REMARKS

The Office Action of January 16, 2002 has been received and carefully reviewed, and the substitute specification along with the following comments are a complete response thereto.

Claims 1-23, 25 and 26 are all the claims under examination. By this Amendment, Claims 1-23, 25 and 26 have been amended as discussed below.

I. Withdrawal of Restriction Requirement

Applicants gratefully acknowledge the Examiner's withdrawal of the restriction requirement of the claims based on the arguments filed in the response of November 2, 2001. Accordingly, claims 16 and 17 have been rejoined with claims 1-15, 18-23 and 25 and 26 for consideration.

II. Response to Objection to the Specification and Claim 19

A. The Examiner objects to the specification because it lacks division into distinct sections as required.

A substitute specification is attached hereto and which complies with the specification formatting requirements.

B. Claim 19 is objected to because it does not end with a period.

Claim 19 has been amended to insert a period as appropriate. This amendment does not effect the scope of the claim.

III. Response to Rejection of Claims 1-23, 25 and 26 under 35 USC §112, second paragraph

Claims 1-23, 25 and 26 are rejected under 35 USC §112, second paragraph, for indefiniteness.

A. According to the Examiner, Claim 13 is indefinite for reciting "chemical integrity".

Example 3 in the specification explains in detail the measurements performed in order to characterize the chemical "stability" of the formulation over long term. Accordingly, the claim has been amended to replace the term "integrity" with "stability", even though "chemical integrity" is just as acceptable based on the definition provided on page 9 at lines 31-37. This amendment does not effect the scope of the claim.

B. According to the Examiner, Claims 15 and 26 are indefinite for reciting "physical integrity".

Contrary to the Examiner's assertion, Claim 15 does not recite the phrase.

Applicants cite page 10 at lines 3-9 of the specification in support of the use of the phrase "physical integrity", and submit that the phrase is definite with respect to Claim 26.

C. According to the Examiner, Claims 18 and 26 are indefinite for reciting "auxiliaries".

"Auxiliary" substances are defined on page 10, line 36- page 11, line 12 of the specification. However, this general class of substances can also be referred to as "ingredients", and in amending Claim 18 to recite this term, Applicants are not introducing new matter or altering the claim scope.

Claim 26 does not recite "auxiliaries", contrary to the Examiner's assertion.

D. According to the Examiner, Claims 1-3 are indefinite for reciting "as active ingredient" since the claims are missing the article ("an" or "the"), and which is the biological activity being referred to if the article "an" is present. Additionally, the standard terminology for representation of units of IFN- β is 25 x 10⁶ U/ml instead of 25 MU/ml as recited in claim 1.

Applicants submit that an active ingredient is more typically found in a pharmaceutical composition claim. In having amended claims 1-3 to recite a "liquid pharmaceutical formulation", the formulation containing an active ingredient finds proper basis.

Insofar as the Examiner's rejection of the active units claimed in claim 1, Applicants have adopted the Examiner's suggestion for bringing the claims into compliance under U.S. practice, i.e., reciting "25 x 10^6 U" instead of 25 MU. This amendment does not effect the scope of the claim.

E. According to the Examiner, Claim 20 is indefinite for reciting "physiologically acceptable preservatives".

"Physiologically acceptable preservatives" are taught on page 11 at lines 18-21, and therefore, the phrase finds support in the specification. Applicants amendment of the claim to recite "at least one physiologically acceptable preservative" does not raise an issue of new matter nor change the scope of the claim.

F. According to the Examiner, Claim 26 is indefinite for reciting "or/and" because in each case the limitations that follow the use of the phrase "or/and" are not clear.

Applicants have amended the claim to replace "and/or" language with the phrase "at least one of", since the Examples in the specification support the three aspects of

-8-

the formulation that are stabilized, namely, the biological, chemical and physical properties.

G. According to the Examiner, Claim 5 is indefinite for reciting "originates from CHO cells", since it is not clear how human IFN- β originates from CHO cells. The Examiner indicates that this rejection can be obviated by reciting "IFN- β recombinantly produced in CHO cells".

Support for the Examiner's suggested phrase is found on page 9 at line 10, and claim 5 has been amended accordingly. This change does not alter the scope of the claim.

H. According to the Examiner, the recitation in claim 6 of "a concentration of 10 mM/l to 1 mol/l" is indefinite because it is not clear as to what is the buffer constituent, such as "phosphate or acetate" that is present at the said concentration.

Applicants disagree that the claim should recite an embodiment for any one type of buffer in order for to claim a concentration range for a "buffer". Applicants are not aware of any rule or case law, which precludes claiming a concentration range for a generic buffer.

I. According to the Examiner, Claim 23 is indefinite because it is not clear if recitation of "unit doses" is meant as an additional element, or is it intended as "packaged in unit doses of $1-25 \times 10^6$ IU".

Applicants submit that the pharmaceutical composition would be in the form of a unit dose containing contain 1-25 \times 10⁶ IU of INF- β , and claim 23 has been amended to

more clearly recite the intended subject matter. This amendment does not effect the scope of the claim.

J. According to the Examiner, Claim 25 is indefinite because the only required step is a negative limitation and involves no process steps. Therefore, the claim is incomplete. Additionally, "using a formulation" is not "a process for improving the shelf life" and use of the term "using" is indefinite because it is not a method step.

Claim 25 has been amended to recite process steps for stabilizing the formulation.

K. According to the Examiner, the use of parenthesis in claim language make claim 26 indefinite because it is not clear if the parenthetical phrase "is" or "is not" a limitation.

The Examiner appears to have examined original claim 26 rather than the amended claim included on the amended pages of the national stage application. Amended claim 26 has already been corrected in this aspect, and no further action need be taken on this matter.

IV. Response to Rejection to Claims 1-17, 21-23, 25 and 26 under 35 USC §103(a)

Claims 1-17, 21-23, 25 and 26 are rejected under 35 USC §103(a) as being obvious over U.S. Patent No. 5,151,265 (1992) in view of U.S. Patent No. 5,358,708 (10/25/1994).

According to the Examiner, '265 teaches a liquid pharmaceutical composition of non-lyophilized IFN-γ, or recombinant IFN-γ including a buffer capable of maintaining the pH of the liquid composition within the pH range of 4.0 - 6.0 (abstract, lines 1-6).

The formulation contained 5 x 10⁶ U/ml (column 3, Example 1, lines 1-2, column 4, 2nd paragraph, lines 1-2) of the cytokine, and was stable for prolonged periods when stored at -20 °C to 30 °C with the preferred storage temperature in the range of 2-8 °C (column 3, entire 4th paragraph), in succinate buffer and mannitol as the stabilizing agents (claim 15). '265 also disclosed that the shelf life was better in the absence of human serum albumin (Table 1, column 4), thus meeting all of the limitations of instant claim 1. '265 also teaches liquid pharmaceutical compositions of recombinant IFN-γ, which meets the limitations of instant claims 21-23. However, '265 is silent as to INF-β.

'708 teaches several approaches taken to stabilize and prepare protein formulations of IFN-α, erythropoietin, human plasminogen, IL-2, and plasmin (column 1, paragraph 3-7). In particular, disclosure of '708 also points out that their invention can be used "to stabilize all of the proteins in the IFN family produced in the human body, including related, or recombinant proteins, which confer resistance to viral infection, affect proliferation of cells and modulate the response of the immune system" including IFN-β (column 2, detailed description of the invention, lines 44-58).

In combining the disclosures of '265 and '708, the Examiner considers the claims prima facie obvious.

Applicants traverse and submit that the Examiner's rejection based on the combined reference disclosures fails to satisfy a *prima facia* case of obviousness since the references alone or in combination, do not teach or suggest the invention as a whole (MPEP §2141.02) or provide objective reasons for modifying their disclosures to obtain the inventive processes and kit (MPEP §2143.01).

Claims 1-17, 21-23, 25 and 26 are directed to a liquid pharmaceutical formulation, a pharmaceutical composition or a process for making the same where the formulation and composition have **long-term stability** at **room temperature** and they contain **human interferon-β** as an active ingredient, a buffer in a **physiological pH** range, and human serum albumin or any acidic amino acids, arginine or glycine in amounts of between 0.3 and 5% by weight are excluded.

'265 only teaches long-term stabilization of **INF-** γ -containing formulations when maintained at between **-20°C** to **8°C** over several months. The reference does not teach or suggest the effects on stability when liquid formulations containing any other cytokine but INF- γ are held at 25° over several months.

1

In the Examples of '265, the biological activity and physical stability of its INF- γ formulations were measured after long-term storage at 5°C. '265 does not teach or suggest the importance of stabilizing biological activity, chemical stability **and** physical stability of its formulations at room temperature for prolonged periods of time. Thus, it is not apparent that preserving shelf-life for a liquid INF- β formulation would be inherent to '265.

The '265 patent does not teach or suggest, as the Examiner well appreciates, that a formulation in the absence of human serum albumin would have a higher stability than in the presence thereof. Applicants direct the Examiner's attention to Table 1 of the patent, where two different lyophilizates are compared, i.e., succinate/mannitol and HAS/phosphate. The lyophilized HAS solution has a higher stability, and while it is a fact that a liquid succinate/mannitol solution is more stable than the HAS/phosphate

lyophilizate, no comparison is made for a liquid HAS/phosphate solution.¹ Accordingly, the '265 patent does not provide any evidentiary support for the Examiner's assertion that the absence of HAS would result in increased stability.

