ОШИБКИ ОЦЕНИВАНИЯ СИГНАЛА С ПОМОЩЬЮ КОМПЛЕКСНОГО АНАЛИЗА СИНГУЛЯРНОГО СПЕКТРА 1

Голяндина Н. Э., доцент кафедры Статистического Моделирования СПбГУ, n.golyandina@spbu.ru

Сенов М. А., студент, СПбГУ, senov.mikhail@gmail.com

Аннотация

Анализ сингулярного спектра (singular spectrum analysis, SSA) — непараметрический метод для разложения временного ряда в сумму интерпретируемых компонент, таких как тренд, периодики и шум. Расширение SSA на комплексный случай называется CSSA. В работе проведено теоретическое сравнение CSSA и SSA, примененного отдельно к вещественной и мнимой части, на основе первого порядка ошибки оценки сигнала, где первый порядок рассматривается по величине возмущения. Проведено численное сравнение полной ошибки и первого порядка ошибки на примерах. Для константного сигнала получен явный вид первого порядка ошибки его оценки в случае наличия в ряде выброса.

Введение

Анализ сингулярного спектра (singular spectrum analysis, SSA) [2] — мощный метод анализа временных рядов, не требующий предварительного задания параметрической модели ряда. Метод имеет естественное расширение на случай комплексных временных рядов, называемое Complex SSA (CSSA). Есть класс сигналов, а именно временные ряды, управляемые линейными рекуррентными соотношениями, который позволяет получать для него теоретические результаты относительно свойств метода SSA.

Пусть наблюдаемый комплексный временной ряд имеет вид X=S+R. Для получение оценки сигнала \widetilde{S} будем использовать метод CSSA. Кроме применения CSSA ко всему ряду, будем также применять метод SSA отдельно к вещественной и мнимой части ряда X.

¹Работа выполнена при поддержке гранта РФФИ 20-01-00067

Для анализа ошибки оценивания сигнала используется теория возмущений [5], которая была применена для случая выделения сигнала методом SSA в ряде работ, см., например, [6].

Хотя теория возмущения Като дает вид полной ошибки, однако ее исследование представляется сложной задачей. Поэтому мы будем рассматривать только первый порядок ошибки в разложении ошибки по величине возмущения.

При этом проведем численное сравнение первого порядка ошибки и полной ошибки для выявления случаев, когда анализ первого порядка ошибки плохо описывает полную ошибку и поэтому его анализ не представляет интереса.

Даже для первого порядка ошибки получение его явного вида — довольно трудоемкая задача. Нам удалось его получить для случая константного сигнала и возмущения в виде выброса. В общем случае результаты касаются сравнения MSE ошибок оценки сигнала методом CSSA и суммарного MSE при применении SSA отдельно к мнимой и вешественной частям.

Алгоритм CSSA

Алгоритм 1.

Вход: Комплексный временной ряд $X = (x_1, \dots, x_N)$, длина окна L, ранг сигнала r.

Выход: Оценка сигнала \widetilde{S} .

Алгоритм:

1. **Вложение.** Построим $\mathbf{X} \in \mathsf{R}^{L \times K}$, L-траекторную матрицу $\mathit{pядa}$ X:

$$\mathbf{X} = \mathcal{T}_L X = [X_1 : \dots X_K],$$

 $\mathit{ede}\ K=N-L+1,\ a\ X_i$ — векторы L -вложения: $X_i=(x_i,\ldots,x_{i+L-1})^{\mathrm{T}}\in\mathsf{R}^L.$

- 2. Разложение. Построим SVD-разложение матрицы $\mathbf{X}: \mathbf{X} = \sum_{k=1}^{\mathrm{rank}\,\mathbf{X}} \sqrt{\lambda_k} U_k V_k^{\mathrm{H}} = \sum_{k=1}^{\mathrm{rank}\,\mathbf{X}} \widehat{\mathbf{X}}_k$, где U_k , V_k правые u левые сингулярные векторы матрицы \mathbf{X} соответственно, $\sqrt{\lambda_k}$ сингулярные числа.
- 3. **Группировка.** Сгруппируем матрицы компонент сигнала $\hat{\mathbf{S}}$: $\hat{\mathbf{S}} = \sum_{k=1}^r \hat{\mathbf{X}}_k$.

