

lmię i nazwisko słuchacza studiów podyplomowych: Artur Karpiński

Kierunek studiów: Inżynieria Danych - Data Science

PROJEKT (własny) z Politechniki Gdańskiej

Tytuł pracy w języku polskim: Analiza danych filmowych na platformie Netflix

Tytuł pracy w języku angielskim: Analysis of movie data on the Netflix platform

Wstęp

Projekt dotyczy analizy danych filmowych na platformie Netflix.

Projekt oparty jest na wybranych danych dotyczących Systemu Rekomendacji Filmów.

- tytuły filmów

- czas wydania, najważniejsze gatunki filmów

- oceny i daty jej wystawienia

Cel projektu nie jest związany z wszystkimi pobranymi danymi. Nie wykorzystuję indywidualnych danych związanych z użytkownikami. Nie chodzi o rekomendowanie, reklamowanie tytułów widzom na podstawie zebranych o nich danych, prefencji.

Najpierw przeprowadziłem prognozowanie wyników w przedziale czasu obejmującym zebrane dane (interpolacja).

Potem prognozowałem przyszłe wyniki (do 2030 r.) na podstawie zebranych danych (ekstrapolacja).

Badania oparłem na regresji wielomianowej. Dla znajdowania wartości pośrednich w obecnych czasach wykorzystałem metodę interpolacji. Prognozowanie wyników w przyszłości oparłem na ekstrapolacji.

Projekt oparty został na otwartych danych z platformy Kaggle.

System rekomendacji filmów (poniżej opis zbioru wszystkich danych)

AUTOR zbioru zebranych danych (z Kaggle): Bandi Karthik

Movie Recommendation System

Spis treści

Wstęp	1
Analiza danych	4
Przegląd danych zebranych o filmach platformy	4
2. Popularność gatunków w czasie	5
Podział kategorii filmów na pojedyncze gatunki	5
Rozwój gatunków na przestrzeni czasu	6
3. Oceny filmów	7
Badanie ocen filmów	7
Najgorsze filmy	8
Najlepsze filmy	9
4. Najbardziej popularne filmy	10
5. Ocena a popularność	10
Porównanie 2 najpopularniejszych gatunków	11
Zmiana ocen filmów w przedziałach czasu	12
Zmiana popularności w przedziałach czasu	12
6. Seria "Star Wars: Episode"	12
7. Zastosowanie regresji wielomianowej (w interpolacji i ekstrapolacji)	14
"Star Wars: Episode 1" w interpolacji	14
Wszystkie dane Netflix w ekstrapolacji	15
Porównanie wyników na podstawie regresji wielomianowej	17
Zakończenie	17
Bibliografia	17
Załaczniki	17

Analiza danych

Ten zbiór danych opisuje działania związane z oceną pięciogwiazdkową oraz tagowaniem dowolnym tekstem w usłudze polecania filmów.

Zawiera 23 mln ocen i 590 tys. tagów w 34 tys. filmów. Te dane zostały utworzone przez 250 tys. użytkowników między 9 stycznia 1995 a 29 stycznia 2016.

Użytkownicy zostali wybrani losowo do włączenia. Wszyscy ocenili co najmniej 1 film.

Dane są zawarte w czterech plikach:

movies.csv – filmy (dane o filmach – tytuł, gatunek, rok wydania),

ratings.csv – oceny (ocena, data głosu),

links.csv – linki (połączenia, relacje danych),

tags.csv – tagi (etykiety do danych o użytkownikach).

Filmy z platformy Netflix.

Przygotowanie i analiza danych.

Dane z publicznej domeny kaggle.

Dotyczą filmów z platformy Netflix (m.in. oglądalność, oceny).

Wykorzystałem dane dwóch plików:

- 1. movies informacje dotyczące filmów (tytuł, gatunek, rok wydania)
- 2. ratings informacje dotyczące ocen tych filmów (ocena, data głosu)

1. Przegląd danych zebranych o filmach platformy

Przykładowe dane na temat filmów

title genres	year
Toy Story [adventure, animation, children, comedy, fantasy]	1995
Jumanji [adventure, children, fantasy]	1995
Grumpier Old Men [comedy, romance]	1995
Waiting to Exhale [comedy, drama, romance]	1995
Father of the Bride Part II [comedy]	1995

Tab. Tytuły, gatunki, lata produkcji przykładowych filmów

Liczba filmów w poszczególnych latach

Wszystkie dane do roku 2014

Rys. Liczba wszystkich filmów do 2014 roku

Rys. Liczba filmów od 2000 do 2014 roku

2. Popularność gatunków w czasie

Podział kategorii filmów na pojedyncze gatunki

Ilość filmów w poszczególnych gatunkach (w sposób rosnący)

