Прикладной вейвлет-анализ

Лабораторная работа №2 Дискретное преобразование Фурье в приложениях

Вариант 1. Сжатие изображений

Общая постановка задачи

Написать программу, которая осуществляет сжатие изображений с использованием дискретного преобразования Фурье. Для вычисления ДПФ можно ипользовать как встроенные функции выбранного вами языка программирования, так и самостоятельно реализованный алгоритм БПФ из ЛР N1.

Пусть X — матрица тестового черно-белого изображения (выбирается самостоятельно), $Y = F_n X F_n - Д \Pi \Phi$ матрицы X, Y^{ϵ} — матрица, полученная из Y после обнуления всех элементов, по модулю не превосходящих ϵ, X^{ϵ} — матрица, полученная после применения обратного $Д \Pi \Phi$ к матрице Y^{ϵ} . Процент нулевых элементов в матрице Y^{ϵ} обозначим $Z(\epsilon)$.

Задания

- 1) Экспериментально подобрать значения параметра ϵ_{80} , ϵ_{90} , ϵ_{99} , при которых $Z(\epsilon_k) \approx k$. Для указанных значений ϵ необходимо
 - ullet построить «сжатое» изображение, т. е. изображение матрицы X^ϵ ;
 - вычислить значение PSNR (см. ниже).

Коэффициент PSNR — стандартная количественная оценка искажений для изображений. PSNR расшифровывается как peak signal-to-noise

ratio (пиковое отношение сигнал/шум) и вычисляется по формуле

$$PSNR = 20 \log_{10} \left(\frac{M_{gray}}{rms} \right),$$
 где

- M_{gray} количество градаций серого; ${
 m rms} = \sqrt{\frac{1}{m \cdot n} \sum_{i=1}^m \sum_{j=1}^n (X_{ij} X_{ij}^\epsilon)^2}$ среднеквадратичное отклонение между точками X_{ij} исходного и точками X_{ij}^{ϵ} «сжатого» изображения;
- $\bullet \,\, m$ и n соответственно число строк и столбцов в матрице изображения.
- 2) Изменяя значение ε так, чтобы $Z(\epsilon)$ изменялось от 0 до 100, построить диаграмму « $Z(\epsilon)$ — PSNR(ϵ)», содержащую как минимум 10 значений. Сделать выводы.

Содержание отчета

- 1) постановка задачи (скриншот);
- 2) тестовое изображение;
- 3) значения ϵ_{80} , ϵ_{90} , ϵ_{99} , соответствующие им значения $Z(\epsilon)$, и все изображения из пункта 1;
- 4) диаграмма из пункта 2;
- 5) выводы и комментарии;
- 6) исходные тексты всех программ.

Вариант 2. Распознавание звукового сигнала

Общая постановка задачи

Цель работы — распознавание телефонного сигнала в двухтональном многочастотном формате. Даны звуковые файлы в формате WAV с частотой дискретизации 8000 Гц, которые содержат код в форматие DTMF. Необходимо расшифровать данные коды, используя дискретное преобразование Фурье.

Содержание отчета

- 1) постановка задачи (скриншот);
- 2) графики звуковых волн для каждого файла;
- 3) описание принципа распознавания;

- 4) результаты распознавания;
- 5) код программы.

Вариант 3. Тригонометрическая интерполяция

Общая постановка задачи

Написать программу, которая для вещественной функции f (см. далее) на отрезке [a,b] строит тригонометрическую интерполяционную функцию ϕ_n (тригонометрический многочлен) по n равноотстоящим точкам, используя для вычисления коэффициентов дискретное преобразование Фурье. Провести вычислительные эксперименты.

Погрешность интерполяции обозначим $r_n = f - \phi_n$. Величину погрешности будем измерять как

$$||r_n|| = \max_{x_i \in X} |r_n(x_i)|,$$

где X — равномерная сетка из 1024 узлов на отрезке [a,b].

Задания

- 1) Для n=3,5,10 изобразить совмещенные графики функций f и ϕ_n , график погрешности r_n , а также привести коэффициенты тригонометрического многочлена ϕ_n .
- 2) Для $n=5,10,15\ldots,100$ построить логарифмический график зависимости $\|r_n\|$ от n.

Содержание отчета

- 1) постановка задачи (скриншот);
- 2) функция, соответствующая вашему варианту;
- 3) расчетные формулы для случаев четного и нечетного n;
- 4) формула вычисления коэффициентов через ДПФ;
- 5) графики и данные из пункта 1;
- 6) график сходимости из пукта 2;
- 7) комментарии и выводы;
- 8) код программы.

Варианты функций

1)
$$f(x) = \frac{1}{1+25x^2}$$
, $[a,b] = [-1,1]$.
2) $f(x) = ||x|-1|$, $[a,b] = [-2,2]$.
3) $f(x) = |\cos x|$, $[a,b] = [0,2\pi]$.
4) $f(x) = (x+1)\sin x$, $[a,b] = [-1,1]$.

2)
$$f(x) = ||x| - 1|$$
, $[a, b] = [-2, 2]$.

3)
$$f(x) = |\cos x|, \quad [a, b] = [0, 2\pi].$$

4)
$$f(x) = (x+1)\operatorname{sign} x$$
, $[a,b] = [-1,1]$.