Turma Compartilhada Programação de Computadores

Prof. Carlos Eduardo Weber

Aula 02 - Conceitos 25/02/2025

✓ Raciocínio Lógico:

- Pensar antes de agir.
- Entender o problema proposto e suas possíveis soluções.
- Pensar com coerência sobre os vários caminhos possíveis e tomar a melhor decisão para alcançar o objetivo.

✓ Raciocínio Lógico:

• Trata das formas do pensamento em geral (dedução, indução, hipótese, inferência, entre outros.) e das operações intelectuais que visam à determinação do que é verdadeiro ou não.

✓ Lógica de programação:

• Transferência do pensar humano para a máquina.

- √ Nós utilizamos a lógica para resolver um problema;
- ✓ A resolução do problema é o objetivo;
- ✓ Para chegar ao objetivo é necessário seguir uma sequência;
- ✓ Nesta sequência estão contidas instruções.
- ✓ Sendo assim, tudo isso se resume em:

✓ Definição de Algoritmo:

- Sequência passo a passo FINITA descritiva com o intuito de alcançar um objetivo bem definido.
- Tem por objetivo representar de forma fiel o raciocínio envolvido na Lógica de Programação.

- ✓ No desenvolvimento de ALGORITMOS deve-se seguir algumas premissas:
 - Ter um COMEÇO e um FIM, as ações devem ter uma sequência finita de passos;
 - As instruções devem ser organizadas em uma sequência lógica;
 - As instruções devem ser descritas de forma precisa, simples e sem ambiguidades.

Possível resolução do algoritmo "Fritar ovos":

- ✓ Separar ingredientes
 - manteiga
 - sal
 - ovos
- ✓ Separar utensílios
 - colher
 - frigideira
- ✓ Preparar ambiente
 - acender o fogo
 - colocar a frigideira no fogão
- ✓ Modo de preparo
 - colocar a manteiga na frigideira, depois junte os ovos, coloque sal e mexa.
 - quando os ovos fritarem, desligue o fogo.

Alguns problemas com o algoritmo do "Fritar ovos"

- ✓ A linguagem natural é imprecisa:
 - Quanto de manteiga?
 - Quanto de Sal?
 - Quantos ovos?
 - Como mexer?
 - O que define que está pronto?
- ✓ O uso de uma linguagem mais restritiva e estruturada seria mais adequado para certas situações;
- ✓ Sem ambiguidades (possíveis entendimentos diferentes);
- ✓ Utilizar uma linguagem simples e genérica.

Veja o algoritmo do "Fritar ovos" de forma mais definida:

- separar 2 ovos;
- separar 100g de manteiga;
- separar 5g de sal;
- separar frigideira;
- separar colher de pau;
- acender fogo do fogão;
- colocar frigideira no fogo;
- colocar manteiga na frigideira;
- deixar a manteiga derreter;
- colocar o sal;
- quebrar levemente a casca do primeiro ovo;
- colocar a clara e a gema na frigideira;
- repetir os dois passos anteriores para o segundo ovo;
- mexer os ovos com a colher;
- •

- ✓ Instrução de um Algoritmo:
 - Cada linha do algoritmo pode ser chamada de instrução;
 - Logo, pode-se dizer que um algoritmo é um conjunto de instruções;
 - Uma instrução indica a um computador uma ação elementar a ser executada.

- ✓ Qual a conclusão que podemos tirar sobre os algoritmos?
 - Algoritmo é uma espécie de passo a passo.
 - Algoritmos realizam uma saída (ex. Um ovo frito) a partir de uma entrada (um ovo) através de uma sequência.
 - Os passos têm que ser executados um após o outro.
 - Um algoritmo está correto quando a sua sequência de instrução resulta em uma saída esperada.
 - Podem existir um ou mais algoritmos para atingir um resultado, desde que o resultado seja o mesmo.

O algoritmo não é a solução do problema,

mas o caminho que leva à solução.

✓ As principais tarefas realizadas por um Algoritmo são:

- Ler e escrever dados;
- Tomar decisões com base nos resultados das expressões avaliadas;
- Repetir um conjunto de ações de acordo com uma condição.

- ✓ Formas de representação de Algoritmos:
 - Quando falamos em algoritmo sob o ponto de vista computacional não podemos utilizar uma descrição narrativa para representá-lo.
 - Sendo assim, um algoritmo pode ser representado por:
 - Diagrama de Bloco (Fluxograma)
 - Pseudocódigos (Portugol)

✓ Diagrama de Bloco (Fluxograma)

- Uma representação gráfica que visa descrever métodos e sequências de um processo;
- Por meio de figuras geométricas (símbolos) e ligações (setas), descreve-se as relações entre cada instrução e o fluxo de informação ilustrando de forma descomplicada a transição de informações entre os elementos que o compõem;
- Os símbolos devem ser dispostos em ordem lógica e com sintaxe correta para atingir o objetivo de resolver o problema;
- Vantagem: O entendimento de elementos gráficos é mais fácil que o entendimento de texto.

