(19) 世界知的所有権機関 国際事務局

PCT

(43) 国際公開日 2003年11月27日(27.11.2003)

(10) 国際公開番号

WO 03/097824 A1

(51)	国際特許分類?:	C12N 9/12, C12Q 1/48	(74)	代理人: 小林 浩 、外(KOBAYASHI, Hiroshi et al.); 〒 104-0028 東京都 中央区 八重洲 2 丁目 8 番 7 号 福岡
(21)	国際出願番号:	PCT/JP03/06054		ビル9階 Tokyo (JP).
(22)	国際出願日:	2003年5月15日(15.05.2003)	(81)	指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,
(25)	国際出願の言語:	日本語		DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT,
(26)	国際公開の言語:	日本語		LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,

特願2002-142232 2002年5月16日(16.05,2002) JP (71) 出願人 (米国を除く全ての指定国について): 萬有製薬

(30) 優先権データ:

- 株式会社 (BANYU PHARMACEUTICAL CO., LTD.) [JP/JP]: 〒103-8416 東京都 中央区 日本橋本町 2 丁目 2番3号 Tokyo (JP).
- (72) 発明者; および (75) 発明者/出願人 (米国についてのみ): 鎌田 健司 (KA-MATA,Kenji) [JP/JP]; 〒300-2611 茨城県 つくば市 大 久保3番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP). 長田 安史 (NAGATA, Yasufumi) [JP/JP]: 〒300-2611 茨城県 つくば市 大久保3番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP), 岩間 年治 (IWAMA, Toshiharu) [JP/JP]: 〒300-2611 茨城県 つくば市 大久保 3 番 萬有製薬株式会社 つくば研究所内 Ibaraki (JP).
- (84) 指定国 (広域): ARIPO 特許 (GH. GM. KE. LS. MW. MZ. SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FL FR, GB, GR. HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CL, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

TJ. TM. TN. TR. TT. TZ. UA. UG. US. UZ. VC. VN. YU.

添付公開書類: 国際調査報告書

ZA, ZM, ZW.

2 文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: CRYSTAL OF GLUCOKINASE PROTEIN, AND METHOD FOR DRUG DESIGN USING THE CRYSTAL

(54) 発明の名称: グルコキナーゼタンパク質の結晶、及びその結晶を用いたドラッグデザイン方法

(3) 影明の名称: アルコキアーセタンハフ真の影論。及ひその影論を洗いたドラックテサイン方法

(57) Abstract: Glucokinase is crystallized, the three-dimensional structure thereof is analyzed, and then a compound to be bonded to glucokinase is designed on the basis of the coordinate for the resulting three-dimensional structure. Specifically, glucokinase is freed of a part of amino acid residues being on the N-terminal side thereof, to thereby crystallize it, and the three-dimensional structure of the resulting crystal is elucidated through the X-ray crystallographic analysis thereof.

(57) 要約: 本発明は、グルコキナーゼを結晶化し、その三次元構造を解析し、得られる三次元構造座標に基づいて グルコキナーゼに結合する化合物を設計する。 具体的には、グルコキナーゼのN末端側のアミノ酸残基の一部 を欠失させることによってグルコキナーゼを結晶化し、この結晶についてX線結晶構造解析によってその三次元構 造を解明することによって達成される。

- 1 -

明細書

グルコキナーゼタンバク質の結晶、及びその結晶を用いたドラッグデザイン方 法

5 技術分野

本発明は、新規なグルコキナーゼタンパク質(以下、「GKタンパク質」と もいう)の結晶、その結晶を用いて得られる三次元構造座標を用いたドラッグ デザイン方法などに関する。

10 背景技術

15

20

グルコキナーゼは、主に肝臓と膵臓ベータ細胞に発現が限局しており、それ 5の細胞におけるグルコース代謝の律速段階を制御することで、体全体の糖代 謝に重要な役割を果たしている。肝臓と膵臓ベータ細胞のグルコキナーゼは、 それぞれスプライシングの違いによりN末端の15アミノ酸の配列が異なって いるが、酵素学的性質は同一である。

10年ほど前から、グルコキナーゼは膵臓ベータ細胞や肝臓のグルコースセンサーとして働くという仮説が提唱されている (Garfinkel D, et al: Am J Physiol 247(3Pt2):R527-536, 1984)。 最近のグルコキナーゼ遺伝子操作マウスの結果から、実際にグルコキナーゼは全身のグルコース恒常性に重要な役割を担うことが明らかになっている。

グルコキナーゼ遺伝子を破壊したマウスは、生後まもなく糖尿病で死亡する

- 2 -

(Grupe A, et al: Cell 83:69-78.1995)。一方、グルコキナーゼを過剰発現させたマウスは血糖値が低くなる (Ferre T, et al: Proc Natl Acad Sci U S A 93:7225-7230.1996)。 グルコース濃度上昇によってグルコキナーゼ活性が上昇すると、膵臓ベータ細胞と肝細胞の反応は異なるが、いずれも血糖を低下させる方向に作用する。膵臓ベータ細胞は、より多くのインスリンを分泌するようになり、肝臓は糖を取り込みグリコーゲンとして貯蔵すると同時に糖放出を低下させる。

このようにグルコキナーゼ酵素活性の変動は、肝臓および膵臓ベータ細胞を介した哺乳類のグルコースホメオスタシスにおいて重要な役割を果たしている。MODY2 (maturity-onset diabetes of the young) と呼ばれる若年に糖尿病を発症する症例においてグルコキナーゼ遺伝子の突然変異が発見され、グルコキナーゼ活性の低下が血糖上昇の原因となっている (Vionnet N. et al: Nature 356:721-722, 1992)。一方グルコキナーゼ活性を上昇させる突然変異をもつ家系も見つかっており、このような人たちは低血糖症状を示す (Glaser B, et al: N Engl J Med 338: 226-230, 1998)。

10

20

25

以上より、グルコキナーゼはヒトにおいてもグルコースセンサーとして働き、グルコース恒常性に重要な役割を果たしている。一方、多くの I I 型糖尿病患者のグルコキナーゼは変位を受けていないので、グルコキナーゼモンサーシステムを利用した血糖調節は可能と考えられる。グルコキナーゼ活性化物質には膵臓ベータ細胞のインスリン分泌促進作用と肝臓の糖取り込み亢進および糖放出抑制作用が期待できるので、II型糖尿病患者の治療薬として有用と考えられる。

近年、膵臓ベータ細胞型グルコキナーゼが、ラット脳、なかでも特に摂食中枢である視床下部腹内側核(Ventromedial hypothalamus,VMH)に限局して発現していることが明らかにされた。VMHの約2割の神経細胞は、グルコースレスポンシブニューロンと呼ばれ、従来から体重コントロールに重要な役割を果たすと考えられてきた。ラットの脳内ヘグルコースを投与すると摂食量が低下するのに対して、グルコース類縁体のグルコ

- 3 -

サミンの脳内投与によってグルコース代謝を抑制すると過食となる。電気生理学的実験からグルコースレスポンシブニューロンは生理的なグルコース濃度変化(5-20mM)に呼応して活性化されるがグルコサミン等でグルコース代謝を抑制すると活性抑制が認められる。VMHのグルコース濃度感知システムには膵臓ベータ細胞のインスリン分泌と同様なグルコキナーゼを介したメカニズムが想定されている。従って肝臓、膵臓ベータ細胞に加えVHMのグルコキナーゼ活性化を行う物質には血糖是正効果のみならず、多くのII型糖尿病患者で問題となっている肥満をも是正できる可能性がある。

一方、DIABETES, vol. 48, 1698-1705, September 1999 にはヘキソキナーゼ I からグルコキナーゼの立体構造を予測した旨が記載されているが、実際に結晶化はされていないし、実用的なものではなかった。

10

15

以上より、グルコキナーゼの三次元立体構造を明らかにし、グルコキナーゼ と相互作用する化合物を効率的に見いだすことを可能にすることは、例えば、 糖尿病の治療剤、又は予防剤;網膜症、腎症、神経症、虚血性心疾患、動脈硬 化等の糖尿病の慢性合併症の治療剤、又は予防剤;肥満の治療剤、又は予防剤 の開発に大きな進展をもたらすと考えられる。

現在ではタンパク質の活性中心の解析や反応機作の予測といった作業にコンピュータを利用したCARDD (Computer Aided Rational Drug Design)が実用的なレベルで活用されるようになっている。

20 CARDDによる創薬システムにおいては、ターゲットとなるタンパク質の 3次元構造解析データに基づき、タンパク質の活性部位の構造が予測される。 そして、その活性部位の構造と結合し得る化合物の候補に関する情報が化合物 データベースから取得される。その後、ターゲットとなるタンパク質の活性部 位と候補化合物の3次元構造や物理的性質を考慮し、ターゲットとなるタンパ ク質に結合しうる化合物の候補を選択する。これらの工程が、いわゆるインシ リコスクリーニング工程である。

インシリコスクリーニング工程で選択された化合物が、ターゲットとなるタンパク質と結合し、その活性を変化させるかどうかは、実際の試験(ウエット 実験)により調べられる。そして、実際にターゲットとなるタンパク質の活性

- 4 -

を変化させる化合物が医薬の有効成分となる。これにより、実験室で無数の化 合物を標的タンパク質に一つ一つ作用させて相互作用を確認するという操作を 行うことなく、標的タンパク質と相互作用する化合物を効率よく探し出される。 インシリコスクリーニングは、ターゲットとなるタンパク質と結合する化合 物の候補を大幅に絞ることができるため医薬品開発に有効な手段であるといえ る。

CARDDによる創薬システムにおいては、ターゲットとなるタンパク質の X線構造解析による3次元構造解析データが重要な情報となる。X線構造解析 による3次元構造解析には、解析試料としてターゲットとなるタンパク質の結 晶が必要である。したがってCARDDによる創薬システムに基づいてGKに 関連する創薬の開発を進めるためには、GKの結晶が必要である。しかしなが ら、前述のとおりGKは結晶化が困難で、CARDDに必要な情報を与えうる ものではなかった。

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、グルコ 15 キナーゼの結晶を得ること、及び、当該結晶から得られた情報に基づいてグル コキナーゼに結合する化合物を設計することを目的とする。

発明の開示

5

10

- 上記目的の少なくともひとつ以上は、以下の発明により解決される。 20
 - [1] 結晶化に用いることを特徴とする、グルコキナーゼタンパク質。
 - [2] 配列番号5に記載のアミノ酸配列からなることを特徴とする、前記 [1] に記載のタンパク質。
 - [3] 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に 同一のアミノ酸配列からなることを特徴とするタンパク質の結晶。
- 25
 - [4] 前記タンパク質がグルコキナーゼタンパク質である、前記[3]に記 載の結晶。
 - [5] 配列番号5に記載のアミノ酸配列を有するタンパク質の結晶である、 前記[3]に記載の結晶。

- 5 -

[6] 格子定数が、下記式(1)~(4)

a=b=79.9±4オングストローム … (1)

c=322.2±15オングストローム … (2)

 $\alpha = \beta = 90^{\circ}$ ··· (3)

5 $\gamma = 120^{\circ}$... (4)

を満たす、前記[3]に記載の結晶。

- [7] 空間群がP6522である、前記[6]に記載の結晶。
- [8] 表1に配載の三次元構造座標データによって特定されるタンパク質の結晶。
- 10 [9] 表1に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表1に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(Cα原子)と、該Cα原子と対応する前記変更した三次元構造座標データで示されるCα原子との平均二乗偏差が、0.6 オングストローム以下である結晶。
- 15 [10] 化合物結合部位が、配列番号5に示すアミノ酸配列における、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基の少なくともひとつによって構成される、[3]~[9]のい20 ずれかに記載の結晶。
 - [11] 配列番号 5 に記載のアミノ酸配列又はそのアミノ酸配列と実質的 に同一のアミノ酸配列からなるタンパク質と該タンパク質に結合可能な化合物 との複合体を含む結晶。
 - [12] 前記化合物が、式(I) で表される、前記[11]に記載の結晶。

- 6 -

(1)

[式中、 R^1 は、ハロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O-Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、Aは置換されていてもよい直鎖の C_1-C_6 アルキル基を示し、Bは置換されていてもよい直鎖の C_1 0、基又はヘテロアリール基を示し、 R^1 は水素原子又はハロゲン原子を示し、

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても 10 よい単環の又は双環のヘテロアリール基を示す]

[13] 前記化合物が、式(IIIa) ~式(IIIc) で表されるいずれかの化合物である前記[12]に記載の結晶。

(IIIa)

$$0 = \overset{CH_3}{\underset{H}{\underbrace{\hspace{1cm}}}} 0 = \overset{CH_3}{\underset{H}{\underbrace{\hspace{1cm}}}} 0 \\ \underset{NH_2}{\underbrace{\hspace{1cm}}} CH_3$$

5

- [14] 配列番号8に記載のアミノ酸配列からなることを特徴とする、前記 [1] に記載のタンパク質。
- [15] 配列番号8に配載のアミノ酸配列又はそのアミノ酸配列と実質的に 同一のアミノ酸配列からなることを特徴とするタンパク質の結晶。
- 10 [16] 前記タンパク質がグルコキナーゼタンパク質である、前記[15] に記載の結晶。
 - [17] 配列番号8に記載のアミノ酸配列を有するタンパク質の結晶である、 前配「15]に記載の結晶。
 - [18] 格子定数が、下記式
- 15 a=b=103.2±5オングストローム … (5)

c=281.0±7オングストローム … (6)

 $\alpha = \beta = 90^{\circ}$... (7)

γ=120° ··· (8)

を満たす、前記[15]に記載の結晶。

20 [19] 空間群が P6522 である、前記 [18] に記載の結晶。

- 8 -

[20] 表2に配載の三次元構造座標データによって特定されるタンパク質の結晶。

[21] 表 2 に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表 2 に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(C α 原子)と、該C α 原子と対応する前記変更した三次元構造座標データで示されるC α 原子との平均二乗偏差が、0. 6 オングストローム以下である結晶。

[22] 配列番号2に記載のアミノ酸配列を有するタンパク質のN末端、C 末端のいずれかまたは両方から、1~50個のアミノ酸残基を欠損したアミノ 酸配列を有するタンパク質を製造するタンパク質製造工程と、

前記タンパク質製造工程で得られたタンパク質と結合する化合物と、前記タンパク質製造工程で得られたタンパク質とを反応させるタンパク質反応工程とを含む、

タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶の製造 15 方法。

[23] タンパク質の結晶を製造する方法であって、

配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含みグルコキナーゼ活性を有するタンパク質、及び該タンパク質に結合可能な化合物を用いることを特徴とする、結晶の製造方法。

20 [24] 前記タンパク質に結合可能な化合物が、式(I)で表される化合物であることを特徴とする、前記[23]に記載のタンパク質の結晶の製造方法。

10

- 9 -

[式中、 R^1 は、ハロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O-Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、Aは置換されていてもよい直鎖の C_1-C_6 アルキル基を示し、Bは置換されていてもよい五員環又は六員環のアリール基又はヘテロアリール基を示し、

5 R²は水素原子又はハロゲン原子を示し、

15

25

(11)

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても よい単環の又は双環のヘテロアリール基を示す)

10 [25] 共結晶法又はソーキング法による、前記[23]、又は[24]に 記載の結晶の製造方法。

[26] タンパク質の立体構造情報に基づいて該タンパク質に結合する化合物の構造をデザインするドラッグデザイン方法であって、

該タンパク質の立体構造情報が、前記[3]~[13]、又は[15]~[2 1]のうちのいずれか一項に記載の結晶を解析することによって得られる情報 であることを特徴とする、ドラッグデザイン方法。

[27] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合 20 物ライブラリより選択する選択工程と、

を含むことを特徴とする、前記 [26] に記載のドラッグデザイン方法。

[28] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を 構築する化合物構造構築工程と、

を含むことを特徴とする、前記[26]に記載のドラッグデザイン方法。

- 10 -

[29] 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を 推測する結合部位推測工程と、

前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合 する化合物とが相互作用するように化合物の構造を目視によりデザインするデ 5 ザイン工程と

を含むことを特徴とする、前記[26]に記載のドラッグデザイン方法。

- [30] 前記化合物結合部位が、配列番号5に示すアミノ酸配列における、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基の少なくともひとつによって構成されている、前記[26]~[29]のうちのいずれか一項に配載のドラッグデザイン方法。
- [31] さらに、前配化合物結合部位に適合すると推定される候補化合物の 生理活性を測定する工程を含む、前配[26]~[30]のいずれか一項に配 載のドラッグデザイン方法。
- [32] さらに、前記化合物結合部位に適合すると推定される候補化合物と、配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質とを接触させ、その候補化合物が該タンパク質に結合するか否か判定する結合判定工程を含む、前記[26]~[30]のいずれ20 か一項に記載のドラッグデザイン方法。
 - [33] 前記[26]~[30]のいずれか一項に記載のドラッグデザイン 方法によって選択された化合物群を化合物アレイとして組み合わせることを含む化合物アレイの製造方法。

25 図面の簡単な説明

10

15

図1は、グルコキナーゼの三次元構造を示すリボン図である。

(図 1a は、グルコキナーゼ (Δ 1-1 1)/グルコース/化合物 1 (式 IIIa の化合物) の構造を示すリボン図である。また、右図は、左図を回転した図である。)

- 11 -

(図1bは、グルコキナーゼ(Δ 1-15)単体の構造を示すリボン図である。 また、右図は、左図を回転した図である。)

図 2 は、グルコキナーゼ $(\Delta 1-11)$ の結合部位に対する化合物 1 (式 IIIa の化合物) の結合様式を示す図である。

5 図3は、グルコキナーゼ(Δ1-11)の結合部位の構造を示す図である。

発明を実施するための最良の形態

本明細書において、アミノ酸、ペプチド、蛋白質は下配に示す I UPAC-I UB生化学命名委員会 (CBN) で採用された略号を用いて表される。また、特に明示しない限りペプチド及び蛋白質のアミノ酸残基の配列は、左端から右端にかけてN末端からC末端となるように、またN末端が1番になるように表される。

以下、本発明の各実施態様について詳細に説明する。

15 (グルコキナーゼタンパク質)

10

20

まず、本発明は、結晶化に用いることを特徴とする、グルコキナーゼタンパク質を提供する。グルコキナーゼタンパク質(GKタンパク質)は、上述のように、生体内で極めて重要な糖の代謝に関与している。したがって、GKタンパク質の三次元構造を明らかにし、GKタンパク質の活性部位を解明することによって、GKタンパク質に結合する化合物(すなわち、活性化剤又は阻害剤)を探索することができる。よって、GKタンパク質の三次元構造を明らかにすることは重要である。

タンパク質の3次元構造を明らかにする手法として、X線結晶構造解析が良く知られている。即ち、タンパク質を結晶化し、その結晶に単色化されたX線25 をあて、得られたX線の回折像をもとに、該タンパク質の3次元構造を解明する(Blundell, T. L. 及びJohnson, L. N., PROTEIN CRYSTALLOGRAPHY, 1-565頁, (1976) Academic Press, New York)。GKタンパク質のX線結晶構造解析に供するために、まず、GKタンパク質を結晶化する必要がある。

- 12 -

ここで、本発明の「GKタンパク質」とは、配列番号 2 に示すアミノ酸配列を有するとト由来の肝臓型グルコキナーゼと、配列番号 2 と実質的に同一のアミノ酸配列を含有するタンパク質をいう。ここで当該実質的に同一のアミノ酸配列を含有するタンパク質をいう。ここで当該実質的に同一のアミノ酸配列を含有するタンパク質としては、グルコキナーゼ活性を有するものが好ましい。したがって、本明細書では、GKタンパク質は、ヒト由来の肝臓型グルコキナーゼのみならず、ヒト由来の膵臓型グルコキナーゼ、マウス、ラット、サル等の非ヒト由来GKタンパク質をも含む。本発明では、ヒト肝臓型グルコキナーゼが好ましく用いられる。ヒト由来のグルコキナーゼにおいて、肝臓型と膵臓型ではN末端の15アミノ酸残基が相違する。ここで、「グルコキナーゼ活性」とは、グルコースからグルコース6リン酸への反応を触媒する活性をいう。

タンパク質の結晶化が一般的に困難なことは良く知られており、GKタンパ ク質をそのまま結晶化することはできなかった。本発明者らは、種々、試行錯 誤による実験の結果、GKタンパク質のN末端側のアミノ酸を11個、又は1 15 5個を欠失させることによって、始めてGKタンパク質の結晶化に成功した。 欠失させた領域は、結晶化を試みた際に球状のGKタンパク質分子より突出し、 その結果、結晶内で隣接するGKタンパク質分子との間で立体的な障害となり GKタンパク質が結晶となるのを妨げていたと考えられる。すなわち、本発明 では、アミノ酸配列が既知でありながら結晶化には成功していなかったグルコ キナーゼにおいて、N末端側の11個のアミノ酸残基を欠失させたGKタンパ 20 ク質(配列番号5)、又はN末端側の15個のアミノ酸残基を欠失させたGK タンパク質(配列番号8)を用いることにより、GKタンパク質の結晶を得た。 ただし、欠失させるアミノ酸は、隣接する結晶との間で立体的な障害がなくな る範囲であればその数は限定されない。具体的には、例えば、配列番号2で表 25 されるアミノ酸配列において、N末端側の $1\sim50$ 個、好ましくは $3\sim30$ 個、 より好ましくは $5\sim25$ 個、さらに好ましくは $8\sim18$ 個、特に好ましくは11~15個のアミノ酸残基を欠失させたアミノ酸配列などが本発明において用 いられる。また、C末端側の $1\sim8$ 個、好ましくは $1\sim7$ 個、より好ましくは 2~6個のアミノ酸残基を欠失させたアミノ酸配列などが本発明において用い

- 13 -

られる。

(グルコキナーゼタンパク質の結晶及びその製造方法)

次に、本発明においては、配列番号5、及び配列番号8に記載のアミノ酸配 5 列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質を含 む結晶を提供する。

上述したように、結晶化に供するGKタンパク質としては、配列番号5、及び / 又は配列番号8で表されるアミノ酸配列又はそれと実質的に同一のアミノ酸 配列を含むタンパク質などが用いられる。

配列番号5、及び/又は配列番号8で表されるアミノ酸配列又はそれと実質的に同一のアミノ酸配列を含むタンパク質(以下、配列番号2で表されるアミノ酸配列又はそれと実質的に同一のアミノ酸配列を有するタンパク質と併せて「GKタンパク質」と略すこともある)は、結晶化が可能であればよく、そのアミノ酸配列は特に制限されない。ここで、配列番号5、及び/又は配列番号15
 8に配載のアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質は、

グルコキナーゼ活性を有している必要はなく、ドラッグデザインに必要な情報を得ることができる結晶構造を有するものであれば、不活性な変異体(例えば、ATPの結合部位に変異を有することにより不活性化した変異体)であってもよい。ここで、配列番号2又は5で表されるアミノ酸配列と実質的に同一のアミノ酸配列を含むなどになります。

20 ノ酸配列を含むタンパク質としては、配列番号2又は5で表わされるアミノ酸 配列と約60%以上、好ましくは約70%以上、さらに好ましくは約80%以 上、なかでも好ましくは約90%以上、最も好ましくは約95%以上の相同性 を有するアミノ酸配列などが挙げられる。また、配列番号2又は5で表される アミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質として、例えば、

25 配列番号2又は5に記載のアミノ酸配列において1~10個、好ましくは1~5個、さらに好ましくは1~3個、さらに好ましくは1~2個のアミノ酸残基が置換、欠失、付加および/または挿入されたアミノ酸配列が例示される。

G K タンパク質の3次元構造解析は、例えば、次のようにして行う。まず、 タンパク質を精製する。そして、結晶化、X線回析強度データ収集、各回析斑

- 14 -

点の位相決定、電子密度計算、分子モデル作成、構造の精密化などの一連の工程を行う。タンパク質構造解析を行うための主要な設備として、結晶化用インキュペーター、双眼顕微鏡、X線回折計、3次元コンピュータグラフィックス装置などが用いられる。具体的にタンパク質の結晶を作製する実験過程は、タンパク質を大量に(数mg以上が好ましい。)精製する段階、結晶が得られる条件を広く検索する段階、X線解析に適した良質の結晶を得る段階に分けられる。以下、各工程について具体的に説明する。

結晶化に際しては、GKタンパク質を、高純度に精製する。精製方法としては、公知のものが利用でき、例えば、カラムクロマトグラフィー、塩析、遠心分離などが用いられる。

精製されたGKタンパク質は、結晶化し、X線結晶構造解析のための試料とする。結晶化は、蒸気拡散法や透析法等の公知の方法に基づいて行われる。タンパク質の結晶を得る際に、タンパク質の純度・濃度、温度、pH、使用する沈殿剤濃度等多くの要素を検討する必要がある。結晶化条件の検討は、市販のスクリーニング試業を使用して広い範囲で行うことができ、1つの条件に1~2%濃度のタンパク質溶液を1~2μ1ずつ使用して検索することが好ましい。こうして微結晶などが得られた場合には、さらに条件を精密化することが好ましい。

なお、GKタンパク質の結晶を得るためには非常に多くの条件を検索しなければならない。従って、結晶化条件の検討のためにも、タンパク質の大量発現系を構築することが好ましい。一般にタンパク質のうち、結晶になるものの多くは、溶液状態で単分散であり、多分散のものは大体において結晶化しない。そこで、GKタンパク質のN末端を順次切除し、得られたタンパク質について、光散乱装置を用いてタンパク質溶液の単分散性を判定し、試料が結晶化に適しているかどうかを検討しても良い。

20

25

次に、得られたGKタンパク質の結晶を用いて、X線回折強度測定を行う。 最近では、結晶を細い糸の輪などですくって液体窒素温度に急速冷却してその まま低温で測定する方法も利用されている。回折X線の強度測定は、通常、イ メージングブレートなどの2次元検出器によって行う。X線を当てながら結晶

- 15 -

を回転させることで発生する多くの回折線をイメージングプレートに記録し、 記録された回折強度をレーザーを当てることにより読み取る。

次に、重原子ソーキング法や共結晶化法により重原子同型置換体を調製する ことが好ましい。これを使用して多重同型置換法 (MIR法) によりタンパク質 結晶の位相を決定することができる。重原子を導入する代わりに、複雑な波長

のX線による回折強度データに基づいて位相を決定する多液長異常散乱法 (MAD法) も利用できる。類似構造を有する分子が既に解析されている場合には、その分子構造を結晶中にあてはめて初期構造を得ることができ、これをもとにフーリエ合成図を描き、残りの部分の構造を解明して全構造を決定する分子置棒法 (MR法) も知られている。

位相が上配の方法で決定したならば、これより電子密度を求める。この精度は、反射の数(分解能)と使用した反射の精度による。分解能は使用する反射の最小面間隔で表す。この電子密度図から分子モデルを組み立てる。分子モデルを組み立てると原子座標が得られるので、これより構造因子の計算値を求め、この大きさを観測値に近づける最小自乗法により原子パラメータの精密化を行う。このようにしてできるだけ妥当な構造情報を取得する。

本発明においては、配列番号 5 に示す G K タンパク質の結晶を調製することに成功している(後述の実施例参照)。そしてこのようにして得られた G K タンパク質の結晶は、格子定数が、下記式(1)~(4):

20 a=b=79.9±4オングストローム … (1)

c=322.2±15オングストローム … (2)

 $\alpha = \beta = 90^{\circ}$... (3)

 $\gamma = 120^{\circ} \cdots (4)$

10

15

を満たすものであった。また、この結晶は、空間群が $P6_522$ であることが解明された。ここで、前記a=bは79. 9 ± 3 オングストロームであることが好ましく、79. 9 ± 2 オングストロームであることがより好ましく、79. 9 ± 1 オングストロームであることがさらに好ましい。また、前記には322. 2 ± 10 オングストロームであることが好ましく、322. 2 ± 8 オングストロームであることがより好ましく、322. 2 ± 5 オングストロームであることがより好ましく、322. 2 ± 5 オングストロームであることがより好ましく、322. 2 ± 5 オングストロームであることがより好ましく、322. 2 ± 5 オングストロームであることがおらに好ましい。

- 16 -

表1

25 ATOM 22 0 VAL 16

このようにして得られたGKタンパク質結晶の3次元構造座標を表1に示す。

ATOM 1 CB THR 14 25. 972 -34. 025 76. 567 1. 00 51. 12 5 ATOM 0G1 THR 14 27. 398 -34. 012 76. 715 1.00 51.49 ATOM CG2 THR 14 25, 626 -34, 173 75, 095 1, 00 49, 96 ATOM C THR 14 4 24. 138 -32. 317 76. 374 1. 00 50. 95 ATOM 5 0 THR 14 24. 246 -31. 685 75. 330 1. 00 52. 42 ATOM N THR 14 6 25. 108 -32. 861 78. 611 1. 00 51. 41 10 ATOM 7 CA THR 14 25. 384 -32. 717 77. 154 1. 00 50. 49 ATOM 8 N LEU 15 22. 957 -32. 673 76. 871 1. 00 49, 75 21. 733 -32. 307 76. 167 1. 00 49. 25 ATOM 9 CA LEU 15 ATOM 10 CB LEU 15 20. 496 -32. 824 76. 904 1. 00 52. 56 ATOM 11 CG LEU 15 20. 439 -34. 307 77. 291 1. 00 55. 08 15 ATOM 12 CD1 LEU 15 21. 186 -34. 524 78. 610 1. 00 53. 67 ATOM 13 CD2 LEU 15 18. 980 -34. 742 77. 438 1. 00 54. 84 ATOM 14 C LEU 15 21. 676 -30. 781 76. 078 1. 00 48. 68 ATOM 15 0 LEU 15 21. 397 -30. 208 75. 023 1. 00 47. 52 ATOM 16 N VAL 16 21. 955 -30. 128 77. 201 1. 00 47. 07 20 ATOM 17 CA VAL 16 21. 950 -28. 677 77. 265 1. 00 44. 96 ATOM 18 CB VAL 16 21. 988 -28. 188 78. 733 1. 00 46. 09 CG1 VAL 16 ATOM 19 22. 239 -26. 684 78. 784 1. 00 44. 09 ATOM 20 CG2 VAL 16 20. 670 -28. 523 79. 418 1. 00 45. 38 ATOM 21 C VAL 16 23. 142 -28. 097 76. 512 1. 00 43. 58

ATOM 23 N GLU 17 24. 310 -28. 712 76. 672 1. 00 43. 48 ATOM 24 CA GLU 17 25. 507 -28. 223 75. 998 1. 00 45. 62 ATOM 25 CB GLU 17 26. 759 -28. 931 76. 532 1. 00 46. 30 ATOM 26 CG GLU 17 27. 140 -28. 571 77. 984 1. 00 49. 19

23. 004 -27. 110 75. 790 1. 00 41. 54

- 17 -.

	ATOM	27	CD	GLU	17	27. 46	7 -27.	087	78. 191	1. 00	50. 74
	ATOM	28	0E1	GLU	17	28. 23	8 -26.	520	77. 386	1. 00	50. 39
	ATOM	29	0E2	GLU	17	26. 96	6 -26.	488	79. 170	1. 00	50. 85
	ATOM	30	C	GLU	17	25. 41	7 -28.	378	74. 479	1. 00	45. 93
5	ATOM	31	0	GLU	17	26. 09	7 -27.	666	73. 735	1. 00	44. 10
	ATOM	32	N	GLN	18	24. 57	7 -29.	303	74. 020	1.00	45. 41
	ATOM	33	CA	GLN	18	24. 40	0 -29.	513	72. 588	1. 00	46. 37
	ATOM	34	CB	GLN	18	23. 64	3 -30.	818	72. 307	1. 00	49. 99
	ATOM	35	CG	GLN	18	24. 48	8 -32.	086	72. 423	1. 00	55. 59
10	ATOM	36	CD	GLN	18	23. 70	1 -33.	352	72. 088	1. 00	58. 40
	ATOM	37	0E1	GLN	18	23. 15	8 -33.	489	70. 988	1. 00	60.78
	ATOM	38	NE2	GLN	18	23. 63	8 -34.	280	73. 037	1. 00	56. 40
	ATOM	39	C	GLN	18	23. 61	7 -28.	338	72. 014	1. 00	44. 35
	ATOM	40	0	GLN	18	23. 84	9 -27.	912	70. 885	1. 00	43. 20
15	ATOM	41	N	ILE	19	22. 67	7 -27.	821	72. 791	1. 00	41. 97
	ATOM	42	CA	ILE	19	21. 89	5 -26.	689	72. 327	1. 00	40. 37
	ATOM	43	CB	ILE	19	20. 63	1 -26.	500	73. 193	1. 00	39. 71
	ATOM	44	CG2	ILE	19	19. 97	6 -25.	166	72. 894	1. 00	39. 42
	ATOM	45	CG1	ILE	19	19. 65	3 -27.	653	72. 915	1. 00	40. 83
20	ATOM	46	CD1	ILE		18. 35	6 -27.	599	73. 719	1. 00	38. 38
	ATOM	47	C	ILE	19	22. 76	4 -25.	431	72. 344	1. 00	39. 01
	ATOM	48	0	ILE	19	22. 74	6 -24.	644	71. 394	1. 00	40. 12
	ATOM	49	N	LEU	20	23. 55	0 -25.	267	73. 404	1.00	35. 38
	ATOM	50	CA	LEU	20	24. 42	3 -24.	109	73. 537	1. 00	34. 35
25	ATOM	51	CB	LEU	20	25. 02	6 -24.	050	74. 944	1. 00	32. 09
	ATOM	52	CG	LEU	20	24. 05	0 -23.	887	76. 106	1. 00	30. 92
	ATOM	53	CD1	LEU	20	24. 81	3 -23.	722	77. 420	1. 00	27. 61
	ATOM	54	CD2	LEU	20	23. 17	1 -22.	689	75. 843	1. 00	29. 31
	ATOM	55	C	LEU	20	25. 55	5 -24.	135	72. 518	1. 00	34. 62

					- 18	_	
	ATOM	56	0	LEU 20	26. 066 -23. 087	72. 112	1. 00 34. 19
	ATOM	57	N	ALA 21	25. 946 -25. 336	72. 116	1. 00 33. 16
	ATOM	58	CA	ALA 21	27. 030 -25. 509	71. 163	1. 00 34. 30
	ATOM	59	CB	ALA 21	27. 344 -26. 992	70. 993	1. 00 34. 49
5	ATOM	60	C	ALA 21	26. 696 -24. 886	69. 814	1. 00 35. 20
	ATOM	61	0	ALA 21	27. 587 -24. 619	69. 007	1. 00 35. 57
	ATOM	62	N	GLU 22	25. 412 -24. 652	69. 578	1. 00 36. 75
	ATOM	63	CA	GLU 22	24. 961 -24. 053	68. 329	1. 00 37. 80
	ATOM	64	CB	GLU 22	23. 435 -24. 102	68. 256	1. 00 41. 47
10	ATOM	65	CG	GLU 22	22. 878 -23. 851	66. 867	1. 00 47. 91
	ATOM	66	CD	GLU 22	21. 384 -24. 128	66. 767	1. 00 49. 95
	ATOM	67	0E1	GLU 22	20. 857 -24. 163	65. 630	1. 00 50. 84
	ATOM	68	0E2	GLU 22	20. 741 -24. 307	67. 822	1. 00 50. 26
	ATOM	69	С	GLU 22	25. 444 -22. 605	68. 177	1. 00 37. 38
15	ATOM	70	0	GLU 22	25. 380 -22. 039	67. 088	1. 00 38. 34
	ATOM	71	N	PHE 23	25. 928 -22. 012	69. 268	1. 00 35. 41
	ATOM	72	CA	PHE 23	26. 426 -20. 636	69. 249	1. 00 33. 38
	ATOM	73	CB	PHE 23	26. 224 -19. 962	70. 614	1. 00 31. 59
	ATOM	74	CG	PHE 23	24. 826 -19. 470	70. 843	1. 00 29. 81
20	ATOM	75		PHE 23	23. 836 -20. 328	71. 310	1. 00 26. 48
	ATOM	76		PHE 23	24. 489 -18. 151	70. 555	1. 00 28. 79
	ATOM	77		PHE 23	22. 520 -19. 882	71. 487	1. 00 29. 30
	ATOM	78		PHE 23	23. 177 -17. 691	70. 727	1. 00 31. 65
	ATOM	79	CZ	PHE 23	22. 189 -18. 563	71. 195	1. 00 28. 91
25	ATOM	80	C	PHE 23	27. 899 -20. 542	68. 877	1. 00 33. 33
	ATOM	81		PHE 23	28. 396 -19. 467	68. 549	1. 00 34. 12
	ATOM	82	N	GLN 24	28. 596 -21. 670	68. 940	1. 00 32. 75
	ATOM	83	CA	GLN 24	30. 016 -21. 716	68. 620	1. 00 32. 56
	ATOM	84	CB	GLN 24	30. 543 -23. 147	68. 778	1. 00 35. 53

				- 19	-	
	ATOM 8	5 CG GL	N 24	30. 817 -23. 603	70. 210	1. 00 37. 84
	ATOM 8	6 CD GL	N 24	31. 214 -25. 074	70. 266	1. 00 42. 36
	ATOM 8	7 0E1 GL	N 24	31. 802 -25. 601	69. 320	1. 00 43. 06
	ATOM 8	8 NE2 GL	N 24	30. 902 -25, 739	71. 375	1. 00 40. 61
5	ATOM 8	9 C GL	V 24	30. 335 -21. 233	67. 208	1. 00 31. 93
	ATOM 9	0 0 GL	¥ 24	29. 508 -21. 320	66. 299	1. 00 30. 32
	ATOM 9	1 N LEI	J 25	31. 548 -20. 717	67. 043	1. 00 31. 64
	ATOM 9	2 CA LEI	J 25	32. 029 -20. 257	65. 751	1. 00 31. 85
	ATOM 9	B CB LET	J 25	31. 876 -18. 742	65. 615	1.00 31.24
10	ATOM 9	1 CG LEU	J 25	30. 441 -18. 211	65. 563	1.00 29.93
	ATOM 9	CD1 LEU	25	30. 436 -16. 690	65.710	1. 00 28. 63
	ATOM 9	CD2 LEU	25	29. 801 -18. 640	64. 262	1. 00 27. 61
	ATOM 9	C LEU	25	33. 502 -20. 635	65. 667	1. 00 33. 30
	ATOM 98			34. 298 -20. 218	66. 502	1. 00 33. 97
15	ATOM 99		26	33. 856 -21. 450	64. 679	1. 00 34. 57
	ATOM 100			35. 244 -21. 860	64. 496	1. 00 36. 87
	ATOM 101			35. 330 -23. 053	63. 540	1. 00 40. 20
	ATOM 102			35. 105 -24. 414	64. 182	1. 00 46. 34
	ATOM 103	CD GLN		33. 863 -24. 462	65.041	1. 00 48. 48
20	ATOM 104	OE1 GLN		33. 918 -24. 229	66. 253	1. 00 49. 27
	ATOM 105	NE2 GLN		32. 725 -24. 757	64. 417	1. 00 51. 72
	ATOM 106	C GLN		36. 024 -20. 688	63. 910	1. 00 36. 49
	ATOM 107	0 GLN		35. 430 -19. 735	63. 403	1. 00 35. 76
	ATOM 108	N GLU		37. 347 -20. 761	63. 981	1. 00 35. 17
25	ATOM 109	CA GLU		38. 181 -19. 705	63. 441	1. 00 37. 77
	ATOM 110	CB GLU		39. 658 -20. 047	63. 627	1. 00 40. 11
	ATOM 111	CG GLU		40. 596 -19. 156	62. 831	1. 00 47. 14
	ATOM 112	CD GLU		41. 754 -18. 639	63. 662	1. 00 52. 56
	ATOM 113	OE1 GLU	27	41. 507 -17. 808	64. 567	1. 00 54. 72

- 20 -

	ATOM 114	0E2 GLU 27	42. 906 -19. 067	63. 415	1. 00 54. 43
	ATOM 115		37. 878 -19. 511		
	ATOM 116	0 GLU 27	37. 915 -18. 392	61. 446	1. 00 37. 09
	ATOM 117		37. 557 -20. 605		
5	ATOM 118	CA GLU 28	37. 261 -20. 535	59. 862	1. 00 36. 18
	ATOM 119	CB GLU 28	37. 175 -21. 939	59. 267	1. 00 37. 83
	ATOM 120	CG GLU 28	37. 826 -22. 039	57. 902	1. 00 41. 72
	ATOM 121	CD GLU 28	39. 154 -21. 287	57. 843	1. 00 44. 57
	ATOM 122	OE1 GLU 28	40. 033 -21. 531	58. 706	1. 00 46. 91
10	ATOM 123	0E2 GLU 28	39. 313 -20. 446	56. 933	1. 00 44. 10
	ATOM 124	C GLU 28	35. 973 -19. 779	59. 588	1. 00 34. 66
	ATOM 125	0 GLU 28	35. 860 -19. 089	58. 575	1. 00 33. 91
	ATOM 126	N ASP 29	34. 994 -19. 926	60. 472	1. 00 32. 44
	ATOM 127	CA ASP 29	33. 738 -19. 219	60. 301	1. 00 32. 41
15	ATOM 128	CB ASP 29	32.713 -19.625	61.370	1. 00 34. 13
	ATOM 129	CG ASP 29	32. 302 -21. 091	61. 285	1. 00 34. 13
	ATOM 130	OD1 ASP 29	32. 012 -21. 580	60. 173	1. 00 34. 03
		OD2 ASP 29		62. 347	1. 00 35. 16
		C ASP 29		60. 456	1. 00 31. 21
20	ATOM 133	0 ASP 29		59. 717	1. 00 29. 93
	ATOM 134	N LEU 30			1. 00 29. 60
		CA LEU 30		61. 674	1.00 28.38
		CB LEU 30		62. 964	1.00 23.67
		CG LEU 30			1. 00 23. 54
25			36. 314 -15. 823	65. 433	1. 00 22. 55
			34. 038 -15. 674	64. 418	1. 00 24. 55
	ATOM 140		36. 032 -15. 390		1. 00 29. 80
			35. 775 -14. 242	60. 139	1. 00 29. 56
	ATOM 142	N LYS 31	36. 963 -16. 131	59. 906	1. 00 29. 13

			- 21	-	
	ATOM 143	CA LYS 3	1 37. 704 -15. 609	58. 770	1. 00 30. 46
	ATOM 144	CB LYS 3	1 38. 823 -16. 574	58. 365	1. 00 32. 24
	ATOM 145	CG LYS 3	1 39. 970 -16. 653	59. 374	1. 00 36. 80
	ATOM 146	CD LYS 3	41. 091 -17. 577	58. 885	1. 00 40. 49
5	ATOM 147	CE LYS 3	42. 291 -17. 534	59. 829	1. 00 44. 52
	ATOM 148	NZ LYS 3	43. 443 -18. 369	59. 363	1.00 47.22
	ATOM 149	C LYS 31	36. 746 -15. 391	57. 599	1. 00 31. 28
	ATOM 150	0 LYS 31	36. 918 -14. 464	56. 816	1. 00 32. 79
	ATOM 151	N LYS 32	35. 730 -16. 243	57. 486	1.00 30.96
10	ATOM 152	CA LYS 32	34. 758 -16. 116	56. 406	1. 00 32. 66
	ATOM 153	CB LYS 32	33. 868 -17. 364	56. 324	1. 00 32. 27
	ATOM 154	CG LYS 32	32. 921 -17. 362	55. 135	1. 00 34. 72
	ATOM 155	CD LYS 32	32. 203 -18. 701	54. 965	1. 00 39. 55
	ATOM 156	CE LYS 32	31. 272 -18. 678	53. 745	1. 00 42. 65
15	ATOM 157	NZ LYS 32	30. 699 -20. 026	53. 417	1. 00 42. 72
	ATOM 158	C LYS 32	33. 890 -14. 868	56. 609	1. 00 32. 63
	ATOM 159	0 LYS 32	33. 607 -14. 140	55. 652	1. 00 32. 25
	ATOM 160	N VAL 33	33. 463 -14. 629	57. 847	1. 00 30. 17
	ATOM 161	CA VAL 33	32. 654 -13. 451	58. 149	1. 00 29. 03
20	ATOM 162	CB VAL 33	32. 154 -13. 460	59.626	1. 00 30. 49
	ATOM 163	CG1 VAL 33	31. 519 -12. 123	59. 985	1. 00 31. 03
	ATOM 164	CG2 VAL 33	31. 130 -14. 562		1. 00 32. 03
	ATOM 165	C VAL 33	33. 538 -12. 226		1. 00 26. 62
0.5	ATOM 166	0 VAL 33	33. 091 -11. 237		1. 00 22. 25
25	ATOM 167	N MET 34	34. 802 -12. 321		1. 00 25. 50
	ATOM 168	CA MET 34	35. 750 -11. 226		1. 00 27. 22
	ATOM 169	CB MET 34	37. 108 -11. 583		1. 00 24. 41
	ATOM 170	CG MET 34	38. 150 -10. 512		1. 00 26. 32
	ATOM 171	SD MET 34	39. 793 -11. 040	59. 074	1. 00 32. 95

- 22 -

ATOM 172 CE MET 34 40. 162 -12. 313 57. 821 1. 00 30. 64 ATOM 173 C MET 34 35. 927 -10. 879 56. 665 1.00 29.30 ATOM 174 0 MET 34 35. 850 -9. 717 56. 286 1.00 29.01 ATOM 175 N ARG 35 36. 164 -11. 883 55. 827 1.00 30.96 ATOM 176 CA ARG 35 36. 340 -11. 621 54. 403 1.00 32.99 ATOM 177 CB 36. 664 -12. 913 53. 641 ARG 35 1.00 34.85 ATOM 178 CG ARG 35 37. 948 -13. 585 54. 081 1.00 38.82 ATOM 179 CD ARG 35 38. 377 -14. 682 53. 126 1. 00 43. 22 ATOM 180 NE ARG 35 38. 963 -15. 791 53. 869 1. 00 47. 35 ATOM 181 CZ ARG 35 38. 260 -16. 801 54. 366 1. 00 47. 12 ATOM 182 NH1 ARG 35 36. 946 -16. 850 54. 186 1. 00 48. 27 ATOM 183 NH2 ARG 35 38. 868 -17. 746 55. 064 1.00 50.91 ATOM 184 C ARG 35 35. 090 -10. 997 53. 797 1. 00 33. 31 ATOM 185 O ARG 35 35. 178 -10. 089 52. 966 1. 00 33. 49 15 ATOM 186 N ARG 36 33. 926 -11. 493 54. 206 1. 00 32. 00 ATOM 187 CA ARG 36 32. 673 -10. 982 53. 675 1. 00 31. 76 ATOM 188 CB ARG 36 31. 511 -11. 857 54. 158 1. 00 29. 95 ATOM 189 CG ARG 36 30. 191 -11. 607 53. 441 1. 00 31. 90 ATOM 190 CD ARG 36 30. 386 -11. 434 51. 929 1. 00 33. 67 ATOM 191 20 NE ARG 36 29. 114 -11. 263 51. 230 1. 00 38. 02 ATOM 192 CZ ARG 36 28. 229 -12. 238 51. 018 1. 00 40. 67 ATOM 193 NH1 ARG 36 28. 477 -13. 471 51. 447 1. 00 40. 50 ATOM 194 NH2 ARG 36 27. 087 -11. 979 50. 382 1.00 41.02 ATOM 195 C ARG 36 32. 459 -9. 510 54. 060 1. 00 31. 54 25 ATOM 196 0 ARG 36 31. 959 -8. 718 53. 260 1. 00 30. 75 ATOM 197 N MET 37 32. 856 -9. 147 55. 276 1. 00 30. 98 ATOM 198 CA MET 37 32. 720 -7. 774 55. 742 1. 00 30. 21 ATOM 199 CB MET 37 33. 134 -7. 663 57. 208 1. 00 27. 60 ATOM 200 CG MET 37 33. 102 -6. 240 57. 761 1. 00 27. 98

- 23 -

	ATOM 201	SD	MET 37	31. 418	-5. 613	57. 981	1. 00 30. 18
	ATOM 202	CE.	MET 37	31. 115	-6. 153	59. 683	1. 00 28. 30
	ATOM 203	C	MET 37	33. 598	-6. 852	54. 892	1. 00 30. 32
	ATOM 204	0	MET 37	33. 162	-5. 782	54. 479	1. 00 31. 66
5	ATOM 205	N	GLN 38	34. 835	-7. 272	54. 642	1. 00 30. 60
	ATOM 206	CA	GLN 38	35. 774	-6. 500	53. 829	1. 00 31. 68
	ATOM 207	CB	GLN 38	37. 126	-7. 206	53. 750	1. 00 32. 18
	ATOM 208	CG	GLN 38	38. 051	-6. 918	54. 898	1. 00 36. 36
	ATOM 209	CD	GLN 38	39. 318	-7. 743	54. 831	1. 00 37. 65
10	ATOM 210	0E1	GLN 38	39. 352	-8. 890	55. 275	1. 00 41. 25
	ATOM 211	NE2	GLN 38	40. 362	-7. 170	54. 258	1. 00 39. 99
	ATOM 212	C	GLN 38	35. 241	-6. 337	52. 419	1. 00 32. 20
	ATOM 213	0	GLN 38	35. 471	-5. 318	51.769	1. 00 32. 83
	ATOM 214	N	LYS 39	34. 541	-7. 360	51.947	1.00 31.94
15	ATOM 215	CA	LYS 39	33. 965	-7. 343	50.611	1. 00 33. 33
	ATOM 216	CB	LYS 39	33. 515	-8. 754	50. 220	1. 00 34. 32
	ATOM 217	CG	LYS 39	33. 757	-9. 105	48. 756	1.00 41.05
	ATOM 218	CD	LYS 39		-8. 183	47. 799	1. 00 43. 55
	ATOM 219	CE	LYS 39		-8. 502	46. 336	1. 00 47. 30
20	ATOM 220		LYS 39		-7. 625	45. 363	1. 00 48. 42
	ATOM 221		LYS 39	32. 774	-6. 378	50. 555	1. 00 32. 37
	ATOM 222		LYS 39		-5. 676	49. 564	1. 00 33. 02
	ATOM 223		GLU 40		-6. 342	51. 613	1. 00 31. 82
	ATOM 224		GLU 40	30. 831	-5. 442	51.632	1. 00 33. 50
25	ATOM 225		GLU 40	29. 845	-5. 831	52. 737	1. 00 34. 39
	ATOM 226		GLU 40	29. 159	-7. 167	52. 507	1.00 36.32
	ATOM 227		GLU 40		-7. 293	51. 112	1. 00 38. 53
	ATOM 228		GLU 40		-6. 350	50.660	1. 00 39. 61
	ATOM 229	0E2	GLU 40	28. 770	-8. 342	50. 469	1. 00 38. 22

- 24 -

	ATOM 23	O C	GLU 40	31. 309	-4. 009	51. 833	1. 00 33. 20
	ATOM 23	1 0	GLU 40	30. 691	-3. 072	51. 345	1. 00 33. 12
	ATOM 232	2 N	MET 41	32. 409	-3. 844	52. 556	1. 00 33. 18
	ATOM 233	3 CA	MET 41	32. 957	-2. 515	52. 783	1. 00 34. 90
5	ATOM 234	1 CB	MET 41	34. 173	-2. 585	53. 706	1. 00 32. 91
	ATOM 235	CG	MET 41	33. 838	-2. 927	55. 154	1. 00 34. 83
	ATOM 236	SD	MET 41	35. 327	-2. 987	56. 170	1. 00 34. 41
	ATOM 237	CE	MET 41	35. 747	-1. 216	56. 267	1. 00 36. 69
	ATOM 238	C	MET 41	33. 368	-1. 941	51. 430	1. 00 36. 56
10	ATOM 239	0	MET 41	33. 058	-0. 792	51. 108	1. 00 34. 98
	ATOM 240	N	ASP 42	34. 054	-2. 758	50. 639	1. 00 36. 46
	ATOM 241	CA	ASP 42	34. 508	-2. 346	49. 317	1. 00 38. 91
	ATOM 242	CB	ASP 42	35. 318	-3. 470	48. 674	1. 00 42. 09
	ATOM 243	CG	ASP 42	36. 130	-2. 999	47. 490	1. 00 43. 40
15	ATOM 244	0D1	ASP 42	37. 081	-2. 216	47. 705	1. 00 45. 67
	ATOM 245		ASP 42	35. 817	-3. 411	46. 350	1. 00 42. 51
	ATOM 246	С	ASP 42	33. 311	-1. 990	48. 433	1. 00 38. 61
	ATOM 247	0	ASP 42	33. 366	-1. 036	47.656	1. 00 39. 03
	ATOM 248	N	ARG 43	32. 232	-2. 761	48. 559	1.00 36.74
20	ATOM 249	CA	ARG 43	31. 012	-2. 524	47. 788	1. 00 33. 90
	ATOM 250	CB	ARG 43	30. 037	-3. 688	47. 967	1. 00 33. 80
	ATOM 251		ARG 43	30. 324	-4. 890	47. 080	1. 00 34. 68
	ATOM 252		ARG 43	29. 654	-6. 163	47.614	1. 00 34. 89
	ATOM 253		ARG 43	28. 232	-5. 997	47. 906	1. 00 35. 11
25	ATOM 254		ARG 43	27. 296	-5. 729	46.998	1. 00 37. 42
	ATOM 255		ARG 43		-5. 589	45. 719	1. 00 39. 98
	ATOM 256		ARG 43		-5. 615	47. 366	1. 00 36. 46
	ATOM 257		ARG 43		-1. 229	48. 193	1. 00 34. 64
	ATOM 258	0 .	ARG 43	29. 712	-0. 550	47. 357	1. 00 35. 89

	ATOM 259	N GLY 44	30. 382	-0. 892	49. 475	1. 00 31. 21
	ATOM 260	CA GLY 44	29. 744	0. 318	49. 940	1. 00 31. 87
	ATOM 261	C GLY 44	30. 463	1. 579	49. 490	1. 00 33. 29
	ATOM 262	0 GLY 44	29. 854	2. 645	49. 397	1. 00 31. 49
5	ATOM 263	N LEU 45	31. 756	1. 455	49. 200	1. 00 31. 44
	ATOM 264	CA LEU 45	32. 563	2. 595	48. 778	1. 00 32. 24
	ATOM 265	CB LEU 45	34. 033	2. 358	49. 129	1. 00 27. 43
	ATOM 266	CG LEU 45	34. 415	2. 487	50. 601	1.00 29.59
	ATOM 267	CD1 LEU 45	35. 832	1. 992	50. 827	1. 00 30. 31
10	ATOM 268	CD2 LEU 45	34. 281	3. 941	51.022	1.00 30.45
	ATOM 269	C LEU 45	32. 455	2. 933	47. 294	1. 00 33. 00
	ATOM 270	0 LEU 45	32. 537	4. 098	46. 924	1.00 32.78
	ATOM 271	N ARG 46	32. 277	1. 911	46. 460	1. 00 34. 18
	ATOM 272	CA ARG 46	32. 179	2.074	45.009	1. 00 34. 76
15	ATOM 273	CB ARG 46	32. 320	0.714	44. 312	1. 00 36. 33
	ATOM 274	CG ARG 46	33. 519	-0. 119	44. 756	1.00 39.02
	ATOM 275	CD ARG 46	34. 794	0. 267	44. 035	1. 00 43. 71
	ATOM 276	NE ARG 46	35. 913	-0. 593	44. 431	1.00 48.60
		CZ ARG 46	37. 142	-0.527	43. 915	1. 00 49. 59
20		NH1 ARG 46	37. 429	0. 359	42. 969	1.00 49.57
	ATOM 279	NH2 ARG 46	38. 091	-1. 344	44. 354	1.00 50.09
		C ARG 46	30. 856	2.710	44. 587	1.00 34.95
	ATOM 281	0 ARG 46	29. 785	2. 361	45. 091	1. 00 32. 49
	ATOM 282	N LEU 47	30. 935	3. 638	43. 644	1.00 34.90
25	ATOM 283	CA LEU 47	29. 741	4. 311	43. 162	1. 00 34. 40
	ATOM 284	CB LEU 47	30. 100	5. 297	42. 049	1.00 34.27
	ATOM 285	CG LEU 47	28. 929	6. 085	41. 447	1. 00 33. 85
	ATOM 286	CD1 LEU 47	28. 445	7. 144	42. 442	1.00 31.01
	ATOM 287	CD2 LEU 47	29. 381	6. 741	40. 144	1. 00 31. 08

- 26 -

	ATOM 288	8 C LEU 47	28. 727	3. 316	42. 625	1. 00 34. 52
	ATOM 289	0 LEU 47	27. 535	3. 41	42. 922	1. 00 32. 39
	ATOM 290	N GLU 48	29. 202	2. 353	41.841	1. 00 34. 67
	ATOM 291	CA GLU 48	28. 301	1. 378	41. 242	1. 00 36. 59
5	ATOM 292	CB GLU 48	29. 010	0. 589	40. 134	1. 00 38. 07
	ATOM 293	CG GLU 48	30. 205	-0. 248	40. 562	1. 00 39. 26
	ATOM 294	CD GLU 48	31. 499	0. 534	40. 580	1. 00 40. 85
	ATOM 295	0E1 GLU 48	32. 571	-0. 106	40. 497	1. 00 44. 46
	ATOM 296	OE2 GLU 48	31. 454	1. 779	40. 682	1. 00 38. 21
10	ATOM 297	C GLU 48	27. 600	0. 406	42. 188	1. 00 37. 46
	ATOM 298	0 GLU 48	26. 654	-0. 268	41. 778	1. 00 37. 82
	ATOM 299	N THR 49	28. 037	0. 321	43. 441	1. 00 36. 85
	ATOM 300	CA THR 49	27. 371	-0. 591	44. 370	1. 00 36. 40
	ATOM 301	CB THR 49	28. 212	-1. 855	44. 645	1. 00 34. 37
15	ATOM 302	OG1 THR 49	29. 554	-1. 480	44. 969	1. 00 33. 33
	ATOM 303	CG2 THR 49	28. 215	-2. 770	43. 437	1. 00 32. 44
	ATOM 304	C THR 49	27. 032	0.037	45. 703	1. 00 38. 54
	ATOM 305	0 THR 49	26. 536	-0. 647	46. 599	1. 00 40. 86
	ATOM 306	N HIS 50	27. 272	1. 335	45. 842	1. 00 38. 89
20	ATOM 307	CA HIS 50	26. 994	1. 990	47. 115	1. 00 41. 74
	ATOM 308	CB HIS 50	27. 548	3. 422	47. 130	1. 00 44. 04
	ATOM 309	CG HIS 50	26. 666	4. 426	46. 451	1.00 46.35
	ATOM 310	CD2 HIS 50	25. 795	5. 331	46. 959	1. 00 48. 65
	ATOM 311	ND1 HIS 50	26. 607	4. 565	45. 081	1. 00 47. 18
25	ATOM 312	CEI HIS 50	25. 738	5. 512	44. 772	1. 00 48. 13
	ATOM 313	NE2 HIS 50	25. 231	5. 993	45. 894	1. 00 49. 20
	ATOM 314	C HIS 50	25. 512	2. 030	47. 466	1. 00 42. 66
	ATOM 315	0 HIS 50	25. 153	2. 046	48. 642	1. 00 42. 85
	ATOM 316	N GLU 51	24. 657	2. 034	46. 447	1. 00 43. 12

- 27 -

	ATOM 317	7 CA GLU 51	23. 213	2. 120	46. 645	1. 00 44. 07
	ATOM 318	GB GLU 51	22. 555	2. 574	45. 329	1. 00 44. 83
	ATOM 319	CG GLU 51	21.051	2. 824	45. 399	1. 00 46. 43
	ATOM 320	CD GLU 51	20. 531	3. 691	44. 243	1. 00 48. 89
5	ATOM 321	OE1 GLU 51	20. 822	3. 385	43. 064	1. 00 46. 31
	ATOM 322	0E2 GLU 51	19. 821	4. 683	44. 522	1. 00 50. 83
	ATOM 323	C GLU 51	22. 543	0. 848	47. 179	1. 00 44. 27
	ATOM 324	0 GLU 51	21.630	0. 925	48. 000	1. 00 45. 14
	ATOM 325	N GLU 52	22. 991	-0. 317	46. 723	1. 00 44. 47
10	ATOM 326	CA GLU 52	22. 422	-1. 585	47. 178	1. 00 44. 81
	ATOM 327	CB GLU 52	22. 199	-2. 521	45. 988	1. 00 47. 15
	ATOM 328	CG GLU 52	23. 485	-2. 920	45. 264	1. 00 53. 66
	ATOM 329	CD GLU 52	23. 698	-2. 164	43. 951	1. 00 57. 63
	ATOM 330	0E1 GLU 52	23. 646	-0. 909	43. 953	1. 00 55. 90
15	ATOM 331	0E2 GLU 52	23. 925	-2. 835	42. 917	1. 00 57. 72
	ATOM 332	C GLU 52	23. 313	-2. 297	48. 206	1. 00 42. 49
	ATOM 333	0 GLU 52	23.052	-3. 441	48. 575	1. 00 43. 45
	ATOM 334	N ALA 53	24. 362	-1.626	48.666	1. 00 39. 72
	ATOM 335	CA ALA 53	25. 285	-2. 224	49. 628	1. 00 37. 01
20	ATOM 336	CB ALA 53	26. 589	-1. 438	49. 645	1. 00 35. 23
	ATOM 337	C ALA 53	24. 700	-2. 291	51.038	1. 00 35. 27
	ATOM 338	0 ALA 53	24. 125	-1. 321	51. 528	1. 00 34. 63
	ATOM 339	N SER 54	24. 845	-3. 439	51. 689	1. 00 32. 88
	ATOM 340	CA SER 54	24. 339	-3. 594	53. 052	1. 00 32. 06
25	ATOM 341	CB SER 54	24. 397	-5. 062	53. 476	1. 00 30. 23
	ATOM 342	0G SER 54	25. 694	-5. 576	53. 261	1. 00 35. 67
	ATOM 343	C SER 54	25. 188	-2. 741	53. 990	1. 00 28. 49
	ATOM 344	0 SER 54	24. 682	-2. 147	54. 934	1. 00 29. 57
	ATOM 345	N VAL 55	26. 485	-2. 684	53. 724	1. 00 28. 44

- 28 -

ATOM 346 CA VAL 55 27. 386 -1.87654. 535 1.00 28.63 ATOM 347 CB VAL 55 28. 737 -2.59454. 726 1.00 27.89 ATOM 348 CG1 VAL 55 29.660 -1.76655. 599 1.00 26.89 CG2 VAL 55 ATOM 349 28. 497 -3. 957 55. 365 1.00 27.94 ATOM 350 C VAL 55 27. 559 -0.55153. 788 1.00 29.80 ATOM 351 VAL 55 0 28. 367 -0.43052.868 1.00 28.14 ATOM 352 N LYS 56 26.787 0.446 54. 205 1.00 31.68 ATOM 353 CA LYS 56 26. 788 1.750 53. 550 1. 00 30. 06 ATOM 354 CB LYS 56 25.727 2. 628 54. 203 1.00 29.96 10 ATOM 355 CG LYS 56 24. 312 2. 124 53. 933 1. 00 29. 47 ATOM 356 CD LYS 56 23. 279 2. 935 54. 689 1.00 31.68 ATOM 357 CE LYS 56 23. 417 2.767 56. 196 1. 00 30, 78 ATOM 358 NZ 22. 911 LYS 56 1. 428 56.648 1.00 36.66 ATOM 359 C LYS 56 28. 087 2. 535 53. 374 1. 00 28. 33 15 ATOM 360 0 LYS 56 28. 222 3. 256 52, 388 1, 00 30, 83 ATOM 361 N MET 57 29.044 2. 410 54. 287 1.00 25.97 ATOM 362 CA MET 57 30. 299 3. 149 54. 137 1.00 23,92 ATOM 363 CB MET 57 31.098 2. 577 52.964 1, 00 24, 05 ATOM 364 CG MET 57 31. 383 1.078 53.075 1.00 27.54 20 ATOM 365 SD MET 57 32. 303 0.659 54. 580 1. 00 26, 48 ATOM 366 CE MET 57 33. 991 1. 127 54. 113 1.00 21.76 ATOM 367 C MET 57 30.006 4.643 53.887 1.00 26.44 ATON 368 MET 57 30.460 5. 237 52.903 1.00 24.39 ATOM 369 N LEU 58 29. 250 5. 235 54.803 1. 00 26. 42 25 ATOM 370 CA LEU 58 28.843 6.630 54.713 1.00 26.83 ATOM 371 CB LEU 58 27. 684 6. 884 55. 677 1. 00 24. 27 ATOM 372 CG LEU 58 26, 440 6.043 55. 386 1. 00 30, 26 ATOM 373 CD1 LEU 58 25. 401 6. 250 56. 473 1.00 28.51 ATOM 374 CD2 LEU 58 6. 430 54. 016 1. 00 31. 10 25. 874

	ATOM 375	C	LEU 58	29. 932	7. 665	54. 965	1. 00 25. 48
	ATOM 376	0	LEU 58	30. 495	7. 742	56. 053	1. 00 25. 30
	ATOM 377	N	PRO 59	30. 242	8. 476	53. 946	1. 00 24. 56
	ATOM 378	CD	PRO 59	29. 764	8. 341	52. 557	1. 00 24. 76
5	ATOM 379	CA	PRO 59	31. 262	9. 528	54. 063	1. 00 26. 48
	ATOM 380	CB	PRO 59	31. 217	10. 196	52. 686	1. 00 26. 76
	ATOM 381	CG	PRO 59	30. 865	9. 036	51.769	1. 00 26. 41
	ATOM 382	C	PRO 59	30. 820	10. 478	55. 190	1.00 26.49
	ATOM 383	0	PRO 59	29. 656	10. 863	55. 239	1. 00 28. 20
10	ATOM 384	N	THR 60	31. 728	10. 845	56. 092	1. 00 27. 28
	ATOM 385	CA	THR 60	31. 372	11.720	57. 220	1. 00 27. 77
	ATOM 386	CB	THR 60	31. 994	11. 217	58. 544	1.00 24.87
		0G1		33. 400		58. 536	1.00 22.66
	ATOM 388	CG2					1. 00 28. 80
15	ATOM 389				13. 196	57. 085	1.00 30.72
	ATOM 390	0	THR 60			57. 897	
		N	TYR 61	32. 623	13. 485	56.084	1. 00 30. 13
	ATOM 392						1. 00 33. 87
	ATOM 393		TYR 61	32. 005	15. 837	55. 684	1. 00 32. 96
20	ATOM 394		TYR 61				1. 00 35. 37
							1. 00 36. 43
							1. 00 34. 05
					14. 995	54.068	1. 00 34. 99
	ATOM 398						1. 00 33. 96
25	ATOM 399						1. 00 33. 72
	ATOM 400						1. 00 37. 69
	ATOM 401						1. 00 34. 78
	ATOM 402						1. 00 34. 09
	ATOM 403	N	VAL 62	34. 407	14. 407	57. 875	1. 00 36. 47

- 30 -

	ATOM 404	4 CA	VAL 62	35. 426	14. 713	58. 869	1. 00 37. 40
	ATOM 405	5 CB	VAL 62	35. 283	13. 825	60. 116	1. 00 37. 42
	ATOM 406	CG1	VAL 62	36. 410	14. 107	61.089	1. 00 32. 97
	ATOM 407	CG2	VAL 62	33. 937	14. 073	60. 774	1. 00 36. 34
5	ATOM 408	С	VAL 62	36. 695	14. 335	58. 104	1. 00 41. 04
	ATOM 409	0	VAL 62	36. 944	13. 153	57. 865	1. 00 40. 85
	ATOM 410	N	ARG 63	37. 475	15. 331	57. 692	1. 00 43. 48
	ATOM 411	CA	ARG 63	38. 682	15. 070	56. 909	1. 00 48. 27
	ATOM 412	CB	ARG 63	38. 843	16. 126	55. 814	1. 00 47. 25
10	ATOM 413	CG	ARG 63	37. 735	16. 112	54. 783	1. 00 49. 66
	ATOM 414	CD	ARG 63	37. 648	17. 447	54.061	1. 00 50. 62
	ATOM 415	NE	ARG 63	36. 482	17. 523	53. 185	1. 00 51. 28
	ATOM 416		ARG 63	36. 405	16. 961	51. 982	1. 00 50. 52
	ATOM 417		ARG 63	37. 430	16. 274	51.492	1. 00 48. 44
15	ATOM 418		ARG 63	35. 295	17. 089	51. 268	1.00 49.50
	ATOM 419		ARG 63	39. 952	15. 006	57. 728	1. 00 50. 30
	ATOM 420		ARG 63	39. 998	15. 478	58.860	1.00 49.69
	ATOM 421		SER 64	40. 987	14. 431	57. 128	1. 00 54. 64
	ATOM 422		SER 64	42. 276	14. 280	57. 783	1. 00 60. 87
20	ATOM 423		SER 64	43. 315	13. 760	56. 794	1. 00 60. 13
	ATOM 424		SER 64	44. 492	13. 381	57. 481	1. 00 62. 83
	ATOM 425		SER 64	42. 760	15. 583	58. 398	1. 00 65. 69
	ATOM 426		ER 64	42. 952	16. 584	57. 703	1. 00 65. 99
	ATOM 427		HR 65	42. 961	15. 530	59. 714	1. 00 71. 92
25	ATOM 428			43. 402	16. 649	60. 545	1. 00 77. 78
	ATOM 429			44. 529	16. 194	61.524	1. 00 78. 35
	ATOM 430			44. 959	17. 309	62. 317	1. 00 79. 07
	ATOM 431	CG2 T		45. 714	15. 611	60. 757	1. 00 79. 19
	ATOM 432	C T	HR 65	43. 839	17. 925	59. 817	1. 00 80. 90

- 31 -

	ATOM 433	0	THR 65	45. 033	18. 188	59. 654	1. 00 80. 93
	ATOM 434	N	PRO 66	42. 863	18. 732	59. 364	1. 00 83. 72
	ATOM 435	CD	PRO 66	41. 410	18. 469	59. 372	1. 00 84. 56
	ATOM 436	CA	PRO 66	43. 162	19. 983	58. 661	1. 00 85. 58
5	ATOM 437	CB	PRO 66	41. 871	20. 254	57. 897	1. 00 85. 53
	ATOM 438	CG	PRO 66	40. 827	19. 776	58. 864	1. 00 85. 36
	ATOM 439	C	PRO 66	43. 468	21. 057	59. 710	1. 00 87. 07
	ATOM 440	0	PRO 66	42. 581	21. 812	60. 119	1. 00 87. 87
	ATOM 441	N	GLU 67	44. 726	21. 109	60. 144	1. 00 87. 71
10	ATOM 442	CA	GLU 67	45. 162	22. 055	61. 169	1. 00 87. 66
	ATOM 443	CB	GLU 67	46. 683	22. 238	61. 110	1.00 88.42
	ATOM 444	CG	GLU 67	47. 283	22. 824	62. 384	1. 00 89. 15
	ATOM 445	CD	GLU 67	46. 871	22. 058	63. 636	1. 00 89. 71
	ATOM 446	0E1	GLU 67	45. 689	22. 150	64. 037	1. 00 89. 95
15	ATOM 447		GLU 67	47. 728	21. 359	64. 217	1.00 89.51
	ATOM 448	C	GLU 67	44. 463	23. 413	61.095	1. 00 86. 97
	ATOM 449	0	GLU 67	44. 203	23. 944	60.013	1. 00 86. 95
	ATOM 450	N	GLY 68	44. 160	23. 962	62. 266	1. 00 85. 72
	ATOM 451	CA	GLY 68	43. 475	25. 237	62. 344	1. 00 83. 56
20	ATOM 452	С	GLY 68	42. 274	25. 073	63. 251	1. 00 82. 01
	ATOM 453	0	GLY 68	41. 136	24. 970	62. 784	1. 00 82. 39
	ATOM 454	N	SER 69	42. 530	25. 038	64. 555	1.00 79.39
	ATOM 455	CA	SER 69	41. 469	24. 869	65. 537	1. 00 77. 31
	ATOM 456	CB	SER 69	41. 855	23. 784	66. 542	1. 00 77. 69
25	ATOM 457	0G	SER 69	40. 877	23. 677	67. 561	1. 00 78. 20
	ATOM 458	С	SER 69	41. 118	26. 143	66. 294	1. 00 75. 21
	ATOM 459		SER 69	41. 993	26. 857	66. 784	1. 00 74. 23
	ATOM 460		GLU 70	39. 822	26. 413	66. 386	1. 00 73. 26
	ATOM 461	CA	GLU 70	39. 328	27. 581	67.096	1. 00 71. 89

- 32 -

	ATOM 462	2 CB GLU 70	38. 004	28. 042	66. 482	1. 00 73. 40
	ATOM 463	G GLU 70	37. 897	29. 544	66. 297	1. 00 77. 84
	ATOM 464	1 CD GLU 70	38. 900	30. 073	65. 285	1. 00 80. 27
	ATOM 465	0E1 GLU 70	38. 763	29. 757	64. 082	1. 00 81. 41
5	ATOM 466	0E2 GLU 70	39. 830	30. 801	65. 692	1. 00 81. 33
	ATOM 467	° C GLU 70	39. 107	27. 144	68. 543	1. 00 69. 48
	ATOM 468	0 GLU 70	38. 409	26. 163	68. 789	1. 00 69. 73
	ATOM 469	N VAL 71	39. 701	27. 853	69. 499	1. 00 65. 92
	ATOM 470	CA VAL 71	39. 536	27. 490	70. 904	1. 00 62. 64
10	ATOM 471	CB VAL 71	40.760	27. 909	71. 746	1.00 61.59
	ATOM 472	CG1 VAL 71	41. 993	27. 156	71. 275	. 1. 00 61. 91
	ATOM 473	CG2 VAL 71	40. 979	29. 406	71.642	1. 00 61. 78
	ATOM 474	C VAL 71	38. 278	28. 105	71. 510	1. 00 61. 05
	ATOM 475	0 VAL 71	37. 608	28. 919	70. 877	1.00 61.02
15	ATOM 476	N GLY 72	37. 952	27. 700	72. 734	1. 00 59. 60
	ATOM 477	CA GLY 72	36. 769	28. 225	73. 390	1. 00 58. 10
	ATOM 478	C GLY 72	35. 841	27. 169	73. 967	1. 00 57. 74
	ATOM 479	0 GLY 72	36. 178	25. 982	74.006	1. 00 58. 27
	ATOM 480	N ASP 73	34.664	27. 607	74. 410	1. 00 55. 55
20	ATOM 481	CA ASP 73	33. 663	26. 724	75. 003	1.00 54.21
	ATOM 482	CB ASP 73	32. 973	27. 426	76. 181	1. 00 57. 20
	ATOM 483	CG ASP 73	33. 846	27. 496	77. 424	1. 00 59. 78
	ATOM 484	OD1 ASP 73	35. 046	27. 830	77. 299	1.00 61.37
	ATOM 485	0D2 ASP 73	33. 324	27. 225	78. 529	1. 00 60. 87
25	ATOM 486	C ASP 73	32. 599	26. 310	73. 994	1. 00 52. 36
	ATOM 487	0 ASP 73	31. 936	27. 161	73. 406	1. 00 52. 44
	ATOM 488	N PHE 74	32. 424	25. 005	73. 800	1. 00 49. 73
	ATOM 489	CA PHE 74	31. 412	24. 519	72. 866	1. 00 46. 98
	ATOM 490	CB PHE 74	32. 019	23. 571	71. 837	1. 00 46. 41

- 33 -

	- 33 -					
	ATOM 49	CG PHE 74	33. 117	24. 179	71. 030	1. 00 47. 09
	ATOM 492	CD1 PHE 74	34. 335	24. 492	71. 618	1. 00 47. 62
	ATOM 493	CD2 PHE 74	32. 930	24. 452	69. 681	1. 00 47. 01
	ATOM 494	CE1 PHE 74	35. 359	25. 071	70. 874	1. 00 49. 47
5	ATOM 495	CE2 PHE 74	33. 943	25. 031	68. 924	1. 00 48. 12
	ATOM 496	CZ PHE 74	35. 161	25. 342	69. 520	1. 00 48. 82
	ATOM 497	C PHE 74	30. 316	23. 783	73. 601	1. 00 45. 68
	ATOM 498	0 PHE 74	30. 485	23. 382	74. 745	1. 00 46. 35
	ATOM 499	N LEU 75	29. 185	23.615	72. 932	1. 00 45. 12
10	ATOM 500	CA LEU 75	28.064	22. 895	73. 501	1. 00 44. 80
	ATOM 501	CB LEU 75	26. 769	23. 686	73. 333	1. 00 43. 29
	ATOM 502	CG LEU 75	25. 535	23. 023	73. 959	1. 00 45. 05
	ATOM 503	CD1 LEU 75	25. 529	23. 278	75. 466	1. 00 41. 53
	ATOM 504	CD2 LEU 75	24. 259	23. 571	73. 326	1. 00 43. 45
15	ATOM 505	C LEU 75	27. 971	21. 598	72. 708	1. 00 46. 04
	ATOM 506	0 LEU 75	28. 087	21. 611	71. 479	1. 00 46. 97
	ATOM 507	N SER 76	27. 770	20. 484	73. 405	1. 00 45. 48
	ATOM 508	CA SER 76	27.664	19. 189	72. 744	1. 00 43. 73
	ATOM 509	CB SER 76	28.837	18. 295	73. 143	1. 00 43, 52
20	ATOM 510	0G SER 76	30.040	18. 741	72. 551	1. 00 44. 64
	ATOM 511	C SER 76	26. 361	18. 469	73. 051	1.00 41.60
	ATOM 512	0 SER 76	26. 026	18. 242	74. 209	1. 00 40. 88
	ATOM 513	N LEU 77	25. 617	18. 130	72.007	1. 00 41. 06
	ATOM 514	CA LEU 77	24. 369	17. 397	72. 175	1. 00 43. 50
25	ATOM 515	CB LEU 77	23. 281	17. 918	71. 225	1. 00 43. 84
	ATOM 516	CG LEU 77	22. 750	19. 346	71. 401	1. 00 45. 70
		CD1 LEU 77	21. 587	19. 577	70. 442	1. 00 45. 96
	ATOM 518		22. 284	19. 550	72. 835	1. 00 46. 75
	ATOM 519	C LEU 77	24. 662	15. 933	71. 851	1. 00 43. 78

- 34 -

	ATOM 520	O LEU '	77 25. 529	15. 635	71.026	1. 00 43. 07
	ATOM 521	N ASP	78 23. 946	15. 021	72. 496	1. 00 44. 50
	ATOM 522	CA ASP	78 24. 151	13. 604	72. 244	1. 00 44. 82
	ATOM 523	CB ASP 7	78 25. 126	13. 026	73. 271	1. 00 44. 71
5	ATOM 524	CG ASP 7	8 25. 597	11.628	72. 905	1. 00 45. 55
	ATOM 525	OD1 ASP 7	8 24. 738	10. 750	72. 672	1. 00 41. 76
	ATOM 526	OD2 ASP 7	8 26.828	11. 410	72. 853	1. 00 45. 32
	ATOM 527	C ASP 7	8 22.838	12. 829	72. 276	1. 00 44. 74
	ATOM 528	0 ASP 7	8 22. 245	12. 633	73. 333	1. 00 45. 25
10	ATOM 529	N LEU 7	9 22. 385	12. 398	71. 107	1. 00 45. 72
	ATOM 530	CA LEU 7	9 21. 154	11.630	70. 994	1. 00 47. 25
	ATOM 531	CB LEU 7	9 20. 137	12. 351	70. 116	1. 00 45. 37
	ATOM 532	CG LEU 7	9 18. 865	11. 530	69. 915	1. 00 43. 65
	ATOM 533	CD1 LEU 7	9 18.067	11. 553	71. 200	1. 00 46. 42
15	ATOM 534	CD2 LEU 7	9 18. 045	12. 086	68.777	1. 00 43. 81
	ATOM 535	C LEU 7	9 21. 491	10. 295	70. 354	1. 00 49. 50
	ATOM 536	0 LEU 79		10. 249	69. 274	1. 00 49. 35
	ATOM 537	N GLY 80	21. 123	9. 207	71.016	1. 00 52. 24
	ATOM 538	CA GLY 80		7. 902	70. 466	1. 00 56. 31
20	ATOM 539	C GLY 80		6. 833	71. 420	1. 00 59. 13
	ATOM 540	0 GLY 80		5. 896	71. 027	1. 00 60. 86
	ATOM 541	N GLY 81		6. 966	72. 679	1. 00 62. 30
	ATOM 542	CA GLY 81		6. 002	73. 674	1. 00 65. 60
	ATOM 543	C GLY 81		6. 395	74. 137	1. 00 67. 84
25	ATOM 544	0 GLY 81		7. 301	73. 564	1. 00 69. 00
	ATOM 545	N THR 82		5. 722	75. 165	1. 00 69. 33
	ATOM 546	CA THR 82		6. 037	75. 695	1. 00 70. 36
	ATOM 547	CB THR 82	17. 110	4. 824	76. 418	1. 00 71. 43
	ATOM 548	OG1 THR 82	18. 032	4. 332	77. 398	1.00 71.60

- 35 -

	ATOM 549	9 CG2 THR 82	16. 784	3. 716	75. 420	1. 00 71. 87
	ATOM 550	C THR 82	17. 846	7. 196	76. 679	1. 00 70. 10
	ATOM 551	0 THR 82	16. 933	7. 458	77. 464	1. 00 71. 18
	ATOM 552	N ASN 83	18. 981	7. 887	76. 625	1. 00 69. 08
5	ATOM 553	CA ASN 83	19. 232	9. 017	77. 508	1. 00 68. 14
	ATOM 554	CB ASN 83	20. 161	8. 584	78. 646	1. 00 69. 98
	ATOM 555	CG ASN 83	19. 862	9. 300	79. 948	1. 00 70. 80
	ATOM 556	OD1 ASN 83	20. 627	9. 213	80. 909	1. 00 71. 46
	ATOM 557	ND2 ASN 83	18. 739	10.004	79. 990	1. 00 72. 56
10	ATOM 558	C ASN 83	19. 866	10. 177	76. 738	1. 00 66. 16
	ATOM 559	0 ASN 83	21.050	10. 136	76. 407	1. 00 66. 52
	ATOM 560	N PHE 84	19. 073	11. 203	76. 447	1. 00 63. 41
	ATOM 561	CA PHE 84	19. 567	12. 375	75. 728	1. 00 60. 93
	ATOM 562	CB PHE 84	18. 398	13. 227	75. 241	1. 00 61. 87
15	ATOM 563	CG PHE 84	18. 817	14. 477	74. 528	1. 00 63. 55
	ATOM 564	CD1 PHE 84	18. 419	15. 724	74. 993	1. 00 63. 38
	ATOM 565	CD2 PHE 84	19. 599	14. 409	73. 381	1. 00 64. 28
	ATOM 566	CE1 PHE 84	18. 793	16. 888	74. 325	1. 00 64. 07
		CE2 PHE 84	19. 979	15. 568	72. 705	1. 00 65. 31
20	ATOM 568	CZ PHE 84	19. 574	16. 810	73. 179	1. 00 64. 75
	ATOM 569	C PHE 84	20. 442	13. 206	76. 658	1. 00 59. 07
	ATOM 570	0 PHE 84	20. 011	13. 582	77. 744	1. 00 59. 19
	ATOM 571	N ARG 85	21.665	13. 500	76. 232	1. 00 57. 25
	ATOM 572	CA ARG 85	22. 583	14. 272	77. 064	1. 00 56. 05
25	ATOM 573	CB ARG 85	23. 857	13. 467	77. 344	1. 00 56. 68
	ATOM 574	CG ARG 85	23. 605	12. 044	77. 828	1. 00 58. 78
	ATOM 575	CD ARG 85	24. 896	11. 367	78. 267	1. 00 59. 39
	ATOM 576	NE ARG 85	25. 908	11. 348	77. 213	1. 00 59. 87
	ATOM 577	CZ ARG 85	27. 068	11. 994	77. 282	1. 00 60. 09

	ATOM 578	8 NH1 ARG 85	27. 366	12. 713	78. 357	1. 00 59. 50
						1. 00 60. 92
	ATOM 580	C ARG 85	22. 966	15. 602	76. 433	1. 00 55. 07
	ATOM 581	0 ARG 85	23. 038	15. 725	75. 209	1. 00 54. 93
5	ATOM 582	N VAL 86	23. 211	16. 593	77. 288	1. 00 53. 13
	ATOM 583	CA VAL 86	23. 598	17. 935	76. 861	1. 00 51. 01
	ATOM 584	CB VAL 86	22. 425	18. 939	77. 003	1. 00 51. 19
	ATOM 585	CG1 VAL 86	22. 851	20. 313	76. 509	1. 00 51. 39
	ATOM 586	CG2 VAL 86	21. 216	18. 446	76. 225	1. 00 50. 96
10	ATOM 587	C VAL 86	24. 734	18. 381	77. 767	1. 00 49. 34
	ATOM 588	0 VAL 86	24. 613	18. 316	78. 989	1.00 48.07
	ATOM 589	N MET 87	25. 834	18. 835	77. 178	1. 00 49. 52
	ATOM 590	CA MET 87	26. 970	19. 260	77. 981	1. 00 50. 78
	ATOM 591	CB MET 87	27. 864	18. 054	78. 284	1. 00 52. 70
15	ATOM 592		28. 572	17. 461	77. 072	1. 00 54. 49
		SD MET 87	29. 005	15. 694	77. 269	1. 00 53. 62
		CE MET 87	27. 839	14. 951	76. 090	1. 00 51. 63
		C MET 87	27. 800	20. 363	77. 348	1.00 50.56
		0 MET 87	27. 715	20.616	76. 149	1. 00 50. 18
20		N LEU 88		21. 015	78. 178	1.00 50.90
		CA LEU 88		22. 093	77. 739	1.00 52.10
	ATOM 599				78. 631	1. 00 53. 23
	ATOM 600				78. 288	1.00 54.71
			29. 618			1. 00 54. 33
25	ATOM 602	CD2 LEU 88				1. 00 54. 33
		C LEU 88				
		0 LEU 88				
					76. 789	1. 00 52. 10
	ATOM 606	CA VAL 89	33. 078	21. 342	76. 788	1. 00 52. 46

- 37 -

	ATOM 60	7 CB VAL 89	33. 241	20. 072	75. 882	1. 00 50. 52
	ATOM 608	G CG1 VAL 89	32. 289	20. 147	74. 710	1. 00 52. 35
	ATOM 609	GG2 VAL 89	34. 674	19. 939	75. 388	1. 00 46. 86
	ATOM 610	C VAL 89	34. 049	22. 433	76. 357	1. 00 53. 35
5	ATOM 611	0 VAL 89	33. 858	23. 081	75. 336	1. 00 54. 69
	ATOM 612	N LYS 90	35. 096	22. 625	77. 151	1. 00 55. 22
	ATOM 613	CA LYS 90	36. 100	23. 640	76. 868	1. 00 56. 94
	ATOM 614	CB LYS 90	36. 656	24. 205	78. 181	1. 00 57. 66
	ATOM 615	CG LYS 90	37. 642	25. 360	78. 005	1. 00 58. 70
10	ATOM 616	CD LYS 90	38. 140	25. 909	79. 345	1. 00 59. 35
	ATOM 617	CE LYS 90	36. 995	26. 399	80. 226	1. 00 60. 64
	ATOM 618	NZ LYS 90	36. 185	27. 462	79. 568	1. 00 61. 04
	ATOM 619	C LYS 90	37. 237	23. 078	76.019	1. 00 57. 63
	ATOM 620	0 LYS 90	37. 921	22. 136	76. 417	1. 00 57. 69
15	ATOM 621	N VAL 91	37. 428	23. 670	74. 846	1. 00 58. 29
	ATOM 622	CA VAL 91	38. 473	23. 254	73. 919	1. 00 57. 11
	ATOM 623	CB VAL 91	37. 920	23. 136	72. 480	1. 00 56. 48
	ATOM 624	CG1 VAL 91	39. 010	22. 661	71. 533	1. 00 55. 29
	ATOM 625	CG2 VAL 91	36. 741	22. 183	72. 459	1. 00 55. 52
20	ATOM 626	C VAL 91	39. 598	24. 279	73. 926	1. 00 57. 81
	ATOM 627	0 VAL 91	39. 365	25. 466	73. 710	1. 00 59. 53
	ATOM 628	N GLY 92	40. 817	23. 819	74. 172	1. 00 58. 12
	ATOM 629	CA GLY 92	41. 947	24. 723	74. 200	1. 00 59. 69
	ATOM 630	C GLY 92	43. 047	24. 245	73. 286	1. 00 61. 78
25	ATOM 631	0 GLY 92	42. 821	23. 381	72. 448	1. 00 61. 06
	ATOM 632	N GLU 93	44. 240	24. 803	73. 449	1. 00 65. 18
	ATOM 633		45. 373	24. 426	72. 619	1. 00 69. 00
	ATOM 634	CB GLU 93	45. 897	25. 646	71. 866	1. 00 71. 56
	ATOM 635	CG GLU 93	47. 082	25. 344	70. 965	1. 00 75. 20

- 38 -

	ATOM 636	G CD GLU 93	47. 659	26. 591	70. 325	1. 00 78. 28
	ATOM 637	7 OE1 GLU 93	46. 893	27. 326	69. 659	1. 00 80. 05
	ATOM 638	0E2 GLU 93	48. 877	26. 834	70. 485	1. 00 79. 21
	ATOM 639	C GLU 93	46. 505	23. 822	73. 437	1. 00 71. 00
5	ATOM 640	0 GLU 93	47. 118	24. 500	74. 263	1. 00 70. 74
	ATOM 641	N GLY 94	46. 784	22. 544	73. 195	1. 00 72. 97
	ATOM 642	CA GLY 94	47. 849	21. 869	73. 916	1. 00 74. 44
	ATOM 643	C GLY 94	49. 078	21. 673	73. 052	1. 00 75. 82
	ATOM 644	0 GLY 94	49. 485	22. 577	72. 315	1. 00 76. 47
10	ATOM 645	N GLU 95	49. 682	20. 496	73. 145	1. 00 75. 73
	ATOM 646	CA GLU 95	50. 859	20. 195	72. 349	1.00 76.61
	ATOM 647	CB GLU 95	52. 023	19. 792	73. 249	1.00 76.93
	ATOM 648	CG GLU 95	52. 439	20. 891	74. 203	1. 00 78. 31
	ATOM 649	CD GLU 95	53. 614	20. 497	75. 065	1. 00 78. 40
15	ATOM 650	OE1 GLU 95	54. 715	20. 274	74. 514	1.00 78.51
	ATOM 651	0E2 GLU 95	53. 432	20. 408	76. 295	1.00 78.60
	ATOM 652	C GLU 95	50. 516	19. 071	71. 392	1.00 76.91
	ATOM 653	0 GLU 95	49. 833	18. 116	71. 764	1. 00 76. 81
	ATOM 654	N GLU 96	50. 987	19. 203	70. 155	1.00 77.78
20	ATOM 655	CA GLU 96	50. 733	18. 220	69. 105	1. 00 78. 07
	ATOM 656	CB GLU 96	51.408	16. 881	69. 440	1. 00 81. 32
	ATOM 657	CG GLU 96	52. 943	16. 930	69. 454	1. 00 85. 11
	ATOM 658	CD GLU 96	53. 541	17. 309	68. 101	1.00 87.05
	ATOM 659	0E1 GLU 96	53. 346	16. 551	67. 124	1. 00 88. 73
25	ATOM 660	OE2 GLU 96	54. 207	18. 365	68. 014	1. 00 87. 56
	ATOM 661	C GLU 96	49. 230	18. 025	68. 919	1. 00 75. 88
	ATOM 662	0 GLU 96	48. 784	17. 039	68. 327	1. 00 75. 92
	ATOM 663	N GLY 97	48. 456	18. 980	69. 427	1. 00 72. 88
	ATOM 664	CA GLY 97	47. 013	18. 910	69. 309	1. 00 69. 37

- 39 -

	ATOM 66	5 C	GLY 97	46. 296	19. 710	70. 380	1. 00 67. 02
	ATOM 660	3 0	GLY 97	46. 921	20. 230	71. 305	1. 00 67. 10
	ATOM 667	7 N	GLN 98	44. 978	19. 811	70. 250	1. 00 64. 76
	ATOM 668	3 CA	GLN 98	44. 166	20. 543	71. 211	1. 00 62. 45
5	ATOM 669	CB	GLN 98	42. 872	21. 045	70. 562	1. 00 62. 69
	ATOM 670	CG	GLN 98	43.026	21. 908	69. 315	1. 00 64. 93
	ATOM 671	CD	GLN 98	43. 191	21. 095	68. 046	1. 00 65. 89
	ATOM 672	0E1	GLN 98	44. 299	20. 684	67. 696	1. 00 65. 96
	ATOM 673	NE2	GLN 98	42. 079	20. 847	67. 353	1. 00 65. 22
10	ATOM 674	C	GLN 98	43. 781	19. 630	72. 369	1. 00 61. 23
	ATOM 675	0	GLN 98	43. 880	18. 403	72. 269	1. 00 62. 18
	ATOM 676	N	TRP 99	43. 356	20. 233	73. 473	1. 00 57. 45
	ATOM 677	CA	TRP 99	42. 893	19. 459	74. 611	1. 00 54. 44
	ATOM 678	CB	TRP 99	43. 639	19. 822	75. 904	1. 00 55. 51
15	ATOM 679	CG	TRP 99	43.770	21. 291	76. 211	1. 00 56. 94
	ATOM 680	CD2	TRP 99	42.763	22. 151	76. 756	1. 00 56. 03
	ATOM 681		TRP 99	43. 345	23. 426	76. 922	1. 00 57. 25
	ATOM 682	CE3	TRP 99	41. 422	21. 969	77. 121	1. 00 56. 67
	ATOM 683		TRP 99	44. 892	22.062	76.068	1. 00 56. 29
20	ATOM 684		TRP 99	44.647	23. 342	76. 495	1. 00 56. 55
	ATOM 685	CZ2 (TRP 99	42.635	24. 516	77. 440	1. 00 56. 53
	ATOM 686			40. 712	23. 053	77. 637	1. 00 56. 67
	ATOM 687			41. 322	24. 309	77. 790	1. 00 56. 70
	ATOM 688			41. 408	19. 756	74. 737	1. 00 52. 04
25	ATOM 689			40. 899	20. 664	74. 089	1. 00 50. 70
	ATOM 690	N S	ER 100	40. 70	4 18. 98	1 75.54	5 1.00 49.57
	ATOM 691		ER 100	39. 27	7 19. 18	6 75.71	5 1. 00 48. 29
	ATOM 692	CB S	ER 100	38. 500	6 18. 47	74. 59	7 1.00 49.26
	ATOM 693	OG S	ER 100	39. 058	5 17. 190	74. 31	5 1. 00 47. 27

- 40 -

						10		
	ATOM 694	l C	SER	100	38. 860	18. 655	77. 067	1.00 47.91
	ATOM 695	0	SER	100	39. 569	17. 845	77. 662	1.00 48.73
	ATOM 696	N	VAL	101	37. 718	19. 120	77. 558	1. 00 47. 53
	ATOM 697	CA	VAL	101	37. 225	18. 684	78. 852	1.00 47.86
5	ATOM 698	CB	VAL	101	38. 102	19. 233	79. 995	1.00 47.92
	ATOM 699	CG1	VAL	101	38. 160	20. 747	79. 923	1.00 49.02
	ATOM 700	CG2	VAL	101	37. 545	18. 783	81. 342	1.00 47.98
	ATOM 701	C	VAL	101	35. 784	19. 102	79. 101	1. 00 48. 77
	ATOM 702	0	VAL	101	35. 391	20. 228	78. 798	1.00 49.05
10	ATOM 703	N	LYS	102	35. 004	18. 176	79. 649	1.00 49.04
	ATOM 704	CA	LYS	102	33. 607	18. 422	79. 969	1. 00 50. 31
	ATOM 705	CB	LYS	102	32. 875	17. 101	80. 220	1.00 51.15
	ATOM 706	CG	LYS	102	31. 385	17. 263	80. 452	1. 00 52. 57
	ATOM 707	CD	LYS	102	30. 835	16. 229	81. 425	1.00 56.56
15	ATOM 708	CE	LYS	102	30. 955	14. 804	80. 908	1. 00 57. 06
	ATOM 709	NZ	LYS	102	30. 275	13. 804	81. 787	1.00 58.08
	ATOM 710		LYS	102	33. 587	19. 254	81. 243	1. 00 51. 12
	ATOM 711	0	LYS	102	34. 220	18. 888	82. 234	1. 00 52. 47
	ATOM 712	N	THR	103	32. 859	20. 366	81. 217	1. 00 51. 40
20	ATOM 713	CA	THR	103	32. 774	21. 252	82. 373	1. 00 50. 47
	ATOM 714	CB	THR	103	33.004	22. 715	81. 965	1. 00 50. 28
	ATOM 715	0G1	THR	103	31. 992	23. 113	81. 032	1.00 51.29
	ATOM 716	CG2	THR	103	34. 368	22. 879	81. 324	1.00 47.52
	ATOM 717	C	THR	103	31. 416	21. 148	83. 048	1. 00 50. 90
25	ATOM 718	0	THR	103	31. 329	21.056	84. 268	1. 00 50. 91
	ATOM 719	N	LYS	104	30. 358	21. 162	82. 247	1. 00 52. 41
	ATOM 720	CA	LYS	104	29. 000	21. 063	82.770	1. 00 54. 04
	ATOM 721	CB :	LYS	104	28. 310	22. 436	82. 714	1. 00. 57. 21
	ATOM 722	CG	LYS	104	28. 823	23. 450	83. 739	1. 00 59. 16

- 41 -

	ATOM 723	B CD	LYS	104	28. 138	24. 809	83. 576	1. 00 62. 54
	ATOM 724	1 CE	LYS	104	28. 398	25. 734	84. 766	1. 00 62. 99
	ATOM 725	NZ	LYS	104	27. 798	25. 217	86. 037	1. 00 64. 17
	ATOM 726	С	LYS	104	28. 215	20. 047	81. 948	1. 00 53. 79
5	ATOM 727	0	LYS	104	28. 411	19. 941	80. 740	1. 00 53. 53
	ATOM 728	N	HIS	105	27. 330	19. 299	82. 600	1. 00 53. 65
	ATOM 729	CA	HIS	105	26. 539	18. 295	81. 903	1. 00 55. 05
	ATOM 730	CB	HIS	105	27. 316	16. 972	81. 837	1. 00 55. 94
	ATOM 731	CG	HIS	105	27. 668	16. 397	83. 176	1. 00 55. 84
10	ATOM 732	CD2	HIS	105	28. 793	16. 501	83. 924	1. 00 55. 19
	ATOM 733	ND1	HIS	105	26. 803	15. 602	83. 897	1. 00 55. 83
	ATOM 734	CE1	HIS	105	27. 380	15. 241	85. 030	1. 00 56. 35
	ATOM 735	NE2	HIS	105	28. 589	15. 773	85. 071	1. 00 55. 64
	ATOM 736	С	HIS	105	25. 169	18. 074	82. 534	1. 00 56. 32
15	ATOM 737	0	HIS	105	24. 903	18. 535	83. 640	1. 00 56. 55
	ATOM 738	N	GLN	106	24. 302	17. 365	81. 817	1. 00 58. 21
	ATOM 739	CA	GLN	106	22. 950	17. 090	82. 289	1. 00 60. 74
	ATOM 740	CB	GLN	106	22. 108	18. 367	82. 224	1. 00 61. 97
	ATOM 741	CG	GLN	106	20. 775	18. 285	82. 945	1. 00 64. 86
20	ATOM 742		GLN	106	20. 928	18. 379	84. 447	1.00 67.03
	ATOM 743	0E1		106	21. 447	19. 370	84. 969	1. 00 68. 82
	ATOM 744	NE2		106	20. 479	17. 348	85. 155	1. 00 67. 41
	ATOM 745	С	GLN	106	22. 322	16. 025	81. 396	1. 00 61. 62
	ATOM 746	0	GLN	106	22. 532	16. 027	80. 186	1. 00 62. 03
25	ATOM 747	N	MET	107	21. 550	15. 121	81. 990	1. 00 63. 03
	ATOM 748	CA	MET	107	20. 900	14. 058	81. 232	1. 00 64. 74
	ATOM 749	CB	MET	107	21. 322	12. 688	81. 769	1. 00 66. 23
	ATOM 750	CG 1	MET	107	22. 821	12. 456	81. 786	1. 00 68. 74
	ATON 751	SD 1	MET	107	23. 248	10. 812	82. 388	1. 00 70. 84

- 42 -

	ATOM 752	CE	MET	107	23. 427	9. 926	80. 853	1. 00 71. 13
	ATOM 753	С	MET	107	19. 385			
	ATOM 754	0	MET	107	18. 837	14. 489	82. 369	1. 00 65. 52
	ATOM 755	N	TYR	108	18. 712	13. 915		1. 00 66. 87
5	ATOM 756	CA	TYR	108	17. 258	13. 984		
	ATOM 757	CB	TYR	108	16. 800	15. 167	79. 286	
	ATOM 758	CG	TYR	108	17. 436	16. 484	79. 660	1. 00 66. 35
	ATOM 759	CD1	TYR	108	18. 781	16. 731	79. 386	1. 00 65. 95
	ATOM 760	CE1	TYR	108	19. 380	17. 929	79. 746	1. 00 65. 76
10	ATOM 761	CD2	TYR	108	16. 702	17. 477	80. 307	1. 00 66. 24
	ATOM 762	CE2	TYR	108	17. 292	18. 683	80. 674	1. 00 65. 93
	ATOM 763	CZ	TYR	108	18. 633	18. 902	80. 391	1. 00 66. 14
	ATOM 764	OH	TYR	108	19. 235	20. 083	80. 763	1. 00 64. 27
	ATOM 765	С	TYR	108	16.706	12. 700	79. 549	1. 00 70. 20
15	ATOM 766	0	TYR	108	16. 995	12. 363	78. 404	1. 00 70. 55
	ATOM 767	N	SER	109	15. 912	11. 982	80. 331	1. 00 73. 54
	ATOM 768		SER	109	15. 322	10. 739	79. 863	1. 00 76. 84
	ATOM 769		SER	109	14. 524	10. 082	80. 992	1. 00 77. 63
	ATOM 770		SER	109	15. 353	9. 837	82. 120	1. 00 78. 13
20	ATOM 771		SER	109	14. 419	11.020	78. 664	1. 00 78. 98
	ATOM 772		SER	109	13. 936	12. 138	78. 486	1. 00 78. 51
	ATOM 773		ILE	110	14. 198	10. 002	77. 841	1. 00 82. 34
	ATOM 774		ILE	110	13. 369	10. 143	76. 651	1. 00 86. 07
	ATOM 775		ILE	110	13. 892	9. 249	75. 511	1. 00 86. 28
25	ATOM 776	CG2		110	13. 092	9. 505	74. 242	1. 00 86. 56
	ATOM 777	CG1	ILE	110	15. 379	9. 529	75. 275	1. 00 86. 19
	ATOM 778	CD1		110	16. 025	8. 612	74. 258	1. 00 86. 76
	ATOM 779		ILE	110	11. 916	9. 772	76. 927	1. 00 88. 58
	ATOM 780	0]	LE	110	11. 596	8. 606	77. 152	1. 00 88. 69

- 43 -

	ATOM 781	N	PR0	111	11. 016	10. 767	76. 910	1. 00 91. 13
	ATOM 782	CD	PRO	111	11. 319	12. 205	76. 811	1. 00 91. 83
	ATOM 783	CA	PR0	111	9. 585	10.562	77. 157	1. 00 93. 32
	ATOM 784	CB	PRO	111	9. 015	11. 975	77. 062	1. 00 93. 16
5	ATOM 785	CG	PR0	111	10. 147	12.819	77. 536	1. 00 92. 31
	ATOM 786	C	PRO	111	8. 928	9.613	76. 159	1. 00 95. 40
	ATOM 787	0	PR0	111	9. 466	9. 355	75. 082	1. 00 95. 80
	ATOM 788	N	GLU	112	7. 758	9. 101	76. 529	1. 00 97. 55
	ATOM 789	CA	GLU	112	7. 006	8. 185	75. 679	1. 00 99. 50
10	ATOM 790	CB	GLU	112	5. 816	7. 611	76. 458	1. 00100. 31
	ATOM 791	CG	GLU	112	4. 745	6. 971	75. 589	1. 00101. 76
	ATOM 792	CD	GLU	112	5. 316	5. 989	74. 587	1. 00102. 84
	ATOM 793	0E1	GLU	112	5. 967	5. 012	75. 014	1. 00103. 66
	ATOM 794	0E2	GLU	112	5. 113	6. 196	73. 372	1. 00103. 00
15	ATOM 795	C	GLU	112	6. 508	8. 884	74. 418	1. 00100. 37
	ATOM 796	0	GLU	112	6. 914	8. 545	73. 304	1. 00100. 17
	ATOM 797	N	ASP	113	5. 625	9.859	74. 606	1. 00101. 44
	ATOM 798	CA	ASP	113	5. 056	10.620	73. 499	1. 00102. 05
	ATOM 799	CB	ASP	113	4. 087	11.680	74. 038	1. 00102. 23
20	ATOM 800	CG	ASP	113	4. 682	12. 494	75. 177	1. 00102. 33
	ATOM 801	0D1	ASP	113	4. 961	11. 913	76. 249	1. 00102. 01
	ATOM 802	0D2	ASP	113	4. 870	13.716	74. 999	1. 00101. 99
	ATOM 803	C	ASP	113	6. 131	11. 282	72. 638	1. 00102. 09
	ATOM 804	0	ASP	113	5. 843	11. 789	71. 553	1. 00101. 96
25	ATOM 805	N .	ALA	114	7. 368	11. 273	73. 126	1. 00102. 12
	ATOM 806	CA ,	ALA	114	8. 484	11.869	72. 401	1. 00102. 09
	ATOM 807	CB .	ALA	114	9. 590	12. 256	73. 377	1. 00101. 76
	ATOM 808	C A	ALA	114	9. 022	10. 895	71. 358	1. 00102. 06
	ATOM 809	0 /	ALA	114	9. 763	11. 282	70. 455	1. 00101. 89

