

Technical Specification PLCopen - Technical Committee 2 – Task Force

Function blocks for motion control

Version 1.1

DISCLAIMER OF WARANTIES

THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS AND MAY BE SUBJECT TO FUTURE ADDITIONS, MODIFICATIONS, OR CORRECTIONS. PLCOPEN HEREBY DISCLAIMS ALL WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, FOR THIS DOCUMENT. IN NO EVENT WILL PLCOPEN BE RESPONSIBLE FOR ANY LOSS OR DAMAGE ARISING OUT OR RESULTING FROM ANY DEFECT, ERROR OR OMISSION IN THIS DOCUMENT OR FROM ANYONE'S USE OF OR RELIANCE ON THIS DOCUMENT.

April 9, 2005.

Function blocks for motion control

The following specification has been developed within the PLCopen Motion Control Task Force. This specification was written by the following members of the Motion Control Task Force:

Ch. Huber	ACC Motion SA, Penthaz, Switzerland
Ph. Moeschler	ACC Motion SA, Penthaz, Switzerland
A. Thome	Beckhoff Industrie Elektronik, Verl, Germany
J. Papenfort	Beckhoff Industrie Elektronik, Verl, Germany
K. Manton	Control Techniques, Newtown, United Kingdom
B. Busher	Proface America Inc., Glendale Heights IL, USA
A. Moeltner	ELAU Elektronik Automations AG, Marktheidenfeld, Germany
D. Boden	Giddings & Lewis / Thyssen, Prescot Merseyside, United Kingdom
S. Partridge	Giddings & Lewis / Thyssen, Prescot Merseyside, United Kingdom
U. Gossmann	Indramat, Lohr am Main, Germany
W. Brendel	Infoteam Software GmbH, Bubenreuth, Germany
B. Seeberger	Infoteam Software GmbH, Bubenreuth, Germany
A. Orzelski	Klöpper & Wiege Software GmbH, Lemgo, Germany
M. Petig	Klöpper & Wiege Software GmbH, Lemgo, Germany
M. Schütte	Lenze, Hameln, Germany
M. Stöwer	Lenze, Hameln, Germany
R. O'Brien	Nyquist Industrial Control, Netherlands
E. van der Wal	PLCopen, Zaltbommel, Netherlands
R. Schmitt	Siemens AG, Nuremberg, Germany
HP. Otto	Siemens AG, Nuremberg, Germany
W. Gagsteiger	Siemens AG, Nuremberg, Germany
A. Oksas	Softing GmbH, Munich, Germany
R. Mittmann	Softing GmbH, Munich, Germany
I. Ulvros (chairman)	Tetra Pak Research & Development AB, Lund, Sweden
E. Baker	Control Techniques, Newtown, UK

Change Status List:

Version	Date	Change comment		
number				
V 0.1	August, 21 1997	Preliminary version		
V 0.2	October, 31 1997	Modified structure after Munich's meeting (Oct.7.97)		
V 0.3	December, 12 1997	Added substance to some elements (Bubenreuth's meeting Nov.28.97)		
V 0.4	January 17 1998	Added Objectives, modification during execution commented		
V 0.5	May 18, 1998	Incorporated changes meeting March 25, 1998, Frankfurt		
V 0.51	December 8, 1998	Incorporated Data Type Axis and comments during meeting Dec. 8, 1998		
V 0.52	February 2, 1999	Incorporated comments General Motors PT and results meeting Dec. 8		
		General lay out reconfiguration. Embedded Excel to Tables		
V 0.53	February 4 & 5, 1999	Inclusion of comments and reworking input/output variables of FB		
V 0.54	May 5 & 6, 1999	Inclusion of comments during meeting		
V 0.6	May 10, 1999	Inclusion of comments meeting May 5&6. Released version for comments, cf. MoM		
V 0.7	March 23, 2000	Merge both parts together and modifications according to comments of meeting of February 9&10 2000.		
V 0.8	June 23, 2000	Meeting at Lenze, April 18 & 19, 2000. Clarification of AXIS_REF.		
V 0.81	July 13, 14 & 20, 2000	Changes according to meeting July 13 & 14 (see minutes of meeting)		
V 0.91	October 15, 2000	Prepared for the Nürnberg meeting 26/27. Oct. 2000		
V0.92	October 22, 2000	Camming, readError, readParameter, writeParameter		
V 0.93	October 27, 2000	Changes according to meeting Oct. 26 & 27 (see minutes of meeting)		
V 0.99	November 13, 2000	Published for feedback – incl. Request for Change form		
V.099A	February 22, 2001	First merge with available feedback: doc. 31 and Doc 32		
V.099B	May 8+9	Feedback work during meeting in Amsterdam		

PLCopen for efficiency in automation

V.099C	July 18 + 19	Graphics changed to Visio graphics (as decided last meeting)	
		Feedback work done during meeting Verl	
V.099D	August 29	Items from meeting included. Drawings adopted	
V.099E	Oct. 17-19 and till Oct. 29	Items from meeting and defined included. Last version before publication	
V. 1.0	November 23, 2001	Included feedback from participants on version 0.99E	
V. 1.01	January 14, 2005	First proposal with inclusion of addendum to part 1 and feedback from	
		members. Changes tracked (Tools/Track Changes/Highlight Changes)	
V. 1.02	March 16, 2005	Preparation for the meeting. Additional comments added during and after	
		meeting	
V. 1.03	April 4 + 5, 2005	As a result of the meeting at Bosch Rexroth	
V. 1.05	April 9, 2005	As a result of the feedback from Control Techniques	
V. 1.06	April 9, 2005	All changes accepted. Certification tables mapped. All comments entered	
		into doc. New timing at example of drilling.	
V. 1.1	April 9, 2005	Generated from Version 1.06	

