INT104 ARTIFICIAL INTELLIGENCE

L10- Unsupervised Learning II Gaussian mixture model (GMM)

Fang Kang Fang.kang@xjtlu.edu.cn

(O)

(C)

CONTENT

- ➤ Mixture Gaussian Model and EM method

- EM (Expectation-Maximization) method Mixture of gaussians
 EM (Ferral)

Motivation

 $x^{(l)}$ must belong to one of the clusters 1,2, K-means make <u>hard</u> assignments to data points:

Sometimes, one data point can belong to multiple clusters

Clusters may overlap Hard assignment may be simplistic Need a <u>soft</u> assignment: and a toth caster and a toth clusters with different *probabilities* data points belong to clusters with different *probabilities*

Gaussian (Normal) distribution

1-D (univariate) Gaussian $\mathcal{N}(\mu,\sigma)$

Probability density function (PDF): $p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

 σ : standard deviation $P(x < \mu) = \int_{-\infty}^{\mu} p(x)dx = 0.5 = P(x > \mu)$ μ : mean

 $P(x < \mu - \sigma) = \int_{-\pi}^{\mu} p(x) dx \approx 0.157 = P(x > \mu + \sigma)$

·O

(M)

Gaussian model

 μ and σ fully define a gaussian distribution

Use them as parameter $\theta=(\mu,\sigma)$ to define the model: suppose each data point is randomly \underline{drawn} from the distribution

 μ,σ are ${f unknown},{f but}$ they can be learned (estimated) from ${f data}$

Tend to have a Gaussian distribution

In biology, the *logarithm* of various variables

Measures of size: length, height, weight, ...

Blood pressure of adult humans

In finance, the logarithm of change rates
Price indices
Stock market indices

Gaussian is ubiquitous

Many scores

Z-scores, t-scores

Bell curve grading

In linguistics, the logarithm of
Word frequency
Sentence length

Job: find the parameters that best fit the data

 $\Rightarrow {\sf Maximum\ Likelihood\ Estimation\ (MLE)}$ What is "best fit"?

O

Gaussian model example

Assumption: The weight is from a Gaussian distribution Task: to estimate the μ,σ of Salman

Maximum Likelihood Estimation (MLE)

Fit a Gaussian model $\mathcal{N}(\mu,\sigma),\,\theta=(\mu,\sigma)$ Given m data points $X = \{\boldsymbol{x}^{(1)}, \cdots, \boldsymbol{x}^{(m)}\}$

 $p\big(x^{(i)}|\theta\big) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x^{(i)}-\mu)^2}{2\sigma^4}} \quad \Longrightarrow \quad \text{How likely it is to observe } x^{(i)} \text{ given } \theta$ PDF at $\boldsymbol{x}^{(i)}$:

Assuming all data points are independent, then the likelihood of observing the whole dataset:

$$p(X|\theta) = \prod_{i=1}^{m} p\big(x^{(i)}|\theta\big) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x^{(i)}-\mu)^2}{2\sigma^2}}$$

A good estimation of θ needs to maximize $p(X|\theta)$, the **likelihood** of data given the parameters

. (C)

(A) Weight (lbs)

Maximum Likelihood Estimation (MLE) (cont.)

$$LL(\theta) = \log(L(\theta)) = -\frac{m \log(2\pi)}{2} - m \log(\sigma) - \sum_{i=1}^{m \log(2\pi)} \frac{(\iota^{(i)} - \mu)^2}{2\sigma^2}$$
 Take the derivative of $LL(\theta)$ w.r.t μ and σ

$$\frac{\partial \mathcal{LL}(\theta)}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{i=1}^{m} (x^{(i)} - \mu) = -\frac{1}{\sigma^2} \left[\sum_{i=1}^{m} x^{(i)} - m \mu \right] \qquad \frac{\partial \mathcal{LL}(\theta)}{\partial \sigma} = -\frac{m}{\sigma} + \frac{1}{\sigma^2} \sum_{i=1}^{m} (x^{(i)} - \mu)^2$$

$$\mathcal{LL}(heta)$$
 has extreme values when $rac{\partial \mathcal{LL}(heta)}{\partial \mu}=0$ and $rac{\partial \mathcal{LL}(heta)}{\partial \sigma}=0$

$$\qquad \qquad \mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} = \bar{X} \qquad \sigma = \left(\frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)^2 \right)^{-1}$$

Mean of data (sample mean)

·O

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0) = 0$$

$$(0)$$

These are the reasonable estimates μ and σ from the data

(W)

$\mathcal{L}(\theta) = p(X|\theta) = \prod_{i=1}^{m} \frac{1}{\sqrt{2\pi}\sigma}$ It is easier to work with log-likelihood:

Maximum Likelihood Estimation (MLE) (cont.)

