Documents autorisés : cours, TD, notes manuscrites. Barème indicatif (sur 30) : 7+2+6+5+6+4. Durée : 1h 30.

Exercice 1

Dans une entreprise, le nombre X de courriels reçus chaque jour par les employés est donné dans le tableau suivant :

X	f_i
[35, 40[0,01
[40, 45[0, 11
[45, 50[0,31
[50, 55[0,32
[55, 60[0, 19
[60, 65[0,06

- 1. Représenter graphiquement.
- 2. Reproduire et compléter le tableau suivant avec les fréquences cumulées

Moyenne x_i	Fréquence f_i	Fréquence cumulée
[35, 40[0,01	
[40, 45[0, 11	
[45, 50[0,31	
[50, 55[0,32	
[55, 60[0, 19	
[60, 65[0,06	

- 3. Préciser la fonction de répartition.
- 4. Représenter graphiquement la fonction de répartion.
- 5. Préciser la moyenne, les quartiles, la (les) classe(s) modale(s), la variance, l'écart-type, l'écart inter-quartile et l'étendue.

Reproduire et compléter le tableau suivant :

Moyenne	Médiane	Classe(s) modale(s)	σ_X	Q_1	Q_3	$Q_3 - Q_1$	Etendue

Exercice 2

Un sac contient un jeton, dont on sait qu'il est blanc ou noir.

On place dans le sac un jeton blanc, on mélange, et on tire l'un des jetons, qui est blanc.

Quelle est maintenant la probabilité de tirer un jeton blanc?

D'après Lewis Carrol, 08/09/1887

Exercice 3

Les coordonnées polaires (ρ, θ) d'une comète vérifient une équation de la forme : $\rho = a\rho\cos\theta + b$ $(\theta \text{ en radian})$ où a et b sont des constantes (a est appelée l'excentricité de l'orbite).

L'observation d'une comète a fourni les données suivantes (Source : Algèbre linéaire de Lay) :

θ (en radian)	0,880	1,10	1,42	1,77	2,14
ρ	3,00	2,30	1,65	1,25	1,01

1. On pose $X = \rho \cos \theta$ et $Y = \rho$. Reproduire et remplir le tableau suivant :

Y	3,00	2,30	1,65	1,25	1,01
X					

- 2. Préciser \overline{x} , \overline{y} , σ_X^2 , σ_Y^2 et σ_{XY} .
- 3. Ajuster Y en X selon la méthode des moindres carrés et préciser la formule obtenue : Y = aX + b, puis $\rho = a\rho\cos\theta + b$.
- 4. Etudier la qualité de l'ajustement en précisant r^2 .
- 5. Selon la première loi de Képler, la trajectoire d'une comète est une ellipse si $0 \le a < 1$, une parabole si a = 1, une hyperbole si a > 1. Préciser la nature de l'orbite de la comète étudiée.
- 6. En utilisant la formule obtenue, donner une estimation de ρ pour $\theta=0,460$ radian.

Exercice 4

La variable aléatoire X qui donne le nombre d'étudiants absents dans un groupe de 25 étudiants lors d'une séance d'enseignement suit la loi binomiale $\mathcal{B}\left(25, \frac{4}{100}\right)$.

- 1. Préciser P(X=0), P(X=1) et $P(X \ge 2)$.
- 2. On procède à présent à une approximation suivant la loi de Poisson $\mathcal{P}(\lambda)$ avec $\lambda = E(X)$.
 - (a) Préciser λ .
 - (b) Reprendre les calculs et préciser P(X=0), P(X=1) et $P(X \ge 2)$. Comparer.
- 3. Le groupe participe à 10 séances d'enseignement. Préciser la probabilité qu'il y ait sur l'ensemble des 10 séances
 - (a) aucun absent,
 - (b) au moins un absent,
 - (c) exactement 1 absent.

 $Indications: \ \ 0,96^{25}\approx 0,360\,396\,72\,; \ 0,96^{250}\approx 3,696\,649\,37\times 10^{-5}.$

Exercice 5

On note X la variable aléatoire qui associe à un exercice la durée de sa résolution par des étudiants (en minutes).

La loi de probabilité \mathcal{D} suivie par X est donnée par :

$$P(X = 1) = 0, 1$$
; $P(X = 2) = 0, 8$; $P(X = 3) = 0, 1$.

- 1. Préciser E(X), V(X) et σ_X .
- 2. On s'intéresse à la durée de résolution de deux exercices successifs par des étudiants. On note X_1 et X_2 les deux variables aléatoires indépendantes associées à la durée de résolution de chacun des exercices. X_1 et X_2 suivent la loi de probabilité \mathcal{D} .
 - (a) Préciser la loi conjointe du couple (X_1, X_2) . On présentera les résultats dans un tableau :

$X_1 \backslash X_2$	1	2	3
1			
2			
3			

- (b) On note $Y = X_1 + X_2$. Préciser
 - i. la loi de probabilité de Y. On présentera les résultats dans un tableau :

P(Y=2)	$P\left(Y=3\right)$	$P\left(Y=4\right)$	$P\left(Y=5\right)$	$P\left(Y=6\right)$

- ii. E(Y), V(Y) et σ_Y .
- iii. $P(Y \leq 4)$.

Exercice 6

Le temps mis par des étudiants pour faire un devoir est une variable aléatoire X qui suit la loi normale $\mathcal{N}(m,\sigma)$ avec m=85 minutes et $\sigma=15$ minutes.

- 1. Quelle est la proportion des étudiants qui terminent le devoir en moins de 1h 50 (110 minutes)?
- 2. Quelle est la durée minimale de l'épreuve qui correspondrait à au moins 90% des étudiants terminant le devoir?