Раздел 1. СЛУЧАЙНЫЕ СОБЫТИЯ

Теория вероятностей — это раздел современной математики, в котором изучаются закономерности случайных явлений. Под случайным явлением понимают явление с неопределенным исходом, происходящее при неоднократном воспроизведении определенного комплекса условий.

Возникновение теории вероятностей как науки относится к XVII в. Первые работы по теории вероятностей представляли собой попытки создания теории азартных игр с целью дать рекомендации игрокам.

Так, 1654 годом датируется переписка Блеза Паскаля (1623—1662) и Пьера Ферма (1601—1665), в которой обсуждаются некоторые задачи, связанные с азартными играми. В частности, так называемая «задача об очках», которую поставил перед Паскалем известный французский игрок XVII в. шевалье де Мере: сколько раз нужно бросать две кости, чтобы ставить на одновременное выпадение хотя бы раз двух шестерок было выгодно?

Под влиянием поднятых в дискуссии Паскаля и Ферма вопросов решением тех же задач занимался и голландский ученый Христиан Гюйгенс (1629–1695). Подробностей переписки он не знал, поэтому методику решения изобрел самостоятельно и опубликовал свои результаты в книге «О расчетах в азартных играх» (1657 г.), которую можно считать первым трактатом по теории вероятностей. В предисловии Гюйгенс пишет: «Я полагаю, что при внимательном изучении предмета читатель заметит, что имеет дело не только с игрой, но что здесь закладываются основы очень интересной и глубокой теории».

Известны также работа итальянского математика Джероламо Кардано (1501–1576) «Книга об игре в кости», опубликованная в 1563 г., и исследование Галилео Галилея (1564–1642) «Об открытиях, совершенных при игре в кости», написанная между 1613 г. и 1624 г.

Мощным стимулом развития теории вероятностей явились также запросы страхового дела, которое зародилось еще в XIV в. С конца XVII в. на научной основе стало производиться страхование от несчастных случаев и стихийных бедствий. В XVI–XVII вв. во всех странах Западной Европы получило распространение

страхование судов и страхование от пожара. В XVIII в. были созданы многочисленные страховые компании и лотереи в Италии, Фландрии, Нидерландах.

В 1713 г. в трактате «Искусство предположений» известного швейцарского математика Якоба Бернулли (1654—1705) была сформулирована и строго доказана первая предельная теорема теории вероятностей — Закон больших чисел.

Точное определение вероятности впервые было сформулировано французским математиком Пьером Симоном Лапласом (1749—1827), сейчас оно называется классическим определением вероямности.

Построение строгой математической теории вероятностей было осуществлено лишь в XX в. В 1933 г. была издана книга советского академика А.Н. Колмогорова (1903—1987) «Основные понятия теории вероятностей», в которой было дано аксиоматическое построение теории вероятностей, основанное на теории множеств.

§ 1. Множество элементарных событий. Классическое определение вероятности

- **Опр. 1.** *Достоверным* называется событие, которое обязательно произойдет при данном комплексе условий (в данном случайном испытании, в данном случайном эксперименте).
- **Опр. 2.** *Невозможным* называется событие, которое при данном комплексе условий заведомо не может произойти.
- **Опр. 3.** *Случайным* называется событие, которое при данном комплексе условий может как произойти, так и не произойти.

Мера возможности осуществления случайного события – это и есть его вероятность.

Для обозначения случайных событий используются, как правило, большие буквы латинского алфавита: A,B,C и т. д.; достоверное событие будем обозначать Ω , а невозможное – \varnothing .

Опр. 4. События A и B называются **несовместными**, если появление одного из них исключает появление другого в одном и том же случайном испытании, т. е. они не могут произойти вместе в одном испытании. События A и B называются **совместными**, если они могут появиться вместе в одном испытании.

События $A_1, A_2, ..., A_n$ называются **попарно несовместными**, если любые два из них несовместны.

Пример 1. Пусть подброшен правильный игральный кубик. Рассмотрим события:

 $A = \{$ выпало 3 очка $\};$

 $B = \{$ выпало не более 2 очков $\}$;

 $C = \{$ выпало 2 очка $\}$.

Здесь события A и B несовместны; события A и C несовместны; события B и C совместны.

Опр. 5. Несколько событий образуют *полную группу событий* для данного испытания, если они попарно несовместны и в результате испытания обязательно появится одно из них.

Иными словами, в результате испытания должно произойти одно и только одно из этих событий.

Пример 1 (продолжение). События A, B и C не образуют полную группу событий, поскольку они не являются попарно несовместными и, кроме того, не исчерпывают все возможные исходы испытания.

Введем событие $D = \{$ выпало более 3 очков $\}$. Тогда события A, B, D образуют полную группу событий.

Однако события A, B, C и D не являются полной группой событий, так как события B и C совместны. \bullet

Для одного и того же испытания можно рассматривать различные полные группы событий. Частным случаем полной группы событий являются противоположные события.

- **Опр. 6.** Два события называются *противоположными*, если в данном испытании они несовместны и одно из них обязательно происходит. Событие, противоположное событию A, обозначают \overline{A} .
- **Опр. 7.** Несколько событий в данном испытании называются *равновозможными*, если ни одно из них не является объективно более возможным, чем другие, т. е. если условия испытания не создают преимущества в появлении какого-либо события перед остальными.

Пример 1 (продолжение). При однократном бросании игральной кости события $A_1, A_2, A_3, ..., A_6$ — соответственно выпадение одного очка, двух, трех и т. д. до шести — образуют полную группу событий и являются равновозможными событиями. \bullet

Классическое определение вероятности

Всякое случайное испытание связано с некоторой совокупностью исходов — результатов испытания, т. е. событий. Во многих случаях бывает возможно перечислить все события, которые могут быть исходами данного испытания.

Опр. 8. Пусть проводится испытание с конечным числом *по- парно несовместных равновозможных* исходов $\omega_1, \omega_2, ..., \omega_n$, образующих полную группу событий. Такие исходы называются элементарными исходами, или элементарными событиями. При этом говорят, что испытание сводится к схеме случаев. Множество всех элементарных исходов (которое называют также пространством элементарных исходов) будем обозначать $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$.

Опр. 9. Элементарный исход ω_i называется *благоприямству-ющим появлению события* A, если наступление исхода ω_i влечет за собой наступление события A.

Классическое определение вероятности: вероятность P(A) случайного события A равна

$$P(A) = \frac{m}{n},$$

где $m = m_A$ — число элементарных исходов испытания, благоприятствующих появлению события A, n — общее число равновозможных элементарных исходов испытания.

Пример 1 (продолжение). Найдем вероятности событий A, B, C, D.

Решение. Множество элементарных исходов $\Omega = \{\omega_1, \omega_2, \omega_3, ..., \omega_6\}$, содержит 6 равновозможных событий $\omega_1, \omega_2, \omega_3, ..., \omega_6$ – соответственно выпадение одного очка, двух, трех и т. д. до шести, поэтому n=6.

Чтобы найти вероятности событий с помощью классического определения вероятности, определим для каждого события благоприятствующие ему элементарные исходы:

$$A = \{\omega_3\} \implies m_A = 1 \implies P(A) = \frac{1}{6};$$

$$B = \{\omega_1, \omega_2\} \implies m_B = 2 \implies P(B) = \frac{2}{6} = \frac{1}{3};$$

$$C = \{\omega_2\} \implies m_C = 1 \implies P(C) = \frac{1}{6};$$

$$D = \{\omega_4, \omega_5, \omega_6\} \implies m_D = 3 \implies P(D) = \frac{3}{6} = \frac{1}{2}. \bullet$$

Замечание. Поскольку результаты случайного испытания не всегда образуют конечное множество равновозможных несовместных исходов, то классическое определение вероятности нельзя считать определением в полном смысле этого слова, а можно только использовать как метод вычисления вероятности для испытаний, сводящихся к схеме случаев.

Легко видеть, что из классического определения вероятности вытекают следующие свойства, справедливые и в общем случае.

Вероятность любого события удовлетворяет условию

$$0 \le P(A) \le 1.$$

Вероятность достоверного события равна 1: $P(\Omega) = 1$; вероятность невозможного события равна 0: $P(\emptyset) = 0$.

Элементы комбинаторики

Комбинаторика — это раздел математики, в котором изучаются методы подсчета числа различных комбинаций (сколькими различными способами можно составить множества (комбинации), удовлетворяющие определенным условиям, из элементов заданного множества).

Многие комбинаторные задачи могут быть решены с помощью следующих двух простых правил.

Правило произведения: если объект типа X можно выбрать n способами и при каждом таком выборе объект типа Y можно выбрать m способами, то выбор пары (X, Y) в указанном порядке можно осуществить nm способами.

Правило суммы: если объект типа X можно выбрать n способами, а объект типа Y-m способами, то выбор объекта типа X или Y можно осуществить n+m способами.

Пример 2. Из пункта M. в пункт N. и обратно можно добраться тремя способами: поездом, автобусом или самолетом; из N. в L. можно доехать автобусом или дойти пешком. Сколько различных по способу передвижения маршрутов можно организовать: **a)** из M. в L. через N.; **6)** из N. либо в M., либо в L.?

Решение. **a)** Нужные маршруты легко перечислить: 1) из M. в N. самолетом, далее автобусом; 2) из M. в N. самолетом, далее пешком; 3) поездом — автобусом; 4) поездом — пешком; 5) автобусом — автобусом; 6) автобусом — пешком.

Число маршрутов можно определить, не перечисляя их. Имеется 3 способа добраться из M. в N. и 2 способа из N. в L. На каждый способ добраться из M. в N. приходится два способа добраться в L. По правилу произведения получаем $3 \cdot 2 = 6$ способов.

- **б)** Нужно выбрать либо один из 3 вариантов добраться из N. в M., либо один из 2 вариантов путешествия из N. в L. Применяя правило суммы, получаем всего 3+2=5 вариантов. •
- **Пример 3.** Сколько можно составить из цифр 1, 2, 3, 4, 5: **a)** трехзначных чисел, **б)** трехзначных чисел, состоящих из различных цифр?

Решение. **a)** Каждую цифру можно выбрать 5 способами, следовательно, по правилу произведения получаем, что всего таких чисел $5 \cdot 5 \cdot 5 = 125$.

