Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

Индивидуальная практическая работа №2

по дисциплине «Статистические основы индуктивного вывода» на тему

ДИСКРИМИНАНТНЫЙ АНАЛИЗ С ГОТОВЫМИ КЛАСТЕРАМИ В MS EXCEL

Выполнил: Е.С. Колосовский

Студент группы 021703

Проверил: А. А. Ефремов

1 Оценка страны производителя автомобиля на основе дискриминативного анализа

1.1 Задачи

- 1. Подобрать в открытых источниках data set, состоящий из результативного признака (заданного бинарной переменной) и нескольких факторных признаков (не менее 3)
- 2. Выполнить дискриминантный наблюдений из тестовой выборки, пользуясь методическими указаниями из примера ниже.
- 3. В отчёте представить: постановку задачи с описанием переменных (A), фрагмент таблицы с исходными данными (Б), расстояния до кластеров (В), оценку точности анализа через расчёт процента ошибок (Γ).

1.2 Суть задачи

B качестве датасета будет использоваться https://www.kaggle.com/code/thebrownviking20/cars-k-means-clustering-script/input Известна следующая информация по автомобилям:

- 1. Страна производства
- 2. Расход топлива (коэффицент x_1)
- 3. Количество цилиндров (коэффицент x_2)
- 4. Объем двигателя (коэффицент x_3)

Показатели потенциального x_1, x_2, x_3 производителя являются следующими - 5.1 6.4 5.4 соотвественно Требуется:

- 1. Требуется построить множественную дискриминантную модель и с ее помощью отнести автомобиль к одному из трёх классов;
- 2. Построить регрессионную дискриминантную модель, найти граничное значение и отнести автомобиль к одному из классов.

Информация об автомобилях приведена в следующей таблице.

Номер п/п	Расход топлива (x_1)	Цилиндров (x_2)	Объем двигателя (x_3)	Страна производитель(Z)
1	14	8	350	US
2	31,9	4	89	Europe
3	17	8	302	US
4	15	8	400	US
5	30,5	4	98	US
6	23	8	350	US
7	13	8	351	US
8	14	8	440	US
9	25,4	5	183	Europe
10	37,7	4	89	Japan
11	34	4	108	Japan
12	34,3	4	97	Europe
13	16	8	302	US
14	11	8	350	US
15	19,1	6	225	US
16	16,9	8	350	US
17	31,8	4	85	Japan
18	16	8	304	US
19	24	4	113	Japan
20	24	4	107	Europe
21	37,2	4	86	Japan

Таблица 1 – Характеристики автомобиля.

1.3 Выполнение

1.3.1 Пункт 1

Рассчитаем центроиды для каждого класса. $\overline{x_1^0}=5,006$ $\overline{x_2^0}=5,936$ $\overline{x_3^0}=6,588$

$$\begin{array}{l} \sigma_{11}=0,352489687\ \sigma_{12}=0,516171147\ \sigma_{13}=0,635879593\\ \overline{x_{1}^{1}}=3,418\\ \overline{x_{2}^{1}}=2,77\\ \overline{x_{3}^{1}}=2,974\\ \sigma_{21}=0,3810244\ \sigma_{22}=0,31379832\ \sigma_{23}=0,32249664\\ \overline{x_{1}^{2}}=1,464\\ \overline{x_{2}^{2}}=4,26\\ \overline{x_{3}^{2}}=5,552\\ \sigma_{31}=0,17351116\ \sigma_{32}=0,469910977\ \sigma_{33}=0,5518947 \end{array}$$

Для оценки коэффициентов проверки работоспособности модели используем её для тестовых данных и сравним результаты с их классами. Оценим близость вектора заданных параметров автомобиля к центроидам каждой из трех групп по формуле::

$$D(x, \overline{x^s}) = \sqrt{(\frac{x_1 - \overline{x_1^s}}{\sigma_1^s})^2 + (\frac{x_2 - \overline{x_2^s}}{\sigma_2^s})^2 + (\frac{x_3 - \overline{x_3^s}}{\sigma_3^s})^2}$$

В результате наша модель правильно предсказала страну производителя в 67,4582159% случаев. Наш потенциальный автомобиль модель относит к первому классу, что соответствует действительности.