

TECNICATURA SUPERIOR EN

Telecomunicaciones

Electrónica Microcontrolada

Circuito Digital. UPPG, Unidad de Procesamiento de Propósito General

Índice

- Introducción:
 - Unidades de Control/Proceso (Específicas).
 - Un Ejemplo: Máximo Común Divisor.
- El procesador de propósito general; definición.
- Unidad de Proceso de PPG:
 - Banco de Registros.
 - ALU.
 - Palabra de Control.
- Entrada/Salida.
- Memoria.
- Unidad de Control de PPG:
 - Secuenciamiento de Instrucciones.
 - Formato de Instrucciones.

Dificultades de los Circuitos Lógicos Combinacionales:

- Sumador de dos números de 16 bits (n = 16).
- Tabla de Verdad inviable: 65.536 filas. (¿Por qué?).
 - ¿Quién la dibuja?
- Implementación con Not, And y Or inviable. (¿Cuántas puertas de cada tipo aproximadamente?).
- Implementación con ROM, posible, escritura por programa.

No diseñaremos los **CLC que procesan palablas de n bits** (para n tipicos de 8, 16, 32 ó 64) con los métodos sistemáticos que hemos visto.

Como en el caso del sumador visto en prácticas, haremos **diseños ad-hoc con bloques multinivel**, aplicando conocimientos, inteligencia, experiencia, etc.

Dificultades de los Circuitos Lógicos Secuenciales:

 Los CLS, en general, requieren muchos estados y los métodos de síntesis vistos anteriormente resultan inviables.

Un Ejemplo:

- Diseñar un CLS que realice la suma de una secuencia de 3 números naturales codificados en binario con 2 bits cada uno.
- Los números llegan al sistema por la entrada DATO a razón de un número por ciclo, comenzando por el ciclo en el que la señal de entrada INI vale 1.
- Una vez terminado el cálculo, el resultado estará disponible en la salida
 RESULT durante 1 ciclo, en el cual el circuito pondrá la salida FIN a 1.

Dificultades de los Circuitos Lógicos Secuenciales:

- ¿Alguien se atreve a diseñar el grafo de estados del CLC que sume 5 números de 8 bits?
- La complejidad de un sistema como éste crece exponencialmente con n (número de bits para codificar los números). Nuestros métodos de síntesis no valen.

Dado que tenemos dos tipos de señales con características y funciones distintas (DATO--RESULT; INI--FIN), crearemos dos subsistemas que manejen cada grupo de manera independiente y se comuniquen entre ellos.

Diseño de Sistemas Complejos:

- A efectos de diseño, un sistema lógico secuencial complejo se descompone en dos subsistemas (ambos secuenciales): Unidad de Proceso (UP) o camino de datos (datapath) y Unidad de Control (UC).
- La UP almacena y transforma (opera) los datos hasta obtener los resultados.
- La UC controla las operaciones que se realizan en la UP y su secuenciamiento correcto.

Unidad de Proceso:

- La Unidad de Proceso es un circuito secuencial que diseñaremos a nivel de bloques mediante un diseño ad-hoc.
- Diseñaremos una UP formada por elementos de almacenamiento (registros, bancos de registros, memorias) interconectados entre sí a través de bloques combinacionales (sumadores, restadores, desplazadores aritméticos, incrementadores, comparadores, ALUs, codificadores, decodificadores, multiplexores...) y puertas lógicas.

Unidad de Proceso:

Ejemplo: Unidad de Proceso de un sumador de 4 números.

Un sumador es suficiente para sumar 4 números, ya que estos llegan uno por ciclo y podemos reutilizar el sumador (poniendo más de 1 sumador no reducimos el tiempo necesario para realizar las 4 sumas).

Unidad de Control:

- La UC también es un CLS, de complejidad más reducida que la UP.
- Se especifica mediante un grafo de estados, según el modelo Moore:
 - Ls salidas de un autómata de Moore (palabra de control que gobierna la UP y salidas de control de la UC) son función únicamente del estado actual.
 - El estado siguiente es función de las Entradas de control, de la palabra de control que llega de la UP y del estado actual.

Solo 1 bit de entrada: INI.

Dos salidas: Bit FIN y bit MX (palabra de control).

No necesitamos condiciones de la UP para generar el secuenciamiento correcto de las palabras de control.

