## CS544 Module4

Suresh Kalathur

## Module4

- Data Distributions
  - Discrete
  - Continuous

# Prereq Course (CS546)

#### Topics from CS546

#### - Module 4

 Lecture 4 - Independent events, discrete random variables, binomial distribution, and the approximation of the binomial distribution.

#### Module 5

 Lecture 5 - Geometric distribution, the math expectation and the variance of a random variable, independent random variables, strong law of large numbers, and the properties of distribution functions.

#### Module 6

 Lecture 6 - Continuous distribution functions, density functions, the math expectation, and the variance of a continuous random variable, standard deviation, normal distribution, and the central limit theorem.

#### Discrete Distributions

- Discrete Random Variables
  - Support
  - Probability Mass Function (PMF)
    - $f_X(x)$  i.e. P(X = x)
  - Mean or Expected Value, variance, standard deviation
  - Cumulative Distribution Function (CDF)
    - $F_X(x)$  i.e.  $P(X \le x)$

## Bernoulli Trials

Binomial coefficients

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

- Bernoulli Trials
  - Random experiment with two possible outcomes
  - Probability of success, p
  - Probability of failure, 1-p
  - Review PMF, mean, and variance
  - Repeated trials
    - The trials are independent,
    - Each trial has two possible outcomes (success and failure)
    - The probability of success remains the same from trial to trial.

## **Binomial Distribution**

- Probability distribution for
  - the number of successes in a sequence of Bernoulli trials.
- Two parameters
  - n, the number of trials
  - p, the probability of success
- Review PMF, mean, and variance
- R dbinom, pbinom, qbinom, rbinom

## The 4 Functions

- d<name>(x, ...)  $f_X(x)$  i.e. P(X = x)
  - Probability Density function
- p<name> (x, ...)  $F_X(x)$  i.e.  $P(X \le x)$ 
  - Cumulative Distribution function
- q<name>(p, ...) smallest x such that  $F_X(x) \ge p$ 
  - Quantile function
- r<name>(n, ...)
  - n random values from the distribution

## Hypergeometric Distribution

- Outcomes dependent on previous outcomes
- Sample data selected without replacement
- Three parameters
  - M, # of events of interest
  - N, # of events not of interest
  - K, the sample size without replacement
- Review PMF, mean, and variance
- R dhyper, phyper, qhyper, rhyper

#### Geometric Distribution

- # of failures before a success in a sequence of Bernoulli trials
- One parameter
  - p, probability of success

- Review PMF, mean, and variance
- R dgeom, pgeom, qgeom, rgeom

## **Negative Binomial Distribution**

- # of failures until a total or "r" successes in a sequence of Bernoulli trials
- Two parameters
  - p, probability of success
  - r, the total number of successes

- Review PMF, mean, and variance
- R dnbinom, pnbinom, qnbinom, rnbinom

#### Poisson Distribution

- Model the frequency with which a specified event occurs during a particular period of time
- One parameter
  - $-\lambda$ , average number of events per unit of time [0,1]

- Review PMF, mean, and variance
- R dpois, ppois, qpois, rpois

## Discrete Uniform Distribution

- Each value is equally likely
- Review PMF, CDF, mean, and variance
- R dunif, punif, qunif, runif
- sample() function
  - sample(x, size, replace = FALSE, prob = NULL)

#### **Continuous Distributions**

- Continuous uniform distribution
  - Two parameters (min and max)
  - Review PDF and CDF
- R functions
  - dunif, punif, qunif, runif

## Normal Distribution

- Determined by the mean  $(\mu)$  and standard deviation  $(\sigma)$
- R functions (dnorm, pnorm, qnorm, rnorm)



## **Exponential Distribution**

- Waiting times, time between arrivals, etc.
- One parameter
  - $-\lambda$ , mean number of arrivals per unit of time
- R functions
  - dexp, pexp, qexp, rexp

## **Project Review**

## Picking the Data Set

Look into the following sites as an example and select a data set that interests you.

- https://www.kaggle.com/datasets
- http://www.kdnuggets.com/datasets/index.html
- Any other source of your choice