Table of Contents

2.1. THE STATE DIAGRAM	1.	GENERAL	9
1.1.1. Language context goals	1.1.	Objectives	10
1.1.2. Definition of a set of Function Blocks 1.1.3. Noverview of the defined Function Blocks 1.1.4. Compatibility issues 1.1.5. Compatibility			
1.1.3 Overview of the defined Function Blocks	1.		
1.1.5. Compatibility issues	1.		
2. MODEL	1.	.4. Compliance and Portability	11
2.1. THE STATE DIAGRAM	1.	.5. Compatibility issues	11
2.2. ERROR HANDLING. 15 2.3. FB INTERFACE 16 2.3.1. General rules 16 2.3.2. Aborting versus Buffered modes 17 2.3.3. AXIS, RFF Data type. 26 2.3.4. Technical Units 27 2.3.5. Why the command input is edge sensitive. 27 2.3.5. Why the command input is edge sensitive. 27 2.3.5. EXAMPLE 1: THE SAME FUNCTION BLOCK INSTANCE CONTROLS DIFFERENT MOTIONS OF AN AXIS. 22 2.5. EXAMPLE 2: DIFFERENT FUNCTION BLOCK INSTANCES CONTROL THE MOTIONS OF AN AXIS. 25 3.5. SINGLE-AXIS FUNCTION BLOCKS. 31 3.1. MOVEABSOLUTE. 33 3.3. MOVE RELATIVE. 33 3.3. MOVE ADDITIVE. 35 3.3. MOVEABSOLUTE. 35 3.3. MOVEABSOLUTE. 35 3.4. MOVESUPER IMPOSED. 33 3.5. MOVEAUTORY. 46 3.6. HOWE PELATIVE. 35 3.5. MOVEAUTORY. 46 3.6. HOWE. 42	2.	MODEL	12
2.2. ERROR HANDLING. 15 2.3. FB INTERFACE 16 2.3.1. General rules 16 2.3.2. Aborting versus Buffered modes 17 2.3.3. AXIS, RFF Data type. 26 2.3.4. Technical Units 27 2.3.5. Why the command input is edge sensitive. 27 2.3.5. Why the command input is edge sensitive. 27 2.3.5. EXAMPLE 1: THE SAME FUNCTION BLOCK INSTANCE CONTROLS DIFFERENT MOTIONS OF AN AXIS. 22 2.5. EXAMPLE 2: DIFFERENT FUNCTION BLOCK INSTANCES CONTROL THE MOTIONS OF AN AXIS. 25 3.5. SINGLE-AXIS FUNCTION BLOCKS. 31 3.1. MOVEABSOLUTE. 33 3.3. MOVE RELATIVE. 33 3.3. MOVE ADDITIVE. 35 3.3. MOVEABSOLUTE. 35 3.3. MOVEABSOLUTE. 35 3.4. MOVESUPER IMPOSED. 33 3.5. MOVEAUTORY. 46 3.6. HOWE PELATIVE. 35 3.5. MOVEAUTORY. 46 3.6. HOWE. 42	2.1	THE STATE DIAGRAM	13
18 18 18 18 18 18 18 18			
2.3.1. General rules			
2.3.2 Aborting versus Buffered modes 17 2.3.3 AXIS_REF Data type			
2.3.3. AXIS_REF Data type 26 2.3.4. Technical Units 27 2.3.5. Why the command input is edge sensitive 27 2.4. EXAMPLE 1: THE SAME FUNCTION BLOCK INSTANCE CONTROLS DIFFERENT MOTIONS OF AN AXIS. 28 2.5. EXAMPLE 2: DIFFERENT FUNCTION BLOCK INSTANCES CONTROL THE MOTIONS OF AN AXIS. 25 3. SINGLE-AXIS FUNCTION BLOCKS 31 3.1. MOVEABSOLUTE 31 3.2. MOVE RELATIVE 33 3.3. MOVEAPHOSED 35 3.4. MOVESUPERIMPOSED 35 3.5. MOVEVELOCITY 46 3.6. HOME 42 3.7. STOP 42 3.8. POWER 45 3.9. READSTATUS 46 3.10. READAXISERROR 47 3.11. RESET 44 3.12. READPARAMETER & READBOOLPARAMETER 45 3.13. WRITEPARAMETER & WRITEBOOLPARAMETER 51 3.14. READACTUALPOSITION 52 3.15. POSITION PROFILE 55 3.16. VELOCITY PROFILE 55 3.17. ACCELERATION PROFILE 55 3.18. POSITION INTO CAMMING 56 4.4. CAMOUT 66 4.6. GEAROUT			
2.3.4 Technical Units		0 50	
2.3.5. Why the command input is edge sensitive. 2.2 2.4. EXAMPLE 1: THE SAME FUNCTION BLOCK INSTANCE CONTROLS DIFFERENT MOTIONS OF AN AXIS. 2.8 2.5. EXAMPLE 2: DIFFERENT FUNCTION BLOCKS 31 3. SINGLE-AXIS FUNCTION BLOCKS 31 3.1. MOVEABSOLUTE 33 3.2. MOVE RELATIVE 33 3.3. MOVE ADDITIVE 35 3.4. MOVESUPERIMPOSED 35 3.5. MOVEVELOCITY 44 3.6. HOME 44 3.7. STOP 45 3.8. POWER 44 3.10. READAXISERROR 47 3.11. RESET 44 3.12. READPARAMETER & READBOOLPARAMETER 45 3.13. WRITEPARAMETER & WRITEBOOLPARAMETER 55 3.14. READACTUALPOSITION 55 3.15. POSITION PROFILE 55 3.17. ACCELERATION PROFILE 55 3.18. VILTI-AXIS FUNCTION BLOCKS 58 4.1. INTRODUCTION INTO CAMMING. 55 4.2. CAMTABLESELECT 55 4.3. CAMIN. 66 4.4. CAMOUT 66 4.5. GEARIN 66 4.6. GEAROUT 66 4.			
2.5. EXAMPLE 2: DIFFERENT FUNCTION BLOCK INSTANCES CONTROL THE MOTIONS OF AN AXIS 3. SINGLE-AXIS FUNCTION BLOCKS 3.1 MOVE ABSOLUTE 3.2. MOVE RELATIVE 3.3. MOVE ADDITIVE 3.3. MOVE ADDITIVE 3.3. MOVE ADDITIVE 3.3. MOVE ADDITIVE 3.4. MOVESUPERIMPOSED 3.5. MOVE VELOCITY 4.6. HOME 3.6. HOME 3.7. STOP 4.7. STOP 4.8. POWER 3.9. READSTATUS 3.10. READASTATUS 3.11. RESET 3.12. READAFAMETER & READBOOLPARAMETER 3.13. WRITEPARAMETER & READBOOLPARAMETER 3.14. READACTUAL POSITION 3.15. POSITION PROFILE 3.16. VELOCITY PROFILE 3.17. ACCELERATION PROFILE 3.18. ACCELERATION PROFILE 3.19. ACCELERATION BLOCKS 4.1 INTRODUCTION INTO CAMMING 4.2 CAMTABLE SELECT 4.3 CAMIO 4.4 GEAROUT 4.5 GEARIN 4.6 GEAROUT 4.7 PHASING 5.1 SOLUTION WITH FUNCTION BLOCK INAGEMENT 5.2 SEQUENTIAL FUNCTION BLOCK DIAGRAM 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 5.2 SEQUENTIAL FUNCTION BLOCK DIAGRAM 5.3 APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' .66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' .66 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 5.2. SEQUENTIAL FUNCTION CHART. 70. APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71. APPENDIX A. SUPPORTED OF ALT PYPES 72. APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 73. APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 74. APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 75. APPENDIX A. SUPPORTED DATA TYPES 76. APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 77. PAPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 78. APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 79. APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 79. APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 79. APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 70. APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 70. APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 71. SOUTH OF THE METER OF THE	2		
3. SINGLE-AXIS FUNCTION BLOCKS 3.1. MOVEABSOLUTE 3.2. MOVE RELATIVE 3.3. MOVE ADDITIVE 3.3. MOVE ADDITIVE 3.3. MOVE ADDITIVE 3.3. MOVE VELOCITY 3.4. MOVESUPERIMPOSED 3.5. MOVEVELOCITY 4.6. HOME 4.7. STOP 4.8. POWER 3.9. READSTATUS 3.10. READAXISEROR 3.11. RESET 3.12. READPARAMETER & READBOOLPARAMETER 3.12. READPARAMETER & WITEBOOLPARAMETER 3.13. WITEPARAMETER & WITEBOOLPARAMETER 3.14. READACTUALPOSITION 3.15. POSITION PROFILE 3.16. VELOCITY PROFILE 3.17. ACCELERATION PROFILE 3.18. MULTI-AXIS FUNCTION BLOCKS 4.1 INTRODUCTION INTO CAMMING 4.2. CAMTABLESELECT 4.3. CAMIN 4.4. CAMOUT 4.5. GEARIN 4.6. GEAROUT 4.6. GEAROUT 4.7. PHASING 5.1. SOLUTION WITH FUNCTION BLOCK DLAGRAM 5.2. SEQUENTIAL FUNCTION GLOCK DLAGRAM 5.3. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'.65 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WIT	2.4.	EXAMPLE 1: THE SAME FUNCTION BLOCK INSTANCE CONTROLS DIFFERENT MOTIONS OF AN AXIS	28
3.1. MOVEABSOLUTE	2.5.	EXAMPLE 2: DIFFERENT FUNCTION BLOCK INSTANCES CONTROL THE MOTIONS OF AN AXIS	29
3.1. MOVEABSOLUTE	2	SINCLE AVIS FUNCTION BLOCKS	21
3.2. MOVE RELATIVE			
3.3. MOVE ADDITIVE			
3.4. MOVESUPERIMPOSED			
3.5. MOVEVELOCITY			
3.6. HOME			
3.7. STOP			
3.8. POWER 45 3.9. READSTATUS 46 3.10. READAXISERROR 47 3.11. RESET 48 3.12. READPARAMETER & READBOOLPARAMETER 49 3.13. WRITEPARAMETER & WRITEBOOLPARAMETER 51 3.14. READACTUALPOSITION 52 3.15. POSITION PROFILE 52 3.16. VELOCITY PROFILE 55 3.17. ACCELERATION PROFILE 56 4. MULTI-AXIS FUNCTION BLOCKS 58 4.1. INTRODUCTION INTO CAMMING 58 4.2. CAMTABLESELECT 55 4.3. CAMIN 66 4.4. CAMOUT 62 4.5. GEARIN 66 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' .69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A 2. SUPPORTED DATA TYPES 72 APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS 74			
3.9. READSTATUS			
3.10. READAXISERROR 47 3.11. RESET 48 3.12. READPARAMETER & READBOOLPARAMETER 45 3.13. WRITEPARAMETER & WRITEBOOLPARAMETER 51 3.14. READACTUALPOSITION 52 3.15. POSITION PROFILE 55 3.16. VELOCITY PROFILE 55 3.17. ACCELERATION PROFILE 56 4. MULTI-AXIS FUNCTION BLOCKS 58 4.1. INTRODUCTION INTO CAMMING 58 4.2. CAMTABLESELECT 55 4.3. CAMÍN 60 4.4. CAMOUT 62 4.5. GEARÍN 62 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' .69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A. STATEMENT OF SUPPLIER 72 APPENDIX A. ST			
3.11. RESET 48 3.12. READPARAMETER & READBOOLPARAMETER 49 3.13. WRITEPARAMETER & WRITEBOOLPARAMETER 51 3.14. READACTUALPOSITION 52 3.15. POSITION PROFILE 55 3.16. VELOCITY PROFILE 55 3.17. ACCELERATION PROFILE 56 4. MULTI-AXIS FUNCTION BLOCKS 58 4.1. INTRODUCTION INTO CAMMING 58 4.2. CAMTABLESELECT 55 4.3. CAMIN 66 4.4. CAMOUT 62 4.5. GEARIN 66 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' .69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A. SUPPORTED DATA TYPES 72 APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 74			
3.12. READPARAMETER & READBOOLPARAMETER 49 3.13. WRITEPARAMETER & WRITEBOOLPARAMETER 51 3.14. READACTUALPOSITION 52 3.15. POSITION PROFILE 52 3.16. VELOCITY PROFILE 55 3.17. ACCELERATION PROFILE 56 4. MULTI-AXIS FUNCTION BLOCKS 58 4.1. INTRODUCTION INTO CAMMING 58 4.2. CAMTABLESELECT 55 4.3. CAMÍN 66 4.4. CAMOUT 62 4.5. GEARÍN 63 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' .69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A. SUPPORTED DATA TYPES 73 APPENDIX A. OVERVIEW OF THE FUNCTION BLOCKS 74			
3.13. WRITEPARAMETER & WRITEBOOLPARAMETER 51 3.14. READACTUALPOSITION 52 3.15. POSITION PROFILE 53 3.16. VELOCITY PROFILE 55 3.17. ACCELERATION PROFILE 56 4. MULTI-AXIS FUNCTION BLOCKS 58 4.1. INTRODUCTION INTO CAMMING 58 4.2. CAMTABLESELECT 55 4.3. CAMIN 66 4.4. CAMOUT 62 4.5. GEARIN 62 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' .69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A. SUPPORTED DATA TYPES 72 APPENDIX A. SUPPORTED DATA TYPES 73 APPENDIX A. SUPPORTED DATA TYPES 73			
3.14. READACTUALPOSITION 52 3.15. POSITION PROFILE 53 3.16. VELOCITY PROFILE 55 3.17. ACCELERATION PROFILE 56 4. MULTI-AXIS FUNCTION BLOCKS 58 4.1. INTRODUCTION INTO CAMMING 58 4.2. CAMTABLESELECT 59 4.3. CAMIN 60 4.4. CAMOUT 62 4.5. GEARIN 63 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB - A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' .69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A. STATEMENT OF SUPPLIER 72 APPENDIX A 2. SUPPORTED DATA TYPES 73 APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS 74			
3.15. POSITION PROFILE 53 3.16. VELOCITY PROFILE 55 3.17. ACCELERATION PROFILE 56 4. MULTI-AXIS FUNCTION BLOCKS 58 4.1. INTRODUCTION INTO CAMMING 58 4.2. CAMTABLESELECT 55 4.3. CAMIN 66 4.4. CAMOUT 62 4.5. GEARIN 62 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' .69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A. STATEMENT OF SUPPLIER 72 APPENDIX A 2. SUPPORTED DATA TYPES 73 APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS 74			
3.16. VELOCITY PROFILE 55 3.17. ACCELERATION PROFILE 56 4. MULTI-AXIS FUNCTION BLOCKS 58 4.1. INTRODUCTION INTO CAMMING 58 4.2. CAMTABLESELECT 55 4.3. CAMIN 60 4.4. CAMOUT 62 4.5. GEARIN 63 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' .69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A 2. SUPPORTED DATA TYPES 72 APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS 74			
3.17. ACCELERATION PROFILE 56 4. MULTI-AXIS FUNCTION BLOCKS 58 4.1. INTRODUCTION INTO CAMMING 58 4.2. CAMTABLESELECT 59 4.3. CAMIN 60 4.4. CAMOUT 62 4.5. GEARIN 63 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' 66 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A 1. STATEMENT OF SUPPLIER 72 APPENDIX A 2. SUPPORTED DATA TYPES 73 APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS 74			
4. MULTI-AXIS FUNCTION BLOCKS 58 4.1. INTRODUCTION INTO CAMMING 58 4.2. CAMTABLESELECT 59 4.3. CAMIN 60 4.4. CAMOUT 62 4.5. GEARIN 63 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' 69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A 2. SUPPORTED DATA TYPES 73 APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS 74			
4.1. Introduction into Camming 58 4.2. CamTableSelect 59 4.3. CamIn 60 4.4. CamOut 62 4.5. GearIn 63 4.6. GearOut 65 4.7. Phasing 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' 69 5.1. Solution with Function Block diagram 70 5.2. Sequential Function Chart 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A 2. Supported Data types 72 Appendix A 3. Overview of the Function Blocks 74			
4.2. CAMTABLESELECT. 59 4.3. CAMIN. 60 4.4. CAMOUT. 62 4.5. GEARIN. 63 4.6. GEAROUT. 65 4.7. PHASING. 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM. 70 5.2. SEQUENTIAL FUNCTION CHART. 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST. 71 APPENDIX A 1. STATEMENT OF SUPPLIER. 72 APPENDIX A 2. SUPPORTED DATA TYPES. 73 APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS. 74			
4.3. CAMÍN 60 4.4. CAMOUT 62 4.5. GEARÍN 62 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' 69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A 2. SUPPORTED DATA TYPES 73 APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS 74			
4.4. CAMOUT 62 4.5. GEARIN 62 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' 69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A 1. STATEMENT OF SUPPLIER 72 APPENDIX A 2. SUPPORTED DATA TYPES 73 APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS 74			
4.5. GEARIN 63 4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' 69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A 1. STATEMENT OF SUPPLIER 72 APPENDIX A 2. SUPPORTED DATA TYPES 73 APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS 74			
4.6. GEAROUT 65 4.7. PHASING 66 5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING' 69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM 70 5.2. SEQUENTIAL FUNCTION CHART 70 APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST 71 APPENDIX A 1. STATEMENT OF SUPPLIER 72 APPENDIX A 2. SUPPORTED DATA TYPES 73 APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS 74			
4.7. PHASING			
5. APPLICATION OF MC FB – A DRILLING EXAMPLE WITH 'ABORTING' VERSUS 'BLENDING'69 5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM			
5.1. SOLUTION WITH FUNCTION BLOCK DIAGRAM			
5.2. SEQUENTIAL FUNCTION CHART			
APPENDIX A. COMPLIANCE PROCEDURE AND COMPLIANCE LIST			
APPENDIX A 1. STATEMENT OF SUPPLIER			
APPENDIX A 2. SUPPORTED DATA TYPES	APP		
APPENDIX A 3. OVERVIEW OF THE FUNCTION BLOCKS	APPI		
	APPI		

PLCopen

for efficiency in automation

FIGURE 1: THE TRIANGLE WITH USER OPTIONS	9
FIGURE 2: FB STATE BEHAVIOR	.4
FIGURE 3: FUNCTION BLOCKS WITH CENTRALIZED ERROR HANDLING1	.5
FIGURE 4: FUNCTION BLOCKS WITH DECENTRALIZED ERROR HANDLING1	.5
FIGURE 5: BASIC EXAMPLE WITH TWO MC_MOVEABSOLUTE ON SAME AXIS1	.9
FIGURE 6: TIMING DIAGRAM FOR EXAMPLE ABOVE WITHOUT INTERFERENCE BETWEEN FB1 AND FB2 (ABORTING MODE)	.9
FIGURE 7: TIMING DIAGRAM FOR EXAMPLE ABOVE WITH FB2 INTERRUPTING FB1 (ABORTING MODE)	
FIGURE 8: TIMING DIAGRAM FOR EXAMPLE ABOVE IN BUFFERED MODE	:1
FIGURE 9: TIMING DIAGRAM FOR EXAMPLE ABOVE WITH MODE BLENDINGLOW2	2
FIGURE 10: TIMING DIAGRAM FOR EXAMPLE ABOVE WITH MODE MERGING12	:3
FIGURE 11: TIMING DIAGRAM FOR EXAMPLE ABOVE WITH MODE BLENDINGNEXTMOTION2	:4
FIGURE 12: TIMING DIAGRAM FOR EXAMPLE ABOVE WITH MODE BLENDINGHIGHMOTION2	:5
FIGURE 13: FUNCTION BLOCKS TO PERFORM A COMPLEX MOVEMENT	:7
FIGURE 14: SINGLE FB USAGE WITH A SFC	8
FIGURE 15: TIMING DIAGRAM FOR A USAGE OF A SINGLE FB	8
FIGURE 16: CASCADED FUNCTION BLOCKS	:9
FIGURE 17: CASCADED FUNCTION BLOCKS TIMING DIAGRAM2	:9
FIGURE 18: CASCADED FUNCTION BLOCKS WITH LD	0
FIGURE 19: TIMING DIAGRAM FOR MC_MOVEABSOLUTE3	2
FIGURE 20: TIMING DIAGRAM FOR MC_MOVERELATIVE3	4
FIGURE 21: TIMING DIAGRAM FOR MC_MOVEADDITIVE	6
FIGURE 22: TIMING DIAGRAM FOR MC_MOVESUPERIMPOSED	8
FIGURE 23: TIMING DIAGRAM OF EFFECT OF MC_MOVESUPERIMPOSED ON SAME AXIS3	9
FIGURE 24: MC_MOVEVELOCITY TIMING DIAGRAM4	1
FIGURE 25: MC_STOP TIMING DIAGRAM4	3
FIGURE 26: BEHAVIOR OF MC_STOP IN COMBINATION WITH MC_MOVEVELOCITY4	4
FIGURE 27: EXAMPLE OF TIME / POSITION PROFILE5	4

PLCopen

for efficiency in automation

FIGURE 28: ACCELERATION PROFILE, 10 SEGMENTS ONLY	57
FIGURE 29: RESULTING POSITION PROFILE	57
FIGURE 30: CAM PROFILE ILLUSTRATION	58
FIGURE 31: GEAR TIMING DIAGRAM	64
FIGURE 32: TIMING EXAMPLE OF MC_PHASING	67
FIGURE 33: EXAMPLE OF MC_PHASING	68
FIGURE 34: EXAMPLE OF A SIMPLE DRILLING UNIT	69
FIGURE 35: TIMING DIAGRAMS FOR DRILLING. LEFT SIDE NO BLENDING	NG, RIGHT SIDE WITH 69
FIGURE 36: SOLUTION WITH FUNCTION BLOCK DIAGRAM	70
FIGURE 37: STRAIGHT FORWARD STEP-TRANSITION CHAIN FOR DRILL	LING EXAMPLE IN SFC70
FIGURE 38: THE PLCOPEN MOTION CONTROL LOGO	86

PLCopen

for efficiency in automation

Table of Tables

TABLE 1: OVERVIEW OF THE DEFINED FUNCTION BLOCKS	10
TABLE 2: GENERAL RULES	17
TABLE 3: PARAMETERS FOR MC_READPARAMETER AND MC_WRITEPARAMETER	50
TABLE 4: SUPPORTED DATATYPES	73
TABLE 5: SUPPORTED DERIVED DATATYPES	73
TABLE 6: SHORT OVERVIEW OF THE FUNCTION BLOCKS	74
TABLE 7. PARAMETERS FOR READPARAMETER AND WRITEPARAMETER	80

1. General

The motion control market displays a wide variety of incompatible systems and solutions. In businesses where different systems are used, this incompatibility induces considerable costs for the end-users, learning is confusing, engineering becomes difficult, and the process of market growth slows down.

Standardization would certainly reduce these negative factors. Standardization means not only the programming languages themselves, (as standardization is achieved using the worldwide IEC 61131-3 standard) but also standardizing the interface towards different motion control solutions. In this way the programming of these motion control solutions is less hardware dependent. The reusability of the application software is increased, and the costs involved in training and support are reduced.

