PATENT ABSTRACTS OF JAPA'N

(11)Publication number:

2002-329995

(43) Date of publication of application: 15.11.2002

(51)Int.CI.

H05K 9/00 CO8K 3/22 CO8L 83/04

(21)Application number: 2001-135773

(71)Applicant:

SHIN ETSU CHEM CO LTD

(22)Date of filing: 07.05.2001 (72)Inventor:

SAKURAI IKUO

FUJIKI HIRONAO

(54) ELECTROMAGNETIC WAVE ABSORBING BODY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electromagnetic wave absorbing body which has high electromagnetic wave absorbing performance and high electromagnetic wave shielding performance and has excellent workability, flexibility, weather resistance and heat resistance reflecting the property of silicon resin itself, by which an electromagnetic wave absorbing layer can be stuck to an electromagnetic wave reflecting layer strongly in addition since the silicon resin is used for both of the electromagnetic wave absorbing layer and the electromagnetic wave reflecting layer, and which can also be provided with high heat conducting performance by adding a heat conductive filler when needed.

SOLUTION: The electromagnetic wave absorbing body is obtained by laminating the electromagnetic wave absorbing layer obtained by dispersing an electromagnetic wave absorbing filler in the silicon resin at least on one surface of the electromagnetic wave reflecting layer obtained by dispersing electrically conductive filler in the silicon resin.

LEGAL STATUS

[Date of request for examination]

23.10.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-329995A)

(43)公開日 平成14年11月15日(2002.11.15)

(51) Int.Cl. ⁷		識別記号	FI		7	·-マコード(参考)
H05K	9/00		H05K	9/00	M	4 J 0 0 2
C 0 8 K	3/22		C08K	3/22		5 E 3 2 1
C 0 8 L	83/04		C08L	83/04		

審査請求 未請求 請求項の数6 OL (全 9 頁)

(21)出願番号	特願2001-135773(P2001-135773)	(71)出願人	
			信越化学工業株式会社
(22)出顯日	平成13年5月7日(2001.5.7)	0.90	東京都千代田区大手町二丁目6番1号
		(72)発明者	櫻井 郁男
			群馬県碓氷郡松井田町大字人見1番地10
			信越化学工業株式会社シリコーン電子材料
	·		技術研究所内
		(72)発明者	藤木 弘谊
			群馬県碓氷郡松井田町大字人見1番地10
			信越化学工業株式会社シリコーン電子材料
	•		技術研究所内
		(74)代理人	100079304
			弁理士 小島 隆司 (外1名)
			最終頁に続く

(54) 【発明の名称】 電磁波吸収体

(57)【要約】

【解決手段】 導電性充填剤をシリコーン樹脂中に分散 させてなる電磁波反射層の少なくとも一方の面に、電磁 波吸収性充填剤をシリコーン樹脂中に分散させてなる電 磁波吸収層を積層したことを特徴とする電磁波吸収体。 【効果】 本発明の電磁波吸収体は、導電性充填剤をシ リコーン樹脂中に分散させてなる電磁波反射層と、電磁 波吸収性充填剤をシリコーン樹脂中に分散させてなる電 磁波吸収層を、一体的に成形したものである。従って、 高い電磁波吸収性能、高い電磁波シールド性能を持つと 共に、シリコーン樹脂自体の性質を反映して、加工性、 柔軟性、耐候性、耐熱性に優れたものとなる。更に、電 磁波吸収層と電磁波反射層の両層にシリコーン樹脂を使 用しているため、電磁波吸収層と電磁波反射層の強固な 接着が可能である。必要に応じて、熱伝導性充填剤を付 加することにより、高い熱伝導性能を兼ね備えることも できる。

【特許請求の範囲】

【請求項1】 導電性充填剤をシリコーン樹脂中に分散 させてなる電磁波反射層の少なくとも一方の面に、電磁 波吸収性充填剤をシリコーン樹脂中に分散させてなる電 磁波吸収層を積層したととを特徴とする電磁波吸収体。

1

【請求項2】 シリコーン樹脂が、シリコーンゴム、シ リコーンゲル又は未加硫のパテ状シリコーン組成物から 選択される請求項1記載の電磁波吸収体。

【請求項3】 電磁波吸収層及び/又は電磁波反射層中 に、更に熱伝導性充填剤を含むことを特徴とする請求項 10 1又は2記載の電磁波吸収体。

【請求項4】 電磁波吸収性充填剤が、鉄元素を15体 積%以上含む軟磁性合金であることを特徴とする請求項 1、2又は3記載の電磁波吸収体。

【請求項5】 電磁波吸収性充填剤が、フェライトであ るととを特徴とする請求項1、2又は3記載の電磁波吸 収体。

【請求項6】 電磁波吸収層の体積固有抵抗率が1×1 0'Ωm以上であることを特徴とする請求項1乃至5の いずれか1項記載の電磁波吸収体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電磁波吸収性能と 電磁波シールド性能とを兼備した電磁波吸収体にに関す る。

[0002]

【従来の技術及び発明が解決しようとする課題】近年、 放送、移動体通信、レーダー、携帯電話、無線LANな どの電磁波利用が進むに伴い、生活空間に電磁波が散乱 ている。これらの問題を解決するための一つの方法とし て、ビル壁面や橋梁などの電磁波の反射、散乱が大きい 構造物に電磁波吸収体を装着することが行われており、 効果を奏している。

【0003】この場合、いわゆる遠方電磁界(平面波) を対象とした電磁波吸収が目的となり、電磁波吸収体の 構造は、一般的にフェライト等の磁性損失材料の粉末や カーボン等の誘電性損失材料の粉末をゴムやプラスチッ ク等に均一に充填してなる電磁波吸収材と、その裏面に 配置された金属等の電磁波反射材からなる。

