기초빅데이터프로그래밍

Pandas

Pandas

- Pandas의 Series는 1차원 데이터를 다루는 데 효과적인 자료구조이며,
 DataFrame은 행과 열로 구성된 2차원 데이터를 다루는 데 효과적인
 자료구조이다.
- Pandas의 Series는 어떤 면에서는 파이썬의 리스트와 비슷하고 어떤 면에서는 파이썬의 딕셔너리와 닮은 자료구조이다.
 - 정수를 사용해서 데이터를 선택하는 리스트 기능
 - Label을 사용해서 데이터를 선택하는 사전 기능

데이터를 Series로 저장해보기

```
from pandas import Series, DataFrame

kakao = Series([92600, 92400, 92100, 94300, 92300])
print(kakao)

0    92600
1    92400
2    92100
3    94300
4    92300
dtype: int64
```

Series 객체를 생성할 때 따로 인덱스를 지정하지 않으면 0부터 시작하는 정숫값으로 인덱싱된다.

print(kakao2['2017-03-09'])


```
my ind =pd.date range("20191203",periods=6)
my_ind
DatetimeIndex(['2019-12-03', '2019-12-04', '2019-12-05', '2019-12-06',
               '2019-12-07', '2019-12-08'],
             dtype='datetime64[ns]', freq='D')
kakao2=pd.Series([92600, 93400, 94500, 93800, 94000, 93500], index=my ind)
kakao2
2019-12-03
             92600
2019-12-04
             93400
2019-12-05
            94500
2019-12-06
           93800
2019-12-07
            94000
2019-12-08
            93500
Freq: D, dtype: int64
kakao=pd.Series([92600, 93400, 94500, 93800, 94000, 93500], index=pd.date range("20170303",periods=6))
kakao
            92600
2017-03-03
2017-03-04
            93400
2017-03-05
            94500
2017-03-06
           93800
           94000
2017-03-07
2017-03-08
           93500
Freq: D, dtype: int64
                                                                                             4
```


• Pandas의 Series 객체에는 **인덱스**와 **값**이 저장되어 있는데 Series 객체의 index와 values라는 이름의 속성을 통해 접근할 수 있다.

• 예를 들어, kakao2 객체의 인덱스 값과 저장된 종가를 각각 출력하는 코드는 다음과 같이 구현할 수 있다.

for date in kakao2.index:
 print(date)

for ending_price in kakao2.values:
 print(ending_price)

2017-03-03

2017-03-06

2017-03-07

2017-03-08

2017-03-09

92600

92400

92100

94300

92300

Series 객체의 덧셈 연산

• 인덱싱이 서로 다른 경우에도 알아서 인덱싱이 같은 값들끼리 덧셈 연산을 수행한다.

```
import numpy as np
import pandas as pd
```

```
obj=pd.Series([3,6,9,12])
print(obj)
print(type(obj))
print(len(obj))
     6
     9
    12
dtype: int64
<class 'pandas.core.series.Series'>
obj=pd.Series([3,6,9,12], index=['a', 'b','c','d'])
obj
     3
    12
dtype: int64
emp={"김철수":5000, '김철호':7000, '한상민':4000, '문대용':4500} #dictionary이용
obj=pd.Series(emp)
obj
김철수
김철호
         5000
        7000
문대용
         4500
한상민
        4000
                                                                  7
dtype: int64
```

```
import pandas as pd
                                                                  SITY
my_se=pd.Series([10,20,30])
my_se
     10
     20
     30
dtype: int64
my_se[2]
30
my_se1 = pd.Series([10,20,30], index=['Samsung',"Naver", 'LG'])
my_se1
Samsung
           10
           20
Naver
LG
           30
dtype: int64
my_se1["LG"]
30
len(my_se1)
3
my_se1.min()
10
my_se1.max()
30
```



```
my_se1.sort_values()
```

Samsung 10 Naver 20 LG 30 dtype: int64

```
my_sel.sort_index()
```

Naver 20 Samsung 10 dtype: int64

my_se.sort_values(ascending=False)

2 30 1 20 0 10 dtype: int64

my_se.sort_index()

