МАТРОИДЫ

Матроидом будем называть произвольную пару $M = [E, \Im]$, где $E - \ker$ конечное множество, а $\Im - \ker$ непустое семейство подмножеств множества E, удовлетворяющее условиям:

- (M1) из $(A \in \mathcal{T}, B \subset A)$ следует, что $B \in \mathcal{T}$;
- (M2) $\forall A, B \in \mathcal{I}$, таких, что |A| < |B|, всегда найдется $e \in B \setminus A : A \cup \{e\} \in \mathcal{I}$.

Множества семейства \mathcal{F} назовем *независимыми множествами*, а все другие подмножества E — *зависимыми множествами* матроида M.

Из (M1) и непустоты \mathcal{S} следует, что $\emptyset \in \mathcal{S}$ в любом матроиде.

База матроида — это любое максимальное по включению независимое множество. Из аксиомы (M2) следует, что все базы матроида имеют одну и ту же мощность.

Цикл матроида — это любое минимальное по включению зависимое множество.

Примеры.

- 1. Матричный матроид. Элементами множества E являются столбцы некоторой матрицы A. Подмножество столбцов считается независимым, если оно линейно независимо (в обычном смысле).
- 2. Графический матроид. Элементами множества Е являются ребра некоторого графа G, и подмножество множества ребер G считается независимым, если оно не содержит цикла графа G.
- 3. Матроид разбиений. Элементами множества E являются дуги некоторого орграфа G, и подмножество множества дуг G считается независимым, если никакие две дуги из этого подмножества не заходят в одну и ту же вершину.

4. Матроид Фано. Пусть $E = \{e_1, ..., e_7\}$ — множество элементов проективной плоскости порядка 2.

 $|E| = n^2 + n + 1$, где n — простое число или степень простого числа.

- Каждые две прямые имеют ровно одну точку пересечения.
- Через любые две точки проходит ровно одна прямая.

Матроид Фанно: $A \subset E$ — независимое множество, если $|A| \le 2$ или |A| = 3 и A не является прямой.

Прямые: $\{e_1, e_2, e_3\}$, $\{e_3, e_4, e_5\}$, $\{e_5, e_6, e_1\}$, $\{e_1, e_7, e_4\}$, $\{e_3, e_7, e_6\}$, $\{e_2, e_7, e_5\}$, $\{e_2, e_4, e_6\}$

5. k-матроид. E — произвольное конечное множество, и подмножество A множества E считается независимым, если и только если $|A| \le k$.

Упражнение.

Доказать, что каждый из перечисленных примеров является матроидом. Описать базы и циклы этих матроидов.

6. Матроид трансверсалей. Пусть G = (V, W; R) — двудольный граф с долями V и W. Подмножество A множества V назовем (частичной) трансверсалью, если в G существует паросочетание, покрывающее все вершины множества A. По теореме Кенига-Оре множество A является трансверсалью, если и только если

$$|N(C)| \ge |C| \quad \forall \ C \subseteq A,$$

где $N(C) = \{w \in W : (v, w) \in R\}.$

Теорема 1 (Эдмондс и Фалкерсон). Пусть G=(V,W;R) — двудольный граф с долями V и W. Тогда пара $M=[V,\mathfrak{T}]$, где $\mathfrak{T}=\{A\subseteq V\,|\, A$ — трансверсаль в $G\}$, является матроидом.

Доказательство. Выполнение (*M*1) очевидно. Пусть $A, B \in \mathcal{I}$ и |A| < |B|. Выберем содержащее |A| ребер паросочетание π_A , покрывающее A и содержащее |B| ребер паросочетание π_B , покрывающее B, так, чтобы они имели максимально возможное число общих ребер. Для каждого $x \in A \cup B$ обозначим через $\pi_A(x)$ (соответственно через $\pi_B(x)$) вершину, соединенную с x ребром, принадлежащим π_A (соответственно, π_B). Для $C \subseteq A \cup B$ определим $\pi_A(C) = \{\pi_A(x) \mid x \in C\}$ и $\pi_B(C) = \{\pi_B(x) \mid x \in C\}$. Если $\pi_A(b') \notin \pi_A(A)$ хотя бы для одного $b' \in B \setminus A$, то $A \cup \{b'\} \in \mathcal{I}$ и теорема доказана.

