Formulation

The goal is to express quantum mechanics in a new way with geometric algebra in order to get an understanding for space and spin.

The wavefunction can be expressed as

$$\Psi = \sum_{i=1}^n rac{1}{\sqrt{2}} (e_i + J f_i) (\mathfrak{R} \psi_i + J \, \mathfrak{I} \psi_i)$$

where e_i, f_i are orthonormal vectors which square to +1,

$$J=e_0f_0$$

is an independent bivector, and ψ_i are the complex valued components of the wave vector. In total there are 2n+2 orthonormal vectors for an n-dimensional original wave vector.

Alternatively, the bivector

$$oxed{\Psi f_0 = rac{1}{\sqrt{2}} \sum_{i=1}^n \left((e_i f_0 + f_i e_0) \mathfrak{R} \psi_i + (e_i e_0 - f_i f_0) \mathfrak{I} \psi_i
ight)}$$

is a more natural choice, but for the (classical) derivation I will use the first version. The difference to other treatments of spin with geometric algebra is that here the basis is of the form ab+cd with 2 additional basis vectors, instead of $\sigma_{12}=e_1e_2$.

One advantage is that the full probability calculation becomes

$$P(1 o 2) = \langle \Psi_1 \Psi_1^\dagger \Psi_2 \Psi_2^\dagger
angle - 1$$

which can take the same rotor for $\Psi\Psi^{\dagger}$ and $\Psi.$

For a spin-1/2 particle coordinates will come out as

$$egin{aligned} J\Psi\Psi^\dagger &= J + T + Xx + Yy + Zz \ X &= rac{1}{2}(e_1f_2 + e_2f_1) \ Y &= rac{1}{2}(e_1e_2 + f_1f_2) \ Z &= rac{1}{2}(e_2f_2 - e_1f_1) \ T &= rac{1}{2}(e_1f_1 + e_2f_2) \end{aligned}$$

where coordinates do not depend on e_0, f_0 . Space rotations can be derived in this basis and the same rotor can be applied to Ψ too. T may be related to time, but for now it is only an expression.

They anti-commute and obey

$$XY = Z \qquad YZ = X \qquad ZX = Y \ XT = 0 \qquad YT = 0 \qquad ZT = 0$$
 $\Pi = e_1 f_1 e_2 f_2 \qquad XX = -rac{1}{2}(1+\Pi) \qquad YY = -rac{1}{2}(1+\Pi) \qquad ZZ = -rac{1}{2}(1+\Pi) \qquad TT = -rac{1}{2}(1-\Pi)$

which has been derived from the spin wave vector alone without actually considering time and for a positive signature vector space. Note that these multivectors are not invertable.

Observation in quantum mechanics

The probability $P=|\langle \psi_1|\psi_2\rangle|^2$ to measure a state ψ_1 in a state ψ_2 can be calculated from

$$egin{aligned} P(1
ightarrow2) &= \langle (1-\Psi_1\Psi_1^\dagger)(1-\Psi_2\Psi_2^\dagger)
angle \ &= \langle \Psi_1\Psi_1^\dagger\Psi_2\Psi_2^\dagger
angle -1 \ &= \Psi_1\Psi_1^\dagger\cdot\Psi_2\Psi_2^\dagger -1 \end{aligned}$$

which is an inner product between two state multivectors of the form $\Psi\Psi^{\dagger}$ (see appendix).

Unitary transformation

A unitary transformation of the wavefunction can be represented as a rotor in geometric algebra. Note that the same rotor can be applied to Ψ or $\Psi\Psi^{\dagger}$.

State vector

$$\Psi = \sum_{i=1}^n rac{1}{\sqrt{2}} (e_i + J f_i) (\mathfrak{R} \psi_i + J \, \mathfrak{I} \psi_i)$$

The wave function squared can be expanded into a bivector

$$egin{aligned} \Omega &= J\Psi\Psi^\dagger \ &= J + \sum_i e_i f_i \, |\psi_i|^2 + \sum_{i < j} (e_i f_j + e_j f_i) \, \mathfrak{R}(\psi_i \psi_j^*) - \sum_{i < j} (e_i e_j + f_i f_j) \, \mathfrak{I}(\psi_i \psi_j^*) \end{aligned}$$

(see appendix) for an easier translation from the usual representation with a complex wave vector ψ_i .

