#### Recherche de Motifs

Samuel Blanquart, d'après les supports de Hélène Touzet

AeA – M1 informatique

Longtemps, je me suis couché de bonne heure. Parfois, à peine ma bougie éteinte, mes yeux se fermaient si vite que je n'avais pas le temps de me dire : Je m'endors. Et, une demi-heure après, la pensée qu'il était temps de chercher le sommeil m'éveillait; je voulais poser le volume que je croyais avoir dans les mains et souffler ma lumière; je n'avais pas cessé en dormant de faire des réflexions sur ce que je venais de lire, mais ces réflexions avaient pris un tour particulier; il me semblait que j'étais moi-même ce dont parlait l'ouvrage : une église, un quatuor, la rivalité de François Ier et de Charles-Quint. Cette croyance survivait pendant quelques secondes à mon réveil; elle ne choquait pas ma raison, mais pesait comme des écailles sur mes yeux et les empêchait de se rendre compte que le bougeoir n'était plus allumé.

#### Recherche de motifs

- un des plus vieux problèmes de l'informatique
- nombreuses applications
  - éditeurs de texte grep en Unix - CTRL s sous Emacs - CTRL f sous Word
  - moteurs de recherche
  - analyse de séquence génétiques



► recherche de motifs musicaux



Voir projet

## Quelques repères historiques

- Extrait de wikipedia, article Chronologie de l'informatique
  - L'algorithme de Dijkstra par Edsger Dijkstra 1959
  - L'algorithme de Floyd par Robert Floyd 1959
  - ▶ L'algorithme Quicksort par Tony Hoare 1961
  - ▶ Invention de l'algorithme de Knuth-Morris-Pratt 1975
  - ▶ Invention de l'algorithme de Boyer-Moore 1977
- Prix Turing
  - Donald Knuth 1974
  - Michael Rabin, 1976
  - Richard Karp, 1985

#### **Définitions**

- Alphabet : Σ, ensemble fini de lettres (caractères, symboles)
- Mot : suite finie d'éléments de Σ
- Concaténation : la concaténation de deux mots u et v est le mot composé des lettres de u, suivi des lettres de v. Elle est notée u ∘ v.
- ► Facteur : un mot u est un facteur du mot v, si, et seulement s'il existe deux mots w et z tels que  $v = w \circ u \circ z$
- Occurrence : Si u est un facteur de v, on dit que u apparait dans v, ou que v contient une occurrence de u
- ▶ Préfixe : un mot u est un préfixe du mot v, si, et seulement s'il existe un mot t tel que  $v = u \circ t$
- ▶ Suffixe : un mot u est un suffixe du mot v, si, et seulement s'il existe un mot t tel que  $v = t \circ u$
- ▶ Bord : un mot u est un bord du mot v, si et seulement si u est à la fois un préfixe propre et un suffixe propre de v.



#### Recherche de motifs

- ▶ Un texte T, mot de longueur n : T(0..n-1)
- ▶ Un motif M, mot de longueur m (m < n) : M(0..m 1)
- ► Trouver toutes les occurrences de *M* dans *T*

# Algorithme naif (par force brute)



sens de lecture du texte : de gauche à droite

# Algorithme naif (par force brute)



- sens de lecture du texte : de gauche à droite
- ▶ tentative : comparaison du motif contre le texte, caractère par caractère, de gauche à droite

# Algorithme naif (par force brute)



- sens de lecture du texte : de gauche à droite
- tentative : comparaison du motif contre le texte, caractère par caractère, de gauche à droite
- décalage du motif : +1 position, vers la droite

## Amélioration de l'approche par force brute

- sens de lecture du texte : de gauche à droite
- tentative
  - sens de lecture du motif : droite, gauche, mélangé
  - comparaison caractère par caractère /comparaison globale
- décalage
  - ▶ de plus de 1 position
  - sans manquer d'occurrences

## Algorithme Shift-Or (Baeza-Yates, Gonnet, 1992)

- décalage : +1 position, à droite
- tentative : comparaison grâce à un tableau de bits
- $\triangleright \mathcal{B}$ : matrice  $m \times n$  sur 0 et 1

$$\mathcal{B}(i,k) = 1 \Leftrightarrow M(0..i) = T(k-i..k)$$

$$\frac{k-i \quad k}{\dots}$$
Texte  $T$ 

$$0 \qquad i$$

▶ les occurrences du motif M se trouvent aux positions p telles que  $\mathcal{B}(m-1, p+m-1)=1$ 

### Shift-Or : Calcul de la matrice ${\cal B}$

- exemple : le motif tactaga
- définition de quatre vecteurs (un par lettre de l'alphabet)

| U(a)                       | U(c)                  | U(g)                  | U(t)                  |
|----------------------------|-----------------------|-----------------------|-----------------------|
| 0<br>1<br>0<br>0<br>1<br>0 | 0<br>0<br>1<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 1<br>0<br>0<br>1<br>0 |
|                            |                       | 0                     |                       |

 $V(x)(i) = 1 \leftrightarrow M(i) = x$ 

#### Première colonne de ${\cal B}$

$$si \ T(0) \neq M(0)$$

$$\mathsf{si}\ T(0) = M(0)$$

#### Colonnes suivantes de $\mathcal{B}$ : la colonne k+1 à partir de la colonne k

où 
$$x = T(k + 1)$$
.

