Total No.	of Questions:	6
I CICIL I TO	of Questions.	•

Total No. of Printed Pages:2

Enrollment	No
------------	----

Faculty of Engineering End Sem Examination May-2024 EC3EL08 / EI3EL08

Computer Organization & Architecture

Programme: B.Tech. Branch/Specialisation: EC/EI

Duration: 3 Hrs.	Maximum Marks: 60
Note: All questions are compulsory. Internal	choices, if any, are indicated. Answers of

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

neces	sary.	Notations and symbols have their usu	al meaning.	
Q.1	i.	MFC stands for		1
		(a) Memory Format Caches	(b) Memory Function Complete	
		(c) Memory Find Command	(d) Mass Format Command	
	ii.	In multiple bus organisation, the r	egisters are collectively placed and	1
		referred as:		
		(a) Set registers	(b) Register file	
		(c) Register Block	(d) Map registers	
	iii.	In IEEE double precision floating p	oint format, the size of the mantissa	1
		part is:		
		(a) 32 bit (b) 64 bit	(c) 72 bit (d) 52 bit	
	iv.	In order to implement complex instr	uctions, CISC architectures use:	1
		(a) Macro-programming	(b) Hardwired logic	
		(c) Micro-programming	(d) None of these	
	v.	v. An instruction pipeline can be implemented by means of:		
		(a) LIFO buffer	(b) FIFO buffer	
		(c) Stack	(d) None of these	
	vi.	rdware device is called:	1	
		(a) Structural hazard	(b) Stall	
		(c) Deadlock	(d) None of these	
	vii.	Which of the following architectu	are is/are not suitable for realizing	1
		SIMD model?		
		(a) Vector processor	(b) Array processor	
		(c) Von Neumann	(d) All of these	

P.T.O.

[2]

	viii.	The throughput of a superscalar processor is:	1
		(a) Less than 1 (b) 1 (c) More than 1 (d) Not known	
	ix.	The slowest data access is provided using:	1
		(a) Caches (b) DRAM's (c) SRAM's (d) CPU Registers	
	х.	The method of mapping the consecutive main memory blocks to	1
		consecutive cache blocks is called	
		(a) Associative (b) Set associative	
		(c) Direct (d) Indirect	
Q.2	i.	What is Von-Neumann Architecture?	2
Q.2	ii.	Explain three factors that influence computer performance using its	3
		basic performance equation.	
	iii.	Compare and contrast between the first and second generation of	5
		electronic computers.	
OR	iv.	Explain the micro programmed CPU control unit with its block diagram.	5
Q.3	i.	Convert the decimal number (-85.25) into IEEE 754 single precision	3
Q.J	1.	floating point format.	J
	ii.		7
		architecture with their five characteristics.	•
OR	iii.	What is an addressing mode? Explain any five types of addressing	7
		modes with example of each.	
			_
Q.4	i.	How does an instruction pipeline improves the speed of execution of a	3
	::	program?	7
	ii.	What do you mean by pipeline hazards? Explain instruction hazard with	/
OR	iii.	a relevant diagram. Describe the operation of four stage instruction pipelining with diagram.	7
OK	111.	Describe the operation of four stage instruction piperining with diagram.	,
Q.5	i.	Differentiate between a process and thread.	3
	ii.	What do you mean by an array processor? Explain its operation with a	7
		diagram.	
OR	iii.	What is Flynn's taxonomy for parallel processing? Explain any two	7
		type of its computer structures with diagram.	
Q.6		Explain any two with the help of relevant diagram:	
Q.0	i.	Computer memory hierarchy	5
	ii.	Cache memories	5
	iii.	Shared memory systems	5
	1111	*****	•

Marking Scheme

EC3EL08 / EI3EL08 Computer Organization and Architecture

Q.1	i.	MFC stands for	1
	ii.	b) Memory Function Complete In multiple bus organisation, the registers are collectively placed]
		and referred as:	
	iii.	b) Register file In IEEE double precision floating point format, the size of the mantissa part is:	1
		d) 52 bit	
	iv.	In order to implement complex instructions, CISC architectures use:	1
		c) Micro-programming	1
	V.	An instruction pipeline can be implemented by means of: b) FIFO buffer	J
	vi.	The contention for the usage of a hardware device is called: a) Structural hazard	1
	vii.	The throughput of a superscalar processor is:	1
		c) More than 1	
	viii.	Which of the following architecture is/are not suitable for realizing SIMD model?]
	:	c) Von Neumann	1
	ix.	The slowest data access is provided using: b) DRAM's	J
	х.	The method of mapping the consecutive main memory blocks to consecutive cache blocks is called: c) Direct	1
Q.2	i.	What is Von-Neumann Architecture?	2
₹		Explanation – 2 Marks	_
	ii.	For best performance, the following factors must be considered: 1. Compiler 2. Instruction set	3
		3. Hardware design, etc. (1x3 Marks)	
		Basic performance equation $T=(N \times S)/R$	
	iii.	Comparison: First and Second generation based on: Vacuum	
		tubes, Transistors 1x5 Marks	
OR	iv.	Explain the Micro programmed CPU control unit with its block diagram.	5
		Block diagram - 2 Marks, Description – 3 Marks	

Q.3	i.	Convert the decimal number (-85.25) into IEEE 754 single precision floating point format. Mantissa = 01010101 1 Mark	•
		E' = 10000101 1 Mark	
		Ans. 1 10000101 1 Mark Ans. 1 10000101 010101010000000000000000 1 Mark	
	ii.	Floating point number description – 2 Marks	,
		Comparison b/w RISC & CISC architecture – 5 Marks	
OR	iii.	Definition of addressing mode 2 Marks	,
		Five types of addressing modes with example 1x5 Marks	
Q.4	i.	How does an instruction pipeline improves the speed of execution	
		of a program?	
		Justify reason – 3 Marks	
	ii.	Pipeline hazards - 2 Marks	,
		Diagram - 2 Marks	
		Instruction hazards description with example – 3 Marks	
OR	iii.	Four stage instruction pipelining	,
		Block diagram – 2 Marks	
		Explanation – 5 Marks	
Q.5	i.	Difference between process and thread – 3 Marks	•
	ii.	Array processor description– 2 Marks	,
		Diagram – 2 Marks, Operation – 3 Marks	
OR	iii.	Flynn's taxonomy – 2 Marks	,
		Computer structures – 2.5x2	
Q.6		Explain any two with the help of relevant diagram:	
		Diagram – 2 Marks, Description – 3 Marks	
	i.	Computer Memory hierarchy	
	ii.	Cache memories	
	iii.	Shared Memory Systems	
