CMSC 303 Introduction to Theory of Computation, VCU Assignment: 6

Name: Steven Hernandez

1. (a) Claim: |N| = |Z| where $N = \{0, 1, 2, 3, \ldots\}$ and $Z = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$. Proof: By bijection, we create a function $f: N \mapsto Z$ such that all even numbers in N map into a some even number in Z and odd numbers in N map to negative numbers in Z.

$$f(x) = \begin{cases} -\frac{x+1}{2} & \text{if } x \text{ is odd} \\ \frac{x}{2} & \text{if } x \text{ is even} \end{cases}$$

(b)

Claim: $|N| \neq |B|$ where $B = \{x | x \in \{0, 1\}^*\}$

Proof: We can prove this by by contradiction.

Suppose we only only concern ourselves with very the large (infinite) strings. We assume \exists list L of all thes strings.

$$L = 011001100...$$
 $100110011...$
 $100100100...$
 $111111111...$
 $......$

We can construct the string $x \in B$ which is not in L by taking the ith symbol of x to be the opposite symbol from the ith entry of L. Thus, contradiction.

- 2. (a) $A \leq B$ means that B is harder than A (or equally hard).
 - (b) A mapping reduction gives us a way to handle deciding whether a problem is decidable or not from knowing that some other problem is decidable or not.

So for example with an example of adding and multiplying. Multiplying \leq adding because multiplying can be achieved by simply using adding. Thus, adding is a more powerful construct.

With this, we can say that if A is not decidable, B is not decidable either because B is harder than A. As well as, if B is decidable, A is also decidable, because A is not as hard as B.

(c)

- (d) i. A is decidable because B is 'harder', yet is decidable.
 - ii. B is undecidable because B is 'harder' than A and A is not decidable.
 - iii. It is unknown whether A is decidable or not, because while B is not decidable, it is also said to be harder than A.
- 3. (a)
 - (b)
 - (c)