Title: PEPTIDE TURN MIMETICS

IN THE CLAIMS

Pending claims are as follows, no amendments are made.

1-112. (Canceled)

113. (Previously Presented) A general mimetic of the structure

wherein:

indicates a bond at a chiral centre of the structure which centre may be in the R or S configuration or a mixture thereof;

R, R¹ and R² are amino acid side chain groups which may be the same or different;

M' and M" may be the same or different and are selected from the group consisting of hydrogen, C_1 - C_4 alkyl, chloro and C_1 - C_4 alkoxy;

 M^3 , M^4 , M^5 and M^6 define a lactam as follows:

- (i) M^3 , M^4 when taken together with the ring carbon to which they are attached form a carbonyl group, M^5 and M^6 = H, or
- (ii) M^3 is H and $M^4 = M'$, M^5 and M^6 when taken together with the carbon atom to which they are attached form a carbonyl group;

Z' is selected from the group consisting of hydrogen or methyl or part of a cyclic amino acid sidechain joined to \mathbb{R}^1 ;

PgN is a protecting group for amine;

Title: PEPTIDE TURN MIMETICS

 R^{C} is selected from the group consisting of a carboxy terminal part of the mimetic, hydrogen, R, and CH $_{2}$ R; and

Z is selected from the group consisting of hydrogen, methyl, ethyl, formyl, acetyl, - CH₂R, and C(O)R.

- 114. (Withdrawn) A peptide mimetic as claimed in claim 113 wherein when Q^1 and Q^2 form a cyclic group Q^1Q^2 which is selected from the group consisting of CH(R)C(O)-, -CH₂CH(R)C(O)-, -CH₂CH(R)CH₂-, -CH₂CH(R)CH₂-, -CH₂CH(R)CH₂-, -CH₂CH(R)CH₂-, -CH₂CH(R)-, -CH₂CH(R)CH₂-, -CH₂CH(R)-, -CH(R)CH₂-, -CH₂CH(R)CH₂-, -CH(R)CH₂-, -CH(R)CH₂-,
- 115. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein Q^1 is R, Q^2 is Z, Q^3 is C(O) or CH₂.
- 116. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein Q^1 is R, Q^2 is Z, Q^3 is $-C(O)N(Q^5)CH(R)C(O)$ or $-C(O)N(Q^5)CH(R)CH_2$ -.
- 117. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein Q^1 is CH(R)C(O) Q^2 , Q^1Q^2 forms a cyclic group –CH(R)C(O)-Q 2 , Q^3 is C(O) or CH $_2$.
- 118. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein Q^1 is $\text{CH}_2\text{CH}(R)\text{C}(O)Q^2 \,, \, Q^1Q^2 \text{forms a cyclic group -CH}_2\text{CH}(R)\text{C}(O) -, \, Q^3 \text{ is C}(O) \text{ or CH}_2.$

Filing Date: February 6, 2001
Title: PEPTIDE TURN MIMETICS

- 119. (Previously Presented) A peptide mimetic as claimed in Claim 113 wherein $\mathbb{R}^{\mathbb{C}}$ is $\mathbb{C}(\mathbb{O})\mathbb{P}_{\mathbb{S}}^{\mathbb{C}}$ where $\mathbb{P}_{\mathbb{S}}^{\mathbb{C}}$ is a protecting group for carboxylic acid.
- 120. (Previously Presented) A peptide mimetic as claimed in Claim 119 wherein Pg^C is selected from the group consisting of alkoxy, benzyloxy, allyloxy, fluorenylmethyloxy, amines forming easily removable amides, a cleavable linker to a solid support, the solid support, hydroxy, NHR, OR, R or the remaining C-terminal portion of the mimetic.
- 121. (Previously Presented) A peptide mimetic as claimed in Claim 113 wherein PgN is selected from a group consisting of Boc, Cbz, Alloc, trityl, a cleavable linker to a solid support, the solid support, hydrogen, R, C(O)R or part of the remaining N-terminal portion of the mimetic.
- 122. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein M' or M" is methoxy.
- 123. (Withdrawn) A peptide mimetic is claimed in Claim 113 wherein M' or M" is methyl.
- 124. (Previously Presented) A peptide mimetic as claimed in Claim 113 wherein Z is H, Z^1 is H and R^C is $C(O)Pg^C$.
- 125. (Withdrawn) A peptide mimetic as claimed in Claim 124 wherein \mathbb{R}^1 and \mathbb{R}^2 \ddot{y} H
- 126. (Previously Presented) A peptide mimetic as claimed in claim 113 wherein Z is hydrogen, M^5 and M^6 when taken together with the carbon atom to which they are attached form a carbonyl group, $Z^1 = H$, and R^C is $C(O)Pg^C$.
- 127. (Withdrawn) A peptide mimetic as claimed in Claim 126 wherein R¹ and R² ÿ H

