The Fault in Our Data Stars: **Studying Mitigation Techniques** against **Faulty Training Data** in Machine Learning Applications

Abraham Chan, Arpan Gujarati, Karthik Pattabiraman, Sathish Gopalakrishnan

The University of British Columbia

Training Data

Image

Label

Normal

Pneumonia

Modern ML Applications

Dataset: Pneumonia

Prediction: Normal

Model Accuracy: 90%

Training Data Faults

Random Mislabelling

Dataset: Pneumonia

Actual: Normal

Prediction: Pneumonia

Model Accuracy: 55%

Original Accuracy: 90%

Training Data Faults in Practice

20% of ChestX-ray mislabelled [Tang et al, 2021]

33% of the popular Udacity Dataset2 mislabelled or missing labels [Dwyer, 2020]

How can we mitigate training data faults?

(From the P.O.V of a practitioner)

Selection Criteria

Techniques against Mislabelled Data

- 1. Loss Correction (LC)
- 2. Knowledge Distillation (KD)
- 3. Robust Loss (RL)
- 4. Label Smoothing (LS)
- 5. Ensemble Learning (Ens)

Our Contribution:

How do we choose a technique?

Techniques against Mislabelled Data

1. Loss Correction (LC)

2. Knowledge Distillation (KD)

3. Robust Loss (RL)

4. Label Smoothing (LS)

5. Ensemble Learning (Ens)

More Practitioner Effort

Less Practitioner Effort

Loss Correction (LC)

Self Knowledge Distillation (KD)

Teacher = Student = (i.e., ResNet50)

Robust Loss (RL)

Robust Loss (RL)

Robust Loss (RL)

Predicted Probabilities

Actual Probabilities

Label Smoothing (LS)

Ensemble Learning (Ens)

Understanding the Resilience of Neural Network Ensembles against Faulty
Training Data

Our Prior Work: [QRS'21]

Methodology

Neural Networks

ML Model Name	Depth (# of Layers)
ConvNet	Shallow
DeconvNet	Shallow
MobileNet	Deep
ResNet18	Deep
ResNet50	Deep
VGG11	Deep
VGG16	Deep

Evaluation Datasets

CIFAR-10Object Detection

GTSRBSelf-Driving Cars

PneumoniaMedical Diagnosis

Reliability Metric: Accuracy Delta (AD)

Model trained with golden data

Test Image 1

Test Image 2

Test Image 3

Test Image 4

Model trained with faulty data

Test Image 1

Test Image 2

Test Image 3

Accuracy Delta (AD) = 2/3 = 67% in this case

Higher AD

is worse

Models

KD is not effective here

GTSRB, ResNet50, Mislabelling

KD is effective here

Higher AD is worse

GTSRB, VGG16, Mislabelling

is worse

Models

Ensembles are effective across models

Higher AD is worse

GTSRB, ResNet50, Mislabelling

GTSRB, VGG16, Mislabelling

is worse

Fault Types

LS is also effective across fault types

Higher AD is worse

GTSRB, ResNet50, Mislabelling

GTSRB, ResNet50, Removal

Higher AD

is worse

Fault Types

Datasets

Ensembles are also effective across fault types

Higher AD is worse

GTSRB, ResNet50, Mislabelling

GTSRB, ResNet50, Removal

Finding: Ensemble is generally effective, followed by LS

GTSRBSelf-Driving Cars

Baseline 60 LS LC RL KD % 40 Q 30 Ens IIIII 20 III 10 10 30 50 Fault Amount (%)

PneumoniaMedical Diagnosis

Higher AD is worse

Takeaways

• **Ensembles** performed best overall but **Label Smoothing** surprisingly effective (second place)

 Dataset size did not have an impact on Loss Correction (but works well for datasets with fewer classes)

 Knowledge Distillation and Robust Loss performed well only at low fault amounts

Summary

Problem: Choose a mitigation technique against faulty training data

Approach: Evaluate techniques on 7 models across 3 datasets

- Results:
 - Ensembles effective across all configurations
 - Label smoothing is second in effectiveness, with less overhead

Email: abrahamc@ece.ubc.ca

More Info: https://github.com/DependableSystemsLab/TDFM-Techniques