

Schletter, Inc.		35° Tilt w/ Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- · Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	14.43 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.64	
C -	0.90	

1.20

2.3 Wind Loads

Design Wind Speed, V =	115 mph	Exposure Category = C
Heiaht ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 20.76 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ TOP	=	1.2 (Pressure)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	2 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.4 -1.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.2 (Suction)	applied away from the surface.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.04	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S 0.9D + 1.0W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 0.6W 1.0D + 0.75L + 0.45W + 0.75S 0.6D + 0.6W M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ° 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E °

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	2		
M4	Outer	M15	5		
M8	Inner	M16A	Ą		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>81</u>	in
$\Phi F_{ty STRONG-AXIS} =$	28.63	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
M _y =	0.668	k-ft
$M_z =$	0.184	k-ft
M _{y allowable} =	1.218	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>76%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	1.5x0.25 6061-T6 35 ksi
F _{ty} = Φ =	0.90
S _v =	0.02 in ³
Ē =	10100 ksi
$I_y =$	33.25 in ⁴
A =	0.38 in^2
g =	0.45 lbs/ft
$M_y =$	0.006 k-ft
P _n =	0.235 k
$M_{y \text{ allowable}} =$	0.046 k-ft
P _{n allowable} =	11.813 k
Utilization =	<u>15%</u>

A cross brace kit is required every 13 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>17.09</u>	1900.04	k
Compressive Load =	1229.85	1368.90	k
Lateral Load =	38.29	1291.70	k
Moment (Weak Axis) =	0.06	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 27626.0 in-lbs Resisting Force Required = 920.87 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1534.78 lbs to resist overturning. Minimum Width = Weight Provided = 1903.13 lbs Sliding 297.85 lbs Force = Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 744.63 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 297.85 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width			
	21 in	22 in	23 in	24 in
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) =$	1903 lbs	1994 lbs	2084 lbs	2175 lbs

ASD LC		1.0D	+ 1.0S			1.0D+	- 0.6W		1	.0D + 0.75L +	0.45W + 0.75	S		0.6D + 0.6W			
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	21 in 22 in 23 in 24 in		21 in	22 in	23 in	24 in		
FA	480 lbs	480 lbs	480 lbs	480 lbs	356 lbs	356 lbs	356 lbs	356 lbs	579 lbs	579 lbs	579 lbs	579 lbs	30 lbs	30 lbs	30 lbs	30 lbs	
FB	323 lbs	323 lbs	323 lbs	323 lbs	573 lbs	573 lbs	573 lbs	573 lbs	639 lbs	639 lbs	639 lbs	639 lbs	-875 lbs	-875 lbs	-875 lbs	-875 lbs	
F _V	62 lbs	62 lbs	62 lbs	62 lbs	545 lbs	545 lbs	545 lbs	545 lbs	450 lbs	450 lbs	450 lbs	450 lbs	-596 lbs	-596 lbs	-596 lbs	-596 lbs	
P _{total}	2707 lbs	2797 lbs	2888 lbs	2979 lbs	2833 lbs	2924 lbs	3014 lbs	3105 lbs	3121 lbs	3212 lbs	3303 lbs	3393 lbs	297 lbs	352 lbs	406 lbs	460 lbs	
M	408 lbs-ft	408 lbs-ft	408 lbs-ft	408 lbs-ft	463 lbs-ft	463 lbs-ft	463 lbs-ft	463 lbs-ft	616 lbs-ft	616 lbs-ft	616 lbs-ft	616 lbs-ft	706 lbs-ft	706 lbs-ft	706 lbs-ft	706 lbs-ft	
е	0.15 ft	0.15 ft	0.14 ft	0.14 ft	0.16 ft	0.16 ft	0.15 ft	0.15 ft	0.20 ft	0.19 ft	0.19 ft	0.18 ft	2.37 ft	2.01 ft	1.74 ft	1.53 ft	
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft										
f _{min}	253.3 psf	251.7 psf	250.2 psf	248.9 psf	260.2 psf	258.3 psf	256.5 psf	254.9 psf	272.3 psf	269.8 psf	267.5 psf	265.5 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	365.3 psf	358.6 psf	352.5 psf	346.8 psf	387.3 psf	379.6 psf	372.5 psf	366.1 psf	441.2 psf	431.0 psf	421.7 psf	413.2 psf	898.7 psf	259.3 psf	185.4 psf	158.7 psf	

Maximum Bearing Pressure = 899 psf Allowable Bearing Pressure = 1500 psf Use a 60in long \times 21in wide \times 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 335.8 \text{ ft-lbs}$

Resisting Force Required = 383.74 lbs S.F. = 1.67 Weight Required = 639.56 lbs

Minimum Width = 21 in in Weight Provided = 1903.13 lbs

A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0	0.362D + 0.875E					
Width		21 in			21 in		21 in						
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer				
F _Y	145 lbs	132 lbs 82 lbs		293 lbs	620 lbs	245 lbs	88 lbs	-11 lbs	28 lbs				
F _V	20 lbs	162 lbs	21 lbs	14 lbs	122 lbs	16 lbs	21 lbs	162 lbs	21 lbs				
P _{total}	2502 lbs	2488 lbs	2438 lbs	2536 lbs	2863 lbs	2487 lbs	777 lbs	678 lbs	717 lbs				
М	59 lbs-ft	275 lbs-ft	63 lbs-ft	39 lbs-ft	207 lbs-ft	50 lbs-ft	60 lbs-ft	274 lbs-ft	63 lbs-ft				
е	0.02 ft	0.11 ft	0.03 ft	0.02 ft	0.07 ft	0.02 ft	0.08 ft	0.40 ft	0.09 ft				
L/6	0.29 ft	1.53 ft	1.70 ft	1.72 ft	1.61 ft	1.71 ft	1.59 ft	0.94 ft	1.58 ft				
f _{min}	262.9 sqft	176.7 sqft	254.1 sqft	274.8 sqft	246.2 sqft	264.8 sqft	65.2 sqft	-30.0 sqft	57.4 sqft				
f _{max}	308.9 psf 392.0 psf 303.2 psf		304.9 psf	408.1 psf	303.7 psf	112.4 psf 185.0 psf 106.4 psf							

Maximum Bearing Pressure = 408 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

	Rear Strut	
0.946 k	Maximum Axial Load =	1.189 k
5.692 k	M8 Bolt Capacity =	5.692 k
7.952 k	Strut Bearing Capacity =	7.952 k
<u>17%</u>	Utilization =	<u>21%</u>
	<u>Bracing</u>	
0.787 k	Maximum Axial Load =	0.235 k
5.692 k	M10 Bolt Capacity =	8.894 k
7.952 k	Strut Bearing Capacity =	7.952 k
<u>14%</u>	Utilization =	<u>3%</u>
	5.692 k 7.952 k 17% 0.787 k 5.692 k 7.952 k	0.946 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 33.11 \text{ in} \\ \text{Allowable Story Drift for All Other} & & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & & 0.662 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & & 0.099 \text{ in} \\ \end{array}$

<u>0.099 ≤ 0.662, OK.</u>

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 81.00 \text{ in}$$

$$J = 0.255$$

$$210.919$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_L &= 28.6 \text{ ksi} \end{split}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_b = 81.00 \text{ in}$$

$$J = 0.255$$

$$219.027$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2})}]$$

$$\phi F_L = 28.5$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\begin{array}{lll} \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 28.6 \text{ ksi} \\ \\ \text{lx} = & 250988 \text{ mm}^4 \\ \\ & 0.603 \text{ in}^4 \\ \\ \text{y} = & 30 \text{ mm} \\ \\ \text{Sx} = & 0.511 \text{ in}^3 \\ \\ M_{\text{max}} St = & 1.218 \text{ k-ft} \\ \end{array}$$

77.3

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.5 \text{ ksi}$$

Compression

S2 =

3.4.9

b/t =7.4

S1 = 12.21 (See 3.4.16 above for formula)

S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi y F c y$

 $\phi F_L =$ 33.3 ksi

b/t =23.9 S1 = 12.21 S2 = 32.70

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

 $\phi F_L =$ 28.5 ksi

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\begin{array}{ll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.13 \\ & 23.1371 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))]$$

 $\phi F_L = 29.5 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.13 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))] \\ \phi F_1 = & 29.5 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\begin{pmatrix}
Rt - 1.17 \frac{\theta_y}{2} F_{CY}
\end{pmatrix}^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

$$h/t = 24.46$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

φ⊦ _L =	43.2 KSI
$\phi F_L St =$	29.5 ksi
lx =	364470 mm ⁴
	0.876 in ⁴
y =	37.77 mm
Sx =	0.589 in ³
$M_{max}St =$	1.446 k-ft

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$\psi = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

x = Sy =

 $M_{max}Wk =$

29 mm

0.457 in³

0.513 k-ft

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \overline{\theta_b} Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.2 \text{ ksi}$$

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$\phi F_1 = 33.3 \text{ ksi}$

Not Used 0.0 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

h/t =

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ m =0.65 15 $C_0 =$ Cc = 15 $S2 = \frac{k_1 Bbr}{mDbr}$ S2 = 77.3

$$\phi F_L St = 31.2 \text{ ksi}$$
 $Ix = 39958.2 \text{ mm}^4$
 0.096 in^4

43.2 ksi

 $\phi F_L = 1.3 \phi y F c y$

 $\phi F_1 =$

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.423 \text{ k-ft}$$

Weak Axis:

3.4.14

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$C_0 = 15$$
 $Cc = 15$
 $S2 = \frac{k_1 Bbr}{mDbr}$
 $S2 = 77.3$
 $\phi F_L = 1.3 \phi y F c y$
 $\phi F_L = 43.2 \text{ ksi}$
 $\phi F_L = 39958.2 \text{ mm}^4$
 0.096 in^4
 $\phi F_L = 15 \text{ mm}$
 $\phi F_L = 15 \text{ mm$

7.75

mDbr

0.65

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$φ$$
CC = 0.03792
 $φ$ F_L= $φ$ CC(BC-DC* $λ$)

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{\text{max}} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16.1 Rb/t =

 $\phi F_L = 33.3 \text{ ksi}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.404 \text{ k-ft}$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ Iy = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 42.32 \text{ in}$$
 $J = 0.16$
 111.025

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.0 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.$$

$$k_1 B p$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Not Used

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$32 - 6t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

 $Cc = 15$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

y = 15 mm

$$Sx = 0.163 \text{ in}^3$$

 $M_{max}St = 0.406 \text{ k-ft}$

Weak Axis:

3.4.14

$$L_b = 42.32 \text{ in}$$
 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 30.0$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$32 = 1.6Dp$$

 $S2 = 46.7$

$$\phi F_1 = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

 $\varphi F_L = 1.3 \varphi y F c y$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L = 43.2 \text{ ks}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.81475$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$
 $\varphi cc = 0.83406$
 $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$
 $\varphi F_L = 8.86409$ ksi
3.4.9
 $b/t = 7.75$

$$S2 = 32.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

 $S1 = 12.21$
 $S2 = 32.70$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$
 $\phi F_L = 33.25 \text{ kg}$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 8.86 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

4.45 kips $P_{max} =$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL			.8			4		·

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-40.249	-40.249	0	0
2	M16	Υ	-40.249	-40.249	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-69.488	-69.488	0	0
2	M16	V	-115.813	-115.813	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	138.975	138.975	0	0
2	M16	V	69 488	69 488	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M16	Ζ	6.693	6.693	0	0
3	M13	Ζ	0	0	0	0
4	M16	Z	0	0	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
	LATERAL - ASD 1.1785D + 0.65.				1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	253.551	2	309.659	2	011	10	Ō	4	Ō	1	0	1
2		min	-310.321	3	-445.279	3	-2.288	4	0	3	0	1	0	1
3	N7	max	.027	3	377.896	1	208	10	0	12	0	1	0	1
4		min	169	2	24.915	15	-29.203	4	047	4	0	1	0	1
5	N15	max	.209	3	946.038	1	.653	1	.001	1	0	1	0	1
6		min	-1.678	2	33.251	15	-29.45	5	047	4	0	1	0	1
7	N16	max	929.339	2	1052.997	2	105	10	0	1	0	1	0	1
8		min	-993.612	3	-1461.571	3	-211.98	4	0	3	0	1	0	1
9	N23	max	.027	3	377.552	1	3.203	1	.006	1	0	1	0	1
10		min	169	2	8.204	15	-27.256	5	043	5	0	1	0	1
11	N24	max	253.963	2	313.661	2	58.408	3	.002	4	0	1	0	1
12		min	-310.517	3	-443.061	3	-3.749	5	0	3	0	1	0	1
13	Totals:	max	1434.838	2	3112.117	1	0	1						
14		min	-1614.188	3	-2138.873	3	-302.283	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	250.271	1_	.676	6	1.405	4	0	10	0	12	0	1
2			min	-367.893	3	.158	15	034	3	0	1	0	1	0	1
3		2	max	250.405	1	.619	6	1.282	4	0	10	0	5	0	15
4			min	-367.792	3	.145	15	034	3	0	1	0	1	0	6
5		3	max	250.54	1	.561	6	1.159	4	0	10	0	5	0	15
6			min	-367.69	3	.131	15	034	3	0	1	0	1	0	6
7		4	max	250.675	1	.504	6	1.036	4	0	10	0	4	0	15
8			min	-367.589	3	.118	15	034	3	0	1	0	1	0	6
9		5	max	250.81	1	.446	6	.912	4	0	10	0	4	0	15
10			min	-367.488	3	.104	15	034	3	0	1	0	3	0	6
11		6	max	250.945	1	.389	6	.789	4	0	10	0	4	0	15
12			min	-367.387	3	.091	15	034	3	0	1	0	3	0	6
13		7	max	251.08	1	.331	6	.666	4	0	10	.001	4	0	15
14			min	-367.286	3	.077	15	034	3	0	1	0	3	0	6
15		8	max	251.215	1	.274	6	.543	4	0	10	.001	4	0	15
16			min	-367.185	3	.064	15	034	3	0	1	0	3	0	6
17		9	max	251.349	1	.216	6	.432	1	0	10	.001	4	0	15
18			min	-367.084	3	.05	15	034	3	0	1	0	3	0	6
19		10	max	251.484	1	.159	6	.432	1	0	10	.001	4	0	15
20			min	-366.982	3	.037	15	034	3	0	1	0	3	0	6
21		11	max	251.619	1	.109	2	.432	1	0	10	.001	4	0	15
22			min	-366.881	3	.016	12	034	3	0	1	0	3	0	6
23		12	max	251.754	1	.064	2	.432	1	0	10	.001	4	0	15
24			min	-366.78	3	013	3	062	5	0	1	0	3	0	6
25		13	max	251.889	1	.019	2	.432	1	0	10	.001	4	0	15
26			min	-366.679	3	047	3	185	5	0	1	0	3	0	6
27		14	max	252.024	1	017	15	.432	1	0	10	.001	4	0	15
28			min	-366.578	3	081	3	308	5	0	1	0	3	0	6

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
29		15	max	252.159	1	031	15	.432	1	0	10	.001	4	0	15
30			min	-366.477	3	129	4	432	5	0	1	0	3	0	6
31		16	max	252.294	1	044	15	.432	1	0	10	.001	4	0	15
32			min	-366.376	3	186	4	555	5	0	1	0	3	0	6
33		17	max	252.428	1	058	15	.432	1	0	10	.001	4	0	15
34			min	-366.274	3	244	4	678	5	0	1	0	3	0	6
35		18	max	252.563	1	071	15	.432	1	0	10	.001	1	0	15
36			min	-366.173	3	301	4	801	5	0	1	0	3	0	6
37		19	max	252.698	1	085	15	.432	1	0	10	.001	1	0	15
38			min	-366.072	3	359	4	924	5	0	1	0	3	0	6
39	M3	1	max		2	1.734	6	035	12	0	5	.002	1	0	6
40			min	-217.878	3	.407	15	-1.399	4	0	1	0	12	0	15
41		2	max	205.365	2	1.557	6	035	12	0	5	.002	1	0	2
42			min	-217.931	3	.366	15	-1.265	4	0	1	0	12	0	3
43		3	max	205.295	2	1.381	6	035	12	0	5	.001	1	0	2
44			min	-217.983	3	.324	15	-1.132	4	0	1	0	15	0	3
45		4	max	205.225	2	1.204	6	035	12	0	5	.001	1	0	15
46			min	-218.036	3	.283	15	998	4	0	1	0	5	0	4
47		5	max		2	1.028	6	035	12	0	5	.001	1	0	15
48			min	-218.088	3	.241	15	864	4	0	1	0	5	0	4
49		6	max		2	.852	6	035	12	0	5	.001	1	0	15
50			min	-218.141	3	.2	15	731	4	0	1	0	5	0	4
51		7	max		2	.675	6	035	12	0	5	.001	1	0	15
52			1		3	.158	15	597	4	0	1	0	5	0	4
53		8	max	204.945	2	.499	6	035	12	0	5	0	1	0	15
54			min	-218.246	3	.117	15	484	1	0	1	0	5	001	4
55		9		204.875	2	.323	6	035	12	0	5	0	1	0	15
56			min	-218.298	3	.075	15	484	1	0	1	0	5	001	4
57		10	max		2	.146	6	035	12	0	5	0	1	0	15
58		10	min	-218.351	3	.034	15	484	1	0	1	0	5	001	4
59		11	max		2	.004	2	.049	5	0	5	0	1	0	15
60			min	-218.403	3	054	3	484	1	0	1	0	5	001	4
61		12	max		2	049	15	.182	5	0	5	0	1	0	15
62		'-			3	207	4	484	1	0	1	0	5	001	4
63		13	max	204.595	2	09	15	.316	5	0	5	0	1	0	15
64		10	min	-218.508	3	383	4	484	1	0	1	0	5	001	4
65		14	max		2	132	15	.45	5	0	5	0	1	0	15
66			min	-218.561	3	559	4	484	1	0	1	0	5	001	4
67		15	max		2	173	15	.583	5	0	5	0	1	0	15
68			min	-218.613	3	736	4	484	1	0	1	0	5	0	4
69		16		204.385		215	15	.717	5	0	5	0	1	0	15
70		10		-218.666		912	4	484	1	0	1	0	5	0	4
71		17		204.315	2	256	15	.851	5	0	5	0	12	0	15
72		1,		-218.718		-1.088	4	484	1	0	1	0	5	0	4
73		18		204.245	2	298	15	.984	5	0	5	0	12	0	15
74		10			3	-1.265	4	484	1	0	1	0	1	0	4
75		19		204.175	2	339	15	1.118	5	0	5	0	5	0	1
76		10			3	-1.441	4	484	1	0	1	0	1	0	1
77	M4	1	max		1	0	1	212	10	0	1	0	5	0	1
78	IVIT	<u> </u>	min	24.564	15	0	1	-28.73	4	0	1	0	2	0	1
79		2	max		1	0	1	212	10	0	1	0	12	0	1
80			min	24.583	15	0	1	-28.786	4	0	1	003	4	0	1
81		3	max		1	0	1	212	10	0	1	<u>003</u> 0	12	0	1
82		J	min		15	0	1	-28.842	4	0	1	005	4	0	1
83		4	max		1	0	1	212	10	0	1	005 0	12	0	1
84		4	min	24.622	15	0	1	-28.898	4	0	1	008	4	0	1
85		5			1	0	1	212	10	0	1	<u>008</u> 0	12	0	1
UU		L U	max	370.33		U		८।८	IU	U		U	14	U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
86			min	24.642	15	0	1	-28.954	4	0	1	01	4	0	1
87		6	max	377.054	1	0	1_	212	10	0	1	0	12	0	1
88			min	24.661	15	0	1	-29.01	4	0	1	013	4	0	1
89		7	max		1	0	1	212	10	0	1	0	12	0	1
90			min	24.681	15	0	1	-29.066	4	0	1	015	4	0	1
91		8	max	377.184	1	0	1	212	10	0	1	0	12	0	1
92			min	24.7	15	0	1	-29.122	4	0	1	018	4	0	1
93		9	max	377.248	1	0	1	212	10	0	1	0	12	0	1
94			min	24.72	15	0	1	-29.178	4	0	1	021	4	0	1
95		10	max	377.313	_1_	0	1	212	10	0	1	0	12	0	1
96			min	24.739	15	0	1	-29.234	4	0	1	023	4	0	1
97		11	max	377.378	1	0	1	212	10	0	1	0	12	0	1
98			min	24.759	15	0	1	-29.291	4	0	1	026	4	0	1
99		12	max	377.443	1	0	1	212	10	0	1	0	12	0	1
100			min	24.778	15	0	1	-29.347	4	0	1	029	4	0	1
101		13	max	377.507	1	0	1	212	10	0	1	0	12	0	1
102			min	24.798	15	0	1	-29.403	4	0	1	031	4	0	1
103		14	max	377.572	1	0	1	212	10	0	1	0	12	0	1
104			min	24.817	15	0	1	-29.459	4	0	1	034	4	0	1
105		15	max	377.637	1	0	1	212	10	0	1	0	12	0	1
106			min	24.837	15	0	1	-29.515	4	0	1	036	4	0	1
107		16	max	377.701	1	0	1	212	10	0	1	0	12	0	1
108			min	24.856	15	0	1	-29.571	4	0	1	039	4	0	1
109		17	max	377.766	1	0	1	212	10	0	1	0	12	0	1
110			min	24.876	15	0	1	-29.627	4	0	1	042	4	0	1
111		18	max		1	0	1	212	10	0	1	0	12	0	1
112			min	24.895	15	0	1	-29.683	4	0	1	044	4	0	1
113		19	max		1	0	1	212	10	0	1	0	12	0	1
114				24.915	15	0	1	-29.739	4	0	1	047	4	0	1
115	M6	1	max	808.612	1	.664	6	1.274	4	0	3	0	3	0	1
116				-1188.565	3	.148	15	163	3	0	5	0	1	0	1
117		2		808.747	1	.607	6	1.151	4	0	3	0	4	0	15
118				-1188.464	3	.134	15	163	3	0	5	0	11	0	6
119		3		808.882	1	.549	6	1.027	4	0	3	0	4	0	15
120				-1188.363	3	.121	15	163	3	0	5	0	11	0	6
121		4		809.017	1	.493	2	.904	4	0	3	0	4	0	15
122				-1188.262	3	.107	15	163	3	0	5	0	10	0	6
123		5		809.152	1	.448	2	.781	4	0	3	0	4	0	15
124		Ť		-1188.161	3	.094	15	163	3	0	5	0	10	0	6
125		6		809.287	1	.403	2	.658	4	0	3	.001	4	0	15
126			min	-1188.06		.076	12		3	0	5	0	10		6
127		7		809.422	1	.359	2	.535	4	0	3	.001	4	0	15
128				-1187.959	3	.054	12	163	3	0	5	0	10	0	2
129		8		809.556	1	.314	2	.412	4	0	3	.001	4	0	15
130				-1187.857	3	.032	12	163	3	0	5	0	3	0	2
131		9		809.691	1	.269	2	.288	4	0	3	.001	4	0	15
132		Ť	min	-1187.756	3	.001	3	163	3	0	5	0	3	0	2
133		10		809.826	1	.224	2	.165	4	0	3	.001	4	0	15
134		10		-1187.655	3	032	3	163	3	0	5	0	3	0	2
135		11	max	809.961	1	.179	2	.137	1	0	3	.001	4	0	12
136				-1187.554	3	066	3	163	3	0	5	.001	3	0	2
137		12		810.096	1	.135	2	.137	1	0	3	.001	4	0	12
138		14		-1187.453	3		3	163	3	0	5	.001	3	0	2
		12				1	2		1		_			T	
139		13		810.231 -1187.352	1	.09		.137		0	3	.001	4	0	12
140		11			3	133	3	244	5	0	5	0	3	0	2
141 142		14		810.366 -1187.251	3	.045 167	3	.137 368	5	0	<u>3</u>	.001	3	0	12
			min	-110//201	4	- 1h/	1 3	- 368	2	()	n				1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
143		15	max	810.501	1	0	2	.137	1	0	3	.001	4	0	12
144			min	-1187.149	3	2	3	491	5	0	5	0	3	0	2
145		16	max	810.635	1	045	2	.137	1	0	3	.001	4	0	3
146			min	-1187.048	3	234	3	614	5	0	5	0	3	0	2
147		17	max	810.77	1	069	15	.137	1	0	3	.001	4	0	3
148		1	min	-1186.947	3	268	3	737	5	0	5	0	3	0	2
149		18		810.905	1	082	15	.137	1	0	3	0	4	0	3
150			min	-1186.846	3	314	4	86	5	0	5	0	3	0	2
151		19	max	811.04	1	096	15	.137	1	0	3	0	4	0	3
152		13	min	-1186.745	3	371	4	983	5	0	5	0	3	0	2
153	M7	1		787.071	2		4	.03	3	0	14	0	4	0	2
	IVI 7		max			1.756									
154			min	-682.521	3	.42	15	-1.291	5	0	3	0	3	0	3
155		2	max	787.001	2	1.58	4	.03	3	0	14	0	4	0	2
156		_	min	-682.573	3	.378	15	-1.157	5	0	3	0	3	0	3
157		3	max	786.931	2	1.403	4	.03	3	0	14	0	2	0	2
158			min	-682.626	3	.337	15	-1.023	5	0	3	0	3	0	3
159		4	max	786.861	2	1.227	4	.03	3	0	14	0	2	0	2
160			min	-682.678	3	.295	15	89	5	0	3	0	5	0	3
161		5	max	786.791	2	1.051	4	.03	3	0	14	0	2	0	15
162			min	-682.731	3	.254	15	756	5	0	3	0	5	0	3
163		6	max	786.721	2	.874	4	.03	3	0	14	0	2	0	15
164			min	-682.783	3	.212	15	622	5	0	3	0	5	0	3
165		7	max	786.651	2	.698	4	.03	3	0	14	0	2	0	15
166		<u> </u>	min	-682.836	3	.171	15	489	5	0	3	0	5	0	6
167		8	max	786.581	2	.521	4	.03	3	0	14	0	2	0	15
168		- 0	min	-682.888	3	.122	12	355	5	0	3	0	5	001	6
		9					2		3						
169		9	max	786.511	2	.349		.03		0	14	0	2	0	15
170		40	min	-682.941	3	.054	12	221	5	0	3	0	5	001	6
171		10	max	786.441	2	.212	2	.03	3	0	14	0	2	0	15
172			min	-682.993	3	035	3	088	5	0	3	0	5	001	6
173		11	max	786.371	2	.075	2	.047	4	0	14	0	2	0	15
174			min	-683.046	3	138	3	008	2	0	3	0	5	001	6
175		12	max	786.301	2	036	15	.181	4	0	14	0	2	0	15
176			min	-683.098	3	241	3	008	2	0	3	0	5	001	6
177		13	max	786.231	2	078	15	.315	4	0	14	0	2	0	15
178			min	-683.151	3	361	6	008	2	0	3	0	5	001	6
179		14	max	786.161	2	119	15	.448	4	0	14	0	11	0	15
180			min	-683.203	3	537	6	008	2	0	3	0	5	001	6
181		15	max	786.091	2	161	15	.582	4	0	14	0	11	0	15
182		1	min	-683.256	3	714	6	008	2	0	3	0	5	0	6
183		16		786.021	2	202	15		4	0	14	0	11	0	15
184				-683.308	3	89	6	008	2	0	3	0	5	0	6
185		17		785.951	2	244	15	.849	4	0	14	0	11	0	15
186		17	min	-683.361	3	-1.067	6	008	2	0	3	0	5	0	6
187		18		785.881	_	285	15	.983	4	_	14	-	1	0	
		10			2					0		0			15
188		40	min	-683.413	3	-1.243	6	008	2	0	3	0	3	0	6
189		19	max		2	327	15	1.117	4	0	14	0	14	0	1
190	1.45		min	-683.466	3	-1.419	6	008	2	0	3	0	3	0	1
191	M8	1	max	944.874	1	0	1	.771	1	0	1	0	4	0	1
192			min	32.9	15	0	1	-28.749	4	0	1	0	1	0	1
193		2	max	944.938	1	0	1	.771	1	0	1	0	1	0	1
194			min	32.919	15	0	1	-28.805	4	0	1	003	4	0	1
195		3	max	945.003	1	0	1	.771	1	0	1	0	1	0	1
196			min	32.939	15	0	1	-28.861	4	0	1	005	4	0	1
197		4	max		1	0	1	.771	1	0	1	0	1	0	1
198			min	32.958	15	0	1	-28.917	4	0	1	008	4	0	1
199		5	max		1	0	1	.771	1	0	1	0	1	0	1
100			πιαλ	UTU. 100							1	U		<u> </u>	

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
200			min	32.978	15	0	1	-28.974	4	0	1	01	4	0	1
201		6	max	945.197	1	0	1	.771	1	0	1	0	1	0	1
202			min	32.997	15	0	1	-29.03	4	0	1	013	4	0	1
203		7	max	945.262	1	0	1	.771	1	0	1	0	1	0	1
204			min	33.017	15	0	1	-29.086	4	0	1	015	4	0	1
205		8	max	945.327	1	0	1	.771	1	0	1	0	1	0	1
206			min	33.036	15	0	1	-29.142	4	0	1	018	4	0	1
207		9	max	945.391	1	0	1	.771	1	0	1	0	1	0	1
208			min	33.056	15	0	1	-29.198	4	0	1	021	4	0	1
209		10	max	945.456	1	0	1	.771	1	0	1	0	1	0	1
210			min	33.075	15	0	1	-29.254	4	0	1	023	4	0	1
211		11	max	945.521	1	0	1	.771	1	0	1	0	1	0	1
212			min	33.095	15	0	1	-29.31	4	0	1	026	4	0	1
213		12	max	945.585	1	0	1	.771	1	0	1	0	1	0	1
214			min	33.114	15	0	1	-29.366	4	0	1	029	4	0	1
215		13	max	945.65	1	0	1	.771	1	0	1	0	1	0	1
216			min	33.134	15	0	1	-29.422	4	0	1	031	4	0	1
217		14	max	945.715	1	0	1	.771	1	0	1	0	1	0	1
218			min	33.153	15	0	1	-29.478	4	0	1	034	4	0	1
219		15	max	945.78	1	0	1	.771	1	0	1	0	1	0	1
220			min	33.173	15	0	1	-29.534	4	0	1	036	4	0	1
221		16	max	945.844	1	0	1	.771	1	0	1	.001	1	0	1
222			min	33.192	15	0	1	-29.59	4	0	1	039	4	0	1
223		17	max	945.909	1	0	1	.771	1	0	1	.001	1	0	1
224			min	33.212	15	0	1	-29.646	4	0	1	042	4	0	1
225		18	max		1	0	1	.771	1	0	1	.001	1	0	1
226			min	33.231	15	0	1	-29.703	4	0	1	044	4	0	1
227		19	max	946.038	1	0	1	.771	1	0	1	.001	1	0	1
228		10	min	33.251	15	0	1	-29.759	4	0	1	047	4	0	1
229	M10	1	max	259.781	1	.707	4	1.442	5	0	1	0	1	0	1
230	IVIIO	-	min	-336.233	3	.179	15	185	1	002	5	0	5	0	1
231		2	max		1	.65	4	1.319	5	0	1	0	1	0	15
232			min	-336.132	3	.166	15	185	1	002	5	0	3	0	4
233		3	max	260.051	1	.592	4	1.196	5	0	1	0	4	0	15
234			min	-336.031	3	.152	15	185	1	002	5	0	3	0	4
235		4	max	260.186	1	.535	4	1.072	5	0	1	0	4	0	15
236			min	-335.929	3	.139	15	185	1	002	5	0	3	0	4
237		5	max	260.321	1	.477	4	.949	5	0	1	0	4	0	15
238		J	min	-335.828	3	.125	15	185	1	002	5	0	3	0	4
239		6	max		1	.42	4	.826	5	0	1	0	4	0	15
240			min		3	.112	15	185	1	002	5	0	3	0	4
241		7	max		1	.362	4	.703	5	0	1	.001	4	0	15
241			min			.098	15	185	1	002	5	0	3	0	4
242		8	max		1	.305	4	.58	5	002	1	.001	4	0	15
243		0	min	-335.525	3	.085	15	185	1	002	5	.001	3	0	4
244		9	max		1	.247	4	.457	5	002 0	1	.001	4	0	15
246		3	min		3	.071	15	185	1	002	5	0	3	0	4
246		10						.333	5	_	<u> </u>	.001	4	0	15
247		10	max	260.995 -335.323	1	.19	4	185	1	0		.001	3	0	4
		11	min		3	.052	12		5	002	<u>5</u>				_
249		11	max		3	.132	12	.21	1	002	5	.001	3	0	15
250		40	min	-335.221		.03		185						_	4
251		12	max		1	.075	4	.087	5	0	1	.001	4	0	15
252		40	min	-335.12	3	.008	12	185	1	002	5	0	3	0	4
253		13	max		1	.025	5	.006	3	0	1	.001	4	0	15
254		4.4	min	-335.019	3	024	3	185	1	002	5	0	3	0	4
255		14	max		1	.004	5	.006	3	0	1	.001	4	0	15
256			min	-334.918	3	066	1	193	4	002	5	0	3	0	4

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
257		15	max	261.669	1	01	15	.006	3	0	1	.001	5	0	15
258			min	-334.817	3	11	1	317	4	002	5	0	3	0	4
259		16	max	261.804	1	023	15	.006	3	0	1	.001	5	0	15
260			min	-334.716	3	156	6	44	4	002	5	0	1	0	4
261		17	max	261.939	1	037	15	.006	3	0	1	.001	5	0	15
262			min	-334.614	3	214	6	563	4	002	5	0	1	0	4
263		18	max	262.074	1	05	15	.006	3	0	1	.001	5	0	12
264			min	-334.513	3	271	6	686	4	002	5	0	1	0	4
265		19	max	262.209	1	064	15	.006	3	0	1	0	5	0	12
266			min	-334.412	3	329	6	809	4	002	5	0	1	0	4
267	M11	1	max	205.12	2	1.721	6	.549	1	.002	4	0	5	0	1
268			min	-218.539	3	.398	15	-1.216	5	0	10	002	1	0	15
269		2	max	205.05	2	1.545	6	.549	1	.002	4	0	5	0	1
270			min	-218.592	3	.357	15	-1.082	5	0	10	002	1	0	3
271		3	max	204.98	2	1.368	6	.549	1	.002	4	0	5	0	1
272			min	-218.644	3	.315	15	949	5	0	10	001	1	0	3
273		4	max	204.91	2	1.192	6	.549	1	.002	4	0	3	0	15
274			min	-218.697	3	.274	15	815	5	0	10	001	1	0	4
275		5	max	204.84	2	1.015	6	.549	1	.002	4	0	3	0	15
276			min	-218.749	3	.232	15	681	5	0	10	001	1	0	4
277		6	max	204.77	2	.839	6	.549	1	.002	4	0	3	0	15
278			min	-218.802	3	.191	15	548	5	0	10	001	1	0	4
279		7	max	204.7	2	.663	6	.549	1	.002	4	0	3	0	15
280			min	-218.854	3	.149	15	414	5	0	10	001	1	001	4
281		8	max	204.63	2	.486	6	.549	1	.002	4	0	3	0	15
282			min	-218.907	3	.108	15	28	5	0	10	0	1	001	4
283		9	max	204.56	2	.31	6	.549	1	.002	4	0	3	0	15
284		-	min	-218.959	3	.066	15	147	5	0	10	0	1	001	4
285		10	max	204.49	2	.143	1	.549	1	.002	4	0	3	0	15
286		10	min	-219.012	3	.025	15	02	3	0	10	0	1	001	4
287		11	max	204.42	2	.005	1	.549	1	.002	4	0	3	0	15
288			min	-219.064	3	071	3	02	3	0	10	0	1	001	4
289		12	max	204.35	2	058	15	.549	1	.002	4	0	3	0	15
290		12	min	-219.117	3	22	4	02	3	0	10	0	1	001	4
291		13	max	204.28	2	099	15	.549	1	.002	4	0	3	0	15
292		10	min	-219.169	3	396	4	02	3	0	10	0	1	001	4
293		14	max	204.21	2	141	15	.643	4	.002	4	0	3	0	15
294		1 -	min	-219.222	3	572	4	02	3	0	10	0	1	001	4
295		15	max	204.14	2	182	15	.777	4	.002	4	0	3	0	15
296		'0	min	-219.274	3	749	4	02	3	0	10	0	1	0	4
297		16	max		2	224	15	.91	4	.002	4	0	3	0	15
298		10	min	-219.327	3	925	4	02	3	0	10	0	10	0	4
299		17	max	204	2	265	15	1.044	4	.002	4	0	4	0	15
300		17		-219.379		-1.102	4	02	3	0	10	0	10	0	4
301		18			2	307	15	1.178	4	.002	4	0	4	0	15
302		10	min		3	-1.278	4	02	3	0	10	0	10	0	4
303		19	max		2	348	15	1.311	4	.002	4	0	4	0	1
304		13	min	-219.484	3	-1.454	4	02	3	0	10	0	10	0	1
305	M12	1		376.387	1	0	1	3.415	1	0	1	0	4	0	1
306	IVIIZ		min	7.853	15	0	1	-26.303	5	0	1	0	3	0	1
307		2	max		1	0	1	3.415	1	0	1	0	1	0	1
308			min	7.872	15	0	1	-26.359	5	0	1	002	5	0	1
309		3	max		1	0	1	3.415	1	0	1	0	1	0	1
310		J	min	7.892	15	0	1	-26.415	5	0	1	005	5	0	1
311		4		376.581	1	0	1	3.415	1	0	1	0	1	0	1
312		_	min	7.911	15	0	1	-26.471	5	0	1	007	5	0	1
313		5		376.646	1	0	1	3.415	1	0	1	.001	1	0	1
			IIIIUX	37 3.0-10				0.710			<u> </u>				

