mSystems Łagania in the manuscript REVISION draft l

- 1 Title:
- Supplemental material of "Health and disease
- imprinted in the time variability of the human
- microbiome"
- 5 Running title:
- Supplemental material of "Microbiota, are you sick?"
- Jose Manuel Martí^{1,2,*}, Daniel Martínez-Martínez^{1,2,3,*}, Teresa Rubio¹, César Gracia^{1,2},
- Manuel Peña², Amparo Latorre^{1,3,4,5}, Andrés Moya^{1,3,4,5,#} & Carlos P. Garay^{1,2,#}
- ¹Institute for Integrative Systems Biology (I2SysBio), 46980, Spain.
- ²Instituto de Física Corpuscular, CSIC-UVEG, P.O. 22085, 46071, Valencia, Spain.
- ³FISABIO, Avda. de Catalunya, 21, 46020, Valencia, Spain.
- ⁴Cavanilles Institute of Biodiversity and Evolutionary Biology, UVEG, 46980, Spain.
- ⁵CIBER en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain

^{*} Equally contributed

[#] Corresponding authors: andres.moya@uv.es, penagaray@gmail.com

Supplementary Table S1. Taylor's parameters. Individuals with either animal-based (A) or plant-based (P) diets (1). Previous to the diet, the population sampled is described by $\bar{V} = 0.09 \pm 0.05, \bar{\beta} = 0.77 \pm 0.04.$

Metadata	V	β	$ar{R}^2$	V_{st}	eta_{st}
A	0.26 ± 0.05	0.826 ± 0.025	0.918	3.1 ± 0.9	1.2 ± 0.6
Α	0.32 ± 0.06	0.857 ± 0.025	0.924	4.4 ± 1.1	2.0 ± 0.6
Α	0.194 ± 0.033	0.813 ± 0.024	0.918	1.9 ± 0.6	0.9 ± 0.6
Α	0.24 ± 0.04	0.824 ± 0.020	0.924	2.7 ± 0.7	1.2 ± 0.5
Α	0.34 ± 0.06	0.855 ± 0.024	0.931	4.7 ± 1.1	1.9 ± 0.6
Α	0.30 ± 0.05	0.847 ± 0.022	0.921	3.9 ± 1.0	1.7 ± 0.5
Α	0.133 ± 0.021	0.784 ± 0.023	0.916	0.7 ± 0.4	0.2 ± 0.6
Α	0.25 ± 0.04	0.831 ± 0.024	0.929	3.0 ± 0.8	1.4 ± 0.6
P	0.23 ± 0.05	0.804 ± 0.035	0.885	2.6 ± 0.9	0.7 ± 0.8
P	0.097 ± 0.018	0.705 ± 0.031	0.891	0.03 ± 0.34	-1.6 ± 0.7
P	0.037 ± 0.006	0.642 ± 0.025	0.881	-1.12 ± 0.11	-3.1 ± 0.6
P	0.118 ± 0.019	0.723 ± 0.025	0.895	0.4 ± 0.4	-1.2 ± 0.6
P	0.17 ± 0.04	0.78 ± 0.04	0.842	1.5 ± 0.7	0.1 ± 0.9
P	0.123 ± 0.020	0.757 ± 0.026	0.914	0.5 ± 0.4	-0.4 ± 0.6
P	0.19 ± 0.05	0.77 ± 0.04	0.871	1.8 ± 0.9	-0.0 ± 0.9
P	0.121 ± 0.020	0.736 ± 0.027	0.921	0.5 ± 0.4	-0.9 ± 0.6
P	0.187 ± 0.034	0.771 ± 0.030	0.908	1.8 ± 0.7	-0.1 ± 0.7
P	0.097 ± 0.015	0.735 ± 0.025	0.922	0.05 ± 0.28	-0.9 ± 0.6

Supplementary Table S2. Taylor's parameters for individuals taking antibiotics (2). Prior to the antibiotics intake, the population sampled is described by $\bar{V} = 0.12 \pm 0.05$, $\bar{\beta} = 0.75 \pm 0.04$.

Metadata	V	β	$ar{R}^2$	V_{st}	eta_{st}
Ab	0.35 ± 0.07	0.81 ± 0.04	0.925	4.3 ± 1.4	1.3 ± 0.9
Ab	0.41 ± 0.09	0.82 ± 0.04	0.908	5.6 ± 1.8	1.6 ± 0.9
Ab	0.23 ± 0.04	0.770 ± 0.031	0.920	2.1 ± 0.8	0.5 ± 0.7
Ab	0.165 ± 0.029	0.738 ± 0.031	0.928	0.9 ± 0.6	-0.3 ± 0.7
Ab	0.34 ± 0.06	0.812 ± 0.032	0.936	4.1 ± 1.2	1.5 ± 0.7
Ab	0.26 ± 0.05	0.798 ± 0.033	0.931	2.8 ± 0.9	1.1 ± 0.8

Supplementary Table S3. Taylor's parameters for persons diagnosed with irritable bowel syndrome (IBS) (3). Healthy individuals sampled in this study are characterized by $\bar{V}=0.135\pm0.010, \bar{\beta}=0.692\pm0.024.$

