Метод внутренней точки. Самосогласованные барьеры Методы оптимизации

Александр Безносиков

Московский физико-технический институт

16 ноября 2023

Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$

s.t.
$$g_i(x) \le 0, i = 1, ... m$$
.

• Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $g_i(x) < 0, i = 1, ... m$.

• Задача со штрафом:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \cdot \frac{1}{2} \sum_{j=1}^n (g_j^+)^2(\mathbf{x}) \right],$$

где $y^+ = \max\{y, 0\}$.

• Рассмотрим следующую задачу с ограничениями:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $g_i(x) \le 0, i = 1, \dots m.$

• Задача со штрафом:

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \rho \cdot \frac{1}{2} \sum_{j=1}^n (g_j^+)^2(x) \right],$$

где $y^+ = \max\{y, 0\}.$

• Итоговое решение штрафной задачи может не удовлетворять ограничениям. Вопрос: как ввести штраф так, чтобы оно гарантированно было в пределах множества $G = \{x \in \mathbb{R}^d \mid g_i(x) \leq 0 \text{ для } i = 1, \dots m\}$?

• Топорный вариант:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \mathbb{I}_{G}(\mathbf{x}) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_G(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

Топорный вариант:

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left[f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \mathbb{I}_{G}(\mathbf{x}) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_{G}(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

Формально все хорошо, все эквивалентно исходной задаче, вопрос: какие есть проблемы?

Топорный вариант:

$$\min_{\mathbf{x}\in\mathbb{R}^d}\left[f_{\rho}(\mathbf{x})=f(\mathbf{x})+\mathbb{I}_G(\mathbf{x})\right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_{G}(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

Формально все хорошо, все эквивалентно исходной задаче, вопрос: какие есть проблемы? Задача не стала легче с вычислительной точки зрения, индикатор недифференцируем.

Топорный вариант:

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \mathbb{I}_G(x) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_{G}(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

- Формально все хорошо, все эквивалентно исходной задаче, вопрос: какие есть проблемы? Задача не стала легче с вычислительной точки зрения, индикатор недифференцируем.
- Идея: воспроизвести поведение индикатора более плавно и непрерывно.

• Топорный вариант – выставим вот такой "барьер":

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \frac{1}{\rho} \cdot \mathbb{I}_{G}(x) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_G(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

• Топорный вариант – выставим вот такой "барьер":

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \frac{1}{\rho} \cdot \mathbb{I}_{G}(x) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_G(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

• Формально все хорошо, все эквивалентно исходной задаче, вопрос: какие есть проблемы?

• Топорный вариант – выставим вот такой "барьер":

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \frac{1}{\rho} \cdot \mathbb{I}_{G}(x) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_G(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

• Формально все хорошо, все эквивалентно исходной задаче, вопрос: какие есть проблемы? Задача не стала легче с вычислительной точки зрения, индикатор не непрерывен и не дифференцируем.

Топорный вариант – выставим вот такой "барьер":

$$\min_{x \in \mathbb{R}^d} \left[f_{\rho}(x) = f(x) + \frac{1}{\rho} \cdot \mathbb{I}_{G}(x) \right],$$

где $\mathbb{I}_G(x)$ – индикаторная функция множества G:

$$\mathbb{I}_G(x) = \begin{cases} 0, & x \in G \\ +\infty, & x \notin G \end{cases}$$

- Формально все хорошо, все эквивалентно исходной задаче, вопрос: какие есть проблемы? Задача не стала легче с вычислительной точки зрения, индикатор не непрерывен и не дифференцируем.
- Идея: воспроизвести поведение индикатора более плавно и непрерывно.

• Дополнительно предположим, что: 1) int G — непустое множество, 2) для любой точки $x \in G$ существует последовательность $\{x_i\} \in \operatorname{int} G$ такая, что $x_i \to x$, 3) G — ограниченное множество, 4) для любого $x \in \operatorname{int} G$ и для любого $i = 1, \ldots m$ следует, что $g_i(x) < 0$, 5) f непрерывно дифференцируема на G.

- Дополнительно предположим, что: 1) int G непустое множество, 2) для любой точки $x \in G$ существует последовательность $\{x_i\} \in \text{int } G$ такая, что $x_i \to x$, 3) G ограниченное множество, 4) для любого $x \in \text{int } G$ и для любого $i = 1, \ldots m$ следует, что $g_i(x) < 0$, 5) f непрерывно дифференцируема на G.
- Введем функцию F: 1) непрерывно дифференцируемую на $\inf G$ и 2) для любой последовательности $\{x_i\} \in \inf G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F(x_i) \to +\infty$.

