

Universidad Nacional del Nordeste

Facultad de Ciencias Exactas y Naturales y Agrimensura Licenciatura en Sistemas de Información Comunicaciones de Datos 2024

Trabajos Prácticos, primera parte

Contenido

Trabajo Práctico N°1: Teoría de la Información y Codificación	4
1	4
2	4
3	4
4	5
5	5
6	5
7	6
8	
9	7
10	
11. Por desarrollar	
Trabajo Práctico N°2: Códigos Detectores y Correctores de Errores	
1	
2. Por desarrollar	
3	
4	
5	
6	
7	
8	
o Trabajo Práctico N°3: Transmisión de Señales. Transmisión de Datos	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	20
12	20
Trabajo Práctico N°4: Codificación y Modulación	21

1	21
2	22
3	
4	
5	
6	
7. En desarrollo	24

Trabajo Práctico N°1: Teoría de la Información y Codificación

- 1. Se lanza una moneda dos veces seguidas.
 - i. Especificar el conjunto de posibles resultados (mensajes).
 - ii. Calcular la probabilidad de ocurrencia de cada mensaje y su cantidad de información.

1.

i.
$$S = \{cc, cs, sc, ss\}$$

Donde c es cara y s es cruz.

ii. Suponiendo que cada posible resultado es equiprobable, la probabilidad de ocurrencia de casa mensaje es de 1/4.

La cantidad de información es:

I (mensaje) =
$$\log_2 \frac{1}{1/4}$$
 = 2 bits

- 2. Dado el alfabeto cuyos símbolos son 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E y F todos equiprobables, calcular la cantidad de información obtenida al presentarse:
 - i. El símbolo F.
 - ii. Un mensaje compuesto por dos símbolos.
 - iii. Una palabra formada por seis símbolos.
- 2. La probabilidad de ocurrencia de cada símbolo es de 1/16

i. I(F) =
$$\log_2 \frac{1}{1/16}$$
 = 4 bits

ii.
$$I(F) + I(6) = 4 \text{ bits} + 4 \text{ bits} = 8 \text{ bits}$$

iii.
$$I(1) + I(2) + ... + (16) = 24$$
 bits

3. En hexadecimal, los colores HTML se especifican mediante una cadena de caracteres o código hexadecimal con la forma #RRGGBB, donde RR, GG y BB especifican la intensidad de los colores rojo (red), verde (green) y azul (blue).

Si con #0000FF se especifica el color azul, ¿cuál es la cantidad de información que contiene el este código?

- 3. Suponiendo que cada símbolo es equiprobable, sin incluir "#", contiene 24 bits.
 - 4. De un mazo de 52 cartas, se elige una al azar.
 - a) Calcular la cantidad de información obtenida cuando se conoce que la carta es:
 - i) De corazones.
 - ii) Una figura.
 - iii) Una figura de corazones

- 4. Cada palo tiene 13 cartas.
- i. La probabilidad de sacar una carta de corazones es de 13/52 o 1/4.

I(corazon) =
$$\log_2 \frac{1}{1/4}$$
 = 2 bits

ii. Debemos tener en cuenta que cada palo tiene tres figuras, siendo 12 en total. Entonces, la probabilidad de sacar una figura es de 12/52.

I(figura) =
$$\log_2 \frac{1}{12/52}$$
 = 3 bits

iii. La probabilidad de sacar una figura de corazones es de 3/52.

I(figura de corazones) = $\log_2 \frac{1}{3/52}$ = 5 bits

5. Una fuente de memoria nula produce cinco símbolos pertenecientes al alfabeto $S = \{a, b, c, d, e\}$ de acuerdo a la siguiente ley de probabilidades P(a) = 1/2; P(b) = 1/4; P(c) = 1/8; P(d) = 1/16 y P(a) = 1/16. Calcular su entropía.

