Lenguaje matemático, conjuntos y números

Pregunta 1 (2.5 puntos) (1+1.5)

Sea E un conjunto no vacío y $f: \mathcal{P}(E) \to \mathbb{R}$ una aplicación tal que dados dos subconjuntos disjuntos cualesquiera de E, A y B, se cumple que $f(A \cup B) = f(A) + f(B)$.

- a) Demuestre que $f(\emptyset) = 0$.
- b) Demuestre que $\forall A, B \in \mathcal{P}(E)$ se cumple que $f(A \cup B) + f(A \cap B) = f(A) + f(B)$.

Solución: a) En efecto, como

$$f(\varnothing) = f(\varnothing \cup \varnothing) = f(\varnothing) + f(\varnothing)$$

de $f(\emptyset) = f(\emptyset) + f(\emptyset)$ se deduce que $f(\emptyset) = 0$.

b) Observemos que $A \cup B = A \cup (B \setminus A)$ y A y $B \setminus A$ son conjuntos disjuntos. En consecuencia:

$$f(A \cup B) = f(A \cup (B \setminus A)) = f(A) + f(B \setminus A) \tag{1}$$

Por otro lado $B = (A \cap B) \cup (B \setminus A)$ y $A \cap B$ y $B \setminus A$ son conjuntos disjuntos. Por tanto:

$$f(B) = f((A \cap B) \cup (B \setminus A)) = f(A \cap B) + f(B \setminus A)$$

y despejando $f(B \setminus A)$ se obtiene, $f(B \setminus A) = f(B) - f(A \cap B)$. Sustituyendo en (1), resulta

$$f(A \cup B) = f(A) + f(B) - f(A \cap B)$$

de donde se deduce que $f(A \cup B) + f(A \cap B) = f(A) + f(B)$.

Pregunta 2 (3 puntos)

Se define en \mathbb{R}^2 la relación \ll dada por:

$$(x,y) \ll (x',y')$$
 si y sólo si $(x+y < x'+y')$ o $(x+y=x'+y')$ y $x \le x'$

- a) Demuestre que \ll es una relación de orden en \mathbb{R}^2 y determine si el orden es total o parcial.
- b) Represente en el plano el conjunto $A = \{(x,y) \in \mathbb{R}^2 \mid (1,1) \ll (x,y)\}$. Determine razonadamente, si existen, cotas superiores, supremo y máximo del conjunto $B = \{(1,y) \mid y \in \mathbb{R}\}$ y del triángulo CDE siendo C, D y E los puntos de coordenadas (-7,0), (0,7) y (2,5), respectivamente.

Solución: a) Veamos que \ll es una relación de orden total en \mathbb{R}^2 .

Es reflexiva: para todo $(x,y) \in \mathbb{R}^2$ se tiene que $(x,y) \ll (x,y)$ pues x+y=x+y y $x \leq x$.

Es antisimétrica: para todo $(x,y),\,(x',y')\in\mathbb{R}^2$ se tiene que si $(x,y)\ll(x',y')$ y $(x',y')\ll(x,y)$ entonces

$$\begin{cases} (x+y < x'+y') \text{ o } (x+y=x'+y' \text{ y } x \le x') \\ (x'+y' < x+y) \text{ o } (x'+y'=x+y \text{ y } x' \le x) \end{cases}$$

Estudiando todas las posibilidades

$$\begin{cases} (x+y < x'+y') \ y \ (x'+y' < x+y) \\ o \ (x+y < x'+y') \ y \ (x'+y' = x+y \ y \ x' \le x) \\ o \ (x+y = x'+y' \ y \ x \le x') \ y \ (x'+y' < x+y) \\ o \ (x+y = x'+y' \ y \ x \le x') \ y \ (x'+y' = x+y \ y \ x' \le x) \end{cases}$$

el único caso factible es el último en el que se deduce que x + y = x' + y' y x = x', esto es, (x, y) = (x', y').

Es transitiva: sean $(x,y), (x',y'), (x'',y'') \in \mathbb{R}^2$ tales que $(x,y) \ll (x',y')$ y $(x',y') \ll (x'',y'')$. Por tanto,

$$\begin{cases} (x+y < x'+y') \text{ o } (x+y=x'+y' \text{ y } x \le x') \\ (x'+y' < x''+y'') \text{ o } (x'+y'=x''+y'' \text{ y } x' \le x'') \end{cases}$$

Estudiando todas las posibilidades

$$\begin{cases} (x+y < x'+y') \ y \ (x'+y' < x''+y'') \\ o \ (x+y < x'+y') \ y \ (x'+y' = x''+y'' \ y \ x' \le x'') \\ o \ (x+y = x'+y' \ y \ x \le x') \ y \ (x'+y' < x''+y'') \\ o \ (x+y = x'+y' \ y \ x \le x') \ y \ (x'+y' = x''+y'' \ y \ x' \le x'') \end{cases}$$

de los tres primeros caso se deduce que x + y < x'' + y'' mientras que en el último se deduce que x + y = x'' + y'' y $x \le x''$. Por tanto, $(x, y) \ll (x'', y'')$.

Además el orden es total. En efecto dados (x, y), $(x', y') \in \mathbb{R}^2$, se comparan x + y y x' + y' dándose únicamente los tres casos siguientes.

- i) Si x + y < x' + y' entonces $(x, y) \ll (x', y')$.
- ii) Si x' + y' < x + y entonces $(x', y') \ll (x, y)$.
- iii) Si x' + y' = x + y entonces se comparan x y x' con las siguientes posibilidades.

