

Anteproyecto: Dispositivo autoregulador de la percepción térmica corporal

Martinez, Gaston - 91383 gaston.martinez.900gmail.com

Vázquez, Matías - 91523 mfvazquez@gmail.com

22 de abril de 2015

Se diseñará e implementará una pulsera térmica que regulará la temperatura corporal. Se utilizará un módulo termoeléctrico para enviar variaciones de calor o frío a la muñeca del usuario para modificar la percepción térmica del cuerpo.

1. Introducción

Su función es generar pulsos de frío o calor, de manera de generar una sensación de confort para una persona en condiciones donde la temperatura es muy alta o muy baja respectivamente. Está basado en el proyecto Wristify [?] ganador del concurso de intel Make It Wearable [?].

2. Especificaciones

El dispositivo utilizará una celda Peltier para enviar pulsos de calor o frío. De forma que se logre una diferencia de temperatura de $0,4\,^{\rm o}{\rm C/seg}$. durante 5 segundos y durante los siguientes 10 segundos entrará en estado de espera, para luego volver a iniciar el ciclo.

Deberá contar con un sensor de temperatura para medir la temperatura ambiente y analizar si deberá enviar o recibir calor.

Finalmente deberá controlar que se cumpla el ciclo utilizando una termocupla para medir la temperatura corporal cercana a la placa de peltier.

2.1. Componentes

Deberá contar con los siguientes componentes.

- Placa de peltier: Generará los pulsos térmicos en la muñeca del usuario.
- Termómetro: Medirá la temperatura ambiente y en base a ella decidirá si se debe aumentar o reducir la temperatura en la termocupla.
- Termocupla: Contará con una doble finalidad. Por un lado permitirá medir el cambio de temperatura de la placa; y por el otro permitirá medir la temperatura actual del cuerpo al momento de colocarse la pulsera.
- Salida de puerto serie: Servirá para poder monitorear en una computadora la temperatura de la placa.
- Fuente: Se encargará de suministrar la corriente necesaria a la placa de peltier y proporcionará alimentación a todos los dispositivos utilizados.
- Pulsador: Para poder invertir el estado de trabajo, de frío a calor y viceversa.
- Disipador: Se encargará de disipar el calor del lado opuesto al de la muñeca de la placa de peltier.
- Controlador: Se utilizara un microcontrolador AVR. Recibirá la temperatura ambiente del termómetro para decidir que régimen de trabajo establecer, y con la temperatura suministrada por la termocupla decidirá cuanta corriente suministrarle a la celda Peltier mediante un circuito regulador de corriente. También estará conectado a un pulsador para invertir el régimen de trabajo.

2.2. Diagrama de Flujo

Figura 1: Diagrama de flujo del proceso

2.3. Diagrama de Bloques

Figura 2: Diagrama de bloques

3. Diseño

3.1. Circuito regulador de corriente

Para la construcción del circuito regulador de corriente se utilizará un regulador de tensión LM317. Partiendo del circuito mostrado en la figura número $\ref{eq:local_substantial_substa$

Figura 3: Circuito regulador de corriente

$$I_{out} = \frac{1,25 \,\mathrm{V}}{R_1} \tag{1}$$

La corriente máxima de salida será necesaria para alcanzar una diferencia de temperatura de $2\,^{\rm o}{\rm C}$ entre una de las caras de la celda Peltier y la temperatura ambiente. Que se deberá obtener experimentalmente con la celda Peltier utilizada.

Referencias

- [1] http://www.embrlabs.com/
- [2] https://youtu.be/sDZHITVfYrI
- [3] https://youtu.be/kvUMCip-r4A