

Patrick D. Smith

Lead Instructor, General Assembly DSI

More Useful Python

LEARNING OBJECTIVES

- Insert Objective 1
- Insert Objective 2

More Useful Python

Opening

Principles of Data Visualization

Visualizing your data is extremely important to be proficient at as a data scientist. Why?

2. You will be always be required to report on your findings working as a data scientist.

- Technical coworkers such as other data scientists or analysts will want to get an intuition for the data too
- Visualization will make your findings compelling and intuitive to non-technical coworkers.

More Useful Python

Lambda Functions

Lambda Functions

- Python supports a style of programming called *functional*programming, where you can easily pass functions to other functions
- A **lambda function** is a function that takes any number of arguments and returns the value of a single expression
- Lambda functions can not contain commands, and they can not contain more than one expression
- Lambda functions are Python's name for *anonymous functions*, IE functions without a formal definition (def)

Lambda Functions

• At a base level, the syntax of lambda functions is:

lambda "arguments": "expression"

Lambda Functions

• At a base level, the syntax of lambda functions is:

lambda "arguments": "expression"

 Lambda functions are good as functions that are going to be used only once

Lambda Functions

Typically, functions are created for one of two purposes:

- 1. To reduce code duplication
- 2. To modularize code.

Lambda Functions

- 1. If your program contains duplicate code in various places, you can instead turn one chunk of that code into a functions, and then call it from various places in your code
- 2. If you have a chunk of code that performs one well-defined operation, but is quite long and ugly, you can replace that chunk of code with a functions

So why create a one lined function, that we only plan to use once?

Let's take a look at an example

Modues

Modules

• We've talked about how as good data scientists and developers we want to make functions reusable

Modules

- We've talked about how as good data scientists and developers we want to make functions reusable
- However.....What if we want to reuse functions in *other programs* that we write?

Modules

- We've talked about how as good data scientists and developers we want to make functions reusable
- However.....What if we want to reuse functions in *other programs* that we write?
- The answer modules!

Modules

- There are various methods of writing modules, but the simplest way is to create a file with a .py extension that contains functions and variables
- A module can be imported by another program to make use of its functionality. This is how we can use the Python standard library as well
- Importing entire modules can be expensive for memory in place, we can use the syntax:

from module import variable

Data Structures

Other Types of Data Structures

- Data structures are basically just that they are structures which can hold some data together. In other words, they are used to store a collection of related data.
- There are four built-in data structures in Python (we've talked about two) list, tuple, dictionary and set.

Dictionaries

- Dictionaries are just like real dictionaries or phone books we associate keys (name) with values (details)
- Note: Key must be unique, just like you cannot find out the correct information if you have two people with the exact same name.

Dictionaries

 Pairs of keys and values are specified in a dictionary by using the notation

```
d = {key1 : value1, key2 : value2 }
```

- **Remember**: key-value pairs in a dictionary are not ordered in any manner. If you want a particular order, then you will have to sort them yourself before using it.
- Dictionaries are stored in **Dict** objects

Let's take a look at an example

Sequences

Lists, tuples and strings are examples of sequences, but what are sequences and what is so special about them?

Sequences

- Lists, tuples and strings are examples of sequences, but what are sequences and what is so special about them?
- The major features are membership tests, (i.e. the in and not in expressions) and indexing operations, which allow us to fetch a particular item in the sequence directly.

Sequences

- Lists, tuples and strings are examples of sequences, but what are sequences and what is so special about them?
- The major features are membership tests, (i.e. the in and not in expressions) and indexing operations, which allow us to fetch a particular item in the sequence directly.
- The three types of sequences mentioned above lists, tuples and strings, also have a slicing operation which allows us to retrieve a slice of the sequence i.e. a part of the sequence

Let's take a look at an example

Sets

- Sets are unordered collections of simple objects. These are used when the existence of an object in a collection is more important than the order or how many times it occurs.
- Using sets, you can test for membership, whether it is a subset of another set, find the intersection between two sets, and so on.

Let's take a look at an example

References

- When you create an object and assign it to a variable, the variable only refers to the object and does not represent the object itself.
- Thus, the variable name points to that part of your computer's memory where the object is stored. This is called *binding*.

Let's take a look at an example

Some Extra thoughts on Strings

•

Let's take a look at an example

Conclusion