✓ Diagrama de Bloco (Fluxograma)

- Vantagem:
 - O entendimento de elementos gráficos é mais fácil que o entendimento de texto.

Para a programação e uso da lógica eficiente.

✓ Exemplo de Fluxograma

Flowgorithm

(http://www.flowgorithm.org/download/)

✓ Símbolos de Fluxograma

SÍMBOLOS	DESCRIÇÃO
	TERMINAL: símbolo utilizado como ponto para indicar o início e/ou fim do fluxo de um programa.
	TECLADO: símbolo que representa a entrada de dados por meio de um teclado de computador.
	DECLARAÇÃO: símbolo utilizado para representar a declaração de variáveis e/ou constantes a serem utilizadas no processo do fluxo.
	PROCESSAMENTO: símbolo ou bloco que representa algum tipo de processamento como cálculo, atribuições de valores ou qualquer manipulação de dados.
	SAÍDA DE DADOS EM VÍDEO: símbolo que representa a exibição de dados e/ou informações em dispositivos visuais, vídeo ou monitor.
	SAÍDA DE DADOS EM IMPRESSORA: símbolo que representa a impressão de dados e/ou informações.
	DECISÃO : símbolo que reprrsenta uma decisão que deve ser tomada indicando a possibilidade de desvios para diversos pontos do fluxo mediante a análise de uma condição.
	CONECTOR: símbolo que representa o particionamento de um diagrama.
	SETA DE FLUXO DE DADOS: símbolo que permite indicar o sentido do fluxo de dados. Serve exclusivamente para conectar outros símbolos ou blocos.

• Identifica o início ou o fim do fluxograma

• Exibe o fluxo do fluxograma

✓ Declaração

• Símbolo usado para declarar as variáveis de um programa.

- ✓ Saída (exibição) de dados em vídeo
 - Símbolo usado para mostrar algo na saída de vídeo.

- Observação
- Caso o dado deva ser exibido (impresso) numa impressora, o símbolo a seguir deve ser usado:

✓ Entrada de dados (terminal / teclado)

• Símbolo alternativo de entrada e saída:

✓ Ação ou Processamento

• Identifica uma ação ou um processamento (exemplo: cálculo ou atribuição)

✓ Decisão

• Avalia uma determinada condição e executa uma ação.

✓ Decisão

• Outra possibilidade é avaliar uma determinada condição e conforme o resultado, o fluxo segue por um caminho ou outro, executando ações diferentes.

Reunificação de fluxo

• Usado para conectar as opções de uma decisão de múltipla escolha para voltar ao mesmo fluxo.

✓ Conector

- De mesma página
 - Usado para conectar partes de um fluxograma.
 - Quando a área disponível na mesma página não tem mais espaço, pode-se usar o conector para indicar o local, na mesma página, onde o fluxo continua.

✓ Conector

De outra página

- Usado para conectar partes de um fluxograma.
- Quando a página não tem mais espaço disponível, pode-se usar o conector para indicar o local (número de outra página), onde o fluxo continua.

Este algoritmo apresenta os passos para se calcular a média de duas notas (N1 e N2) obtidas por um (a) aluno (a).

Em seguida, ele verifica se a média é igual ou maior que 6, e desta forma, informa se o (a) aluno (a) foi aprovado (a) ou reprovado (a) por nota, na disciplina.

✓ Pseudocódigo

- Uma forma genérica de se escrever um algoritmo sem necessidade de conhecer sintaxe de nenhuma linguagem de programação;
- Utiliza uma linguagem simples;
- Ainda incapaz de ser executado num sistema real (computador):
 - Computadores não entendem pseudocódigos.
- Sua transcrição para qualquer linguagem de programação é quase que direta.
- É necessário aprender as regras do pseudocódigo.

✓ Exemplo de Pseudocódigo

```
algoritmo "media"
var N1, N2, M: real
inicio
      escreva ("Digite Nota 1:")
      leia(N1)
      escreva ("Digite Nota 2:")
      leia(N2)
      M < - (N1+N2) / 2
      escreva ("Média:", M)
```

fimalgoritmo

VisualG (http://visualg3.com.br/)

Estrutura de um programa

Processamento de Dados

Forma humana ...

