Scilab Textbook Companion for Fundamentals Of Electronic Devices by J. B. Gupta¹

Created by
Mohd. Arif
B.Tech
Computer Engineering
Uttarakhand Tech. university
College Teacher
Arshad Khan
Cross-Checked by
Lavitha Pereira

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamentals Of Electronic Devices

Author: J. B. Gupta

Publisher: Katariya & Sons, New Delhi

Edition: 1

Year: 2009

ISBN: 978-93-80027-74-6

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Semiconductor materials and crystal properties	5
2	Energy Bands and Charge Carriers in Semiconductor	8
3	Excess Carriers in Semiconductors	20
4	Junction Properties	25
5	Junction Properties Continued	38
6	Bipolar Junction Transistors	42
7	Field Effect Transistors	52
8	Photonic Devices	58

List of Scilab Codes

Exa 1.3	Calculate Density of Copper Crystal	5
Exa 1.4		6
Exa 1.5	v – – – – – – – – – – – – – – – – – – –	6
Exa 1.6	Determine Interplanar Distance	7
Exa 1.7	Determine Wavelength of X rays	7
Exa 2.1	Calculate the velocity of electron at fermi level	8
Exa 2.2	Determine Drift Velocity of Electrons	8
Exa 2.3	Calculate magnitude of current	9
Exa 2.4	Find electron and hole densities	9
Exa 2.5	Calculate concentrations in semiconductor 10	0
Exa 2.6	Find ratio of electron to hole concentration 1	1
Exa 2.7	Calculate relaxation time resistivity and velocity of elec-	
	tron	1
Exa 2.8	Find conductivity and resistivity	2
Exa 2.9	Calculate density of electron	3
Exa 2.10	Find conductivity of Si	3
Exa 2.11	Find conductivity of intrinsic Ge	4
Exa 2.12	Find drift velocity of electron and hole Conductivity and	
	current	4
Exa 2.13	Find diffusion coefficient of electron and hole 18	5
Exa 2.14	Find mobility and density of charge carriers 10	6
Exa 2.15	Determine current density	6
Exa 2.16	Calculate Hall coefficients 1	7
Exa 2.17	Find magnitude of hall voltage	7
Exa 2.18	Determine mobility of holes	8
Exa 2.19	Determine Hall Voltage	8
Exa 2.20	Calculate Hall angle	9
Exa 3.2	Find minimum Energy	0

Exa 3.3	Calculate work function
Exa 3.4	Determine power absorbed and rate of excess thermal
	energy
Exa 3.5	Determine electron transit time and photoconductor gain
Exa 3.6	Determine current through diode
Exa 3.7	Find forward voltage
Exa 3.8	Find reverse saturation current density
Exa 4.2	Calculate electron and hole concentration at thermal equilibrium
Exa 4.3	Calculate electron and hole concentration at thermal
	equilibrium
Exa 4.4	determine built in potential barrier
Exa 4.5	Obtain value of contact potential
Exa 4.6	Determine space charge width and electric field
Exa 4.7	Obtain value of contact potential
Exa 4.8	Calculate height of potential barrier
Exa 4.9	Find current in the circuit
Exa 4.10	Determine voltage VA in the circuit
Exa 4.12	Determine temperature coefficients
Exa 4.13	Find output voltage and current through Zener diode.
Exa 4.14	Find maximum and minimum values of zener diode cur-
	rent
Exa 4.15	Design a regulator
Exa 4.16	Determine VL IZ and PZ
Exa 4.17	Comment on operation of circuit
Exa 4.18	Find voltage drop across the resistance
Exa 4.19	Find Ri so that VL remain 12V
Exa 4.20	Determine range of RL and IL
Exa 5.1	Estimate junction width
Exa 5.3	Find new position of fermi level
Exa 5.4	Calculate height of potential barrier
Exa 5.5	Find electron and hole concentration
Exa 5.6	Determine junction capacitance
Exa 6.1	Determine emitter current
Exa 6.2	Determine emitter current amplification factor and gain
	factor
Exa 6.3	Determine emitter current and collector current
Exa 6 4	Determine collector current

Exa 6.5	Calculate dynamic input resistance 4
Exa 6.6	Determine base and collector current
Exa 6.7	Determine current gain and base current 4
Exa 6.8	Determine base current
Exa 6.9	Determine base current
Exa 6.10	Determine collector emitter voltage and base current . 4
Exa 6.11	Determine collector current 4
Exa 6.12	Calculate dynamic input resistance 4
Exa 6.13	Calculate dynamic output resistance 4
Exa 6.14	Determine operating point 4
Exa 6.15	Find VCE at cut off point 4
Exa 6.16	Determine VC and VB
Exa 6.17	Find IB and IC
Exa 7.1	Determine resistance between gate and source 5
Exa 7.2	Calculate AC drain resistance
Exa 7.3	Determine Transconductance
Exa 7.4	Calculate VGS
Exa 7.5	Determine minimum value of VDS 5
Exa 7.6	Findd values of ID gmo and gm 5
Exa 7.7	Findd values of ID and gm 5
Exa 7.8	Find value of VGS and gm 5
Exa 7.9	Sketch the transfer Characteristics 5
Exa 7.10	Determine Drain current
Exa 8.1	Determine steady state photo current density 5
Exa 8.2	Determine photo current density 5
Exa 8.3	Determine open circuit voltage
Exa 8.4	Determine approximate no of solar cell required 6

Chapter 1

Semiconductor materials and crystal properties

Scilab code Exa 1.3 Calculate Density of Copper Crystal

```
1 //Exa 1.3
2 clc;
3 clear;
4 close;
5 //given data
6 \text{ r=1.278;}//\text{in Angstrum}
7 AtomicWeight = 63.5; //constant
8 AvogadroNo=6.023*10^23; // constant
9 //For FCC structure a=4*r/sqrt(2)
10 a=4*r*10^-10/sqrt(2);//in meter
11 V=a^3;//in meter^3
12 / \text{mass of one atom} = m
13 m=AtomicWeight/AvogadroNo; //in gm
14 m=m/1000; //in Kg
15 n=4;// no. of atoms per unit cell for FCC structure
16 rho=m*n/V; //in Kg/m<sup>3</sup>
17 disp(rho, "Density of crystal in Kg/m^3: ");
```

Scilab code Exa 1.4 Obtain volume density of Si atoms

```
//Exa 1.4
clc;
clear;
close;
//given data
n=4;// no. of atoms per unit cell of silicon
AtomicWeight=28;//constant
AvogadroNo=6.021*10^23;//constant
m=AtomicWeight/AvogadroNo;//in gm
m=m/1000;//in Kg
a=5.3;//lattice constant in Angstrum
a=a*10^-10;//in meter
V=a^3;//in meter^3
rho=m*n/V;//in Kg/m^3
disp(rho, "Density of silicon crystal in Kg/m^3: ");
```

Scilab code Exa 1.5 Calculate surface density of atoms

```
1 //Exa 1.5
2 clc;
3 clear;
4 close;
5 //given data
6 a=4.75; //lattice constant in Angstrum
7 a=a*10^-10; //in meter
8 disp("Surface density in FCC on (111) Plane : dp = 2.31/a^2");
9 dp=2.31/a^2; //in atom/m^2
10 dp=dp/10^6; //in atom/mm^2
```

```
11 disp(dp, "Surface density in FCC on (111) Plane in atoms/mm^2: ");
```

Scilab code Exa 1.6 Determine Interplanar Distance

```
1 //Exa 1.6
2 clc;
3 clear;
4 close;
5 //given data
6 lambda=1.539; //in Angstrum
7 theta=22.5; //in degree
8 n=1; //order unitless
9 d=n*lambda/(2*sin(theta*%pi/180)); //in Angstrum
10 disp(d,"Interpolar distance in Angstrum : ")
```