Users have requested that PLCopen help solve this problem, which initiated the Motion Control Task Force. This Task Force has defined the programmer's interface by standardizing the Function Blocks for Motion Control.

Figure 1: The triangle with user options

For the positioning of this activity, please check figure 1. This triangle has the following user options at its corners:

- Performance
- Functionality
- Standardization.

In practice, users write their programs very closely coupled to the hardware with dedicated functions, in order to get the highest performance possible as dictated by their environment. This limits the user in his options with respect to the target hardware and the reusability of the control software and raises the training investment.

The second user option enables a very broad range of software functionality to be offered. This can be very helpful to the user, but will seldom lead to high performance. Also the training costs are increased.

The third corner, standardization, is primarily focused on reusability across different systems from different suppliers, including integrated, distributed and networked systems, as well as reduction in training investments. Due to the general character of this definition, the performance on different architectures can be less optimal than hard coding. Due to this, standardization should not be expected to offer maximum performance but can closely approach maximum functionality, meaning that the bottom of the triangle is very short.

1.1. Objectives

The Motion Control Function Blocks shall be applicable in the IEC 61131-3 languages with following factors in consideration:

1 Simplicity - ease of use, towards the application program builder and installation & maintenance 2 Efficiency - in the number of Function Blocks, directed to efficiency in design (and understanding)

3 Consistency - conforming to IEC 61131-3 standard

4 Universality - hardware independent

5 Flexibility - future extensions / range of application

6 Completeness - not mandatory but sufficiently

1.1.1. Language context goals

- Focus on definition of
 - Function Block interfaces and behavior
 - Data Types according to the IEC 61131-3 specification.
- These Function Blocks and data types can be used in all IEC 61131-3 languages.
- The examples in this document are given informatively in textual and graphical IEC 61131-3 languages.
- The contents of the Function Blocks can be implemented in any programming language (e.g. IEC 61131-3 ST, C) or even in firmware or hardware. Therefore the content should not be expected to be portable.
- Reusable applications composed from these Function Blocks and data types can be achieved by PLCopen Conformity Level and Reusability Level of IEC 61131-3 languages, and future PLCopen certification and exchange standards
- This specification shall be seen as an open framework without hardware dependencies. It provides openness in the
 implementation on different platforms such as fully integrated, centralized or distributed systems. The actual implementation of the Function Blocks themselves is out of the scope of this MC standard.

1.1.2. Definition of a set of Function Blocks

A basic problem concerns the granularity or modularity of the standardized Function Blocks. The extremes are one Function Block per axis versus a command level functionality. The objectives stated above can be achieved more easily by a modular design of the Function Blocks. Modularity creates a higher level of scalability, flexibility and reconfigurability. Large-scale blocks (Derived Function Blocks) can then be created from these, e.g. the whole axis, for ease of application program building and browsing.

If feasible, a Function Block specified here could be implemented as a Function (for instance MC_ReadParameter).

1.1.3. Overview of the defined Function Blocks

The following table gives an overview of the defined Function Blocks, divided into administrative (not driving motion) and motion related sets.

Administrative		Motion	
Single Axis	Multiple Axis	Single Axis	Multiple Axis
MC_Power	MC_CamTableSelect	MC_MoveAbsolute	MC_CamIn
MC_ReadStatus		MC_MoveRelative	MC_CamOut
MC_ReadAxisError		MC_MoveAdditive	MC_GearIn
MC_ReadParameter		MC_MoveSuperimposed	MC_GearOut
MC_ReadBoolParameter		MC_MoveVelocity	MC_Phasing
MC_WriteParameter		MC_Home	
MC_WriteBoolParameter		MC_Stop	
MC_ReadActualPosition		MC_PositionProfile	
MC_Reset		MC_VelocityProfile	
MC_PassiveHome		MC_AccelerationProfile	

Table 1: Overview of the defined Function Blocks

1.1.4. Compliance and Portability

The objective of this work is to achieve a level of portability for motion control Function Blocks acting on an axis, and providing the same functionality to the user as described within this document, with respect to user interface, input / output variables, parameters and units used.

The possibility of combining several MC libraries from different vendors within one application is left open to be solved by the systems integrator or end user.

An implementation which claims compliance with this PLCopen specification shall offer a set of (meaning one or more) Function Blocks for motion control with at least the **basic** input and output variables, marked as "**B**" in the defined tables in the definition of the Function Blocks in this document.

For higher-level systems and future extensions any subset of the **extended** input and output variables, marked as "E" in the tables can be implemented.

Vendor specific additions are marked with "V".

For more specific information on compliance and the usage of the PLCopen Motion Control logo, refer to Appendix A.

- Basic input/output variables are mandatory	Marked in the tables with the letter "B"
- Extended input /output variables are optional	Marked in the tables with the letter "E"
- Vendor Specific additions	Marked in the vendor's compliance documentation with "V"

Any vendor is allowed to add Vendor Specific parameters to any of the Function Blocks specified within this document.

Note:

According to the IEC 61131-3 specification, the input variables may be unconnected or not parameterized by the user. In this case the Function Block will use the value from the previous invocation of the Function Block instance or in case of the first invocation the initial value will be used. Each Function Block input has a defined initial value, which is typically 0.

The data type REAL listed in the Function Blocks and parameters (e.g. for velocity, acceleration, distance, etc.) may be exchanged to SINT, INT, DINT or LREAL without being seen as incompliant to this standard, as long as it is consistent for the whole set of Function Blocks and parameters.

Implementation allows the extension of data types as long as the basic data type is kept. For example: WORD may be changed to DWORD, but not to REAL.

1.1.5. Compatibility issues

The first official release of Part 1 was made in November 2001. Since that time feedback has been received from both users and implementers. In 2004 it was decided to release a new version, Version 1.1, of Part 1, which includes the changes resulting from inclusion of the feedback into the specification. This update may result in incompatibilities between Version 1.0 and Version 1.1 as errors were corrected and some specifications were clarified.

for efficiency in automation

2. Model

The following Function Block (FB) library is designed for the purpose of controlling axes via the language elements consistent with those defined in the IEC 61131-3 standard. It was decided by the task force that it would not be practical to encapsulate all the aspects of one axis into only one function block. The retained solution is to provide a set of command oriented function blocks that have a reference to the axis, e.g. the abstract data type 'Axis', which offers flexibility, ease of use and reusability.

Implementations based on IEC 61131-3 (for instance via Function Blocks and SFC) will be focused towards the interface (look-and-feel / 'proxy') of the Function Blocks. This specification does not define the internal operation of the Function Blocks.

This leads to some consequences that are described in this chapter.

2.1. The State Diagram

The following diagram normatively defines the behavior of the axis at a high level when multiple motion control Function Blocks are «simultaneously» activated. This combination of motion profiles is useful in building a more complicated profile or to handle exceptions within a program. (In real implementations there may be additional states at a lower level defined).

The basic rule is that motion commands are always taken sequentially, even if the PLC had the capability of real parallel processing. These commands act on the axis' state diagram.

The axis is always in one of the defined states (see diagram below). Any motion command that causes a transition changes the state of the axis and, as a consequence, modifies the way the current motion is computed.

The state diagram is an abstraction layer of what the real state of the axis is, comparable to the image of the I/O points within a cyclic (PLC) program.

A change of state is reflected immediately when issuing the corresponding motion command. (Note: the response time of 'immediately' is system dependent, coupled to the state of the axis, or an abstraction layer in the software)

The diagram is focused on a single axis. The multiple axis Function Blocks, MC_CamIn, MC_GearIn and MC_Phasing, can be looked at, from a state diagram point of view, as multiple single-axes all in specific states. For instance, the CAM-master can be in the state 'Continuous Motion'. The corresponding slave is in the state 'Synchronized Motion'. Connecting a slave axis to a master axis has no influence on the master axis.

The state 'Disabled' describes the initial state of the axis. In this state the movement of the axis is not influenced by the FBs. The axis feedback is operational.

If the MC_Power FB is called with Enable=TRUE while being in 'Disabled', this either leads to 'Standstill' if there is no error inside the axis, or to "ErrorStop" if an error exists.

Calling MC_Power with Enable=FALSE in any state, the axis goes to the state 'Disabled', either directly or via any other state. If a motion generating Function Block controls an axis, while the MC_Power FB with Enable=FALSE is called, the motion generating Function Block is aborted (CommandAborted).

The intention of the "ErrorStop" state is that the axis goes to a stop, if possible. There are no further FBs accepted until a reset has been done from the ErrorStop state

The transition Error refers to errors from the axis and axis control, and not from the Function Block instances. These axis errors may also be reflected in the output of the Function Blocks 'FB instances errors'.

Issuing MC_Home in any other state than StandStill will go to ErrorStop, even if MC_Home is issued from the state "Homing" itself.

Function Blocks which are not listed in the State Diagram do not affect the state of the axis, meaning that whenever they are called the state does not change. They are: MC_ReadStatus; MC_ReadAxisError; MC_ReadParameter; MC_ReadBoolParameter; MC_WriteParameter; MC_WriteBoolParameter; MC_ReadActualPosition and MC_CamTableSelect.

Calling the FB MC_Stop in state "StandStill" changes the state to "Stopping" and back to "Standstill" when "Execute = FALSE". The state "Stopping" is kept as long as the input "Execute" is true. The "Done" output is set when the stop ramp is finished.

Note 1: In this state ErrorStop or Stopping, all Function Blocks can be called, although they will not be executed, except MC_Reset and Error – they will generate the transition to StandStill or ErrorStop respectively.

Note 2: Power.Enable = TRUE and there is an error in the Axis

Note 3: Power.Enable = TRUE and there is no error in the Axis

Note 4: MC_Stop.Done AND NOT MC_Stop.Execute

Figure 2: FB state behavior

for efficiency in automation

2.2. Error handling

All access to the drive/motion control is via Function Blocks. Internally these Function Blocks provide basic error checking on the input data. Exactly how this is done is implementation dependent. For instance, if MaxVelocity is set to 6000, and the Velocity input to a FB is set to 10,000, a basic error report is generated. In the case where an intelligent drive is coupled via a network to the system, the MaxVelocity parameter is probably stored on the drive. The FB has to take care that it handles the error generated by the drive internally. With another implementation, the MaxVelocity value could be stored locally. In this case the FB will generate the error locally.

Both centralized and decentralized error handling methods are possible when using the motion control Function Blocks.

Centralized error handling is used to simplify programming of the Function Block. Error-reaction is the same independent of the instance in which the error has occurred.

Figure 3: Function Blocks with centralized error handling

Decentralized error handling gives the possibility of different reactions depending on the Function Block in which an error occurred.

Figure 4: Function blocks with decentralized error handling

2.3. FB interface

2.3.1. General rules

Output exclusivity	The outputs 'Busy', 'Done', 'Error', and 'CommandAborted' are mutually exclusive: only one of them can be TRUE on one FB. If 'Execute' is TRUE, one of these outputs has to be TRUE. Only one of the outputs "Active", "Error", "Done" and "CommandAborted" is set at the same time.
Output status	The "Done", "InGear", "InSync", "InVelocity", "Error", "ErrorID" and "CommandAborted" outputs are reset with the falling edge of "Execute". However the falling edge of "Execute" does not stop or even influence the execution of the actual FB. It must be guaranteed that the corresponding outputs are set for at least one cycle if the situation occurs, even if execute was reset before the FB completed. If an instance of a FB receives a new execute before it finished (as a series of commands on the
	same instance), the FB won't return any feedback, like 'Done' or 'CommandAborted', for the previous action.
Input parameters	The parameters are used with the rising edge of the execute input. To modify any parameter it is necessary to change the input parameter(s) and to trigger the motion again.
Missing input parameters	According to IEC 61131-3, if any parameter of a function block input is missing ("open") then the value from the previous invocation of this instance will be used. In the first invocation the initial value is applied.
Position versus dis-	"Position" is a value defined within a coordinate system. "Distance" is a relative measure re-
tance	lated to technical units. "Distance" is the difference between two positions.
Sign rules	The "Velocity", "Acceleration", "Deceleration" and "Jerk" are always positive values. "Position" and "Distance" can be both positive and negative.
Error Handling	All blocks have two outputs, which deal with errors that can occur while executing that Func-
Behavior	tion Block. These outputs are defined as follow:
	Error Rising edge of "Error" informs that an error occurred during the execution of
	the Function Block. ErrorID Error number
	"Done", "InVelocity", "InGear", and "InSync" mean successful completion so these signals are
	logically exclusive to "Error".
	Types of errors:
	• Function Blocks (e.g. parameters out of range, state machine violation attempted)
	• Communication
	• Drive
	Instance errors do not always result in an axis error (bringing the axis to "StandStill")
	The error outputs of the relevant FB are reset with falling edge of Execute.
FB Naming	In case of multiple libraries within one system (to support multiple drive / motion control systems), the FB naming may be changed to "MC_FBname_SupplierID".
Behavior of Done output	The "Done" output (as well as "InGear", "InSync",) is set when the commanded action has been completed successfully.
	With multiple Function Blocks working on the same axis in a sequence, the following applies: when one movement on an axis is interrupted with another movement on the same axis without having reached the final goal, "Done" of the first FB will not be set.
Behavior of	"CommandAborted" is set, when a commanded motion is interrupted by another motion com-
CommandAborted	mand.
output	The reset-behavior of "CommandAborted" is like that of "Done". When "CommandAborted" occurs, the other output-signals such as "InVelocity" are reset.
Inputs exceeding application limits	If a FB is commanded with parameters which result in a violation of application limits, the instance of the FB generates an error. The consequences of this error for the axis are applica-
	tion specific and thus should be handled by the application program.

for efficiency in automation

	-
Behavior of Busy output	Every FB can have an output "Busy", reflecting that the FB is not finished. "Busy" is SET at the rising edge of "Execute" and RESET when one of the outputs "Done", "Aborted", or "Error" is set. It is recommended that this FB should be kept in the active loop of the application program for at least as long as 'Busy' is true, because the outputs may still change. For one axis, several Function Blocks might be busy, but only one can be active at a time. Ex- ceptions are "MC_SuperImposed" and "MC_Phasing", where more than one FB related to one axis can be active.
Output 'Active'	The "Active" output is required on buffered Function Blocks. This output is set at the moment the function block takes control of the motion of the according axis. For un-buffered mode the outputs "Active" and "Busy" can have the same value.
Enable and Valid / Status	The "Enable" input is coupled to a "Valid" output. "Enable" is level sensitive, and "Valid" shows that a valid set of outputs is available at the FB. The "Valid" output is TRUE as long as a valid output value is available and the "Enable" input is TRUE. The relevant output value can be refreshed as long as the input "Enable" is TRUE. If there is a FB error, the output is not valid ("Valid" set to FALSE). When the error condition disappears, the values will reappear and "Valid" output will be set again.

