DATA SCIENCE SYD DAT 6

Week 3 – Logistic Regression Monday 24th October AGENDA 2

- 1. Classification
- 2. What is Logistic Regression?
- 3. Why use Logistic Regression
- 4. Lab
- 5. Homework Review

CLASSIFICATION

SUPERVISED LEARNING - REGRESSION & CLASSIFICATION

If the y variable is numeric then we have a regression problem - we are trying to predict a continuous number

If the y variable is a category (for example trying to predict a type of flower) the we have a classification problem - we are trying to classify what group that y belongs to.

$$Y = egin{cases} 0 & ext{if No} \ 1 & ext{if Yes.} \end{cases}$$

WHAT IS LOGISTIC REGRESSION?

LOGISTIC REGRESSION

We want to build a classifier that correctly identifies which class our target variable y belongs to given our input variable x.

Why not use the linear regression model?

$$y=X\beta+\epsilon$$

LOGISTIC REGRESSION

- If we only have a binary response variable (0 or 1) it might make sense... BUT we can have our estimated value of y > 1 or y < 0 ... which doesn't make sense.
- What of the case where we have more than one class? Linear regression cannot easily handle these cases.
- We want a classification method that can handle these cases and give us results we can easily interpret.

LOGISTIC REGRESSION

$$p(Y=1|X) = \beta_0 + \beta_1 X.$$

- This is a good starting point but we still have the problem of p(Y) being outside the 0,1 range.
- We need to model p(Y=1|X) using a function that gives outputs between 0 and 1.
- Basically we want something that looks like the following

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$$

- This is the logit function,
- We can see that it this function is linear in X
- → $\frac{p}{1-p}$ is called the 'odds' and can be any value from 0 to ∞
- $\log \left(\frac{p}{1-p}\right)$ is called the 'log-odds' or 'logit'

ESTIMATION OF PARAMETERS

Ordinary Least Squares does not work now that the function includes the logic transformation

A common method is **Maximum Likelihood**:

This likelihood gives the probability of the observed zeros and ones in the data. We pick $\beta 0$ and $\beta 1$ to maximise the likelihood of the observed data.

MULTICLASS LOGISTIC REGRESSION

- Also known as 'multinomial' logistic regression.
- Concepts applies to other classification algorithms.

One vs Rest

DEMONSTRATION

SYNCHING YOUR FORK WITH THE COURSE REPO

- 1. re-name your labs with lab_name.<yourname>.ipynb (to prevent a conflict)
- 2. cd <path to the root of your SYD_DAT_6 local repo>
- 3. commit your changes ahead of sync
 - git status
 - git add.
 - git commit -m "descriptive label for the commit"
 - git status
- 4. download new material from official course repo (upstream) and merge it
 - git checkout master (ensures you are in the master branch)
 - git fetch upstream
 - git merge upstream/master

Confusion Matrix: table to describe the performance of a classifier

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
YES	5	100

Example: Test for presence of disease NO = negative test = False = 0 YES = positive test = True = 1

- How many classes are there?
- How many patients?
- How many times is disease predicted?
- How many patients actually have the disease?

$$sensitivity = \frac{number\ of\ true\ positives}{number\ of\ true\ positives + number\ of\ false\ negatives}$$

$$specificity = \frac{number\ of\ true\ negatives}{number\ of\ true\ negatives + number\ of\ false\ positives}$$

n=165	Predicted: NO	Predicted: YES	
Actual: NO	TN = 50	FP = 10	60
Actual: YES	FN = 5	TP = 100	105
	55	110	

False Positive Rate:

- When actual value is negative, how often is prediction wrong?
- FP / actual no = 10/60 = 0.17

Sensitivity:

- When actual value is **positive**, how often is prediction **correct**?
- TP / actual yes = 100/105 = 0.95
- "True Positive Rate" or "Recall"

Specificity:

- When actual value is **negative**, how often is prediction **correct**?
- TN / actual no = 50/60 = 0.83

	Predicted condition				
	Total population	Predicted Condition positive	Predicted Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
True condition	condition positive	True positive	False Negative (Type II error)	True positive rate (TPR), Sensitivity, Recall = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	$\begin{aligned} & \text{False negative rate (FNR),} \\ & \text{Miss rate} = \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}} \end{aligned}$
	condition negative	False Positive (Type I error)	True negative	False positive rate (FPR), Fall-out $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	True negative rate (TNR),
	Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	Positive predictive value (PPV), $\frac{\text{Precision}}{\sum \text{True positive}}$ = $\frac{\sum \text{True positive}}{\sum \text{Test outcome positive}}$	$= \frac{\Sigma \text{ False omission rate (FOR)}}{\Sigma \text{ Test outcome negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR) $= \frac{LR+}{LR-}$
		False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$	Negative predictive value (NPV) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$	

Type I error (false positive)

Type II error (false negative)

DATA SCIENCE PART TIME COURSE

LAB

DISCUSSION TIME

- Review of last week
- Further Reading for Logistic Regression
- Check in with homework/course project

DATA SCIENCE - Week 3 Day 2

DISCUSSION TIME

An Introduction to Statistical Learning

→ Chapter 4 - Logistic Regression

Logistic Regression applied to loan applications

https://github.com/nborwankar/LearnDataScience

Odds Ratio in Logistic Regression

http://www.ats.ucla.edu/stat/mult_pkg/fag/general/odds_ratio.htm

DISCUSSION TIME

Homework/Course Project

- Work on course project ideas
- Read