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

314		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
316	314			min	7.931	15	0	1	-26.527	5	0	1	009	5	0	1
318	315		6	max	376.711	1	0	1	3.415	1	0	1	.002	1	0	1
318	316			min	7.95	15	0	1	-26.583	5	0	1	012	5	0	1
3319	317		7	max	376.775	1	0	1	3.415	1	0	1	.002	1	0	1
3319	318					15	0	1	-26.639	5	0	1	014	5	0	1
1920			8					1				1				1
1821						15		1		5		1		5		1
322			9					1				1				1
323								1				1				1
325			10					1				1				
325																_
1266			11					1				1				1
12 max 377.099 1				1								_				_
1328			12				_	_							_	
329			12													
330			13									_				
331			13							_						_
332			1/													
333			14				_	_								
334			15									_				
335			13													_
336			16					_								
337			10													_
18			47					_							_	
339			17													
340			40				_					_				
341			18			_	_	-		_						_
342			40					-								
343 M1			19				_	_								
344												_				-
345		<u>M1</u>	1													
346								•								-
347 3 max 116.94 3 6.523 9 -4.115 12 0 12 .103 1 .107 1 348 min -15.095 10 -28.599 2 -67.693 1 0 1 .007 12 -148 3 349 4 max 117.06 3 6.332 9 -4.115 12 0 12 .089 1 .111 2 350 min -14.961 10 -28.828 2 -67.693 1 0 1 .006 12 .146 3 351 5 max 117.18 3 6.142 9 -4.115 12 0 12 .074 1 .117 2 352 min -14.828 10 -29.057 2 -67.693 1 0 1 .005 12 .144 3 355 7 max 117.42 3 </td <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>			2									_				
348 min -15.095 10 -28.599 2 -67.693 1 0 1 .007 12 148 3 349 4 max 117.06 3 6.332 9 -4.115 12 0 12 .089 1 .111 2 350 min -14.961 10 -28.828 2 -67.693 1 0 1 .006 12 .146 3 351 5 max 117.18 3 6.142 9 -4.115 12 0 12 .074 1 .117 2 352 min -14.828 10 -29.057 2 -67.693 1 0 1 .005 12 .144 3 353 6 max 117.3 3 5.951 9 -4.115 12 0 12 .059 1 .124 2 354 min -14.694 10 -																
349 4 max 117.06 3 6.332 9 -4.115 12 0 12 .089 1 .111 2 350 min -14.961 10 -28.828 2 -67.693 1 0 1 .006 12 146 3 351 5 max 117.18 3 6.142 9 -4.115 12 0 12 .074 1 .117 2 352 min -14.828 10 -29.057 2 -67.693 1 0 1 .005 12 -144 3 353 6 max 117.3 3 5.957 9 -4.115 12 0 12 .059 1 .124 2 354 min -14.694 10 -29.286 2 -67.693 1 0 1 .004 12 .142 3 355 7 max 117.42 3 </td <td></td> <td></td> <td>3</td> <td></td> <td>_</td>			3													_
350												_				
351 5 max 117.18 3 6.142 9 -4.115 12 0 12 .074 1 .117 2 352 min -14.828 10 -29.057 2 -67.693 1 0 1 .005 12 144 3 353 6 max 117.3 3 5.951 9 -4.115 12 0 12 .059 1 .124 2 354 min -14.694 10 -29.286 2 -67.693 1 0 1 .004 12 .142 3 355 7 max 117.54 3 5.76 9 -4.115 12 0 12 .044 1 .13 2 356 min -14.561 10 -29.514 2 -67.693 1 0 1 .003 12 .14 3 357 8 max 117.54 3			4	_												
S52																
353 6 max 117.3 3 5.951 9 -4.115 12 0 12 .059 1 .124 2 354 min -14.694 10 -29.286 2 -67.693 1 0 1 .004 12 142 3 355 7 max 117.42 3 5.76 9 -4.115 12 0 12 .044 1 .13 2 356 min -14.561 10 -29.514 2 -67.693 1 0 1 .003 12 14 3 357 8 max 117.54 3 5.57 9 -4.115 12 0 12 .03 1 .137 2 358 min -14.427 10 -29.743 2 -67.693 1 0 1 .003 12 137 3 369 min -14.294 10 -29.			5													
354 min -14.694 10 -29.286 2 -67.693 1 0 1 .004 12 142 3 355 7 max 117.42 3 5.76 9 -4.115 12 0 12 .044 1 .13 2 356 min -14.561 10 -29.514 2 -67.693 1 0 1 .003 12 14 3 357 8 max 117.54 3 5.57 9 -4.115 12 0 12 .03 1 .137 2 358 min -14.427 10 -29.743 2 -67.693 1 0 1 .003 12 137 3 359 9 max 117.66 3 5.379 9 -4.115 12 0 12 .015 1 .143 2 360 min -14.294 10 -29.972 <				min												
355 7 max 117.42 3 5.76 9 -4.115 12 0 12 .044 1 .13 2 356 min -14.561 10 -29.514 2 -67.693 1 0 1 .003 12 14 3 357 8 max 117.54 3 5.57 9 -4.115 12 0 12 .03 1 .137 2 358 min -14.427 10 -29.743 2 -67.693 1 0 1 .003 12 137 3 359 9 max 117.66 3 5.379 9 -4.115 12 0 12 .015 1 .143 2 360 min -14.294 10 -29.972 2 -67.693 1 0 1 .002 4 .15 2 362 min -14.16 10 -30.201	353		6	max	117.3	3		9		12	0	12	.059	1	.124	2
356 min -14.561 10 -29.514 2 -67.693 1 0 1 .003 12 14 3 357 8 max 117.54 3 5.57 9 -4.115 12 0 12 .03 1 .137 2 358 min -14.427 10 -29.743 2 -67.693 1 0 1 .003 12 137 3 359 9 max 117.66 3 5.379 9 -4.115 12 0 12 .015 1 .143 2 360 min -14.294 10 -29.972 2 -67.693 1 0 1 .002 10 135 3 361 10 max 117.781 3 5.189 9 -4.115 12 0 12 .002 4 .15 2 362 min -14.16 10 -				min				2		1	0	1	.004	12		3
357 8 max 117.54 3 5.57 9 -4.115 12 0 12 .03 1 .137 2 358 min -14.427 10 -29.743 2 -67.693 1 0 1 .003 12 137 3 359 9 max 117.66 3 5.379 9 -4.115 12 0 12 .015 1 .143 2 360 min -14.294 10 -29.972 2 -67.693 1 0 1 .002 10 135 3 361 10 max 117.781 3 5.189 9 -4.115 12 0 12 .002 4 .15 2 362 min -14.16 10 -30.201 2 -67.693 1 0 1 0 10 133 3 363 11 max 117.901 3 4.998 9 -4.115 <td></td> <td></td> <td>7</td> <td>max</td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td>			7	max		3					0					
358 min -14.427 10 -29.743 2 -67.693 1 0 1 .003 12 137 3 359 9 max 117.66 3 5.379 9 -4.115 12 0 12 .015 1 .143 2 360 min -14.294 10 -29.972 2 -67.693 1 0 1 .002 10 135 3 361 10 max 117.781 3 5.189 9 -4.115 12 0 12 .002 4 .15 2 362 min -14.16 10 -30.201 2 -67.693 1 0 1 0 10 133 3 363 11 max 117.901 3 4.998 9 -4.115 12 0 12 0 3 .156 2 364 min -14.027 10 -3				min								_				
359 9 max 117.66 3 5.379 9 -4.115 12 0 12 .015 1 .143 2 360 min -14.294 10 -29.972 2 -67.693 1 0 1 .002 10 135 3 361 10 max 117.781 3 5.189 9 -4.115 12 0 12 .002 4 .15 2 362 min -14.16 10 -30.201 2 -67.693 1 0 1 0 10 133 3 363 11 max 117.901 3 4.998 9 -4.115 12 0 12 0 3 .156 2 364 min -14.027 10 -30.429 2 -67.693 1 0 1 014 1 131 3 365 12 max 118.021 3 4.807 9 -4.115 <td></td> <td></td> <td>8</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td>12</td> <td>0</td> <td>12</td> <td></td> <td></td> <td></td> <td></td>			8			3				12	0	12				
360 min -14.294 10 -29.972 2 -67.693 1 0 1 .002 10 135 3 361 10 max 117.781 3 5.189 9 -4.115 12 0 12 .002 4 .15 2 362 min -14.16 10 -30.201 2 -67.693 1 0 1 0 10 133 3 363 11 max 117.901 3 4.998 9 -4.115 12 0 12 0 3 .156 2 364 min -14.027 10 -30.429 2 -67.693 1 0 1 014 1 131 3 365 12 max 118.021 3 4.807 9 -4.115 12 0 12 001 12 .163 2 366 min -13.893 10 <t< td=""><td></td><td></td><td></td><td>min</td><td></td><td>10</td><td></td><td>2</td><td></td><td></td><td>0</td><td>_</td><td></td><td>12</td><td>137</td><td></td></t<>				min		10		2			0	_		12	137	
361 10 max 117.781 3 5.189 9 -4.115 12 0 12 .002 4 .15 2 362 min -14.16 10 -30.201 2 -67.693 1 0 1 0 10 -133 3 363 11 max 117.901 3 4.998 9 -4.115 12 0 12 0 3 .156 2 364 min -14.027 10 -30.429 2 -67.693 1 0 1 014 1 131 3 365 12 max 118.021 3 4.807 9 -4.115 12 0 12 001 12 .163 2 366 min -13.893 10 -30.658 2 -67.693 1 0 1 029 1 129 3 367 13 max 118.141 3 4.617 9 -4.115			9	max	117.66	3	5.379	9	-4.115	12	0	12	.015	1	.143	2
361 10 max 117.781 3 5.189 9 -4.115 12 0 12 .002 4 .15 2 362 min -14.16 10 -30.201 2 -67.693 1 0 1 0 10 -133 3 363 11 max 117.901 3 4.998 9 -4.115 12 0 12 0 3 .156 2 364 min -14.027 10 -30.429 2 -67.693 1 0 1 014 1 131 3 365 12 max 118.021 3 4.807 9 -4.115 12 0 12 001 12 .163 2 366 min -13.893 10 -30.658 2 -67.693 1 0 1 029 1 129 3 367 13 max 118.141 3 4.617 9 -4.115	360			min	-14.294	10	-29.972	2	-67.693	1	0	1	.002	10	135	3
363 11 max 117.901 3 4.998 9 -4.115 12 0 12 0 3 .156 2 364 min -14.027 10 -30.429 2 -67.693 1 0 1 014 1 131 3 365 12 max 118.021 3 4.807 9 -4.115 12 0 12 001 12 .163 2 366 min -13.893 10 -30.658 2 -67.693 1 0 1 029 1 129 3 367 13 max 118.141 3 4.617 9 -4.115 12 0 12 002 12 .169 2 368 min -13.76 10 -30.887 2 -67.693 1 0 1 044 1 126 3 369 14 max 118.261 3 4.426 9 -4.115 12 0 12 003 12 .176 2			10	max	117.781	3	5.189	9	-4.115	12	0	12	.002	4	.15	2
363 11 max 117.901 3 4.998 9 -4.115 12 0 12 0 3 .156 2 364 min -14.027 10 -30.429 2 -67.693 1 0 1 014 1 131 3 365 12 max 118.021 3 4.807 9 -4.115 12 0 12 001 12 .163 2 366 min -13.893 10 -30.658 2 -67.693 1 0 1 029 1 129 3 367 13 max 118.141 3 4.617 9 -4.115 12 0 12 002 12 .169 2 368 min -13.76 10 -30.887 2 -67.693 1 0 1 044 1 126 3 369 14 max 118.261 3 4.426 9 -4.115 12 0 12 003 12 .176 2						10										
364 min -14.027 10 -30.429 2 -67.693 1 0 1 014 1 131 3 365 12 max 118.021 3 4.807 9 -4.115 12 0 12 001 12 .163 2 366 min -13.893 10 -30.658 2 -67.693 1 0 1 029 1 129 3 367 13 max 118.141 3 4.617 9 -4.115 12 0 12 002 12 .169 2 368 min -13.76 10 -30.887 2 -67.693 1 0 1 044 1 126 3 369 14 max 118.261 3 4.426 9 -4.115 12 0 12 003 12 .176 2			11			3				12		12	0	3		
365 12 max 118.021 3 4.807 9 -4.115 12 0 12 001 12 .163 2 366 min -13.893 10 -30.658 2 -67.693 1 0 1 029 1 129 3 367 13 max 118.141 3 4.617 9 -4.115 12 0 12 002 12 .169 2 368 min -13.76 10 -30.887 2 -67.693 1 0 1 044 1 126 3 369 14 max 118.261 3 4.426 9 -4.115 12 0 12 003 12 .176 2																
366 min -13.893 10 -30.658 2 -67.693 1 0 1 029 1 129 3 367 13 max 118.141 3 4.617 9 -4.115 12 0 12 002 12 .169 2 368 min -13.76 10 -30.887 2 -67.693 1 0 1 044 1 126 3 369 14 max 118.261 3 4.426 9 -4.115 12 0 12 003 12 .176 2			12			3						12		12		
367 13 max 118.141 3 4.617 9 -4.115 12 0 12 002 12 .169 2 368 min -13.76 10 -30.887 2 -67.693 1 0 1 044 1 126 3 369 14 max 118.261 3 4.426 9 -4.115 12 0 12 003 12 .176 2																
368 min -13.76 10 -30.887 2 -67.693 1 0 1 044 1 126 3 369 14 max 118.261 3 4.426 9 -4.115 12 0 12 003 12 .176 2			13													
369																
			14									_				

Company Designer Job Number Model Name Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
371			max	118.381	3	4.236	9	-4.115	12	0	12	004	12	.183	2
372			min	-13.493	10	-31.344	2	-67.693	1	0	1	073	1	121	3
373		16	max	92.421	2	148.547	2	-4.152	12	0	1	005	12	.188	2
374			min	2.765	15	-204.991	3	-68.088	1	0	5	088	1	117	3
375		17	max	92.581	2	148.318	2	-4.152	12	0	1	006	12	.156	2
376			min	2.813	15	-205.163	3	-68.088	1	0	5	103	1	073	3
377		18	max	-6.563	12	361.084	2	-4.372	12	0	3	006	12	.079	2
378			min	-139.403	1	-167.186	3	-69.819	1	0	2	118	1	036	3
379		19	max	-6.483	12	360.855	2	-4.372	12	0	3	007	12	0	2
380			min	-139.243	1	-167.358	3	-69.819	1	0	2	133	1	0	3
381	<u>M5</u>	1	max	307.906	1_	1134.094	3	036	10	0	1	.04	4	0	3
382		_	min	10.891	15	-816.354	1	-52.155	3	0	5	0	10	0	2
383		2	max	308.066	1	1133.923	3	036	10	0	1	.035	4	.177	1
384		_	min	10.94	15	-816.583	1	-52.155	3	0	5	006	3	246	3
385		3	max	365.846	3	5.51	9	5.992	3	0	3	.029	4	.351	1
386			min	-76.513	2	-105.42	2	-21.862	4	0	4	016	3	486	3
387		4	max	365.966	3	5.32	9	5.992	3	0	3	.024	4	.367	2
388		_	min	-76.353	2	-105.649	2	-21.62	4	0	4	015	3	<u>479</u>	3
389		5	max	366.087	3	5.129	9	5.992	3	0	3	.02	4	.39	2
390		_	min	-76.193	2	-105.877	2	-21.378	4	0	4	014	3	<u>471</u>	3
391		6	max	366.207	3	4.938	9	5.992	3	0	3	.015	4	.413	2
392		7	min	-76.033	2	<u>-106.106</u>	2	-21.136	4	0	4	012 .01	3	<u>463</u>	3
393 394		- /	max	366.327 -75.873	3	4.748 -106.335	9	5.992	3	0	3	011	3	.436	3
395		8	min	366.447	3	4.557	9	-20.894 5.992	3	0	3	.006	_	455	2
396		0	max min	-75.713	2	-106.564	2	-20.652	4	0	4	01	3	<u>.459</u> 447	3
397		9	max	366.567	3	4.367	9	5.992	3	0	3	.002	4	.483	2
398		9	min	-75.552	2	-106.792	2	-20.41	4	0	4	009	3	439	3
399		10	max	366.687	3	4.176	9	5.992	3	0	3	0	10	.506	2
400		10	min	-75.392	2	-107.021	2	-20.168	4	0	4	007	3	431	3
401		11	max	366.807	3	3.985	9	5.992	3	0	3	0	10	.529	2
402			min	-75.232	2	-107.25	2	-19.926	4	0	4	007	4	423	3
403		12	max	366.927	3	3.795	9	5.992	3	0	3	0	10	.552	2
404			min	-75.072	2	-107.478	2	-19.684	4	0	4	012	4	415	3
405		13	max	367.048	3	3.604	9	5.992	3	0	3	0	10	.576	2
406			min	-74.912	2	-107.707	2	-19.442	4	0	4	016	4	407	3
407		14	max	367.168	3	3.414	9	5.992	3	0	3	0	10	.599	2
408			min	-74.752	2	-107.936	2	-19.2	4	0	4	02	4	399	3
409		15	max	367.288	3	3.223	9	5.992	3	0	3	0	10	.622	2
410			min	-74.591	2	-108.165	2	-18.958	4	0	4	024	4	391	3
411		16	max	294.994	2	588.949		5.974	3	0	1	0	3	.64	2
412			min	3.4	15			-17.613	4	0	4	028	4	377	3
413		17	max	295.154	2	588.72	2	5.974	3	0	1	.001	3	.512	2
414			min	3.449	15		3	-17.371	4	0	4	032	4	238	3
415		18		-12.491	12	1187.333		5.449	3	0	4	.003	3	.257	2
416			min	-308.477	1	-547.928	3	-44.936	5	0	1_	041	4	119	3
417		19		-12.411	12	1187.104		5.449	3	0	4	.004	3	0	3
418					1	-548.1	3	-44.694	5	0	1_	051	4	0	2
419	M9	11	max		1	343.655	3	192.178	4	0	3	003	15	0	2
420			min	4.367	15	-247.17	1	7.373	10	0	1	132	1	0	3
421		2	max		1	343.484	3	192.42	4	0	3	.034	5	.054	1
422			min	4.415	15	-247.399		7.373	10	0	1	115	1	075	3
423		3		117.087	3	6.503	9	64.965	1	0	1	.07	5	.106	1
424		4	min	-14.563	10	-28.607	2	-27.21	5	0	5	097	1	148	3
425		4		117.207	3	6.313	9	64.965	1	0	1	.064	5	.111	2
426		_	min	-14.429	10	-28.836	2	-26.968	5	0	5	083	1	146	3
427		5	max	117.327	3	6.122	9	64.965	1	0	1	.058	5	.117	2

