## Основи системного аналізу

#### Методи багатокритеріального оцінювання альтернатив. PROMETHEE

Савченко Ілля Олександрович ННК "ІПСА" НТУУ "КПІ ім. Ігоря Сікорського"

#### Mетоди PROMETHEE i ELECTRE

- PROMETHEE: Preference Ranking Organization METHod for Enrichment Evaluation
- ELECTRE: фр. ELimination Et Choix Traduisant la Realite виключення і вибір, що відображають реальність

#### Розв'язання задач:

- вибору
- ранжування

## Постановка задачі

#### Дано:

- $A = \{a_i \mid i = 1,...,n\}$  множина альтернатив рішень
- $C = \{c_j \mid j = 1,...,m\}$  множина критеріїв
- $V = (v_j(a_i))$  оцінки альтернатив за критеріями
- $w_j^C$  вага j-го критерію  $\sum_{j=1}^m w_j^C = 1$

#### Знайти:

- ранжування альтернатив
- множину "найкращих" альтернатив

# Таблиця оцінок за критеріями

|       | $c_1$      | $c_2$      | ••• | $C_m$      |
|-------|------------|------------|-----|------------|
| $a_I$ | $v_1(a_1)$ | $v_2(a_1)$ | ••• | $v_m(a_l)$ |
| $a_2$ | $v_1(a_2)$ | $v_2(a_2)$ |     | $v_m(a_2)$ |
| •••   | •••        | •••        |     |            |
| $a_n$ | $v_1(a_n)$ | $v_2(a_n)$ | ••• | $v_m(a_n)$ |

|         | $c_{I}$ | $c_2$ | $c_3$      | $c_4$ |
|---------|---------|-------|------------|-------|
| $a_{I}$ | 0,2     | 5600  | добре      | так   |
| $a_2$   | 0,3     | 8100  | погано     | ні    |
| $a_3$   | 0,1     | 11000 | дуже добре | ні    |
| $a_4$   | 0,4     | 8750  | задовільно | так   |

## Модель порогів

• Відношення нерозрізненості за критерієм  $c_j$ 

$$a_k \mathbf{I} a_l \Leftrightarrow |v_j(a_k) - v_j(a_l)| \le q_j$$

• Відношення сильної переваги за критерієм

$$c_j \qquad \qquad a_k \mathbf{P} a_l \iff |v_j(a_k) - v_j(a_l)| > p_j$$

• Відношення слабкої переваги за критерієм  $c_i$ 

$$a_k \mathbf{Q} a_l \iff q_j < |v_j(a_k) - v_j(a_l)| \le p_j$$

## Функція переваги

Функція переваги  $a_k$  над  $a_l$  за критерієм  $c_j$ :

$$H_{j}(a_{k}, a_{l}) = H_{j}(f_{j}(a_{k}, a_{l}))$$

$$f_{j}(a_{k}, a_{l}) = v_{j}(a_{k}) - v_{j}(a_{l})$$

$$H_{j}(a_{k}, a_{l}) \in [0, 1]$$

# Види функцій переваг

Використовуються різні типи функцій переваг, які для кожного критерію призначає експерт або аналітик.



# Функція переваги "usual shape"



Використовується, в основному, для якісних критеріїв з невеликою кількістю рівнів.

$$H_{j}(a_{k}, a_{l}) = \begin{cases} 1, & v_{j}(a_{k}) > v_{j}(a_{l}) \\ 0, & v_{j}(a_{k}) \leq v_{j}(a_{l}) \end{cases}$$

# Функція переваги "U shape"



Використовується, в основному, для якісних критеріїв. p — поріг строгої переваги.

$$H_{j}(a_{k}, a_{l}) = \begin{cases} 1, & v_{j}(a_{k}) - v_{j}(a_{l}) > p_{j} \\ 0, & v_{j}(a_{k}) - v_{j}(a_{l}) \leq p_{j} \end{cases}$$

# Функція переваги "Level shape"



Використовується, в основному, для якісних критеріїв з великою кількістю рівнів.

q — поріг нерозрізненості, p — поріг строгої переваги.