- Unidad de Control:
 - El grafo de estados:

Cronograma:

Tiempo de ciclo suficiente.

CLK —	ciclo 1	ciclo 2	ciclo 3	ciclo 4	ciclo 5	ciclo 6
INI 0	1	0	0	0	0	0
DATO	23	5	12	18	<u> </u>	X
MX_0	0	1	1	1	0	0
Ent. Reg.	23	X///// 28	X///// 40	X///// 58	<u>x</u>	X
Sal. Reg.		23	28	40	58	x
FIN_0	0	0	0	0	1	0

• Ejemplo: Máximo Común Divisor:

– Diseñar, utilizando el algoritmo de Euclides, un circuito capaz de calcular el Máximo Común Divisor de dos números enteros X e Y codificados en complemento a 2 con 16 bits cada uno. Los números a sumar llegan al sistema cuando la entrada INI vale 1, y el resultado en la salida será válido cuando la salida FIN se ponga a 1.

```
Algortimo de Euclides para MCD(X, Y):
A: = X; B: = Y;
mientras (A ≠ B) hacer:
si (A > B) entonces A: = A -B;
en caso contrario B: = B -A;
fin-mientras
MCD: = A.
```

- Ejemplo: Máximo Común Divisor:
 - Paso 1: definir las entradas/salidas de la UC y UP.

- Ejemplo: Máximo Común Divisor:
 - Paso 1: definir las entradas/salidas de la UC y UP.

- Ejemplo: Máximo Común Divisor:
 - Paso 2: diseñar la Unidad de Proceso.

```
Algortimo de Euclides para MCD(X, Y):
A: = X; B: = Y;
mientras (A ≠ B) hacer:
si (A > B) entonces A: = A -B;
en caso contrario B: = B -A;
fin-mientras
MCD: = A.
```


• Ejemplo: Máximo Común Divisor

• Ejercicio:

 Dado el grafo de estados del MCD, implementar su UC con una ROM y conectar dicho circuito a la UP diseñada.

Índice

- Introducción:
 - Unidades de Control/Proceso (Específicas).
 - Un Ejemplo: Máximo Común Divisor.
- El procesador de propósito general; definición.
- Unidad de Proceso de PPG:
 - Banco de Registros.
 - ALU.
 - Palabra de Control.
- Entrada/Salida.
- Memoria.
- Unidad de Control de PPG:
 - Secuenciamiento de Instrucciones.
 - Formato de Instrucciones.

Procesador de Propósito General

- El núcleo de un computador es un **procesador de propósito general:** un mismo circuito que sirve para resolver diferentes problemas.
- Únicamente se cambia la secuencia de órdenes (el **programa**) que se encuentra almacenado en memoria.

Pasos:

- Definiremos una Unidad de Proceso General (UPG) que puede servir para resolver diferentes problemas con sólo cambiar la unidad de control (específica para cada problema).
- Transformaremos la UC hasta obtener un diseño genérico "programable", generando las señales de control adecuadas para la UPG diseñada.
- Objetivo final: un procesador de propósito general (tanto UP como UC).

- A una UP general podremos conectar diferentes Unidades de control, de tal forma que pueda realizar las diferente tareas sin necesidad de ser modificada.
- Una UP general debe tener un conjunto de registros, una o varias unidades funcionales (circuitos combinacionales que realizan diferentes cálculos) y una interconexión que se pueda modificar (multiplexores, demultiplexores) dinámicamente en cada ciclo.

• Registros + Unidades Funcionales + Interconexión

Ancho de los buses: 16 bits.

Banco de registros: 8 registros de 16 bits de tamaño cada uno (Como son 8, 3 bits de dirección @).

Unidad Aritmético--Lógica: 8 posibles operaciones aritméticas y 5 de Comparación (Cmp/Al y F determinan la operación.

Las operaciones de la ALU se llevan a cabo sobre dos registros ó un registro y una constante (**IMMED**).

El **bit z** vale 1 cuando los 16 bits de salida de la ALU valen 0 (en caso contrario vale 0).

Banco de Registros:

8 Regs de 16 bits, con 1 puerto de escritura (D) y dos de lectura (A y B).

Unidad Aritmético--Lógica:

Datos de 16 bits, 13 Operaciones (4 Aritméticas, 4 Lógicas, 5 Comparación).

