ÖZNİTELİK ALGILAMA

- -Görüntü öznitelikleri: Önemli/ilginç yerel şablonlar (paternler)
- -Öznitelikleri algılamak görüntüdeki nesneleri yerelleştirme ya da tanımlamada önemli bir adım olabilir.("Öznitelik temelli yöntemler")
- -Örnek öznitelikler:
- *Kenarlar,
- *Çizgi ve eğriler,
- *Köşeler,
- *Uygulamaya özel şablonlar(paternler)

Kızıl ötesi aydınlatma ile uyuşukluk

algılama, N.EAGLE EE368 sınıf projesi

Kenar algılama

-Amaç(Sürekli-yer)(idea continuous-space):

Yerel eğimi algıla

$$\left| \operatorname{grad} \left(f(x, y) \right) \right| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$

-Dijital görüntü: Sonlu farkları kullan

fark merkezi fark prewitt

sobel

$$\begin{pmatrix}
-1 & 1 \\
-1 & [0] & 1
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 0 & 1 \\
-1 & [0] & 1 \\
-1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 0 & 1 \\
-2 & [0] & 2 \\
-1 & 0 & 1
\end{pmatrix}$$

Pratik kenar algılayıcılar

Kenarlar herhangi bir uyarlamaya sahip olabilirler Tipik kenar algılama düeni K=2 kenar şablonunu (template) kullanır

Bazıları ise K>2 uygular

Kenar algılama filtreleri

Roberts
$$\begin{bmatrix} \begin{bmatrix} 0 \end{bmatrix} & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 1 \end{bmatrix} & 0 \\ 0 & -1 \end{bmatrix}$$

Prewitt
$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & [0] & 1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ 0 & [0] & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Sobel
$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & [0] & 2 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & -2 & -1 \\ 0 & [0] & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Kirsch

$$\begin{pmatrix} +5 & +5 & +5 \\ -3 & [0] & -3 \\ -3 & -3 & -3 \end{pmatrix} \begin{pmatrix} -3 & +5 & +5 \\ -3 & [0] & +5 \\ -3 & -3 & -3 \end{pmatrix} \begin{pmatrix} -3 & [0] & +5 \\ -3 & -3 & +5 \end{pmatrix} \begin{pmatrix} -3 & [0] & +5 \\ -3 & -3 & +5 \end{pmatrix} \begin{pmatrix} -3 & [0] & +5 \\ -3 & +5 & +5 \end{pmatrix}$$

$$\begin{pmatrix} -3 & -3 & -3 \\ -3 & [0] & -3 \\ +5 & +5 & +5 \end{pmatrix} \begin{pmatrix} -3 & -3 & -3 \\ +5 & [0] & -3 \\ +5 & -3 & -3 \end{pmatrix} \begin{pmatrix} +5 & -3 & -3 \\ +5 & [0] & -3 \\ +5 & -3 & -3 \end{pmatrix} \begin{pmatrix} +5 & [0] & -3 \\ +5 & [0] & -3 \\ -3 & -3 & -3 \end{pmatrix}$$

Prewitt kullanıcı örneği

Gerçek köprü

220 x 160

alttaki matrislerle filtrelenmiş görüntüler

$$\begin{pmatrix}
-1 & 0 & 1 \\
-1 & [0] & 1 \\
-1 & 0 & 1
\end{pmatrix}$$

$$\begin{bmatrix}
-1 & -1 & -1 \\
0 & [0] & 0 \\
1 & 1 & 1
\end{bmatrix}$$

Prewitt kullanıcı örneği

Gerçek görüntü büyüklüğü 310 x 241

Filtrelenmiş görüntülerin log (Laplace of Gaussian)

