Examenul național de bacalaureat 2022 Proba E. c) Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_4 - a_3 = 3$, unde r este rația progresiei aritmetice $(a_n)_{n \ge 1}$	2p
	$a_3 = a_1 + 2r \Rightarrow a_1 = 6 - 2 \cdot 3 = 0$	3 p
2.	$f(a) = g(a) \Leftrightarrow a^2 + 2a - 3 = a - 3 \Leftrightarrow a^2 + a = 0$	3 p
	a = -1 sau $a = 0$	2p
3.	$x+3=3^2 \Leftrightarrow x+3=9$	3p
	x = 6, care convine	2p
4.	$\frac{30}{100} \cdot x = 60$, unde x este prețul înainte de scumpire, deci $x = 200$ de lei	3 p
	După scumpire, prețul produsului este 200 + 60 = 260 de lei	2p
5.	M(-1,2), unde M este mijlocul segmentului AB	2p
	$2 = 2 \cdot (-1) + a$, de unde obţinem $a = 4$	3 p
6.	Triunghiul ABC este dreptunghic isoscel, de unde obţinem $AB = AC = 6\sqrt{2}$	3p
	$\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC}{2} = \frac{6\sqrt{2} \cdot 6\sqrt{2}}{2} = 36$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 0 \\ 1 & 1 \end{vmatrix} =$	3p
	$=0\cdot 1-0\cdot 1=0$	2p
b)	$2A(4) + A(-2) = 2\begin{pmatrix} 4 & 4 \\ 1 & 9 \end{pmatrix} + \begin{pmatrix} -2 & -2 \\ 1 & -3 \end{pmatrix} = \begin{pmatrix} 6 & 6 \\ 3 & 15 \end{pmatrix} =$	3р
	$=3\begin{pmatrix} 2 & 2 \\ 1 & 5 \end{pmatrix} = 3A(2)$, de unde obținem $a=3$	2p
c)	$A(1) = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} \Rightarrow \det(A(1)) = 2 \text{si} (A(1))^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$	2p
	$A(m) = \begin{pmatrix} m & m \\ 1 & 2m+1 \end{pmatrix}$ și, cum $X = A(m) \cdot (A(1))^{-1}$, obținem $X = \begin{pmatrix} m & 0 \\ -m+1 & m \end{pmatrix}$, unde m este număr întreg, deci matricea X are toate elementele numere întregi	3 p
2.a)	2*1=(2+1)(2-1)(1-1)+1=	3p
	$= 3 \cdot 1 \cdot 0 + 1 = 1$	2p

b)	x * y = (x + y)(x - 1)(y - 1) + 1 =	2p
	=(y+x)(y-1)(x-1)+1=y*x, pentru orice numere reale x și y , deci legea de compoziție, ** este comutativă	3р
c)	$n*(1-n) = -n^2 + n + 1$, pentru orice număr natural n	2p
	$-n^2 + n + 1 \ge n^2 \Leftrightarrow 2n^2 - n - 1 \le 0$ şi, cum n este număr natural, obținem $n = 0$ sau $n = 1$	3p

SUBIECTUL al III-lea

(30 de puncte)

	·	
1.a)	$f'(x) = \frac{x^2 - (x+3) \cdot 2x}{x^4} + \frac{1}{x} =$	3p
	$=\frac{-x-6}{x^3} + \frac{1}{x} = \frac{x^2 - x - 6}{x^3}, \ x \in (0, +\infty)$	2p
b)	f(1)=4, $f'(1)=-6$	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = -6x + 10$	3p
c)	$f'(x) = 0 \Rightarrow x = 3$; $f'(x) \le 0$, pentru orice $x \in (0,3] \Rightarrow f$ este descrescătoare pe $(0,3]$,	
	$f'(x) \ge 0$, pentru orice $x \in [3, +\infty) \Rightarrow f$ este crescătoare pe $[3, +\infty)$, deci $f(x) \ge f(3)$,	3 p
	pentru orice $x \in (0, +\infty)$	
	$\frac{x+3}{x^2} + \ln x \ge \frac{2}{3} + \ln 3 \Rightarrow \ln \frac{x}{3} \ge \frac{2}{3} - \frac{x+3}{x^2} \Rightarrow \ln \frac{x}{3} \ge \frac{2}{3} - \frac{1}{x} - \frac{3}{x^2}, \text{ pentru orice } x \in (0, +\infty)$	2p
2.a)	$\int_{0}^{2} \left(f(x) - \frac{e^{x}}{2} \right) dx = \int_{0}^{2} (x+1) dx = \left(\frac{x^{2}}{2} + x \right) \Big _{0}^{2} =$	3p
	$=\frac{2^2}{2} + 2 = 4$	2p
b)	$\int_{0}^{1} 2x (f(x) - 1) dx = \int_{0}^{1} (2x^{2} + xe^{x}) dx = \frac{2x^{3}}{3} \Big _{0}^{1} + (x - 1)e^{x} \Big _{0}^{1} =$	3p
	$=\frac{2}{3}+1=\frac{5}{3}$	2p
c)	Cum $f'(x) = 1 + \frac{e^x}{2} = f(x) - x$, $x \in \mathbb{R}$, obtinem $\int_{-1}^{0} (f(x) - x) \cdot f(x) dx = \int_{-1}^{0} f'(x) dx = \int_$	3 p
	$\frac{9e^2 - 1}{8e^2} = \frac{(3e+1)(3e+a)}{8e^2}, \text{ de unde obținem } a = -1$	2p