HIMatrix

Безопасная система управления

Руководство DI 32 01

HIMA Paul Hildebrandt GmbH Системы автоматизации производства

(1545) HI 800 385 RU

Все названные в данном руководстве изделия компании HIMA защищены товарным знаком. То же самое распространяется, если не указано другое, на прочих упоминаемых изготовителей и их продукцию.

HIMax®, HIMatrix®, SILworX®, XMR® и FlexSILon® являются зарегистрированными торговыми марками компании HIMA Paul Hildebrandt GmbH.

Все технические характеристики и указания, представленные в данном руководстве, разработаны с особой тщательностью и с использованием эффективных мер проверки и контроля. При возникновении вопросов обращайтесь непосредственно в компанию HIMA. Компания HIMA будет благодарна за отзывы и пожелания, например, в отношении информации, которая должна быть дополнительно включена в руководство.

Право на внесение технических изменений сохраняется. Компания HIMA оставляет за собой также право обновлять письменные материалы без предварительного уведомления.

Более подробная информация представлена в документации на диске DVD HIMA и на наших вебсайтах http://www.hima.de и http://www.hima.com.

© Copyright 2015, HIMA Paul Hildebrandt GmbH Все права защищены.

Контакты

Адрес компании HIMA: HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl, Germany

Тел.: +49-6202-709-0 Факс: +49-6202-709-107 Эл. почта: info@hima.com

Оригинал на немецком языке	Описание
HI 800 202 D, Rev. 2.00 (1334)	Перевод на русский язык с немецкого оригинала

DI 32 01 Содержание

Содержание

1	введение	5
1.1	Структура и использование руководства	5
1.2	Целевая аудитория	6
1.3	Оформление текста	7
1.3.1 1.3.2	Указания по безопасности Указания по применению	7 8
2	Безопасность	9
2.1	Применение по назначению	9
2.1.1	Условия окружающей среды	9
2.1.2	Меры по защите от электростатического разряда	9
2.2	Остаточный риск	10
2.3	Меры безопасности	10
2.4	Информация об аварийных ситуациях	10
3	Описание продукта	11
3.1	Обеспечение безопасности	11
3.1.1	Безопасные цифровые входы	11
3.1.1.1 3.1.1.2	Реакция при обнаружении ошибки Управление линией	11 11
3.2	Оснащение и объем поставки	12
3.3	Заводская табличка	13
3.4	Конструкция	13
3.4.1	Блок-схема	13
3.4.2	Вид спереди	14
3.4.3 3.4.4	Индикация состояния Светодиоды входов/выходов	15 15
3.5	Данные о продукте	15
3.5.1	Данные о продукте DI 32 014	15
4	Ввод в эксплуатацию	16
4.1	Установка и монтаж	16
4.1.1	Установка и демонтаж модулей	16
4.1.2	Подключение цифровых входов	16
4.1.2.1	Перенапряжение на цифровых входах	18
4.1.3 4.1.4	Клеммный штекер Установка DI 32 01 во взрывоопасной зоне класса 2	18 19
4.2	Конфигурация	20
4.2.1	Слоты для модулей	20
4.3	Конфигурация в SILworX	21
4.3.1	Параметры и коды ошибок входов	21
4.3.2	Входы	21
4.3.2.1 4.3.2.2	Вкладка Module Вкладка DI 32 01: Channels	22 23
	Dividend DI OF OIL OHAIHOO	20

HI 800 385 RU (1545) Стр. 3 из 36

Содержание	DI 32 01

4.4 4.4.1 4.4.2 4.4.3	Конфигурация в ELOP II Factory Конфигурация входов Сигналы и коды ошибок входов Цифровые входы	23 23 23 24
5	Эксплуатация	26
5.1 5.2	Обслуживание Диагностика	26 26
6	Текущий ремонт	27
6.1	Ошибки	27
6.2	Мероприятия по текущему ремонту	27
6.2.1 6.2.2	Загрузка операционной системы Повторная проверка	27 27
7	Вывод из эксплуатации	28
8	Транспортировка	29
9	Утилизация	30
	Приложение	31
	Глоссарий	31
	Перечень изображений	32
	Перечень таблиц	33
	Индекс	34

Стр. 4 из 36 HI 800 385 RU (1545)

DI 32 01 1 Введение

1 Введение

В данном руководстве описаны технические характеристики модуля и его использование. Руководство содержит информацию об установке, вводе в эксплуатацию и конфигурации.

1.1 Структура и использование руководства

Содержание данного руководства является частью описания аппаратного обеспечения программируемой электронной системы HIMatrix.

Руководство включает в себя следующие основные главы:

- Введение
- Безопасность
- Описание продукта
- Ввод в эксплуатацию
- Эксплуатация
- Текущий ремонт
- Вывод из эксплуатации
- Транспортировка
- Утилизация

Система HIMatrix F60 доступна для таких инструментов программирования, как SILworX и ELOP II Factory. Выбор инструмента программирования, доступного для использования, зависит от операционной системы процессора HIMatrix F60, см. следующую таблицу:

Инструмент	Операционная система	Система управления
программирования	процессора	коммуникациями
SILworX	CPU OS V7 и выше	COM BS V12 и выше
ELOP II Factory	До CPU BS V6.x	До CPU BS V11.x

Таблица 1: Инструменты программирования для HIMatrix F60

Различия описаны в руководстве:

- В отдельных подразделах
- В таблицах, с указанием различий версий
- 1 Проекты, созданные с помощью ELOP II Factory, не могут обрабатываться в SILworX, и наоборот!
- 1 Платы расширения модульной системы управления F60 называются модулями. Термин модуль (Module) используется в этом значении также и в SILworX.

