Título do trabalho um subtítulo

Nome Completo

Dissertação apresentada ao Instituto de Matemática e Estatística da Universidade de São Paulo para obtenção do título de Mestra em Ciências

Programa: Ciência da Computação

Orientadora: Prof^a. Dr^a. Fulana de Tal

Coorientador: Prof. Dr. Ciclano de Tal

Coorientadora: Prof^a. Dr^a. Beltrana de Tal

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da XXXX

São Paulo 10 de Agosto de 2017

Título do trabalho um subtítulo

Nome Completo

Esta é a versão original da dissertação elaborada pela candidata Nome Completo, tal como submetida à Comissão Julgadora.

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Esta seção é opcional e fica numa página separada; ela pode ser usada para uma dedicatória ou epígrafe.

Agradecimentos

Do. Or do not. There is no try.

Mestre Yoda

Texto texto. Texto opcional.

Resumo

Nome Completo. **Título do trabalho:** *um subtítulo*. Dissertação (Mestrado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2017.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Deve ser precedido da referência do documento. Texto texto

Palavra-chave1. Palavra-chave2. Palavra-chave3.

Abstract

Nome Completo. **Title of the document:** *a subtitle.* Thesis (Master's). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2017.

Keywords: Keyword1. Keyword2. Keyword3.

Lista de Abreviaturas

CFT	Transformada contínua de Fourier (Continuous Fourier Transform)
DFT	Transformada discreta de Fourier (Discrete Fourier Transform)
EIIP	Potencial de interação elétron-íon (Electron-Ion Interaction Potentials)
STFT	Transformada de Fourier de tempo reduzido (Short-Time Fourier Transform)
ABNT	Associação Brasileira de Normas Técnicas
URL	Localizador Uniforme de Recursos (Uniform Resource Locator)
IME	Instituto de Matemática e Estatística
USP	Universidade de São Paulo

Lista de Símbolos

- ω Frequência angular
- ψ Função de análise wavelet
- Ψ Transformada de Fourier de ψ

Lista de Figuras

4.1 4.2 4.3	Exemplo de subfiguras	22 23 23
List	ta de Tabelas	
4.1 4.2 4.3	Exemplos de tabelas (códigos, abreviaturas e nomes dos aminoácidos) Exemplo de tabela com valores numéricos	24 24 26
List	ta de Programas	
4.1 A.1 A.2	Exemplo de laço em Java	23 27 27

Sumário

1	Intr	odução	1
	1.1	Considerações de Estilo	2
	1.2	Ferramentas Bibliográficas	2
	1.3	O Que o IME Espera	3
2	Usai	ndo o IAT _E X e este modelo	5
	2.1	Instalação do LATEX	6
	2.2	Documentação sobre LATEX	7
3	Do z	zero ao mínimo com LAT _E X	9
	3.1	Visão Geral	10
	3.2	Estrutura de um Documento LATEX	11
	3.3	Executando LATEX e Comandos Auxiliares	12
	3.4	Mais sobre Estrutura	12
	3.5	Referências Cruzadas e <i>Floats</i>	13
	3.6	Fórmulas Matemáticas	14
	3.7	Referências Bibliográficas e Bibliografia	14
	3.8	Imagens, Ilustrações, Diagramas e Gráficos	16
	3.9	Formatação Manual	16
	3.10	Detalhes da Linguagem	17
	3.11	Versões do IATEX	18
	3.12	Limitações do LATEX e Algumas Dicas	19
4	Algı	uns Exemplos de Comandos LAT _E X	21
	4.1	Bibliografia e Referências	21
	4.2	Modo Matemático	21
	4.3	Floats (Tabelas e Figuras)	22

Apêndices

A Código-Fonte e Pseudocódigo	27
Anexos	
A Perguntas Frequentes sobre o Modelo	29
Referências	31
Índice Remissivo	33

Capítulo 1

Introdução

Escrever bem é uma arte que exige muita técnica e dedicação e, consequentemente, há vários bons livros sobre como escrever uma boa dissertação ou tese. Um dos trabalhos pioneiros e mais conhecidos nesse sentido é o livro de Umberto Eco (2009) intitulado *Como se faz uma tese*; é uma leitura bem interessante mas, como foi escrito em 1977 e é voltado para trabalhos de graduação na Itália, não se aplica tanto a nós.

Sobre a escrita acadêmica em geral, John Carlis disponibilizou um texto curto e interessante (Carlis, 2009) em que advoga a preparação de um único rascunho da tese antes da versão final. Mais importante que isso, no entanto, são os vários *insights* dele sobre a escrita acadêmica. Dois outros bons livros sobre o tema são *The Craft of Research* (Booth *et al.*, 2008) e *The Dissertation Journey* (Roberts, 2010). Além disso, a USP tem uma compilação de normas relativas à produção de documentos acadêmicos (SIBIUSP, 2009) que pode ser utilizada como referência.

Para a escrita de textos especificamente sobre Ciência da Computação, o livro de Justin Zobel, Writing for Computer Science (Zobel, 2004) é uma leitura obrigatória. O livro Metodologia de Pesquisa para Ciência da Computação de Raul Sidnei Wazlawick (2009) também merece uma boa lida. Já para a área de Matemática, dois livros recomendados são o de Nicholas Higham, Handbook of Writing for Mathematical Sciences (Higham, 1998) e o do criador do TeX, Donald Knuth, juntamente com Tracy Larrabee e Paul Roberts, Mathematical Writing (Knuth et al., 1996).

Apresentar os resultados de forma simples, clara e completa é uma tarefa que requer inspiração. Nesse sentido, o livro de Edward Tufte (2001), *The Visual Display of Quantitative Information*, serve de ajuda na criação de figuras que permitam entender e interpretar dados/resultados de forma eficiente.

Além desse material, também vale muito a pena a leitura do trabalho de Uri Alon (2009), no qual apresenta-se uma reflexão sobre a utilização da Lei de Pareto para tentar definir/escolher problemas para as diferentes fases da vida acadêmica. A direção dos novos passos para a continuidade da vida acadêmica deveria ser discutida com seu orientador.

1.1 Considerações de Estilo

Normalmente, as citações não devem fazer parte da estrutura sintática da frase¹. No entanto, usando referências em algum estilo autor-data (como o estilo plainnat do LATEX), é comum que o nome do autor faça parte da frase. Nesses casos, pode valer a pena mudar o formato da citação para não repetir o nome do autor; no LATEX, isso pode ser feito usando os comandos \citet, \citep, \citeyear etc. documentados no pacote natbib (DALY, 2010) (esses comandos são compatíveis com biblatex usando a opção natbib=true, ativada por padrão neste modelo). Em geral, portanto, as citações devem seguir estes exemplos:

```
Modos de citação:
indesejável: [AF83] introduziu o algoritmo ótimo.
indesejável: (Andrew e Foster, 1983) introduziram o algoritmo ótimo.
certo: Andrew e Foster introduziram o algoritmo ótimo [AF83].
certo: Andrew e Foster introduziram o algoritmo ótimo (Andrew e Foster, 1983).
certo (\citet ou \citeyear): Andrew e Foster (1983) introduziram o algoritmo ótimo.
```

O uso desnecessário de termos em língua estrangeira deve ser evitado. No entanto, quando isso for necessário, os termos devem aparecer *em itálico*.

Uma prática recomendável na escrita de textos é descrever as legendas das figuras e tabelas em forma auto-contida: as legendas devem ser razoavelmente completas, de modo que o leitor possa entender a figura sem ler o texto onde a figura ou tabela é citada.

Sugerimos que você faça referências bibliográficas de forma similar aos estilos "alpha" (referências alfanuméricas) ou "plainnat" (referências por autor-data) de LATEX. Se estiver usando natbib+bibtex, use os arquivos .bst "alpha-ime.bst" ou "plainnat-ime.bst", que são versões desses dois formatos traduzidas para o português. Se estiver usando biblatex (recomendado), escolha o estilo "alphabetic" (que é um dos estilos padrão do biblatex) ou "plainnat-ime". O arquivo de exemplo inclui todas essas opções; basta des-comentar as linhas correspondentes e, se necessário, modificar o arquivo Makefile para chamar o bibtex ao invés do biber (este último é usado em conjunto com o biblatex).

1.2 Ferramentas Bibliográficas

Embora seja possível pesquisar por material acadêmico na Internet usando sistemas de busca "comuns", existem ferramentas dedicadas, como o Google Scholar (scholar.google. com). Você também pode querer usar o Web of Science (webofscience.com) e o Scopus (scopus.com), que oferecem recursos sofisticados e limitam a busca a periódicos com boa reputação acadêmica. Essas duas plataformas não são gratuitas, mas os alunos da USP têm acesso a elas através da instituição. Ambas são capazes de exportar os dados para o formato .bib, usado pelo LATEX. Algumas editoras, como a ACM e a IEEE, também têm sistemas de busca bibliográfica.

Apenas uma parte dos artigos acadêmicos de interesse está disponível livremente na Internet; os demais são restritos a assinantes. A CAPES assina um grande volume de publicações e disponibiliza o acesso a elas para diversas universidades brasileiras, entre elas

¹ E não se deve abusar das notas de rodapé.

a USP, através do seu portal de periódicos (periodicos.capes.gov.br). Existe uma extensão para os navegadores Chrome e Firefox (www.infis.ufu.br/capes-periodicos) que facilita o uso cotidiano do portal.

Para manter um banco de dados organizado sobre artigos e outras fontes bibliográficas relevantes para sua pesquisa, é altamente recomendável que você use uma ferramenta como Zotero (zotero.org) ou Mendeley (mendeley.com). Ambas podem exportar seus dados no formato .bib, compatível com LATEX. Também existem três plataformas gratuitas que permitem a busca de referências acadêmicas já no formato .bib:

- CiteULike (patrocinados por Springer): www.citeulike.org
- Coleção de bibliografia em Ciência da Computação: liinwww.ira.uka.de/bibliography
- Google acadêmico (habilitar bibtex nas preferências): scholar.google.com

Lamentavelmente, ainda não existe um mecanismo de verificação ou validação das informações nessas plataformas. Portanto, é fortemente sugerido validar todas as informações de tal forma que as entradas bib estejam corretas.

