# Yixin Luo

# Curriculum Vitae

(734) 546 7629

☑ yixinluo@cs.cmu.edu

② www.yixinluo.com

Google Scholar: Yixin Luo

GitHub: camellyx

LinkedIn: luoyixin



#### Education

2012.5–2018.3 **Ph.D. in Computer Science**, *Carnegie Mellon University*, Pittsburgh, PA. PhD Thesis: "Architectural Techniques for Improving NAND Flash Memory Reliability", advised by Prof. **Onur Mutlu.** 

2010.9–2012.5 **B.S. in Computer Engineering**, *University of Michigan*, Ann Arbor, MI. GPA: 3.9/4.0. Dean's List 2010, 2011, EECS Scholar 2010.

2008.9–2012.8 **B.S. in Electrical and Computer Engineering**, *Shanghai Jiao Tong University*, China. GPA: 3.8/4.0. Dean's List 2009.

# Experience

2018.8-present **Software Engineer**, *Google Inc.*, Sunnyvale, CA.

Working with Dr. Jichuan Chang on improving storage and database platforms performance.

2018.4–2018.8 **Postdoctoral Researcher in ECE**, *Carnegie Mellon University*, Pittsburgh, PA. Worked with Dr. **Saugata Ghose** on developing new techniques for improving SSD storage system reliability.

2015.5–2015.8, **Engineering Intern**, Seagate Technology, Lakeview, CA.

2016.5–2016.8 Worked with Dr. **Erich Haratsch** on developing new SSD controller algorithms for next-generation NAND flash memories.

Detailed achievements:

- $\circ$  Developed 10 new techniques and 4 new models to improve SSD lifetime by up to  $12.9 \times$
- Developed new tools to automatically test and analyze seven types of SSD errors
- Collected and analyzed 700 GB of real SSD error data using machine learning and statistical modeling techniques

2013.6–2013.8 **Research Intern**, *Microsoft Research*, Redmond, WA.

Worked with Dr. **Jie Liu** on developing new server architectures to tolerate memory errors in large-scale data centers.

Detailed achievements:

- Developed a new server architecture to reduce data center TCO by 2.7%
- Characterized memory error vulnerability of 3 important production data-intensive applications running in Microsoft data centers

### **Awards**

- 2017 **DFRWS EU Best Paper Award**
- 2015 HPCA Best Paper Runner Up
- 2012 HPCA Best Paper Award

## Publications

- [1] <u>Yixin Luo</u>, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation. In *SIGMETRICS*, 2018.
- [2] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim, <u>Yixin Luo</u>, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G. Luna, and Onur Mutlu. FLIN: Enabling Fairness and Enhancing Performance in Modern NVMe Solid State Drives. In *ISCA*, 2018.
- [3] <u>Yixin Luo</u>, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu. HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature-Awareness. In *HPCA*, 2018.
- [4] Yu Cai, Saugata Ghose, Erich F Haratsch, <u>Yixin Luo</u>, and Onur Mutlu. Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives. *Proc. IEEE*, Sep. 2017.
- [5] Yu Cai, Saugata Ghose, <u>Yixin Luo</u>, Ken Mai, Onur Mutlu, and Erich F Haratsch. Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques. In *HPCA*, 2017.
- [6] Aya Fukami, Saugata Ghose, <u>Yixin Luo</u>, Yu Cai, and Onur Mutlu. Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices. In *DFRWS EU*, 2017. **Best Paper Award**.
- [7] <u>Yixin Luo</u>, Saugata Ghose, Tianshi Li, Sriram Govindan, Bikash Sharma, Bryan Kelly, Amirali Boroumand, and Onur Mutlu. Using ECC DRAM to Adaptively Increase Memory Capacity. *arXiv preprint arXiv:1706.08870*, 2017.
- [8] Yixin Luo, Saugata Ghose, Yu Cai, Erich F Haratsch, and Onur Mutlu. Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory. *IEEE JSAC*, 34(9):2294–2311, 2016.
- [9] Yu Cai, <u>Yixin Luo</u>, Erich F Haratsch, Ken Mai, and Onur Mutlu. Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery. In *HPCA*, 2015. **Best Paper Runner Up**.
- [10] Yu Cai, <u>Yixin Luo</u>, Saugata Ghose, and Onur Mutlu. Read Disturb Errors in MLC NAND Flash Memory: Characterization, Mitigation, and Recovery. In *DSN*, 2015.
- [11] <u>Yixin Luo</u>, Yu Cai, Saugata Ghose, Jongmoo Choi, and Onur Mutlu. WARM: Improving NAND Flash Memory Lifetime With Write-Hotness Aware Retention Management. In *MSST*, 2015.
- [12] <u>Yixin Luo</u>, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu. Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory. In *DSN*, 2014.
- [13] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhi-