HI 800 385 RU (1545) Стр. 5 из 36

1 Введение DI 32 01

Дополнительно необходимо ознакомиться со следующими документами:

Название	Содержание	Номер документа
HIMatrixSystem Manual Compact Systems	Описание аппаратного обеспечения: компактные системы HIMatrix	HI 800 394 RU
HIMatrix System Manual Modular System F60	Описание аппаратного обеспечения: модульная система HIMatrix	HI 800 391 RU
HIMatrix Safety Manual	Функции обеспечения безопасности системы HIMatrix	HI 800 393 RU
HIMatrix Safety Manual for Railway Applications	Функции обеспечения безопасности системы HIMatrix для использования системы HIMatrix в железнодорожных приложениях	HI 800 437 E
SILworX Online Help	Управление SILworX	-
ELOP II Factory Online Help	Управление ELOP II Factory, протокол Ethernet IP	-
SILworX First Steps Manual	Введение в SILworX на примере системы HIMax	HI 801 301 RU
ELOP II Factory First Steps Manual	Введение в ELOP II Factory	HI 800 006 E

Таблица 2: Дополнительные документы

Актуальные версии руководств находятся на веб-сайте компании HIMA по адресу www.hima.com. По индексу версии, указанному в нижней строке, можно определить, насколько актуальны имеющиеся руководства по сравнению с версиями в Интернете.

1.2 Целевая аудитория

Данный документ предназначен для планировщиков, проектировщиков и программистов систем автоматизации, а также для лиц, допущенных ко вводу в эксплуатацию, к эксплуатации и техническому обслуживанию приборов, модулей и систем. Требуется наличие специальных знаний в области автоматизированных систем обеспечения безопасности.

Стр. 6 из 36 HI 800 385 RU (1545)

DI 32 01 1 Введение

1.3 Оформление текста

В целях удобочитаемости и наглядности в данном документе используются следующие способы выделения и написания текста:

Полужирный Выделение важных частей текста.

шрифт Обозначения тех кнопок, опций меню и вкладок в интерфейсе

инструмента программирования, которые можно выбрать мышью

Курсив Параметры и системные переменные

Шрифт Courier Текст, вводимый пользователем

RUN Обозначения режимов работы заглавными буквами

Гл. 1.2.3 Сноски оформлены как гиперссылки, хотя могут и не иметь особой

маркировки. При наведении на них указателя мыши его форма

меняется. При щелчке по ссылке происходит переход к

соответствующему месту в документе.

Указания по безопасности и применению выделены особым образом.

1.3.1 Указания по безопасности

Указания по безопасности представлены в документе следующим образом. В целях максимального уменьшения риска требуется их неукоснительное соблюдение. Они имеют следующую структуру

- Сигнальное слово: предупреждение/осторожно/указание
- Вид и источник риска
- Последствия несоблюдения указаний
- Избежание риска

А СИГНАЛЬНОЕ СЛОВО

Вид и источник риска! Последствия несоблюдения указаний Избежание риска

Значение сигнальных слов

- Предупреждение: несоблюдение указаний по безопасности может привести к тяжким телесным повреждениям вплоть до летального исхода
- Осторожно: несоблюдение указаний по безопасности может привести к легким телесным повреждениям
- Указание: несоблюдение указаний по безопасности может привести к материальному ущербу

ПРИМЕЧАНИЯ

Вид и источник ущерба! Избежание ущерба

HI 800 385 RU (1545) Стр. 7 из 36

1 Введение DI 32 01

1.3.2	Указания по применению Дополнительная информация представлена следующим образом:
i	В этом месте приводится дополнительная информация.
	Полезные советы и рекомендации представлены в следующей форме:

РЕКОМЕНДАЦИЯ В этом месте расположен текст рекомендации.

Стр. 8 из 36 HI 800 385 RU (1545) DI 32 01 2 Безопасность

2 Безопасность

Следует обязательно прочесть изложенную в настоящем документе информацию по безопасности, а также сопутствующие указания и инструкции. Использовать продукт только при соблюдении всех правил, в том числе правил техники безопасности.

Эксплуатация данного продукта осуществляется с БСНН или с ЗСНН. Сам по себе продукт не представляет никакого риска. Использование во взрывоопасной зоне разрешается только с соблюдением дополнительных мер безопасности.

2.1 Применение по назначению

Компоненты HIMatrix предназначены для построения безопасных систем управления.

При использовании компонентов системы HIMatrix необходимо соблюдать следующие условия.

2.1.1 Условия окружающей среды

Условия	Диапазон значений ¹⁾	
Класс защиты	Класс защиты III в соответствии с IEC/EN 61131-2	
Температура окружающей среды	0+60 °C	
Температура хранения	-40+85 °C	
Степень загрязнения	Степень загрязнения II в соответствии с IEC/EN 61131-2	
Высота установки	< 2000 M	
Корпус	Стандарт: IP20	
Питающее напряжение	24 В пост. тока	
3начения технических характеристик имеют критическое значение для устройств, эксплуатируемых в особых условиях окружающей среды		

эксплуатируемых в особых условиях окружающей среды.

Таблица 3: Условия окружающей среды

Эксплуатация в условиях окружающей среды, отличных от указанных в данном руководстве, может привести к возникновению неполадок в системе HIMatrix.

2.1.2 Меры по защите от электростатического разряда

Изменение и расширение системы, а также замена устройства может выполняться только персоналом, ознакомленным с защитными мерами от воздействия электростатического разряда.

ПРИМЕЧАНИЯ

Возможно повреждение устройства в результате электростатического разряда!

- Работы следует производить на рабочем месте с антистатической защитой и носить ленточный заземлитель.
- Хранить устройство с обеспечением антистатической защиты, например в упаковке.

