1.1. Пусть $X = \mathbb{R}$, а $\rho(x, y) = \begin{cases} 1 & x \neq y, \\ 0 & x = y \end{cases}$. Показать, что:

The Carle in the came of the care had the

- а) пара (X, ρ) образует метрическое пространство (называемое дискретным);
- b) всякое подмножество в X является одновременно открытым и замкнутым;
- последовательность $\{x_n\}_{n=1}^{\infty}$ в X является сходящейся тогда и только тогда, когда она стабилизируется, т.е. $x_n \equiv x$ при достаточно больших n;
- d) каждая точка в X является изолированной;
- е) пространство (X, ρ) является полным и несепарабельным.
- 1.2.) Проверить является ли $X = \mathbb{R}$ метрическим пространством с метрикой

(a)
$$\rho(x,y) = |e^x - e^y|$$
 (b) $\rho(x,y) = |\sin x - \sin y|$

(c)
$$\rho(x,y) = |x^3 - y^3|$$
 (d) $\rho(x,y) = \left| \frac{x}{1+x^2} - \frac{y}{1+y^2} \right|$

1.3. Пусть функция $f(\cdot)$ непрерывна и строго монотонна на отрезке [a,b]. Показать, что функция $\rho(x,y) = |f(x) - f(y)|$ удовлетворяет аксиомам метрики.

3.8. Пусть $X = \mathbb{R}[x]$ — пространство многочленов вида $p(x) = a_0 + a_1 x + \ldots + a_n x^n$ с действительными коэффициентами. Будет ли функция

$$\rho(p_1, p_2) = |p_1(0) - p_2(0)|$$

метрикой на X? Ответ обоснуйте.

3.9. Являются ли метриками на множестве \mathbb{N} (множестве натуральных чисел):

a)
$$\rho(x,y) = \frac{|x-y|}{x \cdot y}$$
;
6) $\rho(x,y) = \begin{cases} 1 + \frac{1}{x+y}, & x \neq y, \\ 0, & x = y? \end{cases}$

3.10. Пусть $\rho(x,y)$ — метрика на множестве X . Докажите, что тогда метриками являются:

a)
$$\rho_1(x, y) = \frac{\rho(x, y)}{1 + \rho(x, y)}$$
;

6) $\rho_2(x, y) = \ln(1 + \rho(x, y))$.

3.11. Докажите, что для любых четырех точек x, y, z, t метрика удовлетворяет неравенствам:

a)
$$|\rho(x,z)-\rho(y,z)| \le \rho(x,y)$$
;

6) $|\rho(x,z) - \rho(y,t)| \le \rho(x,y) + \rho(z,t)$.

3.12. Пусть $\rho(x,y)$ — метрика на множестве X. Докажите, что $\rho_1(x,y)=\min\left\{\rho(x,y),1\right\}$ — тоже метрика.
3.13. Докажите, что множество целых чисел $\mathbb Z$ становится мет-

3.13. Докажите, что множество целых чисел \mathbb{Z} становится метрическим пространством, если положить $\rho(a,b)=0$ при a=b и

 $ho(a,b)=\frac{1}{3^k}$ при $a\neq b$, где k — наивысшая степень числа 3, на которую делится нацело разность a-b.

3.14. Пусть функция f определена на $[0,+\infty)$ и обладает сле-

дующими свойствами:

1) f(0) = 0;

2) f строго возрастает на $[0, +\infty)$;

3) $f(x+y) \le f(x) + f(y)$ для любых x и y из $[0, +\infty)$.

Докажите, что если ρ – метрика на некотором множестве X, то $\rho_1(x,y) = f(\rho(x,y))$ также является метрикой на X.

2) f crporo возрастает на $[0, +\infty)$; $f_1 - x \circ p \circ q \sim f_1 + f_1$

3) f имеет на промежутке $(0, +\infty)$ производную второго порядка и f''(0) < 0 на $(0, +\infty)$.

Докажите, что функция ρ_1 , определенная как в задаче 3.14, является метрикой.

3.16. Докажите, что если $\rho_1,...,\rho_n$ – метрики на множестве X то для любых положительных чисел $\lambda_1,...,\lambda_n$ функция

$$p(x,y) = \sum_{k=1}^{n} \lambda_k \, p_k(x,y)$$

также является метрикой на X.

3.17. Пусть на множестве X задана последовательность метрик ρ_n и пусть λ_n — носледовательность положительных чисел. До-

кажите, что если ряд $\sum_{n=1}^{\infty} \lambda_n \rho_n(x,y)$ сходится для любой пары (x,y)

элементов из X, то его сумма $\rho(x,y)$ также является метрикой на X. (—) (3.18) Пусть на множестве X задана последовательность метрик ρ_n . Докажите, что функция

$$\rho(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\rho_n(x,y)}{1 + \rho_n(x,y)}$$

тоже является метрикой на X.

(3.19.) Докажите, что множество S всех числовых последовательностей $x = (x_1, ..., x_n, ...)$ становится метрическим пространством, если положить

$$\rho(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{|x_n - y_n|}{1 + |x_n - y_n|}$$