0 10 1 20 2 30 dtype: int64

where

```
my_se1.where(my_se1 > 15)
Samsung
           NaN
Naver
          20.0
LG
          30.0
dtype: float64
my_se1.where(my_se1 > 15).dropna() #NaN 제거하기
Naver 20.0
LG
     30.0
dtype: float64
my_se1.where(my_se1 == my_se1.max()).dropna()
LG
     30.0
dtype: float64
my_sel.sort_values(ascending = False).head(1)
LG
     30
dtype: int64
```



```
buy_stock = pd.Series([20,20,30], index=['Samsung', 'Naver', 'Kakao'])
buy stock
Samsung
           20
Naver
           20
Kakao
           30
dtype: int64
my_se1 + buy_stock
Kakao
            NaN
LG
           NaN
Naver
          40.0
          30.0
Samsung
dtype: float64
my_se1.add(buy_stock)
Kakao
            NaN
LG
           NaN
Naver
        40.0
Samsung 30.0
dtype: float64
```


https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

add는 이항연산이므로, operand가 NaN 일 경우 대체될 value 를 fill_value로 지정

```
new my se1= my se1.add(buy stock, fill value=0)
new my sel
Kakao
          30.0
LG
          30.0
Naver
        40.0
Samsung
          30.0
dtype: float64
new my se2= new my se1.astype('int64')
new my se2
Kakao
          30
LG
          30
Naver
          40
Samsung
         30
dtype: int64
```


DataFrame 구조

n*m 행렬구조를 가지는 데이터 구조이고 index와 column이 별도의 이름을 가지고, column별로 다른 데이터 타입을 가질 수 있음


```
a=pd.DataFrame([[10,20,30], [40,50,60], [70,80,90]])

print(a)
print(type(a))
print(len(a))
a
```

```
0 1 2
0 10 20 30
1 40 50 60
2 70 80 90
<class 'pandas.core.frame.DataFrame'>
3
```

	0	1	2
0	10	20	30
1	40	50	60
2	70	80	90

```
data=[[10,20,30], [40,50,60], [70,80,90]]
a=pd.DataFrame(data, columns=['1차', '2차', '3차'], index=['One', 'Two', 'Three'])
a
```

	1차	2차	3차
One	10	20	30
Two	40	50	60
Three	70	80	90

```
#사전을 이용해서 원하는 데이터 추출하기
mdf = pd.DataFrame({
   'weight':[80.0, 70.4, 56.9, 66.8, 51.2],
   'height':[170, 167, 162, 164, 159],
    'gender':['m', 'f', 'f', 'm', 'f']
})
print('몸무게 목록')
print(mdf['weight']) #몸무게 목록 출력하기
print('\n봄무게와 키 목록')
print(mdf[['weight', 'height']])
print('\n---키가 165이상')
print(mdf[mdf.height >= 165])
print('\n---남자들만...')
print(mdf[mdf.gender == 'm'])
print('\n---키로 정렬하면...')
print(mdf.sort_values(by='height'))
print('\n---몸무게로 정렬하면...')
print(mdf.sort values(by='weight', ascending=False))
```

mdf

	gender	height	weight
0	m	170	80.0
1	f	167	70.4
2	f	162	56.9
3	m	164	66.8
4	f	159	51.2

몸두	그게 목록			
0	80.0			
1	70.4			
2	56.9			
3	66.8			
4	51.2			
Nam	e: weight,	dtype:	float64	

모므게이 기 모로

	十川エ[기	
	weight	height
0	80.0	170
1	70.4	167
2	56.9	162
3	66.8	164
4	51.2	159

---키가 165이상

	gender	height	weight
0	m	170	80.0
1	f	167	70.4

---남자들만...

	gender	height	weight
0	m	170	80.0
3	m	164	66.8

---키로 정렬하면...

	gender	height	weight		
4	f	159	51.2		
2	f	162	56.9		
3	m	164	66.8		
1	f	167	70.4		
0	m	170	80.6		

---몸무게로 정렬하면...

