Multistate models

Bendix Carstensen

Steno Diabetes Center Copenhagen

Gentofte, Denmark

http://BendixCarstensen.com

SPE, Tartu, Estonia,

August 2019

http://BendixCarstensen.com/SPE

Multistate models

Bendix Carstensen, Martyn Plummer

Multistate models

SPE, Tartu, Estonia,

August 2019

http://BendixCarstensen.com/SPE

1. Subjects are **either** "healthy" **or** "diseased", with no intermediate state.

- 1. Subjects are **either** "healthy" **or** "diseased", with no intermediate state.
- 2. The disease is **irreversible**, or requires intervention to be cured.

- 1. Subjects are **either** "healthy" **or** "diseased", with no intermediate state.
- 2. The disease is **irreversible**, or requires intervention to be cured.
- 3. The time of disease incidence is known **exactly**.

- 1. Subjects are **either** "healthy" **or** "diseased", with no intermediate state.
- 2. The disease is **irreversible**, or requires intervention to be cured.
- 3. The time of disease incidence is known **exactly**.
- 4. The disease is **accurately** diagnosed.

- 1. Subjects are **either** "healthy" **or** "diseased", with no intermediate state.
- 2. The disease is **irreversible**, or requires intervention to be cured.
- 3. The time of disease incidence is known **exactly**.
- 4. The disease is **accurately** diagnosed.

- 1. Subjects are **either** "healthy" **or** "diseased", with no intermediate state.
- 2. The disease is **irreversible**, or requires intervention to be cured.
- 3. The time of disease incidence is known **exactly**.
- 4. The disease is **accurately** diagnosed.

These assumptions are true for death and many chronic diseases.

Invasive squamous cell cancer of the cervix is preceded by cervical intraepithelial neoplasia (CIN)

Invasive squamous cell cancer of the cervix is preceded by cervical intraepithelial neoplasia (CIN)

Aim of the modeling the transition rates between states, is to be able predict how population moves between states:

Invasive squamous cell cancer of the cervix is preceded by cervical intraepithelial neoplasia (CIN)

- Aim of the modeling the transition rates between states, is to be able predict how population moves between states:
- state occupancy probabilities

Invasive squamous cell cancer of the cervix is preceded by cervical intraepithelial neoplasia (CIN)

- ▶ Aim of the modeling the transition rates between states, is to be able predict how population moves between states:
- state occupancy probabilities
- visit probability

Invasive squamous cell cancer of the cervix is preceded by cervical intraepithelial neoplasia (CIN)

- ▶ Aim of the modeling the transition rates between states, is to be able predict how population moves between states:
- state occupancy probabilities
- visit probability
- length of stay (sojourn time)

Multistate models (ms-Markov)

Generalization of Poisson regression to multiple disease states:

 Transition rates between states depends only on current state (and possibly time since start) — the Markov property

- Transition rates between states depends only on current state (and possibly time since start) — the Markov property
- (time-fixed) covariates may influence transition rates

- Transition rates between states depends only on current state (and possibly time since start) — the Markov property
- (time-fixed) covariates may influence transition rates
- the formal Markov property is very restrictive

- Transition rates between states depends only on current state (and possibly time since start) — the Markov property
- (time-fixed) covariates may influence transition rates
- the formal Markov property is very restrictive
- semi-Markov: rates depend on time since entry to current state

- Transition rates between states depends only on current state (and possibly time since start) — the Markov property
- (time-fixed) covariates may influence transition rates
- the formal Markov property is very restrictive
- semi-Markov: rates depend on time since entry to current state
- ▶ In the clinical literature, the term "Markov model" is often used about any type of multistate model

Generalization of Poisson regression to multiple disease states:

- Transition rates between states depends only on current state (and possibly time since start) — the Markov property
- (time-fixed) covariates may influence transition rates
- the formal Markov property is very restrictive
- semi-Markov: rates depend on time since entry to current state
- ▶ In the clinical literature, the term "Markov model" is often used about any type of multistate model
- ...and the Markov property is handy in probability theory

Multistate models (ms-Markov) 4/39

▶ Define the (disease) states

- Define the (disease) states
- Define which transitions between states that occur

- Define the (disease) states
- Define which transitions between states that occur
- Select covariates influencing transition rates (may be different between transitions)

- Define the (disease) states
- Define which transitions between states that occur
- Select covariates influencing transition rates (may be different between transitions)
- ▶ Constrain some covariate effects to be the same, or zero.

