SLASH24

CPU Observability 높이는 Hyperthread 톺아보기

최준우 Server Developer

본 발표자료의 저작권은 연사에 있으며, 저작권자의 사전 서면 동의 없이 자료의 일부 또는 전부를 이용하거나 배포할 수 없습니다.

또한 해당 자료를 복제하여 SLASH 행사 홈페이지를 제외한 온라인상에 게재하는 행위는 연사가 동의한 저작권 및 배포전송권에 위배됩니다.

토스가 다루는 모든 개인정보는 고객에게 동의를 받은 후에 처리되고 있으며, 접근 권한이 분리되어 있습니다. 개발자는 모든 데이터가 아닌 담당 영역에 한하여 접근·이용할 수 있습니다.

김이슈 10:10 AM

전에 구두로 하이퍼쓰레딩 관련해서 문의드린 적 있는데요.

노드의 CPU를 50%를 넘어서 사용할 때 경합 때문에 성능이 떨어지는 문제가 있는지 확인해주시기로 했구요. 관련해서 정리 부탁드립니다.

이<u>토스</u> 10:10 AM

우선 고객 사례중에 비슷한 케이스도 확인되었고, 말씀주신것처럼 CPU 사용률이 50% 이상인 경우 HyperThreading 아키텍쳐가 적합한 모델이 아니므로 HT사용을 권고하지 않는다는 답변이네요.

좀 더 알아보자

출처 : https://www.intel.co.kr/content/www/kr/ko/gaming/resources/hyper-threading.html

pipeline
out of order
super scalar

출처 : https://stackpointer.io/hardware/how-pipelining-improves-cpu-performance/113/

pipeline
out of order
super scalar

출처: https://youtu.be/AiEsYzTDB5c?si=13kUSjijdtd_hgak

pipeline
out of order
super scalar

출처 : https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/

출처 : https://web.archive.org/web/20150217050949/https://software.intel.com/en-us/articles/performance-insights-to-intel-hyper-threading-technology/

그렇게 생각했던 시기가 저에게도 있었지요

Noisy Neighbor

출처 : https://tutorials.pytorch.kr/intermediate/torchserve_with_ipex.html

Noisy Neighbor

Linus Torvalds <torvalds-AT-linux-foundation.org>

Thomas Gleixner <tglx-AT-linutronix.de>

Re: [patch V2 27/28] x86/speculation: Add seccomp Spectre v2 user space protection mode

Sun, 25 Nov 2018 12:40:14 -0800

<CAHk-=whtiX45YPjFPMFuktZ3WB23zqBZR-rL6RewrTyvrFj2Fw@mail.gmail.com>

Linux List Kernel Mailing linux-kernel-AT-vger.kernel.org>, "the arch/x86 maintainers" <x86-AT-kernel.org>, Peter Zijlstra <peterz-ATinfradead.org>, Andrew Lutomirski < luto-AT-kernel.org>, Jiri Kosina < jkosina-AT-suse.cz>, thomas.lendacky-AT-amd.com, Josh Poimboeuf <jpoimboe-AT-redhat.com>, Andrea Arcangeli <aarcange-AT-redhat.com>, David Woodhouse <dwmw-AT-amazon.co.uk>, Tim Chen <tim.c.chen-AT-linux.intel.com>, Andi Kleen <ak-AT-linux.intel.com>, dave.hansen-AT-intel.com, Casey Schaufler <casey.schaufler-ATintel.com>, "Mallick, Asit K" <asit.k.mallick-AT-intel.com>, "Van De Ven, Arjan" <arjan-AT-linux.intel.com>, jcm-AT-redhat.com, longman9394-AT-gmail.com, Greg KH <gregkh-AT-linuxfoundation.org>, david.c.stewart-AT-intel.com, Kees Cook <keescook-AT-

chromium.org>

[You forgot to fix your quilt setup..]

On Sun, 25 Nov 2018, Thomas Gleixner wrote:

> The mitigation guide documents how STIPB works:

Setting bit 1 (STIBP) of the IA32_SPEC_CTRL MSR on a logical processor

prevents the predicted targets of indirect branches on any logical processor of that core from being controlled by software that executes

(or executed previously) on another logical processor of the same core.

Can we please just fix this stupid lie?

Yes, Intel calls it "STIBP" and tries to make it out to be about the indirect branch predictor being per-SMT thread.

But the reason it is unacceptable is apparently because in reality it just disables indirect branch prediction entirely. So yes, *technically* it's true that that limits indirect branch prediction to just a single SMT core, but in reality it is just a "go really slow" mode.

If STIBP had actually just keyed off the logical SMT thread, we wouldn't need to have worried about it in the first place.

So let's document reality rather than Intel's Pollyanna world-view.

Reality matters. It's why we had to go all this. Lying about things and making it appear like it's not a big deal was why the original patch made it through without people noticing.

Linus

출처 : https://lkml.org/lkml/2018/11/26/58

Vulnerability

- 1. 쓰레드간 불균형이 심한경우
- 2. 이미높은메모리대역폭
- 3. 이미높은 Instruction Per Cycle
- 4. false sharing, 잠금 / 동기화 가 많은 경우
- 5. OS CPU 스케줄러가 SMT 미지원일때

"There's no such thing as a free lunch."