Table 2: General Rules

The behavior of the "Execute" / "Done" style FBs is as follows:

2.3.2. Aborting versus Buffered modes

Some of the FBs have an input called "BufferMode". With this input, the FB can either work in a 'Non-buffered mode' (default behavior) or in a 'Buffered mode'. The difference between those modes is when they should start their action:

- A command in a non-buffered mode acts immediately, even if this interrupts another motion
- A command in a buffered mode waits till the current FB sets its "Done" output (or "InPosition", or "InVelocity",..).

for efficiency in automation

There are several options for the buffered mode. For this reason, this input is an ENUM of type MC_BUFFERMODE. The following modes have been identified:

• Aborting Default mode without buffering. The next FB aborts an ongoing motion and the command

affects the axis immediately.

• Buffered The next FB affects the axis as soon as the previous movement is "Done" There is no

blending.

• BlendingLow The next FB controls the axis after the previous FB has finished (equivalent to buffered),

but the axis will not stop between the movements. The velocity is blended with the lowest

velocity of both commands (1 and 2) at the first end-position (1).

 $\bullet\,$ BlendingPrevious blending with the velocity of FB 1 at end-position of FB 1

• BlendingNext blending with velocity of FB 2 at end-position of FB1

• BlendingHigh blending with highest velocity of FB 1 and FB 2 at end-position of FB1

Supplier specific extensions are allowed after these defined Enums.

The following examples describe the different behavior of these modes:

Example 1: Standard behaviour of 2 following absolute movements

Figure 5: Basic example with two MC_MoveAbsolute on same axis

Figure 6: Timing diagram for example above without interference between FB1 and FB2 (Aborting Mode)

Example 2: Aborting motion

Figure 7: Timing diagram for example above with FB2 interrupting FB1 (Aborting Mode)

Example 3: Buffered motion

Figure 8: Timing diagram for example above in Buffered Mode (Stopping to velocity 0 and starting FB2 at that point without delay)

Example 4: BlendingLow motion

Figure 9: Timing diagram for example above with mode BlendingLow

(Using lowest velocity (=velocity 2) from final position of FB1 until final position of FB2)

Example 5: BlendingPrevious motion

Figure 10: Timing diagram for example above with mode Merging1 (Uses velocity FB1 at final position FB1)

Example 6: BlendingNext motion

Figure 11: Timing diagram for example above with mode BlendingNextMotion

Example 7: BlendingHigh motion

Figure 12: Timing diagram for example above with mode BlendingHighMotion

The following table gives an overview of the effects on the defined function blocks:

Function block	Can be specified as a buffered command	Can be followed by a buffered command	Relevant signal to activate the next buffered FB
MC_MoveAbsolute	Yes	Yes	Done
MC_MoveRelative	Yes	Yes	Done
MC_MoveAdditive	Yes	Yes	Done
MC_MoveSuperimposed	No	No	
MC_MoveVelocity	Yes	Yes	InVelocity
MC_Home	Yes	Yes	Done
MC_Stop	Yes	Yes	Done AND NOT Execute
MC_Power	Yes	Yes	Status
MC_PositionProfile	Yes	Yes	Done
MC_VelocityProfile	Yes	Yes	Done
MC_AccelerationProfile	Yes	Yes	Done
MC_CamIn	Yes	Yes - (in single mode)	EndOfProfile
MC_CamOut	No	Yes	Done
MC_GearIn	Yes	No	
MC_GearOut	No	Yes	Done
MC_Phasing	Yes	No	

Note: The (administrative) FBs not listed here are basically not buffered, nor can be followed by a buffered FB. However, the supplier may choose to support the various buffering / blending modes.

If an on-going motion is aborted by another movement, it can occur that the braking distance is not sufficient due to deceleration limits.

In rotary axis, a modulo can be added. A modulo axis could go to the earliest repetition of the absolute position specified, in cases where the axis should not change direction and reverse to attain the target position.

In linear systems, the resulting overshoot can be resolved by reversing, as each position is unique and therefore there is no need to add a modulo to reach the correct position..

2.3.3. AXIS REF Data type

The AXIS_REF is a structure that contains information on the corresponding axis. It is used as a VAR_IN_OUT in all Motion Control Function Blocks defined in this document. The content of this structure is implementation dependent and can ultimately be empty. If there are elements in this structure, the supplier shall support the access to them, but this is outside of the scope of this document. The refresh rate of this structure is also implementation dependent. According to IEC 61131-3 it is allowed to switch the AXIS_REF for an active FB, for instance from Axis1 to Axis2. However, the behavior of this can vary across different platforms, and in not encouraged to do.

AXIS_REF data type declaration:

TYPE AXIS_REF: STRUCT

(Content is implementation dependent)

END STRUCT

Example:

TYPE AXIS REF: STRUCT

AxisNo: UINT;

AxisName: STRING (255);

END STRUCT

2.3.4. Technical Units

The only specification for physical quantities is made on the length unit (noted as [u]) that is to be coherent with its derivatives i.e. (velocity [u/s]; acceleration $[u/s^2]$; jerk $[u/s^3]$). Nevertheless, the unit [u] is not specified (manufacturer dependent). Only its relations with others are specified.

2.3.5. Why the command input is edge sensitive

The "Execute" input for the different Function Blocks described in this document always triggers the function with its rising edge. The reason for this is that with edge triggered "Execute" new input values may be commanded during execution of a previous command. The advantage of this method is a precise management of the instant a motion command is performed. Combining different Function Blocks is then easier in both centralized and decentralized models of axis management. The "Done" output can be used to trigger the next part of the movement. The example given below is intended to explain the behavior of the Function Block execution.

The figure 5 illustrates the sequence of three Function Blocks "First", Second" and "Third" controlling the same axis. These three Function Blocks could be for instance various absolute or relative move commands. When "First" is completed the motion its rising output "First.Done" triggers "Second.Execute". The output "Second.Done" AND "In13" trigger the "Third.Execute".

Figure 13: Function blocks to perform a complex movement

2.4. Example 1: the same Function Block instance controls different motions of an axis

Figure 6 shows an example where the Function Block FB1 is used to control "AxisX" with three different values of Velocity. In a Sequential Function Chart (SFC) the velocity 10, 20, and 0 is assigned to V. To trigger the Execute input with a rising edge the variable E is stepwise set and reset.

Figure 14: Single FB usage with a SFC

The following timing diagram explains how it works.

Figure 15: Timing diagram for a usage of a single FB

Note: The second InVelocity is set for only one cycle because the Execute has gone low before the Actual Velocity equals Commanded Velocity.

2.5. Example 2: different Function Block instances control the motions of an axis

Different instances related to the same axis can control the motions on an axis. Each instance will then be «responsible» for one part of the global profile.

Figure 16: Cascaded Function Blocks

The timing diagram:

Figure 17: Cascaded Function Blocks timing diagram

A corresponding solution written in LD looks like:

Figure 18: Cascaded Function Blocks with LD

3. Single-Axis Function Blocks

3.1. MoveAbsolute

FB-N	Name		MC_MoveAbsolute				
This Function Block commands a controlled motion to a specified absolute position.							
VAR_IN_OUT							
]	В	Axis	AXIS_REF				
VAR	R_INPU	UT					
]	В	Execute	BOOL	Start the motion at rising edge			
	В	Position	REAL	Target position for the motion (in technical unit [u]) (negative or positive)			
	E	Velocity	REAL	Value of the maximum velocity (always positive) (not necessarily reached) [u/s].			
	Е	Acceleration	REAL	Value of the acceleration (always positive) (increasing energy of the motor) [u/s ²]			
	Е	Deceleration	REAL	Value of the deceleration (always positive) (decreasing energy of the motor) [u/s ²]			
]	Е	Jerk	REAL	Value of the Jerk [u/s ³]. (always positive)			
]	E	Direction	MC_Direction	Enum type (1-of-4 values: positive_direction, shortest_way, negative_direction, current_direction)			
	Е	BufferMode	MC_BufferMode	Defines the behavior of the axis: modes are Aborting, Buffered, Blending			
VAR	VAR_OUTPUT						
]	В	Done	BOOL	Commanded position finally reached			
]	E	Busy	BOOL	The FB is not finished			
]	E	Active	BOOL	Indicates that the FB has control on the axis			
]	E	CommandAborted	BOOL	Command is aborted by another command			
]	В	Error	BOOL	Signals that error has occurred within Function block			
]]	E	ErrorID	WORD	Error identification			

Notes:

- This action completes with velocity zero if no further action are pending
- If there is only one mathematical solution to reach the commanded position (like in linear systems), the value of the input Direction is ignored
- For modulo axis valid absolute position values are in the range of [0, 360[, (360 is excluded), or corresponding range. The application however may shift the commanded position of MC_MoveAbsolute into the corresponding modulo range. For relative positions, modulo 360 is applicable
- The Enum type 'shortest_way' is focused to a trajectory which will go through the shortest route. The decision which direction to go is based on the current position where the command is issued.

The following figure shows two examples of the combination of two absolute move Function Blocks:

- 1. The left part of timing diagram illustrates the case if the Second Function Block is called **after** the First one. If First reaches the commanded position of 6000 (and the velocity is 0) then the output Done causes the Second FB to move to the position 10000.
- 2. The right part of the timing diagram illustrates the case if the Second move Function Block starts the execution **while** the First FB is still executing. In this case the First motion is interrupted and aborted by the Test signal during the constant velocity of the First FB. The Second FB moves directly to the position 10000 although the position of 6000 is not yet reached.

MoveAbsolute - Example

Figure 19: Timing diagram for MC_MoveAbsolute

Note to figure: the examples are based on two instances of the Function Block: instance "First" and "Second".

3.2. Move Relative

FB-Name MC_Mov			MC_MoveR	elative			
This Func	This Function Block commands a controlled motion of a specified distance relative to the actual position at the time						
of the execution.							
VAR_IN_OUT							
В	Axis		AXIS_REF				
VAR_INI	PUT						
В	Execute	BOC)L	Start the motion at rising edge			
В	Distance	Distance REA		Relative distance for the motion (in technical unit [u])			
Е	Velocity	REA	L	Value of the maximum velocity (not necessarily reached) [u/s]			
Е	Acceleration	REA	L	Value of the acceleration (increasing energy of the motor) [u/s ²]			
Е	Deceleration	REAL REAL		Value of the deceleration (decreasing energy of the motor) [u/s ²]			
Е	Jerk			Value of the Jerk [u/s ³]			
Е	BufferMode	MC_	BufferMode	Defines the behavior of the axis: modes are Aborting, Buffered,			
				Blending			
VAR_OUTPUT							
В	Done	Done		Commanded distance reached			
Е	Busy	Busy		The FB is not finished			
Е	Active		BOOL	Indicates that the FB has control on the axis			
Е	CommandAborted		BOOL	Command is aborted by another command			
В	Error		BOOL	Signals that error has occurred within Function block			
E	ErrorID		WORD	Error identification			
Notes: This action completes with velocity zero if no further action are pending							

The following figure shows the example of the combination of two relative move Function Blocks

- 1. The left part of timing diagram illustrates the case if the Second Function Block is called **after** the First one. If First reaches the commanded distance 6000 (and the velocity is 0) then the output Done causes the Second FB to move to the distance 10000.
- 2. The right part of the timing diagram illustrates the case if the Second move Function Blocks starts the execution **while** the First FB is still executing. In this case the First motion is interrupted and aborted by the Test signal during the constant velocity of the First FB. The Second FB **adds on the actual position** of 3250 the distance 4000 and moves the axis to the resulting position of 7250.

MoveRelative - Example

Figure 20: Timing diagram for MC_MoveRelative

3.3. Move Additive

FB-Name		MC_MoveA	MC_MoveAdditive				
This Function Block commands a controlled motion of a specified relative distance additional to the most recent							
commande	commanded position in the discrete motion state. The most recent commanded position may be the result of a previ-						
ous MC_MoveAdditive motion which was aborted. If the FB is activated in the Continuous Mode the specified rela-							
tive distance is added to the actual position at the time of the execution.							
VAR_IN_0	OUT						
В	Axis	AXIS_REF					
VAR_INPUT							
В	Execute	BOOL	Start the motion at rising edge				
В	Distance	REAL	Relative distance for the motion (in technical unit [u])				
E	Velocity	REAL	Value of the maximum velocity (not necessarily reached) [u/s]				
E	Acceleration	REAL	Value of the acceleration (increasing energy of the motor) [u/s ²]				
Е	Deceleration	REAL	Value of the deceleration (decreasing energy of the motor) [u/s ²]				
E	Jerk	REAL	Value of the Jerk [u/s ³]				
E	BufferMode	MC_BufferMode	Defines the behavior of the axis: modes are Aborting, Buffered,				
_			Blending				
VAR_OUTPUT							
В	Done	BOOL	Commanded distance reached				
Е	Busy	BOOL	The FB is not finished				
Е	Active	BOOL	Indicates that the FB has control on the axis				
Е	CommandAbor	rted BOOL	Command is aborted by another command				
В	Error	BOOL	Signals that error has occurred within Function Block				
Е	ErrorID	WORD	Error identification				
Notes: -		•					

The following figure shows two examples of the combination of two Function Blocks while the axis is in Discrete Motion state:

- 1. The left part of timing diagram illustrates the case if the Second Function Block is called **after** the First one. If First reaches the commanded distance 6000 (and the velocity is 0) then the output 'Done' causes the Second FB to move to the distance 10000.
- 2. The right part of the timing diagram illustrates the case if the Second move Function Blocks starts the execution **while** the First FB is still executing. In this case the First motion is interrupted and aborted by the Test signal during the constant velocity of the First FB. The Second FB **adds on the previous commanded position** of 6000 the distance 4000 and moves the axis to the resulting position of 10000.

