EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

2003192673

PUBLICATION DATE

09-07-03

APPLICATION DATE

27-12-01

APPLICATION NUMBER

2001396479

APPLICANT: BAYER AG;

INVENTOR: TSUKIMI YASUHIRO:

INT.CL.

: C07D213/74 A61K 31/495 A61K 31/496

A61K 31/506 A61P 9/10 A61P 13/02 A61P 13/10 A61P 19/02 A61P 25/00

A61P 25/04

TITLE

PIPERAZINECARBOXAMIDE

DERIVATIVE

(I)

ABSTRACT: PROBLEM TO BE SOLVED: To provide a medicine having excellent activities as a vanilloid recep tor (VR1) antagonist, and useful for prevention and treatment of a disease associated with VR1 activities, especially treatment of impending incontinence, bladder overactivity, chronic pain, nervous disorder pain, postoperative pain, rheumatoid arthritis pain, neuralgia, neuropathy, hyperpselaphesia, nerve injury, ischemia, neurodegeneration, apoplexy, incontinence and/or inflammatory disease.

> SOLUTION: This piperazinecarboxamide derivative is represented by formula (I) (wherein, R¹ and R² are each a substituted phenyl, pyridyl, quinolyl or naphthyl) or a salt thereof. The medicine contains the derivative as an active ingredient.

COPYRIGHT: (C)2003,JPO

ATTORNEY DOCKET NUMBER: 6750-174-999 (305158-999172) SERIAL NUMBER: 10/625,708

REFERENCE: B15

(19)日本国特許(JP) (12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-192673 (P2003-192673A)

(43)公開日 平成15年7月9日(2003.7.9)

(51) Int.CL'	識別記号	FI.	デーマコート*(参考)
C 0 7 D 213/74		C 0 7 D 213/74	4C031
A 6 1 K 31/495		A 6 1 K 31/495	4 C 0 5 5
31/496		31/496	4 C 0 8 6
31/506		31/506	
A61P 9/10		A 6 1 P 9/10	
	春查請求	未請求 請求項の数10 OL 外国語出版	(全 63 頁) 最終頁に続く

(21)出職書号 特賽2001-396479(P2001-396479) (71)出版人 598019107 パイエル アクチェンゲゼルシャフト (22)出廣日 平成13年12月27日(2001.12.27) ドイツ連邦共和国, デー 51368, レーバ ークーゼン (72)発明者 由良 蒙 奈良県奈良市朱雀4-8-1 (72)発明者 茂木 宗人 奈良県奈良市大安寺5-10-57-102 (74)代理人 110000040 特許業務法人池内・佐藤アンドバートナー ズ

最終頁に絞く

(54) 【発明の名称】 ピペラジンカルポキシアミド誘導体

(57)【要約】 (修正有)

【課題】本医薬は、バニロイド受容体(VR1)アンタ ゴニストとして優れた活性を有し、VR1活性に関する 病気の予防および治療、特に切迫性尿失禁、膀胱過活 動、慢性痛、神経障害痛、術後疼痛、慢性関節リウマチ 痛、神経痛、ニューロパチー、痛覚過敏、神経損傷、虚 血症、神経変性、脳卒中、失禁および/または炎症性疾 患の治療に有用である。

- 【解決手段】活性成分として、(1)式に示したピペラ ジンカルボキシアミド誘導体である、フェニルナフチル 尿素誘導体またはその塩、及びそれを含有する医薬を開 示する。

式中、R 1 およびR 2 は置換されたフェニル、ピリジ ル、ピリミジル、キノリルおよびナフチルを表わす。

【特許請求の範囲】

【請求項1】 下記式(I)のビベラジンカルボキシアミド誘導体、その互変異性体もしくは立体異性体、またはそれらの塩。

(化1)

式中、

ーパは、任意にパ¹、パ²、および パ³で置換されたフェニル、任意にパ¹、パ²、および パ³で置換されたビリジル、任意にパ¹、パ²、および パ³で置換されたビリミジル、任意にパ¹、パ²、および パ³で置換されたキノリル、あるいは任意にパ¹、パ²、および パ³で置換されたナフチルを表し、

ここで、R1、R1、および R1はそれぞれ独立して水 素、ハロゲン、直鎖もしくは分枝C...アルキル、モノ・ ジ・もしくはトリハロゲン置換直鎖もしくは分枝C...ア ルキル、ニトロ、シアノ、 直鎖もしくは分枝 く、アル コキシ、ヒドロキシ、直鎖もしくは分枝Caaアルキルカ ルバモイル、 カルバモイル、 カルボキシル、 アミ ノ、直鎖もしくは分枝(1-4アルキルアミノ、ジ(直鎖も しくは分枝C...アルキル) アミノ、直鎖もしくは分枝C 1-4アルコキシカルボニル、 フェニル、ベンジル、フェ ノキシ、ハロゲン置換フェノキシ、直鎖もしくは分枝C 1-0アルキルチオ、 直鎖もしくは分枝C1-0アルカノイ ル、 直鎖もしくは分枝C₁₋₆アルカノイルアミノ、ヒド ロキシ置換直鎖もしくは分枝(、、。アルキル、モノ・ジ・ もしくはトリハロゲン置換直鎖もしくは分枝C.。アルコ キシを表し、アは任意にア1、ア2、およびア2で置換さ れたフェニル、任意にア1、ア1、および ア1で置換され たビリジル、任意にピュ、ピュ、および ピュで置換された ピリミジル、任意にRi、Ri、および Riで習換された キノリル、あるいは任意に戻っ、尺つ、および 尺って置換 されたナフチルを表し、

でこで、ペュ、ペュ、および ペュはそれぞれ独立して水素、ハロゲン、直鎖もしくは分枝 G.。アルキル、モノ・ジ・もしくはトリハロゲン置換直鎖もしくは分枝 C.。アルコキシ、ヒドロキシ、直鎖もしくは分枝 C.。アルキルカルバモイル、カルバモイル、カルボキシル、アミノ、直鎖もしくは分枝 C.。アルキルフェノ、ジ(直鎖もしくは分枝 C.。アルキルフェノ、立の道をしくは分枝 C.。アルキルカルボニル、フェニル、ベンジル、フェノキシ、ハロゲン置換フェノキシ、直鎖もしくは分枝 C.。アルキルチオ、直鎖もしくは分枝 C.。アルカノイルアミノ、ヒドロキシ 愛換面

鎖もしくは分枝C、。アルキル、モノ・ジ・もしくはトリハロゲン置換直鎖もしくは分枝C、。アルコキシを表す。 【請求項2】 請求項1に記載のビベラジンカルボキシアミド誘導体、その互変異性体もしくは立体異性体、またはそれらの塩。ただし、一片は任意にR¹¹、R¹²およびR¹³で置換されたフェニル、任意にR¹¹、R¹²およびR¹³で置換されたビリジル、任意にR¹¹、R¹²およびR¹³で置換されたビリミジル、任意にR¹¹、R¹²およびR¹³で置換されたモリミジル、任意にR¹¹、R¹²およびR¹³で置換されたキノリル、あるいは任意にR¹¹、R¹²およびR¹³で置

ことで、R¹、R² およびR³は それぞれ独立して水素、 ハロゲン、直鎖もしくは分枝C₂₋₈ アルキル、モノ・ジも しくはトリハロゲン置換直鎖もしくは分枝C₂₋₈ アルキ ル、ニトロ、シアノ、直鎖もしくは分枝C₂₋₈ アルコキ シ、あるいはヒドロキシを表し;および、R²は、任意に R³、R³、および R³で置換されたフェニル、任意に R³、R³、および R³で置換されたビリジル、任意に R³、R³、および R³で置換されたビリジル、任意に R³、R³、および R³で置換されたビリミジル、任意に R³、R³、および R³で置換されたナフテルを表 し、

10 換されたナフチルを表し、

ただし、ペ³、ペ³、および ペ³は、それぞれ独立して水素、ハロゲン、直鎖もしくは分枝 G₋₀ アルキル、モノ・ジもしくはトリハロゲン置換直鎖もしくは分枝 G₋₀ アルキル、ニトロ、シアノ、直鎖もしくは分枝 G₋₀ アルコキシ、あるいはヒドロキシを表す。

【請求項3】 請求項1または2に記載のビベラジンカルボキシアミド誘導体、その互変異性体もしくは立体異性体、またはそれらの塩。ただし、一代は、任意に R¹、R¹およびR¹で置換されたフェニル、任意に R¹、R¹およびR¹で置換されたビリジル、任意に R¹、R¹およびR¹で置換されたビリミジル、任意に R¹、R¹および R¹で置換されたビリミジル、任意に R¹、R¹ および R¹・で置換されたナノリル、あるいは任意に R¹、R¹ および R¹・で置換されたナノリル、あるいは任意に R¹、R¹ および R¹・で置換されたナフチルを表し、

たビリジル、任意に R^1 、 R^2 、および R^3 で置換された ビリミジル、任意に R^1 、 R^2 、および R^3 で置換された キノリル、あるいは任意に R^1 、 R^2 、および R^3 で置換された されたナフチルを表し、 ことで、 R^1 、 R^2 、および R^3 で置換 されたサフチルを表し、 ことで、 R^1 、 R^2 、および R^3 はそれぞれ独立して水素、ハロゲン 素、ハロゲン、直鎖もしくは分枝 G_{-0} アルキル、モノ・ ジ・もしくはトリハロゲン置換直鎖もしくは分枝アルキル、モノ・ ル、ニトロ、シアノ、直鎖もしくは分枝 G_{-0} アルコキシ、 シ、ヒドロキシ、直鎖もしくは分枝 G_{-0} アルコキシ、 シ、ヒドロキシ、直鎖もしくは分枝 G_{-0} アルキルカルバ

を表す。

請求項1に記載のピペラジンカルボキシアミド誘導体、 その互変異性体もしくは立体異性体、またはその塩。4 - (2-クロロフェニル) -N-[4-クロロ-3-(ト リフルオロメチル) フェニル] -1-ピペラジンカルボ キシアミド:N-[4-クロロ-3-(トリフルオロメチ ル)フェニル] -4-[3-(トリフルオロメチル) -2-ビリジニル]-1-ビベラジンカルボキシアミド; N-[4-クロロ-3-(トリフルオロメチル)フェニ ル] -4-(2-フルオロフェニル) -1-ピペラジン カルボキシアミド: N-[4-クロロー3-(トリフルオ 10) ロメチル) フェニル] -4-フェニルー1-ピペラジン カルポキシアミド: N- [4-クロロ-3-(トリフルオ ロメチル) フェニル] -4-(3、5-ジクロロ-4-ビリジニル) -1-ピペラジンカルボキシアミド: N-(7-ヒドロキシー1-ナフチル) -4-[3-(トリ フルオロメチル)-2-ピリジニル]-1-ピベラジン カルポキシアミド; 4 - (2 - クロロフェニル) -N-(7-ヒドロキシー1-ナフチル) -1-ピペラジンカ ルボキシアミド; および4-(3、4-ジメチルフェ ニル)-N-(7-ヒドロキシ-1-ナフチル)-1-ピペ 20 ラジンカルボキシアミド。

【請求項6】 疾患の治療および/または予防用の、請 求項1から3のいずれかに記載されている式(1)のビ ペラジンカルボキシアミド誘導体、その互変異性体もし くは立体異性体、またはそれらの塩。

【請求項7】 一種以上の薬学的に許容可能な担体およ び/もしくは添加物と、請求項1から5に記載の少なく とも一つの化合物、その互変異性体もしくは立体異性 体、およびそれらの塩との組み合わせを含む医薬。

ミド誘導体、その互変異性体もしくは立体異性体、およ びそれらの塩が VR1 アンタゴニストである、請求項7 に記載の医薬。

【請求項9】 切迫性尿失禁、膀胱過活動、慢性痛、神 経障害痛、術後疼痛、慢性関節リウマチ痛、神経痛、ニ ューロバチー、痛覚過敏、神経損傷、虚血症、神経変 性、脳卒中、失禁および炎症性疾患からなる群より選択 される疾患の治療および/もしくは予防に有用である請 求項7に記載の医薬。

【請求項10】 切迫性尿失禁、膀胱過活動、慢性痛、 神経障害痛、術後疼痛、慢性関節リウマチ痛、神経痛、 ニューロパチー、痛覚過敏、神経損傷、虚血症、神経変 性、脳卒中、失禁および炎症性疾患からなる群から選択 される病気の治療および/または予防に有用な医薬の製 造の為の、請求項1から5のいずれかに記載の化合物の 使用。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は薬学的製剤の有効成

する。本発明のピペラジンカルボキシアミド誘導体は、 パニロイド受容体(VR1)拮抗活性を有し、VR1活 性が関与する病気の予防と治療、特に切迫性尿失禁、膀 胱過活動、慢性痛、神経障害痛、術後疼痛、慢性関節リ ウマチ痛、神経痛、ニューロパチー、痛覚過敏、神経損 傷、虚血症、神経変性、脳卒中、失禁および/または炎 症性疾患の治療に有用である。

[0002]