3日 長ろ

Elasticsearch

JVM netty 기반

http api & json parsing

실서비스 노드와 비슷한 서버 사양

높은 CPU 사용률

Brendan Gregg's Blog home

CPU Utilization is Wrong

09 May 2017

The metric we all use for CPU utilization is deeply misleading, and getting worse every year. What is CPU utilization? How busy your processors are? No, that's not what it measures. Yes, I'm talking about the "%CPU" metric used everywhere, by everyone. In every performance monitoring product. In top(1).

출처 : https://www.brendangregg.com/blog/2017-05-09/cpu-utilization-is-wrong.html

CPU usage는 노이즈가 있으니 Instruction 처리량을 확인해야한다

3日 長ろ

Linux-KI

hp에서 개발한 커널 프로파일링

double busy라는 hyperthread 전용 메트릭이 나와 처음 측정에 사용한 툴

perf

리눅스에서 제공하는 프로파일링 도구

3日長ろ

- 1. 다른 노드에서 on vs off
- 2. 같은 노드에서 on vs off

기타 성능에 영향을 주는 Numa, CPU pinning, C-State 는 동일하게 설정

長長ろ

다른노드에서측정

on / off 노드 둘 다 CPU 100%

다른노드에서측정

on / off 노드 둘 다 CPU 100%

성능측정 Linux-KI비교

1.1.4 Hyperthread CPU Usage [Prev Subsection] [Next Subsection] --- [Prev Section] [Next Section] double idle lcpu1 busy lcpu2 busy double busy **PCPU** 0 32]: 2.8% 84.6% 4.6% 7.9% 33]: 0.8% 5.7% 89.2% 34]: 7.2% 82.9% 35]: 89.2% 5.1% 5.5% 86.4% 83.8% 6.8% 5.5% 5.8% 0.7% 5.6% 3.3% 4.6% 2.3% 0.9% 4.0% 4.5% 2.4% 4.4% 1.0% 4.8% 6.2% 5.6% 0.8% 89.6% 5.1% 4.5% 6.1% 4.2% 0.7% 4.6% 8.2% 4.7% 4.7% 4.4% 7.5% 5.0% 6.8% 0.7% 4.6% 4.3% 9.5% 3.5% 4.5% 6.6% 5.6% 30 62]: 2.6% 7.6% 84.6% 5.2% [31 63]: 90.8% 0.6% 3.0% 5.6% 87.5% Total 2.1% 5.5% 4.9%

성능즉정 Linux-KI비교

Warning: 0	PU	Bottleneck (Id)	le < 10%) [Nex	t1	
		al CPU Usage			
[Prev Sub	sec	tion][Next Subs	<u>ection][Pre</u>	v Section][No	ext Section]
cpu node		Total Busy	sys	usr	idle
0 [0]	:	98.04%	4.10%	93.58%	1.91%
1 [1]	:	97.72%	4.11%	93.28%	2.22%
2 [0]	:	97.40%	3.69%	91.28%	2.51%
3 [1]	:	98.14%	4.12%	93.72%	1.81%
4 [0]	:	97.65%	3.91%	93.42%	2.31%
5 [1]	:	97.74%	3.70%	93.79%	2.21%
6 [0]	:	97.18%	3.18%	91.05%	2.73%
7 [1]	:	97.88%	2.86%	94.79%	2.08%
8 [0]	:	97.32%	4.01%	91.42%	2.60%
9 [1]	:	96.74%	3.74%	92.79%	3.21%
10 [0]	:	97.26%	4.34%	92.68%	2.70%
11 [1]	:	97.29%	3.87%	93.18%	2.66%
12 [0]	:	97.90%	4.81%	91.58%	2.04%
13 [1]	:	97.41%	3.49%	93.72%	2.54%
14 [0]	:	98.55%	3.94%	92.95%	1.39%
15 [1]	:	97.35%	3.73%	93.38%	2.59%
16 [0]	:	97.67%	4.35%	92.21%	2.26%
17 [1]	:	98.35%	4.58%	93.47%	1.60%
18 [0]	:	97.81%	4.00%	93.44%	2.15%
19 [1]	:	98.05%	2.98%	94.83%	1.91%
20 [0]	:	97.47%	4.26%	89.20%	2.41%
21 [1]	:	97.95%	3.69%	94.00%	2.00%
22 [0]	:	98.09%	3.97%	93.79%	1.87%
23 [1]	:	96.84%	3.79%	92.80%	3.11%
24 [0]	:	97.59%	3.74%	93.45%	2.36%
25 [1]	:	98.17%	3.25%	94.68%	1.78%
26 [0]	:	98.25%	4.02%	93.88%	1.71%
27 [1]	:	96.58%	4.05%	92.28%	3.38%
28 [0]	:	97.80%	4.68%	92.80%	2.15%
	:	96.53%	3.37%	92.91%	3.42%
	:	98.00%	4.20%	93.22%	1.94%
31 [1]	:	95.75%	3.13%	92.38%	4.20%
Total		97.58%	3.86%	93.00%	2.37%
[CSV]		7-78-10-40	HERESTERNAL FOLKSON STEEL	.00000000 (d) - 400000000000000000000000000000000000	90000000000000000000000000000000000000

