Matlab vs. IDL

Michael Liebling
Biomedical Imaging Group
Institut d'Imagerie et Optique appliquée
Swiss Federal Institute of Technology, Lausanne
CH - 1015 Lausanne
Switzerland
michael.liebling@epfl.ch

February 28, 2002

1 Basic commands and synthax

MATLAB	IDL	Purpose
x';	TRANSPOSE(x)	Transpose
x(3:5);	x[3:5]	Vector portion
A*B;	A##B	Matrix multiplication
A.*B;	A*B	Multiplication
A.^2;	A^2	Exponentiation
A^2;	A##A	Exponentiation
%	;	Comment
	\$	Line continuation
A=[1,2,3;4,5,6];	A=[[1,2,3],[4,5,6]]	Matrix formation
B=A(:,2:3);	B=A[1:2,*]	Submatrix extraction
x=0:9;	x=INDGEN(10)	Integer vector
•		Float vector
x=0.0:1.0:9.0;	x=FINDGEN(10)	
x=byte(0:255);	x=BINDGEN(256)	Byte vector
x=0.0:1.0:9.0;	x=CINDGEN(10)	Complex vector
<pre>sum(x);</pre>	TOTAL(x)	Sum of vector
<pre>sum(sum(A));</pre>	TOTAL(A)	Sum over all elements in matrix
x	PRINT, x	Print vector x
z=x;y=2*x;	z=x & y=2*x	Line continuation
size(mat)	SIZE(mat,/DIMENSIONS)	Size of a matrix
length(vec)	N_ELEMENTS(vec)	Length of a vector
linspace(0,pi,100)		Linearly spaced vector
•	DEVERGE (A 1)	Flip columns
fliplr(A)	REVERSE(A,1)	*
flipud(A)	REVERSE(A,2)	Flip lines
rot90(A)	ROTATE(A,1)	Linearly spaced vector
repmat	????	Replicate a matrix
10*ones(N)	res=REPLICATE(10,N,N)	Replicate a scalar
for k=1:10, disp(k), end	FOR k=1,10 DO PRINT, k	For Loop
for k=1:N	FOR k=1,10 DO BEGIN	_
x(k) = k;	x[k]=k	
end	ENDFOR	
if I == J	IF (I EQ J) THEN BEGIN	If Statements
A(I,J) = 2;	A[I,J] = 2	11 Statements
elseif abs(I-J) == 1	ENDIF ELSE BEGIN	
A(I,J) = -1;	A[I,J] = -1	
else	ENDELSE	
A(I,J) = 0;		
end		
switch lower(METHOD)	CASE name OF	Cases
<pre>case {'linear','bilinear'},</pre>	'Linda': PRINT, 'sister'	
disp('linear')		
<pre>case 'cubic', disp('cubic')</pre>	'John': PRINT, 'brother'	
<pre>case 'nearest', disp('nearest')</pre>	'Harry': PRINT, 'step-brother'	
•		
othorrian dian()IInknorm))	FIGE: DDINT (Not a gibling)	
otherwise, disp('Unknown')	ELSE: PRINT, 'Not a sibling.'	
end	ENDCASE	Cours o colon in a marine (1)
end save 'image.mat' R G B I	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I	Save a color image in a file
end save 'image.mat' R G B I load 'image.mat'	ENDCASE	Restore the saved image
end save 'image.mat' R G B I	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I	_
end save 'image.mat' R G B I load 'image.mat'	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I	Restore the saved image
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat'	Restore the saved image Restore a matrix stored in ASCII
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$	Restore the saved image Restore a matrix stored in ASCII
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$	Restore the saved image Restore a matrix stored in ASCII
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1 HELP	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII whos whos x	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII Get infos on variables
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII whos whos x who	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1 HELP HELP, x	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII Get infos on variables Get infos on variable x
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII whos whos x who help repmat	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1 HELP	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII Get infos on variables Get infos on variable x Get help
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII whos whos x who help repmat lookfor spline	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1 HELP HELP, x	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII Get infos on variables Get infos on variable x Get help Lookfor word spline in help
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII whos whos x who help repmat lookfor spline type repmat	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1 HELP HELP, x	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII Get infos on variables Get infos on variable x Get help Lookfor word spline in help Type the source code
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII whos whos x who help repmat lookfor spline type repmat why	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1 HELP HELP, x ? indgen	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII Get infos on variables Get infos on variable x Get help Lookfor word spline in help Type the source code If you complain ask for a response
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII whos whos x who help repmat lookfor spline type repmat why bad = find(data<0)	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1 HELP HELP, x ? indgen bad = WHERE(data LT 0)	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII Get infos on variables Get infos on variable x Get help Lookfor word spline in help Type the source code If you complain ask for a response Get indices where data meets cond.
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII whos whos x who help repmat lookfor spline type repmat why	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1 HELP HELP, x ? indgen	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII Get infos on variables Get infos on variable x Get help Lookfor word spline in help Type the source code If you complain ask for a response Get indices where data meets cond. Convert to text
end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII whos whos x who help repmat lookfor spline type repmat why bad = find(data<0)	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1 HELP HELP, x ? indgen bad = WHERE(data LT 0)	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII Get infos on variables Get infos on variable x Get help Lookfor word spline in help Type the source code If you complain ask for a response Get indices where data meets cond.
<pre>end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII whos whos x who help repmat lookfor spline type repmat why bad = find(data<0) txt=num2str(1.222)</pre>	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1 HELP HELP, x ? indgen bad = WHERE(data LT 0) txt=STRING(1.222)	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII Get infos on variables Get infos on variable x Get help Lookfor word spline in help Type the source code If you complain ask for a response Get indices where data meets cond. Convert to text
<pre>end save 'image.mat' R G B I load 'image.mat' load 'file.txt' -ASCII save result 'result.txt' -ASCII whos whos x who help repmat lookfor spline type repmat why bad = find(data<0) txt=num2str(1.222)</pre>	ENDCASE SAVE, FILENAME = 'image.dat', R, G, B,I RESTORE, 'image.dat' OPENW,1,'result.txt' &\$ PRINTF, 1, result, FORMAT='(13F10.3)'&\$ CLOSE, 1 HELP HELP, x ? indgen bad = WHERE(data LT 0) txt=STRING(1.222) EXECUTE('SIN(x)')	Restore the saved image Restore a matrix stored in ASCII Write a matrix as ASCII Get infos on variables Get infos on variable x Get help Lookfor word spline in help Type the source code If you complain ask for a response Get indices where data meets cond. Convert to text Execute (evaluate) the command

