Results of Geomagnetic Observations Belsk, Hel, Hornsund, 2008

Jan REDA, Mariusz NESKA and Stanisław WÓJCIK

Institute of Geophysics, Polish Academy of Sciences ul. Księcia Janusza 64, 01-452 Warszawa, Poland

1. INTRODUCTION

This publication contains basic information on geomagnetic observations carried out in 2008 in three Polish geophysical observatories: Belsk (BEL), Hel (HLP), and Hornsund (HRN). All these observatories belong to the Institute of Geophysics, Polish Academy of Sciences. Observatories Belsk and Hel are located on the territory of Poland, while Hornsund is in Spitsbergen archipelago, governed by Norway.

In 2008, like in the previous years, the Belsk, Hel and Hornsund observatories have kept a close collaboration with the world network of geomagnetic observatories INTERMAGNET. The Belsk Observatory joined INTERMAGNET in 1992, Hel in 1999, and Hornsund in 2002.

2. DESCRIPTION OF OBSERVATORIES

The location of observatories is shown in Fig. 1 and Table 1. The geomagnetic coordinates in Table 1 were calculated in relation to the geomagnetic pole located at 83.2°N, 118.3°W on the basis of model IGRF-10 from epoch 2005.

The methodology of geomagnetic observations in all the three observatories was very similar, based on the "Guide for Magnetic Measurements and Observatory Practice" (Jankowski and Sucksdorff 1996). The instruments were similar too. Absolute measurements were made with the use of DI-flux magnetometers and proton magnetometers. The magnetic field variations were measured with the use of PSM magnetometers equipped in Bobrov's quartz variometers. The spare sets are equipped in PSM magnetometers or LEMI flux-gate magnetometers.

Fig. 1. Location of the Belsk, Hel and Hornsund observatories.

Table 1
Coordinates of the Polish observatories

Observatory	Geographic	c coordinates	Geomagneti	Elevation	
Observatory	Latitude	Longitude	Latitude	Longitude	[m]
Belsk (BEL)	51°50.2′ N	20°47.5′ E	50.2°N	105.2°E	180
Hel (HLP)	54°36.5′ N	18°49.0′ E	53.2°N	104.6° E	1
Hornsund (HRN)	77°0.0′ N	15°33.0′ E	73.9°N	126.0°E	15

Continuous recording has been made by means of microprocessor-based digital loggers DR-02 or DR-03. Owing to the recording system we use and the fact that we strictly obey the procedures relating to the so-called magnetic service, the gaps in one-minute data from Belsk and Hel are practically absent. Short gaps have only occurred in records of the Hornsund station, because the conditions prevailing there are much harder than in Poland.

It is worth mentioning that in 2008 the Belsk and Hornsund Observatories have been continuing the permanent observation of the Schumann resonance. Two horizontal magnetic components and the vertical component of the electric field have been recorded at a frequency of 100 Hz. This recording was initiated in both observatories in 2004 (Neska and Satori 2006).

2.1 Central Geophysical Observatory at Belsk, Central Poland

The Observatory at Belsk began continuous observations of the Earth magnetic field in 1965 (Jankowski and Marianiuk 2007). It continued the activity of the first Polish magnetic Observatory at Świder near Warsaw, working incessantly through the years 1920-1975. The magnetic observations were transferred from Świder to Belsk because of a strong increase of artificial noise from the Warsaw agglomeration, in particular due to the electric railroad passing nearby the Świder Observatory.

The Belsk Observatory is located at a distance of about 50 km south of Warsaw and about 2 km northwest of the village Belsk Duży. The premises of the Observatory, about 10 ha in area, is at the edge of the forest reserve Modrzewina, far away of people's settlements and automobile traffic. The location of the observatory in relation to the nearby towns and villages is shown in Fig. 2. The Observatory is surrounded by typically agricultural regions (with fertile soil, mostly apple orchards), so the direct neighborhood is deprived of sources of major artificial geomagnetic field disturbances. It is only the electric railroad (DC powered) situated some 14 km away of the Observatory to the north that produces some small artificial magnetic disturbances, whose average level usually does not exceed 1 nT.

Fig. 2. Location of the Belsk Geophysical Observatory.

More information about the region in which the Observatory is located can be found, in English, Polish and German, on the internet pages of Grójec district (http://www.grojec.pl) to which the village Belsk Duży belongs. Relevant information can also be found at page of the Belsk Observatory (http://www.igf.edu.pl/pl/obserwatoria/cog belsk).

2.2 Geophysical Observatory at Hel, Northern Poland

The Observatory at Hel began continuous observations of the earth magnetic field in 1932 (Jankowski and Marianiuk 2007). The observations were stopped in 1939, after the outbreak of World War II. During the war, the Observatory as well as its equipment and data were completely destroyed. After reconstruction, continuous observations at Hel were resumed in 1957.

The Hel Observatory is located in a small resort town at the end of Hel Peninsula by the Bay of Gdańsk (see Fig. 3). It is the area of Seaside Landscape Park (Nadmorski Park Krajobrazowy), weakly industrialized and urbanized. The region, surrounded by water from three sides, lacks any major artificial noise and is a good place for continuous magnetic observations.

Fig. 3. Location of the Geophysical Observatory at Hel.

The observatory premises, about 4.5 ha in area, is surrounded by mixed forest (mainly pine and birch trees). Pavilions with measurement and recording instruments are located at small clearings.

More information about the town of Hel where the Observatory is located can be found at the address: http://www.hel-miasto.pl/.

2.3 Hornsund, Spitsbergen

The Polish Polar Station Hornsund (PSP Hornsund) is situated on the White Bear Bay (Isbjørnhamna) in Hornsund Fiord, Spitsbergen Island, Svalbard archipelago. (See Fig. 4). More information on the Svalbard Archipelago can be found at the address: http://svalbard.com.

Fig. 4. Location of Polish Polar Station Hornsund.

The Hornsund station is the northernmost Polish scientific facility carrying out year-round activity. The Hornsund region is situated in a zone of strong magnetic field activity, much stronger than on the magnetic pole. Therefore, it is a very interesting place for magnetic observations.

Polish geomagnetic observations in the Arctic were initiated during the II Polar Year; a magnetic station was then established by S. Siedlecki and C. Centkiewicz on the Bear Island. In the years 1932/33, they had carried out continuous recording of magnetic field and performed absolute measurements. In the years 1957/58, in the framework of the International Geophysical Year, measurements of magnetic declination and inclination were made by J. Kowalczuk and K. Karaczun in five sites in the Hornsund Fiord region.

Since the beginning of October 1978, continuous magnetic field recording has been put into operation, and systematic absolute measurements have been implemented (Jankowski and Marianiuk 2007). Since then, PSP Hornsund has begun to fulfill all the requirements for geomagnetic observatory.

Since 1993, PSP Hornsund has been participating in the IMAGE (International Monitor for Auroral Geomagnetic Effects) project. In the framework of this project, Hornsund data are being sent to a server in Finland, once a month on the average. Since 2002, PSP Hornsund is included into the global near-real-time magnetic observatory network INTERMAGNET, sending the results, via Internet, to the GIN (Geomagnetic Information Nodes) centers in Edinburgh and Paris.

3. INSTRUMENTATION

3.1 Introduction

Simplified block diagrams of geomagnetic observations in Belsk, Hel, and Hornsund Observatories are shown in Figs. 5, 6, and 7.

Recording of variations

Fig. 5. Block diagram of magnetic observations system at Belsk

Recording of variations

Fig. 6. Block diagram of magnetic observations system at Hel.

Fig. 7. Block diagram of the magnetic observations system at the Polish Polar Station Hornsund.

3.2 Absolute measurements

In all the three Polish observatories, the absolute measurements used for determination of bases of the recordings are performed by means of DI-flux and proton magnetometers. Di-flux magnetometers measure the absolute values of the angles of declination D and inclination I, while the proton magnetometers measure the absolute values of the total magnetic field vector F. From the measured values of F, D, and I, we can calculate all the remaining magnetic field components, H, X, Y, and Z.

The instruments for absolute measurements are listed in Table 2, and the basic parameters of the instruments in Table 3.

The results of absolute measurements are determined by means of a special computer package DIFLUX, which calculates the base values on the basis of data from the measurement protocol (Tomczyk 2008).

The bases B_A of digital recording of elements $X,\,Y$ and Z were calculated from the formula:

$$B_A = A - \varepsilon_A \times (a - 32768),$$

where A is the result of absolute measurement [nT], ϵ_A is the scale value of the recording [nT/bit], a is the recorded instantaneous value [bits].

For the digital records with a resolution of 16 bits, the values of $2^{15} = 32768$ bits, corresponding to zero voltages on inputs of these loggers, were adopted as the base levels.

Table 2

Instruments for absolute measurements

	Belsk	Hel	Hornsund
DI-fluxgate (fluxgate, theodolite)	ELSEC 810, THEO-10B sn: 002208	FLUX-9408 THEO-10B sn: 160334	FLUX-9408 THEO-10B sn: 160326
Proton magnetometer	PMP-5 sn: 128 PMP-8 sn: 13/1998	PMP-8 sn: 21/2006	PMP-5 sn: 115
Frequency of measurements	6 per week	2 per week	2 per week

 $\label{eq:Table 3}$ Basic parameters of the instruments for absolute measurements

Fluxgate declinometer/inclinometer ELSEC 810 / THEO-10B Producer ELSEC Oxford, UK Mean square error of a horizontal direction $\sigma_D \approx \pm 5^{\prime\prime}$	
Mean square error of a zenith direction	
Fluxgate declinometer/inclinometer FLUX-9408 / THEO-10B Producer (FLUX-9408)Institute of Geophysics Pol. Acad. Sc. Mean square error of a horizontal direction	
Proton magnetometer model PMP-8	
Producer Institute of Geophysics Pol. Acad. Sc.	
Resolution	
Absolute accuracy 0.2 nT	
Proton magnetometer model PMP-5	
Producer Institute of Geophysics Pol. Acad. Sc.	
Resolution	

Results of base determinations and the smoothed values adopted for further computations are depicted in Figs. 8, 9, 17, 18 and 26 in the chapters describing individual observatories.

The mean random errors of a single base measurement, m_B , and the number of measurements n taken in 2008 are listed in Table 4.

Thermal coefficients of magnetic sensors are not taken into account in calculations, with a view to the following facts:

• tests made every few years indicated that the coefficients are very small, less than $0.2~\text{nT/}^{\circ}\text{C}$,

• the magnetic sensors are located in thermostat-controlled wooden boxes where the daily temperature variations are of the order of 0.1-0.2°C.

