

InfluxDBEine Einführung

Louis Beul | #588411 | HTW Berlin

B212: Internet of Things (SoSe 24)

University of Applied Sciences

Agenda

1. Zeitreihen und Zeitreihendatenbanken

- a. Zeitreihen
- Zeitreihendatenbanken

2. InfluxDB in der Theorie

- a. Definition
- b. Datenmodell & Aufbau
- c. Points
- d. Line Protocol
- e. Flux Query Language

3. InfluxDB in der Praxis

- a. Erste Schritte
- b. Einbindung ins IoT-Projekt

4. Fragerunde

Einführung | Zeitreihendaten(banken)

Zeitreihen | Was ist das?

- englisch Time Series Data
- Chronologisch geordnete Folge von Messungen
- Meist in regelmäßigen Intervallen gemessen
- Über einen gewissen Zeitraum hinweg
- Bei der Darstellung als Graph ist eine Achse immer die Zeit
- Oft wird zwischen Ereignissen und Metriken unterschieden
 - Metrik (Metric): Messung in regelmäßigen Intervallen
 - Ereignis (Event): Messung in unregelmäßigen Intervallen

Zeitreihen | Beispiele

- Wertpapierkurse
- Herzfrequenz
- Wetterdaten
- Server Logs
- Network Traces
- Anrufhistorie
- IoT-/Sensordaten

Zeitreihen | Verarbeitung

- Verarbeitung in Echtzeit
- sehr große Datenmengen
- Zeitstempel statt klassischer IDs
- Fokus liegt auf **Schreiboperationen**
- fortlaufende Aggregation
- Anwendung:
 - Prognosen bzw. Trendanalysen
 - Monitoring
 - Machine Learning

Zeitreihendatenbanken | Anforderungen

- Optimiert f
 ür h
 äufige Schreiboperationen
- Timestamp-Indizierung
- Mechanismen zur Datenlöschung bzw. -erhaltung
- Ressourcensparende Speichermechanismen
 - Datenkompression
 - Downsampling
- Automatische, kontinuierliche Queries
- Einfache Anbindungen an Datenquellen
- Hohe Skalierbarkeit

Zeitreihendatenbanken | Beispiele

- InfluxDB
- Prometheus
- TimescaleDB
- DolphinDB
- Apache Druid

InfluxDB | Theorie

InfluxDB | Definition

"Time series analytics database engineered for developers working with real-time streaming data at any scale"

influxdata.com

InfluxDB | Datenmodell im Vergleich

Relationale DBMS (SQL)	InfluxDB (TSDB)
Datenbanken	Buckets
Tabellen	Measurements
Einträge bzw. Zeilen	Points
SQL als Query Language	Flux (Query Language)
Serialisierung via ORM (extern)	Serialisierung via Line Protocol
Keine automatische Löschung/Archivierung	Retention Policy

InfluxDB | Aufbau

InfluxDB | Points (Datensätze)

- Influx speichert einzelne Datensätze als Points
- Points haben immer 4 Bestandteile:
 - Das Measurement dem der Point angehört (z.B. humi)
 - Ein Tag Set als Menge von indizierten Metadaten
 (z.B. studentId="911", location="C625")
 - Ein Field Set als Menge der eigentlichen Daten (z.B. value=39.66)
 - Einen TimeStamp zur zeitlichen Einordnung

optional

InfluxDB | Line Protocol

- Das Line Protocol wird zum Serialisieren von Points genutzt
- Alle von Influx bereitgestellten APIs, SDKs und Interfaces benutzen intern dieses Protokoll
- Es ist sensitiv gegenüber Leerzeichen
- Tags sind immer als String formatiert
- Tag Sets und Field Sets können mehrere Einträge enthalten

Flux | Query Language

- Flux ist eine funktionale Skriptsprache zur Datenverarbeitung
- Gebaut für InfluxDB, funktioniert aber auch mit SQL, CSV, ...
- Flux Queries sind immer ähnlich aufgebaut:
 - a. Quelle spezifizieren
 - b. Zeitraum eingrenzen
 - c. Daten filtern
 - d. Daten verarbeiten, umformen oder aggregieren
 - e. Resultat zurückgeben
- Zeiträume können absolut oder relativ definiert werden
- Klassische Aggregatoren wie min(), max(), mean(), ...

