#### **Graduation Project Defense**

# Optimizing Continuous Integration Using Artificial Intelligence

Supported on July 4<sup>th</sup>, 2022, before the examination board:

Dr. Mohamed Hamdi Associate Professor – SUP'COM President

Dr. Ramzi Guetari Associate Professor – EPT Rapporteur

Prof. Naceur Benhadj Braiek Professor - EPT Academic Supervisor

Dr. Mohamed Aymen Saied Assistant Professor - ULaval Supervisor

Mr. Mohamed Mouine Ph.D. Student - ULaval Supervisor





**Host Organization** 



Elaborated by

Maher Dissem



Academic year: 2021-2022

### CONTENTS

I

#### **Project's Description**

- 1. General Context
- 2. Continuous Integration
- 3. Problem Statement
- 4. Project's Objectives

I

#### **Proposed Solution**

- 1. Dataset
- 2. Decision Trees
- 3. Deep Reinforcement Learning
- 4. Solution Details

Ш

#### **Evaluation**

- 1. Evaluation Methodology
- 2. Compared Techniques
- 3. Results





### Project's Description

- 1. General Context
- 2. Continuous Integration
- 3. Problem Statement
- 4. Project's Objectives

## Project's Description General Context









Test



Design Develo

Development

As projects become more complex, the risk of human error causing consequent defects also grows.

Software flaws and delivery delays can harm a company's reputation resulting in lost consumers.

### Project's Description Continuous Integration

A modern practice where developers frequently push their modifications into the main codebase.

The software is built and tested after every commit.





### Project's Description Benefits of Continuous Integration

#### Lower risk of delivering defective software

Most failures will be detected during the testing phase

#### Faster release cycles

Less time is spent debugging errors.

#### Faster errors debugging

Detecting errors is easier when less changes are integrated at once.

#### Improved code quality

Focusing on the functionality of the code rather than on avoiding problems.

### Project's Description Continuous Integration Workflow



### Project's Description Drawbacks of Continuous Integration



#### Power

Constant use of computational resources to run builds and tests.



#### Time

Long build durations.

Developers become less productive.





#### High cost

Google estimates its CI systems in millions of dollar and Mozilla estimate theirs as 201 k\$/month

This high cost hinders the adoption of CI by small companies.

### Project's Description Optimization Strategy

#### **Motivating Example**

The build process took 1 hr 38 min for a simple code reformatting commit



### Project's Description Project's Objectives

#### Goal

We aim to reduce the number of executed builds by **skipping** unnecessary ones such as:

- code reformatting
- documentation edits
- code comments modification

We model the problem as a **binary classification** task and aim to solve it using Machine Leaning.





### **Proposed Solution**

- 1. Dataset
- 2. Decision Tree Model
- 3. Deep Reinforcement Learning
- 4. Solution Details

# Proposed Solution Dataset

Dataset consisting of the commit history of several open-source software projects using CI that have a significant number of skipped commits.

| Statistics about the commit | Commit purpose       | Link to previous commit           |
|-----------------------------|----------------------|-----------------------------------|
| Number of subsystems        | Fixing commit        | Project's number of recent skips  |
| Number of directories       | Documentation commit | Committer's number of recent skip |
| Number of files             | Building commit      | Previous commit result            |
| Number of lines added       | Meta-files commit    | Age                               |
| Number of lines removed     | Merging commit       | Number of developers              |
| Number of comments added    | Media commit         | Developer's experience            |
| Types of modified files     | Source commit        | Sub-system experience             |
| Commit message              | Formatting commit    | Committer's recent experience     |
|                             | Maintenance commit   |                                   |

# Proposed Solution Dataset



#### Data Imbalance

The dataset is heavily imbalanced.

- A majority of commits are executed.
- A minority of commits are CI skipped.

Developers are not familiar with the option to CI skip commits.



### Proposed Solution Decision Tree Model



We employ the **Decision Tree** model to predict which commits to CI skip.

Quick results Skip Interpretable classification Is a source Build commit =1 Build Number of comments added Skip ≤ 10 Build Yes Number of Number of lines Entropy ≤ 3 Skip changed files  $\leq 5$ added ≤ 15 No

### Proposed Solution Decision Tree Building Algorithm



Building a Decision Tree using the Gini Index

for each tree node do

for each feature do

calculate the Gini index for all thresholds calculate the average Gini index calculate the Gini gain

end for

select the feature with the highest Gini gain set node split dataset

end for

Gini Index: 
$$G(s) = 1 - \sum_{c \in C} -p(c)^2$$

Gini Gain: 
$$GG(s) = G(s) - \sum_{t \in T} p(t)G(t)$$

Low Gini index due to data imbalance.

# Proposed Solution Our Approach



To solve this problem, we implement a novel deep reinforcement learning based algorithm to build decision trees that take into consideration the imbalanced nature of data.



### Proposed Solution Deep Reinforcement Learning



## Proposed Solution Solution Overview



#### Solution's Principle

We iterate through the tree's nodes and adjust them so that the classification metric is improved.



### Proposed Solution State Observation

**State Observation** 

The state is extracted using tree-based convolution.



## Proposed Solution Agent's Actions



#### Agent's Actions

Each episode starts by generating an initial decision tree.

