Universidade Estadual Paulista "Júlio de Mesquita Filho"

Desenvolvimento de um sistema de loT aplicado na área agrícola

Beatriz Aiko Hukuchima Orientador: Prof. Dr. João Eduardo Machado Perea Martins

AGENDA

- Introdução
- Justificativa e Problemática
- Objetivos
- Metodologia
- Definições de desenvolvimento
- Dispositivos de hardware e software
- Desenvolvimento
- Conclusão e próximos passos

Introdução

Implementação de um Sistema com tecnologia IoT aplicada na agricultura

- Boas colheitas -> Condições ambientais favoráveis
- Tecnologia de ponta: Internet + sensores + softwares \rightarrow mapeamento e monitoramento de grandes propriedades rurais
- Recursos tecnológicos 💚 vs. Recursos financeiros 💥

- IoT Internet das Coisas
- Baixo custo e fácil implementação

Oportunidades no meio agrícola – Utilização de sensores visando monitoramento de propriedades agrícolas

Problemática e Justificativa

Problemática

- Falta de recursos financeiros
- Alto custo de máquinas inteligentes -> possibilidades imaturas (SILVA; MUXITO, 2018)
- Não acessível para todos os tipos de produtores rurais
- Não possibilidade de competição no mercado e lucratividade

Justificativa

- Tecnologia aliada à produção agrícola -> aumento de lucratividade e aprimoramento da produção
- Menos impactos ambientais e menos desperdícios
- IoT tecnologia de ponta
- Atuação em área primordial para sociedade
- Agricultura → Alta relevância econômica e social
- Colaboração com produtores rurais de pequeno e médio porte

Objetivos

Objetivo Geral

Desenvolver um sistema utilizando microcontrolador e sensores para monitoramento e melhoria de resultados em propriedades rurais de pequeno/médio porte.

Objetivos Específicos

- Identificar dados relevantes que possam impactar a melhora na produção
- Avaliar sensores e equipamentos para monitoramento
- Desenvolver sistema de hardware utilizando o microcontrolador e sensores
- Construção de página web hospedada em servidor web para envio de dados em tempo real
- Realizar o controle e a gestão de dados
- Armazenar medições para consultas e comparações futuras

Metodologia

Baseada em dois pilares:

1. Pesquisa teórica

- Estudos bibliográficos para embasamento da teoria
- Definição de ferramentas e opções de desenvolvimento do projeto

2. Pesquisa prática

- Experimentos utilizando um microcontrolador e sensores para medição de variáveis do ambiente
- Envio de dados na rede
- Criação de protótipo e de uma interface de controle dos dados

Escolha da placa

Arduíno Uno vs. NodeMCU ESP8266

Sensores

- Variáveis relevantes para o monitoramento
 - Funcionalidade
 - Custo benefício

Servidor web

Hospedagem em servidor web gratuito vs.

NodeMCU ESP8266 como servidor

Banco de dados

Banco de dados local

VS.

Banco de dados em servidor web

VS.

Banco de dados em ferramenta Google

Dispositivos de

hardware

NodeMCU ESP8266

Microcontrolador

DHT 11

Sensor de temperatura e umidade do ar

Higrômetro

Sensor de umidade do solo

LDR

Protoboard

Sensor de luminosidade

Ferramentas de

software

Google Sheets

Desenvolvimento

Protótipo

Elaboração do protótipo de hardware do projeto: junção do microcontrolador + sensores

Interface – Página web

Desenvolvimento da interface do projeto: a criação de uma página web que possibilita o acompanhamento das medições em tempo real

Integrações ferramentas Google

Utilizadas no armazenamento de dados e plotagem de gráficos

Elaboração do protótipo

Programação na Arduíno IDE

Testes unitários dos sensores

SPIFFS – Sistema de arquivos do NodeMCU

Microcontrolador conectado à rede WiFi

Servidor web

Integração - Leituras dos sensores

Envio de dados para o Google Forms

Armazenamento de dados

Registros das leituras dos sensores em um "Banco de Dados" -> Google Sheets 🛅

- Realiza a leitura dos sensores
- Envia os dados para intermediária (Google Forms)

- Recebe os dados do microcontrolador
- Integra os dados com o Google Sheets

- Recebe os dados da intermediária
- Armazena os dados permanentemente

Desenvolvimento da página web

Página inicial

- Associação com o arquivo styles.css
- Resumo dos sensores e funcionalidades
- Links para rolagem na página
- Função para atualização de valores dos sensores AJAX

Página para plotagem dos gráficos

- Associação com o arquivo styles.css
- Recebe parâmetro da página inicial
- Integração com Google Charts
- Função para plotagem do gráfico

Diagrama de integrações

TCC na prática

Conclusão e Próximos passos

Conclusão

- Protótipo possui baixo custo e possui fácil implementação
- Monitoramento e gestão dos dados
- Sistema funciona de maneira satisfatória, atingindo seus objetivos

Melhorias futuras

- Desenvolvimento do sistema para smartphones
- Adição de sensores para medições de outras variáveis
- Sensores de maior precisão

Referências

SILVA, A. M.; MUXITO, E. Agricultura inteligente – proposta de automação de pivôs e canais de irrigação com prototipação por arduino e webservice. In: . [S.I.]: III Congresso internacional Adventista de Tecnologia (CIAT), At Centro Universitário Adventista de São Paulo, 2018. p. 1,2.

ALMEIDA, D. *Sensor de umidade do solo com Arduino – Higrômetro*. 2017. Disponível em: https://portal.vidadesilicio.com.br/sensor-de-umidade-do-solo-higrometro/. Acesso em 17 de Outubro de 2020.

