Physics-informed Discovery of State Variables in Second-Order and Hamiltonian Systems

Félix Chavelli¹ Khoo Zi-Yu¹ **Dawen Wu**^{2,1} Jonathan Sze Choong Low³ Stéphane Bressan¹

¹National University of Singapore (NUS), Singapore ²CNRS@CREATE LTD, Singapore ³Agency for Science, Technology and Research (A*STAR), Singapore

April 23, 2025

Outline

Introduction

Methodology

Experiments

Conclusion & Future Work

Motivation: Modeling Dynamical Systems

- Dynamical systems are ubiquitous (physics, biology, engineering, etc.).
- Understanding, predicting, and controlling them is crucial.
- Challenge: Data-driven methods often:
 - Assume relevant state variables are known.
 - Result in overparameterized or non-interpretable state spaces.
- **Goal**: Discover a minimal, non-redundant, and interpretable set of state variables directly from observational data (e.g., videos).

Baseline Approach ¹

- Proposed a nested autoencoder (AE) architecture to identify state variables from videos.
- Step 1: Outer AE learns compact representation & predicts future frames.
- **Step 2**: Inner AE compresses this representation further into potential state variables.
- Relies on an external Intrinsic Dimension (ID) estimator to determine the number of state variables (size of inner AE bottleneck).

Limitations of Baseline

- ID estimator is physics-agnostic, yields non-integer values (requires rounding potential bias).
- Discovered variables can be correlated, redundant, or entangled.
- No guarantee of physical interpretability.

¹(Chen, B., Huang, K., Raghupathi, S., Chandratreya, I., Du, Q., Lipson, H.: Automated discovery of fundamental variables hidden in experimental data. Nature Computational Science 2, 433–442 (07 2022))

Our Approach: Physics-Informed Discovery

- Leverage physical principles of the systems being modeled.
- Focus on Second-Order and Hamiltonian systems.
- Incorporate physics knowledge using Physics-Informed Machine Learning (PIML) biases [Karniadakis et al., 2021]:
 - Observational Bias: Constraints reflected in data or variable structure (e.g., position/momentum pairs).
 - **Learning Bias:** Constraints via loss functions or training procedure (e.g., VAE's KL divergence for sparsity/independence).
 - **Inductive Bias:** Constraints embedded in the model architecture (e.g., Hamiltonian Neural Network).

Proposed Models: Enhancing the Baseline

We modify the inner autoencoder of the baseline model:

1. Physics-Informed AE (PI-AE)

- Adds Observational Bias.
- Enforces 2nd-order structure: Latent variables represent (position, momentum) pairs.
- Still uses external ID estimator.

2. Physics-Informed VAE (PI-VAE)

- Builds on PI-AE.
- Adds Learning Bias (Variational Autoencoder).
- KL divergence promotes sparsity

3. Hamiltonian PI-VAE (HPI-VAE)

- Builds on PI-VAE.
- Adds Inductive Bias.
- Incorporates a Hamiltonian Neural Network (HNN) layer acting on latent variables.
- Loss includes term for Hamilton's equations $(\dot{\tau} = \partial H/\partial \rho, \dot{\rho} = -\partial H/\partial \tau).$
- Aims for canonical, energy-conserving variables.
- Also bypasses external ID estimator.

Model Architectures Overview

Experimental Setup

- Data: Video frames (real & simulated) from Chen et al. (2022).
 - Systems: Reaction-Diffusion, Single Pendulum, Double Pendulum, Swing Stick, Elastic Pendulum.
 - 100k frames per system (100 frames x 1000 trajectories).
 - 80

• Models:

- Outer AE: CNN-based, latent dim = 64 (fixed).
- Inner AE: Fully Connected layers.
- Baseline/PI-AE bottleneck = ID (from estimator).
- PI-VAE/HPI-VAE bottleneck = 10 (fixed, larger than any true DoF).

• Evaluation:

- Estimated Degrees of Freedom (DoF).
- Interpretability of latent variables (comparison with physical variables).
- Reconstruction loss (check: models must still be predictive).

Results: Degrees of Freedom Estimation

Table: Estimated Latent Space Dimension (Degrees of Freedom)

System	Ground Truth	Baseline (Chen et.al 2022)	PI-AE	PI-VAE	HPI-VAE
Reaction-diffusion	2	$2.16 \approx 2$	$2.16\approx 2$	2	2
Single pendulum	2	$2.05 \approx 2$	$2.05\approx 2$	2	2
Double pendulum	4	4.71 pprox 4	$4.71\approx 4$	4	4
Swingstick system	4	$4.89 \approx 4$	$4.89\approx 4$	4	4
Elastic pendulum	6	$5.34 \approx 6$	$5.34\approx 6$	6	6

- Baseline & PI-AE rely on external estimator + rounding (prone to bias).
- PI-VAE & HPI-VAE automatically discover the correct DoF via VAE latent sparsity (using variance threshold > 0.01).

Results: State Variable Interpretability (Single Pendulum)

Figure: Latent variables vs. time for one trajectory. Black dashed line: $cos(2\theta(t))$.

50

- Baseline: Variables appear entangled/redundant, somewhat discontinuous.
- HPI-VAE: Learns smoother variables. One variable clearly correlates with $\cos(2\theta)$ (position-related), the other (not shown) is its derivative (momentum-related, due to 2^{nd} order constraint). VAE promotes continuity.

Results: State Variable Interpretability (Double Pendulum)

Figure: Latent variables vs. time. Black dashed lines: horizontal positions $x_1(t), x_2(t)$.

- Baseline: Variables entangled. Some correlation with x_1, x_2 exists but is mixed.
- **HPI-VAE**: Clearer separation. Two variables (shown) correlate well with x_1, x_2 . Other two (not shown) are derivatives. VAE helps disentangle.

Results: State Variable Interpretability (Elastic Pendulum)

Figure: Latent variables vs. time. Black dashed lines: $x_1(t), x_2(t)$, arm length z(t).

- Baseline: Difficult to interpret; only one variable seems weakly correlated to x_1 .
- **HPI-VAE**: Captures dynamics better. Variables (3 shown) show correlation with x_1, x_2, z . Hamiltonian structure encourages mapping to canonical coordinates.

Conclusion

• Integrating physics-informed ML (specifically VAEs and Hamiltonian constraints) improves upon baseline data-driven discovery of state variables.

• Key Advantages:

- Automatic DoF Discovery: PI-VAE/HPI-VAE bypass the need for external, physics-agnostic ID estimators and potential rounding biases.
- Improved Interpretability: Discovered variables are less redundant/entangled, smoother, and correlate better with physically meaningful quantities.
- Minimal Representation: VAE sparsity naturally finds a minimal set of variables.
- Faithfully captures system characteristics (e.g., 2nd order dynamics).
- This approach offers a better balance between data-driven flexibility and physical consistency.
- Potential for wide application in science and engineering.

Future Work

- Further improve interpretation of latent variables:
 - Develop methods to automatically map latent variables to known physical coordinates.
 - Explore symbolic regression on the discovered latent space.
- Scale to more complex, higher-dimensional systems.
- Incorporate other physics constraints (e.g., symmetries, other conservation laws).
- Investigate adaptive penalization of errors based on spatial/temporal scales for better variable identification.

Acknowledgements

- Collaborators: Félix Chavelli, Khoo Zi-Yu, Jonathan Sze Choong Low, Stéphane Bressan.
- Institutions: National University of Singapore, CNRS@CREATE, A*STAR.
- Thank you for your attention!

Thank You and Questions?