Package 'NullSens'

May 6, 2014

Title Partitioning Abiotic and Biotic Contributions to Community Variation
Version 1.0
Date April 15, 2014
Author Steven D. Essinger, Christopher B. Blackwood, Gail L. Rosen
Maintainer Steve Essinger <sde22@drexel.edu></sde22@drexel.edu>
Description NullSens is a method for verifying hypotheses on species interactions when environmental gradients are present
Depends R (>= 2.15.0), MASS, censReg
License GPL-3
<pre>URL http://www.github.com/sessinger/NullSens/</pre>

R topics documented:

Index

NullSens-package	2
coeffDet	2
covStatistic	3
mvrRobust	3
mvrStandard	4
mvrTobit	5
nullModel	6
NullSens	6
NullSens_Simulation	8
sitesSelect	9
SpeciesResponseModel	9
testStatistic	0
tic	1
toc	
varExplained	2
1	2

2 coeffDet

NullSens-package	NullSens: Partitioning Abiotic and Biotic Contributions to Community Variation
------------------	--

Description

NullSens is a method that employs a null model based on existing species covariation models to assess community-wide biotic covariation after removing individual species responses to environmental gradients. Analytical output from NullSens provides the percentages of the variation that can be explained due to abiotic, biotic and unexplained factors. Within the biotic variation results, the algorithm also outputs if it detects positive, negative, or mixed community covariation. NullSens can be used to verify hypotheses on species interactions when environmental gradients are present.

Author(s)

Steven D. Essinger <sde22@drexel.edu>, Christopher B. Blackwood, Gail L. Rosen

References

S.D. Essinger, "Partitioning Abiotic and Biotic Contributions to Community Variation," Ph.D. dissertation, Dept. Elect. Eng., Drexel Univ., Philadelphia, PA, 2013

coeffDet Compute t	he coefficient of determination
--------------------	---------------------------------

Description

NullSens internal function: Computes the coefficient of determination for each species and the overall community.

Usage

```
coeffDet(CDM, X, Yhat)
```

Arguments

CDM Community Data Matrix (sites x species)

X Abiotic Factors (sites x # of abiotic factors + 1 (intercept))

Yhat Predicted (fitted) responses

Details

Avg_Adj_R2 is the environmentally explained variation

Value

R2 Coefficient of Multiple Determination, per speci	ies
---	-----

Adj_R2 Adjusted R2, per species

Avg_R2 Community R2

Avg_Adj_R2 Community Adjusted R2

covStatistic 3

Author(s)

Steve Essinger

covStatistic Test for significant positive/negative community covariation.

Description

Covarition test statistic (species pair-wise) for significant community positive/negative covariance hypothesis testing

Usage

```
covStatistic(matrix, sites_sel, mutual_reject)
```

Arguments

matrix Data matrix for computing test statistic

sites_sel Nested list of booleans for including/excluding sites per species

mutual_reject Threshold for excluding species pairs from test statistic

Details

mutual_reject (default 8): Any species pair having less than mutual_reject sites in common will be excluded from the test statistic calculation.

Value

index

Covariation type test statistic computed on input matrix

Author(s)

Steve Essinger

mvrRobust

Robust Regression using bisquare estimator objective function

Description

Multivariate regression using iteratively reweighted least-squares bisquare estimator

Usage

```
mvrRobust(CDM, X, sites_sel)
```

Arguments

CDM Community Data Matrix (sites x species)

X Abiotic Factors (sites x factors) + vector of ones for intercept sites_sel Nested list of booleans for including/excluding sites per species 4 mvrStandard

Value

Yhat Predicted (fitted) responses

Yres Residual responses

B_est Model coefficient estimates

Note

Requires MASS package

Author(s)

Steve Essinger

References

Robust Statistics, Peter. J. Huber, Wiley, 1981 (republished in paperback, 2004)

mvrStandard

OLS Linear Regression

Description

Ordinary Least Squares Linear Regression

Usage

```
mvrStandard(CDM, X, sites_sel)
```

Arguments

CDM Community Data Matrix (sites x species)

X Abiotic Factors (sites x factors) + vector of ones for intercept sites_sel Nested list of booleans for including/excluding sites per species

Value

Yhat Predicted (fitted) responses

Yres Residual responses

B_est Model coefficient estimates

Author(s)

Steve Essinger

References

Rao, C.R. (1973). Linear statistical inference and its applications (2nd ed.). New York: John Wiley & Sons.

mvrTobit 5

mvrTobit	Censored Regression (Tobit) Model	

Description

Fitting a linear model with a censored dependent variable

Usage

```
mvrTobit(CDM, X, sites_sel)
```

Arguments

CDM Comm	nunity Data Matrix (sites x s	pecies)
----------	-------------------------------	---------

X Abiotic Factors (sites x factors) + vector of ones for intercept sites_sel Nested list of booleans for including/excluding sites per species

Value

Yhat Predicted (fitted) responses

Yres Residual responses

B_est Model coefficient estimates

Note

Requires censReg package

Author(s)

Steve Essinger

References

Greene, W.H. (2008): Econometric Analysis, Sixth Edition, Prentice Hall, p. 871-875.

