Базис, размерност, координати.

Определение 1. Непразно подмножество B на линейно пространство V е базис, ако B е линейно независима система вектори и l(B) = V.

Например, векторите

$$e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}) \in F^n, \quad 1 \le i \le n$$

с единствена ненулева компонента 1 в i-та позиция образуват базис на пространството F^n на наредените n-торки с елементи от поле F. За да докажем това да забележим, че за произволни $x_1, \ldots, x_n \in F$ е в сила

$$x_1e_1 + \ldots + x_ie_i + \ldots + x_ne_n = (x_1, \ldots, x_i, \ldots, x_n).$$

Затова от $x_1e_1+\ldots+x_ne_n=(0,\ldots,0)$ следва $x_1=\ldots=x_n=0$ и векторите e_1,\ldots,e_n са линейно независими. Произволна наредена n-торка $x=(x_1,\ldots,x_n)\in F^n$ е линейна комбинация $x=x_1e_1+\ldots+x_ne_n$ на $e_1,\ldots,e_n\in F^n$ с коефициенти $x_1,\ldots,x_n\in F$, така че $l(e_1,\ldots,e_n)=F^n$ и e_1,\ldots,e_n е базис на F^n .

Определение 2. Линейно пространство V е крайномерно, ако $V = \{\overrightarrow{\mathcal{O}}\}$ е нулевото пространство или V има краен базис b_1, \ldots, b_n .

Пространството F^n на наредените n-торки с елементи от поле F е крайномерно, защото има базис

$$e_i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i}) \in F^n, \quad 1 \le i \le n.$$

Пространството F[x] на полиномите на x с коефициенти от F не е крайномерно. Съществуването на нетъждествено нулеви полиноми гарантира, че $F[x] \neq \{\overrightarrow{\mathcal{O}}\}$. Да допуснем, че F[x] има краен базис $f_1(x),\ldots,f_k(x)\in F[x]$. Ако $f_i(x)=\sum\limits_{j=0}^{d_i}c_{i,j}x^j\in F[x]$ са полиноми от степен $d_i=\deg f_i(x)$ и $d:=\max(d_1,\ldots,d_k)$, то за произволни $\alpha_i\in F$ е в сила

$$\alpha_1 f_1(x) + \ldots + \alpha_k f_k(x) = \sum_{i=1}^k \sum_{j=0}^{d_i} \alpha_i c_{i,j} x^j \in l(1, x, \ldots, x^d),$$

откъдето $F[x] = l(f_1(x), \dots, f_k(x)) \subseteq l(1, x, \dots, x^d)$. Сега $x^{d+1} \in F[x] \setminus l(1, x, \dots, x^d) = \emptyset$ е противоречие. Следователно F[x] не е крайномерно пространство.

Твърдение 3. Линейно пространство V е крайномерно тогава и само тогава, когато $V = l(a_1, \ldots, a_n)$ е линейна обвивка на краен брой вектори. В такъв случай, можем да изберем базис на V, съставен от подлножество на $\{a_1, \ldots, a_n\}$.

 \mathcal{A} оказателство. Ако $V = \{\overrightarrow{\mathcal{O}}\}$ е нулевото пространство, то $V = l(\overrightarrow{\mathcal{O}})$. Ако V има краен базис b_1, \ldots, b_k , то отново $V = l(b_1, \ldots, b_k)$ е линейна обвивка на краен брой вектори.

Нека $V = l(a_1, \ldots, a_n)$. Ако $a_i = \overrightarrow{\mathcal{O}}$ за всички $1 \leq i \leq n$, то $V = \{\overrightarrow{\mathcal{O}}\}$ е нулевото пространство.

Ако $a_1 \neq \overrightarrow{\mathcal{O}}$, то a_1 е линейно независим и $l(a_1) \subseteq V$.

В случая $l(a_1) \subsetneq V = l(a_1, a_2, \ldots, a_n)$ съществува вектор $a_i \not\in l(a_1)$ за някое естествено $2 \leq i \leq n$, защото ако $a_2, \ldots, a_n \in l(a_1)$, то $V = l(a_1, \ldots, a_n) = l(a_1)$. След преномериране на a_2, \ldots, a_n можем да считаме, че $a_2 \not\in l(a_1)$. По Лемата за линейна независимост системата a_1, a_2 е линейно независима. Ясно е, че $l(a_1, a_2) \subseteq l(a_1, \ldots, a_n) = V$.