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

430		Member	Sec		Axial[lb]		y Shear[lb]									
430	428			min	-14.296	10	-29.065	2	-26.726	5	0	5	069	1	144	3
431			6	max								_				
May May	430			min	-14.162	10		2	-26.484	5	0	5	055	1	142	3
433	431		7	max	117.567	3	5.741	9		1	0	1	.047	5	.13	2
434	432			min	-14.029	10	-29.522	2	-26.242	5	0	5	04	1	14	3
436	433		8	max	117.687	3	5.55	9	64.965	1	0	1	.041	5	.137	2
436	434			min	-13.895	10	-29.751	2	-26	5	0	5	026	1	137	3
436	435		9	max	117.807	3	5.359	9	64.965	1	0	1	.035	5	.143	2
438						10	-29.98	2	-25.758	5	0	5	012	1	135	
A38			10	max	117.928	3		9		1	0	1	.03	4		2
449								2		5	0	5		2		
A40			11					9		1	0		.028	4		_
441										5	0	5				
May 2			12													
444																
444			13													_
446												5				_
A466			14								_					_
448																
448			15													
449			10											_		
450			16								_					
451			10													
452			17										-			
453			1,													
454			18								_			_		_
455			10													_
456			19								_					_
457 M13			10													
458		M13	1			_		_		_				_		
459		WITO														
Main			2							_	_					
461					7 376											
462 min 7.376 10 -141.307 3 -73.773 1 0 3 027 1 261 1 463 4 max 170.095 4 29.033 1 .045 15 0 2 0 3 .432 3 464 min 7.376 10 -40.132 3 -41.195 1 0 3 07 1 31 1 465 5 max 162.728 4 61.043 3 2.235 5 0 2 002 15 .424 3 466 min 7.376 10 -43.552 1 -8.617 1 0 2 002 15 .34 3 467 6 max 155.362 4 162.218 3 23.961 1 0 2 0 15 .34 3 468 min 7.376 10 -116.136			3										-			
463 4 max 170.095 4 29.033 1 .045 15 0 2 0 3 .432 3 464 min 7.376 10 -40.132 3 -41.195 1 0 3 07 1 31 1 465 5 max 162.728 4 61.043 3 2.235 5 0 2 002 15 .424 3 466 min 7.376 10 -43.552 1 -8.617 1 0 3 089 1 -305 1 467 6 max 155.362 4 162.218 3 23.961 1 0 2 0 15 .34 3 468 min 7.376 10 -116.136 1 124 3 0 3 083 1 245 1 469 7 max 147.996 4																
464 min 7.376 10 -40.132 3 -41.195 1 0 3 07 1 31 1 465 5 max 162.728 4 61.043 3 2.235 5 0 2 002 15 .424 3 466 min 7.376 10 -43.552 1 -8.617 1 0 3 089 1 305 1 467 6 max 155.362 4 162.218 3 23.961 1 0 2 0 15 .34 3 468 min 7.376 10 -116.136 1 124 3 0 3 083 1 245 1 469 7 max 147.996 4 263.392 3 56.539 1 0 2 .004 5 .181 3 470 min 7.376 10 -261.304 </td <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td>			4							_				_		_
465 5 max 162.728 4 61.043 3 2.235 5 0 2 002 15 .424 3 466 min 7.376 10 -43.552 1 -8.617 1 0 3 089 1 305 1 467 6 max 155.362 4 162.218 3 23.961 1 0 2 0 15 .34 3 468 min 7.376 10 -116.136 1 124 3 0 3 083 1 245 1 469 7 max 147.996 4 263.392 3 56.539 1 0 2 .004 5 .181 3 470 min 7.376 10 -188.72 1 1.455 12 0 3 053 1 131 1 471 8 max 140.63 4													-			
466 min 7.376 10 -43.552 1 -8.617 1 0 3 089 1 305 1 467 6 max 155.362 4 162.218 3 23.961 1 0 2 0 15 .34 3 468 min 7.376 10 -116.136 1 124 3 0 3 083 1 245 1 469 7 max 147.996 4 263.392 3 56.539 1 0 2 .004 5 .181 3 470 min 7.376 10 -188.72 1 1.455 12 0 3 053 1 131 1 471 8 max 140.63 4 364.567 3 89.117 1 0 2 .001 4 .038 1 473 9 max 133.264 4			5											_		
467 6 max 155.362 4 162.218 3 23.961 1 0 2 0 15 .34 3 468 min 7.376 10 -116.136 1 124 3 0 3 083 1 245 1 469 7 max 147.996 4 263.392 3 56.539 1 0 2 .004 5 .181 3 470 min 7.376 10 -188.72 1 1.455 12 0 3 053 1 131 1 471 8 max 140.63 4 364.567 3 89.117 1 0 2 .01 4 .038 1 472 min 7.376 10 -261.304 1 2.881 12 0 3 .055 3 473 9 max 133.264 4 465.742 3																
468 min 7.376 10 -116.136 1 124 3 0 3 083 1 245 1 469 7 max 147.996 4 263.392 3 56.539 1 0 2 .004 5 .181 3 470 min 7.376 10 -188.72 1 1.455 12 0 3 053 1 131 1 471 8 max 140.63 4 364.567 3 89.117 1 0 2 .01 4 .038 1 472 min 7.376 10 -261.304 1 2.881 12 0 3 0 3 055 3 473 9 max 133.264 4 465.742 3 121.695 1 0 2 .081 1 .261 1 474 min 7.376 10 -333.889 </td <td></td> <td></td> <td>6</td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td>1</td> <td>-</td> <td></td> <td></td> <td>15</td> <td></td> <td>3</td>			6					3		1	-			15		3
469 7 max 147.996 4 263.392 3 56.539 1 0 2 .004 5 .181 3 470 min 7.376 10 -188.72 1 1.455 12 0 3 053 1 131 1 471 8 max 140.63 4 364.567 3 89.117 1 0 2 .01 4 .038 1 472 min 7.376 10 -261.304 1 2.881 12 0 3 0 3 055 3 473 9 max 133.264 4 465.742 3 121.695 1 0 2 .081 1 .261 1 474 min 7.376 10 -333.889 1 4.308 12 0 3 .002 12 366 3 475 10 max 125.897 4												3				
470 min 7.376 10 -188.72 1 1.455 12 0 3 053 1 131 1 471 8 max 140.63 4 364.567 3 89.117 1 0 2 .01 4 .038 1 472 min 7.376 10 -261.304 1 2.881 12 0 3 0 3 055 3 473 9 max 133.264 4 465.742 3 121.695 1 0 2 .081 1 .261 1 474 min 7.376 10 -333.889 1 4.308 12 0 3 .002 12 366 3 475 10 max 125.897 4 566.917 3 154.273 1 0 2 .184 1 .539 1 476 min 7.376 10 -406.47			7													3
471 8 max 140.63 4 364.567 3 89.117 1 0 2 .01 4 .038 1 472 min 7.376 10 -261.304 1 2.881 12 0 3 0 3 055 3 473 9 max 133.264 4 465.742 3 121.695 1 0 2 .081 1 .261 1 474 min 7.376 10 -333.889 1 4.308 12 0 3 .002 12 -366 3 475 10 max 125.897 4 566.917 3 154.273 1 0 2 .184 1 .539 1 476 min 7.376 10 -406.473 1 5.735 12 0 3 .006 12 -754 3 477 11 max 93.159 4 333.888 1 552 15 0 3 .078 1 .261																
472 min 7.376 10 -261.304 1 2.881 12 0 3 0 3 055 3 473 9 max 133.264 4 465.742 3 121.695 1 0 2 .081 1 .261 1 474 min 7.376 10 -333.889 1 4.308 12 0 3 .002 12 366 3 475 10 max 125.897 4 566.917 3 154.273 1 0 2 .184 1 .539 1 476 min 7.376 10 -406.473 1 5.735 12 0 3 .006 12 754 3 477 11 max 93.159 4 333.888 1 552 15 0 3 .078 1 .261 1 478 min 4.093 12 -465			8													1
473 9 max 133.264 4 465.742 3 121.695 1 0 2 .081 1 .261 1 474 min 7.376 10 -333.889 1 4.308 12 0 3 .002 12 366 3 475 10 max 125.897 4 566.917 3 154.273 1 0 2 .184 1 .539 1 476 min 7.376 10 -406.473 1 5.735 12 0 3 .006 12 754 3 477 11 max 93.159 4 333.888 1 552 15 0 3 .006 12 754 3 478 min 4.093 12 -465.742 3 -121.087 1 0 2 014 5 366 3 479 12 max 85.793 4 261.304 1 1.131 5 0 3 .002 2 .03						10		1						3		3
474 min 7.376 10 -333.889 1 4.308 12 0 3 .002 12 366 3 475 10 max 125.897 4 566.917 3 154.273 1 0 2 .184 1 .539 1 476 min 7.376 10 -406.473 1 5.735 12 0 3 .006 12 754 3 477 11 max 93.159 4 333.888 1 552 15 0 3 .006 12 754 3 478 min 4.093 12 -465.742 3 -121.087 1 0 2 014 5 366 3 479 12 max 85.793 4 261.304 1 1.131 5 0 3 .002 2 .038 1 480 min 4.093 12 <t< td=""><td></td><td></td><td>9</td><td></td><td></td><td>4</td><td></td><td>3</td><td></td><td></td><td>0</td><td></td><td>.081</td><td></td><td></td><td></td></t<>			9			4		3			0		.081			
475 10 max 125.897 4 566.917 3 154.273 1 0 2 .184 1 .539 1 476 min 7.376 10 -406.473 1 5.735 12 0 3 .006 12 754 3 477 11 max 93.159 4 333.888 1 552 15 0 3 .078 1 .261 1 478 min 4.093 12 -465.742 3 -121.087 1 0 2 014 5 366 3 479 12 max 85.793 4 261.304 1 1.131 5 0 3 .002 2 .038 1 480 min 4.093 12 -364.567 3 -88.509 1 0 2 014 4 055 3 481 13 max 78.426 <t< td=""><td></td><td></td><td></td><td>min</td><td></td><td>10</td><td></td><td></td><td></td><td>12</td><td></td><td>3</td><td></td><td>12</td><td></td><td>3</td></t<>				min		10				12		3		12		3
476 min 7.376 10 -406.473 1 5.735 12 0 3 .006 12 754 3 477 11 max 93.159 4 333.888 1 552 15 0 3 .078 1 .261 1 478 min 4.093 12 -465.742 3 -121.087 1 0 2 014 5 366 3 479 12 max 85.793 4 261.304 1 1.131 5 0 3 .002 2 .038 1 480 min 4.093 12 -364.567 3 -88.509 1 0 2 014 4 055 3 481 13 max 78.426 4 188.72 1 3.406 5 0 3 005 12 .181 3 482 min 4.093 12 -	475		10	max	125.897	4		3	154.273	1	0	2	.184	1	.539	1
477 11 max 93.159 4 333.888 1 552 15 0 3 .078 1 .261 1 478 min 4.093 12 -465.742 3 -121.087 1 0 2 014 5 366 3 479 12 max 85.793 4 261.304 1 1.131 5 0 3 .002 2 .038 1 480 min 4.093 12 -364.567 3 -88.509 1 0 2 014 4 055 3 481 13 max 78.426 4 188.72 1 3.406 5 0 3 005 12 .181 3 482 min 4.093 12 -263.392 3 -55.931 1 0 2 055 1 131 1 483 14 max 71.06 4 116.136 1 5.681 5 0 3 005 12 .34 <td>476</td> <td></td> <td></td> <td>min</td> <td></td> <td>10</td> <td></td> <td>1</td> <td></td> <td>12</td> <td>0</td> <td></td> <td>.006</td> <td>12</td> <td></td> <td>3</td>	476			min		10		1		12	0		.006	12		3
478 min 4.093 12 -465.742 3 -121.087 1 0 2 014 5 366 3 479 12 max 85.793 4 261.304 1 1.131 5 0 3 .002 2 .038 1 480 min 4.093 12 -364.567 3 -88.509 1 0 2 014 4 055 3 481 13 max 78.426 4 188.72 1 3.406 5 0 3 005 12 .181 3 482 min 4.093 12 -263.392 3 -55.931 1 0 2 055 1 131 1 483 14 max 71.06 4 116.136 1 5.681 5 0 3 005 12 .34 3	477		11	max		4		1	552	15	0	3	.078	1	.261	1
480 min 4.093 12 -364.567 3 -88.509 1 0 2 014 4 055 3 481 13 max 78.426 4 188.72 1 3.406 5 0 3 005 12 .181 3 482 min 4.093 12 -263.392 3 -55.931 1 0 2 055 1 131 1 483 14 max 71.06 4 116.136 1 5.681 5 0 3 005 12 .34 3	478			min	4.093	12		3		1	0	2	014	5	366	3
480 min 4.093 12 -364.567 3 -88.509 1 0 2 014 4 055 3 481 13 max 78.426 4 188.72 1 3.406 5 0 3 005 12 .181 3 482 min 4.093 12 -263.392 3 -55.931 1 0 2 055 1 131 1 483 14 max 71.06 4 116.136 1 5.681 5 0 3 005 12 .34 3	479		12	max		4		1	1.131	5	0	3	.002	2	.038	1
481 13 max 78.426 4 188.72 1 3.406 5 0 3005 12 .181 3 482 min 4.093 12 -263.392 3 -55.931 1 0 2055 1131 1 483 14 max 71.06 4 116.136 1 5.681 5 0 3005 12 .34 3				min	4.093	12		3						4		3
482 min 4.093 12 -263.392 3 -55.931 1 0 2 055 1 131 1 483 14 max 71.06 4 116.136 1 5.681 5 0 3 005 12 .34 3			13	max	78.426	4		1	3.406	5	0	3	005	12	.181	
	482			min	4.093	12	-263.392	3		1		2	055	1	131	_
484 min 4.093 12 -162.218 3 -23.352 1 0 2 084 1 245 1			14			4	116.136	1	5.681	5	0	_		12		3
	484			min	4.093	12	-162.218	3	-23.352	1	0	2	084	1	245	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC			z-z Mome	LC
485		15	max	68.006	1_	43.551	1	10.27	4	0	3	002	15	.424	3
486			min	4.093	12	-61.043	3	.433	10	0	2	09	1_	305	1
487		16	max	68.006	1_	40.132	3	41.804	1	0	3	.004	5	.432	3
488			min	4.093	12	-29.033	1	3.044	12	0	2	07	1	31	1
489		17	max	68.006	1	141.307	3	74.382	1	0	3	.012	5	.364	3
490			min	4.093	12	-101.617	1	4.471	12	0	2	027	1	261	1
491		18	max	68.006	1	242.482	3	106.96	1	0	3	.041	1	.22	3
492			min	4.093	12	-174.201	1	5.897	12	0	2	.003	10	158	1
493		19	max	68.006	1	343.657	3	139.538	1	0	3	.134	1	0	1
494			min	4.093	12	-246.786	1	7.324	12	0	2	.009	12	0	3
495	M16	1	max	48.381	5	361.091	2	.033	15	0	3	.131	1	0	2
496			min	-68.682	1	-167.386	3	-138.858	1	0	2	027	5	0	3
497		2	max	41.015	5	254.905	2	1.948	5	0	3	.039	1	.107	3
498			min	-68.682	1	-118.326	3	-106.28	1	0	2	026	5	231	2
499		3	max	33.648	5	148.719	2	4.223	5	0	3	0	12	.177	3
500			min	-68.682	1	-69.267	3	-73.702	1	0	2	03	4	382	2
501		4		26.282	5	42.533	2	6.498	5	0	3	003	12	.211	3
502		4	max	-68.682	1	-20.207	3	-41.124	1	0	2	003	1	454	2
			min												
503		5	max	18.916	5	28.852	3	8.773	5	0	3	005	12	.208	3
504			min	-68.682	1	-63.652	2	-8.546	1	0	2	09	1_	446	2
505		6	max	11.55	5	77.912	3	24.032	1	0	3	004	15	.168	3
506			min	-68.682	1	-169.838	2	.347	12	0	2	084	1	359	2
507		7	max	4.184	5	126.972	3	56.61	1_	0	3	.003	5	.091	3
508			min	-68.682	1	-276.024	2	1.774	12	0	2	054	1_	191	2
509		8	max	-1.086	12	176.031	3	89.188	1	0	3	.014	4	.055	2
510			min	-68.682	1	-382.209	2	3.201	12	0	2	004	3	023	3
511		9	max	-1.086	12	225.091	3	121.766	1	0	3	.08	1	.382	2
512			min	-68.682	1	-488.395	2	4.627	12	0	2	0	3	173	3
513		10	max	26.811	5	-11.759	15	154.344	1	0	14	.184	1	.788	2
514			min	-69.599	1	-594.581	2	-9.478	3	0	2	.007	12	36	3
515		11	max	19.445	5	488.395	2	586	15	0	2	.08	1	.382	2
516			min	-69.599	1	-225.091	3	-121.366	1	0	3	012	5	173	3
517		12	max	12.078	5	382.209	2	1.078	5	0	2	.002	2	.055	2
518			min	-69.599	1	-176.031	3	-88.788	1	0	3	012	4	023	3
519		13	max	4.712	5	276.024	2	3.353	5	0	2	002	12	.091	3
520			min	-69.599	1	-126.972	3	-56.21	1	0	3	054	1	191	2
521		14	max	-1.659	15	169.838	2	5.628	5	0	2	003	12	.168	3
522			min	-69.599	1	-77.912	3	-23.632	1	0	3	084	1	359	2
523		15	max	-4.372	12	63.652	2	10.192	4	0	2	001	15	.208	3
524			min	-69.599	1	-28.852	3	.444	10	0	3	089	1	446	2
525		16	max		12	20.207	3	41.524	1	0	2	.005	5	.211	3
526			min	-69.599	1	-42.533	2	2.202	12	0	3	07	1	454	2
527		17	max	-4.372	12	69.267	3	74.102	1	0	2	.014	5	.177	3
528			min		1	-148.719	2	3.629	12	0	3	027	1	382	2
529		18			12	118.326	3	106.68	1	0	2	.041	1	.107	3
530		10	min		1	-254.905	2	5.056	12	0	3	.003	12	231	2
		19			_	167.386					2	.133	1		2
531		19	max		12		3	139.258	12	0	3	.007	12	0	3
532	NAC	4	min	-69.599	1	-361.091	2	6.483		0				0	
533	M15	1	max	0	2	1.847	1	.05	3	0	1	0	1	0	1
534			min	-65.259	3	0	2	04	1	0	3	0	3	0	1
535		2	max	0	2	1.642	1	.05	3	0	1	0	1	0	2
536			min	-65.334	3	0	2	04	1	0	3	0	3	0	1
537		3	max	0	2	1.437	1	.05	3	0	1	0	1	0	2
538			min	-65.41	3	0	2	04	1	0	3	0	3	001	1
539		4	max	0	2	1.231	1	.05	3	0	1	0	1	0	2
540			min		3	0	2	04	1	0	3	0	3	002	1
541		5	max	0	2	1.026	1	.05	3	0	1	0	1_	0	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>. LC</u>
542			min	-65.561	3	0	2	04	1	0	3	0	3	002	1
543		6	max	0	2	.821	1	.05	3	0	1	0	1	0	2
544			min	-65.637	3	0	2	04	1	0	3	0	3	003	1
545		7	max	0	2	.616	1	.05	3	0	1	0	3	0	2
546			min	-65.712	3	0	2	04	1	0	3	0	1	003	1
547		8	max	0	2	.41	1	.05	3	0	1	0	3	0	2
548			min	-65.788	3	0	2	04	1	0	3	0	1	003	1
549		9	max	0	2	.205	1	.05	3	0	1	0	3	0	2
550			min	-65.863	3	0	2	04	1	0	3	0	1	003	1
551		10	max	0	2	0	1	.05	3	0	1	0	3	0	2
552			min	-65.939	3	0	1	04	1	0	3	0	1	004	1
553		11	max	0	2	0	2	.05	3	0	1	0	3	0	2
554			min	-66.014	3	205	1	04	1	0	3	0	1	003	1
555		12	max	0	2	0	2	.05	3	0	1	0	3	0	2
556			min	-66.09	3	41	1	04	1	0	3	0	1	003	1
557		13	max	0	2	0	2	.05	3	0	1	0	3	0	2
558			min	-66.165	3	616	1	04	1	0	3	0	1	003	1
559		14	max	0	2	0	2	.05	3	0	1	0	3	0	2
560			min	-66.241	3	821	1	04	1	0	3	0	1	003	1
561		15	max	0	2	0	2	.05	3	0	1	0	3	0	2
562			min	-66.316	3	-1.026	1	04	1	0	3	0	1	002	1
563		16	max	0	2	0	2	.05	3	0	1	0	3	0	2
564			min	-66.392	3	-1.231	1	04	1	0	3	0	1	002	1
565		17	max	0	2	0	2	.05	3	0	1	0	3	0	2
566			min	-66.467	3	-1.437	1	04	1	0	3	0	1	001	1
567		18	max	0	2	0	2	.05	3	0	1	0	3	0	2
568			min	-66.543	3	-1.642	1	04	1	0	3	0	1	0	1
569		19	max	0	2	0	2	.05	3	0	1	0	3	0	1
570			min	-66.618	3	-1.847	1	04	1	0	3	0	1	0	1
571	M16A	1	max	866	10	3.146	4	.32	4	0	3	0	3	0	1
571 572	M16A	1	max min	866 -234.383	10 4	3.146 .924	4 12	.32 02	3	0	3	0	3	0	1
	M16A	2													
572	M16A	•	min	-234.383	4	.924	12	02	3	0	2	0	4	0	1
572 573	M16A	•	min max	-234.383 782	4 10	.924 2.796	12 4	02 .288	3	0	3	0	3	0	1 12
572 573 574 575	M16A	2	min max min	-234.383 782 -234.429	4 10 4	.924 2.796 .821	12 4 12	02 .288 02	3 4 3	0 0 0	3 2	0 0	4 3 4	0 0 001	1 12 4
572 573 574	M16A	2	min max min max	-234.383 782 -234.429 698	4 10 4 10	.924 2.796 .821 2.447	12 4 12 4	02 .288 02 .255	3 4 3 4	0 0 0 0	2 3 2 3	0 0 0	4 3 4 3	0 0 001 0	1 12 4 12
572 573 574 575 576	M16A	3	min max min max min	-234.383 782 -234.429 698 -234.475	4 10 4 10 4	.924 2.796 .821 2.447 .718	12 4 12 4 12	02 .288 02 .255 02	3 4 3 4 3	0 0 0 0 0	2 3 2 3 2	0 0 0 0	4 3 4 3 4	0 0 001 0 002	1 12 4 12 4
572 573 574 575 576 577 578	M16A	3	min max min max min max min	-234.383 782 -234.429 698 -234.475 614	4 10 4 10 4 10	.924 2.796 .821 2.447 .718 2.097 .616	12 4 12 4 12 4	02 .288 02 .255 02 .223	3 4 3 4 3 4	0 0 0 0 0	2 3 2 3 2 3	0 0 0 0 0	4 3 4 3 4 3	0 0 001 0 002	1 12 4 12 4 12
572 573 574 575 576 577 578 579	M16A	3	min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531	4 10 4 10 4 10 4 10	.924 2.796 .821 2.447 .718 2.097	12 4 12 4 12 4 12	02 .288 02 .255 02 .223 02	3 4 3 4 3 4 3	0 0 0 0 0 0	2 3 2 3 2 3 2	0 0 0 0 0 0	3 4 3 4 3 4	0 0 001 0 002 0 003	1 12 4 12 4 12 4
572 573 574 575 576 577 578 579 580	M16A	3	min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447	4 10 4 10 4 10 4 10 4	.924 2.796 .821 2.447 .718 2.097 .616 1.748	12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191	3 4 3 4 3 4 3 4	0 0 0 0 0 0 0	2 3 2 3 2 3 2 3	0 0 0 0 0 0 0	4 3 4 3 4 3 4 3	0 0 001 0 002 0 003 001	1 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579	M16A	3 4 5	min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568	4 10 4 10 4 10 4 10 4	.924 2.796 .821 2.447 .718 2.097 .616 1.748	12 4 12 4 12 4 12 4 12	02 .288 02 .255 02 .223 02 .191 02	3 4 3 4 3 4 3 4 3	0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2	0 0 0 0 0 0 0 0	4 3 4 3 4 3 4 3	0 0 001 0 002 0 003 001	1 12 4 12 4 12 4 12 4
572 573 574 575 576 577 578 579 580 581	M16A	3 4 5	min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614	4 10 4 10 4 10 4 10 4	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398	12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191 02	3 4 3 4 3 4 3 4	0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5	0 0 001 0 002 0 003 001 004	1 12 4 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579 580 581 582	M16A	3 4 5 6	min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614	4 10 4 10 4 10 4 10 4 10 4	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398	12 4 12 4 12 4 12 4 12 4 12	02 .288 02 .255 02 .223 02 .191 02 .159 02	3 4 3 4 3 4 3 4 3 4 3	0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2	0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5	0 0 001 0 002 0 003 001 004 001	1 12 4 12 4 12 4 12 4 12 4
572 573 574 575 576 577 578 579 580 581 582 583	M16A	3 4 5 6	min max min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363	4 10 4 10 4 10 4 10 4 10 4	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049	12 4 12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191 02 .159 02	3 4 3 4 3 4 3 4 3 4	0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5 1	0 0 001 0 002 0 003 001 004 001 005 002	1 12 4 12 4 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579 580 581 582 583 584 585	M16A	2 3 4 5 6	min max min max min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279	4 10 4 10 4 10 4 10 4 10 4	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699	12 4 12 4 12 4 12 4 12 4 12 4 12	02 .288 02 .255 02 .223 02 .191 02 .159 02	3 4 3 4 3 4 3 4 3 4 3 4 3	0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 3 2	0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5 1	0 0 001 0 002 0 003 001 004 001 005 002	1 12 4 12 4 12 4 12 4 12 4 12 4
572 573 574 575 576 577 578 579 580 581 582 583 584	M16A	2 3 4 5 6	min max min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279 -234.706	4 10 4 10 4 10 4 10 4 10 4 10 4	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049	12 4 12 4 12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02	3 4 3 4 3 4 3 4 3 4 3 4	0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5 1 5	0 0 001 0 002 0 003 001 004 001 005 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587	M16A	2 3 4 5 6 7	min max min max min max min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279 -234.706 195	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699 .205	12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02 .094 02	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	0 0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5 1 5	0 0 001 0 002 0 003 001 004 001 005 002 005 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588	M16A	2 3 4 5 6 7	min max min max min max min max min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279 -234.706 195 -234.753	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699 .205 .35	12 4 12 4 12 4 12 4 12 4 12 4 12 4 12	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02 .094 02	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5 1 5 1 5 1	0 0 001 0 002 0 003 001 004 001 005 002 005 002 006 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588	M16A	2 3 4 5 6 7 8	min max min max min max min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279 -234.706 195 -234.753 111	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699 .205	12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02 .094 02	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5 1 5 1 5	0 0 001 0 002 0 003 001 004 001 005 002 005 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590	M16A	2 3 4 5 6 7 8	min max min max min max min max min max min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279 -234.706 195 -234.753 111	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699 .205 .35 .103	12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02 .094 02 .062 02	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5 1 5 1 5 1 5	0 0 001 0 002 0 003 001 004 005 002 005 002 006 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588	M16A	2 3 4 5 6 7 8 9	min max min max min max min max min max min max min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279 -234.706 195 -234.753 111 -234.799	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699 .205 .35 .103 0	12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 12	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02 .094 02 .062 02	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5 1 5 1 5 1 5	0 0 001 0 002 0 003 001 004 005 002 005 002 006 002 006 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 590 591 592	M16A	2 3 4 5 6 7 8 9	min max min max min max min max min max min max min max min max min max min max min max min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279 -234.706 195 -234.753 111 -234.799 027 -234.845	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699 .205 .35 .103 0	12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02 .094 02 .062 02 .029 02	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 4 3 1 5 1 5 1 5 1 5 1 5	0 0 001 0 002 0 003 001 004 005 002 005 002 006 002 006 002 006 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593	M16A	2 3 4 5 6 7 8 9	min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279 -234.706 195 -234.753 111 -234.799 027 -234.845 .057	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699 .205 .35 .103 0 010335205	12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 12 11 12 11 12 11 12 11 12 12 11 12 12	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02 .094 02 .062 02	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5 1 5 1 5 1 5 1 5	0 0 001 0 002 0 003 001 004 005 002 005 002 006 002 006 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594	M16A	2 3 4 5 6 7 8 9	min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279 -234.706 195 -234.753 111 -234.799 027 -234.845 .057 -234.891	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699 .205 .35 .103 0 010335205699	12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02 .094 02 .062 02 .029 02 .023 02	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 4 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 5	0 0 001 0 002 0 003 001 004 005 002 005 002 006 002 006 002 006 002 006 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595	M16A	2 3 4 5 6 7 8 9	min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279 -234.706 195 -234.753 111 -234.799 027 -234.845 .057 -234.891 .141	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699 .205 .35 .103 0 010335205699308	12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02 .094 02 .062 02 .029 02 .023 02	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 1 3 1 5 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 4 3 1 5 1 5 1 5 1 5 1 5 1 5 1	0 0 001 0 002 0 003 001 004 005 002 005 002 006 002 006 002 006 002 006 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596	M16A	2 3 4 5 6 7 8 9 10 11	min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 -234.614 363 -234.66 279 -234.706 195 -234.753 111 -234.799 027 -234.845 .057 -234.891 .141 -234.938	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699 .205 .35 .103 0 010335205699308 -1.049	12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02 .094 02 .062 02 .029 02 .023 02 .023 02	3 4 3 4 3 4 3 4 3 4 3 4 3 1 3 1 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	0 0 001 0 002 0 003 001 004 005 002 005 002 006 002 006 002 006 002 006 002 006 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595	M16A	2 3 4 5 6 7 8 9	min max	-234.383 782 -234.429 698 -234.475 614 -234.521 531 -234.568 447 363 -234.66 279 -234.706 195 -234.753 111 -234.799 027 -234.845 .057 -234.891 .141 -234.938 .225	4 10 4 10 4 10 4 10 4 10 4 10 4 10 4 10	.924 2.796 .821 2.447 .718 2.097 .616 1.748 .513 1.398 .41 1.049 .308 .699 .205 .35 .103 0 010335205699308	12 4 12 4 12 4 12 4 12 4 12 4 12 4 12 4	02 .288 02 .255 02 .223 02 .191 02 .159 02 .126 02 .094 02 .062 02 .029 02 .023 02	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 1 3 1 5 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 3 4 3 4 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	0 0 001 0 002 0 003 001 004 005 002 005 002 006 002 006 002 006 002 006 002	1 12 4 12 4 12 4 12 4 12 4 12 4 12 4 12

