RN SHETTY TRUST® RNS INSTITUTE OF TECHNOLOGY

Autonomous Institution Affiliated to VTU, Recognized by GOK, Approved by AICTE (NAAC 'A+ Grade' Accredited, NBA Accredited (UG - CSE, ECE, ISE, EIE and EEE) Channasandra, Dr. Vishnuvardhan Road, Bengaluru - 560 098
Ph:(080)28611880,28611881 URL: www.rnsit.ac.in

Department of CSE (AI & ML)

21AI63- MACHINE LEARNING IA 3 - Question Bank

Module 2

	SL.NO QUESTION			
V	1.	In context to prepare the data for Machine Learning algorithms, Write a note on (i) Data Cleaning (ii) Handling text and categorical attributes iii) Feature scaling	2	
\ <u>\</u>	2.	Using code snippets, outline the concepts involved in i) Measuring accuracy using Cross-Validation. ii) Confusion Matrix. iii) Precision and Recall.	2	
16	3.	With the code snippets show how Grid Search and Randomized Search helps in Fine Tuning a model.	2	
\sim	4.	Design a machine learning pipeline for real estate model.	2	
pr	5.	Explain the steps in end to end machine learning project.	2	
8	6.	How to discover and visualize data to gain insights.	2	
	7.	What is data cleaning, explain with suitable example.	2	
7 %	8.	With the code snippet explain how Multilabels classification different from multiclass Multioutput classification?	2	

Module 5

	SL.NO	QUESTION	COs
X	1.	Explain the concept of Bayes theorem with an example.	5
1	2.	Explain Bayesian belief network and conditional independence with example.	5
5,12	3.	Explain Brute force MAP hypothesis learner and minimum description length principle.	5
	4.	Define (i) Prior Probability (ii) Conditional Probability (iii) Posterior Probability	5

	5.	Explain the concept of EM Algorithm. Explain Naïve Bayes Classifier with an Example.								
(6.									
6	7.	Discuss Maximum Likelihood and Least Square Error Hypothesis.								
	8.	Describe Maximum Likelihood Hypothesis for predicting probabilities.								
\0	9.	Apply Naïve Bayes algorithm to classify given instance using below training data. New Instance: (Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong)								
		Day Outlook D1 Sunny D2 Sunny D3 Overcast D4 Rain D5 Rain D6 Rain D7 Overcast D8 Sunny D9 Sunny D10 Rain D11 Sunny D12 Overcast D13 Overcast D14 Rain	Hot Hot Hot Cool Cool Mild Cool Mild Cool Mild Mild Mild Mild Mild Mild Mild Mil	High High High High Normal Normal Normal High Normal Normal Hormal Normal Hormal High Normal	Weak Strong Weak Weak Strong Strong Weak Weak Strong Strong Strong Strong	No No Yes Yes Yes No Yes No Yes Yes No Yes Yes Yes Yes Yes Yes Yes You				
	10.		Tabl Color Type O Red Sports D Red Sports D Red Sports D Yellow Sports D Yellow Sports Ir Yellow SUV Ir	e rigin Stolen omestic Yes omestic No	ng Naïve bay	yes classifier (08 Marks)	5			