- **б)** Первую цифру можно выбрать 5 способами; на каждый способ выбора первой цифры приходится 4 способа выбора второй цифры (можно взять любую цифру, кроме той которую выбрали первый раз); на каждый способ выбора первых двух цифр приходится 3 способа выбора третьей цифры. По правилу произведения получаем всего $5 \cdot 4 \cdot 3 = 60$ способов. •
- **Опр. 10.** Пусть имеется множество, содержащее n элементов. Каждая упорядоченная комбинация, содержащая m элементов из этих n, называется размещением из n элементов по m. Число размещений (упорядоченных комбинаций) из n различных элементов по m элементам (местам), отличающихся либо самими элементами, либо их порядком, называется числом размещений из n по m и обозначается A_n^m .

Можно сказать, что число размещений A_n^m – это *число способов* разместить m из n элементов по m местам. С помощью правила произведения легко вычислить

$$A_n^m = \underbrace{n(n-1)(n-2)...(n-m+1)}_{m \text{ множителей}} = \frac{n!}{(n-m)!}.$$

Опр. 11. Размещения из n элементов по n называются nepecma- новками (из n элементов). Число P_n перестановок из n элементов равно

$$P_n = n(n-1)(n-2)...\cdot 2\cdot 1 = n!.$$

Опр. 12. Пусть имеется множество, содержащее n элементов. *Неупорядоченные* комбинации (порядок не имеет значения), содержащие m элементов из данных n, называются **сочетаниями** из n элементов по m. **Число сочетаний из** n **по** m обозначается C_n^m .

Таким образом, число сочетаний C_n^m — это *число способов выбрать m* элементов из данных *n* элементов (порядок выбранных элементов не учитывается).

Замечание. Из определения понятий размещения и сочетания следует, что число размещений A_n^m и число сочетаний C_n^m имеют смысл только в случае $0 \le m \le n$.

Пример 4. Пусть дано множество из 4 элементов: $D = \{a, b, c, d\}.$

Перечислим все сочетания из 4 данных элементов по 3. Это все возможные подмножества, содержащие 3 элемента:

$${a,b,c}; {a,b,d}; {a,c,d}; {b,c,d}.$$

Всего имеется 4 сочетания из 4 по 3, так как эти множества должны отличаться составом элементов. Такие комбинации, как, например, *abc* и *acb*, отличающиеся только порядком элементов, представляют собой различные размещения, но одно и то же сочетание.

Выпишем все размещения из 4 по 3. Это можно сделать, переставив всеми возможными способами элементы каждого сочетания. Каждому сочетанию (неупорядоченному множеству элементов) будет соответствовать 3! = 6 размещений, различающихся между собой порядком элементов, поэтому всего получится $A_4^3 = 4 \cdot 6 = 24$ размещений:

abc	abd	acd	bcd
acb	adb	adc	bdc
bac	bad	cad	cbd
bca	bda	cda	cdb
cab	dab	dac	dbc
cba	dba	dca	dcb

Аналогично рассмотренному примеру, в общем случае подсчитать число A_n^m всех возможных размещений из n по m можно следующим образом: сперва найти число всех неупорядоченных множеств, содержащих m элементов из данных n (таких множеств будет C_n^m), а затем вычислить число возможных перестановок в каждом неупорядоченном множестве (это число равно P_m). Следовательно, по правилу произведения получаем: $A_n^m = C_n^m P_m = C_n^m m!$. Отсюда

$$C_n^m = \frac{A_n^m}{m!} = \frac{n!}{m!(n-m)!}.$$

Замечание 1. Напомним, что 0!=1.

Замечание 2. Числа C_n^m называют также **биномиальными коэффициен- тами** в соответствии с биномом Ньютона:

$$(1+x)^n = C_n^0 + C_n^1 x + C_n^2 x^2 + \dots + C_n^m x^m + \dots + C_n^n x^n = \sum_{m=0}^n C_n^m x^m.$$

Свойства чисел C_n^m (биномиальных коэффициентов).

- 1. $C_n^m = C_n^{n-m}$.
- **2.** $C_n^0 = C_n^n = 1$.
- **3.** $C_n^1 = C_n^{n-1} = n$.

Пример 5. Сколько существует способов распределения 3 наград между 10 участниками соревнования, если: **a)** награды различные; **б)** все награды одинаковые?

Решение. Число способов распределения 3 наград между 10 участниками соревнования равно числу способов выбрать трех участников из десяти и разместить их по трем местам, т. е.

а) числу размещений $A_{10}^3 = 10 \cdot 9 \cdot 8 = 720$ (порядок важен);

б) числу сочетаний $C_{10}^3 = \frac{10!}{3!7!} = \frac{10 \cdot 9 \cdot 8}{1 \cdot 2 \cdot 3} = 120$ (порядок не учитывается).•

Если при выборе m элементов из n каждый раз выбранный элемент возвращается обратно, то возникают понятия размещения (упорядоченной комбинации) и сочетания (неупорядоченной комбинации) из n элементов по m c n o n

Опр. 13. Если в размещениях из n элементов по m некоторые элементы могут участвовать несколько раз, то такие комбинации (упорядоченные комбинации с возможными повторениями) называются **размещениями** c **повторениями** из n элементов по m.

Число размещений с повторениями из n **по** m обозначают \overline{A}_n^m .

Таким образом, размещения с повторениями могут отличаться друг от друга элементами, их порядком и количеством повторений выбранных элементов.

Несложно видеть, что в силу правила произведения

$$\overline{A}_n^m = n^m$$
.

Пример 6. Сколько существует четырехзначных цифровых кодов?

Решение. Каждую цифру, независимо от остальных, можно выбрать 10 способами, следовательно, по правилу произведения получаем, что количество четырехзначных цифровых кодов равно числу размещений с повторениями из 10 цифр по 4 местам, т. е. $\overline{A}_{10}^4 = 10^4 = 10000$.

Опр. 14. Если в сочетаниях из n элементов по m некоторые элементы могут присутствовать несколько раз, то такие комбинации (неупорядоченные комбинации с возможными повторениями) называются *сочетаниями* с *повторениями* из n элементов по m.

Число сочетаний с повторениями из n **по** m обозначают \overline{C}_n^m .

Замечание. Число размещений с повторениями \overline{A}_n^m и число сочетаний с повторениями \overline{C}_n^m , в отличие от числа размещений A_n^m и числа сочетаний C_n^m без повторений, имеют смысл при любых соотношениях между m и n.

Утв. 1. Число сочетаний с повторениями из n по m равно

$$\overline{C}_n^m = C_{n+m-1}^m.$$

Доказательство. Пусть имеется множество, содержащее n элементов. Обозначим их a_1, a_2, \ldots, a_n . Определим количество различных сочетаний с повторениями из этих n элементов по m.

Поскольку в сочетаниях порядок элементов не имеет значения, то запишем каждое сочетание, упорядочив его элементы и разграничив группы одинаковых элементов. Например, сочетание $a_1a_3a_3a_na_na_4a_5a_1$ запишем в виде $a_1a_1 \parallel a_3a_3 \mid a_4 \mid a_5 \mid \ldots \mid a_na_n$. В этой записи присутствует m выбранных элементов и n-1 разделяющих вертикальных линий, т. е. всего n+m-1 элементов. При такой записи разные сочетания с повторениями отличаются друг от друга только позициями разделяющих вертикальных линий, поэтому количество различных сочетаний с повторениями из n по m равно числу способов выбрать из n+m-1 позиций n-1 мест для разделяющих вертикальных линий, т. е. $\overline{C}_n^m = C_{n+m-1}^m$.

Пример 7. В магазине продается 10 видов тортов. Очередной покупатель выбил чек на 3 торта. Определим количество возможных вариантов заказа.

Решение. Количество различных вариантов заказов равно числу способов выбрать 3 торта из 10 различных видов, возможно с повторениями, причем порядок тортов в заказе неважен, т. е. числу сочетаний с повторениями из 10 по 3:

$$\overline{C}_{10}^3 = C_{10+3-1}^3 = C_{12}^3 = \frac{12!}{3!9!} = \frac{12 \cdot 11 \cdot 10}{1 \cdot 2 \cdot 3} = 220.$$

Пример 8. В гостинице 10 комнат, в каждой из которых можно разместить 4 человека. Сколько существует вариантов размещения прибывших 4 гостей?

Решение. Каждого гостя, независимо от остальных, можно поселить в любой из 10 комнат, следовательно, количество вариантов размещения прибывших 4 гостей равно числу способов выбрать комнату для первого, второго, третьего и четвертого гостя (порядок выбора комнат важен), т. е. числу размещений с повторениями из 10 комнат по $4: \overline{A}_{10}^4 = 10^4 = 10000$.

Опр. 15. Пусть имеется множество, содержащее n элементов, причем в этом множестве элемент a_1 повторяется n_1 раз, элемент

 $a_2 - n_2$ раз, ..., элемент $a_k - n_k$ раз, где $n_1 + n_2 + ... + n_k = n$. Число перестановок этих элементов, отличающихся порядком расположения различных элементов, называется **числом перестановок с по-вторениями** и обозначается P_n $(n_1; n_2; ...; n_k)$.

Утв. 2. Число перестановок с повторениями равно

$$P_n(n_1; n_2; ...; n_k) = \frac{n!}{n_1! n_2! ... n_k!}.$$

Доказательство. Пусть имеется множество из n элементов, причем в нем элемент a_1 повторяется n_1 раз, элемент $a_2 - n_2$ раз, ..., элемент $a_k - n_k$ раз, где $n_1 + n_2 + \ldots + n_k = n$.

Для перестановки этих элементов выберем сначала n_1 мест для элемента a_1 (это можно сделать $C_n^{n_1}$ способами), затем n_2 мест для элемента a_2 из оставшихся свободными $n-n_1$ мест ($C_{n-n_1}^{n_2}$ способов), n_3 мест для элемента a_3 из оставшихся $n-n_1-n_2$ мест ($C_{n-n_1-n_2}^{n_3}$ способов) и т. д. По правилу произведения получим, что число перестановок с повторениями равно

$$\begin{split} P_{n}\left(n_{1};n_{2};\ldots;n_{k}\right) &= C_{n}^{n_{1}}C_{n-n_{1}}^{n_{2}}C_{n-n_{1}-n_{2}}^{n_{3}}\ldots C_{n-n_{1}-n_{2}-\ldots-n_{k-1}}^{n_{k}} = \\ &= \frac{n!}{n_{1}!(n-n_{1})!} \frac{(n-n_{1})!}{n_{2}!(n-n_{1}-n_{2})!} \frac{(n-n_{1}-n_{2})!}{n_{3}!(n-n_{1}-n_{2}-n_{3})!} \times \\ &\times \ldots \frac{(n-n_{1}-n_{2}-\ldots-n_{k-1})!}{n_{k}!0!} = \frac{n!}{n_{1}!n_{2}!\ldots n_{k}!}. \, \, \, \, \, \, \end{split}$$

Пример 9. Сколькими способами можно переставить буквы в слове «КОЛОКОЛ»?

