An investigation of the Framingham Heart Study

By Matthew Curcio

GitHub Repo: https://github.com/mccurcio/Logistic_with_R

1. Executive Summary

- 1. This report investigates the risk factors leading to cardiovascular disease (CVD) using the Framingham Heart Study data. The study included 4,133 participants with 13 factors total over 10 years.
- 2. This R markdown document displays my understanding of logistic regression and R. This report is part one of two articles describing Logit. The first article is a discussion of the Logistic Regression followed by a typical report.
- 3. We find seven (7) of the 13 factors lead to cardiovascular disease. The odds related to each factor were calculated from the study.

No.	Factors	Approximate Odds Over Mean
1	Prevalence Of Stroke In Family History	240%
2	Male Vs Female	150%
3	Prevalence Of Hypertension In Family History	130%
4	Age	$< 2,\!800\%$
5	Cigarettes Per Day	< 210%
6	Systolic Blood Pressure	< 780%
7	Glucose Levels	< 250%

2. Results

2.1 Logistic Regression Model

```
##
## Call:
## glm(formula = TenYearCHD ~ male + age + education + cigsPerDay +
## prevalentStroke + prevalentHyp + diabetes + totChol + sysBP +
```

```
##
       diaBP + BMI + heartRate + glucose, family = "binomial", data = df)
##
## Deviance Residuals:
      Min
               1Q
##
                   Median
                                3Q
                                       Max
##
  -1.964 -0.596
                   -0.432
                           -0.294
                                     2.810
##
## Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                    -8.04990
                                 0.64770
                                          -12.43
                                                  < 2e-16 ***
## male1
                     0.48093
                                 0.10163
                                            4.73
                                                  2.2e-06 ***
## age
                     0.06263
                                 0.00625
                                           10.02
                                                  < 2e-16 ***
                                            0.29
                                                     0.775
## education1
                     0.03031
                                 0.10610
## cigsPerDay
                     0.02087
                                 0.00397
                                            5.25
                                                  1.5e-07 ***
## prevalentStroke1
                     1.00721
                                 0.43923
                                            2.29
                                                    0.022 *
                                            2.00
                                                     0.046 *
## prevalentHyp1
                     0.25864
                                 0.12955
## diabetes1
                     0.24052
                                 0.29605
                                            0.81
                                                     0.417
## totChol
                     0.00184
                                 0.00106
                                            1.73
                                                     0.083 .
## sysBP
                     0.01498
                                 0.00355
                                            4.22
                                                  2.5e-05 ***
## diaBP
                    -0.00386
                                 0.00602
                                           -0.64
                                                     0.521
## BMI
                     0.00212
                                 0.01182
                                            0.18
                                                     0.857
## heartRate
                    -0.00248
                                 0.00393
                                           -0.63
                                                     0.528
                     0.00619
                                 0.00215
                                            2.88
                                                     0.004 **
## glucose
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 3521.9 on 4132 degrees of freedom
## Residual deviance: 3131.2 on 4119
                                        degrees of freedom
## AIC: 3159
##
## Number of Fisher Scoring iterations: 5
```

• 7 most significant variables

• Seven predictors have $\alpha < 0.05$. They are significant and associated with acquiring cardiovascular disease.

Rank	Risk Factor
1	Prevalence of Stroke1
2	Male1
3	Prevalence of Hypertension1
4	Age
5	Cigarettes Per Day
6	Systolic Blood Pressure
7	Glucose

2.2 Wald Test: Do The Seven Factors Fit Our Model

- The Wald Chi-Square Test can help determine if our proposed model is valuable and significant.
- The Wald test generates a P-value « 0.001.

 Therefore, we conclude the seven (7) parameters are significant and useful in describing cardiovascular disease.

