Computing fundamental domains of crystallographic groups With connections to topological interlocking

Lukas Schnelle

GAPDays Summer 2024

Crystallographic groups

Let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a surjective map. Then φ is called an *isometry* if:

Crystallographic groups

Let $\varphi:\mathbb{R}^n\to\mathbb{R}^n$ be a surjective map. Then φ is called an *isometry* if:

$$\forall v, w \in \mathbb{R}^n$$
:

Crystallographic groups

Let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a surjective map. Then φ is called an *isometry* if:

$$\forall v, w \in \mathbb{R}^n : d(v^{\varphi}, w^{\varphi}) = d(v, w).$$

with d(-,-) the Euclidean distance.

Crystallographic groups

Let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a surjective map. Then φ is called an *isometry* if:

$$\forall v, w \in \mathbb{R}^n : d(v^{\varphi}, w^{\varphi}) = d(v, w).$$

with d(-,-) the Euclidean distance.

The set of all isometries of dimension n is denoted as E(n) and called the Euclidean group.

Lemma

Let E(n) be the set of all isometries of a dimension $n \in \mathbb{N}$.

Crystallographic groups

Let $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ be a surjective map. Then φ is called an *isometry* if:

$$\forall v, w \in \mathbb{R}^n : d(v^{\varphi}, w^{\varphi}) = d(v, w).$$

with d(-,-) the Euclidean distance.

The set of all isometries of dimension n is denoted as E(n) and called the Euclidean group.

Lemma

Let E(n) be the set of all isometries of a dimension $n \in \mathbb{N}$. Then E(n) is a group with the composition of homomorphisms as the group operation.

There is an isometry

Crystallographic groups

$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$
.

We denote with φ_o the orthogonal part of φ and with φ_t the vector/translation part of φ .

Then the group operation of $\varphi, \psi \in E(n)$ is as follows:

Proposition ([4, Exa. 1.1, Prop. 1.6])

There is an isometry

Crystallographic groups

$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$
.

We denote with φ_0 the orthogonal part of φ and with φ_t the vector/translation part of φ .

Then the group operation of $\varphi, \psi \in E(n)$ is as follows:

$$(\varphi_o, \varphi_t) \circ (\psi_o, \psi_t) \coloneqq (\underbrace{\varphi_o \circ \psi_o}_{\text{op. in } O(n)}, \psi_t^{\varphi_o} + \varphi_t),$$
i.e. comp. of maps

Proposition ([4, Exa. 1.1, Prop. 1.6])

There is an isometry

Crystallographic groups

$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$
.

We denote with φ_0 the orthogonal part of φ and with φ_t the vector/translation part of φ .

Then the group operation of $\varphi, \psi \in E(n)$ is as follows:

$$(\varphi_o, \varphi_t) \circ (\psi_o, \psi_t) \coloneqq (\underbrace{\varphi_o \circ \psi_o}_{\text{op. in } O(n)}, \psi_t^{\varphi_o} + \varphi_t),$$
i.e. comp. of maps

and the action of E(n) on \mathbb{R}^n extends to the action of $O(n) \ltimes \mathbb{R}^n$ on \mathbb{R}^n :

There is an isometry

Crystallographic groups

$$E(n) \cong O(n) \ltimes \mathbb{R}^n$$
.

We denote with φ_0 the orthogonal part of φ and with φ_t the vector/translation part of φ .

Then the group operation of $\varphi, \psi \in E(n)$ is as follows:

$$(\varphi_o, \varphi_t) \circ (\psi_o, \psi_t) \coloneqq (\underbrace{\varphi_o \circ \psi_o}_{\text{op. in } O(n)}, \psi_t^{\varphi_o} + \varphi_t),$$
i.e. comp. of maps

and the action of E(n) on \mathbb{R}^n extends to the action of $O(n) \ltimes \mathbb{R}^n$ on \mathbb{R}^n :

$$\mathbb{R}^n \times (O(n) \ltimes \mathbb{R}^n) \to \mathbb{R}^n : (v, (\varphi_o, \varphi_t)) \mapsto v^{(\varphi_o, \varphi_t)} = v^{\varphi_o} + \varphi_t.$$

Crystallographic groups

Let λ be a partition of \mathbb{R}^n and let $\emptyset \neq V \subseteq \mathbb{R}^n$ be a set.

Crystallographic groups

Let λ be a partition of \mathbb{R}^n and let $\emptyset \neq V \subseteq \mathbb{R}^n$ be a set.

Then we call V a system of representatives of the partition λ if Vcontains exactly one element of each class of λ .

Crystallographic groups

Let λ be a partition of \mathbb{R}^n and let $\emptyset \neq V \subseteq \mathbb{R}^n$ be a set.

Then we call V a system of representatives of the partition λ if V contains exactly one element of each class of λ .

Definition

Let $\Gamma \leq E(n)$ be a subgroup and $F \subseteq \mathbb{R}^n$ a closed set. Then F is called a *fundamental domain for* Γ if:

Crystallographic groups

Let λ be a partition of \mathbb{R}^n and let $\emptyset \neq V \subseteq \mathbb{R}^n$ be a set.

Then we call V a system of representatives of the partition λ if V contains exactly one element of each class of λ .

Definition

Let $\Gamma \leq E(n)$ be a subgroup and $F \subseteq \mathbb{R}^n$ a closed set. Then F is called a *fundamental domain for* Γ if:

(i)
$$\bigcup_{\gamma \in \Gamma} F^{\langle \gamma \rangle} = \mathbb{R}^n$$
,

Crystallographic groups

Let λ be a partition of \mathbb{R}^n and let $\emptyset \neq V \subseteq \mathbb{R}^n$ be a set.

Then we call V a system of representatives of the partition λ if V contains exactly one element of each class of λ .

