LINGUAGENS FORMAIS

1. Considere as regras abaixo onde $G = \langle \{S,A,B\}, \{?, \text{ que, caçou, o, rato, foi, quem, viu, gato, } \Delta\}, P, S \rangle$

 $P: S \rightarrow AB?$ $A \rightarrow Aque\Delta caçou\Delta o\Delta rato\Delta$ $rato\Delta B \rightarrow rato\Delta que\Delta foiB$ $A \rightarrow quem\Delta viu\Delta o\Delta gato\Delta$

- Determine strings que podem ser gerados por estas regras.
- O que se pode dizer acerca da linguagem gerada por estas regras.
- 2. Considere a gramática $G= \langle N,T,P,S \rangle$ onde $N=\{S\}, T=\{0,1\}, P=\{S \rightarrow 0S1, S \rightarrow 01\}.$ Determine L(G).
- Considere a gramática G= < N,T,P,S> onde N={S,B,C}, T={a,b,c}, P={ S → aSBC, S → aBC, CB → BC, aB → ab, bB → bb, bC → bc, cC→ cc}. Determine L(G).
- 4. Considerando a gramática G= <N,T,P,S> onde N={S,A}, T={a,b}, P={ S → AA, A → AAA, A → bA, A → Ab, A → a}, é possível gerar o string ababaa? Caso seja, verificar se há mais de uma derivação deste string a partir de S pela G.
- 5. Se $X=\{a,b,bb\}$ e $Y=\{a\}^*$ sào linguagens sobre $\{a,b\}$; encontre XY, YX.
- 6. Determine alguns strings pertencentes a linguagem L= {a,b}*{bb}{a,b}*.
- 7. Determine implicitamente a linguagem gerada pela concatenação do conjunto {aa} com o conjunto {a,b}* ou do conjunto {a,b}* com o conjunto {bb}.
- 8. Se $L_1 = \{bb\}$ determine L_{1}^*
- Se L₂={ε, bb, bbb} linguagem sobre Σ={b}, determine L*₂.
- 10. Determine o conjunto dos strings gerados sobre {a,b,c} com comp. menor que 3.

- 11. Determine o conjunto dos stringsgerados sobre {a,b,c} com comp=3.
- 12. Dada a gramática $G = \langle N, T, P, S \rangle$ onde $N = \{S, B\}, T = \{a, b\}, P = \{S \rightarrow aSa, S \rightarrow aBa, B \rightarrow bB, B \rightarrow b\}, determine L(G).$
- Seja G' a gramática definida a partir das regras:

 $S \rightarrow AB$

 $A \rightarrow aA$

 $A \rightarrow a$

 $B \rightarrow bB$

 $B \rightarrow \epsilon$

Determine a linguagem gerada por G'.

- 14. Se G"= $\{S,B\}$, $\{a,b\}$, $\{S \rightarrow aS, B \rightarrow bB$, $S \rightarrow aB, B \rightarrow \epsilon\}$, S >, determine L(G").
- 15. Se G= $\{S,A\}$, $\{a,b\}$, P, S> onde P: $\{S \rightarrow AbAbA, A \rightarrow aA, A \rightarrow \epsilon\}$, L(G) = ?
- 16. Se $G=\langle \{S,A,C\}, \{a,b\}, P, S \rangle$ onde P: $\{S \rightarrow aS, S \rightarrow bA, A \rightarrow aA, A \rightarrow bC, C \rightarrow aC, C \rightarrow \epsilon\}, L(G) = ?$
- 17. Se G=<{S,A,C}, {a,b}, P, S> onde
 P: { S → AbAbA, A → aA, A → bA,
 A → ε}, Determine a linguagem gerada por G.
- 18. Sendo $G = \langle V_N, V_T, P, S \rangle$, a gramática onde $V_N = \{S, A, B\}, V_T = \{a, b\}, P = \{S \rightarrow aB, S \rightarrow bA, A \rightarrow a, A \rightarrow aS, A \rightarrow bAA, B \rightarrow b, B \rightarrow bS, B \rightarrow aBB \}. Determine L(G).$

Bibliografia:

SUDKAMP, Thomas A. Languages and machines: an introduction to the theory of computer science. 2nd ed. - Reading, Mss: Addison-Wesley, 1997.