Solution for the Problem – 1:

The company offers two different models of backpacks. Those are

- 1. Collegiate
- 2. Mini

Let's assume

No of Collegiate Bags = C

No of Mini Bags = M

Bag-Model	Material Required	Sales per	Labor Work	Profit per week
	(Sq. Ft)	week	(Min)	
Collegiate	3	1000	45	32
Mini	2	1200	40	24

The size of the material shipment per week = 5000 Sq. Ft

Let Z represented as the Objective Function for Maximum Profit.

$$Z = 32C+24M \rightarrow \text{(Objective Function)}$$

Constraints are a combination of Labor work and Material.

$$3C+2M \le 5000$$
 \rightarrow (Material Constraint)

Let convert minutes into hours

$$3/4C + 2/3M \le 1400 \rightarrow (Labor work Constraint in Hours)$$

Non-Negativity Condition of decision Variable

$$0 <= M <= 1200$$

Solution for Problem – 2:

Formulation of Data into a tabular form:

	Capacity	Space (Sq. Ft)
Plant - 1	750	13000
Plant - 2	900	12000
Plant - 3	450	5000

	Profit	Material Required	Sales
Large	\$420	20	900
Medium	\$360	15	1200
Small	\$300	12	750

Objective Function: For Maximum Profit:

 $N = 420(P_1L + P_2L + P_3L) + 360(P_1M + P_2M + P_3M) + 300(P_1S + P_2S + P_3S)$

P is the No of units produced.

P1 is No. of units produced in plant 1

P2 is No. of units produced in plant 2

P3 is No. of units produced in plant 3

Constraints of Capacity:

 $P_1L+P_1M+P_1S \le 750$

 $P_2L+P_2M+P_2S \le 900$

 $P_3L+P_3M+P_3S \le 450$

Constraints of Storage Space

 $20P_1L + 15P_1M + 12P_1S \le 13000$

 $20P_2L+15P_2M+12P_2S \le 12000$

 $20P_3L+15P_3M+12P_3S \le 5000$

Constraints of Sales forecasts

$$P_1L+P_2L+P_3L \le 900$$

 $P_1M+P_2M+P_3M \le 1200$
 $P_1S+P_2S+P_3S \le 750$

The percentage of excess capacity usage of each plant is equal to

$$\frac{P1L+P1M+P1S}{750}\ 100 = \frac{P2L+P2M+P2S}{900}\ 100 = \frac{P3L+P3M+P3S}{450}\ 100$$