操作系统原理

第09章文件系统

- ~ 内容
 - u文件系统的概念
 - u文件的逻辑结构和存取方法
 - u文件的物理结构
 - u文件存储空间管理
 - u文件目录
 - u文件的安全
 - u文件操作
- ~ 重点
 - u文件逻辑结构
 - u文件物理结构
 - u文件分配表

1 文件系统的概念

- ~ 定义
- ~ 分类
- ~ 属性
- ~ 文件系统

文件的定义

- ~ 文件是系统中信息存放的一种组织形式
 - u文件是一组具有逻辑意义的若干个信息项的集合, 并赋以一个文件名让用户存取。
 - u信息项可以是字节,可以是某个结构化数据。
 - u用户通过读写指针来存取文件的信息项。

文件系统

文件分类

- Ⅰ以文件的用途分类
 - u系统文件
 - u指用操作系统的执行程序和数据组成的文件,这种 文件不对用户开放,仅供系统使用。
 - u库文件
 - u指系统为用户提供的各种标准函数,标准过程和实 用程序等。用户只能使用这些文件,而无权对其进 行修改。
 - u用户文件
 - u由用户的信息组成的文件,如源程序文件,数据文件等。这种文件的使用和修改权均属于用户

- ~ 从按文件的操作保护分类
 - u只读文件 n只允许进行读操作。
 - u读写文件 n允许进行读写操作。
 - u不保护文件 n不作任何操作限制。

- ~ 按文件的性质分类
 - u普通文件
 - n指一般的用户文件和系统文件。
 - u目录文件
 - n指由文件目录项组成的文件。
 - u特别文件
 - n把设备作为文件统一管理和使用,并为区别起见, 把设备称为特别文件。

~ 文件属性

- u 指定文件的类型、操作特性 和存取保护等一组信息。
- u 文件的属性一般存放在文件 的目录项中。
- p MS-DOS系统中,文件属性占目录项的一个字节,在这个字节中,01表示文件仅读,02表示隐含文件等。

2 文件的逻辑结构和存取方法

- ~ 文件的结构(文件组织)
 - u(用户的观点)逻辑结构
 - n为用户提供逻辑结构清晰、使用方便的逻辑文件。
 - n强调文件信息项的构成和用户存取方式
 - u(实现的观点)物理结构
 - n主要研究驻留在存储设备上的文件结构
 - n合理利用储存空间,缩短1/0存取时间

- ~ 文件的逻辑结构
 - u流式文件
 - u记录文件

- ~ 流式文件
 - u特点

n信息单位是字节或字,其长度是所含字节的数量。

u优点

n文件中无需额外的说明和控制信息

n节省存储空间

u补充

n源程序、可执行程序、库函数等文件采用。

n操作系统中,文件都被看成流式文件。

n文件中任何信息的含义都由用户级程序解释。

~ 记录式文件

u概念

- n一种结构化文件,由若干个记录组成
 - n 一个学生记录【姓名,学号,性别,籍贯】
 - n 学生花名册: 全体学生记录组成的一个文件
- n若文件中记录的长度相等,则称为定长记录文件
- n若文件中的记录长度不相等,则称为变长记录文件。

u特点

- n使用不方便,尤其是变长记录文件。
- n文件中有说明记录长度的信息,浪费存储空间。
- p现代操作系统等都取消了记录式文件。

~ 记录式文件

u左边:定长记录: R0, R1, ...

u右边:变长记录:Lx + Rx:长度+内

容

- ~ 文件的存取方法
 - u顺序存取
 - u随机存取

- ~ 顺序存取
 - u按文件信息单位排列的顺序依次存取。
 - p当打开文件时,文件的读写指针指向第1个信息单位(字节或记录),每存取1个信息单位后读写指针自动加1而指向下一个信息单位。

