Machine Learning

- statistical methods
- input : observations x
- goal : learn the function $f(x) \mapsto y$
- \bullet output : $\boldsymbol{\hat{y}} \approx \boldsymbol{y}$ minimizing prediciton errors on \boldsymbol{x}

Machine Learning

- statistical methods
- input : observations x
- goal : learn the function $f(x) \mapsto y$
- \bullet output : $\boldsymbol{\hat{y}} \approx \boldsymbol{y}$ minimizing prediciton errors on \boldsymbol{x}

Two big families

- supervised : y given with x when learning
- unsupervised : y hidden when learning

Machine Learning

- statistical methods
- input : observations x
- goal : learn the function $f(x) \mapsto y$
- \bullet output : $\boldsymbol{\hat{y}} \approx \boldsymbol{y}$ minimizing prediciton errors on \boldsymbol{x}

Two big families

- supervised : y given with x when learning
- unsupervised : y hidden when learning

Tons of algorithms

- Decision Trees, Random Forests
- Support Vector Machines
- Neural Networks

How to learn?

- Collect $Xs \rightarrow x_{tr}, x_{ts}$
- Compute a frontier to separate x_{tr} (according to associate y_{tr} or based on similarity)
- Evaluate the number of errors
- Repeat to reduce the number of errors

How to learn?

- Collect $Xs \rightarrow x_{tr}, x_{ts}$
- Compute a frontier to separate x_{tr} (according to associate y_{tr} or based on similarity)
- Evaluate the number of errors
- Repeat to reduce the number of errors

Overfitting

- If too much repetitions...
- No errors x_{tr}
- But what about x_{ts} (unseen in the training phase)
- ⇒ lack *generalization* power

Decision Trees

- Frontier is based on decision rules
- Model has a tree hierarchy
- Each level is a test on attributes

How to create the hierarchy?

- Multiple heuristics exist
- Most popular : Information gain; gini

How to create the hierarchy?

- Multiple heuristics exist
- Most popular : Information gain; gini

Information gain

- Entropy based heuristic
- What is the attribute that discriminate most?

Coming back at overfitting

- Few prediction errors on the training set
- Much more on the test set

Coming back at overfitting

- Few prediction errors on the training set
- Much more on the test set

How to avoid it with trees?

- Constrain the growth of the tree
- Prune the tree

Coming back at overfitting

- Few prediction errors on the training set
- Much more on the test set

How to avoid it with trees?

- Constrain the growth of the tree
- Prune the tree

Pruning

- based on heuristic
- Impurity measure
- Trade-off between the depth of the tree and number of errors

Exploitation

- For each incoming new data
- Begin at the root of the tree
- Follow path depending on results of tests
- The ending leaf gives the class

Exploitation

- For each incoming new data
- Begin at the root of the tree
- Follow path depending on results of tests
- The ending leaf gives the class

Decision rules

- New constraints can be extracted
- Simply follow the path!

From Decision to Regression

- Decision = predict a label
- Regression = predict a value

From Decision to Regression

- Decision = predict a label
- Regression = predict a value

Regression Trees

- Similar to Decision Trees
- Problem is more complex

Intro to Machine Learning Intro to Decision Trees Intro to Regression Trees Performance Metrics

Performance

About # of good predictions and #errors

Performance

About # of good predictions and #errors

Supervised leraning Confusion Matrix Prediction outcome p n p True Positive False Negative n False Positive True Negative

Intro to Machine Learning Intro to Decision Trees Intro to Regression Trees Performance Metrics

<u>Performance</u>

About # of good predictions and #errors

Performance

About # of good predictions and #errors

Unsupervised learning

- Mean Squared Error (MSE) and Mean Absolute Error (MAE)
- Mean Absolute Percentage Error (MAPE) :

$$\mathsf{MAPE} = \frac{100}{\#observ.} \sum_{i=1}^{\#observ.} \frac{\| expected - predicted \|}{expected}$$