## **Titanic Dataset**

15\_Titanic Dataset1\_22june23

```
In [124]: import pandas as pd
In [125]: data=pd.read_csv("/home/placement/Desktop/saimohan data/csv files/Titanic Dataset.csv")
In [126]: import warnings
    warnings.filterwarnings("ignore")
```

In [127]: data

#we find the rows X columns and total data

Out[127]:

|     | Passengerld | Survived | Pclass | Name                                              | Sex    | Age  | SibSp | Parch | Ticket              | Fare    | Cabin | Embarked |
|-----|-------------|----------|--------|---------------------------------------------------|--------|------|-------|-------|---------------------|---------|-------|----------|
| 0   | 1           | 0        | 3      | Braund, Mr. Owen Harris                           | male   | 22.0 | 1     | 0     | A/5 21171           | 7.2500  | NaN   | S        |
| 1   | 2           | 1        | 1      | Cumings, Mrs. John Bradley (Florence<br>Briggs Th | female | 38.0 | 1     | 0     | PC 17599            | 71.2833 | C85   | С        |
| 2   | 3           | 1        | 3      | Heikkinen, Miss. Laina                            | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 7.9250  | NaN   | S        |
| 3   | 4           | 1        | 1      | Futrelle, Mrs. Jacques Heath (Lily May Peel)      | female | 35.0 | 1     | 0     | 113803              | 53.1000 | C123  | S        |
| 4   | 5           | 0        | 3      | Allen, Mr. William Henry                          | male   | 35.0 | 0     | 0     | 373450              | 8.0500  | NaN   | S        |
|     |             |          |        |                                                   |        |      |       |       |                     |         |       |          |
| 886 | 887         | 0        | 2      | Montvila, Rev. Juozas                             | male   | 27.0 | 0     | 0     | 211536              | 13.0000 | NaN   | S        |
| 887 | 888         | 1        | 1      | Graham, Miss. Margaret Edith                      | female | 19.0 | 0     | 0     | 112053              | 30.0000 | B42   | S        |
| 888 | 889         | 0        | 3      | Johnston, Miss. Catherine Helen<br>"Carrie"       | female | NaN  | 1     | 2     | W./C. 6607          | 23.4500 | NaN   | S        |
| 889 | 890         | 1        | 1      | Behr, Mr. Karl Howell                             | male   | 26.0 | 0     | 0     | 111369              | 30.0000 | C148  | С        |
| 890 | 891         | 0        | 3      | Dooley, Mr. Patrick                               | male   | 32.0 | 0     | 0     | 370376              | 7.7500  | NaN   | Q        |

891 rows × 12 columns

In [128]: #finding the count, mean, std, min, max etc
data.describe()

## Out[128]:

|       | Passengerld | Survived   | Pclass     | Age        | SibSp      | Parch      | Fare       |
|-------|-------------|------------|------------|------------|------------|------------|------------|
| count | 891.000000  | 891.000000 | 891.000000 | 714.000000 | 891.000000 | 891.000000 | 891.000000 |
| mean  | 446.000000  | 0.383838   | 2.308642   | 29.699118  | 0.523008   | 0.381594   | 32.204208  |
| std   | 257.353842  | 0.486592   | 0.836071   | 14.526497  | 1.102743   | 0.806057   | 49.693429  |
| min   | 1.000000    | 0.000000   | 1.000000   | 0.420000   | 0.000000   | 0.000000   | 0.000000   |
| 25%   | 223.500000  | 0.000000   | 2.000000   | 20.125000  | 0.000000   | 0.000000   | 7.910400   |
| 50%   | 446.000000  | 0.000000   | 3.000000   | 28.000000  | 0.000000   | 0.000000   | 14.454200  |
| 75%   | 668.500000  | 1.000000   | 3.000000   | 38.000000  | 1.000000   | 0.000000   | 31.000000  |
| max   | 891.000000  | 1.000000   | 3.000000   | 80.000000  | 8.000000   | 6.000000   | 512.329200 |

```
In [129]: #finding the datatype in the titanic data
          data.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 891 entries, 0 to 890
          Data columns (total 12 columns):
               Column
                            Non-Null Count Dtype
                                             ----
               PassengerId 891 non-null
                                             int64
           1
               Survived
                             891 non-null
                                             int64
               Pclass
                             891 non-null
                                             int64
           3
                             891 non-null
                                             obiect
               Name
           4
                             891 non-null
                                             obiect
               Sex
               Age
                             714 non-null
                                             float64
                                             int64
           6
               SibSp
                             891 non-null
                             891 non-null
                                             int64
               Parch
                             891 non-null
                                             obiect
               Ticket
                             891 non-null
                                             float64
           9
               Fare
           10
              Cabin
                             204 non-null
                                             obiect
           11 Embarked
                             889 non-null
                                             obiect
          dtypes: float64(2), int64(5), object(5)
          memory usage: 83.7+ KB
In [130]: #finding the only sum of the columns in the data
          data.isna().sum()
Out[130]: PassengerId
                            0
          Survived
                            0
          Pclass
                            0
                            0
          Name
                            0
          Sex
                         177
          Age
          SibSp
                            0
          Parch
                            0
                            0
          Ticket
          Fare
                            0
                         687
          Cabin
                            2
          Embarked
          dtype: int64
```

