HOMEWORK 3.4

Soobin Rho

November 11, 2022

Proofs by Contradiction or Contrapositive

B3-B9. Do proofs by contrapositive or contradiction.

B3. Conjecture: If for all $\epsilon > 0$, $x < c + \epsilon$, then $x \le c$.

This can be proven with proof by contrapositive $\forall x, c \in \mathbb{R}, \ x > c \Rightarrow \exists \ \epsilon > 0 \ s.t. \ x \geq c + \epsilon$

Let
$$x, c \in \mathbb{R}$$
, where $x > c$
Choose $\epsilon = x - c$
Since $x > c$, $x - c > 0$ (Theorem 3.1.3)
Also, $c + \epsilon = c + (x - c) = x$
Therefore, $c + \epsilon \le x$

B4. Prove: There are no integers a and b such that $b^2 = 4a + 2$.

Proof by contradiction:

Suppose
$$\exists a, b \in \mathbb{Z}$$
 s.t. $b^2 = 4a + 2$ (Means of contradiction) $b^2 = 4a + 2$ $\Leftrightarrow b^2 = 2(2a + 1)$ $\Rightarrow \exists k \in \mathbb{Z} \text{ s.t. } b^2 = 2k, \text{ where } k = 2a + 1$ (Definition of even) $\Rightarrow b^2 \text{ is an even number.}$ Since $b^2 \text{ is even, b is even.}$ (Theorem 2.2.15) $\Rightarrow \exists j \in \mathbb{Z} \text{ s.t. } b = 2j$ However, $b^2 = (b)^2 = (2j)^2 = 4j^2 = 2k = 4a + 2$ $\Leftrightarrow 4j^2 = 4a + 2$ $\Leftrightarrow j^2 = 2a + 1$ (Definition of odd) $\Rightarrow Odd$ and even at the same time.

B6. Prove: If n^3 is even, so is n.

Proof by contrapositive $\exists j \in \mathbb{Z} \ s.t. \ n = 2j + 1 \Rightarrow \exists k \in \mathbb{Z} \ s.t. \ n^3 = 2k + 1$

Let
$$j \in \mathbb{Z}$$
 and choose $n = 2j + 1$ (By hypothesis)
Then, $n = 2j + 1$
 $\Leftrightarrow n^3 = (2j + 1)^3$
 $\Leftrightarrow n^3 = 2(2j^3 + 5j^2 + 3j) + 1$ (Definition of odd)
Thus, $n^3 = 2k + 1 = 2(2j^3 + 5j^2 + 3j) + 1$

B7. Prove: Let a and b be real numbers. If a > 0 and b > 0, then $\frac{2}{a} + \frac{2}{b} \neq \frac{4}{a+b}$

Proof by contradiction:

Suppose
$$a > 0$$
, $b > 0$, $\frac{2}{a} + \frac{2}{b} = \frac{4}{a+b}$ (Means of contradiction)
$$\frac{2}{a} + \frac{2}{b} = \frac{4}{a+b}$$
 $\Leftrightarrow \frac{2b+2a}{ab} = \frac{4}{a+b}$ $\Leftrightarrow (2b+2a)(a+b) = 4ab$ $\Leftrightarrow 2(a^2+2ab+b^2) = 4ab$ $\Leftrightarrow a^2+2ab+b^2 = 2ab$ $\Leftrightarrow a^2+b^2 = 0$ However, since $a > 0$ and $b > 0$, $a^2 > 0$ and $b^2 > 0$ (Axiom 3.1.1C) So, $a^2+b^2 > 0$ (Axiom 3.1.1B) Thus, $a > 0$ and $b > 0 \Rightarrow \frac{2}{a} + \frac{2}{b} \neq \frac{4}{a+b}$

B9. Prove: $\sqrt{3}$ is not a rational number.

This can be proven with proof by contradiction – i.e. supposing that $x^2 = 3 \Rightarrow x$ is rational.

Suppose
$$x^2 = 3$$
 and x is rational (Means of contradiction)

Then,
$$x = \frac{m}{n}$$
, where $m, n \in \mathbb{Z}$ (Definition of rational)

Also, m and n have no common factor.

$$(\frac{m}{n})^2 = 3$$
 (By hypothesis)
 $\Leftrightarrow m^2 = 3n^2$ (Definition of even)

$$\Leftrightarrow m^2 = 3n^2$$
 (Definition of even)

$$\Rightarrow m^2 is even.$$

$$\Rightarrow m \text{ is even.}$$
 (Theorem 2.2.15)
 $m^2 = 3n^2$