

KULLIYAH OF INFORMATION AND COMMUNICATION TECHNOLOGY

SEMESTER 2 2020/2021 CSCI 2304 (SECTION 1) INTELLIGENT SYSTEMS

ASSIGNMENT 3

Group Members:

No.	Name	Matric No.	
1.	MUHAMMAD IHSAN BIN AHMAD HANIZAR	1919939	
2.	MUHAMMAD FAHMI FAKHIR	1811481	
3.	MUHAMMAD NAQIB SYAHMI BIN AB RAZAK	1910147	
4.	MOHAMED MOUBARAK MOHAMED MISBAHOU	1820705	
	MKOUBOI	1020703	

Supervised by: Dr. Suriani binti Sulaiman.

QUESTION 1

- 1) k = 3, Centroid = C1(4,9), C2(2,5), C3(1,2)
- a) Distance (D) = $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$

Distance E01(4,9) to **C1(4,9)**

$$=\sqrt{(4-4)^2+(9-9)^2}$$

=0

Distance E01(4,9) to **C2(2,5)**

$$=\sqrt{(4-2)^2+(9-5)^2}$$

= 4.47

Distance E01(4,9) to **C3(1,2)**

$$=\sqrt{(4-1)^2+(9-2)^2}$$

= 7.62

Distance E02(8,4) to C1(4,9)

$$=\sqrt{(8-4)^2+(4-9)^2}$$

$$= 6.40$$

Distance E02(8,4) to C2(2,5)

$$=\sqrt{(8-2)^2+(4-5)^2}$$

$$= 6.08$$

Distance E02(8,4) to C3(1,2)

$$=\sqrt{(8-1)^2+(4-2)^2}$$

$$=7.28$$

Distance E03(2,5) to **C1(4,9)**

$$=\sqrt{(2-4)^2+(5-9)^2}$$

$$= 4.47$$

Distance E03(2,5) to **C2(2,5)**

$$\sqrt{(2-2)^2+(5-5)^2}$$

$$= 0$$

Distance E03(2,5) to **C3(1,2)**

$$=\sqrt{(2-1)^2+(5-2)^2}$$

Distance E04(5,8) to **C1(4,9)**

$$=\sqrt{(5-4)^2+(8-9)^2}$$

$$= 1.41$$

Distance E04(5,8) to **C2(2,5)**

$$=\sqrt{(5-2)^2+(8-5)^2}$$

$$= 4.24$$

Distance E04(5,8) to **C3(1,2)**

$$=\sqrt{(5-1)^2+(8-2)^2}$$

$$= 7.21$$

Distance E05(1,2) to **C1(4,9)**

$$=\sqrt{(1-4)^2+(2-9)^2}$$

$$= 7.62$$

Distance E05(1,2) to **C2(2,5)**

$$=\sqrt{(1-2)^2+(2-5)^2}$$

$$= 3.16$$

Distance E05(1,2) to **C3(1,2)**

$$= \sqrt{(1-1)^2 + (2-2)^2}$$

= 0

$$= ($$

Distance E06(7,5) to **C1(4,9)**

$$= \sqrt{(7-4)^2 + (5-9)^2}$$

= 5

Distance E06(7,5) to **C2(2,5)**

$$= \sqrt{(7-2)^2 + (5-5)^2}$$

= 5

Distance E06(7,5) to **C3(1,2)**

$$= \sqrt{(7-1)^2 + (5-2)^2}$$

= 6.71

Iteration 0	C1(4,9)	C2(2,5)	C3(1,2)	CLUSTER
E01(4,9)	0	4.47	7.62	C1
E02(8,4)	6.40	6.08	7.28	C2
E03(2,5)	4.47	0	3.16	C2
E04(5,8)	1.41	4.24	7.21	C1
E05(1,2)	7.62	3.16	0	C3
E06(7,5)	5	5	6.71	C2

b) The 3 clusters:

- Cluster 1 there is E01(4,9), E04(5,8)
- Cluster 2 there is E02(8,4), E03(2,5) and E06(7,5)
- Cluster 3 there is E05(1,2)

c) Centroids of the new clusters:

- (Cluster 1) C1 – E01(4,9), E04(5,8)
=
$$\left(\frac{4+5}{2}, \frac{9+8}{2}\right)$$
 = (4.5,8.5)

- (Cluster 2) C2 – E02(8,4), E03(2,5) and E06(7,5)
=
$$\left(\frac{8+2+7}{3}, \frac{4+5+5}{3}\right)$$
 = (5.7,4.7)

- (Cluster 3) C3 - E05(1,2) = (1,2)

d) Draw a 10 by 10 graph with all the 6 points and show the clusters after the first epoch and the new centroids.

e) How many more iterations are needed to converge? Draw the result for each epoch.

The number of iterations needed to achieve convergence is 2 iterations.

