

Méthode de Newton

A. Ramadane, Ph.D

Méthode de Newton

225. On veut calculer les deux racines de la fonction $f(x) = \frac{x}{2} - \sin(x) + \frac{\pi}{6} - \frac{\sqrt{3}}{2}$ dans l'intervalle $[-\frac{\pi}{2}, \pi]$. Le graphe de la fonction f est illustré à la figure suivante:

- (a) Peut-on appliquer la méthode de la bissection pour calculer chacune des deux racines? Pourquoi?
- (b) À l'aide du graphe de la fonction f, discuter de l'ordre de convergence de la méthode de Newton pour les deux racines.
- (c) On considère maintenant la méthode de point fixe:

$$x_{n+1} = \sin(x_n) + \frac{x_n}{2} - \left(\frac{\pi}{6} - \frac{\sqrt{3}}{2}\right),\,$$

pour calculer la racine r > 0. En observant que $r \in \left[\frac{2\pi}{3}, \pi\right]$, déterminer la nature du point fixe (attractif, répulsif ou indéterminé).

- (a) On ne peut pas utiliser la méthode de bissection pour trouver la racine près de −1 car il n ' y a pas d'intervalle avec changement de signe tout près de cette racine. On peut cependant l'utiliser pour l'autre racine car la fonction possède de signe dans l'intervalle [2, 2, 5].
- (b) Pour la racine r₁ près de -1, la convergence est d'ordre 1 car f'(r₁) = 0. Pour la racine r₂ près de 2,3, la convergence eat au moins d'ordre 2 car f'(r₂) ≠ 0 (racine simple).
- (c) Le point fixe $r \in [\frac{2\pi}{3}, \pi]$ est attractif car $|g'(x)| \le \frac{1}{2}$ pour tout x dans l'intervalle $[\frac{2\pi}{3}, \pi]$.

Soit $f(x) = x^3 - 5x^2 + 8x - 4$ un polynôme cubique qui possède seulement deux racines: $r_1 = 1$ et $r_2 = 2$. Dans cette question, nous analysons le comportement de la méthode de Newton pour trouver la racine r = 2 à partir de deux valeurs initiales différentes : $x_0 = 1,4$ et $x_0 = 1,5$. Le script MATLAB suivant a permis d'obtenir les résultats présentés ci-bas.

```
[x,err] = newton('fonc','dfonc',1.40,20,1e-5);
ratio1 = err(2:end)./err(1:end-1);
ratio2 = err(2:end)./err(1:end-1).^2;
exout()
```

La fonction exout() permet d'afficher, dans un tableau de cinq colonnes, le numéro de l'itération (i) et les valeurs des vecteurs x, err, ratio1 et ratio2 pour chaque itération.

i	x_i	err_i	ratio1_i	ratio2_i
1	1.40000000	0.60001398	-	-
2	2.60000000	0.59998602	0.99995341	1.66655020
3	2.34736842	0.34735444	0.57893756	0.96491841
4	2.19351666	0.19350269	0.55707560	1.60376703
5	2.10401428	0.10400031	0.53746183	2.77754195
6	2.05434684	0.05433287	0.52242985	5.02334905
7	2.02785616	0.02784218	0.51243721	9.43144101
8	2.01411429	0.01410031	0.50643708	18.18956136
9	2.00710592	0.00709194	0.50296322	35.67035774
10	2.00356545	0.00355147	0.50077580	70.61197303
11	2.00178589	0.00177191	0.49892235	140.48327949
12	2.00089374	0.00087976	0.49650477	280.20904158
13	2.00044707	0.00043309	0.49228311	559.56459720
14	2.00022358	0.00020961	0.48397912	1117.49857572
15	2.00011180	0.00009783	0.46671893	2226.63554691
16	2.00005591	0.00004193	0.42859567	4381.12945489
17	2.00002795	0.00001398	0.33334333	7950.27755001
18	2.00001398	0.00000000	0.00000000	0.00000000

- (a) Pour la racine $r_2 = 2$ qui peut s'obtenir à partir de $x_0 = 1,4$, déterminer l'ordre de convergence de la méthode de Newton à l'aide des résultats présentés dans le tableau et en déduire la multiplicité de la racine $r_2 = 2$.
- (b) Faire une itération de la méthode de Newton en partant de $x_0 = 1, 5$.
- (c) Lorsque l'algorithme converge vers une même racine, l'ordre de convergence ne devrait pas changer avec la valeur initiale. Comment expliquer la rapidité de la méthode de Newton à partir de $x_0 = 1,5$ en comparaison avec les résultats obtenus à partir de $x_0 = 1,4$?

- (a) $e_n \to 0$, $\left| \frac{e_n}{e_{n-1}} \right| \to 0, 5 \neq 0$, convergence d'ordre 1. La racine est de multiplicité m=2.
- (b) $x_1 = 2$. La méthode de Newton convergence une itération.
- (c) Belle co'incidence! La droite qui passe par le point de coordonnées (1, 5, f(1, 5)) et de pente f'(1, 5) coupe l'axe y = 0 en $x_1 = 2$, la méthode de Newton converge en une itération en partant de $x_0 = 1, 5$.