Finally, Applicants submit that the pH-value for the formulations according to '265 fall within a range of between **4.0 and 6.0**, whereas according to the present invention, a physiological pH value is preferred.

The '265 patent does not teach or suggest IFN- β , and furthermore because different proteins each have specifically different requirements for stabilizing their physical and chemical integrity, one skilled in the art would not have been motivated to rely on the patent disclosure to solve the technical problem underlying the present invention.

The specification discusses the conditions under which long-term stability of cytokine formulations was ascertained in the '708 patent (page 5, lines 20-25). In the Examples of '708, chemical stability was measured after a 2-week exposure to a temperature of 40°C. Chemical stability of the formulation was tested by HPLC analysis of degradation products, but significantly, no biological activity or physical stability measurements were made.

Even assuming that '708 makes a very general disclosure for INF formulations, the reference does not teach or suggest that an INF-β formulation would be stable over a 2-week period at 40°C, much less at any relevant temperature below 40°C (i.e., physiological temperature (37°C) or room temperature (25°C) for a period over 2 weeks)

¹ The '265 patent does not make a direct comparison between a liquid HAS solution and a liquid HAS-free solution.

in the disclosed liquid formulation. The Examples in the '708 patent only refer to interferon-α-2b. This product is not glycosylated in contrast to the IFN-β derived from CHO cells of the present invention.

The storage conditions of '708 do not even approximate those of '265 much less those of the claimed invention. Moreover, '708 specifically teaches that even for its own disclosed formulation, **preservation of any protein is relatively unpredictable** (or is at least empirical):

"...different proteins will become inactivated during storage at different rates and under different conditions, due to chemical differences between the proteins. The presence of trace impurities in the formulations may catalyze decomposition reactions. Also, the storage-prolonging effects of methionine and histidine are not equivalent with the different proteins, and of course, mixtures of the amino acids will exhibit different effects as the ratio is varied, the identity of the protein is changed and/or the concentrations are altered."

(Col. 4, lines 8-18).

'708 teaches that the half-life of any protein in its disclosed liquid formulation is highly dependent on the species of protein, and '265 only teaches a formulation for INF- γ . One skilled in the art would not have been motivated to combine the references in the manner asserted by the examiner, because '708 patent does not teach with any degree of surety the conditions for stabilizing an INF- β protein much less that an INF- β protein could be combined with the formulation of '265, to obtain an INF- β formulation with long-term stability. Accordingly, withdrawal of this rejection is deemed proper.

CONCLUSION

In view of the foregoing amended claims, the substitute specification and Applicants' arguments for patentability of the claims, Applicants submit that the Examiner's objection to the specification and rejection of the claims under 35 U.S..C. §§103(a) and 112, second paragraph, have been met and overcome. The Examiner is requested to allow the application to pass to issuance.

Please charge any fee deficiency or credit any overpayment to Deposit Account No. 01-2300 under Client Matter No. 100564-00002.

Respectfully submitted,

Registration No. 48,898

ARENT FOX KINTNER PLOTKIN & KAHN, PLLC 1050 Connecticut Avenue, N.W., Suite 400 Washington, D.C. 20036-5339

Tel: (202) 857-6000; Fax: (202) 638-4810

LAB/vlw

MARKED-UP COPY OF THE CLAIMS FOR 09/508,510

- 1. (Amended) [Liquid] <u>A liquid pharmaceutical</u> formulation [which comprises] comprising human interferon-β as <u>an</u> active ingredient in a concentration of up to [25 MU/ml] <u>25 x 10⁶ u/ml</u> and a buffer for [setting] <u>buffering in</u> a pH <u>range</u> of 5 to 8, [is free from human serum albumin and after storage for 3 months at 25°C shows a long-term stability of the biological in vitro activity of at least 80% of the initial activity,] with the proviso that the formulation does not [comprise] <u>contain human serum albumin</u>, <u>or</u> any acidic amino acids, arginine or glycine in amounts of between 0.3 and 5% by weight, <u>wherein after storage for 3 months at 25°C, stability of in vitro biological activity of the</u> formulation is at least 80% of an initial biological activity.
- 2. (Amended) [Liquid] The liquid formulation according to Claim 1, [characterized in that it comprises] comprising a buffer for [setting] buffering in a pH range of 6 to 7.2.
- 3. (Amended) [Liquid] <u>A liquid</u> formulation [which comprises] <u>comprising</u> human interferon-β as <u>the</u> active ingredient, a buffer for [setting] <u>buffering</u> a pH <u>in a range</u> of 5 to 8, and <u>at least</u> one [or more] amino [acids and shows after storage for 3 months at 25°C a long-term stability of the biological in vitro activity of at least 80% of the initial activity] <u>acid</u>, with the proviso that the formulation does not comprise any acidic amino acids, arginine or glycine in amounts of between 0.3 and 5% by weight, <u>wherein after storage for 3 months at 25°C, stability of an in vitro biological activity of the formulation is at least 80% of an initial biological activity.</u>

- 4. (Amended) [Formulation] The formulation according to Claim 1, [characterized in that it comprises] wherein the interferon- β is a glycosylated interferon- β .
- 5. (Amended) [Formulation] <u>The formulation</u> according to Claim 2, [characterized in that] <u>wherein</u> the interferon-β [originates from] <u>is recombinantly</u> produced in CHO cells.
- 6. (Twice Amended) [Formulation] The formulation according to Claim 1, [characterized in that it comprises] wherein the buffer is in a concentration of 10 mmol/1 to 1 mol/1.
- 7. (Twice Amended) [Formulation] <u>The formulation</u> according to Claim 1, [characterized in that it comprises a] <u>wherein the buffer is</u> selected from the group consisting of <u>a</u> phosphate, <u>a</u> citrate and <u>an</u> acetate [buffers and mixtures of these] <u>buffer, and a combination thereof.</u>
- 8. (Amended) [Formulation] The formulation according to Claim 7, [characterized in that it] wherein the buffer comprises a phosphate/citrate buffer.
- 9. (Twice Amended) [Formulation] <u>The formulation</u> according to Claim 1, [characterized in that it has a] <u>wherein the pH is</u> between 6 and 7.2.
- 10. (Amended) [Formulation] The formulation according to Claim 3, [characterized in that it is free from] wherein the formulation does not contain human serum albumin.
- 11. (Twice Amended) [Formulation] The formulation according to Claim 1, [characterized in that, apart from] wherein the active ingredient[, it] is free from human or animal polypeptides.

- 12. (Twice Amended) [Formulation] <u>The formulation</u> according to Claim 1, [characterized in that it] <u>wherein the formulation</u> is free from surfactants.
- 13. (Twice Amended) [Formulation] The formulation according to Claim 1, [characterized in that it exhibits a chemical integrity] wherein after storage of the formulation for 6 months at 25°C, the formulation is chemically stable.
- 14. (Twice Amended) [Formulation] <u>The formulation</u> according to Claim 1, [characterized in that it exhibits a physical integrity] <u>wherein</u> after storage <u>of the formulation</u> for 6 months at 25°C, the formulation is physically stable.
- 15. (Twice Amended) [Formulation] <u>The formulation</u> according to Claim 1, [characterized in that it furthermore comprises] <u>further containing at least</u> one [or more] amino [acids] <u>acid</u>.
- 16. (Twice Amended) [Formulation] <u>The formulation</u> according to Claim 3, [characterized in that it comprises] <u>wherein the formulation contains</u> methionine.
- 17. (Amended) [Formulation] The formulation according to Claim 16, [characterized in that] wherein the methionine is present in a concentration of 0.1 to 4 mmol/1.
- 18. (Twice Amended) [Formulation] <u>The formulation</u> according to Claim 1, [characterized in that it furthermore comprises auxiliaries] <u>further comprising an ingredient</u> for adjusting [the] tonicity.
- 19. (Twice Amended) [Formulation] <u>The formulation</u> according to Claim 1, [characterized in that it furthermore comprises thickeners] <u>comprising a thickener</u> for increasing [the] viscosity.

- 20. (Twice Amended) [Formulation] <u>The formulation</u> according to Claim 1, [characterized in that it furthermore comprises] <u>further containing at least one</u> physiologically acceptable [preservatives] preservative.
- 21. (Twice Amended) [Pharmaceutical preparation] A pharmaceutical composition [characterized in that it comprises] comprising a liquid formulation according to Claim 1, and a pharmaceutically acceptable carrier.
- 22. (Amended) [Pharmaceutical preparation] The pharmaceutical composition according to Claim 21 in a form suitable for oral, parenteral or ophthalmological administration.
- 23. (Twice Amended) [Pharmaceutical preparation] The pharmaceutical composition according to Claim 21, wherein the composition is in the form of a unit [doses of] dose containing 1 to 25 [MU] x 10⁶ IU of interferon-β.
- 25. (Amended) [Process] <u>A process</u> for [improving the shelf life of] <u>stabilizing</u> a liquid formulation [which comprises] <u>comprising</u> human interferon-β as <u>the</u> active ingredient and a buffer for [setting] <u>buffering in</u> a pH <u>range</u> of 5 to 8, [characterized in that a formulation without human serum albumin or/and with one or more amino acids is used, with the proviso that the formulation does not comprise any acidic amino acids, arginine or glycine in amounts of between 0.3 to 5% by weight] <u>said process comprising</u> adding a stabilizing amount of at least one amino acid, provided that the amino acid is not an acidic amino acid, arginine or glycine in an amount of between 0.3 to 5% by weight of the formulation, with the further proviso that human serum albumin is not present in the formulation.

