ДИФРАКЦИЯ СВЕТА НА ЗВУКОВОЙ ВОЛНЕ В ЖИДКОСТИ

Пазов Тенгиз, Симухин Егор, группа Б03-302

Работа 4.3.2А

Анотация: 1) В работе изучается дифракция света на синусоидальной акустической решетке и наблюдается фазовая решетка. Измеряется длина волны ультразвука и скорость ультразвука в воде. 2) В работе используются оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, горизонтальная нить на рейтере, микроскоп.

Теоретическое введение

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega=2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m\ll 1$).

Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k=2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1. Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Рис. 1: Дифракция световых волн на акустической решетке

Скорость ультразвуковых волн в жидкости, где u — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

Методика измерений

Используются следующие методы изучения дифракции:

- 2.1.) Метод определения длины волны по дифракционной решетке, основанный на построении графика $x_m(m)$ (положения диффракционных максимумов от номера максимума), чтобы по формуле (4) найти длину волны.
- 2.2.) Метод измерения скорости ультразвука в воде по коэффициенту наклона графика $\Lambda(\frac{1}{z})$.
- 2.3.) Метод темного поля, заключающийся в устранении центрального дифракционного максимума с помощью специального экрана(проволочки).

Схема установки. Схема установки приведена на рисунке 2. Источник света Π через светофильтр Φ и конденсор K освещает вертикальную щель S, находящуюся в фокусе объектива O_1 . После объектива параллельный световой пучок проходит через кювету C перпендикулярно акустической решетке, и дифракционная картина собирается в фокальной плоскости объектива O_2 , наблюдается при помощи микроскопа M.

Предварительную настройку установки произведем в соответствии с инструкцией с зеленым фильтром, далее в работе используется красный.

Рис. 2: Схема для наблюдения дифракции на акустической решетке

Параметры установки: фокусное расстояние объектива F=30 см, одно деление винта микроскопа составляет 20 мкм, полоса пропускания фильтра $\lambda=6400\pm200$ Å.

Оборудование и инструментальные погрешности.

Погрешность микрометрического винта (отсчётного устройства): 0.01мм (ввиду жесткой болтанки).

Погрешность микриметрического винта (излучателя): 0.01мм.

Результаты измерений

1. Исследовали изменения дифракционной картины на красном свете. При увеличении частоты УЗ-генератора и приближении к 1,1 МГц проявляется дифракционная решетка: расстояние между максимумами растет.

Измерили положения x_m дифракционных максимумов с помощью микроскопического винта для пяти частот. Для каждой полосы измерили крайние координаты и рассчитали среднее относительно нулевого максимума как координату полосы. Результаты измерений занесли в таблицах ниже. На основе каждой таблицы построили графики зависимости $x_m(m)$.

1. Для частоты $\nu_1 = 1{,}0116 \pm 0{,}0001$ МГц:

m	-3	-2	-1	0	1	2	3	4
x_m , дел.	2,225	2,50	2,80	3,10	3,425	3,70	3,975	4,275
x_m , MKM	-350	-240	-120	0	130	240	350	470

2. Для частоты $\nu_2 = 1{,}2092 \pm 0{,}0001 \text{ M}$ Гц:

m	-3	-2	-1	0	1	2	3
x_m , дел.	2,05	2,40	2,75	3,10	3,475	3,775	4,125
x_m , MKM	-420	-280	-140	0	150	240	410

3. Для частоты $\nu_3 = 2{,}9332 \pm 0{,}0001 \text{ M}$ Гц:

m	-2	-1	0	1	2	3
x_m , дел.	1,425	2,30	3,10	3,925	4,80	5,625
x_m , MKM	-670	-320	0	330	680	1010

4. Дальше резонансы получать всё сложнее, к тому же в поле обзора попадает меньше полос либо полосы второго порядка не возникают. Графики по трём точкам строить бессмысленно. Для частоты $\nu_4 = 4,6086 \pm 0,0001 \; \mathrm{M}\Gamma$ ц:

m	-1	0	1	
x_m , дел.	1,775	3,10	4,425	
x_m , MKM	-530	0	530	

5. Для частоты $\nu_5 = 5{,}1911 \pm 0{,}0001 \ \mathrm{M}\Gamma$ ц:

m	-1	0	1	
x_m , дел.	1,625	3,10	4,60	
x_m , MKM	-590	0	600	

Обработка результатов

По составленным таблицам и коэффициентам наклона графика определим для каждой частоты k, чтобы по формуле (4) рассчитаем длины волн Λ для всех частот.

