

矢量的乘法--数量积(点积、点乘、内积)

 $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \theta$ 为矢量 \vec{a}, \vec{b} 的数量积。

其中 θ 为 \bar{a} , \bar{b} 之间的夹角

模的计算 $|\vec{a}| = \sqrt{\vec{a} \cdot \vec{a}}$

突角的计算
$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

- $(1) \quad \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
 - (2) $k(\vec{a} \cdot \vec{b}) = (k\vec{a}) \cdot \vec{b} = \vec{a} \cdot (k\vec{b})$
 - (3) $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$

 $\vec{a} \perp \vec{b}$ 的充分必要条件是 $\vec{a} \cdot \vec{b} = 0$.

矢量的乘法--矢量积(矢积、叉乘、外积)

 \overrightarrow{c} 称 $\overrightarrow{c} \triangleq \overrightarrow{a} \times \overrightarrow{b}$ 为矢量 \overrightarrow{a} , \overrightarrow{b} 的矢量积。

其中 $|\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \sin \theta$, θ 为 \bar{a} , \bar{b} 之间的夹角

方向: $\bar{a},\bar{b},\bar{a}\times\bar{b}$ 相互垂直成右手系

 \mathbf{Z} **又乘**运算可产生同时垂直两个矢量 \bar{a} , \bar{b} 的矢量

运算律

$$(1) \ \vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$

(2)
$$k(\vec{a} \times \vec{b}) = (k\vec{a}) \times \vec{b} = \vec{a} \times (k\vec{b})$$

(3)
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

 $\vec{a} \parallel \vec{b}$ 的充分必要条件是 $\vec{a} \times \vec{b} = 0$.

矢量的混合积

 $(\vec{a} \times \vec{b}) \cdot \vec{c} = |\vec{a} \times \vec{b}| \cdot |\vec{c}| \cos \alpha = |\vec{a}| \cdot |\vec{b}| \sin \theta \cdot |\vec{c}| \cos \alpha$ 其中 θ 为 \vec{a} , \vec{b} 之间的夹角, α 为 \vec{c} 与 $\vec{a} \times \vec{b}$ 之间的夹角

 \mathbb{Z} 混合积之值等于以 \bar{a},\bar{b},\bar{c} 为邻边的平行六面体的体积(如图)

轮換性: $(\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b}$

這理 $\vec{a}, \vec{b}, \vec{c}$ 共面的充分必要条件是 $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0$.

