Monday, October 9, 2017

7:43 PM

Data Structures in Python

- **Lists** Standard arrays, these ARE mutable and Python passes them by reference. NOT parameterized, can hold multiple data types in one array.
 - Iterate through items using "For I in range arrayname:"
 - Strings and lists operate pretty much the same way
 - Functions:
 - .count() -> Counts number of occurences of a substring or
 - element
 - .clear, .sort, .reverse, .remove, .append, .index self explanatory
 - List.copy() is ONLY in Python 3.
 - If appending another list to a list, use .extend
 - Use .join to combine elements in an array
 - □ Ex: ','.join(['1','2','3']) -> "1,2,3" | "".join(['a','b','c']) ->
 - Arr.pop(index) removes AND returns element in the index

a = [1,2,3,[4,5,6]]

Quick Notes on Strings:

- Strings are immutable. They cannot be altered.
 - □ For example, "cello"[0] = 'h' doesn't work. Must use **str.replace()**
 - □ Python is smart enough that appending still works fine with += operators
 - □ String -> Array using .split()
 - ◆ "Hello World".split(" ") -> ["Hello","World"]
 - □ To get individual character array, use list("Hello")
 - □ **Str.Istrip()** removes leading characters, .rstrip removes trailing chars

 - Str.strip() removes BOTH trailing and leading. Nice for removing spaces if you expect to have them.

Mapping

- Advanced list function. Can be VERY powerful
- Map(function, iterable) -> Applies function to every item in iterable list
 - □ Ex:

```
items = [1, 2, 3, 4, 5]
squared = map(lambda x: x**2, items)) -> [1,4,9,16,25]
```

- ◆ In Python 3, map returns a map object, so use list(map(...)) instead
- ◆ Lambda X is how Python handles anonymous functions. It allows you to apply non-static functions to the iterable objects, such as x.upper(), x.lower()... etc...
- Here is an example from my code https://github.com/KevinTXY/CSSI General/blob/master/problems/ old/anon_notes.py
- ^ This map function is very space efficient. I had to take two strings, lowercase them, and .split them into arrays. Instead of doing it individually for both of them, I used a map function and stuck both strings into a list to do it all in ONE line.
- Similarly filter() and reduce() are very cool functions for easy list comprehensive

Tuples

- Tuples are very efficient data structures
- Declared using parentheses
 - Ex: coords = (112, 341)
- o Functions (only two):
 - .count(element), .index(element)
- Tuples are IMMUTABLE (cannot be altered, which protects the data).
- Can be used as keys in dictionaries because they are immutable
 - Ex: Nice if you want to attach a value to a set of coordinates. Dict[(x,y,z)] = "Stuff"
- Nice and efficient for things like coordinate data (x, y, z)
- Some math operators like max(tuple) and string conversion like str(tuple) is supported

Dictionaries

- Refer to cheat sheet below for declaration
- Functions:
 - Dict.keys() and dict.values() returns lists of all keys and values respectively. Very useful for iterating.
 - Dict.items() returns list of tuples that have key and value in them
 - □ Ex: dict.values() -> [(key1, value1), (key2, value2)]
 - Use .copy() to create a copy of a dictionary. Simply doing dict2 = dict1 will pass dict1
 in by reference so editing either will affect both.
 - ☐ Can also use .fromkeys (d2.fromkeys(...)) to only grab a few keys
 - .get() returns value at key, .pop() returns and removes value at key
 - .popitem() removes and returns a key value pair, but it does not take in an index because dictionaries are not sorted.
 - .has_key exists, but better to just use key in dict
 - Combine dictionaries with .update
 - .itervalues(), .iterkeys(), .iteritems() are nice for iterative work. Not super important though because the functions in the first bullet are better.
- Despite not being sorted, Python does accurate compare dictionaries!
- Sets Sets are like lists except they cannot have multiple occurences of the same element
 - o "Unordered collection of unique and immutable objects"
 - Can be declared using {}
 - Myset = {1, 2, 3}
 - Sets are Objects and not primitive data structures, and must be treated like so
 - Myset[0], for example, does not work. Set must be converted to list first. list(myset)[index] is a valid way to index sets
 - Oftentimes instead of declaring sets, you will turn lists into sets
 - set([1, 1, 2, 3, 3, 4]) -> set([1,2,3,4])
 - Functions (Many can be replaced by mathematical operaors) :
 - .update([iterable list]) to add stuff
 - .add() to add individual items