In [131]: data.head(5)
#we can find the top of the data

Out[131]:

| : | Passengerld | Survived | Pclass | Name                                              | Sex    | Age  | SibSp | Parch | Ticket              | Fare    | Cabin | Embarked |
|---|-------------|----------|--------|---------------------------------------------------|--------|------|-------|-------|---------------------|---------|-------|----------|
|   | 0 1         | 0        | 3      | Braund, Mr. Owen Harris                           | male   | 22.0 | 1     | 0     | A/5 21171           | 7.2500  | NaN   | S        |
|   | <b>1</b> 2  | 1        | 1      | Cumings, Mrs. John Bradley (Florence<br>Briggs Th | female | 38.0 | 1     | 0     | PC 17599            | 71.2833 | C85   | С        |
|   | 2 3         | 1        | 3      | Heikkinen, Miss. Laina                            | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 7.9250  | NaN   | S        |
|   | 3 4         | 1        | 1      | Futrelle, Mrs. Jacques Heath (Lily May<br>Peel)   | female | 35.0 | 1     | 0     | 113803              | 53.1000 | C123  | S        |
|   | 4 5         | 0        | 3      | Allen, Mr. William Henry                          | male   | 35.0 | 0     | 0     | 373450              | 8.0500  | NaN   | S        |

In [132]: data.tail(5)
#we can find the ending of the data

Out[132]:

|     | Passengerld | Survived | Pclass | Name                                     | Sex    | Age  | SibSp | Parch | Ticket     | Fare  | Cabin | Embarked |
|-----|-------------|----------|--------|------------------------------------------|--------|------|-------|-------|------------|-------|-------|----------|
| 886 | 887         | 0        | 2      | Montvila, Rev. Juozas                    | male   | 27.0 | 0     | 0     | 211536     | 13.00 | NaN   | S        |
| 887 | 888         | 1        | 1      | Graham, Miss. Margaret Edith             | female | 19.0 | 0     | 0     | 112053     | 30.00 | B42   | S        |
| 888 | 889         | 0        | 3      | Johnston, Miss. Catherine Helen "Carrie" | female | NaN  | 1     | 2     | W./C. 6607 | 23.45 | NaN   | S        |
| 889 | 890         | 1        | 1      | Behr, Mr. Karl Howell                    | male   | 26.0 | 0     | 0     | 111369     | 30.00 | C148  | С        |
| 890 | 891         | 0        | 3      | Dooley, Mr. Patrick                      | male   | 32.0 | 0     | 0     | 370376     | 7.75  | NaN   | Q        |

In [133]: data['Pclass'].unique()

