Mapa de Karnaugh: cobertura de dois níveis livre de risco lógico

Interação com o ambiente: MF (SIC)

- · Livre de risco lógico dinâmico
- · Livre de risco lógico estático-0 (SOP)
- Livre de risco lógico estático-1 (POS)

Exemplo: exercício de aula → Passo 2 minimização de estados (já realizado)

\X0 X1							
Estados	00	01	11	10	Z		
a	(a)	р	1	O	0		
b	а	Θ	а	1	0		
С	а		Ф	(0)	0		
d		р	\bigcirc	f	0		
е		р	(w)	f	1		
f	а		е	f	1		

to					
Estados	00	01	11	10	Z
1	3	2	$\left(\begin{array}{c} \\ \end{array} \right)$	1	1
2	3	(2)	(N)	1	0
3	3	2	1	3	0

Exemplo: exercício de aula -> Passo 3 assinalamento de estados livre de corrida crítica

to					
Estados	00	01	11	10	Z
1	3	2	1	1	1
2	3	2	2	1	0
3	3	2	1	3	0

	to+					
	$Y_0 Y_1$	00	01	11	10	Z
(3)	00	00	11	01	00	0
(1)	01	00	11	01	01	1
(2)	11	00	(11)	11	01	0
(X)	10	00	11			0

Exemplo: exercício de aula -> Passo 4 minimização lógica livre de risco lógico

Definir arquitetura: Huffman

	to+					
	Y ₀ Y ₁	00	01	11	10	Z
(3)	00	00	11	01	00	0
(1)	01	00	11	01	01	1
(2)	11	00	(11)	11	01	0
(X)	10	00	11			0

Exemplo: exercício de aula → Passo 4 minimização lógica livre de risco lógico

	tox					
	$Y_0 Y_1$	00	01	11	10	Z
(3)	00	(O)	11	01	(0 0)	0
(1)	01	00	11	01	01	1
(2)	11	00	(11)	11	01	0
(X)	10	00	11			0

Definir arquitetura: Huffman

Duas equações de próximo estado (Y0,Y1)

Uma equação de saída (Z)

Exemplo: exercício de aula ->

minimização lógica livre de risco lógico: equação Y0

	to_					
	Y ₀ Y ₁	00	01	11	10	Z
(3)	00	00	11	01	00	0
(1)	01	00	11	01	01	1
(2)	11	00	11	11	01	0
(X)	10	00	11			0

Yo Y1				
Y ₀ Y ₁	00	01	11	10
00	0	1	0	0
01	0	1	0	0
11	0 /	1	1	0
10	0	1		
·				-

$$Y_0(t+1)=\overline{X_0} X_1 + X_1 Y_{0(t)}$$

Exemplo: exercício de aula ->

minimização lógica livre de risco lógico: equação Y1

	to					
	Y ₀ Y ₁	00	01	11	10	Z
(3)	00	00	11	01	00	0
(1)	01	00	11	01	01	1
(2)	11	00	11	11	01	0
(X)	10	00	11			0

$$Y_1(t+1)=X_1 + X_0 Y_1(t)$$

Exemplo: exercício de aula ->

minimização lógica livre de risco lógico: equação Z

	to					
	Yo Y1	00	01	11	10	Z
(3)	00	00	11	01	00	Ο
(1)	01	00	11	01	01	1
(2)	11	00	11	11	01	0
(X)	10	00	11			0

Z=Y0 Y1

Exemplo: exercício de aula ->

Exemplo: exercício de aula → Modelo Mealy → ML livre de risco lógico

	X0 X1				
ESTADO	os \	00	01	11	10
	а	@\0	b\-		C/-
	b	a\-	(b)\0	d\-	-
	С	a\-		e\-	©/0
	d		b\-	@ /0	f\-
	е		b\-	(e\1	f\-
	f	a∖-		e\-	<u>f</u> \1

