Beschreibung

Schaltungselement mit einer ersten Schicht aus einem elektrisch isolierenden Substratmaterial, Verfahren zur Herstellung eines Schaltungselements, Bispyridinium-Verbindungen sowie deren Verwendung in Schaltungselementen

Die Erfindung betrifft ein Schaltungselement mit einer ersten Schicht aus einem elektrisch isolierenden Substratmaterial, 10 Verfahren zur Herstellung eines Schaltungselements, Bispyridinium-Verbindungen sowie deren Verwendung in Schaltungselementen.

Die herkömmliche auf Silizium-Komponenten wie beispielsweise

CMOS-Chips (CMOS: complementary metal-oxide-semiconductor),

basierende Mikroelektronik, wird auch bei weiter

fortschreitender Miniaturisierung an ihre Grenzen kommen. Als

einer der möglichen Wege zur weiteren Verkleinerung von

Bauelementen wird die Molekularelektronik diskutiert.

20

5

Neben der allgemeinen Problemstellung, Schaltungselemente mit Hilfe der Molekularelektronik zu entwickeln, ist ein weiterer in diesem Zusammenhang betrachteter Aspekt, die Entwicklung von Alternativen zu den bisherigen Halbleiter-

25 Speicherelemente wie DRAMs (Dynamische Schreib-Lese-Speicher), SRAMs (Statische Schreib-Lese-Speicher) oder Flash-Speichern.

Aus [1] ist bekannt, das mit Hilfe von monomolekularen auf
Rotaxanen basierenden Schichten konfigurierbare
Schaltungselemente erhalten werden können, die zur
Konstruktion von Logikgattern eingesetzt werden können.
Grundlage hierfür ist, dass die monomolekularen Schichten der

Rotaxane von einem leitfähigen in einen weniger leitfähigen durch Anlegen einer Spannung gebracht, d.h. "geschaltet", werden können. Allerdings ist dieser aus [1] bekannte Schaltvorgang irreversibel und somit für eine Write once / mulitple Read Anwendung geeignet.

Aus [2] ist bekannt, dass mit Hilfe einer weiteren speziellen Molekülklasse, den sogenannten Catenanen, ein reversibler Schaltvorgang erreicht werden kann. Allerdings werden bei diesem Schaltvorgang deutlich geringe Signale beobachtet. Ferner ist in [22] die Verwendung von speziellen Catenanen in Schaltungselementen beschrieben, die eine monomolekulare Schicht aus diesen Catenanen aufweisen.

Die beiden aus [1] und [2] bekannten Schaltungselemente weisen jedoch noch weitere Nachteile für eine breite praktische Anwendung auf. Zum einen sind Rotaxane und Catenane nur durch aufwändige Synthesen erhältlich. Zum anderen werden bei beiden Schaltungselementen zur Erzeugung der monomolekularen Schichten Langmuir-Blodgett-Verfahren angewendet. Darüber hinaus ist die Eignung dieser Langmuir-Blodgett-Verfahren für die Beschichtung von Oberflächen von Bauelementen wie Siliziumwafer, die üblicherweise zur Herstellung elektrischer Bauelemente dienen, noch ungewiss.

25

30

5

10

Neben den eben diskutierten Ansätzen zur Entwicklung von Schaltungselementen auf Basis von organischen Molekülschichten ist aus [3] bekannt, dass sich durch die spezielle Kombination eines Moleküls mit einer Bispyridinium-Einheit und einem Nanoteilchen (Metall-Cluster) aus Gold ein elektrischer Schalter verwirklichen lässt. Da die Nanotechnologie sich noch in den Anfängen befindet, ist

fraglich, ob dieses System in absehbarer Zeit für eine praktische Anwendung eingesetzt werden kann.

Ferner beschreibt [23] eine Molekularelektronik-Anordnung, bei der zwar redoxaktive Bispyridinium-Moleküle verwendet werden können, die Anordnung allerdings einen Abstandshalter zwischen zwei Leiterbahnen aufweist.

Aus [24] ist ferner eine Speicherzelle bekannt, die 10 mindestens 4 übereinander angeordnete elektrisch leitende Schichten umfasst.

Darüber hinaus sind aus der Offenlegungsschrift [25] elektrochrome Verbindungen sowie auf diesen Verbindungen basierende elektrochrome Vorrichtungen bekannt. [26] offenbart ähnlich wie [25] lösliche Polymere und deren Verwendung in elektrochromen Vorrichtungen. Schließlich beschreibt [27] Photosensibilitatoren auf Basis von Ruthenium(II)-Komplexen.

20

15

Der Erfindung liegt das Problem zugrunde, alternative elektrische Schaltungselemente sowie Verfahren zu deren Herstellung bereitzustellen.

Das Problem wird durch das Schaltungselement sowie das Verfahren mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelöst.

Ein solches Schaltungselement ist ein Schaltungselement mit
30 einer ersten Schicht aus einem elektrisch isolierenden
Substratmaterial und mit einem ersten elektrisch leitfähigen
Material. Dieses erste elektrisch leitfähige Material ist als
mindestens ein diskreter Bereich dergestalt ausgebildet, das

15

20

25

30

er in das Substratmaterial eingebettet und/oder auf dem Substratmaterial aufgebracht ist.

Das Schaltungselement weist weiterhin eine zweite Schicht mit einem zweiten elektrisch leitfähigen Material auf und eine 5 monomolekularen Schicht aus redox-aktiven Bispyridinium-Molekülen, die zwischen der ersten Schicht aus dem elektrisch isolierenden Substratmaterial und der zweiten Schicht mit dem zweiten elektrisch leitfähigen Material angeordnet ist. Dabei sind die Bispyridinium-Moleküle der monomolekularen Schicht auf dem elektrisch leitfähigen als mindestens ein diskreter Bereich ausgebildeten Material immobilisiert. Dabei stehen die Bispyridinium-Moleküle der monomolekularen Schicht ferner mit dem zweiten elektrischen Material der zweiten Schicht in elektrischen Kontakt.

Ferner sind bei dem Schaltungselement auf der ersten Schicht aus dem elektrisch isolierenden Substratmaterial elektrisch inerte Moleküle immobilisiert, die eine Matrix ausbilden, die den mindestens einen diskreten Bereich mit den monomolekularen Schicht aus Bispyridinium-Molekülen umgibt.

Unter einem redox-aktiven Bispyridinium-Molekül oder eine redox-aktiven Bispyridinium-Verbindung wird hier eine chemische Verbindung verstanden, die reversibel Elektronen aufnehmen und abgegeben kann, d.h. chemisch gesprochen, ihren Oxidationszustand durch Reduktion und Oxidation ändern kann, und wobei eine Bispyridinium-Einheit (vgl. Fig.1,2) als der Elektronenakzeptor bzw. Elektronendonator dient. Bei diesem Redox-Vorgang der Bispyridinium-Einheit oder -Gruppe, die auch unter der Abkürzung "bipy" bekannt, liegt diese entweder als zweifach positiv geladenes Kation oder nach Elektronenaufnahme als einfach positiv geladenes

Radikalkation vor. Dieser Redoxvorgang lässt sich durch die Reaktionsgleichung bipy²+ + e⁻ ↔ bipy ⁺ beschreiben.

Generell lässt sich in einem hier beschriebenen Schaltungselement als funktionelle Einheit jede Verbindung mit einer oder mehreren Bispyridinium-Einheiten einsetzen, die die beiden oben beschriebenen Oxidationszustände reversibel durchlaufen kann.

In einer bevorzugten Ausführungsform sind diese Bispyridinium-Moleküle Verbindungen der allgemeinen Formel (I)

$$Z_{a} - (CH_{2})_{m} - [(CH_{2})_{n} - Y]_{k} - N + [Y - (CH_{2})_{q}]_{j} - (CH_{2})_{p} - Z_{b}$$

15

20

5

wobei in Formel (I)

eines oder mehrere der Kohlenstoffatome der beiden aromatischen Ringssysteme der Bispyridinium-Einheit unabhängig voneinander durch (mindestens) eine Gruppierung X_a bzw. X_b ersetzt sein kann, die jeweils für ein Heteroatom steht, das aus S, N und O ausgewählt wird, oder für eine Leerstelle steht (d.h. wodurch ein 5-Ring erzeugt wird)

eines oder mehrere der Kohlenstoffatome der beiden Ringssysteme jeweils unabhängig voneinander einen Substituenten Ra bzw. Rb aufweisen kann, der jeweils unabhängig für Alkyl, Aryl, Alkylaryl, Alkenyl, Alkinyl, Halogen, CN, OCN, NCO, COOH, COOR', CONHR', NO2, OH, OR', NH2, NHR', NR'R", SH und SR' steht, wobei R' und R"

unabhängig voneinander Alkyl, Aryl, Alkylaryl, Alkenyl oder Alkinyl sein kann, oder

wobei R_a und R_b zusammen eine Verbrückung zwischen den beiden aromatischen Ringsystemen bilden kann, die 1 bis 3 Atome umfasst, wobei die Atome unabhängig voneinander aus C, S, N und O ausgewählt werden und durch eine Einfach-, Doppeloder Dreifachbindung miteinander verknüpft sein können und ferner einen Substituenten R_c aufweisen können, wobei der Substituent R_c die für R_a und R_b oben angegebene Bedeutung hat,

Y für eine Gruppe steht, die unabhängig voneinander aus CH_2,O , S, NH, NR', COO, CONH, CH=CH, C=C oder Aryl ausgewählt werden kann,

 $Z_a \ und \ Z_b \ unabhängig \ voneinander jeweils \ CH_3, \ -CH=CH_2,$ $SH, -S-S-, -S(CO)-CH_3, \ SiCl_3, \ Si(OR)_3, \ SiR(OR') \ (OR''),$ $SiR(OR')_2, \ Si(R'R'')NH_2, \ COOH, \ SO_3, \ PO_3H, \ oder \ NH_2 \ sein \ kann,$ $wobei \ R' \ und \ R'' \ jeweils \ unabhängig \ voneinander \ Alkyl, \ Aryl,$ $Arylalkyl, \ Alkenyl \ oder \ Alkinyl \ sein \ kann,$

wobei n, q jeweils unabhängig voneinander einen Wert 20 zwischen 0 und 12 annehmen können,

j und k jeweils unabhängig voneinander einen Wert zwischen 0 und 6 annehmen können,

p und m jeweils unabhängig voneinander einen Wert zwischen 0 und 12 annehmen können.