De qualquer modo, tome muito cuidado na padronização das referências bibliográficas: ou considere TODOS os nomes dos autores por extenso, ou TODOS os nomes dos autores abreviados. Evite misturas inapropriadas.

1.3 O Que o IME Espera

Ao terminar sua tese/dissertação, você deve entregar uma cópia dela para a CPG. Após a defesa, você tem 30 dias para revisar o texto e incorporar as sugestões da banca. Assim, há duas versões oficiais do documento: a versão original e a versão corrigida, o que deve ser indicado na folha de rosto.

Fica a critério do aluno definir aspectos como o tamanho de fonte, margens, espaçamento, estilo de referências, cabeçalho, etc. considerando sempre o bom senso. A CPG, em reunião realizada em junho de 2007, aprovou que as teses/dissertações deverão seguir o formato padrão por ela definido². Esse padrão refere-se aos itens que devem estar presentes nas teses/dissertações (e.g. capa, formato de rosto, sumário, etc.), e não à formatação do documento. Ele define itens obrigatórios e opcionais, conforme segue:

- CAPA (obrigatória)
 - O IME usa uma capa padrão de cartolina para todas as teses/dissertações. Essa capa tem uma janela recortada por onde se vê o título e o autor do trabalho e, portanto, a capa impressa do trabalho deve incluir o título e o autor na posição correspondente da página. Ela fica centralizada na página, tem 100mm de largura, 60mm de altura e começa 47mm abaixo do topo da página.
 - O título da tese/dissertação deverá começar com letra maiúscula e o resto deverá ser em minúsculas, salvo nomes próprios.

² www.ime.usp.br/dcc/pos/normas/tesesedissertacoes

- O nome do aluno(a) deverá ser completo e sem abreviaturas.
- É preciso explicitar se é uma tese ou dissertação (para obtenção do título de doutor, tese; para obtenção do título de mestre, dissertação).
- O nome do programa deve constar da capa (Matemática, Matemática Aplicada, Estatística ou Ciência da Computação).
- Também devem constar o nome completo do orientador e do co-orientador, se houver.
- Se o aluno recebeu bolsa, deve-se indicar a(s) agência(s).
- É preciso informar o mês e ano do depósito ou da entrega da versão corrigida.
- Folha de Rosto (obrigatória, tanto para a versão depositada quanto para a versão corrigida)
 - o título da tese/dissertação deverá seguir o padrão da capa
 - deve informar se se trata da versão original ou da versão corrigida; no segundo caso, deve também incluir os nomes dos membros da banca.
- AGRADECIMENTOS (opcional)
- Resumo, em português (obrigatório)
- Abstract, em inglês (obrigatório)
- Sumário (obrigatório)
- Listas (opcionais)
 - Lista de Abreviaturas
 - Lista de Símbolos
 - Lista de Figuras
 - Lista de Tabelas
- Referências Bibliográficas (obrigatório)
- ÍNDICE REMISSIVO (opcional³)

³ O índice remissivo pode ser muito útil para a banca; assim, embora seja um item opcional, recomendamos que você o crie.

Capítulo 2

Usando o LATEX e este modelo

Não é necessário que o texto seja redigido usando LATEX, mas seu uso é fortemente recomendado, pois ele facilita diversas etapas do trabalho e o resultado final é muito bom¹. Este modelo é distribuído com uma "colinha" dos principais comandos LATEX e inclui comentários explicativos para auxiliá-lo com ele, sendo composto dos arquivos de exemplo (tese.tex, artigo.tex, apresentação.tex e poster.tex) e de arquivos auxiliares:

- Arquivos com o conteúdo do trabalho:
 - conteudo/metadados.tex (título, banca etc.)
 - conteudo/paginas-preliminares.tex (sumário, dedicatória etc.)
 - conteudo/capitulos.tex, conteudo/apendices.tex, conteudo/anexos.tex e demais arquivos carregados por eles (XX-*.tex, apendicepseudocodigo.tex, anexo-faq.tex)
 - bibliografia.bib (dados bibliográficos)
- Arquivos com as packages usadas e suas configurações (leia os comentários neles se quiser modificar algum aspecto do documento ou acrescentar alguma package):
 - extras/basics.tex (packages e configurações essenciais), extras/fonts.tex (definição das fontes do documento) e extras/floats.tex
 (configurações e melhorias para floats)
 - extras/imeusp-formatting.tex (aparência: espaçamento, sumário etc.)
 - extras/index.tex (configuração do índice remissivo)
 - extras/hyperlinks.tex (configuração das referências cruzadas)
 - extras/source-code.tex (exibição de código-fonte e pseudocódigo)
 - extras/utils.tex (packages adicionais diversas)
 - extras/bibconfig.tex (configuração da bibliografia)

¹ O uso de um sistema de controle de versões, como mercurial (mercurial-scm.org) ou git (git-scm.com), também é altamente recomendado.

- Outros arquivos auxiliares (geralmente não precisam ser editados):
 - extras/languages.tex (suporte a múltiplas línguas)
 - extras/imeusp-thesis.tex (formatação da capa e páginas preliminares)
 - extras/imeusp-headers.sty (formatação dos cabeçalhos)
 - extras/lstpseudocode.sty (suporte a pseudocódigo com listings)
 - extras/annex.sty (permite adicionar anexos) e extras/appendixlabel.sty (melhora a lista de apêndices/anexos no sumário)
 - froufrou.sty (divisões com ornamentos/florões, como mais abaixo)
 - extras/beamer*.sty (layouts e cores para apresentações e posters)
 - extras/plainnat-ime.* (estilo plainnat para bibliografias)
 - extras/alpha-ime.bst (estilo alpha para bibliografias com bibtex)
 - extras/natbib-ime.sty (tradução da package padrão natbib)
 - hyperxindy.xdy (configuração para xindy) e mkidxhead.ist (configuração para makeindex) criados automaticamente
 - latexmkrc e Makefile (automatizam a geração do documento com os comandos latexmk e make respectivamente)

Para compilar o documento, basta executar o comando latexmk (ou make)². Talvez seu editor ofereça uma opção de menu para compilar o documento, mas ele provavelmente depende do latexmk para isso. La gera diversos arquivos auxiliares durante a compilação que, em algumas raras situações, podem ficar inconsistentes (causando erros de compilação ou erros no PDF gerado, como referências faltando ou numeração de páginas incorreta no sumário). Nesse caso, é só usar o comando latexmk -C (ou make clean), que apaga todos os arquivos auxiliares gerados, e em seguida rodar latexmk (ou make) novamente.

2.1 Instalação do La TEX

LATEX é, na verdade, um conjunto de programas. Ao invés de procurar e baixar cada um deles, o mais comum é baixar um pacote com todos eles juntos. Há dois pacotes desse tipo disponíveis: MiKTEX (miktex.org) e TEXLive (www.tug.org/texlive). Ambos funcionam em Linux, Windows e MacOS X. Em Linux, TEXLive costuma estar disponível para instalação junto com os demais opcionais do sistema. Em MacOS X, o mais popular é o MacTEX (www.tug.org/mactex/), a versão do TEXLive para MacOS X. Em Windows, o mais comumente usado é o MiKTEX.

² Você também pode usar latexmk poster, make apresentacao etc.

Por padrão, eles não instalam tudo que está disponível, mas sim apenas os componentes mais usados, e oferecem um gestor de pacotes que permite adicionar outros. Embora uma instalação completa do LATEX seja relativamente grande (perto de 5GB), em geral vale a pena instalar a maior parte dos pacotes. Se você preferir uma instalação mais "enxuta", não deixe de incluir todos os pacotes necessários para este modelo, como indicado no arquivo README.md.

Também é muito importante ter o latexmk (ou o make). No Linux, a instalação é similar à de outros programas. No MacOS X e no Windows, latexmk pode ser instalado pelo gestor de pacotes do MiKTEX ou TEXLive. Observe que ele depende da linguagem perl, que precisa ser instalada à parte no Windows (www.perl.org/get.html).

2.2 Documentação sobre L'IEX

Existem diversos bons livros sobre LATEX (embora em geral um tanto antigos), dos quais destacamos dois:

- 1. A quarta edição de "A Guide to LATEX", de Helmut Kopka e Patrick W. Daly (publicada em 2003), além de uma ótima introdução, aborda vários tópicos relativamente avançados e úteis³.
- 2. A segunda edição de "The LATEX Companion" (publicada em 2004) é um livro quase obrigatório, pois discute em detalhes praticamente todos os recursos e *packages* importantes de LATEX, servindo tanto para o aprendizado quanto como material de referência.

Além de livros, há muito material sobre LATEX na Internet, mas também há muita informação obsoleta. Em particular, você pode ignorar explicações sobre como converter arquivos no formato DVI gerados por LATEX em PDF: As versões atualmente recomendadas de LATEX (cf. Seção 3.11) geram arquivos PDF diretamente. Quanto a imagens, os formatos de arquivo PS/EPS (PostScript e Encapsulated PostScript) não são adequados para essas novas versões de LATEX; elas trabalham com arquivos de imagem nos formatos PDF, PNG e JPEG. Finalmente, recursos gráficos normalmente não usam mais packages como pstricks, eepic ou outras tradicionalmente citadas; ao invés disso, PGF/TikZ é a ferramenta mais comum.

Dentre o material online, o conteúdo em overleaf.com/learn é excelente, incluindo um rápido tutorial (de escopo similar ao Capítulo 3 deste modelo) e várias páginas sobre como utilizar recursos específicos. Um tutorial bastante abrangente e detalhado está disponível em tug.org/twg/mactex/tutorials/ltxprimer-1.0.pdf (há outros, como tug.org/tutorials/tugindia, www.maths.tcd.ie/~dwilkins/LaTeXPrimer/GSWLaTeX.pdf e www.andy-roberts.net/writing/latex). Em português, você pode consultar polignu.org/sites/polignu.org/files/latex/latex-fflch.pdf e git.febrace.org.br/material-latex/material-latex (este precisa ser baixado e compilado). O sítio tex.stackexchange.com é um fórum de perguntas e respostas sobre LATeX muito útil, pois os principais desenvolvedores do sistema participam das

³ Um dos autores disponibiliza uma versão não-final em www2.mps.mpg.de/homes/daly/GTL/gtl_20030512. pdf.

discussões, e o sítio texfaq.org é bastante abrangente e atualizado. O canal youtube.com/c/anteroneves tem vários vídeos instrutivos em português.

