一、 $(10 \, f)$ 设 x_1, x_2 是线性空间 V 的一组基,线性变换 T 在这组基下的矩阵为 $A = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$ 。 y_1, y_2 是另一组基,且 $(y_1, y_2) = (x_1, x_2)$ $\begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$ 。 (1) 求 T 在 y_1, y_2 下的矩阵 B ; (2) 计算 A^{100} 。

二、
$$(10 \, \text{分})$$
 计算 $\ln A$, 其中 $A = \begin{bmatrix} e & 1 & & \\ & e & 1 & \\ & & e & 1 \\ & & & e \end{bmatrix}$ 。

四、(10 分) 设
$$A = \begin{bmatrix} -1 & -6 & 0 & 0 \\ -6 & 3 & 0 & 0 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 4 & -3 \end{bmatrix}$$
, 计算 $\|A\|_1$, $\|A\|_2$, $\|A\|_\infty$, $\|A\|_F$ 。

五、 $(10\, eta)$ 设矩阵 $A\in R^{n\times n}$ 满足 $A^3=A$,证明存在非奇异矩阵 X 使得 $X^{-1}AX=\begin{bmatrix}I_r&&&\\&-I_s&&\\&&0_t\end{bmatrix}$ 。

六、 $(10 \, \text{分})$ 设矩阵 $A \in \mathbb{R}^{n \times n}$ 是对称正定矩阵,证明存在唯一的对称正定矩阵 B 满足 $B^4 = A$ 。

七、(15分)(1) 证明矩阵 A 为收敛矩阵(即 $\lim_{k\to\infty}A^k=0$)的充分必要条件是 $\rho(A)<1$ 。

(2) 设三个实矩阵 B,C,D 满足 $B=C-D^{\mathrm{T}}CD$, 其中 B 和 C 都对称正定,证明 D 是 收敛矩阵。

八、 $(20 \, \text{分})$ 设矩阵 $A \in \mathbb{R}^{m \times n}$ 列满秩, 即 $\operatorname{rank}(A) = n < m$.

- (1) 写出 A 的奇异值分解的形式 (不需证明);
- (2) 利用(1)中的奇异值分解给出 A 的 Moore-Penrose 广义逆 A^+ 的表达式;
- (3) 证明最小二乘问题 $\min_{x} ||Ax b||_2$ 的解为 $x = A^+b$ 。