Out[133]: array([3, 1, 2])

```
In [134]: data['Age'].unique()
Out[134]: array([22.
                   , 38. , 26. , 35. ,
                                           nan, 54. , 2. , 27. , 14. ,
                    . 58.
                          , 20.
                                 , 39. , 55. , 31.
                                                    , 34.
                                                           , 15.
                          , 40. , 66. , 42. , 21.
                                                    , 18.
                          , 65. , 28.5 , 5. , 11.
                                                     , 45.
                                                           , 17.
                          , 0.83, 30. , 33. , 23. , 24.
                71. , 37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                51. , 55.5 , 40.5 , 44. , 1. , 61. , 56.
                                                          , 50.
                45.5 , 20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43. ,
                60. , 10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. ,
                70. , 24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. ])
In [135]: data['SibSp'].unique()
Out[135]: array([1, 0, 3, 4, 2, 5, 8])
In [136]: #now i want to analize the
In [137]: data1=data.drop(['PassengerId','Cabin','Name','Ticket','SibSp','Parch'],axis=1)
```

0ut

```
In [138]: data1
```

| [120]. |     |          |        |        |      |         |          |
|--------|-----|----------|--------|--------|------|---------|----------|
| [138]: |     | Survived | Pclass | Sex    | Age  | Fare    | Embarked |
|        | 0   | 0        | 3      | male   | 22.0 | 7.2500  | S        |
|        | 1   | 1        | 1      | female | 38.0 | 71.2833 | С        |
|        | 2   | 1        | 3      | female | 26.0 | 7.9250  | S        |
|        | 3   | 1        | 1      | female | 35.0 | 53.1000 | S        |
|        | 4   | 0        | 3      | male   | 35.0 | 8.0500  | S        |
|        |     |          |        |        |      |         |          |
|        | 886 | 0        | 2      | male   | 27.0 | 13.0000 | S        |
|        | 887 | 1        | 1      | female | 19.0 | 30.0000 | S        |
|        | 888 | 0        | 3      | female | NaN  | 23.4500 | S        |
|        | 889 | 1        | 1      | male   | 26.0 | 30.0000 | С        |
|        | 890 | 0        | 3      | male   | 32.0 | 7.7500  | Q        |

891 rows × 6 columns

```
In [139]: list(data1)
Out[139]: ['Survived', 'Pclass', 'Sex', 'Age', 'Fare', 'Embarked']
In [140]: data1['Sex']=data1['Sex'].map({'male':1, 'female':0})
data1['Pclass'].unique()
Out[140]: array([3, 1, 2])
```

In [141]: data1

Out[141]:

|     | Survived | Pclass | Sex | Age  | Fare    | Embarked |
|-----|----------|--------|-----|------|---------|----------|
| 0   | 0        | 3      | 1   | 22.0 | 7.2500  | S        |
| 1   | 1        | 1      | 0   | 38.0 | 71.2833 | С        |
| 2   | 1        | 3      | 0   | 26.0 | 7.9250  | S        |
| 3   | 1        | 1      | 0   | 35.0 | 53.1000 | S        |
| 4   | 0        | 3      | 1   | 35.0 | 8.0500  | S        |
|     |          |        |     |      |         |          |
| 886 | 0        | 2      | 1   | 27.0 | 13.0000 | S        |
| 887 | 1        | 1      | 0   | 19.0 | 30.0000 | S        |
| 888 | 0        | 3      | 0   | NaN  | 23.4500 | S        |
| 889 | 1        | 1      | 1   | 26.0 | 30.0000 | С        |
| 890 | 0        | 3      | 1   | 32.0 | 7.7500  | Q        |

891 rows × 6 columns

In [142]: data2=data1.fillna(data1.median)

In [143]: data2

Out[143]:

|     | Survived | Pclass | Sex | Age                                                                    | Fare    | Embarked |
|-----|----------|--------|-----|------------------------------------------------------------------------|---------|----------|
| 0   | 0        | 3      | 1   | 22.0                                                                   | 7.2500  | S        |
| 1   | 1        | 1      | 0   | 38.0                                                                   | 71.2833 | С        |
| 2   | 1        | 3      | 0   | 26.0                                                                   | 7.9250  | S        |
| 3   | 1        | 1      | 0   | 35.0                                                                   | 53.1000 | S        |
| 4   | 0        | 3      | 1   | 35.0                                                                   | 8.0500  | S        |
|     |          |        |     |                                                                        |         |          |
| 886 | 0        | 2      | 1   | 27.0                                                                   | 13.0000 | S        |
| 887 | 1        | 1      | 0   | 19.0                                                                   | 30.0000 | S        |
| 888 | 0        | 3      | 0   | $<\!\!\!\text{bound method NDFrame}.\_\text{add\_numeric\_operations}$ | 23.4500 | S        |
| 889 | 1        | 1      | 1   | 26.0                                                                   | 30.0000 | С        |
| 890 | 0        | 3      | 1   | 32.0                                                                   | 7.7500  | Q        |