Flux | Analogie Wasseraufbereitung


```
from(bucket:"sensor_data")
|> range(start: -24h)
|> filter(fn: (r) => r._measurement == "humi")
|> group(columns["studentId"])
|> mean()
|> yield(name: "mean_humi")
```

- Quelle angeben
- Zeitlich beschränken
- Filtern und aufbereiten
- Aggregieren
- Ausgeben

InfluxDB | Anbindungen

- Jede InfluxDB-Instanz kommt mit eingebauter REST API
 - Kommunikation via HTTP(S)
 - Requests enthalten Line Protocol oder Flux Queries
- Darüber hinaus gibt es viele SDKs
 - Python, Node, Arduino, Java, R, Scala, Swift ...
- Influx Telegraf als Server-Agent für weitere Schnittstellen
 - AWS, NginX, Jenkins, Salesforce, Redis, Windows OS ...
- Anbindung in Node RED
 - via node-red-contrib-influxdb Node
 - oder via HTTP API Request in JavaScript

InfluxDB | Retention, Tasks, Alerts

- Jeder neue Bucket bekommt eine Retention Policy
 - "Wie lange werden die Daten jeweils gespeichert?"
 - Standardmäßig unbegrenzt
- Tasks sind wiederkehrende, festgelegte Operationen
 - z.B. "führe alle 24h den Query XYZ aus"
 - oder "exportiere alle 10 Tage den Bucket als CSV-Datei"
- Influx kann eigene Alerts versenden
 - Basierend auf Task-Logik
 - Kann an jeglich HTTP Endpunkt angebunden werden
 - Vorkonfiguriert f
 ür Slack oder Pagerduty

InfluxDB | Praxis

InfluxDB | Erste Schritte

- Influx installieren und starten
- Bucket mit Testdaten füllen
- Rumspielen und ausprobieren
 - Data Explorer
 - Dashboards
- Anleitung auf GitHub
 - Teil 01 selbst ausprobieren
 - Oder weiter zuschauen

github.com/LBeul/influx_workshop

InfluxDB | Integration ins Projekt

InfluxDB | Einbindung ins Projekt

- Influx weiterhin laufen lassen
- Node RED starten
- Anleitung auf GitHub folgen
- Aufgeteilt in Read & Write Flows
 - Mit Read starten
 - Mit Write weiter machen
- Jetzt seid ihr an der Reihe
 - Queries auf eure Daten anpassen
 - Mit Flux herumspielen, etc.

github.com/LBeul/influx_workshop

Hochschule für Technik und Wirtschaft Berlin

Quellen

- https://www.ibm.com/docs/de/spss-modeler/saas?topic=data-charact eristics-time-series
- https://www.influxdata.com/what-is-time-series-data/
- https://www.influxdata.com/blog/influxdb-internals-101-part-one/
- https://docs.influxdata.com/influxdb/v1/concepts/glossary
- https://docs.influxdata.com/influxdb/v2/reference/syntax/line-protocol/
- https://flows.nodered.org/node/node-red-contrib-influxdb
- https://docs.influxdata.com/flux/v0/get-started/
- https://github.com/LBeul/influx_workshop

Bildquellen

- https://unsplash.com/ (lizenzfrei)
- https://excalidraw.com/ (zur Diagrammerstellung)
- https://docs.influxdata.com/flux/v0/get-started/ (Water Diagram)
- https://www.the-grcode-generator.com/
- https://www.clipartmax.com/png/full/200-2006484_data-warehouse-apache-dr uid-logo.png
- https://static-00.iconduck.com/assets.00/influxdb-icon-2017x2048-38lz5101.pn
 g
- https://www.timescale.com/static/1d1faec969cde90911998d145e43aaed/Timescale-Brandmark-Yellow-PNG.png
- https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Prometheus_soft ware_logo.svg/2066px-Prometheus_software_logo.svg.png
- https://dolphindb.gallerycdn.vsassets.io/extensions/dolphindb/dolphindb-vscod e/2.0.1115/1706923515493/Microsoft.VisualStudio.Services.lcons.Default
- https://www.influxdata.com/images/influxdata_full_navy-a7ca2ff4.svg

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

www.htw-berlin.de