Worksheet of Experiment

Date of Experiment	24 sep, 2024	
Name	Akshada Jotiram Ghorpade.	
Registration Number	12302956.	

Title of Experiment: Develop RTL designs in verilog to implement JK flipflop and D flipflop verify their functionality using cadence NCSIM.

Name of Language: Verilog.

Name of Software: Cadence NCSIM, simvision.

Theory of Experiment:

Flipflop:

- A flip-flop in digital electronics is a circuit with two stable states that can be used to store binary data.
- The stored data can be changed by applying varying inputs.
- Flip-flops and latches are fundamental building blocks of digital electronics systems used in computers, communications, and many other types of systems.
- Both are used as data storage elements.
- There are 4 types of flip-flops in digital electronics:
- 1. SR Flip-Flop
- 2. JK Flip-Flop
- 3. D Flip-Flop
- 4. T Flip-Flop

JK Flip-Flop

- Due to the undefined state in the SR flip-flops, another flip-flop is required in electronics. The JK flip-flop is an improvement on the SR flip-flop where S=R=1 is not a problem.

Circuit Diagram

Truth table:

	Truth Table						
	J	K	CLK	Q			
ſ	0	0	t	Q ₀ (no change)			
ı	1	0	t	1			
ı	0	1	t	0			
١	1	1	t	\overline{Q}_0 (toggles)			

The JK Flip Flop contains 4 states:

- set (Q = 1)
- reset (Q = 0)
- toggle (Q changes based on the input)
- no change (Q maintains its current value)

D Flipflop:

- In D flip flop, the single input "D" is referred to as the "Data" input.
- When the data input is set to 1, the flip flop would be set, and when it is set to 0, the flip flop would change and become reset.
- However, this would be pointless since the output of the flip flop would always change on every pulse applied to this data input.

Circuit Diagram

Truth table

Clock	D	Q	Q'	Description	
↓ » 0	X	Q	Q'	Memory	
				no change	
1 × 1	0	0	1	Reset Q » 0	
1 × 1	1	1	0	Set Q » 1	

Program and Stimulus (Testbench) program:

PROGRAM (JK Flipflop):

```
module jk_ff(j,k,clk,q);
input j,k,clk;
output q;
reg q;
initial
q=0;
always @(negedge clk)
begin
 if (j==0&&k==0)
 q=q;
 else if (j==0 \&\& k==1)
 q=0;
 else if (j==1 && k==0)
 q=1;
 else
 q=-q;
  end
  endmodule
  module jk fftb;
  reg j,k,clk;
  wire q;
jk_ff dut(j,k,clk,q);
  initial
  begin
  clk=0;
   j = 0; k = 0;
   #12 j=0; k=1;
#10 j=1; k=0;
   #10 j=1;k=1;
   #100 $stop;
   end
   always #5 clk=~clk;
   endmodule
```

PROGRAM (D Flip flop):

Simulation waveform:

JK Flipflop

D Flip flop

RTL Schematic:

JK Flipflop

D Flip flop

Learning Outcome:

- 1. Learn to write syntactically correct Verilog code for JK Flipflop and D Flip flop.
- 2. Create testbenches to simulate and verify the functionality of JK Flipflop and D Flip flop.
- 3. Apply techniques to optimize logic circuits for speed, area, and power efficiency.
- 4. Perform timing analysis to ensure circuits meet required timing constraints.
- 5. Analyze the performance of JK Flipflop and D Flip flop and circuits in terms of timing, power, and area using simulation results.