

remative Specification
□Preliminary Specification
□Approval Specification

MODEL NO.: V420HJ1 SUFFIX: LE1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your con signature and comments.	firmation with your

Approved By	Checked By	Prepared By
Chao-Chun Chung	Ken Wu	Chia-Wen Chen

Version 0.0 Date: 23 Feb. 2012

CONTENTS

1. GENERAL DESCRIPTION	5
1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 FEATURES	5
1.3 APPLICATION	5
1.4 GENERAL SPECIFICATIONS	
1.5 MECHANICAL SPECIFICATIONS	
2. ABSOLUTE MAXIMUM RATINGS	7
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	
2.2 PACKAGE STORAGE	
2.3 ELECTRICAL ABSOLUTE RATINGS	
3. ELECTRICAL CHARACTERISTICS	9
3.1 TFT LCD MODULE (Ta = 25 ± 2 °C)	9
3.2 BACKLIGHT CONVERTER UNIT	
4. BLOCK DIAGRAM OF INTERFACE	
4.1 TFT LCD MODULE	
5. INTERFACE PIN CONNECTION	
5. INTERFACE PIN CONNECTION	
5.1 TFT LCD Module Input	
5.2 BACKLIGHT UNIT	
5.3 CONVERTER UNIT	
5.4 BLOCK DIAGRAM OF INTERFACE	21
5.5 LVDS INTERFACE	23
5.6 COLOR DATA INPUT ASSIGNMENT	24
6. INTERFACE TIMING	25
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	25
6.2 POWER ON/OFF SEQUENCE	28
7. OPTICAL CHARACTERISTICS	29
7.1 TEST CONDITIONS	29
7.2 OPTICAL SPECIFICATIONS	30
8. DEFINITION OF LABELS	33
8.1 CMI MODULE LABEL	33
9. PACKAGING	34
9.1 PACKING SPECIFICATIONS	34
9.2 PACKING METHOD	34
10. International Standard	36
10.1 Safety	36

Version 0.0

2

Date: 23 Feb. 2012

	• • •
11. PRECAUTIONS	37
11.1 ASSEMBLY AND HANDLING PRECAUTIONS	37
11.2 SAFETY PRECAUTIONS	37
12. MECHANICAL CHARACTERISTICS	38

Version 0.0 3 Date: 23 Feb. 2012

REVISION HISTORY

Version	Date	Page(New)	Section	Description
Ver. 0.0	Feb. 23 ,2012	All	All	The Tentative specification was first issued.

Version 0.0 4 Date: 23 Feb. 2012

Date: 23 Feb. 2012

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V420HJ1- LE1 is a 42" TFT Liquid Crystal Display module with LED Backlight and 2ch-LVDS interface.

This module supports 1920 x 1080 Full HDTV format and can display 16.7M colors (8-bit). The converter module for backlight is built-in.

1.2 FEATURES

- -High brightness (350 nits)
- High contrast ratio (5000:1)
- Faster response time (gray to gray average 9.5 ms)
- Color saturation NTSC 68% (68%)
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Ultra wide viewing angle: 176(H)/176(V) (CR≥20) with Super MVA technology
- RoHs compliance

1.3 APPLICATION

- TFT LCD TVs

Version 0.0

- Multi-Media Display

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	930.24 (H) x 523.26 (V) (42" diagonal)	mm	(1)
Bezel Opening Area	937.24(H) x530.26 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	
Pixel Number	1920 x R.G.B. x 1080	pixel	
Pixel Pitch (Sub Pixel)	0.1615 (H) x 0.4845 (V)	mm	
Pixel Arrangement	RGB vertical stripe	-	
Power Consumption	68.46 W (LVDS input 5.16 W+ Backlight Power 63.3W)	Watt	(2)
Display Colors	16.7M	color	
Display Operation Mode	Transmissive mode / Normally Black	-	
Surface Treatment	Anti-Glare Coating (Haze 3.5%) Hard Coating (3H)	-	

- Note (1) Please refer to the attached drawings in chapter 9 for more information about the front and back outlines.
- Note (2) Please refer sec 3.1 and 3.2 for more information of Power consumption
- Note (3) The spec. of the surface treatment is temporarily for this phase. CMI reserves the rights to change this feature.

