Time Series Forecasting. 6. Compositions

Alexey Romanenko alexromsput@gmail.com

FIVT MIPT, September 2017

Содержание

- Compositions of TS Forecasting Algorithms
 - Definitions
 - Simple Compositions of TS Forecasting Algorithm
- 2 Welcome to Aggregating Algorithm
 - Aggregating Algorithm Concept
 - Superpredictions and aggregation function
 - Making Prediction: Substitution Function
- Experiments with Real Data
 - Parameters of Aggregating Algorithm
 - Comparison with Base Algorithms and Other Compositions
 - Comparison with Base Algorithms

Time Series definition

Time series: $y_1, \ldots, y_T, \ldots, y_t \in \mathbb{R}$, — a sequence of values of some variable, detected in a constant time interval.

Time series forecasting task — find function f_T :

$$y_{T+d} \approx f_T(y_T, \dots, y_1, d) \equiv \hat{y}_{T+d|T},$$

where $d \in \{1, \dots, D\}$ — delay, D — horizon.

Another view to TS Forecasting Problem

An outcome space and a prediction space: $\Omega = \Gamma = [Y_1, Y_2] \subset \mathbb{R}$.

Definition

Time series is a sequence of elements from $\Omega^T: X=(y_1,\ldots,y_T)$, where $y_t \in \Omega, \ t=\overline{1,T}$. Element $y_t \in \Omega$ is a point of the time series.

Time series

Online learning

Definition (Game)

Game G comprises $\langle \Omega, \Gamma, \lambda \rangle$ where Ω is a set of outcomes, Γ is a prediction set and $\lambda: \Omega \times \Gamma \to \mathbb{R}^+ \cup \{\infty\}$ is a loss function.

Definition (Forecasting Algorithm)

Forecasting Algorithm is function $A:\Omega^*\to \Gamma$, $\hat{y}_{T+1}^A=A(y_1,\ldots,y_T)$, where \hat{y}_{T+1}^A — forecast of TS point for the moment T+1.

Online learning

Online learning protocol

For $t = 0, \ldots, T, \ldots$

- predict value $\hat{y}_{t+1} \in \Gamma$;
- **2** obtain outcome $y_{t+1} \in \Omega$;
- \bullet calculate loss $\lambda(y_{t+1}, \hat{y}_{t+1})$.

Definition (loss process)

A loss process is cumulative loss at step T Loss_A $(T) = \sum_{t=1}^{T} \lambda(y_t, \hat{x}_t^A)$.

Simple games

Simple games examples:

- binary game $\Omega = \{0,1\}$, $\Gamma = [0,1]$;
- squared game $\lambda(\omega, \gamma) = (\omega \gamma)^2$;
- absolute game $\lambda(\omega, \gamma) = |\omega \gamma|$;
- logarithmic game

$$\lambda(\omega, \gamma) = \begin{cases} -\log_2(1 - \gamma), & \omega = 0; \\ -\log_2(\gamma), & \omega = 1. \end{cases}$$

• simple prediction game $\Omega = \Gamma = \{0, 1\}$,

$$\lambda(\omega, \gamma) = \begin{cases} 0, & \omega = \gamma; \\ 1, & \omega \neq \gamma. \end{cases}$$

Asymmetric Linear and Square Games

• Game
$$G = \langle [Y_1, Y_2], [Y_1, Y_2], \lambda \rangle$$
 where

$$\lambda(x,\hat{x}) = \begin{cases} k_1 \cdot |x - \hat{x}|, & x - \hat{x} < 0 \\ k_2 \cdot |x - \hat{x}|, & x - \hat{x} \ge 0 \end{cases}$$
where $k_1 > 0, k_2 > 0$

linear loss function

$$\lambda(x,\hat{x}) = \begin{cases} k_1 \cdot |x - \hat{x}|, & x - \hat{x} < 0, \\ k_2 \cdot |x - \hat{x}|, & x - \hat{x} \ge 0, \\ \text{where } k_1 > 0, k_2 > 0 \end{cases} \quad \lambda(x,\hat{x}) = \begin{cases} k_1 \cdot (x - \hat{x})^2, & x - \hat{x} < 0, \\ k_2 \cdot (x - \hat{x})^2, & x - \hat{x} \ge 0, \\ \text{where } k_1 > 0, k_2 > 0 \end{cases}$$

square loss function

General Idea of Compositions

Dynamics of loss function for $6\ \mathsf{TS}$ forecasting algorithms:

Idea: use successful base algorithms and don't use less successful.

