Programação Dinâmica

16/10/2023

Sumário

- Recap
- Números de Fibonacci
- Programação Dinâmica & Memoization
- C(n,p) O Triângulo de Pascal
- Números de Delannoy Exercício adicional
- O Problema da Fileira de Moedas ("The Coin Row Problem")
- Sugestões de leitura

Recapitulação

Procura num Array – Tentaram fazer?

- Dado um array de n elementos inteiros
- Encontrar a 1º ocorrência do major elemento
- Divide-And-Conquer
 - Encontrar o maior valor do 1º sub-array : ((n+1) div 2) elementos
 - Encontrar o maior valor do 2º sub-array : (n div 2) elementos
 - Comparar os dois valores e devolver o maior
- Quantas comparações ?

Procura num Array — Nº de comparações

- C(1) = 0
- C(2) = 1
- C(n) = 1 + C(n div 2) + c((n + 1) div 2)
- Seja $n = 2^k$
- $C(n) = 1 + 2 \times C(n / 2) = ?$
- Fazer o desenvolvimento telescópico ou aplicar o "Teorema Mestre"

The Master Theorem

Dada uma recorrência, para n = b^k, k ≥ 1

$$T(1) = c$$
 e $T(n) = a T(n / b) + f(n)$
com $a \ge 1, b \ge 2, c \ge 0$

• Se f(n) em $\Theta(n^d)$, em que d ≥ 0 , então $T(n) \text{ em } \Theta(n^d), \text{ se a < b}^d$ $T(n) \text{ em } \Theta(n^d \log n), \text{ se a = b}^d$ $T(n) \text{ em } \Theta(n^{\log_b a}), \text{ se a > b}^d$

Procura num Array — Nº de comparações

$$C(n) = 2 \times C(n / 2) + 1$$

$$f(n) = 1$$
, $f(n) \text{ em } \Theta(n^0)$, $d = 0$

$$a = 2, b = 2, a > b^d$$

 $C(n) em \Theta(n)$

Generalização – The Smoothness Rule

- T(n) em $\Theta(n)$ para valores de n que são potências de 2
- Então T(n) em $\Theta(n)$, para qualquer n

Ordenação por Fusão

Tarefa: associar a cada seta um rótulo que identifica a sequência pela qual as chamadas são executadas

```
// mergeSort(A, tmpA, 0, n - 1);
void mergeSort(int* A, int* tmpA, int left, int right) {
  // Mais do que 1 elemento ?
  if (left < right) {</pre>
    int center = (left + right) / 2;
    mergeSort(A, tmpA, left, center);
    mergeSort(A, tmpA, center + 1, right);
    merge(A, tmpA, left, center + 1, right);
```

```
void merge(int* A, int* tmpA, int lPos, int rPos, int rEnd) {
  int lEnd = rPos - 1;
  int tmpPos = lPos;
  int nElements = rEnd - lPos + 1;
    COMPARAR O 10 ELEMENTO DE CADA METADE
    E COPIAR ORDENADAMENTE PARA O ARRAY TEMPORÁRIO
  while (lPos <= lEnd && rPos <= rEnd) {
    if (A[lPos] <= A[rPos])</pre>
      tmpA[tmpPos++] = A[lPos++];
    else
      tmpA[tmpPos++] = A[rPos++];
```

```
SOBRA, PELO MENOS, 1 ELEMENTO NUMA DAS METADES
while (lPos <= lEnd) { ···
while (rPos < rEnd) { ···
   COPIAR DE VOLTA PARA O ARRAY ORIGINAL
for (int i = 0; i < nElements; i++, rEnd--) {
 A[rEnd] = tmpA[rEnd];
```

Eficiência

- Todas as comparações são feitas pela função de fusão
- C_{merge}(n): nº de comparações efetuadas para fundir 2 subarrays ordenados, usando um array auxiliar
- Caso particular : $n = 2^k$

$$C(1) = 0$$

 $C(n) = 2 \times C(n / 2) + C_{merge}(n)$

• $C_{\text{merge}}(n) = ?$

Eficiência – C_{merge}(n) – Melhor Caso

- Todos elementos de um dos sub-arrays são copiados primeiro
- Apenas n / 2 comparações para fazer isso!!