HI 800 385 RU (1545) Стр. 9 из 36 2 Безопасность DI 32 01

2.2 Остаточный риск

Непосредственно сама система HIMatrix не представляет никакого риска.

Остаточный риск может возникать в результате:

- Ошибок при проектировании
- Ошибок в прикладной программе
- Ошибок подключения

2.3 Меры безопасности

Необходимо соблюдать на месте эксплуатации действующие правила техники безопасности и использовать предписанное защитное снаряжение.

2.4 Информация об аварийных ситуациях

Система HIMatrix является частью системы безопасности установки. Отказ устройства или модуля приводит установку в безопасное состояние.

В аварийной ситуации запрещается любое вмешательство, препятствующее выполнению системами HIMatrix функции обеспечения безопасности.

Стр. 10 из 36 HI 800 385 RU (1545)

3 Описание продукта

DI 32 01 является модулем с 32 цифровыми входами для модульной системы HIMatrix F60. Входы гальванически отделены от шины ввода/вывода.

Модуль можно использовать в модульной стойке F60 для слотов 3...8. Слоты 1 и 2 зарезервированы для модуля электропитания и центрального модуля.

Модуль сертифицирован по стандарту TÜV для безопасных приложений до уровня SIL 3 (IEC 61508, IEC 61511 и IEC 62061), кат. 4 и PL е (EN ISO 13849-1), а также SIL 4 (EN 50126, EN 50128 и EN 50129).

Дальнейшие нормы безопасности, стандарты использования и параметры испытаний можно узнать из сертификатов на веб-сайте компании HIMA.

3.1 Обеспечение безопасности

3.1.1 Безопасные цифровые входы

Модуль оснащен безопасными цифровыми входами. Семь входов образуют одну группу, а остальные четыре входа (I29...I32) образуют пятую группу, см. назначение клемм . К каждой группе подведена общая линия питания с защитой от короткого замыкания LS+.

3.1.1.1 Реакция при обнаружении ошибки

Если модуль определяет на цифровом входе ошибку, то прикладная программа в соответствии с принципом тока покоя обрабатывает низкий уровень.

Модуль включает светодиод ERR.

Прикладная программа наряду со значением сигнала канала должна учитывать соответствующий код ошибки.

Использование кода ошибки дает пользователю дополнительные возможности для настройки реакции на ошибки в прикладной программе.

3.1.1.2 Управление линией

Управление линией (Line Control) — это устройство распознавания замыкания и обрыва линии, например, для входов аварийного останова по кат. 4 и PL е согласно EN ISO 13849-1. В системе F60 параметрируется Line Control.

Пример применения: выходы DO 1 и DO 2 модуля DIO 24/16 01 соединены с цифровыми входами (DI) того же модуля или модуля F60 DI 32 01 следующим образом:

- EMERGENCY STOP 1 (Аварийный останов 1)
- **2** EMERGENCY STOP 2 (Аварийный останов 2)

Переключатель аварийного останова в соответствии со стандартами EN 60947-5-1 и EN 60947-5-5

Рис. 1: Управление линией

HI 800 385 RU (1545) Стр. 11 из 36

3 Описание продукта DI 32 01

На цифровые выходы посылаются импульсы. Это позволяет осуществлять контроль линий, ведущих к цифровым входам модулей F60 DI 32 01 или F60 DIO 24/16 01.

Реакция на ошибки возникает при возникновении одной из следующих ошибок:

- перекрестное замыкание между двумя параллельными линиями.
- скрещивание двух линий (например, DO 2 с DI 3).
- замыкание одной из линий на землю, только при заземленном минусе выходного сигнала).
- Обрыв линии или размыкание контактов, т. е. даже при задействовании одного из показанных выше переключателей аварийного останова.

Реакция на ошибки включает в себя следующие действия:

- Мигает светодиод ERR на передней панели системы управления.
- Входы получают значение 0.
- Создание кода ошибки, пригодного для анализа.

3.2 Оснащение и объем поставки

В следующей таблице приведены доступные варианты модуля:

Описание
Модуль с 32 цифровыми входами
Модуль с 32 цифровыми входами
Рабочая температура: -25+70 °C (класс температуры Т1),
Колебания и удары проверены в соответствии с EN 50125-3 и EN 50155, класс 1В согласно IEC 61373

Таблица 4: Доступные варианты

Стр. 12 из 36 HI 800 385 RU (1545)

3.3 Заводская табличка

На заводской табличке указаны следующие данные:

- Названия изделия
- Штрихкод (штриховой код или 2D-код)
- Номер изделия
- Год выпуска
- Индекс проверки аппаратного обеспечения (HW-Rev.)
- Индекс проверки встроенного ПО (FW-Rev.)
- Рабочее напряжение
- Знаки технического контроля

Рис. 2: Образец заводской таблички

3.4 Конструкция

В главе «Конструкция» описан внешний вид и функции модуля.

3.4.1 Блок-схема

Рис. 3: Блок-схема

HI 800 385 RU (1545) Стр. 13 из 36

3.4.2 Вид спереди

Рис. 4: Вид спереди

Стр. 14 из 36 HI 800 385 RU (1545)

3.4.3 Индикация состояния

Светодиод	Цвет	Состояние	Значение
RUN	Зеленый	Вкл.	Присутствует рабочее напряжение
		Выкл.	Отсутствует рабочее напряжение
ERR	Красный	Вкл. Неисправность модуля или внешняя ошибка, действие в соответствии с диагностикой	
		Выкл.	Нет неисправности модуля и/или ошибки канала

Таблица 5: Индикация состояния

3.4.4 Светодиоды входов/выходов

Светодиод	Цвет	Состояние	Значение
I 132	Желтый	Вкл.	Уровень High.
		Выкл.	Уровень Low.

