Towards Building Secure and Efficient Decentralized Systems Dr. Yuzhe Tang

EECS, Syracuse University

Modern infrastructures evolves to be more open and decentralized.

- Financial ledgers: blockchains
- Web infrastructures: transparency logs
- Cloud computing: decentralized storage

Intention of decentralization & open-membership designs:

- Trustworthy & more accountable

But two consequences of decentralized & open systems:

- Larger attack surface ...

But two consequences of decentralized & open systems:

- Larger attack surface ...

How to understand & harden security?

But two consequences of decentralized & open systems:

- Larger attack surface ...

How to understand & harden security?

- Higher unit cost for basic operations ...

But two consequences of decentralized & open systems:

- Larger attack surface ...

How to understand & harden security?

- Higher unit cost for basic operations ...

How to optimize the application cost?

Example Projects Presented in this Talk

- How to understand & harden the security in emerging large-scale systems?
 - Securing blockchains under DoS vectors (CCS'21, NDSS'21, IMC'21)
- How to analyze & optimize perf./costs in security-centric large-scale systems?
 - Cost-optimizing DApps without losing security (FSE'21, Middleware'20, ICDE'19)

Talk Outline

Theme 1: Securing blockchains under DoS vectors

- RQ1: DoS security on TxRelay (published in NDSS'21)
- RQ2: DoS security on Tx propagation (ACM IMC'21)
- RQ3: DoS security on Mempool (ACM CCS'21)

Theme 2: Optimizing the DApp cost without losing security

Overview of Other Research Themes

Future Research Directions

Denial of Blockchain comm. channel service?

Denial of Blockchain comm. channel service?

- Miner unable to include txs; empty blocks.
 - low revenue, lose miners, 51% attacks

Denial of Blockchain comm. channel service?

- Miner unable to include txs; empty blocks.
 - low revenue, lose miners, 51% attacks
 Clients cannot send txs.
 - Frontrunning, lose clients

Research statement:

Whether & how resilient are Ethereum blockchains against denial of comm. channel service?

Research statement:

Whether & how resilient are Ethereum blockchains against denial of comm. channel service?

Rank	Name	Symbol	Market Cap	Price
1	Bitcoin	ВТС	\$1,027,956,378,947	\$54,567.67
2	♦ Ethereum	ETH	\$428,418,048,937	\$3,635.44

Blockchain Security under DoS: Related Works

Existing works

- BDoS (CCS'20),
 selfish mining (FC'14),
 51% attacks
- Smart-contract DoS (NDSS'20), Bribery (SP'21)

RQ1. Blockchain Security under DoS Tx Relay

Formulated problem:

- Client

 Tx

 Propagation

 mem
 pool

 Miner Blocks
- Observe a vulnerable relay API (eth_call)
- If exposed, straightforward DoS exploiting eth_call

Formulated problem:

- Observe a vulnerable relay API (eth_call)
- If exposed, straightforward DoS exploiting eth call

RQ1 (Exploitability measurement): Under the DoS exploiting the vulnerable API, how exploitable are real-world blackbox relay services are?

Proposed method (intuition)

 Detect presence of load balancing inside tx relay services.

Proposed method (intuition)

- Detect presence of load balancing inside tx relay services.
- Send two double-spending txs to a RPC service & observe if both requests succeed.
 - Both requests succeed ⇒ load balancing detected.
 - One request fail ⇒ No load balancing detected.

Results: on mainnet services

Type	RPC services	1IP-1key	1IP-2key	2IP-1key	Gas
		(LB0)	(LB1)	(LB2)	limit
i	ServiceX1	X	X	X	X
	ServiceX2	X	X	X	X
	ServiceX3	X	×	×	50
ii	ServiceX4	Х	/	Х	X
	ServiceX5	Х	Х	✓	Х
iii	ServiceX6	/	/	/	10
	ServiceX7	/	/	/	X
	ServiceX9	/	/	/	5
	ServiceX8	/	/	/	1.5

Publication: NDSS 2021

"As Strong As the Weakest Link: How to Break and Fix Blockchain DApps at RPC Service?" Kai Li, Jiaqi Chen, Xianghong Liu, Yuzhe Tang, XiaoFeng Wang, Xiapu Luo.

