Computer Vision

Spring 2006 15-385,-685

Instructor: S. Narasimhan

Wean 5403 T-R 3:00pm – 4:20pm

Lecture #20

Announcements

- Homework 5 due today.
- Homework 6 will be released this evening.

Required for Graduate students.

Extra-credit for undergrads.

• No class this Thursday (April 20).

Principal Components Analysis on Images

Lecture #20

Appearance-based Recognition

- Directly represent appearance (image brightness), not geometry.
- · Why?

Avoids modeling geometry, complex interactions between geometry, lighting and reflectance.

• Why not?

Too many possible appearances!

m "visual degrees of freedom" (eg., pose, lighting, etc)

R discrete samples for each DOF

How to discretely sample the DOFs?

How to PREDICT/SYNTHESIS/MATCH with novel views?

Appearance-based Recognition

- Example:
 - Visual DOFs: Object type P, Lighting Direction L, Pose R
- Set of R * P * L possible images:

$$\chi = \{\hat{x}_{RL}^P\}$$

• Image as a point in high dimensional space:

 $\hat{\mathcal{X}}$ is an image of N pixels and A point in N-dimensional space

The Space of Faces

- · An image is a point in a high dimensional space
 - An N x M image is a point in RNM
 - We can define vectors in this space as we did in the 2D case

[Thanks to Chuck Dyer, Steve Seitz, Nishino]

Key Idea

- Images in the possible set $\chi = \{\hat{x}_{\mathit{RL}}^{\mathit{P}}\}$ are highly correlated.
- So, compress them to a low-dimensional subspace that captures key appearance characteristics of the visual DOFs.

• EIGENFACES: [Turk and Pentland]

USE PCA!

Eigenfaces

Eigenfaces look somewhat like generic faces.

Linear Subspaces

 \overline{x} is the mean of the orange points

convert x into v₁, v₂ coordinates

$$\mathbf{x} \to ((\mathbf{x} - \overline{x}) \cdot \mathbf{v}_1, (\mathbf{x} - \overline{x}) \cdot \mathbf{v}_2)$$

What does the v₂ coordinate measure?

- distance to line
- use it for classification—near 0 for orange pts

What does the v_1 coordinate measure?

- position along line
- use it to specify which orange point it is

 \vec{R}

- · Classification can be expensive
 - Must either search (e.g., nearest neighbors) or store large probability density functions.
- Suppose the data points are arranged as above
 - Idea—fit a line, classifier measures distance to line

Dimensionality Reduction

 \overline{x} is the mean of the orange points

- Dimensionality reduction
 - We can represent the orange points with only their v₁ coordinates
 - since $\mathbf{v_2}$ coordinates are all essentially 0
 - This makes it much cheaper to store and compare points
 - A bigger deal for higher dimensional problems

Linear Subspaces

 \overline{x} is the mean of the orange points

G

Consider the variation along direction **v** among all of the orange points:

$$\mathit{var}(\mathbf{v}) = \sum_{\text{orange point } \mathbf{x}} \| (\mathbf{x} - \overline{\mathbf{x}})^T \cdot \mathbf{v} \|^2$$

What unit vector v minimizes var?

$$\mathbf{v}_2 = min_{\mathbf{v}} \{var(\mathbf{v})\}$$

What unit vector v maximizes var?

$$\mathbf{v}_1 = max_{\mathbf{v}} \{var(\mathbf{v})\}$$

$$\begin{split} R \\ \mathit{var}(\mathbf{v}) &= \sum_{\mathbf{x}} \| (\mathbf{x} - \overline{\mathbf{x}})^T \cdot \mathbf{v} \| \\ &= \sum_{\mathbf{x}} \mathbf{v}^T (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^T \mathbf{v} \\ &= \mathbf{v}^T \left[\sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^T \right] \mathbf{v} \\ &= \mathbf{v}^T \mathbf{A} \mathbf{v} \quad \text{where } \mathbf{A} = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^T \end{split}$$

Solution: **v**₁ is eigenvector of **A** with *largest* eigenvalue **v**₂ is eigenvector of **A** with *smallest* eigenvalue

