На правах рукописи



# ВИЛКОВА АНАСТАСИЯ ИГОРЕВНА

# РАДИКАЛЬНАЯ КОНТРОЛИРУЕМАЯ ПОЛИМЕРИЗАЦИЯ МЕТИЛМЕТАКРИЛАТА В ПРИСУТСТВИИ ТРИ-Н-БУТИЛБОРА И П-ХИНОНОВ

02.00.06 - высокомолекулярные соединения

# АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

2 4 HIOH 2010

Работа выполнена на кафедре органической химии химического факультета ГОУ ВПО "Нижегородский государственный университет им. Н.И. Лобачевского"

Научный руководитель: доктор химических наук, профессор

Додонов Виктор Алексеевич

Официальные оппоненты: доктор химических наук, профессор

Смирнова Лариса Александровна

доктор химических наук, профессор

Климов Евгений Семенович

Ведущая организация: ФГУП НИИ химии и технологии

полимеров им. академика В.А. Каргина с опытным заводом (г. Дзержинск

Нижегородской области)

Защита диссертации состоится « 16 » ШТОНИЕ 2010 года в 13 час. на заседании диссертационного совета Д 212.166.05 по химическим наукам при Нижегородском государственном университете им. Н.И. Лобачевского по адресу: г. Нижний Новгород, просп. Гагарина, д. 23, конференц-зал.

С диссертацией можно ознакомиться в библиотеке Нижегородского государственного университета им. Н.И. Лобачевского.

Автореферат разослан « 14 » « LLQ 2010 года.

Ученый секретарь диссертационного совета кандидат химических наук, доцент

Замышляева О.Г.

# ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Одним из наиболее распространенных способов получения полимеров винилового ряда является радикальная Достоинствами полимеризация. полимеризации, инициированной радикальными инициаторами (ацильными пероксидами, азосоединениями и др.), являются методическая и техническая простота ее осуществления, а также хорошая воспроизводимость результатов. Но этот метод имеет ряд недостатков, относится, например, трудность регулирования которым полимеризации акриловых мономеров. Данная сложность обусловлена тем, что образующийся полиметилметакрилат растворяется в мономере, и по мере увеличения конверсии мономера изменяется вязкость среды, в результате чего изменяется соотношение элементарных констант скоростей роста и обрыва реакционных цепей (гель-эффект), что приводит к образованию полимерных цепей с разной молекулярной массой.

Поиск новых радикальных инициаторов, и особенно комплексных радикальных инициирующих систем, содержащих элементоорганические соединения, в частности триалкилбораны, в присутствии кислорода или пероксидов, является одной из современных задач в развитии полимерной химии на базе виниловых мономеров и их сополимеров. Преимущество таких инициирующих систем над классическими радикальными инициаторами состоит в том, что они проводят полимеризацию в широком интервале температур, а элементоорганические сокомпоненты могут оказывать влияние не только на стадию инициирования, но и на стадии роста и обрыва реакционных цепей. В результате процесс полимеризации осуществляется в контролируемом режиме.

Представленная диссертационная работа посвящена исследованию вопросов контролируемой полимеризации метилметакрилата в присутствии системы: радикальный инициатор — три-н-бутилбор — п-хиноны, и является своевременной и актуальной.

**Цель работы.** Целью настоящей работы явилось исследование полимеризации метилметакрилата в блоке под действием комплексной инициирующей системы, включающей радикальный инициатор, три-н-бутилбор и некоторые п-хиноны. В качестве последних были использованы п-бензохинон, 2,5-ди-трет-бутил-п-бензохинон, бутил-п-бензохинон, дурохинон и 1,4-нафтохинон. В соответствии с поставленной целью решали следующие задачи:

- изучить пути взаимодействия полиметилметакрилатных радикалов с представленными п-хинонами, оценить качественно и количественно встраивание последних в макроцепь в виде внутренних арилоксильных и, особенно, концевых бороксиарильных групп с использованием методов УФ- и ЯМР-спектроскопии;
- разработать способы синтеза низкомолекулярных форполимеров ПММА (макроинициаторов) под действием системы: радикальный инициатор три-н-бутилбор 2,5-ди-трет-бутил-п-бензохинон или 1,4-нафтохинон. Изучить пост-полимеризацию, инициированную форполимерами;
- на основании полученных результатов разработать лабораторные условия одностадийного метода синтеза высокомолекулярного ПММА органического стекла.

Объекты исследования. Объектами исследования явились метилметакрилат и полимер на его основе (органическое стекло). Использовали метилакрилат, нонилакрилат и 2-этилгексилакрилат в виде малых добавок в полимеризующуюся массу, а в качестве радикальных инициаторов — дициклогексилпероксидикарбонат и динитрил азоизомасляной кислоты.

Для изучения кинетики полимеризации метилметакрилата были синтезированы три-н-бутилбор и следующие хиноны: 1,4-нафтохинон, 2,5-дитрет-бутил-п-бензохинон, бутил-п-бензохинон и дурохинон.

На защиту выносятся положения, сформулированные в выводах.