PEPTIDE TURN MIMETICS

- 128. (Withdrawn) A peptide mimetic as claimed in Claim 113 wherein Q^1 is R^1 , Q^2 is hydrogen, Q^3 is $-C(O)N(Q^5)CH(R)C(O)$, Z^1 =H and R^C is $C(O)Pg^C$.
- 129. (Withdrawn) A peptidé mimetic as claimed in Claim 113 wherein Q^1 is R^1 , Q^2 is hydrogen, Q^3 is $-C(O)N(Q^5)CH(R)CH_2$ -, Z^1 =H and R^C is $C(O)Pg^C$.
- 130. (Withdrawn) A peptide mimetic as claimed in Claim 114 wherein Q^1Q^2 is CH(R²)C(O)-, Q^3 is C(O), Z^1 =R¹ and R^C is C(O)Pg^C.
- 131. (Withdrawn) A peptide mimetic as claimed in Claim 114 wherein Q^1Q^2 is $CH(R^2)C(O)$ -, Q^3 is CH_2 , Z^1 = R^1 and R^C is $C(O)Pg^C$.
- $\label{eq:continuous} \begin{tabular}{ll} 132. & (Withdrawn) \ A \ peptide \ mimetic \ as \ claimed \ in \ Claim \ 114 \ wherein \ Q^1Q^2 \ is CH_2CH(R^2)C(O)-, \ Q^3 \ is \ C(O), \ Z^1=R^1 \ and \ R^C \ is \ C(O)Pg^C. \end{tabular}$
- 133. (Withdrawn) A peptide mimetic as claimed in Claim 114 wherein Q^1Q^2 is $CH_2CH(R^2)C(O)$ -, Q^3 is CH_2 , $Z^1=R^1$ and R^C is $C(O)Pg^C$.
- 134. (Previously Presented) A peptide mimetic according to claim 113 wherein R,R^1 and R^2 are each independently selected from the group consisting of
 - (i) -CH3,
 - (ii)
 - (iii) -CH2SH,
 - (iv) -CH₂CH₂-C(O)NH₂,
 - (v) -H,
 - (vi) -CH(CH₃)CH₂CH₃,
 - (vii) -CH2-CH(CH3)2,
 - (viii) -CH2CH2S-CH3,

- (ix) -CH₂Ph,
 - (x) -CH2OH.
 - (xi) -CH(OH)CH₃,
 - (xii) -CH2-(3-indolyl)
 - (xiii) -CH2-Ph-OH,
 - (xiv) -CH(CH3)2,
 - (xv) -CH2CO2H,
- (xvi)
- (xvii)
 - (xix) -CH2-CH2-CH2-NH2.
 - (xx) -CH2CH2CO2H.
- 135. (Previously Presented) A mimetic according to claim 113 having the structure:
- 136. (Withdrawn) A mimetic according to claim 113 having the structure:
- 137. (Previously Presented) A peptide mimetic as claimed in claim 135 wherein M', M" are H.
- 138. (Previously Presented) A peptide mimetic as claimed in claim 135 wherein \mathbb{Z} , \mathbb{Z}^1 are \mathbb{H} .
- 139. (Withdrawn) A peptide mimetic as claimed in claim 135 wherein R 1 and R 2 \ddot{y} H.
- 140. (Previously Presented) A peptide mimetic as claimed in claim 135 wherein R^C is $C(O)Pg^C$ where Pg^C is a protecting group for carboxylic acid.

Filing Date: February 6, 2001
Title: PEPTIDE TURN MIMETICS

- 141. (Withdrawn) A peptide mimetic as claimed in claim 136 wherein M', M" are H.
- 142. (Withdrawn) A peptide mimetic as claimed in claim 136 wherein Z, Z^1 are H.
- 143. (Withdrawn) A peptide mimetic as claimed in claim 136 wherein \mathbb{R}^1 and \mathbb{R}^2 \ddot{y} H.
- 144. (Withdrawn) A peptide mimetic as claimed in claim 136 wherein R^C is $C(O)Pg^C$ where Pg^C is a protecting group for carboxylic acid.