Assignment 1

Shreyash Dwivedi (221035)

 Colab notebook linkhttps://colab.research.google.com/drive/1Tr0fcr8Ck6Wg0pbiseyEGPJ-qpcVgF Zf?usp=sharing

Summary of the Notebook:

This notebook demonstrates the process of classifying handwritten digits from the MNIST dataset using different types of Support Vector Machines (SVMs) with varying data percentages. It follows the steps below:

1. Feature Extraction (HOG):

- HOG (Histogram of Oriented Gradients) is used to extract features from the images. Parameters like orientations, pixels per cell, and blocks are defined for HOG.
- The feature_extraction() function reads the images, resizes them to 28x28 pixels, and extracts HOG features for both training and testing datasets.

2. SVM Training (Linear Kernel with C = 1 and C = 10):

- The SVM classifier is trained using the linear kernel with two different values of the regularization parameter CCC (1 and 10).
- The dataset is split into training, validation, and testing subsets, with increasing percentages of data used for training (from 60% to 90%).
- Accuracy is calculated on the training, validation, and testing sets, and the results are plotted for comparison.

3. SVM Training (RBF Kernel with C = 1 and C = 10):

- The SVM classifier is trained again using the RBF (Radial Basis Function) kernel with two different values of CCC.
- The same percentage splits (60% to 90%) are used for training, and accuracy is computed for each subset.
- Results are plotted to compare the performance of the RBF kernel against the linear kernel.

Accuracy tables:

SVM with Linear Kernel (C = 1)

% Data Used	Training Accuracy	Validation Accuracy	Testing Accuracy
60%	94.72%	93.70%	94.23%
70%	94.59%	93.91%	94.22%
80%	94.63%	93.86%	94.38%
90%	94.72%	93.80%	94.38%

Accuracy vs Data Used 0.946 0.944 Accuracy Training Accuracy Testing Accuracy 0.942 Validation Accuracy 0.940 0.938 65 70 85 60 75 80 90 %Data Used

SVM with Linear Kernel (C = 10)

% Data Used	Training Accuracy	Validation Accuracy	Testing Accuracy
60%	95.65%	93.95%	94.43%

% Data Used	Training Accuracy	Validation Accuracy	Testing Accuracy
70%	95.59%	94.14%	94.63%
80%	95.60%	94.28%	94.73%
90%	95.56%	93.93%	94.75%

SVM with RBF Kernel (C = 1)

% Data Used	Training Accuracy	Validation Accuracy	Testing Accuracy
60%	97.61%	96.02%	96.14%
70%	97.60%	96.27%	96.23%
80%	97.63%	96.38%	96.27%
90%	97.66%	96.38%	96.37%

SVM with RBF Kernel (C = 10)

% Data Used	Training Accuracy	Validation Accuracy	Testing Accuracy
60%	99.85%	96.55%	96.40%
70%	99.81%	96.78%	96.42%
80%	99.80%	96.79%	96.71%
90%	99.80%	97.03%	96.63%

Histogram of Oriented Gradients (HOG) Parameters

The following HOG parameters were used for feature extraction in all experiments:

- **Pixels per Cell:** (8, 8) Each cell is composed of 8x8 pixels, ensuring a balance between feature richness and computational efficiency.

- Cells per Block: (2, 2)

A block consists of 2x2 cells, which allows normalization across a larger spatial region for improved contrast handling.

- Orientations: 9

Gradients are quantized into 9 orientation bins, capturing detailed edge information.

- **Block Normalization:** L2-Hys

L2-Hys normalization is used to normalize gradient values within each block, improving robustness to illumination changes.

- Feature Vector: True

The extracted features are flattened into a 1D vector for compatibility with machine learning models.