Пусть $\pi_B(\{B \setminus A\}) \subseteq \pi_A(A)$. Поскольку |B| > |A|, найдется $b \in B$ с $\pi_B(b) \notin \pi_A(A)$. Согласно доказанному выше $b \in A \cap B$. Пусть $c = \pi_A(b)$. Тогда паросочетание $\pi'_A = (\pi_A \setminus (b,c)) \cup (b,\pi_B(b))$ имеет больше общих ребер с π_B чем π_A в противоречие с выбором π_A .

Теорема 2. Пусть E — конечное множество, а \mathfrak{I} — непустое подсемейство подмножеств множества E, удовлетворяющее условию (M1). При этих предположениях $M = [E, \mathfrak{I}]$ является матроидом, если и только если выполняется условие

(M3) Для каждого $C \subset E$ любые два максимальных (по включению) независимых подмножества множества C имеют одну и ту же мощность.

Доказательство. Допустим сначала, что не выполняется (M3). Это значит, что для некоторого $C \subset E$ найдутся максимальные (по включению) независимые $A, B \subset E$ с |A| < |B|. Согласно (M2), $\exists \ e \in B \setminus A : A \cup \{e\} \in \mathcal{S}$. Это противоречит максимальности A.

Допустим теперь, что не выполняется (M2). Тогда найдутся такие $A, B \in \mathcal{S}$ с |A| < |B|, что $A \cup \{e\} \notin \mathcal{S}$ для любого $e \in B \setminus A$. Значит, для $C = A \cup B$ не выполняется (M3): A — максимальное по включению независимое подмножество множества C, но |A| < |B|.

Следствие. В любом матроиде все базы имеют одну и ту же мощность.

Ввиду теоремы 2 на подмножествах множества E матроида M определена ранговая функция, сопоставляющая каждому $C \subset E$ мощность максимальных (по включению) независимых подмножеств C.

Теорема 3. Пусть $M = [E, \mathcal{J}]$ является матроидом, а ρ — ранговая функция на 2^E . Тогда

(*R*1)
$$0 \le \rho(A) \le |A|$$
;

(R2)
$$A \subset B \Rightarrow \rho(A) \leq \rho(B)$$
;

(R3)
$$\rho(A \cup B) + \rho(A \cap B) \leq \rho(A) + \rho(B)$$
;

(R4)
$$\rho(\emptyset) = 0$$
;

(*R*5)
$$\rho(A) \leq \rho(A \cup \{e\}) \leq \rho(A) + 1;$$

(R6) если
$$\rho(A \cup \{e\}) = \rho(A \cup \{f\}) = \rho(A)$$
, то $\rho(A \cup \{e,f\}) = \rho(A)$.

Доказательство. Выполнение (R1), (R2), (R4) и (R5) очевидно. Допустим, что ρ $(A \cup \{e\}) = \rho$ $(A \cup \{f\}) = \rho$ (A), но ρ $(A \cup \{e,f\}) \neq \rho$ (A). Пусть $I \subset A, I \in \mathcal{I}$, $|I| = \rho$ (A).

По теореме 2 существует $F \subseteq A \cup \{e, f\}, F \in \mathcal{F}$ такое, что $|F| > |I|, F \supset I$. Но это противоречит (M2).

Значит, (R6) верно.

Докажем (R3). Пусть $I \subseteq A \cap B, I \in \mathcal{F}, \ |I| = \rho \ (A \cap B)$.

По теореме 2 существуют $F \subseteq A \setminus B$ и $H \subseteq B \setminus A$ такие, что $F \cup I \in \mathcal{S}$, $F \cup I \cup H \in \mathcal{S}$, $|F \cup I| = \rho(A)$, $|F \cup I \cup H| = \rho(A \cup B)$.

