Artificial Intelligence Project

Author: Nikhitha Saidugari

TABLE OF CONTENTS

Knowledge Representation and Automated Theorem Proving with PROVER9	1
Objective:	
Puzzle-Based Proof Solving:	
Approach:	
Puzzle 1	
Puzzle 1 Actual Prover9 Proof:	
Puzzle 2	6
Puzzle 2 Actual Prover9 Proof:	8
Summary	9

Knowledge Representation and Automated Theorem Proving with PROVER9

Objective

This project focuses on utilizing Prover9, an automated reasoning tool, to conduct formal proofs based on first-order logic (FOL) representations. The approach involves:

- 1. Formulating logical statements: Representing the clauses in first-order logic.
- 2. Clause conversion: Transforming logical sentences into clause form, applying Skolemization where necessary.
- 3. Automated proof verification: Employing Prover9 to perform automatic refutation proofs, verifying logical conclusions.

Puzzle-Based Proof Solving

Puzzle 1: Reasoning About Dogs

- 1. Dogs like bones.
- 2. Dogs eat everything they like.

- 3. Max is a dog.
- 4. (Conclusion) Max eats bones.

Puzzle 2: Logical Deduction on Birds and Their Habitats

- 1. Every bird sleeps in some tree.
- 2. Every loon is a bird, and every loon is aquatic.
- 3. Every tree in which any aquatic bird sleeps is beside some lake.
- 4. Anything that sleeps in anything that is beside any lake eats fish.
- 5. (Conclusion) Every loon eats fish.

Approach:

- 1. Represent the clauses in First-Order Logic (FOL):
 - o Identify predicates and constants.
 - o Represent relationships and implications using logical symbols.
- 2. Convert the logic sentences to Clause Form or Conjunctive Normal Form (CNF):
 - Eliminate implications.
 - Standardize variables.
 - o Skolemize (eliminate existential quantifiers).
 - o Convert to conjunctive normal form (CNF).
- 3. Use Prover9 for refutation:
 - o Input the clause forms as assumptions and negated goal.
 - o Analyze the Prover9 output for the proof.
- 4. Write the report:
 - o Include predicate form, clause form, assumptions, goal, and proof.

Puzzle 1

Problem Statement

- o Dogs like bones.
- o Dogs eat everything they like.
- o Max is a dog.
- o (Conclusion) Max eats bones.

FOL Representation:

Predicates:

- \circ Dog(x): x is a dog.
- \circ Likes(x, y) : x likes y.
- \circ Eats(x, y) : x eats y.
- o Bone(y): y is a bone.
- \circ x = Max : Max is an individual constant.
- 1. First Order Logic Statements:
 - 1. $\forall x (Dog(x) \rightarrow Likes(x, Bone))$
 - 2. $\forall x \ \forall y \ (Dog(x) \land Likes(x, y) \rightarrow Eats(x, y))$
 - 3. Dog(Max)
 - 4. Goal: Eats(Max, Bone)
- 2. Clause Form or Conjunctive Normal Form:
 - 1. $\neg Dog(x) \lor Likes(x, Bone)$
 - 2. $\neg Dog(x) \lor \neg Likes(x, y) \lor Eats(x, y)$
 - 3. Dog(Max)
 - 4. Goal: ¬Eats(Max, Bone)
- 3. Assumptions and Goal

Assumptions: The above clauses (1-3).

Goal: To derive a contradiction from the negation of the conclusion (¬Eats(Max, Bone)).

4. Prover9 Proof

Input File for Prover9:

- $-Dog(x) \mid Likes(x, bone).$
- $-Dog(x) \mid -Likes(x, y) \mid Eats(x, y).$

Dog(max).

Goal:

Eats(max, bone).

Expected Proof:

Prover9 will infer:

- 1. From clause 3, Max is a dog.
- 2. Using clause 1, since Max is a dog, Max likes bones.
- 3. Using clause 2, since Max is a dog and likes bones, Max eats bones.

The conclusion "Max eats bones" will be derived, leading to a contradiction when ¬Eats(Max, Bone) is assumed.

Puzzle 1 Actual Prover9 Proof

======================================
Prover9 (32) version Dec-2007, Dec 2007.
Process 80268 was started by saikr on Sai_ak,
Tue Dec 10 21:41:41 2024
The command was "/cygdrive/c/Program Files (x86)/Prover9-Mace4/bin-win32/prover9".
======================================
=======end of input ====================================
======================================
% Comments from original proof
% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 9.
% Level of proof is 3.
% Maximum clause weight is 0.
% Given clauses 0.
1 Eats(max,bone) # label(non_clause) # label(goal). [goal].
2 Dog(max). [assumption].
$3 - \text{Dog}(x) \mid \text{Likes}(x, \text{bone}).$ [assumption].
$4 - Dog(x) \mid -Likes(x,y) \mid Eats(x,y)$. [assumption].
5 -Likes(max,x) Eats(max,x). [resolve(2,a,4,a)].
6 -Eats(max,bone). [deny(1)].
7 -Likes(max,bone). [resolve(5,b,6,a)].
8 Likes(max,bone). [resolve(2,a,3,a)].
9 \$F. [resolve(7,a,8,a)].
1 6 6
======================================

Puzzle 2

Problem Statement

- o Every bird sleeps in some tree.
- o Every loon is a bird, and every loon is aquatic.
- o Every tree in which any aquatic bird sleeps is beside some lake.
- o Anything that sleeps in anything that is beside any lake eats fish.
- o (Conclusion) Every loon eats fish.

