PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

A61K 31/415

(11) International Publication Number: WO 99/61019

(43) International Publication Date: 2 December 1999 (02.12.99)

(21) International Application Number:

PCT/US99/11322

(22) International Filing Date:

21 May 1999 (21.05.99)

(30) Priority Data:

60/086,494

22 May 1998 (22.05.98)

US

(71) Applicant: AVANIR PHARMACEUTICALS [US/US]; 9393 Towne Centre Drive #200, San Diego, CA 92121 (US).

(72) Inventors: SIRCAR, Jagadish; Avanir Pharmaceuticals, 9393 Towne Centre Drive #200, San Diego, CA 92121 (US). RICHARDS, Mark, L.; Avanir Pharmaceuticals, 9393 Towne Centre Drive #200, San Diego, CA 92121 (US). CAMPBELL, Michael, G.; Avanir Pharmaceuticals, 9393 Towne Centre Drive #200, San Diego, CA 92121 (US). MAJOR, Michael, W.; Avanir Pharmaceuticals, 9393 Towne Centre Drive #200, San Diego, CA 92121 (US).

(74) Agent: ALTMAN, Daniel, E.; Knobbe, Martens, Olson & Bear, LLP, 16th floor, 620 Newport Center Drive, Newport Beach, CA 92660 (US). (81) Designated States: AE, AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments;

(54) Title: BENZIMIDAZOLE DERIVATIVES AS MODULATORS OF IgE

(57) Abstract

This invention relates to a family of diacyl benzimidazole analogs, which are inhibitors of the IgE response to allergens. These compounds are useful in the treatment of allergy and/or asthma or any diseases where IgE is pathogenic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	us	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo ·	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KĢ	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		•
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	ŔU	Russian Federation		•
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark ·	LK	Sri Lanka	SE	Sweden		
ER	Estonia	LR	Liberia	SG	Singapore		
l							

WO 99/61019 PCT/US99/11322

BENZIMIDAZOLE DERIVATIVES AS MODULATORS OF IgE

Background of the Invention

This invention relates to small molecule inhibitors of the IgE response to allergens that are useful in the treatment of allergy and/or asthma or any diseases where IgE is pathogenic.

An estimated 10 million persons in the United States have asthma, about 5% of the population. The estimated cost of asthma in the United States exceeds \$6 billion. About 25% of patients with asthma who seek emergency care require hospitalization, and the largest single direct medical expenditure for asthma has been inpatient hospital services (emergency care), at a cost of greater than \$1.6 billion. The cost for prescription medications, which increased 54% between 1985 and 1990, was close behind at \$1.1 billion (Kelly, *Pharmacotherapy* 12:13S-21S (1997)).

According to the National Ambulatory Medical Care Survey, asthma accounts for 1% of all ambulatory care visits, and the disease continues to be a significant cause of missed school days in children. Despite improved understanding of the disease process and better drugs, asthma morbidity and mortality continue to rise in this country and worldwide (U.S. Department of Health and Human Services; 1991, publication no. 91-3042). Thus, asthma constitutes a significant public health problem.

The pathophysiologic processes that attend the onset of an asthmatic episode can be broken down into essentially two phases, both marked by bronchoconstriction, that causes wheezing, chest tightness, and dyspnea. The first, early phase asthmatic response is triggered by allergens, irritants, or exercise. Allergens cross-link immunoglobulin E (IgE) molecules bound to receptors on mast cells, causing them to release a number of pre-formed inflammatory mediators, including histamine. Additional triggers include the osmotic changes in airway tissues following exercise or the inhalation of cold, dry air. The second, late phase response that follows is characterized by infiltration of activated eosinophils and other inflammatory cells into airway tissues, epithelial desquamonon, and by the presence of highly viscous mucus within the airways. The damage caused by this inflammatory response leaves the airways "primed" or sensitized, such that smaller triggers are required to elicit subsequent asthma symptoms.

A number of drugs are available for the palliative treatment of asthma; however, their efficacies vary markedly. Short-acting β_2 -adrenergic agonists, terbutaline and albuterol, long the mainstay of asthma treatment, act primarily during the early phase as bronchodilators. The newer

WO 99/61019 PCT/US99/11322 2

long-acting β_2 -agonists, salmeterol and formoterol, may reduce the bronchoconstrictive component of the late response. However, because the β_2 -agonists do not possess significant antiinflammatory activity, they have no effect on bronchial hyperreactivity.

Numerous other drugs target specific aspects of the early or late asthmatic responses. For example, antihistamines, like loratadine, inhibit early histamine-mediated inflammatory responses. Some of the newer antihistamines, such as azelastine and ketotifen, may have both antiinflammatory and weak bronchodilatory effects, but they currently do not have any established efficacy in asthma treatment. Phosphodiesterase inhibitors, like theophylline/xanthines, may attenuate late inflammatory responses, but there is no evidence that these compounds decrease bronchial hyperreactivity. Anticholinergics, like ipratopium bromide, which are used in cases of acute asthma to inhibit severe bronchoconstriction, have no effect on early or late phase inflammation, no effect on bronchial hyperreactivity, and therefore, essentially no role in chronic therapy.

The corticosteroid drugs, like budesonide, are the most potent antiinflammatory agents. Inflammatory mediator release inhibitors, like cromolyn and nedocromil, act by stabilizing mast cells and thereby inhibiting the late phase inflammatory response to allergen. Thus, cromolyn and nedocromil, as well as the corticosteroids, all reduce bronchial hyperreactivity by minimizing the sensitizing effect of inflammatory damage to the airways. Unfortunately, these antiinflammatory agents do not produce bronchodilation.

Several new agents are currently being developed that inhibit specific aspects of asthmatic inflammation. For instance, leukotriene receptor antagonists (ICI-204, 219, accolate), specifically inhibit leukotriene-mediated actions. The leukotrienes have been implicated in the production of both airway inflammation and bronchoconstriction.

Thus, while numerous drugs are currently available for the treatment of asthma, these compounds are primarily palliative and/or have significant side effects. Consequently, new therapeutic approaches which target the underlying cause rather than the cascade of symptoms would be highly desirable. Asthma and allergy share a common dependence on IgE-mediated events. Indeed, it is known that excess IgE production is the underlying cause of allergies in general and allergic asthma in particular (Duplantier and Cheng, Ann. Rep. Med. Chem. 29:73-81 (1994)). Thus, compounds that lower IgE levels may be effective in treating the underlying cause of asthma and allergy.

Section of the Section of Section (Section Section Sec

一个年代 第一个

None of the current therapies eliminate the excess circulating IgE. The hypothesis that lowering plasma IgE may reduce the allergic response, was confirmed by recent clinical results with chimeric anti-IgE antibody, CGP-51901, and recombinant humanized monoclonal antibody, rhuMAB-E25. Indeed, three companies, Tanox Biosystems, Inc., Genentech Inc. and Novartis AG are collaborating in the development of a humanized anti-IgE antibody (BioWorld® Today, February 26, 1997, p. 2) which will treat allergy and asthma by neutralizing excess IgE. Tanox has already successfully tested the anti-IgE antibody, CGP-51901, which reduced the severity and duration of nasal symptoms of allergic rhinitis in a 155-patient Phase II trial (Scrip #2080. Nov 24, 1995, p.26). Genentech recently disclosed positive results from a 536 patient phase-II/III trials of its recombinant humanized monoclonal antibody, rhuMAB-E25 (BioWorld® Today, November 10, 1998, p. 1). The antibody, rhuMAB-E25, administered by injection (highest dose 300 mg every 2 to 4 weeks as needed) provided a 50% reduction in the number of days a patient required additional "rescue" medicines (antihistimines and decongestants), compared to placebo. An NDA filing for this product is projected to be in the year 2000. The positive results from anti-IgE antibody trials suggest that therapeutic strategies aimed at IgE down-regulation may be effective.

Summary of the Invention

The present invention discloses a family of related compounds for use in the treatment of a condition associated with an excess IgE level. The benzimidazole inhibitors of IgE in accordance with the present invention are represented by the generic formula:

X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF₃, OCF₃, CONH₂, CONHR and NHCOR₁. R is selected from the group consisting of H, CH₃, C₂H₅, C₃H₇, C₄H₉,

CH₂Ph, and CH₂C₆H₄-F(p-). R₁ and R₂ are independently selected from the group consisting of H, aryl, substituted aryl, cycloaryl substituted cycloaryl, multi-ring cycloaryl, benzyl, substituted benzyl and the like. Substitutions are alkyl, aryl, CF3, CH3, OCH₃, OH, CN, COOR, COOH and the like.

In accordance with another aspect of the invention, there is disclosed a composition for use in the treatment of an allergic condition comprising the diacyl benzimidazole inhibitor of IgE disclosed above and at least one additional active ingredient, combined in a pharmaceutically acceptable diluent. The additional active ingredients may be selected from the group consisting of short-acting β_2 -adrenergic agonists, like terbutaline and albuterol, long-acting β_2 -adrenergic agonists, like salmeterol and formoterol, antihistamines, like loratedine, azelastine and ketotifen, phosphodiesterase inhibitors, anticholinergic agents, corticosteroids, inflammatory mediator release inhibitors and leukotriene receptor antagonists.

In accordance with another aspect of the invention, there is disclosed a family of symmetric and asymmetric diacyl and monoacyl benzimidazole compounds for use in the treatment of an allergic condition comprising the following species:

Structure	BIAA	Structure	BIAB
0,0000	C ₂₇ H ₂₀ N ₄ O ₂	aramio.	C ₂₇ H ₁₉ CIN ₄ O ₂
	CLOGP 5.47		CLOGP 6.24
Structure	BIAC	Structure	BIAD
aranio'	C ₂₈ H ₂₂ N ₄ O ₃	0,0000	C ₂₆ H ₁₉ N ₅ O ₂
150	CLOGP 5.58		CLOGP 4.28
Structure	BIAE	Structure	BIAF
growni.	C ₃₀ H ₂₆ N ₄ O ₅	ararord	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂
,	CLOGP 4.82		CLOGP 6.97
Structure	BIAG	Structure	BIAH
Orano po	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂	Oranio.	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂
N-0-1			
	CLOGP 5.31		CLOGP 6.14
	1	·	1
Structure	1	Structure	1
Structure Change of the control of t	5.31	Structure Charles	6.14
Structure Characteristics of the structure of the structu	5.31	Structure Charles and the structure	BIAJ
Structure Charles of the structure	5.31 BIAI C ₂₇ H ₂₆ N ₄ O ₂ CLOGP	Structure Charles and the structure	BIAJ C26H24N4O2 CLOGP
Structure Structure	5.31 BIAI C ₂₇ H ₂₆ N ₄ O ₂ CLOGP	Structure Structure	BIAJ C26H24N4O2 CLOGP
٥٠٥٥٥	5.31 BIAI C ₂₇ H ₂₆ N ₄ O ₂ CLOGP 8.01	Orono	BIAJ C26H24N4O2 CLOGP 5.45

•			
Structure	BIAM	Structure	BIAN
04:00	C ₃₀ H ₂₄ N ₄ O ₂	900 m	C ₂₂ H ₁₈ N ₄ O ₂
	CLOGP	***	CLOGP
	5.74		3.98
	•		···
Structure	BIAO	Structure	BIAP
	C ₃₁ H ₃₀ N ₄ O ₂	Oranio O	C ₂₈ H ₂₈ N ₄ O ₂
	CLOGP		CLOGP
	6.64		6.57
		4	
Structure	BIAQ	Structure	BIAR
1 5	C ₂₈ H ₂₆ N ₄ O ₂	, i-C	C ₂₈ H ₂₄ N ₄ O ₂
2000	CLOGP	Ci.O.i.D	CLOGP
Cr.	5.76	○	5.28
Structure	BIBA	Structure	. BIBB
Oragio	C ₂₇ H ₁₉ CIN ₄ O ₂	dono	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂
	CLOGP		CLOGP .
	6.26		7.04
Structure	BIBC .	Structure	BIBD
organo,	C ₂₈ H ₂₁ CIN ₄ O ₃	0,0000	C ₂₆ H ₁₈ CIN ₅ O ₂
	CLOGP		CLOGP
·	6.38		5.08
Structure	BIBE	Structure	BIBF
Drown .	C ₃₀ H ₂₅ CIN ₄ O ₅	or arord.	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂
	CLOGP	- M.	CLOGP
	5.62		7.77

