Exercises Set 9 Dec. 21, 2015

Exercise 1: Lyapunov exponents

The Hénon map

$$x_1(n+1) = 1 - ax_1^2(n) + bx_2(n)$$

 $x_2(n+1) = x_1(n)$

generates for a = 1.4 and b = 0.3 the chaotic *Hénon attractor*.

- a) Compute both Lyapunov exponents of the $H\acute{e}non$ attractor using recursive QR-decomposition (use Python function numpy.linalg.qr and make sure that all diagonal elements of the triangular matrix are positive by introducing a diagonal matrix $D = \text{diag}(\text{sign}(R_{11}), \text{sign}(R_{22}))$ such that $\hat{Q}\hat{R}$ with $\hat{Q} = QD$ and $\hat{R} = DR$, where Q and R are obtained with the Python function and \hat{Q} and \hat{R} are required for the computation of the Lyapunov exponents).
- b) Show that the local contraction rate of the *Hénon map* is constant (hint: consider the Jacobian matrix). Since it is constant this contraction rate equals the sum of all Lyapunov exponents (giving the volume contraction rate here: area contraction). Apply this relation between the Lyapunov exponents and the contraction rate to check the results of the numerical computation of both Lyapunov exponents of the *Hénon attractor*.

Exercise 2: Synchronization

a) Synchronization of coupled phase oscillators is given by the Adler equation

$$\frac{d\Delta\phi}{dt} = f(\Delta\phi) = \Delta\omega - \varepsilon\sin(\Delta\phi)$$

where $\Delta \phi$ denotes the phase difference of both oscillators and $\Delta \omega$ the difference of their natural frequencies. Perform a fixed point and a stability analysis and determine the type of local bifurcation which leads to synchronization ($\lim_{t\to\infty} \Delta \phi(t) = const.$)

b) Compute and plot the bifurcation diagram and the winding number (devil's staircase) of the circle map

$$\theta_{n+1} = f(\theta_n) = \theta_n + \Omega - \frac{K}{2\pi} \sin(2\pi\theta_n)$$

for K = 0.9 and Ω ranging from 0 to 2.

c) Compute and plot the Lyapunov exponent of the circle map for K=0.9 and Ω ranging from 0 to 2 and interpret the result.