## AECN 896-003

Taro Mieno

August 17, 2020

#### Instructors

#### Instructor

Taro Mieno (Office: 209, E-mail: tmieno2@unl.edu)

### Teaching Assistant

Shunkei Kakimoto (E-mail: skakimoto3@huskers.unl.edu)

### Goals of the course

- Learn modern introductory econometric theory
- Apply econometric theories to real economic problems
- ► Learn how to use statistical software (R) so you can conduct research independently (without technical help from your advisor)
  - manage data
  - visualize data
  - run regressions
  - interpret results

#### Text Books

### Required:

Wooldridge, Jeffrey M. 2006. "Introductory Econometrics: A Modern Approach (5th edition)." Mason, OH: Thomson/South-Western.

#### Recommended:

- Florian, Heiss. 2016 "Using R for Introductory Econometrics." CreateSpace Independent Publishing Platform. (free version available online <a href="here">here</a>)
- Norman, Matloff. 2011 "The Art of R Programming: A Tour of Statistical Software Design." No Starch Press. (link to the book on Amazon)

#### Course Schedule

- Lectures (MW), 3:00-4:30pm: by me
- Lab sessions (F), 1:00-2:30pm: led by me and Shunkei

#### Note:

I frequently use R within lectures. You are advised to bring your laptop to every class if you want to get the most out of each lecture.

# Grading

| Problem sets (4 assignments) : | 50%  |
|--------------------------------|------|
| Paper:                         | 50%  |
| Proposal:                      | 5%   |
| Final paper:                   | 45%  |
| Total:                         | 100% |

#### Problem sets

- Most questions are from the required text book
- ▶ Some questions come from what we cover in lab sessions

## Rmarkdown to do and submit your problem sets

- You are required to present your R program
- You learn how to compile your assignment with your R code written in a document using Rmarkdown, which will be covered in the second lab session

- 2nd year students have answers to all the questions I will assign (I will use exactly the same problems because they are really good to learn econometrics)
- You are free to copy and paste (or rephrase) the answers for your assignment. I won't bother to try to tell if you have copied and pasted answers.

- 2nd year students have answers to all the questions I will assign (I will use exactly the same problems because they are really good to learn econometrics)
- You are free to copy and paste (or rephrase) the answers for your assignment. I won't bother to try to tell if you have copied and pasted answers.

- 2nd year students have answers to all the questions I will assign (I will use exactly the same problems because they are really good to learn econometrics)
- You are free to copy and paste (or rephrase) the answers for your assignment. I won't bother to try to tell if you have copied and pasted answers.
- However, you are simply doing dis-service to yourself by depriving yourself of learning opporunities

- 2nd year students have answers to all the questions I will assign (I will use exactly the same problems because they are really good to learn econometrics)
- You are free to copy and paste (or rephrase) the answers for your assignment. I won't bother to try to tell if you have copied and pasted answers.
- ► However, you are simply doing dis-service to yourself by depriving yourself of learning opporunities
- Moreover, your lack of understanding of the material will be clearly manifested on your final paper (I am not at all shy of giving bad grades on the final paper)

## Paper

#### In this assignment,

- you write
  - a paper proposal with in-class presentation (5 points)
  - a paper with a particular emphasis on econometric analysis using a real world data set (45 points)
- you are encouraged to use the data set you are using for your masters thesis (talk with your advisor)
- you need to ensure that you use a panel dataset
- No presentation of your final paper

## Paper

Here is the time line of the paper assignment:

- Oct, 7: identify a research topic and the data set you will be using, and get an approval from the instructor
- Oct, 21: paper proposal and presentation
- ▶ Dec, 9: final paper

## Paper Proposal

#### Introduction

- 1. clear identification of what you are trying to find out (research question)
- 2. why the research question is worthwhile answering

### Simple Model

- dependent variable (the variable to be explained)
- explanatory variable (variables to be explain)

#### Data Source

1. where you get data

# Final Paper

#### Introduction

- 1. clear identification of what you are trying to find out (research question) [1 point]
- 2. why the research question is worthwhile answering [1 point]

### Data description

- 1. the nature of the data with summary statistics table [1 point]
- 2. visualize a few key variables in a meaningful way [3 points]

# Final Paper

#### **Econometric Methods:**

the process of how you end up with the final econometric models and methods. [40 points (or more)]

- 1. justification of your choice of independent variables
- 2. potential endogeneity problems
- 3. what did you do to address the endogeneity problems?
- 4. justification of econometric model(s) and method(s)
- 5. identify appropriate standard error estimation methods

#### Results, Discussions, and Conclusions:

- 1. interpret and describe the results [2 points]
- 2. implications of the results [1 point]
- 3. conclusions [1 point]



# What is econometrics about?

#### What econometrics is about

#### **Econometrics**

Estimate quantitative relationships between variables

### Examples:

- the impact of fertilizer on crop yield
- the impact of political campaign expenditure on voting outcomes
- the impact of education on wage