Motivation: How resilient is Ethereum's Tx Propagation under single-point-of-failure?

STAR

 Single-point-of-failure by existing single-node attacks (e.g., eclipse attacks, DoERS, DETER)

Propagation

mem

pool

mem

pool

Propagation

RQ2. Security under DoS Tx Propagation

Formulated problem:

RQ2 (Network measurement): What's Ethereum's network topology?

Related works	Blockchain	Measurement Target
[Neudecker et al. TR'18]	Bitcoin	Nodes
[Miller et al. TR'15], [IEEE ATC'16], TxProbe [FC'19]	Bitcoin	Edges
[FC'20]	Monero	Edges
[IMC'18], [FC'21]	Ethereum	Nodes
?	Ethereum	Edges

Propagation mem pool Miner Blocks

Formulated problem:

RQ2 (Network measurement):

How to measure if remote Ethereum nodes (A & B) are connected?

Proposed method (intuition)

- Preliminary: tx replacement policies
 - Old tx1 replaced by a newer, double spending tx2 if tx2 has sufficient (10%) price bump
- Key insight:
 - Price bump & future txs to enforce isolation.

mem

pool

Propagation

Results: Full-network topology in testnets

- Lower modularity & fewer cliques than random graphs
- Resilient to single-point-of-failure, but unsecure for low-degree nodes

(b) Geo distribution of Rinkeby

mem

pool

Propagation

mem pool

- Results: Critical-node subnet in mainnet
 - Biased node connections towards popular services

Centralization leads to risks

Table 6: Connections among critical nodes

Type	Conn.	Type	Conn.
SrvR1- SrvM1	1	SrvM1- SrvM1	Х
SrvR1- SrvM2	1	SrvM1- SrvM2	1
SrvR1- SrvM3	1	SrvM1- SrvM4	1
SrvR1- SrvM4	1	SrvM1- SrvM3	1
SrvR2- SrvM1	X	SrvM2- SrvM2	1
SrvR2- SrvM2	X	SrvM2- SrvM3	1
SrvR2- SrvM3	X	SrvM2- SrvM4	1
SrvR2- SrvM4	X	SrvM3- SrvM4	1
SrvR2- SrvR1	Х	SrvR1- SrvR1	1

Publication: **ACM IMC 2021**

TopoShot: Uncovering Ethereum's Network Topology Leveraging Replacement Transactions. Kai Li, Yuzhe Tang, Jiaqi Chen, Yibo Wang, Xianghong Liu

RQ3. Security under DoS Mempool

POO

Formulated problem:

RQ3 (Attack design): Whether possible and how to spam a remote mempool at low cost?

RQ3. Security under DoS Mempool

Proposed method (intuition):

- Ethereum uses auction to determine tx admission priority.
 - Necessary to mitigate spamming (Bitcoin16)
- Protocol level: Assume all txs are profitable...
- Implementation level: False assumption!
 - Unconfirmed Ethereum txs are invalid and unprofitable.
- Idea: Send unprofitable and high-priced txs to occupy an Ethereum node's mempool.

Proposed method (intuition): Attack

Attacker node

Proposed method (intuition): Attack

Proposed method (intuition): Attack

Attacker node

admitting tx3 leads to

evict tx1

Proposed method (intuition): Attack

Attacker node

admitting tx3 leads to

- evict tx1
- 2. turn tx2 to future

Victim txpool

Tx relay Tx relay Tx Propagation Tx Tx

RQ3. Security under DoS Mempool

Results: Attack success & cost in testnets

- Launching two supernodes joining Ropsten testnets.
- Using the node discoverability method to discover top miners.