성능 등 perf 비교

#	time	counts unit	events			
	5.018804079	320,194.08 msec	cpu-clock	#	454.155 CPUs utilized	
	5.018804079	210,252	context-switches	#	0.657 K/sec	
	5.018804079	3,559	cpu-migrations	#	0.011 K/sec	
	5.018804079	2,299	page-faults	#	0.007 K/sec	
	5.018804079	736,991,437,457	cycles	#	2.302 GHz	(30.82%)
	5.018804079	767,075,591,420	instructions	#	1.04 insn per cycle	(38.50%)
	5.018804079	126,641,577,808	branches	#	395.515 M/sec	(38.51%)
	5.018804079	1,184,935,985	branch-misses	#	0.94% of all branches	(38.52%)
	5.018804079	225,660,868,259	L1-dcache-loads	#	704.763 M/sec	(38.52%)
	5.018804079	11,846,988,264	L1-dcache-load-misses	#	5.25% of all L1-dcache hits	(38.51%)
	5.018804079	1,836,339,823	LLC-loads	#	5.735 M/sec	(30.80%)
	5.018804079	472,689,945	LLC-load-misses	#	25.74% of all LL-cache hits	(30.78%)
	5.018804079	<not supported=""></not>	L1-icache-loads			
	5.018804079	15,421,958,457	L1-icache-load-misses			(30.77%)
	5.018804079	225,812,175,248	dTLB-loads	#	705.235 M/sec	(30.77%)
	5.018804079	220,544,271	dTLB-load-misses	#	0.10% of all dTLB cache hits	(30.77%)
	5.018804079	813,335,479	iTLB-loads	#	2.540 M/sec	(30.77%)
	5.018804079	150,078,315	iTLB-load-misses	#	18.45% of all iTLB cache hits	(30.78%)
	5.018804079	<not supported=""></not>	L1-dcache-prefetches			
	5.018804079	<not supported=""></not>	L1-dcache-prefetch-misses			

#	time	counts unit	events				
	5.008640330	159,864.14 msec	cpu-clock	#	226.747	CPUs utilized	
	5.008640330	128,407	context-switches	#	0.803	K/sec	
	5.008640330	2,638	cpu-migrations	#	0.017	K/sec	
	5.008640330	26,019	page-faults	#	0.163	K/sec	
	5.008640330	374,374,768,189	cycles	#	2.342	GHz	(52.27%)
	5.008640330	576,251,944,616	instructions	#	1.54	insn per cycle	(58.98%)
	5.008640330	94,582,799,370	branches	#	591.645	M/sec	(59.72%)
	5.008640330	839,477,856	branch-misses	#	0.89%	of all branches	(60.36%)
	5.008640330	168,508,555,554	L1-dcache-loads	#	1054.074	M/sec	(60.38%)
	5.008640330	7,684,421,148	L1-dcache-load-misses	#	4.56%	of all L1-dcache hits	(60.39%)
	5.008640330	1,355,535,703	LLC-loads	#	8.479	M/sec	(55.41%)
	5.008640330	272,723,960	LLC-load-misses	#	20.12%	of all LL-cache hits	(55.23%)
	5.008640330	<not supported=""></not>	L1-icache-loads				
	5.008640330	8,479,351,277	L1-icache-load-misses				(55.22%)
	5.008640330	168,763,460,136	dTLB-loads	#	1055.668	M/sec	(55.32%)
	5.008640330	25,348,735	dTLB-load-misses	#	0.02%	of all dTLB cache hits	(50.07%)
	5.008640330	254,573,771	iTLB-loads	#	1.592	M/sec	(50.80%)
	5.008640330	65,842,183	iTLB-load-misses	#	25.86%	of all iTLB cache hits	(51.52%)
	5.008640330	<not supported=""></not>	L1-dcache-prefetches				
	5.008640330	<not supported=""></not>	L1-dcache-prefetch-misses				

다른 노드에서 on vs off

하이퍼쓰레드를 켰을때 30%정도 더 좋은 성능을 보인다

캐시 미스, 브랜치 미스가 안좋아지는게 보임

cycle 이 거의 2배가 되었지만 instruction 처리량은 비례해서 늘지 않음

40年では、10年には、10年では、10年では、10年では、10年では、10年では、10年では、10年では、10年では、10年では、10年では、10年では、10年では、10年では、10年では、10年では、10年には