MoveAdditive - Example

Figure 21: Timing diagram for MC_MoveAdditive

3.4. MoveSuperImposed

	MC_MoveSuperimposed					
This Function Block commands a controlled motion of a specified relative distance additional to an existing motion.						
g Motion is not inter	rupted, but is	superimposed by the additional motion.				
VAR_IN_OUT						
Axis	AXIS_REF					
UT						
Execute	BOOL	Start the motion at rising edge				
Distance	REAL	Additional Distance that is to be superimposed (in technical unit [u])				
VelocityDiff	REAL	Value of the maximum velocity difference to the ongoing motion (not				
		necessarily reached) [u/s]				
Acceleration	REAL	Value of the acceleration (increasing energy of the motor) [u/s ²]				
Deceleration	REAL	Value of the deceleration (decreasing energy of the motor) [u/s ²]				
Jerk	REAL	Value of the Jerk [u/s ³]				
ΓPUT						
Done	BOOL	Additional distance superimposed to the ongoing motion				
Busy	BOOL	The FB is not finished				
Active	BOOL	Indicates that this FB is contributing to the motion on the axis				
CommandAborted	BOOL	Command is aborted by another command				
Error	BOOL	Signals that error has occurred within Function block				
ErrorID	WORD	Error identification				
	g Motion is not inter OUT Axis UT Execute Distance VelocityDiff Acceleration Deceleration Jerk PUT Done Busy Active CommandAborted Error	ion Block commands a controlled g Motion is not interrupted, but is DUT Axis AXIS_REF UT Execute BOOL Distance REAL VelocityDiff REAL Acceleration REAL Deceleration REAL PUT Done BOOL Busy BOOL Active BOOL CommandAborted BOOL Error BOOL				

Note:

- If MC_MoveSuperImposed is active, then any other command in aborting mode except MC_MoveSuperImposed will abort both motion commands: both the MC_MoveSuperImposed and the underlying motion command. In any other mode, the underlying motion command is not aborted
- If MC_MoveSuperImposed is active and another MC_MoveSuperImposed is commanded, only the on-going MC_MoveSuperImposed command is aborted, and replaced by the new MC_MoveSuperImposed, but not the underlying motion command
- The FB MC_MoveSuperimposed causes a change of the velocity and, if applicable, the commanded position of an ongoing motion in all relevant states
- In the state StandStill the FB MC_MoveSuperimposed acts like MC_MoveRelative
- The values of Acceleration, Deceleration, and Jerk are additional values to the on-going motion, and not absolute ones. With this, the underlying FB always finishes its job in the same period of time regardless of whether a MC_MoveSuperimposed FB takes place concurrently.
- MC_MoveSuperimposed acts on the slave axis, while MC_Phasing acts on the master side, as seen from the slave
- The output "Active" has a different behavior as in buffered FBs.

Second First MC_MoveSuperImp MC_MoveRelative Axis MvAX Axis GO_Rel 5000 GO_Sup Execute Done Execute Done 1000 Distance CommandAborted Distance CommandAborted 300 Velocity VelocityDiff Error 100 — Error 100 Acceleration ErrorID 50 Acceleration ErrorID 100 Deceleration Deceleration 50 1000 1000

MoveSuperimposed - Example

Figure 22: Timing diagram for MC_MoveSuperimposed

Note 1: the CommandAborted is not visible here, because the new command works on the same instance (see general rules 2.3.1) Note 2: the end position is between 7000 and 8000, depending on the timing of the aborting of the second command set for the MC_MoveSuperimposed

Example of MC_MoveSuperImposed during Camming:

Figure 23: Timing diagram of effect of MC_MoveSuperImposed on same axis

Note: at Slave velocity, the double line shows the effect of MoveSuperimposed while in synchronized motion during Camming. The same is valid for the related slave position

3.5. MoveVelocity

FB-	Name		MC_MoveVelo	ocity		
This	This Function Block commands a never ending controlled motion at a specified velocity.					
VA	R_IN_0	OUT				
	В	Axis	AXIS_REF			
VA	R_INP	UT				
	В	Execute	BOOL	Start the motion at rising edge		
	E	Velocity	REAL	Value of the maximum velocity (not necessarily reached) [u/s]		
	Е	Acceleration	REAL	Value of the acceleration (increasing energy of the motor) [u/s ²]		
	E	Deceleration	REAL	Value of the deceleration (decreasing energy of the motor) [u/s ²]		
	Е	Jerk	REAL	Value of the Jerk [u/s ³]		
	E	Direction	MC_Direction	Enum type (1-of-3 values: positive direction, negative direction,		
				and current direction. Note: shortest way not applicable)		
	E	BufferMode	MC_BufferMode	Defines the behavior of the axis: modes are Aborting, Buffered,		
				Blending		
VA	R_OUT	PUT				
	В	InVelocity	BOOL	Commanded velocity reached (first time reached)		
	E	Busy	BOOL	The FB is not finished		
	E	Active	BOOL	Indicates that the FB has control on the axis		
	E	CommandAborte	ed BOOL	Command is aborted by another command		
	В	Error	BOOL	Signals that error has occurred within Function block		
	Е	ErrorID	WORD	Error identification		

Notes:

- To stop the motion, the FB has to be interrupted by another FB issuing a new command
- The signal "InVelocity" has to be reset when the block is aborted by another block or at the falling edge of "Execute".
- In combination with MC_MoveSuperimposed, the output "InVelocity" stays TRUE once the velocity setpoint of the axis has reached the commanded velocity.

The following figure shows two examples of the combination of two MoveVelocity Function Blocks:

- 1. The left part of timing diagram illustrates the case if the Second Function Block is called **after** the First one is completed. If First reaches the commanded velocity 3000 then the output First.InVelocity AND the signal Next causes the Second FB to move to the velocity 2000.
- 2. The right part of the timing diagram illustrates the case if the Second move Function Blocks starts the execution **while** the First FB is not yet InVelocity.
 - The following sequence is shown: The First motion is started again by Go at the input First.Execute. While the First FB is still accelerating to reach the velocity 3000 the First FB will be interrupted and aborted because the Test signal starts the Run of the Second FB. Now the Second FB runs and decelerates the velocity to 2000.

MoveVelocity - Example

Figure 24: MC_MoveVelocity timing diagram

3.6. Home

FB-Name			MC_Home					
This Fund	This Function Block commands the axis to perform the «search home» sequence. The details of this sequence are							
manufactu	manufacturer dependent and can be set by the axis' parameters. The "Position" input is used to set the absolute posi-							
tion when	tion when reference signal is detected. This Function Bock completes at "StandStill".							
VAR_IN_	VAR_IN_OUT							
В	B Axis AXIS_REF							
VAR_INI	PUT							
В	B Execute BOOL Start the motion at rising edge							
В	Position	RE.	AL Absolute position when the reference signal is detected [u]					
Е	HomingMode	MC	C_HomingMode Enum input for Homing mode					
Е	BufferMode	MC	C_BufferMode		Defines the behavior of the axis: modes are Aborting, Buffered,			
					Blending			
VAR_OU	TPUT			_				
В	Done		BOOL	Sta	andStill is reached			
Е	Busy		BOOL	Th	e FB is not finished			
Е	Active		BOOL	Inc	licates that the FB has control on the axis			
Е	CommandAborte	ed	BOOL Command is aborted by another command					
В	Error		BOOL	Signals that error has occurred within Function block				
Е	ErrorID		WORD Error identification					
Notes:	•							
The enum	datatype MC_Ho	ming	Mode has the	e fol	lowing modes:			
The enum	• •	_	•		lowing modes:			

- MC_AbsSwitch (Absolute Switch homing plus Limit switches)
- MC_LimitSwitch (Homing against limit switches)
- MC_RefPulse (Homing using encoder Reference Pulse "Zero Mark")
- MC_Direct (Static Homing forcing position from user reference)
- MC_Absolute (Static Homing forcing position from absolute encoder)
- MC_Block (Homing against hardware parts blocking movement)

For more specific information on these modes, as well as additional modes, please refer to Part 5 - Homing

3.7. Stop

FB-Name		MC_S	Stop			
This Funct	This Function Block commands a controlled motion stop and transfers the axis to the state "Stopping". It aborts any					
ongoing Fu	unction Block	executi	ion. While the	axis is in state Stopping, no other FB can perform any motion on the		
same axis.	After the axis	has rea	ached velocity	zero, the Done output is set to TRUE immediately. The axis remains in		
				TRUE or velocity zero is not yet reached. As soon as "Done" is SET		
and "Execu	ute" is FALSE	the ax	is goes to state	e "StandStill".		
VAR_IN_0	OUT					
В	Axis		AXIS_REF			
VAR_INP	UT					
В	Execute	BOO)L	Start the action at rising edge		
Е	Deceleration	REA	L	Value of the deceleration [u/s ²]		
E	Jerk	REAL		Value of the Jerk [u/s ³]		
Е	BufferMode	BufferMode MC_BufferMode		Defines the behavior of the axis: modes are Aborting, Buffered, Blending		
VAR_OUT	ГРИТ	I				
В	Done		BOOL	Zero velocity reached and execute is not True		
Е	Busy		BOOL	The FB is not finished		
Е	Active		BOOL	Indicates that the FB has control on the axis		
Е	CommandAborted BOOL		BOOL	Command is aborted by switching off power (only possibility to abort)		
В	Error BOOL		BOOL	Signals that error has occurred within Function block		
E ErrorID WORD			WORD	Error identification		
Note:						
As long as	Execute is hig	h, the	axis remains ir	the state 'Stopping' and may not be executing any other command.		

The example below shows the behavior in combination with a MC MoveVelocity.

- a) A rotating axis is ramped down with FB MC_Stop.
- b) The axis rejects motion commands as long as MC_Stop parameter "Execute" = TRUE. FB MC_MoveVelocity reports an error indicating the busy MC_Stop command.

Figure 26: Behavior of MC_Stop in combination with MC_MoveVelocity

3.8. Power

FB-	-Name	M	C_Power					
Thi	This Function Block controls the power stage (on or off).							
VA	VAR IN OUT							
	В	Axis	AXIS_REF					
VA	R_INP	UT						
	В	Enable	BOOL		As long as 'Enable' is true, power is on.			
	Е	Enable_Positive	BOOL		As long as 'Enable' is true, permits motion in positive direc-			
					tion only			
	E	Enable_Negativ	e BOOL		As long as 'Enable' is true, permits motion in negative direc-			
					tion only (_Pos & _Neg can both be true)			
	Е	BufferMode	MC_BufferN	/lode	Defines the behavior of the axis: modes are Aborting, Buff-			
					ered, Blending			
VA	R_OUT	ΓPUT						
	В	Status	BOOL	Effective state of the power stage				
	E	Busy	BOOL	The FB is not finished				
	Е	Active	BOOL	Indicates that the FB has control on the axis				
	В	Error	BOOL	Signa	ls that error has occurred within Function block			
	Е	ErrorID	WORD	Error	identification			

Notes:

- If the MC_Power FB is called with the Enable true while being in Disabled, this either leads to Standstill if there is no error in the axis, or to ErrorStop if an Error exists.
- It is possible to set an error variable when the Command is TRUE for a while and the Status remains false with a Timer FB and an AND Function (with inverted Status input). It indicates that there is a hardware problem with the power stage.
- If power fails (also during operation) it will generate a transition to the ErrorStop state
- Enable_Positive and Enable_Negative are both level triggered
- When MC_Power is called with Enable false the axis goes to state Disabled for every state including ErrorStop.

3.9. ReadStatus

FB-Name	_								
This Funct	This Function Block returns in detail the status of the axis with respect to the motion currently in progress.								
VAR_IN_OUT									
В	Axis	AXIS_REF							
VAR_INP	UT								
В	Enable	BOOL	Get the value of the parameter continuously while enabled						
VAR_OUT	ГРИТ	_							
В	Valid	BOOL	True if valid outputs available						
Е	Busy	BOOL							
В	Error	BOOL	Signals that error has occurred within Function block						
E	ErrorID	WORD	Error identification						
В	ErrorStop	BOOL	See state diagram						
В	Disabled	BOOL	Is SET if the axis is in the Disabled state						
В	Stopping	BOOL	See state diagram						
В	StandStill	BOOL	See state diagram						
В	DiscreteMotion	BOOL	See state diagram						
В	ContinuousMotion	BOOL	See state diagram						
Е	SynchronizedMotion	BOOL	See State Diagram						
E	Homing	BOOL	See state diagram						
E	ConstantVelocity	BOOL	Motor moves with constant velocity						
E	Accelerating	BOOL	Increasing energy of the motor						
Е	Decelerating	BOOL	Decreasing energy of the motor						

3.10. ReadAxisError

FB-	-Name	M	IC_ReadAxisI	Error			
Thi	This Function Block describes general axis errors not relating to the Function Blocks.						
VA	R_IN_0	TUC	_				
	В	Axis	AXIS_REF				
VA	R_INP	UT					
		Enable	BOOL	Get the value of the parameter continuously while enabled			
VA	R_OU	ГРИТ					
	В	Valid	BOOL	Value is available			
	Е	Busy	BOOL				
	В	Error	BOOL	Error flag			
	В	ErrorID	WORD	Indicates the kind of errors			
	В	AxisErrorID	WORD	The value of the axis error. These values are vendor specific			
No	Notes:						
•	This FI	B is the equivaler	nt to read the A	xisErrorID parameter using MC_ReadParameter.			

3.11. Reset

FB-Name		MC_Reset				
This Func	This Function Block makes the transition from the state ErrorStop to StandStill by resetting all internal axis-related					
errors – it	errors – it does not affect the output of the FB instances.					
VAR_IN_	OUT					
В	Axis	AXIS_REF				
VAR_INF	VAR_INPUT					
В	Execute	BOOL	Resets the axis at the rising edge			
VAR_OU	TPUT					
В	Done	BOOL	StandStill state is reached			
Е	Busy	BOOL	The FB with the Busy = TRUE has control on the axis			
В	Error	BOOL	Error flag			
В	ErrorID	WORD	E			
Note: the a	application of N	AC RESET in of	her states then the state ErrorStop is vendor specific			

3.12. ReadParameter & ReadBoolParameter

FB-	-Name		MC_R	eadParameter	r	
Thi	This Function Block returns the value of a vendor specific parameter. The returned Value has to be converted to Real					
if n	ecessar	y. If not possib	ole, the v	endor has to s	upply a vendor specific FB to read the parameter.	
VA	R_IN_	OUT				
	В	Axis		AXIS_REF		
VA	R_INP	UT		_		
	В	Enable		BOOL	Get the value of the parameter continuously while enabled	
	В	ParameterNu	mber	INT	Number of the parameter. One can also use symbolic parameter	
					names which are declared as VAR CONST.	
VA	R_OU	ΓPUT				
	В	Valid		BOOL	Parameter available	
	E	Busy		BOOL		
	В	Error		BOOL	Signals that error has occurred within Function block	
	E	ErrorID		WORD	Error identification	
	В	Value		REAL	Value of the specified parameter in the datatype, as specified by the	
					vendor	
Not	te: The	parameters are	defined	in the table be	elow.	

