Příklad (4.1)

Najděte všechny matice A typu 2×3 nad tělesem \mathbb{Z}_7 takové, že pro příslušné zobrazení f_A platí zároveň následující dvě podmínky.

$$\{\mathbf{x} \in \mathbb{Z}_7^3 : f_A(\mathbf{x}) = \mathbf{o}\} = \{s(2;1;1)^T + t(0;2;1)^T : s, t \in \mathbb{Z}_7\}$$
(1)

$$\left\{ f_A(\mathbf{x}) : \mathbf{x} \in \mathbb{Z}_7^3 \right\} = \left\{ t(1;3)^T : t \in \mathbb{Z}_7 \right\}$$
 (2)

Řešení

První rovnici budeme prozatím uvažovat pouze pro bázové vektory LO, který je na pravé straně, tedy dostáváme $f\left((2;1;1)^T\right) = \mathbf{o}$ a $f\left((0;2;1)^T\right) = \mathbf{o}$. Z druhé rovnice zas vezmeme to, že pravá strana \subseteq levá strana (pravá strana \subseteq levá využijeme později), tedy (když si rovnici rozebereme po řádcích) druhý řádek je trojnásobkem prvního. Tudíž když označíme prvky matice

$$\begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix},$$

dostaneme

$$3a = d$$
, $3b = e$, $3c = f$,
 $2a + b + c = 0$, $2d + e + f = 0$,
 $0 + 2b + c = 0$, $0 + 2e + f = 0$.

Zvolme c jako bázovou proměnnou. Potom rovnice (v opačném pořadí, než jsou zapsány) dávají:

$$b = -\frac{1}{2}c = 3c$$

$$a = -\frac{1}{2}(b+c) = -\frac{1}{2}(3c+c) = -2c = 5c$$

$$f = 3c$$

$$e = 3b = 3 \cdot 3c = 2c$$

$$d = 3a = 3 \cdot 5c = c$$

Tedy hledané matice jsou tvaru:

$$\begin{pmatrix} 5c & 3c & c \\ c & 2c & 3c \end{pmatrix}.$$

V první rovnici jsme jistě mohli uvažovat jen bázové vektory, protože pro ostatní můžeme $f_A(\mathbf{x})$ díky distributivitě rozepsat jako A krát báze + A krát báze + A krát báze atd., což není nic jiného než $\mathbf{o}+\mathbf{o}+\mathbf{o}+\ldots=\mathbf{o}$. Naopak v druhé rovnici si musíme uvědomit, že druhý směr inkluze nám říká, že musíme mít řešení rovnice $(a,b,c)\cdot\mathbf{x}=(5c,3c,c)\cdot\mathbf{x}=t$ pro všechna $t\in\mathbb{Z}_7$, což očividně máme (jelikož máme jednu bázovou proměnnou a tři volné), pokud koeficienty nejsou všechny nulové, tedy $c\neq 0$.

Řešení je tudíž:

$$\left\{ \begin{pmatrix} 5c & 3c & c \\ c & 2c & 3c \end{pmatrix} : c \in \mathbb{Z}_7 \setminus \{0\} \right\}$$

Příklad (4.2)

Najděte reálnou čtvercovou matici A řádu 3 takovou, aby příslušné zobrazení f_A bylo kolmou projekcí na přímku $\{t(1,2,3)^T:t\in\mathbb{R}\}.$

Řešení

Z toho, že f_A je projekcí na zadanou přímku, víme, že $\forall \mathbf{x} \in \mathbb{R}^3 : A\mathbf{x} = t(1,2,3)^T$. Tedy když se na rovnost podíváme po řádcích, zjistíme, že druhý řádek A musí být dvojnásobkem prvního a třetí trojnásobkem. Navíc můžeme využít, že kolmé vektory mají skalární součin 0, tedy $A\mathbf{x} - \mathbf{x} = t(1,2,3)^T - \mathbf{x}$, jako vektor projekce, musí mít nulový skalární součin se směrovým vektorem přímky:

$$(t(1,2,3) - \mathbf{x}) \cdot (1,2,3)^T = 1 \cdot (1t - x_1) + 2 \cdot (2t - x_2) + 3 \cdot (3t - x_3) = 0$$

Tudíž

$$14t = x_1 + 2x_2 + 3x_3.$$

Dosadíme do prvního řádku první rovnice v řešení,

$$a_{1*}\mathbf{x} = t \cdot 1$$
,

$$14 \cdot (a_{11}x_1 + a_{12}x_2 + a_{13}x_3) = (x_1 + 2x_2 + 3x_3) \cdot 1.$$

A z toho, že rovnice musí být splněna pro libovolné ${\bf x}$ dostáváme, že $a_{11}=\frac{1}{14}, a_{12}=\frac{2}{14}$ a $a_{13}=\frac{3}{14},$ tudíž hledaná matice je

$$A = \frac{1}{14} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}.$$

Příklad (4.*)

Najděte matici P odpovídající projekci na rovinu r: ax + by + cz = 0 podél přímky se směrovým vektorem $\mathbf{v} = (d, e, f)^T$.

Řešení

Projekce podél přímky znamená, že rozdíl obrazu a vzoru je násobek jejího směrového vektoru. Tedy $P\mathbf{x} - \mathbf{x} = t\mathbf{v}, \ t \in \mathbb{R}$, což díky distributivitě můžeme elegantně zapsat jako $(P-I)\mathbf{x} = t\mathbf{v}$. Když tuto rovnost rozdělíme po řádcích, zjistíme, že první řádek po vydělení d, druhý po vydělení e a třetí po vydělení f mají stejnou hodnotu a liší se pouze řádkem matice (P-I) vyděleným příslušným číslem, tedy když přijdeme na hodnoty jednoho řádku, jsme schopni najít jednoduše hodnoty ostatních (protože rovnosti musí platit zase pro všechna \mathbf{x}).

Dále si můžeme rozmyslet, že zobrazení se k prvkům v r chová z definice jako identita a bod daný vektorem **v** zobrazí do počátku. Tedy zobrazíme **v**, $(-b, a, 0)^T$ a $(0, -c, b)^T$ a podíváme se na první řádek:

$$p_{11} \cdot d + p_{12} \cdot e + p_{13} \cdot f = 0$$

$$p_{11} \cdot (-b) + p_{12} \cdot a + 0 = -b$$

$$0 + p_{12} \cdot (-c) + p_{13} \cdot b = 0$$

Řešením této rovnice je:

$$p_{11} = -\frac{ad}{be + da + fc} + 1$$

$$p_{11} = -\frac{bd}{be + da + fc}$$

$$p_{11} = -\frac{cd}{be + da + fc}$$

Z rovnice $(P-I)\mathbf{x} = t\mathbf{v}$ pak můžeme dopočítat zbytek a výsledná matice je tvaru:

$$\begin{pmatrix} -\frac{ad}{be+da+fc} + 1 & -\frac{bd}{be+da+fc} & -\frac{cd}{be+da+fc} \\ -\frac{ae}{be+da+fc} & -\frac{be}{be+da+fc} + 1 & -\frac{ce}{be+da+fc} \\ -\frac{af}{be+da+fc} & -\frac{bf}{be+da+fc} & -\frac{cf}{be+da+fc} + 1 \end{pmatrix} =$$

$$=I-\frac{1}{\mathbf{v}^T\mathbf{r}}\cdot\mathbf{v}\mathbf{r}^T, \text{ kde } \mathbf{r}=\begin{pmatrix} a\\b\\c \end{pmatrix} \text{ je normálový vektor roviny}.$$