TT	ГX	1 7	И	T	١ /	\sim
н	VΙ	У	VΙ		VΙ	()

4			U	инженерии и компьютерн				U		
)акупьтет і	$\Pi n \cap \Gamma$	паммиои	инжене	ทนน น	компьюте	nuliy	техноп	огии	
Ŧ	akymbici.	προι	pamminon	HILLMOIT	priri ri	KOMIIDIOIC	PHDIA	ICAHOJI	OI IIII	

	Отчет по лабораторной работе №3	
ПО	дисциплине Бизнес-логика программных систе	M

Студент группы № Р33151

Шипулин Павел Андреевич

Преподаватель

Кривоносов Егор Дмитриевич

Санкт-Петербург 2024

Задание (вариант 9177)

Доработать приложение из лабораторной работы #2, реализовав в нём асинхронное выполнение задач с распределением бизнес-логики между несколькими вычислительными узлами и выполнением периодических операций с использованием планировщика задач.

Требования к реализации асинхронной обработки:

- 1. Перед выполнением работы неободимо согласовать с преподавателем набор прецедентов, в реализации которых целесообразно использование асинхронного распределённого выполнения задач. Если таких прецедентов использования в имеющейся бизнеспроцесса нет, нужно согласовать реализацию новых прецедентов, доработав таким образом модель бизнес-процесса из лабораторной работы #1.
- 2. Асинхронное выполнение задач должно использовать модель доставки "подписка".
- 3. В качестве провайдера сервиса асинхронного обмена сообщениями необходимо использовать сервис подписки на базе Apache Kafka + ZooKeeper.
- 4. Для отправки сообщений необходимо использовать Kafka Producer API.
- 5. Для получения сообщений необходимо использовать клиент Kafka на базе Spring Boot.

Требования к реализации распределённой обработки:

1. Обработка сообщений должна осуществляться на двух независимых друг от друга узлах сервера приложений.

2. Если логика сценария распределённой обработки предполагает транзакционность выполняемых операций, они должны быть включены в состав распределённой транзакции.

Требования к реализации запуска периодических задач по расписанию:

- 1. Согласовать с преподавателем прецедент или прецеденты, в рамках которых выглядит целесообразным использовать планировщик задач. Если такие прецеденты отсутствуют -- согласовать с преподавателем новые и добавить их в модель автоматизируемого бизнес-процесса.
- 2. Реализовать утверждённые прецеденты с использованием планировщика задач Quartz.

Правила выполнения работы:

- 1. Все изменения, внесённые в реализуемый бизнес-процесс, должны быть учтены в описывающей его модели, REST API и наборе скриптов для тестирования публичных интерфейсов модуля.
- 2. Доработанное приложение необходимо либо развернуть на сервере helios, либо продемонстрировать его работоспособность на собственной инфраструктуре обучающегося.

Содержание отчёта:

- 1. Текст задания.
- 2. Модель потока управления для автоматизируемого бизнес-процесса со всеми внесёнными изменениями.
- 3. UML-диаграммы классов и пакетов разработанного приложения.
- 4. Спецификация REST API для всех публичных интерфейсов разработанного приложения.

- 5. Исходный код системы или ссылка на репозиторий с исходным кодом.
- 6. Выводы по работе.

Модель потока управления

https://github.com/PashcalE2/BLPS/tree/main/BLPS_lab3/report/diagram.svg

UML-диаграммы классов и пакетов

https://github.com/PashcalE2/BLPS/tree/main/BLPS_lab3/report/blps_lab3.png

Спецификация REST API

Изменений в спецификации REST API по сравнению с интерфейсами в лабораторной работе №2 — нет.

Рисунок 1. Набор публичных АРІ.

Рисунок 2. Набор АРІ для пользователей с ролью "Клиент".

Рисунок 3. Набор АРІ для пользователей с ролью "Администратор".

Исходный код

https://github.com/PashcalE2/BLPS/tree/main/BLPS_lab3

Выводы

Реализовал асинхронное выполнение задач с использованием модели доставки "подписка" с помощью Apache Kafka + Zookeeper.

Реализовал запуск выполнения периодических задач с помощью библиотеки Quartz: запись собранной статистики результатов (статусов) запросов и отправка отчета на почту администратору.