Scilab code Exa 1.7 Determine Wavelength of X rays

```
1 //Exa 1.7
2 clc;
3 clear;
4 close;
5 //given data
6
7 theta=16.8/2; //in degree
8 n=2; //order unitless
9 d=0.4; //in nm
10 lambda=(2*d*sin(theta*%pi/180))/n; //in Angstrum
11 disp(lambda," wavelength of X-rays in Angstrum : ");
12 //Note: Ans in the book is not correct
```

Chapter 2

Energy Bands and Charge Carriers in Semiconductor

Scilab code Exa 2.1 Calculate the velocity of electron at fermi level

Scilab code Exa 2.2 Determine Drift Velocity of Electrons

```
1 //Exa 2.2
```

```
2 clc;
3 clear;
4 close;
5 //given data
6 J=2.4; //in A/mm^2
7 J=J*10^6; //in A/m^2
8 n=5*10^28; //electrons/m^3
9 e=1.6*10^-19; //constant
10 //Formula : J=e*n*v
11 v=J/(e*n); //in m/s
12 disp(v*10^3, "Velocity of electron at fermi level in mm/s : ");
```

Scilab code Exa 2.3 Calculate magnitude of currrent

```
1 //Exa 2.3
2 clc;
3 clear;
4 close;
5 //given data
6 n=10^24; // electrons/m^3
7 e=1.6*10^-19; // constant
8 v=1.5*10^-2; // in m/s
9 A=1; // in cm^2
10 A=1*10^-4; // in Magnitude of current in Ampere : ");
```

Scilab code Exa 2.4 Find electron and hole densities

```
1 //Exa 2.4
2 clc;
3 clear;
```

```
d close;
//given data
ni=2.5*10^13; //in atoms/cm^3
rho=0.039; //in ohm-cm
SIGMAn=1/rho; //in (ohm-cm)^-1
e=1.6*10^-19; //constant
MUe=3600; //in cm^2/V-s
//formula : SIGMAn=n*e*MUe=Nd*e*MUe
Nd=SIGMAn/(e*MUe); //in atoms/cm^3
n=Nd; //in atoms/cm^3
p=ni^2/n; //in atoms/cm^3
disp(n, Electron density in atoms/cm^3 : ");
disp(p, "Hole density in atoms/cm^3 : ");
```

Scilab code Exa 2.5 Calculate concentrations in semiconductor

```
1 / \text{Exa} \ 2.5
2 clc;
3 clear;
4 close;
5 //given data
6 DonorImpurity=1/10<sup>6</sup>;;//impurity per atom
7 SiAtomCon=5*10^22; //in cm^3
8 ni=1.45*10^10; //in cm^-3
9 MUe=1300; // \text{in cm}^2/\text{V-s}
10 e=1.6*10^-19; //constant
11 //part (i)
12 Nd=SiAtomCon*DonorImpurity; // in cm^-3
13 \operatorname{disp}(\operatorname{Nd}, \operatorname{Donor} \operatorname{atom} \operatorname{concentration} \operatorname{in} \operatorname{cm}^-3 : ");
14 //part (ii)
15 n=Nd; //in cm^-3
16 disp(n, "Mobile electron concentration in cm^-3:");
17 //part (iii)
18 p=ni^2/Nd; //in cm^-3
19 disp(p, "Hole concentration in cm^-3 : ");
```

Scilab code Exa 2.6 Find ratio of electron to hole concentration

```
1 //Exa 2.6
2 clc;
3 clear;
4 close;
5 //given data
6 ni=1.4*10^18; //in atoms/m^3
7 Nd=1.4*10^24; //in atoms/m^3
8 n=Nd; //in atoms/m^3
9 p=ni^2/n; //in atoms/m^3
10 ratio=n/p; // unitless
11 disp(p, "Concentration of holes in per m^3: ");
12 disp(ratio, "Ratio of electron to hole concentration: ");
```

Scilab code Exa 2.7 Calculate relaxation time resistivity and velocity of electron

```
1 //Exa 2.7
2 clc;
```

```
3 clear;
4 close;
5 //given data
6 Ef = 5.5; //in eV
7 MUe=7.04*10^-3; // \text{in m}^2/\text{V-s}
8 n=5.8*10^28; //in m^-3
9 e=1.6*10^-19; //constant
10 m=9.1*10^-31; //in Kg
11 //part (i)
12 tau=MUe*m/e;//in sec
13 disp(tau, "Relaxation time in sec: ");
14 rho=1/(n*e*MUe); //in ohm-m
15 disp(rho, "Resistivity of conductor in ohm-m:")
16 vF = sqrt(2*Ef*1.6*10^-19/m);
17 disp(vF," velocity of electron with fermi energy in m
      /s : ");
```

Scilab code Exa 2.8 Find conductivity and resistivity

Scilab code Exa 2.9 Calculate density of electron

```
1 / Exa 2.9
2 clc;
3 clear;
4 close;
5 //given data
6 SIGMAi = 2.12766; // in S/m
7 RHOi=0.47; //in ohm—m
8 MUh = 0.19; // \text{in m}^2/\text{V-s}
9 MUe=0.39; // \text{in m}^2/\text{V-s}
10 e=1.6*10^-19; //in coulamb
11 // Formula : SIGMAi=ni*e*(MUe+MUh)
12 \text{ni=SIGMAi/(e*(MUe+MUh));}//\text{in m}^{-3}
13 E=10^4; //in V/m
14 vn=MUe*E; //in m/s
15 vh=MUh*E;//in m/s
16 disp(ni," Density of electron in intrinsic material
      in m^-3 : ");
17 disp(vn, "Drift velocity for electrons in m/s : ");
18 disp(vh, "Drift velocity for holes in m/s:");
```

Scilab code Exa 2.10 Find conductivity of Si

```
1 //Exa 2.10
2 clc;
3 clear;
4 close;
5 //given data
6 ni=1.5*10^10; //in cm^-3
7 e=1.6*10^-19; //in coulamb
8 MUh=450; //in cm^2/V-s
```

```
9 MUe=1300; //in cm^2/V-s
10 SIGMAi=ni*e*(MUe+MUh); //in (ohm-cm)^-1
11 disp(SIGMAi, "Conductivity of silicon(intrinsic) in (ohm-cm)^-1 ");
12 Na=10^18; //in cm^-1
13 SIGMAp=e*Na*MUh; //in (ohm-cm)^-1
14 disp(SIGMAp, "Conductivity of resulting P-type si semiconductor in (ohm-cm)^-1 : ");
```

Scilab code Exa 2.11 Find conductivity of intrinsic Ge

```
1 / Exa 2.11
2 clc;
3 clear;
4 close;
5 //given data
6 ni=2.5*10^13; //in cm^-3
7 e=1.6*10^-19; //in coulamb
8 MUh=1800; // \text{in cm}^2/\text{V-s}
9 MUe=3800; // \text{in cm}^2/\text{V-s}
10 SIGMAi=ni*e*(MUe+MUh); //in (ohm-cm)^-1
11 GeAtoms = 4.41*10^22; //in cm^-1
12 DonorImpurity=1/10^7; //in per Ge Atom
13 Nd=4.41*10^22*DonorImpurity; // in cm^-1
14 n=Nd; //in cm^-1
15 p=ni^2/Nd; //in cm^-3
16 SIGMAn=e*Nd*MUe; //in (ohm-cm)^-1
17 disp(SIGMAi, "Conductivity of Ge(intrinsic) in (ohm-
      cm)^-1 ");
18 disp(SIGMAn, "Conductivity of resulting N-type Ge
      semiconductor in (ohm-cm)^--1: ");
```

