Análise Matemática 2

1.	Limites em R ⁿ	2
2.	Continuidade de funções em R ⁿ	4
	♦ Prolongamentos por continuidade	
	◆ Continuidade	
3.	Derivadas de 1ª ordem em R ⁿ	5
	♦ Derivada direcional	5
	♦ Diferenciabilidade	5
	ullet Equação do plano tangente à superfície F	5
	ullet Equação da reta normal à superfície F	6
	♦ Gradiente	6
	♦ Matriz Jacobiana	6
	♦ Divergência	7
	♦ Rotacional	7
4.	Derivada da Composta, Implícita e Inversa	8
	♦ Derivada da Composta (para funções vetoriais)	8
	♦ Derivada da Função Implícita (caso escalar)	8
	♦ Derivada da Função Inversa	8
5.	Derivadas parciais de ordem superior	8
	♦ Matriz Hessiana	9
	♦ Laplaciano	9
6.	Otimização livre e condicionada	10
	♦ Otimização livre	10
	♦ Otimização condicionada – Multiplicadores de Lagrange	11
Exe	ercícios	12

1. Limites em Rn

Em **R** para que existisse o limite de uma função num ponto **a** era necessário que <u>existissem</u> e <u>fossem iguais</u> os limites laterais à esquerda e à direita

$$\lim_{x \to a} f(x) = \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

$$a \qquad \mathbf{R}$$

De certa forma só existem duas direções possíveis.

Em \mathbb{R}^2 para calcular, por exemplo, $\lim_{(x,y)\to(0,0)}$ já temos uma infinidade de direções.

Para provar que um limite **não existe** é utilizado o princípio dos 2 caminhos:

" Se para duas direções diferentes resultarem limites diferentes, então <u>o limite não existe</u> "

Este princípio é usado para provar a não existência de um limite! Se para "mil" direções o resultado for sempre 7, **não** podemos concluir que o limite inicial é 7!!!

Receita para <u>provar a não existência</u> de um limite na origem:

• Direção **y=0** (aproximar pela reta horizontal) $\lim_{x\to 0,y=0}$

A estes dois primeiros limites também se chamam **limites iterados**

- $\lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right) e \lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right)$
- Direção **x=0** (aproximar pela reta vertical) $\lim_{v\to 0, v=0}$
- ◆ Direção y=mx (aproximar pelas retas de declive m)

 $\lim_{x\to 0, y=mx} \longrightarrow$ Se este limite depender de **m** então não existe.

◆ Direção y=ax² ou x=ay² (aproximar por parábolas)

 $\lim_{x\to 0, y=ax^2} \text{ ou } \lim_{y\to 0, x=ay^2} \longmapsto \text{Se este limite depender de } \pmb{a} \text{ então não existe}.$

Quando obtivermos 2 resultados diferentes podemos concluir que o limite não existe.

Truque ... se o menor grau de cima for maior que o maior em baixo então o limite existe.

Exemplo 1:
$$\lim_{(x,y)\to(0,0)} \frac{2x^2-y^2}{x^2-3y^2}$$

O "truque" diz que como o grau em cima é igual ao de baixo (2), o limite não vai existir.

$$\mathbf{y} = \mathbf{0} \mapsto \lim_{x \to 0} \left(\lim_{y \to 0} \frac{2x^2 - y^2}{x^2 - 3y^2} \right) = \lim_{x \to 0} \frac{2x^2}{x^2} = 2 \qquad \mathbf{x} = \mathbf{0} \mapsto \lim_{y \to 0} \left(\lim_{x \to 0} \frac{2x^2 - y^2}{x^2 - 3y^2} \right) = \lim_{y \to 0} \frac{-y^2}{-3y^2} = \frac{1}{3}$$

 \therefore Como para direções diferentes (nomeadamente y=0 e x=0) resultam limites diferentes (2 e 1/3), resulta que o limite original não existe.

