Algorithms for Convex Optimization Suggested Solutions to A.4

- 1. $\omega \in (\alpha + \beta)\Omega \Rightarrow \frac{\omega}{\alpha + \beta} \in \Omega \Rightarrow \alpha \frac{\omega}{\alpha + \beta} + \beta \frac{\omega}{\alpha + \beta} \in \alpha\Omega + \beta\Omega \Rightarrow \omega \in (\alpha + \beta)\Omega \Rightarrow (\alpha + \beta)\Omega \subset \alpha\Omega + \beta\Omega$ $\omega \in \alpha\Omega + \beta\Omega \Rightarrow \exists \omega_{\alpha}, \, \omega_{\beta} \in \Omega \text{ s.t. } \omega = \alpha\omega_{\alpha} + \beta\omega_{\beta} \Rightarrow \frac{\alpha}{\alpha + \beta}\omega_{\alpha} + \frac{\beta}{\alpha + \beta}\omega_{\beta} \in \Omega. \quad (\Omega \text{ is convex})$ $\Rightarrow \frac{\alpha\omega_{\alpha} + \beta\omega_{\beta}}{\alpha + \beta} = \frac{\omega}{\alpha + \beta} \in \Omega \Rightarrow \omega \in (\alpha + \beta)\Omega \Rightarrow \alpha\Omega + \beta\Omega \subset (\alpha + \beta)\Omega.$
- 2. Hint: f^q is the composite of $h:[0,\infty)\to[0,\infty)$ and f, where $h(x)=x^q$ is convex and increasing.
- 3. Hint: $f(x+y) = f(2\frac{x+y}{2}) = 2f(\frac{x}{2} + \frac{y}{2}) \le 2(f(\frac{x}{2}) + f(\frac{y}{2})) = f(x) + f(y)$.
- 4. Hint:

Theorem 5.12 (*L*-smoothness and boundedness of the Hessian). Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function over \mathbb{R}^n . Then for a given $L \geq 0$, the following two claims are equivalent:

- (i) f is L-smooth w.r.t. the l_p -norm $(p \in [1, \infty])$.
- (ii) $\|\nabla^2 f(\mathbf{x})\|_{p,q} \le L$ for any $\mathbf{x} \in \mathbb{R}^n$, where $q \in [1, \infty]$ satisfies $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. (ii) \Rightarrow (i). Suppose that $\|\nabla^2 f(\mathbf{x})\|_{p,q} \leq L$ for any $\mathbf{x} \in \mathbb{R}^n$. Then by the fundamental theorem of calculus, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\nabla f(\mathbf{y}) = \nabla f(\mathbf{x}) + \int_0^1 \nabla^2 f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))(\mathbf{y} - \mathbf{x})dt$$
$$= \nabla f(\mathbf{x}) + \left(\int_0^1 \nabla^2 f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))dt\right) \cdot (\mathbf{y} - \mathbf{x}).$$

Then

$$\begin{split} \|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\|_q &= \left\| \left(\int_0^1 \nabla^2 f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) dt \right) \cdot (\mathbf{y} - \mathbf{x}) \right\|_q \\ &\leq \left\| \int_0^1 \nabla^2 f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) dt \right\|_{p,q} \|\mathbf{y} - \mathbf{x}\|_p \\ &\leq \left(\int_0^1 \|\nabla^2 f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))\|_{p,q} dt \right) \|\mathbf{y} - \mathbf{x}\|_p \\ &\leq L \|\mathbf{y} - \mathbf{x}\|_p, \end{split}$$

establishing (i).

(i) \Rightarrow (ii). Suppose now that f is L-smooth w.r.t. the l_p -norm. Then by the fundamental theorem of calculus, for any $\mathbf{d} \in \mathbb{R}^n$ and $\alpha > 0$,

$$\nabla f(\mathbf{x} + \alpha \mathbf{d}) - \nabla f(\mathbf{x}) = \int_0^\alpha \nabla^2 f(\mathbf{x} + t \mathbf{d}) \mathbf{d} dt.$$

Thus,

$$\left\| \left(\int_0^\alpha \nabla^2 f(\mathbf{x} + t\mathbf{d}) dt \right) \mathbf{d} \right\|_q = \|\nabla f(\mathbf{x} + \alpha \mathbf{d}) - \nabla f(\mathbf{x})\|_q \le \alpha L \|\mathbf{d}\|_p.$$

Dividing by α and taking the limit $\alpha \to 0^+$, we obtain

$$\|\nabla^2 f(\mathbf{x})\mathbf{d}\|_{q} \le L\|\mathbf{d}\|_{p}$$
 for any $\mathbf{d} \in \mathbb{R}^n$,

implying that $\|\nabla^2 f(\mathbf{x})\|_{p,q} \leq L$.

A direct consequence is that for twice continuously differentiable convex functions, L-smoothness w.r.t. the l_2 -norm is equivalent to the property that the maximum eigenvalue of the Hessian matrix is smaller than or equal to L.