Likelihood function:

$$\mathcal{LL}(\theta) = \log \left(\mathcal{L}(\theta) \right) = -\frac{m \log(2\pi)}{2} - m \log(\sigma) - \sum_{i=1}^{m} \frac{(\chi^{(i)} - \mu)^2}{2\sigma^2}$$

Goal: find the $\theta=(\mu,\sigma)$ that maximizes $\mathcal{LL}(\theta)$

Mixture of Gaussians

Previous example has the assumption that data are drawn from **one** Gaussian distribution $\mathcal{N}(\mu,\sigma)$ What if there are **multiple** Gaussian distributions: $\mathcal{N}(\mu_1,\sigma_1), \mathcal{N}(\mu_2,\sigma_2), ..., \mathcal{N}(\mu_k,\sigma_k)$

How do we generate the data?

Step 1: Draw from
$$k$$
 distributions with probabilities Q_1,Q_2,\cdots,Q_k

$$\mu_1,\sigma_1$$
 μ_2,σ_2
 μ_3,σ_3
 μ_2,σ_3

Step 2: Suppose distribution j is chosen, draw a data point from $\mathcal{N}(\mu_{j},\sigma_{j})$

$$p(\boldsymbol{x}^{(i)}|\boldsymbol{\mu}_{j},\sigma_{j}) = \frac{1}{\sqrt{2\pi}\sigma_{j}} e^{-\frac{(\boldsymbol{x}^{(i)} - \boldsymbol{\mu}_{j})^{2}}{2\sigma_{j}^{2}}}$$

@(1)

Example of 2 Gaussians

Weights of two kinds of fish: Salmon & Tuna fish

Weight (lbs)

How a data point is generated

A data point $x^{(l)}$ is generated according to the following process:

First, select the fish \overline{kind} with • Probability ϕ_S of being Salmon • Probability ϕ_T of being Tuna • $\phi_S + \phi_T = 1$

Given the fish \underline{kind} , generate the data point from the corresponding Gaussian distribution \bullet $p(x^{(0)}|S) \sim \mathcal{N}(\mu_S,\sigma_S)$ for Salmon \bullet $p(x^{(0)}|T) \sim \mathcal{N}(\mu_T,\sigma_T)$ for Tuna

Introduce latent (unobserved) variable

Model parameters:
$$\theta = (\phi_S, \phi_T, \mu_S, \mu_T, \sigma_S, \sigma_T)$$

Let $z^{(l)}$ be the latent random variable indicating which Gaussian distribution $x^{(l)}$ is from For each data point $x^{(l)}$, we don't know if it is a Salmon or Tuna

$$z^{(l)}=1$$
 for Salmon, $z^{(l)}=2$ for Tuna Then the likelihood of $x^{(l)}$ is:

$$\operatorname{st.} \sum_{z(i)} Q_i(z^{(i)}, z^{(i)} | \boldsymbol{\theta})$$

$$\sum_{z(i)} p(\boldsymbol{x}^{(i)}, z^{(i)} | \boldsymbol{\theta})$$

$$\sum_{z(i)} q_i(z^{(i)} = j)$$

Rewrite the likelihood

(B)

(A)

Log likelihood of data

The likelihood of the whole data:
$$\mathcal{L}(\theta) = p(X|\theta) = \prod_{l=1}^m p(x^{(l)},z^{(l)}|\theta) = \prod_{l=1}^m \sum_{j \in I} \varrho_l(z^{(l)}) \frac{p(x^{(j)},z^{(j)}|\theta)}{\varrho_l(z^{(j)})}$$

$$\log ||kel|| hood: \ \, \mathcal{L}(\theta) = \sum_{i=1}^{m} \log \left(\sum_{z^{(i)}} Q_i(z^{(i)}) \frac{p(x^{(i)},z^{(i)}|\theta)}{Q_i(z^{(i)})} \right) = \sum_{i=1}^{m} \log \left(Q_i(z^{(i)} = 1) \frac{p(x^{(i)},z^{(i)}|\theta)}{Q_i(z^{(i)} = 1)} + Q_i(z^{(i)} = 2) \frac{p(x^{(i)},z^{(i)}|\theta)}{Q_i(z^{(i)} = 2)} \right)$$

