北京化工大学 2019 — — 2020 学年第2学期 《高等数学(III)》期末考试试卷

课程代码	\mathbf{M}	A	\mathbf{T}	1	3	9	0	7	\mathbf{T}
------	--------------	---	--------------	---	---	---	---	---	--------------

班级:_____ 姓名:____ 学号:____ 任课教师:_____

题号	Exercice 1	Exercice 2	Problème 1	总分	阅卷教师
得分					

Exercice 1 Intégrale de DIRICHLET

Soit
$$I = \int_0^{\pi/2} \ln(\sin t) dt$$

- 1- Montrer que l'intégrale I converge.
- 2- Après avoir justifier la convergence de chaque terme, montrer :

$$I = \frac{\pi \ln(2)}{2} + 2 \int_0^{\pi/4} \ln(\cos t) dt + 2 \int_0^{\pi/4} \ln(\sin t) dt$$

3- Donner la valeur de I

Exercice 2 Irrationalité de π^2

L'objectif est de montrer que π^2 est irrationel. Pour cela, on va procéder par l'absurde, et supposer que $\pi^2 = \frac{a}{b}$, avec $(a,b) \in \mathbb{N}^2$, pour montrer que l'on arrive à une incohérence, et pouvoir conclure.

1- Soient $n \in \mathbb{N}$, $P \in \mathbb{R}[X]$, et soit $Q \stackrel{\text{def}}{=} \frac{1}{n!} X^n P$. Montrer que si les coefficients de P sont des nombres entiers (relatifs, donc dans \mathbb{Z}), alors :

$$\forall k \in \mathbb{N}, \ Q^{(k)}(0) = 0$$

2- Posons $\pi^2 = \frac{a}{b}$, avec $(a,b) \in \mathbb{N}^2$. Pour tout $n \in \mathbb{N}$, on pose :

$$f_n(x) \stackrel{\text{def}}{=} \frac{x^n (1-x)^n}{n!} \qquad I_n \stackrel{\text{def}}{=} \pi a^n \int_0^1 f_n(x) \sin(\pi x) dx$$

Montrer que $0 \leqslant I_n \leqslant \pi \frac{a^n}{n!}$ et en déduire que $I_n \xrightarrow[n \to +\infty]{} 0$

3- Montrer que

$$I_n = a^n \left(f_n(1) - f_n(0) - \frac{1}{\pi} \int_0^1 f_n''(x) \sin(\pi x) dx \right)$$

- 4- Justifier que $\int_0^1 f_n^{(2n+2)}(x) \sin(\pi x) \mathrm{d}x = 0.$
- 5- En déduire que :

$$I_n = a^n \left(\sum_{k=0}^n (-1)^k \frac{f_n^{(2k)}(1) - f_n^{(2k)}(0)}{\pi^{2k}} \right)$$

- 6- Déduire de la question 1– que $\forall k \in [\![0;n]\!], \, a^n \frac{f_n^{(2k)}(1) f_n^{(2k)}(0)}{\pi^{2k}} \in \mathbb{Z}$
- 7- À l'aide des questions 2-, 5- et 6-, conclure.

Problème 1 Études sur ζ

Partie 1 : Série harmonique

1- Soit
$$H_n = \sum_{k=1}^n \frac{1}{n}$$
. Montrer que $H_n \underset{n \to +\infty}{\sim} \ln n$.

2- Montrer que
$$\exists \gamma \in \mathbb{R} / H_n = \ln n - \gamma + \underset{n \to +\infty}{\mathcal{O}} (1)$$

Partie 2: Sommation double

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que :

- (*) Pour tout p fixé dans \mathbb{N} , la série $\sum_{n\geq 0} f(n,p)$ est absolument convergente
- (**) La série $\sum_{p\geqslant 0}\left(\sum_{n=0}^{+\infty}|f(n,p)|\right)$ est convergente
 - 3- Montrer que pour tout n fixé dans \mathbb{N} , la série $\sum_{p\geqslant 0}f(n,p)$ est absolument convergente
 - 4- Montrer que la série $\sum_{n>0} \left(\sum_{n=0}^{+\infty} |f(n,p)| \right)$ est convergente
 - 5- Montrer que

$$\sum_{n=0}^{+\infty} \left(\sum_{p=0}^{+\infty} f(n,p) \right) = \sum_{p=0}^{+\infty} \left(\sum_{n=0}^{+\infty} f(n,p) \right)$$

Partie 3 : première variante

On pose $\zeta(k) = \sum_{n \geqslant 1} \frac{1}{n^k}$. Pour rappel, d'après le théorèmes sur les séries de RIEMANN, ζ est une fonction définie pour tout k > 1. Dans la partie qui vient, on prendra toujours $k \in \mathbb{N}$, k > 1.

- 6- Montrer que $\zeta(k) 1 \leqslant \frac{1}{2^{k-1}}$
- 7- Étudier la nature de la série $\sum_{k\geqslant 2} (\zeta(k)-1)$
- 8- En utilisant rigoureusement le résultat de la Partie 2, montrer que $\sum_{k=2}^{+\infty} (\zeta(k) 1) = 1$.

Partie 4 : deuxième variante

- 9- Soit $p \in \mathbb{N}^*$, et $A \in]0;1[$. Écrire la formule de TAYLOR avec reste intégral pour $f:x\mapsto \ln(1-x)$ à l'ordre p entre 0 et A.
- 10- En déduire que $\forall A \in]0; 1[$, $\ln(1-A) = \sum_{k=1}^{+\infty} \frac{A^k}{k}$. (On sera spécialement attentif à justifier la convergence de cette somme)
- 11- On pose $U_n = H_n \ln n$, et $\delta_n = U_{n+1} U_n$. Montrer que $\delta_n = -\sum_{k=2}^{+\infty} \frac{1}{kn^k}$
- 12- Montrer que la série $\sum_{n\geqslant 2}\delta_n$ converge absolument, et que sa somme est $\gamma-1.$
- 13- En déduire que $\sum_{k=2}^{+\infty} \frac{\zeta(k)-1}{k} = 1 \gamma$. (On sera spécialement attentif à justifier la convergence de cette somme)

2