Chapter 2: Discrete-Time Markov Models (Part i)

Andrey Markov (1856-1922, Russian mathematician)

life is a game with uncertainty:

At least 40×11 transitions between states.

- Fate (next state) depends on where you are (current state).
- Fate does *not* depend on how you got there (history).

YESTERDAY IS HISTORY. TOMORROW IS A MYSTERY.
TODAY IS A GIFT.

YESTERDAY IS HISTORY. TOMORROW IS A MYSTERY.
TODAY IS A GIFT.

- the Turtle (Kung Fu Panda (movie))

YESTERDAY IS HISTORY. TOMORROW IS A MYSTERY. TODAY IS A GIFT.

the Turtle (Kung Fu Panda (movie))

Markovian property:

- X_{n+1} is a random variable, whose <u>law</u> (distribution) is determined only by the <u>current value</u> of X_n and independent of all history X_{n-1}, X_{n-2}, \cdots .
- The law governing the distribution of X_{n+1} (given the value of X_n) is called *transition probability*: $\Pr(X_{n+1} = ?|X_n)$

YESTERDAY IS HISTORY. TOMORROW IS A MYSTERY. TODAY IS A GIFT.

the Turtle (Kung Fu Panda (movie))

Markovian property:

- X_{n+1} is a random variable, whose <u>law</u> (distribution) is determined only by the <u>current value</u> of X_n and independent of all history X_{n-1}, X_{n-2}, \cdots .
- The law governing the distribution of X_{n+1} (given the value of X_n) is called *transition probability*: $\Pr(X_{n+1} = ?|X_n)$

Corollary:

- What is the joint distribution of (X_{n+1}, X_n) ? $Pr(X_{n+1}, X_n) = Pr(X_{n+1} | X_n) Pr(X_n)$
- What is the (marginal) distribution of X_{n+1} ? $Pr(X_{n+1}) = \sum_{X} Pr(X_{n+1}, X_n = x) = \sum_{X} Pr(X_{n+1} | X_n = x) Pr(X_n = x)$

Markov model of the weather

Figure: transition diagram and transition matrix

Theory of DTMC

Definition

A stochastic process $\{X_n, n \ge 0\}$ on state space S is said to be a discrete-time Markov chain (DTMC) if , for all i and j in S ,

$$\Pr(X_{n+1} = j | X_n = i, X_{n-1}, \dots X_0) = \Pr(X_{n+1} = j | X_n = i)$$

A DTMC $\{X_n\}$ is said to be time-homogeneous if, for all n = 0, 1, 2, ...,

$$\Pr(X_{n+1} = j \mid X_n = i)$$

is *independent* of the time n.

In this chapter we mainly consider time-homogeneous DTMCs with finite state space $S = \{1, 2, 3, \dots, N\}$, and occasionally we may consider state space with countable infinite elements labelled as $S = \mathbb{N} := \{1, 2, 3, \dots\}$ or $S = \mathbb{Z} := \{\dots, -2, -1, 0, 1, 2, \dots\}$.

Transition Probability Matrix

One-step transition probability

$$p_{ij} = \Pr(X_{n+1} = j \mid X_n = i)$$

Remark: Strictly speaking, the above notation p_{ij} also depends on the time n. We only consider the time-homogeneous DTMC. So we only have one transition matrix which works for all time.

transition matrix

$$\mathbf{P} = \left[\begin{array}{cccc} p_{11} & p_{12} & \cdots & p_{1N} \\ p_{21} & p_{22} & \cdots & p_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ p_{N1} & p_{N2} & \cdots & p_{NN} \end{array} \right]$$

Example: Random Walk

random walk on Z

Let $X_0 = 0$ and $X_n = \sum_{i=1}^n Z_i$, where the iid random variable Z_i is defined as follows

$$Z_i = \begin{cases} +1, & \text{with prob } p = 0.5\\ -1, & \text{with prob } 1 - p = 0.5 \end{cases}$$

The case of p = q = 1/2 is called symmetric random walk.