- ~ 随机存取
 - u概念
 - n直接存取
 - n每次存取操作时必须先确定存取的位置。
 - u特点
 - n对流式或定长记录文件比较容易确定存取位置。
 - n对不定长的记录式文件比较麻烦
 - n 从首记录开始顺序查询,直到找到要存取的记录为止。
 - n 建立索引
 - n索引可作为文件的一部分也可单独建立索引文件。

3 文件的物理结构

- ~ 概念
 - u物理结构是指文件在存储设备上的存储方式。
- ~ 类型
 - u连续文件
 - u串联文件
 - u索引结构

- ~ 连续文件
 - u概念
 - n文件全部信息连续存放在外存若干个存储块中。
 - n磁带上的文件一般采用连续结构

~ 连续文件

文件目录

~ 特点

- u 建立文件时要求用户给出文件的最大长度,以便系统为文件分配 足够的存储空间,并在相应表格中登记文件的起始位置和长度。
- ~ 优点
 - u 简单
 - u 支持顺序存取和随机存取
 - u 顺序存取速度快
 - u 所需的磁盘寻道次数和寻道时间最少
- ~ 缺点
 - u 文件不易动态增长
 - n预留空间:浪费
 - n重新分配和移动
 - u 不利于文件插入和删除
 - u 外部碎片问题
 - n存储压缩技术

- ~ 串联文件
 - u 概念
 - n非连续的结构
 - n文件信息存放在不连续的存储块中,每个存储块有一个指针(next),指向下一个存放信息的存储块

参曙光.软件学院.华中科技大学

~ 特点

u 串联文件适用于顺序存取。因此要随机地存取信息就较为困难。

~ 优点

- u提高了磁盘空间利用率,不存在外部碎片问题
- u有利于文件插入和删除
- u有利于文件动态扩充

~ 缺点

- u存取速度慢,不适于随机存取
- u链接指针占用一定的空间
- u 可靠性问题,如指针出错

WINDOWS 文件系统——FAT

- ~ FAT概念: File Allocation Table
- ~ FAT文件系统
- ~ FAT16, FAT32

文件分配表(FAT, File Allocation Table)

串联文件的存储特点:

每个存储块中有一个链接字(next)指向下一存储块

文件分配表(FAT, File Allocation Table)

- ~ 将原来分散在存储块中的链接字(next)集中放到一个表中。
- ~ 表和存储设备对应:表的每个元素按序存放相应存储块中的链接字next(标示文件下一存储块的位置)。
- ~ 该表和文件目录结合使用。文件目录指出文件第一块的位置,而其余位置由FAT指示。

~ 文件分配表的特点

u FAT要占用存储空间。若盘的容量较大,存储块数目较 多,则FAT的表项很多,FAT将占用较多存储空间。

n 若存储块有 2^N 块,FAT有 2^N 个元素,每个元素需要N bi t 宽

u在进行文件访问时,需要通过FAT来访问文件。如果 FAT过大,可能在内存中装不下整个FAT,这样就会造 成若要读某块文件信息时,还要先去外存上读FAT,影 响使用效率。

FAT 0 1 2 3 4 5 6 7 8 N-2 N-1

WINDOWS FAT系统

- ~ 扇区和簇(cluster)
 - u扇区

n磁盘上最小可寻址存储单元(512字节)

u簇(cluster) 存储块

n设备的最小存取单元,固定数量的扇区。

u360KB磁盘: 簇大小为2个扇区(1,024字节);

u10MB硬盘: 簇大小为8个扇区(4,096字节);

u小型闪存设备: 16或32个扇区(8KB或16KB)

u2GB以上硬盘:有64个扇区簇(32KB)。

WINDOWS FAT系统

- ~ FAT的表项数要足够大,应和簇数(即存储块数)一样
- ~ 表项宽度(即NEXT的位数)要足够宽以能标识每个 FAT12

u1字节(8位): 28=256簇

u 1.5字节(12位): 212=4,096簇

u 2字节(16位): 216=64K簇

n若每簇64扇区,磁盘容量=64K*64*512 = 2GB

磁盘容量 = 簇数 × 簇大小 = 表项数 ×簇大小

FAT16

~ FAT16文件系统

- u以簇为单位管理磁盘
- u簇是扇区的倍数,是2的次幂,最大64扇区 n扇区512B,簇32KB(64个扇区)
- u表项宽度2字节,即16Bit,若每簇64扇区则可以表示的磁盘最大达2G。

