Cancer Detect

by Affa Alfiandy

In [2]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.callbacks import EarlyStopping
```

In [3]:

```
data_cancer = pd.read_csv('C:/Users/affaa/OneDrive/Dokumen/Latihan programming/TF_2_Note
```

In [4]:

data_cancer

Out[4]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mea symmet
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.24
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.18
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.200
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.25
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.180
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.17:
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.17
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.15!
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.23!
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.15
FCO	0	4 1							

569 rows × 31 columns

In [5]:

data_cancer.isnull().sum()

Out[5]:

mean radius	0
mean texture	0
mean perimeter	0
mean area	0
mean smoothness	0
mean compactness	0
mean concavity	0
mean concave points	0
mean symmetry	0
mean fractal dimension	0
radius error	0
texture error	0
perimeter error	0
area error	0
smoothness error	0
compactness error	0
concavity error	0
concave points error	0
symmetry error	0
fractal dimension error	0
worst radius	0
worst texture	0
worst perimeter	0
worst area	0
worst smoothness	0
worst compactness	0
worst concavity	0
worst concave points	0
worst symmetry	0
worst fractal dimension	0
benign_0mal_1	0
dtype: int64	

In [6]:

data_cancer.info

Out[6]:

<bou< th=""><th>nd method DataFrame.info</th><th>of me</th><th>ean radius</th><th>mean texture</th><th>mean perim</th></bou<>	nd method DataFrame.info	of me	ean radius	mean texture	mean perim
eter	mean area mean smooth	ness \			
0	17.99 10	38	122.80	1001.0	0.11840
1	20.57 17	77	132.90	1326.0	0.08474
2	19.69 21		130.00	1203.0	0.10960
3	11.42 20		77.58	386.1	0.14250
4	20.29 14		135.10	1297.0	0.10030
					0.10050
 564	21.56 22	20	142.00	 1479.0	0.11100
565	20.13 28.		131.20	1261.0	0.09780
566	16.60 28		108.30	858.1	0.08455
567	20.60 29		140.10	1265.0	0.11780
568	7.76 24	54	47.92	181.0	0.05263
	mean compactness mean	concavity	mean conc	ave points me	an symmetry
\					
0	0.27760	0.30010		0.14710	0.2419
1	0.07864	0.08690		0.07017	0.1812
2	0.15990	0.19740		0.12790	0.2069
3	0.28390	0.24140		0.10520	0.2597
4	0.13280	0.19800		0.10320	0.1809
		0.19800		0.10450	
· ·	0.11500	0 24200		0 12000	0.1726
564	0.11590	0.24390		0.13890	0.1726
565	0.10340	0.14400		0.09791	0.1752
566	0.10230	0.09251		0.05302	0.1590
567	0.27700	0.35140		0.15200	0.2397
568	0.04362	0.00000		0.00000	0.1587
	moon fractal dimension	wonst	t toytuno	wonst nonimot	an wanst an
0.2	mean fractal dimension	wors	t texture	worst perimet	er worst ar
	\			•	
0		wors	t texture	worst perimet	
0 9.0	0.07871		17.33	184.	60 201
0 9.0 1	\			•	60 201
0 9.0 1 6.0	\ 0.07871 0.05667		17.33 23.41	184. 158.	60 201 80 195
0 9.0 1	0.07871		17.33	184.	60 201 80 195
0 9.0 1 6.0 2 9.0	\ 0.07871 0.05667		17.33 23.41	184. 158.	60 201 80 195
0 9.0 1 6.0 2	\ 0.07871 0.05667		17.33 23.41	184. 158.	60 201 80 195 50 170
0 9.0 1 6.0 2 9.0	\ 0.07871 0.05667 0.05999		17.33 23.41 25.53	184. 158. 152.	60 201 80 195 50 170
0 9.0 1 6.0 2 9.0 3	\ 0.07871 0.05667 0.05999		17.33 23.41 25.53	184. 158. 152.	201 80 195 50 170 87 56
9.0 1 6.0 2 9.0 3 7.7	0.07871 0.05667 0.05999 0.09744		17.33 23.41 25.53 26.50	184. 158. 152. 98.	201 80 195 50 170 87 56
0 9.0 1 6.0 2 9.0 3 7.7 4 5.0	0.07871 0.05667 0.05999 0.09744 0.05883		17.33 23.41 25.53 26.50 16.67	184. 158. 152. 98.	201 80 195 50 170 87 56 20 157
9.0 1 6.0 2 9.0 3 7.7 4 5.0	0.07871 0.05667 0.05999 0.09744		17.33 23.41 25.53 26.50	184. 158. 152. 98.	201 80 195 50 170 87 56