$$\begin{pmatrix}
-1 & 0 & 1 \\
-1 & [0] & 1 \\
-1 & 0 & 1
\end{pmatrix}$$

$$\begin{bmatrix}
-1 & -1 & -1 \\
0 & [0] & 0 \\
1 & 1 & 1
\end{bmatrix}$$

Prewitt kullanıcı örneği

Yatay ve düşey eğimlerin karelerinin log (Laplace of Gaus.) özeti

Farklı eşik değerleri

Sobel kullanıcı örneği

Yatay ve düşey eğimlerin karelerinin log (Laplace of Gaus. özeti

Farklı eşik değerleri

Roberts kullanıcı örneği

Orijinal görüntü büyüklüğü 309 x 240

Filtrelenmiş görüntülerin log (Laplace of Gaussian)

$$\begin{pmatrix}
[1] & 0 \\
0 & -1
\end{pmatrix} \qquad \begin{pmatrix}
[0] & 1 \\
-1 & 0
\end{pmatrix}$$

Roberts kullanıcı örneği

Köşegen eğimlerinin karelerinin log (Laplace of Gaus.) özeti

Farklı eşik değerleri

Laplace kullanıcısı

- İkinci türevi hesaba katarak süreksizlikleri algıla $\nabla^{2} f(x,y) = \frac{\partial^{2} f(x,y)}{\partial x^{2}} + \frac{\partial^{2} f(x,y)}{\partial y^{2}}$

- -Sıfır geçişleri noktası kenar konumu
- -3x3 itme tepkisiyle konvolüsyon sayesinde

ayrık uzay tahmini

$$\begin{pmatrix}
0 & 1 & 0 \\
1 & [-4] & 1 \\
0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & [-8] & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

2nci türev kenar algılayıcısının 1-d aydınlatması

Sıfır geçişini algıla

Laplace'ın sıfır geçişleri

Çok iyi detaya ve gürültüye duyarlı -> Başlangıçta bulanık Güçlü ve zayıf kenarlara eşit biçimde tepki verir -> Düşük eğimle kenarları bastırır.

Gaus Laplace'ı

Görüntünün Laplace ve Gaus kullanıcılarıyla bulanıklaştırılması, Gaus Laplace(LoG) 'ıyla konvolüsyonla birleştirilebilir

 $LoG(x,y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{\frac{x^2 + y^2}{2\sigma^2}}$

Sürekli fonksiyon ve ayrık tahmin

_	1	/	1
\sim		_/	ı
•		_	-

٥	1	1	2	2	2	1	1	0
1	2	4	5	5	ų,	4	2	1
1	4	5	э	0	э	5	4	1
2	5	3	-12	-24	- 12	3	5	2
2	5	٥	-24	-40	-24	0	5	2
2	5	n	-12	-24	12	Э	5	2
1	4	5	9	0	က	5	4	1
1	2	4	5	5	5	4	2	1
0	1	1	2	2	2	1	1	0

LoG'un sıfır geçişleri

w/o Gaus $\sigma = 1.4$ $\sigma = 3$

LoG'un sıfır geçişleri-Eğim(Gradyan) bazlı eşik

Canny kenar algılayıcı

- -Gaus ile filtrelenmiş düzgün (pürüzsüz) bir görüntü
- -Eğimin büyüklüğünü ve açıyı hesapla(prewitt,sobel)

$$M(x,y) = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

$$\alpha(x,y) = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

- -Eğim büyüklüğü görüntüsüne maksimum olmayan bastırmayı uygula
- -Güçlü ve zayıf kenar piksellerini algılamak için çift eşik değeri uygula
- -Belirgin kenarla ilgisi olmayan zayıf kenar piksellerini çıkar (at)

Canny maksimum olmayan bastırma (nonmaxima suppression)

-Kenar normalini yönlerinden birine nicelendir:

yatay: -45, dikey: +45

-M(x,y) kenar normali yönündeki

komşularının herhangi birinden küçükse ->

bastır, değilse devam et

Zayıf kenarların Canny ile eşiklemesi ve bastırılması

-Gradyan(eğim) büyüklüğünün çift

eşiklemesi

Strong edge:
$$M(x, y) \ge \theta_{high}$$

Weak edge: $\theta_{high} > M(x, y) \ge \theta_{low}$

$$\theta_{high}/\theta_{low}=2...3$$

- -Tipik ayar:
- -Kenar piksellerin bölge etiketlemesi
- -Belirgin(güçlü) kenar pikselleri dışındaki bölgelerin çıkarılması