Higher Dimensions

- Suppose each data point is N-dimensional
 - Same procedure applies:

$$\begin{aligned} \mathit{var}(\mathbf{v}) &= \sum_{\mathbf{x}} \| (\mathbf{x} - \overline{\mathbf{x}})^T \cdot \mathbf{v} \| \\ &= \mathbf{v}^T A \mathbf{v} \quad \text{where } A = \sum_{\mathbf{x}} (\mathbf{x} - \overline{\mathbf{x}}) (\mathbf{x} - \overline{\mathbf{x}})^T \end{aligned}$$

- The eigenvectors of A define a new coordinate system
 - eigenvector with largest eigenvalue captures the most variation among training vectors x
 - · eigenvector with smallest eigenvalue has least variation
- We can compress the data by only using the top few eigenvectors
 - corresponds to choosing a "linear subspace"
 - represent points on a line, plane, or "hyper-plane"
 - · these eigenvectors are known as the principal components

Problem: Size of Covariance Matrix A

- Suppose each data point is N-dimensional (N pixels)
 - The size of covariance matrix A is $\stackrel{2}{N}$ x $\stackrel{2}{N}$
 - The number of eigenfaces is N
 - Example: For N = 256 x 256 pixels,Size of A will be 65536 x 65536!Number of eigenvectors will be 65536!

Typically, only 20-30 eigenvectors suffice. So, this method is very inefficient!

Efficient Computation of Eigenvectors

If B is MxN and M<<N then $A=B^TB$ is NxN >> MxM

- M → number of images, N → number of pixels
- use BB^T instead, eigenvector of BB^T is easily converted to that of B^TB

Eigenfaces – summary in words

· Eigenfaces are

the eigenvectors of the covariance matrix of the probability distribution of the vector space of human faces

- Eigenfaces are the 'standardized face ingredients' derived from the statistical analysis of many pictures of human faces
- A human face may be considered to be a combination of these standardized faces

Generating Eigenfaces – in words

- 1. Large set of images of human faces is taken.
- 2. The images are normalized to line up the eyes, mouths and other features.
- 3. The eigenvectors of the covariance matrix of the face image vectors are then extracted.
- 4. These eigenvectors are called eigenfaces.

Eigenfaces for Face Recognition

- When properly weighted, eigenfaces can be summed together to create an approximate grayscale rendering of a human face.
- Remarkably few eigenvector terms are needed to give a fair likeness of most people's faces.
- Hence eigenfaces provide a means of applying <u>data</u> <u>compression</u> to faces for identification purposes.

Dimensionality Reduction

The set of faces is a "subspace" of the set of images

- Suppose it is K dimensional
- We can find the best subspace using PCA
- This is like fitting a "hyper-plane" to the set of faces
 - spanned by vectors $\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_K}$

Any face: $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \ldots + a_k \mathbf{v_k}$

Eigenfaces

- · PCA extracts the eigenvectors of A
 - Gives a set of vectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$, ...
 - Each one of these vectors is a direction in face space
 - · what do these look like?

Projecting onto the Eigenfaces

- The eigenfaces v₁, ..., v_K span the space of faces
 - A face is converted to eigenface coordinates by

$$\mathbf{x} \to (\underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_1}_{a_1}, \ \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_2}_{a_2}, \dots, \ \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v}_K}_{a_K})$$

$$\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_K \mathbf{v}_K$$

Recognition with Eigenfaces

- Algorithm
 - 1. Process the image database (set of images with labels)
 - Run PCA—compute eigenfaces
 - · Calculate the K coefficients for each image
 - Given a new image (to be recognized) x, calculate K coefficients

$$\mathbf{x} \to (a_1, a_2, \dots, a_K)$$

3. Detect if x is a face

$$\|\mathbf{x} - (\overline{\mathbf{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \mathsf{threshold}$$

- 4. If it is a face, who is it?
 - Find closest labeled face in database
 - · nearest-neighbor in K-dimensional space

Key Property of Eigenspace Representation

Given

- $oldsymbol{\cdot}$ 2 images \hat{x}_1,\hat{x}_2 that are used to construct the Eigenspace
- \hat{g}_1 is the eigenspace projection of image $\hat{\mathcal{X}}_1$
- \hat{g}_2 is the eigenspace projection of image \hat{x}_2

Then,

$$\|\hat{g}_2 - \hat{g}_1\| \approx \|\hat{x}_2 - \hat{x}_1\|$$

That is, distance in Eigenspace is approximately equal to the correlation between two images.