Решение. Здесь $n_1 = 2$ буквы К, $n_2 = 2$ буквы Л и $n_3 = 3$ буквы О, всего $n = n_1 + n_2 + n_3 = 7$ букв. Следовательно, число перестановок с повторениями этих 7 букв равно

$$P_7(2;2;3) = \frac{7!}{2!2!3!} = \frac{7 \cdot 6 \cdot 5 \cdot 4}{2 \cdot 2} = 7 \cdot 6 \cdot 5 = 210.$$

Пример 10. Сколькими способами можно разделить 11 спортсменов на 3 группы по 4, 5 и 2 человека соответственно?

Решение. 1 способ. Выберем сначала 4 спортсмена в первую группу (это можно сделать C_{11}^4 способами), затем из оставшихся 11-4=7 спортсменов выберем 5 человек во вторую группу (имеется C_7^5 способов такого выбора), оставшиеся 2 спортсмена попадают в третью группу (выбираем 2 спортсмена из двух C_2^2 способами). По правилу произведения получим, что число способов деления 11 спортсменов на такие 3 группы равно

$$C_{11}^{4}C_{7}^{5}C_{2}^{2} = \frac{11!}{4!7!} \cdot \frac{7!}{5!2!} \cdot \frac{2!}{2!0!} = \frac{11!}{4!5!2!} = \frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 2} =$$

$$= 11 \cdot 10 \cdot 9 \cdot 7 = 6930.$$

2 способ. Возьмем четыре карточки с номером 1 (первая группа), пять карточек с номером 2 (вторая группа) и две карточки с номером 3 (третья группа). Будем раздавать эти карточки спортсменам, и каждый способ раздачи будет соответствовать разбиению спортсменов на группы. Таким образом, число способов деления 11 спортсменов на указанные 3 группы равно числу перестановок 11 карточек, среди которых четыре карточки с одинаковым номером 1, пять карточек с номером 2 и две карточки с номером 3, т. е.

$$P_{11}(4;5;2) = \frac{11!}{4!5!2!} = 6930. \bullet$$

Замечание. Число способов разделить n элементов на группы так, чтобы в первой группе оказалось n_1 элементов, во второй n_2 элементов, ..., в последней n_k элементов, причем $n_1 + n_2 + \ldots + n_k = n$, равно числу перестановок с повторениями $P_n(n_1; n_2; \ldots; n_k)$.

§ 2. Методы задания вероятностей

1. Классическое определение вероятности: вероятность P(A) случайного события A равна

$$P(A) = \frac{m}{n},$$

где $m = m_A$ — число элементарных исходов испытания, благоприятствующих появлению события A, n — общее число равновозможных элементарных исходов испытания.

Для того, чтобы можно было применить классическое определение вероятности, необходимо, чтобы случайный эксперимент сводился к схеме случаев, т. е.:

- 1) элементарные исходы эксперимента должны быть равновозможны;
- 2) элементарные исходы должны образовывать конечное (или счетное) множество.

Пример 1. В урне содержится N шаров, из них M белых, остальные — черные. Наудачу вынимают n шаров. Какова вероятность того, что среди вынутых шаров m белых?

Решение. Имеет место следующая схема:

Имеем:
$$M$$
 белых $+(N-M)$ черных $=N$ шаров Извлечь: m белых $+(n-m)$ черных $=n$ шаров $P(A)=$ C_M^m \cdot C_{N-M}^{n-m} $/$ C_N^n

Число элементарных исходов — это число способов извлечь (выбрать) n шаров из имеющихся N шаров, т. е. C_N^n . Число благоприятствующих исходов — это число способов выбрать m шаров из имеющихся M белых шаров и при каждом этом выборе извлечь n-m шаров из имеющихся N-M черных шаров. В силу правила произведения, число благоприятствующих исходов равно $C_M^m C_{N-M}^{n-m}$. Обозначая через A событие, вероятность которого надо найти, получаем

$$P(A) = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n}. \bullet$$

- **2. Геометрическая вероятность** может использоваться, если исходы случайного эксперимента равновозможны, но образуют бесконечное несчетное пространство элементарных исходов, которое можно представить в виде некоторой геометрической фигуры области на числовой прямой, на плоскости или в пространстве.
- **Опр. 1.** Пусть G геометрическая фигура (область), представляющая пространство элементарных исходов данного

эксперимента; g — область, представляющая все элементарные исходы, благоприятствующие событию A (рис. 1). **Геометрической вероятностью** события A называется отношение меры области g к мере области G:

$$P(A) = \frac{\mu(g)}{\mu(G)}.$$

При этом если G — отрезок или кривая, то $\mu(G)$ — длина отрезка или кривой; если G — плоская область, то $\mu(G)$ — площадь этой области; если G — пространственное тело, то $\mu(G)$ — объем этого тела.

Рис. 1. Геометрическая вероятность.

Пример 2. В квадрат со стороной a наудачу брошена точка. Какова вероятность того, что она попадет на вписанный в квадрат круг?

Рис. 2. Круг, вписанный в квадрат со стороной a

Решение. Площадь квадрата равна $S_{\rm kB}=a^2$, площадь круга $S_{\rm kp}=\pi r^2$, где $r=\frac{a}{2}$ — радиус круга (см. рис. 2). Применяя геометрическую вероятность, получим

$$P(A) = \frac{S_{\text{KP}}}{S_{\text{KP}}} = \frac{\pi \left(\frac{a}{2}\right)^2}{a^2} = \frac{\pi}{4}. \bullet$$

Пример 3 (задача о встрече). Два лица И. и М. договорились встретиться в течение определенного часа, в пределах которого они приходят случайным образом (наудачу), причем И. ждет 20, а М. — 10 минут. Найдем вероятность того, что они встретятся.

Решение. Пусть x — время прихода И., а y — время прихода М. Введем в рассмотрение прямоугольную систему координат Oxy. Областью возможных значений является множество точек (x; y), $0 \le x \le 60$, $0 \le y \le 60$ (в качестве единиц масштаба возьмем минуты), т. е. множество элементарных исходов эксперимента описывается квадратом Ω со стороной 60 (см. рис. 3), площадь квадрата равна $S_{\Omega} = 60^2 = 3600$.

Рис. 3. Задача о встрече

Событие $A=\{$ встреча состоится $\}$ произойдет, если каждое лицо придет не позже, чем другое уйдет после ожидания, т. е. $x\leq y+10,\,y\leq x+20.$ Таким образом, исходы, благоприятствующие событию A, расположены в заштрихованной полосе между прямыми y=x-10 и y=x+20 (см. рис. 3), причем площадь S_A благоприятствующей событию A области равна площади S_Ω квадрата Ω за вычетом площадей двух прямоугольных треугольников с катетами по 40 и 50 единиц. Тогда

$$P(A) = \frac{S_A}{S_O} = \frac{3600 - \frac{1}{2} \cdot 40 \cdot 40 - \frac{1}{2} \cdot 50 \cdot 50}{3600} = \frac{31}{72} \approx 0,43.$$

3. Статистическая вероятность.

Классическое определение вероятности неприменимо, если исходы случайного эксперимента не равновозможны. Например, при бросании неправильной игральной кости выпадения ее различных граней не равновозможны. В таких случаях иногда используют понятие статистической вероятности.

Опр. 2. Пусть при проведении n испытаний событие A появилось в m испытаниях. Отношение $w(A) = \frac{m}{n}$ называется **относительной частотой** появления события A в данной серии испытаний.

Относительная частота не является величиной постоянной. Если мы проведем еще одну серию из n или n_1 испытаний, то событие A появится m_1 раз, причем $\frac{m_1}{n_1} \neq \frac{m}{n}$, но если n и n_1 достаточно

велики и условия эксперимента достаточно стабильны, то $\frac{m_1}{n_1} \approx \frac{m}{n}$.

Опр. 3. Если относительная частота события обладает свойством статистической устойчивости, т. е. в различных сериях испытаний изменяется незначительно, в качестве *статистической вероятности* события принимают относительную частоту или ее приближенное значение.

Пример 4. Известно, что среди новорожденных больше мальчиков, чем девочек. По официальным статистическим данным, относительная частота рождения девочек в Беларуси в 2003–2018 гг. варьировалась следующим образом:

```
2003 - 0.485;
                 2004 - 0.487;
                                  2005 - 0.487;
                                                    2006 - 0.485;
                 2008 - 0.485;
2007 - 0.485;
                                  2009 - 0,485;
                                                   2010 - 0,484;
                 2012 - 0.485;
                                  2013 - 0.485;
                                                    2014 - 0.483;
2011 - 0.486;
2015 - 0.484;
                 2016 - 0.485;
                                  2017 - 0.486;
                                                   2018 - 0.487.
```

Это дает основания считать вероятность рождения девочек приблизительно равной 0,485.

§ 3. Соотношения между событиями

Случайные события можно рассматривать как подмножества некоторого множества — пространства элементарных исходов Ω . Соотношения между случайными событиями аналогичны соотношениям между множествами. События и действия над ними можно наглядно иллюстрировать с помощью *диаграмм Эйлера*: достоверное событие Ω изображают прямоугольником; элементарные исходы — точками прямоугольника; случайное событие — областью внутри него.

Опр. 1. Говорят, что событие A влечет за собой событие B, или что событие A входит в B, или что событие B включает в себя событие A, если при наступлении события A обязательно наступает и событие B. Обозначается: $A \subset B$.

На рис. 4 представлена геометрическая интерпретация этого понятия.

Рис. 4. Событие A влечет за собой событие B: $A \subset B$

Пример 1. Пусть подброшен правильный игральный кубик. Рассмотрим события:

 $A = \{$ выпало 1 очко $\};$

 $B = \{$ выпало нечетное число очков $\}$.

Здесь событие A влечет за собой событие B (событие A входит в B): $A \subset B$.

Опр. 2. События A и B называются *равносильными* (*равными*), если одновременно $A \subset B$ и $B \subset A$.