【従来の技術】バニロイド化合物は、バニリル基または 機能的に同一の基の存在により特徴づけられる。バニロ イド化合物またはバニロイド受容体モジュレーターのい くつかの例は、パニリン(4-ヒドロキシ-3-メトキ シーベンズアルデヒド)、グアイアコール (2-メトキ シーフェノール)、ジンゲロン(4-/4-ヒドロキシ -3-メトキシフェニル/-2-ブタノン)、オイゲノ ール(2-メトキシ4-/2-プロペニル/フェノー ル)、およびカブサイシン(8-メチル-N-バニリル -6-ノネンアミド) である。

【0003】中でも、唐辛子の主な刺激成分でもあるカ ブサイシンは、C線椎求心性ニューロンを脱感作させる 特異的な神経毒である。カブサイシンは、パニロイド受 容体(VR1)と相互作用し、前記VR1は、後根神経 節(DRG)の細胞体内か、または、C線維神経末端を 含む求心性感覚線椎の神経末端に主に発現する[Tominag a M. Caterina MO. Malmberg AB. Rosen TA. Gilbe rt H. Skinner K. Raumann BE. Basbaum AI. Juliu s D: The cloned capsaicin Receptor integrates mul tiple pain-producing stimuli. Neuron. 21: 531-54 3. 1998]。VR1は、最近クローン化され[Caterina M 【請求項8】 前記式(1)のビベラジンカルボキシア 30 J、 Schumacher MA、 Tominaga M、 Rosen TA、 Levine JD、 Juius D: Nature 389:816-824(1997)]そして構造 的にTRP(トランジェント レセブター ポテンシャ ル) チャンネルファミリーに関連する8個の膜貫通ドメ インを有する非選択性カチオンチャンネルであることが 同定された。カブサイシンとVR1の結合により、ナト リウム、カルシウム、およびおそらくカリウムイオン は、その濃度勺配の低い方へ流れ、最初に脱分極、そし て神経末端からの神経伝達物質の遊離を引き起こす。と のため、VR1は、病的状態または疾患時のニューロン 40 性シグナルを誘起する化学的または物理的刺激物質の分 子インテグレーターと考えられている。

【0004】VR1活性と、痛み、虚血症、および炎症 等の疾患との関係を示す直接または間接的な証拠が数多 く存在する(例えば、WO 99/00115および0 0/50387)。さらに、VR1は、ダメージを受け たかまたは異常な脊髄反射経路を持つ患者の膀胱過活動 に関係する反射シグナルを伝達することが実証されてい る[De Groat WC: A neurologic basis for the overac tive bladder. Urology 50 (6A Suppl): 36-52, 199 分として有用なピペラジンカルボキシアミド誘導体に関 50 刀。カブサイシンなどのVR1アゴニストを使用する神

*

経伝達物質の枯渇による求心性神経の脱感作は、脊髄損 傷や多発性硬化症に関係する膀胱機能障害の治療に有意 な効果があることが示されている[(Maggri CA: Therape utic potential of capsaicin-like molecules - Studi es in animals and humans. Life Sciences 51: 1777-1 781、1992) および (DeRidder D; Chandiramani V; Da sgupta P; VanPoppel H; Baert L; Fowler CJ: Intrav esical capsaicin as a treatment for refractory det rusor hyperreflexia: Adual center study with long -term followup. J. Urol. 158: 2087-2092, 1997)]. 【0005】VR1受容体の拮抗は、神経伝達物質の遊 離を阻害し、VR1活性に関連する症状や病気の予防ま た治療に結びつくと期待される。

【0006】その為、VR1受容体のアンタゴニスト は、慢性痛、神経障害痛、術後疼痛、慢性関節リウマチ 痛、神経痛、ニューロバチー、痛覚過敏、神経損傷、虚 血症、神経変性、脳卒中、失禁、炎症性疾患、切迫性尿 失禁(UUI)、および/または膀胱過活動を含む症状 および病気の予防と治療に有用であると考えられる。

般式または薬学的に許容可能なその塩で表されるバニロ イドアゴニスト活性を有する化合物を開示している。 【化3】

式中;X'は酸素または硫黄原子であり、A'は-NHC H, -または-CH, -であり、Pは置換または無置換C 1-4アルキル基、またはR'CO-であり、式中、R

*'は、1から18個の炭素原子を有するアルキル基、2 から18個の炭素原子を有するアルケニル基、または6 から10個の炭素原子を有する置換もしくは無置換アリ ール基であり、Rは、水素原子、1から6個の炭素原子 を有するアルキル基、1から6個の炭素原子を有するア ルコキシ基、1から6個の炭素原子を有するハロアルキ ル基、またはハロゲン原子であり、10 は、水素原子、1 から4個の炭素原子を有するアルキル基、アミノアルキ ル基、二酸モノエステルまたはαーアルキル酸、そして 星印*はキラル炭素原子である。

【0007】WO 2000/50387は、下記の一 20 【0008】WO 2000/61581は、下記の一 般式で表されるアミン誘導体を、糖尿病、高脂血症、動 脈硬化症、または癌に有用な薬剤として開示している。 [(£4)

式中(R'、R'')は(F、F)、(CF,、H)もしくは(iP r、iPr)である。

【0009】WO 2000/75106は、下記の一 般式で表される化合物を、MMPが介在する哺乳類の疾病 の治療に有用な物質として開示している。

【化5】

式中2は、 [1t6]

40

式中、R[®]は水素、C₁₋₁₁アルキル、C₁₋₁シクロアルキ ボニルー C1-4 アルキル、またはヒドロキシアミノカル ボニルー (1-0アルキルであり; そして 20と21は、 H、 $C_{1-\bullet}$ アルキル、 $C_{1-\bullet}$ アルキルチオ、 $C_{1-\bullet}$ アルコ キシ、フルオロ、クロロ、プロモ、ヨードおよびニトロ からなる群から独立して選択される。

[0010]

【発明が解決しようとする課題】しかしながら、とれら の文献はいずれも薬学的な活性を持つシンプルなピペラ ジンカルボキシアミド誘導体を開示していない。

性に関係した病気の予防および治療、特に、切迫性失禁 および/または膀胱過活動の治療に使用できる化合物の 開発が望まれてきた。

[0012]

【課題を解決するための手段】本発明は、前記式(1) のピペラジンカルボキシアミド誘導体、その互変異性体 もしくは立体異性体、またはその塩を提供する。 【化7】

式中、一㎡は、任意にピュ、ピュ、ピュで置換されたフェ ニル、任意にピュ、ピュ、ピュで置換されたビリジル、任 意にピ゚、ピ゚、ピ゚で置換されたビリミジル、任意に R¹、R¹、R¹で置換されたキノリル、あるいは、任意 にR¹¹、R¹¹、R¹¹で置換されたナフチルを表し、ここ で、ピ¹、ピ¹、および ピ゚はそれぞれ独立して水素、ハ ロゲン、直鎖もしくは分枝Cg.。アルキル、モノ・ジ・も しくはトリハロゲン置換直鎖もしくは分枝C₁₋₆アルキ ル、ニトロ、シアノ、 直鎖もしくは分枝C,-。アルコキ シ、ヒドロキシ、直鎖もしくは分枝(,_。アルキルカルバ モイル、 カルバモイル、 カルボキシル、 アミノ、直 鎖もしくは分枝G--・アルキルアミノ、ジ (直鎖もしくは 分枝(、、アルキル) アミノ、直鎖もしくは分枝(、、アル コキシカルボニル、 フェニル、ベンジル、フェノキ シ、 ハロゲン置換フェノキシ、直鎖もしくは分枝(- 。 アルキルチオ、 直鎖もしくは分枝C.-。アルカノイル、 直鎖もしくは分枝に、アルカノイルアミノ、ヒドロキシ

はトリハロゲン置換直鎖もしくは分枝C₂₋₆アルコキシを ル等であり、 R^{*} はアミノー C_{*-*} アルキル、アミノカル 10 表し、Rは、任意に R^{*} 、 R^{*} 、および R^{*} で置換された フェニル、任意にピュ、ペュ、および ピュで置換されたビ リジル、任意にピュ、ピュ、および ピュで置換されたビリ ミジル、任意にだ」、だ、および だって置換されたキノ リル、あるいは任意にだっ、だっ、および だって置換され たナフチルを表し、ここで、 21、 22、 および 22 はそ れぞれ独立して水素、ハロゲン、直鎖もしくは分枝ぴ... アルキル、モノ・ジ・もしくはトリハロゲン置換直鎖も しくは分枝G-sアルキル、ニトロ、シアノ、 直鎖もし くは分枝G--アルコキシ、ヒドロキシ、直鎖もしくは分 【0011】効果的なVR1拮抗活性を有し、VR1活 20 枝C₄₋₆アルキルカルバモイル、 カルバモイル、 カルボ キシル、 アミノ、直鎖もしくは分枝C₁₋₆アルキルアミ ノ、ジ(直鎖もしくは分枝G-・アルキル)アミノ、直鎖 もしくは分枝C...アルコキシカルボニル、 フェニル、 ベンジル、フェノキシ、 ハロゲン置換フェノキシ、直 鎖もしくは分枝C-・アルキルチオ、 直鎖もしくは分枝C 1-6アルカノイル、 直鎖もしくは分枝C₂₋₆アルカノイル アミノ、ヒドロキシ置換直鎖もしくは分枝C₄₋₆アルキ ル、モノ・ジ・もしくはトリハロゲン置換直鎖もしくは 分枝C、アルコキシを表す。

30 【0013】前記式(1)のピペラジンカルボキシアミ 下誘導体、その互変異性体および立体異性体、ならびに それらの塩は、非常に優れたVRI拮抗活性を示す。それ らは、それゆえにVRI活性に関係する病気の予防および 治療、特に切迫性尿失禁および/または膀胱過活動の治 療に好適である。

【0014】好ましくは、本発明の前記式(1)のピペ ラジンカルボキシアミド誘導体は、式中、 - R は、任意 にR¹、R¹、R¹ で置換されたフェニル、任意にR¹、R 12、P17で置換されたピリジル、任意にP11、P17、P17で 40 置換されたビリミジル、任意にR¹¹、R¹¹、R¹¹で置換さ れたキノリル、あるいは、任意には、ペパ、ペパで置換 されたナフチルを表し、ここで、ペー、ペー、およびペー はそれぞれ独立して水素、ハロゲン、直鎖もしくは分枝 G-*アルキル、モノ・ジ・もしくはトリハロゲン置換直 鎖もしくは分枝 (4.4) アルキル、ニトロ、シアノ、 直鎖 もしくは分枝G-。アルコキシ、あるいは、ヒドロキシを 表し、およびだは、任意にだっ、だっ、およびでごを置換 されたフェニル、任意にだっ、だっ、および だって置換さ れたピリジル、任意に戻り、戻り、および 戻りで置換され 置換直鎖もしくは分枝C₄₋₆アルキル、モノ・ジ・もしく 50 たピリミジル、任意にR¹、R¹、および R¹で置換され

たキノリル、あるいは任意にだ。、だ。、および だ。で置 換されたナフチルを表し、ここで、R²、R²、および R **はそれぞれ独立して水素、ハロゲン、直鎖もしくは分 枝口--アルキル、モノ・ジ・もしくはトリハロゲン置換 直鎖もしくは分枝C、アルキル、ニトロ、シアノ、 直 鎖もしくは分枝(4.4アルコキシ、あるいはヒドロキシを 表す。

【0015】他の実施態様では、前記式(I)のピペラ ジンカルボキシアミド誘導体は、式中、一叶は、任意に R¹、R¹、R¹で置換されたフェニル、任意にR¹、 R¹、R¹で置換されたビリジル、任意にR¹1、R¹1、R¹2 で置換されたピリミジル、任意にピ゙、ピ゙、ピ゚で置換 されたキノリル、あるいは、任意にピュ、ピュ、ペュで置 換されたナフチルを表す誘導体であり得、ととで、ペー およびペーはそれぞれ独立して水素、ハロゲン、直鎖も しくは分枝G.。アルキル、モノ・ジ・もしくはトリハロ ゲン置換直鎖もしくは分枝 C.-。アルキル、ニトロ、シア ノ、 直鎖もしくは分枝C、アルコキシ、あるいは、ヒ ドロキシを表し、そしてペーは水素を表す。さらに他の 実施様態では、前記式(I)のピペラジンカルボキシア ミド誘導体は、式中、アは 【化8】

を表す誘導体であり得る。

【0016】さらに好ましくは、記載の式(1)のピベ ラジンカルボキシアミド誘導体は、下記の物質からなる 群から選択される。4-(2-クロロフェニル)-N-[4-クロロ-3-(トリフルオロメチル)フェニル] -1-ピペラジンカルボキシアミド:N-[4-クロロー 3-(トリフルオロメチル)フェニル]-4-[3-(トリフルオロメチル) -2-ビリジニル] -1-ビベ ラジンカルボキシアミド: N-[4-クロロ-3-(トリ フルオロメチル)フェニル]-4-(2-フルオロフェ*

【0021】前記化合物において、PやおよびPは上記で 定義した通りである。これらの化合物は置換基を有する ピペラジンおよびイソシアネートとの反応により調製す ることができる。この反応は、例えば、メチレンクロラ イドおよびクロロホルム等のハロゲン化炭化水素;ジオ キサンおよびテトラヒドラフラン等のエーテル:ベンゼ ン、トルエンおよびキシレン等の芳香族炭化水素:アセ トニトリル等のニトリル;ジメチルホルムアミド (DM F) およびジメチルアセトアミド等のアミド:ジメチル スルホキシド等のスルホキシドや、その他の溶媒中で行 50 【化10】

