Forward, Backward, Inward, Outward and Omniward Chaining

Nil Geisweiller

SingularityNET Foundation

Inference Tree

- Formal proof as tree
- Axioms as leaves
- Theorem as root

$$\frac{P}{P} \text{ (P)} \quad \frac{\overline{P \to Q} \text{ (PQ)} \quad \overline{Q \to R}}{P \to R} \text{ (Deduction)}}{R}$$

$$\frac{P}{R} \text{ (Modus Ponens)}$$

Premises: $P, P \rightarrow Q, Q \rightarrow R$

 $\underline{\mathsf{Premises}} \colon P, \, P \to Q, \, Q \to R$

$$\frac{1}{P}(P)$$
 $\frac{P \to Q}{P \to Q}(PQ)$ $\frac{1}{Q \to R}(QR)$

<u>Premises</u>: $P, P \rightarrow Q, Q \rightarrow R$

$$\underline{\frac{P}}(\mathsf{P}) \quad \underline{\frac{P \to Q}{P \to R}}(\mathsf{PQ}) \quad \underline{\frac{Q \to R}{Q \to R}}(\mathsf{QR})$$

 $\underline{\mathsf{Premises}} \colon P,\, P \to Q,\, Q \to R$

$$\frac{P}{P}(P) = \frac{P \to Q}{P \to R} \frac{(PQ)}{P \to R} \frac{Q \to R}{(PQ)} \frac{(QR)}{(PQ)} \frac{(QR)}{(PQ$$

Conclusion: R

	Conclusion: R		
Premises			
Conclusions			
		R	

Conclusion: R

$$\frac{P}{P} (P) \qquad \frac{P \to R}{R} (Modus Ponens)$$

Conclusion: R

$$\frac{}{P}\left(\mathsf{P}\right) \quad \frac{\overline{P \to Q} \; \left(\mathsf{PQ}\right) \quad \overline{Q \to R} \; \left(\mathsf{QR}\right)}{P \to R} \; \left(\mathsf{Modus} \; \mathsf{Ponens}\right)}$$

Inward Chaining

<u>Premises</u>: $P, P \rightarrow Q, Q \rightarrow R$, <u>Conclusion</u>: R

5/7

Inward Chaining

Premises: $P, P \rightarrow Q, Q \rightarrow R$, Conclusion: R

$$\frac{P}{P} (P) \qquad \frac{\overline{P \to Q} (PQ) \qquad \overline{Q \to R}}{R} (QR)$$
(Modus Ponens)

Inward Chaining

<u>Premises</u>: $P, P \rightarrow Q, Q \rightarrow R,$ <u>Conclusion</u>: R

$$\frac{P}{P}(P) = \frac{P \to Q}{P \to R} \frac{(PQ)}{P \to R} \frac{Q \to R}{(PQ)} \frac{(QR)}{(PQ)} \frac{(QR)}{(PQ)}$$

$$\frac{P \to Q}{R} \frac{(PQ)}{(PQ)} \frac{Q \to R}{(PQ)} \frac{(QR)}{(PQ)}$$

$$\frac{P \to Q}{(PQ)} \frac{(PQ)}{(PQ)} \frac{Q \to R}{(PQ)} \frac{(QR)}{(PQ)}$$

Premise: P, Lemma: $P \rightarrow R$

Premise:
$$P$$
, Lemma: $P \rightarrow R$

$$\underline{\frac{P}(P)} \quad \underline{\frac{P \to Q}{P \to R}} (PQ) \quad \underline{\frac{Q \to R}{Q \to R}} (QR)$$

Premise: P, Lemma: $P \rightarrow R$

$$\frac{P}{P}(P) = \frac{P \to Q}{P \to R} \frac{(PQ)}{P \to R} \frac{Q \to R}{(PQ)} \frac{(QR)}{(PQ)} \frac{(QR)}{(PQ)} \frac{(QR)}{(PQ)}$$

 Premise: $Q \rightarrow R$, Lemma: $P \rightarrow R$

Premise:
$$Q \to R$$
, Lemma: $P \to R$

$$\frac{}{Q \to R} \text{ (QR)}$$

$$\frac{}{P \to R}$$

Premise:
$$Q \to R$$
, Lemma: $P \to R$

$$\frac{P \to Q}{P \to R} (PQ) = \frac{Q \to R}{Q \to R} (QR)$$
(Deduction)

Premise:
$$Q \to R$$
, Lemma: $P \to R$

$$\frac{}{R} \frac{\overline{P \to Q} \text{ (PQ)} \quad \overline{Q \to R}}{\overline{Q \to R}} \text{ (QR)} \\ \frac{P \to R}{R} \text{ (Modus Ponens)}$$

 Premise: $Q \rightarrow R$, Lemma: $P \rightarrow R$

$$\frac{P}{P}(P) = \frac{P \to Q}{P \to R} \frac{(PQ)}{P \to R} \frac{Q \to R}{(PQ)} \frac{(QR)}{(PQ)} \frac{(QR)}{(PQ)}$$

$$\frac{P \to Q}{R} \frac{(PQ)}{(PQ)} \frac{Q \to R}{(PQ)} \frac{(QR)}{(PQ)}$$

$$\frac{P \to Q}{(PQ)} \frac{(PQ)}{(PQ)} \frac{Q \to R}{(PQ)} \frac{(QR)}{(PQ)}$$

$$\frac{P \to R}{(PQ)} \frac{(PQ)}{(PQ)} \frac{Q \to R}{(PQ)} \frac{(QR)}{(PQ)}$$