- If L is a regular language then L\* is also <u>regular.</u>
- Proof by construction
- Given L is RL so there exists an NFA M such that L(M)=L
- Suppose NFA  $M=(Q, \Sigma, \delta, q_0, q_f)$
- $M^*=(Q, \sum, \delta', q_0, q_f)$  such that  $L(M^*)=L(M)^*=L^*$ Now we construct a NFA

- We assume M has a single initial state q<sub>0</sub> and single final state q<sub>f</sub>
  - Note we can convert any NFA with multiple final states to an NFA with single final states by
- Creating a new final state  $q_f$  and adding  $\epsilon$ -transition from old final states to new final state  $q_f$ . Make old final states non final.
- Idea for M\*
- 1. Add  $\epsilon$ -transition from  $q_f$  to  $q_0$ .  $\delta'(q_f, \epsilon) = q_0$
- 2. Add ε-transition from q<sub>0</sub> to q<sub>f</sub>. δ'(q<sub>0</sub>, ε)=q<sub>f</sub>
  So δ' has all the transition of M and above two εtransitions.



If there exist a string w ε L, we will have a sequence of transitions from initial to final state in M



If there exist a string w1 ε L, we will have a sequence of transitions from initial to final state in M\*

And this process can be repeated infinite times. Hence  $M^*$  can accept  $L^1, L^2, L^3...$ Now after reaching final state we can make  $\epsilon$  transition to initial state and M\* can accept L<sup>0</sup> or ε. So clearly L(M\*)=L<sup>0</sup>UL<sup>1</sup>UL<sup>2</sup>UL<sup>3</sup>U.....=L\* Read another string w2 in L. So M\* can accept L.L (L2)

- If L is a regular language then L<sup>R</sup> is also redular.
- Definition of Reversal operation
- 1. Suppose we have a
- string w=a₁a₂a₃....an₁an then reversal of string w is defined as wR=anan₁....a₃a₂a₁
- Suppose we have a language L then reversal of language L is defined as
  - $L^{R}=\{w^{R}|w\epsilon L\}$
- In other words by reversing each and every string in the language L we get reversal of language L<sup>R</sup>

- If L is a regular language then L<sup>R</sup> is also <u>regular.</u>
- Proof by construction
- Given L is RL so there exists a NFA M such that L(M)=L
- Suppose NFA M=(Q,∑,5,q₀,q₁)
- $M^R=(Q, \sum, \delta', q_f, q_0)$  such that  $L(M^R)=L(M)^R=L^R$ Now we construct an NFA

- We assume M has a single initial state q<sub>0</sub> and single final state q<sub>f</sub>
  - Note we can convert any NFA with multiple final states to an NFA with single final states by
- Creating a new final state  $q_f$  and adding  $\epsilon$ -transition from old final states to new final state  $q_f$ . Make old final states non final.
- Idea for M<sup>R</sup>
- 1. Interchange final state q<sub>f</sub> and initial state q<sub>0</sub>.
- 2. Reverse the direction of each and every transition.
- $\bullet$   $\delta'(q,a)=p$  if  $\delta(p,a)=q$



If there exist a string w ε L, we will have a sequence of transitions from initial to final state in M



If there exist a string w ε L, we will have a sequence of transitions from initial state qo to final state qf in M

Now for a string w<sup>R</sup>, we will have a sequence of transitions from initial state q<sub>f</sub> to final state q<sub>0</sub> in M<sup>R</sup> So  $L(M^R)=L^R$