It is difficult to take the derivative of $\mathcal{LL}(heta)$ w.r.t. $\phi_{S'}\phi_{T'}\mu_{S'}\,
ho_{S'}\,\sigma_{T'}$ and solve them analytically

Solution: Instead of maximizing $\mathcal{LL}(\theta)$, we can maximize the lower bound of $\mathcal{LL}(\theta)$

idea: Find some expression E, s.t. $\mathcal{LL}(\theta) \geq E$. When we maximize E , $\mathcal{LL}(\theta)$ is also maximized.

 $\it E$ should have a form that is easier to calculate derivatives

Find the lower bound of $\mathcal{LL}(heta)$ (optional)

Let a,b be two values of a random variable XThen $Q_l(\mathbf{z}^{(l)}=1)a+Q_l(\mathbf{z}^{(l)}=2)b$ is the expectation of E(X)

 $\log \Big(E(X) \Big) \geq E(\log(X))$

$$\mathcal{LL}(\theta) \geq \sum_{i=1}^{m} Q_{i}(z^{(i)} = 1) \log(a) + Q_{i}(z^{(i)} = 2) \log(b)$$

$$= \sum_{i=1}^{m} \sum_{i,0} Q_{i}(z^{(i)}) \log \left(\frac{p(x^{(i)} z^{(i)} | \theta)}{Q_{i}(z^{(i)})} \right)$$

$$\begin{array}{c} \text{We reed to orp} \\ \text{we frow} \\ \text{we frow} \end{array}$$

Jensen's inequality: $f(E(X)) \ge E(f(X))$, when f is convex

(A)

How to estimate Q_i (optional)

$$\mathcal{LL}(\theta) \ge \sum_{j=0}^{m} \sum_{z \in 0} \frac{Q_i(z^{(j)}) \log \left(\frac{p(x^{(j)}z^{(j)})\theta}{Q_i(z^{(j)})} \right)}{Q_i(z^{(j)})}$$

$$Lt(\theta) \geq \sum_{i=1}^{N} \sum_{x^{(i)}} \frac{Q_i(z^{(i)}) \log \left(\frac{P(x^{(i)}, z^{(i)}|\theta)}{Q_i(z^{(i)})} \right)}{Q_i(z^{(i)})} \qquad Q_i(z^{(i)}) \text{ is unknown, but we can guess it after observing } x^{(i)}$$
Le,, after observing a data point $x^{(i)}$, we can "guess" which distribution it is from

If
$$\chi^{(l)}$$
 is $p(x^{(l)}|s)p(s)=p(x^{(l)}|k_s,\sigma_s)\phi_s$

Then the chance of
$$\chi^{(l)}$$
 being Salmon is:

If $\chi^{(l)}$ is drawn from Tuna, then the likelihood of $\chi^{(l)}$ is

$$p(S|\kappa^{(l)}) = \frac{p(\kappa^{(l)}|S)p(S)}{p(\kappa^{(l)}|S)p(S) + p(\kappa^{(l)}|T)p(T)} \qquad p(T|\mathbf{x})$$

The chance of
$$x^{(\ell)}$$
 being Tuna is:

 $p(x^{(i)}|T)p(T) = p(x^{(i)}|\mu_T, \sigma_T)\phi_T$

$$p(T|\mathbf{x}^{(l)}) = \frac{p(\mathbf{x}^{(l)}|\mathbf{y})p(T)}{p(\mathbf{x}^{(l)}|\mathbf{s})p(S) + p(\mathbf{x}^{(l)}|T)p(T)}$$
Posterior, $w_t^{(l)}$

(B)