Multistate models (ms-Markov)

- Define the (disease) states
- Define which transitions between states that occur
- Select covariates influencing transition rates (may be different between transitions)
- Constrain some covariate effects to be the same, or zero.
- ▶ Not a trivial task do we want *e.g.*

- Define the (disease) states
- Define which transitions between states that occur
- Select covariates influencing transition rates (may be different between transitions)
- Constrain some covariate effects to be the same, or zero.
- Not a trivial task do we want e.g.
 - cause of death

- Define the (disease) states
- Define which transitions between states that occur
- Select covariates influencing transition rates (may be different between transitions)
- Constrain some covariate effects to be the same, or zero.
- Not a trivial task do we want e.g.
 - cause of death
 - disease status at death

Times should be recorded as dates

birth date

- birth date
- entry date

- birth date
- entry date
- entry state

- birth date
- entry date
- entry state
- exit date

- birth date
- entry date
- entry state
- exit date
- death date

- birth date
- entry date
- entry state
- exit date
- death date
- state entry dates for all states

- birth date
- entry date
- entry state
- exit date
- death date
- state entry dates for all states
- ...some states may be revisited

- birth date
- entry date
- entry state
- exit date
- death date
- state entry dates for all states
- ...some states may be revisited

Times should be recorded as dates

- birth date
- entry date
- entry state
- exit date
- death date
- state entry dates for all states
- ...some states may be revisited

From this each person's trajectory through states can be constructed

► The likelihood of the observed data (sojourn times and transitions) depend on the (models for) the transition rates.

- ► The likelihood of the observed data (sojourn times and transitions) depend on the (models for) the transition rates.
- Assume transition rates are constant in small time intervals

- ► The likelihood of the observed data (sojourn times and transitions) depend on the (models for) the transition rates.
- ▶ Assume transition rates are constant in small time intervals
- ▶ ⇒ each interval contributes terms to the log-likelihood:

Multistate models (ms-Markov)

- ► The likelihood of the observed data (sojourn times and transitions) depend on the (models for) the transition rates.
- Assume transition rates are constant in small time intervals
- ▶ ⇒ each interval contributes terms to the log-likelihood:
 - ightharpoonup one for each person (p) at risk in state s in the interval

- ► The likelihood of the observed data (sojourn times and transitions) depend on the (models for) the transition rates.
- Assume transition rates are constant in small time intervals
- ▶ ⇒ each interval contributes terms to the log-likelihood:
 - lacktriangle one for each person (p) at risk in state s in the interval
 - . . . for each possible transition (s o v)

- ► The likelihood of the observed data (sojourn times and transitions) depend on the (models for) the transition rates.
- Assume transition rates are constant in small time intervals
- ▶ ⇒ each interval contributes terms to the log-likelihood:
 - one for each person (p) at risk in state s in the interval
 - . . . for each possible transition (s o v)
 - each term is a Poisson log-likelihood contribution:

$$d_{psv}\log(\lambda_{psv}) - \lambda_{psv}y_{ps},$$
 where:

- ullet λ_{psv} rate for person p in state s going to state v
- ullet d_{psv} did person p in state s go to state v at end of interval
- y_{ps} how long did person p spend in state s (how long is the interval)

- ► The likelihood of the observed data (sojourn times and transitions) depend on the (models for) the transition rates.
- Assume transition rates are constant in small time intervals
- ▶ ⇒ each interval contributes terms to the log-likelihood:
 - ightharpoonup one for each person (p) at risk in state s in the interval
 - ... for each possible transition (s o v)
 - each term is a Poisson log-likelihood contribution:

$$d_{psv}\log(\lambda_{psv}) - \lambda_{psv}y_{ps},$$
 where:

- ullet λ_{psv} rate for person p in state s going to state v
- d_{psv} did person p in state s go to state v at end of interval
- y_{ps} how long did person p spend in state s (how long is the interval)
- Total log-lik is sum of terms over persons and transitions

Multistate models (ms-Markov) 7/39

▶ Total log-lik is sum of terms over persons (p) and transitions $(s \rightarrow v)$

- ▶ Total log-lik is sum of terms over persons (p) and transitions $(s \rightarrow v)$
- components **not** independent, but the total likelihood is a product; hence of the same form as the likelihood of independent Poisson variates

- ▶ Total log-lik is sum of terms over persons (p) and transitions $(s \rightarrow v)$
- components **not** independent, but the total likelihood is a product; hence of the same form as the likelihood of independent Poisson variates
- practical analysis is just analysis of each transition rate separately