Proof of Markovian property:

Proof of Markovian property:

```
\Pr(X_{n+1} = j | X_n = i, X_{n-1}, \dots, X_0)
= \Pr(X_n + Z_{n+1} = j | X_n = i, X_{n-1}, \dots, X_0)
= \Pr(Z_{n+1} = j - X_n | X_n = i, X_{n-1}, \dots, X_0)
= \Pr(Z_{n+1} = j - i | X_n = i) \quad \therefore Z_{n+1} \text{ indpt. of } \{X_n, X_{n-1}, \dots\}
= \begin{cases} p & \text{if } j = i + 1; \\ q & \text{if } j = i - 1; \\ 0 & \text{else.} \end{cases}
```

Proof of Markovian property:

$$\Pr(X_{n+1} = j | X_n = i, X_{n-1}, \dots, X_0)$$

$$= \Pr(X_n + Z_{n+1} = j | X_n = i, X_{n-1}, \dots, X_0)$$

$$= \Pr(Z_{n+1} = j - X_n | X_n = i, X_{n-1}, \dots, X_0)$$

$$= \Pr(Z_{n+1} = j - i | X_n = i) \quad \therefore Z_{n+1} \text{ indpt. of } \{X_n, X_{n-1}, \dots\}$$

$$= \begin{cases} p & \text{if } j = i + 1; \\ q & \text{if } j = i - 1; \\ 0 & \text{else.} \end{cases}$$

Question: What is the transition diagram and transition matrix ?

Proof of Markovian property:

$$\begin{split} &\Pr(X_{n+1} = j | X_n = i, X_{n-1}, \cdots, X_0) \\ &= \Pr(X_n + Z_{n+1} = j | X_n = i, X_{n-1}, \cdots, X_0) \\ &= \Pr(Z_{n+1} = j - X_n | X_n = i, X_{n-1}, \cdots, X_0) \\ &= \Pr(Z_{n+1} = j - i | X_n = i) \quad \because Z_{n+1} \text{ indpt. of } \{X_n, X_{n-1}, \ldots\} \\ &= \begin{cases} p & \text{if } j = i+1; \\ q & \text{if } j = i-1; \\ 0 & \text{else.} \end{cases} \end{split}$$

Question: What is the transition diagram and transition matrix?

random walk on finite interval of Z

Let -M, N be two positive integers, define a random walk on

$$S = [-M, N] \cap \mathbb{Z} = \{-M, -M+1, \cdots, N-1, N\}.$$

The particle X_n will randomly jump to one of its two neighbors, according to probability p and q where p+q=1. Define $\Pr(X_{n+1}=i+1|X_n=i)=p$, $\Pr(X_{n+1}=i-1|X_n=i)=q$ for any *interior* point i.

random walk on finite interval of Z

Let -M, N be two positive integers, define a random walk on

$$S = [-M, N] \cap \mathbb{Z} = \{-M, -M+1, \cdots, N-1, N\}.$$

The particle X_n will randomly jump to one of its two neighbors, according to probability p and q where p+q=1. Define $\Pr(X_{n+1}=i+1|X_n=i)=p$, $\Pr(X_{n+1}=i-1|X_n=i)=q$ for any *interior* point i.

For finite interval [-M, N], we need specify the boundary condition

1. absorbing (gambler's ruin problem)

$$\Pr(X_{n+1} = N | X_n = N) = 1 \text{ and } \Pr(X_{n+1} = -M | X_n = -M) = 1$$

random walk on finite interval of Z

Let -M, N be two positive integers, define a random walk on

$$S = [-M, N] \cap \mathbb{Z} = \{-M, -M+1, \cdots, N-1, N\}.$$

The particle X_n will randomly jump to one of its two neighbors, according to probability p and q where p+q=1. Define $\Pr(X_{n+1}=i+1|X_n=i)=p$, $\Pr(X_{n+1}=i-1|X_n=i)=q$ for any *interior* point i.

