Solution to Assignment 1, Problem 1(a)

Akash Rana

Softmax Prove that *softmax* is invariant to constant offsets in the input, that is, for any input vector x and any constant c,

$$softmax(\mathbf{x}) = softmax(\mathbf{x} + c), \tag{1}$$

where $(\mathbf{x} + c)$ means adding the constant c to every dimension of \mathbf{x} .

$$\operatorname{softmax}(\mathbf{x})_j = \frac{e^{x_j}}{\sum_{k=1} e^{x_k}} \tag{2}$$

Solution:

softmax(
$$\mathbf{x} + c$$
)_j = $\frac{e^{(x_j + c)}}{\sum_{k=1} e^{(x_k + c)}}$ (3)
= $\frac{e^c}{e^c} \frac{e^{(x_j)}}{sum_{k=1} e^{(x_j)}}$

$$= \frac{e^c}{e^c} \frac{e^{(x_j)}}{sum_{k-1}e^{(x_j)}} \tag{4}$$

$$= \operatorname{softmax}(\mathbf{x})_j \tag{5}$$

Solution to Assignment 1, Problem 1(b)

Akash Rana

Given an input matrix of N-rows and d-columns, compute the softmax prediction for each row. Write your implementation in q1_softmax.py. You may test by executing python q1_softmax.py.

Note: The provided tests are not exhaustive. Later parts of the assignment will reference this code so it is important to have a correct implementation. Your implementation should also be efficient and vectorized whenever possible. A non-vectorized implementation will not receive full credit!

```
import numpy as np
def softmax(x):
#x.shape by default gives column value
    if len(x.shape) > 1:
        # Matrix
        ### YOUR CODE HERE
        c = np.max(x, axis=1).reshape(-1,1) #-1 here means, internally
numpy is just calculating, to get the missing dimension.
        x = np.exp(x-c) / np.sum(np.exp(x-c), axis=1).reshape(-1,1)
        print (np.shape(x))
        ### END YOUR CODE
    else:
        # Vector
        ### YOUR CODE HERE
        c = np.max(x)
        x = np.exp(x-c) / np.sum(np.exp(x-c))
        ### END YOUR CODE
    assert x.shape == orig_shape
    return x
```

Solution to Assignment 1, Problem 2(a)

Akash Rana

Derive the gradients of the sigmoid function and show that it can be rewritten as a function of the function value (i.e. in some expression where only $\sigma(x)$, but not x, is present). Assume that the input x is a scalar for this question.

Denote the sigmoid function as $\sigma(z)$,

$$\sigma(z) = \frac{1}{1 + e^{-z}},\tag{6}$$

Using chain rule,

$$\sigma'(z) = \frac{-1}{(1+e^{-z})^2} \times (-e^{-z})$$

$$= \frac{1}{1+e^{-z}} \left(\frac{e^{-z}}{1+e^{-z}}\right)$$

$$= \left(\frac{1}{1+e^{-z}}\right) \left(\frac{1+e^{-z}}{1+e^{-z}} - \frac{1}{1+e^{-z}}\right)$$

$$= \sigma(z)(1-\sigma(z))$$

Solution to Assignment 1, Problem 2(b)

Akash Rana

Derive the gradient with regard to the inputs of a softmax function when cross entropy loss is used for evaluation, i.e. find the gradients with respect to the softmax input vector θ , when the prediction is made by $\hat{y} = \operatorname{softmax}(\theta)$. Remember the cross entropy function is

$$CE(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{i} y_i \log \hat{y}_i \tag{7}$$

where y is the one-hot label vector, and \hat{y} is the predicted probability vector for all classes.

Hint: you might want to consider the fact many elements of y are zeros, and assume that only the k-th dimension of y is one.

Starting with, cross entropy