- ▶ Total log-lik is sum of terms over persons (p) and transitions $(s \rightarrow v)$
- components **not** independent, but the total likelihood is a product; hence of the same form as the likelihood of independent Poisson variates
- practical analysis is just analysis of each transition rate separately
- as long as no two rates out of the same state are modeled we can use subsets of Lexis objects

Multistate models (ms-Markov)

Multistate models with Lexis

Bendix Carstensen

Multistate models

SPE, Tartu, Estonia,

August 2019

http://BendixCarstensen.com/SPE

Example: Renal failure data from Steno

Hovind P, Tarnow L, Rossing P, Carstensen B, and Parving H-H: Improved survival in patients obtaining remission of nephrotic range albuminuria in diabetic nephropathy. *Kidney Int.*, 66(3):1180–1186, 2004.

▶ 96 patients entering at nephrotic range albuminuria (NRA), i.e. U-alb> 300mg/day.

Example: Renal failure data from Steno

Hovind P, Tarnow L, Rossing P, Carstensen B, and Parving H-H: Improved survival in patients obtaining remission of nephrotic range albuminuria in diabetic nephropathy. *Kidney Int.*, 66(3):1180–1186, 2004.

- ▶ 96 patients entering at nephrotic range albuminuria (NRA), i.e. U-alb> 300mg/day.
- ▶ Is remission from this condition (i.e return to U-alb < 300mg/day) predictive of the prognosis?

Example: Renal failure data from Steno

Hovind P, Tarnow L, Rossing P, Carstensen B, and Parving H-H: Improved survival in patients obtaining remission of nephrotic range albuminuria in diabetic nephropathy. *Kidney Int.*, 66(3):1180–1186, 2004.

- ▶ 96 patients entering at nephrotic range albuminuria (NRA), i.e. U-alb> 300mg/day.
- ► Is remission from this condition (i.e return to U-alb< 300mg/day) predictive of the prognosis?
- ► Endpoint of interest: Death or end stage renal disease (ESRD), i.e. dialysis or kidney transplant.

		Remission	
	Total	Yes	No
No. patients No. events Follow-up time (years)	125 77 1084.7	32 8 259.9	93 69 824.8
Cox-model: Timescale: Time since nephrotic range albuminuria (NRA) Entry: 2.5 years of GFR-measurements after NRA Outcome: ESRD or Death			
Estimates:	RR	95% c.i.	p
Fixed covariates: Sex (F vs. M): Age at NRA (per 10 years):	0.92 1.42	(0.53,1.57) (1.08,1.87)	0.740 0.011
Time-dependent covariate: Obtained remission:	0.28	(0.13,0.59)	0.001

Features of the analysis

- Remission is included as a time-dependent variable.
- Age at entry is included as a fixed variable.

```
renal[1:5,]
id dob doe dor dox event
17 1967.944 1996.013 NA 1997.094 2
26 1959.306 1989.535 1989.814 1996.136 1
27 1962.014 1987.846 NA 1993.239 3
33 1950.747 1995.243 1995.717 2003.993 0
42 1961.296 1987.884 1996.650 2003.955 0
```

Note patient 26, 33 and 42 obtain remission.

```
> Lr <- Lexis( entry = list( per=doe,
                             age=doe-dob,
+
                              tfi=0),
                exit = list( per=dox ),
         exit.status = event>0,
              states = c("NRA", "ESRD"),
                data = renal )
> summary( Lr )
Transitions:
     То
From
      NRA ESRD
               Records: Events: Risk time:
                                               Persons:
  NRA 48
            77
                     125
                                77
                                      1084.67
                                                    125
```


Cutting follow-up at remission: cutLexis

```
> Lc <- cutLexis( Lr, cut=Lr$dor,
+
                timescale="per",
                new.state="Rem",
         precursor.states="NRA" )
> summary( Lc )
Transitions:
     To
From
      NRA Rem ESRD
                    Records:
                              Events: Risk time:
                                                    Persons:
  NR.A
       24
           29
                69
                          122
                                    98
                                           824.77
                                                         122
           24
                           32
                                           259.90
                                                          32
  R.em
           53
                77
  Sum
       24
                          154
                                   106
                                          1084.67
                                                         125
```

