Univerza *v Ljubljani* Fakulteta za *matematik*o *in fizik*o

Delo z javno dostopnimi podatki

2. naloga pri Opazovalni Astrofiziki

Avtor: Marko Urbanč (28191096) Predavatelj: prof. dr. Janez Kos

Kazalo

1	Uvod	2
2	Naloga	2
3	Opis reševanja	3
4	Rezultati 4.1 Oddaljenosti 4.1.1 LMC . 4.1.2 SMC . 4.2 Navidezna svetlost nadorjakinj 4.3 Pričakovan razpon paralaks 4.4 Poziva za Gaia ED3 katalog . 4.5 Vizualizacija lastnega gibanja in rotacije 4.6 Replika slik Paula McMillana .	3 3 3 4 4 4 5 8
5	Komentarji in izboljšave	8
Literatura		

1 Uvod

Zdi se mi fascinantno, kako je v zadnjih časih postala ustaljena praksa, da so astrofizikalni podatki javno dostopni. Vrhunec verjteno predstavlja arhiv ESA misije GAIA, ki je vesoljski obzervatorij. Gain arhiv podatkov vsebuje astrometrične podatke, torej oddaljenosti in ekvatorialne koordinate, za skoraj 2 miljardi zvezd. Vsi podatki satelita Gaia so javno dostopni na internetu na Gaia Arhivu [1, 2].

Gaia meri razdalje preko trigonometrične paralakse. To je preko razlike navideznega mesta objekta na nebu iz dveh zornih kotov. Preko znane razdalje med zornima kotoma in kota za katerega se na nebu objekt navidezno premakne lahko izračunamo njegovo oddaljenost. To je za meritev paralakse iz zemlje shematično prikazano na spodnji sliki.

Slika 1: Shematični prikaz trigonometrične paralakse

Preko spremljanja spreminjanja koordinat lahko Gaia določi tudi lastno gibanje objekta na nebu.

2 Naloga

Naloga od nas zahteva, da za najdemo v javno dostopni literaturi oddaljenosti Magellanovih oblakov. Iz te oddaljenosti naj bi potem preračunali kolikšno navidezno svetlost imajo nadorjakinje z $M_G = -4$. Preko znanega razpona paralaks za zvezde oblakov moramo sestaviti ADQL poziv, da izberemo zvezde oblakov iz Gainega arhiva podatkov. Naloga za konec od nas zahteva da vizualiziramo lastno gibanje zvezd v obeh oblakih in da poskusimo replicirati vizualizacijo s tokovnicami, ki dobro predstavi, kako se vsak oblak vrti.

3 Opis reševanja

Na Astrophysical Data System sem iskal članke, ki so v povzetku vključevali besede *LMC* oz. *SMC* in *distance*. Tako sem naletel na nekaj člankov, ki so bili v grobem povezani z razdaljo do Magellanovih oblakov oz. so v sami vsebini članka citirali članke o razdaljah do oblakov. Ustrezno iz oddaljenosti sem lahko izračunal vse potrebno. Paralaksa se zračuna kot:

$$\varpi = \frac{1}{d}\,,\tag{1}$$

kjer je d razdalja v enotah pc. Navidezno svetlost pa lahko dobimo iz relacije

$$m = 5\log d - 5 + M \,, \tag{2}$$

kjer je m nazidezna in M absolutna magnituda nekega objekta.

Ker je imel Gaia arhiv vdrževanje spletne strani sem uporabljal alternativne verzije arhiva preko programa TOPCAT. Od tam sem izvozil .csv datoteke v Python, kjer sem si zopet pomagal z numpy in matplotlib.

4 Rezultati

4.1 Oddaljenosti

4.1.1 LMC

Prvi članek, ki sem ga našel o oddaljenosti LMC je meril oddaljenost preko prekrivajočih dvojnic [3]. Izmerili so oddaljenost

$$d_{LMC} = (49.97 \pm 1.1)$$
 kpc.

Drugi novejši članek, ki tudi meri preko prekrivajočih dvojnic je dobil rezultat, ki se v okviru napake ujema z prejšnjim [4]. Dobili so

$$d_{LMC} = (49.57 \pm 0.54)$$
 kpc.

Tretji članek pa ni meril preko prekrivajočih dvojnic ampak preko kefeid, ki služijo kot standardni svetilniki [5]. Izmerili so modul distance kot $\mu=18.54\pm0.034$ kar ustreza oddaljenosti

$$d_{LMC} = (51.49 \pm 0.9)$$
 kpc.

Zadnji rezultat je iz najnovejšega članka in je nekoliko večji, kot so kazali stari članki. Vseeno pa se rezultati precej dobro ujemajo. Za kotno velikost sem vzel podatek, ki je navoljo na SIMBADu [6], ki je

$$r_{LMC} = (322)$$
 arcmin.

