Métodos de Búsqueda No Informados e Informados

Grupo 3

Biagini, Martín Clozza, Nicolás Filipic, Joaquín Mamone, Federico

Fundamentos Teóricos

Métodos de Búsqueda

No Informados vs. Informados

- DFS
- BFS
- IDDFS

- Greedy
- A*

Juego 0h-h1

Descripción del Trabajo

Determinación del estado inicial

Aplicación de Reglas

Estado Final (Solución o no)

- Se verifican columnas y filas
- No deben violar las restricciones del juego

Función de costo de ruta

- Pasar de un estado a otro es modificar una fila
- Para cualquier estado es lo mismo
- Siempre el costo es 1

Heurística 1

Se elige el valor máximo entre estos 4 casos de restricciones que no se cumplen:

- Cantidad de conjuntos de 3 o más colores consecutivos
- No igualdad de cantidad de colores por columna
- Filas iguales
- Columnas iguales

Heurística 2

Se van sumando las siguientes restricciones que no se cumplen:

- Cantidad de conjuntos de 3 o más colores consecutivos
- No igualdad de cantidad de colores por columna
- Cantidad de filas iguales
- Cantidad de columnas iguales

Resultados

Métricas

TABLERO 2 (6x6)							
Algoritmos de Búsqueda	BFS	DFS	IDDFS	Greedy (H1)	Greedy (H2)	A* (H1)	A* (H2)
Costo Nodo Solución	3	292	4	731	735	4	3
Nodos Expandidos	334	292	151	732	739	5	104
Profundidad Nodo Solución	3	292	4	731	735	4	3
Nodos Explorados	1161	885	3279	3867	2990	6	334
Nodos Frontera	6188	5540	45	12238	13269	105	1955
Solución Encontrada	Sí	Sí	Sí	Sí	Sí	Sí	Sí
Tiempo (us)	16.290	22.936	10.192	96245,2	121555	411,9	30733,1

Tablero 2 - 6x6 - Nodos Expandidos y Nodos Explorados

Tablero 2 - 6x6 - Tiempo (us)

Métricas

TABLERO 3 (4x4)							
Algoritmos de Búsqueda	BFS	DFS	IDDFS	Greedy (H1)	Greedy (H2)	A* (H1)	A* (H2)
Costo Nodo Solución	3	9	4	48	48	3	3
Nodos Expandidos	42	9	13	48	48	4	23
Profundidad Nodo							
Solución	3	9	4	48	48	3	3
Nodos Explorados	133	21	77	118	117	5	39
Nodos Frontera	162	43	16	219	220	24	123
Solución Encontrada	Sí	Sí	Sí	Sí	Sí	Sí	Sí
Tiempo (us)	2.303	155	175	840	1643	465	2317

Tablero 3 - 4x4 - Nodos Expandidos y Nodos Explorados

Tablero 3 - 4x4 - Tiempo (us)

Conclusiones

Búsquedas No Informadas

- En general, IDDFS presenta una menor cantidad de nodos expandidos y explorados que BFS y DFS.
- No necesariamente se ve reflejado siempre en tiempo de ejecución.

Búsquedas Informadas

- A* es sustancialmente mejor que Greedy en todas las métricas.
- Independientemente de la heurística utilizada.
- Heurística 1 (admisible) presenta ventajas sobre la Heurística 2.

Globales

- Greedy resultó muy poco eficiente para este problema.
- Si bien IDDFS tuvo buena performance, claramente el algoritmo más óptimo es A*.
- Es importante la elección adecuada de la heurística.