Опр. 3. *Суммой* (*объединением*) событий A и B называется событие C = A + B ($C = A \cup B$), состоящее в наступлении хотя бы одного из событий A или B. Иными словами, событие C состоит в том, что произошло или событие A, или событие B, или события A и B одновременно (рис. 5).

Рис. 5. Сумма A + B событий A и B

Опр. 4. *Произведением* (*пересечением*) событий A и B называется событие C = AB ($C = A \cap B$), которое наступает, когда происходят оба события A u B (рис. 6).

Рис. 6. Произведение AB событий A и B

Пример 1 (продолжение). Найдем сумму и произведение событий $D = \{$ выпало не более 3 очков $\}$; $K = \{$ выпало не менее 3 очков $\}$.

Множество элементарных исходов $\Omega = \{\omega_1, \omega_2, \omega_3, ..., \omega_6\}$ содержит 6 элементарных событий $\omega_1, \omega_2, \omega_3, ..., \omega_6$ — соответственно выпадение одного очка, двух, трех и т. д. до шести. Перечислим элементарные исходы, благоприятствующие каждому из событий:

$$D = \{\omega_1, \omega_2, \omega_3\}; \qquad K = \{\omega_3, \omega_4, \omega_5, \omega_6\}.$$

Тогда сумма событий включает все исходы, которые благоприятствуют либо одному событию, либо второму, либо обоим событиям одновременно, поэтому

$$D + K = {\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6} = \Omega;$$

произведение событий включает только те исходы, которые благоприятствуют обоим событиям одновременно, т. е.

$$DK = \{\omega_3\}.$$

Заметим, что для событий $A=\{$ выпало 1 очко $\}=\{\omega_1\}$ и $B=\{$ выпало нечетное число очков $\}=\{\omega_1,\,\omega_3,\,\omega_5\}$ получим $A+B=B,\,AB=A.$ ullet

Замечание. Раньше мы ввели понятие несовместных событий: события A и B называются несовместными, если они не могут произойти вместе в одном испытании. Таким образом, события A и B являются несовместными тогда и только тогда, когда их произведение является невозможным событием: $AB = \emptyset$.

Опр. 5. *Разностью* событий A и B называется событие $C = A \setminus B$ (C = A - B), которое произойдет, если произойдет событие A, но не произойдет событие B (рис. 7).

Рис. 7. Разность $C = A \backslash B$ событий A и B

Пример 1 (продолжение). Для введенных выше событий A, B, D, K получим:

$$A \backslash B = \varnothing; \quad B \backslash A = \{\omega_3, \omega_5\}; \quad D \backslash K = \{\omega_1, \omega_2\}; \quad K \backslash D = \{\omega_4, \omega_5, \omega_6\}. \bullet$$

Понятие разности событий позволяет представить событие \overline{A} , противоположное событию A, в виде $\overline{A} = \Omega \backslash A$ (рис. 8).

Рис. 8. Событие $\overline{A} = \Omega \backslash A$, противоположное событию A

§ 4. Аксиоматическое построение теории вероятностей

WWWBUKUC TIPABKAWWWWWWWWWWWWWWWWWWW

Элементарная теория вероятностей – та часть теории вероятностей, в которой приходится иметь дело с вероятностями лишь конечного числа событий. В общем случае теория вероятностей как математическая дисциплина базируется на системе аксиом. Это означает, что, после того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, все дальнейшее изложение теории должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений.

Задача аксиоматизации теории вероятностей была сформулирована в 1900 г. на II Международном математическом конгрессе как часть одной из знаменитых *проблем Гильберта*. Немецкий математик Д. Гильберт (1862–1943) в своем докладе представил список двадцати трех нерешенных проблем, послуживший направляющим указателем приложения усилий математиков на протяжении всего XX в.

Аксиоматизация теории вероятностей может быть проведена различными способами как в отношении выбора аксиом, так и выбора основных понятий и основных соотношений. Если преследовать цель возможной простоты как самой системы аксиом, так и построения на ней дальнейшей теории, то представляется наиболее целесообразным ввести в качестве базовых понятия случайного события и его вероятности.

Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной А. Н. Колмогоровым в монографии «Основные понятия теории вероятностей», первое издание которой опубликовано в 1933 г. на немецком языке. В этой работе А. Н. Колмогоров заложил фундамент современной теории вероятностей, основанной на теории множеств и теории меры. Аксиомы теории вероятностей вводятся так, чтобы вероятность события обладала основными свойствами статистической вероятности, характеризующей ее практический смысл. Сформулированная А. Н. Колмогоровым простая система аксиом позволила описать уже существовавшие к тому времени классические разделы теории вероятностей и дать толчок развитию ее новых разделов, например, теории случайных процессов.

WWWBUKUC II PABKAWWWWWWWWWWWWWWWWWW

Андре́й Никола́евич Колмого́ров (1903–1987)

русский советский математик, один из крупнейших математиков XX в.

Один из основоположников современной теории вероятностей, им получены фундаментальные результаты во многих областях математики и ее приложений, в том числе в геометрии, математической логике, классической механике, теории сложности алгоритмов, теории информации, теории тригонометрических рядов, теории приближения функций, теории множеств, теории дифференциальных уравнений, функциональном анализе. Автор новаторских работ по философии, истории, методологии и преподаванию математики.

Академик Академии наук СССР, президент Московского математического общества в 1964—1966 гг. и 1974—1985 гг. Иностранный член Национальной академии наук США, Лондонского королевского общества, Французской (Парижской), Венгерской и Польской академий наук, Нидерландской королевской академии наук, Академий наук ГДР и Финляндии, Румынской академии, член Германской академии естествоиспытателей «Леопольдина», почетный член Американской академии искусств и наук, член Лондонского математического общества, Индийского математического общества, иностранный член Американского философского общества.

Пусть задано некоторое множество Ω исходов эксперимента, которое мы будем называть *пространством элементарных исходов*. Пусть \mathfrak{F} — некоторый класс (система, множество) случайных событий, т. е. подмножеств множества Ω .

- **Опр. 1.** Класс событий \mathfrak{F} называется σ *-алгеброй* событий, если:
 - 1) $\Omega \in \mathfrak{F}$ (достоверное событие принадлежат классу \mathfrak{F});
- 2) если $A, B \in \mathfrak{F}$, то $A + B, AB, A \setminus B \in \mathfrak{F}$ (если A и B являются событиями, то их сумма A + B, произведение AB и разность $A \setminus B$ также являются событиями);
- 3) если $A_1, A_2, ..., A_n, ... \in \mathfrak{F}$, то $A_1 + A_2 + ... + A_n + ... \in \mathfrak{F}$; $A_1 A_2 ... A_n ... \in \mathfrak{F}$ (сумма и произведение счетного числа событий также являются событиями).

Пример 1. Наиболее простыми примерами σ -алгебр являются:

- 1) \mathfrak{F} множество всех подмножеств множества Ω ;
- 2) $\mathfrak{F} = \{\emptyset; \Omega\};$
- 3) $\mathfrak{F} = \{\emptyset; A; \overline{A}; \Omega\}$, где A некоторое подмножество множества Ω . \bullet
- **Опр. 2.** Вероятностью (или вероятностной мерой) называется числовая функция $P:\mathfrak{F}\to [0;1]$, определенная для каждого события $A\in\mathfrak{F}$ и удовлетворяющая следующим условиям (аксиомам вероятности):
- **A1.** *Аксиома неотрицательности*: вероятность любого события неотрицательна, т. е. $P(A) \ge 0$ для любого события $A \in \mathfrak{F}$;
- **А2.** *Аксиома нормированности*: вероятность достоверного события равна 1, т. е. $P(\Omega) = 1$;
- **А3.** Аксиома аддитивности: вероятность суммы несовместных событий равна сумме их вероятностей, т. е. если события $A_1, A_2, ..., A_n, ... \in \mathfrak{F}$ попарно несовместны ($A_i A_k = \emptyset$ при всех $i \neq k$), то

$$P(A_1 + A_2 + ... + A_n + ...) = P(A_1) + P(A_2) + ... + P(A_n) + ...$$

Опр. 3. Тройка объектов $(\Omega, \mathfrak{F}, P)$, где Ω – некоторое множество, называемое пространством элементарных исходов; \mathfrak{F} – σ -алгебра событий (подмножеств множества Ω); P – вероятность (вероятностная мера), определенная на классе событий \mathfrak{F} , называется вероятностным пространством.

§ 5. Основные теоремы о вероятности

В качестве следствий аксиом вероятности можно получить следующие основные свойства вероятности.

Свойства вероятности

- **1.** Вероятность невозможного события равна 0: $P(\emptyset) = 0$.
- 2. Сумма вероятностей противоположных событий равна 1:

$$P(A) + P(\overline{A}) = 1$$

для любого события A.

3. Вероятность любого события не меньше 0 и не больше 1:

$$0 \le P(A) \le 1$$

для любого события A.

Упражнение 1. Вывести свойства 1, 2, 3 из аксиом вероятности.

Теорема сложения вероятностей

Т 1 (теорема сложения вероятностей). Вероятность суммы двух событий равна сумме вероятностей этих событий за вычетом вероятности их произведения: для любых событий A и B

$$P(A+B) = P(A) + P(B) - P(AB).$$

Доказательство. Действительно, это вытекает из представления событий A + B и B посредством суммы несовместных событий: $A + B = A + B\overline{A}$, $B = B\overline{A} + AB$ (см. рис. 9).

Рис. 9. К доказательству теоремы сложения вероятностей

Тогда в силу аксиомы А3 аддитивности вероятности получим:

$$P(A+B) = P(A) + P(B\overline{A});$$

$$P(B) = P(B\overline{A}) + P(AB).$$

Следовательно,

$$P(B\overline{A}) = P(B) - P(AB);$$

$$P(A+B) = P(A) + P(B) - P(AB). \triangleleft$$

Упражнение 2. Показать, что

$$P(A + B + C) =$$
= $P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$.

Замечание. При нахождении вероятности суммы нескольких совместных событий, как правило, удобнее перейти к противоположному событию. Действительно, поскольку

$$A_1 + A_2 + ... + A_n = \begin{cases}$$
произойдет хотя бы одно $\\$ из событий $A_1, A_2, ..., A_n \end{cases}$

TO

$$\overline{A_1 + A_2 + ... + A_n} = \begin{cases} \text{не произойдет ни одно} \\ \text{из событий } A_1, A_2, ..., A_n \end{cases},$$

т. е.

$$\overline{A_1 + A_2 + ... + A_n} = \overline{A_1} \overline{A_2} ... \overline{A_n},$$

поэтому

$$P(A_1 + A_2 + ... + A_n) = 1 - P(\overline{A_1 A_2 ... A_n}).$$
(1)

В случае несовместных событий A и B имеем $AB = \emptyset$, поэтому формула для вероятности суммы событий упрощается.