uFAT16格式化的磁盘

n组成:启动扇区,2个FAT表(有备份),根目录,其它目录和文件。

启动扇区	FAT1	FAT2	根目录	其他目录 和文件
------	------	------	-----	-------------

FAT16格式化后的磁盘结构

~FAT16文件系统的组织

- ~ FAT 表文件系统中同时使用"扇区地址"和"簇地址"两种地址管理方式。只有数据区使用"簇"进行管理(根目录夹除外)。
- **FAT 文件系统的"引导扇区"**位于**扇区0**, 其中部分区域BPB (BISO参数块, BIOS Parameter Block) 记录着文件系统在磁盘上的起始位置、大小、FAT 表的数量及大小等相关信息。

FAT16格式化后的磁盘结构

~ FAT_PARA结构,位于扇区0

BIOS Parameter Block

Offset	Title		Value
7E00	JMP instruction	EB 3C 90	
7E03	OEM	MSDOS5.0	OEM厂商代号
BIOS Parai	meter Block		
7E0B	Bytes per sector	512	毎扇区字节数
7E0D	Sectors per cluster	32	毎簇扇区数
7E0E	Reserved sectors	8	DBR保留扇区製
7E10	Number of FATs	2	每FAT个数
7E11	Root entries	512	根目录数
7E13	Sectors (under 32 MB)	0	总分区扇区数
7E15	Media descriptor (hex)	F8	介质描述符
7E16	Sectors per FAT	256	每FAT扇区数
7E18	Sectors per track	63	每磁道扇区数
7E1A	Heads	128	磁头数
7E1C	Hidden sectors	63	隐藏扇区数
7E20	Sectors (over 32 MB)	2096577	分区总扇区数
7E24	BIOS drive (hex, HD=8x)	80	BIOS 驱动器号
7E25	(Unused)	0	
7E26	Ext. boot signature (29h)	29	扩展引导标志
7E27	Volume serial number (decimal)	4029398287	卷序列号
7E27	Volume serial number (hex)	0F BD 2B F0	卷序列号
7E2B	Volume label	NO NAME	卷标
7E36	File system	FAT16	文件系统
7FFE	Signature (55 AA)	55 AA	

FAT16文件分配表的实例

Offset	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Ε	F	
0000002類時	: <u>F</u> 8	FF	FF	FF	FF2	PF	05	00	064	00	<u> </u>	FF	07)	600	087	700	
0000002編号	:09	800	0A:	900	ОΒι	000	0C1	100	OD12	00	0E1	300	FFi	<u> </u>	10	00	
000000220	11	00	12	00	13	00	14	00	15	00	16	00	17	00	18	00	
000000230	19	00	1A	00	1B	00	10	00	1D	00	1E	00	1F	00	20	00	
000000240	21	00	22	00	23	00	24	00	25	00	26	00	27	00	28	00	
000000250	29	00	2A	00	2B	00	20	00	2D	00	2E	00	2F	00	30	00	
000000260	31	00	32	00	33	00	34	00	35	00	36	00	37	00	38	00	
000000270	39	00	ЗA	00	3В	00	3С	00		F	AT16	记录项	页的取	(值含	义(16	进制)	
000000280	41	00	42	00	43	00	44	00	FAT	16ìc	录项	的取作	直	对原	过簇的	表现性	青况
000000290	49	00	4A	00	4B	00	4C	00		(0000				未分	配的簇	
0000002A0	51	00	52	00	53	00	54	00		0002	2~FFI	EF			己分	配的簇	
0000002B0	59	00	5A	00	5B	00	5C	00		FFF	0~FF	F6			系統	保留	
								F	FF7				切	簇			
FAT16以2个	AT16以2个字节(记录项)存取。							FFF	B~FF	FF			文件组	结束簇			

