Modelling CS u: control input, y: plant output State variable CS is in state variable form if Inverse Laplace Transform Given F(s), its inverse LT is $J(t) = \mathcal{L}^{-1}\{F(s)\} := \frac{1}{2\pi} \int_{c-j\infty}^{c+j\infty} F(s) e^{st} ds$ $= \lim_{w \to \infty} \frac{1}{2\pi} \int_{c-jw}^{c+jw} F(s) e^{st} ds, c \in \mathbb{C} \text{ is selected s.t. the line } L := \{s \in \mathbb{C} : s = c+j\omega, \omega \in \mathbb{R}\} \text{ is inside the ROC of } F(s).$ Zero: $z \in \mathbb{C}$ is a zero of F(s) if F(z) = 0. **Pole:** $p \in \mathbb{C}$ is a pole of F(s) if $\frac{1}{F(p)} = 0$. $\mathcal{L}^{-1}\{F(s)\} = \textstyle\sum_{i=1}^{N} \operatorname{Res}\left[F(s)e^{st}, s = p_i\right]\mathbf{1}(t),$ $L^{-}(F(s)) = \sum_{i=1}^{s} \text{Res } F(s)e^{st}, s = p_i \text{ I(t)},$ *Res $[F(s)e^{st} \text{ as } s = p_i]$. Residue **Computation** Let G(s) be a complex analytic fcn w/ a pole at s = p, r be the multiplicity of the pole p. Then $\text{Res}[G(s), s = p] = \frac{1}{(r-1)!} \lim_{s \to p} \frac{d^{r-1}}{ds^{r-1}} [G(s)(s-p)^r].$ Inv. LT Partial Frac.: 1. Factorize F(s) into partial fractions. 2. Find coefficients and use LT table to find inverse LT. **Complete the square. where $m \leq n$ (causality) IO to SS Model 1. Define x s.t. highest order derivative in \dot{x} 2. Write x=Ax+Bu=f(x,u) by isolating for components of x 3. Write y=Cx+Du=h(x,u) by setting measurement output y to component of x Find coefficients and any *Complete the square.
 Inv. LT Residue: 1. Find poles of F(s) and their residues.
 Peridue THM to find inverse LT.
 Considues (use Et Transfer Function: Consider a CS in IO form. Assume zero initial conds. $y(0) = \cdots = \frac{d(n-1)}{dt(n-1)}(0) = 0$ and Equilibria y_d (steady state) b/c if $y(0) = y_d$ at t = 0, then $y(t) = y_d \ \forall t \ge 0$. **Equilibrium pair** Consider the system $\dot{x} = f(x, u)$. The pair Equilibrium pair Consider the system x = f(x, u). The pair (\bar{x}, \bar{u}) is an equilibrium pair if $f(\bar{x}, \bar{u}) = 0$. Equilibrium point \bar{x} is an equilibrium point w/ control $u = \bar{u}$. If $u = \bar{u}$ and $x(0) = \bar{x}$ then $x(t) = \bar{x} \ \forall t \geq 0$ (i.e. a system that starts at equilibrium remains at equilibrium). Find Equilibrium Pair/Point 1. Set f(x, u) = 0. Solve f(x, u) = 0 to find $(x, u) = (\bar{x}, \bar{u})$. 3. If specific $u = \bar{u}$, then find $x = \bar{x}$ by solving $f(x, \bar{u}) = 0$. $u(0) = \cdots = \frac{d^{(m-1)}u}{dt^{(m-1)}}(0) = 0.