【0004】電磁波吸収体を構造物に装着する方法とし て、構造物表面が金属などの場合には、その構造物を電 磁波反射材として利用し、電磁波反射材のない電磁波吸 収材を直接装着する方法や、予め電磁波吸収材に金属箔 等の電磁波反射材で裏打ちしたものを装着する方法等が ある。

【0005】被装着構造物の多様な形状に対応するた め、電磁波吸収体には柔軟性が要求されるが、従来の電 磁波反射材は金属箔、金属蒸着フィルム、金属繊維、炭

題があった。そこで、特許第3097343号公報に は、電磁波エネルギ損失材と保持材を混合してなる可撓 性を有するシート状電波吸収層と、有機繊維布に高導電 性金属材料を無電解メッキしてなる電波反射層を積層し た柔軟な薄型電磁波吸収体が提案されている。

【0006】とれらの用途においては、更に、屋外に装 着される場合などには良好な耐候性が要求されるため、 電磁波吸収層の表面に保護層を別途設けていた。また、 長期間使用するためには電磁波吸収層と電磁波反射層の 強固な接着が必要である。しかし、このような柔軟性、 耐候性、電磁波吸収層と電磁波反射層の強固な接着性を 同時に満足する電磁波吸収体の実現は技術的に簡単なも のではなかった。

【0007】一方、もう一つの電磁波障害、即ち近傍電 磁界での電磁波障害の問題として、パーソナルコンピュ ータ、携帯電話等の内部に配置されたCPU、MPU、 LSI等の電子機器要素の高密度化、高集積化、及びブ リント配線基板への電子機器要素の高密度実装化が進 み、電磁波が機器内部に放射されると共に、その電磁波 20 が機器内部で反射、充満して、機器自身から発生した電 磁波により電磁干渉を引き起こすことが挙げられる。 【0008】従来、これらの電磁干渉障害対策を行う場 合にはノイズ対策の専門知識と経験が必要とされ、その

対策には多くの時間が必要とされる上、対策部品の実装 スペースを事前に確保することなど難点があった。こう した問題点を解決するため、電磁波を吸収することによ り反射波及び透過波を低減する電磁波吸収体が使用され 始めている。

【0009】また、機器外部への電磁波漏洩を防ぐた し、電磁波障害、電子機器の誤動作などの問題が頻発し 30 め、金属板を電磁波シールド材として設置することや筐 体に導電性を持たせて電磁波シールド性能を付与すると とが行われているが、このシールド材で反射、散乱した 電磁波は機器内部に充満して電磁干渉を助長してしまう という問題や、機器内部に設置された複数の基板間での 電磁干渉の問題があった。

> 【0010】とれらの問題を解決するため、特開平7-212079号公報には、導電性支持体と、軟磁性体粉 末と有機結合剤からなる絶縁性軟磁性体層を積層した形 の電磁波干渉抑制体が提案されている。

40 【0011】更に、CPU、MPU、LSI等の電子機 器要素の高密度化、高集積化に伴い、発熱量が大きくな り、冷却を効率よく行わなければ、熱暴走により誤動作 してしまうという問題も同時にある。

【0012】従来、発熱を外部に効率よく放出する手段 として、熱伝導性粉体を充填したシリコーングリスやシ リコーンゴムをCPU、MPU、LSI等とヒートシン クの間に設置して接触熱抵抗を小さくする方法があっ た。しかし、との方式では前記機器内部の電磁干渉の問 題を回避することは不可能である。

素繊維布、金属メッキガラス布などであり、柔軟性に問 50 【0013】従って、電子機器内部の特にCPU、MP

U、LSI等の電子機器要素の高密度化、高集積化され た部位に対しては、電磁波吸収性能、電磁波シールド性 能、熱伝導性能を有した部材が必要となるが、これら三 つの性能を兼ね備えた部材は存在しなかった。この用途 の場合、前記三つの性能以外に、柔軟性、耐熱性や、電 磁波吸収層と電磁波反射層の多層構造の場合には、両層 間での強固な接着性なども必要とされるが、これらの性 能を同時に満足するものはなかった。

【0014】本発明は、かかる従来の問題に鑑みてなさ れたものであって、高い電磁波吸収性能を持ち、かつ加 10 工件、柔軟件、耐候性に優れ、電磁波吸収層と電磁波反 射層の強固な接着性を有する電磁波反射層一体型の電磁 波吸収体を提供することを目的とする。

【0015】更には、高い電磁波吸収性能、電磁波シー ルド性能と、高い熱伝導性能を兼ね備え、かつ加工性、 柔軟性、耐熱性に優れ、電磁波吸収層と電磁波反射層の 強固な接着性を有する電磁波反射層一体型の電磁波吸収 体を提供することを他の目的とする。

[0016]

【課題を解決するための手段及び発明の実施の形態】本 20 発明者らは、上記目的を達成するため鋭意検討を重ねた 結果、導電性充填剤をシリコーン樹脂中に分散させてな る電磁波反射層の少なくとも一方の面に電磁波吸収性充 填剤をシリコーン樹脂中に分散させてなる電磁波吸収層 を積層することで、高い電磁波吸収性能を持ち、かつ加 工性、柔軟性、耐候性に優れ、電磁波吸収層と電磁波反 射層の強固な接着性を有する電磁波反射層一体型の電磁 波吸収体が得られることを見出した。