Structure	BICA	Structure	вісв
occoro	C ₂₈ H ₂₂ N ₄ O ₃	ranjo	C ₂₈ H ₂₁ CIN ₄ O ₃
	CLOGP		6.35
	5.58		0.33
Structure	BICC	Structure	BICD
oragio'	C ₂₉ H ₂₄ N ₄ O ₄	orano o	C ₂₇ H ₂₁ N ₅ O ₃
	CLOGP - 5.70		CLOGP 4.39
			·
Structure	BICE	Structure	BICF
orawid.	C ₃₁ H ₂₈ N ₄ O ₆	1 THE	C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃
	CLOGP 4.93		7.09 .
	,		
Structure	BICG	Structure	вісн
(inoron)	C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃	Jano.	C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃
	CLOGP 5,43		CLOGP 6.26
	<u>.t.</u>		
Structure	BICI	Structure .	BICJ
orano.	C ₂₈ H ₂₈ N ₄ O ₃	of any	C ₂₇ H ₂₆ N ₄ O ₃
	CLOGP		CLOGP 5.56
	6.12		
Structure	BICK	Structure	BICL
oranio	C ₂₆ H ₂₀ N ₄ O ₃ S	of October	C ₂₆ H ₂₀ N ₄ O ₃ S
1	CLOGP		CLOGP
I	5.32	1	5.32

and the Contraction of the Contr

Structure		Structure	
	BIDG	م م	BIDH
077 2 30 C2	6H ₁₇ Cl ₂ N ₅ O ₂	0,0000°	C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂
	OGP		CLOGP
	4,44		5.27
<u> </u>			:
Structure	BIDI	Structure	BIDJ
		67	
Children o	26H25N5O2	Charles And Control	C ₂₅ H ₂₃ N ₅ O ₂
CLO	OGP		CLOGP
<u> </u>	5.14	·	4.58
			,
Structure	BIDK	Structure	BIDL
Til . mil	24H17N5O2S	(2. n. sc)	C ₂₄ H ₁₇ N ₅ O ₂ S
8 7 7			
i cu	OGP		CLOGP 4.33
L	4.33		4.00
Structure		Structure	DIDN
	BIDM	M = 0	BIDN
000000	C ₂₉ H ₂₃ N ₅ O ₂	The second second	C ₂₁ H ₁₇ N ₅ O ₂
CL CL	OGP	1	CLOGP
·	4.87		3.11
		•	
Structure	BIDO	Structure	BIDP
	C ₃₀ H ₂₉ N ₅ O ₂	In other	C ₂₇ H ₂₇ N ₅ O ₂
CI CI	.OGP		CLOGP
	5.77		5.70
	•	6.	· · · · · · · · · · · · · · · · · · ·
Structure	BIDQ	Structure	BIDR
		Structure	
	C ₂₇ H ₂₅ N ₅ O ₂	Structure	C ₂₇ H ₂₃ N ₅ O ₂
		Structure	

化工作 化超级分离 化邻苯基 医唇头 化氯化 化阿特里尔拉克基 人名阿雷斯 医多种多种的现在分词 计可以分析 经营业 经工程的 计记录

一日の日本の本のは、日本の子教育を共活用を直移なる変化での教育等、「いっと、中日の

Structure	BIGA	Structure	BIGB ·
Oioooi?	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂		C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂
	5.34		6.12
Structure	BIGC	Structure	BIGD
Good,	C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃		C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂
	5.46		4.16
Structure	BIGE	Structure	BIGF
growni.	C ₃₀ H ₂₄ Cl ₂ N ₄ O ₅	growing.	C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂
,	CLOGP 4.69	8 0	CLOGP 6.85
·	•		
Structure	BIGG	Structure	BIGH
Grown?	C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂	deding.	C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂
	CLOGP 5.19		CLOGP 6.02
	<u>. </u>		
Structure	BIGI	Structure	BIGJ
Promio	C ₂₇ H ₂₄ Cl ₂ N ₄ O ₂	90000	C ₂₆ H ₂₂ Cl ₂ N ₄ O ₂
	CLOGP 5.88		CLOGP 5.33
	<u></u>	1	
Structure	BIGK	Structure	BIGL
GO, W	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S	Granici	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S
6 1	CLOGP 5.08	N-C-	CLOGP 5.08

Structure	BIGM	Structure	BIGN
المناسبة المالية	C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂	Gray.	C ₂₂ H ₁₆ Cl ₂ N ₄ O ₂
	CLOGP	"	CLOGP
	5.62		3.85
Structure	BIGO	Structure	BIGP
	C31H28Cl2N4O2	granio	C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂
	CLOGP		CLOGP
	6.51		6.44
		·	
Structure	BIGQ	Structure	BIGR
1	C ₂₈ H ₂₄ Cl ₂ N ₄ O ₂	;-C	C ₂₈ H ₂₂ Cl ₂ N ₄ O ₂
منتي ا	CLOGP	المنافعة	CLOGP
	5.64	V.	5.16
Structure	BIHA	Structure	ВІНВ
	l i	,	
Orano o	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂	granio.	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂
Promio		Procoso.	
Provide	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂	· Praisis	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂ CLOGP 6.95
9,000,0	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂	Promo	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂
Structure	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂	Structure	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂ CLOGP 6.95
Structure "Transcond"	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂ CLOGP 6.17	Structure "Character of the structure"	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂ CLOGP 6.95
Structure **	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂ CLOGP 6.17	Structure "Children"	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂ CLOGP 6.95 BIHD C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂ CLOGP
Structure Tructure	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂ CLOGP 6.17 BIHC C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃	Structure "China"	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂ CLOGP 6.95 BIHD C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂
Structure Tructure	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂ CLOGP 6.17 BIHC C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃ CLOGP	Structure "The Charles of the Charle	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂ CLOGP 6.95 BIHD C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂ CLOGP
Structure Structure	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂ CLOGP 6.17 BIHC C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃ CLOGP	Structure Structure	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂ CLOGP 6.95 BIHD C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂ CLOGP
90000	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂ CLOGP 6.17 BIHC C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃ CLOGP 6.29	Promio	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂ CLOGP 6.95 BIHD C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂ CLOGP 4.99
90000	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂ CLOGP 6.17 BIHC C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃ CLOGP 6.29	Promio	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂ CLOGP 6.95 BIHD C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂ CLOGP 4.99

Structure	вінс	Structure	ВІНН
1000 m	C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂	Granit.	C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂
	CLOGP		CLOGP
	6.02		6.85
Structure .	віні	Structure	вінл
O'TOTO	C ₂₇ H ₂₄ Cl ₂ N ₄ O ₂	O'TOTO"	C ₂₆ H ₂₂ Cl ₂ N ₄ O ₂
"-"	CLOGP		CLOGP
·	8.71		6.16
Structure		Structure	<u>-</u>
	вінк	i.	BIHL
Orano P	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S	Thomas of	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ s
***	CLOGP		CLOGP
<u> </u>	5.91		5.91
Structure	· · · ·	Structure	·
A	вінм	a. 6	BIHN
المراجعة الم	C30H22Cl2N4O2	M. O. J.	C ₂₂ H ₁₆ Cl ₂ N ₄ O ₂
		" "	
	CLOGP		CLOGP
	CLOGP 6.45		CLOGP 4.68
Structure		Structure	4.68
Structure		Structure	
Structure	6.45	Structure	4.68
Structure	6.45	Structure	4.68 BIHP
Structure	8.45 BIHO C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂	Structure	4.68 BIHP C28H26Cl2N4O2
Starture	8.45 BIHO C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂ CLOGP 7.34	"Propio	4.68 BIHP C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂ CLOGP 7.27
Starture	8.45 BIHO C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂ CLOGP	"Propio	4.68 BIHP C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂ CLOGP
Starture	8.45 BIHO C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂ CLOGP 7.34	"Propio	4.68 BIHP C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂ CLOGP 7.27
D. O. O.	6.45 BIHO C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂ CLOGP 7.34 BIHQ	"Proporo	4.68 BIHP C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂ CLOGP 7.27

Structure	BIKA	Structure	ВІКВ
Orono P	C ₂₅ H ₁₈ N ₄ O ₂ S	or arora	C ₂₅ H ₁₇ CIN ₄ O ₂ S
	CLOGP 5.20		CLOGP 5.98
Structure	вікс	Structure	BIKD
00000	C ₂₆ H ₂₀ N ₄ O ₃ S	0,000	C ₂₄ H ₁₇ N ₅ O ₂ S
	CLOGP 5.32		CLOGP 4.02
Structure	BIKE	Structure	BIKF
ararara.	C ₂₈ H ₂₄ N ₄ O ₅ S	0,0000	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ s
,	CLOGP 4.55		CLOGP 6.71
Structure	BIKG	Structure	ВІКН
0,000	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S	0,0000	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S
	CLOGP 5.05		CLOGP 5.88
Structure	ВІКІ	Structure	ВІКЈ
000000	C ₂₅ H ₂₄ N ₄ O ₂ S	0,000	C ₂₄ H ₂₂ N ₄ O ₂ S
	CLOGP . 5.74		CLOGP 5.19
	<u> </u>		
Structure	BIKK	Structure	BIKL
Orango Po	C ₂₃ H ₁₆ N ₄ O ₂ S ₂	Chair.	C ₂₃ H ₁₆ N ₄ O ₂ S ₂
	CLOGP		CLOGP 4.94

Structure	ВІКМ	Structure	BIKN
040000	C ₂₈ H ₂₂ N ₄ O ₂ S		C ₂₀ H ₁₆ N ₄ O ₂ S
	5.48		3.71
	. /		
Structure	віко	Structure	BIKP
Dia To	C ₂₉ H ₂₈ N ₄ O ₂ S	0,0000	C ₂₆ H ₂₆ N ₄ O ₂ S
N-(_)-N	CLOGP 6.37		CLOGP 6.30
			
Structure	віко	Structure	BIKR
a i o	C ₂₆ H ₂₄ N ₄ O ₂ S	200	C ₂₆ H ₂₂ N ₄ O ₂ S
or.	CLOGP 5.50	or.	CLOGP 5.02
	· · · · · · · · · · · · · · · · · · ·		L
Structure	BILA	Structure	BILB
Structure Company	C ₂₅ H ₁₈ N ₄ O ₂ S	Structure Control of the Control of	C ₂₅ H ₁₇ CIN ₄ O ₂ S
Structure C		Structure Character Charac	
20000	C ₂₅ H ₁₈ N ₄ O ₂ S	Structure Control of the structure Control of	C ₂₅ H ₁₇ CIN ₄ O ₂ S
Structure Structure	C ₂₅ H ₁₈ N ₄ O ₂ S	Structure	C ₂₅ H ₁₇ CIN ₄ O ₂ S
20000	C ₂₅ H ₁₈ N ₄ O ₂ S CLOGP 5.20	2,0,0,0	C ₂₅ H ₁₇ CIN ₄ O ₂ S CLOGP 5.98
20000	C ₂₅ H ₁₈ N ₄ O ₂ S CLOGP 5.20	2,0,0,0	C ₂₅ H ₁₇ CIN ₄ O ₂ S CLOGP 5.98
Structure Characteristics Structure	C ₂₅ H ₁₈ N ₄ O ₂ S CLOGP 5.20 BILC C ₂₆ H ₂₀ N ₄ O ₃ S CLOGP	Structure Structure	C ₂₅ H ₁₇ CIN ₄ O ₂ S CLOGP 5.98 BILD C ₂₄ H ₁₇ N ₅ O ₂ S CLOGP
20000	C ₂₅ H ₁₈ N ₄ O ₂ S CLOGP 5.20 BILC C ₂₆ H ₂₀ N ₄ O ₃ S CLOGP	2,0,0,0	C25H17CIN4O2S CLOGP 5.98 BILD C24H17N5O2S CLOGP 4.02
Structure Characteristics Structure	C ₂₅ H ₁₈ N ₄ O ₂ S CLOGP 5.20 BILC C ₂₆ H ₂₀ N ₄ O ₃ S CLOGP 5.32	Structure Structure	C ₂₅ H ₁₇ CIN ₄ O ₂ S CLOGP 5.98 BILD C ₂₄ H ₁₇ N ₅ O ₂ S CLOGP 4.02

