

Beyond Sparsity: Tree Regularization of Deep Models for Interpretability

MikeWu, Michael C.Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, and Finale Doshi-Velez

Standford &&Harvard &&...

Outline

- Motivation
- Background
- Model
- Experiment
- Discussion

Motivation

- ✓ Deep models are <u>difficult to interpret</u> → <u>interpretability</u>
- ✓ Deep models often have <u>multiple optima</u> of similar predictive accuracy \rightarrow a <u>more interpretable</u> one
- ✓ Want a <u>human-simulatable</u> model → <u>small decision tree</u>

User can take in input data together with the parameters of the model to produce a prediction

Motivation

Background

We can train deep models via the following loss minimization objective:

Background

- ▶ LO: 非零元素的个数 → 参数矩阵是稀疏的
- ▶L1:向量各个元素的绝对值之和
- ▶ L2:向量各元素的平方和然后求平方根
- ► [????

Feature selection Interpretability

Model

Tree Regularization for Deep Models:

$$\min_{W} \lambda \Psi(W) + \sum_{n=1}^{N} \sum_{n=1}^{T_n} loss(y_{nt}, \hat{y}_{nt}(x_n, W))$$

- → Want a small decision tree
- → Measure the complexity of this decision tree
- → The average decision path length
- → We use the DecisionTree model distributed in Python's scikit-learn

Background

DecisionTree in Python's scikit-learn:

CART Tree:

For the whole dataset D, each feature A and all the K categories:

$$Gini(D, A) = \frac{D1}{D}Gini(D1) + \frac{D2}{D}Gini(D2)$$

$$Gini(D) = 1 - \sum_{k=1}^{K} (\frac{C_k}{D})^2$$

Model

$$\min_{W} \lambda \Psi(W) + \sum_{n=1}^{N} \sum_{n=1}^{T_n} loss(y_{nt}, \hat{y}_{nt}(x_n, W))$$

Algorithm 1 Average-Path-Length Cost Function

Require:

 $\hat{y}(\cdot, W)$: binary prediction function, with parameters W $D = \{x_n\}_{n=1}^N$: reference dataset with N examples

- 1: **function** $\Omega(W)$
- 2: tree \leftarrow TRAINTREE($\{x_n, \hat{y}(x_n, W)\}$)
- 3: **return** $\frac{1}{N} \sum_{n} \text{PATHLENGTH}(\text{tree}, x_n)$

Model

Making the Decision-Tree Loss **Differentiable:**

Multi-layer perceptron network → differentiable

$$\min_{\xi} \sum_{j=1}^{J} (\Omega(W_j) - \hat{\Omega}(W_j, \xi))^2 + \epsilon ||\xi||_2^2$$

Tree-Regularized MLPs: A Demonstration

$$y = 5 * (x - 0.5)^2 + 0.4$$

Tree-Regularized Time-Series Models

Sepsis Critical Care:

HIV Therapy Outcome (HIV):

Phonetic Speech (TIMIT):

input: 35 vital signs → output: 5 binary outcomes

40 features(including blood counts, viral load measurements) → output: 15 binary labels

input: 26 continuous features → output : stop phonemes or non-stops

Sepsis Critical Care

Sepsis Critical Care

TIMIT Stop Phonemes

HIV Therapy Adherence

Discussion

The **limitations** of this kind of small decision tree ?

Thanks