Следствие 1 (теорема сложения вероятностей несовместных событий). Вероятность суммы двух несовместных событий равна сумме их вероятностей: если события *A* и *B* несовместны, то

$$P(A+B) = P(A) + P(B).$$

Отметим, что это утверждение является частным случаем аксиомы А3 аддитивности вероятности.

Следствие 2 (свойство полной группы событий). Сумма вероятностей событий $H_1, H_2, ..., H_n$, образующих полную группу событий, равна 1:

$$P(H_1) + P(H_2) + ... + P(H_n) = 1.$$

Упражнение 3. Доказать следствие 2.

Условная вероятность

Пример 1. Подброшен правильный игральный кубик. Обозначим элементарные исходы опыта через $\omega_1, \omega_2, \omega_3, ..., \omega_6$ — соответственно выпадение одного очка, двух, трех и т. д. до шести.

Рассмотрим события:

 $A = \{$ выпало нечетное число очков $\} = \{\omega_1, \omega_3, \omega_5\};$

 $B = \{$ выпало не более 3 очков $\} = \{\omega_1, \omega_2, \omega_3\}.$

Несложно видеть, что
$$P(A) = \frac{3}{6} = \frac{1}{2}$$
.

Найдем вероятность события A npu yсловuu, что произошло событие B. Такая вероятность обозначается

$$P(A \mid B) = P$$
 выпало нечетное число очков, если известно, что выпало не более 3 очков

Для вычисления этой вероятности применим классическое определение вероятности: $P(A \mid B) = \frac{m'}{n'}$, где m' – число элементарных исходов испытания, благоприятствующих появлению события A, n' – общее число равновозможных элементарных исходов испытания. При этом множество элементарных исходов совпадает со множеством исходов, благоприятствующих событию B, т. е.

$$\Omega' = B = \{\omega_1, \omega_2, \omega_3\} \implies n' = 3;$$

 $A' = \{\omega_1, \omega_3\} \implies m' = 2,$

поэтому
$$P(A|B) = \frac{2}{3}$$
. •

Пример 2. В области Ω наудачу выбирается точка (рис. 10). Обозначим через A событие, состоящее в том, что точка принадлежит области A. В силу геометрического определения вероятности, вероятность события A равна отношению площадей этих областей,

т. е.
$$P(A) = \frac{S_A}{S_O}$$
.

Рис. 10. К понятию условной вероятности

Применяя геометрическое определение вероятности для нахождения условной вероятности $P(A \mid B)$ того, что точка принадлежит области A, если известно, что она принадлежит области B, получим

$$P(A \mid B) = \frac{S_{AB}}{S_B} = \frac{S_{AB}/S_{\Omega}}{S_B/S_{\Omega}} = \frac{P(AB)}{P(B)}. \bullet$$

Полученное в примере 2 соотношение принимается за определение условной вероятности.

Опр. 1. *Условной вероятностью* $P(A \mid B)$ события A при условии, что произошло событие B ($P(B) \neq 0$), называется отношение вероятности произведения этих событий к вероятности события B:

$$P(A \mid B) = \frac{P(AB)}{P(B)}.$$

Упражнение 4. Применить эту формулу для нахождения условной вероятности в примере 1.

Теорема умножения вероятностей

Из определения условной вероятности вытекает следующее утверждение.

Т 2 (теорема умножения вероятностей). Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого при условии, что первое событие произошло:

$$P(AB) = P(A)P(B \mid A).$$

Следствие 1. $P(ABC) = P(A)P(B \mid A)P(C \mid AB)$.

Пример 3. Студент знает ответы на 15 вопросов из 20. Какова вероятность того, что он ответит на три предложенных ему вопроса?

Решение. Рассмотрим событие

 $A = \{$ студент ответит на три предложенных ему вопроса $\}$.

Введем более простые события

 $A_i = \{$ студент ответит на i-й вопрос $\}$, где i = 1; 2; 3.

Тогда $A = A_1 A_2 A_3$. По теореме умножения вероятностей имеем

$$P(A) = P(A_1 A_2 A_3) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 A_2).$$

Используя классическое определение вероятности, вычислим: $P(A_1) = \frac{15}{20} = \frac{3}{4}; \ P(A_2 \mid A_1) = \frac{14}{19}, \ \text{так как после первого вопроса остается } n = 19 \ \text{вопросов, из которых студент знает ответы (при условии, что произошло событие } A_1) \ \text{на } m = 14 \ \text{вопросов;}$ $P(A_3 \mid A_1 A_2) = \frac{13}{18}, \ \text{так как после второго вопроса остается } n = 18 \ \text{во-}$

просов, из которых студент знает ответы (при условии, что произошли события A_1 и A_2) на m=13 вопросов.

Следовательно,
$$P(A) = \frac{15}{20} \cdot \frac{14}{19} \cdot \frac{13}{18} \approx 0, 4.$$
 •

Упражнение 5. Решить эту задачу, используя только классическое определение вероятности.

Опр. 2. Событие A называется *независимым* от события B, если $P(A \mid B) = P(A)$.

Иными словами, событие A не зависит от события B, если вероятность его появления не зависит от того, произошло или не произошло событие B.

Упражнение 6. Показать, что если событие A не зависит от события B, то и событие B не зависит от A, т. е. если $P(A \mid B) = P(A)$, то $P(B \mid A) = P(B)$.

Таким образом, зависимость или независимость событий всегда взаимны, поэтому мы можем говорить, что события A и B независимы.

Для независимых событий теорема умножения вероятностей принимает особенно простой вид.

Следствие 2 (теорема умножения вероятностей независимых событий). Вероятность произведения независимых событий равна произведению их вероятностей: если события A и B независимы, то

$$P(AB) = P(A)P(B).$$

Замечание. При решении задач о независимости событий судят по смыслу условия задачи.

Пример 4. Два стрелка делают по одному выстрелу по мишени. Рассмотрим события

 $A_1 = \{$ первый стрелок попал в мишень $\}$;

 $A_2 = \{$ второй стрелок попал в мишень $\}$.

Пусть $P(A_1) = 0.8$; $P(A_2) = 0.6$. Найдем $P(A_1 + A_2)$.

Решение. 1 способ. По теореме сложения вероятностей

$$P(A_1 + A_2) = P(A_1) + P(A_2) - P(A_1 A_2) =$$

$$= P(A_1) + P(A_2) - P(A_1)P(A_2) = 0.8 + 0.6 - 0.8 \cdot 0.6 = 0.92,$$

поскольку по смыслу задачи события A_1 и A_2 независимы.

2 способ. Во многих случаях бывает полезно представить событие, вероятность которого требуется найти, в виде суммы несовместных событий. Запишем событие

 $A = A_1 + A_2 = \{$ хотя бы один стрелок попал в мишень $\}$ как сумму несовместных событий: $A = A_1 \overline{A_2} + \overline{A_1} A_2 + A_1 A_2$. Тогда, применяя теорему сложения вероятностей *несовместных* событий и теорему умножения вероятностей *независимых* событий, получаем

$$P(A) = P(A_1 \overline{A}_2 + \overline{A}_1 A_2 + A_1 A_2) =$$

$$= P(A_1)P(\overline{A}_2) + P(\overline{A}_1)P(A_2) + P(A_1)P(A_2) =$$

$$= 0.8 \cdot (1 - 0.6) + (1 - 0.8) \cdot 0.6 + 0.8 \cdot 0.6 = 0.92.$$

3 способ. Для вычисления вероятности события

 $A = \{$ хотя бы один стрелок попал в мишень $\}$ удобно перейти к противоположному событию

 $\overline{A} = \{$ ни один стрелок не попал в мишень $\}$.

Тогда $\overline{A} = \overline{A}_1 \overline{A}_2$, поэтому

$$P(A) = 1 - P(\overline{A}) = 1 - (1 - 0.8) \cdot (1 - 0.6) = 0.92.$$

Пример 5. Три стрелка, вероятности попадания которых в мишень соответственно равны 0,7, 0,8 и 0,9, произвели по одному выстрелу (независимо друг от друга). Найдем вероятности следующих событий:

 $A = \{$ только один стрелок попал в мишень $\}$,

 $B = \{$ хотя бы один стрелок попал в мишень $\}$.

Решение. По условию известны вероятности событий

 $A_i = \{i$ -й стрелок попал $\}$ (i = 1, 2, 3):

$$P(A_1) = 0.7, P(A_2) = 0.8, P(A_3) = 0.9.$$

Выразим события, вероятности которых нужно найти, через эти события.

Событие A означает, что один стрелок попал, а два не попали в мишень, представим его в виде суммы несовместных событий:

$$A = A_1 \overline{A}_2 \overline{A}_3 + \overline{A}_1 A_2 \overline{A}_3 + \overline{A}_1 \overline{A}_2 A_3$$

(либо попал только первый стрелок (произошло событие $A_1\overline{A_2}\overline{A_3}$), либо попал только второй стрелок (событие $\overline{A_1}\overline{A_2}\overline{A_3}$), либо попал только третий стрелок (событие $\overline{A_1}\overline{A_2}A_3$)). Поскольку слагаемые попарно несовместны, а события A_1, A_2, A_3 независимы, то

$$P(A) = 0.7 \cdot 0.2 \cdot 0.1 + 0.3 \cdot 0.8 \cdot 0.1 + 0.3 \cdot 0.2 \cdot 0.9 = 0.092.$$

Для вычисления вероятности события B удобнее перейти к противоположному событию

 $\overline{B} = \{$ ни один стрелок не попал в мишень $\}$.

Тогда $\overline{B} = \overline{A}_1 \overline{A}_2 \overline{A}_3$, поэтому

$$P(B) = 1 - P(\overline{B}) = 1 - P(\overline{A}_1 \overline{A}_2 \overline{A}_3) = 1 - 0.3 \cdot 0.2 \cdot 0.1 = 0.994.$$

Пример 6. Имеется три независимо работающих элемента, соединенных в цепь. Вероятность отказа каждого из них равна q = 0,1. Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Определим вероятность того, что цепь будет работать, если элементы соединены: **a)** последовательно; **б)** параллельно.

