

TDS - FIAP

INTELIGÊNCIA ARTIFICIAL E CHATBOT

Profa . Miguel Bozer da Silva profmiguel.silva@fiap.com.br

ÁRVORE DE DECISÃO

Prof^a . Miguel Bozer da Silva profmiguel.silva@fiap.com.br

 Árvores de decisão é um tipo de classificador que as decisões são baseadas nas condições dos atributos

	crust		filling		(crust size
Example	size	shape	size	Class	big small
<i>e</i> 1	big	circle	small	pos	
<i>e</i> 2	small	circle	small	pos	filling (shape)
<i>e</i> 3	big	square	small	neg	size small circle sq
<i>e</i> 4	big	triangle	small	neg	big small small sq
<i>e</i> 5	big	square	big	pos	filling
<i>e</i> 6	small	square	small	neg	T shape size
<i>e</i> 7	small	square	big	pos	circle/ tri big/ smal
<i>e</i> 8	big	circle	big	pos	sq —

 Os nós da árvore representam condições e as folhas são as classificações

	crust		filling	
Example	size	shape	size	Class
<i>e</i> 1	big	circle	small	pos
<i>e</i> 2	small	circle	small	pos
<i>e</i> 3	big	square	small	neg
e4	big	triangle	small	neg
<i>e</i> 5	big	square	big	pos
<i>e</i> 6	small	square	small	neg
e7	small	square	big	pos
<i>e</i> 8	big	circle	big	pos

 Dessa forma a classificação é realizada de acordo com certas condições que os nossos dados possuem

- A pergunta que podemos ter: Como decidir em quais perguntas e escolher a sequencia correta de perguntas?
 - Para isso usamos a entropia que nos ajuda a checar quais atributos melhor dividem os nossos dados:

Entropia:

$$H(p) = -\sum_{i=1}^{c} p_i \log_2 p_i$$

Entropia nesse caso nos fornece a ideia da quantidade de impurezas que temos após a saída do nosso nó

Quanto menor a entropia, melhor a divisão dos dados. Logo melhor para a classificação

- Entretanto, ainda não temos como decidir qual o melhor atributo que podemos escolher em cada nó de nossa árvore.
 - Para medir isso o algoritmo de árvores de decisão usa o ganho de informação.
 - O Ganho significa o quanto removemos de impurezas ao escolher um dado atributo para dividir meus dados
 - Ganho(S,A): Ganho de um atributo A com relação a todos os dados S

Exemplo:

Examples	Weather	Parents visiting?	Money	Decision (category)
1	Sunny	Yes	Rich	Cinema
2	Sunny	No	Rich	Tennis
3	Windy	Yes	Rich	Cinema
4	Rainy	Yes	Poor	Cinema
5	Rainy	No	Rich	Stay in
6	Rainy	Yes	Poor	Cinema
7	Windy	No	Poor	Cinema
8	Windy	No	Rich	Shopping
9	Windy	Yes	Rich	Cinema
10	Sunny	No	Rich	Tennis

Cinema: 6x Tennis: 2x Stay in: 1x

Shopping:1x

Entropia:

$$H(S) = -0.6 \times log_2 0.6 - 0.2 \times log_2 0.2 - 2 \times 0.1 \times log_2 0.1 = 1.571$$

 Determinando o melhor ganho - G(S,parents); G(S,weather); G(S,money):

Examples	Weather	Parents visiting?	Money	Decision (category)
1	Sunny	Yes	Rich	Cinema
2	Sunny	No	Rich	Tennis
3	Windy	Yes	Rich	Cinema
4	Rainy	Yes	Poor	Cinema
5	Rainy	No	Rich	Stay in
6	Rainy	Yes	Poor	Cinema
7	Windy	No	Poor	Cinema
8	Windy	No	Rich	Shopping
9	Windy	Yes	Rich	Cinema
10	Sunny	No	Rich	Tennis

Yes:

Cinema: 5x

Tennis: 0

Stay in: 0

Shopping:0

No:

Cinema: 1x

Tennis: 2x

Stay in: 1x

Shopping:1x

Gain(S, parents) =
$$1.571 - (|S_{yes}|/10) \times \text{Entropy}(S_{yes}) - (|S_{no}|/10)$$