At each step, we choose an action  $a_k = (k, x_k)$ for a single node.

- k is the feature
- $x_k$  is the threshold value



### Proposed Solution Reward Function



#### **Reward Function**

After each node modification t, we classify the dataset using the new tree.

The predicted results  $\hat{Y}_t$  and the ground truth  $Y_t$  are used to calculate a classification metric  $m_t$ .

$$r_t = m_t - m_{t-1}$$

### Proposed Solution Training Process



Choose attribute  $K_t$  $k_t = arg \max Q_t$  $= \underset{k \in [K]}{arg \max} Q_q \left( S_t, X_t; \theta_q \right)$ 

Choose action

$$a_t = \begin{cases} (k_t, x_{tk}) \text{ with probability } 1 - \varepsilon \\ \text{random action with probability } \varepsilon \end{cases}$$

### Proposed Solution Training Process





### Evaluation

- 1. Evaluation Methodology
- 2. Compared Techniques
- 3. Results

### Evaluation Evaluation Methodology



#### **Classification Metrics**

|                 |          | Predicted Class |          |  |  |
|-----------------|----------|-----------------|----------|--|--|
|                 |          | Positive        | Negative |  |  |
| Actual<br>Class | Positive | TP              | FN       |  |  |
|                 | Negative | FP              | TN       |  |  |

$$precision = \frac{TP}{TP + FP}$$
  $recall = \frac{TP}{TP + FN}$ 

$$F1 = 2 \frac{precision \cdot recall}{precision + recall}$$

$$AUC = \frac{1 + \frac{TP}{TP + FN} - \frac{FP}{FP + TN}}{2}$$



### Evaluation Compared Techniques

#### Machine Learning

We also compare our solution to:

- Decision Tree built using the Gini index.
- Random Forest

#### Genetic Algorithm

This approach evolves a population of IF-THEN rules to find one with optimal performance.

### Evaluation Results

| Within-project validation |          |      |      |      |      |      |      |      |
|---------------------------|----------|------|------|------|------|------|------|------|
| Metric                    | F1 score |      |      | AUC  |      |      |      |      |
| Project Method            | Ours     | GAR  | DT   | RF   | Ours | GAR  | DT   | RF   |
| Candybar-library          | 0.79     | 1    | 0.75 | 0.72 | 0.71 | 1    | 0.49 | 0.47 |
| Pghero                    | 0.6      | 0.85 | 0.58 | 0.77 | 0.71 | 0.92 | 0.72 | 0.85 |
| Mtsar                     | 0.71     | 0.88 | 0.51 | 0.55 | 0.9  | 0.91 | 0.63 | 0.66 |
| Steve                     | 0.36     | 0.62 | 0.28 | 0.21 | 0.6  | 0.82 | 0.61 | 0.56 |
| SemanticMediaWiki         | 0.49     | 0.45 | 0.24 | 0.04 | 0.65 | 0.69 | 0.54 | 0.5  |

### Evaluation Results

| Cross-project validation |          |      |      |      |      |      |      |      |
|--------------------------|----------|------|------|------|------|------|------|------|
| Metric                   | F1 score |      |      | AUC  |      |      |      |      |
| Project Method           | Ours     | GAR  | DT   | RF   | Ours | GAR  | DT   | RF   |
| Candybar-library         | 0.62     | 0.92 | 0.48 | 0.53 | 0.7  | 0.86 | 0.47 | 0.61 |
| Pghero                   | 0.6      | 0.8  | 0.44 | 0.47 | 0.76 | 0.68 | 0.64 | 0.65 |
| Mtsar                    | 0.54     | 0.68 | 0.41 | 0.37 | 0.59 | 0.72 | 0.58 | 0.59 |
| Steve                    | 0.44     | 0.52 | 0.2  | 0.16 | 0.68 | 0.75 | 0.57 | 0.54 |
| SemanticMediaWiki        | 0.33     | 0.41 | 0.27 | 0.19 | 0.59 | 0.64 | 0.54 | 0.53 |



### Conclusion



#### **Good Performance**

Average F1 score of 60% for within-project validation and 50% for cross-project validation.



#### Interpretable Results

Developers will be presented with an explanation for the CI skip decision.



#### Adaptable Solution

The model will retain its knowledge and adapt to more information and to a shift in development focus.



#### **Future Work**

Automatically selecting optimal hyper-parameters. (tree depth)

# THANK YOU FOR YOUR ATTENTION

Any questions?

#### **Graduation Project Defense**

# Optimizing Continuous Integration Using Artificial Intelligence

Supported on July 4<sup>th</sup>, 2022, before the examination board:

Dr. Mohamed Hamdi Associate Professor – SUP'COM President

Dr. Ramzi Guetari Associate Professor – EPT Rapporteur

Prof. Naceur Benhadj Braiek Professor - EPT Academic Supervisor

Dr. Mohamed Aymen Saied Assistant Professor - ULaval Supervisor

Mr. Mohamed Mouine Ph.D. Student - ULaval Supervisor





**Host Organization** 



Elaborated by

Maher Dissem



Academic year: 2021-2022



### Evaluation Evolutionary Search Approach







 $(LA \le 146)$  (is\_src = 0)





### Evaluation Classification Metrics



# Proposed Solution Dataset

