ORDINARY DIFFERENTIAL EQUATIONS

Handbook of Exact Solutions

Andrei D. Polyanin

Institute for Problems in Mechanics Russian Academy of Sciences Moscow, Russia

and

Valentin F. Zaitsev

Research Institute for Computational Mathematics and Control Processes Saint-Petersburg State University Saint-Petersburg, Russia

 $\begin{array}{ccc} & & CRC \ Press \\ Boca \ Raton & Ann \ Arbor & London & Tokyo \\ \end{array}$

1.4.3. Equations of the Form

$$(A_{22}y^2 + A_{12}xy + A_{11}x^2 + A_2y + A_1x)y_x' \ = B_{22}y^2 + B_{12}xy + B_{11}x^2 + B_2y + B_1x^*$$

Preliminary comments.

- 1. For $A_{22} = 0$, this is the Abel equation (see Subsection 1.3.4). For $B_{11} = 0$ this is the Abel equation with respect to x = x(y).
 - 2. The transformation $\xi = y/x$, w = 1/x leads to the Abel equation of the second kind:

$$\{[A_2\xi^2 + (A_1 - B_2)\xi - B_1]w + A_{22}\xi^3 + (A_{12} - B_{22})\xi^2 + (A_{11} - B_{12})\xi - B_{11}\}w'_{\xi}$$

= $(A_2\xi + A_1)w^2 + (A_{22}\xi^2 + A_{12}\xi + A_{11})w$.

- **3.** In Paragraph 3 of Subsection 1.4.4, another transformation is given which reduces the original equation to the Abel equation of the second kind.
 - 4. Dynamical systems of the second order

$$\frac{dx}{dt} = P(x, y), \qquad \frac{dy}{dt} = Q(x, y) \tag{1}$$

which describe the behavior of the simplest Lagrangian and Hamiltonian systems in mechanics are often reduced to equations of the considered type when

$$P(x,y) = f(x,y)(A_{22}y^2 + A_{12}xy + A_{11}x^2 + A_2y + A_1x),$$

$$Q(x,y) = f(x,y)(B_{22}y^2 + B_{12}xy + B_{11}x^2 + B_2y + B_1x),$$
(2)

where f = f(x, y) is an arbitrary function.

In particular, dynamical systems (1) with functions (2) and $f \equiv 1$ are met with in analyzing complex equilibrium states. In this case, functions P and Q are substituted by their Taylor-series expansions in the vicinity of the equilibrium state x = y = 0 with the first and second order terms retained.

When obtained the solution of the ordinary differential equation

$$(A_{22}y^2 + A_{12}xy + A_{11}x^2 + A_2y + A_1x)y'_x = B_{22}y^2 + B_{12}xy + B_{11}x^2 + B_2y + B_1x$$

in the parametric form $x = x(u, C_1)$, $y = y(u, C_1)$, the solution of the system (1), (2) is determined by the formulae

$$x = x(u, C_1), \quad y = y(u, C_1), \quad t = \int \frac{x'_u du}{P(x(u, C_1), y(u, C_1))} + C_2.$$

The latter relation defines the implicit dependence of parameter u on t: $u = u(t, C_1, C_2)$, and makes it possible to find, with the aid of two former formulae, the dependence of x and y on t.

1.
$$(y^2 - x^2 + ay)y'_x = y^2 - x^2 + ax$$
.

$$x = at + C|t|^{-1}e^{4t}, \quad y = -at + C|t|^{-1}e^{4t}.$$

^{*} This section was written with A.I. Zhurov

2.
$$(y^2 - x^2 + ay)y'_x = 2y^2 - 2xy + ay$$
.

Solution in the parametric form:

$$x = t + Ct^2 e^{a/t}, \quad y = Ct^2 e^{a/t}.$$

3.
$$(y^2 - x^2 + ay - ax)y'_x = y^2 - x^2 - ay + ax$$
.

Solution in the parametric form:

$$x = at + Ce^{2t}, \quad y = -at + Ce^{2t}.$$

4.
$$(y^2 - x^2 + ay + 2ax)y'_x = y^2 - x^2 + 2ay + ax$$
.

Solution in the parametric form:

$$x = -at + C|t|^3 e^{4t}, \quad y = at + C|t|^3 e^{4t}.$$

5.
$$(y^2 - x^2 + ay + 2ax)y'_x = 2xy - 2x^2 + ay + 2ax$$
.