第0、1个记录项(前4个字节)用作介质描述。

第2个记录项开始记录除根目录外的其他文件及文件夹的簇链情况。

FDT: 文件目录表与目录项

- ~ 任一文件(包括文件夹),均需从根目录(FDT)寻址来找到。 根目录就是目录存储结构入口。
- ~ 目录项以32字节为单位存取
- ~ 特别提示: 0x0偏移取值
 - u若为00H,表明目录项 为空:
 - u若为E5H,表明目录项 曾被使用,但对应的文 件或文件夹已被删除。

F	AT16目录项32	个字节	的表示定义				
字节偏移(16进制)	字节数		定义				
0x0~0x7	8		文件名				
0x8~0xA	3		扩展名				
			00000000(读写)				
			00000001(只读)				
		属	00000010(隐藏)				
0xB	1	性字	00000100(系統)				
		कं	00001000(卷标)				
			00010000(子目录)				
			00100000(归档)				
0xC~0x15	10		系统保留				
0x16~0x17	2		文件的最近修改时间				
0x18~0x19	2		文件的最近修改日期				
0x1A~0x1B	2		表示文件的首簇号				
0x1C~0x1F	4		表示文件的长度				

(误删除后进行恢复的理论依据)。

~ 随机文件(索引结构)

u概念

- n 文件的信息存放在若干不连续物理块中,系统为每个文件建立 一个专用数据结构——索引表,存放这些块的块号。
- n索引表记录文件块和磁盘块的对应关系
- n索引表类似页表

u特点

- n索引结构在存储中占用了2个区,访问文件时分2步
 - n 索引区
 - n 数据区

~ 随机文件(索引结构)

索引表类似页表

~ 随机文件(索引结构)

- ~ 优点
 - u保持了链接结构的优点,又解决了其缺点:
 - u即能顺序存取,又能随机存取
 - u满足了文件动态增长、插入删除的要求
 - u能充分利用外存空间
- ~ 缺点
 - u索引表本身带来了系统开销
 - n如:内外存空间,存取时间

- ~ 为文件分配存储空间的策略
 - u静态分配
 - u动态分配

- ~ 静态分配
 - u特点
 - n用户在创建文件时宣布文件大小,OS为其分配相应空间。
 - u优点
 - n适合对连续文件分配空间
 - n适合早期的操作系统、实时系统和简单系统
 - u缺点
 - n用户很难确定文件大小
 - n存在辅存碎片

- ~ 动态分配
 - u特点
 - n建立文件时不分配空间,在写文件时才分配空间。
 - u优点
 - n随时可分配,适合串联结构和索引结构 n建立文件时不需要知道文件大小
 - u缺点
 - n占用了额外的空间

5 文件存储空间管理

- ~ 概念
 - u记录当前磁盘的使用情况,创建文件时分配存储空间, 删除文件时收回存储空间。
- ~ 记录磁盘空闲块的方法
 - u空闲文件目录
 - u空闲块链
 - u位示图

~ 空闲文件目录

- u 存储设备上一片连续空闲区可以看成一个特殊文件: 空闲文件。该文件由多个连续的空闲存储块组成。
- u 存储设备上所有的空闲文件就代表了存储设备上空闲 空间。为这些空闲文件建立一个专门的目录: 空闲文 件目录。
- u 空闲文件目录的每个表项对应一个空闲文件,包括它的第一个空闲块号,空闲块个数等重要信息。

序号	第1个空闲块号	空闲块个数	物理块号	
1	2	4	2,3,4,5	
2	18	9	18,19,20,21,22,23,24,25,26	
3	59	5	59,60,61,62,63	
; :	:	:	:	

~ 空闲块链

u把存储设备上的所有空闲块链接在一起,当申请者需要空闲块时,分配程序从链头开始摘取所需要的空闲块,然后调整链首指针。反之,当回收空闲块时,把释放的空闲块逐个加在链尾上。