- Дополнительно предположим, что: 1) int G непустое множество, 2) для любой точки $x \in G$ существует последовательность $\{x_i\} \in \text{int} G$ такая, что $x_i \to x$, 3) G ограниченное множество, 4) для любого $x \in \text{int} G$ и для любого $i = 1, \ldots m$ следует, что $g_i(x) < 0$, 5) f непрерывно дифференцируема на G.
- Введем функцию F: 1) непрерывно дифференцируемую на $\inf G$ и 2) для любой последовательности $\{x_i\} \in \inf G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F(x_i) \to +\infty$.
- Примеры:
 - Барьер Кэррола:

$$F(x) = -\sum_{i=1}^{m} \frac{1}{g_i(x)},$$

• Логарифмический барьер:

$$F(x) = -\sum_{i=1}^{m} \ln(-g_i(x)).$$

• Физика более менее уже вырисовывается: F это непрерывный дифференцируемый «индикатор», который при приближении к ∂G улетает на бесконечность. Осталось только разобраться с тем, что честный индикатор на $\inf G$ равен 0. Вопрос: идеи?

- Физика более менее уже вырисовывается: F это непрерывный дифференцируемый «индикатор», который при приближении к ∂G улетает на бесконечность. Осталось только разобраться с тем, что честный индикатор на $\inf G$ равен 0. Вопрос: идеи?
- Введем параметр $\rho > 0$ и рассмотрим и модифицируем значение F следующим образом: $\frac{1}{\rho}F(x)$

- Физика более менее уже вырисовывается: F это непрерывный дифференцируемый «индикатор», который при приближении к ∂G улетает на бесконечность. Осталось только разобраться с тем, что честный индикатор на $\inf G$ равен 0. Вопрос: идеи?
- Введем параметр $\rho>0$ и рассмотрим и модифицируем значение F следующим образом: $\frac{1}{\rho}F(x)$
- При $ho o +\infty$, следует, что $rac{1}{
 ho} F(x) o 0$ на $\mathrm{int} \, G$.

- Физика более менее уже вырисовывается: F это непрерывный дифференцируемый «индикатор», который при приближении к ∂G улетает на бесконечность. Осталось только разобраться с тем, что честный индикатор на $\inf G$ равен 0. Вопрос: идеи?
- Введем параметр ho > 0 и рассмотрим и модифицируем значение F следующим образом: $\frac{1}{
 ho}F(x)$
- При $ho o +\infty$, следует, что $rac{1}{
 ho} F(x) o 0$ на $\mathrm{int} \, G$.
- Итого рассмотрим следующую задачу:

$$\min_{x \in \mathbb{R}^d} \left[F_{\rho}(x) = f(x) + \frac{1}{\rho} F(x) \right].$$

• F_{ρ} – непрерывно дифференцируемая на int G. Следует из того, что F непрерывно дифференцируемая на int G.

- F_{ρ} непрерывно дифференцируемая на int G. Следует из того, что F непрерывно дифференцируемая на int G.
- $\{x_i\} \in \operatorname{int} G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F_{\rho}(x_i) \to +\infty$. Следует из непрерывности f и определения F.

- F_{ρ} непрерывно дифференцируемая на int G. Следует из того, что F непрерывно дифференцируемая на int G.
- $\{x_i\} \in \operatorname{int} G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F_{\rho}(x_i) \to +\infty$. Следует из непрерывности f и определения F.
- Формально задача $\min_{x \in \mathbb{R}^d} F_{\rho}(x)$ это задача с ограничениями. Вопрос: почему?

- F_{ρ} непрерывно дифференцируемая на int G. Следует из того, что F непрерывно дифференцируемая на int G.
- $\{x_i\} \in \operatorname{int} G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F_{\rho}(x_i) \to +\infty$. Следует из непрерывности f и определения F.
- Формально задача $\min_{x \in \mathbb{R}^d} F_{\rho}(x)$ это задача с ограничениями. Вопрос: почему? F_{ρ} определена только на int G.

- F_{ρ} непрерывно дифференцируемая на int G. Следует из того, что F непрерывно дифференцируемая на int G.
- $\{x_i\} \in \text{int} G$ такой, что $x_i \to x \in \partial G$ (граница множества G), выполнено $F_o(x_i) \to +\infty$. Следует из непрерывности f и определения F.
- Формально задача $\min_{x \in \mathbb{R}^d} F_{\rho}(x)$ это задача с ограничениями. **Вопрос:** почему? F_o определена только на int G. Но это не проблема: пусть мы стартуем из $x^0 \in \text{int} G$ и можем гарантировать, что метод минимизации $F_{\rho}(x)$ выдает точки x^k такие, что $F_{\rho}(x^k) \leq F_{\rho}(x^0)$. А мы знаем, что $F_{\rho} \to \infty$ при приближении к ∂G , а значит в какой-то момент, приближаясь к границе, F_{ρ} будет больше $F_{\rho}(x^{0})$. Получаем, что x^{k} остается в int G. Это означает, что задача с ограничениями превращается в безусловную, потому что ограничения «не чувствуются».

Свойства барьерной задачи

Чуть более формально последнее утверждение с предыдущего слайда.

Свойство барьерной задачи

Для любого ho>0 функция $F_{
ho}(x)$ принимает минимум на $\inf G$. А множества вида

$$U = \{x \in \operatorname{int} G \mid F_{\rho}(x) \leq a\}$$

являются компактами для любого а.

• Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. Вопрос: что нужно доказать?

• Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. Вопрос: что нужно доказать? $x \in U$.

• Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. **Bonpoc**: что нужно доказать? $x \in U$. Возможны две опции: $x \in \text{int} G$ или ∂G ? Если $x \in \partial G$, то $F_{\rho}(x_i) \to F_{\rho}(x) = \infty$, что невозможно, так как $F_{\rho}(x_i) \leq a$. Значит $x \in \text{int} G$.

• Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. **Вопрос:** что нужно доказать? $x \in U$. Возможны две опции: $x \in \text{int} G$ или ∂G ? Если $x \in \partial G$, то $F_{\rho}(x_i) \to F_{\rho}(x) = \infty$, что невозможно, так как $F_{\rho}(x_i) \leq a$. Значит $x \in \text{int} G$. Но на int G функция F_{ρ} непрерывна, откуда следует необходимое, нужно только перейти к пределу в $F_{\rho}(x_i) \leq a$.

- Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. Вопрос: что нужно доказать? $x \in U$. Возможны две опции: $x \in \text{int} G$ или ∂G ? Если $x \in \partial G$, то $F_{\rho}(x_i) \to F_{\rho}(x) = \infty$, что невозможно, так как $F_{\rho}(x_i) \leq a$. Значит $x \in \text{int} G$. Но на int G функция F_{ρ} непрерывна, откуда следует необходимое, нужно только перейти к пределу в $F_{\rho}(x_i) \leq a$.
- Ограниченность U следует из ограниченности G.

- Чтобы показать замкнутость U, рассмотрим последовательность $\{x_i\} \in U$, сходящуюся к x. Вопрос: что нужно доказать? $x \in U$. Возможны две опции: $x \in \text{int} G$ или ∂G ? Если $x \in \partial G$, то $F_{\rho}(x_i) \to F_{\rho}(x) = \infty$, что невозможно, так как $F_{\rho}(x_i) \leq a$. Значит $x \in \text{int} G$. Но на int G функция F_{ρ} непрерывна, откуда следует необходимое, нужно только перейти к пределу в $F_{\rho}(x_i) \leq a$.
- Ограниченность U следует из ограниченности G.
- F_{ρ} непрерывна на компакте U, тогда она принимает минимальное значение на нем (теорема Вейерштрасса). Но по определению U, этот минимум на U будет минимумом и на $\inf G$.

Свойства решений барьерной задачи

Свойство решений барьерной задачи

Дополнительно к тому, что уже предположено добавим, что $\overline{\operatorname{int} G}=G$ (замыкание $\operatorname{int} G$). Тогда для любого e>0 существует $\rho(e)>0$ такое, что множество решений барьерной задачи X_{ρ}^* для любых $\rho\geq\rho(e)$ содержится в

$$X_e^* = \{ x \in G \mid \exists x^* \in X^* : \|x - x^*\|_2 \le e \},$$

где X^* — множество решение исходной задачи оптимизации с ограничениями вида неравенств.

Свойства решений барьерной задачи

Свойство решений барьерной задачи

Дополнительно к тому, что уже предположено добавим, что $\overline{\operatorname{int} G}=G$ (замыкание $\operatorname{int} G$). Тогда для любого e>0 существует $\rho(e)>0$ такое, что множество решений барьерной задачи X_{ρ}^* для любых $\rho\geq\rho(e)$ содержится в

$$X_e^* = \{ x \in G \mid \exists x^* \in X^* : \|x - x^*\|_2 \le e \},$$

где X^* – множество решение исходной задачи оптимизации с ограничениями вида неравенств.

- X^* непустое, так как G замкнутое и ограниченное, а f непрерывна на этом компакте.
- То, что X_{ρ}^{*} непустое, доказали в первом свойстве.

• От противного:

• От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\}\to\infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^*\in X^*(\rho_i)$ не лежащие в X_e^* .

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- Отметим, что предел \tilde{x}^* лежит в G. Вопрос: почему?

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- Отметим, что предел \tilde{x}^* лежит в G. Вопрос: почему? $\tilde{x}_i^* \in \operatorname{int} G$, G есть замыкание $\operatorname{int} G$.

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- Отметим, что предел \tilde{x}^* лежит в G. Вопрос: почему? $\tilde{x}_i^* \in \text{int} G$, G есть замыкание int G.
- Также \tilde{x}^* не должен лежать в X^* . Вопрос: почему?

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- Отметим, что предел \tilde{x}^* лежит в G. Вопрос: почему? $\tilde{x}_i^* \in \text{int} G$, G есть замыкание int G.
- Также \tilde{x}^* не должен лежать в X^* . Вопрос: почему? Иначе, начиная с некоторого номера i, \tilde{x}^* начнут попадать в X_e^* .

- От противного: пусть существует некоторое e>0 и последовательность $\{\rho_i\} \to \infty$, что $X^*(\rho_i)$ не содержится в X_e^* , т.е. существуют $x_i^* \in X^*(\rho_i)$ не лежащие в X_e^* .
- Так как G ограничено, то $X^*(\rho_i)$ ограничено. По теореме Больцана-Вейрштрасса из ограниченной последовательности можно выделить сходящуюся подпоследовательность: $\tilde{x}_i^* \to \tilde{x}^*$. Посмотрим, что мы можем сказать про \tilde{x}^* .
- Отметим, что предел \tilde{x}^* лежит в G. Вопрос: почему? $\tilde{x}_i^* \in \text{int} G$, G есть замыкание int G.
- Также \tilde{x}^* не должен лежать в X^* . Вопрос: почему? Иначе, начиная с некоторого номера i, \tilde{x}^* начнут попадать в X_e^* .
- Так как \tilde{x}^* вне X^* , то существует $\delta>0$ такое, что

$$f(\tilde{x}^*) > f(x^*) + \delta,$$

где $x^* \in X^* \subseteq G$.