동일노드에서측정

성능측정 Linux-KI비교

1.1.4	Hypert	hread CPU	Usage		
[Prev S	<u>ubsecti</u>	<u>on][Next Sub</u>	<u>osection][P</u>	rev Section]	Next Section][Tabl
PC	PU (double idle	lcpu1 busy	lcpu2 busy	double busy
[0	32] :	4.5%	6.5%	8.3%	80.8%
[1	33]:	6.2%	9.0%	6.6%	78.1%
[2	34] :	3.9%	6.8%	6.5%	82.7%
[3	35] :	5.7%	9.3%	7.9%	77.0%
[4	36] :	5.1%	6.7%	6.4%	81.8%
[5	37] :	4.5%	7.9%	7.0%	80.7%
[6	38]:	3.4%	8.7%	5.7%	82.2%
[7	39]:	4.8%	7.3%	10.1%	77.8%
[8	40]:	4.1%	8.2%	5.5%	82.2%
[9	41]:	5.8%	7.4%	8.2%	78.6%
[10	42]:	4.6%	7.2%	7.4%	80.8%
[11	43]:	4.2%	8.7%	7.4%	79.7%
[12	44]:	4.7%	7.9%	6.9%	80.4%
[13	45] :	6.3%	10.5%	7.2%	76.1%
[14	46]:	4.2%	7.7%	6.5%	81.6%
[15	47] :	4.1%	9.7%	6.7%	79.5%
[16	48]:	3.6%	7.4%	7.6%	81.4%
[17	49]:	4.6%	7.4%	7.5%	80.5%
[18	50]:	4.9%	9.0%	5.7%	80.4%
[19	51]:	4.8%	7.1%	9.0%	79.1%
[20	52]:	4.4%	8.2%	6.4%	80.9%
[21	53]:	5.8%	7.1%	8.5%	78.6%
[22	54] :	6.0%	9.6%	7.0%	77.4%
[23	55] :	4.7%	6.4%	6.5%	82.4%
[24	56]:	4.1%	6.5%	7.2%	82.2%
[25	57] :	6.0%	7.8%	7.1%	79.1%
[26	58]:	4.0%	6.3%	6.8%	83.0%
[27	59]:	6.7%	9.2%	6.8%	77.2%
[28	60]:	4.0%	7.1%	6.2%	82.7%
[29	61]:	6.2%	9.5%	7.3%	76.9%
[30	62] :	4.7%	8.0%	6.2%	81.1%
[31_	63] :	4.9%	9.0%	8.2%	77.9%
Total		4.9%	8.0%	7.1%	80.0%
1.2 CP	U Usad	e bv Task			

경등 Hinux-KI비교

	l CPU Usage l			
	ion] [Next Subse			xt <u>Sectio</u> idle
cpu node 0 [0] :	Total Busy 96.11%	sys 4.61%	usr 89.04%	3.77%
1 [1] :	95.69%	3.23%	92.28%	4.23%
2 [0] :	95.08%	4.22%	88.91%	4.79%
3 [1] :	96.73%	2.87%	93.76%	3.21%
4 [0] :	97.19%	4.00%	91.29%	2.71%
5 [1] :	96.55%	3.68%	92.75%	3.38%
6 [0] :	97.24%	3.95%	91.36%	2.67%
7 [1] :	96.97%	3.21%	93.67%	2.96%
8 [0] :	95.44%	4.21%	89.31%	4.43%
9 [1] :	96.54%	3.37%	93.07%	3.39%
10 [0] :	96.16%	4.10%	91.84%	3.78%
11 [1] :	97.05%	3.36%	93.58%	2.88%
12 [0] :	96.00%	3.52%	92.32%	3.93%
13 [1] :	97.03%	3.17%	93.76%	2.90%
14 [0] :	96.46%	4.60%	91.57%	3.48%
15 [1] :	96.02%	4.52%	91.39%	3.92%
16 [0] :	96.20%	3.89%	90.93%	3.70%
17 [1] :	97.18%	3.43%	93.65%	2.75%
18 [0] :	96.86%	5.44%	89.79%	3.05%
19 [1] :	95.33%	3.61%	91.61%	4.62%
20 [0]:	95.21%	4.70%	90.29%	4.73%
21 [1] :	95.70%	4.06%	91.53%	4.24%
22 [0]:	97.29%	3.19%	93.97%	2.66%
23 [1] :	95.26%	4.03%	91.13%	4.68%
24 [0]:	96.81%	4.02%	92.55%	3.14%
25 [1]:	96.15%	3.30%	92.77%	3.79%
26 [0]:	97.00%	3.81%	91.46%	2.92%
27 [1] :	95.83%	3.78%	91.94%	4.10%
28 [0] :	95.82%	3.66%	91.98%	4.11%
29 [1] :	96.44%	3.06%	93.29%	3.50%
30 [0] :	96.28%	4.00%	92.13%	3.66%
31 [1] :	96.92%	3.52%	93.30%	3.02%
otal	96.33%	3.82%	91.94%	3.60%
CSV]				