- 44 -

	ATOM 810) N	MET	115	8. 640	9. 630	71. 491	1. 00102. 04
	ATOM 811	CA	MET	115	9. 081	8. 592	70. 569	1. 00102. 05
	ATOM 812	CB	MET	115	9. 466	7. 331	71. 346	1. 00102. 77
	ATOM 813	CG	MET	115	10.637	7. 509	72. 307	1. 00103. 47
5	ATOM 814	SD	MET	115	12. 256	7. 549	71. 502	1. 00104. 26
	ATOM 815	CE	MET	115	12. 740	5. 824	71. 638	1. 00103. 48
	ATOM 816	C	MET	115	8. 004	8. 253	69. 538	1. 00101. 77
	ATOM 817	0	MET	115	8. 268	8. 275	68. 337	1. 00102. 14
	ATOM 818	N	THR	116	6. 796	7. 942	70.006	1. 00101. 14
10	ATOM 819	CA	THR	116	5. 690	7. 590	69. 110	1. 00100. 36
	ATOM 820	CB	THR	116	4. 517	6. 927	69. 880	1. 00100. 42
	ATOM 821	0G1	THR	116	5. 004	5. 805	70. 625	1. 00100. 29
	ATOM 822	CG2	THR	116	3. 441	6. 441	68. 911	1. 00100. 05
	ATOM 823	C	THR	116	5. 150	8. 816	68. 379	1. 00 99. 62
15	ATOM 824	0	THR	116	4. 423	8. 694	67. 391	1. 00 99. 72
	ATOM 825	N	GLY	117	5. 510	9. 996	68. 870	1. 00 98. 62
	ATOM 826	CA	GLY	117	5. 048	11. 224	68. 252	1.00 97.42
	ATOM 827	С	GLY	117	5. 619	11.447	66.866	1. 00 96, 48
	ATOM 828	0	GLY	117	5. 746	10. 511	66.074	1. 00 96. 38
20	ATOM 829	N	THR	118	5. 962	12. 696	66. 570	1. 00 95. 25
	ATOM 830	CA	THR	118	6. 521	13. 050	65. 273	1. 00 93. 78
	ATOM 831	CB	THR	118	5. 679	14. 133	64. 578	1. 00 93. 57
	ATOM 832	0G1		118	5. 735	15. 343	65. 342	1. 00 93. 50
	ATOM 833	CG2		118	4. 234	13. 685	64. 457	1.00 93.65
25	ATOM 834	С	THR	118	7. 936	13. 583	65. 440	1.00 92.67
	ATOM 835		THR	118	8. 335	13. 976	66. 537	1. 00 92. 39
	ATOM 836		ALA	119	8. 687	13. 593	64. 343	1. 00 91. 30
	ATOM 837		ALA	119	10. 058	14. 084	64. 356	1.00 90.00
	ATOM 838	CB	ALA	119	10. 643	14. 031	62. 956	1. 00 89. 81

- 45 -

	ATOM 83		ALA	119	10.066	15. 513	64. 867	1. 00 89. 21
	ATOM 840	0 0	ALA	119	11. 045	15. 972	65. 455	1. 00 88. 98
	ATOM 84	l N	GLU	120	8. 959	16. 210	64. 636	1. 00 88. 61
	ATOM 842	CA	GLU	120	8. 819	17. 593	65. 063	1. 00 87. 61
5	ATOM 843	CB	GLU	120	7. 505	18. 177	64. 536	1. 00 87. 74
	ATOM 844	CG	GLU	120	7. 138	17. 763	63. 112	1. 00 86. 31
	ATOM 845	CD	GLU	120	8. 269	17. 956	62. 120	1. 00 85. 84
	ATOM 846	0E	1 GLU	120	8. 884	19. 042	62. 113	1. 00 84. 76
	ATOM 847	0E	2 GLU	120	8. 535	17. 020	61. 336	1. 00 85. 71
10	ATOM 848	C	GLU	120	8. 837	17. 658	66. 588	1. 00 86. 71
	ATOM 849	0	GLU	120	9.610	18. 412	67. 179	1. 00 86. 71
	ATOM 850	N	MET	121	7. 980	16. 859	67. 216	1. 00 85. 74
	ATOM 851	CA	MET	121	7. 895	16. 817	68. 671	1. 00 84. 85
	ATOM 852	CB	MET	121	6. 798	15. 842	69. 111	1. 00 84. 04
15	ATOM 853	CG	MET	121	5. 390	16. 273	68.740	1. 00 81. 88
	ATOM 854	SD	MET	121	4. 152	15. 078	69. 268	1. 00 80. 83
	ATOM 855	CE	MET	121	3. 772	14. 283	67. 730	1. 00 78. 55
	ATOM 856	C	MET	121	9. 226	16. 397	69. 286	1. 00 84. 73
	ATOM 857	0	MET	121	9. 687	17. 003	70. 255	1. 00 84. 87
20	ATOM 858	N	LEU	122	9. 839	15. 360	68. 717	1. 00 84. 21
	ATOM 859	CA	LEU	122	11.115	14.851	69. 211	1. 00 83. 20
	ATOM 860	CB	LEU	122	11.711	13. 847	68. 221	1. 00 83. 29
	ATOM 861	CG	LEU	122	12.966	13. 109	68. 697	1. 00 83. 07
	ATOM 862	CD1	LEU	122	12.612	12. 232	69. 885	1. 00 82. 78
25	ATOM 863	CD2	LEU	122	13. 533	12. 261	67. 572	1. 00 82. 52
	ATOM 864	C	LEU	122	12. 110	15. 980	69. 448	1. 00 82. 61
	ATOM 865	0	LEU	122	12. 546	16. 204	70. 575	1. 00 82. 47
	ATOM 866	N	PHE	123	12. 467	16. 694	68. 385	1. 00 82. 28
	ATOM 867	CA	PHE	123	13. 414	17. 794	68. 512	1. 00 82. 09

- 46 -

	ATOM 86	в св рні	123	13. 898	18. 251	67. 136	1. 00 82. 08
	ATOM 869	CG PHI	123	14. 948	17. 357	66. 547	1. 00 81. 61
	ATOM 870	CD1 PHE	123	14. 616	16. 098	66. 060	1. 00 81. 34
	ATOM 871	CD2 PHE	123	16. 281	17. 756	66. 523	1. 00 81. 33
5	ATOM 872	CE1 PHE	123	15. 594	15. 246	65. 559	1. 00 80. 67
	ATOM 873	CE2 PHE	123	17. 268	16. 912	66. 026	1. 00 81. 58
	ATOM 874	CZ PHE	123	16. 923	15. 653	65. 543	1. 00 81. 33
	ATOM 875	C PHE	123	12. 834	18. 964	69. 288	1. 00 81. 98
	ATOM 876	0 PHE	123	13. 570	19. 838	69. 747	1. 00 81. 74
10	ATOM 877	N ASP	124	11. 512	18. 980	69. 429	1. 00 82. 09
	ATOM 878	CA ASP	124	10. 852	20. 028	70. 195	1. 00 82. 29
	ATOM 879	CB ASP	124	9. 329	19. 909	70. 073	1. 00 81. 96
	ATOM 880	CG ASP	124	8. 731	20. 961	69. 157	1. 00 81. 56
	ATOM 881	OD1 ASP	124	7. 510	20. 897	68. 901	1. 00 81. 25
15	ATOM 882	OD2 ASP	124	9. 477	21. 855	68. 701	1. 00 80. 94
	ATOM 883	C ASP	124	11. 279	19. 808	71. 641	1. 00 82. 22
	ATOM 884	0 ASP	124	11. 819	20. 707	72. 287	1. 00 81. 61
	ATOM 885	N TYR	125	11. 047	18. 595	72. 133	1. 00 82. 59
	ATOM 886	CA TYR	125	11. 420	18. 233	73. 494	1. 00 83. 66
20	ATOM 887	CB TYR	125	11. 048	16. 771	73. 767	1. 00 85. 84
	ATOM 888	CG TYR	125	11. 533	16. 240	75. 100	1. 00 88. 74
	ATOM 889	CD1 TYR	125	12. 763	15. 590	75. 209	1. 00 89. 83
	ATOM 890	CE1 TYR	125	13. 222	15. 110	76. 437	1. 00 91. 28
	ATOM 891	CD2 TYR	125	10. 770	16. 399	76. 257	1. 00 90. 41
25	ATOM 892	CE2 TYR	125	11. 221	15. 926	77. 493	1. 00 91. 86
	ATOM 893	CZ TYR	125	12. 448	15. 281	77. 574	1. 00 92. 09
	ATOM 894	OH TYR	125	12. 896	14. 807	78. 789	1. 00 93. 08
	ATOM 895	C TYR	125	12. 917	18. 451	73. 704	1. 00 82. 86
	ATOM 896	0 TYR	125	13. 352	18. 829	74. 792	1. 00 82. 74

- 47 -

	ATOM 897	N	ILE	126	13. 701	18. 215	72. 655	1. 00 81. 74
	ATOM 898	CA	ILE	126	15. 146	18. 398	72. 727	1. 00 80. 58
	ATOM 899	CB	ILE	126	15. 824	18. 005	71. 397	1. 00 79. 32
	ATOM 900	CG2	ILE	126	17. 277	18. 443	71. 398	1. 00 78. 57
5	ATOM 901	CG1	ILE	126	15. 719	16. 494	71. 194	1. 00 78. 47
	ATOM 902	CD1	ILE	126	16. 408	15. 993	69. 946	1. 00 78. 42
	ATOM 903	C	ILE	126	15. 479	19. 852	73. 047	1. 00 80. 87
	ATOM 904	0	ILE	126	16. 334	20. 133	73. 887	1. 00 79. 71
	ATOM 905	N	SER	127	14. 799	20. 772	72. 370	1. 00 81. 80
10	ATOM 906	CA	SER	127	15. 018	22. 196	72. 594	1. 00 82. 44
	ATOM 907	CB	SER	127	14. 160	23. 021	71.636	1. 00 82. 62
	ATOM 908	0G	SER	127	14. 559	22. 807	70. 294	1. 00 83. 20
	ATOM 909	C	SER	127	14. 668	22. 543	74. 034	1. 00 82. 44
	ATOM 910	0	SER	127	15. 318	23. 382	74. 660	1. 00 81. 86
15	ATOM 911	N	GLU	128	13. 636	21. 884	74. 553	1. 00 83. 04
	ATOM 912	CA	GLU	128	13. 202	22. 106	75. 927	1. 00 83. 79
	ATOM 913	CB	GLU	128	11. 944	21. 289	76. 232	1. 00 84. 79
	ATOM 914	CG	GLU	128	11. 408	21. 490	77. 645	1.00 86.70
	ATOM 915	CD	GLU	128	10. 425	20. 409	78.061	1. 00 88. 14
20	ATOM 916	0E1		128	9. 408	20. 222	77. 357	1. 00 88. 36
	ATOM 917	0E2	GLU	128	10.672	19. 747	79. 094	1. 00 88. 06
	ATOM 918	С	GLU	128	14. 318	21. 686	76. 877	1. 00 83. 42
	ATOM 919	0	GLU	128	14. 483	22. 261	77. 952	1. 00 84. 16
	ATOM 920	N	CYS	129	15. 081	20. 675	76. 475	1. 00 82. 77
25	ATOM 921	CA	CYS	129	16. 177	20. 179	77. 295	1. 00 81. 21
	ATOM 922	CB	CYS	129	16. 554	18. 760	76. 873	1. 00 81. 07
	ATOM 923	SG	CYS	129	15. 206	17. 569	77. 006	1. 00 80. 63
	ATOM 924	C	CYS	129	17. 391	21. 089	77. 178	1. 00 80. 64
	ATOM 925	0 1	CYS	129	18. 092	21. 330	78. 160	1. 00 79. 84

- 48 -

	ATOM 926	N ILE	130	17. 644	21. 591	75. 975	1. 00 80. 16
	ATOM 927	CA ILE	130	18. 782	22. 475	75. 775	1. 00 80. 33
	ATOM 928	CB ILE	130	18. 944	22. 860	74. 298	1. 00 79. 59
	ATOM 929	CG2 ILE	130	20. 253	23. 614	74. 102	1. 00 79. 29
5	ATOM 930	CG1 ILE	130	18. 933	21. 599	73. 436	1. 00 79. 00
	ATOM 931	CD1 ILE	130	19. 069	21. 860	71. 958	1. 00 79. 73
	ATOM 932	C ILE	130	18. 559	23. 735	76. 595	1. 00 80. 49
	ATOM 933	0 ILE	130	19. 475	24. 241	77. 239	1. 00 80. 22
	ATOM 934	N SER	131	17. 326	24. 229	76. 574	1. 00 81. 09
10	ATOM 935	CA SER	131	16. 970	25. 428	77. 320	1. 00 82. 28
	ATOM 936	CB SER	131	15. 525	25. 826	77. 006	1. 00 83. 15
	ATOM 937	OG SER	131	14. 641	24. 736	77. 195	1. 00 82. 88
	ATOM 938	C SER	131	17. 136	25. 195	78. 820	1. 00 82. 33
	ATOM 939	0 SER	131	17. 843	25. 940	79. 501	1. 00 82. 07
15	ATOM 940	N ASP	132	16. 478	24. 155	79. 322	1. 00 82. 42
	ATOM 941	CA ASP	132	16. 540	23. 792	80. 735	1. 00 82. 24
	ATOM 942	CB ASP	132	15. 893	22. 411	80. 934	1. 00 83. 24
	ATOM 943	CG ASP	132	15. 836	21. 981	82. 393	1. 00 83. 66
	ATOM 944		132	15. 165	20. 963	82. 678	1. 00 83. 28
20	ATOM 945	OD2 ASP		16. 458	22. 645	83. 250	1. 00 83. 85
	ATOM 946	C ASP	132	17. 996	23. 778	81. 200	1.00 81.62
	ATOM 947	0 ASP	132	18. 324	24. 293	82. 270	1. 00 82. 12
	ATOM 948	N PHE	133	18. 866	23. 193	80. 383	1. 00 80. 65
	ATOM 949	CA PHE	133	20. 286	23. 118	80. 698	1. 00 79. 47
25	ATOM 950	CB PHE	133	21. 033	22. 331	79. 616	1. 00 77. 80
	ATOM 951	CG PHE	133	22. 528	22. 391	79. 750	1. 00 75. 86
	ATOM 952	CD1 PHE	133	23. 178	21.695	80. 761	1. 00 75. 50
	ATOM 953		133	23. 284	23. 179	78. 889	1. 00 75. 39
	ATOM 954	CE1 PHE	133	24. 562	21. 785	80. 914	1. 00 74. 78

- 49 -

	ATOM 955	CE2 PHE	133	24. 667	23. 275	79. 035	1. 00 74. 59
	ATOM 956	CZ PHE	133	25. 305	22. 578	80. 049	1. 00 74. 18
	ATOM 957	C PHE	133	20. 876	24. 519	80. 786	1. 00 79. 33
	ATOM 958	0 PHE	133	21. 690	24. 810	81. 659	1. 00 79. 06
5	ATOM 959	N LEU	134	20. 459	25. 382	79. 869	1. 00 79. 23
	ATOM 960	CA LEU	134	20. 951	26. 748	79. 828	1. 00 79. 59
	ATOM 961	CB LEU	134	20. 482	27. 412	78. 534	1. 00 79. 43
	ATOM 962	CG LEU	134	21. 043	26. 703	77. 297	1. 00 78. 61
	ATOM 963	CD1 LEU	134	20. 401	27. 247	76. 032	1. 00 78. 47
10	ATOM 964	CD2 LEU	134	22. 554	26. 878	77. 264	1. 00 77. 75
	ATOM 965	C LEU	134	20. 524	27. 565	81. 043	1.00 79.41
	ATOM 966	0 LEU	134	21. 324	28. 310	81. 609	1. 00 78. 74
	ATOM 967	N ASP	135	19. 268	27. 423	81. 448	1. 00 80. 16
	ATOM 968	CA ASP	135	18. 780	28. 152	82. 609	1. 00 80. 92
15	ATOM 969		135	17. 271	27. 966	82. 777	1. 00 80. 81
	ATOM 970	CG ASP	135	16. 474	28. 778	81. 783	1. 00 81. 08
	ATOM 971	OD1 ASP	135	16. 801	29. 970	81. 599	1.00 82.67
	ATOM 972	OD2 ASP	135	15. 517	28. 234	81. 195	1. 00 81. 12
	ATOM 973	C ASP	135	19. 486	27. 686	83. 872	1. 00 81. 80
20	ATOM 974	0 ASP	135	20. 090	28. 490	84. 578	1. 00 82. 12
	ATOM 975	N LYS	136	19. 418	26. 384	84. 143	1. 00 82. 43
	ATOM 976	CA LYS	136	20. 041	25. 811	85. 333	1. 00 83. 25
	ATOM 977	CB LYS	136	19. 750	24. 307	85. 418	1. 00 82. 64
	ATOM 978	CG LYS	136	18. 288	23. 970	85. 677	1. 00 82. 57
25	ATOM 979	CD LYS	136	18. 095	22. 487	85. 952	1. 00 82. 49
	ATOM 980	CE LYS	136	16. 630	22. 154	86. 182	1. 00 82. 31
	ATOM 981	NZ LYS	136	16. 053	22. 914	87. 323	1. 00 82. 43
	ATOM 982	C LYS	136	21. 548	26. 044	85. 429	1. 00 84. 12
	ATOM 983	0 LYS	136	22. 185	25. 610	86. 390	1. 00 84. 51

- 50 -

ATOM 984 N HIS 137 22. 119 26, 727 84, 442 1.00 85.08 ATOM 985 CA HIS 137 23. 551 27.010 84. 450 1.00 86.27 ATOM 986 CBHIS 137 24. 280 26.115 83. 438 1.00 86.74 ATOM 987 CG HIS 137 24. 169 24.649 83, 730 1.00 87.04 5 ATOM 988 CD2 HIS 137 25. 112 23.729 84.047 1.00 86.44 ATOM 989 ND1 HIS 137 22.968 23.971 83.708 1,00 87,51 ATOM 990 CE1 HIS 137 23. 176 22.699 83.999 1.00 86.59 ATOM 991 NE2 HIS 137 24. 468 22. 526 84. 209 1.00 86.35 ATOM 992 C HIS 137 23. 820 28. 476 84. 123 1.00 87.11 ATOM 993 10 0 HIS 137 24. 943 28.842 83.776 1,00 86,73 ATOM 994 N GLN 138 22.78429.307 84. 249 1.00 88.41 ATOM 995 CA GLN 22.883 138 30. 736 83. 955 1.00 89.43 ATOM 996 CB GLN 138 23, 469 31.512 85. 140 1.00 90.47 ATOM 997 CG GLN 138 22.654 31.451 86. 419 1.00 92.10 15 ATOM 998 CD GLN 138 22. 738 30.099 87.095 1.00 93.09 ATOM 999 OE1 GLN 138 23, 829 29, 598 87. 372 1.00 93.35 ATOM 1000 NE2 GLN 138 21. 584 29. 501 87. 371 1.00 93.71 ATOM 1001 C GLN 138 23.779 30, 931 82. 747 1.00 89.90 ATOM 1002 0 GLN 138 24, 922 31.376 82.875 1.00 89.53 ATOM 20 1003 N MET 139 23. 262 30. 591 81.573 1.00 89.97 ATOM 1004 CA 24.046 MET 139 30.725 80.359 1.00 90.27 ATOM 1005 CB MET 139 24.995 29.529 80. 235 1.00 90.82 ATOM 1006 CG MET 139 26. 314 29.838 79.542 1.00 91.26 ATOM 1007 SD MET 139 27. 526 28. 508 79.736 1.00 90.73 25 ATOM 1008 CE MET 139 28.303 28. 974 81.303 1.00 91.08 ATOM 1009 C MET 139 23. 137 30. 820 79. 140 I. 00 90, 17 ATOM 1010 0 MET 139 23.610 30, 894 78.006 1.00 90.11 ATOM N LYS 140 21.829 30. 829 79.380 1.00 89.92 ATOM 1012 CA LYS 140 20.851 30. 921 78. 300 1, 00 89, 78

- 51 -

	ATOM	1013	CB	LYS	140	19. 434	30. 922	78. 874	1. 00 89. 37
	ATOM	1014	CG	LYS	140	18. 357	31. 239	77. 852	1. 00 89. 17
	ATOM	1015	CD	LYS	140	16. 972	31. 055	78. 438	1. 00 89. 06
	ATOM	1016	CE	LYS	140	16. 688	29. 588	78. 675	1. 00 88. 66
5	ATOM	1017	NZ	LYS	140	16. 797	28. 822	77. 406	1. 00 88. 73
	ATOM	1018	C	LYS	140	21.067	32. 179	77. 466	1. 00 89. 78
	ATOM	1019	0	LYS	140	20. 593	32. 278	76. 334	1. 00 89. 28
	ATOM	1020	N	HIS	141	21. 794	33. 133	78. 037	1. 00 90. 38
	ATOM	1021	CA	HIS	141	22. 082	34. 401	77. 376	1. 00 90. 81
10	ATOM	1022	CB	HIS	141	22. 222	35. 506	78. 427	1. 00 90. 98
	ATOM	1023	CG	HIS	141	23. 294	35. 243	79. 443	1. 00 91. 18
	ATOM	1024	CD2	2 HIS	141	24. 520	35. 794	79. 610	1. 00 91. 04
	ATOM	1025	ND I	HIS	141	23. 163	34. 294	80. 434	1. 00 91. 11
	ATOM	1026	CE 1	HIS	141	24. 262	34. 273	81. 168	1. 00 91. 45
15	ATOM	1027	NE2	HIS	141	25. 102	35. 174	80. 688	1. 00 90. 96
	ATOM	1028	C	HIS	141	23. 349	34. 367	76. 516	1. 00 90. 72
	ATOM	1029	0	HIS	141	24. 048	35. 374	76. 399	1. 00 91. 00
	ATOM	1030	N	LYS	142	23.648	33. 220	75. 912	1. 00 90. 17
	ATOM	1031	CA	LYS	142	24. 845	33. 109	75. 082	1. 00 89. 12
20	ATOM	1032	CB	LYS	142	26. 000	32. 529	75. 908	1. 00 89. 54
	ATOM	1033	CG	LYS	142	26. 424	33. 406	77. 079	1. 00 90. 51
	ATOM	1034	CD	LYS	142	27. 490	32. 730	77. 926	1. 00 91. 91
	ATOM	1035	CE	LYS	142	27.867	33. 579	79. 131	1. 00 92. 42
	ATOM	1036	NZ	LYS	142	28. 820	32. 863	80. 026	1. 00 92. 34
25	ATOM	1037	С	LYS	142	24. 643	32. 276	73. 815	1. 00 87. 58
	ATOM	1038	0	LYS	142	23. 763	31. 418	73. 749	1. 00 87. 74
	ATOM	1039	N	LYS	143	25. 465	32. 554	72. 808	1. 00 85. 65
	ATON	1040	CA	LYS	143	25. 414	31. 849	71. 532	1. 00 83. 45
	ATOM	1041	CB	LYS	143	25. 052	32. 819	70. 402	1. 00 83. 10

- 52 -

ATOM 1042 CG LYS 143 25. 199 32. 262 68.988 1.00 82.55 ATOM 1043 CD LYS 143 24. 890 33, 339 67.951 1.00 82.36 ATOM 1044 CE LYS 143 25. 289 32. 922 66.540 1.00 82,46 ATOM 1045 NZ LYS 143 24. 519 31.749 66.045 1.00 82.29 5 ATOM 1046 C LYS 143 26. 790 31. 252 71. 283 1, 00 82, 32 ATOM 1047 0 LYS 143 27.751 31.974 71.002 1.00 82.33 ATOM 1048 N LEU 144 26.884 29. 932 71.409 1.00 79.90 ATOM 1049 CA LEU 144 29. 233 71. 198 28. 146 1.00 77.12 ATOM 1050 CB LEU 144 28. 653 28. 634 72.517 1.00 78.89 ATOM 10 1051 CG LEU 144 29. 417 29. 543 73.491 1.00 80.11 ATOM 1052 CD1 LEU 144 28.560 30. 727 73.924 1.00 81.77 ATOM 1053 CD2 LEU 144 29.836 28. 721 74.698 1.00 80.96 ATOM 1054 C LEU 144 27.993 28. 132 70.156 1.00 73,23 ATOM 1055 0 LEU 144 26.876 27. 742 69.810 1.00 72.89 15 ATOM 1056 N PR₀ 145 29.119 27.628 69.628 1.00 70.01 ATOM 1057 CD PR0 145 30. 498 28. 104 69.833 1. 00 68. 83 ATOM 1058 CA PR0 145 29.081 26.565 68.621 1.00 67.77 ATOM 1059 CB PRO 145 30, 555 26.356 68. 285 1.00 68.79 ATOM 1060 CG PR0 145 31. 159 27, 706 68. 542 1.00 69.21 20 ATOM 1061 C PRO 145 28. 434 25. 299 69, 181 1.00 65, 49 ATOM 1062 0 PR0 145 28.615 24.963 70.351 1.00 64.23 ATOM 1063 N LEU 146 27.677 24.603 68.340 1.00 63.31 ATOM 1064 CA LEU 146 27.007 23. 383 68. 757 1.00 61.72 ATOM 1065 CB LEU 146 25. 492 23. 532 68.602 1.00 62.15 ATOM 25 1066 CG LEU 146 24.678 22. 285 68. 945 1.00 62.90 ATOM 1067 CD1 LEU 146 25. 011 21.842 70. 353 1.00 64.57 ATOM 1068 CD2 LEU 146 23. 194 22. 577 68. 817 1.00 65.06 ATOM 1069 C LEU 146 27. 473 22. 152 67. 985 1.00 59.94 ATOM 1070 0 LEU 146 27. 342 22.086 66. 763 1, 00 59, 04

- 53 -

	ATOM	1071	N	GLY	147	28. 028	21. 189	68. 721	1. 00 58. 65
	ATOM	1072	. CA	GLY	147	28. 492	19. 939	68. 136	1. 00 54. 15
	ATOM	1073	С	GLY	147	27. 444	18. 891	68. 465	1. 00 49. 71
	ATOM	1074	0	GLY	147	27. 175	18. 628	69. 635	1.00 50.70
5	ATOM	1075	N	PHE	148	26. 854	18. 287	67. 440	1. 00 46. 12
	ATOM	1076	CA	PHE	148	25. 795	17. 297	67. 635	1. 00 42. 39
	ATOM	1077	CB	PHE	148	24. 610	17. 675	66. 740	1. 00 39. 68
	ATOM	1078	CG	PHE	148	23. 366	16. 864	66. 977	1. 00 38. 24
	ATOM	1079	CD	PHE	148	22. 326	16. 901	66. 056	1. 00 36. 04
10	ATOM	1080	CD2	PHE	148	23. 212	16. 102	68. 132	1. 00 36. 13
	ATOM	1081	CEI	PHE	148	21. 148	16. 194	66. 279	1. 00 38. 53
	ATOM	1082	CE2	PHE	148	22. 042	15. 395	68. 365	1.00 35.28
	ATOM	1083	CZ	PHE	148	21. 005	15. 440	67. 437	1. 00 37. 48
	ATOM	1084	C	PHE	148	26. 197	15. 840	67. 354	1. 00 41. 67
15	ATOM	1085	0	PHE	148	26. 463	15. 475	66. 205	1. 00 42. 24
	ATOM	1086	N	THR	149	26. 247	15. 013	68. 398	1. 00 40. 23
	ATOM	1087	CA	THR	149	26. 562	13. 593	68. 222	1.00 36.30
	ATOM	1088	CB	THR	149	27. 281	13. 001	69. 442	1.00 36.36
	ATOM	1089	0G1	THR	149	28. 580	13. 597	69. 560	1. 00 37. 54
20	ATOM	1090	CG2	THR	149	27. 444	11. 492	69. 286	1. 00 37. 01
	ATOM	1091	C	THR	149	25. 212	12. 909	68.039	1. 00 34. 65
	ATOM	1092	0	THR	149	24. 412	12. 836	68.967	1. 00 31. 13
	ATOM	1093	N	PHE	150	24. 972	12. 422	66. 825	1.00 33.67
	ATOM	1094	CA	PHE	150	23. 714	11. 782	66.456	1. 00 34. 60
25	ATOM	1095	CB	PHE	150	23.061	12. 614	65. 336	1. 00 32. 78
	ATOM	1096	CG	PHE	150	21. 739	12. 086	64.854	1. 00 30. 57
	ATOM	1097	CD1	PHE	150	21. 625	11. 513	63. 595	1. 00 30. 43
	ATOM	1098	CD2	PHE	150	20. 598	12. 213	65. 637	1. 00 31. 90
	ATOM	1099	CE1	PHE	150	20. 382	11. 076	63. 115	1. 00 34. 54

- 54 -

	ATOM	1100) CI	E2 PHE	150	19. 356	11. 783	65. 176	1. 00 30. 63
	ATOM	1101	CZ	PHE	150	19. 241	11. 213	63. 913	1. 00 32. 01
	ATOM	1102	? C	PHE	150	24. 011	10. 358	65. 991	1. 00 35. 95
	ATOM	1103	0	PHE	150	24. 369	10. 128	64. 836	1. 00 38, 42
5	ATOM	1104	N	SER	151	23. 843	9. 412	66. 908	1. 00 36. 96
	ATOM	1105	CA	SER	151	24. 129	7. 995	66. 680	1. 00 34. 37
	ATOM	1106	CB	SER	151	24. 186	7. 271	68. 025	1. 00 35. 80
	ATOM	1107	0G	SER	151	25. 111	7. 897	68. 892	1. 00 39. 97
	ATOM	1108	С	SER	151	23. 189	7. 228	65. 770	1. 00 32. 05
10	ATOM	1109	0	SER	151	22. 537	6. 292	66. 215	1. 00 32. 11
	ATOM	1110	N	PHE	152	23. 110	7. 611	64. 505	1. 00 31. 41
	ATOM	1111	CA	PHE	152	22. 253	6. 902	63. 563	1.00 31.81
	ATOM	1112	CB	PHE	152	20. 824	7. 464	63. 570	1. 00 34. 43
	ATOM	1113	CG	PHE	152	20. 149	7. 372	64. 904	1. 00 34. 95
15	ATOM	1114	CD	PHE	152	20. 278	8. 401	65. 838	1. 00 32. 95
	ATOM	1115	CD2	PHE	152	19. 439	6. 228	65. 256	1. 00 35. 34
	ATOM	1116	CE	PHE	152	19. 713	8. 291	67. 108	1. 00 35. 00
	ATOM	1117	CE2	PHE	152	18. 868	6. 102	66. 526	1.00 35.79
	ATOM	1118	CZ	PHE	152	19. 005	7. 135	67. 454	1. 00 38. 15
20	ATOM	1119	C	PHE	152	22. 845	7. 010	62. 171	1. 00 31. 95
	ATOM	1120	0	PHE	152	23. 727	7. 831	61.921	1. 00 31. 72
	ATOM	1121	N	PR0	153	22. 386	6. 164	61. 247	1. 00 32. 44
	ATOM	1122	CD	PRO	153	21. 374	5. 098	61.343	1. 00 30. 73
	ATOM	1123	CA	PRO	153	22. 942	6. 248	59. 896	1. 00 34. 59
25	ATOM	1124	CB	PRO	153	22. 397	4. 991	59. 225	1. 00 31. 34
	ATOM	1125	CG	PRO	153	21.072	4. 812	59. 884	1. 00 31. 98
	ATOM	1126	C	PRO	153	22. 507	7. 535	59. 201	1. 00 37. 30
	ATOM	1127	0	PRO	153	21. 310	7. 813	59. 067	1. 00 39. 02
	ATOM	1128	N	VAL	154	23. 483	8. 325	58. 770	1. 00 39. 02

- 55 -

	ATOM	1129	CA	VAL	154	23. 187	9. 581	58. 092	1. 00 40. 43
	ATOM	1130) CB	VAL	154	23. 446	10. 792	59. 007	1. 00 39. 28
	ATOM	1131	CG	1 VAL	154	23. 191	12. 081	58. 238	1. 00 41. 18
	ATOM	1132	CG	2 VAL	154	22. 557	10. 727	60. 221	1. 00 38. 37
5	ATOM	1133	C	VAL	154	24. 023	9. 785	56. 837	1. 00 41. 48
	ATOM	1134	0	VAL	154	25. 241	9. 602	56. 861	1. 00 41. 28
	ATOM	1135	N	ARG	155	23. 365	10. 162	55. 743	1. 00 43. 31
	ATOM	1136	CA	ARG	155	24. 072	10. 441	54. 495	1. 00 46. 32
	ATOM	1137	CB	ARG	155	23. 233	10. 058	53. 280	1. 00 47. 31
10	ATOM	1138	CG	ARG	155	23. 809	10. 586	51. 968	1. 00 52. 20
	ATOM	1139	CD	ARG	155	23. 563	9. 614	50. 844	1. 00 55, 56
	ATOM	1140	NE	ARG	155	24. 419	8. 437	50. 968	1. 00 59. 93
	ATOM	1141	CZ	ARG	155	24. 068	7. 217	50. 573	1.00 61.41
	ATOM	1142	NH1	ARG	155	22. 874	7. 011	50. 032	1.00 63.00
15	ATOM	1143	NH2	ARG	155	24. 910	6. 203	50. 717	1. 00 63. 35
	ATOM	1144	C	ARG	155	24. 367	11. 934	54. 456	1. 00 46. 23
	ATOM	1145	0	ARG	155	23. 486	12. 737	54. 166	1.00 47.64
	ATOM	1146	N	HIS	156	25. 613	12. 291	54. 754	1.00 47.03
	ATOM	1147	CA	HIS	156	26.046	13. 682	54. 791	1. 00 48. 05
20	ATOM	1148	CB	HIS	156	27. 318	13. 834	55. 632	1. 00 49. 62
	ATOM	1149	CG	HIS	156	27. 157	13. 444	57.066	1. 00 52. 65
	ATOM	1150	CD2	HIS	156	26. 274	12. 619	57. 676	1. 00 53. 99
	ATOM	1151	ND1	HIS	156	27. 990	13. 916	58. 057	1. 00 53. 35
	ATOM	1152	CE1	HIS	156	27. 625	13. 401	59. 218	1.00 54.78
25	ATOM	1153	NE2	HIS	156	26. 586	12. 610	59.014	1. 00 54. 28
	ATOM	1154	C	HIS	156	26. 334	14. 317	53. 440	1. 00 48. 30
	ATOM	1155	0	HIS	156	26. 872	13. 677	52. 535	1. 00 47. 38
	ATOM	1156	N	GLU	157	25. 969	15. 589	53. 319	1. 00 47. 98
	ATOM	1157	CA	GLU	157	26. 256	16. 343	52. 114	1. 00 48. 38

- 56 -

	ATOM	1158	CB	GLU	157	25. 113	17. 296	51. 749	1. 00 51. 05
	ATOM	1159	CG	GLU	157	25. 462	18. 198	50. 558	1. 00 57. 22
	ATOM	1160	CD	GLU	157	24. 422	19. 276	50. 275	1. 00 58. 92
	ATOM	1161	0E1	GLU	157	23. 299	18. 931	49. 845	1. 00 60. 91
5	ATOM	1162	0E2	GLU	157	24. 734	20. 471	50. 485	1. 00 60. 69
	ATOM	1163	C	GLU	157	27. 475	17. 138	52. 547	1. 00 45. 12
	ATOM	1164	0	GLU	157	28. 349	17. 457	51. 749	1. 00 43. 91
	ATOM	1165	N	ASP	158	27. 529	17. 427	53. 843	1. 00 43. 85
	ATOM	1166	CA	ASP	158	28. 633	18. 174	54. 416	1. 00 43. 81
10	ATOM	1167	CB	ASP	158	28. 479	19. 654	54. 085	1. 00 46. 74
	ATOM	1168	CG	ASP	158	29. 743	20. 445	54. 349	1. 00 49. 54
	ATOM	1169	OD1	ASP	158	29. 760	21. 651	54. 016	1. 00 53. 34
	ATOM	1170	0D2	ASP	158	30. 716	19.869	54. 884	1. 00 49. 62
	ATOM	1171	C	ASP	158	28. 671	17. 972	55. 928	1. 00 43. 93
15	ATOM	1172	0	ASP	158	27. 724	17. 447	56. 518	1. 00 43. 97
	ATOM	1173	N	ILE	159	29. 767	18. 399	56. 547	1. 00 43. 75
	ATOM	1174	CA	ILE	159	29. 963	18. 250	57. 983	1. 00 44. 27
	ATOM	1175	CB	ILE	159	31. 248	18. 971	58. 452	1. 00 45. 07
	ATOM	1176	CG2	ILE	159	31. 069	20. 480	58. 354	1. 00 47. 24
20	ATOM	1177	CG1	ILE	159	31. 544	18. 617	59. 907	1. 00 45. 29
	ATOM	1178	CD1	ILE	159	31. 733	17. 140	60. 152	1.00 48.99
	ATOM	1179	C	ILE	159	28. 795	18. 744	58.829	1. 00 44. 47
	ATOM	1180	0	ILE	159	28. 583	18. 254	59. 941	1.00 44.15
	ATOM	1181	N	ASP	160	28. 037	19. 709	58. 317	1. 00 44. 10
25	ATOM	1182	CA	ASP	160	26.904	20. 239	59. 072	1. 00 42. 92
	ATOM	1183	CB .	ASP	160	27. 103	21.734	59. 360	1. 00 44. 13
	ATOM	1184	CG .	ASP	160	27. 448	22. 533	58. 118	1. 00 45. 52
	ATOM	1185	OD1 .	ASP	160	28. 258	23. 479	58. 239	1. 00 47. 57
	ATOM	1186	0D2	ASP	160	26. 912	22. 228	57. 031	1. 00 45. 51

- 57 -

	ATOM	1187	C	ASP	160	25. 559	20. 005	58. 410	1. 00 42. 92
	ATOM	1188	0	ASP	160	24. 579	20. 691	58. 706	1. 00 44. 48
	ATOM	1189	N	LYS	161	25. 509	19. 026	57. 518	1. 00 41. 57
	ATOM	1190	CA	LYS	161	24. 267	18. 692	5 6. 838	1. 00 41. 51
5	ATOM	1191	CB	LYS	161	24.067	19. 597	55. 618	1. 00 41. 19
	ATOM	1192	CG	LYS	161	22. 783	19. 306	54. 863	1.00 41.39
	ATOM	1193	CD	LYS	161	22. 687	20. 094	53. 557	1. 00 43. 25
	ATOM	1194	CE	LYS	161	21. 366	19. 809	52. 860	1. 00 40.06
	ATOM	1195	NZ	LYS	161	21. 335	20. 312	51. 468	1. 00 41. 02
10	ATOM	1196	C	LYS	161	24. 258	17. 224	56. 397	1. 00 41. 66
	ATOM	1197	0	LYS	161	25. 239	16. 725	55. 838	1. 00 39. 36
	ATOM	1198	N	GLY	162	23. 143	16. 546	56. 654	1. 00 40. 90
	ATOM	1199	CA	GLY	162	23.005	15. 152	56. 276	1. 00 42. 70
	ATOM	1200	C	GLY	162	21.618	14. 645	56. 615	1. 00 43. 15
15	ATOM	1201	0	GLY	162	21.019	15. 085	57. 594	1. 00 43. 59
	ATOM	1202	N	ILE	163	21.096	13. 722	55. 816	1. 00 43. 93
	ATOM	1203	CA	ILE	163	19. 763	13. 190	56.068	1. 00 45. 03
	ATOM	1204	CB	ILE	163	18. 958	13. 031	54. 755	1. 00 46. 16
	ATOM	1205	CG2	ILE	163	18. 943	14. 352	53. 985	1. 00 45. 82
20	ATOM	1206	CG1	ILE	163	19. 585	11. 938	53. 889	1. 00 46. 11
	ATOM	1207	CD1	ILE	163	18. 812	11. 638	52. 613	1. 00 48. 51
	ATOM	1208	C	ILE	163	19. 812	11. 833	56. 764	1. 00 46. 49
	ATOM	1209	0	ILE	163	20. 771	11. 074	56. 609	1. 00 45. 36
	ATOM	1210	N	LEU	164	18. 767	11. 545	57. 533	1. 00 47. 21
25	ATOM	1211	CA	LEU	164	18.649	10. 286	58. 253	1. 00 47. 53
	ATOM	1212	CB	LEU	164	17. 623	10. 414	59. 379	1. 00 47. 11
	ATOM	1213	CG	LEU	164	17. 135	9. 126	60. 049	1. 00 47. 15
	ATOM	1214	CD1	LEU	164	18. 265	8. 469	60. 832	1. 00 45. 45
	ATOM	1215	CD2	LEU	164	15. 981	9. 465	60. 977	1. 00 47. 00

- 58 -

	ATOM	1216	C	LEU	164	18. 189	9. 220	57. 277	1. 00 48. 06
	ATOM	1217	0	LEU	164	17. 137	9. 352	56. 657	1. 00 48. 49
	ATOM	1218	N	LEU	165	18. 977	8. 161	57. 137	1. 00 48. 32
	ATOM	1219	CA	LEU	165	18. 614	7. 093	56. 224	1. 00 47. 47
5	ATOM	1220	CB	LEU	165	19. 827	6. 208	55. 954	1. 00 45. 44
	ATOM	1221	CG	LEU	165	20. 867	6. 978	55. 140	1.00 47.60
	ATOM	1222	CD1	LEU	165	22. 128	6. 155	54. 956	1. 00 47. 47
	ATOM	1223	CD2	LEU	165	20. 261	7. 342	53. 786	1. 00 48. 48
	ATOM	1224	C	LEU	165	17. 460	6. 300	56. 814	1. 00 46. 86
10	ATOM	1225	0	LEU	165	16. 497	5. 985	56. 120	1. 00 46. 90
	ATOM	1226	N	ASN	166	17. 562	5. 992	58. 101	1. 00 46. 60
	ATOM	1227	CA	ASN	166	16. 521	5. 266	58. 817	1. 00 47. 23
	ATOM	1228	CB	ASN	166	16. 282	3. 883	58. 200	1. 00 49. 17
	ATOM	1229	CG	ASN	166	17. 542	3. 053	58. 118	1. 00 50. 36
15	ATOM	1230	0D1	ASN	166	18. 205	2. 997	57. 076	1. 00 50. 62
	ATOM	1231	$\mathtt{ND2}$	ASN	166	17. 888	2. 406	59. 223	1. 00 50. 50
	ATOM	1232	C	ASN	166	16. 913	5. 123	60. 279	1. 00 47. 60
	ATOM	1233	0	ASN	166	18. 096	5. 177	60. 623	I. 00 48. 53
	ATOM	1234	N	TRP	167	15. 916	4. 966	61. 142	1. 00 46. 96
20	ATOM	1235	CA	TRP	167	16. 166	4. 815	62. 571	1. 00 45. 46
	ATOM	1236	CB	TRP	167	14. 890	5. 085	63. 376	1. 00 47. 63
	ATOM	1237	CG	TRP	167	14. 433	6. 519	63. 454	1. 00 49. 15
	ATOM	1238	CD2	TRP	167	15. 093	7. 602	64. 126	1. 00 49. 07
	ATOM	1239	CE2	TRP	167	14. 237	8. 725	64.050	1. 00 48. 21
25	ATOM	1240	CE3	TRP	167	16. 321	7. 732	64. 787	1. 00 49. 17
	ATOM	1241	CD1	TRP	167	13. 242	7. 022	63. 003	1. 00 49. 03
	ATOM	1242	NE1	TRP	167	13. 117	8. 343	63. 361	1. 00 48. 46
	ATOM	1243	CZ2	TRP	167	14. 569	9. 962	64. 614	1. 00 47. 68
	ATOM	1244	CZ3	TRP	167	16. 652	8. 966	65. 348	1. 00 49. 58

- 59 -

	ATOM	1245	CH	2 TRP	167	15. 777	10. 064	65. 256	1. 00 48. 80
	ATOM	1246	C	TRP	167	16. 647	3. 394	62. 890	1. 00 43. 28
	ATOM	1247	0	TRP	167	16. 425	2. 461	62. 119	1. 00 42. 86
	ATOM	1248	N	THR	168	17. 297	3. 245	64. 038	1. 00 41. 63
5	ATOM	1249	CA	THR	168	17. 796	1. 953	64. 501	1. 00 40. 13
	ATOM	1250	CB	THR	168	19. 275	1. 723	64. 086	1. 00 37. 87
	ATOM	1251	0G1	THR	168	20. 082	2. 795	64. 587	1. 00 33. 52
	ATOM	1252	CG2	THR	168	19. 417	1. 647	62. 566	1. 00 34. 11
	ATOM	1253	C	THR	168	17. 719	1. 943	66. 029	1. 00 41. 33
10	ATOM	1254	0	THR	168	17. 382	2. 953	66. 649	1. 00 41. 41
	ATOM	1255	N	LYS	169	18.025	0. 799	66. 631	1. 00 42. 06
	ATOM	1256	CA	LYS	169	18. 013	0. 672	68. 083	1. 00 42. 59
	ATOM	1257	CB	LYS	169	19. 077	1. 594	68. 683	1. 00 39. 56
	ATOM	1258	CG	LYS	169	20. 497	1. 209	68. 287	1. 00 36. 24
15	ATOM	1259	CD	LYS	169	21. 528	2. 170	68. 840	1. 00 33. 26
	ATOM	1260	CE	LYS	169	21. 481	3. 514	68. 133	1. 00 30. 26
	ATOM	1261	NZ	LYS	169	22. 589	4. 373	68. 610	1. 00 32. 75
	ATOM	1262	C	LYS	169	16.661	0. 933	68. 751	1.00 45.26
	ATOM	1263	0	LYS	169	16. 598	1. 191	69. 955	1. 00 45. 85
20	ATOM	1264	N	GLY	170	15. 583	0. 881	67. 975	1. 00 47. 46
	ATOM	1265	CA	GLY	170	14. 267	1. 083	68. 555	1. 00 52. 44
	ATOM	1266	C	GLY	170	13. 552	2. 394	68. 295	1.00 55.24
	ATOM	1267	0	GLY	170	12. 324	2. 422	68. 275	1. 00 56. 11
	ATOM	1268	N	PHE	171	14. 293	3. 482	68. 118	1. 00 58. 10
25	ATOM	1269	CA	PHE	171	13.668	4. 777	67. 861	1. 00 61. 86
	ATOM	1270	CB	PHE	171	14. 734	5. 846	67. 613	1. 00 62. 35
	ATOM	1271	CG	PHE	171	15. 449	6. 285	68.856	1. 00 64. 08
	ATOM	1272	CD1	PHE	171	16.060	5. 354	69. 691	1. 00 66. 00
	ATOM	1273	CD2	PHE	171	15. 511	7. 630	69. 196	1. 00 64. 53

- 60 -

	1001	405				,	,0		
	ATOM			E1 PHE	171	16. 721	5. 760	70. 851	1. 00 66. 96
	ATOM	1275	CE	2 PHE	171	16. 170	8. 046	70. 352	1. 00 65. 93
	ATOM	1276	CZ	PHE	171	16. 776	7. 109	71. 180	1.00 66.07
	ATOM	1277	C	PHE	171	12. 727	4. 697	66. 663	1. 00 63. 91
5	ATOM	1278	0	PHE	171	12. 994	3. 975	65. 702	1. 00 63, 50
	ATOM	1279	N	LYS	172	11. 620	5. 430	66. 727	1. 00 65. 77
	ATOM	1280	CA	LYS	172	10. 657	5. 424	65. 633	1. 00 68. 37
	ATOM	1281	CB	LYS	172	9. 738	4. 197	65. 727	1. 00 70. 16
	ATOM	1282	CG	LYS	172	8. 814	4. 035	64. 517	1. 00 72. 04
10	ATOM	1283	CD	LYS	172	7. 867	2. 842	64. 647	1. 00 73. 43
	ATOM	1284	CE	LYS	172	6. 977	2. 718	63. 406	1. 00 74. 42
	ATOM	1285	NZ	LYS	172	5. 933	1. 655	63. 525	1. 00 73. 62
	ATOM	1286	C	LYS	172	9. 808	6. 688	65. 606	1. 00 69. 18
	ATOM	1287	0	LYS	172	8. 599	6. 642	65. 838	1. 00 70. 01
15	ATOM	1288	N	ALA	173	10. 445	7. 820	65. 332	1. 00 68. 98
	ATOM	1289	CA	ALA	173	9. 734	9. 086	65. 251	1. 00 69. 07
	ATOM	1290	CB	ALA	173	10. 598	10. 210	65. 818	1. 00 68. 41
	ATOM	1291	C	ALA	173	9. 424	9. 339	63. 776	1. 00 69. 07
	ATOM	1292	0	ALA	173	10. 336	9. 471	62. 962	1. 00 69. 61
20	ATOM	1293	N	SER	174	8. 139	9. 394	63. 432	1. 00 69. 06
	ATOM	1294	CA	SER	174	7. 735	9. 620	62. 047	1. 00 68. 32
	ATOM	1295	CB	SER	174	6. 217	9. 491	61. 901	1. 00 69. 02
	ATOM	1296	0G	SER	174	5. 546	10. 503	62. 632	1. 00 68. 18
	ATOM	1297	C	SER	174	8. 173	10. 996	61. 568	1. 00 67. 71
25	ATOM	1298	0	SER	174	8. 410	11. 897	62. 370	1. 00 68. 23
	ATOM	1299	N	GLY	175	8. 288	11. 148	60. 254	1. 00 67. 37
	ATOM	1300	CA	GLY	175	8. 688	12. 424	59. 690	1. 00 67. 08
	ATOM	1301	C	GLY	175	10. 143	12. 787	59. 915	1. 00 66. 86
	ATOM	1302	0	GLY	175	10. 507	13. 962	59. 855	1. 00 67. 38

- 61 -

ATOM 1303 N ALA 176 10.979 11. 786 60. 172 1. 00 66. 42 ATOM 1304 CA ALA 176 12.400 12.018 60.401 1.00 64.67 ATOM 1305 CB ALA 176 12.828 11.36061.699 1. 00 64. 11 ATOM 1306 C ALA 176 13. 229 11.475 59. 242 1.00 64.02 5 ATOM 1307 0 ALA 176 14.053 12. 183 58.667 1.00 65.00 ATOM 1308 N GLU 177 12.993 10. 214 58.903 1. 00 63. 24 ATOM 1309 CA GLU 177 13.710 9. 544 57. 825 1.00 63.08 ATOM 1310 CB GLU 177 13. 147 8. 127 57.639 1.00 62.97 ATOM CG GLU 177 13. 315 7. 224 58. 865 1.00 64.81 10 ATOM 1312 CD GLU 177 12.712 5. 837 58. 682 1. 00 64. 99 ATOM 1313 OE1 GLU 177 12. 948 4. 972 59. 552 1.00 65.80 ATOM 1314 OE2 GLU 177 12.003 5. 612 57. 677 1. 00 64. 52 ATOM 1315 C GLU 177 13.669 10. 293 56. 491 1. 00 62. 92 ATOM 1316 0 GLU 177 12.602 10. 489 55. 908 1. 00 63. 26 15 ATOM 1317 N GLY 178 14. 838 10. 708 56. 013 1.00 62.46 ATOM 1318 CA GLY 178 14. 911 11, 406 54. 741 1, 00 61, 36 ATOM 1319 C GLY 178 15. 095 12. 911 54. 805 1.00 60.52 ATOM 1320 0 GLY 178 15. 337 13. 539 53. 777 1.00 61.73 ATOM 1321 N ASN 179 14. 990 13. 498 55. 993 1.00 59.84 20 ATOM 1322 CA ASN 179 15. 139 14. 942 56. 134 1, 00 59, 11 ATOM 1323 CBASN 179 13. 985 15. 512 56.959 1.00 59.72 ATOM 1324 CG ASN 179 12. 630 15. 217 56.342 1.00 61.46 ATOM 1325 OD1 ASN 179 12.423 15. 416 55. 143 1.00 61.86 ATOM 1326 ND2 ASN 179 11.696 14. 743 57. 161 1.00 61.02 25 ATOM 1327 C ASN 179 16.463 15. 349 56. 765 1.00 58,81 ATOM 1328 0 ASN 179 17.108 14. 553 57. 441 1.00 59.10 ATOM 1329 N ASN 180 16.860 16. 599 56. 537 1. 00 58. 30 ATOM 1330 CA ASN 180 18. 107 17. 130 57.079 1.00 57.96 ATOM 1331 CB ASN 180 18. 362 18. 539 56. 539 1. 00 58. 57

- 62 -

							-		
	ATOM	1332	CG	ASN	180	19. 693	19. 112	57. 001	1. 00 60. 99
	ATOM	1333	OD I	I ASN	180	20. 278	18. 647	57. 983	1. 00 60. 88
	ATOM	1334	ND2	2 ASN	180	20. 171	20. 139	56. 302	1. 00 60. 74
	ATOM	1335	C	ASN	180	18. 036	17. 183	58. 600	1. 00 57. 30
5	ATOM	1336	0	ASN	180	17. 388	18.064	59. 162	1.00 57.94
	ATOM	1337	N	VAL	181	18. 709	16. 245	59. 261	1. 00 55. 49
	ATOM	1338	CA	VAL	181	18. 716	16. 189	60. 720	1. 00 54. 19
	ATOM	1339	CB	VAL	181	19. 698	15. 109	61. 229	1. 00 53. 15
	ATOM	1340	CG1	VAL	181	19. 756	15. 121	62. 748	1. 00 50. 90
10	ATOM	1341	CG2	VAL	181	19. 258	13. 742	60. 731	1. 00 51. 33
	ATOM	1342	C	VAL	181	19. 089	17. 534	61. 333	1.00 54.31
	ATOM	1343	0	VAL	181	18. 473	17. 979	62. 299	1. 00 53. 21
	ATOM	1344	N	VAL	182	20. 110	18. 174	60. 777	1. 00 56. 27
	ATOM	1345	CA	VAL	182	20. 533	19. 472	61. 271	1. 00 58. 32
15	ATOM	1346	CB	VAL	182	21. 706	20. 033	60. 447	1. 00 58. 42
	ATOM	1347	CG1	VAL	182	22. 135	21. 373	61.007	1. 00 58. 05
	ATOM	1348	CG2	VAL	182	22. 867	19. 054	60. 460	1. 00 59. 02
	ATOM	1349	C	VAL	182	19. 339	20. 410	61. 125	1. 00 60. 16
	ATOM	1350	0	VAL	182	19. 052	21. 220	62. 008	1.00 59.87
20	ATOM	1351	N	GLY	183	18. 640	20. 275	60.003	1.00 61.05
	ATOM	1352	CA	GLY	183	17. 480	21. 103	59. 741	1.00 63.47
	ATOM	1353	C	GLY	183	16. 412	20.967	60. 805	1. 00 64. 68
	ATOM	1354	0	GLY	183	15. 873	21.966	61. 280	1. 00 64. 59
	ATOM	1355	N	LEU	184	16. 103	19. 733	61. 187	1. 00 65. 39
25	ATOM	1356	CA	LEU	184	15. 091	19.502	62. 203	1. 00 66. 47
	ATOM	1357	CB	LEU	184	14. 855	18.005	62. 387	1. 00 66. 17
	ATOM	1358	CG	LEU	184	14. 407	17. 254	61. 132	1. 00 67. 51
	ATOM	1359	CD1	LEU	184	14. 116	15. 805	61. 486	1. 00 66. 63
	ATOM	1360	CD2	LEU	184	13. 168	17. 913	60. 546	1. 00 68. 22

- 63 -

	ATOM	1361	C	LEU	184	15. 502	20. 130	63. 528	1. 00 67. 67
	ATOM	1362	0	LEU	184	14. 651	20. 570	64. 301	1. 00 68. 91
	ATOM	1363	N	LEU	185	16. 804	20. 176	63. 790	1. 00 68. 11
	ATOM	1364	CA	LEU	185	17. 297	20. 759	65. 031	1. 00 68. 91
5	ATOM	1365	CB	LEU	185	18. 797	20. 501	65. 194	1. 00 67. 32
	ATOM	1366	CG	LEU	185	19. 409	21.060	66. 482	1. 00 66. 21
	ATOM	1367	CD	1 LEU	185	18. 776	20. 375	67. 676	1. 00 65. 16
	ATOM	1368	CD	2 LEU	185	20. 913	20. 851	66. 486	1. 00 66. 43
	ATOM	1369	C	LEU	185	17. 034	22. 262	65. 058	1. 00 70. 10
10	ATOM	1370	0	LEU	185	16. 422	22. 776	65. 991	1. 00 70. 26
	ATOM	1371	N	ARG	186	17. 505	22. 962	64. 033	1. 00 71. 83
	ATOM	1372	CA	ARG	186	17. 314	24. 403	63. 948	1. 00 73. 78
	ATOM	1373	CB	ARG	186	18. 015	24. 941	62. 700	1. 00 73. 97
	ATOM	1374	CG	ARG	186	19. 533	24. 881	62. 804	1. 00 74. 09
15	ATOM	1375	CD	ARG	186	20. 206	24. 984	61. 448	1. 00 74. 37
	ATOM	1376	NE	ARG	186	21. 662	24. 945	61. 571	1. 00 75. 77
	ATOM	1377	CZ	ARG	186	22. 503	24. 860	60. 543	1. 00 75. 94
	ATOM	1378	NH1	ARG	186	22. 036	24. 800	59. 303	1. 00 75. 97
	ATOM	1379	NH2	ARG	186	23. 815	24. 841	60. 755	1. 00 75. 99
20	ATOM	1380	C	ARG	186	15. 825	24. 737	63. 927	1. 00 74. 93
	ATOM	1381	0	ARG	186	15. 365	25. 609	64. 665	1. 00 74. 59
	ATOM	1382	N	ASP	187	15. 074	24. 023	63. 095	1. 00 76. 23
	ATOM	1383	CA	ASP	187	13. 632	24. 225	62. 981	1. 00 77. 59
	ATOM	1384	CB	ASP	187	13. 018	23. 128	62. 102	1. 00 75. 83
25	ATOM	1385	CG	ASP	187	13. 203	23. 391	60. 614	1. 00 74. 87
	ATOM	1386	0D1	ASP	187	14. 193	24. 051	60. 234	1. 00 73. 64
	ATOM	1387	0D2	ASP	187	12. 359	22. 924	59. 820	1. 00 74. 33
	ATOM	1388	C	ASP	187	12. 945	24. 236	64. 349	1. 00 79. 78
	ATOM	1389	0	ASP	187	11. 963	24. 952	64. 551	1. 00 80. 50

- 64 -

	ATOM	1390		ALA	188	13. 46	23. 44!	65. 286	1. 00 81. 21
	ATOM	1391	C.A	ALA	188	12. 883	3 23. 379	9 66. 625	1. 00 82. 86
	ATOM	1392	CE CE	B ALA	188	13. 118	3 22. 000	67. 230	1. 00 83. 00
	ATOM	1393	С	ALA	188	13. 477	24. 456	67. 525	1. 00 84. 14
5	ATOM	1394	0	ALA	188	12. 783	25. 019	68. 376	1. 00 84. 10
	ATOM	1395	N	ILE	189	14. 763	24. 736	67. 338	1. 00 85. 33
	ATOM	1396	CA	ILE	189	15. 445	25. 753	68. 127	1. 00 86. 87
	ATOM	1397	CB	ILE	189	16. 947	25. 819	67. 776	1. 00 86. 40
	ATOM	1398	CG	2 ILE	189	17. 585	27. 049	68. 409	1. 00 85. 37
10	ATOM	1399	CG	1 ILE	189	17. 641	24. 541	68. 253	1. 00 86. 52
	ATOM	1400	CD	1 ILE	189	19. 136	24. 516	68.004	1. 00 86. 36
	ATOM	1401	C	ILE	189	14. 812	27. 114	67. 871	1. 00 88. 85
	ATOM	1402	0	ILE	189	14. 802	27. 978	68. 748	1. 00 89. 64
	ATOM	1403	N	LYS	190	14. 278	27. 295	66. 666	1. 00 90. 36
15	ATOM	1404	CA	LYS	190	13. 638	28. 551	66. 291	1. 00 91. 75
	ATOM	1405	CB	LYS	190	13. 678	28. 729	64. 770	1. 00 92. 26
	ATOM	1406	CG	LYS	190	15. 032	29. 205	64. 234	1. 00 93, 56
	ATOM	1407	CD	LYS	190	16. 174	28. 282	64. 652	1. 00 94. 17
	ATOM	1408	CE	LYS	190	17. 507	28. 722	64. 064	1. 00 94. 42
20	ATOM	1409	NZ	LYS	190	18. 605	27. 773	64. 409	1. 00 93. 91
	ATOM	1410	C	LYS	190	12. 202	28. 645	66. 803	1. 00 92. 34
	ATOM	1411	0	LYS	190	11. 612	29. 723	66. 817	1. 00 92. 82
	ATOM	1412	N	ARG	191	11.639	27. 516	67. 221	1. 00 92. 78
	ATOM	1413	CA	ARG	191	10. 286	27. 502	67. 763	1. 00 93. 41
25	ATOM	1414	CB	ARG	191	9. 674	26. 108	67. 658	1. 00 93. 77
	ATOM	1415	CG	ARG	191	9. 711	25. 497	66. 275	1. 00 93. 66
	ATOM	1416	CD	ARG	191	9. 530	23. 993	66. 378	1. 00 93. 81
	ATOM	1417	NE	ARG	191	9. 816	23. 310	65. 123	1. 00 93. 99
	ATOM	1418	CZ	ARG	191	10. 012	22. 000	65. 017	1. 00 94. 26

- 65 -

	ATOM	1419) NI	II ARG	191	9. 954	21. 231	66. 098	1. 00 94. 65
	ATOM	1420) NI	I2 ARG	191	10. 269	21. 459	63. 835	1. 00 94. 96
	ATOM	1421	C	ARG	191	10. 432	27. 866	69. 233	1. 00 94. 00
	ATOM	1422	0	ARG	191	9. 526	27. 654	70. 036	1. 00 94. 16
5	ATOM	1423	N	ARG	192	11. 596	28. 408	69. 574	1. 00 94. 91
	ATOM	1424	CA	ARG	192	11. 897	28. 795	70. 943	1. 00 96. 15
	ATOM	1425	CB	ARG	192	13. 049	27. 944	71. 482	1. 00 96. 57
	ATOM	1426	CG	ARG	192	12. 733	26. 469	71. 581	
	ATOM	1427	CD	ARG	192	11. 737	26. 209	72. 689	1. 00 98. 38
10	ATOM	1428	NE	ARG	192	11. 339	24. 808	72. 745	1. 00 98. 97
	ATOM	1429	CZ	ARG	192	10.624	24. 278	73. 730	1. 00 99. 63
	ATOM	1430	NH	1 ARG	192	10. 230	25. 035	74. 746	1. 00 99. 17
	ATOM	1431	NH:	2 ARG	192	10. 300	22. 992	73. 700	1. 00 99. 97
	ATOM	1432	C	ARG	192	12. 273	30. 265	71.062	1.00 96.50
15	ATOM	1433	0	ARG	192	11.603	31. 035	71. 752	1. 00 96. 60
	ATOM	1434	N	GLY	193	13. 352	30. 652	70. 386	1. 00 96. 89
	ATOM	1435	CA	GLY	193	13. 812	32. 026	70. 465	1. 00 97. 08
	ATOM	1436	C	GLY	193	14. 385	32. 217	71. 855	1. 00 97. 08
	ATOM	1437	0	GLY	193	15.060	33. 204	72. 147	1. 00 96. 46
20	ATOM	1438	N	ASP	194	14. 104	31. 235	72. 707	1. 00 97. 36
	ATOM	1439	CA	ASP	194	14. 552	31. 205	74. 092	1. 00 97. 35
	ATOM	1440	CB	ASP	194	13. 938	29. 984	74. 789	1. 00 98. 43
	ATOM	1441	CG	ASP	194	13.764	30. 181	76. 284	1. 00 99. 62
	ATOM	1442	0D1	ASP	194	13. 117	31. 173	76. 683	1. 00100. 29
25	ATOM	1443	OD2	ASP	194	14. 262	29. 338	77. 059	1. 00 99. 87
	ATOM	1444	C	ASP	194	16.078	31. 122	74. 122	1. 00 96. 90
	ATOM	1445	0	ASP	194	16.715	31. 471	75. 118	1. 00 97. 50
	ATOM	1446	N	PHE	195	16. 657	30. 655	73. 018	1. 00 95. 62
	ATOM	1447	CA	PHE	195	18. 105	30. 524	72. 896	1. 00 94. 15

- 66 -

	ATOM	1448	CB	PHE	195	18. 598	29. 309	73. 697	1. 00 94. 86
	ATOM	1449	CG	PHE	195	18. 043	27. 988	73. 224	1. 00 95. 10
	ATOM	1450	CD	1 PHE	195	18. 560	27. 360	72. 095	1. 00 95. 09
	ATOM	1451	CD	2 PHE	195	17. 005	27. 369	73. 916	1. 00 95. 17
5	ATOM	1452	CE	1 PHE	195	18. 053	26. 136	71. 663	1. 00 95. 14
	ATOM	1453	CE	2 PHE	195	16. 491	26. 145	73. 492	1. 00 95. 12
	ATOM	1454	CZ	PHE	195	17. 016	25. 528	72. 364	1. 00 94. 97
	ATOM	1455	C	PHE	195	18. 508	30. 393	71. 430	1. 00 92. 64
	ATOM	1456	0	PHE	195	17. 667	30. 131	70. 569	1. 00 92. 22
10	ATOM	1457	N	GLU	196	19. 793	30. 583	71. 148	1. 00 90. 93
	ATOM	1458	CA	GLU	196	20. 292	30. 486	69. 779	1. 00 89. 04
	ATOM	1459	CB	GLU	196	20. 249	31. 861	69. 102	1. 00 89. 55
	ATOM	1460	CG	GLU	196	18. 846	32. 395	68. 832	1. 00 90. 25
	ATOM	1461	CD	GLU	196	18. 859	33. 771	68. 187	1. 00 90. 61
15	ATOM	1462	0E1	GLU	196	19. 342	34. 728	68. 830	1. 00 90. 30
	ATOM	1463	0E2	GLU	196	18. 390	33. 895	67. 035	1. 00 90. 79
	ATOM	1464	C	GLU	196	21.711	29. 923	69. 694	1. 00 87. 11
	ATOM	1465	0	GLU	196	22. 681	30. 589	70.066	1. 00 86. 83
	ATOM	1466	N	MET	197	21. 824	28. 692	69. 201	1. 00 84. 23
20	ATOM	1467	CA	MET	197	23. 121	28. 043	69.045	1. 00 80. 79
	ATOM	1468	CB	MET	197	23.067	26. 586	69. 524	1. 00 81. 16
	ATOM	1469	CG	MET	197	22. 633	26. 389	70. 967	1. 00 80. 14
	ATOM	1470	SD	MET	197	23. 597	27. 356	72. 135	1. 00 81. 93
	ATOM	1471	CE	MET	197	25. 195	26. 640	71. 968	1. 00 81. 72
25	ATOM	1472	C	MET	197	23. 502	28. 070	67. 568	1. 00 77. 74
	ATOM	1473	0	MET	197	22.695	28. 436	66.716	1. 00 76. 30
	ATOM	1474	N	ASP	198	24. 733	27. 672	67. 269	1. 00 75. 73
	ATOM	1475	CA	ASP	198	25. 214	27. 652	65. 894	1. 00 72. 50
	ATOM	1476	CB	ASP	198	26. 297	28. 723	65. 720	1. 00 73. 47

- 67 -

							υı		
	ATOM	1477	CG	ASP	198	26. 573	3 29.046	64. 265	1. 00 75. 34
	ATOM	1478	OD	1 ASP	198	27. 407	29. 941	64. 005	1. 00 75. 72
	ATOM	1479	OD	2 ASP	198	25. 954	28. 407	63. 384	1. 00 76. 53
	ATOM	1480	С	ASP	198	25. 769	26. 265	65. 544	1. 00 69. 75
5	ATOM	1481	0	ASP	198	26. 962	26. 005	65. 703	1. 00 69. 48
	ATOM	1482	N	VAL	199	24. 892	25. 383	65. 068	1. 00 66. 43
	ATOM	1483	CA	VAL	199	25. 266	24. 018	64. 697	1. 00 62. 47
	ATOM	1484	CB	VAL	199	24. 055	23. 266	64. 113	1. 00 62. 19
	ATOM	1485	CG	1 VAL	199	24. 426	21. 823	63. 827	1. 00 61. 88
10	ATOM	1486	CG	2 VAL	199	22. 886	23. 340	65. 083	1. 00 61. 21
	ATOM	1487	C	VAL	199	26. 409	23. 986	63. 682	1. 00 60. 44
	ATOM	1488	0	VAL	199	26. 192	24. 135	62. 479	1. 00 59. 37
	ATOM	1489	N	VAL	200	27. 624	23. 774	64. 180	1. 00 58. 00
	ATOM	1490	CA	VAL	200	28. 820	23. 741	63. 341	1. 00 56. 24
15	ATOM	1491	CB	VAL	200	30. 048	24. 278	64. 128	1. 00 57. 42
	ATOM	1492	CG1	VAL	200	31. 326	24. 071	63. 331	1. 00 57. 94
	ATOM	1493	CG2	VAL	200	29. 859	25. 761	64. 433	1. 00 59. 29
	ATOM	1494	c	VAL	200	29. 159	22. 357	62. 785	1. 00 54. 53
	ATOM	1495	0	VAL	200	29. 759	22. 242	61.715	1. 00 54. 29
20	ATOM	1496	N	ALA	201	28. 779	21. 306	63. 503	1. 00 52. 88
	ATOM	1497	$\mathbf{C}\mathbf{A}$	ALA	201	29. 085	19. 953	63. 048	1. 00 49. 83
	ATOM	1498	CB	ALA	201	30. 541	19. 627	63. 349	1. 00 47. 49
	ATOM	1499	C	ALA	201	28. 196	18. 887	63. 654	1. 00 46. 62
	ATOM	1500	0	ALA	201	27. 803	18. 973	64. 810	1. 00 47. 96
25	ATOM	1501	N	MET	202	27. 873	17. 883	62. 851	1. 00 44. 82
	ATOM	1502	CA	MET	202	27. 065	16. 762	63. 309	1. 00 42. 12
	ATOM	1503	CB	MET	202	25. 731	16. 695	62. 567	1. 00 39. 23
	ATOM	1504	CG	MET	202	24. 886	15. 520	63. 014	1. 00 38. 13
	ATOM	1505	SD	MET	202	23. 425	15. 193	62, 026	1. 00 40. 98

- 68 -

	ATOM	1506	CE	MET	202	24. 134	15. 162	60. 401	1. 00 37. 63
	ATOM	1507	C	MET	202	27. 865	15. 489	63. 027	1. 00 40. 68
	ATOM	1508	0	MET	202	28. 274	15. 251	61. 888	1. 00 38. 74
	ATOM	1509	N	VAL	203	28. 092	14. 679	64.060	1. 00 39. 90
5	ATOM	1510	CA	VAL	203	28. 851	13. 438	63. 901	1. 00 37. 47
	ATOM	1511	CB	VAL	203	30. 264	13. 549	64. 517	1. 00 36. 73
	ATOM	1512	CG1	VAL	203	31. 078	14. 615	63. 796	1.00 34.96
	ATOM	1513	CG2	VAL	203	30. 155	13. 852	65. 996	1. 00 37. 90
	ATOM	1514	C	VAL	203	28. 190	12. 199	64. 505	1. 00 37. 09
10	ATOM	1515	0	VAL	203	27. 250	12. 284	65. 309	1. 00 36. 61
	ATOM.	1516	N	ASN	204	28. 707	11.039	64. 101	1. 00 36. 09
	ATOM	1517	CA	ASN	204	28. 228	9. 749	64. 584	1. 00 31. 60
	ATOM	1518	CB	ASN	204	28.461	8. 695	63. 497	1. 00 32. 07
	ATOM	1519	CG	ASN	204	27. 949	7. 322	63. 888	1. 00 31. 63
15	ATOM	1520	0D1	ASN	204	28. 729	6. 443	64. 250	1. 00 30. 91
	ATOM	1521	ND2	ASN	204	26. 634	7. 135	63. 824	1. 00 28. 99
	ATOM	1522	C	ASN	204	29.027	9. 454	65. 853	1. 00 28. 81
	ATOM	1523	0	ASN	204	30. 122	9. 990	66. 019	1. 00 30. 24
	ATOM	1524	N	ASP	205	28. 498	8. 639	66. 765	1. 00 27. 90
20	ATOM	1525	CA	ASP	205	29. 240	8. 361	67. 995	1. 00 26. 70
	ATOM	1526	CB	ASP	205	28. 369	7. 627	69. 028	1. 00 27. 65
	ATOM	1527	CG	ASP	205	27. 642	6. 438	68. 455	1. 00 30. 26
	ATOM	1528	0D1	ASP	205	27. 079	5. 655	69. 256	1. 00 28. 60
	ATOM	1529	0D2	ASP	205	27. 623	6. 289	67. 213	1.00 31.99
25	ATOM	1530	C	ASP	205	30. 573	7. 630	67. 791	1. 00 26. 87
	ATOM	1531	0	ASP	205	31. 498	7. 810	68. 581	1. 00 27. 79
	ATOM	1532	N	THR	206	30. 686	6.816	66. 740	1. 00 24. 79
	ATOM	1533	CA	THR	206	31. 951	6. 146	66. 476	1. 00 24. 03
	ATOM	1534	CB	THR	206	31.886	5. 236	65. 206	1. 00 25. 43

- 69 -

ATOM 1535 OG1 THR 206 31.401 5. 999 64. 089 1. 00 26, 30 ATOM 1536 CG2 THR 206 30.976 4.032 65, 444 1. 00 16. 83 ATOM 1537 С THR 206 32.970 7. 258 66. 220 1.00 24.75 ATOM 1538 0 THR 206 34.025 7.326 66.858 1. 00 25, 65 5 ATOM 1539 N VAL 207 32, 632 8.136 65.285 1.00 22.49 ATOM CA 1540 VAL 207 33.487 9. 257 64.917 1.00 23.51 ATOM 1541 CB VAL 207 32, 775 10. 133 63, 855 1.00 25.35 ATOM 1542 CG1 VAL 207 33.617 11.36263.521 1.00 24.61 ATOM 1543 CG2 VAL 207 32. 509 9. 299 62.609 1.00 21.66 ATOM 10 1544 C VAL 207 33. 897 10. 119 66. 126 1.00 23.48 ATOM 1545 0 VAL 207 35.061 10. 470 66. 279 1.00 26.51 ATOM 1546 N ALA 208 32. 948 10. 452 66. 989 1.00 24.53 ATOM 1547 CA ALA 208 33. 262 11. 251 68. 169 1.00 26.32 ATOM 1548 CB ALA 208 31. 980 11. 533 68. 958 1. 00 27, 56 15 ATOM 1549 С ALA 208 34. 287 10.530 69.055 1.00 28.84 ATOM 1550 0 ALA 208 35. 247 11. 138 69. 549 1.00 27.69 ATOM 1551 N THR 209 34. 084 9. 228 69.258 1.00 28.76 ATOM 1552 CA THR 209 35.006 8. 447 70.075 1.00 28.08 ATOM 1553 CB THR 209 34. 474 7.001 70. 271 1.00 31.76 20 ATOM 1554 OG1 THR 209 33. 373 7.027 71. 181 1.00 33, 12 ATOM 1555 CG2 THR 209 35. 550 6.080 70.818 1.00 30.03 ATOM 1556 C THR 209 36. 382 8.414 69. 418 1.00 26.73 ATOM 1557 0 THR 209 37. 399 8.611 70.078 1.00 28.00 ATOM 1558 N MET 210 36. 421 8. 191 68. 110 1. 00 28. 44 25 ATOM 1559 CA MET 210 37. 703 8. 143 67.419 1.00 28.08 ATOM 1560 CB MET 210 37. 516 7.851 65. 932 1.00 26.94 ATOM 1561 CG MET 210 38.842 7. 766 65. 168 1.00 28.59 ATOM 1562 SD MET 210 38. 643 7. 734 63. 374 1. 00 32. 14 ATOM 1563 CE MET 210 38. 216 9. 518 63. 083 1. 00 33. 30

- 70 -

	ATOM	1564	C	MET	210	38. 467	9. 452	67. 578	1. 00 29. 43
	ATOM	1565	0	MET	210	39. 636	9. 459	67. 972	1. 00 30. 57
	ATOM	1566	N	ILE	211	37. 799	10. 561	67. 281	1. 00 31. 16
	ATOM	1567	CA	ILE	211	38. 433	11. 873	67. 376	1. 00 30. 57
5	ATOM	1568	CB	ILE	211	37. 418	13. 012	67. 019	1. 00 29. 75
	ATOM	1569	CG	2 ILE	211	38. 086	14. 390	67. 177	1. 00 28. 08
	ATOM	1570	CG	1 ILE	211	36. 928	12. 837	65. 578	1. 00 22. 83
	ATOM	1571	CD	1 ILE	211	38. 021	12. 979	64. 553	1. 00 26. 28
	ATOM	1572	C	ILE	211	39. 014	12. 128	68. 762	1. 00 30. 30
10	ATOM	1573	0	ILE	211	40. 185	12. 489	68. 897	1. 00 31. 89
	ATOM	1574	N	SER	212	38. 203	11. 914	69. 792	1. 00 32. 78
	ATOM	1575	CA	SER	212	38. 639	12. 146	71. 164	1. 00 35. 84
	ATOM	1576	CB	SER	212	37. 499	11.852	72. 140	1. 00 35. 91
	ATOM	1577	0G	SER	212	37. 317	10. 455	72. 307	1. 00 41. 55
15	ATOM	1578	C	SER	212	39. 864	11. 334	71. 566	1. 00 37. 74
	ATOM	1579	0	SER	212	40. 684	11. 803	72. 354	1. 00 41. 44
	ATOM	1580	N	CYS	213	39. 990	10. 121	71. 040	1. 00 38. 07
	ATOM	1581	CA	CYS	213	41. 132	9. 273	71. 374	1. 00 39. 83
	ATOM	1582	CB	CYS	213	40. 802	7. 799	71. 108	1. 00 38. 31
20	ATOM	1583	SG	CYS	213	39. 513	7. 129	72. 185	1. 00 38. 48
	ATOM	1584	С	CYS	213	42.372	9. 666	70. 582	1. 00 41. 86
	ATOM	1585	0	CYS	213	43. 503	9. 426	71.012	1. 00 38. 47
	ATOM	1586	N	TYR	214	42. 149	10. 261	69. 413	1. 00 45. 32
	ATOM	1587	CA	TYR	214	43. 243	10. 701	68. 554	1. 00 45. 02
25	ATOM	1588	CB	TYR	214	42. 705	11. 506	67. 370	1. 00 45. 88
	ATOM	1589	CG	TYR	214	43. 798	12. 171	66. 573	1. 00 45. 72
	ATOM	1590	CD1	TYR	214	44. 509	11. 465	65. 608	1. 00 46. 39
	ATOM	1591	CE1	TYR	214	45. 556	12. 061	64. 913	1. 00 47. 16
	ATOM	1592	CD2	TYR	214	44. 160	13. 498	66.823	1. 00 44. 53

- 71 -

ATOM 1593 CE2 TYR 21445. 203 14.099 66. 134 1.00 45.20 ATOM 1594 CZTYR 214 45, 896 13. 375 65. 183 1.00 46.22 ATOM 1595 0HTYR 214 46.942 13.955 64.510 1.00 50.31 ATOM 1596 C TYR 21444. 226 11.573 69. 322 1.00 44.69 5 ATOM 1597 0 TYR 214 45.420 11. 296 69. 363 1.00 44.40 ATOM 1598 N TYR 215 43.713 12.635 69.924 1,00 45,92 ATOM 1599 CA TYR 215 44. 556 13. 552 70.667 1.00 48.38 ATOM 1600 CB TYR 215 43.713 14.716 1.00 51.93 71. 175 ATOM 1601 CG TYR 215 43. 192 15. 545 70.021 1.00 57.70 ATOM 10 1602 CD1 TYR 215 41.918 15. 330 69. 484 1. 00 58. 41 ATOM 1603 CE1 TYR 215 41.478 16.047 68.363 1.00 61.27 ATOM 1604 CD2 TYR 215 44.011 16.498 69.413 1. 00 59. 13 CE2 TYR ATOM 1605 215 43. 586 17. 214 68.300 1.00 61.22 ATOM CZ 215 1606 TYR 42. 325 16.991 67.780 1. 00 62. 20 ATOM 15 1607 0HTYR 215 41.928 17. 728 66.688 1.00 61.67 ATOM 1608 C TYR 215 45.304 12.871 71.792 1.00 48.87 ATOM 1609 0 TYR 215 46. 282 13.407 72.318 1.00 49.38 ATOM 1610 N GLU 216 44.852 11.672 72. 142 1.00 47.69 ATOM CA 1611 GLU 216 45.496 10,889 73. 181 1.00 47.03 ATOM 1612 CB GLU 216 20 44. 474 9.979 73.863 1.00 49.83 ATOM 1613 CG GLU 216 44, 837 9.550 75. 270 1.00 55.37 ATOM 1614 CD GLU 216 44.998 10.735 76. 208 1.00 59.31 ATOM 1615 0E1 GLU 216 44. 285 11. 747 76.012 1.00 59.95 ATOM 1616 0E2 GLU 216 45.824 10.649 77. 146 1.00 60.13 25 ATOM 1617 С GLU 216 46.55210. 044 72. 477 1.00 45.45 ATOM 1618 0 GLU 216 47.673 9.905 72, 958 1, 00 45, 05 ATOM N 1619 ASP 217 46. 183 9. 495 71. 321 1.00 43.73 ATOM 1620 CA ASP 217 47.074 8.643 70.530 1.00 41.33 ATOM 1621 CB ASP 217 46.776 7. 171 70.845 1.00 40.13

- 72 -

	ATOM	1622	C C C	G ASP	217	47. 780	6. 208	70. 226	1. 00 39. 76
	ATOM	1623	OI	1 ASP	217	48. 461	6. 571	69. 249	1. 00 40. 95
	ATOM	1624	01	2 ASP	217	47. 876	5. 062	70. 712	1. 00 42. 61
	ATOM	1625	C	ASP	217	46. 852	8. 921	69. 033	1. 00 40. 53
5	ATOM	1626	0	ASP	217	45. 862	8. 474	68. 443	1. 00 37. 20
	ATOM	1627	N	HIS	218	47. 779	9. 657	68. 427	1. 00 41. 94
	ATOM	1628	CA	HIS	218	47. 689	10.008	67. 007	1. 00 44. 23
	ATOM	1629	CB	HIS	218	48. 912	10. 828	66. 603	1. 00 47. 00
	ATOM	1630	CG	HIS	218	48.860	12. 244	67. 079	1. 00 51. 95
10	ATOM	1631	CD	2 HIS	218	49. 230	13. 402	66. 483	1. 00 54. 47
	ATOM	1632	ND	1 HIS	218	48. 371	12. 592	68. 320	1. 00 54. 33
	ATOM	1633	CE	1 HIS	218	48. 439	13. 903	68. 467	1. 00 55. 83
	ATOM	1634	NE	2 HIS	218	48. 957	14. 419	67. 367	1. 00 55. 95
	ATOM	1635	C	HIS	218	47. 528	8. 810	66. 074	1. 00 42. 66
15	ATOM	1636	0	HIS	218	47. 157	8. 963	64. 909	1. 00 42. 00
	ATOM	1637	N	GLN	219	47. 793	7.620	66. 597	1. 00 41. 40
	ATOM	1638	CA	GLN	219	47. 667	6. 394	65. 820	1. 00 41. 15
	ATOM	1639	CB	GLN	219	48. 592	5. 321	66. 397	1. 00 45. 16
	ATOM	1640	CG	GLN	219	50.070	5. 611	66. 214	1. 00 49. 72
20	ATOM	1641	CD	GLN	219	50. 566	5. 230	64. 832	1. 00 55. 92
	ATOM	1642	0E1	GLN	219	49. 997	5. 646	63. 813	1. 00 57. 28
	ATOM	1643	NE2	GLN	219	51.636	4. 429	64. 787	1. 00 57. 32
	ATOM	1644	C	GLN	219	46. 228	5. 869	65. 792	1. 00 37. 41
	ATOM	1645	0	GLN	219	45. 927	4. 904	65. 091	1. 00 37. 06
25	ATOM	1646	N	CYS	220	45. 342	6. 488	66. 562	1. 00 34. 18
	ATOM	1647	CA	CYS	220	43. 955	6.038	66. 578	1. 00 32. 52
	ATOM	1648	CB	CYS	220	43. 199	6. 597	67. 783	1. 00 28. 93
	ATOM	1649	SG	CYS	220	41. 420	6. 288	67. 739	1. 00 31. 90
	ATOM	1650	С	CYS	220	43. 272	6. 474	65. 303	1. 00 32. 01

- 73 -

	ATOM	1651	0	CYS	220	43. 010	7. 664	65. 096	1. 00 32. 91
	ATOM	1652	N	GLU	221	42. 993	5. 505	64. 442	1. 00 29. 12
	ATOM	1653	CA	GLU	221	42. 343	5. 785	63. 176	1. 00 28. 98
	ATOM	1654	CB	GLU	221	43. 273	5. 437	62. 009	1. 00 30. 00
5	ATOM	1655	CG	GLU	221	44. 481	6. 366	61. 853	1. 00 35. 29
	ATOM	1656	CD	GLU	221	45. 190	6. 166	60. 515	1. 00 36. 83
	ATOM	1657	0E1	GLU	221	44. 490	6. 007	59. 498	1. 00 38. 09
	ATOM	1658	0E2	GLU	221	46. 436	6. 176	60. 465	1. 00 40. 80
	ATOM	1659	C	GLU	221	41.057	4. 991	63. 059	1. 00 25. 46
10	ATOM	1660	0	GLU	221	40. 513	4. 835	61. 970	1. 00 22. 65
	ATOM	1661	N	VAL	222	40. 569	4. 491	64. 185	1. 00 25. 43
	ATOM	1662	CA	VAL	222	39. 337	3. 703	64. 179	1. 00 25. 45
	ATOM	1663	CB	VAL	222	39. 625	2. 172	64. 189	1. 00 24. 36
	ATOM	1664	CG1	VAL	222	38. 318	1. 391	64. 122	1. 00 21. 56
15	ATOM	1665	CG2	VAL	222	40. 533	1. 795	63. 029	1. 00 21. 70
	ATOM	1666	C	VAL	222	38. 527	4. 016	65. 414	1. 00 25. 44
	ATOM	1667	0	VAL	222	39. 076	4. 192	66. 492	1. 00 25. 99
	ATOM	1668	N	GLY	223	37. 217	4. 090	65. 240	1. 00 25. 97
	ATOM	1669	CA	GLY	223	36. 328	4. 347	66. 349	1. 00 25. 83
20	ATOM	1670	C	GLY	223	35. 337	3. 201	66.340	1. 00 25. 37
	ATOM	1671	0	GLY	223	34. 852	2. 812	65. 273	1. 00 25. 38
	ATOM	1672	N	MET	224	35. 044	2.647	67. 511	1. 00 24. 88
	ATOM	1673	CA	MET	224	34. 114	1. 527	67. 587	1. 00 25. 47
	ATOM	1674	CB	MET	224	34. 881	0. 187	67. 638	1. 00 22. 66
25	ATOM	1675	CG	MET	224	33. 956	-1. 041	67. 634	1. 00 25. 14
	ATOM	1676	SD	MET	224	34. 806	-2. 680	67. 748	1. 00 22. 18
	ATOM	1677	CE	MET	224	35. 380	-2.594	69. 396	1. 00 16. 01
	ATOM	1678	C	MET	224	33. 177	1.618	68. 780	1. 00 22. 20
	ATOM	1679	0	MET	224	33. 577	1. 978	69. 881	1. 00 22. 65

- 74 -

ATOM 1680 N ILE 225 31.915 1. 295 68. 543 1. 00 21. 12 ATOM 1681 CA ILE 225 30.936 1. 314 69.604 1. 00 21. 34 ATOM 1682 CB ILE 225 29.757 2. 295 69. 293 1.00 25.85 CG2 ILE ATOM 1683 225 28.739 2. 268 70. 446 1. 00 25. 47 ATOM CG1 ILE 5 1684 225 30. 273 3.734 69. 107 1.00 25.08 ATOM CD1 ILE 1685 225 30.838 4. 355 70. 382 1.00 22.09 ATOM 1686 C ILE 225 30. 321 -0. 080 69.789 1. 00 22. 30 ATOM 1687 0 ILE 225 29. 885 -0. 712 68. 826 1. 00 24. 03 ATOM 1688 N VAL 226 30. 313 -0. 563 71. 025 1. 00 22. 67 ATOM 10 1689 CA VAL 226 29. 645 -1. 817 71. 341 1. 00 21. 60 ATOM 1690 CB VAL 226 30.618 -2.993 71.634 1.00 21.77 ATOM 1691 CG1 VAL 226 29. 821 -4. 291 71. 718 1. 00 21. 54 ATOM 1692 CG2 VAL 226 31. 663 -3. 113 70. 541 1, 00 17, 23 ATOM 1693 C VAL 226 28. 838 -1. 493 72. 604 1. 00 21. 49 15 ATOM 1694 0 VAL 226 29. 316 -1. 633 73. 723 1. 00 18. 90 ATOM 1695 N GLY 227 27. 615 -1. 016 72. 402 1. 00 25. 39 ATOM 1696 26. 744 -0. 675 73. 518 CA GLY 227 1. 00 26, 76 ATOM 1697 C GLY 227 25. 353 -1. 140 73. 150 1. 00 28. 03 ATOM 1698 0 GLY 227 25. 155 -2. 315 72. 846 1.00 29.80 ATOM 20 1699 N THR 228 24. 384 -0. 235 73. 161 1. 00 27. 62 ATOM 1700 CA 23. 031 -0. 607 72. 788 THR 228 1. 00 27, 59 ATOM 1701 CB THR 228 22.083 0.601 72. 911 1.00 29.15 ATOM 1702 OG1 THR 228 21.937 0. 932 74. 294 1.00 32.52 ATOM 1703 CG2 THR 228 20. 719 0.291 72. 339 1. 00 28. 08 25 ATOM 1704 C THR 228 23. 094 -1. 080 71. 345 1. 00 26, 98 ATOM 1705 0 THR 228 22. 460 -2. 065 70.960 1.00 27.95 ATOM 1706 N GLY 229 23. 890 -0. 374 70. 554 1. 00 26. 02 ATOM 1707 CA GLY 229 24. 050 -0. 718 69. 154 1.00 25.33 ATOM 1708 C GLY 229 25. 503 -1. 055 68. 911 1.00 24.09

- 75 -

	ATOM	1709	0	GLY	229	26. 312	-1. 004	69. 838	1. 00 23. 25
	ATOM	1710	N	CYS	230	25. 850	-1. 395	67. 677	1. 00 24. 12
	ATOM	1711	. CA	CYS	230	27. 235	-1. 750	67. 376	1. 00 23. 83
	ATOM	1712	CB	CYS	230	27. 395	-3. 280	67. 425	1. 00 20. 39
5	ATOM	1713	SG	CYS	230	29. 076	-3. 879	67. 182	1. 00 25. 34
	ATOM	1714	C	CYS	230	27. 627	-1. 204	66. 010	1. 00 20. 45
	ATOM	1715	0	CYS	230	26. 919	-1. 406	65. 035	1. 00 20. 28
	ATOM	1716	N	ASN	231	28. 763	-0. 526	65. 935	1. 00 23. 86
	ATOM	1717	CA	ASN	231	29. 196	0. 076	64. 669	1. 00 24. 35
10	ATOM	1718	CB	ASN	231	28. 267	1. 261	64. 355	1. 00 25. 51
	ATOM	1719	CG	ASN	231	28. 598	1. 962	63. 042	1. 00 27. 76
	ATOM	1720	OD:	1 ASN	231	28. 930	1. 331	62. 039	1.00 24.60
	ATOM	1721	ND	2 ASN	231	28. 472	3. 288	63. 043	1. 00 30. 91
	ATOM	1722	C	ASN	231	30. 640	0. 553	64. 784	1. 00 23. 81
15	ATOM	1723	0	ASN	231	31. 184	0.624	65. 885	1. 00 23. 94
	ATOM	1724	N	ALA	232	31. 249	0.885	63. 651	1. 00 22. 70
	ATOM	1725	CA	ALA	232	32. 626	1. 359	63. 636	1. 00 25. 15
	ATOM	1726	CB	ALA	232	33. 580	0. 169	63. 463	1. 00 24. 36
	ATOM	1727	C	ALA	232	32. 867	2. 372	62. 511	1. 00 26. 31
20	ATOM	1728	0	ALA	232	32. 127	2. 416	61. 530	1. 00 28. 47
	ATOM	1729	N	CYS	233	33. 911	3. 176	62.664	1. 00 24. 88
	ATOM	1730	CA	CYS	233	34. 291	4. 160	61.653	1. 00 26. 51
	ATOM	1731	CB	CYS	233	33.899	5. 583	62.076	1. 00 24. 89
	ATOM	1732	SG	CYS	233	34. 875	6. 224	63. 436	1. 00 25. 76
25	ATOM	1733	C	CYS	233	35. 805	4. 055	61.555	1. 00 25. 08
	ATOM	1734	0	CYS	233	36. 450	3. 564	62. 480	1. 00 25. 19
	ATOM	1735	N	TYR	234	36. 373	4. 505	60. 442	1. 00 25. 32
	ATOM	1736	CA	TYR	234	37. 820	4. 427	60. 245	1. 00 23. 93
	ATOM	1737	CB	TYR	234	38. 200	3. 020	59. 760	1. 00 20. 70

- 76 -

ATOM 1738 CG TYR 234 37. 782 2.771 58. 328 1.00 16.78 ATOM 1739 CD1 TYR 234 38.712 2.786 57.302 1.00 18.75 ATOM 1740 CE1 TYR 234 38. 326 2.668 55. 975 1.00 18.89 ATOM 1741 CD2 TYR 234 36. 443 2.622 57.990 1.00 19.60 ATOM CE2 TYR 1742 234 36.043 2, 506 56.666 1.00 18.40 ATOM CZ1743 TYR 234 36. 990 2.535 55. 665 1.00 21.55 ATOM 1744 0H TYR 234 36.603 2.479 54.346 1, 00 23, 25 ATOM 1745 C TYR 234 38. 254 5.452 59. 194 1.00 26.41 ATOM 1746 0 TYR 234 37.436 5. 929 58. 404 1.00 27.14 10 ATOM 1747 N MET 235 39. 543 5. 769 59. 179 1.00 27.10 ATOM 1748 CA MET 235 40.094 6.72258. 224 1.00 28.74 ATOM 1749 CB MET 235 41. 383 7. 331 58. 789 1. 00 29. 38 ATOM 1750 CG MET 235 41. 169 8. 180 60.035 1.00 31.43 ATOM 1751 SD MET 235 39.947 9. 503 59. 750 1.00 32.30 15 ATOM 1752 CE MET 235 40.866 10, 535 58. 591 1.00 34.11 ATOM 1753 C MET 235 40.374 6.066 56. 869 1.00 29.42 ATOM 1754 0 MET 23541. 170 5. 134 56. 767 1.00 30.49 ATOM 1755 N GLU 236 39. 714 6.565 55. 829 1.00 31.08 ATOM 1756 CA GLU 236 39.867 6.040 54.476 1.00 31.04 ATOM 20 1757 CB GLU 236 38. 491 5.743 53.879 1.00 31.57 ATOM 1758 CG GLU 236 38.536 5. 161 52. 474 1.00 32.18 ATOM 1759 CD GLU 236 39.330 3.875 52. 427 1.00 32.52 ATOM 1760 OE1 GLU 236 40.565 3.952 52. 273 1.00 34.34 ATOM 1761 OE2 GLU 236 38. 723 2.789 52. 571 1.00 30.79 25 ATOM 1762 C GLU 236 40.598 7.030 53. 574 1.00 33.43 ATOM 1763 0 GLU 236 40. 583 8. 238 53.818 1.00 29.93 ATOM 1764 N GLU 237 41. 240 6.506 52. 532 1.00 35.85 ATOM 1765 CA GLU 237 41.969 7. 333 51. 575 1.00 37.83 ATOM 1766 CB GLU 237 42. 934 6.46250.764 1.00 40.16

- 77 -

	ATOM	1767	CG	GLU	237	43. 684	5. 426	51. 602	1. 00 43. 86
	ATOM	1768	CD	GLU	237	44. 466	6. 049	52. 743	1. 00 47. 85
	ATOM	1769	0E1	GLU	237	44. 806	5. 322	53. 704	1. 00 51. 02
	ATOM	1770	0E2	GLU	237	44. 747	7. 264	52. 681	1. 00 48. 78
5	ATOM	1771	C	GLU	237	40. 920	7. 969	50. 657	1. 00 37. 87
	ATOM	1772	0	GLU	237	40.058	7. 268	50. 122	1. 00 38. 29
	ATOM	1773	N	MET	238	40. 987	9. 287	50. 477	1. 00 37. 42
	ATOM	1774	CA	MET	238	40.009	9. 987	49. 644	1. 00 37. 50
	ATOM	1775	CB	MET	238	40. 375	11. 467	49. 501	1. 00 38. 62
10	ATOM	1776	CG	MET	238	39. 772	12. 355	50. 587	1. 00 40. 32
	ATOM	1777	SD	MET	238	37. 956	12. 144	50. 764	1. 00 42. 83
	ATOM	1778	CE	MET	238	37. 308	13. 116	49. 410	1. 00 44. 06
	ATOM	1779	C	MET	238	39. 796	9. 374	48. 270	1. 00 36. 21
	ATOM	1780	0	MET	238	38. 685	9. 413	47. 740	1. 00 33. 93
15	ATOM	1781	N	GLN	239	40. 848	8. 803	47. 690	1. 00 35. 50
	ATOM	1782	CA	GLN	239	40. 714	8. 184	46. 378	1. 00 36. 82
	ATOM	1783	CB	GLN	239	42. 078	7. 732	45. 846	1. 00 39. 35
	ATOM	1784	CG	GLN	239	42. 839	6.804	46. 774	1. 00 44. 12
	ATOM	1785	CD	GLN	239	43. 900	7. 534	47. 584	1. 00 49. 18
20	ATOM	1786	0E1	GLN	239	43. 635	8. 580	48. 192	1. 00 49. 88
	ATOM	1787	NE2	GLN	239	45. 111	6. 981	47. 600	1. 00 49. 95
	ATOM	1788	C	GLN	239	39. 762	6. 986	46. 395	1. 00 35. 72
	ATOM	1789	0	GLN	239	39. 276	6.568	45. 348	1. 00 37. 20
	ATOM	1790	N	ASN	240	39. 503	6. 419	47. 570	1. 00 34. 56
25	ATOM	1791	CA	ASN	240	38. 604	5. 272	47. 648	1. 00 33. 20
	ATOM	1792	CB	ASN	240	39. 118	4. 239	48. 658	1. 00 33. 68
	ATOM	1793	CG	ASN	240	40. 548	3. 802	48. 369	1. 00 34. 24
	ATOM	1794	0D1	ASN	240	40. 963	3.710	47. 210	1. 00 33. 87
	ATOM	1795	ND2	ASN	240	41. 306	3. 523	49. 424	1. 00 34. 32

- 78 -

	ATOM	1796	C	ASN	240	37. 190	5. 690	48. 011	1. 00 33. 25
	ATOM	1797	0	ASN	240	36. 259	4. 886	47. 936	1. 00 33. 86
	ATOM	1798	N	VAL	241	37. 024	6. 946	48. 414	1. 00 32. 52
	ATOM	1799	CA	VAL	241	35. 702	7. 441	48. 753	1.00 31.62
5	ATOM	1800	CB	VAL	241	35. 755	8. 559	49. 811	1. 00 29. 14
	ATOM	1801	CG1	VAL	241	34. 339	8. 948	50. 204	1. 00 31. 00
	ATOM	1802	CG2	VAL	241	36. 530	8. 107	51. 021	1. 00 26. 87
	ATOM	1803	C	VAL	241	35. 102	8. 010	47. 474	1. 00 33. 73
	ATOM	1804	0	VAL	241	35. 048	9. 224	47. 286	1. 00 35. 18
10	ATOM	1805	N	GLU	242	34. 643	7. 132	46. 595	1. 00 33. 33
	ATOM	1806	CA	GLU	242	34. 075	7. 572	45. 324	1. 00 33. 69
	ATOM	1807	CB	GLU	242	33. 788	6. 364	44. 431	1. 00 31. 05
	ATOM	1808	CG	GLU	242	34. 983	5. 457	44. 222	1. 00 33. 00
	ATOM	1809	CD	GLU	242	34. 767	4. 451	43. 115	1. 00 33. 45
15	ATOM	1810	0E1	GLU	242	33. 595	4. 162	42.776	1. 00 33. 74
	ATOM	1811	0E2	GLU	242	35. 778	3. 940	42. 592	1. 00 35. 96
	ATOM	1812	C	GLU	242	32. 812	8. 437	45. 427	1. 00 34. 45
	ATOM	1813	0	GLU	242	32. 406	9.061	44. 442	1. 00 32. 92
	ATOM	1814	N	LEU	243	32. 192	8. 471	46.602	1. 00 33. 82
20	ATOM	1815	CA	LEU	243	30. 982	9. 262	46. 799	1. 00 36. 13
	ATOM	1816	CB	LEU	243	30. 080	8. 598	47. 844	1. 00 33. 99
	ATOM	1817	CG	LEU	243	29. 168	7. 490	47. 297	1.00 37.04
	ATOM	1818	CD1	LEU	243	27. 999	8. 096	46. 545	1. 00 36. 01
	ATOM	1819	CD2	LEU	243	29. 969	6.560	46. 384	1. 00 36. 49
25	ATOM	1820	C	LEU	243	31. 290	10. 700	47. 199	1. 00 35. 69
	ATOM	1821	0	LEU	243	30. 406	11. 458	47. 585	1. 00 37. 51
	ATOM	1822	N	VAL	244	32. 560	11.062	47. 117	1. 00 37. 53
	ATOM	1823	CA	VAL	244	32. 992	12. 411	47. 426	1. 00 37. 50
	ATOM	1824	CB	VAL	244	33. 537	12. 547	48. 861	1. 00 36. 75

- 79 -

ATOM 1825 CG1 VAL 244 33. 967 13. 990 49. 109 1.00 36.55 CG2 VAL ATOM 1826 244 32.465 12. 160 49.870 1. 00 37. 02 ATOM 1827 C VAL 244 34.099 12.727 46.446 1.00 39.75 ATOM 1828 0 VAL 244 35, 090 12.003 46.361 1.00 39.55 5 ATOM 1829 N GLU 245 33.909 13.802 45.688 1. 00 42. 16 ATOM CA GLU 1830 245 34.880 14. 232 44.695 1.00 42.30 ATOM 1831 CB GLU 245 34.372 15, 487 43.989 1.00 45.34 ATOM 1832CG GLU 245 34.886 15.636 42. 576 1.00 48.54 ATOM 1833 CD GLU 245 34. 377 16.893 41.901 1.00 50.12 ATOM 1834 OE1 GLU 10 245 33. 192 17. 249 42. 107 1.00 49.37 ATOM 1835 0E2 GLU 245 35. 164 17. 511 41. 152 1.00 52.40 ATOM 1836 C GLU 245 36, 203 14. 532 45.378 1.00 41.00 ATOM 1837 0 GLU 245 36. 230 15. 132 46, 446 1. 00 42, 20 ATOM 1838 GLY 246 37. 297 N 14, 107 44.761 1.00 41.28 ATOM 246 1839 CA GLY 38.606 14. 349 45, 336 1. 00 42, 88 15 ATOM 1840 C GLY 246 39.362 13.066 45.618 1.00 45.38 ATOM 1841 0 GLY 246 38.774 12.056 45.997 1.00 45.50 ATOM 1842 N ASP 247 40.675 13, 105 45. 443 1.00 47.31 ATOM CA 247 45.687 1843 ASP 41.509 11.940 1.00 49.13 20 ATOM 1844 CB ASP 247 42.139 11.454 44. 384 1, 00 51, 65 ATOM 1845 CG ASP 247 41. 131 10.836 43.449 1.00 56.09 ATOM 1846 OD1 ASP 247 41.534 10.410 42.345 1.00 58.83 ATOM 1847 OD2 ASP 247 39.936 10.770 43.819 1.00 59.44 ATOM 1848 C ASP 24742.611 12. 274 46.667 1.00 49.51 25 ATOM 1849 0 ASP 247 43. 406 11.415 47.039 1,00 49.57 ATOM 1850 N GLU 248 42.661 13. 531 47.086 1.00 50.49 ATOM 1851 CA GLU 248 43, 696 13. 957 48. 011 1. 00 50. 97 ATOM 1852 CB GLU 248 44. 198 15. 351 47. 634 1. 00 54. 71 ATOM 1853 CG GLU 248 45.670 15. 391 47. 259 1.00 62.15

