Repetitorium Mathematik

Teil 1

Dr. Michael Hellwig August 2023

Universität Liechtenstein

Bachelorstudiengang Betriebswirtschaftslehre

Inhaltsverzeichnis

Literaturliste

Mengen

Zahlenmengen

Aussagen

Elementare Rechenregeln

Bruchrechnung

Potenzen, Wurzeln und Logarithmen

Summen- und Produktzeichen

Fakultät und Binomialkoeffizienten

Literaturliste

Literaturempfehlung

- Vorkurs Mathematik: Arbeitsbuch zum Studienbeginn in Bachelor-Studiengängen
 E. Cramer und J. Neslehova, Springer, 2012 Über die Bibliothek als eBook verfügbar!
- 2. Brückenkurs Mathematik für Studieneinsteiger aller Disziplinen Walz, Zeilfelder und Rießinger, Spektrum Akad. Verlag, Springer, 2007.
- 3. Wirtschaftsmathematik (Bachelor geeignet) von Kirsch und Führer, Kiehl, 2014.
- 4. Übungsbuch Mathematik für Wirtschaftswissenschaftler von Wendler und Tippe, Springer, 2013.
- 5. YouTube Channels (Beispiel: Mathematik auf YouTube, u.v.m.)

Symbole

Häufige mathematische Symbole zur Beschreibung von Aussagen und Mengen

Symbol	Name	Beispiel
=	gleich	3 = 3
\neq	ungleich	3 ≠ 4
>	größer	5 > 3
\geq	größer (oder) gleich	$4 \ge 3$ oder auch $3 \ge 3$
<	kleiner	1 < 4
\leq	kleiner (oder) gleich	$2 \le 3$ oder auch $2 \le 2$
{}	Mengenklammern	$M = \{-1; 3; 5; 13\}$
\in	enthalten in	3 ∈ M
∉	nicht enthalten in	6 ∉ M
\	Differenz bzw. "ohne"	$M \setminus \{13\} = \{-1; 3; 5\}$
\subset	Teilmenge bzw. Obermenge	$\{-1;5\}\subset M$
U	Vereinigung	$\{-1; 13\} \cup \{3; 5; 13\} = M$
\cap	Durchschnitt	$\{-2; -1; 5; 9\} \cap M = \{-1; 5\}$
: oder	es gilt	
\forall	für alle	$\forall x \in M : x > -2$
∃	es gibt / existiert	$\exists x \in M : x < 0$
\wedge	logisches "und"	${x \in M : (x > 1) \land (x < 4)} = {3}$
V	logisches "oder"	${x \in M : (x < 1) \lor (x > 4)} = {-1; 5; 13}$

Mengen

Mengen

"Unter einer Menge versteht man jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens zu einem Ganzen." GEORG CANTOR

Die Bestandteile *m* einer Menge *M* bezeichnet man als **Elemente** von *M*.

Schreibweise: $m \in M$

- · Mengen werden duch ihre Elemente eindeutig festgelegt.

Zusammenfassung der Elemente in Mengenklammern $M = \{\dots\}$

Beispiel:
$$M = \{1, 2, 3, 4, 4, 4, 5\} = \{1, 2, 3, 4, 5\}$$

Formulierung von Eigenschaften, die alle Elemente der Menge erfüllen.

Beispiel:
$$M = \{x \in \mathbb{N} : 1 < x \le 4\} = \{2, 3, 4\}$$

· Die Mächtigkeit |M| einer Menge M entspricht der Anzahl ihrer Elemente.

Beispiel:
$$|\{7, 8, 9\}| = 3$$

· Die leere Menge Ø enthält keine Elemente.

4

Regeln für Mengen

Für beliebige Mengen A, B und C gelten stets die folgenden Regeln:

- I. $A \cup (B \cup C) = (A \cup B) \cup C$
- II. $A \cap (B \cap C) = (A \cap B) \cap C$
- III. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- IV. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- V. $|A \cup B| = |A| + |B| |A \cap B|$ [für endliche Mengen]

Diese Regeln lassen sich mit Hilfe von Venn-Diagrammen grafisch leicht veranschaulichen.

Direktes Produkt zweier Mengen

Direktes Produkt

Das **direkte Produkt** (bzw. kartesische Produkt) $A \times B$ [sprich: A "kreuz" B] zweier Mengen A und B bildet wiederum eine Menge, die Menge aller **geordneten Paare**

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

Beispiel: Für die Mengen $A = \{1, 2, 3\}$ und $B = \{3, 4\}$ erhält man folglich

		Elemente von A		
		1	2	3
Elemente	3	(1,3)	(2,3)	(3,3)
von B	4	(1,3) (1,4)	(2,4)	(3,4)
		Elemente von A x B		

BEMERKUNG: Für endliche Menge gilt der Zusammenhang:

$$|A \times B| = |A| \cdot |B|$$

[vgl. Mächtigkeit der Menge A × B im obigen Beispiel]

Direktes Produkt endlich vieler Mengen

Direktes Produkt

Analog zur obigen Situation bezeichnet das direkte Produkt $A \times B \times C$ der drei Mengen A, B und C die Menge aller geordneten Tripel

$$A \times B \times C = \{(a, b, c) \mid a \in A, b \in B, c \in C\}.$$

Weiter spricht man für eine endliche Anzahl von Mengen

$$\underbrace{A \times B \times C \times \dots}_{n \text{ Mengen}} = \left\{ \left(\underbrace{a, b, c, \dots}_{n \text{ Einträge}}\right) \ | \ a \in A, \ b \in B, \ c \in C, \ \text{usw.} \right\}$$

von der Menge aller geordneten n-Tupel.

Mengen – Übungsaufgaben

Weitere Übungsaufgaben und zugehörige Lösungen finden Sie zum Beispiel hier:

- Mathods.com/Mengen/Allgemeines
- Mathods.com/Mengen/Operatoren
- · Mathods.com/Mengen/Mächtigkeit
- Mathods.com/Mengen/KartesischesProdukt
- Vorkurs Mathematik von E. Cramer & J. Neslehova, Springer, 2012 Über die Bibliothek als eBook verfügbar!

Kapitel 1.5 – entsprechende Aufgaben Kapitel 2.5 – Aufgaben 2.1 bis 2.5

Zahlenmengen

Die natürlichen Zahlen

Natürliche Zahlen

Die **natürlichen Zahlen** sind die beim Zählen oder zur Festlegung einer Reihenfolge verwendeten Zahlen.

Notation: $\mathbb{N} = \{1, 2, 3, 4, \dots, 100002, 100003, \dots\}$

Eigenschaften der natürlichen Zahlen $n \in \mathbb{N}$:

- · Die Zahl 1 ist die kleinste natürliche Zahl.
- \cdot Jede natürliche Zahl n besitzt einen Nachfolger, nämlich die um EINS größere Zahl n+1.
- · Zwischen einer natürlichen Zahl n und n+1 liegt keine weitere natürliche Zahl.
- · Es gibt keine größte natürliche Zahl.
- · Für alle natürlichen Zahlen m, n in № gilt:

 $m+n\in {\rm I\! N} \qquad {\rm sowie} \qquad m\cdot n\in {\rm I\! N}$

ACHTUNG: Dies gilt nicht für die Subtraktion und die Division!

Die ganzen Zahlen

Ganze Zahlen

Die ganzen Zahlen entstehen aus den natürlichen Zahlen durch Hinzunahme der negativen ganzen Zahlen und der Null.

