Analysis and Design of Algorithms
(ADA)
GTU # 3150703

Unit-8: String Matching

Dr. Gopi Sanghani

Computer Engineering Department
Darshan Institute of Engineering & Technology,

Rajkot gopi.sanghani@darshan.ac.in

9825621471

- Introduction
- The Naive String Matching Algorithm
- The Rabin-Karp Algorithm
- String Matching with Finite Automata
- The Knuth-Morris-Pratt Algorithm

Introduction

- ☐ Text-editing programs frequently need to find all occurrences of a pattern in the text.
- ☐ Efficient algorithms for this problem is called String-Matching Algorithms.
- ☐ Among its many applications, "String-Matching" is highly used in Searching for patterns in DNA and Internet search engines.
- Assume that the text is represented in the form of an array T[1...n] and the pattern is an array P[1...m].

Text T[1..13]

a b c a b a a b c a b a c

Pattern P[1..4]

a b a a

Naive String Matching Algorithm

Naive String Matching - Example

The naive algorithm finds all valid shifts using a loop that checks the condition P[1..m] = T[s+1..s+m]

Naive String Matching - Algorithm

```
NAIVE-STRING MATCHER (T,P)
  n = T.length
  m = P.length
  for s = 0 to n-m
       if p[1..m] == T[s+1..s+m]
                  print "Pattern occurs with
           shift" s
         Naive String Matcher takes time
                O((n-m+1)m)
```

Pattern occurs with shift 2

Rabin-Karp Algorithm

Pattern P | 2 | 6

Choose a random prime number q = 11

Let,
$$p = P \mod q$$

= 26 mod 11 = 4

Let t_s denotes modulo q for text of length m

if
$$t_s == p$$

if $P[1..m] == T[s+1..s+m]$
print "pattern occurs with shift" s

Rabin-Karp Algorithm

 \blacksquare We can compute t_S using following formula

$$t_{s+1} = 10(t_s - 10^{m-1}T[s+1]) + T[s + m + 1]$$

$$3 \quad 1 \quad 4 \quad 1 \quad 5 \quad 9 \quad 2 \quad 6 \quad 5 \quad 3 \quad 5$$

For m=2 and s=0
$$t_s = 31$$

We wish to remove higher order digit T[s+1]=3 and bring the new lower order digit T[s+m+1]=4

$$t_{s+1} = 10(31-10\cdot3) + 4$$

= $10(1) + 4 = 14$
 $t_{s+2} = 10(14-10\cdot1) + 1$
= $10(4) + 1 = 41$

Rabin-Karp-Matcher

```
RABIN-KARP-MATCHER(T, P, d, q)
 n \leftarrow length[T];
 m \leftarrow length[P];
 h \leftarrow d^{m-1} \mod q;
 p \leftarrow 0;
 t_0 \leftarrow 0;
 for i \leftarrow 1 to m do
     p \leftarrow (d_p + P[i]) \mod q
     t_0 \leftarrow (dt_0 + T[i]) \mod q
 for s \leftarrow 0 to n - m do
      if p == t_s then
          if P[1..m] == T[s+1..s+m] then
       print "pattern occurs with shift" s
       if s < n-m then
         t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \mod q
```


String Matching with Finite Automata

Introduction to Finite Automata

- ☐ Finite automaton (FA) is a simple machine, used to recognize patterns.
- ☐ It has a set of states and rules for moving from one state to another.
- ☐ It takes the string of symbol as input and changes its state accordingly. When the desired symbol is found, then the transition occurs.
- ☐ At the time of transition, the automata can either move to the next state or stay in the same state.
- □ When the input string is processed successfully, and the automata reached its final state, then it will accept the input string.
- ☐ The string-matching automaton is very efficient: it examines each character in the text exactly once and reports all the valid shifts.

Introduction to Finite Automata

A finite automaton M is a 5-tuple, which consists of,

$$(Q, q_0, A, \Sigma, \delta)$$

Q is a finite set of states,

 $Q = \{0,1\}$

 $ightharpoonup q_0 \in Q$ is a start state,

 $q_0 = 0$

- $ightharpoonup A \subseteq Q$ set of accepting states,
- $A = \{1\}$

Σ is a finite input alphabet,

- $\Sigma = \{a, b\}$
- δ is a transition function of M. $\delta(1,b)=0$

$$\delta(1,b)=0$$

Suffix of String

Suffix of a string is any number of trailing symbols of that string. If a string ω is a suffix of a string x then it is denoted by $\omega = x$.

Compute Transition Function

COMPUTE-TRANSITION-FUNCTION(P, Σ)

```
\begin{split} m &\leftarrow length[P] \\ \text{for } q \leftarrow 0 \text{ to } m \text{ do} \\ \text{for each character } \alpha \in \Sigma \text{ do} \\ k &\leftarrow \min(m+1,\,q+2) \\ \text{repeat } k \leftarrow k-1 \text{ until } P_k \sqsupset P_q \alpha \\ \delta(q,\,\alpha) \leftarrow k \end{split} return \delta
```

