Lojik Tasarım

Ders 3

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

Boolean Cebri ve Lojik Kapılar Temel Tanımlar

1. Kapalılık. İkili işlem, S'deki her eleman çiftine yine S'de tek bir elemanı karşı düşürecek bir kural belirliyorsa, S kümesi bu ikili işleme göre kapalıdır. Örneğin N doğal sayılar kümesi N = {1, 2, 3, 4,...} aritmetik toplama kurallarıyla artı (+) ikili işlemine göre kapalıdır, çünkü herhangi bir a, b ∈ N, a + b = c işlemiyle tek bir c ∈ N elde edilebilir. Buna karşılık, doğal sayılar kümesi aritmetik çıkarma kurallarıyla eksi ikili işlemine göre kapalı değildir, çünkü 2-3 = -1 ve 2, 3 ∈ N iken (-1) ∉ N'dir.

Temel Tanımlar

Birleşme Kuralı 2. Associative law. A binary operator * on a set S is said to be associative whenever

$$(x*y)*z = x*(y*z)$$
 for all $x, y, z, \in S$

Değişme Kuralı 3. Commutative law. A binary operator * on a set S is said to be commutative whenever

$$x * y = y * x$$
 for all $x, y \in S$

Birim Elemanı

4. *Identity element.* A set S is said to have an identity element with respect to a binary operation * on S if there exists an element $e \in S$ with the property that

$$e * x = x * e = x$$
 for every $x \in S$

Example: The element 0 is an identity element with respect to the binary operator + on the set of integers $I = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}$, since

$$x + 0 = 0 + x = x$$
 for any $x \in I$

Temel Tanımlar

Dağılma Kuralı

5. Inverse. A set S having the identity element e with respect to a binary operator * is said to have an inverse whenever, for every x ∈ S, there exists an element y ∈ S such that

$$x * y = e$$

Example: In the set of integers, I, and the operator +, with e = 0, the inverse of an element a is (-a), since a + (-a) = 0.

6. Distributive law. If * and · are two binary operators on a set S, * is said to be distributive over · whenever

$$x*(y\cdot z) = (x*y)\cdot (x*z)$$

Boolean Cebrinin Aksiyomatik tanımı

- **1.** (a) The structure is closed with respect to the operator +.
 - (b) The structure is closed with respect to the operator \cdot .
- **2.** (a) The element 0 is an identity element with respect to +; that is, x + 0 = 0 + x = x.
 - (b) The element 1 is an identity element with respect to \cdot ; that is, $x \cdot 1 = 1 \cdot x = x$.
- 3. (a) The structure is commutative with respect to +; that is, x + y = y + x.
 - (b) The structure is commutative with respect to \cdot ; that is, $x \cdot y = y \cdot x$.
- **4.** (a) The operator \cdot is distributive over +; that is, $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.
 - (b) The operator + is distributive over \cdot ; that is, $x + (y \cdot z) = (x + y) \cdot (x + z)$.
- **5.** For every element $x \in B$, there exists an element $x' \in B$ (called the *complement* of x) such that (a) x + x' = 1 and (b) $x \cdot x' = 0$.
- **6.** There exist at least two elements $x, y \in B$ such that $x \neq y$.

İki Değerli Boolean Cebri

x	y	$x \cdot y$
0	0	0
0	1	0
1	0	0
1	1	1

x	y	x + y
0	0	0
0	1	1
1	0	1
1	1	1

X	x '
0 1	1 0

- **1.** That the structure is *closed* with respect to the two operators is obvious from the tables, since the result of each operation is either 1 or 0 and 1, $0 \in B$.
- **2.** From the tables, we see that

(a)
$$0 + 0 = 0$$
 $0 + 1 = 1 + 0 = 1$;

(b)
$$1 \cdot 1 = 1$$
 $1 \cdot 0 = 0 \cdot 1 = 0$.

This establishes the two *identity elements*, 0 for + and 1 for \cdot , as defined by postulate 2.