891 rows × 6 columns



Out[144]: <Axes: >







```
In [146]: plt.hist(data1['Pclass'])
Out[146]: (array([216., 0., 0.,
                                   0., 0., 184., 0., 0., 0., 491.]),
          array([1., 1.2, 1.4, 1.6, 1.8, 2., 2.2, 2.4, 2.6, 2.8, 3.]),
          <BarContainer object of 10 artists>)
          500
          400
          300
          200
          100 -
```

1.75

2.00

2.25

2.50

2.75

3.00

1.00

1.25

1.50



```
In [148]: plt.hist(data1['Age'])
Out[148]: (array([ 54., 46., 177., 169., 118., 70., 45., 24.,
                                                                  9.,
                                                                        2.]),
           array([ 0.42 , 8.378, 16.336, 24.294, 32.252, 40.21 , 48.168, 56.126,
                 64.084, 72.042, 80. ]),
           <BarContainer object of 10 artists>)
           175
           150
           125
           100
            75
            50
```

20

30

40

50

70

60

80

10

25 -

```
In [149]: plt.hist(data1['Fare'])
```

Out[149]: (array([732., 106., 31., 2., 11., 6., 0., 0., 0., 3.]), array([ 0. , 51.23292, 102.46584, 153.69876, 204.93168, 256.1646, 307.39752, 358.63044, 409.86336, 461.09628, 512.3292 ]), <BarContainer object of 10 artists>)



In [150]: # some time string and number will be same then we have to replace all the null values into 35 #data1.fillna(35,inplace=True)

```
In [151]: data1.isna().sum()
Out[151]: Survived
                             0
            Pclass
                             0
            Sex
                             0
            Age
                           177
            Fare
                             0
            Embarked
                             2
            dtype: int64
In [152]:
            data1.describe()
Out[152]:
                     Survived
                                  Pclass
                                                Sex
                                                                     Fare
                                                          Age
                    891.000000 891.000000
                                         891.000000
                                                    714.000000
             count
                                                               891.000000
                      0.383838
                                2.308642
                                           0.647587
                                                     29.699118
                                                                32.204208
             mean
                      0.486592
                                0.836071
                                           0.477990
                                                     14.526497
                                                                49.693429
               std
                                                      0.420000
               min
                      0.000000
                                1.000000
                                           0.000000
                                                                 0.000000
              25%
                      0.000000
                                2.000000
                                           0.000000
                                                     20.125000
                                                                 7.910400
              50%
                      0.000000
                                3.000000
                                           1.000000
                                                     28.000000
                                                                14.454200
              75%
                      1.000000
                                3.000000
                                                     38.000000
                                                                31.000000
                                           1.000000
                      1.000000
                                3.000000
                                           1.000000
                                                     80.000000
                                                               512.329200
              max
In [153]: | data1['Age'].unique()
            #the null values can be replaced by 35
            data1.fillna(35,inplace=True)
```

```
In [154]:
         data1['Age'].unique()
Out[154]: array([22. , 38. , 26.
                                 , 35.
                                        , 54. , 2. , 27. , 14.
                          , 39. , 55.
                                       , 31. , 34.
                                                     . 15.
                58. . 20.
                          , 66. , 42.
                                       , 21.
                                              , 18.
                                                     , 3.
                                                           , 7.
                19. , 40.
                29. , 65. , 28.5 , 5.
                                       , 11.
                                              , 45.
                                                     , 17.
                                                           , 32.
                25. , 0.83, 30. , 33. , 23. , 24.
                                                     , 46.
                                                            , 59.
                37. , 47. , 14.5 , 70.5 , 32.5 , 12.
                                                     , 9.
                55.5 , 40.5 , 44. , 1. , 61. , 56. , 50. , 36.
                20.5 , 62. , 41. , 52. , 63. , 23.5 , 0.92, 43.
                10. , 64. , 13. , 48. , 0.75, 53. , 57. , 80. , 70. ,
                24.5 , 6. , 0.67, 30.5 , 0.42, 34.5 , 74. 1)
In [155]: #passenger class mapped into the numbers
In [156]: | data1["Pclass"]=data1["Pclass"].map({1:'F',2:'S',3:'Third'})
In [157]: data1.isna().sum()
Out[157]: Survived
         Pclass
         Sex
         Age
         Fare
         Embarked
         dtype: int64
```