Canny kenar algılayıcı

Canny kenar algılayıcı

Hough(Temizleme) dönüşümü

- -Problem: Bir kenar piksel grubunun içine düz bir çizgi ya da eğri sığdır
- -Hough dönüşümü(1962): Genel şablon eşleme tekniği
- -Düz çizgilerin algılandığını göz önünde bulundur

y = mx + c

Hough dönüşümü

- -m,c düzlemini ayrık karelere böl, tüm kareleri sıfırdan başlat
- -m,c düzlemindeki her bir kenar pikseli x,y için bir doğru çiz ve doğru boyunca kare sayısını artır.
- -m,c düzlemindeki tepe noktalarını tespit

et (algıla)

Hough dönüşümü

Alternatif ölçümler sonsuz eğim (infinite-slope) problemini ihmal eder.

Radon dönüşümüne benzer

Hough dönüşümü Örnek A

Hough dönüşümü Örnek B

Hough dönüşümü Örnek C

Hough dönüşüm örneği

Kenar algılama (Prewitt)

Hough dönüşümü ile yuvarlak (çember) algılama

-İşaretli r yarıçaplı çemberleri bul

-Belirsiz yarıçaplı çemberler için, (x_0, y_0, r) parametreli 3-d hough dönüşümünü kullan

Örnek: Hough dönüşümü ile çember algılama

Gerçek kan görüntüsü

Prewitt kenar algılama

Köşe noktaları algılama

Birçok uygulamalar (x,y) konumlarındaki özniteliklerden faydalanır.

Kenarlar sadece bir yönde daha iyi (çok) konumlanır. -> Köşeleri algıla

Köşe algılayıcı için istenen özellikler:

- -Doğru konum(yer)
- -Ölçek, parlaklık, dönü ve yöne göre değişmez olma
- -Gürültü (istenmeyen görüntü) ve tekrarlamalara karşı dayanıklı olma

En doğru konumlanan paternler hangileridir?

-Yerel uzaklık duyarlılığı (local displacement sensitivity)

$$S(\Delta x, \Delta y) = \sum_{(x,y) \in window} \left[f(x,y) - f(x + \Delta x, y + \Delta y) \right]^{2}$$

-Küçük $\Delta x, \Delta y$ için doğrusal tahmin

$$f(x + \Delta x, y + \Delta y) \approx f(x, y) + f_{x}(x, y) \Delta x + f_{y}(x, y) \Delta y$$

$$S(\Delta x, \Delta y) \approx \sum_{(x,y) \in window} \left[\left(f_{x}(x,y) - f_{x}(x,y) \left(\frac{\Delta x}{\Delta y} \right) \right) \right]^{2}$$

$$= (\Delta x - \Delta y) \left(\sum_{(x,y) \in window} \left[f_{x}^{2}(x,y) - f_{x}(x,y) f_{y}(x,y) - f_{y}^{2}(x,y) \right] \right) \left(\frac{\Delta x}{\Delta y} \right)$$

$$= (\Delta x - \Delta y) \mathbf{M} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

-Eşit duyarlılık (iso-sensitivity) eğrileri elipstir

Anahtar nokta algılama

Sıklıkla yapı (normal) matrisinin Λ_1 , özdeğerleri esasına dayanır.

$$\mathbf{M} = \begin{bmatrix} \sum\limits_{(x,y) \in \textit{window}} f_x^2(x,y) & \sum\limits_{(x,y) \in \textit{window}} f_x(x,y) f_y(x,y) \\ \sum\limits_{(x,y) \in \textit{window}} f_x(x,y) f_y(x,y) & \sum\limits_{(x,y) \in \textit{window}} f_y^2(x,y) \end{bmatrix}$$

$$f_x(x,y) - \text{horizontal image gradient}$$

$$f_y(x,y) - \text{vertical image gradient}$$

Köşe'lik ölçümü

$$C(x, y) = \det(\mathbf{M}) - k \cdot (trace(\mathbf{M}))^{2}$$
$$= \lambda_{1}\lambda_{2} - k \cdot (\lambda_{1} + \lambda_{2})$$

