Unit 13 Big Data Analytics

Characteristics of Many Modern OLAP Applications

- Datasets keep increasing in size
- Individual nodes can not process entire dataset efficiently
- Individual nodes can not store entire dataset efficiently
- Need to resort to distributed processing and storage
- ◆ For storage: distributed filesystems
 - E.g., HDFS with super-fast reads but only append writes
- ◆ Luckily for many applications "reading" is sufficient
 - No writing to datasets as part of application
 - Performed in a second step, separate system, if needed

Approaches

- Many approaches exist for storing and/or processing data
- ◆ Key is *efficient mapping* of data to underlying hardware infrastructure based on 1. structure of data, 2. functionalities offered, and 3. guarantees provided, e.g.,
 - 1: OO vs relational data vs (key, value) pairs
 - 2: arbitrary position read&write vs arbitrary position read&append only vs sequential read&append only
 - 3: isolation for sequence of operations vs individual operations only
- Gives rise to many different "big data" approaches and systems, e.g., MapReduce, Pig/PigLatin, Flume, Mahout, Hive, Samza, Apex, Ignite, Kafka, Hedwig, Storm, Heron, Flink, Spark
 - Understanding tradeoffs (1./2./3.) and system concepts is crucial for making the right choice
 - Vs pure SE principles (e.g. lines of code, modularization)
- We will briefly discuss three:
 - 1. MapReduce
 - 2. Spark/RDDs
 - 3. Storm

MapReduce (a.k.a. Map/Reduce, Map-Reduce, ...)

- Introduced originally in Lisp programming language
- Popularized for distributed processing by Google in 2004 [Dean&Ghemawat;OSDI'04]
- Allows for distribution with strong potential for parallelization
- Well-suited for data structured as (key, value) pairs
- Simple abstraction, programmer implements 2 functions:
 - $map(k_1, v_1) \rightarrow list(k_2, v_2)$
 - $reduce(k_2, list(v_2)) \rightarrow list(v_3)$
- Note: k_2 s needn't be k_1 s, v_2 s needn't be v_1 s, v_3 s needn't be v_2 s

Workflow

- 1. Data loaded in from file, *n* partitions created
- 2. *n* parallel mappers instantiated on *n* hosts, each obtains a partition
- 3. map function called for one partition entry (k_1, v_1) pair at a time, returns list of (k_2, v_2) pairs each time
- 4. Temporary files created with values v_2 per (same) key k_2
- 5. *m* parallel reducers instantiated on *m* hosts
- 6. Each reducer is assigned a subset of the keys k_2
- 7. reduce function called for a key k_2 at a time with all values from temporary files created for that key by any mapper, outputs list of values v_3 each time
- System phase taking care of 6. and distributing data to reducers is called "shuffling"
- System also responsible for monitoring "stragglers" (slow mappers or reducers) and re-initiating them in case of failures, as well as load balancing across hosts

Schematic Overview (Special Case of m=n)

Example: Word Count (Pseudo-Code)

- Input: set of files/documents
- Output: words and the number of their respective occurrences

```
map(String input key, String input value):
    // input key: document name
    // input value: document contents
    for each word w in input value:
        EmitIntermediate(w, "1");
reduce(String output key, Iterator intermediate values):
    // output key: a word
    // output values: a list of counts
    int result = 0;
    for each v in intermediate values:
        result += ParseInt(v);
    Emit(AsString(output_key + ":" + result));
```

Word Count Illustrated

Limitations

Model

- Not all (parallelizable) tasks fit the abstraction
- Can chain multiple stages with respective map and reduce functions
 - Still no unbounded iterative (and recursive) computation stages (cf. great^x-grantchildren/parents)

Performance

- Filesystem becomes bottleneck
- Can avoid distributed filesystem between different stages, but shuffling still uses local filesystem
- Many extensions proposed (for model and/or performance), e.g., aggregators (reducer-side)

Spark

- Original paper published in 2012 [Zaharia et al.;NSDI'12]
- Key tenets
 - A. **Dataflow-based** computation from input data sets to results through sequence of operations
 - Main abstraction: resilient distributed datasets (RDDs)
 - No modifications in place, modifications give rise to new RDD
 - Computation forms a DAG with nodes RDDs and arcs for operations
 - B. **Avoid filesystem** during computations
 - All datasets materialized in RAM including intermediate datasets
 - Support for *iterative* and *incremental* computations
 - C. Scaling by *partitioning datasets across hosts* (RAM)
 - API highlights operations that can be performed on individual partitions
 - D. *Lineages* for tracking dependencies between datasets
 - Used for incremental computations and fault-tolerance (recomputing)
- ◆ A. from data flow programming (e.g., PigLatin [Olsen et al.;SIGMOD'08]), B. from main-memory DBMSs (e.g., [Pedone&Frolund;SRDS'00]), C. from distributed DBMSs, D. from snapshot techniques and provenance tracking (e.g., [Zhang et al.;VLDB'07])

Operations on RDDs

1. Transformations

- Create RDDs from other (parent) RDDs
- Typically one element at a time (and thus independently across partitions)
- Some common transformations
 - map(function): function applied to every element to create new element
 - filter(function): function applied to every element to decide whether to "keep" it

2. Actions

- Compute actual return values
- Some common actions
 - count(): return the number of elements
 - take(n): return an array of first n elements
 - collect(): return array of all elements
 - saveAsTextFile(file): save to file in filesystem
 - reduce(function): aggregate all values using function
- Many alternative APIs and libraries, e.g.,
 - DataFrame (tables w/ named columns), Dataset (static typing for OOP)
 - SparkSQL
 - Spark streaming (discretized streams)
 - SparkML/MLlib (on DataFrame)

Examples (Pseudo-Code)

Word count

General MapReduce

General MapReduce with combiner

Architecture Overview

Tracing Execution

MapReduce vs Spark: Logistic Regression

Limitations

Aggregation

- Performance excellent when "embarrassingly parallel"
- Aggregation performance depends on aggregation function used
 - Sometimes best in many stages 2 x 2 x 2.... (e.g., HP Presto [Venkataraman et al.; EuroSys'13])
 - Sometimes best in 1 stage n x 1 (e.g., Spark original)
 - Often in between, depending on aggregation ratio (tradeoff computation vs communication)
- Cf. LOOM [Culhane et al.;HotCloud'14]*,[Culhane et al.;INFOCOM'15], ROME [Blöcher et al.;ACM TOCS'22]
 - treeReduce (added after *) only poor subset solution using depth parameter

Security

 Cf. Seabed [Papadimitriou et al.;OSDI'16], Cuttlefish [Savvides et al.;SoCC'17], Opaque [Zheng et al.;NSDI'17], Symmetria [Savvides et al.;VLDB'20], Hydra [Mangipudi et al.;PLDI'23]

Correctness

 Cf. Multi-party session types for event-driven fault-tolerant distributed programming [Viering et al.;OOPSLA'21]

. . .

Another Issue: Reactivity

- Spark et al. are optimized for batch/mini-batch processing
- Support for incremental computation upon extension of input datasets
- What if arrival of new data is the norm and reaction times need to be minimized?
- Enter stream processing
- Scenarios
 - Financial applications (e.g., electronic/algorithm trading, fraud detection)
 - Network monitoring
 - Social network analysis
 - Sentiment analysis on tweets
 - •
- Stream processor listens indefinitely for incoming data
 - Reacts

Storm

- Relies on explicit application-defined topology
- Concepts
 - Tuple: ordered list of named values
 - Stream: an unbounded sequence of tuples
 - Spout: source of a stream emitting tuples
 - Bolt: accepts tuple from (one if its) input streams, performs some computation (filtering, aggregation, join), possibly emits new tuple(s)

Parallelism

- Bolts can be replicated
- Groupings specify how tuples are routed to bolt replicas
 - Shuffle grouping: random distribution
 - Field grouping: portioning according to value of tuple attribute
 - All grouping: complete replication
 - Direct grouping: producer decides on replica
 - •
 - Custom application-defined grouping

Key Ideas

- Distributed data analytics
- MapReduce
- Spark
- Limitations/open issues
- Stream processing