- .pop, .clear, .union, .remove self explanatory
- .issubset(), .issuperset(), check if one set is a subset or superset of the other.
 - \Box C.issubset(a) is the same as c <= a. Test if every element in c is in a.
 - \Box C.issuperset(a) is the same as c >= a. Reverse of Above.
- .difference() returns difference of two sets
 - □ A.difference(b) is the same as a b
- .copy()
- **.intersection()** finds like elements in two sets. Incredibly helpful for some interview questions. See examples in image below.

```
>>> a = set([1, 2, 3])
>>> b = set([2, 3, 4])
>>> c = a.intersection(b) # equivalent to c = a
>>> a.intersection(b)
set([2, 3])
```

Ternary Operators

- Python supports some very convenient assignment operators, best seen in examples
- isZero = True if x is 0 else False
 - Just as it reads, this code assigns True to the variable isZero if x == 0, otherwise it is
 False
- \circ X = 6 if 2 < 1 else 5
 - X gets assigned 5 because conditional is failed.
- This can be extremely powerful and makes for clean code by removing need to complex if statement blocks.

• List Comprehension

- List comprehension can be used to create lists in very easy and natural ways
- Best understood by examples
- Ex:
 - $S = [x^{**}2 \text{ for } x \text{ in range}(5)] \rightarrow [0, 1, 4, 9, 16]$
 - What this is saying is, "For every element in my array, give me that element squared"
- \circ S = [x for x in [1,2,3,4,5,6] if x % 2 == 0] -> [2,4,6]
 - "For every element in this array, return that element into this new list if it is even"
- List comprehensions are incredibly powerful and there are many more intense examples. Works kind of similarly to map and filter functions.
- http://www.secnetix.de/olli/Python/list comprehensions.hawk
- http://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/

Beginner's Python Cheat Sheet

Variables and Strings

Variables are used to store values. A string is a series of characters, surrounded by single or double quotes.

Hello world

```
print("Hello world!")
```

Hello world with a variable

```
msg = "Hello world!"
print(msg)
```

Concatenation (combining strings)

```
first_name = 'albert'
last_name = 'einstein'
full_name = first_name + ' ' + last_name
print(full_name)
```

Lists

A list stores a series of items in a particular order. You access items using an index, or within a loop.

Make a list

```
bikes = ['trek', 'redline', 'giant']
```

Get the first item in a list

```
first_bike = bikes[0]
```

Get the last item in a list

```
last bike = bikes[-1]
```

Looping through a list

```
for bike in bikes:
    print(bike)
```

Adding items to a list

```
bikes = []
bikes.append('trek')
bikes.append('redline')
bikes.append('giant')
```

Making numerical lists

```
squares = []
for x in range(1, 11):
    squares.append(x**2)
```

Lists (cont.)

List comprehensions

```
squares = [x**2 \text{ for } x \text{ in range}(1, 11)]
```

Slicing a list

```
finishers = ['sam', 'bob', 'ada', 'bea']
first two = finishers[:2]
```

Copying a list

```
copy of bikes = bikes[:]
```

Tuples

Tuples are similar to lists, but the items in a tuple can't be modified.

Making a tuple

```
dimensions = (1920, 1080)
```

If statements

If statements are used to test for particular conditions and respond appropriately.

