Aulas 20, 21 e 22

- Organização da memória de um sistema computacional
- Hierarquia do sistema de memória
- Organização genérica de um circuito de memória a partir de uma célula básica
- Memória SRAM (Static Random Access Memory):
 - organização de células básicas num array
 - ciclos de acesso para leitura e escrita: diagramas temporais
 - construção de módulos de memória SRAM
- Memória DRAM (Dynamic Random Access Memory) :
 - célula básica; organização interna
 - ciclos de acesso para leitura e escrita: diagramas temporais
 - refrescamento: modo "RAS only"
 - construção de módulos de memória DRAM

José Luís Azevedo, Arnaldo Oliveira, Tomás Silva, Bernardo Cunha

- Pretensão do utilizador:
 - Uma memória rápida e com grande capacidade de armazenamento ©
 - Que custe o preço de uma memória lenta... ©
- Solução perfeita para este dilema não existe
- A organização da memória de um sistema computacional resulta de um compromisso entre:
 - Velocidade
 - Capacidade
 - Custo
 - Consumo energético
- Menor tempo de acesso: maior custo por bit
- Maior capacidade: maior tempo de acesso
- **Solução**: Criar a ilusão de uma memória rápida de grande capacidade através da utilização das várias tecnologias de memória disponíveis, segundo uma hierarquia

• Tecnologias de memória

Tecnologia	Tempo Acesso	\$ / GB
SRAM	0,5 – 2,5 ns	\$500 - \$1000
DRAM	35 - 70 ns	\$10 - \$20
Flash	5 – 50 us	\$0,75 - \$1
Magnetic Disk	5 - 20 ms	\$0,005 - \$0,1

(Dados de 2012)

- SRAM Static Random Access Memory
- DRAM Dynamic Random Access Memory
- Dadas estas diferenças de custo e de tempo de acesso, é vantajoso construir o sistema de memória como uma hierarquia onde se utilizem todas estas tecnologias

• Memória DRAM (Dynamic RAM)

X	
60000	

	Ano	Capacidade	Access	\$ / MB	
		(max. por chip)	Time		
	1980	→ 64 Kbit	250 ns ←	\$1500	
	1983	256 Kbit	185 ns	\$500	_
1	1985	1 Mbit	135 ns	\$200	÷ 7
	1989	4 Mbit	110 ns	\$50	
	1992	16 Mbit	90 ns	\$15	
	1996	64 Mbit	60 ns	\$10	
	1998	128 Mbit	60 ns	\$4	
	2000	256 Mbit	55 ns	\$1	
	2004	512 Mbit	50 ns	\$0.25	
	2007	1024 Mbit	45 ns	\$0.05	
	2010	2 Gbit	40 ns	\$0.03	
	2012	→ 4 Gbit	35 ns ←	\$0.001	

- O processador deve ser alimentado de instruções e dados a uma taxa que não comprometa o desempenho do sistema
 - Processador funciona a n GHz
 - Memória funciona a nnn MHz
- Diferença entre a velocidade do processador e da memória (DRAM) tem vindo a aumentar
- Solução:
 - Guardar a informação mais vezes utilizada numa memória rápida (static RAM) de pequena dimensão "próxima" do CPU
 - Aceder raramente à memória principal (mais lenta) para obter os restantes dados (apenas quando necessário)
 - Transferir blocos de informação da memória principal
- Conceito
 - Cache (ver aulas seguintes)

Utilização da hierarquia de memória

- Solução 1 expor a hierarquia
 - Alternativas de armazenamento: registos internos do CPU, memória rápida, memória principal, disco
 - Cabe ao programador utilizar racionalmente estas alternativas de armazenamento
 - Exemplo de processador que usa esta técnica: Cell microprocessor (Cell Broadband Engine Architecture) que equipa a PlayStation 3 e algumas televisões
- Solução 2 esconder a hierarquia
 - Modelo de programação:
 - Tipo de memória único
 - Espaço de endereçamento único
 - A máquina gere automaticamente o acesso à memória
 - Solução usada na maioria dos processadores contemporâneos

Hierarquia de memória

- Memória organizada em níveis
- Informação nos níveis superiores é um subconjunto da dos níveis inferiores
- Informação circula apenas entre níveis adjacentes

 Bloco – Quantidade de informação que circula entre níveis adjacentes

Tipos de memória

- RAM Random Access Memory
 - Designação para memória volátil que pode ser lida e escrita
 - Acesso "random"
- ROM Read Only Memory
 - Memória não volátil que apenas pode ser lida
 - Acesso "random"

(Acesso "random" - tempo de acesso é o mesmo para qualquer posição de memória)

Tecnologias de memória

- Tecnologias:
 - Semicondutor
 - Magnética
 - Ótica
 - Magneto-ótica
- Memória volátil:
 - Informação armazenada perde-se quando o circuito é desligado da alimentação: RAM (SRAM e DRAM)
- Memória não volátil:
 - A informação armazenada mantém-se até ser deliberadamente alterada: EEPROM, Flash EEPROM, tecnologias magnéticas