Notation:
$$\mathbb{Z} = \{ \dots, -35, -34, \dots, -2, -1, 0, \underbrace{+1, +2, \dots, 51, 52, \dots}_{\mathbb{N}} \}$$

Eigenschaften der ganzen Zahlen $z \in \mathbb{Z}$:

- Es gilt: $\mathbb{N} \subset \mathbb{Z}$
- \cdot Jede ganze Zahl z besitzt genau einen Vorgänger z-1 und einen Nachfolger z+1.
- Es gibt in Z weder eine größte noch eine kleinste Zahl.
- · Zwischen zwei benachbarten ganzen Zahlen liegt keine weitere ganze Zahl.
- \cdot Zusätzlich zu Addition und Multiplikation ist auch die Subtraktion für $y,z\in\mathbb{Z}$ wohldefiniert:

$$y+z\in\mathbb{Z},\quad y\cdot z\in\mathbb{Z}\qquad \mathrm{sowie}\qquad y-z\in\mathbb{Z}$$

Frage: Wie verhält es sich mit der Division?

Das Ergebnis einer Division ganzer Zahlen muss nicht in ℤ liegen (z.B. 5: 3)!

Die rationalen Zahlen

Rationale Zahlen

Die rationalen Zahlen entstehen durch Erweiterung der ganzen Zahlen um die Menge aller möglichen Brüche a/b.

NOTATION:
$$\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z} \setminus \{0\} \right\}$$

Eigenschaften der rationalen Zahlen $q \in \mathbb{Q}$:

- · Es gilt: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q}$
- · Jede ganze Zahl $q \in \mathbb{Z}$ lässt sich als Bruchzahl $q/1 \in \mathbb{Q}$ auffassen.
- · Zwischen zwei verschiedenen rationalen Zahlen p, q gibt es stets Weitere, z.B. $r=\frac{p+q}{2}$.
- In $\mathbb Q$ sind Addition, Subtraktion, Multiplikation und Division (außer durch Null) unbeschränkt ausführbar, d.h. für $p,q\in\mathbb Q$ gilt:

$$\mathsf{p} + \mathsf{q} \in \mathbb{Q}, \quad \mathsf{p} - \mathsf{q} \in \mathbb{Q}, \quad \mathsf{p} \cdot \mathsf{q} \in \mathbb{Q} \quad \text{ und } \quad \mathsf{p} \colon \mathsf{q} \in \mathbb{Q} \quad [\leftarrow \mathit{q} \neq 0]$$

11

Von rationalen zu reellen Zahlen

Motivation

Zwischen je zwei rationalen Zahlen p, q liegen unendlich viele weitere rationale Zahlen.

Aber ist jedem Punkt auf der Zahlengeraden eine rationale Zahl zuzuordnen?

NEIN!

Es zeigt sich nämlich, dass immer "Lücken" auf dem Zahlenstrahl frei bleiben, denen keine rationale Zahl entspricht."

- Eine besonders berühmte "Lücke" auf dem Zahlenstrahl ist $\sqrt{2}$, die Länge der Diagonale eines Quadrats mit Kantenlänge a=1.
- Weitere berühmte Beispiele der sog. irrationalen Zahlen sind $\sqrt{5}$, π , oder e.

Die reellen Zahlen

Reelle Zahlen

Die Menge der reellen Zahlen $\mathbb R$ besteht aus der Vereinigung der rationalen Zahlen $\mathbb Q$ und der irrationalen Zahlen $\mathbb I$.

Notation: $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$

Eigenschaften der reeller Zahlen $a \in \mathbb{R}$:

- · Es gilt: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$
- \cdot Rationale Zahlen $\mathbb Q$ sind durch eine Dezimaldarstellung gekennzeichnet, die entweder
 - nach endlich vielen Stellen abbricht (z.B. 5/2 = 2.5 oder 3/8 = 0.375) oder
 - periodisch ist (z.B. 1/3 = 0.333... oder 1/7 = 0.142857142857...)
- Irrationale Zahlen I haben eine Dezimaldarstellung, die weder abbricht noch periodisch ist.
- · Jeder reellen Zahl entspricht genau ein Punkt auf der Zahlengeraden und umgekehrt.
- In $\mathbb R$ sind Addition, Subtraktion, Multiplikation und Division (außer durch Null) ebenfalls unbeschränkt ausführbar. Für $\mathbf a, \mathbf b \in \mathbb R$, $b \neq 0$ gilt:

 $a+b\in\mathbb{R},\ a-b\in\mathbb{R},\ a\cdot b\in\mathbb{R}$ und $a:b\in\mathbb{R}$

Exkurs: Umwandlung von Dezimal- und Bruchdarstellung

Umwandeln einer rationalen Zahl in Bruchdarstellung in eine endliche oder periodische Dezimalzahl und umgekehrt:

- Bruch zu Dezimalzahl → Division mit Rest
 - $\frac{1}{4} = 0.25$

[Bruch als endliche Dezimalzahl]

• $\frac{1}{3} = 0.\overline{3}$

[Bruch als periodsche Dezimalzahl – Periodenlänge 1]

 $\cdot \frac{15}{7} = 2.\overline{142857}$

[Bruch als periodsche Dezimalzahl – Periodenlänge 6]

Endl. Dezimalzahl zu Bruch → Multiplikation mit "1"

•
$$0.125 = \frac{0.125 \cdot 1000}{1000} = \frac{125}{1000} = \frac{1}{8}$$

[endliche Dezimalzahl als Bruch]

Periodische Dezimalzahl zu Bruch → Trick: Periodenlänge beachten

$$\cdot \ 0.\overline{123} = \frac{0.\overline{123} \cdot 1000 - 0.\overline{123} \cdot 1}{999} = \frac{123}{999}$$

[periodische Dezimalzahl als Bruch]

$$\cdot 0.1\overline{23} = \frac{0.1\overline{23} \cdot 1000 - 0.1\overline{23} \cdot 10}{990} = \frac{122}{990} = \frac{122}{990}$$

[gemischt periodische Dezimalzahl als Bruch]

• Irrationale Zahlen wie π , e, $\sqrt{2}$, etc. sind keine endlichen oder periodischen Dezimalzahlen und somit nicht umwandelbar.

Weitere Schreibweisen

Die Symbole für Mengen werden gelegentlich noch mit zusätzlichen Ornamenten wie +,- oder 0 versehen, um bestimmte Teilmengen zu kennzeichnen.

Dabei bedeutet:

·
$$M_+ = \{m \in M \mid m > 0\}$$

Beispiel: $\mathbb{Q}_+ = \{q \in \mathbb{Q} | q > 0\}$

["positive rationale Zahlen"]

$$M_{-} = \{ m \in M \mid m < 0 \}$$
Beispiel: $\mathbb{Z}_{-} = \{ q \in \mathbb{Z} | q < 0 \}$

["negative ganze Zahlen"]

$$\begin{array}{ccc} \cdot \ M_0 = M \cup \{0\} \\ \\ \underline{\text{Beispiel:}} & \mathbb{N}_0 = \mathbb{N} \cup \{0\} & \text{oder} & \mathbb{R}_{+0} = \{r \in \mathbb{R} | r \geq 0\} \end{array}$$

Intervallschreibweise

Innerhalb der reelen Zahlen werden **Teilbereiche** durch sog. **Intervalle** dargestellt, z.B. alle Zahlen x zwischen -3 und 2, d.h. also -3 < x < 2.

Intervallschreibweise

Für reelle Zahlen $a, b \in \mathbb{R}$ mit $a \le b$, heißt **die Menge aller reellen Zahlen**, die zwischen a und b liegen, das Intervall mit den Grenzen a und b.

· Gehören a und b ebenfalls zur Menge, so heißt das Intervall geschlossenes Intervall:

$$[a, b] = \{x \in \mathbb{R} \text{ mit } a \le x \le b\}$$

· Gehören a und b nicht zur Menge, so heißt das Intervall offenes Intervall:

$$(a,b) = \{x \in \mathbb{R} \text{ mit } a < x < b\}$$

· Die Mischformen nennt man halboffene Intervalle:

$$(a, b] = \{x \in \mathbb{R} \text{ mit } a < x < b\}$$

$$[a, b) = \{x \in \mathbb{R} \text{ mit } a < x < b\}$$

BEMERKE: Als Intervallgrenze ist auch das Symbol ∞ ("unendlich") zulässig.

Beispiele:
$$(2, \infty) = \{x \in \mathbb{R} \mid x > 2\}$$
 oder $(-\infty, 3] = \{x \in \mathbb{R} \mid x \le 3\}$.

Dabei ist ∞ keine Zahl, mit der gerechnet werden darf.]

Direktes Produkt reeller Zahlen

Für das direkte Produkt der reellen Zahlen ${\mathbb R}$ mit sich selbst (vgl. oben) wird die folgende Schreibweise gewählt:

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$$

Die Menge aller geordneter Paare reeller Zahlen. \rightarrow 2-dimensionaler Raum

$$\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$$

Die Menge aller geordneter Tripel reeller Zahlen. \rightarrow 3-dimensionaler Raum

$$\mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ mod}}$$

Die Menge aller geordneter n-Tupel reeller Zahlen. $\rightarrow n$ -dimensionaler Raum

Diese Schreibweise kann auch auf Intervalle übertragen werden:

$$[a,b]^n = \underbrace{[a,b] \times [a,b] \times \cdots \times [a,b]}_{n \text{ mal}} \subset \mathbb{R}^n$$

Beispiel:
$$[0,1]^3 \subset \mathbb{R}^3$$

Menge aller Punkte innerhalb des 3-dimensionalen Einheitswürfel mit Kantenlänge 1.

Mengen – Übungsaufgaben

Weitere Übungsaufgaben und zugehörige Lösungen finden Sie zum Beispiel hier:

• Vorkurs Mathematik von E. Cramer & J. Neslehova, Springer, 2012 Über die Bibliothek als eBook verfügbar!

Kapitel 1.5 – entsprechende Aufgaben

Aussagen

Aussagenlogik

Aussage

Als $\frac{\text{Aussage}}{\text{Ausdrage}}$ bezeichnet man einen Satz oder mathematischen Ausdruck, der eindeutig wahr [w] oder falsch [f] ist.

Beispiele:

- · Oslo ist die Hauptstadt von Norwegen. [wahr]
- · Koalas sind Vögel. [falsch]
- 3 > 1 [w]
- 1+1=3 [f]

Ausdrücke die KEINE Aussage bilden sind hingegen:

- · Mathematik ist schwierig.
- $\cdot x > 1$
- $\cdot 1 + 1$

Aussagen können verneint oder mit anderen Aussagen verknüpft werden.

Negation

Negation

Die **Negation** bzw. die **Verneinung** einer einer Aussage A wird durch ¬A oder Ā (sprich: nicht A) gekennezichnet.

Die Negation einer Aussage kehrt deren Wahrheitsgehalt um.

Beispiele:

$$\begin{array}{c|cccc} A & 2 > 1 & w \\ \hline \neg A & \neg (2 > 1), \text{ also } 2 \le 1 & f \end{array}$$

Allgemein gilt für eine Aussage A stets die folgende Wahrheitstafel:

Verknüpfungen

UND bzw. ODER Verknüpfungen

Aussagen können mit Hilfe von UND (\land) und ODER (\lor) Verknüpfungen miteinander verbunden werden. Dabei gilt:

- $A \wedge B$ ist nur dann wahr, wenn sowohl A als auch B wahr sind.
- · A ∨ B dann wahr, wenn entweder A oder B wahr ist.

Die Zusammenhänge können durch die folgende Wahrheitstafel dargestellt werden.

Α	В	$A \wedge B$	$A \vee B$
W	W	W	W
f	W	f	W
W	f	f	W
f	f	f	f

Beispiele:

21

Verknüpfungen

UND bzw. ODER Verknüpfungen

Aussagen können mit Hilfe von UND (\land) und ODER (\lor) Verknüpfungen miteinander verbunden werden. Dabei gilt:

• $A \wedge B$ ist nur dann wahr, wenn sowohl A als auch B wahr sind.

[Konjunktion]

• $A \lor B$ dann wahr, wenn entweder A oder B wahr ist.

[Disjunktion]

Die Zusammenhänge können durch die folgende Wahrheitstafel dargestellt werden.

Α	В	$A \wedge B$	$A \vee B$
W	W	W	W
f	W	f	W
W	f	f	W
f	f	f	f

Beispiele:

Folgerungen und Äquivalenzen

Folgerungen und Äquivalenzen zwischen Aussagen bilden die Grundlage von mathematischen Beweisen.

Folgerungen

Implikationen oder Folgerungen zwischen zwei Aussagen A und B kennzeichnet man durch die Schreibweise

$$A \Rightarrow B$$
.

Sprechweisen:

- · aus A folgt B
- · A impliziert B
- · wenn A wahr ist, dann auch B
- · A ist hinreichend für B

Beispiel – Folgerungen

Beispiel:

Physikalisches Experiment

- A: Ein dünnes Glas wird aus einer bestimmten Höhe auf eine harte Oberfläche fallen gelassen.
- B: Das Glas zerspringt.
- $A \Rightarrow B$: Wenn das Glas fallen gelassen wird, dann zerspringt es.

Das Fallenlassen ist ein hinreichender Grund für das Zerspringen, jedoch KEIN notwendiger Grund. Denn außer der Voraussetzung A gibt es noch zahlreiche andere Möglichkeiten, die Wirkung B zu erzielen. Die Aussage $B \Rightarrow A$ ist demnach an dieser Stelle falsch.

Wahrheitstafel

Α	В	$A \Rightarrow B$
W	W	W
W	f	f
f	W	W
f	f	w

BEACHTE: Die Implikation $A \Rightarrow B$ besagt nur, dass für wahres A auch B wahr sein muss.

 $A\Rightarrow B$ ist also auch dann richtig, wenn aus einer falschen Aussage A eine beliebige ($wahre\ oder\ falsche$) Aussage B abgeleitet wird.

Folgerungen und Äquivalenzen

Äquivalenzen

Zwei **äquivalente** Aussagen A und B kennzeichnet man durch die Schreibweise

$$A \Leftrightarrow B$$
.

Sprechweisen:

- · A und B sind äquivalent
- \cdot A gilt genau dann, wenn B gilt
- es gilt sowohl $A \Rightarrow B$, als auch $B \Rightarrow A$
- · A ist hinreichend und notwendig für B

Beispiel – Äquivalenzen

Beispiel:

Kaffeeautomat

- A: Geld wird eingeworfen.
- B: Kaffee kommt.
- A ⇔ B: Kaffee kommt dann und nur dann, wenn Geld eingeworfen wird.

Das Einwerfen des korekten Geldbetrags ist <mark>hinreichende</mark> und **notwendige** Voraussetzung für die Herausgabe des Kaffees.

Wahrheitstafel

Α	В	$A \Leftrightarrow B$
W	W	W
W	f	f
f	W	f
f	f	w

Äquivalente Aussagen sind entweder beide gleichzeitig wahr oder gleichzeitig falsch. Beim Auftreten anderer Ereignisse wäre die Äquivalenzbeziehung falsch.

Verifikation logischer Folgerungen

Mit Wahrheitstafeln lässt sich die Gültigkeit logischer Folgerungen formal überprüfen.

Als Beispiel soll die Richtigkeit folgender Aussage bestätigt werden:

A und B sind genau dann äquivalent, wenn sowohl $A \Rightarrow B$ als auch $B \Rightarrow A$ wahr ist, d.h.

$$[A \Leftrightarrow B] \Leftrightarrow [(A \Rightarrow B) \land (B \Rightarrow A)]$$

Der Nachweis ergibt sich aus der Wahrheitstafel:

Α	В	$A \Rightarrow B$	$B \Rightarrow A$	$(A \Rightarrow B) \land (B \Rightarrow A)$	$A \Leftrightarrow B$
W	W	W	W	W	W
W	f	f	W	f	f
f	w	W	f	f	f
f	f	W	W	W	w

 $A\Rightarrow B$ und $B\Rightarrow A$ sind selbst wieder Aussagen, die durch UND verknüpft werden. Die resultierenden Wahrheitswerte (Spalte 5) stimmen für alle Kombinationen mit denen von $A\Leftrightarrow B$ (Spalte 6) überein. Damit sind die Aussagen äquivalent.