25

30

10

Dabei sind Verbindungen bevorzugt, bei denen die am Stickstoffatom des jeweiligen Ringes gebundene Kette jeweils nicht mehr als insgesamt als 20 Atome aufweist. Dabei sind wiederum Verbindungen bevorzugt, bei denen insgesamt beide Ketten zusammen eine Gesamtlänge von mehr als 30 Atomen aufweisen. Mit Hilfe der Indices ausgedrückt, bedeutet dies, dass $(j \cdot q + p)$ bzw. $(k \cdot n + m)$ vorzugsweise jeweils unabhängig voneinander einen Wert (ganze Zahl) nicht größer als 20

annehmen sind. Die Summe aus $(j \cdot q + p) + (k \cdot n + m)$ ist dabei vorzugsweise somit nicht größer als 30. Der Klarheit halber sei hier betont, dass die Gruppe Z nicht bei dieser Betrachtung der Kettenlänge der beiden an den N-Atomen gebunden Substituenten berücksichtigt ist (vgl. die weiter unten folgenden detaillierte Definition von Z).

Da die hier verwendeten Bispyridinium-Verbindungen generell in kationischer Form vorliegen, werden die Bispyridinium
Verbindungen in Form ihrer geeigneten Salze eingesetzt. Als Gegen-Ion eignen sich z.B. das Hydroxid-Anion (OH⁻), die Anionen der Halogenide, insbesondere Br⁻ und Cl⁻, Anionen organischer Säuren wie Acetat oder komplexe Anionen wie das PF₆⁻-Anion, oder andere komplexe Anionen wie die Anionen starker Säuren wie NO₃⁻, ClO₄⁻, oder SO₄²⁻. Weitere Beispiele für geeignete Anionen sind komplexe Anionen wie BF₄⁻, CF₃SO₃⁻ (Triflat), B(Ph)₄⁻ oder komplexe Metall-Anionen wie [PtCl₄]²⁻.

Alkylgruppen können den hier beschriebenen Verbindungen von
20 Formel (I) oder (II) geradkettig oder verzweigt, substituiert
oder unsubstituiert sein. Dies trifft auch zu, wenn sie in
anderen Gruppen vorkommen, z.B. in Alkoxy, Alkylmercapto,
Alkoxycarbonylgruppen. Bevorzugt sind Alkylgruppen mit 1 bis
12 Kohlenstoffatomen und besonders bevorzugt sind
25 Alkylgruppen mit 1 bis 8 Kohlenstoffatomen, insbesondere in
den Verbindungen gemäß Formel (I). Der Begriff Alkyl umfasst
ferner Cycloalkylgruppen mit 3 bis 8 Ringkohlenstoffatomen,
die ebenfalls substituiert oder unsubstituiert sein können.

Alkenyl und Alkinylgruppen in den Verbindungen von Formel (I) oder (II) können ebenfalls geradkettig oder verzweigt, substituiert oder unsubstituiert sein. Dies trifft auch zu, wenn sie in anderen Gruppen vorkommen, z.B. in Alkoxy,

Alkylmercapto, Alkoxycarbonylgruppen. Bevorzugt sind Alkenyloder Alkinylgruppen mit 2 bis 12 Kohlenstoffatomen und besonders bevorzugt sind Alkenyloder Alkinylgruppen mit 2 bis 8 Kohlenstoffatomen, insbesondere in den Verbindungen gemäß Formel (I). Der Begriff Alkenyl umfasst ferner Cycloalkyenylgruppen mit 3 bis 8 Ringkohlenstoffatomen, die ebenfalls substituiert oder unsubstituiert sein können.

Ein hier bevorzugter Substituent der Alkyl- Alkenyl oder

10 Alkinylgruppen ist Halogen, d.h. Fluor, Chlor, Brom oder Iod,
wobei Fluor besonders bevorzugt wird.

Wenn Ra und Rb zusammen eine Verbrückung zwischen den beiden Ringssystemen der Verbindungen gemäß Formel (I) bilden, sei an dieser Stelle betont, dass in diesem Fall eine HC=CH 15 Gruppe eine bevorzugte Alkenylgruppe darstellt, die vorzugsweise eine Verbrückung zwischen den Ringatomen 2 und 9 und/oder 4 und 5 bildet. Somit gehören annelierte aromatische Systeme wie 2,7-Diazaphenanthren (im Fall von nur einer Verbrückung) oder 2,7-Diazapyrenium (im Fall von zwei 20 Verbrückungen) zu den hier bevorzugt eingesetzten Bispyridinium-Grundgerüsten (vgl. Fig.2). Gleichwohl können davon abgeleitete (annelierte) heterocyclische Verbindungen in der vorliegenden Erfindung verwendet werden (vgl. Definition von Ra und Rb). Ein weiteres beispielhaftes 25

Definition von R_a und R_b). Ein weiteres beispielhaftes Bispyridiumium-Grundgerüst, bei dem die Substituenten R_a und R_b eine Verbrückung bilden, ist das aus [4] bekannte Tetrahydrodiazapyren (vgl. **Fig.2**). Der Klarheit halber sei gesagt, dass derartige Systeme selbstverständlich, wie anhand der Definition von Formel 1 ersichtlich, ferner einen Substituenten R_c aufweisen können. In einer Ausführungsform ist R_c vorzugsweise Halogen, wobei wiederum Fluor bevorzugt wird.

30

Die Bedeutung von Aryl in den Verbindungen gemäß Formel (I) schließt substituierte und unsubstituierte carbocyclische aromatische Gruppen wie Phenyl, Naphthyl, Anthracyl sowie heterocyclische aromatische Gruppen wie N-Imidazolyl, 2-Imidazolyl, 2-Thienyl, 3-Thienyl, 2-Furanyl, 3-Furanyl, 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-Pyrimidyl, 4-Pyrimidyl, 2-Pyranyl, 3-Pyranyl, 4-Pyranyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Pyrazinyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Oxazolyl, 4-Oxazolyl and 5-Oxazolyl ein. Ar beinhaltet ebenfalls annellierte polycyclische aromatische Ringsysteme wie Chinolin oder 9H-Thioxanthene-10,10-dioxid, bei denen ein carbocyclischer aromatischer Ring mit einem

Die vorliegende Erfindung betrifft ferner auch neue Bispyridinium-Verbindungen der allgemeinen Formel (Ib)

oder mehreren heterocyclischen Ringen kondensiert ist.

$$Z_a$$
— $(CH_2)_m$ — $[(CH_2)_n$ — $Y]_k$ — N — N — $[Y-(CH_2)_q]_j$ — $(CH_2)_p$ — Z_k

wobei in Formel (Ib)

15

20

25

30

(mindestens) eine Gruppierung X_a bzw. X_b ersetzt sein kann, die jeweils für ein Heteroatom steht, das aus S, N und O ausgewählt wird, oder für eine Leerstelle steht (d.h. wodurch ein 5-Ring erzeugt wird)

eines oder mehrere der Kohlenstoffatome der beiden Ringssysteme jeweils unabhängig voneinander einen Substituenten R_a bzw. R_b aufweist, der jeweils unabhängig für

10

15

20

Alkyl, Aryl, Alkylaryl, Alkenyl, Alkinyl, Halogen, CN, OCN, NCO, COOH, COOR', CONHR', NO $_2$, OH, OR', NH $_2$, NHR', NR'R", SH und SR' steht, wobei R' und R" unabhängig voneinander Alkyl, Aryl, Alkylaryl, Alkenyl oder Alkinyl sein kann, oder

wobei R_a und R_b zusammen eine Verbrückung zwischen den beiden aromatischen Ringsystemen bildet, die 1 bis 3 Atome umfasst, wobei die Atome unabhängig voneinander aus C, S, N und O ausgewählt werden und durch eine Einfach-, Doppel- oder Dreifachbindung miteinander verknüpft sein können und ferner einen Substituenten R_c aufweisen können, wobei der Substituent R_c die für R_a und R_b oben angegebene Bedeutung hat,

Y für eine Gruppe steht, die unabhängig voneinander aus CH_2,O , S, NH, NR', COO, CONH, CH=CH, C=C oder Aryl ausgewählt werden kann,

