Computergrafik SS 2014 Oliver Vornberger

Vorlesung vom 20.05.2014

Kapitel 11: Fraktale

Selbstähnlichkeit

Koch'sche Schneeflocke

Fraktale Dimension

Linie hat Dimension 1 N Teilstücke der Länge 1/N

Fläche hat Dimension 2 $\frac{1}{N^{\frac{1}{2}}}$ N Teilfächen mit Kantenlänge $\frac{1}{N^{\frac{1}{2}}}$

Würfel hat Dimension 3 N Teilwürfel mit Kantenlänge

$$\frac{1}{N^{\frac{1}{3}}}$$

Berechnung der Dimension

$$r = \frac{1}{N^{\frac{1}{D}}} \implies r \cdot N^{\frac{1}{D}} = 1$$

$$\Rightarrow N^{\frac{1}{D}} = \frac{1}{r} \implies \frac{1}{D} \cdot \log(N) = \log(\frac{1}{r})$$

$$\Rightarrow D = \frac{\log(N)}{\log(\frac{1}{r})}$$

Jede Kante der Koch'schen Schneeflocke zerfällt in N=4 Kopien, skaliert mit r=1/3.

$$D = \frac{\log(4)}{\log(3)} = 1.2618$$

Lindenmayer-Systeme

```
Alphabet \Sigma = \{r,u,l,d\}
Regeln f = \{ r \rightarrow rurddrur, \}
                     u \rightarrow ulurrulu
                      1 \rightarrow ldluuldl
                     d \rightarrow drdlldrd
                              rurddrurulurrulu
       ru
```

Quadratische Koch-Kurve

Jeder Kantenzug besteht aus 8 Kopien,

skaliert mit Faktor 1/4

Implementationen zu Lindenmayer

~cg/2014/skript/Applets/Fraktale2/App.html

~cg/2014/Flash/recursiontree.html

Komplexe Zahlen

Komplexe Zahl z = a + bi

$$i^2 = -1$$

Realteil a

Imaginärteil b

Betrag von z =
$$\sqrt{a^2 + b^2}$$

Quadrieren einer komplexen Zahl:

$$z^2 = (a + bi) \cdot (a + bi) = a^2 + 2abi + b^2i^2$$

- \Rightarrow Realteil a^2-b^2
- ⇒ Imaginärteil 2ab

Iteration

Sei c komplexe Zahl

Sei $f(z) := z^2 + c$

Betrachte 0, f(0), f²(0), f³(0), ...

-1.5	0.2	-0.5	0.2
0.000000	0.00000	0.000000	0.00000
-1.500000	0.200000	-0.500000	0.200000
0.710000	-0.400000	-0.290000	0.000000
-1.155900	-0.368000	-0.415900	0.200000
-0.299319	1.050742	-0.367027	0.033640
-2.514467	-0.429014	-0.366422	0.175306
4.638493	2.357487	-0.396466	0.071527
14.457877	22.070379	-0.347930	0.143283
-279.571438	638.381719	-0.399474	0.100294

Mandelbrotmenge

Die zu c gehörende Folge kann ...

- zu einem festen Wert konvergieren
- einen (beschränkten) Zyklus durchlaufen
- sich (beschränkt) chaotisch verhalten
- gegen unendlich streben

Die Menge der komplexen Zahlen c, die bei Startwert z=0 zu einer beschränkten Folge führen, heißt **Mandelbrotmenge**.

Visualisierung der Mandelbrotmenge

Implementation

```
public Complex f(Complex z, Complex c){
  double re, im;
  re = z.re*z.re - z.im*z.im + c.re;
  im = 2*z.re*z.im+c.im;
  return new Complex(re,im);
}

int iter = 0;
Complex z = new Complex(0,0);
while (betrag(z) < 2 && iter < 100) {
  z = f(z,c);
  iter++;
}</pre>
```

betrag > 2: divergiert mit Sicherheit iter > 100: bleibt vermutlich beschränkt

Visualisierung

bei 300 Pixeln \Rightarrow Schrittweite = (0.85+2.15)/300 = 0.01

Mandelbrot-Programmcode

```
// fasse jedes Pixel als Punkt auf, beginne bei 0,
// iteriere z*z + c, schwaerze bei Beschraenktheit
Point p:
double schritt = (ende.re-start.re)/WIDTH;
for (p.x=0, c.re=start.re; p.x < WIDTH;</pre>
     p.x++, c.re+=schritt)
for (p.y=0; c.im=start.im; p.y < HEIGHT;
     p.y++, c.im+=schritt){
  Complex z = \text{new Complex}(0,0);
  int iter=0:
  while((betrag(z)<2.0) && (iter<100)){
    z = f(z,c);
    iter++;
if (betrag(z) < 2.0) setPixel(p);
```

S/W-Mandelbrotmenge

bei mehr Iterationen wird schwarze Fläche weiß

Farbige Mandelbrotmenge

Es seien k Farben verfügbar: col[0], col[1], ..., col[k-1]

bei mehr Iterationen wird schwarze Fläche bunt

Java-Applet zur Mandelbrotmenge

~~cg/2014/skript/Applets/Fraktale2/App.html

XaoS von Jan Hubicka

http://matek.hu/xaos/doku.php

 \rightarrow IFS

Invarianz bzgl. Funktion

Sei
$$f(z) = z^2$$

Wähle Startwert z_0
Betrachte $f(z_0)$, $f(z_0)^2$, $f(z_0)^3$, ...