Таблица 6: Индикация светодиодов входа/выхода

3.5 Данные о продукте

Общая информация	
Рабочее напряжение	24 В пост. тока, -15+20 %, w _{ss} ≤ 15 %, От блока питания с безопасным разделением Согласно требованиям IEC 61131-2
Эксплуатационные данные	3,3 В пост. тока / 0,05 А 24 В пост. тока / 0,2 А
Температура окружающей среды	0+60 °C
Температура хранения	-40+85 °C
Необходимое пространство	6 RU, 4 HP
Macca	260 г

Таблица 7: Данные о продукте

Цифровые входы				
Количество входов	32, гальванически разделенные			
Входное напряжение Высокий уровень Низкий уровень	Ном. 24 В пост. тока 1030 В Макс. 5 В			
Входной ток Высокий уровень Низкий уровень	2 мА при 10 В, 5 мА при 24 В 1 мА при 5 В			
Точка переключения	Тип. 7,5 В			
Линия питания	5 x 20 B/100 мА (при 24 B), устойчивость к короткому замыканию, ограничение тока			

Таблица 8: Технические данные цифровых входов

3.5.1 Данные о продукте DI 32 014

Вариант модели DI 32 014 сконструирован для использования в железнодорожных системах. На компоненты электронного оборудования нанесено защитное покрытие.

DI 32 014	
Рабочая температура	-25+70 °C (Класс температуры Т1)

Таблица 9: Данные о продукте DI 32 014

Модуль DI 32 014 отвечает условиям по колебаниям и ударам согласно EN 61373, категория 1, класс B.

HI 800 385 RU (1545) Стр. 15 из 36

4 Ввод в эксплуатацию

Ввод в эксплуатацию системы управления включает установку и подключение, а также настройку конфигурации с помощью инструмента программирования.

4.1 Установка и монтаж

Монтаж модуля осуществляется в модульной стойке модульной системы HIMatrix F60.

При подключении следует позаботиться о противопомеховой прокладке особенно длинных проводов, например, с помощью раздельной прокладки сигнальных и питающих линий.

При выборе размеров кабеля следует следить за тем, чтобы электрические свойства кабеля не оказывали отрицательного воздействия на измерительную цепь.

4.1.1 Установка и демонтаж модулей

Монтаж и демонтаж модулей осуществляется без использования вставленных клеммных соединений соединительного кабеля.

Персонал в этом случае должен использовать средства защиты от электростатического разряда, см. главу 2.1.2.

Установка модулей

Установить модуль в модульную стойку:

- 1. Без перекоса вставить модуль до упора в обе направляющие шины, расположенные в корпусе сверху и снизу.
- 2. Нажимать на верхний и нижний конец передней панели до тех пор, пока штекер модуля не защелкнется в гнезде задней стенки.
- При помощи двух винтов зафиксировать модуль на верхнем и нижнем конце передней панели.

Модуль установлен.

Демонтаж модулей

Извлечь модуль из модульной стойки:

- 1. Удалить все штекеры с передней панели модуля.
- 2. Ослабить оба стопорных винта на верхнем и нижнем конце передней панели.
- 3. При помощи рукоятки, расположенной внизу на передней панели, высвободить модуль и снять его с направляющих шин.

Модуль демонтирован.

4.1.2 Подключение цифровых входов

Хотя использование экранированного кабеля не требуется, оно значительно улучшает условия ЭМС. При этом внешний диаметр экрана кабеля не должен превышать 12 мм, чтобы обеспечить подключение к решетке заземления F60 с помощью скоб.

Подсоединение входов осуществляется посредством 9-полюсных штекеров, подключения которого пронумерованы. Чтобы соблюдался порядок подключения, такую же последовательность нумерации имеют и выходы на передней панели модуля.

Стр. 16 из 36 HI 800 385 RU (1545)

Входы подключаются при помощи следующих клемм:

Клемма	Обозначение	Функция
01	LS+	Питание для входов 17
02	l1	Цифровой вход 1
03	12	Цифровой вход 2
04	13	Цифровой вход 3
05	14	Цифровой вход 4
06	15	Цифровой вход 5
07	16	Цифровой вход 6
08	17	Цифровой вход 7
09	EGND	Опорный потенциал
Клемма	Обозначение	Функция
10	LS+	Питание для входов 814
11	18	Цифровой вход 8
12	19	Цифровой вход 9
13	110	Цифровой вход 10
14	I11	Цифровой вход 11
15	l12	Цифровой вход 12
16	I13	Цифровой вход 13
17	114	Цифровой вход 14
18	EGND	Опорный потенциал
Клемма	Обозначение	Функция
19	LS+	Питание для входов 1521
20	I15	Цифровой вход 15
21	I16	Цифровой вход 16
22	117	Цифровой вход 17
23	117	Цифровой вход 18
24	I19	Цифровой вход 19
25	120	Цифровой вход 19 Цифровой вход 20
26	120	Цифровой вход 20
27	EGND	
		Опорный потенциал
Клемма 28	Обозначение LS+	Функция
		Питание для входов 2228
29	122	Цифровой вход 22
30	123	Цифровой вход 23
31	124	Цифровой вход 24
32	125	Цифровой вход 25
33	126	Цифровой вход 26
34	127	Цифровой вход 27
35	128	Цифровой вход 28
36	EGND	Опорный потенциал
Клемма	Обозначение	Функция
37	LS+	Питание для входов 2932
38	129	Цифровой вход 29
39	130	Цифровой вход 30
40	131	Цифровой вход 31
41	l32	Цифровой вход 32

HI 800 385 RU (1545) Стр. 17 из 36

Клемма	Обозначение	Функция
42	EGND	Опорный потенциал
43	EGND	Опорный потенциал
44	EGND	Опорный потенциал
45	EGND	Опорный потенциал

Таблица 10: Назначение клемм входов

4.1.2.1 Перенапряжение на цифровых входах

Короткое время цикла систем HIMatrix позволяет цифровым входам считывать импульсные перенапряжения согласно EN 61000-4-5 как кратковременный высокий уровень.