New form of Log-likelihood function (optional)

$$LL(\theta) \ge \sum_{\ell=1}^{m} \sum_{2 \le 0} Q_{\ell}(x^{(\ell)}) \log \left(\frac{p(x^{(\ell)}, x^{(\ell)}|\theta)}{Q_{\ell}(x^{(\ell)})} \right) = \sum_{\ell=1}^{m} w_{\delta}^{(\ell)} \log \left(\frac{p(x^{(\ell)}, x^{(\ell)} = 1|\theta)}{w_{\delta}^{(\ell)}} \right) + w_{\Gamma}^{(\ell)} \log \left(\frac{p(x^{(\ell)}, x^{(\ell)} = 2|\theta)}{w_{\Gamma}^{(\ell)}} \right) = LL(\theta)$$

$$p(x^{(\ell)}, x^{(\ell)} = 1|\theta) = p(x^{(\ell)}|\mu_{\delta}, \sigma_{\delta}) \phi_{\delta} = \frac{\phi_{\delta}}{\sqrt{2\pi\sigma_{\delta}}} e^{\frac{(\kappa^{(\ell)} - \mu_{\delta})^{2}}{2\sigma_{\delta}^{2}}}$$

$$p(x^{(\ell)}, x^{(\ell)} = 2|\theta) = p(x^{(\ell)}|\mu_{\delta}, \sigma_{\delta}) \phi_{\tau} = \frac{\phi_{\tau}}{\sqrt{2\pi\sigma_{\delta}}} e^{\frac{(\kappa^{(\ell)} - \mu_{\delta})^{2}}{2\sigma_{\delta}^{2}}}$$

Treating w_S and $w_{
m r}$ as known, the derivatives of $\mathcal{LL}'(heta)$ is much

$$[\mathcal{LL}(\theta)] = \mathcal{LL}^{\prime(\theta)} = \sum_{i=1}^{m} w_{S}^{(i)} \log \left(\frac{\phi_{S}}{w_{S}^{(i)} \sqrt{2\pi\sigma_{S}}} e^{\frac{(x^{(i)} - \mu_{S})^{2}}{2\sigma_{S}^{2}}} \right) + w_{T}^{(i)} \log \left(\frac{\phi_{T}}{w_{T}^{(i)} \sqrt{2\pi\sigma_{T}}} e^{\frac{(x^{(i)} - \mu_{S})^{2}}{2\sigma_{T}^{2}}} \right)$$

Maximizing $\mathcal{LL}'(heta)$ (optional)

$$[\mathcal{LL}(\theta)] = \mathcal{LL}^{(\theta)} = \sum_{i=1}^{m} w_{S}^{(i)} \log \left(\frac{\phi_{S}}{w_{S}^{(i)} \sqrt{2\pi \sigma_{S}}} e^{-\frac{(\chi^{(i)} - \mu_{S})^{2}}{2\sigma_{S}^{2}}} \right) + w_{T}^{(i)} \log \left(\frac{\phi_{T}}{w_{T}^{(i)} \sqrt{2\pi \sigma_{T}}} e^{-\frac{(\chi^{(i)} - \mu_{S})^{2}}{2\sigma_{T}^{2}}} \right) + w_{T}^{(i)} \log \left(\frac{\phi_{T}}{w_{T}^{(i)} \sqrt{2\pi \sigma_{T}}} e^{-\frac{(\chi^{(i)} - \mu_{S})^{2}}{2\sigma_{T}^{2}}} \right)$$

$$\frac{\partial \mathcal{L}\mathcal{L}'(\theta)}{\partial \mu_{S}} = \sum_{i=1}^{m} \frac{\partial}{\partial \mu_{S}} \left[w_{S}^{(i)} \log \left(\frac{\phi_{S}}{\sqrt{2\pi\sigma_{S}}} e^{-\frac{(\lambda^{(i)} - \mu_{S})^{2}}{2\sigma_{S}^{2}}} \right) \right] = \sum_{i=1}^{m} w_{S}^{(i)} (\chi^{(i)} - \mu_{S}) = 0 \qquad \qquad \qquad \mu_{S} = \frac{\sum_{n=1}^{m} w_{S}^{(i)} \chi^{(i)}}{\sum_{i=1}^{m} w_{S}^{(i)}}$$

