

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Podstawowe testy statystyczne

Statystyka

Dr inż. Janusz Majewski Katedra Informatyki

Zasadniczą domeną statystyki jest weryfikacja <u>hipotez</u> statystycznych, czyli pewnych przypuszczeń dotyczących rozkładu populacji.

Hipotezy:

- Parametryczne dotyczą wartości parametrów rozkładu populacji.
- Nieparametryczne dotyczą typu rozkładu populacji.

Proces weryfikacji hipotezy nosi nazwę <u>testu</u> <u>statystycznego</u>. Gdy weryfikacji podlega hipoteza parametryczna mówimy o teście parametrycznym.

<u>Hipoteza zerowa H_0 </u> – podstawowa hipoteza statystyczna sprawdzana danym testem.

Hipoteza alternatywna H_1 – hipoteza konkurencyjna w stosunku do hipotezy zerowej (jeżeli odrzuca się hipotezę zerową, to przyjmuje się hipotezę alternatywną).

<u>Błąd pierwszego rodzaju</u> polega na odrzuceniu hipotezy podstawowej (zerowej), która jednak jest prawdziwa.

Błąd drugiego rodzaju polega na przyjęciu hipotezy podstawowej (zerowej), która jednak jest fałszywa.

<u>Błąd pierwszego rodzaju</u> polega na odrzuceniu hipotezy podstawowej (zerowej), która jednak jest prawdziwa. <u>Błąd drugiego rodzaju</u> polega na przyjęciu hipotezy podstawowej (zerowej), która jednak jest fałszywa.

Poziom istotności α – to prawdopodobieństwo popełnienia błędu pierwszego rodzaju (np. 0.05, 0.01, 0.1).

Moc testu $1-\beta$ - to prawdopodobieństwo niepopełnienia błędu drugiego rodzaju (β - oznacza prawdopodobieństwo popełnienia błędu drugiego rodzaju)

Uwagi: testowanie hipotezy statystycznej nie jest tożsame z logicznym udowadnianiem jej prawdy lub fałszu. Hipoteza zerowa jest pewną naszą "teorią". Jeśli "rzeczywistość" reprezentowana przez próbę nie zgadza się z teorią, to powinniśmy teorię (czyli hipotezę zerową) odrzucić. Czyniąc tak musimy wiedzieć, że bardzo rzadko, ale jednak czasem (z prawdopodobieństwem niewielkim α) hipoteza zerowa rzeczywiście jest słuszna, a tylko wynik próby przypadkowo odbiega od niej.

H₀: **oskarżony jest niewinny**

H₁: oskarżony jest winny

Odbywa się przewód sądowy. Sędzia może:

- 1) uznać, że wina została udowodniona i wydać wyrok skazujący, tzn. przyjąć H_1 odrzucając H_0 (popełniając przy tym błąd z prawdopodobieństwem α),
- 2) uznać, że wina nie została udowodniona, co nie jest równoważne z przyjęciem, że oskarżony jest niewinny, tzn. może orzec, że <u>nie ma podstaw do odrzucenia hipotezy H₀</u> (co nie znaczy: przyjąć H₀).

Na ogół hipotezy zerowe nie są tymi, na których badaczowi szczególnie zależy. Formułowane są one zwykle w sposób "neutralny", np. że nie ma różnic między dwiema populacjami, że nie ma związku między dwoma zjawiskami. Są one na ogół mało konstruktywne i nietwórcze dla badacza – eksperymentatora. Jemu właśnie zależy na wykazaniu istnienia różnic, związków i zależności wzajemnych. Badacz na ogół pragnie obalenia niechcianej neutralnej hipotezy zerowej i przyjęcia porządnej hipotezy alternatywnej. I do takiego właśnie postępowania znajduje w statystyce bardzo dobre narzędzie.

Ogólny schemat przeprowadzenia parametrycznego testu statystycznego (test istotności) przedstawiono na schemacie blokowym z następnego slajdu.

