

Árvores de Decisão

Discentes:

Joana Branco M11020 João Branco M11019 Pedro Moreira M11052

Considerações iniciais

Árvores de Decisão em geral..

Tipos de Árvores de Decisão

Árvores de Decisão na AA.

02

03 Métricas

Algoritmos de cálculo do custo.

Usos
Vantagens, Desvantagens e aplicações.

Considerações Iniciais

- Metodologia de aprendizagem supervisionada;
- Tem como objetivo prever um valor de uma certa variável através da aprendizagem de regras de decisão presentes no dataset;
- Usada para representar visualmente e explicitamente as decisões e a tomada de decisão;
- Quanto mais profunda for a árvore, mais complexas serão as suas regras de decisão, e melhor treinado será o modelo.

Considerações Iniciais (cont.)

Representação de uma tabela sobre a forma de uma árvore.

Exemplos de Treino						
Dia	Aspecto	Temp.	Humidade	Vento	Jogar Ténis	
D1	Sol	Quente	Elevada	Fraco	Não	
D2	Sol	Quente	Elevada	Forte	Não	
D3	Nuvens	Quente	Elevada	Fraco	Sim	
D4	Chuva	Ameno	Elevada	Fraco	Sim	
D5	Chuva	Fresco	Normal	Fraco	Sim	
D6	Chuva	Fresco	Normal	Forte	Não	
D7	Nuvens	Fresco	Normal	Fraco	Sim	
D8	Sol	Ameno	Elevada	Fraco	Não	
D9	Sol	Fresco	Normal	Fraco	Sim	
D10	Chuva	Ameno	Normal	Forte	Sim	
D11	Sol	Ameno	Normal	Forte	Sim	
D12	Nuvens	Ameno	Elevada	Forte	Sim	
D13	Nuvens	Quente	Normal	Fraco	Sim	
D14	Chuva	Ameno	Elevada	Forte	Não	

Algoritmos

Existem diversos algoritmos, estes são:

- Classification and Regression Tree (CART);
- Iterative Dichotomiser 3 (ID3);
- C4.5:
- C5.0;
- Chi-squared Automatic interaction Detection (CHAID);
- Decision Stump;
- Conditional Decision Tree;
- M5.

Classificação e Regressão (CART)

- O algoritmo CART começa na raiz da árvore e cria dois nodos no próximo nível da árvore;
- De seguida, o mesmo procedimento repete-se para os dois nodos que foram criados, e por aí adiante;
- Este cria uma árvore alta, sendo que irá podar alguns dos seus ramos no final do processo.

Classificação e Regressão (cont.)

	Regressão	Classificação
Output	É um número real.	É uma classe discreta à qual a informação do <i>dataset</i> pertence.

Gini

- Utilizada em problemas de Classificação;
- A função de índices Gini dá-nos uma ideia de quão bem a separação está feita, pois mede as vezes em que um elemento, escolhido ao acaso, aparece mal classificado.

$$G = sum(pk * (1 - pk))$$

 Uma classe perfeita será aquela onde pk = 1 ou pk = 0 e G = 0, onde os nodos terão uma divisão de classes 50-50.

Ganho de Informação

- Utilizada em problemas de Regressão;
- Irá ser calculada para todos os pontos, onde o custo será calculado para todos os possíveis candidatos a serem separados;

O candidato com menor custo será o escolhido.

Quando devemos parar a separação?

- Por norma, quanto maior for o número de atributos,
 maior será o número de nodos da árvore. Tais árvores
 serão complexas e podem levar a overfitting;
- As formas mais comuns de **combater o overfitting** são:
 - Definição de um valor mínimo de inputs de treino em cada folha;
 - Definição de uma profundidade máxima da árvore.

Poda

- A performance da árvore pode ser incrementada através da poda, onde para tal serão removidas as ligações que fazem uso de atributos pouco relevantes.
- Os métodos mais comuns são:
 - Começar nas folhas e ir removendo os nodos mais populares de uma classe naquela folha, e verificar se a mudança não afetou a precisão da mesma -Reduced Error Pruning;
 - Recorrendo a um parâmetro de aprendizagem, verificamos o custo de cada nodo, onde serão removidos aqueles com base no tamanho das suas sub-árvores - Weakest Link Pruning.

Poda (cont.)

Vantagens

Pouco pré-processamento de dados

Face a outros algoritmos de Classificação e Regressão

Multi-output

Capacidade de lidar com problemas de multiplos output.

O custo de uso de uma árvore de decisão é uma função logarítmica face aos número de dados.

Baixo custo

Não há restrição no tipo de dados

Pode manipular variáveis numéricas e categóricas.

Compreensão simples

Existe uma simplicidade de compreensão e interpretação

Modelo White-box

Face a outros algoritmos, que recorrem a modelos *Black-box*

1/

Desvantagens

Difícil Implementação em alguns casos

Certos problemas são difíceis de implementar através de uma árvore de decisão

Overfitting

Pode criar árvores demasiado complexas que não generalizam bem a informação

Maior uso de memória e tempo

O cálculo matemático da árvore de decisão geralmente requer mais memória e tempo

Criação de Árvores desequilibradas

Quando existe uma classe predominante no dataset

Treino mais demorado

O tempo de treino do modelo é relativamente maior, devido à sua elevada complexidade

Não adequado para variáveis contínuas

Ao trabalhar com variáveis numéricas contínuas, a árvore de decisão perde informações quando categoriza variáveis em diferentes categorias.

Usos no Mundo Real

Guilherme Nami, Senior Consultant at Simon-Kucher and Partners

Answered April 15, 2019 - Author has 68 answers and 46.3K answer views

I have personally used them during strategic consulting projects for:

- 1. Predicting high occupancy dates for hotels
- Identifying factors leading to better gross margins on a retail chain (curious: # of drugstores nearby was particularly effective for this client)
- Identifying correlates to high average checks for a global quick-service restaurant chain

The possibilities are, honestly, too many to list.

5.8K views · View 2 Upvoters

Usos na Prática

```
from sklearn import tree

X = [[0, 0], [1, 1]]
Y = [0,1]
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y)

out = clf.predict_proba([[2,2]])
print(out)
```

```
import pandas as pd
import os
from sklearn import tree
x_values = []
y_values = []
def readCSV(file_name: str):
    global x_values, y_values
    file_path = os.path.join(os.getcwd(), file_name)
    base = pd.read_csv(file_path)
    x_values = base.iloc[:,0].values
    x_values = x_values.reshape(-1,1)
    y_values = base.iloc[:,1].values
    y_values = y_values.reshape(-1,1)
def Regression():
    global x_values, y_values
    readCSV('pizza.csv')
    regressor = tree.DecisionTreeRegressor()
    regressor.fit(x_values, y_values)
    out = regressor.predict([[100]])
    print(out)
Regression()
```


- A utilização de uma Árvore de Decisão oferece uma maneira simples para o acesso ao conhecimento, sendo esta muito importante na tomada de decisões;
- Existem vários algoritmos, sendo que o mais utilizado é o CART;
- É um método de fácil interpretação por parte do programador, devido ao seu modelo White-box e facilidade de implementação;
- Existe a necessidade de tratar bem a proporção do dataset, pois um dataset desequilibrado poderá levar à criação de um modelo também desequilibrado.