4.1.2 SMC

Prvi članek, ki sem ga našel za SMC je meril oddaljenost preko opazovanja kefeid v infrardeči svetlobi [7]. Dobili so oddaljenost

$$d_{SMC} = (62 \pm 0.3)$$
 kpc.

Več člankov za oddaljenost SMC pa nisem uspel najti, predvsem zaradi časovne stiske. Prepričan sem, da obstaja še zelo veliko drugih meritev. Za kotno velikost sem zopet vzel SIMBADov podatek, ki je

$$r_{SMC} = (158)$$
 arcmin.

4.2 Navidezna svetlost nadorjakinj

Za nadorjakinjo, ki ima v V filtru magnitudo $M_V = -4$, sem za LMC izračunal, da naj bi bila navidezna magnituda

$$m_{LMC} = 14.49$$
.

Podobno sem za SMC izračunal

$$m_{SMC} = 14.96$$
.

Sklepal sem, da bodo zvezde oblakov nekje v okolici te številke zato sem v obeh primerih omejil magnitude pri iskanju po katalogu na

$$8.5 < m < 15.5$$
 .

S tem upam, da sem zajel večino zvezd galaksij.

4.3 Pričakovan razpon paralaks

Da bi dobil razpon paralaks sem obe galaksiji aproksimiral kot krogelni. Za radij krogle sem vzel kotno velikost posamične galaksije in to pretvoril v paralakso. Tako sem dobil pričakovane razpone paralaks kot

```
\varpi_{LMC} < 0.02222 \quad \text{mas},

\varpi_{SMC} < 0.01724 \quad \text{mas}.
```

Paralaksam nisem postavil spodnje meje, saj bi lahko bile v teoriji tudi negativne. Tako sem raje vzel več zvezd in s tem imel večjo verjetnost, da sem zajel zvezde galaksij ob tem, da sem s tem dobil nekoliko več šuma.

4.4 Poziva za Gaia ED3 katalog

Spisal sem poziva z omenjenimi kriteriji in ju poslal podatkovni bazi. **Poziv za LMC:**

```
SELECT TOP 10000000 source_id, ra, dec, parallax,

pmra, pmdec, phot_g_mean_mag

FROM gaiaedr3.gaia_source

WHERE 1=CONTAINS(POINT('ICRS', ra, dec),

CIRCLE('ICRS', 80.8942, -69.7561, 5.37))

AND phot_g_mean_mag < 15.5

AND phot_g_mean_mag > 8.5

AND parallax < 0.022222
```

Poziv za SMC:

```
SELECT TOP 10000000 source_id, ra, dec, parallax,

pmra, pmdec, phot_g_mean_mag

FROM gaiaedr3.gaia_source

WHERE 1=CONTAINS(POINT('ICRS', ra, dec),

CIRCLE('ICRS', 013.1583, -72.8003, 2.6))

AND phot_g_mean_mag < 15.5

AND phot_g_mean_mag > 8.5

AND parallax < 0.0172414
```

4.5 Vizualizacija lastnega gibanja in rotacije

Zdelo se mi je smiselno, da bi prvo pogledal, ali so zvezde res iz oblakov. To bi načeloma lahko storil tudi grafično. Kot primer sem to prikazal na SMC, kjer so na grafu modre točke zvezde ozadja (torej brez omenjenih omejitvenih kriterijev) in vijolčne točke zveze, kjer je dodana omejitev.

Slika 2: SMC v zvezdnem polju

Večina zvezd res zgleda, kot da pripadajo neki galaksiji. Dobro se vidi tudi to, da sem zraven zajel še dve drugi kopici.

Boljša metoda je, da pogledamo lastno gibanje zvezd. Zvezde v galaksijah imajo približino enako lastno gibanje po analogiji zvezd v kopicah, ki imajo enako lastno gibanje zaradi istega časa nastanka, sestave ipd. Za SMC sem tako dobil gibanje na spodnjem grafu (Slika 3). Na desni slike je prikazana povečana leva zgoščina, ki predstavlja lastna gibanja zvezd galaksije. Desna zgoščina pa je od ene od tistih kopic, ki sem jo zajel ponesreči.

Slika 3: Lastno gibanje za SMC

Podobno lahko storim še za LMC (Slika 4). Spet je na desni povečana centralna zgoščina. Tu k sreči nisem zajel kakih dodatnih kopic.

Slika 4: Lastno gibanje za LMC

Vidi se, da bi za dodatno razšumljanje podatkov lahko uporabil tudi lastno gibanje kot kriterij. V tem smislu, da bi zajel samo zvezde, ki pripadajo tem večjim zgošćinam. Tega zaradi časovne stiske in relativno čistostjo podatkov nisem tokrat počel.

Lepa ponazoritev se mi je zdela tudi z puščičnim diagramom. Ta tudi nekoliko nakazuje kako se gibljeta oba oblaka. Prosojnost je sorazmerna s številom zvezd v nekem območju. Pri diagramu za SMC pa sta očitno vidni tudi tisti dve kopici šuma.