26. (Amended) [Process] <u>The process</u> according to Claim 25, [characterized in that the improved shelf life encompasses improved] <u>wherein the stabilizing comprises</u> increasing at least one of the long-term stability of the <u>in vitro</u> biological [in vitro] activity, [of] the chemical [integrity or/and of] <u>stability and</u> the physical [integrity] <u>stability of the formulation</u>.

- 1 -

Liquid interEmben-β formulations

Cross References to Related Applications

This application is a 1331 of POT/EP98/0605, find an September 23,1998 relates to liquid formulations of human interferon- β . The formulations are characterized in that they have a pH in the weakly acidic to neutral range between 5 and 8 and that the interferon- β is highly stable in solution while retaining the molecular integrity.

Description of Related Art

Naturally occurring interferons are species-specific proteins, in some cases glycoproteins, which are produced by various cells of the body after induction viruses, double-stranded RNA, other nucleotides and antigens. Interferons exhibit a large number of biological activities such as, for example, immunomodulatory antiviral, antiproliferative and Αt least 3 different types of properties. interferons have been identified; they are produced by leucocytes, lymphocytes, fibroblasts and cells of the immune system and termed α -, β - and γ -interferons. Individual types of interferons can furthermore be divided into a large number of subtypes.

25

30

35

10

15

20

Native, human interferon- β can be prepared commercially by superinduction of human fibroblast cell cultures with poly-IC followed by isolation and purification of the interferon- β by chromatographic and electrophoretic techniques. Proteins or polypeptides which exhibit properties similar to those of natural interferon- β can also be prepared by recombinant DNA technologies (EP-A-0 028 033; EP-A-0 041 313; EP-A-0 EP-A-0 287 075; Chernajovsky et al. (1984) DNA 297-308; McCormick et al. (1984) Mol. Cell. Biol. Recombinant interferon-β 166-172). human produced both in eukaryotic cells (for example CHO cells) and by prokaryotic cells (for example E. coli).

The interferons in question are termed interferon- β -1a and interferon- β -1b respectively. In contrast to interferon- β -1b, interferon- β -1a is glycosylated (Goodkin (1994) Lancet 344, 1057-1060).

5

10

15

A prerequisite for the therapeutic use of interferon- β is that it is pharmaceutically formulated so that the protein is storage-stable over a prolonged period while retaining the molecular integrity. Interferon- β is unstable and subject to various degradation reactions. These include, in particular, the cleavage of peptide deamidation, oxidation of the methionin to bonds, methionin sulphide, disulphide exchange, and changes in the sugar side chain which even include deglycosylation.

Owing to the therapeutical benefit of interferons, a series of formulations have been developed in recent however, all of them exhibit certain years; Patent No. 4,647,454 (Inter-Yeda disadvantages. US 20 describes formulation of fibroblast Ltd.) а interferon- β which can be stabilized by addition of polyvinylpyrrolidone (PVP) in the highly acidic range (pH 3.5). Other preferred auxiliaries are mannitol, human serum buffers. 25 albumin and acetate The formulation is freeze-dried and stored at 4°C.

The Japanese Patent Specification 59 181 224 (Sumitomo Chemical Co.) describes an aqueous solution interferons in which polar amino acids 30 asparagine, glutamic acid, glutamine, arginine, histidine, lysine, serine and threonine and their sodium salts together with human serum albumin are employed for stabilizing the interferons.

35

The international Patent Application WO 95/31213 (Applied Research Systems ARS Holding) describes a liquid formulation for interferon- β which is stabilized by addition of a polyol, preferably mannitol, and a

non-reducing sugar or an amino acid. The formulation furthermore comprises a buffer (acetate buffer pH 3.0 to 4.0) and human serum albumin. While formulas with a pH of between 5 and 6 showed an immediate loss in biological activity, the formulas preferred in the patent specification are sufficiently stable at values of 3.0 and 4.0. Moreover, the statement regarding stability only refers to the biological activity of the formulation, but not to the molecular integrity of the active ingredient.

10

15

20

25

30

The European Patent Application EP 0 215 658 (Cetus Corp.) describes a formulation for recombinant interferon-B in which the bioactive compound dissolved in an aqueous medium at a pH of between 2 and 4 with addition of stabilizers such as human serum albumin or human plasma protein fractions and, appropriate, dextrose. A further patent application of Cetus Corp. (WO 89/05 158) describes a formulation for interferon- β where either glycerin or polyethylene glycopolymers with a mean molecular weight of between 190 to [sic] 1600 daltons are employed as stabilizers at a pH of between 2 and 4. Suitable buffer components which are mentioned are glycine, phosphoric acid and citric acid.

The European Patent Application EP 0 217 645 (Cetus Corp.) describes pharmaceutical preparations with IL-2 or interferon- β which are dissolved in an excipient medium at pH 7 to 8 and stabilized with addition of sodium laurate as surfactant. In addition, SDS is also required as further ionic surfactant in order to stabilize these preparations.

The European Patent EP 0 270 799 (Cetus Oncology Corp.) describes a formulation for unglycosylated recombinant interferon- β in an inert water-based excipient medium which comprises non-ionic polymeric detergents as stabilizer.

Patent Application EΡ 529 300 The European Biotechnologie GmbH) describes liquid (Rentschler interferon-β formulations which comprise concentration of 30 or 70 MU/ml recombinant IFN- β , chloride and imidazole buffer or phosphate buffer and have a pH of 7.5 (Example 3). These formulations are stable with regard to their biological activity for 4 weeks at а storage temperature of 25°C. However, the disadvantage of these compositions is that the concentration of interferon- β MU/ml) is (≥ 30 too hiqh for practical applications. Moreover, there is no mention EP-A-0 529 300 of a reduction in the stability of liquid interferon- β formulations by addition of human serum albumin. In contrast, the addition of human serum albumin is stated as being preferred.

5

10

15

In addition to formulations for interferon- β , there are pharmaceutical described forms 20 dosage interferon- α . The European Patent Specification Corp.) 0 082 481 (Schering discloses an aqueous formulation intended for freeze-drying which comprises human serum albumin, in addition to a phosphate buffer 25 and glycine. Alanine is mentioned as further optional constituent. After reconstitution, the Нq of solution is between 7.0 and 7.4. A further patent application of Schering Corp. (WO 96/11018) discloses stable aqueous solutions in interferon- α which comprise chelating agents (NaEDTA or citric acid), a surfactant 30 (Polysorbat 80), an isotonizing agent (sodium chloride) suitable preservatives such as methylparaben, propylparaben, m-cresol or phenol, at a pH of between 4.5 and 7.1. With regard to the biological activity (standard method of inhibiting the cytopathic effect 35 (CPE) of a virus as described by W.P. Protzman in J. Clinical Microbiology, 1985, 22, pp. 596-599), the aqueous formulations disclosed prove to be stable for 6 months at 25°C (biological activity >90% of the

initial activity). However, a determination of the protein content by HPLC carried out in parallel already shows losses in content of between 20.2 (Table 3) or 32.5% (Table 4) after 6 months at 25°C.

5

10

15

EP-A-0 736 303 (Hoffmann-LaRoche AG) discloses aqueous interferon- α compositions which, in addition to an interferon- α , comprise a non-ionic detergent, a buffer for setting the pH range between 4.5 and 5.5, benzyl alcohol and, if appropriate, isotonizing agents. A determination by HPLC identifies a residual content of 84.5% after storage for three months at 25°C and a starting concentration of 18 MU interferon- α 2a, while this value drops to 62.8% when the stabilizer benzyl alcohol is omitted.

EP-A-0 641 567 (Ciba Geigy AG) describes pharmaceutical compositions which comprise hybrid interferon- α and, as stabilizer, a buffer with a pH of between 3.0 and 5.0.

20

25

30

35

US Patent 5,358,708 (Schering Corp.) describes aqueous formulations of interferon- α which comprise methionine, histidine or mixtures of these as stabilizer. After storage of an interferon- α solution at 40°C for two weeks, it is found that the active ingredient content has decreased by 20%.

The abovementioned formulations for interferons have from the present-day view since, shortcomings addition of human serum albumin for example, an stabilizing proteins should be dispensed with, owing to the higher demands for safety from virus contamination by blood donors. Moreover, a number of the abovedescribed formulations require the addition of amino and/or freeze-drying. However, freeze-dried products are complicated to produce and, accordingly, expensive and require an additional pass owing to the necessity of reconstitution, and this additional pass is frequently very difficult to perform, in particular

for patients with a limited power of movement. A series of formulas have unphysiological pH values of below 5.0. While such values are not entirely unusual (see N.J. also Sweetana and Aders, Journal and Technology, 50: Pharmaceutical Sciences 1996, 330-342), painful irritation must be expected in the case of intramuscular or subcutaneous application. While according to Sweetana and Akers the use of surfactants such as Polysorbat 80 is admissible, side effects have been described, 10 series of particular in new-born and older children, which make the use of such auxiliaries questionable. A review of the toxicity of surfactants can be found in Attwood and Florence (Surfactant Systems, their Chemistry, Pharmacy 15 and Biology, Chapman and Hall; London, 1983). pharmacology of Polysorbat 80 is reviewed by R.K. Varma et al. (Arzneim.-Forsch./Drug Res. 35, 1985, 804-808).