5.

$$I(a) = 1 bit$$

$$I(b) = 2 bits$$

$$I(c) = 3 bits$$

$$I(d) = 4 bits$$

$$I(e) = 4 bits$$

H(S) =
$$\frac{1}{2} * 1 \ bit + \frac{1}{4} * 2 \ bits + \frac{1}{8} * 3 \ bits + 2 * \frac{1}{16} * 4 \ bits = \frac{15}{8} \ bits$$

- 6. Considerando una fuente que emite símbolos pertenecientes al alfabeto $S = \{s_1, s_2, s_3\}$ con probabilidades $P(s_1) = P(s_2) = 1/4$ y $P(s_3) = 1/2$.
 - i) Calcular la entropía de la fuente.
 - ii) Definir las extensiones de segundo y tercer orden. Calcular su entropía.

6.

i.

$$I(s_1) = I(s_2) = 2 \text{ bits}$$

$$I(s_3) = 1 bit$$

$$H(S) = 2 * \frac{1}{4} * 2 bits + \frac{1}{2} * 1 bit = \frac{3}{2} bits$$

ii.

$$S^2 = \{ s_1 s_1, s_1 s_2, s_1 s_3, s_2 s_1, s_2 s_2, s_2 s_3, s_3 s_1, s_3 s_2, s_3 s_3 \}$$

$$H(S^{2}) = H(S) * 2 = \frac{3}{2} * 2 = \frac{6}{2} = 3 bits$$

$$S^{3} = \{ s_{1} s_{1}, s_{1} s_{1} s_{2}, s_{1} s_{1} s_{3}, s_{1} s_{2} s_{1}, s_{1} s_{2} s_{2}, s_{1} s_{2} s_{3}, s_{1} s_{3} s_{1}, s_{1} s_{3} s_{2}, s_{1} s_{3} s_{3}, s_{2} s_{1} s_{1}, \dots, s_{3} s_{3} s_{2} \}$$

$$H(S^{3}) = H(S) * 3 = \frac{3}{2} * 3 = \frac{9}{2} bits$$

- 7. Calcular la tasa de información de un sistema de transmisión donde:

 - P(punto) = 2/3- P(raya) = 1/3; $\tau(punto) = 0.2 seg$. $\tau(raya) = 0.4 seg$.

I(punto) =
$$\log_2 \frac{1}{2/3} = 0.58 \ bits$$

I(raya) =
$$\log_2 \frac{1}{1/3} = 1,58 \ bits$$

H(S) =
$$\frac{2}{3}$$
 * 0,58 bits + $\frac{1}{3}$ * 1,58 bits = 0,91 bits

$$\tau = \frac{2}{3} * 0.2 \ seg. + \frac{1}{3} * 0.4 \ seg. = 0.26 \ seg.$$

$$T = \frac{0.91 \ bits}{0.26 \ seg} = 3.5 \ bps$$

- 8. Se tiene una fuente de 32 símbolos equiprobables, cada uno compuesto por 5 bits. La fuente emite a una tasa de 1 símbolo por segundo. La información se transmite en bloques de 20 símbolos, separados por dos pulsos de sincronización de 2.5 ms cada uno. Calcular la tasa de información del sistema.
- 8. La probabilidad de cada símbolo es de 1/32.

Cantidad de información I = 5 bits por definición del problema, ya que $\log_2 \frac{1}{1/32} = 5 \ bits$

$$\tau = \sum_{i=1}^{32} pi * \tau i = \frac{1}{32} * 1 seg. + \frac{1}{32} * 1 seg. + \cdots + \frac{1}{32} * 1 seg = \frac{32}{32} = 1$$

$$H(S) = \left(\frac{1}{32} * 5 \ bits\right) * 32 = 5$$

$$T = \frac{H(S)}{\tau} = \frac{5}{1} = 5 \ bps$$

Si la fuente emite a una tasa de 1 símbolo por segundo, esto quiere decir que emite 5 bits por segundo. Un bloque de 20 símbolos contiene 20 * 5 = 100 bits; transmitiéndose un bloque cada 100,005 segundos, sumando los dos pulsos de sincronización de 2,5 milisegundos.

- 9. Considerando la fuente de memoria nula $S = \{A, N, S, E, B, I\}$, con probabilidades $P = \{0.40; 0.19; 0.17; 0.12; 0.11; 0.01\}$
 - i) Obtener un código compacto binario para la fuente dada utilizando el algoritmo de *Shannon-Fano*.
 - ii) Calcular la longitud media del código obtenido.
 - iii) Calcular la entropía de la fuente.
 - iii) Calcular el rendimiento del código.
 - iv) Calcular el ratio de compresión del código compacto.

