Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, G. Peruginelli

1º appello — 18 giugno 2019

Esercizio 1. Sia A una matrice invertibile. Dimostrare che se v è un autovettore di A associato all'autovalore λ allora lo stesso vettore v è anche un autovettore di A^{-1} associato all'autovalore $1/\lambda$.

Esercizio 2. Sia A una matrice $n \times n$ e $v \in \mathbb{R}^n$ un autovettore di A. Sia $w \in \langle v \rangle^{\perp}$ un vettore ortogonale a v. Dimostrare che anche il vettore $u = A^t w$ è ortogonale a v.

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori $u_1 = (2, 2, 0, -1)$, $u_2 = (3, -1, -1, -3)$ e sia $W \subset \mathbb{R}^4$ il sottospazio vettoriale di equazioni $2x_1 - x_2 + 3x_4 = 0$ e $x_1 + x_3 - 2x_4 = 0$.

- (a) Determinare una base di W, una base di $U \cap W$ e una base di U + W.
- (b) Trovare, se possibile, una base di un sottospazio $Z \subset \mathbb{R}^4$ tale che $U \oplus Z = W \oplus Z = \mathbb{R}^4$.

Esercizio 4. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alla base canonica, è

$$A = \begin{pmatrix} 4 & 0 & 2 \\ t & 2 & 2t \\ -1 & 0 & 1 \end{pmatrix}$$

- (a) Determinare il polinomio caratteristico e gli autovalori di A.
- (b) Per quale valore di t la matrice A è diagonalizzabile? Per tale valore di t trovare una matrice invertibile P tale che la matrice $P^{-1}AP$ sia diagonale.
- (c) Poniamo ora t = 1. Trovare una base di \mathbb{R}^3 rispetto alla quale la matrice di f sia triangolare superiore, con gli autovalori sulla diagonale.

Esercizio 5. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dai vettori $u_1 = (1, 1, -1, 0), u_2 = (0, 1, 1, 0), u_3 = (0, -2, 0, 1).$

- (a) Scrivere la matrice G del prodotto scalare nel sottospazio U, rispetto alla base $\{u_1, u_2, u_3\}$.
- (b) Utilizzando il procedimento di Gram–Schmidt trovare una matrice invertibile P tale che $P^t G P$ sia una matrice diagonale.
- (c) Dato $v = (1, -7, 5, -3) \in \mathbb{R}^4$ determinare le sue proiezioni ortogonali su U e su U^{\perp} .

$$r_{\alpha,\beta}$$
:
$$\begin{cases} x + \alpha y + \alpha z = 2\\ \beta x + 2y - 2\beta z = -2 \end{cases}$$

- (a) Verificare che le rette $r_{\alpha,\beta}$ ($\forall \alpha,\beta \in \mathbb{R}$) passano tutte per uno stesso punto P (trovare le coordinate di P).
- (b) Esiste un piano che contenga tutte le rette $r_{\alpha,\beta}$ ($\forall \alpha,\beta \in \mathbb{R}$)? In caso di risposta affermativa determinare l'equazione di tale piano.
- (c) Poniamo ora $\alpha = 1$. Determinare il valore di β affinché la retta $r_{1,\beta}$ sia parallela al piano $\pi : x + y z = 1$.

Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, G. Peruginelli

1º appello — 18 giugno 2019

Esercizio 1. Sia A una matrice invertibile. Dimostrare che se v è un autovettore di A associato all'autovalore λ allora lo stesso vettore v è anche un autovettore di A^{-1} associato all'autovalore $1/\lambda$.

Esercizio 2. Sia A una matrice $n \times n$ e $v \in \mathbb{R}^n$ un autovettore di A. Sia $w \in \langle v \rangle^{\perp}$ un vettore ortogonale a v. Dimostrare che anche il vettore $u = A^t w$ è ortogonale a v.

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori $u_1 = (1, -1, 2, 0)$, $u_2 = (1, -2, 5, 1)$ e sia $W \subset \mathbb{R}^4$ il sottospazio vettoriale di equazioni $3x_2 + x_3 - 2x_4 = 0$ e $x_1 - x_2 + 3x_4 = 0$.

- (a) Determinare una base di W, una base di $U \cap W$ e una base di U + W.
- (b) Trovare, se possibile, una base di un sottospazio $Z \subset \mathbb{R}^4$ tale che $U \oplus Z = W \oplus Z = \mathbb{R}^4$.