Definition

Let $\Gamma < E(n)$ be a subgroup and $F \subseteq \mathbb{R}^n$ a closed set. Then F is called a fundamental domain for Γ if:

- (i) $\bigcup_{\gamma \in \Gamma} F^{\langle \gamma \rangle} = \mathbb{R}^n$,
- (ii) there is a system of representatives $V \subseteq \mathbb{R}^n$ w.r.t. the partition given by the orbits of Γ acting on \mathbb{R}^n such that

$$F^{\circ} \subseteq V \subseteq F$$
.

Example

Crystallographic groups

00000

$$p4 := \left\langle \rho := \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix}^T \right),$$

$$\tau_1 := \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}^T \right),$$

$$\tau_2 := \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}^T \right) \right\rangle$$

Let $u, v \in \mathbb{R}^n$ be two points. We call

Let $u, v \in \mathbb{R}^n$ be two points. We call

$$H^+(u,v) := \{ w \in \mathbb{R}^n \mid d(u,w) \le d(v,w) \}$$

the halfspace which includes all points that are closer to u than to v (or have the same distance).

Let $u, v \in \mathbb{R}^n$ be two points. We call

$$H^+(u,v) := \{ w \in \mathbb{R}^n \mid d(u,w) \le d(v,w) \}$$

the halfspace which includes all points that are closer to u than to v (or have the same distance).

Definition ([3, Def. III.1])

Let $O \subseteq \mathbb{R}^n$ be a discrete set and $u \in O$ be a point. We call

$$D(u, O) = \bigcap_{w \in O, w \neq u} H^+(u, w).$$

the Dirichlet cell of u.

Crystallographic groups	Dirichlet cells ○●○	Computational aspects	Reference
•			
•			
•	•	•	
•	•	•	

Let $\Gamma \leq E(n)$ be a crystallographic group and $v \in \mathbb{R}^n$ be a point. We say v is in special position for Γ if

Computational aspects

Let $\Gamma \leq E(n)$ be a crystallographic group and $v \in \mathbb{R}^n$ be a point.

We say v is in special position for Γ if $\operatorname{Stab}_{\Gamma}(v) \neq \{Id\}$,

Let $\Gamma \leq E(n)$ be a crystallographic group and $v \in \mathbb{R}^n$ be a point. We say v is in special position for Γ if $\operatorname{Stab}_{\Gamma}(v) \neq \{Id\}$, otherwise we say v is in general position for Γ .

Theorem ([2, Thm. III.11 (ii)])

Let $\Gamma \leq E(n)$ be a crystallographic group and $u \in \mathbb{R}^n$ a point in general position.

Let $\Gamma \leq E(n)$ be a crystallographic group and $v \in \mathbb{R}^n$ be a point. We say v is in special position for Γ if $\operatorname{Stab}_{\Gamma}(v) \neq \{Id\}$, otherwise we say v is in general position for Γ .

Theorem ([2, Thm. III.11 (ii)])

Let $\Gamma \leq E(n)$ be a crystallographic group and $u \in \mathbb{R}^n$ a point in general position. Then the Dirichlet cell $D(u, u^{\Gamma})$ is a fundamental domain for Γ .

Definition ([1, §3, Thm. 7, with remark after])

Let $B \subset \mathbb{R}^n$ be a closed subset. We define the *volume* of B as the Lebesgue measure of B, so $\operatorname{vol}(B) := \lambda(B)$ in the notation of [1].

Computational aspects

Definition ([1, §3, Thm. 7, with remark after])

Let $B \subset \mathbb{R}^n$ be a closed subset. We define the *volume* of B as the Lebesgue measure of B, so $vol(B) := \lambda(B)$ in the notation of [1].

Computational aspects

Theorem ([1, §3, Thm. 2])

Let $B \subset \mathbb{R}^3$ a closed subset, $\varphi \in E(3)$.

Computational aspects

Definition ([1, §3, Thm. 7, with remark after])

Let $B \subset \mathbb{R}^n$ be a closed subset. We define the *volume* of B as the Lebesgue measure of B, so $vol(B) := \lambda(B)$ in the notation of [1].

Theorem ([1, §3, Thm. 2])

Let $B \subset \mathbb{R}^3$ a closed subset, $\varphi \in E(3)$. Then $vol(B^{\varphi}) = vol(B)$.

Definition ([1, \S 3, Thm. 7, with remark after])

Let $B \subset \mathbb{R}^n$ be a closed subset. We define the volume of B as the Lebesgue measure of B, so $vol(B) := \lambda(B)$ in the notation of [1].

Computational aspects

Theorem ([1, §3, Thm. 2])

Let $B \subset \mathbb{R}^3$ a closed subset, $\varphi \in E(3)$. Then $vol(B^{\varphi}) = vol(B)$.

It can be shown that all fundamental domains of crystallographic groups have the same volume.

Computational aspects

current approach to computations - theorem that word length corresponds to distance - algo that incorporates that knowledge

Computational aspects

connections to TIA -> deformations

References

Thank you for your attention

References:

- [1]O. Forster. Analysis 3: Maß- und Integrationstheorie. Integralsätze im IRn und Anwendungen. Aufbaukurs Mathematik. Vieweg+Teubner Verlag, 2012. ISBN: 9783834823748, URL: https://books.google.de/books?id=BNojBAAAQBAJ.
- [2] Wilhelm Plesken. Kristallographische Gruppen, Summer semester, 1994.
- [3] Wilhelm Plesken. Kristallographische Gruppen, Summer semester, 2014.
- [4] A. Szczepanski. Geometry of Crystallographic Groups. Algebra and discrete mathematics. World Scientific, 2012. ISBN: 9789814412261. URL: https://books.google.de/books?id=wX26CgAAQBAJ.