Semi-Blind Decorrelating Multiuser Detection for Synchronous CDMA

Shu Wang, James Caffery, Jr. and Hanhong Shen

Wireless System Research Laboratory

Dept. of Elec. & Comp. Engin. & Comp. Scien.
University of Cincinnati

WCNC 2002 New Orleans, Los

Introduction

- CDMA techniques have attracted attention for their spectral efficiency, interference resistance and flexible traffic control.
- MAI is the dominant impairment for CDMA systems and exits even with perfect power control.
- Multiuser detection promising approach to mitigate MAI: classic/non-blind multiuser detection and blind multiuser detection
- With exploring a new data model and the trade-off between classic multiuser detection and blind multiuser detection, we propose semi-blind decorrelating multiuser detection.
 - ★ Least squares semi-blind decorrelating multiuser detection (LS-DD)
 - ★ Total least squares semi-blind decorrelating multiuser detection (TLS-DD)
 - ★ Mixed LS/TLS semi-blind decorrelating multiuser detection (MLS-DD)

Data Model

- ullet Consider a synchronous CDMA system with L chips per bit $(T_b=LT_c)$.
- Received signal, after chip-matched filter followed by chip-rate sampling:

$$\mathbf{r} = \sum_{k=1}^{K} A_k b_k \mathbf{s}_k + \mathbf{n} = \mathbf{SAb} + \mathbf{n}$$

where $\mathbf{A} = \operatorname{diag} \{A_1 \ A_2 \ \dots \ A_K\}$, $\mathbf{S} = [\mathbf{s}_1 \ \mathbf{s}_2 \ \dots \ \mathbf{s}_K] \ \text{and} \ \mathbf{b} = [b_1 \ b_2 \ \dots \ b_K]^T$ with $b_i \in \{+1, -1\}$.

Linear multiuser detectors can be written in the form

$$\mathbf{b} = \text{sgn} \left\{ \mathbf{Wr} \right\}$$

or for the kth user $b_k = \operatorname{sgn} \{ \mathbf{w}_k^T \mathbf{r} \}$ where \mathbf{w}_k^T is the kth row of \mathbf{W} .

- We consider detection of user 1's data only.
- Maintain the restriction that L > K.

New Data Model w.r.t. User 1 – I

ullet In terms of user 1, a new semi-blind signature matrix ${oldsymbol{\mathcal{S}}}$ is constructed by

$$\mathcal{S} = \begin{bmatrix} A_1 \mathbf{s}_1 & \mathbf{r}_1 & \mathbf{r}_2 & \dots & \mathbf{r}_{M-1} \end{bmatrix}$$

= $\mathbf{S} \mathbf{A} \begin{bmatrix} \mathbf{e}_1 & \mathbf{D} \end{bmatrix} + \mathbf{N}$
= $\mathbf{S} \mathbf{A} \mathbf{B} + \mathbf{N}$

where
$$\mathbf{B} = \begin{bmatrix} 1 & \bar{\mathbf{d}}^T \\ \mathbf{0} & \tilde{\mathbf{D}} \end{bmatrix} = \begin{bmatrix} \mathbf{c}^T \\ \mathbf{0} & \tilde{\mathbf{D}} \end{bmatrix}$$
.

ullet The relationship between ${f r}$ and ${m {\cal S}}$ is

$$r = Sd + z$$

where \mathbf{d} is named the detection vector.

$$\mathbf{d} = \mathbf{B}^{+}\mathbf{b} = \begin{bmatrix} 1 & \mathbf{\bar{d}}^{T} \\ \mathbf{0} & \tilde{\mathbf{D}} \end{bmatrix}^{+} \begin{bmatrix} b_{1} \\ \tilde{\mathbf{b}} \end{bmatrix}$$

New Data Model w.r.t. User 1 – II

- ${f N}$ is a noise matrix of the form, ${f N}=[{f 0}\ {f ilde N}].$ ${f z}$ is the new noise vector defined as ${f z}={f n}-{f N}{f B}^+{f b}.$
- The bit sent by the first user, b_1 , during the time interval $t \in [(n-1)T, nT]$ can be estimated as

$$b_1 = \mathbf{c}^T \mathbf{d}$$

where $\mathbf{c} = \begin{bmatrix} 1 & \bar{\mathbf{d}}^T \end{bmatrix}^T$ and $\mathbf{d} = \begin{bmatrix} d_1 & \tilde{\mathbf{d}} \end{bmatrix}^T$.

ullet Now, the semi-blind multiuser detection problem becomes how to estimate ${f d}$.