Solution in the parametric form:

$$x = t + Ct^{-2}e^{-a/t}, \quad y = -2t + Ct^{-2}e^{-a/t}.$$

6.
$$(y^2 - x^2 + ay - 2ax)y'_x = 4y^2 - 6xy + 2x^2 + ay - 2ax$$

Solution in the parametric form:

$$x = \frac{1}{3}t + C|t|^{2/3}e^{a/t}, \quad y = \frac{2}{3}t + C|t|^{2/3}e^{a/t}.$$

7.
$$(y^2 - x^2 + ay + 3ax)y'_x = -y^2 + 4xy - 3x^2 + ay + 3ax$$

Solution in the parametric form:

$$x = \frac{1}{2}t + C|t|^{-1}e^{-a/t}, \quad y = -\frac{3}{2}t + C|t|^{-1}e^{-a/t}.$$

8.
$$(y^2 - xy + ay + ax)y'_x = xy - x^2 + ay + ax$$
.

Solution in the parametric form:

$$x = -t + C|t|^{-1}e^{a/t}, \quad y = t + C|t|^{-1}e^{a/t}.$$

9.
$$(y^2 - xy + ay + ax)y'_x = y^2 - xy + 2ay$$
.

Solution in the parametric form:

$$x = -at + Ct^2e^t$$
, $y = Ct^2e^t$.

10.
$$(y^2 - xy + ay - 2ax)y'_x = 3y^2 - 5xy + 2x^2 + ay - 2ax$$
.

$$x = \frac{1}{2}t + C|t|^{1/2}e^{a/t}, \quad y = t + C|t|^{1/2}e^{a/t}.$$

11. $(y^2 + xy - 2x^2 + ay + ax)y'_x = y^2 + xy - 2x^2 + 2ax$.

Solution in the parametric form:

$$x = at + Ct^{-2}e^{9t}, \quad y = -2at + Ct^{-2}e^{9t}.$$

12. $(y^2 + xy - 2x^2 + ay + ax)y'_x = 2y^2 - xy - x^2 + ay + ax$. Solution in the parametric form:

$$x = t + C|t|^3 e^{a/t}, \quad y = -t + C|t|^3 e^{a/t}.$$

13. $(y^2 + xy - 2x^2 + ay - ax)y'_x = y^2 + xy - 2x^2 - 2ay + 2ax$. Solution in the parametric form:

$$x = at + Ce^{3t}, \quad y = -2at + Ce^{3t}.$$

14. $(y^2 + xy - 2x^2 + ay - 2ax)y'_x = 5y^2 - 7xy + 2x^2 + ay - 2ax$. Solution in the parametric form:

$$x = \frac{1}{4}t + C|t|^{3/4}e^{a/t}, \quad y = \frac{1}{2}t + C|t|^{3/4}e^{a/t}.$$

15. $(y^2 - 2xy + x^2 + ay)y'_x = ay$. Solution: $x = y + \frac{a}{C - \ln |y|}$.

16. $(y^2 - 2xy + x^2 + ay + ax)y'_x = -y^2 + 2xy - x^2 + ay + ax$. Solution in the parametric form:

$$x = -\frac{a}{2\ln|t|} + Ct, \quad y = \frac{a}{2\ln|t|} + Ct.$$

17. $(y^2-2xy+x^2+ay+2ax)y_x'=-2(y^2-2xy+x^2)+ay+2ax.$ Solution in the parametric form:

$$x=-\frac{a}{3\ln|t|}+Ct,\quad y=\frac{2a}{3\ln|t|}+Ct.$$

18. $(y^2-2xy+x^2+ay-2ax)y_x'=2(y^2-2xy+x^2)+ay-2ax.$ Solution in the parametric form:

$$x = \frac{a}{\ln|t|} + Ct, \quad y = \frac{2a}{\ln|t|} + Ct.$$

19. $(y^2+2xy+x^2+ay+2ax)y_x'=-y^2-2xy-x^2+2ay+ax.$ Solution in the parametric form:

$$x = C^2 \Big(t^{1/3} + \frac{4t^2}{5a} \Big) + Ct, \quad y = -C^2 \Big(t^{1/3} + \frac{4t^2}{5a} \Big) + Ct, \qquad a \neq 0.$$