**Методы исследования.** Кинетику полимеризации изучали гравиметрическим и дилатометрическим методами. Метод УФ-спектроскопии 2

применяли для исследования взаимодействия полиметилметакрилатных радикалов с хинонами путем идентификации ароматических и хиноидных структур, встроенных в макроцепь, а метод ЯМР-спектроскопии — для количественного определения соотношения ароматических фрагментов, встроенных в макроцепь, по отношению к мономерным единицам. Молекулярные массы полиметилметакрилата определяли вискозиметрически и методом гель-проникающей хроматографии.

# Научная новизна работы состоит в том, что в ней впервые:

- предложены новые инициирующие системы, содержащие радикальный инициатор, три-н-бутилбор и п-хиноны. Данные системы не только инициируют полимеризацию метилметакрилата, но и эффективно принимают участие в регулировании роста и обрыва реакционных цепей;
- показано, что данные системы генерируют как радикалы инициатора, так и бутильные радикалы. Кроме этого, в условиях полимеризующейся массы образуются in situ бороксиарилоксильные концевые фрагменты, которые осуществляют полимеризацию метилметакрилата в контролируемом режиме;
- данные, полученные по исследованию конверсии мономера от времени, а также зависимость молекулярной массы от конверсии, свидетельствуют, что указанные системы осуществляют полимеризацию в режиме обратимого ингибирования;
- разработаны синтезы форполимеров (макроинициаторов), получаемых в присутствии 2,5-ди-трет-бутил-п-бензохинона и 1,4-нафтохинона.
   Исследована кинетика пост-полимеризации на указанных форполимерах, рассчитаны энергии активации процессов;
- разработан одностадийный синтез полиметилметакрилата с молекулярной массой 1.2×10<sup>6</sup> под действием описанной выше системы, предложены новые условия проведения полимеризации и получены лабораторные образцы органического стекла.

Практическая ценность работы. Предложены новый и оригинальный синтез полиметилметакрилата в одну стадию, без выделения макроинициатора, в интервале температур 60°-75°С в течении 6-10 часов, близкого по физическим характеристикам к органическому стеклу, выпускаемому в промышленности. Разработаны методики синтеза форполимеров и пост-полимеров.

Апробация работы. Результаты работы докладывались на Международной конференции "Современные направления элементоорганической и полимерной химии" (Москва, 30 мая-4 июня 2004), на Европейском полимерном конгрессе (Москва, 2005), на международной конференции студентов и аспирантов "Синтез, исследование свойств, модификация и переработка высокомолекулярных соединений" (Казань, 24-25 мая 2005), на Международной конференции по металлоорганической и координационной химии (Нижний Новгород, 2-8 сентября 2008), на Всероссийской конференции по органической химии (Москва, 25-30 октября 2009), а также на XI, XII и XIII Нижегородских сессиях молодых ученых (Н.Новгород, апрель 2006, 2007 и 2008). По результатам диссертации опубликовано 2 статьи, одна находится в печати (В.А. Додонов, А.И. Вилкова, Ю.Л. Кузнецова, Н.Ю. Шушунова, С.А. Чесноков, Ю.А. Курский, А.Ю. Долгоносова, А.С. Шаплов. Макроинициаторы радикальной контролируемой полимеризации метилметакрилата на основе системы трибутилбор нафтохинон. // Высокомолек, соед. 2010. В печати. Регистрационный номер 2009/075e).

Публикации. Основные материалы диссертации опубликованы в 2 научных статьях и 8 тезисах докладов. Работа была выполнена при поддержке РФФИ (грант № 05-03-08093-ОФИ, № 08-03-01045-а).

Структура и объем работы. Диссертационная работа состоит из введения, литературного введения, обсуждения результатов, выводов, экспериментальной части и списка цитированной литературы, насчитывающего 119 наименований. Работа изложена на 117 страницах машинописного текста, включает 33 рисунка и 12 таблиц.

# ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Данная работа является продолжением исследований, ранее проводимых на кафедре органической химии ННГУ им. Н.И. Лобачевского. В работе выдвинуто предположение, что при полимеризации метилметакрилата (ММА),

инициированной дициклогексилпероксидикарбонатом (ЦПК) в присутствии три-н-бутилбора (ТНББ) и 2,5-дитрет-бутил-п-бензохинона (ДТХ), обрыв реакционных цепей происходит в основном с образованием концевых

борсодержащих группировок. Такой пространственно-затрудненный дибутилбор-2,5-ди-трет-бутил-фенилокси-фрагмент может выступать макроинициатором радикальной псевдоживой полимеризации.

В связи с этим были продолжены исследования по изучению радикальной полимеризации ММА в присутствии ТНББ и ряда п-хинонов, под действием ЦПК и динитрила азоизомасляной кислоты (ДАК).

1. Исследование кинетических и молекулярно-массовых зависимостей полимеризации метилметакрилата под действием радикальных инициаторов и систем три-н-бутилбор — п-хинон

В присутствии исследуемой системы, включающей радикальный инициатор, хинон и боралкил, радикальная полимеризация проходит более сложно, чем классический процесс. Хиноны являются традиционными ингибиторами радикальной полимеризации, однако в присутствии боралкила они выступают эффективными передатчиками цепи. Учитывая известные факты, что хиноны взаимодействуют с радикалами как по C=O, так и по C=C кратным связям, сложный процесс полимеризации можно представить в виде схемы 1.