Harris köşeliğinin eş yükselti grafiği

$$C(x, y) = \det(\mathbf{M}) - k \cdot (trace(\mathbf{M}))^{2}$$
$$= \lambda_{1}\lambda_{2} - k \cdot (\lambda_{1} + \lambda_{2})$$

Anahtar nokta algılama:Girdi

Harris köşeliği

Eşiklenen köşelik

Köşeliğin yerel maksimumu

Birleştirilmiş anahtar noktalar

Harris köşe algılayıcının dayanıklılığı

-Parlaklığa göre farklılık göstermez $f(x,y) \rightarrow f(x,y) + c$

-Yöne ve rotasyon 'a (dönü) göre farklılık göstermez

-Ölçeğe göre değişir:

Haralick köşe algılayıcı

Adım 1: İlgi algılama penceresi

-Sobel kullanıcıyı kullanarak yatay gradyan $f_x(x,y)$

ve dikey gradyan $f_y(x,y)$ 'yi hesapla

$$f_{y}(x,y)$$

-Her ölçüm penceresi için,aşağıdakilerin

determinantını al

$$\mathbf{M} = \begin{bmatrix} \sum\limits_{(x,y) \in \textit{window}} f_x^2(x,y) & \sum\limits_{(x,y) \in \textit{window}} f_x(x,y) f_y(x,y) \\ \sum\limits_{(x,y) \in \textit{window}} f_x(x,y) f_y(x,y) & \sum\limits_{(x,y) \in \textit{window}} f_y^2(x,y) \end{bmatrix}$$
 Circularity of ellipse: $q=1-\left(\frac{\lambda_1-\lambda_2}{\lambda_1+\lambda_2}\right)^2$
$$\lambda_1, \lambda_2 \text{ - eigenvalues of } \mathbf{M}$$

Measure of "cornerness":
$$\det(\mathbf{M}) = \lambda_1 \lambda_2$$

Circularity of ellipse: $q=1-\left(\frac{\lambda_1-\lambda_2}{\lambda_1+\lambda_2}\right)^2$
 λ_1,λ_2 - eigenvalues of \mathbf{M}

-Eşikleme:

$$w = \begin{cases} \det(\mathbf{M}) & \text{if } \det(\mathbf{M}) > w_{\min} \text{ and } q > q_{\min} \\ 0 & \text{else} \end{cases}$$

-w üzerinde maksimum olmayan (non-maximum) baskı

Haralick köşe algılayıcı

Adım 2:

İlgi penceresindeki ilginç noktanın çıkarımı: yatay ve dikey gradyanın ağırlık merkezinde olduğu gibi

$$x = \frac{\sum\limits_{x,y \in window} \left(f_x(x,y) \times f_y(x,y) \times x \right)}{\sum\limits_{x,y \in window} \left(f_x(x,y) \times f_y(x,y) \right)}$$

$$y = \frac{\sum\limits_{x,y \in window} \left(f_x(x,y) \times f_y(x,y) \times y \right)}{\sum\limits_{x,y \in window} \left(f_x(x,y) \times f_y(x,y) \right)}$$

Haralick köşe algılayıcı

Köşe algılayıcı ,görüntü çakıştırma uygulayabilmek için lazer tarayıcı(solda) ve kamera(sağda) 'dan elde edilen bir yansıma görüntüsüne başvurur.

