Image Features

Image Processing
Dr. Márton Szemenyei
Associate Professor
2024

Position/pose

Image stitching

Intensity, colour

Edges

Corners

Regions

Usable features

- 1. Intensity (colour)
- 2. Gradients (edges)
- 3. Binary objects (later)
- 4. Corner points
- 5. Regions

Template matching

EABCDEABCDI ABCDEABCDEA BCDE ABCDE A CDEABCDEAB DE ABCOEABC

EABCIE ABCDE ABCDI BCDEABCDE CDE ABCDE DEABCDEAL DE ABCOEABC EABCDEABCD

Template Matching

Template: convolutional filter

Error function

Correlation

$$E_{CC}(x,y) = \sum_{x'} \sum_{y'} I(x + x', y + y') T(x', y')$$

SSD

$$E_{SSD}(x,y) = \sum_{x'} \sum_{y'} (I(x+x',y+y') - T(x',y'))^{2}$$

The OF field

OF principle

Homogeneous areas

The aperture problem

Barber pole illusion

Assumptions of the OF

The intensity of each object is constant over time

The displacement between two frames is small

We will need it later:

Pixels close to each other move in a similar way

The intensity flow equation

$$I(x, y, t) = I(x + dx, y + dy, t + dt)$$

$$f(x + dx) = f(x) + f'(x)dx + f''(x)\frac{dx^2}{2} + \cdots$$

$$I(x,y,t) = I(x,y,t) + \frac{\partial I}{\partial x}dx + \frac{\partial I}{\partial y}dy + \frac{\partial I}{\partial t}dt = I_x dx + I_y dy + I_t dt$$

$$I_x \frac{dx}{dt} + I_y \frac{dy}{dt} + I_t = 0 \rightarrow I_x u + I_y v = -I_t$$

$$v = -u\frac{I_x}{I_y} - \frac{I_t}{I_y}$$

The solvability

Lucas-Kanade

for N pixels

$$\begin{bmatrix} I_{x1} & I_{y1} \\ I_{x2} & I_{y2} \\ \vdots & \vdots \\ I_{xN} & I_{vN} \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -I_{t1} \\ -I_{t2} \\ \vdots \\ -I_{tN} \end{pmatrix}$$

$$X\vec{u} = Y \rightarrow \vec{u} = (X^TX)^{-1}X^TY$$

$$X^TX:H$$

Local structure matrix: covariance matrix of derivatives

Farneback Optical Flow

We approximate the image with a quadratic function

$$I_1(x) = x^T A_1 x + b_1^T x + c_1 I_2(x) = x^T A_2 x + b_2^T x + c_2$$

The two images are the same only shifted:

$$I_2(x) = I_1(x - d) = (x - d)^T A_1(x - d) + b_1^T (x - d) + c_1 = \cdots$$

... = $x^T A_1 x + (b_1 - 2A_1 d)^T x + d^T A_1 d - b_1^T d + c_1$

Finally:

$$b_2 = b_1 - 2A_1d \rightarrow d = \frac{-1}{2}A_1^{-1}(b_2 - b_1)$$

Farneback in practice

The picture is not a quadratic function

Estimate polynomials locally, not globally

Estimates per pixel: too noisy

Use LS estimate in the neighbourhood

$$d = \left(\sum_{p \in N(x)} w_p A_p^T A_p\right)^{-1} \sum_{p \in N(x)} w_p A_p^T (b_2 - b_1)$$

Farneback vs LK

Dense optical flow: Farneback

For each pixel position we calculate the movement

Rare optical flow: LK

We count movements only at a few selected points

Iterative OF in 1D

Pyramid OF

Optical Flow with pyramid

Difficulties

Object changes (rotation, scale, etc.)

Occlusion

Non-linear motion

Similar objects

Edge search with derivatives

Edge search with derivatives

1	0	-1
1	0	-1
1	0	-1

Derivative filter

Initial image

Horizontal derivative

Horizontal derivative absolute value

Vertical derivative

Absolute value of vertical derivative

Max of absolute values

Sum of absolute values

Euclidean norm of absolute values

Difference of Gaussians (DoG)

Laplace Filter

0	-1	0
-1	4	-1
0	-1	0

-1	-1	-1
-1	8	-1
-1	-1	-1

Kernel size

Canny edge detector

Gaussian filtering

Derivative filtering in two/four directions

(Roberts, Prewitt, Sobel...)

Gradient magnitude and direction

Delete non-maxima (in gradient direction)

Hysteresis thresholding: strong edges, weak edges

Canny edge detector

Directions, angles

Hough transform

Object is a single point in Hough Space

Lines (primarily!)

Circles

Ellipses

Arbitrary objects

Hough transform

Hough Space

Hough transform

Hough Space

Hough transform

Original image

Hough Space