	Block	Age	Txn	Uncles	Miner	Gas Used	Gas Limit	Avg.Gas Price	Reward
	9450109	2 mins ago	53	0	0x0000000000b00df35	7,996,442 (99.96%)	8,000,000	4.06 Gwei	2.03244 Ether
	9450108	2 mins ago	1	1	0x4b0c63df3cfa34008	21,000 (0.26%)	8,000,000	1.00 Gwei	2.06252 Ether
Attack	9450107	2 mins ago	31	0	0x0000000000b00df35	7,985,261 (99.82%)	8,000,000	73.79 Gwei	2.58925 Ether
stops	9450106	3 mins ago	1	0	0x4b0c63df3cfa34008	21,000 (0.26%)	8,000,000	1.00 Gwei	2.00002 Ether
	9450105	3 mins ago	0	1	0x4b0c63df3cfa34008	0 (0.00%)	8,000,000	×	2.0625 Ether
	9450104	4 mins ago	1	0	0x4b0c63df3cfa34008	21,000 (0.26%)	8,000,000	1.00 Gwei	2.00002 Ether
Attack	9450103	4 mins ago	1	0	0x4b0c63df3cfa34008	142,537 (1.78%)	8,000,000	100.00 Gwei	2.01425 Ether
begins	9450102	5 mins ago	51	0	0x4735581201f4cad63	7,859,945 (98.25%)	8,000,000	4.37 Gwei	2.03435 Ether
	9450101	5 mins ago	46	0	0x0000000000b00df35	2,583,950 (32.30%)	8,000,000	2.75 Gwei	2.0071 Ether
	9450100	6 mins ago	77	0	0x4735581201f4cad63	7,910,342 (98.88%)	8,000,000	1.79 Gwei	2.01418 Ether

Web requests Client Tx Propagation

mem

RQ3. Security under DoS Mempool

Results: Exploitability probes in mainnet

Service name	# of nodes	t_{1m}/X	t_{2m}/Z	Client-codename				
Mining pools								
SrvM1	59	✓	✓	Geth-turbo				
SrvM2	8	√	√	Geth-ethereumsolo,				
				Geth-ethereumpplns				
SrvM3	6	✓	√	Geth-XX				
SrvM4	2	✓	√	Geth-XX				
RPC services								
SrvR1	48	✓	✓	Geth-omnibus				
SrvR2	1	✓	√	Geth-ethshared				

Publication: ACM CCS 2021

DETER: Denial of Ethereum's Txpool Service. Kai Li, Yibo Wang, Yuzhe Tang

Mitigation scheme:

- Goal: DETER security versus miner revenue.
- Ideal: Decline any unprofitable txs.
- But profitability cannot be known upon admission?
- Heuristics: decline future txs (M0), decline exploitable tx eviction (M1).
- Evaluation: M0/M1 impl.'ed as middleware on mempool

Schemes	Miners' revenue	DETER security		
Schemes	(Ether)	t_1/X	t_2/Z	
Geth (default)	16.5388	√ / ✓ (Table 2)		
M_0 (in Appendix 14.1)	15.9506(-3.56%)	X	Х	
M_1	16.5423(+0.002%)	X	Х	

DETER/DoERS bugs confirmed by Ethereum client developers, RPC services & mining pools.

- DETER/DoERS bugs confirmed by Ethereum client developers, RPC services & mining pools.
- Bug bounty rewarded: >\$22,000

- DETER/DoERS bugs confirmed by Ethereum client developers, RPC services & mining pools.
- Bug bounty rewarded: >\$22,000
 - Acknowledgements https://bounty.ethereum.org/

- DETER/DoERS bugs confirmed by Ethereum client developers, RPC services & mining pools.
- Bug bounty rewarded: >\$22,000
 - Acknowledgements https://bounty.ethereum.org/
- Quick code fix deployed, and advanced fixes in progress.