$ Then the TF from u to y is ... $\begin{array}{l} atv^{m-1} \\ G(s) := \frac{y(s)}{U(s)} = \frac{b_{ms}m + \cdots + b_0}{s^n + a_{n-1}s^{n-1} + \cdots + a_0} \\ *0 \text{ Ini. Conds.: } y_0(s) = G(s)u(s) \end{array}$ **Linearization of Nonlinear System** Consider system $\dot{x} = f(x, u)$ w/ equ. pair (\bar{x}, \bar{u}) , then error coordinates around equ. pair *Ø Ini. Conds.: $y_0(s) = G(s)u(s)$ *Ø Ini. Conds.: $y_0(s) = y_0(s) + \frac{\text{poly. based on initial conds.}}{s^n + a_{n-1}s^{n-1} + \dots + a_0}$ $\begin{array}{l} \delta x = x - \bar{x}, \, \delta u = u - \bar{u}, \, \delta y = y - h(\bar{x}, \bar{u}) \, \, \delta x = x - f(\bar{x}, \bar{u}) \, \, w/\\ \delta x = A \delta x + B \delta u, \, A = \frac{\partial f(\bar{x}, \bar{u})}{\partial \underline{x}} \in \mathbb{R}^{n_1 \times n_1}, \, B = \frac{\partial f(\bar{x}, \bar{u})}{\partial u} \in \mathbb{R}^{n_1}, \end{array}$ $\delta y = C\delta x + D\delta u, \ C = \frac{\partial h}{\partial \underline{x}}(\bar{x}, \bar{u}) \in \mathbb{R}^{1 \times n_1}, \ D = \frac{\partial h(\bar{x}, \bar{u})}{\partial u} \in \mathbb{R}$ *Only valid at equ. pairs. Impulse Response: Given CS modeled by TF G(s), its IR is $g(t) := \mathcal{L}^{-1}\{G(s)\}$. ** $\mathcal{L}\{\delta(t)\} = 1$, then if $u(t) = \delta(t)$, then Y(s) = U(s)G(s) = G(s). SS to TF: $G(s) = C(sI - A)^{-1}B + D$ s.t. y(s) = G(s)U(s). *Assume $x(0) = 0 \in \mathbb{R}^n$ (zero initial conds.). **LTI: G(s) of an LTI system is always a rational fcn. *Not Invertible: Values of s s.t. sI - A not invertible can correspond to poles of G(s). **Linear Approx.** Given a diff. fcn. $f: \mathbb{R} \to \mathbb{R}$, its linear approx. at \bar{x} is $f_{lin} = f(\bar{x}) + f'(\bar{x})(x - \bar{x})$. *Remainder Thm: $f(x) = f_{lin} + r(x)$ where $\lim_{x \to \bar{x}} \frac{r(x)}{x - \bar{x}} = 0$. * $A_{(i,j)}$: A w/ row i and col. j removed. 3. Find $A^{-1} = \frac{1}{\det(A)}\operatorname{adj}(A) = \frac{1}{\det(A)}[\operatorname{cof}(A)]^T$. *2 × 2 : $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ TF (SS to TF): 1. Given SS form, assume zero initial conds. *Note: Can provide a good approx. near \bar{x} but not globally. *Gen. $f: \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}, \ f(x) = f(\bar{x}) + \frac{\partial f}{\partial x}(\bar{x})(x - \bar{x}) + R(x)$ *Jacobian: $\frac{\partial f}{\partial x}(\bar{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\bar{x}) & \cdots & \frac{\partial f}{\partial x_{n_1}}(\bar{x}) \end{bmatrix} \in \mathbb{R}^{n_2 \times n_1}$ 2. Solve $G(s) = C(sI - A)^{-1}B + D$. Linearization Steps 1. Find equ. pair (\bar{x}, \bar{u}) 2. Derive A, B, C, D and then evaluate at (\bar{x}, \bar{u}) & jth col. of $\operatorname{adj}(sI-A)$ s.t. $G(s) = \frac{[\operatorname{adj}(sI-A)]_{(i,j)}}{\det(sI-A)} + D$. 3. Write $\delta \dot{x} = A\delta x + B\delta u$ and $\delta y = C\delta x + D\delta u$ *Multiple i, j non-zero entries: Work it out using MM.