* ニル) - 1 - ピペラジンカルボキシアミド; N- [4 - ク ロロー3~(トリフルオロメチル)フェニル]-4-フ ェニルー 1 - ピペラジンカルボキシアミド; N- [4-ク ロロー3- (トリフルオロメチル) フェニル] -4-(3、5-ジクロロー4-ピリジニル)-1-ピペラジ ンカルボキシアミド: N- (7-ヒドロキシ-1-ナフチ ル) -4- [3-(トリフルオロメチル) -2-ピリジ ニル] -1-ピペラジンカルボキシアミド:4-(2-クロロフェニル) -M-(7-ヒドロキシー1-ナフチ 10 ル)-1-ピペラジンカルボキシアミド: および4-(3、4-ジメチルフェニル) -N-(7-ヒドロキシ-1-ナフチル) -1-ピペラジンカルボキシアミド。 【0017】好ましくは、本発明の医薬は、一種以上の 薬学的に許容可能な担体および/もしくは添加物をさら に含む。

【0018】前記式(I)のピペラジンカルボキシアミ ド誘導体、その互変異性体もしくは立体異性体、または それらの塩は、切迫性尿失禁、膀胱過活動、慢性痛、神 経障害痛、術後疼痛、慢性関節リウマチ痛、神経痛、ニ 20 ューロバチー、痛覚過敏、神経損傷、虚血症、神経変 性、脳卒中、失禁および/または炎症性疾患の治療に有 用である。これらは、VRI活性に関係する病気の為であ るためである。

[0019]

(6)

【発明の実施の形態】本発明の前記式(1)の化合物 は、下記の[A]もしくは[B]の方法で製造すること ができるが、これらの方法に限定されるものではない。 いくつかの実施形態では、出発原料または中間体として 使用される化合物におけるアミノ基、カルボキシル基お よびヒドロキシル基等の一以上の置換基は、当業者に公 知の保護基で保護することが有利である。前記保護基の 例は、Greene and Wutsの"Protective Groups in Organ ic Synthesis (2" Edition)"に記述されている。 【0020】[方法A] 【化9】

うことができる。反応は、トリエチルアミンなどの有機 塩基の存在下において行い得る。反応温度は、反応させ る化合物次第で任意に設定される。前記反応温度は限定 されないが、通常室温から約100℃である。前記反応 は、通常30分から48時間行われ、好ましくは1時間 から24時間行われる。置換基を有するピペラジンおよ びイソシアネートは、市販ルートで入手するか、または 公知技術の使用により調製することができる。

【0022】「方法B1

12

前記化合物において、Rは上記で定義した通りである。 これらの化合物は(1)ナフチルアミンおよび1、1' -カルボニルジ(1、2、4 - トリアゾール) (CDT) との反応および(2)反応混合物に置換基を有するアリ ルピペラジンを加えることにより調製することができ る。前記反応(1)は例えば、ジオキサンおよびテトラ ヒドラフラン等のエーテル: ベンゼン、トルエンおよ びキシレン等の芳香族炭化水素; アセトニトリル等の ニトリル; ジメチルホルムアミド (DMF) およびジ メチルアセトアミド等のアミド; ジメチルスルホキシ ド等のスルホキシドや、その他の溶媒中で行うことがで きる。反応温度は、反応させる化合物次第で任意に設定 される。前記反応温度は限定されないが、通常約20℃ から50℃である。前記反応は、通常30分から10時 間行われ、好ましくは1時間から24時間行われる。

【0023】前記式(1)で示した化合物またはその塩 が、互変異性体または立体異性体(例:幾何異性体およ び配座異性体)を有するときは、それらの分離した各異 性体および混合物もまた本発明の範囲に含まれる。

【0024】式(1)の化合物またはその塩が、その構 造に不斉炭素を有するときは、それらの光学活性体およ びラセミ混合物もまた本発明の範囲に含まれる。

【0025】式(1)で示される化合物の代表的な塩に は、本発明の化合物と鉱酸もしくは有機酸、または有機 塩基もしくは無機塩基との反応によって製造される塩を 含む。そのような塩は酸付加塩および塩基付加塩とし て、それぞれ知られている。

【0026】酸付加塩を形成する酸は、特に限定されな いが、硫酸、燐酸、塩酸、臭化水素酸およびヨウ化水素 40 酸等の無機酸、ならびに、特に限定されないが、p-ト ルエンスルホン酸、メタンスルホン酸、蓚酸、p-ブロ モベンゼンスルホン酸、炭酸、コハク酸、クエン酸、安 息香酸、酢酸等の有機酸を含む。

【0027】塩基付加塩は、特に限定されないが、水酸 化アンモニウム、アルカリ金属水酸化物、アルカリ土類 金属水酸化物、炭酸塩、炭酸水素塩等の無機塩基、なら びに、特に限定されないが、エタノールアミン、トリエ チルアミン、トリス (ヒドロキシメチル) アミノメタン

しては、水酸化ナトリウム、水酸化カリウム、炭酸カリ ウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素 カリウム、水酸化カルシウム、炭酸カルシウム等を含

【0028】本発明の化合物またその塩は、その置換基 次第で、低級アルキルエステルまたは公知の他のエステ ル、および/または水和物もしくは別の溶媒和物を形成 するように修飾しても良い。それらのエステル、水和 20 物、および溶媒和物は本発明の範囲に含まれる。

【0029】本発明の化合物は、特に限定されないが、 通常のおよび腸溶性錠剤、カブセル、ビル、散剤、顆粒 剤、エリキシル剤、チンキ剤、溶剤、懸濁剤、シロッ プ、固体もしくは液体エアロゾル、および乳濁液等の経 口剤の形で投与して良い。また、本発明の化合物は、特 に限定されないが、静脈内投与、腹腔内投与、皮下投 与、筋肉内投与のような薬学の分野の当業者によく知ら れている形態等により非経口投与しても良い。本発明の 化合物は、当業者によく知られている適切な経鼻用ビヒ 30 クルの局所的使用を介した鼻腔内投与形態または経皮配 送システムを用いた経皮ルートを介した投与形態で投与 されうる。

【0030】本発明の化合物の使用に関する投与計画 は、特に限定されないが、年齢、体重、性別、患者の医 学的状態、病状、投与経路、患者の代謝・排泄機能のレ ベル、使用される剤形、投与される特定の化合物および その塩を含む、種々の要素を考慮して、当業者によって 選定される。

【0031】本発明の化合物は、投与に先立ち、1種以 上の薬学的に許容可能な添加物と共に製剤されるのが好 ましい。その添加物は、特に限定されないが、担体、希 釈剤、香料、甘味料、滑沢剤、溶解剤、懸濁剤、結合 剤、錠剤崩壊剤、およびカプセル化材のような不活性物 質である。

【0032】本発明のさらに他の実施形態は、本発明の 化合物と、1種以上の薬学的に許容される添加物であっ て、製剤の他の成分と共存でき、患者に有害でない添加 物とからなる薬学的製剤である。本発明の薬学的製剤 は、本発明の化合物の治療的有効量と1種以上の薬学的 等の有機塩基から誘導される塩を含む。無機塩基の例と 50 に許容される添加物を混ぜて調製される。本発明の調合

物を作製するには、活性物質を希釈剤と混合しても担体 に封入しても良く、その担体は、カブセル、小袋、紙ま たは他の容器の形でも良い。前記担体は希釈剤を兼ねて もよく、固体、半固体、ビヒクルとして作用する液体で もよく、または、例えば活性化合物を重量で10%まで 含有する錠剤、ビル、散剤、ローゼンジ、エリキシル、 懸濁液、乳濁液、溶液、シロップ、エアロゾル、軟膏、 軟・硬ゼラチンカブセル、坐薬、滅菌注射用液および包 装滅菌散剤の形になりうる。

非毒性の薬学的に許容される担体(特に限定されない が、ラクトース、デンプン、スクロース、グルコース、 炭酸ナトリウム、マンニトール、ソルビトール、炭酸カ ルシウム、リン酸カルシウム、硫酸カルシウム、メチル セルロース等)と、そして必要に応じ、崩壊剤(特に限 定されないが、トウモロコシ粉、デンプン、メチルセル ロース、寒天、ベントナイト、キサンタンガム、アルギ ン酸等)と、そして必要に応じ、結合剤(特に限定され ないが、ゼラチン、天然糖、ベータラクトース、トウモ ロコシ甘味料、天然および合成ゴム、アラビアゴム、ト 20 ラガカントゴム、アルギン酸ナトリウム、カルボキシメ チルセルロース、ポリエチレングリコール、ワックス 等) と、そして必要に応じ、滑沢剤 (特に限定されない が、ステアリン酸マグネシウム、ステアリン酸ナトリウ ム、ステアリン酸、オレイン酸ナトリウム、安息香酸ナ トリウム、酢酸ナトリウム、食塩、タルク等) と共に混 合してもよい。

【0034】飲剤では、担体は細かく砕いた固体でもよ く、それが細かく砕いた活性成分と混合される。活性成 分は、結合力を有する担体と適当な割合で混合し、所望 30 の形と大きさに圧縮し、錠剤にしてもよい。前記散剤お よび錠剤は、好ましくは、本発明の新規組成物である活 性成分を約1~約99重量%含んでいる。適切な固体担 体は、カルボキシメチルセルロースマグネシウム、低融 点ワックスおよびカカオ脂である。

【0035】滅菌溶液製剤は、懸濁液、乳濁液、シロッ ブ、およびエリキシル剤を含む。活性成分は、薬学的に 許容される担体、例えば滅菌水、滅菌有機溶媒またはそ れらの混合物に溶解または懸濁することができる。

【0036】活性成分はまた、適切な有機溶媒、例えば 40 シン誘導Ca**流入の測定] (アッセイ1) プロピレングリコール水溶液に溶かすこともできる。他 の調合物は、細かく砕いた活性成分をデンプン水溶液、 CMC(カルボキシメチルセルロース)ナトリウム水溶 液または適切なオイルに分散させて作製できる。

【0037】製剤は単位用量形態、すなわちヒトまたは 他の哺乳類への投与に適した単位用量を含む物理的に分 割した単位でも良い。単位用量形態は1個のカブセルも しくは錠剤、または多数のカブセルもしくは錠剤で良 い。「単位用量」とは、所望の治療効果を生みだすため に計算された、1種以上の添加物と混合された本発明の 50 ナトリウム、20mM HEPES、0. 15% 炭酸

活性化合物の予め決められた量である。単位用量中の活 性成分の量は、関係する特定の処置に応じて、約0.1 から約1000mgまたはそれ以上に変化または調整す ることができる。

【0038】本発明の典型的経口投与量は、指示された 効果のために使用するときは、約0.01mg/kg/ 日から約100mg/kg/日、好ましくは0. lmg /k g/日から30mg/k g/日、そして最も好まし くは約0.5mg/kg/日から約10mg/kg/日 【0033】経口投与のために、活性成分は、経口用で 10 である。非経口投与の場合、約0.001mg/kg/ 日か5約100mg/kg/日、好ましくは0.01m g/kg/日からlmg/kg/日の量を投与すること が一般的に有利であることが証明されている。 本発明の 化合物は、一日一回のみ投与しても良く、または、1日 の全用量を、1日2回、3回またはそれ以上に分割して 投与しても良い。勿論、経皮形態を経由するときは、投 与は継続的である。

[0039]

(8)

【実施例】本発明を以下に実施例の形態で記述するが、 これらは本発明の境界および範囲を何ら限定するように 解釈されるべきではない。以下の実施例において、全て の量に関する値は、他に述べない限り、重量%である。 マスペクトルは、電子スプレー(ES)イオン化法(micr omass Platform LC) を使用して得た。 融点は未補正値 である。 液体クロマトグラフィーマススペクトル (Lig urid Chromatography - Mass spectroscopy, LC-MS) データは、Shimadzu Phenomenex ODS カラム (4.6 mm X 30 mm) を装備した Micromass PlatformLC を用い、ア セトニトリルと水の混合溶媒 (9:1から1:9)を1 m 1/minの流速で流して記録した。 TLCは、ブ レコートされたシリカゲルブレート (Merck silica gel 60F-254) を用いて行った。全てのカラムクロマトグラ フィー分離には、シリカゲル(WAKO-ge] C-200 (75-150) (m))を用いた。 全ての化学物質は、試薬級であり、S igma - Aldrich、和光純薬化学工業株式会社、東京化 成工業株式会社、Arch corporation から購入した。 【0040】本発明の化合物の効果は、以下のアッセイ および薬理学テストで試験した。

【0041】[VR1形質移入CHO細胞系中のカブサ

(1)ヒトVR1-CHOluc9aeq細胞系の確立 ヒトバニロイド受容体(hVR1)cDNAは、軸索切 断した後根神経節のライブラリーでクローン化した (W O2000/29577)。前記クローン化したhVR 1 cDNAは、pcDNA3ベクターと共に構築さ れ、CHOluc9aeq細胞系に形質移入させた。前 記細胞系はエクオリンおよびCRE - ルシフェラーゼレ ポーター遺伝子を解読シグナルとして有する。前記形質 移入細胞は、10% FCS、1.4mM ピルピン酸