Regeln der Aussagenlogik

Für Aussagen A, B und C gelten stets die folgenden Regeln:

Aussagen – Übungsaufgaben

Weitere Übungsaufgaben und zugehörige Lösungen finden Sie zum Beispiel hier:

- Mathods.com/Aussagenlogik/Allgemeines
- Mathods.com/Aussagenlogik/Wahrheitstafel

Elementare Rechenregeln

Grundlagen der Algebra

"Rechnen mit Buchstaben in Gleichungen" wird im Volksmund häufig Algebra genannt.

- ✓ dieser Abschnitt wiederholt die grundlegenden Rechenregeln
- ✓ unter Breücksichtigung von **Variablen** und **Termen**

Variablen

Buchstaben als Platzhalter in einem mathematischen Ausdruck

 a, b, c, \ldots, x, y, z

 \hookrightarrow allgemeine Gesetzmäßigkeiten präzise und übersichtlich formulieren

Terme sind mathematische Ausdrücke (mit oder ohne Variablen).

 \hookrightarrow Umfang eines Rechtecks mit Seitenlängen a und b

 $2 \cdot (a + b)$

→ Oberfläche eines Würfels mit Seitenlänge a

 $6a^2$

Rechenregeln der reellen Zahlen, z.B. das Kommutativgesetz, das Assoziativgesetz oder das Distributivgesetz (siehe unten), gelten ebenfalls für Variablen und Terme.

Elementare Rechenregeln

Für das Rechnen mit Termen lernen wir nun einige Regeln kennen.

Rechenregeln für Addition "+" und Multiplikation "∙"

Kommutativgesetz

$$a+b=b+a$$
 und $a \cdot b=b \cdot a$

$$\begin{array}{c} \textit{Beispiele:} & 3+5=5+3 \\ 13+4+5=5+13+4 & \text{mehrfache Ausführung} \\ 3\cdot 5=5\cdot 3 \\ 6\cdot 5\cdot (-2)=(-2)\cdot 5\cdot 6 & \text{mehrfache Ausführung} \end{array}$$

Assoziativgesetz

$$a + (b + c) = (a + b) + c$$
 und $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Beispiele:
$$13 + (4+5) = (13+4) + 5$$

 $6 \cdot (5 \cdot (-1)) = (6 \cdot 5) \cdot (-1)$

Vorsicht: Subtraktion und Division sind weder kommutativ noch assoziativ.

Elementare Rechenregeln

Vorsicht: Subtraktion und Division sind weder kommutativ noch assoziativ.

→ Gegenbeispiele:

$$6-3 \neq 3-6$$
 und $8:2 \neq 2:8$
 $13-(7-1) \neq (13-7)-1$ und $16:(4:2) \neq (16:4):2$

Distributivgesetz

Gilt ebenfalls bei Subtraktion.

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

Beispiele:
$$3 \cdot (4+5) = 3 \cdot 4 + 3 \cdot 5$$

 $(-3) \cdot (1+2) = (-3) \cdot 1 + (-3) \cdot 2$
 $z \cdot (x-2y) = z \cdot x + z \cdot (-2y)$

Von "rechts nach links" gelesen:

Gleiche Faktoren, die in allen Summanden vorkommen, dürfen ausgeklammert werden.

$$5 \cdot 4 + 7 \cdot 4 = 4 \cdot (5 + 7) = 4 \cdot 12$$

 $x \cdot y + z \cdot y = y \cdot (x + z)$

Rechnen mit negativen Zahlen

Bekanntlich gilt:

Minus "mal" Plus ist gleich Minus
$$(-3) \cdot 5 = -15$$
 $(-4) \cdot (-3) = +12$ $-x \cdot 5 = -5x$ $(-x) \cdot (-x) = (-1)x(-1)z = xz$

Für das Rechnen mit negativen Zahlen gilt weiter:

$$b - a = b + (-a) = (-a) + b = -a + b$$
und
$$(-a) \cdot b = (-1) \cdot a \cdot b = a \cdot (-1) \cdot b = a \cdot (-b) = -(a \cdot b)$$
und
$$(-a) \cdot (-b) = (-1) \cdot a \cdot (-1) \cdot b = (-1) \cdot (-1) \cdot a \cdot b = a \cdot b$$

$$3 + (-6) - 2 + (-3) + 5 = \dots$$

 $-(8 \cdot 3) \cdot (-2) \cdot 5 = \dots$
 $-(9 - 3 - 4) - (3 - 1 - 7) \cdot (-2 + 1) = \dots$

Rechnen mit Klammern

Punktrechnung

- I. Punktrechnung (⋅ bzw. :) vor Strichrechnung (+ bzw.−)
- II. Punktrechnung immer von links nach rechts auswerten.
- III. Statt $a \cdot b$ schreibt man häufig kurz ab.

Klammerregeln

- I. Geklammerte Rechenoperationen sind stets zuerst auszuführen.
- II. Sind Klammern geschachtelt, so ist zuerst die innerste Klammer aufzulösen.

Merkregel: "Klammer" vor "Punkt" vor "Strich"

$$3 \cdot (3-7) = \dots$$
 [((2-a) · 4) - 2] · (-2) = ...

$$(8-3) \cdot ((3+5) \cdot (2-6) + 35) = \dots$$
 $2x - ((1-4) \cdot (x-2) + 4) = \dots$

Ausmultiplizieren von Klammern

Ausmultiplizieren

Für alle reellen Zahlen a, b, x und y gilt:

$$(a+b)\cdot(x+y) = (a+b)\cdot x + (a+b)\cdot y$$
$$= ax + bx + ay + by$$

- → WICHTIG: Vorzeichen der Variablen m
 üssen beachtet werden:

$$(a-b)\cdot(x+y)=ax+ay-bx-by$$

Beispiele:

$$(2x - 5y) \cdot (-b + 4c) = \dots$$

 $(b + 3c) \cdot (-3a) \cdot (2x - y) = \dots$

→ Übersichtlichkeit: alphabetische Reihenfolge üblich!

[möglich wegen der Kommutativität der Multiplikation]

Zusammenfassen gleichnamiger Terme

Nach dem Ausmultiplizieren von Klammern sollten gleichnamige Terme (also solche, die dieselben Variablen enthalten) zusammengefasst werden.

Beispiele:

$$(2b+3c) \cdot (8b-2c) = 16b^2 + 24bc - 4bc - 6c^2$$

$$(2x-5)\cdot(-xy+4y)=\ldots$$

$$(a+3) \cdot (1-3a) \cdot (2a-4) = \dots$$

Beim Umgang mit geschachtelte Klammern gilt weiterhin:

Klammern werden von innen nach außen aufgelöst!

$$(a+bc)\cdot(3a\cdot(2a-3b))=\ldots$$

Binomische Formeln

In speziellen Fällen kann man das Ausmultiplizieren abkürzen:

Die binomischen Formeln:

Für alle reellen Zahlen a und b gilt:

(B1)
$$(a+b)^2 = a^2 + 2ab + b^2$$

(B2)
$$(a-b)^2 = a^2 - 2ab + b^2$$

(B3)
$$(a+b) \cdot (a-b) = a^2 - b^2$$

 \hookrightarrow Die zweite Formel gilt z.B. wegen:

$$(a-b)^2 = (a-b)(a-b) = a^2 \underbrace{-ab-ab}_{=-2ab} + b^2 = a^2 - 2ab + b^2$$

Beispiel:

$$(3a+5b)^2 = (3a)^2 + 2(3a)(5b) + (5b)^2 = 9a^2 + 30ab + 25b^2$$

Probe durch Einsetzen von z.B. a = 2 und b = 1 ...

