MACM 316 Theorems

Alexander Ng

Wednesday, March 5, 2025

Thm. Let A be an $n \times m$ matrix, B be an $m \times k$ matrix, C be an $k \times p$ matrix, D be an $m \times k$ matrix and λ a real number.

- (a) A(BC) = (AB)C (associativity)
- (b) A(B+D) = AB + AD (distributivity)
- (c) IB = B and BI = B (idempotency)
- (d) $\lambda(AB) = (\lambda A)B = A(\lambda B)$ (scalar associativity)

Def. An $n \times n$ matrix A is said to be nonsingular (or invertible) if an $n \times n$ matrix A^{-1} exists with

$$AA^{-1} = A^{-1}A = I.$$

The matrix A^{-1} is called the inverse of A. A singular matrix does not have an inverse.

Thm. For any nonsingular $n \times n$ matrix A

- (a) A^{-1} is unique
- (b) A^{-1} is nonsingular and $(A^{-1})^{-1} = A$
- (c) If B is also a nonsingular $n \times n$ matrix, then $(AB)^{-1} = B^{-1}A^{-1}$

You can find A^{-1} by row reducing the augmented matrix [A|I], which looks like this:

$$\begin{bmatrix}
a_{11} & a_{12} & a_{13} & 1 & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 & 1 & 0 \\
a_{31} & a_{32} & a_{33} & 0 & 0 & 1
\end{bmatrix}$$