单通道触摸感应开关

RH6030

规格书

Revision 2.1 2012-3-19

目 录

1.	简介		3
2.	特点		3
3.	引脚示	意图	3
4.	功能描	述	4
	4.1	快速/低功耗模式(FST)	4
	4.2	保持/同步模式(HLD)	4
	4.3	输出模式选择(OLH)	4
	4.4	灵敏度调节	4
	4.5	最大开启时间模式(MOT)	4
5.	绝对最	·大值	5
6.	电气参	数	5
7.	应用电	路图	5
	7.1	LED台灯	5
	7.2	墙体开关	6
8.	穿透力	应用说明	7
	8.1	穿透力与铺地、感应电极大小对应关系	7
	8.2	穿透力与触摸引脚并联电容对应关系	7
9.	封装信	息	8
	9.1	SOT23-6L	8
	9.2	SOP-14L	9

1.简介

RH6030 是一款单通道电容式触摸感应控制开关 IC,可以替代传统的机械式开关。

该 IC 采用 CMOS 工艺制造,结构简单,性能稳定。 该 IC 可通过外部引脚配置成多种工作模式,可广泛应 用于灯光控制、玩具、家用电器等产品中。

2.特点

- 工作电压: 2.0V~5.5V
- 最高功耗工作电流为 10uA, 低功耗模式工作电流仅 1.5uA(均指 3.0V 供电且不带负载的条件下)
- 可通过外部引脚配置为多种模式
- 高可靠性,芯片内置去抖动电路,可有效防止由 外部噪声干扰导致的误动作
- 可用于玻璃、陶瓷、塑料等介质表面

3.引脚示意图

图 1 SOP-14/SOT23-6L 封装示意图

注意: SOT23-6L 为常用封装

表 1 引脚功能描述

SOT23-6L SOP14		管脚名称	I/O	Descrption
	1,7,8,10	NC		No Connection
4	2	OLH	I	输出高/低有效模式选择
	3	RST	I	外部复位
	4	SLS	I	采样时长模式选择
	5	MOT	I	最大开启时间选择
3	3 6 TCH I 触摸按键输入		触摸按键输入	
1	1 9 OUT O		0	CMOS 输出
2 11 Gi		GND	Р	负电源
	12	FST	I	快速/低功耗模式选择
6 13 HLD		I	保持/同步模式选择	
5	5 14 VDD		Р	正电源

4.功能描述

RH6030 可通过外部引脚配置为多种工作模式。外部配置引脚悬空时,配置位自动设置为默认值(Default)。 表 2 功能描述表

NAME	选项	功能	备 注	
FST	=1	快速模式	 低功耗模式下触摸检测响应时间将变长	
гот	=0(Default)	低功耗模式	似切札侯八下賦吳位侧啊应时同付文氏	
HLD	=1	保持模式		
HLD	=0(Default)	同步模式		
OLH	=1	输出低电平有效	· 控制 OUT 输出电平	
OLH	=0(Default)	输出高电平有效	控制 001 棚山屯	
SLS	=1(Default)	采样时间约 1.5ms		
SLS	=0	采样时间约 3.0ms		
МОТ	=1(Default)	禁止最大开启时间功能	 此选项只在同步模式下有效	
IVIOI	=0	最大开启时间 75s	此处坎バ任四少侯八千年双	

4.1 快速/低功耗模式(FST)

通过对管脚 FST 的设置,可配置为快速模式或者低功 耗模式,当该管脚悬空时,默认由内部上拉为高电平, 即置为快速模式;

FST 设置为 1 (快速模式)时,触摸响应时间约 40ms; FST 设置为 0 (低功耗模式)时,触摸响应时间约 160 ms。

4.2 保持/同步模式(HLD)

当管脚 HLD 悬空时,默认由内部下拉为低电平,即置为同步模式:

HLD 设置为 1 时,选择保持模式,此时输出 OUT 状态在触摸响应后保持: 当触摸消失后仍保持为响应状态: 再次触摸并响应后恢复为初始状态:

HLD 设置为 0 时,选择同步模式,此时输出 OUT 状态与触摸响应同步:只有检测到触摸时有输出响应; 当触摸消失时,OUT 状态恢复为初始状态。

4.3 输出模式选择(**OLH**)

RH6030 可设置多种输出模式, 当管脚 OLH 悬空时, 默认为由内部下拉为低电平, 即置管脚 OUT 为高电平有效模式;

OLH 设置为 1 时,OUT 脚为低电平有效模式; OLH 设置为 0 时,OUT 脚为高电平有效模式。

4.4 灵敏度调节

- 1. 设置 SLS。当该管脚悬空时,默认由内部上拉为高电平,采样时间长度设置为 1.5ms; SLS 设置为 0 时,采样时间长度设置为 3.0ms, 此时芯片对触摸感应响应的灵敏度高于 SLS 设置为 1 时的灵敏度。
- 2. 外接调节电容 Cj。调节电容值的范围是 0pF~50 pF,电容值的增加将导致灵敏度降低。
- 3. 改变连接到 TCH 的触摸按键的面积和形状。如 需增加触摸感应灵敏度,可适当增大触摸按键 的面积;但触摸按键面积增大到一定程度后, 面积的继续增加几乎不能对灵敏度产生影响。
- 4. 触摸按键到 TCH 管脚的导线长度,及 PCB 的 布局,都会对灵敏度产生一定的影响。