Scilab code Exa 2.12 Find drift velocity of electron and hole Conductivity and current

```
1 / Exa 2.12
2 clc;
3 clear;
4 close;
5 //given data
6 e=1.6*10^-19; //in coulamb
7 MUh = 0.18; // \text{in m}^2/\text{V-s}
8 MUe=0.38; // \text{in m}^2/\text{V-s}
9 V=10; //in Volts
10 1=25; //in mm
11 w=4; //in mm
12 t=1.5; //in mm
13 E=V/(1*10^-3); //in
14 //part (i)
15 ve=MUe*E; //in m/s
16 vh=MUh*E; //in m/s
17 disp(ve, "Drift velocity for electrons in m/s : ");
18 disp(vh, "Drift velocity for holes in m/s:");
19
20 ni=2.5*10^19; //in m^-3
21 //part (ii)
22 SIGMAi=ni*e*(MUe+MUh); //in (ohm-m)^-1
23 disp(SIGMAi, "Conductivity of Ge(intrinsic) in (ohm-m
      )^{-1} ");
24 //part (iii)
25 \text{ I=SIGMAi*E*w*10}^-3*t*10^-3; //in Ampere}
26 disp(I*10^3, "Total current in mili ampere : ");
```

Scilab code Exa 2.13 Find diffusion coefficient of electron and hole

```
1 //Exa 2.13
2 clc;
```

Scilab code Exa 2.14 Find mobility and density of charge carriers

```
1 //Exa 2.14
2 clc;
3 clear;
4 close;
5 //given data
6 e=1.6*10^-19; //in coulamb
7 resistivity=9*10^-3; //in ohm-m
8 RH=3.6*10^-4; //in m^3-coulamb^-1
9 SIGMA=1/resistivity; //in (ohm-m)^-1
10 rho=1/RH; //in cooulamb/m^3
11 n=rho/e; //in m^-3
12 disp(n, "Density of charge carriers in m^-3: ");
13 MU=SIGMA*RH; //in m^2/V-s
14 disp(MU, "Mobility in m^2/V-s: ");
```

Scilab code Exa 2.15 Determine current density

```
1 //Exa 2.15
2 clc;
3 clear;
4 close;
5 //given data
6 e=1.6*10^-19; //in coulamb
7 E=100; //in V/m
8 RH=0.0145; //in m^3-coulamb^-1
9 MUn=0.36; //in m^2/V-s
10 J=MUn*E/RH; //in A/m^2
11 disp(J, "Current density in A/m^2: ");
```

Scilab code Exa 2.16 Calculate Hall coefficients

```
1 //Exa 2.16
2 clc;
3 clear;
4 close;
5 //given data
6 e=1.6*10^-19; //in coulamb
7 n=2.05*10^22; //in m^-3
8 RH=1/(n*e); //in m^3-coulamb^-1
9 disp(RH," Hall coefficient in m^3-coulamb^-1:");
```

Scilab code Exa 2.17 Find magnitude of hall voltage

```
1 //Exa 2.17
2 clc;
3 clear;
4 close;
5 //given data
6 e=1.6*10^-19;//in coulamb
7 ND=10^17;//in cm^-3
```

```
8 Bz=0.1; //in Wb/m^2
9 w=4; //in mm
10 d=4; //in mm
11 Ex=5; //in V/cm
12 MUe=3800; //in cm^2/V-s
13 v=MUe*Ex; //in cm/s
14 v=v*10^-2; //in m/s
15 VH=Bz*v*d; //in mV
16 disp(VH, "Magnitude of hall voltage in mV: ");
```

Scilab code Exa 2.18 Determine mobility of holes

```
1 / Exa 2.18
2 clc;
3 clear;
4 close;
5 //given data
6 e=1.6*10^-19; //in coulamb
7 \text{ w=3; } // \text{in mm}
8 d=3; //in mm
9 rho=200; //in Kohm-cm
10 rho=rho*10^3*10^-2; //in ohm-m
11 VH=50; //in \text{ mV}
12 VH = VH * 10^- - 3; //in Volts
13 I = 10; //in uA
14 I=I*10^-6; //in Ampere
15 Bz=0.1; // \text{in Wb/m}^2
16 \text{ RH=VH*w*10}^-3/(Bz*I)
17 MUh=RH/rho; //in m^2/V-s
18 disp(MUh, "Mobility of holes in p-type Si bar in m^2/
      V-s : ");
```

Scilab code Exa 2.19 Determine Hall Voltage

```
1 //Exa 2.19
2 clc;
3 clear;
4 close;
5 //given data
6 e=1.6*10^-19; //in coulamb
7 ND=10^21; //in m^-3
8 Bz=0.2; //in T
9 d=4; //in mm
10 d=d*10^-3; //in meter
11 J=600; //in A/m^2
12 n=ND; //in m^-3
13 //formula : VH*w/(B*I)=1/(n*e)
14 VH=Bz*J*d/(n*e); //in V
15 disp(VH*10^3, "Magnitude of hall voltage in mV : ");
```

Scilab code Exa 2.20 Calculate Hall angle

```
1 //Exa 2.20
2 clc;
3 clear;
4 close;
5 //given data
6 e=1.6*10^-19; //in coulamb
7 rho=0.00912; //in ohm-m
8 B=0.48; //in Wb/m^2
9 RH=3.55*10^-4; //in m^3-coulamb^-1
10 SIGMA=1/rho; //in (ohm=m)^-1
11 THETAh=atand(SIGMA*B*RH); //in Degree
12 disp(THETAh, "Hall angle in degree: ");
```

Chapter 3

Excess Carriers in Semiconductors

Scilab code Exa 3.2 Find minimum Energy

```
1 //Exa 3.2
2 clc;
3 clear;
4 close;
5 //given data
6 lambda=6000; //in Angstrum
7 h=6.6*10^(-34); // Planks constant
8 c=3*10^8; //speed of light in m/s
9 e=1.602*10^(-19); // Constant
10 phi=c*h/(e*lambda*10^(-10));
11 disp(phi, "Minimum required energy in eV is :");
12 //Note : Ans in the book is not correct
```

Scilab code Exa 3.3 Calculate work function

```
1 //Exa 3.3
```

```
2 clc;
3 clear;
4 close;
5 //given data
6 Emax=2.5; //maximum energy of emitted electrons in eV
7 lambda=2537; //in Angstrum
8 EeV=12400/lambda; //in eV
9 disp(EeV, "The eV equivalent of the energy of incident photon:");
10 phi=EeV-Emax; //in eV
11 disp(phi, "Work function of the cathode material is");
```

Scilab code Exa 3.4 Determine power absorbed and rate of excess thermal energy

```
1 / Exa 3.4
2 clc;
3 clear;
4 close;
5 //given data
6 t=0.46*10^-6; //in meters
7 hf=2;//in ev
8 Pin=10; //in mW
9 alpha=50000;// in per cm
10 e=1.6*10^-19; //constant
11 Io=10^-2; // in mW
12 It=Io*e^(-alpha*t);//in mW
13 // Part (i)
14 disp("Thus power absorbed = 10-1 = 9 mW or 0.009 J/s
15 disp((2-1.43)/2,"The fraction of each photon energy
     unit which is converted into heat");
16 // Part (ii)
17 disp(((2-1.43)/2)*0.009, "Energy converted into heat
```