For finite interval [-M, N], we need specify the boundary condition

1. absorbing (gambler's ruin problem)

$$\Pr(X_{n+1} = N | X_n = N) = 1 \text{ and } \Pr(X_{n+1} = -M | X_n = -M) = 1$$

2. reflection (elastic wall)

$$Pr(X_{n+1} = N - 1 | X_n = N) = 1$$
 and $Pr(X_{n+1} = -M + 1 | X_n = -M) = 1$

random walk on finite interval of Z

Let -M, N be two positive integers, define a random walk on

$$S = [-M, N] \cap \mathbb{Z} = \{-M, -M+1, \cdots, N-1, N\}.$$

The particle X_n will randomly jump to one of its two neighbors, according to probability p and q where p+q=1. Define $\Pr(X_{n+1}=i+1|X_n=i)=p$, $\Pr(X_{n+1}=i-1|X_n=i)=q$ for any *interior* point i.

For finite interval [-M, N], we need specify the boundary condition

1. absorbing (gambler's ruin problem)

$$Pr(X_{n+1} = N | X_n = N) = 1$$
 and $Pr(X_{n+1} = -M | X_n = -M) = 1$

2. <u>reflection</u> (elastic wall)

$$Pr(X_{n+1} = N - 1 | X_n = N) = 1$$
 and $Pr(X_{n+1} = -M + 1 | X_n = -M) = 1$

3. periodic (walk on a circle)

$$\Pr(\overline{X_{n+1}} = -M | X_n = N) = p \text{ and } \Pr(X_{n+1} = N | X_n = -M) = q$$

absorbing boundary condition

$$\mathbf{P} = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ q & 0 & p & 0 & 0 \\ 0 & q & 0 & p & 0 \\ 0 & 0 & q & 0 & p \\ 0 & 0 & 0 & 0 & 1 \end{array} \right]$$

absorbing boundary condition

$$\mathbf{P} = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ q & 0 & p & 0 & 0 \\ 0 & q & 0 & p & 0 \\ 0 & 0 & q & 0 & p \\ 0 & 0 & 0 & 0 & 1 \end{array} \right]$$

reflection boundary condition

$$\mathbf{P} = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ q & 0 & p & 0 & 0 \\ 0 & q & 0 & p & 0 \\ 0 & 0 & q & 0 & p \\ 0 & 0 & 0 & 1 & 0 \end{array} \right]$$

absorbing boundary condition

$$\mathbf{P} = \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ q & 0 & p & 0 & 0 \\ 0 & q & 0 & p & 0 \\ 0 & 0 & q & 0 & p \\ 0 & 0 & 0 & 0 & 1 \end{array} \right]$$

reflection boundary condition

$$\mathbf{P} = \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ q & 0 & p & 0 & 0 \\ 0 & q & 0 & p & 0 \\ 0 & 0 & q & 0 & p \\ 0 & 0 & 0 & 1 & 0 \end{array} \right]$$

periodic boundary condition

$$\mathbf{P} = \left[\begin{array}{ccccc} 0 & p & 0 & 0 & q \\ q & 0 & p & 0 & 0 \\ 0 & q & 0 & p & 0 \\ 0 & 0 & q & 0 & p \\ p & 0 & 0 & q & 0 \end{array} \right]$$

Random Walk on Graph

Consider a connected graph without self-loop with node $S = \{1, 2, ..., N\}$. The walker at state i goes to one of its direct neighbours with equal probability $1/d_i$, where d_i is the degree of node i. For undirected graph, the movement direction is bi-directional.

Transient Distribution: $Pr(X_n = i) = ?$

For the symmetric random walk, we worked very hard to obtain if $X_0 = 0$, then

$$Pr(X_1 = 1) = p, Pr(X_1 = -1) = q,$$

$$Pr(X_2 = 2) = p^2, Pr(X_2 = 0) = 2pq, Pr(X_2 = -2) = q^2,$$

$$Pr(X_3 = 3) = p^3, Pr(X_3 = 1) = 3p^2q, Pr(X_3 = -1) = 3pq^2, Pr(X_3 = -3) = q^3,$$

there is an easy way to calculate for DTMC

you need know matrix-vector multiplication and matrix power.