Adaptive Selection

There is M base algorithms A_1,\ldots,A_M , \hat{y}_{t+d}^j — forecast of A_j for the moment t+d, $e_t^j=y_t-\hat{y}_t^j$ — error of A_j at the moment t, $\tilde{e}_t^j=\delta\sum_{l=1}^t(1-\delta)^{t-l}|e_l^j|$ — exponentially weighted absolute error, δ — smoothing parameter.

The best base algorithm in the moment t:

$$j_t^* = \underset{j=1,...,M}{\operatorname{argmin}} \tilde{e}_t^j.$$

Best indistinctive algorithms:

$$\mathfrak{A}_{t}^{*}(\varepsilon) = \left\{ A_{i} \in \mathfrak{A} | \tilde{e}_{t}^{i} \leq \tilde{e}_{t}^{j_{t}^{*}} + \varepsilon \right\}.$$

Adaptive Selection (composition):

$$\hat{y}_{t+d}^C := \frac{1}{|\mathfrak{A}_t^*(\varepsilon)|} \sum_{A_i \in \mathfrak{A}_t^*(\varepsilon)} \hat{y}_{t+d}^i.$$

Adaptive combination

There is M base algorithms A_1,\ldots,A_M , \hat{y}^j_{t+d} — forecast of A_j for the moment t+d, $e^j_t=y_t-\hat{y}^j_t$ — error of A_j at the moment t, $\tilde{e}^j_t=\delta\sum_{l=1}^t(1-\delta)^{t-l}|e^j_l|$ — exponentially weighted absolute error, δ — smoothing parameter.

Adaptive combination:

$$\hat{y}_{t+d}^C = \sum_{j=1}^M w_t^j \hat{y}_{t+d}^j, \qquad \sum_{j=1}^M w_t^j = 1, \ \forall t.$$

Adaptive weights:

$$w_t^j = \frac{(\tilde{e}_t^j)^{-1}}{\sum_{s=1}^M (\tilde{e}_t^s)^{-1}}.$$

Other Examples of Compositions

Other approaches:

- exponentially weighted squared errors;
- moving averaged squared/absolute errors;
- LSE of weights with regularization;
- ...

Well-known Compositions:

- AFTER (Aggregated Forecast Through Exponential Reweighing) [Yang Y., 2004];
- Averaging according to Inverse Weights , [Timmermann A.G., 2006];
- LAWR (locally adaptive weights with regularization), [Vorontsov K.V., 2006];
- Adaptive selection [Лукашин Ю.П., 2001].
- QR (Quantile Regression)

Loss is more important than forecast

Binary squared game $\Omega = \{0,1\}$, $\Gamma = [0,1], \lambda = (\omega - \gamma)^2$;

- Task 1
 - base algorithm 1 builds constant forecast 0;
 - ullet how can we build forecast of composition AA such that

$$\mathsf{Loss}_{AA} \le \frac{1}{2} \mathsf{Loss}_1?$$

- Answer: ???
- Task 2
 - ullet base algorithm 1 gets an average penalty $rac{1}{2}$
 - \bullet how can we build forecast of composition $\bar{A}A$ such that

$$\mathsf{Loss}_{AA} \leq \frac{1}{2}\mathsf{Loss}_1?$$

• Answer: we build a constant forecast $\frac{1}{2}$

Conclusion: it is more important to look at losses rather than at the forecast itself

Mixability of forecast algorithms

- ullet let us have N forecast algorithms
- ullet $\lambda(y_t,\hat{y}_{j,t})$ loss of algorithm j at forecast of element y_t
- $\mathsf{Loss}_j(T) = \sum_{t=1}^T \lambda(y_t, \hat{y}_{j,t})$ cumulative loss of algorithm j by the time T
- AA − desired composition

