

Stratégie de gestion des antimicrobiens :

Optimisation de la dose

Examen et personnalisation des doses d'antimicrobiens en fonction des caractéristiques du patient, des médicaments administrés et des infections.

@istock.com/bakhtiar_zein

Niveau de priorité : A Niveau de difficulté : 2

Phase du programme :

- ✓ Initiale
- Intermédiaire
- Avancée

Résultats de la gestion antimicrobienne :

- Impact sur l'utilisation des médicaments
- Impact sur les résultats cliniques

Pour en savoir plus sur ces critères et leur élaboration, veuillez consulter l'<u>Antimicrobial</u>

<u>Stewardship Strategy Criteria</u>

<u>Reference Guide</u> (en anglais).

Mis à jour en juin 2016

Description

La fiche qui suit offre un aperçu de la question, et non un résumé exhaustif. En règle générale, l'équipe de soins doit effectuer le suivi des patients dont le traitement a été modifié à la suite de recommandations formulées par l'équipe de gestion des antimicrobiens.

Quoique des doses standards d'antimicrobiens sont habituellement prescrites pour les adultes, le dosage individualisé fait désormais partie des stratégies suggérées pour améliorer les résultats cliniques et diminuer la résistance aux antimicrobiens.

Il est primordial de bien soupeser le dosage des antimicrobiens lors du traitement d'une infection. Une dose trop faible peut compromettre les chances de réussite d'un traitement et accroître le risque d'apparition de résistance. Une dose trop élevée peut prédisposer le patient à des effets indésirables.

L'optimisation de la dose signifie l'adaptation de la dose d'antimicrobiens en fonction des caractéristiques du patient (ex. son poids, sa fonction rénale et hépatique), le microbe en cause, le site d'infection (ex. le système nerveux central, le système sanguin), ainsi que les caractéristiques pharmacocinétiques et pharmacodynamiques du médicament (p. ex. activité concentration dépendante ou temps dépendant). »¹

L'optimisation de la dose est une activité populaire auprès des pharmaciens dans le cadre d'une stratégie de gestion des antimicrobiens lors du processus d'évaluation de la médication. Elle implique fréquemment la réduction des doses d'antimicrobiens éliminés par voie rénale chez les patients atteints d'une dysfonction rénale. Il est cependant important d'accroître les doses en présence de certaines maladies (ex. infection du système nerveux central, endocardite, infection des os et des articulations), d'organismes particuliers (staphylococcus

aureus résistant à la méthicilline, infection multirésistante à la bactérie Pseudomonas aeruginosa) et d'obésité.

Les doses et les régimes thérapeutiques recommandés devraient être intégrés à des directives de traitement empiriques, des protocoles de soins et des ordonnances prédéfinies, afin d'assurer que le régime thérapeutique adéquat soit prescrit dans les cas d'infections spécifiques. Certains établissements peuvent dejà avoir en place des directives médicales, afin de simplifier les processus et permettre aux pharmaciens d'ajuster les doses d'antimicrobiens.

Le schéma posologique et le mode d'administration doivent maximiser les profils pharmacocinétique et pharmacodynamique des antimicrobiens pour optimiser leurs effets. Par exemple, l'administration uniquotidienne d'aminosides au lieu d'un dosage traditionnel (doses plus faibles administrées deux ou trois fois par jour) peut accroître l'élimination des bactéries et diminuer le risque de néphrotoxicité et d'ototoxicité.^{2,3}

Une stratégie plus complexe d'optimisation de la dose implique l'utilisation de perfusions prolongées ou continues de bêta-lactamines plutôt que la traditionnelle dose en bolus. On a d'ailleurs démontré que cette approche améliorait les résultats cliniques (dont une réduction de la mortalité) chez les patients gravement malades et les personnes infectées par des organismes plus résistants. Comme cette pratique exige davantage de main-d'œuvre, ce type de programme se limite souvent aux centres hospitaliers universitaires et aux unités de soins critiques. Plus difficiles à mettre en œuvre et moins prioritaires que les autres initiatives d'optimisation de la dose, les programmes de perfusions de bêta-lactamines ne sont donc pas considérés comme une composante essentielle de cette stratégie.

Avantages

- Probabilité accrue d'atteindre l'objectif pharmacodynamique.
- Amélioration possible des taux de guérison microbiologique et clinique, y compris une réduction de la mortalité.
- Risque moins élevé de développer une résistance.
- Risque moins élevé d'événement indésirable causé par un dosage excessif (p. ex., néphrotoxicité causée par un aminoside).
- Diminution du risque de sous-dosage chez les patients obèses.
- Approche pouvant être centralisée si l'on dispose de suffisamment de renseignements (ex. dossier médical électronique de la fonction rénale) au moment de servir la médication.

Inconvénients

- Il pourrait être difficile d'obtenir les renseignements pertinents du patient (ex. fonction rénale, poids, indication thérapeutique des antimicrobiens) pour faire les ajustements nécessaires.
- Il n'existe pas d'études cliniques qui définissent les doses, les schémas posologiques optimaux et les indications pour l'ensemble des antimicrobiens (des directives ont toutefois été établies pour la plupart des infections).
- Les doses recommandées pour les populations spécifiques (ex. patients obèses ou ayant une dysfonction rénale) ne sont pas toujours disponibles ou cohérentes.
- Les perfusions prolongées ou continues de bêta-lactamines peuvent être difficiles à mettre en place sur le plan logistique (ex. problèmes liés à la stabilité ou à la compatibilité du médicament) et exiger beaucoup de main-d'œuvre.