- 80 -

	ATOM	1854	CD	GLU	248	46.067	14. 259	46. 317	1. 00 66. 63
	ATOM	1855	0E1	GLU	248	46. 196	13. 105	46. 788	1. 00 68. 58
	ATOM	1856	0E2	GLU	248	46. 241	14. 520	45. 105	1.00 68.21
	ATOM	1857	C	GLU	248	43. 222	13. 955	49. 446	1. 00 47. 90
5	ATOM	1858	0	GLU	248	42.063	14. 250	49. 726	1. 00 46. 55
	ATOM	1859	N	GLY	249	44. 133	13. 614	50. 351	1. 00 45. 49
	ATOM	1860	CA	GLY	249	43. 799	13. 590	51.759	1. 00 44. 30
	ATOM	1861	C	GLY	249	43. 138	12. 301	52. 205	1. 00 42. 85
	ATOM	1862	0	GLY	249	43. 257	11. 259	51. 552	1. 00 42. 97
10	ATOM	1863	N	ARG	250	42. 444	12. 380	53. 335	1. 00 41. 43
	ATOM	1864	CA	ARG	250	41. 747	11. 232	53. 897	1. 00 39. 63
	ATOM	1865	CB	ARG	250	42. 625	10. 532	54. 931	1. 00 40. 69
	ATOM	1866	CG	ARG	250	44. 092	10. 454	54. 559	1. 00 43. 91
	ATOM	1867	CD	ARG	250	44. 903	9. 902	55. 714	1. 00 45. 22
15	ATOM	1868	NE	ARG	250	44. 630	8. 487	55. 940	1. 00 45. 43
	ATOM	1869	CZ	ARG	250	45. 040	7. 813	57. 007	1.00 44.67
	ATOM	1870	NH1	ARG	250	45. 738	8. 426	57. 954	1. 00 46. 95
	ATOM	1871	NH2	ARG	250	44.761	6. 524	57. 121	1. 00 46. 99
	ATOM	1872	C	ARG	250	40. 486	11.726	54. 580	1. 00 37. 70
20	ATOM	1873	0	ARG	250	40. 430	12.865	55.042	1.00 37.51
	ATOM	1874	N	MET	251	39. 473	10. 867	54.630	1.00 35.10
	ATOM	1875	CA	MET	251	38. 216	11. 197	55. 277	1. 00 32. 34
	ATOM	1876	CB	MET	251	37. 137	11. 517	54. 242	1. 00 33. 00
	ATOM	1877	CG	MET	251	35. 803	11. 907	54.868	1. 00 31. 56
25	ATOM	1878	SD	MET	251	34. 474	12. 160	53.677	1. 00 37. 84
	ATOM	1879	CE	MET	251	35. 067	13. 715	52. 885	1. 00 32, 92
	ATOM	1880	C	MET	251	37. 764	10.007	56. 121	1. 00 32. 47
	ATOM	1881	0	MET	251	38. 024	8.852	55. 777	1. 00 31. 05
	ATOM	1882	N	CYS	252	37. 088	10. 292	57. 229	1. 00 30. 16

- 81 -

	ATOM	1883	CA	CYS	252	36. 595	9. 236	58. 092	1. 00 30. 32
	ATOM	1884	CB	CYS	252	36. 364	9. 762	59. 517	1. 00 30. 54
	ATOM	1885	SG	CYS	252	35. 601	8. 557	60. 676	1. 00 28. 61
	ATOM	1886	C	CYS	252	35. 292	8. 717	57. 511	1.00 29.86
5	ATOM	1887	0	CYS	252	34. 422	9. 495	57. 114	1. 00 29. 84
	ATOM	1888	N	VAL	253	35. 170	7. 397	57. 438	1. 00 28. 79
	ATOM	1889	CA	VAL	253	33. 960	6. 776	56. 921	1. 00 27. 69
	ATOM	1890	CB	VAL	253	34. 291	5. 761	55. 816	1. 00 28. 07
	ATOM	1891	CG1	VAL	253	33. 033	5. 005	55. 405	1. 00 26. 98
10	ATOM	1892	CG2	VAL	253	34. 898	6. 484	54. 624	1. 00 24. 14
	ATOM	1893	C	VAL	253	33. 200	6.069	58. 038	1. 00 28. 79
	ATOM	1894	0	VAL	253	33. 801	5. 448	58. 922	1. 00 31.23
	ATOM	1895	N	ASN	254	31. 879	6. 188	58. 000	1. 00 28. 38
	ATOM	1896	CA	ASN	254	31. 003	5. 557	58. 976	1. 00 27. 73
15	ATOM	1897	CB	ASN	254	29. 834	6. 473	59. 328	1. 00 27. 41
	ATOM	1898	CG	ASN	254	28. 803	5. 779	60. 181	1. 00 31.67
	ATOM	1899	0D1	ASN	254	29. 048	4. 675	60. 677	1. 00 32. 14
	ATOM	1900	ND2	ASN	254	27. 643	6. 415	60. 367	1. 00 29. 17
	ATOM	1901	C	ASN	254	30. 480	4. 295	58. 299	1. 00 27. 41
20	ATOM	1902	0	ASN	254	29. 575	4. 372	57. 467	1. 00 25. 53
	ATOM	1903	N	THR	255	31. 049	3. 142	58. 654	1. 00 24. 66
	ATOM	1904	CA	THR	255	30.662	1. 883	58. 016	1. 00 24. 86
	ATOM	1905	CB	THR	255	31. 501	0. 665	58. 527	1. 00 23. 42
	ATOM	1906	0G1	THR	255	31.071	0. 310	59. 849	1. 00 23. 50
25	ATOM	1907	CG2	THR	255	32.973	0. 982	58. 558	1. 00 23. 88
	ATOM	1908	C	THR	255	29. 207	1. 488	58. 195	1. 00 23. 00
	ATOM	1909	0	THR	255	28. 589	0. 984	57. 259	1. 00 24. 38
	ATOM	1910	N	GLU	256	28. 673	1. 710	59. 394	1. 00 23. 70
	ATOM	1911	CA	GLU	256	27. 306	1. 305	59. 721	1. 00 26. 37

- 82 -

	ATOM	1912	CB	GLU	256	26. 271	2. 017	58. 838	1. 00 26. 22
	ATOM	1913	CG	GLU	256	25. 974	3. 471	59. 204	1. 00 29. 32
	ATOM	1914	CD	GLU	256	25. 284	3. 644	60. 558	1. 00 31. 10
	ATOM	1915	0E	I GLU	256	24. 489	2. 764	60. 953	1. 00 31. 47
5	ATOM	1916	0E2	GLU	256	25. 523	4. 682	61. 218	1. 00 30. 04
	ATOM	1917	C	GLU	256	27. 269	-0. 203	59. 458	1. 00 27. 40
	ATOM	1918	0	GLU	256	26. 369	-0. 713	58. 782	1. 00 26. 71
	ATOM	1919	N	TRP	257	28. 269	-0. 912	59. 982	1. 00 25. 98
	ATOM	1920	CA	TRP	257	28. 335	-2. 356	59. 774	1. 00 24. 56
10	ATOM	1921	CB	TRP	257	29. 714	-2. 928	60. 180	1. 00 21. 05
	ATOM	1922	CG	TRP	257	30. 100	-2. 891	61. 653	1.00 17.51
	ATOM	1923	CD2	TRP	257	31. 429	-3. 026	62. 182	1.00 16.19
	ATOM	1924	CE2	TRP	257	31. 320	-3. 077	63. 588	1. 00 14. 42
	ATOM	1925	CE3	TRP	257	32. 705	-3. 112	61. 597	1. 00 16. 23
15	ATOM	1926	CD1	TRP	257	29. 264	-2.862	62. 733	1. 00 18. 14
	ATOM	1927	NE1	TRP	257	29. 990	-2. 977	63. 902	1. 00 19. 95
	ATOM	1928	CZ2	TRP	257	32. 435	-3. 214	64. 421	1. 00 17. 46
	ATOM	1929	CZ3	TRP	257	33. 815	-3. 246	62. 424	1. 00 13. 91
	ATOM	1930	CH2	TRP	257	33. 672	-3. 294	63. 822	1. 00 14. 28
20	ATOM	1931	C	TRP	257	27. 218	-3. 091	60. 500	1.00 24.58
	ATOM	1932	0	TRP	257	27.067	-4. 305	60. 352	1. 00 24. 81
	ATOM	1933	N	GLY	258	26. 427	-2. 354	61. 273	1. 00 23. 21
	ATOM	1934	CA	GLY	258	25. 328	-2. 981	61. 982	1. 00 23. 11
	ATOM	1935	C	GLY	258	24. 385	-3. 640	60. 991	1. 00 25. 72
25	ATOM	1936	0	GLY	258	23. 758	-4. 660	61. 285	1. 00 28. 37
	ATOM	1937	N	ALA	259	24. 288	-3.067	59. 796	1. 00 24. 64
	ATOM	1938	CA	ALA	259	23. 406	-3. 630	58. 789	1. 00 25. 53
	ATOM	1939	CB	ALA	259	22. 866	-2. 519	57. 874	1. 00 25. 11
	ATOM	1940	C	ALA	259	24. 084	-4. 724	57. 961	1. 00 25. 44

- 83 -

	ATOM	1941	0	ALA	259	23. 515	-5. 205	56. 985	1. 00 24. 68
	ATOM	1942	N	PHE	260	25. 306	-5. 101	58. 329	1. 00 26. 96
	ATOM	1943	CA	PHE	260	25. 995	-6. 175	57. 614	1. 00 28. 11
	ATOM	1944	CB	PHE	260	27. 359	-6. 440	58. 254	1. 00 30. 88
5	ATOM	1945	CG	PHE	260	28. 127	-7. 569	57. 625	1. 00 33. 87
	ATOM	1946	CD	1 PHE	260	28. 496	-7. 525	56. 286	1. 00 33. 60
	ATOM	1947	CD	2 PHE	260	28. 499	-8. 675	58. 380	1. 00 37. 30
	ATOM	1948	CE	1 PHE	260	29. 220	-8. 564	55. 716	1. 00 33. 58
	ATOM	1949	CE	2 PHE	260	29. 229	-9. 720	57. 808	1. 00 35. 65
10	ATOM	1950	CZ	PHE	260	29. 586	-9. 660	56. 478	1. 00 34. 41
	ATOM	1951	C	PHE	260	25. 080	-7. 388	57. 783	1. 00 28. 87
	ATOM	1952	0	PHE	260	24. 487	-7. 576	58. 849	1. 00 27. 08
	ATOM	1953	N	GLY	261	24. 941	-8. 193	56. 737	1. 00 28. 88
	ATOM	1954	CA	GLY	261	24. 074	-9. 357	56. 826	1. 00 30. 83
15	ATOM	1955	C	GLY	261	22. 664	-9. 092	56. 317	1. 00 32. 15
	ATOM	1956	0	GLY	261	21. 905	-10. 021	56. 043	1. 00 34. 22
	ATOM	1957	N	ASP	262	22. 307	-7. 822	56. 175	1. 00 33. 45
	ATOM	1958	CA	ASP	262	20. 975	-7. 456	55. 701	1. 00 35. 91
	ATOM	1959	CB	ASP	262	20. 761	-5. 948	55. 868	1. 00 35. 78
20	ATOM	1960	CG	ASP	262	20. 674	-5. 541	57. 323	1. 00 35. 93
	ATOM	1961	0D1	ASP	262	20. 903	-6. 415	58. 182	1. 00 37. 70
	ATOM	1962	0D2	ASP	262	20. 382	-4. 364	57. 615	1. 00 35. 14
	ATOM	1963	C	ASP	262	20. 676	-7. 884	54. 262	1. 00 36. 35
	ATOM	1964	0	ASP	262	19. 546	-7. 758	53. 799	1. 00 37. 40
25	ATOM	1965	N	SER	263	21. 685	-8. 380	53. 554	1. 00 37. 07
	ATOM	1966	CA	SER	263	21. 488	-8. 863	52. 189	1. 00 37. 53
	ATOM	1967	CB	SER	263	22. 420	-8. 155	51. 200	1. 00 37. 00
	ATOM	1968	0G	SER	263	22. 028	-6. 815	50. 991	1. 00 38. 85
	ATOM	1969	C	SER	263	21. 770 -	-10. 359	52. 161	1. 00 37. 06

- 84 -

	ATOM	1970	0	SER	263	22. 062 -10. 923	51. 107	1. 00 36. 90
	ATOM	1971	N	GLY	264	21. 697 -10. 988	53. 331	1. 00 36. 97
	ATOM	1972	CA	GLY	264	21. 934 -12. 418	53. 428	1.00 37.50
	ATOM	1973	C	GLY	264	23. 370 -12. 857	53. 663	1. 00 38. 59
5	ATOM	1974	0	GLY	264	23. 666 -14. 050	53. 573	1. 00 40. 28
	ATOM	1975	N	GLU	265	24. 263 -11. 915	53. 961	1. 00 37. 52
	ATOM	1976	CA	GLU	265	25. 671 -12. 237	54. 199	1. 00 36. 34
	ATOM	1977	CB	GLU	265	26. 488 -10. 965	54. 438	1. 00 35. 82
	ATOM	1978	CG	GLU	265	26. 535 -9. 976	53. 289	1. 00 38. 57
10	ATOM	1979	CD	GLU	265	25. 270 -9. 148	53. 158	1. 00 39. 55
	ATOM	1980	0E1	GLU	265	24. 600 -8. 901	54. 173	1. 00 38. 51
	ATOM	1981	0E2	GLU	265	24. 953 -8. 722	52. 031	1. 00 43. 82
	ATOM	1982	C	GLU	265	25. 906 -13. 171	55. 391	1. 00 36. 38
	ATOM	1983	0	GLU	265	26. 899 -13. 906	55. 425	1. 00 35. 35
15	ATOM	1984	N	LEU	266	24. 996 -13. 140	56. 362	1. 00 34. 63
	ATOM	1985	CA	LEU	266	25. 130 -13. 955	57. 567	1. 00 35. 02
	ATOM	1986	CB	LEU	266	25. 008 -13. 054	58. 803	1. 00 31. 68
	ATOM	1987	CG	LEU	266	26. 017 -11. 914	58. 973	1. 00 33. 35
	ATOM	1988	CD1	LEU	266	25. 555 -10. 975	60. 077	1. 00 32. 52
20	ATOM	1989	CD2	LEU	266	27. 383 -12. 480	59. 294	1. 00 32. 43
	ATOM	1990	C	LEU	266	24. 108 -15. 092	57. 674	1. 00 35. 37
	ATOM	1991	0	LEU	266	24. 047 -15. 779	58. 696	1. 00 35. 21
	ATOM	1992	N	ASP	267	23. 321 -15. 300	56. 627	1. 00 36. 35
	ATOM	1993	CA	ASP	267	22. 286 -16. 332	56. 643	1. 00 39. 50
25	ATOM	1994	CB	ASP	267	21. 664 -16. 480	55. 248	1. 00 42. 21
	ATOM	1995	CG	ASP	267	20. 666 -15. 369	54. 921	1. 00 45. 43
	ATOM	1996	0D1	ASP	267	20. 205 -15. 320	53. 759	1. 00 48. 41
	ATOM	1997	0D2	ASP	267	20. 332 -14. 554	55. 813	1. 00 45. 57
	ATOM	1998	C	ASP	267	22. 676 -17. 715	57. 171	1. 00 38. 87

- 85 -

						00		
	ATOM	1999	0	ASP	267	21. 888 -18. 353	57. 867	1. 00 39. 64
	ATOM	2000	N	GLU	268	23. 879 -18. 179	56. 860	1. 00 38. 72
	ATOM	2001	CA	GLU	268	24. 301 -19. 502	57. 313	1.00 39.91
	ATOM	2002	CB	GLU	268	25. 510 -19. 971	56. 495	1.00 40.60
5	ATOM	2003	CG	GLU	268	26. 847 -19. 444	56. 976	1.00 43.85
	ATOM	2004	CD	GLU	268	27. 969 -19. 710	55. 981	1. 00 47. 64
	ATOM	2005	0E1	GLU	268	28. 013 -19. 017	54. 941	1. 00 49. 73
	ATOM	2006	0E2	GLU	268	28. 802 -20. 612	56. 232	1. 00 48. 40
	ATOM	2007	C	GLU	268	24. 633 -19. 577	58. 807	1. 00 40. 59
10	ATOM	2008	0	GLU	268	24. 790 -20. 667	59. 360	1. 00 41. 43
	ATOM	2009	N	PHE	269	24. 734 -18. 427	59. 462	1. 00 39. 17
	ATOM	2010	CA	PHE	269	25. 070 -18. 402	60. 882	1. 00 37. 75
	ATOM	2011	CB	PHE	269	26. 182 -17. 385	61. 127	1. 00 34. 69
	ATOM	2012	CG	PHE	269	27. 435 -17. 675	60. 369	1. 00 35. 74
15	ATOM	2013	CD1	PHE	269	28. 144 -18. 853	60. 599	1. 00 35. 94
	ATOM	2014	CD2	PHE	269	27. 910 -16. 781	59. 416	1.00 34.75
	ATOM	2015	CE1	PHE	269	29. 306 -19. 136	59. 891	1.00 34.71
	ATOM	2016	CE2	PHE	269	29. 068 -17. 050	58. 701	1.00 34.58
	ATOM	2017	CZ	PHE	269	29. 770 -18. 233	58. 939	1. 00 35. 80
20	ATOM	2018	C	PHE	269	23. 898 -18. 085	61. 793	1. 00 36. 73
	ATOM	2019	0	PHE	269	23. 932 -18. 384	62. 984	1. 00 36. 59
	ATOM	2020	N	LEU	270	22. 861 -17. 480	61. 231	1. 00 37. 18
	ATOM	2021	CA	LEU	270	21. 696 -17. 107	62.012	1. 00 37. 71
	ATOM	2022	CB	LEU	270	20. 712 -16. 332	61. 135	1. 00 36. 52
25	ATOM	2023	CG	LEU	270	21. 264 -15. 036	60. 521	1. 00 37. 18
	ATOM	2024	CD1	LEU	270	20. 299 -14. 516	59. 466	1. 00 38. 72
	ATOM	2025	CD2	LEU	270	21. 488 -13. 990	61. 604	1. 00 34. 72
	ATOM	2026	C	LEU	270	21. 010 -18. 312	62.644	1. 00 38. 27
	ATOM	2027	0	LEU	270	20. 794 -19. 333	61. 995	1. 00 39. 49

- 86 -

	ATOM	2028	S N	LEU	271	20. 685 -18. 176	63. 924	1. 00 37. 92
	ATOM			LEU		20. 010 -19. 212		
	ATOM	2030	CB	LEU	271	20. 657 -19. 339	66. 078	1. 00 37. 71
	ATOM	2031	CG	LEU	271	21. 897 -20. 220	66. 261	1. 00 38. 14
5	ATOM	2032	CD	1 LEU	271	22. 827 -20. 111	65. 075	1. 00 39. 09
	ATOM	2033	CD	2 LEU	271	22. 596 -19. 830	67. 549	1. 00 35. 73
	ATOM	2034	C	LEU	271	18. 536 -18. 845	64. 855	1. 00 39. 78
	ATOM	2035	0	LEU	271	18. 125 -17. 721	64. 538	1. 00 38. 05
	ATOM	2036	N	GLU	272	17. 751 -19. 794	65. 358	1. 00 39. 69
10	ATOM	2037	CA	GLU	272	16. 322 -19. 590	65. 575	1. 00 41. 03
	ATOM	2038	CB	GLU	272	15. 697 -20. 842	66. 219	1. 00 43. 64
	ATOM	2039	CG	GLU	272	16. 221 -21. 179	67. 627	1. 00 47. 44
	ATOM	2040	CD	GLU	272	15. 685 -22. 509	68. 182	1. 00 49. 81
	ATOM	2041	0E1	GLU	272	16. 081 -23. 580	67. 666	1. 00 51. 29
15	ATOM	2042	0E2	GLU.	272	14. 869 -22. 484	69. 134	1. 00 47. 60
	ATOM	2043	C	GLU	272	16. 084 -18. 377	66. 466	1. 00 39. 89
	ATOM	2044	0	GLU	272	15. 151 -17. 602	66. 250	1. 00 40. 35
	ATOM	2045	N	TYR	273	16. 944 -18. 208	67. 465	1. 00 38. 65
	ATOM	2046	CA	TYR	273	16. 813 -17. 095	68. 393	1. 00 35. 97
20	ATOM	2047	CB	TYR	273	17. 829 -17. 238	69. 530	1. 00 35. 50
	ATOM	2048	CG	TYR	273	18. 008 -18. 658	70.009	1. 00 34. 45
	ATOM	2049	CD1	TYR	273	19. 109 -19. 416	69. 611	1. 00 32. 53
	ATOM	2050	CE1	TYR	273	19. 252 -20. 740	70.017	1. 00 35. 58
	ATOM	2051	CD2	TYR	273	17. 053 -19. 258	70. 830	1. 00 34. 35
25	ATOM	2052	CE2	TYR	273	17. 185 -20. 580	71. 241	1. 00 34. 82
	ATOM	2053	CZ	TYR	273	18. 281 -21. 314	70.830	1. 00 35. 96
	ATOM	2054	0H	TYR	273	18. 381 -22. 626	71. 208	1. 00 38. 31
	ATOM	2055	C	TYR	273	17. 021 -15. 763	67. 680	1. 00 35. 11
	ATOM	2056	0	TYR	273	16. 404 -14. 752	68. 031	1. 00 34. 85

- 87 -

						•••		
	ATOM	2057	N	ASP	274	17. 888 -15. 763	66. 676	1. 00 36. 47
	ATOM	2058	CA	ASP	274	18. 164 -14. 541	65. 933	1. 00 36. 65
	ATOM	2059	CB	ASP	274	19. 405 -14. 718	65. 059	1. 00 32. 36
	ATOM	2060	CG	ASP	274	20. 627 -15. 072	65. 869	1. 00 32. 89
5	ATOM	2061	0D1	ASP	274	20. 949 -14. 315	66. 810	1.00 30.53
	ATOM	2062	0D2	ASP	274	21. 265 -16. 104	65. 569	1. 00 32. 08
	ATOM	2063	C	ASP	274	16. 968 -14. 165	65. 081	1.00 37.27
	ATOM	2064	0	ASP	274	16. 571 -13. 001	65.040	1. 00 37. 20
	ATOM	2065	N	ARG	275	16. 380 -15. 148	64. 410	1.00 39.32
10	ATOM	2066	CA	ARG	275	15. 222 -14. 866	63. 574	1. 00 41. 70
	ATOM	2067	CB	ARG	275	14. 803 -16. 121	62. 809	1. 00 44. 47
	ATOM	2068	CG	ARG	275	15. 908 -16. 666	61. 914	1. 00 49. 05
	ATOM	2069	CD	ARG	275	15. 516 -18. 002	61.303	1. 00 53. 46
	ATOM	2070	NE	ARG	275	16. 668 -18. 740	60.779	1. 00 57. 36
15	ATOM	2071	CZ	ARG	275	17. 352 -18. 408	59. 685	1. 00 58. 81
	ATOM	2072	NH 1	ARG	275	18. 383 -19. 148	59. 296	1. 00 60. 43
	ATOM	2073	NH2	ARG	275	17. 005 -17. 341	58. 976	1.00 61.75
	ATOM	2074	C	ARG	275	14. 079 -14. 353	64. 446	1. 00 41. 43
	ATOM	2075	0	ARG	275	13. 350 -13. 444	64.059	1. 00 40. 04
20	ATOM	2076	N	LEU	276	13. 939 -14. 927	65. 637	1. 00 40. 97
	ATOM	2077	CA	LEU	276	12. 888 -14. 507	66. 556	1. 00 42. 14
	ATOM	2078	CB	LEU	276	12. 831 -15. 450	67. 761	1. 00 44. 12
	ATOM	2079	CG	LEU	276	12. 315 -16. 862	67. 468	1.00 47.86
	ATOM	2080	CD1	LEU	276	12. 662 -17. 800	68. 618	1. 00 48. 62
25	ATOM	2081	CD2	LEU	276	10. 808 -16. 808	67. 236	1. 00 47. 43
	ATOM	2082	C	LEU	276	13. 094 -13. 072	67. 034	1. 00 40. 87
	ATOM	2083	0	LEU	276	12. 152 -12. 281	67. 072	1. 00 41. 20
	ATOM	2084	N	VAL	277	14. 322 -12. 740	67. 412	1. 00 39.68
	ATOM	2085	CA	VAL	277	14. 617 -11. 390	67. 876	1. 00 40. 86

- 88 -

	ATOM	2086	CB	VAL	277	16. 084 -11. 263	68. 331	1.00 41.86
	ATOM	2087	CG1	VAL	277	16. 447 -9. 802	68. 497	1. 00 43. 25
	ATOM	2088	CG2	VAL	277	16. 290 -12. 012	69. 647	1. 00 41. 47
	ATOM	2089	C	VAL	277	14. 363 -10. 381	66. 761	1. 00 40. 10
5	ATOM	2090	0	VAL	277	13. 813 -9. 305	66. 993	1. 00 41. 12
	ATOM	2091	N	ASP	278	14. 767 -10. 738	65. 550	1. 00 39. 42
	ATOM	2092	CA	ASP	278	14. 592 -9. 867	64. 398	1.00 40.24
	ATOM	2093	CB	ASP	278	15. 356 -10. 434	63. 195	1. 00 38. 24
	ATOM	2094	CG	ASP	278	15. 179 -9. 598	61. 943	1.00 40.23
10	ATOM	2095	0D1	ASP	278	15. 26 0 -8. 35 1	62. 043	1.00 39.72
	ATOM	2096	0D2	ASP	278	14. 969 -10. 187	60.860	1.00 38.10
	ATOM	2097	C	ASP	278	13. 120 -9. 669	64. 043	1.00 41.19
	ATOM	2098	0	ASP	278	12. 693 -8. 545	63. 791	1.00 40.82
	ATOM	2099	N	GLU	279	12. 347 -10. 754	64. 035	1.00 43.34
15	ATOM	2100	CA	GLU	279	10. 922 -10. 688	63. 696	1.00 46.81
	ATOM	2101	CB	GLU	279	10. 321 -12. 097	63. 627	1. 00 50. 53
	ATOM	2102	CG	GLU	279	10.870 -12.965	62. 496	1.00 56.10
	ATOM	2103	CD	GLU	279	10. 320 -14. 382	62. 523	1.00 59.07
	ATOM	2104	0E1	GLU	279	10. 336 -15. 006	63. 607	1.00 60.28
20	ATOM	2105	0E2	GLU	279	9. 880 -14. 876	61.461	1. 00 60. 79
	ATOM	2106	C	GLU	279	10. 086 -9. 840	64. 652	1.00 47.25
	ATOM	2107	0	GLU	279	9. 048 -9. 303	64. 260	1. 00 46. 34
	ATOM	2108	N	SER	280	10. 535 -9. 722	65. 899	1. 00 46. 87
	ATOM	2109	CA	SER	280	9. 809 -8. 948	66. 900	1. 00 47. 53
25	ATOM	2110	CB	SER	280	9. 769 -9. 708	68. 228	1. 00 49. 98
	ATOM	2111	0G	SER	280	9. 043 -10. 919	68. 093	1. 00 52. 36
	ATOM	2112	C	SER	280	10. 415 -7. 575	67. 129	1. 00 47. 33
	ATOM	2113	0	SER	280	9. 909 -6. 788	67. 936	1. 00 45. 86
	ATOM	2114	N	SER	281	11. 499 -7. 289	66. 416	1. 00 46. 95

- 89 -

	ATOM	9115	0.4	cen	001	10 170		00 550	
	ATOM		CA	SER	281			66. 552	
		2116	CB	SER	281	13. 581	-6. 081	65. 971	1. 00 47. 24
	ATOM	2117	0G	SER	281	13. 524	-6. 172	64. 559	1. 00 47. 80
	ATOM	2118	C	SER	281	11. 391	-4. 915	65. 824	1. 00 45. 65
5	ATOM	2119	0	SER	281	10. 514	-5. 199	65. 013	1.00 45.10
	ATOM	2120	N	ALA	282	11. 723	-3. 667	66. 123	1.00 45.75
	ATOM	2121	CA	ALA	282	11.066	-2. 530	65. 500	1. 00 45. 70
	ATOM	2122	CB	ALA	282	11. 257	-1. 289	66.354	1.00 45.60
	ATOM	2123	C	ALA	282	11. 617	-2. 286	64. 100	1.00 46.48
10	ATOM	2124	0	ALA	282	11. 252	-1. 303	63. 449	1.00 48.61
	ATOM	2125	N	ASN	283	12. 493	-3. 172	63. 633	1. 00 43. 90
	ATOM	2126	CA	ASN	283	13. 076	-3. 015	62. 306	1.00 41.45
	ATOM	2127	CB	ASN	283	14. 300	-2. 092	62. 384	1.00 40.08
	ATOM	2128	CG	ASN	283	15. 398	-2. 631	63. 289	1. 00 39. 25
15	ATOM	2129	0D1	ASN	283	15. 136	-3. 308	64. 289	1. 00 37. 65
	ATOM	2130	ND2	ASN	283	16. 641	-2.310	62.950	1. 00 37. 96
	ATOM	2131	C	ASN	283	13. 433	-4. 350	61.655	1.00 41.06
	ATOM	2132	0	ASN	283	14. 585	-4. 606	61.318	1. 00 40. 48
	ATOM	2133	N	PR0	284	12. 423	-5. 211	61. 455	1. 00 40. 23
20	ATOM	2134	CD	PR0	284	11.013	-4. 898	61.751	1. 00 40. 75
	ATOM	2135	CA	PR0	284	12. 534	-6. 540	60.851	1. 00 40. 08
	ATOM	2136	CB	PR0	284	11.080	-6. 914	60. 581	1. 00 40. 52
	ATOM	2137	CG	PRO	284	10.364	-6. 260	61.712	1. 00 41. 21
	ATOM	2138	C	PRO	284	13. 366	-6. 565	59. 579	1. 00 39. 55
25	ATOM	2139	0	PR0	284	13. 054	~5. 868	58. 617	1. 00 40. 95
	ATOM	2140	N	GLY	285	14. 416	-7. 382	59. 576	1. 00 38. 56
	ATOM	2141	CA	GLY	285	15. 266	-7. 491	58. 407	1. 00 35. 73
	ATOM	2142	C	GLY	285	16. 428	-6. 516	58. 371	1. 00 35. 10
	ATOM	2143	0	GLY	285	17. 288	-6. 624	57. 500	1. 00 36. 22

- 90 -

ATOM 2144 N GLN 16. 468 -5. 573 286 59. 308 1.00 34.06 ATOM 2145 CA GLN 286 17. 547 -4. 584 59. 348 1.00 34.96 ATOM 2146 CB GLN 286 16. 974 -3. 166 59.321 1.00 39.16 ATOM 2147 CG GLN 286 16. 189 -2. 825 58.067 1.00 45.72 5 ATOM 2148 CD GLN 286 15.698 -1.384 58.074 1.00 51.15 ATOM OE1 GLN 2149 286 14. 816 -1. 018 58, 860 1.00 52.21 ATOM 2150 NE2 GLN 286 16. 276 -0. 555 57. 203 1. 00 50. 85 ATOM 2151 C GLN 286 18. 439 -4. 719 60.573 1.00 33.59 ATOM 2152 0 GLN 286 17. 993 -5.15761.637 1. 00 33, 18 10 ATOM 2153 N GLN 287 19. 701 -4. 334 60.408 1.00 32.85 ATOM 2154 CA GLN 287 20.691 -4.375 61.484 1, 00 32, 45 ATOM 2155 CB GLN 287 20. 248 -3. 456 62. 636 1.00 33.34 ATOM 2156 CG GLN 287 19. 955 -1. 999 62. 251 1.00 31.48 ATOM 2157 CD GLN 287 21. 188 -1. 259 61. 743 1.00 31.78 15 ATOM 2158 OE1 GLN 287 21. 330 -1. 010 60.544 1.00 33.25 ATOM 2159 NE2 GLN 287 22. 090 -0. 921 62.652 1.00 27.51 ATOM 2160 C GLN 287 20. 924 -5. 788 62, 032 1.00 30.79 ATOM 2161 0 GLN 287 21. 120 -5. 957 63. 229 1.00 29.31 ATOM 2162 N LEU 288 20. 921 -6.79161.158 1.00 29.33 20 ATOM 2163 CA LEU 288 21. 101 -8. 181 61.585 1.00 27.53 ATOM 2164 CB LEU 288 20.940 -9.129 60.393 1.00 28.13 ATOM 2165 CG LEU 288 19. 599 -9. 090 59. 647 1.00 29.14 ATOM 2166 CD1 LEU 288 19. 390 -10. 418 58. 922 1.00 27.60 ATOM 2167 CD2 LEU 288 18. 453 -8. 844 60.621 1.00 27.42 25 ATOM 2168 C LEU 288 22. 418 -8. 476 62. 297 1.00 27.92 ATOM 2169 0 288 22. 438 -9. 184 63. 303 1.00 28.24 ATOM 2170 N TYR 289 23. 520 -7. 946 61.776 1.00 27.17 ATOM 2171 CA TYR 289 24. 819 -8. 153 62.399 1.00 24.83 ATOM 2172 CB TYR 28925. 899 -7. 458 61.583 1.00 24.32

- 91 -

						J	1			
	ATOM	2173	CG	TYR	289	27. 303	-7. 575	62. 137	1. 00	21. 26
	ATOM	2174	CD1	TYR	289	27. 951	-8. 814	62. 208	1. 00	20.00
	ATOM	2175	CE1	TYR	289	29. 281	-8. 909	62. 616	1. 00	18. 43
	ATOM	2176	CD2	TYR	289	28. 013	-6. 441	62. 503	1. 00	18. 12
5	ATOM	2177	CE2	TYR	289	29. 338	-6. 520	62. 918	1. 00	20.65
	ATOM	2178	CZ	TYR	289	29. 976	-7. 762	62. 966	1. 00	21. 27
	ATOM	2179	0H	TYR	289	31. 314	-7. 833	63. 326	1. 00	19. 02
	ATOM	2180	C	TYR	289	24. 771	-7. 566	63. 799	1. 00	26. 94
	ATOM	2181	0	TYR	289	25. 221	-8. 175	64. 776	1. 00	27. 95
10	ATOM	2182	N	GLU	290	24. 198	-6. 374	63. 892	1. 00	27. 68
	ATOM	2183	CA	GLU	290	24. 078	-5. 686	65. 165	1. 00	26. 41
	ATOM	2184	CB	GLU	290	23. 484	-4. 309	64. 927	1. 00	26.55
	ATOM	2185	CG	GLU	290	23. 059	-3. 595	66. 180	1. 00	27.05
	ATOM	2186	CD	GLU	290	22. 815	-2. 142	65. 913	1. 00	25. 47
15	ATOM	2187	0E1	GLU	290	23. 716	-1. 336	66. 204	1. 00	27. 17
	ATOM	2188	0E2	GLU	290	21.731	-1. 815	65. 398	1. 00	29.09
	ATOM	2189	C	GLU	290	23. 218	-6. 463	66. 159	1. 00	26. 59
	ATOM	2190	0	GLU	290	23. 458	-6. 430	67. 371	1. 00	25. 62
	ATOM	2191	N	LYS	291	22. 216	-7. 166	65. 646	1. 00	26.31
20	ATOM	2192	CA	LYS	291	21. 343	-7. 942	66. 509	1. 00	27. 77
	ATOM	2193	CB	LYS	291	20. 110	-8. 394	65. 722	1. 00	28. 30
	ATOM	2194	CG	LYS	291	19.096	-7. 263	65. 585	1. 00	33. 35
	ATOM	2195	CD	LYS	291	18. 005	-7. 529	64. 555	1. 00	33. 56
	ATOM	2196	CE	LYS	291	17. 038	-6. 330	64. 522	1. 00	36. 46
25	ATOM	2197	NZ	LYS	291	16. 150	-6. 319	63. 327	1. 00	36. 55
	ATOM	2198	C	LYS	291	22. 073	-9. 123	67. 138	1. 00	26. 53
	ATOM	2199	0	LYS	291	21. 584	-9. 736	68.084	1. 00	27. 81
	ATOM	2200	N	LEU	292	23. 261	-9. 426	66. 628	1. 00	26. 02
	ATOM	2201	CA	LEU	292	24. 043 -	-10. 523	67. 168	1. 00	25. 35

- 92 -

ATOM 2202 CB LEU 292 24. 922 -11. 140 66. 079 1. 00 25. 16 ATOM 2203 CG LEU 292 24. 229 -11. 746 64.856 1. 00 26. 25 ATOM 2204 CD1 LEU 292 25. 274 -12. 190 63.827 1.00 23.09 ATOM 2205 CD2 LEU 292 23. 359 -12. 912 65. 297 1.00 24.40 ATOM 2206 C LEU 292 24. 942 -10. 030 68. 283 1. 00 25. 18 ATOM 2207 0 LEU 292 25. 392 -10. 808 69. 120 1.00 23.84 ATOM 2208 N ILE 293 25. 179 -8. 723 68. 308 1.00 24.94 ATOM 2209 CA ILE 293 26. 107 -8. 140 69. 267 1. 00 23. 59 ATOM 2210 CB ILE 293 27. 259 -7. 468 68. 476 1. 00 24. 66 10 ATOM 2211 CG2 ILE 293 28. 233 -6. 762 69. 409 1. 00 21. 05 ATOM 2212 CG1 ILE 293 27. 952 -8. 527 67. 618 1. 00 24. 42 ATOM 2213 CD1 ILE 293 28. 715 -7. 965 66. 441 1.00 25.64 ATOM 2214 C ILE 293 25. 560 -7. 148 70. 278 1. 00 25. 10 ATOM 2215 0 ILE 293 25. 797 -7. 289 71. 474 1.00 23.79 15 ATOM 2216 N GLY 294 24. 845 -6. 136 69. 781 1.00 28.83 ATOM 2217 CA GLY 294 24. 302 -5. 071 70. 615 1.00 26.73 ATOM 2218 C GLY 294 23. 551 -5. 379 71. 898 1.00 29.79 ATOM 2219 0 GLY 294 22. 757 -6. 318 71.964 1.00 27.85 ATOM 2220 N GLY 295 23. 794 -4. 553 72. 918 1, 00 30, 56 ATOM CA 20 2221 GLY 295 23. 136 -4. 722 74, 204 1.00 33.01 ATOM 2222 C GLY 295 21.628 -4.539 74. 144 1, 00 34, 05 ATOM 2223 0 GLY 295 20. 927 -4. 810 75. 107 1.00 34.93 ATOM 2224 N LYS 296 21. 124 -4. 058 73. 016 1.00 35.19 ATOM 2225 CA LYS 296 19.690 -3.868 72. 851 1.00 36.24 25 ATOM 2226 CB LYS 296 19. 419 -2. 988 71.626 1.00 38.05 ATOM 2227 CG LYS 296 17. 961 -2. 910 71. 181 1.00 40.26 ATOM 2228 CD LYS 296 17. 122 -2. 093 72. 141 1.00 43.32 ATOM 2229 CE LYS 29615. 730 -1. 862 71.579 1.00 44,42 ATOM 2230 NZ LYS 296 14. 842 -1. 175 72. 562 1. 00 44. 77

- 93 -

ATOM 2231 C LYS 296 19. 045 -5. 235 72.654 1.00 36.63 ATOM 0 LYS 296 17. 867 -5. 420 72.963 1. 00 38, 56 ATOM 2233 N TYR 297 19. 836 -6. 193 72. 168 1.00 34.63 ATOM 2234 CA TYR 297 19. 346 -7. 539 71.890 1. 00 33. 22 ATOM 2235 5 CB TYR 29719. 487 -7. 810 70.389 1. 00 34. 65 ATOM 2236 CG TYR 29719. 073 -6. 631 69. 535 1.00 36.28 ATOM 2237 CD1 TYR 297 20. 010 -5. 677 69. 125 1. 00 34, 21 ATOM 2238 CE1 TYR 297 19. 622 -4. 548 68. 404 1.00 36.22 ATOM 2239 CD2 TYR 297 17, 732 -6, 431 69. 195 1. 00 34. 24 ATOM 10 2240 CE2 TYR 297 17. 330 -5. 305 68. 476 1.00 35.71 ATOM 2241 CZ TYR 297 18. 280 -4. 368 68. 082 1, 00 37, 38 ATOM 2242 0H TYR 297 17. 887 -3. 258 67. 375 1. 00 35. 33 ATOM 2243 C TYR 297 19. 968 -8. 713 72. 670 1.00 33.21 ATOM 2244 0 TYR 297 19, 392 -9, 800 72. 716 1. 00 33. 78 ATOM 15 2245 N MET 298 21. 126 -8. 504 73, 283 1, 00 31, 19 ATOM 2246 CA MET 298 21. 803 -9. 576 74.005 1. 00 30. 16 ATOM 2247 CB MET 298 23. 075 -9. 038 74, 644 1, 00 30, 05 ATOM 2248 CG MET 298 23. 957 -10. 104 75. 231 1.00 26.86 ATOM 2249 SD MET 298 25. 486 -9. 405 75, 850 1, 00 32, 83 20 ATOM 2250 CE MET 298 26, 409 -9, 201 74. 338 1. 00 29. 59 ATOM C MET 298 20. 963 -10. 296 75. 066 1. 00 31. 27 ATOM 2252 0 MET 298 20. 882 -11. 529 75. 077 1.00 29.78 ATOM 2253 N GLY 299 20. 353 -9. 530 75.963 1.00 30.40 ATOM 2254 CA GLY 299 19. 534 -10. 132 76.998 1.00 31.32 25 ATOM C GLY 299 18. 354 -10. 869 76.393 1. 00 33. 32 ATOM 2256 0 GLY 299 17. 988 -11. 962 76. 831 1.00 33.97 ATOM 2257 N GLU 300 17. 752 -10. 265 75. 377 1.00 31.78 ATOM 2258 CA GLU 300 16.617 -10.874 74.707 1. 00 31. 93 ATOM 2259 CB GLU 300 16.080 -9.937 73.621 1.00 29.00

- 94 -

ATOM 14. 877 -10. 486 72. 881 2260 CG GLU 300 1.00 32.60 ATOM 2261 CD GLU 300 13. 655 -10. 655 73. 769 1. 00 31. 13 ATOM 2262 OE1 GLU 300 12. 629 -11. 144 73. 265 1.00 34.55 ATOM 2263 OE2 GLU 300 13. 714 -10. 299 74. 963 1.00 33.16 5 ATOM 2264 C GLU 300 17. 013 -12. 215 74.092 1.00 30.90 ATOM 2265 0 GLU 300 16. 225 -13. 156 74. 090 1.00 32.89 ATOM 2266 N LEU 301 18. 234 -12. 301 73. 570 1.00 31.16 ATOM 2267 CA LEU 301 18. 714 -13. 546 72. 973 1.00 28,93 ATOM 2268 CB LEU 301 20.085 -13.339 72.325 1.00 24.69 10 ATOM 2269 CG LEU 301 20. 152 -12. 667 70. 952 1. 00 24. 17 ATOM 2270 CD1 LEU 301 21. 607 -12. 326 70, 628 1. 00 23. 70 ATOM 2271 CD2 LEU 301 19. 560 -13. 598 69. 886 1. 00 23, 13 ATOM 2272 C LEU 301 18.814 -14.616 74.056 1.00 29.42 ATOM 2273 0 LEU 301 18. 408 -15. 761 73. 853 1.00 32.03 15 ATOM 2274 N VAL 302 19. 365 -14. 239 75. 204 1. 00 28, 73 ATOM 2275 CA VAL 302 19. 505 -15. 164 76. 317 1.00 29.42 ATOM 2276 CB VAL 302 20. 265 -14. 510 77. 497 1. 00 26, 51 ATOM 2277 CG1 VAL 302 20. 172 -15. 395 78. 740 1.00 25.63 ATOM 2278 CG2 VAL 302 21. 731 -14. 301 77. 117 1.00 25.98 ATOM 20 2279 C VAL 302 18. 127 -15. 624 76, 795 1.00 31.88 ATOM 2280 0 VAL 302 17. 934 -16. 795 77. 112 1.00 32.71 ATOM 2281 N ARG 303 17. 171 -14. 703 76.835 1.00 32.91 ATOM 2282 CA ARG 303 15. 818 -15. 039 77. 270 1.00 36.08 ATOM 2283 CB ARG 14. 910 -13. 802 77. 250 1.00 35.86 25 ATOM 2284 CG ARG 303 13. 524 -14. 055 77. 847 1.00 36.97 ATOM 2285 CD ARG 303 12. 660 -12. 802 77. 833 1.00 39.15 ATOM 2286 NE ARG 303 12. 105 -12. 529 76. 511 1.00 41.95 ATOM 2287 CZ ARG 303 11. 090 -13. 197 75. 968 1.00 43.84 ATOM 2288 NH1 ARG 303 10. 502 -14. 182 76. 631 1.00 42.47

- 95 -

						00		
	ATOM	2289	NH2	ARG	303	10. 666 -12. 885	74. 750	1. 00 43. 86
	ATOM	2290	C	ARG	303	15. 215 -16. 110	76. 373	1. 00 36. 97
	ATOM	2291	0	ARG	303	14. 554 -17. 032	76. 851	1.00 37.22
	ATOM	2292	N	LEU	304	15. 432 -15. 970	75. 068	1.00 37.86
5	ATOM	2293	CA	LEU	304	14. 914 -16. 924	74. 103	1. 00 37. 63
	ATOM	2294	CB	LEU	304	15. 113 -16. 387	72. 687	1. 00 38. 69
	ATOM	2295	CG	LEU	304	13. 944 -15. 590	72. 104	1. 00 40. 35
	ATOM	2296	CD1	LEU	304	13. 486 -14. 516	73. 062	1. 00 40. 85
	ATOM	2297	CD2	LEU	304	14. 378 `-14. 986	70. 785	1. 00 42. 07
10	ATOM	2298	C	LEU	304	15. 602 -18. 272	74. 262	1. 00 37. 69
	ATOM	2299	0	LEU	304	14. 978 -19. 324	74. 120	1. 00 38. 84
	ATOM	2300	N	VAL	305	16. 893 -18. 238	74. 558	1. 00 36. 28
	ATOM	2301	CA	VAL	305	17. 647 -19. 466	74. 753	1. 00 34. 31
	ATOM	2302	CB	VAL	305	19. 148 -19. 184	74. 908	1. 00 32. 24
15	ATOM	2303	CG1	VAL	305	19. 868 -20. 438	75. 390	1. 00 28. 85
	ATOM	2304	CG2	VAL	305	19. 717 -18. 713	73. 578	1.00 29.80
	ATOM	2305	C	VAL	305	17. 153 -20. 158	76. 012	1.00 35.48
	ATOM	2306	0	VAL	305	17. 079 -21. 389	76. 070	1.00 34.47
	ATOM	2307	N	LEU	306	16. 820 -19. 362	77. 023	1.00 34.14
20	ATOM	2308	CA	LEU	306	16. 328 -19. 921	78. 273	1.00 35.52
	ATOM	2309	CB	LEU	306	16. 257 -18. 841	79. 353	1. 00 32. 11
	ATOM	2310	CG	LEU	306	17. 601 -18. 289	79. 829	1.00 32.53
	ATOM	2311	CD1	LEU	306	17. 359 -17. 326	80. 964	1.00 33.54
	ATOM	2312	CD2	LEU	306	18. 515 -19. 420	80. 287	1.00 30.60
25	ATOM	2313	C	LEU	306	14. 948 -20. 532	78. 049	1.00 37.53
	ATOM	2314	0	LEU	306	14. 637 -21. 608	78. 566	1. 00 33. 87
	ATOM	2315	N	LEU	307	14. 129 -19. 850	77. 257	1. 00 39. 39
	ATOM	2316	CA	LEU	307	12. 787 -20. 336	76. 971	1.00 41.43
	ATOM	2317	CB	LEU	307	12. 011 -19. 296	76. 165	1. 00 40. 84

- 96 -

						00		
	ATOM	2318	CG	LEU	307	10. 932 -18. 527	76. 935	1. 00 43. 43
	ATOM	2319	CD 1	LEU	307	11. 389 -18. 243	78. 356	1. 00 43. 36
	ATOM	2320	CD2	LEU	307	10. 610 -17. 233	76. 197	1. 00 41. 75
	ATOM	2321	C	LEU	307	12. 802 -21. 674	76. 239	1. 00 42. 39
5	ATOM	2322	0	LEU	307	11. 974 -22. 537	76. 514	1. 00 42. 90
	ATOM	2323	N	ARG	308	13. 729 -21. 860	75. 306	1. 00 42. 02
	ATOM	2324	CA	ARG	308	13. 771 -23. 132	74. 605	1. 00 42. 88
	ATOM	2325	CB	ARG	308	14. 765 -23. 125	73. 445	1.00 43.55
	ATOM	2326	CG	ARG	308	14. 891 -24. 514	72.837	1.00 47.00
10	ATOM	2327	CD	ARG	308	15. 908 -24. 626	71.729	1. 00 49. 25
	ATOM	2328	NE	ARG	308	16. 079 -26. 026	71. 349	1. 00 52. 10
	ATOM	2329	CZ	ARG	308	16. 915 -26. 456	70. 410	1. 00 52. 45
	ATOM	2330	NH1	ARG	308	17. 663 -25. 591	69.739	1. 00 54. 77
	ATOM	2331	NH2	ARG	308	17. 016 -27. 756	70. 154	1. 00 51. 73
15	ATOM	2332	C	ARG	308	14. 181 -24. 222	75. 582	1. 00 43. 27
	ATOM	2333	0	ARG	308	13. 654 -25. 333	75. 540	1. 00 42. 09
	ATOM	2334	N	LEU	309	15. 135 -23. 895	76. 452	1. 00 42. 54
	ATOM	2335	CA	ĽEU	309	15. 627 -24. 837	77. 447	1. 00 42. 29
	ATOM	2336	CB	LEU	309	16. 771 -24. 207	78. 248	1. 00 40. 55
20	ATOM	2337	CG	LEU	309	18. 193 -24. 656	77. 886	1. 00 39. 65
	ATOM	2338	CD1	LEU	309	18. 313 -24. 973	76. 416	1. 00 38. 56
	ATOM	2339	CD2	LEU	309	19. 171 -23. 569	78. 284	1.00 37.67
	ATOM	2340	C	LEU	309	14. 515 -25. 302	78. 379	1.00 42.66
	ATOM	2341	0	LEU	309	14. 509 -26. 450	78. 818	1.00 41.33
25	ATOM	2342	N	VAL	310	13. 570 -24. 416	78. 676	1.00 44.27
	ATOM	2343	CA	VAL	310	12. 464 -24. 789	79. 543	1. 00 46. 40
	ATOM	2344	CB	VAL	310	11. 711 -23. 546	80. 111	1. 00 46. 06
	ATOM	2345	CG1	VAL	310	12. 682 -22. 613	80. 807	1. 00 45. 43
	ATOM	2346	CG2	VAL	310	10. 976 -22. 825	79. 014	1. 00 48. 29

- 97 -

ATOM 2347 C VAL 310 11. 479 -25. 666 78. 769 1.00 48.00 ATOM 2348 0 VAL 310 10. 952 -26. 638 79. 311 1.00 47.71 ATOM 2349 N ASP 311 11. 242 -25. 333 77. 501 1.00 49.58 ATOM 2350 CA ASP 311 10. 313 -26. 104 76. 683 1. 00 52, 37 ATOM. 5 CB ASP 311 9. 978 -25. 365 75, 382 1.00 54.70 ATOM 2352 CG ASP 311 9. 318 -24. 014 75. 626 1. 00 58, 89 ATOM 2353 OD1 ASP 311 8. 742 -23. 808 76. 719 1.00 60.74 ATOM 2354 OD2 ASP 311 9. 364 -23. 158 74. 713 1.00 60.54 ATOM 2355 C ASP 311 10. 872 -27. 485 76. 365 1.00 52.35 10 ATOM 2356 0 ASP 311 10. 131 -28. 388 75. 982 1. 00 55. 07 ATOM 2357 N GLU 312 12. 180 -27. 642 76. 515 1. 00 51. 23 ATOM 2358 CA GLU 312 12. 828 -28. 926 76. 279 1. 00 51, 12 ATOM 2359 CB GLU 312 14. 277 -28. 729 75. 834 1. 00 52. 62 ATOM 2360 CG GLU 312 14. 445 -28. 141 74. 448 1. 00 57, 13 15 ATOM 2361 CD GLU 312 14. 187 -29. 153 73. 358 1.00 58.40 ATOM 2362 OE1 GLU 312 14.831 -30.222 73.385 1. 00 59. 31 ATOM 2363 OE2 GLU 13. 346 -28. 879 72. 476 312 1.00 60.41 ATOM 2364 C GLU 312 12. 810 -29. 660 77. 611 1.00 50.76 ATOM 2365 0 GLU 312 13. 292 -30. 787 77. 720 1.00 50.64 20 ATOM 2366 N ASN 313 12. 265 -28. 989 78. 624 1.00 50.08 ATOM 2367 CA ASN 313 12. 154 -29. 533 79.974 1.00 51.37 ATOM 2368 CB ASN 313 11. 428 -30. 886 79. 932 1.00 53.51 ATOM 2369 CG ASN 313 10.846 -31.275 81. 271 1.00 55.73 ATOM 2370 OD1 ASN 313 10. 011 -30. 560 81.824 1.00 58.95 25 ATOM 2371 ND2 ASN 313 11. 281 -32. 415 81. 803 1.00 59.16 ATOM 2372 C ASN 313 13. 524 -29. 693 80. 635 1.00 50.00 ATOM 2373 0 ASN 313 13. 733 -30. 595 81. 447 1.00 50.40 ATOM 2374 N LEU 314 14. 449 -28. 799 80, 296 1.00 48.35 ATOM 2375 CA LEU 314 15. 805 -28. 843 80. 835 1. 00 45. 12

- 98 -

	ATOM	2376	CB	LEU	314	16. 819 -28. 785	79. 688	1. 00 44. 25
	ATOM	2377	CG	LEU	314	16. 759 -29. 872	78. 611	1. 00 45. 98
	ATOM	2378	CD	LEU	314	17. 619 -29. 465	77. 416	1. 00 43. 63
	ATOM	2379	CD2	LEU	314	17. 232 -31. 201	79. 196	1. 00 45. 09
5	ATOM	2380	C	LEU	314	16. 119 -27. 724	81. 829	1. 00 43. 38
	ATOM	2381	0	LEU	314	17. 180 -27. 732	82. 449	1. 00 41. 90
	ATOM	2382	N	LEU	315	15. 211 -26. 765	81. 982	1. 00 41. 74
	ATOM	2383	CA	LEU	315	15. 446 -25. 645	82. 899	1. 00 42. 39
	ATOM	2384	CB	LEU	315	15. 907 -24. 407	82. 116	1. 00 40. 17
10	ATOM	2385	CG	LEU	315	17. 243 -23. 721	82. 428	1. 00 39. 81
	ATOM	2386	CD 1	LEU	315	17. 262 -22. 383	81. 689	1.00 41.89
	ATOM	2387	CD2	LEU	315	17. 421 -23. 482	83. 920	1. 00 37. 58
	ATOM	2388	C	LEU	315	14. 198 -25. 278	83. 694	1. 00 42. 28
	ATOM	2389	0	LEU	315	13. 103 -25. 214	83. 144	1. 00 40. 83
15	ATOM	2390	N	PHE	316	14. 377 -25. 021	84. 986	1. 00 43. 70
	ATOM	2391	CA	PHE	316	13. 271 -24. 648	85. 863	1. 00 46. 70
	ATOM	2392	CB	PHE	316	12. 717 -23. 278	85. 459	1. 00 47. 06
	ATOM	2393	CG	PHE	316	13. 776 -22. 247	85. 187	1. 00 47. 07
	ATOM	2394	CD1	PHE	316	14. 824 -22. 051	86. 082	1.00 47.24
20	ATOM	2395	CD2	PHE	316	13. 722 -21. 467	84. 037	1. 00 47. 25
	ATOM	2396	CE1	PHE	316	15. 803 -21. 094	85. 835	1. 00 46. 12
	ATOM	2397	CE2	PHE	316	14. 695 -20. 507	83. 782	1. 00 47. 70
	ATOM	2398	cz	PHE	316	15. 738 -20. 321	84. 683	1. 00 47. 68
	ATOM	2399	C	PHE	316	12. 131 -25. 672	85. 857	1. 00 48. 45
25	ATOM	2400	0	PHE	316	10. 960 -25. 306	85. 967	1. 00 48. 86
	ATOM	2401	N	HIS	317	12. 473 -26. 950	85. 725	1. 00 50. 80
	ATOM	2402	CA	HIS	317	11. 469 -28. 009	85. 712	1. 00 53. 83
	ATOM	2403	CB	HIS	317	10. 655 -27. 986	87. 010	1. 00 57. 67
	ATOM	2404	CG	HIS	317	11. 496 -27. 985	88. 246	1. 00 61. 10

- 99 -

	ATOM	2405	CD	2 HIS	317	11. 558 -27. 116	89. 282	1. 00 63. 07
	ATOM	2406	ND:	I HIS	317	12. 430 -28. 965	88. 509	1. 00 62. 35
	ATOM	2407	CE	HIS	317	13. 032 -28. 699	89. 655	1. 00 64. 77
	ATOM	2408	NE	HIS	317	12. 521 -27. 582	90. 144	1. 00 65. 99
5	ATOM	2409	C	HIS	317	10. 521 -27. 859	84. 534	1. 00 53. 57
	ATOM	2410	0	HIS	317	9. 429 -28. 425	84. 537	1. 00 53. 60
	ATOM	2411	N	GLY	318	10. 939 -27. 090	83. 534	1. 00 52. 50
	ATOM	2412	CA	GLY	318	10. 113 -26. 881	82. 358	1. 00 51. 83
	ATOM	2413	C	GLY	318	8. 940 -25. 958	82. 615	1. 00 51. 72
10	ATOM	2414	0	GLY	318	7. 939 -25. 999	81. 904	1. 00 50. 88
	ATOM	2415	N	GLU	319	9. 073 -25. 110	83. 627	1. 00 53. 43
	ATOM	2416	CA	GLU	319	8. 014 -24. 182	83. 996	1. 00 55. 73
	ATOM	2417	CB	GLU	319	7. 510 -24. 544	85. 392	1. 00 58. 85
	ATOM	2418	CG	GLU	319	6. 145 -23. 998	85. 761	1. 00 63. 60
15	ATOM	2419	CD	GLU	319	5. 590 -24. 664	87. 016	1. 00 66. 32
	ATOM	2420	0E1	GLU	319	6. 206 -24. 527	88. 100	1. 00 65. 47
	ATOM	2421	0E2	GLU	319	4. 540 -25. 335	86. 913	1.00 67.45
	ATOM	2422	C	GLU	319	8. 538 -22. 748	83. 966	1. 00 55. 18
	ATOM	2423	0	GLU	319	9. 278 -22. 324	84. 851	1. 00 55. 23
20	ATOM	2424	N	ALA	320	8. 145 -22. 006	82. 938	1. 00 55. 14
	ATOM	2425	CA	ALA	320	8. 585 -20. 630	82. 780	1. 00 55. 95
	ATOM	2426	CB	ALA	320	8. 609 -20. 265	81. 304	1. 00 55. 13
	ATOM	2427	C	ALA	320	7. 708 -19. 649	83. 544	1. 00 56. 88
	ATOM	2428	0	ALA	320	6. 487 -19. 789	83. 584	1. 00 58. 58
25	ATOM	2429	N	SER	321	8. 344 -18. 648	84. 141	1. 00 57. 00
	ATOM	2430	CA	SER	321	7. 644 -17. 625	84. 902	1. 00 56. 57
	ATOM	2431	CB	SER	321	8. 649 -16. 808	85. 705	1. 00 56. 74
	ATOM	2432	0G	SER	321	8. 013 -15. 725	86. 349	1. 00 57. 41
	ATOM	2433	C	SER	321	6. 853 -16. 689	83. 995	1. 00 58. 61

- 100 -

	ATOM	2434	0	SER	321	7. 054 -16. 665	82. 783	1. 00 58. 41
	ATOM	2435	N	GLU	322	5. 955 -15. 914	84. 595	1. 00 60. 41
	ATOM	2436	CA	GLU	322	5. 133 -14. 960	83. 858	1. 00 62. 09
	ATOM	2437	CB	GLU	322	4. 171 -14. 254	84. 819	1. 00 65. 34
5	ATOM	2438	CG	GLU	322	3. 185 -13. 299	84. 165	1. 00 69. 70
	ATOM	2439	CD	GLU	322	2. 075 -14. 020	83. 418	1. 00 73. 68
	ATOM	2440	0E1	GLU	322	1. 379 -14. 851	84. 046	1. 00 74. 78
	ATOM	2441	0E2	GLU	322	1. 896 -13. 751	82. 208	1. 00 75. 02
	ATOM	2442	C	GLU	322	6. 047 -13. 929	83. 204	1. 00 61. 24
10	ATOM	2443	0	GLU	322	5. 913 -13. 612	82. 022	1. 00 60. 81
	ATOM	2444	N	GLN	323	6. 987 -13. 420	83. 991	1. 00 60. 42
	ATOM	2445	CA	GLN	323	7. 935 -12. 422	83. 521	1. 00 58. 63
	ATOM	2446	CB	GLN	323	8. 729 -11. 863	84. 700	1. 00 59. 77
	ATOM	2447	CG	GLN	323	7. 902 -11. 039	85. 658	1. 00 61. 20
15	ATOM	2448	CD	GLN	323	8. 690 -10. 608	86. 873	1. 00 63. 03
	ATOM	2449	0E1	GLN	323	9. 672 -9. 866	86. 767	1. 00 63. 70
	ATOM	2450	NE2	GLN	323	8. 266 -11. 074	88. 044	1. 00 64. 05
	ATOM	2451	C	GLN	323	8. 904 -12. 955	82. 478	1. 00 56. 96
	ATOM	2452	0	GLN	323	9. 244 -12. 255	81. 526	1. 00 56. 89
20	ATOM	2453	N	LEU	324	9. 351 -14. 190	82. 652	1. 00 53. 93
	ATOM	2454	CA	LEU	324	10. 298 -14. 763	81. 713	1. 00 52. 62
	ATOM	2455	CB	LEU	324	10. 745 -16. 151	82. 180	1. 00 51. 22
	ATOM	2456	CG	LEU	324	11. 830 -16. 826	81. 334	1. 00 50. 58
	ATOM	2457	CD1	LEU	324	13. 076 -15. 952	81. 299	1. 00 49. 50
25	ATOM	2458	CD2	LEU	324	12. 160 -18. 192	81. 909	1. 00 49. 35
	ATOM	2459	C	LEU	324	9. 730 -14. 855	80. 306	1. 00 52. 38
	ATOM	2460	0	LEU	324	10. 485 -14. 870	79. 337	1. 00 51. 83
	ATOM	2461	N	ARG	325	8. 405 -14. 902	80. 193	1. 00 52. 63
	ATOM	2462	CA	ARG	325	7. 759 -15. 015	78. 887	1. 00 53. 00

- 101 -

	ATOM	2463	CB	ARG	325	6. 477 -15. 848	79. 000	1. 00 54. 77
	ATOM	2464	CG	ARG	325	6. 585 -17. 005	79. 985	1. 00 58. 57
	ATOM	2465	CD	ARG	325	6. 013 -18. 330	79. 458	1. 00 60. 34
	ATOM	2466	NE	ARG	325	6. 881 -18. 961	78. 464	1. 00 62. 28
5	ATOM	2467	CZ	ARG	325	6. 953 -20. 273	78. 249	1. 00 62. 81
	ATOM	2468	NH	1 ARG	325	6. 208 -21. 109	78. 963	1. 00 62. 98
	ATOM	2469	NH	2 ARG	325	7. 769 -20. 752	77. 317	1. 00 62. 50
	ATOM	2470	C	ARG	325	7. 430 -13. 663	78. 266	1. 00 52. 20
	ATOM	2471	0	ARG	325	6. 835 -13. 595	77. 194	1. 00 51. 65
10	ATOM	2472	N	THR	326	7. 820 -12. 589	78. 940	1. 00 51. 52
	ATOM	2473	CA	THR	326	7. 562 -11. 248	78. 438	1. 00 53. 54
	ATOM	2474	CB	THR	326	7. 031 -10. 343	79. 570	1. 00 54. 40
	ATOM	2475	0G1	THR	326	8. 068 -10. 120	80. 534	1. 00 56. 68
	ATOM	2476	CG2	THR	326	5. 858 -11. 012	80. 274	1. 00 53. 00
15	ATOM	2477	C	THR	326	8. 853 -10. 655	77. 850	1.00 54.00
	ATOM	2478	0	THR	326	9. 891 -10. 626	78. 515	1. 00 53. 48
	ATOM	2479	N	ARG	327	8. 782 -10. 191	76. 604	1.00 54.30
	ATOM	2480	CA	ARG	327	9. 948 -9. 628	75. 923	1. 00 55. 25
	ATOM	2481	CB	ARG	327	9. 568 -9. 074	74. 550	1. 00 58. 73
20	ATOM	2482	CG	ARG	327	9. 050 -10. 101	73. 572	1. 00 62. 94
	ATOM	2483	CD	ARG	327	9. 189 -9. 599	72. 143	1. 00 66. 63
	ATOM	2484	NE	ARG	327	8. 462 -10. 454	71. 213	1. 00 70. 25
	ATOM	2485	CZ	ARG	327	7. 136 -10. 522	71. 154	1. 00 72. 29
	ATOM	2486	NH1	ARG	327	6. 399 -9. 778	71. 969	1. 00 72. 86
25	ATOM	2487	NH2	ARG	327	6. 546 -11. 338	70. 288	1. 00 73. 24
	ATOM	2488	C	ARG	327	10. 660 -8. 529	76. 688	1.00 53.79
	ATOM	2489	0	ARG	327	10. 027 -7. 690	77. 326	1. 00 55. 10
	ATOM	2490	N	GLY	328	11. 986 -8. 535	76. 604	1.00 50.97
	ATOM	2491	CA	GLY	328	12. 773 -7. 520	77. 276	1. 00 50. 03

- 102 -

	ATOM	2492	C	GLY	328	12. 922	-7. 715	78. 770	1. 00 49. 36
	ATOM	2493	0	GLY	328	13. 622	-6. 942	79. 426	1. 00 49. 68
	ATOM	2494	N	ALA	329	12. 274	-8. 740	79. 315	1. 00 47. 47
	ATOM	2495	CA	ALA	329	12. 354	-9. 007	80.749	1. 00 46. 93
5	ATOM	2496	CB	ALA	329	11. 468	-10. 184	81. 115	1. 00 48. 23
	ATOM	2497	C	ALA	329	13. 786	-9. 287	81. 173	1. 00 45. 48
	ATOM	2498	0	ALA	329	14. 247	-8. 794	82. 203	1. 00 44. 91
	ATOM	2499	N	PHE	330	14. 490	-10. 088	80. 383	1. 00 43. 75
	ATOM	2500	CA	PHE	330	15. 870	-10. 392	80.710	1. 00 42. 95
10	ATOM	2501	CB	PHE	330	16. 271	-11. 760	80. 156	1. 00 39. 40
	ATOM	2502	CG	PHE	330	17. 478	-12. 350	80. 829	1. 00 36. 90
	ATOM	2503	CD1	PHE	330	18. 761	-11. 985	80. 436	1. 00 35. 73
	ATOM	2504	CD2	PHE	330	17. 330	-13. 241	81.893	1. 00 35. 23
	ATOM	2505	CE1	PHE	330	19. 878	-12. 496	81.093	1. 00 33. 48
15	ATOM	2506	CE2	PHE	330	18. 443	-13. 759	82. 558	1.00 31.61
	ATOM	2507	CZ	PHE	330	19. 716	-13. 387	82. 160	1. 00 33. 39
	ATOM	2508	C	PHE	330	16. 752	-9. 292	80. 130	1. 00 43. 51
	ATOM	2509	0	PHE	330	17. 202	-9. 373	78. 986	1. 00 44. 11
	ATOM	2510	N	GLU	331	16. 962	-8. 254	80. 935	1. 00 43. 95
20	ATOM	2511	CA	GLU	331	17. 777	-7. 099	80. 569	1. 00 43. 11
	ATON	2512	CB	GLU	331	17. 767	-6. 068	81. 697	1. 00 46. 19
	ATOM	2513	CG	GLU	331	16. 393	-5. 551	82. 092	1. 00 50. 13
	ATOM	2514	CD	GLU	331	16. 458	-4. 651	83. 316	1. 00 53. 54
	ATOM	2515	0E1	GLU	331	17. 324	-3. 745	83. 343	1. 00 55. 03
25	ATOM	2516	0E2	GLU	331	15.646	-4. 846	84. 247	1. 00 53. 56
	ATOM	2517	C	GLU	331	19. 216	-7. 511	80. 310	1. 00 42. 02
	ATOM	2518	0	GLU	331	19. 742	-8. 411	80. 968	1. 00 42. 05
	ATOM	2519	N	THR	332	19. 855	-6. 830	79. 365	1. 00 39. 23
	ATOM	2520	CA	THR	332	21. 235	-7. 122	79. 017	1. 00 36. 08

- 103 -

ATOM 2521 CB THR 21. 713 -6. 200 77. 869 1, 00 36, 47 ATOM 2522 OG1 THR 332 21. 297 -6. 762 76.618 1.00 33.61 ATOM 2523 CG2 THR 332 23. 235 -6.03077.884 1.00 31.36 ATOM 2524 C THR 332 22.159-6. 987 80. 219 1, 00 35, 73 ATOM 2525 0 THR 332 23. 209 -7.63480. 280 1.00 35.30 ATOM 2526 N ARG 333 21. 782 -6. 151 81.180 1.00 34.21 ATOM 2527 CA ARG 333 22. 632 -6, 003 82. 353 1. 00 34. 18 ATOM 2528 CB ARG 333 22. 211 -4. 786 83. 193 1.00 36.60 ATOM 2529 ARG 333 20. 830 -4. 854 83. 835 1.00 39.58 10 ATOM 2530 CD ARG 333 20. 488 -3. 518 84. 520 1. 00 42. 78 ATOM 2531 NE ARG 333 19. 264 -3. 590 85. 316 1.00 45.29 ATOM 2532 CZ ARG 333 19. 205 -4. 039 86. 567 1.00 47.32 ATOM 2533 NH1 ARG 333 20. 305 -4. 455 87. 182 1.00 49.55 ATOM 2534 NH2 ARG 333 18. 042 -4. 080 87. 205 1.00 48.70 15 ATOM 2535 C ARG 333 22. 609 -7. 298 83. 181 1.00 31.65 ATOM 2536 0 ARG 333 23. 584 -7. 625 83.863 1.00 31.61 ATOM 2537 N PHE 334 21. 513 -8. 049 83. 105 1.00 31.01 ATOM 2538 CA PHE 334 21. 431 -9. 317 83.835 1.00 30.67 ATOM 2539 CB PHE 334 20. 048 -9. 967 83. 678 1.00 30.39 ATOM 20 2540 CG PHE 334 18. 923 -9. 210 84. 330 1.00 30.58 ATOM 2541 CD1 PHE 334 19. 170 -8. 214 85. 269 1.00 29.37 ATOM 2542 CD2 PHE 334 17.600 -9.522 84.019 1.00 31.94 ATOM 2543 CE1 PHE 334 18. 113 -7. 539 85. 891 1.00 31.67 ATOM 2544 CE2 PHE 334 16. 535 -8. 851 84.636 1.00 32.25 25 ATOM 2545CZ PHE 334 16. 796 -7. 857 85. 575 1.00 28.89 ATOM 2546 C PHE 334 22. 496 -10. 287 83. 295 1.00 30.73 ATOM 2547 0 PHE 334 23. 136 -11. 016 84.064 1. 00 30. 77 ATOM 2548 N VAL 335 22. 685 -10. 290 81.973 1.00 29.44 ATOM 2549 CA VAL 335 23. 672 -11. 165 81.350 1.00 30.61

- 104 -

						104		
	ATOM	2550	CB	VAL	335	23. 777 -10. 921	79. 831	1. 00 30. 75
	ATOM	2551	CG	VAL	335	24. 774 -11. 898	79. 216	1. 00 32. 48
	ATOM	2552	CG2	VAL	335	22. 424 -11. 078	79. 181	1. 00 29. 80
	ATOM	2553	C	VAL	335	25. 041 -10. 904	81. 964	1. 00 31. 64
5	ATOM	2554	0	VAL	335	25. 759 -11. 830	82. 356	1. 00 31. 87
	ATOM	2555	N	SER	336	25. 382 -9. 623	82. 048	1. 00 33. 23
	ATOM	2556	CA	SER	336	26. 655 -9. 173	82. 593	1. 00 32. 42
	ATOM	2557	CB	SER	336	26. 778 -7. 660	82. 384	1. 00 33. 94
	ATOM	2558	0G	SER	336	28. 080 -7. 204	82. 682	1. 00 38. 27
10	ATOM	2559	C	SER	336	26. 793 -9. 524	84. 078	1. 00 32. 82
	ATOM	2560	0	SER	336	27. 863 -9. 917	84. 529	1. 00 33, 76
	ATOM	2561	N	GLN	337	25. 711 -9. 389	84. 839	1. 00 32. 64
	ATOM	2562	CA	GLN	337	25. 753 -9. 715	86. 260	1. 00 34. 83
	ATOM	2563	CB	GLN	337	24. 480 -9. 233	86. 958	1. 00 37. 43
15	ATOM	2564	CG	GLN	337	24. 339 -7. 721	86. 972	1. 00 42. 29
	ATOM	2565	CD	GLN	337	22. 984 -7. 260	87. 471	1. 00 44. 59
	ATOM	2566	0E1	GLN	337	22. 710 -6. 062	87. 525	1. 00 46. 49
	ATOM	2567	NE2	GLN	337	22. 128 -8. 209	87. 835	1. 00 43. 79
	ATOM	2568	C	GLN	337	25. 899 -11. 217	86. 447	1. 00 33. 66
20	ATOM	2569	0	GLN	337	26. 663 -11. 674	87. 297	1. 00 35. 28
	ATOM	2570	N	VAL	338	25. 159 -11. 983	85. 655	1. 00 31. 29
	ATOM	2571	CA	VAL	338	25. 236 -13. 432	85. 743	1. 00 29. 21
	ATOM	2572	CB	VAL	338	24. 326 -14. 102	84. 690	1. 00 28. 27
	ATOM	2573	CG1	VAL	338	24. 687 -15. 571	84. 525	1. 00 27. 17
25	ATOM	2574	CG2	VAL	338	22. 877 -13. 984	85. 129	1. 00 26. 99
	ATOM	2575	C	VAL	338	26. 678 -13. 877	85. 547	1. 00 27. 35
	ATOM	2576	0	VAL	338	27. 176 -14. 722	86. 284	1. 00 26. 69
	ATOM	2577	N	GLU	339	27. 361 -13. 283	84. 576	1. 00 27. 29
	ATOM	2578	CA	GLU	339	28. 747 -13. 657	84. 314	1. 00 27. 15

- 105 -

	ATOM	2579	CB	GLU	339	29. 136 -13. 303	82. 871	1. 00	27. 02
	ATOM	2580	CG	GLU	339	28. 404 -14. 185	81. 843	1. 00	30. 73
	ATOM	2581	CD	GLU	339	28. 942 -14. 063	80. 425	1. 00	30. 33
	ATOM	2582	0E1	GLU	339	30. 121 -14. 414	80. 185	1. 00	34. 73
5	ATOM	2583	0E2	GLU	339	28. 179 -13. 619	79. 548	1. 00	29. 50
	ATOM	2584	C	GLU	339	29. 749 -13. 085	85. 311	1. 00	26. 93
	ATOM	2585	0	GLU	339	30. 940 -13. 345	85. 209	1. 00	27. 69
	ATOM	2586	N	SER	340	29. 264 -12. 320	86. 285	1. 00	27. 55
	ATOM	2587	CA	SER	340	30. 140 -11. 763	87. 318	1. 00	28.61
10	ATOM	2588	CB	SER	340	29. 741 -10. 323	87. 667	1. 00	29. 40
	ATOM	2589	0G	SER	340	29. 800 -9. 485	86. 528	1.00	35. 97
	ATOM	2590	C	SER	340	30. 029 -12. 615	88. 583	1. 00	27. 94
	ATOM	2591	0	SER	340	30. 811 -12. 448	89. 526	1. 00	24. 04
	ATOM	2592	N	ASP	341	29. 042 -13. 511	88. 600	1. 00	28. 02
15	ATOM	2593	CA	ASP	341	28. 812 -14. 387	89. 748	1.00	29. 66
	ATOM	2594	CB	ASP	341	27. 808 -15. 490	89. 393	1.00	30. 94
	ATOM	2595	CG	ASP	341	27. 296 -16. 227	90. 620	1.00	33. 11
	ATOM	2596	0D1	ASP	341	26. 289 -15. 778	91. 217	1. 00	28. 78
	ATOM	2597	0D2	ASP	341	27. 918 -17. 247	90. 991	1. 00	32. 82
20	ATOM	2598	C	ASP	341	30. 137 -15. 003	90. 163	1.00	30.38
	ATOM	2599	0	ASP	341	30. 853 -15. 564	89. 342	1.00	30. 59
	ATOM	2600	N	THR	342	30. 466 -14. 886	91. 443	1.00	33. 59
	ATOM	2601	CA	THR	342	31. 729 -15. 405	91. 953	1. 00	37. 01
	ATOM	2602	CB	THR	342	32. 013 -14. 836	93. 350	1. 00	38. 81
25	ATOM	2603	0G1	THR	342	31. 012 -15. 304	94. 265	1. 00	43. 90
	ATOM	2604	CG2	THR	342	31. 972 -13. 316	93. 317	1. 00	35. 79
	ATOM	2605	C	THR	342	31. 780 -16. 929	92. 027	1. 00	37. 87
	ATOM	2606	0	THR	342	32. 853 -17. 514	92. 191	1. 00	39. 64
	ATOM	2607	N	GLY	343	30. 625 -17. 568	91.894	1. 00	36. 81

- 106 -

ATOM 2608 CA GLY 34 ATOM 2609 C GLY 34 ATOM 2611 N ASP 34 ATOM 2612 CA ASP 34 ATOM 2613 CB ASP 34 ATOM 2616 OD1 ASP 34 ATOM 2616 OD2 ASP 34 ATOM 2616 OD2 ASP 34 ATOM 2616 OD2 ASP 34 ATOM 2618 O ASP 34 ATOM 2619 N ARG 34 ATOM 2619 N ARG 34 ATOM 2621 CB ARG 34 ATOM 2621 CB ARG 34 ATOM 2621 CB ARG 34 ATOM 2622 CG ARG 34 ATOM 2624	
ATOM 2610 O GLY 34 ATOM 2612 CA ASP 34 ATOM 2612 CA ASP 34 ATOM 2612 CA ASP 34 ATOM 2613 CB ASP 34 ATOM 2614 CG ASP 34 ATOM 2615 ODJ ASP 34 ATOM 2616 ODZ ASP 34 ATOM 2618 OD ASP 34 ATOM 2619 N ARG 345 ATOM 2620 CA ARG 345 ATOM 2621 CB ARG 345 ATOM 2622 CG ARG 345 ATOM 2623 CD ARG 345 ATOM 2624 NE ARG 345 ATOM 2625 CZ ARG 345 ATOM 2628	30. 578 -19. 018 91. 970 1. 00 39. 26
ATOM 2611 N ASP 34 ATOM 2612 CA ASP 34 ATOM 2613 CB ASP 34 ATOM 2614 CG ASP 34 ATOM 2615 OD1 ASP 34 ATOM 2616 OD2 ASP 34 ATOM 2616 OD2 ASP 34 ATOM 2618 O ASP 34 ATOM 2619 N ARG 345 ATOM 2620 CA ARG 345 ATOM 2621 CB ARG 345 ATOM 2622 CG ARG 345 ATOM 2623 CD ARG 345 ATOM 2624 NE ARG 345 ATOM 2625 CZ ARG 345 ATOM 2626 NH1 ARG 345 ATOM 2627 <td>3 29. 631 -19. 515 93. 053 1. 00 38. 98</td>	3 29. 631 -19. 515 93. 053 1. 00 38. 98
5 ATOM 2612 CA ASP 34-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	3 29. 293 -20. 695 93. 090 1. 00 39. 46
ATOM	29. 204 -18. 615 93. 935 1. 00 38. 20
ATOM	28. 287 -18. 980 95. 005 1. 00 39. 74
ATOM 2615 ODI ASP 34- ATOM 2616 OD2 ASP 34- ATOM 2618 O ASP 34- ATOM 2618 O ASP 34- ATOM 2619 N ARG 34- ATOM 2620 CA ARG 34- ATOM 2621 CB ARG 34- ATOM 2622 CG ARG 34- ATOM 2623 CD ARG 34- ATOM 2624 NE ARG 34- ATOM 2626 NHI ARG 34- ATOM 2626 NHI ARG 34- ATOM 2627 NH2 ARG 34- ATOM 2628 C ARG 34- ATOM 2628 C ARG 34- ATOM 2629 O ARG 34- ATOM 2620 N LYS 34- ATOM 2631 CA LYS 34- ATOM 2631 CA LYS 34- ATOM 2633 CG LYS 34- ATOM 2634 CD LYS 34- ATOM 2633 CG LYS 34- ATOM 2634 CD LYS 34- ATOM 2633 CG LYS 34- ATOM 2633 CG LYS 34- ATOM 2634 CD LYS 34- ATOM 2634 CD LYS 34- ATOM 2633 CG LYS 34- ATOM 2634 CD LYS 34- ATOM 2634 C	28. 480 -18. 071 96. 231 1. 00 39. 14
ATOM 2616 ODZ ASP 344 ATOM 2617 C ASP 344 ATOM 2618 O ASP 344 ATOM 2619 N ARG 344 ATOM 2620 CA ARG 345 ATOM 2621 CB ARG 345 ATOM 2622 CG ARG 345 ATOM 2623 CD ARG 345 ATOM 2624 NE ARG 345 ATOM 2626 NHI ARG 345 ATOM 2626 NHI ARG 345 ATOM 2627 NHZ ARG 345 ATOM 2628 C ARG 345 ATOM 2630 N LYS 346 ATOM 2631 CA LYS 346 ATOM 2633 C AYS 346	28. 267 -16. 595 95. 928 1. 00 41. 19
100 ATOM 2617 C ASP 344 ATOM 2618 C ASP 344 ATOM 2619 N ARG 348 ATOM 2620 CA ARG 348 ATOM 2621 CB ARG 348 ATOM 2622 CG ARG 348 ATOM 2623 CD ARG 348 ATOM 2624 NE ARG 348 ATOM 2626 NH ARG 348 ATOM 2626 NH ARG 348 ATOM 2627 ATOM 346 ATOM 2628 C ARG 348 ATOM 2630 C ARG 348 ATOM 2631 C ARG 348 ATOM 2631 C ARG 348 ATOM 2633 C ARG 348	27. 733 -16. 256 94. 848 1. 00 39. 57
ATOM 2618 0 ASP 344 ATOM 2619 N ARG 348 ATOM 2620 CA ARG 348 ATOM 2621 CB ARG 348 ATOM 2622 CG ARG 348 ATOM 2623 CD ARG 348 ATOM 2623 CD ARG 348 ATOM 2626 NHI ARG 348 ATOM 2626 NHI ARG 348 ATOM 2627 NH2 ARG 348 ATOM 2628 C ARG 348 ATOM 2630 C ARG 348 ATOM 2631 CA LYS 346 ATOM 2633 C ARG 348 ATOM 2633 C ARG 348 ATOM 2634 C ARG 348 ATOM 2634 C ARG 348 ATOM 2636 C ARG 348 ATOM 2636 C ARG 348 ATOM 2637 C ARG 348 ATOM 2638 C AR	28. 627 -15. 767 96. 794 1. 00 42. 27
ATOM 2619 N. ARG 348 ATOM 2620 CA ARG 348 ATOM 2621 CB ARG 348 ATOM 2622 CG ARG 348 ATOM 2623 CD ARG 348 ATOM 2623 CD ARG 348 ATOM 2626 NHI ARG 348 ATOM 2626 NHI ARG 348 ATOM 2627 NH2 ARG 348 ATOM 2628 C ARG 348 ATOM 2631 C ARG 348 ATOM 2631 C ARG 348 ATOM 2632 C ARG 348 ATOM 2633 C ARG 348 ATOM 2633 C ARG 348 ATOM 2633 C ARG 348 ATOM 2634 C AR	26. 842 -18. 926 94. 516 1. 00 40. 25
ATOM 2620 CA ARG 348 ATOM 2621 CB ARG 348 ATOM 2622 CG ARG 348 ATOM 2623 CD ARG 348 ATOM 2624 NE ARG 348 ATOM 2625 CZ ARG 348 ATOM 2626 NH1 ARG 348 ATOM 2627 NH2 ARG 348 ATOM 2628 C ARG 348 ATOM 2628 C ARG 348 ATOM 2628 C ARG 348 ATOM 2630 N IVS 346 ATOM 2631 CA IVS 346 ATOM 2633 CG IVS 346 ATOM 2633 CG IVS 346 ATOM 2633 CG IVS 346 ATOM 2634 CD IVS 346	25. 904 -19. 235 95. 257 1. 00 39. 36
ATOM 2621 CB ARG 348 ATOM 2622 CG ARG 348 ATOM 2623 CD ARG 348 ATOM 2624 RE ARG 348 ATOM 2625 CZ ARG 348 ATOM 2626 NH1 ARG 348 ATOM 2627 NH2 ARG 345 ATOM 2628 C ARG 345 ATOM 2628 C ARG 345 ATOM 2630 N IVS 346 ATOM 2631 CA IVS 346 ATOM 2633 CG IVS 346 ATOM 2633 CG IVS 346 ATOM 2634 CD IVS 346	26. 680 -18. 525 93. 259 1. 00 38. 45
15 ATOM 2622 CG ARG 3445 ATOM 2623 CD ARG 3456 ATOM 2624 NE ARG 3456 ATOM 2626 NH1 ARG 3456 ATOM 2626 NH1 ARG 3456 ATOM 2627 NH2 ARG 3456 ATOM 2628 C ARG 3456 ATOM 2629 O ARG 3456 ATOM 2629 O ARG 3456 ATOM 2630 N LYS 3466 ATOM 2631 CA LYS 3466 ATOM 2633 CG LYS 3466 ATOM 2633 CG LYS 3466 ATOM 2634 CD LYS 3466	25. 374 -18. 449 92. 618 1. 00 37. 30
ATOM 2623 CD ARG 3486	24. 738 -19. 847 92. 587 1. 00 37. 49
ATOM 2624 NE ARG 3458 ATOM 2625 CZ ARG 3458 ATOM 2626 NH1 ARG 3458 ATOM 2627 NH2 ARG 3458 ATOM 2628 C ARG 3458 ATOM 2629 O ARG 3458 ATOM 2630 N LYS 3468 ATOM 2631 CA LYS 3468 ATOM 2632 CB LYS 3468 ATOM 2633 CG LYS 3468 ATOM 2633 CG LYS 3468	25. 657 -20. 935 92. 044 1. 00 38. 81
ATOM 2625 CZ ARG 3450 ATOM 2626 NH1 ARG 3450 ATOM 2627 NH2 ARG 3450 ATOM 2628 C ARG 3450 ATOM 2629 O ARG 3450 ATOM 2630 N LYS 3460 ATOM 2631 CA LYS 3460 ATOM 2632 CB LYS 3460 ATOM 2633 CG LYS 3460 ATOM 2633 CG LYS 3460	24. 976 -22. 301 92. 046 1. 00 40. 19
ATOM 2626 NH ARG 345 ATOM 2627 NH2 ARG 345 ATOM 2628 C ARG 345 ATOM 2629 O ARG 345 ATOM 2630 N LYS 346 ATOM 2631 CA LYS 346 ATOM 2632 CB LYS 346 ATOM 2633 CG LYS 346 ATOM 2633 CG LYS 346 ATOM 2634 CD LYS 346	25. 790 -23. 327 91. 397 1. 00 42. 18
20 ATOM 2627 NHZ ARG 345 ATOM 2628 C ARG 345 ATOM 2629 0 ARG 345 ATOM 2630 N LYS 346 ATOM 2631 CA LYS 346 25 ATOM 2632 CB LYS 346 ATOM 2633 CG LYS 346 ATOM 2634 CD LYS 346	26. 730 -24. 051 91. 999 1. 00 43. 19
ATOM 2628 C ARG 345 ATOM 2629 0 ARG 345 ATOM 2630 N LYS 346 ATOM 2631 CA LYS 346 25 ATOM 2632 CB LYS 346 ATOM 2633 CG LYS 346 ATOM 2634 CD LYS 346	26. 990 -23. 880 93. 288 1. 00 43. 31
ATOM 2629 0 ARG 345 ATOM 2630 N LYS 346 ATOM 2631 CA LYS 346 25 ATOM 2632 CB LYS 346 ATOM 2633 CG LYS 346 ATOM 2634 CD LYS 346	27. 421 -24. 947 91. 302 1. 00 40. 56
ATOM 2630 N. LYS 346 ATOM 2631 CA LYS 346 ATOM 2632 CB LYS 346 ATOM 2633 CG LYS 346 ATOM 2634 CD LYS 346	24. 397 -17. 456 93. 246 1. 00 37. 06
25 ATOM 2631 CB LYS 346 25 ATOM 2632 CB LYS 346 ATOM 2633 CG LYS 346 ATOM 2634 CD LYS 346	23. 231 -17. 395 92. 837 1. 00 35. 44
25 ATOM 2632 CB LYS 346 ATOM 2633 CG LYS 346 ATOM 2634 CD LYS 346	24. 855 -16. 681 94. 228 1. 00 37. 09
ATOM 2633 CG LYS 346 ATOM 2634 CD LYS 346	23. 977 -15. 704 94. 876 1. 00 39. 61
ATOM 2634 CD LYS 346	24. 710 -14. 964 96. 005 1. 00 43. 18
	25. 084 -15. 826 97. 214 1. 00 47. 92
ATOM 2635 CF IVS 346	25. 835 -15. 009 98. 285 1. 00 50. 48
110m 2000 CL DID 040	26. 274 -15. 887 99. 466 1. 00 53. 20
ATOM 2636 NZ LYS 346	27. 039 -15. 136 100. 520 1. 00 54. 15

- 107 -

	ATOM	2637	C	LYS	346	23. 467 -14. 690	93. 858	1. 00 39. 25
	ATOM	2638	0	LYS	346	22. 271 -14. 400	93. 795	1. 00 38. 51
	ATOM	2639	N	GLN	347	24. 384 -14. 158	93. 055	1. 00 40. 01
	ATOM	2640	CA	GLN	347	24. 036 -13. 169	92. 037	1. 00 39. 62
5	ATOM	2641	CB	GLN	347	25. 301 -12. 725	91. 290	1. 00 44. 30
	ATOM	2642	CG	GLN	347	25. 117 -11. 507	90. 403	1. 00 50. 12
	ATOM	2643	CD	GLN	347	24. 996 -10. 214	91. 196	1. 00 54. 40
	ATOM	2644	0E1	GLN	347	24. 699 -9. 153	90. 637	1. 00 57. 36
	ATOM	2645	NE2	GLN	347	25. 234 -10. 295	92. 501	1.00 55.02
10	ATOM	2646	C	GLN	347	23. 015 -13. 735	91. 046	1. 00 36. 71
	ATOM	2647	0	GLN	347	22. 012 -13. 087	90. 732	1. 00 35. 38
	ATOM	2648	N	ILE	348	23. 264 -14. 949	90. 563	1. 00 33. 61
	ATOM	2649	CA	ILE	348	22. 360 -15. 579	89. 610	1. 00 30. 26
	ATOM	2650	CB	ILE	348	22. 946 -16. 906	89. 103	1. 00 31. 09
15	ATOM	2651	CG2	ILE	348	21. 983 -17. 561	88. 102	1. 00 24. 14
	ATOM	2652	CG1	ILE	348	24. 315 -16. 641	88. 467	1. 00 24. 89
	ATOM	2653	CD1	ILE	348	25. 016 -17. 870	87. 989	1. 00 26. 20
	ATOM	2654	C	ILE	348	20. 990 -15. 836	90. 231	1. 00 32. 47
	ATOM	2655	0	ILE	348	19. 946 -15. 578	89. 607	1. 00 28. 48
20	ATOM	265 6	N	TYR	349	20. 996 -16. 330	91. 468	1. 00 33. 64
	ATOM	2657	CA	TYR	349	19. 757 -16. 622	92. 173	1. 00 33. 94
	ATOM	2658	CB	TYR	349	20. 023 -17. 189	93. 566	1. 00 35. 19
	ATOM	2659	CG	TYR	349	18. 728 -17. 513	94. 273	1. 00 35. 54
	ATOM	2 6 60	CD1	TYR	349	18. 085 -18. 737	94.064	1. 00 35. 44
25	ATOM	2661	CE1	TYR	349	16. 847 -19. 009	94. 647	1. 00 35. 96
	ATOM	2662	CD2	TYR	349	18. 100 -16. 569	95. 083	1. 00 34. 28
	ATOM	2663	CE2	TYR	349	16. 860 -16. 833	95. 665	1. 00 34. 50
	ATOM	2664	CZ	TYR	349	16. 242 -18. 053	95. 441	1. 00 34. 82
	ATOM	2665	0H	TYR	349	15. 007 -18. 305	95. 990	1. 00 39. 44

- 108 -

18. 888 -15. 390 92. 339 1. 00 35. 45

349 17. 698 -15. 419 92. 042 1. 00 37. 11

ATOM

ATOM

2666 C

2667 0

TYR 349

TYR

	ATOM	2668	N	ASN	350	19. 475 -14. 312	92. 846	1. 00 37. 18
	ATOM	2669	CA	ASN	350	18. 722 -13. 082	93. 049	1. 00 38. 47
5	ATOM	2670	CB	ASN	350	19. 617 -11. 985	93. 630	1. 00 40. 65
	ATOM	2671	CG	ASN	350	20. 014 -12. 263	95.065	1. 00 45. 75
	ATOM	2672	0D1	ASN	350	19. 176 -12. 638	95.893	1. 00 45. 11
	ATOM	2673	ND2	ASN	350	21. 298 -12. 075	95. 373	1. 00 46. 81
	ATOM	2674	C	ASN	350	18. 085 -12. 585	91.768	1. 00 37. 56
10	ATOM	2675	0	ASN	350	16. 924 -12. 186	91.769	1. 00 40. 92
	ATOM	2676	N	ILE	351	18. 839 -12. 601	90. 673	1. 00 37. 62
	ATOM	2677	CA	ILE	351	18. 310 -12. 139	89. 395	1. 00 37. 09
	ATOM	2678	CB	ILE	351	19. 401 -12. 130	88. 308	1. 00 38. 11
	ATOM	2679	CG2	ILE	351	18. 771 -11. 955	86. 938	1. 00 37. 56
15	ATOM	2680	CG1	ILE	351	20. 400 -11. 004	88. 588	1. 00 38. 11
	ATOM	2681	CD1	ILE	351	21. 726 -11. 178	87. 879	1. 00 36. 24
	ATOM	2682	C	ILE	351	17. 144 -12. 997	88. 921	1. 00 36. 57
	ATOM	2683	0	ILE	351	16. 120 -12. 474	88. 479	1. 00 38. 22
	ATOM	2684	N	LEU	352	17. 291 -14. 314	89. 012	1. 00 35. 96
20	ATOM	2685	CA	LEU	352	16. 219 -15. 206	88. 577	1. 00 36. 28
	ATOM	2686	CB	LEU	352	16. 740 -16. 640	88. 443	1. 00 32. 41
	ATOM	2687	CG	LEU	352	17. 845 -16. 828	87. 395	1. 00 30. 66
	ATOM	2688	CD1	LEU	352	18. 465 -18. 226	87. 496	1. 00 25. 83
	ATOM	2689	CD2	LEU	352	17. 262 -16. 597	86.025	1. 00 27. 66
25	ATOM	2690	C	LEU	352	15. 039 -15. 156	89. 547	1. 00 37. 27
	ATOM	2691	0	LEU	352	13. 896 -15. 356	89. 145	1. 00 38. 32
	ATOM	2692	N	SER	353	15. 322 -14. 888	90. 819	1. 00 39. 41
	ATOM	2693	CA	SER	353	14. 279 -14. 794	91. 838	1. 00 42. 13
	ATOM	2694	CB	SER	353	14. 893 -14. 708	93. 237	1. 00 43. 72

						- 109 -		
	ATOM	2695	0G	SER	353	13. 883 -14. 546	94. 224	1. 00 48. 17
	ATOM	2696	C	SER	353	13. 431 -13. 557	91. 590	1. 00 43. 61
	ATOM	2697	0	SER	353	12. 229 -13. 552	91. 858	1. 00 42. 99
	ATOM	26 98	N	THR	354	14. 066 -12. 506	91. 081	1. 00 44. 80
5	ATOM	2699	CA	THR	354	13. 363 -11. 267	90. 785	1. 00 46. 06
	ATOM	2700	CB	THR	354	14. 356 -10. 122	90. 497	1. 00 47. 48
	ATOM	2701	0G1	THR	354	15. 100 -9. 820	91.687	1. 00 47. 39
	ATOM	2702	CG2	THR	354	13. 615 -8. 877	90. 034	1. 00 47. 87
	ATOM	2703	C	THR	354	12. 446 -11. 455	89. 579	1. 00 46. 06
10	ATOM	2704	0	THR	354	11. 443 -10. 757	89. 436	1. 00 47. 23
	ATOM	2705	N	LEU	355	12. 788 -12. 406	88. 717	1. 00 46. 03
	ATOM	2706	CA	LEU	355	11. 983 -12. 679	87. 533	1. 00 46. 26
	ATOM	2707	CB	LEU	355	12. 875 -13. 157	86. 390	1. 00 46. 43
	ATOM	2708	CG	LEU	355	14. 030 -12. 210	86. 063	1. 00 46. 85
15	ATOM	2709	CD1	LEU	355	14. 861 -12. 813	84. 950	1. 00 47. 00
	ATOM	2710	CD2	LEU	355	13. 497 -10. 844	85. 660	1. 00 45. 99
	ATOM	2711	С	LEU	355	10. 908 -13. 722	87. 821	1. 00 46. 88
	ATOM	2712	0	LEU	355	10. 370 -14. 346	86. 902	1. 00 47. 28
	ATOM	2713	N	GLY	356	10. 609 -13. 912	89. 105	1. 00 47. 29
20	ATOM	2714	CA	GLY	356	9. 586 -14. 858	89. 511	1. 00 44. 74
	ATOM	2715	С	GLY	356	9. 959 -16. 321	89. 396	1. 00 44. 45
	ATOM	2716	0	GLY	356	9. 097 -17. 163	89. 146	1. 00 45. 09
	ATOM	2717	N	LEU	357	11. 235 -16. 635	89. 575	1. 00 43. 26
	ATOM	2718	CA	LEU	357	11. 681 -18. 018	89. 485	1. 00 41. 29
25	ATOM	2719	CB	LEU	357	12. 653 -18. 187	88. 310	1. 00 42. 15
	ATOM	2720	CG	LEU	357	12. 171 -17. 833	86. 896	1. 00 41. 21
	ATOM	2721		LEU	357	13. 366 -17. 781	85. 972	1. 00 39. 61
	ATOM	2722		LEU	357	11. 153 -18. 849	86. 393	1. 00 39. 50
	ATOM	2723	C	LEU	357	12. 361 -18. 455	90. 780	1. 00 40. 57

- 110 -

	ATOM	2724	0	LEU	357	12. 780 -17. 627	91. 590	1. 00 38. 53
	ATOM	2725	N	ARG	358	12. 448 -19. 766	90. 970	1. 00 39. 68
	ATOM	2726	CA	ARG	358	13. 092 -20. 355	92. 139	1. 00 40. 04
	ATOM	2727	CB	ARG	358	12. 048 -20. 916	93. 112	1. 00 42. 61
5	ATOM	2728	CG	ARG	358	11. 172 -19. 845	93. 760	1. 00 46. 08
	ATOM	2729	CD	ARG	358	12. 019 -18. 871	94. 560	1. 00 49. 74
	ATOM	2730	NE	ARG	358	11. 355 -17. 588	94. 772	1. 00 55. 41
	ATOM	2731	CZ	ARG	358	10. 588 -17. 293	95. 816	1. 00 58. 08
	ATOM	2732	NH1	ARG	358	10. 376 -18. 195	96. 771	1. 00 59. 09
10	ATOM	2733	NH2	ARG	358	10. 035 -16. 087	95. 906	1. 00 58. 98
	ATOM	2734	C	ARG	358	13. 954 -21. 471	91. 576	1. 00 38. 39
	ATOM	2735	0	ARG	358	13. 569 -22. 641	91. 586	1. 00 37. 47
	ATOM	2736	N	PR0	359	15. 140 -21. 109	91. 065	1. 00 36. 51
	ATOM	2737	CD	PR0	359	15. 664 -19. 728	91. 087	1. 00 36. 88
15	ATOM	2738	CA	PR0	359	16. 123 -22. 006	90. 461	1. 00 34. 17
	ATOM	2739	CB	PR0	359	17. 035 -21. 039	89. 722	1. 00 35. 29
	ATOM	2740	CG	PR0	359	17. 135 -19. 925	90. 703	1.00 34.03
	ATOM	2741	C	PR0	359	16. 915 -22. 872	91. 416	1. 00 33. 10
	ATOM	2742	0	PR0	359	17. 140 -22. 520	92. 566	1. 00 31. 20
20	ATOM	2743	N	SER	360	17. 365 -24. 004	90.899	1. 00 33. 97
	ATOM	2744	CA	SER	360	18. 183 -24. 931	91. 658	1. 00 34. 21
	ATOM	2745	CB	SER	360	17. 912 -26. 363	91. 210	1. 00 34. 53
	ATOM	2746	0G	SER	360	18. 287 -26. 530	89. 851	1. 00 33. 54
	ATOM	2747	C	SER	360	19. 618 -24. 568	91. 307	1. 00 34. 99
25	ATOM	2748	0	SER	360	19. 855 -23. 673	90. 495	1. 00 35. 49
	ATOM	2749	N	THR	361	20. 564 -25. 267	91. 920	1. 00 34. 70
	ATOM	2750	CA	THR	361	21. 977 -25. 048	91. 673	1. 00 36. 89
	ATOM	2751	CB	THR	361	22. 838 -26. 003	92. 535	1. 00 36. 99
	ATOM	2752	0G1	THR	361	22. 828 -25. 558	93. 898	1. 00 38. 93

- 111 -

	ATOM	2753	CG2	THR	361	24. 260 -26. 041	92. 033	1. 00 38. 24
	ATOM	2754	С	THR	361	22. 303 -25. 291	90. 201	1. 00 37. 14
	ATOM	2755	0	THR	361	23. 142 -24. 606 ⁻	89. 616	1. 00 37. 81
	ATOM	2756	N	THR	362	21. 635 -26. 273	89. 612	1. 00 35. 92
5	ATOM	2757	CA	THR	362	21. 865 -26. 614	88. 223	1. 00 34. 91
	ATOM	2758	CB	THR	362	21. 369 -28. 037	87. 914	1. 00 36. 12
	ATOM	2759	0G1	THR	362	19. 969 -28. 117	88. 199	1. 00 40. 45
	ATOM	2760	CG2	THR	362	22. 113 -29. 063	88. 771	1. 00 34. 62
	ATOM	2761	C	THR	362	21. 181 -25. 626	87. 292	1. 00 33. 53
10	ATOM	2762	0	THR	362	21. 684 -25. 360	86. 205	1. 00 33. 46
	ATOM	2763	N	ASP	363	20. 034 -25. 091	87. 698	1. 00 31. 06
	ATOM	2764	CA	ASP	363	19. 355 -24. 115	86. 860	1. 00 32. 46
	ATOM	2765	CB	ASP	363	18. 018 -23. 690	87. 468	1. 00 34. 45
	ATOM	2766	CG	ASP	363	16. 964 -24. 783	87. 409	1. 00 37. 91
15	ATOM	2767	OD 1	ASP	363	16. 889 -25. 504	86. 388	1. 00 38. 99
	ATOM	2768	OD2	ASP	363	16. 194 -24. 907	88. 385	1. 00 38. 23
	ATOM	2769	C	ASP	363	20. 254 -22. 878	86.718	1. 00 32. 88
	ATOM	2770	0	ASP	363	20. 419 -22. 331	85. 629	1. 00 30. 65
	ATOM	2771	N	CYS	364	20. 833 -22. 451	87. 836	1. 00 33. 86
20	ATOM	2772	CA	CYS	364	21. 712 -21. 292	87. 860	1. 00 32. 22
	ATOM	2773	CB	CYS	364	22. 186 -21. 015	89. 289	1.00 31.35
	ATOM	2774	SG	CYS	364	20. 915 -20. 338	90. 389	1. 00 31. 77
	ATOM	2775	C	CYS	364	22. 914 -21. 493	86. 950	1. 00 30. 91
	ATOM	2776	0	CYS	364	23. 207 -20. 645	86. 119	1.00 30.71
25	ATOM	2777	N	ASP	365	23. 608 -22. 614	87. 107	1. 00 31. 25
	ATOM	2778	CA	ASP	365	24. 774 -22. 894	86. 280	1. 00 32. 00
	ATOM	2779	CB	ASP	365	25. 389 -24. 243	86. 659	1. 00 32. 78
	ATOM	2780	CG	ASP	365	26. 037 -24. 211	88. 023	1. 00 35. 48
	ATOM	2781	0D1	ASP	365	26. 017 -23. 127	88. 650	1. 00 37. 01

