

Geodatenanalyse I: Sensitivitätsanalyse

Kathrin Menberg

Stundenplan

Vorläufiger Stundenplan		
Datum	Thema	Dozent
20.10.2021	Einführung in die Programmierung mit Python	Gabriel Rau
25.10.2021	Univariate Statistik und statistisches Testen	Kathrin Menberg
01.11.2021	Feiertag	
08.11.2021	Umgang und Berechnung von Datensätzen	Gabriel Rau
15.11.2021	Bivariate und schließende Statistik	Kathrin Menberg
22.11.2021	Datenvisualisierung mit matplotlib	Gabriel Rau
29.11.2021	Multivariate Statistik	Kathrin Menberg
06.12.2021	Einführung in den Umgang mit Datensätzen	Gabriel Rau
13.12.2021	ausgefallen	Kathrin Menberg
20.12.2021	Weiterführender Umgang mit Datensätzen	Gabriel Rau
27.12.2021	Weihnachtsferien	
03.01.2022	Weihnachtsferien	
10.01.2022	Monte-Carlo Methoden	Kathrin Menberg
17.01.2022	Analyse und Visualisierung von Geodaten	Gabriel Rau
24.01.2022	Räumliche Interpolation	Kathrin Menberg
31.01.2022	Datenethik, Lizensierung und Entwicklungstools	Gabriel Rau
07.02.2022	Regressionsanalyse	Kathrin Menberg

Vorlesungsplan

Uhrzeit	Inhalt
10:00 – 10:20	Grundlagen Sensitivitätsanalysen
10:20 – 11:00	Übung
11:00 – 11:10	Diskussion und Reflexion
11:10 – 11:25	<u>Pause</u>
11:25 – 11:45	Fortgeschrittene Methoden
11:45 – 12:20	Übung
12:20 – 12:30	Diskussion und Reflexion

Lernziele Teil 1: Grundlagen

Am Ende der Stunde werden die Teilnehmer:

- mit den Grundlagen der lokalen und globalen Sensitivitätsanalyse vertraut sein.
- ... einfache Methoden zur qualitativen Sensitivitätsanalyse in Python anwenden und die Ergebnisse graphisch darstellen können.

The study of how uncertainty in the output of a model can be apportioned to different sources of uncertainty in the model input.

(Saltelli et al. 2004)

Was kann eine Sensitivitätsanalyse

- Identifizierung wichtiger Parameter und Faktoren
- Kritische Regionen im Input Parameterraum aufdecken
 - Schwerpunkte für weitere Forschung, Messungen usw. identifizieren
- ▶ Technische Fehler in einem Modell aufdecken
 - z.B. bei unerwarteten Zusammenhängen
- Möglichkeiten zur Vereinfachung von Modellen aufzeigen
 - Parameter oder Faktoren ohne Einfluss fixieren
- Erweiterung von System-, bzw. Modellverständnis
- Robustheit der Modellergebnisse unter Unsicherheit zeigen
- ... und vieles mehr.

Sensitivitäts- und Unsicherheitsanalyse

Iterative (parametrische) Modellauswertungen z.B. mit Monte Carlo Simulationen

- Bewertung der Aussagekraft eines Modells, bzw. dessen Outputs
- "Alle Modelle sind falsch, aber manche sind nützlich" (George E.P. Box)

Input, Output und Model

- Input:
 - Daten, Parameter, ...
 - Annahmen, ...
- Model:
 - Diagnostisch oder prognostisch
 - Data-driven oder law-driven
- Output:
 - Grundlage für weitere Entscheidungen usw.

Saltelli et al. (2008)

Workflow zur Sensitivitätsanalyse

- Model-Inputs (Parameter) und deren Stichprobenbereich festlegen
- 2. Model-Inputs anhand einer Sampling-Strategie generieren
 - z.B. Zufallswerte, Latin-Hypercube, o.ä.
- 3. Das Model für die generierten Parameterwerte auswerten
 - ▶ Iterative Modellläufe z.B. mit Monte Carlo Simulation
- Model-Inputs und Outputs in Bezug auf ihren Zusammenhang analysieren
 - Graphische Darstellung, Korrelationskoeffizienten, ...
 - Varianzbasierte Methoden, ...

