EECS 376: Foundations of Computer Science

Lecture 08 – Introduction to Computability

Introduction to Computability: Deterministic Finite Automata

Techniques and Paradigms in this Course

- Divide-and-conquer, greed, dynamic programming, the power of randomness

 Problems that are easy for a computer
- Computability Problems that are **impossible** for a computer
- NP-completeness and approximation algorithms
- Cryptography

Problems that are "probably hard" for a computer

Using "probably hard" problems for our benefit (hiding secrets)

What is a computer?

Plan in 5 lectures

Two models of computations (types of "hardware")

Finite Automaton = a person (system whose space cannot grow according input size)

- **Q:** What type of problems can a person solve?
- A: Very limited!

Turing Machine = a person + papers (as much as they want)

- Q: What type of problems can a person with papers solve?
- A: Every solvable problem! (Church-Turing thesis)
 - Ignoring efficiency: Nothing is more powerful than Turing Machine

Is every problem solvable? No. Why not?

Problems and Decision Problems

An <u>algorithm</u> solves a <u>problem</u> if it gives the correct <u>solution</u>

on every instance.

We'll define last 3 terms now.

What is a computational problem?

We'll start with an example.

Example problem:

MULTIPLICATION

Instance		Solution
(also known as	s <i>input,</i>	
3,	7	21
610,	25	15250
50,	610	30500
15251,	252	3843252
12345679,	9	11111111

Example problem:

PALINDROME

Instance	Solution
(also known as <mark>input</mark>)	
a	Yes
10101	Yes
selfless	No
huh	Yes
376	No
emus sail i assume	Yes

A problem is a collection of instances and the solution to each instance.

Problems where the solution is Yes / No.

```
(Also known as True / False, 1 / 0, accept / reject.)
```

Languages

String notation

Alphabet: A nonempty finite set Σ of symbols.

e.g. $\Sigma = \{0,1\}$ or $\Sigma = ASCII$ characters

ex: (0, 1)3= (all binary strings of length 3.7

String: A finite sequence of o or more symbols. (or word")

The empty string is denoted ε.

For any $a \in \Sigma$:

a^k means k a's

(a*/means ≥0 a's,

a⁺means ≥1 a's

 Σ^k means all strings over Σ of length k.

means all (finite) strings (over Σ

 Σ^+ means all nonempty (finite) 1st rings over Σ^-

For any $a,b \in \Sigma$: a|b| means a OR b

Language: A (possibly infinite) set of strings.

e, any subset $L \subseteq \Sigma^*$.

The empty language is denoted Ø.

Examples of Languages

 $L = a^* = \{\varepsilon, a, aa, aaa, ...\}$

{0,01,011,011,--}

L = 01* = all strings of one o followed by zero or more 1's

L = $\{x^ky^k: k \ge 0\}$ = all strings consisting of some number of x's followed by the same number of y's / 5, xy, xxyy, ...}

Question $L = \{\epsilon\}$. Is $L = \emptyset$?

Answer: No. L has 1 element, Ø has 0 elements

Question: How is a*|b* different from (a|b)* possible combinations of all possible numbers of all pos

BP: (8, a, a9, .- } () [8, b, bb , ... }

Decision Problems = Languages

Representing instances of a problems

The instances of a problem can be:

- numbers
- strings
- pairs of numbers
- lists of strings
- graphs
- images
- •

These can all be conveniently encoded by **strings**. For an input G, (G) denotes its encoding as a string

Representing problems

We can encode instances and solutions as strings.

Thus, we can think of a problem as a function

$$f: \Sigma^* \to \Sigma^*$$

mapping instances (string) to solutions (string).

A decision problem can be thought of as

$$f: \Sigma^* \to \{No, Yes\}$$

Representing decision problems

A decision problem can be thought of as

$$f: \Sigma^* \to \{No, Yes\}$$

or equivalently as a language

$$L \subseteq \Sigma^*$$

$$L = \{x \in \Sigma^* : f(x) = Yes\} \qquad f(x) = \begin{cases} Yes & \text{if } x \in L \\ No & \text{if } x \notin L \end{cases}$$

E.g.: LPALINDROME =
$$\{x \in \Sigma^*\}$$
: x is a palindrome $\}$

Let us practice this notations

What is a language corresponding to this problem?

