

Transductores inductivos

Mediciones Biomédicas 2024 Ingeniería Civil Biomédica

Dr. Alejandro Veloz <u>alejandro.veloz@uv.cl</u>

Tipos de transductores

Resistivos

Capacitivos

Piezoeléctricos

Inductivos/magnéticos

Térmicos

Radiación/ópticos

Electroquímicos (Cap. 4)

Transductores de Inductancia Variable

Basados en la Ley de Inducción de Faraday

Principio:

- Cambio en la inductancia produce una fuerza electromotriz
- Esto se puede usar para medición y control de desplazamiento, presión y fuerza

Tipos de Transductores de Inductancia Variable

Autogeneradores:

Electromagnéticos

Electrodinámicos

De corrientes de Eddy

Pasivos:

De reluctancia variable

De inductancia mutua

Transformador diferencial de variación lineal (LVDT)

Aplicaciones

- Medición de desplazamiento lineal y angular
- Sensores de presión y fuerza
- Acelerómetros
- Medidores de flujo
- Sistemas de control industrial
- IoT
- ...

Ventajas / desventajas

- Alta sensibilidad y precisión
- Robustez y durabilidad
- Salida lineal en un amplio rango
- Miniaturización para aplicaciones MEMS
- Integración con sistemas digitales y IoT
- Sensibilidad a campos magnéticos externos
- Necesidad de excitación (en tipos pasivos)
- Limitaciones en frecuencia de operación

Sensores inductivos

$$L=n^2G\mu$$
 n: número de vueltas de la bobina. G: factor de forma. μ : permeabilidad.

Figure 2.7 Inductive displacement sensors (a) Self-inductance, (b) Mutual inductance, (c) Differential transformer.

Sensores inductivos

- Desplazamientos en el rango 0.1-250 mm
- 0.5-2 mV para un desplazamiento de 0.01mm
- sensibilidad mayor en relación a las GE

Desventaja: requiere procesamiento de señal más complejo.

http://www.macrosensors.com/lvdt_macro_sensors/lvdt_tutorial/lvdt_prime r.pdf

Sensores inductivos

Figure 2.8 (a) As x moves through the null position, the phase changes 180°, while the magnitude of v_o is proportional to the magnitude of x. (b) An ordinary rectifier-demodulator cannot distinguish between (a) and (b), so a phase-sensitive demodulator is required.

Electromagnetic Blood Flow Meters

- Measures instantaneous pulsatile flow of blood
- Works based on the principle of electromagnetic induction
 - The voltage induced in a conductor moving in a magnetic field is proportional to the velocity of the conductor
- The conductive blood is the moving conductor

Principle of Electromagnetic Blood Flow Meters

Principle of Electromagnetic Blood flow Measurement

ELECTROMAGNETIC FLOWMETER

Principle of Electromagnetic Blood Flow Meters

- A permanent magnet or electromagnet positioned around the blood vessel generates a magnetic field perpendicular to the direction of the flow of the blood.
- Voltage induced in the moving blood column is measured with stationary electrodes located on opposite sides of the blood vessel and perpendicular to the direction of the magnetic field.

Principle of Electromagnetic Blood Flow Meters

The Induced *emf*

$$e = \int_0^{L_1} \mathbf{u} \times \mathbf{B} \cdot d\mathbf{L}$$

where:

B is the magnetic flux density, T

L is the length between electrodes, m

u is the instantaneous velocity of the conductor (blood) moving through the magnetic field, m/s

Ejemplo

Considere un vaso sanguíneo expuesto a un campo magnético para la medición del flujo y los siguientes parámetros:

- Velocidad del flujo sanguíneo (u): 0.1 m/s
- Intensidad del campo magnético aplicado (B): 0.005 Tesla Longitud de los electrodos de detección (L): 0.2 m

Asumiendo un campo magnético uniforme perpendicular a la dirección del flujo sanguíneo y un flujo uniforme la expresión de la Ley de Faraday

$$e = \int_0^{L_1} \mathbf{u} \times \mathbf{B} \cdot d\mathbf{L}$$

equivale a:

$$e = u^*B^*L$$

Resolviendo se tiene:

Principle of Electromagnetic Blood Flow Meters

This method requires that the blood vessel be exposed so that the flow head or the measuring probe can be put across it.

Design of Flow Transducers

- The electromagnetic flow-transducer is a tube of non-magnetic material to ensure that the magnetic flux does not bypass the flowing liquid and go into the walls of the tube.
- The tube is made of a conducting material and generally has an insulating lining to prevent short circuiting of induced emf.
- The induced emf is picked up by point electrodes made from stainless steel or platinum.

Design of Flow Transducers

 The flow head contains a slot through which the intact blood vessel can be inserted to make a snug fit.

- Several probes of different sizes must therefore accompany the flowmeter to match the full range of sizes of the blood vessels which have various diameters.
- Flow heads having as small as 1mm are available.

Types of Electromagnetic Blood Flow Meters

DC Flow meters

- Use DC Magnetic field.
- Cause electrode polarization and amplifier drift.

AC Flow meters

- Electromagnets are driven by alternating currents.
- The transducer acts like a Transformer and induces error voltages that often exceed the signal levels by several orders of magnitude.

Electromagnetic AC flow meters

 Error recovery is achieved by using several different waveforms for magnet current

Sine, Square, Trapezoidal

 Suitable balancing circuits are used to balance out the error voltage.

Sine wave Flowmeters

The transformer induced voltage is 90° out of phase and is eliminated by

- Injecting a voltage of equal strength and opposite phase into the signal.
- Using a gated amplifier.
 - Permit the amplification of the signal only during the flow induced voltages are maximum and the transformer induced voltages are minimum.

Square wave Flowmeters

- The transformer induced voltage is only a spike.
- Separation is easier as the amplifier can be gated only for a very short period.
- Blanking is required only when the current in the magnet is reversing its direction and the amplifier works during the flat portion of the square wave.

Magnetic Flowmeter Block Diagram

Magnetic Flowmeter Block Diagram

- The oscillator, which drives the magnet provides a control signal for the gate, operates at a frequency of between 60 and 400 Hz.
- The frequency response is high enough to allow the recording of the flow pulses.
- The mean or average flow can be derived by use of a low-pass filter.