5

1.5 MECHANICAL SPECIFICATIONS

lt lt	Item		Тур.	Max.	Unit	Note
Horizontal(H)		-	958.2	-	mm	(1)
	Vertical(V)	-	553.3	-	mm	(1)
Module Size	Depth(D)	-	10.6	-	mm	
Depth(D)		22.6	23.6	24.6	mm	To converter cover
Weight			(8500)			

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note	
item	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-20	+60	ပ္	(1)
Operating Ambient Temperature	T _{OP}	0	50	ပ္	(1), (2)
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)
Vibration (Non-Operating)	V_{NOP}	-	1.0	G	(4), (5)

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z.
- Note (4) $10 \sim 200$ Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Version 0.0 7 Date: 23 Feb. 2012

2.2 PACKAGE STORAGE

When storing modules as spares for a long time, the following precaution is necessary.

- (a) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
- (b)The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	VCC	-0.3	13.5	٧	(1)
Logic Input Voltage	VIN	-0.3	3.6	V	(1)

2.3.2 BACKLIGHT UNIT

Item	Symbol	Test Condition	Min.	Туре	Max.	Unit	Note
Light Bar Voltage	V_W	Ta = 25 ℃	-	-	60	V_{DC}	
Converter Input Voltage	V_{BL}	-	0	-	30	V	
Control Signal Level	-		-0.3	-	7	V	

Note (1)Permanent damage to the device may occur if maximum values are exceeded. Functional operation should be restricted to the conditions described under normal operating conditions.

Note (2) No moisture condensation or freezing.

Note (3) The control signals include On/Off Control.

Version 0.0 8 Date: 23 Feb. 2012

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE (Ta = 25 ± 2 °C)

1 TFT LCD I	MODULE (Ta = 25 ± 2 °C)					
Parameter Power Supply Voltage		Currele el	1.1	Note			
		Symbol	Min. Typ.		Max.	Unit	Note
		V _{cc}	10.8	12	13.2	V	(1)
Rush Current		I _{RUSH}	-	-	(2.8)	Α	(2)
	White Pattern	_	_	(6)	(7.92)	W	
Power consumption	Horizontal Stripe	_	_	(9.6)	(11.88)	W	(3)
	Black Pattern	_	_	(6)	(7.92)	W	
	White Pattern	_	_	(0.5)	(0.6)	А	
-	Horizontal Stripe	_	_	(0.8)	(0.9)	А	(4)
	Black Pattern	_	_	(0.5)	(0.6)	А	
	Differential Input High Threshold Voltage	V_{LVTH}	+100		-	mV	
LVDS	Differential Input Low Threshold Voltage	V _{LVTL}	-	-	-100	mV	(5)
interface	Common Input Voltage	V _{CM}	1.0	1.2	1.4	V	
	Differential input voltage	V _{ID}	200	-	600	mV	
-	Terminating Resistor	R _T	-	100	-	ohm	
CMOS	Input High Threshold Voltage	V _{IH}	2.7	-	3.3	V	
interface	Input Low Threshold Voltage	V _{IL}	0	-	0.7	V	

Note (1) The module should be always operated within the above ranges.

Note (2) Measurement condition:

Version 0.0 9 Date: 23 Feb. 2012

PRODUCT SPECIFICATION

Vcc rising time is 470us

Note (3) The Specified Power consumption is under XXX pattern.

Note (4) The specified power supply current is under the conditions at Vcc =12V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

Note (5) The LVDS input characteristics are as follows:

Version 0.0 11 Date: 23 Feb. 2012

3.2 BACKLIGHT CONVERTER UNIT

3.2.1 LED LIGHT BAR CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value		Unit	Note
raiailletei	Symbol	Min.	Тур.	Max.	Offic	Note
One String Current	ΙL	141	150	159	mA	
One String Voltage	V _W	-	-	39.8	V_{DC}	I _L =150mA
One String Voltage Variation	$\triangle V_W$	-	-	TBD	V	
Life time	-	30,000	-	-	Hrs	(1)

Note (1) The lifetime is defined as the time which luminance of the LED decays to 50% compared to the initial value, Operating condition: Continuous operating at Ta = 25±2°C, I_L =150mA.