AND est l'opérateur qui effectue le Et logique bit par bit.

### Shift-Or: Exemple

- ► Mot ctactatatatc
- ▶ Motif tata

| U(a) | U(c) | U(g) | U(t) |
|------|------|------|------|
| 0    | 0    | 0    | 1    |
| 1    | 0    | 0    | 0    |
| 0    | 0    | 0    | 1    |
| 1    | 0    | 0    | 0    |

► La matrice B

|   | С                | t | a | С | t | a | t | a | t | a | t | С |
|---|------------------|---|---|---|---|---|---|---|---|---|---|---|
| t | 0                | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| а | 0                | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| t | 0                | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| а | 0<br>0<br>0<br>0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |

▶ Une occurence est trouvée si on lit 1 sur la dernière ligne.

#### Shift-or: conclusion

- Points forts
  - pré-traitement quasi inexistant
  - facile à implémenter
  - fonctionne bien si le motif est de taille inférieure à un mot machine : les opérations se font alors en temps constants. On obtient alors une complexité linéaire.
  - s'adapte facilement au cas de motifs approchés
- Points faibles
  - inadapté quand le motif est long

## Algorithme de Karp-Rabin (1987)

- ▶ décalage : +1 position, à droite
- ▶ tentative : comparaison grâce à une fonction de hachage h
- arithmétique modulo et décalage
- ▶ un mot est codé par un entier en base d

$$h(u) = (u_0 d^{m-1} + u_1 d^{m-2} \cdots + u_{m-1})$$
 modulo  $q$ 

- ▶ d : taille de l'alphabet
- q: plus grand entier. Le calcul du modulo se fait implicitement.

## Karp-Rabin : déroulement de l'algorithme

- 1. calcul de h(M)
- 2. calcul de h(T(0..m-1)
- 3. déplacement d'une fenêtre de longueur m le long du texte, de 1 en 1, avec réactualisation de la valeur de h



$$h' = (d(h - xd^{m-1}) + y) \text{ modulo } q \text{ (temps constant)}$$

4. quand on trouve une fenêtre f telle que h(f) = h(u), on vérifie en comparant f et u caractère par caractère



### Karp-Rabin : Exemple

- ▶ Alphabet :  $\Sigma = \{a, c, g, t\}$ ,
- ▶ Motif  $tata \leftrightarrow 4, 1, 4, 1$
- ► Hachage :  $h(tata) = 4 \times 4^3 + 1 \times 4^2 + 4 \times 4^1 + 1 = 289$ ,
- ► Le texte et son hachage :

### Karp-Rabin: conclusion

- Points forts
  - ► Facile à implémenter
  - ▶ Plus efficace en pratique que l'algorithme naif
- Points faibles
  - ► Complexité en *O*(*mn*) dans le pire des cas
  - ▶ Pas le plus efficace en pratique

### Algorithme de Morris et Pratt (1970)

- ▶ décalage intelligent : +1 position ou plus, vers la droite
- tentative : comparaison caractère par caractère, de gauche à droite



information exploitée

$$T(k-i..k-1) = M(0..i-1)$$

quand une erreur intervient en position i, on décale le motif le long du texte directement a la prochaine position ou peut démarrer M



## Algorithme de Knuth, Morris et Pratt (1975)



- Deux informations sont exploitées
  - 1. T(k-i..k-1) = M(0..i-1) (Morris-Pratt)
  - 2.  $T(k) \neq M(i)$

#### ► Exemple 1 : le motif *tactaga*



▶ Exemple 2 : le motif *tagtaga* 



### KMP: Mise en œuvre

Phase 1 Prétraitement du motif, le tableau Next

i : position dans le motif

Next(i): longueur du plus long mot u possible tel que

u est un bord de M(0..i-1)

et uM(i) n'est pas un préfixe de M.

**Next(i)=-1** si un tel u n'existe pas.

|         | t  | а | С | t  | а | g | a |   |
|---------|----|---|---|----|---|---|---|---|
| i       | 0  | 1 | 2 | 3  | 4 | 5 | 6 | 7 |
| Next(i) | -1 | 0 | 0 | -1 | 0 | 2 | 0 | 0 |

|   |         | t  | а | g | t  | а | g |   |
|---|---------|----|---|---|----|---|---|---|
| ſ | i       | 0  | 1 | 2 | 3  | 4 | 5 | 6 |
| Ī | Next(i) | -1 | 0 | 0 | -1 | 0 | 0 | 3 |

▶ Phase 2 : Recherche du motif dans le texte. Si erreur en position i du motif, décaler le motif sur le texte de i — Next(i) vers la droite, reprendre la comparaison à la position courante dans le texte.