Но тогда $|H \cup I| \le \rho(B)$ и $\rho(A \cup B) + \rho(A \cap B) = |F| + |H| + 2|I| \le \rho(A) + \rho(B)$. ■

Теорема 4. Функция ρ : $2^E \to Z$ является ранговой функцией некоторого матроида на E тогда и только тогда, когда она удовлетворяет (R4), (R5) и (R6).

Доказательство. Ввиду теоремы 3 достаточно доказать импликацию «только тогда». Положим $\mathcal{S} = \{A \subseteq E : \rho(A) = |A|\}$. Из-за (R4) имеем $\mathcal{S} \neq \emptyset$. Допустим, что $A \subset B$, $\rho(A) < |A|$, $B \setminus A = \{x_1, ..., x_k\}$. Согласно (R5), $\rho(B) \le 1 + \rho(B \setminus \{x_1\}) \le 2 + \rho(B \setminus \{x_1, x_2\}) \le ... \le k + \rho(B \setminus \{x_1, ..., x_k\}) = k + \rho(A) < |B|$. Таким образом, (M1) верно.

Допустим теперь, что (*M*2) неверно. Тогда для некоторых $A, B \in \mathcal{F}, A = \{x_1, ..., x_m, a_1, ..., a_k\}, B = \{x_1, ..., x_m, b_1, ..., b_p\}, p > k$ имеем $\rho(A \cup \{b_i\}) = \rho(A)$ при любом $1 \le i \le p$. Из (*R*6) получаем $\rho(A \cup \{b_1, b_i\}) = \rho(A \cup \{b_1\}) = \rho(A)$ при любом $2 \le i \le p$. Снова по (*R*6) $\rho(A \cup \{b_1, b_2, b_i\}) = \rho(A)$ при любом $3 \le i \le p$ и т.д.

Через p шагов получаем $\rho(A \cup B) = \rho(A \cup \{b_1, b_2, ... b_p\}) = \rho(A)$. Противоречие. \blacksquare

Теорема 5. Функция ρ : $2^E \to Z$ является ранговой функцией некоторого матроида на E тогда и только тогда, когда она удовлетворяет (R1), (R2) и (R3).

Доказательство. Ввиду теорем 3 и 4 достаточно доказать, что выполнение (R1), (R2) и (R3) влечет выполнение (R4), (R5) и (R6).

Очевидно, (R4) следует из (R1), а левое неравенство в (R5) следует из (R2). Правое неравенство в (R5) и свойство (R6) следуют из (R3).

Следствие из (*M***2).** Для множества \mathcal{B} баз произвольного матроида $M = [E, \mathcal{S}]$ верно:

(B1) Для любых $B_1 \neq B_2$ и любого $x \in B_1 \backslash B_2$ найдется такой $y \in B_2 \backslash B_1$, что

$$(B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$$
.

Теорема 6. Пусть E — конечное множество, \mathcal{B} — непустое подсемейство подмножеств множества E, удовлетворяющее условию (B1). Тогда множество $\mathcal{S} = \{A \subset E \mid \exists \ B \in \mathcal{B} : A \subset B\}$ удовлетворяет аксиомам (M1) и (M2).

Доказательство. Выполнение (M1) очевидно.

Покажем, что все члены \mathcal{B} равномощны. Допустим, что это не так. Выберем множества $B_1, B_2 \in \mathcal{B}$ разной мощности так, чтобы максимизировать мощность пересечения. Можно считать, что $|B_1| > |B_2|$. Выберем произвольно $x \in B_1 \setminus B_2$.

Согласно (B1), найдется такой $y \in B_2 \setminus B_1$, что $B = (B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$. Но $|B \cap B_2| > |B_2 \cap B_1|$, $|B| = |B_1|$. Это противоречит выбору B_1 и B_2 .