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
599		15	max	.309	10	513	12	.023	1	0	3	0	4	001	12
600			min	-235.03	4	-1.748	4	136	5	0	2	0	3	004	4
601		16	max	.393	10	616	12	.023	1	0	3	0	4	0	12
602			min	-235.076	4	-2.097	4	168	5	0	2	0	3	003	4
603		17	max	.477	10	718	12	.023	1	0	3	0	1	0	12
604			min	-235.123	4	-2.447	4	2	5	0	2	0	5	002	4
605		18	max	.56	10	821	12	.023	1	0	3	0	1	0	12
606			min	-235.169	4	-2.796	4	232	5	0	2	0	5	001	4
607		19	max	.644	10	924	12	.023	1	0	3	0	1	0	1
608			min	-235.215	4	-3.146	4	265	5	0	2	0	5	0	1

Envelope Member Section Deflections

				<u> </u>				F: 1		D		() I / D ::		/) I / D ::	
4	Member	Sec	I	x [in]	LC	y [in]	LC	z [in]	1	x Rotate [r					
1	M2	1	max	.003	1	.011	2	.013	1	1.703e-3	5	NC 4004 440	3	NC	3
2		—	min	004	3	<u>011</u>	3	016	5	-1.12e-3	1_	4001.118	2	3194.791	1
3		2	max	.002	1	.01	2	.012	1	1.725e-3	5_	NC	3_	NC	3
4			min	004	3	011	3	<u>016</u>	5	-1.07e-3	1_	4377.777	2	3429.527	1
5		3	max	.002	1	.009	2	.011	1	1.747e-3	5_	NC	1	NC 0707.047	2
6			min	003	3	01	3	<u>016</u>	5	-1.021e-3	_1_	4827.78	2	3707.617	1
7		4	max	.002	1	.008	2	.011	1	1.77e-3	5	NC	1	NC	2
8		_	min	003	3	<u>01</u>	3	015	5	-9.718e-4	<u>1</u>	5369.131	2	4039.245	1
9		5	max	.002	1	.007	2	.01	1	1.792e-3	5	NC	_1_	NC	2
10			min	003	3	009	3	015	5	-9.226e-4	1	6025.911	2	4438.011	1
11		6	max	.002	1	.006	2	.009	1	1.814e-3	5	NC	1	NC	2
12			min	003	3	009	3	014	5	-8.733e-4	1_	6830.855	2	4922.396	1
13		7	max	.002	1	.005	2	.008	1	1.836e-3	5_	NC	_1_	NC	2
14			min	003	3	008	3	014	5	-8.24e-4	1	7829.304	2	5518.018	1
15		8	max	.002	1	.005	2	.007	1	1.859e-3	5	NC	_1_	NC	2
16			min	002	3	008	3	013	5	-7.748e-4	1_	9085.454	2	6261.232	1
17		9	max	.001	1	.004	2	.006	1	1.881e-3	5_	NC	_1_	NC	2
18			min	002	3	007	3	012	5	-7.255e-4	1_	NC	1_	7205.066	1
19		10	max	.001	1	.003	2	.005	1	1.903e-3	5	NC	_1_	NC	2
20			min	002	3	007	3	012	5	-6.763e-4	1_	NC	1_	8429.431	1
21		11	max	.001	1	.003	2	.004	1	1.925e-3	5	NC	_1_	NC	1
22			min	002	3	006	3	011	5	-6.27e-4	1	NC	1	NC	1
23		12	max	.001	1	.002	2	.003	1	1.948e-3	5_	NC	_1_	NC	1
24			min	001	3	005	3	01	5	-5.778e-4	1	NC	1	NC	1
25		13	max	0	1	.002	2	.003	1	1.97e-3	5	NC	<u>1</u>	NC	1
26			min	001	3	005	3	009	5	-5.285e-4	1_	NC	1_	NC	1
27		14	max	0	1	.001	2	.002	1	1.992e-3	5	NC	1_	NC	1
28			min	001	3	004	3	007	5	-4.792e-4	1	NC	1	NC	1
29		15	max	0	1	0	2	.001	1	2.015e-3	5_	NC	_1_	NC	1
30			min	0	3	003	3	006	5	-4.3e-4	1	NC	1	NC	1
31		16	max	0	1	0	2	0	1	2.037e-3	5	NC	_1_	NC	1_
32			min	0	3	002	3	005	5	-3.807e-4	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1	2.059e-3	5	NC	1_	NC	1
34			min	0	3	002	3	003	5	-3.315e-4	1	NC	1	NC	1
35		18	max	0	1	0	2	0	1	2.081e-3	5	NC	1	NC	1
36			min	0	3	0	3	002	5	-2.822e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	2.104e-3	5	NC	1_	NC	1_
38			min	0	1	0	1	0	1	-2.33e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.116e-4	1	NC	1	NC	1
40			min	0	1	0	1	0	1	-1.006e-3	5	NC	1	NC	1
41		2	max	0	3	0	2	.005	5	1.349e-4	1	NC	1	NC	1
42			min	0	2	0	3	0	1	-1.022e-3	5	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		LC
43		3	max	0	3	0	2	.01	5	1.582e-4	_1_	NC	_1_	NC	1
44			min	0	2	002	3	0	1	-1.037e-3	5	NC	1_	9633.166	14
45		4	max	0	3	0	2	.015	5	1.815e-4	1	NC	1	NC	1
46			min	0	2	003	3	0	1	-1.053e-3	5	NC	1	6314.433	14
47		5	max	0	3	0	2	.02	5	2.048e-4	1	NC	1	NC	1
48			min	0	2	004	3	001	1	-1.068e-3	5	NC	1	4667.904	14
49		6	max	0	3	0	2	.025	5	2.281e-4	1	NC	1	NC	1
50			min	0	2	004	3	0	1	-1.084e-3	5	NC	1	3688.928	14
51		7	max	0	3	0	2	.03	4	2.514e-4	1	NC	1	NC	1
52			min	0	2	005	3	0	1	-1.099e-3	5	NC	1	3042.793	14
53		8	max	0	3	0	2	.035	4	2.747e-4	1	NC	1	NC	1
54			min	0	2	006	3	0	1	-1.115e-3	5	NC	1	2586.165	14
55		9	max	.001	3	.001	2	.04	4	2.98e-4	1	NC	1	NC	1
56			min	001	2	007	3	0	1	-1.13e-3	5	NC	1	2247.454	14
57		10	max	.001	3	.002	2	.045	4	3.213e-4	1	NC	1	NC	1
58			min	001	2	007	3	0	10	-1.146e-3	5	NC	1	1986.942	14
59		11	max	.001	3	.002	2	.05	4	3.446e-4	1	NC	1	NC	1
60			min	001	2	008	3	0	10	-1.161e-3	5	NC	1	1780.834	
61		12	max	.002	3	.003	2	.055	4	3.679e-4	1	NC	1	NC	1
62		12	min	001	2	008	3	.000	10	-1.177e-3	5	NC	1	1614.016	
63		13	max	.002	3	.004	2	.06	4	3.912e-4	1	NC	1	NC	1
64		'	min	002	2	008	3	0	12	-1.192e-3	5	NC	1	1476.427	14
65		14	max	.002	3	.004	2	.064	4	4.145e-4	1	NC	1	NC	1
66		17	min	002	2	009	3	0	12	-1.208e-3	5	NC	1	1361.115	
67		15	max	.002	3	.005	2	.069	4	4.379e-4	1	NC	1	NC	1
68		13	min	002	2	009	3	0	12	-1.223e-3	5	8579.816	2	1263.12	14
69		16	max	.002	3	.006	2	.074	4	4.612e-4	1	NC	1	NC	1
70		10	min	002	2	009	3	0	12	-1.239e-3	5	7277.571	2	1178.812	
71		17	max	.002	3	.007	2	.078	4	4.845e-4	1	NC	1	NC	2
72		17	min	002	2	009	3	.078	12	-1.254e-3	5	6269.042	2	1105.469	
73		18	max	.002	3	.008	2	.083	4	5.078e-4	1	NC	1	NC	2
74		10	min	002	2	009	3	0	12	-1.27e-3	5	5478.987	2	1041.01	14
75		19	max	.002	3	.009	2	.087	4	5.311e-4	<u> </u>	NC	3	NC	2
76		19		002	2	009	3	0	12	-1.285e-3	5	4854.497	2	983.817	14
77	M4	1	min	.002	1	.012	2	0	12	7.036e-3	5	NC	1	NC	3
78	IVI4		max	<u>.002</u>	15	012	3	092	4	-8.637e-4	1	NC NC	1	210.456	4
		2	min		1						•		1	NC	3
79		2	max	.002 0	15	.012 01	2	084	12	7.036e-3 -8.637e-4	5	NC NC	1	229.422	4
80		2	min		1		2				1_	NC NC	1	NC	2
81		3	max	.002	-	.011		0	12	7.036e-3	5		1		
82		1	min	0	15	01	3	077	4	-8.637e-4	1_	NC NC	1	251.998	4
83		4	max	.001	1	.01	2	0	12		5_	NC	1	NC 070 400	2
84		_	min	0	15	009	3	069	4	-8.637e-4		NC NC	1_	279.132	4
85		5	max	.001	1	.01	2	0	12	7.036e-3	5_	NC NC	1_	NC 240.40	2
86			min	0	15	009	3	062	4	-8.637e-4	1_	NC NC	1_	312.12	4
87		6	max	.001	1	.009	2	0	12	7.036e-3	5	NC NC	1	NC 250.704	2
88		-	min	0	15	008	3	055	4	-8.637e-4	1_	NC NC	1_	352.761	4
89		7	max	.001	1	.008	2	0	12	7.036e-3	5_	NC	1_	NC 400,004	2
90		_	min	0	15	007	3	048	4	-8.637e-4	_1_	NC NC	1_	403.621	4
91		8	max	.001	1	.008	2	0	12	7.036e-3	5_	NC	1	NC 400,455	2
92		_	min	0	15	007	3	041	4	-8.637e-4	1_	NC NC	1_	468.455	4
93		9	max	0	1	.007	2	0	12	7.036e-3	5	NC	1_	NC FF0.044	1
94		1.0	min	0	15	006	3	035	4	-8.637e-4	1_	NC NC	1_	552.941	4
95		10	max	0	1	.006	2	0	12	7.036e-3	5_	NC	1	NC	1
96		4.	min	0	15	005	3	029	4	-8.637e-4	1_	NC	1_	666.007	4
97		11	max	0	1	.006	2	0	12	7.036e-3	5_	NC	1	NC 000,050	1
98		40	min	0	15	005	3	024	4	-8.637e-4	1_	NC NC	1_	822.359	4
99		12	max	0	1	.005	2	0	12	7.036e-3	5	NC	<u>1</u>	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
100			min	0	15	004	3	018	4	-8.637e-4	1_	NC	1_	1047.643	
101		13	max	0	1	.004	2	00	12	7.036e-3	5	NC	_1_	NC	1
102			min	0	15	004	3	014	4	-8.637e-4	_1_	NC	1_	1389.97	4
103		14	max	0	1	.003	2	0	12	7.036e-3	5	NC	_1_	NC	1
104		4.5	min	0	15	003	3	<u>01</u>	4	-8.637e-4	<u>1</u>	NC	1_	1948.575	
105		15	max	0	1	.003	2	0	12	7.036e-3	5_	NC	1_	NC	1
106		40	min	0	15	002	3	007	4	-8.637e-4	1_	NC	1_	2956.598	
107		16	max	0	1	.002	2	0	12	7.036e-3	_5_	NC	1	NC FOZO COF	1
108		47	min	0	15	002	3	004	4	-8.637e-4	1_	NC NC	1_	5076.805	
109		17	max	0	1	.001	2	0	12	7.036e-3	5_	NC	1_	NC NC	1
110		40	min	0	15	001	3	002	4	-8.637e-4	<u>1</u>	NC NC	1_	NC NC	1
111		18	max	0	1	0	2	0	12	7.036e-3	5_	NC	1	NC NC	1
112		40	min	0	15	0	3	0	4	-8.637e-4	<u>1</u>	NC NC	1_	NC NC	1
113		19	max	0	1	0	1	0	1	7.036e-3	_5_	NC	_1_	NC NC	1
114	140		min	0	1	0	1	0	1	-8.637e-4	1_	NC NC	1_	NC NC	1
115	<u>M6</u>	1_	max	.008	1	.038	2	.005	1	1.865e-3	4	NC 4400.040	3_	NC 0045.050	2
116			min	012	3	035	3	016	5	2.828e-7	10	1122.043	2	8815.358	
117		2	max	.008	1	.035	2	.004	1	1.884e-3	4	NC	3_	NC 2525,422	2
118			min	012	3	034	3	016	5	-3.041e-7		1201.087	2	9525.123	
119		3	max	.008	1	.033	2	.004	1	1.903e-3	4	NC	3_	NC NC	1
120		1	min	011	3	032	3	016	5	-1.937e-6	2	1291.711	2	NC NC	1
121		4	max	.007	1	.03	2	.004	1	1.922e-3	4_	NC 1000 000	3	NC NC	1
122		-	min	01	3	03	3	016	5	-4.254e-6	2	1396.222	2	NC NC	1
123		5	max	.007	1	.028	2	.003	1	1.941e-3	4_	NC 4547.50	3_	NC NC	1
124			min	01	3	028	3	015	5	-6.571e-6	2	1517.59	2	NC	1
125		6	max	.006	1	.026	2	.003	1	1.96e-3	4	NC	3	NC	1
126		<u> </u>	min	009	3	026	3	<u>015</u>	5	-8.888e-6	2	1659.702	2	NC	1
127		7	max	.006	1	.023	2	.003	1	1.979e-3	4	NC	3	NC	1
128			min	008	3	024	3	<u>014</u>	5	-1.121e-5	2	1827.74	2	NC	1
129		8	max	.005	1	.021	2	.002	1	1.998e-3	4_	NC	3	NC	1
130			min	008	3	022	3	014	5	-1.352e-5	2	2028.771	2	NC	1
131		9	max	.005	1	.019	2	.002	1	2.017e-3	4	NC	3	NC	1
132		4.0	min	007	3	02	3	<u>013</u>	5	-1.584e-5	2	2272.684	2	NC	1
133		10	max	.004	1	.016	2	.002	1	2.036e-3	_4_	NC	3	NC	1
134			min	006	3	<u>018</u>	3	012	5	-1.816e-5	2	2573.753	2	9931.28	4
135		11	max	.004	1	.014	2	.001	1	2.055e-3	4	NC	3	NC	1
136			min	006	3	016	3	011	5	-2.047e-5	2	2953.375	2	9983.507	4
137		12	max	.003	1	.012	2	.001	1	2.074e-3	4	NC	3	NC	1
138			min	005	3	014	3	01	5	-2.279e-5	2	3445.155	2	NC	1
139		13	max	.003	1	.01	2	0	1	2.093e-3	4	NC	3	NC	1
140			min	004	3	012	3	009		-2.511e-5				NC	1
141		14	max	.002	1	.008	2	0	1	2.112e-3	4_	NC Table 2	3	NC	1
142			min	003	3	01	3	008	5	-2.742e-5	2	5033.8	2	NC NC	1
143		15	max	.002	1	.007	2	0	1	2.131e-3	_4_	NC	_1_	NC	1
144		4.0	min	003	3	008	3	006	5	-3.077e-5	<u>11</u>	6432.682	2	NC	1
145		16	max	.001	1	.005	2	0	1	2.15e-3	4_	NC	1_	NC	1
146			min	002	3	006	3	005	5	-3.698e-5	<u>1</u>	8771.331	2	NC	1
147		17	max	0	1	.003	2	0	1	2.169e-3	_5_	NC	1_	NC	1
148			min	001	3	004	3	003	5	-4.618e-5	1_	NC	1_	NC	1
149		18	max	0	1	.002	2	0	1	2.189e-3	5_	NC	_1_	NC	1
150		4	min	0	3	002	3	002	5	-5.538e-5	<u>1</u>	NC	1_	NC	1
151		19	max	0	1	0	1	0	1	2.21e-3	5	NC	1_	NC	1
152			min	0	1	0	1	0	1	-6.458e-5	_1_	NC	_1_	NC NC	1
153	M7	1	max	0	1	0	1	0	1	3.054e-5	1_	NC	1_	NC	1
154			min	0	1	0	1	0	1	-1.057e-3	5	NC	1_	NC	1
155		2	max	0	3	.002	2	.005	5	2.694e-5	1_	NC	1_	NC	1
156			min	0	2	002	3	0	1	-1.058e-3	4	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
157		3	max	0	3	.003	2	.011	5	2.334e-5	1	NC	1_	NC	1
158			min	0	2	004	3	0	1	-1.061e-3	4	NC	1_	NC	1
159		4	max	.001	3	.005	2	.016	5	1.974e-5	_1_	NC	_1_	NC	1
160			min	001	2	007	3	0	1	-1.064e-3	4_	9878.85	2	NC	1
161		5	max	.002	3	.006	2	.021	5	1.614e-5	1	NC	1_	NC	1
162			min	002	2	009	3	0	1	-1.066e-3	4	7453.79	2	NC NC	1
163		6	max	.002	3	.008	2	.027	5	2.566e-5	3	NC F070.00	1_	NC NC	1
164		-	min	002	2	011	3	0	1	-1.069e-3	4_	5970.08	2	NC NC	1
165		7	max	.003	3	.009	2	.032	5	4.545e-5	3	NC 4050 ac4	3	NC NC	1
166		0	min	003	2	<u>012</u> .011	2	<u> </u>	1	-1.072e-3	4	4959.261 NC	2	NC NC	1
167 168		8	max	.003 003	3		3		5	6.524e-5 -1.074e-3	3	4221.03	3	NC NC	1
169		9	min	.003	3	014 .013	2	001 .042	5	8.503e-5	3	NC	3	NC NC	1
170		9	max	004	2	016	3	001	1	-1.077e-3	4	3655.486	2	NC NC	1
171		10	max	.004	3	.014	2	.047	5	1.048e-4	3	NC	3	NC	1
172		10	min	004	2	018	3	001	1	-1.048e-4	4	3207.215	2	NC	1
173		11	max	.004	3	.016	2	.052	5	1.246e-4	3	NC	3	NC	1
174			min	005	2	019	3	001	1	-1.083e-3	4	2842.948	2	NC	1
175		12	max	.005	3	.018	2	.056	4	1.444e-4	3	NC	3	NC	1
176		12	min	005	2	021	3	002	1	-1.085e-3	4	2541.42	2	NC	1
177		13	max	.005	3	.02	2	.061	4	1.642e-4	3	NC	3	NC	1
178			min	006	2	022	3	002	1	-1.088e-3	4	2288.333	2	NC	1
179		14	max	.006	3	.022	2	.065	4	1.84e-4	3	NC	3	NC	1
180			min	006	2	023	3	002	1	-1.091e-3	4	2073.651	2	NC	1
181		15	max	.006	3	.024	2	.07	4	2.038e-4	3	NC	3	NC	1
182			min	007	2	024	3	002	1	-1.093e-3	4	1890.073	2	NC	1
183		16	max	.006	3	.027	2	.074	4	2.236e-4	3	NC	3	NC	1
184			min	007	2	026	3	002	1	-1.096e-3	4	1732.128	2	NC	1
185		17	max	.007	3	.029	2	.079	4	2.433e-4	3	NC	3	NC	1
186			min	008	2	027	3	002	1	-1.099e-3	4	1595.611	2	NC	1
187		18	max	.007	3	.031	2	.083	4	2.631e-4	3	NC	3	NC	1
188			min	008	2	028	3	002	1	-1.101e-3	4	1477.229	2	NC	1
189		19	max	.008	3	.034	2	.087	4	2.829e-4	3	NC	3	NC	1
190			min	009	2	029	3	002	1	-1.104e-3	4	1374.36	2	NC	1
191	<u>M8</u>	1	max	.005	1	.044	2	.002	1	6.859e-3	4	NC	1_	NC	2
192			min	0	15	035	3	092	4	-2.266e-4	3	NC	1_	210.35	4
193		2	max	.004	1	.041	2	.002	1	6.859e-3	4	NC	1_	NC	2
194			min	0	15	<u>033</u>	3	084	4	-2.266e-4	3	NC	1_	229.306	4
195		3	max	.004	1	.039	2	.002	1	6.859e-3	4_	NC	1_	NC	2
196		4	min	0	15	031	3	077	4	-2.266e-4	3	NC NC	1_	251.869	4
197		4	max	.004	1	.037	2	.002	1	6.859e-3	4	NC NC	1_	NC 270,000	1
198		_	min	0	15	029	3	069	4	-2.266e-4	3	NC NC	1_	278.989	4
199		5	max	.004	1 15	.034	2	.002	1	6.859e-3 -2.266e-4	4	NC NC	<u>1</u> 1	NC 244 059	1
200		6	min	003	1	027	3	062	4		3	NC NC	1	311.958 NC	1
201		6	max min	<u>.003</u>	15	.032 025	3	.001 055	4	6.859e-3 -2.266e-4	3	NC NC	1	352.577	4
203		7	max	.003	1	.029	2	.001	1	6.859e-3	4	NC	1	NC	1
204			min	0	15	023	3	048	4	-2.266e-4	3	NC	1	403.41	4
205		8	max	.003	1	.027	2	.001	1	6.859e-3	4	NC	1	NC	1
206		0	min	<u>.003</u>	15	021	3	041	4	-2.266e-4	3	NC	1	468.207	4
207		9	max	.003	1	.024	2	0	1	6.859e-3	4	NC	1	NC	1
208		9	min	0	15	019	3	035	4	-2.266e-4	3	NC	1	552.647	4
209		10	max	.002	1	.022	2	<u>033</u> 0	1	6.859e-3	4	NC	1	NC	1
210			min	0	15	017	3	029	4	-2.266e-4	3	NC	1	665.652	4
211		11	max	.002	1	.019	2	0	1	6.859e-3	4	NC	1	NC	1
212			min	0	15	016	3	024	4	-2.266e-4	3	NC	1	821.917	4
213		12	max	.002	1	.017	2	0	1	6.859e-3	4	NC	1	NC	1
			man	.002		.017			<u> </u>	3.0000					