Ако $l(a_1, a_2) = V$, то a_1, a_2 е базис на V.

Продължавайки по същия начин, да предположим, че a_1, \ldots, a_m за някое $m \leq n$ са линейно независими вектори.

Ако $l(a_1,\ldots,a_m)=V$, то a_1,\ldots,a_m е базис на V.

В противен случай съществува $a_i \notin l(a_1,\ldots,a_m)$ за някое $m+1 \leq i \leq n$. След преномерация на a_{m+1},\ldots,a_n можем да считаме, че $a_{m+1} \notin l(a_1,\ldots,a_m)$. По Лемата за линейна независимост a_1,\ldots,a_m,a_{m+1} са линейно независими вектори.

Векторите a_1, \ldots, a_n са краен брой, така че след краен брой стъпки ще намерим линейно независими вектори a_1, \ldots, a_k с $l(a_1, \ldots, a_k) = V$ за някое $k \leq n$. Тогава a_1, \ldots, a_k е базис на V.

Твърдение 4. Всеки два базиса на ненулево крайномерно пространство V имат един и същи брой вектори.

Доказателство. Нека a_1, \ldots, a_n и b_1, \ldots, b_m са базиси на линейно пространство V. Линейната независимост на $b_1, \ldots, b_m \in V = l(a_1, \ldots, a_n)$ изисква $m \leq n$ съгласно Основната лема на линейната алгебра (Лемата за линейна зависимост). Аналогично, от линейната независимост на $a_1, \ldots, a_n \in V = l(b_1, \ldots, m)$ получаваме $n \leq m$ чрез прилагане на Основната лема на линейната алгебра (Лемата за линейна зависимост). Следователно m = n и всеки два базиса на ненулево крайномерно пространство V имат един и същи брой вектори.

Определение 5. Броят на векторите в един, а оттам и всеки един базис на ненулево крайномерно пространство V се нарича размерност на V и се бележи с $\dim V$. Размерността на нулевото пространство $\{\overrightarrow{\mathcal{O}}\}$ е $\dim\{\overrightarrow{\mathcal{O}}\}=0$. Линейните пространства V, които не са крайномерни имат размерност $\dim V=\infty$.

Задача 6. Следните свойства са еквивалентни в линейно пространство V над поле F:

- (i) $e_1, \ldots, e_n \in V$ e базис на V;
- (ii) всеки вектор $v \in V$ има единствено представяне $v = x_1e_1 + \ldots + x_ne_n$ като линейна комбинация на вектори $e_1, \ldots, e_n \in V$ с коефициенти $x_1, \ldots, x_n \in F$.

Коефициентите x_1, \ldots, x_n се наричат координати на v спрямо базиса e_1, \ldots, e_n .

Доказателство. $(i) \Rightarrow (ii)$ Ако e_1, \ldots, e_n е базис на V, то $V = l(e_1, \ldots, e_n)$ и произволен вектор $v \in V$ има представяне $v = x_1e_1 + \ldots + x_ne_n$ като линейна комбинация на e_1, \ldots, e_n с коефициенти $x_1, \ldots, x_n \in F$. Ако

$$x_1e_1 + \ldots + x_ne_n = v = y_1e_1 + \ldots + y_ne_n$$

са две представяния на v като линейни комбинации на e_1, \ldots, e_n , то

$$(x_1-y_1)e_1+\ldots+(x_n-y_n)e_n=\overrightarrow{\mathcal{O}}.$$

Съгласно линейната независимост на e_1, \ldots, e_n , оттук следва $x_i - y_i = 0$ за всички $1 \le i \le n$ и представянето $v = x_1 e_1 + \ldots + x_n e_n$ е единствено.

 $(ii) \Rightarrow (i)$ Ако всеки вектор $v \in V$ има представяне $v = x_1e_1 + \ldots + x_ne_n$ като линейна комбинация на e_1, \ldots, e_n , то $l(e_1, \ldots, e_n) = V$. Съгласно единствеността на представянето на нулевия вектор като линейна комбинация на $e_1, \ldots, e_n \in V$, от

$$x_1e_1 + \ldots + x_ne_n = \overrightarrow{\mathcal{O}}$$

следва анулирането на всички коефициенти $x_1 = \ldots = x_n = 0$. Това доказва, че e_1, \ldots, e_n са линейно независими, а оттам и базис на V.

