Московский физико-технический институт Физтех-школа прикладной математики и информатики

САША ДУРАНЧЕЛУС ПЫТАЕТСЯ ВОССТАНОВИТЬСЯ В МФТИ IV CEMECTP

Сделал Акантьев Александр (частично спиздил)

Содержание

1	Вве	едение	в математический анализ	4
	1.1	Преде	ел числовой последовательности. Единственность предела	4
		1.1.1	Предел числовой последовательности	4
		1.1.2	Единственность предела	4
		1.1.3	Свойства предела, связанные с неравенствами	5
		1.1.4	Арифметические операции со сходящимися последовательностями	6
		1.1.5	Теорема Вейерштрасса о пределе монотонной ограниченной последо-	
			вательности	7
		1.1.6	Число е	7
		1.1.7	Теорема Кантора о вложенных отрезках	8
		1.1.8	Бесконечно малые и бесконечно большие последовательности и их	
			свойства	8
	1.2	Подпо	оследовательности, частичные пределы. Верхний и нижний пределы	9
		1.2.1	Подпоследовательность, частичные пределы	9
		1.2.2	Верхний и нижний предел числовой последовательности	10
		1.2.3	Теорема Больцано—Вейерштрасса	11
		1.2.4	Критерий Коши сходимости числовой последовательности	12
	1.3	.3 Предел функции одной переменной. Определения по Гейне и по Копп		13
		1.3.1	Предел функции одной переменной. Определения по Гейне и по Ко-	
			ши, их эквивалентность	13
		1.3.2	Свойства пределов функции	14
		1.3.3	Критерий Коши существования предела функции	16
		1.3.4	Различные типы пределов	16
		1.3.5	Существование односторонних пределов у монотонной функции	17
	1.4	Непре	ерывность функции в точке. Свойства	18
		1.4.1	Непрерывность функции в точке. Односторонняя непрерывность	18
		1.4.2	Свойства непрерывных функций	18
		1.4.3	Теорема о переходе к пределу под знаком непрерывной функции	18
		1.4.4	Непрерывность сложной функции	19
		1.4.5	Точки разрыва, их классификация	19
		1.4.6	Разрывы монотонных функций	19
	1.5	Свойс	ства функций, непрерывных на отрезке — ограниченность	20
		1.5.1	Ограниченность	20
		1.5.2	Достижение точных верхней и нижней граней	21
		1.5.3	Теорема о промежуточных значениях непрерывной функции	21

		1.5.4	Теорема об обратной функции	22	
	1.6	Непре	ерывность элементарных функций. Определение показательной функ-		
		ции		23	
		1.6.1	Непрерывность элементарных функций	23	
		1.6.2	Определение показательной функции	23	
		1.6.3	Свойства показательной функции	25	
		1.6.4	Замечательные пределы, следствия из них	26	
2	Ана	алитич	неская Геометрия	28	
3	Мн	огомеј	рный анализ, интегралы и ряды	29	
4	Ли	нейная	а алгебра	30	
5	Kpa	атные	интегралы и теория поля	31	
	5.1	Teope	ма о неявной функции, заданной одним уравнением	31	
6	Дифференциальные уравнения				
	6.1	Прост	сейшие типы уравнений первого порядка: уравнения с разделяющимися		
		перем	енными	32	
		6.1.1	Простейшие типы уравнений первого порядка: уравнения с разделя-		
			ющимися переменными, однородные, линейные, уравнения в полных		
			дифференциалах		
		6.1.2	Интегрирующий множитель	32	
		6.1.3	Уравнение Бернулли или Риккати	32	
		6.1.4	Метод введения параметра для уравнения первого порядка, не раз-		
			решенного относительно производной.	32	
		6.1.5	Методы понижения порядка дифференциальных уравнений	32	
	6.2		іные дифференциальные уравнения и линейные системы	33	
		6.2.1	Линейные дифференциальные уравнения и линейные системы диф-		
			ференциальных уравнений с постоянными коэффициентами	33	
		6.2.2	Формула общего решения линейного однородного уравнения n-го по-		
			рядка	33	
		6.2.3	Отыскание решения линейного неоднородного уравнения в случае,		
			когда правая часть уравнения является квазимногочленом	33	
		6.2.4	Уравнение Эйлера.	33	
	6.3	Форм	ула общего решения линейной однородной системы уравнений	34	

	6.3.1	Формула общего решения линейной однородной системы уравнений	
		в случае простых собственных значений матрицы коэффициентов си-	
		стемы	34
	6.3.2	Формула общего решения линейной однородной системы в случае	
		кратных собственных значений матрицы коэффициентов системы	34
	6.3.3	Отыскание решения линейной неоднородной системы уравнений в	
		случае, когда свободные члены уравнения являются квазимногочле-	
		нами	34
6.4	Матрі	ичная экспонента и ее использование для получения формулы общего	
	решен	ия	35
	6.4.1	Матричная экспонента и ее использование для получения формулы	
		общего решения и решения задачи Коши для линейных однородных	
		и неоднородных систем уравнений	35

1 Введение в математический анализ

1.1 Предел числовой последовательности. Единственность предела . . .

1.1.1 Предел числовой последовательности

Определение 1.1. (Эпсилон окрестность)

$$\forall a \,\forall \varepsilon > 0 \, U_{\varepsilon}(a) = \{x : \rho(x, a) < \varepsilon\}$$
$$U_{\varepsilon}(\pm \infty) = (\pm \infty, \pm \frac{1}{\varepsilon})$$

Определение 1.2. (Предел числовой последовательности)

$$a \in \mathbb{R} = \lim_{n \to +\infty} a_n \Leftrightarrow \forall \varepsilon > 0 \,\exists N \in \mathbb{N} \,\forall n > N : a_n \in U_{\varepsilon}(a)$$

Если

$$a \in \mathbb{R}$$

, то последовательность называется сходящейся

1.1.2 Единственность предела

Теорема 1.1. (Единственность предела) Числовая последовательность может иметь не более чем один предел.

Доказательство. Предположим, что $\exists l_1, l_2 \in \mathbb{R} \mid \lim_{n \to \infty} x_n = l_1, \lim_{n \to \infty} x_n = l_2$. Тогда:

$$\begin{cases} \lim_{n \to \infty} x_n = l_1 \Leftrightarrow \forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \ |x_n - l_1| < \varepsilon \Leftrightarrow l_1 - \varepsilon < x_n < l_1 + \varepsilon \\ \lim_{n \to \infty} x_n = l_2 \Leftrightarrow \forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \ |x_n - l_2| < \varepsilon \Leftrightarrow l_2 - \varepsilon < x_n < l_2 + \varepsilon \end{cases}$$

Рассмотрим $\varepsilon = \frac{l_2 - l_1}{2} > 0, \forall n > max(N_1, N_2)$:

$$\begin{cases} l_1 + \varepsilon = l_1 + \frac{l_2 - l_1}{2} = \frac{l_1 + l_2}{2} \\ l_2 - \varepsilon = l_2 - \frac{l_2 - l_1}{2} = \frac{l_1 + l_2}{2} \end{cases}$$

Теорема 1.2. (Предел произведения б.м. и ограниченной последовательностей) Если $\{x_n\}_{n=1}^{\infty}$ - бесконечно малая, а $\{y_n\}_{n=1}^{\infty}$ ограничена, то $\{x_ny_n\}_{n=1}^{\infty}$ - бесконечно малая последовательность.

Доказательство.
$$\{y_n\}_{n=1}^{\infty}$$
 - ограниченная $\Rightarrow \exists M>0 \mid \forall n\in\mathbb{N} \mid y_n\mid\leqslant M$ $\{x_n\}_{n=1}^{\infty}$ - бесконечно малая $\Rightarrow \forall \varepsilon>0 \;\exists N\in\mathbb{N} \mid \forall n>N \;|x_n|<\frac{\varepsilon}{M}$

ФПМИ МФТИ, осень 2023

1.1.3 Свойства предела, связанные с неравенствами

Теорема 1.3. (Свойства предела)

- 1. (Ограниченность сходящейся последовательности) Если последовательность сходится, то она ограничена.
- 2. (Отделенность от нуля и сохранение знака) Если последовательность $\{x_n\}_{n=1}^{\infty}$ сходится κ $l \neq 0$, то $\exists N \in \mathbb{N} \mid \forall n > N \ \operatorname{sgn} x_n = \operatorname{sgn} l \ u \ |x_n| > \frac{|l|}{2}$
- 3. (Переход к пределу в неравенстве) Если $\lim_{n\to\infty} x = x_0$, $\lim_{n\to\infty} y = y_0$ и $\exists N\in\mathbb{N}\mid n\geqslant N$ $x_n\leqslant y_n,\ mo\ x_0\leqslant y_0$
- 4. (О промежуточной последовательности) Если $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = l$ и $\exists N\in\mathbb{N}\mid \forall n>N$ $x_n\leqslant y_n\leqslant z_n,$ то $\lim_{n\to\infty} y_n=l$

Доказательство. 1. По условию, $\exists l \in \mathbb{R} \mid \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ |x_n - l| < \varepsilon$.