D 1 / D = 0 C 1				
ge	nder	height	weight	
0	m	170	80.0	
1	f	167	70.4	
3	m	164	66.8	
2	f	162	56.9	
4	-	450	F4 2	

DataFrame 생성: 1 column

DataFrame은 기본적으로 column 단위로 데이터를 관리함

```
import pandas as pd
                                                                       data =[1,2,3,4,5,6,7]
                                                                       df=pd.DataFrame(data)
# Our small data set
                                                                       df
                                                          열
d = [0,1,2,3,4,5,6,7,8,9]
# Create dataframe
df = pd.DataFrame(d)
                                                           col1
                                                      row 1
print(df)
   0
                                                     row 2
  1
                                             행
  2
  5
  7
```


DataFrame 생성: list/tuple

column단위로 리스트를 만들어서 **zip을 이용해서 순서쌍을 만들고** 데이 터를 생성

```
names=['Bob','Jessica', 'Mary', 'John','kate']
births =[988, 155, 77, 578,973]
BabySet=list(zip(names,births))
df = pd.DataFrame(data=BabySet, columns=['Names', 'Births'])
df
```

- 80	Names	Births
0	Bob	988
1	Jessica	155
2	Mary	77
3	John	578
4	kate	973

DataFrame 생성: dict

column단위로 리스트를 만들어서 dict에 대입해서 데이터를 생성

```
names=['Bob', 'Jessica', 'Mary', 'John', 'kate']
births =[988, 155, 77, 578, 973]

DicBabySet={'Names':names, 'Births':births}
df = pd.DataFrame(data=DicBabySet)
df
```

	Births	Names
0	988	Bob
1	155	Jessica
2	77	Mary
3	578	John
4	973	kate

DataFrame 생성: Series

두 개의 series타 입에서 키값을 추출해서 자동으 로 인덱스화 해 서 처리

	Area	Population
Florida	170312	1170312
Illinois	149995	1149995
New York	141297	1141297
Texas	695662	1695662
california	423967	1423967

DataFrame 생성

• 딕셔너리를 통해 각 칼럼에 대한 데이터를 저장한 후 딕셔너리를 DataFrame 클래스의 생성자 인자로 넘겨주면 DataFrame 객체가 생성된다.

raw_data 딕셔너리는 'col0', 'col1', 'col2'라는 key 값을 가지며 각 key 는 리스트 타입의 value를 가진다.

```
col0 col1 col2
0 1 10 100
1 2 20 200
2 3 30 300
3 4 40 400
```

```
DataFrame에는 3개의 Series 객체가 있고,
이는 'col0', 'col1', 'col2'라는 key에 각각
대응되는 값(value)이다.
```

'col0', 'col1', 'col2'라는 key를 통해 value 에 해당하는 Series 객체에 접근할 수 있다.

```
data['col0']
```

```
1 2 2
```

Name: col0, dtype: int64

'col0', 'col1', 'col2'라는 문자열은 DataFrame의 각 칼럼을 인덱싱하는데 사용

```
type(data['col0'])
```


	Col0	Col1	Col2	
0	1	10	100	
1	2	20	200	
2	3	30	300	
3	4	40	400	

data = pd.DataFrame(raw_data, index=['r0','r1','r2','r3'])
data

	Col0	Col1	Col2
r0	1	10	100
r1	2	20	200
г2	3	30	300
r3	4	40	400

data['Col2']

r0 100 r1 200 r2 300 r3 400

Name: Col2, dtype: int64

· Column순서 변경

• Index 순서 변경

	Col1	Col2	Col0
0	10	100	1
1	20	200	2
2	30	300	3
3	40	400	4

df=data.reindex(index=[0,3,2,1])
df

TANAT State	Col1	Col2	Col0
0	10	100	1
3	40	400	4
2	30	300	3
1	20	200	2

- Column 추가
- 원하는 위치의 값을 변경: loc 옵션

import numpy as np
df['Col3']=np.nan
df

	Col1	Col2	Col0	Col3
0	10	100	1	NaN
3	40	400	4	NaN
2	30	300	3	NaN
1	20	200	2	NaN

df.loc[1,['Col3']]=2000
df

Ì	Col1	Col2	Col0	Col3
0	10	100	1	NaN
3	40	400	4	NaN
2	30	300	3	NaN
1	20	200	2	2000.0

- Column 간 연산
- 행 추가

df['NewCol']	=df['Col1']+	df['Col2']
df		- 3

	Col1	Col2	Col0	Col3	NewCol
0	10	100	1	NaN	110
3	40	400	4	NaN	440
2	30	300	3	NaN	330
1	20	200	2	2000.0	220

	Col1	Col2	Col0	Col3	NewCol	
0	10.0	100.0	1.0	NaN	110.0	
3	40.0	400.0	4.0	NaN	440.0	
2	30.0	300.0	3.0	NaN	aN 330.0	
1	20.0	200.0	2.0	2000.0	220.0	
4	NaN	NaN	NaN	NaN	NaN	

실습: 주가를 DataFrame으로 저장해보기

- 16.02.23~16.02.29일 사이의 일자별 주가 중 시가, 고가, 저가, 종가를 DataFrame으로 저장해보자.
- 참고로 시가, 고가, 저가, 종가는 영어로 open, high, low, close라고 부르며 약 어로 OHLC라고 한다.