Single spin

The wavefunction for a single spin-up in a direction given by Euler angles θ,ϕ is usually written as

$$\psi = egin{pmatrix} \cosrac{ heta}{2} \ \sinrac{ heta}{2}e^{i\phi} \end{pmatrix}$$

up to an arbitrary phase.

Written in geometric algebra this is

$$J\Psi\Psi^{\dagger} = J + e_1 f_1 \cos^2 \frac{\theta}{2} + e_2 f_2 \sin^2 \frac{\theta}{2}$$
 $+ (e_1 f_2 + e_2 f_1) \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \phi$
 $+ (e_1 e_2 + f_1 f_2) \cos \frac{\theta}{2} \sin \frac{\theta}{2} \sin \phi$
 $= J + e_1 f_1 \frac{1 - \cos \theta}{2} + e_2 f_2 \frac{1 + \cos \theta}{2}$
 $+ (e_1 f_2 + e_2 f_1) \frac{1}{2} \sin \theta \cos \phi$
 $+ (e_1 e_2 + f_1 f_2) \frac{1}{2} \sin \theta \sin \phi$
 $= J + \frac{1}{2} (e_1 f_1 + e_2 f_2)$
 $+ \frac{1}{2} (e_2 f_2 - e_1 f_1) \cos \theta$
 $+ \frac{1}{2} (e_1 f_2 + e_2 f_1) \sin \theta \cos \phi$
 $+ \frac{1}{2} (e_1 e_2 + f_1 f_2) \sin \theta \sin \phi$

Remembering that we have Euler angles, we can identify the multivectors for space coordinates from this expression for a single spin

$$egin{aligned} J\Psi\Psi^\dagger &= J + T + Xx + Yy + Zz \ X &= rac{1}{2}(e_1f_2 + e_2f_1) \ Y &= rac{1}{2}(e_1e_2 + f_1f_2) \ Z &= rac{1}{2}(e_2f_2 - e_1f_1) \ T &= rac{1}{2}(e_1f_1 + e_2f_2) \end{aligned}$$

The expression for T is just the remaining term.

Space rotations will be derived soon.

$$egin{aligned} e_1 f_1 &= T - Z \ e_2 f_2 &= T + Z \ TT + XX &= -1 \end{aligned} \ \Omega = J + \sum_i e_i f_i \, |\psi_i|^2 + 2 \sum_{i < j} X_{ij} \, \mathfrak{R}(\psi_i \psi_j^*) - 2 \sum_{i < j} Y_{ij} \, \mathfrak{I}(\psi_i \psi_j^*) \end{aligned}$$

Interpretation

A vague idea why quantum mechanics is this way, is because due to the rules of probability, a state should be a (multi)vector and probabilities be calculated from an inner product. The probabilities rules are that they should sum to 1 and redoing a measurement yields the same results.

This state is constantly being rotated looking like $\Delta=\cdots R_3R_2R_1?R_1^\dagger R_2^\dagger R_3^\dagger \cdots$ we somehow get, that actually Δ should split into $\Delta=\Psi\Psi^\dagger$ with the consequence that the degrees of freedom are largely reduced. The above construction with geometric algebra demonstrates how to do this "square root".

Other ideas

Looking at

$$\Psi f_0 = rac{1}{\sqrt{2}} \sum_{i=1}^n \left((e_i f_0 + f_i e_0) \mathfrak{R} \psi_i + (e_i e_0 - f_i f_0) \mathfrak{I} \psi_i
ight)$$

one may also consider what happens if the terms $e_i f_0$, $f_i e_0$, $e_i e_0$, $f_i f_0$ have independent coefficients. Maybe this is related to Dirac matrices.

Also, one may wonder if a term $e_i e_j$ is existing.