Положим $\varepsilon := 1 > 0$. Тогда $\forall n > N \ l - 1 < x_n < l + 1$. Отсюда следует, что

$$x_n \leqslant \max(x_1, x_2, \dots, x_N, l+1) \Rightarrow \{x_n\}_{n=1}^{\infty}$$
 — ограничена сверху $x_n \geqslant \min(x_1, x_2, \dots, x_N, l-1) \Rightarrow \{x_n\}_{n=1}^{\infty}$ — ограничена снизу

2. По условию, $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; | \; \forall n > N \; |x_n - l| < \varepsilon \Leftrightarrow l - \varepsilon < x_n < l + \varepsilon.$ Тогда, рассмотрим $\varepsilon := \frac{|l|}{2} > 0.$

$$l > 0 \Rightarrow x_n > l - \varepsilon = \frac{l}{2} > 0$$

 $l < 0 \Rightarrow x_n < l + \varepsilon = \frac{l}{2} < 0$

3. От противного. Пусть $x_0 > y_0$. Тогда, по условию:

$$\lim_{n \to \infty} x_n = x_0 \Leftrightarrow \forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \ x_0 - \varepsilon < x_n < x_0 + \varepsilon$$

$$\lim_{n \to \infty} y_n = y_0 \Leftrightarrow \forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \ y_0 - \varepsilon < y_n < y_0 + \varepsilon$$

Рассмотрим $\varepsilon := \frac{x_0 - y_0}{2} > 0, \forall n > \max(N_1, N_2)$:

$$y_n < y_0 + \varepsilon = \frac{x_0 + y_0}{2} = x_0 - \varepsilon < x_n$$

Получили противоречие.

4. По условию,

$$\begin{cases} \lim_{n \to \infty} x_n = l \Leftrightarrow \forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \ | x_n - l | < \varepsilon \\ \lim_{n \to \infty} z_n = l \Leftrightarrow \forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \ | z_n - l | < \varepsilon \end{cases}$$

Отсюда следует: $l-\varepsilon < x_n \leqslant y_n \leqslant z_n < l+\varepsilon \Rightarrow |y_n-l| < \varepsilon$, то есть $\lim_{n\to\infty} y_n = l$

1.1.4 Арифметические операции со сходящимися последовательностями

Пусть
$$\lim_{n\to\infty} x_n = x_0$$
, $\lim_{n\to\infty} y_n = y_0$. Тогда

- 1. $\lim_{n \to \infty} (x_n + y_n) = x_0 + y_0$
- 2. $\lim_{n \to \infty} (x_n y_n) = x_0 y_0$
- 3. $\lim_{n \to \infty} (x_n \cdot y_n) = x_0 \cdot y_0$
- 4. Если $\forall n \in \mathbb{N} \ y_n \neq 0$ и $y_0 \neq 0$, то $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x_0}{y_0}$

Доказательство. 1-2. По определению

$$\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \ |x_n - x_0| < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \ |y_n - y_0| < \frac{\varepsilon}{2}$$

Рассмотрим $\forall n > \max(N_1, N_2)$, тогда

$$|(x_n \pm y_n) - (x_0 \pm y_0)| \leqslant |x_n - x_0| + |y_n - y_0| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

3. $\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \ |x_n - x_0| < \frac{\varepsilon}{2}$

Из теоремы выше, $\exists C > 0 \mid \forall n \in \mathbb{N} \mid x_n \mid \leqslant C$

$$\lim_{n \to \infty} y_n = y_0 \Leftrightarrow \forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \ | \ \forall n > N_2 \ |y_n - y_0| < \frac{\varepsilon}{2C}$$

Рассмотрим $\forall n > \max(N_1, N_2)$:

$$|x_n y_n - x_0 y_0| \leqslant |x_n y_n - x_n y_0| + |x_n y_0 - x_0 y_0| = |x_n| \cdot |y_n - y_0| + |y_0| \cdot |x_n - x_0| < C \cdot \frac{\varepsilon}{2C} + \frac{\varepsilon}{2} = \varepsilon$$

4. По условию,

$$\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} \mid \forall n > N_1 \ |x_n - x_0| < \frac{|y_0|}{2} \cdot \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 \ \exists N_2 \in \mathbb{N} \mid \forall n > N_2 \ |y_n - y_0| < \frac{|y_0|^2}{2(|x_0| + 1)} \cdot \frac{\varepsilon}{2}$$

Так как $\lim_{n\to\infty} y_n = y_0 \neq 0$, то начиная с некоторого номера $|y_n| > \frac{|y_0|}{2}$. Будем считать, что это верно $\forall n > N_2$ (иначе можно nodeunymb наше значение N_2 вправо настолько, что это станет верно).

Рассмотрим $\forall n > \max(N_1, N_2)$

$$\begin{aligned} \left| \frac{x_n}{y_n} - \frac{x_0}{y_0} \right| &= \left| \frac{x_n y_0 - y_n x_0}{y_n y_0} \right| \leqslant \frac{|x_n y_0 - x_0 y_0|}{|y_n| \cdot |y_0|} + \frac{|x_0 y_0 - y_n x_0|}{|y_n| \cdot |y_0|} = \\ &= \frac{|x_n - x_0|}{|y_n|} + \frac{|x_0| \cdot |y_0 - y_n|}{|y_n| \cdot |y_0|} < |x_n - x_0| \cdot \frac{2}{|y_0|} + |y_0 - y_n| \cdot \frac{2|x_0|}{|y_0|^2} < \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \cdot \frac{|x_0|}{|x_0| + 1} < \varepsilon \end{aligned}$$

1.1.5 Теорема Вейерштрасса о пределе монотонной ограниченной последовательности

Теорема 1.4. (Вейерштрасса о монотонных последовательностях) Если $\{x_n\}_{n=1}^{\infty}$ ограниченная сверху и неубывающая последовательность, то $\exists \lim_{n\to\infty} x_n = \sup\{x_n\}$. Если же невозрастающая и ограниченная снизу, то $\lim_{n\to\infty} x_n = \inf\{x_n\}$

Доказательство. Приведём доказательство только для ограниченной сверху и неубывающей последовательности.

$$l := \sup\{x_n\} \Leftrightarrow \begin{cases} \forall n \in \mathbb{N} \ x_n \leqslant l \\ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ l - \varepsilon < x_N \leqslant l \end{cases}$$

Рассмотрим $\forall n > N$. Тогда

$$l + \varepsilon > l \geqslant x_n \geqslant x_{n-1} \geqslant \ldots \geqslant x_N > l - \varepsilon \Rightarrow |x_n - l| < \varepsilon$$

То есть

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ | \ \forall n > N | x_n - l | < \varepsilon$$

Что и доказывает наше утверждение.

1.1.6 Число е

Теорема 1.5. (Число Эйлера) Последовательность $\{x_n = (1 + \frac{1}{n})^n\}_{n=1}^{\infty}$ сходится. Её предел называется числом e.

$$e \approx 2,718281828459045...$$

Доказательство. Рассмотрим последовательность $y_n := \left(1 + \frac{1}{n}\right)^{n+1}$. Докажем, что y_n убывает.

$$\frac{y_{n-1}}{y_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \left(\frac{\frac{n}{n-1}}{\frac{n+1}{n}}\right)^{n+1} \cdot \frac{1}{1 + \frac{1}{n-1}} = \left(\frac{n^2}{n^2 - 1}\right)^{n+1} \cdot \frac{1}{1 + \frac{1}{n-1}} = \left(1 + \frac{1}{n^2 - 1}\right)^{n+1} \cdot \frac{1}{1 + \frac{1}{n-1}} \ge \left(1 + \frac{n+1}{n^2 - 1}\right) \cdot \frac{1}{1 + \frac{1}{n-1}} = \left(1 + \frac{1}{n-1}\right) \cdot \frac{1}{1 + \frac{1}{n-1}} = 1, n > 1$$

ФПМИ МФТИ, осень 2023

При этом $\{y_n\}$ - ограниченная снизу последовательность, так как $\forall n \in \mathbb{N} \ y_n \geqslant 0$ Следовательно, по теореме Вейерштрасса $\{y_n\}$ сходится. Её предел равен e. Покажем, что к тому же пределу сходится и x_n :

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n \cdot \left(1 + \frac{1}{n}\right) = e \cdot (1 + 0) = e$$

1.1.7 Теорема Кантора о вложенных отрезках

Определение 1.3. Последовательность вложенных отрезков - это $\{[a_n;b_n]\}_{n=1}^{\infty},\ a_n \leqslant b_n \ \forall n \in \mathbb{N} \ \text{такая, что} \ \forall n \in \mathbb{N} \ [a_n;b_n] \supset [a_{n+1};b_{n+1}]$

Теорема 1.6. (Принцип Кантора вложенных отрезков) Каждая система вложенных отрезков имеет непустое пересечение, то есть

$$\bigcap_{n=1}^{\infty} [a_n; b_n] \neq \emptyset$$

Доказательство. $[a_n;b_n]\supset [a_{n+1};b_{n+1}]\Rightarrow ((a_n\leqslant a_{n+1})\wedge (b_n\geqslant b_{n+1}))$ Следовательно, $\{a_n\}$ - неубывающая, а $\{b_n\}$ - невозрастающая $a_n\leqslant b_n\leqslant b_1$, а $a_1\leqslant a_n\leqslant b_n$, то есть

$$\exists a = \lim_{n \to \infty} a_n = \sup\{a_n\}$$
$$\exists b = \lim_{n \to \infty} b_n = \inf\{b_n\}$$

Так как $\forall n \in \mathbb{N} a_n \leqslant b_n$, то предельный переход даёт неравенство $a \leqslant b$

Ну а учитывая равенства у пределов, получим $a_n \le a \le b \le b_n$, то есть $\forall n \in \mathbb{N} \ [a_n; b_n] \supset [a; b]$, что и доказывает непустоту пересечения.

Определение 1.4. Стягивающейся системой отрезков называется система вложенных отрезков, длины которых образуют б.м. последовательность.

Дополнение. Система стягивающихся отрезков имеет пересечение, состоящее из одной точки.

Доказательство.
$$a_n \leqslant a \leqslant b \leqslant b_n \Rightarrow 0 \leqslant b - a \leqslant b_n - a_n \Rightarrow a = b$$

1.1.8 Бесконечно малые и бесконечно большие последовательности и их свойства

Определение 1.5. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется бесконечно малой, если

$$\lim_{n \to \infty} x_n = 0$$

Теорема 1.7. (Предел произведения б.м. и ограниченной последовательностей) Если $\{x_n\}_{n=1}^{\infty}$ - бесконечно малая, а $\{y_n\}_{n=1}^{\infty}$ ограничена, то $\{x_ny_n\}_{n=1}^{\infty}$ - бесконечно малая последовательность.

