April 17, 2024

1 Q2

The goal of this question is to calculate body fat using Brozek's equation. In this problem, the first column **brozek** is the response variable, and all other columns are treated as the features (we may not use all the features, please only use the ones stated in each question). To start, read the data file fat.csv in the homework folder (containing 252 samples) and split it into two sets. Set 1 includes the first 200 rows of the data (do not count the row associated with the feature/response names), and set 2, which includes the last 52 rows of the data. Name the first set **train** and the second set **test**.

```
[93]: import numpy as np
import pandas as pd
from matplotlib.pyplot import subplots
import statsmodels.api as sm
from ISLP import load_data
from ISLP.models import (ModelSpec as MS,
summarize)
```

```
[94]: Fat = pd.read_csv("fat.csv")
      train,test = np.split(Fat,[int(200)])
      y = train['brozek']
      X = pd.DataFrame({'intercept': np.ones(train.shape[0]),
                         'siri':
                                   train['siri'],
                         'density': train['density'],
                                   train['age'],
                         'age':
                         'weight': train['weight'],
                        'height': train['height'],
                         'adipos': train['adipos'],
                        'free':
                                   train['free'],
                         'neck':
                                   train['neck'],
                        'chest':
                                   train['chest'],
                                   train['abdom'],
                        'abdom':
                         'hip':
                                   train['hip'],
                        'thigh':
                                   train['thigh'],
                                   train['knee'],
                        'knee':
                         'ankle':
                                   train['ankle'],
                        'biceps': train['biceps'],
                         'forearm': train['forearm'],
```

'wrist': train['wrist']})

(a) As a first modeling attempt, consider a linear model using all the 17 features, that is brozek = $\beta_0 + \beta_1 \sin i + ... + \beta_{17} \text{wrist}$ report the fitted parameters, the 95% confidence interval for each estimated parameter and the p-values. What is the R2 value, and based on that how good do you see the model fitting the training data?

[95]: firstModel = sm.OLS(y, X)
 firstFittedModel = firstModel.fit()
 firstFittedModel.summary()

[95]:

Dep. Variable:	brozek	R-squared:	0.999
Model:	OLS	Adj. R-squared:	0.999
Method:	Least Squares	F-statistic:	1.859e + 04
Date:	Wed, 17 Apr 2024	Prob (F-statistic):	7.25e-285
Time:	15:40:13	Log-Likelihood:	61.275
No. Observations:	200	AIC:	-86.55
Df Residuals:	182	BIC:	-27.18
Df Model:	17		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
intercept	11.7984	4.641	2.542	0.012	2.641	20.956
siri	0.8845	0.013	66.439	0.000	0.858	0.911
$\mathbf{density}$	-9.5175	4.172	-2.281	0.024	-17.750	-1.285
age	-0.0007	0.002	-0.417	0.677	-0.004	0.003
\mathbf{weight}	0.0116	0.005	2.429	0.016	0.002	0.021
\mathbf{height}	0.0004	0.005	0.075	0.940	-0.009	0.010
adipos	-0.0213	0.016	-1.361	0.175	-0.052	0.010
${f free}$	-0.0134	0.006	-2.324	0.021	-0.025	-0.002
\mathbf{neck}	-0.0037	0.011	-0.325	0.746	-0.026	0.019
\mathbf{chest}	0.0034	0.005	0.631	0.529	-0.007	0.014
${f abdom}$	0.0005	0.005	0.090	0.929	-0.010	0.011
\mathbf{hip}	-0.0037	0.007	-0.496	0.620	-0.018	0.011
${f thigh}$	0.0199	0.008	2.579	0.011	0.005	0.035
knee	-0.0305	0.013	-2.386	0.018	-0.056	-0.005
ankle	0.0037	0.010	0.359	0.720	-0.017	0.024
\mathbf{biceps}	-0.0159	0.009	-1.871	0.063	-0.033	0.001
forearm	0.0196	0.010	1.891	0.060	-0.001	0.040
\mathbf{wrist}	0.0340	0.027	1.246	0.214	-0.020	0.088
Omnibus	:	146.785	Durbir	n-Watso	n:	1.875
Prob(Om	nibus):	0.000	Jarque	-Bera (J	JB): 8	218.452
Skew:		2.048	$\operatorname{Prob}(\operatorname{J}$	IB):		0.00
Kurtosis:		34.136	Cond.	No.	1	.48e + 05

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 1.48e+05. This might indicate that there are strong multicollinearity or other numerical problems.