Решение. Введем события:

 $A = \{$ цепь работает $\},$

 $A_i = \{i$ -й элемент работает $\}$ (i = 1, 2, 3).

По условию, $P(A_1) = P(A_2) = P(A_3) = 0.9$.

а) Если элементы соединены в цепь последовательно (рис. 11), то для работы цепи необходимо, чтобы работали *все* ее элементы, т. е. $A = A_1A_2A_3$. Поскольку события A_1 , A_2 , A_3 независимы, то вероятность безотказной работы цепи равна

$$P(A) = P(A_1)P(A_2)P(A_3) = 0.9^3 = 0.729.$$

Рис. 11. Последовательное соединение элементов

б) При параллельном соединении элементов (рис. 12) цепь работает, если работает *хотя бы один* из элементов, т. е. $A = A_1 + A_2 + A_3$. Для вычисления суммы совместных событий перейдем к противоположному событию и используем формулу (1). Поскольку события A_1 , A_2 , A_3 независимы, то вероятность безотказной работы цепи равна

$$P(A) = 1 - P(\overline{A_1} \overline{A_2} \overline{A_3}) = 1 - P(\overline{A_1}) P(\overline{A_2}) P(\overline{A_3}) = 1 - 0.1^3 = 0.999.$$

Рис. 12. Параллельное соединение элементов

Пример 7. Имеется три независимо работающих элемента, соединенных в цепь по схеме, изображенной: **a)** на рис. 13a; **б)** на рис. 13б. Вероятность отказа каждого из них равна q = 0,1. Отказ любого из элементов приводит к прерыванию сигнала в той ветви цепи, где находится данный элемент. Определим вероятность работы цепи в каждом из случаев.

Рис. 13. Цепь из трех независимых элементов

Решение. Введем события:

 $A = \{$ цепь работает $\},$

 $A_i = \{i$ -й элемент работает $\}$ (i = 1, 2, 3).

По условию, $P(A_1) = P(A_2) = P(A_3) = 0.9$.

а) Введем дополнительно событие

 $B = \{$ работает участок цепи, включающий элементы 1 и 2 $\}$.

Тогда $A = BA_3$, поскольку для работы цепи, изображенной на рис. 13а, необходимо, чтобы работали и элемент 3, и участок цепи с элементами 1 и 2. Поэтому

$$P(A) = P(B)P(A_3).$$

Рассмотрим событие B. Элементы 1 и 2 на рис. 13а соединены параллельно, поэтому $B = A_1 + A_2$ и

$$P(B) = 1 - P(\overline{A_1})P(\overline{A_2}) = 1 - 0.1^2 = 0.99.$$

Следовательно,

$$P(A) = P(B)P(A_3) = 0.99 \cdot 0.9 = 0.891.$$

б) Как и в пункте а), введем событие

 $B = \{$ работает участок цепи, включающий элементы 1 и 2 $\}$.

В данном случае $A = B + A_3$, поскольку для работы цепи, приведенной на рис. 136, достаточно, чтобы был исправен по крайней мере один из участков: либо участок цепи с элементами 1 и 2, либо элемент 3. Поэтому

$$P(A) = 1 - P(\overline{B})P(\overline{A_3}).$$

Рассматривая событие B, видим, что на рис. 13б элементы 1 и 2 соединены последовательно, поэтому $B = A_1 A_2$ и

$$P(B) = P(A_1)P(A_2) = 0.9^2 = 0.81.$$

Следовательно,

$$P(A) = 1 - P(\overline{B})P(\overline{A_3}) = 1 - 0.19 \cdot 0.1 = 0.981.$$

Формула полной вероятности

Т 3 (формула полной вероятности). Если событие A может наступить при появлении одного из n попарно несовместных событий (*гипотез*) $H_1, H_2, ..., H_n$, образующих полную группу событий, то вероятность события A равна сумме произведений вероятностей каждой из гипотез на соответствующую условную вероятность события A:

$$P(A) = P(H_1)P(A | H_1) + P(H_2)P(A | H_2) + \dots + P(H_n)P(A | H_n).$$

Доказательство. Гипотезы $H_1, H_2, ..., H_n$ образуют полную группу событий, т. е. они попарно несовместны и $H_1 + H_2 + ... + H_n = \Omega$. Тогда событие A можно представить в виде $A = \Omega A = H_1 A + H_2 A + ... + H_n A$, причем слагаемые попарно несовместны. Следовательно, применяя теорему сложения вероятностей несовместных событий, а затем теорему умножения вероятностей, получим

$$P(A) = P(H_1A) + P(H_2A) + \dots + P(H_nA) =$$

$$= P(H_1)P(A \mid H_1) + P(H_2)P(A \mid H_2) + \dots + P(H_n)P(A \mid H_n). \triangleleft$$

Пример 8. В торговую фирму поступили телевизоры от трех поставщиков в отношении 1 : 4 : 5. Практика показала, что среди телевизоров, поступающих от 1-го, 2-го и 3-го поставщиков, соответственно 98%, 88% и 92% не требуют ремонта в течение гарантийного срока. Найдем вероятность того, что проданный телевизор не потребует ремонта в течение гарантийного срока.

Решение. Пусть событие $A = \{$ проданный телевизор не потребует ремонта в течение гарантийного срока $\}$. По условию известен для каждого поставщика процент телевизоров, выдерживающих гарантийный срок без ремонта, т. е. известны условные вероятности события A при условии осуществления гипотез $H_i = \{$ проданный телевизор поступил от i-го поставщика $\}$ (i = 1; 2; 3):

$$P(A|H_1) = 0.98$$
; $P(A|H_2) = 0.88$; $P(A|H_3) = 0.92$.

Чтобы найти P(A) по формуле полной вероятности, найдем вероятности гипотез. Пусть от 1-го поставщика поступило k телевизоров, тогда от 2-го -4k, от 3-го -5k, всего -10k телевизоров. Применяя классическое определение вероятности, получим:

$$P(H_1) = \frac{k}{10k} = 0.1; \ P(H_2) = \frac{4k}{10k} = 0.4; \ P(H_3) = \frac{5k}{10k} = 0.5.$$

Контроль: $P(H_1) + P(H_2) + P(H_3) = 1$ (сумма вероятностей гипотез должна быть равна 1).

По формуле полной вероятности находим

$$P(A) = 0.1 \cdot 0.98 + 0.4 \cdot 0.88 + 0.5 \cdot 0.92 = 0.91.$$

Формула Байеса

WWWBUKUC TIPABKAWWWWWWWWWWWWWWWWWWW

Томас Байес

(англ. *Thomas Bayes*) (1702–1761)

британский математик, пресвитерианский священник.

Опубликовал при жизни всего две работы, одна из них богословская, другая — математическая. «Эссе о решении проблем в теории случайных событий», в котором изложена формула Байеса, опубликовано в 1764 г. после смерти автора.

Теорема Байеса, имеющая ныне сильнейшее влияние на разработки софтверных компаний, рассчитывает вероятность верности гипотезы в условиях, когда на основе наблюдений известна лишь некоторая частичная информация о событиях.

Пионером была британская интернет-компания Autonomy, использовавшая байесовскей оценки для интеллектуального поиска информации.

Корпорация Oracle в своем ПО для баз данных с помощью теории Байеса выявляет характерные тенденции в сложных массивах данных.

В компании Microsoft байесовский подход использовался, например, в программах выявления неполадок в новых ОС, а еще ранее – при создании для MS Office "мистера Скрепки" (Mr Clippy).

WWWWWWWWWWWWWWWWWWWWWWWWWWW

Формула Байеса применяется, если событие A произошло и требуется переоценить вероятности гипотез, т. е. найти $P(H_k|A)$.

Т 4 (формула Байеса). Если события $H_1, H_2, ..., H_n$ образуют полную группу событий, то

$$P(H_k | A) = \frac{P(H_k)P(A | H_k)}{\sum_{i=1}^{n} P(H_i)P(A | H_i)}.$$

Доказательство. Используя определение условной вероятности, теорему умножения вероятностей и формулу полной вероятности, имеем

$$P(H_k \mid A) = \frac{P(H_k A)}{P(A)} = \frac{P(H_k)P(A \mid H_k)}{P(A)} = \frac{P(H_k)P(A \mid H_k)}{\sum_{i=1}^{n} P(H_i)P(A \mid H_i)}. \triangleleft$$

Вероятности $P(H_k)$, известные до проведения опыта, называются **априорными** (лат. *а priori* — буквально «от предшествующего») вероятностями гипотез, вероятности $P(H_k|A)$ называются **апостериорными** (лат. *а posteriori* — от последующего).

Пример 8 (продолжение). Проданный телевизор потребовал ремонта в течение гарантийного срока. От какого поставщика вероятнее всего поступил этот телевизор?

Pешение. Найдем апостериорные вероятности гипотез $P(H_k \mid \overline{A})$, где $\overline{A} = \{$ проданный телевизор потребует ремонта в течение гарантийного срока $\}$, $P(\overline{A}) = 1 - P(A) = 0,09$.

По формуле Байеса получим:

$$P(H_1 | \overline{A}) = \frac{P(H_1)P(\overline{A} | H_1)}{P(\overline{A})} = \frac{0.1 \cdot 0.02}{0.09} \approx 0.022;$$

$$P(H_2 | \overline{A}) = \frac{P(H_2)P(\overline{A} | H_2)}{P(\overline{A})} = \frac{0.4 \cdot 0.12}{0.09} \approx 0.533;$$

$$P(H_3 | \overline{A}) = \frac{P(H_3)P(\overline{A} | H_3)}{P(\overline{A})} = \frac{0.5 \cdot 0.08}{0.09} \approx 0.445.$$

Следовательно, наиболее вероятно, что данный телевизор поступил от 2-го поставщика. •

§ 6. Схема Бернулли

Якоб Бернулли

(нем. *Jakob Bernoulli*) (1654–1705)

швейцарский математик. Один из основателей теории вероятностей и математического анализа, внес огромный вклад в развитие аналитической геометрии и зарождение вариационного исчисления.

Ввел значительную часть современных понятий теории вероятностей, сформулировал первый вариант закона больших чисел. В 1713 г. посмертно был издан его трактат «Искусство предположе-

ний» (Ars conjectandi) – монография по теории вероятностей, статистике и их практическому применению, итог комбинаторики и теории вероятностей XVII в.

