agents)

CAS-EINTRAG TUR DE 19610745 A1

```
ANSWER 1 OF 1 HCAPLUS COPYRIGHT 1999 ACS
AN
     1997:640809 HCAPLUS
DN
     127:279523
     Mixtures of reducing sulfur compounds and organic corrosion inhibitors as
TΙ
     corrosion-inhibiting bleaching or reducing agents
IN
     Beckmann, Eberhard; Lukas, Siegmar; Oetter, Gunter; Mahr, Norbert
PA
     BASF A.-G., Germany; Beckmann, Eberhard; Lukas, Siegmar; Oetter, Gunter;
     Mahr, Norbert
so
     PCT Int. Appl., 17 pp.
     CODEN: PIXXD2
DT
     Patent
LA
     German
IC
     ICM D06L003-10
     ICS D06P001-22; C11D007-34; D21C009-10
     40-8 (Textiles and Fibers)
CC
     Section cross-reference(s): 43
FAN.CNT 1
     PATENT NO.
                     KIND DATE
                                          APPLICATION NO. DATE
                     ____
PΙ
    WO 9735062
                      A1
                            19970925
                                          WO 1997-EP1162
                                                            19970307
        W: AU, BG, BR, CA, CN, CZ, GE, HU, IL, JP, KR, LV, MX, NO, NZ, PL,
             RO, SG, SI, SK, TR, UA, US, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
        RW: AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE
     DE 19610745
                       Al
                             19970925
                                          DE 1996-19610745 19960320 <--
     AU 9721538
                       A1
                             19971010
                                           AU 1997-21538
                                                             19970307
PRAI DE 1996-19610745 19960320
     WO 1997-EP1162
                      19970307
```

- AB Reducing S compds. contg. 1 ppm-1% org. corrosion inhibitor are useful as corrosion-inhibiting reducing agents or reductive bleaching agents, esp. in textile decolorizing or stain-removal, vat dyeing, and bleaching in paper manuf. or of wool. A 68:21:11 mixt. of Na2S204, Na2C03, and Na2S03 contg. 0.1% bis(hydroxyalkyl)fatty-alkylsulfonium salt removed stains (red wine, fruit juice) from textiles just as well as in the absence of the sulfonium salt, but the latter compn. induced strong corrosion in metal parts, while the former did not.
- ST corrosion inhibitor reducing agent; sulfonium salt corrosion inhibitor; dithionite reductant corrosion inhibitor; sulfite reductant corrosion inhibitor; bleaching agent corrosion inhibitor; wool bleaching corrosion inhibitor; paper bleaching corrosion inhibitor
- IT Aliphatic amines
 RL: TEM (Technical or engineered material use); USES (Uses)
 (C2-8, salts with fatty acids, corrosion inhibitors; mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting
- bleaching or reducing agents)

 IT Carboxylic acids, uses

 RL: TEM (Technical or engineered material use); USES (Uses)

 (C3-16, corrosion inhibitors; mixts. of reducing sulfur compds. and
 org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing
- IT Fatty acids, uses
 RL: TEM (Technical or engineered material use); USES (Uses)
 (C3-30, salts with aliph. amines, corrosion inhibitors; mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing agents)

Corrosion inhibitors

Reducing agents

(mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing agents)

IT Vat dyeing

(mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting reducing agents in vat dyeing)

IT Polyolefins

RL: TEM (Technical or engineered material use); USES (Uses)
(poly-.alpha.-olefins, with maleic anhydride; mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing agents)

IT Fabrics

(stain removers; mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing agents)

IT 108-31-6D, 2,5-Furandione, copolymers with .alpha.-olefins 110-15-6D, Butanedioic acid, alkenyl derivs. 111-42-2D, Diethanolamine, salts with tall-oil fatty acids 288-32-4, Imidazole, uses 288-47-1, Thiazole 26099-09-2, Poly(maleic acid) 37306-44-8, Triazole

RL: TEM (Technical or engineered material use); USES (Uses) (corrosion inhibitors; mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing agents)

IT 7757-83-7 7775-14-6, Disodium dithionite 13686-28-7D, Thiosulfuric acid, salts

RL: TEM (Technical or engineered material use); USES (Uses) (mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing agents)

