Practice quiz on Types of Functions

TOTAL POINTS 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do \it{not} define a function $f:A\to B$?

1/1 point

- $\bigcap f(a) = 4a$, for each $a \in A$
- f(1) = 4, f(2) = 4, and f(10) = 4.
- (1) = 5, f(2) = 8, and f(10) = 40.
- f(1) = 4, f(2) = 40, and f(10) = 8.

✓ Correct

A function $f:A\to B$ is a rule which assigns an element $f(a)\in B$ to each $a\in A$. In this case, unfortunately, $f(1)=5\notin B$.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

1/1 point

Suppose that $T:A\to Y$ is the function which gives T(a)=+ if person a tests positive and T(a)=- if they test negative.

Suppose that D:A o Z is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

- $\bigcirc T(a) = \text{ and } D(a) = S$
- $\bigcirc \ T(a) = + \operatorname{and} D(a) = S$
- \bullet T(a) = + and D(a) = H
- $\bigcirc \ T(a) = \ \mathsf{and} \ D(a) = H$

✓ Correct

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

3. Consider the function $g:\mathbb{R}\to\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are *not* on the graph of g?

1 / 1 point

- \bigcirc (1,0)
- (2,-1)
- $\bigcirc (0,-1)$
- $\bigcirc (-1,0)$

✓ Correct

Recall that the graph of g consists of all points (x,y) such that y=g(x). Here $g(2)=3\neq -1$, so the point (2,-1) is \emph{not} on the graph of g.

4. Let the point A=(2,4). Which of the following graphs does *not* contain the point A?

1 / 1 point

○ Th	e graph	of s	(x)	$= x^2$
<u> </u>	c grapn	0101		,

igcup The graph of g(x)=x+2

✓ Correct

The graph of h consists of all points (x,y) such that y=h(x). Here $h(2)=1 \neq 4$, so the point (2,4) is *not* on the graph of h.

5. Suppose that h(x) = -3x + 4. Which of the following statements is true?

All statements are correct

 $\bigcirc \ \ h$ is a strictly increasing function

- \bigcirc *h* is neither a strictly increasing function nor a strictly decreasing function.
- lacktriangledown is a strictly decreasing function

✓ Correct

A function h is called strictly decreasing if whenever a < b, then h(a) > h(b)

Since the graph of h is a line with negative slope, this is in fact true!

6. Suppose that $f:\mathbb{R} \to \mathbb{R}$ is a strictly increasing function, with f(3)=15

1 / 1 point

Which of the following is a possible value for f(3.7)?

- 17
- 14.7
- \bigcirc -3
- \bigcirc 3

/ Corre

A function f is called strictly increasing if whenever a < b, then f(a) < f(b).

Since f(3)=15 is given and 3<3.7, it must be that 15< f(3.7), and this answer satisfies that.

