Συστήματα Μικροϋπολογιστών

1η Ομάδα Ασκήσεων

Ιωάννης Τσαντήλας

03120883

1η Άσκηση

Η μετάφραση σε assembly είναι:

0E 08	MVI C,08H	Move immediate the value 08H to C
3A 00 20	LDA 2000H	Load the contents of mem_loc 2000H into A
17	RAL	Rotate left A's contents
DA 0D 08	JC 080DH	If(CY==1) then (jump to mem_loc 080DH)
0D	DCR C	Decrement C's contents by 1
C2 05 08	JNZ 0805H	If(Z==0) then (jump to mem_loc 0805H)
79	MOV A,C	Copy C's contents to A
2F	CMA	Complement A
32 00 30	STA 3000H	Store A's contents to mem_loc 3000H
CF	RST 1	Restart 1

Περνάμε το πρόγραμμα στο Simulator, αλλάζοντας τις διευθύνσεις των jump με ετικέτες και παραθέτουμε το αντίστοιχο διάγραμμα ροής:

Για να τρέχει απ΄ άπειρον, μπορούμε να προσθέσουμε ένα unconditional jump στο τέλος, το οποίο θα μας επαναφέρει στην αρχή του προγράμματος:

<u>2^η Άσκηση</u>

IN 10H	
LXI B,01F4H	Load immediate the values B=01H, C=F4H (01F4 _{Hex} = 500 _{Dec}) *
MVI E,01H	Move immediate the value E=01H (i.e., nº of LED to be lit)
PROG:	
LDA 2000H	Load the value of mem_loc 2000H (i.e., input) to A
MOV D,A	
RAR	Rotate right A's contents, so that CY=LSB
JC PROG	If(CY==1) then (jump PROG)
MOV A,D	
CALL DELB	Wait for 0.5secs **
RAL	Rotate left A's contents, so that CY=MSB
JNC RIGHT	If(CY==0) then (we'd turn RIGHT) else (we'd turn LEFT)
LEFT:	
MOV A,E	Copy E's contents (i.e., nº of LED to be lit) to A
CMA	Complement A's contents (reverse logic LEDs)
STA 3000H	Store A's contents to mem_loc 3000H (i.e., output)
CMA	Complement A's contents (original A's contents)
RLC	Rotate left A's contents, to find next LED to be lit
MOV E,A	
JMP PROG	
RIGHT:	
MOV A,E	Copy E's contents (i.e., nº of LED to be lit) to A
CMA	Complement A's contents (reverse logic LEDs)
STA 3000H	Store A's contents to mem_loc 3000H (i.e., output)
CMA	Complement A's contents (original A's contents)
RRC	Rotate right A's contents, to find next LED to be lit
MOV E,A	
JMP PROG	
END	

*/**Important Note:

Η εντολή **CALL DELB** καλεί την (implemented στο mLab) υπορουτίνα **DELB**, η οποία προκαλεί καθυστέρηση ίση με την τιμή του ζεύγους BC επί 1 millisecond, και αφού BC = $01F4_{Hex} = 500_{Dec}$, καθυστερεί 0.5 seconds.