- 112 -

	ATOM	2782	OD2	ASP	365	26. 564 -25. 251	88. 466	1. 00 35. 21
	ATOM	2783	C	ASP	365	24. 405 -22. 886	84. 810	1. 00 30. 41
	ATOM	2784	0	ASP	365	25. 166 -22. 407	83. 966	1. 00 31. 73
	ATOM	2785	N	ILE	366	23. 225 -23. 408	84. 514	1. 00 29. 17
5	ATOM	2786	CA	ILE	366	22. 739 -23. 462	83. 148	1. 00 30. 58
	ATOM	2787	CB	ILE	366	21. 456 -24. 318	83. 058	1. 00 30. 61
	ATOM	2788	CG2	ILE	366	20. 779 -24. 118	81. 712	1. 00 28. 15
	ATOM	2789	CG1	ILE	366	21. 808 -25. 797	83. 261	1. 00 33. 09
	ATOM	2790	CD1	ILE	366	20. 577 -26. 702	83. 405	1. 00 32. 69
10	ATOM	2791	C	ILE	366	22. 462 -22. 066	82. 576	1. 00 29. 08
	ATOM	2792	0	ILE	366	22. 729 -21. 815	81. 405	1. 00 28. 78
	ATOM	2793	N	VAL	367	21. 906 -21. 170	83. 386	1. 00 27. 52
	ATOM	2794	CA	VAL	367	21. 632 -19. 817	82. 910	1. 00 27. 71
	ATOM	2795	CB	VAL	367	20. 803 -19. 021	83. 943	1. 00 26. 66
15	ATOM	2796	CG1	VAL	367	20. 812 -17. 531	83. 609	1. 00 24. 57
	ATOM	2797	CG2	VAL	367	19. 373 -19. 535	83. 928	1. 00 26. 09
	ATOM	2798	C	VAL	367	22. 979 -19. 143	82. 643	1. 00 28. 05
	ATOM	2799	0	VAL	367	23. 144 -18. 409	81.670	1. 00 28. 53
	ATOM	2800	N	ARG	368	23. 940 -19. 436	83. 508	1. 00 27. 74
20	ATOM	2801	CA	ARG	368	25. 300 -18. 927	83. 386	1. 00 30. 76
	ATOM	2802	CB	ARG	368	26. 172 -19. 575	84. 458	1. 00 31. 66
	ATOM	2803	CG	ARG	368	27. 023 -18. 648	85. 269	1. 00 38. 26
	ATOM	2804	CD	ARG	368	28. 312 -18. 282	84. 579	1. 00 41. 00
	ATOM	2805	NE	ARG	368	29. 272 -17. 763	85. 547	1. 00 43. 72
25	ATOM	2806	CZ	ARG	368	30. 397 -17. 135	85. 226	1. 00 46. 75
	ATOM	2807	NH1	ARG	368	30. 710 -16. 938	83. 954	1. 00 48. 06
	ATOM	2808	NH2	ARG	368	31. 212 -16. 708	86. 179	1. 00 47. 96
	ATOM	2809	C	ARG	368	25. 841 -19. 317	82. 003	1. 00 30. 63
	ATOM	2810	0	ARG	368	26. 343 -18. 469	81. 256	1. 00 27. 84

- 113 -

	ATOM	2811	N	ARG	369	25. 735 -20. 606	81. 677	1. 00 27. 70
	ATOM	2812	CA	ARG	369	26. 228 -21. 115	80. 399	1. 00 28. 24
	ATOM	2813	CB	ARG	369	26. 077 -22. 645	80. 327	1. 00 26. 69
	ATOM	2814	CG	ARG	369	27. 044 -23. 429	81. 224	1. 00 29. 04
5	ATOM	2815	CD	ARG	369	28. 506 -23. 228	80. 815	1. 00 31. 91
	ATOM	2816	NE	ARG	369	28. 752 -23. 683	79. 445	1. 00 35. 74
	ATOM	2817	CZ	ARG	369	29. 117 -22. 892	78. 439	1. 00 36. 75
	ATOM	2818	NH1	ARG	369	29. 291 -21. 590	78. 638	1. 00 36. 65
	ATOM	2819	NH2	ARG	369	29. 291 -23. 400	77. 225	1. 00 36. 11
10	ATOM	2820	C	ARG	369	25. 528 -20. 472	79. 208	1. 00 27. 14
	ATOM	2821	0	ARG	369	26. 160 -20. 188	78. 189	1. 00 28. 06
	ATOM	2822	N	ALA	370	24. 224 -20. 252	79. 327	1. 00 25. 64
	ATOM	2823	CA	ALA	370	23. 480 -19. 634	78. 238	1. 00 25. 08
	ATOM	2824	CB	ALA	370	21. 991 -19. 587	78. 574	1. 00 25. 47
15	ATOM	2825	C	ALA	370	24. 015 -18. 218	78.006	1. 00 25. 14
	ATOM	2826	0	ALA	370	24. 196 -17. 793	76. 870	1. 00 25. 23
	ATOM	2827	N	CYS	371	24. 268 -17. 491	79. 087	1. 00 24. 15
	ATOM	2828	CA	CYS	371	24. 785 -16. 135	78. 965	1. 00 25. 09
	ATOM	2829	CB	CYS	371	24. 855 -15. 467	80. 338	1.00 22.74
20	ATOM	2830	SG	CYS	371	23. 239 -15. 076	81. 033	1. 00 25. 40
	ATOM	2831	C	CYS	371	26. 161 -16. 127	78. 300	1.00 24.93
	ATOM	2832	0	CYS	371	26. 392 -15. 358	77. 367	1. 00 25. 49
	ATOM	2833	N	GLU	372	27. 062 -16. 991	78. 765	1. 00 24. 70
	ATOM	2834	CA	GLU	372	28. 411 -17. 073	78. 207	1. 00 26. 69
25	ATOM	2835	CB	GLU	372	29. 247 -18. 105	78. 975	1. 00 27. 07
	ATOM	2836	CG	GLU	372	29. 232 -17. 890	80. 481	1. 00 32. 77
	ATOM	2837	CD	GLU	372	30. 016 -18. 945	81. 243	1. 00 33. 87
	ATOM	2838	0E1	GLU	372	29. 905 -20. 139	80. 892	1. 00 36. 95
	ATOM	2839	0E2	GLU	372	30. 733 -18. 583	82. 200	1. 00 35. 18

- 114 -

	ATOM	2840	C	GLU	372	28. 418 -17. 420	76. 718	1. 00 27. 23
	ATOM	2841	0	GLU	372	29. 259 -16. 922	75. 966	1. 00 29. 09
	ATOM	2842	N	SER	373	27. 489 -18. 273	76. 296	1. 00 25. 93
	ATOM	2843	CA	SER	373	27. 403 -18. 664	74. 894	1. 00 27. 07
5	ATOM	2844	CB	SER	373	26. 393 -19. 803	74.718	1. 00 25. 93
	ATOM	2845	0G	SER	373	26. 784 -20. 951	75. 457	1. 00 32. 56
	ATOM	2846	C	SER	373	26. 988 -17. 471	74.034	1. 00 25. 31
	ATOM	2847	0	SER	373	27. 585 -17. 207	72. 998	1. 00 24. 49
	ATOM	2848	N	VAL	374	25. 962 -16. 754	74. 475	1. 00 25. 87
10	ATOM	2849	CA	VAL	374	25. 473 -15. 596	73. 743	1. 00 25. 12
	ATOM	2850	CB	VAL	374	24. 139 -15. 103	74. 319	1. 00 26. 07
	ATOM	2851	CG1	VAL	374	23. 754 -13. 766	73. 682	1. 00 29. 29
	ATOM	2852	CG2	VAL	374	23. 055 -16. 127	74.061	1. 00 25. 56
	ATOM	2853	C	VAL	374	26. 465 -14. 429	73. 742	1. 00 24. 54
15	ATOM	2854	0	VAL	374	26. 657 -13. 792	72.714	1. 00 25. 64
	ATOM	2855	N	SER	375	27. 094 -14. 144	74. 878	1. 00 21. 70
	ATOM	2856	CA	SER	375	28. 029 -13. 034	74. 922	1. 00 23. 89
	ATOM	2857	CB	SER	375	28. 298 -12. 585	76. 365	1. 00 23. 28
	ATOM	2858	0G	SER	375	28. 986 -13. 565	77. 120	1. 00 29. 71
20	ATOM	2859	C	SER	375	29. 324 -13. 391	74. 210	1. 00 24. 77
	ATOM	2860	0	SER	375	29. 873 -12. 560	73. 490	1. 00 23. 61
	ATOM	2861	N	THR	376	29. 805 -14. 623	74. 386	1. 00 23. 54
	ATOM	2862	CA	THR	376	31. 029 -15. 052	73. 707	1. 00 23. 38
	ATOM	2863	CB	THR	376	31. 444 -16. 501	74.096	1. 00 23. 76
25	ATOM	2864	0G1	THR	376	31. 874 -16. 527	75. 458	1. 00 26. 36
	ATOM	2865	CG2	THR	376	32. 594 -16. 987	73. 222	1. 00 21. 48
	ATOM	2866	C	THR	376	30. 859 -14. 996	72. 189	1. 00 22. 33
	ATOM	2867	0	THR	376	31.810 -14.694	71.465	1. 00 23. 88
	ATOM	2868	N	ARG	377	29. 660 -15. 293	71.695	1. 00 20. 80

- 115 -

	ATOM	2869	CA	ARG	377	29. 452 -15. 239	70. 253	1. 00 21. 46
		2870			377			
	ATOM	2871	CG	ARG	377	27. 958 -15. 875	68. 312	1. 00 25. 01
	ATOM	2872	CD	ARG	377	26. 601 -16. 377	67. 827	1. 00 27. 70
5	ATOM	2873	NE	ARG	377	25. 491 -15. 558	68. 302	1. 00 25. 17
	ATOM	2874	CZ	ARG	377	24. 255 -15. 637	67. 825	
	ATOM	2875	NH	1 ARG	377	23. 973 -16. 492	66. 850	1. 00 25. 23
	ATOM	2876	NH	2 ARG	377	23. 294 -14. 877	68. 339	1. 00 26. 96
	ATOM	2877	C	ARG	377	29. 439 -13. 773	69. 787	1. 00 21. 55
10	ATOM	2878	0	ARG	377	29. 856 -13. 462	68. 670	1. 00 20. 80
	ATOM	2879	N	ALA	378	28. 951 -12. 879	70. 639	1. 00 19. 46
	ATOM	2880	CA	ALA	378	28. 927 -11. 463	70. 302	1. 00 21. 17
	ATOM	2881	CB	ALA	378	28. 239 -10. 653	71. 412	1. 00 20. 68
	ATOM	2882	C	ALA	378	30. 374 -11. 015	70. 151	1. 00 20. 18
15	ATOM	2883	0	ALA	378	30. 747 -10. 420	69. 145	1. 00 20. 36
	ATOM	2884	N	ALA	379	31. 191 -11. 326	71. 153	1. 00 19. 41
	ATOM	2885	CA	ALA	379	32. 600 -10. 950	71. 138	1. 00 20. 64
	ATOM	2886	CB	ALA	379	33. 296 -11. 515	72. 371	1. 00 20. 04
	ATOM	2887	C	ALA	379	33. 332 -11. 405	69.869	1. 00 22. 79
20	ATOM	2888	0	ALA	379	34. 054 -10. 620	69. 234	1. 00 21. 82
	ATOM	2889	N	HIS	380	33. 139 -12. 666	69. 489	1. 00 22. 45
	ATOM	2890	CA	HIS	380	33. 803 -13. 208	68. 305	1. 00 22. 78
	ATOM	2891	CB	HIS	380	33. 726 -14. 745	68. 314	1. 00 22. 80
	ATOM	2892	CG	HIS	380	34. 584 -15. 384	69. 364	1. 00 26. 52
25	ATOM	2893	CD2	HIS	380	35. 557 -14. 870	70. 152	1. 00 27. 81
	ATOM	2894	ND1	HIS	380	34. 499 -16. 720	69. 687	1. 00 28. 99
	ATOM	2895	CE1	HIS	380	35. 383 -17. 002	70. 627	1. 00 28. 15
	ATOM	2896	NE2	HIS	380	36. 039 -15. 896	70. 927	1. 00 28. 70
	ATOM	2897	C	HIS	380	33. 242 -12. 657	66. 994	1. 00 22. 38

- 116 -

	ATOM	2898	0	HIS	380	33. 988 -12. 368	66. 073	1. 00 20. 71
	ATOM	2899	N	MET	381	31. 926 -12. 524	66. 915	1. 00 23. 83
	ATOM	2900	CA	MET	381	31. 285 -12. 018	65. 713	1. 00 26. 66
	ATOM	2901	CB	MET	381	29. 760 -12. 086	65. 899	1. 00 29. 06
5	ATOM	2902	CG	MET	381	28. 926 -12. 031	64. 622	1. 00 34. 34
	ATOM	2903	SD	MET	381	29. 456 -13. 157	63. 312	1. 00 33. 69
	ATOM	2904	CE	MET	381	28. 228 -14. 472	63. 429	1. 00 34. 64
	ATOM	2905	C	MET	381	31. 781 -10. 580	65. 509	1. 00 27. 50
	ATOM	2906	0	MET	381	32. 153 -10. 188	64. 406	1. 00 26. 70
10	ATOM	2907	N	CYS	382	31. 830 -9. 813	66. 595	1. 00 26. 32
	ATOM	2908	CA	CYS	382	32. 302 -8. 441	66. 536	1. 00 24. 87
	ATOM	2909	CB	CYS	382	32. 102 -7. 769	67. 896	1. 00 26. 05
	ATOM	2910	SG	CYS	382	32. 389 -5. 962	67. 931	1. 00 26. 70
	ATOM	2911	C	CYS	382	33. 785 -8. 355	66. 122	1. 00 24. 60
15	ATOM	2912	0	CYS	382	34. 187 -7. 457	65. 360	1. 00 19. 92
	ATOM	2913	N	SER	383	34. 590 -9. 288	66. 623	1. 00 22. 62
	ATOM	2914	CA	SER	383	36. 017 -9. 302	66. 327	1. 00 22. 35
	ATOM	2915	CB	SER	383	36. 716 -10. 439	67. 096	1. 00 23. 03
	ATOM	2916	0G	SER	383	36. 361 -11. 712	66. 571	1. 00 24. 25
20	ATOM	2917	C	SER	383	36. 272 -9. 463	64. 834	1. 00 23. 77
	ATOM	2918	0	SER	383	37. 202 -8. 875	64. 288	1. 00 24. 79
	ATOM	2919	N	ALA	384	35. 448 -10. 269	64. 173	1.00 24.03
	ATOM	2920	CA	ALA	384	35. 612 -10. 480	62. 743	1. 00 25. 52
	ATOM	2921	CB	ALA	384	34. 649 -11. 552	62. 256	1. 00 22. 05
25	ATOM	2922	C	ALA	384	35. 369 -9. 182	61. 980	1.00 25.61
	ATOM	2923	0	ALA	384	35. 990 -8. 942	60. 947	1. 00 25. 37
	ATOM	2924	N	GLY	385	34. 450 -8. 360	62. 490	1. 00 25. 67
	ATOM	2925	CA	GLY	385	34. 134 -7. 098	61. 842	1. 00 23. 86
	ATOM	2926	C	GLY	385	35. 289 -6. 128	61. 944	1. 00 20. 99

- 117 -

ATOM 2927 0 GLY 385 35. 702 -5. 531 60.960 1, 00 22, 47 ATOM 2928 N LEU 386 35. 811 -5. 962 63. 148 1, 00 22, 82 ATOM 2929 CA LEU 386 36. 937 -5. 065 63. 364 1.00 25.33 ATOM 2930 CB LEU 386 37. 259 -4.97164.850 1. 00 23. 48 5 ATOM 2931 CG LEU 386 37. 800 -3. 658 65. 425 1.00 27.75 ATOM 2932 CD1 LEU 386 38.641 -4.00766. 641 1.00 26.18 ATOM 2933 CD2 LEU 386 38. 621 -2. 865 64. 428 1, 00 25, 52 ATOM 2934 C LEU 386 38. 172 -5. 584 62. 616 1.00 26.01 ATOM 2935 0 LEU 386 38. 953 -4. 794 62.067 1.00 26.60 10 ATOM 2936 N ALA 387 38. 356 -6. 904 62. 601 1. 00 23. 95 ATOM 2937 CA ALA 387 39. 509 -7. 482 61. 902 1.00 24.13 ATOM 2938 CB ALA 387 39. 585 -8. 989 62. 135 1.00 20.59 ATOM 2939 C ALA 387 39. 405 -7. 181 60.411 1.00 24.07 ATOM 2940 0 ALA 40.419 387 -6.99059. 730 1.00 22.59 15 ATOM 2941 N GLY 388 38. 175 -7. 141 59.904 1.00 24.30 ATOM 2942 CA GLY 388 37. 975 -6.83858.497 1.00 24.40 ATOM 2943 C GLY 388 38. 380 -5.39858. 203 1. 00 25. 62 ATOM 2944 0 GLY 388 39.048 -5. 114 57. 205 1.00 25.24 2945 ATOM N VAL 389 37. 974 -4. 488 59.084 1. 00 25. 15 ATOM 20 2946 CA VAL 389 38. 294 -3.07258.950 1.00 23.08 ATOM 2947 CBVAL 389 37. 581 -2. 259 60.057 1. 00 21. 38 ATOM 2948 CG1 VAL 389 38. 083 -0.82060.076 1.00 21.90 ATOM 2949 CG2 VAL 389 36.078 -2.30359.819 1, 00 20, 64 ATOM 2950 C VAL 389 39. 802 -2. 858 59.034 1.00 24.13 ATOM 2951 25 0 VAL 389 40. 402 -2. 198 58. 178 1.00 25.99 ATOM 2952 N ILE 390 40. 424 -3. 429 60.054 1.00 24.21 ATOM 2953 CA ILE 390 41.866 -3.28960, 209 1.00 25.31 ATOM 2954 CB ILE 390 42. 317 -3.88361.576 1. 00 25. 21 CG2 ILE ATOM 2955 390 43. 831 -3.96261.661 1.00 27.92

- 118 -

							10		
	ATOM	2956	CG	1 ILE	390	41. 778	-2. 993	62. 708	1.00 26.03
	ATOM	2957	CD	1 ILE	390	42. 091	-3. 476	64. 094	1. 00 27. 41
	ATOM	2958	C	ILE	390	42.668	-3. 899	59. 040	1. 00 26. 27
	ATOM	2959	0	ILE	390	43. 622	-3. 287	58. 563	1.00 25.08
5	ATOM	2960	N	ASN	391	42. 286	-5.082	58. 561	1. 00 27. 72
	ATOM	2961	CA	ASN	391	43. 026	-5. 689	57. 448	1. 00 29. 87
	ATOM	2962	CB	ASN	391	42.649	-7. 162	57. 250	1. 00 27. 74
	ATOM	2963	CG	ASN	391	43. 147	-8. 044	58. 375	1.00 29.54
	ATOM	2964	0D1	ASN	391	44. 216	-7. 804	58. 939	1. 00 28. 68
10	ATOM	2965	ND2	2 ASN	391	42. 383	-9. 079	58. 699	1.00 26.84
	ATOM	2966	C	ASN	391	42. 805	-4. 930	56. 144	1.00 31.14
	ATOM	2967	0	ASN	391	43. 688	-4. 903	55. 281	1. 00 29. 49
	ATOM	2968	N	ARG	392	41.627	-4. 331	55. 991	1.00 31.07
	ATOM	2969	CA	ARG	392	41. 358	-3. 553	54. 795	1. 00 33. 43
15	ATOM	2970	CB	ARG	392	39. 921	-3.018	54. 780	1.00 35.04
	ATOM	2971	CG	ARG	392	39. 597	-2. 307	53. 483	1.00 35.84
	ATOM	2972	CD	ARG	392	38. 614	-1. 173	53. 650	1.00 37.18
	ATOM	2973	NE	ARG	392	38. 804	-0. 186	52. 589	1. 00 35. 89
	ATOM	2974	CZ	ARG	392	38. 518	-0.390	51. 309	1.00 36.67
20	ATOM	2975	NH1	ARG	392	38. 006	-1.550	50. 911	1.00 38.42
	ATOM	2976	NH2	ARG	392	38. 788	0. 553	50. 417	1. 00 37. 33
	ATOM	2977	C	ARG	392	42. 335	-2. 377	54. 831	1. 00 33. 73
	ATOM	2978	0	ARG	392	43. 028	-2. 107	53. 858	1. 00 34. 52
	ATOM	2979	N	MET	393	42. 396	-1.691	55. 967	1.00 34.05
25	ATOM	2980	CA	MET	393	43. 298	-0. 554	56. 126	1. 00 35. 93
	ATOM	2981	CB	MET	393	43. 119	0.073	57. 517	1. 00 32. 21
	ATOM	2982	CG	MET	393	41. 801	0.834	57. 692	1. 00 28. 72
	ATOM	2983	SD	MET	393	41. 530	1. 348	59. 400	1. 00 27. 28
	ATOM	2984	CE	MET	393	42.652	2. 753	59. 533	1. 00 24. 26

- 119 -

ATOM 2985 C MET 393 44. 751 -0. 979 55.9471.00 39.48 ATOM 2986 0 MET 393 45. 579 -0. 216 55. 448 1.00 39.63 ATOM 2987 N ARG 394 45. 049 -2. 205 56.364 1. 00 43. 20 ATOM 2988 CA ARG 394 46. 391 -2. 766 56. 277 1.00 45.79 5 ATOM CB2989 ARG 394 46. 381 -4. 180 56.870 1.00 49.86 ATOM 2990 CG ARG 394 47.670 -4.59557. 551 1.00 53,76 ATOM 2991 CD ARG 394 48. 587 -5.33556.612 1.00 56,09 ATOM 2992 NE ARG 394 49.896 -5, 554 57. 217 1.00 60.36 ATOM 2993 CZARG 394 50. 797 -4.59657. 411 1.00 60.35 10 ATOM 2994 NH1 ARG 394 50. 528 -3.35357. 042 1.00 61.48 ATOM 2995 NH2 ARG 394 51. 964 -4. 878 57. 978 1.00 60.51 ATOM 2996 C ARG 394 46. 912 -2. 792 54. 835 1.00 46.90 ATOM 2997 0 ARG 394 48. 117 -2. 697 54.606 1.00 44.95 ATOM 2998 N GLU 395 46.005 -2.906 53.869 1.00 48.68 15 ATOM 2999 CA GLU 395 46. 387 -2. 943 52, 459 1.00 52.84 ATOM 3000 CB GLU 395 45. 165 -3. 275 51.590 1.00 54.51 ATOM 3001 CG GLU 395 44. 388 -4.50852.051 1.00 60.85 ATOM 3002 CD GLU 395 43. 310 -4.95251.061 1.00 64.84 ATOM 3003 OE1 GLU 395 42. 485 -4.10550.642 1.00 65.83 20 ATOM 3004 OE2 GLU 395 43. 286 -6.15550.708 1.00 66, 43 ATOM 3005 C GLU 395 47.008 -1.62151.991 1.00 54.64 ATOM 3006 0 GLU 395 47. 791 -1.59451.039 1.00 53.71 ATOM 3007 N SER 396 46.660 -0.52852.666 1.00 56.54 ATOM 3008 CA SER 396 47. 179 0.794 52.313 1.00 58.22 ATOM 25 3009 CB SER 396 46.037 1.808 52. 266 1.00 57.21 ATOM 3010 0G SER 396 44.980 1. 340 51.448 1, 00 59, 52 ATOM 3011 C SER 396 48. 221 1.268 53. 318 1.00 60, 22 ATOM 3012 0 SER 396 48. 394 2.468 53. 527 1.00 60.38 ATOM 3013 N ARG 397 48.915 0.32453.941 1.00 62.22

- 120 -

	ATOM	3014	CA	ARG	397	49. 924	0. 663	54. 933	1. 00 64. 67
	ATOM	3015	CB	ARG	397	49. 430	0. 260	56. 324	1. 00 65. 24
	ATOM	3016	CG	ARG	397	49. 798	1. 218	57. 444	1. 00 67. 16
	ATOM	3017	CD	ARG	397	49. 178	2. 596	57. 244	1. 00 68. 03
5	ATOM	3018	NE	ARG	397	48. 803	3. 208	58. 516	1. 00 69. 13
	ATOM	3019	CZ	ARG	397	47. 681	2. 933	59. 178	1. 00 70. 58
	ATOM	3020	NH1	ARG	397	46. 813	2. 059	58. 687	1. 00 71. 37
	ATOM	3021	NH2	ARG	397	47. 429	3. 521	60. 340	1. 00 70. 29
	ATOM	3022	C	ARG	397	51. 222	-0.063	54. 611	1. 00 65. 54
10	ATOM	3023	0	ARG	397	51.416	-1. 215	54. 998	1. 00 66. 75
	ATOM	3024	N	SER	398	52. 106	0. 621	53. 894	1. 00 66. 86
	ATOM	3025	CA	SER	398	53. 388	0.052	53. 508	1. 00 67. 48
	ATOM	3026	CB	SER	398	53. 980	0. 832	52. 331	1. 00 67. 48
	ATOM	3027	0G	SER	398	53. 155	0. 725	51. 181	1. 00 66. 93
15	ATOM	3028	C	SER	398	54. 358	0.063	54. 679	1. 00 68. 36
	ATOM	3029	0	SER	398	55. 036	1. 063	54. 934	1. 00 69. 35
	ATOM	3030	N	GLU	399	54. 413	-1. 059	55. 388	1. 00 67. 90
	ATOM	3031	CA	GLU	399	55. 297	-1. 206	56. 533	1. 00 68. 16
	ATOM	3032	CB	GLU	399	55. 002	-0. 126	57. 564	1. 00 68. 95
20	ATOM	3033	CG	GLU	399	53. 540	0.020	57. 889	1. 00 71. 05
	ATOM	3034	CD	GLU	399	53. 261	1. 318	58. 598	1. 00 71. 37
	ATOM	3035	0E1	GLU	399	53. 871	1. 545	59.662	1. 00 72. 25
	ATOM	3036	0E2	GLU	399	52. 443	2. 111	58. 089	1. 00 71. 32
	ATOM	3037	C	GLU	399	55. 167	-2. 581	57. 168	1. 00 67. 57
25	ATOM	3038	0	GLU	399	54. 078	-3. 155	57. 232	1. 00 67. 34
	ATOM	3039	N	ASP	400	56. 301	-3. 091	57. 635	1. 00 66. 86
	ATOM	3040	CA	ASP	400	56. 397	-4. 400	58. 265	1. 00 65. 75
	ATOM	3041	CB	ASP	400	57. 739	-4. 507	58. 989	1. 00 68. 55
	ATOM	3042	CG	ASP	400	58. 892	-3. 961	58. 157	1. 00 71. 49

- 121 -

	ATOM	3043	0D	I ASP	400	59. 015	-4. 356	56. 976	1. 00 72. 29
	ATOM	3044	OD2	2 ASP	400	59. 675	-3. 136	58. 682	1. 00 72. 38
	ATOM	3045	C	ASP	400	55. 247	-4. 676	59. 233	1. 00 63. 41
	ATOM	3046	0	ASP	400	54. 385	-5. 514	58. 962	1. 00 63. 27
5	ATOM	3047	N	VAL	401	55. 241	-3. 973	60. 361	1.00 59.50
	ATOM	3048	CA	VAL	401	54. 193	-4. 138	61. 360	1. 00 55. 59
	ATOM	3049	CB	VAL	401	54. 789	-4. 439	62. 757	1. 00 55. 81
	ATOM	3050	CG1	VAL	401	53. 698	-4. 375	63. 818	1. 00 54. 69
	ATOM	3051	CG2	VAL	401	55. 442	-5. 817	62. 757	1. 00 54. 18
10	ATOM	3052	C	VAL	401	53. 345	-2. 876	61. 454	1. 00 53. 78
	ATOM	3053	0	VAL	401	53. 841	-1. 807	61. 820	1. 00 53. 39
	ATOM	3054	N	MET	402	52.065	-2. 991	61. 114	1. 00 50. 91
	ATOM	3055	CA	MET	402	51. 190	-1. 834	61. 194	1.00 47.59
	ATOM	3056	CB	MET	402	49. 992	-1. 958	60. 250	1.00 46.98
15	ATOM	3057	CG	MET	402	49. 043	-0. 768	60. 387	1.00 47.22
	ATOM	3058	SD	MET	402	47. 505	-0.874	59. 461	1.00 48.69
	ATOM	3059	CE	MET	402	46. 622	-2.099	60. 439	1. 00 48. 15
	ATOM	3060	С	MET	402	50.670	-1.643	62.605	1.00 44.98
	ATOM	3061	0	MET	402	49. 945	-2. 483	63. 134	1. 00 43. 92
20	ATOM	3062	N	ARG	403	51.054	-0.533	63. 219	1. 00 43. 27
	ATOM	3063	CA	ARG	403	50. 587	-0. 229	64. 556	1. 00 41. 71
	ATOM	3064	CB	ARG	403	51.673	0. 484	65. 350	1. 00 45. 65
	ATOM	3065	CG	ARG	403	52. 903	-0. 356	65. 596	1. 00 52. 20
	ATOM	3066	CD	ARG	403	53. 973	0. 474	66. 262	1. 00 57. 99
25	ATOM	3067	NE	ARG	403	55. 137	-0. 324	66. 630	1. 00 65. 47
	ATOM	3068	CZ	ARG	403	56. 251	0. 184	67. 149	1. 00 68. 76
	ATOM	3069	NH1	ARG	403	56. 349	1. 493	67. 357	1.00 69.34
	ATOM	3070	NH2	ARG	403	57. 265	-0. 615	67. 468	1. 00 69. 59
	ATOM	3071	C	ARG	403	49. 388	0. 685	64. 372	1. 00 37. 99

- 122 -

	ATOM	3072	0	ARG	403	49. 471	1. 692	63. 679	1. 00 37. 13
	ATOM	3073	N	ILE	404	48. 267	0. 322	64. 975	1. 00 34. 39
	ATOM	3074	CA	ILE	404	47. 069	1. 129	64. 854	1. 00 31. 53
	ATOM	3075	CB	ILE	404	46. 161	0. 577	63. 735	1. 00 33. 38
5	ATOM	3076	CG2	ILE.	404	45. 681	-0.829	64. 096	1. 00 32. 57
	ATOM	3077	CG1	ILE	404	44. 987	1. 524	63. 500	1. 00 35. 77
	ATOM	3078	CD1	ILE	404	44. 144	1. 153	62. 300	1. 00 38. 45
	ATOM	3079	C	ILE	404	46. 322	1. 152	66. 179	1. 00 28. 96
	ATOM	3080	0	ILE	404	46. 393	0. 204	66. 956	1. 00 29. 35
10	ATOM	3081	N	THR	405	45. 632	2. 250	66. 453	1. 00 28. 84
	ATOM	3082	CA	THR	405	44. 874	2. 359	67. 693	1. 00 27. 84
	ATOM	3083	CB	THR	405	45. 323	3. 558	68. 535	1. 00 26. 65
	ATOM	3084	0G1	THR	405	46.663	3. 335	68. 990	1. 00 30. 48
	ATOM	3085	CG2	THR	405	44. 428	3. 715	69.749	1. 00 27. 32
15	ATOM	3086	C	THR	405	43. 387	2. 460	67. 408	1. 00 27. 13
	ATOM	3087	0	THR	405	42. 964	3. 127	66. 462	1. 00 24. 36
	ATOM	3088	N	VAL	406	42.604	1. 786	68. 245	1. 00 25. 61
	ATOM	3089	CA	VAL	406	41. 160	1. 737	68. 107	1. 00 23. 67
	ATOM	3090	CB	VAL	406	40. 705	0. 244	67. 973	1. 00 23. 64
20	ATOM	3091	CG1	VAL	406	39. 189	0. 138	67. 798	1. 00 24. 19
	ATOM	3092	CG2	VAL	406	41. 405	-0. 399	66. 783	1. 00 21. 36
	ATOM	3093	C	VAL	406	40. 493	2. 392	69. 320	1. 00 26. 21
	ATOM	3094	0	VAL	406	40. 763	2. 018	70. 469	1. 00 26. 86
	ATOM	3095	N	GLY	407	39. 644	3. 389	69. 072	1.00 25.61
25	ATOM	3096	CA	GLY	407	38. 943	4. 044	70. 168	1. 00 23. 09
	ATOM	3097	C .	GLY	407	37. 645	3. 285	70. 387	1. 00 21. 77
	ATOM	3098	0	GLY	407	36. 919	3. 011	69. 426	1. 00 23. 17
	ATOM	3099	N	VAL	408	37. 334	2. 943	71.632	1. 00 20. 52
	ATOM	3100	CA	VAL	408	36. 128	2. 167	71. 907	1. 00 21. 51

- 123 -

	ATOM	3101	CB	VAL	408	36. 500	0. 684	72. 252	1. 00 23. 04
	ATOM	3102	CG	1 VAL	408	35. 237	-0. 176	72. 351	1. 00 19. 52
	ATOM	3103	CG	2 VAL	408	37. 436	0. 121	71. 201	1. 00 20. 49
	ATOM	3104	C	VAL	408	35. 282	2. 704	73. 060	1. 00 23. 66
5	ATOM	3105	0	VAL	408	35. 814	3. 223	74. 045	1. 00 23. 60
	ATOM	3106	N	ASP	409	33. 963	2. 580	72. 923	1. 00 24. 58
	ATOM	3107	CA	ASP	409	33. 040	2. 992	73. 975	1. 00 26. 70
	ATOM	3108	CB	ASP	409	32. 612	4. 455	73. 803	1. 00 30. 78
	ATOM	3109	CG	ASP	409	31. 909	4. 998	75. 041	1. 00 31. 51
10	ATOM	3110	OD:	1 ASP	409	32. 322	4. 625	76. 156	1. 00 31. 70
	ATOM	3111	0D2	2 ASP	409	30. 955	5. 794	74. 910	1. 00 35. 70
	ATOM	3112	С	ASP	409	31. 824	2. 083	73. 898	1. 00 25. 68
	ATOM	3113	0	ASP	409	31.639	1. 396	72. 901	1. 00 27. 99
	ATOM	3114	N	GLY	410	30. 999	2. 079	74. 943	1. 00 28. 67
15	ATOM	3115	CA	GLY	410	29. 807	1. 233	74. 964	1. 00 29. 54
	ATOM	3116	C	GLY	410	29. 755	0. 355	76. 212	1. 00 30. 09
	ATOM	3117	ó	GLY	410	30. 787	-0. 138	76. 657	1. 00 28. 57
	ATOM	3118	N	SER	411	28. 560	0. 150	76. 767	1. 00 30. 89
	ATOM	3119	CA	SER	411	28. 392	-0. 649	77. 983	1. 00 32. 71
20	ATOM	3120	CB	SER	411	26. 941	-0. 554	78. 490	1. 00 32. 88
	ATOM	3121	0G	SER	411	26. 011	-0. 884	77. 473	1. 00 36. 82
	ATOM	3122	C	SER	411	28. 804	-2. 121	77. 840	1. 00 31. 25
	ATOM	3123	0	SER	411	29. 480	-2. 661	78. 712	1. 00 29. 96
	ATOM	3124	N	VAL	412	28. 398	-2. 768	76. 754	1. 00 29. 78
25	ATOM	3125	CA	VAL	412	28. 780	-4. 158	76. 535	1. 00 28. 59
	ATOM	3126	CB	VAL	412	28. 264	-4. 665	75. 174	1. 00 29. 68
	ATOM	3127	CG1	VAL	412	28. 772	-6. 088	74. 908	1. 00 27. 25
	ATOM	3128	CG2	VAL	412	26. 739	-4. 642	75. 173	1. 00 29. 93
	ATOM	3129	C	VAL	412	30. 307	-4. 320	76. 584	1. 00 29. 24

- 124 -

ATOM 3130 0 VAL 412 30. 831 -5. 145 77. 340 1. 00 28. 78 ATOM 3131 N TYR 413 31. 023 -3. 522 75. 796 1.00 27.57 ATOM 3132 CA TYR 413 32. 482 -3. 602 75. 763 1.00 24.60 ATOM CB 3133 TYR 413 33. 049 -2. 730 74. 645 1.00 19.87 5 ATOM 3134 CG TYR 413 34. 568 -2. 710 74. 587 1. 00 20. 22 ATOM CD1 TYR 3135 413 35. 270 -3. 566 73. 735 1.00 21,52 ATOM 3136 CE1 TYR 413 36. 667 -3.51973.655 1.00 19.93 CD2 TYR ATOM 3137 413 35, 300 -1.81975. 363 1.00 14.63 ATOM 3138 CE2 TYR 413 36. 690 -1.770 75, 294 1.00 17.31 10 ATOM 3139 CZ TYR 413 37. 364 -2. 616 74. 439 1.00 19.92 ATOM 3140 0HTYR 413 38. 737 -2. 547 74. 362 1. 00 23. 08 ATOM 3141 C TYR 413 33. 151 -3. 193 77. 072 1.00 26,48 ATOM 3142 0 TYR 413 34. 085 -3. 849 77. 534 1. 00 26. 86 ATOM 3143 N LYS 414 32. 690 -2. 108 77.669 1.00 26, 13 15 ATOM 3144 CA LYS 414 33. 309 -1.64078.902 1.00 29.80 ATOM 3145 CB LYS 414 33. 001 -0. 147 79. 117 1.00 29.42 ATOM 3146 CG LYS 414 33.882 0.802 78.302 1.00 32.94 ATOM 3147 CD LYS 414 33. 558 2. 275 78, 559 1.00 34.12 ATOM 3148 CE LYS 414 34.553 3.179 77.833 1.00 36.09 20 ATOM 3149 NZ LYS 414 34. 170 4.626 77.859 1.00 35.28 ATOM 3150 C LYS 414 32.966 -2.40080.181 1.00 29.74 ATOM 3151 0 LYS 414 -2.67733.850 80.988 1.00 28,77 ATOM 3152 N LEU 415 31.696 -2.74980.357 1,00 30,99 ATOM 3153 CA LEU 415 31. 255 -3.39581. 591 1.00 34.39 25 ATOM 3154 CB LEU 415 29.942 -2.73882.041 1.00 34.94 ATOM 3155 CG LEU 415 29, 964 -1.19582.012 1.00 38.17 ATOM 3156 CD1 LEU 415 28.610 -0.647 82. 469 1.00 38.59 ATOM 3157 CD2 LEU 31.080 -0.660 415 82.901 1.00 34.42 ATOM 3158 C LEU 415 31.113 -4.923 81.657 1.00 34.46

- 125 -

	ATOM	3159	0	LEU	415	31. 202 -5. 49	82. 741	1. 00 33. 89
	ATOM	3160	N	HIS	416	30. 886 -5. 586	80. 531	1.00 34.56
	ATOM	3161	CA	HIS	416	30. 746 -7. 04	80. 561	1. 00 36. 94
	ATOM	3162	CB	HIS	416	30. 394 -7. 572	79. 175	1. 00 39. 81
5	ATOM	3163	CG	HIS	416	29. 811 -8. 949	79. 192	1. 00 44. 04
	ATOM	3164	CD	2 HIS	416	28. 536 -9. 375	79. 038	1. 00 43. 02
	ATOM	3165	ND	1 HIS	416	30. 573 -10. 080	79. 402	1. 00 44. 57
	ATOM	3166	CE	1 HIS	416	29. 791 -11. 144	79. 374	1. 00 44. 76
	ATOM	3167	NE	2 HIS	416	28. 550 -10. 744	79. 156	1. 00 46. 14
10	ATOM	3168	C	HIS	416	32. 046 -7. 673	81. 060	1. 00 35. 57
	ATOM	3169	0	HIS	416	33. 103 -7. 483	80. 471	1. 00 37. 06
	ATOM	3170	N	PRO	417	31. 973 -8. 445	82. 153	1. 00 33. 55
	ATOM	3171	CD	PRO	417	30. 727 -8. 999	82. 700	1. 00 32. 04
	ATOM	3172	CA	PRO	417	33. 134 -9. 109	82. 757	1. 00 33. 47
15	ATOM	3173	CB	PRO	417	32. 504 -10. 219	83. 614	1.00 31.67
	ATOM	3174	CG	PR0	417	31. 142 -10. 410	83. 016	1. 00 32. 88
	ATOM	3175	C	PRO	417	34. 252 -9. 628	81. 849	1. 00 32. 70
	ATOM	3176	0	PR0	417	35. 428 -9. 411	82. 146	1. 00 36. 28
	ATOM	3177	N	SER	418	33. 929 -10. 302	80. 752	1. 00 29. 70
20	ATOM	3178	CA	SER	418	35. 015 -10. 808	79. 915	1. 00 28. 37
	ATOM	3179	CB	SER	418	35. 215 -12. 314	80. 163	1. 00 30. 65
	ATOM	3180	0G	SER	418	35. 798 -12. 555	81. 439	1. 00 35. 61
	ATOM	3181	C	SER	418	34. 895 -10. 560	78. 418	1. 00 25. 27
	ATOM	3182	0	SER	418	35. 730 -11. 028	77. 648	1. 00 23. 69
25	ATOM	3183	N	PHE	419	33. 856 -9. 846	78. 004	1. 00 21. 86
	ATOM	3184	CA	PHE	419	33. 673 -9. 543	76. 587	1. 00 24. 13
	ATOM	3185	CB	PHE	419	32. 551 -8. 522	76. 407	1. 00 22. 03
	ATOM	3186	CG	PHE	419	32. 270 -8. 187	74. 978	1. 00 24. 42
	ATOM	3187	CD1	PHE	419	31. 273 -8. 860	74. 276	1. 00 23. 32

- 126 -

	ATOM	3188	CD	2 PHE	419	33. 033	-7. 231	74. 312	1. 00 22. 16
	ATOM	3189	CE	1 PHE	419	31. 038	-8. 593	72. 932	1. 00 23. 49
	ATOM	3190	CE	2 PHE	419	32. 808	-6. 961	72. 967	1. 00 25. 91
	ATOM	3191	CZ	PHE	419	31. 806	-7. 645	72. 275	1. 00 24. 70
5	ATOM	3192	С	PHE	419	34. 961	-8. 965	76. 000	1.00 24.09
	ATOM	3193	0	PHE	419	35. 491	-9. 455	75. 009	1. 00 26. 51
	ATOM	3194	N	LYS	420	35. 432	-7. 899	76. 628	1. 00 25. 00
	ATOM	3195	CA	LYS	420	36. 641	-7. 179	76. 238	1. 00 26. 79
	ATOM	3196	CB	LYS	420	36. 984	-6. 207	77. 370	1. 00 28. 35
10	ATOM	3197	CG	LYS	420	38. 241	-5. 396	77. 229	1. 00 30. 04
	ATOM	3198	CD	LYS	420	38. 433	-4. 537	78. 497	1. 00 33. 98
	ATOM	3199	CE	LYS	420	37. 170	-3. 740	78. 832	1.00 31.09
	ATOM	3200	NZ	LYS	420	37. 322	-2. 923	80.067	1.00 36.69
	ATOM	3201	C	LYS	420	37. 819	-8. 118	75. 968	1. 00 25. 76
15	ATOM	3202	0	LYS	420	38. 446	-8.064	74. 911	1. 00 25. 94
	ATOM	3203	N	GLU	421	38. 111	-8. 961	76. 951	1. 00 24. 13
	ATOM	3204	CA	GLU	421	39. 195	-9. 929	76. 887	1. 00 26. 26
	ATOM	3205	CB	GLU	421	39. 204 -	-10. 781	78. 155	1. 00 32. 38
	ATOM	3206	CG	GLU	421	39. 547 -	-10. 043	79. 417	1. 00 38. 45
20	ATOM	3207	CD	GLU	421	38. 700	-8. 798	79. 664	1. 00 41. 54
	ATOM	3208	0E1	GLU	421	37. 458	-8. 844	79. 501	1. 00 42. 17
	ATOM	3209	0E2	GLU	421	39. 300	-7. 767	80. 053	1. 00 42. 62
	ATOM	3210	C	GLU	421	39. 075 -	-10. 864	75. 699	1. 00 24. 57
	ATOM	3211	0	GLU	421	40. 017 -	-11. 023	74. 930	1. 00 25. 86
25	ATOM	3212	N	ARG	422	37. 921 -	-11. 509	75. 576	1. 00 24. 00
	ATOM	3213	CA	ARG	422	37. 682 -	12. 439	74. 480	1. 00 26. 01
	ATOM	3214	CB	ARG	422	36. 284 -	13. 063	74. 610	1. 00 27. 36
	ATOM	3215	CG	ARG	422	36.076 -	13. 878	75. 887	1. 00 31. 58
	ATOM	3216	CD	ARG	422	34. 600 -	14. 053	76. 188	1. 00 35. 39

- 127 -

		3217	NE	ARG	422	34. 390	-14. 834	77. 397	1. 00 40. 58
	ATOM	3218	CZ	ARG	422	33. 232	-14. 911	78. 046	1. 00 44. 53
	ATOM	3219	NH1	ARG	422	32. 171	-14, 243	77. 596	1. 00 41. 79
	ATOM	3220	NH2	ARG	422	33. 141	-15.651	79. 150	1. 00 41. 67
5	ATOM	3221	C	ARG	422	37. 794	-11.691	73. 160	1. 00 24. 48
	ATOM	3222	0	ARG	422	38. 439	-12. 148	72. 221	1. 00 22. 97
	ATOM	3223	N	PHE	423	37. 153	-10. 531	73. 094	1.00 24.48
	ATOM	3224	CA	PHE	423	37. 189	-9. 737	71. 879	1. 00 22. 97
	ATOM	3225	CB	PHE	423	36. 403	-8. 442	72. 089	1. 00 24. 98
10	ATOM	3226	CG	PHE	423	36. 494	-7. 484	70. 939	1. 00 25. 21
	ATOM	3227	CD1	PHE	423	37. 468	-6. 490	70. 926	1. 00 25. 04
	ATOM	3228	CD2	PHE	423	35. 618	-7. 584	69. 861	1. 00 23. 47
	ATOM	3229	CE1	PHE	423	37. 568	-5. 607	69.857	1. 00 24. 77
	ATOM	3230	CE2	PHE	423	35. 710	-6. 708	68. 784	1. 00 25. 48
15	ATOM	3231	CZ	PHE	423	36. 684	-5. 715	68. 780	1. 00 24. 31
	ATOM	3232	C	PHE	423	38. 629	-9. 442	71. 456	1. 00 21. 03
	ATOM	3233	0	PHE	423	38. 989	-9.680	70. 308	1. 00 19. 38
	ATOM	3234	N	HIS	424	39. 454	-8.952	72. 381	1. 00 20. 46
	ATOM	3235	CA	HIS	424	40. 846	-8.631	72. 054	1.00 23.40
20	ATOM	3236	CB	HIS	424	41. 602	-8. 128	73. 293	1. 00 24. 89
	ATOM	3237	CG	HIS	424	41. 133	-6.803	73. 808	1. 00 25. 28
	ATOM	3238	CD2	HIS	424	40. 391	-5. 828	73. 230	1. 00 24. 67
	ATOM	3239	ND1	HIS	424	41. 419	-6. 361	75. 083	1. 00 25. 18
	ATOM	3240	CE1	HIS	424	40.869	-5. 174	75. 269	1. 00 22. 64
25	ATOM	3241	NE2	HIS	424	40. 239	-4. 829	74. 161	1. 00 24. 12
	ATOM	3242	C	HIS	424	41.604	-9. 834	71. 486	1. 00 24. 51
	ATOM	3243	0	HIS	424	42. 239	-9. 741	70. 432	1. 00 23. 58
	ATOM	3244	N	ALA	425	41. 540 -	-10. 962	72. 191	1. 00 24. 51
	ATOM	3245	CA	ALA	425	42. 242 -	-12. 164	71. 746	1. 00 26. 94

- 128 -

	ATOM	3246	CB	ALA	425	42. 068 -13. 306	72. 774	1. 00 27. 10
		3247		ALA	425			
	ATOM	3248	0	ALA	425	42. 559 -12. 937	69. 505	1. 00 27. 02
	ATOM	3249	N	SER	426	40. 453 -12. 600	70. 151	1. 00 24. 30
5	ATOM	3250	CA	SER	426	39. 967 -13. 003	68. 850	1. 00 23. 93
	ATOM	3251	CB	SER	426	38. 450 -13. 142	68. 863	1. 00 20. 85
	ATOM	3252	0G	SER	426	38. 007 -13. 582	67. 596	1. 00 21. 86
	ATOM	3253	C	SER	426	40. 394 -12. 039	67. 743	1. 00 25. 72
	ATOM	3254	0	SER	426	40. 760 -12. 483	66. 660	1. 00 25. 40
10	ATOM	3255	N	VAL	427	40. 363 -10. 727	68. 007	1. 00 27. 03
	ATOM	3256	CA	VAL	427	40. 761 -9. 750	66. 983	1. 00 27. 43
	ATOM	3257	CB	VAL	427	40. 591 -8. 269	67. 450	1. 00 28. 91
	ATOM	3258	CG1	VAL	427	40. 999 -7. 323	66. 314	1. 00 29. 57
	ATOM	3259	CG2	VAL	427	39. 150 -7. 990	67. 852	1. 00 27. 73
15	ATOM	3260	C	VAL	427	42. 226 -9. 919	66. 601	1. 00 28. 67
	ATOM	3261	0	VAL	427	42. 582 -9. 858	65. 424	1.00 27.30
	ATOM	3262	N	ARG	428	43. 076 -10. 119	67. 603	1. 00 28. 43
	ATOM	3263	CA	ARG	428	44. 498 -10. 281	67. 350	1. 00 31. 91
	ATOM	3264	CB	ARG	428	45. 273 -10. 231	68. 670	1. 00 31. 80
20	ATOM	3265	CG	ARG	428	45. 449 -8. 793	69. 130	1. 00 31. 90
	ATOM	3266	CD	ARG	428	45. 662 -8. 639	70.617	1. 00 34. 40
	ATOM	3267	NE	ARG	428	45. 867 -7. 231	70. 971	1. 00 34. 78
	ATOM	3268	CZ	ARG	428	45. 668 -6. 728	72. 186	1. 00 38. 69
	ATOM	3269	NH1	ARG	428	45. 251 -7. 516	73. 172	1. 00 38. 56
25	ATOM	3270	NH2	ARG	428	45. 901 -5. 442	72. 424	1. 00 39. 08
	ATOM	3271	C	ARG	428	44. 797 -11. 548	66. 572	1.00 33.56
	ATOM	3272	0	ARG	428	45. 694 -11. 558	65. 731	1. 00 32. 81
	ATOM	3273	N	ARG	429	44. 037 -12. 609	66. 837	1. 00 34. 25
	ATOM	3274	CA	ARG	429	44. 224 -13. 859	66. 115	1. 00 33. 42

- 129 -

ATOM 3275 CB ARG 429 43. 252 -14. 941 66, 601 1,00 36,36 ATOM 3276 CG ARG 429 43. 756 -15. 769 67.760 1, 00 43, 73 ATOM 3277 CD ARG 429 42. 930 -17. 038 67.939 1.00 47.67 ATOM 3278 NE ARG 429 41. 561 -16. 789 68. 398 1, 00 51, 58 ATOM CZ ARG 3279 42941. 222 -16. 467 69.646 1.00 51.70 ATOM 3280 NH1 ARG 429 42. 154 -16. 345 70, 585 1.00 50.85 ATOM. 3281 NH2 ARG 429 39. 945 -16. 288 69. 962 1,00 49,95 ATOM 3282 C ARG 429 43. 960 -13. 618 64.639 1.00 32.81 ATOM 32830 ARG 429 44. 610 -14. 215 63. 783 1.00 32.29 10 ATOM. 3284 N LEU 430 43. 001 -12. 741 64. 345 1.00 30.18 ATOM 3285 CA LEU 430 42. 623 -12. 455 62.9651. 00 29. 19 ATOM 3286 CB LEU 430 41. 132 -12. 109 62.904 1.00 29.15 ATOM 3287CG LEU 430 40. 173 -13. 164 63. 453 1.00 31.83 ATOM 3288 CD1 LEU 430 38. 746 -12. 629 63. 437 1.00 28.32 ATOM 3289 CD2 LEU 15 430 40. 281 -14. 441 62.613 1.00 32.03 ATOM 3290 C LEU 430 43. 407 -11. 355 62. 251 1.00 27.64 ATOM. 3291 0 LEU 430 43. 244 -11. 151 61.048 1.00 28.08 ATOM 3292 N THR 431 44. 261 -10. 645 62. 966 1.00 28.04 ATOM 3293 CA THR 431 44. 988 -9. 567 62.326 1.00 31.15 ATOM 20 3294 CB THR 431 44. 569 -8. 201 62, 934 1.00 30.03 ATOM 3295 OG1 THR 431 44. 666 -8. 254 64.363 1. 00 31.84 ATOM 3296 CG2 THR 431 43. 137 -7. 879 62.561 1.00 26.93 ATOM 3297 C THR 431 46. 507 -9. 719 62.367 1.00 34.65 ATOM 3298 0 THR 431 47, 190 -9, 015 63. 101 1.00 34.08 ATOM 3299 25 N PRO 432 47. 049 -10. 655 61. 566 1.00 37.36 ATOM 3300 CD PRO 432 46. 296 -11. 603 60. 726 1.00 37.91 ATOM 3301 CA PR0 432 48. 489 -10. 923 61. 484 1, 00 38, 59 ATOM 3302 CB PRO 432 48. 572 -12. 080 60. 487 1. 00 38. 98 ATOM 3303 CG PRO 432 47. 245 -12. 758 60.630 1.00 40.10

- 130 -

ATOM 3304 C PR0 432 49. 224 -9. 689 60.969 1, 00 39, 65 ATOM 3305 0 PR0 432 48, 712 -8.96860.113 1.00 39.80 ATOM 3306 N SER 433 50. 420 -9.46161.495 1.00 39.94 ATOM 3307 CA SER 433 51. 254 -8.32661. 112 1. 00 42, 47 ATOM 5 3308 CB SER 433 51.467 -8.28059. 586 1.00 44.12 ATOM 3309 0G SER 433 50.363 -7.70758.898 1. 00 48, 10 ATOM 3310 C SER 433 50. 687 -6.99661.598 1.00 42.26 ATOM 3311 SER 0 433 51.085 -5.93261, 121 1, 00 42, 50 ATOM 3312 N 434 49. 756 -7. 053 62.544 1.00 40.68 10 ATOM 3313 CA CYS 434 49. 184 -5. 831 63.092 1, 00 40, 64 ATOM 3314 CB CYS 434 47. 679 -5. 735 62.826 1.00 39.36 ATOM 3315 SG CYS 434 47. 196 -5. 674 61.111 1.00 39.36 ATOM 3316 C CYS 434 49. 398 -5. 789 64.590 1.00 40.17 ATOM 3317 0 CYS 434 49. 258 -6.80165.281 1.00 40.51 ATOM 15 3318 N GLU 435 49. 743 -4. 609 65.081 1.00 38.91 ATOM 3319 CA GLU 435 49. 945 -4. 388 66.504 1.00 39.30 ATOM 3320 CB GLU 435 51. 302 -3. 733 66.738 1.00 42.29 ATOM 3321 CG GLU 435 51. 779 -3. 766 68. 162 1.00 49.24 ATOM 3322 CD GLU 435 53.072 -2.99368.340 1.00 53.77 ATOM 20 OE1 GLU 435 54. 106 -3.42167. 781 1, 00 56, 24 ATOM 3324 OE2 GLU 435 53.047 -1.95069.032 1.00 54.88 ATOM 3325 C GLU 435 48. 801 -3.43066.839 1. 00 37. 06 ATOM 3326 0 GLU 435 48. 866 -2.24166. 532 1.00 34.30 ATOM 3327 N ILE 436 47. 749 -3. 971 67.449 1, 00 36, 39 25 ATOM 3328 CA ILE 436 46, 552 -3, 203 67.786 1.00 34.47 ATOM 3329 CB ILE 436 45. 280 -4. 040 67, 508 1.00 34.15 ATOM 3330 CG2 ILE 436 44. 024 -3. 166 67.639 1.00 33.64 ATOM 3331 CG1 ILE 436 45.357 -4.63366. 100 1.00 36.06 ATOM 3332 CD1 ILE 436 44. 166 -5.48765. 719 1.00 36.35

- 131 -

ATOM 3333 C ILE 436 46. 492 -2. 717 69, 228 1, 00 34, 50 ATOM 3334 ILE 436 0 46.612 -3.50670.164 1. 00 35, 88 ATOM 3335 N THR 437 46.308 -1.41169.405 1.00 32.66 ATOM 3336 CA THR 437 46. 196 -0.83770. 741 1, 00 30, 32 ATOM 3337 CB THR 437 47, 134 0.370 70.930 1.00 29.83 ATOM 3338 OG1 THR 437 48. 496 -0.06070.833 1.00 33.74 ATOM 3339 CG2 THR 437 46.925 0.996 72. 294 1. 00 28, 96 ATOM 3340 C THR 437 44, 759 -0.37770. 949 1.00 29.92 ATOM 3341 0 437 THR 44. 177 0.293 70.090 1, 00 28, 24 10 ATOM 3342 N PHE 438 44, 179 -0.75072.083 1.00 29.43 ATOM 3343 CA PHE 438 42.807 -0.35972.390 1. 00 29. 35 ATOM 3344 CB PHE 438 41. 991 -1.56772.853 1.00 27.92 ATOM 3345 CG PHE 438 41.794 -2.61471.789 1. 00 27. 95 ATOM 3346 CD1 PHE 438 42.695 -3.66171.648 1.00 27.90 ATOM CD2 PHE 15 3347 438 40.703 -2.54970.930 1. 00 24. 76 ATOM 3348 CE1 PHE 438 42. 505 -4.63470.662 1.00 29.21 ATOM 3349 CE2 PHE 438 40. 506 -3.50569.950 1. 00 28. 87 ATOM 3350 CZ PHE 438 41.408 -4.55469.814 1.00 28.70 ATOM 3351 C PHE 438 42.772 0.712 73.467 1. 00 30. 41 20 ATOM 0 PHE 438 43.469 0.601 74. 474 1.00 30.53 ATOM 3353 N ILE 439 41.968 1.752 73. 250 1.00 30.35 ATOM 3354 CA ILE 439 41.839 2.832 74. 220 1.00 31.89 ATOM 3355 CB ILE 439 42.544 4. 124 73.751 1. 00 33. 03 ATOM 3356 CG2 ILE 439 42. 233 5. 269 74. 721 1.00 36.00 ATOM 3357 CG1 ILE 25 439 44.053 3.916 73.704 1. 00 33. 82 ATOM 3358 CD1 ILE 439 44. 818 5. 165 73. 296 1.00 36.93 ATOM 3359 C ILE 439 40. 373 3. 158 74, 420 1. 00 32. 85 ATOM 3360 0 ILE 439 39.603 3.157 73.467 1.00 33.09 ATOM 3361 N GLU 440 39. 991 3.442 75.659 1.00 35.09

- 132 -

	ATOM	3362	CA	GLU	440	38. 608	3. 789	75. 956	1. 00 39. 34
	ATOM	3363	CB	GLU	440	38. 133	3. 041	77. 199	1. 00 37. 95
	ATOM	3364	CG	GLU	440	38. 213	1. 526	77. 038	1. 00 39. 96
	ATOM	3365	CD	GLU	440	37. 837	0. 773	78. 298	1. 00 40. 82
5	ATOM	3366	0E	l GLU	440	38. 058	-0. 456	78. 340	1. 00 41. 23
	ATOM	3367	0E	2 GLU	440	37. 318	1. 403	79. 245	1. 00 41. 08
	ATOM	3368	C	GLU	440	38. 495	5. 298	76. 156	1. 00 41. 28
	ATOM	3369	0	GLU	440	39. 356	5. 918	76. 769	1. 00 42. 10
	ATOM	3370	N	SER	441	37. 431	5. 886	75. 627	1. 00 43. 99
10	ATOM	3371	CA	SER	441	37. 231	7. 327	75. 738	1. 00 48. 53
	ATOM	3372	CB	SER	441	36. 390	7. 823	74. 550	1. 00 47. 96
	ATOM	3373	0G	SER	441	35. 196	7.066	74. 390	1. 00 48. 42
	ATOM	3374	C	SER	441	36. 577	7. 752	77. 051	1. 00 50. 20
	ATOM	3375	0	SER	441	35.654	7. 087	77. 531	1.00 51.01
15	ATOM	3376	N	GLU	442	37. 060	8. 852	77. 634	1. 00 53. 24
	ATOM	3377	CA	GLU	442	36. 490	9. 359	78. 885	1.00 55.51
	ATOM	3378	CB	GLU	442	37. 362	10. 454	79. 507	1.00 60.16
	ATOM	3379	CG	GLU	442	36. 822	10. 936	80. 859	1. 00 65. 44
	ATOM	3380	CD	GLU	442	37. 596	12. 107	81. 450	1. 00 69. 63
20	ATOM	3381	0E1	GLU	442	38. 824	11. 984	81. 667	1. 00 71. 27
	ATOM	3382	0E2	GLU	442	36. 965	13. 155	81. 709	1. 00 72. 91
	ATOM	3383	C	GLU	442	35. 118	9. 938	78. 579	1. 00 54. 68
	ATOM	3384	0	GLU	442	34. 104	9. 495	79. 126	1. 00 56. 30
	ATOM	3385	N	GLU	443	35. 094	10. 942	77. 714	1. 00 51. 73
25	ATOM	3386	CA	GLU	443	33. 840	11. 555	77. 307	1. 00 51. 12
	ATOM	3387	CB	GLU	443	33. 706	12. 960	77. 888	1. 00 51. 77
	ATOM	3388	CG	GLU	443	32. 561	13. 086	78. 869	1. 00 49. 05
	ATOM	3389	CD	GLU	443	31. 202	12. 812	78. 239	1. 00 48. 41
	ATOM	3390	0E1	GLU	443	30. 245	12. 572	79. 006	1. 00 48. 06

- 133 -

	ATOM	3391	OE4	2 GLU	449	21 004	19 0 49	70 000	1 00 44 40
					443	31. 084			1. 00 44. 46
	ATOM	3392	С	GLU	443	33. 851	11. 614	75. 793	1. 00 50. 48
	ATOM	3393	0	GLU	443	33. 624	12. 662	75. 191	1. 00 50. 61
	ATOM	3394	N	GLY	444	34. 131	10. 458	75. 199	1. 00 49. 69
5	ATOM	3395	CA	GLY	444	34. 213	10. 321	73. 760	1. 00 46. 29
	ATOM	3396	C	GLY	444	33. 300	11. 190	72. 928	1. 00 45. 39
	ATOM	3397	0	GLY	444	33. 786	12.031	72. 181	1. 00 44. 10
	ATOM	3398	N	SER	445	31. 990	10. 996	73. 052	1. 00 44. 40
	ATOM	3399	CA	SER	445	31. 035	11. 765	72. 263	1. 00 45. 82
10	ATOM	3400	CB	SER	445	29. 614	11. 258	72. 505	1. 00 43. 70
	ATOM	3401	0G	SER	445	29. 248	11. 396	73. 860	1. 00 51. 13
	ATOM	3402	C	SER	445	31. 108	13. 265	72. 523	1. 00 45. 79
	ATOM	3403	0	SER	445	31. 381	14. 043	71. 607	1. 00 46. 62
	ATOM	3404	N	GLY	446	30. 867	13. 666	73. 766	1. 00 45. 46
15	ATOM	3405	CA	GLY	446	30. 924	15. 075	74. 112	1. 00 44. 61
	ATOM	3406	C	GLY	446	32. 176	15. 778	73. 615	1. 00 44. 65
	ATOM	3407	0	GLY	446	32. 085	16. 754	72. 872	1. 00 45. 17
	ATOM	3408	N	ARG	447	33. 344	15. 286	74. 024	1. 00 44. 10
	ATOM	3409	CA	ARG	447	34. 615	15. 878	73. 615	1. 00 44. 23
20	ATOM	3410	CB	ARG	447	35. 765	15. 244	74. 396	1. 00 44. 71
	ATOM	3411	CG	ARG	447	36.079	15. 917	75. 720	1. 00 46. 63
	ATOM	3412	CD	ARG	447	36. 405	14. 896	76. 794	1. 00 48. 87
	ATOM	3413	NE	ARG	447	37. 226	13. 804	76. 286	1. 00 53. 97
	ATOM	3414	CZ	ARG	447	38. 507	13. 915	75. 956	1. 00 55. 65
25	ATOM	3415	NH1	ARG	447	39. 130	15. 076	76. 085	1. 00 56. 71
	ATOM	3416	NH2	ARG	447	39. 161	12. 862	75. 486	1. 00 58. 00
	ATOM	3417	c	ARG	447	34. 891	15. 739	72. 122	1. 00 45. 53
	ATOM	3418	0	ARG	447	35. 506	16. 617	71. 508	1. 00 45. 95
	ATOM	3419	N	GLY	448	34. 444	14. 630	71. 543	1. 00 45. 12

- 134 -

ATOM 3420 CA GLY 448 34.667 14. 395 70. 129 1.00 43.75 ATOM 3421 C GLY 448 33, 915 15.390 69. 275 1.00 44.42 ATOM 3422 0 GLY 448 34. 497 16.033 1.00 43.25 68. 401 ATOM 3423 N ALA 449 32.617 15.508 69.530 1.00 44.33 ATOM 3424 CA ALA 449 31, 764 16.435 68.798 1.00 46.02 ATOM 3425 CB ALA 449 30. 349 16. 393 69.362 1, 00 44, 02 ATOM 3426 C ALA 449 17.852 32, 334 68.901 1.00 47.27 ATOM 3427 0 ALA 449 32.388 18, 585 67.910 1, 00 46, 99 ATOM 3428 N ALA 450 32. 771 18. 226 70. 100 1.00 47.32 10 ATOM 3429 CA ALA 450 33. 337 19. 549 70.320 1, 00 48, 93 ATOM 3430 CB ALA 450 33.590 19. 771 71.803 1.00 48.70 ATOM 3431 C ALA 450 34.630 19.752 69.537 1.00 49.10 ATOM 3432 ALA 450 0 34. 795 20.770 68.864 1.00 51.55 ATOM 3433 N LEU 451 35. 546 18.792 69. 625 1.00 47.13 ATOM 3434 CA LEU 451 15 36. 828 18.889 68.923 1.00 46.08 ATOM 3435 CB LEU 451 37.693 17.661 69. 226 1.00 43.72 ATOM 3436 CG LEU 451 38. 376 17. 636 70.598 1.00 44.07 ATOM 3437 CD1 LEU 451 38. 798 16.218 70.955 1.00 41.74 ATOM 3438 CD2 LEU 451 39. 577 18. 574 70.574 1.00 40.23 20 ATOM 3439 C LEU 451 36.672 19.055 67.410 1, 00 45, 46 ATOM 3440 0 LEU 451 37. 495 19.708 66.760 1.00 46.36 ATOM 3441 N VAL 452 35.618 18. 465 66.857 1.00 43.95 ATOM 3442 CA VAL 452 35, 348 18. 552 65. 428 1.00 44.38 ATOM 3443 CB VAL 452 34.426 17. 376 64.959 1. 00 43, 85 ATOM 3444 CG1 VAL 452 33, 998 25 17, 576 63.513 1.00 41.59 ATOM 3445 CG2 VAL 452 35. 169 16.040 65.087 1, 00 40, 86 ATOM 3446 C VAL 452 34.687 19.905 65. 125 1.00 45.31 ATOM 3447 0 VAL 452 34. 881 20. 482 64.056 1.00 42.97 ATOM 453 3448 N SER 33. 912 20. 411 66.077 1.00 46.60

- 135 -

	ATOM	3449	CA	SER	453	33. 253	21. 693	65. 900	1. 00 49. 07
	ATOM	3450	CB	SER	453	32. 204	21. 902	66. 986	1. 00 47. 21
	ATOM	3451	0G	SER	453	31. 146	20. 972	66. 845	1. 00 44. 37
	ATOM	3452	C	SER	453	34. 293	22. 806	65. 951	1. 00 51. 53
5	ATOM	3453	0	SER	453	34. 150	23. 820	65. 281	1. 00 52. 56
	ATOM	3454	N	ALA	454	35. 352	22. 593	66. 728	1. 00 54. 40
	ATOM	3455	CA	ALA	454	36. 430	23. 567	66. 881	1. 00 56. 39
	ATOM	3456	CB	ALA	454	37. 336	23. 158	68. 031	1. 00 55. 74
	ATOM	3457	C	ALA	454	37. 259	23. 751	65. 614	1. 00 58. 75
10	ATOM	3458	0	ALA	454	37. 863	24. 807	65. 408	1. 00 59. 45
	ATOM	3459	N	VAL	455	37. 310	22. 719	64. 779	1. 00 60. 29
	ATOM	3460	CA	VAL	455	38. 063	22. 796	63. 535	1. 00 61. 78
	ATOM	3461	CB	VAL	455	38. 603	21. 416	63. 112	1.00 61.44
	ATOM	3462	CG1	VAL	455	39. 090	21.464	61. 672	1. 00 60. 81
15	ATOM	3463	CG2	VAL	455	39. 737	21.005	64. 031	1. 00 60. 68
	ATOM	3464	C	VAL	455	37. 152	23. 330	62. 442	1. 00 63. 56
	ATOM	3465	0	VAL	455	37. 550	24. 176	61. 643	1. 00 63. 25
	ATOM	3466	N	ALA	456	35. 921	22. 835	62. 416	1. 00 65. 38
	ATOM	3467	CA	ALA	456	34. 959	23. 275	61. 422	1.00 69.39
20	ATOM	3468	CB	ALA	456	33. 751	22. 354	61. 423	1. 00 68. 17
	ATOM	3469	C	ALA	456	34. 522	24. 709	61.710	1. 00 73. 10
	ATOM	3470	0	ALA	456	33. 975	25. 382	60. 837	1. 00 73. 04
	ATOM	3471	N	CYS	457	34. 771	25. 170	62. 935	1. 00 77. 06
	ATOM	3472	CA	CYS	457	34. 390	26. 521	63. 341	1. 00 81. 01
25	ATOM	3473	CB	CYS	457	34. 192	26. 599	64. 856	1. 00 80. 51
	ATOM	3474	SG	CYS	457	33. 478	28. 151	65. 432	1. 00 81. 75
	ATOM	3475	C	CYS	457	35. 420	27. 554	62. 916	1. 00 83. 65
	ATOM	3476	0	CYS	457	35. 312	28. 726	63. 275	1. 00 85. 11
	ATOM	3477	N	LYS	458	36. 430	27. 118	62. 172	1. 00 86. 29

- 136 -

	ATOM	3478	CA	LYS	458	37. 441	28. 041	61. 683	1. 00 89. 14
	ATOM	3479	CB	LYS	458	38. 843	27. 441	61. 803	1. 00 88. 60
	ATOM	3480	CG	LYS	458	39. 932	28. 486	61. 632	1. 00 89. 51
	ATOM	3481	CD	LYS	458	41. 276	27. 992	62. 130	1. 00 89. 70
5	ATOM	3482	CE	LYS	458	42. 257	29. 146	62. 269	1. 00 89. 22
	ATOM	3483	NZ	LYS	458	41. 718	30. 194	63. 180	1. 00 88. 81
	ATOM	3484	C	LYS	458	37. 096	28. 310	60. 232	1. 00 91. 26
	ATOM	3485	0	LYS	458	37. 936	28. 733	59. 438	1.00 91.56
	ATOM	3486	N	LYS	459	35. 834	28. 043	59. 901	1. 00 93. 94
10	ATOM	3487	CA	LYS	459	35. 302	28. 240	58. 548	1. 00 96. 28
	ATOM	3488	CB	LYS	459	35. 323	26. 923	57. 765	1. 00 96. 25
	ATOM	3489	CG	LYS	459	36. 719	26. 409	57. 421	1. 00 96. 30
	ATOM	3490	CD	LYS	459	37. 458	27. 348	56. 475	1. 00 96. 73
	ATOM	3491	CE	LYS	459	38. 833	26. 801	56. 111	1. 00 97. 12
15	ATOM	3492	NZ	LYS	459	39. 577	27. 717	55. 197	1. 00 97. 75
	ATOM	3493	C	LYS	459	33. 863	28. 759	58. 624	1. 00 97. 78
	ATOM	3494	0	LYS	459	33. 417	29. 516	57. 758	1. 00 98. 11
	ATOM	3495	N	ALA	460	33. 153	28. 327	59.666	1. 00 99. 29
	ATOM	3496	CA	ALA	460	31. 778	28. 738	59. 916	1. 00100. 54
20	ATOM	3497	CB	ALA	460	31. 028	27. 644	60. 681	1. 00100. 58
	ATOM	3498	C	ALA	460	31. 765	30. 042	60. 719	1. 00101. 56
	ATOM	3499	0	ALA	460	30. 755	30. 750	60. 777	1. 00101. 79
	ATOM	3500	N	CYS	461	32. 899	30. 360	61. 338	1. 00102. 59
	ATOM	3501	CA	CYS	461	33. 033	31. 572	62. 156	1. 00103. 00
25	ATOM	3502	CB	CYS	461	33. 145	31. 169	63. 624	1. 00103. 05
	ATOM	3503	SG	CYS	461	33. 354	32. 536	64. 774	1. 00103. 32
	ATOM	3504	C	CYS	461	34. 265	32. 367	61. 753	1. 00103. 21
	ATOM	3505	0	CYS	461	34. 788	33. 098	62. 620	1. 00103. 54
	ATOM	3506	0XT	CYS	461	34. 665	32. 248	60. 578	1. 00103. 24

- 137 -

	TER 3	07 (CYS	461					
	ATOM	3508	C1	GLC	500	23. 469	1. 767	65. 521	1. 00 30. 82
	ATOM	3509	C2	GLC	500	23. 418	3. 122	64. 706	1. 00 29. 40
	ATOM	3510	C3	GLC	500	24. 837	3. 619	64. 445	1. 00 29. 78
5	ATOM	3511	C4	GLC	500	25. 496	3. 860	65. 778	1. 00 28. 77
	ATOM	3512	C5	GLC	500	25. 529	2. 514	66. 593	1. 00 27. 72
	ATOM	3513	C6	GLC	500	26. 162	2. 717	67. 936	1. 00 26. 98
	ATOM	3514	01	GLC	500	24. 127	0. 765	64. 857	1. 00 36. 62
	ATOM	3515	02	GLC	500	22. 756	2. 872	63. 483	1. 00 32. 75
10	ATOM	3516	03	GLC	500	24. 786	4. 837	63. 698	1. 00 29. 31
	ATOM	3517	04	GLC	500	26. 853	4. 253	65. 639	1. 00 29. 10
	ATOM	3518	05	GLC	500	24. 152	2. 040	66. 770	1. 00 29. 59
	ATOM	3519	06	GLC	500	25. 517	3. 687	68. 814	1. 00 30. 98
	TER 35	20 G	LC	500					
15	ATOM	3521	S1	CP1	501	36. 312	19. 051	60. 824	1. 00 50. 83
	ATOM	3522	C2	CP1	501	35. 720	19. 405	59. 240	1.00 49.96
	ATOM	3523	C3	CP1	501	36. 398	18.662	58. 318	1.00 49.96
	ATOM	3524	N4	CP1	501	37. 363	17. 829	58. 827	1. 00 49. 99
	ATOM	3525	C5	CP1	501	37. 429	17. 932	60. 162	1. 00 49. 39
20	ATOM	3526	N6	CP1	501	38. 317	17. 183	60. 878	1. 00 48. 07
	ATOM	3527	C7	CP1	501	38. 575	17. 220	62. 294	1. 00 46. 71
	ATOM	3528	80	CP1	501	37. 968	18.001	63. 039	1. 00 47. 48
	ATOM	3529	C9	CP1	501	40. 386	16. 405	64. 107	1. 00 46. 71
	ATOM	3530	C10	CP1	501	39. 620	16. 253	62. 884	1. 00 47. 34
25	ATOM	3531	C11	CP1	501	39. 831	15.053	62. 110	1.00 46.39
	ATOM	3532	C12	CP1	501	40. 749	14.066	62. 520	1.00 46.34
	ATOM	3533	C13	CP1	501	41. 496	14. 237	63. 722	1. 00 47. 57
	ATOM	3534	F	CP1	501	42.392	13. 310	64. 155	1. 00 48. 24
	ATOM	3535	C15	CP1	501	41. 306	15. 404	64. 502	1. 00 46. 98

- 138 -

							-		
	ATOM	3536	S16	CP1	501	40. 907	12. 638	61. 485	1. 00 44. 61
	ATOM	3537	N17	CP1	501	42. 782	10.864	62. 327	1. 00 40. 11
	ATOM	3538	C18	CP1	501	42. 525	11. 942	61. 488	1. 00 41. 49
	ATOM	3539	N19	CP1	501	43. 528	12. 436	60. 686	1.00 42.95
5	ATOM	3540	C20	CP1	501	44. 549	11. 571	61.054	1. 00 43. 00
	ATOM	3541	C21	CP1	501	44. 116	10.651	62.014	1.00 39.24
	ATOM	3542	C22	CP1	501	41. 894	10. 152	63. 276	1.00 32.83
	ATOM	3543	N23	CP1	501	40. 279	17. 465	64. 913	1. 00 46. 10
	TER 3	544 (CP1	501		11.	IJ		
10	ATOM	3545	NA+1	NA1	600	36. 903	10.609	46. 484	1.00 48.71
	ATOM	3546	0	НОН	601	20. 332	-23. 624	70. 208	1. 00 45. 57
	ATOM	3547	0	НОН	602	18.766	-22. 456	65. 630	1.00 41.87
	ATOM	3548	0	НОН	603	13. 471	-20. 599	70. 297	1. 00 45. 83
	ATOM	3549	0	НОН	604	11. 104	-30. 408	72. 307	1.00 48.61
15	ATOM	3550	0	НОН	605	6. 606	-26. 352	79. 319	1. 00 59. 47
	ATOM	3551	0	HOH	606	15. 315	-28. 400	85. 522	1.00 48.85
	ATOM	3552	0	НОН	607	18. 765	-29. 705	82. 807	1. 00 55. 60
	ATOM	3553	0	НОН	608	27. 649	-22. 465	84. 914	1. 00 39. 29
	ATOM	3554	0	НОН	609	28. 890	-18. 936	88. 942	1. 00 38. 24
20	ATOM	3555	0	НОН	610	31. 397	-19. 437	88. 300	1.00 44.33
	ATOM	3556	0	НОН	611	33. 495	-12. 487	88. 943	1. 00 40. 63
	ATOM	3557	0	НОН	612	28. 110	-14. 193	93. 119	1. 00 37. 41
	ATOM	3558	0	НОН	613	22. 501	-9. 921	93. 883	1. 00 55. 62
	ATOM	3559	0	НОН	614	18. 084	-9. 259	91. 966	1. 00 48. 69
25	ATOM	3560	0	НОН	615	19. 985	-7. 585	89. 518	1. 00 54. 30
	ATOM	3561	0	НОН	616	18. 162	-4. 982	77. 583	1. 00 42. 44
	ATOM	3562	0	НОН	617	15. 728	-5. 792	77. 752	1. 00 49. 61
	ATOM	3563	0	НОН	618	17. 869	-7. 338	75. 263	1. 00 52. 43
	ATOM	3564	0	НОН	619	14. 631	-9. 827	77. 339	1. 00 27. 38

- 139 -

	ATOM	3565	0	НОН	620	14. 305	-5. 926	69. 446	1. 00	38. 14
	ATOM	3566	0	НОН	621	13. 616	-3. 087	68. 452	1. 00	51. 29
	ATOM	3567	0	НОН	622	15. 537	-2. 602	66.865	1. 00	35. 42
	ATOM	3568	0	НОН	623	18. 821	-1. 831	65. 405	1.00	31. 67
5	ATOM	3569	0	НОН	624	17. 261	0. 174	60. 996	1. 00	34. 87
	ATOM	3570	0	НОН	625	18. 895	-0. 653	58. 995	1. 00	41. 82
	ATOM	3571	0	НОН	626	20. 053	-2. 478	55. 373	1. 00	35. 91
	ATOM	3572	0	НОН	627	22. 217	-1. 019	55.062	1.00	36. 64
	ATOM	3573	0	НОН	628	25. 137	-0. 153	56. 470	1. 00	24. 69
10	ATOM	3574	0	НОН	629	22. 562	1. 498	59. 774	1.00	31. 68
	ATOM	3575	0	НОН	630	24. 912	0. 122	62. 135	1. 00	25. 12
	ATOM	3576	0	НОН	631	25. 071	2. 179	71. 129	1. 00	26. 49
	ATOM	3577	0	НОН	632	27. 157	5. 888	71. 903	1. 00	41.05
	ATOM	3578	0	НОН	633	29. 481	7. 227	73. 290	1. 00	47. 52
15	ATOM	3579	0	НОН	634	31. 223	8. 383	71. 417	1.00	44. 33
	ATOM	3580	0	НОН	635	32. 517	7. 788	77. 983	1. 00	44. 30
	ATOM	3581	0	НОН	636	35. 945	15. 748	80. 298	1.00	32. 85
	ATOM	3582	0	НОН	637	41. 395	13. 522	74. 250	1.00	52. 40
	ATOM	3583	0	НОН	638	41. 454	16.603	73. 492	1. 00	35. 38
20	ATOM	3584	0	НОН	639	44. 238	18.657	64. 621	1. 00	57. 41
	ATOM	3585	0	НОН	640	48. 524	12.679	62.857	1. 00	55.80
	ATOM	3586	0	НОН	641	50.088	10.035	69. 707	1. 00	37. 86
	ATOM	3587	0	НОН	642	47. 834	4. 897	73.654	1. 00	43. 91
	ATOM	3588	0	НОН	643	47. 658	2. 456	75. 515	1. 00	46. 89
25	ATOM	3589	0	НОН	644	45. 862	0.872	75. 793	1. 00	36. 22
	ATOM	3590	0	НОН	645	42. 167	-0. 401	77. 407	1. 00	46. 09
	ATOM	3591	0	НОН	646	39. 939	-1.664	76. 818	1.00	28.80
	ATOM	3592	0	НОН	647	41. 804	2. 590	77. 672	1. 00	3 0. 06
	ATOM	3593	0	НОН	648	35. 946	-0. 230	81. 704	1. 00	44. 47

- 140 -

	ATOM	3594	1 0	НОН	649	35. 692 -3. 832	84. 533	1. 00 48. 68
	ATOM	3595	0	НОН	650	35. 503 -5. 648	82. 602	1. 00 39. 36
	ATOM	3596	0	HOH	651	34. 249 -6. 282	78. 743	1. 00 28. 80
	ATOM	3597	0	НОН	652	41. 570 -6. 014	79. 114	1.00 41.31
5	ATOM	3598	0	НОН	653	42. 725 -8. 259	76. 851	1. 00 34. 12
	ATOM	3599	0	НОН	654	42. 400 -10. 619	75. 649	1. 00 32. 12
	ATOM	3600	0	НОН	655	44. 745 -10. 112	73. 414	1. 00 30. 95
	ATOM	3601	0	НОН	656	44. 977 -6. 287	75. 709	1. 00 54. 82
	ATOM	3602	0	НОН	657	49. 536 -3. 896	71. 639	1. 00 46. 68
10	ATOM	3603	0	НОН	658	47. 500 -6. 424	68. 659	1. 00 37. 00
	ATOM	3604	0	НОН	659	46. 887 -8. 289	65. 948	1. 00 35. 73
	ATOM	3605	0	НОН	660	45. 007 -14. 004	70. 403	1.00 31.53
	ATOM	3606	0	НОН	661	44. 785 -16. 666	70. 958	1. 00 39. 67
	ATOM	3607	0	НОН	662	39. 546 -15. 899	74. 666	1. 00 38. 86
15	ATOM	3608	0	НОН	663	38. 539 -14. 985	72. 232	1. 00 34. 80
	ATOM	3609	0	НОН	664	38. 252 -17. 032	68. 208	1. 00 47. 76
	ATOM	3610	0	НОН	665	39. 836 -15. 454	66. 437	1. 00 38. 55
	ATOM	3611	0	НОН	666	36. 975 -19. 549	67. 636	1. 00 43. 12
	ATOM	3612	0	НОН	667	37. 200 -20. 262	70. 388	1. 00 51. 64
20	ATOM	3613	0	НОН	668	33. 328 -20. 695	70. 543	1. 00 49. 91
	ATOM	3614	0	НОН	669	32. 877 -18. 716	69. 209	1. 00 30. 69
	ATOM	3615	0	НОН	670	30. 463 -18. 228	69. 770	1. 00 29. 35
	ATOM	3616	0	НОН	671	29. 403 -18. 862	72. 028	1. 00 29. 94
	ATOM	3617	0	НОН	672	31. 677 -19. 876	75. 929	1. 00 57. 83
25	ATOM	3618	0	НОН	673	32. 105 -15. 120	81. 811	1. 00 56. 36
	ATOM	3619	0	HOH	674	25. 408 -13. 262	70. 399	1. 00 19. 73
	ATOM	3620	0	НОН	675	20. 199 -11. 770	66. 567	1. 00 31. 95
	ATOM	3621	0	НОН	676	20. 589 -11. 169	63. 684	1. 00 28. 18
	ATOM	3622	0	НОН	677	18. 416 -12. 169	62. 695	1. 00 34. 73

- 141 -

						* * * *			
	ATOM	3623	0	НОН	678	18. 037 -1	2. 657	56. 097	1. 00 62. 31
	ATOM	3624	0	НОН	679	15. 700 -1	0. 616	55. 942	1. 00 49. 61
	ATOM	3625	0	НОН	680	17. 485 -	8. 240	55. 372	1. 00 37. 91
	ATOM	3626	0	НОН	681	22. 370 -12	2. 555	56. 733	1. 00 27. 53
5	ATOM	3627	0	НОН	682	21. 048 -16	6. 039	51. 265	1. 00 53. 09
	ATOM	3628	0	НОН	683	25. 649 -8	8. 890	49. 620	1. 00 43. 30
	ATOM	3629	0	НОН	684	25. 472 -	. 908	50. 031	1. 00 43. 23
	ATOM	3630	0	НОН	685	27. 841 -3	. 633	51. 119	1. 00 34. 64
	ATOM	3631	0	НОН	686	23. 209 1	. 359	50. 792	1. 00 44. 06
10	ATOM	3632	0	НОН	687	26. 198 3	. 711	50. 151	1. 00 38. 65
	ATOM	3633	0	НОН	688	27. 728 6	. 416	50. 494	1. 00 39. 66
	ATOM	3634	0	НОН	689	30. 171 5	. 238	50. 152	1. 00 36. 90
	ATOM	3635	0	НОН	690	32. 248 6	. 334	48. 750	1. 00 33. 36
	ATOM	3636	0	HOH	691	36.665 2	. 495	46. 196	1. 00 32. 68
15	ATOM	3637	0	НОН	692	37. 821 0	. 573	47. 634	1. 00 47. 42
	ATOM	3638	0	НОН	693	42. 794 0.	201	52. 097	1. 00 44. 65
	ATOM	3639	0	НОН	694	41. 559 1.	725	53. 810	1. 00 38. 52
	ATOM	3640	0	НОН	695	43. 105 3.	662	55. 242	1. 00 34. 89
	ATOM	3641	0	НОН	696	45. 510 2.	836	56. 086	1. 00 40. 92
20	ATOM	3642	0	НОН	697	50. 206 2.	510	60. 598	1. 00 45. 86
	ATOM	3643	0	НОН	698	52. 258 1.	308	61. 720	1. 00 45. 43
	ATOM	3644	0	НОН	699	48. 954 1.	961	67. 618	1. 00 35. 43
	ATOM	3645	0	НОН	700	49. 694 -0.	399	68. 442	1. 00 39. 38
	ATOM	3646	0	НОН	701	40. 015 -5.	106	51. 960	1. 00 36. 49
25	ATOM	3647	0	НОН	702	34. 048 -12.	903	50. 839	1. 00 37. 87
	ATOM	3648	0	НОН	703	33. 190 -14.	541	52. 882	1. 00 51. 09
	ATOM	3649	0	НОН	704	34. 961 -16.	254	52. 067	1. 00 35. 42
	ATOM	3650	0	НОН	705	30. 397 -15.	105	52. 902	1. 00 39. 69
	ATOM	3651	0	НОН	706	31.770 -20.	985	57. 467	1. 00 48. 16

- 142 -

ATOM 3652 0 НОН 707 37. 192 -19. 637 55, 866 1. 00 46, 43 ATOM 3653 0 HOH 708 38. 187 -23. 567 61. 924 1.00 40.92 ATOM 3654 0 HOH 709 38. 470 -23. 126 65. 456 1. 00 45. 43 ATOM 3655 0 HOH 710 30. 533 -23. 844 62. 578 1.00 37.90 5 ATOM 3656 0 HOH 711 26. 515 -21. 678 62. 544 1. 00 39. 08 ATOM 3657 0 HOH 712 27. 242 -20. 400 65. 671 1.00 33.60 ATOM 3658 0 HOH 713 25. 907 -18. 116 65. 171 1.00 24.64 ATOM 3659 0 НОН 714 28. 226 -26. 567 74. 622 1. 00 44, 93 ATOM 3660 0 HOH 715 31. 091 -28. 151 73. 632 1. 00 39. 43 ATOM 10 3661 0 НОН 716 28. 020 -32. 685 74. 512 1, 00 48, 35 ATOM 3662 0 HOH 717 28. 401 -36. 363 77. 956 1.00 47.24 ATOM 3663 0 HOH 26. 796 -22. 733 95. 375 718 1.00 34.50 ATOM 3664 0 HOH 719 23. 506 -18. 729 96. 532 1. 00 46. 50 ATOM 3665 0 HOH 720 7. 193 -13. 392 87. 134 1.00 48.33 15 ATOM 3666 0 HOH 721 23. 769 -2. 393 77. 130 1.00 39.79 ATOM 3667 0 HOH 722 21. 538 6. 141 76.432 1. 00 52. 58 ATOM 3668 0 HOH 723 26.038 13. 552 80.579 1.00 47.60 ATOM 3669 0 НОН 724 25.460 9.823 62.329 1.00 33.10 ATOM 3670 0 HOH 725 27. 321 10.443 60.403 1.00 39.23 ATOM 20 3671 0 HOH 726 26.658 8.602 58.871 1.00 32.16 ATOM 3672 0 HOH 727 29.670 11.059 61.417 1.00 24.95 ATOM 3673 HOH 728 30. 585 13. 937 60. 932 1.00 41.90 ATOM 3674 0 HOH 729 34, 591 18. 790 55.094 1, 00 40, 47 ATOM 3675 0 НОН 730 34. 117 19. 353 52. 182 1.00 54.62 25 ATOM 3676 0 НОН 731 31. 428 16. 535 48, 224 1.00 37.06 ATOM 3677 0 HOH 732 31.432 15. 488 46.047 1. 00 33, 85 ATOM 3678 0 HOH 733 27.660 11. 291 51. 289 1.00 40.74 ATOM 3679 0 HOH 734 27.629 10.029 53.857 1.00 30.56 ATOM 3680 0 HOH 735 22.996 7. 311 45. 724 1. 00 57. 65

- 143 -

ATOM 3681 0 HOH 736 25. 532 2. 038 43. 263 1. 00 34. 43 ATOM 3682 0 HOH 3. 221 40. 211 1. 00 45. 05 737 33, 508 ATOM 3683 0 HOH 738 35. 525 1. 426 41. 242 1. 00 44. 71 ATOM 3684 0 HOH 739 37. 227 9. 576 44. 352 1. 00 31. 96 5 ATOM 3685 0 HOH 740 39. 858 15. 804 52. 237 1. 00 43. 41 ATOM 3686 0 HOH 741 42. 053 15. 415 53. 940 1. 00 47. 39 ATOM 3687 0 HOH 742 32. 200 24. 148 58. 683 1. 00 45. 42 ATOM 3688 0 HOH 743 28. 016 21. 804 51. 201 1. 00 44. 12 ATOM 3689 0 HOH 744 22. 797 26. 498 63. 763 1. 00 53. 69 ATOM 10 3690 0 HOH 745 10. 552 26. 073 62. 119 1. 00 43. 13 ATOM 3691 0 HOH 746 11. 190 7. 673 68. 338 1. 00 57. 06 ATOM 3692 0 HOH 747 20. 818 -3. 881 51. 225 1. 00 56. 55 ATOM 3693 0 HOH 29. 885 -6. 633 43. 981 1. 00 46. 17 748 ATOM 3694 0 HOH 749 40. 811 30. 945 68. 309 1. 00 45. 88 15 TER 3695 HOH

なお、表1は、当業者によって慣用されているプロテイン・データ・バンク の表記方法に準拠して作成されている。表1中、GLCはグルコース分子を表 20 し、CP1は式IIIaで表される化合物を表し、HOHは水分子を表す。

また、本発明においては、配列番号8に示すGKタンパク質の結晶を調製することに成功している(後述の実施例参照)。そしてこのようにして得られたGKタンパク質の結晶は、格子定数が、下記式(5)~(8):

25 a=b=103. 2±5 オングストローム … (5) c=281. 0±7 オングストローム … (6)

 $\alpha = \beta = 90^{\circ} \qquad \cdots \quad (7)$

 $\gamma = 120^{\circ}$... (8)

を満たすものであった。また、この結晶は、空間群が P6s22 であることが

- 144 -

解明された。ここで、前記 a=b は 103.2 ± 3 オングストロームであることが好ましく、 103.2 ± 2 オングストロームであることがより好ましく、 103.2 ± 1 オングストロームであることがさらに好ましい。また、前記 c は 281.0 ± 6 オングストロームであることが好ましく、 281.0 ± 4 オングストロームであることが好ましく、 281.0 ± 4 オングストロームであることがより好ましく、 281.0 ± 2 オングストロームであることがさらに好ましい。このようにして得られた GK タンパク質結晶の 3 次元構造座標を表 2 に示す。

5

表 2 ATOM 1 CB MET 15 54. 150 5. 972 67. 103 1. 00 55, 10 10 ATOM CG MET 15 55, 594 5. 943 67. 591 1. 00 55, 46 ATOM 3 SD MET 15 56.013 4. 505 68. 603 1, 00 52, 92 ATOM 4 CE MET 15 56. 517 5. 326 70. 108 1. 00 51. 73 ATOM 5 C MET 15 4. 955 65. 669 1. 00 56. 87 52, 357 ATOM 6 0 MET 15 52.057 4.609 64.524 1.00 57.60 15 ATOM 7 N MET 15 54, 770 4. 766 65. 028 1. 00 55. 00 ATOM CA MET 15 53. 800 4. 813 66. 167 1.00 56.04 ATOM 9 N VAL 16 51. 468 5. 456 66. 525 1.00 55.58 ATOM 10 CA VAL 16 50.065 5. 625 66. 154 1.00 52.87 ATOM 11 CB VAL 16 49. 141 4. 862 67. 129 1.00 49.32 20 ATOM CG1 VAL 16 12 47. 696 5. 016 66. 716 1, 00 48, 26 ATOM 13 CG2 VAL 16 49.508 3. 394 67. 126 1.00 47.28 ATOM 14 C VAL 16 49.666 7.097 66. 085 1, 00 53, 26 ATOM 15 0 VAL 16 49. 218 7. 563 65. 040 1.00 52, 32 ATOM 16 N GLU 17 49. 845 7. 828 67. 182 1. 00 56. 12 25 ATOM 17 CA GLU 17 49. 511 9. 253 67. 210 1. 00 59. 41 ATOM 18 CB GLU 17 50. 102 9. 921 68, 456 1.00 63.35 ATOM 19 CG GLU 17 49. 063 10. 373 69. 484 1. 00 68. 69 ATOM 20 CD GLU 17 48. 174 11. 525 69. 004 1. 00 72. 00 ATOM 21 0E1 GLU 17 47. 314 11. 964 69. 805 1. 00 74. 22

- 145 -

						1.	Į.O			
	ATOM	22	0E2	GLU	17	48. 328	11. 992	67. 847	1. 00	72. 36
	ATOM	23	C	GLU	17	50. 035	9. 963	65. 967	1. 00	59. 05
	ATOM	24	0	GLU	17	49. 521	11. 011	65. 566	1. 00	57. 70
	ATOM	25	N	GLN	18	51.070	9. 389	65. 367	1. 00	60. 75
5	ATOM	26	CA	GLN	18	51.661	9. 960	64. 170	1. 00	61.70
	ATOM	27	CB	GLN	18	53. 038	9. 329	63. 895	1. 00	66. 55
	ATOM	28	CG	GLN	18	54. 001	9. 219	65. 110	1. 00	72. 22
	ATOM	29	CD	GLN	18	54. 509	10. 566	65. 654	1. 00	75. 87
	ATOM	30	0E1	GLN	18	55. 317	10.605	66. 595	1.00	75. 55
10	ATOM	31	NE2	GLN	18	54. 037	11. 669	65.067	1. 00	77. 63
	ATOM	32	C	GLN	18	50. 709	9. 682	63.004	1. 00	59. 33
	ATOM	33	0	GLN	18	50. 322	10.601	62. 287	1. 00	59. 09
	ATOM	34	N	ILE	19	50. 321	8. 418	62. 832	1.00	55. 64
	ATOM	35	CA	ILE	19	49. 416	8. 029	61. 747	1. 00	53. 41
15	ATOM	36	CB	ILE	19	49. 113	6. 529	61.778	1. 00	52. 34
	ATOM	37	CG2	ILE	19	47. 964	6. 211	60. 832	1. 00	50.69
	ATOM	38	CG1	ILE	19	50. 374	5. 754	61. 389	1. 00	52. 73
	ATOM	39	CD1	ILE	19	50. 186	4. 256	61. 274	1. 00	53. 73
	ATOM	40	C	ILE	19	48. 088	8. 774	61.741	1. 00	53. 03
20	ATOM	41	0	ILE	19	47. 791	9. 528	60. 812	1. 00	52.86
	ATOM	42	N	LEU	20	47. 279	8. 548	62. 766	1. 00	52. 38
	ATOM	43	CA	LEU	20	45. 997	9. 228	62.861	1. 00	51.95
	ATOM	44	CB	LEU	20	45. 336	8. 937	64. 195	1. 00	50. 70
	ATOM	45	CG	LEU	20	44. 563	7. 632	64. 212	1. 00	51.65
25	ATOM	46	CD1	LEU	20	45. 450	6. 454	63. 803	1. 00	51.77
	ATOM	47	CD2	LEU	20	44. 010	7. 463	65. 599	1. 00	51.02
	ATOM	48	C	LEU	20	46. 158	10.723	62. 727	1. 00	52. 33
	ATOM	49	0	LEU	20	45. 204	11. 427	62. 401	1. 00	54. 11
	ATOM	50	N	ALA	21	47. 366	11. 207	62. 990	1. 00	51.49

- 146 -

	ATOM	51	CA	ALA	21	47. 643	12. 628	62. 907	1. 00 49. 87
	ATOM	52	CB	ALA	21	49. 066	12. 899	63. 342	1. 00 50. 58
	ATOM	53	C	ALA	21	47. 414	13. 133	61. 491	1. 00 48. 63
	ATOM	54	0	ALA	21	47. 090	14. 301	61. 286	1. 00 47. 74
5	ATOM	55	N	GLU	22	47. 571	12. 243	60. 517	1.00 47.60
	ATOM	56	CA	GLU	22	47. 383	12.605	59. 121	1.00 48.69
	ATOM	57	CB	GLU	22	47. 818	11. 457	58. 215	1. 00 51. 49
	ATOM	58	CG	GLU	22	49. 282	11. 520	57. 838	1. 00 59. 47
	ATOM	59	CD	GLU	22	49. 738	10. 335	57. 003	1. 00 64. 78
10	ATOM	60	0E1	GLU	22	50. 896	10. 369	56. 519	1. 00 66. 47
	ATOM	61	0E2	GLU	22	48. 948	9. 373	56. 839	1. 00 68. 05
	ATOM	62	C	GLU	22	45. 954	12. 999	58. 794	1. 00 48. 26
	ATOM	63	0	GLU	22	45. 683	13. 538	57. 721	1. 00 48. 86
	ATOM	64	N	PHE	23	45. 036	12. 733	59. 715	1.00 47.14
15	ATOM	65	CA	PHE	23	43. 641	13. 076	59. 490	1. 00 45. 51
	ATOM	66	CB	PHE	23	42. 722	12.045	60. 147	1. 00 41. 36
	ATOM	67	CG	PHE-	23	42. 544	10.783	59. 347	1. 00 37. 96
	ATOM	68	CD1	PHE	23	43. 208	9. 613	59. 697	1. 00 35. 23
	ATOM	6 9	CD2	PHE	23	41. 687	10.758	58. 255	1. 00 37. 67
20	ATOM	70	CE1	PHE	23	43. 016	8. 435	58. 968	1. 00 32. 67
	ATOM	71	CE2	PHE	23	41. 492	9. 583	57. 523	1. 00 37. 15
	ATOM	72	CZ	PHE	23	42. 158	8. 423	57. 883	1. 00 33. 48
	ATOM	73	C	PHE	23	43. 310	14. 468	60.013	1. 00 47. 24
	ATOM	74	0	PHE	23	42. 227	14. 993	59. 767	1. 00 46. 34
25	ATOM	75	N	GLN	24	44. 245	15.068	60. 735	1. 00 50. 44
	ATOM	76	CA	GLN	24	44. 028	16.400	61. 279	1. 00 55. 06
	ATOM	77	CB	GLN	24	45. 306	16: 882	61. 979	1. 00 59. 10
	ATOM	78	CG	GLN	24	45. 715	16.023	63. 168	1. 00 62. 03
	ATOM	79	CD	GLN	24	44. 686	16.075	64. 277	1. 00 65. 56

- 147 -

	ATOM	80	0E	1 GLN	24	44. 653	15. 207	65. 156	1. 00 66. 95
	ATOM	81	NE	2 GLN	24	43. 834	17. 103	64. 245	1. 00 65. 89
	ATOM	82	C	GLN	24	43. 644	17. 359	60. 149	1. 00 56. 09
	ATOM	83	0	GLN	24	43. 892	17. 073	58. 979	1. 00 57. 63
5	ATOM	84	N	LEU	25	43.016	18. 476	60. 504	1. 00 55. 99
	ATOM	85	CA	LEU	25	42.616	19. 501	59. 540	1. 00 55. 27
	ATOM	86	CB	LEU	25	41. 303	19. 128	58. 841	1. 00 54. 71
	ATOM	87	CG	LEU	25	41. 325	17. 896	57. 922	1. 00 53. 30
	ATOM	88	CD	l LEU	25	39. 928	17.618	57. 419	1. 00 53. 18
10	ATOM	89	CD2	LEU	25	42. 264	18. 113	56. 755	1. 00 51. 55
	ATOM	90	C	LEU	25	42. 444	20. 786	60. 336	1. 00 56. 31
	ATOM	91	0	LEU	25	41. 377	21.061	60. 889	1. 00 55. 85
	ATOM	92	N	GLN	26	43. 519	21. 563	60. 399	1. 00 58. 22
	ATOM	93	CA	GLN	26	43. 527	22. 807	61. 153	1. 00 58. 31
15	ATOM	94	CB	GLN	26	44. 980	23. 280	61.361	1. 00 63. 03
	ATOM	95	CG	GLN	26	45. 118	24. 480	62. 313	1. 00 69. 87
	ATOM	96	CD	GLN	26	46. 490	25. 161	62. 245	1. 00 73. 70
	ATOM	97	0E1	GLN	26	47. 009	25. 446	61. 158	1. 00 74. 68
	ATOM	98	NE2	GLN	26	47.067	25. 446	63.411	1. 00 74. 99
20	ATOM	99	C	GLN	26	42. 702	23. 903	60. 485	1. 00 55. 29
	ATOM	100	0	GLN	26	42. 358	23. 811	59. 308	1. 00 51. 30
	ATOM	101	N	GLU	27	42. 389	24. 931	61.267	1. 00 55. 08
	ATOM	102	CA	GLU	27	41.617	26. 083	60.824	1. 00 55. 66
	ATOM	103	CB	GLU	27	41. 940	27. 280	61.709	1. 00 57. 13
25	ATOM	104	CG	GLU	27	41. 029	28. 469	61.523	1. 00 59. 64
	ATOM	105	CD	GLU		39. 694	28. 272	62. 208	1. 00 62. 00
	ATOM	106	0E1	GLU	27	39. 685	27. 840	63. 382	1. 00 62. 44
	ATOM	107	0E2	GLU :	27	38. 653	28. 559	61.581	1.00 64.27
	ATOM	108	C	GLU :	27	41. 905	26. 454	59. 380	1. 00 55. 70

