MM 225 – AI and Data Science

Day 24: Supervised Learning: Regression Analysis-2

Instructors: Hina Gokhale, MP Gururajan, N. Vishwanathan

1 OCTOBER 2024

Least Squares Estimators of β_0 , β_1

- Let $(Y_i, x_i) : i = 1, 2, ..., n$ be the data.
- These can be expressed as $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$: i = 1, 2, ..., n
- Want to find β_0 , β_1 by minimizing the squared error between values of Y_i and its estimator $\beta_0 + \beta_1 x_i$
- Let us denote estimated value of β_0 , β_1 as $\widehat{\beta_0}$ and $\widehat{\beta_1}$ respectively
- Want find β_0 and β_1 that would minimize sum of squares of deviations from the observations from the regression line:

$$\circ SS = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 x_i)^2$$

$$\frac{\partial SS}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial SS}{\partial \beta_1} = -2\sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

Simplify these two equation leads to

$$n\beta_0 + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$

$$\beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n y_i x_i$$

Least Squares Normal Equations

Further simplification we will get

$$\widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \overline{x}$$

$$\widehat{\beta_1} = \frac{\sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^n x_i^2 - n\bar{x}^2} = \frac{\sum (x_i - \bar{x})y_i}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$$

Notations

Let estimated value of Y_i and ϵ_i be denoted by \hat{Y}_i and e_i for i =1, 2,...,n

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$$
 and $e_i = Y_i - \widehat{Y}_i$

Sum of Squares of residuals = $SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$

$$Sxx = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n}$$

$$Sxy = \sum_{i=1}^{n} (x_i - \bar{x})(Y_i - \bar{Y}) = \sum_{i=1}^{n} x_i Y_i - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} Y_i)}{n}$$

Properties of Estimated Residuals

$$\circ SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

- It can be shown that E(SSE) = (n-2) σ^2
- Hence SSE/(n-2) is an unbiased estimator of σ^2 and it is denoted by

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2}$$

SSE can be simplified as

$$SSE = SST - \widehat{\beta_1} * Sxy$$

Where, $SST = Total \ corrected \ sum \ of \ squares = \sum_{i=1}^{n} (Y_i - \overline{Y}_i)^2$

Properties of Estimated Residuals

- For i = 1, 2, ..., n
- $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ and $E(\epsilon_i) = 0$ and $Var(\epsilon_i) = \sigma^2$
- It implies that

$$E(Y_i) = \beta_0 + \beta_1 x_i$$
$$Var(Y_i) = \sigma^2$$

$$E(\widehat{\beta_1}) = \frac{\sum (x_i - \bar{x})E(Y_i)}{\sum x_i^2 - n\bar{x}^2} = \beta_1 \text{ and } Var(\widehat{\beta_1}) = \frac{\sigma^2}{Sxx}$$

$$E(\widehat{\beta_0}) = \sum_{i=1}^{n} \frac{E(Y_i)}{n} - \bar{x}E(B) = \beta_0 \text{ and } Var(\widehat{\beta_0}) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{Sxx} \right]$$

Properties of LS Estimators

A is an unbiased estimator of β_0

B is an unbiased estimator of β_1

It can be shown that $Cov(A, B) = -\frac{\sigma^2 \bar{x}}{Sxx}$

Standard Errors of estimator of intercept and slope are respectively

$$SE(\widehat{\beta_0}) = \sqrt{\sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{Sxx} \right]}$$

$$SE(\widehat{\beta_1}) = \sqrt{\frac{\sigma^2}{Sxx}}$$

Estimated std error for $\widehat{\beta_0}$ and $\widehat{\beta_1}$ can be obtained by replacing σ^2 by its unbiased estimate $\widehat{\sigma}^2$

Testing Hypothesis on regression parameters

 $Y = \beta_0 + \beta_1 x + \epsilon$ and β_0 and β_1 are estimated as $\widehat{\beta_0}$ and $\widehat{\beta_1}$.

How do we know that statistically this relationship is significant?

If $\beta_1 = 0$ then this implies that Y is not dependent on x!

Therefore, it is of interest to test the hypothesis

$$H_0$$
: $\beta_1 = 0$

In general it would be of interest to test the hypothesis that

$$H_0$$
: $\beta_1 = \beta_{1,0}$

To statistically test the hypothesis an additional assumption needs to be made:

$$\epsilon \sim N(o, \sigma^2)$$

8

Distribution of the regression estimators

$$\epsilon \sim N(o, \sigma^2)$$

Hence $Y \sim N(\beta_0 + \beta_1 x, \sigma^2)$

Estimator $\widehat{\beta_1} = \frac{\sum (x_i - \bar{x})Y_i}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}$ is a linear combination of independent RV Y_i

Hence
$$\widehat{\beta_1} \sim N\left(\beta_1, \frac{\sigma^2}{Sxx}\right)$$

Similarly
$$\widehat{\beta_0} \sim N\left(\beta_0, \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{Sxx}\right]\right)$$

And
$$\frac{(n-2)\widehat{\sigma}^2}{\sigma^2} \sim \chi_{n-2}^2$$

The test statistic for testing $\beta_1 = \beta_{1,0}$

Unbiased estimator of β_1 is B and estimated SE(B) = $\sqrt{\frac{\hat{\sigma}^2}{Sxx}}$

Hence the test statistic for testing $\beta_1 = \beta_{1,0}$ is

$$T = \frac{\widehat{\beta_1} - \beta_{1,0}}{\sqrt{\frac{\widehat{\sigma}^2}{Sxx}}}$$

Hence when H_0 is true: $T \sim t(n-2)$

Critical region for testing $\beta_1 = \beta_{1,0}$

Alternative Hypothesis	Critical region for given α
$\beta_1 \neq \beta_{1,0}$: Two sided alternative	$\left\{\frac{\widehat{\beta_1} - \boldsymbol{\beta}_{1,0}}{\sqrt{\frac{\widehat{\sigma}^2}{Sxx}}} < t\alpha_{/2}(n-2)\right\} \cup \left\{\frac{\widehat{\beta_1} - \boldsymbol{\beta}_{1,0}}{\sqrt{\frac{\widehat{\sigma}^2}{Sxx}}} > t_{1-\alpha_{/2}}(n-2)\right\}$
$oldsymbol{eta_1} < oldsymbol{eta_{1,0}}$: one sided alternative	$\left\{\frac{\widehat{\beta_1} - \boldsymbol{\beta}_{1,0}}{\sqrt{\frac{\widehat{\boldsymbol{\sigma}}^2}{Sxx}}} < t_{\alpha}(n-2)\right\}$
$m{eta_1} > m{eta_{1,0}}$: one sided alternative	$\left\{\frac{\widehat{\beta_1} - \boldsymbol{\beta}_{1,0}}{\sqrt{\frac{\widehat{\boldsymbol{\sigma}}^2}{Sxx}}} > t_{1-\alpha}(n-2)\right\}$

The test statistic for testing $\beta_0 = \beta_{0,0}$

Unbiased estimator of β_0 is A and estimated SE(B) = $\sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{Sxx} \right]}$

Hence the test statistic for testing $\beta_0 = \beta_{0,0}$ is

$$T = \frac{\widehat{\beta_0} - \beta_{0,0}}{\sqrt{\widehat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{Sxx} \right]}}$$

Hence when H_0 is true: $T \sim t(n-2)$

Critical region for testing $\beta_0 = \beta_{0,0}$

Alternative Hypothesis	Critical region for given α
$oldsymbol{eta_0} eta oldsymbol{eta_{0,0}}$: Two sided alternative	$ \left\{ \frac{\widehat{\beta_0} - \boldsymbol{\beta}_{0,0}}{\sqrt{\widehat{\sigma}^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{Sxx} \right]}} < t\alpha_{/2}(n-2) \right\} \cup \left\{ \frac{\widehat{\beta_0} - \boldsymbol{\beta}_{0,0}}{\sqrt{\widehat{\sigma}^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{Sxx} \right]}} > t_{1-\alpha_{/2}}(n-2) \right\} $
$oldsymbol{eta_0} < oldsymbol{eta_{0,0}}$: one sided alternative	$\left\{ \frac{\widehat{\beta_0} - \beta_{0,0}}{\sqrt{\widehat{\sigma}^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{Sxx} \right]}} < t_{\alpha}(n-2) \right\}$
$oldsymbol{eta_0} > oldsymbol{eta_{0,0}}$: one sided alternative	$\int \frac{\widehat{\beta_0} - \boldsymbol{\beta}_{0,0}}{\sqrt{1 - \alpha(n-2)}} > t_{1-\alpha}(n-2)$

Prediction

Suppose new value Y_{n+1} is to be predicted when $x = x_{n+1}$

Then the point estimator Y_{n+1} can be given by $\hat{Y}_{n+1} = \hat{\beta}_0 + \hat{\beta}_1 x_{n+1}$

Error in prediction $e_p = Y_{n+1} - \hat{Y}_{n+1}$

Note that

$$E(e_p) = E(Y_{n+1} - \hat{Y}_{n+1}) = 0$$

$$Var(\hat{Y}_{n+1} = \hat{\beta}_0 + \hat{\beta}_1 x_{n+1}) = \sigma^2 \left[\frac{1}{n} + \frac{(x_{n+1} - \bar{x})^2}{Sxx} \right]$$

$$Var(Y_{n+1}) = \sigma^2$$

Also note that Y_{n+1} refers to the future observation while \hat{Y}_{n+1} is estimated from the model developed. Hence, Y_{n+1} and \hat{Y}_{n+1} are independent.

Therefore:
$$Var(e_p) = \sigma^2 \left[1 + \frac{1}{n} + \frac{(x_{n+1} - \bar{x})^2}{Sxx} \right]$$

Prediction Interval

Thus we have

$$Y - \hat{\beta}_0 - \hat{\beta}_1 x_{n+1} \sim N\left(0, \sigma^2 \left[1 + \frac{1}{n} + \frac{(\bar{x} - x_{n+1})^2}{Sxx}\right]\right)$$

And hence
$$\frac{Y_{n+1} - \hat{Y}_{n+1}}{\sqrt{\hat{\sigma}^2 \left[1 + \frac{1}{n} + \frac{(\overline{x} - x_{n+1})^2}{Sxx}\right]}} \sim t(n-2)$$

Therefore prediction interval at $100(1-\alpha)\%$ confidence level is

$$\hat{y}_{n+1} - t_{n-2,\alpha/2} \sqrt{\hat{\sigma}^2 \left[1 + \frac{1}{n} + \frac{(\bar{x} - x_{n+1})^2}{Sxx} \right]} \le Y_{n+1}$$

$$\le \hat{y}_{n+1} + t_{n-2,\alpha/2} \sqrt{\hat{\sigma}^2 \left[1 + \frac{1}{n} + \frac{(\bar{x} - x_{n+1})^2}{Sxx} \right]}$$

Summary

Statistical properties of estimated errors = residuals

Statistical properties of least squares estimators

Testing of Hypothesis for regression coefficients

Prediction and Prediction Interval

Thank you....

Difference between <u>mean value</u> prediction and Prediction of <u>future value of Y</u>

Suppose we are interested in predicting Y for given x_{n+1} say $Y(x_{n+1})$

Difference between mean response $\beta_0 + \beta_1 x_0$ and $Y(x_{n+1})$

- \circ Example: let x_0 be temperature and Y be response to an experiment carried out at temperature x_0 , then
 - When several experiments are carried out at a given x_0 , then expected value would be mean value of $\beta_0+\beta_1x_0$
 - However, if only one experiment is carried out Y will be only one response....Present case
 relates to this possibility