Showing states and FU: boxes.Lexis

Splitting states: cutLexis

```
> Lc <- cutLexis( Lr, cut=Lr$dor,
                 timescale="per",
+
                 new.state="Rem",
         precursor.states="NRA",
              split.states=TRUE )
> summary( Lc )
Transitions:
     Tο
From
      NRA Rem ESRD ESRD(Rem)
                                Records: Events: Risk time:
                                                                Persons:
  NR.A
       24
           29
                 69
                                     122
                                                98
                                                                      122
                                                       824.77
                                      32
                                                                      32
  R.em
           24
                                                 8
                                                       259.90
                                     154
       24
                 69
                                               106
                                                      1084.67
                                                                     125
  Sum
```

Splitting states: cutLexis

```
> Lc <- cutLexis( Lr, cut=Lr$dor,
                 timescale="per",
+
                 new.state="Rem",
         precursor.states="NRA",
              split.states=TRUE )
> summary( Lc )
Transitions:
     Tο
From
      NRA Rem ESRD ESRD(Rem)
                                Records: Events: Risk time:
                                                                Persons:
  NR.A
       24
           29
                                     122
                                                98
                                                                      122
                 69
                                                       824.77
                                      32
                                                                      32
  R.em
           24
                                                 8
                                                       259.90
                                     154
       24
                 69
                                               106
                                                      1084.67
                                                                     125
  Sum
```

Showing states and FU: boxes.Lexis

- Product of likelihoods for each transition
 - each one as for a survival model

- Product of likelihoods for each transition
 - each one as for a survival model
- ▶ **Risk time** is the risk time in the "From" state

- Product of likelihoods for each transition
 - each one as for a survival model
- ▶ **Risk time** is the risk time in the "From" state
- **Events** are transitions to the "To" state

- Product of likelihoods for each transition
 - each one as for a survival model
- ▶ **Risk time** is the risk time in the "From" state
- **Events** are transitions to the "To" state
- All other transitions out of "From" are treated as censorings

- Product of likelihoods for each transition
 - each one as for a survival model
- ▶ **Risk time** is the risk time in the "From" state
- **Events** are transitions to the "To" state
- All other transitions out of "From" are treated as censorings
- Possible to fit models separately for each transition

Prediction in multistate models: simLexis and renal failure

Bendix Carstensen

Multistate models

SPE, Tartu, Estonia,

August 2019

A more complicated multistate model

A more complicated multistate model

Modeling in a multistate model

Modeling in a multistate model

Each transition modeled by a model for rates (Cox-model, Poisson-model for split data, glm or gam):

... using the Lexis properties

...using the Lexis properties

```
> # Rem-rate
> mr <- gam.Lexis( sLc, from="NRA", to="Rem",
                        formula = ~s(tfi. k=10) + sex)
mgcv::gam Poisson analysis of Lexis object sLc with log link:
Rates for the transition: NRA->Rem
> # ESRD-rates
> mx <- gam.Lexis( sLc. formula = ~ s(tfi,k=10) + sex +
                        I((doe-dob-40)/10) + I(lex.Cst=="Rem"))
+
mgcv::gam Poisson analysis of Lexis object sLc with log link:
Rates for transitions: NRA->ESRD, Rem->ESRD(Rem)
```

Default is to model all transitions

How do we get from rates (Poisson-models) to probabilities:

1 Analytic calculations:

- 1 Analytic calculations:
 - immensely complicated formulae

- 1 Analytic calculations:
 - immensely complicated formulae
 - computationally fast (once implemented)

- 1 Analytic calculations:
 - immensely complicated formulae
 - computationally fast (once implemented)
 - difficult to generalize

- 1 Analytic calculations:
 - immensely complicated formulae
 - computationally fast (once implemented)
 - difficult to generalize
- 2 Simulation of persons' histories

- 1 Analytic calculations:
 - immensely complicated formulae
 - computationally fast (once implemented)
 - difficult to generalize
- 2 Simulation of persons' histories
 - conceptually simple

- 1 Analytic calculations:
 - immensely complicated formulae
 - computationally fast (once implemented)
 - difficult to generalize
- 2 Simulation of persons' histories
 - conceptually simple
 - computationally not quite simple

- 1 Analytic calculations:
 - immensely complicated formulae
 - computationally fast (once implemented)
 - difficult to generalize
- 2 Simulation of persons' histories
 - conceptually simple
 - computationally not quite simple
 - easy to generalize

- 1 Analytic calculations:
 - immensely complicated formulae
 - computationally fast (once implemented)
 - difficult to generalize
- 2 Simulation of persons' histories
 - conceptually simple
 - computationally not quite simple
 - easy to generalize
 - hard to get confidence intervals (bootstrap)