 $\times \text{Entropy}(S_{no}) = 1.571 - (0.5) \times 0 - (0.5) \times (1.922) = 0.61$

Determinando o melhor ganho - G(S,parents); G(S,weather);
 G(S,money):

Examples	Weather	Parents visiting?	Money	Decision (category)	Sunny:
1	Sunny	Yes	Rich	Cinema	Cinema: 1x
2	Sunny	No	Rich	Tennis	Tennis: 2x
3	Windy	Yes	Rich	Cinema	Stay in: 0
4	Rainy	Yes	Poor	Cinema	Shopping:0
5	Rainy	No	Rich	Stay in	,, 0
6	Rainy	Yes	Poor	Cinema	Windy:
7	Windy	No	Poor	Cinema	Cinema: 3x
8	Windy	No	Rich	Shopping	Tennis: 0
9	Windy	Yes	Rich	Cinema	Stay in: 0
10	Sunny	No	Rich	Tennis	Shopping:1x

Gain(S, weather) =
$$1.571 - (|S_{\text{sun}}|/10) \times \text{Entropy}(S_{\text{sun}}) - (|S_{\text{wind}}|/10)$$

 $\times \text{Entropy}(S_{\text{wind}}) - (|S_{\text{rain}}|/10) \times \text{Entropy}(S_{\text{rain}})$
 = $1.571 - (0.3) \times (0.918) - (0.4) \times (0.8113) - (0.3)$
 $\times (0.918) = 0.70$

Rainy:

Cinema: 2x

Tennis: 0

Stay in: 1x

Shopping: 0

Determinando o melhor ganho - G(S,parents); G(S,weather);
 G(S,money):

Examples	Weather	Parents visiting?	Money	Decision (category)
1	Sunny	Yes	Rich	Cinema
2	Sunny	No	Rich	Tennis
3	Windy	Yes	Rich	Cinema
4	Rainy	Yes	Poor	Cinema
5	Rainy	No	Rich	Stay in
6	Rainy	Yes	Poor	Cinema
7	Windy	No	Poor	Cinema
8	Windy	No	Rich	Shopping
9	Windy	Yes	Rich	Cinema
10	Sunny	No	Rich	Tennis

Rich: Cinema: 3x

Tennis: 2x Stay in: 1x Shopping:1x

Poor:

Cinema: 3x Tennis: 0

Stay in: 0

Shopping:1x

Gain(S, money) =
$$1.571 - (|S_{rich}|/10) \times Entropy(S_{rich})$$

 $- (|S_{poor}|/10) \times Entropy(S_{poor})$
= $1.571 - (0.7) \times (1.842) - (0.3) \times 0 = 0.2816$

• Entre os três primeiros, Weather tem o maior ganho. Logo ele deve ser o primeiro ramo.

RANDOM FOREST

Random Forest

- Criamos diferentes árvores de decisão para o mesmo conjunto de treinamento;
- Cada árvore é treinada com um subconjunto dos dados de treinamento;
- A saída é determinada a partir da votação de todas as árvores. A mais votada será escolhida

Random Forest

A saída é determinada a partir da votação de todas as árvores. A mais votada será escolhida

GRADIENT BOOSTING CLASSIFIER

Gradient Boosting Classifier (GBC)

Os classificadores que usam o método de Boosting possuem a ideia de treinar os seus classificadores sequencialmente tentando corrigir os seus predecessores.

O GBC adiciona novos classificadores ao seu modelo tentando reduzir o erro residual dos modelos predecessores

https://medium.com/swlh/gradient-boosting-trees-for-classification-a-beginners-guide-596b594a14ea

Referências Bibliográficas

- DOUGHERTY, Geoff. Pattern Recognition and Classification: an introduction. New York: Springer International Publishing, 2013.
- IGUAL, Laura; SEGUÍ, Santi. Introduction to Data Science: a python approach to concepts, techniques and applications. Ebook: Springer, 2017. (Undergraduate Topics in Computer Science).
- GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn and TensorFlow. Sebastopol: O'reilly Media, 2017

Copyright © 2021 Prof. Miguel Bozer da Silva

Todos direitos reservados. Reprodução ou divulgação total ou parcial deste documento é expressamente proíbido sem o consentimento formal, por escrito, do Professor (autor).