Introduction to Machine learning

Eun Yi Kim

Today

- Machine learning definition
- Taxonomy of machine learning

What is machine learning?

- How can we solve a specific problem?
 - > As computer scientists we write a program that encodes a set of rules that are useful to solve problem
 - In many cases is very difficult to specify those rules, e.g., given a picture determine whether there is a cat in the image

- How can we solve a specific problem?
 - > As computer scientists we write a program that encodes a set of rules that are useful to solve problem
 - ➤ In many cases is very difficult to specify those rules, e.g., handwritten characters
- Learning systems are not directly(explicitly) programmed to solve a problem, instead develop own program based on:
 - > Examples of how they should behave
 - > From trial-and-error experience trying to solve the problem

- How can we solve a specific problem?
 - > As computer scientists we write a program that encodes a set of rules that are useful to solve problem
 - ➤ In many cases is very difficult to specify those rules, e.g., handwritten characters
- Learning systems are not directly(explicitly) programmed to solve a problem, instead develop own program based on:
 - > Examples of how they should behave
 - > From trial-and-error experience trying to solve the problem
- Learning simply means incorporating information from the training examples into the system

• Arthur Samuel (1959): Machine Learning is the field of study that gives the computer the ability to learn without being explicitly programmed.

• Tom Mitchell (1998): a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Experience (data): games played by the program (with itself)

Performance measure: winning rate

Tasks that requires ML

- What makes a 2?
- What distinguishes a 2 from a 7?

Tasks that requires ML

How can we make a robot cook?

Learning algorithms are useful in many tasks

- Machine learning grew out of work in Al
- New capability for computers
- Examples:
 - ➤ Data mining

Large datasets from growth of automation/web E.g., Web click data, medical records, biology, engineering

- Application can't program by hand
 E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision
- ➤ Self-customizing programs
 E.g., Amazon, Netflix product recommendations
- ➤ Understanding human learning (brain, real AI)

Taxonomy of Machine Learning (A Simplistic View Based on Tasks)

Supervised Learning

Housing Price Prediction

- Supervised Learning
 - : "right answers" given

- Regression
 - : Predict continuous valued output (price)

Housing Price Prediction

• Task: if a residence has x square feet, predict its price?

> Lecture 2&3: fitting linear/quadratic functions to the dataset

Breast cancer (malignant, benign)

• Classification: Discrete valued output (0 or 1)

Breast cancer (malignant, benign)

More features

- Clump Thickness
- Uniformity of cell size
- Uniformity of cell shape

Supervised Learning in Computer Vision

- Image Classification
 - X = raw pixels of the image
 - Y = the main object

Supervised Learning in Computer Vision

- Object localization and detection
 - X = raw pixels of the image
 - Y = the bounding boxes

- Dataset contains no labels
- Goal (vaguely-posed): to find interesting structures in the data

Clustering

➤ Lecture 12&13: k-mean clustering, mixture of Gaussians

Clustering genes

Identifying Regulatory Mechanisms using Individual Variation Reveals Key Role for Chromatin Modi fication. [Su-In Lee, Dana Pe'er, Aimee M. Dudley, George M. Church and Daphne Koller. '06]

Clustering

Today

- Machine learning definition
- Taxonomy of machine learning