Твърдение 7. Нека V е ненулево линейно пространство над поле F. В :такъв случай:

- $(i) \dim V = n$ тогава и само тогава, когато съществуват n линейно независими вектора $a_1, \ldots, a_n \in V$ и произволни n+1 вектора $b_1, \ldots, b_{n+1} \in V$ са линейно зависими;
- (ii) $\dim V = \infty$ тогава и само тогава, когато за всяко естествено число n съществуват n линейно независими вектора $a_1, \ldots, a_n \in V$.

Доказателство. (i) Нека $\dim V = n$ и a_1, \ldots, a_n е базис на V. Тогава $a_1, \ldots, a_n \in V$ са линейно независими и произволни n+1 вектора $b_1, \ldots, b_{n+1} \in V = l(a_1, \ldots, a_n)$ са линейно зависими съгласно Основната лема на линейната алгебра (Лемата за линейна зависимост).

Обратно, нека $a_1, \ldots, a_n \in V$ са линейно независими и произволни n+1 вектора $b_1, \ldots, b_{n+1} \in V = l(a_1, \ldots, a_n)$ са линейно зависими. Достатъчно е да докажем, че $l(a_1, \ldots, a_n) = V$, за да твърдим, че a_1, \ldots, a_n е базис на V и $\dim V = n$. Линейната обвивка $l(a_1, \ldots, a_n)$ на произволни вектори a_1, \ldots, a_n от линейно пространство V се съдържа във V. Затова допускането $l(a_1, \ldots, a_n) \neq V$ е еквивалентно на $l(a_1, \ldots, a_n) \subsetneq V$. Тогава съществува вектор $a_{n+1} \in V \setminus l(a_1, \ldots, a_n)$ и $a_1, \ldots, a_n, a_{n+1} \in V$ са линейно независими, съгласно Лемата за линейна независимост. Това противоречи на предположението за линейна зависимост на произволни n+1 вектора от V и доказва $l(a_1, \ldots, a_n) = V$.

(ii) С допускане на противното, нека $\dim V = \infty$ и съществува естествено число n, така че произволни n+1 вектора $b_1,\ldots,b_{n+1}\in V$ са линейно зависими. Ако n е минималното естествено с това свойство, то съществуват n линейно независими вектора $a_1,\ldots,a_n\in V$ и $\dim V=n$ съгласно (i). Противоречието доказва, че ако $\dim V=\infty$, то за произволно естествено число n съществуват n линейно независими вектора от V.

Да предположим, че за всяко естествено число n съществуват n линейно независими вектора от V и $\dim V \neq \infty$. Съгласно предположението $V \neq \{\overrightarrow{\mathcal{O}}\}$ имаме $\dim V = n$ за някое естествено число n. Тогава (i) изисква произволни n+1 вектора от V да са линейно зависими. Противоречието доказва, че $\dim V = \infty$.

Твърдение 8. Следните условия са еквивалентни за векторите $a_1, \ldots, a_n \in V$ в n-мерно линейно пространство V :

- (i) a_1,\ldots,a_n са линейно независими;
- (ii) $l(a_1,\ldots,a_n)=V$;
- (iii) a_1,\ldots,a_n е базис на V.

Доказателство. По определението за базис, от (iii) следват (i) и (ii).

(i) \Rightarrow (ii) и (iii) Твърдим, че ако a_1, \ldots, a_n са n линейно независими вектора от n-мерно линейно пространство V, то $l(a_1, \ldots, a_n) = V$ и a_1, \ldots, a_n е базис на V. За произволни $a_1, \ldots, a_n \in V$ е в сила $l(a_1, \ldots, a_n) \subseteq V$. Затова допускането $l(a_1, \ldots, a_n) \neq 0$

V е еквивалентно на $l(a_1,\ldots,a_n)\subsetneq V$ и води до съществуването на вектор $a_{n+1}\in V\setminus l(a_1,\ldots,a_n)$. По Лемата за линейна независимост, векторите $a_1,\ldots,a_n,a_{n+1}\in V$ са линейно независими. За произволен базис e_1,\ldots,e_n на V имаме $V=l(e_1,\ldots,e_n)$, така че линейната независимост на $a_1,\ldots,a_n,a_{n+1}\in l(e_1,\ldots,e_n)$ противоречи на Основната лема на линейната алгебра (Лемата за линейна зависимост) и доказва, че всяка линейно независима система a_1,\ldots,a_n от n вектора в n-мерно линейно пространство V е базис на V.

