

הנדסת תוכנה Software Engineering מערכות משובצות מחשב (קורס מס׳ 10110

בר 2 – ממשק תצוגת LCD הרצאה מספר 32PIC

כתב: ד"ר מנחם אפשטיין

בקורס מערכות משובצות מחשב

8bit LCD חיבור

bit 4 - LCD חיבור

	Code											Execution Time (max) (when f _{cp} or
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	f _{osc} is 270 kHz)
Clear display	0	0	0	0	0	0	0	0	0	1	Clears entire display and sets DDRAM address 0 in address counter.	
Return home	0	0	0	0	0	0	0	0	1	_	Sets DDRAM address 0 in address counter. Also returns display from being shifted to original position. DDRAM contents remain unchanged.	1.52 ms
Entry mode set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. These operations are performed during data write and read.	37 μs
Display on/off control	0	0	0	0	0	0	1	D	С	В	Sets entire display (D) on/off, cursor on/off (C), and blinking of cursor position character (B).	37 μs
Cursor or display shift	0	0	0	0	0	1	S/C	R/L	_	_	Moves cursor and shifts display without changing DDRAM contents.	37 μs
Function set	0	0	0	0	1	DL	N	F			Sets interface data length (DL), number of display lines (N), and character font (F).	37 μs
Set CGRAM address	0	0	0	1	ACG	ACG	ACG	ACG	ACG	ACG	Sets CGRAM address. CGRAM data is sent and received after this setting.	37 μs
Set DDRAM address	0	0	1	ADD	Sets DDRAM address. DDRAM data is sent and received after this setting.	37 μs						
Read busy flag & address	0	1	BF	AC	Reads busy flag (BF) indicating internal operation is being performed and reads address counter contents.	0 μs						

Execution Time

			Code		Execution Time (max) (when f _{cp} or
Instruction	RS	R/W	DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0	Description	f _{osc} is 270 kHz)
Write data to CG or DDRAM	1	0	Write data	Writes data into DDRAM or CGRAM.	$37 \mu s$ $t_{ADD} = 4 \mu s^*$
Read data from CG or DDRAM	1	1	Read data	Reads data from DDRAM or CGRAM.	$37 \mu s$ $t_{ADD} = 4 \mu s^*$
	S/C	= 1: = 0: = 1: = 0: = 1: = 1:	Cursor move Shift to the right Shift to the left 8 bits, DL = 0: 4 bits 2 lines, N = 0: 1 line 5×10 dots, F = 0: 5×8 dots	DDRAM: Display data RAM CGRAM: Character generator RAM ACG: CGRAM address ADD: DDRAM address (corresponds to cursor address) AC: Address counter used for both DD and CGRAM addresses	Execution time changes when frequency changes Example: When f_{cp} or f_{OSC} is 250 kHz, $37 \mu s \times \frac{270}{250} = 40 \mu s$

Name PIC32 Pin Description

DISP_RS AN15/RPB15/OCFB/CTED6/PMA0/RB15 Register Select: High for Data

Transfer, Low for Instruction Transfer.

DISP_RW RPD5/PMRD/RD5 Read/Write signal: High for Read mode, Low for Write

mode.

DISP_EN RPD4/PMWR/RD4 Read/Write Enable: High for Read, falling edge writes data

DBO PMDO/REO Data bits 0 -7.