Esercizio 4. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alla base canonica, è

$$A = \begin{pmatrix} -1 & 0 & 2 \\ 2 - t & 3 & t \\ -4 & 0 & 5 \end{pmatrix}$$

- (a) Determinare il polinomio caratteristico e gli autovalori di A.
- (b) Per quale valore di t la matrice A è diagonalizzabile? Per tale valore di t trovare una matrice invertibile P tale che la matrice $P^{-1}AP$ sia diagonale.
- (c) Poniamo ora t = 1. Trovare una base di \mathbb{R}^3 rispetto alla quale la matrice di f sia triangolare superiore, con gli autovalori sulla diagonale.

Esercizio 5. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dai vettori $u_1 = (1, 0, -1, 2), u_2 = (1, 0, 1, 0), u_3 = (0, 1, 1, 2).$

- (a) Scrivere la matrice G del prodotto scalare nel sottospazio U, rispetto alla base $\{u_1, u_2, u_3\}$.
- (b) Utilizzando il procedimento di Gram–Schmidt trovare una matrice invertibile P tale che $P^t G P$ sia una matrice diagonale.
- (c) Dato $v = (1, -5, 6, 4) \in \mathbb{R}^4$ determinare le sue proiezioni ortogonali su U e su U^{\perp} .

$$r_{\alpha,\beta}: \begin{cases} \alpha x + 2y + \alpha z = 2\\ x + 3\beta y + \beta z = 3 \end{cases}$$

- (a) Verificare che le rette $r_{\alpha,\beta}$ ($\forall \alpha, \beta \in \mathbb{R}$) passano tutte per uno stesso punto P (trovare le coordinate di P).
- (b) Esiste un piano che contenga tutte le rette $r_{\alpha,\beta}$ ($\forall \alpha,\beta \in \mathbb{R}$)? In caso di risposta affermativa determinare l'equazione di tale piano.
- (c) Poniamo ora $\alpha = 1$. Determinare il valore di β affinché la retta $r_{1,\beta}$ sia parallela al piano $\pi : 3x y + z = 1$.

Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, G. Peruginelli

1º appello — 18 giugno 2019

Esercizio 1. Sia A una matrice invertibile. Dimostrare che se v è un autovettore di A associato all'autovalore λ allora lo stesso vettore v è anche un autovettore di A^{-1} associato all'autovalore $1/\lambda$.

Esercizio 2. Sia A una matrice $n \times n$ e $v \in \mathbb{R}^n$ un autovettore di A. Sia $w \in \langle v \rangle^{\perp}$ un vettore ortogonale a v. Dimostrare che anche il vettore $u = A^t w$ è ortogonale a v.

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori $u_1 = (1, 2, 0, 1), u_2 = (2, 1, -2, 1)$ e sia $W \subset \mathbb{R}^4$ il sottospazio vettoriale di equazioni $3x_1 - x_2 + x_3 = 0$ e $2x_1 - 2x_3 + x_4 = 0$.

- (a) Determinare una base di W, una base di $U \cap W$ e una base di U + W.
- (b) Trovare, se possibile, una base di un sottospazio $Z \subset \mathbb{R}^4$ tale che $U \oplus Z = W \oplus Z = \mathbb{R}^4$.

Esercizio 4. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alla base canonica, è

$$A = \begin{pmatrix} -4 & 0 & 6 \\ t & -1 & -t \\ -3 & 0 & 5 \end{pmatrix}$$

- (a) Determinare il polinomio caratteristico e gli autovalori di A.
- (b) Per quale valore di t la matrice A è diagonalizzabile? Per tale valore di t trovare una matrice invertibile P tale che la matrice $P^{-1}AP$ sia diagonale.
- (c) Poniamo ora t = 1. Trovare una base di \mathbb{R}^3 rispetto alla quale la matrice di f sia triangolare superiore, con gli autovalori sulla diagonale.