20.
$$(y^2 + 2xy + x^2 + ay - ax)y'_x = -y^2 - 2xy - x^2 + ay - ax$$
. Solution in the parametric form:

$$x = C^3 \sqrt{1 - \frac{4t^3}{3a}} + C^2 t, \quad y = -C^3 \sqrt{1 - \frac{4t^3}{3a}} + C^2 t, \quad a \neq 0.$$

21.
$$(y^2+2xy+x^2+ay-2ax)y'_x=-y^2-2xy-x^2-2ay+ax$$
. Solution in the parametric form:

$$x = C^2 \left(t^3 + \frac{4t^2}{a} \right) + Ct, \quad y = -C^2 \left(t^3 + \frac{4t^2}{a} \right) + Ct, \qquad a \neq 0.$$

22.
$$(y^2 + 2xy - 3x^2 + ay + ax)y'_x = 3y^2 - 2xy - 1x^2 + ay + ax$$
. Solution in the parametric form:

$$x = \frac{1}{2}t + Ct^2e^{a/t}, \quad x = -\frac{1}{2}t + Ct^2e^{a/t}.$$

23.
$$(y^2+2xy-3x^2+ay+ax)y'_x=y^2+2xy-3x^2-ay+3ax$$
. Solution in the parametric form:

$$x = at + C|t|^{-1}e^{8t}, \quad y = -3at + C|t|^{-1}e^{8t}.$$

24.
$$(y^2 + 2xy - 3x^2 + ay + 2ax)y'_x = y^2 + 2xy - 3x^2 + 3ax$$
. Solution in the parametric form:

$$x = at + C|t|^{-3}e^{16t}, \quad y = -3at + C|t|^{-3}e^{16t}.$$

25.
$$(y^2 - x^2 + ay + bx)y'_x = y^2 - x^2 + by + ax$$

Solution in the parametric form:

$$x = (a-b)t + C|t|^{-\frac{a+b}{a-b}}e^{4t}, \quad y = (b-a)t + C|t|^{-\frac{a+b}{a-b}}e^{4t}, \quad a \neq b.$$

26.
$$(y^2 - xy + ay + bx)y'_x = y^2 - xy + (a+b)y$$
.

Solution in the parametric form:

$$x = -bt + C|t|^{\frac{a+b}{b}}e^t$$
, $y = C|t|^{\frac{a+b}{b}}e^t$, $b \neq 0$.

27.
$$(y^2 + xy - 2x^2 + ay + bx)y'_x = y^2 + xy - 2x^2 + (b-a)y + 2ax$$
. Solution in the parametric form:

$$x = (2a - b)t + C|t|^{-\frac{a+b}{2a-b}}e^{9t}, \quad y = 2(b-2a)t + C|t|^{-\frac{a+b}{2a-b}}e^{9t}, \quad b \neq 2a$$

28.
$$(y^2 - 2xy + x^2 + ay - abx)y'_x = b(y^2 - 2xy + x^2) + ay - abx$$
.

$$x=\frac{a}{b-1}\frac{1}{\ln|t|}+Ct,\quad y=\frac{ab}{b-1}\frac{1}{\ln|t|}+Ct,\qquad b\neq 1.$$

29. $(y^2 + 2xy - 3x^2 + ay + bx)y'_x = y^2 + 2xy - 3x^2 + (b - 2a)y + 3ax$. Solution in the parametric form:

$$x = (3a - b)t + C|t|^{-\frac{a+b}{3a-b}}e^{16t}, \quad y = 3(b-3a)t + C|t|^{-\frac{a+b}{3a-b}}e^{16t}, \quad b \neq 3a.$$

30. $(y^2 - 3xy + 2x^2 + ay + bx)y'_x = y^2 - 3xy + 2x^2 + (3a + b)y - 2ax$. Solution in the parametric form:

$$x = (2a+b)t + C|t|^{\frac{a+b}{2a+b}}e^{-t}, \quad y = 2(2a+b)t + C|t|^{\frac{a+b}{2a+b}}e^{-t}, \qquad b \neq -2a.$$