• С другой стороны: так как G есть замыкание $\mathrm{int}G$, а f непрерывна на G, то можно найти такую точку $\widetilde{x} \in \mathrm{int}G$, что

$$f(\tilde{x}) \leq f(x^*) + \frac{\delta}{2}.$$

• С другой стороны: так как G есть замыкание int G, а f непрерывна на G, то можно найти такую точку $\tilde{x} \in int G$, что

$$f(\tilde{x}) \leq f(x^*) + \frac{\delta}{2}.$$

Тогда

$$f(\tilde{x}_i^*) + \frac{1}{\rho_i} F(\tilde{x}_i^*) = F_{\rho_i}(\tilde{x}_i^*) = \min_{x_i \in \mathsf{int} G} F_{\rho_i}(x_i) \leq F_{\rho_i}(\tilde{x}) = f(\tilde{x}) + \frac{1}{\rho_i} F(\tilde{x})$$

• С другой стороны: так как G есть замыкание $\operatorname{int} G$, а f непрерывна на G, то можно найти такую точку $\tilde{x} \in \operatorname{int} G$, что

$$f(\tilde{x}) \leq f(x^*) + \frac{\delta}{2}.$$

Тогда

$$f(\tilde{x}_i^*) + \frac{1}{\rho_i}F(\tilde{x}_i^*) = F_{\rho_i}(\tilde{x}_i^*) = \min_{x_i \in \text{int} G} F_{\rho_i}(x_i) \leq F_{\rho_i}(\tilde{x}) = f(\tilde{x}) + \frac{1}{\rho_i}F(\tilde{x})$$

• Мы уже показывали, что F_{ρ} принимает свое минимальное значение (а значит ограничено снизу) на $\mathrm{int}G$. Аналогично, можно показать, что $F(x) \geq F^* > -\infty$ на $\mathrm{int}G$. Поэтому

$$f(\tilde{x}_i^*) \leq f(\tilde{x}) + \frac{1}{\rho_i}F(\tilde{x}) - \frac{1}{\rho_i}F^*.$$

Александр Безносиков Лекция 10 16 ноября 2023 12 / 33

• С предыдущего слайда:

$$f(\tilde{x}_i^*) \leq f(\tilde{x}) + \frac{1}{\rho_i} F(\tilde{x}) - \frac{1}{\rho_i} F^*.$$

• С предыдущего слайда:

$$f(\tilde{x}_i^*) \leq f(\tilde{x}) + \frac{1}{\rho_i} F(\tilde{x}) - \frac{1}{\rho_i} F^*.$$

ullet Функция f непрерывна на G. Переходим к пределу в неравенстве:

$$f(\tilde{x}^*) \leq f(\tilde{x}).$$

• С предыдущего слайда:

$$f(\tilde{x}_i^*) \leq f(\tilde{x}) + \frac{1}{\rho_i} F(\tilde{x}) - \frac{1}{\rho_i} F^*.$$

• Функция f непрерывна на G. Переходим к пределу в неравенстве:

$$f(\tilde{x}^*) \leq f(\tilde{x}).$$

Ho

$$f(x^*) + \delta < f(\tilde{x}^*) \le f(\tilde{x}) \le f(x^*) + \frac{\delta}{2}$$
.

Противоречие.

◆ロト ◆個ト ◆園ト ◆園ト ■ めので

Итог по барьерам на данный момент

- По факту условная задача превращена в безусловную.
- Увеличение ρ помогает лучше аппроксимировать поведение честной индикаторной функции, а значит приближает нас к исходной задаче.
- Решение всегда удовлетворяет ограничениям.
- Более того, так как в процессе оптимизации мы не выходим за G, то можно сказать, что мы всегда «внутри», поэтому метод решающий задачу с барьером называется метод внутренней точки.
- В общем случае все. Как и для штрафов выбираем, какое-то ρ пытаемся решить задачу с барьером. Далее можно попробовать увеличить ρ .

Итог по барьерам на данный момент

- По факту условная задача превращена в безусловную.
- Увеличение ρ помогает лучше аппроксимировать поведение честной индикаторной функции, а значит приближает нас к исходной задаче.
- Решение всегда удовлетворяет ограничениям.
- Более того, так как в процессе оптимизации мы не выходим за G, то можно сказать, что мы всегда «внутри», поэтому метод решающий задачу с барьером называется метод внутренней точки.
- В общем случае все. Как и для штрафов выбираем, какое-то ρ пытаемся решить задачу с барьером. Далее можно попробовать увеличить ρ .
- Далее рассмотрим фундаментальные азы теории вокруг барьеров, которая сильно продвинула вперед науку в этой области.