9.

i.

Simbolo	Probabilidad	Paso 1	Paso 2	Paso 3	Codigo
Α	0,4	1	1		11
N	0,19	1	0		10
S	0,17	0	1	1	011
Е	0,12	0	1	0	010
В	0,11	0	0	1	001
ı	0,01	0	0	0	000

 $C = \{11, 10, 011, 010, 001, 00\}$

ii.
$$L = 0.40 * 2, 0.19 * 2 + 0.17 * 3 + 0.12 * 3 + 0.11 * 3 + 0.01 * 3 = 2.41 bits$$

iii.

$$I(A) = 1,32 bits$$

$$I(N) = 2,39 \text{ bits}$$

$$I(S) = 2,55 \text{ bits}$$

$$I(E) = 3,05 bits$$

$$I(B) = 3,18 \text{ bits}$$

$$I(I) = 6,64 \text{ bits}$$

$$H(S) = 0.40 * 1.32 \ bits + 0.19 * 2.39 \ bits + 0.17 * 2.55 \ bits + 0.12 * 3.05 \ bits + 0.11 * 3.18 \ bits + 0.01 * 6.64 \ bits = 2.19 \ bits$$

iv.

$$\eta = \frac{H(S)}{L} = \frac{2,19 \ bits}{2,41 \ bits} = 0,9087$$

٧

$$R = \frac{\log_2 6}{2,41 \ bits} = 1,07$$

- 10. Considerando la fuente de memoria nula $S = \{A, N, S, E, B, I\}$, con probabilidades $P = \{0.40; 0.19; 0.17; 0.12; 0.11; 0.01\}$
 - i) Obtener un código compacto binario para la fuente dada utilizando el algoritmo de *Huffman*.
 - ii) Calcular la longitud media del código obtenido.
 - iii) Calcular la entropía de la fuente.
 - iii) Calcular el rendimiento del código.
 - iv) Calcular el ratio de compresión del código compacto.

10.

i.

	S		S1		S2		S3	S4	
si	pi	si	pi	si	pi	si	pi	si	pi
Α	0,4	Α	0,4	Α	0,4	Α	0,4	EBINS	0,6
N	0,19	N	0,19	EBI	0,24	NS	0,36	Α	0,4
S	0,17	S	0,17	N	0,19	EBI	0,24		
Е	0,12	E	0,12	S	0,17				
В	0,11	BI	0,12						
ı	0,01								

	S		S1	!	S2	S	3	S4	
si	pi	si	pi	si	pi	si	pi	si	pi
Α	1	Α	1	Α	1	Α	1	EBINS	0
N	000	N	000	EBI	01	NS	00	Α	1
S	001	S	001	N	000	EBI	01		
Ε	010	E	010	S	001				
В	0110	BI	011						
ı	0111								

 $C = \{1, 000, 001, 010, 0110, 0111\}$

ii.
$$L = 0.40 * 1 + 0.19 * 3 + 0.17 * 3 + 0.12 * 3 + 0.11 * 4 + 0.01 * 4 = 2.32 bits$$

iii.

I(A) = 1,32 bits

I(N) = 2,39 bits

I(S) = 2,55 bits

I(E) = 3,05 bits

I(B) = 3,18 bits

I(I) = 6,64 bits

 $H(S) = 0.40 * 1.32 \ bits + 0.19 * 2.39 \ bits + 0.17 * 2.55 \ bits + 0.12 * 3.05 \ bits + 0.11 * 3.18 \ bits + 0.01 * 6.64 \ bits = 2.19 \ bits$

iv.

$$\eta = \frac{H(S)}{L} = \frac{2,19 \text{ bits}}{2,32 \text{ bits}} = 0,944$$

٧.

$$R = \frac{\log_2 6}{2,32 \ bits} = 1,11$$

11. Dada la fuente de memoria nula $S = \{a, b\}$, con P(a) = 0.75 y P(b) = 0.25 obtener un código compacto binario (utilizar el algoritmo de Huffman) y calcular su rendimiento. Codificar las extensiones de segundo, tercer y cuarto orden y calcular sus respectivos rendimientos. Representar gráficamente el rendimiento en un par de ejes cartesianos ¿Qué observa?