 $Table \ 4$ Mean errors of measurements of $B_X,\,B_Y$ and B_Z in 2008

		Set	I	Set II		
Observatory	Element	Number of measurements	Mean error [m _B]	Number of measurements	Mean error [m _B]	
		[n]	[nT]	[n]	[nT]	
	B_X	293	0.4	291	0.5	
Belsk	B_{Y}	293	0.5	291	0.5	
	B_{Z}	293	0.2	291	0.2	
	B_X	101	0.5	100	0.6	
Hel	B_{Y}	101	0.5	100	0.5	
	B_{Z}	101	0.3	100	0.4	
	B_X	104	1.1	_	_	
Hornsund	B_{Y}	104	0.9		_	
	B_{Z}	107	0.5	_	_	

3.3 Recording of geomagnetic field variations

As we already mentioned, the continuous digital recordings of geomagnetic field variations in all the Polish observatories are performed by means of magnetometers PSM and digital loggers DR-02 (or DR-03). In spare sets, we use magnetometers PSM or LEMI. Both the main and spare sets record the components in the rectangular coordinate system X, Y, Z. At Belsk and Hel, continuous recording of the total magnetic field modulus F is performed as well. The basic parameters of the recording systems are listed in Table 5.

Magnetometers PSM

Magnetometers PSM were designed at the Institute of Geophysics PAS with the use of torsion quartz variometers of V.N. Bobrov system (Marianiuk 1977, Jankowski *et al.* 1984). In these magnetometers, the magnet's deflections in response to the magnetic field changes are transformed by means of photoelectric converters into the electric current changes. Owing to a strong negative feedback, the voltage changes on the output of the converter are in linear proportion to the magnetic field changes. The magnetometers PSM are characterized by good stability, of about 3-5 nT/year, and small noise, below 10 pT.

 $\label{eq:table 5} Table \ 5$ Basic instruments for the magnetic field variations recording

		Belsk	Hel	Hornsund
	Name of magnetometer Kind of sensor	PSM Bobrov	PSM Bobrov	PSM Bobrov
	Туре	PSM-8511-01P	PSM 8511-09P	PSM-8911-05P
	Sensor's orientation	XYZ	XYZ	XYZ
SET 1	Range	+/- 850 nT	+/- 850 nT	+/- 5000 nT
SE	Magnetometer's producer	Institute of Geophysics PAS	Institute of Geophysics PAS	Institute of Geophysics PAS
	Digital recorder Producer	DR-02, DR-03 EL-LAB	DR-03 EL-LAB	DR-02 EL-LAB
	Sampling interval	nterval 5 s and 1 s 5 s		10 s
	Name of magnetometer Kind of sensor	PSM Bobrov	PSM Bobrov	LEMI fluxgate
	Туре	PSM-8511-01P	PSM 8511-03P	LEMI-003/95
	Sensor's orientation	XYZ	XYZ	XYZ
SET 2	Range	+/- 820 nT	+/- 820 nT	+/- 10.000 nT
SE	Magnetometer's producer	Institute of Geophysics PAS	Institute of Geophysics PAS	Institute of Geophysics PAS
	Digital recorder Producer	DR-02, DR-03 EL-LAB	DR-02 EL-LAB	DR-02 EL-LAB
	Sampling interval	5 s and 1 s	5 s	10 s
p	Name of magnetometer	PMP-5	PMP-5	-
Total field	Producer	Institute of Geophysics PAS	Institute of Geophysics PAS	_
Ţ	Sampling interval	10 s	10 s	-

Magnetometers LEMI

Magnetometers LEMI were designed at the Lviv Centre of the Institute of Space Research (Ukraine). They employ flux-gate sensors. These magnetometers have been successfully used as auxiliary sets. Their stability is not much less than that of PSM's, and they are also characterized by good orthogonality of sensors and relatively small self noise.

Proton magnetometers PMP-5 and PMP-8

Magnetometers PMP-5 and PMP-8 were designed at the Institute of Geophysics PAS. These are classical proton magnetometers, in which the precession signal is forced in a cycle of proton polarization by means of direct current. The resolution of magnetometers PMP-5 is 0.1nT, that of PMP-8 being 0.01nT. The stability of both magnetometers is better than 0.3 nT/year. More information about PMP-8 magnetometer can be found on the page:

http://www.igf.edu.pl/pl/zaklady_naukowe/konstrukcji_aparatury/aparatura

Digital loggers DR-02 and DR-03

The digital loggers were designed in the early 1990s by the enterprise EL-LAB (Poland) especially for recording the long-term slow-changing variations. These are independent instruments and their cooperation with the computer resolves itself to the read-out of data via the RS-232 interface. Model DR-03 is equipped in clock synchronized by a GPS.

3.4 Calibration of magnetic sensors

The verification of scale values of recording systems in all the three observatories was made by the classical electromagnetic method: electric currents were passed through calibration coils woven over variometers. The currents induce the magnetic field of precisely known intensity. The measurements are made at least few times a year.

Table 6
Scale values adopted for computations in 2008

Observatory	Set	Period	Scale values				
Observatory	Set	Period	X [nT/bit]	Y [nT/bit]	Z [nT/bit]		
Belsk	Set I	Jan 01-Dec 31	0.0250	0.0249	0.0249		
Deisk	Set II	Jan 01-Dec 31	0.0249	0.0249	0.0249		
	Jan 01-Feb 27		0.0249	0.0249	0.0249		
	Set I	Feb 28-Oct 23	0.0254	0.0251	0.0244		
Hel		Oct 24-Dec 31	0.0247	0.0247	0.0245		
		Jan 01-Feb 27	0.0250	0.0250	0.0251		
	Set II	Feb 28-Dec 31	0.0249	0.0250	0.0250		
Hornsund	Set I	Jan 01-Dec 31	0.149	0.151	0.149		
nomsund	Set II	Jan 01-Dec 31	0.307	0.308	0.307		

The scale values of magnetometers PSM and LEMI, parameters of calibration coils of PSMs, and mutual orthogonality of sensors in PSMs and LEMIs is checked every few years in large calibration coils installed at the Belsk Observatory.

3.5 Data treatment

In processing the results of digital recordings we used the software packet developed for the needs of an observatory operating in the INTERMAGNET network. This software makes it possible to perform, among other things, the following operations:

- conversion of magnetic data into the INTERMAGNET text format IMFV1.22 and creation in this format of daily files containing one-minute means of X, Y, Z and F (authors: J. Reda and A. Pałka),
- automatic transmission of data, via the Internet, to the Institute of Geophysics PAS in Warsaw and data centers in Paris and Edinburgh (author: M. Neska),
- archivation of data and plotting of magnetograms (author: J. Reda),
- calculation of results of absolute measurements (author: S. Tomczyk),
- automatic calculation of geomagnetic indices K (Nowożyński *et al.* 1991). The indices are calculated with the use of ASm (Adaptive Smoothed) method, developed at the Institute of Geophysics PAS, and recommended by IAGA in 1991. The currently used program calculates the indices from one-minute means in the INTERMAGNET CD-ROM Data Format or in the IMFV1.22 format. The program for calculation of indices may be taken from the INTERMAGNET page: http://www.intermagnet.org/Software_e.html
- test printouts to check various parameters of recording adopted for calculation and a possibility of looking over current and past data curves or tables.

The diagrams illustrating the annual variations of X, Y, and Z, monthly variations of X, Y, Z and F, bases of recording sets as well as plots of K indices for 2008 were prepared with the use of program imagplot.exe provided to us by INTERMAGNET. The diagrams prepared by means of imagplot.exe and other diagrams related to 2008 data are shown in Figs. 8–32.

In the present yearbook, we include for the first time the E indices calculated for Belsk observatory. The E indices, unlike the K indices, are calculated on the basis of energy analysis. They have been described in detail by Reda and Jankowski (2004).

3.6 Data availability

The newest data from Belsk, Hel and Hornsund observatories can be viewed in graphic form through the WEB application

http://rtbel.igf.edu.pl described by Nowożyński and Reda (2007).

On this page, the Belsk and Hel data appear with one-hour delay, while the delay for Hornsund is few hours. The page makes it possible to view the archival data from any observatory belonging to the INTERMAGNET network (in the form of curves on the screen). It offers also a possiblity of calculating the K indices according to the ASm method (Nowożyński *et al.* 1991) and E indices (Reda and Jankowski 2004).

The current data (of status REPORTED) from all the three observatories can be found in INTERMAGNET at the Internet address:

http://www.intermagnet.org/apps/dl_data_prel_e.php

Data from Belsk, Hel and Hornsund are also available from the WDCs. Addresses of some WDC pages with magnetic data are the following:

WDC for Geomagnetism, Edinburgh http://www.wdc.bgs.ac.uk/catalog/master.html

WDC for Geomagnetism, Kyoto http://swdc234.kugi.kyoto-u.ac.jp/

All the three observatories have in their archives the original data, whose sampling periods are listed in Table 5. For those interested, these data can be made available on request.

