TP558 - Tópicos avançados em aprendizado de máquina: *WaveNet*

Adrian A. C. Alanes adrian@mtel.inatel.br

Introdução

- O WaveNet, desenvolvido pela DeepMind em 2016, é um modelo generativo autoregressivo que produz o sinal de áudio diretamente na forma de waveform, amostra por amostra.
- Ao contrário dos sistemas TTS concatenativos e paramétricos, gera fala com qualidade muito mais natural e expressiva, aproximando-se da voz humana.
- O modelo consegue imitar múltiplos falantes, capturando sotaques, entonações e características específicas da voz.
- Suas aplicações vão além da fala: podem incluir síntese musical, efeitos sonoros e até tarefas de reconhecimento de fala.

1 Second

- Modelagem autorregressiva, cada amostra de áudio x_t é prevista considerando todas as amostras anteriores.
- Isso significa que o sinal completo pode ser descrito como uma probabilidade conjunta, fatorada em uma sequência de probabilidades condicionais:

$$p\left(\mathbf{x}\right) = \prod_{t=1}^{T} p\left(x_{t} \mid x_{1}, \dots, x_{t-1}\right)$$

- Convoluções causais: garantem que o modelo respeite a ordem temporal: cada saída só pode depender das amostras atuais e passadas, nunca do futuro.
- Isso é essencial em tarefas de geração de áudio, pois o modelo precisa prever o próximo ponto da waveform de forma sequencial.

Figure 2: Visualization of a stack of causal convolutional layers.

 Convoluções dilatadas: ampliam o campo receptivo de forma exponencial, permitindo que o modelo considere dependências de longo prazo no áudio

- Quantização μ-law: aplica uma compressão não-linear que reduz o espaço para apenas 256 níveis discretos.
- Assim, o problema de prever a próxima amostra transforma-se em uma tarefa de classificação com 256 classes, resolvida por uma camada softmax.

$$f(x_t) = \text{sign}(x_t) \frac{\ln(1 + \mu |x_t|)}{\ln(1 + \mu)},$$

• Unidades com portões: combinam funções tanh e sigmoide, permitindo controlar de forma não-linear quais informações passam adiante em cada camada.

$$\mathbf{z} = \tanh(W_{f,k} * \mathbf{x}) \odot \sigma(W_{g,k} * \mathbf{x}),$$

• Conexões residuais e skip connections: permitem redes muito profundas. Essas conexões aceleram o treinamento e tornam possível empilhar dezenas de camadas de convoluções dilatadas.

- O WaveNet pode ser condicional, ou seja, além do histórico de amostras, recebe uma entrada adicional *h*.
- Essa condição pode representar texto, identidade do falante ou qualquer outro sinal auxiliar, orientando a geração de áudio.

$$p(\mathbf{x} \mid \mathbf{h}) = \prod_{t=1}^{T} p(x_t \mid x_1, \dots, x_{t-1}, \mathbf{h}).$$

Esse condicionamento pode ser implementado de duas formas:

• Global: uma única representação latente h, constante em toda a sequência.

 $\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{h} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} + V_{g,k}^T \mathbf{h} \right).$

Ex.: identidade do falante, idioma.

• **Local**: uma série temporal ht(y), alinhada ao áudio.

 $\mathbf{z} = \tanh \left(W_{f,k} * \mathbf{x} + V_{f,k} * \mathbf{y} \right) \odot \sigma \left(W_{g,k} * \mathbf{x} + V_{g,k} * \mathbf{y} \right),$

Ex.: sequência de fonemas.

Arquitetura e operação Estrutura do MobileNet v1

- A arquitetura do WaveNet começa com uma convolução causal inicial, que garante o respeito à ordem temporal.
- Em seguida, uma pilha de blocos residuais aplica convoluções dilatadas com portões (tanh × sigmoide).
- As conexões residuais e skip permitem treinar redes profundas e acumular informação de múltiplos níveis.
- Projeções 1×1 e uma softmax transformam os sinais acumulados em probabilidades sobre as próximas amostras da waveform.

Figure 4: Overview of the residual block and the entire architecture.

Treinamento e otimização

Quantização u-Law

- Sinal de 16 bits reduzido a 256 valores discretos.
- Transforma o problema em classificação multiclasse.

Função de perda

- Uso de cross-entropy entre a saída prevista e a amostra real.
- Maximiza a probabilidade da classe correta.

Treinamento end-toend

- Da waveform de entrada até a saída softmax.
- Ajuste de parâmetros via backpropagation.

Otimizador

- Adam, utilizado para atualização dos pesos.
- Garante convergência eficiente em redes profundas.

Treinamento e otimização

Conexões residuais e skip

- Permitem treinar redes muito profundas.
- Evitam problemas de desaparecimento de gradiente.

Batch Normalization

- Introduzida nos blocos convolucionais.
- Melhora a estabilidade e velocidade do treino.

