PHY2049 Summer 2018

Lecture 5 Review Questions

Douglas H. Laurence

Department of Physical Sciences, Broward College, Davie, FL 33314

Chapter 25: Electrostatic Potential and Energy

Review the following problems (challenge problems given by *):

• Section 25.1: 5, 7, 13

• Section 25.2: 21, 27

• Section 25.4: 42[†], 46[†]

• Section 25.5: 63, 65^{††}, 69*

• Review Problems: 81, 83

 † There are no good odd-numbered problems, so I'll just give you the answers. For problem 42,

$$\vec{E}(2,2) = (8 \text{ N/C})\hat{i} + (4 \text{ N/C})\hat{j}$$

For problem 46,

$$\vec{E}(x,y,z) = (2xy + 3yz)\hat{i} + (x^2 + 3xz + 2zy)\hat{j} + (3xy + y^2)\hat{k}$$

^{††} You should find the answer in Joules (J) like you normally would, and then use an online converter like WolframAlpha to find the answer in eV; for example, if you wanted to know 2.4×10^{-5} J in eV, you could type "Convert 2.4e-5 J to eV" and WolframAlpha will output 1.498×10^{14} eV.