EPFL - Automne 2020	Prof. Z. Patakfalvi
Structures Algébriques	Exercices
Série 5	16 Octobre 2020

Veuillez télécharger vos solutions aux exercices à rendre (Exercice 6) sur la page Moodle du cours avant le lundi 26 octobre, 18h.

1 Exercices

Exercise 1.

Soit $\phi \colon G \to H$ un homomorphisme de groupes.

- 1. Supposons que ϕ soit un isomorphisme. Montrez que l'application inverse $\phi^{-1} \colon H \to G$ est aussi un homomorphisme de groupes. En particulier, G est isomorphe à H si et seulement si H est isomorphe G.
- 2. Si $g \in G$ est un élément d'ordre fini, montrez que $\phi(g) \in H$ est aussi un élément d'ordre fini. Si de plus ϕ est un isomorphisme, montrez que $o(\phi(g)) = o(g)$.
- 3. Supposons que $|G| = |H| < \infty$. Montrer que ϕ est un isomorphisme si et seulement ϕ est injective, si et seulement si ϕ est surjective.

Exercise 2.

Montrez que Aut(G), muni de la composition de fonctions, est un groupe.

Exercise 3.

Soit $n \geq 2$ un nombre entier.

1. Montrez que l'ensemble des endomorphismes de $\mathbb{Z}/n\mathbb{Z}$ est égal à

$$\{m_d \colon \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \mid 0 \le d < n\}.$$

Déduisez que que l'ensemble des endomorphismes de $\mathbb{Z}/n\mathbb{Z}$, muni de la composition de fonctions, est un monoïde isomorphe à $(\mathbb{Z}/n\mathbb{Z},\cdot)$. En particulier c'est un monoïde abélien.

Les applications m_d sont définies dans l'Exemple 3.2.3.1.

2. Montrez que l'isomorphisme de monoïde du point précédent induit un isomorphisme de groupes $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Exercise 4.

Montrez que tous les groupes d'ordre 2 sont isomorphes entre eux.

Exercise 5.

Donnez la liste de tous les homomorphismes de groupes entre $\mathbb{Z}/3\mathbb{Z}$ et $\mathbb{Z}/2\mathbb{Z}$ (dans un sens ou dans l'autre).

2 Exercice à rendre

Exercise 6.

Montrez que tous les groupes d'ordre 3 sont isomorphes entre eux.