Année Universitaire 2014/2013

Université Sultan Moulay Slimane FST de Béni Mellal Département de Mathématiques

Série N°1

MIPC : Algèbre

Exercice 1:

Ecrire la négation des assertions suivantes :

- 1) Toutes les voitures rapides sont rouges.
- 2) Pour tout $\varepsilon \geq 0$, il existe $q \in Q^*$ tel que $0 \leq q \leq \varepsilon$.
- 3) $\forall P \land Q$, $\forall P \lor Q$, $P \lor (Q \land R)$, $P \land (Q \land R)$ $P \Rightarrow 7Q, P \Rightarrow 0.$

Exercice 2:

Montrer que les assertions $P \land \exists Q \text{ et } \exists (P \Rightarrow Q) \text{ sont équivalentes.}$

Exercice 3:

- 1) En utilisant un raisonnement par contraposition, montrer que si p^2 est pair alors p est pair, $p \in IN$.
- 2) En utilisant un raisonnement par l'absurde, montrer que $\sqrt{2} \notin Q$.

Exercice 4:

Démontrer par récurrence :

1)
$$\forall n \in IN^*$$
, $\sum_{p=1}^n \frac{1}{p(p+1)} = \frac{n}{n+1}$

2)
$$\forall n \in IN: 1+2^2+3^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$$
.

Exercice 5:

Soit $f: E \to F$ une application,

A, B deux parties de E et C, D deux parties de F.

Montrer les propriétés suivantes.

- $A \subset B \Rightarrow f(A) \subset f(B)$. - $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- $-f(A \cup B) = f(A) \cup f(B).$ $-f(A \cap B) \subset f(A) \cap f(B).$ $-f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D).$ $-f^{-1}(\overline{C}) = \overline{f^{-1}(C)} \text{ où } \overline{C} = \text{Complémentaire de } C \text{ dans } F.$ $-C \subset D \Rightarrow f^{-1}(C) \subset f^{-1}(D).$ $-A \subset f^{-1}(f(A)).$

Exercice 6:

Montrer si les applications suivantes sont injectives ? surjectives ?

$$f: IR \to IR$$
 , $g: IR^2 \to IR^2$, $h: IN \times IN \to IN$
 $x \mapsto x^3 - x$ $(x,y) \mapsto (x+y,x-y)$ $(n,m) \mapsto 2^n 3^m$

Exercice 7:

Soit
$$f: E \to F$$
 une application, $A \subset E$ et $B \subset F$. Montrer les propriétés suivantes :
1) $f(f^{-1}(B)) = B \cap f(E)$.
3) f est injective $\Leftrightarrow f^{-1}(f(A)) = A$.

2)
$$f$$
 est surjective $\Leftrightarrow f(f^{-1}(B)) = B$ 4) f est bijective $\Leftrightarrow f(\overline{A}) = \overline{f(A)}$.

Exercice 8:

Dans IR^2 , on définit la relation R par $(x,y)R(x',y') \Leftrightarrow y=y'$. Montrer que R est une relation d'équivalence.

TDNº1: Algébre I

Exercice 1:

1) Il existe une voiture rapide, qui n'est pas rouge

Il existe & 0, pour tout q & Q 1/0>9>E

3,7(7P/Q) = 7(7P) v70 = PV7Q

*7(7PVP) = 7(7P) 170 = P170

*7(PV(QAR)) = 7P A (7QV7R)

* (PN(ONR)) = (PNONR) = PVOVR.

