Engenharia de Software

Seção 8 – Estimativas de Software

Objetivos

O aluno deverá reconhecer os conceitos e técnicas para estimativas de tamanho de Software e de esforço para seu desenvolvimento.

Coisas que não acontecem...

- ✓ "O software é muito mais complexo do que pensávamos."
- √ "Nossa equipe não interagiu como esperávamos."
- ✓ "A produtividade nesta linguagem é diferente daquela outra."
- ✓ "O esforço para desenvolver nessa tecnologia é muito maior do que para desenvolver naquela outra."

Planejamento

- ✓ O Planejamento do desenvolvimento é uma atividade que ocorre no início do projeto de desenvolvimento do sistema (ou do software).
- ✓ O Planejamento é fortemente dependente do tamanho do software a ser desenvolvido.

WBS

O WBS (Work Breakdown Structure) depende muito do tamanho do software, pois:

- ✓ O WBS determina a forma como o trabalho é estruturado.
- ✓ O WBS utiliza o esforço estimado para o desenvolvimento, dividindo-o ao longo de etapas e entregáveis.
- Estimativa de esforço incorreta leva a um WBS incorreto.

Cronograma

O cronograma organiza, no tempo, a execução das atividades para o desenvolvimento. Ele depende das estimativas de esforço para o desenvolvimento, pois:

- ✓ Os esforços de desenvolvimento influem na duração as tarefas determinadas pelo WBS.
- ✓ A duração das tarefas e o esforço previsto podem determinar qual processo de desenvolvimento será utilizado.
- ✓ A organização das tarefas, com seus esforços e duração, determina qual (ou quais) é o caminho crítico do desenvolvimento.
- Estimativas incorretas levam a uma visão inadequada do cronograma.

Orçamento e Aquisições

O orçamento do projeto é diretamente dependente do esforço necessário para o desenvolvimento, pois:

- ✓ Os esforços de desenvolvimento determinam os custos de mão-de-obra.
- ✓ A estimativa de esforços define a permanência de mais ou menos pessoas no projeto, e consequentemente o custo.
- ✓ A estimativa de esforços determina o custo de aquisições de recursos materiais (e.g. computadores) para o desenvolvimento.
- Estimativas incorretas levam a um orçamento inadequado.

Plano de Recursos Humanos

O Plano de Recursos Humanos define qual será a equipe de projeto, quantos e quais profissionais serão necessários, e quais serão os treinamentos exigidos. Ele depende das estimativas de esforço para o desenvolvimento, pois:

✓ A distribuição de esforços determina quantas pessoas serão necessárias.

Plano de Recursos Humanos

- ✓ A distribuição das tarefas (decorrente da estimativa de esforços e equipe) define que partes do sistema cada pessoa deverá desenvolver, e com quem deverá se comunicar.
- ✓ Estimativas incorretas levarão a um dimensionamento de equipe inadequado.

Estimativas

- ✓ O software é usualmente o item mais caro de qualquer sistema baseado em computador.
- ✓ Para sistemas complexos e customizados, erros em estimativas, como vimos, podem ser a diferença entre lucro e prejuízo.
- ✓ A estimativa de custo e esforço do desenvolvimento de software nunca será uma ciência exata, pois há muitos fatores – humanos, técnicos, ambientais, políticos – que o afetam.

Estimativas (continuação)

- ✓ Para tentar obter estimativas confiáveis de custo e esforço, algumas opções aparecem:
 - Atrasar a estimativa o máximo possível;
 - ✓ Basear a estimativa em projetos anteriores que já tenham sido completados;
 - Usar técnicas simples de decomposição do projeto;
 - Usar um ou mais modelos empíricos.

Estimativas (continuação)

- ✓ Atrasar a estimativa:
 - ✓ Normalmente não aceitável, pois a estimativa de esforço e custo é necessária no início do projeto;
- ✓ Basear a estimativa em projetos anteriores:
 - ✓ Só é útil se os projetos anteriores possuem características muito semelhantes às do projeto sendo estimado.

Estimativas (continuação)

- ✓ Técnicas de Decomposição e modelos empíricos:
 - ✓ São opções viáveis para estimativa de esforço e custo;
 - ✓ Se possível, devem ser aplicadas mais de uma técnica, para efeitos de confirmação.
 - Cada uma delas é tão boa quanto os dados históricos utilizados.

