

WHAT IS CLAIMED IS:

- 1 1. A voltage regulation system for multiword programming in a non volatile
2 memory, for example of the Flash type, with low circuit area occupation, wherein the memory
3 comprises at least a memory cell matrix organized in cell rows and columns and with
4 corresponding circuits responsible for addressing, decoding, reading, writing and erasing the
5 memory cell content, each cell having a drain terminal connected to a matrix column and biased
6 in the programming step with a predetermined voltage value by a program load circuit associated
7 with each matrix column, the system further including, in parallel with each program load
8 circuit, a conduction-to-ground path enabled by a controlled active element.

- 1 2. The system according to claim 1, wherein the controlled active element is a pass
2 transistor receiving on the control terminal thereof a first enabling signal.

- 1 3. The system according to claim 2, wherein the first enabling signal is
2 complementary to a second enabling signal applied to the corresponding program load circuit.

- 1 4. The system according to claim 1, wherein the conduction-to-ground path is a
2 redundant current path.

- 1 5. The system according to claim 1, wherein the conduction-to-ground path is a
2 dummy current path.

- 1 6. A non-volatile memory circuit, comprising:
 - 2 a non-volatile memory cell coupled to a bit line and a word line; and
 - 3 a selectively actuated conduction to ground path coupled to the bit line.
- 1 7. The circuit of claim 6 wherein the non-volatile memory cell comprises a floating gate transistor having its drain terminal connected to the bit line and its gate connected to the word line.
- 1 8. The circuit of claim 6 further including a bit line biasing circuit coupled to the bit line, the selectively actuated conduction to ground path being connected in parallel with the bit line biasing circuit.
- 1 9. The circuit of claim 6 wherein the selectively actuated conduction to ground path is coupled to the bit line through at least a column decoding circuit.
- 1 10. The circuit of claim 6 wherein the selectively actuated conduction to ground path is coupled to the bit line through at least a bit line biasing circuit.
- 1 11. The circuit of claim 10 wherein the bit line biasing circuit and the selectively actuated conduction to ground path are oppositely activated.

1 12. A non-volatile memory, comprising:
2 a memory matrix including a plurality of memory cells arranged in columns, each
3 associated with a bit line, and rows, each associated with a word line;
4 a column programming circuit coupled between a programming voltage source
5 and each bit line and activated in response to a first control signal; and
6 a bypass path circuit for each bit line and coupled between the programming
7 voltage source and ground and activated in response to a second control signal.

1 13. The memory of claim 12 wherein each memory cell comprises a floating gate
2 transistor having its drain terminal connected to the bit line and its gate connected to the word
3 line.

1 14. The memory of claim 12 wherein, for each column, the first and second control
2 signals are complementary.

1 15. The memory of claim 12 further including a column decoding circuit for each
2 column.

1 16. The memory of claim 12 wherein the bypass path circuit comprises a pass
2 transistor for each column coupled between the programming voltage source and ground.

1 17. A voltage regulation system for a non volatile memory including a memory cell
2 matrix organized in cell rows and columns, comprising:

3 a program load circuit for each matrix column that biases each memory cell in a
4 selected matrix column with a predetermined voltage value during a programming operation; and
5 a conduction-to-ground path for each matrix column, each path being enabled
6 when its associated matrix column is not selected during the programming operation.

1 18. The system of claim 17 wherein each memory cell comprises a floating gate
2 transistor having its drain terminal connected to a bit line for a column and its gate connected to
3 a word line for a row.

1 19. The system of claim 17 further including a column decoding circuit for each
2 column.

1 20. The system according to claim 17, wherein the conduction to ground path
2 includes a controlled active element comprising a pass transistor receiving on a control terminal
3 thereof a first enabling signal.

1 21. The system according to claim 20, wherein the first enabling signal is
2 complementary to a second enabling signal applied to the corresponding program load circuit.

1 22. The system according to claim 17, wherein the conduction-to-ground path is a
2 redundant current path for the program load circuit.

1 23. The system according to claim 17, wherein the conduction-to-ground path is a
2 dummy current path for the program load circuit.