Klammern und Ausklammern

Manchmal ist es sinnvoll aus einer Summe gemeinsame Faktoren auszuklammern!

Ausklammern eines Faktors:

Die Umformung einer Summe der Form

$$ax + ay$$

in die Form

$$a \cdot (x + y)$$

nennt man Ausklammern des Faktors a aus der Summe.

- → Rückgängigmachen des Ausmultiplizierens!
- → Im obigen Beispiel haben alle vier Summanden den gemeinsamen Faktor a. Wir können also a ausklammern:

$$6a^3 - 9a^2b + 6a^2bc - 9ab^2c = a \cdot \left(\underbrace{6a^2 - 9ab + 6abc - 9b^2c}_{\text{Weiter ausklammern?}}\right) = \dots$$

Das Ausklammern gemeinsamer Faktoren aus Summen

- · erlaubt eine kompaktere Darstellung mathematischer Ausdrücke
- · kann die Verständklichkeit steigern
- · hilfreich beim Kürzen in Bruchtermen (siehe unten)
- u.v.m.

Bruchrechnung

Bruchrechnung

Bruchrechnung behandelt die Rechenoperationen innerhalb der rationalen Zahlen $\mathbb Q$.

$$\mathbb{Q} = \left\{ \frac{a}{b}, \text{ für die gilt: } a, b \in \mathbb{Z}, b \neq 0 \right\}$$

Brüche sind andere Schreibweise für "nicht durchgeführte" Divisionen:

$$a: b = \frac{a}{b} \leftarrow \frac{\text{Z\"{a}hler}}{\text{Nenner}}$$

- Die Zahl a über dem Bruchstrich heißt Zähler.
- Die Zahl b unter dem Bruchstrich heißt Nenner.
- Einen Bruch der Form 1/b nennt man **Stammbruch**.

Wir wissen bereits:

Jeder Bruch lässt sich durch ausführen der Division in eine Dezimalzahl umwandeln:

$$\frac{6}{2} = 3$$
 $\frac{1}{4} = 0,25$ $\frac{3}{7} = 0,428571428571...$

Bruchrechnung

Erweitern von Brüchen

Multipliziert man Zähler und Nenner eines Bruches mit der gleichen Zahl, so ändert sich sein Wert nicht.

$$\frac{a}{b} = \frac{a \cdot c}{b \cdot c}, \quad \text{für alle } c \neq 0$$

Beispiel:
$$\frac{1}{7} = \dots$$

z.B. Erweitern zu Darstellung mit kleinstem dreistelligen Nenner.

Kürzen von Brüchen

Enthalten Zähler und Nenner eines Bruchs den gleichen Faktor (\neq 0), so kann man beide durch diesen Faktor dividieren, ohne den Wert des Bruchs zu verändern.

$$\frac{a \cdot c}{b \cdot c} = \frac{a}{b}, \quad \text{ für alle } c \neq 0$$

Beispiel:
$$\frac{27}{45} = \dots$$

!!! Die Kunst ist es, die gemeinsamen Faktoren zu finden:

$$\frac{208}{304} = \dots$$

Rechenregeln für Brüche

Beim Addieren und Subtrahieren von Brüchen muss man sicherstellen, dass beide Brüche den gleichen Nenner haben!

Summe und Differenz zweier Brüche mit gleichem Nenner

$$\frac{a_1}{b} \pm \frac{a_2}{b} = \frac{a_1 \pm a_2}{b}$$

$$\frac{3}{5} + \frac{2}{5} = \dots$$

$$\frac{3}{5} - \frac{2}{5} = \dots$$

$$\frac{13}{17} - \frac{12}{17} + \frac{16}{17} = \dots$$

Beim Addieren und Subtrahieren von Brüchen muss man sicherstellen, dass beide Brüche den gleichen Nenner haben!

Summe und Differenz zweier Brüche mit ungleichem Nenner

 Erweitern des ersten Bruchs mit dem Nenner des Zweiten (und umgekehrt!) liefert

$$\frac{a_1}{b_1} \pm \frac{a_2}{b_2} = \frac{a_1 \cdot b_2}{b_1 \cdot b_2} \pm \frac{a_2 \cdot b_1}{b_2 \cdot b_1}$$

• Wegen der Kommutativität der Multiplikation haben nun beide Brüche den gleichen Nenner, nämlich $b_1 \cdot b_2$, und es folgt:

$$\frac{a_1}{b_1} \pm \frac{a_2}{b_2} = \frac{a_1 \cdot b_2 \pm a_2 \cdot b_1}{b_1 \cdot b_2}$$

Beispiel:
$$\frac{3}{6} + \frac{1}{8} = \dots$$
 und $\frac{3}{6} - \frac{1}{8} = \dots$

Rechenregeln für Brüche

Produkt zweier Brüche

Für zwei Brüche $rac{a_1}{b_1}$ und $rac{a_2}{b_2}$ ist die Multiplikation folgendesmaßen definiert:

$$\frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = \frac{a_1 \cdot a_2}{b_1 \cdot b_2}$$

- → Die Multiplikation von Brüchen erfolgt z\u00e4hler- und nennerweise!
- \hookrightarrow Man beachte das jede ganze Zahl c als Bruch $\frac{c}{1}$ geschrieben werden kann!

Es gilt also:

$$c \cdot \frac{a}{b} = \frac{c}{1} \cdot \frac{a}{b} = \frac{c \cdot a}{1 \cdot b} = \frac{c \cdot a}{b}$$

$$\frac{9}{4} \cdot \frac{6}{3} = \dots$$

$$\frac{1}{125} \cdot 5 = \dots$$

$$\frac{5}{36} \cdot \frac{5}{2} \cdot \frac{72}{25} = \dots$$

Rechenregeln für Brüche

Division zweier Brüche

Für zwei Brüche $\frac{a_1}{b_1}$ und $\frac{a_2}{b_2}$ ist die Division definiert als:

$$\frac{a_1}{b_1} \colon \frac{a_2}{b_2} = \frac{a_1}{b_1} \cdot \frac{b_2}{a_2} = \frac{a_1 \cdot b_2}{b_1 \cdot a_2}$$

- → Die Division durch einen Bruch entspricht der Multiplikation mit seinem Kehrwert!
- \hookrightarrow Bilden des Kehrwertes erfolgt durch vertauschen von Zähler und Nenner.

Bruch
$$\frac{a}{b}$$
 \leftrightarrow Kehrwert $\frac{b}{a}$

$$\frac{12}{27} : \frac{5}{6} = \dots$$

$$\frac{15}{6} : 5 = \dots$$

$$\left(\frac{5}{6} : \frac{35}{3}\right) : \frac{2}{7} = \dots$$

Bruchterm

Unter einem Bruchterm versteht man einen Bruch aus Zähler und Nenner bei dem im Nenner mindestens eine Variable (z.B. x) vorkommt.

$$\frac{3}{x+1}$$
 oder $\frac{x^2-2x+1}{(x-1)(x+1)}$

· Welche Zahlen dürfen für die Platzhalter eingesetzt werden?

[Es darf niemals durch die Zahl NULL dividiert werden!]

- · Zahlen x für die der Nenner des Bruchterms NULL wird, heißen Definitionslücken.
- Die Menge aller Zahlen x, für die ein Bruchterm definiert ist, nennt man Definitionsmenge D.
- Treten in einem Bruchterm mehrere Variablen auf, so müssen alle Kombinationen die den Nenner NULL verursachen identifiziert werden.