성능적 perf비교

15.027127069	319,436.91 msec	cpu-clock	#	453.081	CPUs utilized	
15.027127069	225,632	context-switches	#	0.706	K/sec	
15.027127069	4,096	cpu-migrations	#	0.013	K/sec	
15.027127069	123,218	page-faults	#	0.385	K/sec	
15.027127069	711,285,391,560	cycles	#	2.225	GHz	(27.01%)
15.027127069	772,095,349,581	instructions	#	1.10	insn per cycle	(33.82%)
15.027127069	130,972,902,929	branches	#	409.632	M/sec	(33.66%)
15.027127069	1,178,235,590	branch-misses	#	0.91%	of all branches	(33.76%)
15.027127069	226,401,972,698	L1-dcache-loads	#	708.097	M/sec	(33.87%)
15.027127069	11,464,018,902	L1-dcache-load-misses	#	5.06%	of all L1-dcache hits	(33.92%)
15.027127069	1,664,979,146	LLC-loads	#	5.207	M/sec	(27.29%)
15.027127069	460,857,429	LLC-load-misses	#	27.97%	of all LL-cache hits	(27.27%)
15.027127069	<not supported=""></not>	L1-icache-loads				
15.027127069	14,447,604,323	L1-icache-load-misses				(27.20%)
15.027127069	225,441,688,126	dTLB-loads	#	705.094	M/sec	(27.17%)
15.027127069	181,443,520	dTLB-load-misses	#	0.08%	of all dTLB cache hits	(27.15%)
15.027127069	752,727,342	iTLB-loads	#	2.354	M/sec	(27.03%)
15.027127069	146,376,797	iTLB-load-misses	#	19.45%	of all iTLB cache hits	(27.04%)
15.027127069	<not supported=""></not>	L1-dcache-prefetches				
15.027127069	<not supported=""></not>	L1-dcache-prefetch-misses				

15	.011297485	159,658.08 msec cpu	-clock	#	226	.455 CPUs	s utili:	zed	
	15.011297485	82,416	context-switches		#	0.516	K/sec		
	15.011297485	1,352	cpu-migrations		#	0.008	K/sec		
	15.011297485	175,802	page-faults		#	0.001	M/sec		
	15.011297485	377,295,189,588	cycles		#	2.362	GHz	63	(31.14%)
	15.011297485	598,506,750,506	instructions		#	1.60	insn p	er cycle	(35.60%)
	15.011297485	95,644,410,362	branches		#	598.797	M/sec		(38.06%)
	15.011297485	821,205,638	branch-misses		#	0.87%	of all	branches	(40.15%)
	15.011297485	186,127,306,143	L1-dcache-loads		# 1	L165.280	M/sec		(40.15%)
	15.011297485	5,196,651,048	L1-dcache-load-misses		#	2.99%	of all	L1-dcache hits	(40.15%)
	15.011297485	925,179,670	LLC-loads		#	5.792	M/sec		(23.41%)
	15.011297485	396,808,337	LLC-load-misses		#	32.42%	of all	LL-cache hits	(22.87%)
	15.011297485	<not supported=""></not>	L1-icache-loads						
	15.011297485	3,590,942,396	L1-icache-load-misses						(22.86%)
	15.011297485	183,938,491,296	dTLB-loads		# 1	L151.576	M/sec		(23.24%)
	15.011297485	14,444,707	dTLB-load-misses		#	0.01%	of all	dTLB cache hits	(23.72%)
	15.011297485	95,141,611	iTLB-loads		#	0.596	M/sec		(26.18%)
	15.011297485	30,686,226	iTLB-load-misses		#	15.60%	of all	iTLB cache hits	(28.65%)
	15.011297485	<not supported=""></not>	L1-dcache-prefetches						
	15.011297485	<not supported=""></not>	L1-dcache-prefetch-mi	sses	6				

3日 長ろ

같은 노드에서 on vs off

여전히 30%정도 더 좋은 성능을 보인다

Hyperthread 켜면 좋다

결론이나고.

모니터링

무엇이 문제인가?

자원 경합으로 인한 stall 증가

문제 상황을 만들어보자

```
int main() {
   int i,j,k,l,m,n;
   long count;
   while(count < 10000000000) {
       i++;
        j++;
        k++;
        1++;
       m++;
       n++;
        i--;
        k--;
        1--;
        m--;
       n--;
       count++;
    return 0;
```

다른 코어에서 실행시

```
time taskset -c 47 ./test
```

real 1m0.504s
user 1m0.399s
sys 0m0.000s

time taskset -c 6 ./test

real 1m0.304s
user 1m0.159s
sys 0m0.003s

같은 코어에서 실행시

```
time taskset -c 47 ./test
```

real 2m4.867s
user 2m4.521s
sys 0m0.000s

time taskset -c 23 ./test

real 2m4.850s
user 2m4.533s
sys 0m0.001s

EC2 Dedicated Host PMCs

The PMCs available are the architectural PMCs listed in the <u>Intel 64 and IA-32 Architectures Developer's Manual: vol. 3B</u>, in section 18.2.1.2 "Pre-defined Architectural Performance Events", Table 18-1 "UMask and Event Select Encodings for Pre-Defined Architectural Performance Events". I've drawn my own table of them below with example event mnemonics.