Task: how can we mix forecasts of base algorithms so that

$$\mathsf{Loss}_{AA}(T) \preceq \mathsf{Loss}_{j}(T), \ \forall j = \overline{1, N}?$$

ldea: we can focus on cumulative loss $\mathsf{Loss}_j(t)$ of each base algorithm j at every time point t

Kolmogorov Mean as an Aggregation of Arithmetic Mean

Kolmogorov Mean:

$$M(y_1, \dots, y_n) = \varphi^{-1} \left(\frac{1}{n} \sum_{k=1}^n \varphi(y_k) \right) = \varphi^{-1} \left(\frac{\varphi(y_1) + \dots + \varphi(y_n)}{n} \right)$$

- $\varphi(x) = x \Rightarrow M(y_1, \dots, y_n) = \frac{y_1 + \dots + y_n}{n}$ arithmetic mean;
- $\varphi(x)=x^{-1}\Rightarrow M(y_1,\ldots,y_n)=\frac{n}{1/y_1+\cdots+1/y_n}$ harmonic mean;
- $\varphi(x) = \log(x) \Rightarrow M(y_1, \dots, y_n) = \sqrt[n]{y_1 \cdot \dots \cdot y_n}$ geometric mean;
- $\varphi(x) = e^x \Rightarrow \ln\left(\frac{1}{n}\sum_{k=1}^n e^{(y_k)}\right)$

What aggregation (mixability) function should we choose in order to build forecasts?

The Idea of V. Vovk Aggregating Algorithm

- "average"(aggregate) losses instead of forecasts;
- weigh losses in exponential space $p_j \sim \exp^{-\eta \mathsf{Loss}_j(T)}$;

Final composition AA is built based on generalized mixability function:

$$g(y) = \log_{\beta} \left(\sum_{j=1}^{N} \frac{1}{N} \beta^{\mathsf{Loss}_{j}(T) + \lambda(y, \hat{y}_{j, T+1})} \right)$$

where $\beta = e^{-\eta} \in (0,1)$, $\eta \in (0,\infty)$ — learning rate

Super-Prediction

Let us introduce several terms

• pseudo-prediction is a function:

$$f(\omega):\Omega\to[0,+\infty];$$

ullet set of outcomes Γ and loss function λ define real-predictions:

$$\lambda(\cdot,\gamma):\Omega\to[0,+\infty];$$

 let us call superprediction those pseudo-predictions, which dominate some real-prediction:

$$\exists \gamma \in \Gamma \colon \lambda(\omega, \gamma) \le g(\omega), \forall \omega \in \Omega;$$

Example of super-prediction

квадратичная игра $\lambda(\omega, \gamma) = (\omega - \gamma)^2$

логарифмическая игра

$$\lambda(\omega,\gamma) = \left\{ \begin{array}{ll} -\log_2(1-\gamma), & \omega = 0 \\ -\log_2\gamma, & \omega = 1 \end{array} \right.$$

абсолютная игра $\lambda(\omega,\gamma)=|\omega-\gamma|$

простая предсказательная игра

$$\lambda(\omega, \gamma) = \begin{cases} 0, & \omega = \gamma \\ 1, & \omega \neq \gamma \end{cases}$$

Super-prediction set for squared game

Game
$$G = \langle [Y_1, Y_2], [Y_1, Y_2], \lambda = (\omega - \gamma)^2 \rangle$$

Main theoretical result

Theorem (V. Vovk)

If
$$g(\omega) = \log_{\beta} \left(\sum_{j=1}^N \frac{1}{N} \beta^{\mathsf{Loss}_j(T) + \lambda(\omega, \hat{\gamma}_{j,T+1})} \right)$$
, then

$$c(\beta) \cdot g(\omega)$$
 — super–prediction;

That means

• in all observable games: $\exists \gamma \in \Gamma \ \ \forall \omega \in \Omega$

$$\lambda(\omega,\gamma) \leq c(\beta) \cdot \log_{\beta} \left(\sum_{j=1}^{N} \frac{1}{N} \beta^{\mathsf{Loss}_{j}(T) + \lambda(\omega,\hat{\gamma}_{j,T+1})} \right)$$

