CH11.金屬合金應用與製程

Classification and specification of steel & alloys

SAE.AISI.ASTM

AISI/SAE(ASTM Number) \rightarrow EX. 1060 \rightarrow 10-plain; 60-0.6wt%C

UNS→前面加個 G or K, 後面補個 0→EX. G10600

鋼鋼 Family

*ferrous 的缺點→1.高密度 2.低電導 3.有時候不夠抗蝕

F stainless→無法變成 A→無法熱處理

A stainless→A 區擴展到很低溫,所以無法 M 化

Tool steel 加(Cr.V.W.Mo)→增加抗磨耗的碳化物

*stainless steel 的部分 smith 講了一堆,要看。

		1.0 Mn, 0.50 Ni, 0.75 Ti					exhaust components, tanks for agricultural sprays
446	S44600	0.20 C, 25 Cr, 1.5 Mn	Annealed	515 (75)	275 (40)	20	Valves (high temperature), glass molds, combustion chambers
304	S30400	0.08 C, 19 Cr, 9 Ni, 2.0 Mn	Annealed	ustenitic 515 (75)	205 (30)	40	Chemical and food processing equipment, cryogenic vessels
316L	S31603	0.03 C, 17 Cr, 12 Ni, 2.5 Mo, 2.0 Mn	Annealed	485 (70)	170 (25)	40	Welding construction
			M	artensitic			
410	S41000	0.15 C, 12.5	Annealed	485 (70)	275 (40)	20	Rifle barrels,
		Cr, 1.0 Mn	Q & T	825 (120)	620 (90)	12	cutlery, jet engine parts
440A	S44002	0.70 C, 17 Cr,	Annealed	725 (105)	415 (60)	20	Cutlery,
		0.75 Mo, 1.0 Mn	Q & T	1790 (260)	1650 (240)	5	bearings, surgical tools
			Precipita	tion Hardenab	le		
17-7PH	S17700	0.09 C, 17 Cr, 7 Ni, 1.0 Al, 1.0 Mn	Precipitation hardened	1450 (210)	1310 (190)	1–6	Springs, knives, pressure vessels
金	壽鐵 Fami	ly					
					C>2 14 ud	0/_	
$Fe_3C \rightarrow 3Fe(\alpha) + C(graphite)$					C>2.14 wt%		

damping vibrational energy

鑄造時流動性好

便宜!

Compacted Graphite Iron(CGI) 鑄鐵 Family 的新寵兒

Si:1.7~3wt% C:3.1~4wt%

結構介於 gray 和 ductile 之間,主要要形成 worm-like (or vermicular) shape 有加了一些 Mg/Ce(比 ductile 少)-->nodules(但要避免太多)-->控制延性 同時要避免形成 graphite flakes(應力集中)

亦有 P&F-type; P 較硬, F 較延

優點

- 1.更高的熱傳導
- 2.抗 thermal shock
- 3.較不易氧化

以上鋼和鐵合金,有時會遭遇某些限制

1.高密度 2.低電導 3.有時候不夠抗蝕

以下討論 Alloy System

先搞清楚

Cast alloy	Alloy 很脆,無法藉由變形來成型,需使用鑄造 cast			
Wrought alloy	可以用機械變形來成型			

可熱處理性:代表可藉由析出硬化或 Martensitic 化來提高機械強度 (較常是析出硬化)

很軟、延,難加工,耐腐蝕,有無限的被冷加工能力,無法熱處理

Brass: substitional Zn impurity

EX. Yellow,naval,cartridge brass, muntz metal, gilding metal

中 Cu-Zn 相圖, α 向大概到 35%, 隨著 Zn 增加

 α (FCC, 軟延)→ α + β '(所已通常是 hot worked)→ β '(BCC, 硬)

bronze: Sn 、 Al 、 Si 、 Ni → tt brass strong

最常見的可熱處理合金為 beryllium coppers ,各種好性質 ,可以鑄造、冷作、熱作 ,還可以藉由析出硬化來強化 ,但很貴(因為 beryllium)