IT Aliphatic alcohols

RL: TEM (Technical or engineered material use); USES (Uses) (C3-6 unsatd., corrosion inhibitors; mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing agents)

IT Sulfonium compounds

RL: TEM (Technical or engineered material use); USES (Uses)
(aliph., corrosion inhibitors; mixts. of reducing sulfur compds. and
org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing
agents)

IT Sulfonic acids, uses

RL: TEM (Technical or engineered material use); USES (Uses)
(ammonium salts, corrosion inhibitors; mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing agents)

IT Cellulose pulp

(bleaching agents; mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing agents)

IT Carboxylic acids, uses

RL: TEM (Technical or engineered material use); USES (Uses) (dicarboxylic, C3-16, corrosion inhibitors; mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing agents)

IT Tall oil fatty acids

RL: TEM (Technical or engineered material use); USES (Uses)
(diethanolamine salts, corrosion inhibitors; mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching or reducing agents)

IT Wool

(mixts. of reducing sulfur compds. and org. corrosion inhibitors as corrosion-inhibiting bleaching agents for wool)

IT Bleaching agents

(B) BUNDESREPUBLIK

DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 196 10 745 A 1

C 23 F 11/18 D 06 L 3/10 D 06 P 1/22 C 09 K 15/04 // C23F 11/12,11/14 11/16,11/173,C09K 15/22,15/06,15/30, 15/10,15/28

DEUTSCHES

② Aktenzeichen:

196 10 745.8

Anmeldetag: 20. 3.96

) Offenlegungstag: 2

25. 9.97

PATENTAMT

BASF AG, 67063 Ludwigshafen, DE

(71) Anmelder:

= AUA 21538 = WO 9735062

② Erfinder:

Beckmann, Eberhard, Dr., 67435 Neustadt, DE; Lukas, Siegmar, Dr., 67083 Ludwigshafen, DE; Oetter, Günter, Dr., 67227 Frankenthal, DE; Mahr, Norbert, Dr., 67065 Ludwigshafen, DE

Mischungen aus reduzierend wirkenden Schwefelverbindungen und organischen Korrosionsinhibitoren und ihre Verwendung als Korrosionshemmende Bleich- oder Reduktionsmittel

Mischungen aus

(A) reduzierend wirkenden anorganischen oder organischen Schwerelverbindungen und

(B) organischen Korrosionsinhibitoren,

wobei die Komponente (B) in Mangen von 1 ppm bis 1 Gew.-%, bezogen auf die Menge der Komponente (A), in den Mischungen vorliegt.

Die genannten Mischungen eignen sich als korrosionshemmende Reduktionsmittel oder reduktive korrosionshemmende Bleichmittel insbesondere in Textilentfärbungsmitteloder Fleckentfernungsmittel-Formulierungen, beim Färben von Textilien mit Küpenfarbstoffen, bei der Bleiche von Faserstoffen für die Papierherstellung und bei der Wollblei-

che.

45

Beschreibung

Die vorliegende Erfindung betrifft Mischungen aus reduzierend wirkenden anorganischen und organischen Schwefelverbindungen und organischen Korrosionsinhibitoren sowie ihre Verwendung als korrosionshemmende Bleich- oder Reduktionsmittel, insbesondere in Textilentfärbungsmittel- oder Fleckentfernungsmittel-Formulierungen, beim Färben von Textilien mit Küpenfarbstoffen, bei der Bleiche von Faserstoffen für die Pa- 10 pierherstellung und bei der Wollbleiche. Weiter betrifft die vorliegende Erfindung Textilentfärbungsmitteloder Fleckentfärbungsmittel-Formulierungen, welche die genannten Mischungen enthalten.

Reduzierend wirkende Schwefelverbindungen wie 15 Natriumdithionit ("Hydrosulfit") oder auch Thioharnstoffdioxid sind in Industrie und Haushalt weit verbreitete Reduktionsmittel. Die beiden genannten Schwefelverbindungen werden beispielsweise beim Bleichen von Holzschliff in der Papierherstellung, beim Färben von 20 Textilien mit Küpenfarbstoffen oder als wirksamer Bestandteil in Haushaltsfleckenentfernern eingesetzt. Bisher ist das Problem der bei der Verwendung solcher Mittel auftretenden Korrosion oder Rostbildung bei Metallteilen noch ungelöst. Beispielsweise korrodieren 25 metallische Reißverschlüsse und Knöpfe bei der Flekkentfernung auf Textilien im Haushalt. Ähnliches gilt für die Metallapparaturen, die bei der industriellen Holzschliffbleiche und der industriellen Färbung von Textilien mit Küpenfarbstoffen verwendet werden.

