CSC165H1 Problem Set 3

Xiaoyu Zhou, Yichen Xu March 7, 2019

1. Induction and sequences

(a) Proof: Let $n \in \mathbb{Z}^+$. Base Case: Let n = 1

$$d_{2n-1} = d_1 = 1 \le \sqrt{1}$$
$$= \sqrt{2-1}$$
$$= \sqrt{2n-1}$$

Induction Step: Let $n \in \mathbb{Z}^+$ and assume that $d_{2n+1} \leq \sqrt{2n-1}$. We want to prove that $d_{2(n+1)-1} \leq \sqrt{2(n+1)-1}$, which is $d_{2n+1} \leq \sqrt{2n+1}$

$$\begin{split} d_{2n+1} &= \frac{n+1}{d_{2n}} \\ &= \frac{2n+1}{\frac{2n}{d_{2n_1}}} \\ &= \frac{(2n+1)d_{2n-1}}{2n} \\ &\leq \frac{(2n+1)\sqrt{2n-1}}{2n} (sinced_{2n-1} \leq \sqrt{2n-1}) \\ &= \frac{\sqrt{2n+1}*\sqrt{2n-1}*\sqrt{2n+1}}{2n} \\ &= \frac{\sqrt{4n^2-1}*\sqrt{2n+1}}{2n} \\ &\leq \frac{\sqrt{4n^2}*\sqrt{2n+1}}{2n} \\ &= \frac{2n*\sqrt{2n+1}}{2n} \\ &= \sqrt{2n+1} \end{split}$$

(b) Proof: Let $n \in \mathbb{N}$.

Since $n \in \mathbb{N}$ which means that $n \geq 1$.

So $2n \geq 2$, which means that d_{2n-1} always exist.

From part (a), we can know that $d_{2n-1} \leq \sqrt{2n-1}$.

$$d_{2n} = \frac{2n}{d_{2n-1}}$$

$$\geq \frac{2n}{\sqrt{2n-1}}$$

$$\geq \frac{2n}{\sqrt{2n}}$$

$$= \sqrt{2n}$$

Thus, $d_2 n > \sqrt{2n}$

- 2. Number Representations
 - (a) i.

$$(T011T)_{bt} = (-1) \times 3^4 + 0 \times 3^3 + 1 \times 3^2 + 1 \times 3^1 + (-1) \times 3^0$$
$$= -81 + 0 + 9 + 3 - 1$$
$$= -70$$

ii.

$$210 = 1 \times 3^5 + 0 \times 3^4 + (-1) \times 3^3 + (-1) \times 3^2 + 1 \times 3^1 + 0 \times 3^0$$

= $(10TT10)_{bt}$

(b) Proof:Let $n \in \mathbb{Z}^+$

Base Case: Let n = 1

$$3^n - 3 = 3^1 - 3 = 0$$

6 can be divided by 0, so 6|0, which is $6|3^1 - 3$.

Induction Step: Let $n \in \mathbb{Z}^+$, and assume that $6|3^n - 3$. We want to prove $6|3^{n+1} - 3$.

Since $6|3^n-3$, there exist $k_1 \in \mathbb{Z}$ that $6k_1 = 3^n - 3$.

Let $k_2 = 3k_1 + 1$

$$3^{n+1} - 3 = (3^{n} - 3)3 + 6$$

$$= 6k_{1} \times 3 + 6$$

$$= 18k_{1} + 6$$

$$= 6(3k_{1} + 1)$$

$$= 6k_{2}$$

so
$$6|3^{n+1}-3$$

(c) Let $P(n): \forall x \in \mathbb{N}$, (x is n-digit positively balanced), $\Rightarrow 6 \not| x - 2 \land 6 \not| x - 5$. We want to prove that $\forall n \in \mathbb{Z}^+, P(n)$.

Proof. Let $n \in \mathbb{Z}^+$,

Base Case: Let n = 1.

 $x = d_0 * 3^0$, where d_0 can be 1 or 0. Let us divide the proof in two cases.