일자	시가	고가	저가	종가	전일	일비	등락률	거래	량
16,02,29	11,650	12,100	11,600	11,900		300	+2,59%	225,	844
16,02,26	11,100	11,800	11,050	11,600 🛕 600		+5,45%	385,	241	
16,02,25	11,200	11,200	10,900	11,000 • 100		-0,90%	161,	214	
16,02,24	11,100	11,100	10,950	11,100 🔺 50		+0.45%	77,	201	
16,02,23	11,000	11,150	10,900	11,050	11,050. • 100		+0,91%	113,131	
16,02,22	10,950	11,050	10,850	10,950	١,	100	-0,90%	138,	387
16,02,19	10,950	11,100	10,800	11,050		- 0	0,00%	76,	105
16,02,18	11,050	11,200	10,950	11,050		250	+2 31%	831	611
16,02,17	11,150	11,300	10,800	10,8	6.02.29	open 11650	high 12100	low 11600	close
16,02,16	10,950	11,200	10,850	111	6.02.29	11100	11800	11050	11900 11600
				200	6.02.25	11200	11200	10900	11000
ZI 12 0 2	차원 형태의 데(이다 (취). 다	ᄋᅎᆁ	16	6.02.24	11100	11100	10950	11100
- 13.9 Z	사면 영대의 네	기디 (토시: 니	급 궁건)	16	6.02.23	11000	11150	10900	11050

실습: 그래프로 그리기

주가를 DataFrame으로 저장해보기

- 16.02.23~16.02.29일 사이의 일자별 주가 중 시가, 고가, 저가, 종가를 DataFrame으로 저장해보자.
- 참고로 시가, 고가, 저가, 종가는 영어로 open, high, low, close라고 부르며 약 어로 OHLC라고 한다.

 DataFrame 객체에서 칼럼의 순서는 DataFrame 객체를 생성할 때 columns라는 키워드를 지정 할 수 있다.

```
daeshin_day = DataFrame(daeshin, columns=['open', 'high', 'low', 'close'])
print(daeshin_day)

    open high low close
0 11650 12100 11600 11900
1 11100 11800 11050 11600
2 11200 11200 10900 11000
3 11100 11100 10950 11100
4 11000 11150 10900 11050
```


 DataFrame에서 인덱스 역시 DataFrame 객체를 생성하는 시점에 index를 통해 지정할 수 있다. 먼저 인덱싱에 사용할 값을 만든 후 이 를 DataFrame 객체 생성 시점에 지정한다.

kakao=pd.Series([92600, 93400, 94500, 93800, 94000, 93500], index=pd.date_range("20180227",periods=6)) kakao

```
2018-02-27 92600

2018-02-28 93400

2018-03-01 94500

2018-03-02 93800

2018-03-03 94000

2018-03-04 93500

Freq: D, dtype: int64
```


date_range

pd.date_range 함수를 쓰면 모든 날짜/시간을 일일이 입력할 필요 없이 시작일과 종료일 또는 시작일과 기간(periods=)을 입력하면 범위 내의 인덱스를 생성해 준다.

- freq 인수로 특정한 날짜만 생성되도록 할 수도 있다. 많이 사용되는 freq 인수값은 다음과 같다.
- s: 초
- T: 분
- H: 시간
- D: 일(day)
- B: 주말이 아닌 평일
- W: 주(일요일)
- W-MON: 주(월요일)
- M: 각 달(month)의 마지막 날
- MS: 각 달의 첫날
- BM: 주말이 아닌 평일 중에서 각 달의 마지막 날
- BMS: 주말이 아닌 평일 중에서 각 달의 첫날
- WOM-2THU: 각 달의 두번째 목요일
- Q-JAN: 각 분기의 첫달의 마지막 날
- Q-DEC: 각 분기의 마지막 달의 마지막 날
- 보다 자세한 내용은 다음 웹사이트를 참조한다.
- http://pandas.pydata.org/pandasdocs/stable/timeseries.html#offset-aliases