•
$$C(n) = 2 \times C(n / 2) + n / 2$$

• Teorema Mestre : $\Theta(n \log n)$

Construir um exemplo!

Eficiência – C_{merge}(n) – Pior Caso

- Os elementos de um dos sub-arrays são copiados de modo intercalado, um a um!
- Necessárias (n 1) comparações!

•
$$C(n) = 2 \times C(n / 2) + (n - 1)$$

- Teorema Mestre : ⊕(n log n)
- Construir um exemplo!

Eficiência – C_{merge}(n) – Caso Médio

- Podemos assumir que ocorre o nº médio de comparações
- ~ 3 x n / 4 comparações
- $C(n) = 2 \times C(n / 2) + 3 \times n / 4$
- Teorema Mestre : (n log n)
- Construir um exemplo!

Números de Fibonacci

Números de Fibonacci – Recorrência

$$F(0) = 0$$
; $F(1) = 1$
 $F(i) = F(i-1) + F(i-2)$; $i = 2, 3, 4,...$

• F(5) = ?

- → Número de chamadas recursivas ?
- Árvore das chamadas recursivas ?
- Há chamadas recursivas repetidas ?

 Sim, para f(i-1) calculamos f(i-2), logo vamos utilizar programacao dinamica
- Ordem de complexidade ?

Contar as adições

Números de Fibonacci

```
unsigned int
fibonacciRec( unsigned int n )
 if( n == 0 )
   return 0;
 if( n == 1 )
   return 1;
 N_SOMAS++;
 return fibonacciRec( n - 1 ) + fibonacciRec( n - 2 );
```

Tarefa – Função recursiva

- Implemente a função recursiva para calcular F(n)
- Qual é o maior número de Fibonacci que consegue obter --em tempo útil --- no seu computador ?
 - F(20) = ?
 - F(30) = ?
 - F(35) = ?
 - F(40) = ?

•

Número de adições?

- A(0) = 0; A(1) = 0
- A(i) = 1 + A(i 1) + A(i 2); i = 2, 3, 4,...
- Expressão ?
- Matemática Discreta: solução da equação de recorrência
- MAS, podemos obter a ordem de complexidade analisando a tabela...

b/m/f(n-1

Número de adições

- Como cresce F(n) ?
- Como cresce A(n) ?
- Da tabela obtemos

$$A(n) = F(n+1) - 1$$

- Crescimento Exponential !!
 - Porquê?

$$(1+\sqrt{5})/2 = 1,618034$$
1ms -> 2ms -> 4ms -> ...
número de Ouro

		Ų,		
n	F(n)	Ratio	A(n)	Ratio
0	0		0	
1	1		0	
2	1	1	1	
3	2	2	2	2
4	3	1,5	4	2
5	5	1,666667	7	1,75
6	8	1,6	12	1,714286
7	13	1,625	20	1,666667
8	21	1,615385	33	1,65
9	34	1,619048	54	1,636364
10	55	1,617647	88	1,62963
11	89	1,618182	143	1,625
12	144	1,617978	232	1,622378
13	233	1,618056	376	1,62069
14	377	1,618026	609	1,619681
15	610	1,618037	986	1,619048
16	987	1,618033	1596	1,618661
17	1597	1,618034	2583	1,618421
18	2584	1,618034	4180	1,618273
19	4181	1,618034	6764	1,618182
20	6765	1,618034	10945	1,618125

Até agora faziamos "TOP-DOWN", para optimizar vamos trabalhar por baixo e guardar os valores "BOTTOM-UP"

Programação Dinâmica

Programação Dinâmica

- Estratégia algorítmica genérica
- Aplicável a
 - Cálculo de recorrências
 - Resolução de problemas de otimização combinatória
- Ideia: armazenar e reutilizar resultados "anteriores" usando um array local
 - Array 1D / 2D / ...

