

MDI224

Interpolation par splines cubiques

Travaux Pratique 2 - Deuxième semestre de 2011

PROFESSEUR: ROLAND BADEAU

ANTHONY CLERBOUT CASIER: 234
TIAGO CHEDRAUOI SILVA CASIER: 214

Décembre 15, 2011

Table des matières

1	$\mathbf{R\acute{e}s}$	solution du système linéaire 3
	1.1	Méthode de relaxation
	1.2	Méthode du gradient à pas constant
		1.2.1 Complexité
		1.2.2 Convergence de l'algorithme
		1.2.3 Taux de convergence optimal
		1.2.4 Implémentation
		1.2.5 Variation du taux de convergence
	1.3	Méthode du gradient à pas optimal
		1.3.1 β qui minimise $J(x_k) - \beta g_k$
		1.3.2 Complexité
		1.3.3 Implémentation
		1.3.4 Taux de convergence
	1.4	Méthode du gradient conjugué
		1.4.1 Complexité
		1.4.2 Implémentation
		1.4.3 Temps d'exécution
	1.5	Application
\mathbf{T}	able	e des figures
	1	Taux de convergence de la méthode gradient en fonction de beta : théorique 5
	2	Taux de convergence de la méthode gradient en fonction de beta : réel
	3	Convergence de la méthode gradient optimal
	4	Calcul de spline cubique naturelle

1 Résolution du système linéaire

1.1 Méthode de relaxation

Nous pouvons exprimer analytiquement la valeur de x_i^{k+1}

$$J(x) = \frac{1}{2}x^{T}Ax - x^{T}b$$

$$= \frac{1}{2}\sum_{i}\sum_{j}x_{i}^{k+1}x_{j}^{k+1}a_{ij} - \sum_{i}x_{i}^{k+1}b_{i}$$

$$\frac{\delta J}{\delta x_{i}^{k+1}} = \sum_{j\leq i}x_{j}^{k+1}a_{ij} + \sum_{j>i}x_{j}^{k}a_{ij} - b_{i} = 0$$

$$x_{i}^{k+1} = \frac{1}{a_{ij}}(b_{i} - \sum_{j\leq i}x_{j}^{k+1}a_{ij} - \sum_{j>i}x_{j}^{k}a_{ij})$$

On observe qu'il s'agit de l'expression de x_i^{k+1} dans l'algorithme de Gauss-Seidel et également dans l'algorithme de relaxation avec w=1.

1.2 Méthode du gradient à pas constant

1.2.1 Complexité

A chaque itération on fait : $g = A * x_n - b$ et xn = x(:, i+1) - beta * g Donc : Comme A est une matrice tridiagonal, $A * x_n$ fait 3N multiplications, et beta * g fait N. Donc, on a 4N multiplication a chaque itération pour la méthode du gradient à pas constant.

multiplication a chaque itération pour la méthode du gradient à pas constant. Pour le méthode de relaxation on fait : $x_i^{k+1} = \frac{1}{a_{ij}}(b_i - \sum_{j < i} x_j^{k+1} a_{ij} - \sum_{j > i} x_j^k a_{ij})$, et cela nous donne aussi 4N multiplications.

1.2.2 Convergence de l'algorithme

On pose $e^{n+1} = x^n - x^*$. On a donc :

$$e^{n+1} = x^{n+1} - x^*$$

$$= x^n - \beta(Ax^n - b) - x^*$$

$$= (I_n - \beta A)e^n$$

On sait qu'il existe une base orthonormale de vecteurs propres de A, notons là $(p_i)_{1 \le i \le N}$ Soit v appartenant à R^n , on pose $v = sum_{i=1}^N v_i.p_i$

On a alors :

$$(I_n - \beta A)v = \sum_{i=1}^{N} (I_n - \beta A)v_i p_i$$
$$= \sum_{i=1}^{N} (1 - \beta \lambda_i)v_i p_i$$