Simulation of a survival time

▶ For a rate function $\lambda(t)$, $\Lambda(t) = \int_0^t \lambda(s) \, \mathrm{d}s$:

$$S(t) = \exp(-\Lambda(t))$$

Simulation of a survival time

▶ For a rate function $\lambda(t)$, $\Lambda(t) = \int_0^t \lambda(s) \, ds$:

$$S(t) = \exp(-\Lambda(t))$$

▶ Simulate a survival probability $u \in [0, 1]$:

$$u = S(t) \Leftrightarrow \Lambda(t) = -\log(u)$$

Simulation of a survival time

▶ For a rate function $\lambda(t)$, $\Lambda(t) = \int_0^t \lambda(s) \, ds$:

$$S(t) = \exp(-\Lambda(t))$$

▶ Simulate a survival probability $u \in [0, 1]$:

$$u = S(t) \Leftrightarrow \Lambda(t) = -\log(u)$$

- \blacktriangleright Knowledge of $\Lambda(t)$ makes it easy to find a survival time — essentially just linear interpolation.

▶ Simulate a "survival time" for each transition **out** of a state.

- ▶ Simulate a "survival time" for each transition **out** of a state.
- ▶ The smallest of these is the transition time.

- ▶ Simulate a "survival time" for each transition **out** of a state.
- ▶ The smallest of these is the transition time.
- Choose the corresponding transition type as transition.

Transition objects are glm/gam


```
> Tr <- list( "NRA" = list( "ESRD" = mx,
+ "Rem" = mr),
+ "Rem" = list( "ESRD(Rem)" = mx))
```

Input required:

► A Lexis object representing the initial state of the persons to be simulated.

(lex.dur and lex.Xst will be ignored.)

Input required:

- ► A Lexis object representing the initial state of the persons to be simulated.
 - (lex.dur and lex.Xst will be ignored.)
- A transition object with the estimated Poisson models collected in a list of lists.

Input required:

- ► A Lexis object representing the initial state of the persons to be simulated.
 - (lex.dur and lex.Xst will be ignored.)
- A transition object with the estimated Poisson models collected in a list of lists.

Input required:

- A Lexis object representing the initial state of the persons to be simulated.
 - (lex.dur and lex.Xst will be ignored.)
- A transition object with the estimated Poisson models collected in a list of lists.

Output produced:

Input required:

- A Lexis object representing the initial state of the persons to be simulated.
 - (lex.dur and lex.Xst will be ignored.)
- A transition object with the estimated Poisson models collected in a list of lists.

Output produced:

A Lexis object with simulated event histories for may persons

Input required:

- ► A Lexis object representing the initial state of the persons to be simulated.
 - (lex.dur and lex.Xst will be ignored.)
- A transition object with the estimated Poisson models collected in a list of lists.

Output produced:

- A Lexis object with simulated event histories for may persons
- Use nState to count how many persons in each state at different times

Using simLexis I

Put one record a new Lexis object (init, say). representing a person with the desired covariates.

Must have same structure as the one used for estimation — time scales must be initiated even if not used in models

```
> init <- sLc[NULL,c(timeScales(sLc),"lex.Cst")]
> init[1,"per"] <- 1994
> init[1,"age"] <- 40
> init[1,"tfi"] <- 0
> init[1,"lex.Cst"] <- "NRA"
> init[1,"sex"] <- "M"
> init[1,"dob"] <- 1954
> init[1,"doe"] <- 1994
> init
```

Using simLexis II

```
per age tfi lex.Cst sex dob doe
1 1994 40
                   NR.A
           0
                         M 1954 1994
> system.time(
+ sim1 <- simLexis( Tr, init, N=10000 ) )
        system elapsed
  user
 48.655 52.448 36.065
> summary(sim1)
Transitions:
     To
From
          Rem ESRD ESRD(Rem) Records:
                                         Events: Risk time:
                                                             Persons:
  NRA 293 1797 7910
                                  10000
                                            9707
                                                   74766.04
                                                                10000
          874
                          923
                                   1797
                                             923 19852.42
                                                                 1797
  R.em
  Sum 293 2671 7910
                          923
                                  11797
                                           10630 94618.45
                                                                10000
```