 $Z_a \ und \ Z_b \ unabhängig \ voneinander \ jeweils \ CH_3, \ -CH=CH_2,$ $SH, -S-S-, -S(CO)-CH_3, \ SiCl_3, \ Si(OR)_3, \ SiR(OR')(OR''),$ $SiR(OR')_2, \ Si(R'R'')NH_2, \ COOH, \ SO_3, \ PO_3H, \ oder \ NH_2 \ sein \ kann,$ $wobei \ R' \ und \ R'' \ jeweils \ unabhängig \ voneinander \ Alkyl, \ Aryl,$ $Arylalkyl, \ Alkenyl \ oder \ Alkinyl \ sein \ kann,$

wobei n, q jeweils unabhängig voneinander einen Wert zwischen 0 und 12 annehmen können,

j und k jeweils unabhängig voneinander einen Wert zwischen 0 und 6 annehmen können,

p und m jeweils unabhängig voneinander einen Wert zwischen 0 und 12 annehmen können, wobei die folgenden Verbindungen ausgenommen sind:

N,N'-Dimethyl-4,5,9,10-Tetrahydro-2,7-diazapyreniumdiiodid (in [4] beschrieben);

1,1',2,2'-tetramethyl-4,4'-bispyridinium; 1,1',2,-trimethyl4,4'-bispyridinium (in [5] und [6] beschrieben);
N,N'-Dimethyl-2,7-diazapyrenium (in [7] beschrieben);

11

N-methyl-N'-(p-toloyl)-2,7-diazapyrenium (in [7] beschrieben);

- 1,1'-Dimethyl-2-phenyl-6-(p-toloyl)-4,4'-bispyridiumdiperchlorat (in [8] beschrieben);
- 5 1,1'-Dimethyl-2-phenyl-4,4'-bispyridiumdiperchlorat (in [8] beschrieben);
 - 6-(Phenyl)-1,1',2-trimethyl-4,4'-bispyridiumdi-perchlorat (in [8] beschrieben);
 - 1,1'-Dimethyl-2-phenyl-6-(2,5-dichloro-3-thienyl)-4,4'-
- 10 bispyridiumdiperchlorat (in [8] beschrieben).

Dabei sind Verbindungen bevorzugt, bei denen die am Stickstoffatom des jeweiligen Ringes gebundene Kette jeweils nicht mehr als insgesamt als 20 Atome aufweist. Dabei sind wiederum Verbindungen bevorzugt, bei denen insgesamt beide Ketten zusammen eine Gesamtlänge von mehr als 30 Atomen aufweisen. Mit Hilfe der Indices ausgedrückt, bedeutet dies, dass (j·q + p) bzw. (k·n + m) vorzugsweise jeweils unabhängig voneinander einen Wert (ganze Zahl) nicht größer als 20 annehmen sind. Die Summe aus (j·q + p) + (k·n + m) ist dabei vorzugsweise somit nicht größer als 30.

Ferner betrifft die Erfindung die Verwendung von Bispyridinium-Verbindungen der allgemeinen Formel (I)/(Ib) als funktioneller Bestandteil von (elektrischen) Speichereinheiten, insbesondere als funktioneller Bestandteil von Permanentspeichern.

Die Darstellung von Bispyridinium-Verbindungen gemäß Formel

(I) bzw. (Ib) erfolgt vorzugsweise stufenweise, indem zuerst die Bispyridimium-Einheit synthetisiert wird und dann die Quarternisierung am Stickstoffatom erfolgt. Dabei lassen sich unsubstituierte Bispyridine in Analogie zu den Biphenylen

z.B. mittels der Ullmann-Kopplung (C-C-Verknüpfung von Arylhalogeniden mit Kupfer), oder Wurtz-sche Synthese (stufenweise Umsetzung mit Kupfer, die die Ausbildung unsymmetrischer Verbindungen erlaubt) darstellen, siehe dazu z.B. [9] und die dort angegebenen Zitate. Das unsubstituierte Bispyridin ist kommerziell erhältlich.

Die Anbindung der N-Substituenten an die Bispyridium-Einheit erfolgt durch einfache Quartärnisierung mit R-X. Für den

10 einfachsten Fall z.B. durch Umsetzung von Bipyridyl mit Reagenzien wie Methyliodid in Benzol (siehe z.B. [10] oder [11]). Dies ergibt dann direkt die symmetrisch N-substituierten Bispyridinium-Verbindungen oder wenn ein geeigneter Rest X verwendet wird, stufenweise auch

15 unsymmetrische Verbindungen (die Wahl von X steuert hierbei die Löslichkeit in geeigneten Lösungsmitteln) und wird gefolgt von Austausch des Gegen-Ions und Substitution des zweiten N-Atoms. Allgemein kann dies wie folgt formuliert werden.

20

25

5

Die Substitution an den Stickstoffatomen, die zu asymetrischen Verbindungen führt, kann z.B. in einer

Zweischrittreaktion erfolgen, wie in [12] anhand der Synthese von N-(n-Decyl)-N'-(10-mercaptododecyl)-4,4'-bispyridinium beschrieben (vgl. hierzu auch [13] oder [14] sowie [15]).

Die Substitution der Bispyridinium-Einheit durch Ra und Rb, 5 wobei diese sowohl Substituenten mit elektronenspendenden als auch elektronenziehenden Eigenschaften sein können, kann als vorangehende Reaktion wie z.B. in [16], [17] oder [18] beschrieben erfolgen (vgl. insbesondere [16] Schemata 1 und 2; [17] Verbindungen 6). Ausgehend von einer Bispyridinium-10 Verbindung, die in 2-Position eine Hydroxylgruppe trägt (vgl. R2 in [17], ist es ferner z.B. möglich, durch Umsetzung mit P₂S₅ unter Ringbildung zu einem -S-S- bzw. -S- verbrückten System (vgl. Definition von Ra und Rb) zu gelangen. Ferner, und insbesondere bei Verwendung von 2,7-Diazaphenanthren als 15 Bispyridinium-Einheit kann die Einführung der Substituenten Ra und Rb analog zu dem in [19] beschriebenen Verfahren durchgeführt werden (siehe dort insbesondere Verbindungen 6 und 7).

20

Verbindungen mit (zusätzlichen) Heteroatomen, d.h. einer oder mehreren Gruppen X, können zum Beispiel mittels der in [18] beschriebenen Synthese erhalten werden (vgl. dort Block 4 und 5).

25

30

In den Verbindungen nach Formel (I)/(Ib) können die Gruppe X wie auch die Substituenten R zur Beeinflussung und gezielten Steuerung der elektrochemischen Eigenschaften, d.h. insbesondere der Redoxpotentiale, der Bispyridinium-Einheit herangezogen werden. Durch solche Substitutionen kann der Ladungsausgleich bei einem Schaltvorgang in dem Schaltungselement unterstützt werden.

10

14

So lassen sich z.B. durch elektronenreiche Substituenten R, wie z.B. Alkyl oder Arylreste, die einen induktiven, elektronenspendenden Effekt (den sogenannten +I-Effekt) ausüben, die Elektronenabgabe durch die Bispyridinium-Einheit, erleichtern, und dadurch das Reduktionspotential erniedrigen. Gleiches gilt für Substituenten, die freie Elektronenpaare zur Verfügung stellen und die Ausbildung mesomerer Grenzstrukturen ermöglichen, d.h. einen +M-Effekt zeigen. Beispiele für solche Substituenten sind -OH, -OR, -NH2, -NHR, -SR oder Fluor.

Gegenläufige Effekte, d.h. die Erhöhung des
Oxidationspotentials lassen sich durch Substituenten mit
elektronenziehenden -I und -M Effekten (z.B. -CN, -NO₂,

-COOH, -SO₃H) bzw. mit Substituenten wie Cl, bei denen ein
elektronenziehender Effekt einen elektronenspendenden Effekt
überwiegt, erzielen.

Diese Effekte sollten ableitbar sein und im guten Einklang liegen z.B. mit Trends und Erkenntnissen aus der 20 Photoelektronenspektroskopie (siehe z.B. [20]). Daraus ist zum Beispiel für substituierte Benzole das Ionisierungspotential bekannt, was mit der Energie des höchsten besetzten Molekülorbitals (HOMO) korreliert. +I und 25 +M-Substituenten haben energiereichere HOMOs als Benzol, d.h. niedrigere Ionisierungspotentiale (entsprechend einer leichteren Oxidierbarkeit), im Falle von -M, bzw. -I-Substituenten ist der Effekt umgekehrt. Dieser Einfluss auf die Ionisierungspotentiale ist zwar nicht ganz so stark, aber 30 auch deutlich vorhanden. Diese Beziehung sollte vor allem gelten, weil die elektrophile aromatische Substitution mit dem reaktionsbeschleunigenden Einfluss von +M/+I-Substituenten über eine Primärreaktion des aromatischen

Elektronensystems mit E^{+} verläuft, d.h. also einer Oxidation des Aromaten entspricht.

Durch den Substituenten Y können ebenfalls die elektrochemischen Eigenschaften der hier verwendeten Bispyridinium-Verbindungen in der für die Substituenten R und X vorstehend beschriebenen Weise beeinflusst werden.

Eine bevorzugte Klasse von Bispyridinium-Verbindungen sind

Moleküle mit langkettigen Alkylresten. Diese Verbindungen
haben den Vorteil, dass sie die Ausbildung
selbstorganisierender Schichten der redox-aktiven Moleküle
auf der Oberfläche des elektrisch leitfähigen Materials
ermöglichen. Bei solchen Verbindungen nehmen j und k in

Formel (I) die Werte 0 an.