Якоб Бернулли является родоначальником известной научной династии, многие члены которой в XVII-XVIII вв. внесли существенный вклад в науку. В частности, к этой династии принадлежат 9 крупных математиков и физиков (из них 3 великих), а также известные историки, искусствоведы, архитекторы, юристы и др. Историки насчитали в науке и культуре не менее 30 знаменитых представителей семьи Бернулли.

Опр. 1. Пусть проводится n независимых e совокупности испытаний, в каждом из которых возможно только два исхода: появление некоторого события A – y спех e и его непоявление \overline{A} – e неуспех, причем вероятность наступления успеха в каждом испытании постоянна и равна e. Такая последовательность испытаний называется e схемой e бернулли.

Итак, вероятность успеха в каждом испытании постоянна и равна P(A) = p; следовательно, вероятность неудачи (неуспеха) во всех испытаниях тоже постоянна и равна $P(\overline{A}) = 1 - p = q$.

Пример 1. 1) Несколько последовательных бросаний монеты представляют собой независимые испытания.

2) Несколько последовательных выниманий карты из колоды представляют собой независимые опыты при условии, что вынутая карта каждый раз возвращается в колоду и карты перемешиваются; в противном случае это — зависимые опыты.

- 3) Несколько выстрелов представляют собой независимые опыты только в случае, если прицеливание производится заново перед каждым выстрелом; в случае, когда прицеливание производится один раз перед всей стрельбой или непрерывно осуществляется в процессе стрельбы (стрельба очередью, бомбометание серией), выстрелы представляют собой зависимые опыты. ●
- **Т 1.** В схеме Бернулли вероятность $P_n(k)$ наступления k успехов в n независимых испытаниях вероятность того, что в этих испытаниях событие A наступит ровно k раз, вычисляется по формуле Бернулли:

$$P_n(k) = C_n^k p^k q^{n-k},$$
 (1)

где $C_n^k = \frac{n!}{k!(n-k)!}$; p = P(A) — вероятность успеха в одном испы-

тании; q = 1 - p — вероятность неуспеха в одном испытании.

Доказательство. Если в результате n независимых испытаний по схеме Бернулли событие A произошло k раз (неважно в каком порядке), то это означает, что совместно наступили k событий A и (n-k) событий \overline{A} . Так как все n событий независимы, то по теореме умножения вероятность появления в определенной последовательности k раз события A и (n-k) раз события \overline{A} равна p^kq^{n-k} .

Однако событие A может появляться ровно k раз в n опытах совершенно в разных последовательностях (комбинациях), чередуясь с противоположным событием \overline{A} . Число таких возможных последовательностей совпадает с числом способов, которыми можно выбрать k мест из имеющихся n, не учитывая их порядка. Поэтому это число равно числу сочетаний из n по k, т. е. C_n^k .

Все C_n^k вариантов появления ровно k раз события A представляют собой несовместные события, вероятность каждого из которых равна p^kq^{n-k} . Поэтому по теореме сложения вероятностей несовместных событий искомая вероятность $P_n(k)$ равна сумме вероятностей всех указанных несовместных событий, т. е. $C_n^k p^k q^{n-k}$, в результате получаем формулу Бернулли (1).

Пример 2. Всхожесть семян данного растения составляет 90%. Найдем вероятность того, что из пяти посеянных семян взойдут: **a)** ровно четыре; **б)** не менее четырех.

Решение. **а)** Мы имеем схему Бернулли с n=5 испытаниями (посеяно пять семян). Событие $A=\{$ семя взошло $\}$. По условию задачи p=P(A)=0.9, тогда q=1-p=0.1. Искомую вероятность $P_5(4)$ находим по формуле Бернулли:

$$P_5(4) = C_5^4 \cdot 0.9^4 \cdot 0.1^1 = 5 \cdot 0.9^4 \cdot 0.1^1 = 0.32805.$$

6) Искомое событие состоит в том, что из пяти посеянных семян взойдут или четыре, или пять. Таким образом, $P_5(k \ge 4) = P_5(4) + P_5(5)$. Первое слагаемое найдено. Для вычисления второго слагаемого применяем снова формулу Бернулли:

$$P_5(5) = C_5^5 \cdot 0.9^5 \cdot 0.1^0 = 1 \cdot 0.9^5 \cdot 1 = 0.59049.$$

Следовательно, $P_5(k \ge 4) = 0.32805 + 0.59049 = 0.91854$. •

Пример 3. Вероятность попадания в мишень при каждом выстреле равна 0,4. По мишени производится шесть независимых выстрелов. Найдем вероятность хотя бы одного попадания в мишень.

Peшение. Пусть событие B- хотя бы одно попадание. Задачу удобнее решать при помощи нахождения вероятности противоположного события, т. е. события $\overline{B}-$ ни одного попадания в мишень. В данном примере n=6; p=0,4; q=1-p=0,6. Применяя формулу Бернулли, получаем

$$P(B) = 1 - P(\overline{B}) = 1 - P_6(0) = 1 - 0.6^6 \approx 0.953.$$

Наивероятнейшее число успехов в схеме Бернулли

Пример 3 (продолжение). Найдем наиболее вероятное число попаданий в мишень при 6 выстрелах и соответствующую этому числу вероятность, если вероятность попадания в мишень при каждом выстреле равна 0,4.

Непосредственные вычисления по формуле Бернулли дают следующие значения для вероятностей k попаданий при 6 выстрелах.

k	0	1	2	3	4	5	6
$P_n(k)$	0,046656	0,186624	0,31104	0,27648	0,13824	0,036864	0,004096

Следовательно, наибольшую вероятность $P_n(2) = 0.31104$ имеет осуществление ровно 2 попаданий в мишень.

Число k_0 , которому соответствует максимальная вероятность $P_n(k)$, называют *наивероятнейшим числом успехов* в серии n независимых испытаний Бернулли.

Решим задачу нахождения числа k_0 в общем виде. Согласно определению, для числа k_0 имеет место

$$\begin{cases} P_n(k_0) \ge P_n(k_0 + 1), \\ P_n(k_0) \ge P_n(k_0 - 1). \end{cases}$$

Рассмотрим первое неравенство:

$$C_{n}^{k_{0}} p^{k_{0}} q^{n-k_{0}} \geq C_{n}^{k_{0}+1} p^{k_{0}+1} q^{n-k_{0}-1};$$

$$\frac{n!}{k_{0}!(n-k_{0})!} p^{k_{0}} q^{n-k_{0}} \geq \frac{n!}{(k_{0}+1)!(n-k_{0}-1)!} p^{k_{0}+1} q^{n-k_{0}-1};$$

$$\frac{1}{n-k_{0}} q \geq \frac{1}{k_{0}+1} p;$$

$$(k_{0}+1)q \geq (n-k_{0})p;$$

$$k_{0} \geq np-q.$$

Аналогично для второго неравенства:

$$C_{n}^{k_{0}} p^{k_{0}} q^{n-k_{0}} \geq C_{n}^{k_{0}-1} p^{k_{0}-1} q^{n-k_{0}+1};$$

$$\frac{n!}{k_{0}!(n-k_{0})!} p^{k_{0}} q^{n-k_{0}} \geq \frac{n!}{(k_{0}-1)!(n-k_{0}+1)!} p^{k_{0}-1} q^{n-k_{0}+1};$$

$$\frac{1}{k_{0}} p \geq \frac{1}{n-k_{0}+1} q;$$

$$(n-k_{0}+1) p \geq k_{0} q;$$

$$k_{0} \leq np+p.$$

Итак, наивероятнейшее число k_0 успехов в серии n независимых испытаний Бернулли удовлетворяет условию

$$np - q \le k_0 \le np + p. \tag{2}$$

Отметим, что длина интервала в оценке (2) равна np + p - (np - q) = p + q = 1, поэтому всегда существует целое число k_0 , удовлетворяющее условию (2).

Если np + p — целое число, то np - q — следующее целое число. В этом случае будет два наивероятнейших числа.

Пример 4. Всхожесть семян данного растения в среднем составляет 80%. Найдем наивероятнейшее число всхожих семян из 9 посеянных.

Решение. По формуле (2) получим

$$9 \cdot 0.8 - 0.2 \le k_0 \le 9 \cdot 0.8 + 0.2;$$

 $7 \le k_0 \le 8.$

Следовательно, имеем два наивероятнейших числа успехов: 7 и 8. Действительно,

$$P_9(7) = C_9^7 \cdot 0.8^7 \cdot 0.2^2 = 36 \cdot 0.8^7 \cdot 0.2^2 \approx 0.302;$$

 $P_9(8) = C_9^8 \cdot 0.8^8 \cdot 0.2^1 = 9 \cdot 0.8^8 \cdot 0.2^1 \approx 0.302.$

Предельные теоремы в схеме Бернулли

Точная формула Бернулли используется при сравнительно небольших сериях испытаний (n < 20). При больших значениях числа испытаний n для вычисления вероятностей $P_n(k)$ используются асимптотические (приближенные) формулы Пуассона и Муавра-Лапласа.

1. Формула Пуассона.

WWWBИКИСПРАВКАWWWWWWWWWWWWWWWWWW

Симеон Дени Пуассон

(фр. Siméon Denis Poisson) (1781–1840)

французский математик, механик и физик. В 1800 г., не достигнув еще возраста 20 лет, опубликовал две статьи, которые сделали его известным в ученом мире. В одной из них было дано новое, простое доказательство теоремы Безу.

В 1820 г. Пуассону было поручено высшее наблюдение над преподаванием математики во всех коллежах Франции.

При Наполеоне был произведен в бароны, впоследствии стал пэром Франции.

Т. 2 [Пуассон]. Если $n \to \infty$ и $p = p_n \to 0$ так, что $np_n \to a$, то при любом постоянном значении k = 0; 1; 2; ...

$$P_n(k) \to \frac{a^k e^{-a}}{k!}$$
 при $n \to \infty$.

Из этой теоремы вытекает формула Пуассона: если в схеме Бернулли число испытаний n велико, а вероятность p появления события A в каждом из n независимых испытаний o чень mала, то

$$P_n(k) \approx \frac{a^k e^{-a}}{k!}, \quad a = np.$$

Замечание 1. Формулу Пуассона применяют, когда событие A является $ped\kappa um$, т. е. вероятность p очень мала (как правило, p < 0,1), но количество испытаний n велико и среднее число успехов a = np незначительно ($a \le 10$).

Замечание 2. Если в схеме Бернулли вероятность p появления события A близка к 1, а число испытаний n велико, для вычисления вероятности $P_n(k)$ также можно использовать формулу Пуассона (считая успехом событие \overline{A}).

