```
In [61]: %matplotlib inline
import warnings
warnings.filterwarnings("ignore")

import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer

import re
from nltk.corpus import stopwords
import pickle
from tqdm import tqdm
import os
```

1. Reading Data

```
In [62]: project_data=pd.read_csv("C:/Users/91888/Desktop/Assignment/NaiveBayes Assignment/train_data.csv")
    resource_data=pd.read_csv("C:/Users/91888/Desktop/Assignment/NaiveBayes Assignment/resources.csv")

In [63]: print("Number of data points in train data", project_data.shape)
    print('_'*50)
    print("The attributes of data :", project_data.columns.values)

Number of data points in train data (109248, 17)

The attributes of data : ['Unnamed: 0' 'id' 'teacher_id' 'teacher_prefix' 'school_state'
    'project_submitted_datetime' 'project_grade_category'
    'project_subject_categories' 'project_subject_subcategories'
    'project_title' 'project_essay_1' 'project_essay_2' 'project_essay_3'
    'project_essay_4' 'project_resource_summary'
    'teacher_number_of_previously_posted_projects' 'project_is_approved']
```

```
In [64]: print("Number of data points in resource data",resource_data.shape)
print('_'*50)
print("The attributes of data :",resource_data.columns.values)

Number of data points in resource data (1541272, 4)

The attributes of data : ['id' 'description' 'quantity' 'price']
```

2. Preprocessing Categorical Features

teacher_prefix

```
In [65]: project data['teacher prefix'].value counts()
Out[65]: Mrs.
                     57269
         Ms.
                     38955
         Mr.
                     10648
          Teacher
                      2360
                        13
          Dr.
         Name: teacher prefix, dtype: int64
In [66]: print(project data['teacher prefix'].isnull().values.any())
         print("Number of nan values", project data['teacher prefix'].isnull().values.sum())
          True
         Number of nan values 3
In [67]: #replace msiing values with Mrs
         project data['teacher prefix']=project data['teacher prefix'].fillna('Mrs.')
```

```
In [68]: project data['teacher prefix'].value counts()
Out[68]: Mrs.
                     57272
                     38955
          Ms.
          Mr.
                     10648
          Teacher
                      2360
          Dr.
                        13
         Name: teacher prefix, dtype: int64
In [69]: | project data['teacher prefix']=project data['teacher prefix'].str.replace('.','')
          project data['teacher prefix']=project data['teacher prefix'].str.lower()
          project data['teacher prefix'].value counts()
Out[69]: mrs
                     57272
                     38955
          ms
                     10648
          mr
          teacher
                      2360
          dr
                        13
          Name: teacher prefix, dtype: int64
```

project_grade_category

Name: project grade category, dtype: int64

school_state

In [73]: project_data['school_state'].value_counts()

Out[73]:	CA	15388
	TX	7396
	NY	7318
	FL	6185
	NC	5091
	ΙL	4350
	GΑ	3963
	SC	3936
	MI	3161
	PA	3109
	IN	2620
	MO	2576
	ОН	2467
	LA	2394
	MA	2389
	WA	2334
	OK	2276
	NJ	2237
	ΑZ	2147
	VA	2045
	WI	1827
	AL	1762
	UT	1731
	TN	1688
	CT	1663
	MD	1514
	NV	1367
	MS	1323
	KY	1304
	OR	1242
	MN CO	1208
	AR	1111 1049
	ID	693
	TΑ	666
	KS	634
	NM	557
	DC	516
	HI	507
	ME	505
	WV	503
	WV	כשכ

```
348
NH
        345
ΑK
        343
DE
        309
NE
SD
        300
RΙ
        285
MT
        245
ND
        143
         98
WY
         80
VT
```

Name: school_state, dtype: int64

```
In [74]: project_data['school_state'].isnull().values.any()
```

Out[74]: False

In [75]: project_data['school_state']=project_data['school_state'].str.lower()
 project_data['school_state'].value_counts()

Out[75]:	ca	15388
	tx	7396
	ny	7318
	fl	6185
	nc	5091
	il	4350
	ga	3963
	sc	3936
	тi	3161
	pa	3109
	in	2620
	mo	2576
	oh	2467
	la	2394
	ma	2389
	wa	2334
	ok	2276
	nj	2237
	az	2147
	va	2045
	wi -	1827
	al	1762
	ut	1731
	tn	1688
	ct	1663
	md	1514
	nv	1367
	ms	1323
	ky	1304
	or	1242
	mn	1208
	со	1111
	ar	1049
	id	693
	ia	666
	ks	634
	nm	557 516
	dc h:	516
	hi	507
	me	505
	WV	503

```
348
nh
ak
        345
de
        343
        309
ne
        300
sd
ri
        285
        245
mt
nd
        143
         98
wy
vt
         80
Name: school_state, dtype: int64
```

project_subject_categories

In [76]: project_data['project_subject_categories'].value_counts()

0+[76].	litanagu 9 languaga	22655
Out[/6]:	Literacy & Language Math & Science	23655 17072
	Literacy & Language, Math & Science	14636
	Health & Sports	10177
	Music & The Arts	5180
	Special Needs	4226
	Literacy & Language, Special Needs	3961
	Applied Learning	3771
	Math & Science, Literacy & Language	2289
	Applied Learning, Literacy & Language	2191
	History & Civics	1851
	Math & Science, Special Needs	1840
	Literacy & Language, Music & The Arts	1757
	Math & Science, Music & The Arts	1642
	Applied Learning, Special Needs	1467
	History & Civics, Literacy & Language	1421
	Health & Sports, Special Needs	1391
	Warmth, Care & Hunger	1309
	Math & Science, Applied Learning	1220
	Applied Learning, Math & Science	1052
	Literacy & Language, History & Civics	809
	Health & Sports, Literacy & Language	803
	Applied Learning, Music & The Arts	758
	Math & Science, History & Civics	652
	Literacy & Language, Applied Learning	636
	Applied Learning, Health & Sports	608
	Math & Science, Health & Sports	414
	History & Civics, Math & Science	322
	History & Civics, Music & The Arts	312
	Special Needs, Music & The Arts	302
	Health & Sports, Math & Science	271
	History & Civics, Special Needs	252
	Health & Sports, Applied Learning	192
	Applied Learning, History & Civics	178
	Health & Sports, Music & The Arts	155
	Music & The Arts, Special Needs	138
	Literacy & Language, Health & Sports	72
	Health & Sports, History & Civics	43
	Special Needs, Health & Sports	42
	History & Civics, Applied Learning	42
	Health & Sports, Warmth, Care & Hunger	23

```
Special Needs, Warmth, Care & Hunger
                                                 23
Music & The Arts, Health & Sports
                                                 19
Music & The Arts, History & Civics
                                                 18
History & Civics, Health & Sports
                                                 13
Math & Science, Warmth, Care & Hunger
                                                 11
Music & The Arts, Applied Learning
                                                 10
Applied Learning, Warmth, Care & Hunger
                                                 10
Literacy & Language, Warmth, Care & Hunger
                                                  9
Music & The Arts, Warmth, Care & Hunger
                                                  2
History & Civics, Warmth, Care & Hunger
                                                  1
Name: project subject categories, dtype: int64
```

In [77]: print(project_data['project_subject_categories'].isnull().values.any())
 print("Number of nan values", project_data['project_subject_categories'].isnull().values.sum())

