Package 'lhmixr'

May 5, 2017

Title Fits Sex-Specific Life History Models With Missing Classifications
Version 0.0.0.9000
Author Coilin Minto, John Hinde, Rui Coelho
Maintainer Coilin Minto <coilin.minto@gmit.ie></coilin.minto@gmit.ie>
Description Ihmixr fits sex-specific life-history models for fish and other taxa where some of the individuals have unknown sex.
Depends R (>= $3.2.0$)
License GPL (>= 3)
<pre>URL https://github.com/mintoc/lhmixr</pre>
LazyData true
RoxygenNote 6.0.0
R topics documented:
Epusillus
Espinax
get_growth_post_prob
get_maturity_post_prob
maturity_mix
sim_mat_data
sim_vb_data
vb_bind_gr
vb_bind_nll
vb_growth_mix
vb_lengths
Index 13

2 Espinax

Epusillus

Etmopterus pusillus data

Description

Growth data for deepwater smooth lantern shark *Etmopterus pusillus* from Coelho and Erzini (2007). Data are cross-sectional with one observation (row) per individual.

Usage

Epusillus

Format

A data frame with five variables:

species Full species name

sex Sex of the animal: Female (F) or Male (M)

age Age in years

length Total length in centimetres

maturity Maturation status: immature or mature

Source

Coelho, R. & Erzini, K. (2007). Population parameters of the smooth lantern shark, *Etmopterus pusillus*, in southern portugal (NE Atlantic). *Fisheries Research*, 86, 42–57.

Espinax

Etmopterus spinax data

Description

Growth data for deepwater velvet belly lantern shark *Etmopterus spinax* from Coelho and Erzini (2008). Data are cross-sectional with one observation (row) per individual.

Usage

Espinax

get_growth_post_prob 3

Format

A data frame with five variables:

species Full species name

sex Sex of the animal: Female (F) or Male (M)

age Age in years

length Total length in centimetres

maturity Maturation status: immature or mature

Source

Coelho, R. and Erzini, K. (2008). Life history of a wide-ranging deepwater lantern shark in the north-east Atlantic, *Etmopterus spinax* (chondrichthyes: Etmopteridae), with implications for conservation. *Journal of Fish Biology*, 73, 1419–1443.

get_growth_post_prob

Posterior probability of sex being female based on growth alone

Description

get_growth_post_prob returns the probability of the observation(s) arising from the female component given a set of parameters and an assumed distribution (normal currently). The component probability is given by Bayes' theorem. Used internally.

Usage

```
get_growth_post_prob(mixprop, muF, muM, sigmaF, sigmaM, data, distribution)
```

Arguments

mixprop	Numeric scalar of mixing proportion (overall sex ratio)
_	

muF Numeric vector with predicted female lengths
muM Numeric vector with predicted male lengths

sigmaF Numeric scalar for female residual standard deviation sigmaM Numeric scalar for male residual standard deviation

data A data.frame with column "length". Note predicted means "muF" and "muM"

must come from corresponding ages.

distribution Character with options: "normal" or "lognormal".

Value

Numeric vector of the posterior probability of being female.

4 maturity_mix

```
get_maturity_post_prob
```

Posterior probability of sex being female based on maturity alone

Description

get_growth_post_prob returns the probability of the observation(s) arising from the female component given a set of parameters and an assumed distribution (binomial). The component probability is given by Bayes' theorem. Used internally.

Usage

```
get_maturity_post_prob(mixprop, pF, pM, data)
```

Arguments

mixprop	Numeric scalar of mixing proportion (overall sex ratio)
pF	Numeric vector with predicted female maturity probability.
рМ	Numeric vector with predicted male maturity probability.
data	A data.frame with binary column "maturity".

Value

Numeric vector of the posterior probability of being female.

Examples

maturity_mix

Fit finite mixture maturity model.

Description

maturity_mix fits sex-specific maturity models where some of the animals are of unknown sex. Optimization is via the Expectation-Maximisation algorithm.

Usage

```
maturity_mix(start.list, data, binding = NULL, maxiter.em = 1000,
  reltol = 1e-08, plot.fit = FALSE, verbose = TRUE,
  estimate.mixprop = TRUE)
```

maturity_mix 5

Arguments

start.list A list with a list called par containing starting values for: "mixprop", "betaF"

(female parameters) and "betaM" (male parameters) (see Examples).

data A data.frame with columns: "maturity" (binary), "x" (single explanatory co-

variate currently), and "obs.sex". "obs.sex" must have values "female", "male",

"unclassified".

binding A (kx2) parameter index matrix (not implemented yet)
maxiter.em Integer for maximum number of EM iterations (1e3 default).

reltol Relative tolerance for EM observed data log likelihood convergence (1e-8 de-

fault).

plot.fit Logical, if TRUE fit plotted per iteration (binary maturity jittered for visualisa-

tion). Red and blue circles are used for known females and males, respectively. Unclassified animals are plotted as triangle with the colour indicating the ex-

pected probability of being female or male (FALSE default).

verbose Logical, if TRUE iteration and observed data log-likelihood printed.

estimate.mixprop

Logical, if TRUE the mixing proportion is estimated, otherwise fixed at the

starting value.

