Rwanda Food Price Analysis

Project Scope

The project includes analyzing potato price and creating a function to calculate any other foods in the future. The Project document starts with the Scope of the project, followed by objective of the project, the code used (R programming), the Visualizations and the Insights.

Objective

This is a practice project to analyze price of Potato overtime at Rwanda, a country in East Africa.

Code:

```
# Load the readr and dplyr packages
library(readr)
library(dplyr)
# Import the potatoes dataset
potato_prices <- read_csv("datasets/Potatoes (Irish).csv")</pre>
# Take a glimpse at the contents
glimpse(potato_prices)
# Import again, only reading specific columns
potato_prices <- read_csv("datasets/Potatoes (Irish).csv",</pre>
col_types = cols_only(adm1_name = col_character(),
                      mkt_name = col_character(),
                      cm_name = col_character(),
                      mp_month = col_integer(),
                      mp_year = col_integer(),
                      mp price = col double()))
# Rename the columns to be more informative
potato_prices_renamed <- potato_prices %>% rename(
region = adm1 name,
market = mkt_name,
commodity_kg = cm_name,
```

```
month = mp month,
year = mp_year,
price rwf = mp price
# Check the result
glimpse(potato_prices_renamed)
OUTPUT:
Rows: 4,320
Columns: 6
# Load lubridate to perform Timeseries Analysis
library(lubridate)
# Convert year and month to Date
potato prices cleaned <- potato prices renamed %>% mutate(date =
ymd(paste(year, month, "01" ))) %>% select(-year, -month)
#Result
potato_prices_cleaned
read_price_data <- function(commodity) {</pre>
 data_file <- paste0("datasets/", commodity, ".csv")</pre>
 prices <- read_csv(</pre>
   data_file,
 col types = cols only(
   adm1_name = col_character(),
   mkt name = col character(),
   cm_name = col_character(),
   mp_month = col_integer(),
   mp_year = col_integer(),
   mp_price = col_double()
)
prices_renamed <- prices %>%
```

```
rename(
    region = adm1_name,
    market = mkt name,
    commodity kg = cm name,
    month = mp_month,
    year = mp_year,
    price_rwf = mp_price
  )
prices_renamed %>%
  mutate(
    date = ymd(paste(year, month, "01"))
  select(-month, -year)
}
# Testing with the sample Food "Peas"
pea prices <- read price data("Peas (fresh)")</pre>
glimpse(pea prices)
... Rows: 1,893
   Columns: 5
   $ region $$<chr> "$West/Iburengerazuba", "$West/Iburengerazuba", "$west... $<chr>> "Birambo", "Birambo", "Birambo", "Birambo", "Birambo", ...
   $ commodity_kg <chr> "Peas (fresh)", "Peas (fresh)", "Peas (fresh)", "Peas ...
   $ date
                <date> 2011-01-01, 2011-02-01, 2011-04-01, 2011-05-01, 2011-...
# Load ggplot2 to plot Data
library(ggplot2)
# Draw a line plot of price vs. date grouped by market
ggplot(potato prices cleaned, aes(x = date, y = price rwf, group =
market)) + geom line(alpha = 0.2) + ggtitle("Potato price over time")
# Load forecast and plot Potato forecasted Price
library(forecast)
potato_price_forecast <- forecast(potato_time_series)</pre>
potato price forecast
autoplot(potato price forecast) + ggtitle("Potato price forecast")
```

Visualizations:

		Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Jan	2016		190.0093	171.35706	208.6615	161.48317	218.5354
Feb	2016		202.6099	174.14582	231.0740	159.07783	246.1420
Mar	2016		220.0317	181.72222	258.3413	161.44238	278.6211
Apr	2016		231.5932	184.48380	278.7026	159.54559	303.6408
May	2016		226.2626	174.20438	278.3209	146.64641	305.8789
Jun	2016		229.1587	170.73454	287.5829	139.80665	318.5108
Jul	2016		230.8787	166.57270	295.1848	132.53113	329.2263
Aug	2016		251.1739	175.53815	326.8096	135.49902	366.8487
Sep	2016		279.3573	189.13187	369.5827	141.36943	417.3451
Oct	2016		262.7887	172.33073	353.2467	124.44516	401.1323
Nov	2016		236.0485	149.89274	322.2042	104.28465	367.8123
Dec	2016		205.0924	126.05584	284.1290	84.21640	325.9684
Jan	2017		205.0036	121.88813	288.1190	77.88948	332.1177
Feb	2017		218.4941	125.58323	311.4050	76.39917	360.5891
Mar	2017		237.1698	131.67270	342.6669	75.82591	398.5137
Apr	2017		249.5154	133.68437	365.3465	72.36711	426.6638

Potato price forecast

Insights:

- From the above Visualizations, it is evident that potato prices are an increasing trend since 2008 and until 2012. However, Post 2012, the prices are normalized and moves parallelly.
- Based on our Forecast, we see that price might slightly surge no 2016 and 2017.
- The peas chart we created the function developed from Potato analysis points that the peas price fluctuates up and down, however moving on a parallel channel when looked over years.