Performing a t-test for a Difference in Means

```
t_test(x = <NAME OF DATASET>,
response = <NAME OF NUMERICAL VARIABLE>,
explanatory = <NAME OF CATEGORICAL VARIABLE>,
conf_int = TRUE,
conf_level = 0.90,
alternative = "two-sided")
```

Note: If you want a 95% confidence interval, you change conf_level to 0.95

Note: If you are doing a one-sided hypothesis test, you change alternative to either "greater" or "less"

Obtaining 1000 Bootstrap Differences in Means

Note: The quotation marks in the c() function are important! They need to be there even after you replace the values!

Note: Spelling and capitalization are important. You need to be 100% certain what the names of each group are when you specify them in the order = step!

Plotting the Bootstrap Distribution

Note: This step **must** come after you have obtained the bootstrapped differences in means!

Obtaining the Sample Difference in Means

Note: This step must be done before you find your confidence interval and before finding your p-value!

Obtaining a Confidence Interval from a Bootstrap Distribution

Note: This step **must** come after you have obtained the bootstrapped differences in means **and** the observed difference in means!

Note: If you want a 90% confidence interval, you change level to 0.90

Obtaining 1000 Permuted Differences in Means – Assuming the Null Hypothesis is True

Plotting the Simulated Null Distribution

Note: This step must come after you have obtained the permuted differences in means!

Obtaining a p-value from a Null Distribution

Note: This step **must** come after you have obtained the bootstrapped differences in means **and** the observed difference in means!

Note: If you are doing a one-sided hypothesis test, you change alternative to either "greater" or "less"

Faceted Histograms

Note: A histogram **must** have the variable on the x-axis!

Side-by-Side Boxplots

Note: For <u>horizontally stacked</u> boxplots, the categorical variable should be on the <u>x-axis</u>. For <u>vertically stacked</u> boxplots, the categorical variable should be on the <u>y-axis</u>.

Calculating Summary Statistics for One Numerical Variable and One Categorical Variable

Note: The ~ must be included!

Obtaining an ANOVA Table

aov(<NAME OF NUMERICAL VARIABLE> \sim <NAME OF CATEGORICAL VARIABLE>, data = <NAME OF DATASE>)

Plotting the Bootstrap Distribution

Note: This is *the same* as plotting the bootstrap for one mean!

Obtaining the Sample Slope

Note: This step **must** be done **before** you find your confidence interval!

Obtaining a Confidence Interval from a Bootstrap Distribution

Note: This is the same as how you found a confidence interval for one mean!