Structure	BIJG
ara-ara	C ₂₆ H ₂₂ Cl ₂ N ₄ O ₂
	CLOGP
	5.29

Structure	ВІЈН
aranio.	C ₂₆ H ₂₂ Cl ₂ N ₄ O ₂
1	CLOGP
,	6.12

Structure

BIIA

C₂₇H₂₆N₄O₂

CLOGP

6.01

vlib.db	
Structure	BIIB
0,011,00	C ₂₇ H ₂₅ CIN ₄ O ₂
	CLOGP
	6.78

Structure	BIIC
0,00000	C ₂₈ H ₂₈ N ₄ O ₃
***	CLOGP
	6.12

Structure	BIID
0,0000	C ₂₆ H ₂₅ N ₅ O ₂
	CLOGP
	. 4.82

Structure	BIIE
growy d.	C ₃₀ H ₃₂ N ₄ O ₅
,	CLOGP
	5.36

Structure	BIIF
0,00,00	C ₂₇ H ₂₄ Cl ₂ N ₄ O ₂
	CLOGP
	7.51

Structure	BIIG.
0,000	C ₂₇ H ₂₄ Cl ₂ N ₄ O ₂
I	CLOGP
	5.85

A CONTRACTOR OF THE CONTRACTOR

Structure	BIIK
0,000	C ₂₅ H ₂₄ N ₄ O ₂ S
	CLOGP
	5.74

Structure	BIIL
0,0000	C ₂₅ H ₂₄ N ₄ O ₂ S
	CLOGP
	5.74

Structure	BIJA
0,000	C ₂₆ H ₂₄ N ₄ O ₂
	CLOGP
	5.45

Structure	BIJB
0,0000	C ₂₆ H ₂₃ CIN ₄ O ₂
-	CLOGP
	6.22

Structure	BIJC
granio	C27H26N4O3
"-	CLOGP
	5.56

Structure	BIJD
0,000	C ₂₅ H ₂₃ N ₅ O ₂
	CLOGP
	4.26

Structure	BIJE
arain.	C ₂₉ H ₃₀ N ₄ O ₅
	CLOGP
	4.80

Structure	BIOL
	<u> </u>
	C ₂₉ H ₂₈ N ₄ O ₂ S
	CLOGP
-	6.37

Structure

BIOA

C31H30N4O2

CLOGP
6.64

VIID.GD	
Structure	BIOB
	C31H29CIN4O2
√.	CLOGP
	7.41

Structure	BIOC
B.	
-CADL	C ₃₂ H ₃₂ N ₄ O ₃
U.	CLOGP
	6.75

Structure	BIOD
	C ₃₀ H ₂₉ N ₅ O ₂
	CLOGP
	5.45

Structure	BIOE
1 TOWN	C ₃₄ H ₃₆ N ₄ O ₅
	CLOGP
	5.99

Structure	BIOF
Dia.	
	C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂
7	CLOGP .
	8.14

Structure	BIOG
	C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂
	CLOGP
	6.48

Structure	BIPG
Cinop	C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂
	CLOGP
	6.41 ·

Structure	ВІРН
Oranio	C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂
	CLOGP .
	7.24

Structure	вірк
0,0000	C ₂₆ H ₂₆ N ₄ O ₂ S
	CLOGP
	6.30

Structure .	BIPL
0,0000	C ₂₆ H ₂₆ N ₄ O ₂ S
I	CLOGP
	6.30

Structure	BIPA
0,000	C ₂₈ H ₂₈ N ₄ O ₂
	CLOGP
	6.57

Structure	BIPB
Oranio	C ₂₈ H ₂₇ CIN ₄ O ₂
	CLOGP
	7.34

Structure	BIPC
Oroginio	C ₂₉ H ₃₀ N ₄ O ₃
_	CLOGP
	6.68

Structure	BIPD
00000	C ₂₇ H ₂₇ N ₅ O ₂
	CLOGP
	5.38

Structure	BIPE
Chair de	C ₃₁ H ₃₄ N ₄ O ₅
/	CLOGP
L	5.92

In accordance with another aspect of the present invention, there is disclosed a method for the preparation of a medicament for treatment of a condition associated with an excess IgE level. The compound has the formula:

X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF₃, OCF₃, CONH₂, CONHR and NHCOR₁. R is selected from the group consisting of H, CH₃, C₂H₅, C₃H₇, C₄H₉, CH₂Ph, and CH₂C₆H₄-F(p-). R₁ and R₂ are independently selected from the group consisting of H, aryl, substituted aryl, cycloaryl substituted cycloaryl, multi-ring cycloaryl, benzyl, substituted benzyl and the like. Substitutions are alkyl, aryl, CF₃, CH₃, OCH₃, OH, CN, COOR, COOH and the like.

In accordance with another aspect of the present invention, there is disclosed a method of treating a mammal having a condition associated with an excess IgE level. The method comprises administering to the mammal an amount of a compound sufficient to reduced IgE levels in the mammal. The compound has the formula:

X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF₃, OCF₃, CONH₂, CONHR and NHCOR₁. R is selected from the group consisting of H, CH₃, C₂H₅, C₃H₇, C₄H₉,

redbulgarie : .

The state of the s

CH₂Ph, and CH₂C₆H₄-F(p-). R₁ and R₂ are independently selected from the group consisting of H, aryl, substituted aryl, cycloaryl substituted cycloaryl, multi-ring cycloaryl, benzyl, substituted benzyl, alkyl, cycloalkyl substituted cycloalkyl, multi-ring cycloalkyl, fused-ring aliphatic, cyclopropyl, substituted cyclopropyl, substituted cyclobutyl, cyclopentyl, substituted cyclopentyl, cyclopentyl, substituted cyclohexyl, substituted cycloheptyl, bicycloheptyl, bicyclooctyl, bicyclononyl, substituted bicycloalknyl, adamantyl, substituted adamantyl and the like, wherein at least one of R1 and R2 are aromatic groups. Substitutions are alkyl, aryl, CF3, CH3, OCH₃, OH, CN, COOR, COOH and the like.

In a variation of the above-disclosed method, at least one additional active ingredient may be administered in conjunction with the administration of the compound. The additional active ingredient may be combined with said compound in a pharmaceutically acceptable diluent and co-administered to the mammal. The additional active ingredient may be a short-acting β_2 -adrenergic agonist selected from the group consisting of terbutaline and albuterol. In a variation, the additional active ingredient may be a long-acting β_2 -adrenergic agonist selected from the group consisting of salmeterol and formoterol or an antihistamine selected from the group consisting of loratadine, azelastine and ketotifen. In another variation, the additional active ingredient may be a phosphodiesterase inhibitor, an anticholinergic agent, a corticosteroid, an inflammatory mediator release inhibitor or a leukotriene receptor antagonist.

The compound is preferably administered at a dose of about 0.01 mg to about 100 mg per kg body weight per day in divided doses of said compound for at least two consecutive days at regular periodic intervals.

Other variations within the scope of the present invention may be more fully understood with reference to the following detailed description.

Detailed Description of the Preferred Embodiment

The present invention is directed to small molecule inhibitors of IgE (synthesis and/or release) which are useful in the treatment of allergy and/or asthma or any diseases where IgE is pathogenic. The particular compounds disclosed herein were identified by their ability to suppress IgE levels in both ex vivo and in vivo assays. Development and optimization of clinical treatment regimens can be monitored by those of skill in the art by reference to the ex vivo and in vivo assays described below.

Ex Vivo Assay

This assay begins with *in vivo* antigen priming and measures secondary antibody responses *in vitro*. The basic protocol was documented and optimized for a range of parameters including: antigen dose for priming and time span following priming, number of cells cultured *in vitro*, antigen concentrations for eliciting secondary IgE (and other Ig's) response *in vitro*, fetal bovine serum (FBS) batch that will permit optimal IgE response *in vitro*, the importance of primed CD4+ T cells and hapten-specific B cells, and specificity of the ELISA assay for IgE (Marcelletti and Katz, *Cellular Immunology* 135:471-489 (1991); incorporated herein by reference).

The actual protocol utilized for this project was adapted for a more high throughput analyses. BALB/cByj mice were immunized i.p. with 10 μ g DNP-KLH adsorbed onto 4 mg alum and sacrificed after 15 days. Spleens were excised and homogenized in a tissue grinder, washed twice, and maintained in DMEM supplemented with 10% FBS, 100 U/ml penicillin, 100 μ g/ml streptomycin and 0.0005% 2-mercaptoethanol. Spleen cell cultures were established (2-3 million cells/ml, 0.2 ml/well in quadruplicate, 96-well plates) in the presence or absence of DNP-KLH (10 ng/ml). Test compounds (2 μ g/ml and 50 ng/ml) were added to the spleen cell cultures containing antigen and incubated at 37° C for 8 days in an atmosphere of 10% CO₂.

Culture supernatants were collected after 8 days and Ig's were measured by a modification of the specific isotype-selective ELISA assay described by Marcelletti and Katz (Supra). The assay was modified to facilitate high throughput. ELISA plates were prepared by coating with DNP-KLH overnight. After blocking with bovine serum albumin (BSA), an aliquot of each culture supernatant was diluted (1:4 in phosphate buffered saline (PBS) with BSA, sodium azide and Tween 20), added to the ELISA plates, and incubated overnight in a humidified box at 4° C. IgE levels were quantitated following successive incubations with biotinylated-goat antimouse IgE (b-GAME), AP-streptavidin and substrate.

Antigen-specific IgG1 was measured similarly, except that culture supernatants were diluted 200-fold and biotinylated-goat antimouse IgG1 (b-GAMG1) was substituted for b-GAME. IgG2a was measured in ELISA plates that were coated with DNP-KLH following a 1:20 dilution of culture supernatants and incubation with biotinylated-goat antimouse IgG2a (b-GAMG2a). Quantitation of each isotype was determined by comparison to a standard curve. The level of detectability of all

antibody was about 200-400 pg/ml and there was less than 0.001% cross-reactivity with any other Ig isotype in the ELISA for IgE.

29

In Vivo Assay

Compounds found to be active in the ex vivo assay (above) were further tested for their activity in suppressing IgE responses in vivo. Mice receiving low-dose radiation prior to immunization with a carrier exhibited an enhanced IgE response to sensitization with antigen 7 days later. Administration of the test compounds immediately prior to and after antigen sensitization, measured the ability of that drug to suppress the IgE response. The levels of IgE, IgG1 and IgG2a in serum were compared.

Female BALB/cByj mice were irradiated with 250 rads 7 hours after initiation of the daily light cycle. Two hours later, the mice were immunized i.p. with 2 μ g of KLH in 4 mg alum. Two to seven consecutive days of drug injections were initiated 6 days later on either a once or twice daily basis. Typically, i.p. injections and oral gavages were administered as suspensions (150 μ l/injection) in saline with 10% ethanol and 0.25% methylcellulose. Each treatment group was composed of 5-6 mice. On the second day of drug administration, 2 μ g of DNP-KLH was administered i.p. in 4 mg alum, immediately following the morning injection of drug. Mice were bled 7-21 days following DNP-KLH challenge.