Самосогласованная функция

Самосогласованная функция

Выпуклая трижды непрерывно дифференцируемая на $\inf G$ функция называется самосогласованной, если выполнены следующие условия

- $\left| \frac{d^3}{dt^3} F(x+th) \right| \leq 2 [h^T
 abla^2 F(x)h]^{3/2}$ для любых $x \in \operatorname{int} G$ и $h \in \mathbb{R}^d$;
- Для любой последовательности $\{x_i\} \in \text{int} G$ такой, что $x_i \to x \in \partial G$, выполнено «барьерное» свойство: $F(x_i) \to +\infty$.

Самосогласованная функция: примеры

 Квадратичная функция с симметричной положительно полуопределенной матрицей:

$$f(x) = \frac{1}{2}x^T A x + b^T x + c,$$

является самосогласованной на \mathbb{R}^d .

• Отрицательный логарифм:

$$f(x) = -\ln(x),$$

является самосогласованным на \mathbb{R}_+ .

• Отрицательный логарифм квадратичной функции $g(x) = \frac{1}{2}x^T A x + b^T x + c$:

$$f(x) = -\ln(-g(x))$$

является самосогласованным на $G = \{x \in \mathbb{R}^d \mid g(x) < 0\}$.

Самосогласованная функция: операции сохраняющие

• Сумма двух самосогласованных функций (F_1 на int G_1 и F_2 на int G_2):

$$F(x) = \alpha_1 F_1(x) + \alpha_2 F_2(x),$$

где $\alpha_1, \alpha_2 \ge 1$, также является самосогласованной.

• Аффинное преобразование аргумента сохраняет самосогласованность: если F(x) самосогласована на int G, тогда

$$\tilde{F}(x) = F(Ax + b)$$

самосогласована на $\inf \tilde{G} = \{x \mid Ax + b \in \inf G\}.$

Самосогласованный барьер

Самосогласованный барьер

Функция F является u-самосогласованным барьером (u всегда ≥ 1) на множестве int G, если

- F самосогласована на int G;
- Выполнено условие: $|h^T \nabla F(x)| \leq \sqrt{\nu} \sqrt{h^T \nabla^2 F(x) h}$ для любых $x \in \operatorname{int} G$ и $h \in \mathbb{R}^d$.
- Пример логарифмический барьер от лилейных ограничений:

$$F(x) = -\sum_{i=1} -\ln(b_i - a_i^T x),$$

где $\{b_i - a_i^T x\}$ удовлетворяют условию Слейтера, является m-самосогласованным барьером на

 $G = \{x \in \mathbb{R}^d \mid a_i^\mathsf{T} x \leq b_i, \ i = 1, \dots, m\}$

Задача

• То с чего начинали:

$$\min_{x \in \mathbb{R}^d} f(x),$$
s.t. $g_i(x) \le 0, i = 1, \dots m$.

Только пусть теперь все функции f и g_i выпуклые на G.

Задача

• То с чего начинали:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}),$$

s.t. $g_i(\mathbf{x}) \le 0, i = 1, \dots m.$

Только пусть теперь все функции f и g_i выпуклые на G.

• Переформулируем в форме эпиграфа:

$$\min_{(x,t)\in\mathbb{R}^{d+1}} t,$$
s.t. $g_i(x) \leq 0, \ i=1,\ldots m$
 $f(x)-t \leq 0.$

Задача остается выпуклой (эпиграф выпуклый тогда и только тогда, когда функция выпукла). Добавилась линейность целевой функции.

|Задача

• Поэтому будем рассматривать задачу вида:

$$\begin{aligned} & \min_{x \in \mathbb{R}^d} & c^T x, \\ & \text{s.t.} & g_i(x) \le 0, \ i = 1, \dots m, \end{aligned}$$

с выпуклыми функциями g_i .

Общий случай метода

Сначала посмотрим на общую схему, которая подойдет для любой задачи.

Алгоритм 1 Метод внутренней точки (общий случай)

Вход: стартовая точка $x^0\in \mathrm{int} G$, стартовое значение параметра $ho_{-1}>0$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Увеличить $\rho_k > \rho_{k-1}$
- 3: С помощью некоторого метода решить численно задачу безусловной оптимизации с целевой функцией F_{ρ_k} и стартовой точкой x_k . Гарантировать, что выход метода x_{k+1} будет близок к реальному решению $x^*(\rho_k)$.
- 4: end for

Выход: x^K

Линейная целевая функция и самосогласованный барьер

- Теперь перейдем к частному случаю линейной целевой функции и u-самосогласованных барьеров.
- Чем меньше ν тем лучше барьер и как увидим далее быстрее сходится метод.

Линейная целевая функция и самосогласованный барьер

- Теперь перейдем к частному случаю линейной целевой функции и u-самосогласованных барьеров.
- Чем меньше ν тем лучше барьер и как увидим далее быстрее сходится метод.