Recursividade – Top-Down

- Explorar a relação entre
 - A solução de uma dada instância de um problema
 - As soluções de instâncias mais pequenas / mais simples do mesmo problema
- Estabelecer uma recorrência!
- Decomposição em sub-problemas mais pequenos / mais simples
 - Argumentos ?
- Identificar as instâncias mais pequenas / mais simples / triviais
 - Casos de base

Programação Dinâmica — Bottom-up

- Usar a recorrência : MAS proceder bottom-up!
- Começar com as instâncias mais pequenas / mais simples / triviais
- Determinar resultados intermédios a partir das instâncias anteriores
- Atingir o resultado final
- Vantagem : não se repetem quaisquer cálculos intermédios

```
0 1 2 3 1 arg -> array 1D
```

F = [0, 1, 1, 2,]

Agora a recorrência é no array! [0, 1, 1, 2, 3, 5, 8, 13, ... até ao n]

Números de Fibonacci – Prog. Dinâmica

```
long unsigned int fibonacci(unsigned int n) {
 long unsigned int fib[n + 1];
                array local!Mas se quisermos calcular mais no fu
  fib[0] = 0;
  fib[1] = 1;
  for (unsigned int i = 2; i <= n; i++) {
    N_SOMAS++;
    fib[i] = fib[i - 2] + fib[i - 1];
  return fib[n];
```

Recursão vs Prog. Din.

	1	†(1)	#ADDs-Rec	#ADDs_DP_1
	0	0	0	0
	1	1	0	0
	2	1	1	1
	3	2	2	2
	4	3	4	3
	5	5	7	4
	6	8	12	5
	7	13	20	6
	8	21	33	7
	9	34	54	8
1	.0	55	88	9
1	.1	89	143	10
1	.2	144	232	11
	.3	233	376	12
	.4	377	609	13
1	.5	610	986	14

Tarefa – Versão de Programação Dinâmica

 Implemente e teste o algoritmo de Programação Dinâmica para calcular F(n)

- Como é preenchido o array ?
- Qual é a ordem de complexidade do algoritmo ?

Combina a recursividade e a tabela dos valores previamente calculados!

(Não usa mais um array local)

- Resultados de uma função são memorizados para uso futuro
- I.e., evita-se o cálculo de resultados (intermédios ou finais) obtidos no processamento de inputs anteriores
- Usar um array global / uma cache para armazenar os resultados calculados
 - Como inicializar ?
- Recursividade + Programação Dinâmica

- Inicializar os elementos da cache com um valor por omissão
 - Não ocorre durante o processo de cálculo
 - Sinaliza um resultado ainda não calculado
- Sempre que se pretende um resultado para um dado input
 - Verificar o correspondente elemento da cache
 - Se não for o valor por omissão, consultar esse resultado
 - Caso contrário, calculá-lo efetuando chamada(s) recursive(s)
 - Armazenar o resultado obtido

Números de Fibonacci – Memoization

```
#define SIZE 100 <- MAXIMO
long int Fib_Cache[SIZE];
void initializeCache(void) {
  for (size_t i = 0; i < SIZE; i++) {
    Fib_Cache[i] = -1;
```

Números de Fibonacci – Memoization

```
long int fibonacci(unsigned int n) {
 if (Fib_Cache[n] != -1) return Fib_Cache[n];
 long int r;
 if (n == 0)
   r = 0;
 else if (n == 1)
   r = 1;
 else {
   N_SOMAS++;
   r = fibonacci(n - 2) + fibonacci(n - 1);
 Fib_Cache[n] = r;
 return r;
```

- Cálculo do valor de sucessivos números de Fibonacci
- Sucessivas chamadas à função
- Apenas mais uma adição para calcular o número de Fibonacci seguinte

i	f(i)	#ADDs_Memo
0	0	0
1	1	0
2	1	1
3	2	1
4	3	1
5	5	1
6	8	1
7	13	1
8	21	1
9	34	1
10	55	1

85	259695496911122585	1
86	420196140727489673	1
87	679891637638612258	1
88	1100087778366101931	1
89	1779979416004714189	1
00	2000067104270016120	1

Tarefa – Versão com Memoization

- Implemente e teste o algoritmo recursivo com "memoization" para calcular F(n)
- Como é preenchido o array global ?
- Qual é a ordem de complexidade do algoritmo ?