Técnicas de Decomposição

- ✓ Técnicas baseadas na divisão do desenvolvimento do software em pedaços menores. Estes pedaços podem ser:
 - ✓ Partes do problema: analisa-se o software:
 - Estimativas de linhas de código (LOC);
 - ✓ Estimativas de pontos por função (FP);
 - ✓ Partes do processo: analisam-se as etapas do desenvolvimento.

Estimativa com base no problema

- A partir de uma descrição do software a ser desenvolvido, é feita uma decomposição funcional.
- São aplicadas estimativas (FP ou LOC) para cada função.
- 3. Métricas de produtividade históricas (FP/pm ou LOC/pm) são aplicadas.
- As estimativas para cada função são então combinadas para obter a estimativa para todo o projeto.

Estimativa com base no problema (continuação)

- 6. Preferencialmente são levantadas três estimativas:
 - a) Otimista: usualmente tem os menores valores de esforço;
 - b) Mais provável.
 - c) Pessimista: com os piores valores.
- 7. É utilizada a formula abaixo para definir o estorço final estimado:

$$S = (S_{ot} + 4* S_{mp} + S_{pe})/6$$

Estimativa por LOC

- ✓ Nesta forma de estimativas, são atribuídas quantidades de linhas de código para cada função identificada do sistema.
- ✓ O sistema precisa ser particionado com alto nível de detalhe, pois uma decomposição com baixa granularidade leva a estimativas superficiais e usualmente inferiores às reais.

Exemplo

Software simples de registro de horas de trabalho.

Função	Otim	+ Prov	Pess	Final
Interface com Usuário	4000	5000	6000	5000
Cadastro de usuário	1200	2000	2300	1920
Cadastro de projetos	1500	2200	3200	2250
Registro de horas de trabalho	2500	3500	4300	3470
Relatórios	1200	1600	1800	1570
Total	10400	14300	17600	14210

Considerando uma produtividade média de 650 LOC/pm, o esforço para o desenvolvimento será de cerca de 22 pessoas-mês.

Estimativa por FP

- ✓ Pontos por Função é uma métrica de software que é derivada utilizando-se uma relação empírica baseada em duas medidas:
 - ✓ Valores do domínio da informação: é realizada uma contagem direta de existência de determinados elementos no software, ponderada por uma avaliação de complexidade.
 - Aplicação de Fatores de Ajuste: realizada por meio da somatória de medida de aplicabilidade de características adicionais.
- Estes valores são então aplicados à fórmula:

$$FP = contagem x (0,65 + 0,01 x \sum (F_i))$$

- ✓ Número de Entradas Externas (External Inputs
 - EIs):
 - Entradas que se originam do usuário
 - Entradas que se originam de outra aplicação
 - ✓ Fornecem dados ou informações de controle
 - ✓ Não são consultas

Domínio da Informação (continuação)

- ✓ Número de Saídas Externas (External Outputs -EOs):
 - ✓ Derivada de dentro da aplicação
 - ✓ Fornece informação para o usuário
 - Exemplos: Relatórios, telas, mensagens de erro, etc.
 - ✓ Itens de dados individuais dentro de um relatório não são contados separadamente.

- ✓ Número de Consultas Externas (External Inquiries EQs):
 - ✓ Entrada online que resulta na geração de alguma resposta imediata do software sob a forma de uma saída online.
- ✓ Número de Arquivos Lógicos Internos (Internal Logical Files - ILFs):
 - ✓ Agrupamento lógico de dados que reside dentro das fronteiras da aplicação e é mantido por entradas externas.

- ✓ Número de Aruuivos de Interface Externa (External Interface Files - EIFs):
 - ✓ Agrupamento lógico de dados que reside externamente à aplicação mas fornece dados que podem ser úteis para a aplicação.

- Após feitas as contagens, estes valores são multiplicados por pesos, dependendo de sua complexidade.
- Cada organização determina seus próprios critérios para determinar a complexidade de cada valor.

Valor	Pesos			
Valut	Simples	Média	Complexa	
Entradas Externas	3	4	6	
Saídas Externas	4	5	7	
Consultas Externas	3	4	6	
Arquivos Lógicos Internos	2	10	15	
Arquivos de Interface Externa	5	7	10	

Fatores de Ajuste

- Para a determinação dos Fatores de Ajuste (Fi na fórmula original) são respondidas várias questões.
- ✓ Estas respostas variam de um valor 0 (não aplicável ou não importante) a 5 (absolutamente essencial).
- Estas respostas são determinadas de forma empírica.
- As perguntas a serem respondidas são mostradas a seguir.