Exemplo 2:
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$

Neste caso o "tal truque" diz que o grau em cima é 3 (um do x e dois do y) e o maior em baixo é 4, logo o limite não vai existir.

$$y = 0 \mapsto \lim_{x \to 0} \left(\lim_{y \to 0} \frac{xy^2}{x^2 + y^4} \right) = \lim_{x \to 0} \frac{0}{x^2} = 0$$
 $x = 0 \mapsto \lim_{y \to 0} \left(\lim_{x \to 0} \frac{xy^2}{x^2 + y^4} \right) = \lim_{y \to 0} \frac{0}{y^4} = 0$

$$y = mx \mapsto \lim_{x \to 0, y = mx} \frac{x(mx)^2}{x^2 + (mx)^4} = \lim_{x \to 0} \frac{m^2x^3}{x^2(1 + m^4x^2)} = \lim_{x \to 0} \frac{m^2x}{1 + m^4x^2} = 0.$$

Estamos a tentar provar que não existe ... temos de encontrar uma direção que dê um limite diferente.

$$x = y^2 \mapsto \lim_{y \to 0, x = y^2} \frac{y^2 y^2}{(y^2)^2 + y^4} = \lim_{y \to 0} \frac{y^4}{2y^4} = \frac{1}{2}.$$

 \therefore Como para direções diferentes (nomeadamente y=0 e $x=y^2$) resultam limites diferentes (0 e 1/2), resulta que o limite original não existe.

• Quando existe a expressão $x^2 + y^2$ usamos coordenadas polares $\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases}$

Assim a expressão
$$\lim_{(x,y)\to(0,0)}...\mapsto \lim_{\rho\to 0}...$$
 e $x^2+y^2\mapsto \rho^2$

Neste caso se o limite der 20, o resultado é 20, se depender de θ não existe.

Se o limite não for para a origem adaptam-se as coordenadas ...

$$\lim_{(x,y)\to(2,-3)} \mapsto \begin{cases} x-2 = \rho\cos\theta \\ y+3 = \rho\sin\theta \end{cases}, \quad \lim_{(x,y)\to(2,-3)} \dots \mapsto \lim_{\rho\to 0} \dots \quad \text{e} \quad (x-2)^2 + (y+3)^2 \mapsto \rho^2$$

Exemplo 3:
$$\lim_{(x,y)\to(0,0)} \frac{3xy}{\sqrt{x^2+y^2}}$$

O grau em cima é 2 (o x e o y estão a multiplicar), em baixo é 1 (raiz de x²) ... vai existir. Utilizando coordenadas polares ...

$$\lim_{(x,y)\to(0,0)} \frac{3xy}{\sqrt{x^2+y^2}} = \lim_{\rho\to 0} \frac{3\rho\cos\theta\rho\sin\theta}{\sqrt{\rho^2}} = \lim_{\rho\to 0} \frac{3\rho^2\cos\theta\sin\theta}{\rho} = \lim_{\rho\to 0} 3\rho\cos\theta\sin\theta = 0$$

∴ O limite existe e é 0.

2. Continuidade de funções em Rⁿ

Prolongamentos por continuidade

Quando uma função não está definida num ponto $a \in \mathbb{R}^n$ é sempre possível prolongar a função. Acontece que nem sempre é possível fazê-lo de modo a que a função fique contínua nesse ponto.

É possível prolongar por continuidade uma função f num ponto a se existir o seu limite

$$\lim_{(x,y)\to(a_1,a_2)} f(x,y) = L$$

Como resultado teremos uma função prolongamento

$$\tilde{f}(x,y) = \begin{cases} f(x,y), & (x,y) \neq (a_1, a_2) \\ L, & (x,y) = (a_1, a_2) \end{cases}$$

♦ Continuidade

- Uma função que <u>não esteja definida por ramos</u> é contínua em todo o seu domínio (a não ser que o domínio seja um conjunto "esburacado" com condições do tipo x ∈ R\Q).
 Desta forma quanto for pedido o conjunto onde a função é contínua ... basta calcular o domínio.
- Uma função <u>definida por ramos</u> é contínua nos pontos onde não muda de ramo e, no ponto onde muda de ramo é necessário ver se o limite é igual à imagem.

Exemplo 4: Estude a continuidade de
$$f(x,y) = \begin{cases} \frac{3xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 8, & (x,y) = (0,0) \end{cases}$$

Para já posso afirmar que a função é contínua se $(x, y) \neq (0,0)$, pois é o quociente de duas funções contínuas (um polinómio e uma raiz) e o denominador não se anula.

