CS-E4740 Federated Learning

"Data Poisoning in FL"

Dipl.-Ing. Dr.techn. Alexander Jung

Die Dosis macht das Gift.

(Paracelsus)

gutezitate.com

Learning Goals

know some poisoning techniques

know about defence strategies

Networked Data+Model

FL Design Principle

$$\min_{\mathbf{h}^{(i)}} \sum_{i} L^{(i)}(\mathbf{h}^{(i)}) + \lambda \sum_{\{i,j\} \in \mathcal{E}} A_{i,j} d(\mathbf{h}^{(i)}, \mathbf{h}^{(j)})$$

what is our under control here?

"...AI must cope with changes in operating env. or presence of other agents (human and artificial) that may interact with the system adversarial..."

FedSGD (Sec. 9.1 of Notes)

FedRelax (Sec. 9.3 of Notes)

All under your control?

```
from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
X, y = iris.data, iris.target
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, y)
```

 $\hat{h}(x)$

Data Poisoning

"In poisoning attacks, attackers deliberately influence the training data to manipulate the results of a predictive model."

M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru and B. Li, "Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning," 2018 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2018, pp. 19-35, doi: 10.1109/SP.2018.00057.

Attack Goals

out of denial

backdoor

Out of Denial Attack

Backdoor Attack

How to Poison?

• add perturbed "clean" datapoints (x,y)

perturb features x

clean label attacks: do not change y

dirty label attacks: also change label y

To Poison = To Augment

I. Tulkki, "Implementing backdoor data poisoning attacks," Bachelor thesis, 2023

Perturbing Features

stripes

I. Tulkki, "Implementing backdoor data poisoning attacks," Bachelor thesis, 2023

Dirty vs. Clean Label Poisoning

Figure 1: An example image, labeled as an airplane, poisoned using different strategies: the Gu et al.

A. Turner, D. Tsipras, A. Madry, "Clean-Label Backdoor Attacks," 2019.

https://openreview.net/forum?id=HJg6e2CcK7

Defence Against Poisoning

• detect/remove poisoned data points

augment clean data points

•smooth learnt hypothesis

Quiz "Data Poisoning" Ex. 12.2

Thank you for your attention!