Como dito anteriormente, \LaTeX é, na verdade, um conjunto de programas e, normalmente, instalamos pacotes pré-prontos com todos eles. Esses pacotes (em geral, Texlive e MiKTex) contém também a documentação das *packages* incluídas: Basta digitar texdoc nome-da-package (Texlive) ou mthelp nome-da-package (MiKTex) para ter acesso à documentação correspondente. texdoc/mthelp incluem também alguns tutoriais e textos introdutórios, como "The Not So Short Introduction to \LaTeX (texdoc Ishort-eng; há uma versão em português, mas não está em dia com o original), "Getting up and running with \LaTeX (texdoc amshelp) e "A Simplified Introduction to \LaTeX (texdoc simplified-intro). Versões recentes do \LaTeX incluem também o " \LaTeX via exemplos" (texdoc latex-via-exemplos), em português. O sítio texdoc.net oferece acesso online a essa mesma documentação de maneira organizada e o sítio ctan.org é o repositório semi-oficial das *packages* \LaTeX e sua documentação.

A documentação de referência de LATEX pode ser acessada com texdoc latex2e. Minúcias sobre seu funcionamento interno estão descritas em texdoc source2e e, sobre as classes padrão (article, book etc.), em texdoc classes. Você normalmente não vai usar esses documentos, mas eles podem servir para esclarecer algum detalhe. texdoc clsguide é um guia para a criação de novas classes e *packages*, e texdoc macros2e é uma lista de comandos especialmente úteis para isso. Finalmente, texdoc fntguide explica como funciona a gestão de fontes de LATEX (mas note que LualATEX e XALATEX usam outro mecanismo; veja texdoc fontspec). Você pode ver exemplos de fontes disponíveis para LATEX em tug.org/FontCatalogue.

Quando você se tornar um usuário avançado, pode se interessar em conhecer melhor a linguagem TeX, que está na base do LaTeX. "The TeX book", de Donald Knuth (o criador do TeX), é amplamente recomendado, mas há três livros completos a respeito que são instalados com LaTeX: "A gentle introduction to TeX" (texdoc gentle), "TeX for the impatient" (texdoc impatient) e "TeX by topic" (texdoc texbytopic).

Capítulo 3

Do zero ao mínimo com LATEX

Preparar um texto para impressão envolve duas coisas:

Escrever: digitar, recortar/colar trechos, revisar etc.

Formatar: definir o tamanho da fonte, o espaçamento entre parágrafos etc.

Hoje é comum fazer essas duas coisas ao mesmo tempo, graças à visualização imediata que o computador oferece. No entanto, imagine como era o processo de produção de um livro nos anos 1970: o autor escrevia seu texto em uma máquina de escrever e enviava esse material para o editor, que era responsável pela tarefa de formatá-lo para impressão. O autor muitas vezes inseria anotações para o editor explicando coisas como "este parágrafo é uma citação", e o editor criava algum mecanismo visual para representar isso.

Não é de se surpreender que, com o surgimento do microcomputador, os primeiros programas para criação de textos seguissem um funcionamento similar: o autor digitava e editava seu texto sem formatá-lo visualmente, apenas inserindo alguns comandos correspondentes a aspectos da formatação que ele depois revisava na versão impressa. LATEX é uma ferramenta baseada nesse processo: você prepara seu texto no editor de sua preferência, insere comandos no texto que indicam a estrutura do documento e o processa com o LATEX, que gera um arquivo PDF formatado. Embora seja um estilo "antigo" de trabalhar, ele é muito eficiente em vários casos. Ou seja, dependendo da situação, pode ser mais adequado trabalhar fazendo tudo ao mesmo tempo ou dividindo o trabalho nessas duas fases. De maneira geral:

- Se você precisa criar páginas diferentes entre si com layout definido manualmente, é melhor usar uma ferramenta que permita trabalhar visualmente, como LibreOffice Writer, MS-Word, Google Docs etc.;
- Se você precisa fazer um documento relativamente longo com estrutura regular (capítulos, seções etc.), é melhor usar ferramentas que formalizam essa estrutura (como LATEX) ao invés de ferramentas visuais;
- Se você precisa fazer um documento envolvendo referências cruzadas, bibliografia relativamente extensa ou fórmulas matemáticas, é difícil encontrar outra ferramenta tão eficiente quanto LATEX;

- Se você precisa criar um documento simples, ambas as abordagens funcionam bem; cada um escolhe esta ou aquela em função da familiaridade com as ferramentas;
- Se você quer que a qualidade tipográfica do resultado seja realmente excelente, é necessário usar uma ferramenta profissional, como LATEX, Scribus, Adobe InDesign ou outras; processadores de texto convencionais não oferecem o mesmo nível de qualidade dessas ferramentas.

3.1 Visão Geral

Com Latex, você prepara o texto (incluindo as indicações de estrutura) em um editor de textos qualquer, salva como arquivo de texto puro (".txt", mas é comum usar a extensão ".tex" ao invés de ".txt") e processa esse arquivo com o comando "latexmk" ("compila" o documento) para obter o PDF correspondente. Qualquer editor capaz de salvar arquivos em formato texto puro, como o bloco de notas do windows, vim, emacs etc. pode ser usado. Programas como LibreOffice Writer, MS-Word etc. também funcionam, mas possivelmente vão gerar dores de cabeça porque vão tentar formatar algumas coisas automaticamente (e de maneira incompatível com Latex proposado de cabeça porque vão tentar formatar algumas coisas automaticamente (e de maneira incompatível com Latex proposado de cabeça porque vão tentar formatar algumas coisas automaticamente (e de maneira incompatível com Latex proposado de cabeça porque vão tentar formatar algumas coisas automaticamente (e de maneira incompatível com Latex proposado de cabeça porque vão tentar formatar algumas coisas automaticamente (e de maneira incompatível com Latex proposado de cabeça porque vão tentar formatar algumas coisas automaticamente (e de maneira incompatível com Latex proposado de cabeça porque vão tentar formatar algumas coisas automaticamente (e de maneira incompatível com Latex proposado de cabeça porque vão tentar formatar algumas coisas automaticamente (e de maneira incompatível com Latex proposado de cabeça porque vão tentar formatar algumas coisas automaticamente (e de maneira incompatível com Latex proposado de cabeça porque vão tentar formatar algumas coisas automaticamente (e de maneira incompatível com Latex proposado de cabeça porque vão tentar formatar algumas coisas automaticamente (e de maneira incompatível com Latex proposado de cabeça porque vão de cabeça porq

Em geral, é recomendável usar editores projetados especificamente para trabalhar com LATEX; eles utilizam cores para distinguir o texto dos comandos de formatação, automatizam o processo de compilação do documento e oferecem outras comodidades. O mais usado atualmente é o Texstudio, que é software livre e funciona em Windows, MacOS e Linux. O editor Visual Studio Code (code.visualstudio.com) é voltado para programadores e tem uma interface às vezes peculiar para outros usuários, mas em conjunto com a *package* LaTeX Workshop (do editor, não do LATEX), é uma boa opção. O mesmo vale para o editor emacs (www.gnu.org/software/emacs) e sua package AUCTEX. Ainda outra possibilidade são os editores *online*; dentre eles, o overleaf (www.overleaf.com) é o mais usado.

Um documento LATEX é dividido em duas partes: o *preâmbulo*, onde você coloca comandos de configuração para o documento, e o *corpo* do documento em si, que contém o texto propriamente dito. O preâmbulo é onde você define as características do resultado tipográfico esperado para o documento como um todo: tipo e tamanho da fonte a usar, posição dos títulos e subtítulos na página etc. O corpo, por sua vez, consiste no texto e em alguns comandos indicativos da estrutura.

Dado que configurar o preâmbulo é um tanto complexo e que mesmo no corpo do texto às vezes há comandos especiais (para a geração da bibliografia ou tabelas, por exemplo), usar algum documento existente como base para criar seu texto em geral é uma boa ideia. O IME/USP oferece um conjunto de modelos adequados para teses/dissertações, artigos, apresentações e pôsteres (gitlab.com/ccsl-usp/modelo-latex) que pode ser adaptado para outros usos e outras instituições. Há também uma família de modelos (www.abntex.net.br) que procura seguir as normas da ABNT para diversos tipos de documentos científicos, e algumas publicações científicas fornecem modelos de acordo com suas diretrizes.

3.2 Estrutura de um Documento L'IEX

O preâmbulo La Começa com a definição da classe a ser utilizada, que determina boa parte da configuração do documento. As principais classes são book, report e article; você pode saber mais sobre elas (e outras) em qualquer texto introdutório sobre La Capacita de teses ou dissertações acadêmicas. A seguir, são carregadas várias packages ("plugins") que acrescentam funcionalidades ou modificam as classes padrão. Qualquer documento La Utiliza várias delas e é comum que revistas científicas utilizem packages próprias que pré-definem a formatação esperada para os artigos. A classe é definida com o comando \documentclass{nome-da-classe}; packages são carregadas com o comando \documentclass{nome-da-classe}. Classes e packages podem receber opções adicionais entre colchetes (\usepackage[opção1,opção2...]{nome-da-package}); a documentação de cada package e classe (veja a Seção 2.2) detalha as opções disponíveis.

LATEX ignora quebras de linha e trata sequências de vários espaços como se fossem apenas um. Isso significa que você pode usar quebras de linha e espaços no texto que está digitando como "dicas visuais" da estrutura do texto durante a edição. É muito comum fazer isso com listas de itens, por exemplo. Uma ou mais linhas em branco sinalizam o fim de um parágrafo e o início de outro. O caractere "%" indica que o restante da linha é um comentário, ou seja, um trecho de texto que não tem nenhum efeito sobre o resultado final do documento. Comentários podem ser usados como lembrete sobre alguma decisão, para indicar um parágrafo que ainda precisa de revisão etc. Por conta desse significado especial, para inserir um caractere % "normal" no texto é preciso digitar "\%".

