Detailed Report of Clustering Results

Clustering Metrics and Insights:

1. Cluster Composition:

Total Number of Clusters: 5

Cluster Size Breakdown:

• Cluster 0: 12 customers

• Cluster 1: 59 customers

• Cluster 2: 71 customers (Largest cluster)

• Cluster 3: 36 customers

• Cluster 4: 21 customers

2. Clustering Performance Metrics:

Davies-Bouldin Index (DB Index)

Value: 0.9245800474301245

• The Davies-Bouldin Index measures the average similarity between each cluster and its most similar cluster.

3. Cluster Size Analysis:

Cluster Distribution Insights

The cluster sizes reveal interesting patterns:

- Cluster 2 (71 customers): Represents the majority of the customer base
- Cluster 1 (59 customers): Second largest group
- Cluster 3 (36 customers): Mid-sized cluster
- Cluster 4 (21 customers): Little Smaller group
- Cluster 0 (12 customers): Smallest cluster, might represent unique or outlier customers

4. Implications of Cluster Sizes:

Customer Segmentation Considerations

1. Large Segments

- Clusters 1 and 2 contain the large no. of customers.
- These groups likely represent the most typical customer behaviours.

2. Small Segments

- Clusters 0 and 4 are smaller.
- May represent Unique customer types with potential high-value or high-risk groups from the rest.

5. Methodological Notes:

Feature Engineering of aggregate customer data:

Code:

Clustering Approach:

• Algorithm: K-Means Clustering

```
# K-Means clustering

num_clusters = 5

kmeans = KMeans(n_clusters=num_clusters, random_state=42)

clusters = kmeans.fit_predict(scaled_data)

customer_data['Cluster'] = clusters

# Evaluating clusters

db_index = davies_bouldin_score(scaled_data, clusters)

print(f"DB Index: {db_index}")
```

• **Preprocessing**: StandardScaler for feature normalization

```
# Standardize the data
scaler = StandardScaler()
scaled_data = scaler.fit_transform(customer_data.drop(columns=['CustomerID']))
```

• Number of Clusters: Determined through initial analysis – taken 5

6. Clustering visualizations:

1. K-Means clustering of customers:

```
plt.figure(figsize=(8, 6))
sns.scatterplot(
    x=scaled_data[:, 0], y=scaled_data[:, 1],
    hue=clusters, palette="Set2", s=100
)
plt.title("Customer Clusters (K-Means)")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.legend(title="Cluster")
plt.show()
```

Plot:

Insights:

- Cluster 1 and 4 are the dominant groups and may represent average or majority customer behaviours.
- Cluster 2 contain inactive or low-engagement customers who are comparatively little lower in number.
- Cluster 3 consists of moderately active or mid-spending customers, who are moderately populated.

2. Spending Distribution by Cluster:

```
plt.figure(figsize=(8, 6))

sns.boxplot(data=customer_data, x='Cluster', y='TotalValue')

plt.title("Spending Distribution by Cluster")

plt.xlabel("Cluster")

plt.ylabel("Total Value")

plt.show()
```

Plot:

Insights:

- Cluster 0 has the highest spending customers, with a median total value above 6000.
- Cluster 2 has the lowest median spending, suggesting that customers in this cluster spend the least on average.
- Clusters 1, 3, and 4 show more moderate spending levels, their box sizes suggest moderate variability in spending within each of these groups.
- There's a single data point plotted as a circle above the box for Cluster 0. This is an outlier, representing an individual in this cluster with exceptionally high spending compared to the rest of the group.

3. Transaction vs Total Spend by Cluster:

```
plt.figure(figsize=(8, 6))
sns.scatterplot(x=customer_data['TransactionID'], y=customer_data['TotalValue'],
hue=customer_data['Cluster'], palette="Set2")
plt.title("Transaction vs Total Spend by Cluster")
plt.xlabel("Transaction Count")
plt.ylabel("Total Value")
plt.legend(title="Cluster")
plt.show()
```

Plot:

Insights:

- There's a positive correlation between transaction count and total value. As the number of transactions increases, the total spending tends to increase as well.
- Cluster 0 generally exhibits higher total spending, even with a moderate number of transactions.
- Cluster 2 consistently shows lower spending across all transaction counts. Even with a higher number of transactions, their total spending remains relatively low, indicating smaller purchase sizes.