SI 211: Numerical Analysis Homework 4

Prof. Boris Houska

Deadline: Nov 4, 2020

1. Prove that for all $x \in \mathbb{R}^n$ the inequality

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le n||x||_{\infty}$$

holds.

- 2. Let $H, \langle \cdot, \cdot \rangle$ be a Hilbert space with norm $||x|| = \sqrt{\langle x, x \rangle}$. Prove that $\langle x, y \rangle = 0$ if and only if we have $||x + \alpha y|| = ||x \alpha y||$ for all scalars α .
- 3. Prove that the Legendre polynomials

$$P_n = \frac{1}{2^n n!} \frac{\partial^n}{\partial x^n} \left(x^2 - 1 \right)^n$$

are orthogonal with respect to the L_2 -scalar product on the interval [-1,1].

4. Solve the least-squares optimization problem

$$\min_{p \in P_2} \int_{1}^{2} |f(x) - p(x)|^2 dx$$

for $f(x) = e^x$ by using Legendre polynomials. Here, P_2 denotes the set of polynomials of order 2.

5. Solve the least-squares optimization problem

$$\min_{p \in P_1} \int_0^\infty |f(x) - p(x)|^2 e^{-x} dx$$

for $f(x) = x^2$. Here, P_1 denotes the set of polynomials of order 1.