In einer Ausführungsgestaltung sind in der vorliegenden Erfindungen Moleküle bevorzugt, bei denen die am Pyridin-Stickstoffatom befindlichen (Alkyl)-Ketten eine Länge von mit 6 bis 12 Atomen aufweisen. Es ist jedoch auch möglich, kürzere oder längere Ketten zu verwenden, solange die Redoxeigenschaften der Bispyridinium-Moleküle und die Funktionalität des Schaltungselements dadurch nicht beeinträchtigt wird.

25

30

20

5

Der Buchstabe Z in Formel (I) steht für eine Kopf- oder Ankergruppe, mittels deren die Bispyridinium-Verbindungen auf den elektrisch leitfähigen Materialien aufgebracht werden. Diese Immobilisierung kann durch physikalische oder chemische Wechselwirkungen erfolgen.

Diese Wechselwirkungen schließen hydrophobe oder ionische (elektrostatische) Wechselwirkungen und kovalente Bindungen

ein. Beispielsweise kann bei Verwendung von Thiolgruppen als Substituent und Gold als leitfähigem Material, das auf dem Substratmaterial aufgebracht ist, die Immobilisierung durch die sogenannte Gold-Schwefel-Kopplung erfolgen.

5

10

15

Bei Verwendung von Gruppen wie z.B. SH, SiCl $_3$ oder NH $_2$, COOH kann eine direkte kovalente Verknüpfung der Bispyridinium-Verbindung mit dem elektrisch leitfähigen Material erfolgen. Hierbei ist es auch möglich, Disulfid-Verbindungen (RSSR', wobei R=R'= Bipyridylhaltiges Molekül, bzw. R= Bipyridylhaltiges Molekül, und R' einfach Methyl oder kurzes Alkyl) zu verwenden, die ebenfalls Monoschichten auf Gold bilden, dies jedoch über nicht kovalente Wechselwirkungen bewerkstelligen. Möglich ist es auch, z.B. wenn freie Hydroxyl-Gruppen, auf der Oberfläche des elektrisch leitfähigen Materials ausgebildet werden können (z.B. bei Verwendung von dotiertem Silizium), Alkoxysilane für die Anbindung zu nehmen, z.B. $-SiR_n(OR')_{3-n}$ mit R und R' Alkyl, R'

20

Die kovalente Verknüpfung kann dabei über jede geeignete Verknüpfungschemie erfolgen. Möglich ist jedoch auch, einen kurzen separaten Linker zur Immobilisierung der redox-aktiven Verbindungen zu verwenden.

typischerweise Methyl oder Ethyl, n = 0-2).

25

30

Die Wahl der jeweiligen Kopfgruppe kann auch von der Art des elektrisch leitfähigen Materials beeinflusst werden. So eignen sich zum Beispiel im Falle von Gold als leitfähigem Material insbesondere Thiole als Ankergruppen; bei Verwendung von Palladium kommen z.B. Cyanide und Isocyanide als bevorzugte Kopfgruppen in Betracht und für Silizium-Oberflächen sind Silylchloride, Silylamine Si(R'R") NH_2 sowie wie oben Alkoxysilane, $-SiR'_n(OR")_{3-n}$ mit R' und R" = Alkyl,

17

(typischerweise Methyl, Ethyl, Propyl, Butyl etc., n = vorzugsweise 0-5, besonders bevorzugt n=0-2) gut geeignete Ankergruppen für die Immobilisierung.

5 Eine andere für die Immobilisierung generell gut geeignete und daher ebenfalls bevorzugte Kopfgruppe ist $-S(CO)-CH_3$.

In einer Ausführungsform des Schaltungselements ist eine kovalente Verknüpfung der redox-aktiven Verbindungen an das erste und/oder das zweite leitfähigen Material bevorzugt, weil dadurch die Orientierung der Moleküle und der (elektrische) Kontakt zu den leitfähigen Materialien gewährleistet werden kann.

Unter einem elektrisch inerten Molekül wird hier eine chemische Verbindung verstanden, die als elektrischer Isolator dient und vorzugsweise auch chemisch inert ist, insbesondere oxidations- oder reduktionsbeständig ist, und somit den Schaltungsvorgang, der durch die redox-aktiven

Bispyridinium-Moleküle bewirkt wird, nicht stört. Wegen ihrer Eigenschaft als elektrischer Isolator zu dienen, bilden die Schichten aus den inerten Molekülen, die man folglich auch als Isolatormoleküle bezeichnen kann, eine isolierende Matrix, um die einzelnen aktiven Bereiche (Positionen) des Schaltungselements voneinander elektrisch zu trennen.

Prinzipiell kann jede Art von Molekülen, die die eben genannten Anforderungen erfüllen, in dem Schaltungselement der Erfindung eingesetzt werden. Dabei können auch verschiedene Arten von inerten Molekülen verwendet werden, um eine isolierende Matrix zu bilden.

In einer bevorzugten Ausführungsform des Schaltungselements sind die elektrisch inerten Moleküle Verbindungen mit einem langkettigen (gesättigten) Alkylrest.

Vorzugsweise weisen die elektrischen Moleküle eine Kopfgruppe auf, mittels derer sie an die erste Schicht aus dem elektrisch isolierenden Substratmaterial gebunden werden können. Dabei ist eine Immobilisierung über nicht-kovalente oder kovalente Bindungen möglich. Es ist möglich, die inerten Moleküle auch an der Schicht aus dem zweiten elektrisch leitfähigen Material zu immobilisieren.

Vorzugsweise sind die inerten Matrix-bildenden Moleküle Alkylsilylverbindungen der allgemeinen Formel

 $CH_3-(CH_2)_p-SiR_1R_2R_3$ (II)

15

sind, wobei in Formel (II) p für eine ganze Zahl zwischen 1 und 30, vorzugsweise 1 und 20 steht, und wobei die inerten 20 Moleküle über mindestens einen der Reste R_1 , R_2 und R_3 , der unabhänqiq voneinander Wasserstoff, Halogen, OR', NHR', NR'R" sein kann, wobei R' und R" Alkyl ist (typischerweise Methyl, Ethyl, Propyl, Butyl etc., n = vorzugsweise 0-5, besonders bevorzugt n= 0-2), auf der ersten Schicht immobilisiert sind. 25 Solche Verbindungen sind kommerziell erhältlich, z.B. von ABCR/Gelest (einfachere Verbindungen auch bei Fluka oder Aldrich). Diese Verbindungen sind insbesondere bevorzugt, wenn ein Substrat auf Siliziumbasis verwendet wird. In diesem Fall erfolgt eine kovalente Bindung der inerten Isolator-30 Moleküle über freie Hydroxygruppen auf der Oberfläche des Substratmaterials.

An dieser Stelle sei angemerkt, dass die Länge der Alkylketten der elektrisch inerten Moleküle von der jeweils gewählten Bispyridinium-Verbindungen abhängt. Es ist günstig, wenn die Länge der Moleküle annähernd gleich ist, um so annähernd gleiche Dicken der monomolekularen Schichten zu erzielen. Die Anzahl der Alkyleinheiten in der isolierenden Schwanzgruppe der inerten Isolator-Moleküle kann anhand der bekannten Bindungslängen abgeschätzt werden. Allerdings ist auch eine rein empirische Vorgehensweise zur Ermittlung der am besten geeigneten Moleküllänge möglich.

Folglich ist die Verwendung von elektrisch inerten Moleküle mit einem langkettigen Alkylrest, insbesondere von Alklysilylverbindungen der Formel (II) in Schaltungselementen ein weiterer Gegenstand der Erfindung.

In einer Ausgestaltung ist das hier offenbarte
Schaltungselement ein Element, bei dem eine Vielzahl
diskreter Bereiche aus dem ersten elektrisch leitenden
Material in das Substratmaterial eingebettet und/oder auf dem
Substratmaterial aufgebracht ist. Diese Ausgestaltung
ermöglicht es zum Beispiel, das Schaltungselement der
Erfindung als einen elektrischen Speicher mit einer Vielzahl
von Speicherzellen auszubilden.

25

30

5

10

15

20

In diesem Zusammenhang sei darauf hingewiesen, dass es selbstverständlich möglich ist, sowohl unterschiedliche Bispyridinium-Verbindungen auf einem einzelnen diskreten Bereich des leitfähigen ersten Materials aufzubringen. Ferner ist es auch möglich, verschiedene dieser Bereiche mit verschiedenen redox-aktiven Verbindungen zu versehen, um dadurch die Eigenschaften des Schaltungselement an einen bestimmten Verwendungszweck anzupassen.

Bei einer bevorzugten Ausgestaltung des Schaltungselements ist das erste elektrisch leitfähige Material Gold, Silber Palladium, Platin oder Silizium. Der diskrete Bereich, den das erste leitfähige Material einnimmt, kann als Elektrode in dem Substratmaterial ausgestaltet sein.

Bei einer anderen Ausgestaltung des hier offenbarten Schaltungselements weist die Schicht aus dem zweiten elektrisch leitfähigen Material vorzugsweise Titan und/oder Aluminium auf. Die zweite Schicht kann ebenfalls als Elektrode ausgestaltet sein. Zudem sind als weitere Materialien zur Ausbildung der zweiten Elektrode, die Materialien der ersten Elektrode geeignet.