Aus der CN-A 1062773 ist ein Reinigungsmittel für Filter für Polyesterschmelzen bekannt, welches Reduktionsmittel wie Na₂S₂O₃ oder Na₂S₂O₄ und Korrosionsinhibitoren enthält. Als derartige Korrosionsinhibitoren werden Natriumhydroxid und Kaliumhydroxid genannt. 35

Aufgabe der vorliegenden Erfindung war es, universell verwendbare Bleich- und Reduktionsmittel bereitzustellen, die die Korrosion oder Rostbildung effizient hemmen oder zumindest auf einen tolerierbaren Umfang zurückdrängen.

Demgemäß wurden Mischungen aus

- (A) reduzierend wirkenden anorganischen oder organischen Schwefelverbindungen und
- (B) organischen Korrosionsinhibitoren,

wobei die Komponente (B) in Mengen von 1 ppm bis 1 Gew.-%, bezogen auf die Menge der Komponente (A), in den Mischungen vorliegt, gefunden.

Als Komponente (A) kommen insbesondere in Be- 50

- (i) wasserlösliche Salze der Thioschwefelsäure,
- (ii) wasserlösliche Salze der dithionigen Säure,
- (iii) wasserlösliche Salze der schwefligen Säure 55 oder der dischwefligen Säure und/oder
- (iv) aliphatische oder aromatische Sulfinsäuren, deren wasserlösliche Salze oder Derivate solcher Sulfinsäuren.

Wasserlösliche Salze sind hierbei meist Alkalimetallsalze wie Natrium- oder Kaliumsalze, Ammoniumsalze und substituierte Ammoniumsalze.

Die Schwefelverbindungen der Komponente (A) enthalten den Schwefel in niederen Oxidationsstufen, in der 65 Regel von +2 bis +5, so +2 bei (i) (+2 stellt das arithmetische Mittel für +5 des Zentralschwefels und -1 des Ligandenschwefels in S₂O₃²⁻ dar), +3 bei (ii)

und +4 bei (iii) und (iv).

Beispiele für (i) sind Natriumthiosulfat (Na₂S₂O₃) und das daraus abgeleitete Natriumtetrathionat (Na₂S₄O₆).

Ein Beispiel für (ii) ist Natriumdithionit (Na₂S₂O₄, "Hydrosulfit"), welches im übrigen als Komponente (A) besonders bevorzugt wird.

Beispiele für (iii) sind Natriumsulfit (Na₂SO₃), Natriumhydrogensulfit (Natriumbisulfit, NaHSO3) und Natriumdisulfit (Na₂S₂O₅).

Beispiele für (iv) sind die Natriumsalze der Methansulfinsaure (CH₃SO₂Na), Hydroxymethansulfinsaure (HOCH₂SO₂Na), Aminomethansulfinsäure (H2NCH2SO2Na), Iminomethansulfinsäure $(HN(CH_2SO_2Na)_2)_{a}$ Nitrilomethansulfinsäure Hydroxyethansulfinsäure (N(CH₂SO₂Na)₃),(HOCH₃CHSO₂Na, bildet sich aus Mischungen von Natriumdithionit mit dem Natriumbisulfit-Addukt des Acetaldehyds) und Benzolsulfinsaure (C₆H₅SO₂Na); Beispiel für ein Derivat (iv) ist Thioharnstoffdioxid (Aminoimino-methansulfinsäure, Formamidinsulfinsäure).

Es können auch Mischungen verschiedener Komponenten (A), insbesondere Verbindungen der Gruppen (i) bis (iv), eingesetzt werden, beispielsweise Natriumdithionit zusammen mit Natriumsulfit.