False Number of nan values 0

Out[78]:	literacy_language	23655
	math_science	17072
	literacy_language_math_science	14636
	health_sports	10177
	music_arts	5180
	specialneeds	4226
	literacy_language_specialneeds	3961
	appliedlearning	3771
	math_science_literacy_language	2289
	appliedlearning_literacy_language	2191
	history_civics	1851
	math_science_specialneeds	1840
	<pre>literacy_language_music_arts</pre>	1757
	math_science_music_arts	1642
	appliedlearning_specialneeds	1467
	history_civics_literacy_language	1421
	health_sports_specialneeds	1391
	warmth_care_hunger	1309
	math_science_appliedlearning	1220
	appliedlearning_math_science	1052
	literacy_language_history_civics	809
	health_sports_literacy_language	803
	appliedlearning_music_arts	758
	<pre>math_science_history_civics</pre>	652
	literacy_language_appliedlearning	636
	appliedlearning_health_sports	608
	math_science_health_sports	414
	history_civics_math_science	322
	history_civics_music_arts	312
	specialneeds_music_arts	302
	health_sports_math_science	271
	history_civics_specialneeds	252
	health_sports_appliedlearning	192
	appliedlearning_history_civics	178
	health_sports_music_arts	155
	music_arts_specialneeds	138
	literacy_language_health_sports	72
	health_sports_history_civics	43
	specialneeds_health_sports	42
	history_civics_appliedlearning	42
	health_sports_warmth_care_hunger	23

specialneeds_warmth_care_hunger	23
music_arts_health_sports	19
music_arts_history_civics	18
history_civics_health_sports	13
math_science_warmth_care_hunger	11
appliedlearning_warmth_care_hunger	10
<pre>music_arts_appliedlearning</pre>	10
literacy_language_warmth_care_hunger	9
music_arts_warmth_care_hunger	2
history_civics_warmth_care_hunger	1
<pre>Name: project_subject_categories, dtype:</pre>	int64

project_subject_subcategories

In [79]: project_data['project_subject_subcategories'].value_counts()

Out[791:	Literacy	9486
	Literacy, Mathematics	8325
	Literature & Writing, Mathematics	5923
	Literacy, Literature & Writing	5571
	Mathematics	5379
	Literature & Writing	4501
	Special Needs	4226
	Health & Wellness	3583
	Applied Sciences, Mathematics	3399
	Applied Sciences	2492
	Literacy, Special Needs	2440
	Gym & Fitness, Health & Wellness	2264
	ESL, Literacy	2234
	Visual Arts	2217
	Music	1472
	Warmth, Care & Hunger	1309
	Literature & Writing, Special Needs	1306
	Gym & Fitness	1195
	Health & Wellness, Special Needs	1189
	Mathematics, Special Needs	1187
	Environmental Science	1079
	Team Sports	1061
	Applied Sciences, Environmental Science	984
	Environmental Science, Health & Life Science	964
	Music, Performing Arts	948
	Early Development	905
	Environmental Science, Mathematics	838
	Other	831
	Health & Life Science	827
	Health & Wellness, Nutrition Education	797
		• • •
	College & Career Prep, Team Sports	2
	Nutrition Education, Social Sciences	2
	Civics & Government, Health & Wellness	2
	Financial Literacy, Health & Wellness	2
	Visual Arts, Warmth, Care & Hunger	2
	Economics, Health & Life Science	2
	History & Geography, Warmth, Care & Hunger	1
	Community Service, Gym & Fitness	1
	Parent Involvement, Team Sports	1
	Other, Warmth, Care & Hunger	1

NB solve 3/27/2021

```
Economics, Foreign Languages
                                                   1
Gym & Fitness, Parent Involvement
                                                   1
Literature & Writing, Nutrition Education
                                                   1
Economics, Other
                                                   1
ESL, Economics
Gym & Fitness, Warmth, Care & Hunger
Community Service, Music
Civics & Government, Nutrition Education
Parent Involvement, Warmth, Care & Hunger
                                                   1
Financial Literacy, Performing Arts
Economics, Nutrition Education
Community Service, Financial Literacy
                                                   1
Civics & Government, Foreign Languages
                                                   1
Gym & Fitness, Social Sciences
                                                   1
Financial Literacy, Foreign Languages
College & Career Prep, Warmth, Care & Hunger
                                                   1
Economics, Music
                                                   1
ESL, Team Sports
                                                   1
Extracurricular, Financial Literacy
                                                   1
Civics & Government, Parent Involvement
                                                   1
```

Name: project subject subcategories, Length: 401, dtype: int64

```
In [80]: | print(project data['project subject subcategories'].isnull().values.any())
         print("Number of nan values", project data['project subject subcategories'].isnull().values.sum())
```

False

Number of nan values 0

```
In [81]: project_data['project_subject_subcategories'] = project_data['project_subject_subcategories'].str.replace(' The ','')
    project_data['project_subject_subcategories'] = project_data['project_subject_subcategories'].str.replace(' ','')
    project_data['project_subject_subcategories'] = project_data['project_subject_subcategories'].str.replace('&','_')
    project_data['project_subject_subcategories'] = project_data['project_subcategories'].str.replace(',','_')
    project_data['project_subject_subcategories'] = project_data['project_subject_subcategories'].str.lower()
    project_data['project_subject_subcategories'].value_counts()
```

Out[81]:	literacy	9486
	literacy_mathematics	8325
	literature_writing_mathematics	5923
	literacy_literature_writing	5571
	mathematics	5379
	literature_writing	4501
	specialneeds	4226
	health_wellness	3583
	appliedsciences_mathematics	3399
	appliedsciences	2492
	literacy_specialneeds	2440
	<pre>gym_fitness_health_wellness</pre>	2264
	esl_literacy	2234
	visualarts	2217
	music	1472
	warmth_care_hunger	1309
	literature_writing_specialneeds	1306
	gym_fitness	1195
	health_wellness_specialneeds	1189
	mathematics_specialneeds	1187
	environmentalscience	1079
	teamsports	1061
	appliedsciences_environmentalscience	984
	<pre>environmentalscience_health_lifescience</pre>	964
	music_performingarts	948
	earlydevelopment	905
	<pre>environmentalscience_mathematics</pre>	838
	other	831
	health_lifescience	827
	health_wellness_nutritioneducation	797
	civics_government_health_wellness	 2
	environmentalscience_teamsports	2
	earlydevelopment_economics	2
	extracurricular_foreignlanguages	2
	foreignlanguages_gym_fitness	2
	college_careerprep_teamsports	2
	parentinvolvement_warmth_care_hunger	1
	communityservice_financialliteracy	1
	economics_foreignlanguages	1
	civics_government_parentinvolvement	1

```
economics other
                                               1
communityservice music
                                               1
other_warmth_care_hunger
                                               1
parentinvolvement_teamsports
                                               1
esl economics
                                               1
history geography warmth care hunger
communityservice gym fitness
                                               1
gym fitness socialsciences
                                               1
financialliteracy performingarts
                                               1
civics government foreignlanguages
                                               1
gym fitness parentinvolvement
                                               1
esl teamsports
                                               1
economics music
gym fitness warmth care hunger
                                               1
extracurricular financialliteracy
                                               1
literature writing nutritioneducation
                                               1
economics nutritioneducation
                                               1
civics government nutritioneducation
                                               1
financialliteracy foreignlanguages
                                               1
college careerprep warmth care hunger
                                               1
Name: project subject subcategories, Length: 401, dtype: int64
```

3. Text Processing

project_essay

```
In [82]: import re
         def decontracted(phrase):
             # specific
             phrase = re.sub(r"won't", "will not", phrase)
             phrase = re.sub(r"can\'t", "can not", phrase)
             # general
             phrase = re.sub(r"n\'t", " not", phrase)
             phrase = re.sub(r"\'re", " are", phrase)
             phrase = re.sub(r"\'s", " is", phrase)
             phrase = re.sub(r"\'d", " would", phrase)
             phrase = re.sub(r"\'ll", " will", phrase)
             phrase = re.sub(r"\'t", " not", phrase)
             phrase = re.sub(r"\'ve", " have", phrase)
             phrase = re.sub(r"\'m", " am", phrase)
             return phrase
                      "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', \
```

```
In [83]: | stopwords= ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've",\
                      'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their',\
                      'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', \
                      'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', \
                      'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', \
                      'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after',\
                      'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'furthe
         r',\
                      'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'mor
         e',\
                      'most', 'other', 'some', 'such', 'only', 'own', 'same', 'so', 'than', 'too', 'very', \
                      's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're',
          \
                      've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn',\
                      "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn',
                      "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "were
         n't", \
                      'won', "won't", 'wouldn', "wouldn't"]
```

```
In [84]: from tqdm import tqdm
         def preprocess_text(text_data):
             preprocessed_text = []
             # tqdm is for printing the status bar
             for sentance in tqdm(text data):
                  sent = decontracted(sentance)
                  sent = sent.replace('\\r', ' ')
                  sent = sent.replace('\\n', ' ')
                  sent = sent.replace('\\"', ' ')
                  sent = re.sub('[^A-Za-z0-9]+', ' ', sent)
                  # https://gist.github.com/sebleier/554280
                  sent = ' '.join(e for e in sent.split() if e.lower() not in stopwords)
                  preprocessed text.append(sent.lower().strip())
             return preprocessed text
In [85]: project_data["essay"]=project_data["project_essay_1"].map(str) +\
                                project data["project essay 2"].map(str) +\
                                project data["project essay 3"].map(str) +\
```

project data["project essay 4"].map(str)

```
In [86]: print("Printing some random essays")
    print(9,project_data["essay"].values[9])
    print('-'*100)
    print(34,project_data["essay"].values[34])
    print('-'*100)
    print(147,project_data["essay"].values[147])
```

