## Solution for Exercise sheet 6

## Yikai Teng, You Zhou

Exercise session: Thu. 8-10

**Exercise 6.1** We first show that m=n+k. Every point  $b\in S^n$  has a small neighborhood U that is homeomorphic to  $\mathbb{R}^n$ . Since p is a fiber bundle, we may assume that  $p^{-1}(U)\cong U\times S^k\cong \mathbb{R}^n\times S^k$ . A point  $x\in \mathbb{R}^n\times S^k$  then has a neighborhood homeomorphic to  $\mathbb{R}^n\times \mathbb{R}^k$  and such that its inverse image under the homeomorphism  $p^{-1}(U)\stackrel{\cong}{\longrightarrow} \mathbb{R}^n\times S^k$  is homeomorphic to  $\mathbb{R}^m$ . This shows that m=n+k. We then show that k=n-1. If m=1, then this follows from m=n+k and  $n\geq 1$ . If m=2, then either

We then show that k = n - 1. If m = 1, then this follows from m = n + k and  $n \ge 1$ . If m = 2, then either n = 2, k = 0 or n = k = 1. In the first case, p is a two-fold covering map. But this is impossible since  $\pi_1(S^2) = 0$  and has no index-2 subgroup. In the second case, we have the long exact sequence

$$\cdots \to \pi_i(S^k) \to \pi_i(S^m) \to \pi_i(S^n) \to \pi_{i-1}(S^k) \to \cdots$$

Since  $\pi_2(S^1) = 0$ , taking n = 2 gives us an exact sequence  $0 \to \mathbb{Z} \to 0$ , which is also impossible. When m > 2, still consider the exact sequence above. Then we have exact sequences

$$0 \to \pi_i(S^n) \to \pi_{i-1}(S^k) \to 0$$

for all 1 < i < m. From this we get n cannot be 1 since otherwise we would have  $\pi_{k+1}(S^1) \to \pi_k(S^k) \to 0$  exact. So  $\pi_1(S^n) = 0$  and there is a common i that is the minimal i such that  $\pi_i(S^n)$  and  $\pi_{i-1}(S^k)$  are not trivial. This shows that k = n - 1.

**Exercise 6.3** First note that there is a homeomorphism

$$\Omega X \times \Omega X \cong X^{(S^1 \vee S^1, y_0)},$$

where  $y_0$  is the point of intersection of the two circles. The map from the left side to the right side can be given by

$$\varphi \colon (f_1, f_2) \mapsto (x \mapsto f_i(x), \text{ if } x \text{ is in the } i\text{-th wedge summand})$$

and map in the opposite direction is

$$\psi \colon g \mapsto (g \circ i_1, g \circ i_2),$$

where  $i_1, i_2$  are two wedge summand inclusions. By definition they are inverse to each other and are both continuous. (The continuity can be easily checked on subbasis.)

Let  $\widetilde{\nabla^2}$  be  $\nabla^2$  with the three vertices glued together and  $q \colon \nabla^2 \to \widetilde{\nabla^2}$  be the quotient map, then  $q^* \colon X^{\widetilde{\nabla^2}} \to X^{\nabla^2}$  is a homeomorphism onto its image, which is just E. So it suffices to show that the map

$$\Phi \colon X^{\widetilde{\nabla^2}} \to X^{S^1 \vee S^1}, \quad f \mapsto (f \circ i') \vee (f \circ j')$$

is a homotopy equivalence, where

$$i',j'\colon S^1\to\nabla^2$$

is defined by

$$i'(e^{2\pi it}) = (t, 1 - t, 0)$$
 respectively  $j'(e^{2\pi it}) = (0, t, 1 - t)$ 

and

$$(f \circ i') \lor (f \circ j')(x) = \begin{cases} f \circ i'(x), & \text{if } x \text{ is in the first wedge summand} \\ f \circ j'(x), & \text{if } x \text{ is in the second wedge summand.} \end{cases}$$

To prove this, we will first construct a homotopy equivalence between  $\widetilde{\nabla^2}$  and  $S^1 \vee S^1$  whose induced map on mapping spaces is  $\Phi$  and then show a general property that under certain assumptions, a homotopy equivalence



Figure 1: The map  $\alpha$ 



Figure 2: The map  $\beta$ 

map induces homotopy equivalence on mapping spaces. For the first step, to avoid messy notations and formulas, I express the maps  $\alpha \colon \widetilde{\nabla^2} \to S^1 \vee S^1$  and  $\beta \colon S^1 \vee S^1 \to \widetilde{\nabla^2}$  in figures 1 and 2 below. Then by definition  $\alpha \circ \beta = \mathrm{id}_{S^1 \vee S^1}$ . Moreover, a homotopy equivalence from  $\mathrm{id}_{\widetilde{\nabla^2}}$  to  $\beta \circ \alpha$  can also be constructed as illustrated in figure 3 below.

So we have constructed our expected homotopy equivalence. By definition its induced map  $\beta^* \colon X^{\widetilde{\nabla^2}} \to X^{S^1 \vee S^1}$  is just  $\Phi$ .

Now we do the second step. Suppose that X, Y and Z are topological spaces,  $f: X \to Y$  is a homotopy equivalence and that  $g: Y \to X$  is the homotopy inverse of f. We may assume that X and Y are both Hausdorff since  $\widetilde{\nabla^2}$  and  $S^1 \vee S^1$  have this property. We have a continuous map

$$H: Y \times [0,1] \to Y$$

such that  $H(y,0)=f\circ g(y)$  and H(y,1)=y for all  $y\in Y.$  Since Y is Hausdorff,

$$H^*: Z^Y \times [0,1] \to Z^Y, \quad (h(\cdot),t) \mapsto (h(H(\cdot,t)))$$

is a continuous map that gives a homotopy between the identity and  $(f \circ g)^*$ . Similarly, we can show that  $(g \circ f)^*$  is also homotopy equivalent to the identity. Thus f and g really induce homotopy equivalence between mapping spaces  $Z^X$  and  $Z^Y$ . Combining these two steps then finishes our proof.



Figure 3: Homotopy between  $\widetilde{\nabla^2}$  and  $S^1 \vee S^1$