Ve 280

Programming and Introductory Data Structures

Container of Pointers; Polymorphic Container

Outline

Container of Pointers

• Polymorphic Container

Introduction

- So far, we've inserted and removed elements by value.
- In other words, we **copy** the things we insert into/remove from the container.
- Copying elements by value is fine for types with "small" representations.
 - For example, all of the built-in types.
- This is **not** true for "large" types any nontrivial struct or class would be expensive to pass by value, because you'll spend a lot of your time copying.

Introduction

- **Question**: suppose we had a list of BigThings. When you call insert(), how many copy-related operations will be done?
- Answer: Twice
 - First time as an argument to insert (), and
 - Second time when you store the item in the list node.

```
foo.insert(A_Big_Thing);

void List::insert(BigThing v) {
  node *np = new node;
  np->value = v;
  np->next = first;
  first = np;
}
```

This is unacceptable!

Introduction

- Instead of copying large types by value, we usually insert and remove them **by reference**.
 - The container stores **pointers-to-BigThing** instead.

```
struct node {
  node *next;
  BigThing *value;
};
```

• So, if we have a BigThing list, its insert and remove methods have the following type signatures.

```
void insert(BigThing *v);
BigThing *remove();
```

Introduction

```
struct node {
  node *next;
  BigThing *value;
};
void ListBigThing::insert(BigThing *v) {
  node *np = new node;
  np->next = first;
  np->value = v;
  first = np;
```

Templated Container of Pointers

<u>Practice</u>: when we define templated container of pointers, we do <u>NOT</u>

- define a template on **object**
- and define

```
List<BigThing *> ls;
```

```
template <class T>
class List {
  public:
    void insert(T v);
         remove();
  private:
    struct node {
        node *next;
               0;
```

Templated Container of Pointers

Instead, we

- define a template on **pointer**
- and define

```
List<BigThing> ls;
```

```
template <class T>
class List {
 public:
    void insert(T *v);
         *remove();
  private:
    struct node {
        node *next;
              *o;
```

Templates

- Containers-of-pointers are subject to two broad classes of potential bugs:
 - 1. Using an object after it has been deleted
 - 2. Leaving an object **orphaned** by **never** deleting it

Use

- To avoid the bugs related to container of pointers, one usual "pattern" of using container of pointers has an **invariant**, plus three **rules** of use:
 - At-most-once invariant: any object can be linked to at most one container at any time through pointer.
 - 1. <u>Existence</u>: An object must be **dynamically allocated** before a pointer to it is inserted.
 - 2. Ownership: Once a pointer to an object is inserted, that object becomes the property of the container. No one else may use or modify it in any way.
 - 3. <u>Conservation</u>: When a pointer is removed from a container, either the pointer must be inserted into **some** container, or its referent must be **deleted**.

At-most-once Invariant

• Any object can be linked to at most one container at any time through pointer.

Existence Rule

• An object must be **dynamically allocated** before a pointer to it is inserted

```
List<BigThing> 1;
// 1: container of pointer
BigThing b;
1.insert(&b); X

List<BigThing> 1;
// 1: container of pointer
BigThing *pb = new BigThing;
1.insert(pb);
```

Ownership Rule

• Once a pointer to an object is inserted, that object becomes the property of the container. No one else may use or modify it in any way.

Conservation Rule

• When a pointer is removed from a container, either the pointer must be inserted into **some** container, or its referent must be **deleted**.

- Either be inserted into another container
- Or delete the object

Templates

- These three rules have an important implication for any method that **destroys** an existing container.
 - When a container is destroyed, the objects contained in the container should also be deleted!
- There are (at least) two such methods that could destroy a container:
 - 1. The destructor: Destroys an existing instance.
 - 2. The assignment operator: Destroys an existing instance before copying the contents of another instance.

