انتگرال روی خم:

جواب.

تعریف ۱. هر خم در صفحه مختلط به صورت y(t) به y(t) و است که y(t) و y(t) توابعی حقیقی و پیوسته هستند. y(t) و y(t) و y(t) توابعی حقیقی و پیوسته هستند. y(t) و نقطه ابتدایی و y(t) و نقطه انتهایی خم می نامند.

تعریف ۲. ۱) اگر نقاط آغازی و پایانی بر هم منطبق باشند، یعنی $\gamma(a)=\gamma(a)=\gamma(a)$ خم را بسته گوییم. ۲) اگر خم خودش را قطع نکند (بجز احتمالاً درنقطه ابتدایی و انتهایی) خم را ساده گوییم. ۳) خم بسته و ساده را ژردان (جردن) گوییم.

شكل ١٠١: انواع منحنى

توجه ۱. جهت مثبت خم ژردان پادساعتگرد است (در خلاف جهت عقربه های ساعت) که به آن جهت مثلثاتی گوییم. جهت منفی خم ساعتگرد است (در جهت عقربه های ساعت) وقتی به جهت خم اشاره نشود، منظورهمان جهت مثلثات است.

تعریف ۳. خم $\gamma:[a,b] o \mathbb{C}$ را قطعه به قطعه هموار گوییم، هرگاه افرازی از [a,b] مانند $\gamma:[a,b] o \mathbb{C}$ وجود داشته باشد که $a=t_{\circ}< t_{1}< \ldots < t_{n}=t_{n}$ مشتق پذیر با مشتق پذیر با

 γ تعریف ۴. انتگرال روی خم: فرض کنید $\gamma(t) = x(t) + iy(t)$ و $\alpha \leq t \leq b$ خمی قطعه به قطعه هموار و $\gamma(t) = x(t) + iy(t)$ باشد در این صورت

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma^{'}(t)dt$$

(1,1) تا (\circ,\circ) مثال (\circ,\circ) را حساب کنید که C خمی است از نقطه $\int_C Re(z)dz$.1

$$z = x + iy \Rightarrow Ree(z) = x$$

$$C : y = x \Rightarrow z = x + ix = x(1 + i)$$

$$\Rightarrow dz = (1 + i)dx \circ \leq x \leq 1$$

$$\int_C Re(z)dz = \int_0^1 x(1 + i)dx$$

$$= (1 + i)\int_0^1 xdx = \frac{1 + i}{2}$$

قضیه ۱. اگر C همانخم C در خلاف جهت مثلثات باشد آنگاه

$$\int_{-C} f dz = -\int_{C} f dz$$

مثال ٢.

$$\int_C (z + \frac{1}{z}) d\bar{z}$$

جواب. توجه: قرمزهای شکل جزو جواب است.

$$\underline{\gamma = -C} \quad \int_C (z + \frac{1}{z}) d\bar{z} = -\int_{\gamma} (z + \frac{1}{z}) d\bar{z}$$

$$\gamma : \left\{ \begin{array}{l} z = \mathbf{Y}e^{i\theta} \\ \\ \bar{z} = \mathbf{Y}e^{-i\theta} \\ \\ dz = \mathbf{Y}ie^{i\theta}d\theta \qquad \pi \leq \theta \leq \mathbf{Y}\pi + \frac{\pi}{\bar{\varsigma}} \ (\mathbf{\dot{L}} \ -\pi \leq \theta \leq \frac{\pi}{\bar{\varsigma}}) \\ \\ \frac{1}{z} = \frac{1}{\mathbf{Y}}e^{-i\theta} \\ \\ d\bar{z} = -\mathbf{Y}ie^{-i\theta}d\theta \end{array} \right.$$