Como mencionado anteriormente, LATEX divide o trabalho de produção de um texto entre a preparação do conteúdo e a definição da forma de apresentação. Assim, os comandos usados durante a produção do conteúdo procuram expressar o significado de cada elemento, e não sua aparência. Por exemplo, para realçar uma palavra é comum usar texto em itálico; embora exista um comando especificamente para gerar textos em itálico em LATEX, o recomendado é que se utilize o comando \emph ("enfatizado"), pois em alguns casos pode ser melhor utilizar negrito, Versalete ou outro mecanismo para dar ênfase a uma palavra. Essa é uma orientação geral para a escrita de textos com LATEX: procure definir a estrutura, não a aparência.

Um exemplo de documento LATEX simples:

```
% O documento começa com o preâmbulo
% Vamos usar a classe "book" com fonte no tamanho 11pt
\documentclass[11pt]{book}
% Vamos escrever em português do Brasil
\usepackage[brazilian]{babel}
% Estas linhas não imprimem nada, apenas definem
% as informações que serão usadas por "\maketitle"
\author{Fulano de Tal}
\title{Começando a usar o \LaTeX{}}
% Finaliza o preâmbulo e inicia o conteúdo:
```

```
\begin{document}
% Cria uma página de título com os dados definidos acima
\maketitle
% Capítulos, seções etc. são numerados automaticamente
\chapter{Cheguei!}
Oi, Galera!
% É preciso sinalizar o final do documento
\end{document}
```

Esse exemplo mostra como definir o nome de um capítulo. Existem também os comandos \section, \subsection, \subsubsection e \paragraph (a classe book inclui também \part, um nível acima de \chapter). Usar o nome do comando seguido de um asterisco (\chapter* etc.) faz o capítulo/seção não ser numerado nem incluído no sumário (nem considerado na contagem de capítulos, seções etc.).

3.3 Executando La Comandos Auxiliares

Depois de escrever o arquivo .tex, é preciso *compilá-lo*, ou seja, processá-lo para gerar o pdf desejado. Isso envolve executar, além do próprio LATEX (veja a Seção 3.11), alguns programas auxiliares (em geral, biber ou bibtex e makeindex). Nesse processo, LATEX quase sempre precisa ser executado três ou mais vezes antes de gerar o pdf final¹. Por conta dessa complexidade, é comum utilizar alguma ferramenta para automatizar o processamento. Existem diversas opções, mas a mais comum é o latexmk, que é capaz de identificar automaticamente os passos necessários para a geração do documento, executando os programas na ordem correta quantas vezes forem necessárias². Assim, embora seja possível gerar o pdf executando apenas pdflatex nome-do-arquivo.tex, acostume-se a compilar o documento sempre com latexmk -pdf nome-do-arquivo.tex. Note que editores especializados em LATEX costumam ter uma opção de menu para a compilação do documento; muitas vezes essa opção simplesmente aciona latexmk.

3.4 Mais sobre Estrutura

Para criar listas de itens, você pode fazer³:

```
\begin{itemize}
   \item Primeiro item
   \item Segundo item
   \item Terceiro item
\end{itemize}
```

¹ A cada vez, ele gera uma nova versão intermediária do arquivo pdf, mas essas versões têm defeitos, como citações e referências cruzadas incorretas ou sumário inexistente.

² É possível personalizar o comportamento de latexmk com o arquivo de configuração latexmkrc.

³ Observe o uso de espaços no início das linhas com ∖item para deixar a estrutura visualmente mais clara durante a edição.

Além de "itemize", há também "enumerate" (auto-explicativo) e "description":

```
\begin{description}
   \item[0 primeiro item] é o primeiro;
   \item[0 segundo item] é o segundo;
   \item[0 terceiro item] é o terceiro.
\end{description}
```

Citações curtas normalmente são incluídas no fluxo normal do texto e colocadas entre aspas; para citações mais longas, use \begin{quote} ou \begin{quotation} (este último é mais adequado para citações com vários parágrafos). Para poesia, use verse (estrofes são separadas por uma linha em branco e versos são separados por *. O asterisco é opcional; ele instrui LATEX a manter as linhas na mesma página). A package csquotes acrescenta recursos sofisticados para citações.

Para inserir uma nota de rodapé, use o comando \footnote{texto da nota}. Um espaço não-separável é indicado pelo caractere til ("~") e é possível forçar uma quebra de linha com "\". Aspas tipográficas ("" e '') são inseridas com ``'' e `'. Você pode consultar a lista completa de símbolos com texdoc symbols-a4 ou em www.ctan.org/tex-archive/info/symbols/comprehensive/symbols-a4.pdf. Uma outra maneira de encontrar símbolos é usar este sítio: detexify.kirelabs.org/classify.html.

3.5 Referências Cruzadas e Floats

É comum que um trecho do texto faça referência a outro trecho ("como discutimos no Capítulo X..."). Isso pode ser feito diretamente, mas se você reorganizar o documento ou acrescentar seções, a numeração pode mudar. Para evitar esse problema, você pode gerar essas referências automaticamente com o par de comandos \label{nome-sugestivo} exref{nome-sugestivo} (para o número da seção/capítulo) ou \pageref{nome-sugestivo} (para o número da página).

LATEX garante que a sequência das figuras e a sequência das tabelas sejam respeitadas (a Figura 6 nunca aparece depois da Figura 7). No entanto, isso *não* se aplica a *floats* de tipos diferentes, ou seja, se você definiu a Figura 5, a Tabela 3 e a Figura 6, elas podem aparecer no documento na ordem "Figura 5, Tabela 3, Figura 6", "Figura 5, Figura 6, Tabela 3" ou "Tabela 3, Figura 5, Figura 6".

⁴ Em alguns casos, é possível colocar o \label de uma figura ou tabela fora do comando \caption mas, como em muitos casos isso gera problemas, é um bom hábito sempre colocá-lo dentro dele.

3.6 Fórmulas Matemáticas

A diagramação de fórmulas matemáticas tem regras específicas; assim, para criar fórmulas em LATEX, é preciso usar um comando para iniciar o modo matemático. Isso pode ser feito de duas formas:

- Pequenas fórmulas no meio do texto ($E = mc^2$) são inseridas com \$fórmula\$ (e, portanto, para inserir um caractere \$ normal no texto, é preciso usar \\$).
- Fórmulas mais longas ou que devem aparecer em um parágrafo separado são inseridas com \[fórmula\] (ou \begin{displaymath}).

No modo matemático, letras são interpretadas como variáveis e espaços em branco são ignorados (LATEX usa o contexto da fórmula para definir o espaçamento). Para inserir um espaço explicitamente, use \quad ou \enspace. Para inserir texto "normal" em uma fórmula matemática, use \text{texto} (para texto de fato) ou \mathit{texto} (para nomes de variáveis ou funções com mais de uma letra). Pode ser necessário deixar um espaço no início do texto para evitar que ele fique colado com o caractere matemático que o antecede.

Usando \begin{equation}, a fórmula recebe um número (que aparece à direita) ao qual você pode se referir no texto usando os comandos "\ref" e "\eqref" ("conforme vimos na equação \ref{eq:bhaskara}...") ou "de acordo com \eqref{eq:bhaskara}..."). \begin{equation*} (incluindo o *) elimina o número e é, portanto, equivalente a \begin{displaymath}. Há outros comandos similares, como align, multline e gather, definidos e documentados na package amsmath, e todos têm a variante com "*".

3.7 Referências Bibliográficas e Bibliografia

A geração de bibliografias no LATEX é feita através da package biblatex e do programa auxiliar biber⁵ e envolve três passos:

- 1. A criação de um banco de dados, no formato ".bib", das obras de interesse. Esse banco de dados pode incluir obras que não vão ser de fato referenciadas no documento final. Isso significa que você pode criar um único banco de dados e utilizá-lo em todos seus documentos⁶.
- 2. A inserção de referências às obras ao longo do texto, usando diferentes comandos dependendo do caso: \cite, \citet, \citep etc. Como já mencionado, esses comandos estão descritos na documentação da package natbib (DALY, 2010).
- 3. A escolha do estilo bibliográfico (usando as opções da package biblatex) que formata as citações ao longo do texto e gera a bibliografia automaticamente através do comando \printbibliography. Normalmente, apenas as obras efetivamente citadas são incluídas na lista de referências, mas é possível forçar a inclusão de uma obra sem citá-la explicitamente com o comando \nocite.

⁵ Antigamente, usava-se a package natbib e o comando auxiliar bibtex. O funcionamento geral dos dois mecanismos é similar e o formato do banco de dados de ambos é o mesmo.

 $^{^6}$ É comum criar bancos de dados desse tipo separados por assunto, mas isso não é necessário.

O banco de dados é um arquivo de texto contendo uma *entrada* para cada item da bibliografia e, em cada entrada, uma série de *campos* com os dados (título, autor etc.). A entrada inclui também uma *chave*, que é usada para inserir as citações no texto. Há vários tipos de entrada (para artigos, livros, sítios web etc.) e, para cada tipo, uma lista de campos possíveis (considere que periódicos normalmente incluem o número do volume, mas teses não). O exemplo abaixo é um livro cuja chave é "dissertjourney"; ele pode ser citado com o comando \cite{dissertjourney}:

```
@book{dissertjourney,
    author = {Carol M. Roberts},
    title = {The Dissertation Journey},
    publisher = {Corwin},
    year = 2010,
    edition = 2,
    location = {Thousand Oaks, CA},
}
```

Observe que existem dois formatos comumente usados para escrever títulos de artigos, livros etc:

Title case: Substantivos, adjetivos e verbos (além de nomes próprios e siglas) são escritos com a primeira letra maiúscula ("Um Exemplo de Título no Estilo Title Case"). Em geral, a regra não se aplica ao título de artigos ou capítulos de livro, apenas aos livros dos quais eles fazem parte;

Sentence case: O título é escrito como qualquer outra frase ("Um título só tem maiúsculas em abreviaturas, como ABNT, ou nomes próprios").

