本章主要内容

- 一. 酶的概念 (重点)
- 二. 维生素与辅酶(重点)
- 三. 酶促反应动力学 (重点)
- 四. 酶的结构和催化作用机制 (重点) ——
- 五. 酶的调控 ——
- 六.人工酶与酶工程(自学为主) ——

上次课内容回顾

四. 酶的结构和催化作用机制

- 2. 酶与底物的相互作用
- 3. 催化作用机制

本次课主要内容

四、酶的结构和催化作用机制 (重点)

- 4. 实例
 - (1) 溶菌酶
 - (2) 蛋白酶
 - (3) 碳酸酐酶
- 五、酶的调控(重点)
- 六、人工酶与酶工程(自学为主)

四、酶的结构及催化作用机制

4. 实例

(1) 溶菌酶 (Lysozyme)

存在于鸡蛋清及动物眼泪中,用于催化某些细菌细胞壁多糖的水解,

从而溶解细胞壁。

底物专一性

细胞壁多糖 (NAM-NAG共聚物) 几丁质 (NAG共聚物)

键: β-1,4-糖苷键

(1) 溶菌酶

- 溶菌酶发现: 1922年, Fleming, 英国 细菌学家。
- 溶菌酶结构:
 - --- 1965, Phillips, X-ray, 三维结构确定
 - --- 鸡蛋清溶菌酶: Mr 14600, monomer, 129 amino acid residues
 - --- 内部几乎全部是非极性的

(1) 溶菌酶

- 活性部位:
 - --- 表面狭长裂缝。
 - --- <u>底物类似物水解实验及X-ray单晶衍射分析</u>证明:
 - 六个单糖残基被结合。

(结合部位编号为: ABCDEF)

--- 断裂位点在D和E之间 (如何得出此结论?)。

底物类似物水解实验

结果1

底物类似物	相对水解速率
(NAG) ₂	0
(NAG) ₃	1
(NAG) ₄	8
(NAG) ₅	4000
(NAG) ₆	30000
(NAG) ₈	30000

得出何种结论?

结果2

(NAG)3不是底物,却是竞争性抑制剂

结论1

至少五聚体,酶才能发挥正常催化功能

Glu35 结果3 X-ray单晶 衍射分析

X-Ray structure of HEW lysozyme in complex with (NAG)6.

结论2

C位只能是NAG。

结论3

D环形变为半椅式构象,DE环间糖苷 键稳定性低,易断。

溶菌酶断裂键的确定

同位素标记实验

得出何种结论っ

结论4

断裂D位糖的C₁-O键,而非E位糖的C₄-O键。

溶菌酶的催化机制

D-E断裂部位微环境分析

活性部位必需基团: Asp₅₂, Glu₃₅

必需基团微环境差异: Asp₅₂ --- 极性区, COO⁻, 碱

Glu₃₅ --- 非极性区, COOH, 酸

溶菌酶的催化机制

$S_N 1$

S_N2

溶菌酶的催化机制要点

- ◆ 主要涉及三个催化机制:
 - --- general acid-base catalysis (S_N2 and S_N1)
 Glu₃₅ COOH as proton donor
 Glu₃₅ COO as proton receptor
 - --- covalent catalysis (S_N2)
 Asp₅₂ COO⁻ as covalent group
 - --- transition state stabilization (S_N1) charge stabilization by Asp₅₂ COO⁻

四、酶的结构及催化作用机制

4. 实例

(2) 蛋白酶 (proteases)

根据催化剂活化类型主要分为四类:

- a. Serine proteases
- b. Cysteine proteases
- c. Aspartyl proteases
- d. Metalloproteases

17

a. 丝氨酸蛋白酶 Serine proteases

◆ 活性部位

- 1. 必需基团及其测定(化学标记法)
- 2. 空间结构特点

◆ 催化机制

- 1. 各必需基团的作用
- 2. 催化机制(步骤)(催化三联体、氧负离子洞)
- 3. 所涉及的催化机制种类
- ◆ 不同丝氨酸蛋白<u>酶选择性差异</u>的原因

(自学为主,要求掌握,参见p151-155)

a. 丝氨酸蛋白酶 Serine proteases

◆ 活性部位:

1. 必需基团及其测定(化学标记法)

a. 丝氨酸蛋白酶 Serine proteases

◆活性部位:

1. 必需基团及其测定(化学标记法)

问题:对胰蛋白酶可设计什么样的共价抑制剂呢?