- 148 -

	ATOM	109	0	GLU	27	41. 025	26. 416	58. 531	1. 00	56. 30
	ATOM	110	N	GLU	28	43. 147	26. 828	59. 113	1. 00	56. 74
	ATOM	111	CA	GLU	28	43. 571	27. 208	57. 770	1. 00	58. 34
	ATOM	112	CB	GLU	28	45. 102	27. 226	57. 714	1. 00	63. 94
5	ATOM	113	CG	GLU	28	45. 704	28. 026	56. 573	1. 00	70. 36
	ATOM	114	CD	GLU	28	45. 615	29. 524	56. 806	1. 00	74. 74
	ATOM	115	0E1	GLIJ	28	46. 245	30. 289	56. 040	1. 00	77. 18
	ATOM	116	0E2	GLU	28	44. 912	29. 938	57. 755	1. 00	77. 44
	ATOM	117	C	GLU	28	43. 032	26. 231	56. 721	1. 00	56. 56
10	ATOM	118	0 -	GLU	28	42. 375	26. 641	55. 764	1. 00	54. 38
	ATOM	119	N	ASP	29	43. 316	24. 942	56. 921	1. 00	55. 20
	ATOM	120	CA	ASP	29	42. 893	23. 869	56. 015	1. 00	53. 13
	ATOM	121	CB	ASP	29	43. 106	22. 499	56. 667	1. 00	56. 36
	ATOM	122	CG	ASP	29	44. 570	22. 116	56. 758	1. 00	59. 69
15	ATOM	123	0D1	ASP	29	45. 263	22. 198	55. 717	1. 00	61. 07
	ATOM	124	0D2	ASP	29	45. 021	21. 727	57. 863	1. 00	60. 92
	ATOM	125	C	ASP	29	41. 439	23. 995	55. 607	1. 00	49. 74
	ATOM	126	0	ASP	29	41. 100	23. 924	54. 424	1.00	47. 81
	ATOM	127	N	LEU	30	40. 579	24. 156	56.603	1. 00	46. 04
20	ATOM	128	CA	LEU	30	39. 167	24. 309	56. 344	1.00	43.06
	ATOM	129	CB	LEU	30	38. 393	24. 491	57. 649	1. 00	39. 08
	ATOM	130	CG	LEU	30	38. 026	23. 218	58. 404	1. 00	36. 61
	ATOM	131	CD1	LEU	30	39. 280	22. 441	58. 756	1. 00	37. 28
	ATOM	132	CD2	LEU	30	37. 233	23. 576	59. 642	1.00	35. 29
25	ATOM	133	C	LEU	30	38. 948	25. 516	55. 452	1. 00	44. 18
	ATOM	134	0	LEU	30	38. 410	25. 388	54. 354	1. 00	45. 60
	ATOM	135	N	LYS	31	39. 381	26. 685	55. 920	1. 00	44. 63
	ATOM	136	CA	LYS	31	39. 206	27. 927	55. 170	1. 00	43. 67
	ATOM	137	CB	LYS	31	40. 136	29. 020	55. 695	1. 00	45. 23

- 149 -

	ATOM	138	CG	LYS	31	39. 968	29. 361	57. 165	1.00	46. 98
	ATOM	139	CD	LYS	31	38. 743	30. 221	57. 440	1. 00	15. 54
	ATOM	140	CE	LYS	31	38. 695	30. 675	58. 915	1.00	15. 82
	ATOM	141	NZ	LYS	31	39. 836	31.545	59. 387	1. 00	12. 73
5	ATOM	142	C	LYS	31	39. 483	27. 725	53. 697	1.00	12. 23
	ATOM	143	0	LYS	31	38. 759	28. 241	52. 855	1. 00 4	1. 29
	ATOM	144	N	LYS	32	40. 535	26. 976	53. 385	1.00 4	1. 79
	ATOM	145	CA	LYS	32	40. 877	26. 737	51. 994	1. 00 4	3. 47
	ATOM	146	CB	LYS	32	42. 171	25. 928	51.888	1.00 4	5. 16
10	ATOM	147	CG	LYS	32	42. 811	25. 974	50. 499	1. 00 5	0. 49
	ATOM	148	CD	LYS	32	44. 302	25. 565	50. 510	1. 00 5	4. 48
	ATOM	149	CE	LYS	32	44. 505	24. 086	50. 900	1. 00 8	7. 45
	ATOM	150	NZ	LYS	32	45. 934	23. 610	51.002	1. 00 5	6. 65
	ATOM	151	C	LYS	32	39. 740	25. 995	51. 308	1. 00 4	3. 99
15	ATOM	152	0	LYS	32	39. 260	26. 407	50. 246	1.00 4	3. 34
	ATOM	153	N	VAL	33	39. 306	24. 901	51. 925	1.00 4	3. 47
	ATOM	154	CA	VAL	33	38. 218	24. 100	51. 382	1.00 4	0. 87
	ATOM	155	CB	VAL	33	37. 895	22. 927	52. 310	1.00 4	0. 53
	ATOM	156	CG1	VAL	33	36. 977	21. 939	51. 604	1.00 4	0. 20
20	ATOM	157	CG2	VAL	33	39. 183	22. 248	52. 729	1.00 4	0. 29
	ATOM	158	C	VAL	33	36. 994	24. 981	51. 226	1.00 3	9. 39
	ATOM	159	0	VAL	33	36. 370	25. 011	50. 165	1.00 3	7. 22
	ATOM	160	N	MET	34	36. 675	25. 707	52. 290	1.00 3	9. 46
	ATOM	161	CA	MET	34	35. 539	26.609	52. 288	1.00 4	2. 17
25	ATOM	162	CB	MET	34	35. 515	27. 460	53. 555	1.00 4	3. 81
	ATOM	163	CG	MET	34	34. 259	28. 305	53. 656	1.00 4	8. 81
	ATOM	164	SD	MET	34	34. 302	29. 606	54. 908	1.00 5	ð. 60
	ATOM	165	CE	MET	34	34. 576	31.074	53. 859	1.00 5	5. 54
	ATOM	166	C	MET	34	35. 612	27. 535	51.086	1.00 4	3. 35

- 150 -

	ATOM	167	0	MET	34	34. 626	27. 735	50. 383	1. 00 43. 86
	ATOM	168	N	ARG	35	36. 785	28. 104	50. 847	1. 00 44. 90
	ATOM	169	CA	ARG	35	36. 938	29. 015	49. 729	1. 00 45. 60
	ATOM	170	CB	ARG	35	38. 286	29. 727	49. 815	1. 00 49. 40
5	ATOM	171	CG	ARG	35	38. 459	30. 563	51. 075	1. 00 53. 81
	ATOM	172	CD	ARG	35	38. 231	32. 052	50. 851	1. 00 57. 78
	ATOM	173	NE	ARG	35	38. 483	32. 807	52. 077	1. 00 63. 20
	ATOM	174	CZ	ARG	35	39. 587	32. 696	52. 820	1. 00 65. 30
	ATOM	175	NH 1	ARG	35	40. 557	31. 854	52. 466	1. 00 64. 80
10	ATOM	176	NH2	ARG	35	39. 720	33. 425	53. 925	1. 00 66. 89
	ATOM	177	С	ARG	35	36. 814	28. 262	48. 418	1. 00 44. 08
	ATOM	178	0	ARG	35	35. 977	28. 605	47. 586	1. 00 43. 75
	ATOM	179	N	ARG	36	37. 633	27. 227	48. 245	1. 00 43. 43
	ATOM	180	CA	ARG	36	37. 612	26. 418	47. 026	1. 00 43. 94
15	ATOM	181	CB	ARG	36	38. 547	25. 212	47. 174	1.00 44.76
	ATOM	182	CG	ARG	36	40. 020	25. 580	47. 244	1.00 44.66
	ATOM	183	CD	ARG	36	40. 898	24. 392	47. 617	1. 00 44. 20
	ATOM	184	NE	ARG	36	41. 728	23. 919	46. 512	1. 00 44. 66
	ATOM	185	CZ	ARG	36	42. 890	23. 292	46. 678	1. 00 45. 10
20	ATOM	186	NH1	ARG	36	43. 350	23. 075	47. 900	1. 00 44. 34
	ATOM	187	NH2	ARG	36	43. 590	22. 870	45. 631	1. 00 45. 47
	ATOM	188	С	ARG	36	36. 202	25. 941	46.660	1. 00 43. 73
	ATOM	189	0	ARG	36	35. 921	25. 645	45. 497	1. 00 43. 31
	ATOM	190	N	MET	37	35. 324	25. 851	47. 656	1. 00 42. 87
25	ATOM	191	CA	MET	37	33. 946	25. 440	47. 413	1. 00 41. 30
	ATOM	192	CB	MET	37	33. 222	25. 136	48.726	1. 00 43. 30
	ATOM	193	CG	MET	37	31. 782	24. 636	48. 556	1. 00 45. 16
	ATOM	194	SD	MET	37	31.646	22. 826	48. 280	1. 00 52. 61
	ATOM	195	CE	MET	37	31. 892	22. 708	46. 492	1. 00 46. 47

- 151 -

							U I		
	ATOM	196	G C	MET	37	33. 249	26. 603	46. 723	1. 00 39. 52
	ATOM	197	0	MET	37	32. 702	26. 458	45. 635	1. 00 39. 06
	ATOM	198	N N	GLN	38	33. 275	27. 767	47. 359	1. 00 37. 22
	ATOM	199	CA	GLN	38	32. 637	28. 927	46. 776	1. 00 35. 67
5	ATOM	200	CB	GLN	38	32. 874	30. 155	47. 643	1. 00 36. 29
	ATOM	201	CG	GLN	38	32. 128	30. 122	48. 950	1. 00 37. 44
	ATOM	202	CD	GLN	38	32.689	31. 108	49. 950	1. 00 41. 99
	ATOM	203	0E	1 GLN	38	33. 841	30. 992	50. 376	1. 00 44. 33
	ATOM	204	NE:	2 GLN	38	31. 880	32. 091	50. 331	1. 00 44. 58
10	ATOM	205	C	GLN	38	33. 184	29. 155	45. 382	1. 00 35. 21
	ATOM	206	0	GLN	38	32. 454	29. 557	44. 486	1. 00 34. 82
	ATOM	207	N	LYS	39	34. 467	28. 884	45. 188	1. 00 36. 41
	ATOM	208	CA	LYS	39	35. 069	29. 081	43. 875	1. 00 38. 60
	ATOM	209	CB	LYS	39	36. 560	28. 708	43. 888	1. 00 42. 47
15	ATOM	210	CG	LYS	39	37. 395	29. 263	42. 714	1. 00 45. 02
	ATOM	211	CD	LYS	39	37. 638	30. 775	42. 861	1. 00 49. 54
	ATOM	212	CE	LYS	39	38. 523	31. 365	41. 752	1.00 51.65
	ATOM	213	NZ	LYS	39	38. 621	32.865	41.821	1. 00 53. 58
	ATOM	214	C	LYS	39	34. 339	28. 196	42.884	1. 00 38. 31
20	ATOM	215	0	LYS	39	34. 229	28. 534	41.710	1. 00 40. 28
	ATOM	216	N	GLU 4	40	33. 827	27.066	43. 369	1. 00 37. 21
	ATOM	217	CA	GLU 4	40	33. 117	26. 107	42. 525	1.00 34.69
	ATOM	218	CB	GLU 4	40	33. 329	24. 705	43.072	1. 00 32. 80
	ATOM	219	CG	GLU 4	40	34. 742	24. 245	42.900	1. 00 33. 53
25	ATOM	220	CD	GLU 4	10	35. 164	24. 348	41. 459	1. 00 36. 48
	ATOM	221	0E 1	GLU 4	10	34. 318	24. 044	40. 589	1. 00 39. 36
	ATOM	222	0E2	GLU 4	10	36. 326	24. 720	41. 187	1. 00 37. 18
	ATOM	223	C	GLU 4	10	31. 632	26. 387	42. 375	1. 00 34. 48
	ATOM	224	0	GLU 4	0	31. 040	26. 110	41. 332	1. 00 32. 30

- 152 -

						1.	04		
	ATOM	225	N	MET	41	31. 030	26. 928	43. 425	1. 00 35. 61
	ATOM	226	CA	MET	41	29. 621	27. 256	43. 373	1. 00 39. 30
	ATOM	227	CB	MET	41	29. 155	27. 852	44. 692	1. 00 39. 16
	ATOM	228	CG	MET	41	29. 146	26. 910	45. 867	1. 00 40. 71
5	ATOM	229	SD	MET	41	27. 930	27. 569	47. 040	1. 00 46. 34
	ATOM	230	CE	MET	41	28. 978	28. 338	48. 243	1. 00 46. 54
	ATOM	231	C	MET	41	29. 336	28. 258	42. 251	1. 00 42. 24
	ATOM	232	0	MET	41	28. 358	28. 113	41.517	1.00 44.97
	ATOM	233	N	ASP	42	30. 173	29. 284	42. 118	1. 00 43. 47
10	ATOM	234	CA	ASP	42	29. 952	30. 274	41.069	1.00 42.69
	ATOM	235	CB	ASP	42	30. 848	31. 497	41. 249	1. 00 44. 70
	ATOM	236	CG	ASP	42	30. 548	32. 254	42. 523	1.00 49.63
	ATOM	237	0D 1	ASP	42	31. 352	32. 128	43. 477	1. 00 52. 14
	ATOM	238	OD2	ASP	42	29. 510	32. 968	42. 572	1.00 49.66
15	ATOM	239	C	ASP	42	30. 248	29. 641	39. 739	1. 00 41. 40
	ATOM	240	0	ASP	42	29. 550	29. 880	38. 759	1.00 41.06
	ATOM	241	N	ARG	43	31. 289	28. 826	39. 707	1.00 39.70
	ATOM	242	CA	ARG	43	31.668	28. 171	38. 477	1.00 39.99
	ATOM	243	CB	ARG	43	32. 835	27. 227	38. 739	1. 00 43. 98
20	ATOM	244	CG	ARG	43	33. 329	26. 482	37. 516	1. 00 49. 72
	ATOM	245	CD	ARG	43	34. 636	25. 777	37. 831	1. 00 55. 67
	ATOM	246	NE	ARG	43	34. 962	24.746	36. 854	1. 00 62. 98
	ATOM	247	CZ	ARG	43	36.062	24. 002	36. 899	1.00 67.95
	ATOM	248	NH1	ARG	43	36. 950	24. 178	37. 877	1. 00 69. 41
25	ATOM	249	NH2	ARG	43	36. 269	23. 075	35. 969	1. 00 70. 32
	ATOM	250	C	ARG	43	30. 488	27. 417	37. 881	1. 00 38. 35
	ATOM	251	0	ARG	43	30. 253	27. 493	36. 677	1. 00 38. 07
	ATOM	252	N	GLY -	44	29. 739	26. 709	38. 728	1. 00 36. 44
	ATOM	253	CA	GLY .	44	28. 592	25. 938	38. 262	1. 00 32. 80

- 153 -

	ATOM	254	C	GLY	44	27. 344	26. 772	38.062	1. 00 31. 71
	ATOM	255	0	GLY	44	26. 483	26. 448	37. 251	1. 00 30. 43
	ATOM	256	N	LEU	45	27. 258	27. 854	38. 820	1. 00 31. 23
	ATOM	257	CA	LEU	45	26. 144	28. 774	38. 761	1. 00 31. 72
5	ATOM	258	CB	LEU	45	26. 168	29. 638	40.010	1. 00 30. 96
	ATOM	259	CG	LEU	45	25. 063	29. 363	41. 013	1. 00 34. 38
	ATOM	260	CD1	LEU	45	25. 346	30.066	42. 334	1. 00 34. 74
	ATOM	261	CD2	LEU	45	23.750	29. 849	40. 413	1. 00 37. 12
	ATOM	262	C	LEU	45	26. 204	29. 666	37. 517	1. 00 33. 39
10	ATOM	263	0	LEU	45	25. 184	30. 211	37. 086	1.00 34.01
	ATOM	264	N	ARG	46	27. 402	29. 813	36. 955	1. 00 34. 39
	ATOM	265	CA	ARG	46	27. 628	30. 651	35. 774	1. 00 37. 39
	ATOM	266	CB	ARG	46	29. 092	31. 140	35. 744	1. 00 42. 80
	ATOM	267	CG	ARG	46	29. 463	32. 067	34. 562	1.00 48.17
15	ATOM	268	CD	ARG	46	30. 951	32. 487	34. 546	1.00 49.35
	ATOM	269	NE	ARG	46	31. 250	33. 400	33. 441	1. 00 54. 04
	ATOM	270	CZ	ARG	46	30. 599	34. 542	33. 216	1. 00 57. 98
	ATOM	271	NH1	ARG	46	29. 608	34. 915	34. 019	1. 00 56. 34
	ATOM	272	NH2	ARG	46	30. 936	35. 316	32. 187	1. 00 59. 91
20	ATOM	273	C	ARG	46	27. 301	29. 920	34. 477	1. 00 37. 53
	ATOM	274	0	ARG	46	27. 773	28. 804	34. 243	1.00 38.11
	ATOM	275	N	LEU	47	26. 515	30. 573	33. 623	1. 00 36. 42
	ATOM	276	CA	LEU	47	26. 089	29. 993	32. 350	1.00 35.82
	ATOM	277	CB	LEU	47	25. 151	30. 957	31. 617	1.00 31.45
25	ATOM	278	CG	LEU	47	24. 771	30. 548	30. 196	1.00 29.68
	ATOM	279	CD1	LEU	47	24. 031	29. 240	30. 230	1. 00 28. 93
	ATOM	280	CD2	LEU	47	23. 929	31. 622	29. 559	1. 00 28. 83
	ATOM	281	C	LEU	47	27. 223	29. 578	31. 418	1. 00 37. 14
	ATOM	282	0	LEU	47	27. 152	28. 534	30. 764	1. 00 36. 41

- 154 -

	ATOM	283	N	GLU	48	28. 272	30. 383	31. 347	1. 00 39. 28
	ATOM	284	CA	GLU	48	29. 371	30. 034	30. 462	1. 00 42. 38
	ATOM	285	CB	GLU	48	30. 448	31. 126	30. 473	1. 00 43. 91
	ATOM	286	CG	GLU	48	30. 126	32. 354	29. 631	1. 00 46. 02
5	ATOM	287	CD	GLU	48	29. 022	33. 215	30. 221	1. 00 48. 71
	ATOM	288	0E1	GLU	48	28. 581	34. 157	29. 524	1. 00 48. 10
	ATOM	289	0E2	GLU	48	28. 600	32. 959	31. 375	1. 00 49. 31
	ATOM	290	C	GLU	48	30.005	28. 691	30. 809	1. 00 43. 42
	ATOM	291	0	GLU	48	30. 593	28. 045	29. 939	1. 00 43. 61
10	ATOM	292	N	THR	49	29. 873	28. 262	32. 066	1. 00 44. 28
	ATOM	293	CA	THR	49	30. 484	26. 999	32. 508	1. 00 46. 81
	ATOM	294	CB	THR	49	31. 761	27. 267	33. 366	1. 00 47. 70
	ATOM	295	0G1	THR	49	31. 477	28. 265	34. 356	1. 00 45. 18
	ATOM	296	CG2	THR	49	32. 921	27. 739	32. 486	1.00 48.17
15	ATOM	297	C	THR	49	29. 595	26. 024	33. 293	1. 00 46. 50
	ATOM	298	0	THR	49	30. 043	24. 932	33. 683	1. 00 45. 72
	ATOM	299	N	HIS	50	28. 340	26. 405	33. 508	1. 00 44. 18
	ATOM	300	CA	HIS	50	27. 416	25. 565	34. 262	1.00 41.93
	ATOM	301	CB	HIS	50	25. 980	26. 129	34. 190	1. 00 38. 83
20	ATOM	302	CG	HIS	50	25. 217	25. 754	32. 953	1. 00 35. 50
	ATOM	303	CD2	HIS	50	23. 950	25. 304	32. 795	1. 00 33. 70
	ATOM	304	ND1	HIS	50	25. 730	25. 894	31. 682	1. 00 36. 24
	ATOM	305	CE1	HIS	50	24. 812	25. 550	30. 796	1. 00 33. 56
	ATOM	306	NE2	HIS	50	23. 722	25. 189	31. 446	1. 00 32. 06
25	ATOM	307	C	HIS	50	27. 447	24. 117	33. 804	1. 00 41. 73
	ATOM	308	0	HIS	50	27. 144	23. 212	34. 572	1. 00 41. 14
	ATOM	309	N	GLU	51	27. 848	23. 883	32. 566	1. 00 42. 00
	ATOM	310	CA	GLU	51	27. 863	22. 519	32. 103	1. 00 45. 79
	ATOM	311	CB	GLU	51	27. 573	22. 463	30. 617	1. 00 46. 76

- 155 -

	ATOM	312	CG	GLU	51	27. 523	21.048	30. 100	1. 00 50. 98
	ATOM	313	CD	GLU	51	26. 521	20. 885	28. 989	1. 00 53. 94
	ATOM	314	0E1	GLU	51	25. 313	21. 082	29. 253	1. 00 55. 61
	ATOM	315	0E2	GLU	51	26. 940	20. 560	27. 857	1. 00 55. 48
5	ATOM	316	C	GLU	51	29. 139	21. 757	32. 402	1. 00 48. 17
	ATOM	317	0	GLU	51	29. 094	20. 657	32. 953	1. 00 49. 35
	ATOM	318	N	GLU	52	30. 276	22. 331	32. 034	1. 00 50. 75
	ATOM	319	CA	GLU	52	31. 565	21. 681	32. 264	1. 00 52. 07
	ATOM	320	CB	GLU	52	32. 633	22. 321	31. 352	1. 00 56. 66
10	ATOM	321	CG	GLU	52	32. 768	23. 854	31. 476	1. 00 63. 81
	ATOM	322	CD	GLU	52	33. 420	24. 528	30. 253	1. 00 67. 84
	ATOM	323	0E1	GLU	52	33. 601	25. 770	30. 278	1. 00 68. 83
	ATOM	324	0E2	GLU	52	33. 742	23. 826	29. 266	1. 00 70. 00
	ATOM	325	С	GLU	52	31. 982	21.760	33. 738	1. 00 49. 95
15	ATOM	326	0	GLU	52	33. 013	21. 215	34. 132	1. 00 47. 47
	ATOM	327	N	ALA	53	31. 162	22. 429	34. 548	1. 00 48. 46
	ATOM	328	CA	ALA	53	31. 449	22. 594	35. 972	1. 00 47. 88
	ATOM	329	CB	ALA	53	30. 418	23. 510	36. 615	1. 00 47. 30
	ATOM	330	C	ALA	53	31.510	21. 278	36. 731	1. 00 46. 84
20	ATOM	331	0	ALA	53	31. 287	20. 206	36. 172	1. 00 48. 51
	ATOM	332	N	SER	54	31.816	21. 353	38. 016	1. 00 44. 67
	ATOM	333	CA	SER	54	31. 895	20. 133	38. 792	1. 00 42. 38
	ATOM	334	CB	SER	54	33. 201	20.090	39. 581	1. 00 44. 26
	ATOM	335	0G	SER	54	33. 290	18. 883	40. 316	1. 00 45. 49
25	ATOM	336	C	SER	54	30. 712	20.059	39. 734	1. 00 39. 72
	ATOM	337	0	SER	54	30. 058	19. 028	39. 841	1. 00 41. 09
	ATOM	338	N	VAL	55	30. 440	21. 165	40. 411	1. 00 34. 77
	ATOM	339	CA	VAĻ	55	29. 326	21. 239	41. 343	1. 00 30. 58
	ATOM	340	CB	VAL	55	29.682	22. 186	42. 498	1. 00 28. 73

- 156 -

	ATOM	341	CG	l VAI	. 55	28. 480	22. 433	43. 383	1. 00 30. 75
	ATOM	342	CG2	VAI.	. 55	30. 814	21. 596	43. 297	1. 00 25. 80
	ATOM	343	C	VAL	55	28. 094	21. 760	40. 597	1. 00 30. 28
	ATOM	344	0	VAL	55	27. 704	22. 920	40. 745	1. 00 32. 16
5	ATOM	345	N	LYS	56	27. 482	20. 887	39. 803	1. 00 26. 82
	ATOM	346	CA	LYS	56	26. 323	21. 235	38. 986	1. 00 21. 66
	ATOM	347	CB	LYS	56	25. 362	20. 046	38. 891	1. 00 26. 53
	ATOM	348	CG	LYS	56	25. 936	18. 737	38. 337	1. 00 29. 32
	ATOM	349	CD	LYS	56	26. 311	18. 836	36. 875	1. 00 29. 86
10	ATOM	350	CE	LYS	56	27. 609	19. 592	36. 698	1. 00 29. 73
	ATOM	351	NZ	LYS	56	27. 932	19. 759	35. 259	1. 00 32. 80
	ATOM	352	C	LYS	56	25. 520	22. 470	39. 374	1. 00 17. 56
	ATOM	353	0	LYS	56	25. 133	23. 236	38. 498	1. 00 15. 95
	ATOM	354	N	MET	57	25. 257	22.660	40.665	1. 00 14. 30
15	ATOM	355	CA	MET	57	24. 462	23. 803	41. 128	1. 00 12. 73
	ATOM	356	CB	MET	57	25. 277	25. 089	41.059	1.00 9.92
	ATOM	357	CG	MET	57	26. 515	25. 090	41. 930	1. 00 6. 47
	ATOM	358	SD	MET	57	26. 219	25. 164	43.694	1.00 8.00
	ATOM	359	CE	MET	57	25. 523	26. 842	43. 905	1.00 1.00
20	ATOM	360	C	MET	57	23. 207	23. 953	40. 270	1. 00 14. 05
	ATOM	361	0	MET	57	23. 000	24. 972	39. 610	1. 00 12. 36
	ATOM	362	N	LEU	58	22. 371	22. 923	40. 290	1. 00 17. 80
	ATOM	363	CA	LEU	58	21. 154	22. 914	39. 498	1. 00 19. 02
	ATOM	364	CB	LEU	58	20.710	21. 466	39. 245	1. 00 18. 03
25	ATOM	365	CG	LEU	58	21.726	20. 444	38. 720	1. 00 16. 28
	ATOM	366	CD1	LEU	58	21. 193	19.068	39. 021	1. 00 20. 44
	ATOM	367	CD2	LEU	58	21. 999	20.608	37. 233	1. 00 15. 03
	ATOM	368	C	LEU	58	20. 005	23. 696	40. 134	1. 00 20. 20
	ATOM	369	0	LEU	58	19. 752	23. 602	41. 340	1. 00 19. 91

- 157 -

	ATOM	370	N	PR0	59	19. 310	3 24. 507	39. 320	1. 00 20. 57
	ATOM	371	CD	PR0	59	19. 856	24. 939	38. 022	1. 00 20. 39
	ATOM	372	CA	PRO	59	18. 171	25. 342	39. 694	1. 00 22. 50
	ATOM	373	CB	PR0	59	17. 939	26. 168	38. 437	1. 00 22. 07
5	ATOM	374	CG	PRO	59	19. 306	26. 329	37. 906	1. 00 21. 92
	ATOM	375	C	PRO :	59	16. 975	24. 437	40. 010	1. 00 23. 49
	ATOM	376	0	PRO !	59	16. 698	23. 504	39. 264	1. 00 25. 36
	ATOM	377	N	THR (60	16. 258	24. 714	41. 092	1. 00 22. 35
	ATOM	378	CA	THR (60	15. 133	23. 871	41. 469	1. 00 20. 99
10	ATOM	379	CB	THR (60	15. 097	23. 607	42. 964	1. 00 22. 35
	ATOM	380	0G1	THR 6	60	14. 823	24. 837	43. 647	1. 00 24. 53
	ATOM	381	CG2	THR 6	60	16. 408	23. 049	43. 441	1. 00 24. 88
	ATOM	382	C	THR 6	60	13. 815	24. 516	41. 160	1. 00 20. 21
	ATOM	383	0	THR 6	0	12. 793	23. 848	41. 119	1. 00 24. 18
15	ATOM	384	N	TYR 6	1	13. 839	25. 822	40. 973	1. 00 19. 09
	ATOM	385	CA	TYR 6	1	12. 628	26. 595	40. 715	1. 00 20. 03
	ATOM	386	CB	TYR 6	1	11. 955	26. 172	39. 427	1. 00 13. 50
	ATOM	387	CG :	TYR 6	1	12. 581	26. 830	38. 234	1. 00 13. 18
	ATOM	388	CD1	TYR 6	1	12. 028	27. 983	37. 666	1. 00 8. 00
20	ATOM	389	CE1 1	TYR 6	1	12. 596	28. 551	36. 536	1. 00 4. 24
	ATOM	390	CD2 7	TYR 6	1	13. 725	26. 281	37. 647	1. 00 14. 04
	ATOM	391	CE2 1	YR 61	1	14. 296	26. 843	36. 529	1. 00 10. 05
	ATOM	392	CZ 1	YR 61	1	13. 730	27. 963	35. 976	1. 00 5. 80
	ATOM	393	OH T	YR 61	1	14. 307	28. 423	34. 828	1. 00 4. 54
25	ATOM	39 4	C T	YR 61	l	11.620	26. 572	41. 833	1. 00 21. 95
	ATOM	395	0 T	YR 61	l	10. 437	26. 816	41. 609	1. 00 22. 47
	ATOM	396	N V	AL 62	?	12. 102	26. 293	43. 037	1. 00 24. 47
	ATOM	397	CA V.	AL 62		11. 265	26. 288	44. 218	1. 00 29. 86
	ATOM	398	CB V.	AL 62		11.750	25. 231	45. 207	1. 00 28. 92

- 158 -

	ATOM	399	CG	1 VAI	62	10. 780	25. 091	46. 370	1. 00 28. 30
	ATOM	400	CG	2 VAI	62	11. 909	23. 926	44. 480	1. 00 28. 58
	ATOM	401	C	VAI	62	11. 494	27. 680	44. 786	1. 00 34. 67
	ATOM	402	0	VAI	62	11. 584	27. 879	45. 993	1. 00 39. 01
5	ATOM	403	N	ARC	63	11. 589	28. 638	43. 874	1.00 38.40
	ATOM	404	CA	ARG	63	11. 847	30. 038	44. 182	1. 00 41. 10
	ATOM	405	CB	ARC	63	12. 041	30. 804	42. 874	1. 00 42. 02
	ATOM	406	CG	ARG	63	10. 794	30. 798	41. 996	1. 00 44. 76
	ATOM	407	CD	ARG	63	11. 072	31. 197	40. 550	1. 00 46. 61
10	ATOM	408	NE	ARG	63	9. 827	31. 366	39. 804	1. 00 48. 56
	ATOM	409	CZ	ARG	63	8. 972	30. 381	39. 541	1. 00 50. 39
	ATOM	410	NH 1	ARG	63	9. 225	29. 145	39. 955	1. 00 50. 83
	ATOM	411	NH2	ARG	63	7. 854	30. 635	38. 875	1. 00 51. 11
	ATOM	412	C	ARG	63	10. 788	30. 751	45. 004	1. 00 42. 71
15	ATOM	413	0	ARG	63	9. 790	30. 167	45. 424	1. 00 41. 58
	ATOM	414	N	SER	64	11.047	32. 036	45. 224	1. 00 46. 12
	ATOM	415	CA	SER	64	10. 155	32. 922	45. 954	1.00 49.96
	ATOM	416	CB	SER	64	10. 400	32. 826	47. 454	1. 00 50. 57
	ATOM	417	0G	SER	64	9. 374	33. 507	48. 157	1. 00 53. 70
20	ATOM	418	C	SER	64	10. 435	34. 340	45. 458	1.00 51.04
	ATOM	419	0	SER	64	11. 300	35. 047	45. 985	1. 00 50. 38
	ATOM	420	N	THR	65	9. 690	34. 728	44. 425	1. 00 53. 23
	ATOM	421	CA	THR	65	9. 827	36. 031	43. 791	1. 00 54. 89
	ATOM	422	CB	THR	65	10. 151	35. 871	42. 281	1. 00 56. 21
25	ATOM	423	0G1	THR	65	9. 094	35. 158	41. 622	1. 00 55. 23
	ATOM	424	CG2	THR	65	11. 461	35. 112	42. 103	1. 00 56. 71
	ATOM	425	C	THR	65	8. 582	36. 911	43. 939	1. 00 56. 01
	ATOM	426	0	THR	65	7. 503	36. 430	44. 291	1. 00 56. 26
	ATOM	427	N	PRO	66	8. 728	38. 222	43. 676	1. 00 56. 49

- 159 -

	ATOM	428	CD	PR0	66	10. 019	38. 866	43. 377	1. 00	5 6. 96
	ATOM	429	CA	PR0	66	7. 666	39. 228	43. 758	1. 00	56. 28
	ATOM	430	CB	PRO	66	8. 369	40. 502	43. 313	1. 00	57. 08
	ATOM	431	CG	PR0	66	9. 759	40. 287	43. 786	1. 00	58. 08
5	ATOM	432	C	PR0	66	6. 487	38. 901	42. 864	1. 00	56. 75
	ATOM	433	0	PR0	66	5. 477	39. 604	42. 874	1. 00	57. 23
	ATOM	434	N	GLU	67	6. 631	37. 849	42. 072	1. 00	56. 42
	ATOM	435	CA	GLU	67	5. 540	37. 445	41. 193	1. 00	56. 82
	ATOM	436	CB	GLU	67	6. 048	36. 487	40. 115	1.00	61. 19
10	ATOM	437	CG	GLU	67	6. 421	35. 108	40. 637	1. 00	66. 99
	ATOM	438	CD	GLU	67	7. 123	34. 261	39. 594	1. 00	69. 61
	ATOM	439	0E1	GLU	67	8. 253	34. 618	39. 201	1. 00	70. 19
	ATOM	440	0E2	GLU	67	6. 541	33. 241	39. 168	1. 00	70. 18
	ATOM	441	C	GLU	67	4. 406	36. 803	41. 984	1. 00	54. 30
15	ATOM	442	0	GLU	67	3. 241	36. 940	41. 633	1. 00	54. 25
	ATOM	443	N	GLY	68	4. 753	36. 116	43.076	1. 00	50.50
	ATOM	444	CA	GLY	68	3. 741	35. 478	43. 901	1. 00	45. 77
	ATOM	445	C	GLY	68	4. 166	34. 087	44. 316	1.00	43.04
	ATOM	446	0	GLY	68	3. 626	33. 503	45. 259	1. 00	40.69
20	ATOM	447	N	SER	69	5. 154	33.564	43. 599	1. 00	42. 30
	ATOM	448	CA	SER	69	5. 690	32. 230	43. 845	1. 00	41.02
	ATOM	449	CB	SER	69	6. 769	31.902	42. 804	1. 00	41.03
	ATOM	450	0G	SER	69	6. 438	32. 404	41. 517	1. 00	42. 34
	ATOM	451	C	SER	69	6. 301	32. 126	45. 240	1. 00	39.68
25	ATOM	452	0	SER	69	7. 163	32. 920	45. 607	1.00	38.89
	ATOM	453	N	GLU	70	5. 857	31. 143	46.014	1. 00	39. 96
	ATOM	454	CA	GLU	70	6. 388	30. 942	47. 355	1. 00	40. 53
	ATOM	455	CB	GLU	70	5. 265	31.074	48. 391	1. 00	44. 80
	ATOM	456	CG	GLU	70	4. 675	32. 483	48. 492	1. 00	52. 74

- 160 -

	ATOM	457	CD GI	U 70	5. 705	33. 554	48. 900	1. 00 58. 55
	ATOM	458	OE1 GI	U 70	5. 362	34. 763	48. 866	1. 00 59. 55
	ATOM	459	OE2 GI	U 70	6. 852	33. 192	49. 258	1.00 60.30
	ATOM	460	C GL	U 70	7. 075	29. 583	47. 483	1. 00 38. 65
5	ATOM	461	0 GL	U 70	6. 807	28. 660	46. 704	1. 00 37. 89
	ATOM	462	N VA	L 71	7. 962	29. 459	48. 466	1. 00 35. 96
	ATOM	463	CA VA	L 71	8. 670	28. 207	48. 653	1. 00 34. 46
	ATOM	464	CB VA	L 71	9. 723	28. 319	49. 755	1. 00 33. 00
	ATOM	465	CG1 VA	L 71	10. 236	26. 949	50. 120	1. 00 33. 91
10	ATOM	466	CG2 VA	L 71	10. 885	29. 152	49. 249	1.00 32.56
	ATOM	467	C VA	L 71	7. 730	27. 042	48. 931	1.00 34.75
	ATOM	468	0 VA	L 71	7. 851	25. 985	48. 310	1.00 37.23
	ATOM	469	N GL	Y 72	6. 783	27. 219	49. 841	1. 00 33. 37
	ATOM	470	CA GL	72	5. 842	26. 139	50. 105	1. 00 32. 39
15	ATOM	471	C GLY	72	5. 066	25. 644	48. 879	1. 00 31. 10
	ATOM	472	0 GLY	72	4. 631	24. 493	48. 859	1. 00 28. 98
	ATOM	473	N ASF	73	4. 878	26. 503	47. 870	1.00 31.05
	ATOM	474	CA ASE	73	4. 156	26. 129	46.650	1. 00 31. 14
	ATOM	475	CB ASF	73	4. 389	27. 147	45. 532	1.00 34.00
20	ATOM	476	CG ASP	73	3. 759	28. 491	45. 817	1. 00 38. 43
	ATOM	477	OD1 ASP	73	3. 758	29. 355	44. 907	1. 00 41. 88
	ATOM	478	OD2 ASP	73	3. 262	28. 690	46. 945	1. 00 41. 23
	ATOM	479	C ASP	73	4. 675	24. 785	46. 189	1. 00 30. 89
	ATOM	480	0 ASP	73	5. 875	24. 544	46. 256	1. 00 32. 81
25	ATOM	481	N PHE	74	3. 796	23. 921	45. 694	1. 00 28. 84
	ATOM	482	CA PHE	74	4. 233	22. 595	45. 271	1. 00 27. 21
	ATOM	483	CB PHE	74	4. 728	21. 834	46. 502	1. 00 26. 13
	ATOM	484	CG PHE	74	5. 407	20. 551	46. 185	1. 00 25. 61
	ATOM	485	CD1 PHE	74	6.641	20. 546	45. 547	1. 00 29. 29

- 161 -

						10	ı			
	ATOM	486	CD2	PHE	74	4. 805	19. 344	46. 496	1.00	24. 94
	ATOM	487	CE1	PHE	74	7. 259	19. 354	45. 213	1.00	31. 36
	ATOM	488	CE2	PHE	74	5. 408	18. 149	46. 168	1. 00	27. 38
	ATOM	489	CZ	PHE	74	6. 640	18. 149	45. 527	1. 00	30. 18
5	ATOM	490	С	PHE	74	3. 080	21. 837	44.604	1. 00	27. 31
	ATOM	491	0	PHE	74	1. 912	22. 034	44. 951	1.00	28. 04
	ATOM	492	N	LEU	75	3. 402	20. 965	43.654	1. 00	23. 99
	ATOM	493	CA	LEU	75	2. 370	20. 214	42. 958	1. 00	20. 00
	ATOM	494	CB	LEU	75	2. 222	20. 725	41.534	1.00	19. 88
10	ATOM	495	CG	LEU	75	0.868	20. 487	40.865	1.00	21. 27
	ATOM	496	CD1	LEU	75	1. 083	20. 282	39. 354	1.00	19. 58
	ATOM	497	CD2	LEU	75	0. 190	19. 279	41. 474	1.00	18. 85
	ATOM	498	C	LEU	75	2. 755	18.758	42. 911	1.00	18. 82
	ATOM	499	0	LEU	75	3. 587	18. 369	42. 102	1.00	19. 49
15	ATOM	500	N	SER	76	2. 143	17. 957	43.774	1.00	21.08
	ATOM	501	CA	SER	76	2. 434	16. 530	43.834	1. 00	22. 49
	ATOM	502	CB	SER	76	2. 333	16.001	45. 261	1.00	22. 74
	ATOM	503	0G	SER	76	2. 591	14. 612	45. 292	1.00	20. 37
	ATOM	504	C	SER	76	1. 507	15.720	42. 967	1.00	23. 58
20	ATOM	505	0	SER	76	0.309	15. 980	42.866	1.00	23.06
	ATOM	506	N	LEU	77	2.064	14. 686	42. 378	1.00	25.35
	ATOM	507	CA	LEU	77	1. 280	13.862	41. 509	1.00	27. 55
	ATOM	508	CB	LEU	77	1. 758	14. 122	40.089	1.00	29. 38
	ATOM	509	CG	LEU	77	1. 176	13. 275	38. 980	1.00	32. 75
25	ATOM	510	CD1	LEU	77	-0. 334	13. 434	38. 974	1. 00	34. 55
	ATOM	511	CD2	LEU	77	1. 796	13. 695	37.661	1. 00	32. 83
	ATOM	512	C	LEU	77	1. 445	12. 402	41. 913	1. 00	2 8. 86
	ATOM	513	0	LEU	77	2. 527	11.826	41.760	1.00	26. 84
	ATOM	514	N	ASP	78	0. 386	11. 811	42. 465	1. 00	29. 41

- 162 -

	ATOM	515	CA	ASP	78	0. 457	10. 407	42. 865	1. 00	30. 41
	ATOM	516	CB	ASP	78	-0. 150	10. 186	44. 255	1. 00	31. 87
	ATOM	517	CG	ASP	78	-0. 286	8. 702	44. 606	1. 00	33. 99
	ATOM	518	0D1	ASP	78	-1. 025	7. 993	43. 894	1. 00	35. 38
5	ATOM	519	0D2	ASP	78	0. 338	8. 241	45. 586	1. 00	33. 31
	ATOM	520	C	ASP	78	-0. 270	9. 530	41. 860	1. 00	29. 41
	ATOM	521	0	ASP	78	-1. 484	9. 587	41. 732	1. 00	29. 74
	ATOM	522	N	LEU	79	0. 472	8. 710	41. 143	1. 00	27. 93
	ATOM	523	CA	LEU	79	-0. 169	7. 858	40. 184	1. 00	28. 08
10	ATOM	524	CB	LEU	79	0. 323	8. 173	38. 781	1. 00	25. 78
	ATOM	525	CG	LEU	79	1. 676	7. 627	38. 371	1. 00	24. 57
	ATOM	526	CD1	LEU	79	1. 845	7. 871	36. 904	1. 00	25. 82
	ATOM	527	CD2	LEU	79	2. 779	8. 274	39. 166	1. 00	26. 37
	ATOM	528	C	LEU	79	0. 114	6. 420	40. 548	1. 00	31.25
15	ATOM	529	0	LEU	79	1. 265	6. 017	40.712	1. 00	32. 14
	ATOM	530	N	GLY	80	-0. 955	5. 652	40.699	1. 00	34. 99
	ATOM	531	CA	GLY	80	-0. 812	4. 259	41.056	1. 00	38. 29
	ATOM	532	C	GLY	80	-2. 088	3. 499	40. 776	1. 00	40.81
	ATOM	533	0	GLY	80	-3. 100	3. 686	41. 452	1. 00	40.77
20	ATOM	534	N	GLY	81	-2.038	2. 642	39. 765	1.00	43. 19
	ATOM	535	CA	GLY	81	-3. 197	1. 850	39. 422	1. 00	45. 84
	ATOM	536	C	GLY	81	-3. 936	2. 428	38. 244	1. 00	49. 22
	ATOM	537	0	GLY	81	-3. 328	2. 825	37. 241	1. 00	49. 20
	ATOM	538	N	THR	82	-5. 260	2. 465	38. 365	1. 00	51.93
25	ATOM	539	CA	THR	82	-6. 117	3. 003	37. 312	1. 00	54. 41
	ATOM	540	CB	THR	82	-7. 344	2. 090	37. 060	1. 00	56. 74
	ATOM	541	0G1	THR	82	-6. 908	0. 727	36. 952	1. 00	60. 43
	ATOM	542	CG2	THR	82	-8. 043	2. 473	35. 752	1. 00	58. 23
	ATOM	543	C	THR	82	-6. 584	4. 382	37. 759	1. 00	52. 48

- 163 -

	ATOM	544	0	THE	82	-7. 308	5. 077	37. 046	1. 00 52. 21
	ATOM	545	N	ASN	83	-6. 148	4. 778	38. 946	1. 00 50. 63
	ATOM	546	CA	ASN	83	-6. 523	6. 071	39. 466	1. 00 50. 52
	ATOM	547	CB	ASN	83	-7. 574	5. 911	40. 568	1. 00 53. 97
5	ATOM	548	CG	ASN	83	-8. 955	5. 560	40. 020	1. 00 58. 88
	ATOM	549	OD1	ASN	83	-9. 508	6. 290	39. 190	1. 00 60. 51
	ATOM	550	ND2	ASN	83	-9. 521	4. 444	40. 489	1. 00 60. 30
	ATOM	551	C	ASN	83	-5. 338	6. 861	39. 997	1. 00 48. 79
	ATOM	552	0	ASN	83	-4. 682	6. 442	40. 956	1. 00 48. 09
10	ATOM	553	N	PHE	84	-5. 068	8. 003	39. 356	1.00 45.51
	ATOM	554	CA	PHE	84	-3. 995	8. 907	39. 772	1. 00 40. 32
	ATOM	555	CB	PHE	84	-2. 998	9. 145	38. 644	1. 00 39. 20
	ATOM	556	CG	PHE	84	-3. 436	10. 175	37. 652	1. 00 39. 52
	ATOM	557	CD1	PHE	84	-4. 096	9. 802	36. 494	1. 00 40. 87
15	ATOM	558	CD2	PHE	84	-3. 159	11. 524	37. 860	1. 00 39. 69
	ATOM	559	CE1	PHE	84	-4. 479	10.758	35. 549	1. 00 41. 79
	ATOM	560	CE2	PHE	84	-3. 540	12. 490	36. 922	1. 00 40. 16
	ATOM	561	CZ	PHE	84	-4. 198	12. 105	35. 762	1. 00 40. 38
	ATOM	562	C	PHE	84	-4. 604	10. 246	40. 176	1. 00 37. 84
20	ATOM	563	0	PHE	84	-5. 405	10.806	39. 439	1. 00 37. 11
	ATOM	564	N	ARG	85	-4. 216	10. 762	41. 338	1. 00 36. 37
	ATOM	565	CA	ARG	85	-4. 738	12. 032	41. 840	1. 00 35. 14
	ATOM	566	CB	ARG	85	-5. 496	11. 779	43. 136	1. 00 39. 80
	ATOM	567	CG	ARG	85	-4. 888	10. 677	43. 970	1. 00 47. 71
25	ATOM	568	CD	ARG	85	-5. 948	9. 964	44. 805	1. 00 55. 73
	ATOM	569	NE	ARG	85	-5. 391	8. 801	45. 493	1. 00 62. 76
	ATOM	570	CZ	ARG	85	-4. 799	7. 772	44. 883	1. 00 65. 65
	ATOM	571	NH1	ARG	85	-4. 684	7. 749	43. 557	1. 00 63. 79
	ATOM	572	NH2	ARG	85	-4. 314	6. 765	45. 605	1. 00 66. 67

- 164 -

	ATOM	573	C	ARG	85	-3.664	13. 088	42. 075	1. 00	32. 14
	ATOM	574	0	ARG	85	-2. 561	12. 772	42. 522	1. 00	32. 77
	ATOM	575	N	VAL	86	-3. 977	14. 345	41. 778	1. 00	27. 45
	ATOM	576	CA	VAL	86	-2. 997	15. 405	41. 983	1.00	26. 49
5	ATOM	577	CB	VAL	86	-2.975	16. 400	40. 821	1. 00	24. 77
	ATOM	578	CG1	VAL	86	-3. 033	15.655	39. 510	1. 00	26. 70
	ATOM	579	CG2	VAL	86	-4. 109	17. 373	40. 948	1. 00	24. 73
	ATOM	580	C	VAL	86	-3. 292	16. 177	43. 257	1.00	26. 66
	ATOM	581	0	VAL	86	-4. 401	16. 121	43. 779	1. 00	28.06
10	ATOM	582	N	MET	87	-2. 289	16. 888	43. 757	1.00	26. 93
	ATOM	583	CA	MET	87	-2. 427	17. 677	44. 973	1. 00	25. 08
	ATOM	584	CB	MET	87	-1. 748	16. 979	46. 138	1. 00	25.05
	ATOM	585	CG	MET	87	-1. 674	17. 833	47. 375	1. 00	24. 83
	ATOM	586	SD	MET	87	-0. 509	17. 090	48. 503	1.00	30. 68
15	ATOM	587	CE	MET	87	-1. 544	16. 749	49. 894	1. 00	29. 41
	ATOM	588	C	MET	87	-1. 768	19.021	44. 774	1. 00	24. 52
	ATOM	589	0	MET	87	-0. 638	19.097	44. 298	1. 00	27. 12
	ATOM	590	N	LEU	88	-2. 455	20.087	45. 146	1. 00	22. 16
	ATOM	591	CA	LEU	88	-1. 872	21. 398	44. 975	1. 00	20.70
20	ATOM	592	CB	LEU	88	-2.825	22. 309	44. 230	1. 00	20. 34
	ATOM	593	CG	LEU	88	-2. 178	23. 663	43. 991	1. 00	23. 49
	ATOM	594	CD1	LEU	88	-0.806	23. 470	43. 354	1.00	24. 39
	ATOM	595	CD2	LEU	88	-3. 078	24. 493	43. 094	1. 00	2 5. 91
	ATOM	596	C	LEU	88	-1. 535	22. 021	46. 301	1.00	19. 94
25	ATOM	597	0	LEU	88	-2. 225	21. 794	47. 282	1. 00	21. 18
	ATOM	598	N	VAL	89	-0.463	22. 799	46. 343	1. 00	20. 16
	ATOM	599	CA	VAL	89	0. 082	23. 462	47. 580	1. 00	21. 15
	ATOM	600	CB	VAL	89	0. 984	22. 676	48. 357	1. 00	14. 95
	ATOM	601	CG1	VAL	89	1. 292	23. 385	49. 657	1. 00	7. 73

- 165 -

	ATOM	602	CG2	VAL	89	0. 515	21. 268	48.609	1. 00	10. 59
	ATOM	603	C	VAL	89	0. 491	24. 829	47. 254	1. 00	27. 10
	ATOM	604	0	VAL	89	1. 410	24. 939	46. 442	1. 00	27. 22
	ATOM	605	N	LYS	90	-0.066	25. 866	47. 875	1. 00	33. 21
5	ATOM	606	CA	LYS	90	0. 401	27. 235	47. 671	1. 00	40. 01
	ATOM	607	CB	LYS	90	-0. 443	27. 962	46. 604	1. 00	41. 03
	ATOM	608	CG	LYS	90	-1. 941	27. 979	46.850	1. 00	47. 19
	ATOM	609	CD	LYS	90	-2. 749	28. 454	45. 622	1. 00	52. 33
	ATOM	610	CE	LYS	90	-4. 274	28. 393	45. 899	1. 00	55. 73
10	ATOM	611	NZ	LYS	90	-5. 161	28. 724	44. 731	1. 00	56. 02
	ATOM	612	C	LYS	90	0. 384	28.009	48. 981	1. 00	43.61
	ATOM	613	0	LYS	90	-0. 577	27. 943	49. 747	1. 00	44.04
	ATOM	614	N	VAL	91	1. 469	28. 728	49. 241	1.00	47. 88
	ATOM	615	CA	VAL	91	1. 587	29. 513	50. 458	1. 00	51.82
15	ATOM	616	CB	VAL	91	3. 059	29. 780	50. 788	1. 00	51. 29
	ATOM	617	CG1	VAL	91	3. 160	30. 748	51.947	1. 00	54.88
	ATOM	618	CG2	VAL	91	3. 749	28. 479	51. 137	1. 00	48. 18
	ATOM	619	C	VAL	91	0.849	30. 846	50. 355	1. 00	55.01
	ATOM	620	0	VAL	91	0. 994	31. 569	49. 369	1. 00	54. 57
20	ATOM	621	N	GLY	92	0.060	31. 157	51. 382	1.00	59. 16
	ATOM	622	CA	GLY	92	-0. 696	32. 396	51.401	1. 00	64. 58
	ATOM	623	C	GLY	92	-0. 305	33. 297	52. 558	1. 00	68. 39
	ATOM	624	0	GLY	92	0. 637	32. 992	53. 295	1. 00	66. 92
	ATOM	625	N	GLU	93	-1. 025	34. 410	52. 712	1.00	73. 13
25	ATOM	626	CA	GLU	93	-0. 751	35. 351	53. 792	1. 00	78. 27
	ATOM	627	CB	GLU	93	-0. 623	36. 780	53. 248	1. 00	79. 11
	ATOM	628	CG	GLU	93	0. 334	37. 635	54. 077	1. 00	82. 44
	ATOM	629	CD	GLU	93	0. 218	39. 120	53. 795	1. 00	84. 34
	ATOM	630	0E1	GLU	93	-0.877	39. 688	54. 018	1. 00	84. 71

- 166 -

	ATOM	631	0E	2 GLU	93	1. 228	39. 718	53. 359	1. 00 85. 45
	ATOM	632	C C	GLU	93	-1. 813	35. 309	54. 904	1. 00 80. 72
	ATOM	633	0	GLU	93	-1. 469	35. 340	56. 086	1. 00 81. 42
	ATOM	634	N	GLY	94	-3. 093	35. 240	54. 536	1. 00 83. 03
5	ATOM	635	CA	GLY	94	-4. 153	35. 182	55. 538	1. 00 85. 37
	ATOM	636	C	GLY	94	-4.867	36. 502	55. 792	1. 00 87. 51
	ATOM	637	0	GLY	94	-4. 356	37. 562	55. 430	1. 00 88. 65
	ATOM	638	N	GLU	95	-6.041	36. 447	56. 427	1. 00 88. 43
	ATOM	639	CA	GLU	95	-6. 831	37. 653	56. 716	1. 00 88. 66
10	ATOM	640	CB	GLU	95	-8. 192	37. 281	57. 328	1. 00 89. 61
	ATOM	641	CG	GLU	95	-9. 077	36. 406	56. 448	1. 00 90. 41
	ATOM	642	CD	GLU	95	-8. 620	34. 958	56. 408	1. 00 91. 01
	ATOM	643	0E1	GLU	95	-9. 089	34. 211	55. 523	1. 00 90. 26
	ATOM	644	0E2	GLU	95	-7. 800	34. 565	57. 266	1. 00 91. 81
15	ATOM	645	C	GLU	95	-6. 115	38. 625	57. 652	1. 00 88. 62
	ATOM	646	0	GLU	95	-6. 576	39. 748	57. 868	1. 00 88. 29
	ATOM	647	N	GLU	96	-4. 991	38. 182	58. 208	1. 00 89. 03
	ATOM	648	CA	GLU	96	-4. 200	38. 995	59. 124	1. 00 88. 80
	ATOM	649	CB	GLU	96	-4.065	38. 282	60. 476	1. 00 88. 55
20	ATOM	650	CG	GLU :	96	-5. 368	38. 155	61. 268	1. 00 89. 59
	ATOM	651	CD	GLU 9	96	-6. 400	37. 262	60. 593	1. 00 90. 56
	ATOM	652	0E1	GLU 9	96	-6. 163	36. 040	60. 481	1. 00 90. 53
	ATOM	653	0E2	GLU 9	96	-7. 452	37. 785	60. 172	1. 00 90. 67
	ATOM	654	C	GLU 9	96	-2. 810	39. 327	58. 519	1. 00 88. 40
25	ATOM	655	0	GLU 9	6	-2. 097	40. 166	59. 052	1. 00 89. 12
	ATOM	656	N	GLY 9	7	-2. 431	38. 700	57. 404	1. 00 86. 87
	ATOM	657	CA	GLY 9	7	-1. 133	38. 917	56. 789	1. 00 85. 05
	ATOM	658	C	GLY 9	7	-0. 161	37. 976	57. 494	1. 00 84. 17
	ATOM	659	0	GLY 9	7	1. 044	38. 179	57. 605	1. 00 83. 49

- 167 -

						10	, ,		
	ATOM	660	N	GLN	98	-0. 820	36. 901	57. 977	1. 00 83. 07
	ATOM	661	CA	GLN	98	-0. 253	35. 810	58. 769	1. 00 82. 28
	ATOM	662	CB	GLN	98	-1. 346	34. 825	59. 250	1. 00 82. 41
	ATOM	663	CG	GLN	98	-2. 647	35. 462	59. 699	1. 00 83. 61
5	ATOM	664	CD	GLN	98	-3. 740	34. 427	60.007	1. 00 84. 16
	ATOM	665	0E1	GLN	98	-3. 606	33. 239	59. 714	1. 00 84. 01
	ATOM	666	NE2	GLN	98	-4. 905	34. 685	60. 592	1. 00 84. 46
	ATOM	667	C	GLN	98	0. 735	34. 981	58. 011	1. 00 81. 85
	ATOM	668	0	GLN	98	1. 955	35. 200	57. 956	1. 00 83. 51
10	ATOM	669	N	TRP	99	0. 118	33. 962	57. 470	1. 00 79. 05
	ATOM	670	CA	TRP	99	0. 703	32. 914	56. 706	1. 00 75. 85
	ATOM	671	CB	TRP	99	1. 993	32. 398	57. 308	1. 00 73. 88
	ATOM	672	CG	TRP	99	2. 968	31. 780	56. 325	1. 00 71. 82
	ATOM	673	CD2	TRP	99	3. 211	30. 386	56.075	1. 00 70. 49
15	ATOM	674	CE2	TRP	99	4. 222	30. 308	55. 123	1. 00 69. 72
	ATOM	675	CE3	TRP	99	2. 671	29. 200	56. 550	1. 00 69. 52
	ATOM	676	CD1	TRP	99	3. 832	32. 464	55. 525	1. 00 71. 99
	ATOM	677	NE 1	TRP	99	4. 598	31. 589	54. 790	1. 00 71. 07
	ATOM	678	CZ2	TRP	99	4. 692	29. 089	54. 624	1. 00 67. 81
20	ATOM	679	CZ3	TRP	99	3. 136	27. 984	56.080	1. 00 67. 31
	ATOM	680	CH2	TRP	99	4. 151	27. 945	55. 111	1. 00 67. 77
	ATOM	681	C	TRP	99	-0. 247	31. 793	56. 673	1. 00 74. 58
	ATOM	682	0	TRP	99	-1. 060	31. 567	57. 556	1. 00 75. 00
	ATOM	683	N	SER	100	-0. 090	31. 087	55. 647	1. 00 72. 11
25	ATOM	684	CA	SER	100	-0. 948	29. 999	55. 517	1. 00 68. 48
	ATOM	685	CB	SER	100	-2. 376	30. 466	55. 232	1. 00 68. 40
	ATOM	686	0G	SER	100	-2. 467	31. 128	53. 985	1. 00 68. 76
	ATOM	687	C	SER	100	-0. 522	29. 152	54. 382	1.00 66.28
	ATOM	688	0	SER	100	0. 405	29. 473	53. 632	1. 00 65. 13

- 168 -

						100			
	ATOM	689	N	VAL	101	-1. 225	28. 028	54. 291	1. 00 64. 27
	ATOM	690	CA	VAL	101	-0. 982	27. 030	53. 262	1. 00 62. 66
	ATOM	691	CB	VAL	101	0. 090	26. 023	53. 715	1. 00 62. 98
	ATOM	692	CG1	VAL	101	1. 493	26. 554	53. 459	1. 00 66. 77
5	ATOM	693	CG2	VAL	101	-0. 075	25. 688	55. 198	1. 00 63. 17
	ATOM	694	C	VAL	101	-2. 219	26. 243	52. 878	1. 00 60. 88
	ATOM	695	0	VAL	101	-2.561	25. 258	53. 530	1.00 60.62
	ATOM	696	N	LYS	102	-2. 880	26.671	51.810	1.00 58.24
	ATOM	697	CA	LYS	102	-4.066	25. 981	51. 337	1. 00 56. 12
10	ATOM	698	CB	LYS	102	-4. 887	26.880	50. 410	1. 00 57. 06
	ATOM	699	CG	LYS	102	-5. 884	27. 806	51. 111	1. 00 60. 55
	ATOM	700	CD	LYS	102	-7. 056	27. 038	51.748	1.00 63.17
	ATOM	701	CE	LYS	102	-8. 282	27. 944	52.036	1.00 64.70
	ATOM	702	NZ	LYS	102	-8. 021	29. 150	52. 899	1.00 63.52
15	ATOM	703	C	LYS	102	-3. 677	24. 710	50. 596	1.00 54.04
	ATOM	704	0	LYS	102	-2. 599	24. 609	50.007	1.00 52.35
	ATOM	705	N	THR	103	-4. 576	23. 738	50. 631	1. 00 52. 24
	ATOM	706	CA	THR	103	-4. 345	22. 474	49. 972	1.00 49.72
	ATOM	707	CB	THR	103	-4. 139	21. 385	51.010	1.00 49.49
20	ATOM	708	0G1	THR	103	-3. 399	20. 316	50. 422	1. 00 53. 11
	ATOM	709	CG2	THR	103	-5. 475	20.861	51. 517	1. 00 48. 32
	ATOM	710	C	THR	103	-5. 563	22. 158	49. 106	1.00 49.61
	ATOM	711	0	THR	103	-6. 693	22. 435	49. 507	1. 00 50. 24
	ATOM	712	N	LYS	104	-5. 330	21. 587	47. 924	1.00 48.56
25	ATOM	713	CA	LYS	104	-6. 404	21. 251	46. 983	1. 00 48. 50
	ATOM	714	CB	LYS	104	-6.469	22. 298	45. 864	1. 00 49. 98
	ATOM	715	CG	LYS	104	-6. 753	23. 737	46. 313	1.00 56.05
	ATOM	716	CD	LYS	104	-8. 195	23. 932	46. 814	1. 00 60. 38
	ATOM	717	CE	LYS	104	-8. 456	25. 383	47. 254	1. 00 62. 32

- 169 -

	ATOM	718	NZ	LYS	104	-9. 845	25. 649	47. 761	1. 00	61. 31
	ATOM	719	C	LYS	104	-6. 224	19. 878	46. 332	1. 00	48. 13
	ATOM	720	0	LYS	104	-5. 286	19. 685	45. 563	1. 00	49. 60
	ATOM	721	N	HIS	105	-7. 127	18. 936	46.606	1. 00	47. 57
5	ATOM	722	CA	HIS	105	-7. 023	17. 601	46.010	1.00	47. 23
	ATOM	723	CB	HIS	105	-7. 165	16. 529	47. 074	1. 00	47. 40
	ATOM	724	CG	HIS	105	-6. 241	16. 709	48. 228	1. 00	49. 37
	ATOM	725	CD2	HIS	105	-5.098	16.066	48. 563	1. 00	49. 55
	ATOM	726	ND1	HIS	105	-6. 459	17. 648	49. 212	1. 00	50. 43
10	ATOM	727	CE1	HIS	105	-5. 493	17. 571	50. 110	1. 00	51. 38
	ATOM	728	NE2	HIS	105	-4. 655	16. 619	49. 740	1. 00	50. 58
	ATOM	729	C	HIS	105	-8. 030	17. 304	44. 907	1. 00	46. 39
	ATOM	730	0	HIS	105	-9. 195	17. 692	44. 985	1.00	49.62
	ATOM	731	N	GLN	106	-7. 575	16. 580	43. 894	1.00	42. 98
15	ATOM	732	CA	GLN	106	-8. 419	16. 226	42. 771	1.00	40. 44
	ATOM	733	CB	GLN	106	-8. 284	17. 285	41.685	1. 00	40. 41
	ATOM	734	CG	GLN	106	-9. 546	17. 548	40. 908	1. 00	40. 59
	ATOM	735	CD	GLN	106	-10. 428	16. 324	40.813	1.00	40. 54
	ATOM	736	0E1	GLN	106	-11.061	15. 927	41. 795	1. 00	39. 16
20	ATOM	737	NE2	GLN	106	-10. 475	15. 712	39. 631	1. 00	40.06
	ATOM	738	C	GLN	106	-7. 940	14. 878	42. 249	1. 00	40. 70
	ATOM	739	0	GLN	106	-6. 745	14. 699	42. 012	1.00	41. 69
	ATOM	740	N	MET	107	-8. 867	13. 937	42. 066	1.00	41.01
	ATOM	741	CA	MET	107	-8. 532	12. 588	41. 599	1.00	40. 17
25	ATOM	742	CB	MET	107	-9. 083	11. 551	42. 588	1. 00	42. 07
	ATOM	743	CG	MET	107	-8. 772	10.094	42. 249	1.00	44. 67
	ATOM	744	SD	MET	107	-10. 185	9. 202	41. 551	1. 00	50. 71
	ATOM	745	CE	MET	107	-10. 688	8. 056	42. 927	1. 00	43. 37
	ATOM	746	C	MET	107	-9. 059	12. 294	40. 204	1. 00	38. 93

- 170 -

	ATOM	747	0	MET	107	-10. 264	12. 285	39. 979	1. 00	41. 30
	ATOM	748	N	TYR	108	-8. 161	12. 044	39. 264	1. 00	37. 96
	ATOM	749	CA	TYR	108	-8. 588	11.750	37. 907	1.00	38. 48
	ATOM	750	CB	TYR	108	-7. 670	12. 454	36. 900	1. 00	3 5. 63
5	ATOM	751	CG	TYR	108	-7. 732	13. 972	36. 977	1.00	35. 18
	ATOM	752	CD1	TYR	108	-7. 492	14. 645	38. 180	1. 00	37. 21
	ATOM	753	CE1	TYR	108	-7. 550	16. 047	38. 268	1. 00	34. 81
	ATOM	754	CD2	TYR	108	-8. 031	14. 735	35. 857	1. 00	34. 14
	ATOM	755	CE2	TYR	108	-8. 092	16. 134	35. 931	1. 00	35. 09
10	ATOM	756	CZ	TYR	108	-7.852	16. 783	37. 139	1.00	35. 25
	ATOM	757	ОН	TYR	108	-7. 937	18. 158	37. 211	1.00	33. 27
	ATOM	758	C	TYR	108	-8. 583	10. 241	37. 689	1.00	40. 17
	ATOM	759	0	TYR	108	-7. 817	9. 514	38. 325	1. 00	38.04
	ATOM	760	N	SER	109	-9. 469	9. 765	36. 818	1.00	42.63
15	ATOM	761	CA	SER	109	-9. 524	8. 341	36. 530	1. 00	44.60
	ATOM	762	CB	SER	109	-10. 929	7. 787	36. 736	1. 00	43.05
	ATOM	763	0G	SER	109	-10. 926	6. 385	36. 522	1. 00	41.66
	ATOM	764	С	SER	109	-9. 090	8. 106	35. 097	1. 00	46.74
	ATOM	765	0	SER	109	-9. 531	8. 799	34. 182	1. 00	44.65
20	ATOM	766	N	ILE	110	-8. 217	7. 120	34. 918	1. 00	50.31
	ATOM	767	CA	ILE	110	-7. 686	6.782	33. 608	1.00	55. 29
	ATOM	768	CB	ILE	110	-6. 326	6.060	33. 731	1. 00	54.32
	ATOM	769	CG2	ILE	110	-5. 690	5. 932	32. 364	1. 00	56. 16
	ATOM	770	CG1	ILE	110	-5. 373	6.844	34. 626	1. 00	53. 30
25	ATOM	771	CD1	ILE	110	-4. 067	6. 117	34. 869	1. 00	51.57
	ATOM	772	C	ILE	110	-8. 621	5. 882	32. 799	1. 00	59.70
	ATOM	773	0	ILE	110	-8. 906	4. 749	33. 199	1. 00	58.82
	ATOM	774	N	PR0	111	-9. 114	6. 381	31. 650	1. 00	64. 10
	ATOM	775	CD	PR0	111	-8. 972	7. 759	31. 142	1. 00	64.05

- 171 -

						111				
	ATOM	776	CA	PR0	111	-10. 012	5. 608	30. 788	1. 00	68. 40
	ATOM	777	CB	PR0	111	-10. 118	6. 484	29. 547	1. 00	67. 29
	ATOM	778	CG	PR0	111	-10. 105	7.860	30. 144	1. 00	63. 88
	ATOM	779	C	PR0	111	-9. 416	4. 231	30. 494	1. 00	72. 88
5	ATOM	780	0	PR0	111	-8. 195	4.065	30. 506	1. 00	73. 72
	ATOM	781	N	GLU	112	-10. 280	3. 250	30. 239	1. 00	77. 60
	ATOM	782	CA	GLU	112	-9. 845	1. 879	29. 958	1. 00	80. 79
	ATOM	783	CB	GLU	112	-11. 072	0. 968	29. 798	1. 00	82. 29
	ATOM	784	CG	GLU	112	-10. 748	-0. 498	29. 524	1. 00	83.62
10	ATOM	785	CD	GLU	112	-11. 896	-1. 247	28. 851	1. 00	85.04
	ATOM	786	0E1	GLU	112	-11. 697	-2. 423	28. 470	1. 00	85. 60
	ATOM	787	0E2	GLU	112	-12. 995	-0. 665	28. 700	1. 00	85. 42
	ATOM	788	C	GLU	112	-8. 971	1.806	28. 702	1. 00	82. 21
	ATOM	789	0	GLU	112	-7. 936	1. 137	28. 693	1. 00	82. 17
15	ATOM	790	N	ASP	113	-9. 394	2. 501	27. 649	1. 00	83. 97
	ATOM	791	CA	ASP	113	-8. 660	2. 522	26. 385	1. 00	85. 79
	ATOM	792	CB	ASP	113	-9. 506	3. 221	25. 302	1. 00	86.45
	ATOM	793	CG	ASP	113	-9. 961	4. 624	25. 712	1. 00	87. 32
	ATOM	794	0D1	ASP	113	-10. 655	4. 756	26. 748	1. 00	86.75
20	ATOM	795	0D2	ASP	113	-9. 629	5. 595	24. 991	1. 00	87. 18
	ATOM	796	C	ASP	113	-7. 297	3. 215	26. 533	1. 00	86. 44
	ATOM	797	0	ASP	113	-6. 467	3. 195	25. 617	1. 00	86.35
	ATOM	798	N	ALA	114	-7. 075	3. 813	27. 701	1. 00	86. 34
	ATOM	799	CA	ALA	114	-5. 837	4. 533	28. 000	1.00	85. 22
25	ATOM	800	CB	ALA	114	-6. 174	5. 904	28. 585	1.00	84. 46
	ATOM	801	C	ALA	114	-4. 928	3.768	28. 963	1.00	83. 67
	ATOM	802	0	ALA	114	-3. 716	3.692	28. 762	1. 00	83. 48
	ATOM	803	N	MET	115	-5. 528	3. 212	30. 012	1. 00	81. 79
	ATOM	804	CA	MET	115	-4. 802	2. 457	31. 023	1. 00	78. 70

- 172 -

	ATOM	805	CB	MET	115	-5. 776	2. 050	32. 135	1. 00	81. 16
	ATOM	806	CG	MET	115	-5. 148	1. 863	33. 503	1. 00	84. 52
	ATOM	807	SD	MET	115	-3. 978	0. 492	33. 553	1. 00	90.44
	ATOM	808	CE	MET	115	-5. 060	-0. 891	34. 119	1. 00	88. 49
5	ATOM	809	C	MET	115	-4. 145	1. 224	30. 391	1.00	76. 27
	ATOM	810	0	MET	115	-3. 066	0.809	30. 813	1.00	74. 47
	ATOM	811	N	THR	116	-4. 796	0. 658	29. 372	1.00	74. 50
	ATOM	812	CA	THR	116	-4. 282	-0.518	28. 666	1.00	72. 46
	ATOM .	813	CB	THR	116	-5. 399	-1. 524	28. 309	1.00	72. 22
10	ATOM	814	0G1	THR	116	-6. 200	-0. 993	27. 244	1.00	71. 17
	ATOM	815	CG2	THR	116	-6. 275	-1. 805	29. 516	1.00	71. 94
	ATOM	816	C	THR	116	-3.621	-0. 110	27. 356	1.00	71.75
	ATOM	817	0	THR	116	-3. 562	-0.899	26. 412	1. 00	71. 39
	ATOM	818	N	GLY	117	-3. 142	1. 131	27. 301	1. 00	71. 09
15	ATOM	819	CA	GLY	117	-2. 477	1. 639	26. 110	1. 00	68.62
	ATOM	820	C	GLY	117	-0.961	1.651	26. 260	1.00	66.70
	ATOM	821	0	GLY	117	-0. 384	0. 702	26. 798	1. 00	67. 20
	ATOM	822	N	THR	118	-0. 313	2. 716	25. 783	1. 00	63. 05
	ATOM	823	CA	THR	118	1. 142	2. 844	25. 876	1. 00	59. 92
20	ATOM	824	CB	THR	118	1. 796	3. 020	24. 502	1.00	59. 06
	ATOM	825	0G1	THR	118	1. 013	3. 926	23. 718	1. 00	57. 88
	ATOM	826	CG2	THR	118	1. 917	1. 688	23. 794	1.00	59. 21
	ATOM	827	C	THR	118	1. 548	4. 038	26. 721	1.00	58. 97
	ATOM	828	0	THR	118	0. 764	4. 971	26. 912	1. 00	58. 11
25	ATOM	829	N	ALA	119	2. 782	4. 001	27. 218	1. 00	56. 72
	ATOM	830	CA	ALA	119	3. 313	5.071	28. 052	1. 00	52. 86
	ATOM	831	CB	ALA	119	4. 807	4. 938	28. 177	1. 00	51. 30
	ATOM	832	C	ALA	119	2. 972	6. 399	27. 421	1. 00	51. 58
	ATOM	833	0	ALA	119	2. 456	7. 301	28. 080	1. 00	52. 70

- 173 -

	ATOM	834	N	GLU	120	3. 260	6. 502	26. 131	1. 00 48. 02
	ATOM	835	CA	GLU	120	2. 994	7. 716	25. 386	1. 00 46. 07
	ATOM	836	CB	GLU	120	3. 194	7. 471	23. 894	1. 00 49. 10
	ATOM	837	CG	GLU	120	4. 210	6. 381	23. 550	1. 00 52. 89
5	ATOM	838	CD	GLU	120	5. 630	6. 736	23. 945	1. 00 53. 64
	ATOM	839	0E I	GLU	120	5. 962	6. 621	25. 141	1. 00 55. 30
	ATOM	840	0E2	GLU	120	6. 411	7. 139	23. 057	1. 00 52. 83
	ATOM	841	C	GLU	120	1. 557	8. 140	25. 630	1. 00 44. 27
	ATOM	842	0	GLU	120	1. 295	9. 257	26. 070	1. 00 44. 84
10	ATOM	843	N	MET	121	0. 627	7. 235	25. 351	1. 00 41. 37
	ATOM	844	CA	MET	121	-0. 791	7. 525	25. 513	1. 00 38. 57
	ATOM	845	CB	MET	121	-1. 626	6. 358	24. 990	1. 00 41. 30
	ATOM	846	CG	MET	121	-1. 721	6. 328	23. 479	1. 00 46. 24
	ATOM	847	SD	MET	121	-2. 483	4. 835	22. 838	1. 00 50. 88
15	ATOM	848	CE	MET	121	-3. 908	4. 669	23. 961	1. 00 50. 02
	ATOM	849	C	MET	121	-1. 190	7. 820	26. 937	1. 00 34. 60
	ATOM	850	0	MET	121	-1. 910	8. 780	27. 204	1. 00 31. 69
	ATOM	851	N	LEU	122	-0. 719	6. 985	27. 852	1. 00 32. 63
	ATOM	852	CA	LEU	122	-1. 051	7. 141	29. 263	1. 00 30. 24
20	ATOM	853	CB	LEU	122	-0. 256	6. 140	30. 108	1. 00 27. 33
	ATOM	854	CG	LEU	122	-0. 778	5. 923	31. 533	1. 00 21. 99
	ATOM	855	CD1	LEU	122	-0. 279	4.601	32. 031	1. 00 22. 53
	ATOM	856	CD2	LEU	122	-0. 366	7. 034	32. 456	1. 00 17. 78
	ATOM	857	C	LEU	122	-0. 759	8. 551	29. 746	1. 00 28. 67
25	ATOM	858	0	LEU	122	-1. 619	9. 228	30. 326	1. 00 25. 21
	ATOM	859	N	PHE	123	0. 469	8. 987	29. 502	1. 00 26. 83
	ATOM	860	CA	PHE	123	0.871	10. 306	29. 929	1. 00 25. 29
	ATOM	861	CB	PHE	123	2. 387	10. 398	29. 908	1. 00 20. 22
	ATOM	862	CG	PHE	123	3. 015	9. 772	31. 112	1. 00 15. 51

- 174 -

						- 114	+ -			
	ATOM	863	CDI	PHE	123	3. 538	8. 494	31.064	1. 00	12. 96
	ATOM	864	CD2	PHE	123	3. 028	10. 457	32. 328	1. 00	13. 35
	ATOM	865	CE 1	PHE	123	4. 067	7. 910	32. 217	1. 00	12. 87
	ATOM	866	CE2	PHE	123	3. 552	9. 879	33. 484	1. 00	9. 69
5	ATOM	867	CZ	PHE	123	4. 072	8. 609	33. 432	1.00	9. 56
	ATOM	868	C	PHE	123	0. 202	11. 432	29. 157	1. 00	26. 20
	ATOM	869	0	PHE	123	-0. 102	12. 489	29. 722	1. 00	26.61
	ATOM	870	N	ASP	124	-0. 053	11. 207	27. 875	1. 00	24. 47
	ATOM	871	CA	ASP	124	-0. 750	12. 210	27. 090	1. 00	23. 14
10	ATOM	872	CB	ASP	124	-1. 228	11. 614	25. 785	1. 00	24. 52
	ATOM	873	CG	ASP	124	-0. 178	11. 628	24. 747	1. 00	27. 01
	ATOM	874	0D1	ASP	124	-0. 376	10. 955	23.715	1. 00	26. 39
	ATOM	875	0D2	ASP	124	0. 839	12. 325	24. 968	1.00	29. 23
	ATOM	876	C	ASP	124	-1. 967	12.650	27. 875	1. 00	21.89
15	ATOM	877	0	ASP	124	-2. 361	13. 815	27. 841	1. 00	20.01
	ATOM	878	N	TYR	125	-2. 562	11.688	28. 574	1. 00	20. 84
	ATOM	879	CA	TYR	125	-3. 749	11. 943	29. 371	1. 00	20. 51
	ATOM	880	CB	TYR	125	-4. 414	10.619	29. 792	1. 00	20. 43
	ATOM	881	CG	TYR	125	-5. 796	10. 794	30. 394	1. 00	22.84
20	ATOM	882	CD1	TYR	125	-6. 083	10. 358	31. 692	1. 00	23. 51
	ATOM	883	CE1	TYR	125	-7. 345	10. 584	32. 268	1. 00	31.08
	ATOM	884	CD2	TYR	125	-6.803	11. 451	29. 678	1. 00	26. 43
	ATOM	885	CE2	TYR	125	-8. 064	11. 685	30. 232	1. 00	31. 61
	ATOM	886	CZ	TYR	125	-8. 336	11. 255	31. 528	1. 00	34. 64
25	ATOM	887	0Н	TYR	125	-9. 585	11. 520	32. 073	1. 00	38. 10
	ATOM	888	C	TYR	125	-3. 382	12. 752	30. 605	1. 00	19. 11
	ATOM	889	0	TYR	125	-3. 904	13. 848	30. 824	1. 00	16. 08
	ATOM	890	N	ILE	126	-2. 465	12. 212	31. 399	1. 00	17. 91
	ATOM	891	CA	ILE	126	-2.049	12. 879	32. 615	1. 00	17. 82

- 175 -

	ATOM	892	CB	ILE	126	-0. 819	12. 236	33. 203	1. 00	19. 82
	ATOM	893	CG2	ILE	126	-0. 489	12. 905	34. 538	1. 00	18. 77
	ATOM	894	CG1	ILE	126	-1. 055	10. 732	33. 331	1.00	21. 27
	ATOM	895	CD1	ILE	126	0. 045	9. 984	34. 062	1. 00	23. 92
5	ATOM	896	C	ILE	126	-1. 717	14. 313	32. 325	1. 00	18. 09
	ATOM	897	0	ILE	126	-1. 991	15. 205	33. 123	1. 00	16 . 6 8
	ATOM	898	N	SER	127	-1. 108	14. 532	31. 172	1. 00	19. 12
	ATOM	899	CA	SER	127	-0. 747	15. 877	30. 789	1. 00	20. 96
	ATOM	900	CB	SER	127	-0. 057	15. 857	29. 432	1. 00	19. 89
10	ATOM	901	0G	SER	127	0. 569	17. 100	29. 190	1. 00	22. 20
	ATOM	902	C	SER	127	-2. 011	16. 742	30. 746	1.00	21. 92
	ATOM	903	0	SER	127	-2. 177	17. 658	31. 551	1. 00	20. 25
	ATOM	904	N	GLU	128	-2. 902	16. 431	29. 813	1.00	23. 87
	ATOM	905	CA	GLU	128	-4. 152	17. 161	29. 670	1. 00	26.98
15	ATOM	906	CB	GLU	128	-5. 111	16. 353	28. 802	1.00	33. 10
	ATOM	907	CG	GLU	128	-6. 471	16. 990	28. 544	1. 00	39. 51
	ATOM	908	CD	GLU	128	-7. 280	16. 175	27. 544	1. 00	44. 52
	ATOM	909	0E1	GLU	128	-7. 211	16. 481	26. 327	1. 00	46. 11
	ATOM	910	0E2	GLU	128	-7. 963	15. 218	27. 980	1. 00	43. 93
20	ATOM	911	C	GLU	128	-4. 797	17. 431	31. 020	1. 00	26.55
	ATOM	912	0	GLU	128	-5. 177	18. 561	31. 334	1. 00	26. 16
	ATOM	913	N	CYS	129	-4. 929	16. 384	31.820	1. 00	26. 36
	ATOM	914	CA	CYS	129	-5. 532	16. 535	33. 130	1.00	26. 47
	ATOM	915	CB	CYS	129	-5. 452	15. 219	33. 893	1. 00	28. 39
25	ATOM	916	SG	CYS	129	-6. 450	13. 922	33. 126	1. 00	37. 58
	ATOM	917	C	CYS	129	-4. 853	17. 636	33. 914	1. 00	25. 00
	ATOM	918	0	CYS	129	-5. 515	18. 561	34. 372	1.00	24. 97
	ATOM	919	N	ILE	130	-3. 532	17. 536	34. 059	1. 00	24. 74
	ATOM	920	CA	ILE	130	-2. 763	18. 536	34. 793	1. 00	21. 55

- 176 -

	ATOM	921	CB	ILE	130	-1. 245	18. 255	34. 709	1. 00 17. 55
	ATOM	922	CG2	ILE	130	-0. 458	19. 404	35. 304	1. 00 15. 00
	ATOM	923	CG	ILE	130	-0. 915	16. 984	35. 490	1. 00 16. 42
	ATOM	924	CD 1	ILE	130	0. 574	16. 713	35. 623	1. 00 18. 34
5	ATOM	925	C	ILE	130	-3. 070	19. 910	34. 219	1. 00 23. 54
	ATOM	926	0	ILE	130	-3. 572	20. 780	34. 926	1. 00 21. 27
	ATOM	927	N	SER	131	-2. 785	20. 091	32. 933	1. 00 26. 25
	ATOM	928	CA	SER	131	-3. 048	21. 353	32. 270	1. 00 28. 50
	ATOM	929	CB	SER	131	-3. 011	21. 186	30. 764	1. 00 28. 76
10	ATOM	930	0G	SER	131	-3.856	22. 154	30. 164	1. 00 32. 87
	ATOM	931	C	SER	131	-4. 417	21. 851	32. 661	1. 00 31. 48
	ATOM	932	0	SER	131	-4. 586	23. 002	33. 057	1. 00 33. 67
	ATOM	933	N	ASP	132	-5. 411	20. 986	32. 546	1. 00 34. 56
	ATOM	934	CA	ASP	132	-6. 753	21. 397	32. 908	1. 00 39. 04
15	ATOM	935	CB	ASP	132	-7. 735	20. 248	32. 694	1. 00 44. 84
	ATOM	936	CG	ASP	132	-9. 165	20.650	32. 987	1. 00 50. 51
	ATOM	937	0D1	ASP	132	-9. 764	21. 347	32. 131	1. 00 53. 56
	ATOM	938	0D2	ASP	132	-9. 674	20. 283	34. 078	1. 00 52. 37
	ATOM	939	C	ASP	132	-6. 790	21.843	34. 376	1. 00 38. 23
20	ATOM	940	0	ASP	132	-7. 160	22. 982	34. 677	1. 00 36. 81
	ATOM	941	N	PHE	133	-6. 394	20. 932	35. 270	1. 00 36. 88
	ATOM	942	CA	PHE	133	-6. 372	21. 170	36. 713	1. 00 34. 85
	ATOM	943	CB	PHE	133	-5. 604	20.060	37. 433	1. 00 33. 59
	ATOM	944	CG	PHE	133	-5. 343	20. 362	38. 878	1. 00 34. 77
25	ATOM	945	CD1	PHE	133	-6. 396	20. 547	39. 760	1. 00 35. 58
	ATOM	946	CD2	PHE	133	-4. 043	20. 523	39. 348	1. 00 37. 81
	ATOM	947	CE1	PHE	133	-6. 159	20. 896	41. 091	1. 00 37. 66
	ATOM	948	CE2	PHE	133	-3. 792	20. 872	40. 678	1. 00 38. 00
	ATOM	949	cz	PHE	133	-4. 850	21. 059	41. 548	1. 00 38. 85

- 177 -

							•		
	ATOM	950	С	PHI	3 133	-5. 755	22. 503	37. 094	1. 00 34. 28
	ATOM	951	0	PHE	E 133	-6. 274	23. 226	37. 947	1. 00 33. 97
	ATOM	952	N	LEU	J 134	-4. 622	22. 813	36. 482	1. 00 33. 97
	ATOM	953	CA	. LEG	J 134	-3. 958	24. 070	36. 766	1. 00 31. 79
5	ATOM	954	CB	LEU	134	-2. 590	24. 109	36. 089	1. 00 24. 12
	ATOM	955	CG	LEU	134	-1.618	23. 026	36. 545	1. 00 16. 64
	ATOM	956	CD	LEU	134	-0. 368	23. 101	35. 705	1. 00 15. 98
	ATOM	957	CD2	LEU	134	-1. 305	23. 184	38. 014	1. 00 10. 77
	ATOM	958	C	LEU	134	-4. 855	25. 176	36. 234	1. 00 34. 44
10	ATOM	959	0	LEU	134	-5. 111	26. 163	36. 920	1. 00 34. 41
	ATOM	960	N	ASP	135	-5. 365	24. 999	35. 022	1. 00 37. 26
	ATOM	961	CA	ASP	135	-6. 230	26. 014	34. 454	1. 00 42. 65
	ATOM	962	CB	ASP	135	-6. 815	25. 565	33. 121	1. 00 46. 76
	ATOM	963	CG	ASP	135	-7. 707	26. 629	32. 509	1. 00 52. 18
15	ATOM	964	0D1	ASP	135	-8. 659	26. 271	31. 772	1. 00 53. 75
	ATOM	965	0D2	ASP	135	-7. 443	27. 829	32. 772	1. 00 52. 70
	ATOM	966	C	ASP	135	-7. 386	26. 381	35. 383	1.00 43.96
	ATOM	967	0	ASP	135	-7. 643	27. 563	35. 619	1.00 44.98
	ATOM	968	N	LYS	136	-8. 084	25. 368	35. 894	1.00 44.30
20	ATOM	969	CA	LYS	136	-9. 225	25. 578	36. 780	1.00 44.56
	ATOM	970	CB	LYS	136	-9. 889	24. 237	37. 124	1. 00 46. 76
	ATOM	971	CG	LYS	136	-11. 195	24. 350	37. 941	1. 00 52. 67
	ATOM	972	CD	LYS	136	-11. 910	22. 981	38. 128	1. 00 55. 98
	ATOM	973	CE	LYS	136	-13. 367	23. 120	38. 628	1. 00 55. 25
25	ATOM	974	NZ	LYS	136	-14. 106	21.817	38. 719	1. 00 51. 28
	ATOM	975	C	LYS	136	-8.862	26. 306	38. 069	1. 00 44. 85
	ATOM	976	0	LYS	136	-9. 730	26. 894	38. 717	1. 00 45. 87
	ATOM	977	N	HIS	137	-7. 586	26. 273	38. 444	1. 00 44. 25
	ATOM	978	$\mathbf{C}\mathbf{A}$	HIS	137	-7. 149	26. 937	39. 670	1. 00 43. 21

- 178 -

						1.0			
	ATOM	979	CB	HIS	137	-6.434	25. 937	40. 585	1. 00 44. 13
	ATOM	980	CG	HIS	137	-7. 344	24. 915	41. 199	1. 00 45. 24
	ATOM	981	CD2	HIS	137	-7. 676	24. 680	42. 492	1. 00 45. 35
	ATOM	982	ND1	HIS	137	-8. 042	23. 991	40. 452	1.00 45.45
5	ATOM	983	CE1	HIS	137	-8. 764	23. 231	41. 257	1.00 45.40
	ATOM	984	NE2	HIS	137	-8. 560	23. 629	42. 500	1.00 44.34
	ATOM	985	c	HIS	137	-6. 242	28. 132	39. 400	1.00 41.96
	ATOM	986	0	HIS	137	-5. 592	28. 649	40. 307	1.00 40.24
	ATOM	987	N	GLN	138	-6. 217	28. 577	38. 151	1. 00 42. 87
10	ATOM	988	CA	GLN	138	-5. 390	29. 706	37. 766	1. 00 44. 93
	ATOM	989	CB	GLN	138	-5. 949	30. 993	38. 373	1.00 47.58
	ATOM	990	CG	GLN	138	-7. 258	31. 448	37. 749	1.00 51.96
	ATOM	991	CD	GLN	138	-7. 416	32. 966	37. 766	1. 00 55. 20
	ATOM	992	0E1	GLN	138	-6. 680	33. 698	37. 088	1. 00 56. 05
15	ATOM	993	NE2	GLN	138	-8. 375	33. 445	38. 546	1. 00 55. 44
	ATOM	994	C	GLN	138	-3. 921	29. 537	38. 162	1.00 44.67
	ATOM	995	0	GLN	138	-3. 316	30. 437	38. 747	1. 00 45. 78
	ATOM	996	N	MET	139	-3. 350	28. 383	37. 836	1. 00 41. 86
	ATOM	997	CA	MET	139	-1. 951	28. 109	38. 138	1.00 38.60
20	ATOM	998	CB	MET	139	-1. 846	27.062	39. 236	1. 00 39. 19
	ATOM	999	CG	MET	139	-2. 048	27. 660	40.604	1. 00 41. 24
	ATOM	1000	SD	MET	139	-0.859	28. 992	40.852	1.00 47.65
	ATOM	1001	CE	MET	139	0. 308	28. 217	42. 007	1. 00 44. 32
	ATOM	1002	C	MET	139	-1. 232	27. 653	36. 881	1. 00 36. 60
25	ATOM	1003	0	MET	139	-0. 316	26. 823	36. 910	1. 00 35. 29
	ATOM	1004	N	LYS	140	-1. 659	28. 237	35. 771	1. 00 34. 23
	ATOM	1005	CA	LYS	140	-1. 101	27. 921	34. 477	1. 00 32. 15
	ATOM	1006	CB	LYS	140	-2. 198	28.062	33. 417	1. 00 31. 04
	ATOM	1007	CG	LYS	140	-1. 970	27. 293	32. 116	1. 00 31. 48

- 179 -

	ATOM	1008	CD	LYS	140	-2. 184	25. 780	32. 275	1.00	32. 43
	ATOM	1009	CE	LYS	140	-2. 112	25. 015	30. 925	1.00	30. 89
	ATOM	1010	NZ	LYS	140	-0. 811	25. 130	30. 168	1.00	29. 56
	ATOM	1011	C	LYS	140	0. 085	28. 834	34. 161	1.00	31.02
5	ATOM	1012	0	LYS	140	0.047	30.045	34. 412	1.00	29.99
	ATOM	1013	N	HIS	141	1. 143	28. 228	33. 627	1.00	31. 35
	ATOM	1014	CA	HIS	141	2. 353	28. 940	33. 244	1.00	30.03
	ATOM	1015	CB	HIS	141	1. 989	30. 145	32. 385	1.00	30.05
	ATOM	1016	CG	HIS	141	1. 001	29. 836	31. 305	1.00	31. 15
10	ATOM	1017	CD2	HIS	141	-0. 132	30. 473	30. 927	1.00	30. 91
	ATOM	1018	ND1	HIS	141	1. 148	28. 769	30. 448	1.00	33. 49
	ATOM	1019	CE1	HIS	141	0. 147	28. 763	29. 584	1. 00	35. 03
	ATOM	1020	NE2	HIS	141	-0. 643	29. 787	29. 853	1.00	32. 67
	ATOM	1021	C	HIS	141	3. 138	29. 396	34. 460	1. 00	29. 17
15	ATOM	1022	0	HIS	141	4. 211	29. 983	34. 341	1.00	28. 17
	ATOM	1023	N	LYS	142	2. 601	29. 108	35. 635	1. 00	28.81
	ATOM	1024	CA	LYS	142	3. 248	29. 505	36. 869	1. 00	29. 17
	ATOM	1025	CB	LYS	142	2. 317	29. 240	38. 065	1. 00	33. 65
	ATOM	1026	CG	LYS	142	0. 986	30.042	38. 072	1.00	39. 35
20	ATOM	1027	CD	LYS	142	1. 194	31. 561	38. 214	1. 00	42.74
	ATOM	1028	CE	LYS	142	-0. 122	32. 360	38. 170	1.00	45. 49
	ATOM	1029	NZ	LYS	142	0. 110	33. 844	38. 325	1. 00	46. 19
	ATOM	1030	C	LYS	142	4. 575	28. 785	37. 075	1.00	26. 49
	ATOM	1031	0	LYS	142	5. 340	29. 138	37. 966	1. 00	26. 10
25	ATOM	1032	N	LYS	143	4. 862	27. 784	36. 254	1. 00	24. 58
	ATOM	1033	CA	LYS	143	6. 106	27. 042	36. 416	1. 00	22.67
	ATOM	1034	CB	LYS	143	7. 258	27. 847	35. 836	1.00	21. 51
	ATOM	1035	CG	LYS	143	8. 533	27. 071	35. 737	1. 00	22 . 59
	ATOM	1036	CD	LYS	143	9. 319	27. 510	34. 516	1.00	25.81

.

