

Multi-objective Optimization by Learning Space Partitions

facebook Al Research

Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, Yuandong Tian

Motivation

Problem: Branin-Currin

$$f^{(1)}(x_1, x_2) = \left(15x_2 - \frac{5.1(15x_1 - 5)x^2}{4\pi^2} + \frac{75x_1 - 25}{\pi} - 5\right)^2 + \left(10 - \frac{10}{8\pi}\right) * cos(15x_1 - 5)$$

$$f^{(2)}(x_1,x_2) = \left[1 - exp(\frac{-1}{2x_2})\right] \frac{2300x_1^3 + 1900x_1^2 + 2092x_1 + 60}{100x_1^3 + 500x_1^2 + 4x_1 + 20} \quad , where (x_1,x_2) \in [0,1]$$

Observation:

The good samples are gathering in small regions(shaded areas).

Intuition:

The search space can be learned to partition by samples.

Methodology

1. Partitions: $\mathcal{P}(\mathbf{o}(x)=0)$ Search Space Expand the tree

2. Select:

Select the leaf node with most UCB value to trade off the exploration and exploitation.

Select w.r.t ucb

Algorithm 1 LaMOO Pseudocode.

1: **Inputs:** Initial D_0 from uniform sampling, sample budget T. 2: **for** t = 0, ..., T **do** Set $\mathcal{L} \leftarrow \{\Omega_{\text{root}}\}\$ (collections of regions to be split). $\Omega_j \leftarrow \text{pop_first_element}(\mathcal{L}), \ D_{t,j} \leftarrow D_t \cap \Omega_j, \ n_{t,j} \leftarrow |D_{t,j}|.$ Compute dominance number $o_{t,j}$ of $D_{t,j}$ using dominance numbers and train SVM model $h(\cdot)$. If $(D_{t,j}, o_{t,j})$ is splittable by SVM, then $\mathcal{L} \leftarrow \mathcal{L} \cup \operatorname{Partition}(\Omega_j, h(\cdot))$. end while for k = root, k is not leaf node do $D_{t,k} \leftarrow D_t \cap \Omega_k, \ v_{t,k} \leftarrow \text{HyperVolume}(D_{t,k}), \ n_{t,k} \leftarrow |D_{t,k}|.$ $k \leftarrow \arg\max_{c \in \text{children}(k)} \text{UCB}_{t,c}$, where $\text{UCB}_{t,c} := v_{t,c} + 2C_p \sqrt{\frac{2\log(n_{t,k})}{n_{t,c}}}$ end for $D_{t+1} \leftarrow D_t \cup D_{\text{new}}$, where D_{new} is drawn from Ω_k based on qEHVI or CMA-ES. 14: **end for**

Learning Space Partitions

Learning Partitions:

- Sort the dominance numbers of samples o(x) to get two groups of samples, i.e., good, bad.
- Leverage a SVM classifier to learn a boundary to partition the search space.

Learn to partition h(·) High o(x)Low $\mathbf{o}(x)$

3. Sample:

Visualization of LaMOO

Experiment Results

1. Small-scale Problems

2. Molecule Discovery

GSK+JNK

QED+SA+SARS

GSK+JNK+QED+SA