4. CONTACT PERSON, POSTAL ADDRESS, CONTACT DETAILS

4.1 Belsk Observatory

Jan Reda, Mariusz Neska Central Geophysical Observatory 05-622 Belsk Poland

Tel.: +48 486610830 Fax: +48 486610840

E-mail: jreda@igf.edu.pl (J. Reda), nemar@igf.edu.pl (M. Neska)

http://www.igf.edu.pl/pl/obserwatoria/cog_belsk

4.2 Hel Observatory

Stanisław Wójcik Geophysical Observatory ul. Sosnowa 1 84-150 Hel Poland Tel./Fax +48 58 6750480 E-mail: hel@igf.edu.pl http://www.igf.edu.pl

4.3 Hornsund

Mariusz Neska Central Geophysical Observatory 05-622 Belsk Poland

Tel.: +48 486610833 Fax: +48 486610840

E-mail: nemar@igf.edu.pl

http://hornsund.igf.edu.pl, http://www.igf.edu.pl

5. PERSONNEL TAKING PART IN THE WORK OF BELSK, HEL AND HORNSUND OBSERVATORIES IN 2008

5.1 Belsk

- Jan Reda (head of Geomagnetic Laboratory at Belsk to June 2008)
- Mariusz Neska (head of Geomagnetic Laboratory at Belsk since July 2008)
- Janusz Marianiuk (consulting)
- Halina Suska (data processing, observer)
- Krzysztof Kucharski (observer)
- Paweł Czubak (data processing, since October 2008)
- Józef Skowroński (observer)

5.2 Hel

- Stanisław Wójcik (head of Geophysical Observatory)
- Anna Wójcik (observer)
- Mariusz Neska (data processing)
- Jan Reda (data processing)

5.3 Hornsund

- Mariusz Neska (head of geomagnetic observations)
- Paweł Czubak (observer in 1-st half-year)
- Piotr Łepkowski (observer in 2-nd half-year)
- Jan Reda (data processing)

References

- Jankowski, J., and C. Sucksdorff (1996), *Guide for Magnetic Measurements and Observatory Practice*, IAGA, Warsaw, 235 pp.
- Jankowski, J., J. Marianiuk, A. Ruta, C. Sucksdorff, and M. Kivinen (1984), Long-term stability of a torque-balance variometer with photoelectric converters in observatory practice, *Geophys. Surv.* **6**, 3/4, 367-380.
- Jankowski, J., and J. Marianiuk (2007), Past and present of Polish geomagnetic observatories, *Publs. Inst. Geophys. Pol. Acad. Sc.* **C-99** (398), 20-31.
- Marianiuk, J. (1977), Photoelectric converter for recording the geomagnetic field elements: construction and principle of operation, *Publs. Inst. Geophys. Pol. Acad. Sc.* **C-4** (114), 57-73.
- Neska, M., and G. Satori (2006), Schumann resonance observation at Polish Polar Station at Spitsbergen and in Central Geophysical Observatory in Belsk, Poland, *Przegl. Geofiz.* **3-4**, 189-198, (in Polish).
- Nowożyński, K., T. Ernst, and J. Jankowski (1991), Adaptive smoothing method for computer derivation of K-indices, *Geophys. J. Int.* **104**, 85-93.

- Nowożyński, K., and J. Reda (2007), Comparison of observatory data in quasi-real time, *Publs. Inst. Geophys. Pol. Acad. Sc.* C-99 (398), 123-127.
- Reda, J., and M. Neska (2007), Measurement Session during the XII IAGA Workshop at Belsk, *Publs. Inst. Geophys. Pol. Acad. Sc.* **C-99** (398), 7-19.
- Reda, J., and J. Jankowski (2004), Three hour activity index based on power spectra estimation, *Geophys. J. Int.* **157**, 141-146.
- Reda, J. (editor) (2007), XII IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing, Belsk, 19-24 June 2006, Monographic Volume, *Publs. Inst. Geophys. Pol. Acad. Sc.* **C-99** (398), 397 pp.
- Tomczyk, S. (2008), DIFLUX software package for calculation of absolute measurement results, *Publs. Inst. Geophys. Pol. Acad. Sc.* **C-100** (402), 61-67.
- Technical data of PMP-8:

http://www.igf.edu.pl/pl/zaklady_naukowe/konstrukcji_aparatury/aparatura

Received March 23, 2009 Accepted April 27, 2009

Tables and plots for Belsk Observatory

Fig. 8. Base values of set 1, Belsk 2008.

Fig. 9. Base values of set 2, Belsk 2008.

21

Annual mean values of magnetic elements in Belsk Observatory

		•	1				•	
No	Year	[°']	H	Z	X	Y	I [°']	F
-	1966	LJ	[nT]	[nT]	[nT]	[nT]	L J	[nT]
1		2 04.2	18901.2	45023.3	18888.9	682.8	67 13.6'	48829.8
2	1967	2 05.6	18906.2	45047.7	18893.6	690.7	67 14.0	48854.3
3	1968	2 06.2	18917.8	45071.3 45093.5	18905.5	694.6	67 13.8 6713.3	48880.5 48907.9
4	1969	2 06.3	18935.7		18922.9	695.6		
5	1970	2 06.6	18953.0	45123.1	18940.2	697.7	67 13.0	48941.9
6	1971	2 06.6	18975.5	45146.4	18962.6	698.8	67 12.2	48972.1
7	1972	2 08.0	18991.6	45176.3	18978.4	706.7	67 11.9	49005.9
8	1973	2 10.2	19004.6	45210.8	18991.0	719.4	67 12.0	49042.8
9	1974	2 13.3	19016.3	45245.6	19002.0	737.1	67 12.2	49079.3
10	1975	2 16.4	19035.2	45273.5	19020.2	754.9	67 11.7	49112.4
11	1976	2 18.5	19049.7	45306.9	19034.3	767.3	67 11.7	49148.8
12	1977	2 22.0	19062.1	45336.6	19045.8	787.4	67 11.7	49181.0
13	1978	2 27.4	19058.6	45375.7	19041.1	817.1	67 13.0	49215.7
14	1979	2 32.3	19061.4	45401.4	19042.7	844.2	67 13.5	49240.5
15	1980	2 37.2	19063.2	45418.4	19043.3	871.2	67 13.9	49256.8
16	1981	2 42.9	19047.1	45448.9	19025.7	902.0	67 15.7	49278.7
17	1982	2 48.3	19034.8	45478.8	19012.0	931.3	67 17.3	49301.6
18	1983	2 52.4	19032.6	45498.8	19008.7	953.8	67 18.0	49319.2
19	1984	2 56.9	19022.8	45519.8	18997.6	978.4	67 19.2	49334.8
20	1985	3 00.8	19015.2	45542.0	18988.9	999.5	67 20.3	49352.3
21	1986	3 05.1	19003.3	45570.4	18975.8	1022.8	67 21.8	49373.9
22	1987	3 08.5	18999.1	45592.7	18970.6	1041.2	67 22.7	49392.9
23	1988	3 12.4	18983.0	45626.4	18953.3	1062.0	67 24.6	49417.8
24	1989	3 15.9	18966.2	45662.1	18935.4	1080.3	67 26.6	49444.3
25	1990	3 18.8	18961.5	45684.3	18929.8	1095.9	67 27.5	49463.1
26	1991	3 22.2	18950.8	45709.3	18918.0	1114.1	67 28.8	49482.0
27	1992	3 25.3	18954.8	45726.1	18921.0	1131.2	67 29.1	49499.1
28	1993	3 29.8	18956.4	45743.7	18921.1	1156.0	67 29.4	49516.0
29	1994	3 34.8	18953.6	45772.4	18916.6	1183.3	67 30.4	49541.4
30	1995	3 39.8	18959.3	45796.8	18920.6	1211.5	67 30.7	49566.2
31	1996	3 45.0	18965.7	45821.9	18925.1	1240.6	67 30.9	49591.8
32	1997	3 50.9	18962.8	45856.9	18920.0	1272.7	67 32.0	49623.0
33	1998	3 57.3	18955.8	45897.1	18910.6	1307.6	67 33.6	49657.5
34	1999	4 02.5	18957.8	45930.6	18910.6	1336.4	67 34.3	49689.2
35	2000	4 07.8	18955.4	45968.7	18906.2	1365.4	67 35.5	49723.5
36	2001	4 13.0	18962.4	46004.8	18911.1	1394.2	67 36.0	49759.6
37	2002	4 18.4	18969.2	46043.6	18915.6	1424.4	67 36.6	49798.0
38	2003	4 24.2	18970.2	46089.6	18914.2	1456.7	67 37.7	49840.9
39	2004	4 29.4	18980.3	46121.0	18922.0	1486.0	67 37.9	49873.8
40	2005	4 34.7	18984.3	46154.6	18923.7	1515.5	67 38.5	49906.4
41	2006	4 39.8	18996.7	46177.2	18933.8	1544.3	67 38.3	49932.0
42	2007	4 45.8	19007.4	46206.7	18941.8	1578.4	67 38.4	49963.4
43	2008	4 52.5	19014.0	46236.3	18945.2	1615.9	67 38.7	49993.3

Fig. 10. Secular changes of H, X, Y, Z, F, D and I at Belsk.

MONTHLY AND YEARLY MEAN VALUES OF MAGNETIC ELEMENTS

2008	MEAN		445 449	441		116	115 118		236	235	237
	DEC		447 450	442		133	131		250	249	250
	NOV	nT	446 448	441		130	129	in nT	247	246	247
	OCT	- - - - -	443 448	437	in nT	$^{\circ}$	126	·н : :	246	245	247
	SEP	: : +	446 447	441	·н	123	123	+ 00	241	241	241
	AUG	18500	448 450	445	1500 +	12	119	46000	238	238	239
	JUL		450 451	446	15	117	116	ENT:	237	236	238
	JUN	COMPONENT:	450 452	451	COMPONENT:	114	114	OMPON	234	\sim	233
	MAY		450 454	447	COMPC	110	110	VERTICAL COMPONENT:	231	229	232
	APR	NORTH	442 444	436	EAST	108	107	VERT]	231	230	233
	MAR		438 445	429		106	104		231	229	231
	F E B		440	435		103	101		228	227	228
	JAN		443 450	437		9			223	221	223
BELSK			All days Quiet days	Disturbed days		All days	Quiet days Disturbed days		All days	Quiet days	Disturbed days

Three-hour-range K indices Belsk, January - March, 2008 The limit of K=9 is 450

Day	Januar	У	Febr	uary	M	arch
Day	K	SK	K	SK	K	SK
1	2201 1011	8	3232 24	55 26	5333	4443 29
2	0111 1120	7	4422 33	43 25	2232	2333 20
3	0101 1012	6	3223 24	53 24	1223	1221 14
4	0000 1112	5	3212 12	34 18	2011	1101 7
5	2234 4354	27	1211 12	10 9	2222	3331 18
6	3332 3454	27	0111 12	32 11	1111	0112 8
7	3333 3223	22	3200 12	23 13	2110	1122 10
8	2223 2443	22	4111 12	32 15	0012	
9	3222 1122	15	1011 21			3434 28
10	2111 2212	12	0223 45	45 25	3323	3444 26
11	2111 1120	9	3323 44	33 25	2232	4432 22
12	0012 3422	14	3222 33		3332	3243 23
13	3111 2342	17	2232 44		2223	4223 20
14	3224 3453	26	2122 31		3322	2434 23
15	2222 3222	17	2223 33	32 20	4223	2222 19
16	2233 3333	22	3222 22	30 16		2323 16
17	3212 4234	21	0122 21			1321 13
18	3322 2332	20	1112 54			2211 15
19	1223 3522	20	3232 33		0121	3333 16
20	1221 2132	14	1321 12		2112	
21	1112 2233	15	1112 33		2112	
22	1111 1110	7	1111 21			2123 11
23	0012 2133	12	1111 12			2222 19
24	1111 2232	13	1011 12			1111 8
25	3322 1142	18	2111 11			2223 12
26	3222 1213	16	0111 11			4454 26
27	1101 1232	11	1111 23			3555 33
28	1101 1123	10	3323 25			4443 29
29	1222 1100	9	5233 36	55 32		2334 19
30	1111 1000	5				2223 18
31	0011 2333	13			2101	2121 10

