Calcul Numeric –Laborator #10

- **Ex. 1** Să se afle funcțiile de interpolare spline liniară și pătratică S pentru funcția f(x) = sinx relativ la diviziunea $\left(-\frac{\pi}{2}, 0, \frac{\pi}{2}\right)$.
- **Ex.** 2 Fie $f:[a,b]\to\mathbb{R}$ o funcție continuă.
 - a) Să se construiască în Python procedura **SplineL** având sintaxa y =**SplineL**(X, Y, x), conform metodei de interpolare spline liniară. Datele de intrare: vectorul X, componentele căruia sunt nodurile de interpolare, i.e. $a = X_1 < X_2 < ... < X_{n+1} = b$; vectorul Y definit prin $Y_i = f(X_i), i = \overline{1, n+1}$; variabila scalară $x \in [a, b]$. Datele de ieşire: Valoarea numerică y reprezentănd valoarea funcției spline liniară S(x) calculată conform metodei spline liniare.
 - b) Fie datele: $f(x) = sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]; n = 2, 4, 10; X$ o diviziune echidistantă a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu n + 1 noduri; Y = f(X). Să se construiască grafic funcția f, punctele de interpolare (X, Y) și un vector S calculat conform procedurii **SplineL**, corespunzător unei discretizări x a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu 100 de noduri. Ind.: $S_i =$ **SplineL** $(X, Y, x_i), i = \overline{1, 100}$.
 - e) Să se modifice procedura $y = \mathbf{SplineL}(X, Y, x)$, astfel încât atât parametrul de intrare x, cât şi parametrul de ieşire y să fie vectori.

Ex. 3 Fie $f:[a,b]\to\mathbb{R}$ o funcție continuă.

- a) Să se construiască în Python procedura **SplineP** având sintaxa [y, z] =**SplineP**(X, Y, fpa, x), conform metodei de interpolare spline pătratică. Datele de intrare: vectorul X, componentele căruia sunt nodurile de interpolare, i.e. $a = X_1 < X_2 < ... < X_{n+1} = b$; vectorul Y definit prin $Y_i = f(X_i)$, $i = \overline{1, n+1}$; derivata funcției f în capătul din stânga a intervalului, fpa = f'(a); variabila scalară $x \in [a, b]$. Datele de ieșire: Valorile numerice y, z reprezentănd valoarile funcției spline pătratică S(x) și derivatei S'(x) calculate conform metodei spline pătratice. Indicație: $z = b_j + 2c_j(x x_j)$.
- b) Fie datele: $f(x) = sin(x), x \in [-\frac{\pi}{2}, \frac{\pi}{2}]; n = 2, 4, 10; X$ o diviziune echidistantă a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu n+1 noduri; Y = f(X). Să se construiască grafic funcția f, punctele de interpolare (X, Y) și functia spline S(x) calculată conform procedurii **SplineP**, corespunzător unei discretizări x a intervalului $[-\frac{\pi}{2}, \frac{\pi}{2}]$ cu 100 de noduri.
- c) Într-o altă figură să se construi
ască grafic derivata funcției spline și derivata funcției f.
- d) Să se modifice procedura $[y, z] = \mathbf{SplineP}(X, Y, fpa, x)$, astfel încât parametrii de intrare/ieşire x și respectiv y, z să poată fi vectori.