Пример 4. Вероятность попадания в цель при каждом выстреле равна 0,001. Найдем вероятность попадания в цель хотя бы двумя пулями, если число выстрелов равно 5000.

Решение. По условию n = 5000, p = 0,001. Поскольку число n велико, вероятность p мала, рассматриваемые события (попадания

в цель при разных выстрелах) независимы, то применима формула Пуассона. Найдем $a = np = 5000 \cdot 0,001 = 5$.

В Великой Отечественной войне реальное осуществление условий этого примера имело место при обстреливании самолета из пехотного оружия. Пулей самолет может быть подбит лишь при попадании в немногие уязвимые места – мотор, летчик, бензобаки и проч. Вероятность попадания в эти уязвимые места отдельным выстрелом весьма мала, но, как правило, по самолету вело огонь целое подразделение, и общее количество выстрелов, выпущенных по самолету, было значительным. В результате вероятность попадания хотя бы одной или двумя пулями имела заметную величину. Это обстоятельство было подмечено и практически.

Найдем вероятность $P_{5000}(k \ge 2)$ попадания в цель хотя бы 2 пулями. События $\{k \ge 2\} = \{$ не менее 2 попаданий в цель $\}$ и $\{k < 2\} = \{$ менее 2 попаданий в цель $\}$ — противоположные, поэтому $P_{5000}(k \ge 2) = 1 - P_{5000}(k < 2)$.

Вычислим вероятность того, что будет менее двух попаданий, т. е. либо ровно одно, либо ни одного:

$$P_{5000}(k < 2) = P_{5000}(0) + P_{5000}(1) \approx \frac{5^{0} \cdot e^{-5}}{0!} + \frac{5^{1} \cdot e^{-5}}{1!} =$$

$$= e^{-5} + 5e^{-5} = 6e^{-5} \approx 0,0404.$$

Следовательно, $P_{5000}(k \ge 2) \approx 1 - 0.0404 = 0.9596.$

Оценка погрешности формулы Пуассона:

$$\sum_{k=0}^{\infty} \left| P_n(k) - \frac{a^k e^{-a}}{k!} \right| \le \frac{2a}{n} \min\{a; 2\}.$$

2. Локальная формула Муавра — Лапласа используется, если в схеме Бернулли число испытаний n велико, а вероятность p появления события A в каждом из n независимых испытаний значимельно отличается от 0 и 1 (не очень мала u не очень велика, 0,1). Тогда

$$P_n(k) \approx \frac{1}{\sqrt{npq}} \varphi \left(\frac{k - np}{\sqrt{npq}} \right),$$

где
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} - \phi y h \kappa u u \pi \Gamma a y c c a$$
.

Абрахам де Муавр

(фр. и англ. *Abraham de Moivre*) (1667–1754)

английский математик французского происхождения. Внес большой вклад в теорию вероятностей.

Вынужден был покинуть Францию из-за гонений на протестантов. Жил в Лондоне, на жизнь зарабатывал частным преподаванием и шахматной игрой. Был известен как талантливый математик, однако как иностранец не имел шансов на кафедру в английском учебном заведении. Ученик и помощник Исаака Ньютона.

WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

WWWBUKUCПPABKAWWWWWWWWWWWWWWWWWW

Пьер-Симо́н, маркиз де Лапла́с (фр. Pierre-Simon de Laplace) (1749–1827)

французский математик, механик, физик, астроном, почетный член Петербургской AH.

Заслуги Лапласа в области чистой и прикладной математики, а особенно в астрономии громадны: он усовершенствовал почти все разделы этих наук. Является одним из создателей теории вероятностей.

Его имя внесено в список величайших ученых Франции, помещённый на первом этаже Эйфелевой башни.

WWWWWWWWWWWWWWWWWWWWWWWWWWWWW

Иоганн Карл Фридрих Гаусс

(нем. Johann Carl Friedrich Gauß) (1777–1855)

немецкий математик, механик, физик, астроном и геодезист. Считается одним из величайших математиков всех времен, «королем математиков».

Отличительными чертами его исследований являются необычайная широта проблематики, глубокая органическая связь между теоретической и прикладной математикой.

Работы Гаусса оказали большое влияние на развитие высшей алгебры, теории чисел, дифференциальной геометрии, теории притяжения, классической теории электричества и магнетизма.

Внес фундаментальный вклад также в астрономию и геодезию; разработал вычислительные методы, приведшие к созданию нового научного направления — высшей геодезии.

В 1832 г. создал абсолютную систему мер (СГС), введя три основных единицы: единицу длины — *сантиметр*, единицу массы — *грамм*, единицу времени — *секунду*.

Гаусс чрезвычайно строго относился к своим печатным трудам и никогда не публиковал даже выдающиеся результаты, если считал свою работу над этой темой незавершенной. На его личной печати было изображено дерево с несколькими плодами, под девизом «Pauca sed matura» («Немного, но зрело»). Гаусс на 10 лет раньше Лобачевского пришел к идее неевклидовой геометрии, но не стал заниматься этой темой глубже. Узнав о работе Лобачевского, начал в 62 года изучать русский язык, чтобы прочитать эти работы в оригинале.

Замечание 1. Существуют таблицы значений этой функции. При использовании этих таблиц следует иметь в виду следующие свойства функции Гаусса:

- 1) $\varphi(x)$ четная функция, т. е. $\varphi(-x) = \varphi(x)$;
- 2) $\varphi(x)$ непрерывна и монотонно убывает при $x \ge 0$;
- 3) $\varphi(x) \to 0$ при $x \to \infty$.

В силу последнего свойства на практике обычно полагают $\phi(x) \approx 0$ при $x \ge 4$.

Замечание 2. Для того чтобы локальная формула Муавра — Лапласа давала хороший результат (довольно точное значение

вероятности), нужно чтобы $x = \frac{k - np}{\sqrt{npq}}$ было достаточно мало по абсолютной величине.

3. Интегральная формула Муавра — Лапласа используется при тех же предположениях, что и локальная (в схеме Бернулли n велико, p не очень мало u не очень велико). Тогда вероятность того, что число успехов (т. е. появлений события A) в n независимых испытаниях будет заключено в пределах от k_1 до k_2 , может быть вычислена по формуле

$$P_n(k_1 \le k < k_2) \approx \Phi\left(\frac{k_2 - np}{\sqrt{npq}}\right) - \Phi\left(\frac{k_1 - np}{\sqrt{npq}}\right),$$

где
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-t^{2}/2} dt - \phi y$$
нкция Лапласа.

Замечание I. Существуют таблицы значений функции Лапласа, поскольку интеграл $\int e^{-t^2/2} dt$ — неберущийся. При использовании таблиц следует иметь в виду следующие свойства функции Лапласа:

- 1) $\Phi(x)$ нечетная функция, т. е. $\Phi(-x) = -\Phi(x)$;
- 2) $\Phi(x)$ непрерывна и монотонно возрастает при $x \in \mathbb{R}$;
- 3) $\Phi(x) \rightarrow 0,5$ при $x \rightarrow +\infty$.

В силу последнего свойства на практике обычно полагают $\Phi(x) \approx 0.5$ при $x \ge 5$.

Замечание 2. Более точное значение искомой вероятности получается по формуле

$$P_n(k_1 \le k < k_2) \approx \Phi\left(\frac{k_2 - \frac{1}{2} - np}{\sqrt{npq}}\right) - \Phi\left(\frac{k_1 - \frac{1}{2} - np}{\sqrt{npq}}\right).$$

Замечание 3. При использовании таблиц необходимо следить за тем, какая именно функция затабулирована и какие свойства имеет эта функция. В некоторых учебниках функция Лапласа определяется иначе, например,

$$\Phi_1(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2} dt = \frac{1}{2} + \Phi(x);$$

$$\Phi_2(x) = \frac{2}{\sqrt{2\pi}} \int_0^x e^{-t^2/2} dt = 2\Phi(x)$$

и т. д. Тогда интегральная формула Муавра – Лапласа может изменить свой вид. Например,

$$P_n(k_1 \le k < k_2) \approx \frac{1}{2} \left(\Phi_2 \left(\frac{k_2 - np}{\sqrt{npq}} \right) - \Phi_2 \left(\frac{k_1 - np}{\sqrt{npq}} \right) \right),$$

в случае функции $\Phi_1(x)$ вид формулы не изменяется.

Пример 5. Какова вероятность того, что при 400 независимых подбрасываниях правильной монеты герб выпадет: **a)** ровно 195 раз; **б)** не менее 195 раз?

Решение. **a)** По условию задачи n=400 – велико; p=0,5 – не очень мало; q=1-p=0,5; k=195. Применим локальную формулу Муавра-Лапласа:

$$P_{400}(195) \approx \frac{1}{\sqrt{400 \cdot 0, 5 \cdot 0, 5}} \varphi \left(\frac{195 - 400 \cdot 0, 5}{\sqrt{400 \cdot 0, 5 \cdot 0, 5}} \right) = \frac{1}{10} \varphi(-0, 5).$$

По таблице значений функции $\phi(x)$ находим $\phi(-0,5) = \phi(0,5) \approx 0.3521$. Следовательно,

$$P_{400}(195) \approx \frac{1}{10} \cdot 0,3521 = 0,03521.$$

б) В этом случае применима интегральная формула Муавра-Лапласа, так как требуется найти $P_{400}(k \ge 195) = P_{400}(195 \le k \le 400)$. По условию задачи n = 400; p = 0.5; $k_1 = 195$; $k_2 = 400$. Учитывая свойства функции Лапласа, получим

$$P_{400}(195 \le k \le 400) \approx \Phi\left(\frac{400 - 400 \cdot 0.5}{\sqrt{400 \cdot 0.5 \cdot 0.5}}\right) - \Phi\left(\frac{195 - 400 \cdot 0.5}{\sqrt{400 \cdot 0.5 \cdot 0.5}}\right) = \Phi(20) - \Phi(-0.5) = \Phi(20) + \Phi(0.5) \approx 0.5 + 0.1915 = 0.6915. \bullet$$

Оценка погрешности интегральной формулы Муавра – Лапласа следует из теоремы Берри – Эссеена:

$$\max_{x>0} \left| P_n(k < x) - \Phi\left(\frac{x - np}{\sqrt{npq}}\right) + \frac{1}{2} \right| \le \frac{p^2 + q^2}{\sqrt{npq}}.$$