Kleiber, C. and Zeileis, A. (2008): Applied Econometrics with R, Springer, p. 141-143.

Tobin, J. (1958): Estimation of Relationships for Limited Dependent Variables. Econometrica 26, p. 24-36.

6 NullSens

nullModel

Null model

Description

Randomize matrix using null model

Usage

```
nullModel(matrix, sites_sel)
```

Arguments

matrix

Data matrix for randomization

sites_sel

Nested list of booleans for including/excluding sites per species

Details

This null model randomly permutes species abundance using the respective sites selected in sites_sel. Each species is randomized independently of the other species.

Value

rand_matrix

Return matrix randomized by null model

Author(s)

Steve Essinger

NullSens

Partitioning Abiotic and Biotic Contributions to Community Variation

Description

NullSens is a method that employs a nullmodel based on existing species covariation models to assess community-wide biotic covariation after removing individual species responses to environmental gradients. Analytical output from NullSens provides the percentages of the variation that can be explained due to abiotic, biotic and unexplained factors. Within the biotic variation results, the algorithm also outputs if it detects positive, negative, or mixed community covariation. NullSens can be used to verify hypotheses on species interactions when environmental gradients are present.

Usage

```
NullSens(CDM, X, select = TRUE, reg_method = "robust", null_reps = 200,
test_stat = c(1, 1), mutual_reject = 8, alpha = 0.05)
```

NullSens 7

Arguments

CDM Community Data Matrix (sites x species) *Must be a matrix

X Abiotic Factors (sites x factors) *Must be a matrix (i.e. use as.matrix())

select Enable site selection procedure – TRUE (default)

reg_method Regression method – "robust" (defaut), "tobit", "standard"

null_reps Number of random matrices to generate for null distribution – 200 (default)

test_stat Test statistic employed for computing indices

mutual_reject Ignore species pairs with less than m mutual sites in testStatistic – 8 (default)

alpha Significance level – 0.05 (default)

Details

Test Statistic Options: test_stat[1] -> Statistic, test_stat[2] -> Weight

 $test_stat[1] = 1 -> abs(cvar), = 2 -> cvar^2, = 3 -> abs(ccorr), = 4 -> ccorr^2$

 $test_stat[2] = 1 -> abs(cvar), = 2 -> abs(ccorr), = 3 -> sum(mutsel), = 4 -> 1$

Value

CDM Community Data Matrix

X Abiotic Factors, vector of ones appended if missing

Yhat Predicted (fitted) responses

Yres Residual Responses

B_est Estimated Regression Parameters

sites_sel List Sites Selected for Analysis, per Species
p_value P-Value of Covariation Significance Test

index List of index values for random and test matrices (test is last element)

CR Pairwise Residual (Yres) Correlation Matrix from testStatistic
CV Pairwise Residual (Yres) Covaration Matrix from testStatistic

R2 Coefficient of Multiple Determination, per species

Adj_R2 Adjusted R2, per species
Avg_R2 Community Averaged R2

Avg_Adj_R2 Community Averaged Adjusted R2

IND_summary abiotic, biotic, unexplained variation, per species COM_summary abiotic, biotic, unexplained variation, community

COM_var_type [avg_covar, p-value_pos, p_value_neg]

Author(s)

Steve Essinger

References

S.D. Essinger, "Partitioning Abiotic and Biotic Contributions to Community Variation," Ph.D. dissertation, Dept. Elect. Eng., Drexel Univ., Philadelphia, PA, 2013

NullSens_Simulation

NullSens_Simulation	Evaluating NullSens on Simulated Community Data	
---------------------	---	--

Description

This function is useful for performing sensitivity analyses on NullSens using simulated communities (see SpeciesResponseModel.R)

Usage

```
NullSens_Simulation(n, p, q, N, M, CD, Type, num_exp = 100, select = TRUE,
reg_method = "robust", null_reps = 200, test_stat = c(1, 1), mutual_reject = 7, alpha = 0.05)
```

Arguments

n	Number of Sites to Include in Simulation
р	Number of Species to Include in Simulation
q	Number of Abiotic Factors to Include in Simulation
N	Noise Parameter Selection (integer 1 thru 12)
М	Covariation Magnitude Selection (integer 1 thru 5)
CD	Number of Covarying Species Pairs to Include in Simulation
Туре	Type of Species Covariation in Simulation (see details)
num_exp	Number of Experiments to Include in Simulation
select	Enable site selection procedure – TRUE (default)
reg_method	Regression method – "robust" (defaut), "tobit", "standard"
null_reps	Number of random matrices to generate for null distribution – 200 (default)
test_stat	Test statistic employed for computing indices
mutual_reject	Ignore species pairs with less than m mutual sites in testStatistic – 8 (default)
alpha	Significance level – 0.05 (default)

Details

Type:

0 -> All negatively covarying pairs

1 -> All positively covarying pairs

2 -> Mixed type covarying pairs (randomly selected)

Value

Parameters	List of parameters used in function call
COM_summary	Community variation paritioning, for each experiment
p_values	Detection p-value for each experiment
avg_det_rate	Number of communities showing significant iteraction over total experiments
avg_det_type	Number of communities with significant [positive,negative] interactions
run_time	Run-time of entire simulation (in seconds)

sitesSelect 9

Author(s)

Steve Essinger

References

S.D. Essinger, "Partitioning Abiotic and Biotic Contributions to Community Variation," Ph.D. dissertation, Dept. Elect. Eng., Drexel Univ., Philadelphia, PA, 2013

sitesSelect

Site Selection Procedure

Description

Procedure used to select sites for inclusion in analysis, per species.