DataFrame 칼럼, 로우 선택

DataFrame 객체의 column에 접근하려면 **칼럼 이름을**, row에 접근하려면 loc 메소드를 통해 인덱스값을 이용한다.

```
day_data=daeshin_day.loc['16.02.24']
print(day_data)
print(type(day_data))

open 11100
high 11100
low 10950
close 11100
Name: 16.02.24, dtype: int64
<class 'pandas.core.series.Series'>
```

• DataFrame 객체의 칼럼 이름과 인덱스 값을 확인하려면 각각 columns와 index 속성을 사용한다.

```
print(daeshin_day.columns)
print(daeshin_day.index)

Index(['open', 'high', 'low', 'close'], dtype='object')
Index(['16.02.29', '16.02.26', '16.02.25', '16.02.24', '16.02.23'], dtype='object')
```


32

```
%matplotlib nbagg
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
dae_day.plot(title='Daeshin')
```



```
day_data=daeshin_day.loc['16.02.24']
print(day_data)
print(type(day_data))

open 11100
high 11100
— low 10950
close 11100
Name: 16.02.24, dtype: int64
```


<class 'pandas.core.series.Series'>

서강대학교 Sogang University

DataReader 이용하기

- pandas_datareader 패키지를 추가로 설치
- Anaconda Prompt에서
 - conda install panda-datareader
- 또는 Windows PowerShell에서
 - pip install panda_datareader
- import pandas_datareader.data as web


```
import pandas_datareader.data as web
import datetime
start = datetime.datetime(2010, 2, 19)
end = datetime.datetime.today()
gs = web.DataReader("078930", "google", start, end)
```

gs.info()

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1804 entries, 2010-02-19 to 2017-06-05
Data columns (total 5 columns):
```

Open 1804 non-null float64
High 1804 non-null float64
Low 1804 non-null float64
Close 1804 non-null float64
Volume 1804 non-null int64
dtypes: float64(4), int64(1)
memory usage: 84.6 KB

memory usage: 84.6 KB

import matplotlib.pyplot as plt
plt.plot(gs['Close'])
plt.show()


```
import pandas_datareader.data as web
import datetime
start = datetime.datetime(2017, 2, 19)
end = datetime.datetime.today()
gs = web.DataReader("078930.KS", 'yahoo', start, end)
```

gs.info()

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 1415 entries, 2017-02-20 to 2022-11-28
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	High	1415 non-null	float64
1	Low	1415 non-null	float64
2	Open	1415 non-null	float64
3	Close	1415 non-null	float64
4	Volume	1415 non-null	float64
5	Adj Close	1415 non-null	float64
_		, <u> </u>	

dtypes: float64(6)

memory usage: 77.4 KB

	High	Low	Open	Close	Volume	Adj Close	
Date							
2017-02-20	54800.0	53800.0	54300.0	54500.0	134852.0	44448.437500	
2017-02-21	55200.0	54300.0	54300.0	55000.0	129964.0	44856.218750	
2017-02-22	54900.0	53800.0	54900.0	54200.0		44203 765625 tplotlib.pyplot	as nit
2017-02-23	54400.0	53600.0	54400.0	53900.0		gs['Close'])	as pit
2017-02-24	54400.0	53500.0	54000.0	54000.0	prc.snow(
2022-11-22	47050.0	46250.0	46500.0	47050.0			
2022-11-23	47450.0	46550.0	47050.0	47150.0			
2022-11-24	47100.0	46000.0	47100.0	46150.0	70000 -	M	
2022-11-25	46650.0	46100.0	46200.0	46600.0		14 M	
2022-11-28	46550.0	45200.0	46550.0	46200.0	60000 -	- 1 . MM	A
					00000		Malank .
					50000 -		**************************************
					40000 -		The state of the s


```
%matplotlib nbagg
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
a = pd.Series(np.random.randn(10), index = np.arange(0, 100, 10))
a
0
     0.336954
10
    0.942193
20
    -1.139543
30
    0.745335
40
   0.833991
50
   0.965838
60 1.565770
70
   0.421018
80
    -0.315718
90
     0.592613
dtype: float64
```


a.plot()

plt.plot(a)

a.plot() plt.plot(a)

	Α	В	С	D
0	- <u>0.195147</u>	-0.818633	0.231205	1.397892
10	0.771331	0.444291	0.382609	-0.563171
20	2.854510	-0.707699	0.105789	-0.692718
30	4.147936	0.043988	-0.276413	-0.944034
40	4.483857	-0.550648	-0.093270	- <u>4.125725</u>
50	5.914736	-1.304638	-0.368625	-3.265200
60	6.237437	-2.928266	-0.657638	-3.261847
70	5.771313	-2.523559	-1.764859	-2.589371
80	3.286360	-0.485514	-2.850688	-2.549705
90	3.534146	- <u>1.165568</u>	-2.093120	- <u>1.955858</u>