~ 位示图

u系统首先从内存中划出若干个字节,每个bit对应1个存储块的使用情况(空闲或占用)。如果该bit为"1",则表示对应存储块是空闲块;如果该bit为"0",则表示对应存储块已分配出去。

1	1	0	0	1	0	0	1
0	0	0	0	1	0	0	1
0	1	0	0	0	0	1	1
1	0	1	0	0	0	1	1

6 文件目录管理

- ~ 文件目录
 - u文件名址录,记录文件名和存放地址的目录表
 - u为了对大量文件进行分门别类的管理,提高文件检索的效率,现代操作系统往往将文件的一些属性也记录在目录中。
- ~ 目录文件
 - u文件目录以文件形式存于外存,这个文件叫目 录文件。
- ~ 文件目录的功能
 - u将文件名转换为外存物理位置的功能

~ 目录结构

u不同的系统,文件目录的组织也不完全相同。 nDOS系统(32字节)

nUNIX系统

- n索引节点
- n 文件目录项中的文件名和其他信息分开。后者单独组成一个定长数据结构:索引节点 i_node。

- ~ 目录结构
 - u一级目录
 - u二级目录
 - u多级文件目录(树型目录)
- ~ 文件全名

~ 单级目录

u单级目录是最简单的目录结构。在这种组织方式下, 全部文件都登记在同一目录中。

u特点:简单、易于理解和实现

u缺点:查找速度慢、不允许重名、不便于文件共享

~ 两级目录

- u每个用户使用一个相对独立的目录,在所有用户的目录上层再建一层目录来管理各个用户目录。
- u二级目录结构把文件目录分成二级,第一级称为主目录,第二级称为子目录或次目录。
- u系统允许每个用户有一个子目录。也称为用户目录。
- u二级目录结构有效地解决文件重名的问题,不同用户的文件,使用相同名字也不会导致混乱。

~ 两级目录

~ 树型目录

- u又称为多级目录结构,它是二级目录结构的扩充。
- u 这种多层次的目录结构如同一棵倒置的树,主目录就 是树根,称为根目录
- u每一个树枝结点就是一个子目录,每一片树叶描述的 一个文件。

~ 树型目录

文件全名和路径

- ~ 文件的全名
 - u 包括从根目录开始到文件为止的通路上所有子目录路 径。
 - n子目录名之间用正斜线 "/"或反斜线 "\"隔开 n子目录名组成的部分又称为路径名。
- ~ 每个文件都有惟一的路径名。
- ~ 两种路径名形式
 - u绝对路径名:从根目录直到指定的文件
 - u相对路径名:从当前目录直到指定的文件

7 文件的保护

- ~ 对文件的访问系统首先要检查访问权限
 - u仅允许执行(E)。
 - u 仅允许读(R)。
 - u仅允许写(W)
 - u 仅允许在文件尾写 (A)
 - u 仅允许对文件进行修改(U)
 - u允许改变文件的存取枚限(C)
 - u允许取消文件(D)
 - p权限可进行适当的组合。

8 文件和目录操作

- ~ 文件操作
 - u创建文件
 - u写文件
 - u读文件
 - u文件定位
 - u删除文件
 - u截短文件
 - u属性设置和读取
- ~ 目录操作
 - u创建目录
 - u删除目录

Create

Delete

Rename

File_attribute

Open

Close

Write

Read

DIR_read

DISK_space

Link

Unlink

File_date

9 Linux文件系统

~文件类型

- u 普通文件
- u 目录文件
- u 设备文件
- u 链接

~使用文件系统

- u mount命令
 - n功能是安装文件系统
 - n 格式为: mount 开关 系统设备文件名 文件系统挂接点 n mount /dev/hda1 /mnt/c
- u umount命令
 - n功能是卸下文件系统
 - n格式为: umount 连接点
 - n umount /mnt/c

~ 典型的文件系统

uFAT16

uFAT32

uNTFS

uEXT2

uEXT3