- $c(\beta) \geq 1$
- if $c(\beta) = 1$ for some β then game is (called) mixable

Mixable Games

- binary log-game is mixable $(\beta \ge 1/2)$
- binary squared game $\Omega = \{0,1\}$, $\Gamma = [0,1]$ is mixable $(\beta \ge 1)$;
- (symmetric) squared game $\langle \Omega = \Gamma = [Y_2, Y_2], \lambda = (\omega \gamma)^2 \rangle$ is mixable

$$\beta \ge \exp\left(-\frac{2}{(Y_2 - Y_1)^2}\right);$$

ullet asymmetric squared game $\langle \Omega = \Gamma = [Y_2, Y_2]$ is mixable

$$\beta \ge \exp\left(-\frac{1}{2 \cdot K \cdot (Y_2 - Y_1)^2}\right),$$

$$K = \frac{2k_1 - k_2 - k^*}{3(k_1 - k_2)} \cdot \frac{k_1 - 2k_2 + k^*}{3(k_1 - k_2)} \cdot \frac{k_1 + k_2 + k^*}{3}, k^* = \sqrt{(k_1 - k_2)^2 + k_1 \cdot k_2}.$$

Not-Mixable Games

simple binary game is not mixable

$$c(\beta) = (\ln \beta) / \left(\ln \frac{1+\beta}{2}\right)$$

- \bullet binary absolute game is not mixable $c(\beta) = \left(\ln\beta\right)/\left(2\ln\frac{1+\beta}{2}\right)$
- ullet absolute game $\Omega=\Gamma=[Y_2,Y_2], \lambda(\omega,\gamma)=|\omega-\gamma|$ не смешиваемая

$$c(\beta) = ((Y_2 - Y_1) \ln \beta) / \left(2 \ln \frac{1 + \beta^{(Y_2 - Y_1)}}{2}\right)$$

absolute asymmetric game is not mixable

$$c(\beta) = \frac{k_1 k_2 (Y_2 - Y_1) \ln(\beta)}{k_1 \ln\left(\frac{k_1}{k_1 + k_2} \frac{1 - \beta^{(k_1 + k_2)(Y_2 - Y_1)}}{1 - \beta^{(k_1)(Y_2 - Y_1)}}\right) + k_2 \ln\left(\frac{k_2}{k_1 + k_2} \frac{1 - \beta^{(k_1 + k_2)(Y_2 - Y_1)}}{1 - \beta^{(k_2)(Y_2 - Y_1)}}\right)}$$

How to build Substitution Function

Condition for S(g):

$$\lambda(Y_1, S(g)) \in [0, g(Y_1)]; \quad \lambda(Y_2, S(g)) \in [0, g(Y_2)]$$

Substitution Function for Squared Game

$$S(g) = \arg\min_{\hat{x}} \sup_{x} \left(\frac{\lambda(x, \hat{x})}{g(x)} \right)$$

$$S(g) = \frac{Y_2\sqrt{g(Y_1)} + Y_1\sqrt{g(Y_2)}}{\sqrt{g(Y_1)} + \sqrt{g(Y_2)}}$$

$$S(g) = \arg\min_{\hat{x}} \|u-v\|_{\infty}$$
, где $u = (g(Y_1), g(Y_2))$, $v = ((\hat{x}-Y_01)^2, (\hat{x}-Y_2)^2)$

$$S(g) = \frac{g(Y_1) - g(Y_2)}{2(Y_2 - Y_1)} + \frac{Y_1 + Y_2}{2}$$

Substitution Function for Asymmetric Squared Game

$$S(g) = \arg\min_{\hat{x}} \sup_{x} \left(\frac{\lambda(x, \hat{x})}{g(x)} \right)$$

$$S_{1}\left(g\right) = \frac{Y_{2}\sqrt{k_{2}g(Y_{1})} + Y_{1}\sqrt{k_{1}g(Y_{2})}}{\sqrt{k_{2}g(Y_{1})} + \sqrt{k_{1}g(Y_{2})}}$$

$$S(g)=rg\min_{\hat{x}}\|u-v\|_{\infty}$$
, where $u=ig(g(Y_1),g(Y_2)ig),$ $v=ig(\lambda(Y_1,\hat{x}),\lambda(Y_2,\hat{x})ig)$

$$\begin{split} S_2\left(g\right) &= \frac{k_2 Y_1 - k_1 Y_2}{k_1 - k_2} - \\ &- \frac{\sqrt{k_2 k_1 (Y_1 - Y_2)^2 + g(Y_1) - g(Y_2)}}{k_1 - k_2} \end{split}$$