El tipo de operación es seleccionado con los 3 bits de la entrada F y con la entrada Cmp/Al:

ОР	Cmp/Al=1	Cmp/Al=0
000	CMPLT(X,Y)	AND(X,Y)
001	CMPLE(X,Y)	OR(X,Y)
010	_	XOR(X,Y)
011	CMPEQ(X,Y)	NOT(X)
100	CMPLTU(X,Y)	ADD(X,Y)
101	CMPLEU(X,Y)	SUB(X,Y)
110	<u> </u>	SHA(X,Y)
111	<u> </u>	SHL(X,Y)

- Unidad Aritmético--Lógica: Operaciones Aritméticas/Lógicas:
 - La salida de la ALU es el valor de la función seleccionada por F, aplicado a X e Y.

F	W
000	AND(X,Y)
001	OR(X,Y)
010	XOR(X,Y)
011	NOT(X)
100	ADD(X,Y)
101	SUB(X,Y)
110	SHA(X,Y)
111	SHL(X,Y)

Operación Shift.

F	W
000	AND(X,Y)
001	OR(X,Y)
010	XOR(X,Y)
011	NOT(X)
100	ADD(X,Y)
101	SUB(X,Y)
110	SHA(X,Y)
111	SHL(X,Y)

Unidad Aritmético--Lógica: Comparaciones:

- Salida de CMP: True ó False (codificable con 1 bit).
- Utilizo el bit 0: TRUE: W(b0) = 1 FALSE: W(b0) = 0. El resto de bits de salida a 0 (W(bi) = 0).

ОР	Cmp/Al = 1	Cmp/Al = 0
000	CMPLT(X,Y)	Less Than (<i>signed</i>): if (X<y< b="">) W=1; else W=0;</y<>
001	CMPLE(X,Y)	Less Than or Equal (<u>signed</u>): if (X<=Y) W=1; else W=0;
010	_	_
011	CMPEQ(X,Y)	Equal: if (X==Y) W=1; else W=0;
100	CMPLTU(X,Y)	Less Than (<u>unsigned</u>): if (X<y< b="">) W=1; else W=0;</y<>
101	CMPLEU(X,Y)	Less Than or Equal (<u>unsigned</u>): if (X<=Y) W=1; else W=0;
110	_	_
111	_	_

- Posibles acciones (en 1 ciclo) de la Unidad General de Proceso:
 - **1. Operaciones con 2 registros:** leer dos registros, operarlos con alguna de las 12 funciones de 2 operandos de la ALU y dejar el resultado en otro registro al final del ciclo. Ejemplos:

* El segundo operando puede ser un número codificado en complemento a 2 con 16 bits que entra por IMMED:

$$R7 = R1 - 1$$
 (ADDI R7, R1, -1).

2. Operaciones con 1 registro: leer un registro por el bus A, operarlo con la función NOT:

$$R4 = !R2 \text{ (NOT R4, R2)}.$$

3. Entrada de Datos: escribir un registro, al final del ciclo, con la información presente durante ese ciclo en DATAIN:

4. Salida de Datos: contenido de un registro presente en DATAOUT: **valor de DATAOUT = R4** (OUT R4).

La Palabra de Control:

 No perder la perspectiva. Seguimos trabajando con el modelo utilizado al comienzo del tema (Unidad de Control <> Unidad de Proceso).

Para que la Unidad de Proceso realice una acción en un ciclo determinado, hay que propor-

cionar a la UP la palabra de control adecuada durante ese ciclo (recordar el ejemplo del MCD).

16 DATAIN

Mnemotécnicos y Palabras de Control:

- Interpretar las palabras de control desde el punto de vista «humano» es complejo.
 - Ejemplo: ¿qué hace la palabra de control **0111001101001101xxxxxxxxxxxxxxxxx**?
- Utilizaremos un sistema de representación más fácil de interpretar (mnemotécnicos).
- El formato de dichos mnemotécnicos será el siguiente:
- 1. Operaciones con 2 registros:

Operación	Reg. Destino	Reg. Origen	Reg. Origen				
ADD	R6,	R3,	R5				

2. Operaciones con 1 registro y 1 inmediato:

Operación	Reg. Destino	Reg. Origen	Inmediato				
ADD	R6,	R3,	2				

3. Operaciones con 1 registro:

Operación	Reg. Destino	Reg. Origen
NOT	R6,	R3

4. Entrada / Salida de datos:

Operación	Registro
IN	R6

Estos mnemotécnicos también se denominan <u>Instrucciones</u>.