Conditional tests

Conditional test with lists

```
'trek' in bikes
'surly' not in bikes
```

Assigning boolean values

```
game_active = True
can edit = False
```

A simple if test

```
if age >= 18:
    print("You can vote!")
```

If-elif-else statements

```
if age < 4:
    ticket_price = 0
elif age < 18:
    ticket_price = 10
else:
    ticket_price = 15</pre>
```

Dictionaries

Dictionaries store connections between pieces of information. Each item in a dictionary is a key-value pair.

A simple dictionary

```
alien = {'color': 'green', 'points': 5}
Accessing a value
print("The alien's color is " + alien['color'])
```

Adding a new key-value pair

```
alien['x position'] = 0
```

Looping through all key-value pairs

```
fav_numbers = {'eric': 17, 'ever': 4}
for name, number in fav_numbers.items():
    print(name + ' loves ' + str(number))
```

Looping through all keys

```
fav_numbers = {'eric': 17, 'ever': 4}
for name in fav_numbers.keys():
    print(name + ' loves a number')
```

Looping through all the values

```
fav_numbers = {'eric': 17, 'ever': 4}
for number in fav_numbers.values():
    print(str(number) + ' is a favorite')
```

User input

Your programs can prompt the user for input. All input is stored as a string.

Prompting for a value

```
name = input("What's your name? ")
print("Hello, " + name + "!")
```

Prompting for numerical input

```
age = input("How old are you? ")
age = int(age)

pi = input("What's the value of pi? ")
pi = float(pi)
```

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

While loops

A while loop repeats a block of code as long as a certain condition is true.

A simple while loop

```
current_value = 1
while current_value <= 5:
    print(current_value)
    current value += 1</pre>
```

Letting the user choose when to quit

```
msg = ''
while msg != 'quit':
    msg = input("What's your message? ")
    print(msg)
```

Functions

Functions are named blocks of code, designed to do one specific job. Information passed to a function is called an argument, and information received by a function is called a parameter.

A simple function

```
def greet_user():
    """Display a simple greeting."""
    print("Hello!")
greet_user()
```

Passing an argument

```
def greet_user(username):
    """Display a personalized greeting."""
    print("Hello, " + username + "!")
greet_user('jesse')
```

Default values for parameters

```
def make_pizza(topping='bacon'):
    """Make a single-topping pizza."""
    print("Have a " + topping + " pizza!")

make_pizza()
make_pizza('pepperoni')
```

Returning a value

```
def add_numbers(x, y):
    """Add two numbers and return the sum."""
    return x + y

sum = add_numbers(3, 5)
print(sum)
```

Classes

A class defines the behavior of an object and the kind of information an object can store. The information in a class is stored in attributes, and functions that belong to a class are called methods. A child class inherits the attributes and methods from its parent class.

Creating a dog class

```
class Dog():
    """Represent a dog."""

    def __init__(self, name):
        """Initialize dog object."""
        self.name = name

    def sit(self):
        """Simulate sitting."""
        print(self.name + " is sitting.")

my_dog = Dog('Peso')

print(my_dog.name + " is a great dog!")
my_dog.sit()
```

Inheritance

```
class SARDog(Dog):
    """Represent a search dog."""

    def __init__(self, name):
        """Initialize the sardog."""
        super().__init__(name)

    def search(self):
        """Simulate searching."""
        print(self.name + " is searching.")

my_dog = SARDog('Willie')

print(my_dog.name + " is a search dog.")
my_dog.sit()
my_dog.search()
```

Infinite Skills

If you had infinite programming skills, what would you build?

As you're learning to program, it's helpful to think about the real-world projects you'd like to create. It's a good habit to keep an "ideas" notebook that you can refer to whenever you want to start a new project. If you haven't done so already, take a few minutes and describe three projects you'd like to create.

Working with files

Your programs can read from files and write to files. Files are opened in read mode ('r') by default, but can also be opened in write mode ('w') and append mode ('a').

Reading a file and storing its lines

```
filename = 'siddhartha.txt'
with open(filename) as file_object:
    lines = file_object.readlines()

for line in lines:
    print(line)
```

Writing to a file

```
filename = 'journal.txt'
with open(filename, 'w') as file_object:
    file_object.write("I love programming.")
```

Appending to a file

```
filename = 'journal.txt'
with open(filename, 'a') as file_object:
    file_object.write("\nI love making games.")
```

Exceptions

Exceptions help you respond appropriately to errors that are likely to occur. You place code that might cause an error in the try block. Code that should run in response to an error goes in the except block. Code that should run only if the try block was successful goes in the else block.

Catching an exception

```
prompt = "How many tickets do you need? "
num_tickets = input(prompt)

try:
    num_tickets = int(num_tickets)
except ValueError:
    print("Please try again.")
else:
    print("Your tickets are printing.")
```

Zen of Python

Simple is better than complex

If you have a choice between a simple and a complex solution, and both work, use the simple solution. Your code will be easier to maintain, and it will be easier for you and others to build on that code later on.

More cheat sheets available at ehmatthes.github.io/pcc/

Beginner's Python Cheat Sheet - Lists

What are lists?

A list stores a series of items in a particular order. Lists allow you to store sets of information in one place, whether you have just a few items or millions of items. Lists are one of Python's most powerful features readily accessible to new programmers, and they tie together many important concepts in programming.

Defining a list

Use square brackets to define a list, and use commas to separate individual items in the list. Use plural names for lists, to make your code easier to read.

Making a list

```
users = ['val', 'bob', 'mia', 'ron', 'ned']
```

Accessing elements

Individual elements in a list are accessed according to their position, called the index. The index of the first element is 0, the index of the second element is 1, and so forth. Negative indices refer to items at the end of the list. To get a particular element, write the name of the list and then the index of the element in square brackets.

Getting the first element

```
first user = users[0]
```

Getting the second element

second_user = users[1]

Getting the last element

newest_user = users[-1]

Modifying individual items

Once you've defined a list, you can change individual elements in the list. You do this by referring to the index of the item you want to modify.

Changing an element

```
users[0] = 'valerie'
users[-2] = 'ronald'
```

Adding elements

You can add elements to the end of a list, or you can insert them wherever you like in a list.

Adding an element to the end of the list

```
users.append('amy')
```

Starting with an empty list

```
users = []
users.append('val')
users.append('bob')
users.append('mia')
```

Inserting elements at a particular position

```
users.insert(0, 'joe')
users.insert(3, 'bea')
```

Removing elements

You can remove elements by their position in a list, or by the value of the item. If you remove an item by its value, Python removes only the first item that has that value.

Deleting an element by its position

```
del users[-1]
```

Removing an item by its value

```
users.remove('mia')
```

Popping elements

If you want to work with an element that you're removing from the list, you can "pop" the element. If you think of the list as a stack of items, pop() takes an item off the top of the stack. By default pop() returns the last element in the list, but you can also pop elements from any position in the list.

Pop the last item from a list

```
most_recent_user = users.pop()
print(most recent user)
```

Pop the first item in a list

```
first_user = users.pop(0)
print(first_user)
```

List length

The len() function returns the number of items in a list.

Find the length of a list

```
num_users = len(users)
print("We have " + str(num_users) + " users.")
```

Sorting a list

The sort() method changes the order of a list permanently. The sorted() function returns a copy of the list, leaving the original list unchanged. You can sort the items in a list in alphabetical order, or reverse alphabetical order. You can also reverse the original order of the list. Keep in mind that lowercase and uppercase letters may affect the sort order.

Sorting a list permanently

```
users.sort()
```

Sorting a list permanently in reverse alphabetical order

```
users.sort(reverse=True)
```

Sorting a list temporarily

```
print(sorted(users))
print(sorted(users, reverse=True))
```

Reversing the order of a list

```
users.reverse()
```

Looping through a list

Lists can contain millions of items, so Python provides an efficient way to loop through all the items in a list. When you set up a loop, Python pulls each item from the list one at a time and stores it in a temporary variable, which you provide a name for. This name should be the singular version of the list name.

The indented block of code makes up the body of the loop, where you can work with each individual item. Any lines that are not indented run after the loop is completed.

Printing all items in a list

```
for user in users:
    print(user)
```

Printing a message for each item, and a separate message afterwards

```
for user in users:
    print("Welcome, " + user + "!")
```

print("Welcome, we're glad to see you all!")

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

The range() function

You can use the range() function to work with a set of numbers efficiently. The range() function starts at 0 by default, and stops one number below the number passed to it. You can use the list() function to efficiently generate a large list of numbers.

Printing the numbers 0 to 1000

```
for number in range(1001):
    print(number)
```

Printing the numbers 1 to 1000

```
for number in range(1, 1001):
    print(number)
```

Making a list of numbers from 1 to a million

```
numbers = list(range(1, 1000001))
```

Simple statistics

There are a number of simple statistics you can run on a list containing numerical data.

Finding the minimum value in a list

```
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
youngest = min(ages)
```

Finding the maximum value

```
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77] oldest = max(ages)
```

Finding the sum of all values

```
ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77] total years = sum(ages)
```

Slicing a list

You can work with any set of elements from a list. A portion of a list is called a slice. To slice a list start with the index of the first item you want, then add a colon and the index after the last item you want. Leave off the first index to start at the beginning of the list, and leave off the last index to slice through the end of the list.

Getting the first three items

```
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
first three = finishers[:3]
```

Getting the middle three items

```
middle_three = finishers[1:4]
```

Getting the last three items

```
last three = finishers[-3:]
```

Copying a list

To copy a list make a slice that starts at the first item and ends at the last item. If you try to copy a list without using this approach, whatever you do to the copied list will affect the original list as well.

Making a copy of a list

```
finishers = ['kai', 'abe', 'ada', 'gus', 'zoe']
copy_of_finishers = finishers[:]
```

List comprehensions

You can use a loop to generate a list based on a range of numbers or on another list. This is a common operation, so Python offers a more efficient way to do it. List comprehensions may look complicated at first; if so, use the for loop approach until you're ready to start using comprehensions.

To write a comprehension, define an expression for the values you want to store in the list. Then write a for loop to generate input values needed to make the list.

Using a loop to generate a list of square numbers

```
squares = []
for x in range(1, 11):
    square = x**2
    squares.append(square)
```

Using a comprehension to generate a list of square numbers

```
squares = [x**2 \text{ for } x \text{ in range}(1, 11)]
```

Using a loop to convert a list of names to upper case

```
names = ['kai', 'abe', 'ada', 'gus', 'zoe']
upper_names = []
for name in names:
    upper_names.append(name.upper())
```

Using a comprehension to convert a list of names to upper case

```
names = ['kai', 'abe', 'ada', 'gus', 'zoe']
upper_names = [name.upper() for name in names]
```

Styling your code

Readability counts

- Use four spaces per indentation level.
- Keep your lines to 79 characters or fewer.
- Use single blank lines to group parts of your program visually.

Tuples

A tuple is like a list, except you can't change the values in a tuple once it's defined. Tuples are good for storing information that shouldn't be changed throughout the life of a program. Tuples are designated by parentheses instead of square brackets. (You can overwrite an entire tuple, but you can't change the individual elements in a tuple.)

Defining a tuple

```
dimensions = (800, 600)
```

Looping through a tuple

```
for dimension in dimensions:
    print(dimension)
```

Overwriting a tuple

```
dimensions = (800, 600)
print(dimensions)

dimensions = (1200, 900)
```

Visualizing your code

When you're first learning about data structures such as lists, it helps to visualize how Python is working with the information in your program. pythontutor.com is a great tool for seeing how Python keeps track of the information in a list. Try running the following code on pythontutor.com, and then run your own code.

Build a list and print the items in the list

```
dogs = []
dogs.append('willie')
dogs.append('hootz')
dogs.append('peso')
dogs.append('goblin')

for dog in dogs:
    print("Hello " + dog + "!")
print("I love these dogs!")

print("\nThese were my first two dogs:")
old_dogs = dogs[:2]
for old_dog in old_dogs:
    print(old_dog)

del dogs[0]
dogs.remove('peso')
print(dogs)
```

More cheat sheets available at ehmatthes.github.io/pcc/

Beginner's Python Cheat Sheet — Dictionaries

What are dictionaries?

Python's dictionaries allow you to connect pieces of related information. Each piece of information in a dictionary is stored as a key-value pair. When you provide a key, Python returns the value associated with that key. You can loop through all the key-value pairs, all the keys, or all the values.

Defining a dictionary

Use curly braces to define a dictionary. Use colons to connect keys and values, and use commas to separate individual key-value pairs.

Making a dictionary

```
alien_0 = {'color': 'green', 'points': 5}
```

Accessing values

To access the value associated with an individual key give the name of the dictionary and then place the key in a set of square brackets. If the key you're asking for is not in the dictionary, an error will occur.

You can also use the get() method, which returns None instead of an error if the key doesn't exist. You can also specify a default value to use if the key is not in the dictionary.

Getting the value associated with a key

```
alien_0 = {'color': 'green', 'points': 5}
print(alien_0['color'])
print(alien_0['points'])
```

Getting the value with get()

```
alien_0 = {'color': 'green'}
alien_color = alien_0.get('color')
alien_points = alien_0.get('points', 0)
print(alien_color)
print(alien_points)
```

Adding new key-value pairs

You can store as many key-value pairs as you want in a dictionary, until your computer runs out of memory. To add a new key-value pair to an existing dictionary give the name of the dictionary and the new key in square brackets, and set it equal to the new value.

This also allows you to start with an empty dictionary and add key-value pairs as they become relevant.

Adding a key-value pair

```
alien_0 = {'color': 'green', 'points': 5}
alien_0['x'] = 0
alien_0['y'] = 25
alien_0['speed'] = 1.5
```

Adding to an empty dictionary

```
alien_0 = {}
alien_0['color'] = 'green'
alien 0['points'] = 5
```

Modifying values

You can modify the value associated with any key in a dictionary. To do so give the name of the dictionary and enclose the key in square brackets, then provide the new value for that key.

Modifying values in a dictionary

```
alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

# Change the alien's color and point value.
alien_0['color'] = 'yellow'
alien_0['points'] = 10
print(alien 0)
```

Removing key-value pairs

You can remove any key-value pair you want from a dictionary. To do so use the del keyword and the dictionary name, followed by the key in square brackets. This will delete the key and its associated value.

Deleting a key-value pair

```
alien_0 = {'color': 'green', 'points': 5}
print(alien_0)

del alien_0['points']
print(alien_0)
```

Visualizing dictionaries

Try running some of these examples on pythontutor.com.

Looping through a dictionary

You can loop through a dictionary in three ways: you can loop through all the key-value pairs, all the keys, or all the values.

A dictionary only tracks the connections between keys and values; it doesn't track the order of items in the dictionary. If you want to process the information in order, you can sort the keys in your loop.

Looping through all key-value pairs

```
# Store people's favorite languages.
fav_languages = {
    'jen': 'python',
    'sarah': 'c',
    'edward': 'ruby',
    'phil': 'python',
    }
# Show each person's favorite language.
for name, language in fav_languages.items():
    print(name + ": " + language)
```

Looping through all the keys

```
# Show everyone who's taken the survey.
for name in fav_languages.keys():
    print(name)
```

Looping through all the values

```
# Show all the languages that have been chosen.
for language in fav_languages.values():
    print(language)
```

Looping through all the keys in order

```
# Show each person's favorite language,
# in order by the person's name.
for name in sorted(fav_languages.keys()):
    print(name + ": " + language)
```

Dictionary length

You can find the number of key-value pairs in a dictionary.

