# Proyecto final: Entrenamiento y optimización de modelos de Machine Learning

Maximiliano Ramirez

#### **Abstracto**

El proyecto busca generar un modelo de interpretación de datos de terremotos, estos entendidos como movimientos sísmicos de magnitudes significativas y que podrían provocar daños. La motivación radica en la búsqueda de patrones o tendencias que permitan establecer niveles de riesgo geológicos y temporales. Estos niveles de riesgo pueden ayudar a programas de prevención y educación sísmica, e incluso a organismos de emergencia, tanto para actividades preventivas como formativas.

#### Resumen de metadatos

La data es obtenida a través de la plataforma kaggle, y se titula Significant Earthquakes 1965-2016, y que incluye movimientos de carácter significativo.

Link: https://www.kaggle.com/datasets/usgs/earthquake-database

| #                              | Column                     | Non-Null Count | Dtype   |  |
|--------------------------------|----------------------------|----------------|---------|--|
|                                |                            |                |         |  |
|                                | Date                       | 23412 non-null | object  |  |
| 1                              | Time                       | 23412 non-null | object  |  |
| 2                              | Latitude                   | 23412 non-null | float64 |  |
| 3                              | Longitude                  | 23412 non-null | float64 |  |
| 4                              | Туре                       | 23412 non-null | object  |  |
| 5                              | Depth                      | 23412 non-null | float64 |  |
| 6                              | Depth Error                | 4461 non-null  | float64 |  |
| 7                              | Depth Seismic Stations     | 7097 non-null  | float64 |  |
| 8                              | Magnitude                  | 23412 non-null | float64 |  |
| 9                              | Magnitude Type             | 23409 non-null | object  |  |
| 10                             | Magnitude Error            | 327 non-null   | float64 |  |
| 11                             | Magnitude Seismic Stations | 2564 non-null  | float64 |  |
| 12                             | Azimuthal Gap              | 7299 non-null  | float64 |  |
| 13                             | Horizontal Distance        | 1604 non-null  | float64 |  |
| 14                             | Horizontal Error           | 1156 non-null  | float64 |  |
| 15                             | Root Mean Square           | 17352 non-null | float64 |  |
| 16                             | ID                         | 23412 non-null | object  |  |
| 17                             | Source                     | 23412 non-null | object  |  |
| 18                             | Location Source            | 23412 non-null | object  |  |
| 19                             | Magnitude Source           | 23412 non-null | object  |  |
| 20                             | Status                     | 23412 non-null | object  |  |
| dtypes: float64(12), object(9) |                            |                |         |  |
| memory usage: 3.8+ MB          |                            |                |         |  |

## Preguntas e hipótesis

El objetivo es identificar las variables físicas que juegan un rol preponderante en la magnitud de un terremoto. Sean estas la profundidad, latitud y longitud geográficas, entre otras que se registran, como se puede observar en el mapa de calor de correlaciones entre las variables del dataset.

En primer lugar se emplean modelos de machine learning para mejorar la calidad de la base de datos, para luego emplear un modelo de clasificación sobre la data.



#### Evaluación de modelos de ML

En algunos casos la información faltante puede ser interpolada o interpretada, en este caso evaluaremos modelos de ML para interpretar datos faltantes.

Primero se identifica como variable objetivo el tipo de magnitud registrada (ver gráfico de distribución de dicha variable), para luego comparar un grupo de tres modelos (RandomForest contra Árbol de decisión y regresión logística).



### Evaluación de modelos de ML

Podemos concluir que Random forest es el modelo con mejores resultados para la data en análisis.

| Modelo              | Accuracy | F1-Score |
|---------------------|----------|----------|
| RandomForest        | 0,63     | 0,63     |
| Árbol de decisión   | 0,57     | 0,52     |
| Regresión logística | 0,57     | 0,52     |

## La ubicación geográfica

Al observar la data graficada sobre un mapa, obtendremos una imagen familiar, donde las zonas de alta actividad sísmica se hacen notar fuertemente (véase el cinturón de fuego del pacifico). La ubicación de los terremotos está fuertemente asociada a las zonas de confluencia tectónica, caracterizadas por su alta actividad. Fuera de estas zonas la actividad decae fuertemente.





# ¿Relación entre la profundidad y la magnitud?

En esta pregunta nos detendremos a analizar los datos con mayor detención, ya que a simple vista no se ve una relación evidente, pero a la vez también se observan zonas con alta densidad eventos, lo que sugiere la existencia de clusters ocultos dentro de los datos.



# ¿Relación entre la profundidad y la magnitud?

Mediante un modelo de clasificación es posible identificar una serie de clusters de interés para el estudio, que para el caso de los terremotos nos interesa separarlos en regiones geográficas de interés (mayor a 2).





## Información obtenida de los clusters





# Optimización, validación y conclusiones

Con la nueva información obtenida de los clusters, se genera un nuevo modelo de ML sobre el cual se realizarán diversos test tanto de validación (K-folds), hipertunning (RandomizedSearch), y obtención de indicadores para modelo Random Forest.

| Indicador | Random Forest (gini, profundidad=7) |
|-----------|-------------------------------------|
| MAE       | 0,008                               |
| MSE       | 0,023                               |
| RMS       | 0,152                               |