15

20

5

In einer bevorzugten Ausführungsform ist das hier beschriebene Schaltungselement zwischen zwei Elektroden angeordnet. Diese Elektroden können das erste und das zweite elektrisch leitende Material sein. In dieser Ausgestaltung, d.h. bei Anordnung zwischen zwei Elektroden, stellt das Schaltungselement der vorliegenden Erfindung einen veränderbaren Widerstand und folglich ein Speicherelement dar.

In einer Weiterbildung, bei der eine Vielzahl von redoxaktiven Bispyridiniumschichten verwendet wird, bildet eine
Anordnung derartiger Speicherelemente eine Speichermatrix,
d.h. sie kann als ein elektrischer Speicher verwendet werden.
Ein Vorteil dieser Ausgestaltung ist die Verwendung eines
molekularen Zweipols als Speicherelement, wodurch gegenüber
konventionellen Speicherelementen wie RAMs der
Verdrahtungsaufwand reduziert und die Packungsdichte erhöht
wird. Somit bietet das Speicherelement der Erfindung den

Zugang zu einem hochintegrierbaren elektrischen Speicher. Das Speicherelement ist vorzugsweise ein Permanentspeicherelement und der auf einer Vielzahl von Speicherelementen basierende elektrische Speicher ist vorzugsweise ein Permanentspeicher. Ein solcher Permanentspeicher kann z.B. als Speicher für graphische Information dienen, beispielsweise als Speicher für "on-chip" Videofilme.

Bei dem Verfahren der Erfindung zur Herstellung eines

Schaltungselements wird zunächst eine erste Schicht aus einem isolierenden Substratmaterial vorgelegt und ein erstes elektrisch leitfähigen Material an mindestens einer diskreten Position in das Substratmaterial eingebettet und/oder auf dem Substratmaterial aufgebracht.

15

20

Danach werden redoxaktive Bispyridinium-Moleküle als monomolekulare Schicht auf dem mindestens einen diskreten Bereich aus dem ersten elektrisch leitfähigen Material immobilisiert. Daraufhin werden elektrisch inerte Moleküle auf der ersten Schicht aus dem elektrisch isolierenden Substratmaterial immobilisiert. Dadurch bilden die elektrisch inerten Moleküle eine Matrix aus, die den mindestens einen Bereich mit der monomolekularen Schicht aus Bispyridinium-Molekülen umgibt.

25

30

Dann wird bei dem Verfahren eine zweite Schicht mit einem zweiten elektrisch leitfähigen Material auf die Schicht aus den elektrisch inerten Molekülen und den Bispyridinium-Molekülen aufgebracht. Dadurch treten die Bispyridinium-Moleküle der monomolekularen Schicht mit dem zweiten elektrisch leitfähigen Material der zweiten Schicht in Kontakt. Die inerten matrixbildenden Isolatormoleküle müssen

25

nicht auf dem zweiten leitfähigen Material immobilisiert werden.

In einer bevorzugten Ausführungsform werden die

Bispyridinium-Verbindungen jedoch auch auf dem zweiten elektrisch leitfähigen Material immobilisiert, um den elektrischen Kontakt mit diesem Material zu gewährleisten.

Diese Immobilisierung kann aufgrund der identischen Kopfgruppe Z in derselben Weise wie die Immobilisierung auf dem ersten leitfähigen Material erfolgen.

Bei dem Verfahren werden vorzugsweise als BispyridiniumMoleküle Verbindungen der allgemeinen Formel (I) verwendet.
Als elektrisch inerte Moleküle werden vorzugsweise

Verbindungen mit einem langkettigen Alkylrest, insbesondere
Verbindungen gemäß Formel (II), verwendet.

Als erstes leitfähiges Material wird vorzugsweise Gold verwendet. Ferner wird das erste elektrische leitfähige Material bevorzugt in einer regelmäßigen Anordnung in das Substratmaterial eingebettet und/oder aufgebracht.

Das Aufbringen der Schicht aus dem zweiten elektrischen Material erfolgt vorzugsweise dadurch, dass das zweite elektrische Material auf die Schicht aus den elektrisch inerten Molekülen und den Bispyridinium-Molekülen aufgedampft wird.

In einer weiteren Ausgestaltung des Verfahrens wird als zweites elektrisch leitendes Material Titan und/oder Aluminium verwendet.

Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und werden im weiteren näher erläutert.

Es zeigen

5

Figuren 1a und 1b die redox-aktive Bispyridinium-Einheit der in der Erfindungen verwendeten Moleküle sowie eine schematische Darstellung der Arbeitsweise eines Schaltungselements der Erfindung;

10

Figuren 2a bis 2e Formeldarstellungen von in der Erfindung bevorzugt verwendeten redox-aktiven Bispyridinium-Verbindungen und bevorzugt verwendeten elektrisch inerten Molekülen;

15

- Figuren 3a bis 3e ein Ausführungsbeispiel des hier beschriebenen Verfahrens zur Herstellung eines Schaltungselements;
- 20 Figuren 4a bis 4c einen elektrischen Speicher, bei dem die hier beschriebenen Schaltungselemente verwendet werden, sowie dessen Arbeitsweise.
- Fig.1a zeigt eine Formeldarstellung sowie eine schematische
 25 Darstellung der Bispyridinium-Einheit, anhand derer der auf
 molekularer Ebene ablaufende Redox-Vorgang der BispyridiniumEinheit (des Bispyridinium-Grundgerüsts) veranschaulicht
 wird.
- Das zweifach positiv geladenes Kation 101, das in der Schemadarstellung die Bezugsziffer 102 trägt, ist die Spezies, die unterhalb eines vorgegebenen Reduktionspotentials nicht leitend ist.

Oberhalb dieses vorgegebenen Reduktionspotentials stellt das Kation 101 einen Elektronenakzeptor dar. Unter Aufnahme eines Elektrons wandelt sich das zweifach positiv geladene Kation zum einfach positiv geladenen Radikalkation 103 (104 in der 5 schematischen Darstellung) um. Durch das freie Elektron wird das Radikalkation elektrisch leitfähig. Dieser Zustand liegt unterhalb des Oxidationspotentials des Radikalkations 103 vor. Oberhalb des Oxidationspotentials stellt das Radikalkation folglich einen Elektronendonator dar. Die durch 10 das Bezugszeichen 105 gekennzeichneten Alkylketten, die über das Stickstoffatom des jeweiligen Rings am Pyridinringsystem gebunden sind, nehmen an sich nicht an dem Redoxvorgang teil, sondern wirken eher als Isolator. Allerdings können in die Alkylketten eingebaute Substituenten wie vorstehend 15 beschrieben z.B. durch +M und/oder +I-Effekte die Lage des Redoxpotentials beeinflussen.

Fig.1b zeigt schematisch die Potentialverhältnisse und
20 Arbeitsweise (das Schaltprinzip) eines als Speicherelements
ausgestalteten Schaltungselement der vorliegenden Erfindung.
Dieses Speicherelement kann ein Schaltungselement sein, bei
dem das ein Bereich aus dem ersten elektrisch leitenden
Material sowie die Schicht aus dem zweiten elektrisch
leitenden Material als Elektrode ausgestaltet ist.

Beim Anlegen von kleinen positiven oder negativen Potentialen 107 (das Potential ist auf der x-Achse 106 in seiner relativen Lage angezeigt) werden noch keine Veränderungen des Redoxzustands initiiert. Dieser Bereich 108 wird zum Lesen der Speicherzelle verwendet. Das Anlegen eines größeren negativen Potentials 109 bewirkt eine Reduktion des Moleküls (Übergang zum Radikalkation 104). Dieser Bereich 110 dient

30

25

30

zum Beschreiben des Speicherelements. Wird ein größeres positives Potential 111 an das Speicherelement angelegt, bewirkt dies eine Oxidation des Moleküls, d.h. eine Umwandlung in das Dikation 102. Dieser mit dem Potential 111 beginnende Bereich 112 wird zum Löschen des Speicherelements verwendet. Da dieser Redox-Prozess reversibel ist, können beliebig viele Schreib-, Lese- und Lösch-Vorgänge durchgeführt werden.

- Fig.2a zeigt Bispyridinium-Verbindungen 201 gemäß Formel (I), die bevorzugt in der vorliegenden Erfindung eingesetzt werden. Fig.2b bis Fig.2d zeigen 2,7-Diazaphenanthren (205), 2,7-Diazapyrenium (206) und Tetrahydrodiazapyren (207) als Beispiele für ein Bispyridiumium-Grundgerüst, bei dem die Substituenten Ra und Rb eine Verbrückung bilden. In Fig.2e ist in Formeldarstellung und schematisch eine Trichloralkylsilanverbindung 202 gezeigt, die eine bevorzugte Ausführungsform der elektrisch inerten Isolatormoleküle darstellen. Die Kopf- oder Verankerungsgruppe zum
 Immobilisieren trägt das Bezugszeichen 203 und die langkettige (isolierende) Alkylkette das Bezugszeichen 204.
 - Fig.3 veranschaulicht ein Beispiel des hier beschriebenen Verfahrens zur Herstellung eine Schaltungselements 300.

Fig.3a zeigt den Substratmaterial 301, in dem diskrete Bereiche 302, 303, 304 aus dem ersten elektrisch leitenden Material angeordnet sind. Das Substratmaterial ist ein Isolatormaterial wie Siliziumoxid. Die diskreten Bereiche 302, 303, 304 bestehen aus Gold.

