

CORROSION OF MATERIALS IN HYDROSPACE

PART III - TITANIUM AND TITANIUM ALLOYS

BY

Fred M. Reinhart

September 1967

Internal Working Paper

"This document has been approved for public release and sale; its distribution is unlimited."

NAVAL CIVIL ENGINEERING LABORATORY Port Hueneme, California

TA 417 .N3 No. N921 CORROSION OF MATERIALS IN HYDROSPACE

PART III - TITANIUM AND TITANIUM ALLOYS

Technical Note N-921

Y-F015-01-05-002a

by

Fred M. Reinhart

ABSTRACT

A total of 475 specimens of 10 titanium alloys were exposed at two different depths in the Pacific Ocean for six different periods of time varying from 123 to 1064 days to determine the effects of deep ocean environments on their corrosion resistance. Specimens of the alloys were also exposed in surface seawater for 181 days for comparison purposes.

Corrosion rates, types of corrosion, pit depths, effects of welding, stress corrosion cracking resistance and changes in mechanical properties are presented.

The alloys were immune to corrosion and stress corrosion cracking except alloy 13V-11Cr-3A1 with unrelieved circular welds. This alloy with unrelieved circular welds failed by stress corrosion cracking after 181 days of exposure at the surface, 403 days at 6,780 feet and 402 days at 2,370 feet. The 13V-11Cr-3A1 alloy with unrelieved butt welds failed by stress corrosion cracking when stressed at 75 percent of its yield strength after 35, 77 and 105 days of exposure at the surface.

The mechanical properties of the alloys were not affected. Some information from TOTO in the Atlantic Ocean is included for comparative purposes.

Each transmittal of this document outside the agencies of the U. S. Government must have prior approval of the Naval Civil Engineering Laboratory.

PREFACE

The U. S. Naval Civil Engineering Laboratory is conducting a research program to determine the effects of deep ocean environments on materials. It is expected that this research will establish the best materials to be used in deep ocean construction.

A Submersible Test Unit (STU) was designed, on which many test specimens can be mounted. The STU can be lowered to the ocean floor and left for long periods of exposure.

Thus far, two deep-ocean test sites in the Pacific Ocean have been selected. Six STUs have been exposed and recovered. Test Site I (nominal depth of 6,000 feet) is approximately 81 nautical miles west-southwest of Port Hueneme, California, latitude 33°44'N and longitude $120^{\rm o}45^{\rm l}{\rm W}$. Test Site II (nominal depth of 2,500 feet) is 75 nautical miles west of Port Hueneme, California, latitude 34°06'N and longitude $120^{\rm o}42^{\rm l}{\rm W}$. A surface sea water exposure site (V) was established at Point Mugu, California (34°06'N - 119°07'W) to obtain surface immersion data for comparison purposes.

This report presents the results of the evaluations of titanium and titanium alloys exposed at the above three test sites. Also, some information from TOTO is included for comparative purposes.

INTRODUCTION

The development of deep diving submarines which can stay submerged for long periods of time has focused attention on the deep ocean as an operating environment. This has created a need for information concerning the behavior of common materials of construction as well as newly developed materials with promising potentials, at depths in the ocean.

To study the problems of construction in the deep ocean, project "Deep Ocean Studies" was established. Fundamental to the design, construction and operation of structures, and their related facilities is information with regard to the deterioration of materials in deep ocean environments. This report is devoted to the portion of the project concerned with determining the effects of these environments on the corrosion of metals and alloys.

The test sites for the deep ocean exposures are shown in Figure 1 and their specific geographical locations are given in Table 1. The complete oceanographic data at these sites, obtained from NCEL cruises between 1961 and 1967, are summarized in Figure 2. Initially, it was decided to utilize the site at the 6,000 foot depth. Because of the minimum oxygen concentration zone found between the 2,000 and 3,000 foot depths, during the early oceanographic cruises, it was decided to establish a second exposure site (STU II-1 and II-2) at a nominal depth of 2,500 feet. For comparative purposes, the surface water site V was included.

A summary of the characteristics of the bottom waters 10 feet above the bottom sediments at the two deep ocean exposure sites and at the surface exposure site is given in Table 1.

Sources of information pertaining to the biological characteristics of the bottom sediments, biological deterioration of materials, detailed oceanographic data, and construction, emplacement and retrieval of STU structures are given in Reference 1.

The procedures for the preparation of the specimens for exposure and for evaluating them after exposure are described in Reference 2.

Previous reports pertaining to the performance of materials in the deep ocean environments are given in References 1 through 7.

This report is a discussion of the results obtained of the corrosion of titanium and titanium alloys for the six exposure periods shown in Table 1 and for 181 days of exposure five feet below the surface.

RESULTS AND DISCUSSION

The results presented and discussed herein also include the corrosion data for titanium exposed on the STU structures for the International Nickel Company, Incorporated as granted by Reference 8. Results from other participants in the NCEL exposures are also included; U. S. Navy Marine Engineering Laboratory (Reference 9), the Chemistry Division, NCEL (Reference 10), and U. S. Naval Air Engineering Center (Reference 11). Deep ocean data from the Atlantic Ocean (TOTO) are also included for purposes of comparison; Naval Research Laboratory (Reference 12) and Naval Applied Science Laboratory (Reference 13).

The chemical compositions of the titanium alloys are given in Table 2, their corrosion rates in Table 3, their stress corrosion behavior in Table 4 and the effect of corrosion on their mechanical properties in Table 5.

Corrosion

There was no corrosion of any of the alloys at the surface or at either nominal depth (2,500 or 6,000 feet) for any period of exposure except two alloys; the Navy Marine Engineering Laboratory reported a corrosion rate of 0.19 MPY for unalloyed titanium and of 0.18 MPY for the 6 Al-4V alloy after 123 days of exposure at a depth of 5,640 feet in the Pacific Ocean, Reference 9. They also reported no visible corrosion. For practical purposes, these values are considered to be inconsequential.

Alloys 75A, Ti-0.15 Pd, 5A1-2.5Sn, 6A1-4V and 13V-11Cr-3A1 were fusion welded by the inert-gas shielded arc, non-consumable (tungsten-arc) electrode process (TIG). There were transverse butt welds and 3-inch diameter circular welds in the 6 inch by 12 inch specimens. The welding stresses of these specimens were not relieved by an annealing treatment in order to simulate a welded component not adaptable to stress relieving after welding. There was no visible corrosion of these welded alloys except for stress corrosion cracking of the 13V-11Cr-3A1 alloy with the circular welds. This will be discuss under stress corrosion.

The 6A1-4V alloy was also exposed as:

- a. Wire, 0.020, 0.045 and 0.063 inch diameter
- b. Cables, 1/16"- 1 x 19, ½" 6 x 19, ½" 6 x 19 with Type 304 stainless steel swaged ends and ½" 6 x 19 tied with mild steel wire.

- c. Flash welded tube.
- d. Flash welded sphere.
- e. Piece from a broken sphere.

There was no visible corrosion on any of the above specimens except for the Type 304 swaged fittings and the mild steel wire. The faying surfaces of the Type 304 swaged fittings were severely attacked by crevice corrosion. The mild steel wire used to tie the end of one titanium cable was corroded almost through by galvanic corrosion; the mild steel wire being anodic to the titanium cable.

The Naval Research Laboratory, Reference 12, and the Naval Applied Science Laboratory, Reference 13, reported no corrosion of titanium alloys, both unwelded and welded, at depths of 4,250 and 5,600 feet in the Tongue-of-the-Ocean, Atlantic Ocean after exposures varying from 102 to 1050 days.

Stress Corrosion

Specimens of the alloys stressed in various ways and to values equivalent to 35, 50 and 75 percent of their respective yield strengths were exposed at the surface for 180 days and at nominal depths of 2,500 and 6,000 feet for different periods of time.

The majority of the specimens were deformed by bowing to obtain the desired tensile stress in the central 2 inch length of the outer surface of the specimen as described in Reference 2. Many of these specimens, butt welded by the TIG process, were positioned such that the transverse weld bead was at the apex of the bow in the 2-inch length. Other specimens, 6" x 12", had a 3" diameter circular weld bead placed in the center as shown in Figure 3. The stresses induced by the welding operation were not relieved in order to retain the maximum residual stresses in the specimens. Still other specimens were in the shape of welded rings 9-5/8 inches outside diameter which were deformed different amounts in order to induce tensile stresses in the periphery at the ends of the restraining rods as shown in Figure 4.

The results of the stress corrosion tests are given in Table 4. There were no stress corrosion cracking failures of any of the alloys, both unwelded and butt welded, stressed at values equivalent to as high as 75 percent of their respective yield strengths for 180 days of exposure at the surface, 402 days at the 2,370 foot depth and 751 days at the 5,640 foot depth, except for the butt welded 13V-11Cr-3A1 alloy. The unrelieved butt welded 13V-11Cr-3A1 alloy

failed by stress corrosion cracking when stressed at values equivalent to 75 percent (94,500 psi) of its yield strength after 35, 77 and 105 days of exposure at the surface in the Pacific Ocean. The stress corrosion cracks occurred at the edge of the weld bead as shown in Figure 5.

Metallographic examinations of unetched and etched sections in a plane parallel to the surface of the specimen showed that a secondary crack which started at the edge of the specimen in the parent metal away from and parallel to the main fracture was irregular and branching in nature as well as transgranular as shown in Figure 6. This is typical of the main fracture.

The Naval Applied Science Laboratory, Reference 10, reported no stress corrosion cracking of unwelded and butt welded 7A1-2Cb-lTa alloy stressed at 100 percent of its yield strength after 199 days of exposure at a depth of 4,250 feet in the Tongue-of-the-Ocean, Atlantic Ocean.

The 6Al-4V alloy rings stressed as high as 60,000 psi (approximately 50 percent of its yield strength) (Figure 4) did not fail by stress corrosion cracking during 402 days of exposure at a depth of 2,370 feet.

Alloys 75A, Ti-0.15Pd, 5A1-2.5Sn, 7A1-2Cb-1Ta, 6A1-4V and 13V-11Cr-3A1 were exposed with an unrelieved 3-inch diameter circular weld bead in the center of 6" x 12" specimens as shown in Figure 3. Only the 13V-11Cr-3A1 alloy failed by stress corrosion cracking because of the residual welding stresses. Cracking occurred during surface exposure of 181 days, during 403 days of exposure at a depth of 6,780 feet, during 751 days of exposure at a depth of 5,640 feet, and during 402 days of exposure at a depth of 2,370 feet. The cracks in all cases were radial across the weld beads, a typical crack is shown in Figure 7. The crack in this case changed direction by 90 degrees (left side of Figure) just outside the weld bead because of the redistribution of the residual stresses.

Metallographic examination of a polished section of the crack taken in the plane of the sheet where it changed direction showed that the path of the crack was irregular and branching in nature as shown in Figure 8. After etching and reexamination it was found that the crack was predominantly transgranular as shown in Figure 9.

Mechanical Properties

The effect of exposure in sea water at nominal depths of 2,500 and 6,000 feet on the mechanical properties of the alloys is given in Table 5. These data show that the mechanical properties of the alloys were not adversely affected by exposure in sea water at nominal depths of 2,500 and 6,000 feet for periods of time as long as 751 days.

SUMMARY AND CONCLUSIONS

The purpose of this investigation was to determine the effects of deep ocean environments on the corrosion and stress corrosion of titanium alloys. To accomplish this, 473 specimens of 10 alloys were exposed at the surface for 181 days and at nominal depths of 2,500 and 6,000 feet for periods of time varying from 123 to 1064 days.

There was no visible corrosion nor any significant weight losses of any of the alloys after 181 days of exposure at the surface, 197 and 402 days at a nominal depth of 2,500 feet, and 123, 403, 751, and 1064 days at a nominal depth of 6,000 feet either in the sea water or the bottom sediment.

Alloys, unwelded and with transverse butt welds, were not susceptible to stress corrosion cracking when stressed at values equivalent to 75 percent of their respective yield strengths after 180 days of exposure at the surface, 402 days at a nominal depth of 2,500 feet, and 751 days of exposure at a nominal depth of 6,000 feet, except the butt welded 13V-11Cr-3A1 alloy. This alloy failed by stress corrosion cracking after 35, 77 and 105 days of exposure at the surface. Flash welded rings of 6A1-4V alloy did not stress corrosion crack when stressed to 60,000 psi and exposed at a depth of 2,370 feet for 402 days. The residual stresses induced in 13V-11Cr-3A1 alloy sheet by a 3-inch diameter unrelieved weld were great enough to cause stress corrosion cracking after 181 days of exposure at the surface, 403 days at 6,780 feet, and 402 days at 2,370 feet. The other alloys, 75A, Ti-0.15Pd, 5A1-2.5Sn, 7A1-2Cb-1Ta, and 6A1-4V, similarly welded were not susceptible to stress corrosion cracking either at the surface or at depth.

The mechanical properties of the alloys were not adversely

affected by exposure in sea water at depth.

Differences in temperature, oxygen concentration, pressure and velocity of flow between the surface and depths in the Pacific Ocean appear to have no influence on the corrosion behavior of titanium alloys.

REFERENCES

- U. S. Naval Civil Engineering Laboratory Technical Note N-900: Corrosion of Materials in Hydrospace Part I - Irons, Steels, Cast Irons and Steel Products, by Fred M. Reinhart, Port Hueneme, California, July 1967.
- U. S. Naval Civil Engineering Laboratory Technical Report R-504: Corrosion of Materials in Hydrospace, by Fred M. Reinhart, Port Hueneme, California, December 1966.
- U. S. Naval Civil Engineering Laboratory Technical Note N-605: Preliminary Examination of Materials Exposed on STU I-3 in the Deep Ocean - (5,640 Feet of Depth for 123 Days), by Fred M. Reinhart, Port Hueneme, California, June 1964.
- 4. U. S. Naval Civil Engineering Laboratory Technical Note N-695: Examples of Corrosion of Materials Exposed on STU II-1 in the Deep Ocean - (2,340 Feet of Depth for 197 Days), by Fred M. Reinhart, Port Hueneme, California, February 1965.
- U. S. Naval Civil Engineering Laboratory Technical Note N-781: Effect of Deep Ocean Environments on the Corrosion of Selected Alloys, by Fred M. Reinhart, Port Hueneme, California, October 1965.
- 6. U.S. Naval Civil Engineering Laboratory Technical Note N-793: Visual Observations on Corrosion of Materials on STU I-1 after 1064 Days of Exposure at a Depth of 5,300 Feet in the Pacific Ocean, by Fred M. Reinhart, Port Hueneme, California, November 1965.
- U. S. Naval Civil Engineering Laboratory Technical Note N-915: Corrosion of Materials in Hydrospace Part II - Nickel and Nickel Alloys, by Fred M. Reinhart, Port Hueneme, California, August 1967.
- May, Dr. T. P., Unpublished data, International Nickel Company, Incorporated, Wrightsville Beach, N. C.
- Navy Marine Engineering Laboratory MEL R&D Phase Report 429/66: Metal Corrosion in Deep-Ocean Environments, by W. L. Wheatfall, Annapolis, Maryland, January 1967.

- U. S. Naval Civil Engineering Laboratory Technical Note N-859: Corrosion Rates of Selected Alloys in the Deep Ocean, by J. B. Crilly and W. S. Haynes, Port Hueneme, California, November 1966.
- 11. Naval Air Engineering Center Report NAEC-AML-2132: Evaluation of Metallic Materials Exposed to the Deep Ocean Environment at 5,640 Feet for 123 Days, by John J. De Luccia and Edward Taylor, Philadelphia, Pennsylvania, June 1965.
- 12. Naval Research Laboratory NRL Memorandum Report 1634: Marine Corrosion Studies: Stress-Corrosion Cracking, Deep Ocean Technology, Cathodic Protection and Corrosion Fatigue. Third Interim Report of Progress, by B. F. Brown, et al, Washington, D. C., July 1965.
- 13. Naval Applied Science Laboratory, Laboratory Project 9400-72, Technical Memorandum 3: Corrosion at 4,500 Foot Depth in Tongueof-the-Ocean, by E. Fischer and S. Finger, Brooklyn, New York, March 1966.
- 14. Naval Applied Science Laboratory, Laboratory Project 9300-6, Technical Memorandum 5: Retrieval, Examination and Evaluation of Materials Exposed for 199 Days on NASL Deep Sea Materials Exposure Mooring No. 1, by A. Anastasio and A. Macander, Brooklyn, New York, July 1966.

Table 1. STU Locations and Bottom Water Characteristics

Don'th
Longit. Depthi, Exposure, W
- 69
5300 1064
5640 751
5640 123
6780 403
2340 197
2370 402
. 5 181

Chemical Composition of Titanium Alloys. Percent by Weight Table 2.

	Source-3/	INCO ⁸ /	NCEL	NCEL	NCEL	NCEL	NCEL		NCEL	NCEL	NCEL	NCEL		E	NCEL 10/	NCEL-	NCEL 10/	NCEL	NCEL	NCEL	NCEL, O	NCEL-12/		NCEL	NCEL
	Ti^2	Rem.	Rem.	Rem.	Rem.	Rem.	Rem.		Rem.	Rem.	Rem.	Rem.		100	Kem.	Rem.	Rem.	Rem.	Rem.	Rem.	Rem.	Rem.		Rem.	Rem.
lable 2. Unemical Composition of litanium Alloys, Fercent by Weight	Other	-	•	ı	,	0.14Pd	0.15Pd		2.2Sn	2.4Sn	2.5Sn	1.0Ta	2.0Cb	960	o.om	1.9Mo	3.0Mo	3.7Mo	1	1	,			1	1
rercent	Cr		,	1	•		,		'	,	,	1			ı	2.1	ı	0.2	,	1	ı	40.1	,	11.4	10.9
Alloys,	Λ	,	1	'		•	1		1	•	•	'			1	6 0.1	1.0	0.9	3.9	4.0	4.0	5.2	,	13.4	13.6
canium	A1		,	,	,	•	1		5.1	5.1	5.1	7.0			1	6 0.1	4.25	4.5	0.9	5.9	5.8	7.2	,	3.1	3.0
0I II	0	1		0.28	0.32	0.15	,		1	0.18	0.17	0.07			ı		•	,		•	0.11	ı			0.12
osition	Ħ		0.004	0.003	0.003	0.003	0.004		0.011	900.0	0.008	0.002		-	0.10	ı	0.15				0.007			0.008	0.010
cal comp	z	0.02	0.026	0.016	0.017	0.009	0.012		0.014	0.013	0.013	900.0		2	٥٠٥	ı	0.05	,	0.015	0.015	0.013	1	,	0.027	0.027
Cuemi	ъ					90.0				0.27		90.0			1	1.9	0.25	0.1	0.15	0.13	0.08	6 0.1			0.14
ante c.	O	<0.1	0.027	0.025	0.025	0.022	0.022		0.025	0.022	0.025	0.023		ys	0.20	ı	0.08	ı	0.023	0.025	0.022	,		0.027	0.021
	Alloy	Titanium		75A		Ti-0.15Pd	Ti-0.15Pd	A1250 A11000	5A1-2.5Sn	5A1-2.5Sn	5A1-2.5Sn	7A1-2Cb-1Ta		Alpha Beta Alloys	SMIL	140A	4A1-3Mo-1V=/	4A1-3Mo-1V	6A1-4V	6A1-4V	6A1-4V	6A1-4V	Beta Alloys	13V-11Cr-3A1	13V-11Cr-3A1

Nominal compositions Rem. = Remainder Numbers indicate references at end of paper. 13121

Table 3. Corrosion Rates of Titanium Alloys

Source 3/	INCO8/	INCONI 8	INCO 8/	INCOE!	INCOS,	INCOS/	INCOS	INCOS,	INCOS,	INCOS	INCOS/	INCO,	MEL2/	MEL-7/	NRL 15/	NRL 12/	NAST 13/	MA CT 13/	NASL13/	NASL13/	NASL==	NCEL						
Type of Corrosion	visible	visible	visible			visible		No visible corrosion	No visible corrosion	No visible corrosion		No visible corrosion	Month of the contraction of the party of the contraction of the contra	No visible collection	Visible		No visible corrosion											
Corrosion Ratg/ MPY2/	(0.1	<0.1	<0.1	(0.1	<0.1	< 0.1	(0.1	<0.1	(0.1	<0.1	<0.1	<0.1	0.19	<0.1	0.0	0.0		1.0	1.07	(0.1	<0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Depth, Feet	5640	5640	6780	6780	2640	2640	5300	5300	2340	2340	2370	2370	2640	2640	2600	2600	0207	000	4250	4500	4200	2640	2640	6780	6780	2640	2340	2340
Exposure, Days	123	123	403	403	751	751	1064	1064	197	197	402	402	123	751	111	1050	103	100	199	06	180	123	123	403	403	751	197	197
Environ- ment-	М	so :	≯	S	.≥	S	3	S	3	S	×	S	M	×	X	×	5	₹ ;	3	3	×	3	S	3	S	ß	M	S
Alloy	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	200	2004	KCSS	RC55	RC55	75A						

Table 3. Continued

	Source 3/	NCEL	NCEL	NCEL	NCEL	NCEL		NCEL	NCEL		NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEI.	NCEL	NCEL	NCEL	NCEL	NCEL	NCEI.	
	Type of Corrosion	No visible corrosion	No visible corrosion	No visible corrosion,	No visible corrosion,	fouling stains No visible corrosion,	fouling stains	No visible corrosion,	fouling stains No visible corrosion,	fouling stains	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	visible	visible	visible		No visible corrosion	No visible corrosion	visible		No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion,	fouling stains	fouling stains
	Corrosion Ratg/ MPY2/	0.0	0.0	0.0	0.0	0.0		0.0	0.0		<0.1	0.0	< 0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Concinaea	Depth, Feet	2370	2370	S	٠ <u>٠</u>	5		5	5		2640	2640	2640	2640	6780	6780	6780	6780	5640	5640	2340	2340	2340	2370	2370	2370	2370	5	ſſ	
table 3.	Exposure, Days	707	402	181	181	181		181	181		123	123	123	123	403	403	403	403	751	751	197	197	197	402	705	402	705	181	181	1
	Environ- ment	М	S	Μ	М	М		W.	М		M	м	S	S	м	М	S	တ္	3= ;	3 ;	≭ Þ	: 07	ິນ	М	М	S	S	M	3	:
	Alloy	75A	75A	75A	75A ⁴ /	75 <u>4</u> 5/		Ti-0.15Pd4/	Ti-0.15Pd ⁵ /		5A1-2.5Sn ⁴ / ₅ /	5A1-2.5Sn2/	5A1-2.5Sn=/	5A1-2.5Sm2/	5A1-2.5Sn5/	5A1-2.5Sn2/	$5A1-2.58n\frac{2}{5}$	5A1-2.5Sn-4/	5A1-2.5Sn5/)A1-2.55m4/	2A1-2.35m5/	5A1-2.5Sn4/	5A1-2.58n5/	5A1-2.5Sn=/	5A1-2.5Sn7/	5A1-2.5Sn7/	5A1-2.5Sm2/	5A1-2.5Sn7'	541-2 59n5/	

Table 3. Continued

Alloy	Environ- ment	Exposure, Days	Depth, Feet	Corrosion Rate, MPY-21	Type of Corrosion	Source 3/
7A1-12Zr	м	123	2640	0.0	No visible corrosion	NAEC 11/
7A1-2Cb-1Ta-	Μ	181	5	0.0	No visible corrosion,	NCEL
7A1-2Cb-1Ta ⁵ /	А	181	5	0.0	fouling stains No visible corrosion, fouling stains	NCEL
8Mn 8Mn	N S	402 402	2370 2370	0.0	No visible corrosion No visible corrosion	NCEL
140A	38	1064	5300	0.0	No visible corrosion	NCEL 10/
4A1-3Mo-1V	Α	123	5640	0.0	Slight amount of chemical attack with small amount	NAEC 11/
4A1-3M0-1V	3	1064	5300	0.0	or white corrosion products under similar metal couple. No visible corrosion	NCEL 10/
4A1-3Mo-1V	: ≱s υ	402	2370	0.0	No visible corrosion	NCEL
641-4V) Þ	123	5640	60.1	No visible corrosion	NAEC 11/
6A1-4V	Α	123	5640	0.18	No visible corrosion	MEL ² /
6A1-4V	*	123	2640	0.0		NCEL
6A1-4V ₄ /	S	123	5640	0.0	visible	NCEL
6A1-4V=/	3:	123	5640	0.0	No visible corrosion	NCEL
6A1-4V4/	s v	123	5640	0.0		NCEL
6A1-4V ⁵ /	S	123	5640	0.0		NCEL
6A1-4V	3	403	6780	0.0	No visible corrosion	NCEL
6A1-4V,	S	403	6780	0.0	No visible corrosion	NCEL
6A1-4V ⁴ /	м	403	6780	0.0	No visible corrosion	NCEL

	Source 3/	NCEL	NCEL	NCEL,	MEL ² /	NCEL	NCEL	NCEL 10/	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL		NCEL		MEL ⁹ /	NCEL	NCEL	NCEL	NCEL
	Type of Corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	visible	visible	visible	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion,	fouling stains No visible corrosion,	fouling stains	No visible corrosion,	touling stains	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion
pa	Corrosion Rate MPY21	0.0	0.0	0.0	(0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(0.0		<0.1	0.0	0.0	<0.1	0.0
ontinued	Depth, Feet	6780	6780	6780	2640	2640	2640	2640	5300	2340	2340	2340	2340	2340	2340	2370	2370	2370	2370	2370	2370	5	5	ι	Λ		2640	2640	2640	2640	2640
lable 3.	Exposure, Days	403	403	403	751	751	751	751	1064	197	197	197	197	197	197	402	402	402	402	402	402	181	181	,	181		123	123	123	123	123
	Environ- ment-	3	S	S	ß	×	3	3	3	M	Š	3	*	S	S	×	s	B	3	S	S	3	×	;	3					S	
	Alloy	$6A1-4V_{2}^{5}$	$(6A1 - 4V_{\overline{c}}^{4})$	$6A1-4V^{2}$	6A1-4V	6A1-4V,,	$6A1 - 4V_{5}^{+}$	6A1-4V='	6A1-4V	6A1-4V	6A1-4V ₄ /	$6A1 - 4V_{\frac{2}{5}}'$	$6A1 - 4V_{4}^{2}$	$6A1 - 4V_{5}'$	6A1-4V='	6A1-4V	6A1-4V,	$6A1 - 4V_{5}^{2}$	$6A1 - 4V_{4}^{2}$	$6A1 - 4V_{5}^{2}$	6A1-4V='	6A1-4V	$6A1-4\sqrt{4}$	/5	0A1-4V-		13V-11Cr-3A1,	$13V-11Cr-3A1\frac{4}{5}$	$13V-11Cr-3A1\frac{2}{2}$	$13V-11Cr-3A1\frac{2}{5}$	13V-11Cr-3Al=.

Table 3. Continued

	16	Source 3/			NCEL	NCEL	NCEL		NCEH,	MEL ² /	NCEL		NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL	NCEL		NCEL	NCEL		NCEL	
		Type of Corrosion			No visible corrosion	No visible corrosion	Stress corrosion cracks,	radial, across weld bead	No visible corrosion	No visible corrosion	Stress corrosion cracks,	radial, across weld bead	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	No visible corrosion	Stress corrosion cracks,	radial, across weld bead	No visible corrosion	Stress corrosion cracks,	radial, across weld bead	No visible corrosion,	fouling stains
led	Corrosion	Rate,	MPY='		0.0	0.0	0.0		0.0	(0.1	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	
lable 3. Continued		Depth,	Feet		6780	6780	6780		6780	2640	2640		2640	2340	2340	2340	2340	2370	2370	2370		2370	5		2	
Iable		Exposure,	Days		403	403	403		403	751	751		751	197	197	197	197	402	402	402		402	181		181	
		Environ-	ment-		M	*	S		S	3	3		3	73		S	ß	3	3	S		w	33		×	
		Alloy		, ,	13V-11Cr-3A1 = /	13V-11Cr-3A12/	13V-11Cr-3A1=/	/ 3	13V-11Cr-3A1 ² /	13V-11Cr-3A1,	13V-11Cr-3A1"	/ 2	$ 13V-11Cr-3A1\frac{2}{2} $	13V-11Cr-3A1 = /	$13V-11Cr-3A1\frac{2}{7}$	13V-11Cr-3A1 = /	13V-11Cr-3A12/	13V-11Cr-3A12/	$13V-11Cr-3A1\frac{2}{7}$	13V-11Cr-3A1='	/ 2	$ 13V-11Cr-3A1\frac{2}{2} $	13V-11Cr-3A1="	7 2	13V-11Cr-3A1-7	

S = specimens exposed in base of STU, partially embedded in bottom sediment Circular weld 3 inches in diameter in center of specimen, unrelieved MPY = mils penetration per year calculated from weight loss Transverse butt weld across width of specimen, unrelieved W = specimens exposed on sides of STU in sea water Numbers refer to references at end of paper 12/4/3/15

Table 4. Stress Corrosion of Titanium Alloys

					Spe	cimens
Alloy	Stress, KSI	Percent of Yield Strength	Exposure, Days	Depth, Feet	Exposed	Failed
75A	24.5	35	403	6780	2	0
75A	24.5	35	197	2340	3	0
75A	35.0	50	403	6780	2	0
75A	35.0	50	197	2340	3	0
75A	35.0	50	402	2370	3	0
75A	52.6	75	403	6780	2	0
75A	52.6	75	197	2340	3	0
75A ₁ /	52.6	75	402	2370	3	0
$75A_{\frac{1}{2}}^{\frac{1}{2}}$	28.8	35	180	5	3	0
$75A_{1}^{\frac{1}{4}}$	41.2	50	180	5	3	0
$75A\frac{1}{2}/$	61.7	7 5	180	5	3	0
75A ² /		stresses	181	5	4	0
$Ti-0.15Pd_{1/}^{1/}$	23.8	35	180	5	3	0
Ti-0.15Pd1/	33.9	50	180	5	3	ő
Ti-0.15Pd-	50.8	75	180	5	3	ő
Ti-0.15Pd2/		stresses	181	5	4	Ö
$5A1-2.5Sn\frac{1}{1}$	42.9	35	123	5640	3	0
$5A1-2.5Sn_{1}^{1/}$	42.9	35	403	6780	2	Ō
$5A1-2.5Sn^{\frac{1}{2}}$	42.9	35	751	5640	3	0
$5A1-2.5Sn_{1}^{1}$	42.9	35	197	2340	3	0
$5A1-2.5Sn_{\frac{1}{2}}$	61.3	50	123	5640	3	Ö
$5A1-2.5Sn_{1}^{1}$	61.3	50	403	6780	2	Ō
$5A1-2.5Sn_{1}^{1}$	61.3	50	751	5640	2 3	0
$5A1-2.5Sn_1^{1/2}$	61.3	50	197	2340	3	0
$5A1-2.5Sn_{1}^{1}$	92.0	75	123	5640	3	0
$5A1-2.5Sn_1$	92.0	75	403	6780	3 2 3 3	
$5A1-2.5Sn_{1}^{1}$	92.0	75	751	5640	3	0 <u>3</u> /
$5A1-2.5Sn_{1}^{1}$	92.0	75	197	2340	3	0
5A1-2.5Sn1/	43.3	35	180	5	3	Ö
$5A1-2.5Sn_{3}^{1}$	61.8	50	180	5	3	0
$5A1-2.5Sn^{\frac{1}{2}}$	92.7	75	180	5		Ō
5A1-2.5Sn2/		stresses	123	5640	3 2 2	Ö
5A1-2.5Sn2/		stresses	403	6780	- 2	
5A1-2.5Sn-2/		stresses	751	5640	2	0 <u>4</u> /
5A1-2.5Sn2/	Welding	stresses	197	2340	2	Ö
5A1-2.5Sn2/		stresses	402	2370	2	Õ
5A1-2.5Sn ² /	•	stresses	181	5	4	ő

Table 4. Continued

					Spec	imens
Alloy	Stress, KSI	Percent of Yield Strength	Exposure, Days	Depth, Feet	Exposed	Failed
7A1-2Cb-1Ta\frac{10}{10}/	110	100	102	4250	1	0
7Al-2Cb-1Ta-10/	110	100	102	4250	1	0
transverse weld	1					
7A1-2Cb-lTa-	110	100	102	4250	1	0
longitudinal weld	1					
$7A1-2Cb-1Ta\frac{10}{10}$	110	100	199	4250	1	0
7A1-2Cb-1Ta-0/	110	100	199	4250	1	0
transverse weld						
7A1-2Cb-1Ta=-	110	100	199	4250	1	0
longitudinal weld						
7A1-2Cb-1Ta1/	34.9	35	180	5	3	0
1/A1-2Cb-lTa-7	49.9	50	180	5	3	0
7A1-2Cb-lTa-7	74.9	75	180	5	3	0
7A1-2Cb-1Ta ² /	Welding	stresses	181	5	4	0
6A1-4V	47.6	35	123	5640	3	0
6A1-4V ₁ / 6A1-4V ¹ /	48.8	35	123	5640	3	0
6A1-4V	47.6	35	403	6780		Ö
6A1-4V ₁ / 6A1-4V 1 /	48.8	35	403	6780	2	ő
6A1-4V.	47.6	35	751	5640	2 2 3	ő
6A1-4V ₁ / 6A1-4V 1 /	48.8	35	751	5640	3	ő
6A1-4V.	47.6	35	197	2340	3	ő
$6A1-4V^{\frac{1}{2}}$	48.8	35	197	2340	3	0
6A1-4V.	68.0	50	123	5640	3	Õ
6A1-4V 6A1-4V-/	69.7	50	123	5640	3	0
6A1-4V.	68.0	50	403	6780	2	0
6A1-4V-1	69.7	50	403	6780	2	
6A1-4V 6A1-4V1/	68.0	50	751	5640	3	0 <u>5</u> /
6A1-4V-1	69.7	50	751	5640	3	0
6A1-4V,	68.0	50	197	2340	3	0
6A1-4V ¹	69.7	50	197	2340	3	0
6A1-4V	68.0	50	402	2370	3	0
6A1-4V 6A1-4V1/	102.0	75 ·	123	5640	3	0
6A1-4V-'	104.5	75	123	5640	3	0
6A1-4V 6A1-4V-/	102.0	75	403	6780	2	0
6A1-4V-'	104.5	7 5	403	6780	2	0
6A1-4V 6A1-4V1/	102.0	75	751	5640	3	5/ 5/ 0
6A1-4V-	104.5	75	751	5640	3	<u>5</u> /
6A1-4V ₁ / 6A1-4V ¹ /	102.0	75	197	2340	3	0
	104.5	75	197	2340	3	0
6A1-4V	102.0	75	402	2370	3	0
6A1-4V ₁ / 6A1-4V ₁ /	46.1	35	180	5	3	0
$\frac{6A1-4V^{\frac{1}{2}}}{6A1-4V^{\frac{1}{2}}}$	65.8	50	180	5	3	0
6A1-4V-	98.7	75	180	5	3	0

Table 4. Continued

					Speci	mens
Alloy	Stress,	Percent of	Exposure,	Depth,	Exposed	Failed
	KSI	Yield Strength	Days	Feet		
$5A1 - 4V\frac{2}{2}$	Welding	stresses	123	5640	2	0
6A1-4V2/	Welding	stresses	403	6780	2	0 <u>4</u> /
$6A1 - 4V_{\frac{2}{3}}^{2}$	_	stresses	751	5640	2	04/
$6A1-4V\frac{2}{2}$	Welding	stresses	197	2340	2	0
$6A1-4V_{2}^{2}$	Welding	stresses	402	2370	2	0
$6A1-4V^{2/2}$	Welding	stresses	181	5	4	0
$13V-11Cr-3A1\frac{1}{1}$	48.8	35	123	5640	3	0
13V-11Cr-3A11/	48.8	35	403	6780	2	Ö
13V-11Cr-3A11/	48.8	35	751	5640	3	Ö
13V-11Cr-3Al	48.8	35	197	2340	3	0
13V-11Cr-3A11/	69.8	50	123	5640	3	0
13V-11Cr-3Al	69.8	50	403	6780	2	0.,
13V-11Cr-3A11/	69.8	50	751	5640	3	0 <u>4</u> /
$13V-11Cr-3Al\frac{1}{3}$	69.8	50	197	2340		0
$13V-11Cr-3A1\frac{1}{1}$	104.6	7 5	123	5640	3 3	0
$13V-11Cr-3Al^{\frac{1}{2}}$	104.6	75	403	6780	2	0
$13V-11Cr-3A1\frac{1}{1}$	104.6	75	751	5640	3	0
$13V-11Cr-3Al_{\frac{1}{2}}^{\frac{1}{2}}$	104.6	75	197	2340	3 3	0
$13V-11Cr-3A1\frac{1}{1}$	44.2	35	180	5		0
$13V-11Cr-3Al_{1}^{\frac{1}{2}}$	63.0	50	180	5	3	⁰ 36/
$13V-11Cr-3A1\frac{1}{2}$	94.5	7 5	180	5	3	307
$13V-11Cr-3A1\frac{2}{2}$	Welding	stresses	123	5640	2	$\frac{0}{1}\frac{7}{8}$
$13V-11Cr-3A1\frac{2}{2}$	Welding	stresses	403	6730	2	$1\frac{7}{8}'$
$13V-11Cr-3A1\frac{2}{3}$	Welding	stresses	751	5640	2	1-0'
$13V-11Cr-3A1\frac{2}{2}$	Welding	stresses	197	2340	2	07/
$13V-11Cr-3A1\frac{2}{2}$	Welding	stresses	402	2370	2	$\frac{1}{8}/9/$
13V-11Cr-3Al-2/	Welding	stresses	181	5	4	12/2/

- 1/ Transverse butt weld, unrelieved, across specimen at apex of bow.
- 2/ Circular weld 3 inches in diameter in center of specimen, unrelieved.
- $\overline{\underline{\mathbf{3}}}/$ Two specimens lost when structure was turned on its side and dragged along the bottom.
- 4/ One specimen lost when structure was turned on its side and dragged along the bottom.
- $\underline{5}/$ Three specimens lost when structure was turned on its side and dragged along the bottom.
- $\underline{6}$ / Specimens failed at edge of weld beads after 35, 77 and 105 days.
- $\overline{2}/$ Specimen partially embedded in bottom sediment cracked radially across the weld bead.
- 8/ Specimen in sea water cracked radially across the weld bead.
- 9/ Three specimens lost during a storm.
- 10/ Reference 13

Table 5. Percent Change in Mechanical Properties of Titanium Alloys Due to Corrosion

	Exposure	sure	Orig	Original Properties	ies	Pe	Percent Change	
Alloy	Depth, Feet	Days	Tensile Strength, KSI	Yield Strength, KSI	Elonga- tion Percent	Tensile Strength	Yield Strength	Elonga- tion
75A	,	1	87.2	70.1	29.7		1	
75A	5640	123		,	1	+3.6	+5.0	-4.7
75A	6780	403	ı	ı	1	44.0	4.2	-15.5
75A	5640	751		1	ı	4.0	+11.0	-14.8
75A	2340	197	,	1	1	+4.5	+7.8	-11.2
75A	2370	402	1	ı	ı	16.4	+7.1	-13.2
541=2 58n1/	,	,	130.1	122.6	14.0	1	•	,
5A1-2.5Sn=/	6780	403		'		+10.0	+10.3	-13.2
5A1-2.5Sn-1/	5640	751	1	•	ı	+3.5	14.5	-10.8
5A1-2.5Sm-	2370	402	1	1	•	+5.0	+4.2	-15.0
8Mn	,	1	132.4	116.1	11.8		1	1
8Mn	2370	402	1	•	1	+2.4	+3.2	+33.1
4A1-3Mo-1V	,	1	201.4	180.4	4.0	1	ı	ı
4A1-3Mo-1V	2370	402	ı	1	ı	+1.2	-2.2	+18.8
6A1-4V	,	,	139.7	136.0	14.0	1	,	•
6A1-4V	6780	403	,	١	1	+15.6	+15.7	0.0
6A1-4V	2640	751	1	1	•	+0.2	+3.5	-7.3
6A1-4V	2340	197	1	,	,	+2.3	+3.2	+1.8
6A1-4V1,	2370	402	•	1	,	+7.2	0.9+	-0.7
$ 6A1-4V_1^{\pm} $	'	•	148.4	139.3	12.5		1	ı
$(6A1-4V_1^{\pm})$	6780	403	,	,	ı	44.0	-0.5	-12.8
$6A1-4V_1^{\pm}$	2640	751	,	,	1	+3.1	14.3	-12.8
$6A1-4V^{\pm}$	2370	402	ı	1	•	+2.3	+1.2	4.8 -

Table 5. Continued

	Expo	Exposure	Origi	Original Properties	ies	Per	Percent Change	
Alloy	Depth, Feet	Days	Tensile Strength, KSI	Yield Strength, KSI	Elonga- tion Percent	Tensile Strength	Yield Strength	Elonga- tion
$13V-11Cr-3A1\frac{1}{7}$	1		143.9	139.5	8.5	1	ı	1
$13V-11Cr-3A1^{\frac{1}{7}}$	6780	403		,	1	+17.8	+18.1	-1.8
$13V-11Cr-3A1^{\frac{1}{2}}$	5640	751	•	,	ı	+17.8	+19.6	+5.9
$ 13V-11Cr-3A1^{\pm} $	2370	402	•	•	1	+6.1	+5.1	-21.8

 $\underline{1}/$ Transverse butt weld across mid-point of reduced section of tensile specimens.

		1		
			١,	
·				

Area map showing STU sites off the Pacific Coast; STU structure in inset. Figure 1.

Figure 2. Oceanographic data at STU sites.

Figure 3. Circular weld (3" diameter) in 6" x 12" specimen, unrelieved.

Figure 4. Alloy 6A1-4V welded rings deformed to induce stresses.

Figure 5. Stress corrosion crack across specimen of 13V-11Cr-3A1 alloy at the edge of the weld bead. Note secondary branching cracks extending from main fracture.

Figure 6. Secondary crack in parent metal away from and parallel to main fracture. Crack is branching in nature and transgranular. Etched in lactic, hydrofluoric and nitric acid mixture. X100.

Figure 7. Radial stress corrosion crack across weld bead of 13V-11Cr-3A1.

Figure 8. Irregular, branching stress corrosion crack in 13V-11Cr-3A1. Unetched. X100.

Figure 9. Same area as shown in Figure 6 etched to show that crack is predominantly transgranular. Etched in lactic- hydrofluoric-nitric acids. X100.

NAVAL CIVIL ENGINEERING

LABORATORY
PORT HUENEME, CALIFORNIA 93041

TN 927
IN REPLY REFER TO:
L30/eh
Y-F015-01-05-002A

Serial 632 31 March 1970

From: Commanding Officer

To: Distribution Addressees

Distribution Statement for NCEL Technical Note N-921, Corrosion of Materials in Hydrospace. Part III. Titanium and Titanium Alloys by F. M. Reinhart dated September 1967; change of Sub 1:

- 1. The subject report was printed with a distribution statement limiting of the document to agencies of the U. S. Government without approval of the Naval Civil Engineering Laboratory.
- distribution limitation currently found on the report be deleted and 2. This report has been reviewed by the Chief of Naval Material and Cleared for public release. Accordingly, it is requested that the replaced with the following distribution statement.

Security Classification		1				
	NTROL DATA : F					
Security classification of title, body of abstract and indexi	ni) annotation wust be	28. REPORT SECURITY CLASSIFICATION				
, , , , , , , , , , , , , , , , , , , ,						
Naval Civil Engineering Laboratory Port Hueneme, California		Unclassified 25. GROUP				
S REPORT TITLE						
Corrosion of Materials in Hydrospace. I	Part III - Ti	tanium and	Titanium Alloys			
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)						
5 AUTHOR(5) (First name, middle initial, last name)						
REINHART, Fred M.						
6 REPORT DATE	78. TOTAL NO.	OF PAGES	7b. NO. OF REFS			
August 1967	30		14			
8a. CONTRACT OR GRANT NO.	98. ORIGINATO	R'S REPORT NUM	BER(5)			
b. PROJECT NO. Y-F015-01-05-002a	Technical Note N-921					
с.	9b. OTHER REP this report)	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)				
d.						
Each transmittal of this document outside must have prior approval of the Naval C	vil Engineer	ing Laborat	ofy.			
11. SUPPLEMENTARY NOTES	12. SPONSORIN	12. SPONSORING MILITARY ACTIVITY				
	Naval Facilities Engineering Command Washington, D. C.					
A total of 475 specimens of 10 tits depths in the Pacific Ocean for six diff 1064 days to determine the effects of deresistance. Specimens of the alloys were 181 days for comparison purposes.	ferent period eep ocean env	s of time v ironments o	arying from 123 to on their corrosion			

Corrosion rates, types of corrosion, pit depths, effects of welding, stress corrosion cracking resistance and changes in mechanical properties are presented.

The alloys were immune to corrosion and stress corrosion cracking except alloy 13V-11Cr-3A1. This alloy with unrelieved circular welds failed by stress corrosion cracking after 181 days of exposure at the surface, 403 days at 6,780 feet and 402 days at 2,370 feet. The 13V-11Cr-3A1 alloy with unrelieved butt welds failed by stress corrosion cracking when stressed at 75 percent of its yield strength after 35, 77 and 105 days of exposure at the surface.

The mechanical properties of the alloys were not affected.

Some information from $TOTO\ in\ the\ Atlantic\ Ocean\ is\ included\ for\ comparative\ purposes.$

DD FORM 1473

(PAGE 1)

UNCLASSIFIED

S/N 0101-807-6801

Security Classification

Security Classification LINK A LINK B LINK C KEY WORDS ROLE ROLE ROLE Titanium alloys Mechanical properties Corrosion Hydrospace

DD FORM 1473 (BACK)

UNCLASSIFIED

Security Classification