Architectural PMCs

Event Name	UMask	Event Select	Example Event Mask Mnemonic
UnHalted Core Cycles	00H	3CH	CPU_CLK_UNHALTED.THREAD_P
Instruction Retired	00H	C0H	INST_RETIRED.ANY_P
UnHalted Reference Cycles	01H	3CH	CPU_CLK_THREAD_UNHALTED.REF_XCLK
LLC Reference	4FH	2EH	LONGEST_LAT_CACHE.REFERENCE
LLC Misses	41H	2EH	LONGEST_LAT_CACHE.MISS
Branch Instruction Retired	00H	C4H	BR_INST_RETIRED.ALL_BRANCHES
Branch Misses Retired	00H	C5H	BR_MISP_RETIRED.ALL_BRANCHES

출처: https://www.brendangregg.com/blog/2017-05-04/the-pmcs-of-ec2.html

Gregg know the answer

CHAPTER 20 PERFORMANCE MONITORING

Intel 64 and IA-32 architectures provide facilities for monitoring performance via a PMU (Performance Monitoring Unit).

NOTE

Performance monitoring events can be found here: https://perfmon-events.intel.com/.

Additionally, performance monitoring event files for Intel processors are hosted by the Intel Open Source Technology Center. These files can be downloaded here: https://download.01.org/perfmon/.

출처 : https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Performance Monitoring Unit

역시나 인텔에서 perf 에 넣어둠

https://github.com/torvalds/linux/blob/master/tools/perf/pmu-events/arch/x86/skylake/skl-metrics.json

Event Name	Description	Additional Info
CPU_CLK_UNHALTED.THREAD &	Counts the number of core cycles while the thread is not in a halt state. The thread enters the halt state when it is running the HLT instruction. This event is a component in many key event ratios. The core frequency may change from time to time due to transitions associated with Enhanced Intel SpeedStep Technology or TM2. For this reason this event may have a changing ratio with regards to time. When the core frequency is constant, this event can approximate elapsed time while the core was not in the halt state. It is counted on a dedicated fixed counter, leaving the four (eight when Hyperthreading is disabled) programmable counters available for other events.	IA32_FIXED_CTR1 Architectural, Fixed
CPU_CLK_UNHALTED.THREAD_ANY &	Core cycles when at least one thread on the physical core is not in halt state.	IA32_FIXED_CTR1 Architectural, Fixed
CPU_CLK_UNHALTED.THREAD_P &	This is an architectural event that counts the number of thread cycles while the thread is not in a halt state. The thread enters the halt state when it is running the HLT instruction. The core frequency may change from time to time due to power or thermal throttling. For this reason, this event may have a changing ratio with regards to wall clock time.	EventSel=3CH UMask=00H Counter=0,1,2,3 CounterHTOff=0,1,2,3,4,5,6,7 Architectural
CPU_CLK_UNHALTED.THREAD_P_ANY &	Core cycles when at least one thread on the physical core is not in halt state.	EventSel=3CH UMask=00H AnyThread=1 Counter=0,1,2,3 CounterHTOff=0,1,2,3,4,5,6,7 Architectural

출처: https://perfmon-events.intel.com/index.html?pltfrm=skylake.html&evnt =CPU_CLK_UNHALTED.THREAD

CPU Topdown Analysis

CPU 프론트엔드에서 백엔드까지 performance counter 를 통해 병목 지점을 분석

출처 : https://chipsandcheese.com/2021/12/02/popping-the-hood-on-golden-cove/


```
# perf stat -a -C 15 -Mtma_L1_group -euops_executed.stall_cycles taskset -c 15 ./test
Performance counter stats for 'system wide':
                                                                                    (35.71%)
364,335,968
                uops_executed.stall_cycles
1,611,154,226
                  CPU_CLK_UNHALTED.REF_XCLK
                                              # 618997959839.45 SLOTS
                                                 67.9 % tma_retiring
                                              # 0.0 % tma_bad_speculation
                                                                                    (21.43%)
               INT_MISC.RECOVERY_CYCLES_ANY
                                                                                    (21.43%)
24,273,540
                                                                                    (21.43\%)
1,611,583,468
                  CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE
                                                                                    (28.57%)
154,728,878,608
                    CPU_CLK_UNHALTED.THREAD
                                                                                    (35.72%)
420,425,669,644
                    UOPS_RETIRED.RETIRE_SLOTS
                                                                                    (35.72%)
420,444,801,462
                    UOPS_ISSUED.ANY
                                                  0.1 % tma_frontend_bound
1,612,182,102
                  CPU_CLK_UNHALTED.REF_XCLK #
                                                  31.9 % tma_backend_bound
                                                                                    (35.72%)
                                                                                    (35.72%)
900,131,965
                IDQ_UOPS_NOT_DELIVERED.CORE
                                                                                    (28.57%)
23,508,714
               INT_MISC.RECOVERY_CYCLES_ANY
                                                                                    (28.57%)
1,611,951,671
                  CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE
                                                                                    (35.71\%)
154,773,425,775
                    CPU_CLK_UNHALTED.THREAD
                                                                                    (35.71%)
420,647,011,006
                    UOPS_ISSUED.ANY
430,034,883,695
                    INST_RETIRED.ANY
                                              # 430034883695.00 Instructions
                                                                                    (21.43%)
                                                 2.78 CoreIPC
                                                                                    (21.43%)
1,611,366,729
                  CPU_CLK_UNHALTED.REF_XCLK
                                                                                    (21.43%)
1,611,279,125
                  CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE
                    CPU_CLK_UNHALTED.THREAD
                                                                                    (21.43%)
154,691,221,053
64.955153257 seconds time elapsed
```


