2進数でマイナスを表現

プログラマのためのC言語 第6回

絶対値表現

10進数	符号ビット	絶対値	2進数
+7	0	111	0111
+6	0	110	0110
+5	0	101	0101
+4	0	100	0100
+3	0	011	0011
+2	0	010	0010
+1	0	001	0001
+0	0	000	0000
-0	1	000	1000
-1	1	001	1001
-2	1	010	1010
-3	1	011	1011
-4	1	100	1100
-5	1	101	1101
-6	1	110	1110
-7	1	111	1111

10進数	符号ビット	絶対値	2進数
+7	0	111	0111
+6	0	110	0110
+5	0	101	0101
+4	0	100	0100
+3	0	011	0011
+2	0	010	0010
+1	0	001	0001
+0	0	000	0000
-0	1	000	1000
-1	1	001	1001
-2	1	010	1010
-3	1	011	1011
-4	1	100	1100
-5	1	101	1101
-6	1	110	1110
-7	1	111	1111

±0

0が2つできる

10進数	符号ビット	絶対値	2進数
+7	0	111	0111
+6	0	110	0110
+5	0	101	0101
+4	0	100	0100
+3	0	011	0011
+2	0	010	0010
+1	0	001	0001
+0	0	000	0000
-0	1	000	1000
-1	1	001	1001
-2	1	010	1010
-3	1	011	1011
-4	1	100	1100
-5	1	101	1101
-6	1	110	1110
-7	1	111	1111

1+(-1)=0になって欲しいけど、単純に足すと

 $0001 + 1001 = 1010 \rightarrow -2$

±0

0が2つできる

都合がわるい

" 2の補数表現

2の補数表現

補数

オーバーフロー

マイナス(逆元)

補数 オーバーフロー マイナス(逆元)

足すと桁が上がる数

(例) 4なら6とか 8なら2とか

補数

オーバーフロー

マイナス(逆元)

足すと桁が上がる数

(例) 4なら6とか 8なら2とか

コンピュータで数値の計算結 果が大きくなったときに**桁が 溢れること**

溢れた部分は捨てられる

補数

オーバーフロー

マイナス(逆元)

(例) 4なら6とか 8なら2とか

コンピュータで数値の計算結 果が大きくなったときに**桁が 溢れること**

溢れた部分は捨てられる

ある数に足すと0になる数 元の数を打ち消す数

1 + (-1) = 0

仮に数を 4桁(4bit) で表すとする

仮に数を <mark>4桁(4bit)</mark> で表すとする

仮に数を <mark>4桁(4bit)</mark> で表すとする

1に 足したら0になる数 を求める

仮に数を <mark>4桁(4bit)</mark> で表すとする

1に 足したら0になる数 を求める

×と置く

仮に数を <mark>4桁(4bit)</mark> で表すとする

$$1 + x = 0$$

1に 足したら0になる数 を求める

仮に数を 4桁(4bit) で表すとする

$$1 + x = 0$$

1に 足したら0になる数 を求める

2進数で書くとこういうこと

仮に数を <mark>4桁(4bit)</mark> で表すとする

$$1 + x = 0$$

1に 足したら0になる数 を求める

$$x = -1$$

仮に数を <mark>4桁(4bit)</mark> で表すとする

1に 足したら0になる数 を求める

1 + x = 0

仮に数を <mark>4桁(4bit)</mark> で表すとする

$$1 + x = 0$$

1に 足したら0になる数 を求める

$$x = -1$$

仮に数を <mark>4桁(4bit)</mark> で表すとする

$$1 + x = 0$$

1に 足したら0になる数 を求める

仮に数を 4桁(4bit) で表すとする

1 + x = 0

1に 足したら0になる数 を求める

仮に数を 4桁(4bit) で表すとする

1+x=0

1に 足したら0になる数 を求める

x = -1

計算すると 桁上がり する

仮に数を 4桁(4bit) で表すとする

1 + x = 0

1に 足したら0になる数 を求める

仮に数を 4桁(4bit) で表すとする

1 + x = 0

1に 足したら0になる数 を求める

仮に数を 4桁(4bit) で表すとする

1に 足したら0になる数 を求める

1 + x = 0

仮に数を 4桁(4bit) で表すとする

5に 足したら0になる数 を求める

5 + x = 0

x = -5

他の数でも同じ、例えば -5 は 1011 になる

2の補数?