Beispiel: Der Definitionsbereich der obigen Bruchterme lautet:

$$\mathbb{D}=\mathbb{R}\backslash\{-1\} \qquad \text{bzw.} \qquad \mathbb{D}=\mathbb{R}\backslash\{-1,+1\}$$

Rechnen mit Bruchtermen

Rechenregeln

- Für Bruchterme gelten dieselben Rechenregeln wie für gewöhnliche Brüche.
 Erweitern, Kürzen, Addition, Subtraktion, Multiplikation und Division
- · Der Bruchstrich verhält sich wie eine Klammer zu behandeln.

$$-\frac{a-b}{c-d} = \frac{-(a-b)}{c-d} = \frac{a-b}{-(c-d)}$$

- Zur Vereinfachung von Bruchtermen bietet sich das Ausklammern gemeinsamer Faktoren asu Z\u00e4her und Nenner an.
 - · Kürzen ist bei Termen nicht anders als in Zahlenbrüchen!
 - · Dazu müssen gemeinsame Faktoren in Zähler und Nenner gefunden werden.

$$\frac{abx + aby}{cx + cy} = \frac{ab(x + y)}{c(x + y)} = \frac{ab}{c}$$

Rechenregeln

Beispiel:

$$\frac{12abx^2 - 4a^2bx - 8ab^2x}{4axy^2 - 16ax^2 + 10a^2bx}$$

Vereinfachen des Zählers:

$$12abx^2 - 4a^2bx - 8ab^2x = \dots$$

Vereinfachen des Nenners:

$$4axv^2 - 16ax^2 + 10a^2bx = \dots$$

Insgesamt folgt also:

$$\frac{12abx^2 - 4a^2bx - 8ab^2x}{4axy^2 - 16ax^2 + 10a^2bx} = \dots = \frac{2b(3x - a - 2b)}{(2y^2 - 8x + 5ab)}$$

Elementare Rechenregeln – Übungsaufgaben

Weitere Übungsaufgaben und zugehörige Lösungen finden Sie zum Beispiel hier:

• Vorkurs Mathematik von E. Cramer & J. Neslehova, Springer, 2012 Über die Bibliothek als eBook verfügbar!

Kapitel 1.5 – entsprechende Aufgaben Kapitel 3.5 – Aufgaben 3.1 bis 3.6

Potenzen, Wurzeln und Logarithmen

Potenzieren mit natürlichen Zahlen

Berechne den Flächeninhalt A eines Quadrats mit einer Seitenlänge von 2 Metern.

$$A = 2m \cdot 2m = 4m^2$$

Berechne das Volumen eines Würfels mit Seitenlänge von 3 Zentimetern.

$$V = 3cm \cdot 3cm \cdot 3cm = 27cm^3$$

Eine "kürzere" Schreibweise für die mehrfache Multiplikation gleicher Zahlen bietet die **Potenzschreibweise**.

Potenzieren mit natürlichen Zahlen

Ist a eine beliebige Zahl und n eine natürliche Zahl ($\in \mathbb{N}$), so ist a^n definiert als das n-fache Produkt von a mit sich selbst: $a^n = \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{n-\text{mal}}$. [sprich: "a hoch n"]

Die Zahl a heißt Basis n heißt Exponent

Den Term a^n bezeichnet man als die **n-te Potenz** von a

$$3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = 81$$
 oder $\left(\frac{4}{5}\right)^3 = \frac{4}{5} \cdot \frac{4}{5} \cdot \frac{4}{5} = \frac{64}{125}$ oder $x^4 = x \cdot x \cdot x \cdot x$

Ist a eine beliebige Zahl und n eine natürliche Zahl ($\in \mathbb{N}$), so ist a^n definiert als das n-fache Produkt von a mit sich selbst: $a^n = \underbrace{a \cdot a \cdot a \cdots a}_{n-\text{mal}}$.

- ! MERKE: Statt a¹ schreibt man meist einfach a.
- ! BEACHTE: Für alle Zahlen a \neq 0 definiert man a⁰ = 1.

Potenzrechengesetze

Für alle Zahlen a, b und alle natürlichen Zahlen m, n gelten die Potenzgesetze:

(P1)
$$a^m \cdot a^n = a^{m+n}$$

$$(P2) \quad a^m \cdot b^m = (a \cdot b)^m$$

(P3)
$$(a^m)^n = a^{m \cdot n}$$

Beispiele zu (P1):

$$3^2 \cdot 3^3 = \cdots$$
$$x^2 \cdot x^3 \cdot x^4 = \cdots$$

Ist a eine beliebige Zahl und n eine natürliche Zahl ($\in \mathbb{N}$), so ist a^n definiert als das n-fache Produkt von a mit sich selbst: $a^n = \underbrace{a \cdot a \cdot a \cdots a}_{n-1}$.

- ! MERKE: Statt a¹ schreibt man meist einfach a.
- ! BEACHTE: Für alle Zahlen a \neq 0 definiert man $a^0 = 1$.

Potenzrechengesetze

Für alle Zahlen a, b und alle natürlichen Zahlen m, n gelten die Potenzgesetze:

(P1)
$$a^m \cdot a^n = a^{m+n}$$

$$(P2) a^m \cdot b^m = (a \cdot b)^m$$

$$(P3) \quad (a^m)^n = a^{m \cdot n}$$

Beispiele zu (P2):

$$\left(\frac{1}{4}\right)^3 \cdot 12^3 = \cdots$$
$$x^2 \cdot y^2 = \cdots$$
$$x^2 \cdot y^3 \cdot x \cdot z^3 = \cdots$$

Ist a eine beliebige Zahl und n eine natürliche Zahl ($\in \mathbb{N}$), so ist a^n definiert als das n-fache Produkt von a mit sich selbst: $a^n = \underbrace{a \cdot a \cdot a \cdots a}_{}$.

- ! MERKE: Statt a¹ schreibt man meist einfach a.
- ! BEACHTE: Für alle Zahlen a \neq 0 definiert man a⁰ = 1.

Potenzrechengesetze

Für alle Zahlen a, b und alle natürlichen Zahlen m, n gelten die Potenzgesetze:

$$(P1) \quad a^m \cdot a^n = a^{m+n}$$

$$(P2) \quad a^m \cdot b^m = (a \cdot b)^m$$

$$(P3) \quad (a^m)^n = a^{\hat{m} \cdot n}$$

Beispiele zu (P3):

$$(2^3)^3 = \cdots$$
$$(y^3)^2 \cdot (z^2)^3 = \cdots$$
$$(2^3)^3 = \cdots$$

Negative Potenzen

Was wenn der Exponent negativ wird?

Beispiel: a^{-1}

Wegen Regel (P1) sollte dann gelten, das $a^{-1} \cdot a^1 = a^{-1+1} = a^0 = 1$ ist! Division beider Seiten von $a^{-1} \cdot a^1 = 1$ durch a liefert dann den Zusammenhang

$$a^{-1} = \frac{1}{a}$$

ALLGEMEIN:

Potenzen mit negativen Exponenten

Für alle ganzen Zahlen *n* gilt:

$$a^{-n}=\frac{1}{a^n}.$$

Die Potenzgesetze (P1), (P2) und (P3) gelten auch für negative Exponenten m und n!

$$3^{2} \cdot 3^{-4} \cdot 3^{5} = \cdots$$

$$(3 \cdot 2^{-3} \cdot 5^{2})^{-3} \cdot 3^{2} \cdot 2^{12} = \cdots$$

$$\frac{(6^{3})^{-5}}{6^{3} \cdot 6^{-2}} = \cdots$$

Negative Potenzen

Potenzen mit negativen Exponenten

Für alle ganzen Zahlen n gilt:

$$a^{-n}=\frac{1}{a^n}.$$

Die Potenzgesetze (P1), (P2) und (P3) gelten auch für negative Exponenten m und n!

