

C2M0040120D

Silicon Carbide Power MOSFET Z-FET[™] MOSFET

N-Channel Enhancement Mode

Features

- High Speed Switching with Low Capacitances
- High Blocking Voltage with Low R_{DS(on)}
- Easy to Parallel and Simple to Drive
- Resistant to Latch-Up
- Halogen Free, RoHS Compliant

Benefits

- Higher System Efficiency
- Increased System Switching Frequency
- Reduced Cooling Requirements
- Increased System Reliability

Applications

- Solar Inverters
- Switch Mode Power Supplies
- High Voltage DC/DC converters
- Motor Drive

V_{DS} 1200 V

I_D @ 25°c 60 A

 $\mathbf{R}_{\mathrm{DS(on)}}$ 40 m Ω

Package

TO-247-3

Part Number	Package	
C2M0040120D	TO-247-3	

Maximum Ratings (T_C = 25 °C unless otherwise specified)

	- Ç				
Symbol	Parameter	Value	Unit	Test Conditions	Note
т.	Continuous Drain Current	60	Α	V _{GS} = 20 V, T _C = 25 °C	Fig. 10
I _{DS (DC)}	Continuous Diam Current	40		V _{GS} = 20 V, T _C = 100 °C	Fig. 19
$I_{ extsf{DS (pulse)}}$	Pulsed Drain Current	160	А	Pulse width t_P limited by T_{jmax} $T_C = 25 ^{\circ}C$	Fig. 22
V_{GS}	Gate Source Voltage	-10/+25	V		
P _{tot}	Power Dissipation	330	W	T _C =25 °C, T _J = 150 °C	Fig. 20
T_{j} , T_{stg}	Operating Junction and Storage Temperature	-55 to +150	°C		
TL	Solder Temperature	260	°C	1.6 mm (0.063") from case for 10s	
M _d	Mounting Torque	1 8.8	Nm lbf-in	M3 or 6-32 screw	

Electrical Characteristics $(T_c = 25^{\circ}C \text{ unless otherwise specified})$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	1200			V	$V_{GS} = 0 \text{ V, } I_D = 50 \mu\text{A}$		
$V_{GS(th)}$	Gate Threshold Voltage	2.4	2.8		V	$V_{DS} = 10 \text{ V, } I_{D} = 10 \text{mA}$	Fig. 11	
V GS(th)	Gate Tilleshold Voltage	1.8	2.0		V	$V_{DS} = 10 \text{ V}, I_{D} = 10 \text{mA}, T_{J} = 150 \text{ °C}$	1 ig. 11	
I_{DSS}	Zero Gate Voltage Drain Current		1	100	μΑ	$V_{DS} = 1200 \text{ V}, V_{GS} = 0 \text{ V}$		
I_{GSS}	Gate-Source Leakage Current			250	nA	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$		
R	Drain-Source On-State Resistance		40	52	mΩ	$V_{GS} = 20 \text{ V, } I_{D} = 40 \text{ A}$	Fig.	
$R_{DS(on)}$	Drain Source on State Resistance		84	100	11175	$V_{GS} = 20 \text{ V, } I_{D} = 40 \text{ A, } T_{J} = 150 \text{ °C}$	4,5,6	
g _{fs}	 Transconductance		15.1		S	V _{DS} = 20 V, I _{DS} = 40 A	Fig. 7	
9ts	Transconductance		13.2			V_{DS} = 20 V, I_{DS} = 40 A, T_{J} = 150 °C		
C _{iss}	Input Capacitance		1893			$V_{GS} = 0 V$		
C_{oss}	Output Capacitance		150		pF	$V_{DS} = 1000 \text{ V}$	Fig. 17,18	
C_{rss}	Reverse Transfer Capacitance		10			f = 1 MHz	,	
E _{oss}	C _{oss} Stored Energy		82		μЈ	Vac = 25 mV	Fig 16	
t _{d(on)}	Turn-On Delay Time		14.8			$V_{DD} = 800 \text{ V, } V_{GS} = -5/20 \text{ V}$		
t _r	Rise Time		52]	$I_D = 40 \text{ A},$	F:- 27	
$t_{d(off)}$	Turn-Off Delay Time		26.4		ns	$R_{G(ext)} = 2.5 \Omega$, $R_{L} = 16 \Omega$ Timing relative to V_{DS}	Fig. 27	
t _f	Fall Time		34.4			Per IEC60747-8-4 pg 83		
E _{on}	Turn-On Switching Loss		1.0		mJ	$V_{DS} = 800 \text{ V}, V_{GS} = -5/20 \text{ V},$	Fig. 25	
E _{OFF}	Turn Off Switching Loss		0.4		$I_{D} = 40A, R_{G(ext)} = 2.5\Omega$	$I_{D} = 40A, R_{G(ext)} = 2.5\Omega, L = 80 \mu H$	Fig. 25	
R_G	Internal Gate Resistance		1.8		Ω	$f = 1 \text{ MHz}$, $V_{AC} = 25 \text{ mV}$, ESR of C_{ISS}		

Built-in SiC Body Diode Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
\/	Diada Faruard Valtaga	3.6		V	$V_{GS} = -5 \text{ V}, I_{SD} = 20 \text{ A}, T_{J} = 25 \text{ °C}$	Note 1
V_{SD}	Diode Forward Voltage	3.3		V	$V_{GS} = -5 \text{ V}, I_{SD} = 20 \text{ A}, T_{J} = 150 \text{ °C}$	Note 1
t _{rr}	Reverse Recover time	54		ns	V _{GS} = - 5 V, I _{SD} = 40 A T ₁ = 25 °C	
Q _{rr}	Reverse Recovery Charge	283		nC	VR = 800 V dif/dt = 1000 A/µs	Note 1
I _{rrm}	Peak Reverse Recovery Current	15		Α	7,1	

