SemEval 2017 Task 10: Science IE

Extracting Keyphrases and Relations from Scientific Texts Jennifer Storozum

The Task

Subtask (A): Identification of keyphrases

Given a scientific publication, the goal of this task is to identify all the keyphrases in the document.

Subtask (B): Classification of identified keyphrases

In this task, each keyphrase needs to be labelled by one of three types: (i) PROCESS, (ii) TASK, and (iii)

MATERIAL.

PROCESS

Keyphrases relating to some scientific model, algorithm or process should be labelled by PROCESS.

TASK

Keyphrases those denote the application, end goal, problem, task should be labelled by TASK.

MATERIAL

MATERIAL keyphrases identify the resources used in the paper.

The Task

Subtask (C): Extraction of relationships between two identified keyphrases

Every pair of keyphrases need to be labelled by one of three types: (i) HYPONYM-OF, (ii) SYNONYM-OF, and (iii) NONE.

HYPONYM-OF

The relationship between two keyphrases A and B is HYPONYM-OF if semantic field of A is included within that of B. One example is Red HYPONYM-OF Color.

SYNONYM-OF

The relationship between two keyphrases A and B is SYNONYM-OF if they both denote the same semantic field, for example Machine Learning SYNONYM-OF ML.

The Data

Labels SemEval 2017 Task 10

Material, Process, Task

Т1	Process 0 19 Max-linear
T2	Material 73 107 multiproce
T3	Process 47 68 optimisati
Т4	Material 131 140 variab
T5	Process 234 251 integer so
T6	Material 281 306 generi
T7	Process 321 338 integer so
T8	Material 342 383 two-si
T9	Material 421 437 genera
T15	Task 506 546 algorithms
T21	Material 255 274 max-li
Т22	Task 442 495 adapt the
*	Synonym-of T15 T22

Topics	Computer Science, Physics,				
	Material Science				
Number all keyphrases	5730				
Proportion singleton keyphrases	31%				
Proportion single-word mentions	18%				
Proportion mentions with word length ≥ 2	82%				
Proportion mentions with word length $>= 3$					
Proportion mentions with word length $>= 5$					

Task

Information extraction is the process of extracting structured data from unstructured text, which is relevant for several end-to-end tasks,

Tasl

including question answering. This paper addresses the tasks of named entity recognition (NER), a subtask of information extraction,

Process Process

Material

using conditional random fields (CRF). Our method is evaluated on the ConLL-2003 NER corpus.

The Approach

BILOU tagging

CRF with Scikit learn CRF Suite

Feature engineering (w-1, w, w+1):

- Prefixes, suffixes (up to 4 letters)
- Upper/lower/titlecase, isDigit, isAlphaNum, contains AlphaNum
- POS tag
- Word length >= 2, 3, 4

Gazeteer: GO (Gene Ontology)

The Challenges

As usual, data heavily skewed by negative samples

The same span can (and often does) have more than one label How to represent this? Examples:

```
T13 Material 835 848 simple metals
T14 Material 835 893 simple metals with sufficiently delocalized wave functions

T2 Task 65 79 thermalization
T3 Process 65 79 thermalization

T12 Process 61 87 chemical vapour deposition
T14 Material 70 76 vapour
```

The Results - Dev Set

Material				Process					Task			
	precision recall f1-score			precision recall f1-score					precision recall f1-score			
В	0.476	0.365	0.413	В	0.454	0.334	0.385	В	0.284	0.180	0.220	
I	0.339	0.308	0.323	I	0.292	0.278	0.285	1	0.340	0.184	0.238	
L	0.585	0.448	0.507	L	0.515	0.376	0.435	L	0.338	0.211	0.260	
U	0.776	0.232	0.357	U	0.432	0.182	0.256	U	0.000	0.000	0.000	
av	g 0.550	0.338	0.401	avg	0.404	0.313	0.350	avg	0.326	0.185	0.236	

THANK YOU FOR COMING TO MY