Komentarze dotyczą testu istotności dla średniej:

$$H_0$$
: $\mu = \mu_0 (\mu_0 - \text{wartość ustalona})$

$$H_1$$
: $\mu \neq \mu_0$

$$\alpha = \alpha_0 (\alpha_0 - \text{wartość ustalona})$$

Populacja o rozkładzie normalnym lub zbliżonym.

Próba o liczebności n.

Testy statystyczne – procedura postępowania

- 1) Sformułowanie hipotezy H_0 , hipotezy H_1 , określenie poziomu istotności α .
- 2) Ewentualne sprawdzenie typu rozkładu lub innych założeń.
- 3) Zbudowanie statystyki Z i określenie rozkładu tej statystyki przy założeniu prawdziwości H_0 oraz uwzględnienie parametrów próby (np. liczebności) i ewentualnie parametrów populacji.
- 4) Określenie w rozkładzie statystyki Z (przy uwzględnieniu wartości α) tzw. obszaru krytycznego Q, tzn. zbioru takich wartości Z, które są bardzo mało prawdopodobne (prawdopodobieństwo α) jeżeli są spełnione wszystkie założenia, w szczególności założenie prawdziwości hipotezy H_0 .

$$P(Z \in Q) = \alpha$$

- 5) Obliczenie wartości statystyki Z na podstawie próby.
- 6) Sprawdzenie, czy wyznaczone Z należy do obszaru krytycznego. Jeśli tak odrzucamy H_0 przyjmując H_1 , jeśli nie nie ma podstaw do odrzucenia H_0 .

Test istotności dla średniej

- Populacja ma rozkład normalny o średniej μ i wariancji σ^2 (μ i σ^2 nieznane).
- Próba o liczebności n jest losowana niezależnie.
- Poziom istotności α.

 $\mathbf{H_0}$: $\boldsymbol{\mu} = \boldsymbol{\mu_0}$ (μ_0 – konkretna liczba)

 $H_1: \mu \neq \mu_0$ (test dwustronny)

$$t = \frac{\bar{x} - \mu_0}{\frac{S}{\sqrt{n}}} = \frac{\bar{x} - \mu_0}{S} \sqrt{n}$$

 \bar{x} – średnia z próby,

s - odchylenie standardowe z próby,

Rozkład t dla prawdziwej H_0 .

Odrzucamy H_0 gdy $|t| \ge \alpha t_{(n-1)}$

 $_{\alpha}t_{(n-1)}$ – wartość krytyczna rozkładu t dla danego α w teście dwustronnym

Test istotności dla średniej - dwustronny

Test istotności dla średniej - lewostronny

Test istotności dla średniej - prawostronny

Test istotności dla średniej

<u>Przykład:</u> W doświadczeniu biochemicznym bada się czas życia żywych komórek w toksycznym środowisku. Rozkład tego czasu można uznać za normalny. Dokonano 8 pomiarów i otrzymano następujące czasy życia komórek: 4,7; 4,0; 3,8; 6,2; 5,5; 4,5; 6,0 [godz.]. Dla $\alpha = 0,05$ sprawdzić hipotezę, że średni czas życia komórek wynosi 4 godziny:

$$\mu_0 = 4.0$$
 $\frac{s}{\sqrt{n}} = 0.315$
 $\bar{x} = 5.0$ $t = 3.17$
 $n = 8$
 $s^2 = 0.794$ $|t| \ge_{0.05} t_{(7)}$

Średni czas życia jest istotnie <u>różny</u> od 4,0 godz.

Przedział ufności dla $1-\alpha=0.95$ wynosi 5.0 ± 0.75 I nie obejmuje wartości hipotetycznej 4,0 godz.

Test różnicy między dwoma średnimi

AGH

Z dwóch populacji o rozkładach normalnych oraz <u>takich samych wariancjach</u> wylosowano niezależnie próby o liczebnościach n_1 i n_2 . Zweryfikować hipotezę mówiącą, że średnie w obu populacjach są równe.

$$H_0$$
: $\mu_1 = \mu_2$

$$H_1: \mu_1 \neq \mu_2$$

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

gdzie:

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{(n_{1} - 1) + (n_{2} - 1)}$$

 $\overline{x_1}$ – średnia z próby 1-szej populacji,

 $\overline{x_2}$ – średnia z próby 2-giej populacji,

 n_1 – liczebność próby 1-szej populacji,

 n_2 – liczebność próby 2-giej populacji,

 s_1^2 – wariancja z próby 1-szej populacji,

 s_2^2 – wariancja z próby 2-giej populacji.