補数とは?

元の数に足して桁が1つ上がる最も小さい数のこと

補数とは?

元の数に足して桁が1つ上がる最も小さい数のこと

$$4+6=10$$

$$0001 + 1111 = 10000$$

$$12 + 88 = 100$$

$$0010 + 1110 = 10000$$

補数とは?

元の数に足して桁が1つ上がる最も小さい数のこと

基数の補数減基数の補数

● 補数とは?

元の数に足して桁が1つ上がる最も小さい数のこと

○ <mark>基数の補数</mark> :元の数に足して桁上がりする最も小さい数のこと │ 減基数の補数

元の数に足して桁が1つ上がる最も小さい数のこと

<mark>→ 基数の補数</mark> :元の数に足して桁上がりする最も小さい数のこと 減基数の補数

$$4+6=10$$

0001 + 1111 = 10000

$$12 + 88 = 100$$

0010 + 1110 = 10000

● 補数とは?

元の数に足して桁が1つ上がる最も小さい数のこと

√ 基数の補数 :元の数に足して桁上がりする最も小さい数のこと

減基数の補数:元の数に足して桁上がりしない最大の数のこと

元の数に足して桁が1つ上がる最も小さい数のこと

$$4+5 = 9$$

$$0001 + 1110 = 1111$$

$$12 + 87 = 99$$

$$0010 + 1101 = 1111$$

元の数に足して桁が1つ上がる最も小さい数のこと

元の数に足して桁が1つ上がる最も小さい数のこと

) 基数の補数 :元の数に足して桁上がりする最も小さい数のこと

減基数の補数:元の数に足して桁上がりしない最大の数のこと

		基数の補数	減基数の補数
2	進数	2の補数	1の補数
10	進数	10の補数	9の補数

基数

元の数に足して桁が1つ上がる最も小さい数のこと

基数の補数 :元の数に足して桁上がりする最も小さい数のこと

減基数の補数:元の数に足して桁上がりしない最大の数のこと

10進数なら「10の補数」「9の補数」がある

10進数	9の補数	10の補数
6	3	4
12	87	88
127	872	873
	減基数の補数	基数の補数

元の数に足して桁が1つ上がる最も小さい数のこと

基数の補数 :元の数に足して桁上がりする最も小さい数のこと

減基数の補数:元の数に足して桁上がりしない最大の数のこと

10進数なら「10の補数」「9の補数」がある

10進数	9の補数	10の補数
6	3	4
12	87	88
127	872	873
	減基数の補数	基数の補数

2進数なら「2の補数」「1の補数」がある

2進数	1の補数	2の補数
01	10	11
0100	0011	0100
01111111	10000000	10000001
	減基数の補数	基数の補数

元の数に足して桁が1つ上がる最も小さい数のこと

基数の補数 :元の数に足して桁上がりする最も小さい数のこと

減基数の補数:元の数に足して桁上がりしない最大の数のこと

10進数なら「10の補数」「9の補数」がある

10進数	9の補数	10の補数
6	3	4
12	87	88
127	872	873
	減基数の補数	基数の補数

2進数なら「2の補数」「1の補数」がある

2進数	1の補数	2の補数
01	10	11
0100	0011	0100
01111111	10000000	10000001
	減基数の補数	基数の補数

+

2の補数の求め方

1の補数 + 1 = 2の補数

1の補数を求める

2進数の場合は元の数の0,1を反転するだけ

2の補数を求める

+1して終わり

10進数	2進数
	0000
	0001
	0010
	0011
	0100
	0101
	0110
	0111
	1000
	1001
	1010
	1011
	1100
	1101
	1110
	1111

4bitで表せる数のパターン

✓ 4bit = 2の4乗 = 16パターン

10進数	2進数
	0000
	0001
	0010
	0011
	0100
	0101
	0110
	0111
	1000
	1001
	1010
	1011
	1100
	1101
	1110
	1111

|0以上 8パターン

0未満 8パターン

- ✓ 4bit = 2の4乗 = 16パターン
- ✔ 全体を半分にわけて使う

10進数	2進数
0	0000
	0001
	0010
	0011
	0100
	0101
	0110
	0111
	1000
	1001
	1010
	1011
	1100
	1101
	1110
	1111

0以上8パターン

0未満 8パターン

- ✓ 4bit = 2の4乗 = 16パターン
- ✔ 全体を半分にわけて使う

10進数	2進数
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
	1000
	1001
	1010
	1011
	1100
	1101
	1110
	1111

0以上8パターン

0未満 8パターン

- ✓ 4bit = 2の4乗 = 16パターン
- ✔ 全体を半分にわけて使う

10進数	2進数
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
	1000
	1001
	1010
	1011
	1100
	1101
	1110
-1	1111

0以上8パターン

0未満 8パターン

- ✓ 4bit = 2の4乗 = 16パターン
- ✔ 全体を半分にわけて使う

10進数	2進数
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

0以上8パターン

0未満 8パターン

- ✓ 4bit = 2の4乗 = 16パターン
- ✔ 全体を半分にわけて使う

10進数	2進数
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

0以上8パターン

0未満 8パターン

4bitで表せる数のパターン

- ✓ 4bit = 2の4乗 = 16パターン
- ✔ 全体を半分にわけて使う

特徴

✓ 4bitでは -8 ~ 7 を表せる

10進数	2進数
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

0以上8パターン

0未満 8パターン

4bitで表せる数のパターン

- ✓ 4bit = 2の4乗 = 16パターン
- ✔ 全体を半分にわけて使う

特徴

- ✓ 4bitでは -8 ~ 7 を表せる
- ✔ 0は1つになる

10進数	2進数
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

0以上8パターン

0未満 8パターン

4bitで表せる数のパターン

- ✓ 4bit = 2の4乗 = 16パターン
- ✔ 全体を半分にわけて使う

特徴

- ✓ 4bitでは -8 ~ 7 を表せる
- ✔ 0は1つになる
- ✓ マイナスを含む計算も普通に足すだけ 7 + (-8) = -10111 + 1000 = 1111

10進数	2進数
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

0以上8パターン

0未満8パターン

4bitで表せる数のパターン

- ✓ 4bit = 2の4乗 = 16パターン
- ✔ 全体を半分にわけて使う

特徴

- ✓ 4bitでは -8 ~ 7 を表せる
- ✔ 0は1つになる
- ✓ マイナスを含む計算も普通に足すだけ 7 + (-8) = -10111 + 1000 = 1111
- ✔ 先頭のビットが符号を表す符号ビットになる

1 ? ? ?

0か+

_

● まとめ

- ✔ コンピューターは0と1で表現するしかない
- ✔ 故に0と1でなんとかするというのが基本にある
- ✓ マイナスの数は 2の補数 で表現
 - ・オーバーフローを利用して実現(桁数が決まっている)
 - ・マイナスを含む計算も普通に足すだけでよい

まとめ

- ✔ コンピューターは0と1で表現するしかない
- ✔ 故に0と1でなんとかするというのが基本にある
- ✓ マイナスの数は 2の補数 で表現
 - ・オーバーフローを利用して実現(桁数が決まっている)
 - ・マイナスを含む計算も普通に足すだけでよい

おしまい