(ii) \Rightarrow (i) и (iii) Твърдим, че ако $l(a_1,\ldots,a_n)=V$ за n-мерно линейно пространство V, то a_1,\ldots,a_n са линейно независими, а оттам и базис на V. В противен случай, от линейната зависимост на a_1,\ldots,a_n следва съществуването на $1\leq i\leq n$ с $a_i\in l(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n)$. Тогава $V=l(a_1,\ldots,a_n)=l(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n)$. За произволен базис e_1,\ldots,e_n на V е в сила $e_1,\ldots,e_n\in V=l(a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_n)$. По Основната лема на линейната алгебра (Лемата за линейна зависимост), векторите e_1,\ldots,e_n трябва да са линейно зависими. Това противоречи на определението за базис e_1,\ldots,e_n на V и доказва линейната независимост на произволни n вектора a_1,\ldots,a_n от n-мерно линейно пространство V с $l(a_1,\ldots,a_n)=V$.

Следствие 9. Нека V е n-мерно линейно пространство над поле F, а W е nодпространство на V. Тогава $\dim W \leq \dim V = n$ с равенство $\dim W = \dim V = n$ тогава u само тогава, когато W = V съвпадат.

Доказателство. Ако допуснем, че подпространството W на линейното пространство V има размерност $\dim(W) > \dim(V) = n$, то $\dim(W) \ge n+1$. Следователно съществуват n+1 линейно независими вектора $w_1, \ldots, w_n, w_{n+1} \in W \subseteq V$, което противоречи на $\dim(V) = n$. Следователно $\dim(W) \le \dim(V)$.

Ако $\dim(W) = \dim(V) = n$, то произволни n линейно независими вектора

$$e_1, \ldots, e_n \in W \subseteq V$$

образуват базис на W и базис на V. Следователно $W = l(e_1, \ldots, e_n) = V$.

Твърдение 10. Нека b_1, \ldots, b_k са линейно независими вектори от n-мерно линейно пространство V над поле F. Тогава $k \le n$ и векторите b_1, \ldots, b_k могат да се допълнят до базис $b_1, \ldots, b_k, b_{k+1}, \ldots, b_n$ на V.

Доказателство. Нека e_1, \ldots, e_n е базис на V. Линейната независимост на

$$b_1,\ldots,b_k\in V=l(e_1,\ldots,e_n)$$

изисква $k \leq n$ съгласно Основната лема на линейната алгебра (Лемата за линейна зависимост).

Ако k=n, то линейно независимите вектори b_1,\ldots,b_n в n-мерно линейно пространство V образуват базис на V.

За k < n е в сила строго включване $l(b_1, \ldots, b_k) \subsetneq V$, защото от $l(b_1, \ldots, b_k) = V$ за линейно независими вектори b_1, \ldots, b_k следва $\dim(V) = k$. Избираме вектор $b_{k+1} \in V \setminus l(b_1, \ldots, b_k)$. Тогава $b_1, \ldots, b_k, b_{k+1}$ са линейно независими по Лемата за линейна независимост. Ако k+1=n, то $l(b_1, \ldots, b_k, b_{k+1}) = V$. В случая k+1 < n имаме $l(b_1, \ldots, b_k, b_{k+1}) \subsetneq V$ и съществува $b_{k+2} \in V \setminus l(b_1, \ldots, b_k, b_{k+1})$. Тогава векторите $b_1, \ldots, b_k b_{k+1}, b_{k+2}$ са линейно независими по Лемата за линейна независимост. Продължавайки по същия начин, след краен брой стъпки получаваме n линейно независими вектора $b_1, \ldots, b_k, b_{k+1}, \ldots, b_n$ от n-мерното пространство V и твърдим, че $b_1, \ldots, b_k, b_{k+1}, \ldots, b_n$ е базис на V.