CS 461: Machine Learning Principles

Class 5: Sept. 19

Linear Regression and Data Pre-Processing

Instructor: Diana Kim

In the last class, we talked about creating a feature space to accommodate the linear modeling for regression/ classification problems.

We may need the pre-processing steps before the algorithm but let's focus on "regression algorithm" first and cover pre-processing part.

• Suppose we defined a proper feature map $\phi(\vec{d})$ for data point (\vec{d}, y) . The data matrix D is transformed into Φ .

• Suppose we defined a proper feature map $\phi(\vec{d})$ for data point (\vec{d}, y) . The data matrix D is transformed into Φ .

We set the linear combination of $\phi(\vec{d})$ with \vec{w} to predict the value y.

$$y = \Phi(\vec{d}) \cdot \vec{w} + \varepsilon, \ \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

- ε errors from :
- + imperfection feature space design
- + imperfection hypothesis space
- + error from measurement

- Suppose we defined a proper feature map $\phi(\vec{d})$ for data point (\vec{d}, y) . then we can transform a data matrix D into Φ .
- We set the linear combination of $\phi(\vec{d})$ with \vec{w} to predict the value y.

$$y = \Phi(\vec{d}) \cdot \vec{w} + \varepsilon, \ \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

We have observed data.
 (design matrix Φ)

ϕ_1 (d1)	ϕ_2 (d1)	• • •	ϕ_M (d1)
ϕ_1 (d2)	ϕ_2 (d2)		ϕ_M (d2)
• • •			
• • •			
• • •			
ϕ_1 (dN)	ϕ_2 (dN)	• • •	ϕ_M (dN)

- Suppose we defined a proper feature map $\phi(\vec{d})$ for data point (\vec{d}, y) . then we can transform a data matrix D into Φ .
- We set the linear combination of $\phi(\vec{d})$ with \vec{w} to predict the value y.

$$y = \Phi(\vec{d}) \cdot \vec{w} + \varepsilon, \ \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

- We have observed data.
- We want to estimate \vec{w}

ϕ_1 (d1)	ϕ_2 (d1)	• • •	ϕ_M (d1)		W_1		y_1
ϕ_1 (d2)	ϕ_2 (d2)	0 0 0	ϕ_M (d2)		W_2		y_2
• • •				×		=	•••
• • •							
• • •					W_{M}		
• • •					1.1		
ϕ_1 (dN)	ϕ_2 (dN)	• • •	ϕ_M (dN)				y_n

Regression Algorithm

: how to find the \overrightarrow{w} ?

from observations

$$y = \Phi(\vec{d}) \cdot \vec{w} + \varepsilon, \ \varepsilon \sim \mathcal{N}(0, \sigma^2)$$

want to estimate W!

We learned the two possible ways (MAP and MLE)!

•
$$w^* = argmax \ p(\vec{w}|y, \Phi) = \frac{p(y|\vec{w}, \Phi)p(\vec{w})}{p(\Phi)} : (MAP)$$

• $w^* = argmax \ p(y|\vec{w}, \Phi) : (MLE)$

- Q: the distribution of $y\sim$?

Suppose we have a feature map $\phi(\vec{d})$ for a data point \vec{d} we want to learn \vec{w} whose the linear combination of $\phi(\vec{d})$ predicts the value y with error $\varepsilon \sim N(0, \sigma^2)$.

we have observations: data Φ (N × M) and \vec{y}

- $w^* = argmax \ p(w^{\rightarrow} | \vec{y}, \Phi) = \frac{p(y|\vec{w}, \Phi)p(\vec{w})}{p(\Phi)} : (MAP)$
- $w^* = argmax \ p(\vec{y}|\vec{w}, \Phi)$: (MLE) = $argmax \ \mathcal{N}_y(\Phi(\vec{d}) \cdot \vec{w}, \sigma^2 I)$ (when observations are i.i.d)

we have observations: data Φ (N × M) and \vec{y}

•
$$w^* = argmax \ p(\vec{y}|\vec{w}, \Phi)$$
: (MLE) Ground Truth (data)
$$= argmax \ \mathcal{N}_y(\Phi(\vec{d}) \cdot \vec{w}, \sigma^2 \vec{I})$$
 Prediction!
$$\arg \min ||\vec{y} - \Phi \cdot \vec{w}||^2$$

$$\underset{w}{\operatorname{arg\,min}} ||\vec{y} - \Phi \cdot \vec{w}||^2$$

MLE becomes

Minimum Mean Square Error Problem

$$J(\vec{w}) = ||\vec{y} - \Phi \cdot \vec{w}||^2$$

$$J(\vec{w}) = (\vec{y}^t - \vec{w}^t \cdot \Phi^t) \cdot (\vec{y} - \Phi \cdot \vec{w})$$

$$\nabla J(\vec{w}) = -2 \cdot \Phi^t \cdot (\vec{y} - \Phi \cdot \vec{w}) = 0$$

$$\Phi^t \cdot \Phi \cdot \vec{w} = \Phi^t \cdot \vec{y}$$

Normal Equation

The three possible cases:

- invertible (Rank *M*)
- invertible (Rank *M*) but close to singular (very small eigenvalues)
- non invertible (Rank $\leq M$)

Note) close look into the bias term

$$J(w) = ||\vec{y} - \Phi \cdot \vec{w}||^{2}$$

$$= ||\vec{y} - \Phi' \cdot \vec{w'} - [b, b, ...b]^{t}||^{2}$$

$$\frac{\partial J}{\partial b} = -2 \cdot [1, 1, 1, ..., 1] \cdot (\vec{y} - \Phi' \cdot \vec{w'} - [b, b, ...b]^{t}) = 0$$

$$= \sum_{i=1}^{N} y_{i} - \sum_{i=1}^{N} y'_{i} - b \cdot N = 0$$

$$bN = \sum_{i=1}^{N} y_{i} - \sum_{i=1}^{N} y'_{i}$$

$$b = \frac{1}{N} \sum_{i=1}^{N} y_{i} - \frac{1}{N} \sum_{i=1}^{N} y'_{i}$$

$$\frac{w_{1}}{w_{2}} = \frac{y_{1}}{w_{2}}$$

$$\frac{w_{2}}{w_{3}} = \frac{y_{1}}{w_{2}}$$

$$\frac{w_{2}}{w_{3}} = \frac{w_{1}}{w_{2}}$$

$$\frac{w_{1}}{w_{2}} = \frac{w_{2}}{w_{3}}$$

$$\frac{w_{2}}{w_{3}} = \frac{w_{1}}{w_{3}}$$

$$\frac{w_{1}}{w_{2}} = \frac{w_{2}}{w_{3}}$$

$$\frac{w_{1}}{w_{3}} = \frac{w_{2$$

• y' = prediction without bias?

Geometrical Interpretation: MMSE Solution

Geometrical Interpretation MMSE Estimation

$$\Phi(\vec{d}) \cdot \vec{w} = \vec{y}$$

• solving overdetermined System

• projection to the data space and find an approximated solution

$$\Phi(\vec{d})^t \cdot \Phi(\vec{d}) \cdot \vec{w} = \Phi(\vec{d})^t \cdot \vec{y}$$

- when data space's rank is M: unique approximated solution
 when data space's rank is less than M: pseudo-inverse solution

We learned regression algorithm. but we need some pre-processing steps for successful learning.

We need the pre-processing steps before the algorithm.

+ for regression, we will focus on dimensionality reduction and whitening

Two Kinds of Raw Data in Regression Problems

• each feature dimension has semantic.

"prediction of house market price" single house/ townhome, square feet, garden size, public school scores

• no semantic, a whole vector represents an image/ audio /texts

Both cases will need pre-processing steps, but

Semantic Data

[A car's fuel efficiency in miles per gallon]

From https://developers.google.com/machine-learning/crash-course/linear-regression

Regression Model: Prediction of Miles/Gallon

From https://developers.google.com/machine-learning/crash-course/linear-regression

Vector Data (in general very high dimension and services and services and services are less than the s 2.02936288e-02 1.33205568e-02 1.15464339e-02 8.20994973e-02 2.41902079e-02 2.42145211e-02 4.81210562e-04 8.90940 6.85443357e-02 4.78595048e-02 1.18027581e-02 1.17037995e-02 1.71675645e-02 3.76332477e-02 7.88647458e-02 3.7952859 4.51750029e-03 9.38767791e-02 3.61216962e-02 1.98117495e-02 6.82575488e-03 3.21909995e-03 6.07831627e-02 5.22131985e-03 4.10482734e-02 5.29111736e-02 4.37461957e-02 4.37461808e-02 5.19240461e-03 9.47480425e-02 1.72703192e-02 1.32609099e-01 1.03731174e-02 7.90489465e-02 3.40001471e-02 2.08658073e-02 3.63909267e-03 2.93061193e-02 1.79619715e-02 3.9250711 1.79619640e-02 1.44496362e-03 3.47868539e-04 2.03075245e-01 2.45202169e-01 1.26138151e-01 1.07999377e-01 1.46901429e-01 9.70007405e-02 1.03836969e-01 1.09804377e-01 1.04106106e-01 6.67123348e-02 7.02826679e-02 1.02719694e-01 1.04542613e-01 7.41177499e-02 1.03439212e-01 1.14290312e-01 1.15447372e-01 1.28355548e-01 1.06327742e-01 7.30694234e-02 6.20305464e-02 1.06132567e-01 7.94187784e-02 8.86070132e-02 8.47868249e-02 9.61078107e-02 9.56790447e-02 1.04670644e-01 8.01085979e-02 6.94930553e-02 7.93032944e-02 9.49410051e-02 7.71025643e-02 Image representation in the last hidden layer of deep-CNN 123981662e-01 6.65690452e-02 4.43194956e-02 1.57082587e-01 1.04566351e-01 Resurrection, Alma Thomas 9.22555625e-02 1.10619672e-01 1.21558294e-01 8.79304186e-02 1.04587585e-01 1.42198473e-01 8.80973265e-02 4.42507043e-02

We need the pre-processing steps for the raw data.