```
s2 = pd.Series(np.random.rand(16), index=list("abcdefghijklmnop"))
s2
```

```
0.447705
a
b
     0.366086
     0.112897
C
d
     0.461951
     0.024518
e
     0.816570
     0.194222
g
h
     0.982399
i
     0.512912
     0.243593
k
     0.513772
1
     0.070270
     0.416423
m
     0.221580
n
     0.774268
0
     0.692939
dtype: float64
```

s2.plot(kind="bar")


```
s2 = pd.Series(np.random.rand(16), index=list("abcdefghijklmnop"))
52
```

```
0.447705
a
b
     0.366086
     0.112897
C
d
     0.461951
     0.024518
e
    0.816570
     0.194222
g
h
     0.982399
i
     0.512912
     0.243593
k
    0.513772
1
     0.070270
     0.416423
     0.221580
n
     0.774268
0
     0.692939
dtype: float64
```

s2.plot(kind="barh")


```
df2 = pd.DataFrame(np.random.rand(6, 4),
    index=['one', "two", "three", "four", "five", "six"],
    columns=pd.Index(["A", "B", "C", "D"], name="Genus"))
df2
```

Genus	Α	В	С	D
one	0.418906	0.236360	0.356705	0.734447
two	0.607312	0.303439	0.386386	0.028987
three	0.682558	0.194159	0.673478	0.713587
four	0.435695	0.141532	0.976216	0.189504
five	0.560502	0.049765	0.696089	0.068235
six	0.290436	0.671938	0.569046	0.369884

df2.plot(kind="bar")

Stacked = True

df2.plot(kind="barh", stacked=True)


```
s3 = pd.Series(np.random.normal(0, 1, size=200))
s3
```


0	-0.894760	1477/88	
1	0.828095		
2	-0.483131	170	1.035331
3	-0.598732	171	-0.986877
4	-0.216426	172	0.033864
5	-0.035249	173	1.473756
6	-0.014753	174	0.302862
7	0.077966	175	-1.431808
8	0.558808	176	0.763044
9	-1.527285	177	-0.411425
10	0.134735	178	-0.187996
11	-0.119358	179	-1.612416
12	-0.743607	180	-0.170691
13	1.354945	181	-0.688637
14	1.159680	182	-0.096160
15	0.385966	183	-0.448952
16	-0.696737	184	-0.888805
17	-3.001067	185	1.089468
18	0.779795	186	-0.287810
19	-1.550678	187	1.069154
20	0.977719	188	0.633246
21	0.207527	189	-0.080853
22	-0.309065	190	-0.575455
23	-1.255309	191	0.825637
24		192	-0.488726
25	0.293596	193	0.219815
	0.518539	194	1.648556
26	-0.008871	195	0.598652
27	1.280560	196	-2.763028
28	-1.909763	197	-1.289101
29	0.153304	198	1.431606
		199	-0.528180
170	1.035331	dtype:	float64

s3.hist()

s3.hist(bins=50)

s3.hist(bins=100, normed=True)

hist함수 :파라미터

facecolor는 색깔, alpha는 투명도 표시

: s3.hist(normed=True, facecolor='r', alpha=0.4)


```
x1 = np.random.normal(1,1, size=(100, 1))
x2 = np.random.normal(-2, 4, size=(100, 1))
x = np.concatenate((x1, x2), axis=1)
x
```

scatter

plt.scatter(df3["x1"], df3["x2"])

-2

-1


