数理统计第11次作业

林陈冉

2016年12月14日

6.1

(1) 记第 i 块第上甲品种产量为 X_i 、乙品种产量为 Y_i 、 $Z_i=X_i-Y_i$,由题意可知 $Z_i\sim N(\mu,\sigma^2)$, $i=1,\cdots,n$,n=8 . 检验问题

$$H_0: \mu \leq 0 \leftrightarrow H_1: \mu > 0$$

 σ^2 未知,则否定域为

$$D = \{ Z | T = \frac{\sqrt{n}(\bar{Z} - \mu_0)}{S} < t_{n-1}(\alpha) \}$$

均值 $\bar{Z}=17.375$,方差 S=21.2733, $\alpha=0.05$, $t_7(0.05)=1.8946$,检验统计量 $T=\sqrt{8}\bar{Z}/S=2.31012$,落入接受域,故认为甲是对乙的改良.

(2) 符号检验: 检验问题

 H_0 : 甲不是对乙的改良 \leftrightarrow H_1 : 甲是对乙的改良

否定域为

$$D = \{n_+ > c \not \exists n_+ < d\}$$

由 $Z=\{58,32,30,5,-7,11,0,10\}$,则 $n_+=6$,n=7 ,当 $\alpha=0.05$,c=7 ,d=0 ,落入接受域,故认为甲不是对乙的改良

符号秩和检验: 检验问题

 H_0 : 甲不是对乙的改良 \leftrightarrow H_1 : 甲是对乙的改良

否定域为

$$D = \{W^+ > c \neq W^+ < d\}$$

由 $Z = \{58, 32, 30, 5, -7, 11, 0, 10\}$,则 $W^+ = 26$,n = 7 ,当 $\alpha = 0.05$,c = 25 ,d = 3 ,落否定域,故认为 甲是对乙的改良

6.3

(1) 记实验号为 i 的猪吃新饲料增重为 X_i ,吃旧饲料的增重为 Y_i , $Z_i = X_i - Y_i$, $Z = \{5, -2, 0, 4, 2, -1, 3, 7, -6\}$. 符号检验: 检验问题

 H_0 : 新饲料催肥效果没有变好 \leftrightarrow H_1 : 新饲料催肥效果变好

否定域为

$$D = \{ n_+ \ge c \not \boxtimes n_+ \le d \}$$

可知 $n_+=5$, n=8, 当 $\alpha=0.10$, c=7, d=1, 落入接受域, 故认为新饲料催肥效果没有变好, 不能推广.

符号秩和检验: 检验问题

 H_0 : 新饲料催肥效果没有变好 \leftrightarrow H_1 : 新饲料催肥效果变好

否定域为

$$D = \{W^+ \ge c \not \boxtimes W^+ \le d\}$$

可知 $W^+ = 25.5$, n = 8, 当 $\alpha = 0.10$, c = 25, d = 11, 落否定域, 故认为新饲料催肥效果变好, 可以推广

6.4

检验问题

 H_0 :两厂显像管平均寿命相同 $\leftrightarrow H_1$:两厂显像管平均寿命不同

否定域为

$$D = \{(X, Y) | W \ge c \not \boxtimes W \le d\}$$

m=8 , n=10 , $\alpha=0.10$, 查表得 c=92 , d=60 , 经计算, W=116.5 , 落入否定域, 故认为两厂显像管寿命不同.

6.7

检验问题

 H_0 : 骰子是均匀的 $\leftrightarrow H_1$: 骰子不是均匀的

可知 n=300 , $\alpha=0.05$, 理论分布 $p_i=P(X=i)=1/6$, $np_i=50$, 观察频数 $\nu=\{43,49,56,45,66,41\}$, 经计算 $k_0=\sum_{i=1}^6\frac{(\nu_i-np_i)^2}{np_i}=8.96$. 由 $K_n\sim\chi_5^2$, 拟合优度

$$p(k_0) = P(K_n \ge k_0 | H_0) \approx P(\chi_5^2 \ge k_0) < 0.10$$

故可以认为骰子是均匀的.

6.8

检验问题

 H_0 : 结果符合遗传学模型 \leftrightarrow H_1 : 结果不符合遗传学模型

可知 n=64 , $\alpha=0.05$, 理论分布 $p_1=9/16$, $p_2=3/16$, $p_3=1/4$, 观察频数 $\nu_1=34$, $\nu_2=10$, $\nu_3=20$, 经计算 $k_0=\sum_{i=1}^3 \frac{(\nu_i-np_i)^2}{np_i}=1.444$. 由 $K_n\sim\chi_2^2$, 拟合优度

$$p(k_0) = P(K_n \ge k_0 | H_0) \approx P(\chi_2^2 \ge k_0) < 0.25$$

故可以认为实验结果符合"9:3:4"的遗传学模型.