Methods Lesson 6

QUESTION 15 (4 marks)

Solve the following equations.

a)
$$4e^x = 100$$

b)
$$2 \log_4 x - \log_4 (x - 1) = 1$$

QUESTION 12 (5 marks)

An object is moving in a straight line from a fixed point. The object is at the origin initially. The acceleration a (in m s⁻²) of the object is given by

$$a(t) = \pi \cos(\pi t)$$
 $t \ge 0$, where t is time in seconds.

The velocity at t = 1 is 0.5 m s⁻¹

a) Determine the initial acceleration.

[1 mark]

b) Determine the initial velocity.

[2 marks]

c) Determine the displacement after one second.

[2 marks]

CF

QUESTION 18 (4 marks)

The graph of y = f(x), where f(x) is the quadratic function $f(x) = ax^2 + bx + 4$, is shown. Two regions of the area between the graph of y = f(x) and the x-axis are shaded.

Region P has an area of $\frac{13}{6}$ units² and Region Q has an area of $\frac{43}{6}$ units².

Determine the values of a and b.

26 a Differentiate $\sin^3(2x)$ with respect to x.

b Write $\cos^3(2x)$ as $(1 - \sin^2(2x))\cos(2x)$ and hence find an anti-derivative of $\cos^3(2x)$.

QUESTION 11 (5 marks)

Determine:

a)
$$\frac{d}{dx}(3\ln(5x))$$
 [1 mark]

b)
$$\frac{d}{dx}(x^3\cos(x^4+1))$$
 (You do not need to simplify.) [3 marks]

c)
$$\int 3e^{4x} dx$$
 [1 mark]

CU

QUESTION 18 (6 marks)

Determine the area of the largest rectangle that has one side on the x-axis and two vertices on the curve $y = e^{-x^2}$. Express your answer in simplest form. The curve is sketched below.

Not drawn to scale

Question 12

For
$$f(x) = x \sin(5x)$$
, it is given that $f'(x) = 5x \cos(5x) + \sin(5x)$.

Use this to determine an anti-derivative of $x\cos(5x)$.

Question 10 CF (3 marks)

The area of the region bounded by the y-axis, the x-axis, the curve $y = e^{\frac{x}{2}}$ and the line x = a is 4. Find the value of a.

Tech Active

Question 1 SF (3 marks)

Let $f(x) = Ae^{kx} + 3$. It is known that the points (0,6) and (5,50) lie on the curve of y = f(x). Find the exact value of A and the value of k correct to two decimal places.

Question 6 SF (2.5 marks)

Calculate the value(s) of x for which $f(x) = e^{(x+2)^2}$ and $g(x) = 3\sin\left(\frac{x}{2}\right)$ have the same gradient for $-2 \leqslant x \leqslant 2$.

Question 9 CF (5 marks)

Calculate the value/s of x, correct to three decimal places, for which $f(x) = \ln(2-4x) - \frac{x^2}{2}$ and $g(x) = -2\cos(3x)$ have the same gradient for $-\pi \le x \le \pi$.

Question 11 CF (6 marks)

A part of the graph of $y=e^{\left(2-\frac{x}{2}\right)}-2$ is shown. Region A is bounded by the axes and the graph of $y=e^{\left(2-\frac{x}{2}\right)}-2$. Region B is bounded by the x-axis, the graph of $y=e^{\left(2-\frac{x}{2}\right)}-2$ and the line x=a. Find the value of a, correct to 2 decimal places, such that the area of region A is equal to the area of region B.

- 33 Let $f(x) = 6 e^{-2x}$. The diagram shows part of the graph of f and also shows the normal to the graph of f at the point (0, 5).
 - **a** Find the coordinates of points C and D.
 - **b** Find the area of the shaded region.