Scilab code Exa 3.5 Determine electron transit time and photoconductor gain

```
1 / Exa 3.5
2 clc;
3 clear;
4 close;
5 //given data
6 L=100; //in uM
7 A = 10\& -7; //in cm^2
8 th=10^-6; //in sec
9 V=12; //in Volts
10 ue=0.13; //in m^2/V-s
11 uh=0.05; //in m^2/V-s
12 E=V/(L*10^-6); //in V/m
13 tn=(L*10^-6)/(ue*E);
14 disp(tn, "Electron transit time in sec is");
15 Gain=(1+uh/ue)*(th/tn);
16 disp(Gain, "Photoconductor gain is");
```

Scilab code Exa 3.6 Determine current through diode

```
1 //Exa 3.6
2 clc;
3 clear;
4 close;
5 //given datex
6 Io=0.15;//in uA
```

```
7  V=0.12; //in mVolt
8  Vt=26; //in mVolt
9  I=Io*10^-6*(exp(V/(Vt*10^-3))-1); //in A
10  disp(I*10^6, "Current flowing through diode in uA is ");
```

Scilab code Exa 3.7 Find forward voltage

```
1 //Exa 3.7
2 clc;
3 clear;
4 close;
5 //given data
6 Io=2.5; //in uA
7 I=10; //in mA
8 Vt=26; //in mVolt
9 n=2; // for silicon
10 V=n*Vt*10^-3*log((I*10^-3)/(Io*10^-6))
11 disp(V, "Forward voltage in volts is ");
```

Scilab code Exa 3.8 Find reverse saturation current density

```
1 //Exa 3.8
2 clc;
3 clear;
4 close;
5 //given data
6 ND=10^21; //in m^-3
7 NA=10^22; //in m^-3
8 De=3.4*10^-3; //in m^2-s^-1
9 Dh=1.2*10^-3; //in m^2-s^-1
10 Le=7.1*10^-4; //in meters
11 Lh=3.5*10^-4; //in meters
```

```
12  ni=1.6*10^16; //in m^-3
13  e=1.602*10^-19; //constant
14  IoA=e*ni^2*(Dh/(Lh*ND)+De/(Le*NA));
15  disp(IoA*10^6, "Reverse saturation current density in uA/m2 is ")
```

Chapter 4

Junction Properties

Scilab code Exa 4.2 Calculate electron and hole concentration at thermal equilibrium

```
1  //Exa4.2
2  clc;
3  clear;
4  close;
5  //given data
6  T=300; //in Kelvin
7  ND=10^16; //in cm^-3
8  NA=0; //in cm^-3
9  ni=1.5*10^10; //in cm^-3
10  no=ND/2+sqrt((ND/2)^2+ni^2); //in cm^-3
11  po=ni^2/no; //in cm^-3
12  disp(no, "Majority carrier electron concentration in cm^-3: ");
13  disp(po, "Minority carrier hole concentration in cm^-3: ");
```

Scilab code Exa 4.3 Calculate electron and hole concentration at thermal equilibrium

```
1 //Exa4.3
2 clc;
3 clear;
4 close;
5 //given data
6 T=300; //in Kelvin
7 ND=3*10^15; //in cm^-3
8 NA=10^16; //in cm^-3
9 ni=1.6*10^10; //in cm^-3
10 po=(NA-ND)/2+sqrt(((NA-ND)/2)^2+ni^2); //in cm^-3
11 no=ni^2/po; //in cm^-3
12 disp(po, "Majority carrier hole concentration in cm ^-3: ");
13 disp(no, "Minority carrier electron concentration in cm^-3: ");
```

Scilab code Exa 4.4 determine built in potential barrier

```
1 //Exa4.4
2 clc;
3 clear;
4 close;
5 //given data
6 T=300;//in Kelvin
7 ND=10^15;//in cm^-3
8 NA=10^18;//in cm^-3
9 ni=1.5*10^10;//in cm^-3
10 VT=T/11600;//in Volts
11 Vbi=VT*log(NA*ND/ni^2);//in Volts
12 disp(Vbi, "Built in potential barrier in volts : ");
```

Scilab code Exa 4.5 Obtain value of contact potential

```
1 //Exa4.5
2 clc;
3 clear;
4 close;
5 //given data
6 T=300; //in Kelvin
7 ND=10^21; //in m^-3
8 NA=10^21; //in m^-3
9 ni=1.5*10^16; //in m^-3
10 VT=T/11600; //in Volts
11 Vo=VT*log(NA*ND/ni^2); //in Volts
12 disp(Vo, "Contact p; otential in volts: ");
```

Scilab code Exa 4.6 Determine space charge width and electric field

```
1 / Exa4.6
2 \text{ clc};
3 clear;
4 close;
5 //given data
6 T=300; //in Kelvin
7 ND=10^15; // \text{in cm}^-3
8 NA=10^16; // \text{in cm}^-3
9 ni=1.5*10^10; //in cm^-3
10 VT=T/11600; //in Volts
11 e=1.6*10^-19; //in Coulamb
12 epsilon=11.7*8.854*10^--14; // constant
13 Vbi=VT*log(NA*ND/ni^2);//in Volts
14 SCW=sqrt((2*epsilon*Vbi/e)*(NA+ND)/(NA*ND));//in cm
15 SCW = SCW * 10^4; //in uMeter
16 disp(SCW, "Space charge width in uMeters: ");
17 \text{ xn} = 0.864; // \text{in uM}
18 xp=0.086; //in uM
19 Emax = -e*ND*xn/epsilon; //in V/cm
20 disp(Emax," At metallurgical junction, i.e for x=0
```

```
the electric field is peak i.e. Emax in volts : " );   
21 //Note : Ans in the book is wrong
```

Scilab code Exa 4.7 Obtain value of contact potential

```
1 //Exa4.7
2 clc;
3 clear;
4 close;
5 //given data
6 T=300;//in Kelvin
7 ND=10^21;//in m^-3
8 NA=10^21;//in m^-3
9 ni=1.5*10^16;//in m^-3
10 VT=T/11600;//in Volts
11 Vo=VT*log(NA*ND/ni^2);//in Volts
12 disp(Vo, "Contact potential in volts : ");
```

Scilab code Exa 4.8 Calculate height of potential barrier

```
1 //Exa4.8
2 clc;
3 clear;
4 close;
5 //given data
6 T=300; //in Kelvin
7 ND=8*10^14; //in cm^-3
8 NA=8*10^14; //in cm^-3
9 ni=2*10^13; //in cm^-3
10 k=8.61*10^-5; //in eV/K
11 Vo=k*T*log(NA*ND/ni^2); //in Volts
12 disp(Vo, "Contact potential in volts : ");
```

Scilab code Exa 4.9 Find current in the circuit

```
1 / Exa4.9
2 clc;
3 clear;
4 close;
5 //In given circuit :
6 \text{ V=5;}//\text{in volts}
7 Vo=0.7; //in Volts
8 R=100; //in Kohm
9 disp("Since diode is silicon one, and the barrier
      potential for Si diode is 0.7 volt, Vo = 0.7
      volts ");
10 disp("This barrier potential acts in opposite
      direction to the applied voltage. The diode
      forward resistance is being assumed to be zero.")
11 I = (V - Vo)/R; //in Ampere
12 disp(I*1000, "Current flowing through the circuit in
      Amperes :")
```

Scilab code Exa 4.10 Determine voltage VA in the circuit

```
1  //Exa4.10
2  clc;
3  clear;
4  close;
5  //In given circuit :
6  V=15; //in volts
7  Vo=0.7; //in Volts
8  R=7; //in Kohm
```

```
9 I=(V-2*Vo)/R
10 disp("Since diode is silicon one, and the barrier
        potential for Si diode is 0.7 volt, Vo = 0.7
        volts ");
11 disp("This barrier potential acts in opposite
        direction to the applied voltage. The diode
        forward resistance is being assumed to be zero.")
    ;
12 I=(V-2*Vo)/R;//in mAmpere
13 disp("Barrier potential of Si diode, Vo = 0.7 Volts"
    );
14 disp("Potential VA = Voltage drop across 7 Kohm
        resistor");
15 VA=I*R;//in Volts
16 disp(VA," Voltagee VA in volts: ");
```