絽

低密度,高電導、熱導,抗蝕,FCC→延,主要限制為其低熔點

增強強度的方法為冷加工、alloying,但兩者都會減少抗蝕能力

主要 alloying -> Cu、Mg、Si、Mn、Zn

非熱處理型 >單相,藉固溶強化

可熱處理型→由於 alloying 可析初硬化→除了 AI 得其他兩元素析出,並形成

intermetallic compound→EX.MgZn₂

不同成分,可用來當 cast,亦可 wrought

Temper Designation→表示合金受了什麼機械或熱處理

F→as-fabricated H→strain-hardening O→annealed

T3→固溶強化→冷加工→自然時效(時效硬化)

T6→固溶強化→人工時效

*注意鋁合金和如鎂、鈦等低密度金屬,重要特性為 specific strength→即使抗拉強度比高密度材料差,但以比強度來說,能夠承受不錯的負載

較新發展

aluminum-lithium 合金→低密度、高比模數、疲勞性質好、低溫韌性性質好

→aircraft and aerospace industries

但很貴,因為 Li 很會反應,需要特殊製成

最傑出的是他的低密度 1.7g/cm³,所有 structural metal 最低的

HCP,很軟,low E,室溫很難變形,沒有退火很難冷加工,所已通常是熱作 耐蝕和抗氧化相當好,但是是因為不純物,而非鎂本身

Fine magnesium powder ignites easily

Cast、wrought 都可,可熱處理

쉾

低密度、高熔點、strong,主要限制為他和其他材料高溫會反應,所以要發展非傳統的製程→貴

The Refractory Metals→高熔點

niobium (Nb), molybdenum (Mo), tungsten (W), and tantalum (Ta)

原子鍵結很強,大E、高強度、硬度

但高溫時會氧化

※W.Mo.Ta.Nb(我摸她乳)

The Superalloys

要有最棒的性質組合,主要用在 aircraft turbine

要承受氧化、高溫, 密度是重要考量

主要金屬→Co、Ni、Fe

合金元素→ W、Mo、Ta、Nb (Refractory Metals)

The Noble Metals

貴和優越的性質 soft, ductile, and oxidation resistant

silver, gold, platinum, palladium, rhodium, ruthenium, iridium, and osmium

銀和金可藉由固溶合金銅強化

積體電路佣金來當電接點

Pt 用來當 catalyst,以及量測高溫 thermocouples

非鐵合金

Ni,耐蝕,由其在 basic(alkaline)

Monel→65wt% Ni、28wt% Cu、其餘為 Fe

Lead, tin →低熔點、抗蝕、再結晶溫度在室溫,EX. Solders 硬焊劑、Pb 常用來遮蔽 X 光、storage batteries

Zn→易腐蝕,鍍鋅鋼(優先腐蝕保護鋼),

Zr(zirconium) → is transparent to thermal neutrons, so that its alloys have been used

Thermal Processing of Metals

→annealing \ heat treating of steels \ precipitation hardening

Annealing

高溫一段時間,然後緩慢冷卻

目的

- 1.應力釋放
- 2.增加軟、延、韌性
- 3.產生 specific microstructure

三階段

- 1.加熱到特定溫度
- 2.holding or soaking at that temperature
- 3.cooling

factor

- 1.時間→速率太大→內部應力、warping、cracking,且時間要夠使變態反應完成
- 2.溫度越高→加速退火(擴散)

Process annealing →用來 negate the effect of cold work

允許回復和再結晶發生,但晶粒希望 fine 一點,所以熱處理要再晶粒成長過大之前結束

避免 scale→降低退火温度、無氧氣氛

Stress Relief → 消除殘餘應力

通常使用相對低的溫度,使他不會受冷加工或熱處理影響 (smith 的 process annealing 即指 stress relief,消除冷加工產生之內布應力,與用

