Discrete Structures and Theory of Logic Lecture-14

Dharmendra Kumar July 23, 2020

Order of a group

The order of a group (G,o) is the number of elements of G, when G is finite. If G is infinite, then the order will be infinite.

Example: Consider the multiplicative group $G=\{\ 1,\ -1,\ i,\ ,\ -i\}.$ Since this group is finite, therefore the order of this group is 4.

Example: Show that the set $\{1,2,3,4,5\}$ is not a group under addition and multiplication modulo 6 operation.

Solution: The composition tables under addition and multiplication modulo 6 operations are the following:-

$+_6$	1	2	3	4	5	\times_6	1	2	3	4	5
1	2	3	4	5	0	1	1	2	3	4	5
2	3	4	5	0	1	2	2	4	0	2	4
3	4	5	0	1	2	3	3	0	3	0	3
4	5	0	1	2	3	4	4	2	0	4	2
5	0	1	2	3	4	5	5	4	3	2	1

Closure property is not satisfied under both operation, because 0 entry belongs into table which is not the element of set. Therefore, the set $\{1,2,3,4,5\}$ is not a group under addition and multiplication modulo 6 operation.

Example: Prove that the set $\{0,1,2,3,4\}$ is a finite abelian group of order 5 under addition modulo 5 operation.

Solution: The composition tables under addition and multiplication modulo 6 operations are the following:-

$+_5$	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	2 3 4 0 1	2	3

From table, closure property is satisfied, because all entries of table belongs into set $\{0,1,2,3,4\}$.

Since operation is addition, therefore associative property is satisfied.

Clearly from table, identity element is 0. And each element has a inverse i.e. $(0)^{-1} = 0$, $(1)^{-1} = 4$, $(2)^{-1} = 3$, $(3)^{-1} = 2$, $(4)^{-1} = 3$

1. Commutative property is also satisfied because aob = boa, for all a,b.

Therefore, this set is an abelian group under operation $+_5$.

Left cancellation law

For a,b,c \in G, aob = aoc \Leftrightarrow b = c.

Right cancellation law

For a,b,c \in G, boa = coa \Leftrightarrow b = c.

Example: In a group (G,o), prove the following:-

- (a) $(a^{-1})^{-1} = a$
- (b) $(aob)^{-1} = b^{-1}oa^{-1}$

Solution:

(a) Since a^{-1} is the inverse of a, therefore $aoa^{-1}=e$ (1) Since $a \in G$, therefore a^{-1} is also belong into G. Since $a^{-1} \in G$, therefore inverse of it will also belong.

Using inverse property, $(a^{-1})^{-1}oa^{-1} = e$ (2)

Using (1) and (2), $(a^{-1})^{-1}oa^{-1} = aoa^{-1}$

By right cancellation law, we get $(a^{-1})^{-1} = a$ It is proved.

(b) Consider $a,b \in G$. Therefore, its inverses are a^{-1} and b^{-1} . Since $a,b \in G$, therefore and also belong into G. Now, $b^{-1}oa^{-1}$ will be inverse of and if (and) $(b^{-1}oa^{-1}) = e$. Now, (aob)o $(b^{-1}oa^{-1}) = ao(bo(b^{-1}oa^{-1}))$ using associative property = $ao((bob^{-1})oa^{-1}))$ using associative property = $ao(eoa^{-1})$ since b^{-1} is the inverse of b $= aoa^{-1}$ using identity property = e since a^{-1} is the inverse of a Therefore, $(aob)^{-1} = b^{-1}oa^{-1}$

Example: Prove that in a group (G,o), if $a^2 = a$, then a = e, for $a \in G$ and e is the identity element of G.

Solution:

Since
$$a^2 = a \Rightarrow aoa = aoe$$

 $\Rightarrow a = e$ using left cancellation law.

Example: Show that if every element of a group (G,o) be its own inverse, then it is an abelian group. Is the converse true?

Solution:

First part:

Consider two elements $a,b \in G$. Since each element has its own inverse, therefore $a^{-1} = a$ and $b^{-1} = b$.

To show that the group (G,o) is abelian, we have to show that aob = boa.

Since $a,b \in G$, therefore and also belong into G. Since each element has its own inverse, therefore $(aob)^{-1} = aob$

We know that $(aob)^{-1}=b^{-1}oa^{-1}$, therefore $b^{-1}oa^{-1}=aob \Rightarrow boa=aob$ (Since $a^{-1}=a$ and $b^{-1}=b$)

Therefore the group is abelian.

Second part:

In this part, we have to check if a group is abelian then each element has its own inverse.

This part is not true. We are giving justification of it below.

Consider an abelian group (Z,+). Clearly in this group, inverse of any element a will be -a, which is not equal to a. Therefore, converse part not true.

Exercise

- 1. If (G,o) is an abelian group, then for all $a,b \in G$, show that $(aob)^n = a^n ob^n$.
- 2. Write down the composition tables for $(Z_7, +_7)$ and (Z_7^*, \times_7) , where $Z_7^* = Z_7 \{0\}$.

Order of an element

The order of an element a in a group (G,o) is the smallest positive integer n such that $a^n = e$, where e is the identity element of G.

If no such integer exists, then we say a has infinite order.

Example: Let $G = \{1,-1,i,-i\}$ be a multiplicative group. Find the order of every element.

Solution: In this group, the identity element, e = 1. Therefore, $(1)^1 = 1$ (That is e.), therefore order of 1 = 1. $(-1)^1 = -1$, $(-1)^2 = 1$, therefore order of -1 = 2. $(i)^1 = i$, $(i)^2 = -1$, $(i)^3 = -i$, $(i)^4 = 1$, therefore order of i = 4. $(-i)^1 = -i$, $(-i)^2 = -1$, $(-i)^3 = i$, $(-i)^4 = 1$, therefore order of -i = 4.

Example: Find the order of every element in the multiplicative group $G = \{a, a^2, a^3, a^4, a^5, a^6 = e\}$.

Solution: In this group, the identity element, $e = a^6$. Therefore, $(a)^6 = e$, therefore order of a = 6. $(a^2)^1 = a^2$, $(a^2)^2 = a^4$, $(a^2)^3 = a^6 = e$, therefore order of $a^2 = 3$. $(a^3)^1 = a^3$. $(a^3)^2 = a^6 = e$. therefore order of $a^3 = 2$. $(a^4)^1 = a^4$. $(a^4)^2 = a^8 = a^6 o a^2 = e o a^2 = a^2$. $(a^4)^3 = a^1 2 = a^6 o a^6 = eoe = e$, therefore order of $a^4 = 3$. $(a^5)^1 = a^5$, $(a^5)^2 = a^10 = a^6oa^4 = eoa^4 = a^4$. $(a^5)^3 = a^1 5 = a^6 o a^6 o a^3 = e o e o a^3 = a^3$ $(a^5)^4 = a^2 0 = a^6 o a^6 o a^6 o a^2 = e o e o e o a^2 = a^2$ $(a^5)^5 = a^25 = a^6oa^6oa^6oa^6oa = eoeoeoeoa = a$ $(a^5)^6 = a^3 0 = a^6 0 a^6 0 a^6 0 a^6 = e^6 0 e^6 e^6 = e^6 e^6 e^6$

Therefore, the order of $a^5 = 6$.

 $(a^6)^1 = a^6 = e$, therefore order of $a^6 = 1$.