Revisiting Network Energy Efficiency of Mobile Apps: Performance in the Wild

Sanae Rosen¹ Ashkan Nikravesh¹ Yihua Guo¹ Z. Morley Mao¹ Feng Qian² Subhabrata Sen³

¹University of Michigan

²Indiana University

³AT&T Labs - Research

- Over the past 15 years, CPU performance has increased 250x but battery life has only doubled!
- We know how to design apps that dont drain batteries (as much)...

- Over the past 15 years, CPU performance has increased 250x but battery life has only doubled!
- We know how to design apps that dont drain batteries (as much)...

- Over the past 15 years, CPU performance has increased 250x but battery life has only doubled!
- We know how to design apps that dont drain batteries (as much)...

- Over the past 15 years, CPU performance has increased 250x but battery life has only doubled!
- We know how to design apps that dont drain batteries (as much)...

Prior work: App design is a problem

Application network patterns make a huge difference, generally

- Periodic transfers have a disprportionate impact¹
- Understanding app behavior in the wild is essential²
- Continuous online presence has a high cost³

¹Huang et al, MobiSys 2012; Qian et al, WWW 2012

²Xu et al, IMC 2011; Gember et al, IMC 2012

³Aucinas et al. CoNEXT 2013

Research questions

- What are real users experiencing in the wild?
- Given all this interest, are apps getting better?
 - Some are, but many apps aren't.
 - Background updates are often too frequent for how much users use the app.
 - New problem: foreground traffic that keeps running after the app is closed.
- Are current measures sufficient?
 - Per-app ad-hoc performance improvements don't solve the problem entirely
 - We show minor OS-level suppression of background traffic from underused apps can make a big difference

Overview

- Experimental setup
- Contribution 1: Foreground traffic not terminated
- Contribution 2: Background traffic continues to drain battery.
- Contribution 3: Excessive background traffic from unused or underused apps.
- Recommendations

Methodology

- 20 users, 342 apps total, over almost 2 years
- Collect unencrypted packet payloads, user input events, packet-process mappings, foreground/background process codes
- All data anonymized, study IRB-approved
- Highly diverse set of top apps among users, but some in common (e.g. facebook)

Foreground requests not terminated

- Majority of Chromes traffic occurs in the background!
- Root cause: requests started in the foreground keep running
- A popular local website sends network requests every 2 seconds
 - Can continue for hours, even after the app is minimized

Duration traffic sent/received after Chrome sent to background.

Foreground requests not terminated

84% of apps send 80% of background traffic within 60s of minimizing the app

Periodic background traffic

For many apps described in prior work, this has gotten a lot better. For example⁴:

Арр	Beginning	End
Pandora, Facebook	every 1 minute in 2012 ⁵	1/ hour
Gmail	Every 30 minutes	Highly varying intervals, as needed?
Go Weather	5 minutes	40 minutes

Update frequencies

Is the problem solved?

⁴See the paper for more details

⁵Qian et al, WWW '12

Periodic background traffic

Getting it consistently right, every time, probably won't happen

Unused background traffic

- We observed background traffic is sometimes present even for apps a user rarely uses
- What if we try something really simple like killing an app after its unused for 3 consecutive days?

	Shu	Weiß	No. No.	ESP _N	. ₽	Skype Skype
A: % days with only	42	83	70	13	43	62
background traffic						
B: Max consecutive	40	24	84	10	18	49
background days						
C: Disable after 3 days:	14	54	39	6.2	22	45
avg.% energy reduction						

Unused background traffic

After our paper was submitted, Google announces OS support for managing background traffic and reducing power consumption...

Conclusions and recommendations:

- Apps should be aware of their foreground/background state and be sure to manage network traffic appropriately
- Major apps reducing periodicity of network traffic + using improved push services has been helpful
 - Now to get everyone else on board!
- OS-level management of background traffic would be very valuable
 - There are millions of apps, we cant expect every developer to get it right

Thank you!

Any questions?