Линейная целевая функция и самосогласованный барьер

Введем дополнительные объекты:

- $\Phi_{\rho}(x) = \rho F_{\rho}(x) = \rho c^{\mathsf{T}} x + F(x)$
- $\lambda(\Phi_{\rho}, x) = \sqrt{[\nabla \Phi_{\rho}(x)]^T [\nabla^2 \Phi_{\rho}(x)]^{-1} \nabla \Phi_{\rho}(x)}$

Алгоритм 2 Метод внутренней точки (частный случай)

Вход: параметры $e_1,e_2\in(0;1)$, стартовое значение параметра $\rho_{-1}>0$, стартовая точка $x^0\in \mathrm{int} G$ такая, что $\lambda(\Phi_{\rho_{-1}},x^0)\leq e_1$, количество итераций K

- 1: **for** k = 0, 1, ..., K 1 **do**
- 2: Увеличить $ho_k = \left(1 + rac{\mathsf{e_2}}{\sqrt{
 u}}
 ight)
 ho_{k-1}$
- 3: Сделать шаг демпфированного метода Ньютона:

$$x^{k+1} = x^k - \frac{1}{1 + \lambda(\Phi_{\rho_k}, x^k)} [\nabla^2 \Phi_{\rho_k}(x^k)]^{-1} \nabla \Phi_{\rho_k}(x^k)$$

(возможно, понадобится больше одного шага метода Ньютона, но при правильном соотношении e_1 и e_2 достаточно ровно одного)

4: end for

Rhyon: xK

Александр Безносиков Лекция 10 16 ноября 2023 23 / 33

Введем дополнительные объекты:

• С помощью хитрого критерия (ньютоновского декремента): $\lambda(\Phi_{\rho},x)$ мы измеряем «близость» x к $x^*(\rho)$.

Введем дополнительные объекты:

- С помощью хитрого критерия (ньютоновского декремента): $\lambda(\Phi_{\rho},x)$ мы измеряем «близость» x к $x^*(\rho)$.
- для положительно определенной матрицы $\nabla^2 \Phi_{\rho}(x)$ декремент представляет собой некоторую модификацию критерия вида $\|\nabla \Phi_{\rho}(x)\|_2$, но по норме, индуцированной матрицей.

Введем дополнительные объекты:

- С помощью хитрого критерия (ньютоновского декремента): $\lambda(\Phi_{\rho}, x)$ мы измеряем «близость» x к $x^*(\rho)$.
- для положительно определенной матрицы $\nabla^2 \Phi_{\rho}(x)$ декремент представляет собой некоторую модификацию критерия вида $\|\nabla \Phi_{\rho}(x)\|_2$, но по норме, индуцированной матрицей.
- Мы задаем x^0 так, что он сразу близок к $x^*(\rho)$. Это можно сделать, например, запустив демпфированный метод Ньютона на большое число итераций.

Введем дополнительные объекты:

- С помощью хитрого критерия (ньютоновского декремента): $\lambda(\Phi_{\rho},x)$ мы измеряем «близость» x к $x^*(\rho)$.
- для положительно определенной матрицы $\nabla^2 \Phi_{\rho}(x)$ декремент представляет собой некоторую модификацию критерия вида $\|\nabla \Phi_{\rho}(x)\|_2$, но по норме, индуцированной матрицей.
- Мы задаем x^0 так, что он сразу близок к $x^*(\rho)$. Это можно сделать, например, запустив демпфированный метод Ньютона на большое число итераций.
- Далее мы увеличиваем ρ . И оказывается, что теперь достаточно только одного шага Ньютона, чтобы снова гарантированно быть близко к $x^*(\rho)$, а точнее $\lambda(\Phi_{\rho_k},x^{k+1}) \leq e_1$. А дальше зацикливаем. Осталось только показать, что и правда $\lambda(\Phi_{\rho_k},x^{k+1}) < e_1$.

4□▶ 4₫▶ 4½▶ 4½▶ ½ 900

Еще одно обозначение: $H(x) = \nabla^2 \Phi_{\rho}(x) = \nabla^2 F(x)$, и уже знакомая нам норма, индуцированная положительно определенной матрицей: $\|x\|_{\Delta}^2 = x^T A x$.

Сразу из определения самосогласованного барьера следует, что H(x) положительно полуопределена, но можно показать и, что положительно определена.

Еще одно обозначение: $H(x) = \nabla^2 \Phi_{\rho}(x) = \nabla^2 F(x)$, и уже знакомая нам норма, индуцированная положительно определенной матрицей: $\|x\|_{\Delta}^2 = x^T A x$.

Сразу из определения самосогласованного барьера следует, что H(x) положительно полуопределена, но можно показать и, что положительно определена.

• В новых обозначениях:

$$\lambda(\Phi_{\rho}, x) = \|\nabla \Phi_{\rho}(x)\|_{H^{-1}(x)} = \|\rho c + \nabla F(x)\|_{H^{-1}(x)}$$

Еще одно обозначение: $H(x) = \nabla^2 \Phi_{\rho}(x) = \nabla^2 F(x)$, и уже знакомая нам норма, индуцированная положительно определенной матрицей: $\|x\|_A^2 = x^T A x$.

Сразу из определения самосогласованного барьера следует, что H(x) положительно полуопределена, но можно показать и, что положительно определена.