水素ナトリウム、100U/ml ベニシリン、100μg/ml ストレブトマイシン、2mMグルタミン、非必須アミノ酸および2mg/ml G418を含む選択培地(DMEM/F12 medium、Gibco BRL)中で、限定希釈法によりクローニングした。Ca''流入は、カブサイシン刺激されたクローンについて試験した。高応答クローンは、このブロジェクトにおける更なる実験のために選択し、使用した。前記ヒトVR1-CHOluc9aeq細胞は、前記選択培地中で保持し、1~2.5×10[']細胞/フラスコ(75mm')で3~4日に一度整代し 10た。

【0042】(2) FDSS-3000を使用したCa **流入の測定

ヒトVR1-CHOluc9aeq細胞を、前記選択培 地からG418を除いた培地中で懸濁させ、ウェル当た り1、000細胞の密度で384-ウェルブレート(bla ck walled clear-base/Nalge Nunc International)中化 接種した。48時間培養後、前記培地を、2μΜ F1 uo-3 AM(Molecular Probes)および0.02% Puronic F-127を含むアッセイ用緩衝液 (Hank's 平衡塩類溶液 (HBSS)、17mM HEPES (pH7.4)、1mMプロベネシッド、 0. 1% BSA) と交換し、前記細胞を、25℃で6 0分間インキュベートした。アッセイ用級債液で2回洗 浄した後、前記細胞を試験用化合物または媒体で、25 *Cにおいて20分間インキュベートした。細胞質中のC a2+の移動は、FDSS-3000 (A_{ex}=488n m、λ = 5 4 0 n m / Hamamatsu Photonics) を用い て、10nM カブサイシンによる刺激後60秒で測定 した。積分比を計算し、対照と比較した。

[0043] [ラット後根神経節の初代培養神経細胞を使ったカブサイシンによるCa¹¹流入誘導の測定] (アッセイ2)

(1) ラット後根神経節神経細胞の調製

ウィスター系ラットの新生児(生後5~11日)を殺 し、後根神経節 (DRG) を摘出した。DRGは、PB S (-) (Gibco BRL)中0. 1% トリプシン(Gibco BR L)を用いて37℃で30分間インキュベートし、次に、 半量のウシ胎児血清(FCS)を加え、そして、細胞を 遠心分離により沈殿させた。前記DRG神経細胞は、H 40 am F12/5% FCS/5% ウマ血清(Gibco B RL)で再懸濁させ、ピペッティングの繰り返しおよび7 Oμm メッシュ(Falcon)の通過により分散させた。培 養プレートは、混入Schwann細胞を除去するため に37℃で3時間インキュベートした。非付着細胞は、 回収し、ラミニンでコートした384ウェルプレート(N unc)中、50 n g/ml 組換えラットNGF (Sigma) および50 µM 5-フルオロデオキシウリジン(Sion a)の存在下、1×10 4細胞/50 μ1/ウェルで2日 間さらに培養した。

(2) Ca**移動アッセイ

DRG神経細胞は、17mM HEPES (pH7. 4) および0. 1% BSAを含むHBSSで2回洗浄した。 $2\mu M$ fluo-3M(Molecular Probe)、0. 02% PF127(Gibco BRL)および1mM ブロベネシッド(Sigma)を用いて37℃で40分間インキュベートした後、細胞を3回洗浄した。前記細胞は、VR1rンタゴニストまたは溶媒(ジメチルスルホキシド)と、続いて1 μM のカブサイシンでFDSS-6000中(λ_{**} =480nm、 λ_{**} =520nm/Hamamatsu Photonics) インキュベートした。480nmでの蛍光の変化は、2.5分間追跡した。積分比を計算し、対照と比較した。

16

【0044】 [カブサイシン誘導膀胱収縮を測定するた めのマグヌスアッセイ] (アッセイ3) オスのウィスター系ラット (生後10週) をエーテルで 麻酔し、頚椎骨折により殺した。膀胱の全体を切除し、 酸素を通したModified Krebs-Henseleit溶液(p H 7. 4) に浸した。前記溶液は、112mM NaC1、 20 5. 9mM KC1, 1. 2mM MgCl₂, 1. 2 mM NaH, PO. 2mM CaCl, 2.5mM NaHCO,、12mM グルコースの組成を有す る。前記膀胱の収縮反応は、すでに記述されているよう にして研究した[Maggi CA et al: BR.].Pharmacol. 10 8: 801-805、 1993]。等尺性張力は、ラット排尿筋の縦 方向細片を使用して1gの負荷で記録した。膀胱細片 は、各刺激に先立って60分間平衡化させた。80mM KClに対する収縮反応は、反復可能な応答が得られ るまで、15分間隔で測定した。前記KC1に対する応 30 答は、カブサイシンに対する最大応答値を評価するため の内部標準として使用した。前記化合物の効果は、前記 小片を、1μΜ カブサイシンによる刺激(媒体:80 % 生理食塩水、10% エタノール、および10% Tween 80) に先立って、化合物で30分間イン キュベートすることにより調べた。同一の動物から作製 された試料のうちの一つを対照として供し、その他を評 価しようとする化合物のために使用した。内部標準(す なわちKC 1 誘導収縮) に対する各々のカブサイシン誘 導収縮を計算し、カブサイシン誘導収縮に対する試験化

【0045】 [ヒトP2X1形質移入CHO細胞系への Ca**流入の測定]

合物の効果を評価した。

(1)ヒトP2X1形質移入CHOluc9aeq細胞系の調製

ヒトP2X1形質移入CHOluc9aeq細胞系を確立し、7.5% FCS、20mM HEPES-KOH(pH7.4)、1.4mM ピルピン酸ナトリウム、100U/ml ペニシリン、100μg/mlストレプトマイシン、2mM グルタミン(Gibco BRL) および0.5ユニット/ml アピラーゼ(一級、Sigm

a)を含むダルベッコの修飾型イーグル培地(DMEM/ F12) 中で保持した。懸濁させた細胞を、384-well o ptical bottom black plates (Nalge Nunc Internation al)の各ウェルに、3×10'/50μ1/ウェルで接種 した。前記細胞は、続いて48時間培養し、前記プレー トに接着させた。

17

(2) 細胞内C a2. レベルの測定

P2X1受容体アゴニストが媒介する細胞質中のCa¹ レベルの上昇は、蛍光性Ca**キレート色素Fluo-3 AM(Molecular Probes)を用いて測定した。プレー 10 トに接着した細胞は、洗浄用緩衝液(HBSS、17m M HEPES-KOH (pH7. 4), 0. 1% B SAおよび0. 5ユニット/ml アピラーゼ)で2回 洗浄し、40 μ1の添加液(洗浄用緩衝液中1 μM F 1uo-3 AM、1mM プロベネシッド、1μM シクロスポリン A、O. 01%pluronic (Molecular Probes)) 中、暗所で1時間インキュベートした。前記 プレートは、40μ1の洗浄用級衝液で2回洗浄し、3 5μ1の洗浄用級衝液を、各ウェルに、5μ1の試験用 化合物または対照用としての2'、3'-o-(2、 4、6-トリニトロフェニル) アデノシン5 - 三リン 酸(Molecular Probes)と共に加えた。 さらに暗所で10 分間インキュベートした後、200nM α、β-メチ レンATPアゴニストを添加して、Ca2・移動を開始さ せた。蛍光強度は、FDSS-6000 (λ.z=410 nm、 λ = = 5 1 0 nm/HamamatsuPhotonics) によ り、250msec間隔で測定した。そのデータから積 分比を計算し、対照と比較した。

【0046】 [麻酔下でのラットを使ったカブサイシン により誘導される膀胱収縮の測定] (アッセイ4)

(1)動物

雌のSprague-Dawleyラット(200~250g/Charle s River Japan) を使用した。

(2) カテーテル植え込み

ラットを、ウレタン(Sigma)の1.2g/kg腹腔内投 与により麻酔した。正中線切開により開腹し、ポリエチ レンカテーテル(BECTON DICKINSON、 PESO)を、膀胱 に、その頂部を通じて植え込んだ。一方、鼠径部を切り 込み、生理食塩水(Otsuka)中2 I U/m I のヘパリン (ノボ・ヘパリン、Aventis Pharma) で満たしたポリウ 40 レタンカテーテル(Hibiki、サイズ5)を、経腸骨動脈中 に挿入した。

(3)シストメトリー調査

前記膀胱カテーテルは、T-チューブを通じて圧力変換 器(Vicco-SpectramedPte Ltd、 DT-XXAD)およびマイク ロインジェクションポンプ(TERUMO)と接続した。生理食 塩水を、膀胱に、室温下、2.4m1/hRの速度で注 入した。膀胱内圧力は、チャートペンレコーダー(Yokog awa)で連続的に記録した。20分間に相当する、少なく とも三回の反復可能な排尿サイクルを、試験化合物投与 50 ラジンカルボキシアミド(112.0mg、収率67

前に記録し、それをベースライン値として用いた。

(4) 試験化合物の投与と、カブサイシンによる膀胱刺

化合物投与前に、生理食塩水の注入を停止した。エタノ ール、Tween 80(ION Biomedicals Inc.)および 生理食塩水 (1:1:8、 v/v/v) の混合物に溶解 した試験化合物を、10mg/kgで動脈内投与した。 前記化合物の投与から2分後に、エタノールに溶解した 10μgのカブサイシン(Nacalai Tesque)を動脈内投与 Utc.

(5)シストメトリーパラメータの解析

カブサイシン誘導による膀胱内圧力上昇は、シストメト リーデータから解析した。カブサイシン誘導による膀胱 圧力は、カブサイシン刺激が無いときの排尿中最大膀胱 圧力と比較した。試験化合物媒介による膀胱圧力上昇の 阻害は、Studentのtーテストを用いて評価した。5% よりも小さい確率レベルは、有意差とみなした。

【0047】ヒトVR1形質移入CHO細胞系における カブサイシン誘導Caii流入のIC。値の結果を、以下 の実施例および実施例の表に示す。データは、固相合成 法により得られ、したがって純度レベルが約40から9 0%である化合物に対応する。実用上の理由から、前記 化合物は、以下の4クラスの活性に分類した。

 $IC_{10} = A \le 0.$ $1 \mu M < B \le 0.$ $5 \mu M < C \le 1 \mu M$

【0048】本発明の化合物はまた、優れた選択性を示 し、上記の他のアッセイ(2)~(4)でも強い活性を

【0049】実施例1-1

4-(2-クロロフェニル)-N-[4-クロロー3-(トリフルオロメチル)フェニル]ー1-ピペラジンカ ルボキシアミド

【化11】

【0050】本実施例は前記一般的方法Aに従って行っ た。4-クロロー3-トリフルオロメチルフェニルイン シアネート (80.0mg、0.36mmol) のOL(CI 』(1.5ml) 溶液を攪拌しながら、この溶液に1-(2-クロロフェニル) ピペラジン (79.0mg. 0. 40 mmol) のCH₂ Cl₂ (1.5 ml) 溶液を室温で加え た。その反応混合物を同じ温度で2時間攪拌した。溶媒 は減圧下で除去し、そしてその残渣をジエチルエーテル で洗浄し、4-(2-クロロフェニル)-N-[4-クロ ロー3-(トリフルオロメチル)フェニル]-1-ピペ %)を得た。

融点:175-176℃ 分子量:418.25 MS (MHH): 418

活性度:A

【0051】実施例1-2

4-(4-クロロフェニル)-N-[4-クロロー3-(トリフルオロメチル) フェニル] -1-ピペラジンカ ルボキシアミド

19

【化12】

【0052】本実施例は一般的方法Aに従って行った。 4-クロロフェニルピペラジンヒドロクロライド(9

4. 0 mg, 0. 4 0 mmol) およびトリエチルアミン $(0.062 \,\mathrm{m}\,1,\,0.44 \,\mathrm{mmo}\,1)\,\mathcal{O}\mathrm{CH_2\,Cl_2}\,(2.0 \,\mathrm{m}\,*20\,$

*1) 溶液を攪拌しながら、この溶液に4-クロロー3-トリフルオロメチルフェニルイソシアネート(80.0 mg、0.36 mmol)を室温で加えた。その反応混合物 を同じ温度で2時間攪拌した。飽和NaHCO。溶液を加え、 そして反応混合物をCt. Cl. で抽出した。有機層をNa. SQ. で乾燥し、そして次に減圧下で濃縮した。その残渣をジ エチルエーテルで洗浄し、4-(4-クロロフェニル) -N-[4-クロロー3-(トリフルオロメチル)フェニ ル] -1-ビベラジンカルボキシアミド(130.0m 10 g、収率78%)を得た。

融点:119℃ 分子量:418.24 MS (M+H) : 418

活性度:B

【0053】上記実施例1-1もしくは1-2のうちい ずれかと同様の方法に従って、下記の化合物を合成し試 験した。

[0054]表1(化13~化24) 【化13】

実施例 番号	分子報達	分子量	M+1	数点	hVR1 クラス
1-3		401.79432		115	В
1-4	FF O	496.7998		186	В

[0055]

【化14】

21				
1-5	H,C CH,	411.86807	140-142	В
1-8	CH _a	411.85807	162-163	В

[0056]