BE/Core

BE/Core

BE/Core

BE/Core

BE/Core

RET

Backend_Bound.Core_Bound.Ports_Utilization.Ports_Utilized_3m.ALU_Op_Utilization	% Core_Execution	50.2
Backend_Bound.Core_Bound.Ports_Utilization.Ports_Utilized_3m.Load_Op_Utilization.Port_2	% Core_Clocks	65.2
Backend_Bound.Core_Bound.Ports_Utilization.Ports_Utilized_3m.Load_Op_Utilization.Port_3	% Core_Clocks	66.3
Backend_Bound.Core_Bound.Ports_Utilization.Ports_Utilized_3m.Store_Op_Utilization	% Core_Execution	93.9
Backend_Bound.Core_Bound.Ports_Utilization.Ports_Utilized_3m.Store_Op_Utilization.Port_4	% Core_Clocks	93.9
Retiring.Light_Operations.Memory_Operations	% Slots	42.5

```
# perf stat -a -C 7 -Mtma_L1_group -euops_executed.stall_cycles taskset -c 7 ./test
Performance counter stats for 'system wide':
                                                                                   (35.71%)
  21,576,372,155
                    uops_executed.stall_cycles
   2,719,105,840
                    CPU_CLK_UNHALTED.REF_XCLK
                                               # 522313131452.00 SLOTS
                                                   80.5 % tma_retiring
                                                    0.1 % tma_bad_speculation
                                                                                   (21.43%)
                                                                                   (21.43\%)
      74,869,131
                    INT_MISC.RECOVERY_CYCLES_ANY
                                                                                   (21.43\%)
                    CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE
                                                                                   (28.57%)
 261, 156, 565, 726
                    CPU_CLK_UNHALTED.THREAD
                                                                                   (35.72%)
                    UOPS_RETIRED.RETIRE_SLOTS
 420,681,760,926
                                                                                   (35.72%)
 420,859,463,825
                    UOPS_ISSUED.ANY
                                                   18.7 % tma_frontend_bound
                    CPU_CLK_UNHALTED.REF_XCLK
   2,721,194,985
                                                    0.7 % tma_backend_bound
                                                                                   (35.72%)
                                                                                   (35.72%)
  97,860,876,494
                    IDQ_UOPS_NOT_DELIVERED.CORE
                                                                                   (28.57%)
      75,907,506
                    INT_MISC.RECOVERY_CYCLES_ANY
                                                                                   (28.57%)
                    CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE
                    CPU_CLK_UNHALTED.THREAD
                                                                                   (35.71\%)
 261,234,803,515
                                                                                   (35.71\%)
 420,933,337,909
                    UOPS_ISSUED.ANY
 430,198,407,698
                    INST_RETIRED.ANY
                                                # 430198407698.00 Instructions
                                                                                   (21.43\%)
                                                   3.30 CoreIPC
   2,719,504,896
                    CPU_CLK_UNHALTED.REF_XCLK
                                                                                   (21.43\%)
                                                                                   (21.43%)
                    CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE
                    CPU_CLK_UNHALTED.THREAD
                                                                                   (21.43\%)
 261,072,462,886
  109.840303999 seconds time elapsed
```

```
{
    "BriefDescription": "Probability of Core Bound bottleneck hidden by SMT-profiling artifacts",
    "MetricExpr": "100 * ( 1 - ( IDQ_UOPS_NOT_DELIVERED.CORE...",
    "MetricGroup": "Cor;SMT",
    "MetricName": "tma_info_botlnk_core_bound_likely"
},
```

