Отчёт по лабораторной работе №6

Задача об эпидемии

Голощапова Ирина Борисовна

Содержание

1	Цели и задачи лабораторной работы	5
	1.1 Цель работы	5
	1.2 Задачи работы	5
2	Теоретическая справка	6
	2.1 Задача об эпидемии	6
3	Условие задачи (вариант №7)	8
4	Выполнение лабораторной работы	9
	4.1 Реализация в OpenModelica. Случай 1	9
	4.2 Реализация на Julia. Случай 1	10
	4.3 Реализация в OpenModelica. Случай 2	12
	4.4 Реализация на Julia. Случай 2	13
5	Выводы	16
6	Библиография	17

Список иллюстраций

4.1	Графики на OpenModelica. Случай 1	10
4.2	Графики на OpenModelica. Случай 1_2	10
4.3	Графики на Julia. Случай 1	12
4.4	Графики на OpenModelica. Случай 2	13
4.5	Графики на Julia. Случай 2	1.5

Список таблиц

1 Цели и задачи лабораторной работы

1.1 Цель работы

Рассмотреть простейшую модель эпидемии.

1.2 Задачи работы

- Согласно своему варианту задать начальные условия и коеффициенты пропорциональности.
- Построить графики изменения числа особей трех групп:
 - 1. восприимчивые к болезни, но пока здоровые особи: S(t)
 - 2. инфицированные особи, которые также являются распространителями инфекции: I(t)
 - 3. здоровые особи с иммунитетом к болезни: ${\cal R}(t)$
- Рассмотреть, как будет протекать эпидемия в случае:
 - 1. если $I(0) \le I *$
 - 2. если I(0) > I st

2 Теоретическая справка

2.1 Задача об эпидемии

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа - это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни.

До того, как число заболевших не превышает критического значения I*, считаем, что все больные изолированы и не заражают здоровых. Когда I(t)>I*, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$\frac{dS}{dt} = \begin{cases} -\alpha * S, I(t) > I* \\ 0, I(t) \le I* \end{cases}$$
 (2.1)

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися

и теми, кто уже болеет и лечится, т.е.:

$$\frac{dI}{dt} = \begin{cases} -\alpha S - \beta I, I(t) > I* \\ -\beta I, I(t) \le I* \end{cases}$$
 (2.2)

А скорость изменения выздоравливающих особей (при этом приобретающие иммунитет к болезни):

$$\frac{dR}{dt} = \beta I \tag{2.3}$$

Постоянные пропорциональности α , β - это коэффициенты заболеваемости и выздоровления соответственно.

Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия .Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I*$ и I(0) > I* .

3 Условие задачи (вариант №7)

На одном острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=13000) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=113, А число здоровых людей с иммунитетом к болезни R(0)=13. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае:

- 1. если $I(0) \leq I *$
- 2. если I(0) > I *

4 Выполнение лабораторной работы

4.1 Реализация в OpenModelica. Случай 1

Для начала реализуем решение данной задачи в OpenModelica:

Листинг программы для первого случая, когда $I(0) \leq I *$

```
//case 1: I<=I*
model lab6

parameter Real a = 0.01;
parameter Real b = 0.02;
parameter Real N = 13000;
parameter Real I0 = 113;
parameter Real R0 = 13;
parameter Real S0 = N - I0 - R0;

Real S(start=S0);
Real I(start=I0);
Real R(start=R0);

equation
der(S) = 0;
der(I) = -b*I;
der(R) = b*I;</pre>
```

annotation(experiment(StartTime = 0, StopTime = 200, Interval = 20));

end lab6;

В результате получим следующие графики (рис. 4.1):

Рис. 4.1: Графики на OpenModelica. Случай 1

Так как значение S(t) сильно отличается от I(t) и R(t), плохо виден характер изменения значений, поэтому попробуем вывести только функции I(t) и R(t) (рис. 4.2):

Рис. 4.2: Графики на OpenModelica. Случай 1_2

4.2 Реализация на Julia. Случай 1

Листинг программы:

using Differential Equations

```
function lorenz!(du, u, p, t)
    a, b = p
    du[1] = 0
    du[2] = -b*u[1]
    du[3] = b*u[1]
end
const N = 13000
const I0 = 113
const R0 = 13
const S0 = N - I0 - R0
u0 = \Gamma I0, R0, S07
p = (0.01, 0.02)
tspan = (0.0, 200.0)
prob = ODEProblem(lorenz!, u0, tspan, p)
sol = solve(prob, dtmax=20)
using Plots; gr()
plot(sol)
savefig("julia_1.png")
```

В результате получим следующие графики, на которых виден характер поведения функций (рис. 4.3):

Рис. 4.3: Графики на Julia. Случай 1

4.3 Реализация в OpenModelica. Случай 2

Рассмотрим случай ${\tt N}^{\tt o}2$, когда I(0)>I* Листинг программы для второго случая:

```
//case 2: I>I*
model lab6_2

parameter Real a = 0.01;
parameter Real b = 0.02;
parameter Real N = 13000;
parameter Real I0 = 113;
parameter Real R0 = 13;

parameter Real S0 = N - I0 - R0;

Real S(start=S0);
Real I(start=I0);
```

```
Real R(start=R0);
equation
der(S) = -a*S;
der(I) = a*S - b*I;
der(R) = b*I;
annotation(experiment(StartTime = 0, StopTime = 200, Interval = 1));
end lab6_2;
```

Получим следующее решение (рис. 4.4)

Рис. 4.4: Графики на OpenModelica. Случай 2

4.4 Реализация на Julia. Случай 2

using DifferentialEquations

Листинг программы:

function lorenz!(du, u, p, t)
 a, b = p
 du[1] = -a*u[3]

```
du[2] = a*u[3] - b*u[1]

du[3] = b*u[1]
```

end

```
const N = 13000
const I0 = 113
const R0 = 13
const S0 = N - I0 - R0

u0 = [I0, R0, S0]

p = (0.01, 0.02)
tspan = (0.0, 200.0)

prob = ODEProblem(lorenz!, u0, tspan, p)
sol = solve(prob, dtmax=1)

using Plots; gr()
plot(sol)
savefig("julia_2.png")
```

В результате получим следующие графики, на которых виден характер поведения функций (рис. 4.5):

Рис. 4.5: Графики на Julia. Случай 2

5 Выводы

В ходе лабораторной работы нам удалось

- Построить графики изменения числа особей трех групп:
 - 1. восприимчивые к болезни, но пока здоровые особи: S(t)
 - 2. инфицированные особи, которые также являются распространителями инфекции: I(t)
 - 3. здоровые особи с иммунитетом к болезни: R(t)
- Рассмотреть, как будет протекать эпидемия в случае:
 - 1. если $I(0) \le I *$
 - 2. если I(0) > I *

6 Библиография

- 1. Git система контроля версий
- 2. Дифференциальные уравнения
- 3. Язык программирования Julia
- 4. Решение ДУ на языке программирование Julia
- 5. Работа с OpenModelica