X0 X1 Estados	00	01	11	10
1	3\-	2\-	1\1	1\1
2	3/0	2\0	2\0	1\-
3	3\0	2\0	1\-	3\0

Exemplo: exercício de aula -> Modelo Mealy

	to+				
	Y ₀ Y ₁	00	01 1	1 10	Z
(3)	00	00/0	11 /0	01 /	00/0
(1)	01	00/0	11 /0	01)/1	01)/1
(2)	11	00/0	11/0	11)/0	01 /
(X)	10	00/0	11 /0		

Yo Yit				
Y ₀ Y ₁	00	01	11	10
00	0	1	0	0
01	0	1	0	0
11	0 /	1	1	0
10	0	1		
·				

$$Y_0(t+1)=\overline{X_0} X_1 + X_1 Y_0(t)$$

Exemplo: exercício de aula → Modelo Mealy

	to_				
	Y ₀ Y ₁	00	01 1	1 10	Z
(3)	00	00/0	11 /0	01 /	00/0
(1)	01	00/0	11 /0	01)/1	01/1
(2)	11	00/0	11/0	11)/0	01 /
(X)	10	00/0	11 /0		

to+				
Yo Y1	00	01	11	10
00	0	1	1	0
01	0	1	1	1
11	0	1	1	1
10	0	1	/	
·				

 $Y_1(t+1) = X_1 + X_0 Y_1(t)$

Exemplo: exercício de aula -> Modelo Mealy

	tot				
	Y_0 Y_1	00	01 1	1 10	Z
(3)	00	00/0	11 /0	01 /	00/0
(1)	01	00/0	11 /0	01)/1	01)/1
(2)	11	00/0	11/0	11)/0	01 /
(X)	10	00/0	11 /0		

to_				
Yo Y1	00	01	11	10
00	0	0		0
01	0	0	1	1
11	0	0	0	
10	0	0		

$$Z = X_0 \overline{Y_{0(t)}} Y_{1(t)}$$

Exemplo: exercício de aula -> Modelo Mealy

Arquitetura Standard RS → **Modelo Moore**

Arquitetura Standard RS → **Modelo Moore**

Regras de preenchimento→ FSET:

 $0 \rightarrow 0$ (igual)

0→1 (igual)

1→1 (dont'-care)

1→0 (parte com 1 é dont'-care)

Regras de preenchimento→ Freset:

0→0 (dont'-care)

0→1 (iparte com 0 é dont'-care e 1 é zero)

1→1 (tudo 0)

1→0 (parte com 1 é zero e parte com 0 é 1)

Arquitetura Standard RS → **Modelo Moore**

Regras de preenchimento >

FSET:

 $0 \rightarrow 0$ (igual)

0→1 (igual)

1→**1** (dont'-care)

1→0 (parte com 1 é dont'-care)

Regras de preenchimento >

YO YI	00	01	_11	10
0 0	0	/1	1	0
01	0	1	1	Х
11	0	1	X	X
10	0	1	- /	

tot	FSET-Y1= X1			
YO YI	00	0.1	11	10
0 0	0	/1 \	0	0
01	0	1	0	0
11	0	1	X	0
10	0	1		
F _{SET-Y0} = X0 X1				

to to	0.0	01	11	10	
00	1	0	0	X	
01	1	0	0	0	
11	1	0	0	0	
10	1	0			
FRESET V4- Y0 Y1					

な	Freset-Y1= $\overline{X0}$ $\overline{X1}$				
10 to to	00	01	11	10	
0 0	1	0	X	X	
01	1	0	χ	1	
11	1	0	0	1	
10	1	0		-	

もなっ				
Y0 Y1	00	01	11	10
0 0	8	11	01	00
0 1	00	11	01	01
11	00	11	11	01
10	00	11		

	_
FRESET-Y0=	X

FRESET:

0→0 (dont'-care)

0→1 (iparte com 0 é dont'-

care e 1 é zero)

1→1 (tudo 0)

1→0 (parte com 1 é zero e parte com 0 é 1)

Arquitetura Standard RS → **Modelo Moore**

YO YIZ	0.0	0 1	11	10
0 0	1	0	0	х
0 1	1	0	0	0
11	1	0	0	0
1 0	1	0		

Arquiteturas: Huffman x Standard RS