15774
10124
5300
4875
4445
3446
3365
3040
2763
2156
1837
1692
1609
1387
1345
1145
1052
779
338
196

Tab. Ilość filmów w poszczególnych gatunkach

Rys. Ilość filmów w poszczególnych gatunkach

Często filmy są przydzielone do kilku kategorii

1	14372
2	10719
3	6432
4	2023
5	537
6	98
7	21
8	5
10	1

Tab. Liczba gatunków w wielu kategoriach

Rys. Liczba gatunków w wielu kategoriach

Rozwój gatunków na przestrzeni czasu

liczba filmów w poszczególnych dekadach przedział dla lat 1940-2020 co 10 lat

Rys. Popularność gatunków w czasie, dekadach

3. Oceny filmów

Badanie ocen filmów

Widzowie oceniali dodając ilość punktów, gwiazdek. oceny między 0.5 oraz 5.0

movield	rating	timestamp
169	2.5	2008-03-07 22:08:14
2471	3.0	2008-03-07 22:03:58
48516	5.0	2008-03-07 22:03:55
2571	3.5	2015-07-06 06:50:33
109487	4.0	2015-07-06 06:51:36

Tab. Przykładowe oceny w czasie

Liczba ocen w poszczególnych przedziałach ocen

4.0	6265623
3.0	4783899
5.0	3358218
3.5	2592375
4.5	1813922
2.0	1603254
2.5	1044176
1.0	769654
1.5	337605
0.5	315651

Tab. Liczba ocen filmów

Rys. Liczba ocen filmów

Rozkład nie jest równomierny, a średnia między 3 i 4.

Rozkład (przegląd) średnich ocen dla wszystkich filmów

Rys. Rozkład średniej ocen filmów

Najgorsze filmy

Najgorsze filmy z lewej strony wykresu.

Dla nich wartości mniejsze niż w skrajnym kwantylu (od lewej).

Ze związku między mean i std widać, że oceny skrajnie negatywne.

movield	mean	std
1323	1.619639	0.999614
1495	1.403794	1.082217
1599	1.677817	1.071550
1739	1.574730	1.087333
1826	1.197917	0.930694

Tab. Średnia i odchylenie najgorszych filmów

Poniżej lista najgorzej ocenianych filmów

sortowanie względem średniej i w sposób rosnący

title	genres	year	mean	std
SuperBabies: Baby Geniuses 2	[comedy]	2004	0.851598	0.788178
From Justin to Kelly	[musical, romance]	2003	0.985491	0.845644
Glitter	[drama, musical, romance]	2001	1.135344	0.861708
Gigli	[comedy, crime, romance]	2003	1.170715	0.918029
Barney's Great Adventure	[adventure, children]	1998	1.197917	0.930694

Tab. Lista najgorszych filmów

Najgorszym był " SuperBabies: Baby Geniuses 2".

Najlepsze filmy

Dla najlepszych filmów analogicznie.

Zmiana nierówności i skrajnych kwantyli (od prawej).

Najlepsze filmy były z prawej strony wykresu.

Ze związku między mean i std widać, że oceny skrajnie pozytywne.

movield	mean	std
50	4.318987	0.770791
260	4.158052	0.958329
296	4.163211	0.984206
318	4.441710	0.733828
527	4.290952	0.849629

Tab. Średnia i odchylenie najgorszych filmów

Poniżej lista najlepiej ocenianych filmów

sortowanie względem średniej i w sposób malejący

title	genres	year	mean	std
Shawshank Redemption, The	[crime, drama]	1994	4.441710	0.733828
Godfather, The	[crime, drama]	1972	4.353639	0.854273
Usual Suspects, The	[crime, mystery, thriller]	1995	4.318987	0.770791
Schindler's List	[drama, war]	1993	4.290952	0.849629
Godfather: Part II, The	[crime, drama]	1974	4.268878	0.875126

Tab. Lista najlepszych filmów

Najlepszym był "The Shawshank Redemption".

Średnia ocen

3.2983740005180495

4. Najbardziej popularne filmy

Liczba głosów najpopularniejszych filmów (w sposób malejący)

#votes
81296
79091
77887
76271
69545

Tab. Głosy najpopularniejszych filmów

Poniżej lista najpopularniejszych filmów

sortowanie względem liczby głosów w sposób malejący

#votes	movield	title	genres	year
81296	356	Forrest Gump	[comedy, drama, romance, war]	1994
79091	296	Pulp Fiction	[comedy, crime, drama, thriller]	1994
77887	318	Shawshank Redemption, The	[crime, drama]	1994
76271	593	Silence of the Lambs, The	[crime, horror, thriller]	1991
69545	480	Jurassic Park	[action, adventure, sci-fi, thriller]	1993

Tab. Lista najpopularniejszych filmów

Najpopularniejszym był "Forrest Gump".

