DATA SCIENCE WITH R

HYPOTHESIS TESTING

Introduction to Hypothesis Testing

Basic Framework of a Hypothesis Test

Distance Measures

Central Limit Theorem

Types of Hypothesis Tests

Example:

Company A has been facing a lot of customer complaints about resolution time when clients contact the customer care center.

Example:

Company A has been facing a lot of customer complaints about resolution time when clients contact the customer care center.

The VP, Call Center has been asked to find a solution on reducing issue resolution time.

Example:

Company A has been facing a lot of customer complaints about resolution time when clients contact the customer care center.

The VP, Call Center has been asked to find a solution on reducing issue resolution time.

Approach

Example:

Company A has been facing a lot of customer complaints about resolution time when clients contact the customer care center.

The VP, Call Center has been asked to find a solution on reducing issue resolution time.

Approach

1. Take a sample of calls, note average current resolution time

Example:

Company A has been facing a lot of customer complaints about resolution time when clients contact the customer care center.

The VP, Call Center has been asked to find a solution on reducing issue resolution time.

Approach

- 1. Take a sample of calls, note average current resolution time
- Implement project, and note average call resolution time for another sample

Example:

Company A has been facing a lot of customer complaints about resolution time when clients contact the customer care center.

The VP, Call Center has been asked to find a solution on reducing issue resolution time.

Approach

- 1. Take a sample of calls, note average current resolution time
- Implement project, and note average call resolution time for another sample
- 3. Check if sample means are significantly different

Average

The two-sample t-test is used when means across two groups (or samples) are compared

Avg Call Time Before Implementation	Avg Call Time Post Implementation
8.5	6.5
9.5	5.5
10	6.5
7	3
12.5	5
9	11
4	8.5
9	9.5
9	8.5
9	9
8.75	7.3

The two-sample t-test is used when means across two groups (or samples) are compared

In most business situations we check for differences across samples rather than a sample outcome against a population outcome

Avg Call Time Before Implementation	Avg Call Time Post Implementation	
8.5	6.5	
9.5	5.5	
10	6.5	
7	3	
12.5	5	
9	11	
4	8.5	
9	9.5	
9	8.5	
9	9	
8.75	7.3	

	9	9
Average	8.75	7.3

Average

The two-sample t-test is used when means across two groups (or samples) are compared

In most business situations we check for differences across samples rather than a sample outcome against a population outcome

In this example, can we use the data to show a significant improvement (i.e reduction) in average call time post project implementation?

Avg Call Time Before	Avg Call Time Post
Implementation	Implementation
8.5	6.5
9.5	5.5
10	6.5
7	3
12.5	5
9	11
4	8.5
9	9.5
9	8.5
9	9
8.75	7.3

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

The test statistic is:

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Assuming equal variance between the two samples.

The test statistic is:

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Assuming equal variance between the two samples.

Variances are unequal:

The test statistic is:

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{s^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Assuming equal variance between the two samples.

Variances are unequal:

$$s^{2} = \frac{\sum_{j=1}^{n_{1}} (x_{j} - \overline{x}_{1})^{2} + \sum_{i=1}^{n_{2}} (x_{i} - \overline{x}_{2})^{2}}{n_{1} + n_{2} - 2}$$

$$d = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

$$df = \frac{\left[\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right]^2}{\frac{\left(s_1^2/n_1\right)^2}{n_2 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

If we calculate the Test Statistic assuming equal variance:

- 1. Mean of group 1 = 8.75
- 2. Mean of group 2 = 7.3
- 3. Std Deviation Group 1 = 2.16
- 4. Std Deviation Group 2 = 2.41
- 5. DF = 10 + 10 2 = 18
- 6. T-stat = 1.41

If we calculate the Test Statistic assuming equal variance:

- 1. Mean of group 1 = 8.75
- 2. Mean of group 2 = 7.3
- 3. Std Deviation Group 1 = 2.16
- 4. Std Deviation Group 2 = 2.41
- 5. DF = 10 + 10 2 = 18
- 6. T-stat = 1.41