FB-N	Name	ame MC ReadBoolParameter					
This	This Function Block returns the value of a vendor specific parameter with datatype BOOL.						
VAF	VAR_IN_OUT						
	В	Axis		AXIS_REF			
VAR_INPUT							
	В	Enable		BOOL	Get the value of the parameter continuously while enabled		
	В	ParameterNun	nber	INT	Number of the parameter. One can also use symbolic parameter names which are declared as VAR CONST.		
VAF	R_OU7	ΓPUT			numes when are declared as VIII CONST.		
	В	Valid		BOOL	Parameter available		
	Е	Busy		BOOL	The FB with the Busy = TRUE has control on the axis		
	В	Error		BOOL	Signals that error has occurred within Function block		
	Е	ErrorID		WORD	Error identification		
	В	Value		BOOL	Value of the specified parameter in the datatype, as specified by the		
					vendor		
Note	e: The	parameters are o	defined	in the table be	elow		

The parameters defined below have been standardized by the task force. Suppliers should use these parameters if they are offering this functionality.

All read-only parameters as defined may be writable during the initialization phase (supplier dependent).

These parameters are available for use in the application program, and typically are not intended for commissioning tools like operator panels, etc. (the drive is not visible – only the axis position)

Note: that the most used parameters are accessible via Function Blocks, and are not listed here.

	(Note: PN is Parameter Number see FB	MC ReadParameter / MC	WriteParameter and Boolean versions)
--	--------------------------------------	-----------------------	--------------------------------------

PN	Name	Datatype	B/E	R/W	Comments
1	CommandedPosition	REAL	В	R	Commanded position
2	SWLimitPos	REAL	Е	R/W	Positive Software limit switch position
3	SWLimitNeg	REAL	Е	R/W	Negative Software limit switch position
4	EnableLimitPos	BOOL	Е	R/W	Enable positive software limit switch
5	EnableLimitNeg	BOOL	Е	R/W	Enable negative software limit switch
6	EnablePosLagMonitoring	BOOL	Е	R/W	Enable monitoring of position lag
7	MaxPositionLag	REAL	Е	R/W	Maximal position lag
8	MaxVelocitySystem	REAL	Е	R	Maximal allowed velocity of the axis in the
					motion system
9	MaxVelocityAppl	REAL	В	R/W	Maximal allowed velocity of the axis in the
					application
10	ActualVelocity	REAL	В	R	Actual velocity
11	CommandedVelocity	REAL	В	R	Commanded velocity
12	MaxAccelerationSystem	REAL	Е	R	Maximal allowed acceleration of the axis
					in the motion system
13	MaxAccelerationAppl	REAL	Е	R/W	Maximal allowed acceleration of the axis
					in the application
14	MaxDecelerationSystem	REAL	Е	R	Maximal allowed deceleration of the axis
15	MaxDecelerationAppl	REAL	Е	R/W	Maximal allowed deceleration of the axis
16	MaxJerk	REAL	Е	R/W	Maximal allowed jerk of the axis

Table 3: Parameters for MC_ReadParameter and MC_WriteParameter

Extensions by any supplier or user are also allowed at the end of the list, although this can affect portability between different platforms. Parameter-numbers from 0 to 999 are reserved for the standard. Numbers greater than 999 indicate supplier-specific parameters.

3.13. WriteParameter & WriteBoolParameter

FB-	FB-Name MC_WriteParameter			
This	This Function Block modifies the value of a vendor specific parameter.			
VA	R_IN_0	OUT		
	В	Axis	AXIS_REF	
VA	R_INP	UT		
	В	Execute	BOOL	Write the value of the parameter at rising edge
	В	ParameterNumber	INT	Number of the parameter (correspondence between number and
				parameter is to be specified later)
	B Value REAL New value of the specified parameter		New value of the specified parameter	
VA	R_OU7	ΓPUT		
	В	Done	BOOL	Parameter successfully written
	Е	Busy	BOOL	The FB with the Busy = TRUE has control on the axis
	В	Error	BOOL	Signals that error has occurred within Function block
	E ErrorID WORD Error identification			
Not	Notes:			
The	parame	eters are defined in the	table above (under MC_ReadParameter, writing allowed)

FB-	FB-Name MC_WriteBoolParameter				
Thi	This Function Block modifies the value of a vendor specific parameter of type BOOL.				
VA	R_IN_	OUT			
	В	Axis	AXIS_REF		
VA	R_INP	UT			
	В	Execute	BOOL	Write the value of the parameter at rising edge	
	В	ParameterNumber	INT	Number of the parameter (correspondence between number and parameter is to be specified later)	
	В	Value	BOOL	New value of the specified parameter	
VA	R_OU	ГРИТ			
	В	Done	BOOL	Parameter successfully written	
	Е	Busy	BOOL	The FB with the Busy = TRUE has control on the axis	
	В	Error	BOOL	Signals that error has occurred within Function block	
	E ErrorID WORD Error identification				
Not The		eters are defined in	the table above (under MC_ReadParameter, writing allowed)	

3.14. ReadActualPosition

FB-Name	Name MC_ReadActualPosition			
This Fun	ction Block returns	the actual position	on.	
VAR_IN	_OUT			
В	Axis	AXIS_REF		
VAR_IN	PUT			
В	Enable	BOOL	Get the value of the parameter continuously while enabled	
VAR_OU	JTPUT			
В	Valid	BOOL	Value is available	
Е	Busy	BOOL	The FB with the Busy = TRUE has control on the axis	
В	Error	BOOL	Signals that error has occurred within Function block	
Е	ErrorID	WORD	Error identification	
В	Position	REAL	New absolute position (in axis' unit [u])	

3.15. Position Profile

FB-Name MC				MC_PositionP	rofile
Th	This Function Block commands a time-position locked motion profile				
VA	R_IN	N_OUT			
	В	Axis		AXIS_REF	Reference to axis
	В	TimePosition		MC_TP_REF	Reference to Time / Position. Description - see note below
VA	R_IN	NPUT			
	В	Execute	BC	OOL	Start the motion at rising edge
	Е	TimeScale	RE	AL	Overall time scaling factor of the profile [t.u.]
	Е	PositionScale	RE	AL	Overall Position scaling factor [t.u.]
	Е	Offset	RE	AL	Overall offset for profile [u]
	Е	BufferMode	MO	C_BufferMode	Defines the behavior of the axis: modes are Aborting, Buffered,
					Blending
VA	AR_O	UTPUT			
	В	Done		BOOL	Profile completed
	Е	Busy		BOOL	The FB is not finished
	Е	Active		BOOL	Indicates that the FB has control on the axis
	Е	CommandAborted		BOOL	Command is aborted by another command
	В	Error		BOOL	Signals that error has occurred within Function block
	Е	ErrorID		WORD	Error identification
No	tes:			·	

- MC_TP_REF is a supplier specific data type. An example for this datatype is given below:
 - The content of a Time/Position pair may be expressed in DeltaTime/Pos, where Delta could be the difference in time between two successive points.
 - TYPE MC_TP STRUCT delta time : TIME position : REAL **END STRUCT** END_TYPE
 - TYPE MC_TP_TABLE STRUCT Number_of_pairs : INT IsAbsolute : BOOL

: ARRAY [1..N] of MC_TP MC_TP_Array

END_STRUCT

END_TYPE

- This functionality does not mean it runs one profile over and over again: it can shift between different profiles
- Alternatively to this FB, the CAM FB coupled to a virtual master can be used

Figure 27: Example of Time / Position Profile

Note: The Time / Velocity and Time / Acceleration Profiles are similar to the Position Profile, with sampling points on the Velocity or Acceleration lines.

3.16. Velocity Profile

FB-Name		ne	MC_VelocityP	rofile
Th	is Fur	nction Block comma	ands a time-velocity	locked motion profile
VAR_IN_OUT				
	В	Axis	AXIS_REF	Reference to axis
	В	TimeVelocity	MC_TV_REF	Reference to Time / Velocity. Description - see note below
V	AR_IN	NPUT		
	В	Execute	BOOL	Start the motion at rising edge
	Е	TimeScale	REAL	Overall time scaling factor of the profile
	Е	VelocityScale	REAL	Overall velocity scaling factor of the profile
	Е	Offset	REAL	Overall offset for profile [u/s]
	Е	BufferMode	MC_BufferMode	Defines the behavior of the axis: modes are Aborting, Buffered,
				Blending
V	AR_O	UTPUT		
	В	Done	BOOL	Profile completed
	Е	Busy	BOOL	The FB is not finished
	Е	Active	BOOL	Indicates that the FB has control on the axis
	Е	CommandAborted	BOOL	Command is aborted by another command
	В	Error	BOOL	Signals that error has occurred within Function block
	Е	ErrorID	WORD	Error identification
No	otes:			

- MC_TV_REF is a supplier specific datatype. An example for this datatype is given here below:
 - The content of Time/Velocity pair may be expressed in DeltaTime/Velocity, where Delta could be the difference in time between two successive points.
 - TYPE MC_TV STRUCT delta time : TIME velocity : REAL END_STRUCT END_TYPE
 - TYPE MC_TV_TABLE STRUCT Number_of_pairs : INT IsAbsolute : BOOL

MC_TV_Array : ARRAY [1..N] of MC_TV

END_STRUCT

END_TYPE

- This functionality does not mean it runs one profile over and over again: it can shift between different profiles
- Alternatively to this FB, the CAM FB coupled to a virtual master can be used

3.17. Acceleration Profile

FB-Name	e	MC_AccelerationProfile		
This Fun	ction Block command	ls a time-accelerati	ion locked motion profile	
VAR_IN				
В	Axis	AXIS_REF	Reference to axis	
В	TimeAcceleration	MC_TA_REF	Reference to Time / Acceleration. Description – see note below	
VAR_IN				
В	Execute	BOOL	Start the motion at rising edge	
E	TimeScale	REAL	Overall time scaling factor of the profile	
E	AccelerationScale	REAL	Scale factor for acceleration amplitude	
E	Offset	REAL	Overall offset for profile [u/s ²]	
E	BufferMode	MC_BufferMode	Defines the behavior of the axis: modes are Aborting, Buff-	
			ered, Blending	
VAR_OU	JTPUT	.		
В	Done	BOOL	Profile completed	
Е	Busy	BOOL	The FB is not finished	
Е	Active	BOOL	Indicates that the FB has control on the axis	
Е	CommandAborted	BOOL	Command is aborted by another command	
В	Error	BOOL	Signals that error has occurred within Function block	
E	ErrorID	WORD	Error identification	
•	Notes: MC_TA_REF is a supplier specific datatype. An example for this datatype is given here below: The content of Time/Acceleration pair may be expressed in DeltaTime/Acceleration, where Delta could be the difference in time between two successive points.			
	END_TYPE alternatively to this FB, the CAM FB coupled to a virtual master can be used			

Example of an acceleration profile:

A profile is made from a number of sequential "A to B" positioning points. It is simple to visualize, but requires a lot of sequences for a smooth profile. These requirements are often beyond the capability of low-end servos.

Alternatively, by using a modest amount of constant acceleration segments it is possible to define a well-matching

motion profile. With this method the capability range of low-end servos can be extended. It is possible to make matching to either:

- 1. Position versus time profile
- 2. Master versus slave axis

Advantages:

- Compact description of a profile
- Smooth profile properties by nature
- Low processor power requirements

Disadvantages

• Higher programming abstraction level with existing tools

Figure 28: Acceleration Profile, 10 segments only

Figure 29: Resulting Position Profile

4. Multi-Axis Function Blocks

With Multi-Axis Function Blocks a synchronized relationship exists between two or more axes. The synchronization can be related to time or position. Often this relationship is between a master axis and one or more slave axes. A master axis can be a virtual axis.

From the state diagram point of view, the multi-axis Function Blocks related to Camming and Gearing can be looked at as a master axis in one state (for instance: MC_MoveContinuous) and the slave axis in a specific synchronized state, called SychronizedMotion (see State Diagram, chapter 2.1).

4.1. Introduction into Camming

Two types of Camming:

- 1. Periodic: Once a curve is executed the camming immediately starts again at the beginning of the curve.
 - 2. Non periodic: After a curve is executed the execution stops

Camming may be done with several combined cam tables, which are executed sequentially. Between the different cam curves may be a gap (wait for trigger) in the execution.

CAM table

Camming is done with one table (two dimensional – describing master and slave positions together) or two tables - for master and slave positions separately. The table should be strictly monotonic rising or falling, going both reverse and forward with the master.

It is allowed and possible to change tables while CAM is running and to change elements in the table while the CAM is running.

The generation and filling of the CAM table (master, slave) is performed by an external tool, which is supplier specific. The coupling of the FB MC_CamIn to the table is also supplier-specific.

Value presentation types

Master and slave axes may have different presentations:

- Absolute values
- Relative to a starting position
- Relative steps (difference to the previous position)
- Equidistant or non-equidistant values.
- Polynomial Format. In this case the cam is described completely in the slave-table. The master-table is zero.

Figure 30: CAM profile illustration

CAM Function Blocks

The advantages of having different Function Blocks for the camming functionality are a more transparent program execution flow and better performance in execution.