(b) Based on $\alpha = 0.05$ and the calculated p-values, 10 features seem problematic.

feature	p-value
age	0.677
height	0.940
adipos	0.175
neck	0.746
chest	0.529
abdom	0.929
hip	0.620
ankle	0.720
biceps	0.063
wrist	0.214

```
[96]: X_test = pd.DataFrame({'intercept': np.ones(test.shape[0]),
                        'siri': test['siri'],
                        'density': test['density'],
                        'age':
                                   test['age'],
                        'weight': test['weight'],
                        'height': test['height'],
                        'adipos': test['adipos'],
                        'free': test['free'],
                        'neck': test['neck'],
                        'chest': test['chest'],
                        'abdom': test['abdom'],
                        'hip': test['hip'],
                        'thigh': test['thigh'],
                        'knee': test['knee'],
'ankle': test['ankle'],
                        'biceps': test['biceps'],
                        'forearm': test['forearm'],
                        'wrist': test['wrist']})
```

(c) Calculate the prediction error e_1 using your test file.

```
[97]: # the actual value from test dataset
y_actual = test['brozek'].values

# the value predicted by the first model
y_pred_first = firstFittedModel.predict(X_test)

y_actual = np.array(y_actual)
y_pred_first = np.array(y_pred_first)

e_1 = np.sqrt(sum(np.square(y_actual - y_pred_first)))
print('Prediction Error e_1 = ', e_1)
```

Prediction Error e_1 = 0.753742369836337

```
[98]: import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.plot(test['siri'], y_actual, "bo", label="y_actual")
ax.plot(np.hstack((test['siri'], X_test['siri'])), np.hstack((y_actual, y_pred_first)), "r+", label="y_predict")
plt.title('1st Model\n Actual vs Prediction')
ax.legend(loc="best")
```

[98]: <matplotlib.legend.Legend at 0x13dd45ed0>

(d) Now consider a second model which uses the features indicated in part (a), with the only difference that density is replaced by inverse density. In other words, your model has the the following parametric form:brozek = $\beta_0 + \beta_1 \sin i + \frac{\beta_2}{density} + \beta_3$ age $+ \dots + \beta_{17}$ wrist Repeat the steps in part (a) and report the values.

```
'weight': train['weight'],
                 'height': train['height'],
                 'adipos': train['adipos'],
                 'free': train['free'],
                 'neck': train['neck'],
                 'chest': train['chest'],
                 'abdom': train['abdom'],
                 'hip': train['hip'],
                 'thigh': train['thigh'],
                 'knee': train['knee'],
                 'ankle': train['ankle'],
                 'biceps': train['biceps'],
                 'forearm': train['forearm'],
                           train['wrist']})
                 'wrist':
secondFittedModel = sm.OLS(y, X_second).fit()
secondFittedModel.summary()
```

[99]:

brozek	R-squared:	0.999
OLS	Adj. R-squared:	0.999
Least Squares	F-statistic:	1.852e + 04
Wed, $17 \text{ Apr } 2024$	Prob (F-statistic):	1.00e-284
15:40:13	Log-Likelihood:	60.917
200	AIC:	-85.83
182	BIC:	-26.46
17		
nonrobust		
	OLS Least Squares Wed, 17 Apr 2024 15:40:13 200 182 17	OLS Adj. R-squared: Least Squares F-statistic: Wed, 17 Apr 2024 Prob (F-statistic): 15:40:13 Log-Likelihood: 200 AIC: 182 BIC: 17

	coef	std err	t	\mathbf{P} > $ \mathbf{t} $	[0.025]	0.975]
intercept	-8.0827	4.536	-1.782	0.076	-17.032	0.867
siri	0.8865	0.013	67.497	0.000	0.861	0.912
$\operatorname{density}$	10.3645	4.867	2.129	0.035	0.761	19.968
age	-0.0007	0.002	-0.423	0.673	-0.004	0.003
\mathbf{weight}	0.0109	0.005	2.287	0.023	0.001	0.020
\mathbf{height}	0.0005	0.005	0.094	0.925	-0.009	0.010
adipos	-0.0206	0.016	-1.320	0.189	-0.051	0.010
${f free}$	-0.0125	0.006	-2.161	0.032	-0.024	-0.001
\mathbf{neck}	-0.0038	0.011	-0.332	0.740	-0.026	0.019
\mathbf{chest}	0.0031	0.005	0.583	0.561	-0.008	0.014
${f abdom}$	0.0005	0.005	0.098	0.922	-0.010	0.011
hip	-0.0039	0.007	-0.529	0.598	-0.019	0.011
${f thigh}$	0.0199	0.008	2.580	0.011	0.005	0.035
knee	-0.0305	0.013	-2.386	0.018	-0.056	-0.005
ankle	0.0036	0.010	0.352	0.725	-0.017	0.024
\mathbf{biceps}	-0.0158	0.009	-1.850	0.066	-0.033	0.001
forearm	0.0193	0.010	1.858	0.065	-0.001	0.040
wrist	0.0339	0.027	1.239	0.217	-0.020	0.088

