Прикладная статистика. Проверка гипотез. Введение

Леонид Иосипой

Программа «Математика для анализа данных» Центр непрерывного образования, ВШЭ

1 декабря 2020

• Повторение

• Проверка гипотез

Пусть $\alpha \in (0,1)$. Две оценки $\widehat{\theta}_1$ и $\widehat{\theta}_2$ определяют границы доверительного интервала для параметра θ с коэффициентом доверия $1-\alpha$, если для выборки $\mathbf{X}=(X_1,\ldots,X_n)$ из закона распределения F_θ при всех $\theta \in \Theta$ справедливо неравенство

$$\mathbb{P}\Big(\widehat{\theta}_1(\mathbf{X}) < \theta < \widehat{\theta}_2(\mathbf{X})\Big) \geq 1 - \alpha.$$

Если вероятность в левой части неравенства в пределе не превосходит $1-\alpha$ при $n\to\infty$, то есть выполняется

$$\lim_{n\to\infty} \mathbb{P}\Big(\widehat{\theta}_1(\mathbf{X}) < \theta < \widehat{\theta}_2(\mathbf{X})\Big) \ge 1 - \alpha.$$

то доверительный интервал называется асимптотическим.

Пусть X_1, \ldots, X_k независимы и имеют стандартное нормальное распределение $\mathcal{N}(0,1)$.

Распределением χ^2 (хи-квадрат) с k степенями свободы называется распределение случайной величины

$$Y = X_1^2 + \ldots + X_k^2.$$

Обозначение: χ_k^2 или H_k .

Пусть X_0, X_1, \ldots, X_k независимы и имеют стандартное нормальное распределение $\mathcal{N}(0, 1)$.

Распределением Стьюдента называется распределение случайной величины

$$Y = \frac{X_0}{\sqrt{\frac{X_1^2 + \dots + X_k^2}{k}}}$$

Обозначение: T_k .

Повторение Проверка гипоте:

Повторение

Доверительные интервалы в нормальной модели. Пусть X_1, \ldots, X_n — выборка из $\mathcal{N}(\mu, \sigma^2)$.

ightharpoonup доверительный интервал для μ при известном σ^2 :

$$\mathbb{P}\left(\overline{X} - \frac{c_{1-\alpha/2}\sigma}{\sqrt{n}} < \mu < \overline{X} + \frac{c_{1-\alpha/2}\sigma}{\sqrt{n}}\right) = 1 - \alpha,$$

где $c_{1-\alpha/2}$ — квантиль распределения $\mathcal{N}(0,1)$.

ightharpoonup доверительный интервал для σ^2 при известном μ :

$$\mathbb{P}\left(\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{c_{1-\alpha/2}}<\sigma^{2}<\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{c_{\alpha/2}}\right)=1-\alpha,$$

где $c_{\alpha/2}$ и $c_{1-\alpha/2}$ — квантили распределения χ^2_n .

ightharpoonup доверительный интервал для μ при неизвестном σ^2 :

$$\mathbb{P}\left(\overline{X} - \frac{c_{1-\alpha/2}S}{\sqrt{n}} < \mu < \overline{X} + \frac{c_{1-\alpha/2}S}{\sqrt{n}}\right) = 1 - \alpha,$$

где $c_{1-\alpha/2}$ — квантиль распределения T_{n-1} .

ightharpoonup доверительный интервал для σ^2 при неизвестном μ^2 :

$$\mathbb{P}\left(\frac{(n-1)S^2}{c_{1-\alpha/2}} < \sigma^2 < \frac{(n-1)S^2}{c_{\alpha/2}}\right) = 1 - \alpha,$$

где $c_{lpha/2}$ и $c_{1-lpha/2}$ уже квантили χ^2_{n-1} .

Повторение Проверка гипотез

Повторение

Бутстрэп — это набор практических методов, который основан на многократной генерации выборок на базе одной имеющейся выборки.

Повторение

Параметрический бутстрэп:

- ▶ Данные пришли из некоторого параметрического семейства F_{θ} .
- ▶ Чтобы сгенерировать новые выборки необходимо найти оценку $\widehat{\theta}$ и генерировать из $F_{\widehat{\theta}}$.
- Если семейство распределений F_{θ} непрерывно зависит от параметра и оценка $\widehat{\theta}$ не сильно уклонилась от истинного значения, то $F_{\widehat{\theta}}$ будет близко к закону, из которого получена выборка.
- ▶ Новые выборки используем для оценки того, что нужно.

Повторение Проверка гипотез

Повторение

Непараметрический бутстрэп:

- Не делаем предположения относительно какого-либо «семейства» распределений F_{θ} .
- Чтобы сгенерировать новые выборки используем выбор с возвращением из исходной выборки.
- У этой идеи есть теоретическое подспорье: мы тем самым генерируем новую выборку из эмпирической функции распределения, которая является хорошим приближением истинной функции распределения.
- ▶ Новые выборки используем для оценки того, что нужно.