11. Por desarrollar ...

Trabajo Práctico N°2: Códigos Detectores y Correctores de Errores

- 1. Calcular la Distancia Hamming:
 - i. Si se transmite la palabra c = 1001 y se recibe la palabra c' = 0011.
 - ii. Si se transmite la palabra c = 101010 y se recibe la palabra c = 110100.
- 1.
- i. d(1001, 0011) = 2
- ii. d(101010, 110100) = 4
 - 2. Se utiliza un código de triple repetición, decodificar las palabras recibidas $c_1=101;\ c_2=001;\ c_3=111.$
- 2. Por desarrollar ...
 - 3. Determinar si los códigos dados son códigos de bloques lineales.
 - a. $C_1 = \{000, 101, 011, 110\}$
 - b. $C_2 = \{0000, 1011, 0111, 1110\}$
- 3.
- a. Si es un código lineal
- b. No es un código lineal, ya que 1011 XOR 0111 es 1100, y 1100 no es una palabra código

- 4. Considerando el (7, 4, 3) código de Hamming:
 - a. Calcule la eficiencia del código.
 - b. Obtenga las ecuaciones para el cálculo de los bits de paridad y síndromes (Tabla 1).
 - c. Codifique las palabras de datos:

i.
$$u_1 = 1110$$
,

ii.
$$u_2 = 1011$$
.

- d. Decodificar las palabras código:
 - i. $v_1 = 1011100$,
 - ii. $v_2 = 1111011$.
 - Si se detecta un error, corregir indicando la posición del bit alterado y obtener la palabra de datos originalmente transmitida.

Tabla 4

	b_4	b_3	b_2	p_3	b_1	p_2	$p_{_{1}}$
s_3							
<i>s</i> ₂							
<i>s</i> ₁							

4.

a.

n = 7, longitud de la palabra código

m = 4 tamaño del código

q = 2 porque es un alfabeto binario con símbolos atómicos 0 y 1.

$$R = \frac{1}{n} * \log_q m = \frac{1}{7} * \log_2 4 = \frac{2}{7}$$

Por lo tanto, dos de cada siete bits son de datos.

b.

	b4	b3	b2	р3	b1	p2	p1
s 3	1	1	1	1	0	0	0
s 2	1	1	0	0	1	1	0
s1	1	0	1	0	1	0	1

p3 = b2 XOR b3 XOR b4

p2 = b1 XOR b3 XOR b4

p1 = b1 XOR b2 XOR b4

s3 = b2 XOR b3 XOR b4 XOR p3

s2 = b1 XOR b3 XOR b4 XOR p2

s1 = b1 XOR b2 XOR b4 XOR p1

u1 = 1110	u2 = 1011
p3 = 1	p3 = 0
p2 = 0	p2 = 0
p3 = 1 p2 = 0 p1 = 0	p1 = 1
c1 = 1111000	c2 = 1010101

d.

i. v1 = 1011100	ii. v2 = 1111011
s3 = 1	s3 = 1 + 1 + 1 + 1 = 0
s2 = 0	s2 = 0 + 1 + 1 + 1 = 1
s1 = 1	s1 = 0 + 1 + 1 + 1 = 1
iii. El bit alterado es b2	iii. El bit alterado es b1
Corrección: v1' = 1001100	Corrección: v2' = 1111111
Palabra de dato: d1 = 1001	Palabra de dato: d2 = 1111

5. Sea el $(6, 3, 3) - c \circ digo$ con matriz generatriz G y de control de paridad H.

$$C = \begin{vmatrix} 100011 \\ 010101 \\ 001110 \end{vmatrix}; H = \begin{vmatrix} 011100 \\ 101010 \\ 110001 \end{vmatrix}$$

a. Codifique las palabras de datos:

i.
$$d_1 = 011$$
,

ii.
$$d_2 = 101$$
.

- Construya la tabla estándar considerando todos los patrones correspondientes a un bit erróneo.
- c. Decodificar las palabras:

i.
$$c_1 = 100110$$
,

ii.
$$c_2 = 100111$$
.

