Electronics Lab Course Experiment #1: Expansion of signals in conducters

Christopher Jörn

April 14, 2015

Contents

L	Theoretical background	2
	1.1 Conducting properties	2
	1.2 Expansion of waves in homogeneous cables	2
	1.3 Phase velocity and wave resistance	2
	1.4 Cable termination and adjustment	3
2	Preperational exercises	4
3	Experiment set-up	5
1	Procedure	6
5	Measurement	7
õ	Evaluation	8
7	Conclusion	g

1 Theoretical background

1.1 Conducting properties

If the electrical properties of a double-cable are equal on the whole cable, it is called homogeneous. In this experiment, we work with such cables.

Capacitive and inductive properties of the cable are:

$$C = \epsilon_r \epsilon_0 l \frac{2\pi}{\ln\left(\frac{r_a}{r_i}\right)}$$

$$L = \mu_r \mu_0 \frac{\ln\left(\frac{r_a}{r_i}\right)}{2\pi}$$

The four characteristics of a cable¹ grow proportional to it's length. A lossless cable can be approximated as a chain of many LC-links.

1.2 Expansion of waves in homogeneous cables

$$\frac{d^2}{dx^2}U - \gamma^2 U = 0$$

$$\gamma^2 = z' \cdot y' \Rightarrow \text{damping}$$

$$solution: U(x,t) = U_f(x,t) + U_b(x,t) \quad \text{f: forward, b: backwards}$$

$$I(x,t) = I_f(x,t) + I_b(x,t)$$

1.3 Phase velocity and wave resistance

The phase velocity is:

$$v_{Ph} = \frac{c_0}{\sqrt{\epsilon_r \mu_r}}$$

It is equal to the velocity of waves with equal wavelength in matter with equal ϵ_r and μ_r .

In lossless case the wave resistance is:

$$z = \sqrt{\frac{L'}{C'}}$$

$$= \sqrt{\frac{\mu_r \mu_0}{\epsilon_r \epsilon_0}} \cdot \frac{\ln\left(\frac{r_a}{r_i}\right)}{2\pi}$$

¹Resistance, inductance, capacity and loss

adjusted termination terminal resistance = wave resistance

1.4 Cable termination and adjustment

Inside a cable there is not only the incoming, but also a reversal wave of voltage or current.

But depending on the termination it can be absorbed.

2 Preperational exercises

3 Experiment set-up

4 Procedure

5 Measurement

Evaluation

Conclusion