Compact Sets

Definition: Compact

Let E be a normed space and let $K \subseteq E$. To say that K is *compact* means every sequence (\vec{x}_n) in K has a convergent subsequence $\vec{x}_{n_k} \to \vec{x}$ such that $\vec{x} \in K$.

Examples

Let $E = \mathbb{R}^N$ or \mathbb{C}^N :

- 1). Closed balls: $\overline{B}(x,r) = \{y \in E \mid \|\vec{x} \vec{y}\| \le r\}$
- 2). Closed cubes: $[a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n]$

Definition: Bounded

Let E be a normed space and let $S \subseteq E$. To say that S is bounded means $\exists r > 0$ such that $S \subseteq B(\vec{0}, r)$.

Theorem

Let E be a normed space and let $K \subseteq E$:

K compact $\implies K$ is closed and bounded.

Proof

Assume K is compact.

Assume (\vec{x}_n) is a sequence in K such that $\vec{x}_n \to \vec{x} \in E$.

WTS: $\vec{x} \in K$.

But K is compact, so (\vec{x}_n) contains a subsequence (\vec{x}_{n_k}) such that $\vec{x}_{n_k} \to \vec{y} \in K$.

But convergent subsequences of a convergent sequence must converge to the same value.

And so $\vec{x} = \vec{y} \in K$.

Therefore, K is closed.

Now, ABC: *K* is not bounded.

Thus, $\forall r > 0, K \not\subseteq B(0, r)$.

And so, $\forall r > 0, \exists \vec{x} \in K, ||\vec{x}|| > r$.

Construct the sequence (\vec{x}_n) in K such that $||\vec{x}_n|| > n$.

For every subsequence (\vec{x}_{n_k}) , it is the case that $||\vec{x}_{n_k}|| > n_k \to \infty$.

Thus, (\vec{x}_n) does not have a convergent subsequence in K.

CONTRADICTION! (of the compactness of K)

Therefore, K is bounded.

Note that by Heine-Borel, the converse is true as well for finite-dimensional spaces; however, not necessarity for infinite-dimensional spaces.

Example

 $E = \mathcal{C}[0,1]$ equipped with the sup norm.

$$K = \overline{B}(0,1) = \{ f \in \mathcal{C}(0,1) \mid ||f|| \le 1 \} \subset E$$

$$f_n(t) = t^n \in \mathcal{C}[0, 1] \text{ since } ||f_n|| = \max_{t \in [0, 1]} |f_n(t)| = 1 \le K.$$

$$f_n \to f = \begin{cases} 0, & 0 \le t < 1 \\ 1, & t = 1 \end{cases}$$

But f is discontinuous and thus $f \notin C[0,1]$.

Therefore, there exists a sequence in K with a non-converging subsequence, and thus K is not compact.

Lemma: Riesz

Let E be a normed space and let X be a proper, closed subspace of E:

$$\forall \, \epsilon \in (0,1), \exists \, \vec{x}_\epsilon \in E, \|\vec{x}_\epsilon\| = 1 \text{ and } \forall \, \vec{x} \in X, \|\vec{x}_\epsilon - \vec{x}\| \geq \epsilon$$

Proof

Since X is a proper subset of $E, E \setminus X \neq \emptyset$. So, $\exists \vec{y} \in E \setminus X$.

Let
$$d = d(\vec{x}, \vec{y}) = \inf_{\vec{x} \in X} \|\vec{y} - \vec{x}\|.$$

Since X is closed and $\vec{y} \notin X$, $d(\vec{x}, \vec{y}) > 0$.

Assume
$$\epsilon \in (0,1)$$
, as so $d < \frac{d}{\epsilon}$.

$$\exists \vec{x}_0 \in X \text{ such that } d \leq ||\vec{y} - \vec{x}_0|| \leq \frac{d}{\epsilon}.$$

Let
$$\vec{x}_{\epsilon} = \frac{\vec{y} - \vec{x}_0}{\|\vec{y} - \vec{x}_0\|}$$
.

Assume $\vec{x} \in X$:

$$\begin{aligned} \|\vec{x}_{\epsilon} - \vec{x}\| &= \left\| \frac{\vec{y} - \vec{x}_{0}}{\|\vec{y} - \vec{x}_{0}\|} - \vec{x} \right\| \\ &= \frac{1}{\|\vec{y} - \vec{x}_{0}\|} \|\vec{y} - \vec{x}_{0} - \|\vec{y} - \vec{x}_{0}\| \vec{x} \| \\ &= \frac{1}{\|\vec{y} - \vec{x}_{0}\|} \|\vec{y} - (\vec{x}_{0} + \|\vec{y} - \vec{x}_{0}\|) \vec{x} \| \end{aligned}$$

But, by closure, $(\vec{x}_0 + \|\vec{y} - \vec{x}_0\|) \vec{x} = \vec{x}_1 \in X$, and so:

$$\|\vec{x}_{\epsilon} - \vec{x}\| = \frac{1}{\|\vec{y} - \vec{x}_{0}\|} \|\vec{y} - \vec{x}_{1}\| \ge \frac{\epsilon}{d} d = \epsilon$$

Theorem

Let E be a normed space. E is finite-dimensional iff $\overline{B}(0,1)$ is compact.

Proof

 \implies Assume *E* is finite-dimensional.

Since E is finite-dimensional, all norms are equivalent, so AWLOG the Euclidean norm. Thus $\overline{B}(0,1)$ is closed and bounded.

Therefore, by Heine-Borel, $\overline{B}(0,1)$ is compact.

 \iff Assume E is infinite-dimensional.

Construct (x_n) in E by induction using Riesz's Lemma.

Start by selecting any $\vec{x}_1 \in E$ such that $||\vec{x}_1|| = 1$.

Let $X_1 = \operatorname{Span}\{\vec{x}_1\}.$

By Riesz's Lemma, $\exists \vec{x}_2 \in E \setminus X_1$ such that $\|\vec{x}_2\| = 1$ and $\|\vec{x}_2 - \vec{x}_1\| \ge \frac{1}{2}$.

Assume $\vec{x}_1, \ldots, \vec{x}_n$ have been selected in this fashion and let $X_n = \operatorname{Span}^2\{\vec{x}_1, \ldots, \vec{x}_n\}$.

$$\exists \vec{x}_{n+1} \in E \setminus X_n \text{ such that } ||\vec{x}_{n+1}|| = 1 \text{ and } \forall k \leq n, ||\vec{x}_{n+1} - v_k|| \geq \frac{1}{2}.$$

Thus, (x_n) is a sequence in $\overline{B}[0,1]$.

ABC: $\overline{B}[0,1]$ is compact.

Thus, (\vec{x}_n) contains a convergent subsequence (\vec{x}_{n_k}) such that $\vec{x}_{n_k} \to \vec{x} \in \overline{B}[0,1]$.

$$\frac{1}{2} \le \left\| \vec{x}_{n_{k+1}} - \vec{x}_{n_k} \right\| = \left\| \vec{x}_{n_{k+1}} - \vec{x} + \vec{x} - \vec{x}_{n_k} \right\| \le \left\| \vec{x}_{n_{k+1}} - \vec{x} \right\| + \left\| \vec{x}_{n_k} - \vec{x} \right\| \to 0 + 0 = 0$$

CONTRADICTION!

Therefore, $\overline{B}[0,1]$ is not compact.