Antigen-specific IgE, IgG1 and IgG2a antibodies were measured by ELISA. Periorbital bleeds were centrifuged at 14,000 rpm for 10 min, the supernatants were diluted 5-fold in saline, and centrifuged again. Antibody concentrations of each bleed were determined by ELISA of four dilutions (in triplicate) and compared to a standard curve: anti-DNP IgE (1:100 to 1:800), anti-DNP IgG2a (1:100 to 1:800), and anti-DNP IgG1 (1:1600 to 1:12800).

Diacyl Benzimidazole Inhibitors of IgE

Several species embraced by the following generic formula were synthesized and evaluated for their effectiveness in down-regulating IgE in the ex vivo and in vivo assays.

X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF₃, OCF₃, CONH₂, CONHR and NHCOR₁. R is selected from the group consisting of H, CH₃, C₂H₅, C₃H₇, C₄H₉, CH₂Ph, and CH₂C₆H₄-F(p-). R₁ and R₂ are independently selected from the group consisting of H, aryl, substituted aryl, cycloaryl substituted cycloaryl, multi-ring cycloaryl, benzyl, substituted benzyl, alkyl, cycloalkyl substituted cycloalkyl, multi-ring cycloalkyl, fused-ring aliphatic, cyclopropyl, substituted cyclopropyl, substituted cyclopentyl, substituted cyclopentyl, substituted cyclopentyl, bicyclonexyl, substituted cyclohexyl, substituted cycloheptyl, bicyclonetyl, bicyclononyl, substituted bicycloalknyl, adamantyl, substituted adamantyl and the like, wherein at least one of R1 and R2 are aromatic groups. Substitutions are alkyl, aryl, CF3, CH3, OCH₃, OH, CN, COOR, COOH and the like.

Synthesis of the Combinatorial Library

The diacyl benzimidazole compounds of the present invention were prepared using the following synthesis reactions, wherein the desired acid chlorides are selected from the R1 and R2 groups provided in the Table.

Synthesis of 3: 4-Nitro-1,2-phenylenediamine (10 g, 65.3 mmol) and 4-aminobenzoic acid (8.95 g, 65.3 mmol) were taken in a round bottomed flask and phosphorus oxychloride (95 ml) was added slowly. The reaction mixture was allowed to stir under reflux conditions. After 18 h, the reaction was allowed to cool and then poured slowly into an ice water mixture in an Erlenmeyer flask with vigorous stirring. Greenish yellow precipitate fell out which was then

filtered and washed with copious amounts of water. The residue was then dried to obtain 16.9 g of crude desired product. Mass spectrum analysis (positive ion) indicated presence of 3.

Synthesis of 4: Benzimidazole 3 (800 mg, 3.14 mmol) was dissolved in dry pyridine (5 ml) in a scintillation vial and the desired acid chlorides (1.1 eq) were added slowly. The reactions were carried out in an oven at 60C. After 16h, the reaction was cooled to RT and DI water was added. Precipitation took place, which was filtered off, washed with water and air dried. The aqueous layer was extracted with EtOAc (6 x 50 ml), dried over anhydrous Na₂SO₄ and the solvent was removed *in vacuo* to result in a colored solid. By positive ion MS the desired monoacylated product was found to be present in the initial precipitate as well as in the organic layer. Hence the solid residues obtained were combined and used as such for the reduction step.

Reduction of 4: Crude monoacylated nitro benzimidazole 4 (1.22 g, 3.40 mmol) was dissolved in MeOH (20 ml) and minimum amount of THF was added for complete dissolution to occur. Catalytic amount of 10% Pd on C was added and the solution was degassed and allowed to stir at 3.4 atm pressure under H₂ atmosphere for 4 h. Upon completion of reaction as observed via TLC, the reaction mixture was filtered through celite and the solvent was removed under reduced pressure to afford 979 mg of crude residue.

General Organic Analyses

HPLC/MS data was obtained using a Gilson semi-prep HPLC with a Gilson 170 Diode Array UV detector and PE Sciex API 100LC MS based detector. A Waters 600E with a Waters 490E UV detector was also used for recording HPLC data. The compounds were eluted with a gradient of CH₃CN (with 0.0035% TFA) and H₂O(with 0.01% TFA). Both HPLC instruments used Advantage C18 60A 5μ 50mm x 4.6mm columns from Thomson Instrument Company. Mass spectra were obtained by direct injection and electrospray ionization on a PE Sciex API 100LC MS based detector. Thin layer chromatography was performed using Merck 60F-254 aluminum backed precoated plates. Flash chromatography was carried out on Merck silica gel 60 (230-400 mesh) purchased from EM Scientific.

Syntheses of Symmetrical Diamides

The symmetrical diacyl benzimidazole compounds of the present invention were generally prepared from 2-(4-aminophenyl)-5-aminobenzimidazole, which was obtained by reduction of 2-(4-nitrophenyl)-6-nitrobenzimidazole.

2-(4-nitrophenyl)-6-nitrobenzimidazole

The dinitro benzimidazole was prepared as follows: a mixture of 4-nitrophenylenediamine (6.4g, 41.83 mmol) and 4-nitrobenzoic acid (7.86 g, 47 mmol) was dissolved in POCl₃ (250 ml) and heated to reflux for 2 h. The reaction mixture was cooled, poured on to ice, and stirred for 30 min. The resulting solid was filtered and washed with methanol and sodium bicarbonate to remove unreacted acid and allowed to dry overnight to give the desired product as a brown solid (5.8 g). The product was characterized by electrospray mass spectroscopy (mp >300° C).

2-(4-Aminophenyl)-5-aminobenzimidazole was prepared by suspending the above solid (75 g) in THF (75 ml), to which was added Pd-C (10% Pd by weight). The flask was purged with hydrogen and stirred under a balloon of hydrogen over night. TLC and MS showed starting material was still present so the reaction was allowed to continue over the weekend. TLC indicated complete reaction, the reaction was filtered through celite and washed with methanol. The solvent was removed under reduced pressure to give a dark brown solid (0.37 g) that was used without further purification.

2-(4-aminophenyl)-5-aminobenzimidazole

Alternatively, the 2-(4-aminophenyl)-5-aminobenzimidazole was prepared by the following reduction: 2-(4-nitrophenyl)-6-nitrobenzimidazole (8.9 g, 31 mmole) was suspended in concentrated HCl (100 ml) to which was added stannous chloride (42.3 g 180 mmole). The reaction mixture was heated to reflux for 5 hrs. The mixture was cooled to RT and the HCl salt

of the desired product was precipitated by the addition of ethanol. The resulting solid was filtered, re-dissolved in water and the solution made basic by the addition of concentrated ammonium hydroxide. The resulting precipitate was filtered and dried overnight under vacuum to yield the desired product as a gray solid (6.023 g, 26.9 mmole, 87%). The product characterized by electrospray mass spectroscopy and HPLC (mp. 222-227° C).

2-(4-Aminophenyl)-5-methoxy benzimidazole was synthesized from 2-(4-nitrophenyl)-5-methoxy benzimidazole, which was prepared as follows: 1,2-diamino-4-methoxybenzene (1.26 g, 10.0 mmole was mixed with 4-nitrobenzoic acid (1.67 g, 9.8 mmole) and dissolved in POCl₃ (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO₃ and used without further purification.

2-(4-nitrophenyl)-5-methoxy benzimidazole

2-(4-Aminophenyl)-5-methoxy benzimidazole was prepared by dissolving 1 g of the above nitrobenzimidazole in 30% Na₂S•9H₂O (20 ml) with stirring at RT for 21 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.

2-(4-aminophenyl)-5-methoxy benzimidazole

2-(4-Aminophenyl)-5,6-dichloro benzimidazole was synthesized from 2-(4-nitrophenyl)-5,6-dichloro benzimidazole, which was prepared as follows: 1,2-diamino-4,5-dichlorobenzene (1.68 g, 10.0 mmole) was mixed with 4-nitrobenzoic acid (1.58 g, 9.3 mmole), dissolved in POCl₃ (10 ml), and heated to reflux for 2.5 hours. The reaction mixture was cooled and

cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO₃ and used without further purification.

2-(4-nitrophenyl)-5,6-dichloro benzimidazole

2-(4-Aminophenyl)-5,6-dichloro benzimidazole was prepared by dissolving 1 g of the above nitrobenzimidazole in 30% Na₂S•9H₂O (20 ml) with stirring at RT for 21 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.

2-(4-Aminophenyl)-5,6-dichloro benzimidazole

2-(4-aminophenyl)-7-methyl benzimidazole was synthesized from 2-(4-nitrophenyl)-7-methyl benzimidazole, which was prepared by mixing 1,2-diamino-3-methylbenzene (1.24 g, 10.0 mmole) with 4-nitrobenzoic acid (1.69 g, 9.8 mmole), dissolved in POCl₃ (10 ml), and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO₃ and used without further purification.

2-(4-nitrophenyl)-7-methyl benzimidazole

2-(4-Aminophenyl)-7-methyl benzimidazole was synthesized by dissolving 1 g of the above nitrobenzimidazole in 30% Na₂S•9H₂O (20 ml) with stirring at RT for 4.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were

dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.

2-(4-aminophenyl)-7-methyl benzimidazole

2-(4-Aminophenyl)-6-methyl benzimidazole was synthesized from 2-(4-nitrophenyl)-6-methyl benzimidazole, which was prepared by mixing 1,2-diamino-4-methylbenzene (1.24 g, 9.8 mmole) with 4-nitrobenzoic acid (1.6 g, 9.9 mmole) and dissolved in POCl₃ (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO₃ and used without further purification.

2-(4-nitrophenyl)-6-methyl benzimidazole

2-(4-Aminophenyl)-6-methyl benzimidazole was synthesized by dissolving 1 g of the above nitrobenzimidazole in 30% Na₂S•9H₂O (20 ml) with stirring at RT for 4.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.

2-(4-aminophenyl)-6-methyl benzimidazole

2-(4-Aminophenyl)-5,6-dimethyl benzimidazole was synthesized from 2-(4-nitrophenyl)-5,6-dimethyl benzimidazole, which was prepared by mixing 1,2-diamino-4,5-dimethylbenzene (1.38 g, 10.1 mmole) with 4-nitrobenzoic acid (1.69 g, 9.9 mmole) and dissolved in POCl₃ (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured

こうできるとなっているというといればないということがないないとなるというないないないないないないとこれにないないという

onto ice. The resulting solid was filtered, washed with NaHCO₃ and used without further purification.

2-(4-nitrophenyl)-5,6-dimethyl benzimidazole

2-(4-Aminophenyl)-5,6-dimethyl benzimidazole was synthesized by dissolving 1 g of the above nitrobenzimidazole (31.1) in 30% Na₂S•9H₂O (20 ml) with stirring at RT for 4.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.

2-(4-aminophenyl)-5,6-dimethyl benzimidazole

The subsequent preparation of symmetrical diamides was accomplished by one of the following methods:

Method A: 2-(4-Aminophenyl)-6-aminobenzimidazole (1 mmole) was suspended in THF (5 ml) to which was added DIEA (2.5 mmole) and mixture cooled to -78° C. To the above cooled mixture was added the acid chloride (2.5 mmole) and let warm to RT overnight. Water (2 ml) is added to the reaction and extracted with EtOAc. The combined organic extracts were combined washed with NaHCO₃ (aq.) and concentrated under reduced pressure. The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH₂Cl₂) or reverse phase HPLC (CH₃CN/H₂O).

