



Universidade Federal de Pernambuco Centro de Informática

### Cálculo Numérico (IF215)

Profa. Maíra Santana





Um sistema linear com m equações e n variáveis é usualmente escrito como:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

onde:

 $a_{ij}$ : coeficientes

 $1 \le i \le m$  ,  $1 \le j \le n$ 

 $x_i$ : variáveis

j = 1, 2, ..., n

 $b_i$ : termos independentes i = 1, 2, ..., m





$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Notação matricial:

A: matriz dos coeficientes;

x: vetor das variáveis;

*b*: vetor de termos independentes.

Solução do sistema:

Encontrar o vetor de valores  $x_j$  que satisfaçam todas as m equações simultaneamente.





Álgebra Linear;

- Aplicações práticas:
  - · Tráfego de veículos;
  - Balanceamento de equações químicas;
  - Cálculo de alimentação diária equilibrada;
  - Circuitos elétricos;
  - Sistemas de GPS;
  - Ruídos acústicos poluição sonora;
  - Mecanismos de busca.

http://www.ime.unicamp.br/~apmat/sistemas-lineares-algumas-aplicacoes/





- Sistemas de Equações compostos por muitas equações;
- Métodos numéricos para resolução de sistemas de equações lineares:
  - Métodos diretos: fornecem a solução exata, caso ela exista, após um número finito de operações;
  - Métodos iterativos: geram uma sequência de vetores a partir de uma aproximação inicial, essa sequência converge para a solução, caso ela exista.





- Métodos diretos:
  - Eliminação de Gauss;
  - Fatoração LU;
  - Fatoração de Cholesky.
- Métodos iterativos:
  - Método de Jacobi;
  - Método de Gauss-Seidel;
  - Método de sobre-relaxação sucessiva (SOR).





- Eliminação de Gauss
  - Objetivo: encontrar a matriz triangular superior, ou seja, zerar os elementos abaixo da diagonal principal;
  - Pivô: número da diagonal principal utilizado para zerar os elementos abaixo da diagonal principal.

- Operações que não modificam o resultado do sistema:
  - Multiplicar por uma constante;
  - Trocar de posição;
  - · Multiplicar uma linha e somar a uma outra linha.





Exemplo

$$\begin{cases} 3x_0 + 2x_1 + 7x_2 = 8 \\ -6x_0 + 5x_1 + x_2 = -10 \\ 3x_0 + 11x_1 - x_2 = -9 \end{cases}$$

#### Matriz aumentada do sistema

$$\begin{bmatrix} 3 & 2 & 7 & 8 \\ -6 & 5 & 1 & -10 \\ 3 & 11 & -1 & -9 \end{bmatrix}$$





Exemplo [continuação]

$$\begin{cases} 3x_0 + 2x_1 + 7x_2 = 8 \\ -6x_0 + 5x_1 + x_2 = -10 \\ 3x_0 + 11x_1 - x_2 = -9 \end{cases}$$

$$\begin{bmatrix} 3 & 2 & 7 & 8 \\ -6 & 5 & 1 & -10 \\ 3 & 11 & -1 & -9 \end{bmatrix}$$

1) Somar a 2ª linha pela 1ª multiplicada por  $m = -\left(\frac{-6}{3}\right) = 2$ :





Exemplo [continuação]

2) Somar a 3ª linha pela 1ª multiplicada por  $m = -\left(\frac{3}{3}\right) = -1$ 

$$\begin{bmatrix} 3 & 2 & 7 & 8 \\ 0 & 9 & 15 & 6 \\ 0 & 9 & -8 & -17 \end{bmatrix}$$

Matriz aumentada de um sistema <u>equivalente</u> ao sistema original, ou seja, que possui as mesmas soluções do sistema original.





Exemplo [continuação]

$$\begin{bmatrix} 3 & 2 & 7 & 8 \\ 0 & 9 & 15 & 6 \\ 0 & 9 & -8 & -17 \end{bmatrix}$$

Para que se torne uma matriz triangular superior precisamos zerar mais um elemento.

3) Somar a 3ª linha pela 2ª multiplicada por m = 
$$-\left(\frac{9}{9}\right) = -1$$
Pivô  $\begin{bmatrix} 3 & 2 & 7 & 8 \\ 0 & 9 & 15 & 6 \\ 0 & 0 & -23 & -23 \end{bmatrix}$ 

Matriz aumentada de um sistema <u>equivalente</u> ao sistema original, ou seja, que possui as mesmas soluções do sistema original.





Exemplo [continuação]

$$\begin{bmatrix} 3 & 2 & 7 & 8 \\ 0 & 9 & 15 & 6 \\ 0 & 0 & -23 & -23 \end{bmatrix}$$

$$\begin{cases} 3x_0 + 2x_1 + 7x_2 = 8 \\ 9x_1 + 15x_2 = 6 \\ -23x_2 = -23 \end{cases}$$

$$x_2 = \frac{-23}{-23} = 1$$

$$x_1 = \frac{6 - 15x_2}{9} = -1$$

$$x_0 = \frac{8 - 2x_1 - 7x_2}{3} = 1$$





### Eliminação de Gauss (algoritmo)



- 1º passo: definir a matriz dos coeficientes e o vetor de termos independentes;
- 2º passo: multiplicadores:

$$m_{ik} = -\frac{a_{ik}}{a_{kk}}$$
 ,  $i = (k+1), (k+2), ..., n$ 

• 3º passo: para cada multiplicador:

$$\cdot a_{ij} = a_{ij} + (m * a_{kj})$$

• 
$$b_i = b_i + mb_k$$

• 4º passo: calcular as soluções  $x_i$ .