Als Komponente (B) eignen sich vor allem:

- (a) Umsetzungsprodukte aus gesättigten oder ungesättigten aliphatischen Carbonsäuren mit 3 bis 30 C-Atomen und aliphatischen Oligoaminen mit 2 bis 8 N-Atomen, welche zusätzlich Hydroxyigruppen tragen können, oder Dialkanolaminen oder Derivate solcher Umsetzungsprodukte,
- (b) aliphatische Sulfoniumsalze, welche durch zusätzliche hydrophile Gruppen substituiert sein kön-
- (c) aliphatische oder aromatische Monocarbonsäuren und/oder Dicarbonsäuren mit 3 bis 16 C-Atomen oder deren wasserlösliche Salze.
- (d) Triazole oder Derivate hiervon,
- (e) Imidazole oder Derivate hiervon,
- (f) Thiazole oder Derivate hiervon,
- (g) ungesättigte aliphatische Alkohole mit 3 bis 6 C-Atomen.
- (h) Alkenylbernsteinsäuren, deren wasserlösliche Salze oder Derivate solcher Alkenylbernsteinsäu-
- (j) Polymaleinsäuren oder deren wasserlösliche Sal-
- (k) α-Olefin-Maleinsäureanhydrid-Copolymere,
- (1) Sulfamidocarbonsäuren oder deren wasserlösliche Salze und/oder
- (m) Ammoniumsalze von Sulfonsäuren.

Wasserösliche Salze sind bei (B) — ähnlich wie bei (A) - meist Alkalimetallsalze wie Natrium- oder Kaliumsalze, Ammoniumsalze und substituierte Ammoniumsal-

Die Umsetzungsprodukte der Gruppe (a) sind vorzugsweise Kondensationsprodukte von gesättigten oder ungesättigten Fettsäuren, vor allem solchen mit 6 bis 24, insbesondere 8 bis 20 C-Atomen, z. B. 2-Ethylhexansäure, Nonansäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Ölsäure, Elaidinsäure, Linolsäure, Linolensäure oder deren insbesondere natürlich vorkommenden Mischungen wie Kokosfettsäure, Talgfettsäure, Erdnußölfettsäure, Palmkernfettsäure oder Olivenölfettsäure, mit den Aminkomponenten Diethylentriamin, Dipropylentriamin, Aminoethyleth-

anolamin, Aminopropylpropanolamin, Diethanolamin oder Dipropanolamin.

Von besonderem Interesse sind hierbei ein- oder mehrfach ungesättigte Fettsäuren oder entsprechende Mischungen aus überwiegend ein- oder mehrfach ungesättigten Fettsäuren mit 16 bis 20 C-Atomen, d. h. mit einem Anteil solcher ungesättigten C₁₆- bis C₂₀-Monocarbonsäuren von mindestens 60 Gew.-%, insbesondere von mindestens 80 Gew.-%.

Neben der reinen Ölsäure kommt ganz besonders 10 bevorzugt Tallölfettsäure zum Einsatz. Die Tallölfettsaure ist eine Komponente des Tallöls, das durch Aufschluß von harzreichen Holzarten (Fichte, Kiefer) nach dem Sulfat-Prozeß erhalten wird und durch Destillation in Tallpech, Tallölfettsäure und Tallharz fraktioniert wird. Die Tallölsettsäure besteht zu mindestens 97 Gew.-% (beste Qualitāt) bzw. 67 Gew.-% (Harzsäureanteil 25 bis 30 Gew.-%) aus Fettsäuren. Die Art und der Anteil der Fettsäuren schwankt jedoch nach Art des verwendeten Holzes und dessen geographischer Herkunft: Linol- und konjugierte C18-Fettsäuren (45 bis 65 Gew.-%), Ölsäure (25 bis 45 Gew.-%), 5,9,12-octatriensäure (5 bis 12 Gew.-%) und gesättigte Fettsäuren (1 bis 3 Gew.-%). Die Säurezahl der Tallölfettsäuren beträgt in der Regel 190 bis 250, insbesondere 210 bis

Die genannten Kondensationsprodukte sind oft entsprechend substituierte heterocyclische Verbindungen, insbesondere Imidazoline oder Tetrahydropyrimidine, oder ringoffene Vorprodukte hierzu oder Gemische hieraus, welche noch zusätzlich derivatisiert, z. B. protoniert, quaterniert oder anionisiert, oder mit weiteren die korrosionsinhibierende Wirkung verstärkenden Komponenten abgemischt sein können.