TF to SS: Consider $G(s) = \frac{b_m s^m + \dots + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}$ $_{1}^{0}$ 0 $\begin{bmatrix} 0 \\ -a_2 \end{bmatrix}$

Laplace Transform Given a fcn $f : \mathbb{R}_{+} = [0, \infty) \rightarrow \mathbb{R}^{n}$, its Laplace transform is $F(s) = \mathcal{L}\{f(t)\} := \int_{0^{-}}^{\infty} f(t)e^{-st} dt$, $s \in \mathbb{C}$. $*\mathcal{L}: f(t) \mapsto F(s), t \in \mathbb{R}_+ \text{ (time dom.) } \& s \in \mathbb{C} \text{ (Laplace dom.)}.$ P.W. CTS: A fcn $f: \mathbb{R}_+ \to \mathbb{R}^n$ is p.w. cts if on every finite interval of \mathbb{R} , f(t) has at most a finite # of discontinuity points (t_i) and the limits $\lim_{t \to t_i^+} f(t)$, $\lim_{t \to t_i^-} f(t)$ are finite.

Exp. Order A function $f: \mathbb{R}_+ \to \mathbb{R}^n$ is of exp. order if \exists constants $K, \rho, T > 0$ s.t. $\|f(t)\| \le Ke^{\rho t}, \ \forall t \ge T$. Existence of LT Thm If f(t) is p.w. cts and of exp. order w/ constants $K, \rho, T > 0$, then $F(\cdot)$ exists and is defined $\forall s \in D := \{s \in \mathbb{C} : \operatorname{Re}(s) > \rho\}$ and $F(\cdot)$ is analytic on D. *Analytic fen iff differentiable fcn. *D: Region of convergence (ROC), open half plane.

Unit Step $\mathbf{1}(t) := \begin{cases} 1, & \text{if } t \geq 0 \\ 0, & \text{otherwise} \end{cases}$

Table of Common Laplace Transforms: $f(t) \mid F(s)$ $\mathbf{1}(t)\mapsto \frac{1}{s} \quad t\mathbf{1}(t)\mapsto \frac{1}{s^2} \quad t^k \mathbf{1}(t)\mapsto \frac{k!}{s^{k+1}} \quad e^{at} \mathbf{1}(t)\mapsto \frac{1}{s-1}$ $t^n e^{at} \ \mathbf{1}(t) \mapsto \frac{n!}{(s-a)^{n+1}} \quad \sin(at) \ \mathbf{1}(t) \mapsto \frac{a}{s^2 + a^2}$

 $\cos(at)\,\mathbf{1}(t)\mapsto \frac{s}{s^2+a^2} - \frac{1}{2\omega^3}[\sin(\omega t) - \omega t\cos(\omega t)]\,\mathbf{1}(t)\mapsto \frac{1}{(s^2+\omega^2)^2}$

Prop. of Laplace Transform Linearity: $\mathcal{L}\{cf(t) + g(t)\} = c\mathcal{L}\{f(t)\} + \mathcal{L}\{g(t)\}, c \sim \text{constant.}$

Differentiation: If the Laplace transform of f'(t) exists, then $\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0^{-}).$

If the Laplace transform of $f^{(n)}(t) := \frac{d^n f}{dt^n}(t)$ exists, then $\mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - \sum_{i=1}^n s^{n-i} f^{(i-1)}(0^-).$

Integration: $\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{1}{s}\mathcal{L}\{f(t)\}.$

The probability of the probabil

Shift in s: $\mathcal{L}\lbrace e^{at}f(t)\rbrace = \mathcal{L}\lbrace f(t)\rbrace \Big|_{s\to s-a}^{-1} = F(s-a)$, where

 $F(s) = \mathcal{L}\{f(t)\} \& a \text{ const.}$

Trig. Id. $2\sin(2t) = 2\sin(t)\cos(t)$, $\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$, $\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$

Complete the Square: $ax^{2} + bx + c = a(x + \frac{b}{2a})^{2} - \frac{b^{2}}{4a} + c$ LT Steps: 1. Write f(t) as a sum and use linearity *Trig. id. may be useful.