Tecnologias de memória não volátil

- **ROM** programada durante o processo de fabrico
- PROM Programmable Read Only Memory: programável uma única vez
- **EPROM** Erasable PROM: escrita em segundos, apagamento em minutos (ambas efectuadas em dispositivos especiais)
- EEPROM Electrically Erasable PROM
 - O apagamento e a escrita podem ser efetuados no próprio circuito em que a memória está integrada
 - O apagamento é feito byte a byte
 - Escrita muito mais lenta que leitura
- Flash EEPROM (tecnologia semelhante à EEPROM)
 - A escrita pressupõe o prévio apagamento das zonas de memória a escrever
 - O apagamento é feito por blocos (por exemplo, blocos de 4 kB) o que torna esta tecnologia mais rápida que a EEPROM
 - O apagamento e a escrita podem ser efetuados no próprio circuito em que a memória está integrada
 - Escrita muito mais lenta que leitura

Memória do tipo RAM (volátil)

SRAM – Static RAM

- Vantagens:
 - Rápida
 - Informação permanece até que a alimentação seja cortada
- Inconvenientes:
 - Implementações típicas: 6 transistores / célula
 - Baixa densidade, elevada dissipação de potência
 - Custo/bit elevado

DRAM – Dynamic RAM

- Vantagens:
 - Implementações típicas: (1 transistor + 1 condensador) / célula
 - Alta densidade, baixa dissipação de potência
 - Custo/bit baixo
- Inconvenientes:
 - Informação permanece apenas durante alguns mili-segundos (necessita de refresh regular – daí a designação "dynamic")
 - Mais lenta (pelo menos 1 ordem de grandeza) que a SRAM

Organização básica de memória

- Uma memória pode ser encarada como uma coleção de M registos de dimensão N (M x N)
- Cada registo é formado por N células, cada uma delas capaz de armazenar 1 bit
- Uma célula de memória (de 1 bit) pode ser representada por:

Organização básica de memória

• Uma possível implementação de uma célula de memória é: Di/o sel sel rd\ wr\ Di/o rd\ Operação de leitura Operação de escrita sel sel rd\ wr\ Din **Dout**

Agrupamento de células de memória

- Através do agrupamento de células-base pode formar-se uma memória de maior dimensão
- O que é necessário especificar:
 - Word size (x1, x4, x8, x16, 32, ...)
 - O número total de words que a memória pode armazenar (Número total de bits = word size * nº words)
- Exemplo: 1Mx4
 - 4 bits / word
 - 1M = $2^{20} \rightarrow 20$ linhas de endereço $\rightarrow 1.048.576$ endereços

Organização 2D

Organização em matriz (conceito)

RAM estática (SRAM)

• 6 transistores / célula

Write

- Colocar a informação em "bit" (e "bit\"). Exemplo: para a escrita do valor lógico "1" – "bit"=1, "bit\"=0
- Ativar a linha "select"

Read

- Ativar a linha "select"
- O valor lógico armazenado na célula é detetado pela diferença de tensão entre as linhas "bit" e "bit\"

SRAM - Organização interna

SRAM - Organização interna

SRAM - Organização interna

SRAM - Bloco funcional

• Diagrama lógico (interface assíncrona)

• Tabela de verdade

CE\	OE\	WE\	Operação
1	X	X	High-Z
0	1	1	High-Z
0	Х	0	Escrita
0	0	1	Leitura

SRAM – Ciclo de Leitura

• Diagrama temporal típico de um ciclo de leitura de uma memória SRAM (interface assíncrona)

SRAM – Ciclo de leitura

 Valores indicativos (em ns) dos parâmetros associados a um ciclo de leitura de uma memória SRAM:

Parameter	Symbol	Min.	Max.
Read Cycle Time	t _{RC}	1.5	
Address Access Time	t _{AA}		1.5
CE\ Access Time	t _{CA}		1.5
Output Enable to Output Valid	t _{OE}		0.7
CE\ to Output in High-Z	t _{HZ}		0.6
OE\ to Output in High-Z	t _{OHZ}		0.6

- Cycle Time: tempo de acesso mais qualquer tempo adicional necessário antes que um segundo acesso possa ter início
- Access Time: tempo necessário para os dados ficarem disponíveis no barramento de saída da memória
- Taxa de transferência: taxa a que os dados podem ser transferidos de/para uma memória (1 / cycle_time)

SRAM – Ciclo de Escrita

 Diagrama temporal típico de um ciclo de escrita de uma memória SRAM

SRAM – Ciclo de Escrita

• Valores indicativos (em ns) dos parâmetros associados a um ciclo de escrita de uma memória SRAM:

Parameter	Symbol	Min.	Max.
Write Cycle Time	t _{wc}	1.5	
Address Valid to End of Write	t _{AW}	1.0	
CE\ to End of Write	t _{CW}	1.0	
Write Pulse Width	t _{WP}	1.0	
Data Valid to End of Write	t _{DW}	0.7	
Data Hold Time	t _{DH}	0	

Aumento da capacidade de armazenamento

- É frequente ter-se necessidade de memórias com uma capacidade de armazenamento superior à capacidade individual dos circuitos disponíveis comercialmente
- Nessa situação recorre-se à construção de módulos de memória que resultam do agrupamento de circuitos de acordo com o aumento pretendido
- Assim, a construção de um módulo de memória pode envolver as duas fases seguintes, ou apenas uma delas, em função dos circuitos disponíveis e dos requisitos finais de armazenamento:
 - Aumento do comprimento de palavra. Exemplo: a partir de C.I.s de 32Kx1, construir uma memória de 32Kx8
 - Aumento do número total de posições de memória. Exemplo: a partir de C.I.s de 32Kx8, construir uma memória de 256Kx8

Módulo de memória SRAM

Módulo de memória SRAM

 Condensador com uma capacidade muito pequena (dezenas de fF (1 fF = 10⁻¹⁵ F)

- A operação de leitura é destrutiva (descarrega o condensador)
- Na ausência de leitura, o condensador descarrega "lentamente"
- Informação permanece na célula apenas durante alguns mili-segundos
- Obrigatório fazer refrescamento ("refresh") periódico da carga do condensador

Write

- Colocar dado na linha "bit"
- Ativar a linha "select"

Read

- Pre-carregar a linha "bit" a VDD/2
- Ativar a linha "select"
- Valor lógico detetado pela diferença de tensão na linha bit (rel. a VDD/2)
- Restauro do valor da tensão no condensador (write)

Refresh da célula

 Operação interna idêntica a uma operação de "Read"

- Organização em matriz
- Endereços de linha e coluna multiplexados no tempo
- Multiplexagem no tempo obriga à utilização de 2 sinais adicionais (multiplexagem com 2 strobes independentes)
 - RAS Row Address Strobe
 - CAS Column Address Strobe
- Linha CAS funciona também como "chip-select"
- RAS e CAS, sensíveis à transição

DRAM - Diagrama lógico

- WE\= 0 \rightarrow escrita; WE\=1 \rightarrow leitura (\equiv R/W\)
- RAS\: valida endereço da linha na transição descendente
- CAS\: valida endereço da coluna na transição descendente

DRAM – Diagrama de blocos conceptual

DRAM – Leitura

DRAM – Ciclo de Leitura

 Diagrama temporal típico de um ciclo de leitura de uma memória DRAM

DRAM – Ciclo de Escrita

 Diagrama temporal típico de um ciclo de escrita (early write) de uma memória DRAM

DRAM – Ciclo de Leitura em *page mode*

 Diagrama temporal típico de um ciclo de leitura de uma memória DRAM, em modo paginado (page mode)

DRAM – Refrescamento

DRAM Refresh – RAS Only

- O refresh é feito simultaneamente em todas as células da mesma linha da matriz (especificada no address bus, no momento da ativação do sinal RAS\)
- O sinal CAS\ mantém-se inativo durante o processo

DRAM - Parâmetros principais

 Valores indicativos (em ns) dos parâmetros indicados nos diagramas temporais de leitura e escrita de uma memória DRAM com um tempo de acesso de 55 ns:

Parameter	Symbol	Min.	Max.
Read or Write Cycle Time	t _{RC}	100	
RAS\ precharge time	t _{RP}	45	
Page mode cycle time	t _{PC}	35	
RAS\ pulse width	t _{RAS}	55	10000
CAS\ pulse width	t _{CAS}	28	10000
Data-in setup time	t _{DS}	5	
Data-in hold time	t _{DH}	14	
Output buffer turn-off delay	t _{OFF}		15
Access time from RAS\	t _{RAC}		55
Access time from CAS\	t _{CAC}		28

Módulo de memória DRAM

Módulo de memória DRAM

Melhorias de desempenho da DRAM

Fast Page Mode

 Adiciona sinais de temporização que permitem acessos repetidos ao buffer de linha (sem outro tempo de acesso à linha)

Synchronous DRAM (SDRAM)

- Adiciona um sinal de relógio à interface DRAM, para facilitar a sincronização de transferências múltiplas
- Múltiplos bancos, cada um com o seu buffer de linha

Double Data Rate (DDR SDRAM)

- Transferência de dados tanto no flanco ascendente como no flanco descendente do sinal de relógio (duplica a taxa de transferência de pico)
- Versão atual: DDR4 (set/2014). Exemplo: DDR4-3200, 3200 Milhões de transferências por segundo, relógio de 1.6 GHz
- Estas técnicas melhoram a largura de banda, mas não a latência