44100113: COMPUTER NETWORKS HOMEWORK 3: CHAPTER 4 Network Layer

Submission Due: 23:59 P.M., Nov 9, 2022

Notes:

- 1. All exercises are in accordance with the 6^{th} edition (International Edition). We change data values in some problems, which are highlighted.
- 2. These limited exercises are not enough to cover all the knowledge required in our course. You should read the textbook by yourselves.

Exercise 1 (R3, CHAPTER 4)

What is the difference between routing and forwarding?

Exercise 2 (R21, CHAPTER 4)

Compare and contrast link-state and distance-vector routing algorithms.

Exercise 3 (P5, CHAPTER 4)

Consider a VC network with a 2-bit field for the VC number. Suppose that the network wants to set up a virtual circuit over four links: link A, link B, link C, and link D. Suppose that each of these links is currently carrying two other virtual circuits, and the VC numbers of these other VCs are as follows:

Link A	Link B	Link C	Link D	
00	10	01	11	
01	11	10	00	

In answering the following questions, keep in mind that each of the existing VCs may only be traversing one of the four links.

- a. If each VC is required to use the same VC number on all links along its path, what VC number could be assigned to the new VC?
- b. If each VC is permitted to have different VC numbers in the different links along its path (so that forwarding tables must perform VC number translation), how many different combinations of four VC numbers (one for each of the four links) could be used?

Exercise 4 (P10, CHAPTER 4)

Consider a datagram network using 32-bit host addresses. Suppose a router has four links, numbered 0 through 3, and packets are to be forwarded to the link interfaces as follows:

Destination Address Range	Link Interface
11100000 00000000 00000000 00000000	0
through	
11100000 00111111 11111111 11111111	
11100000 01000000 00000000 00000000	1
through	
11100000 01000000 11111111 11111111	
11100000 01000001 00000000 00000000	2
through	
11100001 01111111 11111111 11111111	
otherwise	3

- a. Provide a forwarding table that has five entries, uses longest prefix matching, and forwards packets to the correct link interfaces.
- b. Describe how your forwarding table determines the appropriate link interface for datagrams with destination addresses:

Exercise 5 (P11, CHAPTER 4)

Consider a datagram network using 8-bit host addresses. Suppose a router uses longest prefix matching and has the following forwarding table:

Prefix Match	Interface
00	0
010	1
011	2
10	2
11	3

For each of the four interfaces, give the associated range of destination host addresses and the number of addresses in the range.

Exercise 6 (P12, CHAPTER 4)

Consider a datagram network using 8-bit host addresses. Suppose a router uses longest prefix matching and has the following forwarding table:

Prefix Match	Interface
1	0
10	1
111	2
otherwise	3

For each of the four interfaces, give the associated range of destination host addresses and the number of addresses in the range.

Exercise 7 (P17, CHAPTER 4)

Consider the topology shown in Figure 4.17. Denote the three subnets with hosts (starting clockwise at 12:00) as Networks A, B, and C. Denote the subnets without hosts as Networks D, E, and F.

- a. Assign network addresses to each of these six subnets, with the following constraints: All addresses must be allocated from 214.97.254/23; Subnet A should have enough addresses to support 120 interfaces; Subnet B should have enough addresses to support 250 interfaces; and Subnet C should have enough addresses to support 120 interfaces. Of course, subnets D, E and F should each be able to support two interfaces. For each subnet, the assignment should take the form a.b.c.d/x or a.b.c.d/x e.f.g.h/y.
- b. Using your answer to part (a), provide the forwarding tables (using longest prefix matching) for each of the three routers.

Exercise 8 (P19, CHAPTER 4)

Consider sending a 2400-byte datagram into a link that has an MTU of 700 bytes. Suppose the original datagram is stamped with the identification number 422. How many fragments are generated? What are the values in the various fields in the IP datagram(s) generated related to fragmentation?

Exercise 9 (P28, CHAPTER 4)

Consider the network shown below, and assume that each node initially knows the costs to each of its neighbors. Consider the distance-vector algorithm and show the distance table entries at node z.