31. $(y^2 + 3xy - 4x^2 + ay + bx)y'_x = y^2 + 3xy - 4x^2 + (b - 3a)y + 4ax$. Solution in the parametric form:

$$x = (4a - b)t + C|t|^{-\frac{a+b}{4a-b}}e^{25t}, \quad y = 4(b-4a)t + C|t|^{-\frac{a+b}{4a-b}}e^{25t}, \quad b \neq 4a.$$

32. $[y^2 + Axy - (A+1)x^2 + by - 2bx]y'_x = (A+4)y^2 - (A+6)xy + 2x^2 + by - 2bx$. Solution in the parametric form:

$$x = \frac{t}{A+3} + C|t|^{\frac{A+2}{A+3}} e^{b/t}, \quad y = \frac{2t}{A+3} + C|t|^{\frac{A+2}{A+3}} e^{b/t}, \qquad A \neq -3.$$

33. $(y^2 - 2Axy + A^2x^2 + by - bx)y'_x = Ay^2 - 2A^2xy + A^3x^2 + by - bx$. Solution in the parametric form:

$$x = C^3 \sqrt{1 + \frac{2(A-1)}{3b}t^3} + C^2 t, \quad y = AC^3 \sqrt{1 + \frac{2(A-1)}{3b}t^3} + C^2 t, \qquad b \neq 0.$$

34. $[y^2-2Axy+(2A-1)x^2+by-Abx]y_x'=(2-A)y^2-2xy+Ax^2+by-Abx.$ Solution in the parametric form:

$$x = \frac{t}{1-A} + Ct^2 e^{b/t}, \quad y = \frac{At}{1-A} + Ct^2 e^{b/t}, \qquad A \neq 1.$$

35. $(y^2-2Axy+A^2x^2+ay+bx)y_x'=A(y^2-2Axy+A^2x^2)+(aA+a+b)y-aAx.$ Solution in the parametric form:

$$x = C^{2} \left[t^{\frac{aA+b}{a+b}} + \frac{(1-A)^{2}}{(2-A)a+b} t^{2} \right] + Ct, \quad y = AC^{2} \left[t^{\frac{aA+b}{a+b}} + \frac{(1-A)^{2}}{(2-A)a+b} t^{2} \right] + Ct,$$
 where $a+b \neq 0$ and $(2-A)a+b \neq 0$.

36. $[y^2 - (A+2)xy + (A+1)x^2 + by - Abx]y'_x = -Axy + Ax^2 + by - Abx.$ Solution in the parametric form:

$$x = \frac{t}{1-A} + C|t|^A e^{(A-1)b/t}, \quad y = \frac{At}{1-A} + C|t|^A e^{(A-1)b/t}, \qquad A \neq 1.$$

- 70 1. First Order Differential Equations
- 37. $[Ay^2 + xy (A+1)x^2 + by + bx]y'_x = (A+1)y^2 xy Ax^2 + by + bx.$ Solution in the parametric form:

$$x = t + C|t|^{2A+1}e^{b/t}, \quad y = -t + C|t|^{2A+1}e^{b/t}.$$

38. $(Ay^2 + Bxy + Cx^2 + kx)y'_x = Dy^2 + Exy + Fx^2 + ky$.

The substitution y = xz leads to a linear equation with respect to x = x(z):

$$[-Az^{3} + (D-B)z^{2} + (E-C)z + F]x'_{z} = (Az^{2} + Bz + C)x + k.$$

39. $(Ay^2 + Bxy + Cx^2 - \alpha By - \alpha Cx)y'_x = Dy^2 + Exy + \alpha (C - E)y$. The transformation $x = w + \alpha$, $y = \xi w$ leads to a linear equation:

 $[-A\xi^{3} + (D-B)\xi^{2} + (E-C)\xi]w'_{\xi} = (A\xi^{2} + B\xi + C)w + \alpha C.$