- menko, <u>Yixin Luo</u>, Onur Mutlu, Phillip B Gibbons, Michael A Kozuch, et al. RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization. In *MICRO*, 2013.
- [14] Justin Meza, <u>Yixin Luo</u>, Samira Khan, Jishen Zhao, Yuan Xie, and Onur Mutlu. A Case for Efficient Hardware/Software Cooperative Management of Storage and Memory. In *WEED*, 2013.
- [15] Arun Raghavan, <u>Yixin Luo</u>, Anuj Chandawalla, Marios Papaefthymiou, Kevin P Pipe, Thomas F Wenisch, and Milo MK Martin. Designing for Responsiveness with Computational Sprinting. *IEEE Micro*, 33(3): 8–15, 2013.
- [16] Joseph L Greathouse, Hongyi Xin, <u>Yixin Luo</u>, and Todd Austin. A Case for Unlimited Watchpoints. In *ASPLOS*, 2012.
- [17] Arun Raghavan, <u>Yixin Luo</u>, Anuj Chandawalla, Marios Papaefthymiou, Kevin P Pipe, Thomas F Wenisch, and Milo MK Martin. Computational Sprinting. In *HPCA*, 2012. **Best Paper Award**.

### Conference Talks

- Architectural Techniques for Improving NAND Flash Memory Reliability,
  - Thesis Defense: CMU 2018,
  - Job Talk: Alibaba, Baidu, Seagate, 2018,
  - Seminar: Tsinghua University, CAS-ICT, SJTU, Kyushu University, NTU Taipei, NCTU, TSMC, City University of Hong Kong, Seoul National University, KAIST, Microsoft Research, 2018.
- Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation, Sigmetrics 2018, PDL Retreat 2017.
- HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature Awareness, HPCA 2018, PDL Retreat 2017.
   (Lightning session talk on YouTube: https://youtu.be/7ZpGozzEVpY)
- Improving SSD Lifetime with Access Pattern and Flash Device Awareness, Google PhD Summit 2017.
- Online Flash Channel Modeling and Its Applications, Flash Memory Summit, PDL Retreat, 2016.
- Data Retention in MLC NAND Flash Memory, Flash Memory Summit, PDL Retreat, CMU SCS Student Seminar Series, 2015.
- WARM: Write-hotness Aware Retention Management, MSST 2015.
- Read Disturb Errors in MLC NAND Flash Memory, DSN, PDL Retreat, 2015.
- Data Retention in MLC NAND Flash Memory (Best paper session), HPCA, PDL Retreat, CALCM Seminar, 2015.
- Optimizing Data Center Cost via Heterogeneous Reliability Memory, DSN, PDL Retreat, 2014.

# **Projects**

# Research Projects

#### 2017.1–2018.3 Peloton: A Self-Driving In-Memory Database, Open Source Project.

Led a team of three graduate students to design and develop the database catalog for Peloton to support non-blocking schema change and to implement a concurrent lock-free skiplist index. This project is advised by Prof. **Andy Pavlo**.

#### 2014.1–2018.7 Architectural Techniques to Improve NAND Flash Memory Reliability.

Started as an internship project at Seagate to improve the reliability of NAND flash memory-based SSD at low cost. Led to my PhD dissertation.

Detailed achievements:

- Published 4 first-authored papers and 6 co-authored papers, one of which won DFRWS EU best paper award, another won HPCA best paper runner up award
- $\circ$  Developed 10 new techniques to improve SSD lifetime by up to  $12.9 \times$
- Experimentally characterized state-of-the-art NAND flash memory chips
- Developed 4 new analytical models to accurately estimate SSD reliability

#### 2013.6–2018.7 **Heterogeneous Reliability Memory**.

Started as an internship project at Microsoft Research to optimize data center TCO and memory reliability. Closely related to my PhD dissertation.