Assim é contínua, para já, em $\mathbb{R}^2 \setminus \{(0,0)\}$

No ponto (0,0) a função será contínua se
$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0) = 8$$

No Exemplo 3 foi calculado este limite e deu 0!!! Assim a função não é contínua em (0,0).

 \therefore A função é contínua em $\mathbb{R}^2 \setminus \{(0,0)\}$.

3. Derivadas de 1^a ordem em Rⁿ

♦ Derivada direcional

A derivada direcional da função f na direção do vetor \vec{v} num ponto $a \in \mathbb{R}^n$ nota-se por $f_{\vec{v}}(a)$ ou $D_{\vec{v}}f(a)$ ou $f'(a;\vec{v})$ ou $\frac{\partial f}{\partial \vec{v}}(a)$ e é dada pelo seguinte limite

$$f'_{\vec{v}}(a) = \lim_{h \to 0} \frac{f(a+h\vec{v}) - f(a)}{h}$$

• O vetor \vec{v} tem de ser unitário, isto é, ter norma 1. Se assim não acontecer é necessário dividir pela sua norma.

- A derivada parcial em ordem a x, $\frac{\partial f}{\partial x}$ é o caso particular do vetor $\vec{v}=(1,0)$;
- A derivada parcial em ordem a y, $\frac{\partial f}{\partial v}$ trata-se de $\vec{v} = (0,1)$.

♦ Diferenciabilidade

- **Teorema:** Se todas as derivadas parciais de f existirem numa vizinhança de a e forem contínuas em a, então f é diferenciável no ponto a.
- Desta forma, se uma função não estiver definida por ramos basta calcular as derivadas parciais e, nos pontos onde estas existirem e forem contínuas, a função **f** será diferenciável.
- No caso da função estar definida por ramos e $a=(a_1,a_2)$ o ponto onde a função muda de ramo, f é diferenciável em $a=(a_1,a_2)$ se

$$\lim_{(x,y)\to(a_1,a_2)} \frac{f(x,y) - f(a_1,a_2) - \frac{\partial f}{\partial x}(a_1,a_2) \times (x-a_1) - \frac{\partial f}{\partial y}(a_1,a_2) \times (y-a_2)}{\sqrt{(x-a_1)^2 + (y-a_2)^2}} = 0$$

• **Teorema**: Se f é diferenciável em a então f é contínua em a.

Se f é diferenciável em a e $\vec{v} = (v_1, v_2)$ (já unitário), então a derivada direcional fica:

$$f_{\vec{v}}(a) = \frac{\partial f}{\partial x}(a) \times v_1 + \frac{\partial f}{\partial y}(a) \times v_2 = \nabla f(a) \cdot (v_1, v_2)$$

♦ Equação do plano tangente à superfície F

A equação do plano tangente a uma superfície dada pela equação F(x,y,z)=0 no ponto $a=(a_1,a_2,a_3)$ é

$$\frac{\partial F}{\partial x}(a) \times (x - a_1) + \frac{\partial F}{\partial y}(a) \times (y - a_2) + \frac{\partial F}{\partial z}(a) \times (z - a_3) = 0 \text{ ou } \langle (x, y, z) - a, \nabla F(a) \rangle = 0$$

Quando a superfície é dada pelo gráfico de uma função f(x,y) temos de fazer $z = f(x,y) \Leftrightarrow z - f(x,y) = 0$.

Neste caso temos que F(x, y, z) = f(x, y) - z e a coordenada em falta é $a_3 = f(a_1, a_2)$.

♦ Equação da reta normal à superfície F

A equação da reta normal a uma superfície dada pela equação F(x,y,z)=0 no ponto $a=(a_1,a_2,a_3)$ é

Equações vetoriais da reta $(x, y, z) = a + t\nabla F(a), t \in \mathbb{R}$ ou $N(t) = a + t\nabla F(a), t \in \mathbb{R}$

Equações paramétricas
$$\begin{cases} x = a_1 + t \frac{\partial F}{\partial x}(a) \\ y = a_2 + t \frac{\partial F}{\partial y}(a), t \in \mathbb{R} \\ z = a_3 + t \frac{\partial F}{\partial z}(a) \end{cases}$$

O vetor $\nabla F(a)$ é o **vetor normal**. No caso de ser pedido unitário basta normalizá-lo, isto é, $\frac{\nabla F(a)}{\|\nabla F(a)\|}$.