• Let the state space $S = \{1, 2, ..., N\}$. Specify an initial distribution at time t = 0: $\Pr(X_0 = j) = a_j$ where $a = (a_1, a_2, \cdots, a_N)$ satisfies $a_j \ge 0 \ \forall j$ and $\sum_{j=1}^N a_j = 1$. (called a *stochastic vector* or *probability vector*.)

there is an easy way to calculate for DTMC

you need know matrix-vector multiplication and matrix power.

- Let the state space $S = \{1, 2, ..., N\}$. Specify an initial distribution at time t = 0: $\Pr(X_0 = j) = a_j$ where $a = (a_1, a_2, \cdots, a_N)$ satisfies $a_j \ge 0 \ \forall j$ and $\sum_{j=1}^N a_j = 1$. (called a *stochastic vector* or *probability vector*.)
- Define *n*-step transition probability in matrix form $\mathbf{P}^{(n)} = [p_{ij}^{(n)}]$:

$$p_{i,i}^{(n)} \triangleq \Pr(X_n = j | X_0 = i), \quad \mathbf{P}^{(0)} = \mathbf{I}, \quad \mathbf{P}^{(1)} = \mathbf{P}.$$

there is an easy way to calculate for DTMC

you need know matrix-vector multiplication and matrix power.

- Let the state space $S = \{1, 2, \ldots, N\}$. Specify an initial distribution at time t = 0: $\Pr(X_0 = j) = a_j$ where $a = (a_1, a_2, \cdots, a_N)$ satisfies $a_j \ge 0 \ \forall j$ and $\sum_{j=1}^N a_j = 1$. (called a *stochastic vector* or *probability vector*.)
- Define *n*-step transition probability in matrix form $\mathbf{P}^{(n)} = [p_{ij}^{(n)}]$:

$$p_{ij}^{(n)} \triangleq \Pr(X_n = j | X_0 = i), \quad \mathbf{P}^{(0)} = \mathbf{I}, \quad \mathbf{P}^{(1)} = \mathbf{P}.$$

• From Law of Total Probability, for any $j \in S$,

$$\Pr(X_n = j) = \sum_{i \in S} \Pr(X_n = j | X_0 = i) \Pr(X_0 = i) = \sum_i p_{ij}^{(n)} a_i = (a\mathbf{P}^{(n)})_j$$
 (1)

here $a\mathbf{P}^{(n)}$ is a (row)vector-matrix multiplication.

What is the probability that the sample path of the (time homogeneous) DTMC is $(X_0, X_1, X_2, \cdots, X_n) = (i_0, i_1, i_2, \cdots, i_n)$? i.e., the joint distribution of $(X_0, X_1, X_2, \cdots, X_n)$?

^{*}In the continuous limit (diffusion), these "sums" become the so-called path-integral.

What is the probability that the sample path of the (time homogeneous) DTMC is $(X_0, X_1, X_2, \cdots, X_n) = (i_0, i_1, i_2, \cdots, i_n)$? i.e., the joint distribution of $(X_0, X_1, X_2, \cdots, X_n)$?

$$\Pr\Big((X_0, X_1, X_2, \cdots, X_n) = (i_0, i_1, i_2, \cdots, i_n)\Big)$$

$$= \Pr(X_0 = i_0) \times \Pr(X_1 = i_1, X_2 = i_2, \cdots, X_n = i_n \mid X_0 = i_0)$$

$$= a_{i_0} \Pr(X_1 = i_1 \mid X_0 = i_0) \times \Pr(X_1 = i_1, X_2 = i_2, \cdots, X_n = i_n \mid X_0 = i_0, X_1 = i_1)$$

$$= a_{i_0} p_{i_0, i_1} \Pr(X_2 = i_2, \cdots, X_n = i_n \mid X_1 = i_1)$$

$$= \cdots$$

$$(\triangle)$$

 $=a_{i_0} \times p_{i_0,i_1} \times p_{i_1,i_2} \times p_{i_{n-1},i_n}$ So, the marginal distribution for X_n is

^{*}In the continuous limit (diffusion), these "sums" become the so-called path-integral.