Case 1:When d_0 is 0, so x = 0.

$$x-2=0-2=-2$$

6 / - 2, which means that 6 / x - 2

$$x - 5 = 0 - 5 = -5$$

6 /-5, which means that 6 /x-5

Case 2:When d_0 is 1, so x = 1.

$$x - 2 = 1 - 2 = -1$$

 $6 \not | -1$, which means that $6 \not | x-2$

$$x - 5 = 1 - 5 = -4$$

6 / - 4, which means that 6 / x - 5

Inductive Step: Let $n \in \mathbb{Z}^+$ and assume that P(n) is true (i.e. $\forall x \in \mathbb{N}$, (x is n-digit positively balanced), $\Rightarrow 6 \not| x-2 \land 6 \not| x-5$.) We want to prove that P(n+1) is true. Let $x_2 \in \mathbb{N}$ and assume that x_2 is n+1-digit positively balanced, we want to prove that $6 \not| x_2 - 2 \land 6 \not| x - 5$.

By the definition of balance ternary, we can know that $x_1 = (d_{n-1}d_{n-2}...d_1d_0)_{bt}$, $x_2 = (d_nd_{n-1}d_{n-2}...d_1d_0)_{bt}$.

By the definition of balance ternary and n-digit positively balanced, we can know that $x_2 = x_1 + c * 3^n$, where c = 0 or c = 1.

So we will divide the proof in two cases:

Case 1: When c = 0, which is $x_2 = x_1$.

Form the assumption, we can know that 6 $/x_1 - 2$ and 6 $/x_1 - 5$.

Thus 6 $\not|x_2 - 2$ and 6 $\not|x_2 - 5$

Case 2: When c = 1, which is $x_2 = x_1 + 3^n$

Let's divide the proof into two parts:

Part 1: We want to proof that $6 / x_2 - 2$.

$$x_2 - 2 = x_1 + 3^n - 2 = (x_1 - 5) + (3^n + 3) = (x_1 - 5) + (3^n - 3) + 6$$

Form part (b), we already know that $6|3^n - 3$, also 6|6.

However, from the assumption we can know that 6 $/x_1 - 5$

By the Quotient-Remainder Theorem, we can conclude that:

$$6 / x_1 - 5 + 3^n - 3 + 6$$
, which is $6 / x_2 - 2$

Part 2: We want to prove that 6 $/x_2 - 5$

$$x_2 - 5 = x_1 + 3^n - 5 = (x_1 - 2) + (3^n - 3)$$

From part (b), we already know that $6|3^n-3$. From the assumption, we can know that $6 \nmid x_1-2$

Thus, by the Quotient-Remainder Theorem, we can conclude that

6
$$/x_1 - 2 + 3^n - 3$$
, which is 6 $/x_2 - 5$

- 3. Properties of Asymptotic Notation
 - (a) Translation: $\exists k \in \mathbb{N}, \exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow n^n \leq c * n^k$ Negation: $\forall k \in \mathbb{N}, \forall c, n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, n \geq n_0 \wedge n^n > c * n^k$

Proof: Let $k \in \mathbb{N}$, let $c, n_0 \in \mathbb{R}^+$, let $n = k + c + n_0 + 1$. We want to prove $n \ge n_0$ and $n^n > c * n^k$. We will divide the proof in two parts.

Part 1:Since $k \ge 0, c, n_0 > 0$

$$k + c + n_0 + 1 \ge n_0$$
$$So, n \ge n_0$$

Part 2:Since $k \ge 0, c, n_0 > 0$ and $n = k + c + n_0 + 1, n > k + 1, n > c$ and $n > n_0$.

$$c * n^k < n * n^k$$

= n^{k+1}
< n^n (since n^x is a non-decreasing function and $n > k+1$

So the original statement is false

(b) **Translation:** $\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow 165n^5 + n^2 \leq c(n^5 - n^3)$ **Proof:**Let c = 166, Let $n_0 = 13$, Let $n \in \mathbb{N}$, assume $n \geq n_0$, we want to prove that $165n^5 + n^2 \leq c(n^5 - n^3)$.