*Trig. id. may be useful. 2. Use prop. of LT and common LT to find F(s)Transient Performance Sat.: Given performance spec. $T_r \leq T_r^d$, $T_s \leq T_s^d$, OS \leq OS d , find loc. of poles of G(s).
*Admissible region for the poles of G(s) s.t. the step response

Inverse Laplace Transform Given F(s), its inverse LT is f(t) =

Cauchy's Residue THM If F(s) is analytic (complex diff.) everywhere except at isolated poles $\{p_1,\ldots,p_N\}$, then

TF Steps (IO to TF): 1. Given IO form of CS, assume zero

*Careful: Y(s)/U(s) = G(s) not U(s)/Y(s) = G(s).

Impulse Response: Given CS modeled by TF G(s), its IR is

Inverse: 1. For $A \in \mathbb{R}^{n \times n}$, find $[\operatorname{cof}(A)]_{(i,j)} = (-1)^{i+j} \det(A_{(i,j)})$.

2. Assemble cof(A) and find $det(A) = \sum_{j=1}^{n} a_{ij} [cof(A)]_{(i,j)}$

w/ fixed i or $\det(A) = \sum_{i=1}^n a_{ij} [\operatorname{cof}(A)]_{(i,j)}^{\bullet}$ w/ fixed j

*If $C = \begin{bmatrix} 0 & 1_i & 0 \end{bmatrix}$ & $B = \begin{bmatrix} 0 & 1_j & 0 \end{bmatrix}$, then only need ith row

< n (i.e. G(s) is strictly proper). Then the SS form is

0

 $C = \begin{bmatrix} b_0 & \cdots & b_m & | & 0 & \cdots & 0 \end{bmatrix}, I$ *Unique: State space of a TF is not unique 0], D = 0.

Block Diagram Types of Blocks

Cascade: $y_2 = (G_1(s)G_2(s))U \stackrel{\text{SISO}}{=} y_2 = (G_2(s)G_1(s))U$

$$\cup \to \boxed{G_1} \xrightarrow{\mathcal{Y}_1} \boxed{G_2} \longrightarrow \mathcal{Y}_2 \quad \equiv \quad \cup \to \boxed{G_1} \boxed{G_2} \longrightarrow \mathcal{Y}_2$$

Parallel $y = (G_1(s) + G_2(s))U$

$$= \cup \longrightarrow \underbrace{G_1}_{G_2} \longrightarrow \forall$$

Feedback $y = \left(\frac{G_1(s)}{1 + G_1(s)G_2(s)}\right)R$

$$R \xrightarrow{\circ} 0 \xrightarrow{\circ} G_{1} \xrightarrow{\circ} 1$$

$$\equiv R \xrightarrow{\circ} G_{1} \xrightarrow{\circ} 1$$

*SC: Unity Feedback Loop (UFL) if $G_2(s) = 1$. Manipulations: 1. $y = G(U_1 - U_2) = GU_1 + GU_2$ 2. $y_1 = GU$ $y_2 = U$ | $y_1 = GU$ $y_2 = G \frac{1}{G}U$

3. From feedback loop to UFL.

U, -SO - TG - Y U. → T67-30-34

o Tal y = U > a - in y. $R \rightarrow \begin{bmatrix} \frac{1}{6} \\ \frac{1}{6} \end{bmatrix} \rightarrow 0 \rightarrow \begin{bmatrix} \frac{1}{6} \\ \frac{1}{6} \end{bmatrix} \rightarrow$

Find TF from Block Diagram: 1. Start from in \rightarrow out, making simplifications using block diagram rules.

