REGRESSION II

Machine Learning for Autonomous Robots

Bilal Wehbe RIC

DFKI Bremen

30 novembre 2023 - Bremen, Deutschland

Linear Algebra Recap

Def.: Group, Abelian Group

Let G be a set and $\circ: G \times G \to G$ a binary operation on that set. (G, \circ) is called a group iff $\forall a, b, c \in G$:

- ▶ $a \circ b \in G$ (Closure).
- $(a \circ b) \circ c = a \circ (b \circ c) \text{ (Associativity)}.$
- $ightharpoonup \exists e \in G : a \circ e = e \circ a = a \text{ (Identity)}.$
- $ightharpoonup \forall a, \exists -a : a \circ -a = -a \circ a = e \text{ (Inverse)}.$

If furthermore $a \circ b = b \circ a$ (Commutativity) the group is called **Abelian**. **Example :** $(\mathbb{Z}, +)$.

Def.: Field

Let K be a set, +, * two binary operations on K and 0, 1 distinct elements in K. (K, +, *) is called a **field** iff:

- \triangleright (K,+) is an abelian group with neutral element 0,
- $(K \setminus \{0\}, *)$ is an abelian group with neutral element 1 and
- ► The distributive law

$$a*(b+c) = a*b + a*c$$

 $(a+b)*c = a*c + b*c$

applies for all $a, b, c \in K$.

Example : \mathbb{R} and \mathbb{C} .

Def.: Vector Space

 \mathcal{X} is called **vector space** over field \mathbb{F} iff for all $x, y, z \in \mathcal{X}$ and $a, b \in \mathbb{F}$

- $ightharpoonup (\mathcal{X},+)$ is a group.
- $ightharpoonup ax \in \mathcal{X}$ (Closure).
- ightharpoonup a(x+y)=ax+ay and (a+b)x=ax+bx (Distributivity).
- ightharpoonup a(bx) = (ab)x (Multiplicative Associativity).
- ightharpoonup 1x = x (Multiplicative Identity).

Example : For all $d \in \mathbb{N}$, \mathbb{R}^d is a vector space over \mathbb{R} .

Def.: Inner Product Space

Let \mathcal{X} be a vector space over a field \mathbb{F} with an inner product $\langle \cdot, \cdot \rangle : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ satisfying the following conditions :

- $ightharpoonup \langle x,y\rangle = \langle y,x\rangle$ (Symmetry).
- $lack a\langle x,y\rangle=\langle ax,y\rangle$ and $\langle x+y,z\rangle=\langle x,z\rangle+\langle y,z\rangle$ (Linearity).
- $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$ (Positive semi-definiteness).

for all $x, y, z \in \mathcal{X}$ and all $a \in \mathbb{F}$. A vectot space with inner product is called **inner product** space.

Kernel Functions

Def.: Kernel Function

Let \mathcal{X} be a vector space and \mathcal{F} an inner product space. A function $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a **Kernel Function** or **Kernel** iff for all $x, y \in \mathcal{X}$:

$$\kappa(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{F}}$$
$$= \langle \phi(y), \phi(x) \rangle_{\mathcal{F}}$$
$$= \kappa(y, x)$$

for a **Feature Mapping** $\phi: \mathcal{X} \to \mathcal{F}$. \mathcal{F} is then also called **Feature Space**.

- lacktriangle To prove, that some κ is a Kernel Function, it is sufficient to show, that such a ϕ exists.
- ▶ This is usually hard, it is common, that neither ϕ not \mathcal{F} are explicitly known.
- ▶ We will now take a look at some proofs related to kernel functions. They are mostly based on **Construction** from the linear kernel.
- ► Alternatively we can prove, that the **Kernel-Matrix** of a kernel is positive semi-definite (we get to that).

First some tools

Def.: Kernel Matrix, Gram Matrix

The **Kernel Matrix** or **Gram Matrix** K is created, by applying a kernel κ to all pairs of vectors in a set $\{x_i\}_{i=1}^n$:

$$K := \begin{pmatrix} \kappa(x_1, x_1) & \kappa(x_1, x_2) & \cdots & \kappa(x_1, x_n) \\ \kappa(x_2, x_1) & \kappa(x_2, x_2) & \cdots & \kappa(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ \kappa(x_n, x_1) & \kappa(x_n, x_2) & \cdots & \kappa(x_n, x_n) \end{pmatrix}$$

Def.: Positive-definiteness for Matrices

Let M be a $n \times n$ square matrix. M is called positive definite iff :

$$x^{\mathsf{T}} M x > 0$$

and positve semi-definite iff:

$$x^{\mathsf{T}} M x \geq 0$$

for all *n*-vectors x. For a positive (semi-) definite Matrix all Eigenvalues are > 0 (≥ 0).

Prop.:

All Kernel Matrices are positve semi-definite.