Следующие меры предотвращают неправильное функционирование в средах, в которых могут возникнуть перенапряжения:

- 1. Установка экранированных линий ввода
- 2. Программирование подавления помех в прикладной программе. Сигнал должен поступить минимум в двух циклах, прежде чем его можно будет проанализировать. Реакция на ошибку выполняется с соответствующей задержкой.
- 1 От вышеуказанных мер можно отказаться, если путем соответствующего расчета параметров установки можно исключить перенапряжение в системе.

 К расчету параметров, в частности, относятся меры защиты, касающиеся перенапряжения, удара молнии, заземления и проводного монтажа установки на основе данных в руководстве системы (HIMatrix System Manual Compact Systems HI 800 394 RU) или (HIMatrix System Manual Modular Systems HI 800 391 RU) и релевантных стандартов.

4.1.3 Клеммный штекер

Подсоединение панели осуществляется при помощи клеммных штекеров, устанавливаемых на разъемах модулей. Клеммные штекеры входят в объем поставки модулей HIMatrix.

Подсоединение со стороны панели				
Количество клеммных штекеров	5 шт., 9-полюсные, с винтовыми клеммами			
Поперечное сечение провода	0,21,5 мм ² (одножильный) 0,21,5 мм ² (тонкожильный) 0,21,5 мм ² (с кабельным зажимом)			
Длина снятия изоляции	6 мм			
Отвертка	Шлиц 0,4 x 2,5 мм			
Начальный пусковой момент	0,20,25 Нм			

Таблица 11: Характеристики клеммных штекеров

Стр. 18 из 36 HI 800 385 RU (1545)

4.1.4 Установка DI 32 01 во взрывоопасной зоне класса 2

(EC Directive 94/9/EC, ATEX)

Модуль пригоден для установки в зоне класса 2. Декларация изготовителя о соответствии приведена на веб-сайте компании HIMA.

При установке необходимо соблюдать указанные ниже особые условия.

Особые условия Х

1. Система управления HIMatrix F60 должна устанавливаться в специальный корпус, который удовлетворяет требованиям стандарта EN 60079-15 и имеет минимальную степень защиты IP54 согласно EN 60529. Снаружи этого корпуса следует разместить наклейку:

Work is only permitted in the de-energized state Открывать и работать только при отсутствии напряжения

Исключение:

Если в месте нахождения корпуса гарантировано отсутствие взрывоопасной атмосферы, то допустима работа и под напряжением.

- 2. Используемый корпус должен безопасно отводить выделяемое при работе тепло. Мощность потерь на каждый модуль DI 32 01 составляет максимум 7 Вт в зависимости от питающего напряжения.
- 3. Питание 24 В пост. тока должно подаваться к устройству от блока питания с безопасным разделением. Разрешается использовать только блоки питания в исполнениях для 3СНН или БСНН.
- 4. Применимые стандарты:

VDE 0170/0171 Часть 16, DIN EN 60079-15: 2004-5 VDE 0165 Часть 1, DIN EN 60079-14: 1998-08

В особенности обратите внимание на разделы:

DIN EN 60079-15:

Глава 5 Конструкция

Глава 6 Соединительные детали и кабельная разводка
Глава 7 Воздушные зазоры, пути утечки тока и расстояния
Глава 14 Штекерные разъемы и штекерные соединители

DIN EN 60079-14:

HIMatrix

Глава 5.2.3 Рабочие средства для взрывоопасной зоны класса 2 Глава 9.3 Кабели и провода для взрывоопасных зон классов 1 и 2

Глава 12.2 Установки для взрывоопасных зон классов 1 и 2

Изготовитель дополнительно оснащает ПЛК следующей табличкой:

HIMA

Paul Hildebrandt GmbH

A.-Bassermann-Straße 2

A.-Bassermann-Straße 28, D-68782 Brühl

🖾 II 3 G Ex nA II T4 X

0 °C ≤ Ta ≤ 60 °C

DI 32 01

Besondere Bedingungen X beachten!

Рис. 5: Табличка условий эксплуатации во взрывоопасной зоне

HI 800 385 RU (1545) Стр. 19 из 36

4.2 Конфигурация

Конфигурация модулей осуществляется с помощью таких инструментов программирования, как SILworX или ELOP II Factory. Выбор инструмента программирования зависит от версии операционной системы (встроенного ПО):

- Для операционных систем процессорного модуля, начиная с версии V7, требуется использовать SILworX.
- Для операционных систем процессорного модуля до версии V6.х требуется использовать ELOP II Factory.
- 1 Процесс смены операционной системы описан в руководстве по модульным системам (HIMatrix System Manual Modular Systems HI 800 391 RU).

4.2.1 Слоты для модулей

В модульной стойке F60 для модуля электропитания PS 01 и центрального модуля зарезервированы слоты 1 и 2. Слоты 3...8 могут оснащаться любыми модулями ввода/вывода.

Инструменты программирования SILworX и ELOP II Factory используют следующую нумерацию слотов для модулей:

Модуль	Слот в модульной стойке	Слот в SILworX	Слот в ELOP II Factory
PS 01	1	-	-
CPU/COM	2	0/1	-
Ввода/вывода	3	2	1
Ввода/вывода	4	3	2
Ввода/вывода	5	4	3
Ввода/вывода	6	5	4
Ввода/вывода	7	6	5
Ввода/вывода	8	7	6

Таблица 12: Слоты для модулей

- i
- Для модуля электропитания PS 01 параметры не задаются.
- Процессорный модуль и коммуникационный модуль находятся на центральном модуле. В инструментах программирования они представлены как отдельные элементы.