♦ Gradiente

O vetor gradiente de uma função <u>escalar</u> $f: \mathbb{R}^3 \to \mathbb{R}$ é um vetor formado pelas derivadas parciais da função f

$$\nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

♦ Matriz Jacobiana

A matriz Jacobiana de uma função vetorial $f: \mathbb{R}^3 \to \mathbb{R}^3$ com $f(x, y, z) = (f_1, f_2, f_3)$ é a matriz

$$Df = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z} \end{bmatrix}$$

O <u>Jacobiano</u> é o determinante da Matriz Jacobiana, isto é, $J_f = |Df|$

Divergência

A divergência de uma função vetorial $f: \mathbb{R}^3 \to \mathbb{R}^3$ com $f(x,y,z) = (f_1,f_2,f_3)$ é o traço da matriz Jacobiana

$$\operatorname{div} f = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$

Rotacional

O rotacional de uma função vetorial $f: \mathbb{R}^3 \to \mathbb{R}^3$ com $f(x, y, z) = (f_1, f_2, f_3)$ é o seguinte vetor

$$\operatorname{rot} f = \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}, \frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}, \frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right)$$

O rotacional é um <u>vetor</u>.

Derivada da Composta (para funções vetoriais)

$$D(f \circ g)(a) = Df(g(a)) \times Dg(a)$$

onde a expressão anterior é o produto das matrizes Jacobianas de f e g.

Derivada da Função Implícita (caso escalar)

A equação F(x, y, z) = 0 define implicitamente **z** como função de **x** e **y**, isto é z = f(x, y), se:

- F for de classe C¹, isto é, as derivadas parciais existirem e forem contínuas;
- $\bullet \frac{\partial F}{\partial z} \neq 0$

Em caso afirmativo, podem-se calcular as seguintes derivadas

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}} \quad e \quad \frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$$

♦ Derivada da Função Inversa

A função vetorial $f(x,y)=(f_1,f_2)=(u,v)$ é localmente invertível numa vizinhança de (x_0,y_0) se:

- f for de classe C1, isto é, as quatro derivadas parciais existirem e são contínuas;
- O Jacobiano de f em (x_0, y_0) for $\neq 0$, isto é, $J_f(x_0, y_0) \neq 0$.

Em caso afirmativo podemos calcular a matriz Jacobiana da função inversa

$$Df^{-1}(R) = [Df(x_0, y_0)]^{-1} = \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix}, R = f(x_0, y_0)$$

5. Derivadas parciais de ordem superior

As 4 derivadas parciais de segunda ordem para uma função escalar $(f: \mathbb{R}^2 \to \mathbb{R})$ são:

$$f''_{xx} = \frac{\partial^2 f}{\partial x^2} \qquad f''_{yy} = \frac{\partial^2 f}{\partial y^2} \qquad f''_{yx} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right) \qquad f''_{xy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)$$

Observe-se que as duas últimas são as derivadas mistas. Quando a função é contínua estas derivadas são iguais (Teorema Schwarz).

♦ Matriz Hessiana

A matriz Hessiana de uma função <u>escalar</u> $f: \mathbb{R}^3 \to \mathbb{R}$ é uma matriz formada pelas 9 derivadas de $2^{\underline{a}}$ ordem

$$H_{f} = \begin{bmatrix} f''_{xx} & f''_{xy} & f''_{xz} \\ f''_{yx} & f''_{yy} & f''_{yz} \\ f''_{zx} & f''_{zy} & f''_{zz} \end{bmatrix}$$

♦ Laplaciano

O Laplaciano de uma função <u>escalar</u> $f:\mathbb{R}^3 \to \mathbb{R}$ é o traço da matriz Hessiana, isto é, a soma da diagonal

$$\Delta f = f''_{xx} + f''_{yy} + f''_{zz}$$

Quando uma função f verifica a **equação de Laplace**: $\Delta f = 0$, diz-se que a função é **Harmónica**.

