Hardness magnification

Sparse NP Languages

Sanjana Das

18.405

May 14, 2024

Hardness magnification is a phenomenon where weak-looking lower bounds on certain problems imply much stronger lower bounds.

What is hardness magnification?

Introduction

Hardness magnification is a phenomenon where weak-looking lower bounds on certain problems imply much stronger lower bounds.

If there is $\varepsilon > 0$ and arbitrarily small $\beta > 0$ such that

- * MCSP[n^{β}] doesn't have circuits of size $n^{1+\varepsilon}$ (on inputs of length $n = 2^m$),
- \star then NP $\not\subseteq$ Circuit[poly].

We believe MCSP[n^{β}] is 'hard,' so a lower bound of $n^{1+\varepsilon}$ looks very weak

The high-level idea

We argue by contrapositive: e.g., we assume $NP \subseteq Circuit[poly]$ and use this to get super efficient circuits for MCSP[n^{β}].

Sparse NP Languages

Reduce to a problem on much smaller input size (e.g., n^{β} instead of n).

The high-level idea

We argue by contrapositive: e.g., we assume $NP \subseteq Circuit[poly]$ and use this to get super efficient circuits for MCSP[n^{β}].

Introduction

0

Reduce to a problem on much smaller input size (e.g., n^{β} instead of n).

- ightharpoonup Given an oracle \mathcal{O} for a specific problem, we can solve MCSP[n^{β}] with a circuit of size $n^{1+\beta}$ and oracle calls of size n^{β} .
- ▶ Under the assumption NP \subseteq Circuit[poly], we can solve \mathcal{O} with a decently efficient circuit (e.g., polynomial in its input length).
- ightharpoonup The input length to \mathcal{O} is so tiny that even a decently efficient circuit for \mathcal{O} in terms of its input length is super efficient in terms of n.

Definition (Search-MCSP[s]

- ▶ Input: $f: \{0,1\}^m \to \{0,1\}$, as a truth table of length $n=2^m$.
- ▶ Output: a circuit of size at most s that computes f, or the all-0's string if no such circuit exists.

Magnification for Search-MCSP

Definition (Search-MCSP[s])

- ▶ Input: $f: \{0,1\}^m \rightarrow \{0,1\}$, as a truth table of length $n=2^m$.
- ▶ **Output**: a circuit of size at most *s* that computes *f*, or the all-0's string if no such circuit exists.

Theorem (McKay-Murray-Williams 2019)

If there is $\varepsilon > 0$ and arbitrarily small $\beta > 0$ such that Search-MCSP[n^{β}] doesn't have circuits of size $n^{1+\varepsilon}$ and depth n^{ε} , then NP $\not\subseteq$ Circuit[poly].

- ▶ Input: $f: \{0,1\}^m \to \{0,1\}$, as a truth table of length $n=2^m$.
- ▶ Output: a circuit of size at most s that computes f, or the all-0's string if no such circuit exists.

Sparse NP Languages

Theorem (McKay–Murray–Williams 2019)

If there is $\varepsilon > 0$ and arbitrarily small $\beta > 0$ such that Search-MCSP[n^{β}] doesn't have circuits of size $n^{1+\varepsilon}$ and depth n^{ε} , then NP $\not\subset$ Circuit[poly].

If NP \subseteq Circuit[poly], then Search-MCSP[s] has circuits of size $n \cdot poly(s)$ and depth poly(s). (Think of s as n^{β} .)

If our input f can be computed by a small circuit, then we can 'compress' chunks of it by representing the chunk with a small circuit.

Main idea — compression using small circuits

If our input f can be computed by a small circuit, then we can 'compress' chunks of it by representing the chunk with a small circuit.

▶ Imagine we have some interval $Z = [z_1, z_2] \subseteq \{0, 1\}^m$. Then we can store the values of f on Z by instead storing a small circuit C that computes f on Z — if no such circuit exists, we know f can't be computed by a small circuit.

If our input f can be computed by a small circuit, then we can 'compress' chunks of it by representing the chunk with a small circuit.

- ▶ Imagine we have some interval $Z = [z_1, z_2] \subseteq \{0, 1\}^m$. Then we can store the values of f on Z by instead storing a small circuit C that computes f on Z — if no such circuit exists, we know f can't be computed by a small circuit.
- ▶ If we've got two such circuits, to 'merge' them we only need their descriptions and the endpoints of their intervals — this is a problem with input length poly(s).

▶ Input: $\langle 1^s, C_1, C_2, Z_1, Z_2, j \rangle$ where $j \in \mathbb{N}$, C_1 and C_2 are circuits of size at most s, and $Z_1, Z_2 \subseteq \{0,1\}^m$ are adjacent intervals.

Sparse NP Languages

Output: $\langle C \rangle_i$ where C is the lexicographically first circuit C of size at most s such that $C(z) = C_1(z)$ for all $z \in Z_1$ and $C(z) = C_2(z)$ for all $z \in \mathbb{Z}_2$, or 0 if no such circuit exists.

