Reproducing a LATEXDocument

Put your name here

Theorem. If x and y are odd integers then x + y is an even integer.

Proof. We assume that x and y are odd integers and will prove that x + y is an even integer. Since x and y are odd, there exist integers m and n such that x = 2m + 1 and y = 2n + 1. By substitution and algebra we obtain

$$x + y = 2m + 1 + 2n + 1$$
$$= 2m + 2n + 2$$
$$= 2(m + n + 1).$$

Define q = m + n + 1. Since m and n are integers and the integers are closed under addition, we conclude that q is an integer. Since x + y = 2q for the integer q we conclude that x + y is an even integer.

Challenge Typing

Suppose that $f:(-1,1)\to\mathbb{R}$ and f is differentiable at 0. Let sequences $(\alpha_n)_{n\geq 1}$ and $(\beta_n)_{n\geq 1}$ satisfy $-1<\alpha_n<\beta_n<1$ for all $n\geq 1$ and $\lim_{n\to\infty}\alpha_n=\lim_{n\to\infty}\beta_n=0$. Set

$$\lambda_n = \frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n}.$$