Computer Arithmetic

Binary...Integers...Real-Numbers

Binary ... Integers ... Real - Numbers

- For simplicity we would like to use only binary numbers and positive integers.
- But in real life >> Real-Numbers are required.
- Which numbers are "Real-Numbers"?
 - Any type number we can think of is a Real-Number

Binary ... Integers ... Real - Numbers

Fixed and Floating Point representations

Because we need to ...

- 1. Expand the number range
- 2. Include smaller numbers than 1
- 3. Use Real Numbers (integers, positive and negative numbers that can be written in decimal notation)
- Fixed-Point and Floating-Point Number representations are used

Fixed-point: binary point fixed

Fixed-Point Numbers

32-bit Fixed-Point Number					
0000 0000 000 0000	0000 0000 0000 0000				
16-bit Integer	16-bit Fraction				

Where are used?

 Fixed-Point arithmetic is used in applications where speed is more important than precision:

- Digital Signal/Image Processing
- Control Systems
- o smartDevices
- Games

Floating-Point and Fixed-Point

- To represent Real Numbers (Numbers with Fractional Part) we can use:
 - Fixed-Point
 - Floating-Point
- Note that, the logic circuits of Fixed-Point hardware are much less complicated than those of Floating-Point hardware
- Fixed-point calculations require less memory and less processor time

Fixed-Point

- Computer: Works with Integers
- Designer (Programmer): Can assign, in the following 8-bit integer, a fraction part.
- Example: $00001000_2 = \frac{8}{10}$
- Insert decimal point: 0000.1000₂ =
- Scaled 8 by $2^{-4} = 1/2^4 = 1/16 = 0.0625$
- Therefore: $8 * 0.0625 = 0.5_{10}$

Therefore ...

- 0000.10002 = 0.510
- 0.12 = 0.510

Fixed-Point Numbers

- Fixed-Point Math is integer math that allows fractions
- Fixed-point binary numbers can represent realnumbers (with fractional or binary point component)
- They have fixed width (for example: 8-bit number)

8-bit number

Divide your range of values to two parts (Integer and fractional)

Whole Part Fractional Part

Fixed-Point

Q<X.Y> format for Fixed-Point numbers

Q<X.Y>

where,

- X = whole number + fractional part
- Y = fractional part

Representation format: Example: Q<8.4>

- If X = whole number + fractional part
- If Y= fractional part
 - -Q<X.Y> = Q<8.4> fixed-point
 - If Y = 0, then X.Y = X.0, with no fraction part

Precision (Example: Q<8.4>)

- Precision is the smallest difference between two successive binary numbers, i.e., (1/8-1/16)
- Precision for our Q<8.4> example: (1/8-1/16) = 1/16 = 0.625

<8.4> Fixed-point (signed) representation

Integer part

Fractional part

Programmer choice

- It is noted again that the programmer has a clear choice about the range of the numbers involved in the design (application).
- Binary data, for the ALU, are just ... a bit pattern

- -001101112 = 5510
- $-0011011.1_2 = 27.5_{10}$
- \blacksquare 001101.11₂ = 13.75₁₀
- -00110.1112 = 6.87510

Example: Fixed-Point Q < X.Y > = Q < 8.1 >

- Example: Q<X.Y> = Q<8.1>
- { ------ }
- The decimal number 0.5 can be represented in binary notation with Q<8.1>, as ...

2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰		2 ⁻¹
0	0	0	0	0	0	0	•	1

New Example ... 0.75 decimal

- Express decimal 0.75 in a Q<8.1> fixed-point binary format.
- The decimal number 0.75 cannot be represented in a Q<8.1> fixed-point binary format
- Increase the fraction range by one Q<8.2>
- Therefore we decrease the whole number range (Precision loss)

Example: Decimal 0.75 in <8.2> format

2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2 ⁻²
0	0	0	0	0	0	1	1

- We lost range on the integer part
- Main disadvantage of Fixed Point numbers

Negative fixed-point numbers

- Use 2's complement signed-magnitude representation
- Assign one bit of each number for sign. This will decrease the range of numbers by 2

Why?

Dividing by 2 in binary ...

 Dividing a number by 2 is equivalent to shifting the binary number to the right by 1-bit position

Examples:

•
$$1110_2 (14) \rightarrow 0111_2 (7)$$

•
$$1100_2$$
 (12) \rightarrow 0110_2 (6)

•
$$1101_2$$
 (13) \rightarrow 110.1_2 (6.5)

•
$$1111_2$$
 (15) \rightarrow 111.1_2 (7.5)

Why?

• 1101₂ (13) \rightarrow 110.1₂ (6.5)

Convert decimal (with fraction) to binary:

6.5₁₀ in binary?

$$6_{10} = 110_2$$

 $0.5_{10} = in binary?$

With fractional part (0.5)

Multiply by 2 ...

$$0.5 * 2 = 1.0$$

$$0 * 2 = 0.0$$

Top to bottom

$$0.5_{10} = .10_{2}$$

Zeros in the fractions have no real meaning ... 2.30000000 = 2.3

Floating-Point Numbers

32-bit Floating-Point Number			
1	0000 0000	0000 0000 0000 0000 0000	
1-bit	8-bit exponent	23-bit Fraction	

Floating-Point Numbers ... range

- Is used to represent numbers:
 - Very large
 - Very small

Decimal Range of the IEEE 64-bit Format

$$4.9 \times 10^{-307}$$
 to $1.8 \times 10^{+308}$

Single/Double-Precision

32-bit Single-Precision Floating-point Number

IEEE-754 FPU

IEEE-754 Floating Point Unit Single/Double Precision, Full Compliance

Fixed Point and Floating Point Numbers

- A Fixed-Point Number has a fixed number of digits after the binary point
 - Division by zero gives an interrupt or exception
- A Floating-Point Number can have a varying number of digits after the binary point
 - Division by zero gives infinite result