 "Merkregel": Ändert man das Vorzeichen des Exponenten, so muss auch der Kehrwert der Basis gebildet werde, damit der Potenzwert gleichbleibt.
 Beispiele:

$$7^{-3} = \left(\frac{1}{7}\right)^{+3} = \frac{1^3}{7^3} = \frac{1}{7^3}$$

oder

$$\left(\frac{1}{3}\right)^{-5} = (3)^{+5} = \dots = 405$$

Weitere Beispiele:

$$3^{2} \cdot 3^{-4} \cdot 3^{5} = \cdots$$

$$\frac{(6^{3})^{-5}}{6^{3} \cdot 6^{-2}} = \cdots$$

$$(3 \cdot 2^{-3} \cdot 5^{2})^{-3} \cdot 3^{2} \cdot 2^{12} = \cdots$$

BEMERKUNG:

Die **Potenzrechengesetze** (P1) und (P2) gelten ebenfalls für die Division von Potenzen:

(P1)
$$a^m : a^n = \frac{a^m}{a^n} = a^m \cdot a^{-n} = a^{m-n}$$

(P2) $a^m : b^m = \frac{a^m}{b^m} = \left(\frac{a}{b}\right)^m$

$$3^5: 3^3 = \cdots$$

 $36^3: 12^3 = \cdots$

Quadratwurzeln

Nun betrachten wir rationale Exponenten, also Brüche, wie z.B. $\frac{13}{15}$.

Beispiel:
$$a^{\frac{13}{15}}$$

Wie ist dieser Ausdruck zu verstehen?

Um diese Frage zu klären beginnen wir mit dem einfachsten Bruch $\frac{1}{2}$.

Was ist also beispielsweise $3^{\frac{1}{2}}$?

Wegen Regel (P3) muss das Ergebnis eine Zahl sein, für die gilt:

$$3^{\frac{1}{2}} \cdot 3^{\frac{1}{2}} = (3^{\frac{1}{2}})^2 = 3^{\frac{1}{2} \cdot 2} = 3^1 = 3$$

Diese Zahl selbst lässt sich allerdings nicht als Bruch schreiben. Es handelt sich um eine irrationale Zahl.

Quadratwurzeln

Quadratwurzel

Für jede positive Zahl a ist $a^{\frac{1}{2}}$ definiert als diejenige positive Zahl, die mit sich selbst multipliziert a ergibt.

Man bezeichnet $a^{\frac{1}{2}}$ als (Quadrat-) Wurzel aus a und schreibt $a^{\frac{1}{2}} = \sqrt{a}$.

→ Die (Quadrat-) Wurzel einer Quadratzahl

$$\{1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, \dots\}$$

ist selbst wieder eine natürliche Zahl.

 \hookrightarrow In den meisten Fällen aber eine irrationale, reelle Zahl ($\in \mathbb{R} \setminus \mathbb{Q}$)

$$\sqrt{16} = 16^{\frac{1}{2}} = \dots$$
$$\sqrt{a^4} = (a^4)^{\frac{1}{2}} = \dots$$

Quadratwurzeln und n-te Wurzeln

Allgemeiner gilt für alle Stammbrüche:

Die n-te Wurzel

Für jede positive Zahl a und jeden Stammbruch $\frac{1}{n}$ ist

$$a^{\frac{1}{n}}$$

definiert als diejenige positive Zahl, die n mal mit sich selbst multipliziert a ergibt. Man bezeichnet $a^{\frac{1}{n}}$ als **n-te Wurzel** aus a und schreibt

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
.

$$32^{\frac{1}{5}} = \sqrt[5]{32} = \dots$$
$$\sqrt[3]{a^6} = (a^6)^{\frac{1}{3}} = \dots$$

Potenzieren mit beliebigen rationalen Zahlen

Potenzieren mit $\frac{m}{n}$:

• Für eine beliebige positive Zahl a bezeichnet der Ausdruck $a^{\frac{m}{n}}$ die m-te Potenz der n-ten Wurzel aus a:

$$a^{\frac{m}{n}}=(a^{\frac{1}{n}})^m=(\sqrt[n]{a})^m.$$

· Wegen den Potenzrechengesetzen (P1) bis (P3) gelten die folgenden Identitäten:

$$a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m = (\sqrt[n]{a})^m = (a^m)^{\frac{1}{n}} = \sqrt[n]{a^m}.$$

$$8^{\frac{2}{3}} = (8^{\frac{1}{3}})^2 = \sqrt[3]{8}^2 = 2^2 = 4 \quad \text{oder} \quad 8^{\frac{2}{3}} = (8^2)^{\frac{1}{3}} = 64^{\frac{1}{3}} = \sqrt[3]{64} = \sqrt[3]{4^3} = 4$$
$$3^{\frac{1}{2}} \cdot 3^{\frac{3}{2}} = 3^{\frac{1}{2} + \frac{3}{2}} = 3^2 = 9$$

Übungsaufgaben:
$$4^{\frac{1}{3}} \cdot 2^{\frac{1}{3}} \cdot 16^{\frac{1}{4}} = \dots$$
 $120^{\frac{1}{2}} \cdot \sqrt[4]{900} = \dots$ $\sqrt{0,16} = \dots$

Logarithmen

Zur Motivation betrachten wir die Potenz:

$$a^n = b$$

(Im Folgenden bezeichnet x immer den unbekannten, gesuchten Wert):

- Potenzrechnung: Der Potenzwert ist gesucht aⁿ = x
 Gesucht ist die n-te Potenz von a!
- Wurzelrechnung: Die Basis ist gesucht $x^n = b$ Die Basis einer Potenz ist gesucht, die **n-te Wurzel** aus b, also $x = \sqrt{b}!$

Logarithmenrechnung:

• Statt dem Potenzwert b oder der Basis a kann auch der Exponent gesucht sein.

$$a^{x} = b$$

- Man nennt den unbekannten Exponenten dann den Logarithmus von b zur Basis a.
- Um die Gleichung a^x = b nach x umzustellen, führen wir an dieser Stelle ein neues Zeichen "log_n" ein!

$$a^{x} = b \Leftrightarrow \log_{a} b = x$$

Logarithmen

Logarithmus von b zur Basis a

Unter dem Logarithmus $x = \log_a b$ versteht man den Exponenten x in der Gleichung $a^x = b$.

$$a^{x} = b \Leftrightarrow \log_{a} b = x$$

- Beispiele: $log_2 8 = \dots$ und $log_{10} 1000000 = \dots$
- · besondere Logarithmen:
 - Den Logarithmus log₁₀ zur Basis 10 kürzt man durch *lg* ab:

$$\log_{10} b = \lg b.$$

 Den Logarithmus zur Basis e nennt man den natürlichen Logarithmus, Schreibweise:

$$\log_{e} b = \ln b$$
.

Die Zahl e heißt eulersche Zahl.

e ist, so wie π oder $\sqrt{2}$, irrational (nicht als Bruch darstellbar).

$$\ln 20 = x \Leftrightarrow e^x = 20 = e^{\ln 20} \Rightarrow \ln 20 =$$
 "nicht so einfach"

Rechenregeln für Logarithmen

Basis-Umrechnung:

$$\log_a b = \frac{\log_c b}{\log_c a}$$

 Folglich kann jeder Logarithmus auf die besonderen Logarithmen zurückgeführt werden:

$$\log_a b = \frac{\log_c b}{\log_c a} = \frac{\lg b}{\lg a} = \frac{\ln b}{\ln a}$$

$$\log_{1000} 100 = \frac{\lg 100}{\lg 1000} = \frac{2}{3}$$

$$\log_7 137 = \frac{\lg 137}{\lg 7} = \frac{\ln 137}{\ln 7} \longrightarrow Taschenrechner:)$$

Rechenregeln für Logarithmen

Logarithmus von b zur Basis a

$$a^{x} = b \Leftrightarrow \log_{a} b = x$$

Rechenregeln am Beispiel des natürlichen Logarithmus:

$$e^x = b \Leftrightarrow \ln(b) = x$$

Für Zahlen $b, c, d \in \mathbb{R}$ gilt:

(L1)
$$ln(b^d) = d \cdot ln b$$

(L2)
$$\ln(b \cdot c) = \ln b + \ln c$$

(L3)
$$\ln(\frac{b}{c}) = \ln b - \ln c$$

Bemerke: Diese Rechenregeln gelten für ALLE Logarithmen, d.h. sie sind unabhängig von der Basis.