What is the probability that the sample path of the (time homogeneous) DTMC is $(X_0, X_1, X_2, \cdots, X_n) = (i_0, i_1, i_2, \cdots, i_n)$? i.e., the joint distribution of $(X_0, X_1, X_2, \cdots, X_n)$?

$$\Pr((X_0, X_1, X_2, \dots, X_n) = (i_0, i_1, i_2, \dots, i_n))$$

$$= \Pr(X_0 = i_0) \times \Pr(X_1 = i_1, X_2 = i_2, \dots, X_n = i_n \mid X_0 = i_0)$$

$$= a_{i_0} \Pr(X_1 = i_1 \mid X_0 = i_0) \times \Pr(X_1 = i_1, X_2 = i_2, \dots, X_n = i_n \mid X_0 = i_0, X_1 = i_1)$$

$$= a_{i_0} p_{i_0, i_1} \Pr(X_2 = i_2, \dots, X_n = i_n \mid X_1 = i_1)$$

$$= \dots$$
(\triangle)

So, the marginal distribution for X_n is

 $=a_{i_0} \times p_{i_0,i_1} \times p_{i_1,i_2} \times p_{i_{n-1},i_n}$

$$\Pr(X_n = i_n) = \sum_{i_0} \sum_{i_1} \cdots \sum_{i_{n-1}} (\Delta) = (a\mathbf{P}^n)_{i_n}$$
 (2)

^{*}In the continuous limit (diffusion), these "sums" become the so-called path-integral.

What is the probability that the sample path of the (time homogeneous) DTMC is $(X_0, X_1, X_2, \cdots, X_n) = (i_0, i_1, i_2, \cdots, i_n)$? i.e., the joint distribution of $(X_0, X_1, X_2, \cdots, X_n)$?

$$\Pr(X_{0}, X_{1}, X_{2}, \dots, X_{n}) = (i_{0}, i_{1}, i_{2}, \dots, i_{n})$$

$$= \Pr(X_{0} = i_{0}) \times \Pr(X_{1} = i_{1}, X_{2} = i_{2}, \dots, X_{n} = i_{n} \mid X_{0} = i_{0})$$

$$= a_{i_{0}} \Pr(X_{1} = i_{1} \mid X_{0} = i_{0}) \times \Pr(X_{1} = i_{1}, X_{2} = i_{2}, \dots, X_{n} = i_{n} \mid X_{0} = i_{0}, X_{1} = i_{1})$$

$$= a_{i_{0}} p_{i_{0}, i_{1}} \Pr(X_{2} = i_{2}, \dots, X_{n} = i_{n} \mid X_{1} = i_{1})$$

$$= \dots$$

$$(\triangle)$$

 $=a_{i_0} \times p_{i_0,i_1} \times p_{i_1,i_2} \times p_{i_{n-1},i_n}$ So, the marginal distribution for X_n is

$$\Pr(X_n = i_n) = \sum_{i_0} \sum_{i_1} \cdots \sum_{i_{n-1}} (\Delta) = (a\mathbf{P}^n)_{i_n}$$
 (2)

Compare (1) and (2) which hold for any vector a, then

$$a\mathbf{P}^{(n)} = a\mathbf{P}^n \Longrightarrow \mathbf{P}^{(n)} = \mathbf{P}^n$$

^{*}In the continuous limit (diffusion), these "sums" become the so-called path-integral.

n-step transition matrix

Theorem ((for time-homogeneous MC). Thm 2.2)

$$\mathbf{P}^{(n)}=\mathbf{P}^n.$$

where \mathbf{P}^n is the nth power of the one-step transition matrix \mathbf{P} .

n-step transition matrix

Theorem ((for time-homogeneous MC). Thm 2.2)

$$\mathbf{P}^{(n)} = \mathbf{P}^n.$$

where \mathbf{P}^n is the nth power of the one-step transition matrix \mathbf{P} .