В результате в полимеризующейся массе образуется, как мы полагаем, четыре типа структур. Структуры II и IV-внутренние (встроенные в

<sup>&</sup>lt;sup>1</sup> Додонов В.А., Кузнецова Ю.Л., Лопатин М.А., Скатова А.А. // Изв. АН. Серия химическая. 2004. №10. С. 2114-2119.

полимерную цепь), а структуры I и III-концевые, содержащие бороксиарилоксильные фрагменты. При образовании структур II и IV на арилоксирадикалах происходит обрыв реакционной цепи.

Направление 1 заключается во взаимодействии радикала роста с молекулой п-хинона по С=О связи, а арилоксильный макрорадикал реагирует с ТНББ (S<sub>R</sub>2-замещение) или с растущей цепью с образованием концевых "живых" (I) и "мертвых" (II) структур соответственно. Развитие процесса по направлению 2 осуществляется по С=С связи хинона с последующим образованием концевых "мертвых" борсодержащих хиноидных (III) и встроенных (IV) фрагментов. В зависимости от строения п-хинона, все синтезированные полимеры визуально имели окраску от светло-желтой до коричневой, что обусловлено количеством встроенных бензохиноидных структур, образующихся по направлению 2 схемы 1.

Методом УФ-спектроскопии было показано, что дурохинон и 2,5-ди-трет-бутил-п-бензохинон (ДТХ) преимущественно взаимодействуют с радикалами роста по С=О связи, п-бензохинон взаимодействует только по С=С связи, а в присутствии 1,4-нафтохинона были идентифицированы соответствующие фрагменты присоединения как по С=С, так и по С=О связи.

Исследуя начальные скорости полимеризации ММА, инициированной ЦПК, показано, что скорость полимеризации существенно зависит от соотношения [боралкил]:[п-хинон]. Результаты представлены на рисунке 1.

Из рис.1 видно, что процесс в присутствии различных п-хинонов характеризуется разным положением максимума скорости. Мы связываем этот факт с различным строением и реакционной способностью радикалов роста к представленным п-хинонам. В присутствии п-бензохинона при определенном соотношении боралкила и п-хинона скорость падает практически до нуля, что обусловлено выработкой компонентов системы.



Рис. 1. Зависимость начальной скорости полимеризации ММА, инициированной ЦПК (0.17 мол.%), в присутствии ТНББ (0.8 мол.%) от концентрации п-хинона:

1 – п-бензохинон; 2 – 2,5-ди-третбутил-п-бензохинон; 3 – дурохинон; 4 – 1,4-нафтохинон

Важно отметить, что в избытке замещенных хинонов начальные скорости выходят на плато и между собой различаются незначительно, что может быть обусловлено протеканием контролируемой полимеризации.

Для подтверждения высказанного предположения необходимо изучить полный ход кинетически кривых и расширить круг п-хинонов. Весовым

методом была изучена полимеризация ММА, инициированная ЦПК, в присутствии ТНББ и ряда п-хинонов (рис.2). На начальных стадиях полимеризации скорость практически мало зависит от строения п-хинонов, что согласуется с данными дилатометрии. Это обусловлено эффективной передачей цепи на боралкил и образованием бороксиарильных фрагментов, встроенных в макроцепь (схема 1). С увеличением времени реакции различия становятся очевидными. Видно, что в присутствии замещенных хинонов (ДТХ, дурохинона и бутил-п-бензохинона) наблюдается линейное возрастание конверсии. В случае п-бензохинона прослеживается ярко выраженный гель-эффект.



о 200 400 600 800

Время, мин

Рис. 2. Кинетические кривые полимеризации ММА при 30°С, инициированной ЦПК (0.17 мол.%), в присутствии ТНББ (0.8 мол.%) и п-

хинонов (0.25 мол.%): 1 — п-бензохинон; 2 — 2,5-ди-трет-бутилп-бензохинон; 3 — дурохинон; 4 —бутилп-бензохинон; 5 - 1,4-нафтохинон



Рис. 3. Зависимость средневязкостной молекулярной массы ПММА от степени превращения мономера: 1 – п-бензохинон; 2 – 2,5-ди-трет-бутил-п-бензохинон; 3 – дурохинон;

бутил-п-бензохинон; 3 – дурохинон; 4 –бутил-п-бензохинон; 5 - 1,4-нафтохинон

Для систем, содержащих ТНББ и ДТХ, дурохинон, бутил-п-бензохинон, включая 1,4-нафтохинон, наблюдается линейный рост ММ с ростом конверсии (рис.3, кривые 2, 3, 4, 5). В присутствии п-бензохинона отмечается резкое возрастание молекулярной массы вследствие проявления гель-эффекта (рис.3, кривая 1). Линейная зависимость молекулярной массы от конверсии является

одним из основных признаков псевдоживой радикальной полимеризации. Мы полагаем, что ответственными за реализацию механизма являются «живые» структуры I — бороксиарилоксильные фрагменты (схема 1). Фрагмент I (схема 1) содержит лабильную C-O связь, которая в условиях полимеризации способна обратимо гомолитически диссоциировать. При этом в бороксиарильном фрагменте имеет место эффективное сопряжение вакантной р-орбитали атома бора с  $\pi$ -электронами кольца ( $\pi$ -р) и неподеленной электронной парой атома кислорода (p-р сопряжение), что приводит к стабилизации бороксиарильной группировки в целом, и как следствие облегчает гомолитическую диссоциацию C-O связи по схеме 2.

