Wealth, Returns, and Taxation: A Tale of Two Dependencies

Alexandre Gaillard

Philipp Wangner

Toulouse School of Economics

NBER Summer Institute, July 2022

Should we tax/redistribute wealth? How?

ex: Ultra Millionaire Tax in US, France, Norway, Switzerland...

Should we tax/redistribute wealth? How?

ex: Ultra Millionaire Tax in US, France, Norway, Switzerland...

Should we tax/redistribute wealth? How?

ex: Ultra Millionaire Tax in US, France, Norway, Switzerland...

This paper: study macro implications of wealth taxation

- taking into account the importance of heterogeneous returns to wealth
 - \rightarrow returns are **high** and **persistent** at the top, largely driven by portfolio.

Fagereng et al. (2020), Bach et al. (2020), Halvorsen et al. (2022)

Should we tax/redistribute wealth? How?

ex: Ultra Millionaire Tax in US, France, Norway, Switzerland...

- taking into account the importance of heterogeneous returns to wealth
 - → returns are **high** and **persistent** at the top, largely driven by portfolio. Fagereng et al. (2020), Bach et al. (2020), Halvorsen et al. (2022)
 - → key to generating high wealth inequality.
 Benhabib et al. (2019), Hubmer et al. (2021)

Should we tax/redistribute wealth? How?

ex: Ultra Millionaire Tax in US, France, Norway, Switzerland...

- taking into account the importance of heterogeneous returns to wealth
 - → returns are **high** and **persistent** at the top, largely driven by portfolio. Fagereng et al. (2020), Bach et al. (2020), Halvorsen et al. (2022)
 - → key to generating high wealth inequality.
 Benhabib et al. (2019), Hubmer et al. (2021)
 - → breaks equivalence between taxing wealth/capital income. Guvenen et al. (2019)

Should we tax/redistribute wealth? How?

ex: Ultra Millionaire Tax in US, France, Norway, Switzerland...

- taking into account the importance of heterogeneous returns to wealth
 - → returns are **high** and **persistent** at the top, largely driven by portfolio. Fagereng et al. (2020), Bach et al. (2020), Halvorsen et al. (2022)
 - → key to generating high wealth inequality.
 Benhabib et al. (2019), Hubmer et al. (2021)
 - → breaks equivalence between taxing wealth/capital income. Guvenen et al. (2019)
- ▶ Whether/how taxing wealth: depends on the <u>origins</u> of the relation between returns and wealth.

(1) Focus on two concepts generating empirical **returns** – **wealth** relation:

- (1) Focus on two concepts generating empirical **returns wealth** relation:
 - Type-dependence: role of household's intrinsic characteristics. ex: outstanding investment/entrepreneurial skills, risk-tolerance.
 - \rightarrow high return investors end up wealthy over time (*returns* \rightarrow *wealth*).

- (1) Focus on two concepts generating empirical **returns wealth** relation:
 - Type-dependence: role of household's intrinsic characteristics. ex: outstanding investment/entrepreneurial skills, risk-tolerance.
 - \rightarrow high return investors end up wealthy over time (*returns* \rightarrow *wealth*).
 - **Scale-dependence**: role of household's wealth itself (*wealth* \rightarrow *returns*). ex: DRRA, costly information acquisition, participation costs.

- (1) Focus on two concepts generating empirical **returns wealth** relation:
 - Type-dependence: role of household's intrinsic characteristics. ex: outstanding investment/entrepreneurial skills, risk-tolerance.
 - \rightarrow high return investors end up wealthy over time (*returns* \rightarrow *wealth*).
 - **Scale-dependence**: role of household's wealth itself (*wealth* \rightarrow *returns*). ex: DRRA, costly information acquisition, participation costs.
- (2) Return heterogeneity may reflect:
- ▶ differences in the marginal product of capital (MPK) Cagetti & De Nardi (2006), Moll (2014), Guvenen et al. (2019)

- (1) Focus on two concepts generating empirical **returns wealth** relation:
 - ► Type-dependence: role of household's intrinsic characteristics. ex: outstanding investment/entrepreneurial skills, risk-tolerance.
 - \rightarrow high return investors end up wealthy over time (*returns* \rightarrow *wealth*).
 - **Scale-dependence**: role of household's wealth itself (*wealth* \rightarrow *returns*). ex: DRRA, costly information acquisition, participation costs.
- (2) Return heterogeneity may reflect:
 - differences in the marginal product of capital (MPK) Cagetti & De Nardi (2006), Moll (2014), Guvenen et al. (2019)
 - ► rents: market/bargaining power Smith et al. (2019), Scheuer and Slemrod (2021), David and Venkateswaran (2022)

- (1) Focus on two concepts generating empirical **returns wealth** relation:
 - ► Type-dependence: role of household's intrinsic characteristics. ex: outstanding investment/entrepreneurial skills, risk-tolerance.
 - \rightarrow high return investors end up wealthy over time (*returns* \rightarrow *wealth*).
 - **Scale-dependence**: role of household's wealth itself (*wealth* \rightarrow *returns*). ex: DRRA, costly information acquisition, participation costs.
- (2) Return heterogeneity may reflect:
 - ► differences in the marginal product of capital (MPK) Cagetti & De Nardi (2006), Moll (2014), Guvenen et al. (2019)
 - ► rents: market/bargaining power Smith et al. (2019), Scheuer and Slemrod (2021), David and Venkateswaran (2022)

Interaction of (1) and (2) implies different motives for taxing wealth.

What We Find: Overview

In quantitative benchmark US economy with both type/scale-dependence:

- A. If returns reflect purely MPK, welfare-max wealth tax is *positive* at 0.8%.
 - scale-dependence pushes toward a small negative wealth tax. behavioral response of high return investments.
 - **type-dependence** pushes toward a **high positive** wealth tax. reinforces *selection* of high return investors at the top.

What We Find: Overview

In quantitative benchmark US economy with both type/scale-dependence:

- A. If returns reflect purely MPK, welfare-max wealth tax is *positive* at 0.8%.
 - **scale-dependence** pushes toward a **small negative** wealth tax. *behavioral response* of high return investments.
 - ► **type-dependence** pushes toward a **high positive** wealth tax. reinforces *selection* of high return investors at the top.
- B. If returns reflect partially rents, wealth tax roughly unchanged at 0.8%,
 - wealth tax is **higher** under scale: limits rent-seeking behavior.
 - wealth tax is **lower** under type: avoids selecting rent-seekers.
 - \rightarrow both forces offset each other.

Related Literature

How does the literature compare to our paper?

Many frameworks implicitly use type or scale dependence to generate high wealth inequality (and its dynamics).

```
Gabaix et al. (2016), type: Cagetti & De Nardi (2006), Moll (2014), Herranz et al. (2015), Gomez (2017), Guvenen et al. (2019), scale: Galor & Zeira (1993), Kaplan et al. (2018), Kacperczyk et al. (2019), Hubmer et al. (2021), Meeuwis (2021)
```

⇒ cannot be used *interchangeably* to study **wealth redistribution**.

Related Literature

How does the literature compare to our paper?

Many frameworks implicitly use type or scale dependence to generate high wealth inequality (and its dynamics).

```
Gabaix et al. (2016), type: Cagetti & De Nardi (2006), Moll (2014), Herranz et al. (2015), Gomez (2017), Guvenen et al. (2019), scale: Galor & Zeira (1993), Kaplan et al. (2018), Kacperczyk et al. (2019), Hubmer et al. (2021), Meeuwis (2021)
```

- ⇒ cannot be used *interchangeably* to study **wealth redistribution**.
- Wealth taxation with return heterogeneity
 - type-dependence in macro: Guvenen et al. (2019), Boar & Midrigan (2021)
 - scale with fixed type in public econ: Gerritsen et al. (2020), Schulz (2021)
 - rent-seeking: Rothschild and Scheuer (2016), Scheuer & Slemrod (2021)
 - ⇒ unify results depending on the *sources* of return heterogeneity.

Roadmap

1. A simple model

- ▶ isolate key statistics to study inequality efficiency tradeoff.
- ▶ unify the literature on return heterogeneity and redistribution.

2. A full-blown quantitative dynamic model calibrated to the US

- endogenous joint distribution of wealth and skill types.
- characterization of optimal wealth taxation.

Heterogeneous households with initial wealth a and type ϑ .

Heterogeneous households with initial wealth a and type ϑ .

► Supply one unit of work and receive wage.

Heterogeneous households with initial **wealth** a and **type** ϑ .

- ► Supply one unit of work and receive wage.
- ► Invest in
 - **risky assets** with gross return R^{risky} , used in entrepreneurial sector.
 - **safe assets** with return $R^{safe} < \mathbb{E}\left[R^{risky}\right]$, used in traditional sector.

risky asset share: $\omega(a, \vartheta) \propto \vartheta a^{\gamma}$ Microfoundation

Heterogeneous households with initial **wealth** a and **type** ϑ .

- ► Supply one unit of work and receive wage.
- Invest in
 - **risky assets** with gross return R^{risky} , used in entrepreneurial sector.
 - **safe assets** with return $\mathit{R^{safe}} < \mathbb{E}\left[\mathit{R^{risky}}\right]$, used in traditional sector.

risky asset share:
$$\omega(a, \vartheta) \propto \vartheta a^{\gamma}$$
 Microfoundation

- $\rightarrow \gamma$: wealth-dependent risk-taking elasticity.
- \rightarrow **\vartheta**: "type"-specific shifter.
- ightarrow reduced form generates **correlation** btw portfolio and wealth/type.

Production: two technologies (risky/safe)

- ▶ safe assets with marginal productivity $MPK^{safe} = R^{safe}$.
- ► risky assets with marginal productivity *MPK*^{risky}.

Production: two technologies (risky/safe)

- ▶ safe assets with marginal productivity $MPK^{safe} = R^{safe}$.
- risky assets with marginal productivity MPK^{risky}.
- \rightarrow empirically, $R^{risky} > R^{safe}$ not informative on whether $MPK^{risky} > MPK^{safe}$ ex. rent-seeking activities Smith et al. (2019), David et Venkateswaran (2022).

Production: two technologies (risky/safe)

- ▶ safe assets with marginal productivity $MPK^{safe} = R^{safe}$.
- risky assets with marginal productivity MPK^{risky}.
- \rightarrow empirically, $R^{risky} > R^{safe}$ not informative on whether $MPK^{risky} > MPK^{safe}$ ex. rent-seeking activities Smith et al. (2019), David et Venkateswaran (2022).
- \rightarrow introduce wedge μ btw private returns R^{risky} and social returns MPK^{risky}

$$MPK^{risky} = \mu R^{risky} + (1 - \mu)MPK^{safe}$$
,

modeled as a zero-sum game: lower μ reduces overall returns. Equilibrium

Efficiency/output is given by aggregating risky/safe investments

$$Y = F\left(\int\limits_{a,\vartheta} \mathsf{capital}^{\mathit{efficient}}\left(\underbrace{\omega(a,\vartheta)}_{\mathsf{portfolio}},\mu\right) \underbrace{d\mathcal{G}(a,\vartheta)}_{\mathsf{joint density}},\mathsf{Labor}\right).$$

Efficiency/output is given by aggregating risky/safe investments

$$Y = F\left(\int\limits_{a,\vartheta} \mathsf{capital}^{\mathit{efficient}}\left(\underbrace{\omega(a,\vartheta)}_{\mathsf{portfolio}},\mu\right) \underbrace{d\mathcal{G}(a,\vartheta)}_{\mathsf{joint density}}, \mathsf{Labor}\right).$$

Four key parameters to characterize $d\mathcal{G}(a, \vartheta)$ and capital *efficient*:

 η : shape of the wealth distribution, assuming $a \sim Pareto(\eta)$, ϱ : **sorting of skilled-type** along the distribution, i.e. $cov(\vartheta, a)$, γ : wealth-dependent **risk taking elasticity**, i.e. $\frac{\partial \ln(\omega(a,\vartheta))}{\partial \ln(a)}$, μ : extent to which high returns to wealth reflect higher productivity.

Efficiency/output is given by aggregating risky/safe investments

$$Y = F\left(\int_{a,\vartheta} \text{capital}^{efficient}\left(\underbrace{\omega(a,\vartheta)}_{\text{portfolio}},\mu\right) \underbrace{d\mathcal{G}(a,\vartheta)}_{\text{joint density}}, \text{Labor}\right)$$

Four key parameters to characterize $d\mathcal{G}(a, \vartheta)$ and capital *efficient*:

 η : shape of the wealth distribution, assuming $a \sim Pareto(\eta)$, ϱ : sorting of skilled-type along the distribution, i.e. $cov(\vartheta, a)$, γ : wealth-dependent **risk taking elasticity**, i.e. $\frac{\partial \ln(\omega(a,\vartheta))}{\partial \ln(a)}$, μ : extent to which high returns to wealth reflect higher productivity.

8 / 18

Efficiency/output is given by aggregating risky/safe investments

$$Y = F\left(\int\limits_{a,\vartheta} \mathsf{capital}^{\mathit{efficient}}\left(\underbrace{\omega(a,\vartheta)}_{\mathsf{portfolio}},\mu\right) \underbrace{d\mathcal{G}(a,\vartheta)}_{\mathsf{joint density}},\mathsf{Labor}\right)$$

Four key parameters to characterize $d\mathcal{G}(a, \vartheta)$ and capital *efficient*:

 η : shape of the wealth distribution, assuming $a \sim Pareto(\eta)$,

 ϱ : **sorting of skilled-type** along the distribution, i.e. $cov(\vartheta, a)$,

 γ : wealth-dependent **risk taking elasticity**, i.e. $\frac{\partial \ln(\omega(a,\theta))}{\partial \ln(a)}$,

 μ : extent to which high returns to wealth reflect higher productivity.

Efficiency/output is given by aggregating risky/safe investments

$$Y = F\left(\int\limits_{a,\vartheta} \mathsf{capital}^{efficient}\left(\underbrace{\omega(a,\vartheta)}_{\mathsf{portfolio}},\mu\right) \underbrace{d\mathcal{G}(a,\vartheta)}_{\mathsf{joint density}},\mathsf{Labor}\right)$$

Four key parameters to characterize $d\mathcal{G}(a, \vartheta)$ and capital *efficient*:

 η : shape of the wealth distribution, assuming $a \sim Pareto(\eta)$,

 ϱ : **sorting of skilled-type** along the distribution, i.e. $cov(\vartheta, a)$,

 γ : wealth-dependent **risk taking elasticity**, i.e. $\frac{\partial \ln(\omega(a,\theta))}{\partial \ln(a)}$,

 μ : extent to which high returns to wealth reflect higher productivity.

Efficiency/output is given by aggregating risky/safe investments

$$Y = F\left(\int_{a,\vartheta} \text{capital}^{efficient}\left(\underbrace{\omega(a,\vartheta)}_{\text{portfolio}}, \mu\right) \underbrace{d\mathcal{G}(a,\vartheta)}_{\text{joint density}}, \text{Labor}\right)$$

Four key parameters to characterize $d\mathcal{G}(a, \vartheta)$ and capital *efficient*:

 η : shape of the wealth distribution, assuming $a \sim Pareto(\eta)$,

 ϱ : **sorting of skilled-type** along the distribution, i.e. $cov(\vartheta, a)$,

 γ : wealth-dependent **risk taking elasticity**, i.e. $\frac{\partial \ln(\omega(a,\theta))}{\partial \ln(a)}$,

 μ : extent to which high returns to wealth reflect higher productivity.

Efficiency-Inequality Decomposition

Proposition: the marginal effect of a change in inequality on output can be decomposed as

$$\Delta y \propto \underbrace{\mu}_{\substack{\text{pass-through}\\ \text{MPK-returns}}} \left(\underbrace{\Lambda^S(\eta) \cdot \gamma}_{\substack{\text{scale-dep}\\ \text{if } \gamma \neq 0}} + \underbrace{\Lambda^T(\eta) \cdot \varrho}_{\substack{\text{type-dep}\\ \text{if } \varrho \neq 0}} + \underbrace{\Lambda^{ST}(\eta) \cdot \varrho \cdot \gamma}_{\substack{\text{interaction}}} \right),$$

where Λ is a vector of positive "model-specific" inequality multipliers.

A variation in the Pareto tail (e.g. through a wealth tax):

- $\gamma \neq 0$: changes investment *behavior* of a given household.
- $\varrho \neq$ 0: changes allocation of wealth *between* skill-types.

$$\Delta y \propto \underbrace{\mu}_{\substack{\text{pass-through}\\ \text{MPK-returns}}} \left(\underbrace{\Lambda^{S}(\eta) \cdot \gamma}_{\substack{\text{scale-dep}\\ \text{if } \gamma \neq 0}} + \underbrace{\Lambda^{T}(\eta) \cdot \varrho}_{\substack{\text{type-dep}\\ \text{if } \varrho \neq 0}} + \underbrace{\Lambda^{ST}(\eta) \cdot \varrho \cdot \gamma}_{\substack{\text{interaction}}} \right)$$

$$\Delta y \propto \underbrace{\mu}_{\substack{\text{pass-through}\\ \text{MPK-returns}}} \left(\underbrace{\Lambda^{S}(\eta) \cdot \gamma}_{\substack{\text{scale-dep}\\ \text{if } \gamma \neq 0}} + \underbrace{\Lambda^{T}(\eta) \cdot \varrho}_{\substack{\text{type-dep}\\ \text{if } \varrho \neq 0}} + \underbrace{\Lambda^{ST}(\eta) \cdot \varrho \cdot \gamma}_{\substack{\text{interaction}}} \right)$$

$$\Delta y \propto \underbrace{\mu}_{\substack{\text{pass-through}\\ \text{MPK-returns}}} \left(\underbrace{\Lambda^{S}(\eta) \cdot \gamma}_{\substack{\text{scale-dep}\\ \text{if } \gamma \neq 0}} + \underbrace{\Lambda^{T}(\eta) \cdot \varrho}_{\substack{\text{type-dep}\\ \text{if } \varrho \neq 0}} + \underbrace{\Lambda^{ST}(\eta) \cdot \varrho \cdot \gamma}_{\substack{\text{interaction}}} \right)$$

$$\Delta y \propto \underbrace{\mu}_{\substack{\text{pass-through}\\ \text{MPK-returns}}} \left(\underbrace{\Lambda^{S}(\eta) \cdot \gamma}_{\substack{\text{scale-dep}\\ \text{if } \gamma \neq 0}} + \underbrace{\Lambda^{T}(\eta) \cdot \varrho}_{\substack{\text{type-dep}\\ \text{if } \varrho \neq 0}} + \underbrace{\Lambda^{ST}(\eta) \cdot \varrho \cdot \gamma}_{\substack{\text{interaction}}} \right)$$

Efficiency-Inequality Diagram

- lacksquare Some models boil down to a particular representation of weights $oldsymbol{\Lambda}(\eta)$
 - ex: many type/scale mechanisms used to generate high wealth inequality
 - \rightarrow important when it comes to redistribution.

From Efficiency to Welfare

Wealth redistribution trade-offs: Equilibrium Conditions

- 1. **inequality-efficiency** (Δy): affects equilibrium wages, trickle down.
- 2. **rents** (μ < 1): reduce efficiency link, lower overall returns.
- 3. equity: equalizing marginal utility across households.

Static model: elasticity of response to wealth tax depend on type/scale dep.

ightarrow additional behavioral response under scale-dependence.

Dynamic model: endogenize joint distribution wealth and skill types.

- \rightarrow quantitative structure on inequality weights $\Lambda(\eta)$.
- \rightarrow type/scale dependence generate opposite results for wealth taxation.

Quantitative Dynamic Model: Overview

Extended Aiyagari – Bewley – Huggett economy à la Conesa et al. (2019). Model

► Households

- decide how much to consume and save given prices.
- earnings: life-cycle, retirement, persistent and transitory component.
- portfolio $\omega(a, \vartheta)$ driven by skill-types ϑ and wealth a, κ is idio. shock.

return:
$$r(\mathbf{a}, \vartheta) = \underline{r} + r_F \cdot (1 - \omega(\mathbf{a}, \vartheta)) + r_R \cdot \kappa \cdot \omega(\mathbf{a}, \vartheta)$$

Quantitative Dynamic Model: Overview

Extended Aiyagari – Bewley – Huggett economy à la Conesa et al. (2019). Model

▶ Households

- decide how much to consume and save given prices.
- earnings: life-cycle, retirement, persistent and transitory component.
- portfolio $\omega(a, \vartheta)$ driven by skill-types ϑ and wealth a, κ is idio. shock.

return:
$$r(\mathbf{a}, \vartheta) = \underline{r} + r_F \cdot (1 - \omega(\mathbf{a}, \vartheta)) + r_R \cdot \kappa \cdot \omega(\mathbf{a}, \vartheta)$$

Production

- final good F(X, L) combines intermediate goods x and labor.
- x produced with risky/safe assets with different MPKs.

$$x(\mathbf{a},\vartheta) = \Big((1 - \omega(\mathbf{a},\vartheta)) A_F + \omega(\mathbf{a},\vartheta) (\mu A_R + A_F(1-\mu)) \Big) \mathbf{a}$$

Closing the Model

Equilibrium prices: Definition

wage rate equalizes marginal product of labor.

$$r_F = \underbrace{A_F F_X(X, L)}_{MPK_F}, \quad r_R = A_R F_X(X, L) \ge \underbrace{(\mu A_R + A_F(1 - \mu)) F_X(X, L)}_{MPK_R(\mu)}$$

• if μ < 1: \underline{r} adjusts to ensure capital income = capital product.

Closing the Model

Equilibrium prices: Definition

wage rate equalizes marginal product of labor.

$$r_F = \underbrace{A_F F_X(X, L)}_{MPK_F}, \quad r_R = A_R F_X(X, L) \ge \underbrace{(\mu A_R + A_F(1 - \mu)) F_X(X, L)}_{MPK_R(\mu)}$$

• if μ < 1: \underline{r} adjusts to ensure capital income = capital product.

Government: implements a wealth tax

$$t_a(a; \tau_a, \underline{a}_{max}) = \mathbb{1}_{a \geq \underline{a}_{max}} \tau_a(a - \underline{a}_{max})$$

- **b** balanced with labor income tax: $T_{labor} + T_a = \overline{G}$.
- **Welfare criterion:** utilitarian consumption equivalent variation Δ^{CEV} , steady-state comparison.

$$\pi_{\vartheta}(\vartheta'|\vartheta, \mathbf{a}) = \begin{bmatrix} 1 - \underline{\pi}_{\vartheta} - \lambda(\mathbf{a}) & \underline{\pi}_{\vartheta} + \lambda(\mathbf{a}) \\ \overline{\pi}_{\vartheta} & 1 - \overline{\pi}_{\vartheta} \end{bmatrix}$$

- $\lambda(a)$ matches wealth dependent entry into equity investment in PSID Data
- $\underline{\pi}_{\vartheta}$ and $\overline{\pi}_{\vartheta}$ match fraction of investors and exit.
- \rightarrow suppose $\lambda(a) = 0$, type-dependence arises if $\underline{\pi}_{\vartheta} < 1/2$.

$$\pi_{\vartheta}(\vartheta'|\vartheta, \mathbf{a}) = \begin{bmatrix} 1 - \underline{\pi}_{\vartheta} - \lambda(\mathbf{a}) & \underline{\pi}_{\vartheta} + \lambda(\mathbf{a}) \\ \overline{\pi}_{\vartheta} & 1 - \overline{\pi}_{\vartheta} \end{bmatrix}$$

- $\lambda(a)$ matches wealth dependent entry into equity investment in PSID Data
- $\underline{\pi}_{\vartheta}$ and $\overline{\pi}_{\vartheta}$ match fraction of investors and exit.
- \rightarrow suppose $\lambda(a) = 0$, type-dependence arises if $\underline{\pi}_{\vartheta} < 1/2$.
- Portfolio share: $\omega(\mathbf{a}, \vartheta) = \vartheta(\underline{\omega} + \omega(\mathbf{a})).$
 - $\omega(a)$ matches increase in *net* private equity investments at the top scr
 - $\underline{\omega}$ matches average equity portfolio of investors.

$$\pi_{\vartheta}(\vartheta'|\vartheta, \mathbf{a}) = \begin{bmatrix} 1 - \underline{\pi}_{\vartheta} - \lambda(\mathbf{a}) & \underline{\pi}_{\vartheta} + \lambda(\mathbf{a}) \\ \overline{\pi}_{\vartheta} & 1 - \overline{\pi}_{\vartheta} \end{bmatrix}$$

- $\lambda(a)$ matches wealth dependent entry into equity investment in PSID Data
- $\underline{\pi}_{\vartheta}$ and $\overline{\pi}_{\vartheta}$ match fraction of investors and exit.
- \rightarrow suppose $\lambda(a) = 0$, type-dependence arises if $\underline{\pi}_{\vartheta} < 1/2$.
- Portfolio share: $\omega(\mathbf{a}, \vartheta) = \vartheta(\underline{\omega} + \omega(\mathbf{a})).$
- $\omega(a)$ matches increase in *net* private equity investments at the top sce
- $\underline{\omega}$ matches average equity portfolio of investors.
- Parameters $\{\beta, A_R\}$: pin down K/Y ratio, top wealth inequality Other Parameters

Wealth Inequality

Different models generate consistent wealth and return distributions.

- benchmark: coexistence of type/scale.
- pure scale-model: cross-sectional return heterogeneity from scale only.
- pure type-model: cross-sectional return heterogeneity from types only.

Table 1: Wealth distribution in the data and models.^a

	Gini ^c	Share of wealth (in %) held by the top $x\%$					
		20	10	5	1	0.1	0.01
US data	0.82	86.4	72.7	59.7	37.2	17.8	7.3
benchmark model pure scale model – recalibrated ^a pure type model – recalibrated ^a	0.80 0.82 0.78	84.2 85.7 82.0	71.9 73.6 67.1	59.3 60.3 56.2	35.4 35.2 35.7	18.2 20.7 20.2	8.9 11.7 10.9

^a recalibrated to match the top 1% wealth share and K/Y ratio.

Result A: Positive Wealth Tax

- ▶ scale dep: *snowball effect* which amplifies productivity response to tax.
- ightharpoonup type dep: only the fittest survive at the top ightharpoonup productivity increases. Show

Result B: Effects of Rents

What if returns reflect rents instead of MPK?

- scale dependence: wealth tax increases to limit rent-extraction.
- ▶ type dependence: wealth tax **decreases** to avoid selecting renters.
- benchmark: both effects offset each other.

Conclusion

To understand how/whether we should tax wealth

key to distinguishing between **type** and **scale** dependence:

F. Scott Fitzgerald: "You know, the rich are different from you and me."

Ernest Hemingway: "Yes. They've got more money."

together with whether returns reflect MPK or rents.

Two quantitative results: welfare maximizing wealth tax in the US is

- A. **positive** due to type-dependence,
- B. unresponsive to size of rents.

Efficiency-inequality diagram Back

Model: Households Back

- ▶ labor productivity *z* depends on age *j*, persistent/transitory component,
- **heterogeneous rate of returns** (due to type ϑ and scale (wealth) a).

(return)
$$r(\mathbf{a}, \vartheta) = \underline{r} + r_F \cdot (1 - \omega(\mathbf{a}, \vartheta)) + r_R \kappa \cdot \omega(\mathbf{a}, \vartheta)$$

 $\omega(\mathbf{a}, \vartheta)$ drives high return investments, with κ an idiosyncratic shock.

- decide how much to consume, work, and save,
- ▶ take prices $\{w, r_F, r_R, \underline{r}\}$, taxes and transfers as given.

$$V(\underline{a}, \vartheta, \kappa, z, j) = \max_{c,\ell,d' \ge 0} u(c,\ell) + \beta (1 - d_j) \mathbb{E} \left[V(\underline{a}', \vartheta, \kappa', z', j') \right]$$
s.t.
$$c + \underline{a}' = w\ell z (1 - \tau_w) + (1 + r(\underline{a}, \vartheta)(1 - \tau_k)) \underline{a} - \underbrace{t_a(\underline{a})}_{\text{wealth tax}}$$

SCF – Portfolio Increase at Top Back

Figure 1: Decomposition into multiple priv. equity business investments, SCF

PSID – Participation Increase at Top (Back)

Utility: Micro Foundation Back

Households

- ▶ initial wealth a_i , and innate type ϑ_i
- ightharpoonup CARA utility $u_i = -\frac{\mathbb{E}[e^{-\alpha_i c_i}]}{\alpha_i}$
- with innate risk-aversion correlates with type/wealth: $\alpha_i = \frac{\overline{\vartheta}}{\vartheta_{i}a_i^{\gamma+1}}$

Budget constraint

$$conso_i = wage_i + k_i R_r^i + (a_i - k_i) R_f$$
 with $R_r^i \sim \mathcal{N}(\mathbb{E}[R_r^i], \sigma_r^2)$

Optimal risky asset demand k_i and portfolio share $\omega(a_i, \vartheta_i)$

$$k_i \propto \omega \underbrace{\mathcal{T}(a_i, \vartheta_i)}_{\text{risk tolerance}} = \omega \cdot \frac{\vartheta_i}{\overline{\vartheta}} \cdot a_i^{\gamma+1}, \qquad \omega(a_i, \vartheta_i) \propto \omega \cdot \frac{\vartheta_i}{\overline{\vartheta}} \cdot a_i^{\gamma}$$

Generally: demand for risky assets for arbitrary utility: $k_i \approx \frac{\mu_p^p}{var_k} \mathcal{T}(a_i \mathbb{E}[R_r])$

▶ we generalize the risk-tolerance shape with scale/type dependence.

A Simple Model: Equilibrium Rents

Lemma 1

Given the joint distribution of types and wealth $G(\vartheta, a)$, aggregate risky capital K_I , output Y, productivity Z, the wage rate w and the rent component satisfy:

$$K_{I} = \int_{(a,\theta)} \omega(a,\theta) d\mathcal{G}(a,\theta)$$

$$Y = Z\mathbb{E}[a]$$

$$Z = \mu(MPK^{risky} - MPK^{safe}) \frac{K_{I}}{\mathbb{E}[a]} + A$$

$$w = \varphi Y,$$

$$\underline{r} = (\mu - 1)(MPK^{risky} - MPK^{safe})(1 - \varphi) \frac{K_{I}}{\mathbb{E}[a]}.$$

where the return component of individuals is given by:

$$r(a, \vartheta) = \underline{r} + R^{safe}(1 - \omega(a, \vartheta)) + R^{risky} \underbrace{\kappa}_{idio. shock} \omega(a, \vartheta)$$

Portfolio, Returns, and Wealth Intro

- ► Average returns to wealth are positively correlated with wealth more
 - → **high** and **persistent** at the top, Fagereng et al. (2020), Bach et al. (2020).
- Large part driven by heterogeneity in equity portfolio allocation.
- (a) portfolio shares, SCF (1998-2019)

(b) average wealth returns, PSID (2000-2018)

Welfare Measure Back

$$\int_{\mathbf{s}} \mathbb{E}_{0} \left[\sum_{t=0}^{\infty} \widetilde{\beta}^{t} u \Big(c_{t}^{post}(\mathbf{s}), \ell_{t}^{post}(\mathbf{s}) \Big) \right] d\mathcal{G}^{post}(\mathbf{s}) = \int_{\mathbf{s}} \mathbb{E}_{0} \left[\sum_{t=0}^{\infty} \widetilde{\beta}^{t} u \Big((1 + \Delta^{CEV}) c_{t}^{pre}(\mathbf{s}), \ell_{t}^{pre}(\mathbf{s}) \Big) \right] d\mathcal{G}^{pre}(\mathbf{s})$$

Parameterization Back

	Symbol	Value	Source
A. Various external parameters			
preferences $u(c, \ell) = \frac{c^{1-\sigma_1}}{1-\sigma_1} - \chi \frac{\ell^{1+\sigma_2}}{1+\sigma_2}$	$\{\sigma_1,\sigma_2\}$	{2.5, 1.7}	Brüggemann (2021)
persistent process h with Pareto tail	$\{\sigma_h, \rho_h, \eta_h, q_h\}$	{0.22,0.95, 2.1,0.9}	Hubmer et al. (2021)
stochastic aging part for <i>h</i> process inheritance of <i>h</i> skills	in paper ρ _h	in paper 0.65	Sommer et Sullivan (2018) Chetty (2014)
transitory process labor <i>y</i> production	σ_y $\{\alpha \delta A_E\}$	0.15 {0.33, 0.05, 1.0}	Hubmer et al. (2021) standard values
tax rates	$\{\alpha, \delta, A_F\} \{\tau_w, \tau_k, \tau_b\}$	$\{0.22, 0.25, 0.4\}$	standard values
B. Return-heterogeneity parameter	RS		
riskiness of equity investment	σ_{κ}	0.51	estimates PSID (table)
return wedge	μ	1.0	benchmark value
inheritance of ϑ skills	$ ho_{artheta}$	0.15	Fagereng et al. (2020)

Parameters internally calibrated:

- ▶ $\{\beta, A_R A_F\}$, match $\frac{K}{Y}$ and top 1% wealth share.
- disutility of labor χ : matches 1/3 time on market work.
- high return investment: match investment decisions in SCF/PSID.

Result A: Positive Wealth Tax Back

Under type-dependence: a wealth tax changes the sorting of skilled investors along the wealth distribution.

→ At the top: more Elon Musk ("new" money), less Albert de Monaco ("old" money).

Figure 3: Change in the fraction of skilled investors along the wealth distribution.