Least-Square Semi-blind Multiuser Detection (LS-DD)

The LS estimation problem is

$$\mathbf{d}_{\mathrm{LS}} = \min_{\mathbf{x}} \left\| \mathbf{\mathcal{S}} \mathbf{x} - \mathbf{r} \right\|_{2}$$

The LS solution is

$$\mathbf{d}_{\mathrm{LS}} = \mathcal{S}^+ \mathbf{r}$$

and the bit sent by the first user, b_1 , in the nth signaling interval is detected with

$$\begin{array}{ll} \hat{b}_1^{\mathrm{LS}} &=& \mathrm{sgn}\{\mathbf{w}_{\mathrm{LS}}^T\mathbf{r}\} \\ &=& \mathrm{sgn}\left\{b_1+\mathbf{c}^T\boldsymbol{\mathcal{S}}^+\tilde{\mathbf{n}}\right\} \end{array}.$$

• In LS estimation, it assumes that S is error-free. However, this assumption is not entirely accurate according since there is a noise term, N.

Total Least-Square Semi-blind Multiuser Detection (TLS-DD)

- ullet ${f r}$ can also be expressed as ${f r}=\hat{m{\mathcal{S}}}{f d}+{f n}$, where $\hat{m{\mathcal{S}}}=m{\mathcal{S}}-{f N}={f S}{f A}{f B}$.
- The LS problem can then be transformed into the following TLS problem:

$$\mathbf{d}_{\mathrm{TLS}} = \min_{ar{oldsymbol{\mathcal{S}}}, \ \mathbf{x}} \| [oldsymbol{\mathcal{S}} \ \mathbf{r}] - [ar{oldsymbol{\mathcal{S}}} \ ar{oldsymbol{\mathcal{S}}} \mathbf{x}] \|_2$$
.

The TLS solution is

$$\mathbf{d}_{ ext{TLS}} = \left(\mathbf{\mathcal{S}}^T \mathbf{\mathcal{S}} - \sigma_{K+1}^2 \mathbf{I} \right)^{-1} \mathbf{\mathcal{S}}^T \mathbf{r}$$

and the nth bit sent by the first user, b_1 , can be detected with

$$egin{array}{lll} \hat{b}_1^{ ext{TLS}} &=& ext{sgn}\{\mathbf{w}_{ ext{TLS}}^T\mathbf{r}\} \ &=& ext{sgn}\left\{\mathbf{c}^T\left(\mathbf{\mathcal{S}}^T\mathbf{\mathcal{S}} - \sigma_{K+1}^2\mathbf{I}\right)^{-1}\mathbf{\mathcal{S}}^T\mathbf{r}\right\} \end{array}.$$

Mixed LS/TLS Semi-blind Multiuser Detection (MLS-DD) I

- In the LS problem, it assumed the semi-blind signature matrix S is error-free. Again, this assumption is not completely accurate.
- In the TLS problem, it assumed that in each column of the semi-blind signature matrix, S, some noise or error exists. This assumption also is not complete.
- Hence, to maximize the estimation accuracy of the detection vector \mathbf{d} , it is natural to require that the corresponding columns of $\boldsymbol{\mathcal{S}}$ be unperturbed since they are known exactly. The estimation problem becomes the following MLS problem.

