Imperial College London

UROP PROJECT

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Enumerative geometry on manifolds

 $\begin{array}{c} Author: \\ \text{Wei Jiang} \end{array}$

Supervisor: Dr. Arbesfeld Noah

September 19, 2019

Contents

1	Introduction	2
2	Manifolds and Grassmannian	3
3	Transverse intersection and cohomology	5
4	Vector bundles and chern class	6
5	Applications	7

1 Introduction

2 Manifolds and Grassmannian

When we try to describe curves on a 2-sphere, things become difficult. If we work in \mathbb{R}^3 , we increse the complexity. If we work in \mathbb{R}^2 , indentifying some points on the sphere is inevitable, which over simplifies the question. To deal with a topological spaces like sphere are not easy, however we do have tools to describe such a space.

Def 2.1. An *n*-dimensional topological manifold is a topological space X together with a set of open sets on X U_{α} and maps $\phi_{\alpha}: U_{\alpha} \longrightarrow \mathbb{R}^n$ such that

- (1) $X \subseteq \bigcup_{\alpha} U_{\alpha}$
- (2) Each ϕ_{α} is a homeomorphism from U_{α} to a open set $V_{\alpha} \subseteq \mathbb{R}^n$.

The pair $(U_{\alpha}, \phi_{\alpha})$ is called a chart for X. The collection $\{(U_{\alpha}, \phi_{\alpha})\}$ is called an atalas for X.

Each ϕ_{α} defines a system of coordinates on U_{α} , which is the usual coordinates $(x_1, x_2, x_3, ..., x_n)$ on $V_{\alpha} \subseteq \mathbb{R}^n$. Thiese are the local coordinates on U_{α} . Functions $f_{\alpha\beta}: V_{\beta} \longrightarrow V_{\alpha}$ defined by $f_{\alpha\beta} = \phi_{\alpha} \circ \phi_{\beta}^{-1}$ are called the transition functions.

Now we can do calculations on manifolds use the local coordinates on U_{α} , and indentify calculations with different systems of coordinates using transion functions.

Eg 2.2. The 2-sphere S^2 is a manifold.pick north and south poles,(0,0,1) and (0,0,-1) on $S^2 \subset \mathbb{R}^2$. We have one-to-one correspondences $\phi_1: S^2 - \{(0,0,1)\} \longrightarrow \mathbb{R}^2$ and $\phi_2: S^2 - \{(0,0,-1)\} \longrightarrow \mathbb{R}^2$ defined by

$$\phi_1(x, y, z) = (\frac{x}{1-z}, \frac{y}{1-z})$$
 $\phi_2(x, y, z) = (\frac{x}{1+z}, \frac{y}{1+z})1$

With inverses

$$\begin{split} \phi_1^{-1}(x,y) &= (\frac{2x}{x^2+y^2+1}, \frac{2y}{x^2+y^2+1}, \frac{x^2+y^2-1}{x^2+y^2+1}) \\ \phi_2^{-1}(x,y) &= (\frac{2x}{x^2+y^2+1}, \frac{2y}{x^2+y^2+1}, -\frac{x^2+y^2-1}{x^2+y^2+1}) \end{split}$$

We can easly show these are homeomorphisms, so S^2 is a manifold.

To count the number of certain geometric varieties in a topological space, we need to have a way to describe all such varieties. We first consider linear ones.

Def 2.3. A Grassmannian Gr(k,n) over \mathbb{C} is the space of all k-dimensional linear subspace of \mathbb{C}^n .

Eg 2.4. Gr(1,n) the projective spaces \mathbb{P}^n .

Eg 2.5. Gr(2,4) the hyperplanes in \mathbb{P}^4 .

Thm 2.6. Gr(k,n) is a manifold with dimension k(n-k).

Proof. \Box

Then we consider the case when our varieties has degree > 1.

Def 2.7. Let X be a complex manifold with a atalas $\{U_{\alpha}\}$. If we have holomorphic functions $g_{\alpha\beta}$ defined on each $U_{\alpha} \cap U_{\beta}$ such that $g_{\alpha\alpha} = 1$ and $g_{\alpha\gamma} = g_{\alpha\beta}g_{\beta\gamma}$ on each $U_{\alpha} \cup U_{\beta} \cap U_{\gamma} \neq \emptyset$, then we call $g_{\alpha\beta}$ transitions subordinate to $\{U_{\alpha}\}$.

Def 2.8. Let $g_{\alpha\beta}$ and $g_{\alpha\beta}^{'}$ be transition funtions subordinate to the open cover $U_{|alpha}$. $g \sim g^{'}$ if there are nowhere vanishing holomorphic functions f_{α} on U_{α} such that $g_{\alpha\beta} = f_{\alpha}g_{\alpha\beta}^{'}f_{\beta}^{-1}$. The set of equivalence classes is called the set of line bundles which can be trivialised over $\{U_{\alpha}\}$

Def 2.9. A line bundle on a topological manifold X with open cover $\{U_{\alpha}\}$ is a line bundle which can be trivialised over some open covering U_{α} . A line bundle L trivialised over U_{α} is equivalent to a line bundle L' trivialised over U'_{β} if they are equivalent after restricting all transition functions to the sets of open cover $\{U_{\alpha} \cap U'_{\beta}\}$

If we restricting to just complex manifold there is another way to view line bundles from a more geometric aspect.

Given transition functions $g_{\alpha\beta}$ subordinate to $\{U_{\alpha}\}$. We build a new complex manifold E of dimension n+1, where $n=\dim X$. Then E can be obtained from the cover $\{U_{\alpha}\times\mathbb{C}\}$ by indentifying $(p,v_{\alpha})\in U_{\alpha}\times\mathbb{C}$ and $(q,v_{\beta})\in U_{\beta}\times\mathbb{C}$ if p=q and $v_{\alpha}=g_{\alpha\beta}(p)\cdot v_{\beta}$. From this relations we define charts on E:

$$\phi_{\alpha} \times 1 : U_{\alpha} \times \mathbb{C} \longrightarrow \mathbb{C}^{n} \times \mathbb{C} = \mathbb{C}^{n+1}$$

3 Transverse intersection and cohomology

4 Vector bundles and chern class

5 Applications