[0057]

【化16】

23				2
1-9	F-F-F	452.78985	153-156	С
1-10	F F a	487.23488	123-125	В
* * [{£17]				

[0058]

[0059]

【化18】

25	_	2
1-13	428.50142	178-180 B
1-14	418.24892	133-135 B

[0060]

* * (化19)

1-15

428.80142

208-210 C

N

1-16

A08.81377

184-186 B

[0061]

27	,,				28
1-17	Q GH,	413.63038	175-181	8	
1-18		363.60300	158-137	^	

[0082]

[0063]

【化22】

29	9			3(
1-21		386,77905	157-159	C
1-22	a The second sec	453.68153	253-255	^

[0064]

[0065]

[化24]

[0066]実施例2-1

4-(4-ヒドロキシフェニル)-N-[4-クロロー3-(トリフルオロメチル)フェニル]-1-ピペラジンカルボキシアミド

【化25】

【0067】本実施例は一般的方法Aに従って行い、さらにピペラジンの置換基として存在するフェニル部位を修飾して行った。N-[4-クロロ-3-(トリフルオロメチル)フェニル]-4-(4-メトキシフェニル)-1-ピペラジンカルボキシアミド(100.0mg、0.*

* 2.4 mmol) のCH₂ CI₂ 溶液に三臭化ホウ素 (1.0 MのCH₂ CI₂ 中溶液; 0.7 mmol) を0°Cで加えた。 その混合物を室温で5時間攪拌した。その反応混合物を飽和 NaHCO, 溶液で中和し、そして次にCH₂ CI₂ で抽出した。その残渣を分取薄層シリカゲルクロマトグラフィー(CHCI₂:MeOH=10:1)で精製し、目的化合物(2.9 mg、3.0%)を得た。

融点:231-233℃ 分子量:399.80

20 MS (M+H): 400 活性度: C

実施例2 - 1の方法に従って、下記化合物を合成し、試験した。

【0068】表2(化26) 【化26】

実施例 番号	分子供金	分子量	M+1	融点	MA グラス
2-2	OH COH	300,8033		191-192	В
2-3	OH CO	369.8033		182-184	C

44

リフルオロメチル) - 2 - ピリジニル] - 1 - ピペラジ ンカルボキシアミド

[{£27]

【0070】本実施例は一般的方法Bに従って行った。 8-アミノー2-ナフトール(69.0mg、0.43 mmol)のTHF(2ml)溶液に、1、1'ーカルボニルジ (1、2、4-トリアゾール)(71.0mg、0.4 3mmol)を加え、そしてその混合物を室温で2時間攪拌 した。1-[3-トリフルオロメチル]ビリジー2-イ ル]ビベラジン(100.0mg、0.43mmol)を加* *え、その混合物を50°Cで3時間攪拌した。水を加え、そしてその混合物をAcCEtで抽出した。有機層をMcSOで 乾燥し、そして次に減圧下で濃縮した。その残渣をジェチルエーテルで洗浄し、N-(7-EFロキシ-1-ナフチル)-4-[3-(Fリフルオロメチル)-2-ピリジニル]-1-ビベラジンカルボキシアミド(125.0mg、69%)を得た。

融点:202-204℃ 分子量:416.41

10 MS (M+H): 417

活性度:B

実施例3-1に従って、下記化合物を合成し、試験し

た。

【0071】表3(化28)

[ft28]

突進例 香号	分子傳達	分子量	M+1	融級	hVR1 クラス
3-2	P P P P P P P P P P P P P P P P P P P	392.418		210	В
3-3	0	381.9655		233	٨
3-4	P P P P P P P P P P P P P P P P P P P	S75.4746		280	A

フロントページの続き

(51)Int.Cl.' A 6 1 P		識別記号	F I A 6 1 P	13/02 13/10 19/02 25/00	テーマンード(参考)
	25/00 25/04			25/00 25/04	

			25/28
	25/28		25/28
	29/00		29/00
	1 0 1		1 0 1
	43/00 1 1 1		43/00 1 1 1
C07D	215/42	C 0 7 D 2	215/42
	239/42	2	239/42 Z
	295/20	2	295/20 A
(72)発明者	池上 由香	(72)発明者	多治見 政臣
	京都府京都市伏見区西奉行町伏見合同宿舎		京都府相楽郡精華町桜が丘1-8-17
	942	(72)発明者	竹下 慶亮
(72)発明者	桝田 努		京都府京都市下京区七条通大宫東入大工町
(- ,) - , .	奈良県奈良市神功3-15-6-6A		118-405
(72)発明者	小久保 利雄	(72)発明者	
	奈良県奈良市神功3-15-18B		奈良県生駒市北大和2-25-4
(72)発明者	ウアバーンズ クラウス	(72)発明者	
	兵庫県神戸市灘区楠丘町6-3-1-301		兵庫県尼崎市久々知2-10-1
(72)発明者	吉田 長弘	Fターム(参	考) 4C031 LA03
	京都府相楽郡木津町相楽台5-18-15		4C055 AA01 BA02 BA03 BA52 BB02
(72)発明者	丸茂 真紀子		CA01 CA02 CA03 CA06 CA13
	奈良県奈良市西大寺南町4-9-307		CA39 DA01 DA52 DB02
(72)発明者	城尾 昌宏		4C086 AA01 AA02 AA03 BC50 MA01
	奈良県生駒市鹿ノ台南1-3-17		MA02 MA03 MA04 MA05 NA14
			ZA01 ZA08 ZA15 ZA20 ZA36
			ZA81 ZB11 ZB15 ZC42

【外国語明細書】

TITLE OF INVENTION

PIPERAZINECARBONAMIDE DERIVATIVES

2. Claims

(1) A piperezinecerbosamide derivative of the formula (I), its tautomeric or stereoisomeric form, or a salt thereof:

wherein

 $-R^1$ represents phenyl optionally substituted by R^{11} , R^{12} and R^{13} , pyridyl optionally substituted by R^{11} , R^{12} and R^{13} , pyrimidyl optionally substituted by R^{11} , R^{12} and R^{13} , quinclyl optionally substituted by R^{11} , R^{12} and R^{13} , or naphthyl optionally substituted by R^{11} , R^{12} and R^{13} ,

in which R^{11} , R^{12} and R^{13} independently represent hydrogen, halogen, straight-chain or branched C_{14} alkyl, mono-, di-, or tri- halogen substituted straight-chain or branched C_{14} alkyl, nitro, cyano, straight-chain or branched C_{14} alkylcarbancyl, carbancyl, carboxyl, amino, straight-chain or branched C_{14} alkylcarbancyl, carbancyl, carboxyl, amino, straight-chain or branched C_{14} alkyl)amino, straight-chain or branched C_{14} alkyl)amino, straight-chain or branched C_{14} alkyl)amino, phenoxy, halogen substituted phenoxy, straight-chain or branched C_{14} alkylothio, hydroxy substituted straight-chain or branched C_{14} alkylothio, hydroxy substituted straight-chain or branched C_{14}

alkyl, mono-, di-, or tri-halogen substituted straight-chain or branched $C_{1-\delta}$ alkowy,

 R^2 represents phenyl optionally substituted by R^{21} , R^{22} and R^{23} , pyridyl optionally substituted by R^{21} , R^{22} and R^{23} , pyrimidyl optionally substituted by R^{21} , R^{22} and R^{23} , quinolyl optionally substituted by R^{21} , R^{22} and R^{23} , or naphthyl optionally substituted by R^{21} , R^{22} and R^{23} ,

in which R²¹, R²² and R²¹ independently represent hydrogen, halogen, straight-chain or branched C₁₋₄ alkyl, mono-, di-, or tri- halogen substituted straight-chain or branched C₁₋₄ alkyl, nitro, cyano, straight-chain or branched C₁₋₄ alkyl-chain or branched C₁₋₄ alkyl-carbonyl, carbonyl, carbonyl, amino, straight-chain or branched C₁₋₄ alkyl-amino, di(straight-chain or branched C₁₋₄ alkyl-amino, straight-chain or branched C₁₋₄ alkyl-amino, phenoxy, halogen substituted phenoxy, straight-chain or branched C₁₋₄ alkyl-chain or branched C₁₋₄ alkanoyl, straight-chain or branched C₁₋₄ alkanoyl, straight-chain or branched C₁₋₄ alkanoyl-mino, hydroxy substituted straight-chain or branched C₁₋₄ alkyl, mono-, di-, or tri- halogen substituted straight-chain or branched C₁₋₄ alkoxy.

(2) A piperazinecarboxamide derivative, its tautomeric or stereoisomeric form, or a salt thereof as claimed in claim 1, wherein $-R^1$ represents phenyl optionally substituted by R^{11} , R^{12} and R^{13} , pyrindyl optionally substituted by R^{11} , R^{12} and R^{13} , pyrindyl optionally substituted by R^{11} , R^{12} and R^{13} , quinolyl optionally substituted by R^{11} , R^{12} and R^{13} , or naphthyl optionally substituted by R^{11} , R^{12} and R^{13} ,

in which R¹¹, R¹² and R¹³ independently represent hydrogen, halogen, straight-chain or branched C₁₋₄ alkyl, mono-, di-, or tri- halogen substituted straight-chain or branched C₁₋₄ alkyl, nitro, cyano, straight-chain or branched C₁₋₄ alkowy, or hydroxy; and

 R^2 represents phenyl optionally substituted by R^2 , R^2 and R^2 , pyridyl optionally substituted by R^2 , R^2 and R^2 , pyrimidyl optionally substituted by R^2 , R^2 and R^2 , quinclyl optionally substituted by R^2 , R^2 and R^2 , or naphthyl optionally substituted by R^2 , R^2 and R^2 ,

in which \mathbb{R}^{2} , \mathbb{R}^{2} and \mathbb{R}^{3} independently represent hydrogen, halogen, straight-chain or branched $C_{1:4}$ alkyl, mono-, di-, or tri- halogen substituted straight-chain or branched $C_{3:4}$ alkyl, nitro, cyano, straight-chain or branched $C_{3:4}$ alkowy, or hydrony.

(3) A priparazine carbos and derivative, its tautomaric or stereoisomeric form, or a salt thereof as claimed in claim 1 or 2, Wherein $-\mathbb{R}^1$ represents phenyl optionally substituted by \mathbb{R}^{11} , \mathbb{R}^{12} and \mathbb{R}^{13} , pyricityl optionally substituted by \mathbb{R}^{11} , \mathbb{R}^{12} and \mathbb{R}^{13} , pyrimidyl optionally substituted by \mathbb{R}^{11} , \mathbb{R}^{12} and \mathbb{R}^{13} , or nephthyl optionally substituted by \mathbb{R}^{11} , \mathbb{R}^{12} and \mathbb{R}^{13} , or nephthyl optionally substituted by \mathbb{R}^{11} , \mathbb{R}^{12} and \mathbb{R}^{13} ,

in which R¹¹ and R¹² independently represent hydrogen, halogen, straight-chain or branched C₁₋₆ alkyl, mono-, di-, or tri- halogen substituted straight-chain or branched C₁₋₆ alkyl, nitro, cyano, straight-chain or branched C₁₋₆ alkowy, or hydroxy and R¹³ represents hydrogen.

(4) A piperazinecarboxamide derivative, its tantomeric or stereoisomeric form, or a salt thereof as claimed in any one of claims 1 to 3,

e;

wherein R2 represents

(5) A piperazinecarboxanide derivative of the formula (I), its tautomeric or stemeoisomeric form, or a salt thereof as claimed in claim 1, wherein said piperazinecarboxanide derivative of the formula (I) is selected from the group consisting of:

4-(2-chlorophenyl)-N-[4-chloro-3-(triflnoromethyl)phenyl]-1-piperazine certoszanide;

N-[4-chloro-3-(trifluoromethyl)phenyl]-4-[3-(trifluoromethyl)-2-pyridi. nyl]-1-piperazinecarboxemide;

N-[4-chloro-3-(trifluoromethyl)phenyl]-4-(2-fluorophenyl)-1-piperazine carboxamide;

N-[4-chloro-3-(trifluoromethyl)phenyl]-4-phenyl-1-piperaxinecarboxamid

N-[4-chloro-3-(trifluoromethyl)phenyl]-4-(3,5-dichloro-4-pyridinyl)-1-piperazinecarboxamide;

N-(7-hydroxy-1-naphthyl)-4-[3-(trifluoromethyl)-2-pyridinyl]-1-piperaz inecarboxamida;

4-(2-chlorophenyl)-N-(7-hydroxy-1-naphthyl)-1-piperexinecarboxamide;

4-(3,4-dimethylphenyl)-N-(7-hydroxy-1-naphthyl)-1-piperazinecarboxzmid

- (6) A piperexinecarboxamide derivative of the formula (I), its tantomeric or stereoisomeric form, or a salt thereof as claimed in any one of claims 1 to 3 for the treatment and/or prophylaxis of diseases.
- (7) A medicement comprising at least one of the compounds, their tautomeric and stereoisomeric form, and salts thereof as claimed in claim 1 to 5 in combination with at least one phenomenoutically acceptable carrier and/or excipients.
- (8) The medicament as claimed in claim 7, wherein said priperazinecambezzanida decrivative of the formula (I), its tautomeric or stereorischeric form, or a salt thereof is a VRI antagomist.
- (9) The medicement as claimed in claim 7 for the treatment and/or prophylaxis of a disease selected from the group consisting of urge urinary incontinence, overactive bladder, chronic pain, neuropathic pain, postoperative pain, rheumatoid artiritic pain, neurologia, neuropathies, algesia, nerve injury, ischaemia, neurodegeneration, stroke, incontinence and inflammatory discoders.
- (10) Use of compounds of any one of claims 1 to 5 for the production of a medicine for treatment and/or prophylaxis of a disease selected from the group consisting of urgs urinary incontinence, overactive bladder, chronic pain, neuropathic pain, postoperative pain, rheumatoid arthritic pain, neurolgia, neuropathies, algesia, nerve injury, ischeemia, neurodegeneration, stroke, incontinence and inflammatory disorders.