Detailed achievements:

- Published 2 first-authored papers
- Developed a new server architecture to reduce data center TCO by 2.7%
- Developed a new mechanism that dynamically adjusts memory capacity and reliability

#### 2013 Single-Level Storage.

Characterized the performance, energy, and scalability benefit of a single-level storage system compared to a traditional two-level storage system through architectural simulations.

#### 2011.5–2012.3 A Case for Unlimited Watchpoints, Undergraduate Research Project.

Worked with Prof. **Todd M. Austin** and Dr. **Joseph L. Greathouse** on architecture support for **Unlimited Watchpoints** that accelerates dynamic software analysis by  $9 \times$ .

Detailed achievements:

- Developed a simulation framework for range cache using C++
- Performed architectural simulations to show the performance benefits of the proposed range cache design

#### 2011.9–2012.2 **Computational Sprinting**, *Undergraduate Research Project*.

Worked with Prof. Marios C. Papaefthymiou and Prof. Thomas F. Wenisch on Computational Sprinting of manycore processors on mobile devices that improves the responsiveness of interactive applications by  $10\times$ .

Detailed achievements:

- Developed a SPICE power model for power gating many-core processors
- Developed a new technique to reduce the performance overhead for power gating
- Performed SPICE circuit simulations to show the performance benefit of Computational Sprinting

#### **Academic Projects**

#### 2017.12 Multi-Agent Deep Reinforcement Learning, Course Project.

Developed DQN, DDPG, and MADDPG models for continuous multi-agent environment.

#### 2017.4 Symbolic Information Processing for Question Answering, Course Project.

Developed an RNN model to answer questions regarding a natural language context.

- 2014.12 **Deep Learning with Noise**, Course Project.
  - Characterized the effect of different types of noise on different components of a neural network.
- 2014.5 Compiler Support for Hardware Compression, Course Project.
  - Developed data splitting and memory pooling compiler optimizations for cache compression algorithms.
- 2011.5 **CPU Architecture Design**, *Undergraduate Major Design Project*.
  - Led a team of three undergraduate students on designing and implementing an 150 MHz out-of-order processor using Verilog.
- 2011.12 **CPU Layout Design**, *Undergraduate Major Design Project*.
  - Led a team of five graduate and undergraduate students on designing the circuit layout for a 5-stage pipelined in-order processor and a 3-transistor eDRAM cache.

# Teaching Experience

- 2014.8–2012.12 **Teaching Assistant**, Carnegie Mellon University, Pittsburgh, PA.
  - CMU 18-742 Parallel Computer Architecture, taught by Prof. Onur Mutlu.
  - Responsibilities include holding office hours, mentoring research projects.
- 2014.1–2014.5 **Teaching Assistant**, *Carnegie Mellon University*, Pittsburgh, PA.
  - CMU 15-418/15-618 Parallel Computer Architecture and Programming, taught by Prof. Kayvon Fatahalian.
  - Responsibilities include holding office hours, mentoring projects, preparing and grading homework.

# Selected Coursework

#### Graduate

- CMU 15-721 Advanced Database Systems
- CMU 15–712 Advanced Operating Systems and Distributed Systems
- CMU 15-719 Advanced Cloud Computing
- CMU 15-744 Computer Networks
- CMU 15-745 Advanced Optimizing Compilers
- CMU 15-740 Computer Architecture
- CMU 15-750 Graduate Algorithms
- CMU 10-701 Machine Learning
- CMU 10–707 Deep Learning
- CMU 10-703 Deep Reinforcement Learning

#### Undergraduate

- UM EECS570 Computer Architecture + Major Design Project
- UM EECS427 VLSI Design + Major Design Project
- UM EECS470 Microprocessor-Based Systems
- UM EECS482 Operating Systems
- UM EECS484 Database Management Systems
- UM EECS492 Artificial Intelligence
  - SJTU Honors Mathematics

# Programming Skills

Advanced C++, Python, Matlab, Shell, Verilog, LATEX

Intermediate Perl, HTML, Windows Batch, TensorFlow, PyTorch

Tools Intel Pin, HSPICE, Cadence tools, gem5, Multi2Sim, MySQL/PostgreSQL

# Interests

Basketball

Ping Pong

Hiking

Traveling