

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application.

LISTING OF CLAIMS:

1. (Currently Amended) A gamut mapping system, comprising:
an image processing module for transforming an input image into a luminance component L_{in} and chrominance components, C_1 and C_2 ;
a spatial low pass filter, responsive to L_{in} for outputting a filtered luminance component L_f , wherein L_f is a function of L_{in} ; and
a luminance compression module responsive to L_f and L_{in} for outputting a compressed luminance signal L_{out} that is within an achievable luminance range of an output device; wherein the luminance compression module combines two compression functions $L_{comp1}(L_{in})$ and $L_{comp2}(L_{in})$ via a blending function $\alpha(L_f)$ and wherein $L_{comp1}(L_{in}), L_{comp2}(L_{in})$ and $\alpha(L_f)$ are all functions of L_{in} .
2. (Canceled).
3. (Currently Amended) The system of claim 2¹, wherein L_{out} is computed according to the relationship $L_{out} = \alpha(L_f) L_{comp1}(L_{in}) + (1 - \alpha(L_f)) L_{comp2}(L_{in})$.
4. (Currently Amended) The system of claim 2¹, wherein $\alpha(L_f)$ is a piecewise linear function, determined by two breakpoints, B_1 and B_2 .
5. (Currently Amended) The system of Claim 2¹, wherein function L_{comp1} is optimized for preserving overall image contrast.
6. (Currently Amended) The system of Claim 2¹, wherein function

L_{comp2} is optimized for preserving shadow detail.

7. (Original) The system of claim 4, wherein:

$\alpha(L_f) = 0$ for values of L_f between 0 and B_1 ;

$\alpha(L_f)$ increases linearly from 0 to 1 for values of L_f from B_1 to B_2 ; and

$\alpha(L_f) = 1$ for values of L_f between B_2 and L_{max} ,

where L_{max} is a maximum luminance achievable by the output device.

8. (Original) The system of claim 1, wherein the luminance compression module, responsive to the chrominance components C_1 and C_2 , in addition to L_f and L_{in} , for outputting a compressed luminance signal L_{out} that is within the achievable luminance range of an output device.

9. (Original) The system of claim 1, wherein the low pass filter comprises a constant weight filter.

10. (Original) The system of claim 1, wherein the image is down-sampled prior to filtering and upsampled and interpolated after filtering.

11. (Original) The system of claim 1, further comprising a color correction module for transforming L_{out} , C_1 and C_2 to CMYK for printing.

12. (Currently Amended) A method for gamut mapping, comprising:
transforming an input image into a luminance component L_{in} and chrominance components, C_1 and C_2 ;

spatially low pass filtering L_{in} into a filtered luminance component L_f , wherein L_f is a function of L_{in} ; and

processing L_f and L_{in} through a luminance compression module to obtain a compressed luminance signal L_{out} that is within an achievable luminance range of an

output device; wherein the processing step comprises combining two compression functions $L_{comp1}(L_{in})$ and $L_{comp2}(L_{in})$ via a blending function $\alpha(L_f)$ and wherein $L_{comp1}(L_{in})$, $L_{comp2}(L_{in})$ and $\alpha(L_f)$ are all functions of L_{in} .

13. (Cancelled).

14. (Currently Amended) The method of claim 43~~12~~, wherein $L_{comp1}(L_{in})$ and $L_{comp2}(L_{in})$ are combined according to the relationship $L_{out} = \alpha(L_f) L_{comp1}(L_{in}) + (1 - \alpha(L_f)) L_{comp2}(L_{in})$.

15. (Currently Amended) The method of claim 43~~12~~, wherein $\alpha(L_f)$ is a piecewise linear function, determined by two breakpoints, B_1 and B_2 .

16. (Currently Amended) The method of Claim 43~~12~~, wherein function L_{comp} is optimized for preserving overall image contrast.

17. (Currently Amended) The method of Claim 43~~12~~, wherein function L_{comp2} is optimized for preserving shadow detail.

18. (Original) The method of claim 15, wherein:

$\alpha(L_f) = 0$ for values of L_f between 0 and B_1 ;

$\alpha(L_f)$ increases linearly from 0 to 1 for values of L_f from B_1 to B_2 ; and

$\alpha(L_f) = 1$ for values of L_f between B_2 and L_{max} ,

where L_{max} is a maximum luminance achievable by the output device.

19. (Original) The method of claim 12, wherein the processing step comprises incorporating C_1 and C_2 , in addition to L_f and L_{in} , for outputting a compressed luminance signal L_{out} that is within the achievable luminance range of an output device.

20. (Original) The method of claim 12, wherein the spatial low pass filtering comprises applying a constant weight filter.

21. (Original) The method of claim 12, further comprising down-sampling the input image prior to filtering and upsampling and interpolating the input image after filtering.

22. (Original) The method of claim 12, further comprising applying a color correction for transforming L_{out} , C_1 and C_2 to CMYK for printing.