STAT 4352 - Mathematical Statistics Notes

 ${\bf Jaime GoB}$

March 1, 2021

1 Chapter 11 - Interval Estimation

Point Estimators

 θ is a unknown parameter (feature of a population)

- Ex: population mean μ
- Fixed.

 $\hat{\theta}$ is a point estimator of θ (it is a numerical value)

- Ex: sample mean \bar{x}
- Varies from sample to sample.
- No guarantee of accuracy
- Must be supplemented by $Var(\theta)$

Standard Error $SE(\hat{\theta})$ measures how much $\hat{\theta}$ varies from sample to sample. small $SE \implies$ low variance thus a more reliable estimate of θ

Interval Estimators

Def: Interval Estimate

Provides a range of values that best describe the population.

Let L = L(x) be the Lower Limit

U = U(x) be the Upper Limit

Both L,U are Random Variables because they are functions of sample data.

Def: Confidence Level / Confidence Coefficient

Is the probability that the **interval estimate** will include population parameter θ .

- Sample means will follow the <u>normal probability distribution</u> for large sample sizes $(n \ge 30)$
- For small sample forces us to use the t-distribution probability distribution (n < 30)
- A confidence level of 95% implies that 95% of all samples would give an interval that includes θ , and only 5% of all samples would yield an erroneous interval.
- The most frequently used confidence levels are 90%, 95%, and 99% with corresponding Z-scores 1.645, 1.96, 2.576.
- The higher the confidence level, the more strongly we believe that the value of the parameter lies within the interval.

Def: Confidence Interval

Gives plausible values for the parameter θ being estimated where degree of plausibility specified by a confidence level.

To construct an interval estimator of unknown parameter θ . We must find two statistics **L** and **U** such that:

$$P\{\mathbf{L} \le \theta \le \mathbf{U}\} = 1 - \alpha$$

- $P\{L \le \theta \le U\}$ Coverage Probability, in repeated sampling, what percent of samples or Confident Intervals capture true θ .
- 100(1- α) Confidence Interval for unknown fixed parameter θ .
- L,U Lower and Upper Bounds RVs because they are functions of sample data. Vary from sample to sample.
- 1- α Confidence Level (Probability) estimate will include population parameter θ .
- α Level of Significance Percent chance Confidence Interval will not contain population parameter θ .

Def: Coverage Probability

 $P\{\mathbf{L} \leq \theta \leq \mathbf{U}\}$ Gives what % of samples or Confidence Intervals capture true θ .

Ex: Coverage Probability = 95%

Will capture θ , 95% of the time.

Will NOT capture θ , 5% of the time.

Properties of Confidence Intervals

- Confidence Intervals are not unique.
- Desirable to have E[Length of CI] to be small.
- A one-sided $100(1-\alpha)$ lower-confidence interval on θ : L = $-\infty \implies P\{L \le \theta\} = 1-\alpha$
- A one-sided $100(1-\alpha)$ upper-confidence interval on θ : $U=\infty \implies P\{\theta \leq U\} = 1-\alpha$
- If L,U are both finite, then we have a two sided interval.

Correctly Interpreting Confidence Intervals

Not Correct

There is 90% probability that the true population mean is within the interval.

Correct

There is a 90% probability that <u>any given Confidence Interval from a random sample</u> will contain the true population mean.

Theorem 11.1: Confidence Interval on the Mean of a Normal Distribution with known Variance

Let X be normal random variable with:

Unknown mean μ

Known variance σ^2

Suppose a random sample n, $(X_1, X_2, ..., X_n)$ is taken.

A $100(1-\alpha)\%$ confidence interval on μ can be obtained by considering sampling distribution of the sample mean \bar{X} .