Method B: 2-(4-Aminophenyl)-6-aminobenzimidazole (1 mmole) and DMAP (cat.) was dissolved in pyridine (5 ml). To the above solution was added the acid chloride (2.5 mmole) and the reaction stirred overnight at 60° C. The reaction was cooled to room temperature and water added to precipitate the product. The resulting solid was collected by filtration with the solid

being washed by hexanes and water and NaHCO₃ (aq.). The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH₂Cl₂) or reverse phase HPLC (CH₃CN/H₂O).

Method C: 2-(4-Aminophenyl)-6-aminobenzimidazole (1 mmole) was suspended in THF (10 ml) to which was added K₂CO₃ (2.5 mmole) in water (0.5 ml). and mixture cooled to -78° C. To the above cooled mixture was added the acid chloride (2.5 mmole) and let warm to RT overnight. Water (10 ml) was added to the reaction and extracted with EtOAc. The combined organic extracts were combined washed with NaHCO₃ (aq.) and concentrated under reduced pressure. The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH₂Cl₂) or reverse phase HPLC (CH₃CN/H₂O).

Method D: The carboxylic acid (2.2 mmole), EDC (2.2 mmole) and DMAP (cat.) was dissolved in hot pyridine. To the above solution was added 2-(4-aminophenyl)-6-aminobenzimidazole (1 mmole) and heated to 60° C overnight. The cooled reaction mixture was partitioned between water and EtOAc. The organic layer was washed with NaHCO₃, dried over Na₂SO₄ and concentrated under vacuum. The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH₂Cl₂) or reverse phase HPLC (CH₃CN/H₂O).

Diacyl Benzimidazole Species

The following species encompassed within the disclosed generic formula were synthesized and tested for their ability to suppress IgE. The species are presented above in the Summary of the Invention

IgE Down-Regulatory Activity

All of the disclosed species were tested for their ability to suppress IgE in both the ex vivo and in vivo assays. They were all active in both assays. Activities (IC₅₀) of the species in the ex vivo assay ranged from about 100 pM to 1 nM. In the in vivo assay, the IC₅₀ dose ranged from approximately 100 µg/kg body weight/day to about 10 mg/kg body weight/day. The diacyl benzimidazole compounds were generally more potent than the monoacyl compounds.

Suppression of IgE Response

The inhibitory activity of the small molecules of the present invention were assayed using both the ex vivo and in vivo assays as described above. All of the compounds presented above were active in suppressing the IgE response. In the ex vivo assay, compounds in genuses I-XI produced 50% inhibition at concentrations ranging from 1 pM to 10 µM. In the in vivo assay, the compounds were effective at concentrations ranging from less than about 0.01 mg/kg/day to about 25 mg/kg/day, when administered in divided doses (e.g., two to four times daily) for at least two to seven consecutive days. Thus, the small molecule inhibitors of the present invention are disclosed as being useful in lowering the antigen-induced increase in IgE concentration, and consequently, in the treatment of IgE-dependent processes such as allergies in general and allergic asthma in particular.

Treatment Regimens

The amount of the IgE inhibitor compound which may be effective in treating a particular allergy or condition will depend on the nature of the disorder, and can be determined by standard clinical techniques. The precise dose to be employed in a given situation will also depend on the choice of compound and the seriousness of the condition, and should be decided according to the judgment of the practitioner and each patient's circumstances. Appropriate dosages can be determined and adjusted by the practitioner based on dose response relationships between the patient's IgE levels as well as standard indices of pulmonary and hemodynamic changes. Moreover, those skilled in the art will appreciate that dose ranges can be determined without undue experimentation by following the protocol(s) disclosed herein for ex vivo and in vivo screening (See

当ないにおきを要求する。

for example Hasegawa et al., *J. Med. Chem.* 40: 395-407 (1997) and Ohmori et al., *Int. J. Immunopharmacol.* 15:573-579 (1993); employing similar ex vivo and in vivo assays for determining dose-response relationships for IgE suppression by naphthalene derivatives; incorporated herein by reference).

Initially, suitable dosages of the compounds will generally range from about 0.001 mg to about 300 mg per kg body weight per day in divided doses, more preferably, between about 0.01 mg and 100 mg per kg body weight per day in divided doses. The compounds are preferably administered systemically as pharmaceutical formulations appropriate to such routes as oral, aerosol, intravenous, subcutaneously, or by any other route which may be effective in providing systemic dosing of the active compound. The compositions of pharmaceutical formulations are well known in the art. The treatment regimen preferably involves periodic administration. Moreover, long-term therapy may be indicated where allergic reactions appear to be triggered by continuous exposure to the allergen(s). Daily or twice daily administration has been effective in suppressing the IgE response to a single antigen challenge in animals when carried out continuously from a period of two to seven consecutive days. Thus, in a preferred embodiment, the compound is administered for at least two consecutive days at regular periodic intervals. However, the treatment regimen, including frequency of dosing and duration of treatment may be determined by the skilled practitioner, and modified as needed to provide optimal IgE down-regulation, depending on nature of the allergen, the dose, frequency, and duration of the allergen exposure, and the standard clinical indices.

In one embodiment of the present invention, an IgE-suppressing compound may be administered in conjunction with one or more of the other small molecule inhibitors disclosed, in order to produce optimal down-regulation of the patient's IgE response. Further, it is envisioned that one or more of the compounds of the present invention may be administered in combination with other drugs already known or later discovered for treatment of the underlying cause as well as the acute symptoms of allergy or asthma. Such combination therapies envisioned within the scope of the present invention include mixing of one or more of the small molecule IgE-inhibitors together with one or more additional ingredients, known to be effective in reducing at least one symptom of the disease condition. In a variation, the small molecule IgE-inhibitors herein disclosed may be administered separately from the additional drugs, but during the same course of the disease

WO 99/61019 PCT/US99/11322 40

condition, wherein both the IgE-inhibitor(s) and the palliative compounds are administered in accordance with their independent effective treatment regimens.

是一个时间,我们是这个时间,我们是一个时间,我们是这种我们的时间,我们就是一个时间,这种时间,这个时间,这个时间,这个时间,这个时间,这个时间,这个时间,这个时间

WHAT IS CLAIMED IS:

1. A pharmaceutical composition comprising the following compounds:

wherein X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF₃, OCF₃, CONH₂, CONHR and NHCOR₁;

wherein R is selected from the group consisting of H, CH₃, C₂H₅, C₃H₇, C₄H₉, CH₂Ph, and CH₂C₆H₄-F(p-); and

wherein R₁ and R₂ are independently selected from the group consisting of H, aryl, substituted aryl, cycloaryl substituted cycloaryl, multi-ring cycloaryl, benzyl, substituted benzyl, alkyl, cycloalkyl substituted cycloalkyl, multi-ring cycloalkyl, fused-ring aliphatic, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclopentyl, cyclopentyl, substituted cyclopentyl, cyclopentyl, substituted cycloheptyl, bicyclopetyl, bicyclooctyl, bicyclononyl, substituted bicycloalknyl, adamantyl, substituted adamantyl and the like, wherein at least one of R1 and R2 are aromatic groups.

- 2. The pharmaceutical composition of claim 1, wherein the R₁ and R₂ substitutions are selected from the group consisting of alkyl, aryl, CF₃, CH₃, OCH₃, OH, CN, COOR and COOH.
- 3. The pharmaceutical composition of Claim 2, wherein the compound is selected from the group consisting of:

Structure .	BIAA
0,000	C ₂₇ H ₂₀ N ₄ O ₂
	CLOGP
	5.47

Structure	1
Succure	BIAB
de diviso.	C ₂₇ H ₁₉ CIN ₄ O ₂
	CLOGP
	6.24

Structure :	BIAC
aranio	C ₂₈ H ₂₂ N ₄ O ₃
	CLOGP
	5.58

Structure .	BIAD
0,0000	C ₂₆ H ₁₉ N ₅ O ₂
	CLOGP
	4.28

Structure	BIAE
aramet.	C ₃₀ H ₂₆ N ₄ O ₅
	CLOGP
	4.82

Structure	BIAF
aragnis	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂
	CLOGP
	6.97

Structure	BIAG
aranio o	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂
	CLOGP
	5.31

Structure	ВІАН
Organio	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂
	CLOGP
	6.14

Structure	BIAI
0,000	C ₂₇ H ₂₆ N ₄ O ₂
	CLOGP
	6.01

Structure	BIAJ
Oranio	C ₂₆ H ₂₄ N ₄ O ₂
*	CLOGP
<u>(†)</u>	5.45

Structure	BIAK
Oronio	C ₂₅ H ₁₈ N ₄ O ₂ S
	CLOGP
	5.20

Structure	BIAL
0,000	C ₂₅ H ₁₈ N ₄ O ₂ S
"	CLOGP
	5.20

·			
Structure	BIAM	Structure	BIAN
	C ₃₀ H ₂₄ N ₄ O ₂	Q " >0	C ₂₂ H ₁₈ N ₄ O ₂
CHOCK W			CLOGP
	CLOGP		3.98
	5.74		
		Structure	
Structure	BIAO	Gudoloro	BIAP
	C ₃₁ H ₃₀ N ₄ O ₂	0,0000	C ₂₈ H ₂₈ N ₄ O ₂
	CLOGP		CLOGP
	6.64		6.57 ·
	<u></u>		
Structure	8100	Structure	BIAR
۶.	BIAQ	ا ب	
-G	C ₂₈ H ₂₆ N ₄ O ₂	رکن د	C ₂₈ H ₂₄ N ₄ O ₂
	CLOGP	ا المانية الما	CLOGP
()°	5.76	0.	5.28
Structure	BIBA	Structure	BIBB
00 00	0 11 011 0	Din or	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂
A Chit	C ₂₇ H ₁₉ CIN ₄ O ₂	400	
	CLOGP		CLOGP 7.04
	6.26		1
1	}	Structure	T
Structure	BIBC	0.100.010	BIBD
200 . W	C ₂₈ H ₂₁ CIN ₄ O ₃	1°0,00,00	C ₂₆ H ₁₈ CIN ₅ O ₂
1000	CLOGP		CLOGP
	6.38		5.08
Structure	7 5:5	Structure	BIBF
	BIBE		
Wor. J.	C ₃₀ H ₂₅ CIN ₄ O ₅	M. Oliving	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂
	CLOGP		CLOGP
	5.62		7.77

Structure	BIBG	Structure	вівн
dimoro o	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂	comoro	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂
	CLOGP 6.11		CLOGP 6.94
Structure	BIBI	Structure	BIBJ
oranio	C ₂₇ H ₂₅ CIN ₄ O ₂	مزمن	C ₂₆ H ₂₃ CIN ₄ O ₂
	CLOGP 6.81		CLOGP 6.25
Structure	ВІВК	Structure	BIBL
0,0000	C ₂₅ H ₁₇ CIN ₄ O ₂ S	"Orono"	C ₂₅ H ₁₇ CIN ₄ O ₂ S
	CLOGP 6.00		CLOGP 6.00
Structure	вівм	Structure	BIBN
منين ا	C ₃₀ H ₂₃ CIN ₄ O ₂	D'O'T	C ₂₂ H ₁₇ CIN ₄ O ₂
	CLOGP 6.54		CLOGP 4.78
	, , , , , , , , , , , , , , , , , , , ,		
Structure	ВІВО	Structure	BIBP
	C31H29CIN4O2	Promio	C ₂₈ H ₂₇ CIN ₄ O ₂
O. O.	CLOGP		CLOGP 7.37
	7.43		
		6	
Structure	BIBQ	Structure	BIBR
Structure	BIBQ C ₂₈ H ₂₅ CIN ₄ O ₂	Structure	BIBR C ₂₈ H ₂₃ CIN ₄ O ₂