Q: Is an input number *x* even?

- $\langle x \rangle$ = binary string encoding a number x.
- $L_1 = \{\langle x \rangle \in \{0,1\}^* \mid x \mod 2 = 0\}$

Q: Given a tic-tac-toe board B, can "x" always win?

- $\langle B \rangle$ = encoding of a current board B
- $L_2 = \{\langle B \rangle \in \{0,1,2\}^9 \mid \text{"x" can win in } B\}$

Upshot

Languages and decision problems are two ways to think of the same things

First Model of Computation: Deterministic Finite Automata

capturing any system whose space cannot grow according input size

This lecture:

A computational model:

pt decisive problem

Deterministic Finite Automata (DFA)

Weak model of computation

Capture a very weak type of algorithms

Good warmup before we study Turing Machine (most powerful model of computation)...

Deterministic Finite Automata (DFAs) Σ={0,1} is something that looks like this: 0111 (stop) DFA accepts its input if the process ends/ 并 把 o 29

如果DFA最后总在calepting states, 即为accept the Anatomy of a DFA input i 停在划筋地对

transition rules: the labeled arrows

Computing with DFAs

Let M be a DFA, using alphabet Σ .

M accepts some strings in Σ^* and rejects the rest.

Definition: $L(M) = \{x \in \Sigma^* : M \text{ accepts } x\}$

Called the "language decided by M".

If L is a language,

we say M decides L if L(M) = L.

What language does this DFA decide?

$$(\alpha\alpha)^*$$

What language does this DFA decide?

even length bihany storks

M is the following DFA, with alphabet $\Sigma = \{a,b,c\}$:

$$L(M) = \{a, b, cb, cc\}$$

$$L(M) = \{ \xi \} \bigcup \{ \text{stabps endaps with o} \}$$

Bit: swap #instate & account to the state

Fact: If there is a DFA that decides a language L, then there is also a DFA that decides the complement of L. Why?

E.g. L = {strings containing "01"}
complement of L = {strings NOT containing "01"}

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

$$M = (Q, \Sigma, \delta, q_o, F)$$

- (Q) is a nonempty finite set of states,
- Σis an(alphabet,) 🛱
 - $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ is the state-transition function,
 - $q_0 \in Q$ is the start state,
 - (5) $F \subseteq Q$ is the set of accepting states.

部: graph bb abstraction. 在几个 states, ppt states iate acc, states iate bansit.

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

$$M = (Q, \Sigma, \delta, q_o, F)$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0,1\}$$

δ we'll come back to

q_o is the start state

$$F = \{q_1, q_2\}$$

Formal definition of DFAs

A deterministic finite automaton is a 5-tuple:

$$M = (Q, \Sigma, \delta, q_o, F)$$

- For $\Sigma = \{a,b\}$, consider the language of strings with exactly one b
 - Write using string notation

- Draw a DFA
- Draw a DFA for $l = \{ykyk, lass\}$

(出现代日午其他b: Ygect) ·(到) ab.

$$2. - (91) \frac{(92)}{b} \frac{(94)}{(93)} \frac{(94)}{2}$$

Limitation and Characterization of **DFAs**

Thm: No DFA can decide {x^ky^k: k≥0}

Suppose for contradiction there's a DFA M that decides $(x^k)^k : k \gg$

Let s = #states of M.) 这是核心的语: men on是有限的!

Consider the input string x^{s+1}y^{s+1}.

There are **s states** (pigeonholes) and **s+1** x's (pigeons), so there must be two values $i, j \le s+1$ such that $state(x^i) = state(x^j)$.

Claim. The two inputs $x^{i}y^{i}$ and $x^{j}y^{i}$ have the same final state. Why?