【0017】更には、これら電磁波吸収層及び/又は電 磁波反射層中に、更に熱伝導性充填剤を含有させること 30 で、高い電磁波吸収性能、電磁波シールド性能と、高い 熱伝導性能を兼ね備え、かつ加工性、柔軟性、耐熱性に 優れ、電磁波吸収層と電磁波反射層の強固な接着性を有 する電磁波反射層一体型の電磁波吸収体が得られること を見出し、本発明をなすに至った。

【0018】以下、本発明につき更に詳しく説明する。 本発明の電磁波吸収体は、導電性充填剤をシリコーン樹 脂中に分散させてなる電磁波反射層の少なくとも一方の 面に電磁波吸収性充填剤をシリコーン樹脂中に分散させ てなる電磁波吸収層を積層したものである。更に、必要※40

R^1 _n S i O_{(4-n)/2}

【0024】ととで、R1は同一又は異種の非置換又は 置換の1価炭化水素基、好ましくは炭素数1~10、よ り好ましくは1~8のものであり、例えばメチル基、エ チル基、イソプロピル基、ブチル基、イソブチル基、t ertーブチル基、ヘキシル基、オクチル基等のアルキ ル基、シクロヘキシル基等のシクロアルキル基、ピニル 基、アリル基等のアルケニル基、フェニル基、トリル基 等のアリール基、ベンジル基、フェニルエチル基、フェ ニルプロピル基等のアラルキル基などの非置換の1価炭 50 た、nは1.98~2.02の正数である。このオルガ

* に応じて、これら電磁波吸収層及び/又は電磁波反射層 中に、更に熱伝導性充填剤を含有させたものである。

【0019】図1、2は、本発明の電磁波吸収体の一例 を図示したもので、図1の電磁波吸収体1は、電磁波反 射層2の一面に電磁波吸収層3を積層したもの、図2の 電磁波吸収体1は、電磁波反射層2の両面にそれぞれ電 磁波吸収層3.3を積層したものである。

【0020】本発明の電磁波吸収体においては、導電性 充填剤、電磁波吸収性充填剤及び熱伝導性充填剤の分散 媒体としてシリコーン樹脂を使用することにより、加工 性、柔軟性、耐候性、耐熱性に優れた電磁波吸収体とす ることが可能となる。特に、シリコーン樹脂が他のプラ スチックやゴムに比較して、耐候性、耐熱性において良 好な特性を持つことから、耐候性、耐熱性に優れた電磁 波吸収体とすることが可能となる。耐候性が優れること から、屋外に設置する場合でも、別途に表面保護層を設 ける必要はなくなる。また、本発明の電磁波吸収体にお いては、電磁波反射層と電磁波吸収層の両者にシリコー ン樹脂を使用することにより、両層間の強固な接着が可 能となる。

【0021】本発明の電磁波吸収体の電磁波反射層と電 磁波吸収層中のシリコーン樹脂分としては、未加硫のバ テ状シリコーン組成物やシリコーンゲル、付加反応型シ リコーンゴム又は過酸化物架橋タイプのシリコーンゴム 等のシリコーンゴムを使用することができるが、特にこ れらに限定されるものではない。

【0022】熱伝導性能が必要な場合には、本発明の電 磁波吸収体と他の電子機器要素或いは放熱器との密着性 を向上させて、接触熱抵抗を小さくする上で、硬化後の ゴム硬度は低いほうが好ましく、低硬度タイプのシリコ ーンゴム、シリコーンゲルや未加硫のパテ状シリコーン 組成物を使用することが好ましい。硬化後のゴム硬度 は、アスカーCで80以下、特に50以下であることが 好ましい。

【0023】上記未加硫のパテ状シリコーン組成物、硬 化前のシリコーンゴム組成物やシリコーンゲル組成物の ベースポリマーとしては、公知のオルガノポリシロキサ ンを用いることができ、このオルガノボリシロキサンと しては下記平均組成式(1)で示されるものを用いると とができる。

(1)

化水素基、更にはこれらの基の炭素原子に結合した水素 原子の一部又は全部をハロゲン原子、シアノ基等で置換 したクロロメチル基、ブロモエチル基、シアノエチル基 等のハロゲン置換アルキル基、シアノ置換アルキル基等 の置換の1価炭化水素基から選択することができる。中 でもメチル基、フェニル基、ビニル基、トリフルオロブ ロビル基が好ましく、更にはメチル基が50モル%以 上、特には80モル%以上であることが好ましい。ま

ノポリシロキサンとしては、1分子中にアルケニル基を 2個以上有するものが好ましく、特にR1の0.001 ~5 モル%がアルケニル基であることが好ましい。 【0025】上記式(1)のオルガノポリシロキサンと しては、その分子構造は特に限定されるものではない が、その分子鎖末端がトリオルガノシリル基等で封鎖さ れたものが好ましく、特にジメチルビニルシリル基等の ジオルガノビニルシリル基で封鎖されたものが好まし い。また、基本的には直鎖状であることが好ましいが、 部分的に分岐構造、環状構造などを有していてもよく、 分子構造の異なる1種又は2種以上の混合物であっても よい。

【0026】上記オルガノポリシロキサンは、平均重合* R'a H, S i O(4-a-b)/2

(式中、R'は炭素数1~10の非置換又は置換の1価 炭化水素基である。また、aは0≤a≤3、特に0.7 ≦a≦2. 1、bは0<b≦3、特に0. 001≦b≦ 1で、かつa+bは0<a+b≤3、特に0.8≤a+ b≤3.0を満足する数である。)で示される常温で液 体であるものが好ましい。