- 180 -

	ATOM	1037	CE	LYS	143	10. 455	26. 542	34. 240	1.00	28.01
	ATOM	1038	NZ	LYS	143	11. 140	26. 828	32. 959	1.00	27. 2 5
	ATOM	1039	C	LYS	143	6. 383	26. 732	37. 896	1.00	22. 14
	ATOM	1040	0	LYS	143	7. 133	27. 459	38. 556	1.00	21.99
5	ATOM	1041	N	LEU	144	5. 766	25. 655	38. 401	1.00	20.81
	ATOM	1042	CA	LEU	144	5. 910	25. 214	39. 797	1.00	16. 90
	ATOM	1043	CB	LEU	144	4. 577	25. 351	40. 567	1.00	16.78
	ATOM	1044	CG	LEU	144	3. 208	24. 956	39. 983	1.00	18. 43
	ATOM	1045	CD1	LEU	144	2. 148	24. 915	41.074	1.00	17.60
10	ATOM	1046	CD2	LEU	144	2. 795	25. 960	38. 929	1. 00	19. 20
	ATOM	1047	C	LEU	144	6. 432	23. 781	39. 933	1. 00	15.80
	ATOM	1048	0	LEU	144	6. 265	22. 958	39. 032	1.00	12. 24
	ATOM	1049	N	PR0	145	7. 078	23. 478	41.076	1.00	16. 26
	ATOM	1050	CD	PR0	145	7. 227	24. 446	42. 172	1.00	15.64
15	ATOM	1051	CA	PR0	145	7. 678	22. 196	41. 467	1.00	14. 17
	ATOM	1052	CB	PR0	145	8. 079	22. 427	42. 923	1.00	18. 10
	ATOM	1053	CG	PR0	145	8. 378	23. 860	42. 963	1.00	17. 14
	ATOM	1054	C	PR0	145	6. 707	21. 050	41. 357	1.00	12.75
	ATOM	1055	0	PR0	145	5. 580	21. 141	41. 852	1.00	12. 27
20	ATOM	1056	N	LEU	146	7. 160	19. 957	40. 758	1.00	10. 29
	ATOM	1057	CA	LEU	146	6. 290	18. 804	40. 560	1. 00	11. 21
	ATOM	1058	CB	LEU	146	6. 156	18. 539	39. 075	1.00	7. 24
	ATOM	1059	CG	LEU	146	5. 160	17. 439	38. 824	1. 00	3. 01
	ATOM	1060	CD1	LEU	146	3. 817	17. 832	39. 389	1. 00	1. 00
25	ATOM	1061	CD2	LEU	146	5. 083	17. 215	37. 342	1. 00	3.06
	ATOM	1062	C	LEU	146	6. 696	17. 502	41. 233	1. 00	12. 36
	ATOM	1063	0	LEU	146	7. 629	16.851	40. 790	1. 00	15. 11
	ATOM	1064	N	GLY	147	5. 972	17. 086	42. 262	1.00	14.72
	ATOM	1065	CA	GLY	147	6. 333	15. 851	42. 937	1. 00	17. 81

- 181 -ATOM 1066 C **GLY 147** 5.716 14. 586 42. 371 1. 00 18. 51 **GLY 147** ATOM 1067 0 4.689 14.644 41.704 1, 00 20, 85 ATOM 1068 N PHE 148 6.342 13.440 42.631 1.00 19.28 ATOM 1069 CA PHE 148 5.825 12. 167 42.142 1.00 20.55 ATOM 6.707 11.635 CB PHE 148 41.023 1.00 16.36 ATOM 1071 CG PHE 148 6.593 12.409 39.759 1.00 17.72 ATOM 1072 CD1 PHE 148 6, 792 13, 779 39, 753 1,00 17,99 ATOM 1073 CD2 PHE 148 6.298 11, 769 38.560 1,00 21,10 ATOM 1074 CE1 PHE 148 6.695 14.509 38.570 1.00 22.37 ATOM 1075 CE2 PHE 148 6.198 12.494 37. 362 1.00 22.82 ATOM 1076 CZPHE 148 6.398 13.864 37. 366 1.00 21.67 ATOM 1077 C PHE 148 5.712 11. 104 43, 222 1.00 22.75 6.691 ATOM 1078 0 PHE 148 10.783 43.885 1.00 24.66 ATOM 1079 THR 149 4.513 10.562 43.403 N 1.00 24.45 ATOM 1080 CA THR 149 4.312 9. 514 44. 387 1.00 24.75 ATOM 1081 CBTHR 149 3.365 9.917 45.497 1.00 23.76 ATOM 1082 0G1 THR 149 2. 757 11. 175 45. 192 1.00 25.51 ATOM 1083 CG2 THR 149 4. 107 9.989 46.786 1.00 22.63 ATOM 1084 C THR 149 3. 705 8.306 43.715 1.00 27.38 ATOM 1085 THR 149 3.093 8.405 42.647 1.00 24.58 0 ATOM 1086 N PHE 150 3.857 7.160 44. 361 1, 00 30, 07 ATOM 1087 CA PHE 150 3. 327 5.936 43.811 1.00 32.54 ATOM 1088 CB PHE 150 4. 455 5. 120 43. 215 1.00 29.97 ATOM 1089 CG PHE 150 5. 172 5.820 42.119 1.00 27.55 1.00 27.41 ATOM 1090 CD1 PHE 150 6. 134 6, 770 42.397ATOM CD2 PHE 150 4.850 40, 798 1.00 27.56 1091 5, 561

6.770

5.481

6. 437

7.447

6. 231

7. 177

41.366

39, 762

40.045

1.00 28.61

1.00 26.86

1.00 27.37

10

15

20

25

ATOM

ATOM

ATOM

1092

1093

1094 CZ

CE1 PHE 150

CE2 PHE 150

PHE 150

- 182 -

						- 10	۷ –		
	ATOM	1095	C	PHI	3 150	2. 561	5. 093	44. 808	1. 00 35. 78
	ATOM	1096	0	PHI	150	3. 095	4. 695	45. 845	1. 00 36. 93
	ATOM	1097	N	SEF	151	1. 305	4. 813	44. 467	1. 00 38. 60
	ATOM	1098	CA	SEI	151	0. 420	4.006	45. 295	1.00 40.51
5	ATOM	1099	CB	SEF	151	-0. 830	4. 802	45. 641	1. 00 41. 51
	ATOM	1100	0G	SER	151	-1.507	5. 159	44. 453	1. 00 47. 40
	ATOM	1101	C	SER	151	0. 038	2. 736	44. 533	1. 00 41. 75
	ATOM	1102	0	SER	151	0.069	2. 696	43. 301	1. 00 40. 78
	ATOM	1103	N	PHE	152	-0. 336	1. 704	45. 278	1. 00 43. 86
10	ATOM	1104	CA	PHE	152	-0. 684	0. 421	44. 687	1. 00 45. 76
	ATOM	1105	CB	PHE	152	0. 465	-0. 557	44. 965	1. 00 51. 67
	ATOM	1106	CG	PHE	152	0. 429	-1.808	44. 133	1.00 57.82
	ATOM	1107	CDI	PHE	152	0. 597	-1. 749	42. 751	1. 00 59. 39
	ATOM	1108	CD2	PHE	152	0. 256	-3.056	44. 739	1.00 60.37
15	ATOM	1109	CE 1	PHE	152	0. 598	-2. 915	41. 979	1. 00 61. 23
	ATOM	1110	CE2	PHE	152	0. 254	-4. 232	43. 978	1. 00 61. 76
	ATOM	1111	CZ	PHE	152	0. 426	-4. 161	42. 593	1. 00 61. 46
	ATOM	1112	C	PHE	152	-2.007	-0. 134	45. 238	1.00 43.74
	ATOM	1113	0	PHE	152	-2. 137	-0. 382	46. 437	1.00 43.01
20	ATOM	1114	N	PR0	153	-3.005	-0.322	44. 359	1. 00 40. 65
	ATOM	1115	CD	PR0	153	-2. 993	0. 179	42. 979	1. 00 39. 35
	ATOM	1116	CA	PR0	153	-4. 330	-0. 844	44. 685	1. 00 38. 88
	ATOM	1117	CB	PR0	153	-5. 045	-0. 803	43. 352	1. 00 36. 16
	ATOM	1118	CG	PR0	153	-4. 454	0. 359	42. 711	1. 00 37. 38
25	ATOM	1119	C	PR0	153	-4. 235	-2. 255	45. 192	1. 00 41. 30
	ATOM	1120	0	PRO	153	-3. 481	-3. 057	44. 657	1. 00 42. 17
	ATOM	1121	N	VAL	154	-5. 013	-2. 565	46. 215	1. 00 45. 30
	ATOM	1122	CA	VAL	154	-5. 016	-3. 905	46. 767	1. 00 49. 50
	ATOM	1123	CB	VAL	154	-4. 124	-3. 989	47. 990	1. 00 45. 75

- 183 -

	ATOM	1124	CG1	VAL	154	-4. 297	-5. 331	48. 638	1. 00	45. 79
	ATOM	1125	CG2	VAL	154	-2. 684	-3. 772	47. 594	1. 00	44.88
	ATOM	1126	С	VAL	154	-6. 432	-4. 268	47. 181	1.00	55. 51
	ATOM	1127	0	VAL	154	-6. 963	-3. 683	48. 119	1.00	58.30
5	ATOM	1128	N	ARG	155	-7. 042	-5. 232	46. 495	1.00	61.06
	ATOM	1129	CA	ARG	155	-8. 413	-5. 643	46. 812	1.00	67.71
	ATOM	1130	CB	ARG	155	-8. 812	-6. 847	45. 956	1. 00	71. 43
	ATOM	1131	CG	ARG	155	-9. 033	-6. 501	44. 501	1.00	76.11
	ATOM	1132	CD	ARG	155	-9. 094	-7. 736	43.621	1.00	78. 73
10	ATOM	1133	NE	ARG	155	-9. 292	-7. 352	42. 226	1. 00	81. 59
	ATOM	1134	CZ	ARG	155	-9. 138	-8. 168	41. 190	1. 00	82.83
	ATOM	1135	NH1	ARG	155	-8. 778	-9. 432	41. 386	1.00	83. 55
	ATOM	1136	NH2	ARG	155	-9. 340	-7. 717	39. 956	1.00	82.01
	ATOM	1137	C	ARG	155	-8. 639	-5. 965	48. 291	1.00	70. 15
15	ATOM	1138	0	ARG	155	-7. 689	-6. 255	49. 022	1. 00	71. 24
	ATOM	1139	N	HIS	156	-9. 903	-5. 923	48. 720	1. 00	71.23
	ATOM	1140	CA	HIS	156	-10. 265	-6. 184	50. 117	1.00	72. 30
	ATOM	1141	CB	HIS	156	-11. 724	-5. 769	50. 365	1. 00	73.82
	ATOM	1142	CG	HIS	156	-12. 049	-5. 506	51. 808	1. 00	76. 32
20	ATOM	1143	CD2	HIS	156	-11. 335	-5. 722	52. 941	1. 00	76.70
	ATOM	1144	ND1	HIS	156	-13. 243	-4. 944	52. 211	1. 00	76. 54
	ATOM	1145	CE1	HIS	156	-13. 251	-4. 823	53. 527	1. 00	76. 16
	ATOM	1146	NE2	HIS	156	-12. 106	-5. 288	53. 994	1. 00	77. 55
	ATOM	1147	C	HIS	156	-10.063	-7. 645	50. 522	1. 00	72.42
25	ATOM	1148	0	HIS	156	-9. 196	-7. 957	51. 345	1. 00	71. 15
	ATOM	1149	N	ASN	180	11. 816	6. 551	32. 482	1.00	43. 22
	ATOM	1150	CA	ASN	180	11. 492	7. 278	33. 706	1. 00	42. 73
	ATOM	1151	CB	ASN	180	12. 677	8. 168	34. 155	1. 00	46. 67
	ATOM	1152	CG	ASN	180	13. 189	9. 094	33. 052	1.00	50. 13

- 184 -

	ATOM	1153	0D1	ASN	180	14. 152	8. 777	32. 336	1. 00	51. 24
	ATOM	1154	ND2	ASN	180	12. 547	10. 250	32. 915	1.00	51.73
	ATOM	1155	C	ASN	180	10. 228	8. 110	33. 523	1.00	38. 44
	ATOM	1156	0	ASN	180	9. 941	8. 600	32. 431	1. 00	36. 40
5	ATOM	1157	N	VAL	181	9. 473	8. 257	34. 603	1.00	34. 02
	ATOM	1158	CA	VAL	181	8. 218	8. 995	34. 577	1.00	31. 37
	ATOM	1159	CB	VAL	181	7. 498	8. 874	35. 957	1.00	34. 84
	ATOM	1160	CG1	VAL	181	6. 091	9. 484	35. 909	1. 00	32. 59
	ATOM	1161	CG2	VAL	181	7. 414	7. 405	36. 353	1. 00	38. 00
10	ATOM	1162	C	VAL	181	8. 426	10. 458	34. 221	1. 00	26. 36
	ATOM	1163	0	VAL	181	7. 882	10.964	33. 237	1. 00	23. 28
	ATOM	1164	N	VAL	182	9. 228	11. 131	35. 030	1.00	23.56
	ATOM	1165	CA	VAL	182	9. 518	12. 538	34. 826	1. 00	18. 23
	ATOM	1166	CB	VAL	182	10. 702	12. 958	35.716	1. 00	14. 26
15	ATOM	1167	CG1	VAL	182	11. 905	12. 084	35. 426	1. 00	14. 73
	ATOM	1168	CG2	VAL	182	11. 001	14. 403	35. 508	1. 00	11.08
	ATOM	1169	C	VAL	182	9. 773	12. 882	33. 352	1. 00	15. 36
	ATOM	1170	0	VAL	182	9. 330	13. 924	32. 875	1. 00	15. 32
	ATOM	1171	N	GLY	183	10. 467	12. 009	32.632	1. 00	13. 34
20	ATOM	1172	CA	GLY	183	10. 713	12. 267	31. 228	1. 00	12.56
	ATOM	1173	С	GLY	183	9. 458	12. 098	30. 382	1. 00	13.06
	ATOM	1174	0	GLY	183	9. 104	12. 978	29.601	1. 00	12.05
	ATOM	1175	N	LEU	184	8. 772	10. 971	30. 540	1. 00	15. 78
	ATOM	1176	CA	LEU	184	7. 549	10. 708	29. 777	1. 00	15. 21
25	ATOM	1177	CB	LEU	184	6. 858	9. 435	30. 295	1. 00	16.78
	ATOM	1178	CG	LEU	184	7. 613	8. 108	30.075	1. 00	15. 45
	ATOM	1179	CD1	LEU	184	7. 037	7. 023	30. 951	1. 00	10.71
	ATOM	1180	CD2	LEU	184	7. 548	7. 708	28.608	1. 00	16.62
	ATOM	1181	C	LEU	184	6. 601	11. 894	29. 863	1. 00	13.07

- 185 -

	ATOM	1182	0	LEU	184	6. 041	12. 311	28. 855	1. 00 13. 90
	ATOM	1183	N	LEU	185		12. 436		
	ATOM	1184	CA	LEU	185		13. 600		
	ATOM	1185	CB	LEU	185	5. 524	13. 997	32. 729	1. 00 13. 27
5	ATOM	1186	CG	LEU	185	4. 630	15. 191	33. 080	1. 00 11. 52
	ATOM	1187	CD1	LEU	185	3. 256	14. 936	32. 515	1. 00 10. 60
	ATOM	1188	CD2	LEU	185	4. 553	15. 395	34. 600	1. 00 12. 16
	ATOM	1189	С	LEU	185	6. 077	14. 788	30. 419	1. 00 12. 48
	ATOM	1190	0	LEU	185	5. 289	15. 488	29. 784	1. 00 9. 22
10	ATOM	1191	N	ARG	186	7. 388	15. 020	30. 428	1. 00 13. 24
	ATOM	1192	CA	ARG	186	7. 946	16. 123	29. 661	1. 00 14. 83
	ATOM	1193	CB	ARG	186	9. 478	16. 135	29. 727	1. 00 14. 69
	ATOM	1194	CG	ARG	186	10. 112	17. 274	30. 526	1. 00 18. 47
	ATOM	1195	CD	ARG	186	11. 633	17. 063	30. 663	1. 00 25. 71
15	ATOM	1196	NE	ARG	186	12. 325	18.069	31. 484	1. 00 37. 62
	ATOM	1197	CZ	ARG	186	12. 048	18. 357	32. 764	1. 00 42. 54
	ATOM	1198	NH1	ARG	186	11.070	17. 721	33. 407	1. 00 43. 86
	ATOM	1199	NH2	ARG	186	12. 762	19. 277	33. 414	1.00 39.97
	ATOM	1200	C	ARG	186	7. 510	15. 968	28. 220	1.00 16.38
20	ATOM	1201	0	ARG	186	6. 857	16.851	27. 673	1. 00 17. 00
	ATOM	1202	N	ASP	187	7. 850	14. 832	27. 616	1. 00 19. 34
	ATOM	1203	CA	ASP	187	7. 519	14. 579	26. 214	1.00 24.04
	ATOM	1204	CB	ASP	187	7. 799	13. 123	25. 822	1. 00 30. 35
	ATOM	1205	CG	ASP	187	9. 226	12. 696	26. 123	1. 00 37. 33
25	ATOM	1206	OD1	ASP	187	9. 479	12. 216	27. 251	1. 00 40. 99
	ATOM	1207	0D2	ASP	187	10.096	12. 845	25. 234	1. 00 40. 65
	ATOM	1208	С	ASP	187	6.069	14. 889	25. 912	1. 00 23. 78
	ATOM	1209	0	ASP	187	5. 756	15. 541	24. 909	1. 00 25. 37
	ATOM	1210	N	ALA	188	5. 185	14. 413	26. 780	1. 00 20. 98

- 186 -

	ATOM	1211	CA	ALA	188	3. 761	14. 634	26. 603	1. 00 17. 11
	ATOM	1212	CB	AL/	188	2. 996	13. 943	27. 722	1. 00 19. 70
	ATOM	1213	C	ALA	188	3. 475	16. 130	26. 600	1. 00 14. 48
	ATOM	1214	0	ALA	188	2. 911	16.660	25. 646	1. 00 11. 69
5	ATOM	1215	N	ILE	189	3. 873	16. 801	27. 677	1. 00 13. 32
	ATOM	1216	CA	ILE	189	3. 682	18. 239	27. 817	1. 00 13. 84
	ATOM	1217	CB	ILE	189	4. 422	18. 754	29. 056	1. 00 12. 34
	ATOM	1218	CG	2 ILE	189	4. 368	20. 266	29. 118	1. 00 13. 98
	ATOM	1219	CG	1 ILE	189	3, 776	18. 153	30. 302	1. 00 14. 10
10	ATOM	1220	CD	1 ILE	189	4. 455	18. 530	31. 595	1. 00 14. 04
	ATOM	1221	C	ILE	189	4. 223	18. 928	26. 575	1. 00 15. 60
	ATOM	1222	0	ILE	189	3. 634	19. 888	26. 058	1. 00 14. 87
	ATOM	1223	N	LYS	190	5. 351	18. 408	26. 103	1. 00 16. 13
	ATOM	1224	CA	LYS	190	6. 010	18. 913	24. 918	1. 00 16. 34
15	ATOM	1225	CB	LYS	190	7. 361	18. 211	24. 737	1. 00 18. 43
	ATOM	1226	CG	LYS	190	8. 503	19. 081	24. 175	1. 00 24. 32
	ATOM	1227	CD	LYS	190	8. 539	19. 154	22. 631	1. 00 28. 76
	ATOM	1228	CE	LYS	190	9. 830	19. 841	22. 125	1. 00 30. 07
	ATOM	1229	NZ	LYS	190	10.060	19. 788	20.642	1. 00 27. 01
20	ATOM	1230	C	LYS	190	5. 101	18. 652	23. 718	1. 00 16. 41
	ATOM	1231	0	LYS	190	4. 786	19. 575	22. 981	1. 00 17. 80
	ATOM	1232	N	ARG	191	4. 656	17. 413	23. 529	1. 00 14. 92
	ATOM	1233	CA	ARG	191	3. 798	17. 107	22. 386	1. 00 15. 62
	ATOM	1234	CB	ARG	191	3. 241	15. 684	22. 491	1. 00 19. 10
25	ATOM	1235	CG	ARG	191	4. 071	14. 622	21. 775	1. 00 20. 57
	ATOM	1236	CD	ARG	191	3. 634	13. 221	22. 156	1. 00 19. 26
	ATOM	1237	NE	ARG	191	3. 950	12. 925	23. 547	1. 00 23. 45
	ATOM	1238	cz	ARG	191	3. 732	11. 747	24. 119	1. 00 28. 59
	ATOM	1239	NH1	ARG	191	3. 194	10. 767	23. 406	1. 00 32. 19

PCT/JP03/06054

WO 03/097824 - 187 -ATOM 1241 C ARG 191 2.652 18.086 22.207 1.00 15.44

						B. 00B	10. 000	44. 401	1. 00 10. 4
	ATOM	1242	0	ARG	G 191	2. 383	18. 513	21. 098	1. 00 15. 17
	ATOM	1243	N	ARG	192	1. 980	18. 441	23. 295	1. 00 17. 09
5	ATOM	1244	CA	ARG	192	0. 853	19. 372	23. 253	1. 00 19. 02
	ATOM	1245	CB	ARG	192	0. 588	19. 885	24. 647	1. 00 17. 94
	ATOM	1246	CG	ARG	192	0. 579	18. 785	25. 635	1. 00 20. 35
	ATOM	1247	CD	ARG	192	-0. 812	18. 328	25. 855	1. 00 22. 03
	ATOM	1248	NE	ARG	192	-1. 565	19. 332	26. 586	1. 00 27. 30
10	ATOM	1249	CZ	ARG	192	-2. 824	19. 164	26. 954	1. 00 32. 13
	ATOM	1250	NH	ARG	192	-3. 437	18. 028	26. 639	1. 00 34. 51
	ATOM	1251	NH2	2 ARG	192	-3. 465	20. 115	27. 631	1. 00 33. 64
	ATOM	1252	C	ARG	192	1. 010	20. 572	22. 321	1. 00 22. 21
	ATOM	1253	0	ARG	192	0. 017	21. 184	21. 937	1.00 24.03
15	ATOM	1254	N	GLY	193	2. 245	20. 923	21. 975	1. 00 24. 28
	ATOM	1255	CA	GLY	193	2. 472	22. 052	21. 088	1. 00 25. 59
	ATOM	1256	C	GLY	193	2. 351	23. 417	21.750	1. 00 27. 55
	ATOM	1257	0	GLY	193	2. 734	24. 437	21. 163	1. 00 26. 53
	ATOM	1258	N	ASP	194	1. 836	23. 434	22. 981	1. 00 28. 09
20	ATOM	1259	CA	ASP	194	1. 634	24. 678	23. 725	1. 00 28. 74
	ATOM	1260	CB	ASP	194	0. 349	24. 597	24. 548	1. 00 32. 11
	ATOM	1261	CG	ASP	194	-0. 873	24. 329	23. 692	1.00 36.60
	ATOM	1262	0D1	ASP	194	-1. 053	25. 025	22.668	1. 00 38. 48
	ATOM	1263	OD2	ASP	194	-1. 659	23. 424	24.046	1. 00 40. 23
25	ATOM	1264	C	ASP	194	2. 774	25. 089	24. 641	1. 00 27. 04
	ATOM	1265	0	ASP	194	3. 815	24. 439	24. 689	1. 00 26. 55
	ATOM	1266	N	PHE	195	2. 565	26. 181	25. 370	1. 00 25. 47
	ATOM	1267	CA	PHE	195	3. 582	26. 691	26. 274	1. 00 25. 41
	ATOM	1268	CB	PHE	195	3. 083	27. 932	27. 016	1. 00 27. 05

- 188 -

	ATOM	1269	CG	PHE	195	3. 156	29. 192	26. 201	1. 00 28. 43
	ATOM	1270	CD1	PHE	195	2. 032	29. 686	25. 550	1. 00 31. 56
	ATOM	1271	CD2	PHE	195	4. 353	29. 880	26.067	1. 00 29. 11
	ATOM	1272	CE1	PHE	195	2. 097	30. 852	24. 771	1. 00 30. 45
5	ATOM	1273	CE2	PHE	195	4. 426	31. 046	25. 290	1. 00 30. 62
	ATOM	1274	CZ	PHE	195	3. 294	31. 528	24. 644	1. 00 29. 47
	ATOM	1275	C	PHE	195	4. 024	25. 642	27. 267	1. 00 24. 15
	ATOM	1276	0	PHE	195	3. 214	25. 083	28. 000	1. 00 25. 61
	ATOM	1277	N	GLU	196	5. 324	25. 385	27. 280	1. 00 22. 49
10	ATOM	1278	CA	GLU	196	5. 897	24. 394	28. 166	1. 00 23. 12
	ATOM	1279	CB	GLU	196	7. 117	23. 754	27. 499	1. 00 21. 72
	ATOM	1280	CG	GLU	196	6. 942	23. 418	26. 020	1. 00 22. 22
	ATOM	1281	CD	GLU	196	8. 121	22. 629	25. 477	1. 00 24. 60
	ATOM	1282	0E1	GLU	196	8. 336	22. 601	24. 241	1. 00 23. 54
15	ATOM	1283	0E2	GLU	196	8. 839	22. 026	26. 301	1. 00 26. 49
	ATOM	1284	C	GLU	196	6. 314	25.066	29. 466	1. 00 24. 25
	ATOM	1285	0	GLU	196	7. 467	24. 966	29. 882	1. 00 26. 05
	ATOM	1286	N	MET	197	5. 376	25. 729	30. 126	1. 00 25. 12
	ATOM	1287	CA	MET	197	5. 711	26. 444	31.352	1. 00 27. 52
20	ATOM	1288	CB	MET	197	5. 546	27. 942	31.096	1. 00 29. 51
	ATOM	1289	CG	MET	197	6.758	28. 782	31.466	1. 00 33. 61
	ATOM	1290	SD	MET	197	7. 208	29. 992	30. 181	1. 00 35. 72
	ATOM	1291	CE	MET	197	5. 967	31. 256	30. 466	1. 00 37. 45
	ATOM	1292	C	MET	197	4. 906	26.045	32.583	1. 00 27. 47
25	ATOM	1293	0	MET	197	4. 921	26. 749	33. 597	1. 00 25. 63
	ATOM	1294	N	ASP	198	4. 230	24. 903	32. 502	1. 00 27. 57
	ATOM	1295	CA	ASP	198	3. 384	24. 430	33. 598	1. 00 26. 12
	ATOM	1296	CB	ASP	198	2. 462	23. 298	33. 110	1. 00 29. 89
	ATOM	1297	CG	ASP	198	1. 326	23. 796	32. 232	1. 00 31. 76

- 189 -

						10.	7		
	ATOM	1298	OD:	l ASF	198	0. 736	24. 840	32. 590	1. 00 30. 59
	ATOM	1299	OD2	2 ASP	198	1. 023	23. 135	31. 203	1. 00 32. 71
	ATOM	1300	C	ASP	198	4. 110	23. 959	34. 853	1. 00 22. 26
	ATOM	1301	0	ASP	198	3. 960	24. 551	35. 923	1. 00 18. 00
5	ATOM	1302	N	VAL	199	4. 873	22. 878	34. 717	1.00 19.81
	ATOM	1303	CA	VAL	199	5. 605	22. 301	35. 841	1. 00 18. 78
	ATOM	1304	CB	VAL	199	5. 133	20. 852	36. 115	1. 00 16. 48
	ATOM	1305	CG1	VAL	199	3. 736	20. 859	36. 696	1. 00 19. 07
	ATOM	1306	CG2	VAL	199	5. 150	20. 042	34. 823	1. 00 10. 86
10	ATOM	1307	C	VAL	199	7. 121	22. 267	35. 648	1. 00 20. 19
	ATOM	1308	0	VAL	199	7. 665	22. 752	34. 655	1. 00 21. 16
	ATOM	1309	N	VAL	200	7. 798	21. 695	36. 629	1. 00 20. 40
	ATOM	1310	CA	VAL	200	9. 237	21. 547	36. 594	1. 00 22. 39
	ATOM	1311	CB	VAL	200	9. 975	22. 834	37. 007	1. 00 24. 84
15	ATOM	1312	CG1	VAL	200	9. 331	23. 406	38. 255	1. 00 31. 58
	ATOM	1313	CG2	VAL	200	11. 465	22. 539	37. 266	1. 00 21. 54
	ATOM	1314	С	VAL	200	9. 502	20. 457	37. 598	1. 00 23. 06
	ATOM	1315	0	VAL	200	9. 039	20. 501	38. 755	1. 00 22. 26
	ATOM	1316	N	ALA	201	10. 229	19. 460	37. 120	1. 00 23. 03
20	ATOM	1317	CA	ALA	201	10. 569	18. 300	37. 907	1. 00 22. 74
	ATOM	1318	CB	ALA	201	11. 460	17. 418	37. 112	1. 00 23. 66
	ATOM	1319	C	ALA	201	11. 236	18. 646	39. 209	1. 00 24. 47
	ATOM	1320	0	ALA	201	12. 045	19. 564	39. 285	1. 00 27. 55
	ATOM	1321	N	MET	202	10. 872	17. 914	40. 244	1. 00 25. 96
25	ATOM	1322	CA	MET	202	11. 479	18. 106	41. 547	1. 00 27. 52
	ATOM	1323	CB	MET	202	10.720	19. 124	42. 386	1. 00 27. 45
	ATOM	1324	CG	MET	202	11. 516	19. 580	43. 597	1. 00 27. 56
	ATOM	1325	SD	MET	202	11. 967	18. 244	44. 740	1. 00 28. 85
	ATOM	1326	CE	MET	202	10. 732	18. 486	46. 045	1. 00 23. 74

- 190 -

	ATOM	1327	C	MET	202	11. 436	16. 752	42. 219	1. 00 28. 79
	ATOM	1328	0	MET	202	10. 377	16. 290	42. 653	1. 00 25. 51
	ATOM	1329	N	VAL	203	12.600	16. 118	42. 293	1. 00 29. 76
	ATOM	1330	CA	VAL	203	12. 695	14. 802	42. 883	1. 00 28. 97
5	ATOM	1331	CB	VAL	203	12. 943	13. 727	41. 813	1. 00 25. 86
	ATOM	1332	CG1	VAL	203	11. 936	13. 870	40. 681	1. 00 22. 02
	ATOM	1333	CG2	VAL	203	14. 361	13. 831	41. 310	1. 00 23. 30
	ATOM	1334	C	VAL	203	13. 815	14. 713	43. 890	1. 00 31. 36
	ATOM	1335	0	VAL	203	13. 934	13. 713	44. 585	1. 00 34. 93
10	ATOM	1336	N	ASN	204	14. 638	15. 745	43. 987	1. 00 32. 12
	ATOM	1337	CA	ASN	204	15. 741	15. 674	44. 929	1. 00 33. 37
	ATOM	1338	CB	ASN	204	16.667	16. 867	44. 736	1. 00 36. 19
	ATOM	1339	CG	ASN	204	18.052	16. 601	45. 260	1. 00 39. 20
	ATOM	1340	0D1	ASN	204	18. 847	15. 905	44. 621	1. 00 41. 71
15	ATOM	1341	ND2	ASN	204	18. 349	17. 133	46. 440	1. 00 39. 72
	ATOM	1342	C	ASN	204	15. 220	15. 625	46. 363	1. 00 32. 02
	ATOM	1343	0	ASN	204	14. 382	16. 439	46. 751	1. 00 28. 87
	ATOM	1344	N	ASP	205	15. 705	14.665	47. 149	1. 00 31. 97
	ATOM	1345	CA	ASP	205	15. 245	14. 538	48. 541	1. 00 33. 94
20	ATOM	1346	CB	ASP	205	15. 792	13. 266	49. 197	1. 00 32. 38
	ATOM	1347	CG	ASP	205	15. 163	12. 017	48. 642	1. 00 31. 18
	ATOM	1348	0D1	ASP	205	15. 386	10. 935	49. 217	1. 00 31. 15
	ATOM	1349	0D2	ASP	205	14. 450	12. 118	47. 625	1. 00 28. 42
	ATOM	13 50	C	ASP	205	15. 626	15. 722	49. 414	1. 00 33. 64
25	ATOM	1351	0	ASP	205	14. 909	16. 080	50. 356	1. 00 33. 83
	ATOM	1352	N	THR	206	16. 770	16. 313	49. 092	1. 00 31. 15
	ATOM	1353	CA	THR	206	17. 290	17. 449	49. 826	1. 00 25. 09
	ATOM	1354	CB	THR	206	18.646	17. 825	49. 278	1. 00 25. 45
	ATOM	1355	0G1	THR	206	19. 423	16. 630	49. 123	1. 00 24. 81

- 191 -

	ATOM	1356	CG2	THR	206	19. 350	18. 769	50. 232	1. 00	26. 26
	ATOM	1357	C	THR	206	16. 347	18. 634	49. 734	1. 00	20. 16
	ATOM	1358	0	THR	206	15. 923	19. 184	50. 755	1. 00	17. 86
	ATOM	1359	N	VAL	207	16.009	19.016	48. 510	1. 00	12. 86
5	ATOM	1360	CA	VAL	207	15. 106	20. 133	48. 308	1. 00	9. 27
	ATOM	1361	CB	VAL	207	14. 582	20. 164	46.867	1. 00	5. 21
	ATOM	1362	CG1	VAL	207	13. 555	21. 243	46.720	1. 00	1. 26
	ATOM	1363	CG2	VAL	207	15.714	20. 397	45.910	1. 00	4. 57
	ATOM	1364	C	VAL	207	13. 917	19. 992	49. 255	1. 00	11.72
10	ATOM	1365	0	VAL	207	13. 584	20. 909	50.016	1. 00	9. 00
	ATOM	1366	N	ALA	208	13. 291	18. 819	49. 212	1. 00	14.04
	ATOM	1367	CA	ALA	208	12. 122	18. 523	50.041	1.00	14.67
	ATOM	1368	CB	ALA	208	11. 598	17. 148	49. 702	1.00	14.60
	ATOM	1369	C	ALA	208	12. 422	18. 615	51. 537	1.00	15.41
15	ATOM	1370	0	ALA	208	11.514	18. 770	52. 362	1. 00	14. 28
	ATOM	1371	N	THR	209	13. 699	18. 498	51.879	1.00	13.94
	ATOM	1372	CA	THR	209	14. 123	18. 591	53. 261	1. 00	13.05
	ATOM	1373	CB	THR	209	15. 567	18. 237	53. 423	1. 00	11.66
	ATOM	1374	0G1	THR	209	15.887	17. 177	52. 525	1.00	12.70
20	ATOM	1375	CG2	THR	209	15. 833	17. 807	54. 846	1. 00	7. 92
	ATOM	1376	C	THR	209	14. 007	20. 041	53. 626	1. 00	14. 97
	ATOM	1377	0	THR	209	13. 554	20. 401	54.714	1.00	14.80
	ATOM	1378	N	MET	210	14. 447	20. 885	52. 707	1. 00	15.34
	ATOM	1379	CA	MET	210	14. 363	22. 298	52. 965	1.00	16.36
25	ATOM	1380	CB	MET	210	15.043	23. 091	51.845	1. 00	19.89
	ATOM	1381	CG	MET	210	15. 119	24. 592	52. 103	1. 00	23.82
	ATOM	1382	SD	MET	210	15. 258	25. 542	50. 561	1. 00	29. 33
	ATOM	1383	CE	MET	210	13. 547	25. 995	50. 325	1. 00	27.80
	ATOM	1384	С	MET	210	12.864	22. 592	53. 031	1. 00	14. 33

- 192 -

						10	_			
	ATOM	1385	0	MET	210	12. 332	22. 896	54. 102	1. 00	15. 04
	ATOM	1386	N	ILE	211	12. 180	22. 452	51. 898	1. 00	11. 15
	ATOM	1387	CA	ILE	211	10. 743	22. 708	51. 831	1. 00	9. 09
	ATOM	1388	CB	ILE	211	10. 157	22. 122	50. 566	1. 00	5. 39
5	ATOM	1389	CG2	ILE	211	8. 748	22. 693	50. 337	1. 00	3. 22
	ATOM	1390	CG1	ILE	211	11. 111	22. 412	49. 412	1. 00	2. 02
	ATOM	1391	CD1	ILE	211	10. 580	22. 065	48. 067	1. 00	1. 00
	ATOM	1392	C	ILE	211	9. 987	22. 129	53.022	1. 00	10. 92
	ATOM	1393	0	ILE	211	9. 117	22. 781	53. 605	1. 00	7. 92
10	ATOM	1394	N	SER	212	10. 319	20. 891	53. 364	1. 00	12.74
	ATOM	1395	CA	SER	212	9. 701	20. 254	54. 489	1. 00	15. 18
	ATOM	1396	CB	SER	212	10. 300	18. 880	54. 704	1. 00	12. 84
	ATOM	1397	0G	SER	212	10. 216	18. 533	56.078	1. 00	19. 56
	ATOM	1398	C	SER	212	9. 918	21. 101	55. 736	1. 00	19. 90
15	ATOM	1399	0	SER	212	8. 969	21. 432	56. 435	1. 00	21. 30
	ATOM	1400	N	CYS	213	11. 161	21. 476	56. 016	1.00	24. 22
	ATOM	1401	CA	CYS	213	11. 432	22. 259	57. 219	1.00	28. 52
	ATOM	1402	CB	CYS	213	12. 934	22. 367	57. 464	1. 00	30. 65
	ATOM	1403	SG	CYS	213	13. 713	20. 766	57. 805	1.00	39. 09
20	ATOM	1404	C	CYS	213	10.822	23. 637	57. 168	1.00	29. 40
	ATOM	1405	0	CYS	213	10. 366	24. 150	58. 186	1.00	30. 64
	ATOM	1406	N	TYR	214	10. 816	24. 229	55. 981	1.00	29. 50
	ATOM	1407	CA	TYR	214	10. 243	25. 548	55. 788	1.00	29. 27
	ATOM	1408	CB	TYR	214	10. 168	25. 846	54. 292	1.00	31. 33
25	ATOM	1409	CG	TYR	214	9. 637	27. 212	53. 985	1.00	33. 15
	ATOM	1410	CD1	TYR	214	10. 182	28. 328	54. 594	1.00	36. 28
	ATOM	1411	CE1	TYR	214	9. 694	29. 592	54. 341	1.00	39. 73
	ATOM	1412	CD2	TYR	214	8. 582	27. 390	53. 100	1. 00	35. 23
	ATOM	1413	CE2	TYR	214	8. 080	28. 656	52. 833	1. 00	39. 38

PCT/JP03/06054

WO 03/097824 - 193 -ATOM 1414 CZ TYR 214 8. 644 29. 758 53. 463 1.00 41.11 ATOM TYR 214 1415 0H 8. 168 31.034 53. 241 1.00 43.33 TYR 214 ATOM 1416 C 8,848 25.649 56. 429 1.00 28.57 ATOM 1417 0 TYR 214 8.561 26. 578 57. 185 1.00 27.99 ATOM 1418 TYR 215 7.986 N 24, 685 56, 136 1.00 27.91 ATOM 1419 CA TYR 215 6.642 24.685 56.691 1.00 27.12 ATOM 1420 TYR 215 CB 5. 922 23. 403 56. 309 1.00 21.95 ATOM 1421 TYR 215 5.723 23. 235 54. 829 1.00 18.06 ATOM 1422 CD1 TYR 215 6.064 22.048 54. 197 1.00 17.25 ATOM 1423 CE1 TYR 215 5.835 21.867 52.841 1. 00 17. 47 ATOM 1424 CD2 TYR 215 5. 152 24. 246 54.065 1.00 16.51 4.917 ATOM 1425 CE2 TYR 215 24.075 52. 711 1.00 15.51 ATOM 1426 5.257 CZ TYR 215 22, 882 52. 109 1.00 17.82 ATOM 1427 0H TYR 215 4.979 22.681 50. 785 1.00 20.98 ATOM 1428 C TYR 215 6.658 24, 810 58, 201 1. 00 30. 19 ATOM 25. 438 1429 0 TYR 215 5.780 58. 778 1.00 31.10 ATOM 1430 N **GLU 216** 7.640 24. 197 58, 850 1. 00 35. 15 ATOM 1431 CA **GLU 216** 7.725 24. 278 60.306 1.00 41.19 ATOM 1432 CB GLU 216 8.560 23, 132 60, 876 1. 00 44. 10 ATOM 7.877 1433 CG **GLU 216** 21.767 60.887 1.00 52.19 ATOM 1434 CD GLU 216 6.579 21, 749 61.685 1.00 54.93 0E1 GLU 216 ATOM 1435 6.491 22.481 62.702 1.00 55.44 ATOM 1436 0E2 GLU 216 5.658 20.988 61, 296 1, 00 56, 26 ATOM 1437 C **GLU 216** 8.369 25.591 60.707 1.00 43.33 ATOM 1438 GLU 216 7.787 0 26. 385 61.449 1.00 44.64

9.583

10.357

11.734

12.667

25. 802

27.007

26.623

27.806

60, 209

60. 489

61.033

61. 136

1.00 44.35

1.00 44.65

1.00 47.71

1.00 50.46

5

10

15

20

25

ATOM

ATOM

ATOM

ATOM

1439 N

1440 CA ASP 217

1441 CB ASP 217

1442 CG ASP 217

ASP 217

- 194 -

ATOM 1443 OD1 ASP 217 13. 252 28. 205 60.106 1, 00 51, 95 ATOM OD2 ASP 217 1444 12. 804 28. 346 62.252 1.00 54.06 ATOM 1445 C ASP 217 10, 514 27, 820 59, 215 1, 00 43, 04 ATOM 1446 0 ASP 217 11. 372 27, 527 58.385 1, 00 44, 60 5 ATOM 1447 N HIS 218 9, 691 28. 848 59.059 1.00 41.00 ATOM 1448 CA HIS 218 9.750 29, 671 57, 862 1, 00 39, 42 ATOM 1449 CB HIS 218 8. 569 30.630 57.826 1.00 40.46 ATOM 1450 CG HIS 218 7. 261 29, 960 58, 083 1, 00 44, 54 ATOM 1451 CD2 HIS 218 6.652 28.930 57. 450 1.00 45.30 10 ATOM 1452 ND1 HIS 218 6.449 30, 290 59. 147 1, 00 47, 09 ATOM: 1453 CE1 HIS 218 5. 397 29.492 59. 161 1.00 45.61 ATOM 1454 NE2 HIS 218 5.497 28.65758. 142 1.00 46.44 ATOM 1455 С HIS 218 11.036 30.452 57. 759 1.00 37.69 ATOM 1456 0 HIS 218 11. 120 31.381 56.974 1.00 37.21 ATOM 15 1457 N GLN 219 12.041 30.076 58. 537 1.00 37.38 13. 312 ATOM 1458 CA GLN 219 30, 779 58, 494 1. 00 38. 18 ATOM 1459 GLN 219 CB 13. 727 31.186 59.910 1.00 41.72 ATOM 1460 CG GLN 219 14.577 32, 451 1.00 48.69 60.011 ATOM 1461 CD GLN 219 13.836 33. 718 59. 546 1.00 55.14 20 ATOM 1462 0E1 GLN 219 12.665 33.945 59, 908 1.00 55.89 ATOM 1463 NE2 GLN 219 14.523 34. 555 58. 751 1.00 55.41 ATOM 1464 C GLN 219 14. 348 29, 846 57.886 1, 00 36, 85 ATOM 1465 GLN 219 0 15. 508 30. 200 57. 735 1.00 37.28 ATOM 1466 N CYS 220 13.912 28, 647 57, 535 1.00 36.02 ATOM 25 1467 CA CYS 220 14.790 27.646 56. 950 1.00 37.10 ATOM 1468 CB CYS 220 14. 103 26, 286 57, 043 1.00 38.40 ATOM CYS 220 1469 SG 15.067 24.916 56. 396 1. 00 44. 24 ATOM 1470 C CYS 220 15. 106 27.970 55. 486 1.00 37.48 ATOM 1471 0 CYS 220 14. 193 28.081 54. 672 1, 00 40, 52

- 195 -

	ATOM	1472	N	GLU	221	16. 382	28. 123	55. 137	1. 00	36. 17
	ATOM	1473	CA	GLU	221	16.742	28. 428	53. 746	1.00	35. 58
	ATOM	1474	CB	GLU	221	17. 116	29. 911	53. 591	1.00	38. 60
	ATOM	1475	CG	GLU	221	15. 921	30. 878	53.645	1.00	42. 48
5	ATOM	1476	CD	GLU	221	16. 325	32. 347	53.760	1.00	42.62
	ATOM	1477	0E1	GLU	221	17. 120	32. 815	52. 909	1.00	42.89
	ATOM	1478	0E2	GLU	221	15.835	33. 024	54.700	1.00	40.36
	ATOM	1479	C	GLU	221	17.896	27. 566	53. 260	1.00	33. 89
	ATOM	1480	0	GLU	221	18. 498	27. 826	52. 217	1.00	32. 29
10	ATOM	1481	N	VAL	222	18. 199	26. 525	54.018	1.00	32. 57
	ATOM	1482	CA	VAL	222	19. 286	25. 654	53.645	1.00	31.01
	ATOM	1483	CB	VAL	222	20. 548	26.041	54. 376	1.00	29. 59
	ATOM	1484	CG1	VAL	222	21. 673	25. 102	53. 995	1.00	29.07
	ATOM	1485	CG2	VAL	222	20.895	27. 465	54.043	1. 00	30.00
15	ATOM	1486	C	VAL	222	18. 983	24. 214	53. 966	1. 00	31.75
	ATOM	1487	0	VAL	222	18.872	23.846	55. 132	1. 00	33.50
	ATOM	1488	N	GLY	223	18.858	23. 400	52. 925	1.00	31.02
	ATOM	1489	CA	GLY	223	18. 575	21. 994	53. 119	1.00	28. 49
	ATOM	1490	C	GLY	223	19. 847	21. 184	53. 026	1.00	26. 21
20	ATOM	1491	0	GLY	223	20. 757	21. 528	52. 267	1.00	25.39
	ATOM	1492	N	MET	224	19. 911	20. 098	53. 786	1. 00	24. 93
	ATOM	1493	CA	MET	224	21. 101	19. 267	53. 774	1.00	24.66
	ATOM	1494	CB	MET	224	22. 164	19. 958	54. 623	1. 00	26.07
	ATOM	1495	CG	MET	224	23. 584	19. 535	54. 358	1. 00	26. 25
25	ATOM	1496	SD	MET	224	24. 664	20. 375	55. 525	1. 00	28.76
	ATOM	1497	CE	MET	224	24. 493	19. 328	56. 939	1. 00	27. 46
	ATOM	1498	C	MET	224	20. 867	17. 819	54. 253	1. 00	23. 62
	ATOM	1499	0	MET	224	20. 243	17. 581	55. 294	1. 00	21.62
	ATOM	1500	N	ILE	225	21. 389	16. 867	53. 478	1. 00	21. 96

- 196 -

						10	· ·		
	ATOM	1501	CA	ILE	225	21. 265	15. 434	53. 764	1. 00 21. 80
	ATOM	1502	CB	ILE	225	20. 514	14. 706	52. 662	1. 00 23. 26
	ATOM	1503	CG	2 ILE	225	20. 389	13. 242	53. 026	1. 00 22. 57
	ATOM	1504	CG	1 ILE	225	19. 142	15. 332	52. 463	1. 00 26. 22
5	ATOM	1505	CD	1 ILE	225	18. 270	15. 229	53. 688	1. 00 30. 06
	ATOM	1506	C	ILE	225	22. 595	14. 702	53. 904	1. 00 21. 76
	ATOM	1507	0	ILE	225	23. 204	14. 299	52. 909	1. 00 20. 84
	ATOM	1508	N	VAL	226	23. 008	14. 492	55. 146	1. 00 22. 14
	ATOM	1509	CA	VAL	226	24. 263	13. 824	55. 454	1. 00 22. 07
10	ATOM	1510	CB	VAL	226	25. 031	14. 613	56. 514	1. 00 22. 20
	ATOM	1511	CG	VAL	226	26. 321	13. 905	56. 872	1. 00 20. 57
	ATOM	1512	CG2	VAL.	226	25. 283	16. 016	56. 005	1. 00 22. 66
	ATOM	1513	C	VAL	226	24. 060	12. 411	55. 972	1. 00 22. 96
	ATOM	1514	0	VAL	226	24. 032	12. 172	57. 183	1. 00 23. 79
15	ATOM	1515	N	GLY	227	23. 924	11. 470	55. 054	1. 00 23. 08
	ATOM	1516	CA	GLY	227	23. 738	10.094	55. 459	1. 00 25. 20
	ATOM	1517	C	GLY	227	24. 623	9. 207	54. 621	1. 00 25. 79
	ATOM	1518	0	GLY	227	25. 820	9. 447	54. 501	1. 00 26. 18
	ATOM	1519	N	THR	228	24. 039	8. 181	54. 026	1. 00 27. 28
20	ATOM	1520	CA	THR	228	24. 822	7. 291	53. 200	1. 00 29. 44
	ATOM	1521	CB	THR	228	23. 900	6. 356	52. 413	1.00 28.91
	ATOM	1522	0G1	THR	228	24. 691	5. 441	51.650	1. 00 27. 54
	ATOM	1523	CG2	THR	228	22. 983	7. 159	51. 496	1.00 30.69
	ATOM	1524	C	THR	228	25. 705	8. 139	52. 267	1. 00 30. 87
25	ATOM	1525	0	THR	228	26. 878	7. 834	52. 072	1. 00 32. 00
	ATOM	1526	N	GLY	229	25. 140	9. 216	51. 723	1. 00 31. 23
	ATOM	1527	CA	GLY	229	25. 888	10. 111	50. 855	1. 00 30. 25
	ATOM	1528	C	GLY	229	25. 716	11.501	51. 434	1. 00 32. 12
	ATOM	1 52 9	0	GLY	229	25. 139	11. 632	52. 518	1. 00 33. 23

- 197 -

	ATOM	1530	N	CYS	230	26. 208	12. 535	50. 749	1. 00 31. 95
	ATOM	1531	CA	CYS	230	26.057	13. 909	51. 247	1.00 31.05
	ATOM	1532	CB	CYS	230	27. 344	14. 417	51.891	1.00 31.11
	ATOM	1533	SG	CYS	230	27. 145	16.090	52. 562	1.00 40.64
5	ATOM	1534	C	CYS	230	25.650	14. 909	50. 183	1.00 29.04
	ATOM	1535	0	CYS	230	26. 202	14. 913	49. 087	1. 00 30. 85
	ATOM	1536	N	ASN	231	24. 701	15. 775	50. 513	1. 00 26. 12
	ATOM	1537	CA	ASN	231	24. 267	16. 773	49. 554	1. 00 26. 17
	ATOM	1538	CB	ASN	231	23. 380	16. 130	48. 505	1.00 24.13
10	ATOM	1539	CG	ASN	231	23. 146	17. 030	47. 341	1.00 24.98
	ATOM	1540	0D1	ASN	231	22. 505	18.064	47.463	1.00 24.73
	ATOM	1541	ND2	ASN	231	23. 684	16.656	46. 196	1.00 29.51
	ATOM	1542	C	ASN	231	23. 529	17. 927	50. 213	1. 00 27. 77
	ATOM	1543	0	ASN	231	22. 929	17. 757	51. 275	1. 00 28. 70
15	ATOM	1544	N	ALA	232	23. 569	19. 103	49. 587	1. 00 27. 44
	ATOM	1545	CA	ALA	232	22. 890	20. 258	50. 158	1.00 26.70
	ATOM	1546	CB	ALA	232	23.806	20. 963	51. 113	1.00 26.89
	ATOM	1547	C	ALA	232	22. 366	21. 245	49. 144	1.00 26.61
	ATOM	1548	0	ALA	232	22. 693	21. 184	47.963	1. 00 26. 44
20	ATOM	1549	N	CYS	233	21. 537	22. 161	49. 617	1.00 27.04
	ATOM	1550	CA	CYS	233	20. 976	23. 172	48. 743	1.00 31.21
	ATOM	1551	CB	CYS	233	19.676	22. 666	48. 127	1. 00 31. 60
	ATOM	1552	SG	CYS	233	18. 376	22. 446	49. 348	1.00 35.31
	ATOM	1553	C	CYS	233	20.708	24. 408	49. 589	1.00 31.98
25	ATOM	1554	0	CYS	233	20. 596	24. 303	50.809	1. 00 32. 62
	ATOM	1555	N	TYR	234	20.621	25. 572	48. 949	1. 00 30. 70
	ATOM	1556	CA	TYR	234	20. 366	26. 822	49.660	1. 00 30. 60
	ATOM	1557	CB	TYR	234	21. 684	27. 524	50.026	1.00 29.53
	ATOM	1558	CG	TYR	234	22. 464	28. 011	48. 829	1. 00 27. 41

- 198 -

						100				
	ATOM	1559	CD1	TYR	234	22. 363	29. 327	48. 393	1. 00 25. 56	j
	ATOM	1560	CE1	TYR	234	22. 981	29. 739	47. 217	1. 00 25. 47	ľ
	ATOM	1561	CD2	TYR	234	23. 218	27. 121	48.061	1.00 28.10)
	ATOM	1562	CE2	TYR	234	23. 838	27. 524	46. 882	1.00 26.39)
5	ATOM	1563	CZ	TYR	234	23. 707	28. 830	46. 462	1. 00 25. 77	,
	ATOM	1564	OH	TYR	234	24. 240	29. 201	45. 253	1.00 27.36	j
	ATOM	1565	C	TYR	234	19. 531	27. 742	48. 797	1.00 32.10)
	ATOM	1566	0	TYR	234	19. 211	27. 411	47. 657	1.00 32.79)
	ATOM	1567	N	MET	235	19. 184	28. 897	49. 357	1.00 34.08	ò
10	ATOM	1568	CA	MET	235	18. 380	29. 908	48. 679	1.00 34.57	,
	ATOM	1569	CB	MET	235	17. 492	30.617	49. 697	1.00 34.74	Į
	ATOM	1570	CG	MET	235	16. 489	29. 699	50. 305	1.00 34.74	Į
	ATOM	1571	SD	MET	235	15. 575	28. 985	48. 959	1.00 35.81	
	ATOM	1572	CE	MET	235	14. 171	30.092	48. 917	1.00 34.50)
15	ATOM	1573	C	MET	235	19. 270	30. 933	48. 009	1.00 35.41	ı
	ATOM	1574	0	MET	235	19. 631	31. 930	48. 625	1.00 37.55	j
	ATOM	1575	N	GLU	236	19.626	30.702	46. 753	1.00 35.58	;
	ATOM	1576	CA	GLU	236	20. 487	31.643	46. 049	1.00 36.59)
	ATOM	1577	CB	GLU	236	21. 168	30. 949	44. 869	1.00 38.16	j
20	ATOM	1578	CG	GLU	236	22.051	31.861	44.051	1.00 39.44	į
	ATOM	1579	CD	GLU	236	23. 107	32. 542	44. 890	1.00 41.44	Į
	ATOM	1580	0E1	GLU	236	24. 116	31. 891	45. 240	1.00 40.65	j
	ATOM	1581	0E2	GLU	236	22. 918	33. 735	45. 208	1.00 42.03	j
	ATOM	1582	C	GLU	236	19. 679	32. 838	45. 564	1.00 37.02	ļ
25	ATOM	1583	0	GLU	236	18. 452	32. 810	45. 580	1.00 38.00)
	ATOM	1584	N	GLU	237	20. 354	33. 898	45. 149	1.00 38.75	į
	ATOM	1585	CA	GLU	237	19. 634	35.062	44. 668	1.00 41.18	ļ
	ATOM	1586	CB	GLU	237	20. 482	36. 317	44. 830	1.00 39.63	;
	ATOM	1587	CG	GLU	237	20. 912	36. 579	46. 258	1. 00 36. 10)

- 199 -

						100			
	ATOM	1588	CD	GLU	237	19.764	37. 022	47. 131	1. 00 35. 20
	ATOM	1589	0E1	GLU	237	19.056	37. 971	46. 726	1. 00 34. 49
	ATOM	1590	0E2	GLU	237	19. 574	36. 434	48. 221	1. 00 33. 72
	ATOM	1591	C	GLU	237	19. 307	34. 836	43. 206	1.00 43.71
5	ATOM	1592	0	GLU	237	20. 143	34. 351	42. 437	1. 00 43. 65
	ATOM	1593	N	MET	238	18. 078	35. 172	42. 832	1. 00 45. 47
	ATOM	1594	CA	MET	238	17. 625	35. 013	41. 457	1. 00 47. 13
	ATOM	1595	CB	MET	238	16. 275	35. 705	41. 275	1. 00 47. 10
	ATOM	1596	CG	MET	238	15.094	34. 875	41.721	1. 00 46. 82
10	ATOM	1597	SD	MET	238	14. 773	33. 548	40. 554	1. 00 45. 37
	ATOM	1598	CE	MET	238	13. 564	34. 332	39. 412	1. 00 46. 47
	ATOM	1599	C	MET	238	18. 629	35. 589	40. 466	1. 00 48. 34
	ATOM	1600	0	MET	238	18.814	35.061	39. 371	1. 00 49. 97
	ATOM	1601	N	GLN	239	19. 280	36. 672	40. 868	1. 00 48. 44
15	ATOM	1602	CA	GLN	239	20. 252	37. 344	40. 026	1. 00 49. 76
	ATOM	1603	CB	GLN	239	20. 398	38. 794	40. 491	1. 00 54. 00
	ATOM	1604	CG	GLN	239	20. 375	38. 963	42. 007	1. 00 58. 66
	ATOM	1605	CD	GLN	239	20.056	40. 394	42. 447	1. 00 63. 23
	ATOM	1606	0E1	GLN	239	19.660	40.624	43. 593	1.00 65.75
20	ATOM	1607	NE2	GLN	239	20. 233	41. 359	41. 540	1. 00 63. 23
	ATOM	1608	C	GLN	239	21.612	36. 665	40. 011	1. 00 48. 87
	ATOM	1609	0	GLN	239	22. 611	37. 295	39. 687	1. 00 49. 50
	ATOM	1610	N	ASN	240	21.656	35. 384	40. 354	1.00 47.67
	ATOM	1611	CA	ASN	240	22. 926	34.660	40. 379	1. 00 47. 01
25	ATOM	1612	CB	ASN	240	23. 301	34. 278	41. 809	1. 00 47. 66
	ATOM	1613	CG	ASN	240	24. 101	35. 347	42. 518	1. 00 45. 71
	ATOM	1614	OD 1	ASN	240	23. 553	36. 328	43. 021	1. 00 43. 88
	ATOM	1615	ND2	ASN	240	25. 414	35. 159	42. 561	1. 00 46. 64
	ATOM	1616	С	ASN	240	22.861	33. 393	39. 550	1. 00 46. 58

- 200 -

	ATOM	1617	- 0	ASN	240	23. 888	32. 840	39. 137	1. 00	46. 44
	ATOM	1618	N	VAL	241	21.643	32. 919	39. 340	1.00	44. 69
	ATOM	1619	CA	VAL	241	21. 426	31.717	38. 564	1. 00	43. 22
	ATOM	1620	CB	VAL	241	20. 103	31.056	38. 948	1. 00	43. 93
5	ATOM	1621	CG1	VAL	241	20.071	29. 643	38. 412	1. 00	44. 87
	ATOM	1622	CG2	VAL	241	19. 922	31.091	40. 456	1. 00	40. 98
	ATOM	1623	С	VAL	241	21. 358	32. 182	37. 126	1.00	41.83
	ATOM	1624	0	VAL	241	20. 351	32. 739	36. 685	1. 00	42. 56
	ATOM	1625	N	GLU	242	22. 433	31. 974	36. 386	1. 00	39. 79
10	ATOM	1626	CA	GLU	242	22. 426	32. 440	35. 017	1. 00	38. 35
	ATOM	1627	CB	GLU	242	23. 841	32. 438	34. 435	1. 00	41. 38
	ATOM	1628	CG	GLU	242	24. 874	33. 080	35. 345	1. 00	43. 21
	ATOM	1629	CD	GLU	242	26.062	33. 639	34. 588	1.00	46.65
	ATOM	1630	0E1	GLU	242	26.489	33.026	33. 581	1.00	46. 29
15	ATOM	1631	0E2	GLU	242	26. 581	34. 694	35. 014	1.00	49. 23
	ATOM	1632	C	GLU	242	21. 495	31.626	34. 144	1.00	34.71
	ATOM	1633	0	GLU	242	21. 135	32.057	33. 054	1. 00	33. 08
	ATOM	1634	N	LEU	243	21.085	30. 456	34. 612	1.00	31. 90
	ATOM	1635	CA	LEU	243	20. 194	29. 652	33. 794	1. 00	30.72
20	ATOM	1636	CB	LEU	243	20. 125	28. 214	34. 285	1. 00	29. 40
	ATOM	1637	CG	LEU	243	21. 244	27. 279	33. 833	1. 00	28. 38
	ATOM	1638	CD1	LEU	243	21. 264	27. 192	32. 321	1.00	23.84
	ATOM	1639	CD2	LEU	243	22. 570	27. 786	34. 381	1. 00	31. 28
	ATOM	1640	C	LEU	243	18. 799	30. 222	33. 763	1. 00	31. 18
25	ATOM	1641	0	LEU	243	18. 143	30. 153	32. 729	1. 00	32.86
	ATOM	1642	N	VAL	244	18. 350	30. 779	34. 887	1.00	30. 11
	ATOM	1643	CA	VAL	244	17. 011	31. 361	34. 979	1. 00	30. 23
	ATOM	1644	CB	VAL	244	16. 549	31. 527	36. 432	1. 00	31.77
	ATOM	1645	CG1	VAL	244	15. 085	31. 981	36. 444	1. 00	31. 84

- 201 -

	ATOM	1646	CG2	VAL	244	16. 748	30. 234	37. 213	1. 00	31. 59
	ATOM	1647	С	VAL	244	16. 955	32. 746	34. 361	1. 00	30. 94
	ATOM	1648	0	VAL	244	17. 919	33. 499	34. 458	1. 00	31. 77
	ATOM	1649	N	GLU	245	15. 819	33. 083	33. 753	1. 00	32. 44
5	ATOM	1650	CA	GLU	245	15. 625	34. 389	33. 125	1. 00	36. 05
	ATOM	1651	CB	GLU	245	14. 384	34. 384	32. 237	1. 00	35. 98
	ATOM	1652	CG	GLU	245	14. 542	35. 203	30. 981	1. 00	38. 72
	ATOM	1653	CD	GLU	245	15. 357	34. 449	29. 959	1. 00	41. 52
	ATOM	1654	0E1	GLU	245	15. 957	33. 428	30. 356	1. 00	40.02
10	ATOM	1655	0E2	GLU	245	15. 402	34.859	28.776	1.00	43. 26
	ATOM	1656	C	GLU	245	15. 453	35. 511	34. 149	1. 00	39. 49
	ATOM	1657	0	GLU	245	15. 995	36.603	33. 978	1.00	39. 69
	ATOM	1658	N	GLY	246	14.676	35. 239	35. 197	1. 00	42.62
	ATOM	1659	CA	GLY	246	14. 417	36. 228	36. 233	1.00	44. 14
15	ATOM	1660	C	GLY	246	15. 642	36.762	36. 953	1. 00	44. 54
	ATOM	1661	0	GLY	246	16.720	36. 163	36. 906	1. 00	43. 59
	ATOM	1662	N	ASP	247	15. 476	37. 896	37. 627	1. 00	44. 51
	ATOM	1663	CA	ASP	247	16. 582	38. 500	38. 345	1.00	45. 26
	ATOM	1664	CB	ASP	247	17. 179	39.654	37. 540	1.00	48.06
20	ATOM	1665	CG	ASP	247	18. 102	39. 173	36. 436	1. 00	52.60
	ATOM	1666	0D1	ASP	247	19.016	38. 376	36. 744	1.00	54.76
	ATOM	1667	0D2	ASP	247	17. 923	39. 584	35. 265	1.00	54. 1 5
	ATOM	1668	C	ASP	247	16. 213	38. 993	39. 720	1.00	44. 83
	ATOM	1669	0	ASP	247	17. 087	39. 306	40. 518	1. 00	45. 80
25	ATOM	1670	N	GLU	248	14. 930	39.064	40. 022	1. 00	44. 56
	ATOM	1671	CA	GLU	248	14.561	39. 546	41. 336	1. 00	45. 70
	ATOM	1672	CB	GLU	248	13.610	40. 727	41. 206	1. 00	50.66
	ATOM	1673	CG	GLU	248	12. 441	40. 458	40. 298	1. 00	60.84
	ATOM	1674	CD	GLU	248	11. 394	41. 556	40. 355	1. 00	67. 29

- 202 -

						202				
	ATOM	1675	0E1	GLU	248	10. 742	41. 702	41. 414	1. 00	69. 90
	ATOM	1676	0E2	GLU	248	11. 223	42. 273	39. 340	1. 00	71.41
	ATOM	1677	C	GLU	248	13. 952	38. 482	42. 224	1. 00	43. 15
	ATOM	1678	0	GLU	248	12. 986	37. 827	41.855	1. 00	42. 29
5	ATOM	1679	N	GLY	249	14. 530	38. 315	43. 404	1. 00	42. 35
	ATOM	1680	CA	GLY	249	14. 023	37. 327	44. 330	1. 00	42. 91
	ATOM	1681	С	GLY	249	15. 044	36. 247	44. 625	1. 00	43. 93
	ATOM	1682	0	GLY	249	16. 177	36. 294	44. 145	1. 00	43.62
	ATOM	1683	N	ARG	250	14. 644	35. 267	45. 427	1. 00	43. 38
10	ATOM	1684	CA	ARG	250	15. 526	34. 160	45. 781	1. 00	41.04
	ATOM	1685	CB	ARG	250	15. 819	34. 207	47. 293	1. 00	42. 27
	ATOM	1686	CG	ARG	250	14. 745	34. 934	48. 114	1. 00	46.82
	ATOM	1687	CD	ARG	250	15. 139	35. 142	49. 584	1. 00	51.21
	ATOM	1688	NE	ARG	250	16. 425	35. 828	49. 730	1. 00	55. 52
15	ATOM	1689	CZ	ARG	250	16. 864	36. 394	50. 855	1. 00	55. 63
	ATOM	1690	NH1	ARG	250	16. 121	36. 375	51.956	1.00	55.05
	ATOM	1691	NH2	ARG	250	18. 063	36. 962	50. 885	1. 00	54. 32
	ATOM	1692	C	ARG	250	14. 905	32. 812	45. 359	1. 00	38. 25
	ATOM	1693	0	ARG	250	13. 681	32. 640	45. 394	1. 00	37. 44
20	ATOM	1694	N	MET	251	15. 760	31. 880	44. 932	1.00	33. 58
	ATOM	1695	CA	MET	251	15. 352	30. 543	44. 492	1. 00	29. 34
	ATOM	1696	CB	MET	251	15. 326	30. 471	42. 966	1.00	24. 54
	ATOM	1697	CG	MET	251	15. 180	29.069	42. 379	1.00	17.89
	ATOM	1698	SD	MET	251	14. 994	29. 090	40. 552	1.00	18. 23
25	ATOM	1699	CE	MET	251	16. 329	28. 087	40. 075	1.00	12. 48
	ATOM	1700	C	MET	251	16. 316	29. 481	45.004	1. 00	30. 48
	ATOM	1701	0	MET	251	17. 529	29. 640	44. 895	1. 00	31. 49
	ATOM	1702	N	CYS	252	15. 775	28. 392	45. 546	1. 00	29. 56
	ATOM	1703	CA	CYS	252	16. 599	27. 298	46. 059	1. 00	26. 54

- 203 -

	ATOM	1704	CB	CYS	252	15. 710	26. 185	46. 612	1. 00 27. 29
	ATOM	1705	SG	CYS	252	16.613	24. 659	46. 927	1. 00 29. 14
	ATOM	1706	C	CYS	252	17. 492	26. 704	44. 975	1. 00 23. 38
	ATOM	1707	0	CYS	252	17. 104	26. 639	43.816	1. 00 22. 79
5	ATOM	1708	N	VAL	253	18.688	26. 268	45. 349	1. 00 20. 80
	ATOM	1709	CA	VAL	253	19. 584	25.660	44. 377	1. 00 20. 25
	ATOM	1710	CB	VAL	253	20.740	26. 583	43.969	1. 00 19. 02
	ATOM	1711	CG1	VAL	253	21.623	25. 881	42.936	1. 00 15. 42
	ATOM	1712	CG2	VAL	253	20. 198	27. 866	43. 411	1. 00 19. 77
10	ATOM	1713	C	VAL	253	20. 191	24. 374	44. 900	1. 00 22. 35
	ATOM	1714	0	VAL	253	20. 705	24. 305	46.023	1. 00 22. 21
	ATOM	1715	N	ASN	254	20. 127	23. 352	44.060	1. 00 24. 23
	ATOM	1716	CA	ASN	254	20.661	22. 045	44. 390	1. 00 22. 10
	ATOM	1717	CB	ASN	254	19.860	20. 975	43.647	1. 00 21. 49
15	ATOM	1718	CG	ASN	254	20. 479	19.604	43. 747	1. 00 22. 93
	ATOM	1719	0D1	ASN	254	21.074	19. 232	44. 764	1. 00 20. 03
	ATOM	1720	ND2	ASN	254	20. 325	18. 827	42. 687	1. 00 26. 40
	ATOM	1721	C	ASN	254	22. 124	22. 046	43. 975	1. 00 19. 26
	ATOM	1722	0	ASN	254	22. 454	22. 155	42. 795	1. 00 15. 88
20	ATOM	1723	N	THR	255	23. 001	21. 949	44. 961	1. 00 15. 23
	ATOM	1724	CA	THR	255	24. 428	21. 962	44. 691	1. 00 15. 03
	ATOM	1725	CB	THR	255	25. 193	22. 217	45.944	1. 00 13. 56
	ATOM	1726	0G1	THR	255	25. 035	21. 087	46.808	1. 00 14. 56
	ATOM	1727	CG2	THR	255	24. 670	23. 458	46.617	1. 00 14. 18
25	ATOM	1728	C	THR	255	24. 957	20. 665	44. 127	1. 00 15. 21
	ATOM	1729	0	THR	255	25.675	20.647	43. 126	1. 00 12. 07
	ATOM	1730	N	GLU	256	24. 594	19. 570	44. 777	1. 00 18. 83
	ATOM	1731	CA	GLU	256	25. 076	18. 268	44. 355	1. 00 22. 28
	ATOM	1732	CB	GLU	256	24. 795	18. 025	42.876	1. 00 25. 93

- 204 -

	ATOM	1733	CG	GLU	J 256	23. 377	18. 345	42. 454	1. 00	31. 90
	ATOM	1734	CD	GLU	256	22. 500	17. 121	42. 336	1. 00	34. 74
	ATOM	1735	0E	GLU	256	22. 191	16. 510	43. 386	1. 00	36. 97
	ATOM	1736	0E2	GLU	256	22. 122	16. 777	41. 188	1. 00	35. 26
5	ATOM	1737	C	GLU	256	26. 562	18. 402	44. 559	1. 00	21. 32
	ATOM	1738	0	GLU	256	27. 359	18. 032	43. 701	1. 00	23. 09
	ATOM	1739	N	TRP	257	26. 931	18. 966	45. 699	1. 00	17. 36
	ATOM	1740	CA	TRP	257	28. 327	19. 141	45. 985	1. 00	14. 83
	ATOM	1741	CB	TRP	257	28. 514	20. 074	47. 176	1. 00	11. 59
10	ATOM	1742	CG	TRP	257	28. 038	19. 561	48. 478	1.00	8. 69
	ATOM	1743	CD2	TRP	257	27. 830	20. 332	49. 676	1. 00	9. 05
	ATOM	1744	CE2	TRP	257	27. 562	19. 410	50. 715	1. 00	7. 00
	ATOM	1745	CE3	TRP	257	27. 845	21. 703	49. 964	1. 00	7. 18
	ATOM	1746	CD1	TRP	257	27. 881	18. 265	48. 827	1.00	7. 58
15	ATOM	1747	NE 1	TRP	257	27. 602	18. 163	50. 172	1. 00	7. 99
	ATOM	1748	CZ2	TRP	257	27. 325	19. 818	52. 038	1. 00	4.73
	ATOM	1749	CZ3	TRP	257	27. 605	22. 108	51. 280	1.00	7. 12
	ATOM	1750	CH2	TRP	257	27. 346	21. 164	52. 300	1. 00	5. 47
	ATOM	1751	C	TRP	257	29. 033	17. 813	46. 224	1. 00	17. 81
20	ATOM	1752	0	TRP	257	30. 221	17. 776	46. 523	1.00	19. 44
	ATOM	1753	N	GLY	258	28. 318	16. 708	46.099	1. 00	21.88
	ATOM	1754	CA	GLY	258	28. 991	15. 444	46. 303	1. 00	23. 25
	ATOM	1755	C	GLY	258	30. 137	15. 303	45. 316	1. 00	23. 01
	ATOM	1756	0	GLY	258	31. 133	14. 629	45. 600	1.00	21.92
25	ATOM	1757	N	ALA	259	29. 997	15. 943	44. 156	1. 00	23. 11
	ATOM	1758	CA	ALA	259	31.015	15. 863	43. 113	1. 00	27. 74
	ATOM	1759	CB	ALA	259	30. 400	16. 139	41.766	1. 00	27. 03
	ATOM	1760	C	ALA	259	32. 176	16. 806	43. 335	1. 00	30. 23
	ATOM	1761	0	ALA	259	33. 178	16. 748	42. 622	1. 00	32. 12

- 205 -

	ATOM	1762	N	PHE	260	32. 041	17. 680	44. 320	1 00	32. 43
	ATOM	1763	CA		260	33. 093	18. 627	44. 611		36. 43
	ATOM	1764	СВ		260	32. 804	19. 343	45. 924		39. 42
	ATOM	1765	CG		260	33. 932	20. 206	46. 411		43. 92
5	ATOM	1766		PHE		34. 660	21. 003	45. 534		46. 49
	ATOM	1767		PHE		34. 232	20. 263	47. 765		45. 64
	ATOM	1768	CE1	PHE	260	35. 672	21. 835	46. 002		47. 73
	ATOM	1769	CE2	PHE	260	35. 242	21. 093	48. 242		46. 62
	ATOM	1770	CZ	PHE	260	35. 958	21. 882	47. 360		47. 27
10	ATOM	1771	С	PHE	260	34. 412	17. 897	44. 695		39. 39
	ATOM	1772	0	PHE	260	34. 495	16. 800	45. 243		40. 20
	ATOM	1773	N	GLY	261	35. 441	18. 511	44. 127	1. 00	41. 71
	ATOM	1774	CA	GLY	261	36. 753	17. 911	44. 152	1.00	43. 62
	ATOM	1775	С	GLY	261	36. 967	16. 857	43. 090	1.00	44. 99
15	ATOM	1776	0	GLY	261	38. 049	16. 282	43. 015	1.00	47. 22
	ATOM	1777	N	ASP	262	35. 961	16. 578	42. 270	1.00	46.06
	ATOM	1778	CA	ASP	262	36. 143	15. 574	41. 229	1. 00	47. 68
	ATOM	1779	CB	ASP	262	34. 800	15. 197	40. 602	1. 00	50. 82
	ATOM	1780	CG	ASP	262	34. 024	14. 187	41. 445	1.00	53. 64
20	ATOM	1781	0D1	ASP	262	32. 815	13. 996	41. 191	1. 00	54. 63
	ATOM	1782	0D2	ASP	262	34. 624	13. 578	42. 356	1. 00	54.71
	ATOM	1783	C	ASP	262	37. 089	16. 129	40. 177	1.00	47. 19
	ATOM	1784	0	ASP	262	37. 539	15. 400	39. 292	1.00	47. 09
	ATOM	1785	N	SER	263	37. 380	17. 427	40. 298	1.00	46. 38
25	ATOM	1786	CA	SER	263	38. 289	18. 147	39. 401	1. 00	44. 53
	ATOM	1787	CB	SER	263	37. 651	19. 445	38. 903	1.00	43. 57
	ATOM	1788	0G	SER	263	36. 341	19. 246	38. 415	1.00	43. 79
	ATOM	1789	C	SER	263	39. 552	18. 513	40. 174	1. 00	43. 93
	ATOM	1790	0	SER	263	40. 061	19. 632	40. 059	1. 00	44. 40

- 206 -

						200				
	ATOM	1791	N	GLY	264	40. 039	17. 577	40. 979	1. 00	43. 71
	ATOM	1792	CA	GLY	264	41. 235	17. 825	41. 762	1.00	42. 64
	ATOM	1793	C	GLY	264	41. 133	18.889	42. 845	1. 00	40.75
	ATOM	1794	0	GLY	264	42. 052	19. 012	43. 648	1.00	42. 90
5	ATOM	1795	N	GLU	265	40.040	19.647	42. 887	1. 00	38. 43
	ATOM	1796	CA	GLU	265	39. 881	20.700	43. 893	1.00	37. 42
	ATOM	1797	CB	GLU	265	38. 437	21. 227	43. 907	1.00	39. 11
	ATOM	1798	CG	GLU	265	37. 986	21. 928	42.632	1.00	40.76
	ATOM	1799	CD	GLU	265	37. 198	21. 023	41.701	1.00	43.56
10	ATOM	1800	0E1	GLU	265	36. 904	21.461	40. 565	1.00	45. 26
	ATOM	1801	0E2	GLU	265	36. 863	19.883	42.099	1.00	42. 42
	ATOM	1802	C	GLU	265	40. 266	20. 299	45. 321	1.00	36. 38
	ATOM	1803	0	GLU	265	40. 410	21. 160	46. 185	1.00	33. 59
	ATOM	1804	N	LEU	266	40. 425	19.004	45. 573	1.00	37. 71
15	ATOM	1805	CA	LEU	266	40. 783	18. 534	46. 912	1. 00	40.56
	ATOM	1806	CB	LEU	266	39. 597	17. 831	47. 567	1. 00	40.03
	ATOM	1807	CG	LEU	266	38. 371	18. 631	48.001	1. 00	40. 79
	ATOM	1808	CD1	LEU	266	37. 234	17. 673	48. 259	1. 00	40. 27
	ATOM	1809	CD2	LEU	266	38. 677	19. 432	49. 253	1. 00	41.81
20	ATOM	1810	C	LEU	266	41. 949	17. 563	46.880	1.00	43. 51
	ATOM	1811	0	LEU	266	42. 363	17. 045	47. 919	1. 00	43.63
	ATOM	1812	N	ASP	267	42. 475	17. 324	45. 682	1. 00	47. 00
	ATOM	1813	CA	ASP	267	43. 584	16. 393	45. 480	1. 00	48. 18
	ATOM	1814	CB	ASP	267	44. 222	16. 622	44. 097	1.00	50.89
25	ATOM	1815	CG	ASP	267	44. 982	15. 391	43. 584	1. 00	54 . 98
	ATOM	1816	0D1	ASP	267	45. 239	15. 317	42. 360	1.00	56. 65
	ATOM	1817	OD2	ASP	267	45. 328	14. 499	44. 398	1.00	55. 43
	ATOM	1818	С	ASP	267	44.659	16. 440	46. 571	1.00	46. 46
	ATOM	1819	0	ASP	267	45. 205	15. 397	46.960	1.00	45. 37

- 207 -

	ATOM	1820	N	GLU	268	44. 957	17. 630	47. 084	1. 00	44. 63
	ATOM	1821	CA	GLU	268	45. 990	17. 721	48. 109	1. 00	44. 67
	ATOM	1822	CB	GLU	268	46. 805	19. 024	47. 956	1. 00	44. 68
	ATOM	1823	CG	GLU	268	46. 508	20. 163	48. 934	1.00	43.60
5	ATOM	1824	CD	GLU	268	45. 234	20. 915	48. 613	1. 00	43. 53
	ATOM	1825	0E1	GLU	268	45.020	21. 258	47. 423	1. 00	42. 43
	ATOM	1826	0E2	GLU	268	44. 461	21. 174	49. 561	1.00	40.84
	ATOM	1827	C	GLU	268	45. 457	17. 569	49. 528	1. 00	43. 45
	ATOM	1828	0	GLU	268	46. 102	17. 961	50. 499	1. 00	46. 29
10	ATOM	1829	N	PHE	269	44. 286	16. 971	49.656	1. 00	38. 78
	ATOM	1830	CA	PHE	269	43. 729	16. 785	50. 974	1.00	33. 75
	ATOM	1831	CB	PHE	269	42. 480	17. 614	51. 135	1. 00	33.69
	ATOM	1832	CG	PHE	269	42. 733	18. 990	51.639	1. 00	34. 75
	ATOM	1833	CD1	PHE	269	43. 435	19. 193	52.822	1. 00	36.51
15	ATOM	1834	CD2	PHE	269	42. 161	20. 079	51.001	1. 00	34. 78
	ATOM	1835	CE1	PHE	269	43. 548	20. 469	53. 365	1. 00	37. 39
	ATOM	1836	CE2	PHE	269	42. 266	21. 354	51. 532	1. 00	35. 15
	ATOM	1837	CZ	PHE	269	42. 955	21. 551	52.717	1. 00	37. 68
	ATOM	1838	C	PHE	269	43. 405	15. 343	51. 225	1. 00	32. 83
20	ATOM	1839	0	PHE	269	43. 206	14. 952	52. 365	1.00	31.85
	ATOM	1840	N	LEU	270	43. 355	14. 555	50. 157	1.00	33. 85
	ATOM	1841	CA	LEU	270	43. 046	13. 130	50. 259	1.00	34. 53
	ATOM	1842	CB	LEU	270	42. 712	12. 553	48. 884	1. 00	35. 63
	ATOM	1843	CG	LEU	270	41. 326	12. 857	48. 321	1. 00	37.61
25	ATOM	1844	CD 1	LEU	270	41. 323	14. 293	47. 842	1. 00	35. 85
	ATOM	1845	CD2	LEU	270	40.966	11. 878	47. 177	1. 00	37. 50
	ATOM	1846	C	LEU	270	44. 172	12. 298	50. 845	1. 00	33. 68
	ATOM	1847	0	LEU	270	45. 334	12. 640	50. 695	1. 00	35. 64
	ATOM	1848	N	LEU	271	43. 829	11. 200	51. 507	1. 00	33. 66

- 208 -

	ATOM	1849	CA	LEU	271	44. 850	10. 324	52. 059	1. 00	34. 55
	ATOM	1850	CB	LEU	271	44. 610	10. 032	53. 519	1.00	30. 63
	ATOM	1851	CG	LEU	271	44. 870	11. 238	54. 383	1.00	29. 49
	ATOM	1852	CD1	LEU	271	43.855	12. 324	54.075	1. 00	27. 82
5	ATOM	1853	CD2	LEU	271	44. 783	10. 798	55. 824	1. 00	31.04
	ATOM	1854	C	LEU	271	44. 884	9. 010	51. 324	1. 00	37. 04
	ATOM	1855	0	LEU	271	44. 009	8. 715	50. 513	1. 00	36. 79
	ATOM	1856	N	GLU	272	45. 890	8. 209	51. 638	1. 00	40. 66
	ATOM	1857	CA	GLU	272	46.052	6. 927	50. 989	1. 00	44. 99
10	ATOM	1858	CB	GLU	272	47. 256	6. 182	51. 590	1. 00	51. 18
	ATOM	1859	CG	GLU	272	47. 124	5. 781	53. 075	1.00	58. 46
	ATOM	1860	CD	GLU	272	48. 371	5. 077	53. 641	1. 00	62. 56
	ATOM	1861	0E1	GLU	272	49. 393	5. 772	53. 876	1.00	64. 96
	ATOM	1862	0E2	GLU	272	48. 325	3. 835	53. 849	1. 00	61. 73
15	ATOM	1863	C	GLU	272	44. 789	6.080	51.092	1. 00	44. 62
	ATOM	1864	0	GLU	272	44. 377	5. 452	50. 116	1. 00	44. 50
	ATOM	1865	N	TYR	273	44. 163	6.079	52. 266	1.00	43. 42
	ATOM	1866	CA	TYR	273	42. 955	5. 284	52. 486	1. 00	40. 23
	ATOM	1867	CB	TYR	273	42. 537	5. 377	53. 958	1. 00	38. 82
20	ATOM	1868	CG	TYR	273	43. 709	5. 401	54. 923	1.00	36. 38
	ATOM	1869	CD1	TYR	273	44. 126	6.602	55. 505	1. 00	35. 57
	ATOM	1870	CE1	TYR	273	45. 210	6. 647	56.380	1.00	34. 95
	ATOM	1871	CD2	TYR	273	44. 413	4. 231	55. 243	1. 00	35. 34
	ATOM	1872	CE2	TYR	273	45. 509	4. 264	56. 122	1.00	34. 05
25	ATOM	1873	CZ	TYR	273	45. 897	5. 481	56. 685	1.00	34. 66
	ATOM	1874	0H	TYR	273	46. 966	5. 556	57. 550	1.00	33. 77
	ATOM	1875	C	TYR	273	41.826	5. 749	51. 567	1. 00	38. 50
	ATOM	1876	0	TYR	273	41. 264	4. 967	50. 804	1. 00	35. 21
	ATOM	1877	N	ASP	274	41. 507	7. 030	51. 638	1. 00	38. 17

- 209 -

						200				
	ATOM	1878	CA	ASP	274	40. 473	7. 579	50. 796	1. 00	40. 03
	ATOM	1879	CB	ASP	274	40. 470	9. 083	50. 929	1. 00	41. 17
	ATOM	1880	CG	ASP	274	40. 252	9. 512	52. 341	1. 00	43. 77
	ATOM	1881	0D1	ASP	274	39. 123	9.327	52. 839	1.00	46. 59
5	ATOM	1882	0D2	ASP	274	41. 212	10.010	52. 958	1. 00	44. 41
	ATOM	1883	C	ASP	274	40. 740	7. 200	49. 359	1.00	40.92
	ATOM	1884	0	ASP	274	39. 819	6. 937	48. 595	1.00	41. 41
	ATOM	1885	N	ARG	275	42. 007	7. 160	48. 984	1.00	42. 93
	ATOM	1886	CA	ARG	275	42. 333	6.819	47. 613	1. 00	45.81
10	ATOM	1887	CB	ARG	275	43. 831	6. 993	47. 365	1.00	49. 53
	ATON	1888	CG	ARG	275	44. 191	7. 563	45. 995	1.00	53. 24
	ATOM	1889	CD	ARG	275	45. 702	7. 772	45. 886	1. 00	58.85
	ATOM	1890	NE	ARG	275	46. 213	8. 663	46. 933	1.00	62.67
	ATOM	1891	CZ	ARG	275	47. 088	8. 308	47. 876	1.00	62.82
15	ATOM	1892	NH1	ARG	275	47. 571	7.068	47. 922	1. 00	61. 28
	ATOM	1893	NH2	ARG	275	47. 476	9. 201	48. 777	1.00	61.64
	ATOM	1894	C	ARG	275	41. 901	5. 390	47. 316	1. 00	46.01
	ATOM	1895	0	ARG	275	41. 134	5. 160	46. 382	1. 00	45. 19
	ATOM	1896	N	LEU	276	42. 382	4. 437	48. 113	1.00	47. 51
20	ATOM	1897	CA	LEU	276	42. 026	3. 030	47. 922	1. 00	48.68
	ATOM	1898	CB	LEU	276	42. 460	2. 197	49. 134	1.00	45.63
	ATOM	1899	CG	LEU	276	43. 971	1. 999	49. 287	1.00	43. 28
	ATOM	1900	CD1	LEU	276	44. 418	2. 379	50. 686	1. 00	42. 53
	ATOM	1901	CD2	LEU	276	44. 321	0. 557	48. 994	1.00	42.97
25	ATOM	1902	C	LEU	276	40.520	2. 915	47. 718	1.00	51. 24
	ATOM	1903	0	LEU	276	40.050	2. 133	46. 891	1.00	52.38
	ATOM	1904	N	VAL	277	39. 772	3.710	48. 475	1.00	5 3. 11
	ATOM	1905	CA	VAL	277	38. 321	3. 722	48. 372	1.00	54.05
	ATOM	1906	CB	VAL	277	37. 703	4. 640	49. 423	1. 00	52. 84

- 210 -

	ATOM	1907	CG1	VAL	277	36. 210	4. 682	49. 249	1. 00 52. 71	
	ATOM	1908	CG2	VAL	277	38.069	4. 156	50. 804	1. 00 54. 87	
	ATOM	1909	C	VAL	277	37. 906	4. 231	46. 999	1. 00 55. 80	
	ATOM	1910	0	VAL	277	37. 381	3. 474	46. 185	1. 00 57. 15	
5	ATOM	1911	N	ASP	278	38. 146	5. 518	46. 754	1. 00 56. 71	
	ATOM	1912	CA	ASP	278	37. 804	6. 146	45. 481	1. 00 57. 65	
	ATOM	1913	CB	ASP	278	38. 479	7. 514	45. 353	1. 00 59. 73	
	ATOM	1914	CG	ASP	278	38. 243	8. 163	43. 989	1. 00 61. 93	
	ATOM	1915	0D1	ASP	278	38. 990	9. 110	43.642	1. 00 61. 47	
10	ATOM	1916	0D2	ASP	278	37. 308	7. 733	43. 273	1. 00 62. 11	
	ATOM	1917	C	ASP	278	38. 263	5. 281	44. 328	1. 00 58. 14	
	ATOM	1918	0	ASP	278	37. 645	5. 271	43. 266	1. 00 58. 75	
	ATOM	1919	N	GLU	279	39. 358	4. 563	44. 538	1. 00 58. 33	
	ATOM	1920	CA	GLU	279	39. 900	3.710	43. 498	1. 00 59. 14	
15	ATOM	1921	CB	GLU	279	41. 437	3. 808	43. 477	1. 00 60. 99	
	ATOM	1922	CG	GLU	279	41. 978	5. 219	43. 178	1. 00 61. 92	
	ATOM	1923	CD	GLU	279	43. 497	5. 276	43. 014	1. 00 60. 92	
	ATOM	1924	0E1	GLU	279	44. 219	4. 874	43. 953	1. 00 60. 85	
	ATOM	1925	0E2	GLU	279	43.965	5. 733	41. 946	1. 00 58. 99	
20	ATOM	1926	C	GLU	279	39. 467	2. 261	43. 664	1. 00 58. 04	
	ATOM	1927	0	GLU	279	40. 196	1. 346	43. 298	1. 00 59. 38	
	ATOM	1928	N	SER	280	38. 283	2. 044	44. 219	1. 00 57. 21	
	ATOM	1929	CA	SER	280	37. 798	0.679	44. 390	1. 00 56. 55	
	ATOM	1930	CB	SER	280	38. 283	0.091	45. 719	1. 00 56. 66	
25	ATOM	1931	0G	SER	280	38. 015	-1. 298	45. 774	1. 00 54. 41	
	ATOM	1932	C	SER	280	36. 282	0.671	44. 334	1. 00 55. 29	
	ATOM	1933	0	SER	280	35. 640	-0. 371	44. 472	1. 00 53. 68	
	ATOM	1934	N	SER	281	35. 725	1.854	44. 113	1. 00 54. 58	

- 211 -

	ATOM	1936	G CB	SER 281	33. 919	3. 451	44. 464	1. 00 56. 89
	ATOM	1937	OG	SER 281	34. 565	4. 415	43. 649	1. 00 56. 89
	ATOM	1938	C	SER 281	33. 843	1. 832	42. 584	1.00 54.80
	ATOM	1939	0	SER 281	34. 652	1. 905	41.664	1. 00 55. 85
5	ATOM	1940	N	ALA 282	32. 553	1. 587	42. 389	1. 00 53. 75
	ATOM	1941	CA	ALA 282	32. 025	1. 379	41.050	1. 00 52. 42
	ATOM	1942	CB	ALA 282	30. 626	0. 809	41. 133	1. 00 52. 26
	ATOM	1943	C	ALA 282	32. 012	2. 679	40. 250	1. 00 51. 83
	ATOM	1944	0	ALA 282	31. 632	2. 685	39. 081	1. 00 52. 27
10	ATOM	1945	N	ASN 283	32. 441	3. 772	40. 879	1. 00 50. 19
	ATOM	1946	CA	ASN 283	32. 465	5. 089	40. 239	1. 00 47. 37
	ATOM	1947	CB	ASN 283	31. 338	5. 945	40. 790	1. 00 47. 04
	ATOM	1948	CG	ASN 283	31. 482	6. 191	42. 276	1. 00 47. 38
	ATOM	1949	0D1	ASN 283	31. 584	5. 255	43. 068	1. 00 46. 86
15	ATOM	1950	ND2	2 ASN 283	31. 497	7. 455	42.662	1. 00 49. 96
	ATOM	1951	C	ASN 283	33. 777	5. 806	40. 513	1. 00 46. 64
	ATOM	1952	0	ASN 283	33. 783	6. 894	41. 081	1. 00 48. 74
	ATOM	1953	N	PRO 284	34. 905	5. 214	40. 110	1. 00 45. 15
	ATOM	1954	CD	PRO 284	35. 028	3. 896	39. 462	1.00 44.41
20	ATOM	1955	CA	PRO 284	36. 227	5. 814	40. 327	1. 00 43. 24
	ATOM	1956	CB	PRO 284	37. 151	4. 855	39. 583	1. 00 44. 66
	ATOM	1957	CG	PRO 284	36. 459	3. 532	39. 756	1. 00 44. 93
	ATOM	1958	C	PRO 284	36. 389	7. 267	39. 856	1. 00 41. 14
	ATOM	1959	0	PRO 284	35. 978	7. 624	38. 755	1. 00 40. 17
25	ATOM	1960	N	GLY 285	36. 994	8. 099	40. 695	1. 00 39. 45
	ATOM	1961	CA	GLY 285	37. 208	9. 484	40. 321	1. 00 40. 34
	ATOM	1962	C	GLY 285	35. 964	10. 343	40. 401	1. 00 42. 06
	ATOM	1963	0	GLY 285	36. 035	11. 576	40. 367	1. 00 43. 11
	ATOM	1964	N	GLN 286	34. 811	9. 699	40. 510	1. 00 42. 34

- 212 -

						5.5				
	ATOM	1965	CA	GLN	286	33. 555	10. 427	40.601	1. 00	41.88
	ATOM	1966	CB	GLN	286	32. 490	9. 717	39.758	1. 00	44.97
	ATOM	1967	CG	GLN	286	31. 973	10. 544	38. 588	1. 00	49. 89
	ATOM	1968	CD	GLN	286	31. 043	11.668	39. 043	1. 00	54. 72
5	ATOM	1969	0E1	GLN	286	29. 911	11. 419	39. 483	1.00	56. 09
	ATOM	1970	NE2	GLN	286	31. 519	12. 911	38. 950	1.00	54. 20
	ATOM	1971	C	GLN	286	33. 113	10. 541	42.063	1. 00	40. 59
	ATOM	1972	0	GLN	286	33. 396	9.660	42.879	1.00	39. 39
	ATOM	1973	N	GLN	287	32. 445	11. 648	42. 389	1. 00	39. 59
10	ATOM	1974	CA	GLN	287	31. 939	11. 913	43. 741	1. 00	38.06
	ATOM	1975	CB	GLN	287	30. 770	10. 969	44.053	1. 00	37. 29
	ATOM	1976	CG	GLN	287	29. 732	10. 837	42. 939	1. 00	35. 04
	ATOM	1977	CD	GLN	287	28. 912	12. 100	42.736	1. 00	33. 74
	ATOM	1978	0E1	GLN	287	28.906	12. 692	41.647	1.00	28. 89
15	ATOM	1979	NE2	GLN	287	28. 204	12. 514	43.786	1. 00	31. 49
	ATOM	1980	C	GLN	287	33. 015	11. 744	44. 820	1.00	37. 30
	ATOM	1981	0	GLN	287	32. 958	10. 813	45.624	1. 00	37. 53
	ATOM	1982	N	LEU	288	33. 990	12. 643	44.856	1. 00	34. 03
	ATOM	1983	CA	LEU	288	35. 051	12. 516	45. 844	1.00	29.84
20	ATOM	1984	CB	LEU	288	36. 351	13. 071	45. 293	1.00	30. 50
	ATOM	1985	CG	LEU	288	37. 285	11. 960	44. 819	1. 00	32.6 9
	ATOM	1986	CD1	LEU	288	36.645	11. 102	43.728	1.00	31. 90
	ATOM	1987	CD2	LEU	288	38. 546	12. 611	44. 323	1. 00	36. 00
	ATOM	1988	C	LEU	288	34. 729	13. 180	47. 156	1. 00	26. 53
25	ATOM	1989	0	LEU	288	34. 991	12.627	48. 218	1.00	26.76
	ATOM	1990	N	TYR	289	34. 172	14. 374	47. 086	1. 00	23. 58
	ATOM	1991	CA	TYR	289	33. 809	15. 074	48. 292	1. 00	22. 36
	ATOM	1992	CB	TYR	289	33. 086	16. 365	47. 939	1. 00	20. 16
	ATOM	1993	CG	TYR	289	32.716	17. 186	49. 136	1. 00	18.61

- 213 -

	ATOM	1994	CD1	TYR	289	33. 660	17. 486	50. 105	1. 00	18.65
	ATOM	1995	CE1	TYR	289	33. 347	18. 269	51. 195	1.00	18. 34
	ATOM	1996	CD2	TYR	289	31. 433	17. 693	49. 288	1.00	18. 91
	ATOM	1997	CE2	TYR	289	31. 105	18. 484	50. 378	1. 00	18.97
5	ATOM	1998	CZ	TYR	289	32. 073	18. 768	51. 327	1.00	20.15
	ATOM	1999	0H	TYR	289	31. 788	19. 565	52. 408	1. 00	22. 93
	ATOM	2000	C	TYR	289	32. 894	14. 165	49. 105	1. 00	25.30
	ATOM	2001	0	TYR	289	32. 991	14. 106	50. 337	1. 00	24. 21
	ATOM	2002	N	GLU	290	32. 005	13. 448	48. 411	1.00	27. 35
10	ATOM	2003	CA	GLU	290	31. 071	12. 532	49.084	1.00	26.68
	ATOM	2004	CB	GLU	290	30. 081	11. 904	48. 090	1. 00	26. 17
	ATOM	2005	CG	GLU	290	28. 614	12. 216	48. 413	1. 00	25.68
	ATOM	2006	CD	GLU	290	27.617	11. 404	47. 591	1. 00	26. 93
	ATOM	2007	0E1	GLU	290	27. 735	11. 363	46. 337	1. 00	22. 27
15	ATOM	2008	0E2	GLU	290	26. 702	10. 815	48. 215	1. 00	27.37
	ATOM	2009	C	GLU	290	31. 838	11. 425	49. 781	1.00	25.75
	ATOM	2010	0	GLU	290	31. 649	11. 193	50. 974	1. 00	26. 23
	ATOM	2011	N	LYS	291	32. 706	10.756	49.024	1.00	24. 16
	ATOM	2012	CA	LYS	291	33. 526	9. 666	49. 538	1.00	24. 45
20	ATOM	2013	CB	LYS	291	34. 342	9. 063	48. 408	1. 00	24. 19
	ATOM	2014	CG	LYS	291	33. 506	8. 383	47. 354	1. 00	28. 37
	ATOM	2015	CD	LYS	291	34. 322	8. 162	46.094	1. 00	31.52
	ATOM	2016	CE	LYS	291	33. 533	7. 434	45. 030	1. 00	31. 16
	ATOM	2017	NZ	LYS	291	34. 367	7. 299	43. 813	1. 00	33. 55
25	ATOM	2018	C	LYS	291	34. 460	10. 143	50.636	1. 00	24. 99
	ATOM	2019	0	LYS	291	35. 488	9. 522	50. 918	1. 00	25. 78
	ATOM	2020	N	LEU	292	34. 095	11. 254	51. 255	1. 00	24. 20
	ATOM	2021	CA	LEU	292	34. 894	11. 809	52. 318	1. 00	25. 20
	ATOM	2022	CB	LEU	292	35. 544	13. 106	51.843	1. 00	25. 62

- 214 -

	ATOM	2023	CG	LEU	292	36. 904	13. 450	52. 464	1. 00	26. 59
	ATOM	2024	CD1	LEU	292	37. 935	12. 396	52. 035	1. 00	26. 37
	ATOM	2025	CD2	LEU	292	37. 343	14. 853	52.025	1. 00	24. 08
	ATOM	2026	C	LEU	292	33. 999	12.063	53. 528	1. 00	26.58
5	ATOM	2027	0	LEU	292	34. 431	11. 924	54. 671	1.00	27. 91
	ATOM	2028	N	ILE	293	32. 744	12. 421	53. 272	1. 00	27. 03
	ATOM	2029	CA	ILE	293	31. 783	12.689	54. 342	1. 00	26.01
	ATOM	2030	CB	ILE	293	30. 948	13.956	54.019	1.00	26. 42
	ATOM	2031	CG2	ILE	293	30. 184	14. 431	55. 247	1. 00	25. 08
10	ATOM	2032	CG1	ILE	293	31. 866	15. 085	53. 573	1.00	24. 53
	ATOM	2033	CD1	ILE	293	31. 131	16. 366	53. 336	1. 00	23. 77
	ATOM	2034	C	ILE	293	30. 827	11. 503	54. 489	1.00	24. 65
	ATOM	2035	0	ILE	293	30. 681	10. 919	55. 565	1. 00	23. 84
	ATOM	2036	N	GLY	294	30. 197	11. 159	53. 374	1. 00	24.02
15	ATOM	2037	CA	GLY	294	29. 237	10.073	53. 325	1. 00	25. 49
	ATOM	2038	C	GLY	294	29. 454	8. 815	54. 142	1. 00	24. 75
	ATOM	2039	0	GLY	294	30. 427	8. 079	53. 953	1.00	26. 25
	ATOM	2040	N	GLY	295	28. 517	8. 556	55.044	1.00	22. 54
	ATOM	2041	CA	GLY	295	28. 607	7. 369	55. 851	1.00	22.80
20	ATOM	2042	C	GLY	295	28. 530	6. 125	54. 986	1.00	25.08
	ATOM	2043	0	GLY	295	28. 252	5.047	55. 497	1. 00	27.80
	ATOM	2044	N	LYS	296	28. 748	6. 238	53.680	1. 00	25. 43
	ATOM	2045	CA	LYS	296	28. 696	5. 039	52. 849	1.00	25.87
	ATOM	2046	CB	LYS	296	28. 313	5. 354	51.411	1.00	27.04
25	ATOM	2047	CG	LYS	296	28. 036	4. 096	50. 587	1. 00	30. 40
	ATOM	2048	CD	LYS	296	29. 249	3. 562	49. 842	1.00	30. 20
	ATOM	2049	CE	LYS	296	28. 954	2. 204	49. 176	1. 00	32. 59
	ATOM	2050	NZ	LYS	296	29. 015	1. 038	50. 135	1. 00	32. 31
	ATOM	2051	C	LYS	296	30. 044	4. 364	52. 828	1.00	28. 34

- 215 -

	ATOM	2052	0	LYS	296	30. 158	3. 185	52. 507	1. 00	29. 08
	ATOM	2053	N	TYR	297	31. 075	5. 122	53. 163	1. 00	29. 56
	ATOM	2054	CA	TYR	297	32. 414	4. 582	53. 147	1. 00	29. 25
	ATOM	2055	CB	TYR	297	33. 208	5. 230	52. 022	1.00	30. 07
5	ATOM	2056	CG	TYR	297	32.620	5. 025	50.650	1. 00	30. 84
	ATOM	2057	CD1	TYR	297	32. 023	6. 082	49. 960	1. 00	32. 45
	ATOM	2058	CE1	TYR	297	31. 544	5. 915	48. 665	1. 00	35. 21
	ATOM	2059	CD2	TYR	297	32. 715	3. 789	50. 015	1.00	30. 51
	ATOM	2060	CE2	TYR	297	32. 244	3.604	48. 724	1. 00	34. 82
10	ATOM	2061	CZ	TYR	297	31. 661	4. 673	48. 049	1.00	37. 82
	ATOM	2062	OH	TYR	297	31. 219	4. 504	46. 753	1. 00	41. 74
	ATOM	2063	C	TYR	297	33. 097	4. 842	54. 465	1.00	27. 53
	ATOM	2064	0	TYR	297	34. 174	4. 312	54. 731	1. 00	28. 35
	ATOM	2065	N	MET	298	32. 464	5.665	55. 288	1.00	24. 45
15	ATOM	2066	CA	MET	298	33. 025	6.000	56. 580	1.00	23. 96
	ATOM	2067	CB	MET	298	31. 959	6.652	57. 454	1.00	21.69
	ATOM	2068	CG	MET	298	32. 436	6.992	58. 850	1. 00	20. 73
	ATOM	2069	SD	MET	298	31. 288	8. 100	59. 701	1. 00	20.68
	ATOM	2070	CE	MET	298	31. 435	9. 523	58.620	1. 00	18. 32
20	ATOM	2071	C	MET	298	33. 579	4.750	57. 254	1. 00	24. 25
	ATOM	2072	0	MET	298	34. 776	4. 656	57. 529	1.00	24. 74
	ATOM	2073	N	GLY	299	32. 707	3. 779	57. 494	1.00	26.72
	ATOM	2074	CA	GLY	299	33. 135	2. 552	58. 135	1.00	25. 77
	ATOM	2075	C	GLY	299	34. 301	1. 906	57. 424	1.00	25. 50
25	ATOM	2076	0	GLY	299	35. 162	1. 331	58. 076	1.00	26. 16
	ATOM	2077	N	GLU	300	34. 325	2.004	56. 095	1.00	25. 37
	ATOM	2078	CA	GLU	300	35. 389	1. 418	55. 282	1. 00	24. 57
	ATOM	2079	CB	GLU	300	35. 057	1. 551	53. 800	1. 00	24. 05
	ATOM	2080	CG	GLU	300	36. 066	0.859	52. 905	1. 00	24. 66

- 216 -

	ATOM	2081	CD	GLU	300	36. 018	-0.662	53. 004	1. 00 24. 52
	ATOM	2082	0E1	GLU	300	35. 581	-1. 195	54. 054	1. 00 24. 02
	ATOM	2083	0E2	GLU	300	36. 438	-1. 319	52.026	1. 00 22. 70
	ATOM	2084	C	GLU	300	36. 734	2. 082	55. 550	1. 00 25. 31
5	ATOM	2085	0	GLU	300	37. 769	1. 408	55. 663	1. 00 22. 71
	ATOM	2086	N	LEU	301	36.712	3. 409	55. 622	1. 00 26. 47
	ATOM	2087	CA	LEU	301	37. 919	4. 174	55. 900	1. 00 26. 65
	ATOM	2088	CB	LEU	301	37. 600	5. 676	55. 992	1. 00 26. 57
	ATOM	2089	CG	LEU	301	37. 165	6. 395	54. 701	1. 00 26. 02
10	ATOM	2090	CD1	LEU	301	36. 684	7. 784	55. 047	1. 00 27. 06
	ATOM	2091	CD2	LEU	301	38. 312	6. 474	53. 701	1. 00 25. 38
	ATOM	2092	C	LEU	301	38. 452	3. 648	57. 226	1. 00 26. 23
	ATOM	2093	0	LEU	301	39. 594	3. 209	57. 313	1. 00 26. 97
	ATOM	2094	N	VAL	302	37. 623	3. 670	58. 259	1. 00 26. 05
15	ATOM	2095	CA	VAL	302	38.068	3. 154	59. 542	1. 00 27. 56
	ATOM	2096	CB	VAL	302	36. 911	3.034	60. 524	1. 00 28. 13
	ATOM	2097	CG1	VAL	302	37. 354	2. 285	61.777	1. 00 26. 62
	ATOM	2098	CG2	VAL	302	36. 433	4. 424	60.882	1. 00 30. 95
	ATOM	2099	C	VAL	302	38. 723	1. 786	59. 386	1. 00 27. 42
20	ATOM	2100	0	VAL	302	39.765	1. 529	59. 977	1. 00 29. 00
	ATOM	2101	N	ARG	303	38. 127	0. 906	58. 593	1. 00 25. 04
	ATOM	2102	CA	ARG	303	38. 723	-0. 395	58. 417	1. 00 25. 12
	ATOM	2103	CB	ARG	303	37. 906	-1. 254	57. 475	1. 00 26. 51
	ATOM	2104	CG	ARG	303	38. 587	-2. 558	57. 126	1. 00 28. 11
25	ATOM	2105	CD	ARG	303	37. 609	-3. 520	56. 490	1. 00 31. 77
	ATOM	2106	NE	ARG	303	38. 260	-4. 456	55. 583	1. 00 32. 46
	ATOM	2107	CZ	ARG	303	38. 483	-4. 215	54. 296	1. 00 34. 64
	ATOM	2108	NH1	ARG	303	38. 103	-3. 059	53. 759	1. 00 33. 51
	ATON	2109	NH2	ARG	303	39. 082	-5. 136	53. 546	1. 00 35. 80

- 217 -

ATOM 2110 C ARG 303 40. 111 -0. 242 57. 854 1.00 27.77 ARG 303 ATOM 2111 0 41.073 -0.78858. 401 1.00 30.47 ATOM LEU 304 2112 N 40, 236 0.495 56, 754 1, 00 27, 67 ATOM 2113 CA LEU 304 41.562 0.674 56. 147 1.00 24.93 ATOM 2114 CB LEU 304 41.464 1.526 54.865 1.00 22.51 ATOM 2115 CG LEU 304 40,640 0.902 53, 718 1.00 19.14 ATOM 2116 CD1 LEU 304 40.386 1.957 52.675 1.00 19.15 ATOM 2117 CD2 LEU 304 41, 352 -0.29553, 105 1.00 14.45 ATOM 2118 C LEU 304 42.523 1. 290 57. 168 1.00 21.35 ATOM 2119 LEU 304 0.736 57, 432 10 0 43, 584 1,00 20,90 ATOM 2120 N VAL 305 42. 142 2.406 57.770 1.00 17.52 ATOM 2121 CA VAL 305 43.003 3.011 58. 758 1.00 17.43 ATOM 2122 CB VAL 305 42.316 4.162 59.423 1.00 14.40 ATOM 2123 CG1 VAL 305 43. 154 4.673 60. 583 1.00 14.53 15 ATOM 2124 CG2 VAL 305 42.095 5.240 58. 408 1.00 14.33 ATOM 2125 VAL 305 C 43. 400 2.010 59. 829 1.00 20.92 ATOM 2126 0 VAL 305 44. 497 2.071 60.387 1.00 22.69 ATOM 2127 LEU 306 42, 502 1.085 60. 126 N 1.00 24.02 ATOM 2128 CA LEU 306 42.783 0.081 61. 144 1.00 26.64 ATOM 2129 LEU 306 41.481 -0.58561.594 20 CB 1.00 27.02 ATOM 2130 CG LEU 306 41. 154 -0.56363.087 1.00 27.64 ATOM 2131 CD1 LEU 306 41.094 0.873 63, 592 1.00 27.51 ATOM 2132 CD2 LEU 306 39.826 -1.26763.311 1.00 28.07 ATOM 2133 C LEU 306 43, 721 -0.96560, 566 1.00 27.73 ATOM 2134 0 LEU 306 44.745 -1.30361. 157 1.00 26.86 25 ATOM 2135 N LEU 307 43.360 -1.46759. 394 1. 00 28. 77 ATOM 2136 CA LEU 307 44. 156 -2.47858.733 1.00 32.47 57.437 ATOM 2137 CB LEU 307 43.465 -2.8931.00 29.90 ATOM 2138 CG LEU 307 43. 477 -4. 392 57. 130 1.00 29.19

- 218 -

	ATOM	2139	CD1	LEU	307	43. 104	-5. 210	58. 361	1. 00 28. 38
	ATOM	2140	CD2	LEU	307	42. 495	-4. 648	56.015	1. 00 29. 88
	ATOM	2141	С	LEU	307	45. 553	-1. 916	58. 466	1. 00 35. 49
	ATOM	2142	0	LEU	307	46. 542	-2.645	58. 394	1.00 36.50
5	ATOM	2143	N	ARG	308	45. 622	-0. 602	58. 332	1. 00 38. 03
	ATOM	2144	CA	ARG	308	46. 882	0.080	58. 101	1.00 41.29
	ATOM	2145	CB	ARG	308	46. 603	1. 580	57. 936	1.00 47.88
	ATOM	2146	CG	ARG	308	47. 706	2. 544	58. 368	1.00 54.88
	ATOM	2147	CD	ARG	308	48. 819	2. 693	57. 338	1. 00 60. 14
10	ATOM	2148	NE	ARG	308	49. 524	3. 958	57. 540	1.00 65.47
	ATOM	2149	CZ	ARG	308	50. 523	4. 401	56. 784	1.00 67.54
	ATOM	2150	NH1	ARG	308	50. 954	3. 673	55. 757	1.00 68.57
	ATOM	2151	NH2	ARG	308	51.074	5. 584	57. 046	1.00 66.83
	ATOM	2152	C	ARG	308	47. 783	-0. 182	59. 301	1.00 40.42
15	ATOM	2153	0	ARG	308	48. 889	-0. 694	59. 159	1. 00 40. 04
	ATOM	2154	N	LEU	309	47. 287	0. 152	60. 487	1.00 39.27
	ATOM	2155	CA	LEU	309	48. 043	-0. 027	61.717	1. 00 38. 92
	ATOM	2156	CB	LEU	309	47. 224	0. 484	62.895	1. 00 33. 74
	ATOM	2157	CG	LEU	309	46.852	1. 958	62. 854	1. 00 30. 26
20	ATOM	2158	CD1	LEU	309	45. 453	2. 121	63. 368	1. 00 30. 84
	ATOM	2159	CD2	LEU	309	47. 819	2. 766	63. 683	1. 00 27. 57
	ATOM	2160	C	LEU	309	48. 461	-1. 473	61.984	1.00 41.92
	ATOM	2161	0	LEU	309	49.600	-1. 741	62. 364	1. 00 42. 73
	ATOM	2162	N	VAL	310	47. 541	-2. 406	61.788	1.00 44.59
25	ATOM	2163	CA	VAL	310	47. 829	-3. 811	62. 039	1.00 46.67
	ATOM	2164	CB	VAL	310	46. 606	-4. 651	61. 798	1. 00 46. 95
	ATOM	2165	CG1	VAL	310	45. 419	-4. 006	62. 479	1. 00 49. 54
	ATOM	2166	CG2	VAL	310	46. 368	-4. 779	60. 312	1. 00 47. 77
	ATOM	2167	C	VAL	310	48. 929	-4. 321	61. 139	1. 00 47. 55

- 219 -

ATOM 2168 0 VAL 310 49. 488 -5. 392 61.374 1.00 48.66 ATOM 2169 N ASP 311 49. 217 -3. 559 60.093 1.00 48.93 ATOM 2170 CA ASP 311 50. 262 -3. 927 59. 160 1.00 52.04 ATOM 2171 CB ASP 311 49. 993 -3.29857, 793 1,00 57,14 ATOM 5 2172 CG ASP 311 48. 752 -3. 869 57. 135 1.00 61.79 ATOM 2173 OD1 ASP 311 48. 348 -3. 377 56.054 1, 00 63, 59 ATOM 2174 OD2 ASP 311 48. 180 -4. 819 57.713 1.00 63.98 ATOM 2175ASP 311 51. 618 -3. 490 С 59.698 1.00 51.94 ATOM 2176 0 ASP 311 52. 580 -4.25659.653 1.00 53.89 10 ATOM 2177 N GLU 312 51. 702 -2.26760. 212 1.00 49.51 ATOM 2178 CA GLU 312 52.961 -1.78560.762 1, 00 47, 68 ATOM 2179 CB GLU 312 -0.27253.071 60.632 1.00 48.44 52.900 ATOM 2180 CG GLU 312 0.22159. 216 1.00 51.79 ATOM 2181 CD GLU 312 53.122 1.713 59.084 1.00 53.56 ATOM 15 2182 OE1 GLU 312 52.698 2. 280 58.047 1.00 49.90 ATOM 2183 0E2 GLU 312 53. 725 2.309 60.013 1. 00 56. 82 ATOM 2184 C GLU 312 53. 075 -2. 172 62. 222 1.00 46.11 ATOM 2185 GLU 312 53. 514 -1. 377 63, 049 0 1.00 46.75 ATOM 2186 N ASN 313 52.666 -3.397 62. 527 1.00 45.02 20 ATOM 2187 CA ASN 313 52, 720 -3, 938 63.879 1.00 44.64 ATOM 2188 CB ASN 313 54. 100 -4. 550 64. 119 1.00 43.84 ATOM 2189 CG ASN 313 54.028 -5.860 64.863 1,00 45,16 ATOM 2190 OD1 ASN 313 53. 377 -5. 965 65.906 1.00 43.79 ATOM 2191 ND2 ASN 313 54, 701 -6, 875 64, 333 1, 00 46, 05 ATOM 25 2192 C ASN 313 52. 408 -2. 921 64.991 1.00 44.49 ATOM 2193 ASN 313 0 53, 303 -2, 509 65, 728 1.00 45.19 ATOM 2194 N LEU 314 51. 142 -2. 530 65, 126 1.00 43.02 ATOM CA LEU 314 2195 50.743 -1.56366. 159 1.00 40.80 ATOM 2196 CB LEU 314 50. 639 -0. 167 65. 549 1.00 34.97

