Machine Learning Correlates the Charge Density Wave with the Local Gap in Cuprate Superconductors

By Kaylie Hausknecht

Understanding Disordered Materials

• CON: Disorder masks underlying properties

• PRO: Disorder can act as an experimental tuning parameter

Understanding Disordered Materials

• CON: Disorder masks underlying properties

Bi₂Sr₂CuO_{6+δ} (Bi2201) Superconductor

• PRO: Disorder can act as an experimental tuning parameter

$$Y = f[X]$$

CDW in Bi2201→ Detailed Look

UD25K UD32K OD15K OPT35K Tatiana Webb, J. Hoffman, PRX 9, 021021 (2019) Fermi Surface Transition

Webb

Fourier Masking Technique

Losing information from images → Fourier space → points → fitting! 5

Spatial Variations in $Q(\Delta(r))$

Neural Network to Detect DW Transition

Translationally Invariant Model Architecture

≈ 85% accurate on test data

Accuracy Tracks Hypothesis Overlap

Simulating Data on a Torus

Periodic Boundary Conditions

Ideal Translation Interpretability Tests

DWs simulated from a gap map by one of the two hypotheses

Generated by smoothing Poissonian noise, binning, and sharpening edges

"Mapping Photographic Images to 3D Surfaces"
http://demonstrations.wolfram.com/MappingPhotographicImagesTo3DSurfaces/
Wolfram Demonstrations Project

How Certain is the Model in its Classifications?

Is the Model Learning Local Correlations (i.e. F(X)=Y in 2D)?

Conclusions

Proved: Local learning to find f(X)=Y, within two 2D images

- Convolutional neural networks
 - → pooling induces translational invariance

- Synthetic data on a torus
 - \rightarrow shift interpretability test

Next steps:

Predictions on real data

Bi2201: Local Doping Controls Electronic Inhomogeneity

Fei Sci. China Phys. Mech. Astron. 61, 127404 (2018)

Zeljkovic...Hoffman 337, 320 Science (2012)

Bi2212: Local Doping → Electronic Inhomogeneity

Synthetic Data Simulation

Fujita, K., & Hamidian, M et al (2014). Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates. PNAS, 3026-3032. doi:10.1073/pnas.14062971

Hamidian, M., & Edkins, S. (2015). Atomic-Scale Electronic Structure of the Cuprate d-Symmetry Form Factor Charge Density Wave. Nature Physics, 59-88. doi:10.1007/978-3-319-65 975-6_4