But M is supposed to accept xⁱyⁱ and reject x^jyⁱ. Contradiction!

Intuitive reason why DFAs cannot decide many languages:

Finite memory!

note: 1770 decide?

Novide BEED: ST

无论多大的的加工

都能是实生里

7y*,空好上尺点室

西个小女长,可以在有

PEMENNY BY OF A PET, SPUDCOMICS.COM © 2010 LONNIE EASTERLY THE TRAGEDY OF A THREE SECOND MEMORY

不 xkyk, kot 以想到大就多大, B布 finde memolys 无法完成

Which language can be decided by DFAs?

- There is an exact characterization!
- Regular Expression
 - A regular expression = finite expression using the string notations
 - Start from finite alphabet.
 - Compose them using concantenation, alternation "|" or Kleen star "*"
 - Examples:
 - $L(\epsilon) = \{\epsilon\}$
 - $L(ab*|ba*) = \{a, ab, abb, ...\} \cup \{b, ba, baa, ...\}$
- Theorem (RegExp = DFA):
 - \circ L is defined by regular expression \Leftrightarrow L is decided by a DFA
- These languages are called regular languages.

The Chomsky Hierarchy (1956)

"Regular Language": Language decidable by some DFA

Noam Chomsky

- Noam Chomsky is an American professor and public intellectual known for his work in linguistics, political activism, and social criticism.
- Sometimes called "the father of modern linguistics", Chomsky is also a major figure in analytic philosophy and one of the founders of the field of cognitive science.
- He is a laureate professor of linguistics at the University of Arizona and an institute professor emeritus at the Massachusetts Institute of Technology (MIT).

DFAs/regularity are widely used in practice

- Simple household devices (switches, garage doors, ...)
- Software for designing and checking the behavior of digital circuits
- "Lexers," the first stage of compilers
- Flexible string search in text files (logs, latex, ...)
 - Warning: "Regular exprs" in practice often aren't regular!
- and much more...

(Bonus) Exercises

Regular Expression Exercises

- All strings over $\{a, b\}$ with an **even** number of as.
 - $b^*(b^*ab^*ab^*)^*$
- All strings over $\{a, b\}$ without 2 consecutive as.
 - $\circ (b^*ab)^*(b^*(a|\epsilon))$
- All strings over $\{0,1\}$ that begin and end with the same symbol.
 - $\circ \quad (0(0|1)^*0)|(1(0|1)^*1)$
- $N = (0|1|2|\cdots|9)$ $L = (A|B|\cdots|Z)$
 - \circ Dates: $NN LLL NN(NN|\epsilon)$ (E.g., 16-Feb-2023 or 16-Feb-23)
 - o Michigan License Plates: LLL NNNN

DFA Exercises

- Design a DFA to decide $\{x \in \{0,1\}^* \mid (unsigned\ int)\ x\ is\ divisible\ by\ 5\}$
- Design a DFA to decide $\{x \in \{0,1\}^* \mid (unsigned\ int)\ x^R\ is\ divisible\ by\ 5\}$
 - \circ x^R is the *reversal* of x, i.e., least significant digits comes first.
- You need to keep track of the score in a tennis game between A and B. The sequence of points scored is represented by a string $x \in \{A, B\}^*$.
 - The first player to get ≥4 points AND be ahead by 2 wins.
 - For weird historical reasons, 0 pts is "love", 1 is "15", 2 is "30", 3 is "40".
- Design a DFA to decide $\begin{cases} x \in \{A, B\}^* \mid A \text{ has already won after seeing} \\ x \text{ points recorded.} \end{cases}$

DFA Impossibility Exercises

- Prove $L_{Palindrome} = \{x \in \{0,1\}^* \mid x \text{ is a palindrome}\}\$ cannot be decided by a DFA.
 - \circ Let s = #states
 - Hint: consider $0^{s+1}110^{s+1}$
- Prove $L_{\text{Prime}} = \{x \in \{0,1\}^* \mid x = 1^p \text{ and } p \text{ is prime}\}$ cannot be decided by a DFA.