Итак, предположим, что (M2) неверно. Это значит, что для некоторых $A_1,A_2\in \mathcal{F}$ с $|A_1|<|A_2|$,

$$A_1 \cup \{e\} \notin \mathcal{F} \quad \forall \ e \in A_2 \backslash A_1.$$
 (1)

Выберем B_1 , $B_2 \in \mathcal{B}$, $B_1 \supset A_1$, $B_2 \supset A_2$ так, чтобы максимизировать $|B_2 \cap B_1|$. В силу (1),

$$B_1 \cap (A_2 \setminus A_1) = \varnothing. \tag{2}$$

Если $B_1 \setminus A_1 \subset B_2$, то в силу (2) имеем $|B_2| \geq |B_1 \setminus A_1| + |A_2| > |B_1 \setminus A_1| + |A_1| = |B_1|$. Значит, найдется $x \in B_1 \setminus (A_1 \cup B_2)$. Согласно (B1), найдется такой $y \in B_2 \setminus B_1$, что $B = (B_1 \setminus \{x\}) \cup \{y\} \in \mathcal{B}$. Но $|B \cap B_2| > |B_2 \cap B_1|$ и $B \supset A_1$. Это противоречит выбору B_1 и B_2 . \blacksquare

Теорема 7. Пусть $M = [E, \mathcal{F}]$ — матроид. Тогда для любых членов C и D семейства \mathcal{F} циклов в M выполняются условия:

- (C1) если $C \subset D$, то C = D;
- (C2) если $C \neq D$ и $e \in C \cap D$, то найдется цикл $F \subset (C \cup D) \setminus \{e\}$.

И наоборот, если для любых множеств C и D из некоторого семейства $\mathbb C$ подмножеств E выполнены условия (C1) и (C2), то $\mathbb C$ является семейством циклов некоторого матроида на E.

Доказательство. " \Rightarrow " Выполнение (C1) очевидно.

Докажем выполнение (C2). Пусть $C \neq D$ и $e \in C \cap D$. Обозначим $A = C \cap D$. По условию, $A \in \mathcal{F}$. Допустим, что $(C \cup D) \setminus \{e\}$ независимо. Тогда по теореме 2 найдется независимое множество $B \subset C \cup D$ с $|B| = |C \cup D| - 1$ такое, что $B \supset A$. Но в этом случае $B \supset C$ или $B \supset D$.

" \Leftarrow " Пусть для любых множеств C и D из некоторого семейства $\mathfrak T$ подмножеств E выполнены условия (C1) и (C2).

Обозначим $\mathcal{F} = \{A \subseteq E : \exists \ C \in \mathcal{F} : C \setminus A \neq \emptyset\}$. Выполнение (*M*1) очевидно.

Предположим, что условие (M2) не выполняется.

Выберем пару (A, B) множеств из \mathcal{S} , противоречащих (M2), с максимальной мощностью пересечения, а среди таких — пару с минимальной мощностью A.

Пусть $A = \{x_1,...,x_m, a_1, ..., a_k\}, B = \{x_1, ..., x_m, b_1,..., b_p\}, p > k, A \cup \{b_i\} \notin \mathcal{F}$ при любом $1 \le i \le p$. Это означает, что

$$\forall i, 1 \leq i \leq p \quad \exists C_i \in \mathcal{C}: C_i \subseteq A \cup \{b_i\}.$$

По выбору (A,B), для пары $(A\setminus\{a_1\},B)$ найдется b_1 с $F=(A\setminus\{a_1\})\cup\{b_1\}$ $\in \mathcal{S}$. Снова по выбору (A,B) существует b_2 с $D=F\cup\{b_2\}\in \mathcal{S}$. Но по (C2) найдется $C\in \mathcal{C}$, $C\subseteq (C_1\cup C_2)\setminus\{a_1\}=D\setminus\{a_1\}$, что противоречит $D\in \mathcal{S}$.

Укажем на связь матроидов со структурами, на которых хорошо работают "жадные" алгоритмы.