Доказательство.
$$\{y_n\}_{n=1}^{\infty}$$
 - ограниченная $\Rightarrow \exists M>0 \mid \forall n\in\mathbb{N} \mid y_n\mid\leqslant M$ $\{x_n\}_{n=1}^{\infty}$ - бесконечно малая $\Rightarrow \forall \varepsilon>0 \mid \exists N\in\mathbb{N} \mid \forall n>N \mid x_n\mid<\frac{\varepsilon}{M}$

Определение 1.6. Последовательностью $\{x_n\}_{n=1}^{\infty}$ называется бесконечно большой, если

$$\lim_{n\to\infty}x_n=-\infty,+\infty$$
 или ∞

Теорема 1.8. (Связь б.м. и б.б. последовательностей) Если $x_n \neq 0 \ \forall n \in \mathbb{N}$, то $\{x_n\}_{n=1}^{\infty}$ - б.м. $\Leftrightarrow \{\frac{1}{x_n}\}_{n=1}^{\infty}$ - б.б.

Доказательство. 1. $\{x_n\}_{n=1}^{\infty}$ - б.м. $\Rightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ |x_n| < \varepsilon$. Отсюда следует, что $\left|\frac{1}{x_n}\right| > \frac{1}{\varepsilon} \Leftrightarrow \frac{1}{x_n} \in U_{\varepsilon}(\infty) \Leftrightarrow \lim_{n \to \infty} \frac{1}{x_n} = \infty$

2.
$$\lim_{n \to \infty} \frac{1}{x_n} = \infty \Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid n > N \ \left| \frac{1}{x_n} \right| > \frac{1}{\varepsilon} \Rightarrow 0 < |x_n| < \varepsilon \Leftrightarrow \lim_{n \to \infty} x_n = 0$$

1.2 Подпоследовательности, частичные пределы. Верхний и нижний пределы . . .

1.2.1 Подпоследовательность, частичные пределы

Определение 1.7. Подпоследовательностью последовательности $\{x_n\}_{n=1}^{\infty}$ называется $\{x_{n_k}\}_{k=1}^{\infty}$, где $\{n_k\}_{k=1}^{\infty}$ - возрастающая последовательность натуральных чисел

Определение 1.8. Частичным пределом последовательности $\{x_n\}_{n=1}^{\infty}$ называется пределеё подпоследовательности.

Теорема 1.9. (Эквивалентное определение частичного предела) Число $l \in \mathbb{R}$ является частичным пределом $\{x_n\}_{n=1}^{\infty}$ тогда и только тогда, когда $\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \mid |x_n - l| < \varepsilon$

Доказательство. 1. l - частичный предел. То есть

$$l = \lim_{k \to \infty} x_{n_k} \Leftrightarrow \forall \varepsilon > 0 \ \exists K \in \mathbb{N} \mid \forall k > K \ |x_{n_k} - l| < \varepsilon$$

При этом помним, что $\{n_k\}$ - возрастающая последовательность натуральных чисел Следовательно, для $\forall N \in \mathbb{N}$ найдётся $K_1 \in \mathbb{N} \mid n_{K_1} > N$, а значит и $n := n_{K_1+1} \Rightarrow n > n_{K_1} > N$, $|x_n - l| < \varepsilon$

В итоге имеем:

$$\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \mid |x_n - l| < \varepsilon$$

2. Пусть для l верно, что $\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \ | \ |x_n - l| < \varepsilon$ Построим сходящуюся подпоследовательность:

$$\varepsilon := 1$$
 $N := 1$ $\exists n_1 \in \mathbb{N} \mid n_1 > 1, |x_{n_1} - l| < 1$
 $\varepsilon := 1/2$ $N := n_1$ $\exists n_2 \in \mathbb{N} \mid n_2 > n_1, |x_{n_2} - l| < 1/2$

По построению $\{x_{n_k}\}_{k=1}^{\infty}$ такова, что $\forall \varepsilon > 0 \ \exists K \in \mathbb{N} \mid \forall k > K \ |x_{n_k} - l| < \varepsilon$

1.2.2 Верхний и нижний предел числовой последовательности

Определение 1.9. Верхним пределом последовательности $\{x_n\}_{n=1}^{\infty} \subset R$ называется наибольший из её частичных пределов $\overline{\lim}_{n \to \infty} x_n$.

Определение 1.10. *Ниэкним пределом последовательности* $\{x_n\}_{n=1}^{\infty} \subset R$ называется наименьший из её частичных пределов $\underset{n\to\infty}{\underline{\lim}} x_n$.

Замечание автора. Следует помнить, что частичный предел может быть бесконечным. Следовательно, верхний и нижний тоже.

Теорема 1.10. (3 определения верхнего и нижнего пределов) Для любой ограниченной последовательности $\{x_n\}_{n=1}^{\infty}$ существуют конечные $L = \overline{\lim_{n \to \infty}} x_n$, $l = \underline{\lim_{n \to \infty}} x_n$. Для них справедливы следующие утверждения:

1.
$$(\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ x_n < L + \varepsilon) \land (\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \ x_n > L - \varepsilon)$$

 $(\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ x_n > l - \varepsilon) \land (\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \ \mid x_n < l + \varepsilon)$

2.
$$L = \lim_{n \to \infty} \sup\{x_n, x_{n+1}, \dots\}; \ l = \lim_{n \to \infty} \inf\{x_n, x_{n+1}, \dots\}$$

Причём определения равносильны (стандартное и эти 2 пункта).

Доказательство. Доказательство приводится только для верхнего предела. Для нижнего просто аналогично.

Рассмотрим последовательность $s_n := \sup\{x_n, x_{n+1}, \dots\} = \sup_{m \geqslant n} x_m$. Мы можем это сделать, так как $\{x_n\}_{n=1}^{\infty}$ ограничена по условию теоремы. Несложно заметить 2 утверждения из данного определения:

$$s_n \geqslant s_{n+1}$$

 $s_n \geqslant \inf\{x_n\}$

А значит по теореме Вейерштрасса, данная последовательность сходится и имеет предел $L := \lim_{n \to \infty} s_n = \inf\{s_n\}.$

Покажем, что для этой последовательности верен первый пункт. По определению предела

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ |s_n - L| < \varepsilon$$

Так как $s_n := \sup\{x_n, x_{n+1}, \dots\}$, то $x_n \leqslant s_n < L + \varepsilon$ (доказано следствие первой части п.1. из п.2.).

Рассмотрим $N \in \mathbb{N}$ и $s_{N+1} = \sup\{x_{N+1}, x_{N+2}, \dots\}$. Так как $L = \inf\{s_n\}$, то

$$s_{N+1} \geqslant L$$

A так как $s_n := \sup\{x_n, x_{n+1}, \dots\}$, то ещё имеем

$$\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \mid x_n > s_{N+1} - \varepsilon \geqslant L - \varepsilon \Rightarrow x_n > L - \varepsilon$$

(доказано следствие второй части п.1. из п.2.)

Теперь докажем, что из пункта 1. L - наибольший частичный предел $\{x_n\}$. Построим подпоследовательность:

$$\varepsilon := 1 \qquad \Rightarrow \exists n_1 \in \mathbb{N} \mid |x_{n_1} - L| < 1$$

$$\varepsilon := 1/2 \qquad \Rightarrow N_2' := \max(N_2, n_1) \ \exists n_2 > N_2' \mid |x_{n_2} - L| < 1/2$$

Существование номера обусловлено тем, что мы вначале применяем первую часть пункта 1., а затем подставляем во вторую часть пункта 1. $N'_i := \max(N_i, n_{i-1})$ и находим такое $n > N'_i$, что для него верны оба неравенства сразу.

Получили $\{x_{n_k}\}_{k=1}^{\infty}$ такую, что $\lim_{k\to\infty} x_{n_k} = L$

Рассмотрим произвольную $\{x_{m_i}\}_{i=1}^{\infty}$ такую, что $\exists\lim_{i\to\infty}x_{m_i}=t$ Из уже доказанного пункта 1. следует, что

$$\forall \varepsilon > 0 \ \exists I \in \mathbb{N} \mid \forall i > I \ x_{m_i} < L + \varepsilon$$

Совершая предельный переход в неравенстве, получим

$$\forall \varepsilon > 0 \ t \leqslant L + \varepsilon$$

Отсюда понятно, что $t \leqslant L$, то есть L действительно наибольший частичный предел. \square

Замечание автора. По моему мнению, ключевая идея выше в том, что мы всегда изза ограниченности можем рассмотреть последовательность s_n и доказать, что её предел либо удовлетворяет другому определению, либо свойством (которое можно принять за определение).

1.2.3 Теорема Больцано—Вейерштрасса

Теорема 1.11. (Больцано-Вейерштрасса) Из каждой ограниченной последовательности можно выделить сходящуюся подпоследовательность

Доказательство. $\{x_n\}_{n=1}^{\infty}$ - ограниченная, то есть $\exists [a_1;b_1]\supset \{x_n\}_{n=1}^{\infty}$

Разделим отрезок пополам. Утверждение: хотя бы 1 из половин содержит бесконечное число членов последовательности.

Пусть $[a_2;b_2]$ - та из половин $[a_1;b_1]$, которая содержит бесконечно много членов последовательности $\{x_n\}$. Продолжая, получим последовательность вложенных отрезков $\{[a_n;b_n]\}_{n=1}^{\infty}$. Так как $b_n-a_n=\frac{b_1-a_1}{2^{n-1}}$.