La méthode de Newton a été utilisée pour résoudre une équation de la forme f(x) = 0 à partir de $x_0 = 0, 5$. Les résultats suivants ont été obtenus pour les 17 premières itérations.

n	e_n	$\left \frac{e_n}{e_{n-1}}\right $	n	e_n	$\left \frac{e_n}{e_{n-1}}\right $
0	0,5		9	0,01487	0,66828
1	0,34615	0,68627	10	0,00993	0,66775
2	0,23576	0,68627	11	0,00663	0,66740
3	0,161182	0,68120	12	0,00442	0,66715
4	0,10958	0,67715	13	0,00295	0,66699
5	0,07386	0,67406	14	0,00196	0,66688
6	0,04962	0,67180	15	0,00131	0,66681
7	0,03325	0,67019	16	0,00087	0,66676
8	0,2225	0,66906	17	0,00058	0,66673

À partir de ces résultats, que pouvez-vous conclure sur la convergence de la méthode et sur la multiplicité de la racine calculée?

 $e_n \to 0$, $\left|\frac{e_n}{e_{n-1}}\right| \to 0,6666 \neq 0$, convergence d'ordre 1. La racine est de multiplicité m=3.

Une *variante* de la méthode de Newton pour résoudre les équations de la forme f(x) = 0 résulte en l'algorithme suivant:

pour
$$x_0$$
 donné, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$.

- (a) Donner une interprétation géométrique de cette méthode.
- (b) On aimerait se servir de cette méthode pour évaluer la racine de l'équation $x^2 2 = 0$. Donner une condition nécessaire sur x_0 pour que la méthode converge vers $\sqrt{2}$ à l'ordre 1.
- (c) Déterminer la valeur de x_0 pour laquelle la convergence sera quadratique.

- (a) La pente est fixée une fois pour toutes à $f'(x_0)$. Par conséquent, les droites sont toutes parallèles.
- (b) On pose $g(x) = x \frac{f(x)}{f'(x_0)} = x \frac{x^2-2}{2x_0}$. La condition de convergence est alors $|g'(\sqrt{2})| < 1$ et on obtient $\frac{\sqrt{2}}{2} < x_0 < \infty$.
- (c) $x_0 = \sqrt{2}$.

On veut calculer une racine double par la méthode de Newton modifiée qui donnera un meilleur ordre de convergence en utilisant l'algorithme suivant:

$$x_{n+1} = x_n - 2\frac{f(x_n)}{f'(x_n)}.$$

Le tableau suivant, donne les résultats respectifs obtenus à l'aide de la méthode de Newton ordinaire et de la méthode modifiée pour la fonction

$$f(x) = (x-1)^2 e^x.$$

	x_n		
n	Newton	Newton modifée	
0	0,250 000 000	0,250 000 000	
1	0,850 000 000	1,450 000 000	
2	0,931 081 081	1,082 653 061	
3	0,966770374	1,003 280 205	
4	0,983 665 903	1,000 005 371	
5	0,919 900 201	1,000 000 000	
6	0,995 966 569		
7	0,997 987 369		
8	0,989 994 694		
9	0,999 497 600		
10	0,999748863		
11	0,999 874 447		
12	0,999937228		
13	0,999 968 615		
14	0,999 984 308		
15	0,999 992 154		
16	0,999996077		
17	0,999998038		
18	0,999 999 019		

- (a) Quelle est la multiplicité de la racine r = 1 de f(x)?
- (b) À l'aide de ces résultats numériques, vérifier que la convergence de la méthode de Newton ordinaire est linéaire.
- (c) Quel est l'ordre de convergence de la méthode de Newton modifiée?
- (d) La méthode de bissection serait-elle plus rapide ou moins rapide que la méthode de Newton ordinaire pour trouver cette racine?

- (a) f(x) est de la forme $(x-1)^2h(x)$ avec $h(1)=e\neq 0 \Rightarrow r=1$ est de multiplicité m=2.
- (b) Le ratio $|\frac{e_{n+1}}{e_n}| \to 0$, 5, la convergence est linéaire et le taux de convergence |g'(r)| = 0, 5.

n	$\left \frac{e_{n+1}}{e_n}\right $
8	4.994963331318167e-01
9	4.997485470223553e-01
10	4.998743683459937e-01
11	4.999372078471372e-01
12	4.999686098374866e-01
13	4.999843063966225e-01
14	4.999921535661964e-01
15	4.999960768780633e-01
16	4.999980384554781e-01
17	4.999990192486539e-01
18	4.999995096445901e-01

(c) Le ratio $|\frac{e_{n+1}}{e_n}| \to 0$ et le ratio $|\frac{e_{n+1}}{e_n^2}| \to 0, 5 \neq 0 \Rightarrow$ convergence quadratique.

n	$\left \frac{e_{n+1}}{e_n}\right $	$\left \frac{e_{n+1}}{e_n^2}\right $
1	0,6	0,799999
2	$1,836734 \times 10^{-1}$	0,468 163
3	$3,968643 \times 10^{-2}$	0,480756
4	$1,637416 \times 10^{-3}$	0,499181
5	$2,685505\times10^{-6}$	0,499952

(d) La fonction $f(x) = (x-1)^2 e^x \ge 0$, donc ne change pas de signe. La méthode de la bissection ne peut pas être utilisée pour approcher la racine r=1.