Cada estilo de bibliografia utiliza um desses formatos e, portanto, é desejável que o banco de dados funcione corretamente com ambos. No entanto, nem sempre é claro quais palavras devem ser iniciadas com letra maiúscula ao usar *title case* e, por conta disso, não há um sistema automático em LATEX para adaptar títulos a ele. Sendo assim, como fazer um banco de dados bibliográfico capaz de funcionar com os dois formatos? A solução é sempre inserir os títulos dos itens no banco de dados seguindo o formato *title case*. Se o estilo utiliza esse formato, o título é reproduzido na bibliografia como digitado no banco de dados. Se o estilo usa *sentence case*, o texto (exceto a primeira letra) é convertido para letras minúsculas. Para evitar que isso afete siglas e nomes próprios, basta colocá-los entre chaves ("Automated Application-Level Checkpointing of {MPI} Programs").

Finalmente, os campos author e publisher podem incluir uma lista de nomes separados por and; biblatex reconhece que cada nome é composto por nome e sobrenome, às vezes com partículas como "de", "dos" ou "von" e, dependendo do estilo bibliográfico, pode abreviar nomes, mudar sobrenomes para caixa alta etc. Isso evidentemente não funciona quando o autor é, na verdade, uma instituição; nesses casos, basta colocar o nome inteiro da instituição entre chaves ("{Universidade de São Paulo — Sistema Integrado de Bibliotecas}") para que biblatex não faça alterações desse tipo. Se o nome é longo, pode ser interessante definir o campo shortauthor.

A fonte mais detalhada de informações sobre o banco de dados é a documentação da package biblatex (Lehman *et al.*, 2018, em especial as seções 2.1.1 e 2.2.2), mas o material ali

é um tanto denso. Há muito material introdutório ao formato ".bib" e ao bibtex disponível online, e você pode se inspirar em exemplos para criar seu banco de dados bibliográfico. Além disso, ferramentas como Zotero ou Mendeley (o uso de uma delas é altamente recomendado!) podem exportar para o formato .bib. Observe que biblatex oferece recursos bastante sofisticados para o tratamento de referências e bibliografias. Se você precisar de alguma funcionalidade especial, consulte a documentação do pacote ou a Internet; é quase certeza que biblatex oferece uma solução.

3.8 Imagens, Ilustrações, Diagramas e Gráficos

Podemos classificar imagens em quatro categorias:

- 1. Imagens fotográficas ou escaneadas, que consistem em um conjunto de *pixels* coloridos sem organização previsível.
- 2. Ilustrações, que consistem em curvas e figuras geométricas que formam uma imagem completa, como um objeto ou uma paisagem. Apesar de lidarem com abstrações geométricas ao invés de meros *pixels*, elas ainda são desenhadas de forma totalmente manual em programas como Inkscape ou CorelDraw!.
- 3. Diagramas, que são ilustrações estruturadas, como fluxogramas, grafos ou diagramas UML, criadas com ferramentas como Draw.io, LibreOffice Draw ou Microsoft Visio. Graças à sua estrutura intrínseca, os programas podem automatizar, ao menos parcialmente, o trabalho de posicionar e alinhar cada elemento.
- 4. Gráficos de dados, como gráficos de pizza ou de barras. A geração desses gráficos, em geral, é quase totalmente automatizada por ferramentas como Gnuplot, R, LibreOffice Calc ou Microsoft Excel.

Em LATEX, é possível importar imagens fotográficas nos formatos PNG e JPG e imagens dos demais tipos no formato PDF. Além disso, LATEX tem recursos para criar ilustrações, diagramas e gráficos diretamente, mas usá-los em geral não é trivial. Em particular, a package tikz oferece bons recursos para a criação de ilustrações e diagramas (incluindo funções pré-prontas para formas geométricas, grafos, matrizes etc.) e é fácil usá-la para traçar linhas ou curvas simples. Você também pode criar gráficos de dados ou de funções matemáticas com a package pgfplots. Gnuplot, com o driver lua tikz⁷, e matplotlib, com o backend PGF⁸, são capazes de exportar gráficos de dados na forma de comandos para tikz (garantindo maior consistência visual entre o texto principal e o gráfico), e o programa Asymptote tem excelente integração com LATEX.

3.9 Formatação Manual

Às vezes é preciso inserir formatação de forma manual; os comandos mais importantes são: \emph (texto *enfatizado*, em geral itálico), \textt (texto teletype, imitando um

⁷ www.gnuplot.info/docs_5.2/Gnuplot_5.2.pdf#section*.516

⁸ matplotlib.org/users/pgf.html

terminal de texto ou uma impressora), \textit (itálico), \textbf (negrito), \textsf (fonte sem serifa), \textsc (texto Versalete — nem todas as fontes oferecem essa possibilidade), \normalsize (tamanho normal), \small (tamanho reduzido), \footnotesize (ainda menor), \scriptsize (ainda menor), \tiny (ainda menor), \large (tamanho aumentado), \Large (ainda maior), \LARGE (ainda maior), \Huge (ainda maior), \vspace{\baselineskip} (deixa uma linha em branco), \begin{center} (centraliza parágrafos), \begin{flushleft} (alinha parágrafos à esquerda), \begin{flushright} (alinha parágrafos à direita)9, \hyphenation (permite "ensinar" LATEX como hifenizar uma lista de palavras; note que, em geral, a hifenização automática de LATEX é excelente), \- (sugere uma possível hifenização localizada), \linebreak[0-4] (sugere uma quebra de linha; o número indica quão forte é a sugestão, ou seja, 4 faz a quebra obrigatória; se o parágrafo é justificado, a linha quebrada também é justificada), \newline ou \\ (força uma quebra de linha; a linha não é justificada nesse caso), \pagebreak[0−4] (sugere uma quebra de página; como \linebreak, o número indica quão forte é a sugestão; o texto da página é espalhado verticalmente de maneira a fazer a última linha alinhada com o final das demais páginas) e \newpage (força uma quebra de página; o final da página não é alinhado com o final das demais páginas nesse caso).

Mas, como discutido na Seção 3.2, não é recomendável usar esses comandos ao longo do texto: o ideal em Latex é expressar o significado de cada elemento, não a sua forma de apresentação, pois isso permite que você faça alterações na formatação com mais facilidade. Assim, quando os recursos pré-definidos do Latex (\itemize, \chapter etc.) não forem suficientes, o mais adequado é definir comandos novos, em geral usando os comandos de formatação mencionados acima. Esse é um tópico avançado, mas você pode consultar o início do arquivo Latex deste capítulo para alguns exemplos simples.

3.10 Detalhes da Linguagem

Há quatro estilos típicos de comandos LATEX:

- Comandos que se referem a um parâmetro; por exemplo, \emph{um texto} significa "escreva a frase 'um texto' com ênfase" (em geral, itálico). As chaves delimitam o início e o final do escopo sobre o qual o comando tem efeito. Aqui entram também comandos como \title e \author, que não escrevem nada diretamente mas definem o título e autoria do documento (essa informação é usada, por exemplo, por \maketitle).
- Comandos que se referem a um parâmetro que é um bloco grande de texto, possivelmente vários parágrafos; por exemplo, \begin{center} um texto \end{center} faz "um texto" (que podem ser vários parágrafos) ser centralizado.
- Comandos que ativam alguma opção; por exemplo, \itshape significa "ative o modo itálico". Nesse caso, o texto vai ser impresso em itálico até outro comando selecionar outro estilo de fonte. Se o comando for inserido dentro de um bloco delimitado por chaves, ele "perde o efeito" após o caractere de fecha-chaves (exemplo: "{\itshape{}} Fulano de Tal} é meu nome" será impresso como "Fulano de Tal é meu nome"). Você normalmente não vai utilizar esse estilo de comando, mas ele é útil em alguns casos.

⁹ É altamente recomendável carregar a package ragged2e (já incluída neste modelo) e utilizar \Center, \FlushLeft e \FlushRight ao invés de \center, \flushleft e \flushright.

 Comandos que fazem o programa escrever algo específico; por exemplo, em várias classes padrão o comando \maketitle gera uma página de título com o nome do trabalho, autor etc.

Nos dois últimos, não é preciso usar chaves após o comando. Ainda assim, as chaves podem ser colocadas e muitas vezes isso é bom: sem elas, LATEX entende que o caractere espaço que se segue a esses comandos serve apenas como separador em relação ao que vem a seguir. Por conta disso, ele ignora esse espaço. Quando isso não é o que se deseja, a solução é usar as chaves: \itshape{}. Vale observar que alguns comandos aceitam mais de um parâmetro, às vezes entre chaves, às vezes entre colchetes. Você pode descobrir a sintaxe correta para cada caso lendo a documentação de cada comando.

3.11 Versões do L'IEX

Assim como há packages para o LATEX, o próprio LATEX é, na verdade, um conjunto de extensões para o programa TEX. Assim, se você encontrar referências a "TEX" ou a "plain TEX", basta saber que esse é o sistema que funciona "por baixo" do LATEX.

LATEX é um sistema em evolução (desde os anos 80!). Uma das consequências disso é que há, na verdade, quatro versões diferentes dele:

- 1. LATEX "tradicional", que gera arquivos em formato DVI que, por sua vez, precisam ser convertidos para o formato PDF. Essa versão não é capaz de usar as fontes instaladas no sistema; ela só pode usar fontes adaptadas para uso com o LATEX. Hoje em dia não há boas razões para usar essa versão.
- 2. pdfI/TEX, que gera arquivos PDF e dá suporte a alguns recursos avançados de tipografia adicionais. É a versão mais usada hoje em dia, embora também só possa usar as fontes adaptadas para uso com o I/TEX.
- 3. XŢĿTĘX que, além dos recursos do pdfĿTĘX, opera internamente em UTF-8 (ou seja, funciona melhor com múltiplas línguas) e pode funcionar não só com as fontes adaptadas para o LªTĘX como também com as fontes instaladas no sistema.
- 4. LualateX, que oferece os mesmos recursos que o XALATEX e também pode ser estendido internamente com mais facilidade (através da linguagem de programação Lua).