| motif   | t     | а    | с     | t    | а    | g     | а    |    |
|---------|-------|------|-------|------|------|-------|------|----|
| i       | 0     | 1    | 2     | 3    | 4    | 5     | 6    |    |
| Next(i) | -1    | 0    | 0     | -1   | 0    | 2     | 0    |    |
|         |       |      |       |      |      |       |      |    |
| Texte 1 | <br>X |      |       |      |      |       |      |    |
|         | -     | d=0- | -(-1) |      |      |       |      |    |
| Texte 2 | <br>t | X    |       |      |      |       |      |    |
|         | -     | d=1- | -0    |      |      |       |      |    |
| Texte 3 | <br>t | а    | X     |      |      |       |      |    |
|         |       | -    | d=2-  | -0   |      |       |      |    |
| Texte 4 | <br>t | а    | с     | X    |      |       |      |    |
|         |       |      |       | -    | d=3- | -(-1) |      |    |
| Texte 5 | <br>t | а    | С     | t    | X    |       |      |    |
|         |       |      |       | -    | d=4- | -0    |      |    |
| Texte 6 | <br>t | а    | С     | t    | а    | X     |      |    |
|         |       |      | -     | d=5- | -2   |       |      |    |
| Texte 7 | <br>t | а    | С     | t    | а    | g     | X    |    |
|         |       |      |       |      |      | -     | d=6- | -0 |

## Il y a un automate caché derrière KMP



#### Chaque état possède deux transitions :

- Une transition de succès qui permet d'avancer d'un pas vers la droite du texte et du motif,
- Une transition d'échec qui renvoie à l'endroit où l'analyse doit être poursuivie dans le motif, suite à son décalage adéquate dans le texte.



### KMP: conclusion

- Points forts
  - Rôle fondateur
  - Complexité linéaire
  - Pré-traitement du motif facile à implémenter (non détaillé)
- Points faibles
  - ▶ Moins efficace en moyenne que l'algorithme de Boyer-Moore

### Algorithme de Boyer-Moore (1977)



- ► Tentative : le motif est lu de la droite vers la gauche, caractère par caractère
- Décalage : le plus de positions possibles, en prétraitant le motif

## Boyer-Moore: Règle du bon suffixe



- ▶ Information exploitée : à la position k+1, le texte contient le suffixe p = M(i+1..m-1) du motif, et  $T(k) \neq M(i)$
- Décalage : la prochaine occurrence (vers la gauche) de p dans M, telle que le caractère précédent est différent de M(i), est alignée avec la position k + 1 de T :
  - ▶ GS(i) (good suffix) : plus petit entier non nul  $\ell$  tel que le décalage de  $\ell$  positions satisfasse
  - $M(i+1-\ell..m-1-\ell)=M(i+1..m-1)$
  - $M(i-\ell)\neq M(i)$
- ▶ Ou, si  $\ell$  n'existe pas :  $\ell = m k$ , où k est le plus long bord du motif.



- ▶ Application de la règle du bon suffixe :  $GS(i) = \ell$  tel que :
  - $M(i+1-\ell..m-1-\ell)=M(i+1..m-1)$
  - $M(i-\ell)\neq M(i)$

motif

• Exemple : i == 7,  $\ell == 6$ 

| Exemple $I = I, \ell = 0$ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|---------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| Texte                     | S | Т | Α | В | S | Т | U | В | Α | В | V | Q | Χ | R |  |
| i                         | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |   |   |   |   |  |
| Motif                     | Q | C | Α | В | D | Α | В | D | Α | В |   |   |   |   |  |
| + = 6                     |   |   |   |   |   |   | Q | C | Α | В | D | Α | В | D |  |

▶ Application de la règle du plus long bord :  $\ell = m - k$  tel que M(m-1-k..m-1) = M(0..k)



## Boyer-Moore: dernier exemple



## Boyer-Moore : règle du mauvais caractère



- information exploitée : le texte contient le caractère x = T(k) en position k
- décalage : la position k du texte est alignée avec un caractère x du motif
- ▶ **BC**(x) (bad character) : longueur du plus long suffixe de M qui ne contient pas x, sauf éventuellement en dernière position
- Exemple : le motif gcagagag  $\begin{vmatrix} a & c & g & t \\ 1 & 6 & 2 & 8 \end{vmatrix}$
- ▶ Bon suffixe + mauvais caractère : Quand un mismatch intervient entre la position i du motif et la position k du texte, le décalage se fait de max{GS(i), BC(T(k)) - (m - i)} positions.

### Boyer-Moore: conclusion

#### Points forts

- ► Complexité : O(mn) dans le pire des cas, mais sous-linéaire en moyenne
  - Sous-linéaire : un caractère est lu moins d'une fois.
- Terriblement efficace en pratique si l'alphabet est grand (26 caractères), ou si le motif est long

#### Points faibles

- Pré-traitement en temps linéaire, mais délicat à implémenter (non détaillé)
- Moins convaincant pour de courts motifs sur un petit alphabet (l'ADN par exemple)