Scilab code Exa 4.12 Determine temperature coefficients

```
1 //Exa4.12
2 clc;
3 clear;
4 close;
5 //given data
6 Vz=5; //in volts
7 to=25; //in degree centigrade
8 t=100; //in degree centigrade
9 Vdrop=4.8; //in Volts
10 delVz=Vdrop-Vz; //in Volts
11 delt=t-to; //in degree centigrade
12 TempCoeff=delVz*100/(Vz*delt);
13 disp(TempCoeff, "Temperature coefficient f zener diode in % : ");
```

Scilab code Exa 4.13 Find output voltage and current through Zener diode

```
1 / Exa4.13
2 clc;
3 clear;
4 close;
5 //given data
6 Vz=8;//in volts
7 VS=12; //in volts
8 Vout=8; //in volts
9 RL=10; //in Kohm
10 Rs=5; // in Kohm
11 //part (a)
12 disp("Output voltage will be equal to Vz i.e"+
     string(Vz)+" Volts");
13 //part (b)
14 Vrs=VS-Vout; //in volts
15 disp(Vrs, "Voltage across Rs in volts: ");
16 IL=Vout/RL;//in mAmpere
17 Is=(VS-Vout)/Rs;//in mAmpere
18 Iz=Is-IL;//in mAmpere
19 disp(Iz, "Current through zener diode in mA: ");
```

Scilab code Exa 4.14 Find maximum and minimum values of zener diode current

```
1  //Exa4.14
2  clc;
3  clear;
4  close;
5  //given data
6  Vz=50; //in volts
7  VSmax=120; //in volts
8  VSmin=80; //in volts
9  RL=10; //in Kohm
```

Scilab code Exa 4.15 Design a regulator

```
1 / Exa4.15
2 clc;
3 clear;
4 close;
5 //given data
6 Vz=15; //in volts
7 Izk=6; //in mA
8 Vout=15;//in Volts
9 Vs=20; //in Volts
10 ILmin=10; //in mA
11 ILmax=20; //in mA
12 disp("the zener current will be minimum i.e. Izk = 6
     mA when load current is maximum i.e. ILmax = 20mA
     "):
13 RS=(Vs-Vout)/(Izk+ILmax);//in ohm
14 disp("when the load current will decrease and become
      10 mA, the zener current will increase and
```

become 6+10 i.e. 16 mA. Thus the current through series resistance Rs will remain unchanged at 6+20 i.e. 26 mA. Thus voltage drop in series resistance Rs will remain constant. Consequently, the output voltage will also remain constant. ");

Scilab code Exa 4.16 Determine VL IZ and PZ

```
1 / Exa4.16
2 clc;
3 clear;
4 close;
5 //given data
6 Vs=16; //in volts
7 RL=1.2; //in Kohm
8 Rs=1; //in Kohm
9 //If zener open circuited
10 VL=Vs*RL/(Rs+RL);//in Volts
11 disp(VL,"When zener open circuited Voltage across
     load in volts : ");
12 disp("Since voltage across load VL is less than
     breakdown voltage of zener diode i.e. VL < Vz.
     The zener diode will not conduct and VL = 8.73
     Volt");
13 Iz=0; //in mA
14 disp(Iz, "Zener current in mA: ");
15 Pz=VL*Iz;//in watts
16 disp(Pz, "Power in watts: ");
```

Scilab code Exa 4.17 Comment on operation of circuit

```
1 / Exa4.17
```

```
2 clc;
3 clear;
4 close;
5 //given data
6 Vin=20; //in volts
7 Rs=220; //in Kohm
8 \text{ Vz=10;} //\text{in volts}
9 // part (i) RL=50;//in Kohm
10 disp("For RL=50ohm :");
11 RL=50; //in Kohm
12 VL=Vin*RL/(RL+Rs)
13 disp("Since voltage across load, VL is less than
      breakdown voltage of zener diode. Zener will not
      conduct.")
14 IR=Vin/(Rs+RL); //in mA
15 IL=IR; // in mA
16 IZ=0; //in mA
17 disp(VL,"VL in volt : ");
18 disp(IL*1000,"IL in mA:");
19 disp(IZ,"Iz in mA: ");
20 disp(IR*1000,"IR in mA:");
21
22 // part (ii) RL=200;//in Kohm
23 disp("For RL=200ohm : ")
24 RL=200; //in Kohm
25 \text{ VL=Vin*RL/(RL+Rs)}
26 disp("voltage across load, if zener diode is open
      circuited.")
27 IR=Vin/(Rs+RL); //in mA
28 IL=IR; // in mA
29 IZ=0; //in mA
30 disp(VL,"VL in volt : ");
31 disp(IL*1000,"IL in mA:");
32 disp(IZ," Iz in mA: ");
33 disp(IR*1000,"IR in mA:");
```

Scilab code Exa 4.18 Find voltage drop across the resistance

```
1 / Exa4.18
2 clc;
3 clear;
4 close;
5 //given data
6 RL=10; //in Kohm
7 Rs=5; //in Kohm
8 Vin=100; //in Volts
9 disp ("Removing the zener diode from the circuit, We
     have : V = Vin*RL/(RL+Rs)");
10 V=Vin*RL/(RL+Rs); //in Volt
11 disp(V, "Voltage V in volts = ");
12 disp("V > Vz So zener diode is in ON stste.");
13 VZ=50; //in Volts
14 VL=VZ;//in volts
15 //Apply KVL
16 VR=100-50; // in Volts
17 VR=50; //in Volts
18 disp(VR," Hence the voltage dropp across the 5 Kohm
      resistor in Volts is : ");
```

Scilab code Exa 4.19 Find Ri so that VL remain 12V

```
1 //Exa4.19
2 clc;
3 clear;
4 close;
5 //given data
6 RL=120;//in ohm
7 Izmin=20;//in mA
```

```
8  Izmax=200; //in mA
9  VL=12; //in  Volts
10  VDCmin=15; //in  Volts
11  VDCmax=19.5; //in  Volts
12  Vz=12; //in  Volts
13  IL=VL/RL; //in  Ampere
14  IL=IL*1000; //in  mAmpere
15  //For  VDCmin = 15  volts
16  VSmin=VDCmin-Vz; //in  Volts
17  //For  VDCmax = 19.5  volts
18  VSmax=VDCmax-Vz; //in  Volts
19  ISmin=Izmin+IL; //in  mA
20  Ri=VSmin/ISmin; //in  Kohm
21  Ri=Ri*10^3; //in  ohm
22  disp(Ri, "The resistance Ri in ohm : ");
```

Scilab code Exa 4.20 Determine range of RL and IL

```
1 / Exa4.20
2 clc;
3 clear;
4 close;
5 //given data
6 VRL=10; //in Volts
7 Vi=50;//in Volts
8 R=1; //in Kohm
9 Vz=10; //in Volts
10 VL=Vz; //in Volts
11 Izm=32; //in mA
12 IR = (Vi - VL) / R; / / in mA
13 disp("Load current IL will be maximum when Iz = 0")
14 Izmin=0; //in mA
15 ILmax=IR-Izmin; //in mA
16 disp(ILmax, "Maximum load current in mA: ");
```