- d. Suponga que en la tabla estándar se agregan los patrones 100100; 010010 y 001001 correspondientes a dos bits erróneos.
 - i. Obtener el síndrome asociado a cada uno.
 - ii. Suponga que se recibe la palabra $c_3 = 100100$. ¿Qué observa?

5.

е	h(e)
000000	000
000001	001
000010	010
000100	100
001000	110
010000	101
100000	011

c. i. El síndrome perteneciente al código 100110 es 101. Sumando mediante módulo 2 el líder 010000 con el código 100110 obtenemos el código corregido 110110 y la palabra de dato 110.

100110
010000
110110

ii. El síndrome perteneciente al código 100111 es 100. Sumando mediante módulo 2 el líder 000100 con el código 100111 obtenemos el código corregido 100011 y la palabra de dato 100.

100111
000100
100011

d. i.

Patrones	Síndrome
000000	000
000001	001
000010	010
000100	100
001000	110
010000	101
100000	011
100100	111
010010	111
001001	111

ii. Al recibir la palabra código 100100 y multiplicarla por la matriz de control de paridad traspuesta, se observa que se obtiene el síndrome 111, el cual pertenece a 3 patrones de error distinto, por lo cual es un código que no se puede corregir.

6. Dadas las matrices:

$$I = \begin{vmatrix} 1000 \\ 0100 \\ 0010 \\ 0001 \end{vmatrix}; P = \begin{vmatrix} 110 \\ 101 \\ 011 \\ 111 \end{vmatrix}$$

- a. Hallar la matriz que caracteriza al $(7, 4, 3) c\acute{o}digo$.
- b. Codificar las palabras de datos:

i.
$$d_1 = 1011$$
,

ii.
$$d_2 = 1101$$
,

iii.
$$d_3 = 1110$$
,

iv.
$$d_4 = 0011$$
.

6. a. Matriz generadora que caracteriza al (7, 4, 3)-código:

- $1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0$
- 0 1 0 0 1 0 1
- 0 0 1 0 0 1 1
- 0 0 0 1 1 1 1

b.

- i. c1 = 1011010
- ii. c2 = 1101100
- iii. c3 = 1110000
- iv. c4 = 0011100

7. Sea el $(7, 4, 3) - c \circ digo$ con matriz de control de paridad H:

$$H = \begin{vmatrix} 1101100 \\ 1011010 \\ 0111001 \end{vmatrix}$$

Decodificar las palabras:

a.
$$c_1 = 1010010$$
,

b.
$$c_2 = 1001100$$
.

7. La tabla estándar para esta matriz de control de paridad es la siguiente:

Síndrome
000
001
010
100
111
011
101
110

i. La palabra código 1010010 pertenece al síndrome 111. Sumando módulo 2 el líder 0001000 con la palabra código 1010010 obtenemos el código corregido 1011010 y la palabra de dato 1011.

ii. La palabra código 1001100 pertenece al síndrome 101. Sumando módulo 2 el líder 0100000 con la palabra código 1001100 obtenemos el código corregido 1101100 y la palabra de dato 1101

8. Dado el polinomio generador $G(x) = x^4 + x + 1$; determinar la secuencia de comprobación de la trama (*FCS*) y la trama (*T*) para transmitir el mensaje M = 10110101101.

8. Los coeficientes del polinomio son 10011. El resto de la división entre el mensaje dividendo

101101011010000 y el divisor 10011 es 00110 mediante la siguiente FCS:

Al sumar módulo 2 el resto con el mensaje, obtenemos la trama:

1	0	1	1	0	1	0	1	1	0	1	0	0	0	0
										0	0	1	1	0
1	0	1	1	0	1	0	1	1	0	1	0	1	1	0

9. Dada la palabra de datos M = 10100111100 y el patrón P = 10111, determinar en el transmisor la secuencia de comprobación de trama y la trama a transmitir. Asumiendo que la trama se recibió sin error, realice la comprobación en el receptor.

