Makroekonomia zaawansowana - lista 1 termin oddania: zajecia 7 marca

Zadanie 1 (2p) Rozpatrzmy model Solowa z funkcją produkcji Cobba-Douglasa postaci $F(k,l) = k^{\alpha}l^{1-\alpha}$ gdzie $1 > \alpha > 0$. Niech $y^*(s)$ oznacza poziom produkcji w stanie ustalonym jako odwzorowanie stopy oszczędności s.

- a) Oblicz $\frac{y^*(s)}{y^*(0.22)}$,
- b) Najbiedniejsze kraje świata mają poziom PKB pc na poziomie $\frac{1}{30}$ PKB pc USA. Przyjmując, że dla gospodarki USA s = .22, a pozostałe parametry opisujące te gospodarki (funkcja produkcji oraz stopa deprecjacji) są takie same wyznacz wzór na stopę oszczędności kraju biednego wyjaśniającą takie rozpietości w PKB pc,
- c) Wykorzystując wzory z punktu b) oblicz poziom s wyjaśniający omawiane rozpiętości dla $\alpha = .15, .5, .85$.

Zadanie 2 (2p) Przyjmijmy że okres w modelu Solowa wynosi 1 rok. Rozpatrzmy funkcję produkcji Cobba-Douglasa postaci $F(k,l) = k^{\alpha}l^{1-\alpha}$. Niech s = .2, $\delta = .09$ a $\alpha = .15, .45, .85$.

- a) Dla każdej wartości α wyznacz (na komputerze) poziom kapitału w stanie ustalonym oraz minimalną liczbę okresów koniecznych na przejście od .1k* do .55k*, od .6k* do .8k* oraz od .9k* do .95k* (A więc dla każdego okresu początkowego oblicz liczbę okresów (lat) niezbędnych dla przejścia połowy drogi do stanu ustalonego). Wyniki podsumuj w tabelce.
- b) Rozparz funkcję produkcji $F(k,l) = Ak^{\alpha}l^{1-\alpha}$. Dla $\alpha = .3$ powtórzy obliczenia punktu a) dla A = 2 oraz A = 4.
- c) Jaki wpływ na tempo konwergencji mają parametry α oraz A? Podaj wyjaśnienie ekonomiczne.

Zadanie 3 (2p) Na zajęciach założyliśmy, że funkcja f jest ostro wypukła. Rozpatrz model Solowa, ale przy założeniu f(k) = Ak, gdzie A = const. > 0.

- a) Narysuj zależność k_{t+1} od k_t .
- b) Uargumentuj, że taka gospodarka nie będzie miała dodatniego stanu ustalonego poza szczególnym warunkiem (jakim?)
- c) Załóż, że $sA < \delta$. Jakie jest asymptotyczne zachowanie kapitału w takiej gospodarce? Czy gospodarka ma BGP? Ile? Jakie jest tempo zmiany kapitału na tych BGP?
- d) Załóż, że $sA > \delta$. Pokaż, że gospodarka ma kontinuum BGP, ale każda ma takie samo tempo wzrostu (jakie?).

Zadanie 4 (2p) W tym zadaniu rozpatrzysz model wzrostu Solowa bez postępu technologicznego, ale ze wzrostem populacji (identycznych, reprezentatywnych, pracujących gospodarstw domowych). Niech N_t oznacza wielkość populacji w okresie t z $N_0 = 1$ i stałym tempem wzrostu N_t na poziomie $1+\gamma_N$. Wykorzystując metody analizy w modelu Solowa dla postępu technologicznego wzbogacającego pracę:

- a) pokaż, że rozpatrując wartości c, k, y per capita gospodarka ma stan ustalony i k_{pc} zbiega (monotonicznie) to tego poziomu,
- b) rozpatrz i wyjaśnij ekonomicznie dynamikę konsumpcji pc dla dwóch identycznych gospodarek z różnym tempem wzrostu populacji,

c) rozpatrz gospodarkę ze stałym tempem wzrostu populacji w stanie ustalonym. Graficznie poddaj analizie wpływ jednookresowej zmiany wielkości populacji (odpływ pracowników za granicę, po której tempo wzrostu populacji wraca do poprzedniego poziomu $1 + \gamma_N$) na per capital wartości y, k, c.

Zadanie 5 (2p) W modelu wzrostu optymalnego niech $f(k) = k^{\alpha}$, dla $\alpha = 1/3$, $\beta = .96$, $\delta = .08$. Preferencje są zadane funkcją $u(c) = \frac{1}{1-\sigma}c^{1-\sigma}$ dla $\sigma = 1.01$. Stosunek kapitału początkowego do kapitału w stanie ustalonym wynosi $\lambda = .1$.

- a) Oblicz stan ustalony dla modelu wzrostu optymalnego, i wyznacz k_0 .
- b) Oblicz jaka część produktu (w stanie ustalonym) jest przeznaczana na inwestycje w modelu wzrostu optymalnego i oznacz tą liczbę przez s
- c) Oblicz ścieżkę akumulacji kapitału dla modelu Solowa z obliczoną powyżej stopą s
- d*) Oblicz ścieżke akumulacji kapitału dla modelu wzrosty optymalnego¹
- e*) Na jednym wykresie porównaj obie ścieżki (Solow vs. model wzrostu optymalnego). Opisz i ekonomicznie wyjaśnij różnice w obu ścieżkach.

 $^{^1\}mathrm{Wykorzystaj}$ jedną z metod omówionych na zajęciach: shooting, dyskretyzacja, albo wydłużanie horyzontu czasowego.