ν, МГц	1,0116	1,2092	2,9332	4,6086	5,1911
k, mkm	117,8	136	335	530	595
σk , mkm	0.78	2.48	1.60	0	1.66
Λ , mkm	1630	1410	573	362	323
$\Delta\Lambda$, mkm	50	60	30	13	10

Рис. 3: График зависимости $x_m(m)$ при ν_1

Рис. 4: График зависимости $x_m(m)$ при ν_2

Рис. 5: График зависимости $x_m(m)$ при ν_3

Построили график $\Lambda(1/\nu)$. По коэффициенту наклона определили скорость ультразвука в воде из формулы (5):

$$v = 1620 \pm 20 \text{ m/c}.$$

Для сравнения табличное значение составляет $v=1490\ \mathrm{m/c}.$

Рис. 6: График зависимости $\Lambda(\frac{1}{\nu})$

Определение скорости ультразвука методом темного поля

Для наблюдения акустической решетки используется метод темного поля, который заключается в устранении центрального дифракционного максимума с помощью непрозрачного экрана.

Приставим к задней стенке (для светового луча) кюветы стеклянную пластинку с миллиметровыми делениями; сфокусируем микроскоп на изображение пластинки. Определим цену деления окулярной шкалы микроскопа, совместив ее с миллиметровыми делениями: в 6 делениях миллиметровой шкалы убирается 100 маленьких делений окулярной. Значит, цена деления окулярной шкалы: C=0,06 мм.

Без применения метода темного поля звуковая решетка не наблюдается. Закроем нулевой максимум горизонтальной нитью. Таким образом, осевая составляющая фазово-модулированной волны поглощается, а боковые остаются без изменения. Получившееся поле описывается следующим образом:

$$f(x) = \frac{im}{2}e^{i\Omega x} + \frac{im}{2}e^{-i\Omega x} = im\cos\Omega x \quad \text{и} \quad I(x) = m^2\cos^2\Omega x = m^2\frac{1+\cos2\Omega x}{2}$$
 (6)

Отсюда получаем, что расстояние между темными полосами составляет $\Lambda/2$. Проведем измерение длины ультразвуковой волны, приняв ошибку равной цене деления окулярной шкалы. Формулы для расчета длины волны ультразвука Λ и скорости распространения v в воде:

$$\Lambda/2 = \frac{NC}{n-1}, \quad v = \nu\Lambda \tag{7}$$

Расчеты также могут быть представлены в таблице, где содержится количество маленьких делений окулярной шкалы N (цена деления $C=0,06\,\mathrm{mm}$), соответствующее n темным полосам акустической решетки. Ошибка при таком определении скорости звука больше, чем в первой части работы. Сами значения тоже получились больше.

ν, Мгц	Количество делений	Количество темных полос	A 201	a. 10 m/a	Δv , 10 m/c
ν , wirt	шкалы окуляра N	акустической решетки n	71, MM	0, 10 M/C	Δv , 10 M/C
1,220	150	15	1,29	157	7
1,259	150	16	1,20	151	8
1,271	175	18	1,24	157	8

Рис. 7: Вычисление длины ультразвуковой волны Λ и скорости распространения ее в воде υ методом темного поля.

Вывод

В данной работе была исследована дифракция света на ультразвуковой волне в жидкости. С помощью измерений была определена скорость ультразвука (двумя способами - непосредственно по дифракционной картине и методом тёмного поля). Первый способ позволил достаточно точно определить скорость звука, полученное значение хорошо сошлось с табличным, во втором способе значение получено менее точно из-за больших погрешностей при измерений координат полос, однако всё же сходится с табличным.