Value

List containing the components:

logLik.vec Observed data log-likelihood at each iteration.

logLik Observed data log-likelihood on the last EM iteration.

complete_data Data frame of the data (re-ordered) with component probabilities (tau).

coefficients Parameter estimates (on logit scale) by sex and associated standard errors (not

currently implemented).

vcov Estimated variance covariance matrix of the parameters estimated on the real

line. Can be used to obtain parameter standard errors on the natural scale (not

currently implemented).

convergence Binary with a "0" denoting convergence of the EM algorithm.

6 sim_mat_data

sim_mat_data	Simulate sex-specific maturity data with missing classifications.
31III_IIIat_uata	simulate sex-specific maintify and with missing classifications.

Description

sim_mat_data simulates sex-specific maturity data according to a logistic maturity model.

Usage

```
sim_mat_data(nfemale, nmale, shapes, mat_parF, mat_parM, xcutoff)
```

Arguments

nfemale	Numeric scalar for number of female observations.
nmale	Numeric scalar for number of male observations.
shapes	Numeric vector for beta-distribution shape parameters - used to generate x values
mat_parF	Named ("x50", "xr") numeric vector with female maturity parameters ("x50" is the x value at which 50% are mature; "xr" is the x range between 25% and 75% mature)
mat_parM	Named ("x50", "xr") numeric vector with male maturity parameters
xcutoff	Named ("female", "male") numeric vector with x cutoffs below which immature animals are unclassified

Value

data.frame with columns "x", "true.sex", "obs.sex" (observed sex including unclassified), "maturity" (binary: 1 if mature; 0 if immature).

```
sim.dat < -sim_mat_data (nfemale = 30, nmale = 30, shapes = c(3, 3), \\ mat_parF = c(x50 = 0.5, xr = 0.1), \\ mat_parM = c(x50 = 0.4, xr = 0.1), \\ xcutoff = c(female = 0.5, male = 0.4))
```

sim_vb_data 7

sim_vb_data	Simulate sex-specific von Bertalanffy data with missing classifications.
SIII VD Uata	Simulate sex-specific von Derialantiv aala with missing classifications.

Description

sim_vb_data simulates sex-specific growth data according to the von Bertalanffy growth model and a logistic model governing maturity.

Usage

```
sim_vb_data(nfemale, nmale, mean_ageF, mean_ageM, growth_parF, growth_parM,
    mat_parF, mat_parM, distribution)
```

Arguments

nfemale	Numeric scalar for number of female observations.
nmale	Numeric scalar for number of male observations.
mean_ageF	Numeric scalar for female mean age - used to generate ages from rnbinom(,mu = mean_ageF)
mean_ageM	Numeric scalar for male mean age - used to generate ages from rnbinom(, $mu = mean_ageM$)
growth_parF	Named ("linf", "k", "t0", "sigma") numeric vector with female growth parameters
growth_parM	Named ("linf", "k", "t0", "sigma") numeric vector with male growth parameters
mat_parF	Named ("A50", "MR") numeric vector with female maturation parameters A50 is the age at 50% maturity, MR is age range between 25% and 75% maturity.
mat_parM	Named ("A50", "MR") numeric vector with male maturation parameters.
distribution	Character with options: "normal" or "lognormal".

Value

data.frame with columns "age", "length", "true.sex", "obs.sex" (observed sex assuming immature animals unclassified), "maturiy" (binary: 1 if mature; 0 if immature).

8 vb_bind_gr

vb_bind_gr	Gradient of the negative log-likelihood for potentially constrained von Bertalanffy growth model (typically used internally).

Description

vb_bind_gr returns the parameter gradients of negative log-likelihood for the von Bertalanffy model. Equality constraints across sexes can be implemented for any combination of parameters using the binding argument.

Usage

```
vb_bind_gr(theta, binding, data, distribution)
```

Arguments

theta	A parameter vector of the same length as the maximum of binding. Unconstrained parameters take the order: lnlinfF, lnlinfM, lnkF, lnkM, lnnt0F, lnnt0M, lnsigmaF, lnsigmaM.
binding	A (4x2) parameter index matrix with rows named (in order): "lnlinf", "lnk", "lnnt0", "lnsigma" and the left column for the female parameter index and right column for mal parameter index. Used to impose arbitrary equality constraints across the sexes (see Examples).
data	A data.frame with columns: "age", "length" and "weights". "weights" are set to 1 or 0 for known females or males, respectively; proportions otherwise.
distribution	Character with options: "normal" or "lognormal".

Value

Vector of parameter gradients:

vb_bind_nll 9

vb_bind_nll	Negative log-likelihood for potentially constrained von Bertalanffy growth model (typically used internally).

Description

vb_bind_nll returns the negative log-likelihood for the von Bertalanffy model. Equality constraints across sexes can be implemented for any combination of parameters using the binding argument.

