

Deep learning

Introduction

Caspar van Leeuwen, David Ruhe

SURFsara

SURF

SURFsara

High performance computing

Supercomputing
Clustercomputing
Machine learning
HPC cloud

Data processing

Data analytics
Grid services
Visualization
HPC cloud

Data services

Mass online storage
PID service
Data management
Data preservation

Who are we?

Caspar van Leeuwen

- Advisor Cluster/Supercomputing
- Support users in using Cartesius / Lisa
- Strong interest in Deep Learning
- Other activities, e.g. Training

David Ruhe

- Advisor Machine Learning
- Support ML workloads on HPC infrastructure
- Other activities, e.g. joint (ML) research projects

Course information

- The course will be "hands-on".
- We will use R, the programming language.
 - Disclaimer: R is not a common HPC language, but was thought to fit best with your backgrounds. We are sure we can manage, but are not fluent in R syntax!
- We will use Keras, a popular deep learning framework.
- Online Jupyter notebook environment later today
- Syllabus, announcements & discussion board @ <u>Canvas</u>

Your backgrounds

Any experience in

- Programming
- R
- Statistics
- Machine learning

Course plan

- 1. Introduction and ML & DL fundamentals
- 2. Optimisation & network training
- 3. ML tasks (regression vs classification) & regularisation
- 4. Sequential data analysis with recurrent neural networks
- 5. Image processing with convolutional neural networks
- 6. Unsupervised learning
- 7. Complex architectures and models

Today's program

14:00-14:30 What is ML / DL? What is a neuron?

14:30-15:30 Hands on: building a neuron from scratch

15:30-15:45 How do neural networks work?

15:45-16:15 Break

16:15-16:30 How do neural networks work? (continued)

16:30-17:15 Hands on: building a network from scratch

17:15-18:00 Loss function & updating weights

18:00-19:00 Diner

19:00-19:45 Hands on: the XOR problem

19:45-20:00 Dataset splitting & Performance evaluation

20:00-21:00 Hands on: Keras on fashion Mnist

If we finish early: Machine learning tasks (classification vs regression)

Overview

Today we will cover

- Where deep learning has made an impact.
- The basic components of a neural network.
- Build a basic neural network from scratch
- Perform binary classification using a neural network
- Get to know the online Jupyter notebook environment.

Mach

DecisionTreeClassif If (DEPARTURE TIM Predict: NOT DEL Else (DEPARTURE_T

Predict: DELAYED

Machine le

Source: Machine Learning for an Expert Sys

rning

epth 1 with 3 nodes

Features and result (delivery)
Decision system **Limited human input**

oolery et al. (1994)

Machine learning

- Learning tasks are often broken into two broad categories, supervised or unsupervised.
- In supervised learning we train using the expected output.
 - Regression
 - Classification.
- In **unsupervised** learning the expected output is not provided (or does not exist) during training. Instead we rely on the *similarity* of data points.
 - Clustering
 - Dimensionality reduction
- Machine learning has many good models but most require some manual work (feature engineering) to perform.

Source: <u>Deep Learning</u>, <u>Ian Goodfellow and Yoshua Bengio and Aaron Courville</u>

Source: <u>Deep Learning</u>, <u>Ian Goodfellow and Yoshua Bengio and Aaron Courville</u>

What is deep learning?

Machine Learning

Deep Learning

Source: Alex, D., 2017: <u>Difference between Machine Learning and Deep Learning.</u>

- Machine translation
- Speech recognition
- Language recognition based on characters
- Image classification
- Image screen caption generation
- Recommender systems
- Drug design

• ...

Source: https://ai.googleblog.com/2016/10/supercharging-style-transfer.html

Source: https://phillipi.github.io/pix2pix/

Source: https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/#gif-264

Deep learning

Deep learning is based on neural networks

What is a neural network?

