S[
$$\psi$$
, h] = $\int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int d^{4}x \ \bar{\psi}(\not p + m) \ \psi$
 $\int_{(-ie)^{m}}^{\infty} \int_{(-ie)^{m}}^{\infty} S[\psi, h] = \int_{(-ie)^{m}}^$

There are two (equivelent) ways to see where this extra minus sign romes from.

(1) Suppose <4(x) \$1/3) > = S(x, y) is the Piece propagator in position space

Then (4(x) \$19)7 = - (\$\bar{Y}(y) \(4(x)\) = - (\$\bar{Y}(y) \(4(x)\)) = - (

cherefore in position space we'd get a term (-ie) ddx Vox Y(x) [ddy \$A Y 14) from expanding the fermion interactions. Joining the electron fields with propagators und one of these terms is out of order > we get a minus sign.

Mone generally

$$\bar{\psi} \times \psi(x) \dots \bar{\psi} \times \psi(x_n)$$

1 Alternatively, if me perform the path integral over electrons, we get

$$\int DAD\overline{V}DV e^{-S[A,\overline{V},Y]} = \int DA \det(\overrightarrow{p}+m) e^{-\frac{1}{4}\int F^2 dx}$$

if bosons,
would get Set instead

$$= \int DA de^{-Sets(A)} \quad \text{when} \quad Sets[A] = \frac{1}{4} \int F^2 dx - \ln det(\not D + m)$$

$$= \frac{1}{4} \int F^2 dx - \ln det(\not D + m)$$

and parturbatively, we get ln (\$ +m) = ln (\$ +m + ie \$)

Non- Abelian Gauge Theories

Non-Abelian gauge theories are based on saying our morld is a principal G bundle. This is a manifold P together with a projection

π: P → M for some other manifold M, where π-1(x) = G (a lie group)

Go is often called the <u>structure group</u> or the <u>sange group</u>.

(e.g. Maxwell theory has G = U(1), while SM has $G = SU(3) \times SU(2) \times U(1)$)

There's a right action of G = W(1) which preserves the fibres, i.e. given $g \in G$, we have $S = P \rightarrow Pg$ where T(pg) = T(p)

The simplest examples are to take $M=S^4$ and G=IR. Then we have two possible IR -bundles: the cylinder and the morbin strip

For an open set UCM, we have a local trivialisation &

Suppose {Ua} are a collection of open sets and ne are given trivialisations P_{α} on each Ua. We have that $P_{\alpha}: p \longrightarrow (x, \varphi_{\alpha}(p))$ and similarly C_{Stonp} element

Ip: p' - (x', 4p(p)) Non suppose Ua and Up overlap

Up Up then on the intersection we can compare the two trainialisations

Since $\Phi_{\alpha}(p)$, $\Phi_{\beta}(p) \in G$, we must have $\Phi_{\beta}(p) = \Phi_{\alpha}(p) t_{\alpha\beta} \quad \text{for some } t_{\alpha\beta} \in G.$

If we want to compare these trivialisations throughout the onescapping set, top may need to very with x & UKAUp. We define a transition of

 $T_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \rightarrow G$ that obeys $t_{\alpha\beta}^{-1}(x) = t_{\beta\alpha}(x) \forall x \in U_{\alpha} \cap U_{\beta}$ $x \rightarrow t_{\alpha\beta}(x)$

and also tap(x) tpr(x) = tar(x) Y x & Uan Upn Ur

In physics, the most application is when $M = \mathbb{R}^n$ and dM the U_{∞} are the whole space, so we are just comparing different trivialisations of $\pi^{-1}(\mathbb{R}^n) \cong \mathbb{R}^n \times \mathbb{G}$

- For example, in EM, $M \subseteq \mathbb{R}^{3, 1}$, G = U(1), so our local trivialisations are a choice of gauge and transition f^{∞} s are gauge transformations $top(x) = e^{i\lambda ap(x)} \quad (Y(x) \longrightarrow e^{i\lambda ap(x)} Y(x))$
- In GR, we take G = GL(n,R) if dim M = n Then transition $f^{\mu}s$ allow us to change coordinates $top(x) = \frac{\partial y^{\nu}(x)}{\partial x^{\mu}(x)}$

Keiter bundles

To a Lie group g, we often went to study its representations. A representation is a map $\rho: G \to Mer(K, L)$ where $\rho(gh) = \rho(g) \rho(h)$

Ricking a represent for a principle G bundle gives a vector bundle of rank r.

This is $E \xrightarrow{\pi} M$ st. we have local trivialisation $\Phi : E|_{\pi i u} \to U \times C^r$ and trensition $\int_{-\infty}^{\infty} T_{\alpha \beta} : U_{\alpha} \cap U_{\beta} \to Mat(r, C)$

If the original P has structure group G (GL (Γ , C) then the trensition $f^{\Gamma}s$ preserve some extra structure.

If $\mathfrak{S}u(r) = G$, then the transition f^{μ} preserve the inner product $(Z_1, Z_2, 7) = \sum_{i} Z_i^{i} Z_i^{i}$

If G = SU(r), then the transition f^{2} also have unit det.