Templates

• Consider the following implementation of the destructor for a singly-linked list, using the interface we've discussed so far:

```
template <class T>
List<T>::~List() {
  while (!isEmpty()) {
    remove();
  }
}

struct node {
    node *next;
    int *
    T* value;
  };
```

```
template <class T>
T* List<T>::remove() {
 node *victim = first;
  if(isEmpty()) {
    listIsEmpty e;
    throw e;
  T* result = victim->value;
  first = victim->next;
  delete victim;
  return result;
```

• Question: Note that this list stores things by pointer. This implementation violates one of the three rules. Which one is violated, and how? The conservation rule!

Destructor

• To fix this, we **must** handle the objects we remove:

```
template <class T>
List<T>::~List() {
  while (!isEmpty()) {
    T *op = remove();
    delete op;
  }
    This keeps conservation rule.
}
```

Copy

- Copy is also tricky for container of pointers.
- Here is the original singly-linked list of T*s:

• Here is the old copy constructor and utility function:

Copy

• The list we would end up with is:

This violates the at-most-once invariant

Copy

- Now, if we remove the first item of the new list, we delete the first node, and return a pointer to the item.
- The client will use the item and delete it (Why?).
- Leaving us with this:

Сору

- Clearly, this is not a good thing because we aren't doing a "full" **deep copy**.
- The list nodes are deeply copied, but the Ts are not since we are copying the pointers, but **not** the objects they point to.

Copy

• Fix:

```
template <class T>
void List<T>::copyList(node *list) {
  if (!list) return;
  copyList(list->next);
  T *o = new T(*list->value);
  insert(o);
}
```

What does the blue statement mean?

Copy

• The list we would end up with is:

deep copy!

Templated Container of Pointers

- Given container of pointers, the List template **must know** whether it is something that holds T's or "pointers to T".
- The former **cannot** delete the values it holds, while the latter **must** do so.
- So, if we want to write a template class that holds pointer-to-T, we should provide a version based on pointer.

Templates

```
template <class T>
class PtrList {
 public:
    void insert(T *v);
        *remove();
 private:
    struct node {
        node *next;
        node *prev;
        T
             *0;
```

```
template <class T>
class ValList {
 public:
    void insert(T v);
         remove();
 private:
    struct node {
        node *next;
        node *prev;
        T
               0;
```

Templates

• This means that if we create two lists of BigThings:

```
ValList<BigThing> vbl;
PtrList<BigThing> pbl;
```

• Then the first list takes BigThings by value:

```
BigThing b;
vbl.insert(b);
```

• But the second list takes them as pointers:

This technique is preferable if you expect most (or even some) of your Lists to hold BigThings.

Templates

• This means that if we create two lists of BigThings:

```
ValList<BigThing> vbl;
PtrList<BigThing> pbl;
```

• Then the first list takes BigThings by value:

```
BigThing b;
vbl.insert(b);
```

• But the second list takes them as pointers:

```
BigThing *bp = new BigThing;
pbl.insert(bp);
```

However, it is **impossible** to have only a **single** implementation of List that can correctly contain things either as pointer or by value.

Outline

• Container of Pointers

• Polymorphic Container

Polymorphic containers

- Templates are checked at compile time, but when used straightforwardly, they cannot hold more than one kind of object at once, and sometimes this is desirable.
- There is another kind of container, called a "polymorphic" container, that **can** hold more than one type at once.
- The intuition behind polymorphic containers is that, because the container must contain **some** specific type, we'll manufacture a **special "contained" type**, and every real type will be a **subtype** of this contained type.

Polymorphic containers

• We are going to use derived class mechanism

```
class bar: public foo {
    ...
};
```

• Recall: a bar* can always be used where a foo* is expected, but not the other way around.

```
bar b;
foo *pf = &b;
```

Polymorphic containers

• We can take advantage of this by creating a "dummy class", called Object, that looks like this:

```
class Object {
  public:
    virtual ~Object() { }
};
```

- This defines a single class Object with a virtual destructor.
- Remember that if a method is virtual, it is also virtual in all derived classes.
- Why we need this? Because when a base-class pointer to a derivedclass object is deleted (for example, in function removeAll()), it will call the destructor of the derived class.