Corollary 5.13. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable convex function over \mathbb{R}^n . Then f is L-smooth w.r.t. the l_2 -norm if and only if $\lambda_{\max}(\nabla^2 f(\mathbf{x})) \le L$ for any $\mathbf{x} \in \mathbb{R}^n$.

Proof. Since f is convex, it follows that $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in \mathbb{R}^n$. Therefore, in this case,

$$\|\nabla^2 f(\mathbf{x})\|_{2,2} = \sqrt{\lambda_{\max}((\nabla^2 f(\mathbf{x}))^2)} = \lambda_{\max}(\nabla^2 f(\mathbf{x})),$$

which, combined with Theorem 5.12, establishes the desired result.

5. Hint:

[prox of g_5] We will first assume that $\eta < \infty$. Note that $\tilde{u} = \text{prox}_{g_5}(x)$ is the minimizer of

$$w(u) = \frac{1}{2}(u - x)^2$$

over $[0, \eta]$. The minimizer of w over \mathbb{R} is u = x. Therefore, if $0 \le x \le \eta$, then $\tilde{u} = x$. If x < 0, then w is increasing over $[0, \eta]$, and hence $\tilde{u} = 0$. Finally, if $x > \eta$, then w is decreasing over $[0, \eta]$, and thus $\tilde{u} = \eta$. To conclude,

$$\operatorname{prox}_{g_5}(x) = \tilde{u} = \left\{ \begin{array}{ll} x, & 0 \leq x \leq \eta, \\ \\ 0, & x < 0, \\ \\ \eta, & x > \eta, \end{array} \right. = \min\{\max\{x, 0\}, \eta\}.$$

For $\eta = \infty$, $g_5(x) = \delta_{[0,\infty)}(x)$, and in this case, g_5 is identical to g_1 with $\mu = 0$, implying that $\text{prox}_{g_5}(x) = [x]_+$, which can also be written as

$$\operatorname{prox}_{q_5}(x) = \min\{\max\{x, 0\}, \infty\}.$$

6.

(1).
$$\partial f(x) = \begin{cases} -e^{-x} \\ [-1,1] \\ e^x \end{cases}$$

Example 3.41 (subdifferential set of the l_1 -norm function—strong result). Consider the function $f: \mathbb{R}^n \to \mathbb{R}$ given by $f(\mathbf{x}) = \|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$. Then $f = \sum_{i=1}^n f_i$, where $f_i(\mathbf{x}) \equiv |x_i|$. We have (see also Example 3.34)

$$\partial f_i(\mathbf{x}) = \begin{cases} \{\operatorname{sgn}(x_i)\mathbf{e}_i\}, & x_i \neq 0, \\ [-\mathbf{e}_i, \mathbf{e}_i], & x_i = 0. \end{cases}$$

Thus, by Corollary 3.39,

$$\partial f(\mathbf{x}) = \sum_{i=1}^{n} \partial f_i(\mathbf{x}) = \sum_{i \in I_{\neq}(\mathbf{x})} \operatorname{sgn}(x_i) \mathbf{e}_i + \sum_{i \in I_0(\mathbf{x})} [-\mathbf{e}_i, \mathbf{e}_i],$$

where

$$I_{\neq}(\mathbf{x}) = \{i : x_i \neq 0\}, \ I_0(\mathbf{x}) = \{i : x_i = 0\},\$$

and hence

 $\partial f(\mathbf{x}) = \{ \mathbf{z} \in \mathbb{R}^n : z_i = \operatorname{sgn}(x_i), i \in I_{\neq}(\mathbf{x}), |z_j| \le 1, j \in I_0(\mathbf{x}) \}.$

(2) Hint:

7.

8. .

Proof: (a) For any $y \in \mathbb{R}^n$,

$$g^{*}(y) = \max_{x} \left\{ \langle y, x \rangle - g(x) \right\}$$

$$= \max_{x} \left\{ \langle y, x \rangle - \alpha f\left(\frac{x}{\alpha}\right) \right\}$$

$$= \alpha \max_{x} \left\{ \langle y, \frac{x}{\alpha} \rangle - f\left(\frac{x}{\alpha}\right) \right\}$$

$$\stackrel{z \leftarrow \frac{x}{\alpha}}{=} \alpha \max_{x} \left\{ \langle y, z \rangle - f(z) \right\}$$

$$= \alpha f^{*}(y).$$

(b) Note that

$$\operatorname{prox}_{g}(x) = \operatorname{arg\,min}_{u} \left\{ g(u) + \frac{1}{2} \left\| \left\| u - x \right\|^{2} \right\} = \operatorname{arg\,min}_{u} \left\{ \alpha f\left(\frac{u}{\alpha}\right) + \frac{1}{2} \left\| \left\| u - x \right\|^{2} \right\}.$$

Making the change of variables $z = \frac{x}{\alpha}$, we can continue to write

$$\begin{split} \operatorname{prox}_{g}(x) &= \alpha \arg \min_{z} \left\{ \alpha f(z) + \frac{1}{2} \left\| \alpha z - x \right\|^{2} \right\} \\ &= \alpha \arg \min_{z} \left\{ \alpha^{2} \left(\frac{f(z)}{\alpha} + \frac{1}{2} \left\| z - \frac{x}{\alpha} \right\|^{2} \right) \right\} \\ &= \alpha \arg \min_{z} \left\{ \frac{f(z)}{\alpha} + \frac{1}{2} \left\| z - \frac{x}{\alpha} \right\|^{2} \right\} \\ &= \alpha \operatorname{prox}_{f/\alpha}(x/\alpha). \end{split}$$

9.