4. Диагональное усреднение. Применим процедуру диагонального усреднения (проекции в норме Фробениуса на линейное пространство ганкелевых матриц): $\widetilde{\mathbf{S}} = \mathcal{H}\widehat{\mathbf{S}}$, затем сопоставим полученным Ганкелевым матрицам ряды длины $N: \widetilde{S} = \mathcal{T}_I^{-1} \widetilde{\mathbf{S}}.$

L-Рангом временного ряда называется ранг его траекторной матрицы. Для дальнейших рассуждений потребуется знание рангов конкретных рядов. Из [3] известно, что ранг комплексного сигнала, вещественная и мнимая чать которого являются синусоидами с одинаковой частотой ω , $0 < \omega < 0.5$, равен 2, если сдвиг между синусоидами не равен $\pi/2$, и равен 1 в случае комплексной экспоненты. Ранг вещественного синусоидального сигнала, равен 2 при тех же ограничениях на частоту. Ранги же комплексной и вещественной констант равны 1 их можно рассматривать как частный случай с $\omega = 0$.

Применение теории возмущений к SSA и CSSA

Наблюдаем комплексный временной ряд X длины N, данный ряд представляется как X = S + R, где S -сигнал ранга r, R -возмущение. Возьмем некоторую длину окна L, L > r.

В [6] вводится разложение восстановления сигнала в модели $S(\delta) =$ $S + \delta R$, что соответствует $H(\delta) = H + \delta E$, где $H(\delta) = \mathcal{T}_L S(\delta)$, $H = S(\delta)S$, $\delta \mathbf{E} = \delta \mathsf{R}$, и рассматривается линейный по δ член ошибки восстановления, называемый первым порядком ошибки восстановления.

Рассмотрим возмущение ряда R с $\delta = 1$, его траекторная матрица E. Первый порядок ошибки восстановления обозначим как $\mathsf{F}^{(1)} = \mathcal{H}(\mathbf{H}^{(1)})$.

На основе результатов из [8, стр.12] и теоремы 2.1 из [6] была получена следующая формула для $\mathbf{H}^{(1)}$ в случае достаточно маленького возмущения.

$$\mathbf{H}^{(1)} = \mathbf{P}_0 \mathbf{E} \mathbf{Q}_0^{\perp} + \mathbf{P}_0^{\perp} \mathbf{E},\tag{1}$$

где \mathbf{P}_0^{\perp} — проектор на пространство столбцов $\mathbf{H},\,\mathbf{Q}_0^{\perp}$ — проектор на пространство строк $\mathbf{H}, \mathbf{P}_0 = \mathbf{I} - \mathbf{P}_0^{\perp}, \mathbf{I}$ — единичная матрица.

Сравнение CSSA и SSA в случае совпадающих пространств сигналов

Обозначим за: $\mathsf{F}^{(1)} = (f_1^{(1)}, \dots, f_N^{(1)})$ первый порядок ошибки восстановления S с возмущением R метода CSSA,

 $\mathsf{F}^{(1)}_{\mathrm{Re}}=(f^{(1)}_{\mathrm{Re},1},\ldots,f^{(1)}_{\mathrm{Re},N})$ первый порядок ошибки восстановления $\mathrm{Re}(\mathsf{S})$ с возмущением $\mathrm{Re}(\mathsf{R})$ метода SSA,

 $\mathsf{F}_{\mathrm{Im}}^{(1)}=(f_{\mathrm{Im},1}^{(1)},\ldots,f_{\mathrm{Im},N}^{(1)})$ первый порядок ошибки восстановления $\mathrm{Im}(\mathsf{S})$ с возмущением $\mathrm{Im}(\mathsf{R})$ метода SSA.

Теорема 1. Пусть пространства столбцов траекторных матриц рядов S, Re(S) и Im(S) совпадают и то же самое верно для пространств строк. Тогда при любом достаточно малым возмущении R

$$F^{(1)} = F_{\text{Re}}^{(1)} + i F_{\text{Im}}^{(1)}.$$

Теорема непосредственно следует из линейности вхождения ${\bf E}$ в формулу (1) и линейности диагонального усреднения.

Заметим, что хотя в утверждении теоремы возмущение R может быть любым по форме, однако теорема имеет практическое применение только если первый порядок ошибки адекватно описывает полную ошибку.