Чтобы убедится в реализации данного механизма, необходимо было провести исследование пост-полимеризации на форполимерах ПММА, содержащих в своем составе бороксиарильные фрагменты.

#### 2. Исследование пост-полимеризации

Как известно, пост-полимеризация является прямым подтверждением реализации псевдоживого механизма. Были синтезированы форполимеры ПММА, при инициировании ЦПК (0.17 мол.%), в присутствии ТНББ (0.8 мол.%) и ДТХ (0.25 мол.%). Затем 5 мас.% форполимера растворяли в

ММА и проводили пост-полимеризацию в интервале температур 45°-60°С за 3-6 часов. При исследовании пост-полимеризации отмечено увеличение конверсии в 1.5 раза, а молекулярной массы — в 1.7 раза.

Полученные полимеры исследовали методом гель-проникающей хроматографии (ГПХ) (рис.4). Как видно из рисунка, происходит заметный сдвиг высокомолекулярной моды в сторону более высоких молекулярных масс и наблюдается тенденция к ее сужению. Низкомолекулярная мода при этом уменьшается, что говорит о расходовании макроинициатора.



Рис. 4. Кривые ГПХ образцов ПММА, полученных в присутствии 0.8 мол.% ТНББ и 0.25 мол.% 2,5-ди-трет-бутил-п-бензохинона: 1 — при 30°C за 3 часа,  $M_W/M_N=13.6$ ; 2 — пост-эффект при 45°C за 3 часа,  $M_W/M_N=8.23$ 

Особый интерес как с теоретической, так и, особенно, практической точек зрения представляет количественная оценка ароматических структур I и II (схема 1), встроенных в макроцепь полимера, И ответственных за полимеризацию пути обратимого ингибирования. Для поставленной задачи был выбран 1,4-нафтохинон, который, единственный из представленных п-хинонов, встраиваясь макроцепь всех виде регистрируется ЯМР-спектроскопии. ароматических структур, методом Нафтохинон, как отмечали выше, взаимодействует с радикалами роста как по С=С, так и по С=О связи. Была исследована кинетика полимеризации в интервале концентраций 0,25-0,75 мол.% п-хинона (рис.5).

Как видно из рисунка (рис. 5 кривая 1), в присутствии 0.25 мол.% 1,4-нафтохинона наблюдается тенденция к проявлению гель-эффекта.

Последний не проявляется уже при увеличении концентрации хинона до 0.50 и 0.75 мол.% (рис. 5 кривые 2 и 3).

Стоит отметить, что с увеличением концентрации 1,4-нафтохинона скорость растет в саморегулирующемся режиме полимеризации, поскольку зависимость молекулярной массы от конверсии (рис. 6) носит линейный характер.



M°10<sup>3</sup>
120
90
60
30
60
90
Конверсия,%

**Рис.** 5. Кинетические кривые полимеризации ММА при 30°С, инициируемой ЦПК (0.17мол.%), в присутствии ТНББ (0.8 мол.%) и 1,4-нафтохинона: 1-0.25 мол.% хинона; 2-0.50 мол.% хинона; 3-0.75 мол.% хинона

Рис. 6. Зависимость молекулярной массы полимера от степени превращения при 30°С:  $1-0.25\,$  мол.% нафтохинона;  $2-0.50\,$ мол.% нафтохинона;  $3-0.75\,$ мол.% нафтохинона

Образцы ПММА, полученные в присутствии 0.25 мол.% и 0.75 мол.% нафтохинона с близкой конверсией (15% и 21% соответственно) были исследованы методом ГПХ (рис. 7), параметры полидисперсности которых составили 3.82 и 2.1 соответственно. При увеличении концентрации 1,4-нафтохинона в системе увеличивается доля контролируемых процессов, что подтверждается сужением ММР.



**Рис. 7.** Молекулярно-массовое распределение для образцов ПММА:

1 - 0.25мол.% нафтохинона,  $M_W/M_N = 3.82$ ;

2 - 0.75мол.% нафтохинона,  $M_W/M_N=2.1$ 

Приведенные выше данные были положены в основу синтеза который получали ЦПК (0.17)форполимера, на системе: мол.%), ТНББ (0.8 мол.%) и 1,4-нафтохинон (0.25 и 0.75 мол.%) в течение 6 часов при 30°С. Молекулярные массы составили 76 тыс. (в присутствии 0.25 мол.% 1,4-нафтохинона) и 46 тыс. (при 0.75 мол.% п-хинона). Для количественного установления ароматических группировок полимер, полученный в присутствии 0.75 мол.% 1.4-нафтохинона, исследовали методом ЯМР-спектроскопии, для чего готовили его раствор в CDCl<sub>3</sub>. В области <sup>1</sup>Н ЯМР-спектра, характерной для ароматических протонов наблюдается ряд сигналов с хим. сдвигами 6.13, 6.64, 6.93, 7.35-7.47, 7.60-7.74, 7.83-8.15 м.д. В области, характерной для протонов при двойных связях присутствует сигнал с хим. сдвигом 4.87 м.д. Исходя из соотношения интегральных интенсивностей сигналов полимера И содержание форполимереароматических структур, последних макроинициаторе составляет 3 на 1000 мономерных звеньев.