<u>3η Άσκηση</u>

<u> </u>	
LXI B,01F4H	Load immediate the values B=01H, C=F4H (01F4 _{Hex} = 500 _{Dec})
PROG:	
LDA 2000H	Load the value of mem_loc 2000H (i.e., input) to A
CPI C8H	$(C8_{Hex} = 200_{Dec})$
	If(A≥200) then (C=0)
	Else if (A<200) then (C=1)
JNC MSB ERR	If(C==0 \rightarrow A \ge 200) then (jump MSB ERR)
_	Else (we'll check the next boundary)
CPI 64H	$(64_{\text{Hex}} = 100_{\text{Dec}})$
	If(A≥100) then (C=0)
	Else if (A<100) then (C=1)
JNC LSB ERR	If(C==0 \rightarrow A \ge 100) then (jump LSB ERR)
MVI D,FFH	$(FF_{Hex} = 255_{10} = 1111 \ 1111_{Bin})$
MAIN:	
INR D	Increase D's contents by 1
SUI OAH	Decrease A's contents by 10 (0A _{Hex} = 10 _{Bin})
	If(Result>A) then (C=1)
JNC MAIN	
ADI 0AH	Increase A's contents by 10 ($0A_{Hex} = 10_{Bin}$).
-	If(Result>A) then (C=1)
MOV E,A	Copy A's contents to E
MOV A,D	Copy D's contents to A
RLC	Rotate left A's contents 4 times, so MSD = MSB
RLC	
RLC	
RLC	
ADD E	Add E's contents to A, so LSD = LSBs
CMA	Complement A's contents (exit is reverse logic)
STA 3000H	Store A's contents to mem loc 3000H (i.e., output)
JMP PROG	
MSB ERR:	
MVI A,0FH	Move immediate the value A=0FH (0F _{Hex} = 0000 1111 _{Bin}) \rightarrow MSBs ON, LSBs OFF
STA 3000H	Store A's contents to mem loc 3000H (i.e., output)
CALL DELB	Wait for 0.5secs
MVI A,FFH	Move immediate the value A=0FH (0F _{Hex} = 0000 1111 _{Bin}) \rightarrow MSBs ON, LSBs OFF
STA 3000H	Store A's contents to mem_loc 3000H (i.e., output)
CALL DELB	Wait for 0.5secs
JMP PROG	
LSB_ERR:	
MVI A,F0H	Move immediate the value A=F0H ($0F_{Hex} = 1111 \ 0000_{Bin}$) \rightarrow MSBs OFF, LSBs ON
STA 3000H	Store A's contents to mem_loc 3000H (i.e., output)
CALL DELB	Wait for 0.5secs
MVI A,FFH	Move immediate the value A=FFH (FF _{Hex} = 1111 1111 _{Bin}) → MSBs OFF, LSBs OFF
STA 3000H	Store A's contents to mem loc 3000H (i.e., output)
CALL DELB	Wait for 0.5secs
JMP PROG	
END	

4η Άσκηση

Γενικά:

Όπου Ν είναι το πλήθος των τεμαχίων. Έχουμε λοιπόν ανά περίπτωση:

$$TC1 = 20.000 + 20 * N$$

$$TC2 = 10.000 + 40 * N$$

$$TC3 = 100.000 + 4 * N$$

$$TC4 = 200.000 + 2 * N$$

Οι γραφικές αυτών των εξισώσεων:

Τα σημεία τομής που μας ενδιαφέρουν:

Επομένως, για πλήθος:

- 1. N ≤ 500, συμφέρει η 2^n τεχνολογία.
- 2. $500 \le N \le 5.000$, συμφέρει η $1^{η}$ τεχνολογία.
- 3. 5.000 ≤ N ≤ 50.000, συμφέρει η 3^{η} τεχνολογία.
- 4. 50.000 ≤ N, συμφέρει η $4^{η}$ τεχνολογία.

Για να «εξαφανίσουμε» την 1^n τεχνολογία (μπλε γραμμή), ουσιαστικά θα θέλουμε στο δεύτερο διάστημα ($500 \le N \le 5.000$), να προτιμούμε την 2^n τεχνολογία (κόκκινη). Για να συμβεί αυτό, θα πρέπει:

$$TC2' = 10.000 + (IC_Cost' + 10) * N$$

 $TC2'(5.000) \le 120.000$

Όπου 120.000 είναι η τεταγμένη του σημείου τομής της $1^{n\varsigma}$ τεχνολογίας (μπλε) με την 3^n (κίτρινη). Δηλαδή:

$$10.000 + (IC_Cost' + 10) * 5.000 \le 120.000 \rightarrow IC_Cost' = 12$$
€
 $\rightarrow TC2' = 10.000 + 22 * N$

Άρα, σε καμία περίπτωση δεν προτιμούμε την 1^{η} τεχνολογία (μπλε):