On the basis of the abovementioned disadvantages, an optimal formulation for interferon- β should combine the 20 following properties:

- retaining the biological activity over the storage period,
- retaining the molecular integrity of the active 25 ingredient molecule over the storage period,
 - liquid formulation, no expensive freeze-drying and no additional reconstitution,
- no risky auxiliaries such as human serum albumin or surfactants (detergents), 30 Sriet Summary
 of Inventure
 - pH in the neutral to weakly acidic range.

35

All requirements are met by the invention, which is (insert described in greater detail in the section which block from follows.

Detailed Description of Invention Page 7) Detailed Description of Invention

Surprisingly, a composition of a formula has been found which ensures the molecular integrity of interferon- β liquid form over prolonged period in in a

physiological pH range of between 5 and 8, preferably between over 5.5 and 8, without having to resort to the auxiliaries of the prior art, which are known as being disadvantageous.

5

10

page 6

A first aspect of the present invention is therefore a liquid pharmaceutical formulation which comprises human interferon- β as active ingredient in a concentration of up to 25 MU/ml and a buffer for setting a pH of between 5 and 8, preferably between over 5.5 and 8, is free from human serum albumin and shows a long-term stability of the biological activity (in vitro) of at least 80% of the initial activity after storage for 3 months at 25°C.

15

20

further aspect of the invention liquid is pharmaceutical formulation which comprises human interferon- β as active ingredient and a buffer setting a pH of between 6 and 7.2, is free from human serum albumin and shows a long-term stability of the biological activity (in vitro) of at least 80% of the initial activity after storage for 3 months at 25°C.

25

Yet a further aspect of the invention is a liquid pharmaceutical formulation which comprises human IFN- β as active ingredient, a buffer for setting a pH of between 5 and 8, preferably between over 5.5 and 8, and one or more amino acids and shows a long-term stability of the biological activity (in vitro) of at least 80% of the initial activity after storage for 3 months at 35°C .

30

35

The long-term stability of liquid pharmaceutical formulations was measured at 25°C. The temperature of 25°C was chosen, on the one hand, to cause accelerated degradation reactions, but, on the other hand, to avoid artefacts caused by unduly high temperatures. Suitable analytical methods for determining the stability of interferon- β can be found in the reviews by J. Geigert

(J. Parent. Sci. Technol. 43 (1989), 220-224) or M.C. Manning, K. Patel and R.T. Borchardt (Pharm. Res. 6 (1989), 903-918).

- The biological activity after the storage period chosen in each case was measured by the standard method of inhibiting the cytopathic effect of a virus. A detailed description of the test method used can be found in Stewart, W.E. II (1981): The Interferon System (Second, enlarged Edition), Springer-Verlag: Vienna, New York; 10 Grossberg, S.E. et al. (1984), Assay of Interferons. In: Came, P.E., Carter W.A (eds) Interferons and their Applications, Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, pp. 23-43. After storage for three months at 25°C, a formulation according to the invention 15 exhibits a biological activity of at least preferably of at least 85%, and especially preferably of at least 90%, of the initial activity.
- 20 After storage for six months at 25°C, a formulation according to the invention preferably has a biological activity of at least 80%, and preferably of at least 85%, of the initial activity.
- 25 Even when stored at higher temperatures, for example 37°C, the formulations according to the invention exhibit a surprisingly high long-term stability of the biological activity. For example after storage for one month at 37°C, a biological activity of at least 70%, and preferably of at least 80%, of the initial activity is found.

The liquid pharmaceutical formulations according to the invention are preferably free from human serum albumin and especially preferably - apart from the active ingredient - free from human or animal polypeptides, in particular serum proteins. It is furthermore preferred for the liquid pharmaceutical formulation according to the invention to be free from surfactants, in

particular free from ionic detergents and/or non-ionic surfactants.

The formulations according to the invention comprise, as active ingredient, an interferon- β , that is to say a polypeptide which exhibits biological and/or immunological properties of natural human interferon- β and which may be a naturally occurring or recombinant interferon- β . The formulation preferably comprises a glycosylated interferon- β , especially preferably a recombinant interferon- β from CHO cells. Interferon- β species which are most preferably used are those which can be obtained from the cell line BIC 8622 (ECACC 87 04 03 01) and which are described, for example, in EP-B-0 287 075 and EP-A-0 529 300.

10

15

20

25

30

35

Preferably, the active ingredient is present in the formulations according to the invention in a concentration of up to 25 MU/ml. However, a dosage in the range of 1 to 25 MU/ml is preferred, in the range of 3 to 20 MU/ml especially preferred and in the range of 3 to 10 MU/ml most preferred. These dosage ranges allow an immediate use without further dilution in conjunction with a particularly good stability at an elevated temperature.

preferred feature of the liquid further pharmaceutical formulation according to the invention is that it exhibits a chemical integrity after storage for 3 months, and preferably 6 months, at 25°C, i.e. that it is stable to peptide cleavage, oxidation and deglycosylation. The chemical integrity is measured by peptide mapping, Western blot and qlycosylation analysis. Chemically stable for the purposes of the compositions in which the present invention are interferon- β after formulation retains at least 85%, preferably at least 90%, of the chemical integrity at the storage conditions chosen.

the preferred feature of further liquid pharmaceutical formulations according to the invention is a physical integrity after storage for 3 months, and preferably 6 months, at 25°C. The physical integrity is in this case measured by measuring the transmission at nm and by visually observing the solutions. solutions Physically stable are those transmission is over 90%, preferably over 93%, at the storage conditions chosen, and where no turbidity can be determined upon visual observation.

10

surprisingly allows invention liquid The present formulations of interferon- β to be provided which are biologically, chemically and physically stable over a 15 prolonged period and free from undesired constituents for example, human serum surfactants. In addition to the active ingredient, the formulations according to the invention comprise a buffer which is preferably present in a concentration of 10 mmol/l to 1 mol/l, especially preferably in a 20 concentration of 20 mmol/l to 200 mmol/l, for example approximately 50 mmol/l to 100 mmol/l, and which serves to maintain the pH of the formulation in the range of 5 8, preferably above 5.5 to 8, more preferably between 6 and 7.4. A pH range between 6 and 7.2 is 25 especially preferred, and a pH range between 6.2 and 6.8 most preferred, since a particularly high stability while retaining the molecular integrity is achieved here. The buffer is selected from amongst pharmaceutically acceptable buffers, for example 30 borate, succinate, L-malate, TRIS, salicylate, glycyltriethanolamine, isocitrate, maleate, phosphate, citrate and acetate buffer, or mixtures of Phosphate, citrate and acetate buffer these. mixtures of these are preferably used, especially 35 preferably phosphate/citrate buffers.

In addition to the active ingredient and the buffer, the formulation according to the invention can comprise

other physiologically acceptable auxiliaries, for example auxiliaries for adapting tonicity to tonicity of blood or tissue, for example non-reducing sugars, sugar alcohols such as mannitol, xylitol or glycerin. Moreover, one or more amino acids for example, alanine, arginine, glycine, histidine or/and methionine, may be added to the formulation according to the invention to further increase the chemical stability. Methionine preferred in this context. The methionine concentration is preferably in the range of 0.1 to 4 mmol/l. A concentration of 2 mmol/l is especially preferred. Moreover, the composition may comprise thickeners for increasing the viscosity, for example for ophthalmological purposes. Examples of suitable thickeners are ophthalmologically suitable polymers, for example Carbopol, methylcellulose, carboxymethylcellulose etc.

10

15

35

Moreover, the composition according to the invention may also comprise preservatives. For ophthalmological 20 purposes, for example, thiomersalate may be employed in an amount of 0.001 to 0.004% (weight/volume).

The invention furthermore relates to pharmaceutical 25 preparations which comprise a liquid interferon- β comprising formulation as described above. pharmaceutical preparations are particularly suitable for oral, parenteral or ophthalmological application. The formulations preferably exist in unit doses of 1 to 25 MU IFN- β . The invention furthermore relates to a 30 process for the preparation of such pharmaceutical in which a formulation according to the preparation, invention and, if appropriate, other pharmaceutical auxiliaries which formulation are necessary are prepared and formulated as a suitable dosage form.

The formulation according to the invention can be stored in suitable, washed and sterilized glass vials (hydrolytic class 1) with pharmaceutically acceptable

rubber stoppers.

Moreover, formulations according to the invention can also be packaged aseptically in ready-to-use syringes or else in carpules for use in self-injection systems, and employed thus. While this is not preferred, the aqueous solutions may be freeze-dried by addition of other auxiliaries known to the skilled worker, and, after reconstitution, are available in liquid form.

10

20

25

Using suitable preservatives, it is possible to prepare liquid multidose forms and eye-drop solutions and solutions for dropwise oral application.

15 The auxiliaries additionally required for preparing the relevant dosage forms are known to the skilled worker.

Finally, the invention relates to a process for improving the shelf life of a liquid formulation which comprises human interferon- β as active ingredient and a buffer for setting a pH of 5 to 8, preferably of above 5.5 to 8, characterized in that a formulation without human serum albumin or/and with one or more amino acids is used. The improvement in shelf life encompasses improved long-term stability of the biological activity (in vitro), of the chemical integrity or/and of the physical integrity as indicated hereinabove.

The invention is furthermore illustrated by the 30 examples which follow.

Examples

An interferon- β obtained from CHO cells was used in all the examples.