Chapter 5

Junction Properties Continued

Scilab code Exa 5.1 Estimate junction width

```
1 // \text{Exa} \ 5.1
2 clc;
3 clear;
4 close;
5 //given data
6 ND=10^17; //in atoms/cm<sup>3</sup>
7 NA=0.5*10^16; // in atoms/cm^3
8 Vo=0.7; //in Volts
9 V = -10; //in Volts
10 ND=ND*10^6; //in atoms/m^3
11 NA=NA*10^6; // in atoms/m<sup>3</sup>
12 epsilon=8.85*10^--11; //in F/m
13 e=1.6*10^-19; //coulamb
14 //part (i)
15 disp("When no external voltage is applied i.e. V=0")
16 disp("VB = 0.7 \text{ volts"});
17 VB=0.7; //in Volts
18 W=sqrt(2*epsilon*VB*(1/NA+1/ND)/e);//in m
19 disp(W,"When no external voltage is applied,
      Junction width in meter: ");
```

```
//part (ii)
disp("When external voltage of -10 volt is applied");

disp("VB = Vo-V volts");
VB=Vo-V;//in Volts
W=sqrt(2*epsilon*VB*(1/NA+1/ND)/e);//in m
disp(W,"When external voltage of -10 Volt is applied, Junction width in meter: ");
```

Scilab code Exa 5.3 Find new position of fermi level

```
1 //Exa 5.3
2 clc;
3 clear;
4 close;
5 //given data
6 Ecf=0.3; //in Volts
7 T=27+273; //in Kelvin
8 delT=55; //in degree centigrade
9 //formula : Ecf=Ec-Ef=K*T*log(nc/ND)
10 //let K*log(nc/ND)=y
11 //Ecf=Ec-Ef=T*y
12 y=Ecf/T; //assumed
13 Tnew=273+55; //in Kelvin
14 EcfNEW=y*Tnew; //in Volts
15 disp(EcfNEW,"New position of fermi level is(eV):")
;
```

Scilab code Exa 5.4 Calculate height of potential barrier

```
1 //Exa 5.4
2 clc;
3 clear;
```

```
4 close;
5 //given data
6 ND=8*10^14; //in cm^-3
7 NA=8*10^14; //in cm^-3
8 ni=2*10^13; //in cm^-3
9 T=300; //in Kelvin
10 k=8.61*10^-5; //in eV/K
11 e=1.6*10^-19; //coulamb
12 Vo=k*T*log(ND*NA/ni^2); //in Volts
13 disp(Vo, "Potential barrier in volts: ");
```

Scilab code Exa 5.5 Find electron and hole concentration

```
1 //Exa 5.5
2 clc;
3 clear;
4 close;
5 //given data
6 ND=2*10^16; //in cm^-3
7 NA=5*10^15; // \text{in cm}^-3
8 Ao=4.83*10^21; // constant
9 T=300; //in Kelvin
10 EG=1.1; //in eV
11 kT = 0.026; //in eV
12 ni=Ao*T^(3/2)*exp(-EG/(2*kT)); //in m^-3
13 ni=ni*10^-6; //in cm^-3
14 p=(ni^2)/ND; //in cm^-3
15 n = (ni^2) / NA; //in cm^-3
16 disp(p," Hole concentration in cm^-3: ");
17 disp(n,"electron concentration in cm^-3:");
18 disp ("Since electron concentration is mote than hole
      concentration, the given Si is of N-type.");
19 //Note: Ans in the book is wrong. Mistake in value
      putting.
```

Scilab code Exa 5.6 Determine junction capacitance

```
1 //Exa 5.6
2 clc;
3 clear;
4 close;
5 //given data
6 CTzero=50; //in pF
7 VR=8; //in Volt
8 VK=0.7; //in Volt
9 n=1/3; // for Si
10 CT=CTzero/((1+VR/VK)^n); //in pF
11 disp(CT, "Junction capacitance in pF: ");
```

Chapter 6

Bipolar Junction Transistors

Scilab code Exa 6.1 Determine emitter current

```
1 //Exa 6.1
2 clc;
3 clear;
4 close;
5 //given data
6 IC=20;//in mA
7 Beta=50;//Unitless
8 IB=IC/Beta;//in mA
9 IE=IC+IB;//in mA
10 disp(IE, "Emitter current in mA: ");
```

Scilab code Exa 6.2 Determine emitter current amplification factor and gain factor

```
1 //Exa 6.2
2 clc;
3 clear;
4 close;
```

```
5 //given data
6 IC=0.98; //in mA
7 IB=20; //in uA
8 IB=IB*10^-3; //in mA
9 //part (i)
10 IE=IB+IC; //in mA
11 disp(IE, "Emitter current in mA:");
12 //part (ii)
13 alfa=IC/IE; // unitless
14 disp(alfa, "Current amplification factor: ");
15 //part (iii)
16 Beta=IC/IB; // unitless
17 disp(Beta, "Current gain factor: ");
```

Scilab code Exa 6.3 Determine emitter current and collector current

```
1 //Exa 6.3
2 clc;
3 clear;
4 close;
5 //given data
6 alfaDC=0.98; // unitless
7 ICBO=4; //in uA
8 ICBO=ICBO*10^-3; //in mA
9 IB=50; //in uA
10 IB=IB*10^-3; //in mA
11 //Formula : IC=alfaDC*(IB+IC)+ICBO)
12 IC=alfaDC*IB/(1-alfaDC)+ICBO/(1-alfaDC); //in mA
13 IE=IC+IB; //in mA
14 disp(IE, "Emitter current in mA : ");
15 disp(IC, "Collector current in mA : ");
```

Scilab code Exa 6.4 Determine collector current

```
1 //Exa 6.4
2 clc;
3 clear;
4 close;
5 //given data
6 IB=10; //in uA
7 IB=IB*10^-3; //in mA
8 Beta=99; // Unitless
9 ICO=1; //in uA
10 ICO=ICO*10^-3; //in mA
11 //Formula : IC=alfa*(IB+IC)+ICO
12 IC=Beta*IB+(1+Beta)*ICO; //in mA
13 disp(IC, "Collector current in mA : ");
```

Scilab code Exa 6.5 Calculate dynamic input resistance

```
1 //Exa 6.5
2 clc;
3 clear;
4 close;
5 //given data
6 delVEB=200; //in Volts
7 delIE=5; //in mA
8 rin=delVEB/delIE; //in ohm
9 disp(rin, "Dynamic input resistance in ohm: ");
```

Scilab code Exa 6.6 Determine base and collector current

```
1 //Exa 6.6
2 clc;
3 clear;
4 close;
5 //given data
```

```
6 alfao=0.98; // unitless
7 ICO=10; //in uA
8 ICO=ICO*10^-3; //in mA
9 IE=2; //in mA
10 IC=alfao*IE+ICO; //in mA
11 IB=IE-IC; //in mA
12 disp(IC, "Collector current in mA: ");
13 disp(IB*1000, "Base current in uA: ");
```

Scilab code Exa 6.7 Determine current gain and base current

```
1 //Exa 6.7
2 clc;
3 clear;
4 close;
5 //given data
6 ICBO=12.5; //in uA
7 ICBO=ICBO*10^-3; //in mA
8 IE=2; //in mA
9 IC=1.97; //in mA
10 alfa=(IC-ICBO)/IE; // unitless
11 IB=IE-IC; //in mA
12 disp(alfa, "Current gain: ");
13 disp(IB, "Base current in mA: ");
```

Scilab code Exa 6.8 Determine base current

```
1 //Exa 6.8
2 clc;
3 clear;
4 close;
5 //given data
6 RL=4;//in Kohm
```

```
7 VL=3; //in volt
8 alfa=0.96; // unitless
9 IC=VL/RL; //in mA
10 IE=IC/alfa; //in mA
11 IB=IE-IC; //in mA
12 disp(IB, "Base current in mA: ");
```