Ainsi:

$$||I_{n} - \beta A||_{2}^{2} = \left(\sum_{i=1}^{N} (1 - \beta \lambda_{i}) v_{i} p_{i}, \sum_{j=1}^{N} (1 - \beta \lambda_{j}) v_{j} p_{j}\right)$$

$$= \sum_{i=1}^{N} (1 - \beta \lambda_{i}^{2}) v_{i}^{2}$$

$$\leq \max(1 - \beta \lambda_{i}) \sum_{j=1}^{N} v_{j}^{2} = (\max|1 - \beta \lambda_{i}|^{2} * ||v||_{2}^{2})$$

Pour tout v appartenant à \mathbb{R}^n , on a donc :

$$||e^{n+1}||_2 \le \max |1 - \beta \lambda_i|||e^n||_2$$

On note $\rho(b) = max|1 - \beta \lambda_i|$ et par récurrence, on obtient :

$$||e^n||_2 \le \rho(B)||e^0||_2$$

On doit donc vérifier que $\rho(B) < 1$! Pour tout $i \in [1, N]$:

$$\lambda_N \leq \lambda_i \leq \lambda_1$$
.

Donc:

$$1 - \beta \lambda_1 \le 1 - \beta \lambda_i \le 1 - \beta \lambda_N$$

Donc:

$$\rho(B) = \max|1 - \beta \lambda_i| = \max(|1 - \beta \lambda_1|, \max|1 - \beta \lambda_N|)$$

L'algorithme converge seulement si $\rho(B) < 1$. Donc $|1 - \beta \lambda_1| < 1$ est équivalent à :

$$1 - \beta \lambda_1 < 1 \text{ et } \beta \lambda_1 - 1 < 1$$
 Soit $0 < \beta < \frac{2}{\lambda_1}$.

Fig. 1: Taux de convergence de la méthode gradient en fonction de beta : théorique

On a trouvé $\lambda_N = 1.4384$ et $\lambda_1 = 5.5616$, donc $\beta_{optimal} = \frac{2}{7}$. Cette valeur est plus petite que la valeur du taux de convergence de la méthode de relaxation : $w_{optimal} = 1.1$.

1.2.3 Taux de convergence optimal

Premièrement, $\rho(B)$ = taux de convergence et la vitesse de convergence du gradient à pas fixe est $-ln(\rho(B))$.

Comme $\rho(B) = \max(1 - \beta \lambda_n, \beta \lambda_1 - 1)$. Donc $\rho(B)$ est minimale lorsque $1 - \beta \lambda_n = \beta \lambda_1 - 1$ Soit : $\beta = \beta_0 = \frac{2}{\lambda_1 + \lambda_n}$

$$\rho(B) = \frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}$$

D'où quand N est grand, la vitesse de convergence est :

$$-ln(1 - \frac{2\lambda_n}{\lambda_1 + \lambda_n}) = -ln(1 - \frac{2}{1 - k}) \quad \text{Avec } k = \frac{\lambda_1}{\lambda_n} .$$

1.2.4 Implémentation

Pour voir la méthode du gradient à pas constant, on a fait le code suivant :

```
Méthode du gradient à pas constant
                                         21 \text{ xn}=\text{x0};
22 x=[x0 xn];
2 % 19/01/11
                                         23 i=1:
3 % Chedraoui Silva, Tiago
4 % Casier: 214
                                         25 while (norm (x(:,i+1) - x(:,i)) > eps | |
5 % CLERBOUT, Anthony
                                               i == 1 ),
6 % Casier: 234
7 % TP2: interpolation par splines
                                             % Pour la fonction
                                         27
8 % cubiques partie II
                                         28
                                                 J=1/2*xT*A*x-xTb;
% Le gradient est donne par
                                            % g=Ax-b;
                                         30
12 function x = mygradient(A,b,x0,beta,eps
                                             g = A * xn - b;
                                         32
                                         33
                                             xn = x(:,i+1)-beta*g;
14 % Entree
                                             x = [x xn];
                                         35
15 % A : matrice
                                             i++;
16 % b : vecteur
17 % x0: vecteur d'initialisation
                                         38 end:
18 % beta: le pas
19 % esp: critere de convergence
```