於含碳量低於 0.3%, 溫度低於共析溫度)

鐵合金的退火

smith

- A. 水 quench(最快)→產生 M
- B. 臨界冷卻速率
- C. 油 quench(較慢)
- → 先產生 P,但來不及反應完,再產生 M,轉變兩步驟→ spilt transformation
- D. normalizing(細化,改善不均)
- → 產生 fine P(空冷)
- E. full annealing(得最大延性)
- →產生 coarse P(爐冷)

Quench 淬火

加熱至沃斯田鐵化,使碳化物固溶,冷卻時避開波來鐵變態區,產生 Martensite, 產生最大硬度!

Tempering 回火

Martensite 加熱至臨界溫度(共析溫度)以下,藉由改變 iron carbide 顆粒在 ferrite matrix 的結構,軟化 martensite。

(在 smith,sphere-like 指的就是 spheroidite,他也可以藉由 M 回火得到!) 當溫度在 $200^{\sim}700^{\circ}$ C,材料硬度會隨回火溫度上升而減少,是因為第二相 Fe_3 C 析 出的緣故。

鋼之熱處理

產生 Martensitics steel 的熱處理→austenitized specimeny 在 quenched medium(水、油、空氣)中連續快速冷卻,希望 M 含量越多越好,產生 B 或 P 都不是我們想要的,但在 quench 的時候,不可能整個試片都均勻冷卻,不同的位置會有不同的微結構和變化

Factor

- 1.合金的成份
- 2.quench medium→Severity of quench:水>油>空氣(quench 的激烈程度) 油適合很多 alloy steel 的熱處理,水的激烈程度太大會引起 cracking or warping,空冷通常會產生 totally P
- 3.試片的尺寸和形狀→ surface-to-mass ratio (Irregular shapes with edges and corners>球狀和柱狀)

Hardenability → the ability of an alloy to be hardened by the formation of martensite as a result of a given heat treatment , 為一種硬度由於 M 含量隨位置降低而降低的一種量測,Hardenability 越高,代表內部形成 M 的程度越高決定 Hardenability 的標準程序→The Jominy End-Quench Test

析出硬化

=Age hardening(因為 strength 隨著時間成長)

藉由形成很小的 uniformly dispersed particles 第二相來強化

EX.Al-Cu \ Cu-Be \ Cu-Sn \ Mg-Al \ some ferrous alloys

Coherent precipitate

solute 原子僅置換 solvent 原子 GP1、GP2

Incoherent precipitate

析出粒子有不同的晶體結構

θ ':異質成核 tetragonal structure

 θ :incoherent equilibrium, CuAl₂, BCT

必須有終端固溶體,其固溶度隨溫度降低而降低!

但並非所有符合成份與相圖的合金都可以實施析出硬化!!

再 precipitate–matrix 介面必須要建立 lattice strains(θ ")→阻礙差排→stronger 當θ 形成,這些 slip 的阻礙減少。

在室溫和短時間就能進行析出硬化的合金,必須在 quench 後,儲存在冷凍狀態 EX.

rivot(鉚釘)還很軟的時候施用,然後他會再正常環境溫度析出硬化→natural aging 若需要在高溫實施→artificial aging

考量

通常

固溶熱處理→quench→cold worked→析出硬化(因為再結晶,會造成能量的損失)若先實施析出硬化,冷加工更困難,會造成更多能量的消耗,且導致 crack

析出硬化合金由於會 overaging,所以<u>最高使用溫度</u>為其限制

Hardening of steel (quenching & tempering)	Precipitation hardening				
1.Austenitize(高於 T _{cr})→A	1.固溶熱處理(加熱至固溶區)→單相				
2.Quench(相對低溫)→M(脆)	2.quench(相對低溫)→單相過飽和(很軟)				
3.Tempered(低於共析溫度)→Temper M(延)	3.析出硬化(加熱固體兩相區)→雙相(plate 粒子新相)				
4.冷卻至室溫→Temper M	4.冷卻至室溫→雙相 (隨時間硬化,過時效軟化)				

*11章課本習題很重要!

