<u>Last Time</u>: Principal Component Analysis (PCA)

Today: More applications of eigenvectors + eigenvalues

- · diagonal decompositions
- · singular value decompositions (SVD's)

Matrix Decompositions:

Idea: to solve many problems w/ matrices, one tactic is to decompose as a product of "nice matrices"

USEFUL FOR SOLVING LINEAR SYSTEMS

Ex: LDL - factorization, Chdesky factorization QR decomposition.

We will focus on diagonalization and SVD.

Diagonalization:

Relate a matrix to a diagonal matrix.

Def: As diagonal matrix is a matrix D where D(i,j) = 0 if $i \neq j$ Ex! $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$ is diagonal

Def: A diagonalization of an nxn matrix A
75 an non Mertible matrix P and diagonal matrix D satisfying $A = PDP^{-1}$
matrix D satisfying [A = PDP-1]
104
Lots of good applications!
An . 1 . 1
Method to diagonalize nxn matrix A:
(1) calculate the n different eigenvolves of A $\lambda_1, \lambda_2,, \lambda_n$ (not necessarily distinct)
λ, λz,, λn (not necessarily distinct)
(2) For each λ_i , find an eigenvector \vec{V} : with
(2) For each λ_j , find an eigenvector $\vec{\nabla}_j$ with eigenvalue λ_j (for repeated λ_j , might need to be careful about which eigenvectors we pick)
about which eigennectors we prok)
(3) $\mathcal{P} = \begin{bmatrix} \vec{v}_1 \vec{v}_2 \vec{v}_n \end{bmatrix}$ $\mathcal{D} = \begin{bmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_n \end{bmatrix}$
0 1
Σ ~νη]
1. I Pro Dunishla D. O.D
As long as P is muertible, P and D will define a diagonalization of A (A=PDP-1)
will define a diagonalization of A (A - 1D1)
Millel and TRRT- milk).
Matlab code: [P,D] = eig(A); Automotically produces a dragonalization
Automotically produces a diagonalization
1120 m/A
WARNING: its possible that no matter which eigenvectors use choose, P won't be invertible. Some matrices just don't have diagonalizations!
ve choose, P won't be invertible.
Some matrices just don't have diagonalizations:
Def: A matrix which has a diagonalization To called
Def: A matrix which has a diagonalization To called non-degenerate. Otherwise it is called degenerate.

Diagonalization of Symmetric Matrices

Df: An non mobile A 15 symmetric if $A = A^T$.

A real new matrix U 13 called <u>orthogonal</u>

(or <u>unitary</u>) if $U^T = U^{-1}$.

Theorem: If A is an nxn symmetric matrix then there exists an nxn unitary matrix U and a diagonal matrix D satisfying $A = UDU^{-1} = UDU^{-1}$ In particular, A has a diagonalization.

MATLAB: [P,D] = erg(A); When $A = A^T$, this outs motically returns a unitary P.

 E_{\times} : $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ $d_{t}(A-\lambda I) = d_{t}[(1-\lambda)(1-\lambda)(2-\lambda)]$

= (1-)(2-2)

Eigenvalues of A? 1,2

1 has eigenvedor [o] ([oz][o]=[o])

2 has ergenvedor [1] ([02][1]=[2]=2[1])

$$P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$

$$A = PDP^{-1}$$

Double-check:
$$p^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} t & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} t & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} t & 1 \\ 0 & 2 \end{bmatrix} = A$$

Diagonalization can help us compute complicated expressions. like powers.

$$A^2 = AA = \begin{bmatrix} 1 & 1 & 7 \\ 0 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix}$$

$$A^3 = AAA = \begin{bmatrix} 1 & 1 & 3 & 7 & 7 \\ 0 & 2 & 6 & 8 \end{bmatrix}$$

Make this double with diagonalization!

$$A = PDP^{-1}$$

$$A^3 = PDP^{-1}(PD^2P^{-1}) = PDP^{-1}PD^2P^{-1} = PD^3P^{-1}$$

$$A_{\nu} = b p_{\nu} b_{-\Gamma}$$

$$A^{100} = P D^{100} P^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 7 & 1^{100} & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 7 \\ 0 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2^{100} & 1 & 1 \\ 0 & 2^{100} & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 7 \\ 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2^{100} & 1 & 1 \\ 0 & 2^{100} & 1 & 1 \end{bmatrix}$$

Filornacci Sequence:

Use diagonalization to get a closed-form formula for the nith Fibonacci number fr.

The
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 satisfies $A \begin{bmatrix} \frac{1}{2}n-1 \\ \frac{1}{2}n \end{bmatrix} = \begin{bmatrix} \frac{1}{2}n \\ \frac{1}{2}n+1 \end{bmatrix}$

$$A\begin{bmatrix}f_{n-1}\\f_n\end{bmatrix} = \begin{bmatrix}0\\1\\0\\f_n\end{bmatrix} = \begin{bmatrix}f_{n-1}\\f_n\end{bmatrix} = \begin{bmatrix}f_n\\f_{n+1}\end{bmatrix}$$

$$\Delta \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 11 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$A^{2}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}0\\1\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}0\\1\end{bmatrix}\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}2\\3\end{bmatrix}$$

$$A^{3}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}0\\1\\1\end{bmatrix}A^{2}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}0\\1\\1\end{bmatrix}\begin{bmatrix}2\\3\\3\end{bmatrix} = \begin{bmatrix}3\\5\end{bmatrix}$$

$$A^{n} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} f_{n+1} \\ f_{n+2} \end{bmatrix}$$

Use diagonalization to calculate A", and then use it to get an expression for for

$$dut\left(A-\lambda I\right) = dut\left[-\lambda I - \lambda I\right] = \lambda^2 - \lambda - L$$

Roots
$$\lambda = \frac{1+\sqrt{5}}{2}$$
 and $\frac{1-\sqrt{5}}{2}$
Golden Ratio δ_{+}

Eigenvector for A w/ eigenvalue 8 t is | 8t - 1]

$$P = \begin{bmatrix} \gamma_{+} & \gamma_{-} & \gamma_{-} \\ 1 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} \gamma_{+} & \gamma_{-} \\ 0 & \gamma_{-} \end{bmatrix}$$

Then
$$A = PDP^{-L}$$

$$A^{n} \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} \S_{n+1} \\ \S_{n+2} \end{bmatrix}$$

$$\frac{1}{\S_{n+2}} \begin{bmatrix} \S_{n+1} \\ \S_{n+2} \end{bmatrix} \begin{bmatrix} \S_{n+2} \end{bmatrix} \begin{bmatrix} 1 \\ \S_{n+2} \end{bmatrix} \begin{bmatrix} 1 \\$$

This is a generalization of diagonalization.

for some diagonal matrix E (mxm) (3) Set D= UTAV (mxn diagonal) This automatically makes A= UDVT Big application of SVD: approximating matrices of lower rank.