10.

11.

12. Choose

$$f_1(x) = f_2(x) = \begin{cases} |x|, & \text{if } x \neq 0. \\ -1, & \text{otherwise }. \end{cases}$$

Then $(f_1 * f_2)(x) = x^2$ if $x \neq 0$ and $(f_1 * f_2)(x) = 1$ otherwise.

13. Just calculate the subdifferential formula. Notice for the interval $\Omega=[a,b],$ we have

$$\partial d(\bar{x}; \Omega) = \begin{cases} \{0\} & \text{if } \bar{x} \in (a, b), \\ [0, 1] & \text{if } \bar{x} = b, \\ \{1\} & \text{if } \bar{x} > b, \\ [-1, 0] & \text{if } \bar{x} = a, \\ \{-1\} & \text{if } \bar{x} < b. \end{cases}$$

Then use the sum rule of subdifferential calculus.

14. .

Proof Suppose $a_{i \max} = \max\{a_1, a_2, \dots, a_k\}$, on the one hand, if we take $\lambda_{i \max} = 1$, $\lambda_{i \neq i \max} = 0$, then we have

$$\max\{a_1, a_2, \cdots, a_k\} \le \max_{\lambda \in \Delta_k} \sum_{i=1}^k \lambda_i a_i. \tag{1.1}$$

On the other hand, since

$$\max_{\lambda \in \Delta_k} \sum_{i=1}^k \lambda_i a_i \le \{ \sum_{i=1}^k \lambda_i a_{i \max}, \mid \lambda \in \Delta_k \} = a_{i \max},$$

and thus we have

$$\max\{a_1, a_2, \cdots, a_k\} \ge \max_{\lambda \in \Delta_k} \sum_{i=1}^k \lambda_i a_i. \tag{1.2}$$

By inequalities (1.1) and (1.2), we complete the proof.

15.

16.

17.

18.

- 19. Counterexample: $f(x) = x^2$ with $\Omega = [1, 4]$, then $f^{-1}(\Omega) = [-2, -1] \cup [1, 2]$ is not convex.
- 20. Hint: For any $\omega \in \Omega$, the function $|\cdot \omega|$ is convex. Recall that the maximum (or supremum) function is convex.

- 21. (c). Recall Theorem (convexity under partial minimization).
 - (d). Recall second prox theorem and its corollary and Theorem (smoothness of the Moreau envelope)

 $x^* \in \mathop{\rm arg\,min}\nolimits f \Leftrightarrow x^* = \mathop{\rm prox}\nolimits_f(x^*) \Leftrightarrow x^* = \mathop{\rm prox}\nolimits_{\mu f}(x^*) \Leftrightarrow \nabla M_f^\mu(x^*) = 0 \Leftrightarrow x^* \in \mathop{\rm arg\,min}\nolimits M_f^\mu.$

(e). For any $x^* \in \arg\min M_f^{\mu}$, recall the alternative expression of M_f^{μ} :

$$\min_{x \in \mathbb{R}^n} M_f^{\mu}(x) = M_f^{\mu}(x^*) = f\left(\mathrm{prox}_{\mu f}(x^*) \right) + \frac{1}{2\mu} \left\| x^* - \mathrm{prox}_{\mu f}(x^*) \right\|^2 = f(x^*) = \min_{x \in \mathbb{R}^n} f(x).$$

22.

23. Hint:

$$\frac{\lambda x + (1 - \lambda)y}{\lambda t_x + (1 - \lambda)t_y} = \frac{\lambda t_x}{\lambda t_x + (1 - \lambda)t_y} \frac{x}{t_x} + \frac{(1 - \lambda)t_y}{\lambda t_x + (1 - \lambda)t_y} \frac{y}{t_y}$$

24.

$$g^*(y,s) = \sup_{x/t \in \text{dom}(f), t > 0} \{ \langle y, x \rangle + st - g(x,t) \}$$

$$= \sup_{z \in \text{dom}(f), t > 0} \{ t \langle y, z \rangle + st - tf(z) \}$$

$$= \sup_{t > 0} \{ t (f^*(y) + s) \}$$

$$= \begin{cases} 0, & \text{if } f^*(y) + s \leq 0, \\ \infty, & \text{otherwise} \end{cases}$$