Proof: Let K be a kernel matrix for any dataset $\{x_i\}_{i=1}^n$ and kernel κ . Then for any $y \in \mathbb{R}^n$ it holds:

$$y^{\mathsf{T}} \mathcal{K} y = \sum_{i,j} y_i \kappa(x_i, x_j) y_j$$

$$= \sum_{i,j} y_i \langle \phi(x_i), \phi(x_j) \rangle_{\mathcal{F}} y_j$$

$$= \sum_{i,j} \langle y_i \phi(x_i), y_j \phi(x_j) \rangle_{\mathcal{F}}$$

$$= \left\langle \sum_i y_i \phi(x_i), \sum_j y_j \phi(x_j) \right\rangle_{\mathcal{F}}$$

$$\geq 0$$

Proposition:

For any vector space $\mathcal X$ which is also an inner product space, the **linear kernel** $\kappa: \mathcal X \times \mathcal X \to \mathbb R$

$$\kappa(x,y) := \langle x,y \rangle$$

Proof : If $\mathcal X$ is an inner product space, κ obviously suffices the kernel properties.

The feature map is the identity map $\phi(x) = x$, the feature space is \mathcal{X} itself.

Proposition:

Let κ be a kernel, then for all $a \in \mathbb{R}, a > 0$

$$\omega := a\kappa$$

is also a kernel.

Proof: Let K be a kernel matrix for any dataset $\{x_i\}_{i=1}^n$ and kernel κ , and O accordingly for kernel ω . Then for any $y \in \mathbb{R}^n$ it holds:

$$\omega = a\kappa \Rightarrow O = aK$$
$$\Rightarrow y^{\mathsf{T}}Oy = ay^{\mathsf{T}}Ky \ge 0$$

The related feature space of ω is the feature space of κ scaled by \sqrt{a} .

Proposition

Let κ_1 and κ_2 be kernels. Then

$$\kappa = \kappa_1 + \kappa_2$$

is also a kernel.

Proof : Let K, K_1, K_2 be kernel matrices for $\kappa, \kappa_1, \kappa_2$ for a dataset of size n and $y \in \mathbb{R}^n$, then :

$$\kappa = \kappa_1 + \kappa_2 \Rightarrow K = K_1 + K_2$$

$$\Rightarrow y^\mathsf{T} K y = y^\mathsf{T} K_1 y + y^\mathsf{T} K_2 y \ge 0$$

The related feature space of κ is then $\left(\phi(x)\right) = \begin{pmatrix} \phi_1(x) \\ \phi_2(x) \end{pmatrix}$.

Def.: Spectral Decomposition

Any quadratic and symmetric $n \times n$ matrix M can be written as :

$$M = \sum_{i=1}^n \lambda_i v_i v_i^{\mathsf{T}}$$

where λ_i are the Eigenvalues and v_i the corresponding Eigenvectors of M. This is called the **Spectral Decomposition** of M.

Proof: We observe:

- The eigenvectors for different eigenvalues are linearly independent, therefore any $n \times n$ matrix N satisfying $Nv_i = Mv_i$ for all $i \in \{1, ..., n\}$ is necessarily indetical to M.
- lacktriangle Eigenvectors for different eigenvalues are orthogonal, therefore $\langle v_i, v_j \rangle = 0$ for all $i \neq j$.

Therefore for any *j*

$$\left(\sum_{i=1}^{n} \lambda_i v_i v_i^{\mathsf{T}}\right) v_j = \sum_{i=1}^{n} \lambda_i v_i v_i^{\mathsf{T}} v_j = \lambda_j v_j = M v_j$$

and therefore

$$\sum_{i=1}^n \lambda_i v_i v_i^{\mathsf{T}} = M$$

Proposition

Let κ_1 and κ_2 be kernels. Then

$$\kappa = \kappa_1 \cdot \kappa_2$$

is also a kernel.

Proof: Let K, K_1, K_2 be kernel matrices for $\kappa, \kappa_1, \kappa_2$ for a dataset of size n and $y \in \mathbb{R}^n$. \odot is the element-wise product for matrices:

$$= \sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\mathsf{T}} \odot \sum_{j=1}^{n} \gamma_{j} w_{j} w_{j}^{\mathsf{T}}$$

$$= \sum_{i=1}^{n} \sqrt{\lambda_{i} \gamma_{j}} (v_{i} \odot w_{j}) (v_{i} \odot w_{j})^{\mathsf{T}}$$

 $\kappa = \kappa_1 \cdot \kappa_2 \Rightarrow K = K_1 \odot K_2$

Which is again a positive semi-definite matrix.

The related feature space : $(\phi(x))_{..} = (\phi_1(x))_{..} \cdot (\phi_2(x))_{..}$

Lemma

$$\sum_{i,j=1}^n \sqrt{\lambda_i \gamma_j} (v_i \odot w_j) (v_i \odot w_j)^{\mathsf{T}}$$

is a positive semi-definite matrix.

Proof: For any $n \times n$ matrix of the form $M = \sum_i x_i x_i^\mathsf{T}$ with $x_i \in \mathbb{R}^n$ for all $y \in \mathbb{R}^n$

$$y^{\mathsf{T}} M y = y^{\mathsf{T}} \left(\sum_{i} x_{i} x_{i}^{\mathsf{T}} \right) y$$
$$= \sum_{i} (y^{\mathsf{T}} x_{i})^{2}$$
$$\geq 0$$

Proposition:

Let κ be a kernel and $p:\mathbb{R} \to \mathbb{R}$ a polynomial with non-negative coefficients.

$$\omega := p(\kappa)$$

is also a kernel.

Proof : Follows from the previous oberservations of the sum, product and scalar product for kernels. \Box

Proposition

Let κ be a kernel.

$$\omega = e^{\kappa}$$

is also a kernel.

Proof: Part of the exercise sheet!