Die Umsetzungsprodukte der Gruppe (a) und ihre Herstellweisen sind allgemein bekannt, beispielsweise aus der EP-A 034 726, DE-A 31 09 826, DE-A 31 09 827, EP-A 103 737 und der deutschen Patentanmeldung 195 20 269.4. Solche Produkte werden allgemein als Korrosionsinhibitoren bei Ölfeldanwendungen eingesetzt.

Die aliphatischen Sulfoniumsalze der Gruppe (b) sind aus der JP-B 1972/10202 als Korrosionsinhibitoren in Beizbädern bekannt. Methoden zur Herstellung der Verbindungen (b) werden in der DE-A 18 06 653 und der DE-A 22 08 894 beschrieben. Die Verbindungen (b) weisen vorzugsweise die folgende Struktur auf:

$$\mathbb{R}^1$$
 $\mathbb{S} - \mathbb{R}^3$
 \mathbb{X}^{Θ}

wobei

R¹ einen C₁- bis C₄-Hydroxyalkylrest insbesondere einen β-Hydroxyethylrest, einen Carboxyalkylrest mit insgesamt 2 bis 5 C-Atomen, insbesondere einen Essigsäurerest, oder einen Alkylenoxyrest, welcher aus 1 bis 15 Ethylenoxid-, Propylenoxid- und/oder Butylenoxid-Einheiten aufgebaut ist, bezeichnet,

R² einen C₄- bis C₃₀-Alkyl- oder Alkenylrest, insbesondere einen linearen oder geringfügig verzweigten C₆-bis C₁₈-Alkylrest, bedeutet,

 R^3 für C_1 - bis C_3 -Alkyl steht oder die Bedeutung von R^1 oder R^2 aufweist und

X^o ein die Wasserlöslichkeit förderndes Anion, insbesondere ein Mono(C₁- bis C₄-alkyl)sulfat oder ein Mono(C₁- bis C₄-hydroxyalkyl)sulfat, bezeichnet.

Als Carbonsäuren der Gruppe (c) eignen sich vor allem die Natrium- und Kaliumsalze von Monocarbonsäuren mit 5 bis 12 C-Atomen, z. B. die Salze von Pentansäure, Hexansäure, Octansäure, 2-Ethylhexansäure, Nonansäure, Decansäure, Undecansäure, Dodecansäure, Benzoesäure und Methylbenzoesäure, sowie die Mono- oder Dinatrium- bzw. -kaliumsalze von Dicarbonsäuren mit 4 bis 12 C-Atomen, z. B. die Salze von Korksäure, Azelainsäure, Sebacinsäure, Undecandisäure, Dodecandisäure, Dicyclopentadiendicarbonsäure, Phthalsäure und Terephthalsäure. Weiterhin sind auch substituierte Ammoniumsalze solcher Carbonsäuren, insbesondere die Ammoniumsalze mit Piperazin oder Morpholin, von Interesse.

Als Triazole (d) kommen insbesondere Kohlenwasserstofftriazole, vor allem Benzotriazol und Toluoltriazol in Betracht.

Als Imidazole (e) eignen sich vor allem unsubstituiertes Imidazol, alkyl- oder arylsubstituierte Imidazole wie 1-(C₁- bis C₄-Alkyl)imidazole oder 1-Phenylimidazol, Aminoalkylimidazole, z. B. N-(3-Aminopropyl)imidazol, sowie auaternierte Imidazole, z. B. mit Dimethylsulfat quaterniertes N-Vinylimidazol, letztere sind in der deutschen Patentanmeldung 196 05 509 als Buntmetall-Korrosionsinhibitoren beschrieben.

Als Thiazole (f) kommen insbesondere Kohlenwasserstoffthiazole, z. B. Benzothiazol, in Betracht.

Ein typischer Vertreter eines ungesättigten Alkohols (g) ist Propargylalkohol.

Bei den Alkenylbernsteinsäuren (h) bzw. deren Derivaten sind Ammoniumsalze von Alkenylbernsteinsäurehalbamiden, wie sie in der DE-A 41 03 262 beschrieben sind, besonders hervorzuheben. Als Alkenylrest ist hierbei insbesondere ein Polyisobutylrest von Interesse.