Следовательно, $\{[a_n;b_n]\}_{n=1}^{\infty}$ - стягивающаяся система, пусть $c=\bigcap_{n=1}^{\infty}[a_n;b_n]$. Докажем, что c - частичный предел.

$$x_{n_1}=x_1\;;\;x_{n_2}\in [a_2;b_2]\;;\;\dots\;;\;x_{n_k}\in [a_k;b_k].$$
 Отсюда $0\leqslant |c-x_{n_k}|\leqslant \frac{b_1-a_1}{2^{n-1}} o 0.$

Дополнение. Каждая числовая последовательность $\forall \{x_n\}_{n=1}^{\infty}$ имеет хотя бы 1 частичный предел, то есть $\exists \{x_{n_k}\}_{k=1}^{\infty} \mid \lim_{k \to \infty} x_{n_k} = l \in \mathbb{R}$

Доказательство. Если последовательность ограничена, то смотрим теорему Больцано-Вейерштрасса. Если последовательность неограничена сверху, то построим подпоследовательность:

$$M := 1$$
 $\Rightarrow \exists n_1 \in \mathbb{N} \mid x_{n_1} > 1$
 $M := \max(2, x_1, x_2, \dots, x_{n_1})$ $\Rightarrow \exists n_2 \in \mathbb{N} \mid x_{n_2} > \max(2, x_{n_2}) \geqslant 2, n_2 > n_1$

Получили $\{x_{n_k}\}_{k=1}^{\infty}$ такую, что $\forall k \in \mathbb{N} \ x_{n_k} > k$. Несложно показать, что данная последовательность - бесконечно большая.

Аналогично доказывается случай, когда последовательность неограничена снизу.

1.2.4 Критерий Коши сходимости числовой последовательности.

Определение 1.11. Последовательность $\{x_n\}_{n=1}^{\infty}$ называется $\phi y n \partial a$ ментальной, или же последовательностью Коши, если $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N, p \in \mathbb{N} \mid x_{n+p} - x_n \mid < \varepsilon$

Теорема 1.12. (Критерий Коши) Последовательность $\{x_n\}_{n=1}^{\infty}$ сходится тогда и только тогда, когда она фундаментальна.

Доказательство. 1. Сходимость \Rightarrow фундаментальность

Пусть $\lim_{n\to\infty} x_n = l$, тогда

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N \ |x_n - l| < \frac{\varepsilon}{2}$$

Тогда,
$$\forall p \in \mathbb{N} \ n+p > N \Rightarrow |x_{n+p}-l| < \frac{\varepsilon}{2}$$

 $|x_{n+p}-x_n| = |x_{n+p}-l+l-x_n| \leqslant |x_{n+p}-l| + |l-x_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

2. Фундаментальность ⇒ ограниченность

Согласно свойству фундаментальности, положим $\varepsilon := 1 \Rightarrow n := N + 1$. Теперь,

$$\forall p \in \mathbb{N} |x_{N+1+n} - x_{N+1}| < 1 \Rightarrow x_{N+1} - 1 < x_{N+1+n} < x_{N+1} + 1$$

Отсюда для $\forall n \in \mathbb{N}$

$$\min(x_1, \dots, x_{N+1}) - 1 < x_n < \max(x_1, \dots, x_{N+1}) + 1$$

3. Φ ундаментальность \Rightarrow ограниченность \Rightarrow сходимость.

Так как последовательность ограничена, то по теореме Больцано-Вейерштрасса можно выделить сходящуюся подпоследовательность.

$$\exists \{x_{n_k}\}_{k=1}^{\infty} \mid \lim_{k \to \infty} x_{n_k} = l$$

По определению предела,

$$\forall \varepsilon > 0 \ \exists K \in \mathbb{N} \mid \forall k > K \ |x_{n_k} - l| < \frac{\varepsilon}{2}$$

При этом исходная последовательность фундаментальна. То есть

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \mid \forall n > N, p \in \mathbb{N} \mid x_{n+p} - x_n \mid < \frac{\varepsilon}{2}$$

Рассмотрим $\forall m > \max(N, n_{K+1})$, тогда

$$|x_m - l| \le |x_m - x_{n_{K+1}}| + |x_{n_{K+1}} - l| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

1.3 Предел функции одной переменной. Определения по Гейне и по Коши, . . .

1.3.1 Предел функции одной переменной. Определения по Гейне и по Коши, их эквивалентность

Определение 1.12. (Предел по Коши)

$$\lim_{x \to a} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x \in \mathring{U}_{\delta}(a) \; f(x) \in U_{\varepsilon}(A)$$

Определение 1.13. (Предел по Гейне)

$$\lim_{x \to a} f(x) = A \Leftrightarrow \left(\forall \{x_n\} \subset X \setminus \{a\} \ \lim_{n \to \infty} x_n = a \right) \ \lim_{n \to \infty} f(x_n) = A$$

Теорема 1.13. Определения предела функции по Коши и по Гейне эквивалентны.

Доказательство. 1. $(K \Rightarrow \Gamma)$

Рассмотрим $\forall \{x_n\} \subset X \setminus \{a\} \mid \lim_{n \to \infty} x_n = a$. По определению предела

$$\forall \delta > 0 \; \exists N \in \mathbb{N} \; \big| \; \forall n > N \; |x_n - a| < \delta$$

Так как $\forall n \in \mathbb{N} \ x_n \in X \setminus \{a\}$, то отсюда следует

$$\forall \delta > 0 \; \exists N \in \mathbb{N} \; \big| \; \forall n > N \; x_n \in \mathring{U}_{\delta}(a)$$

По условию выполнено утверждение:

$$\lim_{x \to a} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta > 0 \; \big| \; \forall x \in \mathring{U}_{\delta}(a) \; f(x) \in U_{\varepsilon}(A)$$

То есть для любого $\varepsilon > 0$ найдётся $\delta > 0$, для которого верно 2 условия:

$$\begin{cases} \exists N \in \mathbb{N} \mid \forall n > N \ x_n \in \mathring{U}_{\delta}(a) \\ \forall x \in \mathring{U}_{\delta}(a) \ f(x) \in U_{\varepsilon}(A) \end{cases}$$

В итоге имеем:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ | \ \forall n > N \ f(x_n) \in U_{\varepsilon}(A) \Leftrightarrow \lim_{n \to \infty} f(x_n) = A$$

2. $(\Gamma \Rightarrow K)$

Докажем от противного, то есть при выполненности определения Гейне неверно определение Коши:

 $\exists \varepsilon > 0 \mid \forall \delta > 0 \ \exists x \in \mathring{U}_{\delta}(a) \mid f(x) \notin U_{\varepsilon}(A)$

Зафиксируем ε и подставим разные δ :

$$\delta := 1 \qquad \exists x_1 \in \mathring{U}_1(a) \qquad f(x_1) \notin U_{\varepsilon}(A)$$

$$\delta := 1/2 \qquad \exists x_2 \in \mathring{U}_{1/2}(a) \qquad f(x_2) \notin U_{\varepsilon}(A)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\delta := 1/n \qquad \exists x_n \in \mathring{U}_{1/n}(a) \qquad f(x_n) \notin U_{\varepsilon}(A)$$

Получили последовательность $\{x_n\}_{n=1}^{\infty} \mid \forall n \in \mathbb{N} \ x_n \in \mathring{U}_{1/n}(a), \ f(x_n) \notin U_{\varepsilon}(A)$

Но при этом, для этой последовательности верно утверждение:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ | \ \forall n > N \ x_n \in \mathring{U}_{\varepsilon}(a) \Leftrightarrow \lim_{n \to \infty} x_n = a$$

А из определения предела по Гейне это будет означать, что

$$\lim_{n \to \infty} f(x_n) = A \Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \big| \ \forall n > N \ f(x_n) \in U_{\varepsilon}(A)$$

Получили противоречие. (Потому что хотя бы для одного ε , которое мы зафиксировали для последовательности, это выполнено не будет)

1.3.2 Свойства пределов функции

1. (о единственности) Если $\lim_{x\to a} f(x) = b$ и $\lim_{x\to a} f(x) = c$, то b=c

Доказательство. Рассмотрим произвольную $\{x_n\} \subset E \setminus \{a\}, x_n \to a$. По определению Гейне:

$$f(x_n) \to b \text{ и } f(x_n) \to c$$

В силу единственности предела последовательности b = c.

2. (о пределе по подмножеству) Если $\lim_{x\to a} f(x) = b$ и a – предельная точка множества $D \subset E$, то $\lim_{x\to a} f|_D(x) = b$.

Доказательство. Рассмотрим $\{x_n\} \subset D \setminus \{a\}, x_n \to a$. Тогда

$$f|_D(x_n) = f(x_n) \to b$$

По определению Гейне, $b = \lim_{x\to a} f|_D(x)$.

3. (о зажатой функции) Пусть $\exists \sigma > 0 \ \forall x \in \overset{o}{B_{\delta}}(a) \cap E \ (f(x) \leqslant h(x) \leqslant g(x))$. Пусть $\lim_{x \to a} f(x) = b$, $\lim_{x \to a} g(x) = b$. Тогда $\exists \lim_{x \to a} h(x) = b$.

Доказательство. Рассмотрим $x_n \subset E \setminus \{a\}, x_n \to a$. Тогда $\exists n_0 \ \forall n \geqslant n_0(x_n \in \overset{o}{B_\delta}(a) \cap E)$ и, значит, $f(x_n) \leqslant h(x_n) \leqslant g(x_n)$. По условию $f(x_n) \to b$, $g(x_n) \to b$. Тогда, по свойству предела последовательности, $h(x_n) \to b \Rightarrow b = \lim_{x \to a} h(x)$.

