Mathematical Logic HW5

Abraham Murciano

December 21, 2019

1. (b) Prove $((P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge \neg C) \rightarrow \bot) \leftrightarrow ((P_1 \wedge P_2 \wedge \ldots \wedge P_n) \rightarrow C)$

1.
$$(P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge \neg C) \rightarrow \bot$$
 assumption
2.
$$\neg (P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge \neg C) \vee \bot$$
 1, material implication
3.
$$\neg \bot$$
 axiom
4.
$$\neg (P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge \neg C)$$
 2, 3, disjunctive syllogism
5.
$$\neg (P_1 \wedge P_2 \wedge \ldots \wedge P_n) \vee C$$
 4, negation of conjunction
6.
$$(P_1 \wedge P_2 \wedge \ldots \wedge P_n) \rightarrow C$$
 5, material implication
7.
$$((P_1 \wedge P_2 \wedge \ldots \wedge P_n) \rightarrow C$$
 5, material implication
8.
$$(P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge \neg C) \rightarrow \bot) \rightarrow ((P_1 \wedge P_2 \wedge \ldots \wedge P_n) \rightarrow C)$$
 1-6, deduction theorem
8.
$$(P_1 \wedge P_2 \wedge \ldots \wedge P_n) \rightarrow C$$
 assumption
9.
$$\neg (P_1 \wedge P_2 \wedge \ldots \wedge P_n) \vee C$$
 8, material implication
10.
$$\neg (P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge \neg C)$$
 9, negation of conjunction
11.
$$\neg (P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge \neg C) \vee \bot$$
 10, disjunction introduction
12.
$$(P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge \neg C) \rightarrow \bot$$
 11, material implication
13.
$$((P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge \neg C) \rightarrow \bot$$
 11, material implication
14.
$$((P_1 \wedge P_2 \wedge \ldots \wedge P_n \wedge \neg C) \rightarrow \bot) \leftrightarrow ((P_1 \wedge P_2 \wedge \ldots \wedge P_n) \rightarrow C)$$
 7, 13, biconditional introduction

- 2. (b) Define the following two premises.
 - a = Bacon wrote plays which were attributed to Shakespeare
 - b = Bacon was a great writer

We want to claim the following.

$$a \to b$$

$$b$$

$$\overline{\cdot \cdot \cdot a}$$

By the deduction theorem, however, the claim can be true if and only if $\vdash (a \to b) \to (b \to a)$. However, this is not a tautology, as shown in the truth table below.

1

	a	b	$(a \to b) \to (b \to a)$
	T	T	T
İ	T	F	T
İ	F	T	F
	F	F	T

3. (a) We must prove that the following premises are inconsistent.

- 1. $\neg (A \rightarrow B)$ premise
- 2. $\neg (B \to C)$ premise
- 3. $\neg(\neg A \lor B)$ 1, material implication
- 4. $\neg(\neg B \lor C)$ 2, material implication
- 5. $A \wedge \neg B$ 3, negation of disjunction
- 6. $B \wedge \neg C$ 4, negation of disjunction
- 7. $\neg B$ 5, conjunction elimination
- 8. B 6, conjunction elimination
- 9. \perp 7, 8, contradiction introduction
- (b) We must prove that the following premises are inconsistent.
 - 1. A premise
 - 2. $B \to \neg (C \land A)$ premise
 - 3. $\neg (C \rightarrow \neg B)$ premise
 - 4. $\neg(\neg C \lor \neg B)$ 3, material implication
 - 5. $C \wedge B$ 4, negation of disjunction
 - 6. B 5, conjunction elimination
 - 7. $\neg (C \land A)$ 2, 6, modus ponens
 - 8. $\neg C \lor \neg A$ 7, negation of conjunction
 - 9. C 5, conjunction elimination
 - 10. $\neg A$ 8, 9, disjunctive syllogism
 - 11. \perp 1, 10, contradiction introduction
- (d) We must prove that the following premises are inconsistent.
 - 1. $A \leftrightarrow B$ premise
 - 2. $A \to C$ premise
 - 3. $\neg (B \to C)$ premise
 - 4. $B \to A$ 1, biconditional elimination
 - 5. $B \to C$ 2, 4, hypothetical syllogism
 - 6. \perp 3, 5, contradiction introduction
- 4. Define the following atomic propositions.
 - a = Moses is a hero.
 - b = Moses is happy with what he has.
 - c = Moses shows weakness.
 - d =Moses conquers his desires.

We must show that the following propositions are inconsistent.

- 1. $a \to b$ premise
- 2. $c \rightarrow \neg b$ premise
- 3. $\neg a \rightarrow \neg d$ premise
- 4. $d \wedge c$ premise
- 5. c 4, conjunction elimination
- 6. $\neg b$ 2, 5, modus ponens
- 7. $\neg a$ 1, 6, modus tollens
- 8. $\neg d$ 3, 7, modus ponens
- 9. d 4, conjunction elimination
- 10. \perp 8, 9, contradiction elimination

- 5. (b) $\Gamma \nvdash C$ does not necessarily imply that $\Gamma \vdash \neg C$. We will prove this by a counterexample. Let $\Gamma = \phi$. We know that $\phi \nvdash C$, because C is a proposition, which could be true or false, since we have no premises. However, in this case we also know that $\phi \nvdash \neg C$, for the same reason.
- 6. (b) It is claimed that there exists a set Γ , such that for any proposition C, $\Gamma \vdash C$ and $\Gamma \vdash \neg C$. This claim is true, because for any set of premises which is inconsistent, any conclusion can be derived from that set. For example, the set of premises $\Gamma = \{A, \neg A\}, \Gamma \vdash C$, and $\Gamma \vdash \neg C$.