4.5 最大开启时间模式(MOT)

此模式只在同步模式下有效,当管脚 MOT 悬空时,默认为由内部上拉为高电平,禁止最大开启时间复位功能;

MOT 设置为 0 时,同步模式下触摸响应后,如持续检测到触摸存在达到约 75s(3V),则自动复位并校准,同时置输出 OUT 为未检测到触摸时的状态。

5.绝对最大值

表 4 工作条件规格表

项 目	符号	范 围	单 位	
工作电压	VDD	-0.3~5.5	V	
输入/输出电压	VI / VO	-0.5∼VDD +0.5	V	
工作温度	T_OPR	-20 ~ 70	${\mathbb C}$	
储藏温度	T_{STG}	-50 ~ 125	${\mathbb C}$	
所列电压均以 GND 为参考				

6.电气参数

表 5 电气参数表

参数	符号	条	件	最小值	典型值	最大值	单位
工作电压	VDD	T _{OPR} =-20 ~ 70	$\mathfrak{I}^{\mathbb{C}}$	2.0	3.0	5.5	V
	IDD	FST=0	SLS=1		1.5	3.5	
工作电流			SLS=0		2.5	5.0	
工作电 机		FST=1	SLS=1		6.0	8.5	uA
			SLS=0		10.0	15.0	
若无特别说明, VDD 为 3.0V, 环境温度为 25℃,芯片输出无负载							

7.应用电路图

7.1 LED台灯

图 2 LED 台灯应用电路

7.2 墙体开关

图 3 墙体开关应用电路示意图

说明:

- 1. Cj 指调节灵敏度的电容, 电容值大小 0pF~50pF(电容值的增大将导致灵敏度降低)。
- 2. Rs 指在触摸电极和触摸输入脚之间串联的电阻,用于提高触摸的抗干扰能力,可根据具体应用进行选择。
- 3. VDD 与 GND 间需并联滤波电容以消除噪声。供电电源需稳定,如果电源电压漂移或者快速变化,可能引起灵敏度漂移或检测错误。
- 4. 应该在触摸电极上铺好覆盖介质后再上电,这样芯片会在上电时候检测环境以及初始电容。如在芯片已经 初始化后再放上覆盖物,则有可能被系统检测到电容突变而无法将其作为环境,引起误判断!
- 5. 请参看<RH60XX应用指南>,以改善实际应用之可靠性。

8. 穿透力应用说明

8.1 穿透力与铺地、感应电极大小对应关系 8.2 穿透力与触摸引脚并联电容对应关系

感应电	PCB顶层不铺地	PCB顶层铺实铜	
极面积	底层不铺地	底层35%铺地	
6×6mm	8mm	1.7mm	
7×7mm	10mm	2.8mm	
8×8mm	14mm	3.8mm	
10×10mm	16mm	4.9mm	
12×12mm	18mm	6mm	
15×15mm	22mm	8mm	

说明:

- 1. 此表仅供参考,具体焊盘大小应根据实际模具外 壳厚度来调整。
- 2. 触摸焊盘面积越大,可穿透介质材料越厚。
- 3. PCB铺地比例越小,PCB点触焊盘与地之间的寄 生电容越小, 人体触摸后新生的手指电容相对 PCB寄生电容变化越大, 触摸灵敏度越高, 可穿 透介质越厚。
- 4. PCB铺地比例越小,越易受到外界干扰。
- 5. 建议实际应用时兼顾灵敏度和抗干扰设计PCB 的铺地形式。如对穿透介质厚度要求不高,建议 增加铺地比例以提高抗干扰性能。

电容 (*) 值	亚克力材料穿透力	
未接	4.9mm	
1pF	4.9mm	
5pF	3mm	
10pF	2mm	
20pF	1mm	
30pF	1mm	
(*) 触摸引脚并联电容到地,		

测试条件:感应电极(直径10mm),PCB 顶层铺实铜,PCB底层35%铺地。

说明:

此表仅供参考,并联电容越小,可穿透介质材料越厚。

9.封装信息

9.1 SOT23-6L

Symbol	Dimensions in mm				
Symbol	Min	Тур	Max		
Α	-	-	1.35		
A 1	0.04	-	0.15		
A2	1.00	1.10	1.20		
А3	0.55	0.65	0.75		
b	0.34	-	0.43		
b1	0.33	0.35	0.38		
С	0.15	-	0.21		
c1 0.14		0.15	0.16		
D	2.72	2.92	3.12		
E	E 2.60		3.00		
E1	1.40	1.60	1.80		
е		0.95BSC			
e1	1.90BSC				
L	0.30	0.60			
θ	0	-	8°		

9.2 SOP-14L

Symbol	Dimensions in mm			
Symbol	Min	Тур	Max	
Α	-	-	1.75	
A 1	0.05	-	0.225	
A2	1.30	1.40	1.50	
А3	0.60	0.65	0.70	
b	0.39	-	0.48	
b1	0.38	0.41	0.43	
С	0.21	-	0.26	
c1	0.19	0.20	0.21	
D	8.45	8.65	8.85	
Е	5.80	6.00	6.20	
E1	3.70	3.90	4.10	
е	1.27BSC			
h	0.25	-	0.50	
L	L 0.50		0.80	
L1	1.05BSC			
θ	0	-	8°	

注意:

规格如有更新,恕不另行通知。请在使用该 IC 前更新规格书至最新版本。