Стр. 20 из 36 HI 800 385 RU (1545)

4.3 Конфигурация в SILworX

В редакторе аппаратного обеспечения Hardware Editor отображается система управления со следующими модулями:

- Один процессорный модуль (CPU)
- Один коммуникационный модуль (СОМ)
- 6 свободных слотов для модулей входа/выхода

Модули входа/выхода добавляются из списка модулей в свободный слот с помощью функции Drag&Drop.

Двойным щелчком по модулю открывается окно подробного представления с вкладками. Во вкладках можно присвоить системные параметры глобальным переменным, настроенным в прикладной программе.

4.3.1 Параметры и коды ошибок входов

В следующих таблицах приведены считываемые и настраиваемые системные параметры входов, включая коды ошибок.

Коды ошибок могут в рамках прикладной программы считываться с помощью соответствующих логических переменных.

Возможно также отображение кодов ошибок в SILworX.

4.3.2 Входы

В приведенных ниже таблицах указаны состояния и параметры модуля ввода в той же последовательности, что и в редакторе аппаратного обеспечения Hardware Editor.

HI 800 385 RU (1545) Стр. 21 из 36

4.3.2.1 Вкладка **Module**

Вкладка Module содержит следующие системные параметры:

Системные параметры	Тип данных	R/W	Описание			
DI Number of Pulsed	USINT	W	Количество такто	вых выходов (выходов питания)		
Outputs			Кодирование	Описание		
			0	Выходной канал для распознавания LS/LB ¹⁾ не предусмотрен		
			1	Предусмотрен выходной канал 1 для распознавания LS/LB ¹⁾		
			2	Предусмотрены выходные каналы 12 для распознавания LS/LB ¹⁾		
			8	Предусмотрены выходные каналы 18 для распознавания LS/LB ¹⁾		
			выходы!	ды нельзя использовать как безопасные		
DI Pulse Module Slot	UDINT	W		ульсного генератора: значение 16, в актическим слотом справа от ЦПУ		
DI Pulse Delay [μs]	UINT	W		для управления линией (распознавание рестного замыкания)		
DI.Error Code	WORD	R	Коды ошибок для	всех цифровых входов		
			Кодирование	Описание		
			0x0001	Ошибка модуля		
			0x0002	Ошибка теста FTT образца тестирования		
			0x0004	Тест FTT: порог температуры 1 превышен		
			0x0008	Тест FTT: порог температуры 2 превышен		
Module Error Code	WORD	R	Коды ошибок модуля			
			Кодирование	Описание		
			0x0000	Ошибки обработки ввода/вывода, см. дальнейшие коды ошибок		
			0x0001	Отсутствует обработка ввода/вывода (CPU не в режиме RUN)		
			0x0002	Отсутствует обработка ввода/вывода при загрузочном тесте		
			0x0004	Работает интерфейс производителя		
			0x0010	Отсутствует обработка ввода/вывода: неверное параметрирование		
			0x0020	Отсутствует обработка ввода/вывода: превышено допустимое количество ошибок		
			0x0040/ 0x0080	Отсутствует обработка ввода/вывода: не вставлен конфигурированный модуль		
Module SRS	UDINT	R	Номер слота (System.Rack.Slot)			
Module Type	UINT	R	Тип модуля, заданное значение: 0xF807 [63 495 _{dec}]			
1) SC/OC (Замыкание г	ровода/Обрь	ыв пров	ода)	*		

Таблица 13: SILworX — системные параметры цифровых входов, вкладка **Module**

Стр. 22 из 36 HI 800 385 RU (1545)

4.3.2.2 Вкладка **DI 32 01: Channels**

Вкладка **DI 32 01: Channels** содержит следующие системные параметры.

Системные параметры	Тип данных	R/W	Описание		
-> Error Code [BYTE]	BYTE	R	Коды ошибок всех цифровых входных каналов		
			Кодирование	Описание	
			0x01	Ошибка в модуле цифрового входа	
			0x10	Замыкание линии канала	
			0x80	Размыкание линии между тактовым выходом DO и тактовым входом DI, например, в результате	
				Обрыва линии	
				• разомкнутого переключателя	
				■ Пониженное напряжение L+	
-> Value [BOOL]	BOOL	R	Входное значение цифровых входных каналов 0: Вход включается 1: Вход не включается		
DI[xx].Pulsed Output	USINT	W	Исходный канал та		
[USINT] ->			Кодирование	Описание	
			0	Входной канал	
			1	Такт первого канала DO	
			2	Такт второго канала DO	
			8	Такт канала 8 DO	

Таблица 14: SILworX — системные параметры цифровых входов, вкладка DI 32 01: Channels

4.4 Конфигурация в ELOP II Factory

4.4.1 Конфигурация входов

При помощи программного обеспечения ELOP II Factory сигналы, предварительно определенные в редакторе сигналов (Hardware Management), присваиваются отдельным каналам (входам), см. руководство по модульным системам F60 или онлайн-справку.

В следующем разделе описаны системные сигналы, доступные для назначения сигналам в системе управления.

4.4.2 Сигналы и коды ошибок входов

В следующих таблицах приведены считываемые и настраиваемые системные сигналы входов и выходов, включая коды ошибок.

Коды ошибок могут в рамках прикладной программы считываться с помощью сигналов, описанных логическими переменными.

Возможно также отображение кодов ошибок в ELOP II Factory.

