Impedance

$$X_R = R \tag{1a}$$

$$X_C = \frac{-j}{\omega C} = \frac{1}{j\omega C}$$
 (1b)
 $X_L = j\omega L$ (1c)

$$X_L = j\omega L \tag{1c}$$

$$Z = \frac{V}{I} \tag{1d}$$

$$Y = \frac{1}{Z} = \frac{I}{V} \tag{1e}$$

Phase Changes

Resistance does not change phase of current or voltage Capacitor makes voltage lag behind current Inductor makes current lag behind voltage

Impedance, Admittance, Susceptance, Conductance

Admittance is the reciprocal of impedance $[Y=\frac{1}{Z}]$ Susceptance is the imaginary part of admittance [B=Im(Y)] Conductance is the real part of admittance [G=Re(Y)]

Combination of Elements [Series]

$$R_{eq} = \Sigma_0^n R_n \tag{2a}$$

$$\frac{1}{C_{eq}} = \Sigma_0^n \frac{1}{C_n} \tag{2b}$$

$$L_{eq} = \sum_{0}^{n} L_{n} \tag{2c}$$

Combination of Elements [Parallel]

$$\frac{1}{R_{eq}} = \Sigma_0^n \frac{1}{R_n}$$
 (3a)

$$C_{eq} = \Sigma_0^n C_n$$
 (3b)

$$\frac{1}{L_{eq}} = \Sigma_0^n \frac{1}{L_n}$$
 (3c)

$$C_{eg} = \sum_{0}^{n} C_{n} \tag{3b}$$

$$\frac{1}{1} = \sum_{n=0}^{\infty} \frac{1}{r} \tag{3c}$$

(3d)

Current Division Formula

$$I_n = I_0 \frac{R_{eq}}{R_n} = I_0 \frac{Z_{eq}}{Z_n}$$
 (4a)

Capacitance and Inductance in terms of I, V

$$i_{C}(t) = C \frac{dv_{C}(t)}{dt}$$
 (5a)
$$v_{L}(t) = L \frac{di_{L}(t)}{dt}$$
 (5b)

$$v_L(t) = L \frac{di_L(t)}{dt}$$
 (5b)

$$v_{C}(t) = \frac{1}{C} \int_{t_{0}}^{t} (i_{C}(t)dt) + v_{C}(0)$$
 (5c)

$$i_L(t) = \frac{1}{L} \int_{t_0}^t (v_L(t)dt) + i_L(0)$$
 (5d)

Energy Stored / Dissipated over time T

$$w(t) = \frac{1}{R} \int_{0}^{T} (v_R^2(t)dt) = R \int_{0}^{T} (i_R^2(t)dt)$$
 (6a)

$$w(t) = \frac{1}{2}C(v_c(t))^2$$
 (6b)

$$w(t) = \frac{1}{2}L(i_c(t))^2$$
 (6c)

Unit Function u(t)

$$u(t) = \left\{ \begin{array}{cc} 1 & \text{if } t > 0 \\ 0 & \text{if } t < 0 \end{array} \right\} \tag{7a}$$

$$u(-t) = \left\{ \begin{array}{cc} 1 & \text{if } t < 0 \\ 0 & \text{if } t > 0 \end{array} \right\} \tag{7b}$$

$$u(t-k) = \left\{ \begin{array}{ll} 1 & \text{if } t > k \\ 0 & \text{if } t < k \end{array} \right\} \tag{7c}$$

$$u(k-t) = \left\{ \begin{array}{ll} 1 & \text{if } t < k \\ 0 & \text{if } t > k \end{array} \right\} \tag{7d}$$

Capacitor Voltage and Inductor Current in RC, RL Circuits

$$v_C(t) = v_C(\infty) + (v_C(t_0) - v_C(\infty))e^{\frac{-(t - t_0)}{RC}}$$
 (8a)

$$i_L(t) = i_L(\infty) + (i_L(t_0) - i_L(\infty))e^{\frac{-R(t - t_0)}{L}}$$
 (8b)