3.2.2 CONVERTER CHARACTERISTICS (Ta = 25 ± 2 °C)

Parameter	Symbol		Value		Unit	Note
Farameter	Symbol	Min.	Тур.	Max.	Offic	Note
Power Consumption	P_BL	-	50	TBD	W	(1),(2) IL = 150 mA
Converter Input Voltage	V_{BL}	22.8	24	25.2	V_{DC}	
Converter Input Current	I_{BL}	-	2.08	TBD	Α	Non Dimming
Input Inrush Current	-	-		3.24	Apeak	V _{BL} =24V, (IL=typ.) (3)
Dimming Frequency	F _B	150	160	170	Hz	
Minimum Duty Ratio	D _{MIN}	5	10	-	%	(4)

Note (1)The power supply capacity should be higher than the total converter power consumption P_{BL}. Since the pulse width modulation (PWM) mode was applied for backlight dimming, the driving current changed as PWM duty on and off. The transient response of power supply should be considered for the changing loading when converter dimming.

Note (2) The measurement condition of Max. value is based on 42" backlight unit under input voltage 24V, average LED current 159 mA and lighting 1 hour later.

Note (3) The duration of rush current is about 30ms.

Note (4) 5% minimum duty ratio is only valid for electrical operation.

Version 0.0 12 Date: 23 Feb. 2012

3.2.3 CONVERTER INTERFACE CHARACTERISTICS

Davamatav		Cumah al	Test		Value		l lmit	Nata
Parameter		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
On/Off Control Moltons	ON	VDI ON	_	2.0	_	5.0	V	
On/Off Control Voltage	OFF	VBLON	_	0	_	0.8	V	
External PWM Control	НІ		_	2.0	_	5.0	V	Duty on
Voltage	LO	VEPWM	_	0	_	0.8	V	Duty off (5)
Error Signal		ERR	_	_	_	-		Abnormal: Open collector Normal: GND (4)
VBL Rising Time		Tr1	_	30	_	_	ms	10%-90%V _{BL}
Control Signal Rising Ti	me	Tr	_	_	-	100	ms	
Control Signal Falling Ti	me	Tf	_	_		100	ms	
PWM Signal Rising Tim	е	TPWMR	_			50	us	
PWM Signal Falling Tim	е	TPWMF	-	F) –	50	us	
Input Impedance		Rin		1	_	_	ΜΩ	
PWM Delay Time		TPWM		100	_	_	ms	
PLON Dolov Time		T _{on}	_	300	_	_	ms	
BLON Delay Time		T _{on1}	_	300	_	_	ms	
BLON Off Time		Toff	_	300	_	_	ms	

Note (1) The Dimming signal should be valid before backlight turns on by BLON signal. It is inhibited to change the external PWM signal during backlight turn on period.

Note (2) The power sequence and control signal timing are shown in the Fig.1. For a certain reason, the converter has a possibility to be damaged with wrong power sequence and control signal timing.

Note (3) While system is turned ON or OFF, the power sequences must follow as below descriptions:

Turn ON sequence: VBL \rightarrow PWM signal \rightarrow BLON

Turn OFF sequence: BLOFF → PWM signal → VBL

Note (4) When converter protective function is triggered, ERR will output open collector status.

Note (5) The EPWM interface that inserts a pull up resistor to 5V in Max Duty (100%), please refers to Fig.2.