Substitution Function for Asymmetric Linear Game

$$S(g) = \arg\min_{\hat{x}} \sup_{x} \left(\frac{\lambda(x, \hat{x})}{g(x)} \right)$$

$$S(g) = \frac{Y_2 k_2 g(Y_1) + Y_1 k_2 g(Y_2)}{k_2 g(Y_1) + k_1 g(Y_2)}$$

$$S(g) = \arg\min_{\hat{x}} \|u-v\|_{\infty}, \text{ где}$$

$$u = \left(g(Y_1), g(Y_2)\right),$$

$$v = \left(\lambda(Y_1, \hat{x}), \lambda(Y_2, \hat{x})\right)$$

$$x = Y_1$$

$$\left(c(\beta)g(Y_1), c(\beta)g(Y_2)\right)$$

$$\hat{x}_{t+1}$$

$$\left(\lambda(Y_1, \hat{x}), \lambda(Y_2, \hat{x})\right)$$

$$\hat{x} = Y_2$$

$$S(g) = \frac{c(\beta)(g(Y_1) - g(Y_2))}{(k_1 + k_2)} + \frac{k_1 Y_1 + k_2 Y_2}{k_1 + k_2}$$

Compositions based on Aggregating Algorithm

Forecasts AA_1 in AA_2

Initialization of weights $p_{j,0} = 1/N$

For t = 0, ..., T - 1

- **①** obtain prediction of experts $\hat{y}_{j,t+1}, \forall j = \overline{1,N}$;
- calculate mixability function:

$$g(x) = \log_{\beta} \left(\sum_{j=1}^{N} p_{j,t} \cdot \beta^{\lambda(y,\hat{y}_{j,t+1})} \right)$$

$$\hat{y}_{AA_1,t+1} = \frac{Y_2\sqrt{g(Y_1)} + Y_1\sqrt{g(Y_2)}}{\sqrt{g(Y_1)} + \sqrt{g(Y_2)}}; \ \hat{y}_{AA_2,t+1} = \frac{g(Y_1) - g(Y_2)}{2(Y_2 - Y_1)} + \frac{Y_1 + Y_2}{2};$$

- **3** obtain actual value y_{t+1} ; calculate loss $\lambda(y_{t+1}, \hat{y}_{t+1})$;
- **3** update weights of experts $p_{j,t+1} = \beta^{\lambda(y_{t+1},\hat{y}_j,t+1)} \cdot p_{j,t}$.

Loss Process Estimation

- ullet Consider base forecast algorithms $\{A^1,\dots,A^N\}$.
- Assign $p_0^j = 1/N$ where $j = \overline{1, N}$.
- Get appropriate β and S(g)
- We obtain a composition AA.
- Time complexity of the composition is O(NT).

Theorem

The loss process AA in a asymmetric loss game G for $\forall (y_1, \ldots, y_T) \in [Y_1, Y_2]^T$, $\forall \{A^1, \ldots, A^M\}$ satisfies inequality:

$$\mathsf{Loss}_{AA}(T) \leq \min_{i=1,\dots,M} \mathsf{Loss}_{A^i}(T) + O\left(\ln(N)\right). \tag{1}$$

Data Description

- 1913 time series from retail nets;
- Length of time series varies from 50 to 1500 points;
- Base algorithms: Exponential Smoothing (ES), Brown's Linear model (BL), Theil-Wage model (TW);
- Training set for base algorithm: 200 time series;
- Training set for parameters of compositions: 1000 time series.