- 4. (арифметические опреации с пределами) Пусть $\lim_{x\to a} f(x) = b$, $\lim_{x\to a} g(x) = c$. Тогда справедливы следующие утверждения:
 - 1. $\lim_{x\to a} (f(x) \pm g(x)) = b \pm c$.
 - 2. $\lim_{x\to a} (f(x) \cdot g(x)) = b \cdot c$.
 - 3. Если $c \neq 0$ и $g(x) \neq 0$ $\forall x \in E$, то $\lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = \frac{b}{c}$.

Заключение следует понимать так: если существует величина справа, то существует величина слева и они равны.

Доказательство. Рассмотрим произвольную последовательность $\{x_n\} \in E$ с условиями $x_n \to a$ и $x_n \neq a$. Тогда $f(x_n) \to b$ и $g(x_n) \to c$. По свойствам предела последовательности $f(x_n) \pm g(x_n) \to b \pm c$, $f(x_n) \cdot g(x_n) \to b \cdot c$, $\frac{f(x_n)}{g(x_n)} \to \frac{b}{c}$. Осталось воспользоваться определением предела по Гейне.

5. (о локализации) Если $\exists \sigma > 0 \ \forall x \in \overset{\circ}{B_{\sigma}}(a) \cap E \ (f(x) = g(x))$ и $\lim_{x \to a} f(x) = b$, то $\exists \lim_{x \to a} g(x) = b$.

Доказательство. Если в определении Коши предел f для $\epsilon > 0$ подходит $\delta > 0$, то в поределении Коши предел g подходит $\delta' = min\{\delta, \sigma\}$.

6. (о локализации ограниченности) Если $\exists \lim_{x\to a} f(x) \in \mathbb{R}$, то $\exists C > 0 \ \exists \delta > 0 \ \forall x \in \overset{o}{B_{\delta}}(a) \cap E \ (|f(x)| \leqslant C).$

Доказательство. Пусть $\lim_{x\to a} f(x) = b$. Тогда $\exists \delta > 0 \ \forall x \in \overset{o}{B_{\delta}}(a) \cap E \ (b-1 < f(x) < b+1)$. Положим c = |b| + 1. Тогда |f(x)| < c.

- 7. (О пределе композиции.) Пусть $E,D\subset\mathbb{R}$ и $f:E\longrightarrow D$ и $g:D\longrightarrow\mathbb{R}$, такие что $\lim_{x\to a}f(x)=b$ и $\lim_{y\to b}g(y)=c$. Пусть выполнено одно из двух условий:
 - 1) $f(x) \neq b$ в некоторой проколотой окрестности множества a или
 - 2) g(b) = c. Тогда $\lim_{x\to a} g(f(x)) = c = \lim_{y\to b} g(y)$.

Доказательство. Зафиксируем $\epsilon > 0$. По определению предела

$$\exists \sigma > 0 \ \forall y \in \overset{\circ}{B_{\sigma}}(b) \cap D \ (g(y) \in B_{\epsilon}(c))$$

$$\exists \delta > 0 \ \forall y \in \overset{\circ}{B_{\delta}}(a) \cap E \ (f(x) \in B_{\sigma}(b))$$

- 1) Уменьшая δ , если необходимо, можно считать, что $f(x) \neq b$ на $\overset{o}{B_{\delta}}(a) \cap E$. Тогда $f(x) \in \overset{o}{B_{\sigma}}(b) \cap D$. Поэтому $g(f(x)) \in B_{\epsilon}(c) \Rightarrow \lim_{x \to a} g(f(x)) = c$.
- 2) Если f(x) = b для некоторого $x \in B_{\delta}(a)$, то $g(f(x)) = c \in B_{\epsilon}(c)$. Поэтому $\forall x \in B_{\delta}(a) \cap E \ (g(f(x)) \in B_{\epsilon}(c)) \Rightarrow \lim_{x \to a} g(f(x)) = c$.

1.3.3 Критерий Коши существования предела функции

Теорема 1.14.
$$\exists \lim_{x \to a} f(x) \in \mathbb{R} \Leftrightarrow \underbrace{\forall \varepsilon > 0 \ \exists \delta > 0 \mid \forall x_1, x_2 \in \mathring{U}_{\delta}(a) \ |f(x_1) - f(x_2)| < \varepsilon}_{\text{Условие Коши}}$$

Доказательство. Докажем необходимость:

Из определения предела:

$$\lim_{x \to a} f(x) = A \in \mathbb{R} \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x \in \mathring{U}_{\delta}(a) \ |f(x) - A| < \frac{\varepsilon}{2}$$

По неравенству треугольника: $\forall x_1, x_2 \in \mathring{U}_{\delta}(a) |f(x_1) - f(x_2)| \leq |f(x_1) - A| + |A - f(x_2)| < \varepsilon$ Докажем достаточность:

Рассмотрим $\forall \{x_n\} \subset X \setminus \{a\} \mid \lim_{n \to \infty} x_n = a$. Из определения предела:

$$\lim_{n \to \infty} x_n = a \Leftrightarrow \forall \delta > 0 \ \exists N \in \mathbb{N} \ \big| \ \forall n > N \ x_n \in \mathring{U}_{\delta}(a)$$

Согласно этому утверждению и условию Коши, мы получаем

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ | \ \forall n, m > N \ |f(x_n) - f(x_m)| < \varepsilon$$

Что в точности означает фундаментальность последовательности $f(x_n)$, то есть она сходящаяся.

1.3.4 Различные типы пределов

Определение 1.14. Пусть f определена на $(a;b) \mid -\infty < a < b < +\infty$ Левосторонним пределом в точке b называется $B \in \mathbb{R} \cup \{\infty\}$ такое, что

1.
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x, b - \delta < x < b \ f(x) \in U_{\varepsilon}(B)$$

2.
$$\forall \{x_n\}_{n=1}^{\infty} \subset (a;b), \lim_{n \to \infty} x_n = b \lim_{n \to \infty} f(x_n) = B$$

Обозначается как

$$f(b-0) := \lim_{x \to b} f(x) = B$$

Правосторонним пределом в точке a называется $A \in \mathbb{R} \cup \{\infty\}$ такое, что

1.
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x, \ a < x < a + \delta \ f(x) \in U_{\varepsilon}(A)$$

2.
$$\forall \{x_n\}_{n=1}^{\infty} \subset (a;b), \lim_{n \to \infty} x_n = a \lim_{n \to \infty} f(x_n) = A$$

Обозначается как

$$f(b+0) := \lim_{x \to a+0} f(x) = A$$

Определение 1.15. $(b-\delta;b)$ называется *певосторонней* окрестностью точки b. $(a;a+\delta)$ называется *правосторонней* окрестностью точки a.

Теорема 1.15. (Связь предела и односторонних пределов) Пусть f ограничена в $U_{\delta}(a)$, $a \in \mathbb{R}$. Тогда

$$\exists \lim_{x \to a} f(x) \Leftrightarrow \exists \lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x)$$

Доказательство. 1. Пусть $\exists \lim_{x \to a} f(x) = A$, тогда

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x, \ 0 < |x - a| < \delta, \ f(x) \in U_{\varepsilon}(A)$$

Отсюда следует, что $\forall x \mid a < x < a + \delta$, $f(x) \in U_{\varepsilon}(A)$ и $\forall x \mid a - \delta < x < a$, $f(x) \in U_{\varepsilon}(A)$, что равносильно утверждению справа.

2. Пусть $\exists \lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = A$. Тогда

$$\forall \varepsilon > 0 \ \exists \delta_1 > 0 \ | \ \forall x, \ a - \delta_1 < x < a \ f(x) \in U_{\varepsilon}(A)$$

 $\forall \varepsilon > 0 \ \exists \delta_2 > 0 \ | \ \forall x, \ a < x < a + \delta_2 \ f(x) \in U_{\varepsilon}(A)$

Выберем $\delta := \min(\delta_1, \delta_2)$, получим

$$\delta_1 \geqslant \delta \Rightarrow a - \delta_1 \leqslant a - \delta$$

 $\delta_2 \geqslant \delta \Rightarrow a + \delta_2 \geqslant a + \delta$

Рассмотрим $\forall x \in \mathring{U}_{\delta}(a)$:

$$a < x < a + \delta \Rightarrow a < x < a + \delta_2$$
$$a - \delta < x < a \Rightarrow a - \delta_1 < x < a$$

Любой из этих случаев ведёт к тому, что $f(x) \in U_{\varepsilon}(A)$. А значит

$$\forall \varepsilon > 0 \exists \delta > 0 \mid \forall x, \ x \in \mathring{U}_{\delta}(a) \ f(x) \in U_{\varepsilon}(A)$$

Что равносильно левой стороне утверждения.

1.3.5 Существование односторонних пределов у монотонной функции

Теорема 1.16. (Существование односторонних пределов монотонной функции) Если f монотонна на $(a;b), -\infty < a < b < +\infty, mo$

$$\exists \lim_{x \to a+0} f(x) \in \bar{\mathbb{R}}, \ \lim_{x \to b-0} f(x) \in \bar{\mathbb{R}}$$

причём если f неубывающая, то

$$\lim_{x \to a+0} f(x) = \inf_{x \in (a;b)} f(x), \ \lim_{x \to b-0} f(x) = \sup_{x \in (a;b)} f(x)$$

если f невозрастающая, то

$$\lim_{x \to a+0} f(x) = \sup_{x \in (a;b)} f(x), \ \lim_{x \to b-0} f(x) = \inf_{x \in (a;b)} f(x)$$

Доказательство. Пусть f неубывающая. Положим $\sup_{x \in (a;b)} f(x) := M$

1.
$$M = +\infty$$
. Тогда

$$\forall \varepsilon > 0 \ \exists x_0 \in (a; b) \mid f(x_0) > \frac{1}{\varepsilon}$$

Отсюда $\exists \delta := b - x_0 > 0 \mid \forall x, b - \delta < x < b \Rightarrow \frac{1}{\varepsilon} < f(x) \leqslant f(x)$, то есть $f(x_0) \in U_{\varepsilon}(+\infty)$. В итоге

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; | \; \forall x, \, b - \delta < x < b \; f(x) \in U_{\varepsilon}(M) \Leftrightarrow \lim_{x \to b - 0} f(x) = +\infty = M$$

2. $M < +\infty$. Тогда

$$\forall \varepsilon > 0 \ \exists x_0 \in (a; b) \mid f(x_0) \in (M - \varepsilon; M]$$

Отсюда уже аналогично получим, что

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x, b - \delta < x < b \ f(x) \in U_{\varepsilon}(M) \Leftrightarrow \lim_{x \to b - 0} f(x) = M$$

Если
$$a=-\infty$$
, то $\lim_{x\to -\infty}f(x)$ вместо $\lim_{x\to a+0}f(x)$

Если
$$b=+\infty$$
, то $\lim_{x\to+\infty}f(x)$ вместо $\lim_{x\to b-0}f(x)$

1.4 Непрерывность функции в точке. Свойства ...

