Tutorium B03: (Aussagen-) Logik und Beweisprinzipien						
	· Fragen?					
	· Fragen? · Aussagenlogik					
	Mini-test Auggbersammlung 3.1.1 Welche Werte kann eine Aussagenvariable annehmen?					
	3.1.2 (a) Welche Verknüpfungen zweier Aussagenvariablen A und B haben Sie kennen gelernt (4)? (b) Wie genau sind diese Definiert? (c) Welche Operation gibt es für eine einzelne Aussagenvariable A (1) und (d) wie ist diese definiert?					
	3.1.3 Wie ist die Negation einer Aussage A definiert?	ANB	AVB	A=B	AOB	17 A
	3.1.4 Wie ist die Konjunktion zweier Aussagen A und B definiert? $\qquad \qquad \qquad$					
	3.1.5 Wie ist die Disjunktion zweier Aussagen A und B definiert?	\				
	3.1.6 Wie ist die Implikation von einer Aussage A zu einer Aussagen B definiert?					
	3.1.7 Wie ist die Äquivalenz zweier Aussagen A und B definiert?)	
	3.1.8 Wie ist eine Aussageformeln F definiert?					1
	3.1.9 Wann sind zwei Aussageformeln F_1, F_2 nach der Definition gleichwertig ?					
	3.1.10 Wie lauten die Kommutativgesetze der Aussagenlogik?					
	3.1.11 Wie lauten die Assoziativgesetze der Aussagenlogik?					
	3.1.12 Wie lauten die Distributivgesetze der Aussagenlogik?					
	3.1.13 Wie lauten die De Morganschen Gesetze der Aussagenlogik?					

Aufgabe 34 Zeigen Sie mittels Wahrheitstabelle, dass $F_1(A,B,C):=(A\Rightarrow C)\land$ $F(B \Rightarrow C)$ und $F_2(A, B, C) := A \vee B \Rightarrow C$ gleichwertig sind.

(Mini-test-Ausgabensammlung)

3.2.1 Zeigen Sie mittels einer vollständigen Wahrheitstabelle, dass

$$F_1(A, B, C) := A \Rightarrow (B \lor C)$$

und

$$F_2(A, B, C) := \neg (A \land \neg (B \lor C))$$

gleichwertig sind.

3.2.2 Zeigen Sie mittels einer vollständigen Wahrheitstabelle, dass

$$F_1(A, B, C) := (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

und

$$F_2(A, B, C) := (A \Leftarrow B) \land (B \Leftarrow C) \land (C \Leftarrow A)$$

gleichwertig sind.

3.2.3 Zeigen Sie mittels einer vollständigen Wahrheitstabelle, dass

$$F_1(A, B, C, D) := (\neg A \land \neg D) \lor (B \land D) \lor (\neg B \land \neg C \land \neg D)$$

und

$$F_2(A,B,C,D) := (\neg A \vee \neg B \vee D) \wedge (\neg A \vee B \vee \neg C) \wedge (B \vee \neg D)$$

gleichwertig sind.

(Mini-Test-Ausgabensammlung)

3.2.4 Übersetzen Sie die folgende Natürlichsprachige Aussage zunächst in Mathematisch Schreibweise unter Verwendung des Existenzquantors (∃) und Allquantors (∀). Nehmen Sie dann an Sie wollten die Aussage mittels Beweis durch Widerspruch zeigen. Ermitteln Sie die dafür zu zeigende negierte Aussage:

 $Zu\ jeder\ Primzahl\ p\ gibt\ es\ eine\ Primzahl\ b\ mit\ b>p.$

(Mini-Test-Ausgabensammlung)

3.2.5 Übersetzen Sie die folgende Natürlichsprachige Aussage zunächst in Mathematisch Schreibweise unter Verwendung des Existenzquantors (∃) und Allquantors (∀). Nehmen Sie dann an Sie wollten die Aussage mittels Beweis durch Widerspruch zeigen. Ermitteln Sie die dafür zu zeigende negierte Aussage:

Für jede stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ für die es Werte $a \in \mathbb{R}$ und $c \in \mathbb{R}$ gibt, sodass f(a) < 0 und f(c) > 0, lässt sich ein $b \in \mathbb{R}$ finden, sodass gilt f(b) = 0.

(Mini-Test Autgabensammlung)

3.2.6 Übersetzen Sie die folgende Natürlichsprachige Aussage zunächst in Mathematisch Schreibweise unter Verwendung des Existenzquantors (∃) und Allquantors (∀). Nehmen Sie dann an Sie wollten die Aussage mittels *Beweis durch Widerspruch* zeigen. Ermitteln Sie die dafür zu zeigende negierte Aussage:

Für jede stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ gilt an jeder Stelle $a \in \mathbb{R}$, dass es zu jedem wählbaren $\varepsilon \in \mathbb{R}, \varepsilon > 0$ ein passendes $\delta \in \mathbb{R}, \delta > 0$ gibt, sodass $f((a - \varepsilon, a + \varepsilon)) \subset (f(a) - \delta, f(a) + \delta)$ gilt.

(Augabensammlung / Kript Kapikl D.1)

Aufgabe 37 Es seien x_1 und x_2 Integer-Variablen in einem Computer-Programm. Darin sei weiter Folgendes implementiert:

```
if x_1 < x_2
  if x_1 < 4
     print(Hello World)
  else
     if x_2 < 2
       print(Hallo Welt)
     end if
  end if
else
  print(Moien Welt)
end if
```

- a) Bestimmen Sie drei Aussageformeln, die jeweils genau dann wahr sind, wenn Hello World, bzw. Hallo Welt, bzw. Moien Welt ausgegeben wird.
- b) Welche der Aussageformeln aus Teil a) wird niemals wahr sein? Begründen Sie dies mit Hilfe von Aussageformeln.

Beweisprinzipien

Mini-Test-Augubersammlung)

3.1.14 Nennen Sie 5 Beweisprinzipien. 3.1.15 Auf welcher Aussagenlogischen Äquivalenz beruht das Beweisprinzip der Kontraposition? 3.1.16 Aus welchen beiden Teilbeweisen kann ein Äquivalenzbeweis aufgebaut werden? 3.1.17 Skizzieren Sie die Grundidee eines Beweises durch Widerspruch.