

600mA,10uA, Higt PSRR Voltage Reaulator

www.sot23.com.tw

Features

- 10µ A Ground Current at no Load
- ±2% Output Accuracy
- 600mA Output Current
- 10nA Disable Current (by option)
- Wide Operating Input Voltage Range: 1.2V to 5.5V
- Dropout Voltage: 0.32V at 600mA/ Vout 3.3V
- Support Fixed Output Voltage 1.2V, 1.5V, 1.6V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V
- Stable with Ceramic or Tantalum Capacitor
- Current Limit Protection
 Over Temperature Protection
- SOT23-5 Packages

Applications

- Portable, Battery Powered Equipment
- Low Power Microcontrollers
- Laptop, Palmtops and PDAs
- · Wireless Communication Equipment
- Audio/Video Equipment
- Car Navigation Systems

General Descrition

This production is group of low -dropout (LDO) voltage regulators offering the benefits of wide input voltage range from 1.2V to 5.5V, low dropout voltage, low power consumption, and miniaturized packaging. Quiescent current of only 10µA makes these devices ideal for powering the battery-powered, always-on systems that require very little idle-state power dissipation to a longer service life. There is an option of

shutdown mode by selecting the parts with the EN pin and pulling it low. The shutdown current in this mode goes down to only 10nA (typical).

This production is of linear regulators are stable with the ceramic output capacitor over its wide input range from 1.2V to 5.5V and the entire range of output load current (0mA to 600mA).

Ordering Information

AP2112K-3.3TRG1

Output voltage: 1.2=1.2V

1.8=1.8V

3.0 = 3.0 V

3.3=3.3V

3.6=3.6V

600mA,10uA, Higt PSRR Voltage Reaulator

www.sot23.com.tw

PIN CONFIGURATION

Typical Application Circuit

Figure 2: Application circuit of Fixed Vout LDO with enable function

ABSOLUTE MAXIMUM RATINGS

VIN Pin to GND Pin Voltage		0.3V to 6.5V
VOUT Pin and EN 'olta	ge	0.3V to 6V
VOUT Pin to VIN Pin Voltage		6V to 0.3V
Storage Temperature Range		60°C~150°C
Lead Temperature (Soldering, 10 sec)		260°C
Junction Temperature		150°C
Operating Ambient Temperature Range	T _A	40°C~85°C
Thermal Resistance Junction to Case, R	ЮJC SOT23-3	115°C/W
	SOT23-5	115°C/W
	DFN-4(1x1)	65°C/W
	DFN-6(2x2)	30°C/W
Thermal Resistance Junction to Ambient	t, Rθja SOT23-3	250°C/W
	SOT23-5	250°C/W
	DFN-4(1x1)	195°C/W
	DFN-6(2x2)	165°C/W
	_	

600mA,10uA, Higt PSRR Voltage Reaulator

www.sot23.com.tw

Electrical Characteristics (T_A=25 C unless otherwise noted)

(V_{IN} =5V, V_{EN} = 5V T_A =25°C unless otherwise specified)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Supply Voltage	V _{IN}			1.2		5.5	V
DC Output Voltage Accuracy		I _{LOAD} =0	1mA	-2		2	%
Dropout Voltage (I _{LOAD} =600mA) (Note 3)	V _{DROP_3V}	V _{OUT} ≥ 3V			0.32		V
	VDROP_2.8V	V _{OUT} = 2.8V			0.36		
	VDROP_2.5V	V _{OUT} = 2.5V			0.36		
	VDROP_1.8V	V _{OUT} = 1.8V			0.57		
	V _{DROP_1.5V}	V _{OUT} = 1.5V			0.71		
	V	V = 1.2V			0.8		
Ground Current	lα	I _{LOAD} = 0mA			10		μΑ
Shutdown Ground Current	I _{SD}	V _{EN} = 0V,			0.01	0.5	
V _{OUT} Shutdown Leakage Current	I _{LEAK}	Vout = 0V			0.01	0.5	μΑ
Freelig Throughold Vellege	ViH	EN Rising				2	V
Enable Threshold Voltage	VIL	EN Falling		0.6			
EN Input Current	I _{EN}	V _{EN} = 5V			10	100	nA
Line Regulation	ΔLINE	$I_{LOAD} = 30 \text{mA},$ $1.5 \text{V} \le \text{V}_{IN} \le 5.5 \text{V} \text{ or}$ $(\text{Vout} + 0.2 \text{V}) \le \text{V}_{IN} \le 5.5 \text{V}$			0.2		%
Load Regulation	ΔLOAD	10mA ≤ I _{LOAD} ≤ 0.3A			0.2		%
Output Current Limit	ILIM	V _{OUT} =0		601	1100		mA
	PSRR	Vouт	f = 100Hz		80		
Power Supply Rejection Ratio (ILOAD =5mA)		=1.2V, V _{IN} = 2V	f = 1kHz		75		dB
Output Voltage Noise		V _{IN} =	V _{OUT} =0.9V		40		
(BW = 10Hz to 100kHz, C_{OUT} = 1 μ F,)		3.5V I _{LOAD} =0.1A	V _{OUT} =2.8V		50		μV _{RMS}
Thermal Shutdown Temperature	T _{SD}	I _{LOAD} =10mA			155		°C
Thermal Shutdown Hysteresis	ΔT _{SD}				15		°C
Discharge Resistance		EN = 0V , V _{OUT} = 0.1V			100		Ω

600mA,10uA, Higt PSRR Voltage Reaulator

www.sot23.com.tw

- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured at T_A = 25°C on a TECH PUBLICboard.
- Note 3. $V_{DROP} = V_{IN} V_{OUT}$ when the V_{OUT} is 98% of its target value.

600mA,10uA, Higt PSRR Voltage Reaulator

www.sot23.com.tw

Typical Characteristics

Fig. 5 Output Voltage vs. Temperature

Fig. 6 Output Voltage vs. Input Voltage

Fig. 7 Output Voltage vs. Load Current

Fig. 8 Dropout Voltage vs. Temperature

Fig. 9 Ground Current vs. Input Voltage

Fig. 10 Ground Current vs. Loading Current

600mA,10uA, Higt PSRR Voltage Reaulator

www.sot23.com.tw

Current Limit vs. Input voltage 1300 (PE) 1100 1100 800 3 4 Input Voltage (V)

600mA,10uA, Higt PSRR Voltage Reaulator

www.sot23.com.tw

Fig. 17 Line Transient Response

Fig. 18 V_{OUT} Turn On/Off by EN

600mA,10uA, Higt PSRR Voltage Reaulator

www.sot23.com.tw

BLOCK DIAGRAM

600mA,10uA, Higt PSRR Voltage Reaulator

www.sot23.com.tw

Package informantion SOT23-5

	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
C	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°