IMO IZLASE, DARBA LAPA, 2022-06-06

Aritmētiskais un geometriskais vidējais: Pozitīviem reāliem a_1, \ldots, a_n ir spēkā $\sqrt[n]{a_1 \cdots a_n} \leq \frac{a_1 + \ldots + a_n}{n}$.

p-valuācija: Katram pirmskaitlim p par naturāla skaitļa n p-valuāciju sauc lielāko veselo nenegatīvo pakāpi k, kurai n dalās ar p^k . To apzīmē $k = \nu_p(n)$ (grieķu ν (nī)).

Divnieka pakāpes atdalīšana: Naturālu skaitli n var tieši vienā veidā izteikt kā reizinājumu $s \cdot 2^k$, kur s ir pozitīvs nepāra skaitlis, bet $k \geq 0$ ir jebkurš vesels nenegatīvs skaitlis. (s = 1 t.t.t., ja n ir skaitļa 2 pakāpe.)

Ležandra formula:
$$\nu_p(n!) = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor$$
. No šejienes arī $\nu_p(n!) < \frac{n}{p} + \frac{n}{p^2} + \ldots = \frac{n}{p-1}$.

Polinoma racionālo sakņu teorēma: Dots vienādojums $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 = 0$ ar veseliem koeficientiem, kur $a_0, a_n \neq 0$. Ja x = p/q ir kāda šī polinoma racionāla sakne uzrakstīta kā nesaīsināma daļa, tad skaitītājs p dala brīvo koeficientu a_0 , bet saucējs q dala vecāko koeficientu a_n .

Kāpinātāja pacelšanas lemma 1: Dots nepāra pirmskaitlis p un naturāls kāpinātājs n. Ja neviens no veseliem skaitļiem a,b nedalās ar p, bet a-b dalās ar p tad $\nu_p(a^n-b^n)=\nu_p(a-b)+\nu_p(n)$.

Kāpinātāja pacelšanas lemma 2: Dots nepāra pirmskaitlis p un naturāls kāpinātājs n. Ja neviens no veseliem skaitliem a,b nedalās ar p, bet a+b dalās ar p tad $\nu_p(a^n+b^n)=\nu_p(a+b)+\nu_p(n)$.

Stirlinga tuvinājums: $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$, kur $f(n) \sim g(n)$ ir asimptotiska ekvivalence: $\lim_{n \to \infty} f(n)/g(n) = 1$.

1.1 levaduzdevumi

- 1. Ar cik nullēm beidzas skaitļa 1000! decimālpieraksts? (Pietiek atrast aptuvenu atbildi; pieļaujamā kļūda ir ± 4).
- 2. Atrast tos naturālos skaitļus, kuriem $\nu_2(n!) = n 1$.
- 3. Apzīmējam $N = (2^1 1)(2^2 1)\cdots(2^{120} 1)$. Kurš skaitlis lielāks: $\nu_5(N)$ vai $\nu_7(N)$?
- 4. Doti naturāli skaitļi a, b. Pierādīt, ka izteiksme (36a + b)(a + 36b) nevar būt skaitļa 2 pakāpe.

1.2 Sacensību uzdevumi

1.1. uzdevums: Atrast visus naturālos skaitļus n, kuriem var atrast naturālu skaitļu pāri (a,b) tādu, ka a^2+b+3 nedalās ne ar viena pirmskaitla kubu un izpildās vienādība:

$$\frac{ab + 3b + 8}{a^2 + b + 3} = n.$$

- **1.2. uzdevums:** Atrast visus naturālos skaitļus n ar sekojošu īpašību: skaitlim n ir k pozitīvi dalītāji, kuriem eksistē tāda permutācija (d_1, d_2, \ldots, d_k) , ka jebkuram $i = 1, 2, \ldots, k$ skaitlis $d_1 + \cdots + d_i$ ir pilns kvadrāts.
- **1.3. uzdevums:** Dots racionāls skaitlis r>1 un taisne ar diviem punktiem $B\neq R$, kur punktā R ir sarkana lodīte, bet punktā B ir zila lodīte. Alise izdara virkni gājienu. Katrā gājienā viņa izvēlas veselu skaitli k (ne obligāti pozitīvu) un lodīti, kuru pārvietot. Ja izvēlētā lodīte ir punktā X, bet otras krāsas lodīte atrodas punktā Y, tad Alise izvēlēto lodīti pārvieto uz X', kur $\overrightarrow{YX'}=r^k\overrightarrow{YX}$.

Alises mērķis ir pārvietot sarkano lodīti uz punktu B. Atrast visus racionālos skaitļus r > 1, kuriem Alise var sasniegt šo mērki ne vairāk kā 2021 gājienos.

1.4. uzdevums: Pierādīt, ka eksistē tikai galīgs skaits naturālu skaitļu četrinieku (a, b, c, n), kuriem izpildās vienādība

$$n! = a^{n-1} + b^{n-1} + c^{n-1}.$$