We must do PCA. Why? Otherwise, some error dimension can be magnified by whitening (1/small eigenvalue)

Centering, Normalization, Standardization, Whitening

- Centering: $\vec{x} E[\vec{X}]$
- Normalization: $\frac{\vec{x}}{||x||}$
- Standardization: $\frac{x_i E[X_i]}{VAR[X_i]}$ (element-wise operation)
- Whitening : $Y = AX + \vec{b}$ when $Y \sim N(0, I)$

Raw data --- Pre-processing --- Feature Space Expansion with Basis

"Regression Model"

$$y = \sum_{j}^{M} \phi_{j}(\vec{d}) \cdot \vec{w}$$

Basis Function (1): Polynomial Expansion

+ Pre-processed data: (reduced dimensions and whitened)

	1	x_2	x_2^2
1	1	x_2	x_2^2
x_1	x_1	x_1x_2	×
x_1^2	x_1^2	×	×

Basis Function (1): Polynomial Expansion

- This example shows the case when input is scalar.
- Q: what if input is a 2D vector? How would you draw the plot?

Basis Function (1): Polynomial Expansion

• This example shows the case when we set \vec{w} with an arbitrary parameter. This shows a possible regression function.

Basis Function (2): Gaussian Basis function

$$\phi_j = \exp\left\{-\frac{(x-\mu_j)^2}{2\sigma^2}\right\}$$

Q: the magnitude of σ^2 ?

(small: local and spiky vs. large: global and smooth)

Q: the locations of μ_i ? (dense / sparse)

Basis Function (2): Gaussian Basis function

The magnitude of sigma determines the influence over other neighboring Gaussian functions.

30

Summary: Train and Test Procedures for Regression Problem

- A set of hypothetical basis functions (polynomial / Gaussian)
- We have data points $((d_1, y_1), (d_2, y_2), (d_3, y_3), ..., ((d_N, y_N))$

Train

- Train data PCA for dim-reduction (high-dimensional data) and whitening. (save the PCA blocks computed with training set)
- Normal equation to estimate W

Test

- Test data PCA for dim-reduction and whitening with the same block used in training!!!! (important)
- Compute error between the groudturth y and prediction y': $\|y-y'\|^2$

Dimensionality Reduction: PCA

- how can we reduce high-dimensional images into 2D space?

Principal Component Analysis (PCA)

We want to make data (N-D) moves around within a subspace (M-D), (N>M)

Vector $\vec{x} = (a, b)$ can be represented by different orthonormal bases.

When $x_n \in \mathbb{R}^D$ and u_i where i = 1, 2, ..., D are are abnormal basis,

• X_n

$$x_n = \sum_{i=1}^D lpha_{ni} u_i \quad ext{and} \quad lpha_{ni} = < x_n, u_i >$$

• $\widetilde{X_n}$ We want to approximate x_n on the subspace of the first M basis,

$$\tilde{x_n} = \sum_{i=1}^{M} z_{ni} u_i + \sum_{i=M+1}^{D} b_i u_i$$

Q: What is the optimal values for Z_{ni} and b_i minimizing $J = ||X_n - \widetilde{X_n}||^2$

We want to minimize the averaged square error between x_n and $\tilde{x_n}$

$$\underset{(z_{ni},b_i)}{\operatorname{arg\,min}} J = \frac{1}{N} \sum_{n=1}^{N} (\langle x_n, u_i \rangle \cdot u_i^t - \sum_{i=1}^{M} z_{ni} u_i^t - \sum_{i=M+1}^{D} b_i u_i^t) \cdot (\langle x_n, u_i \rangle \cdot u_i - \sum_{i=1}^{M} z_{ni} u_i - \sum_{i=M+1}^{D} b_i u_i)$$

• Respect to z_{nk}

$$\frac{\partial J}{\partial z_{nk}} = (-2u_k^t) \cdot (\langle x_n, u_i \rangle \cdot u_i - \sum_{i=1}^M z_{ni} u_i - \sum_{i=M+1}^D b_i u_i)$$
$$= -2 \langle x_n, u_k \rangle + 2z_{nk} = 0$$