Todas essas versões são instaladas quando você instala o LATEX na sua máquina. XALATEX e LuaLATEX são as duas propostas da comunidade para o futuro novo padrão do sistema, mas você não tem nada a perder se escolher a "errada", pois para todos os efeitos práticos elas são equivalentes. Em geral, se você pretende escrever apenas com línguas no alfabeto latino e não pretende usar fontes diferentes das disponíveis por padrão no LATEX, qualquer das três versões modernas (pdfLATEX, XALATEX e LuaLATEX) é adequada. Se você pretende usar outros alfabetos ou se gostaria de escolher fontes diferentes, use LuaLATEX.

3.12 Limitações do LATEX e Algumas Dicas

Como qualquer ferramenta, LATEX tem limitações e características indesejáveis:

- A linguagem é muito prolixa: é bastante tedioso escrever coisas como "\begin {itemize}" etc. Linguagens como asciidoc/asciidoctor (asciidoctor.org), markdown (daringfireball.net/projects/markdown), bookdown (bookdown.org) e sphinx (sphinx-doc.org) operam de maneira similar a LATEX, mas sua sintaxe é bem mais enxuta. Elas funcionam muito bem para a geração de páginas web, mas LATEX oferece mais recursos e geralmente produz resultados impressos melhores.
- LATEX gera muitas mensagens pouco importantes durante o processamento do documento, o que dificulta a identificação de problemas. Além disso, quando ocorrem erros durante esse processamento, as mensagens explicativas de LATEX muitas vezes são confusas ou, pior, não indicam o problema real que causou a falha.
- LATEX procura ser uma linguagem *declarativa*, ou seja, os comandos buscam expressar o que se deseja e não como fazer algo ("este texto é um título" e não "pule duas linhas, selecione uma fonte maior, escreva este texto, pule mais duas linhas e selecione a fonte de tamanho padrão"). No entanto, ela é insuficiente em algumas situações, obrigando o usuário a utilizar vários comandos, às vezes obscuros, para obter resultados relativamente simples.
- Há diversas packages para personalizar os aspectos básicos da formatação final do documento, como o tipo de fonte, tamanho dos títulos das seções, espaçamento etc. No entanto, quando se quer fazer modificações maiores, é preciso lidar com partes complexas da linguagem e diversos comportamentos surpreendentes.
- Às vezes há incompatibilidades entre packages; em alguns casos, isso pode ser contornado mudando a ordem em que elas são carregadas, mas em outros pode simplesmente não ser possível combiná-las.
- A colocação automática dos *floats* em geral funciona bem, mas nem sempre. Isso acontece porque LateX decide o posicionamento de cada *float* individualmente, sem levar em conta os próximos *floats*, e nunca reavalia essa decisão. No exemplo da Seção 3.5, se a ordem "Figura 5, Tabela 3, Figura 6" for aceitável, esse vai ser o resultado, mesmo que a ordem "Tabela 3, Figura 5, Figura 6" seja melhor. Apenas se não for possível encontrar um lugar aceitável para a Figura 5 imediatamente (ou seja, na página atual) é que LateX processa os *floats* seguintes e, depois, procura novamente um lugar para ela. Por isso, depois que seu trabalho estiver finalizado, vale a pena avaliar se a colocação dos *floats* pode ser melhorada; se sim, mudar o lugar em que eles são definidos no documento (veja algumas dicas em MITTELBACH, 2014) pode fazer LateX gerar um resultado melhor (mas lembre-se que isso só faz sentido depois que o documento estiver pronto, pois qualquer mudança no texto pode mudar totalmente a posição final dos *floats*).
- O algoritmo que LATEX usa para quebrar páginas é excelente, minimizando linhas órfãs ou viúvas e garantindo uma distribuição homogênea do texto na página. No entanto, ele não utiliza um recurso comumente usado por editores profissionais, que

é mudar o tamanho de algumas páginas para melhorar a distribuição geral do texto. Esse é um último recurso, mas que muitas vezes pode ser bastante positivo. Ainda assim, se houver quebras de página ruins no seu texto final, você pode usar essa estratégia manualmente. Ao invés de comandos como \pagebreak ou \newpage, o mais adequado é usar \enlargethispage{\baselineskip}. Esse comando instrui LATEX a fazer a página ligeiramente maior, tornando possível acomodar mais uma linha ("-1\baselineskip" faz a página ficar com uma linha a menos). Em documentos frente e verso, lembre-se de sempre garantir que a página adjacente também tenha seu tamanho modificado para que a alteração não seja tão perceptível. Um outro truque às vezes útil é aplicar o comando \looseness=1 (ou -1) a um parágrafo, que faz LATEX tentar reorganizar as quebras de linha de maneira a fazer o parágrafo ter uma linha a mais (ou a menos), se isso for possível.

- Como muitos outros sistemas de texto, LATEX pode usar mais de um padrão para a codificação de caracteres acentuados (através da configuração da package inputenc). Alguns anos atrás, o mais comum era o ISO-8859-1, também conhecido como latin1 (esse é o nome usado no LATEX) ou Windows-1252; atualmente, o mais comum é o UTF-8 (default em versões recentes de LATEX). De maneira geral, é simples reconhecer e resolver os problemas causados por inconsistências na codificação (seja trocando a opção de inputenc, seja recodificando o arquivo), mas arquivos ".bib" são um caso especial: biblatex (usado neste modelo) funciona normalmente com caracteres acentuados, mas bibtex oficialmente não tem suporte a eles (embora em geral funcione corretamente). Além disso, é bastante comum que arquivos desse tipo sejam compartilhados por várias pessoas, com diferentes configurações. Para evitar problemas com os acentos nesse caso, uma possibilidade é representar os caracteres acentuados usando comandos LATEX: \'a para á, \c{c} para cedilha etc., independentemente da codificação usada no texto¹⁰.
- As classes padrão (book, article etc.) não foram criadas para serem facilmente modificadas, o que deu origem a inúmeras packages voltadas para possibilitar a personalização de diversos aspectos da apresentação final do documento. Esse mecanismo não é ideal, por diversas razões. Por conta disso, existe um conjunto de versões alternativas dessas classes (scrbook no lugar de book, scrartcl no lugar de article etc.) chamado KOMA-Script, com mais recursos e mais possibilidades de customização. A classe memoir tem o mesmo objetivo, mas procura dar suporte a livros e artigos com uma única classe. Ambas abordagens são muito boas, mas a maioria dos modelos usados por revistas e outras publicações é baseada nas classes padrão. A versão 3 de LATEX está em desenvolvimento com vistas a resolver boa parte dos problemas atuais do sistema, mas ainda deve demorar muitos anos para ficar pronta. ConTEXt é um "irmão mais novo" de LATEX com diversas vantagens, mas com sintaxe diferente e que ainda não é tão popular.

¹⁰ Você pode consultar os comandos desse tipo mais comuns em en.wikibooks.org/wiki/LaTeX/Special_ Characters. Observe que a dica sobre o pingo do i não é mais válida atualmente; basta usar \'i.

Capítulo 4

Alguns Exemplos de Comandos LATEX

4.1 Bibliografia e Referências

A documentação do pacote biblatex (LEHMAN *et al.*, 2018) é bastante extensa e explica (nas Seções 2.1.1 e 2.2.2) os diversos tipos de documento suportados, bem como o significado de cada campo. Na prática, às vezes é preciso fazer escolhas sobre o que incluir na descrição de um item bibliográfico e muitas vezes é mais fácil aprender copiando exemplos já existentes, como estes (consulte o arquivo bibliografia.bib para ver como foi criado o banco de dados e a bibliografia na página 31 para ver o resultado impresso):

- @Book: Knuth et al., 1996.
- @Article (em periódico): MITTEL-BACH, 2014.
- @InProceedings (ou @Conference): ALVES *et al.*, 2003.
- @InCollection (capítulo de livro ou coletânea): BABAOGLU e MARZULLO, 1993
- @PhdThesis: GARCIA, 2001.

- @MastersThesis: Schmidt, 2003.
- @Techreport: ALVISI et al., 1999.
- @Manual: Lенман *et al.*, 2018.
- @Misc: Allcock, 2003.
- @Online (para referência a artigo online): Fowler, 2004.
- @Online (para referência a página web): FSF, 2007.

4.2 Modo Matemático

O modo matemático do LATEX tem sintaxe própria, mas ela não é complicada e há bastante documentação *online* a respeito. Por exemplo, "massa e energia são grandezas relacionadas pela Equação $E=mc^2$, definida inicialmente por Einstein", ou ainda "equações de segundo grau (Equação 4.1) são estudadas no ensino médio. As raízes de uma equação de segundo grau podem ser encontradas por (4.2) — a fórmula de Bháskara. O valor do discriminante Δ (Equação 4.3) determina se a equação tem zero, uma ou duas raízes reais

distintas". Observe que, quando um parágrafo termina com um símbolo, pode ser boa ideia usar um espaço não-separável (com "~") para evitar que ele fique sozinho na última linha (por exemplo, "O discriminante é denotado por~\$\Delta\$").

$$ax^2 + bx + c = y \quad \forall x \in \mathbb{R} \tag{4.1}$$

$$y = 0 \Leftrightarrow x = \frac{-b \pm \sqrt{\Delta}}{2a} \Leftrightarrow x \text{ \'e raiz da equação}$$
 (4.2)

$$\Delta (delta) = b^2 - 4ac \tag{4.3}$$

4.3 Floats (Tabelas e Figuras)

Evidentemente, LATEX permite inserir figuras no texto; além disso, ele também permite girá-las e criar subfiguras (com sublegendas), como no exemplo da Figura 4.1, que inclui as subfiguras 4.1a e 4.1b.

Figura 4.1: Exemplo de subfiguras.

