

Quadratic Functions

Week 2 Part 1

Objectives:

Understand the definition of axis of symmetry and

vertex of a Quadratic function.

Quadratic Function

A quadratic function is one of the form f(x) = ax² + bx + c, where a, b, and c are numbers with a not equal to zero.

The graph of a quadratic function is a parabola.

Axis of symmetry

The axis of symmetry is the line which divides a parabola into two equal halves that are reflections of each other

Axis of symmetry
$$x = \frac{-b}{2a}$$

Example

Find the axis of symmetry of the function $f(x) = x^2 + 4x-3$

Solution:

a = 1, b = 4
Axis of symmetry
$$x = \frac{-b}{2a} = \frac{-4}{2 \times 1} = -2$$

Click the below link to view the video on Axis of Symmetry

https://youtu.be/0wCkENKihPM

Vertex

Vertex is the lowest or highest point on the graph of a quadratic function $f(x) = ax^2 + bx + c$

Vertex (x,y) =
$$\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$$

Example

Find the axis and vertex of the function $f(x) = -2x^2 + 4x - 5$

Solution:

a = -2, b = 4

$$x = \frac{-b}{2a} = \frac{-4}{2 \times (-2)} = 1$$
 So Axis, $x = 1$
 $y = f(1) = -2(1)^2 + 4(1) - 5 = -3$
Vertex = $(1, -3)$

Click the below link to view the video on vertex

https://youtu.be/WWpgbLzcZRA

Exercise:

Find the Axis of symmetry and vertex for the following functions:

a)
$$f(x) = 3x^2 - 9x - 6$$

b)
$$f(x) = \frac{5}{6}x^2 + 3x$$

c)
$$f(x) = (x-7)^2 + 2$$

d)
$$f(x) = -(x+1)^2 - 2$$

Reference

• Pindling.org. (2019). *3.4 Transformation of Graphs*. [online] Available at: http://www.pindling.org/Math/CA/By_Examples/3_4_Transformation/3_4_Transformation.html [Accessed 17 Aug. 2019].