3. DETAILED DESCRIPTION OF INVENTION

TROUNICAL FIELD

The present invention relates to a piperazinecerboxamide derivative which is useful as an active ingredient of phenescentical preparations. The piperazinecerboxamide derivative of the present invention has vanilloid receptor (VRI) antagonistic activity, and can be used for the prophylaxis and treatment of diseases associated with VRI activity, in particular for the treatment of urgs urinary incontinence, overactive bladder, chronic pain, neuropathic pain, postoperative pain, rheumatoid arthritic pain, neurolagia, neuropathies, algesia, nerve injury, ischaemia, neurodegeneration, stroke, incontinence and/or inflammatory disorders.

BACKGROUND ART

Vanilloid compounds are characterized by the presence of vanilly group or a functionally equivalent group. Examples of several vanilloid compounds or vanilloid receptor modulators are vanillin (4-hydroxy-3-methoxy-benzaldehyde), guaiacol (2-methoxy-phenol), zingerone (4-/4-hydroxy-3-methoxyphenyl/-2-butznon), eugenol(2-methoxy4-/2-propenyl/phenol), and capsaicin (8-methy-N-vanilly1-6-nonenesmide).

Among others, cepsaidin, the main pungent ingredient in "hot" chilipeppers, is a specific neurotoxin that desensitizes C-fiber afferent
neurons. Capsaidin interacts with vanilloid receptors (VR1), which are
predominantly expressed in call bodies of dorsal root ganglia (DRG) or
nerve endings of afferent sensory fibers including C-fiber nerve endings

[Tominaga M, Catarina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Rammann BE, Bashama AI, Julius D: The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 21: 531-543, 1998]. The VRI receptor was recently cloned [Catarina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D: Nature 389: 816-824, (1997)] and identified as a nonselective cation channel with six transmembrane domains that is structurally related to the TRP (transient receptor potential) channel family. Binding of capsaicin to VRI allows sodium, calcium and possibly potassium ions to flow down their concentration gradients, causing initial depolarization and release of neurotransmitters from the nerve terminals. VRI can therefore be viewed as a molecular integrator of chemical and physical stimuli that elicit neuronal signals in a pathological conditions or diseases.

There are abundant of direct or indirect evidence that shows the relation between VRI activity and diseases such as pain, ischaemia, and inflammatory (e.g., NO 99/00115 and 00/50387). Further, it has been demonstrated that VRI transduce reflex signals that are involved in the overactive bladder of patients who have demaged or abnormal spinal reflex pathways [De Groat WC: A neurologic basis for the overactive bladder. Urology 50 (6A Suppl): 36-52, 1997]. Desensitisation of the afferent nerves by depleting neurotransmitters using VRI agonists such as capsaicin has been shown to give proxising results in the treatment of bladder dysfunction associated with spinal cord injury and multiple sclerosis [(Maggi CA: Therespeutic potential of capsaicin-like molecules - Studies in animals and humans. Life Sciences 51: 1777-1781, 1992) and (DeRidder

D; Chandirameni V; Desgupta P; VanPoppel H; Baert L; Powler CJ; Intravesical capsaicin as a treatment for refractory detrusor hyperreflexia: A dual center study with long-term followup. J. Urol. 158: 2087-2092, 1997)].

It is anticipated that antagonism of the VR1 receptor would lead to the blockage of neurotransmitter release, resulting in prophylaxis and treatment of the condition and diseases associated with VR1 activity.

It is therefore expected that entegonists of the VR1 receptor can be used for prophylaris and treatment of the condition and diseases including chronic pain, neuropathic pain, postoperative pain, rheumatoid arthritic pain, neuralgia, neuropathies, algeria, nerve injury, ischaemia, neurodegeneration, stroke, incontinence, inflammatory disorders, urge urinary incontinence (UUI), and/or overactive bladder.

NO 2000/50387 discloses the compounds having a vanilloid agonist activity represented by the general formula:

wherein;

x is an oxygen or sulfur atom;

A" is -NHCH- or -CH-;

 R^n is a substituted or unsubstituted C_{k-1} alkyl group, or $R^{nl}CO-$; wherein R^{nl} is an alkyl group having 1 to 18 carbon atoms,

an alkenyl group having 2 to 18 cerbon atoms, or substituted or unsubstituted aryl group having 6 to 10 cerbon atoms; R^b is a hydrogen atom, an alkyl group having 1 to 6 cerbon atoms, an alkoky group having 1 to 6 cerbon atoms, a haloalkyl group having 1 to 6 cerbon atoms or a halogen atom;

 R^C is a hydrogen atom, an alkyl group having 1 to 4 carbon atom, an aminoalkyl, a discid monoester or α -alkyl acid; and the asteric mark * indicates a chiral carbon atom, and their pharmaceutically acceptable salts.

WO 2000/61581 discloses amine derivatives represented by the general formula:

wherein (R', R') represent (F, F), (CF_3, H) , or (1Pr, 1Pr) as useful agents for diabetes, hyperlipsula, arteriosclerosis and cancer.

WO 2000/75106 discloses the compounds represented by the general formula:

wherein I represents

in which R^{50} is hydrogen, C_{1-12} alkyl, C_{3-6} cycloalkyl, or the like, and R^{51} is amino- C_{1-6} alkyl, aminocarbonyl- C_{1-6} alkyl, or hydroxymminocarbonyl C_{1-6} alkyl; and

 R^{80} and R^{61} are independently selected from the group consisting of H, C_{1-6} alkyl, C_{1-6} alkylthio, C_{1-6} alkowy, fluoro, chloro, brown, indo, and nitro;

as useful agents for treating MSP-mediated diseases in manuals.

However, none of these reference discloses simple piperasinecerboxamids derivatives having phenaeceutical activity.

The development of a compound having effective VR1 antagonistic activity and can be used for the prophylaxis and treatment of diseases

associated with VRI activity, in particular for the treatment of urge uninery incontinence and/or overactive bladder has been desired.

SUMPARY OF THE INVENTION

This invention is to provide a piperazine carboxanide derivative of the formula (I), their tautomeric and stereoisomeric form, and salts thereof:

wherein

-R¹ represents phenyl optionally substituted by R¹¹, R¹² and R¹³, pyridyl optionally substituted by R¹¹, R¹² and R¹³, pyrimidyl optionally substituted by R¹¹, R¹² and R¹³, quinclyl optionally substituted by R¹¹, R¹² and R¹³, or nephthyl optionally substituted by R¹¹, R¹² and R¹³.

in which R^{11} , R^{12} and R^{13} independently represent hydrogen, halogen, straight-chain or branched C_{14} alkyl, mono-, di-, or tri- halogen substituted straight-chain or branched C_{14} alkyl, nitro, cyano, straight-chain or branched C_{14} alkylcarbasoyl, carbasoyl, carbasoyl, amino, straight-chain or branched C_{14} alkylcarbasoyl, carbasoyl, carbasoyl, amino, straight-chain or branched C_{14} alkylamino, di(straight-chain or branched C_{14} alkylamino, straight-chain or branched C_{14} alkylamino, phenoxy, halogen substituted phenoxy, straight-chain or branched C_{14} alkylthio, straight-chain

or branched C_{i-6} alkanoyl, straight-chain or branched C_{i-6} alkanoylamino, hydroxy substituted straight-chain or branched C_{i-6} alkyl, mono-, di-, or tri-halogen substituted straight-chain or branched C_{i-6} alkoxy,

 R^2 represents phenyl optionally substituted by R^n , R^2 and R^n , pyridyl optionally substituted by R^n , R^2 and R^n , pyrimidyl optionally substituted by R^n , R^2 and R^2 , quinclyl optionally substituted by R^n , R^2 and R^2 , or naphthyl optionally substituted by R^n , R^2 and R^2 ,

in which R²¹, R²² and R²³ independently represent hydrogen, halogen, straight-chain or branched C₁₋₄ alkyl, mono-, di-, or tri- halogen substituted straight-chain or branched C₁₋₄ alkowy, hydroxy, straight-chain or branched C₁₋₄ alkylcarbencyl, carboxyl, carboxyl, amino, straight-chain or branched C₁₋₄ alkylcarbencyl, carboxyl, carboxyl, amino, straight-chain or branched C₁₋₄ alkylcarboxyl, straight-chain or branched C₁₋₄ alkylcarboxyl, phenoxy, halogen substituted phenoxy, straight-chain or branched C₁₋₄ alkylcarboxyl, phenoxyl, straight-chain or branched C₁₋₄ alkylcarboxyl, mono-, di-, or tri- halogen substituted straight-chain or branched C₁₋₄ alkoxyl.

The piperazinecarboxanide derivative of formula (I), their teutomeric and stereoisomeric form, and salts thereof surprisingly show excellent VRI antagonistic activity. They are, therefore suitable especially for the prophylaxis and treatment of diseases associated with

VRI activity, in particular for the treatment of urge uninary incontinence and/or overactive bladder.

Preferably, the piperazine curbos and decivative of formula (I) are those wherein;

 $-R^1$ represents phenyl optionally substituted by R^{11} , R^{12} and R^{13} , pyridyl optionally substituted by R^{11} , R^{12} and R^{13} , pyrimidyl optionally substituted by R^{11} , R^{12} and R^{13} , quinclyl optionally substituted by R^{11} , R^{12} and R^{13} , or naphthyl optionally substituted by R^{11} , R^{12} and R^{13} ,

in which \mathbb{R}^{11} , \mathbb{R}^{12} and \mathbb{R}^{13} independently represent bydrogen, helogen, straight-chain or branched $C_{1:4}$ alkyl, mono-, di-, or tri- helogen substituted straight-chain or branched $C_{1:4}$ alkyl, nitro, cyano, straight-chain or branched $C_{1:4}$ alkowy, or hydroxy; and

 R^2 represents phenyl optionally substituted by R^2 , R^2 and R^2 , pyridyl optionally substituted by R^2 , R^2 and R^2 , pyrididyl optionally substituted by R^2 , R^2 and R^3 , quinclyl optionally substituted by R^2 , R^2 and R^3 , or naphthyl optionally substituted by R^2 , R^2 and R^3 ,

in which \mathbb{R}^{21} , \mathbb{R}^{22} and \mathbb{R}^{23} independently represent hydrogen, balogen, straight-chain or branched C_{1-6} alkyl, mono-, di-, or tri- balogen substituted straight-chain or branched C_{1-6} alkyl, nitro, cyano, straight-chain or branched C_{1-6} alkowy, or hydroxy.

In another embodiment, the piperazine carboxamide derivative of formula (I) can be those wherein $-R^1$ represents phenyl optionally substituted by R^{11} , R^{12} and R^{13} , pyridyl optionally substituted by R^{11} , R^{12} and R^{13} , pyrindyl optionally substituted by R^{11} , R^{12} and R^{13} , quinolyl optionally substituted by R^{11} , R^{12} and R^{13} , or naphthyl optionally

substituted by R11, R12 and R13,

in which R^{11} and R^{12} independently represent hydrogen, halogen, straight-chain or branched C_{1-4} alkyl, mono-, di-, or tri- halogen substituted straight-chain or branched C_{1-4} alkyl, nitro, cyano, straight-chain or branched C_{1-4} alkowy, or hydroxy and R^{13} represents hydrogen.

In another embodiment, the piperaxinecextoxamide derivative of formula (I) can be those wherein \mathbb{R}^2 represents

More preferably, said piperazineourboxamide derivative of the formula (I) is selected from the group consisting of:

4-(2-chlorophenyl)-N-[4-chloro-3-(trifluoromethyl)phenyl]-1-piperazine carboxomide;

N-[4-chloro-3-(trifluoromethyl)phenyl]-4-[3-(trifluoromethyl)-2-pyridinyl]-1-pdperazinecarboxamide;

N-[4-chloro-3-(trifluoromethyl)phenyl]-4-(2-fluorophenyl)-1-piperazine carbonantile;

N-[4-chloro-3-(trifluoromethyl)phenyl]-4-phenyl-1-piperazinecarbonzanid

N-[4-chloro-3-(trifluoromethyl)phenyl]-4-(3,5-dichloro-4-pyridinyl)-1-piperexinecarboxamide;

 $\label{eq:N-(7-hydroxy-1-nephthy1)-4-(3-(trifluoromethy1)-2-pyridiny1)-1-pipenes inecarboxamide;} % The property of the prop$

4-(2-chlorophenyl)-N-(7-hydroxy-1-nephthyl)-1-piperaxinecarboxamide; and

4-(3,4-dimethylphenyl)-N-(7-hydroxy-1-naphthyl)-1-piperazinecarboxamid

Preferably, the medicement of the present invention further comprise one or more pharmaceutically acceptable carrier and/or exciptents.