• В новых обозначениях:

$$\lambda(\Phi_{\rho}, x) = \|\nabla \Phi_{\rho}(x)\|_{H^{-1}(x)} = \|\rho c + \nabla F(x)\|_{H^{-1}(x)}$$

• Попробуем оценить $\lambda(\Phi_{\rho_k}, x^k)$ через $\lambda(\Phi_{\rho_{k-1}}, x^k)$, т.е. насколько ухудшает ситуацию увеличение ρ (здесь используем просто неравенство треугольника):

$$\lambda(\Phi_{\rho_k}, x^k) = \|\rho_k c + \nabla F(x^k)\|_{H^{-1}(x^k)}$$

$$\leq \|\rho_{k-1} c + \nabla F(x^k)\|_{H^{-1}(x^k)} + \|(\rho_k - \rho_{k-1})c\|_{H^{-1}(x^k)}$$

• Продолжаем с предыдущего слайда (просто подставляем ρ_k через ρ_{k-1}):

$$\lambda(\Phi_{\rho_{k}}, x^{k}) \leq \|\rho_{k-1}c + \nabla F(x^{k})\|_{H^{-1}(x^{k})} + \|(\rho_{k} - \rho_{k-1})c\|_{H^{-1}(x^{k})}$$

$$= \lambda(\Phi_{\rho_{k-1}}, x^{k}) + \frac{\rho_{k} - \rho_{k-1}}{\rho_{k-1}} \|\rho_{k-1}c\|_{H^{-1}(x^{k})}$$

$$\leq e_{1} + \frac{e_{2}}{\sqrt{\nu}} \|\rho_{k-1}c\|_{H^{-1}(x^{k})}$$

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$.

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$:

$$\lambda(\Phi_{\rho_{k-1}}, x^k) = \|\rho_{k-1}c + \nabla F(x^k)\|_{H^{-1}(x^k)} \le e_1$$

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$:

$$\lambda(\Phi_{\rho_{k-1}}, x^k) = \|\rho_{k-1}c + \nabla F(x^k)\|_{H^{-1}(x^k)} \le e_1$$

• Неравенство треугольника:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \|\nabla F(x^k)\|_{H^{-1}(x^k)}$$

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$:

$$\lambda(\Phi_{\rho_{k-1}}, x^k) = \|\hat{\rho}_{k-1}c + \nabla F(x^k)\|_{H^{-1}(x^k)} \le e_1$$

• Неравенство треугольника:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \|\nabla F(x^k)\|_{H^{-1}(x^k)}$$

• Из определения самосогласованного барьера для любого h: $|h^T \nabla F(x)| \le \sqrt{\nu} \sqrt{h^T H(x) h}$.

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$:

$$\lambda(\Phi_{\rho_{k-1}}, x^k) = \|\rho_{k-1}c + \nabla F(x^k)\|_{H^{-1}(x^k)} \le e_1$$

• Неравенство треугольника:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \|\nabla F(x^k)\|_{H^{-1}(x^k)}$$

• Из определения самосогласованного барьера для любого h: $|h^T \nabla F(x)| \leq \sqrt{\nu} \sqrt{h^T H(x) h}$. В том числе для $h = H^{-1}(x) \nabla F(x)$: $[\nabla F(x)]^T H^{-T}(x) \nabla F(x) \leq \sqrt{\nu} \sqrt{[\nabla F(x)]^T H^{-T}(x) \nabla F(x)}$

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$:

$$\lambda(\Phi_{\rho_{k-1}}, x^k) = \|\rho_{k-1}c + \nabla F(x^k)\|_{H^{-1}(x^k)} \le e_1$$

• Неравенство треугольника:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \|\nabla F(x^k)\|_{H^{-1}(x^k)}$$

• Из определения самосогласованного барьера для любого h:

$$|h^T \nabla F(x)| \leq \sqrt{\nu} \sqrt{h^T H(x) h}$$
. В том числе для $h = H^{-1}(x) \nabla F(x)$: $[\nabla F(x)]^T H^{-T}(x) \nabla F(x) \leq \sqrt{\nu} \sqrt{[\nabla F(x)]^T H^{-T}(x) \nabla F(x)}$

В силу симметричности H(x) получаем

$$\|\nabla F(x)\|_{H^{-1}(x)} \le \sqrt{\nu}$$

• Нужно оценить $\|\rho_{k-1}c\|_{H^{-1}(x^k)}$:

$$\lambda(\Phi_{\rho_{k-1}}, x^k) = \|\rho_{k-1}c + \nabla F(x^k)\|_{H^{-1}(x^k)} \le e_1$$

• Неравенство треугольника:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \|\nabla F(x^k)\|_{H^{-1}(x^k)}$$

• Из определения самосогласованного барьера для любого h:

$$|h^T \nabla F(x)| \leq \sqrt{\nu} \sqrt{h^T H(x) h}$$
. В том числе для $h = H^{-1}(x) \nabla F(x)$: $[\nabla F(x)]^T H^{-T}(x) \nabla F(x) \leq \sqrt{\nu} \sqrt{[\nabla F(x)]^T H^{-T}(x) \nabla F(x)}$