The smaller problem

- ▶ Input: $\langle 1^s, C_1, C_2, Z_1, Z_2, j \rangle$ where $j \in \mathbb{N}$, C_1 and C_2 are circuits of size at most s, and $Z_1, Z_2 \subseteq \{0,1\}^m$ are adjacent intervals.
- **Output**: $\langle C \rangle_i$ where C is the lexicographically first circuit C of size at most s such that $C(z) = C_1(z)$ for all $z \in Z_1$ and $C(z) = C_2(z)$ for all $z \in \mathbb{Z}_2$, or 0 if no such circuit exists.

Claim

Circuit-Merge $\in \Sigma_3 P$.

Existentially guess C. To check it works, universally guess z and check C(z) is correct. To check it's lexicographically first, universally guess $C' \prec C$, then existentially guess z' and check C'(z') is incorrect.

Lemma

There is a Circuit-Merge-oracle circuit for Search-MCSP[s] with size $n \cdot \text{poly}(s)$, queries of length poly(s), and depth log n.

Lemma

There is a Circuit-Merge-oracle circuit for Search-MCSP[s] with size $n \cdot \text{poly}(s)$, queries of length poly(s), and depth log n.

- ▶ We start out with one circuit representing each bit of the input (e.g., the all-0's or all-1's circuit).
- ► Then we repeatedly merge two consecutive circuits (in a binary tree) to get circuits representing larger and larger chunks of the input.
- \blacktriangleright If we ever get 'stuck' (i.e., there's no small circuit merging C_1 and C_2), then we know f itself doesn't have a small circuit.
- ightharpoonup Otherwise, we eventually get a small circuit representing f.

Introduction

(We hardcode 1^s and all the values of Z_1 and Z_2 .)

References

Theorem ('Contrapositive' of MMW19)

If NP \subseteq Circuit[poly], then Search-MCSP[s] has circuits of size $n \cdot \text{poly}(s)$ and depth poly(s).

- \blacktriangleright We've made a Circuit-Merge-oracle circuit of size $n \cdot poly(s)$ and depth $\log n$, making queries of length $\ell = \text{poly}(s)$.
- ▶ If NP \subseteq Circuit[poly], then Σ_3 P \subseteq Circuit[poly].
- ► So we can implement all the oracle queries with circuits of size $poly(\ell) = poly(s)$ to get an actual circuit for Search-MCSP[s] of size $n \cdot poly(s)$ and depth poly(s).

Sparse NP Languages

•0000

What's special about MCSP[n^{β}]?

Magnification for more general languages

What's special about MCSP[n^{β}]?

- \blacktriangleright One property of MCSP[n^{β}] is that it's sparse MCSP[s] only has $2^{s \log s}$ **YES** instances (out of 2^n possible inputs).
- ► Surprisingly, this is enough to get a hardness magnification result!

Magnification for more general languages

What's special about MCSP[n^{β}]?

 \blacktriangleright One property of MCSP[n^{β}] is that it's sparse — MCSP[s] only has $2^{s \log s}$ **YES** instances (out of 2^n possible inputs).

Sparse NP Languages

► Surprisingly, this is enough to get a hardness magnification result!

Suppose there is some $\varepsilon > 0$ and a family of languages $\{L_{\beta}\} \subseteq \mathsf{NP}$ (with arbitrarily small values of β) such that each L_{β} is $2^{n^{\beta}}$ -sparse and doesn't have circuits of size $n^{1+\varepsilon}$. Then NP $\not\subset$ Circuit $[n^k]$ for all k.

What's special about MCSP[n^{β}]?

 \blacktriangleright One property of MCSP[n^{β}] is that it's sparse — MCSP[s] only has $2^{s \log s}$ **YES** instances (out of 2^n possible inputs).

Sparse NP Languages

► Surprisingly, this is enough to get a hardness magnification result!

Suppose there is some $\varepsilon > 0$ and a family of languages $\{L_{\beta}\} \subseteq NP$ (with arbitrarily small values of β) such that each L_{β} is $2^{n^{\beta}}$ -sparse and doesn't have circuits of size $n^{1+\varepsilon}$. Then NP $\not\subset$ Circuit $[n^k]$ for all k.

Suppose that NP \subseteq Circuit[n^k]. Then every $2^{n^{\beta}}$ -sparse language $L_{\beta} \in NP$ has circuits of size $O(n^{1+k\beta})$ (for all β).

Main idea — hashing

Lemma

Given β , there is a hash family $\{h_v : \{0,1\}^n \to \{0,1\}^t\}$ such that:

- ▶ For any $S \subseteq \{0,1\}^n$ of size $|S| \le 2^{n^{\beta}}$, there is some 'good seed' v such that h_v hashes all $x \in S$ to different values.
- ▶ The output length t and seed lengths |v| are both $O(n^{\beta})$.
- ▶ Given n, β , ν , and x, we can very efficiently compute $h_{\nu}(x)$.

