Sztuczna inteligencja

Zestaw 4 odpowiedzi na pytania 2(i) oraz 3-7 Dominik Lewczyński 155099

Pytanie 3

Sprawdź, czy podane zdania są logicznie równoważne. $\neg(p \lor (\neg p \land q))$ i $\neg p \land \neg q$ Definicja:

Dwa zdania są logicznie równoważne, jeśli mają taką samą wartość w ramach dowolnego przypisania; tzn., $\alpha \equiv \beta$ wtedy i tylko wtedy gdy $\alpha \models \beta$ oraz $\beta \models \alpha$. Na przykład $p \Rightarrow q \equiv \neg p \lor q$.

Przypisanie	p	q	$p \Rightarrow q$	¬ <i>p</i> ∨ q
V1	1	1	1	$(0 \lor 1) = 1$
V2	1	0	1	$(1 \lor 1) = 1$
V3	0	1	0	$(0 \lor 0) = 0$
V4	0	0	1	$(0 \lor 1) = 1$

Tabela prawdy dla $\neg (p \lor (\neg p \land q))$

p	q	$\neg p$	$\neg p \land q$	$p \lor (\neg p \land q)$	$\neg (p \lor (\neg p \land q))$
1	1	0	0	1	0
1	0	0	0	1	0
0	1	1	1	1	0
0	0	1	0	0	1

Tabela prawdy dla $\neg p \land \neg q$

p	q	$\neg p$	$\neg q$	$\neg p \land \neg q$
1	1	0	0	0
1	0	0	1	0
0	1	1	0	0
0	0	1	1	1

Odpowiedź: Na podstawie tabeli prawdy wnioskuję ze te zdania są logicznie równoważne

Sprawdź, czy poniższe zdanie jest spełniane

Definicja:

Zdanie jest spełniane, zwane także niesprzecznym, jeśli istnieje co najmniej jedno przypisanie, w którym jest prawdziwe. Na przykład $p \Rightarrow (p \land q)$

Przypisanie	p	q	$p \Rightarrow (p \land q)$
V1	1	1	$(1 \Rightarrow 1) = 1$
V2	1	0	$(1 \Rightarrow 0) = 0$
V3	0	1	$(0 \Rightarrow 1) = 1$
V4	0	0	$(0 \Rightarrow 0) = 0$

(i)
$$(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$$

p	q	$p \Rightarrow q$	$\neg p$	$\neg q$	$\neg p \Rightarrow \neg q$	$(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$
1	1	1	0	0	1	1
1	0	0	0	1	1	1
0	1	1	1	0	0	0
0	0	1	1	1	1	1

Odpowiedź: To zdanie jest spełniane ponieważ istnieje co najmniej jedno przypisanie które jest prawdziwe. W tym przypadku mamy 3 takie przypisania.

(ii)
$$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$$

p	q	r	$p \Rightarrow q$	p∧r	$(p \wedge r) \Rightarrow q$	$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$
1	1	1	1	1	1	1
1	1	0	1	0	1	1
1	0	1	0	1	0	1
1	0	0	0	0	1	1
0	1	1	1	0	1	1
0	1	0	1	0	1	1
0	0	1	1	0	1	1
0	0	0	1	0	1	1

Odpowiedź: To zdanie jest spełniane ponieważ istnieje co najmniej jedno przypisanie które jest prawdziwe. W tym przypadku zdanie posiada wszystkie takie przypisania czyli jest tautologią.

Używając tabeli prawdziwości sprawdź czy $(p \Rightarrow q) \models ((p \land r) \Rightarrow q)$

Aby sprawdzić czy wyrażenie jest spełnione zamiennie \models na \Rightarrow i sprawdzę czy powstałe wyrażenie $(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$ jest tautologią

p	q	r	$p \Rightarrow q$	$p \wedge r$	$(p \wedge r) \Rightarrow q$	$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$
1	1	1	1	1	1	1
1	1	0	1	0	1	1
1	0	1	0	1	0	1
1	0	0	0	0	1	1
0	1	1	1	0	1	1
0	1	0	1	0	1	1
0	0	1	1	0	1	1
0	0	0	1	0	1	1

Odpowiedź: W tabeli prawdy wychodzi że wyrażenie jest tautologia, a więc $(p \Rightarrow q) \models ((p \land r) \Rightarrow q)$ jest spełnione.

Używając tabeli prawdziwości znajdź CNF i DNF dla zdań w zadaniu 4

Definicja CNF: Koniunkcyjna postać normalna (CNF) (ang. conjunctive normal form) formuła zapisana w postaci koniunkcji klauzul, z których każda jest alternatywą literałów. ($l_{11} \ \lor \ l_{12} \ \lor \ldots \lor \ l_{1k}$) \land ($l_{21} \ \lor \ l_{22} \ \lor \ldots \lor \ l_{2s}$) $\land \ldots (l_{m1} \ \lor \ l_{m2} \ \lor \ldots \lor \ l_{mn}$) gdzie każdy l_{ij} jest zdaniem atomowym lub jego negacją, i każde wyrażenie z ($l_{11} \ \lor \ l_{12} \ \lor \ldots \lor \ l_{1k}$) $\ldots (l_{m1} \ \lor \ l_{m2} \ \lor \ldots \lor \ l_{mn}$) jest klauzulą.

Definicja DNF: Dysjunkcyjna postać normalna (DNF) (ang. disjunctive normal form) - formuła zapisana w postaci dysjunkcji (alternatywy) wyrażeń, z których każde jest koniunkcją literałów.

$$(l_{11} \ \land \ l_{12} \ \land \dots \land \ l_{1k}) \ \lor \ (l_{21} \ \land \ l_{22} \ \land \dots \land \ l_{2s}) \ \lor \dots (l_{m1} \ \land \ l_{m2} \ \land \dots \land \ l_{mn})$$

(i)
$$(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$$

p	q	$p \Rightarrow q$	$\neg p$	$\neg q$	$\neg p \Rightarrow \neg q$	$(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$
1	1	1	0	0	1	1
1	0	0	0	1	1	1
0	1	1	1	0	0	0
0	0	1	1	1	1	1

Skupiając się na "0" CNF: p ∨ ¬q

Skupiając się na "1" DNF: $(\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$

(ii)
$$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$$

p	q	r	$p \Rightarrow q$	p∧r	$(p \land r) \Rightarrow q$	$(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow q)$
1	1	1	1	1	1	1
1	1	0	1	0	1	1
1	0	1	0	1	0	1
1	0	0	0	0	1	1
0	1	1	1	0	1	1
0	1	0	1	0	1	1
0	0	1	1	0	1	1
0	0	0	1	0	1	1

Skupiając się na "0" CNF: Brak ponieważ to zdanie jest tautologią Skupiając się na "1" DNF: $(\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land r)$

Znajdź unifikator dla $\alpha = Older(Father(y), y)$ i $\beta = Older(Father(x), John)$

 α = Older(Father(y), y) β = Older(Father(x), John)

α	β	θ
Older(Father(y), y)	Older(Father(x), John)	{y/x,x/John}