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		
214			min	0	15	014	3	018	4	-2.266e-4	3	NC	1	1047.078	4
215		13	max	.002	1	.015	2	0	1	6.859e-3	4_	NC	_1_	NC	1
216			min	0	15	012	3	014	4	-2.266e-4	3	NC	1	1389.216	4
217		14	max	.001	1	.012	2	0	1	6.859e-3	4	NC	1_	NC	1_
218			min	0	15	01	3	01	4	-2.266e-4	3	NC	1	1947.513	4
219		15	max	.001	1	.01	2	0	1	6.859e-3	4	NC	1_	NC	1
220			min	0	15	008	3	007	4	-2.266e-4	3	NC	1	2954.979	4
221		16	max	0	1	.007	2	0	1	6.859e-3	4	NC	1	NC	1
222			min	0	15	006	3	004	4	-2.266e-4	3	NC	1	5074.011	4
223		17	max	0	1	.005	2	0	1	6.859e-3	4	NC	1_	NC	1
224			min	0	15	004	3	002	4	-2.266e-4	3	NC	1	NC	1
225		18	max	0	1	.002	2	0	1	6.859e-3	4	NC	1	NC	1
226			min	0	15	002	3	0	4	-2.266e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1	6.859e-3	4	NC	1	NC	1
228			min	0	1	0	1	0	1	-2.266e-4	3	NC	1	NC	1
229	M10	1	max	.003	1	.011	2	0	3	1.004e-3	1	NC	3	NC	1
230			min	004	3	011	3	007	4	-3.985e-4	3	4003.347	2	NC	1
231		2	max	.003	1	.01	2	0	3	9.532e-4	1	NC	3	NC	1
232			min	003	3	011	3	008	4	-3.849e-4	3	4380.316	2	NC	1
233		3	max	.002	1	.009	2	0	3	9.019e-4	1	NC	3	NC	1
234			min	003	3	01	3	008	4	-3.712e-4	3	4830.71	2	NC	1
235		4	max	.002	1	.008	2	0	3	8.506e-4	1	NC	1	NC	1
236			min	003	3	01	3	008	4	-3.575e-4	3	5372.559	2	NC	1
237		5	max	.002	1	.007	2	0	3	8.283e-4	4	NC	1	NC	1
238			min	003	3	009	3	008	4	-3.438e-4	3	6029.98	2	NC	1
239		6	max	.002	1	.006	2	0	3	8.954e-4	4	NC	1	NC	1
240			min	003	3	009	3	008	4	-3.301e-4	3	6835.761	2	NC	1
241		7	max	.002	1	.005	2	0	3	9.625e-4	4	NC	1	NC	1
242			min	002	3	008	3	008	4	-3.164e-4	3	7835.318	2	NC	1
243		8	max	.002	1	.005	2	0	3	1.03e-3	4	NC	1	NC	1
244		T .	min	002	3	008	3	008	4	-3.028e-4	3	9092.963	2	NC	1
245		9	max	.002	1	.004	2	0	3	1.097e-3	4	NC	1	NC	1
246		Ť	min	002	3	007	3	008	4	-2.891e-4	3	NC	1	NC	1
247		10	max	.002	1	.003	2	0	3	1.164e-3	4	NC	1	NC	1
248		10	min	002	3	007	3	008	4	-2.754e-4	3	NC	1	9787.098	
249		11	max	.002	1	.003	2	<u>000</u>	3	1.231e-3	4	NC	1	NC	1
250			min	002	3	006	3	008	4	-2.617e-4	3	NC	1	9771.077	4
251		12	max	.002	1	.002	2	<u>.000</u>	3	1.298e-3	4	NC	1	NC	1
252		12	min	001	3	006	3	007	4	-2.48e-4	3	NC	1	NC	1
253		13	max	0	1	.002	2	<u>.007</u>	3	1.365e-3	4	NC	1	NC	1
254		13	min	001	3	005	3	006	4	-2.343e-4	3	NC	1	NC	1
255		14	max	0	1	.001	2	<u>000</u>	3	1.432e-3	4	NC	1	NC	1
256		14	min	0	3	004	3	006	4	-2.207e-4	3	NC NC	1	NC NC	1
257		15	max	0	1	004	2	000	3	1.499e-3	4	NC	1	NC	1
258		13	min	0	3	003	3	005	4	-2.07e-4	3	NC	1	NC	1
259		16		0	1	<u>003</u> 0	2	<u>005</u> 0	3	1.567e-3	4	NC	1	NC	1
260		10	max		3	003	3	004		-1.933e-4	3	NC	1	NC	1
261		17	min	<u> </u>	1	003 0	2		3	1.634e-3	<u>3</u>	NC NC	1	NC NC	1
		17	max	0	3			0					1		1
262		10	min		1	002	3	003	4	-1.796e-4	3	NC NC		NC NC	
263		18	max	0	3	<u> </u>	3	0 001	3	1.701e-3	4	NC NC	1	NC NC	1
264		10	min							-1.659e-4	3			NC NC	
265		19	max	0	1	0	1	0	1	1.768e-3	4	NC	1	NC	1
266	D 4 4 4	4	min	0	1	0	1	0	1	-1.522e-4	3	NC NC	1_	NC NC	1
267	M11	1	max	0	1	0	1	0	1	7.283e-5	3	NC	1	NC NC	1
268			min	0	1	0	1	0	1	-8.466e-4	4	NC	1_	NC NC	1
269		2	max	0	3	0	2	.004	4	5.203e-5	3	NC	1	NC NC	1
270			min	0	2	0	3	0	3	-9.404e-4	4	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