Three-hour-range K indices Belsk, April - June, 2008 The limit of K=9 is 450

Day	April		May		June	
Day	K	SK	K	SK	K	SK
1 2 3	1212 1110 0101 0011 2101 1201	9 4 8	1211 1334 5321 3111 3233 4233	16 17 23	2211 3221 0102 2322	16 14 12
4 5 6	0011 2444 2223 2534 3343 3234	16 23 25	1223 2333 2231 3442 3222 2122	19 21 16		9 8 17
7 8 9	3322 1443 2213 4233 3233 3233	22 20 22	2111 2222 2112 2221 1111 2112	13 13 10	3212 4312 2111 1021	21 18 9
10 11 12	3222 3233 3112 2211 3223 3243	20 13 22	1211 1122 2112 2121 0111 1221	11 12 9		8 9 12
13 14 15	2112 3421 1100 0110 0111 3223	16 4 13	2211 1220 0112 2121 0111 1121	11 10 8	4423 3324	6 19 25
16 17 18	2223 4353 3211 2321 2222 2222	24 15 16	1212 2221 1001 1101 0112 3111	13 5 10	2223 3322 3322 2211	23 19 16
19 20 21	2211 1223 2111 1221 1111 1211	14 11 9	2223 3331 2222 2333 3332 3322	19 19 21	2333 2222 1111 2212	15 19 11
22 23 24	0111 1323 3443 3434 3334 3223	12 28 23	3221 3432 2102 3233 4222 2322	20 16 19	2111 1110 1001 1233	11 8 11
25 26 27 28	2222 3232 3122 2433 2222 2322 1123 4444	18 20 17 23	2211 2212 1212 0111 1011 2222 3232 4423	13 9 11 23	3333 4322 3213 3321	19 23 18 14
29 30 31	3221 1121 0111 1452	13 15	2222 3432 3222 3442 1223 3332	20 22 19	2213 2223	17 13

Three-hour-range K indices Belsk, July - September, 2008 The limit of K=9 is 450

_	July		August		September
Day	K	SK	K	SK	K SK
1	2112 2111	11	1110 1222	10	1111 1111 8
2	2111 1010	7	0111 1111	7	1111 1111 8
3	1101 2211	9	1111 1222	11	1223 1334 19
4	0111 2321	11	1111 2111	9	5633 3433 30
5	2112 3333	18	1011 1110	6	2212 2123 15
6	2111 1111	9	1112 2222	13	3222 3233 20
7	1121 1102	9	1101 1222	10	3221 3241 18
8	0011 1111	6	1001 1212	8	1232 2343 20
9	0111 1111	7	3333 3445	28	1221 1113 12
10	0112 2222	12	3332 2332	21	1111 1231 11
11	2122 3223	17	2222 3212	16	0010 1112 6
12	3433 4232	24	1221 2322	15	1111 1010 6
13	2233 3432	22	2111 1211	10	0000 0001 1
14	2223 3423	21	2211 2210	11	0011 1144 12
15	3222 2222	17	2111 0110	7	3233 4433 25
16	2111 1222	12	1111 1223	12	1223 1432 18
17	2211 1220	11	3212 2212	15	3101 0011 7
18	1111 2111	9	2323 5343	25	2223 2211 15
19	1001 1101	5	3222 3331	19	0111 2231 11
20	1111 1121	9	2212 2110	11	1110 1100 5
21	1221 2222	14	1011 1121	8	1000 1112 6
22	1123 4333	20	1111 1111	8	3200 0101 7
23	3323 4333	24	1100 1111	6	2011 1111 8
24	3222 2222	17	0001 1012	5	1112 1100 7
25	1202 1101	8	1010 1001	4	1001 0133 9
26	2212 2221	14	1111 1111	8	2101 1100 6
27	0112 2124	13	2111 2011	9	0011 1232 10
28	2221 1211	12	1101 1222	10	0012 2110 7
29	0111 1212	9	1110 1211	8	0111 1111 7
30	1212 1222	13	0111 0100	4	0111 2223 12
31	1111 2211	10	0022 2232	13	

Three-hour-range K indices Belsk, October - December, 2008 The limit of K=9 is 450

Day	October		November	December
Day	K	SK	K S	K K SK
1	2222 2233	18	1111 0121	8 0000 0000 0
2	3323 4343	25	0011 1012	6 0000 1000 1
3	3232 3333	22	0101 0111	5 0111 1222 10
4	2323 2213	18	1010 0001	3 2322 3312 18
5	2211 1112	11	0000 0000	0 2212 2525 21
6	1211 0101	7	0000 1010	2 3422 2432 22
7	0001 1120	5	0222 3235 1	.9 2222 3322 18
8	1100 0001	3	3223 3232 2	1110 1231 10
9	0010 1000	2	4222 2233 2	0 0000 0100 1
10	0111 1103	8	1111 1210	8 0001 1222 8
11	2143 5753	30	0111 0100	4 2211 1221 12
12	4323 2324	23	1011 1111	7 1011 1112 8
13	3222 1232	17	1001 1000	3 2111 0011 7
14	1111 1221	10	0001 0111	4 1000 0000 1
15	3222 1122	15	2110 0123 1	0 0111 0112 7
16	1111 0111	7	3322 2133 1	9 1111 2133 13
17	0000 1100	2	2120 0011	7 3211 1221 13
18	0000 0011	2	1000 0110	3 0000 1121 5
19	1112 2333	16	0001 0110	3 1101 2212 10
20	1010 1122	8	0100 0022	5 1001 1110 5
21	2211 1112	11	1001 0010	3 0111 0100 4
22	0011 1233	11	0001 0011	3 0000 1432 10
23	2111 1111	9	2110 0010	5 2222 2344 21
24	0110 0000	2	0000 0013	4 2122 1332 16
25	0001 1111	5		2 1001 2131 9
26	0211 1201	8	3322 2233 2	1100 1122 8
27	1011 0000	3	2222 2233 1	8 2001 1011 6
28	0122 1222	12	1211 1123 1	2 2011 1111 8
29	2342 2444	25	1111 0122	9 1001 0101 4
30	3223 2543	24	1011 0210	6 0000 0011 2
31	2222 1233	17		3323 2232 20

Three-hour-range E indices
based on power spectrum estimation(*)
Belsk, January - March, 2008

28

_	January		February		March	
Day	K	SE	K	SE	K	SE
1	2201 1001	7	3232 1465	26	6433 5543	33
2	0011 0120	5	4422 4354	28	2233 2334	22
3	0000 0011	2	3224 3554	28	1222 1221	13
4	0000 0012	3	3212 1223	16	2011 1000	5
5	2344 4455	31	1100 0210	5	2212 4341	19
6	4433 4554	32	0001 1242	10	1101 0112	7
7	4332 3123	21	3200 0312	11	1110 0012	6
8	2223 2544	24	4111 1122	13	0002 5341	15
9	4222 1122	16	1001 2123	10	4634 4435	33
10	2101 2212	11	0224 5655	29	4323 3455	29
11	3111 0020	8	3424 4443	28	3142 5532	25
12	0011 2433	14	3323 4443	26	3342 4153	25
13	3111 3452	20	2242 5431	23	2223 4233	21
14	4225 3564	31	2112 4153	19	2322 3544	25
15	2222 3233	19	2223 4442	23	4123 3223	20
16	2333 3433	24	2322 3140	17	2211 2213	14
17	3212 4234	21	0112 2013	10	2100 0321	9
18	3322 2443	23	1013 4444	21	2311 2210	12
19	1123 3532	20	3242 3341	22	0021 3444	18
20	1321 2033	15	1322 1301	13	2112 4333	19
21	1112 2233	15	1112 3331	15	2111 0233	13
22	1100 1110	5	1011 2000	5	2000 1014	8
23	0012 1142	11	0111 1342	13	4333 2222	21
24	1101 2241	12	1011 0123	9	0011 1110	5
25	3322 1152	19	2111 1100	7	0011 1113	8
26	4222 2203	17	0101 0122	7	2243 4465	30
27	1101 1143	12	2211 2353	19	5533 3556	35
28	0101 1024	9	4324 2666	33	5353 4444	32
29	1212 1000	7	5234 4755	35	2322 2334	21
30	1100 0000	2			3122 2223	17
31	0001 1344	13			1101 2121	9

^{* -} see literature: Reda and Jankowski, 2004

Three-hour-range E indices
based on power spectrum estimation(*)
Belsk, April - June, 2008

29

Day	April		May	May	
	K	SE	K	SE	K SE
1	1211 0100	6	1111 1235	15	2212 2432 18
2	0100 0010	2	5221 3101	15	1201 2221 11
3	1001 1100	4	3223 4243	23	0201 1222 10
4	0001 2455	17	1123 1333	17	2110 1100 6
5	1113 2635	22	2231 3443	22	0001 1200 4
6	3443 3244	27	4122 1122	15	0122 2132 13
7	4321 1544	24	2001 1122	9	2143 3343 23
8	1113 4234	19	2111 1121	10	4212 3312 18
9	3233 3233	22	1011 1011	6	2001 0021 6
10	3212 3232	18	1111 1112	9	1001 1110 5
11	3102 2301	12	1111 2120	9	1122 1000 7
12	3323 3243	23	0000 1121	5	0211 1112 9
13	1112 3531	17	2200 1220	9	0100 1110 4
14	1100 0000	2	0101 2110	6	1001 2346 17
15	0011 2224	12	0111 1011	6	4433 3324 26
16	3123 4353	24	1112 2211	11	2223 3344 23
17	4211 1210	12	1001 0000	2	3223 3432 22
18	2122 1112	12	0001 2110	5	4422 2100 15
19	2111 0224	13	3123 3331	19	1002 3222 12
20	2011 1321	11	2222 3334	21	2443 2222 21
21	1101 0110	5	4422 3322	22	1111 2112 10
22	0001 0333	10	3111 2442	18	1111 2000 6
23	3444 4544	32	2102 3243	17	2100 0000 3
24	4443 4223	26	4112 2312	16	0000 1123 7
25	2222 2232	17	2211 2212	13	4221 2433 21
26	3122 2434	21	1111 0101	6	4334 3331 24
27	2222 2311	15	0011 1223	10	4213 2411 18
28	1113 3543	21	3332 4423	24	0102 2232 12
29	3210 1121	11	2222 3432	20	2213 2234 19
30	0001 0452	12	4112 3542	22	1111 2230 11
31			0123 4342	19	

