ID:	Name:

Set

BRAC UNIVERSITY Inspiring Excellence

Brac University

Semester: Summer 2023 Course Code: CSE250 Circuits And Electronics

- ✓ No washroom breaks. Phones must be turned off. Using/carrying any notes during the exam is not allowed.
- \checkmark At the end of the exam, both the **answer script** and the **question paper** must be returned to invigilator.
- ✓ All **3 questions** are compulsory. Marks allotted for each question are mentioned beside each question.
- \checkmark Answer the question 1(c) on the question paper using the provided grid.
- ✓ Symbols have their usual meanings.

■ Question 1 of 3 [CO2, CO3] [20 marks]

Consider the the following circuits which are equivalent to each other.

- (a) [7 marks] Derive Circuit 2 from Circuit 1. What are the values of $V^{'}$ and $R^{'}$?
- (b) [9 marks] Now, analyze the transient behavior of the circuit assuming that the switch moves from position b to position a at t = 0. Determine i(t) for t > 0.

(c) [4 marks] Based on your answer in (b), does the inductor get charged or discharged? In the following grid, draw the current i(t) found in (b) as a function of time. Mark the time where the inductor is fully charged or discharged.

\blacksquare Question 2 of 3 [CO2] [15 marks]

Consider the following circuit with a load R_L connected between terminals a and b.

- (a) [8 marks] Determine the value of R_L that will draw the maximum power from the circuit.
- (b) [7 marks] Determine the value of the maximum power.

\blacksquare Question 3 of 3 [CO3] [20 marks]

(a) [4 marks] The input $v_{in}(t)$ and output $v_{out}(t)$ voltage waveforms of a two terminal ac circuit are plotted as a function of time below. **Determine** mathematically the phase difference between the two and specify which one is leading.

(b) When a current of $i_s = 2\cos(100t - 60^\circ)$ A passes through an unknown circuit element with an impedance of $Z_{unknown}$, it causes a voltage drop of $v_z = 4\cos(100t + 30^\circ)$ V across it as shown below.

- (i) [1 mark] Does the voltage (v_z) lead or lag the current (i_s) ?
- (ii) [1 mark] Determine the value of the impedance $Z_{unknown}$.
- (iii) [2 marks] Based on your answer in (ii), guess the circuit element and determine the value of it with appropriate units.
- (c) [12 marks] For the circuit shown below, determine $v_o(t)$, the voltage across the capacitor.

