Quiz 1	Graded
Student	
Alaa Alghwiri	
Total Points	
6 / 6 pts	
Question 1	
Probability of Classes	1 / 1 pt
→ + 1 pt Correct	
Question 2	
Basis Functions	1 / 1 pt
→ + 1 pt Correct	
Question 3	
Function Approximation	1 / 1 pt
→ + 1 pt Correct	
Question 4	
Universal Function Approximation	1/1 pt
→ + 1 pt Correct	
Question 5	
Binary Classification	1 / 1 pt
→ + 1 pt Correct	
Question 6	
Gradienet Descent and Linear Regression	1 / 1 pt
→ + 1 pt Correct	

Q1 Probability of Classes

1 Point

We proposed the objective functions $l(w) = -\prod_{i=1}^n \Pr(\hat{Y} = y_i | X = x_i)$ and $l'(w) = -\sum_{i=1}^m \ln \Pr(\hat{Y} = y_i | X = x_i)$ for binary classification. What is true about these two objective functions?

/	They	both	of	the	same	optin	าล

- If these functions are optimized with gradient descent, they will both find a solution in the same number of iterations (number of steps of gradient descent).
- ightharpoonup The log probability version, l'(w), has a better gradient when misclassifications occur.
- ☐ The gradients do not point in the same direction
- ightharpoonup The gradient of the first one, $\nabla l(w)$, goes towards zero when there are large misclassifications.

Q2 Basis Functions

1 Point

If we create an approximation $f(x,w)=\phi(x)^{\top}w$ of f_* , where $\phi\colon\mathbb{R}^n\to\mathbb{R}^m$ is a basis function (e.g., polynomial basis, Fourier basis, or binning), and $w\in\mathbb{R}^m$, we say that this is linear function approximation because:

- \bigcirc ϕ is a linear function
- $\ \bigcirc$ we do not call this linear function approximation because ϕ is a nonlinear function
- lacktriangle the function is linear in the parameters w
- igcup the function can only represent linear transformations of x

Q3 Function Approximation 1 Point

What are the reasons for approximating a function? Mark all that apply

Copy the target function exactly
☑ Be able to imitate the behavior of some complex process like human decision-making
✓ Create a faster version of the original function
Create a known function that we can use when the target function is unknown

Q4 Universal Function Approximation 1 Point

With an appropriate Basis function (or neural network), the universal function approximation theorem says

- with a possibly infinite number of basis functions, any function can be represented to an arbitrarily small precision.
- we can optimize the function or neural network using gradient descent to find a perfect fit
- that with enough basis functions, we can approximate any function to an arbitrarily small precision
- if we have infinite data, we can approximate any function to an arbitrarily small precision

Q5 Binary Classification

more likely.

1 Point

In binary classification, we want to maximize the number of correct classifications or, equivalently, minimize the number of misclassifications. We proposed the objective $l(w,b) = -\sum_{i=1}^m y_i \mathrm{sign}(w^\top x + b)$, which counts up the number of correct classifications and subtracts the number of incorrect classifications. Which of the following are reasons we proposed a different objective that aimed to maximize the probability of correct classifications?

_		
	It is not possible to find the optimal parameters \boldsymbol{w} and \boldsymbol{b} .	
✓	The function is not differentiable.	
	The minimum of this function does not correspond to achie classification.	ving perfect
	Maximizing probabilities finds a better solution because the	e classes are

Q6 Gradienet Descent and Linear Regression 1 Point

In linear regression with the objective function $l(w) = \frac{1}{2} \mathbf{E} \left[(f(X, w) - Y)^2 \right]$, we can find the optimal weights with the expression $w_* = \mathbf{E} \left[\phi(x) \phi(x)^\top \right]^{-1} \mathbf{E} [\phi(X) Y]$. If we perform gradient descent on this objective function, we are not guaranteed to find w_* because gradient descent only finds a local optimum and not a global optimum.

O true

false