3. The *commutative* laws are obvious from the symmetry of the binary operator tables.

İki Değerli Boolean Cebri

4. (a) The *distributive* law $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$ can be shown to hold from the operator tables by forming a truth table of all possible values of x, y, and z. For each combination, we derive $x \cdot (y + z)$ and show that the value is the same as the value of $(x \cdot y) + (x \cdot z)$:

X	y	Z
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$x \cdot (y + z)$
0
0
0
0
0
1
1
1

$x \cdot y$	x · z	$(x\cdot y)+(x\cdot z)$
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	1	1
1	0	1
1	1	1

- (b) The *distributive* law of + over \cdot can be shown to hold by means of a truth table similar to the one in part (a).
- 5. From the complement table, it is easily shown that
 - (a) x + x' = 1, since 0 + 0' = 0 + 1 = 1 and 1 + 1' = 1 + 0 = 1.
 - (b) $x \cdot x' = 0$, since $0 \cdot 0' = 0 \cdot 1 = 0$ and $1 \cdot 1' = 1 \cdot 0 = 0$.

Thus, postulate 1 is verified.

Boolean Cebrine İlişkin Temel Teoremler

Postulates and Theorems of Boolean Algebra

$$(a) x + 0 = x$$

(b)
$$x \cdot 1 = x$$

(a)
$$x + x' = 1$$

(b)
$$x \cdot x' = 0$$

(a)
$$x + x = x$$

(b)
$$x \cdot x = x$$

(a)
$$x + 1 = 1$$

(b)
$$x \cdot 0 = 0$$

Theorem 3, involution

$$(x')' = x$$

$$(a) x + y = y + x$$

(b)
$$xy = yx$$

(a)
$$x + (y + z) = (x + y) + z$$

(b)
$$x(yz) = (xy)z$$

(a)
$$x(y+z) = xy + xz$$

(b)
$$x + yz = (x + y)(x + z)$$

(a)
$$(x + y)' = x'y'$$

(b)
$$(xy)' = x' + y'$$

(a)
$$x + xy = x$$

$$(b) \quad x(x+y) = x$$

İşlem Önceliği

- 1. Parantez
- 2. DEĞİL (NOT)
- 3. VE (AND)
- 4. VEYA (OR)

Boolean Fonksiyonlarının Doğruluk Tabloları

$$F_1 = x + y'z$$

$$F_2 = x'y'z + x'yz + xy'$$

X	y	Z	F ₁	F ₂
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0

Boolean Fonksiyonlarının Lojik Kapılar ile Gerçeklenmesi

$$F_1 = x + y'z$$

Boolean Fonksiyonlarının Lojik Kapılar ile Gerçeklenmesi

$$F_2 = x'y'z + x'yz + xy'$$

$$x(x'+y) = ?$$

$$x + x'y = ?$$

$$(x+y)(x+y') = ?$$

$$xy + x'z + yz = ?$$

$$(x+y)(x'+z)(y+z) = ?$$

$$F_2 = x'y'z + x'yz + xy'$$

$$x'y'z + x'yz + xy' = ?$$

Fonksiyonun Tümleyeni

Aşağıdaki Boolean fonksiyonunun tümleyenini hesaplayınız

$$(A + B + C)' = (A + x)'$$
 let $B + C = x$
 $= A'x'$ by theorem 5(a) (DeMorgan)
 $= A'(B + C)'$ substitute $B + C = x$
 $= A'(B'C')$ by theorem 5(a) (DeMorgan)
 $= A'B'C'$ by theorem 4(b) (associative)

Fonksiyonun Tümleyeni

Aşağıdaki Boolean fonksiyonlarının tümleyenini hesaplayınız

$$F'_1 = (x'yz' + x'y'z)' = (x'yz')'(x'y'z)' = (x + y' + z)(x + y + z')$$

$$F'_2 = [x(y'z' + yz)]' = x' + (y'z' + yz)' = x' + (y'z')'(yz)'$$

$$= x' + (y + z)(y' + z')$$

$$= x' + yz' + y'z$$

Gelecek Hafta

Minterim (MINTERM) ve Maksterim (MAKSTERM)