AD105ADMA

单板使用指南

文档版本 01

发布日期 2024-03-05

前言

概述

本文档主要介绍 AD105ADMA 单板基本功能和硬件特性、多功能硬件配置、软件调试操作使用方法。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
3065A 系列	-

读者对象

本文档 (本指南) 主要适用于以下工程师:

- 软件调试工程师
- 单板硬件开发工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

2024-03-05 i

修订日期	版本	修订说明
2024-03-05	01	第 1 次正式版本发布。

2024-03-05 ii

目录

前	前言	
	概述	
	.1 简介	
	.2 功能特性	
1.3	.3 相关组件	3
	· 硬件介绍	
	.1 结构与接口	
2.2	.2 指示灯	5
	.3 单板电源供电方式切换	
2.4	.4 SWD 调试器接口	8
3	操作指南	11
3.1	.1 注意事项	11
3 2	2 单板硬件配置字选择	11

插图目录

图 1-1	单板功能接口框图	3
图 2-1	单板接口结构示意图(插件在正面,贴片在背面)	4
图 2-2	指示灯位置	6
图 2-3	高压供电接线方式	7
图 2-4	低压电源板跳线位置示意图	8
图 2-5	JTAG/SWD 接口 J6 的位置示意图	9
图 2-6	JTAG/SWD 接口连接器管脚定义	10
图 3-1	启动管脚原理图	12
图 3-2	R79、R80的 PCB TOP 面位置	12

2024-03-05 iv

表格目录

表 2-1	单板接口说明	. 5
表 3-1	启动配置选择	12

2024-03-05 v

4 概述

1.1 简介

AD105ADMA 是针对 3065A 系列 64PIN MCU 开发的产品 demo 板,用于 MCU 基于空调电控板场景的功能、性能测试验证,同时作为客户空调电控板的参考设计。

AD105ADMA 支持 220V AC 输入方式,其中 220V AC 输入包含保护、整流、单 PFC 控制、滤波、AC-DC 反激式控制。如果想用低压调试,需要外接一块电源板 (ADPWR24),该单板支持 24V DC 输入,输出 24V、15V、6V 三路电源。MCU 的 DVDD33 和 AVDD33 由同一 LDO 供电,Core 电源由 MCU 内置 LDO 供电。

AD105ADMA 单板包含 PTC 控制 (防止上电瞬间电流脉冲)、四通阀控制 (冷热切换)、电子膨胀阀控制 (制冷剂的开度控制)、室内外机通信。

AD105ADMA 单板 AC-DC 反激式电路,输出 15V 与 6V,15V 作为 AC-DC 反馈电压。 15V 给 IPM 提供电源,6V 给 LDO 转 3V3;继电器与电子膨胀阀使用的 12V,由 15V 通过 4 个二极管降压实现。

AD105ADMA 支持空调压缩机和风机控制,采用单电阻采样,压缩机和风机功率控制器件采用 IPM,压缩机 IPM 通流 15A,风机通流 3A。电流采样使用内置 PGA0(风机电流)与 PGA1(PFC 总电流)和 PGA2(压缩机),均为外置电阻模式,采样电阻分别为 10mohm、20mohm、100mohm。PFC 过流保护使用内置比较器 ACMP1,过流保护点 28.5A,压缩机和风机过流保护使用 IPM 的 VFO 输入到 POE 进行保护,压缩机使用 POE2,过流保护点 14.9A,风机使用 POE0,过流保护点 2.49A。压缩机与FAN 机 IPM 自带温度检测功能。

通过串口或 JTAG/SWD 与 PC 连接,组成一个基本开发系统。为实现更完整的开发系统或演示环境,需增加如下设备或部件:

PC

- 5PIN 串口小板 + RJ45 to Dsub-9 串口线 (串口转 USB 线)
- JTAG/SWD 调试/仿真器,支持 5PIN (2.54 mm pitch) 连接器
- ADPWR24 电源板(低压调试使用)+24V 直流电源

1.2 功能特性

AD105AMDA 包含以下功能特性:

- 支持3个两线串口,UART0/UART2 (与I2C0 复用)可接5PIN 连接器进行对端通信,UART0可以通过boot管脚选择为默认上拉进行烧录功能,UART1 做室内机通信。
- 支持 1 路 JTAG 与 SWD 接口,连接 14PIN 连接器。
- 支持 1 个 I2C 接口 EEPROM。
- 支持母线、PFC 输入电压侦测。
- 支持3路温度传感器温度侦测。
 - 支持3个内置PGA,1个用作压缩机电流采样,1个用作PFC总电流采样,1个用作风机电流采样。
- 支持 8 个 APT 输出,1 个 (APT8_A) 用作单 PFC 控制,3 个 (APT0/1/2) 用作 风机控制,3 个 (APT3/4/5) 用作压缩机控制。
- 支持 1 个内置 ACMP1,用作 PFC 总电流过流保护。
- 支持1个电子膨胀阀控制,用作控制制冷剂开度。
- 支持 2 个继电器控制,用作 PTC、4 通阀控制。
- 预留 1 个 25MHz 外置晶体。
- 支持1个指示灯,用做故障指示或电源灯。

图1-1 单板功能接口框图

1.3 相关组件

以下所列组件不包含在 AD105ADMA 的交付清单之内,但它们是用户程序调试过程中必备的。

- 5PIN 串口线。
- 5PIN SWD 排线。

2 硬件介绍

2.1 结构与接口

图2-1 单板接口结构示意图 (插件在正面,贴片在背面)

表2-1 单板接口说明

序号	描述
1	室内外机通信(UART1)
2	LDO (6V 转 3.3V)
3	风机 IPM
4	电子膨胀阀
5	12V 电源
6	PTC 控制
7	4 WAY
8	15V 电源
9	6V 电源
10	AC-DC
11	整流桥
12	PFC 电路
13	压缩机 IPM
14	UARTO 串口升级或调试
15	JTAG/SWD 接口
16	UART2
17	3 个温度传感器

2.2 指示灯

单板中有一个指示灯 D20,位置如图 2-2 所示。

图2-2 指示灯位置

2.3 单板电源供电方式切换

AD105ADMA 默认为高压供电,可以切换成低压供电,两种供电不能同时用。

图2-3 高压供电接线方式

图2-4 低压电源板跳线位置示意图

2.4 SWD 调试器接口

AD105ADMA 单板提供了 JTAG/SWD 接口对接调试器。可以对接我司提供的四合一调试器或者其他 JTAG/SWD 接口调试器。调试接口在板上的位置和连接器管脚定义如下。

🗀 说明

在对接调试器时, AD105ADMA 单板必须供电。

图2-5 JTAG/SWD 接口 J6 的位置示意图

图2-6 JTAG/SWD 接口连接器管脚定义

3 操作指南

3.1 注意事项

单板适用于实验室或者工程开发环境。在开始操作之前,请先阅读以下注意事项。

- 请在使用单板前仔细阅读本指南。
- 避免单板沾水。如果不慎将水等液体洒落到单板,请立即切断电源,并用干布擦拭干净。
- 只能使用符合本机要求的电源。
- 高压调试时,做好高压防护,下电时切记一定要等到单板母线电容完全放电后触碰单板,以免造成触电危险。
- 在拆封单板包装与安装之前,为避免静电释放 (ESD) 对单板硬件造成损伤,需 采取必要的防静电措施。
- 手持单板时请拿单板的边沿,不要触碰到单板上的外露金属部分,以免静电对单板元器件造成损坏。
- 请将单板放置于干燥的平面上,并保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备(如:医疗设备)等。
- 请对照图 2-1 熟悉单板的结构布局,确保能够在单板上辨认出可操作部件,如电源、连接器以及指示灯的位置。

3.2 单板硬件配置字选择

启动配置和测试模式由以下管脚的上电锁存状态决定,如表 3-1 和图 3-1 所示。

图3-1 启动管脚原理图

表3-1 启动配置选择

BOOT 管脚 (GPIO1_2)	电阻选择	MODE
0	R79 上件	正常启动
1	R80 上件	升级模式,默认选择 UARTO。

图3-2 R79、R80的 PCB TOP 面位置