Exigences

- Accès à des données précises sur le patient (p. ex., poids, fonction rénale, indication thérapeutique des antimicrobiens).
- Tableaux de dosage/nomogramme des aminosides, dosage chez les personnes obèses, doses d'antimicrobiens dans les cas d'insuffisance rénale, etc.
- Formation des pharmaciens et des prescripteurs sur les objectifs pharmacocinétiques et pharmacodynamiques des médicaments ciblés, et les façons d'optimiser le traitement pour maximiser l'atteinte de ces objectifs.
- Élaboration de protocoles, accès à l'équipement nécessaire (p. ex., pompes à perfusion) et formation du personnel médical et infirmier sur les perfusions prolongées ou continues de bêta-lactamines.

Indicateurs connexes

- Pourcentage de patients recevant une dose adéquate et se conformant à la posologie recommandée.
- Facilité de la mise en œuvre des nouveaux protocoles, politiques et procédures.
- Résultats cliniques avant et après la mise en œuvre des nouveaux protocoles (incluant la perfusion prolongée ou continue de bêta-lactamines) (phase avancée).

Références

- 1. Dellit TH, Owens RC, McGowan JE Jr, Gerding DN, Weinstein RA, Burke JP, et al; Infectious Diseases Society of America; Society for Healthcare Epidemiology of America. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44(2):159–77. Disponible à l'adresse: http://cid.oxfordjournals.org/content/44/2/159.long
- 2. Owens RC Jr, Shorr AF. Rational dosing of antimicrobial agents: pharmacokinetic and pharmacodynamic strategies. Am J Health Syst Pharm. 2009;66(12 Suppl 4):S23–30.
- 3. Barza M, Ioannidis JP, Cappelleri JC, Lau J. Single or multiple daily doses of aminoglycosides: a meta-analysis. BMJ. 1996;312(7027):338–45. Disponible à l'adresse : http://www.bmj.com/content/312/7027/338.long

Ouvrages utiles supplementaires

Vous trouverez ci-après une liste d'ouvrages contenant des renseignements et perspectives complémentaires sur la stratégie décrite et (ou) des exemples de mises en application de cette stratégie. Cette liste n'est pas exhaustive. L'adresse URL est fournie quand l'ouvrage est accessible gratuitement sur Internet.

• Xamplas RC, Itokazu GS, Glowacki RC, Grasso AE, Caquelin C, Schwartz DN. Implementation of an extended-infusion piperacillin-tazobactam program at an urban teaching hospital. Am J Health Syst Pharm. 2010;67(8):622–8.

L'article décrit la mise en place réussie d'un programme de perfusion prolongée de pipéracillinetazobactam dans un établissement hospitalier; le programme a par la suite entraîné une diminution des achats de pipéracilline-tazobactam par la pharmacie.

- MacVane SH, Kuti JL, Nicolau DP. Prolonging β-lactam infusion: a review of the rationale and evidence, and guidance for implementation. Int J Antimicrob Agents. 2014;43(2):105–13.
- Drew RH, White R, MacDougall C, Hermsen ED, Owens RC Jr; Society of Infectious Diseases Pharmacists. Insights from the Society of Infectious Diseases Pharmacists on antimicrobial stewardship guidelines from the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Pharmacotherapy. 2009;29(5):593–607.
- Polso AK, Lassiter JL, Nagel JL. Impact of hospital guideline for weight-based antimicrobial dosing in morbidly obese adults and comprehensive literature review. J Clin Pharm Ther. 2014;39(6):584–608.
 Disponible à l'adresse: http://onlinelibrary.wiley.com/doi/10.1111/jcpt.12200/full

Outils et ressources

- Division of Nephrology and Hypertension. *Adult drug book* [internet]. Louisville, KY: Université of Louisville; c2015 [consulté le 23 sept. 2015]. Disponible à l'adresse:
 - https://kdpnet.kdp.louisville.edu/drugbook/adult/?node=4361

Fournit des recommandations sur l'ajustement des doses d'antimicrobiens dans les cas de dysfonctionnement rénal.

Scottish Antimicrobial Prescribing Group (SAPG). Gentamicin and vancomycin [internet]. Glasgow, UK:
 Scottish Medicines Consortium, [consulté le 23 sept. 2015]. Disponible à l'adresse:

http://www.scottishmedicines.org.uk/SAPG/Quality_Improvement/Gentamicin_and_Vancomycin

Guides d'utilisation de la vancomycine et de la gentamicine incluant des calculatrices en ligne.

Guide sur la perfusion intermittente (diffusion percutanée) et la perfusion continue de la vancomycine.

Fournit les monographies des établissements hospitaliers de Hartford et de Greater Glasgow and Clyde, et des tableaux d'administration et de surveillance de la gentamicine.

Modèles et exemples (mis à jour en juin 2016)

- Exemple 1 : Vancouver Coastal Health et Providence Health Care, C.-B. Vancomycin Empiric Dosing Guidelines (Recommandations posologiques empiriques d'administration de vancomycine)
- Exemple 2: Markham Stouffville Hospital Corporation Medication Renal Dose Adjustment Guidelines
 in Adults (Politique d'ajustement des doses de médicament chez des adultes ayant un
 dysfonctionnement rénal)
- <u>Exemple 3 : Centre Sunnybrook des sciences de la santé Antibiotic Dosing Charts in Renal Replacement</u>
 <u>Therapy</u> (Schémas posologiques des antibiotiques dans les traitements de suppléance rénale)
- Exemple 4 : Centre régional de santé Royal Victoria Piperacillin-Tazobactam [TazocinMD] Guidelines for Use, 2013 (Directives d'utilisation de l'association pipéracilline-tazobactam [TazocinMD], 2013)

Divers établissements de soins de santé ont généreusement partagé ces documents pour aider les autres à élaborer et à mettre en oeuvre leur programme de gestion des antimicrobiens. Nous vous recommandons d'indiquer l'établissement d'origine si vous adoptez un outil, un formulaire ou un cheminement particulier sous sa forme originale.

Les exemples contenant des recommandations cliniques ou thérapeutiques ne sont pas nécessairement conformes aux directives publiées et peuvent ne pas convenir ou s'appliquer directement à votre établissement. Tous les exemples doivent être examinés dans le contexte de la population cible, de l'environnement et de l'antibiogramme local de votre établissement.

Santé publique Ontario n'est pas propriétaire des documents et des renseignements mentionnés dans la présente section. Santé publique Ontario ainsi que l'établissement qui a communiqué le document n'assument aucune responsabilité à l'égard de l'utilisation d'un outil ou d'une ressource par un tiers.

Liens vers d'autres stratégies

- <u>Lignes directrices, cheminements cliniques, algorithmes et (ou) formulaires des ordonnances associés au</u> traitement spécifique d'une maladie
- Lignes directrices pour la prescription empirique d'antimicrobiens
- <u>Vérification prospective avec intervention et rétroaction</u>
- Surveillance des concentrations thérapeutiques (avec rétroaction)

Avertissement

Le présent document peut être utilisé librement sans autorisation à des fins non commerciales seulement, pourvu qu'on mentionne Santé publique Ontario de façon appropriée. Aucune modification ne peut être apportée au contenu sans l'autorisation explicite écrite de Santé publique Ontario.

Référence suggérée

Agence ontarienne de protection et de promotion de la santé (Santé publique Ontario). *Stratégie de gestion des antimicrobiens : Optimisation de la dose,* Toronto, ON, Imprimeur de la Reine pour l'Ontario, 2016.

© Imprimeur de la Reine pour l'Ontario, 2016

Renseignements supplémentaires

<u>Programme de gestion des antimicrobiens</u>, Prévention et contrôle des infections, Santé publique Ontario.

Courriel: asp@oahpp.ca

Santé publique Ontario remercie le gouvernement de l'Ontario pour son soutien financier.

Exemple 1 : Vancouver Coastal Health et Providence Health Care, C.-B. - Recommandations posologiques empiriques d'administration de vancomycine

How you want to be treated.

Pharmacy VANCOMYCIN EMPIRIC DOSING GUIDELINES April 2016, 3rd edition

For more information, please contact Pharmacy Or visit: www.vhpharmsci.com

KEY

- 1. Establish patient age, weight, and serum creatinine.
- 2. Using Table 1, identify initial loading dose and maintenance dose per interval according to patient weight and target pre-vancomycin level.
- 3. Using Table 2, determine target pre-vancomycin level based on clinical indication.
- 4. Using Tables 3 or 4, identify initial dosing interval according to target pre-vancomycin level, age, and serum creatinine.
- 5. Using Table 5, determine dialysis dosing.

TABLE 1 INITIAL DOSE PER INTERVAL

TOTAL BODY WEIGHT	LOADIN (suggested 2500 m	MAINTENANCE DOSE	
kg	Target pre-level 10-15 mg/L (20 mg/kg)	Target pre-level 15-20 mg/L (25 mg/kg)	(15 mg/kg)
40-50	1000 mg	1250 mg	750 mg
51-60	1250 mg	1500 mg	1000 mg
61-70	1250 mg	1750 mg	1000 mg
71-80	1500 mg	2000 mg	1250 mg
81-90	1750 mg	2250 mg	1250 mg
91-100	2000 mg	2500 mg	1500 mg

Disponible en ligne à l'adresse :

http://vhpharmsci.com/PagePocket/index.html

Avis de non-responsabilité

Cette ressource a été élaborée par Vancouver Coastal Health et Providence Healthcare. Son contenu n'est pas la propriété de SPO, qui n'assume aucune responsabilité pour les renseignements qu'on y trouve. Santé publique Ontario, Vancouver Coastal Health et Providence Healthcare ne peuvent être tenus responsables de l'usage subséquent, par une tierce partie, des ressources et outils offerts.

Exemple 1: Vancouver Coastal Health et Providence Health Care, C.-B. -Recommandations posologiques empiriques d'administration de vancomycine (suite)

TABLE 2 SUGGESTED TARGET PRE-VANCOMYCIN LEVELS **BASED ON INDICATION**

Pre-vancomycin Level 10-15 mg/L	Pre-vancomycin Level 15-20 mg/L
Skin and soft tissue infection Urinary tract infection (UTI) (if catheter-associated; rule out bacteremia)	Catheter-associated bacteremia Central nervous system infection Deep-seated or sequestered infection (e.g. abscess) Endocarditis Osteomyelitis MRSA bacteremia or pneumonia MSSA bacteremia (penicillin allergic patient)

TABLE 3 FOR SKIN AND SOFT TISSUE INFECTION & UTI LOW-TARGET 10-15 mg/L INITIAL DOSING INTERVAL (hours)

SCr	Age Group (years)						
(mcmol/L)	20-29	30-39	40-49	50-59	60-69^	70-79^	
40-60	8	8	12	12	12	18	
61-80	8	12	12	12	18	18	
81-100	12	12	12	18	18	18	
101-120	12	12	18	18	18	24	
121-140	12	18	18	18	24		
141-160	18	24	24	24			
161-180	24	24					
181-200	24						
Above 200							
Dialysis		See	TABLE	5 (back of	card)		

TABLE 4 FOR ALL OTHER INDICATIONS (COMPLICATED INFECTIONS) HIGH-TARGET 15-20 mg/L INITIAL DOSING INTERVAL (hours)

SCr	Age Group (years)						
(mcmol/L)	20-29	30-39	40-49	50-59	60-69^	70-79^	80-89^
40-60	6	6-8	8	8	8-12*	12	12
61-80	8	8	8-12*	12	12	12	12-18*
81-100	12	12	12	12	12-18*	18	18
101-120	12	12	12-18*	18	18	18	18
121-140	12	18	18	18	18	18-24*	
141-160	18	18	18	18-24*	24		
161-180	18-24*	24	24	24			
Above 180							
Dialysis			See TAB	LE 5 (bac	k of card)		

[^]In elderly patients with low muscle mass, use clinical judgment as SCr may not reflect renal function accurately.

- Shaded boxes: These patients have unstable and/or reduced renal function, and the nomogram may not be as predictive. For those with an interval stated, patients should receive a loading dose followed by 3 hour and pre-2nd dose serum
- levels to determine appropriate dosing.
- For those with no dosing interval stated, patients should receive a loading dose followed by 3 hour and 24 hour post-dose serum levels to determine subsequent dosing.

 A clinical pharmacist should be contacted for assistance with dosing and interpretation of levels.

Disponible en ligne à l'adresse :

http://vhpharmsci.com/PagePocket/index.html

Avis de non-responsabilité

Cette ressource a été élaborée par Vancouver Coastal Health et Providence Healthcare. Son contenu n'est pas la propriété de SPO, qui n'assume aucune responsabilité pour les renseignements qu'on y trouve. Santé publique Ontario, Vancouver Coastal Health et Providence Healthcare ne peuvent être tenus responsables de l'usage subséquent, par une tierce partie, des ressources et outils offerts.

^{*}If more aggressive therapy is desired, select more frequent dosing interval.

INTERDISCIPLINARY MANUAL

AUTHOR: Patient Care Director.

Pharmacy

FOLDER:

Medication Guidelines & **Protocols**

Services

APPROVED BY:

Medical Advisory Committee REVIEW FREQUENCY: 3 years

ELECTRONIC RESPONSIBILITY: Director,

Patient Care

ORIGINAL APPROVAL DATE: 3/11/2005

Pharmacy Services

POLICY HISTORY/ NUMBER

REVIEWED 22/01/2014

CHANGES:

REVISED DATE:

290.914.916.195 MEDICATION RENAL DOSE ADJUSTMENT GUIDELINES IN ADULTS

POLICY: To ensure proper adjustment of renally eliminated medications for patients with renal impairment.

GUIDELINES: Many medications require adjustment of dose in the setting of impaired renal function. Renal impairment is the main reason for reducing the doses of drugs in the elderly as they will often have moderate renal impairment despite a serum creatinine value within the normal range. Adjusting doses according to renal function can eliminate adverse effects and can provide cost savings by avoidance of excessive dosing. Recommended doses are available for these medications based on estimated creatinine clearance. 1,2,3,4 This policy would grant the authority for pharmacists to automatically adjust the dose of designated agents.

PROCEDURE:

- 1) Review patient's chart and laboratory record
- 2) Obtain height, weight and serum creatinine to calculate estimated creatinine clearance based on the Cockroft-Gault equation*
- 3) Refer to the suggested dosing schedules in chart attached and identify appropriate dosing regimen based on estimated creatinine clearance

Avis de non-responsabilité

4)	Write order in patient chart	"Automatic renal dose adjustment by	y
	pharmacist, change	(medication name) to	(new
	dose and interval)		

- 5) Documentation will be made in electronic chart including estimated creatinine clearance and rationale for dose adjustment.
- 6) Order BUN and serum creatinine on day 2 and then as required. Order drug levels as required.
- 7) Adjustments will be made to medication regimen as needed based on subsequent serum creatinine measurements or drug level results.

Exceptions:

- a. Physician indicates 'no substitution' on order
- b. Patients with a diagnosis of meningitis or endocarditis (See aminoglycoside policy for dosing of gentamicin in endocarditis)
- c. Patients in Intensive Care Unit with presumed sepsis

For above situations, any suggested dosing changes require review and acceptance by most responsible physician.

*Cockroft-Gault equation:

Creatinine clearance (CrCl) = $\underline{\text{(140-age) x weight (kg)}}$ Multiply by 1.2 if male Serum creatinine (µmol/L)

References:

- Aronoff GR, Bennett WM, et al. Drug Prescribing in Renal Failure: Dosing Guidelines for Adults, Fourth Edition. Philadelphia, PA; American College of Physicians. 1999.
- 2. Compendium of Pharmaceuticals and Specialties, electronic version (eCPS). Canadian Pharmacists Association, 2007.
- 3. Micromedex. Thomson Healthcare Inc. 2005.
- 4. Guidelines for Antimicrobial Use. Antibiotic Subcommittee, University Health Network, 2003.