Note: E06 at Iteration 0 belong to 2 clusters which are Cluster 1 & 2. However, the number of iterations needed to achieve convergence is lesser when E06 is appointed to Cluster 2. Thus, E06 is assigned to Cluster 2.

Iteration 1	C1(4,9)	C2(2,5)	C3(1,2)	CLUSTER
E01(4,9)	0.71	4.62	7.62	C1
E02(8,4)	5.70	2.40	7.28	C2
E03(2,5)	4.30	3.71	3.16	C3
E04(5,8)	0.71	3.37	7.21	C 1
E05(1,2)	7.38	5.42	0	C3
E06(7,5)	4.30	1.33	6.70	C2

The 3 clusters for Iteration 1:

- Cluster 1 there is E01(4,9), E04(5,8)
- Cluster 2 there is E02(8,4), E06(7,5)
- Cluster 3 there is E03(2,5), E05(1,2)

With centroids C1(4.5, 8.5), C2(7.5, 4.5), C3(1.5, 3.5)

Iteration 2	C1(4,9)	C2(2,5)	C3(1,2)	CLUSTER
E01(4,9)	0.71	5.70	6.04	C1
E02(8,4)	5.70	0.71	6.52	C2
E03(2,5)	4.30	5.52	1.58	C3
E04(5,8)	0.71	4.30	5.70	C1
E05(1,2)	7.38	6.96	1.58	C3
E06(7,5)	4.30	0.71	5.70	C2

The 3 clusters for Iteration 2:

- Cluster 1 there is E01(4,9), E04(5,8)
- Cluster 2 there is E02(8,4), E06(7,5)
- Cluster 3 there is E03(2,5), E05(1,2)

With centroids C1(4.5, 8.5), C2(7.5, 4.5), C3(1.5, 3.5)

QUESTION 2

2) =
$$f(x) = \left(-\frac{x^2}{8}\right) + 4x$$

Chromosome	Initial	x	Fitness	Selection
Number	Population	Value	Value $f(x)$	Probability
1	01011	11	28.875	12.145
2	01001	9	25.875	10.883
3	00111	7	21.875	9.2
4	01110	14	31.5	13.249
5	01100	12	30	12.618
6	11110	30	7.5	3.155
7	10110	22	27.5	11.567
8	1 1 0 0 1	25	21.875	9.2
9	00011	3	10.875	4.574
10	10001	17	31.875	13.407
Total			237.75	

Table 2: Initial Population

a) Fitness Value

Chromosome
$$1 = \left(-\frac{11^2}{8}\right) + 4(11) = -15.125 + 44 = 28.875$$

Chromosome
$$2 = \left(-\frac{9^2}{8}\right) + 4(9) = -10.125 + 36 = 25.875$$

Chromosome
$$3 = \left(-\frac{7^2}{8}\right) + 4(7) = -6.125 + 28 = 21.875$$

Chromosome
$$4 = \left(-\frac{14^2}{8}\right) + 4(14) = -24.5 + 56 = 31.5$$

Chromosome
$$5 = \left(-\frac{12^2}{8}\right) + 4(12) = -18 + 48 = 30$$

Chromosome
$$6 = \left(-\frac{30^2}{8}\right) + 4(30) = -112.5 + 120 = 7.5$$

Chromosome
$$7 = \left(-\frac{22^2}{8}\right) + 4(22) = -60.5 + 88 = 27.5$$

Chromosome
$$8 = \left(-\frac{25^2}{8}\right) + 4(25) = -78.125 + 100 = 21.875$$

Chromosome
$$9 = \left(-\frac{3^2}{8}\right) + 4(3) = -1.125 + 12 = 10.875$$

Chromosome
$$10 = \left(-\frac{17^2}{8}\right) + 4(17) = -36.125 + 68 = 31.875$$

b) Fitness Ratio

Chromosome
$$1 = \frac{28.875}{237.75} * 100\% = 12.145$$

Chromosome
$$2 = \frac{25.875}{237.75} * 100\% = 10.883$$

Chromosome
$$3 = \frac{21.875}{237.75} * 100\% = 9.2$$

Chromosome
$$4 = \frac{31.5}{237.75} * 100\% = 13.249$$

Chromosome
$$5 = \frac{30}{237.75} * 100\% = 12.618$$

Chromosome
$$6 = \frac{7.5}{237.75} * 100\% = 3.155$$

Chromosome
$$7 = \frac{27.5}{237.75} * 100\% = 11.567$$

Chromosome
$$8 = \frac{21.875}{237.75} * 100\% = 9.2$$

Chromosome
$$9 = \frac{10.875}{237.75} * 100\% = 4.574$$

Chromosome
$$10 = \frac{31.875}{237.75} * 100\% = 13.407$$

The two best chromosomes based on their fitness of fit are chromosomes 4 and 10.

b)

c)