HI 800 385 RU (1545) Стр. 23 из 36

4.4.3 Цифровые входы

Системный сигнал	R/W	Описание			
Mod.SRS [UDINT]	R	Номер слота (Sy	stem.Rack.Slot)		
Mod.Type [UINT]	R	Тип модуля, заданное значение: 0xF807 [63 495 _{dec}]			
Mod.Error Code	R	Коды ошибок модуля			
[WORD]		Кодирование	Описание		
		0x0000	Ошибки обработки ввода/вывода,		
			см. дальнейшие коды ошибок		
		0x0001	Отсутствует обработка ввода/вывода (CPU не в режиме RUN)		
		0x0002	Отсутствует обработка ввода/вывода при загрузочном тесте		
		0x0004	Работает интерфейс производителя		
		0x0010	Отсутствует обработка ввода/вывода: неверное параметрирование		
		0x0020	Отсутствует обработка ввода/вывода: превышено допустимое количество ошибок		
		0x0040/	Отсутствует обработка ввода/вывода: не вставлен		
		0x0080	конфигурированный модуль		
DI.Error Code [WORD]	R		я всех цифровых входов		
		Кодирование	Описание		
		0x0001	Ошибка модуля		
		0x0002	Ошибка теста FTT образца тестирования		
		0x0004	Тест FTT: порог температуры 1 превышен		
		0x0008	Тест FTT: порог температуры 2 превышен		
DI[xx].Error Code	R	Коды ошибок всех цифровых входных каналов			
[BYTE]		Кодирование	Описание		
		0x01	Ошибка в модуле цифрового входа		
		0x10	Замыкание линии канала		
		0x80	Размыкание линии между тактовым выходом DO и		
			тактовым входом DI, например, в результате		
			Обрыв линии		
			• Разомкнутого переключателя		
			■ Пониженное напряжение L+		
DI[xx].Value [BOOL]	R	Вхолное значени	ие цифровых входных каналов		
		0: Вход включае			
		1: Вход не включ			
DI Number of Pulsed	W	Количество такто	овых выходов (выходов питания)		
Outputs [USINT]		Кодирование	Описание		
		0	Выходной канал для распознавания LS/LB ¹⁾		
			не предусмотрен		
		1	Предусмотрен выходной канал 1 для распознавания LS/LB ¹⁾		
		2	Предусмотрены выходные каналы 12 для распознавания LS/LB ¹⁾		
		8	Предусмотрены выходные каналы 18 для		
		Tours	распознавания LS/LB ¹⁾		
Di Dulas Madula Olat	10/	Тактовые выходы нельзя использовать как безопасные выходы!			
DI Pulse Module Slot [UDINT]	W	Слот модуля импульсного генератора: значение 16, в соответствии с фактическим слотом справа от ЦПУ			

Стр. 24 из 36 HI 800 385 RU (1545)

Системный сигнал	R/W	Описание			
DI[xx].Pulsed Output	W	Исходный канал тактового питания			
[USINT]		Кодирование	Описание		
		0	Входной канал		
		1	Такт первого канала DO		
		2	Такт второго канала DO		
		8	Такт восьмого канала DO		
DI Pulse Delay [10E-6 s] [UINT]	W	Время ожидания для управления линией (распознавание замыкания/перекрестного замыкания)			
1) LS/LB (Замыкание про	овода/С	брыв провода)			

Таблица 15: Системные сигналы цифровых входов ELOP II Factory

HI 800 385 RU (1545) Стр. 25 из 36

5 Эксплуатация DI 32 01

5 Эксплуатация

Эксплуатация модуля осуществляется на основном носителе HIMatrix и не требует особого контроля.

5.1 Обслуживание

Обслуживание системы управления во время эксплуатации не требуется.

5.2 Диагностика

Первичная диагностика выполняется путем анализа светодиодов на передней панели — см. главу 3.4.3.

Считывание истории диагностики модуля может выполняться дополнительно с помощью инструмента программирования SILworX.

Стр. 26 из 36 HI 800 385 RU (1545)

DI 32 01 6 Текущий ремонт

6 Текущий ремонт

В режиме обычной эксплуатации не требует мероприятий по текущему ремонту.

При возникновении неисправностей замените устройство или модуль идентичным либо вариантом замены, одобренным HIMA.

Ремонт устройства или модуля может производиться только поставщиком.

6.1 Ошибки

Реакции на ошибки входов описаны в главе 3.1.1.1.

ПРИМЕЧАНИЯ

В случае ошибки необходимо заменить модуль, чтобы обеспечить безопасность установки.

Замена модуля может производиться только при выключенном напряжении.

i

Не допускается извлечение или вставка модуля во время эксплуатации!

Замена имеющегося модуля или вставка нового осуществляется в соответствии с описанием в главе 4.1.1.

6.2 Мероприятия по текущему ремонту

Для модульной системы F60 изредка требуется проводить следующие мероприятия:

- Загрузка операционной системы, если требуется новая версия
- Выполнение повторной проверки

6.2.1 Загрузка операционной системы

В рамках совершенствования продукта фирма HIMA продолжает разработку операционной системы центрального модуля F60. Компания HIMA рекомендует использовать запланированное время простоя установки для загрузки в систему управления F60 актуальной версии операционной системы.

Предварительно следует проверить воздействие версии операционной системы на систему на основании списка версий!

Операционная система загружается с помощью инструмента программирования.

До начала загрузки система управления F60 должна находиться в состоянии STOP (см. сообщение в инструменте программирования). В противном случае следует остановить систему управления F60.

Более подробная информация представлена в документации инструмента программирования и в руководстве модульная система F60 (HIMatrix System Manual Modular System F60 HI 800 391 RU).

6.2.2 Повторная проверка

Устройства и модули HIMatrix подлежат повторной проверке (proof test) каждые 10 лет. Более подробную информацию можно найти в руководстве по безопасности (HIMatrix Safety Manual HI 801 393 RU).