$$\frac{\partial \mu_{S}}{\partial L \mathcal{L}'(\theta)} = \sum_{i=1}^{m} \frac{\partial}{\partial s_{i}} \left[\frac{s}{s} \cdot \left(\sqrt{2\pi \sigma_{S}} \right) \right] = \sum_{i=1}^{m} \frac{s}{s} \cdot \left(x^{(i)} - \mu_{S} \right)^{2} - \sigma_{S}^{2} \right] = 0 \quad \longrightarrow \quad \sigma_{S}^{2} = \sum_{i=1}^{m} \frac{\psi_{S}^{(i)}}{\sqrt{2\pi \sigma_{S}}} \left(\frac{\delta_{S}}{\sqrt{2\pi \sigma_{S}}} e^{-\frac{\kappa \sigma_{S}^{2} - \kappa_{S}^{2}}{2\sigma_{S}^{2}}} \right) = \sum_{i=1}^{m} \frac{\psi_{S}^{(i)}}{\sqrt{s}} \left(\left(x^{(i)} - \mu_{S} \right)^{2} - \sigma_{S}^{2} \right) = 0 \quad \longrightarrow \quad \sigma_{S}^{2} = \sum_{i=1}^{m} \frac{\psi_{S}^{(i)}}{\sqrt{2\pi \sigma_{S}}} \left(\frac{\delta_{S}^{2} - \kappa_{S}^{2} - \kappa_{S}^{2}}{2\sigma_{S}^{2} - \kappa_{S}^{2}} \right) = \sum_{i=1}^{m} \frac{\psi_{S}^{(i)}}{\sqrt{2\pi \sigma_{S}}} \left(\frac{\delta_{S}^{2} - \kappa_{S}^{2} - \kappa_{S}^{2}}{2\sigma_{S}^{2} - \kappa_{S}^{2}} \right) = \sum_{i=1}^{m} \frac{\delta_{S}^{2}}{2\sigma_{S}^{2}} \left(\frac{\delta_{S}^{2} - \kappa_{S}^{2} - \kappa_{S}^{2}}{2\sigma_{S}^{2} - \kappa_{S}^{2}} \right) = \sum_{i=1}^{m} \frac{\delta_{S}^{2}}{2\sigma_{S}^{2}} \left(\frac{\delta_{S}^{2} - \kappa_{S}^{2} - \kappa_{S}^{2}}{2\sigma_{S}^{2} - \kappa_{S}^{2}} \right) = \sum_{i=1}^{m} \frac{\delta_{S}^{2}}{2\sigma_{S}^{2}} \left(\frac{\delta_{S}^{2} - \kappa_{S}^{2} - \kappa_{S}^{2}}{2\sigma_{S}^{2} - \kappa_{S}^{2}} \right) = \sum_{i=1}^{m} \frac{\delta_{S}^{2}}{2\sigma_{S}^{2}} \left(\frac{\delta_{S}^{2} - \kappa_{S}^{2} - \kappa_{S}^{2}}{2\sigma_{S}^{2} - \kappa_{S}^{2}} \right) = \sum_{i=1}^{m} \frac{\delta_{S}^{2}}{2\sigma_{S}^{2}} \left(\frac{\delta_{S}^{2} - \kappa_{S}^{2} - \kappa_{S}^{2}}{2\sigma_{S}^{2} - \kappa_{S}^{2}} \right) = \sum_{i=1}^{m} \frac{\delta_{S}^{2}}{2\sigma_{S}^{2}} \left(\frac{\delta_{S}^{2} - \kappa_{S}^{2} - \kappa_{S}^{2}}{2\sigma_{S}^{2} - \kappa_{S}^{2}} \right) = \sum_{i=1}^{m} \frac{\delta_{S}^{2}}{2\sigma_{S}^{2}} \left(\frac{\kappa_{S}^{2} - \kappa_{S}^{2} - \kappa_{S}^{2}}{2\sigma_{S}^{2} - \kappa_{S}^{2}} \right)$$

lacktriangledown ϕ_S and ϕ_T cannot take any value lacktriangledown Under constraint: $\phi_S+\phi_T=1$ Find the terms that only depends on ϕ_S and ϕ_{T} $^-$