ENDORSEMENTS:

Antibiotic Stewardship Subcommittee Drugs and Therapeutics Committee

Avis de non-responsabilité

Antibiotic	Creatinine Clearance (CrCI) (mL/min)							
***************************************	Greater than 50	25-49	10-24	Less than 10				
acyclovir (IV)	5-10 mg/kg q8h	5-10 mg/kg q12h	5-10 mg/kg q24h	50% dose q24h				
(PO) genital herpes	400 mg TID	400 mg TID	400 mg TID	200 mg BID				
(PO) varicella zoster	800 mg 5 x / day	800 mg 5 x / day	800 mg TID	800 mg BID				
aminoglycosides		see aminoglycoside dosing in adults guideline (policy # 290.914.916.025)						
amoxicillin-clavulanate	500-875 mg BID	500-875 mg BID	250-500 mg BID	250-500 mg q24h				
ampicillin	1-2 g q4-6h	1-2 g q6-12h	1-2 g q6-12h	1-2 g q12-24 h				
amoxicillin	250-500 mg TID	CrCl less than 30: 250-500 mg BID	250-500 mg BID	250-500 mg q24h				
azithromycin	no adjustment requir							
cefazolin	1-2 g q8h	1-2 g q12h	1-2 g q12h	1-2 g q24h				
cefotaxime	1 g q8h	1 g q12h	1 g q12h	1 g q24h				
ceftazidime	1-2 g q8h	1-2 g q12h	1-2 g q24h	500 mg-1 g q24h				
ceftriaxone	no adjustment requir	no adjustment required						
cefuroxime (IV)	750 mg q8h	750 mg q8h	750 mg q12h	750 mg q24h				
cefuroxime axetil (PO)	500 mg BID	500 mg BID	500 mg BID	500 mg q24h				
cephalexin	500 mg QID	500 mg TID	500 mg BID	250 mg BID				
ciprofloxacin (IV)	400 mg q12h	CrCl less than 30: 400 mg q24h	400 mg q24h	400 mg q24h				
ciprofloxacin (PO)	500-750 mg BID	CrCl less than 30: 500-750 mg q24h	500-750 mg q24h	500 mg q24h				
clarithromycin	250-500 mg BID	CrCl less than 30: 50% of dose BID	50% of dose BID	50% of dose BID				
Clindamycin	no adjustment requir	ed						
cloxacillin	no adjustment requir	red		<u>'</u>				
cotrimoxazole (IV)	8-10 mg/kg/day in 2-4	CrCl Less than 30: 50% of dose in	50% of dose in	not recommended				
(of TMP component)	divided doses	2 divided doses	2 divided doses					
PCP pneumonia	15-20 mg/kg/day in 2-4	CrCl Less than 30: 50% of dose in	50% of dose in	not recommended				
	divided doses	2 divided doses	2 divided doses					

Avis de non-responsabilité

Antibiotic	Creatinine Clearance (CrCl) (mL/min)					
	Greater than 50	25-49	10-24	Less than 10		
cotrimoxazole (PO)	1 DS tablet BID	CrCl Less than 30: 1 DS tablet daily	1 DS tablet daily	not recommended		
ertapenem	1 g q24h	CrCl Less than 30: 500 mg q24h	500 mg q24h	500 mg q24h		
fluconazole	100-400 mg q24h	50% of dose q24h	50% of dose q24h	25% of dose q24h		
meropenem	500 mg q6h	500 mg q8h (CrCl Less than 30 - q12h)	500 mg q12h	500 mg q24h		
moxifloxacin	no adjustment require	ed				
metronidazole	no adjustment require	ed				
nitrofurantoin	100 mg PO BID	should be avoided if CICr	less than 50 ml/min			
Oseltamivir – Treatment	75 mg BID	75 mg daily	30 mg daily	Not recommended		
Oseltamivir- Prophylaxis	75 mg daily	30 mg daily	30 mg every second day	Not recommended		
penicillin G	1-4 Milli units q4-6h	1-4 Milli units q8-12h	1-4 Milli units q8-12h	1-4 Milli units q12h		
piperacillin/tazobactam	4.5 g q8h	CrCl less than 40: 3.375 g q8h	CrCl less than 20: 3.375 g q12h			
piperacillin/tazobactam for HAP/VAP *HAP= hospital acquired pneumonia *VAP= ventilator associated pneumonia	4.5 g q6h	CrCl less than 40: 3.375g q6h	CrCl less than 20 2.25g q6h			
Valacyclovir Herpes zoster	1000 mg q8h	CrCl less than 30: 1000 mg q12h	1000 mg q12h			
Genitial herpes (initial)	1000 mg q12h	CrCl less than 30: 1000 mg q24h	1000 mg q24h			
Genitial herpes (recurrent)	500 mg q12h	500 mg q12h	500 mg q12h			
Herpes Labialis (cold sores)	2000 mg q12h x 2 doses	1000 mg q12h x 2 doses	500 mg q12h x 2 doses			
vancomycin	CrCl greater than 65 - 1 g q12h	CrCl 31-40 - 1 g q36h	CrCl 10-15 - 1 g q72h			
vancomycin	CrCl 41-64 - 1 g q24h	CrCl 16-30 - 1 g q48h	CrCl less than 10, rpt dose 12	when level less than		

Avis de non-responsabilité

Miscellaneous Medications							
	Greater than 50	25-49	10-24	Less than 10			
Allopurinol	200-400 mg q24h	200 mg q24h	100 mg q24h	100 mg q2-3 days			
Gabapentin	300-900 mg TID	200-700 mg BID	200-700 mg daily	100-300 mg q24-48h			
Ranitidine (PO)	150 mg BID	150 mg daily	·				
Ranitidine (IV)	50 mg q8h	50 mg q12-24h					
Sotalol (for VT)	CrCl greater than 60 40-160 mg BID	CrCl 30-60 40-160 mg daily	CrCl 10-30 40-160 mg q36-48h	Patient specific – discuss with MD			
Sotalol (for AF)	CrCl greater than 60 40-160 mg BID	CrCl 40-60 40-160 mg daily	CrCl less than 40 Not recommended				