Central Limit Theorem:

$$E(\bar{X}) = \mu$$
 and $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$, so $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$

Let $Z = Standardizing \bar{X}$, Z will follow a Standard Normal Distribution

Let
$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

We can see from the image to the <u>left:</u> **Distribution of Z** and the image to the <u>right:</u> **Confidence Interval of 95**%

We can see that:

$$P\{-Z_{\alpha/2} \le Z \le Z_{\alpha/2}\} = 1 - \alpha$$

substituting Z into equation:

$$P\{-Z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le Z_{\alpha/2}\} = 1 - \alpha$$

isolating μ :

$$P\{\bar{X} - Z_{\alpha/2}(\sigma/\sqrt{n}) \le \mu \le \bar{X} + Z_{\alpha/2}(\sigma/\sqrt{n})\} = 1 - \alpha$$

Conclusion $\left[\bar{X} - Z_{\alpha/2}(\sigma/\sqrt{n}), \bar{X} + Z_{\alpha/2}(\sigma/\sqrt{n})\right]$ is a 100(1- α) CI for μ

How to Construct Confidence Interval Using Pivot Approach:

Suppose we have a random sample $X_1, X_2, ..., X_n$ from a population distribution and the parameter of interest is θ .

Given value $\alpha \in (0,1)$. We would like to construct a 1- α Confidence Interval using a Pivot Approach:

- 1. Find a variable Y, that is function of the parameter θ and data x.
- 2. The distribution of newly created variable Y is free of θ .

In many cases:

$$Y = \frac{\hat{\theta} - \theta}{SE(\hat{\theta})}$$
 is a pivot and the distribution of Y is symmetric about 0.

Using Pivot Approach for Two-Sided Intervals:

Find the critical points denoted $c_{\alpha/2}$ such that:

$$P\{-c_{\alpha/2} \le Y \le c_{\alpha/2}\} = 1 - \alpha$$

 $c_{\alpha/2}$ is the upper (α / 2)100th percentile.

Critical points- give you the area to the right of the point.

Visualizing elements from Pivot Approach:

Let μ be parameter of interest. We can construct CI using pivot approach.

$$\frac{1}{\sqrt{95}} = \overline{X} \quad \theta = M$$

$$SE(\theta) = SE(\overline{X}) = 0$$

$$-C_{4/2} = 2 \cdot 025 = 1 - d$$

Symmetric Two-sided CI: Theorem

 $\hat{\theta} \pm c_{\alpha/2}(SE(\hat{\theta}))$ is a $100(1-\alpha)\%$ confidence interval for θ

Proof:

$$\begin{split} 1 - \alpha &= P\{-c_{\alpha/2} \leq Y \leq c_{\alpha/2}\} \\ &= P\{-c_{\alpha/2} \leq \frac{\hat{\theta} - \theta}{SE(\hat{\theta})} \leq c_{\alpha/2}\} \\ &= P\{\hat{\theta} - c_{\alpha/2}(SE(\hat{\theta})) \leq Y \leq \hat{\theta} + c_{\alpha/2}(SE(\hat{\theta}))\} \\ &\implies \hat{\theta} \text{ is within } c_{\alpha/2}(SE(\hat{\theta})) \text{ of } \theta \text{ with probability } 1-\alpha \end{split}$$

 $c_{\alpha/2}(SE(\hat{\theta}))$ is known as Margin of Error (size of error in estimation) Ex: In polls you might hear accurate with 0.02 (this is margin of error)

Asymmetric Two-sided CI(Non-symmetric distributions):

 $[\hat{\theta} - c_{\alpha/2}(SE(\hat{\theta})), \hat{\theta} - c_{1-\alpha/2}(SE(\hat{\theta}))]$ is a $100(1-\alpha)\%$ confidence interval for θ

Proof:

$$1 - \alpha = P\{c_{1-\alpha/2} \le Y \le c_{\alpha/2}\}$$

$$= P\{c_{1-\alpha/2} \le \frac{\hat{\theta} - \theta}{SE(\hat{\theta})} \le c_{\alpha/2}\}$$

$$= P\{\hat{\theta} - c_{\alpha/2}(SE(\hat{\theta})) \le \theta \le \hat{\theta} - c_{1-\alpha/2}(SE(\hat{\theta}))\}$$

Ex: Chi-Square distribution critical points

One-sided Confidence Bound:

A one-sided confidence bound defines the point where a certain percentage of the population is either higher or lower than the defined point.