35

1. Long-term stability of liquid interferon- β formulations at 25°C

The following formulations were tested:

Formulation 1: 50 mmol/l sodium citrate pH 5.0

5

10

20

Formulation 2: 50 mmol/l sodium citrate, 50 mmol/l sodium phosphate pH 7.0, 15 mg/ml human serum albumin, 2 mmol/l methionine, 50 mg/ml glycerin

Formulation 3: 50 mmol/l sodium citrate, 50 mmol/l sodium phosphate pH 7.0, 50 mg/ml glycerin, 2 mmol/l methionine

Formulation 4: 50 mmol/l sodium citrate, 50 mmol/l sodium phosphate pH 7.0, 2 mmol/l methionine

Formulation 5: 50 mmol/l sodium citrate, 50 mmol/l sodium phosphate pH 7.0

Formulation 17: 70 mmol/l sodium citrate, 50 mmol/l sodium phosphate, 2 mmol/l methionine, pH 6.5

The formulations were diluted to a content of approx. 10 to 15 MU/ml (that is to say 10 to 15 \times 10⁶ IU/ml.

With the exception of formulation 17 (see below), the formulations were stored at 25°C for the period indicated in hydrolytic class 1 glass vials (DIN 2R vials) which were sealed with commercially available chlorobuthyl rubber stoppers. The biological activity 25 (in vitro) was determined as described by Stewart, W.E. (1981): The Interferon System (Second, enlarged edition) Springer-Verlag: Vienna, New York; Grossberg, S.E. et al. (1984) Assay of Interferons. In: (eds.) 30 P.E., Carter W.A. Interferons and their Applications, Springer-Verlag: Berlin, Heidelberg, New York, Tokyo, pp. 23-43.

The results are shown in Tables 1 to 5. "% (ref.)"

35 indicates the biological activity based on the biological activity of a reference sample which had been stored at -20°C for the period indicated.

"% (0mo)" is the percentage of biological activity based on the initial value at 0 months.

Table 1 (Formulation 1):

Months	Active ingredient content				
	MU	/ml	Recovery		
	-20°C	25°C	% (ref.)	% (0mo.)	
0	11.0	11.0	100	100	
1	10.0	9.8	98	89	
2	9.7	11.0	113	100	
3	10.0	10.6	106	96	
4	10.3	9.5	92	86	
5	9.5	9.7	102	88	
6	10.5	10.2	97	93	

5 Table 2 (Formulation 2):

Months	Active ingredient content				
	MU,	/ml	Recovery (25°C)		
	-20°C	25°C	% (ref.)	% (0mo.)	
0	13.9	13.9	100	100	
1	14.0	11.9	85	86	
2	13.0	11.6	89	83	
3	13.1	9.6	73	69	
4	12.5	8.8	70	63	
5	11.0	8.2	75	59	
6	13.3	8.4	63	60	

Table 3 (Formulation 3):

Months	A	ctive ingre	edient conten	ıt
	MU,	/ml	Recovery	y (25°C)
	-20°C	25°C	% (ref.)	% (0mo.)
0	12.5	12.5	100	100
1	9.4	10.0	106	80
2	8.3	11.5	139	92
3	7.8	11.8	151	94.4
4	6.8	10.3	151	82.4
5	6.6	11.2	170	89.6

_	7.0	12 /	177	107 0
6	/.0	13.4	1/2	10/.2

Table 4 (Formulation 4):

Months	Active ingredient content				
	MU,	/ml	Recovery (25°C)		
	-20°C	25°C	% (ref.)	% (0mo.)	
0	11.4	11.4	100	100	
1	10.5	10.2	97	89	
2	11.9	11.1	93	97	
3	10.8	10.0	93	88	
4	10.4	9.3	89	82	
5	11.6	8.4	72	74	
6	12.4	9.5	77	83	

5 Table 5 (Formulation 5):

10

Months	Active ingredient content				
	MU	/ml	Recovery (25°C)		
	-20°C	25°C	% (ref.)	% (0mo.)	
0	11.3	11.3	100	100	
1	11.0	9.7	88	86	
2	11.7	10.1	86	89	
3	11.1	10.2	92	90	
4	11.3	10.2	90	90	
5	12.0	9.2	77	81	
6	11.0	9.7	88	86	

It can be seen from the above tables that formulations which do not contain human serum albumin (Formulations 1, 3, 4, 5) surprisingly exhibit a better stability than a formulation which comprises human serum albumin (Formulation 2).

In Formulation 17 (see above), an interferon solution without human serum albumin was brought to an activity of 6 MU/0.5 ml under aseptic conditions. The colourless, clear solution was subsequently filtersterilized, and 0.5-ml aliquots were filled into pre-

sterilized disposable syringes and sealed. The readyto-use syringes were stored at 25°C and examined for clarity, pH and biological activity. The following results were obtained:

Storage	рΗ	Clarity[%]	MU/syringe		Recovery	y (25°C)
in			-20°C	25°C	%(ref.)	%(0mo.)
months						
0	6.5	99.5	6.3	6.3	100	100
3	6.5	99.1	5.6	6.1	108	97

2. Long-term stability of liquid IFN- β formulations at 37°C

10 The following formulations in ready-to-use syringes were tested:

Formulation 6: 50 mmol/l sodium citrate, 50 mmol/l sodium phosphate pH 7.0, 2 mmol/l methionine

Formulation 7: 50 mmol/l sodium citrate pH 5.0, 18 mg/ml glycerin, 2 mmol/l methionine

Formulation 8: 50 mmol/l sodium citrate pH 5.0, 18 mg/ml glycerin, 15 mg/ml human serum albumin, 2 mmol/l methionine

Formulation 9: 50 mmol/l sodium citrate pH 6.0, 18 mg/ml glycerin, 2 mmol/l methionine

Formulation 10: 50 mmol/l sodium citrate pH 6.5, 18 mg/ml glycerin, 2 mmol/l methionine

25

15

20

The formulations were tested in dosage strengths of 3 MU per 0.5 ml (dosage strength 3), 6 MU per 0.5 ml (dosage strength 6) and 12 MU per ml (dosage strength 12).

30

The results are shown in Table 6 which follows.

Table 6

			Г				
		10	100	84	81	81	79
gth 12	on	6	100	16	77	80	78
stren	Formulation	8	100	71	48	35	24
Dosage strength 12	For	7	100	88	88	72	64
	-	9	100	87	69	99	ı
		10	100	84	16	69	ı
gth 6	uo	6	100	98	80	73	84
Dosage strength 6	Formulation	8	100	63	43	36	26
Dosage	For	7	100	85	81	64	65
	-	9	100	72	61	48	46
		10	100	69	85	65	61
Dosage strength 3	ion	6	100	74	74	63	61
ge stre	Formulation	ω	100	61	33	23	16
Dosaç	<u>н</u>	7	100	80	82	76	51
	-	9	100 100	71	51	44	33
Storage	in	months	0		2	3	4

AMENDED PAGE

The results of Table 6 show that, surprisingly, the formulations according to the invention without human serum albumin exhibit an improved stability at 37°C.

5 3. Chemical stability at 25°C

20

25

30

35

To examine the chemical stability of liquid formulations of IFN- β , 7 batches were formulated and stored at 25°C. After 3 and 6 months, the protein was characterized by means of Lys-C mapping and complete 10 carbohydrate analysis. The formation of methionine sulphoxide and the desialylation was checked particularly carefully.

15 In addition to Formulation 10 (see above), the following formulations were tested:

Formulation 11: 50 mmol/l sodium citrate, 50 mmol/l sodium phosphate, 2 mmol/l methionine pH 7.0 to 7.2

Formulation 12: 50 mmol/l sodium citrate, 50 mmol/l sodium phosphate pH 7.0 to 7.2

Formulation 13: 50 mmol/l sodium citrate, 18 mg/ml glycerin, 2 mmol/l methionine, pH 5.0 to 5.2

Formulation 14: 50 mmol/l sodium citrate, 18 mg/ml glycerin, pH 5.0 to 5.2

Formulation 15: 50 mmol/l sodium citrate, 15 mg/ml human serum albumin (medical grade), 18 mg/ml glycerin, 2 mmol/l methionine, pH 5.0 to 5.2

Formulation 16: 50 mmol/l sodium citrate, 15 mg/ml human serum albumin (medical grade), 18 mg/ml glycerin, pH 5.0 to 5.2 (comparison)

In all batches, the IFN- β content was between 10 and 11 MU/ml.

Testing procedure

To carry out the analyses, the samples had to be concentrated. Moreover, the human serum albumin had to be removed in the case of batches 15 and 16. This is why the batches were passed over an anti- β chromatography column. The initial volume per batch was 32 ml. Batches 13 to 16 were neutralized prior to anti- β chromatography by addition of 2.1 ml of 0.4 mol/l Na₂HPO₄ and 2.1 ml of 0.4 mol/l Na₃PO₄.

For the immunoadsorption of interferon- β on a monoclonal antibody against interferon- β (BO2 sepharose 6B, crosslinked by Celltech), a C10 chromatography column (Pharmacia) was packed with 5 ml of BO2 sepharose and washed 3 times with in each case 5-10 gel volumes of PBS, 0.1 mol/l sodium phosphate pH 2.0 and PBS/1 mol/l KCl at a linear flow rate of 1.0 cm/min.

20

15

Approximately 32 ml of the interferon/HSA-containing solution was applied at a linear flow rate of 0.5 cm/min.