2. Simplify until you get the form $U(s) \to G(s) \to Y(s)$. Time Response of Elementary Terms: $1(t) \leftarrow \text{pole } @ 0$ The first constant of the first pole @ 0 w/ mult. $n \mid e^{at}\mathbf{1}(t) \leftarrow \text{pole}$ @ $a \sin(\omega t + \phi)\mathbf{1}(t) \leftarrow \text{pole}$ @ $a \pm j\omega \mid \cos(\omega t + \phi)\mathbf{1}(t) \leftarrow \text{pole}$ @ $a \pm j\omega$ Real Pole: $y(s) = \frac{1}{s+a}$, real pole at s = -a, then $y(t) = e^{-at} \mathbf{1}(t)$ 1. $a>0 \implies \lim_{t\to\infty} y(t)=0 \mid 2. \ a<0 \implies \lim_{t\to\infty} y(t)=\infty$ 3. $a=0 \implies y(t)=\mathbf{1}(t)$ is constant.

Time Constant:
$$\tau = \frac{1}{a}$$
 of the pole $s = -a$ for $a > 0$ Pair of Comp. Conj. Poles:
$$y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s + \sigma)^2 + \omega_d^2}, \ |\zeta| < 1, \ \text{then}$$

$$y(t) = \frac{\omega_n}{\sqrt{1 - \zeta^2}} e^{-\sigma t} \sin(\omega_d t) \mathbf{1}(t)$$

*Poles: $s_{1,2} = -\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2} = -\sigma \pm j\omega_d$ * $\zeta = \frac{\sigma}{\omega_n}$: Damping ratio (or damping coefficient)

 $\sigma^* = \zeta \omega_n$: Decay/growth rate | ω_d : Freq. of oscillation

 $*\omega_n = \sqrt{\sigma^2 + \omega_d^2} \left[\frac{\text{radians}}{\text{seconds}} \right]$: Undamped natural freq.

 $*\omega_d = \omega_n \sqrt{1-\zeta^2} \left[\frac{\text{radians}}{\text{seconds}} \right]$: Damped natural freq.

 $*|s_{1,2}|^2 = \omega_n^2$: Mag. of poles is ω_n .

 $*\cos^{-1}(\zeta)$: Angle of s_1 on complex plane CW from -ve Re axis

Damping Ratio Effect: $0 < \zeta_1 < \zeta_2 < 1$, then

 $-1 < \zeta_4 < \zeta_3 < 0$, then $\sigma = \zeta \omega_n < 0$, (exp. envelop \uparrow)

Class. of 2nd Order Sys.: y(s) =

Loc. of Poles and Behavior:

Control Spec. of 2nd Order Sys.: Step Response: Given a TF G(s), its SR is y(t) resulting from applying the input $u(t) = \mathbf{1}(t)$.

i.e. $\mathcal{L}^{-1}\left\{G(s)\frac{1}{s}\right\}$. Control Spec. A control spec. is a criterion specifiying how we would like a CS to behave. $\omega_n^2 \qquad \qquad \omega_n^2 \qquad \qquad \omega_n^2 \qquad \qquad \omega_n^2 = \frac{1}{2}$

2nd Order Sys. Metrics: $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ w/ $U(s) = \frac{1}{s}$ *0 < ζ < 1 (i.e. 2 comp. conj. poles w/ Re(pole) < 0).

Rise Time (RT): T_r is the time it takes y(t) to go from 10% to 90% of its steady-state value.

RT: 1. Find $t_1 > 0$ s.t. $y(t_1) = 0.1$, $t_2 > 0$ s.t. $y(t_2) = 0.9$.

3. Compute
$$T_r = t_2 - t_1$$
. $T_r \approx \frac{1.8}{\omega_n}$

Settling Time (ST): T_s is the time required to reach and stay w/in 2% of the steady-state value.

ST: 1. Find when it's first that $|y(t) - 1| \le 0.02$.

Peak Time: T_p is time req'd to reach the max (peak) value.