4.2. CamTableSelect

FB	FB-Name		MC_CamTableSelect		
Thi	This Function Block selects the CAM tables by setting the connections to the relevant tables				
VA	VAR_IN_OUT				
	В	Master	AXIS_REF	Reference to master axis	
	В	Slave	AXIS_REF	Reference to slave axis	
	В	CamTable	MC_CAM_REF	Reference to CAM description	
VA	VAR_INPUT				
	В	Execute	BOOL	Selection at rising edge	
	Е	Periodic	BOOL	1 = periodic, 0 = non periodic	
	E	MasterAbsolute	BOOL	1 = absolute; 0 = relative coordinates	
	Е	SlaveAbsolute	BOOL	1 = absolute; 0 = relative coordinates	
VA	R_OU	JTPUT	_		
	В	Done	BOOL	Pre-selection done	
	E	Busy	BOOL	The FB with the Busy = TRUE has control on the axis	
	В	Error	BOOL	Signals that error has occurred within Function block	
	Е	ErrorID	WORD	Error identification	
	E	CamTableID	MC_CAM_ID	Identifier of CAM Table to be used in the MC_CamIn FB	

Notes:

- A virtual axis can be used as master axis
- MC_CAM_REF is a supplier specific data type
- MC_CAM_ID is a supplier specific data type
- CamTableSelect makes data available. This can include:
 - 1. Starting point of a download of a profile
 - 2. Start to generate a CAM profile
 - 3. PC based : no function it is referenced by a pointer
- When the Done output is SET, the CamTableID is valid and ready for use in a MC_CamIn FB.
- Possible parameters within the structure CAM_TABLE_REF are:
 - o E MasterPositions REAL, List of expressions of the MasterValues for the Cam Table
 - o E SlavePositions REAL, List of expressions of the SlaveValues for the Cam Table

4.3. CamIn

FB-Name		MC_CamIn		
This Fun	nction Block engages t	he CAM		
VAR_IN	N_OUT			
В	Master	AXIS_REF	Reference to master axis	
В	Slave	AXIS_REF	Reference to slave axis	
VAR_IN	NPUT			
В	Execute	BOOL	Start at rising edge	
Е	MasterOffset	REAL	Offset of master table. Angular offset of the master shaft to cam.	
Е	SlaveOffset	REAL	Offset of slave table. Sharpened cam (i.e higher elevation and deeper depression)	
Е	MasterScaling	REAL	Factor for the master profile (default = 1.0). From the slave point of view the master overall profile is multiplied by this factor	
Е	SlaveScaling	REAL	Factor for the slave profile (default = 1.0). The overall slave profile is multiplied by this factor.	
E	StartMode	MC_StartMode	Start mode: absolute, relative, or ramp-in	
Е	CamTableID	MC_CAM_ID	Identifier of CAM Table to be used, linked to output of MC_CamTableSelect	
Е	BufferMode	MC_BufferMode	Defines the behavior of the axis: modes are Aborting, Buffered, Blending	
VAR_O	UTPUT			
В	InSync	BOOL	Cam is engaged for the first time.	
Е	Busy	BOOL	The FB is not finished	
Е	Active	BOOL	Indicates that the FB has control on the axis	
Е	CommandAborted	BOOL	Command is aborted by another command	
В	Error	BOOL	Signals that error has occurred within Function block	
Е	ErrorID	WORD	Error identification	
Е	EndOfProfile	BOOL	Pulsed output signaling the cyclic end of the CAM Profile	

Notes:

- It is not required that the master is stationary
- If the actual master and slave positions do not correspond to the offset values when MC_CamIn is executed, either an error occurs or the system deals with the difference automatically
- The Cam is placed either absolute or relative to the current master and slave positions.
 Absolute: the profile between master and slave is seen as an absolute relationship.
 Relative: the relationship between master and slave is in a relative mode.
- Ramp-in is a supplier specific mode. It can be coupled to additional parameters, such as a master-distance parameter, acceleration parameter, or other supplier specific parameters where the slave to ramp-in into the cam profile ("flying coupling")
- This FB is not merged with the MC_CamTableSelect FB because this separation enables changes on the fly
- A mechanical analogy to a slave offset is a cam welded with additional constant layer thickness. Because of this the slave positions have a constant offset and the offset could be interpreted as axis offset of the master shaft, if linear guided slave tappets are assumed.

		MC_CamIn	
AXIS_REF	Master	Master	AXIS_REF
AXIS_REF	Slave	Slave	AXIS_REF
BOOL	Execute	InSync	BOOL
REAL	MasterOffset	Busy	BOOL
REAL	SlaveOffset	Active	BOOL
REAL	MasterScaling	CommandAborted	BOOL
REAL	SlaveScaling	Error	BOOL
MC_StartMode	StartMode	ErrorID	WORD
MC_CAM_ID	CamTableID	EndOfProfile	BOOL
MC_BufferMode	BufferMode		
_			

4.4. CamOut

FB-	FB-Name MC_CamOut				
Thi	This Function Block disengages the Slave axis from the Master axis immediately				
VA	R_IN_	OUT			
	В	Slave	AXIS_REF	Slave Axis reference	
VA	VAR_INPUT				
	В	Execute	BOOL	Start to disengage the slave from the master	
VA	R_OU	TPUT			
	В	Done	BOOL	Disengaging completed	
	E	Busy	BOOL	The FB with the Busy = TRUE has control on the axis	
	В	Error	BOOL	Signals that error has occurred within Function block	
	E	ErrorID	WORD	Error identification	

Notes:

It is assumed that this command is followed by another command, for instance MC_Stop, MC_GearIn, or any other command. If there is no new command, the default condition should be: maintain last velocity.

4.5. GearIn

FB	FB-Name		MC_GearIn		
Th	is Func	ction Block command	s a ratio between th	e VELOCITY of the slave and master axis.	
VA	VAR_IN_OUT				
	В	Master	AXIS_REF	Reference to master axis	
	В	Slave	AXIS_REF	Slave Axis reference	
V.A	AR_INI	PUT			
	В	Execute	BOOL	Start the gearing process at the rising edge	
	В	RatioNumerator	INT	Gear ratio Numerator	
	В	RatioDenominator	INT	Gear ratio Denominator	
	E	Acceleration	REAL	Acceleration for gearing in	
	E	Deceleration	REAL	Deceleration for gearing in	
	E	Jerk	REAL	Jerk of Gearing	
	E	BufferMode	MC_BufferMode	Defines the behavior of the axis: modes are Aborting, Buffered, Blending	
VA	AR_OU	TPUT			
	В	InGear	BOOL	Commanded gearing completed	
	E	Busy	BOOL	The FB is not finished	
	Е	Active	BOOL	Indicates that the FB has control on the axis	
	E	CommandAborted	BOOL	Command is aborted by another command	
	В	Error	BOOL	Signals that error has occurred within Function block	
	E	ErrorID	WORD	Error identification	

Notes:

- 1. The slave ramps up to the ratio of the master velocity and locks in when this is reached. Any lost distance during synchronization is not caught up.
- 2. The gearing ratio can be changed while MC_GearIn is running, using a consecutive MC_GearIn command without the necessity to MC_GearOut first
- 3. InGear is set the first time the ratio is reached.
- 4. After being InGear, a position locking or just a velocity locking is system specific.

Figure 31: Gear timing diagram

4.6. GearOut

FB-Name MC_GearOut						
Thi	This Function Block disengages the Slave axis from the Master axis					
VA	R_IN	_OUT				
	В	Slave	AXIS_REF	Slave Axis reference		
VAR_INPUT						
	B Execute BOOL		BOOL	Start disengaging process at the rising edge		
VA	R_OU	JTPUT				
	В	Done	BOOL	Disengaging completed		
	E	Busy	BOOL			
	В	Error	BOOL	Signals that error has occurred within Function block		
	Е	ErrorID	WORD	Error identification		

Notes:

It is assumed that this command is followed by another command, for instance MC_Stop, MC_GearIn, or any other command. If there is no new command, the default condition should be: maintain last velocity.

4.7. Phasing

FB-Name MC_Phasing			AC_Phasing			
This Function Block creates a phase shift in the master position of a slave axis. The master position is shifted in						
relation to the real physical position. This is analogous to opening a coupling on the master shaft for a moment,						
and is used to delay or advance an axis to its master. The phase shift is seen from the slave. The master does not						
know that there is a phase shift experienced by the slave. The phase shift remains until another 'Phasing' com-						
	anges it again.					
VAR_IN	Ŧ					
В	Master		AXIS_REF	Reference to master axis		
В	Slave		AXIS_REF	Slave Axis reference		
VAR_INPUT						
В	Execute	BOOL		Start the phasing process at the rising edge		
В	PhaseShift	REAL		Phase difference in master [u]		
E	Velocity	REAL		Maximum Velocity to reach phase difference [u/s]		
E	Acceleration	REAL		Maximum Acceleration to reach phase difference [u/s ²]		
E	Deceleration	REAL		Maximum Deceleration to reach phase difference [u/s ²]		
E	Jerk	REAL		Maximum Jerk to reach phase difference [u/s ³]		
Е	BufferMode	MC_BufferMode		Defines the behavior of the axis: modes are Aborting, Buffered,		
				Blending		
VAR_OUTPUT						
В	Done		BOOL	Commanded phasing reached		
Е	Busy		BOOL	The FB is not finished		
Е	Active		BOOL	Indicates that the FB has control on the axis		
Е	CommandAborted		BOOL	Command is aborted by another command		
В	Error		BOOL	Signals that error has occurred within Function block		
Е	ErrorID		WORD	Error identification		
Note:	•			•		
Phase, Velocity, Acceleration, Deceleration and Jerk of a phase shift are controlled by the FB.						

		MC_Phasing		
AXIS_REF	Master	Master	AXIS	S_REF
AXIS_REF	Slave	Slave	AXIS	S_REF
BOOL	Execute	Done	BOO	L
REAL	PhaseShift	Busy	BOO	L
REAL	Velocity	Active	BOO	L
REAL	Acceleration	CommandAborted	BOO	L
REAL	Deceleration	Error		
REAL	Jerk	ErrorID	WOF	RD
MC_BufferMode	BufferMode			

Figure 32: Timing example of MC_Phasing

Hereunder the effect of 'Phasing'.

Figure 33: Example of MC_Phasing

5. Application of MC FB – A Drilling Example with 'Aborting' versus 'Blending'

Figure 34: Example of a simple drilling unit

This simple example of drilling a hole shows the difference between two modes.

In order to drill the hole, the following steps have to be done:

Step 1: Initialization, for instance at power up.

Step 2: Move forward to drilling position and start the drill turning. In this way it will be fully operational before the position is reached and then check if both actions are completed.

Step 3: Drill the hole.

Step 4: After drilling the hole we have to wait for the step-chain sequence to finish dwelling to free the hole of any debris, which might have been stuck in the hole.

Step 5: Move drill back to starting position and shut the spindle off. Combining the completion of moving backwards and stopping the spindle we signal the step-chain to start over.

Figure 35: Timing diagrams for drilling. Left side no blending, right side with blending

5.1. Solution with Function Block diagram

Both examples can be described with the same program in FBD. The difference is in the input of the 'BufferMode' at the second FB, the MC_MoveRelative. The modes shown in this example are 'Aborting' or 'BlendingLow'.

Figure 36: Solution with Function Block diagram

5.2. Sequential Function Chart

This is the classical approach using Sequential Function Charts for the specification of sequencing steps. The SFC implements the timing diagram given in the example above.

Figure 37: Straight forward step-transition chain for drilling example in SFC

- Step 1: Initialization, for instance at power up.
- Step 2: Move forward to drilling position and start the drill turning.: In this way it will be fully operational before the position is reached and then check if both actions are completed.
- Step 3: Drill the hole.
- Step 4: After drilling the hole, wait for the step-chain sequence to finish dwelling to free the hole of any debris, which might have been stuck in the hole.
- Step 5: Move drill back to starting position and shut the spindle off. Combining the completion of moving backwards and stopping the spindle we signal the step-chain to start over.

Appendix A. Compliance Procedure and Compliance List

Listed in this Appendix are the requirements for the compliance statement from the supplier of the Motion Control Function Blocks. The compliance statement consists of two main groups: supported data types (see Appendix A 2 Supported Data types) and supported Function Blocks, in combination with the applicable inputs and outputs (see Appendix A 3 Overview of the Function Blocks and its paragraphs). The supplier is required fill out the tables for the used data types and Function Blocks, according to their product, committing their support to the specification.

By submitting these tables to PLCopen, and after approval by PLCopen, the list will be published on the PLCopen website, www.plcopen.org, as well as a shortform overview, as specified in Appendix A 2 Supported Data types and Appendix A 3 Overview of the Function Blocks.

In addition to this approval, the supplier is granted access and usage rights of the PLCopen Motion Control logo, as described in chapter Appendix A 4 The PLCopen Motion Control Logo and Its Usage.

Data types

The data type REAL listed in the Function Blocks and parameters (e.g. for velocity, acceleration, distance, etc.) may be exchanged to SINT, INT, DINT or LREAL without to be seen as incompliant to this standard, as long as they are consistent for the whole set of Function Blocks and parameters.

Implementation allows the extension of data types as long as the basic data type is kept. For example: WORD may be changed to DWORD, but not to REAL.

Function Blocks and Inputs and Outputs

An implementation which claims compliance with this PLCopen specification shall offer a set of Function Blocks for motion control, meaning one or more Function Blocks, with at least the **basic** input and output variables, marked as "**B**" in the tables. These inputs and outputs have to be supported to be compliant.

For higher-level systems and future extensions any subset of the **extended** input and output variables, marked as "E" in the tables can be implemented.

Vendor specific additions are marked with " \mathbf{V} ", and can be listed as such in the supplier documentation.

- Basic input/output variables are mandatory	Marked in the tables with the letter "B"
- Extended input /output variables are optional	Marked in the tables with the letter "E"
- Vendor Specific additions	Marked in the vendor's compliance documentation with "V"

All the vendor specific items will not be listed in the comparison table on the PLCopen website, but in the detailed vendor specific list, which also is published.

All vendor specific in- and outputs of all FBs must be listed in the certification list of the supplier. With this, the certification listing from a supplier describes all the I/Os of the relevant FBs, including vendor-specific extensions, and thus showing the complete FBs as used by the supplier.

Appendix A 1. Statement of Supplier

Supplier name	
Supplier address	
City	
Country	
Telephone	
Fax	
Email address	
Product Name	
Product version	
Release date	

I hereby state that the following tables as filled out and submitted do match our product as well as the accompanying user manual, as stated above.

