Réponse

session 2020

Exercice 1: 5 points

- **1. Réponse b)** G(2;-1)
- 2. Réponse a) 24 000 DJF
- 3. Réponse c) une solution
- 4. Réponse c) 0,825

$$p(B) = 0.3 \times 0.6 + 0.7 \times 0.75 = 0.705$$

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

= 0.3 + 0.705 - 0.3 \times 0.6 = 0.825

5. Réponse a) 0,26

$$p_{\rm B}(A) = \frac{p(A \cap B)}{p(B)} = \frac{0.3 \times 0.6}{0.705} \approx 0.26$$

Exercice 2: 6 points

- 1. Le nombre d'adhérent en 2019 est : $u_1 = 0.9 \times 150 + 40 = 175$ Le nombre d'adhérent en 2020 est $u_2 = 0.9 \times 175 + 40 = 197, 5 \approx 198$
- 2. Cet algorithme affiche 5. 2018+5=2023 Le nombre d'adhérents dépassera 250 en 2023.

3. a)
$$v_{n+1} = u_{n+1} - 400 = 0,9u_n + 40 - 400 = 0,9(u_n - 400) = 0,9v_n$$

Alors (v_n) est une suite géométrique de raison q = 0.9 et de premier terme $v_0 = 150 - 400 = -250$

b) Pour tout entier naturel n; $v_n = -250 \times 0.9^n$

c)
$$u_n = 400 + v_n = 400 - 250 \times 0.9^n$$

4. Comme on a 0 < q = 0, 9 < 1 **donc** $\lim_{n \to +\infty} 0, 9^n = 0$.

D'où
$$\lim_{n \to +\infty} 400 - 250 \times 0, 9^n = 400$$
. **Soit** $\lim_{n \to +\infty} u_n = 400$

La suite (u_n) converge vers 400.

Exercice 3:6 points

Partie A

1.
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} 2 + e^x (1 - x) = -\infty$$

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} 2 + e^x - xe^x = 2$$

2.
$$g'(x) = e^x(1-x) + e^x(-1) = -xe^x$$

x	$-\infty$	0		α	$+\infty$
g'(x)	+	0	+		
g(x)	2	×3~		$f(\alpha)$	$-\infty$

3. a) g(1) = 2 et $g(2) = 2 - e^2 \approx -5$, 4. D'après le tableau de variations, l'équation g(x) = 0 admet une unique solution dans l'intervalle [1; 2].

b) $\alpha \approx 1,46$

4.

x	$-\infty$	α	$+\infty$
g(x)	+	0	_

Partie B

Soit *h* la fonction définie sur R par $h(x) = -x + \frac{1}{2}e^x(x-2)$.

1.
$$\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} -x + \frac{1}{2} e^x (x - 2) = +\infty$$

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} -x + \frac{1}{2}e^{x}(x-2) = +\infty$$

2. a)

$$h'(x) = -1 + \frac{1}{2} (e^{x} (x - 2) + e^{x})$$
$$= -\frac{1}{2} (2 - xe^{x} + e^{x}) = -\frac{1}{2} g(x)$$

b) h' est du signes de $-\frac{1}{2}g(x)$

x	$-\infty$	α	$+\infty$
h'(x)	_	0	+

c) Le tableau de variation de la fonction h.

x	$-\infty$	α	$+\infty$
h'(x)	_	0	+
h(x)	+∞	$h(\alpha)$	+∞

Exercice 4 (3 points)

1. a)
$$t = \frac{0.078}{12} = 0.0065$$
. **Soit t = 0.65%.**

b) $1800000 \times 0.0065 = 11700$.

2. Il y a 24 mois dans 2 années. Le montant d'une mensualité est $m = \frac{C \times t}{1 - (1 + t)^{-n}} = \frac{1800000 \times 0,0065}{1 - (1 + 0,0065)^{-24}} \approx 81245.$

3. $81245 \times 12 = 1949880$.

La somme totale remboursée est 1 949 880 DJF.

Donc le coût du crédit est de :

1 949 880 – 1 800 000 = 149 880 DJF.

4. voir ci-dessous.

	Capital restant dû En DJF	Intérêt En DJF	Amortissement En DJF	Mensualités En DJF
1 ^{er} mois	1 800 000	11 700	69 545	81 245
2 ^e mois	1 730 455	11 248	69 997	81 245
3 ^e mois	1 660 458	10 793	70 452	81 245