LÓGICA

Cód:30829840

Turma: SI

Prof. Dr. João Paulo I. F. Ribas

Sejam P(p,q,r,...) e Q(p,q,r,...) duas proposições compostas, elas são ditas equivalentes (logicamente equivalentes) se e somente se a coluna resultante de suas tabelas-verdade são idênticas

Lê-se "P é equivalente a Q".

Notação: $P(p,q,r,...) \Leftrightarrow Q(p,q,r,...)$

Propriedades da Equivalência

Propriedade Reflexiva:

$$P(p,q,r,...) \Leftrightarrow P(p,q,r,...)$$

Propriedade Simétrica:

Se P(p,q,r,...)
$$\Leftrightarrow$$
 Q(p,q,r,...) **ENTÃO** Q(p,q,r,...) \Leftrightarrow P(p,q,r,...)

Propriedades da Equivalência

Propriedade Transitiva:

Se P(p,q,r,...)
$$\Leftrightarrow$$
 Q(p,q,r,...) E
Q(p,q,r,...) \Leftrightarrow R(p,q,r,...) ENTÃO
P(p,q,r,...) \Leftrightarrow R(p,q,r,...) .

Exemplos: Verificar se as proposições $P(p,q)=p\rightarrow q$ é equivalente a $Q(p,q)=\sim pvq$.

▶ Ou seja, verificar se $p \rightarrow q \Leftrightarrow \sim pvq$

Preencher a tabela-verdade com as duas proposições, da seguinte forma:

р	\rightarrow	q	\$	2	р	V	q
V	V	V		F	V	V	V
V	F	F		F	V	F	F
F	V	V		V	F	V	V
F	V	F		V	F	V	F
1	2	1		2	1	3	1

р	\rightarrow	q	\Leftrightarrow	2	р	V	q
V	V	V		F	V	V	V
V	F	F		F	V	F	F
F	V	V		V	F	V	V
F	V	F		V	F	V	F
1	2	1		2	1	3	1
	$\overline{\uparrow}$					$\overline{\uparrow}$	

São Equivalentes

 Verifica-se que se as duas proposições são equivalentes, a bicondicional entre elas é uma tautologia.

Exercícios: Verifique as seguintes equivalências por tabela-verdade:

a)
$$(p \rightarrow q) \lor (p \rightarrow r) \Leftrightarrow p \rightarrow p \lor r$$

b)
$$p \vee q \Leftrightarrow (p \vee q) \wedge \sim (p \wedge q)$$

c)
$$p \land q \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$$

Negação Conjunta

Sejam p e q duas proposições simples, a negação conjunta de p e q é dada por p√q.

▶ Lê-se "não p e não q".

• p ↓ q ⇔ ~p ^ ~q

Negação Conjunta

- Ou seja:
 - \circ V \downarrow V = F
 - $\circ V \downarrow F = F$
 - $\circ F \downarrow V = F$
 - \circ F \downarrow F = V
- Tabela-Verdade:

Negação Conjunta			
р	q	p↓q	
V	V	F	
V	F	F	
F	V	F	
F	F	V	

Negação Disjunta

Sejam p e q duas proposições simples, a negação disjunta de p e q é dada por p¹q.

- ▶ Lê-se "não p ou não q".
- p↑q ⇔ ~p v ~q

Negação Disjunta

- Ou seja:
 - \circ V \uparrow V = F
 - \circ V \uparrow F = V
 - \circ F \uparrow V = V
 - \circ F \uparrow F = V
- Tabela-Verdade:

Negação Disjunta			
р	q	p↑q	
V	V	F	
V	F	V	
F	V	V	
F	F	V	

Equivalências Notáveis

EQUIVALÊNCIAS NOTÁVEIS					
IDEM	p ⇔ p ^ p	$p \Leftrightarrow p v p$			
COM	p ^ q ⇔ q ^ p		$p v q \Leftrightarrow q v p$		
ASSOC	$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$		$p v (q v r) \Leftrightarrow (p v q) v r$		
ID	p ^ t ⇔ p	p ^ c ⇔ c	p v t ⇔ t	$p \ v \ c \Leftrightarrow p$	
	onde $t = V$ (verdadeiro) e $c = F$ (falso)				
DIST	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$		$ p v (q ^ r) \Leftrightarrow (p v $	q)^(pvr)	
ABS	p ^ (p v q) ⇔	> p	p v (p ^ q) <	⇒ p	

Equivalências Notáveis

EQUIVALÊNCIAS NOTÁVEIS (Continuação)				
DN	p ⇔ ~~p			
DM	~(p ^ q) \ ~p v ~q	~(p v q) \ ~p ^ ~q		
COND	$p \rightarrow q \Leftrightarrow \sim p \vee q$			
BICOND	$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$	$p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\sim p \land \sim q)$		
CP	$p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p$			
EI	$p \land q \rightarrow r \iff p \rightarrow (q \rightarrow r)$			
	$p \vee q \Leftrightarrow \sim (p \leftrightarrow q)$			
Outras	p ↓ q ⇔ ~p ^ ~q			
	p ↑ q ⇔ ~p v ~q			