Scilab code Exa 6.9 Determine base current

```
1 //Exa 6.9
2 clc;
3 clear;
4 close;
5 //given data
6 RL=1; //in Kohm
7 VL=1.2; //in volt
8 Beta=60; // unitless
9 IC=VL/RL; //in mA
10 IB=IC/Beta; //in mA
11 disp(IB*1000, "Base current in uA: ");
```

Scilab code Exa 6.10 Determine collector emitter voltage and base current

```
1 //Exa 6.10
2 clc;
3 clear;
4 close;
5 //given data
6 VCC=10;//in volt
7 RL=800;//in ohm
8 VL=0.8;//in volt
9 alfa=0.96;//unitless
```

```
//VR=IC*RL
VCE=VCC-VL;//in Volt
disp(VCE, "Collector-emitter Voltage in volts: ");
IC=VL*1000/RL;//in mA
Beta=alfa/(1-alfa);//unitless
IB=IC/Beta;//in mA
disp(IB*1000, "Base current in uA: ");
```

Scilab code Exa 6.11 Determine collector current

```
1 //Exa 6.11
2 clc;
3 clear;
4 close;
5 //given data
6 alfao=0.98; // unitless
7 ICO=10; //in uA
8 ICO=ICO*10^-3; //in mA
9 IB=0.22; //in mA
10 IC=(alfao*IB+ICO)/(1-alfao); //in mA
11 disp(IC, "Collector current in mA: ");
```

Scilab code Exa 6.12 Calculate dynamic input resistance

```
1 //Exa 6.12
2 clc;
3 clear;
4 close;
5 //given data
6 delVEB=250; //in mVolts
7 delIE=1; //in mA
8 rin=delVEB/delIE; //in ohm
9 disp(rin, "Dynamic input resistance in ohm: ");
```

Scilab code Exa 6.13 Calculate dynamic output resistance

```
1 //Exa 6.13
2 clc;
3 clear;
4 close;
5 //given data
6 delVCE=10-5; //in Volts
7 delIC=5.8-5; //in mA
8 rin=delVCE/delIC; //in Kohm
9 disp(rin, "Dynamic output resistance in Kohm: ");
```

Scilab code Exa 6.14 Determine operating point

```
1 //Exa 6.14
2 clc;
3 clear;
4 close;
5 //given data
6 VCC=10; //in volt
7 RC=8; //in Kohm
8 Beta=40; //unitless
9 IB=15; // in uA
10 IB=IB*10^-3; //in mA
11 // For VCE = 0 Volts
12 IC=VCC/RC; //in mA
13 disp(IC,"VCE=0V \text{ and } IC \text{ in } mA = ");
14 disp("This gives a point on loasd line.");
15 / For IC=0 VCE=VCC=10V :
16 disp("For IC=0, VCE=VCC=10V:")
17 disp("This gives another point on load line.");
```

Scilab code Exa 6.15 Find VCE at cut off point

```
1 / \text{Exa} 6.15
2 clc;
3 clear;
4 close;
5 //given data :
6 VCC=20; //in Volt
7 RC=3.3*10^3; //in ohm
8 disp("Applying Kirchoffs Voltage Law: ");
9 disp("VCC=IC*RC+VCE");
10 disp("For cut-off point, IC=0");
11 disp("Therefore, VCC=VCE");
12 VCE=VCC; //in volt
13 disp(VCE, "VCE at cut-off point: ");
14 disp("For Saturation point, VCE = 0");
15 VCE=0; //in volts
16 IC=VCC/RC; //in A
17 disp(IC,"IC at saturation point in mA; ");
18 disp("Therefore Load line coordinates are given as:
      ");
19 disp("("+string(20)+"V,"+string(0)+"mA)");
20 disp("("+string(VCE)+"V,"+string(IC*1000)+"mA)");
```

Scilab code Exa 6.16 Determine VC and VB

```
1 //Exa 6.16
2 clc;
```

```
3 clear;
4 close;
5 //given data :
6 Beta=45; // Unitless
7 VBE=0.7;//in Volt
8 VCC=0; //in Volt
9 RB=10^5; //in ohm
10 RC=1.2*10^3; // in ohm
11 VEE = -9; //in Volt
12 disp ("Applying Kirchoffs Voltage Law in input loop
      we have : ");
13 disp("IB*RB+VBE+VEE=0");
14 IB = -(VBE + VEE) / RB; // in mA
15 IC=Beta*IB; //in mA
16 VC=VCC-IC*RC; //in Volts
17 VB=VBE+VEE; //in Volts
18 disp(VC, "VC in volts: ");
19 disp(VB, "VB in volts: ");
```

Scilab code Exa 6.17 Find IB and IC

```
1 //Exa 6.17
2 clc;
3 clear;
4 close;
5 //given data :
6 Beta=100; // Unitless
7 hfe=Beta; // Unitless
8 VBB=5; //in Volt
9 VBE=0.8; //in Volt
10 RB=50*10^3; //in ohm
11 RE=2*10^3; //in ohm
12 VCE=0.2; //in Volt
13 disp("Applying Kirchoffs Voltage Law in input loop we have : ");
```

```
disp("VBB=IB*RB+VBE+IE*RE=IB*RB+VBE+(1+Beta)*IB*RE")
;
disp("IB=(VBB-VBE)/(RB+(1+Beta)*RE)");
IB=(VBB-VBE)/(RB+(1+Beta)*RE);//in A
disp(IB*1000,"IB in mA: ");
disp("Applying Kirchoffs Voltage Law in output loop we have: ");
disp("10-IC(3*10^3)-VCE-IE(2*10^3)=0");
IC=(10-0.2)/(5*10^3);//in A
disp(IC*1000,"IC in mA: ");
disp(Beta*IB,"Beta*Ib in mA = ");
disp(IC,"IC = ");
disp(IC,"IC = ");
disp("IC > Beta*IB. Hence the transistor is in saturation with the values of IB = 0.0166 mA and IC = 1.96 mA.")
```

Chapter 7

Field Effect Transistors

Scilab code Exa 7.1 Determine resistance between gate and source

```
1 //Exa 7.1
2 clc;
3 clear;
4 close;
5 //given data :
6 VGS=10; //in Volt
7 IG=0.001; //in uA
8 IG=IG*10^-6; //in A
9 RGS=VGS/IG; //in ohm
10 disp(RGS/10^6, "Resistance between gate and source in Mohm; ");
```

Scilab code Exa 7.2 Calculate AC drain resistance

```
1 //Exa 7.2
2 clc;
3 clear;
4 close;
```

Scilab code Exa 7.3 Determine Transconductance

Scilab code Exa 7.4 Calculate VGS

```
1 //Exa 7.4
2 clc;
3 clear;
4 close;
5 //given data:
6 gm=10;//in mS
7 IDSS=10;//in uA
```

```
8 IDSS=IDSS-10^-6; // in Ampere
9 disp("VGS(OFF) : VGS=VP");
10 disp("gm=gmo=-2*IDSS/VP=-2*IDSS/VGS(OFF)");
11 VGS_OFF=-2*IDSS/gm
12 disp(round(VGS_OFF), "VGS(OFF) in mV :");
```

Scilab code Exa 7.5 Determine minimum value of VDS

```
1 //Exa 7.5
2 clc;
3 clear;
4 close;
5 //given data :
6 VP=-4; //in Volt
7 IDSS=10; //in mA
8 IDSS=IDSS*10^-3; //in Ampere
9 VGS=-2; //in Volt
10 ID=IDSS*(1-VGS/VP)^2; //in mA
11 disp(ID*1000,"Drain current in mA: ");
12 disp("The minimum value of VDS for pinch-OFF region is equal to VP. Thus the minimum value of VDS: ");
13 disp(VP,"VDS(min) in volt: ");
```

