Matemática 4- 2024

TP 5 (Continuación) - Aritmética Modular

- 1. Hallar los resultados de las siguientes operaciones realizadas entre enteros módulo 4 y $5: \bar{3} + \bar{1}; \bar{5} + \bar{9}; \bar{40}.\bar{3}; (\bar{3} + \bar{2}).(\bar{6}.\bar{8})$
- 2. Construir las tablas de sumar y multiplicar de los enteros módulo 2 y 5
- 3. Analizar si las siguientes son estructuras de grupo:
 - (a) $(Z_4, +)$ enteros módulo 4 con la suma modular
 - (b) $(Z_4,.)$ enteros módulo 4 con el producto modular
 - (c) $(Z_3,.)$ enteros módulo 3 con el producto modular
- 4. Sean $A_1 = {\overline{0}, \overline{5}}$ y $A_2 = {\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}}$ subconjuntos de Z_{10} .
 - Probar que A_1 y A_2 son subgrupos de Z_{10}
 - Mostrar que todo elemento de Z_{10} puede escribirse como suma de elementos de A_1 y A_2 (es decir, para todo x de Z_{10} , $x = x_1 + x_2$ con $x_1 \in A_1$ y $x_2 \in A_2$
- 5. Mostrar que $\overline{3}$ es un generador del grupo cíclico $(Z_8,+)$. Cuál es el orden del subgrupo cíclico generado por $\overline{2}$?
- 6. Encontrar los generadores del grupo cíclico $(Z_6, +)$.
- 7. Si reparto en partes iguales m caramelos entre 3 personas, me sobran 2, mientras que si los reparto entre 7, me sobran 4. Sabiendo que m está entre 30 y 70. ; Cuántos caramelos tengo para repartir? (Usar aritmética modular)
- 8. Averiguar qué día de la semana cayó 05/11/1968, fecha del natalicio de Ricardo Fort.
- 9. Mostrar que \mathbb{Z}_m para m natural y las operaciones de suma y producto tiene estructura de anillo
- 10. Dar todos los elementos invertibles de \mathbb{Z}_6
- 11. Sea m un entero impar, probar que $m^2 \equiv_4 1$

- 12. Dar todos los elementos invertibles de \mathbb{Z}_6
- 13. Si \bar{a} es invertible entonces no es divisor de cero
- 14. Probar que (t, m) = 1 si y sólo si t es invertible módulo m
- 15. Si p es primo entonces \mathbb{Z}_p es un cuerpo

Ejercicios Adicionales

- 1. Dado su número de alumno, Leg: abcde/f y sean m=abcde y k=f+10.
 - (a) Calcular, si existe el inverso modular de k en:
 - Z_8 si su f es **impar**,
 - Z_9 si su f es **par**.
 - (b) Como debe ser q para que los últimos 3 dígitos de qx91xm coincidan con los últimos 3 dígitos de su número de alumno.
- 2. Calcular el resto de dividir 7 elevado a la 11 por 12
- 3. Un grupo de chicos de primer año (aprox 900 alumnos) está armando equipos para jugar al fútbol. Si arman equipos para fútbol 5 me quedan 3 sin equipo, pero si van a usar canchita de 11 ahora me quedan 7 amigos sin equipo ¿puede decir cuantos chicos son? la respuesta es única? (usar aritmética modular)