Maxwell's Equations						
Name	Differential Form	Integral Form				
Gauss' Law	$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$	$\Phi_{\mathbf{E}} = \int_{S} \mathbf{E} \cdot d\mathbf{S} = rac{Q_{enc}}{arepsilon_{0}}$				
Faraday's Law of Induction	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\mathcal{E} = \oint_C \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{S} = -\frac{d\Phi_{\mathbf{B}}}{dt}$				
Gauss' Law for Magnetism	$\nabla \cdot \mathbf{B} = 0$	$\Phi_{\mathbf{B}} = \int_{C} \mathbf{B} \cdot d\mathbf{S} = 0$				
Ampere's Law	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$	$\oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{enc} + \mu_0 \varepsilon_0 \frac{d\Phi_{\mathbf{E}}}{dt}$				

Energy and Force
$$u = \frac{1}{2}\varepsilon_0 \mathbf{E}^2 = \frac{1}{2\mu_0} \mathbf{B}^2 \quad U = \frac{1}{2}CV^2 = \frac{1}{2}Li^2 = \frac{1}{2}\int_{\tau} \rho \phi d\tau = \frac{q_1q_2}{4\pi\varepsilon_0 r} = -\mathbf{m} \cdot \mathbf{B} = -\mathbf{p} \cdot \mathbf{E} = \int Pdt$$

$$\tau = \mathbf{m} \times \mathbf{B} = \mathbf{p} \times \mathbf{E} \quad F = -q\mathbf{E} + q\mathbf{v} \times \mathbf{B} = I\mathbf{L} \times \mathbf{B} = \int_{\tau} \mathbf{J} \times \mathbf{B}d\tau$$

Miscellaneous						
$P = IV = I^2R = \frac{V^2}{R}$	$\mathbf{E} = -\nabla \phi$	$\mathbf{m} = IA\hat{\mathbf{n}} = I\int d\mathbf{A}$	$I = \frac{dq}{dt}$	$C = \frac{A\varepsilon_0}{d}$		
$\frac{1}{\sigma} = \rho = \frac{RA}{l} = \frac{E}{J}$	$\phi = -\oint_C \mathbf{E} d\mathbf{l}$	$W = q_t \int_{\infty}^{r} \mathbf{E} dr$	$\nabla \cdot \mathbf{J} + \frac{d\rho}{dt} = 0$	$2\pi f = \omega$		

Field Formulae						
Electric		Magnetic				
Infinite Wire	$\frac{\lambda}{2\pi r arepsilon_0}$	Infinite Wire	$\frac{\mu_0 I}{2\pi r}$			
Finite Wire	$\left \frac{\lambda x}{4\pi\varepsilon_0 y\sqrt{y^2 + x^2}} \right _{x_1}^{x_2}$	Finite Wire	$\frac{\mu_0 I}{4\pi r} \int_{\theta_1}^{\theta_2} \cos\phi d\phi$			
Infinite Sheet	$\frac{\sigma}{2\varepsilon_0}$	Ring	$\frac{\mu_0 I r^2}{2(z^2 + r^2)^{\frac{3}{2}}}$			
Point Charge	$rac{Q}{4\piarepsilon_0 r^2}\mathbf{\hat{r}}$	Biot-Savart	$d\mathbf{B} = \frac{\mu_0 I d\mathbf{l} \times \hat{\mathbf{r}}}{4\pi r^2}$			
Hemisphere	$rac{Q}{8\pi r^2 arepsilon_0}$	Solenoid	$\mu_0 nI$			
Ring	$\frac{Qz}{2\pi\varepsilon_0(r^2+z^2)^{\frac{3}{2}}}$					

$$\mathcal{E} = \mathcal{E}_0 \sin(\omega t) \quad i = i_0 \sin(\omega t + \phi) \quad z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$