Appendix

Derivation

$$\Psi = \sum_i rac{1}{\sqrt{2}} (e_i + J f_i) (\mathfrak{R} \psi_i + J \, \mathfrak{I} \psi_i)$$

With $z_i=\Re\psi_i+J\,\Im\psi_i$

$$egin{aligned} \Psi \Psi^\dagger &= rac{1}{2} \sum_{ij} (e_i + J f_i) z_i z_j^\dagger (e_j - J f_j) \ &= \sum_i (1 - e_i f_i J) z_i z_i^\dagger \ &+ rac{1}{2} \sum_{i < j} \left((e_i + J f_i) (e_j - J f_j) z_i z_j^\dagger + (e_j + J f_j) (e_i - J f_i) z_j z_i^\dagger
ight) \ &= \sum_i (1 - e_i f_i J) z_i z_i^\dagger \ &+ rac{1}{2} \sum_{i < j} \left(e_i e_j + f_i f_j - (e_i f_j + e_j f_i) J \right) z_i z_j^\dagger \ &+ rac{1}{2} \sum_{i < j} \left(e_j e_i + f_j f_i - (e_j f_i + e_i f_j) J \right) z_j z_i^\dagger \end{aligned}$$

With the real and imaginary parts

$$egin{aligned} R_{ij} &= rac{1}{2}(z_iz_j^\dagger + z_jz_i^\dagger) \ JI_{ij} &= rac{1}{2}(z_iz_j^\dagger - z_jz_i^\dagger) \ z_iz_j^\dagger &= R_{ij} + J\,I_{ij} \ z_jz_i^\dagger &= R_{ij} - J\,I_{ij} \end{aligned}$$

where R_{ij}, I_{ij} are scalars this becomes

$$egin{aligned} \Psi \Psi^\dagger &= \sum_i (1 - e_i f_i J) z_i z_i^\dagger \ &+ rac{1}{2} \sum_{i < j} \left(e_i e_j + f_i f_j - (e_i f_j + e_j f_i) J
ight) (R_{ij} + J \, I_{ij}) \ &+ rac{1}{2} \sum_{i < j} \left(-e_i e_j - f_i f_j - (e_i f_j + e_j f_i) J
ight) (R_{ij} - J \, I_{ij}) \ &= \sum_i z_i z_i^\dagger - \sum_i e_i f_i J z_i z_i^\dagger \ &- \sum_{i < j} (e_i f_j + e_j f_i) J R_{ij} \ &+ \sum_{i < j} (e_i e_j + f_i f_j) J \, I_{ij} \end{aligned}$$

For normalized wave vectors

$$\langle \Psi \Psi^\dagger
angle = 1$$

Therefore

$$J\Psi\Psi^\dagger = J + \sum_i e_i f_i z_i z_i^\dagger + \sum_{i < j} (e_i f_j + e_j f_i) R_{ij} - \sum_{i < j} (e_i e_j + f_i f_j) \, I_{ij}$$

is a grade-2 multivector.

The probability in quantum mechanics can be calculated from the dot product of two real vectors where states have the components

$$(\psi_i\psi_i^*,\ldots,\sqrt{2}\mathfrak{R}(\psi_i\psi_i^*),\ldots,\sqrt{2}\mathfrak{I}(\psi_i\psi_i^*),\ldots)$$

due to

$$egin{aligned} P(\psi
ightarrow \phi) &= |\langle \psi | \phi
angle|^2 \ &= \sum_i \psi_i \phi_i^* \sum_j \phi_j \psi_j^* \ &= \sum_i \psi_i \phi_i^* \phi_i \psi_i^* + \sum_{i < j} \left(\psi_i \phi_i^* \phi_j \psi_j^* + \psi_j \phi_j^* \phi_i \psi_i^*
ight) \ &= \sum_i \psi_i \psi_i^* \phi_i \phi_i^* + \sum_{i < j} 2 \mathfrak{R}(\psi_i \psi_j^* \phi_i^* \phi_j) \ &= \sum_i \psi_i \psi_i^* \phi_i \phi_i^* + \sum_{i < j} 2 \left(\mathfrak{R}(\psi_i \psi_j^*) \mathfrak{R}(\phi_i \phi_j^*) + \mathfrak{I}(\psi_i \psi_j^*) \mathfrak{I}(\phi_i \phi_j^*)
ight) \end{aligned}$$

being a dot product of vectors with components $\psi_i \psi_i^*, \sqrt{2} \psi_i \psi_j^* (i < j)$.

Therefore in our case and for normalized wave vectors the probability can also be calculated from

$$P(1 o 2) = \langle (1-\Psi_1\Psi_1^\dagger)(1-\Psi_2\Psi_2^\dagger)
angle = \langle \Psi_1\Psi_1^\dagger\Psi_2\Psi_2^\dagger
angle - 1$$