2.3 Determination of Odds for Seven Variables

- We can calculate the odds of acquiring cardiovascular disease for each of the seven variables.
- By holding all other values constant we create a dataframe that investigates the odds given Prevalence of Stroke, for example.

```
strok_test <- with(df, data.frame(male = "0",</pre>
                                    age = mean(age),
                                    education = "0",
                                    cigsPerDay = 0, # Non-smoker
                                    prevalentHyp = "0",
                                    diabetes = "0",
                                    totChol = mean(totChol),
                                    sysBP = mean(sysBP),
                                    diaBP = mean(diaBP),
                                    BMI = mean(BMI),
                                    heartRate = mean(heartRate),
                                    glucose = mean(glucose),
                                    prevalentStroke = c("0", "1"))
                    )
# Convert prevalentStroke from Numeric to FACTOR
strok_test$prevalentStroke <- as.factor(strok_test$prevalentStroke)</pre>
# str(strok_test)
strok_test$prevalentStroke <- predict(mylogit,</pre>
                                        newdata = strok_test,
                                        type = "response")
#strok_test$prevalentStroke
```

2.4 Odds Given Prevalence Of Stroke In family history.

WITH Prevalence of Stroke: 0.18761
 NO Prevalence of Stroke: 0.07778

• Odds = 2.4119

2.5 Odds Given For Male Vs Female

```
male_test <- with(df, data.frame(male = c("0","1"), # Factor of Interest</pre>
                                  age = mean(age),
                                   education = "0",
                                   cigsPerDay = 0,
                                  prevalentHyp = "0",
                                  diabetes = "0",
                                  totChol = mean(totChol),
                                  sysBP = mean(sysBP),
                                  diaBP = mean(diaBP),
                                  BMI = mean(BMI),
                                  heartRate = mean(heartRate),
                                  glucose = mean(glucose),
                                  prevalentStroke = "0"))
# REMEMBER convert male_test from numeric to FACTOR
male_test$male <- as.factor(male_test$male)</pre>
male_test$male <- predict(mylogit, newdata = male_test, type = "response")</pre>
```

Males: 0.12005
 Female: 0.07778

• Odds = 1.54343

2.6 Odds Prevalence of Hypertension In Family History

```
hyperT_test <- with(df, data.frame(male = "0",
                                    age = mean(age),
                                    education = "0",
                                    cigsPerDay = 0,
                                    prevalentHyp = c("0","1"), # Factor of Interest
                                   diabetes = "0",
                                   totChol = mean(totChol),
                                    sysBP = mean(sysBP),
                                   diaBP = mean(diaBP),
                                   BMI = mean(BMI),
                                   heartRate = mean(heartRate),
                                    glucose = mean(glucose),
                                   prevalentStroke = "0"))
# REMEMBER convert male_test from numeric to FACTOR
hyperT_test$prevalentHyp <- as.factor(hyperT_test$prevalentHyp)</pre>
hyperT_test$prevalentHyp <- predict(mylogit, newdata = hyperT_test, type = "response")
```

- 1. WITH Prevalence of Hypertension: 0.09848
- 2. NO Prevalence of Hypertension: 0.07778
- Odds = 1.2661

2.7 Odds Given Age

Age (years)	Probability Given Age	Odds Compared to 20 yr old
20	0.01307	1
30	0.02418	1.84969
40	0.0443	3.38895
50	0.0798	6.1044
60	0.13958	10.67785
70	0.23282	17.81084
80	0.36214	27.70331

2.8 Odds Given Number Of Cigarettes Per Day

1. A pack of cigarettes gave a person 45% increase of acquiring Cardiovascular disease, **using this data** set. This seems oddly low.