- 220 -

	ATOM	2197	CG	LEU	314	51. 940	0. 499	65. 127	1. 00 29. 58
	ATOM	2198	CD1	LEU	314	51. 698	1. 453	63. 981	1. 00 28. 94
	ATOM	2199	CD2	LEU	314	52. 516	1. 212	66. 311	1. 00 28. 16
	ATOM	2200	C	LEU	314	49. 396	-1. 924	66. 777	1. 00 42. 38
5	ATOM	2201	0	LEU	314	49. 026	-1. 422	67. 848	1. 00 39. 73
	ATOM	2202	N	LEU	315	48. 689	-2. 812	66.078	1. 00 44. 49
	ATOM	2203	CA	LEU	315	47. 352	-3. 268	66. 439	1.00 45.22
	ATOM	2204	CB	LEU	315	46. 354	-2.695	65. 445	1.00 43.49
	ATOM	2205	CG	LEU	315	45. 121	-2.063	66.045	1. 00 43. 28
10	ATOM	2206	CD1	LEU	315	44. 055	-1. 976	64. 972	1. 00 43. 01
	ATOM	2207	CD2	LEU	315	44. 643	-2. 907	67. 209	1. 00 46. 13
	ATOM	2208	C	LEU	315	47. 214	-4. 781	66. 407	1. 00 46. 34
	ATOM	2209	0	LEU	315	47. 828	-5. 439	65. 577	1. 00 47. 74
	ATOM	2210	N	PHE	316	46. 380	-5. 318	67. 292	1. 00 48. 50
15	ATOM	2211	CA	PHE	316	46. 125	-6. 760	67. 369	1. 00 50. 80
	ATOM	2212	CB	PHE	316	45. 054	-7. 186	66. 347	1. 00 48. 89
	ATOM	2213	CG	PHE	316	43. 829	-6. 312	66. 331	1. 00 46. 47
	ATOM	2214	CD1	PHE	316	43. 163	-5. 999	67. 508	1. 00 45. 93
	ATOM	2215	CD2	PHE	316	43. 350	-5. 791	65. 134	1. 00 44. 48
20	ATOM	2216	CE1	PHE	316	42.043	-5. 183	67. 491	1.00 44.57
	ATOM	2217	CE2	PHE	316	42. 229	-4. 974	65. 109	1. 00 43. 59
	ATOM	2218	CZ	PHE	316	41. 577	-4. 669	66. 290	1. 00 44. 05
	ATOM	2219	C	PHE	316	47. 371	-7. 605	67. 124	1. 00 53. 06
	ATOM	2220	0	PHE	316	47. 342	-8. 521	66. 299	1. 00 54. 62
25	ATOM	2221	N	HIS	317	48. 456	-7. 304	67. 835	1. 00 54. 60
	ATOM	2222	CA	HIS	317	49.710	-8. 046	67. 691	1. 00 55. 95
	ATOM	2223	CB	HIS	317	49. 676	-9. 301	68. 569	1. 00 54. 90
	ATOM	2224	CG	HIS	317	49. 708	-9. 004	70. 034	1. 00 55. 21
	ATOM	2225	CD2	HIS	317	49. 686	-9. 823	71. 113	1. 00 55. 22

- 221 -

	ATOM	2226	ND1	HIS	317	49.	778	-7. 718	70. 528	1. 00	54. 55
	ATOM	2227	CE1	HIS	317	49.	798	-7. 756	71.848	1.00	55. 21
	ATOM	2228	NE2	HIS	317	49.	744	-9.020	72. 229	1.00	56.90
	ATOM	2229	C	HIS	317	50.	. 004	-8. 426	66. 240	1. 00	58. 27
5	ATOM	2230	0	HIS	317	50.	521	-9. 514	65. 950	1.00	58.90
	ATOM	2231	N	GLY	318	49.	665	-7. 513	65. 335	1. 00	59.86
	ATOM	2232	CA	GLY	318	49	881	-7. 734	63. 921	1. 00	60.72
	ATOM	2233	C	GLY	318	49.	290	-9. 022	63. 379	1. 00	62. 25
	ATOM	2234	0	GLY	318	50.	031	-9. 956	63.080	1. 00	63.75
10	ATOM	2235	N	GLU	319	47.	962	-9. 087	63. 277	1. 00	62.86
	ATOM	2236	CA	GLU	319	47.	277	-10. 257	62.716	1. 00	62.72
	ATOM	2237	CB	GLU	319	47.	663	-11. 545	63. 439	1. 00	66. 93
	ATOM	2238	CG	GLU	319	47.	437	-12. 784	62. 575	1.00	73. 23
	ATOM	2239	CD	GLU	319	47.	862	-14. 068	63. 262	1. 00	78.58
15	ATOM	2240	0E1	GLU	319	49.	020	-14. 129	63.745	1.00	80. 57
	ATOM	2241	0E2	GLU	319	47.	043	-15. 019	63. 310	1. 00	81.49
	ATOM	2242	C	GLU	319	45.	765	-10.097	62. 739	1. 00	59.42
	ATOM	2243	0	GLU	319	45.	. 098	-10. 387	63. 735	1. 00	57.03
	ATOM	2244	N	ALA	320	45.	246	-9. 643	61.604	1.00	55.74
20	ATOM	2245	CA	ALA	320	43.	828	-9. 394	61.414	1. 00	54.02
	ATOM	2246	CB	ALA	320	43.	657	-8. 357	60. 338	1.00	52. 55
	ATOM	2247	C	ALA	320	43.	052	-10.650	61.043	1. 00	54. 49
	ATOM	2248	0	ALA	320	43.	620	-11. 565	60. 457	1.00	55.61
	ATOM	2249	N	SER	321	41.	762	-10. 698	61.388	1. 00	55.01
25	ATOM	2250	CA	SER	321	40.	924	-11. 856	61.050	1. 00	55. 90
	ATOM	2251	CB	SER	321	39.	649	-11. 911	61.895	1.00	56.08
	ATOM	2252	0G	SER	321	38.	814	-12. 975	61.445	1. 00	53.96
	ATOM	2253	C	SER	321	40.	513	-11. 780	59. 589	1.00	55. 49
	ATOM	2254	0	SER	321	40.	367	-10.689	59.041	1.00	54. 92

- 222 -

ATOM 2255 N GLU 322 40. 292 -12. 933 58.967 1.00 54.84 ATOM 2256 GLU 322 CA 39. 917 -12. 951 57.563 1.00 56.14 ATOM 2257 CB GLU 322 39.646 -14.382 57.092 1. 00 58. 38 ATOM 2258 CG GLU 322 40, 173 -14, 697 55.681 1.00 63.26 5 ATOM 2259 CD GLU 322 41. 712 -14. 670 55, 574 1, 00 66, 36 ATOM 2260 OE1 GLU 322 42. 296 -13. 571 55. 432 1,00 66,15 ATOM 2261 OE2 GLU 322 42, 339 -15, 754 55, 637 1, 00 66, 78 38.685 -12.085 57.354 ATOM 2262 C GLU 322 1, 00 55, 71 ATOM 2263 0 GLU 322 38. 343 -11. 727 56. 227 1.00 54.93 10 ATOM 2264 N GLN 323 38. 027 -11. 740 58. 454 1, 00 55, 82 ATOM 2265 CA GLN 323 36. 838 -10. 904 58. 393 1.00 55.20 ATOM 2266 CB GLN 323 35. 995 -11. 101 59. 659 1.00 57.22 ATOM 2267 CG GLN 323 35. 737 -12. 571 59. 983 1.00 60.42 ATOM 2268 CD GLN 323 34. 801 -12. 778 61. 164 1.00 62.11 ATOM 2269 OE1 GLN 323 15 34. 596 -13. 909 61.612 1.00 63.58 ATOM 2270 NE2 GLN 323 34. 223 -11. 690 61.668 1.00 61.37 ATOM 2271 C GLN 323 37. 259 -9. 445 58. 249 1.00 53.59 ATOM 2272 0 GLN 323 36.963 -8.800 57. 242 1.00 53.27 ATOM 2273 N LEU 324 1.00 50.98 37. 973 -8. 936 59, 248 20 ATOM 2274 CA LEU 324 38. 430 -7. 553 59. 224 1.00 48.40 ATOM 2275 CB LEU 324 39, 396 -7, 294 60.378 1.00 46.63 ATOM 2276 CG LEU 324 39. 956 -5. 876 60.498 1.00 44.87 ATOM 2277 CD1 LEU 324 38, 846 -4, 837 60, 390 1.00 44.21 ATOM 2278 CD2 LEU 324 40.671 -5.758 61.827 1.00 43.22 ATOM 2279 C LEU 324 25 39. 115 -7. 224 57. 911 1.00 47.25 ATOM 2280 0 LEU 324 39. 181 ~6. 065 57, 505 1, 00 44, 86 ATOM ARG 325 2281 N 39.627 -8.253 57. 252 1.00 48.35 ATOM 2282 CA ARG 325 40, 309 -8, 057 55. 988 1.00 50.22 ATOM 2283 CB ARG 325 41. 473 -9. 055 55. 839 1. 00 53. 47

- 223 -

						220	,			
	ATOM	2284	CG	ARG	325	42. 580	-8. 896	56. 894	1. 00	57. 97
	ATOM	2285	CD	ARG	325	43.660	-9. 986	56. 808	1. 00	61.92
	ATOM	2286	NE	ARG	325	44. 564	-9. 957	57. 966	1. 00	67. 95
	ATOM	2287	CZ	ARG	325	45. 535	-10. 844	58. 206	1. 00	70. 27
5	ATOM	2288	NH1	ARG	325	45. 753	-11. 854	57. 371	1. 00	69.69
	ATOM	2289	NH2	ARG	325	46. 290	-10. 725	59. 293	1. 00	70.39
	ATOM	2290	C	ARG	325	39. 320	-8. 224	54. 850	1. 00	48. 80
	ATOM	2291	0	ARG	325	39. 617	-8. 859	53. 847	1.00	50.46
	ATOM	2292	N	THR	326	38. 131	-7. 663	54. 999	1.00	46. 54
10	ATOM	2293	CA	THR	326	37. 162	-7. 783	53. 929	1. 00	45. 13
	ATOM	2294	CB	THR	326	36. 108	-8. 810	54. 264	1.00	44. 85
	ATOM	2295	0G1	THR	326	36. 749	-10.061	54. 546	1.00	44.98
	ATOM	2296	CG2	THR	326	35. 160	-8. 973	53. 092	1.00	43. 46
	ATOM	2297	C	THR	326	36. 500	-6. 453	53. 687	1. 00	44. 79
15	ATOM	2298	0	THR	326	36. 256	-5. 705	54. 626	1. 00	45.01
	ATOM	2299	N	ARG	327	36. 216	-6. 143	52. 430	1. 00	45.02
	ATOM	2300	CA	ARG	327	35. 590	-4. 866	52. 136	1. 00	45. 97
	ATOM	2301	CB	ARG	327	35. 476	-4. 655	50. 623	1.00	48.63
	ATOM	2302	CG	ARG	327	34. 961	-3. 283	50. 229	1. 00	53.97
20	ATOM	2303	CD	ARG	327	34. 975	-3. 072	48. 722	1. 00	58. 44
	ATOM	2304	NE	ARG	327	33. 747	-2. 410	48. 282	1.00	66. 14
	ATOM	2305	CZ	ARG	327	33. 387	-1. 178	48. 648	1.00	69. 53
	ATOM	2306	NH1	ARG	327	34. 167	-0. 471	49. 458	1. 00	69. 84
	ATOM	2307	NH2	ARG	327	32. 242	-0.652	48. 220	1. 00	68. 29
25	ATOM	2308	C	ARG	327	34. 217	-4. 790	52. 794	1. 00	44. 69
	ATOM	2309	0	ARG	327	33. 486	-5. 784	52. 861	1.00	44. 55
	ATOM	2310	N	GLY	328	33. 888	-3. 605	53. 302	1. 00	42. 14
	ATOM	2311	CA	GLY	328	32.606	-3. 394	53. 952	1. 00	37. 48
	ATOM	2312	C	GLY	328	32. 480	-4. 007	55. 334	1. 00	33. 00

- 224 -

	ATOM	2313	0	GLY	328	31. 693	-3. 532	56. 148	1. 00 32. 88	
	ATOM	2314	N	ALA	329	33. 258	-5.049	55. 601	1. 00 29. 02	
	ATOM	2315	CA	ALA	329	33. 227	-5. 743	56. 885	1. 00 26. 22	
	ATOM	2316	CB	ALA	329	34. 452	-6.623	57. 028	1. 00 28. 65	
5	ATOM	2317	C	ALA	329	33.092	-4.861	58. 115	1. 00 24. 38	
	ATOM	2318	0	ALA	329	32. 490	-5. 276	59. 097	1. 00 26. 43	
	ATOM	2319	N	PHE	330	33. 663	-3. 663	58. 091	1. 00 21. 81	
	ATOM	2320	CA	PHE	330	33. 547	-2. 776	59. 242	1. 00 18. 07	
	ATOM	2321	CB	PHE	330	34. 887	-2. 137	59. 558	1.00 13.90	
10	ATOM	2322	CG	PHE	330	34. 913	-1. 404	60. 862	1. 00 12. 45	
	ATOM	2323	CD1	PHE	330	34. 460	-0.096	60. 961	1. 00 12. 64	
	ATOM	2324	CD2	PHE	330	35. 436	-2. 009	61. 995	1. 00 12. 73	
	ATOM	2325	CE1	PHE	330	34. 535	0. 605	62. 188	1. 00 12. 83	
	ATOM	2326	CE2	PHE	330	35. 515	-1. 315	63. 221	1. 00 11. 49	
15	ATOM	2327	CZ	PHE	330	35. 066	-0. 008	63. 315	1. 00 8. 96	
	ATOM	2328	C	PHE	330	32. 528	-1. 716	58. 886	1. 00 17. 48	
	ATOM	2329	0	PHE	330	32. 855	-0. 702	58. 273	1. 00 17. 97	
	ATOM	2330	N	GLU	331	31. 288	-1. 976	59. 275	1. 00 16. 36	
	ATOM	2331	CA	GLU	331	30. 149	-1. 105	58. 998	1. 00 18. 14	
20	ATOM	2332	CB	GLU	331	28. 865	-1. 889	59. 308	1. 00 22. 08	
	ATOM	2333	CG	GLU	331	28. 790	-3. 226	58. 546	1. 00 26. 82	
	ATOM	2334	CD	GLU	331	28. 183	-4. 382	59. 346	1. 00 28. 86	
	ATOM	2335	0E1	GLU	331	28. 381	-5. 552	58. 931	1. 00 28. 12	
	ATOM	2336	0E2	GLU	331	27. 509	-4. 129	60. 371	1. 00 30. 16	
25	ATOM	2337	C	GLU	331	30. 126	0. 248	59. 719	1. 00 16. 36	
	ATOM	2338	0	GLU	331	30. 596	0. 380	60. 849	1. 00 16. 97	
	ATOM	2339	N	THR	332	29. 583	1. 263	59. 060	1. 00 14. 04	
	ATOM	2340	CA	THR	332	29. 494	2. 568	59. 695	1.00 14.47	
	ATOM	2341	CB	THR	332	28. 747	3. 562	58. 825	1.00 10.93	

- 225 -

	ATOM	2342	0G1	THR	332	29. 473	3. 751	57. 611	1. 00	6. 57
	ATOM	2343	CG2	THR	332	28. 597	4. 890	59. 550	1. 00	6. 34
	ATOM	2344	С	THR	332	28. 725	2. 382	60. 994	1.00	18. 42
	ATOM	2345	0	THR	332	29. 125	2. 872	62.052	1.00	17. 70
5	ATOM	2346	N	ARG	333	27. 609	1. 671	60. 892	1.00	21. 79
	ATOM	2347	CA	ARG	333	26. 783	1. 346	62.040	1.00	24. 44
	ATOM	2348	CB	ARG	333	26. 095	0.001	61.764	1.00	28.62
	ATOM	2349	CG	ARG	333	25. 291	-0.590	62. 910	1.00	34.65
	ATOM	2350	CD	ARG	333	24. 308	-1. 664	62. 401	1.00	39. 87
10	ATOM	2351	NE	ARG	333	24. 953	-2. 887	61. 910	1.00	43. 42
	ATOM	2352	CZ	ARG	333	25. 198	-3. 969	62. 653	1. 00	46.01
	ATOM	2353	NH1	ARG	333	24. 852	-3. 992	63. 940	1.00	45. 10
	ATOM	2354	NH2	ARG	333	25. 791	-5.030	62. 104	1.00	43. 75
	ATOM	2355	C	ARG	333	27. 638	1. 271	63. 323	1. 00	24. 88
15	ATOM	2356	0	ARG	333	27. 242	1.803	64. 358	1. 00	24. 00
	ATOM	2357	N	PHE	334	28. 818	0.635	63. 232	1.00	23. 97
	ATOM	2358	CA	PHE	334	29. 740	0. 458	64. 371	1. 00	19.64
	ATOM	2359	CB	PHE	334	30. 877	-0.509	64.033	1. 00	20.52
	ATOM	2360	CG	PHE	334	30. 420	-1. 813	63.468	1.00	24.74
20	ATOM	2361	CD1	PHE	334	29. 469	-2. 574	64. 121	1. 00	25.94
	ATOM	2362	CD2	PHE	334	30. 938	-2. 279	62. 262	1.00	26. 47
	ATOM	2363	CE1	PHE	334	29.039	-3. 780	63. 575	1.00	28. 43
	ATOM	2364	CE2	PHE	334	30. 514	-3. 483	61.711	1.00	24. 74
	ATOM	2365	CZ	PHE	334	29. 565	-4. 233	62.365	1. 00	26. 41
25	ATOM	2366	C	PHE	334	30. 382	1. 739	64. 842	1. 00	16. 52
	ATOM	2367	0	PHE	334	30. 434	2. 020	66.039	1.00	16. 16
	ATOM	2368	N	VAL	335	30. 907	2. 509	63. 905	1. 00	13. 20
	ATOM	2369	CA	VAL	335	31. 546	3. 752	64. 284	1.00	11. 36
	ATOM	2370	CB	VAL	335	31. 877	4. 565	63. 033	1.00	8.08

- 226 -

	ATOM	2371	CG1	VAL	335	32. 113	6. 003	63. 402	1. 00	8.71
	ATOM	2372	CG2	VAL	335	33. 082	3. 979	62. 358	1. 00	1.00
	ATOM	2373	C	VAL	335	30.653	4. 558	65. 249	1. 00	13. 02
	ATOM	2374	0	VAL	335	31. 126	5.066	66. 264	1. 00	10.40
5	ATOM	2375	N	SER	336	29. 359	4. 640	64. 934	1. 00	16. 23
	ATOM	2376	CA	SER	336	28. 365	5. 372	65. 740	1. 00	18.55
	ATOM	2377	CB	SER	336	27. 017	5. 350	65. 039	1. 00	19. 92
	ATOM	2378	0G	SER	336	26.611	3. 999	64.866	1. 00	25. 40
	ATOM	2379	C	SER	336	28. 162	4. 766	67. 118	1.00	17. 99
10	ATOM	2380	0	SER	336	27. 896	5. 465	68. 100	1.00	14.64
	ATOM	2381	N	GLN	337	28. 239	3. 445	67. 159	1.00	19.48
	ATOM	2382	CA	GLN	337	28.061	2. 719	68. 394	1. 00	21.39
	ATOM	2383	CB	GLN	337	27. 995	1. 223	68. 123	1.00	21.42
	ATOM	2384	CG	GLN	337	26. 829	0.800	67. 264	1. 00	23. 07
15	ATOM	2385	CD	GLN	337	26. 920	-0. 654	66. 895	1.00	24. 96
	ATOM	2386	0E1	GLN	337	27. 243	-1. 496	67. 735	1.00	28. 83
	ATOM	2387	NE2	GLN	337	26. 633	-0.966	65. 638	1.00	24. 29
	ATOM	2388	C	GLN	337	29. 260	3. 011	69. 240	1.00	20. 91
	ATOM	2389	0	GLN	337	29. 205	2. 963	70. 464	1.00	23. 32
20	ATOM	2390	N	VAL	338	30. 362	3. 317	68. 584	1. 00	20.52
	ATOM	2391	CA	VAL	338	31. 559	3. 589	69. 337	1. 00	21.67
	ATOM	2392	CB	VAL	338	32. 812	3. 470	68. 443	1. 00	20. 93
	ATOM	2393	CG1	VAL	338	34. 065	3. 624	69. 279	1. 00	19. 79
	ATOM	2394	CG2	VAL	338	32. 811	2. 126	67. 739	1. 00	16.69
25	ATOM	2395	C	VAL	338	31. 480	4. 973	69. 977	1.00	23.61
	ATOM	2396	0	VAL	338	31. 385	5. 079	71. 203	1.00	21.96
	ATOM	2397	N	GLU	339	31. 486	6. 020	69. 146	1. 00	25. 05
	ATOM	2398	CA	GLU	339	31. 455	7. 406	69. 620	1.00	26. 21
	ATOM	2399	CB	GLU	339	31. 460	8. 402	68. 440	1.00	26. 37

- 227 -

	ATOM	2400	CG	GLU	339	30. 515	8. 082	67. 282	1. 00 31. 63
	ATOM	2401	CD	GLU	339	30. 287	9. 267	66.311	1. 00 36. 86
	ATOM	2402	0E1	GLU	339	29. 542	10. 219	66. 663	1. 00 37. 19
	ATOM	2403	0E2	GLU	339	30. 850	9. 243	65. 187	1. 00 37. 90
5	ATOM	2404	C	GLU	339	30. 299	7. 735	70. 541	1. 00 26. 44
	ATOM	2405	0	GLU	339	30. 423	8. 613	71. 396	1. 00 27. 55
	ATOM	2406	N	SER	340	29. 189	7. 017	70. 380	1. 00 26. 30
	ATOM	2407	CA	SER	340	27. 987	7. 246	71. 181	1. 00 25. 08
	ATOM	2408	CB	SER	340	26.861	6.322	70. 717	1. 00 23. 68
10	ATOM	2409	0G	SER	340	27. 191	4. 970	70. 957	1. 00 23. 58
	ATOM	2410	C	SER	340	28. 211	7.065	72. 676	1. 00 26. 02
	ATOM	2411	0	SER	340	27. 415	7. 539	73. 488	1. 00 26. 83
	ATOM	2412	N	ASP	341	29. 294	6. 380	73. 033	1. 00 27. 41
	ATOM	2413	CA	ASP	341	29. 630	6. 143	74. 434	1. 00 27. 85
15	ATOM	2414	CB	ASP	341	28. 939	4. 885	74. 953	1. 00 27. 41
	ATOM	2415	CG	ASP	341	29. 253	4. 621	76. 410	1. 00 26. 49
	ATOM	2416	0D1	ASP	341	29. 628	5. 591	77. 107	1. 00 26. 07
	ATOM	2417	0D2	ASP	341	29. 117	3. 463	76.862	1. 00 25. 64
	ATOM	2418	C	ASP	341	31. 128	6.008	74. 672	1. 00 28. 59
20	ATOM	2419	0	ASP	341	31. 757	5. 049	74. 229	1. 00 30. 06
	ATOM	2420	N	THR	342	31. 688	6. 965	75. 398	1. 00 27. 34
	ATOM	2421	CA	THR	342	33. 105	6. 953	75.694	1. 00 26. 74
	ATOM	2422	CB	THR	342	33.681	8. 348	75. 553	1. 00 26. 75
	ATOM	2423	0G1	THR	342	33. 072	9. 217	76. 511	1. 00 25. 10
25	ATOM	2424	CG2	THR	342	33. 387	8. 881	74. 171	1. 00 29. 29
	ATOM	2425	C	THR	342	33. 292	6. 477	77. 114	1. 00 27. 84
	ATOM	2426	0	THR	342	34. 365	6. 625	77. 692	1. 00 27. 29
	ATOM	2427	N	GLY	343	32. 223	5. 908	77.662	1. 00 30. 32
	ATOM	2428	CA	GLY	343	32. 234	5. 398	79. 020	1. 00 31. 31

- 228 -

	ATOM	2429	C	GLY	343	32. 970	4. 083	79. 178	1. 00	32. 13
	ATOM	2430	0	GLY	343	33. 765	3. 944	80. 105	1. 00	34. 00
	ATOM	2431	N	ASP	344	32. 712	3. 114	78. 304	1. 00	31.93
	ATOM	2432	CA	ASP	344	33. 400	1. 836	78. 411	1. 00	34. 25
5	ATOM	2433	CB	ASP	344	32. 592	0.857	79. 267	1. 00	38. 13
	ATOM	2434	CG	ASP	344	31. 205	0.646	78. 744	1. 00	43. 49
	ATOM	2435	0D1	ASP	344	30. 399	-0.029	79. 426	1. 00	47. 59
	ATOM	2436	0D2	ASP	344	30. 923	1. 159	77. 643	1. 00	46.67
	ATOM	2437	C	ASP	344	33. 744	1. 196	77. 075	1. 00	33. 85
10	ATOM	2438	0	ASP	344	33. 354	1. 681	76.015	1. 00	32. 12
	ATOM	2439	N	ARG	345	34. 490	0.098	77. 148	1. 00	34. 54
	ATOM	2440	CA	ARG	345	34. 935	-0.626	75. 968	1. 00	35. 60
	ATOM	2441	CB	ARG	345	36. 297	-1. 278	76. 233	1. 00	35. 33
	ATOM	2442	CG	ARG	345	37. 339	-0. 370	76. 864	1. 00	35. 88
15	ATOM	2443	CD	ARG	345	38. 729	-1.006	76. 879	1. 00	35. 19
	ATOM	2444	NE	ARG	345	39. 507	-0. 597	78.054	1. 00	36. 95
	ATOM	2445	CZ	ARG	345	39. 984	0. 629	78. 275	1. 00	36.97
	ATOM	2446	NH1	ARG	345	39. 780	1. 605	77. 396	1.00	36. 40
	ATOM	2447	NH2	ARG	345	40. 654	0. 885	79. 394	1. 00	36. 46
20	ATOM	2448	C	ARG	345	33. 961	-1. 716	75. 551	1. 00	36. 31
	ATOM	2449	0	ARG	345	34. 080	-2. 280	74. 461	1. 00	37. 64
	ATOM	2450	N	LYS	346	33. 004	-2. 020	76. 420	1. 00	35. 01
	ATOM	2451	CA	LYS	346	32. 050	-3. 081	76. 134	1. 00	33.81
	ATOM	2452	CB	LYS	346	30. 824	-2. 975	77. 041	1. 00	33. 64
25	ATOM	2453	CG	LYS	346	29. 942	-4. 223	76. 985	1. 00	33. 85
	ATOM	2454	CD	LYS	346	30. 759	-5. 505	77. 186	1. 00	31. 48
	ATOM	2455	CE	LYS	346	30.061	-6. 699	76. 542	1. 00	32. 39
	ATOM	2456	NZ	LYS	346	30. 855	-7.968	76. 542	1. 00	30.01
	ATOM	2457	C	LYS	346	31. 613	-3.093	74. 684	1. 00	33. 18

- 229 -

	ATOM	2458	0	LYS	346	31. 746	-4. 101	73.995	1. 00	31.98
	ATOM	2459	N	GLN	347	31. 101	-1. 967	74. 214	1. 00	33. 36
	ATOM	2460	CA	GLN	347	30. 662	-1. 887	72. 839	1. 00	34. 32
	ATOM	2461	CB	GLN	347	30. 014	-0. 530	72. 589	1. 00	37. 17
5	ATOM	2462	CG	GLN	347	28. 510	-0. 578	72. 703	1. 00	39. 97
	ATOM	2463	CD	GLN	347	27. 905	-1. 436	71.611	1. 00	43. 97
	ATOM	2464	0E1	GLN	347	28. 219	-2. 626	71. 491	1. 00	43. 88
	ATOM	2465	NE2	GLN	347	27. 039	-0. 835	70. 799	1. 00	46. 46
	ATOM	2466	C	GLN	347	31. 799	-2. 144	71. 844	1. 00	34. 27
10	ATOM	2467	0	GLN	347	31. 630	-2. 922	70. 902	1. 00	35. 29
	ATOM	2468	N	ILE	348	32. 952	-1. 502	72. 054	1. 00	31.49
	ATOM	2469	CA	ILE	348	34. 109	-1. 679	71. 165	1. 00	25. 43
	ATOM	2470	CB	ILE	348	35. 309	-0. 826	71.614	1. 00	21.01
	ATOM	2471	CG2	ILE	348	36. 369	-0. 826	70. 540	1. 00	15. 50
15	ATOM	2472	CG1	ILE	348	34. 852	0.606	71.875	1. 00	22. 27
	ATOM	2473	CD1	ILE	348	35. 914	1. 509	72. 462	1. 00	24. 55
	ATOM	2474	C	ILE	348	34. 524	-3. 139	71. 211	1.00	24. 70
	ATOM	2475	0	ILE	348	34. 793	-3. 763	70. 182	1. 00	23. 36
	ATOM	2476	N	TYR	349	34. 560	-3. 681	72. 421	1.00	23. 30
20	ATOM	2477	CA	TYR	349	34. 933	-5. 061	72. 597	1. 00	23.65
	ATOM	2478	CB	TYR	349	34. 727	-5. 491	74. 047	1.00	25. 21
	ATOM	2479	CG	TYR	349	34. 779	-6. 989	74. 221	1. 00	31. 27
	ATOM	2480	CD1	TYR	349	35. 990	-7. 665	74. 333	1.00	33. 98
	ATOM	2481	CE1	TYR	349	36. 028	-9. 062	74. 435	1. 00	36. 98
25	ATOM	2482	CD2	TYR	349	33. 607	-7. 740	74. 216	1.00	34. 38
	ATOM	2483	CE2	TYR	349	33. 628	-9. 125	74. 312	1.00	36.69
	ATOM	2484	CZ	TYR	349	34. 837	-9. 786	74. 421	1. 00	37. 89
	ATOM	2485	ОН	TYR	349	34. 834	-11. 165	74. 512	1.00	37. 12
	ATOM	2486	C	TYR	349	34. 105	-5. 945	71.676	1.00	23. 47

- 230 -

	ATOM	2487	0	TYR	349	34. 654	-6. 602	70. 794	1. 00	21.02
	ATOM	2488	N	ASN	350	32. 783	-5. 934	71. 872	1. 00	25. 29
	ATOM	2489	CA	ASN	350	31. 850	-6. 766	71. 091	1. 00	25. 07
	ATOM	2490	CB	ASN	350	30. 379	-6. 500	71. 482	1. 00	23. 90
5	ATOM	2491	CG	ASN	350	30. 069	-6. 844	72. 941	1. 00	25. 09
	ATOM	2492	0D1	ASN	350	30. 413	-7. 924	73. 440	1. 00	22. 84
	ATOM	2493	ND2	ASN	350	29. 398	-5. 923	73. 626	1. 00	25.65
	ATOM	2494	C	ASN	350	31. 982	-6. 620	69. 580	1. 00	25. 25
	ATOM	2495	0	ASN	350	31. 994	-7. 619	68. 859	1. 00	25. 84
10	ATOM	2496	N	ILE	351	32. 068	-5. 392	69. 083	1. 00	25. 43
	ATOM	2497	CA	ILE	351	32. 195	-5. 227	67. 642	1. 00	25. 64
	ATOM	2498	CB	ILE	351	32. 388	-3. 745	67. 248	1. 00	24.60
	ATOM	2499	CG2	ILE	351	32. 282	-3. 600	65. 743	1. 00	23.69
	ATOM	2500	CG1	ILE	351	31. 305	-2. 882	67. 903	1. 00	22. 24
15	ATOM	2501	CD1	ILE	351	31. 357	-1. 431	67. 509	1. 00	19. 88
	ATOM	2502	C	ILE	351	33. 415	-6. 047	67. 224	1. 00	26.73
	ATOM	2503	0	ILE	351	33. 282	-7. 047	66. 517	1. 00	25.71
	ATOM	2504	N	LEU	352	34. 592	-5. 629	67. 695	1. 00	27. 08
	ATOM	2505	CA	LEU	352	35. 847	-6. 312	67. 397	1. 00	27. 36
20	ATOM	2506	CB	LEU	352	36. 994	-5. 700	68. 206	1. 00	24. 45
	ATOM	2507	CG	LEU	352	37. 295	-4. 208	68. 090	1. 00	23. 84
	ATOM	2508	CD1	LEU	352	38. 464	-3. 838	68. 995	1. 00	21.54
	ATOM	2509	CD2	LEU	352	37. 620	-3. 872	66.660	1. 00	23. 96
	ATOM	2510	C	LEU	352	35. 746	-7. 798	67. 737	1. 00	29.42
25	ATOM	2511	0	LEU	352	36. 045	-8. 670	66. 912	1. 00	29. 43
	ATOM	2512	N	SER	353	35. 336	-8. 087	68. 965	1. 00	30. 73
	ATOM	2513	CA	SER	353	35. 206	-9. 468	69. 398	1. 00	32. 72
	ATOM	2514	CB	SER	353	34. 408	-9.531	70. 711	1. 00	32.86
	ATOM	2515	0G	SER	353	34. 187	-10. 870	71. 126	1. 00	35. 10

- 231 -

						- 40	1 -		
	ATOM	2516	C	SER	353	34. 513	-10. 277	68. 295	1. 00 33. 76
	ATOM	2517	0	SER	353	35. 123	-11. 149	67. 670	1.00 34.42
	ATOM	2518	N	THR	354	33. 252	-9. 941	68. 035	1. 00 34. 17
	ATOM	2519	CA	THR	354	32. 437	-10. 621	67. 031	1. 00 32. 96
5	ATOM	2520	CB	THR	354	30. 999	-10. 073	67. 076	1. 00 33. 01
	ATOM	2521	0G1	THR	354	30. 120	-10. 980	66. 408	1. 00 32. 52
	ATOM	2522	CG2	THR	354	30. 922	-8. 702	66. 411	1. 00 34. 65
	ATOM	2523	C	THR	354	33. 007	-10. 503	65. 608	1. 00 32. 28
	ATOM	2524	0	THR	354	32. 444	-11. 038	64. 646	1. 00 30. 58
10	ATOM	2525	N	LEU	355	34. 137	-9. 807	65. 497	1. 00 31. 47
	ATOM	2526	CA	LEU	355	34. 832	-9. 612	64. 227	1. 00 30. 67
	ATOM	2527	CB	LEU	355	35. 488	-8.239	64. 187	1. 00 28. 42
	ATOM	2528	CG	LEU	355	34. 780	-7. 240	63. 293	1. 00 27. 13
	ATOM	2529	CD1	LEU	355	35. 387	-5. 874	63. 487	1. 00 26. 09
15	ATOM	2530	CD2	LEU	355	34. 898	-7. 698	61. 859	1. 00 27. 39
	ATOM	2531	C	LEU	355	35. 905	-10.668	64. 061	1. 00 31. 14
	ATOM	2532	0	LEU	355	36. 573	-10. 735	63. 033	1. 00 30. 59
	ATOM	2533	N	GLY	356	36.074	-11. 484	65. 091	1. 00 32. 64
	ATOM	2534	CA	GLY	356	37. 068	-12. 530	65. 030	1. 00 35. 49
20	ATOM	2535	C	GLY	356	38. 435	-12. 074	65. 493	1. 00 37. 44
	ATOM	2536	0	GLY	356	39. 443	-12. 492	64. 930	1. 00 37. 31
	ATOM	2537	N	LEU	357	38. 471	-11. 222	66. 516	1. 00 39. 40
	ATOM	2538	CA	LEU	357	39. 729	-10. 717	67. 057	1. 00 41. 85
	ATOM	2539	CB	LEU	357	39. 898	-9. 239	66. 705	$1. 00\; 41. 35$
25	ATOM	2540	CG	LEU	357	39. 816	-8. 876	65. 218	1. 00 43. 17
	ATOM	2541	CD1	LEU	357	39. 953	-7. 375	65.064	1. 00 42. 98
	ATOM	2542	CD2	LEU	357	40. 904	-9. 585	64. 428	1. 00 43. 93
	ATOM	2543	C	LEU	357	39. 759	-10.888	68. 571	1. 00 44. 59
	ATOM	2544	0	LEU	357	38. 750	-11. 247	69. 176	1. 00 45. 94

- 232 -

	ATOM	2545	N	ARG	358	40. 919	-10. 643	69. 178	1. 00	46.55
	ATOM	2546	CA	ARG	358	41. 080	-10. 752	70. 632	1. 00	48. 12
	ATOM	2547	CB	ARG	358	42. 113	-11. 819	70. 994	1. 00	52. 19
	ATOM	2548	CG	ARG	358	41.649	-13. 258	70. 839	1. 00	61. 21
5	ATOM	2549	CD	ARG	358	40. 870	-13. 768	72.064	1. 00	68. 48
	ATOM	2550	NE	ARG	358	39. 519	-13. 206	72. 184	1. 00	74.00
	ATOM	2551	CZ	ARG	358	38. 629	-13. 577	73. 104	1. 00	75. 57
	ATOM	2552	NH1	ARG	358	38. 935	-14. 517	73. 998	1.00	75. 58
	ATOM	2553	NH2	ARG	358	37. 431	-13. 005	73. 131	1. 00	74. 54
10	ATOM	2554	C	ARG	358	41.558	-9. 418	71. 174	1. 00	46.76
	ATOM	2555	0	ARG	358	42. 702	-9. 284	71. 580	1. 00	49. 52
	ATOM	2556	N	PRO	359	40.679	-8. 412	71. 197	1. 00	45. 33
	ATOM	2557	CD	PRO	359	39. 271	-8. 532	70. 791	1. 00	45. 90
	ATOM	2558	CA	PRO	359	40. 956	-7. 056	71. 677	1. 00	44.06
15	ATOM	2559	CB	PRO	359	39. 565	-6. 449	71. 784	1. 00	45. 14
	ATOM	2560	CG	PR0	359	38. 865	-7. 086	70. 643	1. 00	46.70
	ATOM	2561	C	PRO	359	41.725	-6. 936	72. 986	1. 00	42. 11
	ATOM	2562	0	PR0	359	41.662	-7. 797	73. 860	1. 00	42. 98
	ATOM	2563	N	SER	360	42. 449	-5. 840	73. 118	1. 00	38. 55
20	ATOM	2564	CA	SER	360	43. 209	-5. 608	74. 321	1. 00	35. 42
	ATOM	2565	CB	SER	360	44. 701	-5. 624	74.014	1. 00	38. 45
	ATOM	2566	0G	SER	360	45. 100	-4. 379	73. 453	1. 00	37. 32
	ATOM	2567	C	SER	360	42. 847	-4. 234	74. 818	1. 00	33. 26
	ATOM	2568	0	SER	360	42. 530	-3. 345	74. 028	1. 00	30. 55
25	ATOM	2569	N	THR	361	42. 907	-4. 060	76. 128	1. 00	31.87
	ATOM	2570	CA	THR	361	42. 625	-2. 771	76. 721	1.00	33.02
	ATOM	2571	CB	THR	361	43.285	-2. 646	78. 083	1. 00	32.00
	ATOM	2572	0G1	THR	361	42.697	-3. 593	78. 981	1. 00	31. 30
	ATOM	2573	CG2	THR	361	43. 135	-1. 223	78. 618	1. 00	28. 90

- 233 -

	ATOM	2574	С	THR	361	43. 162	-1. 637	75. 853	1. 00 35. 59
	ATOM	2575	0	THR	361	42.600	-0. 545	75. 837	1. 00 37. 16
	ATOM	2576	N	THR	362	44. 253	-1. 879	75. 135	1. 00 37. 62
	ATOM	2577	CA	THR	362	44. 812	-0. 819	74. 303	1.00 37.63
5	ATOM	2578	CB	THR	362	46. 341	-0. 949	74. 156	1. 00 38. 04
	ATOM	2579	0G1	THR	362	46.950	-0. 981	75.453	1. 00 37. 77
	ATOM	2580	CG2	THR	362	46.890	0. 242	73. 395	1. 00 37. 49
	ATOM	2581	C	THR	362	44. 183	-0. 839	72. 928	1.00 36.67
	ATOM	2582	0	THR	362	43. 758	0. 194	72. 416	1. 00 34. 48
10	ATOM	2583	N	ASP	363	44. 132	-2. 032	72. 345	1.00 37.88
	ATOM	2584	CA	ASP	363	43. 555	-2. 246	71.024	1. 00 40. 18
	ATOM	2585	CB	ASP	363	43. 238	-3. 729	70.842	1. 00 42. 13
	ATOM	2586	CG	ASP	363	44. 477	-4. 557	70.666	1. 00 45. 73
	ATOM	2587	0D1	ASP	363	44. 433	-5. 779	70. 932	1.00 49.54
15	ATOM	2588	OD2	ASP	363	45. 500	-3. 976	70. 247	1.00 46.04
	ATOM	2589	C	ASP	363	42. 289	-1. 429	70.841	1.00 40.28
	ATOM	2590	0	ASP	363	42.070	-0.801	69.802	1. 00 38. 03
	ATOM	2591	N	CYS	364	41. 455	-1. 449	71.871	1.00 41.60
	ATOM	2592	CA	CYS	364	40. 197	-0. 724	71.849	1.00 41.33
20	ATOM	2593	CB	CYS	364	39. 426	-1.036	73. 131	1.00 41.81
	ATOM	2594	SG	CYS	364	39. 078	-2. 818	73. 225	1. 00 41. 98
	ATOM	2595	C	CYS	364	40. 447	0.766	71.685	1. 00 39. 78
	ATOM	2596	0	CYS	364	39. 991	1. 382	70. 721	1. 00 37. 44
	ATOM	2597	N	ASP	365	41. 194	1. 333	72.622	1. 00 38. 65
25	ATOM	2598	CA	ASP	365	41. 525	2. 744	72. 580	1.00 37.87
	ATOM	2599	CB	ASP	365	42. 498	3.060	73. 709	1. 00 39. 53
	ATOM	2600	CG	ASP	365	42.073	2. 424	75. 014	1. 00 42. 28
	ATOM	2601	0D1	ASP	365	40. 887	2. 000	75. 096	1. 00 43. 06
	ATOM	2602	OD2	ASP	365	42. 908	2. 355	75. 949	1. 00 41. 82

- 234 -

	ATOM	2603	С	ASP	365	42. 123	3. 092	71. 220	1. 00 35. 70
	ATOM	2604	0	ASP	365	41. 887	4. 173	70. 682	1. 00 35. 49
	ATOM	2605	N	ILE	366	42. 895	2. 175	70. 655	1. 00 32. 72
	ATOM	2606	CA	ILE	366	43. 469	2. 428	69. 347	1. 00 31. 21
5	ATOM	2607	CB	ILE	366	44. 345	1. 241	68. 891	1. 00 30. 98
	ATOM	2608	CG2	ILE	366	44. 878	1. 488	67. 482	1. 00 30. 08
	ATOM	2609	CG1	ILE	366	45. 472	1. 010	69. 907	1. 00 30. 05
	ATOM	2610	CD1	ILE	366	46. 426	2. 165	70.071	1. 00 26. 19
	ATOM	2611	C	ILE	366	42. 292	2. 622	68. 384	1. 00 30. 65
10	ATOM	2612	0	ILE	366	42. 140	3. 686	67. 790	1. 00 29. 65
	ATOM	2613	N	VAL	367	41.451	1. 598	68. 255	1. 00 29. 81
	ATOM	2614	CA	VAL	367	40. 287	1.665	67. 378	1. 00 27. 24
	ATOM	2615	CB	VAL	367	39. 397	0.424	67. 541	1. 00 26. 77
	ATOM	2616	CG1	VAL	367	38. 193	0.520	66.630	1. 00 25. 16
15	ATOM	2617	CG2	VAL	367	40. 190	-0.817	67. 220	1. 00 27. 90
	ATOM	2618	C	VAL	367	39. 453	2. 910	67.657	1. 00 26. 82
	ATOM	2619	0	VAL	367	39.061	3.606	66.727	1. 00 27. 16
	ATOM	2620	N	ARG	368	39. 171	3. 191	68.927	1. 00 25. 49
	ATOM	2621	CA	ARG	368	38. 398	4. 380	69. 266	1. 00 24. 26
20	ATOM	2622	CB	ARG	368	38. 431	4. 644	70. 772	1. 00 23. 73
	ATOM	2623	CG	ARG	368	37. 765	5. 951	71. 217	1. 00 26. 32
	ATOM	2624	CD	ARG	368	36. 239	5. 948	71.033	1. 00 32. 00
	ATOM	2625	NE	ARG	368	35. 542	5. 015	71. 926	1. 00 33. 36
	ATOM	2626	CZ	ARG	368	35. 558	5. 096	73. 253	1. 00 33. 30
25	ATOM	2627	NH1	ARG	368	36. 237	6.069	73. 843	1. 00 36. 87
	ATOM	2628	NH2	ARG	368	34. 904	4. 209	73. 990	1. 00 30. 08
	ATOM	2629	C	ARG	368	39. 034	5. 545	68. 539	1. 00 25. 24
	ATOM	2630	0	ARG	368	38. 403	6. 175	67. 700	1. 00 26. 08
	ATOM	2631	N	ARG	369	40. 299	5. 808	68. 844	1. 00 26. 69

- 235 -

	ATOM	2632	CA	ARG	369	41. 022	6. 905	68. 226	1. 00 28. 80
	ATOM	2633	CB	ARG	369	42. 500	6. 842	68. 619	1. 00 33. 81
	ATOM	2634	CG	ARG	369	42. 992	8. 041	69. 421	1. 00 41. 54
	ATOM	2635	CD	ARG	369	44. 246	8. 666	68. 797	1. 00 47. 78
5	ATOM	2636	NE	ARG	369	44. 827	9. 709	69. 642	1. 00 53. 83
	ATOM	2637	CZ	ARG	369	45. 436	9. 479	70. 803	1. 00 57. 34
	ATOM	2638	NH1	ARG	369	45. 547	8. 234	71. 256	1. 00 57. 39
	ATOM	2639	NH2	ARG	369	45. 925	10. 492	71. 517	1. 00 58. 51
	ATOM	2640	c	ARG	369	40. 888	6. 941	66. 704	1. 00 27. 66
10	ATOM	2641	0	ARG	369	40. 898	8. 017	66. 116	1. 00 27. 35
	ATOM	2642	N	ALA	370	40. 760	5. 778	66.071	1. 00 28. 23
	ATOM	2643	CA	ALA	370	40. 622	5. 699	64. 613	1. 00 29. 69
	ATOM	2644	CB	ALA	370	40. 779	4. 264	64. 144	1. 00 27. 18
	ATOM	2645	C	ALA	370	39. 266	6. 218	64. 184	1. 00 32. 49
15	ATOM	2646	0	ALA	370	39. 155	7. 084	63. 313	1.00 33.37
	ATOM	2647	N	CYS	371	38. 229	5.663	64. 797	1. 00 35. 80
	ATOM	2648	CA	CYS	371	36. 860	6. 053	64. 500	1. 00 37. 09
	ATOM	2649	CB	CYS	371	35. 892	5. 310	65. 427	1. 00 37. 67
	ATOM	2650	SG	CYS	371	35. 709	3. 539	65.052	1. 00 43. 56
20	ATOM	2651	C	CYS	371	36. 692	7. 555	64.663	1. 00 36. 66
	ATOM	2652	0	CYS	371	36. 237	8. 231	63.746	1. 00 36. 14
	ATOM	2653	N	GLU	372	37. 079	8. 065	65.829	1. 00 36. 70
	ATOM	2654	CA	GLU	372	36. 962	9. 482	66. 140	1. 00 37. 83
	ATOM	2655	CB	GLU	372	37. 440	9. 741	67.569	1. 00 41. 72
25	ATOM	2656	CG	GLU	372	37. 405	11. 202	67. 993	1. 00 50. 44
	ATOM	2657	CD	GLU	372	38. 615	11. 981	67.504	1. 00 56. 78
	ATOM	2658	0E1	GLU	372	39. 747	11.656	67. 940	1. 00 60. 05
	ATOM	2659	0E2	GLU	372	38. 437	12. 914	66. 685	1. 00 59. 31
	ATOM	2660	C	GLU	372	37. 736	10. 344	65. 163	1. 00 36. 14

- 236 -

						200			
	ATOM	2661	0	GLU	372	37. 280	11. 410	64. 745	1. 00 34. 24
	ATOM	2662	N	SER	373	38. 917	9. 890	64. 793	1.00 37.31
	ATOM	2663	CA	SER	373	39. 703	10.662	63.856	1. 00 39. 48
	ATOM	2664	CB	SER	373	41. 095	10.040	63.694	1.00 40.54
5	ATOM	2665	0G	SER	373	41.014	8. 697	63. 253	1.00 41.31
	ATOM	2666	C	SER	373	38. 966	10.713	62.516	1. 00 38. 54
	ATOM	2667	0	SER	373	38. 778	11.790	61.953	1. 00 39. 30
	ATOM	2668	N	VAL	374	38. 528	9. 552	62.029	1.00 35.74
	ATOM	2669	CA	VAL	374	37. 817	9. 462	60. 755	1. 00 34. 53
10	ATOM	2670	CB	VAL	374	37. 519	7. 987	60. 388	1.00 33.30
	ATOM	2671	CG1	VAL	374	36. 688	7.897	59. 119	1. 00 30. 40
	ATOM	2672	CG2	VAL	374	38. 811	7. 257	60. 186	1.00 34.78
	ATOM	2673	С	VAL	374	36. 512	10. 250	60. 736	1.00 35.17
	ATOM	2674	0	VAL	374	36. 253	11.010	59. 797	1.00 34.51
15	ATOM	2675	N	SER	375	35. 700	10.080	61.775	1.00 35.24
	ATOM	2676	CA	SER	375	34. 416	10.768	61.866	1. 00 34. 91
	ATOM	2677	CB	SER	375	33. 641	10. 312	63. 103	1. 00 35. 91
	ATOM	2678	0G	SER	375	33. 802	11. 230	64. 178	1. 00 37. 28
	ATOM	2679	C	SER	375	34. 585	12. 272	61. 933	1. 00 34. 67
20	ATOM	2680	0	SER	375	33. 865	13. 010	61.266	1. 00 35. 17
	ATOM	2681	N	THR	376	35. 534	12. 725	62.743	1. 00 34. 00
	ATOM	2682	CA	THR	376	35. 768	14. 150	62.889	1. 00 35. 55
	ATOM	2683	CB	THR	376	36. 827	14. 421	63. 954	1. 00 38. 06
	ATOM	2684	0G1	THR	376	36. 461	13. 739	65. 158	1. 00 40. 51
25	ATOM	2685	CG2	THR	376	36. 926	15. 923	64. 239	1. 00 38. 22
	ATOM	2686	C	THR	376	36. 208	14. 788	61.583	1. 00 34. 80
	ATOM	2687	0	THR	376	35. 794	15. 901	61. 241	1. 00 32. 23
	ATOM	2688	N	ARG	377	37. 049	14. 078	60. 848	1. 00 36. 51
	ATOM	2689	CA	ARG	377	37. 5 2 3	14. 601	59. 581	1. 00 38. 20

- 237 -

ATOM 2690 CB ARG 377 38. 535 13. 640 58. 956 1.00 41.90 ATOM ARG 377 2691 CG 39. 417 14, 271 57, 892 1, 00 43, 83 ATOM 2692 CD ARG 377 38.735 14. 280 56.551 1.00 46.24 ATOM 2693 NE ARG 377 38.467 12. 921 56.074 1.00 50.02 ATOM 2694 CZ ARG 377 39.400 12.058 5 55.679 1. 00. 48. 89 ATOM 2695 NH1 ARG 377 40.681 12. 405 55. 700 1.00 47.77 ATOM NH2 ARG 377 39, 050 2696 10, 849 55, 256 1, 00 48, 65 ATOM 2697 C ARG 377 36. 311 14. 759 58, 688 1.00 37.15 ATOM 15. 780 58. 016 2698 0 ARG 377 36. 163 1.00 37.23 ATOM 2699 N ALA 378 35. 445 13, 744 58, 706 1.00 36.43 10 ATOM 2700 CA ALA 378 34. 212 13. 732 57. 920 1.00 35.58 ATOM 2701 CB ALA 378 33.470 12. 430 58, 130 1.00 35.75 ATOM 2702 C ALA 378 33. 314 14. 897 58. 304 1.00 34.75 ATOM 2703 0 ALA 378 32.675 15, 507 57.451 1.00 34.63 ATOM 15 2704 N ALA 379 33. 249 15. 204 59. 590 1.00 34.17 ATOM 2705 CA ALA 379 32. 427 16.317 60.009 1.00 34.54 ATOM 2706 ALA 379 32. 281 CB 16. 340 61.515 1. 00 32. 43 33.073 ATOM 2707 C ALA 379 17.607 59. 519 1.00 35.95 ATOM 2708 ALA 379 32, 465 18. 358 0 58, 761 1. 00 38, 27 20 ATOM 2709 N HIS 380 34. 314 17.856 59.925 1.00 35.13 ATOM 2710 CA HIS 380 34.994 19.083 59, 526 1.00 34.04 ATOM 2711 CB HIS 380 36. 448 19.031 59.968 1.00 37.01 ATOM 2712 CG HIS 380 36, 628 19. 284 61, 430 1, 00 42, 02 ATOM 2713 CD2 HIS 380 35. 734 19.637 62.385 1.00 43.27 ATOM ND1 HIS 380 25 2714 37, 852 19, 206 62, 058 1, 00 44, 66 ATOM 2715 CE1 HIS 380 37.704 19.500 63. 339 1.00 46.06 ATOM 2716 NE2 HIS 380 36. 429 19, 766 63, 562 1.00 44.63 ATOM 2717 C HIS 380 34, 894 19, 405 58. 045 1, 00 32, 37 ATOM 2718 0 HIS 380 34. 581 20. 536 57.671 1. 00 29. 98

- 238 -

	ATOM	2719	N	MET	381	35. 154	18. 417	57. 197	1. 00	30. 55
	ATOM	2720	CA	MET	381	35. 055	18. 640	55. 764	1. 00	30. 35
	ATOM	2721	CB	MET	381	35. 383	17. 365	54. 992	1. 00	28. 41
	ATOM	2722	CG	MET :	381	36. 852	17. 181	54. 767	1. 00	28. 31
5	ATOM	2723	SD	MET :	381	37. 505	18. 684	54. 017	1. 00	31.73
	ATOM	2724	CE	MET :	381	38. 142	18. 070	52. 446	1. 00	30.02
	ATOM	2725	C	MET :	381	33. 647	19. 101	55. 415	1. 00	32. 29
	ATOM	2726	0	MET 3	381	33. 453	19. 930	54. 527	1. 00	32. 42
	ATOM	2727	N	CYS :	382	32. 660	18. 566	56. 124	1. 00	33. 02
10	ATOM	2728	CA	CYS :	382	31. 279	18. 942	55. 869	1. 00	33. 44
	ATOM	2729	CB	CYS 3	382	30. 323	18. 012	56. 625	1. 00	33.78
	ATOM	2730	SG	CYS 3	382	28. 582	18. 152	56. 124	1. 00	40.21
	ATOM	2731	C	CYS 3	382	31. 087	20. 387	56. 316	1. 00	33.02
	ATOM	2732	0	CYS 3	382	30. 566	21. 218	55. 563	1. 00	32.71
15	ATOM	2733	N	SER 3	383	31. 528	20. 686	57. 537	1. 00	33. 57
	ATOM	2734	CA	SER 3	383	31. 418	22. 037	58. 097	1. 00	33. 39
	ATOM	2735	CB	SER 3	383	32. 232	22. 159	59. 392	1. 00	32. 88
	ATOM	2736	0G	SER 3	383	33. 605	21.877	59. 176	1. 00	31. 29
	ATOM	2737	С	SER 3	383	31. 935	23. 042	57. 085	1. 00	32.50
20	ATOM	2738	0	SER 3	383	31. 314	24. 073	56. 832	1. 00	32.64
	ATOM	2739	N	ALA 3	384	33. 082	22. 729	56. 501	1. 00	30.75
	ATOM	2740	CA	ALA 3	384	33. 663	23. 607	55. 510	1. 00	29.62
	ATOM	2741	CB	ALA 3	384	34. 787	22. 885	54. 789	1. 00	29 . 04
	ATOM	2742	С	ALA 3	384	32. 604	24. 095	54. 509	1. 00	29. 94
25	ATOM	2743	0	ALA 3	384	32. 211	25. 259	54. 544	1. 00	28. 35
	ATOM	2744	N	GLY 3	385	32. 141	23. 193	53. 639	1. 00	31. 38
	ATOM	2745	CA	GLY 3	385	31. 149	23. 525	52. 621	1. 00	30.00
	ATOM	2746	C	GLY 3	385	29. 870	24. 198	53. 090	1. 00	30. 54
	ATOM	2747	0	GLY 3	385	29. 522	25. 285	52. 613	1. 00	28. 88

- 239 -

	ATOM	2748	N	LEU	386	29. 151	23. 559	54. 010	1. 00	29. 58
	ATOM	2749	CA	LEU	386	27. 917	24. 148	54. 522	1. 00	28. 86
	ATOM	2750	CB	LEU	386	27. 410	23. 374	55. 749	1. 00	25. 55
	ATOM	2751	CG	LEU	386	26. 141	23. 824	56. 493	1. 00	21. 28
5	ATOM	2752	CD1	LEU	386	26.504	24. 768	57. 605	1.00	18.56
	ATOM	2753	CD2	LEU	386	25. 157	24. 456	55. 533	1.00	17. 77
	ATOM	2754	C	LEU	386	28. 199	25. 595	54. 898	1.00	30. 29
	ATOM	2755	0	LEU	386	27. 344	26. 458	54.728	1.00	30.86
	ATOM	2756	N	ALA	387	29. 413	25. 846	55. 393	1.00	32. 40
10	ATOM	2757	CA	ALA	387	29.851	27. 184	55. 799	1. 00	32. 84
	ATOM	2758	CB	ALA	387	31. 181	27. 101	56. 536	1.00	31. 99
	ATOM	2759	C .	ALA	387	29.991	28. 098	54. 585	1.00	34. 20
	ATOM	2760	0	ALA	387	29. 509	29. 235	54. 588	1.00	34. 34
	ATOM	2761	N	GLY	388	30.663	27. 597	53. 553	1. 00	34. 88
15	ATOM	2762	CA	GLY	388	30. 831	28. 378	52. 344	1.00	35. 13
	ATOM	2763	C	GLY	388	29. 467	28. 833	51.867	1. 00	35. 42
	ATOM	2764	0	GLY	388	29. 257	30. 005	51. 545	1.00	36. 39
	ATOM	2765	N	VAL	389	28. 524	27. 898	51. 839	1. 00	34. 42
	ATOM	2766	CA	VAL	389	27. 167	28. 202	51. 402	1. 00	32. 28
20	ATOM	2767	CB	VAL	389	26. 266	26. 949	51. 487	1. 00	31. 56
	ATOM	2768	CG1	VAL	389	24.856	27. 285	51.027	1. 00	28. 68
	ATOM	2769	CG2	VAL	389	26. 853	25. 836	50. 638	1. 00	28. 05
	ATOM	2770	C	VAL	389	26. 579	29. 307	52. 273	1. 00	30. 86
	ATOM	2771	0	VAL	389	26.072	30. 304	51.762	1. 00	26. 91
25	ATOM	2772	N	ILE	390	26. 665	29. 115	53. 586	1. 00	31.06
	ATOM	2773	CA	ILE	390	26. 146	30. 073	54. 548	1. 00	34. 83
	ATOM	2774	CB	ILE	390	26. 262	29. 538	56. 001	1. 00	32. 76
	ATOM	2775	CG2	ILE	390	25. 733	30. 562	56. 996	1. 00	31.45
	ATOM	2776	CG1	ILE	390	25. 425	28. 274	56. 154	1.00	32.06

- 240 -

	ATOM	2777	CD1	ILE	390	25. 311	27. 804	57. 572	1. 00 31. 73
	ATOM	2778	C	ILE	390	26. 858	31. 415	54. 444	1. 00 39. 01
	ATOM	2779	0	ILE	390	26. 209	32. 465	54. 370	1. 00 42. 11
	ATOM	2780	N	ASN	391	28. 186	31. 398	54. 437	1. 00 41. 07
5	ATOM	2781	CA	ASN	391	28. 921	32. 652	54. 326	1. 00 42. 97
	ATOM	2782	CB	ASN	391	30. 430	32. 386	54. 290	1.00 47.00
	ATOM	2783	CG	ASN	391	31.061	32. 452	55. 678	1. 00 51. 32
	ATOM	2784	0D1	ASN	391	32. 205	32. 029	55. 878	1. 00 51. 98
	ATOM	2785	ND2	ASN	391	30. 312	32. 996	56.646	1. 00 51.87
10	ATOM	2786	C	ASN	391	28. 459	33. 377	53. 070	1. 00 42. 59
	ATOM	2787	0	ASN	391	27. 927	34. 488	53. 141	1. 00 40. 64
	ATOM	2788	N	ARG	392	28. 638	32. 723	51. 928	1. 00 43. 30
	ATOM	2789	CA	ARG	392	28. 237	33. 277	50.644	1. 00 45. 75
	ATOM	2790	CB	ARG	392	28. 328	32. 182	49. 571	1. 00 48. 20
15	ATOM	2791	CG	ARG	392	27. 020	31. 811	48. 892	1. 00 54. 22
	ATOM	2792	CD	ARG	392	26. 803	32. 578	47. 590	1.00 59.36
	ATOM	2793	NE	ARG	392	27. 491	31. 984	46. 437	1. 00 66. 46
	ATOM	2794	CZ	ARG	392	28. 794	32. 098	46. 156	1. 00 69. 91
	ATOM	2795	NH1	ARG	392	29. 613	32. 793	46. 941	1. 00 69. 61
20	ATOM	2796	NH2	ARG	392	29. 279	31. 524	45.063	1. 00 70. 50
	ATOM	2797	C	ARG	392	26. 822	33. 854	50.711	1. 00 45. 30
	ATOM	2798	0	ARG	392	26. 474	34. 777	49. 973	1. 00 44. 35
	ATOM	2799	N	MET	393	26. 009	33. 316	51.607	1. 00 47. 21
	ATOM	2800	CA	MET	393	24. 640	33. 785	51. 739	1. 00 50. 87
25	ATOM	2801	CB	MET	393	23. 761	32. 687	52. 346	1. 00 49. 84
	ATOM	2802	CG	MET	393	23. 427	31. 551	51.389	1. 00 45. 97
	ATOM	2803	SD	MET	393	22. 244	30. 416	52.096	1. 00 42. 67
	ATOM	2804	CE	MET	393	20. 761	31. 465	52. 244	1. 00 42. 67
	ATOM	2805	C	MET	393	24. 559	35. 046	52. 581	1. 00 54. 43

- 241 -

	ATOM	2806	0	MET	393	23. 631	35. 851	52. 443	1. 00	53. 85
	ATOM	2807	N	ARG	394	25. 528	35. 208	53. 469	1. 00	59. 09
	ATOM	2808	CA	ARG	394	25. 568	36. 386	54. 314	1. 00	64. 57
	ATOM	2809	СВ	ARG	394	26. 624	36. 224	55. 404	1. 00	65. 91
5	ATOM	2810	CG	ARG	394	26. 830	37, 477	56. 228	1. 00	67. 95
	ATOM	2811	CD	ARG	394	28. 048	37. 364	57. 130	1. 00	69. 02
	ATOM	2812	NE	ARG	394	28. 499	38. 673	57. 600	1. 00	68. 97
	ATOM	2813	CZ	ARG	394	27. 776	39. 494	58. 357	1. 00	69. 21
	ATOM	2814	NH1	ARG	394	26. 553	39. 151	58. 743	1. 00	70. 35
10	ATOM	2815	NH2	ARG	394	28. 281	40. 662	58. 732	1. 00	68. 24
	ATOM	2816	C	ARG	394	25. 952	37. 537	53. 404	1. 00	67. 94
	ATOM	2817	0	ARG	394	25. 306	38. 588	53. 391	1. 00	67. 14
	ATOM	2818	N	GLU	395	27. 012	37. 313	52. 633	1. 00	72. 08
	ATOM	2819	CA	GLU	395	27. 513	38. 314	51.707	1. 00	77. 04
15	ATOM	2820	CB	GLU	395	28. 578	37. 691	50. 784	1. 00	78. 09
	ATOM	2821	CG	GLU	395	29. 425	38. 685	49. 955	1. 00	81. 99
	ATOM	2822	CD	GLU	395	30. 402	39. 533	50. 789	1. 00	84. 19
	ATOM	2823	0E1	GLU	395	29. 949	40. 442	51.526	1. 00	83. 64
	ATOM	2824	0E2	GLU	395	31. 631	39. 290	50. 702	1. 00	84. 22
20	ATOM	2825	C	GLU	395	26. 340	38. 873	50. 898	1. 00	79. 30
	ATOM	2826	0	GLU	395	26. 250	40.078	50. 683	1. 00	81. 15
	ATOM	2827	N	SER	396	25. 423	38. 007	50. 481	1. 00	81. 59
	ATOM	2828	CA	SER	396	24. 276	38. 451	49. 696	1. 00	83. 40
	ATOM	2829	CB	SER	396	23. 379	37. 264	49. 366	1. 00	84.05
25	ATOM	2830	0G	SER	396	24. 123	36. 252	48.716	1. 00	86. 28
	ATOM	2831	C	SER	396	23. 462	39. 526	50. 406	1. 00	84. 36
	ATOM	2832	0	SER	396	23. 578	40. 708	50. 092	1. 00	84. 49
	ATOM	2833	N	ARG	397	22. 639	39. 118	51. 362	1. 00	86. 41
	ATOM	2834	CA	ARG	397	21.812	40.070	52. 090	1. 00	88. 71

- 242 -

	ATOM	2835	CB	ARG	397	20. 682	39. 335	52.816	1. 00 89. 74
	ATOM	2836	CG	ARG	397	19. 579	40. 241	53. 346	1. 00 90. 87
	ATOM	2837	CD	ARG	397	19.096	39. 776	54. 713	1. 00 91. 04
	ATOM	2838	NE	ARG	397	20. 021	40. 158	55. 782	1. 00 89. 87
5	ATOM	2839	CZ	ARG	397	19. 905	39. 766	57. 047	1. 00 89. 80
	ATOM	2840	NH1	ARG	397	18. 906	38. 971	57. 409	1. 00 91. 15
	ATOM	2841	NH2	ARG	397	20. 779	40. 174	57. 955	1. 00 87. 97
	ATOM	2842	C	ARG	397	22. 653	40. 847	53. 102	1. 00 89. 74
	ATOM	2843	0	ARG	397	22. 585	40. 588	54. 305	1. 00 90. 41
10	ATOM	2844	N	SER	398	23. 448	41. 795	52. 614	1. 00 90. 58
	ATOM	2845	CA	SER	398	24. 288	42. 602	53. 492	1.00 91.09
	ATOM	2846	CB	SER	398	24. 903	43. 782	52. 718	1. 00 91. 14
	ATOM	2847	0G	SER	398	25. 845	43. 347	51.747	1. 00 89. 49
	ATOM	2848	C	SER	398	23. 470	43. 129	54. 677	1. 00 91. 27
15	ATOM	2849	0	SER	398	22. 458	43. 810	54. 496	1. 00 91. 10
	ATOM	2850	N	GLU	399	23. 904	42. 786	55. 887	1. 00 91. 43
	ATOM	2851	CA	GLU	399	23. 238	43. 233	57. 108	1. 00 90. 89
	ATOM	2852	CB	GLU	399	21. 799	42. 705	57. 183	1. 00 91. 87
	ATOM	2853	CG	GLU	399	20. 969	43. 349	58. 298	1. 00 93. 31
20	ATOM	2854	CD	GLU	399	20. 726	44. 836	58.064	1. 00 94. 22
	ATOM	2855	0E1	GLU	399	20. 270	45. 533	58. 999	1. 00 93. 53
	ATOM	2856	0E2	GLU	399	20. 986	45. 307	56. 936	1. 00 94. 80
	ATOM	2857	C	GLU	399	24. 013	42. 774	58. 339	1. 00 89. 25
	ATOM	2858	0	GLU	399	24. 987	42. 029	58. 236	1. 00 88. 96
25	ATOM	2859	N	ASP	400	23. 570	43. 226	59. 502	1. 00 87. 38
	ATOM	2860	CA	ASP	400	24. 214	42. 883	60. 754	1. 00 85. 70
	ATOM	2861	CB	ASP	400	23. 332	43. 352	61.915	1. 00 88. 35
	ATOM	2862	CG	ASP	400	22. 861	44. 795	61.743	1. 00 90. 64
	ATOM	2863	0D1	ASP	400	22. 059	45. 055	60.817	1. 00 91. 42

- 243 -

						2-10				
	ATOM	2864	0D2	ASP	400	23. 297	45. 671	62. 524	1. 00	91.68
	ATOM	2865	C	ASP	400	24. 496	41.385	60. 853	1. 00	82. 94
	ATOM	2866	0	ASP	400	25. 506	40. 900	60. 346	1. 00	82.03
	ATOM	2867	N	VAL	401	23. 593	40. 658	61.502	1. 00	79. 90
5	ATOM	2868	CA	VAL	401	23. 738	39. 219	61. 682	1. 00	75. 91
	ATOM	2869	CB	VAL	401	23. 607	38. 841	63. 153	1. 00	74. 20
	ATOM	2870	CG1	VAL	401	24. 803	39. 343	63.927	1. 00	73. 12
	ATOM	2871	CG2	VAL	401	22. 314	39. 430	63.710	1.00	72. 79
	ATOM	2872	С	VAL	401	22.662	38. 458	60. 925	1. 00	74. 63
10	ATOM	2873	0	VAL	401	21. 489	38. 846	60. 942	1.00	75.56
	ATOM	2874	N	MET	402	23. 063	37. 365	60. 278	1. 00	70.61
	ATOM	2875	CA	MET	402	22. 130	36. 539	59. 521	1.00	65.65
	ATOM	2876	CB	MET	402	22. 818	35. 887	58. 325	1.00	62.74
	ATOM	2877	CG	MET	402	21. 897	34. 958	57. 543	1. 00	56. 61
15	ATOM	2878	SD	MET	402	22. 543	34. 551	55. 906	1. 00	52. 49
	ATOM	2879	CE	MET	402	23. 857	33. 399	56. 323	1. 00	49.76
	ATOM	2880	C	MET	402	21. 532	35, 450	60. 381	1. 00	65.00
	ATOM	2881	0	MET	402	22. 222	34. 513	60. 781	1. 00	65. 18
	ATOM	2882	N	ARG	403	20. 241	35. 575	60. 657	1. 00	63. 62
20	ATOM	2883	CA	ARG	403	19. 535	34. 593	61.462	1.00	61.57
	ATOM	2884	CB	ARG	403	18. 418	35. 275	62. 262	1. 00	64 . 83
	ATOM	2885	CG	ARG	403	18.856	36. 547	62. 987	1. 00	70.01
	ATOM	2886	CD	ARG	403	17. 691	37. 205	63. 724	1. 00	75. 36
	ATOM	2887	NE	ARG	403	17. 412	36. 582	65. 018	1. 00	80.50
25	ATOM	2888	CZ	ARG	403	16. 305	36. 788	65. 731	1. 00	83. 41
	ATOM	2889	NH1	ARG	403	15. 358	37. 603	65. 277	1. 00	84. 55
	ATOM	2890	NH2	ARG	403	16. 147	36. 187	66. 907	1. 00	83. 64
	ATOM	2891	C	ARG	403	18. 946	33. 560	60. 504	1.00	57.99
	ATOM	2892	0	ARG	403	17. 775	33. 639	60. 135	1. 00	58. 57

- 244 -

	ATOM	2893	N	ILE	404	19.762	32. 597	60. 091	1. 00	52. 97
	ATOM	2894	CA	ILE	404	19. 301	31. 570	59. 170	1.00	49. 14
	ATOM	2895	CB	ILE	404	20. 293	31. 412	57. 999	1. 00	47. 44
	ATOM	2896	CG2	ILE	404	21. 538	30. 680	58. 458	1.00	43. 94
5	ATOM	2897	CG1	ILE	404	19. 629	30. 649	56. 854	1. 00	48. 45
	ATOM	2898	CD1	ILE	404	20. 477	30. 559	55. 598	1.00	48. 95
	ATOM	2899	C	ILE	404	19. 126	30. 222	59. 879	1. 00	48. 34
	ATOM	2900	0	ILE	404	19. 771	29. 967	60.897	1. 00	48. 83
	ATOM	2901	N	THR	405	18. 236	29. 380	59. 346	1. 00	46. 42
10	ATOM	2902	CA	THR	405	17. 956	28. 043	59. 892	1.00	42. 37
	ATOM	2903	CB	THR	405	16.451	27. 838	60. 222	1.00	41.93
	ATOM	2904	0G1	THR	405	16.010	28. 839	61. 145	1.00	43. 89
	ATOM	2905	CG2	THR	405	16.227	26.475	60.849	1.00	38. 85
	ATOM	2906	C	THR	405	18. 332	26. 990	58.857	1. 00	39. 95
15	ATOM	2907	0	THR	405	18. 178	27. 204	57. 653	1. 00	38. 97
	ATOM	2908	N	VAL	406	18. 809	25. 844	59. 324	1. 00	38. 10
	ATOM	2909	CA	VAL	406	19. 195	24. 776	58. 414	1. 00	36. 64
	ATOM	2910	CB	VAL	406	20.686	24. 442	58. 563	1.00	35. 12
	ATOM	2911	CG1	VAL	406	21.069	23. 342	57.600	1. 00	35. 29
20	ATOM	2912	CG2	VAL	406	21.515	25. 672	58. 303	1.00	35. 40
	ATOM	2913	C	VAL	406	18. 390	23. 499	58. 635	1. 00	35. 83
	ATOM	2914	0	VAL	406	18. 214	23. 058	59. 765	1.00	37.06
	ATOM	2915	N	GLY	407	17. 895	22. 915	57. 549	1. 00	34. 50
	ATOM	2916	CA	GLY	407	17. 143	21. 680	57. 653	1. 00	32. 79
25	ATOM	2917	C	GLY	407	18.074	20. 522	57. 353	1. 00	32 . 90
	ATOM	2918	0	GLY	407	18. 704	20. 467	56. 294	1.00	33.85
	ATOM	2919	N	VAL	408	18. 177	19. 585	58. 279	1. 00	31. 27
	ATOM	2920	CA	VAL	408	19.064	18. 466	58.054	1. 00	29.57
	ATOM	2921	CB	VAL	408	20. 199	18. 491	59.042	1.00	29.66

- 245 -

	ATOM	2922	CG1	VAL	408	21. 390	17. 767	58. 468	1. 00 31. 77
	ATOM	2923	CG2	VAL	408	20. 515	19. 916	59. 412	1. 00 29. 91
	ATOM	2924	C	VAL	408	18. 366	17. 135	58. 206	1. 00 29. 58
	ATOM	2925	0	VAL	408	17. 392	17. 015	58. 942	1. 00 28. 54
5	ATOM	2926	N	ASP	409	18. 878	16. 131	57. 509	1.00 30.15
	ATOM	2927	CA	ASP	409	18. 324	14. 789	57. 598	1. 00 31. 95
	ATOM	2928	CB	ASP	409	17. 109	14. 635	56. 674	1.00 35.66
	ATOM	2929	CG	ASP	409	16. 455	13. 252	56. 775	1.00 40.01
	ATOM	2930	0D1	ASP	409	15.613	12. 928	55. 898	1. 00 40. 26
10	ATOM	2931	0D2	ASP	409	16. 773	12. 499	57. 728	1. 00 39. 33
	ATOM	2932	c	ASP	409	19. 415	13. 824	57. 180	1.00 31.91
	ATOM	2933	0	ASP	409	20. 352	14. 208	56. 484	1. 00 32. 39
	ATOM	2934	N	GLY	410	19. 300	12. 574	57.607	1.00 31.09
	ATOM	2935	CA	GLY	410	20. 299	11. 593	57. 233	1.00 29.56
15	ATOM	2936	C	GLY	410	20.703	10.704	58. 385	1. 00 29. 32
	ATOM	2937	0	GLY	410	20. 510	11. 041	59. 558	1. 00 28. 27
	ATOM	2938	N	SER	411	21. 282	9. 559	58. 053	1. 00 28. 24
	ATOM	2939	CA	SER	411	21. 699	8. 631	59.086	1. 00 27. 52
	ATOM	2940	CB	SER	411	22. 018	7. 253	58. 481	1. 00 29. 46
20	ATOM	2941	0G	SER	411	23. 016	7. 316	57. 471	1. 00 31. 64
	ATOM	2942	C	SER	411	22. 895	9. 160	59. 863	1. 00 25. 78
	ATOM	2943	0	SER	411	22. 909	9. 113	61.090	1. 00 25. 89
	ATOM	2944	N	VAL	412	23. 890	9. 687	59. 161	1. 00 23. 18
	ATOM	2945	CA	VAL	412	25.076	10. 185	59. 839	1. 00 21. 25
25	ATOM	2946	CB	VAL	412	26. 099	10.669	58. 841	1. 00 20. 56
	ATOM	2947	CG1	VAL	412	27. 372	11.084	59. 564	1. 00 17. 73
	ATOM	2948	CG2	VAL	412	26. 378	9. 552	57. 857	1. 00 20. 59
	ATOM	2949	C	VAL	412	24. 769	11. 300	60.818	1. 00 20. 44
	ATOM	2950	0	VAL	412	25. 182	11. 262	61. 983	1. 00 21. 51

- 246 -

	ATOM	2951	N	TYR	413	24. 033	12. 288	60. 340	1. 00	16. 42
	ATOM	2952	CA	TYR	413	23. 659	13. 409	61. 171	1.00	16. 41
	ATOM	2953	CB	TYR	413	23. 095	14. 526	60. 288	1.00	16. 40
	ATOM	2954	CG	TYR	413	22. 700	15. 762	61.051	1.00	14. 37
5	ATOM	2955	CD1	TYR	413	23. 645	16.707	61. 434	1.00	13. 43
	ATOM	2956	CE1	TYR	413	23. 296	17. 789	62. 226	1.00	13. 93
	ATOM	2957	CD2	TYR	413	21. 401	15. 939	61.470	1.00	13. 10
	ATOM	2958	CE2	TYR	413	21. 049	17.007	62. 256	1.00	15.82
	ATOM	2959	CZ	TYR	413	21. 994	17. 927	62. 638	1.00	14.65
10	ATOM	2960	ОН	TYR	413	21.620	18. 948	63. 475	1.00	16.02
	ATOM	2961	C	TYR	413	22. 626	13.007	62. 233	1.00	17. 41
	ATOM	2962	0	TYR	413	22. 364	13. 758	63. 172	1.00	18. 36
	ATOM	2963	N	LYS	414	22. 035	11.826	62. 103	1.00	18. 12
	ATOM	2964	CA	LYS	414	21. 033	11. 426	63. 083	1.00	19. 00
15	ATOM	2965	CB	LYS	414	19. 706	11. 130	62. 384	1. 00	19. 22
	ATOM	2966	CG	LYS	414	18. 962	12. 358	61.894	1.00	18. 92
	ATOM	2967	CD	LYS	414	17. 615	11. 965	61. 314	1.00	21. 36
	ATOM	2968	CE	LYS	414	16. 829	13. 181	60. 855	1.00	25. 08
	ATOM	2969	NZ	LYS	414	15. 567	12. 829	60. 132	1.00	28.46
20	ATOM	2970	C	LYS	414	21. 400	10. 249	63. 975	1.00	20. 50
	ATOM	2971	0	LYS	414	20. 637	9. 883	64. 871	1. 00	21. 27
	ATOM	2972	N	LEU	415	22. 565	9.655	63. 753	1.00	22. 22
	ATOM	2973	CA	LEU	415	22. 958	8. 511	64. 565	1.00	23. 27
	ATOM	2974	CB	LEU	415	22. 679	7. 218	63. 784	1. 00	21. 47
25	ATOM	2975	CG	LEU	415	21. 234	6. 978	63. 313	1. 00	17. 45
	ATOM	2976	CD1	LEU	415	21. 158	5. 672	62. 545	1.00	16.66
	ATOM	2977	CD2	LEU	415	20. 293	6. 954	64. 498	1. 00	14. 44
	ATOM	2978	C	LEU	415	24. 418	8. 566	65. 033	1. 00	25. 05
	ATOM	2979	0	LEU	415	24. 921	7.625	65. 657	1.00	26.05

- 247 -

	ATOM	2980	N	HIS	416	25. 095	9. 673	64. 736	1. 00	24. 04
										J 1. 04
	ATOM	2981	CA	HIS	416	26. 481	9. 852	65. 147	1. 00	22. 40
	ATOM	2982	CB	HIS	416	27. 365	9. 997	63. 922	1. 00	23. 29
	ATOM	2983	CG	HIS	416	27. 383	8. 774	63.069	1. 00	25. 75
5	ATOM	2984	CD2	HIS	416	28. 392	7. 937	62. 729	1. 00	27. 82
	ATOM	2985	ND 1	HIS	416	26. 241	8. 248	62. 506	1. 00	26.69
	ATOM	2986	CE1	HIS	416	26. 545	7. 138	61.857	1. 00	28. 69
	ATOM	2987	NE2	HIS	416	27. 844	6. 926	61. 977	1.00	28. 20
	ATOM	2988	C	HIS	416	26. 577	11. 080	66. 027	1. 00	21.63
10	ATOM	2989	0	HIS	416	26.808	12. 184	65. 558	1. 00	22. 44
	ATOM	2990	N	PRO	417	26. 386	10. 898	67. 331	1. 00	21. 25
	ATOM	2991	CD	PR0	417	26. 126	9. 627	68. 015	1. 00	22. 18
	ATOM	2992	CA	PR0	417	26. 440	11. 991	68. 297	1. 00	22. 07
	ATOM	2993	CB	PR0	417	26. 447	11. 258	69. 627	1. 00	21. 52
15	ATOM	2994	CG	PR0	417	25. 565	10. 108	69. 340	1. 00	23. 41
	ATOM	2995	C	PRO	417	27. 655	12. 874	68. 113	1.00	22. 46
	ATOM	2996	0	PR0	417	27. 519	14. 076	67. 878	1. 00	22. 18
	ATOM	2997	N	SER	418	28. 835	12. 262	68. 221	1. 00	20. 96
	ATOM	2998	CA	SER	418	30. 105	12. 959	68.064	1. 00	18. 32
20	ATOM	2999	CB	SER	418	31. 264	11.962	68. 076	1.00	20. 88
	ATOM	3000	0G	SER	418	32. 419	12. 512	67. 460	1. 00	24. 12
	ATOM	3001	C	SER	418	30. 099	13. 720	66. 757	1.00	15. 71
	ATOM	3002	0	SER	418	30. 269	14. 935	66. 742	1. 00	16. 10
	ATOM	3003	N	PHE	419	29. 905	13. 010	65. 656	1. 00	11. 39
25	ATOM	3004	CA	PHE	419	29. 864	13. 683	64. 379	1. 00	10. 22
	ATOM	3005	CB	PHE	419	29. 243	12. 789	63. 335	1. 00	5. 53
	ATOM	3006	CG	PHE	419	29. 035	13. 468	62. 034	1. 00	1. 42
	ATOM	3007	CD1	PHE	419	29. 814	13. 137	60. 942	1. 00	3. 13
	ATOM	3008	CD2	PHE	419	28. 080	14. 449	61. 893	1. 00	1. 00

- 248 -

						L 10				
	ATOM	3009	CE1	PHE	419	29. 648	13. 773	59. 712	1.00	1. 47
	ATOM	3010	CE2	PHE	419	27. 909	15.088	60. 670	1.00	2. 68
	ATOM	3011	CZ	PHE	419	28. 699	14. 746	59. 575	1.00	1.00
	ATOM	3012	C	PHE	419	29. 037	14. 965	64. 472	1.00	12. 48
5	ATOM	3013	0	PHE	419	29. 520	16.048	64. 156	1. 00	12. 11
	ATOM	3014	N	LYS	420	27. 785	14. 838	64. 900	1.00	15. 88
	ATOM	3015	CA	LYS	420	26. 917	16.000	64. 994	1.00	20. 63
	ATOM	3016	CB	LYS	420	25. 525	15.610	65. 522	1.00	21. 26
	ATOM	3017	CG	LYS	420	24. 470	16. 730	65. 361	1.00	22. 35
10	ATOM	3018	CD	LYS	420	23. 045	16. 288	65. 686	1.00	22.81
	ATOM	3019	CE	LYS	420	22. 942	15. 740	67. 102	1.00	25. 24
	ATOM	3020	NZ	LYS	420	21.616	15. 092	67. 350	1.00	27. 51
	ATOM	3021	C	LYS	420	27. 505	17. 099	65. 866	1.00	24. 04
	ATOM	3022	0	LYS	420	27. 533	18. 260	65. 465	1.00	23. 74
15	ATOM	3023	N	GLU	421	27. 978	16. 733	67. 053	1. 00	29. 67
	ATOM	3024	CA	GLU	421	28. 550	17. 701	67. 999	1.00	34. 96
	ATOM	3025	CB	GLU	421	29. 075	16. 972	69. 244	1. 00	36. 76
	ATOM	3026	CG	GLU	421	29. 292	17. 843	70. 480	1. 00	40. 52
	ATOM	3027	CD	GLU	421	29. 895	17. 047	71. 638	1.00	43. 55
20	ATOM	3028	0E1	GLU	421	30. 981	16. 467	71. 445	1.00	47.03
	ATOM	3029	0E2	GLU	421	29. 294	16. 990	72. 734	1. 00	43. 28
	ATOM	3030	C	GLU	421	29. 680	18. 512	67. 369	1. 00	36. 40
	ATOM	3031	0	GLU	421	29. 689	19. 745	67. 442	1. 00	38. 37
	ATOM	3032	N	ARG	422	30.629	17. 816	66.751	1. 00	35. 66
25	ATOM	3033	CA	ARG	422	31. 755	18. 477	66. 124	1. 00	35. 13
	ATOM	3034	CB	ARG	422	32. 801	17. 449	65. 684	1.00	38. 76
	ATOM	3035	CG	ARG	422	33. 277	16. 525	66.811	1. 00	46.51
	ATOM	3036	CD	ARG	422	33. 915	17. 286	67. 980	1.00	51.67
	ATOM	3037	NE	ARG	422	35. 322	17. 578	67. 732	1.00	57. 41

- 249 -

	ATOM	3038	CZ	ARG	422	36. 269	16. 649	67. 625	1. 00	60. 70
	ATOM	3039	NH1	ARG	422	35. 956	15. 364	67. 749	1. 00	60. 82
	ATOM	3040	NH2	ARG	422	37. 529	17. 002	67. 380	1. 00	61. 68
	ATOM	3041	C	ARG	422	31. 256	19. 278	64. 942	1. 00	33. 47
5	ATOM	3042	0	ARG	422	31. 585	20. 450	64. 803	1. 00	35. 28
	ATOM	3043	N	PHE	423	30. 446	18.654	64.096	1.00	32. 46
	ATOM	3044	CA	PHE	423	29. 901	19. 348	62. 930	1. 00	30. 30
	ATOM	3045	CB	PHE	423	28. 949	18. 423	62. 165	1.00	27. 32
	ATOM	3046	CG	PHE	423	28. 188	19. 106	61.063	1.00	23. 75
10	ATOM	3047	CD1	PHE	423	26. 891	19. 552	61. 270	1.00	22. 33
	ATOM	3048	CD2	PHE	423	28. 765	19. 293	59. 814	1.00	23. 98
	ATOM	3049	CE1	PHE	423	26. 178	20. 169	60. 245	1. 00	22. 83
	ATOM	3050	CE2	PHE	423	28.061	19. 909	58. 784	1.00	22. 46
	ATOM	3051	CZ	PHE	423	26. 769	20. 347	59.001	1. 00	22. 73
15	ATOM	3052	C	PHE	423	29. 185	20. 663	63. 280	1. 00	29. 75
	ATOM	3053	0	PHE	423	29. 328	21.652	62. 568	1.00	27. 58
	ATOM	3054	N	HIS	424	28. 415	20.694	64. 363	1.00	30. 19
	ATOM	3055	CA	HIS	424	27. 743	21. 936	64. 692	1. 00	32. 48
	ATOM	3056	CB	HIS	424	26. 754	21. 760	65. 835	1.00	32. 75
20	ATOM	3057	CG	HIS	424	25. 412	21. 279	65. 387	1. 00	31. 94
	ATOM	3058	CD2	HIS	424	24. 980	20.860	64. 176	1. 00	29. 85
	ATOM	3059	ND1	HIS	424	24. 341	21. 147	66. 243	1. 00	32. 28
	ATOM	3060	CE1	HIS	424	23. 308	20. 661	65. 580	1.00	30. 67
	ATOM	3061	NE2	HIS	424	23. 670	20. 477	64. 323	1. 00	30. 19
25	ATOM	3062	C	HIS	424	28. 737	23. 011	65. 048	1. 00	35. 15
	ATOM	3063	0	HIS	424	28. 689	24. 102	64. 487	1. 00	36. 91
	ATOM	3064	N	ALA	425	29. 636	22. 711	65. 979	1.00	36. 32
	ATOM	3065	CA	ALA	425	30. 652	23. 675	66. 395	1.00	36. 74
	ATOM	3066	CB	ALA	425	31. 542	23. 058	67. 444	1.00	35. 43

- 250 -

	ATOM	3067	C	ALA	425	31. 492	24. 149	65. 201	1.00 37	. 82
	ATOM	3068	0	ALA	425	31. 420	25. 316	64. 809	1. 00 38	. 66
	ATOM	3069	N	SER	426	32. 274	23. 243	64. 617	1. 00 37	. 75
	ATOM	3070	CA	SER	426	33. 113	23. 576	63. 466	1.00 37	. 83
5	ATOM	3071	CB	SER	426	33. 602	22. 289	62. 782	1. 00 38	. 67
	ATOM	3072	0G	SER	426	34. 440	22. 560	61. 667	1.00 37	. 85
	ATOM	3073	C	SER	426	32. 390	24. 461	62. 445	1. 00 37	. 21
	ATOM	3074	0	SER	426	33. 025	25. 151	61. 657	1.00 37	. 08
	ATOM	3075	N	VAL	427	31.064	24. 443	62. 450	1.00 37	. 84
10	ATOM	3076	CA	VAL	427	30. 321	25. 269	61.510	1.00 38	. 87
	ATOM	3077	CB	VAL	427	28. 935	24.667	61. 194	1.00 39	. 38
	ATOM	3078	CG1	VAL	427	28. 000	25. 744	60. 633	1.00 37	. 50
	ATOM	3079	CG2	VAL	427	29. 092	23. 534	60. 188	1.00 36	. 83
	ATOM	3080	C	VAL	427	30. 138	26.655	62.090	1.00 39	. 54
15	ATOM	3081	0	VAL	427	30. 578	27. 639	61.512	1.00 40	. 58
	ATOM	3082	N	ARG	428	29. 483	26. 724	63. 238	1.00 40	. 14
	ATOM	3083	CA	ARG	428	29. 247	27. 993	63. 897	1. 00 42	. 86
	ATOM	3084	CB	ARG	428	28. 603	27. 739	65. 258	1.00 42	. 72
	ATOM	3085	CG	ARG	428	27. 288	26. 982	65. 186	1. 00 43	. 31
20	ATOM	3086	CD	ARG	428	27. 139	26.044	66. 378	1.00 46	i. 03
	ATOM	3087	NE	ARG	428	25. 802	25. 461	66. 485	1. 00 47	. 83
	ATOM	3088	CZ	ARG	428	24. 690	26. 173	66. 648	1.00 48	. 39
	ATOM	3089	NH1	ARG	428	24. 757	27. 499	66. 716	1. 00 47	. 35
	ATOM	3090	NH2	ARG	428	23. 516	25. 559	66. 756	1.00 47	. 34
25	ATOM	3091	C	ARG	428	30. 561	28. 768	64.064	1.00 44	. 67
	ATOM	3092	0	ARG	428	30. 577	30. 001	64.060	1.00 45	. 05
	ATOM	3093	N	ARG	429	31.663	28. 037	64. 195	1. 00 45	j. 77
	ATOM	3094	CA	ARG	429	32. 972	28. 652	64. 378	1. 00 46	5. 48
	ATOM	3095	CB	ARG	429	33. 849	27. 738	65. 244	1.00 52	2. 63

WO 03/097824 PCT/JP03/06054 - 251 -ATOM 3096 CG ARG 429 33. 260 27, 471 66, 648 1, 00 59, 36 ATOM 3097 CD ARG 429 33.828 26. 199 67.328 1.00 64.53 ATOM ARG 429 3098 NE 35, 247 26, 286 67.677 1, 00 66, 23 ATOM 3099 CZARG 429 35.963 25. 274 68. 159 1.00 66.80 ATOM 3100 NH1 ARG 429 35. 398 24.083 68.357 1.00 66.02 ATOM 3101 NH2 ARG 429 37, 249 25, 455 68.435 1, 00 68, 38 ATOM 3102 C ARG 429 33.657 28. 954 63.049 1.00 44.06 ATOM 3103 ARG 429 0 34, 885 28, 943 62, 954 1, 00 43, 92 ATOM 3104 N LEU 430 32.847 29. 221 62.029 1.00 41.46 ATOM 3105 CA LEU 430 29, 551 60, 692 33, 333 1, 00 40, 12 ATOM 3106 CBLEU 430 33.495 28.300 59.830 1.00 35.57 ATOM 3107 CG LEU 430 34.755 27.468 60.042 1.00 34.48 ATOM 3108 CD1 LEU 430 34.764 26. 279 59.101 1.00 32.77 ATOM CD2 LEU 430 3109 35. 965 28. 332 59.806 1.00 33.57 ATOM 3110 С LEU 430 32. 332 30.468 60.029 1.00 42.10 ATOM 3111 LEU 430 0 32. 503 30.868 58.880 1.00 42.67 ATOM 3112 N THR 431 31. 280 30.797 60.763 1.00 44.70 ATOM 3113 30. 238 CA THR 431 31, 658 60, 239 1, 00 48, 98 ATOM 3114 CB THR 431 28.923 30.928 60.113 1.00 49.80 ATOM 3115 OG1 THR 431 28. 533 30.463 61.410 1, 00 50, 69 ATOM 3116 CG2 THR 431 29.048 29.758 59. 159 1.00 51.11 ATOM 3117 C THR 431 29, 999 32, 820 61, 174 1.00 51.66

5

10

15

20

25

3118 ATOM 0 THR 431 28.986 32.868 61.881 1.00 52.07 ATOM 3119 N PRO 432 30, 935 33, 774 61. 190 1. 00 52. 95 ATOM 3120 CD PRO 432 32. 179 33. 719 60. 403 1. 00 51. 90 ATOM 3121 CA PRO 432 30.886 34. 980 62.020 1. 00 52. 47 ATOM 3122 CB PRO 432 32. 135 35. 733 61. 587 1.00 54.48 ATOM 3123 CG PRO 432 33.073 34.623 61.176 1.00 54.21 ATOM 3124 C PRO 432 29.620 35. 783 61.739 1. 00 52. 15

- 252 -

						202				
	ATOM	3125	0	PR0	432	29. 257	35. 981	60. 582	1.00	49. 70
	ATOM	3126	N	SER	433	28. 955	36. 243	62. 793	1.00	53. 82
	ATOM	3127	CA	SER	433	27. 734	37. 042	62.652	1.00	57. 56
	ATOM	3128	CB	SER	433	28. 055	38. 372	61. 952	1.00	59. 89
5	ATOM	3129	0G	SER	433	28. 537	38. 176	60. 633	1.00	62. 34
	ATOM	3130	C	SER	433	26. 570	36. 340	61.926	1.00	57. 57
	ATOM	3131	0	SER	433	25. 907	36. 923	61.056	1.00	57. 63
	ATOM	3132	N	CYS	434	26. 327	35. 088	62.306	1.00	56. 67
	ATOM	3133	CA	CYS	434	25. 256	34. 275	61. 738	1.00	54. 67
10	ATOM	3134	CB	CYS	434	25. 805	33. 375	60. 634	1.00	54. 21
	ATOM	3135	SG	CYS	434	26. 729	34. 213	59. 354	1. 00 \$	55. 95
	ATOM	3136	C	CYS	434	24. 657	33. 390	62. 832	1.00	54. 71
	ATOM	3137	0	CYS	434	25. 381	32. 663	63. 513	1. 00	54. 74
	ATOM	3138	N	GLU	435	23. 344	33. 454	63. 011	1.00	54. 63
15	ATOM	3139	CA	GLU	435	22. 681	32. 621	64.009	1.00	54. 57
	ATOM	3140	CB	GLU	435	21. 529	33. 383	64. 681	1. 00 5	59. 73
	ATOM	3141	CG	GLU	435	21. 927	34. 615	65. 511	1.00	64. 17
	ATOM	3142	CD	GLU	435	20. 717	35. 479	65. 902	1.00	67. 96
	ATOM	3143	0E1	GLU	435	20. 905	36. 554	66. 521	1.00	68. 24
20	ATOM	3144	0E2	GLU	435	19. 574	35. 079	65. 584	1.00 6	69. 98
	ATOM	3145	C	GLU	435	22. 134	31. 378	63. 289	1.00	51. 70
	ATOM	3146	0	GLU	435	21. 058	31. 412	62. 685	1. 00 5	51. 14
	ATOM	3147	N	ILE	436	22. 889	30. 288	63. 350	1. 00	47. 61
	ATOM	3148	CA	ILE	436	22. 497	29. 046	62. 702	1. 00 4	43. 09
25	ATOM	3149	CB	ILE	436	23.719	28. 331	62. 118	1. 00 3	38. 65
	ATOM	3150	CG2	ILE	436	23. 278	27. 138	61. 300	1.00 3	38. 13
	ATOM	3151	CG1	ILE	436	24. 502	29. 286	61. 234	1.00 3	34. 79
	ATOM	3152	CD1	ILE	436	25. 768	28. 686	60. 710	1. 00 3	34. 08
	ATOM	3153	C	ILE	436	21. 798	28. 088	63. 664	1. 00 4	12. 96

- 253 -

						200		
	ATOM	3154	0	ILE 43	3 22. 40	03 27. 608	64.621	1. 00 43. 46
	ATOM	3155	N	THR 43	7 20. 52	21 27. 82	63. 402	1. 00 41. 73
	ATOM	3156	CA	THR 43	7 19. 72	24 26. 910	64. 218	1. 00 39. 10
	ATOM	3157	CB	THR 43	7 18. 38	84 27. 55	64.638	1. 00 37. 86
5	ATOM	3158	0G1	THR 43	7 18. 18	82 28. 76	63. 899	1. 00 37. 22
	ATOM	3159	CG2	THR 43	7 18. 37	70 27.856	66. 130	1. 00 37. 07
	ATOM	3160	C	THR 43	7 19. 43	30 25.672	63.380	1. 00 38. 74
	ATOM	3161	0	THR 43	7 18. 97	79 25. 784	62. 238	1. 00 39. 10
	ATOM	3162	N	PHE 43	3 19. 69	96 24. 494	63.936	1. 00 36. 24
10	ATOM	3163	CA	PHE 43	3 19. 44	49 23. 257	63.210	1. 00 33. 18
	ATOM	3164	CB	PHE 43	3 20. 55	56 22. 2 56	63.491	1. 00 30. 88
	ATOM	3165	CG	PHE 43	3 21.90	05 22. 742	63.093	1. 00 32. 48
	ATOM	3166	CD1	PHE 43	3 22. 59	97 23. 652	63.887	1. 00 31. 95
	ATOM	3167	CD2	PHE 43	3 22. 48	39 22. 301	61.913	1. 00 32. 85
15	ATOM	3168	CE 1	PHE 438	3 23. 85	57 24 . 118	63. 507	1. 00 31. 30
	ATOM	3169	CE2	PHE 438	3 23. 74	15 22 . 758	61.522	1. 00 32. 28
	ATOM	3170	CZ	PHE 438	3 24. 43	32 23. 668	62. 320	1. 00 31. 80
	ATOM	3171	C	PHE 438	18. 10	22. 648	63. 563	1. 00 33. 15
	ATOM	3172	0	PHE 438	17. 66	32 22 . 729	64. 705	1. 00 '34. 90
20	ATOM	3173	N	ILE 439	17. 45	0 22. 049	62. 570	1. 00 31. 06
	ATOM	3174	CA	ILE 439	16. 15	50 21.412	62.738	1. 00 28. 59
	ATOM	3175	CB	ILE 439	15. 01	10 22. 347	62. 321	1. 00 26. 74
	ATOM	3176	CG2	ILE 439	15. 26	88 22. 879	60. 937	1. 00 27. 91
	ATOM	3177	CG1	ILE 439	13. 68	33 21. 591	62.312	1. 00 27. 91
25	ATOM	3178	CD1	ILE 439	12. 54	15 22. 406	61.776	1. 00 26. 70
	ATOM	3179	C	ILE 439	16. 11	3 20. 190	61.837	1. 00 29. 76
	ATOM	3180	0	ILE 439	16. 20	8 20.310	60. 618	1.00 29.55
	ATOM	3181	N	GLU 440	15. 97	7 19. 014	62. 434	1. 00 30. 76
	ATOM	3182	CA	GLU 440	15. 93	17. 781	61.666	1. 00 32. 34

- 254 -

	ATOM	3183	CB	GLU	440	16. 028	16. 592	62.609	1. 00	34. 09
	ATOM	3184	CG	GLU	440	17. 272	16. 583	63. 458	1.00	38. 93
	ATOM	3185	CD	GLU	440	17. 339	15. 367	64. 353	1. 00	43. 10
	ATOM	3186	0E1	GLU	440	16. 378	15. 162	65. 131	1. 00	44. 22
5	ATOM	3187	0 E 2	GLU	440	18. 346	14. 623	64. 277	1.00	44. 99
	ATOM	3188	C	GLU	440	14. 648	17. 687	60.854	1. 00	33. 11
	ATOM	3189	0	GLU	440	13. 703	18. 445	61.086	1. 00	31. 25
	ATOM	3190	N	SER	441	14. 613	16.764	59.896	1.00	34. 70
	ATOM	3191	CA	SER	441	13. 416	16. 587	59.086	1. 00	37. 07
10	ATOM	3192	CB	SER	441	13. 738	15. 904	57. 761	1. 00	34. 79
	ATOM	3193	0G	SER	441	14. 159	14. 579	57. 988	1. 00	34.61
	ATOM	3194	C	SER	441	12. 452	15. 724	59.889	1. 00	40. 43
	ATOM	3195	0	SER	441	12. 866	14. 964	60.773	1. 00	38. 99
	ATOM	3196	N	GLU	442	11. 168	15. 855	59. 571	1. 00	43. 31
15	ATOM	3197	CA	GLU	442	10. 099	15. 135	60. 254	1.00	45. 59
	ATOM	3198	CB	GLU	442	8.764	15. 638	59. 724	1. 00	46. 37
	ATOM	3199	CG	GLU	442	7. 575	15. 244	60. 549	1. 00	49. 47
	ATOM	3200	CD	GLU	442	6. 653	16. 421	60.794	1. 00	52. 25
	ATOM	3201	0E1	GLU	442	5. 425	16. 199	60.895	1. 00	52. 44
20	ATOM	3202	0E2	GLU	442	7. 160	17. 568	60.894	1. 00	53. 16
	ATOM	3203	C	GLU	442	10. 165	13.607	60. 174	1. 00	47.69
	ATOM	3204	0	GLU	442	10. 828	13. 035	59. 314	1.00	47. 21
	ATOM	3205	N	GLU	443	9. 435	12. 964	61.076	1. 00	50. 15
	ATOM	3206	CA	GLU	443	9. 382	11. 508	61. 210	1. 00	52. 79
25	ATOM	3207	CB	GLU	443	8. 911	11. 204	62. 623	1.00	55. 86
	ATOM	3208	CG	GLU	443	9. 468	12. 183	63. 635	1.00	61.71
	ATOM	3209	CD	GLU	443	10. 948	11. 962	63. 877	1.00	6 6 . 19
	ATOM	3210	0E1	GLU	443	11. 689	11. 746	62. 886	1.00	68. 22
	ATOM	3211	0E2	GLU	443	11. 365	12.006	65. 058	1. 00	67. 57

- 255 -

						200			
	ATOM	3212	c	GLU	443	8. 521	10.711	60. 218	1. 00 53. 03
	ATOM	3213	0	GLU	443	7. 344	10. 999	60.025	1. 00 54. 82
	ATOM	3214	N	GLY	444	9. 116	9. 702	59. 593	1. 00 52. 26
	ATOM	3215	CA	GLY	444	8. 373	8. 861	58.667	1. 00 52. 32
5	ATOM	3216	C	GLY	444	7. 966	9. 389	57. 302	1. 00 53. 07
	ATOM	3217	0	GLY	444	6.767	9. 460	57. 003	1. 00 52. 97
	ATOM	3218	N	SER	445	8. 961	9. 750	56. 483	1. 00 52. 71
	ATOM	3219	CA	SER	445	8. 760	10. 239	55. 104	1. 00 50. 05
	ATOM	3220	CB	SER	445	7. 836	11. 464	55. 084	1.00 51.01
10	ATOM	3221	0G	SER	445	6. 487	11.084	55. 318	1. 00 46. 84
	ATOM	3222	C	SER	445	10.076	10. 545	54. 356	1. 00 46. 51
	ATOM	3223	0	SER	445	11. 123	10.710	54. 976	1. 00 45. 30
	ATOM	3224	N	GLY	446	10.013	10.603	53. 026	1. 00 43. 17
	ATOM	3225	CA	GLY	446	11. 207	10. 842	52. 235	1. 00 40. 08
15	ATOM	3226	C	GLY	446	11. 199	12.057	51. 330	1. 00 39. 05
	ATOM	3227	0	GLY	446	11. 414	13. 164	51.803	1. 00 42. 74
	ATOM	3228	N	ARG	447	10. 940	11.873	50.039	1.00 37.60
	ATOM	3229	CA	ARG	447	10.956	13.000	49. 098	1. 00 37. 46
	ATOM	3230	CB	ARG	447	11. 549	12. 546	47. 747	1.00 45.51
20	ATOM	3231	CG	ARG	447	10. 793	11. 401	47. 014	1.00 53.91
	ATOM	3232	CD	ARG	447	11.521	10. 902	45. 743	1. 00 58. 18
	ATOM	3233	NE	ARG	447	12. 939	10. 598	45. 975	1. 00 63. 62
	ATOM	3234	CZ	ARG	447	13. 399	9. 623	46. 769	1. 00 66. 02
	ATOM	3235	NH1	ARG	447	12. 560	8. 825	47. 425	1. 00 67. 97
25	ATOM	3236	NH2	ARG	447	14.711	9. 447	46. 924	1. 00 69. 08
	ATOM	3237	C	ARG	447	9. 642	13. 737	48. 848	1. 00 32. 93
	ATOM	3238	0	ARG	447	9. 122	14. 416	49. 741	1. 00 29. 46
	ATOM	3239	N	GLY	448	9. 150	13. 625	47. 607	1. 00 30. 52
	ATOM	3240	CA	GLY	448	7. 902	14. 245	47. 202	1. 00 26. 03

- 256 -

						400				
	ATOM	3241	C	GLY 4	48	6. 845	13. 828	48. 200	1. 00	25. 25
	ATOM	3242	0	GLY 4	48	5. 752	14. 378	48. 244	1. 00	24. 59
	ATOM	3243	N	ALA 4	49	7. 186	12.840	49.018	1. 00	23.74
	ATOM	3244	CA	ALA 4	49	6. 282	12. 362	50. 035	1. 00	20.54
5	ATOM	3245	CB	ALA 4	49	6. 611	10. 917	50. 410	1. 00	18. 12
	ATOM	3246	C	ALA 4	49	6. 340	13. 251	51. 282	1. 00	22. 37
	ATOM	3247	0	ALA 4	49	5. 307	13. 782	51.693	1. 00	22.56
	ATOM	3248	N	ALA 4	50	7. 524	13. 443	51.881	1.00	22. 28
	ATOM	3249	CA	ALA 4	50	7.605	14. 261	53. 088	1. 00	20.98
10	ATOM	3250	CB	ALA 4	50	9.056	14. 432	53. 535	1.00	9.63
	ATOM	3251	C	ALA 4	50	6. 937	15. 594	52.872	1.00	20.66
	ATOM	3252	0	ALA 4	50	6.417	16. 168	53.826	1.00	19.81
	ATOM	3253	N	LEU 4	51	6. 943	16. 109	51. 702	1. 00	19. 91
	ATOM	3254	CA	LEU 4	51	6. 279	17. 379	51.602	1.00	22. 22
15	ATOM	3255	CB	LEU 4	51	6. 586	18. 056	50. 279	1.00	26.74
	ATOM	3256	CG	LEU 4	51	6. 089	19. 496	50. 144	1.00	34. 07
	ATOM	3257	CD1	LEU 4	51	6. 894	20. 425	51.040	1. 00	37. 55
	ATOM	3258	CD2	LEU 4	51	6. 160	19. 955	48.696	1.00	36. 19
	ATOM	3259	C	LEU 4	51	4. 774	17. 157	51.686	1. 00	23. 24
20	ATOM	3260	0	LEU 4	51	4. 136	17. 474	52. 699	1.00	21. 18
	ATOM	3261	N	VAL 4	52	4. 212	16. 613	50. 608	1. 00	26. 44
	ATOM	3262	CA	VAL 4	52	2. 798	16. 405	50. 557	1.00	26. 90
	ATOM	3263	CB	VAL 4	52	2. 454	15. 179	49. 666	1. 00	28.65
	ATOM	3264	CG1	VAL 4	52	3. 082	15. 353	48. 300	1. 00	26. 01
25	ATOM	3265	CG2	VAL 4	52	2. 933	13. 886	50. 313	1. 00	31. 22
	ATOM	3266	C	VAL 4	52	2. 217	16. 308	51. 935	1. 00	26.69
	ATOM	3267	0	VAL 4	52	1. 181	16. 878	52. 234	1. 00	24.86
	ATOM	3268	N	SER 4	53	2. 880	15. 579	52. 769	1. 00	26.07
	ATOM	3269	CA	SER 4	53	2. 377	15. 346	54. 125	1. 00	26.79

- 257 -ATOM 3270 CB SER 453 3.058 14. 127 54.756 1.00 28.88 ATOM 3271 0G SER 453 2, 553 13.881 56.057 1.00 37.16 16, 558 55.028 1,00 26,82 ATOM 3272 C SER 453 2.571 1.658 17.301 55.377 1.00 26.28 ATOM 3273 0 SER 453 3.831 16.701 55. 389 1.00 26.83 5 ATOM 3274N ALA 454 17.807 56. 177 1.00 23.37 ATOM 3275 CA ALA 454 4.250 1.00 17.54 5.719 18. 128 55. 937 ATOM 3276 CB ALA 454 3277 19,002 1.00 21.80 ATOM C ALA 454 3.381 55. 866 3.194 19.883 56.714 1.00 21.02 ATOM 3278 0 ALA 454 19, 044 1.00 21.59 ATOM 3279 N VAL 455 2.848 54, 656 10 2.020 20.156 54. 281 1.00 25.32 ATOM 3280 CA VAL 455 ATOM 3281 CB VAL 455 2.313 20.557 52.841 1.00 28.03 ATOM 3282 CG1 VAL 455 1.676 19.583 51.871 1.00 29.06 ATOM 3283 CG2 VAL 455 1.813 21.961 52. 577 1.00 29.98 3284 0.528 19.890 54.469 1.00 27.69 15 ATOM C VAL 455 1.00 28.10 ATOM 3285 0 VAL 455 -0.20220. 783 54. 911 1.00 30.51 ALA 456 0.061 18.681 54. 142 ATOM 3286 N 54. 318 1.00 31.54 ATOM 3287 CA ALA 456 -1.36718. 349 -1.66616.937 53.836 1.00 25.20 ATOM 3288 CB ALA 456 55, 797 1.00 31.77 ATOM 3289 C ALA 456 -1.70218, 505 20 -2.85318.713 56. 176 1.00 33.11 ATOM 3290 0 ALA 456 3291 N CYS 457 -0.67318.384 56, 625 1.00 31.33 ATOM ATOM 3292 CA CYS 457 -0.84318.538 58.049 1.00 33.33 58.811 1,00 36.53 ATOM 3293 CB CYS 457 0.262 17. 815 1.040 16.448 57.890 1.00 44.65 25 ATOM 3294 SG CYS 457 1.00 34.59 CYS 457 -0.90319.990 58. 438 ATOM 3295 C 20.391 59, 237 1.00 34.67 ATOM 3296 0 CYS 457 -1.74557.881 0.005 20.779 1.00 37.14 ATOM 3297 N LYS 458

LYS 458

ATOM

3298 CA

0.060

22. 199

58. 190

1.00 38.61

						- 258	-		
	ATOM	3299	CB	LYS	458	1. 363	22. 799	57. 669	1. 00 37. 21
	ATOM	3300	CG	LYS	458	2. 573	22. 474	58. 538	1. 00 37. 81
	ATOM	3301	CD	LYS	458	2. 501	23. 206	59. 874	1. 00 38. 84
	ATOM	3302	CE	LYS	458	3. 820	23. 143	60. 639	1.00 38.18
5	ATOM	3303	NZ	LYS	458	3. 812	24. 023	61.851	1. 00 36. 51
	ATOM	3304	C	LYS	458	-1. 128	22. 920	57. 596	1. 00 40. 24
	ATOM	3305	0	LYS	458	-1. 377	24. 079	57. 898	1.00 39.64
	ATOM	3306	N	LYS	459	-1. 869	22. 223	56. 752	1. 00 43. 69
	ATOM	3307	CA	LYS	459	-3. 036	22. 820	56. 147	1.00 50.66
10	ATOM	3308	CB	LYS	459	-3. 242	22. 248	54. 747	1. 00 55. 88
	ATOM	3309	CG	LYS	459	-4. 657	22. 405	54. 183	1.00 63.64
	ATOM	3310	CD	LYS	459	-5. 037	23.850	53.856	1.00 66.97
	ATOM	3311	CE	LYS	459	-6. 431	23. 941	53. 226	1. 00 68. 86
	ATOM	3312	NZ	LYS	459	-7. 531	23. 519	54. 152	1. 00 71. 25
15	ATOM	3313	C	LYS	459	-4. 262	22. 562	57. 018	1. 00 52. 41
	ATOM	3314	0	LYS	459	-5. 132	23. 425	57. 132	1.00 51.90
	ATOM	3315	N	ALA	460	-4. 322	21. 380	57. 634	1. 00 54. 96
	ATOM	3316	CA	ALA	460	-5. 449	20. 997	58. 495	1. 00 57. 72
	ATOM	3317	CB	ALA	460	-5. 201	19. 620	59. 111	1. 00 54. 90
20	ATOM	3318	C	ALA	460	-5. 736	22. 018	59. 596	1.00 60.41
	ATOM	3319	0	ALA	460	-6. 773	21. 950	60. 261	1. 00 60. 54
	ATOM	3320	N	CYS	461	-4. 815	22. 965	59. 776	1.00 63.50
	ATOM	3321	CA	CYS	461	-4. 961	24. 022	60.776	1. 00 66. 18
	ATOM	3322	CB	CYS	461	-3. 580	24. 489	61. 252	1.00 67.98
25	ATOM	3323	SG	CYS	461	-3. 604	26. 041	62. 185	1. 00 75. 61
	ATOM	3324	C	CYS	461	-5. 727	25. 217	60. 200	1. 00 65. 92
	ATOM	3325	0	CYS	461	-6. 940	25. 348	60. 490	1. 00 65. 70
	ATOM	3326	OXT	CYS	461	-5. 099	26.001	59. 454	1. 00 65. 20

ATOM 3327 S S04 600 20.241 7.477 54.655 1.00 35.04

WO 03/097824 PCT/JP03/06054

						- 259 -			
	ATOM	3328	01	S04	600	19. 370	7. 951	53. 566	1. 00 33. 14
	ATOM	3329	02	S04	600	20. 343	8. 532	55. 683	1. 00 32. 80
	ATOM	3330	03	S04	600	19. 690	6. 249	55. 260	1. 00 33. 32
	ATOM	3331	04	S04	600	21. 572	7. 178	54. 108	1. 00 33. 97
	ATOM	3332	S	S04	601	22. 953	22. 471	69. 199	1. 00 77. 32
	ATOM	3333	01	S04	601	21.971	21. 759	68. 356	1.00 76.19
	ATOM	3334	02	S04	601	22. 411	23. 803	69. 553	1. 00 77. 48
	ATOM	3335	03	S04	601	23. 205	21.698	70. 433	1. 00 77. 23
	ATOM	3336	04	S04	601	24. 224	22. 628	68. 461	1. 00 77. 19
ı	ATOM	3337	NA+1	NA1	602	17. 158	10. 244	54. 280	1. 00 10. 17
	ATOM	3338	0H2	НОН	603	19. 770	14. 543	47. 159	1. 00 1. 00
	ATOM	3340	0H2	НОН	604	20. 723	24. 387	67. 178	1.00 17.94
	ATOM	3341	0H2	НОН	605	10.880	33. 802	37. 628	1. 00 1. 00
	ATOM	3342	0H2	НОН	606	22. 743	28.762	37. 147	1. 00 31. 78
j	ATOM	3343	0H2	НОН	607	38. 906	1. 328	74. 611	1. 00 37. 76
	ATOM	3344	0H2	НОН	608	1. 237	30. 510	46. 162	1. 00 32. 40
	ATOM	3345	0H2	НОН	609	34. 702	-1. 731	56. 455	1. 00 62. 03

5

10

15

25

END

20 なお、表2は、当業者によって慣用されているプロテイン・データ・バンクの表記方法に準拠して作成されている。表2中、HOHは水分子を表す。

本発明においては、配列番号5、及び/又は配列番号8と実質的に同一のアミノ酸配列を有し、グルコキナーゼ活性を有するタンパク質の結晶は本発明の 範囲内である。そのような結晶としては、例えば、表1、及び/又は表2に配 載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座 標データにおいて、表1、及び/又は表2に記載の三次元構造座標データで示 されるアミノ酸の主鎖の原子(Cα原子)と、該Cα原子と対応する前記変 更した三次元構造座標データで示されるCα原子との平均二乗偏差が、0.