1.4.1 Непрерывность функции в точке. Односторонняя непрерывность.

Определение 1.16. Если f определена в некоторой окрестности точки x_0 и $\lim_{x\to x_0} f(x) = f(x_0)$, то функция называется непрерывной в точке x_0 .

Определение 1.17. Если f определена на $[x_0; x_0 + \delta_0]$, где $\delta_0 > 0$ и $\lim_{x \to x_0 + 0} f(x) = f(x_0)$, то f называется непрерывной справа в точке x_0 .

Определение 1.18. Если f определена на $[x_0 - \delta_0; x_0]$, где $\delta_0 > 0$ и $\lim_{x \to x_0 = 0} f(x) = f(x_0)$, то f называется непрерывной слева в точке x_0 .

Теорема 1.17. Пусть f определена в некоторой окрестности точки x_0 . Тогда, следующие утверждения эквивалентны:

1. f непрерывна в точке x_0

2.
$$\forall \varepsilon > 0 \ \exists \delta > 0 \ | \ (\forall x, |x - x_0| < \delta) \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

3.
$$\left(\forall \{x_n\}_{n=1}^{\infty}, \lim_{n \to \infty} x_n = x_0 \right) \lim_{n \to \infty} f(x_n) = f(x_0)$$

1.4.2 Свойства непрерывных функций

1.4.3 Теорема о переходе к пределу под знаком непрерывной функции.

Теорема 1.18. (Переход к пределу под знаком непрерывной функции) Если $\lim_{x\to a} f(x) = b$ и g непрерывна в точке b, то $\lim_{x\to a} (g\circ f)(x) = g(b)$

Доказательство. Рассмотрим $\Big(\forall \{x_n\}_{n=1}^{\infty}, \ x_n \neq a, \ \lim_{n \to \infty} x_n = a\Big) \ \lim_{n \to \infty} f(x_n) = b$ Положим $y_n := f(x_n)$

$$\{y_n\}_{n=1}^{\infty}$$
, $\lim_{n\to\infty} y_n = b \Rightarrow \lim_{n\to\infty} g(y_n) = g(b)$

1.4.4 Непрерывность сложной функции.

Дополнение. (Следствие теоремы выше. Непрерывность сложной функции) Если f непрерывна в a, g непрерывна в f(a), то $g \circ f$ непрерывна в a.

Замечание. (Предел сложной функции) Для того, чтобы из $\lim_{x\to a} f(x) = b$ и $\lim_{y\to b} g(y) = l$ следовало $\lim_{x\to a} (g\circ f)(x) = l$, достаточно потребовать, чтобы $f(x)\neq b$ в некоторой проколотой окрестности точки a.

1.4.5 Точки разрыва, их классификация.

Определение 1.19. Пусть f определена в проколотой окрестности точки x_0 . Если $\lim_{x\to x_0} f(x) \neq f(x_0)$, то x_0 называется точкой разрыва функции f(x).

Замечание. Неравенство полагается верным также и в тех случаях, когда хоть одна из частей не определена.

Определение 1.20. Если $\exists \lim_{x \to x_0 = 0} f(x)$, $\lim_{x \to x_0 + 0} f(x) \in \mathbb{R}$, то точка разрыва называется точкой разрыва первого рода.

В противном случае точкой разрыва второго рода.

Определение 1.21. Если $\lim_{x\to x_0-0} f(x) = \lim_{x\to x_0+0} f(x) \in \mathbb{R}$ и $\neq f(x_0)$, то x_0 называется точкой устранимого разрыва.

Определение 1.22. Если хотя бы 1 из односторонних пределов бесконечен, то x_0 называется точкой бесконечного разрыва.

Определение 1.23. Величину $\lim_{x\to x_0+0} f(x) - \lim_{x\to x_0-0} f(x)$ называется *скачком функции* в точке x_0 .

1.4.6 Разрывы монотонных функций.

Теорема 1.19. (О точках разрыва монотонной функции) Если f(x) монотонна на (a;b), $-\infty \le a < b \le +\infty$, то она может иметь на (a;b) лишь точки разрыва 1го рода, причём неустранимого разрыва, и число таких точек разрыва не более чем счётно.

Доказательство.
$$\forall x_0 \in (a;b) \exists \lim_{x \to x_0 = 0} f(x), \lim_{x \to x_0 \neq 0} f(x) \in \mathbb{R}$$

Считая f неубывающей функцией, то

$$\forall x < x_0 \Rightarrow f(x) \leqslant f(x_0) \Rightarrow f(x_0 - 0) \leqslant f(x_0) \leqslant f(x_0 + 0)$$

 $f(x_0 - 0) \neq f(x_0 + 0)$, иначе бы точки разрыва не было.

$$x_1 < x_2 \Rightarrow f(x_1 - 0) < f(x_1 + 0) \le f(x_2 - 0) < f(x_2 + 0)$$

Отсюда $(f(x_1-0); f(x_1+0)) \cap (f(x_2-0); f(x_2+0)) = \emptyset$. То есть, мы получили систему непересекающихся отрезков на прямой действительных чисел, которая является не более чем счётным множеством (каждому отрезку можно сопоставить рациональное число внутри него).

Пример. (Функция Римана)

$$f(x) = \begin{cases} \frac{1}{n}, \text{ если } x = \frac{m}{n} \\ 0, \text{ если } x \in \mathbb{R} \backslash \mathbb{Q} \end{cases}$$

Докажем, что f непрерывна в $x_0 \in \mathbb{R} \setminus \mathbb{Q}$: зафиксируем произвольный $\varepsilon > 0$ и рассмотрим множество

$$M = \{x \mid f(x) \geqslant \varepsilon\}$$

Так как $\varepsilon > 0$ и $f(x) = 0 \ \forall x \in \mathbb{R} \backslash \mathbb{Q}$, то любой элемент M - рациональное число, имеющее вид в несократимой дроби $\frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$.

$$f(x) = \frac{1}{n} \geqslant \varepsilon \Rightarrow n \leqslant \frac{1}{\varepsilon}$$

То есть число таких n конечно. Это значит, что число рациональных точек, попавших в $U_{\delta}(x_0) \cap M$, конечно (в самом деле, бесконечность может достигаться только за счёт m, а это мы ограничили пересечением). Ну а раз так, то найдётся $\delta > 0$ такое, что $U_{\delta}(x_0) \cap M = \emptyset$. Иными словами,

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x \in U_{\delta}(x_0) \ f(x) < \varepsilon$$

это означает непрерывность функции Римана в любой иррациональной точке.

Теперь докажем, что f(x) разрывна во всех рациональных точках. Пусть $x_0 \in \mathbb{Q}$ и мы снова зафиксировали $\varepsilon > 0$. Какую δ -окрестность точки x_0 ни взять, там найдётся иррациональное число, для которого $f(x) = 0 \Rightarrow$ получим разрывность.

Таким образом, функция Римана непрерывна $\forall x \in \mathbb{R} \backslash \mathbb{Q}$ и разрывна $\forall x \in \mathbb{Q}$.

1.5 Свойства функций, непрерывных на отрезке — ограниченность...

1.5.1 Ограниченность

Непрерывность на множестве

Определение 1.24. Функция называется непрерывной на множестве X, если

$$\forall x_0 \in X \ \left(\forall \{x_n\} \subset X, \lim_{x \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = f(x_0) \right)$$

или по Коши

$$\forall x_0 \in X \quad (\forall \varepsilon > 0 \ \exists \delta > 0 \ | \ \forall x \in X \cap U_\delta(x_0) \ | f(x) - f(x_0) | < \varepsilon)$$

Замечание. Не стоит думать, что непрерывность на множестве - это непрерывность в каждой точке этого множества. Это не так. Как минимум потому, что мы не требуем определённость функции в некоторой окрестности точки из X.

Теорема 1.20. (Первая теорема Вейерштрасса о непрерывных на отрезке функциях) Если f непрерывна на [a;b], то она ограничена на [a;b]

Доказательство. Докажем от противного. Пусть f - неограничена сверху (снизу аналогично). Это означает

$$\forall \varepsilon > 0 \ \exists x_{\frac{1}{\varepsilon}} \in [a;b] \mid f(x_{\frac{1}{\varepsilon}}) > \frac{1}{\varepsilon}$$

Последовательно будем брать $\varepsilon:=1,\frac{1}{2},\dots,\frac{1}{n},\dots$ Получим $\{x_n\}_{n=1}^{\infty}\subset [a;b],\, f(x_n)>n.$ По теореме Больцано-Вейерштрасса

$$\exists \{x_{n_k}\}_{k=1}^{\infty}, \ \lim_{k \to \infty} x_{n_k} = x_0 \in [a; b]$$

А из этого следует, что $\lim_{k\to\infty} f(x_{n_k}) = f(x_0)$, что неверно $(f(x_n) > n)$.