Slika 5: Puščični diagram SMC

Slika 6: Puščični diagram LMC

4.6 Replika slik Paula McMillana

Po več dneh truda in branja dokumentacije sem praktično obupal nad risanjem diagramov s tokovnicami, ki ju je narisal avtor Paul McMillan. Izvorni članek [8] mi je dal namig kako sta bili sliki ustvarjeni. Uporabil je metodo, kjer z konvolucijo krivuljnih integralov naslikamo vektorsko polje [9]. Tik pred rokom oddaje sem našel stran, kjer je ta metoda demonstrirana, ampak na mojem računalniku seveda ne dela. https://scipy-cookbook.readthedocs.io/items/LineIntegralConvolution.html

5 Komentarji in izboljšave

Tokrat res nisem imel nobene ideje, kako bi lahko napisal bolj pester teoretičen uvod. Upam, da bo vsaj za prvo silo okay. Praktično sem rage quit-al to nalogo, ker nikakor nisem uspel v času, ki smo ga imeli ugotoviti kako implementirati tisto metodo z konvolucijo krivuljnih integralov. Zasledil sem nek package na githubu, ki pa žal ni imel jasno napisano dokumentacijo, a sem ga kljub temu sprobal in žal nekaj ni več kompatibilno z mojo verzijo pythona (3.7.5). Ostalo se mi zdi, da sem dokaj uredu pokomentiral sproti. Želel bi si mogoče več časa ali pa dokumentacije o tem kako je nastala slika, ki naj bi jo replicirali. V originalnem članku je temu posvečeno okoli 5 stavkov in samo navedejo, da so uporabili prej omenjeno metodo. Saj v resnici nisem nič jezen bolj frustriran, ampak tako pač je kdaj. Tudi svoj quiver plot bi lahko mogoče nekoliko zoptimiziral, ampak nisem imel ideje kako.

Slika 7: REEEEEEEEEE

Literatura

- Gaia Collaboration, T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, C. Babusiaux, C. A. L. Bailer-Jones, U. Bastian, M. Biermann, D. W. Evans, and et al. The Gaia mission., 595:A1, November 2016.
- [2] Gaia Collaboration, A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, C. A. L. Bailer-Jones, M. Biermann, D. W. Evans, L. Eyer, and et al. Gaia Data Release 2. Summary of the contents and survey properties., 616:A1, August 2018.
- [3] G. Pietrzyński, D. Graczyk, W. Gieren, I. B. Thompson, B. Pilecki, A. Udalski, I. Soszyński, S. Kozłowski, P. Konorski, K. Suchomska, G. Bono, P. G. Prada Moroni, S. Villanova, N. Nardetto, F. Bresolin, R. P. Kudritzki, J. Storm, A. Gallenne, R. Smolec, D. Minniti, M. Kubiak, M. K. Szymański, R. Poleski, Ł. Wyrzykowski, K. Ulaczyk, P. Pietrukowicz, M. Górski, and P. Karczmarek. An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent., 495(7439):76-79, March 2013.
- [4] G. Pietrzyński, D. Graczyk, A. Gallenne, W. Gieren, I. B. Thompson, B. Pilecki, P. Karczmarek, M. Górski, K. Suchomska, M. Taormina, B. Zgirski, P. Wielgórski, Z. Kołaczkowski, P. Konorski, S. Villanova, N. Nardetto, P. Kervella, F. Bresolin, R. P. Kudritzki, J. Storm, R. Smolec, and W. Narloch. A distance to the Large Magellanic Cloud that is precise to one per cent., 567(7747):200–203, March 2019.
- [5] Piotr Wielgórski and Grzegorz et al. Pietrzyński. An Absolute Calibration of the Near-infrared Period-Luminosity Relations of Type II Cepheids in the Milky Way and in the Large Magellanic Cloud., 927(1):89, March 2022.
- [6] David O. Cook, Daniel A. Dale, Benjamin D. Johnson, Liese Van Zee, Janice C. Lee, Robert C. Kennicutt, Daniela Calzetti, Shawn M. Staudaher, and Charles W. Engelbracht. The Spitzer Local Volume Legacy (LVL) global optical photometry., 445(1):881–889, November 2014.
- [7] Victoria Scowcroft, Wendy L. Freedman, Barry F. Madore, Andy Monson, S. E. Persson, Jeff Rich, Mark Seibert, and Jane R. Rigby. The Carnegie Hubble Program: The Distance and Structure of the SMC as Revealed by Mid-infrared Observations of Cepheids., 816(2):49, January 2016.
- [8] Gaia Collaboration and X. et al. Luri. Gaia Early Data Release 3. Structure and properties of the Magellanic Clouds. , 649:A7, May 2021.
- [9] Brian Cabral and Leith Casey Leedom. Imaging vector fields using line integral convolution. Proceedings of the 20th annual conference on Computer graphics and interactive techniques - SIGGRAPH '93, 1993.