Metadata	V	β	$ar{R}^2$	V_{st}	eta_{st}
IBS (minor)	0.205 ± 0.034	0.740 ± 0.029	0.917	6.9 ± 3.3	2.0 ± 1.2
IBS (severe)	0.35 ± 0.06	0.793 ± 0.025	0.934	21 ± 6	4.2 ± 1.0

Supplementary Table S4. Taylor's parameters for the healthy subject of the discordant twins (4). This table continues in Supplementary Table 5. The population of healthy twins is characterized by $\bar{V}=0.25\pm0.10, \bar{\beta}=0.863\pm0.028.$

Metadata	V	β	$ar{R}^2$	V_{st}	$oldsymbol{eta_{st}}$
DH	0.27 ± 0.04	0.835 ± 0.016	0.925	0.2 ± 0.4	-1.0 ± 0.6
DH	0.36 ± 0.06	0.858 ± 0.015	0.929	1.1 ± 0.6	-0.2 ± 0.5
DH	0.35 ± 0.06	0.859 ± 0.014	0.926	1.0 ± 0.5	-0.1 ± 0.5
DH	0.25 ± 0.04	0.829 ± 0.014	0.911	0.0 ± 0.4	-1.2 ± 0.5
DH	0.30 ± 0.05	0.844 ± 0.014	0.920	0.5 ± 0.4	-0.7 ± 0.5
DH	0.29 ± 0.05	0.850 ± 0.016	0.915	0.4 ± 0.5	-0.5 ± 0.5
DH	0.28 ± 0.05	0.848 ± 0.016	0.921	0.3 ± 0.5	-0.5 ± 0.6
DH	0.35 ± 0.07	0.861 ± 0.017	0.918	0.9 ± 0.6	-0.0 ± 0.6
DH	0.31 ± 0.04	0.833 ± 0.012	0.916	0.6 ± 0.4	-1.1 ± 0.4
DH	0.33 ± 0.05	0.843 ± 0.013	0.925	0.8 ± 0.5	-0.7 ± 0.5
DH	0.31 ± 0.05	0.852 ± 0.014	0.925	0.6 ± 0.5	-0.4 ± 0.5
DH	0.31 ± 0.05	0.853 ± 0.015	0.930	0.6 ± 0.5	-0.4 ± 0.5
DH	0.203 ± 0.033	0.815 ± 0.015	0.907	-0.44 ± 0.32	-1.7 ± 0.5

Supplementary Table S5. Taylor's parameters for the kwashiorkor part of the discordant twins (4). This is a continuation of Supplementary Table 4. The population of healthy twins is characterized by $\bar{V}=0.25\pm0.10, \bar{\beta}=0.863\pm0.028$.

Metadata	V	β	$ar{R}^2$	V_{st}	$oldsymbol{eta_{st}}$
DK	0.40 ± 0.07	0.859 ± 0.017	0.926	1.5 ± 0.7	-0.1 ± 0.6
DK	0.44 ± 0.08	0.868 ± 0.016	0.919	1.8 ± 0.8	0.2 ± 0.6
DK	0.196 ± 0.031	0.819 ± 0.014	0.916	-0.50 ± 0.30	-1.5 ± 0.5
DK	0.160 ± 0.026	0.798 ± 0.015	0.904	-0.85 ± 0.25	-2.3 ± 0.5
DK	0.30 ± 0.05	0.845 ± 0.014	0.924	0.5 ± 0.4	-0.6 ± 0.5
DK	0.23 ± 0.04	0.834 ± 0.014	0.908	-0.1 ± 0.4	-1.0 ± 0.5
DK	0.27 ± 0.05	0.848 ± 0.015	0.930	0.2 ± 0.4	-0.5 ± 0.5
DK	0.35 ± 0.07	0.860 ± 0.019	0.916	1.0 ± 0.7	-0.1 ± 0.7
DK	0.34 ± 0.05	0.835 ± 0.012	0.917	0.9 ± 0.5	-1.0 ± 0.4
DK	0.25 ± 0.04	0.831 ± 0.012	0.912	0.0 ± 0.4	-1.1 ± 0.4
DK	0.36 ± 0.06	0.858 ± 0.013	0.918	1.1 ± 0.5	-0.2 ± 0.5
DK	0.31 ± 0.06	0.851 ± 0.016	0.924	0.6 ± 0.6	-0.4 ± 0.6
DK	0.149 ± 0.022	0.799 ± 0.013	0.905	-0.96 ± 0.22	-2.2 ± 0.5

Supplementary Table S6. Taylor's parameters for individuals with different degrees of overweight and obesity (5). Healthy people in this study, who were not obese, are characterized by $\bar{V}=0.19\pm0.06$, $\bar{\beta}=0.806\pm0.034$.

