

CENTRUL NAȚIONAL DE POLITICI ȘI EVALUARE ÎN EDUCAȚIE

VII. Országos Magyar Matematikaolimpia XXXIV. EMMV

megyei szakasz, 2025. február 1.

XI. osztály

1. feladat. Adott az $(a_n)_{n>0}$ számsorozat, amelyre

$$a_0 = 1$$
 és $a_0 + a_1 + a_2 + \dots + a_n = a_n a_{n+1}$,

bármely $n \in \mathbb{N}$ esetén.

- a) Határozd meg az a_1, a_2, \ldots, a_{10} értékét!
- b) Határozd meg a sorozat általános tagját! Bizonyítsd is be a kapott eredményt!
- **2.** feladat. a) Adj példát olyan $A \in \mathcal{M}_2(\mathbb{R})$ mátrixra, amelyre $A^2 + I_2 = O_2$.
- b) Igazold, hogy végtelen sok olyan $A \in \mathcal{M}_2(\mathbb{R})$ mátrix létezik, amelyre $A^2 + I_2 = O_2$.
- c) Igazold, hogy végtelen sok olyan $B,C\in\mathcal{M}_2(\mathbb{R})$ invertálható mátrixokból álló páros létezik, amelyre

$$B^2 \neq I_2, C^2 \neq I_2$$
 és $B^2 + C^2 = O_2$.

3. feladat. Adott az $(x_n)_{n\geq 1}$ pozitív tagú sorozat, amelyre

$$x_1 = 3$$
 és $3x_{n+1}^2 \cdot x_n = 6 + x_n^3$, $\forall n \in \mathbb{N}^*$.

- a) Igazold, hogy az $(x_n)_{n\geq 1}$ sorozat konvergens, majd határozd meg a határértékét!
- b) Számítsd ki a

$$\lim_{n \to \infty} \left(n \cdot x_n^3 - 3n \right)$$

határértéket!

- 4. feladat. Egy $n \times 5$ -ös téglalapot 1×5 -ös téglalapokkal födünk le. Jelölje a_n a lefödések számát.
- a) Szerkeszd meg az összes lehetséges lefődést, ha $n \in \{1, 2, 3, 4, 5, 6, 7, 8\}$.
- b) Vezess le egy rekurziót az $(a_n)_{n\geq 1}$ sorozatra!
- c) Határozd meg az $\{a_1, a_2, a_3, \dots, a_{2025}\}$ halmazban az 5-tel osztható számok számát!