9. En el transmisor, la FCS se desarrolla de la siguiente manera:

_									1	0	0	1	1	0	1	1	1	0	1
1	0	1	1	1	1	0	1	0	0	1	1	1	1	0	0	0	0	0	0
					1	0	1	1	1										
					0	0	0	1	1	1									
						0	0	0	0	0									
						0	0	1	1	1	1								
							0	0	0	0	0								
							0	1	1	1	1	1							
								1	0	1	1	1							
								0	1	0	0	0	1						
									1	0	1	1	1						
									0	0	1	1	0	0					
										0	0	0	0	0					
										0	1	1	0	0	0				
											1	0	1	1	1				
											0	1	1	1	1	0			
												1	0	1	1	1			
												0	1	0	0	1	0		
													1	0	1	1	1		
													0	0	1	0	1	0	
														0	0	0	0	0	
														0	1	0	1	0	0
															1	0	1	1	1
															0	0	0	1	1

Se obtiene el resto 00011 y se suma al mensaje mediante módulo 2, obteniendo la trama a transmitir:

1	0	1	0	0	1	1	1	1	0	0	0	0	0	0
										0	0	0	1	1
1	0	1	0	0	1	1	1	1	0	0	0	0	1	1

En el receptor, se realiza la misma secuencia de pasos de FCS con la trama recibida

									1	0	0	1	1	0	1	1	1	0	1
1	0	1	1	1	1	0	1	0	0	1	1	1	1	0	0	0	0	1	1
					1	0	1	1	1										
					0	0	0	1	1	1									
						0	0	0	0	0									
						0	0	1	1	1	1								
							0	0	0	0	0								
							0	1	1	1	1	1							
								1	0	1	1	1							
								0	1	0	0	0	1						
									1	0	1	1	1						
									0	0	1	1	0	0					
										0	0	0	0	0					
										0	1	1	0	0	0				
											1	0	1	1	1				
											0	1	1	1	1	0			
												1	0	1	1	1			
												0	1	0	0	1	0		
													1	0	1	1	1		
													0	0	1	0	1	1	
														0	0	0	0	0	
														0	1	0	1	1	
															1	0	1	1	
															0	0	0	0	

El resto es 00000 por lo tanto no hubo error en la transmisión.

Trabajo Práctico N°3: Transmisión de Señales. Transmisión de Datos

1. Para el circuito amplificador, cuya ganancia es de 35dB, calcular la potencia de salida si la potencia de entrada es de 0,05W.

1.

$$G(dB) = 10 * \log_{10} \left(\frac{PS}{PE}\right)$$

35dB =
$$10 * \log_{10} \left(\frac{PS}{0.05W} \right)$$

$$PS = 10^{35dB/10} * 0.05W = 158W$$

2. Dado el siguiente circuito de conexión, compuesto por dos dispositivos atenuadores, calcular el valor de salida del circuito, siendo la potencia de entrada de 0,5W.

Pe = 0.5W
$$P1 = \frac{1}{2}$$

$$G=-3dB$$

$$P2 = \frac{1}{2}$$

$$G=-5dB$$

2.

$$PS = 10^{\left(-\frac{8dB}{10}\right)} * 0.5W = 0.08W$$

3. Se trasmite una señal de 2mW a través de un cable de 5km. Sabiendo que la pérdida en el medio es de 3dB/Km, calcular la potencia recibida.

2

Pérdida en dB = 3dB/km * 5km = -15dB

$$PS = 10^{\left(-\frac{15dB}{10}\right)} * 2W = 0.063W$$

4. Para un amplificador con potencia de señal de salida de 10W y potencia de ruido de salida de 0.01W, determinar la relación de potencia de señal a ruido.

4

$$SNR = \frac{10W}{0.01W} = 1000$$

5. Calcular la velocidad máxima a la que se puede transmitir datos binarios por un canal ideal de 3KHz.

5.
$$C = 2 * W$$
 $C = 2 * 3000Hz = 6000bps$

6. Dado un canal con ancho de banda de 3.000Hz y una SNR de 30dB. Calcular la velocidad máxima a la que se puede transmitir.