Esercizio 5. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dai vettori $u_1 = (1, 1, 0, 1), u_2 = (0, 1, 0, -1), u_3 = (2, 0, -1, 2).$

- (a) Scrivere la matrice G del prodotto scalare nel sottospazio U, rispetto alla base $\{u_1, u_2, u_3\}$.
- (b) Utilizzando il procedimento di Gram–Schmidt trovare una matrice invertibile P tale che $P^t G P$ sia una matrice diagonale.
- (c) Dato $v = (3, -2, 7, -8) \in \mathbb{R}^4$ determinare le sue proiezioni ortogonali su U e su U^{\perp} .

$$r_{\alpha,\beta}: \begin{cases} \alpha x + \alpha y + z = 3\\ x + 3\beta y + 2\beta z = 2 \end{cases}$$

- (a) Verificare che le rette $r_{\alpha,\beta}$ ($\forall \alpha,\beta \in \mathbb{R}$) passano tutte per uno stesso punto P (trovare le coordinate di P).
- (b) Esiste un piano che contenga tutte le rette $r_{\alpha,\beta}$ ($\forall \alpha,\beta \in \mathbb{R}$)? In caso di risposta affermativa determinare l'equazione di tale piano.
- (c) Poniamo ora $\alpha=1$. Determinare il valore di β affinché la retta $r_{1,\beta}$ sia parallela al piano $\pi:x-3y-z=1$.

Prof. F. Bottacin, M. Candilera, E. Detomi, R. Colpi, G. Peruginelli

1º appello — 18 giugno 2019

Esercizio 1. Sia A una matrice invertibile. Dimostrare che se v è un autovettore di A associato all'autovalore λ allora lo stesso vettore v è anche un autovettore di A^{-1} associato all'autovalore $1/\lambda$.

Esercizio 2. Sia A una matrice $n \times n$ e $v \in \mathbb{R}^n$ un autovettore di A. Sia $w \in \langle v \rangle^{\perp}$ un vettore ortogonale a v. Dimostrare che anche il vettore $u = A^t w$ è ortogonale a v.

Esercizio 3. Sia $U \subset \mathbb{R}^4$ il sottospazio vettoriale generato dai vettori $u_1 = (1, -3, -2, 2)$, $u_2 = (1, -4, -3, 0)$ e sia $W \subset \mathbb{R}^4$ il sottospazio vettoriale di equazioni $x_1 - x_2 + 3x_3 = 0$ e $3x_2 - 2x_3 + x_4 = 0$.

- (a) Determinare una base di W, una base di $U \cap W$ e una base di U + W.
- (b) Trovare, se possibile, una base di un sottospazio $Z \subset \mathbb{R}^4$ tale che $U \oplus Z = W \oplus Z = \mathbb{R}^4$.

Esercizio 4. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alla base canonica, è

$$A = \begin{pmatrix} -5 & 0 & 6 \\ -t & -2 & t+3 \\ -3 & 0 & 4 \end{pmatrix}$$

- (a) Determinare il polinomio caratteristico e gli autovalori di A.
- (b) Per quale valore di t la matrice A è diagonalizzabile? Per tale valore di t trovare una matrice invertibile P tale che la matrice $P^{-1}AP$ sia diagonale.
- (c) Poniamo ora t = 1. Trovare una base di \mathbb{R}^3 rispetto alla quale la matrice di f sia triangolare superiore, con gli autovalori sulla diagonale.

Esercizio 5. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, sia U il sottospazio generato dai vettori $u_1 = (1, 2, 0, 1), u_2 = (1, 0, 0, -1), u_3 = (4, 1, 1, 0).$

- (a) Scrivere la matrice G del prodotto scalare nel sottospazio U, rispetto alla base $\{u_1, u_2, u_3\}$.
- (b) Utilizzando il procedimento di Gram–Schmidt trovare una matrice invertibile P tale che $P^t G P$ sia una matrice diagonale.
- (c) Dato $v = (-5, 6, 7, -4) \in \mathbb{R}^4$ determinare le sue proiezioni ortogonali su U e su U^{\perp} .

$$r_{\alpha,\beta}: \begin{cases} x + 2\alpha y - \alpha z = 2\\ \beta x - y - \beta z = -1 \end{cases}$$

- (a) Verificare che le rette $r_{\alpha,\beta}$ ($\forall \alpha, \beta \in \mathbb{R}$) passano tutte per uno stesso punto P (trovare le coordinate di P).
- (b) Esiste un piano che contenga tutte le rette $r_{\alpha,\beta}$ ($\forall \alpha,\beta \in \mathbb{R}$)? In caso di risposta affermativa determinare l'equazione di tale piano.
- (c) Poniamo ora $\alpha=1$. Determinare il valore di β affinché la retta $r_{1,\beta}$ sia parallela al piano $\pi:2x+3y-z=1$.