* 7 (P = 0 7 Q) (TP ou 7 Q)

*7(P(=0 0) c-à-d 7(P=0 0 1 0=0P)

7 (7PVQ) V 7 (7PVP)

€0 (PA70) V(QA7P)

Exercice 2: 1 2 méthode: table de vérité:

Q	79	70	7PV0	7 (P=0 P)	PATO
٧	F	F	٧	۴	F
F	F	٧	F	V	٧
٧	٧	F	٧	F	F
F	٧	٧	٧	F	F
	V F V F	 Ø 7P V F F F V V F V 		· and a second s	

P170007 (P=00)

(P => P) (7PV0) alors 7(7PV0) (→ PN70 7(P=0) (PA=0)

Exercice 3: (P=DD -0 70=D7P) 1) On va utiliser, le raisonnement par contraposition; Soit PEIN, on suppose que pest impair, alors il existe $k \in \mathbb{Z}$ tel que: P = 2k+1, et on va montrer que P^2 est impair. P = 2k+1 et on a $P^2 = (2k+1)^2$ $P^2 = 4k^2 + 4k + 1$ $= 2(2k^2 + 2k) + 1$ = 2k'+1 on pose (k'=2k'+2kEZ) cette assertion est vraie: (Pest impair = Pestinpair) Donc parla démonstration contraposée: P'est pair => P est pair 2) on montre que: $\sqrt{2} \notin Q$ $\sqrt{2} = \frac{p}{q} \text{ avec } pGCD = 1 \text{ (Plos grand diviseor common)}$ $\sqrt{2}$ = $\frac{p}{q}$ = D = $\frac{p^2}{q^2}$ = \frac P=2k avec k E Z $\frac{p^2}{q^2} = 2 \implies \frac{4k^2}{q^2} = 2 \implies q^2 = 2k^2 = 2\infty$ et $q = 2\beta$ Azinsi $\begin{cases} P = 2k \\ 9 = 2B \end{cases}$ = 0 PGCD (P, q) = 2Il ressort de notre demonstration une contra de l'hypothése posée d'où √27 € p

www.exomaroc.com écrit par : youssef baassou

Exercice 4:

1) $\forall n \in \mathbb{N}^{*}, \frac{2}{p-1} \frac{1}{p(p+1)} = \frac{n}{n+1}$ Soit p(n), $\frac{1}{2}$ proposition: n = 1 = 0 $\frac{1}{1(1+1)} = \frac{1}{2+1} \Rightarrow \frac{1}{2} = \frac{1}{2}$ (vrzie) On suppose que p(n) est vrzie et on montre que p(n+1) est vrzie. $\frac{2}{p-1} \frac{1}{p(p+1)} = \frac{n+1}{n+2}$ $\Rightarrow \frac{1}{p-1} \frac{1}{p(p+1)} + \frac{1}{(n+1)(n+2)} = \frac{n}{n+1} + \frac{1}{(n+1)(n+2)}$ $\Rightarrow \frac{n(2+n)+1}{(n+1)(n+2)} = \frac{n^{2}+2n+1}{(n+1)(n+2)}$ $\Rightarrow \frac{(n+1)^{2}}{(n+1)(n+2)} = \frac{n+1}{n+2}$

9)
$$\forall n \in \mathbb{N}$$
: $1+2^{2}+3^{2}+\dots+n^{2}=\frac{n(n+1)(2n+1)}{6}$
Pour $n=0$: $0^{2}=\frac{0(0+1)(2\times0+1)}{6}=p$ $0=0$
ce qui est vrai
On suppose que $1^{2}+2^{2}+3^{2}+\dots+n^{2}=\frac{n(n+1)(2n+1)}{(n+1)(2n+1)}$
et montrons que $1^{2}+2^{2}+\dots+n^{2}+(n+1)^{2}=\frac{(n+1)(n+2)(2n+3)}{(n+2)(2n+3)}$
 $1+2^{2}+3^{2}+\dots+n^{2}+(n+1)^{2}=\frac{(n+1)(n+2)(2n+3)}{(n+2)(2n+3)}$
 $=\frac{n(n+1)(6n+1)}{6}+\frac{(n+1)^{2}}{(n+2)(2n+3)}$

```
* Montrons que: g (AMB) C g(A) Mg (B)
Soit y = g(ANB) =0 Ine ANB ty f(n) = 4
               AD Jn EA et JnEB tq g(m)=y
              1=0 ]n E A tq: f(n)=y et ] n EB tq: f(n)=y

\neq 

y \in \beta(A) \text{ et } y \in \beta(B)

             \neq D y \in g(A) \cap g(B)
Donc: f(A \cap B) \subset f(A) \cap f(B)

+ 2 méthode: On sait que A \(\beta \in A \(\beta \) CA = \(\sigma f(A \columb) \columb g(A)\)
            de nême AMBCB=0 g(AMB) cg(B)
          g(ANB) cg(A) ng(B)
      Calcule de g-1 d'un ensemble:
        J: IK - R
         n - p \beta(n) = n^2
 C-3-d g(n)=-1=0 m^2=-1
          Cà-d n2 E [0,4]
              alors no 4
              donc | m | x 2
              J=0 1-2 <n <2
      { -1([0,4]) = [-2,2]
     # On montre que CCD =0 g-1(c) c g-1(D)
 Soit nef-1(c) = 0 f(n) EC, nEE
or \in CD alors g(n) \in D, m \in E

Donc \infty \in g^{-1}(D), D'où g^{-1}(c) \in g^{-1}(D)
```