Printing some random essays

9 Over 95% of my students are on free or reduced lunch. I have a few who are homeless, but despite that, they come to school with an eagerness to learn. My students are inquisitive eager learners who embrace the challenge of not ha ving great books and other resources every day. Many of them are not afforded the opportunity to engage with these big colorful pages of a book on a regular basis at home and they don't travel to the public library. \r\nIt is my du ty as a teacher to do all I can to provide each student an opportunity to succeed in every aspect of life. \r\nReading is Fundamental! My students will read these books over and over again while boosting their comprehension skills. The ese books will be used for read alouds, partner reading and for Independent reading. \r\nThey will engage in reading to build their \"Love for Reading\" by reading for pure enjoyment. They will be introduced to some new authors as well as some old favorites. I want my students to be ready for the 21st Century and know the pleasure of holding a good hard back book in hand. There's nothing like a good book to read! \r\nMy students will soar in Reading, and more because of your consideration and generous funding contribution. This will help build stamina and prepare for 3rd grade. Thank you so much for reading our proposal!nannan

34 My students mainly come from extremely low-income families, and the majority of them come from homes where both pa rents work full time. Most of my students are at school from 7:30 am to 6:00 pm (2:30 to 6:00 pm in the after-school program), and they all receive free and reduced meals for breakfast and lunch. \r\n\r\nI want my students to feel as comfortable in my classroom as they do at home. Many of my students take on multiple roles both at home as well as in school. They are sometimes the caretakers of younger siblings, cooks, babysitters, academics, friends, and most of all, they are developing who they are going to become as adults. I consider it an essential part of my job to model helping others gain knowledge in a positive manner. As a result, I have a community of students who love helping each other in and outside of the classroom. They consistently look for opportunities to support each other's learning in a kind and helpful way. I am excited to be experimenting with alternative seating in my classroom this school year. Stud ies have shown that giving students the option of where they sit in a classroom increases focus as well as motivatio n. \r\n\r\nBy allowing students choice in the classroom, they are able to explore and create in a welcoming environm ent. Alternative classroom seating has been experimented with more frequently in recent years. I believe (along with many others), that every child learns differently. This does not only apply to how multiplication is memorized, or a paper is written, but applies to the space in which they are asked to work. I have had students in the past ask \"Can I work in the library? Can I work on the carpet?\" My answer was always, \"As long as you're learning, you can work w herever you want!\" \r\n\r\nWith the yoga balls and the lap-desks, I will be able to increase the options for seating in my classroom and expand its imaginable space.nannan

147 My students are eager to learn and make their mark on the world.\r\n\r\nThey come from a Title 1 school and need extra love.\r\n\r\nMy fourth grade students are in a high poverty area and still come to school every day to get their education. I am trying to make it fun and educational for them so they can get the most out of their schooling. I c reated a caring environment for the students to bloom! They deserve the best.\r\nThank you!\r\nI am requesting 1 Chro mebook to access online interventions, differentiate instruction, and get extra practice. The Chromebook will be used to supplement ELA and math instruction. Students will play ELA and math games that are engaging and fun, as well as p articipate in assignments online. This in turn will help my students improve their skills. Having a Chromebook in the classroom would not only allow students to use the programs at their own pace, but would ensure more students are get ting adequate time to use the programs. The online programs have been especially beneficial to my students with speci

al needs. They are able to work at their level as well as be challenged with some different materials. This is making these students more confident in their abilities.\r\n\r\nThe Chromebook would allow my students to have daily access to computers and increase their computing skills.\r\nThis will change their lives for the better as they become more successful in school. Having access to technology in the classroom would help bridge the achievement gap.nannan

In [87]: preprocessed_essays = preprocess_text(project_data['essay'].values)

100%| 100%| 1009248/109248 [01:41<00:00, 1079.10it/s]

In [88]: print("printing some random essay")
 print(9, preprocessed_essays[9])
 print('-'*50)
 print(34, preprocessed_essays[34])
 print('-'*50)
 print(147, preprocessed_essays[147])

printing some random essay

9 95 students free reduced lunch homeless despite come school eagerness learn students inquisitive eager learners emb race challenge not great books resources every day many not afforded opportunity engage big colorful pages book regul ar basis home not travel public library duty teacher provide student opportunity succeed every aspect life reading fu ndamental students read books boosting comprehension skills books used read alouds partner reading independent reading engage reading build love reading reading pure enjoyment introduced new authors well old favorites want students re ady 21st century know pleasure holding good hard back book hand nothing like good book read students soar reading con sideration generous funding contribution help build stamina prepare 3rd grade thank much reading proposal nannan

34 students mainly come extremely low income families majority come homes parents work full time students school 7 30 6 00 pm 2 30 6 00 pm school program receive free reduced meals breakfast lunch want students feel comfortable classro om home many students take multiple roles home well school sometimes caretakers younger siblings cooks babysitters ac ademics friends developing going become adults consider essential part job model helping others gain knowledge positi ve manner result community students love helping outside classroom consistently look opportunities support learning k ind helpful way excited experimenting alternative seating classroom school year studies shown giving students option sit classroom increases focus well motivation allowing students choice classroom able explore create welcoming enviro nment alternative classroom seating experimented frequently recent years believe along many others every child learns differently not apply multiplication memorized paper written applies space asked work students past ask work library work carpet answer always long learning work wherever want yoga balls lap desks able increase options seating classro om expand imaginable space nannan

147 students eager learn make mark world come title 1 school need extra love fourth grade students high poverty area still come school every day get education trying make fun educational get schooling created caring environment studen ts bloom deserve best thank requesting 1 chromebook access online interventions differentiate instruction get extra p ractice chromebook used supplement ela math instruction students play ela math games engaging fun well participate as signments online turn help students improve skills chromebook classroom would not allow students use programs pace wo uld ensure students getting adequate time use programs online programs especially beneficial students special needs a ble work level well challenged different materials making students confident abilities chromebook would allow student s daily access computers increase computing skills change lives better become successful school access technology cla ssroom would help bridge achievement gap nannan

In [89]: #adding processed essays to project_data
project data['processed essay']=preprocessed essays

4. Preprocessing Numerical Features

```
In [90]: price data = resource data.groupby('id').agg({'price':'sum', 'quantity':'sum'}).reset index()
          price data.head(2)
Out[90]:
                  id
                      price quantity
          0 p000001 459.56 7
            p000002 515.89 21
In [91]: # join two dataframes in python:
          project data = pd.merge(project data, price data, on='id', how='left')
In [92]: project data['price'].head()
Out[92]: 0
              154.60
              299.00
              516.85
              232,90
               67.98
          Name: price, dtype: float64
In [93]: project data.columns.values
Out[93]: array(['Unnamed: 0', 'id', 'teacher_id', 'teacher_prefix', 'school_state',
                 'project submitted datetime', 'project grade category',
                 'project subject categories', 'project subject subcategories',
                 'project_title', 'project_essay_1', 'project_essay_2',
                 'project essay 3', 'project essay 4', 'project resource summary',
                 'teacher number of previously posted projects',
                 'project is approved', 'essay', 'processed essay', 'price',
                 'auantity'], dtype=object)
```

NB_solve

removing unnecessary columns

In [94]: #removing columns : https://www.geeksforgeeks.org/how-to-drop-one-or-multiple-columns-in-pandas-dataframe/
project_data = project_data.drop(project_data.columns[[0,1,2,5,9,10,11,12,13,14,17,20]], axis=1)

In [95]: project_data.head()

Out[95]:

	teacher_prefix	school_state	project_grade_category	project_subject_categories	project_subject_subcategories	teacher_numb
0	mrs	in	grades_prek_2	literacy_language	esl_literacy	0
1	mr	fl	grades_6_8	nistory_civics_health_sports		7
2	ms	az	grades_6_8	health_sports	health_wellness_teamsports	1
3	mrs	ky	grades_prek_2	literacy_language_math_science	literacy_mathematics	4
4	mrs	tx	grades_prek_2	math_science	mathematics	1