В силу симметричности H(x) получаем

$$\|\nabla F(x)\|_{H^{-1}(x)} \le \sqrt{\nu}$$

Итого:

$$\|\rho_{k-1}c\|_{H^{-1}(x^k)} \le e_1 + \sqrt{\nu}$$

• Объединяем результаты:

$$\lambda(\Phi_{\rho_k}, x^k) \leq e_1 + \frac{e_2}{\sqrt{\nu}}(e_1 + \sqrt{\nu}).$$

• Объединяем результаты:

$$\lambda(\Phi_{\rho_k}, x^k) \leq e_1 + \frac{e_2}{\sqrt{\nu}}(e_1 + \sqrt{\nu}).$$

• Функция Φ_{ρ_k} является самосогласованной, как сумма двух самосогласованных (линейной и самосогласованного барьера). Один шаг демпфированного метода Ньютона дает:

$$\lambda(\Phi_{\rho_k}, x^{k+1}) \le \frac{2\lambda^2(\Phi_{\rho_k}, x^k)}{1 - \lambda(\Phi_{\rho_k}, x^k)}.$$

• Объединяем результаты:

$$\lambda(\Phi_{\rho_k}, x^k) \leq e_1 + \frac{e_2}{\sqrt{\nu}}(e_1 + \sqrt{\nu}).$$

• Функция $\Phi_{
ho_k}$ является самосогласованной, как сумма двух самосогласованных (линейной и самосогласованного барьера). Один шаг демпфированного метода Ньютона дает:

$$\lambda(\Phi_{\rho_k}, x^{k+1}) \le \frac{2\lambda^2(\Phi_{\rho_k}, x^k)}{1 - \lambda(\Phi_{\rho_k}, x^k)}.$$

В частности, если $e_1=0,05$ и $e_2=0,08$, то

$$\lambda(\Phi_{\rho_k}, x^{k+1}) \leq 0,05 = e_1.$$

Что и требовалось.

- Мы всегда близко к текущему $x^*(\rho)$.
- Уже знаем, что увеличение ρ влечет за собой приближение к исходной задаче.
- Осталось понять, как быстро приближаемся к решению исходной задачи с увеличением ρ .

• Разберем упрощенный случай: пусть мы не просто близки к решению, пусть $x=x^*(\rho)$, также остановимся на случае логарифмических барьеров с линейными функциями в качестве ограничений:

$$F(x) = -\sum_{i=1}^m \ln(b_i - a_i^T x).$$

• Разберем упрощенный случай: пусть мы не просто близки к решению, пусть $x=x^*(\rho)$, также остановимся на случае логарифмических барьеров с линейными функциями в качестве ограничений:

$$F(x) = -\sum_{i=1}^m \ln(b_i - a_i^T x).$$

• Так как $x = x^*(\rho)$, то по условию оптимальности:

$$\nabla \Phi_{\rho}(x) = \rho c + \sum_{i=1}^{m} \frac{a_i}{b_i - a_i^T x} = 0.$$

• Разберем упрощенный случай: пусть мы не просто близки к решению, пусть $x=x^*(\rho)$, также остановимся на случае логарифмических барьеров с линейными функциями в качестве ограничений:

$$F(x) = -\sum_{i=1}^m \ln(b_i - a_i^T x).$$

• Так как $x = x^*(\rho)$, то по условию оптимальности:

$$\nabla \Phi_{\rho}(x) = \rho c + \sum_{i=1}^{m} \frac{a_i}{b_i - a_i^T x} = 0.$$

• Возьмем скалярное произведение с $(x - x^*)$:

$$\rho c^{T}(x-x^{*}) = \sum_{i=1}^{m} \frac{a_{i}^{T}(x^{*}-x)}{b_{i}-a_{i}^{T}x} = \sum_{i=1}^{m} \frac{b_{i}-a_{i}^{T}x}{b_{i}-a_{i}^{T}x} = m$$

• В итоге (пользуясь, что для нашего барьера $\nu = m$):

$$f(x) - f(x^*) = c^T(x - x^*) = \frac{m}{\rho} = \frac{\nu}{\rho}$$

• В итоге (пользуясь, что для нашего барьера $\nu = m$):

$$f(x) - f(x^*) = c^T(x - x^*) = \frac{m}{\rho} = \frac{\nu}{\rho}$$

- Так как ρ увеличивается линейно, то и к решению мы приближаемся линейно.
- В общем случае справедлива следующая теорема.

Сходимость

Сходимость метода внутренней точки

Пусть с помощью метода внутренней точки решается задача оптимизации с линейной целевой функцией и выпуклыми ограничениями вида неравенств, при этом используются ν -самосогласованные барьеры. Тогда чтобы достичь ε решения $(f(x)-f(x^*)\leq \varepsilon)$, необходимо

$$K = \mathcal{O}\left(\sqrt{
u}\log rac{
u}{arepsilon
ho_0}
ight)$$
 итераций метода.

Итого

- Метод внутренней точки хорошая альтернатива методу барьеров, которая дополнительно гарантирует соблюдение ограничений.
- Для выпуклых задач метод внутренней точки обладает фундаментальной теорией и сильными гарантиями сходимости.