Name of representation (person):

Date of signature (dd/mm/yyyy):

Signature:

Appendix A 2. Supported Data types

Defined datatypes with MC library:	Supported	If not supported, which datatype used
BOOL		
INT		
WORD		
REAL		
ENUM		

Table 4: Supported datatypes

Within the specification the following derived datatypes are defined. Which structure is used in this system:

Derived datatypes:	Where used	Supported	Which structure
Axis_Ref	Nearly all FBs		
MC_Direction	MC_MoveAbsolute		
(extended)	MC_MoveVelocity		
MC_TP_REF	MC_PositionProfile		
MC_TV_REF	MC_VelocityProfile		
MC_TA_REF	MC_AccelerationProfil		
	e		
MC_CAM_REF	MC_CamTableSelect		
MC_CAM_ID	MC_CamTableSelect		
(extended)	MC_CamIn		
MC_StartMode	MC_CamIn		
(extended)			
MC_BufferMode	Buffered FBs		

Table 5: Supported derived datatypes

Appendix A 3. Overview of the Function Blocks

Single Axis Function Blocks	Supported Yes / No	Comments (<= 48 char.)
MC_MoveAbsolute		
MC_MoveRelative		
MC_MoveAdditive		
MC_MoveSuperimposed		
MC_MoveVelocity		
MC_Home		
MC_Stop		
MC_Power		
MC_ReadStatus		
MC_ReadAxisError		
MC_Reset		
MC_ReadParameter		
MC_ReadBoolParameter		
MC_WriteParameter		
MC_WriteBoolParameter		
MC_ReadActualPosition		
MC_PositionProfile		
MC_VelocityProfile		
MC_AccelerationProfile		
Multi-Axis Function Blocks	Supported Yes / No	Comments (<= 48 char.)
MC_CamTableSelect		
MC_CamIn		
MC_CamOut		
MC_GearIn		
MC_GearOut		
MC_Phasing		

Table 6: Short overview of the Function Blocks

Appendix A 6.1 MoveAbsolute

If Supported	MC_MoveAbsolute	Sup.Y/N	Comments
VAR_IN_OUT			
В	Axis		
VAR_INPUT			
В	Execute		
В	Position		
E	Velocity		
E	Acceleration		
Е	Deceleration		
E	Jerk		
E	Direction		
E	BufferMode		
VAR_OUTPUT			
В	Done		
E	Busy		
E	Active		
Е	CommandAborted		
В	Error		
Е	ErrorID	·-	

Appendix A 6.2 MoveRelative

	din ii ola illo l'ellei		
If Supported	MC_MoveRelative	Supported Y/N	Comments
VAR_IN_OUT			
В	Axis		
VAR_INPUT			
В	Execute		
В	Distance		
E	Velocity		
Е	Acceleration		
Е	Deceleration		
Е	Jerk		
Е	BufferMode		
VAR_OUTPUT			
В	Done		
Е	Busy		
Е	Active		
Е	CommandAborted		
В	Error		
Е	ErrorID		

Appendix A 6.3 MoveAdditive

If Supported	MC_MoveAdditive	Suported Y/N	Comments
VAR_IN_OUT			
В	Axis		
VAR_INPUT			
В	Execute		
В	Distance		
E	Velocity		
E	Acceleration		
E	Deceleration		
E	Jerk		
E	BufferMode		
VAR_OUTPUT	VAR_OUTPUT		
В	Done		
E	Busy		
E	Active		
E	CommandAborted		
В	Error	·	
Е	ErrorID		

Appendix A 6.4 MoveSuperimposed

- Аррсі	Appendix A 0.4 Wovesuper imposed			
If Supported	MC_MoveSuperimpose	Sup. Y/N	Comments	
	d			
VAR_IN_OUT				
В	Axis			
VAR_INPUT				
В	Execute			
В	Distance			
Е	VelocityDiff			
Е	Acceleration			
Е	Deceleration			
Е	Jerk			
VAR_OUTPUT				
В	Done			
E	Busy			
Е	Active			
E	CommandAborted			
В	Error			
Е	ErrorID			

Appendix A 6.5 MoveVelocity

	dix 11 0.5 iviove ve	•	
If Supported	MC_MoveVelocit	Sup. Y/N	Comments
	y		
VAR_IN_OUT			
В	Axis		
VAR_INPUT			
В	Execute		
Е	Velocity		
Е	Acceleration		
Е	Deceleration		
Е	Jerk		
Е	Direction		
Е	BufferMode		
VAR_OUTPUT			
В	InVelocity		
Е	Busy		
Е	Active		
Е	CommandAborted	_	
В	Error		
Е	ErrorID		

Appendix A 6.6 Home

	nuix 11 0.0 110iiic		
If Supported	MC_Home	Sup. Y/N	Comments
VAR_IN_OUT			
В	Axis		
VAR_INPUT			
В	Execute		
В	Position		
Е	HomingMode		
Е	BufferMode		
VAR_OUTPU	T		
В	Done		
Е	Busy		
Е	Active		
Е	CommandAborted		
В	Error		
Е	ErrorID		

Appendix A 6.7 Stop

If Supported	MC_Stop	Sup. Y/N	Comments
VAR_IN_OUT		•	
В	Axis		
VAR_INPUT			
В	Execute		
E	Deceleration		
E	Jerk		
E	BufferMode		
VAR_OUTPUT			
В	Done		
E	Busy		
E	Active		
E	CommandAborted		
В	Error		
E	ErrorID		

Appendix A 6.8 Power

11ppc			
If Supported	MC_Power	Sup. Y/N	Comments
VAR_IN_OUT	Γ		
В	Axis		
VAR_INPUT			
В	Enable		
Е	Enable_Positive		
Е	Enable_Negative		
Е	BufferMode		
VAR_OUTPU	T		
В	Status		
Е	Busy		
Е	Active		
В	Error	·	
Е	ErrorID		

Appendix A 6.9 ReadStatus

If Supported	MC_ReadStatus	Sup. Y/N	Comments
VAR_IN_OUT		-	
В	Axis		
VAR_INPUT			
В	Enable		
VAR_OUTPUT			
В	Valid		
Е	Busy		
В	Error		
Е	ErrorID		
В	Disabled		
В	Errorstop		
В	Stopping		
В	StandStill		
В	DiscreteMotion		
В	ContinuousMotion		
E	SynchronizedMotion		
E	Homing		
Е	ConstantVelocity	·	
Е	Accelerating		
Е	Decelerating		

Appendix A 6.10 ReadAxisError

If Supported	MC_ReadAxisErro	Sup. Y/N	Comments
	r		
VAR_IN_OUT			
В	Axis		
VAR_INPUT			
	Enable		
VAR_OUTPUT			
В	Valid		
E	Busy		
В	Error		
В	ErrorID		

Appendix A 6.11 Reset

	dim ii oili itobet		
If Supported	MC_Reset	Sup. Y/N	Comments
VAR_IN_OUT			
В	Axis		
VAR_INPUT			
В	Execute		
VAR_OUTPUT			
В	Done		
E	Busy		
В	Error		
В	ErrorID		

Appendix A 6.12 ReadParameter

If Supported	MC_ReadParameter	Sup. Y/N	Comments
VAR_IN_OUT			
В	Axis		
VAR_INPUT			
В	Enable		
В	ParameterNumber		
VAR_OUTPUT			
В	Valid		
E	Busy		
В	Error		
Е	ErrorID		
В	Value		

Appendix A 6.13 ReadBoolParameter

Аррспи	Appendix A 0.13 Reaudouli ai ametei					
If Supported	MC_ReadBoolParamete	Sup. Y/N	Comments			
	r					
VAR_IN_OUT						
В	Axis					
VAR_INPUT						
В	Valid					
В	ParameterNumber					
VAR_OUTPUT						
В	Done					
E	Busy					
В	Error					
E	ErrorID					
В	Value					

Name	B/E	R/W	Supp . Y/N	Comments
CommandedPosition	В	R		
SWLimitPos	Е	R/W		
SWLimitNeg	Е	R/W		
EnableLimitPos	Е	R/W		
EnableLimitNeg	Е	R/W		
EnablePosLagMonitoring	Е	R/W		
MaxPositionLag	Е	R/W		
MaxVelocitySystem	Е	R		
MaxVelocityAppl	В	R/W		
ActualVelocity	В	R		
CommandedVelocity	В	R		
MaxAccelerationSystem	Е	R		
MaxAccelerationAppl	E	R/W		
MaxDecelerationSystem	Е	R		
MaxDecelerationAppl	Е	R/W		
MaxJerk	Е	R/W		

Table 7: Parameters for ReadParameter and WriteParameter

Appendix A 6.14 WriteParameter

If Supported	MC_WriteParamete	Sup. Y/N	Comments
	r		
VAR_IN_OUT			
В	Axis		
VAR_INPUT			
В	Execute		
В	ParameterNumber		
В	Value		
VAR_OUTPUT			
В	Done		
E	Busy		
E	Buffered		
В	Error		
Е	ErrorID		

Appendix A 6.15 WriteBoolParameter

	rippendix ii viie viiiteb voii didinetei				
If Supported	MC_WriteBoolParameter	Sup. Y/N	Comments		
VAR_IN_OUT					
В	Axis				
VAR_INPUT					
В	Execute				
В	ParameterNumber				
В	Value				
VAR_OUTPUT					
В	Done				
E	Busy				
E	Buffered				
В	Error				
Е	ErrorID				

Appendix A 6.16 ReadActualPosition

If Supported	MC_ReadActualPositio	Sup. Y/N	Comments
	n		
VAR_IN_OUT			
В	Axis		
VAR_INPUT			
В	Enable		
VAR_OUTPUT			
В	Valid		
Е	Busy		
В	Error		
Е	ErrorID		
В	Position		

Appendix A 6.17 PositionProfile

If Supported	MC_PositionProfile	Sup. Y/N	Comments
VAR_IN_OUT		•	
В	Axis		
В	TimePosition		
VAR_INPUT			
В	Execute		
В	TimeScale		
Е	PositionScale		
Е	Offset		
Е	BufferMode		
VAR_OUTPUT			
В	Done		
Е	Busy		
E	Active		
Е	CommandAborted		
В	Error		
Е	ErrorID	-	

Appendix A 6.18 VelocityProfile

If Supported	MC_VelocityProfile	Sup. Y/N	Comments
VAR_IN_OUT			
В	Axis		
В	TimeVelocity		
VAR_INPUT			
В	Execute		
В	TimeScale		
E	VelocityScale		
Е	Offset		
E	BufferMode		
VAR_OUTPUT			
В	Done		
Е	Busy		
Е	Active		
E	CommandAborted		
В	Error		
Е	ErrorID	•	

Appendix A 6.19 AccelerationProfile

Appendix A 0.17 Acceleration Forme				
If Supported	MC_AccelerationProfil	Sup. Y/N	Comments	
	e			
VAR_IN_OUT				
В	Axis			
В	TimeAcceleration			
VAR_INPUT				
В	Execute			
В	TimeScale			
Е	AccelerationScale			
E	Offset			
Е	BufferMode			
VAR_OUTPUT				
В	Done			
E	Busy			
Е	Active			
E	CommandAborted			
В	Error			
Е	ErrorID			

Appendix A 6.20 CamTableSelect

If Supported	MC_CamTableSelect	Sup. Y/N	Comments
VAR_IN_OUT			
В	Master		
В	Slave		
В	CamTable		
VAR_INPUT			
В	Execute		
Е	Periodic		
E	MasterAbsolute		
Е	SlaveAbsolute		
VAR_OUTPUT			
В	Done		
E	Busy		
В	Error		
E	ErrorID		
E	CamTableID		

Appendix A 6.21 CamIn

	IX 71 0.21 Cumm		
If Supported	MC_CamIn	Sup. Y/N	Comments
VAR_IN_OUT			
В	Master		
В	Slave		
VAR_INPUT			
В	Execute		
E	MasterOffset		
E	SlaveOffset		
Е	MasterScaling		
E	SlaveScaling		
E	StartMode		
E	CamTableID		
E	BufferMode		
VAR_OUTPUT			
В	InSync		
E	Busy		
Е	Active		
E	CommandAborted		
В	Error		
Е	ErrorID		
Е	EndOfProfile		

Appendix A 6.22 CamOut

If Supported	MC_CamOut	Sup. Y/N	Comments
VAR_IN_OUT			
В	Slave		
VAR_INPUT			
В	Execute		
VAR_OUTPUT			
В	Done		
E	Busy		
В	Error		
E	ErrorID		

Appendix A 6.23 GearIn

	11 0.25 GenTh	G 77.07	
If Supported	MC_GearIn	Sup. Y/N	Comments
VAR_IN_OUT			
В	Master		
В	Slave		
VAR_INPUT			
В	Execute		
В	RatioNumerator		
В	RatioDenominator		
Е	Acceleration		
E	Deceleration		
E	Jerk		
E	BufferMode		
VAR_OUTPUT			
В	InGear		
E	Busy		
Е	Active		
Е	CommandAborted		
В	Error		
Е	ErrorID		

Appendix A 6.24 GearOut

rippenam ii o.z.i ocui ou				
If Supported	MC_GearOut	Sup. Y/N	Comments	
VAR_IN_OUT				
В	Slave			
VAR_INPUT				
В	Execute			
VAR_OUTPUT				
В	Done			
Е	Busy			
В	Error			
Е	ErrorID			•

Appendix A 6.25 Phasing

If Supported	MC_Phasing	Sup. Y/N	Comments	
VAR_IN_OUT				
В	Master			
В	Slave			
VAR_INPUT	VAR_INPUT			
В	Execute			
В	PhaseShift			
E	Velocity			
Е	Acceleration			
E	Deceleration			
E	Jerk			
E	BufferMode			
VAR_OUTPUT				
В	Done			
Е	Busy			
E	Active			
E	CommandAborted			
В	Error			
Е	ErrorID			

Appendix A 4. The PLCopen Motion Control Logo and Its Usage

For quick identification of compliant products, PLCopen has developed a logo for the motion control Function Blocks:

Figure 38: The PLCopen Motion Control Logo

This motion control logo is owned and trademarked by PLCopen.

In order to use this logo free-of-charge, the relevant company has to fulfill all the following requirements:

- 1. the company has to be a voting member of PLCopen;
- 2. the company has to comply with the existing specification, as specified by the PLCopen Task Force Motion Control, and as published by PLCopen, and of which this statement is a part;
- 3. this compliance application is provided in written form by the company to PLCopen, clearly stating the applicable software package and the supporting elements of all the specified tables, as specified in the document itself;
- 4. in case of non-fulfillment, which has to be decided by PLCopen, the company will receive a written statement concerning this from PLCopen. The company will have a one month period to either adopt their software package in such a way that it complies, represented by the issuing of a new compliance statement, or remove all reference to the specification, including the use of the logo, from all their specification, be it technical or promotional material;
- 5. the logo has to be used as is meaning the full logo. It may be altered in size providing the original scale and color setting is kept.
- 6. the logo has to be used in the context of Motion Control.