- 1. O sistema requer backup e recovery confiáveis?
- 2. Comunicações de dados especializadas são necessárias para transferir informação para ou da aplicação?
- 3. Existem funções de processamento distribuído?
- 4. O desempenho é crítico?

- 5. O sistema será executado em um ambiente operacional existente, intensamente utilizado?
- 6. O sistema requer entrada de dados online?
- 7. A entrada de dados online exige que a transação de entrada seja construída por meio de várias telas ou operações?

- 8. Os ILFs são atualizados online?
- 9. As entradas, saídas, arquivos ou consultas são complexos?
- 10. O processamento interno é complexo?
- 11. O código é projetado para ser reusado?

- 12. A conversão e a instalação estão incluídas no projeto (design)?
- 13. O sistema está projetado para instalações múltiplas em diferentes organizações?
- 14. A aplicação está projetada para facilitar mudança e para facilidade de uso pelo usuário?

Exemplo simples (continuação)

Valor	Contagem / Pesos			Droduto
	Simples	Média	Complexa	Produto
Entradas Externas	2/3	1/4	0/6	10
Saídas Externas	2/4	1/5	1/7	20
Consultas Externas	0/3	0/4	0/6	0
Arquivos Lógicos Internos	2/2	1/10	0/15	14
Arquivos de Interface Externa	0/5	0/7	0/10	0
Total	18	19	7	44

✓ Somatória de Fatores de Ajuste: 12

Exemplo simples (continuação)

- **✓** FP = contagem x $(0.65 + 0.01 \times \sum (F_i))$
- \checkmark FP = 44 x (0,65 + 0,01 x 12) = 34
- ✓ Considerando, por exemplo, que:
 - √ 1 FP corresponde a 60 LOC
 - ✓ A produtividade é de 12 FP/pm
- Este sistema seria feito em:
 - √ 3 pessoas-mês
 - ✓ Teria pouco mais de 2000 linhas de código
- ✓ Qual estimativa é mais confiável???

Estimativas de Processo

- ✓ É a técnica de estimativa mais comum.
- ✓ Baseia-se no processo que será usado.
- Decompõe-se o processo em um conjunto relativamente pequeno de tarefas e é estimado o esforço para cada uma delas.
- ✓ As funcionalidades também são decompostas, então são definidos o esforço por funcionalidade e por tarefa.

Exemplo Simples

Função	Engenharia		Construção		Total
	Análise	Projeto	Código	Teste	Total
Cadastro de Usuário	0,25	0,25	0,5	0,25	1,25
Cadastro de Projetos	0,25	0,25	0,5	0,25	1,25
Registro de Apontamento	0,5	0,5	1,0	0,5	2,5
Relatórios	0,25	0,5	1,5	1,0	3,25
Total	1,25	1,5	3,5	2,0	8,25

- ✓ Esforços em pessoas-mês
- Havendo poucas concordâncias entre as métricas, novas análises devem ser realizadas.

Modelos Empíricos

- ✓ Modelos empíricos usam fórmulas derivadas por análise de regressão de um grande número de projetos.
- ✓ Leva a uma fórmula como:

$$E = A + B \times (e_v)^C$$

- ✓ E é o esforço em pessoas-mês.
- ✓ A, B e C são constantes deduzidas empiricamente.
- ✓ e_v é a quantidade da variável de estimativa (LOC ou FP).

Exemplos

Nome do modelo	Fórmula
Walston-Felix	$E = 5.2 \text{ x (KLOC)}^{0.91}$
Bailey-Basili	$E = 5,5 + 0,73 \times (KLOC)^{1,16}$
Bohem simples	$E = 3.2 \text{ x (KLOC)}^{1.05}$
Doty para KLOC > 9	$E = 5,288 \text{ x } (KLOC)^{1,047}$
Albrecht e Gaffney	$E = -91,4 + 0,355 \times (FP)$
Kemerer	E = -37 + 0.96 x (FP)
Regressão para pequenos projetos	E = -12,88 + 0,405 x (FP)