Statystyka t ma rozkład t-Studenta

o $n_1 + n_2 - 2$ stopniach swobody.

 H_0 odrzucamy, gdy $|t| \ge \alpha t_{(n_1+n_2-2)}$

Test różnicy między dwoma średnimi

Gdy <u>nie można założyć równości wariancji</u> w obu populacjach stosujemy statystykę *t*:

$$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

która ma rozkład t-Studenta o liczbie swobody v danej wzorem:

$$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 \frac{1}{n_1 + 1} + \left(\frac{s_2^2}{n_2}\right)^2 \frac{1}{n_2 + 1}} - 2$$

 H_0 odrzucamy, gdy $|t| \ge_{\alpha} t_{(\nu)}$.

Test dla danych sparowanych

Czasem mamy do czynienia z dwoma próbami, które można traktować jako zbiory obserwacji dotyczących tych samych obiektów. Przykładowo niech x_i oraz y_i będą wartościami pewnej cechy oznaczonej u n pacjentów, odpowiednio przed i po kuracji. Wówczas zamiast liczyć średnie osobno z wyników przed oraz po kuracji i testować hipotezę H_0 : $\mu_x = \mu_y$ lepiej jest najpierw dla każdego pacjenta (obiektu) obliczyć różnicę:

$$z_i = x_i - y_i$$

a następnie weryfikować hipotezę o tym, że wartość średnia różnic w całej populacji jest równa zeru.

$$H_0: \mu_z = 0$$

Test dla danych sparowanych

$$z_i = x_i - y_i$$

$$H_0: \mu_z = 0$$

<u>Jest to tzw. test dla danych sparowanych.</u> Obliczamy statystykę t:

$$t = \frac{\bar{z}}{S_z} \sqrt{n}$$

gdzie:

 \bar{z} – wartość średnia różnic z próby.

$$s_z = \sqrt{\frac{\sum_i (z_i - \bar{z})^2}{n - 1}}$$

Statystyka t ma rozkład t-Studenta o n-1 stopniach swobody.

 H_0 odrzucamy, gdy: $|t| \ge_{\alpha} t_{(n-1)}$.

Test dla danych sparowanych – przykład

<u>Przykład:</u> W próbie klinicznej nowego środka do leczenia anurezy każdy z 29 pacjentów przez 14 dni otrzymywał lek, a przez inne 14 – placebo. Kolejność przyjmowania tych środków była u każdego pacjenta ustalana losowo. Uzyskane wyniki obserwacji na następnym slajdzie.

Liczba "suchych" nocy (na 14 badanych) u pacjentów otrzymujących lek i placebo.

Lp.	Lek	Placebo	Różnica L-P	Lp.	Placebo	Lek	Różnica L-P
1	8	5	3	2	12	11	-1
3	14	10	4	5	5	8	2
4	8	0	8	8	13	9	-4
6	9	7	2	10	8	8	0
7	11	6	5	12	8	9	1
9	3	5	-2	14	4	8	4
11	6	0	6	15	8	14	6
13	0	0	0	17	2	4	2
16	13	12	1	20	8	13	5
18	10	2	8	23	9	7	-2
19	7	5	2	26	7	10	3
21	13	13	0	29	7	6	-1
22	8	10	-2				
24	7	7	0				

Test dla danych sparowanych – przykład

$$n = 29$$
 $\bar{z} = 2,172$
 $s_z^2 = 11,005$
 $t = 3,53$
 $0,05t_{(28)} = 2,048$
 $t > t_{kryt}$

Różnica między skutecznością leku a placebo jest istotna.