Structure	BICA	Structure	BICB
oranio	C ₂₈ H ₂₂ N ₄ O ₃	oranio.	C ₂₈ H ₂₁ CIN ₄ O ₃
	CLOGP		CLOGP
	5.58		6.35
			·
Structure	BICC	Structure	BICD
'oranio'	C ₂₉ H ₂₄ N ₄ O ₄	acoro	C ₂₇ H ₂₁ N ₅ O ₃
	CLOGP 5,70		CLOGP 4.39
			<u> </u>
Structure	BICE	Structure	BICF
orani.	C ₃₁ H ₂₈ N ₄ O ₆	oran i	C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃
	CLOGP		CLOGP
	4.93		7.09
		Charatura	,
Structure	BICG	Structure	вісн
(dissola)	C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃	1,0000,00.	C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃
	CLOGP 5.43		CLOGP 6.26
	5.43		1,
Structure	BICI	Structure	BICJ
como	C ₂₈ H ₂₈ N ₄ O ₃	0,000,00	C ₂₇ H ₂₆ N ₄ O ₃
	CLOGP		CLOGP
	8.12		5.56
[O	 	Structure	
Structure	віск	Oli dollaro	BICL
0,00000	C ₂₆ H ₂₀ N ₄ O ₃ S	of Ocho	C ₂₆ H ₂₀ N ₄ O ₃ S
-	CLOGP		CLOGP
1	5.32		5.32

Structure	BICM	Structure	BICN
04,00	C ₃₁ H ₂₆ N ₄ O ₃	· Crows	C ₂₃ H ₂₀ N ₄ O ₃
	CLOGP 5.85		CLOGP 4.09
Structure	BICO	Structure	BICP
	C ₃₂ H ₃₂ N ₄ O ₃	Orano O	C ₂₉ H ₃₀ N ₄ O ₃
	CLOGP 6.75		CLOGP 6.68
		<u> </u>	
Structure	BICQ	Structure	BICR
رين ا	C ₂₉ H ₂₈ N ₄ O ₃	7.00	C ₂₉ H ₂₆ N ₄ O ₃
'orora,	CLOGP 5.88	0.00	CLOGP 5.39
	11		
Structure	BIDA	Structure	BIDB
	1 5.57		
0,0,00	C ₂₆ H ₁₉ N ₅ O ₂	10,0000	C ₂₆ H ₁₈ CIN ₅ O ₂
٥٠٥٥٥٥٥	C ₂₆ H ₁₉ N ₅ O ₂	Orororo.	C ₂₆ H ₁₈ CIN ₅ O ₂
٥٠٥٥٥٥	C ₂₆ H ₁₉ N ₅ O ₂	٥٠٥٥٥٥٥	CLOGP
Structure Structure	C ₂₆ H ₁₉ N ₅ O ₂	Structure	CLOGP
Structure Company	C ₂₆ H ₁₉ N ₅ O ₂ CLOGP 4.60	Structure Charles	CLOGP 5.37
Structure "A"O(")	C ₂₆ H ₁₉ N ₅ O ₂ CLOGP 4.60	Structure Charles	Side Cloge 5.37 BIDD C25H18N6O2 CLOGP
Structure Cororio	C ₂₆ H ₁₉ N ₅ O ₂ CLOGP 4.60 BIDC C ₂₇ H ₂₁ N ₅ O ₃	Structure Charles	5.37 BIDD C ₂₅ H ₁₈ N ₆ O ₂
Structure Structure	C ₂₆ H ₁₉ N ₅ O ₂ CLOGP 4.60 BIDC C ₂₇ H ₂₁ N ₅ O ₃ CLOGP 4.71	Structure Structure	5.37 BIDD C25H18N6O2 CLOGP 3.41
٥٠٥٥٥٥٥	C ₂₆ H ₁₉ N ₅ O ₂ CLOGP 4.60 BIDC C ₂₇ H ₂₁ N ₅ O ₃ CLOGP 4.71 BIDE	٥٠٥٥٥٥	BIDD C25H18N6O2 CLOGP 3.41 BIDF
٥٠٥٥٥٥٥	C ₂₆ H ₁₉ N ₅ O ₂ CLOGP 4.60 BIDC C ₂₇ H ₂₁ N ₅ O ₃ CLOGP 4.71	٥٠٥٥٥٥	5.37 BIDD C25H18N6O2 CLOGP 3.41

Structure	BIDG	Structure	BIDH
an is	C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂	Oranio.	C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂
	CLOGP		CLOGP
	4.44		5.27
			
Structure	BIDI	Structure	BIDJ
0,0000	C ₂₆ H ₂₅ N ₅ O ₂	0,000	C ₂₅ H ₂₃ N ₅ O ₂
	CLOGP	H-1	CLOGP
	5.14		4.58
		Structure	
Structure	BIDK	Sudctore	BIDL
0,000	C ₂₄ H ₁₇ N ₅ O ₂ S	Of One	C24H17N5O2S
	CLOGP		CLOGP
	4.33		4.33
		Structure	1
Structure	BIDM	, Man	BIDN
000000	C ₂₉ H ₂₃ N ₅ O ₂	May be	C ₂₁ H ₁₇ N ₅ O ₂
	CLOGP	N-1	CLOGP
	4.87		3.11
Structure		Structure	
Structure	BIDO		BIDP
	C ₃₀ H ₂₉ N ₅ O ₂	M. O. J.	C ₂₇ H ₂₇ N ₅ O ₂
	CLOGP		CLOGP
	5.77		5.70
Structure		Structure	DIDD
£.	BIDQ	4.	BIDR
or or or	C ₂₇ H ₂₅ N ₅ O ₂	oroin d	C ₂₇ H ₂₃ N ₅ O ₂
	CLOGP	in.	CLOGP
)			4.41

Structure BIEA	Structure	BIEB
C30H26N4O5	promio.	C30H25CIN4O5
CLOGP		CLOGP
4.82		5.59
Structure BIEC	Structure	BIED
C31H28N4O6	promio	C ₂₉ H ₂₅ N ₅ O ₅
CLOGP		CLOGP
4.93		3.63
		
Structure BIEE	Structure	BIEF
C ₃₃ H ₃₂ N ₄ O ₈	proons	C ₃₀ H ₂₄ Cl ₂ N ₄ O ₅
CLOGP		CLOGP
4.17		6.32
	Structure	
Structure BIEG	Suddie	BIEH
C ₃₀ H ₂₄ Cl ₂ N ₄ O ₅	Dramio.	C ₃₀ H ₂₄ Cl ₂ N ₄ O ₅
CLOGP CLOGP		CLOGP
4.66		5.49
		·
Structure BIEI	Structure	BIEJ
C ₃₀ H ₃₂ N ₄ O ₅	O'como of Co	C ₂₉ H ₃₀ N ₄ O ₅
CLOGP	h-4	CLOGP .
5.36		4.80
	(a)	
Structure BIEK	Structure	BIEL
C ₂₈ H ₂₄ N ₄ O ₅ S	1. Drawie	C ₂₈ H ₂₄ N ₄ O ₅ S
CLOGP		CLOGP
		4.55

Structure	BIEM	Structure	BIEN
	C ₃₃ H ₃₀ N ₄ O ₅	1. D	C ₂₅ H ₂₄ N ₄ O ₅
	CLOGP		CLOGP
	5.09		3.33
Structure	BIEO	Structure	BIEP
	C ₃₄ H ₃₆ N ₄ O ₅	Drango	C ₃₁ H ₃₄ N ₄ O ₅
D. OT	CLOGP		CLOGP 5.92
	5.99		
Structure	BIEQ	Structure	BIER
throug.	C ₃₁ H ₃₂ N ₄ O ₅	200	C ₃₁ H ₃₀ N ₄ O ₅
127	CLOGP	177	CLOGP
	5.11	•	4.63
	1	Structure	
Structure	BIFA	e.	BIFB
Diano,	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂	provio	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂
1	CLOGP		CLOGP
	7.00		7.78
Structure		Structure	, aven
9	BIFC	٩	BIFD
Dramio	C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃	0,000	C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂
	CLOGP	M-V	CLOGP
	7.12		5.82
•			
Structure		Structure	
Structure	BIFE	Structure	BIFF
Structure	BIFE C ₃₀ H ₂₄ Cl ₂ N ₄ O ₅	Structure	BIFF C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂
Structure		Structure	

a describer a complete de describer de la complete de la complete de la complete de la complete de la complete

Structure BIFG	Structure	BIFH
C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂	Drawio.	C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂
CLOGP CLOGP		CLOGP
6.85		7.68
Structure BIFI	Structure	BIFJ
C ₂₇ H ₂₄ Cl ₂ N ₄ O ₂		C ₂₆ H ₂₂ Cl ₂ N ₄ O ₂
CLOGP		CLOGP
7.54		6.99
Structure BIFK	Structure	BIFL
C25H16Cl2N4O2	Drawici Co	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S
CLOGP		CLOGP
6.74		6.74
Structure RIFM	Structure	BIFN
A .	Structure	BIFN
C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂	Structure	C ₂₂ H ₁₆ Cl ₂ N ₄ O ₂
A .	Structure	
C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂		C ₂₂ H ₁₆ Cl ₂ N ₄ O ₂
C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂	Structure	C ₂₂ H ₁₆ Cl ₂ N ₄ O ₂
C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂ CLOGP 7.28		C ₂₂ H ₁₆ Cl ₂ N ₄ O ₂ CLOGP 5.51
Structure Can BIFO		C ₂₂ H ₁₆ Cl ₂ N ₄ O ₂ CLOGP 5.51
Structure Structure Structure C30H22Cl2N4O2 CLOGP 7.28 BIFO C31H28Cl2N4O2		C ₂₂ H ₁₆ Cl ₂ N ₄ O ₂ CLOGP 5.51 BIFP C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂
Structure BIFO C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂ CLOGP 7.28 Structure BIFO C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂ CLOGP 8.17	Structure	C ₂₂ H ₁₆ Cl ₂ N ₄ O ₂ CLOGP 5.51 BIFP C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂ CLOGP 8.10
Structure BIFO C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂ CLOGP 7.28 Structure BIFO C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂ CLOGP 8.17	Structure	C22H16Cl2N4O2 CLOGP 5.51 BIFP C28H26Cl2N4O2 CLOGP 8.10
Structure BIFO C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂ CLOGP 7.28 Structure BIFO C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂ CLOGP 8.17	Structure	C22H16Cl2N4O2 CLOGP 5.51 BIFP C28H26Cl2N4O2 CLOGP 8.10 BIFR C28H22Cl2N4O2
Structure Structure Structure BIFO C31H28Cl2N4O2 CLOGP 8.17	Structure	C22H16Cl2N4O2 CLOGP 5.51 BIFP C28H26Cl2N4O2 CLOGP 8.10

Structure	BIGA	Structure	BIGB
ciano	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂	grows.	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂
	CLOGP 5.34		6.12
			
Structure	BIGC	Structure	BIGD
growno,	C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃	Orono P	C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂
	CLOGP 5.46		CLOGP 4.16
	<u> </u>		
Structure	BIGE	Structure	BIGF
grows.	C ₃₀ H ₂₄ Cl ₂ N ₄ O ₅	grainsi	C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂
,	CLOGP 4.69		CLOGP 6.85
	4.03		
Structure	BIGG	Structure	BIGH
G'ani)	C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂	Granio.	C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂
N-M-	CLOGP		CLOGP 6.02
	5.19		6.02
Structure	BIGI	Structure ·	BIGJ
G'anio	C ₂₇ H ₂₄ Cl ₂ N ₄ O ₂	Grano P	C ₂₆ H ₂₂ Cl ₂ N ₄ O ₂
h h	CLOGP		CLOGP
	5.88		5.33
Structure	BIGK	Structure	BIGL
an wo	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂	Q-0-10	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ s
11100	CLOGP	1 8 2 1	CLOGP
	5.08		5.08