$$\mathcal{LL}(\theta) = \sum_{i=1}^{m} w_i^{(i)} \log(\phi_S) + w_i^{(i)} \log(\phi_T) \longrightarrow \text{Construct a Lagrangian:} \quad \mathcal{L}(\phi_S) = \left(\sum_{i=1}^{m} w_S^{(i)} \log(\phi_S) + w_T^{(i)} \log(\phi_T)\right) + \beta(\phi_S + \phi_T - 1)$$

$$\frac{1}{\partial \mathcal{L}(\phi_S)} = \frac{\sum_{i=1}^{m} w_S^{(i)}}{\phi_S} + \beta = 0 \quad \boxed{\bigcirc} \phi_S = \frac{\sum_{i=1}^{m} w_S^{(i)}}{-\beta} \quad \phi_T = \frac{\sum_{i=1}^{m} w_T^{(i)}}{-\beta} \quad \boxed{\bigcirc} \rho_T = \frac{\sum_{i=1}^{m} w_T^{(i)}}{-\beta} = m$$

(B)

Solutions of maximizing $\mathcal{LL}'(heta)$ (optional)

$$\begin{cases} \mu_S = \sum_{l=1}^{N_{max}} w_l^{Q_1} \chi^{(l)} \\ \sum_{l=1}^{N_{max}} w_l^{Q_2} \chi^{(l)} \\ \zeta_S^2 = \sum_{l=1}^{N_{max}} w_l^{Q_1} (\chi^{(l)} - \mu_S)^2 \\ \phi_S = \sum_{l=1}^{N_{max}} w_l^{Q_1} (\chi^{(l)} - \mu_S)^2 \\ \phi_S = \sum_{l=1}^{N_{max}} w_l^{Q_2} \\ \phi_S = \sum_{l=1}^$$

Repeatedly update all parameters, $\phi_S,\phi_T,\mu_S,\mu_T,\sigma_S,\sigma_T$ until convergence

In which,
$$\mathbf{w}_{S}^{(i)} = p(S|\mathbf{x}^{(i)}) = \frac{p(\mathbf{x}^{(i)}|S)\phi_{S}}{p(\mathbf{x}^{(i)}|S)\phi_{S} + p(\mathbf{x}^{(i)}|T)\phi_{T}}$$

$$\mathbf{w}_{T}^{(i)} = p(T|\mathbf{x}^{(i)}) = \frac{p(\mathbf{x}^{(i)}|S)\phi_{S}}{p(\mathbf{x}^{(i)}|S)\phi_{S} + p(\mathbf{x}^{(i)}|T)\phi_{T}}$$

(A)

Compare with K-means E-M (Expectation-Maximization) Algorithm (1-D Gaussian)

Assume the data $\{x^{(\ell)}\}$ are drawn from k Gaussian distributions with probabilities $\phi_1,\phi_2,\cdots,\phi_k$ fach distribution has parameters μ_l,σ_l $(J=1,2,\cdots,k)$

Randomly initialize all parameters $\phi_1,\phi_2,\cdots,\phi_k$ and $\mu_j,\sigma_j\ (j=1,2,\cdots,k)$

E-step: For each $x^{(l)}$, compute the expectation of which distribution it is from

$$\mathbf{w}_{j}^{(i)} \coloneqq p(z^{(i)} = j | x^{(i)}) = \frac{p(x^{(i)} | \mu_{j}, q) \phi_{j}}{\sum_{j} p(x^{(i)} | \mu_{j}, q) \phi_{j}} \quad \text{For } j = 1, 2, \cdots, k$$

M-step: Update the parameters (as if $w_j^{(i)}$ is correct) by maximizing the likelihood:

$$\mu_{j} \coloneqq \frac{\sum_{i=1}^{m} w_{j}^{(i)} \chi_{i}^{(j)}}{\sum_{i=1}^{m} w_{j}^{(j)}} \quad \sigma_{j}^{j} \coloneqq \frac{\sum_{i=1}^{m} w_{j}^{(i)} (\chi^{(i)} - \mu_{j})^{2}}{\sum_{i=1}^{m} w_{j}^{(i)}} \quad \phi_{j} \coloneqq \frac{\sum_{i=1}^{m} w_{j}^{(i)}}{m} \quad \text{For } j = 1, 2, \dots, k$$

·O

Randomly initialize all k centroids μ_1,μ_2,\cdots,μ_k

Repeat until convergence {

E-step: For each $x^{(i)}$, assign it to the closes $c^{(i)} \coloneqq \arg\min_{j} ||x^{(i)} - \mu_j||^2$

 $\mu_j \coloneqq \frac{\sum_{l=1}^m 1\{c^{(l)} = j\} x^{(l)}}{\sum_{l=1}^m 1\{c^{(l)} = j\}}$

Demonstration with k = 2, 1-D Gaussian

Demonstration with k = 2, 1-D Gaussian

Weight (lbs)

Demonstration with k = 2, 1-D Gaussian

What about multivariate Gaussians?