Test istotności dla wariancji

Pobrano próbę o liczebności n z populacji <u>o rozkładzie normalnym</u>.

$$\mathsf{H}_0:\ \boldsymbol{\sigma}^2=\boldsymbol{\sigma}_0^2$$

$$H_1: \sigma^2 > \sigma_0^2$$

(test jednostronny, na ogół tylko wariancja większa od pewnego progu jest niekorzystna)

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$
 gdzie: s^2 – wariancja z próby

$$H_0$$
 odrzucamy, gdy: $\chi^2 \ge \alpha \chi^2_{(n-1)}$.

Test istotności dla wariancji

Rozkłady χ^2

źródło [Wikipedia]

Porównanie dwóch wariancji

Z dwóch populacji <u>o rozkładach normalnych</u> wylosowano próby o liczebnościach n_1 i n_2 . Badamy:

$$\mathsf{H}_0: \boldsymbol{\sigma}_1^2 = \boldsymbol{\sigma}_2^2$$

$$H_1: \sigma_1^2 > \sigma_2^2$$

(test jednostronny)

$$F = \frac{s_1^2}{s_2^2}$$
 gdzie: s_1^2 , s_2^2 – wariancje z prób.

(Zawsze umieszczamy większą z wariancji w liczniku i oznaczamy jako s_1^2).

$$H_0$$
 odrzucamy, gdy: $F \ge {}_{\alpha}F_{(n_2-1)}^{(n_1-1)}$

Porównanie dwóch wariancji

Rozkłady F Snedecora

źródło [Wikipedia]

Porównanie dwóch wariancji i dwóch średnich (przykład)

Przykład: Zmierzono w dwóch ulach średnicę komórek plastra zbudowanego przez pszczoły. Dla 7 wylosowanych komórek z plastra z pierwszego ula otrzymano wyniki (w mm): 5,36; 5,20; 5,28; 5,16; 5,30; 5,08; 5,23; analogicznie dla drugiego ula otrzymano: 5,15; 5,04; 5,30; 5,22; 5,19; 5,24; 5,12. Na poziomie istotności $\alpha=0,05$ zweryfikować hipotezę, że średnie długości średnic komórek na plastrach pochodzących z dwóch różnych uli są równe.

Porównanie dwóch wariancji i dwóch średnich (przykład)

1) Sprawdzamy, czy można uznać, że **wariancje** średnic w obu plastrach są równe

$$n_1 = n_2 = 7$$
 $\overline{x_1} = 5.23$
 $\overline{x_2} = 5.18$
 $s_1^2 = 0.008767$
 $s_2^2 = 0.0073$

$$F = \frac{0,008767}{0.0073} = 1,201$$

Zawsze w liczniku większe oszacowanie wariancji!

$$_{0,05}F_{(6)}^{(6)} = 4,28$$
 $F < F_{kryt}$

Nie można odrzucić hipotezy o równości wariancji średnic komórek.

Porównanie dwóch wariancji i dwóch średnich (przykład)

2) Zakładamy więc, że wariancje są równe i obliczamy:

$$s^{2} = \frac{6 \cdot 0,008767 + 6 \cdot 0,0073}{12} = 0,00803$$

$$t = \frac{5,23 - 5,18}{\sqrt{0,00803 \cdot \left(\frac{1}{7} + \frac{1}{7}\right)}} = 2,088$$

$$0,05t_{(12)} = 2,179$$

$$|t| < t_{kryt}.$$

Nie można odrzucić hipotezy o równości średnich średnic komórek.

Test istotności dla frakcji

Populacja ma rozkład dwupunktowy z nieznanym prawdopodobieństwem sukcesu π . Na podstawie dużej (n>100) próby losowanej niezależnie weryfikuje się hipotezę:

 $H_0: \pi = \pi_0$

 H_1 : $\pi \neq \pi_0$

$$p = \frac{r}{n}$$

r − liczba sukcesów,

n – liczba doświadczeń

p − frakcja z próby.

Stosujemy statystykę u:

$$u = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$$

u ma w przybliżeniu rozkład normalny standaryzowany, H_0 odrzucamy gdy: $|u| \ge_{\alpha} u$.