Losqu'on l'utilise, on trouve comme solution :

```
x = [0.99996 \ 1.00002 \ 0.99998 \ 1.00002 \ 0.99996]^T
```

Cette solution n'est pas optimale, mais est beaucoup proché de la solution opimale $(x^* = [1.0 \ 1.0 \ 1.0 \ 1.0]^T)$;

1.2.5 Variation du taux de convergence

FIG. 2: Taux de convergence de la méthode gradient en fonction de beta : réel

1.3 Méthode du gradient à pas optimal

1.3.1 β qui minimise $J(x_k) - \beta g_k$

Pour trouver β qui minimise $J(x_k) - \beta g_k$, avec $g_{k+1} = -\nabla J(x_k + \beta_k g_k)$. Soit :

$$f'(\beta_k) = 0 = (\nabla J(x^k + \beta_k g_k), g_k)$$

= $-(g_{k+1}, g_k) = -g_{k+1}^T g_k$

On a $g_{k+1} = b - Ax_k - \beta_k Ag_k = g_k - \beta_k Ag_k$ Donc:

$$(g_{k+1}, g_k) = 0 \Rightarrow (g_k - \beta_k A g_k, g_k) = 0$$

$$\Leftrightarrow (g_k, g_k) - \beta_k (A g_k, g_k) = 0$$

$$\Leftrightarrow \beta_k = \frac{(g_k, g_k)}{(A g_k, g_k)} = \frac{(g_k^T, g_k)}{g_k^T A^T g_k}$$

1.3.2 Complexité

Pour cette méthode on fait : g = A * xn - b, 3N multiplications, et après beta = g' * g/(g' * A * g), 6N multiplications, et enfin xn = x(:, i+1) - beta * g, N multiplications. Donc, on a 10N.

Ce coût est plus grand que le coût des valeurs antérieures.

1.3.3 Implémentation

Pour voir la méthode du gradient à pas optimal, on a fait le code suivant :

```
Méthode du gradient à pas optimal
                                            20 \text{ xn}=\text{x0};
                                            21 x=[x0 xn];
22 i=1;
2 % 19/12/11
                                            23
3 % Chedraoui Silva, Tiago
                                              while (norm (x(:,i+1) - x(:,i)) > eps | |
4 % Casier: 214
                                                  i == 1),
5 % CLERBOUT, Anthony
                                            25
6 % Casier: 234
                                                   Pour la fonction
                                            26
7 % TP2: interpolation par splines
                                                     J=1/2*xT*A*x-xTb;
                                            27
8\ \% cubiques partie II
                                            28
                                                   Le gradient est donne par
9 % Description: Gradient a pas constant
                                            29
                                                     g = Ax - b;
30
11
                                            31
                                                g = A * xn - b;
12 function x = gradient_optimal(A,b,x0,
                                            32
                                                beta = g'*g/(g'*A*g);
      eps)
                                            33
13
                                            34
14 % Entree
                                                xn = x(:,i+1)-beta*g;
                                            35
15 % A : matrice
                                            36
                                                x = [x xn];
16 % b : vecteur
                                            37
17 % x0: vecteur d'initialisation
                                           38
18 % esp: critere de convergence
                                            39 end;
```

1.3.4 Taux de convergence

Fig. 3: Convergence de la méthode gradient optimal

En utilisant la fonction polyfit de Matlab, on a trouvé p(x) = -0.547007 x + 1.029611. Donc, le taux de convergence de l'algorithme trouvée est : -0.54.

L'intéret d'avoir le β optimal est que l'algorithme converge plus rapidement.