On soit que: $C \subset CUD = D \int_{-1}^{-1}(c) C \int_{-1}^{-1}(CUD)$ de même $D \subset C(CUD) = D \int_{-1}^{-1}(D) C \int_{-1}^{-1}(CUD)$ Alors $\int_{-1}^{-1}(c) U \int_{-1}^{-1}(D) C \int_{-1}^{-1}(CUD) = D \int_{-1}^{-1}(D) \int_{-1}^{-1}(CUD) = D \int_{-1}^{-1}(CUD) =$

6

Exercice 6:

$$\begin{cases} f(0) = 0 \\ f(1) = 0 \end{cases}$$

$$\begin{cases} f(0) = f(1) = 0 \\ \text{or } 0 \neq 1 \text{ Donc } f \text{ n'est pas} \end{cases}$$
in jective

•
$$\forall y \in \mathbb{R}, \exists n \in \mathbb{R}, f(n) = y$$

Alors of est sorjective

* 9:
$$\mathbb{R}^{2}$$
 $\rightarrow 0$ \mathbb{R}^{2}
 $(m,y) \rightarrow (m+y, m-y)$
 $\forall (n,y), (m',y') \in \mathbb{R}^{2}, g(x,y) = g(n',y')$
 $\Rightarrow (m,y) = (m,y')$

$$g(n,y) = g(n',y')$$

$$(n + y, n - y) = (n' + y', n' - y')$$
Alors
$$\begin{cases} n + y = n' + y' \\ n - y = n' - y' \end{cases}$$

Donc les couples (x,y) et (n',y') sontégaux.

www.exomaroc.com ecrit par : youssef baassou · Montrons que g est surjective. $\forall (x,y) \in \mathbb{R}^2, \exists (m,y) \in \mathbb{R}^1, g(x,y) = (x,y)$ g(n,y) = (x,y) (3e +y, n-y) = (x, y) 3-d $\begin{cases} x+y=X\\ n-y=y \end{cases} = D \begin{cases} m=\frac{X+y}{2}\\ y=\frac{X-y}{2} \end{cases}$ Alors g est surjective. injective et surjective donc elle est bijective = g est * h: N × N - N (n,m) ~ 2 3 · Soient (n,m) \(1N^2 \) et (p,q) \(1N^8 \) Supposons que h(n,m) = h(p,q) et vérifions si (n,m) = (p,q) h(n,m)=h(p,q)=0 2"3"= 2"39 Cela est vrai si n-p =0 et q-m = 0

donc n = p et que = m alors (n,m) = (p,q) d'où hest injective.