5. Ocena a popularność

Nie były to najwyżej oceniane filmy lecz z największą liczbą głosów.

Nie wiemy czy najlepiej oceniane są te najbardziej popularne.

Czyli jednym się podobało, innym nie, ale ogólnie dobre oceny, popularność.

Sortowanie przez odchylenie ' std ' daje pojęcie o spójności ocen.

	#votes	movield	title	genres	year	mean	std
	230	74754	Room, The	[comedy, drama, romance]	2003	2.400000	1.767860
	158	1311	Santa with Muscles	[comedy]	1996	2.598101	1.760735
	133	59295	Expelled: No Intelligence Allowed	[documentary]	2008	2.075188	1.620765
	141	70946	Troll 2	[fantasy, horror]	1990	2.092199	1.615331
	104	50703	Secret, The	[documentary]	2006	2.673077	1.597585

Tab. Filmy popularne dobrze oceniane

Średnia ocen

3.2983740005180495

Porównanie 2 najpopularniejszych gatunków

sortowanie względem liczby głosów w sposób malejący

#votes	mean	std	genres
230	2.400000	1.767860	comedy
230	2.400000	1.767860	drama
158	2.598101	1.760735	comedy
137	3.419708	1.471836	comedy
137	3.419708	1.471836	drama

Tab. Porównanie komedii i dramatów

Komedie i dramaty tak samo popularne.

Jednak ocena dramatu statystycznie wyższa niż komedii.

Oceniający też bardziej spójni przy dramatach (mniejsze std) niż komediach.

Rys. Porównanie komedii i dramatów

Wnioski:

Według widzów lepiej obejrzeć dobry dramat niż średnią komedię.

Czyli niekoniecznie wysoka popularność jest zgodna z oceną.

Widzowie mogą też zwracać uwagę na różne elementy.

Np. widzowie mają ulubione gatunki filmów, a unikają innych.

Zmiana ocen filmów w przedziałach czasu

Jak zmieniały się oceny filmów w miesięcznych przedziałach czasu? rozkład głosów względem czasu za pomocą funkcji 'mean'.

średnia między 3, a 4

Rys. Zmiana oceny filmów w czasie

Zmiana popularności w przedziałach czasu

Jak zmieniała się popularność filmów w miesięcznych przedziałach czasu? rozkład względem liczby głosów w czasie zliczanych za pomocą funkcji 'count' mamy film i czas, w którym była ocena

Rys. Zmiana popularności platformy w czasie

6. Seria "Star Wars: Episode"

"Star Wars" – "Gwiezdne Wojny"

ograniczenie się tylko do serii "Gwiezdne Wojny" (7 części filmów)

episode	title	year
1	Star Wars: Episode I - The Phantom Menace	1999
2	Star Wars: Episode II - Attack of the Clones	2002
3	Star Wars: Episode III - Revenge of the Sith	2005
4	Star Wars: Episode IV - A New Hope	1977
5	Star Wars: Episode V - The Empire Strikes Back	1980
6	Star Wars: Episode VI - Return of the Jedi	1983
7	Star Wars: Episode VII - The Force Awakens	2015

Tab. Filmy z serii "Star Wars: Episode"

Poniżej wykres po dołączeniu i porównaniu ocen z czasem ich wystawienia.

Rys. Porównanie ocen z czasem ich wystawienia

Części 4,5,6 powstały najwcześniej (najdawniej).

Części 1, 2, 3, 7 powstały najwcześniej.

title	year	rating	timestamp
Star Wars: Episode VI - Return of the Jedi	1983	5.0	1997-03-26 18:40:32
Star Wars: Episode V - The Empire Strikes Back	1980	5.0	2013-05-27 15:10:43
Star Wars: Episode V - The Empire Strikes Back	1980	5.0	2008-11-04 21:21:44
Star Wars: Episode V - The Empire Strikes Back	1980	5.0	2008-08-02 16:26:28
Star Wars: Episode V - The Empire Strikes Back	1980	5.0	2000-01-31 19:36:20

Tab. Oceny filmów z serii "Star Wars: Episode"

Wnioski

Dawniejsze były znacznie wyżej oceniane niż te nowsze.

Również dużo bardziej stałe w swojej ocenie.

Nie chodzi w tym porównaniu o ilość lecz wysokość ocen.

7. Zastosowanie regresji wielomianowej (w interpolacji i ekstrapolacji)

"Star Wars: Episode 1" w interpolacji

Z **interpolacją** mamy do czynienia, gdy chcemy wyznaczyć wartość y dla konkretnego argumentu x należącego do zakresu istniejących danych X.