【0029】 ここで、R'は炭素数1~10、特に1~ 8の非置換又は置換の1価炭化水素基であり、上記R¹ で示した基と同様の基、好ましくは脂肪族不飽和結合を 含まないものを挙げることができ、特にアルキル基、ア リール基、アラルキル基、置換アルキル基、例えばメチ ル基、エチル基、プロピル基、フェニル基、3,3,3 ートリフルオロプロピル基などが好ましいものとして挙 げられる。分子構造としては直鎖状、環状、分岐状、三 次元網状のいずれの状態であってもよく、またケイ素原 子に結合する水素原子は、分子鎖末端に存在しても側鎖 30 に存在しても、この両方に存在してもよい。分子量に特 に限定はないが、25℃での粘度が1~1,000c s、特に3~500csの範囲であることが好ましい。 【0030】上記オルガノハイドロジェンポリシロキサ ンとして具体的には、1、1、3、3-テトラメチルジ シロキサン、メチルハイドロジェン環状ポリシロキサ ン、メチルハイドロジェンシロキサン・ジメチルシロキ サン環状共重合体、両末端トリメチルシロキシ基封鎖メ チルハイドロジェンポリシロキサン、両末端トリメチル ェンシロキサン共重合体、両末端ジメチルハイドロジェ ンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメ チルハイドロジェンシロキシ基封鎖ジメチルシロキサン ・メチルハイドロジェンシロキサン共重合体、両末端ト リメチルシロキシ基封鎖メチルハイドロジェンシロキサ ン・ジフェニルシロキサン共重合体、両末端トリメチル シロキシ基封鎖メチルハイドロジェンシロキサン・ジフ ェニルシロキサン・ジメチルシロキサン共重合体、(C H,), HS i O,,,単位とS i O,,,単位とからなる共重 合体、(CH,),HSiO,/,単位と(CH,),SiO

*度が100~100,000、特に100~2,000 であることが好ましく、また、25℃における粘度が1 00~100, 000, 000cs、特に100~10 0.000csであることが好ましい。

【0027】上記シリコーンゴム組成物を付加反応硬化 型として調製する場合は、上記オルガノボリシロキサン としてビニル基等のアルケニル基を1分子中に2個以上 有するものを使用すると共に、硬化剤としてオルガノハ イドロジェンポリシロキサンと付加反応触媒を使用す 10 る。

【0028】オルガノハイドロジェンポリシロキサンと しては、下記平均組成式(2)

(2)

1/2単位とSiO1/2単位とからなる共重合体、(C H,), HSiO1/2単位とSiO4/2単位と(C,H,), Si〇1/2単位とからなる共重合体などが挙げられる。 【0031】このオルガノハイドロジェンポリシロキサ ンの配合量は、オルガノハイドロジェンポリシロキサン 20 のケイ素原子結合水素原子(即ち、SiH基)の数と、 ベースポリマー中のケイ素原子結合アルケニル基の数と の比率が 0.1:1~3:1となるような量が好まし く、より好ましくは0.2:1~2:1となるような重 である。この比率が小さい場合、硬化させるとシリコー ンゲルとなり、比較的大きい場合、硬化させるとシリコ ーンゴムとなる。

【0032】付加反応触媒としては白金族金属系触媒が 用いられ、白金族金属を触媒金属として含有する単体、 化合物、及びそれらの錯体などを用いることができる。 具体的には、白金黒、塩化第二白金、塩化白金酸、塩化 白金酸と1価アルコールとの反応物、塩化白金酸とオレ フィン類との錯体、白金ピスアセトアセテートなどの白 金系触媒、テトラキス(トリフェニルホスフィン)パラ ジウム、ジクロロビス(トリフェニルホスフィン)パラ ジウム等のパラジウム系触媒、クロロトリス(トリフェ ニルホスフィン)ロジウム、テトラキス(トリフェニル ホスフィン) ロジウム等のロジウム系触媒などが挙げら れる。

【0033】付加反応触媒の配合量は触媒量とすること シロキシ基封鎖ジメチルシロキサン・メチルハイドロジ 40 ができ、通常、上記アルケニル基含有オルガノポリシロ キサンに対して、好ましくは白金族金属として0.1~ 1,000ppm、より好ましくは1~200ppmで ある。0.1ppm未満であると組成物の硬化が進行し ない場合が多く、1,000ppmを超えるとコスト高 になることがある。

> 【0034】一方、シリコーンゴム組成物を有機過酸化 物硬化する場合には、硬化剤として有機過酸化物を用い る。なお、有機過酸化物硬化は、ベースポリマーのオル ガノポリシロキサンの重合度が3.000以上のガム状 50 の場合に有用である。有機過酸化物としては、従来公知

のものを使用することができ、例えばベンゾイルパーオ キサイド、2、4-ジクロロベンゾイルパーオキサイ ド、p-メチルベンゾイルパーオキサイド、o-メチル ベンゾイルパーオキサイド、pーメチルベンゾイルパー オキサイド、2、4ージクミルパーオキサイド、2、5 -ジメチルービス (2, 5 - t - ブチルパーオキシ) へ キサン、ジーt-ブチルパーオキサイド、t-ブチルバ ーベンゾエート、1, 1-ビス(t-ブチルパーオキ シ) 3, 3, 5-トリメチルシクロヘキサン、1,6-ビス (t-ブチルパーオキシカルボキシ) ヘキサン等が 10 るものではない。 挙げられる。有機過酸化物の配合量は、上記ベースポリ マーのオルガノポリシロキサン100重量部に対して 0.01~10重量部とすることが好ましい。

7

【0035】シリコーン樹脂中には電磁波反射性充填 剤、電磁波吸収性充填剤、熱伝導性充填剤のシリコーン 樹脂への濡れ性を改善し、これら充填剤の高充填化、得 られた電磁波吸収体の高強度化を目的として、これら充 填剤の表面処理剤を添加することが好ましい。この表面 処理剤については、任意の1種又は2種以上のものを選 ぶことができる。