Structure	BIGM	Structure	BIGN
المرابع المرابع	C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂	Grant.	C ₂₂ H ₁₆ Cl ₂ N ₄ O ₂
	CLOGP		CLOGP
	5.62		3.85
<u></u>		(C)	
Structure	BIGO	Structure	BIGP
	C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂	G10-30	C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂
Din't	CLOGP		CLOGP
*	6.51		6.44
Structure	BIGQ	Structure	BIGR
ि	C ₂₈ H ₂₄ Cl ₂ N ₄ O ₂	200	C ₂₈ H ₂₂ Cl ₂ N ₄ O ₂
or ord	CLOGP	رين تي	CLOGP
u,	5.64	~ 。	5.16
		Structure	
Structure	ВІНА	Siluciale	вінв
Organo	C ₂₇ H ₁₈ Cl ₂ N ₄ O ₂	Sionio.	C ₂₇ H ₁₇ Cl ₃ N ₄ O ₂
	CLOGP		CLOGP
	6.17		6.95
Structure		Structure	
Sudcuit	вінс		BIHD
Signory.	C ₂₈ H ₂₀ Cl ₂ N ₄ O ₃	graphy	C ₂₆ H ₁₇ Cl ₂ N ₅ O ₂
	CLOGP		CLOGP
	6.29	·	4.99
Characteristics		Structure	
Structure	BIHE	0300.0	BIHF
Promis.	C ₃₀ H ₂₄ Cl ₂ N ₄ O ₅	grami	C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂
	CLOGP		CLOGP
	5.52		7.68

вінс	Structure	вінн
C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂	granio	C ₂₇ H ₁₆ Cl ₄ N ₄ O ₂
CLOGP		CLOGP
6.02		6.85
	•	
BiHI	Structure	ВІНЈ
C ₂₇ H ₂₄ Cl ₂ N ₄ O ₂	orgon?	C ₂₆ H ₂₂ Cl ₂ N ₄ O ₂
		CLOGP 6.16
6.77		
вінк	Structure	BIHL
C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S	orgons?	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S
CLOGP		CLOGP
5.91		5.91
·	Charaktera	
вінм	Structure	BIHN
C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂	Char.	C ₂₂ H ₁₆ Cl ₂ N ₄ O ₂
CLOGP		CLOGP
6.45	<u> </u>	4,68
7	Structure	
віно		BIHP
C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂	120000	C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂
CLOGP		CLOGP 7.27
1.34	L	
BILLO	Structure	BIHR
віно	Structure	BIHR
BIHQ C ₂₈ H ₂₄ Cl ₂ N ₄ O ₂	Structure	BIHR C ₂₈ H ₂₂ Cl ₂ N ₄ O ₂ CLOGP
	C27H16Cl4N4O2 CLOGP 6.02 BiHI C27H24Cl2N4O2 CLOGP 6.71 BIHK C25H16Cl2N4O2 S CLOGP 5.91 BIHM C30H22Cl2N4O2 CLOGP 6.45	BIHG C27H16Cl4N4O2 CLOGP 6.02 Structure C25H16Cl2N4O2 CLOGP 5.91 Structure C30H22Cl2N4O2 CLOGP 6.45 Structure C31H28Cl2N4O2 CLOGP C131H28Cl2N4O2 CLOGP CLOGP C131H28Cl2N4O2 CLOGP CLOGP C131H28Cl2N4O2 CLOGP CLOGP C131H28Cl2N4O2 CLOGP CLOGP CLOGP C131H28Cl2N4O2 CLOGP CLOGP C131H28Cl2N4O2 CLOGP CLOGP CLOGP CLOGP C131H28Cl2N4O2 CLOGP CLOGP

Structure	BIKA	Structure	ВІКВ
C25H	18N4O2S	0100000	C ₂₅ H ₁₇ CIN ₄ O ₂ S
CLOGP			CLOGP
·]	5.20		5.98
		0	·
Structure	зікс	Structure .	віко
C76H	₂₀ N ₄ O ₃ S	0,000	C ₂₄ H ₁₇ N ₅ O ₂ S
CLOGP			CLOGP
	5.32		4.02
Structure		Structure	BIVE
10.00	BIKE		BIKF
C28H	24N4O5S	Charles of the same	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S
CLOGP			CLOGP
	4.55		6.71
Structure		Structure	DIKH
a, l	BIKG	Structure	ВІКН
a	вік G 6 ^{Cl} 2N4O2	Structure	8іКН С ₂₅ Н ₁₆ С½N ₄ О ₂ S
C ₂₅ H	6Cl ₂ N ₄ O ₂	Structure Structure	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S CLOGP
(C25H	6CI ₂ N ₄ O ₂	Structure	C ₂₅ H ₁₆ C ₂ N ₄ O ₂ S
C ₂₅ H. Structure	6Cl ₂ N ₄ O ₂	Structure Structure	C ₂₅ H ₁₆ C ₂ N ₄ O ₂ S CLOGP 5.88
C ₂₅ H. Structure	6CI ₂ N ₄ O ₂	٥٠٥٠٠٠٠	C ₂₅ H ₁₆ C ₂ N ₄ O ₂ S CLOGP 5.88
C ₂₅ H S CLOGP	6Cl ₂ N ₄ O ₂	٥٠٥٠٠٠٠	C ₂₅ H ₁₆ C ₂ N ₄ O ₂ S CLOGP 5.88
C ₂₅ H S CLOGP	5.05 BIKI	٥٠٥٠٠٠٠	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S CLOGP 5.88 BIKJ C ₂₄ H ₂₂ N ₄ O ₂ S CLOGP
Structure C ₂₅ H	5.05 BIKI	٥٠٥٠٠٠٠	C ₂₅ H ₁₆ C ₂ N ₄ O ₂ S CLOGP 5.88 BIKJ C ₂₄ H ₂₂ N ₄ O ₂ S
Structure C25H CLOGP	5.05 BIKI 24N4O2S	٥٠٥٠٠٠٠	C ₂₅ H ₁₆ C ₂ N ₄ O ₂ S CLOGP 5.88 BIKJ C ₂₄ H ₂₂ N ₄ O ₂ S CLOGP 5.19
Structure C25H CLOGP	5.05 BIKI 24N4O2S 5.74	Structure	C ₂₅ H ₁₆ C ₂ N ₄ O ₂ S CLOGP 5.88 BIKJ C ₂₄ H ₂₂ N ₄ O ₂ S CLOGP 5.19
Structure Structure C25H CLOGP	5.05 BIKI 24N4O2S	Structure	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂ S CLOGP 5.88 BIKJ C ₂₄ H ₂₂ N ₄ O ₂ S CLOGP 5.19
Structure Structure C25H CLOGP	5.05 BIKI 24N4O2S 5.74 BIKK 16N4O2S2	Structure	C ₂₅ H ₁₆ C ₂ N ₄ O ₂ S CLOGP 5.88 BIKJ C ₂₄ H ₂₂ N ₄ O ₂ S CLOGP 5.19

Structure	вікм	Structure	BIKN
04,000	C ₂₈ H ₂₂ N ₄ O ₂ S	ST Chipson	C ₂₀ H ₁₆ N ₄ O ₂ S
	CLOGP		CLOGP 3.71
	5.48		3.71
Structure	віко	Structure	ВІКР
	C ₂₉ H ₂₈ N ₄ O ₂ S	00000	C ₂₆ H ₂₆ N ₄ O ₂ S
	CLOGP		CLOGP 6.30
	6.37		0.30
Structure	BIKQ	Structure	BIKR
7	C ₂₆ H ₂₄ N ₄ O ₂ S	3.50	C ₂₆ H ₂₂ N ₄ O ₂ S
\ \tag{\tau}	CLOGP		CLOGP
	5.50		5.02
Structure	BILA	Structure	BILB
00000	C ₂₅ H ₁₈ N ₄ O ₂ S	200000	C ₂₅ H ₁₇ CIN ₄ O ₂ S
	CLOGP		CLOGP 5.98
	5.20		<u> </u>
Structure	BILC	Structure	BILD
20000	C ₂₆ H ₂₀ N ₄ O ₃ S	2,000	C ₂₄ H ₁₇ N ₅ O ₂ S
	CLOGP		CLOGP
	1 1	v.	. 4.02
	5.32	,	i 1
Structure	1 1	Structure	i 1
Structure	5.32	Structure	. 4.02
Structure	5.32	Structure Structure	. 4.02

Structure	BILG	Structure	BILH
	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂	A. A. S.	C ₂₅ H ₁₆ Cl ₂ N ₄ O ₂
La Cons	s	white a	s
	CLOGP		CLOGP
	5.05		5.88
Structure		Structure	211
	BILI		BILJ
12000	C ₂₅ H ₂₄ N ₄ O ₂ S	A COLUMN	C ₂₄ H ₂₂ N ₄ O ₂ S
•	CLOGP		CLOGP
	5.74		5.19
1		Christian]
Structure	BILK	Structure	BILL
2000	C ₂₃ H ₁₆ N ₄ O ₂ S ₂	12000	C ₂₃ H ₁₆ N ₄ O ₂ S ₂
	CLOGP		CLOGP
	4.94		4.94
•			
Structure	BILM	Structure	BILN
Structure		Structure >°	BILN C ₂₀ H ₁₆ N ₄ O ₂ S
Structure	C ₂₈ H ₂₂ N ₄ O ₂ S	Structure ***	
Structure		Structure	C ₂₀ H ₁₆ N ₄ O ₂ S
Structure	C ₂₈ H ₂₂ N ₄ O ₂ S	Structure	C ₂₀ H ₁₆ N ₄ O ₂ S
Structure	C ₂₈ H ₂₂ N ₄ O ₂ S	Structure Structure	C ₂₀ H ₁₆ N ₄ O ₂ S
٥٩٥٥٥٥	C ₂₈ H ₂₂ N ₄ O ₂ S CLOGP 5.48	57°0'0'0	C ₂₀ H ₁₆ N ₄ O ₂ S CLOGP 3.71
٥٩٥٥٥٥	C ₂₈ H ₂₂ N ₄ O ₂ S CLOGP 5.48 BILO C ₂₉ H ₂₈ N ₄ O ₂ S	57°0'0'0	C ₂₀ H ₁₆ N ₄ O ₂ S CLOGP 3.71 BILP C ₂₆ H ₂₆ N ₄ O ₂ S
٥٩٥٥٥٥	C ₂₈ H ₂₂ N ₄ O ₂ S CLOGP 5.48	57°0'0'0	C ₂₀ H ₁₆ N ₄ O ₂ S CLOGP 3.71
٥٩٥٥٥٥	C ₂₈ H ₂₂ N ₄ O ₂ S CLOGP 5.48 BILO C ₂₉ H ₂₈ N ₄ O ₂ S CLOGP	57°0'0'0	C ₂₀ H ₁₆ N ₄ O ₂ S CLOGP 3.71 BILP C ₂₆ H ₂₆ N ₄ O ₂ S CLOGP
Structure Structure	C ₂₈ H ₂₂ N ₄ O ₂ S CLOGP 5.48 BILO C ₂₉ H ₂₈ N ₄ O ₂ S CLOGP 6.37	Structure Structure	C ₂₀ H ₁₆ N ₄ O ₂ S CLOGP 3.71 BILP C ₂₆ H ₂₆ N ₄ O ₂ S CLOGP
Structure Structure	C ₂₈ H ₂₂ N ₄ O ₂ S CLOGP 5.48 BILO C ₂₉ H ₂₈ N ₄ O ₂ S CLOGP 6.37	Structure Structure	C ₂₀ H ₁₆ N ₄ O ₂ S CLOGP 3.71 BILP C ₂₆ H ₂₆ N ₄ O ₂ S CLOGP 6.30
Structure Structure	C ₂₈ H ₂₂ N ₄ O ₂ S CLOGP 5.48 BILO C ₂₉ H ₂₈ N ₄ O ₂ S CLOGP 8.37 BILQ C ₂₆ H ₂₄ N ₄ O ₂ S	Structure Structure	C ₂₀ H ₁₆ N ₄ O ₂ S CLOGP 3.71 BILP C ₂₆ H ₂₆ N ₄ O ₂ S CLOGP 6.30 BILR C ₂₆ H ₂₂ N ₄ O ₂ S
Structure of the struct	C ₂₈ H ₂₂ N ₄ O ₂ S CLOGP 5.48 BILO C ₂₉ H ₂₈ N ₄ O ₂ S CLOGP 6.37	Structure	C ₂₀ H ₁₆ N ₄ O ₂ S CLOGP 3.71 BILP C ₂₆ H ₂₆ N ₄ O ₂ S CLOGP 6.30

