PLANTS & PLANT DISEASE DOCUMENTATION

(4. Choose Model & 5. Model Training)

- 1) DEFINE SCOPE
- 2) COLLECT DATA
- 3) PREPROCESS DATA
- 4) CHOOSE MODEL
- 5) MODEL TRAINING
- 6) EVALUATE THE MODEL
- 7) DEPLOYMENT
- 8) FARMER USUABILITY
- 9) GATHER FEEDBACK

1. List the Machine Learning and Deep Learning models available.

ML Models: -

Supervised Learning:

Methods	Models
Linear Models	Linear Regression, Logistic Regression, Ridge
	Regression, Lasso Regression
Support Vector	Linear SVM, Kernel SVM (e.g., RBF, Polynomial)
Machines (SVM)	
Decision Trees and	Decision Tree, Random Forest, Gradient Boosting
Ensemble Methods	Machines (GBM), XGBoost, LightGBM, CatBoost,
	AdaBoost
Bayesian Methods	Naive Bayes (Gaussian, Multinomial, Bernoulli), Bayesian
	Networks
k-Nearest Neighbors	Classification, Regression
(k-NN)	
Neural Networks	Multilayer Perceptron (MLP)
(Shallow Networks)	

Unsupervised Learning:

Methods	Models
Clustering	k-Means, Hierarchical Clustering, DBSCAN (Density-Based
Algorithms	Spatial Clustering), Mean Shift
Dimensionality	Principal Component Analysis (PCA), Linear Discriminant
Reduction	Analysis (LDA), t-SNE (t-Distributed Stochastic Neighbor
	Embedding), UMAP (Uniform Manifold Approximation and
	Projection)
Association	Apriori, Eclat
Rule Learning	

Reinforcement Learning:

- 1. Q-Learning
- 2. Deep Q-Learning
- 3. SARSA (State-Action-Reward-State-Action)
- 4. Policy Gradient Methods

Deep Learning Algorithms

Algorithms	Models
Artificial Neural	Feedforward Neural Networks (FNN)
Networks (ANN)	
Convolutional Neural	AlexNet, VGGNet, EfficientNet, GoogLeNet/Inception,
Networks (CNN) -	ResNet, DenseNet
Used for image data	
Recurrent Neural	Vanilla RNN, Long Short-Term Memory (LSTM), Gated
Networks (RNN) -	Recurrent Unit (GRU)
Used for sequential	Bidirectional RNNs
data	
Transformers -	BERT (Bidirectional Encoder Representations from
Revolutionized NLP	Transformers)
tasks	GPT (Generative Pre-trained Transformer)
	T5 (Text-to-Text Transfer Transformer)
	ViT (Vision Transformer)
Generative Models	Variational Autoencoders (VAE), Generative Adversarial
	Networks (GAN) – [DCGAN, StyleGAN, CycleGAN]
Deep Reinforcement	Deep Q-Networks (DQN), Proximal Policy Optimization
Learning	(PPO), A3C (Asynchronous Advantage Actor-Critic)
Specialized Networks	1. Autoencoders: Denoising Autoencoders, Sparse
	Autoencoders
	2. Graph Neural Networks (GNN): GCN (Graph
	Convolutional Networks), GAT (Graph Attention
0.16.0	Networks)
Self-Supervised	SimCLR, BYOL (Bootstrap Your Own Latent), MoCo
Learning	(Momentum Contrast)
Other Architectures	Capsule Networks, Attention Mechanisms (used in
	multiple deep learning domains)

2. Learn about the models used specifically for plant disease and list the most appropriate models to use and why?

1. Traditional Machine Learning Algorithms

Feature Extraction Methods:

- Histogram of Oriented Gradients (HOG)
- Gray-Level Co-Occurrence Matrix (GLCM)
- Local Binary Patterns (LBP)

Machine Learning Algorithms:

- 1. Support Vector Machine (SVM)
- 2. k-Nearest Neighbors (k-NN)
- 3. Random Forest

2. Deep Learning Algorithms

- 1. Convolutional Neural Networks (CNNs):
 - AlexNet: A simple and fast architecture for basic tasks.
 - o VGGNet: Good for general-purpose image classification.
 - ResNet: Excellent for deeper networks, avoids vanishing gradients.
 - InceptionNet: Combines multiple convolution sizes to capture features at different scales.
 - DenseNet: Ensures efficient feature reuse by connecting every layer to every other layer.

2. Transfer Learning:

- Using pre-trained CNN models and fine-tuning them on your dataset saves time and computational power.
- o Pre-trained models on ImageNet:
 - MobileNet: Lightweight, ideal for mobile or edge devices.
 - EfficientNet: State-of-the-art for efficient training and inference.
 - ResNet50 or InceptionV3: Widely used for plant disease detection.
- 3. Vision Transformers (ViT):
 - o Emerging deep learning architecture for image classification tasks.
 - Useful for large datasets and complex patterns.
- 4. Generative Models for Augmentation:
 - Use GANs (Generative Adversarial Networks) or VAEs (Variational Autoencoders) to generate synthetic plant disease images to increase your dataset size and variety.
- 3. Hybrid and Ensemble Methods: Combining traditional ML and DL or using ensembles can improve performance:
 - 1. Hybrid Feature Extraction: Use deep learning (e.g., ResNet) to extract features and feed them into a traditional ML algorithm like SVM for classification.
 - 2. Ensemble DL Models: Combine predictions from multiple deep learning models (e.g., ResNet + InceptionV3) for better accuracy.

Reference:

- Paper19709.pdf
- Machine Learning and Deep Learning for Crop Disease Diagnosis:
 Performance Analysis and Review

• (PDF) An advanced deep learning models-based plant disease detection: A review of recent research 3. What are the issues of overfitting and underfitting? How to resolve it? 4. CNN Hog 5. Build CNN and what is happening in augmentation. 6. How to find severity. 7. CNN -> CNN HOG -> SVM -> LDM (Linear Discriment Model