# Fundamentals of Information & Network Security ECE 471/571



Lecture #3: Modular Arithmetic and Cryptography
Instructor: Ming Li

Dept of Electrical and Computer Engineering
University of Arizona

## Basic Modular Arithmetic

### Divisibility

- A nonzero b divides a, if a=mb for some m (all are integers)
- If b|a, then b is a divisor of a

```
The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24 13 | 182; - 5 | 30; 17 | 289; - 3 | 33; 17 | 0
```

#### Properties of divisibility

```
- If a \mid b and b \mid c, then a \mid c
```

```
11 | 66 and 66 | 198 = 11 | 198
```

- If  $b \mid g$  and  $b \mid h$ , then  $b \mid (mg + nh)$  for arbitrary integers m and n

#### Division algorithm

Given any positive integer n, integer a,
 a = qn+r, 0≤ r<n, q=floor(a/n) ---- q: quotient; r: residue</li>

## Basic Modular Arithmetic

#### Modulus

- a mod n: the remainder when a is divided by n
- n is a positive integer and is called the modulus

$$11 \mod 7 = 4$$
;  $-11 \mod 7 = 3$ 

#### Congruence

- Integers a and b are congruent modulo n, if (a mod n)=(b mod n)
- Written as  $a \equiv b \pmod{n}$

```
73 \equiv 4 \pmod{23}; 21 \equiv -9 \pmod{10}
```

#### Properties

- $a \equiv b \pmod{n} \Leftrightarrow n \mid (a b)$
- $-a \equiv b \pmod{n} \Leftrightarrow b \equiv a \pmod{n}$
- a ≡ b (mod n) and b ≡ c (mod n)  $\rightarrow$  a ≡ c (mod n)

```
23 = 8 (mod 5) because 23 - 8 = 15 = 5 * 3

- 11 = 5 (mod 8) because - 11 - 5 = -16 = 8 * (-2)

81 = 0 (mod 27) because 81 - 0 = 81 = 27 * 3
```

## Basic Modular Arithmetic

- Modular Addition and Multiplication
  - Arithmetic operations within the set  $Z_n = \{0,1,...,(n-1)\}$
  - Examples: (5+7) mod 10 =? (5\*7) mod 10 =?
- Properties:
  - (a + b) mod n = [(a mod n) + (b mod n)] mod n
  - (a b) mod n = [(a mod n) (b mod n)] mod n
  - $(a * b) \mod n = [(a \mod n) * (b \mod n)] \mod n$
- More examples
  - (978 + 1047) mod 10 =?
  - (111 \* 112) mod 10 =?
- Modular Exponentiation
  - Can be done by repeated multiplication
  - $-11^7 \mod 13 = ?$

## Properties of Modular Arithmetic for Integers in Z<sub>n</sub>

#### Arithmetic Modulo 8

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 |
| 2 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 |
| 3 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 |
| 4 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 |
| 5 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 |
| 6 | 6 | 7 | 0 | 1 | 2 | 3 | 4 | 5 |
| 7 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

## Properties of Modular Arithmetic for Integers in Z<sub>n</sub>

#### Multiplication Modulo 8

| × | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 0 | 2 | 4 | 6 | 0 | 2 | 4 | 6 |
| 3 | 0 | 3 | 6 | 1 | 4 | 7 | 2 | 5 |
| 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 |
| 5 | 0 | 5 | 2 | 7 | 4 | 1 | 6 | 3 |
| 6 | 0 | 6 | 4 | 2 | 0 | 6 | 4 | 2 |
| 7 | 0 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |

# Additive and Multiplicative Inverse

- Additive and Multiplicative Identities
  - $0:0+w=w \mod n;$
  - $1:1*w = w \mod n;$
- Additive and Multiplicative Inverses
  - Each w within Z<sub>n</sub> has an additive inverse
  - An integer has a mult. Inverse in  $Z_n$  if and only if it is relatively prime to n.

Q: Will there be more than one multiplicative inverse for a given number?

| W | -w | $W^{-1}$ |
|---|----|----------|
| 0 | 0  | _        |
| 1 | 7  | 1        |
| 2 | 6  | _        |
| 3 | 5  | 3        |
| 4 | 4  | _        |
| 5 | 3  | 5        |
| 6 | 2  |          |
| 7 | 1  | 7        |