Avis de non-responsabilité

Antibiotic dosing charts

Antimicrobial	Usual Dose	CRRT	SLED	HD	ESRD or PD
Aminoglycosides	Standard dosing of Tobramycin / Gentamicin 2mg/kg at interval appropriate for renal function Standard dosing of Amikacin 8mg/kg at interval appropriate for renal function ODA: Gentamicin / tobramycin 5-7mg/kg q24h Amikacin 15mg/kg q24h P/T levels with third dose	• CRRT and Continuous SLED • 2-3mg/kg iv gentamicin or OR 8-10mg/kg iv for amikad q24h • Obtain P/T with 3rd dose • Usually require q24-48h dc CRRT and the same is likely continuous SLED For intermittent SLED: • Give 2-3mg/kg x 1 dose, go following dose and trough I SLED completion, re-dose wafter getting the trough lew trough < 2mg/L with negligi accumulation, since 70-909 • Adjust dosing based on P/ • 5-7mg/kg iv gentamicin or OR 15-20mg/kg iv amikacin recommended in SLED, due with 2mg/kg gentamicin or OR 8mg/kg iv amikacin give SLED (But data is very limite) • ~ 70-90% removed with CR	tobramycin cin given iv psing with with et peak evel after with 2mg/kg el, since likely ble 6 removed. T level. tobramycin has been e to higher Vd tobramycin e after each 8h ed)	x 1 dose Obtain peak and half-life, give nex drop trough <2 m convenient dosin 2-3 half lives. [If HD due in the and trough befor decrease by ~30% convenient for pa when next dose of Then with the nicalculated dosing get trough before get peak and trough the second dose). No calculate the Vd a state dosing. Usually dose q44 and ~30% removes	24h level, calculate t dose in 2-3 half lives to ng/L. Choose a g interval based on the 24h period obtain peak e dialysis and then 6 removed by HD (more atient) then determine due based on half life.] ext dose given at the g interval, do 3-point PK: e the second dose, then ugh with after the pw the pharmacist can and required steady 8-72h in IHD/ESRD/PD ed during 4h with IHD ed dose determination , because peak AND

Avis de non-responsabilité

Exemple 3: Centre Sunnybrook des sciences de la santé— Schémas posologiques des antibiotiques dans les traitements de suppléance rénale (suite)

Antimicrobial Beta-Lactams	Usual Dose	CRRT	SLED	IHD	ESRD or PD
Ampicillin	2g iv q4-6h	2g iv q4-6h	2g iv q4-6h on dialysis days and ESRD dosing on non-dialysis days	2g iv q8-12h, schedule a routine dose after HD	2g iv q8-12h
Cefazolin	1-2g iv q8h	1-2g iv q8h	1-2g iv q8h on dialysis days and ESRD dosing on non-dialysis days	1-2g post HD 3 times per week (none on non- dialysis days)	1g iv q24h
Ceftriaxone	1g iv q24h Meningitis / IE/OM: 2g iv q12h		No dose adjus	tment	
Ceftazidime	2g iv q8h	2g iv q8h	2g iv q8h on dialysis days and ESRD dosing on non-dialysis days	2g iv q24h dosed after HD on dialysis days	2g iv q24h
Cloxacillin	2g iv q4-6h		No dose adjus	tment	
Ertapenem	1g iv q24h	1g iv q24h	1g iv q24h on dialysis days and ESRD dosing on non-dialysis days	30% removed with IHD Dose post dialysis on dialysis days 500mg iv q24h	500mg iv q24h
Meropenem	500mg iv q6h / 1g iv q8h Meningitis: 2g iv q8h	500mg iv q6h / 1g iv q8h Meningitis: 2g iv q8h	500mg iv q6h / 1g iv q8h on dialysis days and ESRD dosing on non-dialysis days Meningitis: 2g iv q8h on dialysis days and ESRD dosing on non- dialysis days	500mg iv q8-12h, schedule a routine dose after HD	500mg iv q12h
Piperacillin / Tazobactam	3.375 – 4.5g iv q6h	3.375 – 4.5g iv q6h	3.375 – 4.5g iv q6h on dialysis days and ESRD dosing on non- dialysis days	3.375 – 4.5g iv q12h, schedule a routine dose after HD	3.375 – 4.5g iv q12h

Avis de non-responsabilité

Exemple 3: Centre Sunnybrook des sciences de la santé— Schémas posologiques des antibiotiques dans les traitements de suppléance rénale (suite)

Antimicrobial	Usual Dose	CRRT	SLED	IHD	ESRD or PD
Daptomycin	6mg/kg iv q24h	6mg/kg iv q24h	Limited data supports extensive elimination via SLED 6mg/kg iv q24h on SLED days and ESRD dosing on non-dialysis days	Only ~15% removed with dialysis Dose 6mg/kg iv q48h	Dose 6mg/kg iv q48h
Fluoroquinolones: Ciprofloxacin	500 mg - 750 mg po q12h 400mg iv q8-12h	500 mg - 750 mg po q12h 400mg iv q8- 12h	Insufficient data — usual dosing seems reasonable with an estimated CrCl of ≥ 60mL/min on dialysis days and ESRD dosing on non-dialysis days	400mg iv q12 - 24h or 500mg po q12 - 24h (use q12h regimen in critically ill) (only ~10% removed with HD, but has 50% non-renal clearance)	400mg iv q12 - 24h or 500mg po q12 - 24h (use q12h regimen in critically ill)
Levofloxacin	500mg – 750mg iv / po q24h	500mg – 750mg iv / po q24h	Insufficient data – but usual dosing reasonable when SLED given continuously (CrCl> 60mL/min), and a 250mg post SLED may be used for supplementing when intermittent SLED used since ~25% removed with SLED	750mg iv / po load then 500mg iv/po q48h, dosed after IHD on dialysis days (Not "effectively removed with HD" - ? <10% and has 20% non renal clearance)	750mg iv / po load then 500mg iv/po q48h,
Moxifloxacin	400mg iv / po q24h	400mg iv / po q24h	400mg iv / po q24h	400mg iv / po q24h	400mg iv / po q24h
Linezolid	600mg iv/po q12h	600m iv / po q12h	~30% removed with SLED; Dose post SLED on dialysis days No dose adjustment 600mg iv / po q12h	~30% removed with IHD; Dose post IHD on dialysis days No dose adjustment 600mg iv / po q12h	600mg iv / po q12h