We also have the following important property due to time homogeneity (invariant under time shift)

(Cor. 2.2)

$$\Pr(X_{n+k} = j | X_k = i) = \Pr(X_n = j | X_0 = i) = p_{i,i}^{(n)}, \forall k$$

Properties of transition matrix

An $N \times N$ matrix $P = [p_{ij}]$ is called a stochastic matrix if

An $N \times N$ matrix $P = [p_{ij}]$ is called a stochastic matrix if

- ② $\sum_{j=1}^{N} p_{ij} = 1$ for all i. That is the sum of each row is 1. In matrix form, $P\mathbb{1} = \mathbb{1}$, where $\mathbb{1} = (1, 1, \dots, 1)^{\mathsf{T}}$

An $N \times N$ matrix $P = [p_{ij}]$ is called a stochastic matrix if

- ② $\sum_{j=1}^{N} p_{ij} = 1$ for all i. That is the sum of each row is 1. In matrix form, $P\mathbb{1} = \mathbb{1}$, where $\mathbb{1} = (1, 1, \dots, 1)^{\mathsf{T}}$

An $N \times N$ matrix $P = [p_{ij}]$ is called a stochastic matrix if

- ② $\sum_{j=1}^{N} p_{ij} = 1$ for all i. That is the sum of each row is 1. In matrix form, $P\mathbb{1} = \mathbb{1}$, where $\mathbb{1} = (1, 1, \dots, 1)^{\mathsf{T}}$

 $\lambda_1 = 1$ is one of the eigenvalues of any stochastic matrix.

An $N \times N$ matrix $P = [p_{ij}]$ is called a stochastic matrix if

- ② $\sum_{j=1}^{N} p_{ij} = 1$ for all i. That is the sum of each row is 1. In matrix form, $P\mathbb{1} = \mathbb{1}$, where $\mathbb{1} = (1, 1, \dots, 1)^{\mathsf{T}}$

 $\lambda_1 = 1$ is one of the eigenvalues of any stochastic matrix.

Theorem

• The transition matrix **P** is a stochastic matrix.

An $N \times N$ matrix $P = [p_{ij}]$ is called a stochastic matrix if

- ② $\sum_{j=1}^{N} p_{ij} = 1$ for all i. That is the sum of each row is 1. In matrix form, $P\mathbb{1} = \mathbb{1}$, where $\mathbb{1} = (1, 1, \dots, 1)^{\mathsf{T}}$

 $\lambda_1 = 1$ is one of the eigenvalues of any stochastic matrix.

$\mathsf{Theorem}$

- The transition matrix **P** is a stochastic matrix.
- \mathbf{P}^n for any integer $n \ge 0$ is a stochastic matrix.

An $N \times N$ matrix $P = [p_{ij}]$ is called a stochastic matrix if

- ② $\sum_{j=1}^{N} p_{ij} = 1$ for all i. That is the sum of each row is 1. In matrix form, $P\mathbb{1} = \mathbb{1}$, where $\mathbb{1} = (1, 1, \dots, 1)^{\mathsf{T}}$

 $\lambda_1 = 1$ is one of the eigenvalues of any stochastic matrix.

Theorem

- The transition matrix **P** is a stochastic matrix.
- \mathbf{P}^n for any integer $n \ge 0$ is a stochastic matrix.

An $N \times N$ matrix $P = [p_{ij}]$ is called a stochastic matrix if

- ② $\sum_{j=1}^{N} p_{ij} = 1$ for all i. That is the sum of each row is 1. In matrix form, $P\mathbb{1} = \mathbb{1}$, where $\mathbb{1} = (1, 1, \dots, 1)^{\mathsf{T}}$

 $\lambda_1 = 1$ is one of the eigenvalues of any stochastic matrix.

Theorem

- The transition matrix **P** is a stochastic matrix.
- \mathbf{P}^n for any integer $n \ge 0$ is a stochastic matrix.

Furthermore, P satisfies (optional)

• All eigenvalues (complex value possibly) satisfy $|\lambda_i| \le 1$ (Perron-Frobenius theorem). So, the spectral radius

$$\rho(\mathbf{P}) \triangleq \max_{i} |\lambda| = 1.$$

An $N \times N$ matrix $P = [p_{ij}]$ is called a stochastic matrix if

- ② $\sum_{j=1}^{N} p_{ij} = 1$ for all i. That is the sum of each row is 1. In matrix form, $P\mathbb{1} = \mathbb{1}$, where $\mathbb{1} = (1, 1, \dots, 1)^{\mathsf{T}}$

 $\lambda_1 = 1$ is one of the eigenvalues of any stochastic matrix.