In [97]: project_data.head()

Out[97]:

	teacher_prefix	school_state	project_grade_category	clean_categories	clean_subcategories	teacher_numbe
0	mrs	in	grades_prek_2	literacy_language	esl_literacy	0
1	mr	fl	grades_6_8	history_civics_health_sports	civics_government_teamsports	7
2	ms	az	grades_6_8	health_sports	health_wellness_teamsports	1
3	mrs	ky	grades_prek_2	literacy_language_math_science	literacy_mathematics	4
4	mrs	tx	grades_prek_2	math_science	mathematics	1

In []: #changing position of columns : https://stackoverflow.com/questions/41968732/set-order-of-columns-in-pandas-dataframe

In [99]: project_data.head()

Out[99]:

	processed_essay	teacher_prefix	project_grade_category	school_state	clean_categories	clean_subcategorie	
0	students english learners working english seco	mrs	grades_prek_2	in	literacy_language	esl_literacy	
1	students arrive school eager learn polite gene	mr	grades_6_8	fl	history_civics_health_sports	civics_government_teamspor	
2	true champions not always ones win guts mia ha	ms	grades_6_8	az	health_sports	health_wellness_teamsports	
3	work unique school filled esl english second I	mrs	grades_prek_2	ky	literacy_language_math_science	literacy_mathematics	
4	second grade classroom next year made around 2 grades_prek_2 tx math_science		math_science	mathematics			
4						•	

converting dataframe to csv

In []: #https://www.codegrepper.com/code-examples/python/pandas+save+as+csv

In [176]: project_data.to_csv(r'C:/Users/91888/Desktop/Assignment/NaiveBayes Assignment/preprocessed1_data.csv', index = False)

5. Loading data

In [177]: data=pd.read_csv('C:/Users/91888/Desktop/Assignment/NaiveBayes Assignment/preprocessed1_data.csv',nrows=100000)

In [178]: data.head()

Out[178]:

	processed_essay	teacher_prefix	project_grade_category	school_state	clean_categories	clean_subcategorie	
0	students english learners working english seco	mrs	grades_prek_2	in	literacy_language	esl_literacy	
1	students arrive school eager learn polite gene	mr	grades_6_8	fl	history_civics_health_sports	civics_government_teamspor	
2	true champions not always ones win guts mia ha	ms	grades_6_8	az	health_sports	health_wellness_teamsports literacy_mathematics	
3	work unique school filled esl english second I	mrs	grades_prek_2	ky	literacy_language_math_science		
4	second grade classroom next year made around 2	mrs	grades_prek_2	tx	math_science	mathematics	

In [103]: data.shape

Out[103]: (100000, 9)

```
In [104]: y = data['project_is_approved'].values
X = data.drop(['project_is_approved'], axis=1)
X.head(1)
```

Out[104]:

	processed_essay	teacher_prefix	project_grade_category	school_state	clean_categories	clean_subcategories	teacher_number_c
0	students english learners working english seco	mrs	grades_prek_2	in	literacy_language	esl_literacy	0

5.1 Splitting data into Train and Cross Validation

```
In [105]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, stratify=y)
X_train, X_cv, y_train, y_cv = train_test_split(X_train, y_train, test_size=0.33, stratify=y_train)
```

5.2 Encoding essays

BOW

```
In [187]: print(X train.shape, y train.shape)
          print(X_cv.shape, y_cv.shape)
          print(X_test.shape, y_test.shape)
          print("="*100)
          vectorizer1 = CountVectorizer(min df=5, max features=5000)
          vectorizer1.fit(X train['processed essay'].values) # fit has to happen only on train data
          X train essay bow = vectorizer1.transform(X train['processed essay'].values)
          X cv essay bow = vectorizer1.transform(X cv['processed essay'].values)
          X test essay bow = vectorizer1.transform(X test['processed essay'].values)
          print("After vectorizations")
          print(X train essay bow.shape, y train.shape)
          print(X cv essay bow.shape, y cv.shape)
          print(X test essay bow.shape, y test.shape)
          print("="*100)
          (44890, 8) (44890,)
          (22110, 8) (22110,)
          (33000, 8) (33000,)
          After vectorizations
          (44890, 5000) (44890,)
          (22110, 5000) (22110,)
          (33000, 5000) (33000,)
```

TFIDF

```
In [188]: print(X train.shape, y train.shape)
          print(X_cv.shape, y_cv.shape)
          print(X test.shape, y test.shape)
          print("="*100)
          vectorizer2 = TfidfVectorizer(min df=5, max features=5000)
          vectorizer2.fit(X train['processed essay'].values) # fit has to happen only on train data
          X train essay tfidf = vectorizer2.transform(X train['processed essay'].values)
          X cv essay tfidf = vectorizer2.transform(X cv['processed essay'].values)
          X test essay tfidf = vectorizer2.transform(X test['processed essay'].values)
          print("After vectorizations")
          print(X train essay tfidf.shape, y train.shape)
          print(X cv essay tfidf.shape, y cv.shape)
          print(X test essay tfidf.shape, y test.shape)
          print("="*100)
          (44890, 8) (44890,)
          (22110, 8) (22110,)
          (33000, 8) (33000,)
          After vectorizations
          (44890, 5000) (44890,)
          (22110, 5000) (22110,)
          (33000, 5000) (33000,)
```

5.3 Encoding Categorical Feature

teacher_prefix

```
In [190]: vectorizer3 = CountVectorizer()
         vectorizer3.fit(X_train['teacher_prefix'].values)
         X train teacher ohe = vectorizer3.transform(X train['teacher prefix'].values)
         X cv teacher ohe = vectorizer3.transform(X cv['teacher prefix'].values)
         X test teacher ohe = vectorizer3.transform(X test['teacher prefix'].values)
         print("After vectorizations")
         print(X train teacher ohe.shape, y train.shape)
         print(X cv teacher ohe.shape, y cv.shape)
         print(X test teacher ohe.shape, y test.shape)
         print(vectorizer3.get feature names())
         print("="*100)
         After vectorizations
         (44890, 5) (44890,)
         (22110, 5) (22110,)
         (33000, 5) (33000,)
         ['dr', 'mr', 'mrs', 'ms', 'teacher']
         ______
```

project_grade_category

['grades_3_5', 'grades_6_8', 'grades_9_12', 'grades_prek_2']

```
In [191]: vectorizer4 = CountVectorizer()
    vectorizer4.fit(X_train['project_grade_category'].values)

X_train_grade_ohe = vectorizer4.transform(X_train['project_grade_category'].values)

X_cv_grade_ohe = vectorizer4.transform(X_cv['project_grade_category'].values)

X_test_grade_ohe = vectorizer4.transform(X_test['project_grade_category'].values)

print("After vectorizations")
    print(X_train_grade_ohe.shape, y_train.shape)
    print(X_cv_grade_ohe.shape, y_cv.shape)
    print(X_test_grade_ohe.shape, y_test.shape)
    print(vectorizer4.get_feature_names())
    print("="*100)

After vectorizations
    (44890, 4) (44890,)
    (22110, 4) (22110,)
```

school_state

(33000, 4) (33000,)

```
In [193]: vectorizer5 = CountVectorizer()
    vectorizer5.fit(X_train['school_state'].values)

X_train_state_ohe = vectorizer5.transform(X_train['school_state'].values)
    X_cv_state_ohe = vectorizer5.transform(X_cv['school_state'].values)
    X_test_state_ohe = vectorizer5.transform(X_test['school_state'].values)

print("After vectorizations")
    print(X_train_state_ohe.shape, y_train.shape)
    print(X_cv_state_ohe.shape, y_train.shape)
    print(X_test_state_ohe.shape, y_test.shape)
    print(vectorizer5.get_feature_names())
    print("="*100)
```

```
After vectorizations
(44890, 51) (44890,)
(22110, 51) (22110,)
(33000, 51) (33000,)
['ak', 'al', 'ar', 'az', 'ca', 'co', 'ct', 'dc', 'de', 'fl', 'ga', 'hi', 'ia', 'id', 'il', 'in', 'ks', 'ky', 'la', 'm a', 'md', 'me', 'mi', 'mn', 'mo', 'ms', 'mt', 'nc', 'nd', 'ne', 'nh', 'nj', 'nm', 'nv', 'ny', 'oh', 'ok', 'or', 'pa', 'ri', 'sc', 'sd', 'tn', 'tx', 'ut', 'va', 'vt', 'wa', 'wi', 'wv', 'wy']
```

clean_categories

```
In [194]: vectorizer6 = CountVectorizer()
    vectorizer6.fit(X_train['clean_categories'].values)

X_train_category_ohe = vectorizer6.transform(X_train['clean_categories'].values)
    X_cv_category_ohe = vectorizer6.transform(X_cv['clean_categories'].values)
    X_test_category_ohe = vectorizer6.transform(X_test['clean_categories'].values)

print("After vectorizations")
    print(X_train_category_ohe.shape, y_train.shape)
    print(X_cv_category_ohe.shape, y_cv.shape)
    print(X_test_category_ohe.shape, y_test.shape)
    print(vectorizer6.get_feature_names())
    print("="*100)
```

```
After vectorizations (44890, 50) (44890,) (22110, 50) (22110,) (33000, 50) (33000,)
```

