

III. országos magyar matematikaolimpia

XXX. EMMV

Déva, 2020. február 11–16.

V. osztály

1. feladat. Tudor magassága $\frac{4}{3}$ -a Morgó magasságának, Szundi magassága pedig 10 cm-rel több, mint Morgó magasságának a $\frac{2}{3}$ -a. Szundi, Hapci, Vidor, Szende és Kuka magasságai egymás utáni természetes számok ebben a sorrendben. Ha a hét törpe átlagmagassága 45 cm, határozd meg a magasságukat külön-külön!

Nagy Örs, Kolozsvár Vészi Gabriella, Marosvásárhely

Megoldás. A 7 törpe átlagmagassága 45 cm, így magasságaiknak összege $45 \cdot 7 = 315$ cm. (1 pont) Szakaszos ábrázolás módszerével kapjuk, hogy

Innen következik, hogy

$$a = \frac{315 - (10 + 11 + 12 + 13 + 14)}{17} = \frac{255}{17} = 15,$$
 (3 pont)

ahonnan a törpék magassága rendre:

M: 45 cm; T: 60 cm; Szu: 40 cm; H: 41 cm; V: 42 cm; Sze: 43 cm; K: 44 cm. (2 pont)

Hivatalból (1 pont)

2. feladat. Határozd meg azokat az x és y nullától különböző természetes számokat, amelyekre

$$7^{x+1} + 19^{y-1} - 382 = 2020.$$

Nagy Örs, Kolozsvár Vészi Gabriella, Marosvásárhely Első megoldás. A megadott összefüggés alapján

$$7^{x+1} + 19^{y-1} = 2402$$
, minden $x, y > 1$ esetén. (1 pont)

Mivel
$$7^2 = 49$$
, $7^3 = 343$, $7^4 = 2401$ és $7^5 > 2402$, (1 pont)

következik, hogy az
$$(x + 1)$$
 szám 2, 3 vagy 4 lehet, tehát az x szám 1, 2 vagy 3 lehet. (1 pont)

Ha x = 1, akkor behelyettesítéssel a

$$49 + 19^{y-1} = 2402$$

összefüggést kapjuk, ahonnan következik, hogy $19^{y-1} = 2353$. Ez viszont lehetetlen, mert a 19 bármilyen természetes hatványának az utolsó számjegye 1-es vagy 9-es, tehát nem lehet 3-as. (2 pont)

Ha x=2, akkor behelyettesítéssel a

$$343 + 19^{y-1} = 2402$$

összefüggést kapjuk, ahonnan következik, hogy $19^{y-1} = 2059$. Mivel $19^2 = 361 < 2059$, valamint $19^3 = 6859 > 2059$, ez az eset is lehetetlen. (2 pont)

Ha x=3, akkor behelyettesítéssel a

$$2401 + 19^{y-1} = 2402$$

összefüggést kapjuk, ahonnan következik, hogy $19^{y-1}=1$. Ez csak akkor lehetséges, hay-1=0, vagyis hay=1.

Tehát
$$x=3$$
 és $y=1$ az egyetlen megoldás. (2 pont)
Hivatalból (1 pont)

Második megoldás. A megadott összefüggés alapján

$$7^{x+1} + 19^{y-1} = 2402$$
, minden $x, y \ge 1$ esetén. (1 pont)

Mivel
$$19^0 = 1$$
, $19^1 = 19$, $19^2 = 361$ és $19^3 = 6859 > 2402$, (1 pont)

következik, hogy az
$$(y-1)$$
 szám 0, 1, vagy 2 lehet, tehát az y szám 1, 2 vagy 3. (1 pont)

Ha y=1, akkor behelyettesítéssel a

$$7^{x+1} + 1 = 2402$$

összefüggést kapjuk, ahonnan következik, hogy $7^{x+1} = 2401$. Ez viszont azt jelenti, hogy x+1=4, vagyis x=3. (2 pont)

Ha y=2, akkor behelyettesítéssel a

$$7^{x+1} + 19 = 2402$$

összefüggést kapjuk, ahonnan következik, hogy $7^{x+1} = 2383$. Mivel $7^3 = 343 < 2383$, valamint $7^4 = 2402 > 2383$, ez az eset lehetetlen. (2 pont)

Ha y = 3, akkor behelyettesítéssel a

$$7^{x+1} + 361 = 2402$$

összefüggést kapjuk, ahonnan következik, hogy $7^{x+1}=2041$. Mivel $7^3=343<2041$, valamint $7^4=2402>2041$, ez az eset is lehetetlen.

Tehát x=3 és y=1 az egyetlen megoldás. (2 pont) Hivatalból (1 pont)

3. feladat. Az Óperenciás-tenger Nevenincs szigetéről egy hajó indul a Kincsek szigetére. Két óra múlva néhány kalóz motorcsónakkal a hajó után indul. Újabb négy óra múlva a kalózok utolérik és megelőzik a hajót, így egy órával hamarabb érnek a Kincsek szigetére. Hány óra alatt tette meg a két sziget közötti utat a hajó, illetve a motorcsónak külön-külön, ha végig ugyanazon az útvonalon haladtak és végig állandó volt a sebességük?

Nagy Örs, Kolozsvár Vészi Gabriella, Marosvásárhely

Megoldás. A találkozás pillanatáig a hajó 6 órát, míg a motorcsónak 4 órát haladt a vízen.