$$c(n^{5} - n^{3}) = 166(n^{5} - n^{3})$$

$$= 165n^{5} + (n^{5} - 166n^{3})$$

$$= 165n^{5} + n^{2} * n * (n^{2} - 166)$$

$$\geq 165n^{5} + n^{2} * 13 * (13^{2} - 166) \text{ (since } n \geq n_{0} = 13)$$

$$= 165n^{5} + 39n^{2}$$

$$> 165n^{5} + n^{2}$$

So $c(n^5 - n^3) \ge 165n^5 + n^2$ has been proven

(c) **Translation:** $\exists c_1, c_2, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow c_1 * 4^{n^2 + n} \leq 4^{n^2} \leq c_2 * 4^{n^2 + n}$ **Negation:** $\forall c_1, c_2, n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, (n \geq n_0 \land c_1 * 4^{n^2 + n} > 4^{n^2}) \lor (n \geq n_0 \land 4^{n^2} > c_2 * 4^{n^2 + n})$

Proof: Let $c_1, c_2, n_0 \in \mathbb{R}^+$, Let $n = max(\frac{\ln \frac{1}{c_1}}{\ln 4} + 1, n_0)$, we want to prove that $n \geq n_0$ and $c_1 * 4^{n^2 + n} > 4^{n^2}$, or $n \geq n_0$ and $c_2 * 4^{n^2 + n} < 4^{n^2}$. We will prove that $n \geq n_0$ and $c_1 * 4^{n^2 + n} > 4^{n^2}$. Let us divide the proof in two part.

Part 1:We want to prove that $n \geq n_0$.

Since $n = max(\frac{\ln \frac{1}{c_1}}{\ln 4} + 1, n_0)$, then $n \ge n_0$.

Part 2:We want to prove that $c_1 * 4^{n^2 + n} > 4^{n^2}$. since $n = max(\frac{\ln \frac{1}{c_1}}{\ln 4} + 1, n_0)$, then $n \ge \frac{\ln \frac{1}{c_1}}{\ln 4} + 1$

$$n \geq \frac{\ln \frac{1}{c_1}}{\ln 4} + 1$$

$$n > \frac{\ln \frac{1}{c_1}}{\ln 4}$$

$$4^n > 4^{\frac{\ln \frac{1}{c_1}}{\ln 4}} \text{ (since } 4^n \text{ is non-decreasing and use Definition 1)}$$

$$\ln 4^n > \ln 4^{\frac{\ln \frac{1}{c_1}}{\ln 4}} \text{ (since } \ln x \text{ is non-decreasing and use Definition 1)}$$

$$\ln 4^n > \ln \frac{1}{c_1} * \ln 4$$

$$\ln 4^n > \ln \frac{1}{c_1}$$

$$4^n > \ln \frac{1}{c_1}$$

$$4^n > 1 \text{ (since } \ln x \text{ is non-decreasing and use Definition 1)}$$

$$c_1 * 4^n > 1 \text{ (since } c_1 \in \mathbb{R}^+)$$

$$c_1 * 4^{n^2} * 4^n > 4^{n^2} \text{ (since } 4^{n^2} > 0$$

$$c_1 * 4^{n^2+n} > 4^{n^2}$$

so the statement is false.

(d) Proof. Let $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$. Let $n \in \mathbb{N}$. Assume that f is non-decreasing and $f(n) = n^2$ for every $n \in \mathbb{N}$.

If we want to prove that $f \in \Theta(n^2)$, we can prove that $f \in O(n^2)$ and $f \in \Omega(n^2)$. We will divide the proof in two parts.

Part 1: We want to prove that $f \in O(n^2)$.

Let c = 4, $n_0 = 0.1$ and $g(n) = 4n^2$. We want to prove that when $n \ge n_0$, $f(n) \le 4n^2$, which is $f(n) \le g(n)$, so that $f \in O(n^2)$.