Случайное возмущение

Рассмотрим случайное возмущение R.

Для дальнейших рассуждений приведём известный результат.

Лемма 1. Пусть $\zeta = \xi + i\eta$. Тогда $\mathbb{D}\zeta = \mathbb{D}\xi + \mathbb{D}\eta$.

Следствие 1 (из теоремы 1). Пусть выполнены условия теоремы 1. Тогда для любого $l, 1 \le l \le N$,

$$\mathbb{D}f_l^{(1)} = \mathbb{D}f_{\mathrm{Re},l}^{(1)} + \mathbb{D}f_{\mathrm{Im},l}^{(1)}.$$
 (2)

Утверждение получается автоматически из теоремы 1 и леммы 1.

Случай двух зашумленных синусоид

Пусть сигнал S имеет вид

$$s_l = A\cos(2\pi\omega l + \phi_1) + iB\cos(2\pi\omega l + \phi_2), \tag{3}$$

где $0<\omega\leq 0.5$ и $0\leq \phi_i<2\pi.$ Заметим, что случай $|\psi_2-\psi_1|=\pi/2$ и A=B соответствует комплексной экспоненте.

Пусть возмущение $\mathsf{R}-\mathsf{m}\mathsf{y}\mathsf{m},$ т.е. случайный вектор с нулевым матожиданием и достаточно малой дисперсией.

Следствие 2 (из теоремы 1). Для комплексного ряда вида (3), кроме случая $|\psi_2 - \psi_1| = \pi/2$ и A = B, выполняется формула (2).

Выполнение условий теоремы 1 (совпадение столбцовых и строковых траекторных пространств сигналов) для ряда вида (3) следует из результатов работы [3].

Замечание 1. Численные эксперименты, проведённые в [1], показывают, что для сигнала в виде комплексной экспоненты суммарная MSE CSSA-оценки сигнала равна полусумме суммарных MSE SSA-оценок сигнала его вещественной и мнимой частей. Численные эксперименты, проведённые нами (не приведены), показывают, что для сигнала в виде комплексной экспоненты MSE CSSA-оценки сигнала равны полусумме MSE SSA-оценок сигнала его вещественной и мнимой частей для каждой точки ряда.

Случай константных сигналов с выбросом

Рассматриваем сигнал $\mathsf{S}=(c_1+\mathrm{i} c_2,\ldots,c_1+\mathrm{i} c_2)$, возмущённый выбросом $a_1+\mathrm{i} a_2$ на позиции k, т.е. ряд R состоит из нулей кроме значения $a_1+\mathrm{i} a_2$ на k-м месте. Исходя из теоремы 1, достаточно уметь вычислять первый порядок ошибки восстановления сигнала $\mathsf{S}=(c,\ldots,c)$, возмущённого выбросом a на позиции k.

В работе [7] была получен частный случай формулы (1) для вещественных сигналов единичного ранга:

$$\mathbf{H}^{(1)} = -U^{\mathrm{T}} \mathbf{E} V U V^{\mathrm{T}} + U U^{\mathrm{T}} \mathbf{E} + \mathbf{E} V V^{\mathrm{T}},$$

где U, V — сингулярные вектора матрицы **H**.

Подстановкой $U=\{1/\sqrt{L}\}_{i=1}^L,\,V=\{1/\sqrt{K}\}_{i=1}^K,\,K=N-L+1$ и последующим диагональным усреднением матрицы $\mathbf{H}^{(1)}$ был получен явный вид первого порядка ошибки восстановления.

Приведем результат для случая $k \leq \min(L/2, K-L)$ и L < K

$$f_l^{(1)} = \frac{a}{LK} \begin{cases} (L+K-k), & 1 \le l \le k \\ \frac{1}{l}(L+K-l)k, & k < l \le L \\ \frac{1}{L}K(L+k-l), & L < l < L+k \\ 0, & L+k \le l \le K \end{cases}.$$

$$\frac{1}{N-l+1}(K-l)(L-k), & K < l < K+k \\ -k, & K+k \le l \le N \end{cases}$$

Замечание 2. Из данной формулы видно, что при фиксированном L первый порядок ошибки не стремится κ 0 c ростом N, тогда как численные эксперименты показывают, что полная ошибка восстановления стремится κ 0 c ростом N. Как показано в следующем разделе, это следствие того, что полная ошибка не описывается ее первым порядком. Если же L и K пропорциональны N, то первый порядок ошибки стремится κ нулю.