HI 800 385 RU (1545) Стр. 27 из 36

7 Вывод из эксплуатации

Чтобы вывести модуль из эксплуатации, следует отключить подачу питающего напряжения на модуль питания PS 01. Затем можно отсоединить вставные винтовые клеммы для входов и выходов и кабель Ethernet.

Стр. 28 из 36 HI 800 385 RU (1545)

DI 32 01 8 Транспортировка

8 Транспортировка

Для защиты от механических повреждений производить транспортировку компонентов HIMatrix в упаковке.

Хранить компоненты HIMatrix всегда в оригинальной упаковке. Она одновременно является защитой от электростатического разряда. Только упаковки продукта недостаточно для осуществления транспортировки.

HI 800 385 RU (1545) Стр. 29 из 36

9 Утилизация DI 32 01

9 Утилизация

Промышленные предприятия несут ответственность за утилизацию своего аппаратного обеспечения HIMatrix, вышедшего из строя. По желанию возможно заключить с компанией HIMA соглашение об утилизации.

Все материалы подлежат экологически чистой утилизации.

Стр. 30 из 36 HI 800 385 RU (1545)

DI 32 01 Приложение

Приложение

Глоссарий

Обозначение	Описание
Al	Analog input, аналоговый вход
AO	Analog output, аналоговый выход
ARP	Address resolution protocol: сетевой протокол для присвоения сетевых адресов
	аппаратным адресам
COM	Коммуникационный модуль
CRC	Cyclic redundancy check, контрольная сумма
DI	Digital input, цифровой вход
DO	Digital output, цифровой выход
ELOP II Factory	Инструмент программирования для систем HIMatrix
EMC	Electromagnetic compatibility, электромагнитная совместимость
EN	Европейские нормы
ESD	Electrostatic discharge, электростатическая разгрузка
FB	Fieldbus, полевая шина
FBD	Function block diagrams, язык функциональных модулей
FTT	Fault tolerance time, время допустимой погрешности
ICMP	Internet control message protocol, сетевой протокол для сообщений о статусе и неисправностях
IEC	Международные нормы по электротехнике
PADT	Programming and Debugging Tool, инструмент программирования и отладки (согласно IEC 61131-3), ПК с SILworX или ELOP II Factory
PE	Protective Earth: защитное заземление
R	Read: системная переменная/сигнал посылает значение, например, в пользовательскую программу
R/W	Read/Write, чтение/запись (заголовок столбца для типа системной переменной/сигнала)
Rack ID	Идентификация основного носителя (номер)
SFF	Safe failure fraction, доля безопасных сбоев
SIL	Safety integrity level, уровень совокупной безопасности (согл. IEC 61508)
SILworX	Инструмент программирования для систем HIMatrix
SNTP	Simple network time protocol, простой сетевой протокол времени (RFC 1769)
SRS	System.Rack.Slot: адресация модуля
SW	Software, программное обеспечение
TMO	Timeout, время ожидания
W	Write: системная переменная/сигнал получает значение, например, от прикладной программы
Watchdog (WD)	Контроль времени для модулей или программ. При превышении показателя контрольного времени модуль или программа выполняют контрольную остановку.
WDT	Watchdog time, время сторожевого устройства
W _{SS}	Значение от пика до пика (Peak-to-peak value) общих составляющих переменного напряжения
Адрес МАС	Адрес аппаратного обеспечения сетевого подключения (media access control)
без обратного воздействия на источник	Предположим, к одному и тому же источнику (например, трансмиттеру) подключены два входных контура. В этом случае входной контур обозначается как контур без обратного воздействия на источник, если он не искажает сигналы другого входного контура.
БСНН	Safety extra low voltage, защитное пониженное напряжение
3CHH	Protective extra low voltage, пониженное напряжение с безопасным размыканием
ПЭС	Programmable electronic system, программируемая электронная система

HI 800 385 RU (1545) Стр. 31 из 36

Приложение DI 32 01

Перече	нь изображений	
Рис. 1:	Управление линией	11
Рис. 2:	Образец заводской таблички	13
Рис. 3:	Блок-схема	13
Рис. 4:	Вид спереди	14
Рис. 5:	Табличка условий эксплуатации во взрывоопасной зоне	19

Стр. 32 из 36 HI 800 385 RU (1545)

DI 32 01 Приложение

Перечень т	таблиц	
Таблица 1:	Инструменты программирования для HIMatrix F60	5
Таблица 2:	Дополнительные документы	6
Таблица 3:	Условия окружающей среды	9
Таблица 4:	Доступные варианты	12
Таблица 5:	Индикация состояния	15
Таблица 6:	Индикация светодиодов входа/выхода	15
Таблица 7:	Данные о продукте	15
Таблица 8:	Технические данные цифровых входов	15
Таблица 9:	Данные о продукте DI 32 014	15
Таблица 10:	Назначение клемм входов	18
Таблица 11:	Характеристики клеммных штекеров	18
Таблица 12:	Слоты для модулей	20
Таблица 13:	SILworX — системные параметры цифровых входов, вкладка Module	22
Таблица 14:	SILworX — системные параметры цифровых входов, вкладка DI 32 01: Channels	23
Таблица 15:	Системные сигналы цифровых входов ELOP II Factory	25

HI 800 385 RU (1545) Стр. 33 из 36

Приложение DI 32 01

Индекс

Блок-схема13	Перенапряжение18
Вид спереди14	Реакции на ошибку
Диагностика26	цифровые выходы11
Обеспечение безопасности11	Технические данные 15

Стр. 34 из 36 HI 800 385 RU (1545)

HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl, Germany

Тел.: +49-6202-709-0 Факс: +49-6202-709-107

Эл. почта: info@hima.com · Веб-сайт: www.hima.com