Since n is natural number, we always have that $n \ge 1 > 0.1 = n_0$.

Let us divide the proof in two cases.

Case 1: n is a power of two, which means that $n = 2^k$, where $k \in \mathbb{N}$.

Because n is a power of two, from the question, we can know that $f(n) = n^2 \le 4n^2$. Thus, $f \in O(n^2)$.

Case 2: n is not a power of two.

Since n is not the power of two and $n \in \mathbb{N}$, n > 2. Thus there must be a $k \in \mathbb{N}$ so that $2^k < n < 2^{k+1}$.

Since f is non-decreasing, $f(2^k) < f(n) < f(2^{k+1})$ (from Definition 1).

From the question, we can know that:

$$f(2^k) = (2^k)^2 = 2^{2k}$$

 $f(2^{k+1}) = (2^{k+1})^2 = 2^{2k+1}$ (since $f(n) = n^2$ for every $n \in \mathbb{N}$ that is a power of two)

So
$$2^{2k} \le f(n) \le 2^{2k+1}$$
.

Also, we can easily know that $g(n) = 4n^2$ is a non-decreasing function.

Thus, $g(2^k) \le g(n)$ (since $2^k \le n$).

$$g(2^k) = 4*(2^k)^2 = 4*2^{2k} = 2^2*2^{2k} = 2^{2k+2}$$
 Thus, $2^{2k+2} \le g(n)$ Thus, $2^{2k} \le f(n) \le 2^{2k+1} \le g(n)$.
So, $f(n) \le g(n) = 4n^2$ So $f \in O(n^2)$

Part 2: We want to prove that $f \in \Omega(n^2)$.

Let $c = \frac{1}{4}$, $n_0 = 0.1$ and $g(n) = \frac{1}{4}n^2$. We want to prove that when $n \ge n_0$, $f(n) \ge \frac{1}{4}n^2$, which is $f(n) \ge g(n)$, so that $f \in \Omega(n^2)$.

Since n is natural number, we always have that $n \ge 1 > 0.1 = n_0$.

Let us divide the proof in two cases.

Case 1: n is a power of two, which means that there is a $k \in \mathbb{N}$ so that $n = 2^k$. Because n is a power of two, from the question, we can know that $f(n) = n^2 \ge \frac{1}{4}n^2$ Thus, $f \in \Omega(n^2)$.

Case 2: n is not a power of two.

Since n is not the power of two and $n \in \mathbb{N}$, n > 2. Thus there must be a $k \in \mathbb{N}$ so that $2^k < n < 2^{k+1}$.

Since f is non-decreasing, $f(2^k) < f(n) < f(2^{k+1})$ (from Definition 1).

From the question, we can know that:

$$f(2^k) = (2^k)^2 = 2^{2k}$$

 $f(2^{k+1}) = (2^{k+1})^2 = 2^{2k+1}$ (since $f(n) = n^2$ for every $n \in \mathbb{N}$ that is a power of two)

So
$$2^{2k} \le f(n) \le 2^{2k+1}$$
.

We can easily know that $g(n) = \frac{1}{4}n^2$ is a non-decreasing function.

Thus,
$$g(n) \le g(2^{k+1})$$
 (since $n \le 2^{k+1}$).

Thus,
$$g(n) \le g(2^{k+1})$$
 (since $n \le 2^{k+1}$). $g(2^{k+1}) = \frac{1}{4} * (2^{k+1})^2 = \frac{1}{4} * 2^{2k+2} = 2^{-2} * 2^{2k+2} = 2^{2k}$ Thus, $g(n) \le 2^{2k}$

Thus,
$$g(n) \le 2^{2k}$$

Thus,
$$g(n) \le 2^{2k}$$

Thus, $g(n) \le 2^{2k} \le f(n) \le 2^{2k+1}$.
So, $f(n) \ge g(n) = \frac{1}{4}n^2$

So,
$$f(n) \ge g(n) = \frac{1}{4}n^2$$

So
$$f \in \Omega(n^2)$$