Avis de non-responsabilité

Exemple 3: Centre Sunnybrook des sciences de la santé— Schémas posologiques des antibiotiques dans les traitements de suppléance rénale (suite)

Antimicrobial	Usual Dose	CRRT	SLED	HD	ESRD or PD
Vancomycin	Weight <100kg 1g iv q12h (Trough < 15mg/L) 1g iv q8h (Trough 15 – 20mg/L) Weight 100 – 150kg 1.5g iv q12h (Trough < 15mg/L) 1.5g iv q8h (Trough 15 – 20mg/L) OR us continuous infusion dosing: 2.5 – 3g iv q24h continuous infusion Monitor levels to individualize dosing	1.25g – 1.5 g iv q24h P/T levels with 3 rd or 4 th dose and adjust based on levels	8-26% removed during SLED; Continuous Infusion SLED: *Usual vancomycin dose *Get P/T with 3 rd - 4 th dose Intermittent SLED: 1g iv followed by 500mg – 1g post dialysis with ESRD dosing For individualized PK dosing with Intermittent SLED: Give 1g dose then: *Get Peak level 2h post 1h infusion and random level post intermittent SLED to determine half-life and dose q1 half-life for trough 15 – 20mg/L or q2 half-lives for trough <15mg/L. Use concepts of: i) half-life; ii) at SS the MAF = 2 x concentration following first dose when dose q1 half-life, and iii) P/T will be proportional to dose. *Only give the 500mg – 1g post dialysis dose AFTER you get the post SLED random level *Once you have determined individualized dose for target trough, give this dose following each subsequent SLED	•1g iv post-dialysis initial dose; •30-50% removed with high flux membranes; 0.5 – 1g iv post dialysis (use 0.5g when desired trough <15mg/L; and 1g when desired trough trough 15 – 20mg/L) Could get levels as per same method as intermittent SLED except need to wait ~3h before getting the post-HD random level to account for rebound seen with HD.	1g iv q5-7days with levels off first dose (peak an 24h level)

Jamal JA. Economou CJP, Lipman J, Roberts JA. Improving antibiotic dosing in special situations in the ICU: burns, renal replacement therapy and extracorporeal membrane oxygenation. Curr Opin Cirt Care 2012;1:460-471.

Bogard KN, Peterson NT, Plumb TJ,et al. Antibiotic dosing during SLED: special considerations in adult critically ill patients. Crit Care Med 2011;39(3):560-70. Mushatt DM et al. Antibiotic dosing in slow extended daily dialysis. CID 2009;49:433-7.

Seyler L et al. Recommended β -lactam regimens are inadequate in septic patients treated with CRRT. Critical Care 2011;15:R137.

Avis de non-responsabilité

Exemple 4 : Centre régional de santé Royal Victoria – directives d'utilisation de l'association pipéracilline-tazobactam (Tazocin^{MD}), 2013

Piperacillin + Tazobactam (Tazocin®): Guidelines for Use Royal Victoria Regional Health Centre June 2013

Background:

Piperacillin-tazobactam is a broad – spectrum antibiotic used to treat a variety of infections including Ventilator Associated Pneumonia, gram-negative sepsis and polymicrobial infections (anaerobes plus gram-negative or gram-positive bacteria).

Due to overuse, susceptibility of *P. aeruginosa* and *E.coli* to this antimicrobial, at our institution, has steadily declined over the last two years.

In general, β -lactam antibiotics exhibit time-dependent bactericidal activity and, with the exception of carbapenems, minimal persistent effects (often termed post-antibiotic effect). As a result, the time for which the free drug concentration (fT) remains above the minimum inhibitory concentration (MIC) of the organism is the pharmacodynamic parameter that predicts clinical and bacteriological outcomes for this drug class.

To maximize the likelihood of achieving desirable pharmacodynamic targets, especially in nosocomial infections caused by less-susceptible bacteria, conventional dosing regimens may need to be modified. Continuous and prolonged infusions increase the probability of target attainment (fT>MIC) throughout the dosing interval.

Several studies have evaluated continuous or extended infusions of β -lactam antibiotics but piperacillin-tazobactam is the most widely studied of those. The highest yielded benefits are seen in the more critically ill population. The extended infusion regimen allows for an overall lower total daily dose of piperacillin- tazobactam which will allow for cost savings for the hospital.

In light of the above findings and the education required for uptake, adoption of extended infusions hospital wide may not be the best way to implement. However, currently we use three different doses of piperacillin-tazobactam depending on indication and renal function. This in itself is labour intensive and sets up opportunities for error. After benchmarking with other hospitals, it became evident that we can eliminate some of these choices without compromising efficacy.

Current Practice

Piperacillin - Tazobactam (Tazocin®):

Normal dosing: 3.375g IV q6h as 30 minute infusion

Avis de non-responsabilité

Cette ressource a été élaborée par le Centre régional de santé Royal Victoria. Son contenu n'est pas la propriété de SPO, qui n'assume aucune responsabilité pour les renseignements qu'on y trouve. Santé publique Ontario et le Centre régional de santé Royal Victoria ne peuvent être tenus responsables de l'usage subséquent, par une tierce partie, des ressources et outils offerts.

