Towards the design of a data layer for the management of the smart buildings?

Daphné Tuncer Ecole des Ponts ParisTech, France

daphne.tuncer@enpc.fr

Increasing computer networked system complexity

e.g., geographical distribution, number and type of devices, demand

Increasing computer networked system complexity

e.g., geographical distribution, number and type of devices, demand

Network management to deal with the complexity of network infrastructures

Increasing computer networked system complexity

e.g., geographical distribution, number and type of devices, demand

Network management to deal with the complexity of network infrastructures

Towards self-managed networked systems

6

Towards self-managed networked systems

Envisioned ultimate goal...

Towards self-managed networked systems

... through supporting, evolving technologies

Automation and networking planes

9

Automation and networking planes

Automation and networking planes

How to automate network resource management tasks?

Convergence between cyberphysical systems

e.g., PV on a smart building as a source for electric vehicle charging through smart charge management

D. Tuncer

13

Convergence between cyberphysical systems

e.g., PV on a smart building as a source for electric vehicle charging through smart charge management

Need for a joint resource management approach that involves heterogeneous stakeholders and infrastructures

14

Convergence between cyberphysical systems

e.g., PV on a smart building as a source for electric vehicle charging through smart charge management

Need for a joint resource management approach that involves heterogeneous stakeholders and infrastructures

Investigate the **use of intents** (*i.e.*, what to do rather than how to do) **coupled to a data layer** in the context of **cyberphysical system infrastructures**

Use case: smart building

Use case: smart building

Source: J. Badosa, Presentation platforms and demonstrators, E4C

Use case: smart building

Source: J. Badosa, Presentation platforms and demonstrators, E4C

Step 1: implementing a data model

Step 1: implementing a data model

Data represents different aspects of a *thing*

Convention to depict the things and their attributes (*i.e.*, information about these things) using high-level constructs

Typically includes entities (*i.e.*, the things and their attributes) and relationships between them

Step 1: implementing a data model

Data represents different aspects of a thing

Convention to depict the things and their attributes (i.e., information about these things) using high-level constructs

Typically includes entities (*i.e.*, the things and their attributes) and relationships between them

Example

```
Entity: Room (Number, Surface, Purpose, etc.)
```

Relationships: Building in which the Room is

located

Smart building data models

Smart building data models

Name	Date	Focus	RDF Ontology	Extensibility
Haystack	2011	Building automation and control systems	No	Yes
Brick	2016	Describing smart building data	Yes	Yes
RealEstateCore	2017	Representing real estate data, including information about properties, listings, and agents.	Yes	Yes
LBD	Early 2000's	Representing and integrating building- related data	Yes	Yes
SAREF4BLDG	2017	Describing smart appliances and devices	Yes	Yes
SSN/SOSA	2008/2017	Representing sensor data	Yes	Yes
NGSI-LD	2019	Providing a standardized way of representing and exchanging data in the context of the Internet of Things	No	Yes

Focus on BRICK

Focus on BRICK

Developed at Standford University

Very active community of developers

Model focused on smart buildings

Technologies: RDF triples, SPARQL, highly integrated with web semantic technologies

Open source license

BRICK specifics

BRICK specifics

Brick Schema: data and metadata organisation

BRICK specifics

Brick Schema: data and metadata organisation

Brick Ontology: description of building-related objects and relationships

B. Balaji, et al., "Brick: Metadata schema for portable smart building applications," Applied Energy, vol. 226, pp. 1273-1292, 2018

Feasibility study applied to IPP building 103

Feasibility study applied to IPP building 103

Drawing an exhaustive inventory of building components

Mapping to BRICK classes and objects

Instantiation of the model for building 103

Preliminary performance analysis on different use case scenarios

(type of queries supported, read/write delays, etc.)

Use cases and associated data query

Use cases and associated data query

Investigated use cases

Surge Detection in Electricity Comsumption

Real-time Monitoring of Electricity Usage

Comparison with Baselines for a Set Period

Peak Thermal Power Consumption

Variation Analysis of Daily Consumption

Water Leak Detection

Use cases and associated data query

Investigated use cases

Surge Detection in Electricity Comsumption

Real-time Monitoring of Electricity Usage

Comparison with Baselines for a Set Period

Peak Thermal Power Consumption

Variation Analysis of Daily Consumption

Water Leak Detection

```
PREFIX brick: <https://brickschema.org/schema/Brick#>
PREFIX E4CL: <http://E4C.com/Location#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?timestamp ?readingValue
WHERE {
    ?meter a E4CL:Electrical_Meter_General ;
        brick:isLocatedIn E4CL:Logement-3-1-3 ;
        brick:hasPoint ?reading .
    ?reading E4CL:timestamp ?timestamp ;
        brick:value ?readingValue .
}
ORDER BY DESC(?timestamp)
LIMIT 1
```

```
PREFIX brick: <a href="https://brickschema.org/schema/Brick#">https://brickschema.org/schema/Brick#>
PREFIX E4CL: <a href="http://E4C.com/Location#">http://E4C.com/Location#>
PREFIX xsd: <a href="http://www.w3.org/2001/XMLSchema#">http://www.w3.org/2001/XMLSchema#</a>
SELECT ?meter ?timestamp ?previousReading ?currentReading ?consumptionDifference
WHERE {
  ?meter a E4CL:Heat_Meter ;
          brick:hasPoint ?reading ;
          brick:isLocatedIn ?area .
  ?reading E4CL:timestamp ?timestamp ;
            brick:value ?currentReading .
  # Subquery to get the previous reading for each meter
    SELECT ?meter (MAX(?t) AS ?previousTimestamp)
      ?meter a E4CL:Heat Meter ;
              brick:hasPoint ?r .
      ?r E4CL:timestamp ?t ;
          brick:value ?previousValue .
       FILTER(?t < "2023-08-07T00:00:00"^^xsd:dateTime)
    GROUP BY ?meter
  ?meter brick:hasPoint ?previousReading .
  ?previousReading E4CL:timestamp ?previousTimestamp ;
                     brick:value ?previousValue .
  # Calculate the consumption difference between consecutive readings
  BIND(?currentReading - ?previousValue AS ?consumptionDifference)
  # Filter for sudden spikes based on a threshold value
  FILTER(?consumptionDifference > threshold // to be determined )
```

Query to detect abnormal values

Query to monitor an electric meter sensor in a room

Beyond data model implementation

Beyond data model implementation

Source: J. Badosa, Presentation platforms and demonstrators, E4C

Beyond data model implementation

Source: J. Badosa, Presentation platforms and demonstrators, E4C

Thank you

Any question?

If interested in the work, please get in touch daphne.tuncer@enpc.fr