

Introdução à Inteligência Artificial

Licenciatura em Engenharia Informática, Engenharia Informática – Pós Laboral e Engenharia Informática – Curso Europeu

2° Ano – 1° semestre

2016/2017

Aulas Laboratoriais

Trabalho Prático nº 2 – Problema de Otimização

1. Objetivos

Conceber, implementar e testar métodos de otimização que encontrem soluções de boa qualidade para diferentes instâncias do problema descrito na secção 2.

Neste trabalho pretende-se que avalie a capacidade de diferentes algoritmos de otimização para encontrar soluções de boa qualidade para o problema que abaixo se descreve. Sendo assim, no seu estudo deverá implementar os três métodos seguintes e efetuar um estudo comparativo aprofundado sobre o desempenho da otimização:

- Algoritmo de pesquisa local (trepa-colinas, recristalização simulada, pesquisa tabu ou outro);
- Algoritmo evolutivo;
- Método híbrido combinando as duas abordagens anteriores.

Para cada algoritmo deve implementar diferentes vizinhanças, operadores genéticos, métodos de seleção e comparar o desempenho dos algoritmos com cada um deles. Deve ainda ser feito um extenso estudo dos parâmetros de cada algoritmo de forma a entender a influência destes parâmetros e encontrar a melhor escolha paramétrica para cada algoritmo.

2. Descrição do Problema - Equitable Dispersion Problem

Neste problema, dado um conjunto original N com \mathbf{n} elementos, pretende-se escolher um subconjunto M com \mathbf{m} elementos ($m \le n$). O valor \mathbf{m} , i.e., a dimensão do subconjunto, não é conhecido à partida. O objetivo da otimização é maximizar a distância média entre os elementos escolhidos para fazerem parte do subconjunto M.

A distância média de um subconjunto M é calculada da seguinte forma:

$$DM(M) = \frac{1}{m} \times \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} dist(e_i, e_j)$$

em que $dist(e_i, e_j)$ representa a distância entre os pares de elementos que foram selecionados para M.

A qualidade de uma solução \mathbf{S} é igual à distância média existente no subconjunto \mathbf{M} que propõe (fórmula acima). O objetivo da otimização é encontrar a solução que maximiza este valor.

De forma a perceber melhor este conceito, suponha que possui N = 5 elementos com as

seguintes distâncias entre eles:

	e1	e2	e3	e4	e5
e1	0	7	2.5	1.5	2
e2	7	0	3	1	1
e3	2.5	3	0	2	1
e4	1.5	1	2	0	3
e 5	2	1	1	3	0

Duas soluções possíveis para o problema poderiam ser:

$$S1 = \{e1, e2, e4\}$$

 $S2 = \{e2, e3, e4, e5\}$

Usando a formula da diversidade, descrita acima, a solução S1 teria uma qualidade de **3.17** e a solução S2 teria uma qualidade de **2.75**. Logo, a solução S1 seria uma melhor solução que S2.

Instâncias para teste

Estão disponíveis no *Moodle* algumas instâncias deste problema para teste. O formato dos ficheiros de texto, onde está armazenada a informação de cada uma das instâncias, é o seguinte:

- O nome do ficheiro contém o tipo de geração usado na criação da instância (I ou II) e a dimensão n do conjunto original. No exemplo abaixo a instância de teste é do tipo I e tem a distância entre pares de 20 elementos;
- O conteúdo do ficheiro está dividido em n × (n 1) / 2 linhas, contendo os valores das distâncias entre todos os pares de elementos que fazem parte do problema.

Exen	\mathbf{nplo} : M	IDPI1_20.txt	Instância com $n=20$
1	2	-8.17	dist(1, 2) = -8.17
1	3	4.48	dist(1, 3) = 4.48
1	4	-8.73	
			•••
18	20	-7.65	
19	20	-9.59	dist(19, 20) = -9.59.

No *Moodle* encontra-se um ficheiro PDF (**best.pdf**), contendo as soluções ótimas de cada instância. Estes valores podem servir de referência para verem se os vossos algoritmos encontram boas soluções.

3. Critérios de avaliação

- Originalidade e correção dos algoritmos implementados (30%);
- Experimentação e análise (50%):
 - Análise do impacto das componentes dos algoritmos: operadores, vizinhanças, arquiteturas híbridas, entre outros (20%);
 - o Análise do efeito da variação de parâmetros (20%);
 - Outros testes (10%).
- Documentação e defesa (20%).

4. Normas de realização do trabalho prático

• Número máximo de alunos por grupo é de dois (2);

- Os trabalhos serão sujeitos a defesa obrigatória, em data a anunciar;
- Cotação do trabalho é de seis (6) valores;
- Cada trabalho só pode ser entregue uma vez e numa única data.

5. Entrega do trabalho

- A data limite para entrega do trabalho é as 23h55m do dia 15 de Janeiro de 2017;
- Será dada uma penalização de 25% por cada dia de atraso;
- Deverá ser submetido um ficheiro compactado, devidamente identificado com os nomes e números dos elementos do grupo. Esse ficheiro deverá conter o seguinte:
 - o **Relatório** abordando, pelo menos, os seguintes pontos:
 - Representação usada para o problema, descrição da função de avaliação e objetivo da otimização;
 - Descrição dos algoritmos e/ou das heurísticas utilizadas. Explicar quais as vizinhanças, métodos de seleção e operadores genéticos implementados;
 - Justificação das principais opções tomadas;
 - Resultados dos testes efetuados e respetiva análise. Os resultados a mostrar no relatório devem ser apenas um resumo baseado em tabelas/gráficos apresentando médias de várias repetições e respetivas conclusões. O estudo completo deve ser anexado num ficheiro Excel.
 - o Código fonte do programa, executável e exemplos para teste;
 - o Ficheiro Excel com os testes realizados para cada algoritmo.
- O trabalho deve ser entregue através da plataforma *Moodle* até à data limite indicada. Uma cópia impressa do relatório deve ser entregue no início da defesa.