丝氨酸蛋白酶 化三联体

His 57 HN Ser 195 HO 与肽键共价结合促 酸碱催化 使肽键断裂-价催化 Catalytic triad 1. 提高His的碱性 (p*K*_a7→11) 2. 定向His Asp 102

点突变确

Fig. Site-directed mutagenesis of subtilisin (枯草杆菌蛋白酶的定点突变)

◆ 过渡态稳定化机理 - 氧负离子洞

第 步 酶与底物结合

◆ 过渡态稳定化机理 - 氧负离子洞

第 步 酶与过渡态结合

◆ 不同丝氨酸蛋白酶对底物的选择性

b. Cysteine proteases

c. Aspartyl proteases

d. Metalloproteases

Protease Inhibitors Are Important Drugs

Crixivan (印地那韦)

- an inhibitor of the HIV protease, is used in the treatment of AIDS.
- Function of HIV protease:
 - multidomain viral proteins -> active forms
- Protease inhibitors used as drugs must be specific for one enzyme without inhibiting other proteins within the body.

The structure of HIV protease and its binding pocket

Crixivan, an HIV protease inhibitor

HIV protease–Crixivan complex

四、酶的结构及催化作用机制

4. 实例

(3) 碳酸酐酶 (carbonic anhydrases)

$$\begin{array}{c}
O \\
C \\
C \\
O
\end{array}$$

$$\begin{array}{c}
K_{1} \\
K_{-1}
\end{array}$$

$$\begin{array}{c}
O \\
HO
\end{array}$$

$$\begin{array}{c}
C \\
O \\
OH
\end{array}$$

$$\begin{array}{c}
O \\
HO
\end{array}$$

$$\begin{array}{c}
O \\
C \\
OH
\end{array}$$

$$\begin{array}{c}
O \\
HO
\end{array}$$

$$\begin{array}{c}
O \\
O \\
OH
\end{array}$$

$$\begin{array}{c}
O \\
HO
\end{array}$$

$$\begin{array}{c}
O \\
O \\
OH
\end{array}$$

$$\begin{array}{c}
O \\
HO
\end{array}$$

$$\begin{array}{c}
O \\
O \\
OH
\end{array}$$

$$\begin{array}{c}
O \\
HO
\end{array}$$

$$\begin{array}{c}
O \\
O \\
OH
\end{array}$$

$$\begin{array}{c}
OH$$

$$\begin{array}{c}
OH
\end{array}$$

$$\begin{array}{c}
OH
\end{array}$$

$$\begin{array}{c}
OH
\end{array}$$

$$\begin{array}{c}
OH$$

$$\begin{array}{c}
OH
\end{array}$$

$$\begin{array}{c}
OH$$

$$\begin{array}{c}
OH
\end{array}$$

$$\begin{array}{c}
OH$$

$$OH$$

$$\begin{array}{c}
OH$$

$$OH$$

$$\begin{array}{c}
OH$$

$$OH$$

$$O$$

$$k_1 = 0.15 \text{ s}^{-1}, k_{-1} = 50 \text{ s}^{-1}.$$

$$K_1 = 5.4 \times 10^{-5}$$

$$[CO_2] : [H_2CO_3] = 340 : 1$$

(3) 碳酸酐酶

- Carbonic anhydrase are required because CO₂ hydration and H₂CO₃ dehydration are often coupled to rapid processes, particularly transport processes.
- ◆ Mutations in some carbonic anhydrases have been found to cause osteopetrosis (骨骼石化症) (excessive formation of dense bones accompanied by anemia) and mental retardation (智力延迟).