Полученные низкомолекулярные полимеры ПММА были испытаны в качестве макроинициаторов. В результате отмечается рост конверсии и молекулярной массы полимеров. Так, при полимеризации  $^4$ а форполимере с содержанием 1,4-нафтохинона 0.25 мол.%, при 45°C за 6 часов молекулярная масса возросла в 5.9 раза, а при 60°C – в 10 раз. В тоже время, в результате пост-полимеризации на макроинициаторе, полученном в присутствии 0.75 мол.%, за 6 часов при 45°C рост молекулярной массы составил 5.2 раза, а при 60°C – 6.5 раза.

Полученные пост-ПММА также исследовали методом ГПХ. Так, пост-полимер, полученный при 45°C на макроинициаторе (0.25 мол.% 1,4-нафтохинона), имеет три моды (рис.8 кривая 2). Одна из них соответствует "мертвым" цепям, образованным за счет присоединения по С=С связи п-хинона, вторая мода - макроинициатору, а третья, высокомолекулярная мода, — полимеру, образующемуся по пути обратимого ингибирования. При этом, при 60°C пост-полимер характеризуется бимодальным ММР (рис.8 кривая 3).



Рис. 8. Кривые ГПХ образцов ПММА, полученных в присутствии 0.17 мол.% ЦПК, 0.8 мол.% ТНББ и 0.25 мол.% нафтохинона:

 $1 - \phi$ ор-ПММА (конверсия ~15%),  $M_W/M_N=3.82$ ;

2 – пост-полимеризация при 45°C,  $M_W/M_N$ =9.99;

3 – пост-полимеризация при  $60^{\circ}$ C,  $M_W/M_N$ =4.72

ММР полимера, полученного на форполимере (0.75 мол.% нафтохинона), в тех же условиях в целом напоминают таковое для ПММА, полученного на форполимере (0.25 мол.% нафтохинона) (рис. 8), но характеризуется меньшими значениями параметров полидисперсности.

По начальным участкам кинетических кривых пост-полимеризации (рис. 9а), полученных дилатометрическим методом, рассчитана энергия активации (рис. 9б) данного процесса. Она составила 47.5 кДж/моль.

Для того, чтобы повысить концентрацию бороксиарильных групп, ответственных за "живую" полимеризации, были синтезированы форполимеры под действием ДАК (0.1 мол.%) практически в сравнимых условиях в присутствии 1,4-нафтохинона (0.8 мол.%), ТНББ (0.8 мол.%) и малых добавок акрилатов: метилакрилата, нонилакрилата и 2-этилгексилакрилата.



**Рис. 9.** Начальные участки кинетических кривых (а) пост-полимеризации при различных температурах: 1 - 50°C; 2 - 60°C; 3 - 70°C; 4 - 80°C; и график зависимости (б)  $-\ln \upsilon = f(1/T)$  для расчета  $E_a$ 

Введение последних в концентрациях, не превышающих 2%, приводит к разрушению физических ассоциатов<sup>2</sup>, что может привести к увеличению бороксиарильных групп в форполимере. Результаты синтеза форполимеров представлены в таблице 1.

Данные ЯМР-спектроскопии синтезированных форполимеров показали, что соотношение арилоксильных фрагментов и мономерных звеньев сохранилось в той же пропорции.

Таблица 1. Результаты полимеризации ММА, инициируемой системой 0.1 мол.% ДАК, 0.8 мол.% 1,4-нафтохинона, 0.8 мол.% ТНББ в присутствии 2 мас.% акрилатов при 45°C за 6 часов, и пост-полимеризации на полученных форполимерах (6 часов 60°C)

|    | полимеризация       |      |                    | пост-полимеризация |                    |                  |                  |
|----|---------------------|------|--------------------|--------------------|--------------------|------------------|------------------|
| No | добавка (2 масс.%)  | P, % | M×10 <sup>-3</sup> | P, %               | M×10 <sup>-3</sup> | P/P <sub>0</sub> | M/M <sub>0</sub> |
| 1  | без добавки         | 23.0 | 42.0               | 93.0               | 1536               | 18.6             | 36.6             |
| 2  | метилакрилат        | 24.4 | 44.7               | 35.2               | 1073               | 7.0              | 24.0             |
| 3  | нонилакрилат        | 31.1 | 39.5               | 45.0               | 995                | 9.0              | 25.2             |
| 4  | 2-этилгексилакрилат | 31.0 | 42.0               | 44.0               | 1094               | 8.8              | 26.0             |

 $<sup>^2</sup>$  Королев Г.В., Перепелицина Е.О. // Высокомолек.соед. Серия А. 2001. Т. 43. № 5. С. 774-783.

