# How do FPGAs work?

- Basic CMOS devices
- Building gates from transistors
- Building wiring from transistors

#### **CMOS** Transistors

All circuit elements built from transistors of two **C**omplementary types



#### **Transistor Switches**

TRUE = 1 = 2.3 to 3 Volts FALSE = 0 = 0 to 0.7 Volts

n-type

1.6v is the "noise margin"



p-type

### How do we make a better switch

- Transmission gate or pass gate
  - Use a switch of each type in parallel



Alternative symbols for pass gates







### Muliplexors



| <u>S</u> | Α | В | F |
|----------|---|---|---|
| 0        | 0 | X | 0 |
| 0        | 1 | X | 1 |
| 1        | X | 0 | 0 |
| 1        | X | 1 | 1 |

- How do we build a 2:1 Mux?
  - Using logic gates



Using pass gates (output ties two signals together?)



## Tri-state logic

- Multiple outputs can be tied to one wire, but only if they are guaranteed to never conflict (driven simultaneously to 0 and 1)
- The "Z" state for a signal when nothing is driving it and it is just left "floating"
- Something has to "pull it up" or "pull it down" to set a value
  - This can be gate outputs (but have to ensure they never conflict)
  - Or it can be pass outputs (but we have to ensure they never conflict)
- The difference is that pass gates can just "disconnect" by turning off – gates can't do that

## Tri-state gates

- The third value
  - logic values: "0", "1"
  - don't care not a value: "X" (must be 0 or 1 in real circuit!)
  - third value or state: "Z" floating, no connection
- Tri-state gates
  - additional input output enable (OE)
  - output values are 0, 1, and Z
  - when OE is high, the gate functions normally
  - when OE is low, the gate is disconnected from wire at output
  - allows more than one gate to be connected to the same output wire
    - as long as only one has its output enabled at any one time



| In | OE | Out |
|----|----|-----|
| X  | 0  | Z   |
| 0  | 1  | 0   |
| 1  | 1  | 1   |



In

OE

Out

#### Where is tristate used?

- We just saw one example with a multiplexer
- Larger scale multiplexer is when we can connect many more signals onto a "bus" – a group of wires that are logically related – e.g., the output of a register such as number
- Only one pass gate can be enabled at a time
- A typical "bus" driver



Autumn 2014

#### **Basic Gates**

INV





NAND

$$A = C$$



NOR



#### More complex or compound gates

- A complex boolean function can be built from basic gates (inverter, NAND, NOR)
- Alternatively, for example, F = A'(B' + C') = (A + BC)' can be realized this way:



# Open-collector gates and wired-AND

- Open collector: another way to connect gate outputs to the same wire
  - gate only has the ability to pull its output low
  - it cannot actively drive the wire high (default pulled high through resistor)
- Wired-AND can be implemented with open collector logic
  - if A and B are "1", output is actively pulled low
  - if C and D are "1", output is actively pulled low
  - □ if one gate output is low and the other high, then low wins
  - if both gate outputs are "1", the wire value "floats", pulled high by resistor
    - low to high transition usually slower than it would have been with a gate pulling high
  - hence, the two NAND functions are ANDed together



#### Static D FF using pass gates

- A pair of inverters can hold a value, static memory
- A value can be read, but how written?





# Dynamic D FF

- Remove feedback loop
- Must guarantee clock is frequent enough that charges stored on inputs of inverters does NOT lead away



# D FF using logic gates



#### How are FPGAs built?

- Logic lookup tables multiplexers (gates or pass gates)
- D-FF static memory



 Programming – static memory that can be loaded with bit patterns that control inputs to LUTs and control wire connections