

INTRODUCTION TO COMPUTER SYSTEMS (IT1020)

Year 1, Semester 1
Practical Answer Submission 5

<IT22350732> , <Imeth Mendis> <5.2>

10/24/2022

1) Draw truth tables and compare

i)

Х	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

a)

Α	В	0
0	0	0
0	1	1
1	0	1
1	1	0

ii) Half Adder

Α	В	Sum	Carrybit
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

iii) Full Adder (Using 2 Half Adders)

Α	В	Carry in	Carry out	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

2)Parallel Adder

2) Binary Decoder

X0	X1	Y0	Y1	Y2	Y3
0	0	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	1	0	0	1	0

3) Multiplexer

C1	CO	X		Υ
0	0	X0	0	0
U	O	XU	1	1
0	1	X1	0	0
U	1		1	1
1	0	X2	0	0
1	O		1	1
1	1	Х3	0	0
1	1	λ3	1	1

4) 4 to 1 mux and 2 to 4 De – mux

i) 4 to 1 mux

C1	CO	Х		Υ	
0	0	X0	0	0	
0	U	Α0	1	1	
0	1	1 1	V4	0	0
0	1	X1	1	1	
1	0	X2	0	0	
1	U		1	1	
1	1 V2	Х3	0	0	
1	1	Λ3	1	1	

ii) 2 to 4 De – mux

C1	C0	X0	X1	X2	Х3
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

5) R-S Flip Flop

S	R	Q	Not Q
1	0	1	0
0	0	1	0
0	1	0	1
0	0	0	1

6) F = ABC' + B'C + AC

7) Design a circuit to generate the parity bit using even parity scheme for a 3 - bit message.

Α	В	С	0
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Using Sum Of Products (SOP);

$$A'B'C + A'BC' + AB'C' + ABC$$

$$= A' (B'C + BC') + A (B'C' + BC)$$

$$= A'X + AX'$$

$${X = B'C + BC', X' = B'C' + BC}$$

= A ⊕ X

= A ⊕ B ⊕ C

8) Design a circuit to output whether the decimal numbers 0-7, is a prime number or not.

Α	В	С	0
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Using Sum Of Products (SOP);

$$A'BC' + A'BC + AB'C + ABC$$

= A'B(C' + C) + AC(B' + B) {Distributive Law}

= A'B (1) + AC (1) {Inverse Law}

= A'B + AC {Identity Law}

a) If the requirement is only to check decimal numbers 2 - 7

Α	В	С	0
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Using Product Of Sum (POS);

$$(A + B + C) (A + B + C')$$

= (A + B) + (C . C') {Distributive Law}

= (A + B) + (0) {Inverse Law}

= A + B {Identity Law}

