CPSC-354 Report

Mitchell Toney Chapman University

September 7, 2025

Abstract

Contents

1	Introduction	1
	Week by Week 2.1 Week 1: HW1 2.2 Week 2: HW2	
3	Essay	3
4	Evidence of Participation	3
5	Conclusion	3

1 Introduction

2 Week by Week

2.1 Week 1: HW1

The MU puzzle is a puzzle created by Douglas Hofstadter. It consists of four rules that can be applied to a string MI.

$$\begin{aligned} &1. \ xI \rightarrow xIU \\ &2. \ Mx \rightarrow Mxx \\ &3. \ xIIIy \rightarrow xUy \\ &4. \ xUUy \rightarrow xy \end{aligned}$$

When first approaching this puzzle, the first strategy that came to mind was to take advantage of rule number 2 to keep duplicating the I's until there is a multiple of three, then using rules 3 and 4 to get rid of the I's and leave a remaining U.

The issue with this is that $2^n \mod 3$ will never equal 0, it infinitely cycles between equaling 1 and 2, and without being able to get rid of all the I's, which would require them being a multiple of 3, you will never be able to get MU.

Thus, the puzzle is not solvable.

2.2 Week 2: HW2

$$1. \ \ A=\varnothing, \ R=\varnothing$$

2.
$$A = \{a\}, R = \emptyset$$

3.
$$A = \{a\}, R = \{(a, a)\}$$

 $\begin{array}{lll} 4. & A & = & \{a,b,c\}, & R & = & \{(a,b),(a,c)\} \end{array}$

5. $A = \{a, b\}, R = \{(a, a), (a, b)\}$

6.
$$A = \{a, b, c\}, R = \{(a, b), (b, b), (a, c)\}$$

7.
$$A = \{a, b, c\}, R = \{(a, b), (b, b), (a, c), (c, c)\}$$

#	Terminating	Confluent	Unique NFs
1	Yes	Yes	Yes
2	Yes	Yes	Yes
3	No	Yes	No
4	Yes	No	No
5	No	Yes	Yes
6	No	No	No
7	No	No	No

Confluent True, Terminating True, Unique NFs True

Confluent True, Terminating True, Unique NFs False

$\begin{array}{c} \textbf{Confluent True, Terminating False,} \\ \textbf{Unique NFs True} \end{array}$

Confluent False, Terminating True, Unique NFs True

Confluent False, Terminating False, Unique NFs True

3 Essay

4 Evidence of Participation

5 Conclusion

References

 $[{\rm BLA}]\,$ Author, Title, Publisher, Year.

$\begin{array}{c} \text{Confluent True, Terminating False,} \\ \text{Unique NFs False} \end{array}$

Confluent False, Terminating True, Unique NFs False

Confluent False, Terminating False, Unique NFs False

$$A = \{a, b, c\}, R = \{(a, b), (a, c), (b, b), (c, c)\}$$