DB1 PMD1/RE1

DB2 AN20/PMD2/RE2

DB3 RPE3/CTPLS/PMD3/RE3

DB4 AN21/PMD4/RE4

DB5 AN22/RPE5/PMD5/RE5

DB6 AN23/PMD6/RE6

DB7 AN27/PMD7/RE7

```
#include <xc.h>
#pragma config JTAGEN = OFF
#pragma config FWDTEN = OFF
#pragma config FNOSC =
                           FRCPLL
#pragma config FSOSCEN = OFF
#pragma config POSCMOD = EC
#pragma config OSCIOFNC = ON
#pragma config FPBDIV = DIV 1
#pragma config FPLLIDIV = DIV 2
#pragma config FPLLMUL = MUL 20
#pragma config FPLLODIV = DIV 1
#include <stdio.h>
#include <stdlib.h>
void busy(void);
void main (void)
{int j,i;
char string[]="Menachem Epstein";
char control[]={0x38,0x38,0x38,0xe,0x6,0x1};
TRISBbits.TRISB15 = 0; // RB15 (DISP RS) set as an output
ANSELBbits.ANSB15 = 0; // disable analog functionality on RB15 (DISP_RS)
TRISDbits.TRISD5 = 0; // RD5 (DISP RW) set as an output
TRISDbits.TRISD4 = 0; // RD4 (DISP EN) set as an output
//TRISEbits.TRISE0 = 1; // RE0 (DB0) set as input (change 1 to 0 for
TRISE&=0xff00;
ANSELEbits.ANSE2 = 0;
ANSELEbits.ANSE4 = 0;
ANSELEbits.ANSE5 = 0;
ANSELEbits.ANSE6 = 0;
PORTBbits.RB15=0;//rs=0
PORTDbits.RD5=0;//w=0
ANSELEbits.ANSE7 = 0;
```

```
for(i=0;i<6;i++)
  PORTE=control[i];
  PORTDbits.RD4=1;
  PORTDbits.RD4=0;
  //for(j=0;j<32000;j++);
  busy();
PORTBbits.RB15=1;//rs=0
PORTDbits.RD5=0;//w=0
for(i=0;i<16;i++)
  PORTE=string[i];
  PORTDbits.RD4=1;
  PORTDbits.RD4=0;
  //for(j=0;j<32000;j++);
  busy();
```

```
void busy(void)
    char RD,RS;
    int STATUS_TRISE;
    int portMap;
  RD=PORTDbits.RD5;
  RS=PORTBbits.RB15;
  STATUS_TRISE=TRISE;
         PORTDbits.RD5 = 1;//w/r
         PORTBbits.RB15 = 0;//rs
       portMap = TRISE;
         portMap |= 0x80;
         TRISE = portMap;
do
  PORTDbits.RD4=1;//enable=1
  PORTDbits.RD4=0;//enable=0
 while(PORTEbits.RE7); // BF רגסטר
    PORTDbits.RD5=RD;
    PORTBbits.RB15=RS;
    TRISE=STATUS_TRISE;
```

```
* File: lcd fader.c
* Author: MenachemE
* Created on July 11, 2019, 5:49 PM
#include <xc.h>
#pragma config JTAGEN = OFF
#pragma config FWDTEN = OFF
#pragma config FNOSC = FRCPLL
#pragma config FSOSCEN =
                                   OFF
#pragma config POSCMOD =
                                   EC
#pragma config OSCIOFNC =
                                   ON
#pragma config FPBDIV = DIV 1
#pragma config FPLLIDIV =
                                   DIV 2
#pragma config FPLLMUL =
                                   MUL 20
#pragma config FPLLODIV =
                                   DIV 1
#include <stdio.h>
#include <stdlib.h>
void busy(void);
void main (void)
{int j,i;
char CG father[16]={0x09,0x0a,0x0c,0x0c,0x0c,0x0a,0x09,0x09,//?
                 0x26,0x29,0x31,0x21,0x29,0x2b,0x36,0x34};//?
char father[3]={0,1,0};// אבא
char control[7]={0x38,0x38,0x38,0xe,0x6,0x1,0x40};
// set CGRAM=0x40
char string[]="Menachem Epstein";
```

```
TRISBbits.TRISB15 = 0; // RB15 (DISP RS) set as an output
ANSELBbits.ANSB15 = 0; // disable analog functionality on RB15 (DISP_RS)
TRISDbits.TRISD5 = 0; // RD5 (DISP RW) set as an output
TRISDbits.TRISD4 = 0; // RD4 (DISP EN) set as an output
TRISE&=0xff00;
ANSELEbits.ANSE2 = 0;
ANSELEbits.ANSE4 = 0;
ANSELEbits.ANSE5 = 0;
ANSELEbits.ANSE6 = 0;
ANSELEbits.ANSE7 = 0;
PORTBbits.RB15=0;//rs=0
PORTDbits.RD5=0;//w=0
for(i=0;i<7;i++)
  PORTE=control[i];
  PORTDbits.RD4=1;
  PORTDbits.RD4=0;
busy();
 PORTBbits.RB15 = 1;//rs
    for(i = 0; i < 16; i++)
    PORTE=CG_father[i];
    PORTDbits.RD4=1;//enable=1
    PORTDbits.RD4=0;//enable=0
busy();
```

```
PORTBbits.RB15 = 0;//rs control
 PORTE=0x80;//DDRAM
 PORTDbits.RD4=1;//enable=1
 PORTDbits.RD4=0;//enable=0
 //for(j=0;j<32000;j++);
 busy();
 PORTBbits.RB15 = 1;//rs
for(i = 0; i < 3; i++)
    PORTE=father[i];
    PORTDbits.RD4=1;//enable=1
    PORTDbits.RD4=0;//enable=0
busy();
```

```
void busy(void)
    char RD,RS;
    int STATUS_TRISE;
    int portMap;
  RD=PORTDbits.RD5;
  RS=PORTBbits.RB15;
  STATUS_TRISE=TRISE;
         PORTDbits.RD5 = 1;//w/r
         PORTBbits.RB15 = 0;//rs
       portMap = TRISE;
         portMap |= 0x80;
         TRISE = portMap;
do
  PORTDbits.RD4=1;//enable=1
  PORTDbits.RD4=0;//enable=0
 while(PORTEbits.RE7); // BF רגסטר
    PORTDbits.RD5=RD;
    PORTBbits.RB15=RS;
    TRISE=STATUS_TRISE;
```