Capítulo 6

Tipos de Dados

O que vamos ver?

- Introdução
- Tipos Primitivos
- String
- Enumerações
- Arrays
- Arrays Associativos
- Registros
- Tuplas
- Listas
- Uniões
- Ponteiros e Referências
- Checagem de Tipos
- Tipagem Forte
- Equivalência de Tipos
- Teoria e Tipos de Dados

Introdução

Tipo de Dado

- Define os valores e o conjunto de operações permitidos sobre esses valores
- Outros termos importantes:
 - Descritor: a coleção de atributos de uma variável
 - Objeto: uma instância de um tipo de dados definido pelo usuário (tipo abstrato de dados)
- Duas categorias:
 - Primitivos: tipos atômicos, que não são definidos em termos de outros tipos
 - Não primitivos: tipos complexos, que são definidos em termos de outros tipos

Tipos Primitivos

- Não são definidos em termos de outros tipos de dados
- Alguns são meramente "reflexos" do hardware
- Outros necessitam de um pequeno suporte além do hardware para sua implementação

Tipos Primitivos: Inteiros

- Quase sempre são um reflexo exato do hardware, então o mapeamento é trivial
- Podem exister diversos tipos inteiros em uma linguagem, por exemplo:

Туре	Storage size	Value range
char	1 byte	-128 to 127 or 0 to 255
unsigned char	1 byte	0 to 255
signed char	1 byte	-128 to 127
int	2 or 4 bytes	-32,768 to 32,767 or -2,147,483,648 to 2,147,483,647
unsigned int	2 or 4 bytes	0 to 65,535 or 0 to 4,294,967,295
short	2 bytes	-32,768 to 32,767
unsigned short	2 bytes	0 to 65,535
long	8 bytes or (4bytes for 32 bit OS)	-9223372036854775808 to 9223372036854775807
unsigned long	8 bytes	0 to 18446744073709551615

Tipos Primitivos: Inteiros

```
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <float.h>
int main(int argc, char** argv) {
    printf("CHAR_BIT
                       : %d\n", CHAR BIT);
    printf("CHAR MAX
                       : %d\n", CHAR MAX);
    printf("CHAR_MIN
                       : %d\n", CHAR MIN);
    printf("INT MAX
                       : %d\n", INT MAX);
    printf("INT MIN
                       : %d\n", INT MIN);
    printf("LONG MAX
                       : %ld\n", (long) LONG MAX);
                       : %ld\n", (long) LONG MIN);
    printf("LONG MIN
    printf("SCHAR MAX
                          %d\n", SCHAR MAX);
                       : %d\n", SCHAR MIN);
    printf("SCHAR MIN
    printf("SHRT MAX
                       : %d\n", SHRT MAX);
    printf("SHRT MIN
                       : %d\n", SHRT MIN);
    printf("UCHAR MAX
                          %d\n", UCHAR MAX);
                       : %u\n", (unsigned int) UINT MAX);
    printf("UINT MAX
    printf("ULONG MAX
                          %lu\n", (unsigned long) ULONG MAX);
    printf("USHRT MAX
                          %d\n", (unsigned short) USHRT MAX);
    return 0;
}
```

- APROXIMAÇÕES para modelar números reais
- Linguagens para uso científico suportam pelo menos dois tipos (float e double)
- IEEE Floating-Point Standard 754


```
#include <stdio.h>
int main(void){
    float soma = 0.0;
    for (int i = 1; i \le 10000; i++) {
        soma = soma + 0.0001;
    printf("%.15f", soma);
    return 0;
```


 Que conseqüência imediata a imprecisão de armazenamento de pontos flutuantes traz na computação?

https://docs.python.org/3/tutorial/floatingpoint.html #include <stdio.h> int main(void){ float x = 1 - 0.1; double y = (43.1 - 43.2) + 1;int w = 10; long int z = 10; if (x == y) { printf("%s\n", "x = y"); } else { printf("%s\n", "x != y"); $if (w == z) {$ printf("%s\n", "W = Z"); } else { printf("%s\n", "w != z");

return 0;

}

Tipos Primitivos: Complexos

- Algumas linguagens têm suporte para o tipo de dados que representa números complexos: C99, Fortran, Lisp, Python
- Cada valor consiste de dois floats:
 - Parte real
 - Parte imaginária

import cmath

• Em Python, por exemplo: (7 + 3j)

Tipos Primitivos: Decimal

- Para aplicações comerciais (dinheiro)
 - Fundamental no COBOL
 - C# tem também
- Armazena um número fixo de dígitos decimais em um formato codificado
 - BCD: binary-coded decimal
- Vantagem: precisão
- Desvantagens: amplitude limitada, desperdício de memória

Tipos primitivos: Boolean

- Mais simples de todos
- Só 2 valores: 0 ou 1; "true" ou "false"
- Atenção: algumas linguagens entendem "false" como o valor 0, e tudo que não é 0 é considerado "true"
 - Lisp
 - C

Tipos Primitivos: Character

- São armazenados como números inteiros
- Codificação: ASCII
- Codificações alternativas:
 - Unicode-2 (UCS-2)
 - 16 bits
 - Suporta caracteres de quase todas as linguagens
 - Originalmente usado no Java
 - Outras linguagens forneceram suporte
 - Unicode (UCS-4)
 - 32 bits
 - Começou com Fortran, em 2003
 - Outras

Strings

- Valores são seqüências de characters
- Problemas a serem considerados:
 - Deve ser considerado um tipo primitivo ou apenas um tipo especial de array?
 - O comprimento das strings deve ser estático ou dinâmico?

Strings: Operações

- Operações típicas:
 - Alocação
 - Cópia
 - Comparação (=, >, etc.)
 - Concatenação
 - Obtenção de substrings
 - Pattern matching

Strings em Linguagens Selecionadas

- CeC++
 - Não é primitivo
 - Implementada através de arrays de char
 - Bibliotecas especiais fornecem as operações
- SNOBOL4 (uma linguagem de manipulação de strings)
 - É um primitivo
 - Muitas operações, incluindo pattern matching sofisticado
- Fortran e Python
 - É primitivo
 - Diversas operações
- Java
 - Primitivo através da classe String
- Perl, JavaScript, Ruby e PHP
 - Primitivo (?)
 - Têm operações built-in para pattern matching usando expressões regulares

Strings: Tamanho

Estático:

- COBOL
- Java (classe String)

Limited Dynamic Length:

- C e C++
- Um caractere especial ("\0") é utilizado para indicar o final de uma string, ao invés de manter o tamanho
- **Dynamic** (sem máximo):
 - SNOBOL4, Perl, JavaScript

Strings: avaliação de tipo

- Auxílio à escrita de código
- Se é uma linguagem com comprimento estático, é fácil fazer
- Se é uma linguagem com comprimento dinâmico, até que dá para fazer, mas vale a pena o trabalho?

Strings: Implementação

Comprimento Estático:

- Descritor em tempo de compilação

Limited dynamic length:

 Podem precisar de um descritor em tempo de execução (exceto em C e C++)

Dynamic length:

- Precisam de um descritor em tempo de execução
- Alocação/desalocação é o maior problema de implementação

Strings: Descritores

Static string

Length

Address

Descritor em tempo de compilação para strings estáticas Limited dynamic string

Maximum length

Current length

Address

Descritor em tempo de execução para strings limitadas dinamicamente

Até a próxima!

- Material no portal
- Estudem!