Washing was effected with 10 gel volumes of PBS/1 mol/l KCl with a linear flow rate of 1 cm/min until the OD had dropped to baseline. Elution was done with approximately 1-2 gel volumes of 0.1 mol/l sodium phosphate pH 2.0 at a linear flow rate of 1 cm/min.

30 Interferon- β is obtained as single peak in high purity. This eluate is suitable for the subsequent protein characterization.

Analytical procedure

35

1. Lys-C mapping

Using the Achromobacter (AP) enzyme endoproteinase Lys-

C, interferon- β is cleaved under reducing conditions on the C-terminal end of lysin to give 12 peptides.

50 μ l of eluate from the anti-β chromatography (12.5-50 μg interferon-β) were placed of Eppendorf reaction vessel, and 5 μl of 2 mol/l TRIS Wako endoproteinase was added in were added. enzyme/substrate ratio of 1:10 (endoproteinase Lys-C solution in 50 mmol/l TRIS/HCl, pH 9.0). The solution was mixed and incubated for 2 hours at 30°C. Then, 5 μl 10 of 0.1 mol/1 DTT were added to the batch.

The peptides were separated on a reversed-phase column (Vydac C18, 300 Å, 5 μ m, 2.1 mm) on an HPLC system HP 1090 M series with diode array detector at 214 mm, for which purpose a gradient of A: 0.1% (v/v) TFA and B: 0.1% (v/v) TFA/70% (v/v) acetonitrile was used. The peptides were numbered consecutively in the sequence of their retention times and are allocated to the following sequences:

15

20

SEQ.	Peptide	Position	Sequence
ID. No.			
1	AP1	109-115	EDFTRGK
2	AP2	100-105	TVLEEK
3	AP3	46-52	QLQQFQK
4	AP4 (ox)	116-123	LM(ox)SSLHLK
5	AP4	116-123	LMSSLHLK
6	AP6 (ox)	35-45	DRM(ox)NFDIPEEIK
7	AP5	124-134	RYYGRILHYLK
8	AP6	34-45	DRMNFDIPEEIK
9	AP7	20-33	LLWQLNGRLEYCLK
10	AP8 (ox)	1-19	M(ox)SYNLLGFLQRSSNFQCQK
11	AP8	1-19	MSYNLLGFLQRSSNFQCQK
12	AP9	137-166	EYSHCAWTIVRVEILRNFYFINRLTG
			YLRN
13	AP10 (ox)	53-99	EDAALTIYEM(ox)LQNIFAIFRQDS
			SSTGWNETIVENLLANVYHQINHLK
14	AP10	53-99	EDAALTIYEMLQNIFAIFRQDSSSTG

WNETIVENLLANVYHQINHLK

References:

10

30

Utsumi et al. (1989). Characterization of four different mammalian-cell-derived recombinant human interferon- β 1. Eur. J. Biochem. 181, 545-553.

5 Utsumi et al. (1988): Structural characterization of fibroblast human interferon- β 1. J. Interferon Res. 8, 375-384

Allen, G. (1981): Laboratory techniques in biochemistry and molecular biology. Sequencing of proteins and peptides. Elsevier Verlag.

Castagnola et al. (1988): HPLC in Protein sequence determinations. J. Chromatography 440, 213-251.

In the peptides marked (ox), the amino acid methionine methionine form of sulphoxide. 15 quantification is based on determining the proportion of the peak area of the oxidized peptide relative to the total area of intact peptide and oxidized peptide. The proportions of oxidized methionines are very low in interferon-β preparations. However. 20 fresh proportion increases more or less drastically during storage, depending on the storage conditions (buffer, pH, temperature etc.). This change is undesired since it contributes to the instability of the interferon- β 25 molecule or can significantly affect the properties.

The proportion of the oxidized peptides AP4(ox), AP6(ox), AP8(ox) and AP10(ox) is thus an important criterion for assessing the chemical integrity of the interferon- β molecule in a liquid formulation.

2. Carbohydrate determination

In the first step, the oligosaccharides were separated from the polypeptide and demineralized.

Approximately 0.7 ml of the eluate of the anti- β chromatography were dialysed for 16-20 hours at room temperature in a dialysis tubing (diameter 6 mm, Sigma D-9277) against 500 ml of dialysis No. 0.10 mol/l NaCl, (0.05 mol/l sodium phosphate, 7.25), with gentle stirring. Then, the tubing was cut open at one end and the contents squeezed into a Eppendorf reaction vessel. After dialysis, the sample volume was 1 ml.

10

15

20

25

30

20 μl of Tween 20 (10% strength) and 15 μl of N-glycosidase F solution (Boehringer Mannheim) were pipetted to the dialysed sample. This mixture was incubated for 24 hours at 37°C. After the incubation had ended, the mixture was centrifuged for 10 minutes at 10,000 rpm, filtered through a 0.45 μm filter and subsequently chromatographed and fractioned over a desalting column (HR 10/10 Pharmacia No. 17-0591-01) with an isokratic gradient (eluent A: distilled water) at a flow rate of 1.0 ml/min. The free oligosaccharides were detected at 206 nm.

In the second step, the oligosaccharides which had been liberated were separated by an ion exchanger as a function of the number of the sialic acid residues.

The oligosaccharides contained in the eluate of the desalted column, approx. 2 ml, were bound to an anion exchanger (Mono Q HR 5/5, Pharmacia No. 17-0546-01). The asialo forms are in the eluate. With the aid of a shallow NaCl gradient, monosialo, disialo and trisialo forms eluted distinctly separately one after the other in the sequence indicated.

35 Eluent A: Milli-Q water
Eluent B: 0.10 mol/l NaCl

Gradient

0 min	100% A	0% B
5 min	100% A	0% B
25 min	33% A	67% B
26 min	100% A	0% B

Flow rate:

0.75 ml/min

Chromatography time: 26 min (with regeneration 36 min)

5 Detection:

UV 206 nm

The individual oligosaccharide fractions were detected by means of a UV detector at 206 nm. The quantitative calculation was done by integrating the areas of the individual peaks.

The oligosaccharide fractions monosialo, disialo and trisialo were subsequently passed over a desalting column as described above.

15

10

In the third step, the charged oligosaccharides are converted into neutral oligosaccharides by hydrolytically eliminating the terminal sialic acid residues under acidic pH conditions.

20

25

30

To this end, approx. 15 μl of each oligosaccharide fraction plus 15 μl of Milli Q water were placed into a micro-test tube, and 30 μl of 10 mmol/l H_2SO_4 were added. The mixture was then heated for 90 minutes at 80°C.

Then, the batch was centrifuged for 1 minute at 5000 rpm and pipetted into a minivial. The carbohydrates, which are now neutral, are bound at alkaline pH to weak anions and on an anion-exchanger column (CarboPac PA1 (4×250 mm) P/N 35391, Dionex). Elution is done with a gradient of

Eluent A: NaOH 0.16 mol/l

Eluent B: NaOH 0.16 mol/l sodium acetate 0.10 mol/l Eluent C: NaOH 0.16 mol/l sodium acetate 0.75 mol/l

Gradient:

5

0 min	95% A	5% B	0% C
2.0 min	95% A	5% B	0% C
3.0 min	85% A	15% B	0% C
4.0 min	85% A	15% B	0% C
28.0 min	37% A	63% B	0% C
28.1 min	90% A	0% B	10% C
45.0 min	20% A	0% B	80% C
45.1 min	95% A	5% B	0% C
50.0 min	95% A	5% B	0% C

Flow rate:

1.0 ml/min

Chromatography time: 50 min

Detection:

PAD

10

15

PAD amperometric detection) was used to (pulsed determine the oligosaccharides. The oligosaccharide molecule is electrochemically oxidized, and the current thus formed measured. PAD is distinguished by a high so that a detection in the ng range sensitivity, presents no difficulty. The output signal in the detector (in mV) is directly proportional to the amount of carbohydrate. Quantification is done by integrating the peak areas.

20

Between the deglycosylation and the analysis, the samples were subjected to intermediate storage -20°C.

25 References:

High-performance anion-exchange Townsend (1988):chromatography of oligosaccharides. Analytical Biochemistry 174, 459-470.

Results

1. Lys-C mapping

- 5 The Lys-C mapping of batches 11 to 16 showed no difference to the initial value with regard to retention time and qualitative determination of the peptides.
- The determination of the methionine sulphoxide content during liquid storage revealed the results shown in Tables 7 (3 months' storage) and 8 (6 months' storage).

Table 7

15

Name	AP4ox	AP6ox	AP8ox	AP10ox
	content	content	content	content
to value	< 5%	7.6%	n.d.	n.d.
Formulation 11	7.9%	10.5%	n.d.	n.d.
Formulation 12	< 5%	11.6%	n.d.	n.d.
Formulation 13	< 5%	7.3%	n.d.	n.d.
Formulation 14	< 5%	9.4%	n.d.	n.d.
Formulation 15	< 5%	8.6%	n.d.	n.d.
Formulation 16	< 5%	10.8%	n.d.	n.d.

(n.d. = not detectable)

Table 8

Name .	AP4ox	AP6ox	AP8ox	AP10ox
	content	content	content	content
to value	< 5%	7.6%	n.d.	n.d.
Formulation 10	7.6%	8.9%	n.d.	n.d.
Formulation 11	7.7%	9.5%	n.d.	n.d.
Formulation 12	12.0%	13.7%	n.d.	n.d.
Formulation 13	7.4%	8.7%	n.d.	n.d.
Formulation 14	13.7%	15.7%	n.d.	n.d.
Formulation 15	7.4%	7.9%	n.d.	n.d.
Formulation 16	18.0%	17.6%	n.d.	n.d.