Usage

```
sitesSelect(CDM, X)
```

Arguments

CDM Community Data Matrix (sites x species)

X Abiotic Factors (sites x factors) + vector of ones for intercept

Value

sites_sel

Nested list of booleans for including/excluding sites per species

Author(s)

Steve Essinger

SpeciesResponseModel

Species Response Model - for use with simulations

Description

This function generates a community data matrix (CDM) with n sites and p species to q environmental factors (X), using a linear model. The number (CD) of species pairs will covary within the community. The type of covariation for each pair depends on Type (0 negative, 1 positive, 2 mixed). The magnitude of covariation depends on Magnitude(M), while the noise depends on Noise(N). Both the noise and the covariation magnitude are added to the environmental species responses.

Usage

```
SpeciesResponseModel(n, p, q, N, M, CD, Type, Noise, Magnitude)
```

10 testStatistic

Arguments

n	Number of Sites to Include in Simulation
p	Number of Species to Include in Simulation

q Number of Abiotic Factors to Include in Simulation

N Noise Parameter Selection (integer 1 thru 12)
 M Covariation Magnitude Selection (integer 1 thru 5)

CD Number of Covarying Species Pairs to Include in Simulation

Type of Species Covariation in Simulation (see details)

Noise Vector of Noise Parameters

Magnitude Vector of Covariation Magnitude Parameters

Value

CDM Community Data Matrix (Sites x Species)

X Environmental Data (Explanatory Variables) (Includes 1's intercept)

Y Environmental Species Responses
YN Noise (Normal and Additive)

Magnitude of Species Covariation

CDMB Community Data Matrix prior to Zero Censoring

B Species Response Parameters

cvid Type of species covariation for each pair (mixed dynamics only)

Author(s)

Steve Essinger

testStatistic Test Statistic for Significant Covariation Test

Description

Test Statistic employed to generate null distribution

Usage

testStatistic(matrix, sites_sel, test_stat, mutual_reject)

Arguments

matrix Data matrix for computing test statistic

sites_sel Nested list of booleans for including/excluding sites per species

test_stat Selection of test statistic employed for computing indices for null distribution

mutual_reject Threshold for excluding species pairs from test statistic

tic 11

Details

 $test_stat$ (default c(1,1))

test_stat[1] = 1: absolute-covariance = 2: squared-covariance = 3: absolute-correlation = 4: squared-correlation

test_stat[2] = 1: absolute-covariance = 2: absolute-correlation = 3: sum of sites included per species pair = 4: 1 (constant)

mutual_reject (default 8): Any species pair having less than mutual_reject sites in common will be excluded from the test statistic calculation.

Value

index Covariation test statistic computed on input matrix

Start of Stopwatch

CR Pair-wise species correlation matrix
CV Pair-wise species covariation matrix

Author(s)

Steve Essinger

tic

Description

Helper function for computing elapsed run-time

Usage

tic()

References

http://stackoverflow.com/questions/1716012/stopwatch-function-in-r

toc

Stopwatch Stop

Description

Helper function for computing elapsed run-time. Returns tic-toc.

Usage

toc()

References

http://stackoverflow.com/questions/1716012/stopwatch-function-in-r

12 varExplained

varExplained	Partitioning Abiotic and Biotic Variation
--------------	---

Description

Partitions community variation attributed to abiotic and biotic factors

Usage

```
varExplained(CDM,p_value,sites_sel,CR, Avg_Adj_R2,Adj_R2,alpha)
```

Arguments

CDM Community Data Matrix (sites x species)

p_value p-value from species interaction significance test

sites_sel Nested list of booleans for including/excluding sites per species

CR Pair-wise species correlation matrix

Avg_Adj_R2 Community Adjusted R2
Adj_R2 Adjusted R2, per species

alpha Significance level for hypothesis test

Value

IND_summary Abiotic, Biotic and Unexplained Variation (per species)
COM_summary Abiotic, Biotic and Unexplained Variation (community)

Author(s)

Steve Essinger

Index

```
coeffDet, 2
covStatistic, 3

mvrRobust, 3
mvrStandard, 4
mvrTobit, 5

nullModel, 6
NullSens, 6
NullSens-package, 2
NullSens_Simulation, 8
sitesSelect, 9
SpeciesResponseModel, 9
testStatistic, 10
tic, 11
toc, 11
varExplained, 12
```