PCS 3225 Sistemas Digitais II

Módulo 05 – Síntese de Circuitos Seqüenciais

(minimização, exemplo de Simplificação por Tabelas de Implicação - Livro Hill&Peterson)

Andrade, Marco Túlio Carvalho de; Albertini, Bruno de Carvalho

Professores Responsáveis

versão: 1.0 (agosto de 2017)

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

Minimização

 Considere a tabela contendo o estado atual, próximo estado e saída.

	Χv	
q v	= 0	= 1
1	2/0	3/0
2	4/0	5/0
3	6/0	7/0
4	8/0	9/0
5	10/0	11/0
6	4/0	12/0
7	10/0	12/0
8	8/0	1/0
9	10/1	1/0
10	4/0	1/0
11	2/0	1/0
12	2/0	1/0
	q v+1/z	q v+1/z

 $@ Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 \\ < Sínt. Circ. Seq. > PCS 3225 Sistemas Digitais II$

2

Minimização

- O estado 9 é o único que produz saída 1.
- Os estados 11 e 12 são equivalentes (para a mesma entrada produzem a mesma saída e mesmo valor de excitação (próximo estado))

	Χ ^ν	
$\mathbf{q}^{\pmb{\nu}}$	= 0	= 1
1	2/0	3/0
2	4/0	5/0
3	6/0	7/0
4	8/0	9/0
5	10/0	11/0
6	4/0	12/0
7	10/0	12/0
8	8/0	1/0
9	10/1	1/0
10	4/0	1/0
11	2/0	1/0
12	2/0	1/0
	q ^{v+1} /z	q ^{v+1} /z

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

Minimização

 O estado 9 não pode ter nenhum estado equivalente (dizemos que representa uma classe de equivalência)

 $@ Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 \\ < Sínt. Circ. Seq. > PCS 3225 Sistemas Digitais II$

2

Minimização

- Monta-se uma tabela com n-1 linhas e colunas (deixando de fora o primeiro e o último)
- Marca-se como descartado as células em que o cruzamento seja de estados com saídas diferentes

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II

9

Bibliografia

Hill & Peterson (2006)

Exemplo 10.8

Hill, Frederic and Peterson, Gerald; *Introduction to Switching Theory and Logical Design*;

Ed. John Wiley and Sons;

© Andrade, Bruno, Midorikawa, Simplício e Spina 2.017 <Sínt. Circ. Seq.> PCS 3225 Sistemas Digitais II