Carbonic Anhydrase Contains a Bound Zinc Ion Essential for Catalytic Activity

The structure of human carbonic anhydrase II and its zinc site

Catalysis Entails Zinc in Activation of Water

- A group with $pK_a = 7$ plays an important role.
- ◆ The deprotonated (high pH) form of this group participates more effectively in catalysis.

Mechanism of carbonic anhydrase

A synthetic analog model system for carbonic anhydrase

Accelerates 100-fold

A Proton Shuttle Facilitates Rapid Regeneration of the Active Form of the Enzyme

Histidine proton shuttle

(1) Histidine 64 abstracts a proton from the zinc bound water molecule, generating a nucleophilic hydroxide ion and a protonated histidine. (2) The buffer (B) removes a proton from the histidine, regenerating the unprotonated form.

五、酶活性的调控

- ◆ 酶除了具有催化功能外,还具有调节和控制各类生物化学反应 速度、方向和途径的功能。
- ◆ 酶活性的调控作用主要有两种方式:
 - --- 激活或抑制酶的活性 (酶水平调控)
 - 1. 别构调控
 - 2. 共价修饰调控
 - 3. 酶原激活
 - --- 改变细胞内酶的含量 (基因水平调控)

五、酶活性的调控

1. 别构调节作用

- ◆多酶体系:一个代谢途径由多步酶促反应组成。
- ◆ 限速反应: 决定一个代谢途径总的反应速率。
- ◆ 催化限速反应的酶通常是一种调节酶 (regulatory enzyme)。
- ◆调节酶:具有催化和调节作用的双功能酶。
- ◆ <u>别构酶</u>就是一类调节酶。

别构酶 Allosteric Enzymes

- **◆又称变构酶**。
- ◆为寡聚酶(含2个或2个以上的亚基),一般分子量较大, 且具有复杂的空间结构。
- ◆大多数<u>不遵守米氏方程</u>,由效应剂引起的抑制作用也不服 从典型的竞争性或非竞争性抑制作用的数量关系。

41

1. 别构调节作用

几个概念

- ◆ 别构部位 (allosteric site)
- ◆ 別构效应剂 (allosteric modulators)
- ◆ 别构调节作用 (allosterism)

别构酶的构成与分类

- ◆ 「催化亚基 (catalytic subunit) 催化部位 调节亚基 (regulatory subunit) — 别构部位
- ◆ 效应剂与酶别构部位的结合是<u>可逆</u>的。
- ◆ 别构效应剂的分类
 - ---- <u>激活效应剂</u> (positive modulator)
 - ---- <u>抑制效应剂</u> (negative modulator)
- ◆ 代谢底物通常是别构酶的激活效应剂;
 代谢产物通常是别构酶的抑制效应剂。

用示意图

Less-active enzyme

More-active enzyme

Active enzyme-substrate complex

例: 门冬氨酸氨甲酰基转移酶 (Aspartate transcarbamoylase, ATCase)

Carbamoyl phosphate

Aspartate

N-Carbamoylaspartate

• 受嘧啶合成终产物CTP的 负反馈调节。

Structure of ATCase

- --- has 12 polypeptide chains (subunits)
- --- 别构部位 + 催化部位
- --- 3r_{2 (二聚体)} + 2c_{3 (三聚体)}

Structure of ATCase

CTP is inhibitor and ATP is activator

Question: How can the binding of CTP to a regulatory subunit influence reactions at the active site of a catalytic subunit?