Note (1): When using SiC Body Diode the maximum recommended $V_{\rm GS} = -5V$

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
$R_{ heta JC}$	Thermal Resistance from Junction to Case	0.34	0.38	°C/W		Fig. 21
$R_{\theta JC}$	Thermal Resistance from Junction to Ambient		40	- C/ W		

Gate Charge Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
Qgs	Gate to Source Charge	28			$V_{DS} = 800 \text{ V}, V_{GS} = -5/20 \text{ V}$	
Q_{gd}	Gate to Drain Charge	37		nC	I _D = 40 A	Fig. 12
Q_g	Gate Charge Total	115			Per IEC60747-8-4 pg 21	

T_j = 25 °C ty < 200 µs

V_{GS} = 16 V

V_{GS} = 14 V

V_{GS} = 12 V

V_{GS} = 10 V

Drain-Source Voltage, V_{DS} (V)

Figure 1. Typical Output Characteristics $T_1 = -55$ °C

Figure 3. Typical Output Characteristics $T_1 = 150$ °C

Figure 4. Normalized On-Resistance vs. Temperature

Figure 5. On-Resistance vs. Drain Current For Various Temperatures

Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

-6 -5 -4 -3 -2 -1 0 Condition: Τ₁ = -55 °C Τ₅ < 200 μs -20 -40 -60 -60 -80 -100 -100 -100

Figure 7. Typical Transfer Characteristic For Various Temperatures

Figure 8. Typical Body Diode Characteristic $T_1 = -55$ °C

Figure 9. Typical Body Diode Characteristic $T_1 = 25$ °C

Figure 10. Typical Body Diode Characteristic $T_1 = 150 \, {}^{\circ}\text{C}$

Figure 11. Typical and Minimum Threshold Voltage vs. Temperature

Figure 12. Typical Gate Charge Characteristic 25 °C

Figure 13. Typical 3rd Quadrant Characteristic $T_{\rm j} = -55~{\rm ^{o}C}$

Figure 15. Typical 3rd Quadrant Characteristic $T_1 = 150 \text{ }^{\circ}\text{C}$

Figure 17. Typical Capacitances vs Drain Voltage (0-200 V)

Figure 14. Typical 3rd Quadrant Characteristic $T_1 = 25 \, {}^{\circ}\text{C}$

Figure 16. Typical Output Capacitor Stored Energy

Figure 18. Typical Capacitances vs Drain Voltage (0-1000 V)

Figure 19. Continuous $\boldsymbol{I}_{\scriptscriptstyle DS}$ Current derating curve

Figure 21. Typical Transient Thermal Impedance (Junction - Case) with Duty Cycle

Figure 23. Clamped Inductive Switching Energy vs. Drain Current ($V_{DD} = 800V$)

Figure 20. Power Dissipation Derating Curve

Figure 22. Safe Operating Area

Figure 24. Clamped Inductive Switching Energy vs. Drain Current ($V_{DD} = 600V$)

Figure 25. Clamped Inductive Switching Energy vs. $R_{G(ext)}$

Figure 27. Resistive Switching Times vs. External Gate Resistor ($V_{\rm DD}$ = 800V, $I_{\rm D}$ = 40A)

Figure 26. Clamped Inductive Switching Energy vs. Junction Temperature

Figure 28. Resistive Switching Time Description

Test Circuit Schematic

Figure 30. Clamped Inductive Switching Waveform Test Circuit

Figure 31. Body Diode Recovery Test Circuit

ESD Ratings

ESD Test	Total Devices Sampled	Resulting Classification
ESD-HBM	All Devices Passed 1000V	2 (>2000V)
ESD-MM	All Devices Passed 400V	C (>400V)
ESD-CDM	All Devices Passed 1000V	IV (>1000V)

Package Dimensions

Package TO-247-3

R→	1	
Τ-→	L -	I -U

Pinout Information:

- Pin 1 = Gate
- Pin 2, 4 = Drain
- Pin 3 = Source

DOC	Inc	hes	Millin	neters
POS	Min	Max	Min	Max
А	.190	.205	4.83	5.21
A1	.090	.100	2.29	2.54
A2	.075	.085	1.91	2.16
b	.042	.052	1.07	1.33
b1	.075	.095	1.91	2.41
b2	.075	.085	1.91	2.16
b3	.113	.133	2.87	3.38
b4	.113	.123	2.87	3.13
С	.022	.027	0.55	0.68
D	.819	.831	20.80	21.10
D1	.640	.695	16.25	17.65
D2	.037	.049	0.95	1.25
Е	.620	.635	15.75	16.13
E1	.516	.557	13.10	14.15
E2	.145	.201	3.68	5.10
E3	.039	.075	1.00	1.90
E4	.487	.529	12.38	13.43
е	.214	BSC	5.44	BSC
N	3			3
L	.780	.800	19.81	20.32
L1	.161	.173	4.10	4.40
ØP	.138	.144	3.51	3.65
Q	.216	.236	5.49	6.00
S	.238	.248	6.04	6.30

Recommended Solder Pad Layout

Part Number	Package	Marking
C2M0040120D	TO-247-3	C2M0040120

Notes

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into
the human body nor in applications in which failure of the product could lead to death, personal injury or property
damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines,
cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control
systems, air traffic control systems.