9.0 1 6.0 2 9.0 3 7.7 4 5.0	0.07871 0.05667 0.05999 0.09744 0.05883		17.33 23.41 25.53 26.50 16.67	184. 158. 152. 98. 152.	201 80 195 50 170 87 56 20 157
9.0 1 6.0 2 9.0 3 7.7 4 5.0 	0.07871 0.05667 0.05999 0.09744 0.05883		17.33 23.41 25.53 26.50 16.67	184. 158. 152. 98.	201 80 195 50 170 87 56 20 157
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0	0.07871 0.05667 0.05999 0.09744 0.05883 		17.33 23.41 25.53 26.50 16.67 26.40	184. 158. 152. 98. 152.	60 201 80 195 50 170 87 56 20 157
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0 565	0.07871 0.05667 0.05999 0.09744 0.05883		17.33 23.41 25.53 26.50 16.67	184. 158. 152. 98. 152.	60 201 80 195 50 170 87 56 20 157
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0 565 1.0	0.07871 0.05667 0.05999 0.09744 0.05883 0.05623 0.05533		17.33 23.41 25.53 26.50 16.67 26.40 38.25	184. 158. 152. 98. 152.	60 201 80 195 50 170 87 56 20 157 10 202 00 173
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0 565 1.0 566	0.07871 0.05667 0.05999 0.09744 0.05883 		17.33 23.41 25.53 26.50 16.67 26.40	184. 158. 152. 98. 152.	60 201 80 195 50 170 87 56 20 157 10 202 00 173
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0 565 1.0 566 4.0	0.07871 0.05667 0.05999 0.09744 0.05883 0.05623 0.05533		17.33 23.41 25.53 26.50 16.67 26.40 38.25 34.12	184. 158. 152. 98. 152.	60 201 80 195 50 170 87 56 20 157 10 202 00 173 70 112
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0 565 1.0 566 4.0 567	0.07871 0.05667 0.05999 0.09744 0.05883 0.05623 0.05533		17.33 23.41 25.53 26.50 16.67 26.40 38.25	184. 158. 152. 98. 152.	60 201 80 195 50 170 87 56 20 157 10 202 00 173 70 112
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0 565 1.0 566 4.0 567 1.0	0.07871 0.05667 0.05999 0.09744 0.05883 0.05623 0.05533 0.05648 0.07016		17.33 23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42	184. 158. 152. 98. 152. 166. 155. 126.	60 201 80 195 50 170 87 56 20 157 10 202 00 173 70 112 60 182
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0 565 1.0 566 4.0 567 1.0 568	0.07871 0.05667 0.05999 0.09744 0.05883 0.05623 0.05533		17.33 23.41 25.53 26.50 16.67 26.40 38.25 34.12	184. 158. 152. 98. 152.	60 201 80 195 50 170 87 56 20 157 10 202 00 173 70 112 60 182
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0 565 1.0 566 4.0 567 1.0	0.07871 0.05667 0.05999 0.09744 0.05883 0.05623 0.05533 0.05648 0.07016		17.33 23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42	184. 158. 152. 98. 152. 166. 155. 126.	60 201 80 195 50 170 87 56 20 157 10 202 00 173 70 112 60 182
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0 565 1.0 566 4.0 567 1.0 568	0.07871 0.05667 0.05999 0.09744 0.05883 0.05623 0.05533 0.05648 0.07016 0.05884		17.33 23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37	184. 158. 152. 98. 152. 166. 155. 126. 184. 59.	60 201 80 195 50 170 87 56 20 157 10 202 00 173 70 112 60 182
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0 565 1.0 566 4.0 567 1.0 568 8.6	0.07871 0.05667 0.05999 0.09744 0.05883 0.05623 0.05533 0.05648 0.07016 0.05884		17.33 23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37	184. 158. 152. 98. 152. 166. 155. 126. 184. 59.	60 201 80 195 50 170 87 56 20 157 10 202 00 173 70 112 60 182
9.0 1 6.0 2 9.0 3 7.7 4 5.0 564 7.0 565 1.0 566 4.0 567 1.0 568	0.07871 0.05667 0.05999 0.09744 0.05883 0.05623 0.05533 0.05648 0.07016 0.05884		17.33 23.41 25.53 26.50 16.67 26.40 38.25 34.12 39.42 30.37	184. 158. 152. 98. 152. 166. 155. 126. 184. 59.	60 201 80 195 50 170 87 56 20 157 10 202 00 173 70 112 60 182

[569 rows x 31 columns]>

In [7]:

sns.countplot(x='benign_0__mal_1',data=data_cancer)

Out[7]:

<matplotlib.axes._subplots.AxesSubplot at 0x23438651508>

In [8]:

```
data_cancer.corr()['benign_0__mal_1'].sort_values()
```

Out[8]:

worst concave points -0.793566 worst perimeter -0.782914 mean concave points -0.776614 -0.776454 worst radius -0.742636 mean perimeter worst area -0.733825 mean radius -0.730029 -0.708984 mean area mean concavity -0.696360 -0.659610 worst concavity mean compactness -0.596534 worst compactness -0.590998 -0.567134 radius error perimeter error -0.556141 -0.548236 area error worst texture -0.456903 worst smoothness -0.421465 -0.416294 worst symmetry mean texture -0.415185 concave points error -0.408042 -0.358560 mean smoothness mean symmetry -0.330499 worst fractal dimension -0.323872 compactness error -0.292999 -0.253730 concavity error fractal dimension error -0.077972 symmetry error 0.006522 0.008303 texture error mean fractal dimension 0.012838 smoothness error 0.067016 benign_0__mal_1 1.000000 Name: benign_0__mal_1, dtype: float64

In [9]:

```
X = data_cancer.drop('benign_0__mal_1',axis=1).values
y = data_cancer['benign_0__mal_1'].values
```

In [10]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1
```

In [11]:

```
scaller = MinMaxScaler()
```

In [12]:

```
X_train = scaller.fit_transform(X_train)
X_test = scaller.transform(X_test)
```

```
In [13]:
```

```
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense,Dropout
```

In [14]:

```
X_train.shape
```

Out[14]:

(426, 30)

In [15]:

```
model = Sequential()
```

In [16]:

```
model.add(Dense(30,activation = 'relu'))
model.add(Dense(15,activation = 'relu'))
#Because Binary Classsification Use sigmoid
model.add(Dense(1,activation = 'sigmoid'))
model.compile(optimizer='adam',loss='binary_crossentropy')
```

In [17]:

```
model.fit(x=X_train,y=y_train,epochs=600,validation_data=(X_test,y_test))
  var_1033.
Epoch 596/600
426/426 [=============== ] - 0s 166us/sample - loss: 0.002
4 - val loss: 0.1702
Epoch 597/600
0 - val_loss: 0.1849
Epoch 598/600
2 - val loss: 0.1873
Epoch 599/600
426/426 [===========================] - 0s 180us/sample - loss: 0.002
3 - val_loss: 0.1904
Epoch 600/600
5 - val loss: 0.1802
Out[17]:
<tensorflow.python.keras.callbacks.History at 0x2343a98d608>
```

In [18]:

```
losses = pd.DataFrame(model.history.history)
```

In [19]:

```
plt.plot(losses)
```

Out[19]:

In [20]:

```
model.add(Dense(30,activation = 'relu'))
model.add(Dense(15,activation = 'relu'))
#Because Binary Classsification Use sigmoid
model.add(Dense(1,activation = 'sigmoid'))
model.compile(optimizer='adam',loss='binary_crossentropy')
```

In [21]:

```
earlystop = EarlyStopping(monitor ='val_loss', mode='min', verbose=1, patience=25)
```

In [22]:

```
model.fit(x=X_train,y=y_train,epochs=600,validation_data=(X_test,y_test),callbacks=[ear]
Epoch 30/600
426/426 [=============== ] - 0s 216us/sample - loss: 0.038
2 - val loss: 0.1612
Epoch 31/600
2 - val_loss: 0.1656
Epoch 32/600
426/426 [=============== ] - 0s 194us/sample - loss: 0.030
7 - val_loss: 0.1632
Epoch 33/600
426/426 [=============== ] - 0s 202us/sample - loss: 0.027
6 - val_loss: 0.1637
Epoch 34/600
9 - val_loss: 0.1675
Epoch 35/600
426/426 [=============== ] - 0s 190us/sample - loss: 0.022
5 - val_loss: 0.1657
Epoch 36/600
```

In [23]:

```
model_loss = pd.DataFrame(model.history.history)
```

In [24]:

```
plt.plot(model_loss)
```

Out[24]:

In [25]:

from tensorflow.keras.layers import Dropout

In [26]:

```
model.add(Dense(30,activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(15,activation = 'relu'))
model.add(Dropout(0.5))
#Because Binary Classsification Use sigmoid
model.add(Dense(1,activation = 'sigmoid'))
model.compile(optimizer='adam',loss='binary_crossentropy')
```

In [27]:

```
model.fit(x=X_train,y=y_train,epochs=600,validation_data=(X_test,y_test),callbacks=[ear]
בטס/סט ב
426/426 [============== ] - 0s 201us/sample - loss: 0.278
5 - val loss: 0.3254
Epoch 29/600
426/426 [=============== ] - 0s 176us/sample - loss: 0.264
4 - val_loss: 0.3246
Epoch 30/600
2 - val loss: 0.3242
Epoch 31/600
6 - val_loss: 0.3244
Epoch 32/600
426/426 [============== ] - 0s 178us/sample - loss: 0.259
9 - val loss: 0.3242
Epoch 33/600
426/426 [=============== ] - 0s 178us/sample - loss: 0.263
6 - val_loss: 0.3239
Epoch 34/600
```

In [28]:

```
model_loss = pd.DataFrame(model.history.history)
```

In [29]:

```
plt.plot(model_loss)
```

Out[29]:

In [30]:

```
predictions = model.predict(X_test)
```

In [31]:

from sklearn.metrics import classification_report,confusion_matrix

In [33]:

```
testdata = data_cancer.drop('benign_0__mal_1',axis=1).iloc[0]
```

```
In [34]:
```

```
model.predict(testdata)
WARNING:tensorflow:Falling back from v2 loop because of error: Failed to f
ind data adapter that can handle input: <class 'pandas.core.series.Serie
s'>, <class 'NoneType'>
                                           Traceback (most recent call las
InvalidArgumentError
t)
<ipython-input-34-5337eeb452c8> in <module>
----> 1 model.predict(testdata)
c:\users\affaa\anaconda3\envs\mytfenv\lib\site-packages\tensorflow core\py
thon\keras\engine\training.py in predict(self, x, batch_size, verbose, ste
ps, callbacks, max_queue_size, workers, use_multiprocessing)
    907
                max_queue_size=max_queue_size,
    908
                workers=workers,
--> 909
                use_multiprocessing=use_multiprocessing)
    910
          def reset_metrics(self):
    911
c:\users\affaa\anaconda3\envs\mytfenv\lib\site-packages\tensorflow_core\py
thon\keras\engine\training_arrays.py in predict(self, model, x, batch_siz
e, verbose, steps, callbacks, **kwargs)
    720
                verbose=verbose,
    721
                steps=steps,
--> 722
                callbacks=callbacks)
c:\users\affaa\anaconda3\envs\mytfenv\lib\site-packages\tensorflow_core\py
thon\keras\engine\training_arrays.py in model_iteration(model, inputs, tar
gets, sample_weights, batch_size, epochs, verbose, callbacks, val_inputs,
 val_targets, val_sample_weights, shuffle, initial_epoch, steps_per_epoch,
validation_steps, validation_freq, mode, validation_in_fit, prepared_feed_
values_from_dataset, steps_name, **kwargs)
    391
    392
                # Get outputs.
--> 393
                batch outs = f(ins batch)
    394
                if not isinstance(batch outs, list):
    395
                  batch_outs = [batch_outs]
c:\users\affaa\anaconda3\envs\mytfenv\lib\site-packages\tensorflow_core\py
thon\keras\backend.py in __call__(self, inputs)
   3738
                value = math_ops.cast(value, tensor.dtype)
              converted inputs.append(value)
   3739
-> 3740
            outputs = self._graph_fn(*converted_inputs)
   3741
   3742
            # EagerTensor.numpy() will often make a copy to ensure memory
 safety.
c:\users\affaa\anaconda3\envs\mytfenv\lib\site-packages\tensorflow core\py
thon\eager\function.py in __call__(self, *args, **kwargs)
   1079
              TypeError: For invalid positional/keyword argument combinati
ons.
   1080
-> 1081
            return self. call impl(args, kwargs)
   1082
   1083
          def _call_impl(self, args, kwargs, cancellation_manager=None):
```

```
c:\users\affaa\anaconda3\envs\mytfenv\lib\site-packages\tensorflow_core\py
thon\eager\function.py in _call_impl(self, args, kwargs, cancellation_mana
ger)
              raise TypeError("Keyword arguments {} unknown. Expected
   1119
 {}.".format(
                  list(kwargs.keys()), list(self._arg_keywords)))
   1120
-> 1121
            return self._call_flat(args, self.captured_inputs, cancellatio
n_manager)
   1122
   1123
          def _filtered_call(self, args, kwargs):
c:\users\affaa\anaconda3\envs\mytfenv\lib\site-packages\tensorflow_core\py
thon\eager\function.py in _call_flat(self, args, captured_inputs, cancella
tion_manager)
   1222
            if executing eagerly:
   1223
              flat outputs = forward function.call(
-> 1224
                  ctx, args, cancellation_manager=cancellation_manager)
   1225
            else:
              gradient_name = self._delayed_rewrite_functions.register()
   1226
c:\users\affaa\anaconda3\envs\mytfenv\lib\site-packages\tensorflow core\py
thon\eager\function.py in call(self, ctx, args, cancellation_manager)
    509
                      inputs=args,
                      attrs=("executor_type", executor_type, "config_prot
    510
o", config),
--> 511
                      ctx=ctx)
    512
                else:
    513
                  outputs = execute.execute_with_cancellation(
c:\users\affaa\anaconda3\envs\mytfenv\lib\site-packages\tensorflow_core\py
thon\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attr
s, ctx, name)
     65
            else:
     66
              message = e.message
            six.raise_from(core._status_to_exception(e.code, message), Non
---> 67
e)
     68
          except TypeError as e:
     69
            keras_symbolic_tensors = [
c:\users\affaa\anaconda3\envs\mytfenv\lib\site-packages\six.py in raise fr
om(value, from_value)
InvalidArgumentError: Matrix size-incompatible: In[0]: [30,1], In[1]: [3
0,30]
         [[node sequential/dense/Relu (defined at c:\users\affaa\anaconda3
\envs\mytfenv\lib\site-packages\tensorflow_core\python\framework\ops.py:17
51) ]] [Op: inference keras scratch graph 33731]
Function call stack:
keras_scratch_graph
```

In []: