Department of Computer Science Ashoka University

Introduction to Machine Learning

Assignment 1

Collaborators: None Name: Rushil Gupta

Question 1

Question 1.1

Since we want λ to be the coefficient of x, we have:

$$\eta = \log \lambda \implies \lambda = e^{\eta} \implies e^{\eta \cdot x} = e^{\log \lambda^x} = \lambda^x$$

So, we want the remaining $e^{-\lambda}$ term to be $e^{-e^{\eta}}$. So, we get:

$$A(\eta) = e^{\eta}$$

So, this gives us:

$$p(x \mid \lambda) = b(x) \cdot e^{\eta \cdot x - A(\eta)} = b(x)\lambda^x e^{-\lambda}$$

Clearly, setting $b(x) = \frac{1}{x!}$, we get the Poisson distribution in exponential family form. So, we have:

$$\eta = \log \lambda$$
$$A(\eta) = e^{\eta}$$

$$b(x) = \frac{1}{x!}$$

Question 1.2

It is known that:

$$E[X] = A'(\eta)$$
 and $Var(X) = A''(\eta)$.

Part (a)

We have $A(\eta) = e^{\eta}$. So, we get:

$$A'(\eta) = e^{\eta} = \lambda$$

Also, since we know p(x) is a Poisson distribution, we know that $E[X] = \lambda$. Hence, correct.

Part (b)

We have $A'(\eta) = e^{\eta} = \lambda$. So, we get:

$$A''(\eta) = e^{\eta} = \lambda$$

Again, since p(x) is Poisson, we know that $Var(X) = \lambda$. Hence, correct.

Question 2

Question 2.a

We know that $Z = w^T X$. So, we have:

$$E[Z] = E[w^T X] = E\left[\sum_{i=1}^{N} w_i X_i\right]$$

By linearity of expectation, we get:

$$E[Z] = \sum_{i=1}^{N} w_i E[X_i] = \sum_{i=1}^{N} w_i \mu_i = w^T \mu$$

So, $E[Z] = w^T \mu$.

Question 2.b

Since we know $Z = w^T X$, we have:

$$\operatorname{Var}(Z) = \operatorname{Var}(w^T X) = \operatorname{Var}\left(\sum_{i=1}^N w_i X_i\right)$$

Since X_i are not independent, but we know the covariance matrix of $X = \Sigma$, we get:

$$Var(Z) = \sum_{i=1}^{N} w_i^2 Var(X_i) + 2 \sum_{i=1}^{N} \sum_{j=i+1}^{N} w_i w_j Cov(X_i, X_j)$$

Now, we know $Var(X_i) = \Sigma_{i,i}$ and $Cov(X_i, X_j) = \Sigma_{i,j}$. So, we get:

$$Var(Z) = \sum_{i=1}^{N} w_i^2 \Sigma_{i,i} + 2 \sum_{i=1}^{N} \sum_{j=i+1}^{N} w_i w_j \Sigma_{i,j} = \sum_{i=1}^{N} \sum_{j=1}^{N} w_i \Sigma_{i,j} w_j = w^T \Sigma w$$

So, $Var(Z) = w^T \Sigma w$.

Question 2.c

We know that the correlation coefficient between X_1 and X_2 is given by:

$$\rho_{X_1, X_2} = \frac{\operatorname{Cov}(X_1, X_2)}{\sigma_{X_1} \sigma_{X_2}}$$

By the Cauchy-Schwarz inequality, we have:

$$|\operatorname{Cov}(X_1, X_2)| \le \sqrt{\operatorname{Var}(X_1)\operatorname{Var}(X_2)} = \sigma_{X_1}\sigma_{X_2}$$

This gives:

$$\frac{|\operatorname{Cov}(X_1,X_2)|}{\sigma_{X_1}\sigma_{X_2}} = |\rho_{X_1,X_2}| \le 1 \implies -1 \le \rho_{X_1,X_2} \le 1$$

Question 2.d

We want to evaluate:

$$\int_{-\infty}^{\infty} x f(x) dx$$

where:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

We will use u-substitution to solve this integral. Let:

$$u = \frac{x - \mu}{\sigma} \implies du = \frac{dx}{\sigma} \implies dx = \sigma du$$

Now, after substitution, we get:

$$\int_{-\infty}^{\infty} (\sigma u + \mu) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{u^2}{2}\right) \sigma du = \int_{-\infty}^{\infty} (\sigma u + \mu) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du$$
$$= \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u \exp\left(-\frac{u^2}{2}\right) du + \frac{\mu}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left(-\frac{u^2}{2}\right) du$$

We know that:

$$\int_{-\infty}^{\infty} \exp\left(-\frac{u^2}{2}\right) du = \sqrt{2\pi}$$

So, out final integral looks like:

$$\frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u \exp\left(-\frac{u^2}{2}\right) du + \mu$$

Now, look at the other integral:

$$\int u \exp\left(-\frac{u^2}{2}\right) du$$

Since $\exp\left(-\frac{u^2}{2}\right)$ is an even function, u is an odd function, and we have symmetric bounds, we get:

$$\int_{-\infty}^{\infty} u \exp\left(-\frac{u^2}{2}\right) du = 0$$

So, our final answer is:

$$\int_{-\infty}^{\infty} x f(x) dx = \mu$$

Question 3

Question 3.a

First, let's look at what a prediction \hat{y} is. We have:

$$\hat{y}^{(i)} = \Theta^T x^{(i)}$$

So, we can then construction a matrix X with columns as $x^{(i)}$ and a matrix Y with columns as $y^{(i)}$. Observe that $X \in \mathbb{R}^{n \times m}$ and $Y \in \mathbb{R}^{p \times m}$. So, we can predictions \hat{Y} as:

$$\hat{Y} = \Theta^T X$$

Now, we know our earlier definition of the cost function was the sum of all squared errors component-wise in each vectors, for all data points. That is equivalent to taking the square of the differences of $\hat{Y} = \Theta^T X$ and Y and summing them up. So, we have:

$$J(\Theta) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{p} ((\Theta^{T} X)_{ij} - Y_{ij})^{2}$$

Now, if we say $A = \Theta^T X - Y$, we know that the cost function is the Frobenius norm of A squared. So, we can write:

$$J(\Theta) = \frac{1}{2} ||A||_F^2 = \frac{1}{2} ||\Theta^T X - Y||_F^2$$

Lastly, since we know $||A||_F^2 = \operatorname{tr}(A^T A)$, we can write:

$$J(\Theta) = \frac{1}{2}\operatorname{tr}\left((\Theta^T X - Y)^T (\Theta^T X - Y)\right)$$

Question 3.b

Expand the term inside the trace:

$$(X\Theta - Y)^T(X\Theta - Y) = \Theta^TX^TX\Theta - \Theta^TX^TY - Y^TX\Theta + Y^TY$$

Thus, the cost function becomes:

$$J(\Theta) = \frac{1}{2}\operatorname{tr}\left(\Theta^TX^TX\Theta\right) - \operatorname{tr}\left(Y^TX\Theta\right) + \frac{1}{2}\operatorname{tr}\left(Y^TY\right)$$

Since the last term, $\operatorname{tr}(Y^TY)$, does not depend on Θ , it can be ignored when finding the minimizer. To find the minimum, we differentiate $J(\Theta)$ with respect to Θ :

$$\nabla_{\Theta} \left(\frac{1}{2} \operatorname{tr} \left(\Theta^{T} X^{T} X \Theta \right) \right) = \frac{1}{2} \operatorname{tr} \left(\nabla_{\Theta} \left(\Theta^{T} X^{T} X \Theta \right) \right)$$
$$= X^{T} X \Theta$$
$$\nabla_{\Theta} \left(\operatorname{tr} \left(Y^{T} X \Theta \right) \right) = Y^{T} X$$

This gives us:

$$\nabla_{\Theta}J(\Theta) = X^T X \Theta - X^T Y$$

We know at the minimum, the gradient is zero. So, we get:

$$X^{T}X\Theta = X^{T}Y$$
$$\Theta = (X^{T}X)^{-1}(X^{T}Y)$$

Question 3.c

Consider the case where we solve for each output dimension separately. We would consider p independent linear models:

$$y_j^{(i)} = \theta_j^T x^{(i)}, \quad j = 1, \dots, p,$$

Here, with little inspection, we see that $\Theta_j \in \mathbb{R}^n$ is the parameter vector for the j-th output dimension. The closed-form solution for each θ_j is given by:

$$\theta_j = (X^T X)^{-1} X^T y_j$$

where y_j is the vector of the j-th output values over all samples. So now, our final predictor will be p such predictors, and we can collect them into a matrix $\Theta \in \mathbb{R}^{n \times p}$:

$$\Theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{bmatrix} = \theta_{:,j}$$

This is identical to the multivariate solution we saw earlier.