【0036】上記シリコーン樹脂には、更に上記成分に 加えて、公知の成分を配合することができる。

【0037】本発明の電磁波吸収体の電磁波反射層と電 磁波吸収層の積層方法は、電磁波反射層の硬化物に電磁 波吸収層の未硬化物を積層した後、電磁波吸収層を硬化 する方法、電磁波吸収層の硬化物に電磁波反射層の未硬 化物を積層した後、電磁波反射層を硬化する方法、所定 の厚さの電磁波吸収層の未硬化物と電磁波反射層の未硬 化物を積層した後、両層を同時に硬化する方法などがあ るが、これらに限定されるものではない。なお、未加硫 30 のパテ状シリコーン組成物を用いる場合は、硬化の必要 はない。

【0038】また、本発明の電磁波吸収体は、電磁波反 射層と電磁波吸収層の両層がシリコーン樹脂であること から、そのまま積層することで両層間の強固な接着が得 られるが、必要に応じて、両層の向かい合う片面のみ又 は両面を、オルガノハイドロジェンポリシロキサンや、 シランカップリング剤やシランカップリング剤の縮合物 などからなるプライマーで処理してもよい。

電磁波吸収性充填剤は、吸収すべき電磁波の周波数帯域 に応じて、カーボンや黒鉛などの粉末状や繊維状の誘電 性損失材料や、軟磁性フェライト、硬磁性フェライト、 軟磁性金属などの粉末からなる磁性損失材料から任意に 選択して使用することができる。この場合、電磁波吸収 性充填剤としては、鉄元素を15体積%以上含む軟磁性 合金、或いはフェライトが好ましい。

【0040】軟磁性フェライトとしては、MnFe 2O₄, CoFe₂O₄, NiFe₂O₄, CuFe₂O₄, Z nFe₂O₄、MgFe₂O₄、Fe₃O₄、Cu-Zn-フ 50 剤の含有量は、電磁波吸収体の電磁波反射層の全量に対

ェライト、Ni-Zn-フェライト、Mn-Zn-フェ ライトなどのスピネル型フェライトや、Ba,Me,Fe $_{12}O_{22}$ (Me=Co. Ni, Zn. Mn. Mg. C u)、Ba,Co,Fe,O,などのフェロクスプレーナ ー型 (Y型、Z型) 六方晶フェライト等が例示される が、これらに限定されるものではない。

8

【0041】硬磁性フェライトとしては、BaFeュュ〇 19、SrFe12O19などのマグネプランバイト(M型) 六方晶フェライト等が例示されるが、これらに限定され

【0042】軟磁性金属としては、Fe-Cr系、Fe -Si系、Fe-Ni系、Fe-Al系、Fe-Co 系、Fe-Al-Si系、Fe-Cr-Si系、Fe-Si-Ni系等が例示されるが、これらに限定されるも のではない。

【0043】とれらの電磁波吸収性充填剤は1種単独で 用いてもよいし、2種以上を組み合わせてもよい。粉末 の形状は扁平状、粒子状のどちらかを単独で用いてもよ いし、両者を併用してもよい。

【0044】電磁波吸収性充填剤の平均粒子径は0.1 μm以上100μm以下であることが好ましい。特には 1μm以上50μm以下のものを用いるのが好ましい。 粒径がO.1μm未満の場合には、粒子の比表面積が大 きくなりすぎて髙充填化が困難となる場合がある。粒径 が100μmを超える場合には、電磁波吸収体の表面に 微小な凹凸が現れ、熱伝導性能が必要な場合、接触熱抵 抗が大きくなってしまうおそれがある。

【0045】電磁波吸収性充填剤の含有量は、電磁波吸 収体の電磁波吸収層の全量に対して5~80 v o 1%、 特には20~70 v o 1%であることが好ましい。5 v o 1%未満では十分な電磁波吸収性能が得られないこと があり、80vo1%を超えた場合には電磁波吸収層が 脆くなってしまうおそれがある。

【0046】本発明の電磁波吸収体の電磁波反射層中の 導電性充填剤としては、金属系、金属複合系、カーボン 系などの導電性フィラーが挙げられる。金属系フィラー としては、アルミニウム、亜鉛、鉄、銅、ニッケル、 銀、金、パラジウム、ステンレスなどの粉末、フレー ク、繊維などが例示されるが、これらに限定されるもの 【0039】本発明の電磁波吸収体の電磁波吸収層中の 40 ではない。金属複合系フィラーとしては、金被覆シリ カ、銀被覆シリカ、アルミニウム被覆ガラスピーズ、銀 被覆ガラスビーズ、ニッケル被覆ガラス繊維、ニッケル 被覆炭素繊維などが例示されるが、これらに限定される ものではない。カーボン系フィラーとしては、アセチレ ンブラック、ケッチェンブラックなどのカーボンブラッ クやPAN系炭素繊維、ピッチ系炭素繊維などの炭素繊 維が例示されるが、これらに限定されるものではない。 【0047】とれらの導電性充填剤は1種単独で用いて もよいし、2種以上を組み合わせてもよい。導電性充填

して5~80vol%、特には20~70vol%であることが好ましい。5vol%未満では十分な電磁波反射性能が得られないことがあり、80vol%を超えた場合には電磁波反射層が脆くなってしまうおそれがある。

【0048】本発明の電磁波吸収体は、熱伝導性能が必要な部位に使用される場合、高い熱伝導性能を得るため、電磁波吸収層及び/又は電磁波反射層中に、更に熱伝導性充填剤を含むことが望ましい。