♦ Otimização livre

1º Encontrar os pontos críticos. Resolver
$$\nabla f = 0 \Leftrightarrow \begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \\ \frac{\partial f}{\partial z} = 0 \end{cases}$$

2º Ver a natureza dos pontos críticos

- Caso f(x,y): Calcular o determinante da matriz Hessiana | H_f | em cada ponto crítico:
 - → Se | H_f | < 0 então o ponto crítico em questão é **ponto de sela**;
 - \rightarrow Se | H_f | > 0

 $\hookrightarrow f''_{rr} > 0$ então o ponto crítico é minimizante e f(PC) é **mínimo**;

 $\hookrightarrow f''_{xx} < 0$ então o ponto crítico é maximizante e f(PC) é **máximo**.

• Caso f(x,y,z): Calcular a matriz Hessiana em cada ponto crítico e os menores principais

$$d_{1} = f''_{xx}, \qquad d_{2} = \begin{vmatrix} f''_{xx} & f''_{xy} \\ f''_{yx} & f''_{yy} \end{vmatrix}, \qquad d_{3} = \begin{vmatrix} f''_{xx} & f''_{xy} & f''_{xz} \\ f''_{yx} & f''_{yy} & f''_{yz} \\ f''_{zx} & f''_{zy} & f''_{zz} \end{vmatrix}$$

Se o resultado for + + + + então o ponto crítico é minimizante e f(PC) é **mínimo**;

Se o resultado for $\underline{-+-}$ então o ponto crítico é maximizante e f(PC) é **máximo**;

Se verificada uma das ordenações atrás e a partir de certa ordem os menores forem todos 0 então nada se pode concluir;

Todos os outros casos restantes originam que o ponto crítico é **ponto de sela**.

♦ Otimização condicionada – Multiplicadores de Lagrange

Para encontrar os extremos de uma função numa região o procedimento é quase análogo ao anterior:

- encontram-se os pontos críticos;
- para os pontos críticos encontrados avalia-se a natureza dos que pertencerem à região (tentar representar a região);
- finalmente ... substituem-se as expressões de cada fronteira da região na função e estuda-se esta "nova" função.

De todos os valores encontrados escolhe-se o maior dos máximos e o menor dos mínimos e serão estes os extremos da função na região indicada.

Quando se pede os extremos de uma função sujeita a uma restrição usam-se os **Multiplicadores de Lagrange**.

Por exemplo para a obtenção dos extremos de f(x,y,z) sujeita à restrição g(x,y,z)=0 procede-se da seguinte forma:

<u>1º</u> Constrói-se a função de Lagrange $L(x, y, z, \lambda) = f(x, y, z) + \lambda g(x, y, z)$

2º Encontram-se os pontos críticos para
$$L$$
. Resolver $\nabla L = 0 \Leftrightarrow \begin{cases} \frac{\partial L}{\partial x} = 0 \\ \frac{\partial L}{\partial y} = 0 \\ \frac{\partial L}{\partial z} = 0 \end{cases}$; $\frac{\partial L}{\partial z} = 0$

 3° Ver a natureza dos pontos críticos. Para cada ponto crítico, que lhe está associado um λ , calcular a matriz Hessiana Orlada

$$\overline{H}_{f} = \begin{bmatrix} 0 & g_{x} & g_{y} & g_{z} \\ g_{x} & f_{xx}^{"} & f_{xy}^{"} & f_{xz}^{"} \\ g_{y} & f_{yx}^{"} & f_{yy}^{"} & f_{yz}^{"} \\ g_{z}^{"} & f_{zx}^{"} & f_{zy}^{"} & f_{zz}^{"} \end{bmatrix}$$

Determina-se o determinante desta matriz em cada ponto crítico. Se forem duas variáveis e uma restrição basta ver o sinal do determinante. > 0 implica que é ponto de máximo; < 0 é ponto de mínimo.

Exercícios

I.

$$f(x,y) = \begin{cases} \frac{(x-1)y^2}{(x-1)^2 + y^2} & \text{se } (x,y) \neq (1,0), \\ 0 & \text{se } (x,y) = (1,0). \end{cases}$$

Calcule
$$\frac{\partial f}{\partial y}(1,0)$$
.