Table 7 reveals that the methionine-containing batches 13 and 15 show a lower methionine sulphoxide content upon three months' storage in comparison methionine-free batches. After storage for six months, the affect of the added methionine in batches 11, 13 and 15 is more pronounced. Only a very small increase in the methionine sulphoxide content can be detected in these batches. In the methionine-free batches, methionine sulphoxide content increases slightly more, but the total of all oxidized methionine contents amounts to less than 10% of the total methionine content.

15 2. Carbohydrate determination

The results of the carbohydrate determination after storage for three or 6 months are shown in Tables 9a, 9b, 10a, 10b, 11a and 11b.

20

25

30

10

Interferon- β -la has a carbohydrate structure on its amino acid chain which is composed of a defined sequence of monosaccharides. Depending on the type of branching, these structures are termed biantennary (2 arms), triantennary (3 arms) and tetraantennary (4 arms).

The carbohydrate structure is composed of the monosaccharides mannose, fucose, N-acetylglucosamine, galactose and sialic acid.

In this context, the sialic acid is special in several respects:

- It is the only monosaccharide with a charged group (carboxyl group).
 - It always occurs at the terminus of the carbohydrate chain.
 - It can be eliminated enzymatically or

hydrolytically considerably more readily than the remaining monosaccharides.

- While the structure of the neutral carbohydate chain is highly constant, the sialic acid moiety varies greatly depending, inter alia, on the cell culture and the purification method of the interferon.

References:

5

10 Kagawa et al., J. Biol. Chem. 263 (1988), 17508-17515; EP-A-0 529 300.

sialostatus (percentage of individual sialo structures) after three months' storage (Table 9a) or six months' storage (Table 9b) was investigated. A 15 carbohydrate structure which does not contain terminal sialic acid is termed asialo. A carbohydrate structure which contains a terminal sialic acid is termed monosialo. A carbohydrate structure which contains two terminal sialic acids is termed disialo. A 20 carbohydrate structure which contains three terminal sialic acids is termed trisialo.

Furthermore, the antennarity (percentage of individual 25 branching types) was determined after three months' storage (Table 10a) and after six months' storage A carbohydrate 10b). structure with (Table branching and thus two terminal galactoses is termed biantennary. It can have zero to two terminal sialic acids. A carbohydrate structure with two branchings and 30 thus three terminal galactoses is termed triantennary. It can have zero to three terminal sialic acids.

The degree of sialylation (percentage occupation of terminal galactose residues with sialic acid) after three months' storage (Table 11a) and six months' storage (Table 11b) was also investigated.

It can be seen from the results that storage at pH 5 causes a slight, but reproducible, desialylation. Storage at pH 7 has no effect on the degree of sialylation.

5

The afuco content specified in batches 15 and 16 is probably due to foreign proteins from the added human serum albumin, which were not quantitatively removed by anti- β chromatography.

10

As regards the antennarity, liquid storage has no measureable effect.

Table 9a

Name ,	Asialo	Monoasialo	Disialo	Trisialo
to value	< 3	13.4	73.4	12.1
Formulation 11	< 3	14.0	74.1	11.9
Formulation 12	< 3	12.6	74.9	11.6
Formulation 13	< 3	16.5	70.4	12.0
Formulation 14	< 3	16.6	71.1	11.1
Formulation 15	< 3	15.8	70.0	13.0
Formulation 16	< 3	15.1	72.0	11.9

Table 9b

	I			
Name	Asialo	Monoasialo	Disialo	Trisialo
to value	< 3	13.4	73.4	12.1
Formulation 10	< 3	13.9	70.2	15.3
Formulation 11	< 3	14.5	73.9	11.6
Formulation 12	< 3	14.0	72.4	13.6
Formulation 13	< 3	18.6	68.9	11.7
Formulation 14	< 3	19.0	69.4	10.7
Formulation 15	< 3	17.0	71.0	11.3
Formulation 16	< 3	16.1	71.5	12.4

Table 10a

Name	Biantennary	Triantennary	Triantennary
		1 → 6	+ 1 repeat
to value	74.4	18.1	3.7
Formulation 11	72.9	18.7	3.7
Formulation 12	76.9	17.0	2.7
Formulation 13	74.7	18.0	3.1
Formulation 14	75.9	17.3	2.9
Formulation 15	76.2 (incl.	18.0	3.3
	5% afuco)		
Formulation 16	76.9 (incl.	17.8	3.0
	5% afuco)		

Table 10b

Name	Biantennary	Triantennary	Triantennary
		1 → 6	+ 1 repeat
to value	74.4	18.1	3.7
Formulation 10	71.4	19.3	4.0
Formulation 11	73.0	18.7	3.3
Formulation 12	72.3	19.7	3.4
Formulation 13	72.4	19.2	3.4
Formulation 14	74.2	18.7	3.2
Formulation 15	73.0	18.7	2.8
Formulation 16	74.3 (incl.	19.7	3.2
	4% afuco)	_	

Table 11a

Name	Degree of sialylation
to value	88.3
Formulation 11	87.0
Formulation 12	88.2
Formulation 13	85.8
Formulation 14	85.8
Formulation 15	86.6
Formulation 16	86.9

Table [11a] 11b

Name	Degree of sialylation
to value	88.3
Formulation 10	87.5
Formulation 11	86.6
Formulation 12	87.7
Formulation 13	84.1
Formulation 14	84.3
Formulation 15	85.7
Formulation 16	86.5

SEQUENCE LISTING (1) GENERAL INFORMATION: 5 (i) APPLICANT: (A) NAME: Dr.Rentschler Biotechnologie GmbH (B) STREET: Erwin-Rentschler-Str. 21 (C) TOWN: Laupheim 10 (E) COUNTRY: Germany (F) POSTCODE: D-88471 (ii) TITLE OF THE INVENTION: Liq γ id interferon- β formulations 15 (iii) NUMBER OF SEQUENCES: 14 (iv) COMPUTER-READABLE VERSION: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM/PC compatible 20 (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1/.30 (EPA) 25 (2) INFORMATION FOR SEQ /ID NO: 1: (i) SEQUENCE CHARÁCTERISTICS: (A) LENGTH: 7 aminoacids (B) TYPE: aminoacid (C) STRANDEDNESS: single 30 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (viii) POSITION IN THE GENOME: 35 (B)/ MAP POSITION: 109-115 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: Glu Asp the Thr Arg Gly Lys 40 (2) INFORMATION FOR SEQ ID NO: 2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 aminoacids 45 (B) TYPE: aminoacid (C) STRANDEDNESS: single (D) TOPOLOGY: linear

```
(ii) MOLECULE TYPE: peptide
         (viii) POSITION IN THE GENOME:
 5
                 (B) MAP POSITION: 100-105
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
           Thr Val Leu Glu Glu Lys
10
         INFORMATION FOR SEQ ID NO: 3:
    (2)
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 7 aminoacids
15
                 (B) TYPE: aminoacid
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
20
         (viii) POSITION IN THE GENOMÉ:
                 (B) MAP POSITION: \sqrt{46-52}
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
25
          Gln Leu Gla Gla Phé Gla Lys
    (2)
         INFORMATION FOR SEQ ID NO: 4:
30
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 8 aminoacids
                 (B) TÝPE: aminoacid
                 (C) STRANDEDNESS: single
                 (D) / TOPOLOGY: linear
35
          (ii) MOLECULE TYPE: peptide
         (viii) PÓSITION IN THE GENOME:
                 (B) MAP POSITION: 116-123
40
              FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) POSITION: 2
                 (C) OTHER INFORMATION:/product= "Xaa =
45
                     Met(oxidized)"
```

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Leu Xaa Ser Ser Leu His Leu Lys (2) INFORMATION FOR SEQ ID NO: 5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 aminoacids (B) TYPE: aminoacid 10 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 15 (viii) POSITION IN THE GENOME: (B) MAP POSITION: 116-12/3 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: Leu Met Ser Ser Leu His/Leu Lys 20 INFORMATION FOR SEQ LÓ NO: 6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 aminoacids 25 (B) TYPE:/aminoacid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide 30 (viii) POSITION IN THE GENOME: (B) MAP POSITION: 34-45 (ix) FEATURE: 35 (A) NAME/KEY: Modified-site (B) POSITION: 3 (C) OTHER INFORMATION:/product= "Xaa = Met(oxidized)" 40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Asp Arg Xaa Asn Phe Asp Ile Pro Glu Glu Ile Lys

	- 34 -
	(2) INFORMATION FOR SEQ ID NO: 7:
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11 aminoacids (B) TYPE: aminoacid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10	(ii) MOLECULE TYPE: peptide (viii) POSITION IN THE GENOME: (B) MAP POSITION: 124-134 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:
15	Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys 1 5 10
	(2) INFORMATION FOR SEQ ID NO: 8:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 12 aminoacids (B) TYPE: aminoacid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
25	(ii) MOLECULE TYPE: peptide
	(viii) POSITION IN THE GENOME: (B) MAP POSITION: 34-45
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:
	Asp Arg Met Asn Phe Asp Ile Pro Glu Glu Ile Lys
35	(2) INFORMATION FOR SEQ ID NO: 9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 aminoacids (B) TYPE: aminoacid
40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide
45	(viii) POSITION IN THE GENOME: (B) MAP POSITION: 20-33