Main idea — hashing

Lemma

Given β , there is a hash family $\{h_v: \{0,1\}^n \to \{0,1\}^t\}$ such that:

▶ For any $S \subseteq \{0,1\}^n$ of size $|S| \le 2^{n^{\beta}}$, there is some 'good seed' v such that h_v hashes all $x \in S$ to different values.

Sparse NP Languages

- ▶ The output length t and seed lengths |v| are both $O(n^{\beta})$.
- Given n, β , ν , and x, we can very efficiently compute $h_{\nu}(x)$.

Main idea

On input x, we hash x; then instead of checking whether $x \in L_{\beta}$, we check whether there's some $y \in L_{\beta}$ with $h_{\nu}(y) = h_{\nu}(x)$.

This is a problem on much smaller input length — $h_{\nu}(x)$ only has length $O(n^{\beta})$ (as opposed to x, which has length n).

The smaller problem

▶ Input: $\langle n, v, x^*, i, b \rangle$ (where $|x^*| = cn^{\beta}$, $i \in [n]$ and $b \in \{0, 1\}$).

Sparse NP Languages

▶ **Decide**: is there some $y \in \{0,1\}^n$ such that $y \in L_\beta$, $h_\nu(y) = x^*$, and $y_i = b$?

▶ Input: $\langle n, v, x^*, i, b \rangle$ (where $|x^*| = cn^{\beta}$, $i \in [n]$ and $b \in \{0, 1\}$).

Sparse NP Languages

▶ **Decide**: is there some $y \in \{0,1\}^n$ such that $y \in L_\beta$, $h_\nu(y) = x^*$, and $y_i = b$?

Claim

 L_{β} -Hash-Match \in NP.

- Guess y (of length n), check that $h_y(y) = x^*$ and $y_i = b$, and nondeterministically check $y \in L_{\beta}$.
- \blacktriangleright This takes poly(n) time; the input length is at least n^{β} , and n is a polynomial in n^{β} for fixed β .

Introduction

There is a L_{β} -Hash-Match oracle circuit for L_{β} with size $O(n^{1+\beta})$ and queries of length $O(n^{\beta})$.

Lemma

There is a L_{β} -Hash-Match oracle circuit for L_{β} with size $O(n^{1+\beta})$ and queries of length $O(n^{\beta})$.

 \blacktriangleright Fix a good seed ν for the **YES** instances of L_{β} (which we hardcode).

- Given x, compute $h_v(x)$ (which we can do with a O(n)-size circuit).
- ▶ Output $\bigwedge_{i \in [n]} L_{\beta}$ -Hash-Match $(\langle n, v, h_v(x), i, x_i \rangle)$.

Lemma

There is a L_{β} -Hash-Match oracle circuit for L_{β} with size $O(n^{1+\beta})$ and queries of length $O(n^{\beta})$.

Construction

- ▶ Fix a good seed v for the **YES** instances of L_{β} (which we hardcode).
- Given x, compute $h_v(x)$ (which we can do with a O(n)-size circuit).
- ▶ Output $\bigwedge_{i \in [n]} L_{\beta}$ -Hash-Match $(\langle n, v, h_v(x), i, x_i \rangle)$.

Proof.

- ▶ For every i, is there some $y \in L_{\beta}$ with $h_{\nu}(y) = h_{\nu}(x)$ and $y_i = x_i$?
- ▶ If $x \in L_{\beta}$, then we can take y = x for all i.
- ▶ If $x \notin L_{\beta}$, then there is at most one $y \in L_{\beta}$ with $h_{\nu}(y) = h_{\nu}(x)$, and this y must be wrong at some index i.

Finishing the proof

Suppose that $NP \subseteq Circuit[n^k]$. Then every $2^{n^{\beta}}$ -sparse language $L_{\beta} \in NP$ has circuits of size $O(n^{1+k\beta})$ (for all β).

 \blacktriangleright We take our oracle circuit and replace each call to L_{β} -Hatch-Match with an actual circuit.

- ▶ The assumption NP \subseteq Circuit[n^k] means that L_β -Hash-Match has circuits of size ℓ^k on inputs of length ℓ .
- ightharpoonup Our oracle circuit made n queries of length $O(n^{\beta})$, so now we can solve each query with a circuit of size $O(n^{\beta k})$; then our resulting circuit has size $O(n^{1+\beta k})$.

References

Thanks for listening!

- Lijie Chen, Ce Jin, and R. Ryan Williams. Hardness magnification for all sparse NP languages. 2019.
- Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-bounded compression imply strong separations of complexity classes. 2019.
- Igor C. Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-of-the-art lower bounds. 2019.
- Igor C. Oliveira and Rahul Santhanam. Hardness magnification for natural problems. 2018.