	1	2	3	4	5	6	7
Pattern	a	b	a	b	a	c	a
	1	2	3	4	5	6	7

$$\Sigma = \{a, b, c\}$$

$$m = 7$$

$$\begin{aligned} & \text{for } q \leftarrow 0 \text{ to m do} \\ & \text{for } each \text{ character } \omega \in \Sigma \text{ do} \\ & \quad k \leftarrow \min(m+1, q+2) \\ & \quad \text{repeat } k \leftarrow k-1 \text{ until } P_k \sqsupset P_q \omega \\ & \quad \delta(q, \omega) \leftarrow k \end{aligned}$$

$$\Sigma = \{a, b, c\}$$

$$m = 7$$

for $q \leftarrow 0$ to m do $for each character \omega \in \Sigma do$ $k \leftarrow min(m+1, q+2)$ $repeat k \leftarrow k-1 \ until \ P_k \sqsupset P_q \ \omega$ $\delta(q, \omega) \leftarrow k$ $return \delta$

	1	2	3	4	5	6	7
Pattern	a	b	a	b	a	c	a
	1	2	3	4	5	6	7

 $\Sigma = \{a, b, c\}$

m = 7

input State b C a 0 $\mathbf{0}$ 0 0 4 6

for
$$q \leftarrow 0$$
 to m do
$$for each character \omega \in \Sigma \ do$$

$$k \leftarrow min(m+1, q+2)$$

$$repeat \ k \leftarrow k-1 \ until \ P_k \sqsupset P_q \ \omega$$

$$\delta(q, \omega) \leftarrow k$$

$$return \ \delta$$

Finite Automata Matcher

FINITE-AUTOMATON MATCHER(**T**, δ, **m**)

 $n \leftarrow length[T]$

$$q \leftarrow 0$$

for $i \leftarrow 1$ to n do

$$q \leftarrow \delta(q, T[i])$$

if q == m then

print "Pattern occurs with shift" i – m

	i =	7
	q =	5
q:	$=\delta(0,$	a) = 1
q:	$=\delta(1, \delta)$	(b) = 2
q:	$=\delta(2,$	a) = 3
q:	$=\delta(3,$	(b) = 4
q:	$=\delta(4,$	a) = 5
q:	$=\delta(5,$	(b) = 4
q:	$=\delta(4,$	a) = 5

	input				
State	a	Ъ	c		
0	1	0	0		
1	1	2	0		
2	3	0	0		
3	1	4	0		
4	5	0	0		
	\ \				

6

4

()

6

()

0

Finite Automata Matcher

FINITE-AUTOMATON MATCHER(T, δ , m) $n \leftarrow length[T]$ $q \leftarrow 0$ for $i \leftarrow 1$ to n do $q \leftarrow \delta(q, T[i])$ if q == m then print "Pattern occurs with shift" i - m

							7				
Text	a	b	a	b	a	b	a	C	a	b	a

i = 9
q = 7
$q = \delta(0, a) = 1$
$q = \delta(1, b) = 2$
$q = \delta(2, a) = 3$
$q = \delta(3, b) = 4$
$q = \delta(4, a) = 5$
$q = \delta(5, b) = 4$
$q = \delta(4, a) = 5$
$q = \delta(5, c) = 6$
$q = \delta(6, a) = 7$

•
111111t
input

State	a	b	c
0	1	0	0
1	1	2	0
2	3	0	0
3	1	4	0
4	5	0	0
5	1	4	6
6	7	0	0
7	1	2	0

Suffix & Prefix of a String

Suffix of a string			

Prefix of a string			

String Matching with Knuth-Morris-Pratt Algorithm

Introduction

- \square The KMP algorithm relies on prefix function (π) .
- □ Proper prefix: All the characters in a string, with one or more cut off the end. "S", "Sn", "Sna", and "Snap" are all the proper prefixes of "Snape".
- □ Proper suffix: All the characters in a string, with one or more cut off the beginning. "agrid", "grid", "rid", "id", and "d" are all proper suffixes of "Hagrid".
- ☐ KMP algorithm works as follows:
 - ☐ Step-1: Calculate Prefix Function
 - ☐ Step-2: Match Pattern with Text

Longest Common Prefix and Suffix

ababa

Possible prefix = a, ab, aba, abab

Possible suffix = a, ba, aba, baba

Calculate Prefix Function - Example

$$k = 0$$

$$q = 7$$

Initially set $\pi[1] = 0$ k is the longest prefix found q is the current index of pattern

KMP- Compute Prefix Function

COMPUTE-PREFIX-FUNCTION(P)

```
m \leftarrow length[P]
\pi[1] \leftarrow 0
k \leftarrow 0
for q \leftarrow 2 to m
      while k > 0 and P[k + 1] \neq P[q]
          k \leftarrow \pi[k]
       end while
       if P[k+1] == P[q] then
                k \leftarrow k + 1
       end if
          \pi[q] \leftarrow k
return \pi
```

KMP String Matching

KMP String Matching

Pattern matches with shift i-m

KMP-MATCHER

KMP-MATCHER(T, P) $n \leftarrow length[T]$ $m \leftarrow length[P]$ $\pi \leftarrow \text{COMPUTE-PREFIX-FUNCTION(P)}$ //Number of characters matched. $q \leftarrow 0$ for $i \leftarrow 1$ to n //Scan the text from left to right. while q > 0 and $P[q + 1] \neq T[i]$ $q \leftarrow \pi[q]$ //Next character does not match. if P[q + 1] == T[i] then then $q \leftarrow q + 1$ //Next character matches. if q == m then //Is all of P matched? print "Pattern occurs with shift" i - m $q \leftarrow \pi[q]$ //Look for the next match.

Thank You!

