Olivetti Faces & PCA

For this assignment, we explored dimensionality reduction with the Olivetti Faces dataset using principal component analysis (PCA). We did this by using K-Means unsupervised learning at a variety of K's and PCA values.

Initial Run

For the initial run where we are getting a feel for things, I fit and transformed the entire dataset to a PCA value of 0.95. It was then inputted into a K-Means unsupervised learning model with an initial guess of 100 clusters. This is 2.5 times the number of people (40) in the dataset. When I plotted the clusters of images, there were only a couple to a few clusters that had one image. I would say about half to three fourths of the clusters were pretty good in containing the right person in it, but there were quite a few that would have a couple random people in them.

PCA Analysis

With using PCA, we lose image detail since we're reducing the dimensions of our dataset. In general, using dimensionality reduction will speed up training since there are likely far fewer features, but it will also likely make your system slightly worse. It also makes your pipelines slightly harder to maintain since it adds complexity. However, there are cases when using dimensionality reduction can help if it ends up filtering out noise or details that aren't necessary. This could likely be explained with the curse of dimensionality. If we have a model with tons of dimensions, we have a greater risk of overfitting it. For example in the MNIST dataset, all the pixels on the borders of the images are usually white so dropping these shouldn't have much affect on the performance of the model.

Finding the Best K for a given PCA

For finding the best K for a given PCA value, I have a find_best_k function that goes through k values from 5 to 150 and fits each k value to a K-means model. It then uses all those fit models and runs silhouette scores on them. Lastly, it will then plot out the scores.

Here, we can see k=120 was best when we had a PCA score of .95. However, this K value changed when the PCA value changed (k=125 was best at PCA score of 0.85).

Figure 1: Best K

Comparison of Various K & PCA Values

PCA	K	Homogeneity	Completeness	V-measure	Silhouette	# of Clusters $w/ > 1$ member
0.85	40	0.7691	0.8016	0.785	0.16	40
0.85	50	0.816	0.7992	0.8076	0.1716	50
0.85	75	0.8959	0.7794	0.8336	0.1873	75
0.85	90	0.9341	0.7824	0.8515	0.2035	88
0.85	95	0.9364	0.774	0.8475	0.2059	92
0.85	100	0.942	0.7696	0.8471	0.206	96
0.85	105	0.954	0.7731	0.8541	0.2077	100
0.85	110	0.9571	0.7673	0.8518	0.2078	103
0.85	115	0.9599	0.7626	0.85	0.2095	106
0.85	120	0.9677	0.7628	0.8531	0.2104	108
0.85	125	0.9713	0.7577	0.8513	0.2104	113
0.85	130	0.9713	0.754	0.8497	0.2124 0.2079	115
0.85	150	0.9752 0.9857	0.734 0.7422	0.8468	0.2079	120
0.85	200	0.9857 0.9953	0.7422	0.829	0.187	119
0.9	40	0.7917	0.8163	0.8038	0.1542	40
0.9	50	0.8301	0.8096	0.8197	0.165	49
0.9	75	0.9158	0.7998	0.8539	0.1867	73
0.9	90	0.926	0.7772	0.8451	0.2028	87
0.9	95	0.9466	0.7812	0.856	0.2029	93
0.9	100	0.9432	0.7732	0.8498	0.2136	95
0.9	105	0.9497	0.7675	0.8489	0.2074	103
0.9	110	0.9599	0.7655	0.8517	0.2078	108
0.9	115	0.9688	0.7661	0.8556	0.2132	112
0.9	120	0.9734	0.7651	0.8568	0.2143	113
0.9	125	0.9765	0.7626	0.8564	0.2148	114
0.9	130	0.981	0.7612	0.8573	0.2158	114
0.9	150	0.9877	0.7452	0.8495	0.2089	118
0.9	200	0.9946	0.7096	0.8282	0.1895	120
0.95	40	0.7656	0.7851	0.7752	0.1481	40
0.95	50	0.8261	0.7998	0.8127	0.1616	50
0.95	75	0.9135	0.8001	0.8531	0.1908	74
0.95	90	0.9364	0.7842	0.8536	0.1954	86
0.95	95	0.9353	0.7791	0.8501	0.1998	87
0.95	100	0.9424	0.7758	0.851	0.2014	91
0.95	105	0.9491	0.7703	0.8504	0.2021	96
0.95	110	0.9499	0.7601	0.8445	0.2055	104
0.95	115	0.9575	0.7595	0.8471	0.2083	107
0.95	120	0.9637	0.7586	0.849	0.2085	109
0.95	125	0.9688	0.7574	0.8502	0.2048	108
0.95	130	0.9706	0.7537	0.8485	0.2016	110
0.95	150	0.9849	0.7449	0.8483	0.21	115
0.95	200	0.9931	0.709	0.8273	0.1801	116
0.99	40	0.7617	0.796	0.7785	0.1497	40
0.99	50	0.8233	0.8069	0.815	0.1652	50
0.99	75	0.9005	0.7908	0.8421	0.1832	73
0.99	90	0.926	0.7794	0.8464	0.192	88
0.99	95	0.9341	0.7728	0.8458	0.192 0.1977	92
0.99	100	0.9383	0.7677	0.8444	0.1977	95
0.99	$100 \\ 105$	0.9383	0.7671	0.848	0.1994 0.1992	101
0.99	110	0.948	0.7626	0.848 0.847	0.1992 0.2013	101
	TTU	0.3024	0.1040	0.041	0.4019	101