Peak Time: 1. Find the first time when
$$\dot{y}(t)=0$$
.
$$* T_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}.$$

 $\% \text{ Overshoot: } \%OS = \frac{\text{[peak value]} - \text{[steady-state value]}}{\text{[steady-state value]}} \times 100\%$ *% $OS = OS \times 100\%$

*
$$\exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right) \iff \zeta = \frac{-\ln(OS)}{\sqrt{\pi^2 + (\ln(OS))^2}}$$

meets all three spec. is the intersection of the above three regions. Rise Time: $T_r \approx \frac{1.8}{\omega_n} \le T_r^d \stackrel{\text{app.}}{\Longrightarrow} \omega_n \ge \frac{1.8}{T_r^d} \equiv \omega_n^d$

Settling Time: $T_s \approx \frac{4}{\zeta \omega_n} = \frac{4}{\sigma} \leq T_s^d \stackrel{\text{app.}}{\Longleftrightarrow} \sigma \geq \frac{4}{T_s^d} \equiv \sigma^d$

OS:
$$\exp\left(\frac{-\pi\zeta}{\sqrt{1-\zeta^2}}\right) \le OS^d \stackrel{\text{app.}}{\Longleftrightarrow} \zeta \ge \frac{-\ln(OS^d)}{\sqrt{\pi^2 + (\ln(OS^d))^2}} \equiv \zeta^d$$

$$\frac{1}{\sqrt{\pi^2 + (\ln(\operatorname{OS}^d))^2}} = \sqrt{\frac{\pi^2 + (\ln(\operatorname{OS}^d))^2}{\sqrt{\pi^2 + (\ln(\operatorname{OS}^d))^2}}}$$

 ${\bf Add.\ Poles\ \&\ Zeros:}$ The analysis remains approx. correct under the following assumptions: 1. Any add. poles of G(s) have much more -ve real part (5-10 times) than the real part of the dom. comp. conjugate poles.

*dominant poles, additional poles.

2. Real part of zeros are -ve & very diff. from the real part of the two dom. poles.

- Internal Stablity: x=Ax is 1. Stable if $\forall x(0) \in \mathbb{R}^n$, the soln. x(t) is bdd; that is, $\exists M>0$ s.t. $\|x(t)\| \leq M \ \forall t \geq 0$. 2. Asymp. Stable if it's stable & $\forall x(0) \in \mathbb{R}^n$, the soln. x(t) converges to the origin; that is, $\lim_{t\to\infty} x(t)=0$. 3. Unstable if it's not stable; that is, $\exists x(0) \in \mathbb{R}^n$ s.t. x(t) is not ...

Asymptotic Stablity Thm. $\overset{\cdot}{x}=Ax$ is A.S. iff $\operatorname{eig}(A)\subseteq\mathbb{C}^-\equiv\{s\in\mathbb{C}\mid\operatorname{Re}(s)<0\},$ i.e. open left half plane (OLHP). Instability Thm. If \exists an eigenvalue λ of A w/ $\operatorname{Re}(\lambda)>0$, then

- x=Ax is unstable. Fact: Zeros of $s^2+a_1s+a_0$ are in \mathbb{C}^- iff $a_1,a_0>0$. Internal Stability 1. Linearize around (\bar{x},\bar{u}) w/ $\bar{u}=0$. 2. Find A and determine $\operatorname{eig}(A)=\lambda$ s.t. $\det(sI-A)=0$.

2. Find A and determine $\operatorname{eig}(A) = \lambda$ s.t. $\operatorname{det}(sI - A) = 0$. 3. Check if $\operatorname{eig}(A) \subseteq \mathbb{C}^- \mid \operatorname{Re}(\operatorname{eig}(A)) > 0$. BIBO Stability: An LTI system w/ 0 i.c. is Bounded Input Bounded Output (BIBO) stable if for any bdd input u(t), the output y(t) is also bdd. BIBO Unstable: An LTI system w/ 0 i.c. is BIBO unstable if it's not BIBO stable; that is, \exists a bdd u(t) s.t. y(t) is not bdd. BIBO Stable Thm. A system y(s) = G(s)U(s) is BIBO stable iff $\operatorname{poles}(G(s)) \subset \mathbb{C}^-$

 $\begin{array}{l} \text{iff poles}(G(s))\subseteq\mathbb{C}^-.\\ \textbf{Lemma:} \ \text{If} \ p \ \text{is a pole of} \ G(s), \ \text{then} \ p \ \text{is an eig}(A). \ \text{I.e.} \ \text{poles}(G(s)):=\\ \{p\in\mathbb{C}\mid p \ \text{is a pole of} \ G(s)\}\subseteq \text{eig}(A). \end{array}$ *Pole-0 Cancellation: eige(\$A\$) need not be a pole of \$G(s)\$.