- 40. $(Ay^2 + 2Bxy + Ak^2x^2 + ay + bx)y'_x = By^2 + 2Ak^2xy + Bk^2x^2 + by + ak^2x$. This is a special case of equation 1.4.3.57 with $C = Ak^2$.
- 41. $(Ay^2 + 2Bxy + Ak^2x^2 + ay + bx)y'_x = By^2 + 2Ak^2xy + Bk^2x^2 + aky + bkx$. This is a special case of equation 1.4.3.62 with $C = Ak^2$.
- 42. $(Ay^2+2Bxy+Ak^2x^2+ay-akx)y'_x=By^2+2Ak^2xy+Bk^2x^2+my-mkx$. This is a special case of equation 1.4.3.61 with $C=Ak^2$.
- 43. $(Ay^2 + 2Bxy Bkx^2 + ay + bx)y'_x = By^2 + 2Ak^2xy Ak^3x^2 + by + ak^2x$. This is a special case of equation 1.4.3.58 with m = b.
- 44. $(Ay^2 + 2Bxy Bkx^2 + ay + bx)y'_x = By^2 + 2Ak^2xy Ak^3x^2 + aky + bkx$. This is a special case of equation 1.4.3.62 with C = -Bk.
- 45. $(Ay^2 + 2Bxy Bkx^2 + ay akx)y'_x = By^2 + 2Ak^2xy Ak^3x^2 + my mkx$. This is a special case of equation 1.4.3.61 with C = -Bk.
- 46. $(Ay^2 + 2Akxy + Cx^2 + ay + bx)y'_x = Aky^2 + 2Ak^2xy + Ckx^2 + by + ak^2x$. This is a special case of equation 1.4.3.57 with B = Ak.
- 47. $(Ay^2 + 2Akxy + Cx^2 + ay + bx)y'_x = Aky^2 + 2Ak^2xy + Ckx^2 + aky + bkx$. This is a special case of equation 1.4.3.62 with B = Ak.
- 48. $(Ay^2 + 2Akxy + Cx^2 + ay akx)y'_x = Aky^2 + 2Ak^2xy + Ckx^2 + my mkx$. This is a special case of equation 1.4.3.61 with B = Ak.
- 49. $(Ay^2 2Akxy + Bkx^2 + ay + bx)y'_x = -By^2 + 2Bkxy Ak^3x^2 + by + ak^2x$. This is a special case of equation 1.4.3.59 with m = b.

50.
$$(Ay^2 - 2Akxy + Bkx^2 + ay + bx)y'_x = -By^2 + 2Bkxy - Ak^3x^2 + aky + bkx$$
.
This is a special case of equation 1.4.3.59 with $m = ak$.

51.
$$\begin{split} [y^2 + 2Axy + A^2x^2 + (A-1)By - 2ABx]y_x' \\ &= -A(y^2 + 2Axy + A^2x^2) - (A^2+1)By + A(A-1)Bx. \end{split}$$

Solution in the parametric form:

$$x = C^2 \left[t^A + \frac{A+1}{(A-2)B} t^2 \right] + Ct, \quad y = -AC^2 \left[t^A + \frac{A+1}{(A-2)B} t^2 \right] + Ct, \quad A \neq 2, \ B \neq 0.$$

52.
$$\begin{split} [y^2 - 2Axy + A^2x^2 + (B-1)ky + (A-B)kx]y_x' \\ &= A(y^2 - 2Axy + A^2x^2) + (AB-1)ky - A(B-1)kx. \end{split}$$

Solution in the parametric form:

$$x = C^{2} \left[t^{B} - \frac{A-1}{(B-2)k} t^{2} \right] + Ct, \quad y = AC^{2} \left[t^{B} - \frac{A-1}{(B-2)k} t^{2} \right] + Ct, \quad B \neq 2, \ k \neq 0.$$

53.
$$[2y^2 - (A+3)xy + (A+1)x^2 + By - ABx]y'_x$$

$$= (A+1)y^2 - (3A+1)xy + 2Ax^2 + By - ABx.$$

Solution in the parametric form:

$$x = \frac{t}{1-A} + C|t|^{-1}e^{-B/t}, \quad y = \frac{At}{1-A} + C|t|^{-1}e^{-B/t}, \qquad A \neq 1.$$

54.
$$[2y^2 - (3A+1)xy + (3A-1)x^2 + By - ABx]y'_x$$

$$= (3-A)y^2 - (A+3)xy + 2Ax^2 + By - ABx.$$

Solution in the parametric form:

$$x = \frac{t}{1-A} + C|t|^3 e^{B/t}, \quad y = \frac{At}{1-A} + C|t|^3 e^{B/t}, \qquad A \neq 1.$$

55.
$$[A(y^2 - 2xy + x^2) - A(A - B)y + B(A - B)x]y'_x$$
$$= B(y^2 - 2xy + x^2) - A(A - B)y + B(A - B)x.$$

$$x = \frac{A}{\ln|t|} + Ct, \quad y = \frac{B}{\ln|t|} + Ct.$$

56.
$$(Ay^2 + Bxy + Cx^2 + ay + bx)y'_x = Aky^2 + Bkxy + Ckx^2 + ny + (ak+b-n)x$$
.