^{* -} see literature: Reda and Jankowski, 2004

Three-hour-range E indices based on power spectrum estimation(*) Belsk, August - September, 2008

Dave	July		August	September		
Day	K	SE	K SE	K SE		
1	2111 2101	9	0000 1112 5	1000 1110 4		
2	2001 1010	5	0000 1011 3	0011 1101 5		
3	0001 2210	6	0011 1223 10	1123 1334 18		
4	0010 2211	7	1001 1111 6	6633 3533 32		
5	1112 4333	18	0011 1100 4	2312 3123 17		
6	2120 1010	7	1112 1222 12	4212 3243 21		
7	1111 0002	6	1101 1122 9	4211 3251 19		
8	0002 1111	6	0000 1202 5	1222 2453 21		
9	0001 1111	5	3333 3556 31	1211 0004 9		
10	0002 2112	8	4431 1432 22	1000 1130 6		
11	1112 4213	15	3112 3212 15	0000 0013 4		
12	3444 4332	27	1221 2312 14	1000 0000 1		
13	2223 3443	23	3101 1111 9	0000 0001 1		
14	2223 3423	21	3311 2110 12	0011 0144 11		
15	3221 1223	16	3101 0010 6	3234 4443 27		
16	1111 1222	11	0111 1124 11	1323 1432 19		
17	3111 1110	9	3112 3212 15	3100 0001 5		
18	0111 1110	6	2324 5453 28	2213 2211 14		
19	0001 1001	3	3222 2431 19	0100 2230 8		
20	1001 0021	5	2112 1100 8	1100 0100 3		
21	2111 2222	13	0001 1021 5	0000 0112 4		
22	0123 4434	21	1110 0100 4	3200 0100 6		
23	3422 5442	26	1000 1001 3	2011 1001 6		
24	4222 2221	17	0000 1002 3	0012 1000 4		
25	0102 1001	5	0000 0000 0	0001 0133 8		
26	2102 1221	11	0000 1110 3	2100 1000 4		
27	0012 1125	12	2111 1000 6	0000 1132 7		
28	2221 1100	9	0000 1112 5	0011 2100 5		
29	0001 1112	6	1010 1110 5	0011 1001 4		
30	1201 1121	9	0011 0000 2	0010 1223 9		
31	0111 1211	8	0001 1221 7			

^{* -} see literature: Reda and Jankowski, 2004

Three-hour-range E indices based on power spectrum estimation(*) Belsk, October - December, 2008

D	October		Novembe	November		December		
Day	K	SE	K	SE	K	SE		
1	2122 2234	18	1010 0110	4	0000 0000	0		
2	3323 4343	25	0011 1012	6	0000 0000	0		
3	3233 4344	26	0000 0000	0	0001 1222	8		
4	2423 2203	18	1000 0000	1	1422 3312	18		
5	1211 1002	8	0000 0000	0	2113 2625	22		
6	0110 0000	2	0000 0020	2	4532 2532	26		
7	0000 0120	3	0222 2236	19	2222 3322	18		
8	1100 0000	2	4323 3242	23	0100 1230	7		
9	0000 0000	0	4222 1234	20	0000 0000	0		
10	0001 1103	6	2101 1200	7	0000 1221	6		
11	2144 6754	33	0100 0000	1	2112 1221	12		
12	5333 3424	27	1010 0012	5	1001 1111	6		
13	4222 1232	18	0000 0000	0	2101 0000	4		
14	1011 1221	9	0000 0100	1	1000 0000	1		
15	3322 1122	16	1100 0113	7	0110 0012	5		
16	1001 0010	3	3321 2013	15	0011 1244	13		
17	0000 1100	2	2110 0011	6	2210 1210	9		
18	0000 0010	1	0000 0000	0	0000 1121	5		
19	1112 2234	16	0000 0010	1	0001 2212	8		
20	1000 1122	7	0000 0012	3	0001 1100	3		
21	2111 1012	9	0000 0000	0	0110 0000	2		
22	0000 1343	11	0000 0000	0	0000 0432	9		
23	1010 0000	2	1110 0010	4	2222 2455	24		
24	0000 0000	0	0000 0001	1	2222 1332	17		
25	0000 0011	2	4332 2342	23	0001 3131	9		
26	0221 1202	10	3321 1234	19	1000 1011	4		
27	0000 0000	0	3212 2242	18	2000 0011	4		
28	0022 1221	10	1211 0124	12	2001 0000	3		
29	3242 2544	26	0011 0112	6	0001 0000	1		
30	3223 2543	24	1000 0200	3	0000 0011	2		
31	1221 1133	14			3334 2342	24		

^{* -} see literature: Reda and Jankowski, 2004

Fig. 11. K-indices in graphical form, Belsk 2008.

Fig. 12. Daily mean data plot for Belsk 2008.

Fig. 13. Hourly mean data plot of \boldsymbol{X} component for Belsk 2008.

Fig. 14. Hourly mean data plot of Y component for Belsk 2008.

Fig. 15. Hourly mean data plot of Z component for Belsk 2008.

Fig. 16. Hourly mean data plot of F component for Belsk 2008.

Tables and plots for Hel Observatory

Fig. 17. Base values of set 1, Hel 2008.

Fig. 18. Base values of set 2, Hel 2008.

41

Annual mean values of magnetic elements in Hel Observatory

No	Year	D [°']	H [nT]	Z [nT]	X [nT]	Y [nT]	[°,]	F [nT]
1	1953	-0 14.5	17388	45327	17388	-73	69 00.8	48548
2	1954	-0 10.0	17394	45374	17394	-51	69 01.5	48594
3	1955	-0 04.2	17379	45430	17379	-21	69 03.9	48640
4	1956	0 03.9	17371	45450	17371	20	69 05.0	48656
5	1957	0 05.7	17372	45475	17372	29	69 05.5	48680
6	1958	0 10.2	17380	45535	17380	52	69 06.5	48739
7	1959	0 14.7	17390	45565	17390	74	69 06.6	48771
8	1960	0 17.6	17402	45602	17402	89	69 06.8	48810
9	1961	0 19.8	17422	45625	17422	100	69 06.0	48838
10	1962	0 22.7	17438	45647	17438	115	69 05.5	48864
11	1963	0 26.5	17449	45663	17448	134	69 05.2	48883
12	1964	0 28.6	17464	45676	17463	145	69 04.6	48901
13	1965	0 30.0	17476	45692	17475	152	69 04.2	48920
14	1966	0 31.6	17485	45710	17484	161	69 04.0	48940
15	1967	0 33.3	17492	45743	17491	169	69 04.4	48973
16	1968	0 34.4	17502	45769	17501	175	69 04.4	49001
17	1969	0 34.3	17524	45792	17523	175	69 03.5	49030
18	1970	0 34.8	17542	45824	17541	178	69 03.2	49067
19	1971	0 35.7	17565	45849	17564	182	69 02.3	49098
20	1972	0 36.1	17579	45880	17578	184	69 02.1	49132
21	1973	0 38.5	17595	45912	17594	197	69 01.9	49168
22	1974	0 41.9	17606	45951	17605	215	69 02.2	49208
23	1975	0 45.0	17625	45984	17623	231	69 01.7	49246
24	1976	0 49.6	17639	46015	17637	254	69 01.6	49280
25	1977	0 55.0	17651	46045	17649	282	69 01.5	49312
26	1978	1 00.2	17646	46085	17643	309	69 02.9	49349
27	1979	1 05.1	17651	46112	17648	334	69 03.2	49375
28	1980	1 11.5	17653	46127	17649	367	69 03.5	49390
29	1981	1 17.5	17637	46156	17632	398	69 05.2	49411
30	1982	1 23.4	17620	46184	17615	427	69 07.1	49431
31	1983	1 28.6	17614	46200	17608	454	69 07.8	49444
32	1984	1 33.5	17602	46219	17596	479	69 09.1	49457
33	1985	1 37.9	17591	46239	17584	501	69 10.3	49472
34	1986	1 42.7	17579	46263	17571	525	69 11.6	49490
35	1987	1 46.3	17572	46285	17564	543	69 12.6	49508
36	1988	1 51.0	17555	46318	17546	567	69 14.6	49533

No	Year	[°,]	H [nT]	Z [nT]	X [nT]	Y [nT]	[°,]	F [nT]
37	1989	1 55.5	17535	46352	17525	589	69 16.7	49558
38	1990	1 58.4	17527	46374	17516	604	69 17.8	49575
39	1991	2 00.6	17513	46398	17502	614	69 19.3	49593
40	1992	2 03.9	17515	46416	17504	631	69 19.6	49611
41	1993	2 10.0	17516	46428	17503	662	69 19.8	49622
42	1994	2 15.9	17512	46456	17498	692	69 20.7	49647
43	1995	2 21.3	17518	46481	17503	720	69 21.0	49672
44	1996	2 26.6	17523	46506	17507	747	69 21.2	49698
45	1997	2 32.9	17519	46539	17502	779	69 22.3	49727
46	1998	2 39.8	17512	46581	17493	814	69 23.8	49764
47	1999	2 45.4	17511	46615	17491	842	69 24.7	49796
48	2000	2 51.9	17507	46657	17485	875	69 25.9	49833
49	2001	2 57.7	17515	46692	17492	905	69 26.2	49869
50	2002	3 03.7	17520	46730	17495	936	69 26.9	49906
51	2003	3 10.8	17519	46777	17492	972	69 28.1	49950
52	2004	3 16.6	17529	46809	17500	1002	69 28.2	49983
53	2005	3 22.3	17531	46843	17501	1031	69 28.9	50016
J	2006.0	0 -1.5	-2	9	-2	-8	0 0.6	7
54	2006	3 29.9	17550	46859	17517	1071	69 28.1	50038
55	2007	3 36.7	17559	46887	17524	1106	69 28.2	50067
56	2008	3 43.8	17564	46917	17527	1143	69 28.5	50097

<u>Note</u>: Since 2006 the observatory has stopped introducing the so-called historical corrections. The corrections were related, among other things, with the variable location of the instruments for absolute measurements. In the 2006.0 line we include the jump value J relating to the neglect of historical corrections. The jump values are defined as follows:

jump value J = old site value - new site value

Fig. 19. Secular changes of H, X, Y, Z, F, D and I at Hel.

