(Pseudo-)Absences for Species distribution modelling

Why do we need them?

The problem with absence data

- background data: characterise the whole landscape
 - sample points to shorten the computational time
 - risk of introducing false absences (Anderson, 2010)
 - overfitting to conditions found near the presences (Anderson, 2010)
 - inflate test statistics (Iturbide et al., 2015)
- pseudo-absence data: characterise the landscape where the species does not occur
 - a priori decisions about the suitability of regions needed (may influence the modelling results) (Stokland et al., 2011)
- **study region:** restricted calibration area + prediction into the larger study area leads to more realistic predictions (Anderson, 2010)
 - extrapolation occurs mainly in regions where presence is unlikely
 - delineation based on topography or coarse distributional patterns
- Background/PA data can be sampled with the same geographic bias as the training data (Phillips et al., 2009) -> but: many assumptions

Strategies for sampling of pseudo-absences

- sampling within areas that are
 - at a geographical distance from the training points or
 - environmental dissimilar to the training points (Senay et al., 2013)
- distance in geographical space:
 - choosing the ideal distance based on the model performance (trial and error)
 - based on expert knowledge
 - based on telemetry data derived movement characteristics
- distance in environmental/predictor space:
 - identification of least suitable areas using presence-only methods
 - based on expert knowledge

Strategies for sampling of pseudo-absences

- Three step method (Senay et al., 2011):
 - 1. Specify geographical extent:
 - increasing the distance until the contribution of the most important variable decreases
 - 2. Classify these areas based on their environmental similarity to presence sites
 - no similarity -> potential pseudo-absence points
 - 3. Cluster these areas in environmental space
 - number of clusters = number of presences available
 - centroids of the clusters are projected into geographical space
 pseudo-absence points
- R-package mopa (Iturbide et al., 2015): provides 3-step PA-sampling method
 - Pseudo-Absences provide generally higher AUC than background points; but: poor CVstrategy + weak test metric

Strategies for sampling of PA / BG data

- package *flexsdm*:
 - background points:
 - random
 - thickening: more sampling towards presence sites
 - bias: using raster layer representing sampling effort
 - pseudo-absence points:
 - random
 - env_const: distance in environmental space
 - geo_const: distance in geographical space
 - geo_env_const: combination of geo & env constrained (2-step)
 - geo_env_km_const: + distributing PAs in env-space using k-means (3-step)

pseudo-absence data: estimation of the potential distribution (ENM) (Iturbide et al., 2015) background data: estimation of the realized distribution (SDM) (Iturbide et al., 2015)

- Calibration area: should be restricted to the area that is accessible to the species (M)
 - Distinction between PA & BG-data difficult

Algorithms	Туре	Weighting
Maxent, BRT, ENFA	BG [1]; BRT: see RF [2]	unequal
Random Forest	BG [1] or PAg (when small sample size) [2] or PAe (when sample size is large) [2] class overlap -> better PA?	equal weight by down- sampling of bg-points
GLM, GAM	PAg [2;3] (when climatically biased* presences) or BG [3]	equal weight
ANN, SVM, NB	pseudo-absence	

*can result from spatially biased sampling / when not the whole range of suitable environmental conditions was sampled [2]

[1] Valavi et al. (2021)

[2] Barbet-Massin et al. (2011)

[3] Senay et al. (2011)

BG: Background-Points

PAg: Pseudo-Absence points based on distance in

geographical space

PAe: Pseudo-Absence points based on distance in

environmental space