Typen von Sensitivitätsanalyse

- Lokale und globale Sensitivitätsanalyse
 - **Lokal**: Einfluss von Variation <u>eines Inputs</u> in einem <u>beschränkten Bereich</u>
 - z.B. durch Analyse von Gradienten oder partielle Ableitungen
 - ► **Global**: Betrachtung der Unsicherheit in <u>allen Faktoren</u> über ihre <u>gesamten Wertebereiche</u>
 - z.B. mit Hilfe von Monte Carlo Simulationen
- Qualitative und quantitative Sensitivitätsanalyse
 - ▶ Qualitativ: relative Einordung der Parameter nach ihrem Einfluss
 - sog. Parameter Ranking Methoden
 - Quantitative: <u>absolute</u> Bestimmung des Einflusses aller Parameter
 - z.B. über die Analysen von Varianzen, lineare Regression, usw.

Mathematische Grundlagen

- Ableitungen vs. Scatterplots
 - ▶ $\frac{\partial Y_j}{\partial X_i}$ → Sensitivität Output Y_j gegenüber Input X_i
- Beispiel Modell:

$$Y = \sum_{i=1}^{r} \Omega_i Z_i$$

- ► Z_i normalverteilt mit $\mu_{Z_i} = 0$, und $\sigma_{Z_1} < \sigma_{Z_2} < ... < \sigma_{Z_n}$
- ► Kein Unterschied in Ableitungen $\frac{\partial Y}{\partial x}$

Welcher Parameter hat den größten Einfluss?

One-at-a-time (OAT) Vorgehen

- Parameter nacheinander innerhalb ihrer Wertebereiche variieren
- Ergebnisse normieren und gegen den Output plotten

Ohmer et al. (2021)

Contribution to Variance (CoV)

- Methode aus der Risikoanalyse und der Ökonomie
- ▶ Beitrag der Unsicherheit (oder $\sigma_{x_i}^2$) eines Postens, zur Unsicherheit des Gesamtportfolios (σ_{Y}^2)
- ightharpoonup Bestimmung der Korrelation zwischen x_i und Y
- bzw. der Kovarianz
- ▶ Oft normiert in % von σ_Y^2 angegeben

Saltelli et al. (2008)

- Problematisch bei stark korrelierenden Input Parametern
- ... und komplexen, nicht-linearen Modellen

Contribution to Variance (CoV)

- Zwei Beispiele zur Visualisierung:
 - Tornadoplot

Figure 22: Statistics for sensitivity analysis of λ for G10m-G30u illustrated in tornado plots. SRC are given on the x-axis (MATLAB 2018b).

Menberg et al. (2013)

Würth, BSc. Thesis (2019)

Mögliche Fallstricke und Schwierigkeiten

- zu viele Inputparameter für genaue Analyse
 - Screening-Methoden (nächste Stunde)
- alle wichtigen Parameter, bzw. Faktoren berücksichtigt?
- zu wenig Information um Wahrscheinlichkeitsverteilung für Parameter aufzustellen
- (Un)abhängigkeit der betrachteten Parameter
 - Spezielle Methoden für gruppierte Parameter
- Modellläufe dauern zu lange
 - Emulatoren (vereinfachte statistische Modelle) benutzen

Übung 7: Sensitivitätsanalyse 1

- Basierend auf MC Simulation aus Übung 6 grundlegende
 Methoden zur Sensitivitätsanalyse
 - Contribution-to-Variance
 - Visualisierung

Aufgaben in Jupyter Notebook:07_Sensitivitätsanalyse_1

$$\lambda = \frac{\Delta \delta^{13} C \cdot k_f \cdot i}{\varepsilon \cdot s \cdot n_e}$$

