Рассмотрим точку x_0 на аттракторе и ее траекторию эволюции

$$x_{t+1} = \Phi(x_t) \tag{1}$$

(соответствующее решение дискретной системы с помощью отображения Φ или непрерывной системы с шагом по времени h) $x_0, x_1, x_2,$

Рассмотрим близкий к x_0 вектор:

$$xv_0 = x_0 + r,$$

где $\|r\|=\delta$ (в двумерной системе $r=\frac{1}{\sqrt{2}}\begin{pmatrix}\delta\\\delta\end{pmatrix}$, δ должно быть мало, например $\delta=10^{-7}$). Вычисляем

$$\overline{xv_1} = \Phi(xv_0), \qquad d_1 = \overline{xv_1} - x_1, \qquad p_1 = \frac{\|d_1\|}{\delta}$$

и вычисляем новый вектор, близкий к x_1 в направлении d_1 :

$$xv_1 = x_1 + \frac{d_1}{\|d_1\|} \delta.$$

Второй шаг алгоритма - это переход $xv_1 \to xv_2$:

$$\overline{xv_2} = \Phi(xv_1), \qquad d_2 = \overline{xv_2} - x_2, \qquad p_2 = \frac{\|d_2\|}{\delta}, \qquad xv_2 = x_2 + \frac{d_2}{\|d_2\|}\delta.$$

k-ый шаг алгоритма - это переход $xv_{k-1} \to xv_k$:

$$\overline{xv_k} = \Phi(xv_{k-1}), \qquad d_k = \overline{xv_k} - x_k, \qquad p_k = \frac{\|d_k\|}{\delta}, \qquad xv_k = x_k + \frac{d_k}{\|d_k\|}\delta.$$

Старший показатель Ляпунова определяется по последовательности $p_1, p_2, ..., p_N$ и шагу по времени h:

$$\Lambda = \frac{1}{hN} \sum_{i=1}^{N} \ln p_i.$$

В дискретных системах h=1. Старший показатель Ляпунова определяет, является ли динамика хаотической: $\Lambda \leq 0$ - регулярная, $\Lambda > 0$ - хаос.