Эмпирическая функция распределения $\widehat{F}_n(u)$ определяется формулой

$$\widehat{F}_n(u) = \frac{1}{n} \sum_{i=1}^n \mathbf{I}_{\{X_i \le u\}},$$

где $\mathbf{I}_{\{X_i \leq u\}}$ — индикатор события $\{X_i \leq u\}$.

График $\widehat{F}_n(x)$ представляет собой ступенчатую функцию, растущую скачками высоты 1/n. Скачки происходят в точках с координатами x_1,\ldots,x_n .

Доверительный интервал на основе бутстрэпа:

- ► Сгенерируем *т* выборок с помощью параметрического или непараметрического бутстрэпа.
- ▶ Посчитаем m раз величину, доверительный интервал для которой мы хотим построить. Обозначим эти «оценки» через $\widehat{\theta}_1, \dots, \widehat{\theta}_m$.
- ightharpoonup Упорядочим $\widehat{ heta}_i$ и выберем те из них, $\widehat{ heta}_-$ и $\widehat{ heta}_+$, которые стоят на местах [(lpha/2)m] и [(1-lpha/2)m] по возрастанию.
- ▶ Тогда нашим интервалом будет:

$$(\widehat{\theta}_{-}, \widehat{\theta}_{+}).$$

Повторение Проверка гипотез

Повторение

Задача. Пусть имеется реализация выборки x_1, \ldots, x_n из равномерного распределения на $[0, \theta]$.

Допустим мы оценили θ с помощью $2\overline{x}$. А затем берем новую выборку из равномерного распределения на $[0,2\overline{x}]$ и оцениваем с помощью ее среднего параметр θ .

Какую дисперсию будет иметь эта новая оценка?

овторение Проверка гипотез

Проверка гипотез

В проверке гипотез делается предположение о процессе, генерирующем данные, и задача состоит в том, чтобы определить, содержат ли данные достаточно информации, чтобы отвергнуть это предположение или нет.

Чтобы иметь возможность отвергнуть предположение, необходимо зафиксировать альтернативу — другое предположение о данных, относительно которого мы будем решать, отвергать основную гипотезу или нет.

Задача. Предположим, что кто-то подбросил 10 раз монетку, и в 8 случаях она упала гербом вверх. Можно ли считать эту монетку симметричной?

Пусть $X_1, \ldots, X_n \sim \mathbf{B_p}$.

 $H_0: p = \frac{1}{2}$ (основная гипотеза).

 $H_1: p \neq \frac{1}{2}$ (альтернативная гипотеза).

Как проверить гипотезу H_0 о том, что p=1/2?

Овторение Проверка гипотез

Проверка гипотез

Правило, позволяющее принять или отвергнуть гипотезу H_0 на основе данных называется статистическим критерием.

Обычно критерий задается при помощи статистики критерия $T(x_1, \ldots, x_n)$ такой, что для нее типично принимать умеренные значения в случае, когда гипотеза H_0 верна, и большие (малые) значения, когда H_0 не выполняется.

Для нашего эксперимента в качестве статистики T можно взять сумму:

$$T(x_1,\ldots,x_n)=x_1+\ldots+x_n.$$

Тогда гипотезе H_0 : p=1/2 противоречат значения, которые близки к 0 или n.

Проверка гипотез

Статистика критерия T должна обладать важным свойством:

- при верной H_0 статистика T должна иметь известное нам распределение F_0 ;
- при верной H_1 должна иметь какое-либо распределение отличное от F_0 .

В нашем примере это свойство выполняется: статистика

$$T(x_1,\ldots,x_n)=x_1+\ldots+x_n.$$

- ▶ при верной H_0 имеет биномиальное распределение ${\bf B_{n,1/2}}$;
- ▶ при верной H_1 тоже имеет биномиальное распределение ${\bf B_{n,p}}$, но с $p \ne 1/2$.

овторение Проверка гипотез

Проверка гипотез

Если значение T попало в область, имеющую при выполнении гипотезы H_0 малую вероятность, то можно заключить, что данные противоречат гипотезе H_0 .

Если произошло обратное, то есть значение T попало в область, имеющую при выполнении гипотезы H_0 большую вероятность, то можно заключить, что данные не противоречат гипотезе H_0 .

Вероятности можно посчитать, так как нам известно распределение F_0 !

