Idaho National Laboratory

Static Data Analysis and Mining with RAVEN

RAVEN workshop

Outline

- Introduction
- Clustering Methods in RAVEN
- Dimensionality Reduction in RAVEN
- Clustering Example
- Dimensionality reduction example

Data Mining

Extraction of implicit, previously unknown and potentially useful information from data

Exploration and analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns

- Alternative Names
 - Knowledge discovery (mining) in databases (KDD)
 - Knowledge extraction
 - Data/pattern analysis
 - Data archeology
 - Information harvesting

Why Data Mining?

Data mining is fairly new in the context considered here....

Opportunity

- During uncertainty quantification/sensitivity analysis lots of data is being collected and warehoused
- Computers and electronic storage are cheaper and faster

Needs

- Need to understand/gain knowledge on both input and output space
- Drowning in data but starving knowledge
- Extraction of interesting knowledge (rules, regularities, patterns, constraints) from data in large databases
- Answer to the question "Why, by whom?" uncertainty is generated

Clustering

- Automatically determining different groups in the data
- Useful for finding different regions in the output
- RAVEN implements a variety of methods:
 - Gaussian mixture models
 - K-Means
 - Affinity
 - Mean shift
 - Spectral clustering
 - DBSCAN

Gaussian Mixture Model

- Probabilistic model that assumes all the data points are generated from a mixture of a finite number of Gaussian distributions with unknown parameters
- It incorporate information about the covariance structure of the data as well as the centers of the latent Gaussians

Two-component Gaussian mixture model: data points, and equiprobability surfaces of the model [source sklearn]

K-Means

- Method to cluster data by trying to separate samples in n groups of equal variance, minimizing a criterion known as the inertia
- The k-means algorithm divides a set of N samples X into K disjoint clusters C, each described by the mean μ_i of the samples in the cluster (centroids)
- The K-means algorithm chooses centroids that minimize the inertia:

$$\sum_{i=0}^{n} \min_{\mu_j \in C} (||x_j - \mu_i||^2)$$

Dimensionality Reduction

- Used when datasets have many dimensions
- Used to avoid the "curse of dimensionality"
- Available methods in RAVEN
 - Principle Component Analysis
 - Truncated Singular Value Decomposition and Latent Semantic Analysis
 - Independent Component Analysis

Principal Component Analysis

 PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that explain a maximum amount of the variance

- Steps
 - Load data-set
 - 2. Post-Process the data
 - 3. Create a dataObject (PointSet) and plot the results

Distributions	Models	Samplers	Databases	DataObjects	Steps
				•	

Distributions	Models	Samplers	Databases	DataObjects	Steps
		•			

```
<Steps>
  <IOStep name="readIn">
    <Input
              class="Files"
                                     type=""
                                                     >DataSetsFile</Input>
    <Output
              class="DataObjects"
                                     type="PointSet" >DataSets</Output>
  </IOStep>
  <PostProcess name="GaussianMixtureBlobs">
    <Input
              class="DataObjects"
                                     type="PointSet"
                                                          >DataSets</Input>
    <Model
              class="Models"
                                     type="PostProcessor"
                                                          >GaussianMixtureBlobs</Model>
              class="DataObjects"
                                     type="PointSet"
    <Output
                                                          >DataSets</Output>
    <Output
              class="OutStreams"
                                     type="Plot"
                                                          >Plotdata</Output>
  </PostProcess>
  <IOStep name="output">
              class="DataObjects"
    <Input
                                     type="PointSet"
                                                       >DataSets</Input>
              class="OutStreams"
                                                       >PlotGaussianMixtureBlobs</Output>
                                     type="Plot"
    <Output
  </IOStep>
</Steps>
```


- Steps
 - Load data-set (fuel performance)
 - Post-Process the data
 - 3. Create a dataObject (PointSet) and plot the results

Distributions	Models	Samplers	Databases	DataObjects	Steps
---------------	--------	----------	-----------	-------------	-------

Distributions	Models	Samplers	Databases	DataObjects	Steps
				,	

```
<Steps>
  <IOStep name="readIn">
    <Input
              class="Files"
                                    type=""
                                                    >bisonDBCSV</Input>
    <Output
              class="DataObjects"
                                    type="PointSet" >bisonData
  </IOStep>
  <PostProcess name="GaussianMixtureBlobs">
    <Input
              class="DataObjects"
                                    type="PointSet"
                                                         >bisonData</Input>
              class="Models"
    <Model
                                    type="PostProcessor"
                                                         >KMeans1</Model>
              class="DataObjects"
                                    type="PointSet"
    <Output
                                                         >bisonData</Output>
              class="OutStreams"
                                    type="Plot"
                                                         >PlotKMeans1</Output>
    <Output
                                    type="Plot"
    <Output
             class="OutStreams"
                                                         >PlotAll</Output>
   <Output
              class="OutStreams"
                                    type="Print"
                                                         >dump data</0utput>
  </PostProcess>
</Steps>
```


RAVEN Example 3 PCA Dimensionality Reduction

RAVEN Example 3: Dimensionality Reduction

- Steps
 - Load data-set (iris database)
 - Post-Process the data
 - 3. Create a dataObject (PointSet) and plot the results

RAVEN Example 3: Dimensionality Reduction

Distributions Models Samplers Databases DataObjects Steps

RAVEN Example 3: Dimensionality Reduction

Distributions	Models	Samplers	Databases	DataObjects	Steps
		00			o to po

```
<Steps>
  <IOStep name="readIn">
    <Input
              class="Files"
                                    type=""
                                                     >DataSetsFile</Input>
    <Output
              class="DataObjects"
                                    type="PointSet" >DataSets</Output>
  </IOStep>
  <PostProcess name="PCAIris">
                                    type="PointSet"
    <Input
              class="DataObjects"
                                                          >DataSets</Input>
              class="Models"
    <Model
                                    type="PostProcessor" >PCA</Model>
              class="DataObjects"
                                    type="PointSet"
    <Output
                                                          >DataSets</Output>
    <Output
              class="OutStreams"
                                    type="Plot"
                                                          >Plotdata</Output>
  </PostProcess>
  <IOStep name="output">
              class="DataObjects"
    <Input
                                    type="PointSet"
                                                       >DataSets</Input>
              class="OutStreams"
                                    type="Plot"
                                                       >PlotGaussianMixtureBlobs</Output>
    <Output
  </IOStep>
</Steps>
```


Exact PCA Dimensionality Reduction Example Output

Questions