Theorem

- The transition matrix P is a stochastic matrix.
- \mathbf{P}^n for any integer $n \ge 0$ is a stochastic matrix.

Furthermore, P satisfies (optional)

• All eigenvalues (complex value possibly) satisfy $|\lambda_i| \le 1$ (Perron-Frobenius theorem). So, the spectral radius

$$\rho(\mathbf{P}) \triangleq \max_{i} |\lambda| = 1.$$

• $\lambda_1 = 1$ might not be the only eigenvalue on the unit circle and the associated eigenspace can be multi-dimensional.

Chapman-Kolmogorov Equation

This is the most fundamental equation for Markov process (not limited to time-homogeneous case, even not to the discrete time or discrete state space).

Theorem (Thm 2.3)

The n-step transition probabilities $\mathbf{P}^{(n)}$ satisfy the following equation, called the Chapman–Kolmogorov equation:

$$p_{ij}^{(n+m)} = \sum_{k=1}^{N} p_{ik}^{(n)} p_{kj}^{(m)}.$$

Remark : For time homogeneous DTMC, this is the simple fact for any square matrix P: $P^{n+m} = P^n P^m$

Proof: textbook page 18.

Occupancy Times

Occupancy time

is the expected amount of time that the Markov chain spends in a given state during a given interval of time.

Occupancy Times

• Let $N_j^{(n)}$ be the number of times the DTMC visits state j over the time span $\{0,1,2,\cdots,n\}$. That is $N_j^{(n)} = \sum_{t=0}^n 1_{\{X_t=j\}}$, where $1_{\{\cdot\}}$ is the indicator function.

Occupancy time

is the expected amount of time that the Markov chain spends in a given state during a given interval of time.

Occupancy Times

- Let $N_j^{(n)}$ be the number of times the DTMC visits state j over the time span $\{0,1,2,\cdots,n\}$. That is $N_j^{(n)}=\sum_{t=0}^n 1_{\{X_t=j\}}$, where $1_{\{\cdot\}}$ is the indicator function.
- $m_{i,j}^{(n)} = \mathbb{E}(N_j^{(n)}|X_0=i)$ is the occupancy time up to n of state j starting from state i.

Occupancy time

is the expected amount of time that the Markov chain spends in a given state during a given interval of time.

Occupancy Times

- Let $N_j^{(n)}$ be the number of times the DTMC visits state j over the time span $\{0,1,2,\cdots,n\}$. That is $N_j^{(n)} = \sum_{t=0}^n 1_{\{X_t=j\}}$, where $1_{\{\cdot\}}$ is the indicator function.
- $m_{i,j}^{(n)} = \mathrm{E}(N_j^{(n)}|X_0=i)$ is the occupancy time up to n of state j starting from state i.
- occupancy times matrix: $\mathbf{M}^{(n)} = [m_{i,j}^{(n)}].$

Theorem (Thm 2.4)

$$\mathbf{M}^{(n)} = \sum_{t=0}^{n} \mathbf{P}^t.$$

Occupancy time is the sum of all *t*-step transition matrices.

Proof: see textbook page 22. (or see next slide for proof of a general case.)

Generalization: Cost Models over a finite time *

Let $c(x): S \to \mathbb{R}$ be a cost function. The expectation of the total cost up to time n is

$$C_i^{(n)} \stackrel{\triangle}{=} \mathbb{E}\left[\sum_{t=0}^n c(X_t)|X_0=i\right].$$

For a general c(x), the calculation is below (Theorem 2.11 (page 35)).

$$\begin{split} C_i^{(n)} &= \sum_{t=0}^n \mathrm{E}\left[c(X_t)(\sum_{j \in S} \mathbf{1}_{\{X_t = j\}}) \mid X_0 = i\right] \text{(: law of total prob.)} \\ &= \sum_{t=0}^n \sum_{j \in S} \mathrm{E}\left[c(X_t) \mid X_t = j, X_0 = i\right] \mathrm{Pr}\left(X_t = j \mid X_0 = i\right) \text{(: cond. prob.)} \\ &= \sum_{t=0}^n \sum_{j \in S} c(j) p_{ij}^{(t)} = \sum_{j \in S} c(j) \sum_{t=0}^n p_{ij}^{(t)} \end{split}$$