A random vector
$$X = \begin{pmatrix} X_1 \\ X_n \end{pmatrix}$$
 is said to have a multivariate Gaussian distribution if its probability density function is:
$$p(X) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Mean: $\mu \in \mathbb{R}^n$

Property:
$$\frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}\exp\left(-\frac{1}{2}(x-\mu)^{T}\Sigma^{-1}(x-\mu)\right)dx_{1}dx_{2}\cdots dx_{n}=1.$$

(a)

Covariance matrix

If X_i , Y_j are a pair of 1-D random variables

Then the covariance is defined as: $Cov[X_l,Y_j] = E\left[\left(X - E(X_l)\right)\left(Y - E(Y_l)\right)\right] = E[X_lY_j] - E(X_l)E(Y_l)$

If
$$X = \binom{X_1}{:}_Y Y = \binom{Y_1}{:}_Y$$
 are a pair of n-D random variables

Then the covariance matrix Σ is a $n\times n$ symmetric matrix whose (i,j) th entry is $Cov[X_i,Y_j]$

$$\Sigma = \begin{bmatrix} Cov[X_1, Y_1] Cov[X_1, Y_2] & Cov[X_1, Y_n] \\ Cov[X_2, Y_1] Cov[X_2, Y_2] & \dots Cov[X_2, Y_n] \\ \vdots & \vdots & \vdots & \vdots \\ Cov[X_n, Y_1] Cov[X_n, Y_2] & Cov[X_n, Y_n] \end{bmatrix}$$

·O

When n=2, 2-D Gaussian distribution

$$= \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \\ \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$p(x) = \frac{1}{2\pi} \frac{1}{\begin{vmatrix} \sigma_1^2 & \sigma_1 \sigma_2 \end{vmatrix}^{1/2}} \exp \left(-\frac{1}{2} \begin{pmatrix} x_1 - \mu_1 \end{pmatrix}^T \begin{bmatrix} \sigma_2^2 & \sigma_1 \sigma_2 \end{bmatrix}^{-1} \begin{pmatrix} x_1 - \mu_1 \\ \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}^{-1} \begin{pmatrix} x_2 - \mu_2 \\ x_2 - \mu_2 \end{pmatrix} \right)$$

Special case: covariance matrix is diagonal

$$= \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} \qquad p(x) = \frac{1}{2\pi} \frac{1}{\sigma_1^2} \exp\left(-\frac{1}{2} \left(\frac{x_1 - \mu_1}{2} \right)^T \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix} - \left(\frac{x_1 - \mu_1}{2} \right) \right)$$

$$= \frac{1}{2\pi} \frac{\sigma_1^2}{\sigma_1^2 \sigma_2^2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)}{2} \right)^T \begin{bmatrix} 1/\sigma_1^2 & 0 \\ 0 & 1/\sigma_2^2 \end{bmatrix} - \frac{(x_1 - \mu_1)}{2} \right)$$

$$= \frac{1}{2\pi\sigma_1 \sigma_2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 - \frac{1}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2\pi\sigma_1} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2\pi\sigma_2} \exp\left(-\frac{1}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2\pi\sigma_1} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2\pi\sigma_2} \exp\left(-\frac{1}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2\pi\sigma_2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2\pi\sigma_2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2\pi\sigma_2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2\pi\sigma_2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2\pi\sigma_2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2\pi\sigma_2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2\pi\sigma_2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_2^2} (x_2 - \mu_2)^2 \right)$$

$$= \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_2^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_2^2} (x_1 - \mu_1)^2 \right)$$

$$= \frac{1}{2} \exp\left(-\frac{1}{2} \frac{(x_1 - \mu_1)^2}{2\sigma_1^2} (x_1 - \mu_1)^2 \right) - \frac{1}{2} \exp\left($$