The substitution $y = z + kx$ leads to the Riccati equation with respect to $x = x(z)$:
$$(n - ak)zx'_z = (Ak^2 + Bk + C)x^2 + [(2Ak + B)z + ak + b]x + Az^2 + az.$$

57.
$$(Ay^2 + 2Bxy + Cx^2 + ay + bx)y'_x$$

= $By^2 + 2Ak^2xy + k(-Ak^2 + Bk + C)x^2 + by + ak^2x$.
The substitution $y = z + kx$ leads to the Riccati equation with respect to $x = x(z)$:

$$[(B - Ak)z + b - ak]zx'_z = (Ak^2 + 2Bk + C)x^2 + [2(Ak + B)z + ak + b]x + Az^2 + az.$$

58.
$$(Ay^2 + 2Bxy - Bkx^2 + ay + bx)y'_x$$

$$= By^2 + 2Ak^2xy - Ak^3x^2 + my + k(ak + b - m)x.$$
The substitution $y = z + kx$ leads to the Riccati equation with respect to $x = x(z)$:
$$[(B - Ak)z + m - ak]zx'_z = (Ak^2 + Bk)x^2 + [2(Ak + B)z + ak + b]x + Az^2 + az.$$

59.
$$(Ay^2 - 2Akxy + Bkx^2 + ay + bx)y'_x$$

$$= -By^2 + 2Bkxy - Ak^3x^2 + my + k(ak + b - m)x.$$
The substitution $y = z + kx$ leads to the Riccati equation with respect to $x = x(z)$:
$$[-(Ak + B)z + m - ak]zx'_z = k(B - Ak)x^2 + (ak + b)x + Az^2 + az.$$

60.
$$(Ay^2 + 2Bxy + Ak^2x^2 + ay + bx)y'_x$$

$$= By^2 + 2Ak^2xy + Bk^2x^2 + my + k(ak + b - m)x.$$
The substitution $y = z + kx$ leads to the Riccati equation with respect to $x = x(z)$:
$$[(B - Ak)z + m - ak]zx'_z = 2k(Ak + B)x^2 + [2(Ak + B)z + ak + b]x + Az^2 + az.$$

61.
$$(Ay^2 + 2Bxy + Cx^2 + ay - akx)y'_x$$

$$= By^2 + 2Ak^2xy + k(-Ak^2 + Bk + C)x^2 + my - mkx.$$
The substitution $y = z + kx$ leads to the Riccati equation with respect to $x = x(z)$:
$$[(B - Ak)z^2 + m - ak]zx'_z = (Ak^2 + 2Bk + C)x^2 + 2(Ak + B)zx + Az^2 + az.$$

62.
$$(Ay^2 + 2Bxy + Cx^2 + ay + bx)y'_x$$

$$= By^2 + 2Ak^2xy + k(-Ak^2 + Bk + C)x^2 + aky + bkx.$$
The substitution $y = z + kx$ leads to the Riccati equation with respect to $x = x(z)$:
$$(B - Ak)z^2x'_z = (Ak^2 + 2Bk + C)x^2 + [2(Ak + B)z + ak + b]x + Az^2 + az.$$

63.
$$\{(A-1)y^2 + [2-A(k+1)]xy + (Ak-1)x^2 + By - Bkx\}y'_x$$

$$= (A-k)y^2 + [2k - A(k+1)]xy + (A-1)kx^2 + By - Bkx.$$
Solution in the parametric form:

$$x = \frac{t}{1-k} + C|t|^A e^{B/t}, \quad y = \frac{kt}{1-k} + C|t|^A e^{B/t}, \qquad k \neq 1.$$

64.
$$[A(\alpha y^2 + \beta xy + \gamma x^2) + (2\alpha - A^2\sigma)y + (\beta - AB\sigma)x]y'_x + B(\alpha y^2 + \beta xy + \gamma x^2) + (\beta - AB\sigma)y + (2\gamma - B^2\sigma)x = 0.$$
 Solution:
$$\alpha y^2 + \beta xy + \gamma x^2 - A\sigma y - B\sigma x + \sigma = C\exp(-Ay - Bx).$$

