Learning Sum-Product Networks Master's Dissertation

Student: Renato Lui Geh

Advisor: Prof. Dr. Denis Deratani Mauá

University of São Paulo (USP)

Institute of Mathematics and Statistics - USP SPSAS 2019

Supported by CNPq Grant 133787/2019-2

Motivation

What if you could have...

Motivation

What if you could have...

The expressivity and toolset of neural networks...

Motivation

What if you could have...

The expressivity and toolset of neural networks...

... and the interpretability and probabilistic semantics of PGMs.

Sum-Product Network (SPN)

Sum-product networks (SPNs) are density estimators with a deep architecture.

Learning SPNs

Structure

- Poon dense architecture
- LearnSPN
- Clustering architecture
- Random-Tensorized SPNs
- ID-SPNs
- SPNs + Chow-Liu Trees

Parameter

- Gradient descent;
- Expectation-Maximization;
- Extended Baum-Welch;
- Collapsed Variational Inference;
- Concave-convex procedure;
- Bayesian Moment Matching.

Some results

Not quite there yet on the discriminative side...

MNIST classification accuracy results

LearnSPN	ID-SPN	SPN-SVD	DSPN-SVD
81.8%	84.4%	85%	97.6%
	•	'	•
SPN-TH	RAT-SPN	Prometheus	DC-SPN

SPN-TH	RAT-SPN	Prometheus	DC-SPN	
98.34%	98.19%	98.37%	99.19%	

...but gradually getting better.

More results

SPNs shine on generative tasks!

Figure: Image reconstruction

Applications

SPNs have reached incredible results in different fields:

- Image segmentation, classification and completion
- Protein folding
- Speech recognition
- Natural language processing
- Semantic mapping and control in robotics
- Activity recognition
- Semantic Web

Thank you!

References I

- Darwiche, Adnan (May 2003). "A Differential Approach to Inference in Bayesian Networks". In: *J. ACM* 50.3, pp. 280–305. ISSN: 0004-5411. DOI: 10.1145/765568.765570. URL: http://doi.acm.org/10.1145/765568.765570.
- Dennis, Aaron and Dan Ventura (2012). "Learning the Architecture of Sum-Product Networks Using Clustering on Variables". In:

 Advances in Neural Information Processing Systems 25.
- Gens, Robert and Pedro Domingos (2012). "Discriminative Learning of Sum-Product Networks". In: Advances in Neural Information Processing Systems 25 (NIPS 2012).
- (2013). "Learning the Structure of Sum-Product Networks". In: International Conference on Machine Learning 30.

References II

- Peharz, R. et al. (2018). "Probabilistic Deep Learning using Random Sum-Product Networks". In: ArXiv e-prints.
- Poon, Hoifung and Pedro Domingos (2011). "Sum-Product Networks: A New Deep Architecture". In: Uncertainty in Artificial Intelligence 27.
- Rashwan, Abdullah, Pascal Poupart, and Chen Zhitang (2018). "Discriminative Training of Sum-Product Networks by Extended Baum-Welch". In: Proceedings of the Ninth International Conference on Probabilistic Graphical Models. Vol. 72. Proceedings of Machine Learning Research, pp. 356–367.

Renato Geh

References III

Rashwan, Abdullah, Han Zhao, and Pascal Poupart (Sept. 2016). "Online and Distributed Bayesian Moment Matching for Parameter Learning in Sum-Product Networks". In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics. Ed. by Arthur Gretton and Christian C. Robert. Vol. 51. Proceedings of Machine Learning Research. Cadiz, Spain: PMLR, pp. 1469–1477. URL: http://proceedings.mlr.press/v51/rashwan16.html.

Rooshenas, Amirmohammad and Daniel Lowd (2014). "Learning Sum-Product Networks with Direct and Indirect Variable Interactions". In: *International Conference on Machine Learning* 31 (ICML 2014).

References IV

Vergari, Antonio, Nicola di Mauro, and Floriana Esposito (2015). "Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning". In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD 2015).

Zhao, Han, Tameem Adel, et al. (20–22 Jun 2016). "Collapsed Variational Inference for Sum-Product Networks". In: Proceedings of The 33rd International Conference on Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning Research. New York, New York, USA: PMLR, pp. 1310–1318. URL: http://proceedings.mlr.press/v48/zhaoa16.html.

References V

Zhao, Han, Pascal Poupart, and Geoffrey J Gordon (2016). "A Unified Approach for Learning the Parameters of Sum-Product Networks". In: Advances in Neural Information Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., pp. 433-441. URL: http://papers.nips.cc/paper/6423-a-unified-approach-for-learning-the-parameters-of-sum-product-networks.pdf.