(2 pont)

Ezért ugyanazt a távot a hajó 3 óra alatt, míg a motorcsónak 2 óra alatt teszi meg. (2 pont) Mivel a motorcsónak 1 órával hamarabb ért a célba, ezért a csónak még 2 órát és a hajó még 3 órát haladt. (3 pont)

Így összesen a hajó 6+3=9 óra alatt, míg a motorcsónak 4+2=6 óra alatt tette meg a távot.

(2 pont)

Hivatalból (1 pont)

4. feladat. Egy 3×3 -as táblázatot úgy töltünk ki egymástól különböző természetes számokkal, hogy minden sor, oszlop és átló mentén a középső szám négyzete egyenlő legyen a másik két szám szorzatával.

a) Töltsd ki a táblázatot, ha a középső négyzetben 6-os van!

- b) Kitölthető-e a táblázat, ha a 6-os helyett a középső négyzetben egy prímszám szerepel?
- c) Ha a középső négyzetben tetszőleges összetett szám van, akkor kitölthető-e a táblázat?

Simon József, Csíkszereda

Megoldás. a) A középső 6-os szám négyzete a következő módokon bontható fel két szám szorzatára:

$$6^2 = 36 = 1 \cdot 36 = 2 \cdot 18 = 3 \cdot 12 = 4 \cdot 9.$$
 (2 pont)

Ezért az átlókra, a középső oszlopra és sorra az

$$1 \text{ és } 36, \quad 2 \text{ és } 18, \quad 3 \text{ és } 12, \quad 4 \text{ és } 9$$

számpárok kerülnek a 6-os mellé. Az 1-es szám csak a sarokban szerepelhet, a vele szemben lévő sarkokba a 36-os kerül. Írjuk az 1-est például a jobb alsó, míg a 36-ost a bal felső sarokba.

36		
	6	
		1

A 2-est és a 3-ast nem írhatjuk a maradék sarkokba, mert $1\cdot 2$ és $1\cdot 3$ nem négyzetszámok.

Ha a 2-es a 36-os mellett szerepel, akkor a 2-es másik oldalán a $\frac{36}{2^2} = 9$ -es számnak kell szerepelnie. Emiatt a 6-ra nézve a 9-essel szembe a 4-est kell írni. De ekkor a 6-ra nézve a 2-essel szembe is 2-est kellene írnunk, mert $2^2 = 1 \cdot 4$, ami nem megengedett. Tehát a 2-es nem szerepelhet a 36-os mellett.

36		4
2	6	2
9		1

36	2	9
	6	
4	2	1

Hasonlóan az előző esethez, ha a 3-as a 36-os mellett szerepel, akkor a 3-as másik oldalán a $\frac{36}{3^2}=4$ számnak kell szerepelnie. Emiatt a 6-ra nézve a 4-essel szembe a 9-est kell írni. De ekkor a 6-ra nézve a 3-assal szembe is 3-ast kellene írnunk, mert $3^2=1\cdot 9$, ami nem megengedett. Tehát a 3-as sem szereplhet a 36-os mellett.

36		9
3	6	3
4		1

36	3	4
	6	
9	3	1

Arra jutottunk, hogy a 2-es is és a 3-as is az 1-es mellett kell legyen. Emiatt a 2-es melletti másik sarokba a 4-es kerül, míg a 3-as melletti másik sarokba a 9-es. (2 pont)

A 4-es és a 36-os közé a 12-es kerül, mert $4 \cdot 36 = 4 \cdot 3 \cdot 3 \cdot 4 = 12^2$. A 9-es és a 36-os közé a 18-as kerül, mert $9 \cdot 36 = 9 \cdot 2 \cdot 2 \cdot 9 = 18^2$. Így kapjuk az alábbi kitöltést. (1 pont)

36	18	9
12	6	3
4	2	1

(1)

Megjegyzés. Az 1-est írhatjuk más sarokba is, illetve a 2-es és a 3-as is kerülhet más sorrendben az 1-es mellé, így még 7 fajta kitöltése van a táblázatnak.

36	12	4	1	2	4	1	3	9	4	12	36	9	18	36	9	3	1	4	2	1
18	6	2	3	6	12	2	6	18	2	6	18	3	6	12	18	6	2	12	6	3
9	3	1	9	18	36	4	12	36	1	3	9	1	2	4	36	12	4	36	18	9

- b) Egy p prímszámot nem írhatunk a 6-os helyére, mert p^2 csak egyféleképpen bontható fel úgy, hogy ne ismétlődjenek a számok: $p^2 = 1 \cdot p$. Így legfeljebb csak egy átlót, sort vagy oszlopot tudunk kitölteni anélkül, hogy számokat ismételnénk. (2 pont)
- c) A 6 helyett egy $a\cdot b$ ($a\neq b,\, a>1,\, b>1$) összetett számot írva a táblázat a következőképpen tölthető ki:

36	18	9		$2^2 \cdot 3^2$	$2 \cdot 3^2$	3^{2}		$a^2 \cdot b^2$	$a \cdot b^2$	b^2
12	6	3	\longrightarrow	$2^2 \cdot 3$	$2 \cdot 3$	3	\longrightarrow	$a^2 \cdot b$	$a \cdot b$	b
4	2	1		2^{2}	2	1		a^2	\overline{a}	1

(2 pont)

Hivatalból (1 pont)