Лабораторная работа №2

Численное вычисление интеграла

Задача численного интегрирования состоит в том, чтобы найти численное значение определенного интеграла

$$I = \int_{b}^{a} f(x)dx, \quad (1)$$

где f(x) - функция, непрерывная на отрезке интегрирования [a,b]. Формулы для решения этой задачи называются квадратурными. Квадратурная формула позволяет вместо точного значения интеграла (1) найти некоторое его приближенное значение \tilde{I} . Разность точного и приближенного значений интеграла называется абсолютной погрешностью квадратурной формулы (или численного метода),

$$R = I - \widetilde{I}$$
.

Квадратурные формулы используют для вычисления интеграла (1) значения $y_0 = f(x_0)$, $y_1 = f(x_1)$, ..., $y_n = f(x_n)$ функции f(x) в точках $x_0, x_1, ..., x_n$ отрезка [a,b]. Квадратурная формула имеет вид

$$I \approx \sum_{i=0}^{n} c_i y_i , \qquad (2)$$

где c_i - некоторые коэффициенты, которые называют весовыми.

Напомним геометрический смысл определенного интеграла: I выражает площадь соответствующей криволинейной трапеции (фигуры, ограниченной графиком функции y = f(x), прямыми x = a, x = b и осью 0x).

Рассмотрим два подхода к решению задачи численного интегрирования.

- 1) Разобьем отрезок интегрирования [a,b] на n частичных отрезков, вычислим интегралы на частичных отрезках. Интеграл на всем отрезке интегрирования [a,b] равен сумме интегралов на частичных отрезках (свойство аддитивности определенного интеграла).
- 2) Вычислим $\int_a^b f(x)dx$, заменяя подынтегральную функцию f(x) на всем отрезке интегрирования [a,b] интерполяционным полиномом Лагранжа $P_n(x)$, построенным на n+1 узлах $x_0,x_1,...,x_n$.

Обозначим через M_n максимальное по модулю значение производной n - го порядка функции f(x) на отрезке[a,b]:

$$M_{n} = \max \left| f^{(n)}(x) \right|$$
$$x \in [a, b]$$

Рассмотрим варианты решения данной задачи.

Формулы прямоугольников

Для простоты разобьем отрезок интегрирования $\begin{bmatrix} a & b \end{bmatrix}$ на n частей точками, равноудаленными друг от друга: $a = x_0 < x_1 < ... < x_n = b$ так, что будет выполняться равенство: $x_k = x_0 + kh, k = \overline{0,n}$, где $h = \frac{b-a}{n}$.

Аппроксимируем площадь под графиком функции f(x) суммой площадей прямоугольников с основанием h и высотой $f(\xi)$, где $x_k \le \xi \le x_{k+1}$.

Причем, если взять $\xi = x_k, k = \overline{0, n-1}$ (левую крайнюю точку частичного отрезка), то получим формулу **левых прямоугольников**:

$$\int_{b}^{a} f(x)dx \approx h(y_0 + y_1 + \dots + y_{n-1}) \approx \frac{b-a}{n}(y_0 + y_1 + \dots + y_{n-1}) = h \sum_{k=0}^{n-1} y_k.$$

Мы видим, что весовые коэффициенты формулы левых прямоугольников в случае равностоящих узлов равны h , кроме коэффициента при y_n , который равен 0.

Абсолютная погрешность формулы левых прямоугольников определяется выражением:

$$|R| \leq \frac{M_1(b-a)}{2}h$$
,

ГДе
$$M_1 = \max |f'(x)|$$
. $x \in [a,b]$

Мы видим, что погрешность метода левых прямоугольников имеет тот же порядок, что шаг интегрирования h (первый порядок по h). Поскольку для функций вида f(x) = const $M_1 = 0$, то для таких функций формула левых прямоугольников является точной.

А если взять $\xi = x_k, k = \overline{1,n}$ (правую крайнюю точку частичного отрезка), то получим формулу **правых прямоугольников**:

$$\int_{a}^{b} f(x)dx \approx h(y_1 + y_2 + \dots + y_n) \approx \frac{b - a}{n} (y_1 + y_2 + \dots + y_n) = h \sum_{k=1}^{n} y_k.$$

Погрешность метода правых прямоугольников имеет тот же порядок, что и шаг интегрирования h .

В случае, когда мы берем среднюю точку $\xi = \frac{(x_{k-1} + x_k)}{2}, k = \overline{1,n}$, получаем формулу средних прямоугольников:

$$\int_{h}^{a} f(x) \approx h[f(\overline{x_{1}}) + ... + f(\overline{x_{1}})], \quad \overline{x_{k}} = \frac{x_{k-1} + x_{k}}{2}.$$

Абсолютная погрешность формулы средних прямоугольников оценивается выражением:

$$\left|R\right| \leq \frac{M_2(b-a)}{24}h^2,$$

Погрешность формулы средних прямоугольников имеет второй порядок по $h(0(h^2))$.