C(n,p) – O Triângulo de Pascal

$$C(n,p) = C(n-1,p) + C(n-1,p-1)$$

Expressão recorrente para C(n,p)

- C(n,0) = 1
- C(n,n) = 1
- C(n,j) = C(n-1,j) + C(n-1,j-1); j = 1, 2,..., n-1
- Dois argumentos!
- C(4,3) = ?

 Número de chamadas recursivas ?
- Chamadas recursivas repetidas? Claro!

C(n,p) – Função recursiva

```
long unsigned int combination_rec(unsigned int n, unsigned int p) {
 if (p == 0) {
   return 1;
 if (n == p) {
   return 1;
 return combination_rec(n - 1, p - 1) + combination_rec(n - 1, p);
```

Triângulo de Pascal

Pascal's Triangle - Recursive Function

```
10
                           10
                                    15
                  15
                           20
                                    35
                           35
                                             21
                  21
                                             56
                           56
                                    70
                                                      28
                  28
                                                                36
                  36
                           84
                                    126
                                             126
                                                      84
1
         10
                  45
                           120
                                    210
                                             252
                                                      210
                                                                120
                                                                         45
                                                                                  10
```

C(n,p) – Programação Dinâmica

```
long unsigned int combination_dp(unsigned int n, unsigned int p) {
  if ((p == 0) || (n == p)) {
    return 1;
     Computing all triangle rows
  long unsigned int comb[n + 1][n + 1];
  for (unsigned int i = 0; i <= n; i++) {
                                  Valores intermédios calculado pela formula!
    comb[i][0] = 1; indice 0 a 1!
    for (unsigned int j = 1; j < i; j++) {
      comb[i][j] = comb[i - 1][j - 1] + comb[i - 1][j];
    comb[i][i] = 1; diagonal principal a 1!
  return comb[n][p];
```

C(n,p) – Memoization

```
#define SIZE 20
long unsigned int Comb_Cache[SIZE][SIZE];
void initialize_cache(void) {
 for (unsigned int i = 0; i < SIZE; i++) {
   for (unsigned int j = 0; j < SIZE; j++) {</pre>
      Comb_Cache[i][j] = 0;
```

C(n,p) – Memoization

```
long unsigned int combination_memo(unsigned int n, unsigned int p) {
  if (Comb_Cache[n][p] != 0) return Comb_Cache[n][p];
 long unsigned int r;
 if ((p == 0) | (n == p)) {
   r = 1;
  } else {
   r = combination_memo(n - 1, p - 1) + combination_memo(n - 1, p);
  Comb_Cache[n][p] = r;
  return r;
```

Tarefas -C(n,p)

- Implemente e teste as funções para calcular C(n,p)
- Função recursiva
- Algoritmo de Programação Dinâmica
- Função com memoization

Números de Delannoy – Exercício adicional

Importante!

Números de Delannoy – D(i,j)

- Grelha retangular de tamanho (m,n)
- Começar no canto SW: (0,0)
- Só é permitido avançar nas direções N, E ou NE
- D(i,j) = número de caminhos distintos de (0,0) para (i,j)
 - Casos triviais ?
 - Definição recursiva ?

D(n,n) – Números Centrais de Delannoy

D(1,1)

D(2,2)

[Mathworld]

D(n,n) – Números Centrais de Delannoy

[Wikipedia]

Números de Delannoy

$$D(m,n) = 1$$
, se $m = 0$ or $n = 0$

$$D(m,n) = D(m-1, n) + D(m-1, n-1) + D(m, n-1)$$

- D(1,1) = ?
- D(2,2) = ?
- D(2,3) = ?
- D(3,2) = ?