Достижение точных верхней и нижней граней 1.5.2

Теорема 1.21. (Вторая теорема Вейерштрасса о непрерывных на отрезке функциях) Eсли f непрерывна на [a;b], то она достигает своих точных верхней и нижней граней. То есть

$$\exists x', x'' \in [a; b] \mid f(x') = \inf_{x \in [a; b]} f(x), \ f(x'') = \sup_{x \in [a; b]} f(x)$$

Доказательство. По определению минимума

$$m := \inf_{x \in [a;b]} f(x) \Rightarrow \forall \varepsilon > 0 \ \exists x \in [a;b] \mid m \leqslant f(x) < m + \varepsilon$$

Построим подпоследовательность через выбор ε :

$$\varepsilon := 1$$
 $m \leqslant f(x_1) < m + 1$
 $\varepsilon := 1/2$ $m \leqslant f(x_2) < m + 1/2$
 \cdots \cdots
 $\varepsilon := 1/n$ $m \leqslant f(x_n) < m + 1/n$

Получили ограниченную последовательность $\{x_n\}_{n=1}^{\infty}$. По теореме Больцано-Вейерштрасса:

$$\exists \{x_{n_k}\}_{k=1}^{\infty} \subset \{x_n\}_{n=1}^{\infty} \mid \lim_{k \to \infty} x_{n_k} = x' \in [a; b]$$

Так как для $\forall n \in \mathbb{N}$ верно

$$m \leqslant f(x_n) < m + 1/n$$

то в силу непрерывности f, можно совершить предельный переход:

$$m \leqslant f(x') \leqslant m \Leftrightarrow f(x') = m$$

Теорема о промежуточных значениях непрерывной функции

Теорема 1.22. (Больцано-Коши о промежуточных значениях) Если f непрерывна на [a;b], то $\forall c = f(x_1) < d = f(x_2)$, где $\{x_1, x_2\} \subset [a;b] \ \forall u \in (c;d) \ \exists \gamma \in (c$ $[a;b] \mid f(\gamma) = u$

Замечание автора. В классической версии данной теоремы утверждается, что $\exists \gamma$ не просто в [a;b], а в $[\min(x_1,x_2);\max(x_1,x_2)]$. Из доказательства лектора это следует.

Доказательство. Рассмотрим c < u = 0 < d. Положим $\{a_1, b_1\} := \{x_1, x_2\}$. Не умаляя общности будем считать $a_1 < b_1$. В силу условия имеем

$$f(a_1) \cdot f(b_1) < 0$$

Посмотрим на $f(\frac{a_1+b_1}{2})$. Если оно равно 0, то мы нашли подходящее нам $\gamma:=\frac{a_1+b_1}{2}$. Иначе рассмотрим одну из половин $[a_2; b_2]$ изначального отрезка такую, что на её концах функция тоже принимает разные значения (то есть $\{\frac{a_1+b_1}{2}\}\subset \{a_2,b_2\}$)

$$f(a_2) \cdot f(b_2) < 0$$

Продолжим рассуждения рекурсивно. Если мы так и не дошли до конкретного γ , то мы получили систему вложенных отрезков $\{[a_n;b_n]\}_{n=1}^{\infty}$. Несложно заметить, что

$$[a_n; b_n] \supset [a_{n+1}; b_{n+1}]$$

 $b_n - a_n = \frac{b_1 - a_1}{2^{n-1}}$

То есть полученная система - стягивающаяся. А по принципу Кантора вложенных отрезков это нам даёт

$$\exists \{\gamma\} = \bigcap_{n=1}^{\infty} [a_n; b_n]$$

Равенство имеет место, потому что $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\gamma$ по построению. В силу непрерывности функции и принципа Кантора

$$\forall n \in \mathbb{N} \ a_n \leqslant \gamma \leqslant b_n \Rightarrow f(\gamma) = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

Так как по построению $f(a_n) \cdot f(b_n) < 0$, то предельный переход даёт неравенство

$$f^2(\gamma) \leqslant 0 \Leftrightarrow f(\gamma) = 0$$

При любом другом u мы можем рассмотреть вспомогательную функцию F(x) = f(x) - f(x)u, для которой верно доказанное утверждение, а значит получим и нужное:

$$F(\gamma) = 0 = f(\gamma) - u \Rightarrow f(\gamma) = u$$

Теорема об обратной функции.

Теорема 1.23. (Теорема об обратной функции) Если f непрерывна и строго монотонна на промежутке I, то на промежутке f(I) определена обратная функция f^{-1} , строго монотонная в том же смысле, что u f, u непрерывная на f(I).

Доказательство. Будем рассматривать такую f, что $\forall x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$. Положим

$$y_1 := f(x_1)$$
$$y_2 := f(x_2)$$

То есть

$$f^{-1}(y_1) := x_1$$

 $f^{-1}(y_2) := x_2$

 $f^{-1}(y_1) < f^{-1}(y_2)$, то есть f^{-1} монотонно возрастает.

По лемме ?? f(I) - промежуток. А значит, f^{-1} определена на промежутке и при этом строго монотонна. Следовательно, по той же лемме, f^{-1} - непрерывна на f(I).

1.6 Непрерывность элементарных функций. Определение показательной функции...

1.6.1 Непрерывность элементарных функций

Докажем, что $\lim_{x \to a} \sin x = \sin a$ при $\forall a \in \mathbb{R}$

$$|\sin x - \sin a| = \left| 2\sin \frac{x - a}{2} \cos \frac{x + a}{2} \right| \le 2 \cdot \left| \sin \frac{x - a}{2} \right| \cdot \left| \cos \frac{x + a}{2} \right| \le 2 \cdot \left| \frac{x - a}{2} \right| \cdot 1 = |x - a|$$

Для доказательства предела достаточно взять $\delta := \varepsilon/2$. Следовательно, $\sin x$ - непрерывная на всей области определения.

Теперь докажем, что $\lim_{x\to a}\cos x=\cos a$ при $\forall a\in\mathbb{R}$

$$|\cos x - \cos a| = \left| -2 \cdot \sin \frac{x+a}{2} \cdot \sin \frac{x-a}{2} \right| \le 2 \cdot 1 \cdot \left| \frac{x-a}{2} \right| = |x-a|$$

Снова достаточно взять $\delta := \varepsilon/2$ и доказательство получено.

1.6.2 Определение показательной функции

Считая, что все рациональные степени уже определены, дадим определение a^x в общем случае

Определение 1.25. a^x при $\forall x \ge 0$ определяется как

1. a > 1

Введём понятие $(x)_n$:

$$(x)_n := \frac{\lfloor 10^n \cdot x \rfloor}{10^n}$$

То есть $(x)_n$ - это число x, у которого оставили ровно n знаков после запятой, а остальное удалили. Понятно, что это - рациональное число, и степень $a^{(x)_n}$ определена.

Заметим, что $\{(x)_n\}$ - неубывающая последовательность. Стало быть, и $\{a^{(x)_n}\}$ - тоже неубывающая. При этом

$$\forall n \in \mathbb{N} \ (x)_n \leqslant \lceil x \rceil \Rightarrow a^{(x)_n} \leqslant a^{\lceil x \rceil}$$

То есть, $\{a^{(x)_n}\}$ к тому же и ограниченная сверху. По теореме Вейерштрасса, она имеет предел. Её предел и называют a^x :

$$a^x := \lim_{n \to \infty} a^{(x)_n}$$

$$2. \ a=1 \Rightarrow a^1=a$$

3. 0 < a < 1

Определяется через предел как и в случае 1., только теорема Вейерштрасса будет для невозрастающей последовательности.

Для x < 0 определим a^x как

$$a^x = \frac{1}{a^{-x}}$$

Покажем, что если $x_1 < x_2$, то и $a^{x_1} < a^{x_2}$:

Начиная с некоторого $N \in \mathbb{N}$, будет в точности выполнено неравенство $\forall n > N$

$$(x_1)_n \leqslant x_1 < (x_2)_n \leqslant x_2$$

А значит найдутся 2 рациональных числа $r_1 < r_2$ такие, что

$$(x_1)_n \leqslant x_1 < r_1 < r_2 < (x_2)_n$$

Предельный переход даёт неравенство

$$a^{x_1} \le a^{r_1} < a^{r_2} \le a^{x_2}$$

Которое и даёт $a^{x_1} < a^{x_2}$

Лемма 1.1. (Корректность определения показательной функции) $(\forall x \in \mathbb{R})$ $(\forall \{r_n\} \subset \mathbb{Q}, \lim_{n \to \infty} r_n = x) \Rightarrow \lim_{n \to \infty} a^{r_n} = a^x$

Доказательство. Доказательство проводится для a>1. Для другого случая аналогично. Заметим, что обе последовательности $a^{-\frac{1}{n}}-1$ и $a^{\frac{1}{n}}-1$ стремятся к нулю. То есть

$$\forall \varepsilon > 0 \ \exists K \in \mathbb{N} \ \big| \ \max(|a^{-\frac{1}{K}} - 1|, a^{\frac{1}{K}} - 1) < \varepsilon$$

Докажем, что $\{a^{r_n}\}$ - фундаментальная последовательность.

$$a^{r_{n+p}} - a^{r_n} = a^{r_n} \cdot (a^{r_{n+p}-r_n} - 1)$$

Так как $\{r_n\}$ сходится, то $\exists M \mid \forall n \in \mathbb{N} \ r_n \leqslant M$. Отсюда

$$a^{r_n} \leqslant a^M$$

Сама $\{r_n\}$ фундаментальна. То есть

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \big| \ \forall n > N, p \in \mathbb{N} \ \big| r_{n+p} - r_n \big| < \varepsilon \Rightarrow \ \varepsilon := \frac{1}{K}, \ -\frac{1}{K} < r_{n+p} - r_n < \frac{1}{K}$$