Anschließend wird auf den Bereichen 302, 303, 304 eine redox-aktive Bispyridinium-Verbindung 305 immobilisiert (Fig.3b,

Fig.3c), wobei jeweils auf diesen Bereichen eine monomolekulare Schicht aus den Molekülen der Verbindung 305 gebildet wird. Die Verbindung ist hier N, N-Di-(10mercaptodecyl)-4,4'-bispyridinium-dibromid, das wie in [15] beschrieben synthetisiert werden kann. Die Immobilisierung an den Goldoberflächen der Bereiche 302, 304, 304 erfolgt daher über die Gold-Schwefel-Kopplung (vgl. Detailansicht in Fig.3c). Üblicherweise wird dafür die Bispyridiumverbindung in einem organischen Lösungsmittel wie Hexan oder Ethanol (je nach Löslichkeit) in einer Konzentration von 10 bis 100 mM 10 aufgenommen und in Kontakt mit der Substratoberfläche gebracht. Die Adsorption erfolgt danach normalerweise in einem Zeitraum von 30 Minuten bis ca. 12 Stunden (über Nacht) bei Raumtemperatur. Danach wird die Oberfläche sorgfältig mit Lösungsmittel abgespült. Die so mit den monomolekularen 15 Schichten versehenen Substrate sind in Luft und Lösungsmittel (bei nicht zu hoher Temperatur) gut haltbar. Eine Übersicht über hier verwendbare Immobilisierungsverfahren bietet [21]).

- Danach werden elektrisch inerte Moleküle 306 auf der Schicht des Substratmaterials 301 als monomolekulare Schicht immobilisiert (Fig.3d). Als Moleküle 306 dienen hierbei Trichloralkylsilane oder Alkoxysilane mit einer Alkylkettenlänge von ca. 10 bis 30, vorzugsweise mit bis zu ca. 20 Kohlenstoffatomen. Die Immobilisierung erfolgt über kovalente Bindungen des Siliziumatoms mit Hydroxylgruppen auf der Oberfläche des als Substratmaterials 301 verwendeten Siliziumdioxids.
- Im nächsten Schritt erfolgt die Ausbildung der zweiten elektrisch leitfähigen Schicht 307 des Schaltungselements (Fig.3e). Dazu wird zunächst eine Schicht 308 aus Titan auf die monomolekularen Schichten der Bispyridinium-Verbindungen

305 und der Isolatormoleküle 306 unter Vakuum aufgedampft. Anschließend wird eine weitere Schicht 309 aus Aluminium unter Vakuum aufgedampft. Im Prinzip sind zum Aufbringen der zweiten elektrischen Schicht alle Verfahren anwendbar, welche eine schonende Abscheidung der Metallschicht ermöglichen.

Auf diese Weise wird ein Schaltungselement mit einer Mehrzahl von molekularen Widerständen ausgebildet, das sich z.B. als Bestandteil einer Speicherzelle einsetzen lässt.

10

5

Fig.4 zeigt einen Ausschnitt aus einem elektrischen Permanentspeicher 400 der vorliegenden Erfindung, der auf einer Vielzahl der hier beschriebenen Schaltungselementen beruht (vgl. Fig.4c).

15

Der Permanentspeicher 400 weist ein Substrat 401 aus einem Isolatormaterial auf, in dem eine Vielzahl von diskreten Bereichen 402 aus einem ersten leitfähigen Material ausgebildet sind. Das Substrat/Isolatormaterial ist Siliziumdioxid, das erste leitfähige Material ist Gold. Die 20 diskreten Bereiche aus Gold sind mit einem elektrischen Anschluss 403 versehen, d.h. als Elektrode ausgebildet. Auf den Bereichen 402 aus Gold ist jeweils eine monomolekulare Schicht aus redox-aktiven Bispyridinium-Verbindungen 404 immobilisiert. Als Verbindung 404 wird hier 25 N-(n-Decyl)-N'-(10-mercaptododecyl)-4,4'-bispyridinium eingesetzt, das gemäß [12] erhalten wird. Alternativ können auch die in [13] und [14] beschriebenen Verbindungen verwendet werden.

3.0

Auf dem Substratmaterial 401 ist eine Schicht aus Alkyltrichlorsilanverbindungen als elektrisch inerte Isolatormoleküle 405 immobilisiert. Vorliegend wird hierzu 2.8

Octadecyltrichlorsilan, $C_{18}H_{35}SiCl_3$ (kommerziell erhältlich z.B. bei Aldrich), verwendet.

Die beiden Molekülschichten stehen im Kontakt mit einer zweiten Schicht 406 aus elektrisch leitfähigem Material, das auf den Molekülschichten aufgebracht worden ist. Die zweite Schicht 406 weist eine Schicht 407 aus Titan und eine Schicht 408 aus Aluminium. Sie ist ferner mit einem elektrischen Anschluss 409 versehen und somit als Elektrode ausgebildet.

10

30

5

Fig.4a und Fig.4b zeigen den Vorgang der Speicherung von Information durch den Speicher 400. An eine ausgewählte Schicht der redox-aktiven Bispyridinium-Verbindungen 404 wird z.B. über den elektrischen Anschluss 403 (und den als Elektrode ausgebildeten Bereich 402) ein negatives Potential angelegt, das größer als das Reduktionspotential der Bispyridinium-Verbindungen. Dies führt zu einer Spannung (Schreibspannung) an den Elektroden 403, 409 und zu einem Schreibvorgang, dadurch, dass jede Bispyridinium-Einheit ein Elektron über den Bereich 402 aufnimmt und in die Form des einfach positiv geladenen Radikalkations übergeht (vgl. Fig.1b).

Der Löschvorgang, der ebenfalls Teil des Speichern von 25 Information ist, geht folgendermaßen vor sich.

An eine ausgewählte Schicht der redox-aktiven Bispyridinium-Verbindungen 404 wird z.B. wiederum über den elektrischen Anschluss 403 ein positives Potential angelegt, das größer als das Oxidationspotential der Bispyridinium-Verbindungen. Dies ist mit einer Spannung (Löschspannung) an den Elektroden 403, 409 und einem Löschvorgang verbunden, bei dem jede Bispyridinium-Einheit unter Übergang in das zweifach positiv

geladene Dikation ein Elektron mittels des Bereichs (der Elektrode) 402 abgibt.

In diesem Zusammenhang sei darauf hingewiesen, dass bei dem Permanentspeicher 400 sowie auch bei allen anderen Ausgestaltungen, die auf eine Vielzahl separater Schaltungselemente der Erfindung zurückgreifen, jedes Schaltungs- bzw. Speicherelement individuell ansteuerbar/adressierbar sein kann.

10

Der Lesevorgang ist in Fig.4c veranschaulicht. Bei diesem
Vorgang wird eine sogenannte Lesespannung angelegt, die den
Redoxzustand der Bispyridinium-Verbindungen 404, wie er in
den einzelnen Speicherelementen momentan vorliegt, nicht
beeinflusst. Das heißt, die angelegte Potentialdifferenz
bewirkt weder eine Oxidation noch eine Reduktion der
Bispyridinium-Moleküle in den einzelnen separaten
Speicherelementen. Die Lesespannung führt zu einem Stromfluss
durch jedes Speicherelement (durch die Pfeile 410
symbolisiert), dessen Größe durch den jeweiligen
Ladungszustand in den Speicherelementen bedingt ist, und der
zur weiteren Informationsverarbeitung herangezogen wird.

Im Fall von Molekülschichten, bei denen die Bispyridinium25 Moleküle als Dikation vorliegen, wird dabei ein kleiner oder
gar kein Strom gemessen. Bei Schichten, bei denen die
Bispyridinium-Einheiten der Moleküle als einfach positiv
geladenes Radikalkation vorliegen, wird ein (größerer)
Stromfluss gemessen.

30

Der Permanentspeicher 400 stellt somit einen kleinen, skalier- und adressierbaren Speicher dar, dessen konstruktiver Aufbau im Vergleich zu konventionellen

Speichern wie DRAMs oder SRAMs wesentlich vereinfacht ist und z.B. eine geringere Verdrahtung benötigt.