Números de Dalennoy

Delannoy's Matrix - Recursive Function

1	1	1	1	1	1	1	1	1	1	1
1	3	5	7	9	11	13	15	17	19	21
1	5	13	25	41	61	85	113	145	181	221
1	7	25	63	129	231	377	575	833	1159	1561
1	9	41	129	321	681	1289	2241	3649	5641	8361
1	11	61	231	681	1683	3653	7183	13073	22363	36365
1	13	85	377	1289	3653	8989	19825	40081	75517	134245
1	15	113	575	2241	7183	19825	48639	108545	224143	433905
1	17	145	833	3649	13073	40081	108545	265729	598417	1256465
1	19	181	1159	5641	22363	75517	224143	598417	1462563	3317445
1	21	221	1561	8361	36365	134245	433905	1256465	3317445	8097453

Tarefa – Versão recursiva

- Implementar a função recursiva
- Executar para vários números centrais D(k,k)
- No seu computador, qual é o maior valor de k que ainda permite obter o número D(k,k) em tempo útil ?

Tarefa – Programação Dinâmica

- Implementar a versão iterativa, usando programação dinâmica e um array 2D
- Executar para vários números D(i,j)
- Verificar se obtém o resultado correto
- Qual é a ordem de complexidade deste algoritmo ?

Tarefa – Memoization

- Implementar a versão recursiva com "memoization"
- Executar para vários números D(i,j)
- Verificar se obtém o resultado correto
- Qual é a ordem de complexidade deste algoritmo ?

The Coin Row Problem

O Problema da Fileira de Moedas

- Fileira de n moedas
- Valores inteiros c₁, c₂, ..., c_n
 - Pode haver moedas repetidas
- Objetivo: Escolher moedas de modo a obter o maior valor total possível
 - Otimização combinatória : problema de maximização
- Restrição: Não podem ser escolhidas duas moedas adjacentes

bit= 0 não pertence -> bit=1 pertence... Solu

Valor da solução ótima – Recorrência

• Como obter uma recorrência para o valor da solução ótima ?

- V(n) = ?
- Maior valor total que se obtém de uma fileira com n moedas
- Casos triviais ?
- n-ésima moeda é escolhida / não é escolhida ?

O Problema da Fileira de Moedas

$$V(0) = 0$$

$$V(1) = c_1$$

$$V(n) = max \{ c_n + V(n-2), \text{ qual o subconjunto que maximiza o valor que ali está}$$

$$V(n-1) \}, \text{ para } n > 1$$

- V(i) representa o valor da solução ótima, considerando as primeiras i moedas
- Exemplo: 5, 1, 2, 10, 6, 2
- V(6) = ?

Tarefa – Versão recursiva

- Implementar a função recursiva
- Executar para vários exemplos
- Verificar que se obtém uma solução ótima
- Determine experimentalmente a ordem de complexidade da função recursiva
- No seu computador, qual é o maior valor de n que ainda permite obter a solução em tempo útil ?

Tarefa – Programação Dinâmica

- Implementar a versão iterativa, usando programação dinâmica
- Executar para vários exemplos
- Verificar que se obtém uma solução ótima
- Qual é a ordem de complexidade desta versão ?

O Problema da Fileira de Moedas

 Como determinar as moedas que constituem uma solução ótima ?

- Usar um array adicional, para registar se uma moeda é escolhida
 - Array binário
- Alternativa: fazer o "trace back"

Outras estratégias

- Procura exaustiva
 - Gerar todas as soluções possíveis e escolher a(s) melhor(es)
 - Complexidade ?
- Geração de soluções aleatórias
 - Gerar um dado número de soluções aleatórias e escolher a(s) melhor(es)
 - Não há garantia de se obter a solução ótima, a menos que...
- Construir uma solução usando uma heurística
 - Não há garantia de se obter sempre a solução ótima

Sugestões de leitura

Sugestões de leitura

- A. Levitin, Introduction to the Design and Analysis of Algorithms, 3rd
 Edition, 2012
 - Capítulo 8