Uma "figura", na verdade, pode ser qualquer tipo de conteúdo ilustrativo (um exemplo interessante é o cronograma mostrado na Figura 4.2) mas, com a *package* float, também é possível definir ambientes específicos para cada tipo de conteúdo adicional (cada um com numeração independente), como é o caso do Programa 4.1. Há mais informações e dicas sobre recursos específicos para inclusão de código-fonte e pseudocódigo no Apêndice A^1 .

LATEX pode importar gráficos gerados por matplotlib e por gnuplot como qualquer outra imagem, mas nesse caso a fonte usada nesses gráficos provavelmente será diferente do corpo do texto. Conforme mencionado na Seção 3.8, há mecanismos para resolver esse problema², como pode ser visto na Figura 4.3.

¹ Observe que o nome do Apêndice ("A") foi impresso em uma linha separada, o que não é muito bom visualmente. Para evitar que isso aconteça (não só no final do parágrafo, mas em qualquer quebra de linha), faça o que já foi discutido na Seção 4.2 sobre símbolos matemáticos: utilize um espaço não-separável para fazer referências a figuras, tabelas, seções etc.: "...no Apêndice∼\ref{ap:pseudocode}".

² Você pode se interessar também pela package gnuplottex.

Figura 4.2: Exemplo de cronograma.

Programa 4.1 Exemplo de laço em Java.

```
1    for (i = 0; i < 20; i++)
2    {
3         // Comentário
4         System.out.println("Mensagem...");
5    }</pre>
```


Figura 4.3: Exemplos de gráficos gerados externamente

Finalmente, talvez você precise organizar a apresentação da informação na forma de tabelas³; Um exemplo simples é a Tabela 4.1.

			.0	Abreviaturs	r & &
Código	Abreviatura	Nome completo	100 100 100 100	Abrey	Nome Completo
A	Ala	Alanina	Α	Ala	Alanina
С	Cys	Cisteína	С	Cys	Cisteína
•••			•••	•••	
W	Trp	Triptofano	W	Trp	Triptofano
Υ	Tyr	Tirosina	Υ	Tyr	Tirosina
(a) Co	m linhas de cores	alternadas.	(b) Co	m cabeçal	lhos girados.

Tabela 4.1: Exemplos de tabelas (códigos, abreviaturas e nomes dos aminoácidos).

Se a tabela tem muitas linhas e, portanto, não cabe em uma única página, é possível fazê-la continuar ao longo de várias páginas com a *package* longtable, como é o caso da Tabela 4.2. Nesse caso, a tabela não é um *float* e, portanto, ela aparece de acordo com a sequência normal do texto. Se, além de muito longa, a tabela for também muito larga, você pode usar o comando landscape (da *package* pdflscape) em conjunto com longtable para imprimi-la em modo paisagem ao longo de várias páginas. A Tabela 4.2 tem essa configuração comentada; experimente des-comentar as linhas correspondentes⁴.

Lim.	1	MGWT			AMI		Spectrum de Fourier			Caract. espectrais		
	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC
1	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08
2	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09
3	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
4	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
5	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11
6	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12
7	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.13
8	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13
9	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14
10	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
11	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
12	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16
13	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
14	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
										C	continu	$a \longrightarrow$

Tabela 4.2: Exemplo de tabela com valores numéricos.

³ Para defini-las com La pena usar o sítio www.tablesgenerator.com.

⁴ Observe que, nesse caso, vai sempre haver uma quebra de página no texto para fazer a tabela começar em uma página em modo paisagem.

Lim.	1	MGWT		AMI		Spectrum de Fourier		Caract. espectrais				
	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC
15	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18
16	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19
17	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19
18	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20
19	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21
20	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
21	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
23	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
24	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
25	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
26	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
27	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
28	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
29	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
30	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
31	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
32	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
33	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
34	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
35	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
36	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
37	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
38	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
39	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22
40	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22

Tabela 4.2: Exemplo de tabela com valores numéricos.

Tabelas mais complexas são um tanto trabalhosas em LATEX; a Tabela 4.3 mostra como construir uma tabela em forma de ficha. Além de complexa, ela é larga e, portanto, deve ser impressa em modo paisagem. No entanto, usamos um outro mecanismo para girar a tabela: o comando sidewaystable (da *package* rotating). Com esse mecanismo, ela continua sendo um *float* (e, portanto, não força quebras de página no meio do texto), mas sempre é impressa em uma página separada.

Resumindo:

- Se uma tabela cabe em uma página, defina-a como um *float*;
- se cabe em uma página mas é muito larga e precisa ser impressa em modo paisagem, use sidewaystable (que também é um *float*);
- se não cabe em uma página por ser muito longa, use longtable;
- se não cabe em uma página por ser muito longa e precisa ser impressa em modo paisagem por ser muito larga, use longtable em conjunto com landscape.

Experimento número:		1		D	Data:		jan 2017
Título:			Me	Medições iniciais	ais		
Tipo de experimento:			Levanta	Levantamento quantitativo	titativo		
Locais	São Paulo	Rio de Janeiro	Porto Alegre	Recife	Manaus	Brasília	Rio Branco
Valores obtidos	0.2	0.3	0.2	0.7	0.5	0.1	0.4

Tabela 4.3: Exemplo de tabela similar a uma ficha.

Apêndice A

Código-Fonte e Pseudocódigo

Com a *package* listings, programas podem ser inseridos diretamente no arquivo, como feito no caso do Programa 4.1, ou importados de um arquivo externo com o comando \lstinputlisting, como no caso do Programa A.1.

Programa A.1 Máximo divisor comum (arquivo importado).

```
FUNCTION euclid(a, b) \triangleright The g.c.d. of a and b
1
            r \leftarrow a \mod b
2
3
            while r \neq 0  \triangleright We have the answer if r is 0
                 a \leftarrow b
                  b \leftarrow r
5
                 r \leftarrow a \mod b
6
7
           end
           return b > The g.c.d. is b
8
9
     end
```

Trechos de código curtos (menores que uma página) podem ou não ser incluídos como *floats*; trechos longos necessariamente incluem quebras de página e, portanto, não podem ser *floats*. Com *floats*, a legenda e as linhas separadoras são colocadas pelo comando \begin{program}; sem eles, utilize o ambiente programruledcaption (atenção para a colocação do comando \label{}, dentro da legenda), como no Programa A.2¹:

Programa A.2 Máximo divisor comum (em português).

```
1 FUNCAO euclides(a, b) \triangleright O máximo divisor comum de a e b
2 r \leftarrow a \mod b
3 enquanto r \neq 0 \triangleright Atingimos a resposta se r \acute{e} zero
4 a \leftarrow b
5 b \leftarrow r
```

 $cont \longrightarrow$

¹ listings oferece alguns recursos próprios para a definição de *floats* e legendas, mas neste modelo não os utilizamos.

Além do suporte às várias linguagens incluídas em listings, este modelo traz uma extensão para permitir o uso de pseudocódigo, útil para a descrição de algoritmos em alto nível. Ela oferece diversos recursos:

- Comentários seguem o padrão de C++ (// e /* ... */), mas o delimitador é impresso como "⊳".
- ":=", "<>", "<=", ">=" e "!=" são substituídos pelo símbolo matemático adequado.
- É possível acrescentar palavras-chave além de "if", "and" etc. com a opção "morekeywords={pchave1,pchave2}" (para um trecho de código específico) ou com o comando \lstset{morekeywords={pchave1,pchave2}} (como comando de configuração geral).
- É possível usar pequenos trechos de código, como nomes de variáveis, dentro de um parágrafo normal com \lstinline{blah}.
- "\$...\$" ativa o modo matemático em qualquer lugar.
- Outros comandos LaTeX funcionam apenas em comentários; fora, a linguagem simula alguns pré-definidos (\textit{}, \texttt{} etc.).
- O comando \label também funciona em comentários; a referência correspondente (\ref) indica o número da linha de código. Se quiser usá-lo numa linha sem comentários, use /// \label{blah}; "///" funciona como //, permitindo a inserção de comandos LaTeX, mas não imprime o delimitador (▷).
- Para suspender a formatação automática, use \noparse{blah}.
- Para forçar a formatação de um texto como função, identificador, palavra-chave ou comentário, use \func{blah}, \id{blah}, \kw{blah} ou \comment{blah}.
- Palavras-chave dentro de comentários não são formatadas automaticamente; se necessário, use \func{}, \id{} etc. ou comandos LATEX padrão.
- As palavras "Program", "Procedure" e "Function" têm formatação especial e fazem a palavra seguinte ser formatada como função. Funções em outros lugares *não* são detectadas automaticamente; use \func{}, a opção "functions={func1,func2}" ou o comando "\lstset{functions={func1,func2}}" para que elas sejam detectadas.
- Além de funções, palavras-chave, strings, comentários e identificadores, há "specialidentifiers". Você pode usá-los com \specialid{blah}, com a opção "specialidentifiers={id1,id2}" ou com o comando "\lstset{specialidentifiers={id1,id2}}".

Anexo A

Perguntas Frequentes sobre o Modelo²

Não consigo decorar tantos comandos!

Use a colinha que é distribuída juntamente com este modelo (gitlab.com/ccsl-usp/modelo-latex/raw/master/pre-compilados/colinha.pdf?inline=false).

• Por que tantos arquivos?

O preâmbulo LATEX deste modelo é muito longo; as partes que normalmente não precisam ser modificadas foram colocadas no diretório extras, juntamente com alguns arquivos acessórios. Já os arquivos de conteúdo (capítulos, anexos etc.) foram divididos de maneira que seja fácil para você atualizar o modelo (copiando os novos arquivos ou com um sistema de controle de versões) sem que alterações no conteúdo de exemplo (este texto que você está lendo) causem conflitos com o seu próprio texto.

As figuras e tabelas são colocadas em lugares ruins.

Veja a discussão a respeito na Seção 3.12.

• Estou tendo problemas com caracteres acentuados.

Veja a discussão a respeito na Seção 3.12.

Existe algo específico para citações de páginas web?