Thm. If $\operatorname{eig}(A) \subseteq \mathbb{C}^-$, then $\forall B, C, D$ the TF G(s) is BIBO stable. That is, internal asymptotic stability \Rightarrow BIBO stability. BIBO Stability 1. Find G(s) from SS form and determine poles.

2. Check if $poles(G(s)) \subseteq \mathbb{C}^-$.

*sⁿ | 1
$$a_{n-1}$$
 a_{n-4} a_{n-6} \cdots 0 *sⁿ⁻¹ | a_{n-1} a_{n-3} a_{n-5} a_{n-7} \cdots 0 *sⁿ⁻² | a_{n-1} a_{n-3} a_{n-5} a_{n-7} \cdots 0 *sⁿ⁻² | a_{n-1} a_{n-3} a_{n-5} a_{n-7} \cdots 0 *sⁿ⁻³ | a_{n-1} a_{n-3} a_{n-5} a_{n-7} \cdots 0 *sⁿ⁻³ | a_{n-1} a_{n-3} a_{n-5} a_{n-7} \cdots 0

 \mathbb{C}^- iff the 1st col of Routh array has no sign changes. The # of sign changes is equal to the # of roots of $a(s) \in \mathbb{C}^+ := \{s \in \mathbb{C} : \text{Re}(s) > 0\}.$ *If 1st element of a row is 0, Rooth array cannot be completed.

FVT v1: Suppose $Y(s) = \mathcal{L}\{y(t)\}$ is a proper rational fcn. If $y(\infty) := \lim_{t \to \infty} y(t)$ exists and is finite, then $y(\infty) = \lim_{s \to 0} sY(s)$ FVT v2: Suppose $Y(s) = \mathcal{L}\{y(t)\}$ is a proper rational fcn. Moreover, suppose either:

1. $\operatorname{poles}(Y(s)) \subseteq \mathbb{C}^-$

2. Y(s) has only one pole at s=0 and all other poles are in \mathbb{C}^- . Then $y(\infty):=\lim_{t\to\infty}y(t)$ exists and is finite and satisfies $y(\infty):=\lim_{s\to 0}sY(s)$.

FVT 1. Does $y(\infty)$ exist? Check if pole at s=0, then compute

Rooth Array to see if poles are in \mathbb{C}^{-} . 2. Compute $\lim_{s\to 0} sY(s)$ if it exists.

MIDTERM CUTOFF

Standard Feedback Control Loop

R(s): Ref., E(s) = R(s) - y(s): Err., C(s): Controller, U(s): Control input, D(s): Dist., G(s): Plant, y(s): Plant output. *Assume: R(s) and D(s) are strictly proper rational fcns w/a fixed set of poles but arbitrary zeros & gain. * \mathcal{R} , \mathcal{D} : Classes of ref. and dist. satisfying the above assumption. Basic Control Prob: Design C(s) s.t. 3 spec. are met: 1. Stability: \forall bdd r(t), d(t), we have u(t), e(t) bdd. 2. Asymptotic Tracking: When $d(t) = 0 \ \forall t \geq 0$, then $\forall r(t) \in \mathcal{R}$, $\lim_{t \to \infty} e(t) = \lim_{t \to \infty} r(t) - y(t) = 0$. 3. Disturbance Rejection: When $r(t) = 0 \ \forall t \geq 0$, then $\forall d(t) \in \mathcal{D}$, $\lim_{t \to \infty} y(t) = 0$.

R, $\lim_{t\to\infty} e(t) = \lim_{t\to\infty} r(t) - y(t) = 0$.