 $|z_0| > 1$ Sequenz divergiert

 $|z_0|$ < 1 Sequenz konvergiert gegen 0

 $|z_0| = 1$ Sequenz bleibt auf Einheitskreis

Menge der Kreispunkte ist invariant bzgl. f

Julia-Menge

Sei c eine komplexe Zahl

Sei $f(z) = z^2 + c$

Die bzgl. f invarianten Punkte bilden die Julia-Menge für c

Julia-Menge für c=0

Julia-Menge, die 1.

```
// betrachte jedes Pixel als Startwert
// iteriere z*z+c und schwaerze bei Beschraenktheit
Point p:
double schritt = (ende.re-start.re)/WIDTH;
for (p.x=0; p.x < WIDTH; p.x++)
for (p.y=0; p.y < HEIGHT; p.y++)
  Complex z = new Complex(p, start, schritt);
  int iter=0;
  while((betrag(z)<2.0) && (iter<100)){
    z = f(z,c);
    iter++;
if (betrag(z) < 2.0) setPixel(p);
```

Der Rand des berechneten Gebiets ist die Julia-Menge

Beispiel für Julia-Menge

Rückwärts statt vorwärts

$$r := r^2$$

$$r := \sqrt{r}$$

0.5000	
0.2500	
0.0625	
0.0039	
0.0001	
•••	

0.8000	1.2000
0.8944	1.0954
0.9457	1.0466
0.9724	1.0230
0.9861	1.0114
•••	•••

Julia-Menge, die 2.

$$f(z)=z^2+c\Rightarrow f^{-1}(z)=\pm\sqrt{z-c}$$
 Sei $z=a+b\cdot i$
$$\sqrt{z}=\begin{cases} \sqrt{\frac{|z|+a}{2}}+i\cdot\sqrt{\frac{|z|-a}{2}}\ falls\ \mathbf{b}\ \geq 0 \end{cases}$$

$$\sqrt{z}=\begin{cases} \sqrt{\frac{|z|+a}{2}}-i\cdot\sqrt{\frac{|z|-a}{2}}\ falls\ \mathbf{b}\ \leq 0 \end{cases}$$

Julia-Menge, die 2.

```
Complex backward_random{Komplex z, Komplex c){
  // berechne r = Wurzel aus z-c
  // wuerfel Vorzeichen fuer r
  return r
Complex z = \text{new Complex}(1.0, 0.0);
for (k=0; k<50; k++) z = backward random(z,c);
for (k=0; k<10000; k++)
  z = backward random(z,c);
  p.x = (int)(z.re-z.start.re)/schritt;
  p.y = (int)(z.im-z.start.im)/schritt;
  setPixel(p);
```

Java-Applet zur Julia-Menge

~cg/2014/skript/Applets/Fraktale2/App.html

Iterierte Funktionensysteme

Beschreibe den Bildinhalt durch System von affinen Transformationen

Pro Transformation:

 2×2 Matrix A

2 × 1 Vektor b

Anwendungswahrscheinlichkeit w

Bilde Ax+b mit Wahrscheinlichkeit w

	Matritzen für	Farn	
	A	b	w
r_1	$\begin{pmatrix} 0.85 & 0.04 \\ -0.04 & 0.85 \end{pmatrix}$	$\left(\begin{array}{c}0.0\\1.6\end{array}\right)$	85 %
r_2	$\left(\begin{array}{cc} 0.20 & -0.26 \\ 0.23 & 0.22 \end{array}\right)$	$\left(\begin{array}{c}0.0\\1.6\end{array}\right)$	7 %
r_3	$\left(egin{array}{ccc} -0.15 & 0.28 \ 0.26 & 0.24 \end{array} ight)$	$\left(\begin{array}{c}0.0\\0.44\end{array}\right)$	7 %
r_4	$\left(egin{array}{ccc} 0.00 & 0.00 \\ 0.00 & 0.16 \end{array} \right)$	$\left(\begin{array}{c} 0.0 \\ 0.0 \end{array} \right)$	1 %

Konvergenzfolge für Farn

Farn-Algorithmus

```
Wähle Startpixel p in Zeichenfläche
while(noch_nicht_zufrieden) {
   wähle Transformation f gemäß w
   p= f(p);
   setPixel(p);
}
```

Sierpinsky-Dreieck

Algorithmus für Sierpinsky

```
D:= Rechteck mit zufälligem Inhalt while (noch_nicht_zufrieden) do {
   D':= mit Faktor ¼ verkleinerte Version von D kopiere D' in den 2., 3., 4. Quadranden von D }
```


Java-Applet zu Iterierten Funktionensystemen

~cg/2014/skript/Applets/IFS/fraktal.html

Fraktale Kompression

fixiere 8 Transformationen

pro Ziel-Block suche bestes Urbild

Liste der Abbildungen

Iterated Systems

(Lizenz über LizardTech jetzt bei onOne Software)

jan.tif

jan.jpg

Ausschnitt aus Ausschnitt aus jan.fif