$$\mathbf{d}_{\mathrm{MLS}} = \min_{\bar{\boldsymbol{\mathcal{S}}}, \mathbf{x}} \| [\tilde{\boldsymbol{\mathcal{S}}} \quad \mathbf{r}] - [\bar{\boldsymbol{\mathcal{S}}} \quad [A_1 \mathbf{s}_1 \ \bar{\boldsymbol{\mathcal{S}}}] \mathbf{x}] \|_2$$

Mixed LS/TLS Semi-blind Multiuser Detection (MLS-DD) II

The MLS solution is given by

$$\mathbf{d}_{\mathrm{MLS}} = \left(\mathbf{\mathcal{S}}^T \mathbf{\mathcal{S}} - \sigma^2 \begin{bmatrix} 0 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{M-1} \end{bmatrix} \right)^{-1} \mathbf{\mathcal{S}}^T \mathbf{r} .$$

and the bit sent by the first user, b_1 , can be detected with

$$egin{aligned} \hat{b}_1^{ ext{MLS}} &= ext{sgn}\{\mathbf{w}_{ ext{MLS}}^T\mathbf{r}\} \ &= ext{sgn}\left\{\mathbf{c}^T \left(\mathbf{\mathcal{S}}^T\mathbf{\mathcal{S}} - \sigma^2 \begin{bmatrix} 0 & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{M-1} \end{bmatrix}
ight)^{-1} \mathbf{\mathcal{S}}^T\mathbf{r}
ight\}. \end{aligned}$$

Performance Analysis I

ullet When ${f N}={f 0}$, the proposed LS-DD and the classic decorrelating detector share the same signature space and

$$\mathbf{w}_{\mathrm{LS}} = A_k^{-1} \mathbf{w}_{\mathrm{DD}} .$$

Hence, they share the same performance for user 1, too.

• It is straightforward to develop the following relationship between the estimation errors of b_1 and \mathbf{d} :

$$\Delta b_1 \leq \|\Delta \mathbf{d}\|_1$$

where $\Delta b_1=\hat b_1-b_1$, $\Delta {f d}=\hat {f d}-{f d}$ and $\|{f m}\|_1$ denotes the 1-norm of the vector ${f m}$.

Performance Analysis II

The mean of the semi-blind noise item z is

$$\mu = E\{\mathbf{z}\} = 0.$$

 \bullet The variance of the semi-blind noise item z satisfies the following inequality

$$\max\{var\{\mathbf{z}\}\} = \max\{E\{(\mathbf{z} - \mu)^2\}\}$$

$$\leq \sigma^2 + (K - 1)\|\tilde{\mathbf{D}}^+\|_2^2 \sigma_N^2$$

where $\max\{\mathbf{m}\}$ denotes the maximum item in the vector \mathbf{m} and σ_N^2 is the power of the noise item \mathbf{N} in the semi-blind signature matrix $\boldsymbol{\mathcal{S}}$.

Computer Simulations I

BER comparison of the single-user matched filter, decorrelating detector, and the LS semi-blind detector for the first user in a two user system with $\rho=0.75$.

Computer Simulations II

BER comparison of the single-user matched filter, decorrelating detector, and the TLS semi-blind detector for the first user in a two user system with $\rho=0.75$.

Computer Simulations III

BER comparison of the single-user matched filter, decorrelating detector, and the MLS semi-blind detector for the first user in a two user system with $\rho=0.75$.

Computer Simulations IV

Near-far resistance comparison of the single-user matched filter, decorrelating detector, and the LS, TLS and MLS semi-blind detectors for the first user in a two user system with $\rho=0.75$ and SNR=6dB.

Conclusion & Future Directions

- Multiuser precoding provides another alternative to solve the near-far problem in multiuser systems.
- With linear system theory, it can be shown that many linear multiuser precoders and detectors can achieve the same performance.
- With considering the input information bits, nonlinear multiuser precoding can be developed to further enhance system performance.
- Additional performance enhancement may be achievable by jointly optimizing transmitter multiuser precoding and adaptive receivers/transmitters.
- For unknown or time-variable channels, adaptive multiuser precoding with feedback from receivers amd multiuser precoding with channel coding can be interesting topics.