Time Constants for RC, RL Circuits

$$\tau = RC \tag{9a}$$

$$\tau = \frac{L}{R} \tag{9b}$$

AC Circuit Math

$$y(t) = B\sin(\omega t + \beta) = B\cos(\omega t + \beta - 90^{\circ})$$
 (10a)

$$f = \frac{1}{T}(Hz) \tag{10b}$$

$$\omega = 2\pi f(rad)(s^{-1}) \tag{10c}$$

Imaginary Numbers

$$Z = a + bj \tag{11a}$$

$$Re(Z) = a, Im(Z) = b$$
 (11b)

$$|Z| = \sqrt{a^2 + b^2}$$
 (11c)

$$\theta = \tan^{-1}\left(\frac{b}{a}\right) \tag{11d}$$

$$\frac{1}{i} = -j = 1\angle -90^{\circ} \tag{11e}$$

$$j = 1 \angle 90^{\circ} \tag{11f}$$

$$Z^* = a - bj = |Z| \angle - \tan^{-1} \left(\frac{b}{a}\right) \tag{11g}$$

Amplitude

$$P = Re(\frac{1}{2}V_L I_L^*) \tag{12a}$$

$$P = \frac{1}{2}R_L|I_L|^2 \tag{12b}$$

$$P = \frac{1}{2} R_L |I_L|^2$$
 (12b)

$$P = \frac{1}{2} |V_L|^2 \frac{R_{load}}{R_{load}^2 + X_{load}^2}$$
 (12c)

RMS

$$P = Re(V_L I_L^*) \tag{13a}$$

$$P = R_L |I_L|^2 \tag{13b}$$

$$P = |V_L|^2 \frac{R_{load}}{R_{load}^2 + X_{load}^2}$$
 (13c)

Max Power Transfer

$$Z_{load} = Z_{eq}^* \tag{14a}$$

$$P_{max} = \frac{|V_{th}|^2}{8R_{eq}} \tag{14b}$$

RMS Formula

$$K_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} (K(t))^{2} dt}$$
 (15a)

Mutual Inductance

$$k = \frac{L_{12}}{\sqrt{L_1 L_2}} \tag{16a}$$

$$E = \frac{1}{2}L_1i_1^2 + \frac{1}{2}L_2i_2^2 \pm L_{12}i_1i_2$$
 (16b)

(16c)

Note that $L_{12}i_1i_2$ term is positive if transformer dots are opposite to each other; otherwise, it is negative.

Ideal Transformer

$$k = 1 \tag{17a}$$

$$\frac{V_2}{V_1} = \frac{n_2}{n_1} \tag{17b}$$

$$\frac{I_2}{I_1} = \frac{n_1}{n_2} \tag{17c}$$

$$k = 1$$
 (17a)
$$\frac{V_2}{V_1} = \frac{n_2}{n_1}$$
 (17b)
$$\frac{I_2}{I_1} = \frac{n_1}{n_2}$$
 (17c)
$$\frac{Z_2}{Z_1} = \left(\frac{n_2}{n_1}\right)^2$$
 (17d)

Currents in Semiconductors

Diffusion evens out charge distribution in semiconductor

$$f = \text{particle flux density}$$
 (20a)

$$n = \text{particle concentration (n or p)}$$
 (20b)

$$D = \text{diffusion coefficient}$$
 (20c)

$$f = -D\frac{d\eta}{dx} \tag{20d}$$

(20e)

Drift Current moves charges according to electric fields

$$J_N = q\mu_n n\epsilon_x \tag{21a}$$

$$J_P = q\mu_p p\epsilon_x \tag{21b}$$

$$J = q\mu_p p c_x$$
 (218)
 $J = \text{current density}$ (21c)

$$\epsilon = \text{electric field}$$
 (21d)

$$q = \text{particle charge}$$
 (21e)

$$\mu = \text{electron mobility}$$
 (21f)

Total Equations

$$J_P = J_{P,drift} + J_{P,diff} = q\mu_p p\epsilon_x - qD_p \frac{d\eta}{dx}$$
 (22a)

$$J_N = J_{N,drift} + J_{N,diff} = q\mu_n n\epsilon_x + qD_n \frac{d\eta}{dx}$$
 (22b)

Einstein Relation

$$k = 8.617 \cdot 10^{-5} eV K^{-1} = \text{Boltzmann constant}$$
 (23a)

$$\frac{D}{\mu} = \frac{kT}{q} = 0.026$$
 (23b)

Quantum Principles

Aufbau Principle Orbitals are filled from lowest to highest en-

ergy Pauli Exclusion Principle No two electrons can have the same quantum numbers \implies two electrons per orbital, with different

spin **Hund's Rule** Equal energy orbitals get one electron each, before a second is filled **Bonding Orbitals** There are two orbitals involved in a bond—bonding and anti-bonding. Bonding orbital ⇒ strong stable bond, anti-bonding ⇒ unstable bond.