In diesem Dokument sind folgende Veröffentlichungen zitiert:

- [1] C.P. Collier et al., Electronically configurable molecular-based logic gates, Science, Vol. 285, S. 391-394, 1999
- [2] C.P. Collier et al., A [2] Catenane-based solid state electronically reconfigurable switch, Science, Vol. 289, S. 1172-1175, 2000

10

5

- [3] D.I. Gittins et al., A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups, Nature, Vol. 408, S. 67-69, 2000
- 15 [4] Kawashima et al., The synthesis and properties of a methylviologen analogue, Tetrahedron Letters, Vol. 25, Nr. 25, S. 1585-1586, 1984
 - [5] JP 56118002

20

- [6] JP 57014507
- [7] A.J. Blacker et al. Molecular Anion Binding and Substrate Photoxidation in Visible Light by 2,7 Diazapyrenium Cations, Helvetica Chimica Acta, Vol. 70, S. 1-12, 1987
- [8] R. Bauer et al., Synthesis and electrochemical properties of some new bipyridinium and related compounds Z. Naturforsch., B: Chem. Sci. 43(4), S. 475-482, 1988

25

30

- [9] J. March, Advanced Organic Chemistry, 3. Auflage (Wiley, New York, 1985), S. 597ff
- [10] P. Stehle et al. Isotachophoresis of quarternary 4,4'Bipyridylium Salts -Analytical Control of synthesis and
 purification procedures, J. Chromatogr. 449(1), 299-305,
 1988
- [11] Blacker et al., Molecular anion binding and substrate

 10 photooxidation in visible light by 2,7-diazapyrenium

 cations, Helvetica Chimica Acta, 70, S. 1-12, 1987
- [12] H.C. DeLong & D.A. Buttry, Ionic Interaktions play a major role in determining the electrochemical behavoir of self-assembling viologen monolayers, Langmuir, 6, S. 1319-1322,1990
- [13] X. Tang et al., A vibrational spectroskopic study of the structure of electroactive self-assembled monolayers of viologen derivatives; Langmuir, 10, S. 2235-2240, 1994
 - [14] H.C. DeLong & D.A. Buttry, Environmental Effects on redox potential of viologen groups in electroactive self-assembling viologen monolayers, Langmuir, 8, S. 2491-2496, 1992
 - [15] D.I. Gittins et al., Diode-like electron transfer accross nanostructured films containing a redox ligand, J. Mater. Chem., Vol. 10, S. 79-83, 2000
 - [16] R. Bauer, Rupert et al, On the synthesis and electrochemical properties of some new bipyridium and

30

33

related compounds, Z. Naturforsch., B: Chem. Sci. 43(4), S. 475-82, 1988

- [17] E.V. Dehmlow & A. Sleegers, Synthesen von hydroxilierten Bipyridinen, III: Synthese von unsymmetrischen und symmetrischen Dihydroxybipyridinen, Liebigs Ann. Chem. 9, S. 953-959, 1992
- [18] H. Fischer & A.L. Summers, Synthesis, polarography and herbicidal activity of quaternary salts of 2-(4-pyridyl)-1,3,5-triazines, 5-(4-pyridyl)pyrimidine, 2-(4-pyridyl)pyrimidine and related compounds, J. Heterocycl. Chem. 17(2), S. 333-336, 1980
- 15 [19] E.W. Gill & A. W. Bracher, The synthesis and characterisation of some diazaphenanthrene derivatives,
 J. Heterocyclic Chem. 20, S. 1107-1109, 1983
- [20] D. W. Turner et al., Molecular Photoelectron 20 Spectroscopy, Wiley, London, 1970
 - [21] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev., vol 96(4), 1533-1554 (1996).
- 25 [22] US Patent 6,198,655
 - [23] DE 101 32 640 A1
 - [24] DE 101 26 578 A1
 - [25] DE 100 23 765 A1
 - [26] DE 198 01 638 A1

[27] DE 42 17 588 A1

Patentansprüche

10

25

- 1. Schaltungselement mit einer ersten Schicht aus einem elektrisch isolierenden Substratmaterial,
- mit einem ersten elektrisch leitfähigen Material, das als mindestens ein diskreter Bereich dergestalt ausgebildet ist, dass es in das Substratmaterial eingebettet und/oder auf dem Substratmaterial aufgebracht ist,
 - einer zweiten Schicht mit einem zweiten elektrisch leitfähigen Material, und
- einer monomolekularen Schicht aus redox-aktiven
 Bispyridinium-Molekülen, die zwischen der ersten Schicht
 aus dem elektrisch isolierenden Substratmaterial und der
 zweiten Schicht mit dem zweiten elektrisch leitfähigen
 Material angeordnet ist, wobei die Bispyridinium-Moleküle
 der monomolekularen Schicht auf dem elektrisch
 leitfähigen als mindestens ein diskreter Bereich
 ausgebildeten Material immobilisiert sind, und wobei
 Bispyridinium-Moleküle der monomolekularen Schicht mit
 dem zweiten elektrischen Material der zweiten Schicht in
 elektrischen Kontakt stehen, und
 - bei dem auf der ersten Schicht aus dem elektrisch isolierenden Substratmaterial elektrisch inerte Moleküle immobilisiert sind, die eine Matrix ausbilden, die den mindestens einen diskreten Bereich mit der monomolekularen Schicht aus Bispyridinium-Molekülen umgibt.
- Schaltungselement nach Anspruch 1,
 bei dem die Bispyridinium-Moleküle Verbindungen der allgemeinen Formel (I) sind,

wobei in Formel (I)

5

10

15

30

eines oder mehrere der Kohlenstoffatome der beiden aromatischen Ringssysteme der Bispyridinium-Einheit unabhängig voneinander durch mindestens eine Gruppierung X_a bzw. X_b ersetzt sein kann, die jeweils für ein Heteroatom steht, das aus S, N und O ausgewählt wird, oder die für eine Leerstelle steht,

eines oder mehrere der Kohlenstoffatome der beiden Ringssysteme jeweils unabhängig voneinander einen Substituenten R_a bzw. R_b aufweisen kann, der jeweils unabhängig für Alkyl, Aryl, Alkylaryl, Alkenyl, Alkinyl, Halogen, CN, OCN, NCO, COOH, COOR', CONHR', NO₂, OH, OR', NH₂, NHR', NR'R", SH und SR' steht, wobei R' und R" unabhängig voneinander Alkyl, Aryl, Alkylaryl, Alkenyl oder Alkinyl sein kann, oder

wobei R_a und R_b zusammen eine Verbrückung zwischen den
20 beiden aromatischen Ringsystemen bilden kann, die 1 bis 3
Atome umfasst, wobei die Atome unabhängig voneinander aus C,
S, N und O ausgewählt werden und durch eine Einfach-, Doppeloder Dreifachbindung miteinander verknüpft sein können und
ferner einen Substituenten R_c aufweisen können, wobei der
25 Substituent R_c die für R_a und R_b oben angegebene Bedeutung
hat,

Y für eine Gruppe steht, die unabhängig voneinander aus CH_2,O , S, NH, NR', COO, CONH, CH=CH, C=C oder Aryl ausgewählt werden kann,

Za und Zb unabhängig voneinander jeweils CH3, -CH=CH2,

SH, -S-S-, -C(CO)CH₃, SiCl₃, Si(OR)₃, SiR(OR')(OR"), SiR(OR')₂, Si(R'R")NH₂, COOH, SO₃, PO₃H, oder NH₂ sein kann, wobei R' und R" jeweils unabhängig voneinander Alkyl, Aryl, Arylalkyl, Alkenyl oder Alkinyl sein kann,

wobei n, q jeweils unabhängig voneinander einen Wert zwischen 0 und 12 annehmen können,

j und k jeweils unabhängig voneinander einen Wert zwischen 0 und 6 annehmen können, p und m jeweils unabhängig voneinander einen Wert zwischen 0 und 12 annehmen können.

- 3. Schaltungselement nach Anspruch 1 oder 2, bei dem die elektrisch inerten Moleküle Verbindungen mit einem langkettigen Alkylrest sind.
- 4. Schaltungselement nach Anspruch 3, bei dem die inerte Moleküle eine Kopfgruppe aufweisen, mittels derer sie kovalent an die erste Schicht aus dem elektrisch isolierenden Substratmaterial gebunden sind.
 - 5. Schaltungselement nach Anspruch 4, bei dem die inerten Moleküle Alkylsilylverbindungen der allgemeinen Formel
- 25 $CH_3 (CH_2)_p SiR_1R_2R_3$ (II)

10

15

20

30

sind, wobei in Formel (II) p für eine ganze Zahl zwischen 1 und 30, vorzugsweise 1 und 20 steht, und wobei R_1 , R_2 und R_3 unabhängig voneinander Wasserstoff, Halogen, OR', NHR', NR'R" sein kann, wobei R' und R" gleich Alkyl ist.

6. Schaltungselement nach Anspruch 1, bei dem eine Vielzahl diskreter Bereiche aus dem ersten elektrisch leitenden

Material in das Substratmaterial eingebettet und/oder auf dem Substratmaterial aufgebracht ist.

- 7. Schaltungselement nach Anspruch 1, bei dem das erste elektrisch leitfähige Material Gold, Silber Palladium, Platin oder Silizium ist.
- 8. Schaltungselement nach Anspruch 1, bei dem die Schicht aus dem zweiten elektrisch leitfähigen Material Titan und/oder
 10 Aluminium aufweist.
 - 9. Schaltungselement nach Anspruch 1, bei dem das erste elektrisch leitende Material und das zweite elektrisch leitende Material als Elektroden ausgestaltet sind.

