Project: Estimation

Project: Estimation

Writeup / README

1. Provide a Writeup / README that includes all the rubric points and how you addressed each one. You can submit your writeup as markdown or pdf.

You're reading it! Below I describe how I addressed each rubric point and where in my code each point is handled.

Build estimator

The estimator will be build in tasks:

Step 1: Sensor Noise

Step 2: Attitude Estimation

Step 3: Prediction Step

Step 4: Magnetometer Update

Step 5: Closed Loop + GPS Update

Step 6: Adding Your Controller

Step 1: Sensor Noise

I used the instructions from README.md to generate the timeseies. Then I calculated their standard deviation using numpy.std. The results I seved to config/6_Sensornoise.txt were:

- 1 MeasuredStdDev_GPSPosXY = 0.71
- 2 MeasuredStdDev_AccelXY = 0.51

The numbers I've got were close to ones from config/SimulatedSensors.txt (0.7 and 0.5).

Step 2: Attitude Estimation

I was able to reduce the errors in the estimated attitude (Euler Angles) via implementing a better rate gyro attitude integration scheme in UpdateFromIMU() as it was advised.

Step 3: Prediction Step

In this step, I implemented the required prediction steps for the estimator. For that, I modified the Predict(), PredictState() and GetRbgPrime() functions.

Also, I tuned the QPosXYStd and QVelXYStd parameters. My final Predict Covariance plots are below:

Step 4: Magnetometer Update

This was a step to include magnetometer values into the state. I implemented it in the UpdateFromMag() function after chosing a suitable QYawStd parameter:

Step 5: Closed Loop + GPS Update

I has to implement the EKF GPS update in QuadEstimatorEKF.txt in this step. It was no required to update any other parameters in QuadEstimatorEKF.txt to reach the required objective:

Step 6: Adding Your Controller

I copied the existing implementation of QuadController.cpp from the previous project and just had to follow the advice on deduning the controller a bit. Adjusting position parameters was enough to meet the objective:

