

TRANSFER OF SAMPLES IN POLICY SEARCH VIA MULTIPLE IMPORTANCE SAMPLING

Andrea Tirinzoni, Mattia Salvini, and Marcello Restelli

{andrea.tirinzoni, marcello.restelli}@polimi.it, mattia.salvini@mail.polimi.it

MOTIVATION

Policy Search (PS):

- Effective RL method for large continuous MDPs
- Optimize a **parametric policy** π_{θ} to maximize the expected return $J(\theta)$, typically via **gradient ascent**
- Needs large batches for accurate policy evaluation/improvement → High sample complexity

In practice, lots of available samples are **not used** by standard PS algorithms

- Different **policies** (e.g., from past iterations)
- Different **dynamics** (e.g., a simulator)

Goal: use these data to reduce sample complexity \longrightarrow **Transfer of samples**

RELATED WORKS

Transfer of samples: focus on batch value-based RL

- Learning similarity measures [4]
- Model-based settings [6]
- Theoretical properties [3]
- Shared dynamics [2]
- Transfer via **importance weighting** [7]

CONTRIBUTIONS

- 1. **Algorithmic**. We propose several **MIS gradient estimators** that effectively reuse trajectories from different policies/dynamics
 - Variance reduction via per-decision weights
 [5] and control variates [1]
 - Adaptive batch size via ESS
 - Efficient MSE-aware method to estimate the weights for unknown transition models
- 2. Theoretical. We formally establish
 - robustness to negative transfer for the ideal case of known transition models
 - a general upper bound on the MSE of importance-weighted gradient estimators
- 3. **Empirical**. We empirically evaluate our algorithms on three different domains with increasing level of difficulty

TRANSFER VIA MULTIPLE IMPORTANCE SAMPLING (MIS)

Transfer samples from a set of source tasks to speed-up the learning process of a target task

- Tasks are MDPs $\mathcal{M}_j = \langle \mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{P}_j, \mu \rangle$ with different dynamics
- Goal: improve the gradient estimation in the target task
 - → Larger and less noisy steps
- **→** Faster convergence

Source Task \mathcal{M}_2 $\boldsymbol{\tau_{i,1}} \sim \pi_{\boldsymbol{\theta}_1}, \mathcal{P}_1$ Source Task \mathcal{M}_1 $\boldsymbol{\pi_{\boldsymbol{\theta}}, \mathcal{P}}$ Source Task \mathcal{M}_m $\boldsymbol{\tau_{i,m}} \sim \pi_{\boldsymbol{\theta}_m}, \mathcal{P}_m$ $\boldsymbol{\tau_{i,m}} \sim \pi_{\boldsymbol{\theta}_m}, \mathcal{P}_m$ $\boldsymbol{\tau_{i,m}} \sim \pi_{\boldsymbol{\theta}_m}, \mathcal{P}_m$ $\boldsymbol{\tau_{i,m}} \sim \pi_{\boldsymbol{\theta}_m}, \mathcal{P}_m$

MIS GRADIENT ESTIMATORS

Transfer *all* samples in a weighted Monte Carlo estimator

$$\widehat{\nabla}_{\boldsymbol{\theta}}^{\text{MIS}} J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{j=0}^{m} \sum_{i=1}^{n_j} \underbrace{w(\boldsymbol{\tau}_{i,j})}_{\text{weights}} \underbrace{\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\tau}_{i,j} | \boldsymbol{\theta}) \mathcal{R}(\boldsymbol{\tau}_{i,j})}_{\text{classic gradient (REINFORCE)}}$$

Can be combined with other variance reduction techniques

- MIS + per-decision (PD) weights
- MIS + control variates (CV)

	IS	MIS	PD	CV	PDCV
Unbiased	/	✓	✓	√	√
Bounded weights	X		/	/	\checkmark
Horizon-independent variance	X			/	\checkmark
Handles long trajectories	X	X		X	\checkmark
Handles high magnitudes	X	X	X		
Robustness to negative transfer	X	X	X	√	√

MIS WITH BALANCE HEURISTICS

Ratio w.r.t. mixture of source distributions

$$w(\boldsymbol{\tau}) := \frac{p(\boldsymbol{\tau}|\boldsymbol{\theta}, \mathcal{P})}{\sum_{j=0}^{m} \alpha_j p(\boldsymbol{\tau}|\boldsymbol{\theta}_j, \mathcal{P}_j)}$$

