

BC817 ... BC818 SMD General Purpose NPN Transistors

SMD General Purpose NPN Transistors
SMD Universal-NPN-Transistoren

 $I_{c} = 800 \text{ mA}$ $h_{FE} \sim 160/250/400$

 $V_{CES} = 30...50 V$ $P_{tot} = 310 mW$

 $T_{imax} = 150$ °C

Version 2021-07-05

SOT-23 TO-236

SPICE Model & STEP File 1)

Marking Code See below | Siehe unten

HS Code 85412100

Typical Applications

Signal processing Switching Amplification Commercial grade Suffix -Q: AEC-Q101 compliant ¹) Suffix -AQ: in AEC-Q101 qualification ¹)

Features

General Purpose Three current gain groups Compliant to RoHS (w/o exemp.), REACH, Conflict Minerals ¹)

Mechanical Data 1)

Taped and reeled
Weight approx.
Case material
Solder & assembly conditions

Typische Anwendungen

Signalverarbeitung Schalten Verstärken Standardausführung Suffix -Q: AEC-Q101 konform ¹) Suffix -AQ: in AEC-Q101 Qualifikation ¹)

> Universell anwendbar Drei Stromverstärkungsklassen Konform zu RoHS (ohne Ausn.), REACH, Konfliktmineralien ¹)

> > Mechanische Daten 1)

Besonderheiten

riechamsche Daten

3000 / 7" Gegurtet auf Rolle
0.01 g Gewicht ca.
UL 94V-0 Gehäusematerial
260°C/10s Löt- und Einbaubedingungen

MSL = 1

Type & Marking Code				Complementary PNP transistors Komplementäre PNP-Transistoren			
BC817-16/-Q = 6A or 6CR BC817-25/-Q = 6B or 6CS BC817-25-AQ = 6CS BC817-40/-Q = 6C or 6CT BC817-40-AQ = 6CT	BC818-16 BC818-25 BC818-40	= 6E or 6CR = 6F or 6CS = 6G or 6CT	2)/	BC807 BC808			

Maximum ratings ¹) Grenzwerte ²)

			BC817	BC818	
Collector-Emitter-voltage – Kollektor-Emitter-Spannung	E-B short	V _{CES}	50 V	30 V	
Collector-Emitter-voltage – Kollektor-Emitter-Spannung	B open	V_{CEO}	45 V	25 V	
Emitter-Base-voltage – Emitter-Basis-Spannung	C open	V_{EBO}	5 V		
Power dissipation – Verlustleistung		P _{tot}	310 mW ²)		
Collector current – Kollektorstrom	DC	${ m I}_{ m C}$	800 mA		
Peak Collector current – Kollektor-Spitzenstrom		\mathbf{I}_{CM}	1 A		
Peak Emitter current – Emitter-Spitzenstrom		- I _{EM}	1 A		
Peak Base current – Basis-Spitzenstrom			200 mA		
Junction temperature – Sperrschichttemperatur Storage temperature – Lagerungstemperatur		$T_{\rm j}$ $T_{\rm S}$	-55+150°C -55+150°C		

¹ Please note the <u>detailed information on our website</u> or at the beginning of the data book Bitte beachten Sie die <u>detaillierten Hinweise auf unserer Internetseite</u> bzw. am Anfang des Datenbuches

¹ $T_A = 25$ °C, unless otherwise specified – $T_A = 25$ °C, wenn nicht anders angegeben

² Mounted on P.C. board with 3 mm2 copper pad at each terminal Montage auf Leiterplatte mit 3 mm2 Lötpad je Anschluss

Characteristics Kennwerte

	$T_j = 25$ °C	Min.	Тур.	Max.
DC current gain – Kollektor-Basis-Stromverhältnis ¹)				
$\begin{array}{c} \text{Group -16} \\ \text{V}_{\text{CE}} = 1 \text{ V, I}_{\text{C}} = 100 \text{ mA} \\ \text{Group -25} \\ \text{Group -40} \end{array}$	h _{FE}	100 160 250	- - -	250 400 630
$V_{CE} = 1 \text{ V, } I_{C} = 500 \text{ mA}$	h _{FE}	40	-	-
Collector-Emitter saturation voltage – Kollektor-Emitter-Sättigungsspg	. ²)			
I_{C} = 500 mA, I_{B} = 50 mA		_	-	0.7 V
Base-Emitter saturation voltage – Basis-Emitter-Sättigungsspannung ²)			
I_C = 500 mA, I_B = 50 mA	V_{BEsat}	_	_	1.3 V
Base-Emitter-voltage – Basis-Emitter-Spannung ²)				
$V_{CE} = 1 \text{ V, } I_C = 500 \text{ mA}$		_	-	1.2 V
Collector-Base cutoff current – Kollektor-Basis-Reststrom				
$V_{CB} = 20 \text{ V, (E open)}$ $V_{CB} = 20 \text{ V, T}_j = 125^{\circ}\text{C, (E open)}$	${ m I}_{ m CB0}$	(R)	_ _	100 nA 5 μA
Emitter-Base cutoff current – Emitter-Basis-Reststrom				
$V_{EB} = 4 \text{ V, (C open)}$	\mathbf{I}_{EB0}	_	-	100 nA
Gain-Bandwidth Product – Transitfrequenz				
$V_{CE} = 5 \text{ V, } I_C = 10 \text{ mA, } f = 50 \text{ MHz}$		_	100 MHz	_
Collector-Base Capacitance – Kollektor-Basis-Kapazität				
$V_{CB} = 10 \text{ V}, I_E = i_e = 0, f = 1 \text{ MHz}$			12 pF	
Typical thermal resistance junction to ambient Typischer Wärmewiderstand Sperrschicht – Umgebung	R _{thA}	420 K/W ²)		

Dimensions - Maße [mm]

Disclaimer: See data book page 2 or <u>website</u> **Haftungssauschluss:** Siehe Datenbuch Seite 2 oder <u>Internet</u>

2 http://www.diotec.com/

¹ Tested with pulses t_p = 300 μ s, duty cycle \leq 2% - Gemessen mit Impulsen t_p = 300 μ s, Schaltverhältnis \leq 2%

² Mounted on P.C. board with 3 mm² copper pad at each terminal Montage auf Leiterplatte mit 3 mm² Kupferbelag (Lötpad) an jedem Anschluss