Custo Computacional

• Gração extremadamente lenta em CPUs

Vantagens

Gera fala extremamente natural, também música e outros sons.

Mais próximas de uma voz humana real (respirações, pausas e entonações variadas).

Flexibilidade por modelar áudio bruto.

Qualidade do áudio gerado e a versatilidade são as maiores vantagens do modelo WaveNet

Desvantagens

Desempenho de inferência (síntese) extremamente lento.

Computacionalmente pesado também em memória.

Sem condicionamento de alto nível, o WaveNet sozinho não garante coerência de larga escala

Treinamento exigente em dados, requer muitas horas de áudio e diversidade para generalizar.

Aplicação	Descrição	Resultados/Impacto
TTS (Text-to-Speech)	Conversão texto → fala natural	Google Assistant desde
Música	Geração de piano e outros estilos (condicionamento por tags)	Sons harmônicos, mas coerência global limitada
Reconhecimento de fala	Classificação de fonemas direto da waveform (TIMIT)	18.8% PER – melhor resultado em áudio cru
Conversão / Enhancing	Conversão de voz, supressão de ruído, reconstrução de pacotes perdidos	Usado no Google Duo (WaveNetEQ)

 Histograma de qualidade (MOS, escala 1–5) obtido em testes cegos com ouvintes humanos. Comparamos três famílias de TTS, os sistemas paramétricos, sistemas concatenativos e o WaveNet, como também e incluímos a voz humana como referência superior.

US inglês

Mandarim Chinese

Parametric

Concatenative

WaveNet

Saber o que dizer

Para usar o WaveNet para transformar texto em fala, temos que dizer a ele o que é o texto. Se treinarmos a rede sem a sequência de texto, ela ainda gera fala, mas agora ela tem que inventar o que dizer.

O WaveNet é capaz de aprender as características de muitas vozes diferentes. Alterando a identidade do locutor, podemos usar o WaveNet para dizer a mesma coisa em vozes diferentes:

- Base de dados PhysioNet Circor: 100 audios (5 segundos)
- Som Cardíaco Normal
- Filtro: 20 800 Hz
- 5 10 épocas

Geração

- Sem épocas -> 1 áudio (5 segundos)
- 5 épocas -> 1 aúdio (~3 segundos*2) 1h07m
- 10 épocas -> 1 aúdio (~3 segundos*2) 1h32m

Comparação com outros modelos

 A tabela mostra o WaveNet e seus sucessores, indicando como evoluíram em qualidade e velocidade. O WaveNet alcançou MOS 4,2, mas era lento; o Parallel WaveNet e o WaveGlow mantiveram qualidade similar com muito mais rapidez; já o DiffWave e o HiFi-GAN chegaram a uma qualidade próxima da voz humana em tempo real, tornando-se padrão nos TTS modernos.

Modelo	Ano	Abordagem	Qualidade (MOS)	Velocidade	Usos típicos
WaveNet	2016	Convolucional (causal/dilatada)	4.2 (inglês, mandarim)	Muito lento (amostra por amostra)	Geração incondicional
Parallel WaveNet	2017	Distilação do WaveNet	4.41	1000× mais rápido	Google Assistant
WaveGlow	2018	Normalizing Flow + WaveNet	≈ WaveNet	Inferência paralela, rápida	Text-To-Seepch (TTS)
DiffWave	2020	Modelo de difusão	4.44	Rápido ainda iterativo	TTS de alta fidelidade
HiFi-GAN	2020	GAN vocoder	Próximo voz humana	Tempo real	TTS em dispositivos, sistemas comerciais

Perguntas?

Referências

- [1] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, "WaveNet: A generative model for raw audio," https://arxiv.org/abs/1609.03499, 2016.
- [2] A. van den Oord, Y. Li, I. Babuschkin, et al., "Parallel WaveNet: Fast high-fidelity speech synthesis," in *Proc. Int. Conf. on Machine Learning (ICML)*, 2018, pp. 3918–3926. http://proceedings.mlr.press/v80/oord18a.html
- [3] R. Prenger, R. Valle, and B. Catanzaro, "WaveGlow: A flow-based generative network for speech synthesis," in *Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP)*, 2019, pp. 3617–3621. https://arxiv.org/abs/1811.00002
- [4] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, "DiffWave: A versatile diffusion model for audio synthesis," *arXiv preprint arXiv:2009.09761*, 2020. https://arxiv.org/abs/2009.09761
- [5] J. Kong, J. Kim, and J. Bae, "HiFi-GAN: Generative adversarial networks for efficient and high fidelity speech synthesis," in *Proc. Advances in Neural Information Processing Systems* (NeurIPS), vol. 33, 2020, pp. 17022–17033. https://arxiv.org/abs/2010.05646

Obrigado!

Links

- Github: https://github.com/aadlrei/TP 558-Topicos-Avancados-em-Aprendizado-de-Maquina.git
- Quiz: https://forms.gle/LzTQVmbFg8976VQi8