Университет ИТМО

Лабораторная работа №2 по предмету "Встроенные системы"

Выполнил: Студент группы Р3410 Глушков Дима

Введение:

Данная лабораторная работа предназначена для получения практических навыков работы с инкрементируемыми таймерами ТІМ6 и ТІМ7 и системой прерываний на виртуальном стенде на базе микроконтроллера STM32F407с использованием НАL функций организовать изменение скорости изменения анимации согласно варианту.

Описание теоретической части:

Для выполнения лабораторной работы используем информацию из таблицы сравнения таймеров МК STM32 и таблицы с адресами переходов МК при вызове обработчика прерываний.

Timer feature comparison

Timer type	Timer	Counter resolutio n	Counter type	Prescaler factor	DMA request generatio n	Capture/ compare channels	Complementar y output	Max interface clock (MHz)	Max timer clock (MHz)
Advanced -control	TIM1, TIM8	16-bit	Up, Down, Up/dow n	Any integer between 1 and 65536	Yes	4	Yes	84	168
General purpose	TIM2, TIM5	32-bit	Up, Down, Up/dow n	Any integer between 1 and 65536	Yes	4	No	42	84
	TIM3, TIM4	16-bit	Up, Down, Up/dow n	Any integer between 1 and 65536	Yes	4	No	42	84
	TIM9	16-bit	Up	Any integer between 1 and 65536	No	2	No	84	168
	TIM10 TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	84	168
	TIM12	16-bit	Up	Anyinteger between 1 and 65536	No	2	No	42	84
	TIM13 TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	No	42	84
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	42	84

Рис. 1. Таблица сравнения таймеров МК STM32F407VGx.

Position	Priority	Type of priority	Acronym	Description	Address
40	47	settable	EXTI15_10	EXTI Line[15:10] interrupts	0x0000_00E0
41	48	settable	RTCAlarm	RTC alarm through EXTI line interrupt	0x0000_00E4
42	49	settable	OTG_FS_WKUP	USB On-The-Go FS Wakeup through EXTI line interrupt	0x0000_00E8
-		.=0		Reserved	0x0000_00EC - 0x0000_0104
50	57	settable	TIM5	TIM5 global interrupt	0x0000_0108
51	58	settable	SPI3	SPI3 global interrupt	0x0000_010C
52	59	settable	UART4	UART4 global interrupt	0x0000_0110
53	60	settable	UART5	UART5 global interrupt	0x0000_0114
54	61	settable	TIM6	TIM6 global interrupt	0x0000_0118
55	62	settable	TIM7	TIM7 global interrupt	0x0000_011C
56	63	settable	DMA2_Channel1	DMA2 Channel1 global interrupt	0x0000_0120
57	64	settable	DMA2_Channel2	DMA2 Channel2 global interrupt	0x0000_0124
58	65	settable	DMA2_Channel3	DMA2 Channel3 global interrupt	0x0000_0128
59	66	settable	DMA2_Channel4	DMA2 Channel4 global interrupt	0x0000_012C

Рис. 2. Фрагмент таблицы с адресами переходов МК при вызове обработчика прерываний.

Регистры стенда, используемые при выполнении ЛР:

Регистр	Описание
TIMx_CR1	регистр управления
TIMx_DIER	регистр разрешения прерываний
TIMx_CNT	счетный регистр
TIMx_PSC	регистр делителя тактового сигнала
TIMx_ARR	регистр, хранящий значение перезагрузки

Функции, которые могут потребоваться при выполнении лабораторной работы:

```
void WRITE_REG(uint reg_address, uint value);
uint READ_REG(uint reg_address);
void registerTIM6_IRQHandler(void* irqHandler);
void registerTIM7_IRQHandler(void* irqHandler);
__enable_irq();
__disable_irq();
```

Задание:

На светодиодные индикаторы LED1 ... LED8 должна выводиться анимация согласно варианту задания.

Скорость анимации задается с помощью переключателей SW. Если на переключателях выставлен код 0х0, то кадры анимации меняются каждые 500 мс. С увеличением значения, выставленном на переключателях SW анимация замедляется на T мс. Значение T задается вариантом задания.

Например, если по варианту задано, что T = 100 мс, это означает, что при установке переключателей в состояние SW = 0x1, кадры начинают меняться каждые 500+1*100=600 мс, если SW = 0x5, то кадры начинают меняться каждые 500+5*100=1000 мс и т.д.

Все задержки должны быть реализованы с использованием прерываний от базовых таймеров ТІМ6 или ТІМ7.

T = 250 MC

Исходный код программы:

```
#include "hal.h"
int frame = 0;
int max frame = 13;
int init speed = 500;
int speed = 500;
int step = 250;
int state[4];
int led num[] = {
   GPIO PIN 3,
   GPIO PIN 4,
   GPIO PIN 5,
   GPIO PIN 6,
   GPIO PIN 8,
   GPIO PIN 9,
    GPIO PIN 11,
    GPIO_PIN_12
};
unsigned int switch_num[] = {
   GPIO PIN 4,
    GPIO PIN 8,
    GPIO PIN 10,
    GPIO_PIN_12
};
void set_state()
    for (int i = 0; i < 4; i++)
          state[i] = HAL GPIO ReadPin(GPIOE, switch num[i]) == GPIO PIN SET ? 1 : 0;
    int general state = \overline{\text{state}[0]} + \overline{\text{state}[1]} * 2 + \overline{\text{state}[2]} * 4 + \overline{\text{state}[3]} * 8;
    speed = init speed + general state * step;
    WRITE_REG(TIM6_ARR, speed);
    WRITE REG(TIM7 ARR, speed);
void TIM6 IRQ Handler()
    if (frame <= 7)
          HAL GPIO WritePin(GPIOD, led num[frame], GPIO PIN SET);
void TIM7_IRQ_Handler()
    if (frame > 7)
          HAL GPIO WritePin(GPIOD, led num[max frame - frame + 2], GPIO PIN RESET);
    set state();
    if (frame++ > max frame)
          frame = 0;
int umain()
    set state();
    registerTIM6 IRQHandler(TIM6 IRQ Handler);
    registerTIM7 IRQHandler(TIM7 IRQ Handler);
```

```
__enable_irq();

WRITE_REG(TIM6_ARR, speed);
WRITE_REG(TIM6_DIER, TIM_DIER_UIE);
WRITE_REG(TIM6_PSC, 0);

WRITE_REG(TIM7_ARR, speed);
WRITE_REG(TIM7_DIER, TIM_DIER_UIE);
WRITE_REG(TIM7_PSC, 1);

WRITE_REG(TIM6_CR1, TIM_CR1_CEN);
WRITE_REG(TIM7_CR1, TIM_CR1_CEN);
return 0;
}
```