Geeignete Polymaleinsäuren (j) sind beispielsweise in der EP-A 065 191 beschrieben.

Typische α-Olefin-Maleinsäure-Copolymere (k) liegen teilweise oder ganz zu den Dicarbonsäure-Strukturen geöffnet vor und sind meist mit Aminen zu Amiden oder Imiden derivatisiert. Als α-Olefine kommen hier insbesondere solche mit 4 bis 20 C-Atomen in Betracht, z. B. iso-Buten, 1-Octen oder 1-Dodecen.

Beispiele für Sulfamidocarbonsäuren (I) sind Sulfonamide der Anthranilsäure sowie Neutralisationsprodukte von Sulfamidocarbonsäuren mit Alkanolaminen, Dialkanolaminen oder Trialkanolaminen.

Als Ammoniumsalze von Sulfonsäuren (m) kommen beispielsweise entsprechende Salze der 2-Aminoethansulfonsäure (Taurin) in Betracht.

Außer den genannten organischen Korrosionsinhibitoren (B) eignen sich weiterhin auch noch Borsäureester, insbesondere cyclische Borsäureester, als Korrosionsinhibitoren im Sinne der vorliegenden Erfindung. Weiterhin kann die korrosionsinhibierende Wirkung der organischen Verbindungen (B) durch anorganische Salze wie Alkalimetallborate, Alkalimetallnitrate, Alkalimetallnitrite, Alkalimetallsilikate, Alkalimetallphosphate oder Alkalimetallmolybdate verstärkt werden.

Es können auch Mischungen der genannten Korrosionsinhibitoren eingesetzt werden. Beispiele für solche Mischungen sind Mischungen aus Vertretern der Gruppen (c) + (d), (c) + (e), (c) + (f), (c) + (d) + (e), (c) + (d) + (f) (c) + (l) (c) + (m) sowie (c) + (l)

Zur effektiven korrosionshemmende Wirkung sind in den erfindungsgemäßen Mischungen sehr geringe Mengen der Komponente (B) notwendig. Je nach Art des eingesetzten Korrosionsinhibitors können die optima-

6

len Mengen etwas schwanken, jedoch liegen sie immer im Bereich von 1 ppm bis 1 Gew.-% an (B), bezogen auf die Menge der Komponente (A). Bevorzugt wird hierbei weiterhin für (B) ein Bereich von 5 ppm bis 0,5 Gew.-%, insbesondere 10 ppm bis 0,1 Gew.-%, jeweils bezogen auf die Menge von (A).

Die erfindungsgemäße Mischung kann überall dort eingesetzt werden, wo in industriellen Anwendungen oder in Haushaltsanwendungen mit Schwefelverbindungen in wäßrigem Medium gebleicht oder reduziert 10 werden soll und wo korrosionsempfindliche Metallteile zugegeben sind. Die korrosionshemmende Wirkung im Sinne der vorliegenden Erfindung entfaltet sich in alkalischem, neutralem und saurem wäßrigen Medium; insbesondere ist jedoch eine effektive korrosionshemmende 15 Wirkung in saurem Medium, etwa bei pH 2 bis 7, insbesondere bei pH 3 bis 6, festzustellen, was besonders interessant ist, da in diesem sauren pH-Bereich die korrodierende Wirkung von Schwefelverbindungen niederer Oxidationsstufe, z. B. von Thiosulfaten (welche sich 20 unter anderem auch aus Dithioniten bei niedrigen pH-Werten bilden können), am größten ist.

Mit besonderem Vorteil können die erfindungsgemäßen Mischungen als reduktive korrosionshemmende Bleichmittel in Textilentfärbungsmittel -Formulierun- 25 gen oder Fleckentfernungsmittel-Formulierungen verwendet werden, solche Formulierungen werden hauptsächlich im Haushalt zur Reinigung der Haushaltswäsche eingesetzt.