Version 0.0 13 Date: 23 Feb. 2012

PRODUCT SPECIFICATION

Fig. 2

Version 0.0 Date: 23 Feb. 2012 14

PRODUCT SPECIFICATION

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

Version 0.0 15 Date: 23 Feb. 2012

5. INTERFACE PIN CONNECTION

5.1 TFT LCD Module Input

CNF1 Connector Pin Assignment (WF23-400-513C,FCN) or equivalent

Pin	Name	Description	Note
1	N.C.	No Connection	(2)
2	N.C.	No Connection	
3	N.C.	No Connection	
4	N.C.	No Connection	
5	N.C.	No Connection	
6	N.C.	No Connection	
7	SELLVDS	LVDS data format Selection	(3)(4)
8	N.C.	No Connection	(2)
9	N.C.	No Connection	(2)
10	N.C	No Connection	(2)
11	GND	Ground	
12	ORX0-	Odd pixel Negative LVDS differential data input. Channel 0	
13	ORX0+	Odd pixel Positive LVDS differential data input. Channel 0	
14	ORX1-	Odd pixel Negative LVDS differential data input. Channel 1	(5)
15	ORX1+	Odd pixel Positive LVDS differential data input. Channel 1	(5)
16	ORX2-	Odd pixel Negative LVDS differential data input. Channel 2	
17	ORX2+	Odd pixel Positive LVDS differential data input. Channel 2	
18	GND	Ground	
19	OCLK-	Odd pixel Negative LVDS differential clock input.	(5)
20	OCLK+	Odd pixel Positive LVDS differential clock input.	(5)
21	GND	Ground	
22	ORX3-	Odd pixel Negative LVDS differential data input. Channel 3	<i>(</i> 5)
23	ORX3+	Odd pixel Positive LVDS differential data input. Channel 3	(5)
24	N.C.	No Connection	(2)
25	N.C.	No Connection	
26	N.C.	No Connection	
27	N.C.	No Connection	
28	ERX0-	Even pixel Negative LVDS differential data input. Channel 0	
29	ERX0+	Even pixel Positive LVDS differential data input. Channel 0	
30	ERX1-	Even pixel Negative LVDS differential data input. Channel 1	(5)
31	ERX1+	Even pixel Positive LVDS differential data input. Channel 1	(5)
32	ERX2-	Even pixel Negative LVDS differential data input. Channel 2	
33	ERX2+	Even pixel Positive LVDS differential data input. Channel 2	

Version 0.0 16 Date: 23 Feb. 2012

PRODUCT SPECIFICATION

34	GND	Ground	
35	ECLK-	Even pixel Negative LVDS differential clock input	(E)
36	ECLK+	Even pixel Positive LVDS differential clock input	(5)
37	GND	Ground	
38	ERX3-	Even pixel Negative LVDS differential data input. Channel 3	(F)
39	ERX3+	Even pixel Positive LVDS differential data input. Channel 3	(5)
40	N.C.	No Connection	(2)
41	N.C.	No Connection	
42	GND	Ground	
43	GND	Ground	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	N.C.	No Connection	(2)
48	Vin	Power input (+12V)	
49	Vin	Power input (+12V)	
50	Vin	Power input (+12V)	
51	Vin	Power input (+12V)	

Note (1) LVDS connector pin order defined as follows

Note (2) Reserved for internal use. Please leave it open.

Note (3)

SELLVDS	Mode
L	JEIDA
H(default)	VESA

L: Connect to GND, H: Connect to Open or +3.3V

Version 0.0 17 Date: 23 Feb. 2012

Note (4) LVDS signal pin connected to the LCM side has the following diagram. R1 in the system side should be less than 1K Ohm. (R1 < 1K Ohm)

System side R1 < 1K

Note (5) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

Note (6) LVDS connector mating dimension range request is 0.93mm~1.0mm as follow:

5.2 BACKLIGHT UNIT

CN2: 196388-12041-3 (P-TWO) or FF01-431-123A (FCN)

Pin №	Symbol	Feature
1	VLED+	
2	VLED+	Positive of LED String
3	VLED+	
4	NC	NC
5	VLED-	
6	VLED-	
7	VLED-	
8	VLED-	Negative of LED String
9	VLED-	Negative of LED String
10	VLED-	
11	VLED-	
12	VLED-	

5.3 CONVERTER UNIT

CN1(Header): Cl0114M1HR0-LF (CvilLux) or equivalent

Pin №	Symbol	Feature
1		
2		
3	VBL	+24V
4		
5		
6		
7		
8	GND	GND
9		
10		
11	ERR	Normal (GND) Abnormal (Open collector)
12	BLON	BL ON/OFF
13	NC	NC
14	E_PWM	External PWM Control

Notice: If Pin14 is open, E_PWM is 100% duty.

CN3(Header): 196388-12041-3 (P-TWO) or FF01-431-123A (FCN)

Pin №	Symbol	Feature
1	VLED-	
2	VLED-	
3	VLED-	
4	VLED-	Negative of LED String
5	VLED-	Negative of LED String
6	VLED-	
7	VLED-	
8	VLED-	
9	NC	NC
10	VLED+	
11	VLED+	Positive of LED String
12	VLED+	

Version 0.0 21 Date: 23 Feb. 2012

ER0~ER7: Even pixel R data EG0~EG7: Even pixel G data EB0~EB7: Even pixel B data OR0~OR7: Odd pixel R data OG0~OG7: Odd pixel G data OB0~OB7: Odd pixel B data DE: Data enable signal

DCLK: Data clock signal

Note (1) The system must have the transmitter to drive the module.