15

25

- 10. Schaltungselement nach Anspruch 9,
 das ein Speicherelement ist.
- 11. Schaltungselement nach Anspruch 10,
- 20 das ein Permanentspeicher ist.
 - 12. Verfahren zur Herstellung eines Schaltungselements, bei dem
 - eine Schicht aus einem isolierenden Substratmaterial vorgelegt wird,
 - ein erstes elektrisch leitfähigen Material an mindestens einer diskreten Position in das Substratmaterial eingebettet und/oder auf dem Substratmaterial aufgebracht wird,
- redoxaktive Bispyridinium-Moleküle als monomolekulare
 Schicht auf dem mindestens einen diskreten Bereich aus
 dem ersten elektrisch leitfähigen Material immobilisiert
 werden,

- elektrisch inerte Moleküle auf der ersten Schicht aus dem elektrisch isolierenden Substratmaterial immobilisiert werden, wodurch die elektrisch inerten Moleküle eine Matrix ausbilden, die den mindestens einen Bereich mit der monomolekularen Schicht aus Bispyridinium-Molekülen umgibt,
- eine zweite Schicht mit einem zweiten elektrisch leitfähigen Material auf die Schicht aus den elektrisch inerten Molekülen und den Bispyridinium-Molekülen aufgebracht wird, wodurch die Bispyridinium-Moleküle der monomolekularen Schicht mit dem zweiten elektrischen Material der zweiten Schicht in Kontakt treten.
- 13. Verfahren nach Anspruch 12,
- bei dem als Bispyridinium-Moleküle Verbindungen der allgemeinen Formel (I)

$$Z_a$$
— $(CH_2)_m$ — $[(CH_2)_n$ — $Y]_k$ — N — N — $[Y-(CH_2)_q]_j$ — $(CH_2)_p$ — Z_t

25

30

5

10

verwendet werden, wobei in Formel (I)

eines oder mehrere der Kohlenstoffatome der beiden aromatischen Ringssysteme der Bispyridinium-Einheit unabhängig voneinander durch mindestens eine Gruppierung X_a bzw. X_b ersetzt sein kann, die jeweils für ein Heteroatom steht, das aus S, N und O ausgewählt wird, oder die für eine Leerstelle steht,

eines oder mehrere der Kohlenstoffatome der beiden Ringssysteme jeweils unabhängig voneinander einen Substituenten R_a bzw. R_b aufweisen kann, der jeweils unabhängig für Alkyl, Aryl, Alkylaryl, Alkenyl, Alkinyl, Halogen, CN, OCN, NCO, COOH, COOR', CONHR', NO₂, OH, OR', NH₂, NHR', NR'R", SH und SR' steht, wobei R' und R" unabhängig voneinander Alkyl, Aryl, Alkylaryl, Alkenyl oder Alkinyl sein kann, oder

wobei R_a und R_b zusammen eine Verbrückung zwischen den beiden aromatischen Ringsystemen bilden kann, die 1 bis 3 Atome umfasst, wobei die Atome unabhängig voneinander aus C, S, N und O ausgewählt werden und durch eine Einfach-, Doppeloder Dreifachbindung miteinander verknüpft sein können und ferner einen Substituenten R_c aufweisen können, wobei der Substituent R_c die für R_a und R_b oben angegebene Bedeutung hat,

Y für eine Gruppe steht, die unabhängig voneinander aus CH_2,O , S, NH, NR', COO, CONH, CH=CH, C \equiv C oder Aryl ausgewählt werden kann,

 $Z_a \ \mbox{und} \ Z_b \ \mbox{unabhängig voneinander jeweils CH}_3, \ -\mbox{CH=CH}_2,$ SH, -S-S-, -C(CO)CH $_3$, SiCl $_3$, Si(OR) $_3$, SiR(OR')(OR"),

SiR(OR')₂, Si(R'R")NH₂, COOH, SO₃, PO₃H, oder NH₂ sein kann, wobei R' und R" jeweils unabhängig voneinander Alkyl, Aryl, Arylalkyl, Alkenyl oder Alkinyl sein kann,

wobei n, q jeweils unabhängig voneinander einen Wert zwischen 0 und 12 annehmen können,

- j und k jeweils unabhängig voneinander einen Wert zwischen 0 und 6 annehmen können, p und m jeweils unabhängig voneinander einen Wert zwischen 0 und 12 annehmen können.
- 30 14. Verfahren nach Anspruch 12 oder 13, bei dem als elektrisch inerten Moleküle Verbindungen mit einem langkettigen Alkylrest verwendet werden.

15. Verfahren nach Anspruch 12,

bei dem als erstes leitfähiges Material Gold verwendet wird.

- 16. Verfahren nach Anspruch 12,
- 5 bei dem das erste elektrische leitfähige Material in einer regelmäßigen Anordnung in das Substratmaterial eingebettet und/oder aufgebracht wird.
 - 17. Verfahren nach Anspruch 12,
- 10 bei dem das zweite elektrische Material auf die Schicht aus den elektrisch inerten Molekülen und den Bispyridinium-Molekülen aufgedampft wird.
 - 18. Verfahren nach Anspruch 17,
- 15 bei dem als das zweite elektrisch leitende Material Titan und/oder Aluminium verwendet wird.
 - 19. Bispyridinium-Verbindungen der allgemeinen Formel (Ib)

$$Z_a$$
— $(CH_2)_m$ — $[(CH_2)_n$ — $Y]_k$ — N — N — $[Y-(CH_2)_q]_j$ — $(CH_2)_p$ — Z_1

wobei in Formel (Ib)

20

eines oder mehrere der Kohlenstoffatome der beiden aromatischen Ringssysteme der Bispyridinium-Einheit unabhängig voneinander durch mindestens eine Gruppierung Xabzw. Xb ersetzt sein kann, die jeweils für ein Heteroatom steht, das aus S, N und O ausgewählt wird, oder für eine Leerstelle steht

15

25

eines oder mehrere der Kohlenstoffatome der beiden Ringssysteme jeweils unabhängig voneinander einen Substituenten Ra bzw. Rb aufweist, der jeweils unabhängig für Alkyl, Aryl, Alkylaryl, Alkenyl, Alkinyl, Halogen, CN, OCN, NCO, COOH, COOR', CONHR', NO2, OH, OR', NH2, NHR', NR'R", SH und SR' steht, wobei R' und R" unabhängig voneinander Alkyl, Aryl, Alkylaryl, Alkenyl oder Alkinyl sein kann, oder

wobei R_a und R_b zusammen eine Verbrückung zwischen den beiden aromatischen Ringsystemen bildet, die 1 bis 3 Atome umfasst, wobei die Atome unabhängig voneinander aus C, S, N und O ausgewählt werden und durch eine Einfach-, Doppel- oder Dreifachbindung miteinander verknüpft sein können und ferner einen Substituenten R_c aufweisen können, wobei der Substituent R_c die für R_a und R_b oben angegebene Bedeutung hat,

Y für eine Gruppe steht, die unabhängig voneinander aus CH_2,O , S, NH, NR', COO, CONH, CH=CH, C \equiv C oder Aryl ausgewählt werden kann,

 $Z_a \ und \ Z_b \ unabhängig \ voneinander \ jeweils \ CH_3, \ -CH=CH_2,$ $20 \quad SH, \ -S-S-, \ SiCl_3, \ Si(OR)_3, \ SiR(OR') (OR"), \ SiR(OR')_2,$ $Si(R'R")NH_2, \ Si(R_2')NH_2, \ COOH, \ SO_3, \ PO_3H, \ oder \ NH_2 \ sein \ kann,$ $wobei \ R' \ und \ R" \ jeweils \ unabhängig \ voneinander \ Alkyl, \ Aryl,$ $Arylalkyl, \ Alkenyl \ oder \ Alkinyl \ sein \ kann,$

wobei n, q jeweils unabhängig voneinander einen Wert zwischen 0 und 12 annehmen können,

j und k jeweils unabhängig voneinander einen Wert zwischen 0 und 6 annehmen können,

p und m jeweils unabhängig voneinander einen Wert zwischen 0 und 12 annehmen können,

wobei die folgenden Verbindungen ausgenommen sind:
N,N'-Dimethyl-4,5,9,10-Tetrahydro-2,7-diazapyreniumdiiodid;
1,1',2,2'-tetramethyl-4,4'-bispyridinium; 1,1',2,-trimethyl-4,4'-bispyridinium;

bispyridiumdiperchlorat;

43

N,N'-Dimethyl-2,7-diazapyrenium;
N-methyl-N'-(p-toloyl)-2,7-diazapyrenium,
1,1'-Dimethyl-2-phenyl-6-(p-toloyl)-4,4'-bispyridiumdiperchlorat;
5 1,1'-Dimethyl-2-phenyl-4,4'-bispyridiumdiperchlorat;
6-(Phenyl)-1,1',2-trimethyl-4,4'-bispyridiumdi-perchlorat;
1,1'-Dimethyl-2-phenyl-6-(2,5-dichloro-3-thienyl)-4,4'-

10 20. Verwendung von Bispyridinium-Verbindungen der allgemeinen Formel (I) oder (Ib) als funktionelle Einheit in Speichereinheiten.

Zusammenfassung

Das Schaltungselement weist eine erste Schicht aus einem elektrisch isolierenden Substratmaterial und ein erstes elektrisch leitfähigen Material, das als mindestens ein 5 diskreter Bereich dergestalt ausgebildet ist, dass es in das Substratmaterial eingebettet und/oder auf dem Substratmaterial aufgebracht ist. Ferner weist es eine zweite Schicht mit einem zweiten elektrisch leitfähigen Material, und eine monomolekulare Schicht aus redox-aktiven 10 Bispyridinium-Molekülen, die zwischen der ersten Schicht und der zweiten Schicht angeordnet ist, auf. Die Bispyridinium-Moleküle sind auf dem elektrisch leitfähigen als mindestens ein diskreter Bereich ausgebildeten Material immobilisiert und stehen mit dem zweiten elektrischen Material der zweiten 15 Schicht in elektrischen Kontakt. Ferner sind auf der ersten Schicht elektrisch inerte Moleküle immobilisiert sind, die eine Matrix ausbilden, die den mindestens einen diskreten Bereich mit den monomolekularen Schicht aus Bispyridinium-20 Molekülen umgibt.

Signifikante Figur 3c