E.g.: Inverses Modulo 8

## Properties of Modular Arithmetic for Integers in Z<sub>n</sub>

| Property              | Expression                                                                         |
|-----------------------|------------------------------------------------------------------------------------|
| Commutative Laws      | $(w + x) \bmod n = (x + w) \bmod n$                                                |
|                       | $(w \times x) \bmod n = (x \times w) \bmod n$                                      |
| Associative Laws      | $[(w+x)+y] \bmod n = [w+(x+y)] \bmod n$                                            |
| Associative Laws      | $[(w \times x) \times y] \bmod n = [w \times (x \times y)] \bmod n$                |
| Distributive Law      | $[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$                 |
| Identities            | $(0+w) \bmod n = w \bmod n$                                                        |
| identities            | $(1 \times w) \bmod n = w \bmod n$                                                 |
| Additive Inverse (-w) | For each $w \in \mathbb{Z}_n$ , there exists a z such that $w + z \equiv 0 \mod n$ |

# **Euclidean Algorithm**

- One of the basic techniques of number theory
- Procedure for determining the greatest common divisor of two positive integers
- Two integers are **relatively prime** if their only common positive integer factor is 1



# **Greatest Common Divisor (GCD)**

- The greatest common divisor of a and b is the largest integer that divides both a and b ---- gcd(a,b)
- Positive integer c is said to be the gcd of a and b if:
  - c is a divisor of a and b
  - Any divisor of a and b is a divisor of c
- An equivalent definition is:

 $gcd(a,b) = max[k, such that k \mid a and k \mid b]$ 

## **GCD**

- Because we require that the greatest common divisor be positive, gcd(a,b) = gcd(a,-b) = gcd(-a,b) = gcd(-a,-b)
- In general, gcd(a,b) = gcd(| a |, | b |)

$$gcd(60, 24) = gcd(60, -24) = 12$$

- Also, because all nonzero integers divide 0, we have gcd(a,0) = | a |
- It is equivalent to saying that a and b are relatively prime if gcd(a,b) = 1

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the positive divisors of 15 are 1, 3, 5, and 15. So 1 is the only integer on both lists.

# **Euclidean Algorithm**

If  $a \ge b \ge 0$ , then gcd(a,b) = gcd(b, a mod b)

Examples: gcd(55,22) gcd(18.12) Same GCD gcd(11,10)  $710 = 2 \times 310 + 90$  $310 = 3 \times 90 + 40$  $90 = 2 \times 40 + 10$  $40 = 4 \times 10$ 

Figure 2.3 Euclidean Algorithm Example: gcd(710, 310)

# Extended Euclidean Algorithm (EEA)

Given integers a and b, EEA calculates integers x and y, such that: ax + by = d = gcd(a,b)

We have:

$$a=q_1*b+r_1; \quad r_1=a*x_1+b*y_1;$$
 $b=q_2*r_1+r_2; \quad r_2=a*x_2+b*y_2;$ 
......

 $r_{n-2}=q_n*r_{n-1}+r_n; \quad r_n=a*x_n+b*y_n;$ 

Where,

 $x_i=x_{i-2}-q_i*x_{i-1}, y_i=y_{i-2}-q_i*y_{i-1}$ 
Initial values:  $X_{-1}=1$ ;  $y_{-1}=0$ 

Examples: Can be used to calculate the multiplicative inverse of b mod a, a=42, b=30; if a and b are relatively prime a=75, b=28

## Extended Euclidean Algorithm Example

a=1759, b=550

| i  | $r_i$ | $q_i$ | $x_i$ | $Y_i$ |
|----|-------|-------|-------|-------|
| -1 | 1759  |       | 1     | 0     |
| 0  | 550   |       | 0     | 1     |
| 1  | 109   | 3     | 1     | -3    |
| 2  | 5     | 5     | -5    | 16    |
| 3  | 4     | 21    | 106   | -339  |
| 4  | 1     | 1     | -111  | 355   |
| 5  | 0     | 4     |       |       |

Result: d = 1; x = -111; y = 355

(This table can be found on page 43 in the textbook)

Q: What is b's multiplicative inverse modulo 1759?

## **Prime Numbers**

- Prime numbers only have divisors of 1 and itself
  - They cannot be written as a product of other numbers
- Any integer a > 1 can be factored in a unique way as

$$a = p_1^{a1} p_2^{a1} \dots p_{p_1}^{a1}$$

where  $p_1 < p_2 < ... < p_t$  are prime numbers and where each  $a_i$  is a positive integer

