1

Assignment 8

Yenigalla Samyuktha EE20MTECH14019

 $\begin{subarray}{c} Abstract — This document lists out the axioms satisfied for a vector space. \end{subarray}$

Download all latex-tikz codes from

https://github.com/EE20MTECH14019/EE5609/ tree/master/Assignment 8

1 Problem

On \mathbb{R}^n define two operations

$$\alpha \oplus \beta = \alpha - \beta \tag{1.0.1}$$

$$c \cdot \alpha = -c\alpha \tag{1.0.2}$$

The operations on the right are usual ones. Which of the axioms for a vector space are satisfied by $(\mathbb{R}^n, \oplus, \cdot)$?

2 Solution

Let $(\alpha, \beta, \gamma) \in \mathbb{R}^n$ and c, c_1, c_2 are scalars taken from the field \mathbb{R} where the vector space is defined on. Table 0 lists the axioms satisfied and not satisfied for $(\mathbb{R}^n, \oplus, \cdot)$.

UNSATISTIFD	SATISFIED
Associativity of addi-	Additive identity
tion	Additive identity
$\alpha \oplus (\beta \oplus \gamma) = \alpha - \beta + \gamma$	$\alpha \oplus \beta = \alpha - \beta = \alpha$
$(\alpha \oplus \beta) \oplus \gamma = \alpha - \beta - \gamma$	Additive identity is β
$\alpha \oplus (\beta \oplus \gamma) \neq (\alpha \oplus \beta) \oplus \gamma$	unique $\beta = (0, 0,0)$
Commutativity of	Additive inverse
addition	
$\alpha \oplus \beta = \alpha - \beta$	$\alpha \oplus \alpha = \alpha - \alpha = 0$
$\beta \oplus \alpha = \beta - \alpha$	Additive inverse is α
$\alpha \oplus \beta \neq \beta \oplus \alpha$	
Scalar multiplication	
with field multiplica-	
tion	
$(c_1c_2)\cdot\alpha=(-c_1c_2)\alpha$	
$c_1 \cdot (c_2 \cdot \alpha) = c_1 c_2 \alpha$	
$(c_1c_2)\cdot\alpha\neq c_1\cdot(c_2\cdot\alpha)$	
Identity element of	
scalar multiplication	
$1 \cdot \alpha = -\alpha = \alpha \text{ for } \alpha = \alpha$	
(0,0,,0)	
$1 \cdot \alpha = -\alpha \neq \alpha \forall$	
$\alpha \neq (0, 0,, 0)$ Distributivity of	
scalar multiplication	
w.r.t vector addition	
$c \cdot (\alpha \oplus \beta) = -c(\alpha - \beta)$	
$c \cdot \alpha \oplus c \cdot \beta = -c\alpha - (-c\beta)$	
$c \cdot (\alpha \oplus \beta) \neq c \cdot \alpha \oplus c \cdot \beta$	
Distributivity of	
scalar multiplication	
w.r.t field addition	
$(c_1 + c_2) \cdot \alpha = -(c_1 + c_2) \cdot \alpha$	
$c_2)\alpha$	
$c_1 \cdot \alpha \oplus c_2 \cdot \beta = -c_1 \alpha -$	
$(-c_2\beta)$	
$(c_1+c_2)\cdot\alpha\neq c_1\cdot\alpha\oplus c_2\cdot\beta$	

TABLE 0: Table showing axioms of vector space $(\mathbb{R}^n, \oplus, \cdot)$