Aufgabenbesprechung

Contribution-to-Variance

Pause

... bis 11:25 Uhr

Vorlesungsplan

Uhrzeit	Inhalt
10:00 – 10:20	Grundlagen Sensitivitätsanalysen
10:20 – 11:00	Übung
11:00 – 11:10	Diskussion und Reflexion
11:10 – 11:25	<u>Pause</u>
11:25 – 11:45	Fortgeschrittene Methoden
11:45 – 12:20	Übung
12:20 – 12:30	Diskussion und Reflexion

Lernziele Teil 2: Fortgeschrittene Methoden arlsruher Institut für Technologie

Am Ende der Stunde werden die Teilnehmer:

- mit den mathematischen Grundlagen der Varianzdekomposition vertraut sein.
- verschiedene quantitative Methoden zur Sensitivitätsanalyse und deren Einsatzgebiete kennen.
- … in Python Sobol Indizes bestimmen und interpretieren können.

Varianzdekomposition

• Generisches Modell $Y = f(X_1, X_2, ..., X_k)$

$$Y = f_0 + \sum_{i=1}^{d} f_i(X_i) + \sum_{j$$

$$V(Y) = \sum_{i} V_{i} + \sum_{i} \sum_{j < i} V_{ij} + \dots$$

- Ableitung von verschiedenen Indizes zur Sensitivitätsanalyse für nicht-lineare Systeme, bzw. Modelle
- Sobol Indizes (nach Ilya Sobol):
 - Sobol Effekte erster Ordnung, Effekte höherer Ordnung, Totale Effekte

Bedingte Varianzen (1. Option)

- ► Generisches Modell $Y = f(X_1, X_2, ..., X_k)$
- Jedes X variiert innerhalb eines bestimmten Wertebereichs
 - ightharpoonup Quantifizieren über Varianz V_{X_i}
- Sensitivität definieren als Effekt den das Fixieren von X_i auf die Varianz in Y hat
 - $ightharpoonup E_{X_{\sim i}}(Y|X_i)$
- Für gesamten Wertebereich von X_i und normiert auf die Gesamtvarianz

$$S_i = \frac{V_{X_i}(E_{X_{\sim i}}(Y|X_i))}{V(Y)}$$

Sobol Effekte erster Ordnung

- Sampling Strategie über Monte Carlo Simulation mit Zufallswerten für Modell-Inputs
- Referenzmatrix und eine Vergleichs-Matrix für jedes X_i

$$X^{ref} = \begin{bmatrix} X_{11}^{ref} & \cdots & X_{1i}^{ref} & \cdots & X_{1k}^{ref} \\ X_{21}^{ref} & \cdots & X_{2i}^{ref} & \cdots & X_{2k}^{ref} \\ \vdots & & & & \vdots \\ X_{N1}^{ref} & \cdots & X_{Ni}^{ref} & \cdots & X_{Nk}^{ref} \end{bmatrix} \qquad X^{(i)} = \begin{bmatrix} X_{11}^{(i)} & \cdots & X_{1i}^{ref} & \cdots & X_{1k}^{(i)} \\ X_{21}^{(i)} & \cdots & X_{2i}^{ref} & \cdots & X_{2k}^{(i)} \\ \vdots & & & & \vdots \\ X_{N1}^{(i)} & \cdots & X_{Ni}^{ref} & \cdots & X_{Nk}^{(i)} \end{bmatrix}$$

$$X^{(i)} = \begin{bmatrix} X_{11}^{(i)} & \cdots & X_{1i}^{ref} & \cdots & X_{1k}^{(i)} \\ X_{21}^{(i)} & \cdots & X_{2i}^{ref} & \cdots & X_{2k}^{(i)} \\ \vdots & & \dots & & \vdots \\ X_{N1}^{(i)} & \cdots & X_{Ni}^{ref} & \cdots & X_{Nk}^{(i)} \end{bmatrix}$$

 \rightarrow die Werte von X_i bleiben gleich, alle anderen werden variiert

Benötigte Modelldurchläufe: (1 + *Anzahl Paratemeter*) * *N*

Sobol Totale Effekte

Bedingte Varianzen (2. Option)

- ► Generisches Modell $Y = f(X_1, X_2, ..., X_n)$
- Jedes X variiert innerhalb eines bestimmten Wertebereichs
 - ightharpoonup Quantifizieren über Varianz V_{X_i}
- Sensitivität als Effekt den Variieren von X_i auf die Varianz in Y hat, wenn alle $X_{\sim i}$ fixiert sind
 - $V_{X_i}(Y|X_{\sim i})$
- Für gesamten Wertebereich von X_i und normiert auf die Gesamtvarianz

$$S_{T_i} = \frac{E_{X_{\sim i}}(V_{X_i}(Y|X_{\sim i}))}{V(Y)} = S_i + S_{ij} + S_{ij...k}$$

Sobol totale Effekte

- Sampling Strategie über Monte Carlo Simulation mit Zufallswerten für Modell-Inputs
- Referenzmatrix und eine Vergleichs-Matrix für jedes X_i

$$X^{ref} = \begin{bmatrix} X_{11}^{ref} & \cdots & X_{1i}^{ref} & \cdots & X_{1k}^{ref} \\ X_{21}^{ref} & \cdots & X_{2i}^{ref} & \cdots & X_{2k}^{ref} \\ \vdots & & \dots & & \vdots \\ X_{N1}^{ref} & \cdots & X_{Ni}^{ref} & \cdots & X_{Nk}^{ref} \end{bmatrix} \qquad X^{(i)} = \begin{bmatrix} X_{11}^{ref} & \cdots & X_{1i}^{i} & \cdots & X_{1k}^{ref} \\ X_{21}^{ref} & \cdots & X_{2i}^{i} & \cdots & X_{2k}^{ref} \\ \vdots & & \dots & & \vdots \\ X_{N1}^{ref} & \cdots & X_{Ni}^{i} & \cdots & X_{Nk}^{ref} \end{bmatrix}$$

 \rightarrow Nur die Werte von X_i werden variiert, alle anderen bleiben gleich

► Benötigte Modelldurchläufe: (1 + *Anzahl Paratemeter*) * *N*

Effekte erster Ordnung vs. Totale Effekte

- Definition der "Wichtigkeit" von Parametern
- Ziel: Reduzierung von Unsicherheiten
 - Parameter der bei Fixierung Varianz in Y verringert
 - Effekt erster Ordnung
- Ziel: Modellvereinfachung
 - ▶ Parameter, der bei Variation möglichst viel der Varianz in *Y* erhält
 - Totale Effekte
- für additive Modellen ergibt die Summe aller Effekte erster
 Ordnung 1

Fazit Sensitivitätsanalyse

- Methoden mit unterschiedlichem Aufwand für verschiedene Zwecke
- Sobol Indizes: <u>die</u> Methode für quantitative und globale Sensitivitätsanalyse
- Rechenkosten für Effekte erster Ordnung und totale Effekte: (1 + Anzahl Parameter) * N * 2
 - ... schnell auf mehrere 10.000 iterative Simulationen
- Parameter Reihenfolge mit Screening Methoden (z.B. Morris Method) verlässlich und effizient zu bestimmen

Übung 8: Sensitivitätsanalyse II

- Basierend auf MC Simulation aus 6 fortgeschrittene Methoden zur Sensitivitätsanalyse
 - Sobol Indizes
 - Visualisierung

Aufgaben in Jupyter Notebook:08_Sensitivitätsanalyse_2

$$\lambda = \frac{\Delta \delta^{13} C \cdot k_f \cdot i}{\varepsilon \cdot s \cdot n_e}$$

Literatur

- Saltelli et al. (2008): Global Sensitivity Analysis. The Primer, John Wiley & Sons.
- Menberg et al. (2016): Sensitivity analysis methods for building energy models: Comparing computational costs and extractable information, Energy and Buildings 133, 433-445.
- Würth et al. (2021): Quantifying biodegradation rate constants of o-xylene by combining compound-specific isotope analysis and groundwater dating. Journal of Contaminant Hydrology, 238, 103757