The piperazinecarbozanide derivatives of the formula (I), their tentomeric and stereodeceric form, and salts thereof are effective for treating or preventing a disease selected from the group consisting of urge uninary incontinence, overactive bladder, chronic pain, neuropathic pain, postoperative pain, rheumatoid arthritic pain, neurolegia, neuropathies, algebia, nerve injury, ischaemia, neurodegeneration and/or stroke, since the diseases also relate to VRI activity.

EMBODIMENT OF THE INVENTION

The compound of the formula (I) of the present invention can be, but not limited to be, prepared by the methods [A] or [B] below. In some embodiments, one or more of the substituents, such as amino group, carboxyl group, and hydroxyl group of the compounds used as starting meterials or intermediates are advantageously protected by a protecting group known to those skilled in the art. Examples of the protecting groups are described in "Protective Groups in Organic Synthesis (2rd Edition)" by Greene and Wats.

[Method A]

The compound wherein R¹ and R² are the same as defined above, can be prepared by the reaction of a substituted piperszine and isocyanate. The reaction may be carried out in a solvent including, for instance, halogenated hydrocarbons such as methylenechloride and chlosoform, ethers, such as dioxane, and tetrehydrofuran; acceptic hydrocarbons such as benzene, toluene and xylene; nitriles such as acetonitrile; anddes such as dissethylformsmide (DMF) and disethylacetamide; sulforides such as disethyl sulforide, and others.

The reaction can be carried out in the presence of organic base such as triethylamine. The reaction temperature can be optionally set depending on the compounds to be reacted. The reaction temperature is usually, but not limited to, about room temperature to 100 °C. The reaction may be conducted for, usually, 30 minutes to 46 hours and preferably 1 to 24 hours.

The substituted piperazine and isocyanate are connercially available or can be prepared by the use of known techniques.

[Method B]

The compound wherein R¹ is the same as defined above, can be prepared by (1) reacting a naphthylamine and 1,1'-carbonyldi(1,2,4-triazole) (CDT), and (2) adding a substituted anyl piperaxine to the reaction mixture. The reaction (1) may be carried out in a solvent including, for instance, ethers, such as dicease, and tetrahydrofuran; arcmatic hydrocarbons such as benzene, toluene and xylene; nitriles such as acetonitrile; amides such as dimethylformunide (DMF) and dimethylacetamide; sulfoxides such as dimethyl sulfoxide, and others.

The reaction temperature can be optionally set depending on the compounds to be reacted. The reaction temperature is usually, but not limited to, about 20 °C to 50 °C. The reaction may be conducted for, usually, 30 minutes to 10 hours and preferably 1 to 24 hours.

When the compound shown by the formula (I) or a salt thereof has tautomeric isomers and/or stereoisomers (e.g., geometrical isomers and conformational isomers), each of their separated isomer and mixtures are also included in the scope of the present invention.

When the compound shown by the formula (I) or a salt thereof has an asymmetric carbon in the structure, their optically active compounds and recemic mixtures are also included in the scope of the present invention.

Typical salts of the compound shown by the formula (I) include salts prepared by reaction of the compounds of the present invention with a mineral or organic acid, or an organic or inorganic base. Such salts are known as acid addition and base addition salts, respectively.

Acids to form acid addition salts include inorganic acids such as, without limitation, sulfuric acid, phosphoric acid, hydrochloric acid, hydrochloric acid, hydrochloric acid, hydrochloric acid, and the like, and organic acids, such as, without limitation, p-toluenesulfonic acid, methenesulfonic acid, carlic acid, p-bromoghenylsulfonic acid, carbonic acid, succinic acid, citric acid, benzolc acid, acetic acid, and the like.

Base addition salts include those derived from inorganic bases, such as, without limitation, emmonium hydroxide, alkaline metal hydroxide, alkaline metal hydroxides, carbonates, bicarbonates, and the like, and organic bases, such as, without limitation, ethanolamine, tristhylamine, tris(hydroxymethyl)aminomethane, and the like. Examples of inorganic bases include sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium bicarbonate, potassium bicarbonate, calcium hydroxide, calcium carbonate, and the like.

The compound of the present invention or a salt thereof, depending on its substituents, may be modified to form lower alkylesters or known

other estems; and/or hydrates or other solvates. Those esters, hydrates, and solvates are included in the scope of the present invention.

The compound of the present invention may be administered in onal forms, such as, without limitation normal and enteric coated tablets, capsules, pills, powders, granules, alixins, tinctures, solution, suspensions, syrups, solid and liquid serosols and emulsions. They may also be administered in parenteral forms, such as, without limitation, intravenous, intraperitoneal, subcutaneous, intrasuscular, and the like forms, well-known to those of ordinary skill in the pharmaceutical arts. The compounds of the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transfermal routes, using transfermal delivery systems well-known to those of ordinary skilled in the art.

The dosage regimen with the use of the compounds of the present invention is selected by one of ordinary skill in the arts, in view of a variety of factors, including, without limitation, age, weight, sex, and medical condition of the recipient, the severity of the condition to be treated, the route of administration, the level of metabolic and excretory function of the recipient, the dosage form employed, the particular compound and salt thereof employed.

The compounds of the present invention are preferably formulated prior to administration together with one or more phermaceutically-acceptable excipients. Excipients are inert substances such as, without limitation carriers, diluents, flavoring agents, sweeteners, lubricants, solubilizers, suspending agents, binders, tablet

disintegrating agents and encapsulating material.

Yet another embodiment of the present invention is pharmaceutical. formulation comprising a compound of the invention and one or more pharmaceutically-acceptable exciptents that are compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. Pharmaceutical formulations of the invention are prepared by combining a therapeuticelly effective amount of the compounds of the invention together with one or more phermaceutically-acceptable excipients therefore. In making the compositions of the present invention, the active ingredient may be mixed with a diluent, or enclosed within a carrier, which may be in the form of a capsule, sachet, paper, or other container. The cauxier may serve as a diluent, which may be solid, semi-solid, or liquid material which acts as a vehicle, or can be in the form of tablets, pills powders, lozenges, elixirs, suspensions, emulsions, solutions, syrups, acrosols, containing, for example, up to 10% by weight of the active compound, soft and hard galatin capsules, suppositories, sterile injectable solutions and sterile peckaged powders.

For oral administration, the active ingredient may be combined with an oral, and non-toxic, pharmaceutically-acceptable carrier, such as, without limitation, lactose, stanch, sucrose, glucose, sodium/carbonate, mannitol, sorbitol, calcium carbonate, calcium phosphate, calcium sulfate, mathyl callulose, and the like; together with, optionally, disintegrating agents, such as, without limitation, maize, starch, methyl callulose, agar bentonite, xanthan gum, alginic acid, and the like; and optionally, binding agents, for example, without limitation, galatin, natural sugars,

beta-lactose, corn sweeteners, natural and synthetic gums, acacia, tragacenth, sodium alginate, carboxymethylcallulose, polyethylene glycol, waxes, and the like; and, optionally, lubricating agents, for example, without limitation, magnesium stearate, sodium stearate, stearic acid, sodium cleate, sodium benzoate, sodium acetate, sodium chloride, talc, and the like.

In powder forms, the carrier may be a finely divided solid which is in admixture with the finely divided active ingredient. The active ingredient may be mixed with a carrier having binding properties in suitable proportions and compacted in the shape and size desired to produce tablets. The powders and tablets preferably contain from about 1 to about 99 weight percent of the active ingredient which is the novel composition of the present invention. Suitable solid carriers are magnesium carbosymsthyl callulese, low malting waxes, and coops butter.

Sterile liquid formulations include suspensions, emulations, syrups and elixirs. The active ingredient can be dissolved or suspended in a pharmaceutically acceptable carriers, such as sterile water, sterile organic solvent, or a mixture of both sterile water and sterile organic solvent.

The active ingredient can also be dissolved in a suitable organic solvent, for example, aqueous propylene glycol. Other compositions can be made by dispersing the finely divided active ingredient in aqueous starch or sodium contoxymethyl calluloss solution or in a suitable cil.

The formulation may be in unit dosage form, which is a physically discrete unit containing a unit dose, suitable for administration in human

or other mammals. A unit dosage form can be a capsule or tablets, or a number of capsules or tablets. A "unit dose" is a predetermined quantity of the active compound of the present invention, calculated to produce the desired therapeutic effect, in association with one or more excipients. The quantity of active ingredient in a unit dose may be varied or adjusted from about 0.1 to about 1000 milligrams or more according to the particular treatment involved.

Typical oral desages of the present invention, when used for the indicated effects, will range from about 0.01mg /kg/day to about 100 mg/kg/day, preferably from 0.1 mg/kg/day to 30 mg/kg/day, and most preferably from about 0.5 mg/kg/day to about 10 mg/kg/day. In the case of parenteral administration, it has generally proven advantageous to administer quantities of about 0.001 to 100mg /kg/day, preferably from 0.01 mg/kg/day to 1 mg/kg/day. The compounds of the present invention may be administered in a single daily dose, or the total daily dose may be administered in divided doses, two, three, or more times per day. Where delivery is via transdemmal forms, of course, administration is continuous.

ECMPLES

The present invention will be described as a form of examples, but they should by no means be construed as defining the metes and bounds of the present invention.

In the examples below, all quantitative data, if not stated otherwise, relate to percentages by weight.

Mass spectra were obtained using electrospray (ES) ionization techniques (micromass Platform IC). Melting points are uncorrected. Liquid Chromatography - Mass spectroscopy (IC-MS) data were recorded on a Micromass Platform IC with Shimadzu Phenomenex ODS column(4.6 mm) X 30 mm) flushing a mixture of acetonitrile-water (9:1 to 1:9) at 1 ml/min of the flow rate. TIC was performed on a precosted milica gal plata (Menck milica gal 60 P-254). Silica gal (MAND-gal C-200 (75-150 µm)) was used for all column chromatography separations. All chemicals were reagent grade and were purchased from Sigma-Aldrich, Wako pure chemical industries, Ltd., Tokyo kasei kogyo co. Ltd., Arch corporation.

All starting materials are commercially available or can be prepared using methods cited in the literature.

The effect of the present compounds were examined by the following assays and pharmacological tests.

[Measurement of capsaicin-induced Ca2+ influx in the human VR1-transfected CHO call line] (Assay 1)

(1) Establishment of the human VR1-CHOluc9eeg cell line
Human vanilloid receptor (hVR1) cDNA was closed from libraries of

constructed with pcDNA3 vector and transfected into a CECluceaeq cell line. The cell line contains acquorin and CEE-luciferase reporter genes as read-out signals. The transfectants were closed by limiting dilution in selection medium (DMEM/F12 medium (Gibco EEL) supplemented with 10t FCS, 1.4 mM Sodium pyruvate, 20 mM HEPES, 0.15t Sodium bicarbonate, 100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM glutamine, non-essential amino acids and 2 mg/ml G418). Ca²⁺ influx was examined in the capsaicin-stimulated closes. A high responder close was selected and used for further experiments in the project. The human VRI-CHOlmcSacq cells were maintained in the selection medium and passaged every 3-4 days at 1-2.5m10³ cells/flask (75 mm²).

(2) Measurement of Ca2 influx using FDSS-3000

Human VR1-CHOlucsecq cells were suspended in a culture medium which is the same as the selection medium except for G418 and seeded at a density of 1,000 calls per well into 384-well plates (black welled clear-base / Nalge Nunc International). Following the culture for 48 hrs the medium was changed to 2 μ M Fluo-3 μ M (Molecular Probes) and 0.022 Puronic F-127 in assay buffer (Hank's balanced salt solution (HBSS), 17 μ M HEPES (μ H7.4), 1 μ M Probenecid, 0.12 HSA) and the cells were incubated for 60 μ M at 25°C. After washing trice with assay buffer the cells were incubated with a test compound or vehicle for 20 μ M at 25°C. Mobilization of cytoplasmic Ca²⁰ was measured by FDSS-3000 (λ_m =488 μ M, λ_m =540 μ M / Hemanutsu Photonics) for 60 sec after the stimulation with 10 μ M capsaicin. Integral R was calculated and compared with controls.

[Measurement of the capsaicin-induced Ca²⁺ influx in primary cultured rat dorsal root ganglia neurons] (Assay 2)

(1) Preparation of rat dorsal root genglia neurons

New born Wister rate (5-11 days) were sacrificed and dorsal root ganglia (DRG) was removed. DRG was incubated with 0.1% trypsin (Gibco BRL) in PRS(-) (Gibco BRL) for 30 min at 37 C, then a half volume of fetal calf serum (FCS) was added and the calls were spun down. The DRG neuron calls were resuspended in Ham F12/5% FCS/5% house serum (Gibco BRL) and dispersed by repeated pipetting and passing through 70 µm mesh (Falcon). The culture plate was incubated for 3 hours at 37 C to remove contaminating Schwann calls. Hon-adherent calls were recovered and further cultured in laminin-coated 384 wall plates (Nunc) at 1x10⁴ calls/50 pl/wall for 2 days in the presence of 50 ng/ml recombinant rat NGF (Sigma) and 50 µM 5-fluorodeoxyuridine (Sigma).

