10.1 Determine the (a) eigenvalues and (c) singular values of a Householder reflector. For the eigenvalues, give a geometric argument as well as algebraic proof.

Solution. (a) $\exists x \in \mathbb{C}^{m-k+1}$, $v = ||x||e_1 - x$. Householder reflector F is reflection across H in \mathbb{C}^{m-k+1} , where H is a hyperplane orthogonal to v (H = null(v)). We can write F as

$$F = I - 2\frac{vv^*}{v^*v}.$$

Then,

$$Fx = x$$
 $\forall x \in H = span\{q_1, q_2, \cdots, q_{m-k}\},\$
 $Fv = -v,$

where q_i 's and $\frac{v}{||v||}$ are orthonormal basis of \mathbb{C}^{m-k+1} .

Therefore, eigenvalues are 1 and -1. Geometrically, F is reflection across H, so if $x \in H$, Fx = F. Also, Fv = -v for $v \in H^{\perp}$.

(c) $F^*F = FF^* = I$. Therefore, singular value is 1.