Metadata	V	β	$ar{R}^2$	V_{st}	eta_{st}
OW	0.59 ± 0.12	0.894 ± 0.034	0.920	6.6 ± 2.0	2.6 ± 1.0
OW	0.22 ± 0.04	0.830 ± 0.030	0.904	0.5 ± 0.6	0.7 ± 0.9
OBI	0.28 ± 0.04	0.855 ± 0.022	0.958	1.5 ± 0.6	1.4 ± 0.6
OBI	0.33 ± 0.07	0.870 ± 0.031	0.916	2.4 ± 1.1	1.9 ± 0.9
OBII	0.223 ± 0.032	0.823 ± 0.023	0.938	0.6 ± 0.5	0.5 ± 0.7
OBII	0.208 ± 0.029	0.844 ± 0.022	0.935	0.4 ± 0.5	1.1 ± 0.7
OBIII	0.34 ± 0.05	0.855 ± 0.025	0.943	2.5 ± 0.9	1.4 ± 0.7
OBIII	0.26 ± 0.04	0.845 ± 0.026	0.954	1.1 ± 0.7	1.2 ± 0.8
OBIII	0.33 ± 0.06	0.870 ± 0.027	0.908	2.4 ± 1.0	1.9 ± 0.8
OBIII	0.200 ± 0.026	0.843 ± 0.020	0.949	0.2 ± 0.4	1.1 ± 0.6
OBIII	0.30 ± 0.05	0.846 ± 0.026	0.929	1.9 ± 0.8	1.2 ± 0.7
OBIII	0.176 ± 0.029	0.826 ± 0.026	0.894	-0.2 ± 0.5	0.6 ± 0.8
OBIII	0.30 ± 0.06	0.841 ± 0.031	0.896	1.8 ± 0.9	1.0 ± 0.9
OBIII	0.28 ± 0.04	0.857 ± 0.025	0.941	1.5 ± 0.7	1.5 ± 0.7
OBIII	0.122 ± 0.018	0.822 ± 0.024	0.930	-1.05 ± 0.30	0.5 ± 0.7
OBIIId	0.47 ± 0.08	0.872 ± 0.023	0.945	4.7 ± 1.3	1.9 ± 0.7
OBIIId	0.38 ± 0.06	0.846 ± 0.023	0.951	3.2 ± 1.0	1.2 ± 0.7
OBIIId	0.36 ± 0.06	0.842 ± 0.022	0.954	2.9 ± 0.9	1.1 ± 0.6

Supplementary Table S7. Taylor's parameters for special intervals concerning gut microbiota in the host lifestyle study (6). The healthy and quotidian periods are characterized by $\bar{V}=0.25\pm0.09, \bar{\beta}=0.777\pm0.025$.

Metadata	V	β	$ar{R}^2$	V_{st}	$oldsymbol{eta_{st}}$
HLS (abroad)	0.51 ± 0.06	0.820 ± 0.012	0.928	2.8 ± 0.6	1.7 ± 0.5
HLS (infection)	0.49 ± 0.08	0.828 ± 0.018	0.923	2.6 ± 0.9	2.0 ± 0.7
HLS (after infection)	0.36 ± 0.05	0.776 ± 0.015	0.922	1.1 ± 0.6	-0.0 ± 0.6

Supplementary Table S8. Rank and Rank Stability Index (RSI, as discussed in Material and Methods) over different periods for the taxa listed as rank stability islands regarding the gut microbiome of the individual A in the host lifestyle study (6).

Pe	Period						Genera						
		Actino	Actinomyces	Геисо	Leuconostoc	Lachnol	Lachnobacterium	Egger	Eggerthella	Clostr	Clostridium	Collin	Collinsella
name	days	rank RSI	RSI	rank	RSI	rank	RSI	rank RSI	RSI	rank RSI	RSI	rank RSI	RSI
before	0 to 70	46	72.5	4	76.3	45	70.2	35	73.3	28	77.2	25	84.2
abroad	abroad 72 to 122	26	67.1	46	66.2	77	53.3	48	53.4	36	49.9	41	63.5
returned	returned 123 to 256	44	79.3	41	69.5	31	74.2	33	77.5	34	71.6	27	81.0
after	257 to 364	43	79.0	39	72.2	33	68.4	30	78.5	34	7.97	26	80.4
0,	Overall	47	76.4	43	71.0	36	69.2	35	74.1	34	70.7	28	79.5

15 References

- 1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling A V,
 Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. 2014.

 Diet rapidly and reproducibly alters the human gut microbiome. Nature **505**:559–63.
- 2. **Dethlefsen L, Relman DA.** 2011. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci **108**:4554–61.
- 3. Durbán A, Abellán JJ, Jiménez-Hernández N, Artacho A, Garrigues V, Ortiz V,
 Ponce J, Latorre A, Moya A. 2013. Instability of the faecal microbiota in diarrhoeapredominant irritable bowel syndrome. FEMS Microbiol Ecol 86:581–589.
- Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich
 SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li J V, Holmes E, Nicholson J,
 Knights D, Ursell LK, Knight R, Gordon JI. 2013. Gut microbiomes of Malawian twin
 pairs discordant for kwashiorkor. Science 339:548–54.
- 5. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL,
 Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI. 2013. The
 long-term stability of the human gut microbiota. Science **341**:1237439.
- David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A,
 Erdman SE, Alm EJ. 2014. Host lifestyle affects human microbiota on daily timescales.
 Genome Biol 15:R89.