Şablon eşleştirme (Template matching)

Problem: s(x,y) görüntü alanında t(x,y) koordinatındaki bir şablonla ifade edilen bir nesne belirle

Şablon eşleştirme

-En iyi eşleştirme için kare ortalaması hatasını (mean-squared error) asgariye indirerek araştır

$$E(p,q) = \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} \left[s(x,y) - t(x-p,y-q) \right]^{2}$$

$$= \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} \left| s(x,y) \right|^{2} + \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} \left| t(x,y) \right|^{2} - 2 \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} s(x,y) \cdot t(x-p,y-q)$$

-Eşit biçimde, alan korelasyonunu maksimum yap

$$r(p,q) = \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} s(x,y) \cdot t(x-p,y-q) = s(p,q) * t(-p,-q)$$

-Alan korelasyonu, s(x,y) görüntüsünün etki tepki ile konvolüsyonuna (evrişim) eşittir t(-x,-y)

Şablon eşleştirme

-Cauchy-schwarz eşitsizliğinden:

$$r(p,q) = \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} s(x,y) \cdot t(x-p,y-q) \le \sqrt{\left[\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} |s(x,y)|^2\right] \cdot \left[\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} |t(x,y)|^2\right]}$$
$$s(x,y) = \alpha \cdot t(x-p,y-q) \text{ with } \alpha \ge 0$$

-Eşitlik:

$$s(x,y) = \alpha \cdot t(x-p, y-q)$$
 with $\alpha \ge 0$

-Şablon eşleştirici blok diyagramı:

-Şablon eşleştirmeden önce parlak bölgelere sapmayı önlemek için ortalamayı at(sil)

Eşleştirilmiş filtreleme

-Sinyal algılama problemini hesaba kat

Search
$$g(x,y)$$
 $r(x,y)$ Search $g(x,y)$ $r(x,y)$ $s(x,y) = t(x-p,y-q) + n(x,y)$$

-g(x,y) filtresini maksimuma ayarla

Eşleştirilmiş filtreleme

-Optimum filtre frekans tepkisine sahiptir

$$G\left(e^{j\omega_{x}},e^{j\omega_{y}}\right) = \frac{T^{*}\left(e^{j\omega_{x}},e^{j\omega_{y}}\right)}{\Phi_{nn}\left(e^{j\omega_{x}},e^{j\omega_{y}}\right)}$$

-İspat:

$$SNR = \frac{\left|r(p,q)\right|^{2}}{E\left\{\left|n(x,y)*g(x,y)\right|^{2}\right\}} = \frac{\left|\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} G\left(e^{j\omega_{x}},e^{j\omega_{y}}\right)T\left(e^{j\omega_{x}},e^{j\omega_{y}}\right)d\omega_{x}d\omega_{y}\right|^{2}}{\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|G\left(e^{j\omega_{x}},e^{j\omega_{y}}\right)\right|^{2} \Phi_{mn}\left(e^{j\omega_{x}},e^{j\omega_{y}}\right)d\omega_{x}d\omega_{y}}$$

$$= \frac{\left|\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left[G\Phi_{mn}^{1/2}\right]\left[\Phi_{mn}^{-1/2}T\right]d\omega_{x}d\omega_{y}\right|^{2}}{\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|G\right|^{2} \Phi_{mn}d\omega_{x}d\omega_{y}} \leq \frac{\left[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|G\right|^{2} \Phi_{mn}d\omega_{x}d\omega_{y}\right]\left[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}\right]}{\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|G\right|^{2} \Phi_{mn}d\omega_{x}d\omega_{y}}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

$$= \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \left|T\right|^{2} \Phi_{mn}^{-1}d\omega_{x}d\omega_{y}$$

Eşleştirilmiş filtreleme

-Optimum algılama: ön filtreleme & şablon eşleştirme

- -Beyaz renk istenmeyen görüntü(noise) n(x,y) için h(x,y) ön filtrelemesi istenmez
- -Düşük frekans parazit: yüksek geçiren ön filtre(süzgeç)

Frekans etki alanı ilişkisi (korelasyonu)

-Ayrık Fourier dönüşümünü kullanan verimli uygulama

Tepe noktası algılama

-Faz korelasyonu

$$H\left(e^{j\omega_{x}},e^{j\omega_{y}}\right) = \frac{1}{\left|S\left(e^{j\omega_{x}},e^{j\omega_{y}}\right)\right|\left|T\left(e^{j\omega_{x}},e^{j\omega_{y}}\right)\right|}$$