FOL Representation

Predicates:

- \circ Bird(x): x is a bird.
- \circ Loon(x): x is a loon.
- \circ Aquatic(x): x is aquatic.
- o Tree(y): y is a tree.
- o SleepsIn(x, y): x sleeps in y.
- \circ Beside(y, z): y is beside z.
- \circ Lake(z): z is a lake.
- \circ Eats(x, y): x eats y.
- \circ Fish(y): y is fish.
- 1. First Order Logic Statements:
 - 1. $\forall x (Bird(x) \rightarrow \exists y (Tree(y) \land SleepsIn(x, y)))$
 - 2. $\forall x (Loon(x) \rightarrow Bird(x) \land Aquatic(x))$
 - 3. $\forall x \ \forall y \ (Aquatic(x) \land SleepsIn(x, y) \rightarrow \exists z \ (Lake(z) \land Beside(y, z)))$
 - 4. $\forall x \forall y \forall z (SleepsIn(x, y) \land Beside(y, z) \land Lake(z) \rightarrow Eats(x, Fish))$
 - 5. Goal: $\forall x (Loon(x) \rightarrow Eats(x, Fish))$
- 2. Clause Form or Conjunctive Normal Form:
 - 1. $\neg Bird(x) \lor Tree(f(x))$
 - 2. $\neg Bird(x) \lor SleepsIn(x, f(x))$
 - 3. $\neg Loon(x) \lor Bird(x)$
 - 4. $\neg Loon(x) \lor Aquatic(x)$
 - 5. \neg Aquatic(x) $\lor \neg$ SleepsIn(x, y) \lor Lake(f(x, y))
 - 6. $\neg Aquatic(x) \lor \neg SleepsIn(x, y) \lor Beside(y, f(x, y))$
 - 7. \neg SleepsIn(x, y) $\lor \neg$ Beside(y, z) $\lor \neg$ Lake(z) \lor Eats(x, Fish)
 - 8. $\neg Loon(x) \lor Eats(x, Fish)$
- 3. Assumptions and Goal

Assumptions: The above clauses (1-7).

Goal: To derive clause $8 (\neg Loon(x) \lor Eats(x, Fish))$.

4. Prover9 Proof

Input File for Prover9:

- -Bird(x) | Tree(f1(x)).
- $-Bird(x) \mid SleepsIn(x, f1(x)).$
- $-Loon(x) \mid Bird(x)$.
- $-Loon(x) \mid Aquatic(x)$.
- -Aquatic(x) | -SleepsIn(x, y) | Lake(f2(x, y)).
- -Aquatic(x) | -SleepsIn(x, y) | Beside(y, f2(x, y)).

-SleepsIn(x, y) \mid -Beside(y, z) \mid -Lake(z) \mid Eats(x, fish).

Goal:

-Loon(x) | Eats(x, fish).

Expected Proof:

Prover9 will:

- 1. Use clause 3 to infer that loons are birds.
- 2. Use clauses 1 and 2 to show that every bird (and thus every loon) sleeps in some tree.
- 3. Use clauses 5 and 6 to show that every tree in which an aquatic bird sleeps is beside some lake.
- 4. Use clause 7 to conclude that anything sleeping beside a lake eats fish.
- 5. Derive the conclusion that every loon eats fish.

Puzzle 2 Actual Prover9 Proof

======================================
Prover9 (32) version Dec-2007, Dec 2007.
Process 82568 was started by saikr on Sai_ak,
Tue Dec 10 21:44:22 2024
The command was "/cygdrive/c/Program Files (x86)/Prover9-Mace4/bin-win32/prover9".
======================================
======end of input ====================================
======================================
% Comments from original proof
% Proof 1 at 0.00 (+ 0.01) seconds.
% Length of proof is 20.
% Level of proof is 6.
% Maximum clause weight is 0.
% Given clauses 0.
1 -Loon(x) Eats(x,fish) # label(non_clause) # label(goal). [goal].
$2 - Loon(x) \mid Bird(x)$. [assumption].
$4 - Bird(x) \mid SleepsIn(x,f1(x))$. [assumption].
5 Loon(c1). [deny(1)].
6 -Loon(x) Aquatic(x). [assumption].
8 -Loon(x) SleepsIn(x,f1(x)). [resolve(2,b,4,a)].
9 Aquatic(c1). [resolve(5,a,6,a)].
10 -Aquatic(x) -SleepsIn(x,y) Lake($f2(x,y)$). [assumption].
11 -Aquatic(x) -SleepsIn(x,y) Beside(y, $f2(x,y)$). [assumption].
12 SleepsIn(c1,f1(c1)). [resolve($8,a,5,a$)].
13 -SleepsIn(x,y) -Beside(y,z) -Lake(z) Eats(x,fish). [assumption].
14 -SleepsIn($c1,x$) Lake($f2(c1,x)$). [resolve($9,a,10,a$)].
15 -SleepsIn(c1,x) Beside(x,f2(c1,x)). [resolve(9,a,11,a)].
16 -Beside($f1(c1),x$) -Lake(x) Eats($c1,fish$). [resolve($12,a,13,a$)].
17 -Eats(c1,fish). [deny(1)].
18 -Beside($f1(c1),x$) -Lake(x). [resolve(16,c,17,a)].
19 Lake(f2(c1,f1(c1))). [resolve(14,a,12,a)].
20 -Beside(f1(c1),f2(c1,f1(c1))). [resolve(18,b,19,a)].
21 Beside(f1(c1),f2(c1,f1(c1))). [resolve(15,a,12,a)].
22 \$F. [resolve(20,a,21,a)].
======================================

Summary

Both puzzles can be solved with Prover9 by following these steps:

- Express the problem using predicate logic.
- Transform the predicates into their equivalent clause form.
- Use the assumptions and the negated conclusion to run the proof in Prover9. Deriving a contradiction validates the conclusion.