Usage

```
vb_bind_nll(theta, binding, data, distribution)
```

Arguments

theta	A parameter vector of the same length as the maximum of binding. Unconstrained parameters take the order: lnlinfF, lnlinfM, lnkF, lnkM, lnnt0F, lnnt0M, lnsigmaF, lnsigmaM.
binding	A (4x2) parameter index matrix with rows named (in order): "lnlinf", "lnk", "lnnt0", "lnsigma" and the left column for the female parameter index and right column for mal parameter index. Used to impose arbitrary equality constraints across the sexes (see Examples).
data	data.frame with columns: "age", "length" and "weights". "weights" are set to 1 or 0 for known females or males, respectively; proportions otherwise.
distribution	Character with options: "normal" or "lognormal"

Value

Complete data negative log-likelihood:

vb_growth_mix

vb_growth_mix Fit finite mixture von Bertalanffy growth model.	vb_growth_mix	Fit finite mixture von Bertalanffy growth model.	
--	---------------	--	--

Description

vb_growth_mix fits sex-specific growth models where some of the animals are of unknown sex. Optimization is via the Expectation-Maximisation algorithm. Equality constraints across sexes can be implemented for any combination of parameters using the binding argument. Assumes a normal distribution currently.

Usage

```
vb_growth_mix(start.list, data, binding, maxiter.em = 1000, reltol = 1e-08,
plot.fit = FALSE, verbose = TRUE, optim.method = "BFGS",
estimate.mixprop = TRUE, distribution)
```

Arguments

start.list	A list with a list called par containing starting values for: "mixprop", "growth.par" (see Examples).
data	A data.frame with columns: "age", "length" and "obs.sex". "obs.sex" must have values "female", "male", "immature".
binding	A (4x2) parameter index matrix with rows named (in order): "lnlinf", "lnk", "lnnt0", "lnsigma" and the left column for the female parameter index and right column for mal parameter index. Used to impose arbitrary equality constraints across the sexes (see Examples).
maxiter.em	Integer for maximum number of EM iterations (1e3 default).
reltol	Relative tolerance for EM observed data log likelihood convergence (1e-10 default).
plot.fit	Logical, if TRUE fit plotted per iteration. Red and blue circles are used for known females and males, respectively. Immature / unsexed animals are plotted as triangle with the colour indicating the expected probability of being female or male (FALSE default).
verbose	Logical, if TRUE iteration and observed data log-likelihood printed.
optim.method	Character, complete data optimisation method to use in optim.
estimate.mixpr	ор
	Logical, if TRUE the mixing proportion is estimated, otherwise fixed at the starting value.
distribution	Character with options: "normal" or "lognormal".

Value

List containing the components:

logLik.vec Observed data log-likelihood at each iteration.

vb_lengths 11

logLik Observed data log-likelihood on the last EM iteration.

coefficients Parameter estimates (on the real line) and associated standard errors on the real

line.

vcov Estimated variance covariance matrix of the parameters estimated on the real

line. Can be used to obtain parameter standard errors on the natural scale.

convergence Binary with a "0" denoting convergence of the EM algorithm.

Examples

```
set.seed(1010)
sim.dat <- sim_vb_data(nfemale = 50, nmale = 50, mean_ageF = 4, mean_ageM = 4,</pre>
                       growth_parF = c(linf = 30, k = 0.5, t0 = -1, sigma = 0.1),
                       growth_parM = c(linf = 25, k = 0.5, t0 = -1, sigma = 0.1),
                       mat_parF = c(A50 = 5, MR = 2), mat_parM = c(A50 = 3, MR = 2),
                       distribution = "lognormal")
## Model fit with contrained Brody's growth coefficient
## Set up the constraint
binding \leftarrow matrix(c(1:2, rep(3, 2), 4:7), ncol = 2, byrow = TRUE)
rownames(binding) <- c("lnlinf", "lnk", "lnnt0", "lnsigma")</pre>
colnames(binding) <- c("female", "male")</pre>
## starting values
start.par \leftarrow c(c(\log(30), \log(25)), rep(\log(0.3), 1), rep(\log(1), 2), rep(\log(.1), 2))
start.list <- list(par = list(mixprop = 0.5, growth.par = start.par))</pre>
vb.bind.fit <- vb_growth_mix(data = sim.dat, start.list = start.list,</pre>
                               binding = binding, distribution = "lognormal",
                               reltol = 1e-6)
```

vb_lengths

von Bertalanffy growth function.

Description

vb_lengths returns the predicted length-at-age for given named set of parameters for the von Bertalanffy growth function:

 $l = L_{\infty} (1 - e^{-k(a - t_0)})$

Usage

```
vb_lengths(theta, age)
```

Arguments

theta A numeric vector with named values "linf", "k", "t0".

age A numeric vector of ages.

vb_lengths

Value

Predicted length-at-age.

```
vb_{lengths}(theta = c("linf" = 30,"k" = 0.2,"t0" = -1), age = 0:10)
```

Index