In [158]: data1

Out[158]:

|     | Survived | Pclass | Sex | Age  | Fare    | Embarked |
|-----|----------|--------|-----|------|---------|----------|
| 0   | 0        | Third  | 1   | 22.0 | 7.2500  | S        |
| 1   | 1        | F      | 0   | 38.0 | 71.2833 | С        |
| 2   | 1        | Third  | 0   | 26.0 | 7.9250  | S        |
| 3   | 1        | F      | 0   | 35.0 | 53.1000 | S        |
| 4   | 0        | Third  | 1   | 35.0 | 8.0500  | S        |
|     |          |        |     |      |         |          |
| 886 | 0        | S      | 1   | 27.0 | 13.0000 | S        |
| 887 | 1        | F      | 0   | 19.0 | 30.0000 | S        |
| 888 | 0        | Third  | 0   | 35.0 | 23.4500 | S        |
| 889 | 1        | F      | 1   | 26.0 | 30.0000 | С        |
| 890 | 0        | Third  | 1   | 32.0 | 7.7500  | Q        |

891 rows × 6 columns

```
In [159]: data1=pd.get_dummies(data1)
```

```
In [160]: data1.shape
```

Out[160]: (891, 11)

In [161]: data1.head(500)

Out[161]:

|     | Survived | Sex | Age  | Fare     | Pclass_F | Pclass_S | Pclass_Third | Embarked_35 | ${\bf Embarked\_C}$ | Embarked_Q | Embarked_S |
|-----|----------|-----|------|----------|----------|----------|--------------|-------------|---------------------|------------|------------|
| 0   | 0        | 1   | 22.0 | 7.2500   | 0        | 0        | 1            | 0           | 0                   | 0          | 1          |
| 1   | 1        | 0   | 38.0 | 71.2833  | 1        | 0        | 0            | 0           | 1                   | 0          | 0          |
| 2   | 1        | 0   | 26.0 | 7.9250   | 0        | 0        | 1            | 0           | 0                   | 0          | 1          |
| 3   | 1        | 0   | 35.0 | 53.1000  | 1        | 0        | 0            | 0           | 0                   | 0          | 1          |
| 4   | 0        | 1   | 35.0 | 8.0500   | 0        | 0        | 1            | 0           | 0                   | 0          | 1          |
|     |          |     |      |          |          |          |              |             |                     | •••        |            |
| 495 | 0        | 1   | 35.0 | 14.4583  | 0        | 0        | 1            | 0           | 1                   | 0          | 0          |
| 496 | 1        | 0   | 54.0 | 78.2667  | 1        | 0        | 0            | 0           | 1                   | 0          | 0          |
| 497 | 0        | 1   | 35.0 | 15.1000  | 0        | 0        | 1            | 0           | 0                   | 0          | 1          |
| 498 | 0        | 0   | 25.0 | 151.5500 | 1        | 0        | 0            | 0           | 0                   | 0          | 1          |
| 499 | 0        | 1   | 24.0 | 7.7958   | 0        | 0        | 1            | 0           | 0                   | 0          | 1          |