Leu L u Trp Gln Leu Asn Gly Arg Leu Glu Tyr Cys Leu Lys

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

```
(2)
         INFORMATION FOR SEQ ID NO: 10:
 5
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 19 aminoacids
                 (B) TYPE: aminoacid
                 (C) STRANDEDNESS: single
10
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: peptide
         (viii) POSITION IN THE GENOME:
15
                 (B) MAP POSITION: 1-19
          (ix) FEATURE:
                 (A) NAME/KEY: Modified-site
                 (B) POSITION: 1
20
                 (C) OTHER INFORMATION: //product = "Xaa =
                      Met(oxidized)"
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:
25
          Xea Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg Ser Ser Asn Phe Gln
          Cys Gln Lys
         INFORMATION FOR SEQ ID NO: 11:
    (2)
           (i) SEQUENCE CHARACTERISTICS:
30
                 (A) LENGTH: 19 aminoacids
                 (B) TYPE: aminoacid
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
35
          (ii) MOLECULE TYPE: peptide
         (viii/) POSITION IN THE GENOME:
                 (B) MAP POSITION: 1-19
40
          (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:
           Met Ser Tyr Asn Leu Cly Phe Leu Gln Arg Ser Ser Asn Phe Gln
          Cys Gln Lys
```

	(2) INFORMATION FOR SEQ ID NO: 12:
	(i) SEQUENCE CHARACTERISTICS:
5	(A) LENGTH: 30 aminoacids(B) TYPE: aminoacid
5	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear
	(5) 101020011 1111001
	(ii) MOLECULE TYPE: peptide
10	
	(viii) POSITION IN THE GENOME:
	(B) MAP POSITION: 137-166
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:
15	
	Glu Tyr Ser His Cys Ala Trp Thr Ile Val Arg/Val Glu Ile Leu Arg 1 10 15
	Asn Phe Tyr Phe Ile Asn Arg Leu Thr Gly/Tyr Leu Arg Asn 20 25 30
	(2) INFORMATION FOR SEQ ID NO: 1/3:
20	(i) SEQUENCE CHARACTERIȘTICS:
	(A) LENGTH: 47 aminoacids
	(B) TYPE: aminoacid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY; linear
25	(11) WOT DOWN D. THERE
	(ii) MOLECULE TYPE: peptide
	(viii) POSITION IN THE GENOME:
	(B) MAP POSITION: 53-99
30	
	(ix) FEATURE:
	(A) NAME/KEY: Modified-site
	(B) POSITION: 10
	(C) OTHER INFORMATION:/product= "Xaa =
35	Met(oxidized)"
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:
	Glu Asp Ala Ala Leu Thr Ile Tyr Glu Kaa Leu Gln Asn Ile Phe Ala 1 10 15
	/ Ile Phe Arg Glm Asp Ser Ser Ser Thr Gly Trp Asn Glu Thr Ile Val 20 25 30
	Glu Asn Leu Leu Ala Asn Val Tyr His Cln Ile Asn His Leu Lys 35 40 45

	(2)	INFORMATION FOR SEQ ID NO: 14:
5		(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 aminoacids (B) TYPE: aminoacid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10		(ii) MOLECULE TYPE: peptide (viii) POSITION IN THE GENOME: (B) MAP POSITION: 53-99
15		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14: Glu Asp Ala Ala Leu Thr Ile Tyr Glu Met Leu Gln Asn Ile Phe Ala
		Ile Phe Arg Gln Asp Ser Ser Ser Thr Gly Trp Asn Glu Thr Ile Val 20 25 30 Glu Asn Leu Leu Ala Asn Val Tyr His Gln Ile Asn His Leu Lys

Patent Claims

- which formulation 1. Liquid comprises human active ingredient interferon-β as in 5 concentration of up to 25 MU/ml and a buffer for setting a pH of 5 to 8, is free from human serum albumin and shows a long-term stability of the biological activity (in vitro) of at least 80% of the initial activity after storage for 3 months at 10 25°C.
- 2. Liquid formulation which comprises human interferon- β as active ingredient and a buffer for setting a pH of 6 to 7.2, is free from human serum albumin and shows a long-term stability of the biological activity (in vitro) of at least 80% of the initial activity after storage for 3 months at 25°C.
- 20 3. Liquid formulation which comprises human interferon- β as active ingredient, a buffer for setting a pH of 5 to 8, and one or more amino acids and shows a long-term stability of the biological activity (in vitro) of at least 80% of the initial activity after storage for 3 months at 25°C.
 - Formulation according to Claim 1, characterized in that it comprises a glycosylated interferon-β.
 - 5. Formulation according to Claim 2, characterized in that the interferon- β originates from CHO cells.

6. Formulation according to any of Claims 1 to 5, characterized in that

35

it comprises the buffer in a concentration of 10 mmol/l to 1 mol/l.

- 7. Formulation according to any of Claims 1 to 6,

 characterized in that

 it comprises a buffer selected from the group consisting of phosphate, citrate and acetate buffers and mixtures of these.
- 10 8. Formulation according to Claim 7,

 characterized in that

 it comprises a phosphate/citrate buffer.
- 9. Formulation according to any of Claims 1 and 3 to158,characterized in thatit has a pH between 6 and 7.2.
- 10. Formulation according to Claim 3,
 20 characterized in that
 it is free from human serum albumin.
 - 11. Formulation according to any of Claims 1 to 10, characterized in that,
- apart from the active ingredient, it is free from human or animal polypeptides.
 - 12. Formulation according to any of Claims 1 to 11, characterized in that
- 30 it is free from surfactants.

- 13. Formulation according to any of Claims 1 to 12, characterized in that it exhibits a chemical integrity after storage for 6 months at 25°C.
 - 14. Formulation according to any of Claims 1 to 13, characterized in that

it exhibits a physical integrity after storage for 6 months at 25°C.

15. Formulation according to any of Claims 1, 2 and 4 to 14,

characterized in that

it furthermore comprises one or more amino acids.

- 16. Formulation according to Claim 3 or 15,10 characterized in that it comprises methionine.
 - 17. Formulation according to Claim 16, characterized in that
- the methionine is present in a concentration of 0.1 to 4 mmol/l.
 - 18. Formulation according to any of Claims 1 to 17, characterized in that
- it furthermore comprises auxiliaries for adjusting the tonicity.
 - 19. Formulation according to any of Claims 1 to 18, characterized in that
- 25 it furthermore comprises thickeners for increasing the viscosity
 - 20. Formulation according to any of Claims 1 to 19, characterized in that
- it furthermore comprises physiologically acceptable preservatives.
 - 21. Pharmaceutical preparation, characterized in that
- it comprises a liquid formulation according to any of Claims 1 to 20.

- 22. Pharmaceutical preparation according to Claim 21 for oral, parenteral or ophthalmological administration.
- 5 23. Pharmaceutical preparation according to Claim 21 or 22 with unit doses of 1 to 25 MU.
 - 24. Process for the preparation of a pharmaceutical preparation according to any of Claims 21 to 23,
- 10 characterized in that

a formulation according to any of Claims 1 to 20 and, if appropriate, other pharmaceutical formulation auxiliaries which are necessary is prepared and formulated as a suitable dosage form.

15

- 25. Process for improving the shelf life of a liquid formulation which comprises human interferon- β as active ingredient and a buffer for setting a pH of 5 to 8,
- 20 characterized in that

a formulation without human serum albumin or/and with one or more amino acids is used.

26. Process according to Claim 25,

25 characterized in that

the improved shelf life encompasses improved longterm stability of the biological activity (in vitro), of the chemical integrity or/and of the physical integrity.

Abstract

The present invention relates to liquid formulations of human interferon- β . The formulations are characterized in that they have a buffer with a pH in the weakly acidic to neutral range of between 5 and 8, preferably between over 5.5 and 8, and that they exhibit high stability of the interferon- β in solution while retaining the molecular integrity.

sh/ANM/17150PEP 17.09.98 10:32

PCT/EP98/06065 17150P WO Enclosure

Patent Claims

- formulation 1. Liquid which comprises human active in interferon-B as ingredient concentration of up to 25 MU/ml and a buffer for setting a pH of 5 to 8, is free from human serum 10 albumin and after storage for 3 months at 25°C shows a long-term stability of the biological in vitro activity of at least 80% of the initial activity, with the proviso that the formulation 15 does not comprise any acidic amino acids, arginine or glycine in amounts of between 0.3 and 5% by weight.
- 3. Liquid formulation which comprises human inferferon- β as active ingredient, a buffer for 20 setting a pH of 5 to 8, and one or more amino acids and shows after storage for 3 months at 25°C a long-term stability of the biological in vitro activity of at least 80% of the initial activity, with the proviso that the formulation does not 25 comprise any acidic amino acids, arginine glycine in amounts of between 0.3 and by weight.

- 23. Pharmaceutical preparation according to Claim 21 or 22 in the form of unit doses of 1 to 25 MU.
- 25. Process for improving the shelf life of a liquid formulation which comprises human interferon- β as active ingredient and a buffer for setting a pH of 5 to 8,

characterized in that

- a formulation without human serum albumin or/and with one or more amino acids is used, with the proviso that the formulation does not comprise any acidic amino acids, arginine or glycine in amounts of between 0.3 to 5% by weight.

vo - October 5, 1999

New Claim 2

5 2. Liquid formulation according to Claim 1, characterized in that it comprises a buffer for setting a pH of 6 to 7.2.