【0049】熱伝導性充填剤の材質としては、銅やアル 10 ミニウム等の金属、アルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化ホウ素等の金属窒化物、或いは炭化ケイ素などを用いることができるが、特にこれらに限定されるものではない。

【0050】熱伝導性充填剤の平均粒子径は0.1~1 00μmであることが好ましい。特には1~50μmで あることが好ましい。粒径が0.1μm未満の場合に は、粒子の比表面積が大きくなりすぎて高充填化が困難 となる。粒径が100μmを超える場合には、電磁波吸 20 収性シリコーンゴム組成物の表面に微小な凹凸が現れ、 熱的な接触抵抗が大きくなってしまう。

【0051】本発明に係わる熱伝導性充填剤は、電磁波吸収性充填剤又は電磁波反射性充填剤との最密充填化を図り、熱伝導率の向上を目的として使用するものであり、その含有量は10~85 v o 1%とすることが好ましく、更に熱伝導性充填剤と電磁波吸収性充填剤又は電磁波反射性充填剤の合計の含有量が15~90 v o 1%、特に30~80 v o 1%とすることが好ましい。熱伝導性充填剤と電磁波吸収性充填剤又は電磁波反射性充填剤の合計の含有量が15 v o 1%未満では十分な熱伝導率が得られない場合がある。熱伝導性充填剤と電磁波吸収性充填剤又は電磁波反射性充填剤の合計の含有量が90 v o 1%を超える場合にはシリコーンゴム組成物が、非常に脆いものとなってしまうおそれがある。

【0052】本発明の電磁波吸収体の電磁波吸収層の体積固有抵抗率は、1×10°Ωm以上であることが好ましい。体積固有抵抗率が1×10°Ωmより小さいと、電子機器内部の素子に直接電磁波吸収体を接触して使用する場合などに、電磁波吸収体を通して短絡が起こり、素子の損傷を引き起こすおそれがある。

【0053】なお、電磁波反射層、電磁波吸収層の厚さは、適応する周波数や使用材料等により適宜選定されるが、電磁波反射層は10~3, $000~\mu$ m、特に30~1, $000~\mu$ mとするととが好ましく、電磁波吸収層は $30~\mu$ m \sim 100mm、特に $50~\mu$ m \sim 10mmとするとが好ましい。

【0054】本発明の電磁波吸収体を電磁波の反射、散 ルコキシ基を含有するオルガノポリシロキサンを導電性 乱が大きい構造物の表面に装着することで、生活空間に 充填剤と熱伝導性充填剤の表面処理剤として、導電性充 充満した不要電磁波を抑制し、テレビゴースト、レーダ 50 填剤と熱伝導性充填剤の合計量100重量部に対して1

ーゴーストなどの問題を解決することができる。また、本発明の電磁波吸収体を電子機器内部に設置することにより、電子機器内部の電磁波ノイズを抑制できると共に、外部への電磁波漏洩量も抑制できる。更に、熱伝導性能を付与した本発明の電磁波吸収性シリコーンゴム組成物のシートを電子機器内部の電子機器要素と放熱要素の間に設置することにより、電磁波ノイズを抑制すると共に、電子機器要素から発生した熱の機器外部への放熱が可能となる。

[0055]

【発明の効果】本発明の電磁波吸収体は、導電性充填剤をシリコーン樹脂中に分散させてなる電磁波反射層と、電磁波吸収性充填剤をシリコーン樹脂中に分散させてなる電磁波吸収層を、一体的に成形したものである。従って、高い電磁波吸収性能、高い電磁波シールド性能を持つと共に、シリコーン樹脂自体の性質を反映して、加工性、柔軟性、耐候性、耐熱性に優れたものとなる。更に、電磁波吸収層と電磁波反射層の両層にシリコーン樹脂を使用しているため、電磁波吸収層と電磁波反射層の強固な接着が可能である。必要に応じて、熱伝導性充填剤を付加することにより、高い熱伝導性能を兼ね備えることもできる。

【0056】このため、本発明の電磁波吸収体を屋外の電磁波反射・散乱の大きい構造物に設置したときには、表面保護層を設ける必要がなく、長期間にわたって、電磁波吸収性能を維持することができ、レーダーゴースト、テレビゴースト等の問題を解決できる。

【0057】また、本発明の電磁波吸収体を電子機器内部に設置することにより、長期間安定して、電磁波ノイズの抑制が可能になる。更に熱伝導性能を付加すれば、CPU、MPU、LSIなどからの発熱を外部に放散することも可能となり、電子器の誤動作を防止することができる。

[0058]

【実施例】以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限される ものではない。

[0059] [実施例1~5] 本発明の導電性充填剤と 熱伝導性充填剤をシリコーン樹脂中に分散させてなる電 40 磁波反射層一層に、電磁波吸収性充填剤と熱伝導性充填 剤をシリコーン樹脂中に分散させてなる電磁波吸収層一 層を積層した二層構造の電磁波吸収体を以下のように作 製した。

【0060】液状付加反応タイプとするため、室温での 粘度が30Pa・sであり、ジメチルビニルシロキシ基 で両末端を封止したビニル基含有ジメチルポリシロキサ ン100重量部をベースオイルとし、ケイ素原子結合ア ルコキシ基を含有するオルガノポリシロキサンを導電性 充填剤と熱伝導性充填剤の表面処理剤として、導電性充 値剤と熱伝導性充填剤の合計量100重量部に対して1