Talk Outline

Theme 1: Securing blockchains under DoS vectors

Theme 2: Optimizing the DApp cost without losing security

- RQ4: Reducing data movement costs
 - By batched processing (FSE'21)
 - By workload-aware data placement (Middleware'20)

Overview of Other Research Themes

Future research directions

Observation: Fees are skyrocketing!

- Fees set by a market/auction (FPA)
- High fees as a result of economics:
 - More demand than supply.

Observation: Fees are skyrocketing!

- Fees set by a market/auction (FPA)
- High fees as a result of economics:

2:49 AM · Jan 4, 2021 · Twitter Web App

More demand than supply.

Too Costly Ethereum is Pushing DeFi **Users Away, Fuelling BNB Rally** Consequence: Scared away customers

CZ Binance #ETH network fees are \$155 per transaction. #BSC № network fees are \$0.15 per transaction, and 100% compatible.

vitalik.eth 🔮 @VitalikButerin

To those replying with "gas fees are too high", my answer to that is "well then more people should be accepting payments directly through zksync/loopring/OMG".

Goal: Make DApps'/smart-contracts' use of blockchain efficient, without modifying underlying blockchains.

- Ease of deployment as a middleware onto operational blockchain.
- Distinct from research on "more efficient blockchains"

Recall the communication-channel view of blockchain ecosystem

Theme 2^{3M}: DApp Cost Efficiency: System Model

Two middlewares in BKC-client comm. channel.

- Untrusted off-chain relay server
- Trusted on-chain smart contract.

Approach: Design & impl. cost-optimization schemes in the two blockchain middlewares.

Optimization approach 1:

- Batched processing of smart-contract invocations (FSE'21)

Optimization approach 2:

Dynamic data replication on/off-chain (Middleware'20)

Talk Outline

Theme 1: Securing blockchains under DoS vectors

Theme 2: Optimizing the DApp cost without losing security

Overview of Other Research Themes

Future Research Directions

Current Research: *Methods*, Projects, Grants & Papers.

Applied research: Basic research: Security-analyze, measure, harden Next-gen security app. & optimize emerging/evolving infrastructures Apply P6: Secure data federation P1: BKC (blockchain) P2: Cost-optimization DoS security of BKC-based DApps Grant: NSF-IUCRC Paper: CCS21, Paper: FSE21, MW20, Paper: Bioinformatics ICDE19,TPDS13 IMC21, NDSS21 P7: Educational lab dev. P4: Optimize MPC in P3: Transparency log federated analytics security against forks Grants(3): NSF-SaTC, Paper: TKDE15/ NSA, Intel Paper: MW20w ICDCS14/CIKM11 Paper: CISSE P5: SGX side-channel security Paper: MW21i, Courses Grant: NSF-SaTC SysTex17 CIS/FIN629 BKC Feedback foundation & app. Security measure & Perf optimization CIS428 applied crypto harden Protocol analysis & design

Acknowledgement

- Collaborators: XiaoFeng Wang, Xiapu Luo, Jianliang Xu, etc.

My students: Kai Li, Yibo Wang, Jiaqi Chen, Yuxuan Zhou,
 Sencer Burak Somuncuoglu

- Grant support from NSF, NSA, AFRL and industrial gifts from Intel.

Takeaway Points

- Research methodology
 - Target (sub)system: large-scale infrastructures, emerging/evolving features, code in security/cost-critical path.
 - Security research: Understand, measure & harden security?
 - Systems research: Analyze & optimize performance?

- Example research themes in this talk
 - Securing blockchains under DoS vectors (CCS, NDSS, IMC)
 - Hard problem, clever methods, and significant results
 - Cost-optimizing DApps without losing security (FSE, MW, ICDE)

Backup Slides

Bug Reporting & Ethical Considerations

Ethical measurement on mainnet

- On mainnet, the test evicts at most 10% txs in the txpool.
- As remedy, we resent 10% txs after each test to "refill" the txpool.
- No impacts on txs already included in the block.