A single neuron

A single neuron

A single neuron

Source: Activation Functions in Neural Networks

Prediction

Before we begin

- Refresh some R
- Tensor manipulation
- Implement a neuron from scratch

- Exercises in Jupyter notebooks
- Notebooks run on Lisa, the national compute cluster
 - Lisa has approximately 300 nodes, 4800 cores
 - During course hours: 16 full nodes reserved
 - Outside course hours: 1 node / capacity for 8 notebooks
- First users of Jupyter @ Lisa!

- Notebook session will start when you login (may take up to a minute or so).
- Closing the browser does not shut down the notebook session.
- To manually start / shut down a notebook session:
 - 'Home' (top left) => Start / Stop My Server.
 - Please shut down sessions when working outside of course hours, since capacity is limited!

First time: login & change password @ https://portal.surfsara.nl

Go to https://https://jupyter.lisa.surfsara.nl:8000/

Notebook: 01a-neuron-from-scratch.ipynb

14:30-15:30

Notebook recap

- Data preparation / restructuring is necessary
- Weights change the 'slope'
- Bias shifts decision boundary

Today's program

14:00-14:30 What is ML / DL? What is a neuron?

14:30-15:30 Hands on: building a neuron from scratch

15:30-15:45 How do neural networks work?

15:45-16:15 Break

16:15-16:30 How do neural networks work? (continued)

16:30-17:15 Hands on: building a network from scratch

17:15-18:00 Loss function & updating weights

18:00-19:00 Diner

19:00-19:45 Hands on: the XOR problem

19:45-20:00 Dataset splitting & Performance evaluation

20:00-21:00 Hands on: Keras on fashion Mnist

If we finish early: Machine learning tasks (classification vs regression)

No single reason, much of the theory is old

More data available

Source: Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville

Bigger models

Source: Deep Learning, Ian Goodfellow and Yoshua Bengio and Aaron Courville

More compute power

CPU vs GPU vs TPU performance comparison on six reference workloads log scale)

Source: https://www.androidauthority.com/google-powering-ai-816146/

How do NNs work?

We want to make a model to predict housing prices

Hidden layers

Or just hit it with a hammer and let the model learn the features

How does it work?

Source: A Comprehensive Hands-on Guide to Transfer Learning with Real-World Applications in Deep Learning

Hidden layers

We can

Universal approximation theorem

Interpre

"Given a neural network with a single hidden layer of sufficient size, the network can model can approximate any function in \mathbb{R}^p "

In other words:

- There is a 'true' function f relating the inputs X to outputs Y
- NN can approximate this function to arbitrary precision given sufficient layer size
- Required layer size can be extremely large and grow rapidly (e.g. exponential) with the dimensionality of the problem (p)

The components

- Neural networks are made from neurons and edges.
- A collection of neurons is a layer.
- The output of a previous layer is used as an input to the next layer.
- The input layer is x, the raw data, and the output layer is \hat{y} , the prediction.
- Anything in between is "hidden".
- Layers are usually represented as **vectors**.
- Edges are usually represented as matrices - the weights.
- The **edges** are **parameters** to be trained.

The components

- There are many types of layers, the previous example is a dense layer: all neurons in one layer are connected to all neurons in the next layer.
- Piling many dense layers, creates a Multi Layer
 Perceptron (MLP) and is very powerful, but expensive.

The XOR problem

- The XOR problem is a famous problem (1960s) in deep learning.
- Early networks only used a single layer, and cannot solve XOR.
- By adding a single hidden layer we can implement XOR.

Prediction with a hidden layer

Go to https://https://jupyter.lisa.surfsara.nl:8000/

Notebook: 01b-network-from-scratch.ipynb

16:30-17:15

Summary

- Deep learning is a subfield of machine learning in which the model learns to represent the data using many levels of concept hierarchies.
- Deep learning has greatly improved performance in many tasks involving complex data.
- Neural networks are made from connected neurons which combine into layers. The network maps the input x to an output y.
- The environment @ https://jupyter.lisa.surfsara.nl:8000/
- If you have any questions, post them @ Canvas