['appliedlearning', 'appliedlearning_health_sports', 'appliedlearning_history_civics', 'appliedlearning_literacy_lang uage', 'appliedlearning_math_science', 'appliedlearning_music_arts', 'appliedlearning_specialneeds', 'appliedlearning_warmth_care_hunger', 'health_sports', 'health_sports_appliedlearning', 'health_sports_history_civics', 'health_sports_sliteracy_language', 'health_sports_math_science', 'health_sports_music_arts', 'health_sports_specialneeds', 'history_civics_literacy_language', 'history_civics_math_science', 'history_civics_music_arts', 'history_civics_health_sports', 'history_civics_literacy_language', 'literacy_language_appliedlearning', 'literacy_language_health_sports', 'literacy_language_history_civics', 'literacy_language_math_science', 'literacy_language_music_arts', 'literacy_language_specialneeds', 'literacy_language_warmth_care_hunger', 'math_science_appliedlearning', 'math_science_health_sports', 'math_science_history_civics', 'math_science_literacy_language', 'math_science_music_arts', 'math_science_specialneeds', 'math_science_warmth_care_hunger', 'music_arts', 'music_arts_appliedlearning', 'music_arts_health_sports', 'music_arts_history_civics', 'music_arts_specialneeds', 'music_arts_warmth_care_hunger', 'specialneeds', 'specialneeds_health_sports', 'specialneeds_music_arts', 'specialneeds_warmth_care_hunger', 'warmth_care_hunger']

clean_subcategories

```
In [195]: vectorizer7 = CountVectorizer()
    vectorizer7.fit(X_train['clean_subcategories'].values)

X_train_subcategory_ohe = vectorizer7.transform(X_train['clean_subcategories'].values)
    X_cv_subcategory_ohe = vectorizer7.transform(X_cv['clean_subcategories'].values)
    X_test_subcategory_ohe = vectorizer7.transform(X_test['clean_subcategories'].values)

print("After vectorizations")
    print(X_train_subcategory_ohe.shape, y_train.shape)
    print(X_cv_subcategory_ohe.shape, y_train.shape)
    print(X_test_subcategory_ohe.shape, y_test.shape)
    print(X_test_subcategory_ohe.shape, y_test.shape)
    print(vectorizer7.get_feature_names())
    print("="*100)
```

After vectorizations (44890, 379) (44890,) (22110, 379) (22110,) (33000, 379) (33000,)

['appliedsciences', 'appliedsciences_charactereducation', 'appliedsciences civics government', 'appliedsciences colle ge careerprep', 'appliedsciences communityservice', 'appliedsciences earlydevelopment', 'appliedsciences economics', 'appliedsciences_environmentalscience', 'appliedsciences_esl', 'appliedsciences extracurricular', 'appliedsciences fi nancialliteracy', 'appliedsciences foreignlanguages', 'appliedsciences gym fitness', 'appliedsciences health lifescie nce', 'appliedsciences health wellness', 'appliedsciences history geography', 'appliedsciences literacy', 'appliedsci ences literature writing', 'appliedsciences mathematics', 'appliedsciences music', 'appliedsciences nutritioneducatio n', 'appliedsciences other', 'appliedsciences parentinvolvement', 'appliedsciences performingarts', 'appliedsciences socialsciences', 'appliedsciences specialneeds', 'appliedsciences teamsports', 'appliedsciences visualarts', 'charact ereducation', 'charactereducation civics government', 'charactereducation college careerprep', 'charactereducation co mmunityservice', 'charactereducation earlydevelopment', 'charactereducation environmentalscience', 'charactereducatio n esl', 'charactereducation extracurricular', 'charactereducation financialliteracy', 'charactereducation foreignlang uages', 'charactereducation_gym_fitness', 'charactereducation_health_lifescience', 'charactereducation health wellnes s', 'charactereducation history geography', 'charactereducation literacy', 'charactereducation literature writing', 'charactereducation mathematics', 'charactereducation music', 'charactereducation nutritioneducation', 'charactereduc ation other', 'charactereducation parentinvolvement', 'charactereducation performingarts', 'charactereducation social sciences', 'charactereducation specialneeds', 'charactereducation teamsports', 'charactereducation visualarts', 'char actereducation warmth care hunger', 'civics government', 'civics government college careerprep', 'civics government c ommunityservice', 'civics government economics', 'civics_government_environmentalscience', 'civics_government_esl', 'civics government extracurricular', 'civics government financialliteracy', 'civics government health lifescience', 'civics government history geography', 'civics government literacy', 'civics government literature writing', 'civics government mathematics', 'civics government parentinvolvement', 'civics government performingarts', 'civics governmen t socialsciences', 'civics government specialneeds', 'civics government teamsports', 'civics government visualarts', 'college careerprep', 'college careerprep communityservice', 'college careerprep earlydevelopment', 'college careerpr ep_economics', 'college_careerprep_environmentalscience', 'college_careerprep_esl', 'college_careerprep_extracurricul ar', 'college careerprep financialliteracy', 'college careerprep foreignlanguages', 'college careerprep gym fitness', 'college careerprep health lifescience', 'college careerprep health wellness', 'college careerprep history geograph y', 'college careerprep literacy', 'college careerprep literature writing', 'college careerprep mathematics', 'colleg e careerprep music', 'college careerprep nutritioneducation', 'college careerprep other', 'college careerprep parenti nvolvement', 'college careerprep performingarts', 'college careerprep socialsciences', 'college careerprep specialnee ds', 'college careerprep visualarts', 'college careerprep warmth care hunger', 'communityservice', 'communityservice earlydevelopment', 'communityservice economics', 'communityservice environmentalscience', 'communityservice extracurr icular', 'communityservice financialliteracy', 'communityservice gym fitness', 'communityservice health lifescience', 'communityservice health wellness', 'communityservice history geography', 'communityservice literacy', 'communityserv ice literature writing', 'communityservice mathematics', 'communityservice nutritioneducation', 'communityservice oth er', 'communityservice_parentinvolvement', 'communityservice_performingarts', 'communityservice_socialsciences', 'com munityservice specialneeds', 'communityservice visualarts', 'earlydevelopment', 'earlydevelopment economics', 'earlydevelopment', 'earlydevelopmen evelopment_environmentalscience', 'earlydevelopment_extracurricular', 'earlydevelopment_financialliteracy', 'earlydev

elopment foreignlanguages', 'earlydevelopment gym fitness', 'earlydevelopment health lifescience', 'earlydevelopment health wellness', 'earlydevelopment history geography', 'earlydevelopment literacy', 'earlydevelopment literature wri ting', 'earlydevelopment mathematics', 'earlydevelopment music', 'earlydevelopment nutritioneducation', 'earlydevelop ment other', 'earlydevelopment parentinvolvement', 'earlydevelopment performingarts', 'earlydevelopment socialscience s', 'earlydevelopment_specialneeds', 'earlydevelopment teamsports', 'earlydevelopment visualarts'. 'earlydevelopment warmth care hunger', 'economics', 'economics environmentalscience', 'economics financialliteracy', 'economics health lifescience', 'economics_history_geography', 'economics literacy', 'economics mathematics'. 'economics nutritioneduca tion', 'economics other', 'economics socialsciences', 'economics specialneeds', 'economics visualarts', 'environmenta lscience', 'environmentalscience extracurricular', 'environmentalscience financialliteracy', 'environmentalscience fo reignlanguages', 'environmentalscience gym fitness', 'environmentalscience health lifescience', 'environmentalscience health wellness', 'environmentalscience history geography', 'environmentalscience literacy', 'environmentalscience l iterature writing', 'environmentalscience mathematics', 'environmentalscience music', 'environmentalscience nutrition education', 'environmentalscience other', 'environmentalscience parentinvolvement', 'environmentalscience performinga rts', 'environmentalscience socialsciences', 'environmentalscience specialneeds', 'environmentalscience teamsports', 'environmentalscience visualarts', 'esl', 'esl earlydevelopment', 'esl economics', 'esl environmentalscience', 'esl e xtracurricular', 'esl financialliteracy', 'esl foreignlanguages', 'esl gym fitness', 'esl health lifescience', 'esl h ealth wellness', 'esl history geography', 'esl literacy', 'esl literature writing', 'esl mathematics', 'esl music', 'esl nutritioneducation', 'esl other', 'esl parentinvolvement', 'esl performingarts', 'esl socialsciences', 'esl spec ialneeds', 'esl visualarts', 'extracurricular', 'extracurricular financialliteracy', 'extracurricular foreignlanguage s', 'extracurricular gym fitness', 'extracurricular health lifescience', 'extracurricular health wellness', 'extracur ricular history geography', 'extracurricular literacy', 'extracurricular literature writing', 'extracurricular mathem atics', 'extracurricular music', 'extracurricular nutritioneducation', 'extracurricular other', 'extracurricular pare ntinvolvement', 'extracurricular performingarts', 'extracurricular socialsciences', 'extracurricular specialneeds', 'extracurricular teamsports', 'extracurricular visualarts', 'financialliteracy', 'financialliteracy health lifescienc e', 'financialliteracy health wellness', 'financialliteracy history geography', 'financialliteracy literacy', 'financ ialliteracy literature writing', 'financialliteracy mathematics', 'financialliteracy other', 'financialliteracy paren tinvolvement', 'financialliteracy socialsciences', 'financialliteracy specialneeds', 'financialliteracy visualarts', 'foreignlanguages', 'foreignlanguages health lifescience', 'foreignlanguages health wellness', 'foreignlanguages hist ory geography', 'foreignlanguages literacy', 'foreignlanguages literature writing', 'foreignlanguages mathematics', 'foreignlanguages music', 'foreignlanguages other', 'foreignlanguages performingarts', 'foreignlanguages socialscienc es', 'foreignlanguages specialneeds', 'foreignlanguages visualarts', 'gym fitness', 'gym fitness health lifescience', 'gym fitness health wellness', 'gym fitness history geography', 'gym fitness literacy', 'gym fitness literature writi ng', 'gym_fitness_mathematics', 'gym_fitness_music', 'gym_fitness_nutritioneducation', 'gym fitness other', 'gym fitn ess performingarts', 'gym fitness specialneeds', 'gym fitness teamsports', 'gym fitness visualarts', 'gym fitness war mth care hunger', 'health lifescience', 'health lifescience health wellness', 'health lifescience history geography', 'health lifescience literacy', 'health lifescience literature writing', 'health lifescience mathematics', 'health lif escience music', 'health lifescience nutritioneducation', 'health lifescience other', 'health lifescience parentinvol vement', 'health lifescience performingarts', 'health lifescience socialsciences', 'health lifescience specialneeds', 'health lifescience teamsports', 'health lifescience visualarts', 'health lifescience warmth care hunger', 'health we llness', 'health wellness history geography', 'health wellness literacy', 'health wellness literature writing', 'heal th wellness mathematics', 'health wellness music', 'health wellness nutritioneducation', 'health wellness other', 'he alth wellness parentinvolvement', 'health wellness performingarts', 'health wellness socialsciences', 'health wellnes

s specialneeds', 'health wellness teamsports', 'health wellness visualarts', 'health wellness warmth care hunger', 'h istory geography', 'history geography literacy', 'history geography literature writing', 'history geography mathemati cs', 'history geography music', 'history geography other', 'history geography parentinvolvement', 'history geography performingarts', 'history geography socialsciences', 'history geography specialneeds', 'history geography teamsport s', 'history geography visualarts', 'literacy', 'literacy literature writing', 'literacy mathematics', 'literacy musi c', 'literacy nutritioneducation', 'literacy other', 'literacy parentinvolvement', 'literacy performingarts', 'litera cy socialsciences', 'literacy specialneeds', 'literacy teamsports', 'literacy visualarts', 'literacy warmth care hung er', 'literature writing', 'literature writing mathematics', 'literature writing music', 'literature writing other', 'literature writing parentinvolvement', 'literature writing performingarts', 'literature writing socialsciences', 'li terature writing specialneeds', 'literature writing teamsports', 'literature writing visualarts', 'literature writing warmth care hunger', 'mathematics', 'mathematics music', 'mathematics nutritioneducation', 'mathematics other', 'mat hematics parentinvolvement', 'mathematics performingarts', 'mathematics socialsciences', 'mathematics specialneeds', 'mathematics teamsports', 'mathematics visualarts', 'mathematics warmth care hunger', 'music', 'music other', 'music parentinvolvement', 'music performingarts', 'music socialsciences', 'music specialneeds', 'music teamsports', 'music visualarts', 'nutritioneducation', 'nutritioneducation other', 'nutritioneducation socialsciences', 'nutritioneducati on specialneeds', 'nutritioneducation teamsports', 'nutritioneducation visualarts', 'nutritioneducation warmth care h unger', 'other', 'other parentinvolvement', 'other socialsciences', 'other specialneeds', 'other teamsports', 'other visualarts', 'parentinvolvement', 'parentinvolvement performingarts', 'parentinvolvement socialsciences', 'parentinvo lvement specialneeds', 'parentinvolvement teamsports', 'parentinvolvement visualarts', 'parentinvolvement warmth care hunger', 'performingarts', 'performingarts socialsciences', 'performingarts specialneeds', 'performingarts teamsport s', 'performingarts visualarts', 'socialsciences', 'socialsciences specialneeds', 'socialsciences teamsports', 'socia lsciences visualarts', 'specialneeds', 'specialneeds teamsports', 'specialneeds visualarts', 'specialneeds warmth car e hunger', 'teamsports', 'teamsports visualarts', 'visualarts', 'visualarts warmth care hunger', 'warmth care hunge

5.4 Encoding Numerical Feature

price

```
In [119]: from sklearn.preprocessing import Normalizer
          normalizer = Normalizer()
          normalizer.fit(X train['price'].values.reshape(1,-1))
          X train price norm = normalizer.transform(X train['price'].values.reshape(1,-1))
          X cv price norm = normalizer.transform(X cv['price'].values.reshape(1,-1))
          X_test_price_norm = normalizer.transform(X_test['price'].values.reshape(1,-1))
          X train price norm=X train price norm.reshape(-1,1)
          X cv price norm=X cv price norm.reshape(-1,1)
          X test price norm=X test price norm.reshape(-1,1)
          print("After vectorizations")
          print(X train price norm.shape, v train.shape)
          print(X cv price norm.shape, y cv.shape)
          print(X test price norm.shape, y test.shape)
          print("="*100)
          After vectorizations
          (44890, 1) (44890,)
          (22110, 1) (22110,)
          (33000, 1) (33000,)
```

teacher_number_of_previously_posted_projects

```
In [120]: from sklearn.preprocessing import Normalizer
          normalizer = Normalizer()
          normalizer.fit(X_train['teacher_number_of_previously_posted_projects'].values.reshape(1,-1))
          X train teachernumber norm = normalizer.transform(X train['teacher number of previously posted projects'].values.resha
          pe(1,-1)
          X_cv_teachernumber_norm = normalizer.transform(X_cv['teacher_number_of_previously_posted_projects'].values.reshape(1,-
          1))
          X test teachernumber norm = normalizer.transform(X test['teacher number of previously posted projects'].values.reshape
          (1,-1)
          X train teachernumber norm=X train teachernumber norm.reshape(-1,1)
          X cv teachernumber norm=X cv teachernumber norm.reshape(-1,1)
          X test teachernumber norm=X test teachernumber norm.reshape(-1,1)
          print("After vectorizations")
          print(X train teachernumber norm.shape, y train.shape)
          print(X cv teachernumber norm.shape, v cv.shape)
          print(X test teachernumber norm.shape, y test.shape)
          print("="*100)
          After vectorizations
          (44890, 1) (44890,)
          (22110, 1) (22110,)
          (33000, 1) (33000,)
```

5.5 Merging all features

set 1

```
In [121]: from scipy.sparse import hstack
                                   X tr = hstack((X train essay bow, X_train_teacher_ohe, X_train_grade_ohe, X_train_state_ohe, X_train_category_ohe, X_train_state_ohe, X_train_state_ohe, X_train_category_ohe, X_train_state_ohe, X_tr
                                   in subcategory ohe, X train price norm, X train teachernumber norm)).tocsr()
                                   X cr = hstack((X cv essay bow, X cv teacher ohe, X cv grade ohe, X cv state ohe, X cv category ohe, X cv subcategory ohe
                                    ,X cv price norm,X cv teachernumber norm)).tocsr()
                                   X te = hstack((X test essay bow, X test teacher ohe, X test grade ohe, X test state ohe, X test category ohe, X test sub
                                   category ohe,X test price norm,X test teachernumber norm)).tocsr()
                                   print("Final Data matrix")
                                   print(X tr.shape, y train.shape)
                                   print(X cr.shape, y cv.shape)
                                   print(X te.shape, v test.shape)
                                   print("="*100)
                                    Final Data matrix
                                    (44890, 5491) (44890,)
                                   (22110, 5491) (22110,)
                                    (33000, 5491) (33000,)
```

Applying Naive Bayes on Set 1

```
In [122]: alpha=[0.00001,0.0005, 0.0001,0.005,0.001,0.05,0.01,0.1,0.5,1,5,10,50,100]
```

```
In [125]: # how to take log of list: https://stackoverflow.com/questions/11656767/how-to-take-the-log-of-all-elements-of-a-list
          from math import log
          import numpy
          log_alpha=[numpy.log10(y) for y in alpha]
          log alpha
Out[125]: [-5.0,
           -3.3010299956639813,
           -4.0,
           -2.3010299956639813,
           -3.0,
           -1.3010299956639813,
           -2.0,
           -1.0,
           -0.3010299956639812,
           0.0,
           0.6989700043360189,
           1.0,
           1.6989700043360187,
           2.0]
```

Finding best alpha

In [126]: from sklearn.naive bayes import MultinomialNB import matplotlib.pyplot as plt from sklearn.metrics import roc auc score train auc = [] cv auc = [] for i in tqdm(alpha): neigh = MultinomialNB(alpha = i, class prior = [0.5,0.5]) neigh.fit(X tr, y train) y train pred = neigh.predict proba(X tr)[:, 1] y cv pred = neigh.predict proba(X cr)[:, 1] train auc.append(roc auc score(y train,y train pred)) cv auc.append(roc auc score(y cv, y cv pred)) plt.plot(log_alpha, train_auc, label='Train AUC') plt.plot(log alpha, cv auc, label='Validation AUC') plt.scatter(log alpha, train auc, label='Train AUC points') plt.scatter(log alpha, cv auc, label='CV AUC points') plt.legend() plt.xlabel("hyperparameter") plt.ylabel("Area under ROC curve") plt.title("hyperparameter vs AUC ") plt.grid() plt.show()

100%| 14/14 [00:02<00:00, 5.87it/s]

In [127]: from sklearn.naive bayes import MultinomialNB import matplotlib.pyplot as plt from sklearn.metrics import roc auc score train1 auc = [] cv1 auc = [] for i in tqdm(alpha): neigh = MultinomialNB(alpha = i,fit prior= True, class prior = None) neigh.fit(X tr, y train) y train pred = neigh.predict proba(X tr)[:, 1] y cv pred = neigh.predict proba(X cr)[:, 1] train1 auc.append(roc_auc_score(y_train,y_train_pred)) cv1_auc.append(roc_auc_score(y_cv, y_cv_pred)) plt.plot(log alpha, train1 auc, label='Train AUC') plt.plot(log alpha, cv1 auc, label='Validation AUC') plt.scatter(log alpha, train1 auc, label='Train AUC points') plt.scatter(log alpha, cv1 auc) plt.legend() plt.xlabel("hyperparameter") plt.ylabel("Area under ROC curve") plt.title("hyperparameter vs AUC") plt.grid() plt.show()

100%| 14/14 [00:02<00:00, 5.06it/s]

In []: From above 2 cases (with class_prior[0.5,0.5] and class_prior=None) we can conclude that best_alpha (log alpha) is 1
as
cv_auc is maximum and also gap between train_auc and cv_auc is miminum

In []: best log_alpha is 1
so best alpha is 10

In [130]: best_alpha=10

best_alpha=10

PLotting ROC Curve on both train and test data

In [131]: import numpy as np from sklearn import metrics neigh = MultinomialNB(alpha = best alpha, class prior = [0.5,0.5]) neigh.fit(X tr, y train) y train pred = neigh.predict proba(X tr)[:, 1] y test pred = neigh.predict proba(X te)[:, 1] #https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc curve.html#sklearn.metrics.roc curve train fpr, train tpr, tr thresholds = metrics.roc curve(y train, y train pred) test fpr, test tpr, te thresholds = metrics.roc curve(y test, y test pred) #PLot curve : plt.plot(train fpr, train tpr, label="train AUC ="+str(metrics.auc(train fpr, train tpr))) plt.plot(test fpr, test tpr, label="test AUC ="+str(metrics.auc(test fpr, test tpr))) plt.legend(loc='lower right') plt.xlabel("FPR") plt.ylabel("TPR") plt.title("ROC Curve") plt.grid() plt.show()

Finding optimal threshold

```
In [133]: #finding best threshold : https://stats.stackexchange.com/questions/123124/how-to-determine-the-optimal-threshold-for-
a-classifier-and-generate-roc-curve
from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(y_test, y_test_pred)
    optimal_idx = np.argmax(tpr - fpr)
    optimal_threshold = thresholds[optimal_idx]
    print("Threshold value is:", np.round(optimal_threshold,3))
```

Threshold value is: 0.801

```
In [134]: def predict(proba, threshould):
    predictions = []
    for i in proba:
        if i>=threshould:
            predictions.append(1)
        else:
            predictions.append(0)
        return predictions
    prediction = predict(y_test_pred,optimal_threshold)
```

confusion matrix

```
In [135]: from sklearn.metrics import confusion_matrix
matrix = confusion_matrix(y_test,prediction)
print('Confusion matrix : \n',matrix)

Confusion matrix :
    [[ 3337    1664]
    [11092    16907]]
```

In [136]: import seaborn as sns
import matplotlib.pyplot as plt
sns.heatmap(matrix, annot=True,fmt="d",cmap='Blues')

Out[136]: <matplotlib.axes._subplots.AxesSubplot at 0x237b0a45c50>

set 2

```
In [258]: from scipy.sparse import hstack
          X_tr = hstack((X_train_essay_tfidf, X_train_teacher_ohe, X_train_grade_ohe, X_train_state_ohe,X_train_category_ohe,X_t
          rain_subcategory_ohe,X_train_price_norm,X_train_teachernumber_norm)).tocsr()
          X cr = hstack((X cv essay tfidf, X cv teacher ohe, X cv grade ohe, X cv state ohe, X cv category ohe, X cv subcategory o
          he,X cv price norm,X cv teachernumber norm)).tocsr()
          X_te = hstack((X_test_essay_tfidf, X_test_teacher_ohe, X_test_grade_ohe, X_test_state_ohe, X_test_category_ohe, X_test_s
          ubcategory ohe,X test price norm,X test teachernumber norm)).tocsr()
          print("Final Data matrix")
          print(X tr.shape, y train.shape)
          print(X cr.shape, y cv.shape)
          print(X te.shape, v test.shape)
          print("="*100)
          Final Data matrix
          (44890, 5491) (44890,)
          (22110, 5491) (22110,)
          (33000, 5491) (33000,)
```

Applying Naive Bayes on Set 2

```
In [157]: alpha=[0.00001,0.0005, 0.0001,0.005,0.001,0.05,0.01,0.1,0.5,1,5,10,50,100]
          from math import log
          import numpy
          log_alpha=[numpy.log10(y) for y in alpha]
          log alpha
Out[157]: [-5.0,
           -3.3010299956639813,
           -4.0,
           -2.3010299956639813,
           -3.0,
           -1.3010299956639813,
           -2.0,
           -1.0,
           -0.3010299956639812,
           0.0,
           0.6989700043360189,
           1.0,
           1.6989700043360187,
           2.0]
```