Наиболее употребительной является формула средних прямоугольников.

Формула трапеций

Заменим площадь криволинейной трапеции суммой площадей прямолинейных трапеций, построенных на частичных отрезках $[x_k, x_{k+1}]$, $k = \overline{0, n-1}$. Площадь элементарной прямолинейной трапеции равна:

$$S_k = \frac{y_k + y_{k+1}}{2}h,$$

а интеграл равен:

$$\int_{a}^{b} f(x)dx \approx h\left(\frac{y_{0} + y_{m}}{2} + y_{1} + \dots + y_{n-1}\right) \approx \frac{b - a}{n}\left(\frac{y_{0} + y_{n}}{2} + y_{1} + \dots + y_{n-1}\right) = h\left(\frac{y_{0} + y_{n}}{2} + \sum_{k=1}^{n-1} y_{k}\right).$$

Оценка абсолютной погрешности на всем отрезке интегрирования определяется выражением:

$$\left|R\right| = \frac{M_2(b-a)}{12}h^2$$

Погрешность метода трапеций имеет тот же порядок, что и h^2 . Для функций вида $f(x) = c_0 + c_1 x$ (полиномов первой степени) формула трапеций является точной.

Формула Симпсона (формула парабол).

Теперь аппроксимируем функцию на элементарном отрезке параболой. По сравнению с предыдущими способами вдвое уменьшим расстояние между узлами $h=\frac{b-a}{2n}$. Таким образом, получаем 2n частичных отрезков и (2m+1) узлов интегрирования. Значения функции в узлах: $y_0, y_1, ..., y_{2n}$. Квадратурная формула Симпсона имеет вид:

$$\int_{a}^{b} f(x)dx = \frac{h}{3} [y_0 + y_{2n} + 2(y_2 + \dots + y_{2n-2}) + 4(y_1 + \dots + y_{2n-1})] = \frac{h}{3} \left(y_0 + y_{2n} + 2 \sum_{k=2}^{2n-2} y_{2k-2} + 4 \sum_{k=1}^{2k-1} y_{2k-1} \right)$$

Абсолютная погрешность формулы Симпсона оценивается выражением:

$$\mid R \mid \leq \frac{M_4(b-a)}{180}h^4$$

Абсолютная погрешность формулы Симпсона имеет тот же порядок, что и h^4 (четвертый порядок точности). Формула Симпсона точна для полиномов степени $n \le 3$.

При приближенном вычислении определенного интеграла на компьютере оценка точности вычислений по приведенным выше формулам для погрешностей, как правило, не применяется ввиду трудности нахождения $^{M_{-n}}$. В таких случаях используют *правило Рунге*.

Правило Рунге основано на соотношении:

$$\frac{\left|\widetilde{I}_{2n}-\widetilde{I}_{2n}\right|}{2^{p}-1}<\varepsilon,$$
 (3)

где \tilde{I}_n , \tilde{I}_{2n} - приближенные значения определенного интеграла, вычисленные при разбиении отрезка интегрирования на n и 2n частей соответственно; p - порядок метода; ε - заданная точность. При каждом последующем приближении число отрезков разбиения удваивается. Если условие () выполнено, за приближенное значение интеграла принимается значение \tilde{I}_{2n} , т.е. $I = \tilde{I}_{2n} \pm \varepsilon$.Так как оценка осуществляется после вычисления, то она является апостериорной.

Напомним порядки методов (по h):

Задание:

1. Реализовать программу вычисления приблизительным методом. Частота n = 10, 20, 50,100, 500 (количество отрезков на которые разбивается интервал интегрирования). 2. Сравнить результат работы реализованного метода с разными частотами.

№Интеграла:

- $1. \int_{1}^{2} \frac{\ln x}{x} dx .$
- 2. $\int_{1}^{2} \frac{x}{1+x^2} dx$.
- 3. $\int_{0}^{\pi} x \sin x dx$.
- 4. $\int_{0}^{3} \frac{x}{\sqrt{1+x}} dx$.
- 5. $\int_{0}^{1} xe^{2x} dx$.

Методами:

- 1. левых прямоугольников.
- 2. правых прямоугольников.
- 3. средних прямоугольников.
- 4. трапеций.

Варианты

№ Варианта	№ Интеграла	№ Метода
1	1	1
2	2	2
3	3	3
4	4	4
5	5	1
6	1	2
7	2	3
8	3	4
9	4	1
10	5	2
11	1	3
12	2	4
13	3	2
14	1	4
15	2	3

16	3	2
17	4	1
18	5	4
19	1	3
20	2	2
21	3	1
22	4	4
23	5	3
24	1	2
25	2	1
26	3	4
27	4	3