$$\begin{split} -\int_{\gamma} (z+\frac{1}{z}) d\bar{z} &= -\int_{\pi}^{\Upsilon\pi+\frac{\pi}{\bar{\varphi}}} (\Upsilon e^{i\theta} + \frac{1}{\Upsilon} e^{-i\theta}) \times -\Upsilon i e^{-i\theta} d\theta \\ &= \Upsilon i \int_{\pi}^{\Upsilon\pi+\frac{\pi}{\bar{\varphi}}} (\Upsilon + \frac{1}{\Upsilon} e^{-\Upsilon i \theta}) d\theta \\ &= \Upsilon i (\Upsilon \theta - \frac{1}{\Upsilon i} e^{-\Upsilon i \theta}) \bigg|_{\pi}^{\Upsilon\pi+\frac{\pi}{\bar{\varphi}}} \\ &= \Upsilon i \Big(\Upsilon (\Upsilon \pi + \frac{\pi}{\bar{\varphi}} - \pi) - \frac{1}{\Upsilon i} (e^{-\Upsilon (\Upsilon \pi + \frac{\pi}{\bar{\varphi}})i} - e^{-\Upsilon i \pi}) \Big) \\ &= \Upsilon i \Big(\frac{\Upsilon \pi}{\bar{\varphi}} \times \Upsilon + \frac{i}{\Upsilon} (\cos(-(\Upsilon \pi + \frac{\pi}{\Upsilon})) + i \sin(-(\Upsilon \pi + \frac{\pi}{\Upsilon})) - (\cos(-\Upsilon \pi) + i \sin(-\Upsilon \pi)) \Big) \\ &= \Upsilon i \Big(\frac{\Upsilon \pi}{\Upsilon} - \frac{1}{\Lambda} i + \frac{1}{\Lambda} \sqrt{\Upsilon} \Big) \end{split}$$

قضیه ۲. اگر C_1 و C_7 خم های قطعه به قطعه هموار باشند که نقطه پایانی C_1 همان نقطه آغازی C_7 است آنگاه

$$\int_{C_1 \cup C_{\mathbf{T}}} f(z) dz = \int_{C_1} f(z) dz + \int_{C_{\mathbf{T}}} f(z) dz$$

Jis:
$$\int \overline{z} dz$$
 $z = r e^{i \frac{\pi}{r}}$
 $dz = e^{i \frac{\pi}{r}}$
 $dz = e^{i \frac{\pi}{r}}$
 $dz = e^{i \frac{\pi}{r}}$
 $dz = e^{i \frac{\pi}{r}}$

$$C_{x}: \begin{cases} Z = \sqrt{r} e^{i\Theta} \\ dZ = i\sqrt{r} e^{i\Theta} d\Theta \end{cases}$$

$$Z = \sqrt{r} e^{i\Theta} d\Theta$$

$$Z = \sqrt{r} e^{i\Theta} d\Theta$$

$$-c_{y}: \begin{cases} z = re^{\frac{i \Delta n}{y}} \\ dz = e^{\frac{i \Delta n}{y}} dy \end{cases}$$

$$= re^{\frac{i \Delta n}{y}} dy$$

$$= re^{\frac{i \Delta n}{y}} dy$$

$$\int_{C_{1}} \overline{z} dz = \int_{0}^{\sqrt{r}} re \times e^{-\frac{i}{r}N_{r}} xe^{-\frac{i}{r}N_{r}}$$

$$= \sum_{k=1}^{r} \int_{0}^{\sqrt{r}} = 1$$

$$\frac{1}{2} dz = \begin{cases} \frac{1}{2} & \frac{1}{2}$$

$$\int_{C_{r}} z \, dz = - \int_{C_{r}} v \, e^{-iz \frac{N\pi}{y}} \times e^{iz \frac{N\pi}{y}} \, dr$$

$$= \int_{C_{r}} v \, dy = \frac{v^{r}}{r} \int_{C_{r}} e^{-iz \frac{N\pi}{y}} \, dr$$

$$\int_{C} \overline{z} dz = \int_{C_{1}} \overline{z} dz + \int_{C_{1}} \overline{z} dz + \int_{C_{1}} \overline{z} dz$$

$$= \frac{\sqrt{n}}{4} \int_{C_{1}}^{\infty} dz + \int_{C_{1}}^{\infty} \overline{z} dz + \int_{C_{1}}^{\infty} \overline{z} dz$$