Gegenstand der vorliegenden Erfindung sind auch die ³⁰ genannten Textilentfärbungsmittel- oder Fleckentfernungsmittel-Formulierungen selbst, welche gemäß den üblicherweise verwendeten Rezepturen folgende Bestandteile enthalten:

- 0 bis 80 Gew.-%, insbesondere 5 bis 40 Gew.-%,
 Alkalimetallcarbonate und/oder Alkalimetallhy-drogencarbonate.
- 20 bis 100 Gew.-%, insbesondere 30 bis
 95 Gew.-%, der erfindungsgemäßen Mischungen,
 0 bis 20 Gew.-%, insbesondere 1 bis 15 Gew.-%,
- Tenside und

 0 bis 60 Gew.-%, insbesondere 1 bis 40 Gew.-%,
 Füllmittel, Entstaubungsmittel und/oder Weißmacher

Die genannten Textilentfärbungsmittel- bzw. Flekkentfernungsmittel-Formulierungen weisen im wäßrigen Anwendungsmedium meist einen pH-Wert von 6 bis 11, insbesondere von 7 bis 10, auf.

Die erfindungsgemäßen Mischungen können weiterhin vorteilhaft als korrosionshemmende Reduktionsmittel beim Färben von Textilien mit Küpenfarbstoffen verwendet werden.

Die erfindungsgemäßen Mischungen können weiterhin vorteilhaft als reduktive korrosionshemmende Bleichmittel bei der Bleiche von Faserstoffen für die Papierherstellung verwendet werden. Als Faserstoffe kommen hier insbesondere Holzschliff, Thermo-Mechanical-Pulp (TMP), De-Inked-Pulp (DIP) und Zellstoff in Betracht. TMP wird aus Holzschnitzeln unter Dampfdruck bei höheren Temperaturen gewonnen, DIP stammt vornehmlich aus Altpapier. Übliche wäßrige Anwendungsmedien für solche Bleichprozesse weisen in der Regel einen pH-Wert von 4 bis 9, vor allem 5 bis 8

Die erfindungsgemäßen Mischungen können weiterhin vorteilhaft als reduktive korrosionshemmende Bleichmittel bei der Bleiche von Wolle verwendet werden

Die Korrosionsinhibitoren (B) können den Schwefelverbindungen (A) gleich bei deren Herstellung, bei der Herstellung entsprechender die Komponenten (A) enthaltender Formulierungen für den jeweiligen Anwendungszweck oder separat unmittelbar vor der Anwendung den wäßrigen Anwendungsmedien zugemischt werden.

Bei den genannten Anwendungen der erfindungsgemäßen Mischungen wird die gewünschte Bleich- oder Reduktionswirkung des Mittels nicht beeinträchtigt. Die Korrosion von Metallteilen aus insbesondere Eisen, Eisenlegierungen, Aluminium oder Messing wird gleichzeitig wirksam verhindert oder zumindest auf einen tolerierbaren Umfang zurückgedrängt.

Beispiele

Beispiel 1

Einer handelsüblichen Fleckentfernungsmittel-Formulierung der Zusammensetzung

68 Gew.-% Natriumdithionit (88 gew.-%ig)
21 Gew.-% Natriumcarbonat (wasserfrei)
11 Gew.-% Natriumsulfit (wasserfrei)

wurden 0,1 Gew.-% eines handelsüblichen aliphatischen Sulfoniumsalzes mit zwei kurzkettigen Hydroxyalkylresten und einem langkettigen Alkylrest am S-Atom als Korrosionsinhibitor zugemischt.

Zum Vergleich wurde eine entsprechende Formulierung ohne Korrosionsinhibitor eingesetzt.

Beide Fleckenentferner (mit und ohne Korrosionsschutz) zeigten hinsichtlich der Fleckenentfernung an Testgewebe mit Rotwein- und Obstsaftflecken sowie ausgelaufenem Textilfarbstoff keinen Unterschied in der Reinigungskraft. Allerdings trat bei dem Fleckenentferner ohne Korrosionsinhibitor an Metallteilen (Reißverschluß, eloxierte Metallknöpfe) starke Korrosion auf, während bei dem Fleckenentferner mit Korrosionsinhibitor die Metallteile unverändert blieben.

Beispiel 2

In Papierfabriken müssen bei der Herstellung von gebleichtem Holzschliff bei Verwendung von Natriumdithionit ohne Korrosionsinhibitoren in der Regel alle 6 50 Monate die stählernen Innenraumverkleidungen der Apparaturen erneuert werden, da sie aufgrund von Korrosionsschäden nicht mehr weiterverwendbar sind. Die hierbei eingesetzten Bleichflotten enthalten ca. 4 Gew.-% Holzschliff und weisen einen pH-Wert von ca. 6 und eine Temperatur von ca. 60°C auf.

