

Dependable Computing Modeling and Simulation

Discrete event simulation

Master degree in

Engineering in Computer Science

Simulation

- Software program emulating how a system works
 - Existing systems
 - Systems in designing phase
- System behavior is described by its <u>state</u>

Applications

- System components interactions
- Evaluation about how the system behavior changes when subject to modifications
- Performances in different functional modes (design phase)
- Analytical models validation

Typical phases

- 1) Problem formulation
- 2) Data collection
- 3) Model formulation
- 4) Model evaluation
- 5) Model translation
- 6) Model verification
- 7) Experiments planning
- 8) Analysis

Phases diagram

Problem formulation

- Goals
 - performances
 - input/output relations
 - optimization
 - comparison
- Measures of interest
- Input parameters

Model design and data collection

- Choice on what to represent
- Inputs
 - Service times
 - Inter-arrival times
- Experimental data
- Realistic hypothesis

Model formulation and evaluation

- Model simplification
- Refinement
- Abstraction of main characteristics

Model translation

- Programming language
 - General purpose(SIMSCRIPT, MODSIM, ...)
 - Simulation oriented

Model verification

- Correctness
 - Logic structure
 - Input and output interface modules

Experiment planning

- In this phase should be choosen
 - Initialization period
 - Simulation time
 - Number of simulations

Result Analysis

- Results are collected
- Goodness of results
 - More simulations can be needed

Some definitions

- System: set of entities interacting to achieve a goal
- Model: abstract representation of logical system connections; it describes the system through state, activities and their attributes

Some definitions (contd.)

- System state: the set of variables that identify the system at any time instant
- Entity: each system component we want to represent
- Attributes: characteristic of an entity
- Events: a fact able to change system state
 - conditioned (or dependent) event
 - primary (or independent) event

Some definitions (contd.)

- Event calendar: list of the happening events, ordered over the time
- Activity: a well identified time period
- Delay: an undefined time period (the length is unknown)
- Clock: a variable accounting for the simulated time

Events

- System state changes in a discrete way
- Type of events must be identified
- Longitudinal analysis
 - entities evolve in parallel
 - different objects in movement

Events

- Given an event, it influences the system state and attributes of entities
- Based on the attribute values at a given simulated time, future events are identified

Discrete event simulation

- A sequence of system snapshots over the time (simulated)
- A snapshot is constituted by:
 - System state
 - Active activities (a list)
 - Entity states
 - Cumulative statistics and counters
- Final state

Events

- When an event happens
 - The clock advances
 - Future events list is modified (at least one event is removed)
- System state updating
 - Data for statistics
 - Entity set
 - System state

Notation

- τ : simulation time
- x; system state at i-th step
- e: generic event
- $\delta(x,e)$: transition function state

Initialization

- Future event calendar is set with the happening events at time 0 (primary events)
- Implementation
 - Chained list ordered according to the scheduling time (the time when an event happens)

Future event list

- It is an important data structure
 - It is always accessed by read and insert operations
 - efficiency
- The head is removed (next event)
- Sets of event are modified

Simulation running

Time instant τ_{k} , states x_{k}

- 1) Get (e_{k}, τ_{k}) by the future event list
- 2) $\tau = \tau + \tau_k$ (time advances in a discrete way)
- 3) $x_{k+1} = \delta(x_k e_k)$
 - Update statistics
 - impossible events in X_{k+1} are removed
 - New possible events, due to the happening of e_{κ} are added to the future events list
- 4) Sort the list

An example: a queuing system

- Costumers arrive at random inter-arrival time (Poissonian process)
- If the server is busy, costumer will wait into the queue
- When the service completes, costumer under service leaves the system
- The server can be into one of two states: busy and free

Basic elements

- System state: number of costumers in the queue, server state
- Entities: server, costumers, queue
 - Attributes?
- Events: costumer arrival, costumer departure, service starting (dependent event), simulation end
- Activities: inter-arrival and service times
- Delays: costumer waiting times

Event: costumer arrival

- Actions
 - next costumer arrival is planned (primary event)
 - free server
 - Server state changes to busy and the end of service event is planned
 - busy server
 - number of queued client increases

Event: costumer departure

- Actions
 - the server becomes free
 - if the queue is not empty
 - the number of queued costumers decreases
 - server becomes busy
 - a departure is planned

Event: simulation end

- Action
 - none (system state remains the same)

 Simulation ends and all the statistics are computed

- Simulation time?
 - Time to serve the first five costumers
 - Simulation end event
 - Unknown
- Measures
 - Expected waiting time
 - Server utilization
 - Expected queue length

Expected waiting time

- Each client has a different waiting time (θ_i) in the queue
- N costumers
- A possible estimation is

$$\hat{\theta} = \frac{1}{N} \sum_{k=1}^{N} \theta_k$$

Utilization

- $T_N = \tau_f \tau_O$
- T(i): overall time during which i costumers are inside the system

$$\hat{\mathbf{v}} = \frac{1}{T_N} \sum_{i=1}^{\infty} T(i) = 1 - \frac{T(0)}{T_N}$$

Expected queue length

• $p_N(i)$: probability that the queue length is i

$$\bar{x} = \sum_{i=1}^{\infty} i p_N(i)$$

$$\hat{x} = \sum_{i=1}^{\infty} i \, \hat{p}_{N}(i) = \frac{1}{T_{N}} \sum_{i=0}^{\infty} i \, T(i)$$