$$\begin{cases}
z^{r} (1+|z|) dz \\
z = re^{ix\circ} = r \circ \langle r \langle r \rangle \\
|z|^{r} = r^{r} \\
\overline{z} = r \Rightarrow d\overline{z} = dr
\end{cases}$$

$$\int_{C_{1}} z^{\mu} \left(1+|z|^{\tau}\right) d\bar{z} = \int_{0}^{\mu} r^{\mu} \left(1+r^{\tau}\right) dr$$

$$= \left(\frac{r}{r} r^{\mu} + r^{\Delta}\right) dr = \frac{r^{\mu}}{r} + \frac{r^{\mu}}{r} \left(1\right)$$

$$C_{Y}: \begin{cases} Z = P e^{i\theta} & \text{of } \frac{\pi}{r} \\ |z|^{r} = q \\ \bar{z} = re^{-i\theta} \Rightarrow d\bar{z} = -rie^{-i\theta} d\theta \end{cases}$$

$$\begin{aligned}
z^{r}(1+|z|^{r}) d\bar{z} &= \int_{-r}^{r} r^{r} e^{ri\theta} (1+4) x^{-ri} e^{i\theta} d\theta \\
cr &= rv \cdot x^{-ri} \cdot \int_{0}^{r} e^{ri\theta} d\theta &= \int_{0}^{r} r^{ri\theta} d\theta \\
&= -\int_{0}^{r} r^{r} e^{ri\theta} d\theta &= \int_{0}^{r} r^{r} e^{ri\theta} d\theta \\
&= -\int_{0}^{r} r^{r} e^{ri\theta} d\theta &= \int_{0}^{r} r^{r} e^{ri\theta} d\theta \\
&= -\int_{0}^{r} r^{r} e^{ri\theta} d\theta &= \int_{0}^{r} r^{r} e^{ri\theta} d\theta \\
&= -\int_{0}^{r} r^{r} e^{ri\theta} d\theta &= \int_{0}^{r} r^{r} e^{ri\theta} d\theta &= \int_{0}^{r} r^{r} e^{ri\theta} d\theta \\
&= -\int_{0}^{r} r^{r} e^{ri\theta} d\theta &= \int_{0}^{r} r^{r} e^{r$$

ادامه حل:
$$\int_{C_{\mathsf{T}}} z^{\mathsf{T}} (1+|z|^{\mathsf{T}}) d\bar{z} \qquad (\circ. 1)$$

$$-C_{\mathbf{r}}: \begin{cases} z = re^{\frac{i\pi}{\mathbf{r}}}, & \circ \leq r \leq \mathbf{r} \\ |z|^{\mathbf{r}} = r^{\mathbf{r}} \\ \bar{z} = re^{-\frac{i\pi}{\mathbf{r}}} \\ d\bar{z} = e^{-\frac{i\pi}{\mathbf{r}}} dr \end{cases}$$

$$(\underbrace{\bullet.1}) \int_{C_{\tau}} z^{\tau} (\mathbf{1} + |z|^{\tau}) d\bar{z}$$

$$= -\int_{\circ}^{\tau} r^{\tau} e^{\frac{\mathbf{Y} i \pi}{\mathbf{Y}}} (\mathbf{1} + r^{\tau}) \times e^{-\frac{i \pi}{\mathbf{Y}}} dr$$

$$= -e^{\frac{\mathbf{Y} i \pi}{\mathbf{Y}}} \int_{\circ}^{\tau} (r^{\tau} + r^{\Delta}) dr = -\underbrace{e^{i \pi}}_{-1} (\frac{\mathbf{Y}^{\epsilon}}{\mathbf{Y}} + \frac{\mathbf{Y}^{\epsilon}}{\mathbf{Y}}) = \frac{\mathbf{Y}^{\epsilon}}{\mathbf{Y}} + \frac{\mathbf{Y}^{\epsilon}}{\mathbf{Y}}$$

$$\implies \int_{C} z^{\tau} (\mathbf{1} + |z|^{\tau}) d\bar{z}$$

$$= \int_{C_{1}} z^{\tau} (\mathbf{1} + |z|^{\tau}) d\bar{z} + \int_{C_{\tau}} z^{\tau} (\mathbf{1} + |z|^{\tau}) d\bar{z} + \int_{-C_{\tau}} z^{\tau} (\mathbf{1} + |z|^{\tau}) d\bar{z} = \frac{\mathbf{Y}^{\epsilon}}{\mathbf{Y}} + \frac{\mathbf{Y}^{\epsilon}}{\mathbf{Y}} + \mathbf{A} \mathbf{1} \circ$$