Bei gleicher Arbeitsweise, jedoch unter Zusatz von 0,09 Gew.-%, bezogen auf die eingesetzte Dithionitmenge, eines handelsüblichen Kondensationsproduktes von Tallölettsäure mit Diethanolamin (gemäß der EP-A 034 726) wurde auch nach 1 1/2 Jahren keine Korrosion beobachtet. Der gewonnene Holzschliff war unverändert von gleicher Qualität.

Patentansprüche

1. Mischungen aus

 (A) reduzierend wirkenden anorganischen oder organischen Schwefelverbindungen und

(B) organischen Korrosionsinhibitoren, wobei die Komponente (B) in Mengen von 1 ppm bis 1 Gew.-%, bezogen auf die Menge der Komponente (A), in den Mischungen vorliegt.

2. Mischungen nach Anspruch 1, in denen als Komponente (A)

- (i) wasserlösliche Salze der Thioschwefelsäure, (ii) wasserlösliche Salze der dithionigen Säure,
- (iii) wasserlösliche Salze der schwefligen Säure oder der dischwefligen Säure und/oder
- (iv) aliphatische oder aromatische Sulfinsäuren, deren wasserlösliche Salze oder Derivate solcher Sulfinsäuren

verwendet werden.

3. Mischungen nach Anspruch 1 oder 2, in denen als 15 Komponente (B)

(a) Umsetzungsprodukte aus gesättigten oder ungesättigten aliphatischen Carbonsäuren mit 3 bis 30 C-Atomen und aliphatischen Oligoaminen mit 2 bis 8 N-Atomen, welche zusätzlich Hydroxylgruppen tragen können, oder Dialkanolaminen oder Derivate solcher Umsetzungsprodukte.

(b) aliphatische Sulfoniumsalze, welche durch zusätzliche hydrophile Gruppen substituiert sein können,

(c) aliphatische oder aromatische Monocarbonsäuren und/oder Dicarbonsäuren mit 3 bis 16 C-Atomen oder deren wasserlösliche Salze,

(d) Triazole oder Derivate hiervon,

(e) Imidazole oder Derivate hiervon, (f) Thiazole oder Derivate hiervon,

(g) ungesättigte aliphatische Alkohole mit 3 bis 6 C-Atomen,

(h) Alkenylbernsteinsäuren, deren wasserlösli- 35 che Salze oder Derivate solcher Alkenylbernsteinsäuren.

(j) Polymaleinsäuren oder deren wasserlösliche Salze,

(k) α-Olefin-Maleinsäureanhydrid-Copolyme-

(1) Sulfamidocarbonsäuren oder deren wasserlösliche Salze und/oder

(m) Ammoniumsalze von Sulfonsäuren verwendet werden.

4. Verwendung von Mischungen gemäß den Ansprüchen 1 bis 3 als reduktive korrosionshemmende Bleichmittel in Textilentfärbungsmittel-Formulierungen oder Fleckentfernungsmittel-Formulierungen.

5. Textilentfärbungsmittel oder Fleckentfernungsmittel-Formulierungen, enthaltend

- 0 bis 80 Gew.-% Alkalimetallcarbonate und/oder Alkalimetallhydrogencarbonate,

– 20 bis 100 Gew.-% Mischungen gemäß den 55 Ansprüchen 1 bis 3,

- 0 bis 20 Gew.-% Tenside und

- 0 bis 60 Gew.-% Füllmittel, Entstaubungsmittel und/oder Weißmacher.

6. Verwendung von Mischungen gemäß den Ansprüchen 1 bis 3 als korrosionshemmende Reduktionsmittel beim Färben von Textilien mit Küpen-

7. Verwendung von Mischungen gemäß den Ansprüchen 1 bis 3 als reduktive korrosionshemmende Bleichmittel bei der Bleiche von Faserstoffen für die Papierherstellung.

8. Verwendung von Mischungen gemäß den An-

sprüchen 1 bis 3 als reduktive korrosionshemmende Bleichmittel bei der Bleiche von Wolle.