1.	Select the option that best completes the following sentence:
	For data with many features, principal components analysis
	identifies which features can be safely discarded
	reduces the number of features without losing any information.
	establishes a minimum number of viable features for use in the analysis.
	generates new features that are linear combinations of the original features.
	Correct! You can find more information in the lesson on Dimensionality Reduction.
2.	Which option correctly lists the steps for implementing PCA in Python?
	1. Fit PCA to data
	2. Scale the data
	3. Determine the desired number of components based on total explained variance
	4. Define a PCA object
	O 2, 1, 3, 4
	2, 4, 1, 3
	O 4, 1, 3, 2
	O 4, 1, 2, 3
	Correct Correct! Note that we need to scale the data prior to fitting a PCA object and obtain the total explained variance afterwards based on the principal components built.
3.	Given the following matrix for lengths of singular vectors, how do we rank the vectors in terms of importance?
	$\begin{bmatrix} 11 & 0 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 11 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$
	v_1,v_2,v_3,v_4
	$\bigcirc \ v_4, v_3, v_2, v_1$
	$\bigcirc v_1, v_4, v_3, v_2$

 $\bigcirc v_2, v_3, v_4, v_1$

 ${\it Correct!} \ {\it The bigger the eigenvalue (value on the diagonal), the more important it is.}$

⊘ Correct

4. Given two principal components v_1 , v_2 , let's say that feature f_1 contributed 0.15 to v_1 and 0.25 to v_2 . Feature f_2 contributed -0.11 to v_1 and 0.4 to v_2 .

1/1 point

Which feature is more important according to their total contribution to the components?

- Neither
- $\bigcirc v_1$ because 0.15 + 0.25 > -0.11 + 0.4
- $igotimes v_2$ because |-0.11| + |0.4| > |0.15| + |0.25|
- \bigcirc v_2 because -0.11+0.4 < 0.15+0.25

5. (True/False) In PCA, the first principal component represents the most important feature in the dataset.

1/1 point

- True
- False
 - **⊘** Correct

Correct! Each principal component in PCA is a linear combination of features in the dataset, so the first one doesn't necessarily correspond to the single most important original feature.