We can also use Excel built in options: Data Analysis: Two Sample Test

Avg Call Time Before Implementation	Avg Call Time Post Implementation
8.5	6.5
9.5	5.5
10	6.5
7	3
12.5	5
9	11
4	8.5
9	9.5
9	8.5
9	9
8.75	7.3

Average

t-Test: Two-Sample Assuming Equal Variances		
	Avg Call Time Before	Ava Call Time Post
	Implementation	Implementation
Mean	8.75	7.3
Variance	4.680555556	5.84444444
Observations	10	10
Pooled Variance	5.2625	
Hypothesized Mean Difference	0	
df	18	
t Stat	1.413373519	
P(T<=t) one-tail	0.087303288	
t Critical one-tail	1.734063607	
P(T<=t) two-tail	0.174606576	
t Critical two-tail	2.10092204	

We compared two samples that had equal observations

We compared two samples that had equal observations

 If there are unequal observations, we can still use the t-test, but the degrees of freedom used should be 1 less the small sample size

We compared two samples that had equal observations

- 1. If there are unequal observations, we can still use the t-test, but the degrees of freedom used should be 1 less the small sample size
- 2. We can also assume similar variance across the two samples, in which case the t-stat will be simplified, but if variance is not similar, use the test for unequal variance in Excel

We looked at comparisons of average call time for a *random 10 calls* before the project was implemented, and a *random 10 calls* after a solution was designed

Sometimes we may want to test **observations that are paired** to see if there is a true difference in their means before and after the experiment

Respondent #	Weight - Pre	Weight - Post
1	162	168
2	170	158
3	184	186
4	164	155
5	172	143
6	176	161
7	159	160
8	170	135

We looked at comparisons of average call time for a *random 10 calls* before the project was implemented, and a *random 10 calls* after a solution was designed

Sometimes we may want to test **observations that are paired** to see if there is a true difference in their means before and after the experiment

For example:

Testing the efficacy of a particular drug that claims it will help patients lose weight -

Respondent #	Weight - Pre	Weight - Post
1	162	168
2	170	158
3	184	186
4	164	155
5	172	143
6	176	161
7	159	160
8	170	135

We looked at comparisons of average call time for a *random 10 calls* before the project was implemented, and a *random 10 calls* after a solution was designed

Sometimes we may want to test **observations that are paired** to see if there is a true difference in their means before and after the experiment

For example:

Testing the efficacy of a particular drug that claims it will help patients lose weight -

We record average 'before & after' weight for 8 respondents for 20 weeks

Respondent #	Weight - Pre	Weight - Post
1	162	168
2	170	158
3	184	186
4	164	155
5	172	143
6	176	161
7	159	160
8	170	135

$$t = \frac{d}{\sqrt{s^2/n}}$$

Where d is the difference in scores

Test statistic is:

$$t = \frac{\overline{d}}{\sqrt{s^2/n}}$$

Where d is the difference in scores

We need to calculate the mean and standard error of the pre-post differences for each pair and then use that for the test statistic

Let's say our hypothesis is that the drug does have a positive impact on weight loss, and we would like to use a 95% confidence level -

How would you test the hypothesis?

Respondent #	Weight - Pre	Weight - Post	Data Analysis	?
1	162	168	<u>A</u> nalysis Tools	
2	170	158	E Toot Time Consults for Verice and	OK
3	184	186	Fourier Analysis	Cance
4	164	155	Histogram	
5	172	143	Moving Average Random Number Generation	<u>H</u> elp
6	176	161	Rank and Percentile	
7	159	160	Regression Sampling	
8	170	135	t-Test: Paired Two Sample for Means	
			t-Test: Two-Sample Assuming Equal Variances	~

Respondent#	Weight - Pre	Weight - Pos
1	162	168
2	170	158
3	184	186
4	164	155
5	172	143
6	176	161
7	159	160
8	170	135

Coming Up

Types of Hypothesis Tests:

Multiple Sample Tests

THANK YOU