# Steps in Econometric Analysis

- 1. formulation of the question of interest (what are you trying to find out?)
- 2. develop an economic model of the phenomenon you are interested in understanding (identify variables that matter)
- 3. turn the economic model into an econometric model
- 4. collect data
- 5. estimate the model using econometrics
- 6. test hypotheses

## Step 2: Develop an economic model

## Job training and worker productivity

```
wage = f(educ, exper, training)
```

- wage: hourly wage
- educ: years of formal education
- exper: years of workforce experience
- training: weeks spent in job training

(Depending on questions you would like to answer, the economic model can be much more involved)

## Step 3: Develop an econometric model

## Job training and worker productivity

$$wage = f(educ, exper, training)$$

The form of the function  $f(\cdot)$  must be specified (almost always) before we can undertake an econometric analysis

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 training + u$$

# Step 3: Develop an econometric model

#### The econometric model

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 training + u$$

$$\theta = \{\beta_0, \beta_1, \beta_2, \beta_3\}$$

- are the parameters of the econometric model.
- describe the directions and strengths of the relationship between wage and the factors used to determine wage in the model

и

- is called error term
- includes ALL the other factors that can affect wage other than the included variables (like innate ability)

# Step 4: Collect data

- survey
- websites
- experiment

## Data types

#### Cross-sectional Data

- a sample of individuals, households, firms, cities, states, countries, or a variety of other units, taken at a given point in time
- the data on all units do not correspond to precisely the same time period
  - some families surveyed during different weeks within a year

## Cross-sectional Data

|      | wage  | educ | exper | female | married |
|------|-------|------|-------|--------|---------|
| 1:   | 3.10  | 11   | 2     | 1      | 0       |
| 2:   | 3.24  | 12   | 22    | 1      | 1       |
| 3:   | 3.00  | 11   | 2     | 0      | 0       |
| 4:   | 6.00  | 8    | 44    | 0      | 1       |
| 5:   | 5.30  | 12   | 7     | 0      | 1       |
|      |       |      |       |        |         |
| 522: | 15.00 | 16   | 14    | 1      | 1       |
| 523: | 2.27  | 10   | 2     | 1      | 0       |
| 524: | 4.67  | 15   | 13    | 0      | 1       |
| 525: | 11.56 | 16   | 5     | 0      | 1       |
| 526: | 3.50  | 14   | 5     | 1      | 0       |

## Data types

#### Time-series Data

Observations on a variable or several variables over time

### **Examples**

- corn price
- oil price
- ► The econometric frameworks necessary to analyze time series data are quite different from those for cross-sectional data
- ▶ We do NOT learn time-series econometric methods

## Data types

## Panel (Longitudinal) Data

time series for each cross-sectional member in the data set (same cross-sectional units are tracked over a given period of time)

## **Examples**

- wage data for individuals collected every five years over the past 30 years
- yearly GDP data for 60 countries over the past 10 years

#### **Notes**

- Panel data are much more common than they used to be
- Panel data econometric methods take advantage of the panel data structure

# Panel (Longitudinal) Data

```
county year crmrte prbarr prbpris
  1:
             81 0.0398849 0.289696 0.472222
  2:
             82 0.0383449 0.338111 0.506993
     1 83 0.0303048 0.330449 0.479705
 3:
 4:
     1 84 0.0347259 0.362525 0.520104
 5:
             85 0.0365730 0.325395 0.497059
626:
       197
             83 0.0155747 0.226667 0.428571
627:
       197
             84 0.0136619 0.204188 0.372727
628:
       197
             85 0.0130857 0.180556 0.333333
629:
       197
             86 0.0128740 0.112676 0.244444
630:
       197
             87 0.0141928 0.207595 0.360825
```

# Step 5 and 6

This is what you learn for the next few months!!

- estiamte the model using econometrics
- test hypothesis

#### Association

An association of two variables arise because either of or both variables affect the other variable

$$A \longleftrightarrow B$$

Association does not concern which affects which. This is what correlation coefficient measures.

#### Causality

Causal effect is the impact of one variable on the other,

$$A \rightarrow B$$

Here, changes in A cause changes in B

An interesting CM Click here for an interesting Youtube video

## An interesting CM

Click here for an interesting Youtube video

## So, the guy is trying to convince you that

- ightharpoonup wear glasses ightarrow much smarter than those who don't
- lacktriangle wear glasses ightarrow more likely to pursue higher education
- lacktriangle wear glasses ightarrow 200% more likely to graduate college

## An interesting CM

Click here for an interesting Youtube video

## So, the guy is trying to convince you that

- ▶ wear glasses → much smarter than those who don't
- lacktriangle wear glasses ightarrow more likely to pursue higher education
- lacktriangle wear glasses ightarrow 200% more likely to graduate college

So, wearing glasses has causal positive impacts on some good qualities. Buy glasses!!