Численное сравнение первого порядка ошибки и полной ошибки оценивания сигнала

Для случая зашумленных гармоник рассмотрен пример с сигналом $s_l = \cos(2\pi l/10) + \mathrm{i}\cos(2\pi l/10 + \pi/4), \, \sigma^2 = 0.1, \, N = 49, \, L = 5$. Результат для одной из реализаций шума представлен на рис. 1.

Рис. 1: Вещественные части первого порядка и полной ошибок.

Из графика видно, что ошибки совпадают даже при маленьком L. Аналогичные численные эксперименты подтверждают, что для комплексной экспоненты также есть совпадение.

Для случая возмущения в виде выброса был рассмотрен пример с сигналом $s_l=1+\mathrm{i}1,$ с возмущением в виде выброса $a_1+\mathrm{i}a_2=10+\mathrm{i}10$ на позиции k=L-1. Результаты представлены в таблице 1.

Таблица 1: Максимальное различие первого порядка и полной ошибок.

N	50	100	400	1600
L = N/2	0.1313	0.0419	0.0033	0.0002
L=20	0.3074	0.1965	0.5655	0.6720

Аналогичные численные эксперименты показывают, что при расположении выброса в середине ряда результаты качественно совпадают, при L=N/2 различие стремится к 0, при L=20 не стремится к 0.

Численные результаты показывают, что для случая зашумленных гармоник первый порядок адекватно оценивает полную ошибку восстановления сигнала в каждой точке при любых рассматриваемых параметрах сигналов.

Однако для случая возмущения в виде выброса это верно, только когда L и K пропорциональны N.

Все численные результаты были получены при помощи пакета [4].

Заключение

В работе удалось подвести теоретическую базу под имеющиеся ранее численные результаты ([1]) по сравнению CSSA и SSA для двух зашумленных гармоник с одинаковой частотой и сдвигом, не равным $\pi/2$. Для зашумленной комплексной экспоненты был получен более общий, нежели имеющиеся ранее, численный результат. Результаты показывают, что только в случае сигнала в виде комплексной экспоненты применение CSSA имеет смысл с точки зрения уменьшения ошибки восстановления сигнала.

Для константного ряда с выбросами был получен явный вид первого порядка ошибок оценки сигнала в каждой точке.

Для обоих случаев было численно исследовано соотношение между первым порядком ошибки и полной ошибкой. В случае случайного возмущения оказалось, что первый порядок ошибки практически совпадает с полной ошибкой. Однако в случае неслучайного возмущения выбросом это не так и требуются дополнительные условия на пропорщиональность длины окна L длине ряда N.

Литература

- [1] N. Golyandina, A. Korobeynikov, A. Shlemov, and K. Usevich. Multivariate and 2D extensions of singular spectrum analysis with the Rssa package. *Journal of Statistical Software*, 67(2):1–78, 2015.
- [2] N. Golyandina, V. Nekrutkin, and A. Zhigljavsky. Analysis of Time Series Structure: SSA and Related Techniques. Chapman&Hall/CRC, 2001.
- [3] Д. Степанов, Н. Голяндина. Варианты метода "Гусеница"-SSA для прогноза многомерных временных рядов. Труды IV Международной конференции "Идентификация систем и задачи управления" SICPRO'05. Москва, 2005, с. 1831-1848.
- [4] A. Korobeynikov, A. Shlemov, K. Usevich, and N. Golyandina. Rssa: A collection of methods for singular spectrum analysis http://CRAN.R-project.org/package=Rssa, 2021. R package version 1.04.
- [5] T. Kato. Perturbation theory for linear operators. Springer-Verlag, 1966.
- [6] V. Nekrutkin. Perturbation expansions of signal subspaces for long signals. *Statistics and Its Interface.*, Vol.3, P. 297-319, 2010.
- [7] V. Nekrutkin. Perturbations in SSA. Manuscript, 2008.
- [8] А. Константинов. Некоторые задачи анализа временных рядов (теория методов "Singal Subspace"). *Курсовая работа, науч. рук. В. Некруткин*, 2018.