Porównanie dwóch frakcji

Z dwóch populacji o rozkładzie dwupunktowym i nieznanych prawdopodobieństwach sukcesu π_1 i π_2 pobrano dwie duże próby o liczebnościach n_1 i n_2 ($n_1 > 100, n_2 > 100$). W próbie o liczebności n_1 pochodzącej z populacji pierwszej stwierdzono r_1 sukcesów, w próbie drugiej r_2 sukcesów.

$$\mathsf{H_0}\!\!: \pi_1 = \pi_2$$

$$H_1: \pi_1 \neq \pi_2$$

$$p_1 = \frac{r_1}{n_1}$$

$$p_2 = \frac{r_2}{n_2}$$

$$p = \frac{r_1 + r_2}{n_1 + n_2}$$

$$n = \frac{n_1 \cdot n_2}{n_1 + n_2}$$

$$u = \frac{p_1 - p_2}{\sqrt{\frac{p(1-p)}{n}}}$$

Statystyka u ma rozkład zbliżony do standaryzowanego rozkładu normalnego. H_0 odrzucamy gdy: $|u| \ge_{\alpha} u$.

Czasami dysponujemy obserwacjami tworzącymi *N* par. Każda para obserwacji związana jest z tym samym obiektem. Para obserwacji to wynik dwu doświadczeń, z których każde może zakończyć się sukcesem.

		Próba 2		
		Sukces	Porażka	
Próba 1	Sukces	k	r	k + r
	Porażka	S	m	s+m
		k + s	r+m	N

		Próba 2		
		Sukces	Porażka	
Próba 1	Sukces	k	r	k + r
	Porażka	S	m	s+m
		k + s	r+m	N

Frakcja sukcesu:

w próbie 2:
$$\frac{k+s}{N}$$

w próbie 1:
$$\frac{r+k}{N}$$
 w próbie 2: $\frac{k+s}{N}$ Badamy różnicę $\frac{k+r}{N} - \frac{k+s}{N} = \frac{r-s}{N}$

 H_0 : $\pi_1 - \pi_2 = 0$

 $H_1: \pi_1 - \pi_2 \neq 0$

$$u = \frac{r - s}{\sqrt{r + s}}$$

Statystyka u ma rozkład zbliżony do normalnego standaryzowanego. H₀ odrzucamy gdy $|u| \ge_{\alpha} u$. Przedział ufności dla różnicy frakcji:

$$\frac{r-s}{N} \pm_{\alpha} u \frac{\sqrt{r+s}}{N}$$

<u>Przykład:</u> Sto próbek plwociny posiano na dwóch podłożach A i B. Zadanie polega na porównaniu zdolności obu podłoży do wykrywania prątków gruźlicy. Wyniki przedstawiono w tabeli:

		Podłoże B		
		+	1	Razem
	+	40	24	64
Podłoże A		k	r	k+r
	-	10	26	36
		S	m	s+m
	Razem	50	50	100
		k+s	r+m	N

	Podłoże B			
		+	-	Razem
		40	24	64
Podłoże A	+	k	r	k+r
	-	10	26	36
		S	m	s+m
	Dazam	50	50	100
	Razem	k+s	r+m	N

Hipotezę o jednakowej przydatności obu podłoży należy odrzucić dla α =0,05. 95% przedział ufności dla różnicy częstości $\frac{r-s}{N}$ wynosi:

$$\frac{24-10}{100} \pm \frac{1,96\sqrt{24+10}}{100}$$

czyli
$$0, 14 \pm 0, 12$$
.

$$_{0,01}u = 2,576$$

Dla $\alpha = 0.01$ hipotezy zerowej nie da się odrzucić.

$$r = 24$$

$$s = 10$$

$$N = 100$$

$$\frac{r - s}{N} = \frac{24 - 10}{100} = 0,14$$

$$u = \frac{24 - 10}{\sqrt{24 + 10}} = 2,401$$

$$_{0,05}u = 1,960$$

$$|u| > u_{kryt}$$