<u>Proof.</u> Without loss of generality we may assume r=1 , hence $\alpha=0$ and $T(\tau)h_O=h_O$.

(a) Defining

(1.14)
$$h := \int_0^{\tau} T(s) h_0 ds$$

then for $0 \le t \le \tau$ we have

$$\begin{split} \mathbf{T}(t) \, \mathbf{h} &= \, \int_0^\tau \, \mathbf{T}(s + t) \, \mathbf{h}_o \, \, \mathrm{d}s \, = \, \int_t^\tau \, \mathbf{T}(s) \, \mathbf{h}_o \, \, \mathrm{d}s \, + \, \int_\tau^{\tau + t} \, \mathbf{T}(s - \tau) \, \mathbf{T}(\tau) \, \mathbf{h}_o \, \, \mathrm{d}s \, = \\ &= \, \int_t^\tau \, \mathbf{T}(s) \, \mathbf{h}_o \, \, \mathrm{d}s \, + \, \int_0^t \, \mathbf{T}(s) \, \mathbf{T}(\tau) \, \mathbf{h}_o \, \, \mathrm{d}s \, = \, \mathbf{h} \, \, \, . \end{split}$$

It follows that Ah = lim $t^{-1}(T(t)h - h) = 0$. So far, positivity was not used. The point is that in general, h may be zero. But if (T(t)) is positive and $h_0 \ge 0$, then $s \to (T(s)h_0)(x)$ is a continuous positive function, hence $0 < h_0(x_0) = (T(0)h_0)(x_0)$ implies $h(x_0) = \int_0^\tau (T(s)h_0)(x_0) ds > 0$. (b) Defining $\phi := \int_0^\tau T(s)'\phi_0 ds$, one can proceed as in (a) to obtain the desired result.

We use Prop.1.5 to prove an analogue of the famous Krein-Rutman result. For the sake of completeness we include the proof of this classical result, which states that the spectral radius of a positive operator T on C(K) (or more generally on an order unit space) is an eigenvalue of the adjoint T' (see the Corollary of Thm.2.6 in the appendix of Schaefer (1966)).

Theorem 1.6. Suppose K is compact and $(T(t))_{t \ge 0}$ is a positive semigroup with generator A . Then there exists a positive probability measure $\phi \in D(A')$ such that $A'\phi = \omega(A)\phi$.

<u>Proof.</u> Consider T:=T(1), $r:=r(T)=e^{\omega(A)}$. In view of Prop.1.5 it is enough to show that r is an eigenvalue of T' with a positive eigenvector. Given $\lambda \in \mathbb{C}$, $|\lambda| > r$ and $f \in C(K)$ we have $|R(\lambda,T)f|=|\sum_{n=0}^{\infty} \lambda^{-n-1} T^n f| \leq \sum_{n=0}^{\infty} |\lambda|^{-n-1} T^n |f| = R(|\lambda|,T)|f|$. It follows that $|R(\lambda,T)| \leq |R(|\lambda|,T)|$ and therefore

$$(1.15) \quad \lim_{\lambda \downarrow r} ||R(\lambda,T)|| = \infty .$$

By the uniform boundedness principle there exist a sequence (λ_n) , λ_n+r and a positive $\Psi\in M(K)$ such that $\|R(\lambda_n,T)^{\dagger}\Psi\|\to\infty$. Defining $\Psi_n:=\|R(\lambda_n,T)^{\dagger}\Psi\|^{-1}R(\lambda_n,T)^{\dagger}\Psi$ we have