3. Disturbance Rejection: When $r(t) = 0 \ \forall t \geq 0$, then $\forall d(t) \in \mathcal{D}$, $\lim_{t\to\infty} y(t) = 0$.

Open-Loop Control: 1. Design u(t) s.t. y(t) tracks ref. $y_r \in \mathbb{R}$, i.e. $\lim_{t\to\infty} y(t) = y_r$.

2. Set $u(t) = \gamma y_r 1(t) \ \text{w} / \gamma \in \mathbb{R}$ (const. scaling factor)

3. Apply FVT to find γ s.t. $\lim_{t\to\infty} y(t) = y_r$. 4. Determine $\lim_{t\to\infty} e(t) = \lim_{t\to\infty} y_r - y(t)$ Limitations: 1. Req. perfect knowledge of plant paramters.

2. Not robust against parameter var./(unknown) dist.

3. Does not allow us to speed up convergence.

Feedback Control: 1. Design u(t) s.t. y(t) tracks ref. $y_r \in \mathbb{R}$, i.e. $\lim_{t\to\infty} y(t) = y_r$.

2. Set $u(t) = Ke(t) = K(y_r - y(t)) \ \text{w} / K > 0$ (const. gain).

3. Use block mani. to find y(s) in terms of input and G(s).

4. Apply FVT to find K s.t. $\lim_{t\to\infty} y(t) = y_r$.

5. Determine $\lim_{t\to\infty} \infty e(t) = \lim_{t\to\infty} y_r - y(t)$ Advantages: 1. Doesn't req. perfect knowledge of plant param.

2. Robust against param. var./dist. by $\uparrow K$.

3. Allows us to speed up the rate of convergence by $\uparrow K$.
Disadvantages: 1. Feedback can introduce instability.

2. High-gain amplifies noise.

2. High-gain amplifies noise.

3. Asymptotic tracking doesn't occur.

Integral Control: 1. Design u(t) s.t. y(t) tracks ref. $y_r \in \mathbb{R}$, i.e. $\lim_{t\to\infty} y(t) = y_r$.

The $\liminf_{t\to\infty} y(t) = yT$. 2. Set $u(t) = \mathcal{L}^{-1}\{C(s)E(s)\} = Ke(t) + KT_I\int_0^t e(\tau)d\tau$ (prop. int. (PI) controller) w/ K, $T_I > 0$ (const. gains). $*C(s) = K\left(1 + \frac{T_I}{s}\right)$

**
$$C(s) = K$$
 $\left(1 + \frac{s}{s}\right)$
3. Use block mani. to find $y(s)$ in terms of input and $G(s)$.

4. Apply FVT to find $\lim_{t \to \infty} y(t) = y_r$ as desired.

BIBO Stability of Closed-Loop System: Gang of 4 TF:
$$\begin{bmatrix} E(s) \\ U(s) \end{bmatrix} = \begin{bmatrix} \frac{1}{1 + C(s)G(s)} & \frac{-G(s)}{1 + C(s)G(s)} \\ \frac{C(s)}{1 + C(s)G(s)} & \frac{-C(s)G(s)}{1 + C(s)G(s)} \end{bmatrix} \begin{bmatrix} R(s) \\ D(s) \end{bmatrix}$$

BIBO Stable of CLS: The std. feedback control loop (CLS) is BIBO stable if all the Gang of 4 TFs are BIBO stable.

Thm: The CLS is BIBO stable iff 1. Poles of $\frac{1}{1 + C(s)G(s)} \in \mathbb{C}^-$

2. $C(s)G(s)$ has no polesyere cause. In $\tilde{E}^+ - t = S \in \mathbb{C}^+$, $Rg(s) \geq 0$.

2. C(s)G(s) has no pole-zero cancel. in $\bar{\mathbb{C}}^+ = \{s \in \mathbb{C} : \text{Re}(s) \geq 0\}$.

1. Don't cancel an unstable 0 of G(s) w/ an unstable pole in C(s). 2. Don't cancel an unstable pole of G(s) w/ an unstable 0 in C(s).