Time series forecast

Deviations

Initial Distribution of Expert Weights

Let $\{AA^j\}_{j=1}^N$ be a set of compositions with different ρ_0 , $N\approx 10^4$

$$L_1(T) = \frac{1}{T} \Big(\max_{j=\overline{1,N}} \mathsf{Loss}_{AA^j}(T) - \min_{j=\overline{1,N}} \mathsf{Loss}_{AA^j}(T) \Big),$$

$$L_{2}(T) = \frac{1}{T} \left(\frac{\max_{j=\overline{1,N}} \mathsf{Loss}_{AA^{j}}(T) - \min_{j=\overline{1,10}} \mathsf{Loss}_{AA^{j}}(T)}{\max_{j=\overline{1,N}} \mathsf{Loss}_{AA^{j}}(T) + \min_{j=\overline{1,10}} \mathsf{Loss}_{AA^{j}}(T)} \right).$$

Examples of Substitution Function

An experiment with real data (1 of 200 time series), $k_1=1,\,k_2=2$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 0.1$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 0.2$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 0.3$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 0.4$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 0.5$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 0.6$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 0.7$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 0.8$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 0.9$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 1.0$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 1.2$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 1.2$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 1.3$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 1.4$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 1.5$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 1.5$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 1.6$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 1.8$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 1.8$$

$$S_{1}, \frac{\tan(\varphi)}{\tan(\varphi^{*})} = 1.9$$

$$S_{1}, \tan(\varphi)$$

$$S_{2}$$

In the next slides: AA_1 corresponds to S_1 , AA_2 corresponds to S_2

Theoretical Bounds

Таблица: MSE of AA_1 and the best expert averaged by 1000 time series

k_1/k_2	1	2	5	10	15	20
AA_1	21.69	32.24	57.33	94.17	110.4	139.9
BE	22.05	32.63	58.24	95.23	111.5	140.6
TB	25.16	38.2	71.80	99.44	141.1	179.7

Comparison with Base Algorithms Example 1

An experiment with real data (1 of 1000 time series)

$$\mathsf{MSE} = \frac{1}{T}\mathsf{Loss}(T)$$

Comparison with Base Algorithms Example 2

An experiment with real data (1 of 1000 time series)

—AA
$$\beta = 0.95$$

...AES $\alpha = 0.8$, $\gamma = 0.6$

...AES $\alpha = 0.8$, $\gamma = 0.9$

...ES $\alpha = 0.9$

...TW $\alpha_1 = 0.6$, $\alpha_2 = 0.3$, $\alpha_3 = 0.3$

...TW $\alpha_1 = 0.6$, $\alpha_2 = 0.3$, $\alpha_3 = 0.6$

--- TW $\alpha_1 = 0.6$, $\alpha_2 = 0.9$, $\alpha_3 = 0.3$

$$\mathsf{MSE} = \frac{1}{T}\mathsf{Loss}(T)$$

Comparison with Other Compositions

Таблица: Comparison of compositions under a symmetric loss function, MSE

М	AFTER	IW	LAWR	BI	AA_1	AA_2
10	6,57	6,66	6,74	6,75	6,43	6,37
25	6,50	6,62	6,92	6,71	6,39	6,31
40	6,55	6,57	6,90	6,66	6,35	6,37
	100%	100%	105%	103%	95%	97%

Таблица: Comparison of compositions under an asymmetric loss function

k_1/k_2	AA_1	AA_2	QR
2	2344	2375	2804
10	2694	2863	4978
100	7700	8605	12223

Conclusion

- Aggregating Algorithm is based on loss process mixing rather forecasts
- it is possible to build theoretical assessment
- compositions based on the aggregating algorithm are adaptive and not time-consuming
- theoretical bound of loss process slightly exceeds the actual loss process of compositions
- Compositions based on the aggregating algorithm can be applied in practice for different loss functions

Literature

V.Vovk and C.J.H.C.Watkins. Universal Portfolio Selection. In *Proceedings* of the 11th Annual Conference on Computional Learning Theory, pages 12-23, 1998.

V.Vovk. Competitive on-line statistics. *International Statistic Review*, 69(2):213-248, 2001.

A. A. Romanenko. Aggregation of Adaptive Forecasting Algorithms Under Asymmetric Loss Function // Lecture Notes in Computer Science, LNCS 9047, Springer International Publishing, 2015. — pp. 137–146.

B. В Вьюгин. МАТЕМАТИЧЕСКИЕ ОСНОВЫ ТЕОРИИ МАШИННОГО ОБУЧЕНИЯ И ПРОГНОЗИРОВАНИЯ, http://iitp.ru/upload/publications/6256/vyugin1.pdf