Generalization: Cost Models over a finite time *

Let $c(x): S \to \mathbb{R}$ be a cost function. The expectation of the total cost up to time n is

$$C_i^{(n)} \triangleq \mathbb{E}\left[\sum_{t=0}^n c(X_t)|X_0=i\right].$$

For a general c(x), the calculation is below (Theorem 2.11 (page 35)).

$$\begin{split} C_i^{(n)} &= \sum_{t=0}^n \mathrm{E}\left[c(X_t)(\sum_{j \in S} \mathbf{1}_{\{X_t = j\}}) \mid X_0 = i\right] \text{ (: law of total prob.)} \\ &= \sum_{t=0}^n \sum_{j \in S} \mathrm{E}\left[c(X_t) \mid X_t = j, X_0 = i\right] \mathrm{Pr}\left(X_t = j \mid X_0 = i\right) \text{ (: cond. prob.)} \\ &= \sum_{t=0}^n \sum_{j \in S} c(j) p_{ij}^{(t)} = \sum_{i \in S} c(j) \sum_{t=0}^n p_{ij}^{(t)} \end{split}$$

The equivalent matrix-vector multiplication form is $(c = (c(1), c(2), \cdots, c(N))^T)$ is column vector $(c(1), c(2), \cdots, c(N))^T)$

$$C^{(n)} = \left(\sum_{t=0}^{n} \mathbf{P}^{t}\right) c$$

(3)

*Section 2.6.1

In particular, if $c(\cdot): S \to \mathbb{R}$ is the indicator function $1_{\{j\}}(\cdot)$, then by definition,

$$C_i^{(n)} = \mathbb{E}\left[\sum_{t=0}^n 1_j(X_t)|X_0 = i\right] = \mathbb{E}\left[N_j^{(n)}|X_0 = i\right] = m_{i,j}^{(n)}$$

which is the occupancy time of state j. On the other hand, the previous slide told us that the above line is actually equal to

$$\sum_{j' \in S} c(j') \sum_{t=0}^{n} p_{ij'}^{(t)} = \sum_{j' \in S} 1_{\{j\}}(j') \sum_{t=0}^{n} p_{ij'}^{(t)} = \sum_{t=0}^{n} p_{ij}^{(t)}$$

So, we have shown [Thm 2.4]:

$$\mathbf{M}^{(n)} = \sum_{t=0}^{n} \mathbf{P}^t.$$

Then (3) can be written in terms of $\mathbf{M}^{(n)}$:

$$C^{(n)} = \mathbf{M}^{(n)} c$$

Homework

- Let X_n be the random walk on $S = \mathbb{Z}$ with transition probability $Pr(X_{n+1} = i + 1 | X_n) = p \text{ and } Pr(X_{n+1} = i - 1 | X_n) = q = 1 - p.$ Calculate the mean EX_n , the variance $var X_n$ and the autocovariance $E[(X_n - EX_n)(X_m - EX_m)].$
- Assume that $\{X_n\}$, $n = 0, 1, 2, \cdots$, are iid $\{-1, 1\}$ -valued random variables. $Pr(X_i = 1) = p$ and $Pr(X_i = -1) = 1 - p$. For any $n \ge 1$, define new random variables

$$S_n \triangleq \sum_{i=0}^n X_i, \ Y_n \triangleq X_n + X_{n-1},$$

and the two-dim random vector $Z_n \triangleq \begin{bmatrix} X_{n-1} \\ X_n \end{bmatrix}$. Discuss if the stochastic processes $\{S_n\}$, $\{Y_n\}$, $\{Z_n\}$, are Markov chains. Why? Write the corresponding transition matrices for Markov chains.

- textbook page 51: 2.13, 2.16
- textbook page 53-54: 2.10, 2.11, 2.15(b). *