Si
$$x \le x'$$
 entonces $(x, y) \ll (x', y')$.

Si
$$x' < x$$
 entonces $(x', y') \ll (x, y)$.

b) Observemos que $(x,y) \in A$ si y sólo sí $(1,1) \ll (x,y)$, es decir, 2 < x + y o $(x + y = 2 \text{ y } 1 \le x)$. Por tanto A es la unión del semiplano abierto x + y > 2 y de la semirrecta x + y = 2, $1 \le x$. Veáse la representación adjunta.

El conjunto B no está acotado superiormente: en efecto para cualquier $(a,b) \in \mathbb{R}^2$ el elemento (1,a+b) cumple que $(1,a+b) \in Y$ y sin embargo, no es cierto que $(1,a+b) \ll (a,b)$. Por tanto ningún elemento $(a,b) \in \mathbb{R}^2$ es cota superior de Y.

El triángulo T de vértices C, D, y E está situado en la banda cerrada del plano limitada por las rectas de ecuaciones x+y=-7 y x+y=7. Por tanto, todas las cotas superiores (a,b) del conjunto T de las coordenadas del triángulo de vértices C, D, y E deben cumplir que $a+b\geq 7$. Además si a+b=7 se tiene que cumplir que $a\geq \max(0,2)=2$ Luego el conjunto de cotas superiores de los puntos del triángulo es

$$H = \{(a, b) \in \mathbb{R}^2 \mid a + b > 7 \text{ o } (a + b = 7 \text{ y } a \ge 2)$$

El elemento $(2,5) \in H \cap T$, por tanto $(2,5) = \sup T = \max T$.

Pregunta 3 (2 puntos)

Sea $a \in \mathbb{R}$ tal que $a \ge 0$. Demuestre por inducción que para todo $n \in \mathbb{N}$ se tiene:

$$(1+a)^n \ge 1 + na$$

Solución: i) La desigualdad es cierta para n=0 pues $(1+a)^0=1\geq 1+0\cdot a$.

ii) Supongamos que la desigualdad es cierta para n, esto es, $(1+a)^n \ge 1 + na$. Veamos que es cierta para n+1, esto es,

$$(1+a)^{n+1} \ge 1 + (n+1)a$$
.

En efecto,

$$(1+a)^{n+1} = (1+a)(1+a)^n$$
 por la hipótesis de inducción y puesto que $1+a \ge 0$
 $\ge (1+a)(1+na) = 1+a+na+na^2 \ge 1+a+na = 1+(n+1)a$.

Pregunta 4 (2.5 puntos)

Sea el conjunto de los números primos estrictamente superiores a 2:

$$\mathbb{P} = \{ p \in \mathbb{N} \mid p \text{ es primo y } p > 2 \}$$

Se define en \mathbb{P} la relación \mathcal{R} dada por:

$$p\Re q$$
 si y sólo si $\frac{p+q}{2} \in \mathbb{P}$

Determine razonadamente si la relación es reflexiva, simétrica, antisimétrica o transitiva.

Se recuerda que todo número primo mayor que 2 tiene, en \mathbb{N} , únicamente dos divisores distintos, el propio número y el 1.

Solución:

Es reflexiva: para todo $p \in \mathbb{P}$ se tiene que $p\Re p$ pues $\frac{p+p}{2} = p \in \mathbb{P}$.

Es simétrica: para todo $p,q\in\mathbb{P}$ si $p\Re q$ entonces $\frac{p+q}{2}\in\mathbb{P}$ por tanto $\frac{q+p}{2}\in\mathbb{P}$ y en consecuencia, $q\Re p$.

No es antisimétrica. De $p\Re q$ y $q\Re p$ sólo se deduce que $\frac{p+q}{2} \in \mathbb{P}$. Basta por tanto, hallar dos números primos distintos que estén relacionados para concluir que la relación no es antisimétrica. Por ejemplo, $3\Re 7$ y por la propiedad simétrica $7\Re 3$ y sin embargo $3 \neq 7$.

No es transitiva: De $p\Re q$ y $q\Re r$ se deduce que $a=\frac{p+q}{2}, b=\frac{q+r}{2}\in\mathbb{P}$. A priori, no parece que se pueda deducir que $\frac{p+r}{2}\in\mathbb{P}$. Busquemos un contraejemplo. Para ello escribimos los primero elementos de \mathbb{P} : 3, 5, 7, 11, 13, 17, 19, 23, 29, etc. De estos números nos fijamos en los que están relacionados con el número 3, que son: 3, 7, 11, 19 y 23 pues $\frac{3+7}{2}=5\in\mathbb{P}, \ \frac{3+11}{2}=7\in\mathbb{P}, \ \frac{3+19}{2}=11\in\mathbb{P}$ y $\frac{3+13}{2}=13\in\mathbb{P}$. Tenemos por ejemplo, 7 \Re 3 y 3 \Re 11. Sin embargo 7 y 11 no están relacionados pues $\frac{7+11}{2}=9\notin\mathbb{P}$. Por tanto la relación no es transitiva.

Nota: Si nos hubiéramos fijado en los números 7, 3 y 19, se tiene 7 \Re 3 y 3 \Re 19 y en este caso, también se cumple que 7 \Re 19 pues $\frac{7+19}{2}=13\in\mathbb{P}$. Sin embargo no se puede concluir que \Re es transitiva (de hecho, no lo es) salvo que se demuestre para cualquier terna de elementos.