$$H_{j}(a_{k}, a_{l}) = \begin{cases} 1, & v_{j}(a_{k}) - v_{j}(a_{l}) > p_{j} \\ 0, 5, & q_{j} < v_{j}(a_{k}) - v_{j}(a_{l}) \le p_{j} \\ 0, & v_{j}(a_{k}) - v_{j}(a_{l}) \le q_{j} \end{cases}$$

# Функція переваги "V shape"



Використовується для кількісних критеріїв без порогу нерозрізненості.

p — поріг строгої переваги.

$$H_{j}(a_{k}, a_{l}) = \begin{cases} 1, & v_{j}(a_{k}) - v_{j}(a_{l}) > p_{j} \\ \frac{v_{j}(a_{k}) - v_{j}(a_{l})}{p_{j}}, & 0 < v_{j}(a_{k}) - v_{j}(a_{l}) \le p_{j} \\ 0, & v_{j}(a_{k}) - v_{j}(a_{l}) \le 0 \end{cases}$$

# Функція переваги "Linear shape"



Використовується для кількісних критеріїв з порогом нерозрізненості.

q — поріг нерозрізненості, p — поріг строгої переваги.

$$H_{j}(a_{k}, a_{l}) = \begin{cases} 1, & v_{j}(a_{k}) - v_{j}(a_{l}) > p_{j} \\ \frac{v_{j}(a_{k}) - v_{j}(a_{l}) - q_{j}}{p_{j} - q_{j}}, & q_{j} < v_{j}(a_{k}) - v_{j}(a_{l}) \le p_{j} \\ 0, & v_{j}(a_{k}) - v_{j}(a_{l}) \le q_{j} \end{cases}$$

#### Функція переваги "Gaussian shape"



Використовується для кількісних критеріїв. s — параметр середньої переваги.

$$H_{j}(a_{k}, a_{l}) = \begin{cases} 1 - e^{-\frac{(v_{j}(a_{k}) - v_{j}(a_{l}))^{2}}{2s^{2}}}, & v_{j}(a_{k}) - v_{j}(a_{l}) > 0\\ 0, & v_{j}(a_{k}) - v_{j}(a_{l}) \le 0 \end{cases}$$

#### Mетод PROMETHEE

Розраховується агрегований ступінь переваги  $a_k$  над  $a_l$  за всіма критеріями:

$$\forall (a_k, a_l) \qquad F(a_k, a_l) = \sum_{j=1}^m w_j^c H_j(a_k, a_l)$$

$$F(a_k, a_l) \in [0,1]$$
  $F(a_k, a_k) = 0$ 

## Метод PROMETHEE. Потоки

Для кожної альтернативи розраховуються вхідний, вихідний і чистий потоки:

• Вихідний потік 
$$\Phi^+(a_k) = \frac{1}{n-1} \sum_{l \neq k} F(a_k, a_l)$$

• Вхідний потік 
$$\Phi^{-}(a_k) = \frac{1}{n-1} \sum_{l \neq k} F(a_l, a_k)$$

• Чистий потік  $\Phi(a_k) = \Phi^+(a_k) - \Phi^-(a_k)$ 

## Mетод PROMETHEE I

• 
$$a_k \mathbf{I} a_l$$
 якщо  $(\Phi^+(a_k) = \Phi^+(a_l)) \wedge (\Phi^-(a_k) = \Phi^-(a_l))$ 

• 
$$a_k P a_l$$
 якщо 
$$\begin{bmatrix} (\Phi^+(a_k) \ge \Phi^+(a_l)) \land (\Phi^-(a_k) < \Phi^-(a_l)) \\ (\Phi^+(a_k) > \Phi^+(a_l)) \land (\Phi^-(a_k) = \Phi^-(a_l)) \end{bmatrix}$$

•  $a_k Q a_l$  (непорівнюваність) в іншому випадку

## Часткове ранжування в PROMETHEE I

| Альтернатива | Вихідний потік $arPhi^+$ | Вхідний потік $arPhi^-$ |  |
|--------------|--------------------------|-------------------------|--|
| $a_{I}$      | 0,21                     | 0,19                    |  |
| $a_2$        | 0,36                     | 0,10                    |  |
| $a_3$        | 0,28                     | 0,22                    |  |
| $a_4$        | 0,26                     | 0,26                    |  |
| $a_5$        | 0,26                     | 0,42                    |  |
| $a_6$        | 0,23                     | 0,37                    |  |