MONTHLY AND YEARLY MEAN VALUES OF MAGNETIC ELEMENTS

2008	MEAN		$^{\circ}$	524		143	142 144		417	418
	DEC		529 531	530		161	161		431	432
	NOV	E	529 529	528		D 1	157	n nT	428	429
	OCT	in nT	525 520	524	n nT	154	157 153	ni	427	427
	SEP	: : +	527 530	524	ni	150	150 150	+ 00	422	423
	AUG	17000	529 532	527	+ 00	146	140 146	46500	419	- 7
	JUL		532 530	530	1000	4 4	142 142	TENT:	417	419
	JUN	COMPONENT:	531 533	532	COMPONENT:	140	\sim	VERTICAL COMPONENT:	415	413
	MAY		532 535	530	COMPC	136	137	CAL C	412	413
	APR	NORTH	525 526	519	EAST	135	138 138	VERTI	412	414
	MAR		521 527	512		133	137		412	411
	FEB		522 528	517		131	$^{\prime}$ $^{\prime}$		409	408
	JAN		524 530	519		127	124 129		404	404
нег			All days Quiet days	Disturbed days		All days	Quiec days Disturbed days		All days	Vuiec days Disturbed days

Three-hour-range K indices
Hel, January - March, 2008
The limit of K=9 is 550

Dave	January		February	February				
Day	K	SK	K	SK	K S	K		
1	2101 1001	6	3222 1355	23	5323 4433 2	7		
2	0000 1120	4	4322 3243	23	2222 2323 1	8		
3	0000 0011	2	3223 2443	23	2123 1111 1	2		
4	0000 1112	5	3212 1233	17	2011 1001	6		
5	2233 3354	25	1101 1210	7	2212 3231 1	6		
6	3332 3443	25	0011 1232	10	1111 0111	7		
7	3223 3123	19	3200 0213	11	1110 0011	5		
8	1222 2443	20	3111 1133	14	0013 4331 1	5		
9	3221 1122	14	2000 2123	10	3533 3434 2	8		
10	2111 1212	11	0223 4544	24	3223 3444 2	5		
11	2011 0020	6	3323 3333	23	2232 4432 2	2		
12	0001 2322	10	2222 3333	20	3332 3243 2	3		
13	3111 2342	17	1131 4331	17	2223 3222 1	8		
14	3224 3453	26	2122 3143	18	3322 2434 2	3		
15	2222 3222	17	2223 3332	20	4223 3222 2	0		
16	2233 2333	21	2222 2130	14	2111 2222 1	3		
17	2212 3124	17	0112 2112	10	2111 1321 1	2		
18	3332 2332	21	1012 4434	19	3311 2111 1	3		
19	1123 2422	17	3232 3332	21	0121 3333 1	6		
20	1221 2032	13	1311 1201	10	2112 3333 1	8		
21	1112 1223	13	1112 2331	14	2111 0233 1	3		
22	1110 0110	5	1011 1011	6	2001 2123 1	1		
23	0012 1133	11	0112 1232	12		8		
24	0111 2232	12	1011 1222	10	1111 1110	7		
25	3322 1042	17	2011 0100	5	0012 2113 1	0		
26	3121 1213	14	0111 1122	9	1133 4454 2	5		
27	1101 1132	10	1111 2352	16	4433 3555 3	2		
28	0111 0023	8	3323 2545	27	4343 4443 2	9		
29	1211 1000	6	4233 3644	29	2211 2234 1	7		
30	1100 0000	2			3212 2213 1	6		
31	0001 2333	12			1101 2021	8		

Three-hour-range K indices Hel, April - June, 2008 The limit of K=9 is 550

Day	April		May		June
Бау	K	SK	K	SK	K SK
1	1211 1110	8	1112 1234	15	2222 2321 16
2	0000 0001	1	5212 3101	15	2212 3221 15
3	2001 0100	4	3233 4232	22	1102 2322 13
4	0011 2443	15	1223 2333	19	2121 2101 10
5	2123 3534	23	2131 3432	19	1002 1210 7
6	3443 3233	25	3222 2121	15	1223 2222 16
7	3322 1433	21	2001 2222	11	2133 3233 20
8	2213 4233	20	2112 2111	11	3212 4312 18
9	2233 3233	21	1111 2111	9	1001 1011 5
10	3222 3233	20	1111 1122	10	1001 2110 6
11	3112 2201	12	2111 2121	11	1122 1001 8
12	3223 3133	20	1010 1211	7	1221 1111 10
13	1112 3421	15	1101 1220	8	1100 1120 6
14	1100 0000	2	0102 2110	7	1001 2445 17
15	0001 3223	11	0111 1111	7	3433 3324 25
16	2223 4343	23	1202 2221	12	2223 3334 22
17	3212 2221	15	1001 0100	3	2223 3322 19
18	2222 2212	15	0002 3111	8	3322 3211 17
19	2111 1223	13	2113 3321	16	1112 3222 14
20	2111 1221	11	2122 3333	19	2333 2222 19
21	1101 1211	8	3323 3222	20	1111 2211 10
22	0002 1323	11	2222 3432	20	2111 2111 10
23	3343 3433	26	2102 2233	15	2101 1000 5
24	3333 3223	22	3122 2312	16	1000 1123 8
25	2222 3221	16	2211 2211	12	3221 2333 19
26	3122 2433	20	1111 0111	7	3333 4322 23
27	2112 2321	14	0011 1112	7	3223 3321 19
28	1122 3443	20	3222 4323	21	1112 2222 13
29	2211 1121	11	2212 3332	18	2212 2223 16
30	0111 1351	13	3112 3442	20	1102 2220 10
31			0223 3332	18	

Three-hour-range K indices Hel, July - September, 2008 The limit of K=9 is 550

Day	July			Aug	gust		September		
Day	K		SK	K		SK	K		SK
1	2112	3101	11	1010	2222	10	1000	2111	6
2	2001	1010	5	0001	1111	5	1112	1111	9
3	1001	2211	8	1011	2122	10	1223	2333	19
4	0001	2211	7	1011	1111	7	5533	3433	29
5	1223	3322	18	0001	1100	3	2212	2122	14
6	1111	1110	7	11-12	22222	-1	3222	3233	20
7	1111	0101	6	1111	1222	11	3122	3241	18
8	0001	1111	5	0000	1212	6	1232	2343	20
9	0111	1111	7	3323	3445	27	1211	1113	11
10	0002	2212	9	3332	2322	20	1111	1121	9
11	1122	3223	16	2212	3211	14	0000	1112	5
12	3433	4232	24	1232	2312	16	1000	0000	1
13	2233	3432	22	2112	1111	10	0000	0001	1
14	2223	3422	20	2211	2210	11	0011	1143	11
15	3222	2222	17	2111	1100	7	3233	3433	24
16	1111	2212	11	0111	1123	10	1222	1432	17
17	2211	1210	10	3112	3212	15	3101	1001	7
18	0101	1101	5	2224	4443	25	2212	1111	11
19	0001	1101	4	3222	3331	19	0111	1131	9
20	1001	1121	7	2112	2100	9	1100	1100	4
21	2111	2222	13	1001	2011	6	0000	0112	4
22	0123	4333	19	1110	1001	5	3100	0101	6
23	3322	4333	23	1001	2111	7	2011	1011	7
24	3222	2222	17	0001	1001	3	1002	1100	5
25	1112	1101	8	1000	1001	3	1001	0133	9
26	2112	2221	13	0001	1110	4	1101	1100	5
27	0012	2124	12	2111	1000	6	0000	1222	7
28	2222	1211	13	0001	1111	5	0012	2100	6
29	0101	1212	8	1111	0211	8	0111	1001	5
30	1212	1112	11	0111	1000	4	0011	2223	11
31	0111	2211	9	0012	3121	10			

Three-hour-range K indices Hel, October - December, 2008 The limit of K=9 is 550

Dave	October		No	ovembe	er	De	December			
Day	K	SK	K		SK	I	ζ	SK		
1	2222 2323	18	1010	0021	5	0000	0000	0		
2	2223 4333	22	0011	1012	6	0000	0000	0		
3	2232 3333	21	0000	0000	0	1111	1122	10		
4	2323 2212	17	1000	0000	1	2322	3311	17		
5	2211 1002	9	0000	0000	0	2112	2525	20		
6	1111 0101	6	0000	0010	1	3322	2432	21		
7	0000 1120	4	0112	2224	14	2122	2312	15		
8	1100 0001	3	3223	3232	20	1100	1221	8		
9	0010 0000	1	4222	1233	19	0000	0100	1		
10	0002 1103	7	1111	0210	7	0001	1222	8		
11	2133 5653	28	0101	0000	2	2211	1211	11		
12	4322 2323	21	1010	0112	6	1001	1111	6		
13	3122 1232	16	0000	0000	0	1101	0010	4		
14	1011 1121	8	0000	0111	3	1000	0000	1		
15	3222 1122	15	1100	0123	8	0110	0112	6		
16	1011 0011	5	3222	1023	15	0011	2133	11		
17	0000 1000	1	1120	0011	6	3210	1210	10		
18	0000 0010	1	0000	0010	1	0000	1121	5		
19	1112 2332	15	0000	0010	1	1001	1211	7		
20	1000 1112	6	0100	0021	4	1000	1100	3		
21	2111 1012	9	0001	0000	1	0111	0000	3		
22	0001 1232	9	0000	0010	1	0000	0332	8		
23	11-1-1-1110	-1	2110	0010	5	2222	1344	20		
24	011-11000	-1	0000	0003	3	2122	2232	16		
25	0001 0111	4	4332	3232	22	1001	2131	9		
26	0221 1201	9	3322	2233	20	1000	0022	5		
27	1001 0000	2	2112	1233	15	1000	1011	4		
28	0122 1221	11	1111	0123	10	1011	0111	6		
29	2332 3443	24	0111	0112	7	0001	0000	1		
30	3223 2532	22	1000	0210	4	0000	0011	2		
31	2221 1232	15				3323	2232	20		

Fig. 20. K-indices in graphical form, Hel 2008.

Fig. 21. Daily mean data plot for Hel 2008.

Fig. 22. Hourly mean data plot of X component for Hel 2008.

Fig. 23. Hourly mean data plot of Y component for Hel 2008.

Fig. 24. Hourly mean data plot of Z component for Hel 2008.

Fig. 25. Hourly mean data plot of F component for Hel 2008.

Tables and plots for Hornsund Observatory

Fig. 26. Base values, Hornsund 2008.