1.4 Méthode du gradient conjugué

1.4.1 Complexité

Le nombre d'itérations de cet algorithme est proportionnel à la taille n de la matrice du système. Cela veut dire que le gradient conjugué converge au plus n itérations. Pour une matrice pleine, la méthode demande $2n^3$ opérations mais comme la matrice est creuse, la méthode fera moins que $2n^3$ opérations.

Pour la complexité on fait : beta = g' * w/(w' * A * w); 6N multiplications, xn = x(:, i+1) - beta*w; N multiplications, g = A*xn - b; 3N multiplications, a = -g'*A*w/(w'*A*w); 7N multiplications, w = g + a * w; N multiplications,

Donc : 15 multiplications. Cela est la plus grand des complexités de touts les autres algorithmes, on perd en complexité, mais on gagne grâce au nombre d'itérations qui est le plus petit.

1.4.2 Implémentation

Pour voir la méthode du gradient conjugé, on a fait le code suivant :

```
Méthode du gradient conjugué
                                           18 g = A*xn-b;
                                           19 \ \bar{w} = g;
20
2 % 19/12/11
                                           21 while (norm (x(:,i+1) - x(:,i))>eps ||
3 % Chedraoui Silva, Tiago
                                                 i == 1).
4 % Casier: 214
                                           22
5 % CLERBOUT, Anthony
                                               beta = g'*w/(w'*A*w);
                                           23
6 % Casier: 234
                                           24
7 % TP2: interpolation par splines
                                               xn = x(:,i+1)-beta*w;
8 % cubiques partie II
                                               x = [x xn];
                                           26
9 % Description: Gradient a pas constant
                                           27
g = A * xn - b;
11
                                               a = -g'*A*w/(w'*A*w);
                                           29
12 function x = gradient_conjugue(A,b,x0,
                                           30
                                               w=g+a*w;
      eps)
                                           32
                                               i++:
14 \text{ xn} = \text{x0};
                                           33
15 x = [x0 xn];
                                           34 end
16 i = 1;
```

1.4.3 Temps d'exécution

1.5 Application

Méthode	Temps
Gradient conjugué	0.0017250 s
Relaxation	0.0044890
Gradient optimal	0.0044729 s

TAB. 1: Comparatif des temps d'éxécution de différentes méthodes de résolution linéaire

```
Calcul de spline cubique naturelle
                                               17 sol = gradient_conjugue(A,b,x0,10e-6);
1 %==== tstinvtridiag0.m
                                               19 % on doit prendre la derniere colonne
2\ \% Calcul de spline cubique naturelle
                                                     de la matrice sol
3 clear
                                               20 dsec = sol(:,size(sol,2));
4 global t t2 t3
                                               21
5 Npts=100; t=[0:Npts-1].'/Npts; t2=t.*t;
                                               22~\% la premiere et la dernier derive
       t3=t2.*t;
                                                      seconde sont 0
6 figure (1)
                                               23 dsec = [0; dsec; 0];
7 plot([-1;1],[-1;1],'w'); grid
                                               24
8 Pk=acqPk; N=length(Pk);
                                               25 % Calcul des segments (utiliser global
9 hold on; plot(real(Pk),imag(Pk),'o',
                                                     t, t2 et t3)
      real(Pk),imag(Pk),'-'); hold off
10
                                               27 Skt = [];
11 % Suite des derivees secondes
                                               28 for k=1:N-1
12 % Iniatialization matrice A (Ax=b)
                                               29 Pkt=spline3(Pk(k),Pk(k+1),dsec(k),dsec(
13 A = 4*eye(N-2) + diag(ones(1,N-3),1) +
                                                     k+1)):
      diag(ones(1,N-3),-1);
                                               30 Skt = [Skt; Pkt];
14 A = A/6;
                                               31 end
15 x0 = zeros(N-2,1);
                                               32 hold on; plot(Skt); hold off
16 b=toeplitz(Pk(3:N),[Pk(3) Pk(2) Pk(1)])
       *[1;-2;1];
                      (a) Example 1
                                                       (b) Example 2
```

Fig. 4: Calcul de spline cubique naturelle