Omnibus:	144.182	Durbin-Watson:	1.875
Prob(Omnibus):	0.000	Jarque-Bera (JB):	8277.916
Skew:	1.977	Prob(JB):	0.00
Kurtosis:	34.268	Cond. No.	1.58e + 05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.58e+05. This might indicate that there are strong multicollinearity or other numerical problems.
- (e) Use a similar formulation in part (c) and calculate the test error (we will call this test error e_2 which corresponds to our second model).

```
[100]: # the value predicted by the second model
y_pred_second = np.array(secondFittedModel.predict(X_test))
e_2 = np.sqrt(sum(np.square(y_actual - y_pred_second)))
print('Second Prediction Error e_2 = ', e_2)
```

Second Prediction Error $e_2 = 7.766138616196848$

```
fig, ax = plt.subplots()
ax.plot(test['siri'], y_actual, "bo", label="y_actual")
ax.plot(np.hstack((test['siri'], X_test['siri'])), np.hstack((y_actual, y_pred_second)), "r+", label="y_predict_2nd")
plt.title('2nd Model\n Actual vs Prediction')
ax.legend(loc="best")
```

[101]: <matplotlib.legend.Legend at 0x13df6ff90>

(f) Now consider a third model which only uses siri and density as the features, but follows a para- metric formulation as: brozek = $\beta_0 + \beta_1 \sin i + \beta_2 \sin^2 i + \frac{\beta_3}{density} + \beta_4$ density Repeat the steps in part (a) and report the values.

[102]:

Dep. Variable:	brozek	R-squa	ared:	0.999
Model:	OLS	Adj. F	R-squared:	0.999
Method:	Least Squares	F-stati	stic:	7.648e + 04
Date:	Wed, 17 Apr 2024	Prob (F-statistic):	2.51e-310
Time:	15:40:14	$\operatorname{Log-Li}$	kelihood:	51.125
No. Observations:	200	AIC:		-92.25
Df Residuals:	195	BIC:		-75.76
Df Model:	4			
Covariance Type:	nonrobust			
co	ef std err	t P>	t [0.025	0.975]

	\mathbf{coef}	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
intercept	-1298.6590	567.083	-2.290	0.023	-2417.062	-180.256
siri	0.9618	0.027	35.651	0.000	0.909	1.015
siri_square	-0.0030	0.001	-2.275	0.024	-0.006	-0.000
$inv_density$	706.0142	305.636	2.310	0.022	103.237	1308.791
density	598.1825	262.950	2.275	0.024	79.592	1116.773

Omnibus:	138.737	Durbin-Watson:	1.955
Prob(Omnibus):	0.000	Jarque-Bera (JB):	12413.875
Skew:	1.696	Prob(JB):	0.00
Kurtosis:	41.447	Cond. No.	2.68e + 07

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.68e+07. This might indicate that there are strong multicollinearity or other numerical problems.

(g) Based on = 0.05 and the calculated p-values, which features seem problematic?

All the p-values of the features are less than 0.05

feature	p-value
intercept	0.023
siri	0.00
$siri^2$	0.024
$\frac{1}{density}$	0.022
density	0.024

(h) Repeat part (c) for this model and call the error e_3 .

```
e_3 = np.sqrt(sum(np.square(y_actual - y_pred_third)))
print('Third Prediction Error e_3 =', e_3)
```

Third Prediction Error $e_3 = 0.563361670359713$

```
fig, ax = plt.subplots()
ax.plot(test['siri'], y_actual, "bo", label="y_actual")
ax.plot(np.hstack((test['siri'], X_test_third['siri'])), np.hstack((y_actual, y_pred_third)), "r+", label="y_predict_3rd")
plt.title('3rd Model\n Actual vs Prediction')
ax.legend(loc="best")
```

[104]: <matplotlib.legend.Legend at 0x13e00e610>

(i) Based on the values e_1 , e_2 and e_3 , and the model formulations, which model would you pick and why (state two reasons)?

I will pick the third model. (1) It has the lowest prediction error 0.563361670359713 so it has the highest prediction accuracy.(2) The R-squared values of the three models are the same but the thrid model has the lowest p-values 2.51e-310.