- 260 -

6オングストローム以下である結晶が挙げられる。原子の位置を表す座標の数 値が異なっても、構造座標に含まれる対応する原子の位置を重ね合わせること ができる二つの構造座標は、同一の三次示構造を表すものである。

5 なお、表1、及び/又は表2に記載のGKタンパク質の三次元構造座標は、 ドラッグデザインのための重要な情報であり、必要に応じて、コンピュータ読 み取り可能な記憶媒体に保存され、コンピュータでこの情報を処理してドラッ グデザインを行う。したがって、本発明の別の態様によれば、コンピュータを、 表1、及び/又は表2に記載のアミノ酸残基の三次元座標を記憶する三次元座 標記憶手段として機能させるためのプログラムを記録したコンピュータ読み取 り可能な記録媒体が提供される。

また、本発明の別の態様によれば、コンピュータを、表1、及び/又は表2に記載のアミノ酸残基の三次元座標に関する情報を記憶した三次元座標に管手段と、前配三次元座標記憶手段に配憶された表1、及び/又は表2に記載のアミノ酸残基の三次元座標を用いて配列番号5、及び/又は配列番号8で表されるアミノ酸配列を有するタンパク質の化合物結合部位を推測する結合部位推測手段と、タンパク質と結合する化合物の種類と、当該化合物の三次元構造に関する情報を記憶した結合化合物配憶手段と、少なくとも、前記結合部位推測手段によって推測された配列番号5、及び/又は配列番号8で表されるアミノ酸配列を有するタンパク質の化合物結合部位の三次元構造に関する情報と、前記結合化合物配憶手段に記憶された化合物の三次元構造に関する情報とを用いて前記配列表の配列番号1で表されるアミノ酸配列を有するタンパク質の化合物結合部位に適合する化合物の候補を選択する結合化合物候補選択手段、として機能させるプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。さらに、本発明の別の態様によれば、上記各手段を備えるコンピュータも提供される。

15

20

25

(GKタンパク質とそれに結合する化合物との複合体の結晶) 次に、本発明の別の態様によれば、配列番号5、又は配列番号8に記載のア

- 261 -

ミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含むタンパク質と該タンパク質に結合可能な化合物との複合体を含む結晶及びその製造方法が提供される。

GKタンパク質と結合する化合物が得られた場合は、まず、GKタンパク質とその化合物を、例えば、水溶液中で混合し、複合体を形成する。このような複合体の結晶は、共結晶法、ソーキング法などの公知の共結晶の製造方法が用いられる。結晶化条件、結晶化方法については、上述した方法が参照される。GKタンパク質と結合する化合物は、例えば、上記式(I)で表される化合物群から選択される。

10 ここで、上記式(I)のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが例示され、これらの中でも塩素原子が好ましい。

また、上記式(I)のA、B及び式(I I)のヘテロアリール基における置換基としては、アミノ基、カルパモイル基、カルパモイルアミノ基、カルパモイルオキシ基、カルボキシル基、シアノ基、スルファモイル基、トリフルオロメチル基、ハロゲン原子、ヒドロキシ基、ホルミル基、直鎖の C_1 — C_6 アルキル基、環状の C_5 — C_6 炭化水素基、アラルキル基、N-アラルキルアミノ基、N,N-ジアラルキルアミノ基、アラルキルオキシ基、アラルキルカルボニル基、N-アラルキルカルバモイル基、アリール基、アリールチオ基、N-アリールアミノ基、アリールオキシ基、アリールスルホニルス・アリールストニールアミノ基、アリールオキシ基、アリールスルホニルス・アリールスルホニル

15

N-アリールスルホニルアミノ基、アリールスルファモイル基、 N-アリールカルバモイル基、アロイル基、アロキシ基、 C_1 - C_6 アルカノイル基、N- C_1 - C_6 アルカノイルアミノ基、 C_1 - C_6 アルキルチオ基、N- C_1 - C_6 アルキルスルファモイル基、N, N-ジ- C_1 - C_6 アルキルスルファモイル基、 C_1 - C_6 アルキルスルファモイル基、 C_1 - C_6 アルキルスルホニル基、

25 $N-C_1-C_6$ アルキルスルホニルアミノ基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルコキシカルボニル基又は C_1-C_6 アルキルアミノ基を示す)などが挙げられる。ここで用いられる好ましい置換基は、アミノ基、カルバモイル基、カルバモイルアミノ基、カルバモイルオキシ基、カルボキシル基、シアノ基、スルファモイル基、トリフルオロメチル基、ハロゲン原子、ヒドロキシ基、ホルミ

- 262 -

ル基、直鎖のC₁-C₄アルキル基などが例示される。

10

15

20

ここで、「炭化水素基」は、炭素数1万至6の直鎖のアルキル基を示すか、 又は該アルキル基を構成する炭素原子のうち、1又は2の、好ましくは1の炭 素原子が窒素原子、硫黄原子又は酸素原子で置き換わっていてもよいか、及び / 又は該炭素数1万至6の直鎖のアルキル基中の炭素原子同士が二重結合又は 三重結合で結合されていてもよい基である。該二重結合又は三重結合の数は、 1又は2であることが好ましく、1であることがより好ましい。

該炭化水素基としては、具体的には、メチル基、エチル基、プロビル基若し くはイソプロビル基、プチル基又は下記式

で表される基であることが好ましい。より好ましい炭化水素基は、メチル基、 エチル基、プロピル基、イソプロピル基又は下記式

O CH3、 O CH3、 H CH3、 者L<は

で表される基である。

好ましいAとしては (p=0 の場合)、例えば、次の基が挙げられる。

5

好ましいBとしては、例えば、次の基が挙げられる。

10

- 264 -

式 (II) で示されるヘテロアリール基としては、例えば、次の複素環基が 5 挙げられる。

10

なお、特に好ましい化合物は、上述した式(IIIa)~式(IIIc)で表されるいずれかの化合物である。

本発明の化合物 (I) は、公知の反応手段を用いるか、或いは公知の方法に 従って容易に製造することができる。なお、本発明の一般式 (I) の化合物は、 通常の液相における合成のみならず、近年発達の目覚しい例えばコンビナトリ アル合成法やパラレル合成法等の固相を用いた合成によっても製造することが できる。好ましくは例えば以下の方法により製造することができる。

[式中、各記号は前記定義に同じ]

(工程1)

本工程は、カルボン酸化合物(1)又はその反応性誘導体と前記式(2)で 5 表される置換されていてもよい単環の、又は双環のヘテロアリール基を有する アミノ化合物又はその塩とを反応させて、化合物(3)を製造する方法である。 本反応は文献記載の方法(例えば、ペプチド合成の基礎と実験、泉屋信夫他、 丸善、1983年、コンプリヘンシブ オーガニック シンセシス (Comp rehensive Organic Synthesis)、第6巻、Pe 10 rgamon Press社、1991年、等)、それに準じた方法又はこれ らと常法とを組み合わせることにより、通常のアミド形成反応を行えばよく、 即ち、当業者に周知の縮合剤を用いて行うか、或いは、当業者に利用可能なエ ステル活性化方法、混合酸無水物法、酸クロリド法、カルボジイミド法等によ り行うことができる。このようなアミド形成試薬としては、例えば塩化チオニ 15 ル、N N-ジシクロヘキシルカルボジイミド、1-メチル-2-ブロモピリ ジニウムアイオダイド、N. N' - カルボニルジイミダゾール、ジフェニルフ ォスフォリルクロリド、ジフェニルフォスフォリルアジド、N, N'ージスク

- 267 -

シニミジルカルボネート、 N, N' ージスクシニミジルオキザレート、1 ー エチルー3 ー (3 ージメチルアミノプロピル) カルボジイミド塩酸塩、クロロ ギ酸エチル、クロロギ酸イソプチル又はベンゾトリアゾー1ーリルーオキシートリス (ジメチルアミノ) フォスフォニウムヘキサフルオロフォスフェイト等 が挙げられ、中でも例えば塩化チオニル、N, Nージシクロヘキシルカルボジイミド又はベンゾトリアゾー1ーリルーオキシートリス (ジメチルアミノ) フォスフォニウムヘキサフルオロフォスフェイト等が好適である。またアミド形成反応においては、上配アミド形成試薬と共に塩基、縮合補助剤を用いてもよい。

10 用いられる塩基としては、例えばトリメチルアミン、トリエチルアミン、N、Nージイソプロピルエチルアミン、Nーメチルモルホリン、Nーメチルピロリジン、Nーメチルピペリジン、N, Nージメチルアニリン、1, 8ージアザピシクロ [5.4.0] ウンデカー7ーエン (DBU)、1, 5ーアザピシクロ [4.3.0] ノナー5ーエン (DBN) 等の第3級脂肪族アミン;例えばピリジン、4ージメチルアミノピリジン、ピコリン、ルチジン、キノリン又はイソキノリン等の芳香族アミン等が挙げられ、中でも例えば第3級脂肪族アミン等が好ましく、特に例えばトリエチルアミン又はN, Nージイソプロピルエチルアミン等が好適である。

用いられる縮合補助剤としては、例えばNーヒドロキシベンゾトリアゾール 水和物、Nーヒドロキシスクシンイミド、Nーヒドロキシー5ーノルボルネンー2,3ージカルボキシイミド又は3ーヒドロキシー3,4ージヒドロー4ーオキソー1,2,3ーベンゾトリアゾール等が挙げられ、中でも例えばNーヒドロキシベンゾトリアゾール等が好適である。

用いられるアミノ化合物(2)の量は、用いられる化合物及び溶媒の種類その他の反応条件により異なるが、通常カルボン酸化合物(1)又はその反応性 誘導体1当量に対して、0.02万至50当量、好ましくは0.2万至2当量 である。ここにおいて、反応性誘導体としては、通常有機化学の分野において 用いられる、例えば活性エステル誘導体、活性アミド誘導体等が挙げられる。 用いられるアミド形成試薬の量は、用いられる化合物及び溶媒の頑難その他

25

- 268 -

の反応条件により異なるが、通常カルボン酸化合物 (1) 又はその反応性誘導体1当量に対して、1乃至50当量、好ましくは1乃至5当量である。

用いられる縮合補助剤の量は、用いられる化合物及び溶媒の種類その他の反 応条件により異なるが、通常カルボン酸化合物(1)又はその反応性誘導体1

当量に対して、1万至50当量、好ましくは1万至5当量である。

用いられる塩基の量は、用いられる化合物及び溶媒の種類その他の反応条件 により異なるが、通常1万至50当量、好ましくは3万至5当量である。

本工程において用いられる反応溶媒としては、例えば不活性有機溶媒であり、 反応に支障のない限り、特に限定されないが、具体的には、例えば塩化メチレ

10 ン、クロロホルム、1,2-ジクロロエタン、トリクロロエタン、N,N-ジメチルホルムアミド、酢酸エチルエステル、酢酸メチルエステル、アセトニトリル、ベンゼン、キシレン、トルエン、1,4-ジオキサン、テトラヒドロフラン、ジメトキシエタン又はそれらの混合溶媒が挙げられるが、好適な反応温度確保の点から、特に例えば塩化メチレン、クロロホルム、1,2-ジクロロ15 エタン、アセトニトリル又はN、N-ジメチルホルムアミド等が好適である。

反応温度は、-100℃乃至溶媒の沸点温度、好ましくは0乃至30℃である。

反応時間は、0.5乃至96時間、好ましくは3乃至24時間である。

20

本工程1で用いられる塩基、アミド形成試薬、縮合補助剤は、一種又はそれ 以上組み合わせて使用することができる。

化合物 (3) が保護基を有している場合には、適宜当該保護基を除去することが可能である。当該補助基の除去は、文献配載の方法(プロテクティブ グループス イン オーガニック シンセシス(Protective Groupsin Organic Synthesis)、T. W. Green著、

第2版、John Wiley&Sons社、1991年、等)、それに準じ た方法又はこれらと常法とを組み合わせることにより行うことができる。

このようにして得られる化合物 (3) は、公知の分離精製手段、例えば濃縮、 減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製 するか又は単離精製することなく次工程に付すことができる。 (工程2)

本工程は、上記工程1で得られたアミド化合物(3)と化合物(4)とを反応させることにより化合物(5)を製造する方法である。

本反応においては、反応系中に必要に応じて塩基を加えてもよい。用いられ る化合物(4)としては、好ましくはフェノール誘導体又はチオール誘導体が 好ましい。該フェノール誘導体又はチオール誘導体としては、例えばフェノー ル、チオフェノール、チオイミダゾール、チオトリアゾール等が挙げられる。 用いられる化合物(4)の量は、用いられる化合物及び溶媒の種類その他の反 応条件により異なるが、通常アミノ誘導体(3)1当量に対して、2乃至50 10 当量、好ましくは2乃至5当量である。用いられる塩基としては、例えばトリ メチルアミン、トリエチルアミン、N, N-ジイソプロピルエチルアミン、N -メチルモルホリン、N-メチルピロリジン、N-メチルピペリジン、N, N ージメチルアニリン、1、8ージアザビシクロ[5.4.0]ウンデカー7ー エン (DBU) 、1, 5-アザビシクロ [4. 3. 0] ノナー5-エン (DB 15 N) 等の第3級脂肪族アミン: 例えばピリジン、4-ジメチルアミノピリジン、 ピコリン、ルチジン、キノリン又はイソキノリン等の芳香族アミン:例えば金 属カリウム、金属ナトリウム、金属リチウム等のアルカリ金属:例えば水素化 ナトリウム、水素化カリウム等のアルカリ金属水素化物:例えばブチルリチウ 人等のアルカリ金属アルキル化物:例えばカリウムーtertーブチラート、 ナトリウムエチラート又はナトリウムメチラート等のアルカリ金属アルコキシ ド・例えば水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物:例 えば炭酸カリウム等のアルカリ金属炭酸塩等が挙げられ、中でも例えば第3級 脂肪族アミン、アルカリ金属水素化物又はアルカリ金属炭酸塩が好ましく、特 に何えばトリエチルアミン、N. N-ジイソプロピルエチルアミン、水素化ナ 25

用いられる当該塩基の量は、用いられる化合物及び溶媒の種類その他の反応 条件により異なるが、アミド化合物(3)1当量に対して通常0万至50当量、 好ましくは2万至10当量である。該塩基は、必要に応じて一種又は2種以上

トリウム又は炭酸カリウムが好適である。

- 270 -

用いることができる。

用いられる不活性有機溶媒としては、反応に支障のないものであれば、特に限定されないが、具体的には、例えば塩化メチレン、クロロホルム、1,2-ジクロロエタン、トリクロロエタン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、酢酸エチルエステル、酢酸メチルエステル、アセトニトリル、ベンゼン、キシレン、水、トルエン、1,4-ジオキサン、テトラヒドロフラン又はこれらの混合溶媒等が挙げられる。

このようにして得られる化合物 (5) は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー等により単離精製 することができる。

(工程3)

10

15

20

25

本工程は化合物 (5) を還元して、本発明で用いる化合物 (I) を製造する 方法である。本工程において用いられる還元反応は、当業者に周知の方法が用 いられる。本工程においてもちいられる還元反応としては、具体的には、例え ば (1) 水素、蟻酸、蟻酸アンモニウム、ヒドラジン水和物とパラジウム、白 金、ニッケル触媒を用いる接触還元法、 (2) 塩酸、塩化アンモニウムと鉄を 用いる還元法等が挙げられる。

上記還元反応において用いられる還元剤の量は、用いられる化合物及び溶媒 の種類その他の反応条件により異なるが、化合物(5)1当量に対して通常1 乃至50当量、好ましくは2乃至20当量である。

用いられる反応溶媒としては、反応に支障のない限り、特に限定されないが、例えばジクロロメタン、クロロホルム等のハロゲン化炭化水素類、例えばジエチルエーテル、 tertープチルメチルエーテル、 テトラヒドロフラン等のエーテル類、例えばN, Nージメチルホルムアミド、N, Nージメチルアセトアミド等のアミド類、例えばジメチルスルホキシド等のスルホキシド類、例えばアセトニトリル等のニトリル類、例えばメタノール、エタノール、プロパノール等のアルコール類、例えばペンゼン、トルエン、キシレン等の芳香族炭化水素類、水或いはこれらの混合溶媒を用いることができる。

- 271 -

反応温度及び反応時間は特に限定されないが、 - 10万至100℃程度、好ましくは0万至50℃程度の反応温度で1万至20時間程度、好ましくは1万至5時間程度反応を行う。

このようにして得られる本発明で用いる化合物 (I) は、公知の分離精製手 段、例えば濃縮、減圧濃縮、結晶化、溶媒抽出、再沈殿、クロマトグラフィー 等により単離精製するか又は単離精製することなく、次工程に付すことができ る。

上記各工程の化合物は、各置換基上に保護基を有していてもよい。当該保護 基は、各工程において適宜、公知の方法これに準じた方法、又はこれらと常法 とを組み合わせた方法により除去することができる。除去の態機は、化合物、 反応の種類その他の反応条件により、適宜の除去反応が可能であるが、個別に 各保護基を除去する場合、各保護基を同時に除去する場合等が考えられ、当業 者が適宜適択可能である。当該保護基としては、例えばヒドロキシ基の保護基、 アミノ基の保護基、カルボキシル基の保護基、アルデヒドの保護基、ケト基の 保護基等が挙げられる。また、当該保護基の除去順序は、特に限定されるもの ではない。

10

15

ヒドロキシ基の保護基としては、例えば t e r t - \mathcal{I} $\mathcal{I$

20 例えばベンジル基、pーメトキシベンジル基等のアラルキル基、例えばホルミル基、アセチル基等のアシル基等が挙げられ、これらのうち、特にtertーブチルジメチルシリル基、アセチル基等が好ましい。

アミノ基の保護基としては、例えばベンジル基、pーニトロベンジル基等の アラルキル基、例えばホルミル基、アセチル基等のアシル基、例えばエトキシ カルボニル基、tertープトキシカルボニル基等の低級アルコキシカルボニ ル基、例えばベンジルオキシカルボニル基、pーニトロベンジルオキシカルボ ニル基等のアラルキルオキシカルボニル基等が挙げられ、これらのうち、特に ニトロベンジル基、tertープトキシカルボニル基、ベンジルオキシカルボ ニル基等が好ました。

- 272 -

カルボキシル基の保護基としては、例えばメチル基、エチル基、tertープチル基等の低級アルキル基、例えばベンジル基、pーメトキシベンジル基等のアラルキル基等が挙げられ、これらのうち、特にメチル基、エチル基、tertーブチル基、ベンジル基等が好ましい。

ケト基の保護基としては、例えばジメチルケタール基、1,3-ジオキシラン基、1,3-ジオキソラン基、1,3-ジチオラン基、1,3-ジチオラン基等が挙げられ、これらのうち、ジメチルケタール基、1,3-ジオキソラン基等がより好ましい。

アルデヒド基の保護基としては、例えば、ジメチルアセタール基、1,3-ジオキシラン基、1,3-ジオキソラン基、1,3-ジオキソラン基、1,3-ジオチオラン基等が挙げられ、これらのうちジメチルアセタール基、1,3-ジオキソラン基等がより好ましい。

本発明で用いる化合物を製造するに当たっては、反応を効率よく進行させる ために、官能基に保護基を導入する場合もある。これらの保護基の導入は、当 業者に適宜選択可能であり、当該保護基の除去は、前配配載のプロテクティブ グループス イン オーガニックシンセシス等の方法、これに準じた方法又は これらと常法とを組み合わせることにより行うことができる。なお、保護基の 除去の順序についても、当業者が適宜選択可能である。

15

20

このようにして得られる化合物 (I) は、公知の分離精製手段、例えば濃縮、減圧濃縮、結晶化、再沈殿、溶媒抽出、クロマトグラフィー等により単離精製するか又は単離精製することなく次工程に付すことができる。

また、本発明で用いる化合物である(I)は、下記の工程によっても製造することができる。

[式中各記号は前記定義に同じ]

10

上記工程4、工程5及び工程6については、試薬の量、反応溶媒、反応温度 等その他の反応条件は、前記工程2、工程1及び工程3と同様にして行うこと ができる。

R²に保護基が必要な場合には、前記記載のプロテクティブグループス インオーガニックシンセシス等の方法、それに準じた方法又はこれらと常法とを 組み合わせることにより、当業者が保護基を適宜選択することによって行うこ とができる。

このようにして得られる化合物(6)、(5')は、公知の分離精製手段、 例えば濃縮、減圧濃縮、結晶化、再沈殿、溶媒抽出等により単離精製するか、 又は単離精製することなく次工程に付すことができる。

本発明で用いる化合物 (I) は、公知の分離精製手段、例えば濃縮、減圧濃 15 縮、結晶化、再沈殿、溶媒抽出等により単離精製することができる。

上記工程1万至6において、保護基の除去は、当該保護基の種類及び化合物の安定性により異なるが、前記記載のプロテクティブ グループス イン オーガニック シンセシス ((Protective Groups in O

- 274 -

rganic Synthesis)、T. W. Green著 第2版、John Wiley&Sons社、1991年、等)、それに準じた方法又はこれらと常法とを組み合わせることにより行うことができる。例えば酸又は塩基を用いる加溶媒分解、水素化金属錯体等を用いる化学的還元又はバラジウム炭素触媒、ラネーニッケル等を用いる接触環元等により行うことができる。

本発明によって提供されるベンズアミド化合物は、薬学的に許容される塩として存在することができる。当該塩は、常法に従って製造することができる。 具体的には、上記化合物(I)が、当該分子内に例えばアミノ基、ピリジル基等に由来する塩基性基を有している場合には、当該化合物を酸で処理することにより、相当する薬学的に許容される塩に変換することができる。

当該酸付加塩としては、例えば塩酸塩、フッ化水素酸塩、臭化水素酸塩、ヨ ウ化水素酸塩等のハロゲン化水素酸塩;硝酸塩、過塩素酸塩、硫酸塩、燐酸塩、 炭酸塩等の無機酸塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、 エタンスルホン酸塩等の低級アルキルスルホン酸塩;ペンゼンスルホン酸塩、

15 pートルエンスルホン酸塩等のアリールスルホン酸塩;フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩等の有機酸塩;及びグルタミン酸塩、アスパラギン酸塩等のアミノ酸等の有機酸である酸付加塩を挙げることができる。また、本発明の化合物が酸性基を当該基内に有している場合、例えばカルボキシル基等を有している場合には、当該化合物を塩基で処理20 することによっても、相当する薬学的に許容される塩に変換することができる。当該塩基付加塩としては、例えば例えばナトリウム、カリウム等のアルカリ金

当該塩基付加塩としては、例えば例えばナトリウム、カリウム等のアルカリ金 属塩、カルシウム、マグネシウム等のアルカリ土類金属塩、アンモニウム塩、 グアニジン、トリエチルアミン、ジシクロヘキシルアミン等の有機塩基による 塩が挙げられる。さらに本発明の化合物は、遊離化合物又はその塩の任意の水 和物又は溶媒和物として存在してもよい。

25

本発明においては、実施例の記載にて詳述するように、配列番号5に示すアミノ酸配列を有するGKタンパク質と上記式(IIIa)~式(IIIc)との化合物の複合体の結晶が得られている。これらの、結晶の3次元構造座標を解析することによって、配列番号5で示すGKタンパク質においては、化合物結合部位

- 275 -

が、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基から構成されることが解明されている。

5

15

20

25

なお、本発明の別の態様によれば、配列番号 2 に記載のアミノ酸配列を有するタンパク質から、上述のようにN末端側、および/またはC末端側の所定の数のアミノ酸残基を欠損したアミノ酸配列を有するタンパク質を製造するタンパク質製造工程と、前配タンパク質製造工程で得られたタンパク質と結合する化合物と、前配タンパク質製造工程で得られたタンパク質とを反応させる工程とを含む、タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶を製造する方法が提供される。

上記タンパク質製造工程において製造されるタンパク質としては、結晶内で 隣接する GK タンパク質との間で立体的な障害がなくなる範囲であればその数 は限定されない。具体的には、例えば、配列番号2 で表されるアミノ酸配列に おいて、N末端側の $1\sim5$ 0 個、好ましくは $3\sim3$ 0 個、より好ましくは $5\sim2$ 5 個、さらに好ましくは $8\sim1$ 8 個、特に好ましくは $1\sim1$ 5 個のアミノ酸残基を欠失させたアミノ酸配列などが挙げられる。また、C 末端側の $1\sim8$ 個、好ましくは $1\sim7$ 個、より好ましくは $2\sim6$ 個のアミノ酸残基を欠失させたアミノ酸配列などが挙げられる。

(3次元構造座標を用いるドラッグデザイン方法)

上記のようにして得られる本発明のGKタンパク質の3次元構造は、CARDD (Computer Aided Rational Drug Design) による創業システムのための重要な情報である。このGKタンパク質の活性中心、及びアロステリック部位を明らかにし、その部位に適合し、GKタンパク質と相互作用することにより、GKタンパク質を阻害、または活性化する物質を検索することは、GKタンパク質をターゲットとする創薬開発の重要なステップである。

すなわち、本発明の別の態様によれば、タンパク質の立体構造情報に基づい

- 276 -

て該タンパク質に結合する化合物の構造をデザインするドラッグデザイン方法であって、該タンパク質の立体構造情報が、上述のようにして得られる結晶を解析することによって得られる情報であることを特徴とする、ドラッグデザイン方法が提供される。このようなドラッグデザイン方法としては、エネルギー計算、若しくはこれに類似する活性予測値、又はファルマコフォアを用いてドラッグデザインする手法と、コンピュータグラフィックスの技術を用いて視覚的にドラッグデザインをする手法がある。

エネルギー計算、若しくはこれに類する活性予測値、又はファルマコフォアを用いる手法による方法としては、(1)上述したようにして得られる立体構造情報に基づいて、上記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合物ライブラリより選択する選択工程とを含むことを特徴とするドラッグデザイン方法、(2)前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を構築する化合物構造構築工程とを含むことを特徴とする、ドラッグデザイン方法などが例示される。

10

15

上記タンパク質の化合物結合部位を推測する方法としては、例えば、化合物との共結晶においてリガンドが結合している部位をコンピュータのディスプレイ上で目視で確認して特定する方法の他、リガンドが結合していない状態で解かれたタンパク質結晶構造に対してリガンドが結合しそうな部位を推定して特定する方法が挙げられる。いずれの方法においても公知の方法や市販のコンピュータソフトウエアを用いることができる。前者の方法においては、例えば、Insight II (Accelrys Inc.)、SYBYL (Tripos Inc.)、MOE (Chemical Computing Group)等のソフトウエアを用いることができる。一方、後者の方法においては、例えば、Cavity search: an algorithm for the isolation and display of cavity-like binding regions. (Journal of Computer-Aided Molecular Design. 4(4):337-54, 1990)等の公知の手法を用いることができ、SiteID (Tripos Inc.)等のソフトウエアを用いて実施することができる。

タンパク質における化合物との結合部位が推測できたら、その推測された結

- 277 -

合部位に適合し得る化合物を選択する。この化合物候補を選択する方法として は、既存の化合物ライブラリからの化合物の構造情報を入手して、そのライブ ラリ中の化合物の構造情報と上記のようにして推測された結合部位の構造情報 とを比較することによって、結合可能化合物候補を選択する。

5

10

25

して選択する。

より具体的には、配列番号5に示すアミノ酸配列のアミノ酸残基(チロシン61〜セリン69、グルタミン酸96〜グルタミン98、イソロイシン159、メチオニン210〜チロシン215、ヒスチジン218〜グルタミン酸221、メチオニン235、アルギニン250、ロイシン451〜リジン459)から1つないしは2つ以上の残基もしくは複合体中のリガンドの官能基から形成される水素結合性または疎水性などのファルマコフォアと、蛋白構造またはその一部の側鎖の配向を改変させた構造から作成される蛋白表面を検索条件として、化合物ライブラリより各化合物の配座、配向を網羅的に探索しながら条件を満たすかどうかを判断

他の代替方法として、化合物ライブラリより各化合物の配座、配向を網羅的
15 に探索しながら、アミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~
グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギニン 250、ロイシン 4 5 1
~リジン 4 5 9) から構成されるリガンド結合部位の構造またはその一部の側鎖の配向を改変させた構造に対して候補化合物をパーチャルでドッキングさせ、アミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギニン 250、ロイシン 4 5 1~リジン 4 5 9)から 1 つないしは 2 つ以上の残基と 4 オングストローム以下で近接した相互作用を形成したものを選択したり、エネルギー評価関数を用いた選択を行う。

一方、候補化合物は、上記のようにして推測された結合部位の構造情報に基づいて結合可能化合物を設計することによっても選択することができる。より 具体的には、配列番号 5 に示すアミノ酸配列のアミノ酸残基 (チロシン 61~ セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、ア

- 278 -

ルギニン 250、ロイシン 4 5 1 ~ リジン 4 5 9)から構成される化合物結合部位の構造またはその一部の側鎖の配向を改変させた構造に対して、1つないしは2つ以上の残基と相互作用するように各種原子種、官能基を種々つなぎ合わせて化合物構造を構築する。この方法としては、メチル、エチル等の化学基を活性部位に並べて適合する化合物を探す方法と、原子を活性部位にコンピュータプログラムを用いて結合させていく方法とが知られている。

なお、コンピュータによるエネルギー評価による方法では、例えば分子力場 計算を用いて化合物と、GKタンパク質との結合のエネルギーを求める方法が 挙げられる。その計算をデータベースの中の各化合物に適用し、安定に結合で きる化合物候補を、ライブラリ化合物の中から求める。Insight II のLudiなどコンピュータプログラムによっては、蛋白質分子において相互 作用するアミノ酸残基の3次元構造座標を与えると、自動的に結合可能な化合

物の候補を選択し出力するものもあり、好適に利用することができる。

10

20

25

また、分子の3次元構造に基づくドラッグデザインについては、医薬品の開発・第7巻「分子設計」(廣川書店)をはじめとして数多くの文献が知られている。具体的には、第一に FlexiDock、FlexX 等のフレキシブルリガンドバインディングシミュレーションソフトウエアを用いて、低分子(分子量 1000 以下)化合物のライブラリ(たとえば約 150000 種)をコンピュータでスクリーニングすることができる。このライブラリ内の化学物質は CONCORD 等のプログラムで3次元構造を構築し、活性部位に適合する化合物を選択することができる。

一方、目視的によりドラッグデザインする方法としては、前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推測する結合部位推測工程と、前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合する化合物とが相互作用するように化合物の構造を目視によりデザインするデザイン工程とを含むことを特徴とする、ドラッグデザイン方法が挙げられる。例えば、配列番号5に示すアミノ酸配列のアミノ酸残基(チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギ

- 279 -

ニン 250、ロイシン4 5 1 ~ リジン4 5 9) から構成されるリガンド結合部位 の構造またはその一部の側鎖の配向を改変させた構造に対して、これらの残基のうち1つないしは2つ以上の残基と相互作用するように目視による構造構築、もしくは構造改変を行う。

具体的には、視覚的方法では、まずコンピュータの画面上にGKタンパク質 とそれに結合する化合物との複合体の結晶の構造を、得られた構造座標に従っ て表示する。そして、コンピュータ上で化学的相互作用を考慮しながら、ライ ブラリ中にある化合物とGKタンパク質との結合可能性を順次検討する。ここ で考慮すべき化学的相互作用は静電相互作用、疎水性相互作用、水素結合、フ ァンデルワールス相互作用などである。すなわち、該化合物の3次元空間での 10 構造が、その官能基群においてカルボキシル基、ニトロ基、ハロゲン基などの 陰性電荷を帯びやすい基が、GKタンパク質のリジン、アルギニン、ヒスチジ ンといった正電荷を持つアミノ酸残基に相互作用するように、アミノ基、イミ ノ基、グアニジル基などの陽性電荷を帯びやすい基が、GKタンパク質のグル タミン酸、アスパラギン酸といった負電荷を持つアミノ酸残基に相互作用する 15 ように、脂肪族基や芳香族基といった疎水性の官能基が、アラニン、ロイシン、 イソロイシン、バリン、プロリン、フェニルアラニン、トリプトファン及びメ チオニンといった疎水性のアミノ酸残基と相互作用するように、水酸基、アミ ド基などの水素結合に関与する基が、GKタンパク質の主鎖や側鎖部分と水素 結合ができるように、更には、該化合物とGKタンパク質の結合において立体 20 的な障害が生じないように、また、更には、空隙部分がなるべくできないよう に空隙部分が充填され、ファンデルワールス相互作用が大きくなるようになど、 相互作用に好ましい構造になっているかを総合的に考慮する。このように、静 電相互作用、疎水性相互作用、ファンデルワールス相互作用、水素結合などの 因子を、コンピュータ画面上で視覚的に総合的に考慮して、最終的に候補化合 25 物がGKタンパク質に結合し得るか否かの判断を行う。

このように目視によって化合物候補を選択するプログラムとしては、 Insight II や MOE 等のシミュレーションプログラムが例示される。 G K タン パク質と相互作用する化合物の有力候補を挙げるために、候補化合物とG K タ

- 280 -

ンパク質と接触させ、GKタンパク質の活性を測定する。有力候補化合物を実 際にGKタンパク質と混合し、結晶化し適合するかどうかを検討する。更に適 合した複合物を有機合成を用いて修飾することにより、より望ましい構造とす 3.

なお、視覚的手法と、エネルギーを考慮した手法は、適宜組合わせて用いる 5 こともできる。そのようなコンピュータソフトウエアとしては、FlexiDock (Tripos Inc.), FlexX (Tripos Inc.), SYBYL (Tripos Inc.), Insight II (Accelrys Inc.) 、MOE (Chemical Computing Group Inc.) などが挙げら れる。

なお、本発明においては、上述したドラッグデザイン方法によって選択され た化合物を実際に合成し、これらの化合物群を化合物アレイ(又は化合物ライ ブラリ)として提供することができる。このような化合物アレイを利用すれば、 ハイスループットスクリーニングの技術などを用いて、一度に大量の候補化合 物をアッセイすることができるので、グルコキナーゼの活性化剤又は阻害剤を 効率良くスクリーニングすることができる。 15

(本発明の方法によって得られる化合物及びそれを含む治療剤)

10

20

25

上記のドラッグデザイン方法によって設計される化合物は、グルコキナーゼ と結合する能力を有するので、グルコキナーゼの活性化化合物又はグルコキナ ーゼ阻害化合物として用いることができる。また、このような化合物を含有す る治療剤又は医薬組成物は、グルコキナーゼ活性が関与する疾患の治療剤(例 えば、糖尿病治療剤)として有効に用いることができる。

上記医薬組成物は、本発明のグルコキナーゼと結合する化合物を有効成分と して、その薬学的有効量を、適当な薬学的に許容される担体ないし希釈剤と共 に含有する。上記医薬組成物 (医薬製剤) に利用できる薬学的に許容できる担 体としては、製剤の使用形態に応じて通常使用される、充填剤、増量剤、結合 部、付湿剤、崩壊剤、表面活性剤、滑沢剤などの希釈剤或は賦形剤などが例示 される。これらの担体は、得られる製剤の投与単位形態に応じて適宜選択使用 される。

- 281 -

本発明の医薬組成物の投与単位形態としては、各種の形態が治療目的に応じ て選択でき、その代表的なものとしては、錠剤、丸剤、散剤、粉末剤、顆粒剤、 カプセル割などの固体投与形態や、溶液、懸濁剤、乳剤、シロップ、エリキシ ルなどの液剤投与形能が含まれ、これらは更に投与経路に応じて経口剤、非経 口剤、経鼻剤、経膣剤、坐剤、舌下剤、軟膏剤などに分類され、それぞれ通常 の方法に従い、調合、成形、調製することができる。例えば、錠剤の形態に成 形するに際しては、上記製剤担体として例えば乳糖、白糖、塩化ナトリウム、 ブドウ糖、尿素、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケ イ酸、リン酸カリウムなどの賦形剤、水、エタノール、プロパノール、単シロ ップ、ブドウ糖液、デンプン液、ゼラチン溶液、カルボキシメチルセルロース、 ヒドロキシプロピルセルロース、メチルセルロース、ポリビニルピロリドンな どの結合剤、カルボキシメチルセルロースナトリウム、カルボキシメチルセル ロースカルシウム、低置換度ヒドロキシプロピルセルロース、乾燥デンプン、 アルギン酸ナトリウム、カンテン末、ラミナラン末、炭酸水素ナトリウム、炭 酸カルシウムなどの崩壊剤、ポリオキシエチレンソルビタン脂肪酸エステル類、 ラウリル硫酸ナトリウム、ステアリン酸モノグリセリドなどの界面活性剤、白 糖、ステアリン、カカオバター、水素添加油などの崩壊抑制剤、第4級アンモ ニウム塩基、ラウリル硫酸ナトリウムなどの吸収促進剤、グリセリン、デンプ ンなどの保湿剤、デンプン、乳糖、カオリン、ベントナイト、コロイド状ケイ 酸などの吸着剤、精製タルク、ステアリン酸塩、ホウ酸末、ポリエチレングリ コールなどの滑沢剤などを使用できる。更に錠剤は必要に応じ通常の剤皮を施 した錠剤、例えば糖衣錠、ゼラチン被包錠、腸溶被錠、フィルムコーティング 錠とすることができ、また二重錠ないしは多層錠とすることもできる。

10

15

20

25

丸剤の形態に成形するに際しては、製剤担体として例えばブドウ糖、乳糖、 デンブン、カカオ脂、硬化植物油、カオリン、タルクなどの賦形剤、アラビア ゴム末、トラガント末、ゼラチン、エタノールなどの結合剤、ラミナラン、カ ンテンなどの崩壊剤などを使用できる。

カプセル剤は、常法に従い通常本発明の有効成分を上記で例示した各種の製 剤担体と混合して硬質ゼラチンカプセル、軟質カプセルなどに充填して調整さ れる。

10

15

25

経口投与用液体投与形態は、慣用される不活性希釈剤、例えば水、を含む医薬的に許容される溶液、エマルジョン、懸濁液、シロップ、エリキシルなどを 包含し、更に湿潤剤、乳剤、懸濁剤などの助剤を含ませることができ、これら は常法に従い調製される。

非経口投与用の液体投与形態、例えば滅菌水性乃至非水性溶液、エマルジョン、懸濁液などへの調製に際しては、希釈剤として例えば水、エチルアルコール、プロピレングリコール、ボリエチレングリコール、ボリオキシ化イソステアリルアルコール、ポリオキシ化イソステアリルアルコール、ポリオキシイソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル及びオリーブ油などの植物油などを使用でき、また注入可能な有機エステル類、例えばオレイン酸エチルなどを配合できる。これらには更に通常の溶解補助剤、緩衝剤、湿潤剤、乳化剤、懸濁剤、保存剤、分散剤などを添加することもできる。 滅菌は、例えばパクテリア保留フィルターを通過させる濾過操作、殺菌剤の配合、照射処理及び加熱処理などにより実施できる。また、これらは使用直前に滅菌水や適当な滅菌可能媒体に溶解することのできる減満間は絡成物形態に調製することもできる。

坐剤や膣投与用製剤の形態に成形するに際しては、製剤担体として、例えば ボリエチレングリコール、カカオ脂、高級アルコール、高級アルコールのエス テル類、ゼラチン及び半合成グリセライドなどを使用できる。

20 ペースト、クリーム、ゲルなどの軟膏剤の形態に成形するに際しては、希釈剤として、例えば白色ワセリン、パラフイン、グリセリン、セルロース誘導体、プロピレングリコール、ポリエチレングリコール、シリコン、ベントナイト及びオリーブ油などの植物油などを使用できる。

経鼻又は舌下投与用組成物は、周知の標準賦形剤を用いて、常法に従い調製 することができる。

尚、本発明薬剤中には、必要に応じて着色剤、保存剤、香料、風味剤、甘味 剤などや他の医薬品などを含有させることもできる。

上記医薬製剤中に含有されるべき有効成分の量及びその投与量は、特に限定 されず、所望の治療効果、投与法、治療期間、患者の年齢、性別その他の条件

- 283 -

などに応じて広範囲より適宜選択される。一般的には、投与量は、通常、1日 当り体重60kg当り、約0.01mg~1000mg、好ましくは約1mg~100mgとするのがよく、1日に1~数回に分けて投与することができる。

5 本明細書の配列表の配列番号は、以下の配列を示す。

[配列番号:1]

ヒト由来肝臓型グルコキナーゼをコードするDNAの塩基配列を示す。

[配列番号:2]

ヒト由来肝臓型グルコキナーゼのアミノ酸配列を示す。

10 〔配列番号:3〕

ヒト由来 β 細胞グルコキナーゼのアミノ酸配列を示す。

〔配列番号: 4〕

ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基11個を欠失させたタンパク質をコードするDNAの塩基配列を示す。

15 〔配列番号:5〕

ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基11個を欠失させたタンパク質のアミノ酸配列を示す。

〔配列番号:6〕

以下の実施例1におけるPCR反応で使用した、プライマー1の塩基配列を

20 示す。

[配列番号:7]

以下の実施例1におけるPCR反応で使用した、プライマー2の塩基配列を示す。

〔配列番号:8〕

25 ヒト由来肝臓型グルコキナーゼのN末端側のアミノ酸残基15個を欠失させたタンパク質のアミノ酸耐列を示す。

[配列番号:9]

以下の実施例6におけるPCR反応で使用した、プライマーの塩基配列を示す。

- 284 -

[配列番号:10]

以下の実施例6におけるPCR反応で使用した、プライマーの塩基配列を示す。

5 (実施例)

した。

らびに、

15

20

25

以下、本発明を、実施例を用いて具体的に説明する。

(変異型酵素の精製方法)

Human グルコキナーゼには、プロモーターの違いよって肝臓型と膵臓型が存在し、N 末端の15 残基が異なる。三次元構造解析を目的に結晶化を行うため に、この部分の一部あるいはすべてを欠損した変異型酵素を以下の方法で作成

pCR2. 1 (INTROGEN 社製) 上にクローニングされた Human 肝臓型グルコキナーゼの cDNA と 2 種のプライマーセット

5' - gicacaaggagccagaagctiaiggccttgactciggtag- 3'(配列番号6) 及び 5' -gaagccccacgacattgttcccttctgc - 3 (配列番号7)の組み合わせ、な

5' - ccaggcccagacagccaagcttatggtagagcagatcc- 3'、 (配列番号9)及び

5' -gaagececacgacattgttcccttctgc 3' (配列番号10)

を用いて PCR 反応を行った。得られた PCR 産物の Hind III、ClaI 断片を

pFLAG・CTC ベクター (Eastman Kodak) の Hind III, Eco RI 部位にクローニングされていた肝臓型 GK の Hind III - Cla I 領域と置換することで、肝臓型 GK の $1\sim11$ 残基を欠損する変異型 GK ($\Delta1-11$)、及び $1\sim15$ 残基を欠損する変異型 GK ($\Delta1-15$) をコードする cDNA を得た。得られた cDNA の配列を確認した後、これらのベクターを発現ベクターとし、大腸前 DH5 α 株(宝酒造社製)を形質変換した。

形質変換体を LB 培地で 600nm の吸収が 0.8 になるまで 37℃で培養した後、 終濃度が 0.4mM になるようにイソプロピルー 1 - チオーβ-D-ガラクシド (和光純薬社製)を加え、25℃で 16 時間、タンパク質の生産誘導を行った。

- 285 -

培養された大腸菌を遠心機で収集し、以下の成分を含む緩衝液(50 mM リン酸カリ (Potassium Phosphate) pH7.5, 50mM NaCl, 2 mM DTT, 0.5 mM Pefabloc SC (関東化学社製)、a proteinase inhibitor mixture (Roche 社製)) に懸濁した。

収集した大腸菌は、超音波破砕法によって破砕し、可溶化画分を上記の緩衝 液に対して透析した後、HiTrapQカラム(アマシャム社製)により精製した。 HiTrapQカラムより塩化カリウムのグラジエントにより溶出されたGK画分を 希釈により塩濃度50mMに希釈した。

希釈された GK 画分を論文 (Preparative Biochemistry, 20(2), 163-178 (1990)) に示されている方法で作製した Glucosamin Sepharose カラムにより精製した。GK 画分を Glucosamin Sepharose カラムに吸着させ 100mM 塩化ナトリウムで不純物を除いた後、1M のグルコースにより溶出させた。

溶出された GK 画分は、MonoQ10/10 カラムにより精製した。MonoQ10/10 カラム (アマシャム社製) より塩化ナトリウムのグラジエントにより溶出された GK 画分を、移動層として 50mM Tris-Cl pH7. 2, 50mM NaCl 緩衝液を用いて、Superdex200 カラム (アマシャム社製) により精製した。

(結晶化方法)

15

20

25

(変異型 GK (△1-11) / グルコース/化合物複合体の結晶)

変異型 GX (Δ 1 - 1 1) / グルコース/化合物複合体の結晶は、以下に示す蒸気拡散の手法を用いて得た。なお、変異型 GX (Δ 1 - 1 1)は、配列番号 G5 で表されるアミノ酸配列を有するグルコキナーゼを意味する。

すなわち、高純度に精製された変異型 GK を濃縮し、最終的に 10mg/m1 程度の変異型 GK の溶液 (25 mM 1ris-Cl, 50 mM 1ng/m 1n

- 286 -

後に、試料溶液中に最大 0.4 mm×0.4 mm×0.7 mm 程度の結晶が得られた(実施列1)。

さらに上記の方法で得られた結晶を下記化合物2 (式IIIbで表される化合物) が0.3 Mの濃度で含まれるようにして、28~30% PEG 1500、0.1 M Hepes 5 - NaOH (pH6.6) 溶液に3~7日程度浸透することによって、下記化合物2と上記変異型CKの複合体結晶を得た(実施例2)。

化合物1

10 化合物 2

また、前記化合物1に代えて化合物3 (式 III c で表される化合物) を用いた以外は、実施例1と同様にして結晶化を試みた結果、それぞれ実施例1と同様な結晶が得られた(実施例3)。

(IIIb)

化合物3

15

コキナーゼの構造を決定した。

得られた結晶を 1 0 %のグリセロールを加えた結晶化溶液に浸し、続いて液体窒素中で急速に凍結した。シンクロトロン施設 KEK—PF の BL6B において振動法により、凍結した結晶の X 線回折データを 100K 窒素気流中で収集した。得られた回折像から、DENZO/SCALEPACK (IIKL 社製)を用いて回折強度を数値化し、結晶構造因子を求めた。この段階で結晶は六方晶系で空間群は P6,22 あるいは P6,22 を有し、結晶の単位格子は、a = b = 79.9 オングストローム、c = 322.2 オングストローム、α = β = 90°, γ = 120°であるとわかった。10 得られた構造因子と Human ヘキソキナーゼ タイプ1の3次元構造座標を用いて分子置換法を行い構造を解析した。計算には8 オングストロームから4 オングストロームの分解能のデータを用い、CCP4 (Council for the Central laboratory of the Research Councils)の Amore プログラムにより行った。計算により得られた構造の R 因子は、53.7%であり、結晶の空間群は P6,22で15 非対称単位に変異型 GK —分子を含むことが分かった。この構造と構造因子か

次に CNX (Accelrys Inc.) を用いてアミノ酸の位置の精密化を行い、プログラム 0 を用いてアミノ酸残基の同定を行った。この操作を繰り返し行い、変20 異型グルコキナーゼのスレオニン 14 からシステイン 461 までの 448 アミノ酸 残基の構造座標、1 分子のグルコース分子、1 分子の化合物 A、1 個のナトリウムイオン、及び 149 個の水分子を同定し構造座標を決定した。 最終的に決定された構造の正確さの指標とされる R 因子は、30 オングストロームから 2.3 オングストロームの分解能のデータに対して R=23.2%であり、構造の精密化の25 段階で計算に用いなかったデータに対する R 因子 (Rfree) は 27.4%であった。

ら電子密度マップを得て、プログラム 0 (Dat-ONO 社製) を用いて変異型グル

- 288 -

ラマチャンドラン・プロットで確認したところ許容されない構造を持ったアミ /酸痔基はなかった。

決定された変異型グルコキナーゼの構造は、アイソザイムであるヘキソキナーゼの構造と似たものであったが、グルコキナーゼを活性化する化合物1 (式 IIIaの化合物)の結合している部位の構造は異なっていた。この構造の相違は、現在の計算化学の能力で予想できうるものでなく、今回の構造解析により、この部位がアクティベーターの結合部位であること、そしてその詳細な立体構造が初めて明らかとなった。図1 a は、ここで解明されたグルコキナーゼの三次元構造を示すリボン図である。図1 a に示されるように、新規に見つかった アクティベーター結合部位は、ラージドメインとスモールドメインの間に位置しており、基質であるグルコースが結合しているグルコキナーゼの活性中心から、約 20 オングストローム離れていた。アクティベーター結合部位を構成しているグルコキナーゼのアミノ酸残基は以下のとおりであった。チロシン 61~セリン 69、グルタミン酸 96~グルタミン 98、イソロイシン 159、メチオニン 210~チロシン 215、ヒスチジン 218~グルタミン酸 221、メチオニン 235、アルギニン 250、ロイシン 4 5 1~リジン 4 5 9。

また、この結合部位に対する化合物1 (式 IIIa の化合物) の結合様式を図2に、グルコキナーゼの結合部位の構造を図3に示す。チアゾール環は、パリン62、パリン452、パリン455のそれぞれのアミノ酸側鎖の分子とファンデル70円ルス接触をしており、またチアゾール環上の窒素原子がアルギニン63の主鎖の窒素原子と水素結合をしていた。化合物1上のアミドの窒素原子は、アルギニン63の主鎖の酸素原子と水素結合をしていた。化合物1のベンゼン環部分はイソロイシン211とファンデルワールス接触をしており、ベンゼン環に置換したフッ素原子はチロシン214の側鎖とファンデルワールス接触をしており、ベンゼン環にで、化合物1のアニリン構造は、チロシン215の側鎖の酸素原子と水素結合を形成していた。硫黄を介してベンゼン環と結合しているイミダゾール環部分は、メチオニン210、メチオニン235、チロシン214のアミノ酸側鎖部分とファンデルワールス接触をしていた。ラージドメインとスモールドメインを結んでいる、セリン64~セリン69の部分は、溶液に露出した構造をしており、化合物

- 289 -

1は、この部分が形作るアーチ状構造の下部に結合していた(図3)。

(寒施例4:ドラッグデザインの実施例)

ソフトウエア UNITY (トライポス社製) を用い、Arg63 の主鎖 NI, COからそ れぞれ発生させた水素結合アクセプター、水素結合ドナーのファルマコフォア と、複合体を形成するリガンドのアニリン部分のフェニル基に相当する空間に 形成された疎水性のファルマコフォア、および蛋白の構造を元に作成した蛋白 表面を検索条件としてライブラリ化合物をスクリーニングし、下記化合物4、及び化合物5 が得られ、アッセイを行ったところ、それぞれ780%、および 560%の活性が認められた。なお活性が780%とは、グルコキナーゼの活性をコントロールを100%としたときに、これらの化合物によって780%まで増強されたことを示す(グルコース2.5M及びリガンド10μMを使用)。

化合物 4

活件:780%

化合物 5

15

活性:560%

20 (実施例5)

(変異型 GK (Δ1-15) の結晶)

変異型 $(K(\Delta 1 - 15))$ (配列番号8 で表されるアミノ酸配列を有するグルコキナーゼ)の単体の結晶は、以下に示す蒸気拡散の手法を用いて得た。

- 290 -

すなわち、高純度に精製された変異型 GK を濃縮し、最終的に 10mg/m1 程度の変異型 GK の溶液 (25 mM Tris-C1 pH7.2, 50 mM NaCl, 5 mM TCEP) とした。 タンパク質溶液 1~5 μ 1 に結晶化溶液 (1.5 ~ 1.6 M 硫酸アンモニウム、50mM NaCl, 0.1 M Bicine NaOH (pH8.7)) を等量加えて混合した溶液を 0.5~1ml の結晶化溶液が入った密閉容器に、両溶液が触れ合わないように収め、20℃で静置した。およそ 3 日~1 ヶ月の静置の後に、試料溶液中に最大 0.07mm×0.07mm×0.5mm 程度の大きさの結晶が得られた。

得られた結晶を 20%のグリセロールを加えた結晶化溶液に浸し、続いて液体窒素中で急速に凍結した。シンクロトロン施設 Spring-8 の BL32B2 において、振動法により、凍結した結晶の X 線回折データを 100K 窒素気流中で収集した。得られた回折像から、Mosflm を用いて回折強度を数値化し、結晶構造因子を求めた。この段階で結晶は六方晶系であり、空間群は $P6_222$ あるいは $P6_122$ を有し、結晶の単位格子は、 $\alpha=b=103.2$ Å, $\alpha=281.0$ Å, $\alpha=\beta=90^\circ$, $\alpha=120^\circ$ であることが明らかとなった。

 次に、得られた構造因子をもちいて分子置換法を行い、構造を解析した。立 体構造のモデルとして、変異型 GK (Δ1-11) / グルコース/化合物複合 体結晶により決定されたグルコキナーゼの各ドメインの 3 次元構造座標をそれ ぞれ別々に用いた。計算は、8~4オングストロームの分解能のデータを用い て、CCP4 (Council for the Central laboratory of the Research Councils)
 の Amore プログラムにより行った。結晶の空間群は P6,22 であり、非対称単位 に変異型 GK (Δ1-15) 一分子を含むことが分かった。この構造と構造因 子から電子密度マップを得て、プログラム 0 (Dat-ONO 社製) を用いて変異型 GK (Δ1-15) 単体の構造を決定した。

次に、CNX (モレキュラーシミュレーション社製) を用いてアミノ酸の位置の精密化を行い、プログラム 0 を用いてアミノ酸残基の同定を行った。この操作を繰り返し行い、変異型グルコキナーゼのメチオニン 15 からヒスチジン 156 とアスパラギン 180 からシステイン 461 までの 424 アミノ酸残基の構造座標、2 分子の硫酸イオン、1 個のナトリウムイオン、及び7 個の水分子を同定し構造座標を決定した。長終的に決定された構造の正確さの指標とされる 8 因

- 291 -

子は、50~3.4 オングストロームの分解能のデータに対して R=23.8%であり、 構造の精密化の段階で計算に用いなかったデータに対する R 因子 (Rfree) は 30.6%であった。ラマチャンドラン・プロットで確認したところ、許容されな い構造を持ったアミノ酸残基はなかった。

図1a及び図1bに、それぞれグルコキナーゼ $(\Delta 1-11)$ /グルコース/化 5 合物 1 の構造を示すリボン図、及びグルコキナーゼ $(\Delta 1 - 15)$ 単体の構造を 示すリボン図を示す。なお、右図は、左図を回転した図である。決定された変 異型 $(K(\Delta 1 - 15))$ 単体の構造においてラージドメイン及びスモールドメ インの主要部分の構造は、変異型 GK (Δ1-11) / グルコース/化合物複 合体結晶により決定されたグルコキナーゼにおけるそれぞれの構造と似たもの であったが、?つのドメインの相対位置が大きく異なっていた。変異型 \mathbb{K} (Δ 1-15) 単体構造においてスモールドメインの主要部分は、変異型 GK(△ 1-11) /グルコース/化合物複合体構造におけるスモールドメインの位置 からおよそ 99 度回転していた。また、グルコキナーゼの C 末端領域に位置し 変異型 $GK(\Delta 1-11)$ /グルコース/化合物複合体構造においてはスモー ルドメインを構成していた α 13ヘリックスは、変異型 $GK(\Delta$ 1-15)単 体構造においてはもはやスモールドメインを構成せず、両ドメイン間に位置し ていた。さらに、変異型 $GK(\Delta 1 - 11)$ /グルコース/化合物複合体構造 における基質グルコースの結合部位及び活性化剤結合部位はどちらも2つのド メイン間に存在していたため、新たに決定した構造ではそれらの部位の構造は 20 大きく変化していた。変異型 GK (Δ1-15) 単体構造では酵素活性に重要 な役割を果たすアミノ酸残基が活性部位を形成しておらず、今回解析した変異 型 GK (Δ 1 - 1 5) 単体の構造は、グルコキナーゼの不活性状態の構造であ った。また、変異型 GK (Δ1-15) 単体の構造において活性化剤結合部位 は、完全に消失していた。変異型 $(K(\Delta 1 - 11))$ / グルコース/ 化合物複 合体構造および変異型 $GK(\Delta 1-15)$ 単体構造により観測されたグルコキ ナーゼの構造変化(約99度のドメインの回転)は、今まで知られていたヘキソ

キナーゼの構造変化(約12度のドメインの回転)と比較してはるかに大きな

- 292 -

ものであり、現在の計算化学の能力で予想でき得るものではなく、今回の構造 解析により初めて明らかとなったものである。

また、不活性型である変異型 \mathbf{G} ($\Delta 1-15$) 単体構造への構造変化を阻害する目的として、変異型 \mathbf{G} ($\Delta 1-11$) /グルコース/化合物複合体構造で示された化合物結合部位に結合する化合物を設計することにより、グルコキナーゼの活性化剤を設計できることが明らかとなった。

産業上の利用可能性

以上説明したように、本発明によれば、従来は結晶化が困難であったグルコ
10 キナーゼタンパク質の結晶を得ることができた。この結晶の構造を解析することによって得られる三次元構造座標は、グルコキナーゼに結合する化合物を設計するために好適に用いることができる。また、このようにして設計される化合物は、グルコキナーゼに結合するので、グルコキナーゼ活性化剤又は阻害剤として、グルコキナーゼ活性が関与する疾患の治療剤(例えば、糖尿病治療15 剤)として用いることができる。

- 293 -

請求の範囲

- 1. 結晶化に用いることを特徴とする、グルコキナーゼタンパク質。
- 2. 配列番号5に記載のアミノ酸配列からなることを特徴とする、請求項1
- 5 に記載のタンパク質。
 - 3. 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一 のアミノ酸配列からなることを特徴とするタンパク質の結晶。
 - 4. 前記タンパク質がグルコキナーゼタンパク質である、請求項3に記載の 結晶。
- 10 5. 配列番号5に記載のアミノ酸配列を有するタンパク質の結晶である、請 求項3に記載の結晶。
 - 6. 格子定数が、下記式(1)~(4): a=b=79.9±4オングストローム ···(1) c=322.2±15オングストローム ···(2)
- 15 $\alpha = \beta = 90^{\circ}$... (3)

 $\gamma = 120^{\circ} \quad \cdots \quad (4)$

を満たす、請求項3に記載の結晶。

- 7. 空間群がP6,22である、請求項6に記載の結晶。
- 8. 表1に記載の三次元構造座標データによって特定されるタンパク質の結
- 20 晶。
 - 9. 表1に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表1に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子($C \alpha$ 原子)と、該 $C \alpha$ 原子と対応する前記変更した三次元構造座標データで示される $C \alpha$ 原子との平均二乗偏差が、0.6
- 25 グストローム以下である結晶。
 - 10. 化合物結合部位が、配列番号5に示すアミノ酸配列における、チロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン159、メチオニン210~チロシン215、ヒスチジン218~グルタミン酸21、メチオニン235、アルギニン250、ロイシン451~リジン459

- 294 -

のアミノ酸残基の少なくともひとつによって構成されている、請求項 $3\sim9$ のいずれかに記載の結晶。

- 11. 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同 一のアミノ酸配列からなるタンパク質と該タンパク質に結合可能な化合物との 5 複合体を含む結晶。
 - 12. 前記化合物が、式(I)で表される、請求項11に記載の結晶。

(1)

「式中、R¹は、ハロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O
 10 -Bを示し (ここで、p及びqは同一又は異なって、0~2の整数を示し、A は置換されていてもよい直鎖のC₁-C₁アルキル基を示し、Bは置換されていてもよい五員環又は六員環のアリール基又はヘテロアリール基を示し、R¹は水素原子又はハロゲン原子を示し、

15

(11)

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても よい単環の又は双環のヘテロアリール基を示す)

13. 前記化合物が、式(IIIa)~式(IIIc)で表されるいずれかの化合物である請求項12に記載の結晶。

$$0 = \overset{\mathsf{CH}_3}{=} 0 \\ 0 = \overset{\mathsf{N}}{=} 0 \\ 0 \\ 0 \\ \mathsf{NH}_2$$

5

14. 配列番号8に記載のアミノ酸配列からなることを特徴とする、請求項 1に記載のタンパク質。

(IIIc)

- 15. 配列番号 8 に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同 ーのアミノ酸配列からなることを特徴とするタンパク質の結晶。
 - 16. 前記タンパク質がグルコキナーゼタンパク質である、請求項15に記載の結晶。
 - 17. 配列番号8に記載のアミノ酸配列を有するタンパク質の結晶である、 請求項15に記載の結晶。
- 15 18. 格子定数が、下記式

a=b=103, 2±5 オングストローム … (5)

c=281.0±7 オングストローム … (6)

 $\alpha = \beta = 90^{\circ} \quad \cdots \quad (7)$

- 296 -

 $\gamma = 120^{\circ} \quad \cdots \quad (8)$

を満たす、請求項15に記載の結晶。

- 19. 空間群が P6,22 である、請求項18 に記載の結晶。
- 20. 麦2に記載の三次元構造座標データによって特定されるタンパク質の 5 結晶。
 - 21. 表 2 に記載の三次元構造座標データの少なくとも一つのデータを変更した三次元構造座標データにおいて、表 2 に記載の三次元構造座標データで示されるアミノ酸の主鎖の原子(C α 原子)と、該C α 原子と対応する前記変更した三次元構造座標データで示されるC α 原子との平均二乗偏差が、0. 6 オングストローム以下である結晶。
 - 22. 配列番号2に記載のアミノ酸配列を有するタンパク質のN末端、C末端のいずれかまたは両方から、 $1\sim50$ 個のアミノ酸残基を欠損したアミノ酸配列を有するタンパク質を製造するタンパク質製造工程と、

前記タンパク質製造工程で得られたタンパク質と結合する化合物と、前記タ ンパク質製造工程で得られたタンパク質とを反応させるタンパク質反応工程と を含む、

タンパク質及びそのタンパク質と結合する化合物の複合体を含む結晶の製造 方法。

- 23. タンパク質の結晶を製造する方法であって、
- 20 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミノ酸配列を含みグルコキナーゼ活性を有するタンパク質、及び該タンパク質に結合可能な化合物を用いることを特徴とする、結晶の製造方法。
 - 24. 前記タンパク質に結合可能な化合物が、式(I)で表される化合物であることを特徴とする、請求項23に記載のタンパク質の結晶の製造方法。

(1)

[式中、 R^1 は、ハロゲン原子、-S-(O)p-A、-S-(O)q-B又は-O-Bを示し(ここで、p及びqは同一又は異なって、 $0\sim2$ の整数を示し、Aは置換されていてもよい直鎖の C_1-C_2 アルキル基を示し、Bは置換されてい

「もよい五員環又は六員環のアリール基又はヘテロアリール基を示し、 R^1 は水素原子又はハロゲン原子を示し、

は、アミド基に結合した炭素原子の隣に窒素原子を有する、置換されていても よい単環の又は双環のヘテロアリール基を示す)

25. 共結晶法又はソーキング法による、請求項23、又は請求項24に記 歳の結晶の製造方法。

26. タンパク質の立体構造情報に基づいて該タンパク質に結合する化合物 の構造をデザインするドラッグデザイン方法であって、

15 該タンパク質の立体構造情報が、請求項3~13、請求項15~21のうちのいずれか一項に記載の結晶を解析することによって得られる情報であることを 特徴とする、ドラッグデザイン方法。

27. 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推 測する結合部位推測工程と、

20 前記結合部位推測工程で推測された化合物結合部位に適合する化合物を、化合

- 298 -

物ライブラリより選択する選択工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 28. 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推 測する結合部位推測工程と、
- 5 前記結合部位推測工程で推測された化合物結合部位に適合する化合物の構造を 構築する化合物構造構築工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 29. 前記立体構造情報に基づいて、前記タンパク質の化合物結合部位を推 測する結合部位推測工程と、
- 前記結合部位推測工程で推測された化合物結合部位と該化合物結合部位に適合 する化合物とが相互作用するように化合物の構造を目視によりデザインするデ ザイン工程と、

を含むことを特徴とする、請求項26に記載のドラッグデザイン方法。

- 3.0. 前記化合物結合部位が、配列番号5に示すアミノ酸配列における、チ
- 15 ロシン61~セリン69、グルタミン酸96~グルタミン98、イソロイシン 159、メチオニン210~チロシン215、ヒスチジン218~グルタミン 酸221、メチオニン235、アルギニン250、ロイシン451~リジン459のアミノ酸残基の少なくともひとつによって構成されている、請求項26~29のうちのいずれか一項に配載のドラッグデザイン方法。
- 20 31. さらに、前記化合物結合部位に適合すると推定される候補化合物の生理活性を測定する工程を含む、請求項26~30のいずれか一項に記載のドラッグデザイン方法。
 - 32. さらに、前記化合物結合部位に適合すると推定される候補化合物と、 配列番号5に記載のアミノ酸配列又はそのアミノ酸配列と実質的に同一のアミ
- 25 ノ酸配列を含むタンパク質とを接触させ、その候補化合物が該タンパク質に結合するか否か判定する結合判定工程を含む、請求項26~30のいずれか一項に記載のドラッグデザイン方法。
 - 33. 請求項26~30のいずれか一項に記載のドラッグデザイン方法によって選択された化合物群を化合物アレイとして組み合わせることを含む化合物

- 299 -

アレイの製造方法。

図1

α 13ヘリックス b

2/3

図2

図3

1/15 SEQUENCE LISTING

- <110> Banyu Pharmaceutical Co., Ltd.
- <120> Crystal of Glucokinase Protein and Drug Desing Method
 Using Thereof
- <130> P03-0064PCT
- <140>
- <141>
- <150> JP2002-142232
- <151> 2002-05-16
- <160> 10
- <170> PatentIn Ver. 2.1
- ⟨210⟩ 1
- <211> 1401
- <212> DNA
- <213> Homo sapiens

<400> 1

2/15

<210> 2

<211> 466

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Met Asp Val Thr Arg Ser Gln Ala Gln Thr Ala Leu Thr Leu 1 5 10 15

Val Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln Glu Glu Asp Leu Lys 20 25 30

Lys Val Met Arg Arg Met Gln Lys Glu Met Asp Arg Gly Leu Arg Leu 35 40 45

Glu Thr His Glu Glu Ala Ser Val Lys Met Leu Pro Thr Tyr Val Arg

Ser Thr Pro Glu Gly Ser Glu Val Gly Asp Phe Leu Ser Leu Asp Leu 65 70 75 80

								3/1	15						
Gly	Gly	Thr	Asn	Phe 85	Arg	Val	Met	Leu	Va 1 90	Lys	Val	Gly	Glu	Gly 95	G1u
Glu	G1y	G1n	Trp 100	Ser	Va1	Lys	Thr	Lys 105	His	G1n	Met	Tyr	Ser 110	Ile	Pro
Glu	Asp	Ala 115	Met	Thr	Gly	Thr	Ala 120	Glu	Met	Leu	Phe	Asp 125	Tyr	Ile	Ser
Glu	Cys 130	Ile	Ser	Asp	Phe	Leu 135	Asp	Lys	His	Gln	Met 140	Lys	His	Lys	Lys
Leu 145	Pro	Leu	Gly	Phe	Thr 150	Phe	Ser	Phe	Pro	Val 155	Arg	His	Glu	Asp	I1e 160
Asp	Lys	Gly	Ile	Leu 165	Leu	Asn	Trp	Thr	Lys 170	Gly	Phe	Lys	Ala	Ser 175	Gly
Ala	Glu	Gly	Asn 180	Asn	Val	Val	Gly	Leu 185	Leu	Arg	Asp	Ala	Ile 190	Lys	Arg
Arg	Gly	Asp 195	Phe	Glu	Met	Asp	Va1 200	Val	Ala	Met	Val	Asn 205	Asp	Thr	Va 1
Ala	Thr 210	Met	Ile	Ser	Cys	Tyr 215	Tyr	Glu	Asp	His	G1n 220	Cys	Glu	Val	Gly
Met 225	Ile	Val	Gly	Thr	Gly 230	Cys	Asn	Ala	Cys	Tyr 235	Met	Glu	Glu	Met	Gln 240
Asn	Val	Glu	Leu	Va1	Glu	Gly	Asp	G1u	Gly	Arg	Met	Cys	Val	Asn	Thr

Glu Trp Gly Ala Phe Gly Asp Ser Gly Glu Leu Asp Glu Phe Leu Leu

								4/1	5						
G1u	Tyr	Asp 275	Arg	Leu	Val	Asp	G1u 280	Ser	Ser	Ala	Asn	Pro 285	G1y	Gln	Gln
Leu	Туг 290	G1u	Lys	Leu	Ile	Gly 295	Gly	Lys	Tyr	Met	Gly 300	Glu	Leu	Val	Arg
Leu 305	Val	Leu	Leu	Arg	Leu 310	Val	Asp	G1u	Asn	Leu 315	Leu	Phe	His	Gly	G1u 320
Ala	Ser	G1u	G1n	Leu 325	Arg	Thr	Arg	Gly	Ala 330	Phe	Glu	Thr	Arg	Phe 335	Val
Ser	Gln	Val	G1 u 340	Ser	Asp	Thr	Gly	Asp 345	Arg	Lys	Gln	Ile	Tyr 350	Asn	Ile
Leu	Ser	Thr 355	Leu	Gly	Leu	Arg	Pro 360	Ser	Thr	Thr	Asp	Cys 365	Asp	Ile	Val
Arg	Arg 370	Ala	Cys	G1u	Ser	Va1 375	Ser	Thr	Arg	Ala	Ala 380	His	Met	Cys	Ser
A1a 385	Gly	Leu	Λla	Gly	Val 390	I1e	Asn	Arg	Met	Arg 395	Glu	Ser	Arg	Ser	G1u 400
Asp	Val	Met	Arg	I1e 405	Thr	Val	Gly	Val	Asp 410	Gly	Ser	Val	Tyr	Lys 415	Leu
His	Pro	Ser	Phe 420		Glu	Arg	Phe	His 425	Ala	Ser	Val	Arg	Arg 430	Leu	Thr
Pro	Ser	Cvs	Glu	Ile	Thr	Phe	Ile	Glu	Ser	Glu	Glu	Gly	Ser	Gly	Arg

Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met Leu

5/15

Gly Gln 465

<210> 3

<211> 465

<212> PRT

<213> Homo sapiens

<400> 3

Met Leu Asp Asp Arg Ala Arg Met Glu Ala Ala Lys Lys Glu Lys Val 1 5 10 15

Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln Glu Glu Asp Leu Lys Lys 20 25 30

Val Met Arg Arg Met Gln Lys Glu Met Asp Arg Gly Leu Arg Leu Glu 35 40 45

Thr His Glu Glu Ala Ser Val Lys Met Leu Pro Thr Tyr Val Arg Ser 50 55 60

Thr Pro Glu Gly Ser Glu Val Gly Asp Phe Leu Ser Leu Asp Leu Gly 65 70 75 80

Gly Thr Asn Phe Arg Val Met Leu Val Lys Val Gly Glu Gly Glu Glu 85 90 95

Gly Gln Trp Ser Val Lys Thr Lys His Gln Met Tyr Ser Ile Pro Glu 100 105 110

Asp Ala Met Thr Gly Thr Ala Glu Met Leu Phe Asp Tyr Ile Ser Glu 115 120 125

Cys Ile Ser Asp Phe Leu Asp Lys His Gln Met Lys His Lys Lys Leu 130 135 140

6/15

Pro 145	Leu	Gly	Phe	Thr	Phe 150	Ser	Phe	Pro	Val	Arg 155	His	Glu	Asp	I1e	Asp 160
Lys	Gly	He	Leu	Leu 165	Asn	Trp	Thr	Lys	Gly 170	Phe	Lys	Ala	Ser	Gly 175	Ala
Glu	Gly	Asn	Asn 180	Val	Val	Gly	Leu	Leu 185	Arg	Asp	Ala	Ile	Lys 190	Arg	Arg
G1y	Asp	Phe 195	G1u	Met	Asp	Val	Val 200	Ala	Met	Val	Asn	Asp 205	Thr	Val	Ala
Thr	Met 210	Ile	Ser	Cys	Tyr	Tyr 215	Glu	Asp	His	Gln	Cys 220	Glu	Val	G1y	Met
Ile 225	Val	Gly	Thr	Gly	Cys 230	Asn	Ala	Cys	Tyr	Met 235	Glu	Glu	Met	G1n	Asn 240
Val	Glu	Leu	Val	Glu 245	Gly	Asp	Glu	Gly	Arg 250	Met	Cys	Val	Asn	Thr 255	Glu
Trp	Gly	Ala	Phe 260	Gly	Asp	Ser	Gly	G1u 265	Leu	Asp	Glu	Phe	Leu 270	Leu	Glu
Tyr	Asp	Arg 275	Leu	Val	Asp	Glu	Ser 280	Ser	Ala	Asn	Pro	Gly 285	Gln	Gln	Leu
Tyr	G1u 290	Lys	Leu	Ile	Gly	Gly 295	Lys	Tyr	Met	Gly	G1u 300	Leu	Val	Arg	Leu
Val 305	Leu	Leu	Arg	Leu	Val 310	Asp	Glu	Asn	Leu	Leu 315	Phe	His	Gly	Glu	Ala 320
Ser	Glu	Gln	Leu	Arg 325	Thr	Arg	Gly	Ala	Phe 330	G1u	Thr	Arg	Phe	Va 1 335	Ser

7/15 .

Gln Val Glu Ser Asp Thr Gly Asp Arg Lys Gln Ile Tyr Asn Ile Leu 340 345 350

Ser Thr Leu Gly Leu Arg Pro Ser Thr Thr Asp Cys Asp Ile Val Arg 355 360 365

Arg Ala Cys Glu Ser Val Ser Thr Arg Ala Ala His Met Cys Ser Ala 370 375 380

Gly Leu Ala Gly Val IIe Asn Arg Met Arg Glu Ser Arg Ser Glu Asp 385 390 395 400

Val Met Arg Ile Thr Val Gly Val Asp Gly Ser Val Tyr Lys Leu His 405 410 415

Pro Ser Phe Lys Glu Arg Phe His Ala Ser Val Arg Arg Leu Thr Pro 420 425 430

Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu Glu Gly Ser Gly Arg Gly
435 440 445

Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met Leu Gly 450 455 460

Gln

465

⟨210⟩ 4

<211> 1368

<212> DNA

<213> Homo sapiens

<400> 4

atggccttga ctctggtaga gcagatcctg gcagagttcc agctgcagga ggaggacctg 60

8/15

aagaaggtga tgagacggat gcagaaggag atggaccgcg gcctgaggct ggagacccat 120 gaagaggcca gtgtgaagat gctgcccacc tacgtgcgct ccaccccaga aggctcagaa 180 gtcggggact tcctctcct ggacctgggt ggcactaact tcagggtgat gctggtgaag 240 gtgggagaag gtgaggaggg gcagtggagc gtgaagacca aacaccagat gtactccatc 300 cccgaggacg ccatgaccgg cactgctgag atgetetteg actacatete tgagtgcate 360 teegaettee tggacaagea teagatgaaa cacaagaage tgeecetggg etteacette 420 tectitects tgaggeaega agacategat aagggeatee tieteaactg gaecaaggge 480 ticaaggeet caggageaga agggaacaat giegigggge ticigegaga egetateaaa 540 cggagagggg actitgaaat ggatgiggig gcaatggiga atgacacggt ggccacgatg 600 atotoctgot actacgaaga coatcagtgo gaggtoggoa tgatogtggg cacgggotgo 660 aatgcctgct acatggagga gatgcagaat gtggagctgg tggaggggga cgagggccgc 720 atgigogica atacogagig gggcgccttc ggggactccg gcgagcigga cgagticcig 780 ctggagtatg accgcctggt ggacgagagc tctgcaaacc ccggtcagca gctgtatgag 840 aageteatag gtggcaagta catgggcgag etggtgcgge ttgtgctget caggetegtg 900 gacgaaaacc tgctcttcca cggggaggcc tccgagcagc tgcgcacacg cggagccttc 960 gagacgeget tegtgtegea ggtggagage gaeaegggeg acegeaagea gatetacaae 1020 atectgagea egetgggget gegaceeteg accaeegact gegacategt gegeegeee 1080 tgcgagagcg tgtctacgcg cgctgcgcac atgtgctcgg cggggctggc gggcgtcatc 1140 aaccgcatgc gcgagagccg cagcgaggac gtaatgcgca tcactgtggg cgtggatggc 1200 teegtgtaca agetgeaece cagetteaag gageggttee atgeeagegt gegeaggetg 1260 acgeceaget gegagateae etteategag teggaggagg geagtggeeg gggegegee 1320 ctggtctcgg cggtggcctg taagaaggcc tgtatgctgg gccagtga 1368

<210> 5

<211> 455

<212> PRT

<213> Homo sapiens

<400> 5

Met Ala Leu Thr Leu Val Glu Gln Ile Leu Ala Glu Phe Gln Leu Gln
1 5 10 15

Glu Glu Asp Leu Lys Lys Val Met Arg Arg Met Gln Lys Glu Met Asp 20 25 30

								9/1	15						
Arg	G1y	Leu 35	Arg	Leu	Glu	Thr	His 40	Glu	Glu	Ala	Ser	Val 45	Lys	Met	Leu
Pro	Thr 50	Tyr	Val	Arg	Ser	Thr 55	Pro	G1u	G1y	Ser	Glu 60	Val	G1y	Asp	Phe
Leu 65	Ser	Leu	Asp	Leu	Gly 70	Gly	Thr	Asn	Phe	Arg 75	Val	Met	Leu	Val	Lys 80
Val	Gly	Glu	Gly	G1u 85	Glu	Gly	Gln	Trp	Ser 90	Va1	Lys	Thr	Lys	His 95	Gln
Met	Tyr	Ser	I le 100	Pro	Glu	Asp	Ala	Met 105	Thr	Gly	Thr	Ala	Glu 110	Met	Leu
Phe	Asp	Tyr 115	Ile	Ser	Glu	Cys	I1e 120	Ser	Asp	Phe	Leu	Asp 125	Lys	His	Gln
Met	Lys 130		Lys	Lys	Leu	Pro 135	Leu	Gly	Phe	Thr	Phe 140	Ser	Phe	Pro	Val
Arg 145	His	G1u	Asp	Ile	Asp 150	Lys	Gly	Ile	Leu	Leu 155	Asn	Trp	Thr	Lys	Gly 160
Phe	Lys	Ala	Ser	Gly 165	Ala	Glu	Gly	Asn	Asn 170	Val	Val	Gly	Leu	Leu 175	Arg
Asp	Ala	Ile	Lys 180		Arg	Gly	Asp	Phe 185		Met	Asp	Val	Val 190	Ala	Met
Val	Asn	Asn	Thr	Val	Ala	Thr	Met	He	Ser	Cvs	Tvr	Tvr	Glu	Asp	His

Gln Cys Glu Val Gly Met Ile Val Gly Thr Gly Cys Asn Ala Cys Tyr

								10/	15						
Met 225	G1u	G1u	Met	Gln	Asn 230	Val	Glu	Leu	Val	G1 u 235	Gly	Asp	Glu	Gly	Arg 240
Met	Cys	Val	Asn	Thr 245	G1u	Trp	Gly	Ala	Phe 250	Gly	Asp	Ser	Gly	G1u 255	Leu
Asp	Glu	Phe	Leu 260	Leu	Glu	Tyr	Asp	Arg 265	Leu	Val	Asp	Glu	Ser 270	Se r	Ala
Asn	Pro	Gly 275	Gln	Gln	Leu	Tyr	G1u 280	Lys	Leu	Ile	Gly	G1y 285	Lys	Tyr	Met
Gly	Glu 290	Leu	Val	Arg	Leu	Val 295	Leu	Leu	Arg	Leu	Val 300	Asp	Glu	Asn	Leu
Leu 305	Phe	His	Gly	Glu	Ala 310	Ser	Glu	G1n	Leu	Arg 315	Thr	Arg	Gly	Ala	Phe 320
G1 u	Thr	Arg	Phe	Val 325	Ser	Gln	Val	G1u	Ser 330	Asp	Thr	Gly	Asp	Arg 335	Lys
Gln	Ile	Tyr	Asn 340	Ile	Leu	Ser	Thr	Leu 345	Gly	Leu	Arg	Pro	Ser 350	Thr	Thr
Asp	Cys	Asp 355	Ile	Val	Arg	Arg	Ala 360	Cys	Glu	Ser	Val	Ser 365	Thr	Arg	Ala
Ala	His 370	Met	Cys	Ser	Ala	Gly 375	Leu	Ala	G1y	Val	Ile 380	Asn	Arg	Met	Arg
Glu	Ser	Arg	Ser	Glu	Asp	Val	Met	Arg	Ile	Thr	Val	Gly	Val	Asp	Gly

Ser Val Tyr Lys Leu His Pro Ser Phe Lys Glu Arg Phe His Ala Ser

11/15 Val Arg Arg Leu Thr Pro Ser Cys Glu Ile Thr Phe Ile Glu Ser Glu 420 425 430 Glu Gly Ser Gly Arg Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys 440 445 435 Lys Ala Cys Met Leu Gly Gln 450 455 <210> 6 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Primer <400> 6 39 gtcacaagga gccagaagct tatggcctga ctctggtag <210> 7 <211> 28 <212> DNA <213> Artificial Sequence

<220> <223>

<223> Description of Artificial Sequence:Primer

<400> 7
gaagccccac gacattgttc ccttctgc

28

<210> 8 <211> 451

								12/	15						
	2> P1 3> H		sapi	ens											
<400 Met	0> 8 Val	G1u	Gln	Ile 5	Leu	Ala	Glu	Phe	Gln 10	Leu	Gln	G1u	Glu	Asp 15	Let
Lys	Lys	Val	Met 20	Arg	Arg	Me t	Gln	Lys 25	Glu	Met	Asp	Arg	G1y 30	Leu	Are
Leu	G1 u	Thr 35	His	G1u	G1 u	Ala	Ser 40	Val	Lys	Met	Leu	Pro 45	Thr	Tyr	Val
Arg	Ser 50	Thr	Pro	Glu	Gly	Ser 55	Glu	Val	Gly	Asp	Phe 60	Leu	Ser	Leu	Asp
Leu 65	Gly	Gly	Thr	Asn	Phe 70	Arg	Val	Met	Leu	Val 75	Lys	Val	Gly	Glu	G13 80
G1u	Glu	Gly	Gln	Trp 85	Ser	Va1	Lys	Thr	Lys 90	His	Gln	Met	Tyr	Ser 95	Ile
Pro	G1 u	Asp	A1a 100	Met	Thr	Gly	Thr	Ala 105	G1 u	Met	Leu	Phe	Asp 110	Tyr	Ile
Ser	Glu	Cys 115	Ile	Ser	Asp	Phe	Leu 120	Asp	Lys	His	G1n	Met 125	Lys	His	Lys
Lys	Leu 130	Pro	Leu	G1y	Phe	Thr 135	Phe	Ser	Phe	Pro	Va1 140	Arg	His	G1u	Asp
I le 145	Asp	Lys	Gly	Ile	Leu 150	Leu	Asn	Trp	Thr	Lys 155	Gly	Phe	Lys	Ala	Ser 160
G1y	Ala	Glu	Gly	Asn 165	Asn	Val	Val	Gly	Leu 170	Leu	Arg	Asp	Ala	I 1e 175	Lys

13/15

Arg	Arg	Gly	Asp 180	Phe	Glu	Met	Asp	Val 185	Val	Ala	Met	Val	Asn 190		Thr
Val	Ala	Thr 195	Me t	Ile	Ser	Cys	Tyr 200		Glu	Asp	His	G1n 205		Glu	Val
Gly	Me t 210		Val	Gly	Thr	G1y 215	Cys	Asn	Ala	Cys	Tyr 220	Met	Glu	Glu	Met
G1n 225	Asn	Val	Glu	Leu	Val 230	G1u	Gly	Asp	G1u	Gly 235		Met	Cys	Val	Asn 240
Thr	Glu	Trp	Gly	A1a 245	Phe	Gly	Asp	Ser	Gly 250	Glu	Leu	Asp	G1u	Phe 255	Leu
Leu	Glu	Tyr	Asp 260	Arg	Leu	Val	Asp	G1 u 265	Ser	Ser	Ala	Asn	Pro 270	Gly	Gln
Gln	Leu	Tyr 275	Glu	Lys	Leu	Ile	Gly 280	Gly	Lys	Tyr	Met	Gly 285	G1u	Leu	Val
Arg	Leu 290	Val	Leu	Leu	Arg	Leu 295	Val	Asp	G1u	Asn	Leu 300	Leu	Phe	His	Gly
Glu 305	Ala	Ser	G1u	Gln	Leu 310	Arg	Thr	Arg	Gly	Ala 315	Phe	Glu	Thr	Arg	Phe 320
Val	Ser	Gln	Val	G1u 325	Ser	Asp	Thr	Gly	Asp 330	Arg	Lys	Gln	Ile	Туг 335	Asn
Ile	Leu	Ser	Thr 340	Leu	Gly	Leu	Arg	Pro 345	Ser	Thr	Thr	Asp	Cys 350	Asp	Ile
Val	Arg	Arg 355	Ala	Cys	Glu	Ser	Va 1 360	Ser	Thr	Arg	Ala	Ala 365	His	Met	Cys

14/15

Ser Ala Gly Leu Ala Gly Val Ile Asn Arg Met Arg Glu Ser Arg Ser 370 375 - 380 Glu Asp Val Met Arg Ile Thr Val Gly Val Asp Gly Ser Val Tyr Lys 385 390 395 Leu His Pro Ser Phe Lys Glu Arg Phe His Ala Ser Val Arg Arg Leu 405 410 415 Thr Pro Ser Cvs Glu Ile Thr Phe Ile Glu Ser Glu Glu Glv Ser Glv 420 425 430 Arg Gly Ala Ala Leu Val Ser Ala Val Ala Cys Lys Lys Ala Cys Met 435 440 445 Leu Glv Gln 450 <210> 9 <211> 38 <212> DNA <213> Artificial Sequence ⟨220⟩ <223> Description of Artificial Sequence:Primer <400> 9 ccaggcccag acagccaage ttatggtaga gcagatee

38

<210> 10

<211> 28

<212> DNA

<213> Artificial Sequence

15/15

<220>

<223> Description of Artificial Sequence:Primer

<400> 10

gaagccccac gacattgttc ccttctgc

INTERNATIONAL SEARCH REPORT

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.

			PCT/JI	203/06054			
	SIFICATION OF SUBJECT MATTER .Cl ⁷ C12N9/12, C12Q1/48						
According t	to International Patent Classification (IPC) or to both n	ational classification ar	nd IPC				
B. FIELD	S SEARCHED						
Minimum d	ocumentation searched (classification system followed	by classification symbol	ols)				
	Cl ⁷ Cl2N9/12, Cl2Q1/48						
	tion searched other than minimum documentation to th						
CA(S	lata base consulted during the international search (nan STN), BIOSIS (DIALOG), WPI (DIALC SSProt/PIR/Genbank/EMBL/DDBJ/Ge	OG),	ere practicable, sea	rch terms used)			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap			Relevant to claim No.			
XA	TANIZAWA, Y. et al., Human L. Gene: Cloning and Sequence De			1 2-25			
	Alternatively Spliced cDNAs, USA., 1991, Vol.88, pages 72	Proc.Natl.Ac					
A	MAHALINGAM B. et al., Structu glucokinase in complex with o Diabetes, 1999, Vol.48, pages	glucose and A	TP.,	1-25			
A	WILLSON M. et al., Yeast hex designed from the 3-D enzyme J. Enzyme Inhib., 1997, Vol.: to 121	structure re	boilding.	1-25			
Furth	er documents are listed in the continuation of Box C.	See patent fam	ily annex.				
"A" docum	categories of cited documents; ent defining the general state of the art which is not	priority date and	not in conflict with the	mational filing date or e application but cited to			
	red to be of particular relevance document but published on or after the international filing	"X" document of part		laimed invention cannot be			
	ent which may throw doubts on priority claim(s) or which is	step when the doc	cument is taken alone				
special	establish the publication date of another citation or other reason (as specified)	considered to inve	olve an inventive ster	claimed invention cannot be when the document is			
means "P" docum	ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later e priority date claimed	combination bein	ne or more other such ag obvious to a persor of the same patent	skilled in the art			
	actual completion of the international search une, 2003 (12.06.03)	Date of mailing of the international search report 24 June, 2003 (24.06.03)					
	nailing address of the ISA/ nese Patent Office	Authorized officer					
Facsimile N	0.	Telephone No.					

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/06054

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet) This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 1. X Claims Nos.: 26 to 33 because they relate to subject matter not required to be searched by this Authority, namely: Inventions according to said claims relate to subject matters not required to be searched by this Authority in accordance with PCT Article 17 (2) (a) and PCT Rule 39.1. (see extra sheet for details) 2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: 3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet) This International Searching Authority found multiple inventions in this international application, as follows: 1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/06054

Continuation of Box No.I-1 of continuation of first sheet(1)

"Method for drug design" according to the present invention relates to the design of a compound to be bonded to a protein, on the basis of the information on the three-dimensional structure of the protein. The design according to the present invention involves the work of the inventor to estimate a suitable compound by his mental acts, and such work is considered to correspond to the performance of purely mental acts.

	HIDADA TREE	ESECUTION OF TOTAL OF THE	3/06054
	属する分野の分類(国際特許分類(I PC)) 2N9/12, C12Q1/48		
B. 調査を	行った分野		
調査を行った	- R-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-		
最小限資料以	外の資料で調査を行った分野に含まれるもの		
CA(STN), BI	用した電子データベース(データベースの名称。 OSIS (DIALOG), WPI(DIALOG) PIR/Genbank/EMBL/DDBJ/GeneSeq	、調査に使用した用語)	
C. 関連する	ると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	関連する 請求の範囲の番号
<u>X</u> A	TANIZAWA Y. Tanizawa, et al., Hur Cloning and Sequence Determination Spliced cDNAs	man Liver Glucokinase Gene: on of Two Alternatively	<u>1</u> 2-25
	Proc. Natl. Acad. Sci. USA., 1991, Vo	ol. 88, p. 7294-7297	r
A	MAHALINGAM B. et al., Structural in complex with glucose and ATP. Diabetes, 1999, Vol. 48, p1698-170	_	1-25
区 C欄の続き	きにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。
もの 「E」国際出版 以後には 「L」優先権 日若し、 文献(5 「O」口頭に。	のカテゴリー 車のある文献ではなく、一般的技術水準を示す 原目前の出願または特許であるが、国際出願日 と考されたもの 実際に疑義を提起する文献又は他の文献の発行 には他の特別な理由を確立するために引用する 担自を行すり しる即示、使用、展示等に言及する文献 同目前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「丁」国際出願日又は燈先日後に公表 出願と予用するものではなく、3 の理解のために引用するもの 「X」特に関連のある文献であって、き 「Y」特に関連のある文献であって、き 上の文献との、当業者にとって「 よって進歩性かないと考えられる 「&」同一パテントファミリー文献	を明の原理又は理論 語該文献のみで発明 とられるもの 名談文献と他の1以 同明である組合せに ももの
国際調査を完	「した日 12.06.03	国際調査報告の発送日 24.06.0	
	D名称及びあて先 国特許庁(ISA/JP)	特許庁審査官(権限のある職員) 鈴木 恵理子 印	4B 3037
	事便番号100-8915 第千代田区電が関三丁目4番3号	電話番号 03-3581-1101	内線 9400

	国際調査報告	国際出願番号 PCT/JP0	3/06054
C (続き).	関連すると認められる文献		
引用文献の			関連する
ウ テゴリー*	引用文献名 及び一部の箇所が関連するとき		請求の範囲の番号
A	WILLSON M. et al., Yeast hexokinase in the 3-D enzyme structure reboilding. J. Enzyme Inhib., 1997, Vol. 12, No. 2,		1-25
	· 		

	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き) 条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作いった。
1. 🗵	請求の範囲 <u>26-33</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、 当該請求の範囲に記載された発明は、PCT17条(2)(a)(i)及びPCT規則39.1(i i i)の規定により、この国際調査機関が調査することを要しない対象に係るものである。 (評額は「特別ページ」を参照されたい)
2.	請求の範囲 は、有意能な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 🗌	静水の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
	述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1. 🗌	出願、が必要な追加課金手教料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3. 🗌	出額人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際副金報告は、手数料の約付のあった次の請求の範囲のみについて作成した。 ・
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

『第1ページの続葉 (1) 「第I欄1.」』の続き

本態発明に係る「ドラッグデザイン方法」は、タンパク質の立体構造情報に基づいて該タンパク質 に結合する化合物の構造をデザインすることであるが、発明者がその特神活動によって適切な化合物 を推測する行為を包含しており、これは純粋に精神的な行為の遂行に相当すると認められる。