Scilab code Exa 7.6 Findd values of ID gmo and gm

```
1 //Exa 7.6
2 clc;
3 clear;
4 close;
5 //given data:
6 VP=-3;//in Volt
7 IDSS=8.7;//in mA
```

Scilab code Exa 7.7 Findd values of ID and gm

```
1 //Exa 7.7
2 clc;
3 clear;
4 close;
5 //given data :
6 VP=-3; //in Volt
7 IDSS=8.4; //in mA
8 VGS=-1.5; //in Volt
9 ID=IDSS*(1-VGS/VP)^2; //in mA
10 disp(ID, "Drain current in mA : ");
11 gmo=-2*IDSS/VP; //in mS
12 gm=gmo*(1-VGS/VP); //in mS
13 disp(gm, "gm in mS : ");
```

Scilab code Exa 7.8 Find value of VGS and gm

```
1 //Exa 7.8
2 clc;
3 clear;
4 close;
5 //given data :
6 VP=-4.5;//in Volt
```

```
7 IDSS=9; //in mA
8 IDSS=IDSS*10^-3; //in Ampere
9 IDS=3; //in mA
10 IDS=IDS*10^-3; //in Ampere
11 VGS=VP*(1-sqrt(IDS/IDSS)); //in Volt
12 disp(VGS, "IDS = 3 mA when VGS(in Volt) is : ");
13 gm=(-2*IDSS/VP)*(1-VGS/VP); //in mS
14 disp(gm*1000, "IDS = 3 mA when gm(in mS) is : ");
```

Scilab code Exa 7.9 Sketch the transfer Characteristics

```
1 //Exa 7.9
2 clc;
3 clear;
4 close;
5 //given data :
6 VP=-4; //in Volt
7 IDSS=10; //in mA
8 VGS=[0 1 -1 -2 -4];
9 ID=zeros(1,5);
10 for i=1:5
11     ID(i)=IDSS*(1-VGS(i)/VP)^2; //in mA
12 end
13 plot2d(VGS,ID);
```

Scilab code Exa 7.10 Determine Drain current

```
1 //Exa 7.10
2 clc;
3 clear;
4 close;
5 //given data:
6 ID_on=5;//in mA
```

```
7 VGS=6; //in Volt
8 VGS_on=8; //in Volt
9 VGST=4; //in Volt
10 K=ID_on/(VGS_on-VGST)^2; //in mA/V^2
11 ID=K*(VGS-VGST)^2; //in mA
12 disp(ID, "When VGS=6V the drain current in mA: ");
```

Chapter 8

Photonic Devices

Scilab code Exa 8.1 Determine steady state photo current density

```
1 //Exa 8.1
2 clc;
3 clear;
4 close;
5 //given data :
6 NA=10^22; //in atoms/m^3
7 ND=10^22; //in atoms/m^3
8 De=25*10^-4; //in m^2/s
9 Dh=10^-3; //in m^2/s
10 TAUeo=500; //in ns
11 TAUho=100; //in ns
12 ni=1.5*10^16; //in atoms/m<sup>3</sup>
13 VR = -10; //in Volt
14 epsilon=11.6*8.854*10^--12; //in F/m
15 e=1.6*10^-19; //in Coulamb
16 VT=26; // \text{in mV}
17 GL=10^27; //in m^3 - 3 s^1
18
19 Le=\operatorname{sqrt}(\operatorname{De}*\operatorname{TAUeo}*10^-9); // in um
20 Le=Le*10^6; //in um
21 Lh = sqrt(Dh * TAUho * 10^-9); // in um
```

```
22 Lh=Lh*10^6; //in um
23 Vbi=VT*10^-3*log(NA*ND/ni^2); //in Volt
24 Vo=Vbi; //in Volt
25 VB=Vo-VR; //in Volt
26 W=sqrt((2*epsilon*VB/e)*(1/NA+1/ND)); //in um
27 W=W*10^6; //in um
28 JL=e*(W+Le+Lh)*10^-6*GL; //in A/cm^2
29 disp(JL/10^4, "Steady state photocurrent density in A /cm^2: ");
```

Scilab code Exa 8.2 Determine photo current density

```
1  //Exa 8.2
2  clc;
3  clear;
4  close;
5  //given data :
6  W=25; //in um
7  PhotonFlux=10^21; //in m^2s^-1
8  alfa=10^5; //in m^-1
9  e=1.6*10^-19; //in Coulambs
10  GL1=alfa*PhotonFlux; //in m^-3s^-1
11  GL2=alfa*PhotonFlux*exp(-alfa*W*10^-6); //in m^-3s^-1
12  JL=e*PhotonFlux*(1-exp(-alfa*W*10^-6)); //in mA/cm^2
13  disp(JL/10, "Steady state photocurrent density in mA/cm^2 : ");
```

Scilab code Exa 8.3 Determine open circuit voltage

```
1 //Exa 8.3
2 clc;
3 clear;
4 close;
```

```
5 //given data :
6 NA=7.5*10^24; // in atoms/m^3
7 ND=1.5*10^22; // \text{in atoms/m}^3
8 De=25*10^-4; //in m^2/s
9 Dh=10^-3; //in m^2/s
10 TAUeo=500; // in ns
11 TAUho=100; //in ns
12 ni=1.5*10^16; //in atoms/m<sup>3</sup>
13 VR = -10; //in Volt
14 epsilon=11.6*8.854*10^-12; // in F/m
15 e=1.6*10^-19; //in Coulamb
16 VT=26; // \text{in mV}
17 GL=10^27; // in m^-3 s^-1
18
19 Le=\operatorname{sqrt}(\operatorname{De}*\operatorname{TAUeo}*10^-9);//\operatorname{in} \operatorname{um}
20 Le=Le*10^6; //in um
21 Lh=\operatorname{sqrt}(\operatorname{Dh}*\operatorname{TAUho}*10^-9); //in um
22 Lh=Lh*10^6; //in um
23 JS=e*(ni^2)*(De/(Le*10^-6*NA)+De/(Lh*10^-6*ND)); //in
        A/cm^2
24 JL=12.5; // \text{in mA/cm}^2
25 VOC=VT*log(1+JL/JS);//in Volt
26 disp(VOC, "Open circuit voltage in Volt: ");
27 //Note: Answer in the book is wrong.
```

Scilab code Exa 8.4 Determine approximate no of solar cell required

```
1 //Exa 8.4
2 clc;
3 clear;
4 close;
5 //given data :
6
7 disp("Each cell supplies 50 mA at 0.45V. Allowing for the voltage drop across the rectifier and
```

```
series resistor, a maximum output voltage of
     approximately 28V is required. Thus, ");
8 \text{ disp}("n = Vout/Vcell");
9 Vout=28; //in Volts
10 Vcell=0.45; //in Volt
11 n=Vout/Vcell; // Unitless
12 disp(n,"No. of series connected-cells = ");
13 disp("the charge taken from the batteries over a
      period of 24 hour is 24*0.5 = 12 Ah. thus, the
     charge delivered by the solar cells must be 12
     ampere Hours");
14 disp("Since the solar cells are illuminated only 12
     hours a day, the necessary charging current from
     the solar cell is 12Ah/12h i.e. 1 A");
15 Iout=1; //in A
16 Icell=50; // in mA
17 m = Iout/(Icell*10^-3); //unitless
18 disp(m," Hence total no. of group of cells in
      parallel, m ");
19 disp(round(m*n), "The total no. of cells required:"
     );
20 //Note: Answer in the book is wrong.
```