Contours of 2-D Gaussians

$$x = \binom{X}{\chi_2}$$

$$p(X) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2\sigma_1^2}(x_1 - \mu_1)^2 - \frac{1}{2\sigma_2^2}(x_2 - \mu_2)^2\right)$$

$$\mu = {\mu_1 \choose \mu_2}$$
 . To draw contours, let $p(x)$ be a constant

$$p(x) = c \implies 1 = \frac{(x_1 - \mu_1)^2}{2a_1^2 \log \left(\frac{1}{2\pi c a_1 a_2}\right)} + \frac{(x_2 - \mu_2)^2}{2a_2^2 \log \left(\frac{1}{2\pi c a_1 a_2}\right)}$$

 $\Sigma = \begin{bmatrix} \sigma_1^2 & 0 \\ 0 & \sigma_2^2 \end{bmatrix}$

(O)

PDF for x_2

PDF for x_1

Covariance matrix decides the shape of ellipse

$$\mu = \begin{pmatrix} 2 & 1 & 0 & 5 \\ 2 & 2 & 0 & 0 \end{pmatrix}$$

E-M algorithm for mixture of multivariate gaussians

Assume the data $\{\chi^{(\ell)}\}$ are drawn from k n-D Gaussian distributions with probabilities $\phi_1,\phi_2,\cdots,\phi_k$ Each distribution has parameters $\mu_1,\Sigma_1\ (j=1,2,\cdots,k)$

Randomly initialize all parameters
$$\phi_1,\phi_2,\cdots,\phi_k$$
 and μ_i,Σ_j $(j=1,2,\cdots,k)$

Repeat until convergence {

E-step: For each $\boldsymbol{x}^{(l)}$, compute the expectation of which distribution it is from

$$w_j^{(i)} \coloneqq p(z^{(i)} = j[x^{(i)}] = \frac{p(x^{(i)}|\mu_j,\Sigma_j)\phi_j}{\sum_j p(x^{(i)}|\mu_j,\Sigma_j)\phi_j} \quad \text{For } j = 1,2,\cdots,k$$
 M-step: Update the parameters (as if $w_j^{(i)}$ is correct) by maximizing the likelihood:

$$\mu_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} \chi^{(i)}}{\sum_{i=1}^{m} w_{j}^{(i)}} \quad \Sigma_{j} := \frac{\sum_{i=1}^{m} w_{j}^{(i)} (\chi^{(i)} - \mu_{j}) (\chi^{(i)} - \mu_{j})^{T}}{\sum_{i=1}^{m} w_{j}^{(i)}} \quad \text{for } j = 1, 2, \dots, k$$

(A)

. (C)

Demo of learning a mixture of 2-D Gaussians

Random initialization
For each
$$\kappa^{(0)}$$
, compute

$$\begin{split} \mathbf{w}_{1}^{(i)} &= \frac{p(\mathbf{x}^{(i)}|\mu_{1},\Sigma_{1})\phi_{1}}{p(\mathbf{x}^{(i)}|\mu_{1},\Sigma_{1})\phi_{2} + p(\mathbf{x}^{(i)}|\mu_{2},\Sigma_{2})\phi_{2}} \\ p(\mathbf{x}^{(i)}|\mu_{1},\Sigma_{1})\phi_{1} + p(\mathbf{x}^{(i)}|\mu_{2},\Sigma_{2})\phi_{2} \\ w_{2}^{(i)} &= \frac{p(\mathbf{x}^{(i)}|\mu_{2},\Sigma_{2})\phi_{2}}{p(\mathbf{x}^{(i)}|\mu_{1},\Sigma_{1})\phi_{1} + p(\mathbf{x}^{(i)}|\mu_{2},\Sigma_{2})\phi_{2}} \end{split}$$

$$\mu_1 \coloneqq \frac{\sum_{i=1}^m w_i^{(i)} x^{(i)}}{\sum_{i=1}^m w_i^{(i)}} \quad \mu_2 \coloneqq \frac{\sum_{i=1}^m w_2^{(i)} x^{(i)}}{\sum_{i=1}^m w_2^{(i)}}$$

(B)

Demo of learning a mixture of 2-D Gaussians (cont.)