This is known as the fundamental theorem of arithmetic

### Primes Under 2000

| 2  | 101 | 211 | 307 | 401 | 503 | 601 | 701 | 809 | 907 | 1009 | 1103 | 1201 | 1301 | 1409 | 1511 | 1601 | 1709 | 1801 | 1901 |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|------|------|------|
| 3  | 103 | 223 | 311 | 409 | 509 | 607 | 709 | 811 | 911 | 1013 | 1109 | 1213 | 1303 | 1423 | 1523 | 1607 | 1721 | 1811 | 1907 |
| 5  | 107 | 227 | 313 | 419 | 521 | 613 | 719 | 821 | 919 | 1019 | 1117 | 1217 | 1307 | 1427 | 1531 | 1609 | 1723 | 1823 | 1913 |
| 7  | 109 | 229 | 317 | 421 | 523 | 617 | 727 | 823 | 929 | 1021 | 1123 | 1223 | 1319 | 1429 | 1543 | 1613 | 1733 | 1831 | 1931 |
| 11 | 113 | 233 | 331 | 431 | 541 | 619 | 733 | 827 | 937 | 1031 | 1129 | 1229 | 1321 | 1433 | 1549 | 1619 | 1741 | 1847 | 1933 |
| 13 | 127 | 239 | 337 | 433 | 547 | 631 | 739 | 829 | 941 | 1033 | 1151 | 1231 | 1327 | 1439 | 1553 | 1621 | 1747 | 1861 | 1949 |
| 17 | 131 | 241 | 347 | 439 | 557 | 641 | 743 | 839 | 947 | 1039 | 1153 | 1237 | 1361 | 1447 | 1559 | 1627 | 1753 | 1867 | 1951 |
| 19 | 137 | 251 | 349 | 443 | 563 | 643 | 751 | 853 | 953 | 1049 | 1163 | 1249 | 1367 | 1451 | 1567 | 1637 | 1759 | 1871 | 1973 |
| 23 | 139 | 257 | 353 | 449 | 569 | 647 | 757 | 857 | 967 | 1051 | 1171 | 1259 | 1373 | 1453 | 1571 | 1657 | 1777 | 1873 | 1979 |
| 29 | 149 | 263 | 359 | 457 | 571 | 653 | 761 | 859 | 971 | 1061 | 1181 | 1277 | 1381 | 1459 | 1579 | 1663 | 1783 | 1877 | 1987 |
| 31 | 151 | 269 | 367 | 461 | 577 | 659 | 769 | 863 | 977 | 1063 | 1187 | 1279 | 1399 | 1471 | 1583 | 1667 | 1787 | 1879 | 1993 |
| 37 | 157 | 271 | 373 | 463 | 587 | 661 | 773 | 877 | 983 | 1069 | 1193 | 1283 |      | 1481 | 1597 | 1669 | 1789 | 1889 | 1997 |
| 41 | 163 | 277 | 379 | 467 | 593 | 673 | 787 | 881 | 991 | 1087 |      | 1289 |      | 1483 |      | 1693 |      |      | 1999 |
| 43 | 167 | 281 | 383 | 479 | 599 | 677 | 797 | 883 | 997 | 1091 |      | 1291 |      | 1487 |      | 1697 |      |      |      |
| 47 | 173 | 283 | 389 | 487 |     | 683 |     | 887 |     | 1093 |      | 1297 |      | 1489 |      | 1699 |      |      |      |
| 53 | 179 | 293 | 397 | 491 |     | 691 |     |     |     | 1097 |      |      |      | 1493 |      |      |      |      |      |
| 59 | 181 |     |     | 499 |     |     |     |     |     |      |      |      |      | 1499 |      |      |      |      |      |
| 61 | 191 |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 67 | 193 |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 71 | 197 |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 73 | 199 |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 79 |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 83 |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 89 |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |
| 97 |     |     |     |     |     |     |     |     |     |      |      |      |      |      |      |      |      |      |      |

(This table can be found on page 44 in the textbook)

# Euler's Totient Function $\phi(n)$

- Number of positive integers less than n and relatively prime to n.
- If n=p\*q, where p and q are primes, then  $\emptyset(n)=(p-1)(q-1)$

| n  | φ( <i>n</i> ) |
|----|---------------|
| 1  | 1             |
| 2  | 1             |
| 3  | 2             |
| 4  | 2             |
| 5  | 4             |
| 6  | 2             |
| 7  | 6             |
| 8  | 4             |
| 9  | 6             |
| 10 | 4             |

| n  | $\phi(n)$ |
|----|-----------|
| 11 | 10        |
| 12 | 4         |
| 13 | 12        |
| 14 | 6         |
| 15 | 8         |
| 16 | 8         |
| 17 | 16        |
| 18 | 6         |
| 19 | 18        |
| 20 | 8         |

| n  | φ( <i>n</i> ) |
|----|---------------|
| 21 | 12            |
| 22 | 10            |
| 23 | 22            |
| 24 | 8             |
| 25 | 20            |
| 26 | 12            |
| 27 | 18            |
| 28 | 12            |
| 29 | 28            |
| 30 | 8             |

# Reading Assignment for Next Class

• [W. Stallings] Chapter 2.4-2.5, and Chapter 3 (3.1 – 3.2).