DENGAL: PREDICTING DISEASE SPREAD

OVERVIEW

Using environmental data collected by U.S. Federal Government agencies, can you predict the number of dengue fever cases reported each week in San Juan, Puerto Rico and Iquitos, Peru?

- Dengue fever is a mosquito-borne disease that occurs in tropical and sub-tropical parts of the world
- Symptoms of dengue fever can range from mild to severe, and in severe cases can lead to death
- Climate change is likely to produce distributional shifts that will have significant public health implications worldwide
- Dengue fever has been spreading in recent years, with many cases now occurring in Latin America
- Predicting the number of dengue cases each week in specific locations can help improve research initiatives and resource allocation to help fight life-threatening pandemics.

OBJECTIVE

Accurate dengue predictions would help public health workers, and people worldwide take steps to reduce the impact of these epidemics. However, predicting dengue is a hefty task that requires consolidating different data sets on disease incidence, weather, and the environment.

Data

- The goal is to predict total cases for each (city, year, weekofyear) in the test set.
- The test set has data for two cities, San Juan and Iquitos, spanning 5 and 3 years, respectively.
- The test data are sequential and non-overlapping with any of the training data.
- The features include climate data, precipitation measurements, dew point temperature, air temperature, relative humidity, specific humidity, and vegetation index.

Group C

Ganegoda Appuhamilage Akila Shashith Ganegoda M.L.N.Kaushalee K. G. Inuka Manmitha R Nilakshan S.P.A.G.T Rajapaksha

(Resource: https://www.drivendata.org/competitions/44/dengai-predicting-disease-spread/page/80/)