Solução: 0

II.

$$f(x,y) = \begin{cases} \frac{4}{x^2 + y^2} & \text{se } x^2 + y^2 > 4, \\ e^{y-2} & \text{se } x^2 + y^2 \le 4. \end{cases}$$

Calcule
$$\frac{\partial f}{\partial x}\left(0,2\right),\,\frac{\partial f}{\partial y}\left(0,2\right)$$
e $\frac{\partial f}{\partial x}\left(0,0\right).$

S: 0; não existe; 0

III. Calcule a derivada direcional de f na direção de v no ponto P:

a)
$$f(x,y) = x^2 + y^2 - 3xy^3$$
, $v = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, $P = (1,2)$;

b)
$$f(x,y) = e^x \cos y$$
, $v = \left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$, $P = \left(0, \frac{\pi}{4}\right)$;

c)
$$f(x,y) = 17x^y$$
, $v = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $P = (1,1)$;

d)
$$f(x,y) = e^{x^2} \cos y$$
, $v = \left(\frac{3}{5}, \frac{4}{5}\right)$, $P = \left(1, \frac{\pi}{2}\right)$.

S: $-11-16\sqrt{3}$; $-1/\sqrt{5}$; $17/\sqrt{2}$; -4e/5

IV. Verifique se as seguintes funções são diferenciáveis na origem:

a)
$$f(x,y) = \sqrt{x^2 + y^2}$$
;

b)
$$f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$

c)
$$f(x,y) = \begin{cases} \frac{2y^3}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$

$$d)\;f\left(x,y\right)=\left\{\begin{array}{ccc} \frac{xy^2}{x^2+y^2} & \text{se}& \left(x,y\right)\neq\left(0,0\right),\\ 0 & \text{se}& \left(x,y\right)=\left(0,0\right). \end{array}\right. \\ \text{S: Não; Não; Não; Não}$$

- V. Determine, caso existam, os extremos e os pontos de sela da função no plano:
 - a) $f(x,y) = 2x^3 + 2y^3 6x 6y$:
- b) $f(x,y) = 3xy^2 + x^3 3x$;

c) $f(x,y) = x \sin 2y$;

- d) f(x,y) = (x-1)(x-y)(x+y):
- e) $f(x,y,z) = f(x,y) = e^{1+x^2-y^2}$;
- $f) f(x,y) = x^3 + y^3 3xy;$

- $f(x,y) = x^3 y^3 3xy$.
 - a) (1,-1) e (-1,1) pontos de sela, (1,1) mínimo local e (-1,-1) máximo local;
 - b) (0,1) e (0,-1) pontos de sela, (1,0) mínimo local e (-1,0) máximo local;
 - c) $\left(0, \frac{k\pi}{2}\right)$, com $n \in \mathbb{Z}$, pontos de sela;
 - $d)\ \left(0,0\right),\left(1,1\right)\ \mathrm{e}\ \left(1,-1\right)\ \mathrm{e}\ \left(\frac{2}{3},0\right)\ \mathrm{m\'{n}imo\ local};$
 - e) (0,0) ponto de sela;
 - f) (0,0) ponto de sela e (1,1) mínimo local;
 - q) (0,0) ponto de sela e (-1,1) máximo local.
- VI. Determine, caso existam, os extremos e os pontos de sela da função no espaço:
 - a) $f(x, y, z) = x^2 + y^2 + z^2 xy + x 2z;$ b) $f(x, y, z) = xe^x + ye^y + ze^z$.

 - a) (0,1) e (0,-1) pontos de sela, (1,0) mínimo local e (-1,0) máximo local;
 - c) (-1,-1,-1) mínimo local.
- VII. Determine, caso existam, os extremos e os pontos de sela da função:
 - a) $f(x,y) = x^2 y^2$, no conjunto dos pontos (x,y) que verificam a equação $x^2 + y^2 = 1$;
 - b) $g(x,y) = x^2 + y^2$, no conjunto dos pontos (x,y) que verificam a equação $x^6 + y^6 = 1$; a) $f(0, \pm 1) = -1$ mínimo e $f(\pm 1, 0) = 1$ máximo;
 - b) $g(0,\pm 1) = g(\pm 1,0) = 1$ mínimo e $g\left(\pm \sqrt[6]{\frac{1}{2}}, \pm \sqrt[6]{\frac{1}{2}}\right) = \sqrt[3]{2^2}$ máximo.
- Encontre 3 números cuja soma seja 150 e o seu produto o maior possível. S: x = y = z = 50VIII.