Note (2) LVDS cable impedance shall be 50 ohms per signal line or about 100 ohms per twist-pair line when it is used differentially.

Note (3) Two pixel data send into the module for every clock cycle. The first pixel of the frame is odd pixel and the second pixel is even pixel.

Version 0.0 22 Date: 23 Feb. 2012

5.5 LVDS INTERFACE

VESA LVDS format : (SELLVDS pin=H or open)

JEIDA LVDS format : (SELLVDS pin=L)

R0~R7: Pixel R Data (7; MSB, 0; LSB)

G0~G7: Pixel G Data (7; MSB, 0; LSB)

B0~B7: Pixel B Data (7; MSB, 0; LSB)

DE: Data enable signal DCLK: Data clock signal

Notes: (1) RSVD (reserved) pins on the transmitter shall be "H" or "L".

Version 0.0 23 Date: 23 Feb. 2012

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

ta input.																									
												Da	ata	Sigr	nal										
	Color				Re	ed							G	reer	1						Bl	ue			
	COIOI	R7	R6	R5	R4	R3	R2	R1	R0	G 7	G 6	G 5	G 4	G3	G2	G1	G0	B 7	В6	В5	В4	ВЗ	B2	B 1	B 0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:			·	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Scale Of	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Oreen	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Scale	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	<u>:</u>	:

Version 0.0 24 Date: 23 Feb. 2012

PRODUCT SPECIFICATION

Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Blue (254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
Blue (253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	F _{clkin} (=1/TC)	60	74.25	80	MHz	
LVDS Receiver	Input cycle to cycle jitter	T _{rcl}	_	-	200	ps	(3)
Clock	Spread spectrum modulation range	Fclkin_mo	F _{clkin} -2%		F _{clkin} +2%	MHz	(4)
	Spread spectrum modulation frequency	F _{SSM}	4		200	KHz	(4)
LVDS Receiver Data	Receiver Skew Margin	T _{RSKM}	-400		400	ps	(5)
	Frame Date	F _{r5}	47	50	53	Hz	
Vertical	Frame Rate	F _{r6}	57	60	63	Hz	
Active Display	Total	Tv	1115	1125	1135	Th	Tv=Tvd+T
Term	Display	Tvd	1080	1080	1080	Th	
	Blank	Tvb	35	45	55	Th	
Horizontal Active	Total	Th	1050	1100	1150	Тс	Th=Thd+1
Display	Display	Thd	960	960	960	Тс	
Term	Blank	Thb	90	140	190	Тс	

Note (1) Please make sure the range of pixel clock has follow the below equation:

 $Fclkin(max) \ge Fr6 \times Tv \times Th$ $Fr5 \times Tv \times Th \ge Fclkin(min)$

Version 0.0 25 Date: 23 Feb. 2012

Note (2) This module is operated in DE only mode and please follow the input signal timing diagram below :

INPUT SIGNAL TIMING DIAGRAM

Note (3) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Version 0.0 26 Date: 23 Feb. 2012

Note (4) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (5) LVDS receiver skew margin is defined and shown as below.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Power ON/OFF Sequence

Note (1) The supply voltage of the external system for the module input should follow the definition of Vcc. Note (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen.

Note (3) In case of VCC is in off level, please keep the level of input signals on the low or high impedance.

Note (4) T4 should be measured after the module has been fully discharged between power off and on period.

Note (5) Interface signal shall not be kept at high impedance when the power is on.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol Value		Unit				
Ambient Temperature	Ta	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	VCC	12	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
LED Current	IL	150	mA				
Vertical Frame Rate	Fr	60	Hz				

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 1 hour in a windless room.

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in 7.1.