Finding best alpha

In [165]: from sklearn.naive bayes import MultinomialNB import matplotlib.pyplot as plt from sklearn.metrics import roc auc score train auc = [] cv auc = [] for i in tqdm(alpha): neigh = MultinomialNB(alpha = i, class prior = [0.5,0.5]) neigh.fit(X tr, y train) y train pred = neigh.predict proba(X tr)[:, 1] y cv pred = neigh.predict proba(X cr)[:, 1] train auc.append(roc auc score(y train,y train pred)) cv auc.append(roc auc score(y cv, y cv pred)) plt.plot(log_alpha, train_auc, label='Train AUC') plt.plot(log alpha, cv auc, label='Validation AUC') plt.scatter(log alpha, train auc, label='Train AUC points') plt.scatter(log alpha, cv auc, label='CV AUC points') plt.legend() plt.xlabel("hyperparameter") plt.ylabel("Area under ROC curve") plt.title("hyperparameter vs AUC ") plt.grid() plt.show()

100%| 14/14 [00:02<00:00, 6.16it/s]

In [159]: from sklearn.naive bayes import MultinomialNB import matplotlib.pyplot as plt from sklearn.metrics import roc auc score train1 auc = [] cv1 auc = [] for i in tqdm(alpha): neigh = MultinomialNB(alpha = i,fit prior= True, class prior = None) neigh.fit(X tr, y train) y train pred = neigh.predict proba(X tr)[:, 1] y cv pred = neigh.predict proba(X cr)[:, 1] train1 auc.append(roc_auc_score(y_train,y_train_pred)) cv1_auc.append(roc_auc_score(y_cv, y_cv_pred)) plt.plot(log alpha, train1 auc, label='Train AUC') plt.plot(log alpha, cv1 auc, label='Validation AUC') plt.scatter(log alpha, train1 auc, label='Train AUC points') plt.scatter(log alpha, cv1 auc) plt.legend() plt.xlabel("hyperparameter") plt.ylabel("Area under ROC curve") plt.title("hyperparameter vs AUC") plt.grid() plt.show()

100%| 14/14 [00:02<00:00, 6.28it/s]

In []: From above 2 cases (with class_prior[0.5,0.5] and class_prior=None) we can conclude that best_alpha (log alpha)
 is -0.3010299956639812 as
 cv_auc is maximum and also gap between train_auc and cv_auc is miminum

In [168]: best_alpha=0.5

Plotting ROC curve on both train and test data

In [269]: import numpy as np from sklearn import metrics neigh = MultinomialNB(alpha = best alpha, class prior = [0.5,0.5]) neigh.fit(X tr, y train) y train pred = neigh.predict proba(X tr)[:, 1] y test pred = neigh.predict proba(X te)[:, 1] #https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc curve.html#sklearn.metrics.roc curve train fpr, train tpr, tr thresholds = metrics.roc curve(y train, y train pred) test fpr, test tpr, te thresholds = metrics.roc curve(y test, y test pred) #PLot curve : plt.plot(train fpr, train tpr, label="train AUC ="+str(metrics.auc(train fpr, train tpr))) plt.plot(test fpr, test tpr, label="test AUC ="+str(metrics.auc(test fpr, test tpr))) plt.legend(loc='lower right') plt.xlabel("FPR") plt.ylabel("TPR") plt.title("ROC Curve") plt.grid() plt.show()

Finding optimal threshold

```
In [170]: #https://stackoverflow.com/questions/28719067/roc-curve-and-cut-off-point-python
          from sklearn.metrics import roc curve, auc
          fpr, tpr, thresholds = roc curve(y test, y test pred)
          optimal idx = np.argmax(tpr - fpr)
          optimal threshold = thresholds[optimal idx]
          print("Threshold value is:", np.round(optimal threshold,3))
          Threshold value is: 0.539
In [171]: def predict(proba, threshould):
              predictions = []
              for i in proba:
                   if i>=threshould:
                       predictions.append(1)
                   else:
                       predictions.append(0)
              return predictions
          prediction = predict(y_test_pred,optimal_threshold)
```

confusion matrix

```
In [172]: from sklearn.metrics import confusion_matrix
          matrix = confusion_matrix(y_test,prediction)
          print('Confusion matrix : \n',matrix)
          Confusion matrix :
           [[ 3221 1780]
           [11783 16216]]
In [173]:
          import seaborn as sns
          import matplotlib.pyplot as plt
          sns.heatmap(matrix, annot=True,fmt="d",cmap='Blues')
Out[173]: <matplotlib.axes._subplots.AxesSubplot at 0x237a2583198>
                                                      - 15000
                     3221
                                       1780
           0 -
                                                     - 12500
```


Find Top Features

```
In [276]: all_feature_name=[]

In [277]: all_feature_name.extend(vectorizer2.get_feature_names())
    all_feature_name.extend(vectorizer3.get_feature_names())
    all_feature_name.extend(vectorizer4.get_feature_names())
    all_feature_name.extend(vectorizer5.get_feature_names())
    all_feature_name.extend(vectorizer6.get_feature_names())
    all_feature_name.extend(vectorizer7.get_feature_names())
    all_feature_name.append('price')
    all_feature_name.append('teacher_number_of_previously_posted_projects')

In [257]: len(all_feature_name)

Out[257]: 5491

In [278]: totalfeatures=len(all_feature_name)
```

set2 top 20 positive features

Out[280]:

	feature_prob_estimates	feature_names
5002	-3.243266	mrs
5008	-3.502716	grades_prek_2
5003	-3.641740	ms
5005	-3.686371	grades_3_5
5083	-4.115813	literacy_language
5006	-4.478611	grades_6_8
5091	-4.499325	math_science
5013	-4.557125	са
4363	-4.574568	students
5087	-4.593633	literacy_language_math_science
5007	-4.916853	grades_9_12
5001	-4.949692	mr
5068	-4.993317	health_sports
5408	-5.001064	literacy
5410	-5.154231	literacy_mathematics
5043	-5.296893	ny
5052	-5.336788	tx
5018	-5.480416	fl
5422	-5.500149	literature_writing_mathematics
5409	-5.563312	literacy_literature_writing

set2 top 20 negative features

```
In [281]: neigh = MultinomialNB(alpha =0.5,fit_prior= True, class_prior = None)
    neigh.fit(X_tr,y_train)
    bow_features_probs = []
    for a in range(totalfeatures):
        bow_features_probs.append(neigh.feature_log_prob_[0,a] )
```

Out[283]:

	feature_prob_estimates	feature_names
5002	-3.304794	mrs
5008	-3.516807	grades_prek_2
5003	-3.643076	ms
5005	-3.741890	grades_3_5
5083	-4.268036	literacy_language
5091	-4.339296	math_science
5006	-4.434812	grades_6_8
4363	-4.602013	students
5013	-4.659650	са
5087	-4.779626	literacy_language_math_science
5007	-4.880112	grades_9_12
5001	-4.884349	mr
5068	-4.979305	health_sports
5052	-5.048576	tx
5408	-5.293004	literacy
5410	-5.343233	literacy_mathematics
5018	-5.375090	fl
5043	-5.461996	ny
5432	-5.508456	mathematics
3954	-5.566450	school

conclusion

```
In [272]: #http://zetcode.com/python/prettytable/
         from prettytable import PrettyTable
         x = PrettyTable()
         x.field names = ["Vectorizer", "Model", "Hyperparameter: Alpha", "Test AUC"]
         x.add row(["BOW", "Multinomial Naive Bayes", 10, 0.67])
         x.add row(["TF-IDF", "Multinomial Naive Bayes", 0.5, 0.65])
         print(x)
           Vectorizer | Model | Hyperparameter: Alpha | Test AUC
             BOW | Multinomial Naive Bayes | 10 | 0.67
TF-IDF | Multinomial Naive Bayes | 0.5 | 0.65
In [284]: !jupyter nbconvert --to html NB solve.ipynb
         [NbConvertApp] Converting notebook NB solve.ipynb to html
         [NbConvertApp] Writing 686174 bytes to NB solve.html
```