POISSON NOISE REDUCTION WITH NON-LOCAL PCA

J. Salmon *

C-A. Deledalle

R. Willett *

Z. Harmany*

* Duke University, ECE Department, Durham, NC, USA — †CEREMADE, CNRS-Paris-Dauphine, Paris, France

PROBLEM FORMULATION

Setting: Poisson noise

Observations : M independent observed pixel values Z_i

Quantities to be recovered : intensities $f_i > 0$

Noise generation : the Z_i are Poisson variables with mean $f_i \geq 0$

$$\mathbb{P}(Z_i|f_i) = rac{f_i^{Z_i}e^{-f_i}}{Z_i!}.$$

General scheme:

DENOISING CLUSTERS WITH POISSON-PCA

Y: M imes N matrix of all the (vectorized) $\sqrt{N} imes \sqrt{N}$ overlapping patches extracted from the noisy image. Then, one aims to approximate Y by :

$$\forall (i,j) \in [1,M] \times [1,N], \quad Y_{i,j} \approx \exp([UV]_{i,j})$$
,

 ${ullet} U: M imes \ell$ matrix of coefficients.

ullet $V:\ell imes N$ matrix representing the dictionary components/axis Under the low rank assumption: ℓ is small with respect to M: $\ell \ll M$. The framework introduced in [4] leads to minimizing:

$$L(U, V) = \sum_{i=1}^{M} \sum_{j=1}^{N} \exp(UV)_{i,j} - Y_{i,j}(UV)_{i,j}$$
 ,

with respect to U and V. Defining the corresponding minimizers

 $(U^*, V^*) = \underset{(U,V) \in \mathbb{R}^{M \times \ell} \times \mathbb{R}^{\ell \times N}}{\operatorname{arg min}} L(U, V),$

the original data is then denoised by considering $\hat{Y} = \exp(U^*V^*)$.

BENEFITS OF THE POISSON APPROACH

With respect to other methods the Poisson-PCA has several advantages:

- No positivity constraints in the optimization problem
- Direct approach, no Anscombe / stabilization transform as in [1, 3]
- More general than wavelet-based approaches

NEWTON'S METHOD FOR MINIMIZING L

Second order gradient desecent [5]: Hessian matrices are needed, with respect to variable U and V: $H_U = \nabla^2_U L(U,V)$ and $H_V = \nabla^2_V L(U,V)$.

$$[H_U]_{(a,b),(c,d)} = \begin{cases} \sum\limits_{j=1}^N \exp(UV)_{a,j} V_{b,j}^2, & \text{if } (a,b) = (c,d), \\ 0 & \text{otherwise.} \end{cases}$$

$$[H_V]_{(a,b),(c,d)} = \begin{cases} \sum\limits_{i=1}^M U_{i,a}^2 \exp(UV)_{i,b}, & \text{if } (a,b) = (c,d), \\ 0 & \text{otherwise.} \end{cases}$$

Updating the coefficients rows: $U_{t+1,i,:}$ is the *i*th row of U_{t+1} :

$$U_{t+1,i,:} = U_{t,i,:} - (\exp(U_t V_t)_{i,:} - Y_{i,:}) V_t^{\top} (V_t D_i V_t^{\top})^{-1} , \qquad (1$$

where $D_i = \mathrm{diag}\left(\exp(U_tV_t)_{i,1},\ldots,\exp(U_tV_t)_{i,N}\right)$ is a diagonal matrix of size $N \times N$.

Updating the dictionary columns: $V_{t,i,j}$ is the jth column of V_t

$$V_{t+1,:,j} = V_{t,:,j} - (U_{t+1}^{\top} E_j U_{t+1})^{-1} U_{t+1}^{\top} (\exp(U_{t+1} V_t)_{:,j} - Y_{:,j}) ,$$
 (2)
The $E_i = \operatorname{diag} \left(\exp(U_{t+1} V_t)_{1,i}, \dots, \exp(U_{t+1} V_t)_{M,i} \right)$ is a diagonal matrix.

where $E_j = \operatorname{diag} \left(\exp(U_{t+1}V_t)_{1,j}, \ldots, \exp(U_{t+1}V_t)_{M,j} \right)$ is a diagonal matrix of size $M \times M$.

