

Car detection using YOLO and Faster R-CNN

Filip Buljan, Lovro Akmačić, Lucia Crvelin, Lorena Švenjak, Tomislav Čupić

Overview

- Problem
 - About the problem
 - Existing methods
 - Our approach to the problem
 - Eksperimental results of methods
- Conclusion
 - Future improvements

- Used two state-of-the-art deep models
 - YOLO (You only look once)
 - Faster R-CNN (Region based Convolutional network)
- Implementation and evaluation
- Comparing the results of models

Why car detection matters and why is it challenging

- Autonomous driving
- Surveillance and traffic analysis

- Varying object sizes and angles
- Lightning Conditions
- Speed vs. accuraccy trade-off

Existing methods overview

YOLO

- Single stage detector
- Entire image in a single pass
- Real-time performance
- Fast
- Less accurate for small objects

Existing methods overview

- Faster R-CNN
 - Two stage detector
 - Region proposal network (RPN)
 - High precision
 - Better bounding boxes
 - Slower and more expensive

Our approach

- YOLOv8
 - pre-trained
 - Detection and counting with bounding boxes and confidence scores

Yolo model – test output example

- Faster R-CNN
 - Pre-trained model COCO
 - Fine tuned model
 - Classification head for cars only
 - Trained with annotated car dataset
 - Improved precision

Pre-trained Faster R-CNN – test output example

Fine-tuned Faster R-CNN – test output example

Our approach

- Our own custom model
- Bad results
- Challenges:
 - Structure of the network
 - Small dataset
 - Custom loss function
 - Connecting postprocessing with training process

Experiment results

- YOLOv8 results
 - Precision 0.919
 - Recall 0.857
 - mAP@50 0.904
 - mAP50-95 0.360
- Fast and accurate
- Low precision at IoU thresholds

Experiment results

- Faster R-CNN pre-trained
 - mAP@50 0.7768
 - mAP@75 0.0645
- Bad localization and detection of small object
- Weak performance without tuning

Experiment results

- Faster R-CNN Fine-tuned:
 - mAP@50 0.9987
 - mAP@75 0.7541
- High precision after fine-tuning
- Still weak on small objects
- Fine-tuning is an effective strategy

https://drive.google.com/file/d/19FnDuN mnvrjnNum3ipGIGDVimcg3iWXY/view? usp=sharing

- YOLOv8 ideal for fast real-time identification of an object
 - Highly efficient for car detection
 - Not precise
- Faster R-CNN ideal when accuracy is critical
 - superior precision

Future improvements

- Edge deployment
- Robustness to challenging conditions
- Improvements in detection
- Different datasets