- O método da Eliminação de Gauss requer o cálculo de multiplicadores;
- Esses multiplicadores são calculados a partir do pivô:

$$m = -rac{"elemento que quero zerar"}{piv\^{0}}$$

- O que acontece se o pivô for nulo ou se estiver próximo de zero?
  - Multiplicadores bem maiores que a unidade, o que origina uma ampliação dos erros de arredondamento e, portanto, resultados imprecisos.





 Para minimizar esse problema deve-se adotar estratégias de pivoteamento;

- Conceito:
  - Processo para escolher a linha e/ou coluna pivotal.

- Estratégias:
  - Pivoteamento parcial;
  - Pivoteamento completo ou total.





- Pivoteamento parcial
  - i. Escolher para pivô o elemento de maior módulo entre os coeficientes  $a_{ij}$  da coluna de interesse;
  - ii. Trocar as linhas se for necessário.
- Exemplo:

$$\begin{pmatrix}
3 & 2 & 1 & -1 & 5 \\
0 & 0 & 1 & 3 & 6 \\
0 & -3 & -5 & 7 & 7 \\
0 & 2 & 4 & 0 & 15
\end{pmatrix}$$

- i.  $Piv\hat{o} = -3$ ;
- ii. Trocar linhas 2 e 3.

$$\begin{pmatrix}
3 & 2 & 1 & -1 & 5 \\
0 & -3 & -5 & 7 & 7 \\
0 & 0 & 1 & 3 & 6 \\
0 & 2 & 4 & 0 & 15
\end{pmatrix}$$





- Pivoteamento completo ou total
  - i. Escolher para pivô o elemento de maior módulo entre todos os elementos  $a_{ij}$  que atuam no processo de eliminação.
  - ii. Trocar as linhas e colunas se for necessário.

Exemplo:

$$\begin{pmatrix}
3 & 2 & 1 & -1 & 5 \\
0 & 0 & 1 & 3 & 6 \\
0 & -3 & -5 & 7 & 7 \\
0 & 2 & 4 & 0 & 15
\end{pmatrix}$$

- i.  $Piv\hat{o} = 7$ ;
- ii. Trocar colunas 2 e 4 e,em seguida, trocar linhas 2 e 3

$$\begin{pmatrix}
3 & -1 & 1 & 2 & 5 \\
0 & 7 & -5 & -3 & 7 \\
0 & 3 & 1 & 0 & 6 \\
0 & 0 & 4 & 2 & 15
\end{pmatrix}$$





CÁLCULO NUMÉRICO Profa. Maíra Santana mas6@cin.ufpe.br

#### Algoritmo 2: Eliminação Gaussiana com Pivot eamento 1 para k = 1, ..., n-1 faça 2 Pivot eam ent o: 3 $pivo = a_{kk}$ 4 l pivo = k5 para i = (k + 1), ..., n faça se $|a_{ik}| > |pivo|$ então 7 $pivo = a_{ik}$ 8 l pivo = i9 $_{ m fim}$ 10 $_{\rm fim}$ 11 se pivo = 0 então 12 Parar. A matriz A é singular. 13 fim 14 se l $pivo \neq k$ ent $\tilde{a}o$ 15 para j = 1, ..., n faça 16 $troca = a_{ki}$ 17 18 $a_{kj} = a_{l pivoj}$ $a_{l pivoj} = troca$ 19 $_{ m fim}$ 20 $troca = b_k$ 21 $b_k = b_{l pivo}$ 22 $b_{l\_pivo} = troca$ $^{23}$ fim $^{24}$ $^{25}$ Eliminação: 26 para i = (k + 1), ..., n faça $m = a_{ik}/a_{kk}$ 28 $a_{ik} = 0$ $^{29}$ para j = (k + 1), ..., n faça 30 $a_{ij} = a_{ij} - ma_{kj}$ 31 $_{ m fim}$ 32 $b_i = b_i - mb_k$ 33 $_{ m fim}$ 3435 fim





# Exercícios propostos

1. Resolva o sistema:

$$\begin{pmatrix}
3 & 2 & 1 & -1 & 5 \\
0 & 0 & 1 & 3 & 6 \\
0 & -3 & -5 & 7 & 7 \\
0 & 2 & 4 & 0 & 15
\end{pmatrix}$$

2. Implemente a eliminação Gaussiana com pivoteamento.





#### Referências

• Métodos Numéricos. José Dias dos Santos e Zanoni Carvalho da Silva. (capítulo 3);

Cálculo Numérico – aspectos teóricos e computacionais.
 Márcia A. Gomes Ruggiero e Vera Lúcia da Rocha Lopes.
 (capítulo 3).