Do znajdowania wartości w obecnych czasach, bez prognozowania w przyszłości. Po dopasowaniu funkcji wyliczamy jej wartości pomiędzy znanymi jej punktami. Tworzymy wykres oryginalnych danych (kropki), przewidywania czerwoną linią.

Rys. Oceny w dotychczasowym przedziale czasu

Następnie nasze przewidywania na podstawie regresji wielomianowej.

Sprawdzimy optymalny stopień wielomianu (np. 2,3,4).

Na wykresie przewidywane wyniki (linia) między znanymi węzłami danych (kropki).

Rys. Przewidywane wyniki między znanymi węzłami danych

Widzimy, że wielomian 3-go stopnia był dobrym dopasowaniem.

Dla 2-go stopnia, to nie mamy dobrego dopasowania (linia zbyt oddalona od punktów).

Dla 4-go stopnia dopasowanie staje się tak dobre, że mało realistyczne.

Nie dałoby się przewidzieć co stałoby się z głosami widzów później.

Wszystkie dane Netflix w ekstrapolacji

Z **ekstrapolacją** mamy do czynienia gdy chcemy wyznaczyć y dla x nie należącego do zakresu istniejących danych X.

Prognozowanie wartości zmiennej lub funkcji poza zakresem, dla którego mamy dane.

Dopasowanie do istniejących danych pewnej funkcji, następnie wyliczenie jej wartości w szukanym punkcie w przyszłości.

Dobrą praktyką przy ekstrapolacji jest nie podawanie prognoz dla zbyt daleko leżących argumentów.

Poniżej tendencje w formie wykresów.

Rys. Ilość filmów w poszczególnych latach

Dane ograniczone są do roku 2014 (pełnych), by uniknąć wyników niewiarygodnych.

Można teraz na tych danych dokonać regresji wielomianowej.

Naszymi 'x' będzie rok produkcji, 'y' liczba filmów w konkretnych latach.

Tworzymy wykres oryginalnych danych (kropki).

Rys. Ilość filmów do roku 2014

W ekstrapolacji stosujemy algorytm podobny do interpolacji w "Star Wars: Episode 1". Zmiana odpowiednich parametrów, wartości zmiennych.

Na wykresach przewidywane wyniki (linia) między znanymi węzłami danych (kropki). Jak wcześniej sprawdźmy kolejno, czy optymalny wielomian będzie stopnia 2,3,4.

Dla wielomianu 2-go stopnia nie mamy dobrego dopasowania (zbyt odstający).

Rys. Zastosowanie regresji wielomianowej 2 stopnia

Wielomian 3-go stopnia wydaje się dobry.

Mógłby symulować, w jaki sposób ilość fimów wzrastałaby w przyszłości.

Przewidywania zaznaczone są zieloną linią.

Rys. Zastosowanie regresji wielomianowej 3 stopnia

Dla 4-go stopnia dopasowanie staje się tak dobre, że wygląda na mało realistyczne (model nie uczy się).

Przy stopniu wyższym od 3 mniej realne prognozowanie zmian w ilości filmów później.

Rys. Zastosowanie regresji wielomianowej 4 stopnia

Porównanie wyników na podstawie regresji wielomianowej

- 1. Widzimy, że wielomian 3-go stopnia był dobrym dopasowaniem.
- 2. Gdy zmienimy na 2-go stopnia, to nie mamy dobrego dopasowania (zbyt odstający).
- 3. Dla 4-go stopnia (i wyższym) dopasowanie staje się tak dobre, że mało realistyczne.
- 4. Przy wyższym od 3 trudno przewidzieć co stałoby się z głosami widzów później.

Mieliśmy 2 przykłady wykorzystania regresji wielomianowej

Pierwszy - w interpolacji, drugi - w ekstrapolacji.

- 1. Przy ocenach "Star Wars: Episode 1" oceny można było wykorzystać do znajdowania wartości pośrednich w obecnych czasach (interpolacja).
- 2. Przy ilości produkowanych filmów, do przewidywania szybkości wzrostu lub spadku w przyszłości (ekstrapolacja).

Zakończenie

Na podstawie zebranych danych szukałem, analizowałem i pokazywałem zależności między tytułami, gatunkami filmów, ich ocenami i popularnością wśród widzów na przestrzeni czasu.

Kod, wykresy, tabele wykonanywałem w języku Python na notatniku Jupyter Notbook.

Bibliografia

Dokumentacja biblioteki Numpy: https://numpy.org/doc/stable/

Dokumentacja biblioteki Pandas: https://pandas.pydata.org/docs/

Dokumentacja biblioteki Matplotlib: https://matplotlib.org/stable/index.html

Załączniki

Załączyłem prezentację, wizualizację projeku z poziomu przeglądarki w postaci notatnika Jupyter Notebook i strony www.