Mnemotécnicos y Palabras de Control

- A partir de un mnemotécnico debemos ser capaces de generar la palabra de control (y viceversa).
- Ejemplo: Para que la UPG haga NOT R4, R2 la palabra de control será:

	Mnemotécnico / U/ALU	1 i		@D		@A)/Al	р/AI т			@B				IMMED	
		∵ ≥	b ₂	b_1	b _o	b ₂	b ₁	b _o	Стр	b ₂	b ₁	b _o	RB	b ₂	b ₁	b _o	$b_{15}b_{14}b_{13}b_{1}b_{0}$	
	NOT R4, R2																	

Ejercicio:

 Obtener las palabras de control de la UPG para las siguientes instrucciones:

> ADD R6, R3, R5 CMPLTU R3, R1, R5 ADDI R7, R1, -1 IN R2 OUT R4

	Mnemotécnico	In/ALU	WrD		@D)		@A		Cmp/Al		F		RB/I		@В		IMMED
			>	b ₂	b_1	b _o	b ₂	b ₁	b _o	Cmp	b ₂	b ₁	b _o	R	b ₂	b_1	b _o	IMMED b ₁₅ b ₁₄ b ₁₃ b ₁ b ₀

Observaciones:

- De los 4 tipos de acciones solo en una (OUT) no es necesario escribir al final del ciclo en el banco de registros.
- En ocasiones puede resultar interesante que la ALU opere sin escribir el resultado. Por ejemplo, la acción ANDI –,R3, 0x8000 indicará si el bit 15 de R3 vale 0 si z vale 1.
- Algunas operaciones pueden realizarse de forma simultánea. Por ejemplo, SUB R1, R2, R3 y OUT R2. (La mayoría no pueden. Ej.: ADD R6, R3, R5 y IN R2).

Ejemplo de uso de la UPG:

- Sumar, con la UPG, 4 números que lleguen por la entrada DATAIN.
- La Unidad de Proceso ya está diseñada, hay que diseñar la Unidad de Control.
- La UC debe generar en cada ciclo:
 - La palabra de control (32 bits) y las salidas de control (bit END).
 - El estado siguiente en función de: Estado Actual, palabra de estado (bit z) y entradas de control (bit Begin).

Ejemplo de uso de la UPG

- Sumar, con la UPG, 4 números que lleguen por DATAIN.
- En la sección previa, se diseñó una UP específica para la suma, y posteriormente la UC para dicha UP.
- Dado que la UP ha cambiado, el diseño de la UC no podrá ser igual:
 - Ahora no podemos conectar DATAIN con la ALU directamente y hay que pasar por el Banco de registros (antes el dato del puerto de entrada iba directo al Sumador).
 - Ahora necesitamos ciclos distintos para almacenar en un registro DATAIN y el resultado de la ALU (antes DATAIN no se almacenaba, solamente el valor de la suma).
- Solución: UC distinta, adaptada a la UPG. Introducimos los 4 números en 4 registros y después los sumamos.

Ejemplo de uso de la UPG:

Sumar, con la UPG, 4 números que lleguen por DATAIN.

Grafo de Estados:

	Palabra de Control	FIN
S0	IN R1	0
S1	IN R2	0
S2	IN R3	0
S3	IN R4	0
S4	ADD R5, R1, R2	0
S5	ADD R5, R3, R5	0
S6	ADD R5, R4, R5	0
S7	OUT R5 // IN R1	1

• Ejercicio 1:

 Dadas las instrucciones de la UC necesarias para llevar a cabo la suma de 4 núme-ros (Diapositiva anterior), Determina la Palabra de Control de S1, S5 y S7.

