UFSC-CTC-INE-PPGCC INE 410131 – Gerência de Dados para Big Data

Bancos de Dados em Memória: Visão Geral

BDs Tradicionais X BDs em Memória

- BDs convencionais (BDCs)
 - principal dispositivo de armazenamento de dados é o disco

- BD em memória (*In-memory DB IMDB*)
 - totalidade (ou quase) do BD está na memória RAM
 - motivação
 - minimizar o gargalo de acesso dos BDCs
 - HW mais desenvolvido
 - aplicações OLTP e OLAP

"Memory is the new disk.

Disk is the new tape."

Jean Gray, DB scientist

Alguns Conceitos

- Non-Volatile Memory (NVM):
 - HDD (Hard-Disk Drive): armazenamento em meio magnético
 - ODD (Optical-Disk Drive): armazenamento em dispositivo eletrônico semicondutor c/ o uso de laser
 - taxa de transferência de dados menor que HDD, mas tempo de busca maior que HDD
 - SSD (Solid-State Drive): dispositivo de baixa latência e custo mais alto, com armazenamento em chips de memória
 - PCRAM (Phase Change RAM): menor espaço físico e menor consumo energético que SSD, custo elevado e latência ligeiramente menor que SSD

Alguns Conceitos

- DRAM (Dynamic RAM):
 - memórias voláteis de baixo custo e alta capacidade de armazenamento (Tb)
 - sua capacidade vem aumentando aproximadamente 10x a cada 5 anos

BDC X IMDB

IMDB – Principais Tecnologias HW

1. Arquitetura NUMA

2. NVDIMM

1 – Arquitetura NUMA

- Arquitetura composta por um conjunto de processadores multicore interconectados
- NUMA (Non-Uniform Memory Access)
 - maior capacidade de processamento de dados
 - uso paralelo de memórias DRAM

1 – Arquitetura NUMA

 Arquitetur processa

NUMA (N

maior car

uso paral

cada processador *multicore* mantém 2 ou mais unidades CPU ou GPU que compartilham uma DRAM

2 – NVDIMM

- Non-Volatile Dual In-Line Memory Module
- Dados são mantidos na ausência de energia pois possui fonte de energia dedicada e uma 2ª memória não-volátil: DRAM+NVM

permite a descarga de dados em tempo para a 2ª

Operação de Eviction

- Decisão quanto aos dados que devem ser transferidos da DRAM para NVM (swap)
- Como funciona
 - dados não frequentemente acessados ("cold tuples") são transferidos eventualmente para NVM
 - um índice para tuplas frias mantém as suas localizações na NVM ("tombstone index")
 - quando uma transação T_x deseja acessar cold tuples:
 - 1) T_x é abortada
 - 2) Uma *thread* é ativada para trazer esses dados para a DRAM (*"tuple ressurection"*)
 - 3) T_x é restartada

Paralelismo

- processar múltiplos dados presentes em diferentes cores em uma única instrução
- lidar com múltiplos dados em um único registrador (otimizar processamento em nível de CPU)

- Controle de Concorrência: Very Lightweight Locking (VLL), MVCC-adapted e HTM-based timestamp-based schedulers
 - técnicas de scheduling que mantêm informações, como o tipo de bloqueio, fila de transações em espera ou o timestamp, junto com o dado na memória e não em estruturas de dados separadas
 - separar transações OLTP e OLAP
 - OLAP não faz atualização de dados e pode ser executada com maior paralelismo

- Recuperação de Dados (Recovery)
 - logs persistidos em NVM rápidos (SSD ou PCM) dedicados e replicados
 - command logging: guardam apenas a identificação do dado e a operação realizada sobre ele no log (ao invés dos valores antigo e novo do dado)
 - group commit: agrupam operações de commit para então persistir no log

- Indexação
 - estruturas de acesso rápido pois estão na DRAM
 - 1) estruturas de índice baseadas em árvore com foco em range queries para data analytics
 - T-Tree, CSS-Trees, CSB+-Trees, delta-Tree, BD-Tree, ...
 - para dados mantidos ordenados e contíguos em memória por um atributo X, basta indexar apenas o 1º registro de X em um range. Os demais são rapidamente acessados (índice por range de dados)
 - 2) estruturas de índice baseados em hash
 - utilizados por alguns SGBDs NoSQL chave-valor (Redis, Memcached, RAMCloud)

Soluções IMDB (além dos BD NewSQL)

memory-centric distributed DB, caching, and processing platform for transactional, analytical, and streaming workloads, delivering inmemory speeds at petabyte scale. <u>Multimodel: relational; key-value</u>

OrigoDB

fully ACID in-memory DB. Multimodel: relational; document; keyvalue; graph

GemFire

consistent access to data-intensive applications throughout widely distributed cloud architectures. An in-memory DBMS that provides reliable asynchronous event notifications and guaranteed message delivery. Multimodel: document; keyvalue

IMDB - Atividade

https://en.wikipedia.org/wiki/In-memory_database

- 1) O D do ACID (Durabilidade) é um requisito desafiador para um IMDB, pois os dados estão prioritariamente na memória RAM. Para garantir esta propriedade, algumas técnicas de apoio sugeridas são *checkpoint*, *logging* e *replication*. Como elas funcionam?
- 2) Qual a diferença entre um IMDB e uma cache de dados?