Exemple 4 : Centre régional de santé Royal Victoria – directives d'utilisation de l'association pipéracilline-tazobactam (Tazocin^{MD}), 2013 (suite)

Hospital acquired pneumonia (HAP)/Ventilator acquired pneumonia (VAP)/Febrile Neutropenia, documented *Pseudomonas* infection: 4.5 g IV q6h as 30 minute infusion

Adjustment in renal dysfunction:

Creatinine Clearance (mL/min)	Dose and Interval*
> 20	2.25 g IV q6h (3.375g IV q6h for
	HAP/VAP/Febrile Neutropenia,
	documented Pseudomonas infection)
≤ 20	2.25 g IV q8h (2.25 g IV q6h for
	HAP/VAP/Febrile Neutropenia,
	documented Pseudomonas infection)
	with last dose given after HD if
	applicable

^{*} This is not consistent practice within the institution as we do not have a standardized protocol. Dosing based on best practice with main reference to Lexi-Comp online.

Proposed Practice

1. Hospital Wide

Normal dosing (creatinine clearance ≥ 30 mL/min): 3.375 g IV q6h as 30 minute infusion

HAP/VAP/Febrile Neutropenia, documented *Pseudomonas* infection: 4.5 g IV q6h as 30 minute infusion

Adjustment in renal dysfunction:

rajasiment in renarayoranotien.	
Creatinine Clearance (mL/min)	Dose and Interval*
10-29	3.375 g IV q8h (4.5 g IV q8h for
	HAP/VAP/Febrile Neutropenia,
	documented Pseudomonas infection)
< 10, including hemodialysis (HD)	3.375 g IV q12h (4.5 g IV q12h for
	HAP/VAP/Febrile Neutropenia,
	documented Pseudomonas infection)
	with last dose given after HD, if
	applicable

^{*}All given as 30 minute infusion

2. ICU only (initiation of extended infusions)

Normal dosing for creatinine clearance > 20 mL/min: $3.375g\ \text{IV}$ q8h as 4 hour infusion

Avis de non-responsabilité

Cette ressource a été élaborée par le Centre régional de santé Royal Victoria. Son contenu n'est pas la propriété de SPO, qui n'assume aucune responsabilité pour les renseignements qu'on y trouve. Santé publique Ontario et le Centre régional de santé Royal Victoria ne peuvent être tenus responsables de l'usage subséquent, par une tierce partie, des ressources et outils offerts.

Exemple 4 : Centre régional de santé Royal Victoria – directives d'utilisation de l'association pipéracilline-tazobactam (Tazocin^{MD}), 2013 (suite)

HAP/VAP, documented *Pseudomonas* infection, obese patients (≥ 120 kg) with creatinine clearance > 20 mL/min: 4.5 g IV q8h as 4 hour infusion

Exclusions to extended infusions:

- Febrile neutropenics, meningitis, cystic fibrosis patients
- Patients with microbiology showing isolates with Minimum Inhibitory Concentrations (MIC) to piperacillin-tazobactam > 16 mcg/mL
- Patients receiving HD, follow hospital wide guidelines
- Patients with creatinine clearance ≤ 20 mL/min., follow hospital wide guidelines

When patients are transferred from ICU to the floor, the ICU pharmacist or the intensivist will reassess the need for extended infusion of piperacillin-tazobactam and decide on one of the following:

- Continue as extended infusion with very clear orders on transfer to infuse each dose over 4 hours. The floor pharmacist will follow up within 48 hours (if transfer happens on a Friday) to ensure that the dose is being administered properly and medication administration record is accurate.
- Discontinue extended infusion and resume regular dosing schedule with each dose being infused over 30 minutes. Again, transfer orders must be very clear.

References:

-Aziz MH et al. Continuous beta-lactam infusion in critically ill patients: the clinical evidence. Annals of Intensive Care 2012, 2:37.

Cheatham SC et al. Steady-state pharmacokinetics and pharmacodynamics of piperacillin and tazobactam administered by prolonged infusion in obese patients. International Journal of Antimicrobial Agents 41 (2013) 52-56.

George JM et al. Prolonged infusions of β -lactam antibiotics: implication for antimicrobial stewardship. Pharmacotherapy 2012;32(8):707-721.

Lodise TP et al. Piperacilin-tazobactam for *Pseudomonas aeruginosa* infection: clinical implications of an extended-infusion dosing strategy. CID 2007;44:357-63.

Patel N et al. Identification of optimal renal dosage adjustments for traditional and extended – infusions piperacillin-tazobactam dosing regimens in hospitalized patients. Antimicrobial Agents and Chemotherapy, Jan. 2010, p. 460-465.

Shea KM et al. Steady-state pharmacokinetics and pharmacodynamics of piperacillin/tazobactam administered by prolonged infusion in hospitalized patients. International Journal of Antimicrobial Agents 35 (2009) 429-433.

Tamma PD et al. Does prolonged β -lactam infusions improve clinical outcomes compared to intermittent infusions? A meta-analysis and systematic review of randomized, controlled trials. BMC Infectious Diseases 2011, 11:181.

Lexi-Comp online, accessed June 2013
Ottawa Hospital Correspondance, Rosemary Zvonar, June 2013.
St. Joseph's Health Centre, Toronto Correspondance, Bradley Langford, June 2013.
Sunnybrook Antimicrobial Handbook 2012

Avis de non-responsabilité

Cette ressource a été élaborée par le Centre régional de santé Royal Victoria. Son contenu n'est pas la propriété de SPO, qui n'assume aucune responsabilité pour les renseignements qu'on y trouve. Santé publique Ontario et le Centre régional de santé Royal Victoria ne peuvent être tenus responsables de l'usage subséquent, par une tierce partie, des ressources et outils offerts.