· Yy \in IN, \(\frac{1}{2}\) (n,m) \(\in IN^2\) tel que \(\hat{n}\) (n,m) = y 2"3" # 5, 5 n'appartient pas à l'image =0 À n'est pas surjective

_www.exomaroc.com écrit par : youssef baassou Exercice 7: 8: E - F, ACE, BCF or $n \in g^{-1}(B) = 0$ g(n) = B=0 y = f(~) EB part: $n \in \mathcal{G}^{-1}(B) \subset E \Rightarrow \mathcal{G}(n) \in \mathcal{G}(E)$ d'autre =0 y ∈ g(E) $\{y \in g(E) \Rightarrow y \in B \cap g(E)$ Inversement: BNJ(E) CJ(j-1(B))?: Soit y e Bng(E) =0 y ∈ B et y ∈ g(E) =0 y ∈ B et y ∈ g(n), m ∈ E f(~) ∈ B =0 n ∈ j = (B) =0 f(~)=y ∈ f (f-1(B)) est surjective == == f(E) = F. (E) NB = F NB = B (can & (E) 1B = & (f-1(B)) (F) f(g-1(B)) = B g est injective = 0 f-1 (f (A)) = A Si g est injective, d'apprés Ex on a: ACf-1(f(A))

Soit $m \in g^{-1}(g(A)) = 0$ $g(m) \in g(A)$ =D = a (can ginjective) =D n = a (can ginjective) =D n ∈ A

Doxe per suite A & 2-1(&(A)) C A Donc A = 8-1(8(A)) (Supposons que g-4(g (A)) = A que g est injective: Soient, $n, y \in E$, $tq : \beta(m) - \beta(y)$. Posons A = {m}, on a : { -1 (g(A)) = { -1 (f(~1)) = {m}} donc g-+ (g(n)) = n de même si A = { y} =0 f (f(f y })) = f y } =0 g = (g(y) = y $=v \ \beta^{-1}(\beta(\sim)) = \beta^{-1}(\beta(\gamma))$ = } (y) 8 (~) =D n = y =D & est injective 4) g est bijective 40 g(A) = g(A) est bijective et montrons Supposons que f que {(A) = f(A) · & (A) C 8(A1: Soit $y \in f(\bar{A}) = 0 \exists m \in \bar{A} = C_E^A \vdash g : y = f(x)$ =D] me E et n & A tq: y=f(~) or: $n \notin A = p f(n) \notin f(A)$ Car: Si $f(n) \in f(A) = 0$ $\exists \alpha \in A \text{ tq } : f(n) = f(\alpha)$ = $v = \alpha$ (finjective) =0 m ∈ A absurde y= f(~) &f(A) = y & C(A) = f(A) Par suite &(A) C&(A)

10

Soit y G $g(A) = C_F^{g(A)}$ Inversement: =0 y ∈ F et y \$ {(A) or y & F et g est surjective = D 3 n E E tq: y= g(~) =0 g(~) €g(A) =0 n & A -D $g(m) = y \in g(A)$ =0 $\overline{f(A)}$ $Cf(\overline{A})$ (4) si $g(\bar{A}) = g(\bar{A})$. Montrons que g est bijective. ·Surjection: Matrons que g(E) = F si $A = \emptyset = 0$ $\mathcal{J}(\overline{\emptyset}) = \mathcal{J}(\emptyset)$ =0 f(E) = Ø = F · Injection: D'aprés 3° il suffit de montrer on $\Rightarrow : f(\overline{A}) = f(\overline{A}) = 0 f(\overline{A}) = f(\overline{A})$ $\Rightarrow 0$ $f(\bar{A}) = f(A)$ $=D A = g^{-1}(\overline{f(A)}) = D A = g^{-1}(f(A))$ Exercice 8: (n,y)R(n',y') =0 y=y' * Rest reflexive car: Y (n,y) ∈ R2, (n,y) R(n,y) (car y=y) *R est symétrique.car: si (~,y) R(n',y') =0 y= y'=0 y'=y=0(n',y') R(5) *Rest transitive: =D si (m, y) R(m', y') et (m', y') R (m", y") =v y = y' et y'= y" = 0 (~, y) R (~", y")