• Respect to b_r

$$\frac{\partial J}{\partial b_r} = \frac{1}{N} \sum_{n=1}^{N} (-2u_r^t) \cdot (\langle x_n, u_i \rangle \cdot u_i - \sum_{i=1}^{M} z_{ni} u_i - \sum_{i=M+1}^{D} b_i u_i)$$

$$= \frac{1}{N} \sum_{i=1}^{N} (-2 \langle x_n, u_r \rangle + 2b_r)$$

Rewrite J

$$J = ||x_n - \tilde{x_n}||^2 = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D} ((x_n - \bar{x})^t u_i)^2$$

$$= \sum_{i=M+1}^{D} u_i^t \cdot \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^t \cdot u_i$$

$$= \sum_{i=M+1}^{D} u_i^t \Sigma u_i^{\text{Estimation of COV (X,X)}}$$

• Lagrangian Function for the Constraint $u_i^t u_i = 1$

Lagrangian function for the constraint $||u_i|| = 1$

$$J(\lambda) = \sum_{i=M+1}^{D} u_i^t \Sigma u_i + \lambda (1 - u_i^t u_i)$$

$$\frac{\partial J}{\partial u_i} = \Sigma u_i - \lambda^* u_i = 0$$

Q: What the optimal solution indicate about u_i ?

Go back to J

$$J = ||x_n - \tilde{x_n}||^2 = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=M+1}^{D} ((x_n - \bar{x})^t u_i)^2$$

$$= \sum_{i=M+1}^{D} u_i^t \cdot \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^t \cdot u_i$$

$$= \sum_{i=M+1}^{D} u_i^t \Sigma u_i^{\text{Estimation of COV (X,X)}}$$

Q: To minimize J?

Now, we are ready to define $\widetilde{X_n}$ (PCA Approximation)

$$\begin{split} \tilde{x_n} &= \sum_{i=1}^{M} (x_n^t u_i) u_i + \sum_{i=M+1}^{D} (\bar{x}^t u_i) u_i \\ &= \bar{x} - \bar{x} + \sum_{i=1}^{M} (x_n^t u_i) u_i + \sum_{i=M+1}^{D} (\bar{x}^t u_i) u_i \\ &= \bar{x} - \sum_{i=1}^{M} (\bar{x}^t u_i) u_i + \sum_{i=1}^{M} (x_n^t u_i) u_i \\ &= \bar{x} + \sum_{i=1}^{M} ((x_n^t - \bar{x}^t) u_i) u_i \\ &= \bar{x} + U_M U_M^t (x_n - \bar{x}) \end{split}$$

 $\widetilde{X_n}$ is not full dimension.

Depending on how we select U_M , we can define different approximations.

• Variance of $\widetilde{x_n}$

$$\tilde{x_n} - \bar{x} = u_j^t (x_n - \bar{x}) u_j$$

$$\frac{1}{N} (\tilde{x_n} - \bar{x})^t (\tilde{x_n} - \bar{x})^t = \frac{1}{N} u_j^t (x_n - \bar{x}) u_j u_j^t (x_n - \bar{x})^t u_j$$

$$var(\tilde{x_n}) = \lambda_i$$

Different PCA Approximation for M = 1, M = 10, M = 50, M = 250

Figure 12.5 An original example from the off-line digits data set together with its PCA reconstructions obtained by retaining M principal components for various values of M. As M increases the reconstruction becomes more accurate and would become perfect when $M=D=28\times28=784$.

From Bishop Chap. 12

$$\widetilde{X}_n = \bar{x} + U_M U_M^t (x_n - \bar{x})$$

Visualization of Mean and Eigenvectors The image can be represented by sum of mean and the linear combinations of eigenvectors

Figure 12.3 The mean vector $\overline{\mathbf{x}}$ along with the first four PCA eigenvectors $\mathbf{u}_1,\dots,\mathbf{u}_4$ for the off-line digits data set, together with the corresponding eigenvalues.

From Bishop Chap. 12

$$\widetilde{X_n} = \bar{x} + U_M U_M^t (x_n - \bar{x})$$
A vector

The linear combination of eigenvectors 43

PCA Applications

Compression (small variance dimension does not help in learning)

$$\widetilde{X_n} = \bar{x} + U_M U_M^t (x_n - \bar{x})$$

Whitening (Rotation)

$$\tilde{x_n} = \Lambda^{-\frac{1}{2}} U_M^t (x_n - \bar{x})$$

PCA Applications

Visualization (1) (the projection of high dimensional data to 3D or 2D)

The last hidden layer embedding of a Deep-CNN Style Classifier is projected to the top principal axes (the eigenvectors corresponding to the first and second largest eigenvalues). The samples are color-coded by year of made.

45

PCA Applications

• Visualization (2) (projection of high dimensional data to 3D or 2D)

Figure 14. 6 from Deep Learning by Ian Goodfellow

One dimensional manifold that traces out a curved path for vertical shift of digit "9". The manifold in the high dimensional space is projected into 2D.