If	tem	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		(3500)	(5000)	-	-	Note (2)
Response Time		Gray to gray		-	9.5	19	ms	Note (3)
Center Luminance of White White Variation Cross Talk		LC		280	350	-	cd/m ²	Note (4)
		δW		-	-	1.3	-	Note (6)
		СТ		-	-	4	%	Note (5)
Color Chromaticity	Red	Rx			(0.646)		-	
		Ry	$\theta x=0^{\circ}, \ \theta y=0^{\circ}$ Viewing angle		(0.330)		-	
	Green	Gx	at normal direction		(0.296)		-	
		Gy		Тур. –	(0.575)	Тур+	-	
	Blue	Вх		0.03	(0.145)	0.03	-	-
		Ву			(0.063)		-	
	White	Wx			(0.280)		-	
		Wy			(0.290)		-	
	Color Gamut	C.G			68	-	%	NTSC
Viewing Angle	Horizontal	θх+		80	88	-		
		θх-	CR≥20	80	88	-	Deg.	Note (1)
	Vertical	θΥ+		80	88	-		
		θΥ-		80	88	-		

Note (1) Definition of Viewing Angle (θx , θy):

Viewing angles are measured by Autronic Conoscope Cono-80.

PRODUCT SPECIFICATION

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Surface Luminance with all white pixels Contrast Ratio (CR) = Surface Luminance with all black pixels

CR = CR (5), where CR (X) is corresponding to the Contrast Ratio of the point X at the figure in Note (6).

Note (3) Definition of Gray-to-Gray Switching Time:

The driving signal means the signal of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255 Gray to gray average time means the average switching time of gray level 0, 31, 63, 95, 127, 159, 191, 223 and 255 to each other.

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255. at center point and 5 points

 $L_C = L$ (5), where L (X) is corresponding to the luminance of the point X at the figure in Note (6).

Date: 23 Feb. 2012 Version 0.0 31 The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited

PRODUCT SPECIFICATION

Note (5) Definition of Cross Talk (CT):

$$\mathsf{CT} = |\; \mathsf{YB} - \mathsf{YA} \;|\; /\; \mathsf{YA} \times \mathsf{100} \; (\%)$$

Where:

YA = Luminance of measured location without gray level 0 pattern (cd/m2)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

PRODUCT SPECIFICATION

8. DEFINITION OF LABELS

8.1 CMI MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: V420HJ1-LE1
- (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 2001=1, 2002=2, 2003=3, 2004=4....2010=0, 2011=1, 2012=2....

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I,O, and U.

(b) Revision Code: Cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Date: 23 Feb. 2012 Version 0.0 33

PRODUCT SPECIFICATION

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 6 LCD TV modules / 1 Box
- (2) Box dimensions: 1085(L)x296(W)x653(H)mm
- (3) Weight: Approx. 51 Kg(6 modules per carton)

9.2 PACKING METHOD

Figure.9-1 packing method

Sea / Land Transportation

Air Transportation

Figure.9-2 packing method

10. International Standard

10.1 Safety

- (1) UL 60950-1, UL 60065: Standard for Safety of Information Technology Equipment Including electrical Business Equipment.
- (2) IEC 60950-1:2005, IEC 60065:2001+ A1:2005; Standard for Safety of International Electrotechnical Commission.
- (3) EN 60950-1:2006+ A11:2009, EN60065:2002 + A1:2006 + A11:2008; European Committee for Electrotechnical Standardization (CENELEC), EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

10.2 EMC

- (1) ANSI C63.4 Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHZ. "Anerican National standards Institute(ANSI)
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment. " International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment. "European Committee for Electortechnical Standardization.(CENELEC)

Version 0.0 36 Date: 23 Feb. 2012

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) Do not apply pressure or impulse to the module to prevent the damage of LCD panel and backlight.
- (4) Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- (5) Do not plug in or pull out the I/F connector while the module is in operation.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) Moisture can easily penetrate into LCD module and may cause the damage during operation.
- (9) High temperature or humidity may deteriorate the performance of LCD module. Please store LCD modules in the specified storage conditions.
- (10) When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of LED light bar will be higher than that of room temperature.

11.2 SAFETY PRECAUTIONS

- (1) The startup voltage of a backlight is over 1000 Volts. It may cause an electrical shock while assembling with the converter. Do not disassemble the module or insert anything into the backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

12. MECHANICAL CHARACTERISTICS

Version 0.0 Date: 23 Feb. 2012 38

Version 0.0 39 Date : 23 Feb. 2012