D.A. o pro ot é opio o	S ALU rD		@D		@A		p/A	F		1/1	@B			IMMED			
Mnemotécnico	In/AI	8	b ₂	b_1	b ₀	b ₂	b_1	b ₀	E C	b ₂	b_1	b ₀	8 b ₂	b ₂	b ₁	b ₀	$b_{15}b_{14}b_{13}b_{1}b_{0}$

Ejercicio 2:

Dado el grafo de estados obtenido para la suma de 4 números con una UPG, obtener la implementación de la UC mediante una ROM con el número de entradas y salidas que consideres adecuado.

Unidad de Proceso General (UPG)

Ejercicio 3:

Suponiendo que el estado (contenido de sus registros) de la UPG al inicio de un ciclo es: R0 = 0/R1 = 830/R2 = 3456/R3 = 16/R4 = R5 = 4096/R6 = 1/R7 = 234.
 Determinar cómo se modifican sus registros en lso siguientes casos:

AND R3, R1, R5 ADD R1, R2, R3 ADDI R4, R7, -1 OUT R5 // IN R6 CMPEQ -, R3, R2 SUBI -, R2, 1

• Ejercicio 4:

Diseñar, utilizando el algoritmo de Euclides, un circuito capaz de calcular el Máximo Común Divisor de dos números enteros X e Y codificados en complemento a 2 con 16 bits cada uno. Los números a sumar llegan al sistema cuando la entrada INI vale 1, y el resultado en la salida será válido cuando la salida FIN se ponga a 1.

Índice

- Introducción:
 - Unidades de Control/Proceso (Específicas).
 - Un Ejemplo: Máximo Común Divisor.
- El procesador de propósito general; definición.
- Unidad de Proceso de PPG:
 - Banco de Registros.
 - ALU.
 - Palabra de Control.
- Entrada/Salida.
- Memoria.
- Unidad de Control de PPG:
 - Secuenciamiento de Instrucciones.
 - Formato de Instrucciones.

• El objetivo es **introducir y extraer datos** del procesador (**teclado**, **ratón**, **pantalla**). ¿De dónde viene DATAIN?, ¿dónde va DATAOUT?

• Hay que buscar una forma de conectar dispositivos muy distintos al único Bus de entrada (DATAIN) y al único Bus de salida (DATAOUT)

nuestro procesador.

- Los periféricos se comunican con el procesador a través de registros. Añadiremos un banco de registros adicional que se conectará a DATAIN y DATAOUT.
- El número de registros de E/S será mucho mayor que los del banco de registros del procesador.

Nuevo Banco de Registros:

- Dos tipos de Registros, de entrada y de salida.
- Los periféricos se conectan a los registros, de acuerdo a su tipo (Teclado--PortIn, Pantalla--PortOut).
- Los periféricos escriben y leen los datos de dichos registros
- Utilizamos un único bus de direccionamiento (Addr-IO), por lo que el procesador no puede leer y escribir de I/O en el mismo ciclo.

Conectando I/O al Procesador:

- La nueva palabra de control tendrá 41 bits. Ahora, la unidad de control tiene que generar 9 bits más (8 Addr–IO y 1 para WrO).
- Ahora, en las instrucciones (mnemotécnico) empleadas para introducir y extraer datos del procesador, habrá que especificar el Registro IO (Addr--IO) del que queremos leer o al que queremos escribir.
- Ejemplo:

Antes: IN Ri → Ahora: IN Ri, AddrPortIn.

Antes: OUT Ri ->Ahora: OUT AddrPortOut, Ri.

Ejercicio:

Determina la palabra de control para las siguientes instrucciones: IN R3, 12 / OUT 0x0F, R5.

5	۸LU	5	@D		@A		١	p/Al	F			B/I	@B			INANAED	Addr-IO
≯	/ul	≯	b_1	b_0	b ₂	b_1	b _o	Cml	b_2	b_1	b_0	RE	b_2	b_1	b_0	IMMED	b ₇ b ₆ b ₅ b ₁ b ₀

Índice

- Introducción:
 - Unidades de Control/Proceso (Específicas).
 - Un Ejemplo: Máximo Común Divisor.
- El procesador de propósito general; definición.
- Unidad de Proceso de PPG:
 - Banco de Registros.
 - ALU.
 - Palabra de Control.
- Entrada/Salida.
- Memoria.
- Unidad de Control de PPG:
 - Secuenciamiento de Instrucciones.
 - Formato de Instrucciones.