Heat Treating T Temper Codes

- T1 Cooled from an elevated temperature shaping process and naturally aged to a substantially stable condition.
- . T2 Cooled from an elevated temperature shaping process, cold worked, and naturally aged to a substantially stable condition.
- . T3 Solution heat treated, cold worked, and naturally aged to a substantially stable condition.
- . T4 Solution heat treated, and naturally aged to a substantially stable condition.
- T5 Cooled from an elevated temperature shaping process then artificially aged.
- T6 Solution heat treated then artificially aged.
- T7 Solution heat treated then overaged/stabilized.
- T8 Solution heat treated, cold worked, then artificially aged.
- T9 Solution heat treated, artificially aged, then cold worked.
- . T10 Cooled from an elevated temperature shaping process, cold worked, then artificially aged.

Smith

生鐵(Raw pig iron)的製造

鼓風爐 <u>blast furnace</u> 焦炭 coke 為還原劑

產生的 raw pig iron 含約 4%的碳

反應:

$$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$$

產生的生鐵以液態送到煉鋼爐

煉鋼:raw pig iron→steel

常用的方法:basic-oxygen process

pig iron 在 refractory-lined converter,oxygen lance insert 提供純氧,<u>產生 FeO,再</u> 還原。

$FeO + C \rightarrow Fe + CO$

氧氣開始反應之前,加入有助於產生溶渣的溶劑(石灰),可減少含碳量和雜質。

Limitations of plain-carbon steels for engineering design?

- 1.增強硬度至約 100psi(690MPa)會犧牲延性和 impact resistance
- 2.無法 deep-hardenable,大型物件無法全部 M 化
- 3.不耐腐蝕氧化
- 4.rapid quench 使 distortion.cracking
- 5.低溫.poor impact resistance

鋁的生產→Bayer process

- 1.Bauxite ores(鋁礬土) + NaOH → NaAlO₂(sodium aluminate)
- 2.然後可分離不可溶物質
- 3.析出 aluminum hydroxide,變厚,calcined(鍛燒) →Al₂O₃
- 4.氧化鋁溶解於 cryolite(Na₃AlF₆)
- 5.電解析出鋁(純度 99.5~99.9%)

Hot rolling 是製程的第一步驟,因為高溫比較容易軟化(1200°C) Annealing 可以除去 hot rolling 所產生的雜質

extrusion

主要用在低熔點非鐵金屬

EX. Al.Cu 合金

但因開發出更高馬力,和改良的潤滑劑(玻璃)也可用來擠製一些碳鋼或不鏽鋼

Direction→所施壓力較高
Indirection→摩擦力較低,馬力消耗較低

forging

可用來製作不規則形狀的物品,與鑄造物相比也比較強韌,可使金屬性質更加均勻,後續加工較不易破裂。

hammer forging→hammer <u>反覆地</u>敲擊 press forging→<u>慢速的壓縮力</u> open-die→適合大型零件

Examples of dies for open-die forging.

Close-die → EX.automobile connecting rod

Wire drawing

Surface clean 很重要,避免 defect Lubricants 也很重要,減少摩擦力

金屬 poisson ratio 大約在 0.3 左右!

Slip band→之間約 10000 個原子距離 裡面有很多 slip line→約 50~500 個原子的距離 金屬實際強度和理論強度的比值約 1/10000!!

金屬超塑性 Superplasticity

高溫.低負載速率.可塑性變形至高達 1000~2000%

正常溫度下沒有超塑性

變形機構:

不是差排,而是晶界 sliding(along the boundary)和 grain boundary diffusion

Nanocrystalline metals

小於 100nm

晶粒越小強度越強,但小到一定程度(負 hall-petch)反而會軟化,因為此時差排堆 積已經不再適用,而是其他機制,如晶界滑動、擴散