Введение добавок сказывается в большей мере на результатах пост-полимеризации и на молекулярной массе конечного продукта. Так, форполимер, полученный без добавок, вызывает больший рост конверсии и молекулярной массы (таблица 1). При полимеризации на форполимерах, полученных в присутствии акрилатов, рост молекулярной массы увеличивается в среднем в 25 раз, в то время как при полимеризации на макроинициаторе, синтезированном без добавок, это увеличение составляет 36.6 раза.

Таким образом, полученные данные свидетельствуют о том, что радикальная полимеризация ММА под действием системы: радикальный инициатор — п-хиноны — ТНББ проходит по механизму обратимого ингибирования, и параллельно в инициировании полимеризации принимают участие радикалы инициатора и бутильные радикалы.

В реализации обратимого ингибирования ответственными являются концевые дибутилбороксиарильные фрагменты, образующиеся *in situ* в результате взаимодействия радикалов роста с  $\pi$ -хиноном и последующего  $S_R2$ -замещения на атоме бора ТНББ. По данным ЯМР-спектроскопии количество арилоксильных групп в форполимерах составляет 1 на  $\sim$ 300 мономерных единиц.

## 3. Одностадийный способ получения НММА в блоке

В производстве получение органического стекла в блоке осуществляют под действием ацильных пероксидных инициаторов. В отличие от традиционной полимеризации ММА нам преставилось возможным осуществление синтеза ПММА в одну стадию при определенном соотношении концентраций боралкила и п-хинона, а в качестве инициатора был выбран ДАК.

С учетом данных УФ- и ЯМР-спектроскопии были определены условия для синтеза полимеров (концентрации инициатора и компонентов системы, мольные соотношения боралкила и п-хинона) для получения ПММА с молекулярными массами  $1.2 \times 10^6$  и выше в интервале температур  $60^\circ$ - $75^\circ$ С. При

этом суммарная концентрация всех компонентов системы не превышала традиционных концентраций инициатора.

Дилатометрическим методом была исследована кинетика процесса в указанных условиях в присутствии 1,4-нафтохинона. Рассчитана энергия активации полимеризации, которая составила 80.4 кДж/моль.

Синтез ПММА проводили при температурах: 60°, 65°, 70° и 75°С (рис. 10).

Видно, что в указанных условиях наблюдается гель-эффект полимеризации, который наступает тем раньше, чем выше температура процесса. Наиболее подходящими для синтеза были выбраны температуры 60° и 65°С, при которых наблюдается высокая скорость, но гель-эффект проявляется в меньшей степени, чем при полимеризации в присутствии только ДАК.



**Рис.** 10. Кинетические кривые полимеризации ММА, инициированной ДАК, в присутствии 1,4-нафтохинона и ТНББ при различной температуре:  $1-60^{\circ}\text{C}$ ;  $2-65^{\circ}\text{C}$ ;  $3-70^{\circ}\text{C}$ ;  $4-75^{\circ}\text{C}$ ,  $5-\text{ДАК }70^{\circ}\text{C}$ 

Таблица 2. Результаты полимеризации ММА, инициированной ДАК, в присутствии 1,4-нафтохинона и ТНББ при различной температуре

| _     |        |      |                    |
|-------|--------|------|--------------------|
| t, °C | т, час | P, % | M×10 <sup>-3</sup> |
| 60    | 4      | 30   | 505                |
| 60    | 6      | 82   | 720                |
| 65    | 4      | 66   | 520                |
| 03    | 6      | 90   | 720                |
| 70    | 4      | 90   | 530                |
|       | 6      | 97   | 800                |
| 75    | 4      | 98   | 600                |
| / /3  | 6      | 99   | 770                |

Молекулярная масса полимеров, получаемых в данных условиях, составила от 500 до 800 тыс. (см. табл. 2).

Аналогичные исследования были проведены в присутствии монозамещенного хинона бутил-п-бензохинона. Исследовали также 16

температурную зависимость процесса. Результаты представлены на рис. 11 и в таблице 3. Видно, что общая тенденция к проявлению гель-эффекта с увеличением температуры сохраняется, однако молекулярная масса в данном случае, начиная с температуры 65°С, выше. При увеличении времени прогрева образцов до 10 часов молекулярная масса существенно увеличивается. Таким образом, было найдено, что оптимальными условиями для синтеза высокомолекулярного ПММА в присутствии бутил-п-бензохинона являются 65°С, время - 10 часов.



Рис. 11. Кинетические кривые полимеризации ММА, инициированной ДАК, в присутствии бутил-п-бензохинона и ТНББ при различной температуре:

1 – 60°С; 2 – 65°С; 3 – 70°С; 4 – 75°С, 5– ЛАК 70°С Таблица 3. Результаты полимеризации ММА, инициированной ДАК, в присутствии бутил-п-бензохинона и ТНББ при

| различной температуре |        |      |                    |  |
|-----------------------|--------|------|--------------------|--|
| t, ℃                  | т, час | P, % | M×10 <sup>-3</sup> |  |
|                       | 4      | 39   | •                  |  |
| 60                    | 6      | 89   | 400                |  |
|                       | 10     | -    | 1260               |  |
|                       | _ 4    | 83   | -                  |  |
| 65                    | 6      | 92   | 850                |  |
|                       | 10     | -    | 1350               |  |
|                       | 4      | 96   | -                  |  |
| 70                    | 6      | 99   | 980                |  |
|                       | 10     | -    | 1320               |  |
|                       | 4      | 96   | -                  |  |
| 75                    | 6      | 97   | 1170               |  |
|                       | 10     | -    | 1300               |  |