Rem: a conditionner $arepsilon_{\mathrm{cond}}$ might be needed to invert the Hessian

Peak Direct-2P Ansc-2P Direct-1P Ansc-1P Alg. in [2] 20.31 18.97 18.73 19.18 19.48 22.49 20.74 22.04 21.55 20.93 25.58 24.31 23.69 23.98 25.34 26.88 26.17 25.07 26.79 26.46 28.34 27.90 26.67 28.25 28.10 28.57 28.94 28.73 29.61 29.27 28.19 29.31

Table: PSNR for Saturn (ave. over ten realizations): NLPCA one/two pass (Direct-1P/Direct-2P), the Gaussian NL-PCA (Anscombe transform) with one/two pass (Ansc-1P/Ansc-2P) and haarTIApprox [2].

ALGORITHM

```
Input: noisy image Z ; Output: estimated image \hat{f}
 Parameters: Patch size \sqrt{N} \times \sqrt{N}, number of clusters K,
   number of components \ell, maximal number of iterations N_{
m iter}
 3: Clusterization: create K clusters of patches using K-Means
  for cluster k do
         Initialize U_0 = \operatorname{randn}(M_k, \ell) and V_0 = \operatorname{randn}(\ell, N)
        while t \leq N_{\mathrm{iter}} and \mathrm{test} > \varepsilon_{\mathrm{stop}} do
              for i < M_k do
                   Update the ith row of U using (1)
              end for
              for j \leq \ell do
                    Update the jth column of V using (2)
              end for
              t := t + 1
        end while
        \hat{Y}^k = \exp(U_t V_t)
16: end for
```

- 17: Reprojection: average the various pixel estimates due to overlaps
- 18: Second iteration: use the denoised image to improve clustering

REFERENCES

- [1] J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J.-B Sibarita, and J. Salamero, "Patch-based nonlocal functional for denoising fluorescence microscopy image sequences.," IEEE TMI, vol. 29, no. 2, pp. 442–454, 2010.
- [2] R. Willett and R. Nowak, "Platelets: A multiscale approach for recovering edges and surfaces in photon-limited medical imaging," IEEE Trans. Med. Imag., vol. 22, no. 3, pp. 332–350, 2003.
- [3] M. Makitalo and A. Foi, "Optimal inversion of the Anscombe transformation in low-count Poisson image denoising," *IEEE TIP*, vol. 20, no. 1, pp. 99–109, 2011.
- [4] M. Collins, S. Dasgupta, and R. E. Schapire, "A generalization of principal components analysis to the exponential family," in NIPS, 2002, pp. 617–624.
- [5] G.J. Gordon, "Generalized² linear² models," in *NIPS*, 2003, pp. 593–600.
- [6] C.-A. Deledalle, L. Denis, and F. Tupin, "Poisson NL means: Unsupervised non local means for Poisson noise," in *ICIP*, 2010, pp. 801–804.

ACKNOWLEDGEMENTS

This work was supported by NSF CAREER Award No. CCF-06-43947 and ARO Grant No. W911NF-09-1-0262.

Online code: http://josephsalmon.eu/

 $=20^2$: patch size

: rank of approximation

: number of clusters

: maximum iterations

VISUAL RESULTS

Original data Peak = 0.1

Noisy data,

PSNR=4.77

PSNR=19.94

PSNR=19.23

HaarTIApprox [2],

PSNR=16.34

PSNR=18.76

Gaussian NL-PCA,

PSNR=17.84

• $\varepsilon_{\rm stop} = 10^{-1}$: stopping criterion 10^{-3} : Hessian conditionner Poisson NL-PCA,

PSNR=20.06