Chapter 1 Module

1.3 Exercise

3.4 Prove that Zmn ≃ Zm ⊕ Zn as Z modules iff gcdcm,n) = 1.

Proof. " \Rightarrow " $\mathbb{Z}_m \cong \mathbb{Z}_m \oplus \mathbb{Z}_n$ as \mathbb{Z}_m module means $\mathbb{Z}_m \times \mathbb{Z}_m \times \mathbb{Z}_m$ as Abelian group. Let the isomorphism be

$$\psi \colon \mathbb{Z}_{mn} \longrightarrow \mathbb{Z}_m \times \mathbb{Z}_n$$

Notice the order of $1_{Z_{mn}}$ in Z_{mn} is mn. $\Psi(1_{Z_{mn}}) = (1_{Z_{mn}}, 1_{Z_{n}})$. This isomorphism implies order $(\Psi(1_{Z_{mn}})) = \text{order}(1_{Z_{mn}}) = m \cdot n$. But we know $\text{order}[(1_{Z_{m}}, 1_{Z_{n}})] = \text{l}(m \cdot m, n)$ in $Z_{m} \times Z_{n}$. Using the formula $\text{l}(m \cdot m, n) = m \cdot n / \text{gcd}(m, n)$, we see gcd(m, n) = 1.

"\(\pm \)". If $\text{gcd}(m \cdot n) = 1$. Define

$$f: \mathbb{Z}_{mn} \to \mathbb{Z}_m \oplus \mathbb{Z}_n$$

$$[\alpha I_{\mathbb{Z}_{mn}} \mapsto ([\Omega I_{\mathbb{Z}_m}, [\alpha J_{\mathbb{Z}_n})])$$

We need to show it's an isomorphism.

0 f is well-defined. For $a-a'=k\cdot mn$, it's clear $[a]_{z_m}=[a']_{z_m}$ and $[a]_{z_n}=[a']_{z_n}$.

2) f is I module map.

3 f is surjective

 Θ Ker f = o.

3.5. Let p be a prime number, prove that $\mathbb{Z}_p e$ ($e \in \mathbb{Z}_{>0}$) can not be written as direct sum of two submodules (or \mathbb{Z} module)

Proof. Suppose $\mathbb{Z}pe=\mathbb{Z}m\oplus\mathbb{Z}n$, then $\gcd(cm,n)=1$ and $m\cdot n=p^e$, which is impossible.