Ramsey 4.2-Tangent and Normal-Q.21

Vaibhav Chhabra - Al20BTECH11022

August 30, 2021

Problem

Ramsey 4.2-Tangent and Normal-Q.21

Verify that the perpendicular bisector of the chord joining two points $\mathbf{x_1}$, $\mathbf{x_2}$ on the circle

$$\mathbf{x}^{\top}\mathbf{x} + 2\begin{pmatrix} g & f \end{pmatrix}\mathbf{x} + c = 0 \tag{1}$$

passes through the centre.

Solution

Since x_1 and x_2 lie on the circle,

$$\mathbf{x_1}^{\mathsf{T}} \mathbf{x_1} + 2 \begin{pmatrix} g & f \end{pmatrix} \mathbf{x_1} + c = 0 \tag{2}$$

$$\mathbf{x_2}^{\top} \mathbf{x_2} + 2 \begin{pmatrix} g & f \end{pmatrix} \mathbf{x_2} + c = 0 \tag{3}$$

Subtracting the two, we get,

$$\mathbf{x_2}^{\mathsf{T}} \mathbf{x_2} - \mathbf{x_1}^{\mathsf{T}} \mathbf{x_1} = -2 \begin{pmatrix} g & f \end{pmatrix} (\mathbf{x_2} - \mathbf{x_1})$$
 (4)

The midpoint of the chord x_1x_2 is

$$\mathbf{M} = \frac{\mathbf{x_1} + \mathbf{x_2}}{2} \tag{5}$$

Since perpendicular bisector of x_1x_2 is perpendicular to x_1x_2 and passes through M, any general point P on the perpendicular bisector can be given using the relation

$$\left(\mathbf{x_2} - \mathbf{x_1}\right)^{\top} \left(\mathbf{P} - \mathbf{M}\right) = 0 \tag{6}$$

$$\implies (\mathbf{x_2} - \mathbf{x_1})^{\top} \mathbf{P} - (\mathbf{x_2}^{\top} - \mathbf{x_1}^{\top}) \left(\frac{\mathbf{x_1} + \mathbf{x_2}}{2}\right) = 0$$
 (7)

$$\implies (\mathbf{x_2} - \mathbf{x_1})^{\top} \mathbf{P} = \frac{\mathbf{x_2}^{\top} \mathbf{x_2} - \mathbf{x_1}^{\top} \mathbf{x_1} + \mathbf{x_2}^{\top} \mathbf{x_1} - \mathbf{x_1}^{\top} \mathbf{x_2}}{2}$$
(8)

Since $\mathbf{x_1}^{\top}\mathbf{x_2} = \mathbf{x_2}^{\top}\mathbf{x_1}$, the equation reduces to

$$2(\mathbf{x_2} - \mathbf{x_1})^{\top} \mathbf{P} = \mathbf{x_2}^{\top} \mathbf{x_2} - \mathbf{x_1}^{\top} \mathbf{x_1}$$
 (9)

Using (4), we get

$$2(\mathbf{x_2} - \mathbf{x_1})^{\top} \mathbf{P} = -2(g \quad f)(\mathbf{x_2} - \mathbf{x_1})$$
 (10)

$$\implies (\mathbf{x_2} - \mathbf{x_1})^{\top} \mathbf{P} = (\mathbf{x_2} - \mathbf{x_1})^{\top} \begin{pmatrix} -g \\ -f \end{pmatrix}$$
 (11)

Since the centre of the circle is $\mathbf{C} = \begin{pmatrix} -g \\ -f \end{pmatrix}$, we can clearly see that

 $\mathbf{P} = \mathbf{C}$ satisfies the equation of perpendicular bisector.

Hence, the perpendicular bisector of any chord of a circle passes through the centre of the circle.

Example

For example, consider the circle

$$\mathbf{x}^{\top}\mathbf{x} + 2\begin{pmatrix} -4 & -5 \end{pmatrix}\mathbf{x} + 5 = 0 \tag{12}$$

and let $\mathbf{x_1}=\begin{pmatrix}0\\5-2\sqrt{5}\end{pmatrix}$ and $\mathbf{x_2}=\begin{pmatrix}-2\\5\end{pmatrix}$. We can clearly see in the

figure that the perpendicular bisector of the chord $\mathbf{x_1}\mathbf{x_2}$ passes through the centre C of the circle.

Figure: Example figure

