

KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour

Lösungsblätter zur Klausur

Robotik I: Einführung in die Robotik

am 24. Juli 2018, 14:00 – 15:00 Uhr

Name:	Vorname:		Matrikelnummer:	
Aufgabe 1			von	5 Punkten
Aufgabe 2			von	7 Punkten
Aufgabe 3			von	7 Punkten
Aufgabe 4			von	7 Punkten
Aufgabe 5			von	7 Punkten
Aufgabe 6			von	6 Punkten
Aufgabe 7			von	6 Punkten
Gesamtpunktzahl:				
		Note:		

${\bf Aufgabe\ 1} \quad \textit{Quaternionen}$

 $1. \ \, {\rm Multiplikation} \,\, {\rm von} \,\, {\rm Quaternionen} \,\, {\rm kommutativ};$

2. Abgeschlossenheit der Einheitsquaternionen:

3. Rotationswinkel und -achse für $\boldsymbol{q}=(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)$:

Aufgabe 2 Kinematik

1. DH-Parameter:

Gelenk	θ_i	d_i	a_i	α_i
1				
2				

2. Vorwärtskinematik:

$$f(\theta_1, \theta_2) = \begin{pmatrix} x \\ y \\ z \\ \alpha \\ \beta \\ \gamma \end{pmatrix} =$$

3. Jacobi-Matrix:

Aufgabe 3 Regelung

1. Vervollständigen Sie die Tabelle:

Bezeichnung im System	Bezeichnung im Blockschaltbild
Regler	Block 1
Vorgabe für den Motorstrom	
Gemessener Motorstrom	
Eingestellte Ankerspannung	
Motor	
Rückführgröße	
Differenz zwischen Vorgabe	
und Messung des Motorstroms	

2. (a) Gleichung im Frequenzbereich:

•
$$U_A(s) =$$

(b) Übertragungsfunktion im Frequenzbereich:

- (c) Gleichungen für den PD-Regler im Zeit- und Frequenzbereich:
 - u(t) =
 - U(s) =

Aufgabe 4 Bewegungsplanung mit RRT^*

- 1. Pfadkosten:
 - Cost(q1) =
 - Cost(q2) =
 - Cost(q3) =
 - Cost(q4) =
 - Cost(q5) =
 - Cost(q6) =
 - Cost(q7) =

2. RRT*-Schritt:

(a) Neuer Knoten q_{new} :

$$q_{nn} =$$

$$q_{new}$$
 Position:

(b) Knoten im Rewire-Schritt:

$$Q_{\rm near} = \{$$

(c) Neuer Baum:

Name: Vorname: Matr.-Nr.: 7

Aufgabe 5 Greifplanung

1. Öffnungswinkel β :

2. Reibungsdreiecke:

Name: Vorname: Matr.-Nr.: 8

3. Berechnung der Wrenches:

Aufgabe 6 Bildverarbeitung

1. Bildpunkt:

2. Filtereigenschaften:

3. Verschiebungsfilter:

Name: Vorname: Matr.-Nr.: 10

4. Ergebnis der Laplace-Filterung:

Aufgabe 7 Symbolisches Planen

1. Ist pickup(B,C) ausführbar?

2. Planungsoperator pickupAndPutdown(X, Y, Z):

3. Notwendige STRIPS-Erweiterung: