Control de Diversidad

El control de diversidad es una técnica importante en los Algoritmos Genéticos (AG) que se utiliza para mantener una exploración efectiva del espacio de búsqueda y prevenir la convergencia prematura hacia soluciones subóptimas. Se centra en la gestión de la variabilidad genética dentro de la población de individuos.

Importancia del Control de Diversidad:

- Exploración del Espacio de Búsqueda: Mantener una diversidad adecuada en la población ayuda a explorar una gama más amplia de soluciones posibles. Esto es crucial para evitar quedarse atrapado en óptimos locales y buscar soluciones globales.
- Robustez: Una población diversa es más robusta ante cambios en el entorno o en el problema. Puede adaptarse mejor a perturbaciones y cambios inesperados.

Estrategias de Control de Diversidad:

1. Operadores de Mutación Adaptable:

- Mutación No Uniforme: La tasa de mutación puede variar para diferentes individuos o en diferentes momentos del algoritmo. Los individuos menos aptos pueden experimentar una tasa de mutación más alta, lo que introduce más variabilidad en la población.
- Mutación Controlada por Aptitud: La probabilidad de mutación puede estar relacionada con la aptitud de los individuos. Los menos aptos pueden tener una mayor probabilidad de mutación para explorar nuevas regiones del espacio de búsqueda.

2. Operadores de Recombinación (Cruce) Adaptativos:

 Cruce No Uniforme: La tasa de cruce puede variar según la aptitud de los individuos. Los individuos menos aptos pueden someterse a un cruce más agresivo para introducir diversidad.

3. Mecanismos de Reemplazo Adaptativo:

 Reemplazo por Clones: Se pueden seleccionar algunos individuos de alta aptitud y clonarlos directamente en la nueva generación para mantener soluciones prometedoras. Reemplazo por Supervivencia: Los individuos se seleccionan para sobrevivir a la siguiente generación en función de su aptitud, pero también se pueden incluir algunos individuos menos aptos para mantener la diversidad.

4. Nichos y Selección por Similitud:

 Nichos Genéticos: Se introducen restricciones para evitar que individuos muy similares ocupen el mismo nicho en el espacio de búsqueda. Esto promueve la diversidad.

Métricas de Control de Diversidad:

Para evaluar el control de diversidad en un AG, se pueden utilizar métricas que cuantifiquen la distancia o la similitud entre individuos en la población. Algunas métricas comunes incluyen:

- Distancia Genética: Mide la diferencia promedio entre los genotipos de los individuos en la población. Puede calcularse utilizando fórmulas como la distancia de Hamming (para representaciones binarias) o la distancia Euclidiana (para representaciones continuas).
- **Diversidad de Nichos:** Evalúa cuántos nichos diferentes se ocupan en el espacio de búsqueda y si hay individuos compitiendo en los mismos nichos.
- Entropía Genética: Mide la incertidumbre o variabilidad en la población. Una población más diversa tiene una entropía genética más alta.
- Diversidad por Cobertura: Evalúa qué porcentaje del espacio de búsqueda está cubierto por la población. Una población diversa debería cubrir un área más amplia.