

ORGANIC CHEMISTRY

>> ORGANIC REACTIONS MAP

Organic chemistry functional groups

Organic chemistry functional groups						
Name	Formula	Prefix	Suffix	Example	Notes	
Carboxylic acid	R ₁ OH		-oic acid	OH Ethanoic	Common are acetic acid (vinegar) and butyric acid (human vomit	
Sulphonic acid	Q O R ₁ S OH		- sulfonicic acid	O _{s.OH} Tolene sulphonic acid	Used in batteries and dye production.	
Anhydride	R ₁ OR ₂		-anhydride	O O Maleic anhydride	Used in production of polymers	
Ester	R ₁ LO^R ₂		R ₁ R ₂ oate	Ethyl acetate	Often good smell and flavor	
Acid halide	یگ _ر	Haloformyl-	-R ₁ 0yl halide	Acetyl CI chloride	Usually lachrymatory	

-amide

-nitrile

-al

-one

Amido-

Cyano-

Oxo-

Oxo-

Hydroxy-

Mercapto-

H

Amide

Nitriles

Aldehyde

Ketone

Alcohol

Thiol

Amine

Distinctive feature of

enzymes)

proteins (hair, spider silk,

Found in a lot of fruits

application in medicine

Production of resins and

plastics. Ingredients of

flavours and parfumes. Solvents, precursor for

polymers, pharmaceutics

Cysteine, many

and nuts, as well as

Ethan

amide

Benzo

nitrile

pentane carbaldehyde

Propan-

OH Methanol

cyclo

NH₂

Alkenes ROH Alcohols ROH Alcohols ROH

Reaction	Name	Typical Conditions	Notes [1°, 2° and 3° refers to primary, secondary, tertiary]
0	Free radical chlorination	Cl ₂ , hy	Not highly selective
2	Free radical bromination	Br ₂ , hy	Highly selective for tertiary C-H
3	Elimination [E2]	RO [®] /ROH	Best for 2° and 3°, anti stereochemistry
•	Elimination (E1)	polar solvent, heat	Competes with S _N 1
(5)	Alcohol Formation [S _N 2]	[⊝] OH / H₂O	Best for 1" alkyl halides; 2" can compete w/ E2
6	Alcohol Formation [S _N 1] "Solvolysis"	H ₂ O	Best for 3° alkyl halides; rearr possible w/ 2°
\odot	Ether Formation [S _N 2] ["Williamson Ether Synthe	RO /ROH sis"]	Best for 1° alkyl halides; 2° can compete w/ E2
®	Ether Formation [S _N 1] "Solvolysis"	ROH	Best for 3° alkyl halides; rearr possible w/ 2°
•	Thiol formation [S _N 2]	[⊖] SH	S _N 2; best for 1° alkyl halides, 2° OK
10	Sulfide formation [S _N 2]	⊖ _{SR}	S _N 2; best for 1° alkyl halides, 2° OK
11	Ester formation [S _N 2]	RCO₂ in polar aprotic	S _N 2; best for 1° alkyl halides, 2° OK
12	Azide formation [S _N 2]	N ₃ ⊖ solvent	S _N 2; best for 1° alkyl halides, 2° OK
13	Nitrile formation [S _N 2]	[⊖] CN	S _N 2; best for 1° alkyl halides, 2° OK
14	Alkyne formation [S _N 2]	R-C≣C [⊕]	Best for 1° alkyl halides; 2° can compete w/ E2

elimination

substitution

conjugate conjugate

acid

electrophile nucleophile

CH₃ H
CH₃ -C-O + Cl
CH₃ CH₃ -CH₃ CH
CH₃ CH₃ + H₂O

TABLE 10.4 Important Hybrid Orbitals and Their Shapes **Pure Atomic** Hybridiza-Orbitals of tion of the Number Shape the Central Central of Hybrid of Hybrid Atom Atom **Orbitals Orbitals** Examples 180° 2 BeCl₂ s, p sp Linear sp^2 3 BF, s. p. p 120° Trigonal planar 109.5° sp3 CH₄, NH₄ s. p. p. p Tetrahedral 90° sp^3d 5 s, p, p, p, d PCI₅ 120° Trigonal bipyramidal 90° sp^3d^2 s, p, p, p, d, d SF₆ 6 90°

Octahedral

BOHYDRATES:

CHARIDES # C. H120, \$

examples

- glucose + fruit
- fructose honey of
- garactose digested milk ?

SACCHARIDES # CI2 H22 OI \$

examples

- sucrose → table sugal
- · lactose milk
- galactose barley

OLYSACCHARIDES (C6 H10 O5) n

examples

- Starch Potatoes
- cellulose fruit and veg
- + wholegrain cereals
- glycogen stored animal starch

& 3 or more linked -