Формализация задачи: в случае простых гипотез

выборка: $\mathbf{X} = (X_1, ..., X_n)$

нулевая гипотеза: $H_0: X_i \sim G_0$

альтернатива: H_1 : $X_i \sim G_1 \neq G_0$

статистика: $T(x_1,\ldots,x_n),\ T(\mathbf{X})\sim F_0$ при $\mathbf{X}\sim G_0$ $T(\mathbf{X}) \sim F_0$ при $\mathbf{X}\sim G_1$

реализация выборки: $\mathbf{x} = (x_1, ..., x_n)$

 $\mathbf{x} = (x_1, \dots, x_n)$ $t = T(\mathbf{x})$

реализация статистики: достигаемый уровень значимости

 $p(\mathbf{x}) = \mathbb{P}(T(\mathbf{X}) \ge t \mid H_0)$

или p-value:

(если для T экстремальные значения — большие)

Достигаемый уровень значимости или p-value:

$$p(\mathbf{x}) = \mathbb{P}(T(\mathbf{X}) \geq t \mid H_0)$$

 $p(\mathbf{x})$ — вероятность для статистики T при верной H_0 получить значение t или ещё более экстремальное.

Здесь для удобства мы считали, что экстремальными значениями для статистики T являются большие значения. Так бывает не всегда.

Гипотеза отвергается при $p(\mathbf{x}) \leq \alpha$, α — уровень значимости.

Проверка гипотез

Проверка гипотез

	H_0 верна	H_0 неверна
H_0 принимается	H_0 верно принята	Ошибка второго рода
		(False negative)
H_0 отвергается	Ошибка первого рода (False positive)	H_0 верно отвергнута

Type I error (false positive)

Type II error (false negative)

Проверка гипотез

Если величина p-value достаточно мала, то данные свидетельствуют против нулевой гипотезы в пользу альтернативы.

Если величина p-value недостаточно мала, то данные не свидетельствуют против нулевой гипотезы в пользу альтернативы.

При помощи инструмента проверки гипотез нельзя доказать справедливость нулевой гипотезы!

Овторение Проверка гипотез

Проверка гипотез

Вероятность отвергнуть нулевую гипотезу зависит не только от того, насколько она отличается от истины, но и от размера выборки.

По мере увеличения n нулевая гипотеза может сначала приниматься, но потом выявятся более тонкие несоответствия выборки гипотезе H_0 , и она будет отвергнута.

Пример проверка гипотез

Задача. Джеймс Бонд говорит, что предпочитает мартини взболтанным, но не смешанным. Давайте проверим, так это или нет.

Проведём слепой тест: n раз предложим ему пару напитков и выясним, какой из двух он предпочитает.

Выборка: $\mathbf{X} = (X_1, \dots, X_n)$, где $X_i \sim \mathbf{B_p}$.

Реализация выборки: $\mathbf{x} = (x_1, \dots, x_n)$ — это бинарный вектор длины n, где

- ▶ 1 Джеймс Бонд выбрал взболтанный мартини
- ▶ 0 Джеймс Бонд выбрал смешанный мартини

 H_0 : Д.Б. не различает два вида мартини, p=1/2.

 H_1 : Д.Б. предпочитает взболтанный мартини, p>1/2.

Статистика: $T(x_1, ..., x_n) = x_1 + ... + x_n$.

Реализация статистики: $t = T(\mathbf{x})$.

Какие значения T считаются экстремальными?

При альтернативе H_1 экстремальными являются большие значения t (они свидетельствуют против H_0 в пользу H_1).

Если H_0 справедлива и Джеймс Бонд не различает два вида мартини, то T будет иметь распределение ${\bf B}_{n,1/2}$.

Пусть n=16, тогда $\mathbf{B}_{n,1/2}$ будет иметь следующий вид:

Leonid Iosipoi

Допустим, что t=12, то есть в 12 случаях из 16 Джеймс Бонд выбрал взболтанный мартини.

Тогда достигаемый уровень значимости p-value paвeн:

$$\mathbb{P}(T(\mathbf{X}) \ge 12|H_0) = \frac{2517}{65536} \approx 0.0384.$$

Пример проверка гипотез

Давайте поменяем альтернативу.

 H_1 : Джеймс Бонд предпочитает какой-то определённый вид мартини, но неизвестно какой, то есть $p \neq 1/2$.

При такой альтернативе и большие, и маленькие значения t свидетельствуют против H_0 в пользу H_1 .

Допустим, что t=12, то есть в 12 случаях из 16 Джеймс Бонд выбрал взболтанный мартини.

Тогда достигаемый уровень значимости p-value paвeн:

$$\mathbb{P}(\mathcal{T}(\mathbf{X}) \geq 12$$
 или $\mathcal{T}(\mathbf{X}) \leq 4|H_0) = \frac{5034}{65536} \approx 0.0768.$

Повторение Проверка гипотез

Пример проверка гипотез

Чем ниже достигаемый уровень значимости, тем сильнее данные свидетельствуют против нулевой гипотезы в пользу альтернативы.

Достигаемый уровень значимости нельзя интерпретировать как вероятность справедливости нулевой гипотезы!

Повторение Проверка гипотез

Спасибо за внимание!