But, isn't this more like the true mechanism? nerd  $\rightarrow$  more time studying  $\rightarrow$  much smarter (knowledgeable), more likely to pursue higher education and graduate college, and wear glasses

## So,

Wearing glasses are associated with the good qualities, but do not cause them

#### Causal Effect

Almost always, we care about isolating causal effects, but not association

- ightharpoonup wear glasses ightarrow smart
- ▶ education → income
- ightharpoonup nitrogen ightarrow yield

# Endogeneity: Your Nemesis

## Causality and Association

#### Causality and Association

It is super easy to find an association of multiple variables, but it is incredibly hard to find a causal effect (at least in Economics)!!

## Endogeneity

#### You are interested in

the causal impact of fire fighters on the number of death tolls in fire events

### The (Fake) Data

| Fire event | death toll | # of fire fighters |
|------------|------------|--------------------|
| 1          | 10         | 20                 |
| 2          | 0          | 3                  |
| 3          | 5          | 10                 |
| 4          | 3          | 5                  |
| 5          | 50         | 50                 |

## Endogeneity

#### The (Fake) Data

| Fire event | death toll | # of fire fighters |
|------------|------------|--------------------|
| 1          | 10         | 20                 |
| 2          | 0          | 3                  |
| 3          | 5          | 10                 |
| 4          | 3          | 5                  |
| 5          | 50         | 50                 |

#### Questions

- ► How are they associated?
- ► Can you say anything about the causal effect of fire fighters deployment on the number of death tolls?

## Causality and Association

What happened?

## Causality and Association

### What happened?

You ignored an important variable!!

| Fire event | death toll | # of fire fighters | scale |
|------------|------------|--------------------|-------|
| 1          | 10         | 20                 | 40    |
| 2          | 0          | 3                  | 5     |
| 3          | 5          | 10                 | 20    |
| 4          | 3          | 5                  | 10    |
| 5          | 50         | 50                 | 100   |

### **Endogeneity Problem**

Variables of interest are correlated with some unobservables (variables that cannot be observed or are missing) that have non-zero impacts on the variable that you want to explain

#### In the above example,

variable of interest: the number of firefighters

unobservables: the scale of fire events (and other factors)

variable to explain: death toll

#### The model

death toll = 
$$\alpha + \beta \#$$
 of fire fighters + ( $\gamma$  scale +  $\nu$ )

#### **Endogeneity Problem**

# of fire fighters is correlated with scale, which we ignored

#### Another example: education on wage

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 training + u$$

► What are unobservables in *u* that are likely to be correlated with *educ*?

### Another example: education on wage

$$wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 training + u$$

▶ What are unobservables in *u* that are likely to be correlated with *educ*?

#### An important unobservable

- ightharpoonup innate ability ightharpoonup wage
- ▶ innate ability → education

#### Many sources of endogeneity problems

Most of the time, you will be faced with endogeneity problems caused by at least one of the followings,

- omitted variables (the scale of fire events, innate ability)
- self-selection
- simultaneity
- measurement error

A lot more on this later.

#### Central question

How can we avoid or solve endogneity problems?

## How to deal with endogeneity?

- You have two opportunities to deal with endogeneity problems
  - at the design stage
  - ▶ at the regression stage (what you will learn in this course)

## How to deal with endogeneity?

- You have two opportunities to deal with endogeneity problems
  - at the design stage
  - at the regression stage (what you will learn in this course)
- ► Econometrics has evolved to address endogeneity problems at the regression stage because randomized experiments are infeasible most of the time

### How to deal with endogeneity?

- You have two opportunities to deal with endogeneity problems
  - at the design stage
  - at the regression stage (what you will learn in this course)
- Econometrics has evolved to address endogeneity problems at the regression stage because randomized experiments are infeasible most of the time
- ► How about econometrics and other fields of statistics: Statistics, Psychometrics, and Biometrics?

| Field             | Design               | Estimation Method |
|-------------------|----------------------|-------------------|
| Econometrics      | not feasible (often) | intricate         |
| Many other fields | feasible             | relatively simple |

## Deal with endogneity

#### Randomized Experiments

- you have a liberty to determine the level of the variable of interest
- by randomizing the value of the variable of interest, you can effectively break the link (association) with whatever is included in the error term

### Randomized Experiments



### **Important**

Soil quality (in error term) is still not held fixed (moves together with N), but it is no longer correlated with N!!



### Randomized Experiments on Education?

#### Randomized Experiment?

Researchers determine randomly how much education subjects can get?

## Randomized Experiments on Education?

#### Randomized Experiment?

Researchers determine randomly how much education subjects can get?

#### (Most) Economic data

are confounded with peoples' decisions

- how much education one get is determined based on their judgment of their own ability (not by rolling a dice)
- how many fire fighters to be deployed was determined based on the scale of fire (not by rolling a dice)

### Prediction vs. Causality

#### Prediction

- ▶ interested in the state of the dependent variable predicted by the model in order to act on it
  - commodity price
  - forest coverage
- endogeneity does not matter, but fit  $(R^2)$  matters