The active site studies of ATCase

The active site of ATCase

ATCase exists in two conformations: T state and R state

The R state and the T state are in equilibrium

CTP倾向于结合T态,不利于底物的结合,产生抑制效应。

五、酶活性的调控

2. 共价修饰调控

激活或抑制。

◆ 共价修饰调控 (covalent modification regulation)
某些酶分子上的基团通过发生共价修饰作用引起酶活性的

→ 共价调节酶 (covalent regulatory enzyme)。

共价修饰调控的特点

- ◆ 被修饰的酶可以有两种互变形式:
 - (1) 活性形式(具有催化活性)
 - (2) 非活性形式 (无催化活性)
- ◆ 共价修饰是<u>可逆</u>的。

磷酸化酶b和a

- ◆ 肌肉中存在的一种能催化 糖原的合成和分解的酶。
- ◆ 磷酸化酶 b: 无活性。
- ◆ 磷酸化酶 a: 高活性。
 活性中心的丝氨酸残基被磷酸化。

共价修饰调控的主要类型

共价修饰反 应类型	反应式	被修饰的氨 基酸残基
磷酸化	Enz \rightarrow Enz	Tyr, Ser, Thr, His
腺嘌呤 核苷酸化	Enz-OH PPi Enz-O-AMP	Tyr
腺嘌呤二 核苷酸化	NAD ⁺ 烟酰胺 Enz-NH ₂ → Enz-NH- ADP	Arg, Gln, Cys, His
尿嘧啶 核苷酸化	Enz-OH PPi Enz-O-UMP	Tyr
甲基化	SAM S-腺苷高半胱氨酸 Enz → Enz — Me	Glu

五、酶活性的调控

3. 酶原的激活

- ◆ 有些酶在生物体内首先合成出来的是它的无活性前体,称为酶原 (zymogen)。
- ◆酶原经水解去除一部分肽链,使酶的构象发生变化,形成有活性的酶分子。
- ◆酶原激活过程是<u>不可逆</u>的。
- ◆属于这种类型的酶有消化系统的酶(如胰蛋白酶、靡蛋白酶和胃蛋白酶等)以及凝血酶等。

胰蛋白酶原的激活

Chymotrypsinogen (inactive) 245 Trypsin π -Chymotrypsin (active) 245 15 16 Chymotrypsin Two dipeptides α -Chymotrypsin (active) 13 16 146 245 149 A chain B chain C chain

本次课内容总结

四、酶的结构和催化作用机制

4. 实例

(1) 溶菌酶:

(2) 蛋白酶:

(3) 碳酸酐酶:

酶促反应类型及特点

酶活性部位结构特征

催化机制及其研究方法

六、人工酶与酶工程

自学内容(了解)

(参见教材p119-125, p139-141)

- ◆ 抗体酶的概念及应用
- ◆ 杂化酶的概念及应用
- ◆ 酶模型设计原理及进展
- ◆ 酶工程的概念及应用

本章学习要点(1)

◆ 掌握内容:

- --酶与一般催化剂的异同;
- --酶的专一性种类;
- --酶活力、比活力、转换数的概念及计算;
- --维生素及其辅酶的结构特点、生物功能及作用机理;
- --米氏方程、 K_{m} 和 V_{max} 的意义和求法;
- --酶促反应影响因素;
- --酶的各种抑制作用的概念及动力学特点;
- --酶活性部位的结构特点;
- --各种酶催化反应机制的要点;
- --溶菌酶、丝氨酸蛋白酶、碳酸酐酶活性部位特点及催化机制。

本章学习要点(2)

◆ 了解内容:

- -- 酶的命名和分类;
- -- 维生素的分类;
- -- 人工酶 (抗体酶, 杂化酶, 酶模型) 与酶工 程的概念及其研究进展;
- -- 酶在化学研究中的应用;
- -- 非水介质中的酶促反应。

课后练习

- ◆ 教材p189-192, 第1-33题。
- ◆ 附加题
- 1. 假设在合成 (NAG)₆ 时,D 和 E 糖残基之间的糖苷氧已为¹⁸O所标记。 当溶菌酶水解时,¹⁸O将出现在哪个产物中?
- 2. 请比较溶菌酶、烯醇酶和糜蛋白酶:
 - 1) 哪种酶的催化活性需要金属离子?
 - 2) 哪种酶只含一种多肽链?
 - 3) 哪种酶被DIFP迅速失活?
 - 4) 哪种酶是由酶原激活成的?

预习内容

第五章核酸 (10学时)

授课老师: 欧田苗教授