2 File manipulation

Matlab	IDL	Purpose
	info=ROUTINE_INFO(sin) & PRINT, info.path	Get info on a function or procedure
pause(3)	WAIT(3)	Perform a 3 second pause
cd	CD	Change directory
cd	CD, '::'	Change to upper directory (MacOS)
ls	PRINT, FINDFILE('*')	List files
pwd	CD, C=c & PRINT, c	Path of current directory

3 Help generation

Matlab	IDL	Purpose
	MK_HTML_HELP	
	DOC_LIBRARY	

4 Plotting nice graphs

Matlab	$ ext{ IDL} $	Purpose
h=figure(1)	WINDOW, 0, TITLE=string, XPOS=value,\$	open window
	YPOS=value, XSIZE=pixels , YSIZE=pixels	
text(1,1,'1,1')	XYOUTS, 1, 1, "1,1"	put text at position x, y
	PSYM	plot symbol

5 Constants

Matlab	IDL	Purpose
pi	!PI, !DPI	π
	!RADEG	$180/\pi \approx 57.2958$
	!VALUES.F_INFINITY	∞
	!VALUES.F_NAN	Not a number
inf	!VALUES.D_INFINITY	
NaN	!VALUES.D_NAN	
A = [1,2,3]	A = [1,2,3]	Forming complex arrays
B = [4,5,6]	B = [4,5,6]	
C=A+i*B	C = COMPLEX(A, B)	
i or j	COMPLEX(0, 1.)	$\sqrt{-1}$
clear all	.RESET_SESSION	Clear all variables
clear A	DELVAR, A	Clear variable

6 Logics

Matlab	IDL	Purpose
>	GT	
<	LT	
==	EQ	
>= <=	GE	
<=	LE	
~=	NE	

Procedures, functions, batchfiles

IDL code can take several forms:

- 1. a batch file
- 2. a main program
- 3. a procedure
- 4. a function

whereas in Matlab , it can only take 2 forms:

- 1. script m-files
- 2. function

M-Script files, batch files, main files 7.1

Matlab

A typical M-script file in Matlab looks like this: myplot.m

```
color='rgb'
x=0:9;
y=(x/10.).^2;
for k=1:length(color)
  plot(x,y+k,color(k))
  hold on
end
hold off
```

it is simply launched with the command line:

> myplot

IDL

In IDL this could be accomplished using a batch file like the one below.

mybatch.pro

```
linecolor=[255L,256L*(255L),256L*(256L*255L)]
x=indgen(9)
y=x^2
plot, x,y , /nodata
FOR k=0,2 DO oplot, x, y/10.+k,$
color=linecolor[k],$
background=255L+256L*(256L*255L)
```

Note that there is only a single command per line (in particular, the for construct has no BEGIN and END which is forbidden) and that the \$ character has been used to break the oplot command over several lines. A batch file is run with the command:

IDL>> @mybatch

Another possibility is to use a main .pro file like the one below:

mymain.pro

```
linecolor=[255L,256L*(255L),256L*(256L*255L)]
x=indgen(9)
y=x^2
plot, x,y , /nodata
FOR k=1,3 DO BEGIN
  oplot, x,y, color=linecolor[k]
END
```

(notice the END at the last line) and is run with the com-

IDL>> .run mymain

or with the equivalent successive commands:

IDL>> .compile mymain

IDL>> .go mymain

7.2 Functions and procedures

Matlab

MATLAB functions can take several arguments (their number may be variable) and can output several variables.

```
stat.m
function [mean,stdev] = stat(x)
n = length(x);
mean = avg(x,n);
stdev = sqrt(sum((x-avg(x,n)).^2)/n);
function mean = avg(x,n)
mean = sum(x)/n;
```

IDL

IDL functions can take several arguments (their number may be variable if they are specified as keywords) but have only one output. Arguments that are passed as keywords are modified inside the function.

average.pro

```
FUNCTION AVERAGE, arr
RETURN, TOTAL(arr)/N_ELEMENTS(arr)
END
```

Next function returns the average and puts the standard deviation into variable std if and only if it is specified.

average2.pro

```
FUNCTION AVERAGE, arr, STDDEV=std
aver=TOTAL(arr)/N_ELEMENTS(arr)
IF KEYWORD_SET(std) THEN
std=SQRT(TOTAL((arr-aver)^2))/N_ELEMENTS(arr))
RETURN, aver
END
```

Still another possibility is to have a procedure. Procedure don't return a result.

hello.pro

```
PRO HELLO, name, UP=upcase

IF KEYWORD_SET(upcase) THEN PRINT,

STRUPCASE(name) $

ELSE PRINT, name

END
```