Пусть E — конечное множество, \mathfrak{I} — подсемейство подмножеств множества E и $w:E\to R^+$ — функция, сопоставляющая каждому $e\in E$ его "вес" w(e). Требуется найти

$$\max\{\sum_{e \in S} w(e) | s \in \mathcal{F}\}$$
 (3)

и множество S, на котором максимум достигается.

"Жадный" алгоритм

- 1. Упорядочить E так, чтобы $w(e_1) \ge w(e_2) \ge ... \ge w(e_n)$;
- 2. $S := \emptyset$;
- 3. for i:=1 to n do if $S \cup \{e_i\} \in \mathcal{F}$ then $S:=S \cup \{e_i\}$;

Теорема Радо-Эдмондса. Если $M = [E, \mathcal{F}]$ — матроид, то множество S, найденное "жадным" алгоритмом, является решением задачи (3). Напротив, если $M = [E, \mathcal{F}]$ — не матроид, то найдется функция $w: E \to R^+$, для которой это S не будет оптимальным.

Доказательство. Пусть $M = [E, \mathcal{F}]$ — матроид, $S = \{s_1, ..., s_k\}$ — множество, найденное "жадным" алгоритмом; причем $w(s_1) \geq w(s_2) \geq ... \geq w(s_k)$. Отметим сначала, что S — база матроида M, поскольку отбрасывались лишь элементы, зависимые от S. Пусть $T = \{t_1, ..., t_k\}$ — другая база M и $w(t_1) \geq w(t_2) \geq ... \geq w(t_k)$. Предположим, что $w(t_i) > w(s_i)$ для некоторого i.

Рассмотрим независимые множества $A=\{s_1,...,\ s_{i-1}\}$ и $B=\{t_1,\ ...,\ t_i\}$. Согласно (M2) найдется такое $j,\ 1\leq j\leq i,\$ что $A\cup\{t_j\}\in\mathcal{S}$.

Ho $w(t_i) \ge w(t_i) > w(s_i)$.

Значит, $w(t_i) \le w(s_i)$ для каждого i, и S — решение (3).

Предположим теперь, что $M = [E, \mathcal{J}]$ не является матроидом.

Случай 1. Найдутся $B \in \mathcal{F}$ и $A \notin \mathcal{F}$ такие, что $A \subset B$. Положим

$$w(e) = egin{cases} 2, & e \in A, \ 1, & e \in B \setminus A, \ 0, & e \in E \setminus B. \end{cases}$$

Понятно, что искомым множеством в задаче (3) является B и

 $\sum_{e \in B} w(e) = \mid B \mid + \mid A \mid$. Но при работе "жадного" алгоритма кандидатами в S

вначале будут рассматриваться элементы множества A, и хотя бы один из них не будет включен в S.

Случай 2. Аксиома (M1) выполняется для \mathcal{S} , но найдутся $B \in \mathcal{S}$ и $A \in \mathcal{S}$ такие, что |A| < |B| и $A \cup \{e\} \notin \mathcal{S}$ для любого $e \in B \setminus A$. Обозначим m = |B|. Положим

$$w(e) = egin{cases} 1+1/m, & e \in A, \ 1, & e \in B \setminus A, \ 0, & e \in B \cup A. \end{cases}$$

Тогда "жадный" алгоритм сначала включит в S все элементы множества A, а затем ни один элемент множества $B\setminus A$ не добавится к S. Следовательно, суммарный вес элементов множества S будет равен $|A|(m+1)/m \le (m-1)(m+1)/m < m$. Но оптимальное решение задачи (3) не меньше чем |B| = m.

Пример. Задан граф G = (V, E) с весами $w_e \ge 0$, $e \in E$. Найти остовное дерево максимального веса.

Алгоритм Крускала

- 1. Упорядочить ребра $w(e_1) \ge w(e_2) \ge ... \ge w(e_k)$;
- 2. S := 0;
- 3. for i:=1, to k do if $S \cup \{e_i\}$ дерево, then $S:=S \cup \{e_i\}$

Как найти остовное дерево минимального веса?