Annual mean values of magnetic elements in Hornsund Observatory

56

		1400 01 11					
Year	D [°′]	H [nT]	Z [nT]	X [nT]	Y [nT]	I [°′]	F [nT]
1050							
1979	-032.2	8384	53447	8384	-79	81 05.1	54101
1980	-0 14.2	8370	53447	8370	-35	81 06.0	54098
1981	-0 09.3	8351	53449	8351	-23	81 07.2	54097
1982	-0 09.4	8319	53481	8319	-23	81 09.5	54124
1983	-0 02.0	8295	53457	8295	-5	81 10.8	54097
1984	0 07.7	8266	53439	8266	19	81 12.4	54075
1985	0 14.3	8238	53405	8238	34	81 13.9	54037
1986	0 20.4	8213	53392	8213	49	81 15.3	54020
1987	0 25.6	8193	53360	8193	61	81 16.3	53985
1988	0 34.7	8168	53368	8168	82	81 17.9	53989
1989	0 40.8	8148	53369	8147	97	81 19.2	53987
1990	0 47.2	8122	53360	8121	112	81 20.7	53975
1991	0 53.0	8107	53355	8106	125	81 21.6	53967
1992	1 01.4	8088	53352	8087	144	81 22.8	53962
1993	1 12.9	8065	53356	8063	171	81 24.3	53962
1994	1 25.9	8044	53374	8041	201	81 25.8	53977
1995	1 38.4	8038	53374	8035	230	81 26.1	53976
1996	1 51.4	8023	53385	8019	260	81 27.2	53985
1997	2 07.2	8004	53406	7999	296	81 28.6	54003
1998	2 24.0	8001	53440	7994	335	81 29.1	54036
1999	2 39.1	7998	53471	7989	370	81 29.6	54066
2000	2 55.5	7996	53504	7986	408	81 30.0	54098
2001	3 12.4	7992	53542	7979	447	81 30.6	54135
2002	3 29.7	7989	53585	7974	487	81 31.2	54177
2003	3 49.8	7965	53646	7947	532	81 33.3	54234
2004	4 04.2	7961	53675	7941	565	81 33.8	54262
2005	4 20.5	7953	53707	7930	602	81 34.6	54293
2006	4 36.2	7958	53727	7932	639	81 34.5	54314
2007	4 51.3	7950	53757	7922	673	81 35.2	54342
2008	5 07.9	7941	53785	7909	710	81 36.1	54368

Fig. 27. Secular changes of H, X, Y, Z, F, D and I at Hornsund.

MONTHLY AND YEARLY MEAN VALUES OF MAGNETIC ELEMENTS

## NORTH COMPONENT: 7500 + in nT All days 200 All days	8													
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV NORTH COMPONENT: 7500 + in nT NORTH COMPONENT: 7500 + in nT 414 418 416 417 425 428 421 419 411 410 409 1272 359 352 388 424 418 417 413 389 370 386 EAST COMPONENT: 500 + in nT 196 197 202 201 200 204 210 213 217 222 225 ISS 202 196 218 213 197 202 214 215 222 227 236 ISS 272 282 290 286 277 283 275 281 292 293 294 279 282 290 286 277 283 275 281 292 287 286 INDIVIDUAL COMPONENT: 53500 + in nT VERTICAL COMPONENT: 53500 + in nT 279 282 290 286 277 283 275 281 292 293 294 269 271 281 285 274 276 284 278 282 287 286 INDIVIDUAL COMPONENT: 53500 + in nT VERTICAL COMPONENT: 53500 + in nT ZF 282 290 286 277 283 275 281 292 293 294 ZF 283 303 307 292 280 288 269 287 305 302 309	2008	MEAN		409	416	389		210	209	215		∞	∞	\circ
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT 398 396 398 410 424 425 424 417 409 402 414 418 416 417 425 428 421 419 411 411 lays 372 369 352 388 424 418 417 413 389 370 EAST COMPONENT: 500 + in nT 196 197 202 201 200 204 210 213 219 223 lays 202 196 218 213 197 202 201 202 209 213 217 222 lays 202 196 218 213 197 202 214 215 222 227 AVERTICAL COMPONENT: 53500 + in VERTICAL COMPONENT: 53500 + in 379 282 290 286 277 283 275 281 292 293 269 271 281 285 274 276 284 278 282 287 279 282 303 307 292 280 288 269 287 305 302		DEC		300	408	9		230	228	237		293	289	301
JAN FEB MAR APR MAY JUN JUL AUG SEP OCTT NORTH COMPONENT: 7500 + in n NORTH COMPONENT: 7500 + in n H H H H H H H H H H H H H H H H H		NOV		403	409	∞		228	225	\sim		9	∞	0
JAN FEB MAR APR MAY JUN JUL AUG SEP 398 396 398 410 424 425 424 417 409 414 418 416 417 425 428 421 419 411 lays 372 369 352 388 424 418 417 413 389 EAST COMPONENT: 500 + in 196 197 202 201 200 204 210 213 219 192 194 198 200 200 205 209 213 217 lays 202 196 218 213 197 202 214 215 222 lays 202 282 290 286 277 283 275 281 292 269 271 281 285 274 276 284 278 282 lays 282 303 307 292 280 288 269 287 305		OCT			411	370	nT	223	222	227		293	287	0
JAN FEB MAR APR MAY JUL A 50 MORTH COMPONENT: 750 MORTH 418 416 417 425 428 421 4 418 416 417 425 428 421 4 418 417 425 388 424 418 417 40 200 204 210 2 192 194 198 200 200 205 209 2 192 194 198 200 200 205 209 2 14 2 202 196 218 213 197 202 214 2 202 214 2 202 218 213 197 202 214 2 202 214 2 202 214 2 202 214 2 202 213 282 280 288 269 2 203 203 307 292 280 288 269 2		SEP			411	∞	 in	219	217	222		9	∞	0
JAN FEB MAR APR MAY JUN JUL NORTH COMPONENT: 398 396 398 410 424 425 42 418 414 418 416 417 425 428 421 418 410 192 320 352 388 424 418 41 41 418 410 200 204 21 192 194 198 200 200 205 201 192 194 198 200 200 205 201 202 21 302 202 213 197 202 21 229 282 290 286 277 283 274 276 28 269 282 303 307 292 280 288 26		AUG		_	419	413		213	213	215	535	281	278	287
JAN FEB MAR 398 396 398 414 418 416 414 418 416 196 197 202 192 194 198 192 202 196 218 1279 282 290 269 271 281		JUL		7	421	417		210	209	214	TENT:	275	284	9
JAN FEB MAR 398 396 398 414 418 416 414 418 416 196 197 202 192 194 198 192 202 196 218 1279 282 290 269 271 281		JUN	CMEMI	4.2.7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	428	418	NENT:	204	205	202	OMPO	283	276	∞
JAN FEB MAR 398 396 398 414 418 416 414 418 416 196 197 202 192 194 198 192 202 196 218 1279 282 290 269 271 281		MAY			425	424	COMPC	200	200	197	CAL (277	274	280
JAN FEB M 398 396 414 418 414 418 419 418 196 197 196 197 192 194 193 202 196 194 282 279 282 269 271 194 303		APR	NOP TE	410	417	388	EAST	201	200	213	VERT]	286	285	292
JAN F 398 414 414 192 196 192 192 192 192 192		MAR		8	416	352		202	198	218		290	281	307
JAN 398 414 414 196 196 196 279 ays 202		FEB		396	418	9		197	194	9		282	271	303
lay lay		JAN		σ	414	372		196	192	0		279	269	282
	Hornsund			מאשה רומ	Quiet days	lay		All days	Quiet days	Disturbed days		All days	Quiet days	lay

Three-hour-range K indices Hornsund, January - March, 2008 The limit of K=9 is 2500

Dav	January		February		March
Day	K	SK	K	SK	K SK
1	1221 2101	10	4333 1245	25	6554 3454 36
2	1210 0022	8	2442 3375	30	3343 3235 26
3	0101 0034	9	5443 2435	30	4333 2133 22
4	0001 0033	7	3343 2256	28	3132 2000 11
5	1233 3255	24	3312 2122	16	1333 4322 21
6	2442 3465	30	1222 1353	19	1232 1112 13
7	4443 3223	25	3211 1214	15	3121 1011 10
8	2343 2555	29	4222 3024	19	0012 4211 11
9	4333 1132	20	1111 2122	11	4533 3655 34
10	2222 1115	16	1223 4355	25	3453 3345 30
11	5222 1030	15	2443 3643	29	4343 4634 31
12	0023 1212	11	2453 3264	29	2453 3265 30
13	2322 2344	22	1343 3552	26	1454 4324 27
14	3464 3464	34	2343 3165	27	2443 3644 30
15	2443 3224	24	2444 4553	31	3354 3221 23
16	2464 3655	35	1443 2252	23	2422 3312 19
17	3333 3244	25	0143 2103	14	3311 2332 18
18	3553 3333	28	1233 3355	25	2322 3111 15
19	2353 3542	27	3243 3354	27	0332 3565 27
20	1443 2154	24	1333 2200	14	2223 3121 16
21	2233 2444	24	1233 3432	21	2222 1052 16
22	3222 2120	14	0122 2100	8	1212 2113 13
23	0122 3045	17	0232 2253	19	3433 2112 19
24	1322 2323	18	1123 1222	14	1312 1110 10
25	2442 1063	22	1223 1100	10	0112 2112 10
26	3243 2213	20	0222 1113	12	2234 3435 26
27	1311 1253	17	1321 3452	21	4644 3355 34
28	1222 1034	15	4433 3556	33	4444 5445 34
29	1223 2001	11	6344 3736	36	3333 4345 28
30	1111 1000	5			3333 3233 23
31	0000 0124	7			2212 2252 18

