

Kapittel 15

Benzen og aromatisitet

Aromatiske forbindelser

Main Entry: ¹ar·o·mat·ic •

Pronunciation: \a-ra-'ma-tik, |er-a-\

Function: adjective Date: 14th century

1 : of, relating to, or having aroma: a : FRAGRANT b : having a strong smell c : having a distinctive quality

2 of an organic compound: characterized by increased chemical stability resulting from the delocalization of electrons in a ring system (as benzene) containing usually multiple conjugated double bonds — compare ALICYCLIC, ALIPHATIC

synonyms see ODOROUS

- ar·o·mat·i·cal·ly

 \| \tai-k(\(\pi\))lē\ adverb
- aro·ma·tic·i·ty 🌓 \a-rə-mə-'ti-sə-tē, ˌer-ə-, ə-ˌrō-mə-\ noun
- En klasse forbindelser som historisk sett ble forbundet med en spesiell aroma (duft)

Noen eksempler på aromatiske forbindelser

cinnamaldehyd (kanel)

vanillin

(vanilje)

eugenol (muskat, kanel, basilikum, nellik)

$$\underline{\hspace{1cm}} \hspace{1cm} \hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm$$

anethol (anis, lakris, fennikel)

2,4,6-trikloranisol ("korkesyke")

Navnsetting

En hel del trivialnavn må kunnes – alle er tillatt av IUPAC

Navnsetting

- Monosubstituerte benzener navnsettes som andre hydrokarboner, med –benzen som stammen i navnet
- Disubstituerte benzener navnsettes med forstavelsene
 - orto- (1,2-disubstituert)
 - meta- (1,3-disubstituert)
 - para- (1,4-disubstituert)
- Tri- og flersubstituerte nummereres
 - De lavest mulige nummer brukes
 - Substituentene listes alfabetisk
 - Trivialnavnene på forrige lysark kan utgjøre stammen, med hovedsubstituenten pr. definisjon i posisjon 1

Benzen: Struktur

- Benzen er mindre reaktivt enn typiske alkener
 - Substitusjonsreaksjoner, ikke addisjonsreaksjoner!
- Alle karbon-karbon bindinger i benzen er identiske
 - Bindingsavstander ca. midt mellom C-C og C=C
 - Beskrives med to resonansstrukturer
 - 6 sp²-hybridiserte karbonatomer i ring
 - " π -elektronsky" over og under ringen

Benzen: Stabilitet

- Hydrogenering av en C=C binding i et alken frigjør 118 kJ/mol
- Fullstendig hydrogenering av benzen frigjør 206 kJ/mol
 - Dette er ca. 150 kJ/mol mindre energi enn 3 x alkenets hydrogeneringsvarme
 - Benzen må derfor være 150 kJ/mol mer stabilt enn 3 alkener i utgangspunktet

KJM 1110 - Mats Tilset

Benzen: π -orbitaler

- Normalt C-H og C-C σ-bindingssystem mellom sp²hybridiserte C-atomer
- Utvidet π -bindingssystem
 - Overlapp mellom alle 6 p-orbitaler
 - 6 p-orbitaler kombineres og gir 6 π -orbitaler
 - 3 bindende π -orbitaler utgjør en elektronrik " π -elektronsky" med utstrekning over og under ringens plan

Six benzene molecular orbitals

Benzen: Resonans og "π-elektronsky"

Aromatisitet: Hückels 4n+2-regel

- Benzen er syklisk og plant, med konjugerte C=C bindinger
- Benzen er usedvanlig stabilt sammenlignet med alkener
- Benzen har 120° bindingsvinkler, sp² hybridiserte C-atomer,
 6 identiske C-C bindingsavstander
- Benzen reagerer annerledes enn alkener
- Benzen beskrives med to identiske resonansstrukturer
- Mange andre ringsystemer enn benzen har lignende egenskaper
- Aromatisitet uttrykt ved Hückels 4n+2 regel:
 - Et molekyl er aromatisk (og spesielt stabilisert) hvis det har 4n+2 π-elektroner i syklisk konjugasjon (n = 0, 1, 2, 3...)
 - Et molekyl er *anti*aromatisk (og destabilisert) hvis det har 4n π -elektroner i syklisk konjugasjon (n = 1, 2, 3...)

KJM 1110 - Mats Tilset

Aromatiske kationer og anioner

Aromatic cyclopentadienyl anion with six π electrons

Cycloheptatrienyl cation six π electrons

Aromatiske heterosykliske forbindelser

Heterosykliske ringer (hvor ett eller flere atomer er ikke-karbon) kan også være aromatiske, forutsatt at π -systemet har 4n+2 p-elektroner

KJM 1110 - Mats Tilset

Polysykliske aromatiske hydrokarboner (PAH)

Polysykliske aromatiske forbindelser – materialkjemi

C₆₀ buckyball

karbon nanorør

grafen

Polysykliske aromatiske forbindelser – biologisk kjemi