PCA	K	Homogeneity	Completeness	V-measure	Silhouette	# of Clusters w/ > 1 member
0.99	120	0.9656	0.7617	0.8516	0.1998	104
0.99	125	0.9624	0.7497	0.8428	0.2034	112
0.99	130	0.9784	0.7607	0.8559	0.2113	113
0.99	150	0.9776	0.74	0.8424	0.2045	112
0.99	200	0.9908	0.7091	0.8266	0.1852	113
0.999	40	0.7551	0.7875	0.7709	0.1481	40
0.999	50	0.8049	0.7848	0.7947	0.159	50
0.999	75	0.8923	0.7861	0.8359	0.1828	72
0.999	90	0.9396	0.7929	0.86	0.1959	84
0.999	95	0.9446	0.7856	0.8578	0.1996	89
0.999	100	0.9475	0.7799	0.8555	0.1985	92
0.999	105	0.9513	0.7747	0.854	0.1953	96
0.999	110	0.9458	0.7646	0.8456	0.2026	101
0.999	115	0.9588	0.765	0.851	0.204	105
0.999	120	0.9592	0.7602	0.8482	0.2059	106
0.999	125	0.9607	0.7534	0.8445	0.1942	106
0.999	130	0.9688	0.7549	0.8486	0.1951	103
0.999	150	0.9825	0.7431	0.8462	0.202	117
0.999	200	0.9933	0.7121	0.8295	0.1838	110
0.9999	40	0.7688	0.789	0.7788	0.1424	40
0.9999	50	0.8197	0.8064	0.813	0.1668	50
0.9999	75	0.9315	0.8109	0.867	0.1874	75
0.9999	90	0.9165	0.773	0.8387	0.1957	87
0.9999	95	0.9214	0.7684	0.838	0.1962	91
0.9999	100	0.9263	0.7642	0.8375	0.1996	94
0.9999	105	0.9467	0.7706	0.8496	0.2059	97
0.9999	110	0.9506	0.764	0.8471	0.2072	100
0.9999	115	0.9552	0.7603	0.8467	0.2127	104
0.9999	120	0.9596	0.756	0.8457	0.2113	107
0.9999	125	0.963	0.7532	0.8453	0.2078	109
0.9999	130	0.967	0.7518	0.8459	0.2077	109
0.9999	150	0.9748	0.739	0.8407	0.2005	108
0.9999	200	0.9951	0.7132	0.8309	0.1848	111

Rather than counting the number of pure clusters, I ended up calculating a homogeneity, completeness, and v-measure score since I felt these scores convey similar ideas but with more information. These are all from sklearn.metrics and can be used to evaluate clusters. They are described as follows from the scikit learn documentation:

- Homogeneity score: A clustering result satisfies homogeneity if all of its clusters contain only data points which are members of a single class.
- Completeness Score: A clustering result satisfies completeness if all the data points that are members of a given class are elements of the same cluster.
- V-measure Score: This score is defined as the harmonic mean between the two previous scores, homogeneity and completeness.

I've also calculated the silhouette score again for this, which is a measure of how similar an object is to its own cluster compared to other clusters, ranging from -1 to +1. It studies the separation distance between resulting clusters. A positive value here indicates that the sample is far away from neighboring clusters whereas a negative value indicates the samples may have been assigned to the wrong cluster. We want a value closer to +1, from what I understand.

From this table, we can see that homogeneity and completeness are inversely related. As we increase our K value, homogeneity goes up while completeness goes down. The V-measure score shows us where the best balance between the two is.

Another interesting observation we can make here is that the highest PCA scores (least information lost) didn't necessarily correlate with the best scores overall. For example, for k=120, the PCA value of .9 had the most clusters with more than one member (113), the highest silhouette score (0.2143), and the top v-measure score (0.8568).