500 rows × 11 columns

Out[162]:

| • |              | Survived  | Sex       | Age       | Fare      | Pclass_F  | Pclass_S  | Pclass_Third | Embarked_35 | Embarked_C | Embarked_Q | Embarked |
|---|--------------|-----------|-----------|-----------|-----------|-----------|-----------|--------------|-------------|------------|------------|----------|
| - | Survived     | 1.000000  | -0.543351 | -0.083713 | 0.257307  | 0.285904  | 0.093349  | -0.322308    | 0.060095    | 0.168240   | 0.003650   | -0.1556  |
|   | Sex          | -0.543351 | 1.000000  | 0.091930  | -0.182333 | -0.098013 | -0.064746 | 0.137143     | -0.064296   | -0.082853  | -0.074115  | 0.1257   |
|   | Age          | -0.083713 | 0.091930  | 1.000000  | 0.074199  | 0.302149  | -0.022021 | -0.242412    | 0.069343    | 0.036953   | 0.040528   | -0.0650  |
|   | Fare         | 0.257307  | -0.182333 | 0.074199  | 1.000000  | 0.591711  | -0.118557 | -0.413333    | 0.045646    | 0.269335   | -0.117216  | -0.1666  |
|   | Pclass_F     | 0.285904  | -0.098013 | 0.302149  | 0.591711  | 1.000000  | -0.288585 | -0.626738    | 0.083847    | 0.296423   | -0.155342  | -0.1703  |
|   | Pclass_S     | 0.093349  | -0.064746 | -0.022021 | -0.118557 | -0.288585 | 1.000000  | -0.565210    | -0.024197   | -0.125416  | -0.127301  | 0.1920   |
|   | Pclass_Third | -0.322308 | 0.137143  | -0.242412 | -0.413333 | -0.626738 | -0.565210 | 1.000000     | -0.052550   | -0.153329  | 0.237449   | -0.0095  |
|   | Embarked_35  | 0.060095  | -0.064296 | 0.069343  | 0.045646  | 0.083847  | -0.024197 | -0.052550    | 1.000000    | -0.022864  | -0.014588  | -0.0765  |
|   | Embarked_C   | 0.168240  | -0.082853 | 0.036953  | 0.269335  | 0.296423  | -0.125416 | -0.153329    | -0.022864   | 1.000000   | -0.148258  | -0.7783  |
|   | Embarked_Q   | 0.003650  | -0.074115 | 0.040528  | -0.117216 | -0.155342 | -0.127301 | 0.237449     | -0.014588   | -0.148258  | 1.000000   | -0.4966  |
|   | Embarked_S   | -0.155660 | 0.125722  | -0.065062 | -0.166603 | -0.170379 | 0.192061  | -0.009511    | -0.076588   | -0.778359  | -0.496624  | 1.0000   |

```
In [163]: #finding heat map
import seaborn as sns
sns.heatmap(cor,vmax=1,vmin=-1,annot=True,linewidths=.5,cmap='bwr')
```





```
In [164]: ######
          data.groupby('Survived').count()
Out[164]:
                   Passengerld Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
           Survived
                 0
                         549
                               549
                                     549 549 424
                                                   549
                                                         549
                                                               549
                                                                   549
                                                                          68
                                                                                  549
                 1
                         342
                                                                                  340
                               342
                                     342 342 290
                                                   342
                                                         342
                                                               342
                                                                    342
                                                                         136
In [165]: #which the parameter is predected values can be removed from the data file
          #1) we copied the data into another data("y")
          #2) later we can removed those file from main data set
          v=data1['Survived']
          x=data1.drop('Survived',axis=1)
In [166]: #i am calling function to split
          #split enter data into ->67% traning , ->33% testing
          from sklearn.model selection import train test split
          x train,x test,y train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
```

```
In [167]: #in logistic we predicted 1 Or 2 only survival or not
         from sklearn.linear model import LogisticRegression
         classifier=LogisticRegression()
         classifier.fit(x train,y train)
Out[167]: LogisticRegression()
         In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
In [168]: y pred=classifier.predict(x test)
In [169]: y_pred
Out[169]: array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1,
                0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,
                0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
                0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
                0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,
                1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,
                0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,
                0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
                1, 0, 0, 0, 0, 0, 1, 1, 0])
In [170]: from sklearn.metrics import confusion matrix
          confusion matrix(y test,y pred)
Out[170]: array([[155, 20],
                [ 37, 83]])
```

|           | <pre>#effecency from sklearn.metrics import accuracy_score accuracy_score(y_test,y_pred)</pre> |
|-----------|------------------------------------------------------------------------------------------------|
| Out[171]: | 0.8067796610169492                                                                             |
| In [ ]:   |                                                                                                |
| In [ ]:   |                                                                                                |