Polymorphic containers

• Now, we can write a List that holds Objects:

```
struct node {
                       class Object {
  node *next;
                        public:
  Object *value;
                         virtual ~Object() {};
};
class List {
public:
  void
          insert(Object *o);
  Object *remove();
```

Polymorphic containers

• To put BigThings in a List, you define the class so that it is derived from Object:

```
class BigThing : public Object {
   ...
};
```

- By the derived class rules, a BigThing* can always be used as an Object*, but not the other way around.
- So the following works without complaint:

Polymorphic containers

• However, the compiler complains about the following because remove () returns an Object *; we cannot use a base class pointer when a derived class pointer is expected:

```
BigThing *bp;
bp = l.remove();
```

• However, we can do this:

```
Object *op;
BigThing *bp;

op = l.remove();
bp = dynamic_cast<BigThing *>(op);
...
```

Polymorphic containers

```
• The dynamic cast operator does the following:
  dynamic cast<Type*>(pointer);
  // EFFECT: if pointer's actual type is either
  // pointer to Type or some pointer to derived
  // class of Type, returns a pointer to Type.
  // Otherwise, returns NULL;
• So, after this cast, we assert () that the pointer is valid:
  Object *op;
  BigThing *bp;
  op = remove();
  bp = dynamic cast<BigThing *>(op);
  assert(bp);
```

<u>Note</u>: This only works for classes which have one or more virtual methods. That's okay, because BigThing will always have at least a virtual destructor.

Polymorphic containers

- Even with this, there is still one problem.
- This is a **container of pointers**, so we need **deep copy** for copy constructor and assignment operator
- The copyList() below just does shallow copy

```
List::List(const List &1) {
   first = NULL;
   copyList(l.first);
}

void List::copyList(node *list) {
    if (list != NULL) {
       copyList(list->next);
       insert(list->value);
    }
}

Object * type
```

Polymorphic containers

• Using the previous copyList(), the list we copied will be:

Polymorphic containers

- Now, if we remove the first item of the new list, we delete the first node, and return a pointer to its Object.
- The client, after using that Object, will delete it.
- Leaving us with this:

Polymorphic containers

• To fix this, we might be tempted to rewrite the copyList function to create a copy of the Object, as follows:

```
void List::copyList(node *list) {
  if (list != NULL) {
    Object *o;
    copyList(list->next);
    o = new Object(*list->value);
    insert(o);
    A BigThing object
}
```

• Unfortunately, this won't work, because Object does not have a constructor that takes BigThing as an argument.

Polymorphic containers

- The way to fix this is to use something called the "named constructor idiom".
 - named constructor: A method that (by convention) copies the object, returning a pointer to the "generic" base class.
- The name of this method (again, by convention) is usually "clone".

Polymorphic containers

 Modify the definition of Object to include a pure virtual clone () method: class Object { public: virtual Object *clone() = 0; // EFFECT: copy this, return a pointer to it virtual ~Object() { } **}**; • Declare that method **clone()** in BigThing, which **also** has a **copy** constructor: class BigThing : public Object { public: Object *clone(); BigThing(const BigThing &b);

Polymorphic containers

• BigThing::clone() can then call the correct copy constructor directly, and return a "generic" pointer to it:

Polymorphic containers

• With this, we can finally rewrite copyList to use clone:

```
void List::copyList(node *list) {
  if (list != NULL) {
    Object *o;
    copyList(list->next);
    o = list->value->clone();
    insert(o);
}
```

• This gives us a true **deep copy** ©

Reference

- **Problem Solving with C++ (8th Edition)**, by *Walter Savitch*, Addison Wesley Publishing (2011)
 - Chapter 17 Templates