292 min 002 2 008 3 007 1 -1.972e-3 4 NC 1 6812.205 1 293 14 max .002 3 .004 2 .055 5 -5.503e-5 10 NC 1 NC 2 294 min 002 2 009 3 008 1 -2.066e-3 4 NC 1 5898.828 1 295 15 max .002 3 .005 2 .06 5 -5.874e-5 10 NC 1 NC 2 296 min 002 2 009 3 009 1 -2.159e-3 4 8591.743 2 5190.347 1		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
273			3	max	0				.009			3		_1_		1
274				min	0							4		1_		1
275			4		-				.013			3_				
276																
277			5													_
278											-1.222e-3			_		-
279			6		-											
280			-											_		
281					-											_
282			0									_				
283 9 max 001 3 001 2 0.034 5 -3.647e-5 10 NC 1 NC 1 <th< td=""><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			0													
284			0								-1.503e-5					
285			3													
286			10							-		_				
287			10													_
288			11											_		
12 max																
290			12											_		
13 max														1		1
Min			13							5		_		1		2
14 max .002 3 .004 2 .055 5 .5.503e-5 10 NC 1 NC 2 294 min 002 2 009 3 008 1 .2.066e-3 4 NC 1 .5898.828 1 295 15 max .002 3 .005 2 .066 5 .5.874e-5 10 NC 1 NC 2 296 min 002 2 009 3 009 1 .2.159e-3 4 .8591.743 2 .5190.347 1 297 16 max .002 3 .006 2 .064 5 .6.245e-5 10 NC 1 NC 2 298 min 002 2 009 3 011 1 .2.253e-3 4 .7286.83 2 .4630.538 1 299 17 max .002 3 .007 2 .068 5 .6.616e-5 10 NC 1 NC 2 300 min 002 2 009 3 011 1 .2.347e-3 4 .6276.417 2 4181.583 1 301 18 max .002 3 .008 2 .072 5 .6.988e-5 10 NC 1 NC 2 302 min 002 2 009 3 012 1 .2.441e-3 4 .5485.008 2 .3817.29 1 303 19 max .002 3 .009 2 .076 5 .7.359e-5 10 NC 3 NC 3 304 min 002 2 009 3 013 1 .2.535e-3 4 .4859.528 2 .3519.072 1 .305 M12 1 max .002 1 .012 2 .011 1 .8.221e-3 4 NC 1 NC 3 308 min 0 15 011 3 034 5 8.244e-5 10 NC 1 .250.394 5 .309 3 max .002 1 .011 2 .009 1 .8.221e-3 4 NC 1 NC 3 .311 4 max .002 1 .011 2 .009 1 .8.221e-3 4 NC 1 NC 3 .311 4 max .002 1 .011 2 .008 1 .8.221e-3 4 NC 1 NC 3 .311 4 max .001 1 .011 2 .008 1 .8.221e-3 4 NC 1 NC 3 .311 4 max .001 1 .011 2 .008 1 .8.221e-3 4 NC 1 NC 3 .311 min 0 15 009 3 063 5 8.244e-5 10 NC 1 .340.632 5 .311 4 max .001 1 .011 2 .006 1 8.221e-3 4 NC 1 NC 3 .313 5 max .001 1 .011 2 .006 1 8.221e-3 4 NC 1 NC 3 .314 min 0 15 009 3 057 5 8.244e-5 10 NC 1 .340.635 5 .315 .001 1 .001 2 .006 1 8.221e-3 4												4		1		
294			14							5		10		1		2
15 max .002 3 .005 2 .06 5 .5.874e-5 10 NC 1 NC 2 296 min .002 2 .009 3 .009 1 .2.159e-3 4 8591.743 2 5190.347 1 297 16 max .002 3 .006 2 .064 5 .6.245e-5 10 NC 1 NC 2 298 min .002 2 .009 3 .01 1 .2.253e-3 4 7286.83 2 4630.538 1 299 17 max .002 3 .007 2 .068 5 .6.616e-5 10 NC 1 NC 2 300 min .002 2 .009 3 .011 1 .2.347e-3 4 6276.417 2 4181.583 1 301 18 max .002 3 .008 2 .072 5 .6.988e-5 10 NC 1 NC 2 302 min .002 2 .009 3 .012 1 .2.441e-3 4 5485.008 2 3817.29 1 303 19 max .002 3 .009 2 .076 5 .7.359e-5 10 NC 3 NC 3 304 min .002 2 .009 3 .013 1 .2.535e-3 4 4859.528 2 3519.072 1 305 M12 1 max .002 1 .012 2 .011 1 8.221e-3 4 NC 1 NC 3 306 min 0 15 .011 3 .084 5 8.244e-5 10 NC 1 NC 3 308 min 0 15 .011 3 .009 1 8.221e-3 4 NC 1 NC 3 308 min 0 15 .011 3 .007 5 8.244e-5 10 NC 1 250.394 5 311 4 max .002 1 .011 2 .009 1 8.221e-3 4 NC 1 NC 3 310 min 0 15 .011 3 .008 1 8.221e-3 4 NC 1 NC 3 311 4 max .002 1 .011 2 .009 1 8.221e-3 4 NC 1 NC 3 312 min 0 15 .009 3 .063 5 8.244e-5 10 NC 1 275.027 5 311 4 max .001 1 .011 2 .008 1 8.221e-3 4 NC 1 NC 3 314 min 0 15 .009 3 .063 5 8.244e-5 10 NC 1 304.632 5 315 min 0 15 .009 3 .063 5 8.244e-5 10 NC 1 304.632 5 315 min 0 15 .009 3 .063 5 8.244e-5 10 NC 1 304.632 5 315 min 0 15 .009 3 .057 5 8.244e-5 10 NC 1 304.632 5 315 min 0 15 .009 3 .056 5 8.244e-5 10 NC 1 304.632 5 316 min 0 15 .009 3 .056 5 8.244e				min	002		009			1		4		1	5898.828	1
16 max .002 3 .006 2 .064 5 -6.245e-5 10 NC 1 NC 2 298 min 002 2 009 3 01 1 -2.253e-3 4 7286.83 2 4630.538 1 1 1 1 1 1 1 1 1	295		15	max	.002	3	.005	2	.06	5	-5.874e-5	10	NC	1	NC	2
Min 002 2 009 3 01 1 -2.253e-3 4 7286.83 2 4630.538 1					002	2	009	3	009	1	-2.159e-3	4	8591.743	2	5190.347	1
299 17 max .002 3 .007 2 .068 5 -6.616e-5 10 NC 1 NC 2 300 min 002 2 009 3 011 1 -2.347e-3 4 6276.417 2 4181.583 1 301 18 max .002 3 .008 2 .072 5 -6.988e-5 10 NC 1 NC 2 302 min 002 2 009 3 012 1 -2.441e-3 4 5485.008 2 3817.29 1 303 19 max .002 3 .009 2 .076 5 -7.359e-5 10 NC 3 NC 3 304 min 002 2 009 3 013 1 -2.535e-3 4 NC 1 NC 3 305 M12 1 max <t< td=""><td>297</td><td></td><td>16</td><td>max</td><td>.002</td><td></td><td>.006</td><td>2</td><td>.064</td><td>5</td><td>-6.245e-5</td><td>10</td><td>NC</td><td>1</td><td></td><td>2</td></t<>	297		16	max	.002		.006	2	.064	5	-6.245e-5	10	NC	1		2
Min 002 2 009 3 011 1 -2.347e-3 4 6276.417 2 4181.583 1 301 18 max .002 3 .008 2 .072 5 -6.988e-5 10 NC 1 NC 2 302 min 002 2 009 3 012 1 -2.441e-3 4 5485.008 2 3817.29 1 303 19 max .002 3 .009 2 .076 5 -7.359e-5 10 NC 3 NC 3 304 min 002 2 009 3 013 1 -2.535e-3 4 4859.528 2 3519.072 1 305 M12 1 max .002 1 .012 2 .011 1 8.221e-3 4 NC 1 NC 3 306 min 0 15 011 3 084 5 8.244e-5 10 NC 1 229.699 5 307 2 max .002 1 .012 2 .01 1 8.221e-3 4 NC 1 NC 3 308 min 0 15 01 3 077 5 8.244e-5 10 NC 1 250.394 5 309 3 max .002 1 .011 2 .009 1 8.221e-3 4 NC 1 NC 3 310 min 0 15 01 3 077 5 8.244e-5 10 NC 1 275.027 5 311 4 max .001 1 .011 2 .008 1 8.221e-3 4 NC 1 NC 3 312 min 0 15 009 3 063 5 8.244e-5 10 NC 1 304.632 5 313 5 max .001 1 .011 2 .007 1 8.221e-3 4 NC 1 NC 3 314 min 0 15 009 3 063 5 8.244e-5 10 NC 1 340.625 5 315 6 max .001 1 .009 2 .006 1 8.221e-3 4 NC 1 NC 3 316 min 0 15 009 3 057 5 8.244e-5 10 NC 1 340.625 5 315 min 0 15 009 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 009 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 009 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min	298			min	002		009	3	01	1	-2.253e-3	4		2	4630.538	1
301 18 max .002 3 .008 2 .072 5 -6.988e-5 10 NC 1 NC 2 302 min 002 2 009 3 012 1 -2.441e-3 4 5485.008 2 3817.29 1 303 19 max .002 3 .009 2 .076 5 -7.359e-5 10 NC 3 NC 3 304 min 002 2 009 3 013 1 -2.535e-3 4 4859.528 2 3519.072 1 305 M12 1 max .002 1 .012 2 .011 1 8.221e-3 4 NC 1 NC 3 306 min 0 15 011 3 084 5 8.244e-5 10 NC 1 NC 3 .07 2 max .002 1			17							5						2
Min 002 2 009 3 012 1 -2.441e-3 4 5485.008 2 3817.29 1 303 19 max .002 3 .009 2 .076 5 -7.359e-5 10 NC 3 NC 3 304 min 002 2 009 3 013 1 -2.535e-3 4 4859.528 2 3519.072 1 305 M12 1 max .002 1 .012 2 .011 1 8.221e-3 4 NC 1 NC 3 306 min 0 15 011 3 084 5 8.244e-5 10 NC 1 229.699 5 307 2 max .002 1 .012 2 .01 1 8.221e-3 4 NC 1 NC 3 308 min 0 15 01 3 077 5 8.244e-5 10 NC 1 250.394 5 309 3 max .002 1 .011 2 .009 1 8.221e-3 4 NC 1 NC 3 310 min 0 15 01 3 077 5 8.244e-5 10 NC 1 275.027 5 311 4 max .001 1 .011 2 .008 1 8.221e-3 4 NC 1 NC 3 312 min 0 15 009 3 063 5 8.244e-5 10 NC 1 304.632 5 313 5 max .001 1 .011 2 .007 1 8.221e-3 4 NC 1 NC 3 314 min 0 15 009 3 063 5 8.244e-5 10 NC 1 340.625 5 315 6 max .001 1 .009 2 .006 1 8.221e-3 4 NC 1 NC 3 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15 008 3 057 5 8.244e-5 10 NC 1 340.625 5 316 min 0 15																1
303 19 max .002 3 .009 2 .076 5 -7.359e-5 10 NC 3 NC 3 304 min 002 2 009 3 013 1 -2.535e-3 4 4859.528 2 3519.072 1 305 M12 1 max .002 1 .012 2 .011 1 8.221e-3 4 NC 1 NC 3 306 min 0 15 011 3 084 5 8.244e-5 10 NC 1 229.699 5 307 2 max .002 1 .012 2 .01 1 8.244e-5 10 NC 1 229.699 5 308 min 0 15 01 3 077 5 8.244e-5 10 NC 1 250.394 5 310 min 0 15			18													
304 min 002 2 009 3 013 1 -2.535e-3 4 4859.528 2 3519.072 1 305 M12 1 max .002 1 .012 2 .011 1 8.221e-3 4 NC 1 NC 3 306 min 0 15 011 3 084 5 8.244e-5 10 NC 1 229.699 5 307 2 max .002 1 .012 2 .01 1 8.244e-5 10 NC 1 229.699 5 308 min 0 15 01 3 077 5 8.244e-5 10 NC 1 250.394 5 309 3 max .002 1 .011 2 .009 1 8.221e-3 4 NC 1 NC 3 310 min 0 15																
305 M12 1 max .002 1 .012 2 .011 1 8.221e-3 4 NC 1 NC 3 306 min 0 15 011 3 084 5 8.244e-5 10 NC 1 229.699 5 307 2 max .002 1 .012 2 .01 1 8.244e-5 10 NC 1 229.699 5 308 min 0 15 01 3 077 5 8.244e-5 10 NC 1 250.394 5 309 3 max .002 1 .011 2 .009 1 8.221e-3 4 NC 1 NC 3 310 min 0 15 01 3 07 5 8.244e-5 10 NC 1 275.027 5 311 4 max .001			19													3
306 min 0 15 011 3 084 5 8.244e-5 10 NC 1 229.699 5 307 2 max .002 1 .012 2 .01 1 8.241e-3 4 NC 1 NC 3 308 min 0 15 01 3 077 5 8.244e-5 10 NC 1 250.394 5 309 3 max .002 1 .011 2 .009 1 8.221e-3 4 NC 1 NC 3 310 min 0 15 01 3 07 5 8.244e-5 10 NC 1 275.027 5 311 4 max .001 1 .01 2 .008 1 8.221e-3 4 NC 1 NC 3 312 min 0 15 009 3											-2.535e-3	_				1
307 2 max .002 1 .012 2 .01 1 8.221e-3 4 NC 1 NC 3 308 min 0 15 01 3 077 5 8.244e-5 10 NC 1 250.394 5 309 3 max .002 1 .011 2 .009 1 8.244e-5 10 NC 1 NC 3 310 min 0 15 01 3 07 5 8.244e-5 10 NC 1 275.027 5 311 4 max .001 1 .01 2 .008 1 8.221e-3 4 NC 1 NC 3 312 min 0 15 009 3 063 5 8.244e-5 10 NC 1 304.632 5 313 5 max .001 1 .007 <td></td> <td><u>M12</u></td> <td>1</td> <td></td> <td></td> <td>-</td> <td></td>		<u>M12</u>	1			-										
308 min 0 15 01 3 077 5 8.244e-5 10 NC 1 250.394 5 309 3 max .002 1 .011 2 .009 1 8.221e-3 4 NC 1 NC 3 310 min 0 15 01 3 07 5 8.244e-5 10 NC 1 275.027 5 311 4 max .001 1 .01 2 .008 1 8.221e-3 4 NC 1 NC 3 312 min 0 15 009 3 063 5 8.244e-5 10 NC 1 304.632 5 313 5 max .001 1 .01 2 .007 1 8.221e-3 4 NC 1 NC 3 314 min 0 15 009 3														_		
309 3 max .002 1 .011 2 .009 1 8.221e-3 4 NC 1 NC 3 310 min 0 15 01 3 07 5 8.244e-5 10 NC 1 275.027 5 311 4 max .001 1 .01 2 .008 1 8.221e-3 4 NC 1 NC 3 312 min 0 15 009 3 063 5 8.244e-5 10 NC 1 304.632 5 313 5 max .001 1 .01 2 .007 1 8.221e-3 4 NC 1 NC 3 314 min 0 15 009 3 057 5 8.244e-5 10 NC 1 340.625 5 315 6 max .001 1 .009 2 .006 1 8.221e-3 4 NC 1 NC 3 316 min 0 15 008 3 05 5 8.244e-5 10 NC 1 384.967 5 <td></td> <td></td> <td>2</td> <td></td>			2													
310 min 0 15 01 3 07 5 8.244e-5 10 NC 1 275.027 5 311 4 max .001 1 .01 2 .008 1 8.221e-3 4 NC 1 NC 3 312 min 0 15 009 3 063 5 8.244e-5 10 NC 1 304.632 5 313 5 max .001 1 .01 2 .007 1 8.221e-3 4 NC 1 NC 3 314 min 0 15 009 3 057 5 8.244e-5 10 NC 1 340.625 5 315 6 max .001 1 .009 2 .006 1 8.221e-3 4 NC 1 NC 3 316 min 0 15 008 3			2											_		
311 4 max .001 1 .01 2 .008 1 8.221e-3 4 NC 1 NC 3 312 min 0 15 009 3 063 5 8.244e-5 10 NC 1 304.632 5 313 5 max .001 1 .01 2 .007 1 8.221e-3 4 NC 1 NC 3 314 min 0 15 009 3 057 5 8.244e-5 10 NC 1 340.625 5 315 6 max .001 1 .009 2 .006 1 8.221e-3 4 NC 1 NC 3 316 min 0 15 008 3 05 5 8.244e-5 10 NC 1 384.967 5			3													
312 min 0 15 009 3 063 5 8.244e-5 10 NC 1 304.632 5 313 5 max .001 1 .01 2 .007 1 8.221e-3 4 NC 1 NC 3 314 min 0 15 009 3 057 5 8.244e-5 10 NC 1 340.625 5 315 6 max .001 1 .009 2 .006 1 8.221e-3 4 NC 1 NC 3 316 min 0 15 008 3 05 5 8.244e-5 10 NC 1 384.967 5			1													
313 5 max .001 1 .01 2 .007 1 8.221e-3 4 NC 1 NC 3 314 min 0 15 009 3 057 5 8.244e-5 10 NC 1 340.625 5 315 6 max .001 1 .009 2 .006 1 8.221e-3 4 NC 1 NC 3 316 min 0 15 008 3 05 5 8.244e-5 10 NC 1 384.967 5			4													
314 min 0 15 009 3 057 5 8.244e-5 10 NC 1 340.625 5 315 6 max .001 1 .009 2 .006 1 8.221e-3 4 NC 1 NC 3 316 min 0 15 008 3 05 5 8.244e-5 10 NC 1 384.967 5			5													
315 6 max .001 1 .009 2 .006 1 8.221e-3 4 NC 1 NC 3 316 min 0 15008 305 5 8.244e-5 10 NC 1 384.967 5			J													
316 min 0 15008 305 5 8.244e-5 10 NC 1 384.967 5			6											•		
			<u> </u>													
011			7											_		
318 min 0 15007 3044 5 8.244e-5 10 NC 1 440.458 5																5
			8											•		2
																5
			9	1 1										1		2
																5
			10													2
										5		10		1		5
			11							-		-		1		2
					0	15				5		10		1		5
327 12 max 0 1 .005 2 .002 1 8.221e-3 4 NC 1 NC 2	327		12	max	0	1	.005	2	.002	1	8.221e-3	4	NC	1	NC	2

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		
328			min	0	15	004	3	017	5	8.244e-5	10	NC	1_	1143.083	5
329		13	max	0	1	.004	2	.002	1	8.221e-3	4	NC	1	NC	1
330			min	0	15	004	3	013	5	8.244e-5	10	NC	1	1516.546	5
331		14	max	0	1	.003	2	.001	1	8.221e-3	4	NC	1	NC	1
332			min	0	15	003	3	009	5	8.244e-5	10	NC	1	2125.95	5
333		15	max	0	1	.003	2	0	1	8.221e-3	4	NC	1	NC	1
334			min	0	15	002	3	006	5	8.244e-5	10	NC	1	3225.622	5
335		16	max	0	1	.002	2	0	1	8.221e-3	4	NC	1	NC	1
336		10	min	0	15	002	3	003	5	8.244e-5	10	NC	1	5538.556	5
337		17	max	0	1	.002	2	0	1	8.221e-3	4	NC	1	NC	1
338		17	min	0	15	001	3	002	5	8.244e-5	10	NC NC	1	NC NC	1
		40						_					•		
339		18	max	0	1	0	2	0	1	8.221e-3	4	NC NC	1	NC	1
340		1.0	min	0	15	0	3	0	5	8.244e-5	<u>10</u>	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	8.221e-3	_4_	NC	1_	NC	1
342			min	0	1	0	1	0	1	8.244e-5	10	NC	1_	NC	1
343	M1	1	max	.01	3	.027	3	.009	5	1.561e-2	_1_	NC	_1_	NC	1_
344			min	009	2	024	2	005	1	-2.157e-2	3	NC	1_	NC	1
345		2	max	.01	3	.016	3	.012	5	7.538e-3	2	NC	4	NC	2
346			min	009	2	014	2	01	1	-1.069e-2	3	4918.447	2	8999.253	1
347		3	max	.01	3	.007	3	.016	5	6.187e-4	5	NC	4	NC	2
348			min	009	2	005	2	013	1	-6.829e-4	1	2524.292	2	5462.176	1
349		4	max	.01	3	.003	1	.021	5	6.377e-4	5	NC	4	NC	2
350			min	009	2	002	3	015	1	-5.913e-4	1	1765.44	2	3972.562	5
351		5	max	.009	3	.01	2	.025	5	6.568e-4	5	NC	4	NC	2
352		T .	min	009	2	008	3	015	1	-4.998e-4	1	1398.791	2	2840.641	5
353		6	max	.009	3	.016	2	.03	5	6.758e-4	5	NC	4	NC	2
354		-	min	009	2	014	3	014	1	-4.082e-4	1	1190.043	2	2180.736	5
		7													
355		-	max	.009	3	.02	2	.036	5	6.949e-4	5_	NC 4000 040	5_	NC	2
356			min	009	2	018	3	013	1	-3.167e-4	1_	1062.219	2	1753.883	5
357		8	max	.009	3	.024	2	.041	5	7.14e-4	5_	NC 200.074	5	NC 4.450.040	2
358			min	009	2	021	3	01	1	-2.251e-4	<u>1</u>	983.271	2	1458.316	5
359		9	max	.009	3	.026	2	.047	5	7.33e-4	5	NC	5_	NC	1
360			min	009	2	023	3	007	1	-1.336e-4	_1_	938.254	2	1242.218	4
361		10	max	.009	3	.027	2	.052	5	7.521e-4	5	NC	5	NC	1_
362			min	009	2	024	3	004	1	-4.201e-5	1_	920.35	2	1061.167	4
363		11	max	.009	3	.027	2	.058	4	7.852e-4	4	NC	5	NC	1
364			min	009	2	023	3	001	1	1.465e-5	10	927.7	2	925.568	4
365		12	max	.009	3	.025	2	.064	4	8.264e-4	4	NC	5	NC	2
366			min	009	2	021	3	0	10	2.403e-5	10	962.746	2	821.69	4
367		13	max	.009	3	.022	2	.071	4	8.676e-4	4	NC	4	NC	2
368			min	009	2	018	3	0	10	3.175e-5	12		2	740.766	4
369		14		.009	3	.017	2	.077	4	9.088e-4	4	NC	4	NC	2
370			min	009	2	014	3	0	12	3.551e-5		1158.587	2	676.994	4
371		15	max	.009	3	.01	2	.082	4	9.5e-4	4	NC	4	NC	2
372		10	min	009	2	008	3	0	12	3.927e-5	12	1380.917	2	626.422	4
373		16	max	.009	3	.002	1	.087	4	1.322e-3	4	NC	4	NC	2
374		10		009	2	002	3	_	12	4.201e-5			2	586.301	-
		47	min					0	_		12				4
375		17	max	.009	3	.006	3	.092	4	9.58e-3	4_	NC	4_	NC FF4.704	2
376		40	min	009	2	008	2	0	12	-1.632e-4	1_	2628.442	1_	554.721	4
377		18	max	.009	3	.014	3	.096	4	1.13e-2	2	NC	2	NC 500.057	2
378			min	009	2	02	2	0	10	-5.365e-3	3	5081.519	1_	530.257	4
379		19	max	.009	3	.023	3	.099	4	2.287e-2	2	NC	1_	NC	1_
380			min	009	2	032	2	003	1	-1.086e-2	3	5809.236	2	512.547	4
381	M5	1	max	.03	3	.088	3	.008	5	1.054e-5	4	NC	1	NC	1
382			min	034	2	08	2	006	1	4.251e-8	10	3512.132	3	NC	1
383		2	max	.03	3	.053	3	.012	5	3.136e-4	5	NC	5	NC	1
384			min	034	2	048	2	005	1	-5.824e-5		1470.691	2	NC	1
											_		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio		(n) L/z Ratio	LC
385		3	max	.03	3	.021	3	.016	5	6.117e-4	5	NC	5	NC	1_
386			min	034	2	018	2	005	1	-1.16e-4	1	754.373	2	NC	1
387		4	max	.03	3	.009	2	.021	5	6.394e-4	5	NC	5	NC	1
388			min	034	2	005	3	004	1	-1.112e-4	_1_	527.073	2	NC	1
389		5	max	.03	3	.033	2	.026	5	6.671e-4	5	NC	5_	NC	1
390			min	034	2	028	3	004	1	-1.065e-4	<u>1</u>	417.208	2	NC NC	1
391		6	max	.03	3	.052	2	.032	5	6.948e-4	5	NC 254 coo	5	NC NC	1
392 393		7	min	034 .03	3	<u>046</u> .068	2	004 .037	5	-1.017e-4 7.226e-4	1_	354.629 NC	<u>2</u> 15	NC NC	1
394		-	max	034	2	06	3	004	1	-9.699e-5	<u>5</u> 1	316.281	2	NC NC	1
395		8	max	.03	3	.08	2	.043	5	7.503e-4	5	NC	15	NC NC	1
396			min	034	2	07	3	003	1	-9.223e-5	1	292.563	2	9948.71	3
397		9	max	.03	3	.088	2	.049	5	7.78e-4	5	NC	15	NC	1
398		<u> </u>	min	034	2	075	3	003	1	-8.748e-5	1	278.996	2	NC	1
399		10	max	.03	3	.092	2	.055	5	8.057e-4	5	NC	15	NC	1
400		-	min	034	2	077	3	003	1	-8.273e-5	1	273.534	2	NC	1
401		11	max	.03	3	.09	2	.061	5	8.335e-4	5	NC	15	NC	1
402			min	034	2	074	3	003	1	-7.798e-5	1	275.617	2	NC	1
403		12	max	.029	3	.084	2	.067	5	8.612e-4	5	NC	15	NC	1
404			min	034	2	068	3	003	1	-7.322e-5	1	285.971	2	NC	1
405		13	max	.029	3	.073	2	.072	5	8.889e-4	5	NC	15	NC	1
406			min	034	2	058	3	003	1	-6.847e-5	1	307.015	2	NC	1
407		14	max	.029	3	.056	2	.078	5	9.166e-4	5	NC	5	NC	1
408			min	034	2	044	3	003	1	-6.372e-5	_1_	344.282	2	NC	1
409		15	max	.029	3	.034	2	.083	4	9.444e-4	5	NC	5_	NC	1
410		40	min	034	2	027	3	002	1	-5.896e-5	<u>1</u>	410.753	2	NC NC	1
411		16	max	.029	3	.007	2	.087	4	1.302e-3	5_	NC 540.047	5	NC NC	1
412		47	min	034	2	006	3	002	1	-6.096e-5	1_	542.817	2	NC NC	1
413		17	max	.029	3	.019	3	.092	4	9.556e-3 -2.237e-4	<u>4</u> 1	NC 851.264	5	NC NC	1
415		18	min max	034 .029	3	027 .046	3	002 .096	4	4.901e-3	4	NC	<u>3</u> 5	NC NC	1
416		10	min	034	2	066	2	002	1	-1.145e-4	1	1669.537	3	NC	1
417		19	max	.029	3	.074	3	.099	4	2.509e-6	5	NC	3	NC	1
418		10	min	034	2	108	2	002	1	-4.737e-7	3	1681.937	2	NC	1
419	M9	1	max	.01	3	.027	3	.007	5	2.158e-2	3	NC	1	NC	1
420	1110		min	009	2	024	2	006	1	-1.561e-2	1	NC	1	NC	1
421		2	max	.01	3	.016	3	.007	5	1.066e-2	3	NC	4	NC	2
422			min	009	2	014	2	001	1	-7.601e-3	2	4920.175	2	9862.87	1
423		3	max	.01	3	.006	3	.007	4	2.777e-4	1	NC	4	NC	2
424			min	009	2	005	2	0	3	-6.62e-5	3	2525.202	2	6066.281	1
425		4	max	.01	3	.003	2	.009	4		1	NC	4	NC	2
426			min	009	2	002	3	001	3	-7.046e-5	3	1766.079	2	5092.085	
427		5	max	.01	3	.01	2	.012	4	1.228e-4	_1_	NC	4	NC	2
428			min	009	2	009	3	002	3	-7.471e-5	3	1399.281	2	4982.95	1
429		6_	max	.009	3	.016	2	.015	4	8.437e-5	4_	NC	4_	NC	2
430		-	min	009	2	<u>014</u>	3	003	3	-7.897e-5	3_	1190.439	2	4839.668	
431		7	max	.009	3	.02	2	.019	4	9.87e-5	4	NC	4	NC 0.474.007	2
432			min	009	2	019	3	003	3	-8.323e-5	3_	1062.548	2	3474.297	
433		8	max	.009	3	.024	3	.023	4	1.302e-4	5_1	NC 093 FF	5	NC	1
434		0	min	009	2	022		004	3	-1.095e-4	1_	983.55	2	2623.417	4
435 436		9	max	.009 009	3	.026 023	3	.028 004	3	1.616e-4 -1.869e-4	<u>5</u> 1	NC 938.492	<u>5</u>	NC 2058.034	4
436		10	min max	.009	3	023 .027	2	.034	5	1.931e-4	<u>1</u> 5	938.492 NC	5	NC	1
438		10	min	009	2	024	3	005	1	-2.643e-4	1	920.55	2	1663.306	_
439		11	max	.009	3	.027	2	.041	5	2.245e-4	5	NC	5	NC	1
440			min	009	2	023	3	008	1	-3.418e-4	1	927.861	2	1376.721	4
441		12	max	.009	3	.025	2	.047	5	2.56e-4	5	NC	5	NC	2
											_		_		

