Full Name: ID Number:

In the following, $\log(\cdot)$ is the natural logarithm, e is the base of the natural logarithm, $|\cdot|$ is the absolute value $(|x| = x \text{ if } x \ge 0, \text{ and } |x| = -x \text{ if } x < 0)$, and $\mathbb R$ is the set of real numbers. Recall $\frac{\partial e^x}{\partial x} = e^x$, and $e^{\log x} = x$, x > 0.

• Q3 (25 pts): Consider the activation function

$$f(v) = \begin{cases} 1 - e^{-v}, & v \ge 0, \\ -1 + e^{-|v|}, & v < 0. \end{cases}$$

For (a)-(c), consider a single-neuron network with input-output relationship $y = f(b + \mathbf{w}^T \mathbf{x})$, where y is the network output, b is the bias term, $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ are the synaptic weights, and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is the network input.

- (a) (3 pts): Calculate the derivative f'(v) in closed form.
- (b) (7 pts): Let $E = (d y)^2$, where d is a constant (a generic desired output). Find the delta-learning rule (the gradient-descent update equations) for b, w_1, w_2 given learning parameter $\eta = \frac{1}{2}$. Remember that you can write a single (vectorized) update equation that can handle all variables. The final update expression(s) may however contain only the terms/functions $d, y, f', f, \mathbf{w}, w_1, w_2, b$.
- (c) **(6 pts):** Consider the same delta-learning setup as in (b). Consider the training vectors $\mathbf{x}_1 = \begin{bmatrix} \log 2 \\ \log 3 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 0 \\ \log 2 \end{bmatrix}$, with desired outputs $d_1 = \frac{2}{3}$, $d_2 = \frac{5}{2}$, respectively. Find the updated bias and the updated synaptic weights after one epoch of online learning given initial conditions b = 0, $\mathbf{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- (d) (9 pts) Consider now a multi-layer network as shown below.

Let $E = e^{(d-y)^4}$. Find the gradient-descent update equations for b, w_1, w_2, w_3 given learning parameter $\eta = \frac{1}{4}$. The final expression may only contain the terms/functions $d, y, f', f, \mathbf{w}, w_1, w_2, b, w_3$.

Hint: You do not have to apply some algorithm. Just write the input-output relationship of the network, and use chain rule. This is more of a calculus problem than a neural network problem!

- Q4 (25 pts): Design a (possibly multi-layer) neural network with two inputs $x_1, x_2 \in \mathbb{R}$ and a single output y such that y = 1 if $x_1 = 3$ and $x_2 = 2$, and y = 0, otherwise. In other words, the network output should assume a value of 1 only at the single point $(x_1, x_2) = (3, 2)$ of the input space \mathbb{R}^2 . Note that the inputs can be any real numbers. The neuron(s) of the network should use the step-activation function $u : \mathbb{R} \to \{0, 1\}$ given by u(v) = 1 if $v \ge 0$, and u(v) = 0, otherwise. The network should consist of 5 neurons at most. Spoilers and their partial credits:
 - (a) (3 pts): Design a network with input x_1 and output y such that y = 1 if $x_1 \ge 3$, and y = 0, otherwise.
 - (b) (4 pts): Design a network with input x_1 and output y such that y = 1 if $x_1 \le 3$, and y = 0, otherwise.
 - (c) (6 pts): Design a network with input x_1 and output y such that y = 1 if $x_1 = 3$, and y = 0, otherwise.
 - (d) (6 pts): Solve the original problem without any restrictions on the number of neurons.
 - (e) (6 pts): Solve the original problem.

You are not required to do (a)-(d) provided you can provide a correct solution to (e).