重量部添加し、更に導電性充填剤と熱伝導性充填剤を表 1 に示す割合となるように加えて、室温にて撹拌混合 後、更に撹拌しながら120°C、1時間の熱処理を行っ て、電磁波反射層のベースシリコーン組成物を作製し た。

11

【0061】次に、1分子中にケイ素原子に結合した水 素原子を2個以上含有したオルガノハイドロジェンポリ シロキサン2重量部、白金族金属系触媒を2%アルコー ル溶液として0.3重量部、アセチレンアルコール系反 20°C, 10分間加熱硬化させ、所定の厚さの電磁波反 射層となるシートを得た。

【0062】導電性充填剤を電磁波吸収性充填剤に代え たとと、熱伝導性充填剤は必要な場合のみ添加したとと 以外は、上記と同様にして、電磁波吸収層のベースシリ コーン組成物を作製し、更に、オルガノハイドロジェン ポリシロキサン3重量部、白金族金属系触媒を2%アル コール溶液として0.3重量部、アセチレンアルコール 系反応制御剤0.5重量部を添加混合して、電磁波吸収 層となる未硬化状態のシリコーン組成物を作製した。

*ドロジェンポリシロキサンを塗布した後、上記電磁波吸 収層となる未硬化状態のシリコーン組成物を重ねて硬化 し、電磁波吸収層と電磁波反射層からなる二層構造一体 型の熱伝導性を兼ね備えた図1に示すような電磁波吸収 体を得た。このときの、電磁波吸収層及び電磁波反射層 の組成、厚さを表1に示した。

12

【0064】「実施例6~10」電磁波吸収層を電磁波 反射層の両面に設けるとと以外は、実施例1~5と同様 にして、電磁波反射層の両面に電磁波吸収層が積層され 応制御剤 0.5 重量部を添加混合し、プレス成形にて l 10 た図 2 に示すような三層構造一体型の熱伝導性を兼ね備 えた電磁波吸収体を得た。このときの、電磁波吸収層及 び電磁波反射層の組成、厚さを表1に示した。

> 【0065】[比較例1]電磁波反射層として24メッ シュのステンレス網を用い、この両面に、熱可塑性ポリ ウレタンゴム中に電磁波吸収性充填剤を充填してなる電 磁波吸収層をコーティング成形して、三層構造の電磁波 吸収体を作製した。このときの、電磁波吸収層及び電磁 波反射層の組成、厚さを表1に示した。

[0066]

20 【表1】

【0063】上記電磁波反射層の片面に オルガノハイ米

				口磁波	吸収層]			口证波	反射層				各層の厚み
	THE	波吸	对主充填	列	۶	:左導1	王克填到			祖臣	主充填削			外行為	耳性充填	Fg .	
四南攻	組成	形状	大きさ (μω)	含有率 (wolk)	粗成	形状	大きさ (ルル)	含有平(601%)	組成	形状	大きさ (an)	含有平(volk)	粗成	形状	大きさ (山山)	含有率(wolk)	吸収層/反射層 又は 吸収層/反射層 /吸収層
美庭例	环状式	扁平	20	30	7))라	球	10	40	ニッパル 被復 炭素 機能	桂维	150	35			なし		1. 0/0. 3
完設配 外 2	沙从系	球	20	50	75≥±	玤	10	30	銅	球	20	50			なし		1. 0/0. 3
美施的	Fe-Si 折	周平	20	30	空化的乘	婚片	15	20	金破覆	球	10	40	th 난	珠	1	30	1. 0/0. 3
实际例 4	ተጋቃ'スト	粒	10	50	アルミナ	珠	10	25	金被理	珠	10	40	77k 25	珠	1	30	1. 0/0. 3
美元的 3	Mn-2n- 7x5-ft	1 0	10	40	71/25	珠	10	20	炭素 株雑	器框	500	30			なし・		1. 0/0. 3
実施例 6	涉从系	寫平	20	30	7125	珠	10 .	40	二分 被理 炭素 模能	梯推	150	35			なし		1, 0/0, 3/1, 0
実庭例 7	ないな来	球	20	50	71.25	珠	10	30	鋼	球	20	50			なし		1.0/0.3/1.0
天元년) 8	Fe-Si र्तेर	萬平	20	30	金化粉素	操片	15	20	金被覆	హ	10	40	Th it	缺	1	30	1, 0/0, 3/1, 0
三流列 9	ピタンスト	粒	10	50	かき	玤	10	25	金岐度	玤	10	40	7h 25	玤	1	30	1. 0/0. 3/1. 0
東延州 10	Mm-Zm- 7x54h	粒	10	40	アレシナ	珠	10	20	炭素 核粧	建维	500	30			なし		1. 0/0. 3/1. 0
比较例	ピタケスト	扁平	20	30		T.	し					ステンし	ス網				1. 0/0. 1/1. 0

ートの電磁波透過減衰効果、電磁波吸収特性として放射 ノイズ減衰量、熱伝導率、耐熱性、柔軟性を評価し、結 果を表2に示した。

【0068】電磁波透過減衰効果の測定は、図3に示す ような測定系にて行った。波源及び検出用素子としてゆ 1.5mmのマイクロ波ループアンテナ11を用い、ネ ットワークアナライザー12にて測定した。シート(電 磁波吸収体) 1の大きさは100mm□のものを用い た。周波数1GHzでの透過減衰量を代表値として示し た。