Для повышения молекулярной массы образующихся стекол, а также для снижения количества остаточного мономера мы прогревали полученные стекла при температуре 100-120°С. Так, было установлено, что за три часа прогрева количество остаточного мономера в стекле, полученном в присутствии 1,4-нафтохинона за 6 часов при 65°С, уменьшилось от 4.2% до 1%. Молекулярная масса при этом увеличилась до 850 тыс. При прогреве стекол, полученных с использованием бутил-п-бензохинона в течение 10 часов при

65°C, за 3 часа содержание остаточного мономера уменьшилось с 1.8% до 0.5%, а молекулярная масса увеличилась до 1500 тыс.

В присутствии 1,4-нафтохинона и бутил-п-бензохинона получены лабораторные образцы стекол, которые исследовали на твердость, прозрачность и деструкцию по сравнению друг с другом и со стеклом, выпускаемым в заводских условиях. Результаты измерения твердости представлены в таблице 4.

Таблица 4. Результаты измерения твердости полимеров, полученных в присутствии ДАК, п-хинонов и ТНББ

| хинон               | твердость Н |  |  |
|---------------------|-------------|--|--|
| органическое стекло | 24.64       |  |  |
| 1,4-нафтохинон      | 21.78       |  |  |
| бутил-п-бензохинон  | 24.07       |  |  |

 Как
 видно
 из
 таблицы,

 стекла
 заводского

 производства
 и

 полученного
 в присутствии

 бутил-п-бензохинона

 обладают
 близкими

значениями твердости.

Следует отметить, что полимеры, полученные в присутствии различных хинонов, имеют окраску различной интенсивности. Так, стекла, полученные в присутствии нафтохинона, характеризуются визуально более яркой окраской, чем стекла, полученные в присутствии бутил-п-бензохинона. Это может быть связано с наличием в полимере большого количества встроенных хиноидных фрагментов, за счет чего увеличивается цветность полимера. Полученные образцы стекол исследовали на пропускание в видимой области методом Уфспектроскопии (рис.12).



Рис. 12. Спектры пропускания стекол ПММА в видимой области длин волн: 1 – органическое стекло, 2 – ПММА, полученный в присутствии бутил-пбензохинона, 3 – ПММА,

присутствии

полученный в

1,4-нафтохинона

Видно, что пропускание в видимой области длин волн (380-780 нм) у органического стекла составляет от 80 до 90%. По оптическим свойствам полученные стекла уступают производственному образцу. Однако ПММА, полученный в присутствии бутил-п-бензохинона, обладает гораздо лучшими пропускными свойствами, чем стекло, полученное в присутствии 1,4-нафтохинона.

Еще одной физической характеристикой органических стекол является их термическая устойчивость. Мы определяли термостабильность получаемых стекол методом термогравиметрического анализа (рис.13). Так, ПММА, полученный в присутствии 1,4-нафтохинона начинает терять массу при температуре 150.1°С, в то время как для стекла, полученного в присутствии бутил-п-бензохинона, это значение составляет 172.9°С. Потеря массы при этих температурах составляет менее 1%.

Более существенная деструкция (6-8% массы) наблюдается в случае 1,4-нафтохинона при температуре 275.8°С, а в случае бутил-п-бензохинона — при 257.7°С. Температура, соответствующая наибольшей скорости распада органических стекол составляет для 1,4-нафтохинона 379.9°С, а для бутил-п-бензохинона — 369.6°С. Таким образом, стекло, полученное в присутствии бутил-п-бензохинона начинает разрушаться при более высокой температуре, однако критичная потеря массы и максимальная скорость распада наблюдаются

при меньшем нагреве, чем для стекла, полученном в присутствии 1,4-нафтохинона.



Рис. 13. Дифференциальные и интегральные кривые термогравиметрического анализа стекол, полученных в присутствии различных хинонов:

- 1 1,4-нафтохинона;
- 2 бутил-п-бензохинона

#### Выводы:

- 1. Впервые была предложена инициирующая система, включающая радикальный инициатор, боралкил и п-хинон, позволяющая осуществлять синтез полиметилметакрилата в блоке в радикальном контролируемом режиме. В инициировании принимают участие радикалы инициатора и бутильные радикалы, образующиеся в результате взаимодействия арилоксильных радикалов с три-н-бутилбором. Параллельно реализуется механизм обратимого ингибирования.
- 2. Проведен анализ и исследование радикальных реакций кислород- и углеродцентрированных радикалов с п-хинонами в зависимости от строения радикала и хинона. Установлено, что кислородцентрированные радикалы взаимодействуют преимущественно по С=С связи хинона, а углеродцентрированные полиметилметакрилатные радикалы способны присоединяться как по С=С, так и по С=О кратным связям.