Biblatex define o tipo "online", que deve ser usado para materiais com título, autor etc., como uma postagem ou comentário em um blog, um gráfico ou mesmo uma mensagem de email para uma lista de discussão. Bibtex, por padrão, não tem um tipo específico para isso; com ele, normalmente usa-se o campo "howpublished" para especificar que se trata de um recurso *online*. Se o que você está citando não é algo determinado com título, autor etc. mas sim um sítio (como uma empresa ou um produto), pode ser mais adequado colocar a referência apenas como nota de rodapé e não na lista de referências; nesses casos, algumas pessoas acrescentam uma segunda lista de referências especificamente para recursos *online* (biblatex permite criar múltiplas bibliografias). Já artigos disponíveis *online* mas que fazem parte de uma publicação de formato

² Esta seção não é de fato um anexo, mas sim um apêndice; ela foi definida desta forma apenas para servir como exemplo de anexo.

tradicional (mesmo que apenas *online*), como os anais de um congresso, devem ser citados por seu tipo verdadeiro e apenas incluir o campo "url" (não é nem necessário usar o comando \url{}), aceito por todos os tipos de documento do bibtex/biblatex.

· Aparece uma folha em branco entre os capítulos.

Essa característica foi colocada propositalmente, dado que todo capítulo deve (ou deveria) começar em uma página de numeração ímpar (lado direito do documento). Se quiser mudar esse comportamento, acrescente "openany" como opção da classe, i.e., \documentclass[openany,...]{book}.

É possível resumir o nome das seções/capítulos que aparece no topo das páginas e no sumário?

Sim, usando a sintaxe \section[mini-titulo]{titulo enorme}. Isso é especialmente útil nas legendas (*captions*) das figuras e tabelas, que muitas vezes são demasiadamente longas para a lista de figuras/tabelas.

- Existe algum programa para gerenciar referências em formato bibtex? Sim, há vários. Uma opção bem comum é o JabRef; outra é usar Zotero ou Mendeley e exportar os dados deles no formato .bib.
- Posso usar pacotes LATEX adicionais aos sugeridos?

 Com certeza! Você pode modificar os arquivos o quanto desejar, o modelo serve só como uma ajuda inicial para o seu trabalho.

· Como faço para usar o Makefile (comando make) no Windows?

Lembre-se que a ferramenta recomendada para compilação do documento é o latexmk, então você não precisa do make. Mas, se quiser usá-lo, você pode instalar o MSYS2 (www.msys2.org) ou o Windows Subsystem for Linux (procure as versões de Linux disponíveis na Microsoft Store). Se você pretende usar algum dos editores sugeridos, é possível deixar a compilação a cargo deles, também dispensando o make.

· Como eu faço para...

Leia os comentários dos arquivos "tese.tex" e outros que compõem este modelo, além do tutorial (Capítulo 3) e dos exemplos do Capítulo 4; é provável que haja uma dica neles ou, pelo menos, a indicação da *package* relacionada ao que você precisa.

Referências

- [Allcock 2003] William Allcock. GridFTP Protocol Specification. Global Grid Forum Recommendation (GFD.20). 2003 (citado na pg. 21).
- [Alon 2009] Uri Alon. "How to choose a good scientific problem". Em: *Molecular Cell* 35.6 (set. de 2009), pgs. 726–728. DOI: 10.1016/j.molcel.2009.09.013 (citado na pg. 1).
- [ALVES et al. 2003] Carlos E. R. ALVES, Edson N. CÁCERES, Frank DEHNE e Siang W. SONG. "A parallel wavefront algorithm for efficient biological sequence comparison". Em: *ICCSA'03: The 2003 International Conference on Computational Science and its Applications.* Springer-Verlag, mai. de 2003, pgs. 249–258 (citado na pg. 21).
- [ALVISI *et al.* 1999] Lorenzo ALVISI, Elmootazbellah ELNOZAHY, Sriram S. RAO, Syed A. HUSAIN e Asanka Del MEL. *An Analysis of Comunication-Induced Checkpointing*. Rel. técn. TR-99-01. Austin, USA: Department of Computer Science, University of Texas at Austin, 1999 (citado na pg. 21).
- [Babaoglu e Marzullo 1993] Ozalp Babaoglu e Keith Marzullo. "Consistent global states of distributed systems: fundamental concepts and mechanisms". Em: *Distributed Systems*. Ed. por Sape Mullender. 2ª ed. 1993, pgs. 55–96 (citado na pg. 21).
- [BOOTH *et al.* 2008] Wayne C. BOOTH, Gregory G. COLOMB e Joseph M. WILLIAMS. *The Craft of Research*. The University of Chicago Press, 2008 (citado na pg. 1).
- [CARLIS 2009] John V. CARLIS. *Design: The Key to Writing (and Advising) a One-Draft Ph.D Dissertation.* 2009. URL: www-users.cs.umn.edu/~carlis/one-draft.pdf (acesso em 10/11/2017) (citado na pg. 1).
- [Daly 2010] Patrick W. Daly. *Reference sheet for natbib usage.* 13 de set. de 2010. URL: mirrors.ctan.org/macros/latex/contrib/natbib/natnotes.pdf (acesso em 20/12/2018) (citado nas pgs. 2, 14).
- [Eco 2009] Umberto Eco. *Como se Faz uma Tese*. 22ª ed. Tradução Gilson Cesar Cardoso de Souza. Perspectiva, 2009 (citado na pg. 1).

- [Fowler 2004] Martin Fowler. *Is Design Dead?* Mai. de 2004. URL: martinfowler.com/articles/designDead.html (acesso em 30/01/2010) (citado na pg. 21).
- [FSF 2007] Free Software Foundation. *GNU General Public License*. 2007. url: www. gnu.org/copyleft/gpl.html (acesso em 30/01/2010) (citado na pg. 21).
- [GARCIA 2001] Islene C. GARCIA. "Visões Progressivas de Computações Distribuídas". Tese de dout. Campinas, Brasil: Instituto de Computação, Universidade de Campinas, dez. de 2001 (citado na pg. 21).
- [Higham 1998] Nicholas J. Higham. *Handbook of Writing for the Mathematical Sciences*. 2^a ed. SIAM: Society for Industrial e Applied Mathematics, ago. de 1998 (citado na pg. 1).
- [Knuth *et al.* 1996] Donald E. Knuth, Tracy Larrabee e Paul M. Roberts. *Mathematical Writing*. The Mathematical Association of America, set. de 1996 (citado nas pgs. 1, 21).
- [Lehman *et al.* 2018] Philipp Lehman, Philip Kime, Moritz Wemheuer, Audrey Boruvka e Joseph Wright. *The biblatex Package.* 30 de out. de 2018. url: mirrors. ctan.org/macros/latex/contrib/biblatex/doc/biblatex.pdf (acesso em 20/12/2018) (citado nas pgs. 15, 21).
- [MITTELBACH 2014] Frank MITTELBACH. "How to influence the position of float environments like figure and table in Lagranger Em: TUGboat. Communications of the TeX Users Group 35.3 (2014). URL: tug.org/TUGboat/tb35-3/tb111mitt-float.pdf (acesso em 09/01/2020) (citado nas pgs. 19, 21).
- [ROBERTS 2010] Carol M. ROBERTS. *The Dissertation Journey*. 2^a ed. Thousand Oaks, CA: Corwin, 2010 (citado na pg. 1).
- [SCHMIDT 2003] Rodrigo M. SCHMIDT. "Coleta de Lixo para Protocolos de *Checkpointing*". Diss. de mestr. Campinas, Brasil: Instituto de Computação, Universidade de Campinas, out. de 2003 (citado na pg. 21).
- [Tufte 2001] Edward Tufte. *The Visual Display of Quantitative Information*. 2^a ed. Graphics Press, mai. de 2001 (citado na pg. 1).
- [SIBiUSP 2009] Universidade de São Paulo Sistema Integrado de Bibliotecas. Diretrizes para Apresentação de Dissertações e Teses da USP: Documento Eletrônico e Impresso. 2009. URL: www.teses.usp.br/index.php?option=com_content&view=article&id=52&Itemid=67 (acesso em 10/11/2017) (citado na pg. 1).
- [WAZLAWICK 2009] Raul S. WAZLAWICK. Metodologia de Pesquisa em Ciência da Computação. 1ª ed. Campus, 2009 (citado na pg. 1).
- [ZOBEL 2004] Justin ZOBEL. Writing for Computer Science: The Art of Effective Communication. 2^a ed. Springer, 2004 (citado na pg. 1).

Índice Remissivo

D	IN
biber, 2, 14	natbib, 2, 6, 14
biblatex, 2, 6, 14, 16, 21, 29	Notas de rodapé, 2, 13
bibtex, 2, 6, 14, 29	r ., ., .,
2.2.00., =, 0, 1.2, =>	P
C	Palavras estrangeiras, <i>veja</i> Língua estran
Captions, <i>veja</i> Legendas	geira
CiteULike, 3	gena
Código-fonte, <i>veja</i> Floats	R
	Rodapé, notas, <i>veja</i> Notas de rodapé
E	Rodape, notas, veju Notas de Todape
Equações, <i>veja</i> Modo Matemático	S
	Scopus, 2
F	-
Figuras, <i>veja</i> Floats	Subcaptions, <i>veja</i> Subfiguras
Floats, 2, 22, 24	Subfiguras, 22
Algoritmo, veja Floats, Ordem	Sublegendas, <i>veja</i> Subfiguras
Ordem, 13	T.
Formatação, 3	T
Fórmulas, <i>veja</i> Modo Matemático	Tabelas, <i>veja</i> Floats
, J	Tese/Dissertação
G	itens obrigatórios, 3
Google Scholar, 2, 3	itens opcionais, 3
_	versões, 3
I	
Inglês, <i>veja</i> Língua estrangeira	V
т	Versão corrigida, veja Tese/Dissertação,
J	versões
Java, 23	Versão original, veja Tese/Dissertação,
L	versões
	Versoes
Légendas, 2, 13, 22, 30	W
Língua estrangeira, 2	Web of Science, 2
M	of ocicioc, 2
Mendeley, 3, 16, 30	Z
Modo Matemático, 21	Zotero, 3, 16, 30
	200010, 0, 10, 00