Upper Bound: $U = \hat{\theta} - c_{1-\alpha}(SE(\hat{\theta}))$ when $L = -\infty$

Lower Bound: $L = \hat{\theta} - c_{\alpha}(SE(\hat{\theta}))$ when $U = \infty$

Proof(Upper Bound):

Coverage probability is 1 - α .

$$1 - \alpha = P\{Y \ge c_{1-\alpha}\}$$

$$= P\{\frac{\hat{\theta} - \theta}{SE(\hat{\theta})} \ge c_{1-\alpha}\}$$

$$= P\{\theta \le \hat{\theta} - c_{1-\alpha}(SE(\hat{\theta}))\}$$

$$\implies U = \hat{\theta} - c_{1-\alpha}(SE(\hat{\theta}))$$

The lower bound can be computed in the same manner.

How to interpret a one-sided CI?

For Lower Bound critical region $\in [c_{\alpha}, \infty]$: We are sure parameter θ is below c_{α}

For **Upper Bound** critical region $\in [-\infty, c_{1-\alpha}]$: We are sure parameter θ is above $c_{1-\alpha}$

Confidence Interval on the Mean of a Normal Distribution Variance Unknown:

$$\bar{X} \pm t_{\alpha/2,n-1} \left(\frac{s}{\sqrt{n}} \right)$$
 is a $100(1-\alpha)\%$ confidence interval for θ

Proof:

Proof:
We know that
$$t_{n-1} \sim \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

 $1 - \alpha = P\{-t_{\alpha/2,n-1} \le t \le t_{\alpha/2,n-1}\}$
 $= P\{-t_{\alpha/2,n-1} \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le t_{\alpha/2,n-1}\}$
 $= P\{\bar{X} - t_{\alpha/2,n-1}(S\sqrt{n}) \le \mu \le \bar{X} + t_{\alpha/2,n-1}(S\sqrt{n})\}$

Confidence Interval on the Variance or Standard Deviation of a Normal Distribution

If X_1, X_2, \ldots, X_n are normally distributed and $a = \chi^2_{1-\alpha/2, n-1}$ and $b = \chi^2_{\alpha/2, n-1}$, then a $(1-\alpha)\%$ confidence interval for the population variance σ^2 is:

$$\left(rac{(n-1)s^2}{b} \leq \sigma^2 \leq rac{(n-1)s^2}{a}
ight)$$

And a (1-lpha)% confidence interval for the population standard deviation σ is:

$$\left(\frac{\sqrt{(n-1)}}{\sqrt{b}}s \leq \sigma \leq \frac{\sqrt{(n-1)}}{\sqrt{a}}s\right)$$

Proof

We learned previously that if X_1, X_2, \ldots, X_n are normally distributed with mean μ and population variance σ^2 , then:

$$rac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

Then, using the following picture as a guide:

with ($a=\chi^2_{1-lpha/2}$) and ($b=\chi^2_{lpha/2}$), we can write the following probability statement:

$$Piggl[a \leq rac{(n-1)S^2}{\sigma^2} \leq biggr] = 1-lpha$$

Now, as always it's just a matter of manipulating the quantity in the parentheses. That is:

$$a \leq rac{(n-1)S^2}{\sigma^2} \leq b$$

Taking the reciprocal of all three terms, and thereby changing the direction of the inequalities, we get:

$$\frac{1}{a} \geq \frac{\sigma^2}{(n-1)S^2} \geq \frac{1}{b}$$

Now, multiplying through by $(n-1)S^2$, and rearranging the direction of the inequalities, we get the confidence interval for σ^2 :

$$\frac{(n-1)S^2}{b} \leq \sigma^2 \leq \frac{(n-1)S^2}{a}$$

as was to be proved. And, taking the square root, we get the confidence interval for σ :

$$\frac{\sqrt{(n-1)S^2}}{\sqrt{b}} \le \sigma \le \frac{\sqrt{(n-1)S^2}}{\sqrt{a}}$$

as was to be proved.

 $\mathbf{2}$