(2) Ca mobilization assay

DRG neuron calls were washed twice with HBSS supplemented with 17 mM HEPES (pH 7.4) and 0.1% BSA. After incubating with 2 pM fluo-3AM (Molecular Probe), 0.02% PF127 (Gibco HRL) and 1 mM probenecial (Sigma) for 40 min at 37°C, calls were washed 3 times. The calls were incubated with VRL antagonists or vehicle (dimethylsulphoxide) and then with 1 pM capsaicin in FDSS-6000 (λ_m =480nm, λ_m =520nm / Hammsteu Photonics). The fluorescence changes at 480nm were monitored for 2.5 min. Integral R was calculated and compared with controls.

[Organ bath assay to measure the capsaicin-induced bladder contraction]
(Assay 3)

Male Wister rats (10 week old) were anesthetized with ether and sacrificed by dislocating the necks. The whole uninary bladder was excised and placed in coygenated Modified Krebs-Henseleit solution (pH 7.4) of the following composition (112mM NaCl, 5.9mM NCl, 1.2mM NgCl₂, 1.2mM NaHyPO₄, 2mM CaCl₂, 2.5mM NaHCO₃, 12mM glucose). Contractile responses of the urinary bladder were studied as described previously [Neggi CA et al: Br.J.Fhammool. 108: 801-805, 1993]. Lacmetric tension was recorded under a load of 1 g using longitudinal strips of rat detrusor muscle. Bladder strips were equilibrated for 60 min before each stimulation. Contractile response to 80 mM RCl was determined at 15 min intervals until reproducible responses were obtained. The response to KCl was used as an internal standard to evaluate the maximal response to capsaicin. The effects of the compounds were investigated by incubating the strips with compounds for 30 min prior to the stimulation with 1 µM capsaigin (vehicle: 80% saline, 10% EtCH, and 10% Tween 80). One of the preparations made from the same animal was served as a control while the others were used for evaluating compounds. Ratio of each capsaicin-induced contraction to the internal. standard (i.e. KCl-induced contraction) was calculated and the effects of the test compounds on the capsaicin-induced contraction were evaluated.

Desgurement of Cal influx in the human P2K1-transfected CHO call line]

(1) Preparation of the human P2K1-transfected CHOluc9eeq cell line

Human P2K1-transfected CHOluc9eeq cell line was established and

maintained in Dulbecco's modified Eagle's medium (DMEM/F12) supplemented with 7.5% FCS, 20 mM HEPES-ECH (pH 7.4), 1.4 mM sodium pyruwate, 100 U/ml penicillin, 100 μ g/ml streptomycin, 2 mM glutamine (Gibco ERL) and 0.5 Units/ml apyrese (grade I, Sigma). The suspended cells were seeded in each well of 384-well optical bottom black plates (Nelge Nunc International) at 3 x 10³ / 50 μ l / well. The cells were cultured for following 48 hrs to adhere to the plates.

(2) Measurement of the intracellular Ca2 levels

P2X1 receptor agonist-mediated increases in cytosolic Ca²⁺ levels were measured using a fluorescent Cx2 chelating dye, Fluo-3 MM (Molecular Probes). The plate-attached calls were washed twice with weshing buffer (HBSS, 17 mM HEPES-ROH (pH 7.4), 0.1% HSA and 0.5 units/ml approace), and incubated in 40 pl of loading buffer (1 pM Pluo-3 AM, 1 nM probenecid, 1 M cyclosporin A, 0.01% pluronic (Molecular Probes) in washing buffer) for 1 hour in a dark place. The plates were washed twice with 40 pl washing buffer and 35 µl of washing buffer were added in each well with 5 µl of test compounds or 2',3'-o-(2,4,6-trinitrophenyl) 5'-triphpsphate (Molecular Probes) as a reference. After further incubation for 10 minutes in dark 200 nM α, β-mathylene MTP accords t was added to initiate the Ca2 mobilization. Fluorescence intensity was measured by FDSS-6000 (\lambda_m=410mm, \lambda_m=510mm / Hamementsu Photonics) at 250 usec intervals. Integral ratios were calculated from the data and compared with that of a control.

[Measurement of capsaicin-induced bladder contraction in amenthetized

rats] (Assay 4)

(1) Animals

Female Sprague-Dawley rats (200-250 g / Charles River Japan) were used.

(2) Catheter implantation

Rats were enesthetized by intraperitoneal administration of unethane (Sigma) at 1.2 g/kg. The abdomen was opened through a midline incision, and a polyethylene catheter (BECFON DICKINSON, PESO) was implanted into the bladder through the dome. In parallel, the inguinal region was incised, and a polyethylene catheter (Hibble, size 5) filled with 2 IU / ml of heperin (Novo Heperin, Aventis Pharma) in saline (Otsaka) was inserted into a common iliac artery.

(3) Cystometric investigation

The bladder catheter was connected via T-tube to a pressure transducer (Viggo-Spectramed Pts Ltd. DT-XMAD) and a microinjection pump (TERMAD). Saline was infused at room temperature into the bladder at a rate of 2.4 ml/hr. Introvesical pressure was recorded continuously on a chart pen recorder (Yokogawa). At least three reproducible microrition cycles, corresponding to a 20-minute period, were recorded before a test compound administration and used as baseline values.

(4) Administration of test compounds and stimulation of bladder with capacitin

The seline infusion was stopped before administrating compounds. A testing compound dissolved in the mixture of ethanol, Tween 80 (ICN Biomedicals Inc.) and seline (1:1:8, v/v/v) was administrated

intraarterially at 10 mg/kg. 2min after the administration of the compound 10 µg of capsaicin (Nacalai Tesque) dissolved in ethanol was administered intraarterially.

(5) Analysis of cystometry parameters

Relative increases in the expecial-induced intravesical pressure were analyzed from the cystometry data. The capsaicin-induced bladder pressures were compared with the maximum bladder pressure during micharition without the capsaicin stimulation. The testing compounds-mediated inhibition of the increased bladder pressures was swallnated using Student's t-test. A probability level less than 5% was accepted as significant difference.

Results of IC 50 of capsaicin-induced Ca²⁰ influx in the homen VRI-transfected CHO call line are shown in Examples and tables of the Examples below. The data corresponds to the compounds as yielded by solid phase synthesis and thus to levels of purity of about 40 to 90t. For practical reasons, the compounds are grouped in four classes of activity as follows:

 $IC_{20} = \lambda \leq 0.1 pM < B \leq 0.5 pM < C \leq 1 pM < D$

The compounds of the present invention also show excellent selectivity, and strong activity in other assays (2)-(4) described above .

Example 1-1

4-(2-chloropheny1)-H-[4-chloro-3-(trifinoromethy1)pheny1]-1-piperomine carbonande

This example was performed according to the general method A. To a stirred solution of 4-chloro-3-trifluoromethylphenyl isosyemete (80.0 mg, 0.36 mmol) in CH₂Cl₂ (1.5 mL) was added a solution of 1-(2-chloropheyl) piperazine (79.0 mg, 0.40 mmol) in CH₂Cl₂ (1.5 mL) at room temperature. The reaction mixture was stirred for 2 hrs at the same temperature. The solvent was removed under reduced pressure, and the residue was washed with distinglether to give 4-(2-chlorophenyl)-N-[4-chloro-3-(trifluoromethyl)phenyl]-1-piperaxine carbonomide (112.0 mg, 67% yield)

mp 175-176 °C;

Molecular weight 418.25

MS (MH):418

Activity grade:A

Example 1-2

4-(4-chlorophenyl)-W-[4-chloro-3-(trifluoromethyl)phenyl]-1-piperszins carbonismids

This example was performed according to the general method A.

To a stirred solution of 4-chlorophenylpiperazine hydrochloride (94.0 mg, 0.40 mmol) and triethylamine (0.062 ml, 0.44 mmol) in CH₂Cl₂ (2.0 mL) was added a solution of 4-chloro-3-trifluoromethylphenyl isocyanata (80.0 mg, 0.36 mmol) at room temperature. The reaction mixture was stirred for 2 hms at the same temperature. Saturated NeWCO₃ solution was added and the reaction mixture was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and then concentrated under reduced pressure. The reactions was washed with disthylether to give 4-(4-chlorophenyl)-N-[4-chloro-3-(trifluoromethyl)phenyl]-1-pipemaxine carboszmide (130.0 mg, 78t yield)

mp 119 °C;

Molecular weight 418.24

MS (MHH):418

Activity grade:B

According to procedures similar to the examples 1-1 and 1-2 above, the following compounds were synthesized and tested.

Table 1

Ex. No.	MOLSTRUCTURE	MW	! M+1	mp	hVR1 class
1-3	F CI	401.79432		115	В
1-4	FF O NO-	496.7996		186	В

1-6	H,C CH,	411.85807	140-142	В
1-6	CH ₃ CH ₃ CH ₃ CH ₃ CH ₄ CH ₅	411.85807	162-163	В
1-7	F-F	452.78986	183-165	^

1-8		452.69395	188-189	В
1-9	F-F	452.78985	153-155	C
1-10	F F G	487.234 8 8	123-125	В

1-11	F F G	451.80227	117-119	В
1-12	F C C C	401.79432	128-130	A
1-13		428.80142	178-180	В

1-14	N N N N N N N N N N N N N N N N N N N	418.24892	133-135	В
1-15	0- 0- N- N- N- N- N- N- N- N- N- N- N- N- N-	428.80142	208-210	С
1-16	N F G	408.81377	164-166	В

1-17	CH,	413.83038	179-181 B
1-18		383.80389	136-137 A
1-19	0-04,	413.83038	106-108 B

1-20	CH ₃	413.83038	154-155	C
1-21		385.77905	157-159	С

	1-22	453.68153	253-255	^
1	1-23	502.85039	210-212	8
1.	-24	384.79147	139-141	В

Example 2-1

4-(4-hydroxypheny1)-H-[4-chloro-3-(trifluoromethy1)pheny1]-1-piperaxin ecarboxamide

This example was performed according to said method λ and further modification of the substituent of phenyl modety attached to the piperezine.

To a solution of

N-[4-chloro-3-(trifluoromethyl)phenyl]-4-(4-methomyphenyl)-1-piperaxin ecombonemide (100.0 mg, 0.24 mmol) in CH_cCl_2 was added boron tribromide (1.0M solution in CH_cCl_2 ; 0.72 ml, 0.72 mmol) at 0 °C. The mixture was stirred at room temperature for 5 h. The reaction mixture was neutralized with a saturated NeiCO₃ solution and then extracted with CH_cCl_2 . The organic layer was dried over H_0SO_4 , and then concentrated under reduced presure. The residue was purified by preparative thin layer chromatography (CECl3: MeCH = 10:1) to give the target compound (29 mg, 304).

mp 231-233 °C;

Molecular weight 399.80

MS (M+H): 400

Activity grade:C

According to procedures similar to the example 2-1 above, the

following compounds were synthesized and tested.

Table 2

EX. No	MOLSTRUCTURE	MW	M+1	тр	hVR1 class
2-2	OH N N N F F	399.8033		191-192	В
2-3	OH CI	399.8033		182-184	С

Example 3

H-(7-hydroxy-1-neghthy1)-4-[3-(triflnorosethy1)-2-pyridiny1]-1-piperes
incorporation

This example was performed by using said reaction B.

To a solution of 8-amino-2-naphthol (69.0 mg, 0.43 mmol) in THF (2 ml) was added 1,1'-carbonyldi(1,2,4-triazole) (71.0 mg, 0.43 mmol) and the mixture stirred temperature for 2 WES at TOOM 1-[3-(trifluoromethyl)pyrid-2-yl]piperazine (100.0 mg, 0.43 mmol) was added and the mixture was stirred at 50°C for 3 hrs. Water was added and the reaction mixture was extracted with AcCRt. The organic layer was dried over MgSO, and then concentrated under reduced pressure. The residue was bedasw with diethylether to give N-(7-hydroxy-1-nephthyl)-4-[3-(trifluoromethyl)-2-pyridinyl]-1-piperas inecarboxamide (125.0 mg, 69%).

mp 202-204 °C

Molecular weight 416.41

MS (MHH):417

Activity grade:B

According to procedures similar to the example 3-1 above, the following compounds were synthesized and tested.

Table 3

Ex. No.	MOLSTRUCTURE	MW	M+1	mp	hVR1
3-2	O-NO OH	392.418		210	8
3-3	CI NOH	381.8655		233	A
3-4	H,C H,C OH	375.4748		260	A

ABSTRACT

This invention relates to piperazinecerbosemide derivatives and salts thereof which is useful as an active ingredient of pharmaceutical preparations.

The piperezinecarboxamide derivatives of the present invention have an excellent activity as VRI antagonist and useful for the prophylaxis and treatment of diseases associated with VRI activity, in particular for the treatment of urge urinary incontinence, overactive bladder, chronic pain, neuropathic pain, postoperative pain, rheumatoid arthritic pain, neuralgia, neuropathies, algeria, nerve injury, ischeemia, neurodegeneration, stroke, incontinence and/or inflammatory disorders.