Semiconductors

Conducting Band Anti-bonding orbitals of Si-Si bonds; elec-

trons are free to move Valence Band Bonding orbitals; electrons are bound to atoms Band Gap Energy it takes to go from the valence to the conducting band. $E_{ins} > E_{sem} > E_{con}$

In semiconductors, mobile holes or electrons are needed for charge transfer. Electrons move in conducting band, holes move in valence band. $E_{Si}=1.12eV$, but doping changes this.

$$n_i = \text{intrinsic carrier density}$$
 (18a)

$$n =$$
electron concentration (18b)

$$p = \text{hole concentration}$$
 (18c)

$$np = n_i^2 \tag{18d}$$

DopingDonors: Group 5, n doping
Acceptors: Group 3, p doping

$$N_D = \text{donor doping concentration}$$
 (19a)

$$N_A = \text{acceptor doping concentration}$$
 (19b)

$$p \approx N_A \text{ (for p doped)}$$
 (19c)

$$n \approx \frac{n_i^2}{N}$$
 (19d)

$$n \approx N_D \text{ (for n doped)}$$
 (19e)

$$p \approx \frac{n_i^2}{N_D} \tag{19f}$$

pn Junction

$$V_{bi} = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right)$$
 (24a)

$$\frac{x_n}{x_n} = \frac{N_A}{N_D} \tag{24b}$$

$$x_p = \left[\frac{2\epsilon_r \epsilon_0}{q} \left(\frac{N_D}{N_A(N_A + N_D)} (V_{bi} - V_A)\right)\right]^{\frac{1}{2}}$$
 (24c)

$$x_n = \left[\frac{2\epsilon_r \epsilon_0}{q} \left(\frac{N_A}{N_D(N_A + N_D)} (V_{bi} - V_A)\right)\right]^{\frac{1}{2}}$$
 (24d)

$$W = \left[\frac{2\epsilon_r \epsilon_0}{q} \left(\frac{N_A + N_D}{N_A N_D}\right) (V_{bi} - V_A)\right]^{\frac{1}{2}}$$
 (24e)

$$I = I_0(e^{\frac{qV_A}{kT}} - 1) \tag{24f}$$

$$I = I_0(e^{\frac{qV_A}{kT}} - 1)$$
 (24f)
$$Q = q\left(\frac{N_A N_D}{N_A + N_D}\right) WA [A = Area]$$
 (24g)

$$\epsilon_0 = 8.85 \cdot 10^{-14} Fcm^{-1}$$
 (24h)

$$q_e = -1.6 \cdot 10^{-19} C \tag{24i}$$

 I_0 is the reverse-bias current for the pn-junction

Diodes

$$V_A = V_D + I_0 (e^{\frac{qV_D}{kT}} - 1) R_D$$
 (25a)

$$V_D = \frac{kT}{q} \ln \left(\frac{I_D}{I_0} + 1 \right) \tag{25b}$$

(26c)

$$I_{D} = \mu_{n} C_{ox} \left(\frac{W}{L}\right) \left[(V_{GS} - V_{T}) V_{DS} - \frac{1}{2} V_{DS}^{2} \right]$$
(26a)

$$V_{DS} \leq V_{GS} - V_{T} \text{ [Triode]}$$
(26b)

$$I_{D} = \mu_{n} C_{ox} \left(\frac{W}{L}\right) \left[\frac{1}{2} (V_{GS} - V_{T})^{2}\right]$$
(26c)

$$V_{DS} \geq V_{GS} - V_{T} \text{ [Saturation]}$$
(26d)

$$I_{D} = \mu_{n} C_{ox} \left(\frac{W}{L}\right) \left[\frac{1}{2} V_{DS}^{2}\right]$$
(26e)

$$V_{GS} = V_{T} \text{ [Edge]}$$
(26f)

$$P = V_{DS} I_{D}$$
(26g)

$$(W)$$

$$V_{DS} \le V_{GS} - V_T \text{ [Triode]}$$
 (26b)

$$I_D = \mu_n C_{ox} \left(\frac{W}{L}\right) \left[\frac{1}{2} (V_{GS} - V_T)^2\right]$$

$$V_{DS} \ge V_{GS} - V_T$$
 [Saturation] (26d)

$$I_D = \mu_n C_{ox} \left(\frac{W}{L}\right) \left[\frac{1}{2} V_{DS}^2\right]$$
 (26e)

$$V_{GS} = V_T \text{ [Edge]}$$
 (26f)

$$P = V_T \text{ [Edge]}$$
 (261)
$$P = V_{DS}I_D$$
 (26g)

$$I = VDSID$$
 (20g)

$$k = \mu_n C_{ox} \left(\frac{W}{L}\right) \tag{26h}$$

$$V_{triode} = V_T + \frac{\sqrt{2kR_DV_{DD}} - 1}{kR_D}$$
 (26i)

Transistor Amplifier

$$A = -R_D k (V_G - V_T) \text{ [Gain]} (27a)$$

$$D = \frac{\hat{V_G}}{2(V_G - V_T)} \ [\text{Distortion with small signal condition}] \ \ (27\text{b})$$