Find all eigenvalues of the following matrices. Find one eigenvector corresponding to each eigenvalue.

$$1. \ A = \left[\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right]$$

$$2. B = \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$$

$$3. C = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

$$4. D = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

Find the solution to each system of differential equations or IVP.

6.
$$\frac{dx}{dt} = y$$
$$\frac{dy}{dt} = 4x - 3y$$

7.
$$\frac{dx}{dt} = y$$
$$\frac{dy}{dt} = 6x - 7y$$
$$x(0) = 2, \ y(0) = -1$$

ANSWERS

1.
$$\lambda_1 = 1$$
, $\lambda_2 = 9$ with possible eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

2.
$$\lambda_1 = 1$$
, $\lambda_2 = 3$ with possible eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

3.
$$\lambda_1 = 0$$
, $\lambda_2 = 5$ with possible eigenvectors $\mathbf{v}_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

4.
$$\lambda_1 = i, \ \lambda_2 = -i$$
 with possible eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$

5.
$$\lambda_1 = 0, \lambda_2 = 1, \lambda_3 = 3$$
 with possible eigenvectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

6.
$$x(t) = C_1 e^t + C_2 e^{-4t}$$

 $y(t) = C_1 e^{2t} - 4C_2 e^{-4t}$

7.
$$x(t) = 3e^{2t} - e^{-5t}$$

 $y(t) = 2e^{2t} - 3e^{-5t}$