Using a simulated Lexis object — pState I

```
> NN < - nState(sim1, at = seq(0,15,0.1),
                  from = 0,
            time.scale = "tfi" )
> head( NN )
    State
when
       NR.A
            Rem
                ESRD ESRD(Rem)
     10000
 0.1 9955 20 25
 0.2 9889 46 65
 0.3 9837 75 88
 0.4 9779 104 117
 0.5 9732
            127
                  140
> nw1 <- pState(NN, perm = c(1,2,4,3))
> head( nw1. 3 )
```

Using a simulated Lexis object — pState II

```
State
when
        NRA Rem ESRD(Rem) ESRD
     1.0000 1.0000
                  1.0000
 0.1 0.9955 0.9975 0.9975 1
 0.2 0.9889 0.9935 0.9935
> tail( nw1, 3 )
     State
when
         NR.A
             Rem ESRD(Rem) ESRD
 14.8 0.1004 0.2165 0.2751
 14.9 0.0969 0.2128 0.2717
 15 0.0953 0.2101 0.2701
> par(mar=c(3,3,0.1,0.1), mgp=c(3,1,0)/1.6, las=1)
> plot(nw1, col=clr[c(2.1.4.3)])
> lines( as.numeric(rownames(nw1)), nw1[,2] )
```

Using a simulated Lexis object — pState III

```
> nw2 < - pState(NN, perm = c(4,2,1,3))
> head( nw2, 3 )
    State
when ESRD(Rem) Rem NRA ESRD
            0 0.0000 1.0000
         0 0.0020 0.9975
 0.2
            0 0.0046 0.9935
> tail( nw2, 3 )
     State
when
      ESRD(Rem) Rem NRA ESRD
 14.8 0.0586 0.1747 0.2751
 14.9 0.0589 0.1748 0.2717
 15 0.0600 0.1748 0.2701
> par(mar=c(3,3,0.1,0.1), mgp=c(3,1,0)/1.6, las=1)
> plot(nw2, col=clr[c(4,1.2.3)])
```

Simulated probabilities

Simulated probabilities

How many persons should you simulate?

How many persons should you simulate?

All probabilities have the same denominator — the initial number of persons in the simulation, N, say.

How many persons should you simulate?

- ▶ All probabilities have the same denominator the initial number of persons in the simulation, N, say.
- ▶ Thus, any probability will be of the form p = x/N

How many persons should you simulate?

- ▶ All probabilities have the same denominator the initial number of persons in the simulation, N, say.
- ▶ Thus, any probability will be of the form p = x/N
- For small probabilities we have that:

s.e.
$$(\log(\hat{p})) = (1-p)/\sqrt{Np(1-p)}$$

How many persons should you simulate?

- ▶ All probabilities have the same denominator the initial number of persons in the simulation, N, say.
- ▶ Thus, any probability will be of the form p = x/N
- For small probabilities we have that:

s.e.
$$(\log(\hat{p})) = (1-p)/\sqrt{Np(1-p)}$$

▶ So c.i. of the form $p \stackrel{\times}{\div} \operatorname{erf}$ where:

$$erf = \exp(1.96 \times (1-p)/\sqrt{Np(1-p)})$$

Precision of simulated probabilities

▶ Clarify what the relevant states are

- Clarify what the relevant states are
- Allows proper estimation of transition rates

- Clarify what the relevant states are
- Allows proper estimation of transition rates
- and relationships between them

- Clarify what the relevant states are
- Allows proper estimation of transition rates
- and relationships between them
- Separate model for each transition (arrow)

- Clarify what the relevant states are
- Allows proper estimation of transition rates
- and relationships between them
- Separate model for each transition (arrow)
- ► The usual survival methodology to compute probabilities breaks down

- Clarify what the relevant states are
- Allows proper estimation of transition rates
- and relationships between them
- Separate model for each transition (arrow)
- ► The usual survival methodology to compute probabilities breaks down
- Simulation allows estimation of cumulative probabilities:

- Clarify what the relevant states are
- Allows proper estimation of transition rates
- and relationships between them
- Separate model for each transition (arrow)
- ► The usual survival methodology to compute probabilities breaks down
- Simulation allows estimation of cumulative probabilities:
 - Estimate transition rates (as usual)

- Clarify what the relevant states are
- Allows proper estimation of transition rates
- and relationships between them
- Separate model for each transition (arrow)
- ► The usual survival methodology to compute probabilities breaks down
- Simulation allows estimation of cumulative probabilities:
 - Estimate transition rates (as usual)
 - Simulate probabilities (not as usual)