- El número de registros de nuestro procesador es 8.
- ¿Por qué no se ha puesto un banco de registros mayor?
 - Máxima en diseño de procesadores: Pequeño→Simple → Rápido. Un banco de registros pequeño reduce el tiempo de propagación de dicho circuito, permitiendo operar a nuestro procesador con tiempos de ciclo más cortos (mayor frecuencia).
- ¿Qué pasa si necesito operar con más de 8 datos?

Emplearemos una memoria de mucho mayor tamaño (pero más lenta) que llamaremos

Memoria Principal.

Conceptualmente:

Utilizaremos los datos del procesador (16 bits) para determinar la dirección de la memoria a la que queremos acceder. ¿Cuántas posibles direcciones?

Puesto que el procesador trabaja con datos de 16 bits, ese será el tamaño de cada dato de Memoria (DATO_i: 16 bits).

Conectando la Memoria al Procesador:

La escritura en memoria se hará desde el mismo punto que se utiliza para IO, La salida B del Banco de Registros.

La dirección de Lectura/ Escritura en Memoria será generada por la ALU.

Para la lectura necesitamos añadir un Mux adicional, para deter-minar si el dato proviene de En-trada/Salida ó de Memoria.

¿Cómo afectan estos cambios a las palabras de control?

Conectando la Memoria al Procesador:

 La palabra de control vuelve a crecer. Puesto que aparecen dos señales de control nuevas (In/LD y WrM), pasamos de 41 a 43 bits.

	'n	ō	ηTh	rD		@[)	@A			p/Al	F			3/1	@B			INANAED	Addr-10
/ul	×	M	//uI	Μ	b ₂	b_1	b _o	b ₂	b_1	b_0	Cmp	b ₂	b_1	b_0	RB	b ₂	b_1	b_0	IMMED	b ₇ b ₆ b ₅ b ₁ b ₀

- Además de las instrucciones para Leer/Escribir de IO (IN y OUT), necesitamos dos nue-vas instrucciones para hacerlo desde Memoria: LOAD y STORE.
- El formato es el siguiente:
 - LOAD R2, 0x4001(R6):
 - Dirección que queremos leer: Contenido de R6 + IMMED(0x4001).
 - En qué registro almacenamos la lectura de memoria?: R2.
 - STORE 0x0001(R4), R7:
 - Dirección en la que queremos escribir: Contenido de R4 + IMMED (0x0001).
 - Qué queremos escribir en esa dirección?: El contenido de R7.

• Ejercicio:

Determina la palabra de control para las siguientes instrucciones:

LOAD R2, 0x4001(R6)

IN R2 0x4001

STORE 0x0001(R4), R7

OUT 0x0001, R7

WrO	In/ALU	WrD		@D			@ <i>P</i>	١	Cmp/Al	F			RB/I	@B			INANAED	Addr-IO
8			b ₂	b_1	b ₀	b ₂	b_1	b _o	Cml	b ₂	b_1	b_0	2	b ₂	b_1	b_0	IMMED	$b_7b_6b_5b_1b_0$
WrO	In/ALU	WrD		@D		@A		١	J/AI	F		RB/I	@B			13.43.450	Addr-IO	
ĮŠ			b ₂	b_1	b_0	b ₂	b_1	b _o	Cmp/Al	b ₂	b_1	b_0	R .	b ₂	b_1	b _o	IMMED	$b_7b_6b_5b_1b_0$
WrO	LU.	WrD		@D		@A		od Cmp/Al		F			RB/I	@B				Addr-IO
≶	In/ALU	M	b ₂	b_1	b _o	b ₂	b_1	b _o	Cmp	b ₂	b_1	b _o	RE	b ₂	b_1	b _o	IMMED	$b_7b_6b_5b_1b_0$
WrO	ILU	5		D		@A			J/Al	F			RB/I		@B		וואאאדר	Addr-IO
≯	In/ALU	MrD	$ \begin{array}{ c c c c c c }\hline & @D & @A & & & & \\\hline & b_2 & b_1 & b_0 & b_2 & b_1 & b_0 & & & & \\\hline & b_2 & b_1 & b_0 & b_2 & b_1 & b_0 & & & & \\\hline \end{array} $	b_0	RE	b ₂	b_1	b_0	IMMED	$b_7b_6b_5b_1b_0$								

¡Muchas gracias!