- Unbiased with bounded weigths
- Near-optimal [8]

ALGORITHM

Initialize $\theta_0 \leftarrow \text{INIT-POLICY}(\mathcal{M}, \mathcal{D})$ while not converged do

Compute $\min_{n_0 \geq n_{\min}} \{n_0 \mid \widehat{\text{ESS}}(n_0; \mathcal{D}) \geq \text{ESS}_{\min}\}$

Sample n_0 trajectories from \mathcal{M} under $\pi_{\boldsymbol{\theta}_k}$ Store $\mathcal{D} \leftarrow \mathcal{D} \cup \{\langle (\boldsymbol{\tau}_1, \dots, \boldsymbol{\tau}_{n_0}), \boldsymbol{\theta}_k, \mathcal{P} \rangle\}$ Update $\boldsymbol{\theta}_{k+1} \leftarrow \boldsymbol{\theta}_k + \eta_k \widehat{\nabla}_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_k)$

end while

MSE-AWARE MODEL ESTIMATION

Problem: Transition models unknown \to Importance weights cannot be computed **Solution:** Online minimization of an upper-bound to the **expected MSE** of $\widehat{\nabla}_{\theta}^{\text{MIS}}J(\boldsymbol{\theta})$

Assumption 1. Source models fixed and known

Assumption 2. Gaussian transitions $s_{t+1} = f(s_t, a_t) + \mathcal{N}(0, \sigma^2 I)$ with uncertain target model $f \in \mathcal{F}$

For
$$f \sim \varphi$$
 and $\tau_{i,j} \sim p(\cdot|\boldsymbol{\theta}_j, f_j)$, with $\bar{f}(\boldsymbol{s}, \boldsymbol{a}) := \mathbb{E}_{f \sim \varphi}[f(\boldsymbol{s}, \boldsymbol{a})]$
$$\text{MSE}\left(\widehat{\nabla}_{\boldsymbol{\theta}}^{\text{MIS}}J(\boldsymbol{\theta}; \hat{f})\right) \lesssim \underbrace{\frac{1}{n}\chi^2 \left(p(\cdot|\boldsymbol{\theta}, \hat{f})\Big|\Big|\sum_{j=1}^m \alpha_j p(\cdot|\boldsymbol{\theta}_j, f_j)\right)}_{\text{Minimize the variance of the weights}} + \underbrace{\text{KL}\left(p(\cdot|\boldsymbol{\theta}, \hat{f})\Big|\Big|p(\cdot|\boldsymbol{\theta}, \bar{f})\right)}_{\text{Accurately predict the target model}}$$

Can be efficiently optimized for

- Discrete set of models
- Reproducing Kernel Hilbert Spaces \rightarrow Closed-form solution

In case of unknown source models

- Offline estimation
- Fixed during learning

EMPIRICAL RESULTS

REFERENCES

- [1] J.M. Hammersley and D.C. Handscomb. *Monte Carlo Methods*. Methuen's monographs on applied probability and statistics. Methuen, 1964.
- [2] Romain Laroche and Merwan Barlier. Transfer reinforcement learning with shared dynamics. In *AAAI*, 2017.
- snared dynamics. In AAAI, 2017.

 [3] Alessandro Lazaric and Marcello Restelli. Transfer from multiple mdps. In
- Advances in Neural Information Processing Systems, 2011.
 4] Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Transfer of samples in batch reinforcement learning. In ICML, 2008.
- [5] Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy evaluation. In *ICML*, 2000.
- [6] Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring instances for model-based reinforcement learning. In *ECML PKDD*, 2008.
- 7] Andrea Tirinzoni, Andrea Sessa, Matteo Pirotta, and Marcello Restelli. Importance weighted transfer of samples in reinforcement learning. In *Proceedings of the 35th International Conference on Machine Learning*. PMLR, 2018.
- [8] Eric Veach and Leonidas J Guibas. Optimally combining sampling techniques for monte carlo rendering. In *Proceedings of the 22nd annual conference on Computer graphics and interactive techniques*, pages 419–428. ACM, 1995.