Hyperthread로 인해 백엔드 병목 현상이 가려질 수 있다

Perfor	mance counter stats fo	or 'system wide':				
CPU15	2,722,070,704	CPU_CLK_UNHALTED.REF_XCLK	#	1305410274	41.50 CORE_CLKS	
CPU15			#	9.98	Core_Bound_Likely	(15.39)
CPU15	128,281,290	EXE_ACTIVITY.EXE_BOUND_0_PORTS				(15.39%
CPU15	94,162,481,359	IDQ_UOPS_NOT_DELIVERED.CORE				(15.39%
CPU15	4,226,412	EXE_ACTIVITY.BOUND_ON_STORES				(15.39%
CPU15	62,606,826,579	EXE_ACTIVITY.1_PORTS_UTIL				(15.39%
CPU15	75,813,583	INT_MISC.RECOVERY_CYCLES_ANY				(15.39%
CPU15	2,720,254,455	CPU_CLK_UNHALTED.REF_XCLK_ANY	#	1.00 S	MT_2T_Utilization	(15.39%
CPU15	0	CPU_CLK_UNHALTED.ONE_THREAD_AC	TIVE			(15.3
CPU15	261,082,054,883	CPU_CLK_UNHALTED.THREAD				(19.23%
CPU15	420,519,490,221	UOPS_RETIRED.RETIRE_SLOTS				(19.23%
CPU15	21,118,437,490	CYCLE_ACTIVITY.STALLS_MEM_ANY				(19.23%
CPU15	80,208,279,784	EXE_ACTIVITY.2_PORTS_UTIL				(19.23%
CPU15	21,671,886,837	CYCLE_ACTIVITY.STALLS_TOTAL				(19.23%
CPU15	420,853,102,333	UOPS_ISSUED.ANY				(15.38%
CPU15	16,006,164	ARITH.DIVIDER_ACTIVE				(15.38%
CPU15	430,318,900,660	INST_RETIRED.ANY	#	3.30 C	oreIPC	(11.54%
CPU15	2,720,475,382	CPU_CLK_UNHALTED.REF_XCLK				(11.54%
CPU15	0	CPU_CLK_UNHALTED.ONE_THREAD_AC	TIVE			(11.5
CPU15	261,165,670,208	CPU_CLK_UNHALTED.THREAD				(11.54%
CPU15	560,572,502,189	UOPS_EXECUTED.THREAD	#	2.34 E	xecute	(7.69%)
CPU15	239,364,849,044	cpu/UOPS_EXECUTED.THREAD,cmask	=1/			(7.69%
CPU15	140,096,870,707	L1-dcache-loads				(7.69%)
CPU15	16,733,177	L1-dcache-load-misses	#	0.01% o	f all L1-dcache accesses	
CPU15	833,275	LLC-loads				(11.54%
CPU15	2,534	LLC-load-misses	#	0.30% o	f all LL-cache accesses	(15.39%
CPU15	<not supported=""></not>	L1—icache—loads				
CPU15	25,818,357	L1-icache-load-misses	#	0.00% o	f all L1—icache accesses	(15.39%
CPU15	140,158,263,939	dTLB-loads	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(15.39%
CPU15	111,366	dTLB-load-misses	#	9.00%	f all dTLB cache accesse	
CPU15	52,401	iTLB-loads				(15.39%
CPU15	215,186	iTLB-load-misses	#	410.65% 0	f all iTLB cache accesse	
CPU15	<not supported=""></not>	L1-dcache-prefetches		110.00/0 0	TO GIT TIED CUCITO UCCCSSC	(±0.07/0
CPU15	<not supported=""></not>	L1-dcache-prefetch-misses				

pmu-tools

perf 기반 인텔 CPU 성능 분석 도구

```
# ./toplev -13 --single-thread --nodes '!+Core_Bound*/3,+Backend_Bound,+MUX' taskset -c 15 ./test
# 4.7-full on Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz [skx/skylake]
                                                                               [16.0%]
                 Backend_Bound
                                          % Slots
BE
                                                                               [16.0%]<==
                 Backend_Bound.Core_Bound % Slots
BE/Core
                                                                        31.6
This metric represents fraction of slots where Core non-
memory issues were of a bottleneck...
MUX
                                                                        16.00
Run toplev --describe Backend_Bound.Core_Bound^ to get more information on bottleneck
Add --run-sample to find locations
```

-single-thread

-single-thread

Elasticsearch 에서 CPU Bound 를 보면 되겠다!

```
# 4.7-full on Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz [clx/skylake]
                             Frontend_Bound.Fetch_Latency.MS_Switches
                                                                           % Clocks_est
                                                                                                                [ 5.9%]
5.015660735 FE
                            Retiring.Heavy_Operations.Microcode_Sequencer % Slots
                                                                                                                [ 5.9%]
5.015660735 RET
                            Bad_Speculation.Machine_Clears
                                                                                                                [ 5.9%]
5.015660735 BAD
                                                                           % Slots
                                                                                                          0.0
                                                                                                                [ 5.9%]
5.015660735 BE/Mem
                             Backend_Bound.Memory_Bound
                                                                           % Slots
                                                                                                         21.3
5.015660735 BE/Core
                             Backend_Bound.Core_Bound
                                                                                                                [ 5.9%]
                                                                           % Slots
                                                                                                         20.3
                                                                                                                [ 5.9%]<==
5.015660735 BE
                            Backend_Bound
                                                                           % Slots
                                                                                                         41.5
```

Hyperthread off

# 4.7-full on Intel(R) Xeon(R)	Silver 4216 CPU @ 2.10GHz [clx/sky	lake]	
5.054301612 S0-C0 FE	Frontend_Bound	% Slots	22.2 [1.6%]
5.054301612 S0-C0 BE	Backend_Bound	% Slots	20.8 [1.6%]
5.054301612 S0-C0 FE	Frontend_Bound.Fetch_Laten	cy % Slots	13.3 [1.6%]
5.054301612 S0-C0 BE/Core	Backend_Bound.Core_Bound	% Slots	10.4 [1.6%]

Hyperthreadon

출처 : https://github.com/intel/pcm

PCM exporter

출처 : https://github.com/cloudflare/ebpf_exporter

EBPF exporter

하이퍼스레드 켜면 (대부분) 좋다 사용중인 워크로드의 특성을 잘 알아야 한다