Face Recognition Algorithm

(onside 2 \$ * 3 images:

$$\begin{bmatrix}
0 & 0 & 0 \\
10 & 10 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 10 & 0 \\
0 & 10 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 10 & 0 \\
0 & 10 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & I_2 \\
1 & I_2
\end{bmatrix}$$

$$\Rightarrow I_1 = \begin{bmatrix}
0 & 0 & 10 & 10 & 0 & 0
\end{bmatrix}^T$$

$$I_2 = \begin{bmatrix}
0 & 10 & 0 & 10 & 0 & 0
\end{bmatrix}^T$$

$$\begin{bmatrix}
I_1 & I_2 \\
I_2 & I_3 & I_4
\end{bmatrix}$$
(M' is the number of eigenfaces used)

Compute Average Image, A

$$A = (I_1 + I_2)/2$$

$$= \left[\frac{0+0}{2} \frac{0+10}{2} \dots \frac{0+0}{2}\right]$$

$$= \left[0 \le 0 \le 10 \le 0 \le 0\right]^{T}$$

Project I_1 to 1-D "face space"

$$W_1 = \left[W_{1_1}\right]$$
where
$$W_{1_1} = E_1^{T_1} (I_1 - A)$$

$$I_1 - A = \left[0-0 \ 0-5 \ \dots \ 0-0\right]^{T_1}$$

$$= \left[0 - 5 \ 0 \ F \ 0 \le 0 - 5 \ O\right]^{T_1}$$

$$\Rightarrow W_{1_1} = 5 \cdot D + 0 \cdot -5 + \dots + 5 \cdot 0 = 0$$

$$= \left[0 - 5 \ 0 + 0 \cdot -5 + \dots + 5 \cdot 0 = 0\right]$$

Choosing the Dimension K

- How many eigenfaces to use?
- Look at the decay of the eigenvalues
 - the eigenvalue tells you the amount of variance "in the direction" of that eigenface
 - ignore eigenfaces with low variance

Papers

- M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 1991a. URL http://www.cs.ucsb.edu/~mturk/Papers/jcn.pdf. (URL accessed on November 27, 2002).
- M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In Proc. of Computer Vision and Pattern Recognition, pages 586-591. IEEE, June 1991b. URL http://www.cs.wisc.edu/~dyer/cs540/handouts/mturk-CVPR91.pdf. (URL accessed on November 27, 2002).

Limits of PCA

- Attempts to fit a *hyperplane* to the data
 - can be interpreted as fitting a Gaussian, where A is the covariance matrix
 - this is not a good model for some data
- If you know the model in advance, don't use PCA
 - regression techniques to fit parameters of a model
- Several alternatives/improvements to PCA have been developed
 - LLE: http://www.cs.toronto.edu/~roweis/lle/
 - isomap: http://isomap.stanford.edu/
 - kernel PCA: http://www.cs.ucsd.edu/classes/fa01/cse291/kernelPCA article.pdf
 - For a survey of such methods applied to object recognition
 - Moghaddam, B., "Principal Manifolds and Probabilistic Subspaces for Visual Recognition", *IEEE Transactions on Pattern Analysis and Machine Intelligence* (*PAMI*), June 2002 (Vol 24, Issue 6, pps 780-788)

http://www.merl.com/papers/TR2002-13/

More Problems: Outliers

Sample Outliers

Intra-sample outliers

Need to explicitly reject outliers before or during computing PCA.

[De la Torre and Black]

Robustness to Intra-sample outliers

Robustness to Sample Outliers

Finding outliers = Tracking moving objects

Next Week

Next Week

- Recent Trends in Computer Vision
 - This semester: Novel Sensors
 - Reading: notes, papers, online resources.