【0067】実施例1~10及び比較例1で得られたシ 40 【0069】ノイズ減衰量を評価する方法を図4に示 す。まず、電波暗室21内において、本発明の50mm □に切断した電磁波吸収体を、動作周波数1GHzのC PUとアルミニウム製ヒートシンクの間に挟み込んだバ ーソナルコンピュータ22を動作させ、そのパーソナル コンピュータ22より3m離れた位置の受信アンテナ2 3を通して電磁波ノイズ発生量を測定した。即ち、**これ** はFCC準拠の3m法に合致するものである。この測定 結果と本発明の電磁波吸収体を設置しない場合のノイズ 発生量との差をノイズ減衰量とした。周波数1GHzで 50 のノイズ減衰量を代表値として示した。なお、図4にお いて、24はディスプレイ、25はキーボード、26は シールドルーム、27はEMIレシーバである。耐熱性 の評価は、本発明の電磁波吸収体シートを、150℃の オーブン中で、圧力 0. 1 MP a で圧縮して 2 4 時間放 置した後のシート厚みの変化で評価した。柔軟性は、ゆ 10mmの棒に、幅50mmのシートを巻き付けた後の*

13

* 外観で評価した。ゴム硬度は、電磁波吸収層、電磁波反 射層に用いた材料で厚さ6mmのシートをそれぞれ成形 し、その6mm厚のシートを2枚重ねて12mmとし、 アスカーC硬度を測定した。

[0070]

【表2】

O. 2.	熱伝導率	透過減衰量	ノイス 減衰量	耐熟性		硬さ(アスカーC)		
評価結果	(W/mK)	(dB)	(dB)	厚み変化 (%)	柔軟性	電磁波 吸収層	電磁波 反射層	
実施例 1	3. 1	43	13. 1	-9	0	40	50	
実施例 2	10.6	37	9. 8	-8	0	60	60	
実施例 3	5. 3	38	12. 3	-6	0	30	45	
実施例 4	4. 7	35	7. 3	-7	0	40	45	
実施例 5	2. 1	22	5. 5	-11	0	25	50	
実施例 6	3. 3	45	12.9	-9	0	50	50	
実施例 7	10. 1	39	10. 1	-9	0	65	60	
実施例 8	5. 1	39	13. 8	-8	0	40	45	
実施例 9	4. 9	35	8. 5	-10	0	40	45	
実施例 10	1. 9	25	4. 3	-15	0	20	50	
比較例 1	0. 6	41	13. 2	-66	×	_	_	

【0071】[実施例11,12]熱伝導性充填剤を加 えないこと以外は、実施例1~5と同様にして、電磁波 吸収体を得た。このときの、電磁波吸収層及び電磁波反 射層の組成、厚さを表3に示した。

【0072】 [比較例2] 電磁波反射層としてポリエス テル繊維布にニッケル及び銅を無電解メッキしたものを※

※用い、この片面に、塩素化ポリエチレンゴム中に電磁波 吸収性充填剤を充填してなる電磁波吸収層を積層成形し 吸収層と電磁波反射層からなる二層構造一体型の電磁波 30 て、二層構造の電磁波吸収体を作製した。このときの、 電磁波吸収層及び電磁波反射層の組成、厚さを表3に示 した。

[0073]

【表3】

		包数退收权器								检验波反射 層							
層構成	₹	医波吸	权性无项	워	1	熱伝導性光導剤				主元項用		熱伝導性荒填削				各層の厚み (**)	
78 19 IX	組成	形状	大きさ (# s)	合有平 (vols)	組成	形状	大きさ (μω)	含有平 (vels)	314174	形状	大きさ (μa)	含有平 (vols)	組成	形状	大きさ (μ _s)	含有平 (vol%)	吸収層/反射層
実施別 11	₩n−2n ^ フェライト	稏	10	40		, 12	ل		炭及 数性	量粒	500	30			なし		2.0/0.5
支並例 12	#n=2n= 7x5(}	粒	10	60	なし		17以 被使 炭素 繊維	和堆	150	35	なし			2. 5/0. B			
比较到 2	¥n−Zn− フェライト	权	10	60		ts	υ				4 '71711	S在班布 N	ii-Cu ∄	電解外	, †		2.5/0.1

【0074】実施例11,12、比較例2で得られたシ ートの電磁波吸収特性として反射減衰量を測定した。反 射減衰量のピーク周波数と、その周波数での減衰量を代 表値として示した。また、耐候性の一つの指標として、 耐オゾン性を評価した。評価方法は、40°C, 100p

pmのオゾン雰囲気中に100時間暴露したシートの柔 軟性で評価した。柔軟性の評価は、実施例1~10と同 様な方法にて行った。結果を表4に示した。

[0075]

【表4】

ŧ	5	
	•	

	ノイス・		
評価結果	減衰量 (dB)	ピーク周波数 (GHz)	が少暴露試験後の柔軟性
実施例 11	23	8.7	0
実施例 12	28	5. 3	0
比較例	26	5. 5	×

【0076】実施例1~10(及び比較例1)は電子機 器内部などの近傍電磁界への応用を考えたものであり、 実施例11,12(及び比較例2)はビルによるテレビ 10 【図3】電磁波透過減衰効果の測定方法の説明図であ ゴースト対策、橋梁による船舶レーダーゴースト対策な どの遠方電磁界(平面波)への応用を考えたものである が、実施例の電磁波吸収体はいずれも良好な結果を与え た。

【図面の簡単な説明】

【図1】本発明の電磁波吸収体の一例を示す断面図であ る。

*【図2】本発明の電磁波吸収体の他の例を示す断面図で ある。

16

る。

【図4】ノイズ減衰量の評価方法の説明図である。 【符号の説明】

- 1 電磁波吸収体
- 2 電磁波反射層
- 3 電磁波吸収層

フロントページの続き

Fターム(参考) 4J002 CP031 CP041 CP121 CP141 DE116 FD116 5E321 AA41 BB25 BB32 BB44 GG05 GG11 GH03