Age (years)	Probability Given Age	Odds Compared to Zero Cigarettes Per Day
0	0.07778	1
10	0.09414	1.21027
20	0.11351	1.45932
30	0.13627	1.7519
40	0.16275	2.09238

2.9 Odds Given Systolic Blood Pressure

```
summary(df$sysBP)
##
      Min. 1st Qu. Median
                             Mean 3rd Qu.
                                              Max.
##
           117.0
                   128.0 132.4 144.0
                                             295.0
# Min. 1st Qu. Median
                        Mean 3rd Qu. Max.
# 83.5 117.0 128.0
                         132.4 144.0
sysBP_calc <- with(df, data.frame(male = "0",</pre>
                                  age = mean(age),
                                  education = "0",
                                  cigsPerDay = 0,
                                  prevalentHyp = "0",
                                  diabetes = "0",
                                  totChol = mean(totChol),
                                  sysBP = c(117, 128, 144, 295),
                                  diaBP = mean(diaBP),
                                  BMI = mean(BMI),
                                  heartRate = mean(heartRate),
                                  glucose = mean(glucose),
                                  prevalentStroke = "0"))
sysBP_calc$sysBP <- predict(mylogit, newdata = sysBP_calc, type = "response")</pre>
#sysBP_calc$sysBP
```

Systolic BP	Probability Given Systolic BP	Odds Systolic BP
117	0.06279	1
128	0.07322	1.16607
144	0.09124	1.45318
Max 295	0.49104	7.8204

2.10 Odds Given Glucose Levels

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 40 72 80 82 85 394
```

```
Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
              72
                       80
                               82
                                        85
                                               394
      40
glucose_calc <- with(df, data.frame(male = "0",</pre>
                                   age = mean(age),
                                   education = "0",
                                   cigsPerDay = 0,
                                   prevalentHyp = "0",
                                   diabetes = "0",
                                   totChol = mean(totChol),
                                   sysBP = mean(sysBP),
                                   diaBP = mean(diaBP),
                                   BMI = mean(BMI),
                                   heartRate = mean(heartRate),
                                   glucose = c(72, 80, 85, 394),
                                   prevalentStroke = "0"))
glucose_calc$glucose <- predict(mylogit, newdata = glucose_calc, type = "response")</pre>
# glucose_calc$glucose.
# 0.094843 0.100852 0.110194 0.239738
```

Glucose	Probabilities	Odds Given Glucose
72	0.094843	1
80	0.100852	1.06336
85	0.110194	1.16186
Max 394	0.239738	2.52774

IV. Conclusion

1. We find seven (7) of the 13 factors lead to cardiovascular disease. The odds related to each factor were calculated from the study.

No.	Factors	Approximate Odds Over Mean
1	Prevalence Of Stroke In Family History	240%
2	Male Vs Female	150%
3	Prevalence Of Hypertension In Family History	130%
4	Age	< 2,800%
5	Cigarettes Per Day	< 210%
6	Systolic Blood Pressure	< 780%
7	Glucose Levels	< 250%

- 2. The Wald Chi-Square Test can help determine if our proposed model is valuable and significant. The Wald test generates a P-value « 0.001. Therefore, we conclude the seven (7) parameters are significant and useful in describing cardiovascular disease.
- 3. A pack of cigarettes gave a person 45% increase of acquiring Cardiovascular disease, using this data set. This seems oddly low.

Cigar Per	ettebability Given	
Day	Age	Odds Compared to Zero Cigarettes Per Day
0	0.07778	1
10	0.09414	1.21027
20	0.11351	1.45932
30	0.13627	1.7519
40	0.16275	2.09238

Notes

- For analysis help https://stats.idre.ucla.edu/r/dae/logit-regression/
- $\bullet \ \, \text{For interpretation help https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-interpret-odds-ratios-in-logistic-regression/.} \\$
- $\bullet \ https://stats.oarc.ucla.edu/other/mult-pkg/faq/general/faqhow-are-the-likelihood-ratio-wald-and-lagrange-multiplier-score-tests-different-andor-similar/ \\$

Wald test info

- $\bullet \ \, \text{https://www.mbaskool.com/business-concepts/statistics/} \\ 6916\text{-wald-test.html}$
- https://www.statology.org/wald-test-in-r/
- https://handwiki.org/wiki/Wald_test
- https://questionerlab.com/what-is-the-use-of-wald-test-in-logistic-regression
- https://bookdown.org/mike/data_analysis/wald-test.html
- $\bullet \ \ https://bookdown.org/mike/data_analysis/hypothesis-testing.html\#wald-test$