```
array([[ 0.19313506, 0.31312163],
       [-0.47424759, -3.6463171].
       [-0.39566273, -4.39315792],
        1.58981876, -6.137846891,
       0.82694043, -0.97478759],
       [-1.36406218, -7.52887931],
        1.32639017, 2.4169649 ],
       2.30069265, -4.10133103],
       [-0.40316729, 1.87375378],
       [-0.21853915, -2.40974112],
        1.47694488, -1.96760802],
       1.42585904, -8.0605759 ],
       [-2.06136554, 7.81256667],
       1.06650113, -5.43389854],
        1.46705916, 0.38011986],
       [ 2.2663812 , -2.0689719 ],
        1.93725699, -5.84513859],
        2.25169038, -3.27098125],
       [-0.80174507, 4.59140458],
       [-0.68720265, -3.91389168],
        2.01903759, -1.94005522],
        0.18252244, -0.78753369],
        2.41669538, -1.40658701],
       [-0.06693979, -1.94870717],
       -0.7513464 , -5.56498656],
       [-0.13268378, -1.94952599],
        1.21816097, -0.47712306],
       1.25555707, 0.90667213],
        2.32595465, 4.24346478],
       [-1.52017399, 3.77346622],
        2.3737178 . -3.565503521.
        0.85144142, -4.22281907],
       [-0.13133085, 2.68650806],
        1.07774921, 3.92385452],
       [-0.36599726, -0.36424637],
        2.11846786, -4.38793622],
        1.31668586, -3.62571651],
        1.27920239, -2.31842658],
        0.92087715, -3.89298929],
       [ 2.95758481, -4.75543334],
```

```
df3 = pd.DataFrame(x, columns=["x1", "x2"])
df3
```

	x1	x2
0	0.193135	0.313122
1	-0.474248	-3.646317
2	-0.395663	-4.393158
3	1.589819	- <u>6.137847</u>
4	0.826940	-0.974788
5	-1.364062	-7.528879
6	1.326390	2.416965
7	2.300693	- <u>4.101331</u>
8	-0.403167	1.873754
9	-0.218539	-2.409741
40	4 470045	4.007000

7.5 5.0 2.5 0.0 -2.5 -5.0 -

0

1

UC

plt.scatter(df3["x1"], df3["x2"])

scatter 함수 : 모양과 색 입히기

s는 크기, c는 색상, marker는 삼각형

```
x = np.random.rand(10)
y = np.random.rand(10)
z = np.sqrt(x**2+y**2)
plt.subplot(321)
plt.scatter(x,y, s=80, c=z, marker=">")
plt.show()
```


pie함수

색상 기본 순서 colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w')

```
import numpy as np
import matplotlib.pyplot as plt

data = [5,10,30,20,7,8,10,10]

plt.pie(data)
plt.show()
```


character	color
'b'	blue
ʻg'	green
'r'	red
'c'	cyan
'm'	magenta
'y'	yellow
'k'	black
'W'	white

```
%matplotlib nbagg
import numpy as np
import matplotlib.pyplot as plt
data=[5, 10, 30, 20, 7, 8, 10, 10]
plt.pie(data)
```



```
([<matplotlib.patches.Wedge at 0x1a99ed1ae10>,
 <matplotlib.patches.Wedge at 0x1a99ed21a90>,
 <matplotlib.patches.Wedge at 0x1a99ed27710>,
 <matplotlib.patches.Wedge at 0x1a99ed71390>,
 <matplotlib.patches.Wedge at 0x1a99ed71fd0>,
 <matplotlib.patches.Wedge at 0x1a99ed78c50>,
 <matplotlib.patches.Wedge at 0x1a99ed818d0>,
  <matplotlib.patches.Wedge at 0x1a99ed89550>],
 [<matplotlib.text.Text at 0x1a99ed215c0>,
 <matplotlib.text.Text at 0x1a99ed27240>,
 <matplotlib.text.Text at 0x1a99ed27e80>,
 <matplotlib.text.Text at 0x1a99ed71b00>,
  <matplotlib.text.Text at 0x1a99ed78780>,
  <matplotlib.text.Text at 0x1a99ed81400>,
  <matplotlib.text.Text at 0x1a99ed81f98>,
  <matplotlib.text.Text at 0x1a99ed89cc0>])
```



```
data = [5,10,30,20,7,8,10,10]
label =['Blue','Orange','Green','Red','Purple','Brown','Pink','Gray']
plt.pie(data, labels=label)
plt.show()
```


실습

- * slice labels
- * auto-labeling the percentage (autopct)

* offsetting a slice with "explode"

* drop-shadow* custom start angle : default is 0, counter-clockwise

imshow() 함수

- imshow() 함수를 이용해서 이미지 출력
- colorbar함수를 이용 옆에 colorbar를 출력


