Urbanization Detection

Ashish Sethi (MT18024)

ECE and CSE M.Tech IIITD

Problem statement

Urbanization detection using computer vision algorithms to reduce the reliance on the data of government surveys, which will speed up the policy making process.

Motivation

Rapid change in the landscape of the earth is taking place in the form of Urbanization. The flora is being wiped out at a very fast pace and replaced by the concrete jungles. This generally depreciation reports by government surveys, and these surveys are time taking process and requires human labour, which inadvertently creates a lag in the precautionary and remedial policies. The proposed project intends to develop a full fledged system to detect the change in urbanization using satellite images and computer vision algorithms.

Objectives

- To get a cost effective and efficient method to detect urbanization.
- Develop the deep learning Siamese segmentation network to detect the change in images.

Literature Review

The research in the Urbanization detection talks about the use of Onera Satellite Change Detection (OSCD) dataset to do the pixel-wise segmentation using the Early Fusion and the Siamese Network. Since the dataset contains only 24 multispectral satellite images, the need for a better network which uses this small dataset efficiently was fulfilled by the works of Papadomanolaki M. et al. which used U-Net for feature representation and LSTMs for temporal modelling. This produced improved results and a better use of a small dataset. [1, 2]

Dataset Description

Onera Satellite Change Detection (OSCD) dataset is used containing the images based on urban growth, captured from Sentinel-2 satellite, as shown in Figure - 1 [2].

- It contains 24 image pairs with resolutions between 10mm-60mm, having 13 spectral bands between Ultraviolet and Short-length Infrared.
- 14 pairs with their ground truths are used for training and rest 10 for testing.

Figure 1: Some the images from OSCD Dataset[2]

Proposed Algorithm

- Input is prepared by choosing random patches from the images, so as not to lose important information and get a sufficient number. The number of channels is decided appropriately.
- VGG16 pre-trained on ImageNet is used as an encoder to Siamese U-Net.
- The pair of Before and After image patches are Figure 3: Result images from PCA + K-Mean and Siamese passed through 2 separate Siamese U-Nets with shared weights.
- The difference of the two output masks is calculated and passed through the Sigmoid layer. The results are then compared with the ground truths and analysed.

Figure 2: Architecture of proposed Siamese U-net network for urbanization detection algorithm

Baseline Algorithm

- The difference of both the input images is passed through the PCA algorithm.
- Eigen Values and Eigen Vectors obtained by PCA are passed as the feature vector space to the KMeans clustering algorithm.
- Two clusters are obtained from KMeans, namely, change and no change (Figure - 3 (b)). The output change map is thus created.

Results

Table 1: Results on PCA + K-Means and Siamese U-Net Segmentation Algorithm.

Algorithm	Precision	Recall	IOU
Siamese U-Net	0.656	0.821	0.574
PCA+KMeans	0.424	0.391	0.254

Result Visualization

U-Net algorithm.

Figure 4: Confusion matrix of the Siamese U-Net on Mumbai

Analysis and Conclusion

- An urbanization detection algorithm using Siamese U-Net architecture is presented.
- A good IOU of 0.57 is obtained which improves significantly on the baseline approach (IOU 0.25).
- The experimental results showcase that a properly designed deep learning can potentially provide a scalable solution.

References

- [1] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical segmentation," CoRR, 2015.
- [2] R. Caye Daudt, B. Le Saux, A. Boulch, and Y. Gousseau, "Urban change detection for multispectral earth observation using convolutional neural networks,"
- [3] M. Papadomanolaki, M. Vakalopoulou, S. Zagoruyko, and K. Karantzalos, "Benchmarking deep learning frameworks for the classification of very high resolution satellite multispectral data.," ISPRS.