Involved variables

Computation of expected waiting time:

$$\theta_i, \quad 1 \leq i \leq N \quad \text{=> list of floats/doubles}$$

Computation of utilization:

$$T(0) \Rightarrow a float/double$$

Computation of expected queue length:

$$T(i), 1 \le i \le N \Rightarrow \text{list of floats/doubles}$$

- Optimization by using an accumulator
- Number of customers \Rightarrow an integer N

Events: occurrences

Costumer	Inter-arrival times	Arrival times
1		0
2	2	2
3	4	6
4	1	7
5	1	8

Costumers	Service time
1	3
2	2
3	3
4	4
5	2

Calendar

Simulated time	Event type	Client number
0	arrival	1
2	arrival	2
3	depature	1
5	depature	2
6	arrival	3
7	arrival	4
8	arrival	5
9	depature	3
13	depature	4
15	depature	5

- τ =0: simulation starts
- Server state: busy
- Queue length: 1
- Future events
 - $\tau = 2 : arrival (2)$
 - $-\tau$ =3 : departure (1)
 - $\tau = \tau_f$: simulation end

$$-N=0$$

- τ =2: costumer 2 arrives
- Server state: busy
- Queue length: 2
- Future events
 - τ =3 : departure (1)
 - $\tau = 6 : arrival (3)$
 - $\tau = \tau_{\rm f}$: simulation end

$$-N=0$$

$$-T(1) = 2$$

- $\tau=3$: client 1 departs
- Server state: busy
- Queue length: 1
- Future events
 - $-\tau$ =5 : departure (2)
 - $\tau = 6 : arrival (3)$
 - $\tau = \tau_{\rm f}$: simulation end

$$-N=1$$

$$-\theta_1 = 3$$

$$-T(1) = 2$$

$$-T(2) = 1$$

- τ =5: client 2 departs
- Server state: free
- Queue length: 0
- Future events
 - $\tau = 6 : arrival (3)$
 - $\tau = \tau_f$: simulation end

$$-N=2$$

$$-\theta_1 = 3$$

$$-\theta_2 = 3$$

$$-T(1) = 4$$

$$-T(2) = 1$$

- τ =6: client 3 arrives
- Server state: busy
- Queue length: 1
- Future events
 - $\tau = 7 : arrival (4)$
 - $-\tau$ =9 : departure (3)
 - $\tau = \tau_f$: simulation end

$$-N=2$$

$$-\theta_1 = 3$$

$$-\theta_2 = 3$$

$$-\mathsf{T}(\mathsf{O})=1$$

$$-\mathsf{T}(1)=4$$

$$-T(2) = 1$$

- τ =7: client 4 arrives
- Server state: busy
- Queue length: 2
- Future events
 - $\tau = 8 : arrival (5)$
 - $-\tau$ =9 : departure (3)
 - $\tau = \tau_f$: simulation end

$$-N=2$$

$$-\theta_1 = 3$$

$$-\theta_2 = 3$$

$$-\mathsf{T}(\mathsf{O})=1$$

$$-T(1) = 5$$

$$-T(2) = 1$$

- τ =8: client 5 arrives
- Server state: busy
- Queue length: 3
- Future events
 - $-\tau$ =9: departure (3)
 - $\tau = \tau_f$: simulation end

$$-N=2$$

$$-\theta_1 = 3$$

$$-\theta_2 = 3$$

$$-T(0) = 1$$

$$-T(1) = 5$$

$$-T(2) = 2$$

- τ =9: client 3 departs
- Server state: busy
- Queue length: 2
- Future events
 - $-\tau$ =13 : departure (4)
 - $\tau = \tau_f$: simulation end

$$-N=3$$

$$-\theta_1 = 3$$

$$-\theta_2 = 3$$

$$-\theta_3 = 3$$

$$-\mathsf{T}(\mathsf{O})=1$$

$$- T(1) = 5$$

$$-T(2) = 2$$

$$- T(3) = 1$$

- τ =13: client 4 departs
- Server state: busy
- Queue length: 1
- Future events
 - $-\tau$ =15 : departure (5)
 - $\tau = \tau_f$: simulation end

$$-N=4$$

$$-\theta_1 = 3$$

$$-\theta_2 = 3$$

$$-\theta_3 = 3$$

$$-\theta_4 = 6$$

$$-\mathsf{T}(\mathsf{O})=1$$

$$- T(1) = 5$$

$$-T(2) = 6$$

$$- T(3) = 1$$

- τ =15: client 5 departs
- Server state: free
- Queue length: 0
- Future events

$$-N=5$$

$$-\theta_1 = 3$$

$$-\theta_2 = 3$$

$$\theta_3 = 3$$

$$-\theta_{A}=6$$

$$\theta_5 = 7$$

$$- T(0) = 1$$

$$-$$
 T(1) = 7

$$- T(2) = 6$$

$$-$$
 T(3) = 1

Measures

Simulation ends at time 15

$$\hat{\theta} = \frac{3+3+3+6+7}{5} = 4,4$$

$$\hat{\mathbf{v}} = 1 - \frac{T(0)}{15} = 1 - \frac{1}{15} \approx 0.933$$

$$\hat{x} = \frac{1}{15} \sum_{i=0}^{\infty} iT(i) = \frac{(0 \times 1) + (1 \times 7) + (2 \times 6) + (3 \times 1)}{15} \approx 1,467$$