65.
$$(A_{22}y^2 + A_{12}xy + A_{11}x^2 + A_2y + A_1x)y'_x$$

$$= B_{22}y^2 + k(2A_{22}k + A_{12} - 2B_{22})xy + k(-A_{22}k^2 + B_{22}k + A_{11})x^2$$

$$+ B_2y + k(A_2k + A_1 - B_2)x.$$

The substitution y = z + kx leads to the Riccati equation with respect to x = x(z):

$$[(B_{22} - A_{22}k)z + B_2 - A_2k]zx_z'$$

= $(A_{22}k^2 + A_{12}k + A_{11})x^2 + [(2A_{22}k + A_{12})z + A_2k + A_1]x + A_{22}z^2 + A_2z.$

▶ In equations 66–70, the following notation is used:

$$\Delta = Ab - aB$$
, $\delta = Ab + aB$.

66.
$$(Aa^2y^2 - 2Aabxy + Ab^2x^2 - \Delta Aay + \Delta aBx)y'_x$$

$$= a^2By^2 - 2aBbxy + Bb^2x^2 - \Delta Aby + \Delta Bbx.$$

Solution in the parametric form:

$$x = \frac{A}{\ln|t|} + aCt, \qquad y = \frac{B}{\ln|t|} + bCt.$$

67.
$$[kAa^{2}y^{2} - k\delta axy + kaBbx^{2} - m\Delta Aay + (maB - \Delta)\Delta x]y'_{x}$$
$$= kAaby^{2} - k\delta bxy + kBb^{2}x^{2} - (mAb + \Delta)\Delta y + m\Delta Bbx.$$

Solution in the parametric form:

$$x = At + aC|t|^{m+1}e^{kt}, y = Bt + bC|t|^{m+1}e^{kt}.$$

68.
$$[mAa^2y^2 - a(m\delta - \Delta)xy + b(maB - \Delta)x^2 + k\Delta Aay - k\Delta aBx]y'_x$$
$$= a(mBb + \Delta)y^2 - b(m\delta + \Delta)xy + mBb^2x^2 + k\Delta Aby - k\Delta Bbx.$$

Solution in the parametric form:

$$x = At + aC|t|^{m+1}e^{k/t}, y = Bt + bC|t|^{m+1}e^{k/t}.$$

69.
$$(kA^3y^2 - 2kA^2Bxy + kAB^2x^2 - 2\Delta a^2y + 2\Delta abx)y'_x$$

= $kA^2By^2 - 2kAB^2xy + kB^3x^2 - 2\Delta aby + 2\Delta b^2x$.

Solution in the parametric form:

$$x = AC^3\sqrt{\tfrac{1}{3}kt^3 + 1} + aC^2t, \qquad y = BC^3\sqrt{\tfrac{1}{3}kt^3 + 1} + bC^2t.$$

70.
$$[kA^{3}y^{2} - 2kA^{2}Bxy + kAB^{2}x^{2} + m\Delta Aay - (mAb + \Delta)\Delta x]y'_{x}$$

$$= kA^{2}By^{2} - 2kAB^{2}xy + kB^{3}x^{2} + (maB - \Delta)\Delta y - m\Delta Bbx.$$

Solution in the parametric form:

$$x = AC^2 \left(t^{m+1} + \frac{k}{m-1} t^2 \right) + aCt, \quad y = BC^2 \left(t^{m+1} + \frac{k}{m-1} t^2 \right) + bCt, \qquad m \neq 1.$$

1.4.4. Equations of the Form

$$(A_{22}y^2 + A_{12}xy + A_{11}x^2 + A_2y + A_1x + A_0)y_x' = B_{22}y^2 + B_{12}xy + B_{11}x^2 + B_2y + B_1x + B_0$$

Preliminary comments.

1. With $A_{22} = 0$, this is the Abel equation (see Subsection 1.3.4). With $B_{11} = 0$, this is the Abel equation with respect to x = x(y).

See Subsection 1.4.2 for the case $A_2 = A_1 = B_2 = B_1 = 0$.

See Subsection 1.4.3 for the case $A_0 = B_0 = 0$.