Weighing scale-reader

2.737 Mechatronics

Instructor: Prof. David L. Trumper

Key takeaway: Oversampling for noise reduction.

Code Overview

- Field Programmable Gate Array (FPGA)
 - Reads C/AIO at 333 kHz as a 12-bit integer value, and
 - Oversampling Implemented: Takes a moving average with 320 previous values and converts the result into fixed point.
 - Effectively, the fidelity (tracking of AI without too much phase lag) of the output oversampled AI signal is about 0.5*333/320 = 520.83 Hz. (multiplying by 0.5 due to Shannon-Nyquist criterion)
 - We are trading of throughput (limiting how fast dynamics we can perceive from the AI signal) for lower noise and hence better resolution.
 - For more information, refer to http://www.cypress.com/file/236481/download

• Real-Time

- Reads the oversampled C/AIO from the FPGA.
- Has operations for filtering, converging voltage to load and implements the "tare" function.

Oversampling

Oversampling implemented (320:1)

Oversampling implemented (320:1)

Effective resolution increase:

$$w = \frac{\log(N_{avg})}{\log(4)}$$

 N_{avg} = 320 sample average, w = 4.17

The system effective should behave as a 16-bit ADC.

16-bit resolution: $20/2^16 = 0.305 \text{ mV}$

Measurement:

10 times better resolution and lower noise than original.

Total spread:

Max-Min = 0.778 mV

Original 12-bit Analog input

Original 12-bit Analog input

12-bit resolution: 20/2^12 = 4.883 mV

Total spread:

Max-Min = 9.776 mV

Code screenshots

Front Panel

Block diagram

FPGA Blockdiagram

Tasks

Modify the 3 sub-VIs

- Implement any further filtering if you would like.
- Write to code to convert from voltage to weight measurement.
- Write code to implement tare functionality on pressing the tare button.

Double-click to open <u>sub-VI</u> and modify to implement your own code.