Processamento de Dados

No computador ...

- ✓ Um programa de computador é dividido em:
 - Entrada de dados
 - Processamento
 - Saída de Dados
- ✓ De maneira simplificada
 - Entrada >> Processamento >> Saída

Partes de um ALGORITMO

√ Visão do Usuário

- Para o usuário do programa as regiões que mais importam são:
 - entrada de dados
 - saída dos dados

√ Visão do Programador

Para o programador além de entender qual o tipo de dado de entrada, faz-se necessário entender os processos de transformação do dado (processamento), e qual a sua respectiva saída.


```
File Edit Format Run Options Window Help

numerol = int(input("Digite o primeiro numero:"))

numero2 = int(input("Digite o segundo numero:"))

resultado = numerol + numero2

print("O resultado eh:", resultado)

resultado = numerol + numero2

programador
```


- ✓ Objetivo
- ✓ Recursos necessários Reservar recursos.
- ✓ Ponto de Partida
 - 1° Passo que aproximam do objetivo final
 - 2° Passo que aproximam do objetivo final
 - 3° Passo que aproximam do objetivo final
 - ...
 - N passo que aproximam do objetivo final (onde N é o número total de passos)
- ✓ Objetivo final alcançado.
- ✓ Liberar recursos.

Usuário

- ✓ Para o usuário do programa as regiões que mais importam são:
 - entrada de dados
 - saída dos dados
- ✓ Podemos dizer que a parte do processamento é considerada uma caixa preta.

- ✓ No caso do processamento, o usuário não entende quais são os processos envolvidos. Apenas que dada uma entrada, ocorre um tipo de saída.
- ✓ Para o usuário, o importante é que dada uma entrada ocorre uma saída.
 - Exemplo: Apresentar o resultado de uma soma em uma calculadora.

- ✓ Para o programador, além de entender qual o tipo de dado de entrada, faz-se necessário entender os processos de transformação do dado, e qual a sua respectiva saída.
- ✓ Nesse caso o processamento deve ser entendido pelo programador e todos os seus processos descritos no código fonte.

- ✓ É no processamento que escrevemos os comandos para o computador realizar.
 - Exemplo: Função somar dois números (Calculadora).

Programador

Estrutura de um programa

✓ O computador é uma máquina isenta de inteligência. Isto é, ela só entende 0 e 1 (ligado e desligado), ou em outras palavras entende o bit (*BInary DigiT*).

- ✓ Uma sequência de 8 bits é chamada de byte.
- ✓ Para facilitar a programação o homem desenvolveu as linguagens de programação.
- ✓ Já pensou escrever um programa somente em 0's e 1's ???

Programador

- ✓ A programação pode ser escrita em linguagens de:
 - <u>Baixo nível</u> são as linguagens que se aproximam da linguagem de máquina.
 - <u>Médio nível</u> são as linguagens intermediárias, não apresentam a linguagem humana mas também não estão no nível da linguagem de máquina utilizam um compilador para escrever o código em código de máquina.
 - Alto nível linguagem próxima à da linguagem humana.

✓ Exemplo de programa em Alto Nível:

```
# Gerador de senha
tamanhoSenha = 3
def senha(num):
      qtd = len(num)
      if(qtd < tamanhoSenha):</pre>
         num = "0"+num
         senha(num)
      else:
         print(num, end="\n")
i = 0
while i < 10**tamanhoSenha:
  senha(str(i))
  i+=1
```

Processo 1
Processo 2
Processo 3
.
.
.
.
.
.
.
.
.
.

✓ Exemplo: Escreva o esquema em fluxograma de um algoritmo para apresentar uma mensagem de boas vindas.

Exemplo: Escreva o esquema de um algoritmo para somar dois números desenhando o respectivo fluxograma.

✓ Exemplo: Escreva o esquema de um algoritmo para somar dois números desenhando o respectivo fluxograma.

Testes de Mesa			
Entrada		Processamento	Saída
numero1	numero2	resultado	Tela
2	3	5	O resultado eh:5
101	250	351	O resultado eh: 351
10000	12345	22345	O resultado eh: 22345
А	5	???	???

Exercícios Aula 2

Exercício 2.1:

Faça um algoritmo que leia o nome de uma pessoa, sua idade e o seu salário e ao final mostre essas informações.

Exercício 2.2:

Faça um algoritmo que leia 2 números e faça as 4 operações matemáticas e mostre esses resultados.

"O futuro depende das ações do presente, boas ações geram bons frutos"

www.unicid.edu.br

R. Cesário Galeno, 475 03071 000 São Paulo SP Brasil **T F** 55 11 2178 1212