روش دوم برای حل مثال قبل: برای مسیرهای C_1 و C_7 در مثال قبل می توان به شیوه زیر نیز عمل کرد که ساده تر است. بقیه حل شبیه قبل است.

$$C_{1}: \begin{cases} \overline{z = x + iy} = x, & \circ \leq x \leq \Upsilon \\ |z|^{\Upsilon} = x^{\Upsilon} \\ \bar{z} = x \\ d\bar{z} = dx \end{cases}$$

$$\int_{C_1} z^{\mathsf{r}} (\mathsf{1} + |z|^{\mathsf{r}}) \, d\bar{z} = \int_{\circ}^{\mathsf{r}} x^{\mathsf{r}} (\mathsf{1} + x^{\mathsf{r}}) \, dx = \frac{\mathsf{r}^{\mathsf{r}}}{\mathsf{r}} + \frac{\mathsf{r}^{\mathsf{r}}}{\mathsf{r}}$$

$$C_{\mathsf{r}} : \begin{cases} \overline{z = x + iy} = iy, & \circ \le y \le \mathsf{r} \\ |z|^{\mathsf{r}} = y^{\mathsf{r}} \\ \bar{z} = -iy \\ d\bar{z} = -idy \end{cases}$$

$$\int_{C_{\mathbf{r}}} z^{\mathbf{r}} (\mathbf{1} + |z|^{\mathbf{r}}) d\bar{z} = -\int_{\circ}^{\mathbf{r}} i^{\mathbf{r}} y^{\mathbf{r}} (\mathbf{1} + y^{\mathbf{r}}) - i dy = \frac{\mathbf{r}^{\mathbf{r}}}{\mathbf{r}} + \frac{\mathbf{r}^{\mathbf{r}}}{\mathbf{r}},$$

.....

تموین ۱. حاصل انتگرال های زیر را بیابید. $\int_C (\bar{z} + |z|) \, dz, \qquad C: \, \mathbf{1} + i \, \, \mathbf{i} \, \, \mathbf{7} \, \, \mathbf{7} \, \, \, \mathbf{7} \,$

۲)
$$\int_C (\mathtt{T}ar{z}-|z|)\,dz,$$
 $C:-\mathtt{1}+\sqrt{\mathtt{T}}i$ تا $\sqrt{\mathtt{T}}+i$ تا ۲ دایرهی به شعاع ۲.

قضیه ۳. فرض کنید C یک خم ساده باشد که ابتدای آن در z_1 و انتهای آن در z_1 است و $z_1 \neq z_2$. برای حل انتگرال z_1 اگر برای تابع z_2 یک تابع اولیه مثل z_2 موجود باشد بطوری که z_2 روی z_3 تحلیلی باشد آنگاه:

$$\int_C f(z)dz = \int_{z_1}^{z_1} f(z)dz = F(z)|_{z_1}^{z_1} = F(z_1) - F(z_1).$$

در این حالت چون تابع اولیهی تحلیلی وجود دارد پس انتگرال به مسیر بستگی ندارد.

مثال ۳. مقدار انتگرال زیر را در مسیر داده شده بیابید.

$$\int_C z\,dz$$
, $C:\mathsf{Y}+i$ تا $1+i$ و سپس خط افقی از $1+i$ تا $1+i$ تا $1+i$ فائم از $1+i$ و سپس خط افقی از ا

جواب. در این مثال تابع
$$z$$
 تابع اولیه ی $F(z)=rac{1}{7}z^{7}$ را دارد. پس $\int_{C}zdz=rac{1}{7}z^{7}\bigg|_{1}^{7+i}=rac{(7+i)^{7}}{7}-rac{1^{7}}{7}=1+7i.$