Finding a dictionary's length

```
num_responses = len(fav_languages)
```

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Nesting — A list of dictionaries

It's sometimes useful to store a set of dictionaries in a list; this is called nesting.

Storing dictionaries in a list

```
# Start with an empty list.
users = []
# Make a new user, and add them to the list.
new user = {
    'last': 'fermi',
    'first': 'enrico',
    'username': 'efermi',
users.append(new user)
# Make another new user, and add them as well.
new user = {
    'last': 'curie',
    'first': 'marie',
    'username': 'mcurie',
users.append(new user)
# Show all information about each user.
for user dict in users:
    for k, v in user dict.items():
        print(k + ": " + v)
    print("\n")
```

You can also define a list of dictionaries directly, without using append():

```
# Define a list of users, where each user
# is represented by a dictionary.
users = [
    {
        'last': 'fermi',
        'first': 'enrico',
        'username': 'efermi',
    },
        'last': 'curie',
        'first': 'marie',
        'username': 'mcurie',
    },
1
# Show all information about each user.
for user dict in users:
    for k, v in user dict.items():
        print(k + ": " + v)
    print("\n")
```

Nesting — Lists in a dictionary

Storing a list inside a dictionary alows you to associate more than one value with each key.

Storing lists in a dictionary

```
# Store multiple languages for each person.
fav_languages = {
    'jen': ['python', 'ruby'],
    'sarah': ['c'],
    'edward': ['ruby', 'go'],
    'phil': ['python', 'haskell'],
}
# Show all responses for each person.
for name, langs in fav_languages.items():
    print(name + ": ")
    for lang in langs:
        print("- " + lang)
```

Nesting — A dictionary of dictionaries

You can store a dictionary inside another dictionary. In this case each value associated with a key is itself a dictionary.

Storing dictionaries in a dictionary

```
users = {
    'aeinstein': {
        'first': 'albert',
        'last': 'einstein',
        'location': 'princeton',
        },
    'mcurie': {
        'first': 'marie',
        'last': 'curie',
        'location': 'paris',
        },
   }
for username, user dict in users.items():
    print("\nUsername: " + username)
   full name = user dict['first'] + " "
   full name += user dict['last']
   location = user dict['location']
   print("\tFull name: " + full name.title())
   print("\tLocation: " + location.title())
```

Levels of nesting

Nesting is extremely useful in certain situations. However, be aware of making your code overly complex. If you're nesting items much deeper than what you see here there are probably simpler ways of managing your data, such as using classes.

Using an OrderedDict

Standard Python dictionaries don't keep track of the order in which keys and values are added; they only preserve the association between each key and its value. If you want to preserve the order in which keys and values are added, use an OrderedDict.

Preserving the order of keys and values

```
from collections import OrderedDict

# Store each person's languages, keeping
# track of who respoded first.
fav_languages = OrderedDict()

fav_languages['jen'] = ['python', 'ruby']
fav_languages['sarah'] = ['c']
fav_languages['edward'] = ['ruby', 'go']
fav_languages['phil'] = ['python', 'haskell']

# Display the results, in the same order they
# were entered.
for name, langs in fav_languages.items():
    print(name + ":")
    for lang in langs:
        print("- " + lang)
```

Generating a million dictionaries

You can use a loop to generate a large number of dictionaries efficiently, if all the dictionaries start out with similar data.

A million aliens

```
aliens = []

# Make a million green aliens, worth 5 points
# each. Have them all start in one row.
for alien_num in range(1000000):
    new_alien = {}
    new_alien['color'] = 'green'
    new_alien['points'] = 5
    new_alien['x'] = 20 * alien_num
    new_alien['y'] = 0
    aliens.append(new_alien)

# Prove the list contains a million aliens.
num_aliens = len(aliens)

print("Number of aliens created:")
print(num_aliens)
```

More cheat sheets available at ehmatthes.github.io/pcc/