Data Analysis of Air Quality

Hinduja hinduja.b16@iiits.in

Abstract:

A time series is a set of ordered observations on a quantitative characteristic of a phenomenon at equally spaced time points. One of the main goals of time series analysis is to forecast future values based on existing values.

Dataset : AirQuality

Dependent variables: RelativeHumidity(RH), AbsoluteHumidity(AH)

Problem Statement:

Our aim is to perform time series analysis on AirQuality dataset which consists of 15 features and 9358 instances and predict dependent variables (RH,AH) using ARIMA.

Methodology:

Plotting the variables:

Preprocessing:

Prior to perform analysis on the data we need to remove null values. Null values are given by -200 in the dataset. There are still missing values because there is no data for whole day so the

values are nan we can fill the values or delete the whole row here we are filling the null values with previous row.

Visualization:

Correlation Matrix:

With the help of correlation matrix we can know the relation between any two variables.

Heat map of co-relation between variables

Distribution of dependent variables across the year

Assumptions of MLR:

- 1)Linearity
- 2)Normality

3)Homoskedasticity 4)No Multicollinearity

From these scatterplots we got the data as linear

OLS Regression Results							
Dep. Variable:	======	======= RH	R-square	_	=======	0.782	
Model:		OLS	Adj. R-s	quared:		0.782	
Method:	Le	ast Squares	F-statis	tic:		2346.	
Date:	Wed,	28 Nov 2018	Prob (F-	statistic):		0.00	
Time:		14:41:48	Log-Like	lihood:	-	22932.	
No. Observations	:	6549	AIC:		4.5	89e+04	
Df Residuals:		6538	BIC:		4.5	96e+04	
Df Model:		10					
Covariance Type:		nonrobust					
=======================================	=======	========	=======			=======	
	coef	std err	t	P> t	[0.025	0.975]	
const	84.1017	2.319	36.265	0.000	79.556	88.648	
CO(GT)	-1.4691	0.154	-9.555	0.000	-1.771	-1.168	
PT08.S1(CO)	0.0056	0.001	4.190	0.000	0.003	0.008	
C6H6(GT)	-0.5240	0.087	-6.006	0.000	-0.695	-0.353	
PT08.S2(NMHC)	-0.0667	0.003	-23.774	0.000	-0.072	-0.061	
NOx(GT)	0.0507	0.001	47.473	0.000	0.049	0.053	
PT08.S3(NOx)	-0.0258	0.001	-32.719	0.000	-0.027	-0.024	
NO2(GT)	-0.1291	0.004	-33.240	0.000	-0.137	-0.121	
PT08.S4(NO2)	0.0585	0.001	78.358	0.000	0.057	0.060	
PT08.S5(03)	0.0014	0.001	2.057	0.040	6.7e-05	0.003	
T	-1.7983	0.018	-98.246	0.000	-1.834	-1.762	

Omnibus: 1356.184 Durbin-Watson: 2.007 Prob(Omnibus): 0.000 Jarque-Bera (JB): 4915.984 Skew: 1.008 Prob(JB): 0.00 Kurtosis: 6.735 Cond. No. 5.84e+04

Residuals plot with dependent variables:

From the below Q-Q plot we can see that the data followed normality

Checking Multicollinearity with VIF

```
[14.72928075443703,
194.1584585227424,
55.03872925876073,
380.7810300694413,
14.450216299280246,
20.85744819828689,
24.5785250560868,
245.4923809521838,
59.85010330512997,
16.715160805359478,
38.385100710409645]
```

Checking for influential points

Since the cooks distance are less

than one there are no influential points

Test Statistic	-7.281607e+00
p-value	1.495339e-10
#Lags Used	3.800000e+01
Number of Observations Used	9.318000e+03
Critical Value (1%)	-3.431052e+00
Critical Value (5%)	-2.861850e+00
Critical Value (10%)	-2.566935e+00
dtype: float64	

Results of Dickey-Fuller Test:

Test Statistic	-5.141627
p-value	0.000012
#Lags Used	25.000000
Number of Observations Used	9331.000000
Critical Value (1%)	-3.431051
Critical Value (5%)	-2.861850
Critical Value (10%)	-2.566935
dtype: float64	