- Установлено, что введенные в молекулу п-хинона донорные заместители способствуют присоединению полиметилметакрилатных радикалов по кратной С=О связи.
- 4. Показано, что за механизм обратимого ингибирования ответственны концевые бороксиарилоксильные фрагменты, образующиеся in situ в используемой системе. В таком фрагменте имеет место сопряжение вакантной р-орбитали атома бора с π-электронами кольца (π-р) и неподеленной электронной парой кислорода (р-р сопряжение), способствующее обратимой диссоциации С-О связи в клетке мономера.
- 5. Механизм обратимого ингибирования подтвержден пост-полимеризацией с использованием синтезированных форполимеров, полученных на данных системах, включающих 2,5-ди-трет-бутил-п-бензохинон и 1,4-нафтохинон, а также линейной зависимостью молекулярной массы от конверсии и линейным возрастанием конверсии мономера со временем.
- 6. Методом ЯМР-спектроскопии показано, что форполимеры (молекулярная масса составляет 3-5×10<sup>5</sup>), получающиеся в присутствии 1,4-нафтохинона, содержат 3 арилокси-группы на 1000 мономерных звеньев. Введение родственных акрилатов в количествах, не превышающих 2 мас.%, а также строение инициатора, не оказывает влияние на количество активных ароматических групп в форполимере.
- 7. Полученные результаты по полимеризации на предложенной системе позволили получить полиметилметакрилат в одну стадию в интервале температур 60°-65°С с молекулярной массой (1.2-1.3)×10<sup>6</sup>. Получены лабораторные образцы органических стекол с показателями пропускания, твердости и термодеструкции, близкими к заводскому стеклу.

# Основное содержание диссертации изложено в работах:

# Статьи в журналах, рекомендованных ВАК:

- 1. <u>Вилкова А.И.,</u> Кузнецова Ю.Л., Додонов В.А., Лопатин М.А. К вопросу о радикальной полимеризации метилметакрилата в присутствии системы тринбутилбор 1,4-нафтохинон. // Вестник Нижегородского университета им. Н.И. Лобачевского. Серия Химия. 2006. Вып.1(5). С. 141-146.
- 2. Додонов В.А., Кузнецова Ю.Л., <u>Вилкова А.И.</u>, Скучилина А.С., Неводчиков В.И., Белодед Л.Н. Неконтролируемая псевдоживая радикальная полимеризация метилметакрилата в присутствии бутилзамещенных п-хинонов. // Известия Академии наук. Серия химическая. 2007. №6. С. 1119-1122.

### Тезисы докладов:

- 1. Dodonov V. A., Kuznetsova Yu. L., <u>Vilkova A. I.</u>, Scuchilina A. S. Pseudoliving polymerization of Methylmethacrilate at presence of Tri-n-butylborane and some p-Quinones. // Abstracts. Modern trends in organoelement and polymer chemistry. International Conference Dedicated to 50<sup>th</sup> Anniversary of A.N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, Moscow. 2004. P. 99.
- 2. Yu. Kuznetsova, V. Dodonov, <u>A. Vilkova.</u> Uncontrolled Pseudo-living polymerization of Methylmethacrylate. // Abstracts of European Polymer Congress. 2005. Moscow. P 1.4-25.
- 3. <u>Вилкова А.И.</u> Полимеризация метилметакрилата в присутствии системы боралкил 1,4-нафтохинон. // Тез. докл. 11-ой Международной конференции студентов и аспирантов "Синтез, исследование свойств, модификация и переработка высокомолекулярных соединений". Казань. 24-25 мая 2005. С. 27.
- 4. <u>Вилкова А.И.</u> Неконтролируемая псевдоживая радикальная полимеризация метилметакрилата в присутствии три-н-бутилбора и 1,4-нафтохинона. // Тез. докл. XI Нижегородской сессии молодых ученых. Естественно-научные дисциплины. Н.Новгород. 2006. С. 126.

- 5. <u>Вилкова А.И.</u>, Додонов В.А. Неконтролируемая псевдоживая радикальная полимеризация виниловых мономеров в присутствии системы три-н-бутилбор п-хинон. // Тез. докл. XII Нижегородской сессии молодых ученых. Естественно-научные дисциплины. Н.Новгород. 2007. С. 144.
- 6. <u>Вилкова А.И.</u>, Додонов В.А. Особенности полимеризации метилметакрилата в присутствии 1,4-нафтохинона и три-н-бутилбора. // Тез. докл. XIII Нижегородской сессии молодых ученых. Естественно-научные дисциплины. Н.Новгород. 2008. С. 145.
- 7. A. Vilkova, V. Dodonov. Polymerization of Methylmethacrilate at presence of the system Alkylborane p-Quinone. // Book of Abstracts. International Conference on Organometallic and Coordination Chemistry. September 2-8, 2008. Y 21.
- 8. Додонов В.А., Кузнецова Ю.Л., <u>Вилкова А.И.</u>, Еремина Т.В. Диффузионно-контролируемая живая радикальная полимеризация метилметакрилата. // Тез. докл. Всероссийской конференции по органической химии. Москва. 25-30 октября 2009. С. 169.

Подписано в печать 14.05.2010. Формат  $60\times84$  1/16. Бумага офсетная. Печать цифровая. Гарнитура Таймс. Усл. печ. л. 1. Тир. 100 экз. Зак. 332.

Отпечатано в лаборатории множительной техники ННГУ им. Н.И. Лобачевского. 603950. Н. Новгород, пр. Гагарина, 23.