# Переваги у вигляді графу



## Mетод PROMETHEE II

Альтернативи ранжуються за чистими потоками

• 
$$a_k \mathbf{I} a_l$$
 якщо  $\Phi(a_k) = \Phi(a_l)$ 

•  $a_k P a_l$  якщо  $\Phi(a_k) > \Phi(a_l)$ 

# Метод PROMETHEE II

| Ранг | Альтерна-<br>тива | Вихідний потік $arPhi^+$ | Вхідний потік $\Phi^-$ | Чистий потік $\Phi$ |
|------|-------------------|--------------------------|------------------------|---------------------|
| 1    | $a_2$             | 0,36                     | 0,10                   | 0,26                |
| 2    | $a_3$             | 0,28                     | 0,22                   | 0,06                |
| 3    | $a_1$             | 0,21                     | 0,19                   | 0,02                |
| 4    | $a_4$             | 0,26                     | 0,26                   | 0                   |
| 5    | $a_6$             | 0,23                     | 0,37                   | -0,14               |
| 6    | $a_5$             | 0,26                     | 0,42                   | -0,16               |

# Графічні представлення потоків



# Графічні представлення потоків: діамант



#### PROMETHEE V

Метод використовується для того, щоб обрати підмножину альтернатив.

#### Наприклад:

- проекти;
- інвестиції;
- маркетингові канали;
- тощо.

#### PROMETHEE V

- 1. Виконується аналіз PROMETHEE II і обчислюються чисті потоки  $\Phi(a_k)$ .
- 2. Кожній альтернативі присвоюється бінарна змінна  $x_k$ , яка означає, чи обрана відповідна альтернатива.
- 3. Розв'язується оптимізаційна задача

$$\max \sum_{i=1}^{n} x_i \Phi(a_i)$$

#### PROMETHEE V

За умови відсутності обмежень будуть обрані всі альтернативи з додатнім потоком  $\Phi$ .

В залежності від задачі можуть вводитись обмеження.

#### Наприклад:

• необхідність вибору рівно  $n_c$  альтернатив:  $\sum_{i=1}^{\infty} x_i = n_c$ 

• обмеження за бюджетом: 
$$\sum_{i=1}^n b_i x_i \leq B$$

• несумісність альтернатив:  $x_i + x_j \le 1$ 

PROMETHEE часто поєднують з аналізом GAIA (Geometrical Analysis for Interactive Aid)

Аналіз GAIA відповідає на питання:

- Наскільки альтернативи схожі/відмінні між собою? Чи є кластери схожих альтернатив?
- Які критерії конфліктують між собою? Які критерії дають схожі значення?
- Як впливають ваги критеріїв на ранжування методом PROMETHEE?

# Чистий потік за критерієм

Для альтернатив можна знайти величини чистого потоку за критерієм:

$$\Phi_{j}(a_{k}) = \frac{1}{n-1} \sum_{l \neq k} \left( H_{j}(a_{k}, a_{l}) - H_{j}(a_{l}, a_{k}) \right)$$

|         | $\Phi_I$      | $\Phi_2$      | ••• | $\Phi_{m}$    |
|---------|---------------|---------------|-----|---------------|
| $a_{I}$ | $\Phi_I(a_I)$ | $\Phi_2(a_1)$ | ••• | $\Phi_m(a_l)$ |
| $a_2$   | $\Phi_I(a_2)$ | $\Phi_2(a_2)$ | ••• | $\Phi_m(a_2)$ |
|         | •••           | •••           |     |               |
| $a_n$   | $\Phi_I(a_n)$ | $\Phi_2(a_n)$ | ••• | $\Phi_m(a_n)$ |

Використовується метод головних компонент, що переводить оцінки в площину UV.



- Схожі альтернативи знаходяться поблизу одна від одної, різні далеко
- Критерії, що представляють однакові вимоги, знаходяться близько один від одного. Конфліктуючі критерії знаходяться у протилежних напрямках
- Альтернативи, що мають великі значення за певними критеріями, знаходяться приблизно в тому ж напрямку



# **GAIA** Webs