6.

$$C = 3000Hz * \log_2(1 + 30dB)$$

$$C = 3000Hz * \log_2\left(1 + 10^{\frac{30}{10}}\right)$$

$$C = 29901bps$$

7. Sea un canal con una capacidad de 20Mbps y un ancho de banda de 3MHz; calcule la relación señal-ruido admisible para conseguir la mencionada capacidad.

7.

$$C = W * \log_2(1 + SNR)$$

$$20Mbps = 3Mhz * \log_2(1 + SNR)$$

$$\frac{20Mbps}{3} = \log_2(1 + SNR)$$

$$2^{20/3} - 1 = SNR = 100,59$$

8. Para operar a 9.600bps se usa un sistema de señalización digital. Si cada elemento de señal codifica una palabra de 4 bits, calcular el ancho de banda mínimo necesario. Ídem para palabras de 8 bits.

8.

Para 4 bits:

$$9600bps = 2 * W * \log_2 2^4$$

$$\frac{9600bps}{2 * \log_2 16} = W = 1200Hz$$

Para 8 bits:

$$9600bps = 2 * W * \log_2 2^8$$

$$\frac{9600bps}{2 * \log_2 256} = W = 600Hz$$

9. Dado un cable UTP categoría 5, con una relación SNR de 30dB, calcular el ancho de banda necesario para obtener velocidades de 10/100Mbps.

9

Para 10Mbps y un ruido de 30dB o 1000 SNR:

$$10Mbps = W * \log_2(1 + 1000)$$

$$\frac{10Mbps}{\log_2 1001} = W = 1Mhz$$

Para 100Mbps

$$100Mbps = W * \log_2(1 + 1000)$$

$$\frac{100Mbps}{\log_2 1001} = W = 10Mhz$$

10. Encontrar la máxima velocidad binaria que puede desarrollar un modem 32-PSK trabajando sobre la banda vocal de 4Khz en un canal ideal libre de ruido.

10.

W = 4Khz

$$M = 2^5 = 32$$

En un canal sin ruido:

$$C = 2 * 4 * 32 = 256kbps$$

11. Determinar la máxima velocidad binaria en Kbps con que transmitirá un modem 64-QAM sobre un canal de 50Khz de ancho de banda que tiene una tasa de señal a ruido de 5,2*10^3 veces.

11.

W = 50Khz

$$SNR = 5.2 * 10^3 = 5200$$

$$C = 50Khz * \log_2 5201 = 617Kbps$$

12. De acuerdo a la norma ITU con que fue construido, un módem 32-QAM es capaz de trabajar en la banda vocal de 4Khz realizando un trabajo de compresión y encriptación. Determinar cuál deberá ser la mínima tasa S/N en decibeles para que pueda transmitir a 56Kbps.

12.

$$56Kbps = 4Khz * \log_2(1 + SNR)$$

$$2^{56/4} - 1 = SNR = 16383$$
. Expresado en dB: $10 * \log 16383 = 42,14dB$

Trabajo Práctico N°4: Codificación y Modulación

1. Para la cadena de bits 01001110, representar las formas de onda en cada uno de los siguientes códigos: NRZ-L, NRZI y Bipolar-AMI.

1. En NZR-L

En NZRI

En Bipolar-AMI

2. Dada la siguiente secuencia de bits 101000011000000010, representar la forma de onda para los siguientes códigos Pseudoternario, Manchester y Manchester diferencial.

2. En pseudoternario

En Manchester

En Manchester diferencial

3. Dado la siguiente secuencia de bits 1010000110000000010 represente la forma de onda para el código de representación HDB3.

3. En HDB3

4. Dada la siguiente secuencia de bits 1100 0000 0011 0000 0100, representar la forma de la onda utilizando el esquema de representación HDB3 y B8ZS.

4. En HDB3

En B8ZS

5. Dada la siguiente representación, indique la técnica de Modulación utilizada sabiendo la secuencia de bits utilizada.

5. Usa NZR-L

6. Dada la siguiente representación, indique la técnica de Modulación utilizada sabiendo la secuencia de bits utilizada.

6. Usa Manchester.

7. Dada la siguiente secuencia binaria y una portadora analógica de frecuencia $f_c = 2 \, Hz$, representar gráficamente la forma de onda para cada tipo de modulación (ASK, FSK y PSK).

7. En desarrollo ...