Intégrales à paramètres

January 2024

1 Conseils Cours

1.1 Montrer qu'une fonction est de classe $C^{+\infty}$

On commence au brouillon par trouver une expression de la dérivée k-ème. On note alors G_k l'intégrale qui représente la k-ème dérivée.

On montre grâce au théorème de dérivation sous l'intégrale que G_k est C_1 et que $G'_k = G_{k+1}$.

Finalement, on introduit l'assertion de récurrence: $F \in C^k(I), F^{(k)} = G_k$.

L'initialisation est un cas particulier de ce que l'on vient de démontrer. Pour l'hérédité, d'après ce que l'on vient de démontrer $F^{(k)} \in C^1(I)$ donc $F \in C^{k+1}(I)$ et l'autre relation est vérifiée.

Ce fait étant établi pour tout $k, F \in C^{+\infty}(I)$

2 Conseils Sujets

2.1 X 2014 PC

Hypothèse de domination lorsqu'on définit une fonction par morceaux: Exemple:

f est nulle si $x \ge d$ et $f: x \mapsto g(x)$ sinon.

Dans ce genre de situation, il est intéressant d'utiliser la norme infinie.

En effet on écrit l'inégalité : $\forall x \in I, |f(x)| \leq ||f||_{\infty,I}$

Rappel: montrer qu'une fonction est C^1 :

- On montre que la fonction est continue.
- \circ On montre souvent qu'elle est C^1 sur un certain intervalle avec une valeur problématique (pas forcément aux bornes).
- \circ Il faut enfin trouver une limite en la borne problématique puis appliquer le théorème de prolongement C^1 . Dans le cas, où on a la fonction sous une forme plutot théorique il est souvent bon d'effectuer un développement de Taylor