Structure	BIJG
Or On in	C ₂₆ H ₂₂ Cl ₂ N ₄ O ₂
	CLOGP
	5.29

Structure	ВІЈН
0,000	C ₂₆ H ₂₂ Cl ₂ N ₄ O ₂
	CLOGP
	6.12

Structure	BIIA
000000	C ₂₇ H ₂₆ N ₄ O ₂
	CLOGP
	6.01

Structure	
	BIIB
Day of	
	C ₂₇ H ₂₅ CIN ₄ O ₂
	CLOGP
	6.78

Structure	BIIC
granio	C ₂₈ H ₂₈ N ₄ O ₃
	CLOGP
	6.12

Structure	BIID
0,0000	C ₂₆ H ₂₅ N ₅ O ₂
	CLOGP
· ·	4.82

Structure	BIIE
10.00	
and.	C ₃₀ H ₃₂ N ₄ O ₅
	CLOGP
	5.36

Structure	BIIF
Orani	C ₂₇ H ₂₄ Cl ₂ N ₄ O ₂
	CLOGP
	7.51

Structure	BIIG
Oromis !	C ₂₇ H ₂₄ Cl ₂ N ₄ O ₂
	CLOGP
	5.85

Structure	BIIK
0,0000	C ₂₅ H ₂₄ N ₄ O ₂ S
	CLOGP
	5.74

Structure	BIIL
0,0000	C ₂₅ H ₂₄ N ₄ O ₂ S
	CLOGP
	5.74

Structure	BIJA
0,0000	C ₂₆ H ₂₄ N ₄ O ₂
	CLOGP
	5.45

Structure	BIJB
0,0000	C ₂₆ H ₂₃ CIN ₄ O ₂
	CLOGP
	6.22

Structure	BIJC
grapio	C ₂₇ H ₂₆ N ₄ O ₃
	CLOGP
	5.56

Structure	BIJD
00000	C ₂₅ H ₂₃ N ₅ O ₂
	CLOGP
1	4.26

Structure	BIJE
a diore.	C ₂₉ H ₃₀ N ₄ O ₅
,	CLOGP
	4.80 ·

Structure BIMA Structure	ВІМВ
C ₃₀ H ₂₄ N ₄ O ₂	C ₃₀ H ₂₃ CIN ₄ O ₂
CLOGP	CLOGP
5.74	6.51
Structure BIMC Structure	BIMD
C ₃₁ H ₂₆ N ₄ O ₃	C ₂₉ H ₂₃ N ₅ O ₂
a.oce	CLOGP
5.85	4.55
Structure Structure	BIMF
	\
C ₃₃ H ₃₀ N ₄ O ₅	C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂
CLOGP 5.09	CLOGP 7.24
Structure Structure	вімн
O TO SUMUSINO	C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂
C ₃₀ H ₂₂ Cl ₂ N ₄ O ₂	CLOGP
5.58	6.41
Structure BIJK Structure	BIJL
0 C24H22N4O2S	° C ₂₄ H ₂₂ N ₄ O ₂ S
CLOGP	CLOGP
5.19	5.19
	· · · · · · · · · · · · · · · · · · ·
·	
Structure BIMK Structure	BIML
BIMK BIMK	
BIMK BIMK	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Structure	BINL
الريان ٢٠	C ₂₀ H ₁₆ N ₄ O ₂ S
	CLOGP
	3.71

Structure	BINH
70mio	C22H16Cl2N4O2
	CLOGP
	4.65

Structure	BINA
	C ₂₂ H ₁₈ N ₄ O ₂
	CLOGP
	3.98

Structure	BINC
20170	C ₂₃ H ₂₀ N ₄ O ₃
	CLOGP
	4.09

Structure	BIND
() () () () () () ()	C21H17N5O2
	CLOGP
,	2.79

Structure	BINE
1000 A	C ₂₅ H ₂₄ N ₄ O ₅
	CLOGP
	3.33

Structure	BIOL
Diomi	C ₂₉ H ₂₈ N ₄ O ₂ S
	CLOGP
	6.37

Structure	BIOC
Dioin.	C ₃₂ H ₃₂ N ₄ O ₃
Q.	CLOGP
=	6.75

Structure	BIOD
D	
	C ₃₀ H ₂₉ N ₅ O ₂
	CLOGP
	5.45

Structure	BIOE
LA CHILLIAN	C34H36N4O5
	CLOGP
	5.99

Structure	BIOF
or-ordina	C31H28CI2N4O2
Y	CLOGP
	8,14

Structure	BIOG
O COLDLI	C31H28Cl2N4O2
	CLOGP
	6.48

Structure	вюн
Br. Owii	C ₃₁ H ₂₈ Cl ₂ N ₄ O ₂
	CLOGP
	7.31

Structure	BIPG
Compos	C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂
	CLOGP
	6.41

Structure	BIPH
Orano	C ₂₈ H ₂₆ Cl ₂ N ₄ O ₂
	CLOGP
	7.24

Structure	вірк
0,0000	C ₂₆ H ₂₆ N ₄ O ₂ S
#-	CLOGP
	6.30

Structure	BIPL
0,000	C ₂₆ H ₂₆ N ₄ O ₂ S
****	CLOGP.
	6.30

Structure	BIPA	
0,000	C ₂₈ H ₂₈ N ₄ O ₂	
N	CLOGP	
	6.57	

Structure	BIPB	
Oranjo	C ₂₈ H ₂₇ CIN ₄ O ₂	
	CLOGP	
·	7.34	

Structure	BIPC.
Oranio	C ₂₉ H ₃₀ N ₄ O ₃
	CLOGP
	6.68

Structure	BIPD
0,000	C ₂₇ H ₂₇ N ₅ O ₂
	CLOGP
	5.38

Structure	BIPE
craword.	C ₃₁ H ₃₄ N ₄ O ₅
, ,	CLOGP
	5.92

and the second of the state of the second of

BIQA	Structure 2	BIQB
C ₂₈ H ₂₆ N ₄ O ₂	G ^O	C ₂₈ H ₂₅ CIN ₄ O ₂
LOGP	Ţ.	CLOGP
5.78	Υ	6.54
BIQC	Structure	BIQD
C ₂₉ H ₂₈ N ₄ O ₃	20,	C ₂₇ H ₂₅ N ₅ O ₂
LOGP	Ç.	CLOGP
5.88	Ø	4.57
BIQE	Structure	BIQF
C ₃₁ H ₃₂ N ₄ O ₅	20	C28H24Cl2N4O2
LOGP	٠,٠	CLOGP
5.11	-a.	7.27
BIQG	Structure	відн
28H24Cl2N4O2	G ^O	C ₂₈ H ₂₄ Cl ₂ N ₄ O ₂
LOGP	 	CLOGP
5.61	Υ	6.44
BIQK		BIQL
	\mathcal{Z}	· · · · · · · · · · · · · · · · · · ·
26H24N4O2S	ا کی	C ₂₆ H ₂₄ N ₄ O ₂ S
1 1	14	
.OGP	Ç	CLOGP
	BIQA C28H28N4O2 LOGP 5.78 BIQC C29H28N4O3 LOGP 6.88 BIQE C31H32N4O5 LOGP 6.11 BIQG C28H24Cl2N4O2 CLOGP 6.61	Structure Stru

- 4. The pharmaceutical composition of any of Claims 1-3 for use in the treatment of a disease condition associated with excess IgE.
- 5. The pharmaceutical composition of Claim 4, further comprising at least one additional ingredient which is active in reducing at least one symptom associated with the disease condition associated with excess IgE.
- 6. The pharmaceutical composition of Claim 5, wherein said at least one additional ingredient is selected from the group consisting of a short-acting β_2 -adrenergic agonist, a long-acting β_2 -adrenergic agonist, an antihistamine, a phosphodiesterase inhibitor, an anticholinergic agent, a corticosteroid, an inflammatory mediator release inhibitor and a leukotriene receptor antagonist.
- 7. Use of the pharmaceutical composition of any one of Claims 1-3 in the preparation of a medicament for treatment of a disease condition associated with excess IgE.

Inte 'onal Application No

			101/03 99/11322		
A CLASS IPC 6	SIFICATION OF SUBJECT MATTER A61K31/415				
	to International Patent Classification (IPC) or to both national classif	ication and IPC			
	S SEARCHED locumentation searched (classification system followed by classification system followed by clas				
IPC 6	A61K	ition symbols)			
Documenta	ation searched other than minimum documentation to the extent that	such documents are inch	oded in the fields searched		
Electronic o	data base consulted during the international search (name of data b	ase and where practical	search terms used		
	•	and the second			
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.		
X	EP 0 719 765 A (MITSUI TOATSU CH 3 July 1996 (1996-07-03)	1-4			
	page 30 page 31		-		
	page 38 page 39		х -		
	page 49				
	page 50; claim 1; examples 43,88	,1100,2100			
		·			
	·		į		
	·	•			
·	·	•			
		•			
			×		
		-			
	ner documents are listed in the continuation of box C.	X Patent family m	nembers are listed in annex.		
	tegories of cited documents :		shed after the international filing date not in conflict with the application but		
conside	ant defining the general state of the art which is not ered to be of particular relevance	cited to understand invention	the principle or theory underlying the		
hing da		cannot be consider	ar relevance; the claimed invention ed novel or cannot be considered to		
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another claimon or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an invention cannot be considered to involve an invention cannot be considered to involve an invention.					
other m		document is combinents, such combinents.	ned with one or more other such docu- nation being obvious to a person skilled		
"P" documer later the	P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family				
Date of the a	ctual completion of the international search	Date of mailing of th	e international search report		
1	October 1999	11/10/19	99		
Name and m	ealing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer			
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.	05/17 01	27 P		
	Fax: (+31-70) 340-3016 Orviz Diaz, P				

smational application No.

の対象を対象に対象を対象の対象を対象を対象を対象の対象を対象を対象を対象を対象を対象をあるというにあり、いたでして、ことになっていた。

PCT/US 99/11322

Box i	Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Inte	emational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X	Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: See FURTHER INFORMATION SHEET PCT/ISA/210
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; It is covered by claims Nos.:
Remark o	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International Application No. PCT/US 99 /11322

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

The substituents in the general formula of claim 1 are not clearly defined, contrary to Art. 6 PCT. The expressions "the like" or "substituted aryl", for example, encompass an extremely large number of possiblities, which makes impossible to carry out a complete search.

Furthermore, most of the specific R1 and R2 substituents mentioned in claim 2 are not covered by claim 1 and some of the compounds mentioned in claim 3 have a pyridine ring or a thiophene ring, which are not mentioned as possible substituents in claim 1.

In view of this the search had to be limited to the general structural characteristics of the formula in claim 1.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

.nformation on patent family members

Inte : onel Application No PCT/US 99/11322 こうじょう かいかい かんていけい 医院のなる 美国の 医療の 医療の 医療の はいかい しゅうしん しゅうしゅうしょ しゅうしゅう

		r			PCT/US 99/11322		
 cited	atent document d in search repor		Publication date		Patent family member(s)		Publication date
EP	0719765	A	03-07-1996	JP US	82315 58212	14 A 58 A	10-09-1996 13-10-1998
							•
			•				
			•				
	•						
				•			
		•					

Form PCT/ISA/210 (patent family annex) (July 1992)