Three-hour-range K indices Hornsund, April - June, 2008 The limit of K=9 is 2500

Day	April		May		June	
Day	K	SK	K	SK	K	SK
1	2322 1210	13	2232 2225	20	3332 2522	22
2	0110 0020	4	4332 3101	17	2313 2233	19
3	1001 2100	5	3224 4242	23	2222 2144	19
4	0221 3445	21	2333 3544	27	2222 2111	13
5	2233 3733	26	3342 3632	26	2112 1121	11
6	3443 3252	26	5333 3143	25	1322 3223	18
7	2443 2653	29	2222 2143	18	3244 4354	29
8	2233 4334	24	2343 1231	19	2323 3343	23
9	2344 3153	25	2222 3001	12	3212 2032	15
10	2343 3255	27	1331 2021	13	1111 2120	9
11	2322 3321	18	2231 1032	14	1121 1101	8
12	2344 3153	25	1121 1231	12	1331 1103	13
13	2233 3541	23	1311 1111	10	1220 1010	7
14	1212 0100	7	1122 2132	14	1112 2336	19
15	0102 2124	12	1210 2111	9	3543 4333	28
16	1234 3253	23	2313 2121	15	3343 2455	29
17	2223 3220	16	1001 1110	5	3444 3433	28
18	1343 3212	19	0111 2001	6	4433 3121	21
19	2232 2212	16	3222 3231	18		18
20	2211 2431	16	2322 3235	22	2343 3222	21
21	2222 1210	12	3333 3222	21		15
22	1112 1141	12	2433 3552	27	2222 2100	11
23	3454 4632	31	2112 4253	20		10
24	5455 4344	34	4343 3422	25		13
25	2433 3252	24	1322 3122	16		21
26	4433 3425	28	1222 1232	15	4444 4321	26
27	2222 2321	16	2112 2214	15		21
28	2223 5455	28	3443 3332	25		19
29	2342 2253	23	3233 3442	24		19
30	1212 2541	18	3323 4552	27	1222 3222	16
31			1345 3342	25		

Three-hour-range K indices Hornsund, July - September, 2008 The limit of K=9 is 2500

Day	July		August	August			
Бау	K	SK	K	SK	K SK		
1	2233 2121	16	1221 2123	14	1120 2122 11		
2	2212 2022	13	1011 2002	7	0111 2100 6		
3	1111 2111	9	1111 1212	10	0333 2215 19		
4	0101 2310	8	1111 1112	9	7753 3335 36		
5	2233 3224	21	0121 2100	7	2323 2133 19		
6	3222 2121	15	1122 2132	14	4322 3212 19		
7	1221 0003	9	2211 1113	12	3333 3252 24		
8	1001 1112	7	1211 1111	9	2343 2553 27		
9	1111 2111	9	2433 2436	27	2433 2003 17		
10	1113 2222	14	2343 3334	25	2221 1143 16		
11	3222 3212	17	2333 3221	19	1210 0123 10		
12	3545 3333	29	2343 3212	20	3110 1000 6		
13	2333 3543	26	2322 2132	17	0010 0000 1		
14	2344 3533	27	2311 2201	12	0112 1134 13		
15	2333 3122	19	3212 1110	11	2344 4353 28		
16	2332 1234	20	0123 2122	13	1333 2653 26		
17	3322 1220	15	3212 2212	15	3311 0011 10		
18	2322 2211	15	2335 4354	29	1232 3243 20		
19	1101 1003	7	3333 3431	23	0121 2122 11		
20	1111 2022	10	2323 2210	15	0221 1100 7		
21	2223 3221	17	1122 2221	13	0001 1001 3		
22	1233 4244	23	2111 1111	9	3311 1000 9		
23	4443 5432	29	2220 2003	11	2212 2101 11		
24	4332 3244	25	1002 1002	6	1212 2100 9		
25	2322 2013	15	1011 1001	5	0001 1023 7		
26	2222 2231	16	0001 2011	5	1311 2000 8		
27	1112 2133	14	1311 2010	9	0020 1022 7		
28	2333 2211	17	1102 1112	9	1122 2000 8		
29	1221 1113	12	1221 1110	9	0222 2003 11		
30	2322 1121	14	0222 0000	6	0120 2203 10		
31	1112 2111	10	0011 3123	11			

Three-hour-range K indices Hornsund, October - December, 2008 The limit of K=9 is 2500

Day	October		Novembe	November		
Day	K	SK	K	SK	K SK	
1	2223 3212	17	1222 0011	9	0100 0000 1	
2	3333 3253	25	0121 2111	9	0000 0000 0	
3	2344 3345	28	0212 0001	6	0101 2114 10	
4	3443 2212	21	1100 0003	5	1533 2223 21	
5	2422 2012	15	0000 0000	0	2322 2324 20	
6	0222 1000	7	0000 0011	2	5433 3763 34	
7	0111 1132	10	0222 2125	16	2343 3423 24	
8	1100 0000	2	2434 3143	24	2221 1233 16	
9	0020 1000	3	4323 3244	25	1101 0000 3	
10	0111 1002	6	2222 1220	13	0110 1133 10	
11	1243 4653	28	0201 0010	4	2212 1220 12	
12	3332 3654	29	1111 1011	7	1111 2122 11	
13	2233 2152	20	1000 0000	1	3111 1023 12	
14	2222 2231	16	0110 0000	2	1101 2002 7	
15	2222 2414	19	0210 0001	4	0220 0012 7	
16	3221 1121	13	3332 1025	19	1112 2154 17	
17	0011 1120	6	2241 1033	16	3311 2323 18	
18	0000 0010	1	1100 0000	2	0100 0043 8	
19	1112 2232	14	0010 0120	4	0111 2211 9	
20	1120 1112	9	1200 0032	8	0011 1100 4	
21	2221 1102	11	1110 0000	3	0112 0110 6	
22	0111 1232	11	0000 0000	0	0000 1321 7	
23	2222 1000	9	0121 0011	6	3233 2266 27	
24	0310 1000	5	0000 0000	0	3432 2143 22	
25	0100 0001	2	3333 2255	26	1112 2143 15	
26	0331 1101	10	4533 2155	28	2211 1014 12	
27	3111 0000	6	4333 2254	26	2012 2010 8	
28	0123 1112	11	2222 2045	19	1020 1113 9	
29	3442 2663	30	1231 1113	13	0100 0003 4	
30	2433 3634	28	3112 0100	8	0100 0011 3	
31	2233 1143	19			1333 2254 23	

Fig. 28. K-indices in graphical form, Hornsund 2008.

Fig. 29. Daily mean data plot for Hornsund 2008.

Fig. 30. Hourly mean data plot of X component for Hornsund.

Fig. 31. Hourly mean data plot of Y component for Hornsund.

Fig. 32. Hourly mean data plot of Z component for Hornsund.

List of Yearbooks from Polish Geomagnetic Observatories

Below is the list of yearbooks with the results from the Polish geomagnetic observatories. Since the year 2006, one joint yearbook has been published in place of individual yearbooks from each observatory. The present edition is an activity report, and refers the reader to the internet where one-minute data are available. Most of the issues listed below are still available from the Institute of Geophysics.

I. Results of Geomagnetic Observations Belsk, Hel, Hornsund (since 2006)

Published in

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

2006 – no C-100 (402) 2007 – no C-101 (408)

II. Results of Geomagnetic Observations, Belsk Geophysical Observatory (1966-2005)

Published in

Materiały i Prace Zakładu Geofizyki PAN:

1966 – no 20;	1967 – no 27;	1968 – no 42;	1969 – no 46;
1970 – no 50;	1971 – no 57;	1972 – no 70;	1973 – no 76;
1974 – no 88			

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

1975 – no C-2 (107);	1976 – no C-4 (114);	1977 – no C-5 (125);
1978 – no C-8 (133);	1979 – no C-9 (139);	1980 – no C-10- (144);
1981 – no C-13 (159);	1982 – no C-17 (166);	1983 – no C-20 (180);
1984 – no C-23 (187);	1985 – no C-26 (196);	1986 – no C-29 (205);
1987 – no C-34 (218);	1988 – no C-37 (227);	1989 – no C-38 (228);

1990 – no C-40 (240);	1991 – no C-45 (250);	1992 – no C-49 (259);
1993 – no C-51 (267);	1994 – no C-55 (277);	1995 – no C-58 (287);
1996 – no C-61 (296);	1997 – no C-68 (305);	1998 – no C-70 (312);
1999 – no C-74 (318);	2000 – no C-79 (328);	2001 – no C-82 (343);
2002 – no C-85 (356);	2003 – no C-89 (368);	2004 – no C-92 (379);
2005 – no C-96 (392)		

III. Results of Geomagnetic Observations, Hel Geophysical Observatory (1958-2005)

Published in

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

1958-1965 – no C-41 (241);		1966-1970 – no C-6 (127);
1971-1975 – no C-7 (128);		1976-1979 – no C-11 (154);
1980-1981 – no C-16 (165)		1982 – no C-18 (170);
1983 – no C-19 (179);	1984 – no C-24 (128);	1985 – no C-25 (195);
1986 – no C-30 (206);	1987 – no C-33 (217);	1988 – no C-36 (226);
1989 – no C-39 (239);	1990 – no C-42 (242);	1991 – no C-46 (251);
1992 – no C-50 (260);	1993 – no C-52 (268);	1994 – no C-56 (278);
1995 – no C-59 (288);	1996 – no C-62 (297);	1997 – no C-67 (304);
1998 – no C-71 (313);	1999 – no C-76 (320);	2000 – no C-81 (330);
2001 – no C-84 (345);	2002 – no C-87 (358);	2001 – no C-84 (345);
2003 – no C-91 (370);	2004 – no C-94 (381);	2005 – no C-98 (394)

IV. Results of Geomagnetic Observations, Polish Polar Station Hornsund, Spitsbergen (1978-2005)

Published in

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

```
1986-1987 - no C-47 (254);

1990-1991 - no C-53 (272);

1992-1993 - no C-57 (286);

1994-1995 - no C-64 (301);

1996 - no C-66 (303);

1997 - no C-69 (311);

1998 - no C-72 (315);

1999 - no C-75 (319);

2000 - no C-80 (329);

2001 - no C-83 (344);

2002 - no C-86 (357);

2003 - no C-90 (369);

2004 - no C-93 (380);

2005 - no C-97 (393)
```

V. Results of Geomagnetic Observations, Polish Antarctic Station Arctowski (1978-1995)

Published in

Publications of the Institute of Geophysics, Pol. Acad. Sc.:

```
1978-1979 - no C-21 (181);

1980-1981 - no C-22 (182);

1982-1983 - no C-28 (202);

1984-1985 - no C-32 (212);

1986-1987 - no C-35 (225);

1988-1989 - no C-44 (244);

1990-1991 - no C-54 (276);

1992-1993 - no C-60 (292);

1994-1995 - no C-63 (300)
```

VI. Yearbooks from Świder Observatory (1937-1967)

Annuaires Magnetiques (Roczniki magnetyczne) for the years 1937-1967 were published in Travaux de l'Observatoire Geophysique de St. Kalinowski a Swider (Prace Obserwatorium Geofizycznego im. St. Kalinowskiego w Świdrze).