Potenzrechnung – Übungsaufgaben

Weitere Übungsaufgaben und zugehörige Lösungen finden Sie zum Beispiel hier:

• Vorkurs Mathematik von E. Cramer & J. Neslehova, Springer, 2012 Über die Bibliothek als eBook verfügbar!

Kapitel 3.5 – Aufgaben 3.6 bis 3.18

Summen- und Produktzeichen

Summen- und Produktzeichen

Indexschreibweise

Die **Indexschreibweise** dient zur Vereinfachung der Namensgebung von Variablen. Anstatt der Variablen *a*, *b*, *c* und *d* kann man einen indizierten Buchstaben für die Platzhalter verwenden:

$$x_1, x_2, x_3$$
 und x_4 .

Beispiele:

- $x_1 + 2x_2 3x_3 = 4$ ist eine lineare Gleichung mit 3 Variablen, nämlich x_1, x_2 und x_3
- $A = \{a_1, a_2, \dots, a_{100}\} = \{a_i | i = 1, \dots, 100\}$ bezeichnet eine Menge mit 100 Elementen
- $a_n = \frac{1}{n}$ ist eine Folge reeller Zahlen mit $a_1 = 1$, $a_2 = \frac{1}{2}$, $a_2 = \frac{1}{3}$, usw.

Als Indizes verwendet man üblicherweise die Buchstaben i, j, k, l, m, n.

Summenschreibweise

Die Summe der Elemente einer indizierten Menge lässt sich mit Hilfe des Summenzeichens \sum schreiben

$$\sum_{i=1}^{4} x_i = x_1 + x_2 + x_3 + x_4.$$

Beispiele:

(a)
$$\sum_{i=1}^{100} a_i = a_1 + a_2 + a_3 + \cdots + a_{100}$$

(b)
$$\sum_{i=1}^{10} i = 1 + 2 + 3 + \cdots + 10 = 55$$

(c)
$$\sum_{i=3}^{5} y_i = y_3 + y_4 + y_5$$

(d)
$$\sum_{i=1}^{n} b_i = b_1 + b_2 + b_3 + \cdots + b_n$$

(e)
$$\sum_{i=n}^{n} b_i = b_n$$

(f)
$$\sum_{i=1}^{n} c = \underbrace{c + c + c + \dots + c}_{n \text{ mod}} = n \cdot c$$

Regeln:

(1)
$$\sum_{i=1}^{n} c \cdot a_i = c \cdot a_1 + c \cdot a_2 + c \cdot a_3 + \cdots + c \cdot a_n = c \cdot \sum_{i=1}^{n} a_i$$

(2)
$$\sum_{i=1}^{n} (a_i + b_i) = (a_1 + b_1) + (a_2 + b_2) + \dots + (a_n + b_n) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

Summen- und Produktzeichen

Produktschreibweise

Das Produkt der Elemente einer indizierten Menge lässt sich mit Hilfe des **Produktzeichens** \prod schreiben

$$\prod_{i=1}^4 x_i = x_1 \cdot x_2 \cdot x_3 \cdot x_4.$$

Beispiele:

(a)
$$\prod_{i=1}^{100} a_i = a_1 \cdot a_2 \cdot a_3 \cdot \cdots \cdot a_{100}$$

(b)
$$\prod_{i=1}^{10} i = 1 \cdot 2 \cdot 3 \cdot \dots \cdot 10 = 10! = 3628800$$

(c)
$$\prod_{i=2}^{5} y_i = y_3 \cdot y_4 \cdot y_5$$

(d)
$$\prod_{i=1}^n b_i = b_1 \cdot b_2 \cdot b_3 \cdot \cdots \cdot b_n$$

(e)
$$\prod_{i=n}^n b_i = b_n$$

(f)
$$\prod_{i=1}^{n} c = \underbrace{c \cdot c \cdot c \cdot \cdots \cdot c}_{n-\text{mal}} = c^{n}$$

Regeln:

(1)
$$\prod_{i=1}^{n} c \cdot a_i = (c \cdot a_1) \cdot (c \cdot a_2) \cdot (c \cdot a_3) \cdot \cdots \cdot (c \cdot a_n) = c^n \cdot \prod_{i=1}^{n} \cdot a_i$$

(2)
$$\prod_{i=1}^{n} (a_i \cdot b_i) = (a_1 \cdot b_1)(a_2 \cdot b_2) + \cdots + (a_n \cdot b_n) = (\prod_{i=1}^{n} a_i) \cdot (\prod_{i=1}^{n} b_i)$$

Summen- und Produktzeichen – Übungsaufgaben

Weitere Übungsaufgaben und zugehörige Lösungen finden Sie zum Beispiel hier:

• Vorkurs Mathematik von E. Cramer & J. Neslehova, Springer, 2012 Über die Bibliothek als eBook verfügbar!

Kapitel 4.4 – Aufgaben 4.1 bis 4.2 Kapitel 4.4 – Aufgaben 4.6, 4.8 und 4.9 Fakultät und Binomialkoeffizienten

Fakultät

Die sog. Fakultät einer Zahl $n\in\mathbb{N}_0$ wird mit der Notation n! bezeichnet. Der Ausdruck n! ist für natürliche Zahlen $(n\in\mathbb{N})$ definiert als

$$n! = \prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n$$

Beachte: Der Ausdruck 0! ("Null Fakultät") ist definiert als 0! = 1!

Beispiele:

(a)
$$1! = 1$$

(c)
$$3! = 1 \cdot 2 \cdot 3 = 6$$

(e)
$$5! = \underbrace{(1 \cdot 2 \cdot 3 \cdot 4)}_{41} \cdot 5 = 120$$

(b)
$$2! = 1 \cdot 2 = 2$$

(d)
$$3! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$$

(f)
$$n! = \underbrace{(1 \cdot 2 \cdot \cdots \cdot (n-1))}_{(n-1)!} \cdot n$$

Bemerkung:

Das Fakultätszeichen wird häufig in der Kombinatorik verwendet:

 $\label{eq:definition} \begin{tabular}{ll} Der Ausdruck \ n! \ gibt \ die Anzahl \ der M\"{o}glichkeiten \ an, \ eine \ n-elementige \ Menge \ in \ unterschiedlicher \ Reihenfolge \ anzuordnen. \end{tabular} Beispiel: Anordnungen \ von \ \{\clubsuit; \spadesuit; \diamondsuit; \heartsuit\}$

Binomialkoeffizienten

Binomialkoeffizient

Für zwei Zahlen $n,k\in\mathbb{N}_0$ wird der Ausdruck $\binom{n}{k}$ als **Binomialkoeffizient** von "n **über** k" bezeichnet. Dieser ist folgendermaßen definiert:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \quad \text{falls } n \ge k$$
$$\binom{n}{k} = 0 \quad \text{falls } n < k$$

Beispiele:

(a)
$$\binom{n}{0} = \binom{n}{n} = 1$$

(b)
$$\binom{n}{1} = \binom{n}{n-1} = n$$

(c)
$$\binom{n}{b} = \binom{n}{n-b}$$

(d)
$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$

Bemerkung:

Binomialkoeffizienten treten ebenfalls häufig in der Kombinatorik auf:

Der Ausdruck $\binom{n}{k}$ gibt die Anzahl der Möglichkeiten an, aus einer n-elementige Menge k unterschiedliche Elemente auszuwählen (ohne Beachtung der Reihenfolge).

Beispiel:

Wie viele Möglichkeiten gibt es aus {♣; ♠; ♦; ♡; ★} drei Elemente auszuwählen?

Potenzrechnung – Übungsaufgaben

Weitere Übungsaufgaben und zugehörige Lösungen finden Sie zum Beispiel hier:

• Vorkurs Mathematik von E. Cramer & J. Neslehova, Springer, 2012 Über die Bibliothek als eBook verfügbar!

Kapitel 4.4 – Aufgaben 4.8 bis 4.10