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	_LC	x Rotate [r	LC		LC		
442			min	009	2	021	3	01	1	-4.192e-4	1_	962.861	2	1161.954	4
443		13	max	.009	3	.022	2	.054	5	2.875e-4	5_	NC	5_	NC	2
444			min	009	2	018	3	012	1	-4.966e-4	1	1033.612	2	989.683	5
445		14	max	.009	3	.017	2	.062	5	3.189e-4	5	NC	4	NC	2
446			min	009	2	014	3	013	1	-5.74e-4	1	1158.527	2	857.744	5
447		15	max	.009	3	.01	2	.069	5	3.504e-4	5	NC	4	NC	2
448			min	009	2	008	3	014	1	-6.515e-4	1	1380.632	2	755.321	5
449		16	max	.009	3	.002	1	.077	5	7.418e-4	5	NC	4	NC	2
450			min	009	2	002	3	013	1	-7.073e-4	1	1819.721	2	674.33	5
451		17	max	.009	3	.006	3	.084	5	9.728e-3	4	NC	4	NC	2
452			min	009	2	008	2	011	1	-2.495e-4	1	2628.231	1	608.204	4
453		18	max	.009	3	.014	3	.091	5	5.422e-3	3	NC	2	NC	2
454			min	009	2	019	2	007	1	-1.137e-2	2	5081.126	1	549.539	4
455		19	max	.009	3	.023	3	.099	4	1.086e-2	3	NC	1	NC	1
456			min	009	2	032	2	002	1	-2.287e-2	2	5831.622	2	500.321	4
457	M13	1	max	.006	1	.027	3	.01	3	3.953e-3	3	NC	1	NC	1
458			min	007	5	024	2	009	2	-3.618e-3	2	NC	1	NC	1
459		2	max	.006	1	.214	3	.033	1	4.95e-3	3	NC	5	NC	2
460			min	007	5	158	2	002	10	-4.561e-3	2	863.766	3	4324.279	1
461		3	max	.006	1	.368	3	.085	1	5.947e-3	3	NC	5	NC	3
462			min	007	5	269	2	0	5	-5.504e-3	2	474.945	3	1818.398	
463		4	max	.006	1	.464	3	.128	1	6.944e-3	3	NC	5	NC	3
464			min	008	5	339	2	002	5	-6.446e-3	2	370.123	3	1223.691	1
465		5	max	.006	1	.493	3	.149	1	7.942e-3	3	NC	5	NC	3
466			min	008	5	361	2	004	5	-7.389e-3	2	347.258	3	1058.846	
467		6	max	.006	1	.455	3	.14	1	8.939e-3	3	NC	5	NC	3
468			min	008	5	336	2	006	5	-8.332e-3	2	377.8	3	1119.555	
469		7	max	.006	1	.365	3	.105	1	9.936e-3	3	NC	5	NC	3
470			min	008	5	273	2	009	5	-9.275e-3	2	479.442	3	1480.627	1
471		8	max	.006	1	.246	3	.053	1	1.093e-2	3	NC	5	NC	2
472			min	008	5	191	2	011	5	-1.022e-2	2	738.969	3	2832.791	1
473		9	max	.006	1	.137	3	.028	3	1.193e-2	3	NC	4	NC	1
474			min	008	5	114	2	023	2	-1.116e-2	2	1468.527	3	8847.995	
475		10	max	.006	1	.088	3	.03	3	1.293e-2	3	NC	4	NC	4
476			min	008	5	08	2	034	2	-1.21e-2	2	2665.59	3	6600.805	
477		11	max	.006	1	.137	3	.034	3	1.193e-2	3	NC	4	NC	1
478			min	008	5	114	2	023	2	-1.116e-2	2	1468.525	3	6552.381	3
479		12	max	.005	1	.246	3	.056	1	1.094e-2	3	NC	5	NC	2
480			min	008	5	191	2	009	10	-1.022e-2	2	738.968	3	2688.159	
481		13	max	.005	1	.365	3	.109	1	9.939e-3	3	NC	5	NC	5
482		10	min		5	273	2	0		-9.276e-3		479.442	3	1434.727	
483		14	max	.005	1	.456	3	.144	1	8.943e-3	3	NC	5	NC	5
484			min	009	5	336	2	.005	10	-8.333e-3	2	377.8	3	1093.979	
485		15	max	.005	1	.493	3	.152	1	7.947e-3	3	NC	5	NC	5
486		10	min	009	5	361	2	.005	15	-7.39e-3	2	347.258	3	1039.305	
487		16	max	.005	1	.465	3	.13	1	6.951e-3	3	NC	5	NC	5
488		10	min	009	5	339	2	0	15	-6.447e-3	2	370.122	3	1204.285	
489		17	max	.005	1	.368	3	.086	1	5.955e-3	3	NC	5	NC	3
490			min	009	5	269	2	004	5	-5.505e-3	2	474.945	3	1792.15	1
491		18	max	.005	1	.214	3	.034	1	4.959e-3	3	NC	5	NC	2
492		10	min	009	5	158	2	006	5	-4.562e-3	2	863.766	3	4262.488	
493		19	max	.005	1	.027	3	.01	3	3.964e-3	3	NC	1	NC	1
494		13	min	009	5	024	2	009	2	-3.619e-3	2	NC	1	NC	1
494	M16	1		.002	1	.023	3	.009	3	4.647e-3	2	NC NC	1	NC NC	1
495	IVITO		max	099	4	032	2	009	2	-3.315e-3	3	NC NC	1	NC NC	1
496		2	min	.002	1	032 .118	3	009 .034	1		2	NC NC	5	NC NC	2
		4	max							5.871e-3					
498			min	099	4	231	2	002	10	-4.134e-3	3	814.749	2	4176.297	1

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
499		3	max	.002	1	.196	3	.087	1	7.095e-3	2	NC	5	NC	3
500			min	099	4	394	2	.004	10	-4.953e-3	3	447.606	2	1773.04	1
501		4	max	.002	1	.246	3	.131	1	8.319e-3	2	NC	5	NC	10
502			min	099	4	497	2	.008	10	-5.773e-3	3	348.27	2	1197.702	1
503		5	max	.002	1	.263	3	.151	1	9.543e-3	2	NC	5_	NC	10
504			min	099	4	529	2	.008	10	-6.592e-3	3	325.89	2	1037.645	1
505		6	max	.002	1	.247	3	.143	1	1.077e-2	2	NC	5_	NC	10
506			min	099	4	491	2	.006	10	-7.411e-3	3	352.926	2	1096.394	
507		7	max	.002	1	.205	3	.107	1	1.199e-2	2	NC	5_	NC	5
508			min	099	4	<u>397</u>	2	0	10	-8.231e-3	3	444	2	1445.191	1
509		8	max	.002	1	.15	3	.055	1	1.322e-2	2	NC	5	NC	2
510			min	099	4	273	2	009	10	-9.05e-3	3	671.429	2	2736.057	1
511		9	max	.002	1	.098	3	.032	3	1.444e-2	2	NC	4_	NC 7457.440	1
512		40	min	099	4	1 <u>59</u>	2	023	2	-9.869e-3	3	1269.759	2	7157.119	
513		10	max	.002	1	.074	3	.029	3	1.566e-2	2	NC 0407.000	4_	NC	4
514		44	min	099	4	108	2	034	2	-1.069e-2	3	2137.066	2	6655.428	2
515		11	max	.003	4	.098	3 2	.028 023	2	1.444e-2	2	NC 1269.759	2	NC	3
516		12	min	099		1 <u>59</u>	3		1	-9.868e-3	2	NC	<u>2</u> 5	8442.285 NC	2
517		12	max	.003	1	.15 273		.054		1.322e-2		671.429		2770.073	
518 519		13	min	099 .003	1	.205	3	009 .106	10	-9.048e-3 1.199e-2	2	NC	5	NC	5
520		13	max	099	4	397	2	0	10	-8.227e-3	3	444	2	1461.282	1
521		14	max	.003	1	.247	3	.141	1	1.077e-2	2	NC	5	NC	5
522		14	min	099	4	491	2	.005	15	-7.407e-3	3	352.926	2	1109.187	1
523		15	max	.003	1	.263	3	.149	1	9.545e-3	2	NC	5	NC	5
524		13	min	099	4	529	2	.001	15	-6.586e-3	3	325.89	2	1051.363	1
525		16	max	.003	1	.246	3	.128	1	8.321e-3	2	NC	5	NC	3
526		'	min	099	4	497	2	004	5	-5.766e-3	3	348.27	2	1216.891	1
527		17	max	.003	1	.195	3	.085	1	7.097e-3	2	NC	5	NC	3
528			min	099	4	394	2	008	5	-4.945e-3	3	447.606	2	1810.528	
529		18	max	.003	1	.118	3	.033	1	5.873e-3	2	NC	5	NC	2
530			min	099	4	231	2	008	5	-4.125e-3	3	814.75	2	4311.243	
531		19	max	.003	1	.023	3	.009	3	4.649e-3	2	NC	1	NC	1
532			min	099	4	032	2	009	2	-3.304e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	4.061e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-7.235e-4	5	NC	1	NC	1
535		2	max	0	3	0	15	.011	4	9.259e-4	3	NC	3	NC	1
536			min	0	5	011	1	0	3	-7.49e-4	5	7992.014	2	8271.858	4
537		3	max	0	3	0	15	.025	4	1.446e-3	3	NC	5	NC	1
538			min	002	5	023	1	004	3	-1.129e-3	2	4066.863	2	3680.672	4
539		4	max		3	0	15	.04	4	1.965e-3	3	NC	5	NC	9
540			min	002	5	033	1	008	3	-1.662e-3	2	2790.106	2	2308.85	4
541		5	max	0	3	0	15	.054	4	2.485e-3	3	NC	5	NC	9
542			min	003	5	042	1	013	3	-2.195e-3	2	2177.148	2	1698.286	
543		6	max	0	3	0	15	.066	4	3.005e-3	3	NC	5_	9977.038	
544			min	004	5	05	1	019	3	-2.728e-3	2	1832.3	2	1378.514	
545		7	max	0	3	0	15	.076	4	3.525e-3	3_	NC	<u>5</u>	7922.298	
546			min	005	5	056	1	025	3	-3.261e-3	2	1624.92	2	1201.328	
547		8	max	0	3	0	15	.082	4	4.044e-3	3_	NC	5_	6611.605	9
548			min	006	5	061	1	031	3	-3.794e-3	2	1500.46	2_	1108.32	4
549		9	max	0	3	0	15	.085	4	4.564e-3	3_	NC	_5_	5746.038	
550		4.0	min	007	5	064	1 1	037	3	-4.327e-3	2	1433.469	2	1074.833	
551		10	max	0	3	.001	15	.084	4	5.084e-3	3_	NC	5_	5173.026	
552		4.	min	007	5	065	1	041	3	-4.86e-3	2	1412.276	2	1092.811	
553		11	max	0	3	.001	15	.078	4	5.604e-3	3_	NC	5_	4811.976	
554		40	min	008	5	064	1	044	3	-5.393e-3	2	1433.469	2	1166.03	4
555		12	max	0	3	.002	15	.07	4	6.123e-3	3	NC	5	4623.651	9

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
556			min	009	5	061	1	044	3	-5.926e-3	2	1500.46	2	1312.008	4
557		13	max	.001	3	.002	15	.058	4	6.643e-3	3	NC	5	4599.033	9
558			min	01	5	056	1	043	3	-6.459e-3	2	1624.92	2	1343.727	3
559		14	max	.001	3	.003	5	.045	4	7.163e-3	3	NC	5	4761.425	9
560			min	011	5	05	1	039	3	-6.992e-3	2	1832.3	2	1386.44	3
561		15	max	.001	3	.003	5	.03	4	7.683e-3	3	NC	5	5674.545	15
562			min	011	5	042	1	031	3	-7.525e-3	2	2177.148	2	1506.058	
563		16	max	.001	3	.004	5	.019	1	8.202e-3	3	NC	5	NC	15
564			min	012	5	033	1	02	3	-8.058e-3	2	2790.106	2	1761.255	
565		17	max	.001	3	.005	5	.008	1	8.722e-3	3	NC	5	NC	4
566			min	013	5	023	1	006	3	-8.591e-3	2	4066.863	2	2335.985	3
567		18	max	.002	3	.006	5	.014	3	9.242e-3	3	NC	3	NC	4
568			min	014	5	012	9	016	2	-9.124e-3	2	7992.014	2	4160.655	3
569		19	max	.002	3	.007	5	.038	3	9.762e-3	3	NC	1	NC	1
570			min	015	5	003	9	038	2	-9.658e-3	2	NC	1	NC	1
571	M16A	1	max	0	10	.001	2	.011	3	2.858e-3	3	NC	1	NC	1
572			min	006	4	004	4	011	2	-2.679e-3	2	NC	1	NC	1
573		2	max	0	10	006	12	.004	9	2.746e-3	3	NC	3	NC	1
574			min	005	4	024	4	005	5	-2.563e-3	2	4693.191	4	NC	1
575		3	max	0	10	012	12	.01	1	2.634e-3	3	8133.727	12	NC	4
576			min	005	4	042	4	013	5	-2.446e-3	2	2388.205	4	5766.723	1
577		4	max	0	10	017	12	.016	1	2.521e-3	3	5580.212	12	NC	10
578			min	005	4	06	4	026	5	-2.33e-3	2	1638.448	4	3738.822	5
579		5	max	0	10	021	12	.019	1	2.409e-3	3	4354.296	12	9549.905	
580			min	004	4	075	4	041	5	-2.213e-3	2	1278.498	4	2325.265	
581		6	max	0	10	025	12	.022	1	2.297e-3	3	3664.6	12	8927.306	
582			min	004	4	088	4	056	5	-2.097e-3	2	1075.991	4	1677.513	
583		7	max	0	10	029	12	.022	1	2.185e-3	3	3249.839	12	8808.466	10
584			min	004	4	099	4	07	5	-1.981e-3	2	954.21	4	1333.157	5
585		8	max	0	10	031	12	.022	1	2.073e-3	3	3000.92	12	9080.49	10
586			min	003	4	107	4	082	5	-1.864e-3	2	881.123	4	1137.167	5
587		9	max	0	10	032	12	.021	1	1.961e-3	3	2866.937	12	9737.816	10
588			min	003	4	111	4	09	5	-1.748e-3	2	841.783	4	1026.404	5
589		10	max	0	10	033	12	.019	1	1.849e-3	3	2824.552	12	NC	10
590			min	003	4	112	4	095	5	-1.631e-3	2	829.338	4	972.723	5
591		11	max	0	10	032	12	.017	1	1.737e-3	3	2866.937	12	NC	10
592			min	003	4	111	4	096	5	-1.515e-3	2	841.783	4	964.447	5
593		12	max	0	10	031	12	.014	1	1.625e-3	3	3000.92	12	NC	9
594			min	002	4	106	4	092	5	-1.399e-3	2	881.123	4	1000.138	5
595		13	max	0	10	028	12	.011	1	1.512e-3	3	3249.839	12	NC	9
596			min	002	4	097	4	085	5	-1.282e-3	2	954.21	4	1088.033	
597		14	max	0	10	025	12	.008	1	1.4e-3	3	3664.6	12	NC	2
598			min	002	4	086	4	074	5	-1.166e-3	2	1075.991	4	1250.727	5
599		15	max	0	10	021	12	.005	1	1.288e-3	3	4354.296	12	NC	1
600			min	001	4	073	4	06	5	-1.049e-3	2	1278.498	4	1540.546	5
601		16	max	0	10	016	12	.003	1	1.176e-3	3	5580.212	12	NC	11
602			min	0	4	057	4	044	5	-9.33e-4	2	1638.448	4	2088.98	5
603		17	max	0	10	011	12	.001	9	1.064e-3	3	8133.727	12	NC	1
604			min	0	4	039	4	028	5	-8.166e-4	2	2388.205	4	3310.481	5
605		18	max	0	10	006	12	0	3	1.092e-3	4	NC	3	NC	1
606			min	0	4	02	4	013	5	-7.002e-4	2	4693.191	4	7355.616	5
607		19	max	0	1	0	1	0	1	1.166e-3	4	NC	_1_	NC	1
608			min	0	1	0	1	0	1	-5.838e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,V}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v Ψ _{ed,V} Ψ _{c,V} Ψ _{h,V}	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.