Следовательно

$$a^{-\frac{1}{K}} - 1 < a^{r_{n+p}-r_n} - 1 < a^{\frac{1}{K}} - 1$$

Ну а отсюда уже (перевыбрали окрестность из первого утверждения доказательства)

$$|a^{r_{n+p}-r_n}-1| < \max(|a^{-\frac{1}{K}}-1|, |a^{\frac{1}{K}}-1|) < \frac{\varepsilon}{a^M}$$

В итоге имеем

$$|a^{r_n} \cdot (a^{r_{n+p}-r_n}-1)| < a^{r_n} \cdot \frac{\varepsilon}{a^M} < \varepsilon$$

Покажем, что у $\{a^{(x)_n}\}$ и $\{a^{r_n}\}$ одинаковые пределы. Для этого рассмотрим последовательность:

$$z_n = \begin{cases} r_k, & n = 2k - 1 \\ (x)_k, & n = 2k \end{cases}$$

По определению предела

$$\forall \varepsilon > 0 \ \exists K_1 \in \mathbb{N} \ \big| \ \forall k > K_1 \ (|r_k - x| < \varepsilon \Leftrightarrow |z_{2k-1} - x| < \varepsilon)$$

$$\forall \varepsilon > 0 \ \exists K_2 \in \mathbb{N} \ \big| \ \forall k > K_2 \ (|(x)_k - x| < \varepsilon \Leftrightarrow |z_{2k} - x| < \varepsilon)$$

Следовательно

$$\forall \varepsilon > 0 \ \exists N := 2 \cdot \max(K_1, K_2) \ | \ \forall n > N \ |z_n - x| < \varepsilon$$

То есть $\{z_n\}$ - сходящаяся последовательность рациональных чисел. А из доказанного это значит, что существует предел $\lim_{n\to\infty} a^{z_n}$. Но если $\lim_{n\to\infty} a^{r_n} \neq \lim_{n\to\infty} a^{(x)_n}$, то последовательность $\{a^{z_n}\}$ расходится. Отсюда заключаем, что

$$(\forall x \in \mathbb{R}) \ (\forall \{r_n\} \subset \mathbb{Q}, \ \lim_{n \to \infty} r_n = x) \Rightarrow \lim_{n \to \infty} a^{r_n} = a^x$$

1.6.3 Свойства показательной функции

1.
$$a^{x_1+x_2} = a^{x_1} \cdot a^{x_2}$$

$$2. a^x \cdot b^x = (a \cdot b)^x$$

3.
$$(a^x)^y = a^{x \cdot y}$$

Доказательство. Докажем свойство суммы:

$$\begin{cases} \lim_{n \to \infty} (x_1)_n = x_1 \\ \lim_{n \to \infty} (x_2)_n = x_2 \end{cases} \Rightarrow \lim_{n \to \infty} ((x_1)_n + (x_2)_n) = x_1 + x_2$$

При этом

$$\lim_{n \to \infty} a^{(x_1)_n} = a^{x_1}$$
$$\lim_{n \to \infty} a^{(x_2)_n} = a^{x_2}$$

Тогда

$$\lim_{n \to \infty} a^{(x_1)_n + (x_2)_n} = a^{x_1 + x_2}$$

Второе свойство доказывается аналогично.

Третье свойство уже сложнее. Пусть x, y > 0,

$$\{r'_n\}$$
 — возрастает к x $\{r''_n\}$ — убывает к x $\{p'_n\}$ — возрастает к y $\{p''_n\}$ — убывает к y

Отсюда цепочка неравенств:

$$a^{r'_n \cdot p'_n} = (a^{r'_n})^{p'_n} \leqslant (a^x)^{p'_n} \leqslant (a^x)^y \leqslant (a^x)^{p''_n} \leqslant (a^{r''_n})^{p''_n} = a^{r''_n \cdot p''_n}$$

Пределы обоих концов стремятся к $a^{x \cdot y}$, откуда уже по теореме о трёх последовательностях имеем нужное нам равенство.

Теорема 1.24. a^x - непрерывная функция на $\mathbb{R} \ \forall a \in (0;1) \cup (1;\infty)$

Доказательство. $a^{x} - a^{x_0} = a^{x_0}(a^{x-x_0} - 1)$

Это значит, что достаточно установить факт

$$\lim_{x \to 0} a^x = 1$$

Рассмотрим $|x| < \frac{1}{K}$ для произвольного K. Тогда

$$a^{-\frac{1}{K}} - 1 < a^x - 1 < a^{\frac{1}{K}} - 1 \Rightarrow |a^x - 1| < \max(|a^{-\frac{1}{K}} - 1|, |a^{\frac{1}{K}} - 1|)$$

При этом

$$\forall \varepsilon > 0 \ \exists K \in \mathbb{N} \ | \ \max(|a^{\frac{1}{K}} - 1|, |a^{-\frac{1}{K}} - 1|) < \varepsilon$$

Отсюда

$$\forall \varepsilon > 0 \ \exists \delta := \frac{1}{K} \ | \ \forall x, \ |x| < \delta \ |a^x - 1| < \varepsilon$$

Что и требовалось доказать.

1.6.4 Замечательные пределы, следствия из них

Теорема 1.25. (Первый замечательный предел) Предел $\lim_{x\to 0} \frac{\sin x}{x}$ существует и равен 1.

Доказательство. Рассмотрим $x \in (0; \frac{\pi}{2})$. Тогда, по лемме ?? получим:

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

В предельном переходе

$$1 \leqslant \lim_{x \to 0+} \frac{x}{\sin x} \leqslant 1$$

Следовательно $\lim_{x\to 0+} \frac{\sin x}{x} = 1$

Теорема 1.26. (Второй замечательный предел)

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

Доказательство. Положим 0 < x < 1.

$$n_x := \left\lfloor \frac{1}{x} \right\rfloor$$

$$n_x \leqslant \frac{1}{x} < n_x + 1 \Rightarrow \frac{1}{n_x + 1} < x \leqslant \frac{1}{n_x}$$

Рассмотрим функцию

$$f(x) = \left(1 + \frac{1}{n_x}\right)^{n_x + 1}$$

Положим $x_1 < x_2$. Следовательно

$$\frac{1}{x_2} < \frac{1}{x_1} \Rightarrow n_{x_2} \leqslant n_{x_1} \Rightarrow f(x_2) \geqslant f(x_1) \geqslant 1$$
 (в силу последовательности числа Эйлера)

По теореме Вейерштрасса предел f(x) существует.

Сделаем замечательное наблюдение:

$$f\left(\frac{1}{n}\right) = \left(1 + \frac{1}{n}\right)^n \Rightarrow \lim_{n \to \infty} f(1/n) = e$$

Напишем цепочку неравенств:

$$(1+x)^{1/x} \ge (1+x)^{n_x} > \left(1 + \frac{1}{n_x + 1}\right)^{n_x}$$
$$(1+x)^{1/x} \le \left(1 + \frac{1}{n_x}\right)^{1/x} < \left(1 + \frac{1}{n_x}\right)^{n_x + 1}$$

Крайняя левая и крайняя правая оценки стремятся к е. А значит

$$\lim_{x \to 0+} f(x) = e$$

Осталось доказать левый предел. Сделаем замену x = -y:

$$\lim_{x \to 0^{-}} (1+x)^{1/x} = \lim_{y \to 0^{+}} (1-y)^{-1/y} = \lim_{y \to 0^{+}} \left(\frac{1}{1-y}\right)^{1/y} = \lim_{y \to 0^{+}} \left(\frac{1}{1-y}\right)^{1/y} = \lim_{y \to 0^{+}} \left(1+\frac{y}{1-y}\right)^{1/y} = \lim_{t \to 0^{+}} (1+t)^{\frac{1-t}{t}} = \lim_{t \to 0^{+}} (1+t)^{1/t} \cdot \frac{1}{1+t} = e \cdot 1 = e$$

По теореме о связи предела с односторонними пределами, в итоге получаем

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

2 Аналитическая Геометрия

3 Многомерный анализ, интегралы и ряды

4 Линейная алгебра

- 5 Кратные интегралы и теория поля
- 5.1 Теорема о неявной функции, заданной одним уравнением.

6 Дифференциальные уравнения

- 6.1 Простейшие типы уравнений первого порядка: уравнения с разделяющимися переменными..
- 6.1.1 Простейшие типы уравнений первого порядка: уравнения с разделяющимися переменными, однородные, линейные, уравнения в полных дифференциалах.
- 6.1.2 Интегрирующий множитель.
- 6.1.3 Уравнение Бернулли или Риккати.
- 6.1.4 Метод введения параметра для уравнения первого порядка, не разрешенного относительно производной.
- 6.1.5 Методы понижения порядка дифференциальных уравнений.

- 6.2 Линейные дифференциальные уравнения и линейные системы...
- 6.2.1 Линейные дифференциальные уравнения и линейные системы дифференциальных уравнений с постоянными коэффициентами.
- 6.2.2 Формула общего решения линейного однородного уравнения n-го порядка
- 6.2.3 Отыскание решения линейного неоднородного уравнения в случае, когда правая часть уравнения является квазимногочленом.
- 6.2.4 Уравнение Эйлера.

- 6.3 Формула общего решения линейной однородной системы уравнений . . .
- 6.3.1 Формула общего решения линейной однородной системы уравнений в случае простых собственных значений матрицы коэффициентов системы.
- 6.3.2 Формула общего решения линейной однородной системы в случае кратных собственных значений матрицы коэффициентов системы.
- 6.3.3 Отыскание решения линейной неоднородной системы уравнений в случае, когда свободные члены уравнения являются квазимногочленами.

- 6.4 Матричная экспонента и ее использование для получения формулы общего решения . . .
- 6.4.1 Матричная экспонента и ее использование для получения формулы общего решения и решения задачи Коши для линейных однородных и неоднородных систем уравнений.