```
aou=np.random.random((100,100))
plt.imshow(aou)

plt.jet() # a spectral map with dark endpoints, blue-cyan-yellow-red
plt.colorbar()
```



```
aou=np.random.random((100,100))
plt.imshow(aou)
plt.hot() #sequential black-red-yellow-white
plt.colorbar()
```


image.read 함수

이미지 파일을 읽고 이를 ndarray로 전환해서 imshow함수로 그래프 출력

```
import matplotlib.image as mpimg
img = mpimg.imread("민들레꽃.jpg")
print (type(img))
plt.imshow(img)
                                                                              250
plt.hot()
plt.colorbar()
plt.show()
                                                                              200
                              100
<class 'numpy.ndarray'>
                              200
                                                                             - 150
                              300
                              400
                                                                             - 100
                              500
                                                                             - 50
                              600
                                         200
                                                 400
                                                         600
                                                                 800
```



```
import matplotlib.image as mg
im=mg.imread("민들레꽃.jpg")
print(type(im))
plt.imshow(im)
```

<class 'numpy.ndarray'>

실습: 이미지만 출력하기

이미지 처리시 좌표축 제거하기

axis('off')를 이용해서 이미지만 출력

```
import matplotlib.image as mpimg
img = mpimg.imread("민들레꽃.jpg")
print (type(img))
plt.imshow(img)
plt.axis('off')
plt.show()
<class 'numpy.ndarray'>
```


예제: 출생률 데이터

- https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv
- ➤ HTTP로 다운로드 : curl
- 파일을 콘솔로 출력
 !curl https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv
- 지정한 이름의 파일로 출력 !curl -o birth.csv https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv
- 서버의 filename으로 출력 !curl -0 birth.csv <u>https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv</u>
- birth = pd.read_csv('birth.csv')
- birth.head()

births = pd.read_csv('https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv')

births.head()

6	year	month	day	gender	births
0	1969	1	1	F	4046
1	1969	1	1	М	4440
2	1969	1	2	F	4454
3	1969	1	2	М	4548
4	1969	1	3	F	4548

```
births["decade"] = 10 *(births['year'] // 10)
births.pivot_table('births', index='decade', columns='gender', aggfunc='sum')
```

gender	F	М
decade		
1960	1753634	1846572
1970	16263075	17121550
1980	18310351	19243452
1990	19479454	20420553
2000	18229309	19106428

```
%matplotlib nbagg
import seaborn as sns
sns.set()
births.pivot_table('births', index='year', columns='gender', aggfunc='sum').plot()
plt.ylabel('total births per year')
```



```
quartiles=np.percentile(births['births'], [25, 50, 75])
mu=quartiles[1]
sig = 0.75*(quartiles[2] - quartiles[0])

births =births.query('(births > @mu - 5 * @sig) & (births < @mu + 5*@sig)')

births['day']= births['day'].astype(int)

births.index = pd.to_datetime(10000*births.year + 100*births.month + births.day, format='%Y%m%d')
births['dayofweek'] = births.index.dayofweek

births.pivot_table('births', index='dayofweek', columns='decade', aggfunc='mean').plot()
plt.gca().set_xticklabels(['Mon', 'Tues', "Wed", 'Thurs', 'Fri', 'Sat', 'Sun'])
plt.ylabel('mean births by day')</pre>
```

```
births.pivot_table('births', index='dayofweek', columns='decade', aggfunc='mean').plot()
plt.gca().set_xticklabels(['Mon', 'Tues', "Wed", 'Thurs', 'Fri', 'Sat', 'Sun'])
plt.ylabel('mean births by day')
```



```
births by date = births.pivot table('births', [births.index.month, births.index.day])
births by date.head()
1
  1
       4009.225
       4247.400
       4500.900
       4571.350
       4603.625
Name: births, dtype: float64
births by date.index = [pd.datetime(2012, month, day) for (month, day) in births by date.index]
births by date.head()
2012-01-01 4009.225
2012-01-02 4247.400
2012-01-03 4500.900
2012-01-04 4571.350
2012-01-05 4603.625
Name: births, dtype: float64
fig, ax = plt.subplots(figsize=(12,4))
births by date.plot()
```


fig, ax = plt.subplots(figsize=(12,4))
births_by_date.plot()

<matplotlib.axes._subplots.AxesSubplot at 0x277c8efd278>