Проблемы населенности типов и их разрешимость: $\text{система } \lambda \to$

Денис Николаевич Москвин

25.11.2017

План лекции

- 1 Просто типизированное λ-исчисление
- 2 Вычислительный аспект
- 3 Обитаемость типов
- 4 Обитаемость типов: сходимость алгоритма

План лекции

- 1 Просто типизированное λ-исчисление
- 2 Вычислительный аспект
- ③ Обитаемость типов
- Обитаемость типов: сходимость алгоритма

Типы просто типизированной системы

Определение

Множество *типов* $\mathbb T$ системы λ_{\to} строится из типовых переменных переменных из $\mathbb V=\{\alpha,\beta,\ldots\}$:

$$\sigma, au \in \mathbb{T} \; \Rightarrow \; (\sigma \! o \! au) \in \mathbb{T} \; \;$$
 (типы пространства функций)

• В абстрактном синтаксисе:

 $\alpha \in \mathbb{V} \Rightarrow \alpha \in \mathbb{T}$

$$\mathbb{T} ::= \mathbb{V} \mid (\mathbb{T} \! \to \! \mathbb{T})$$

• Соглашения: α, β, γ используем для типовых переменных, а σ, τ, ρ — для произвольных типов. Скобки ассоциативны вправо.

(переменные типа)

Предтермы системы $\lambda_{ ightarrow}$ а ля Карри

Определение

Множество *предтермов* (или *псевдотермов*) Λ строится из переменных из $V = \{x,y,z,\ldots\}$ с помощью аппликации и абстракции:

$$\begin{array}{ccc} x \in V & \Rightarrow & x \in \Lambda \\ M, N \in \Lambda & \Rightarrow & (M \, N) \in \Lambda \\ M \in \Lambda, x \in V & \Rightarrow & (\lambda x. \, M) \in \Lambda \end{array}$$

• В абстрактном синтаксисе

$$\Lambda ::= V | (\Lambda \Lambda) | (\lambda V. \Lambda)$$

• Имеются стандартные соглашения о скобках, ассоциативности и регистре.

Предтермы просто типизированной системы а ля Чёрч

Определение

Множество *предтермов* $\Lambda_{\mathbb{T}}$ строится из переменных из $V = \{x,y,z,\ldots\}$ с помощью аппликации и аннотированной типами абстракции:

$$\begin{array}{ccc} x \in V & \Rightarrow & x \in \Lambda_{\mathbb{T}} \\ M, N \in \Lambda_{\mathbb{T}} & \Rightarrow & (M \, N) \in \Lambda_{\mathbb{T}} \\ M \in \Lambda_{\mathbb{T}}, x \in V, \sigma \in \mathbb{T} & \Rightarrow & (\lambda x^{\sigma}. \, M) \in \Lambda_{\mathbb{T}} \end{array}$$

• В абстрактном синтаксисе

$$\Lambda_{\mathbb{T}} ::= V \mid (\Lambda_{\mathbb{T}} \Lambda_{\mathbb{T}}) \mid (\lambda V^{\mathbb{T}}. \Lambda_{\mathbb{T}})$$

• Те же стандартные соглашения о скобках, ассоциативности и регистре.

Утверждение о типизации

Определение

 $extstyle{m{\mathcal{Y}}} extstyle{m{\mathcal{T}}} extstyle{m{\mathcal{C}}} extstyle{$

 $M:\tau$

где $M \in \Lambda$ и $\tau \in \mathbb{T}$. Тип τ иногда называют *предикатом*, а терм M - субъектом утверждения.

Для λ_{\to} «а ля Чёрч» надо лишь заменить Λ на $\Lambda_{\mathbb{T}}.$

Примеры утверждений о типизации

Система в стиле Карри Система в стиле Чёрча $(\lambda x. x) : \alpha \to \alpha \qquad (\lambda x^{\alpha}. x) : \alpha \to \alpha \\ (\lambda x. x) : (\alpha \to \beta) \to \alpha \to \beta \qquad (\lambda x^{\alpha \to \beta}. x) : (\alpha \to \beta) \to \alpha \to \beta$

 $(\lambda x y. x): \alpha \rightarrow \beta \rightarrow \alpha$ $(\lambda x^{\alpha} y^{\beta}. x): \alpha \rightarrow \beta \rightarrow \alpha$

Контексты

Определение

Объявление — это утверждение (о типизации) с термовой переменной в качестве субъекта.

Определение

Контекст — это множество объявлений с *различными* переменными в качестве субъекта:

$$\Gamma = \{x_1: \sigma_1, x_2: \sigma_2, \dots, x_n: \sigma_n\}$$

• Контексты можно *расширять*, добавляя объявление *новой* переменной:

$$\Gamma = x : \alpha, y : \beta, f : \alpha \rightarrow \beta, g : (\alpha \rightarrow \beta) \rightarrow \gamma$$

$$\Delta = \Gamma, z : \alpha \rightarrow \gamma = x : \alpha, y : \beta, f : \alpha \rightarrow \beta, g : (\alpha \rightarrow \beta) \rightarrow \gamma, z : \alpha \rightarrow \gamma$$

T ипизация в $\lambda_{ ightarrow}$

Определение

Утверждение типизации M: σ называют *выводимым* в контексте Γ (нотация $\Gamma \vdash M$: σ), если его вывод может быть осуществлен по следующим правилам:

$$\begin{array}{ll} \text{(аксиома)} & \Gamma \vdash x \colon \sigma, & \text{если } x \colon \sigma \in \Gamma \\ \\ \text{(удаление} \to \text{)} & \frac{\Gamma \vdash M \colon \sigma \to \tau \quad \Gamma \vdash N \colon \sigma}{\Gamma \vdash M \, N \colon \tau} \\ \\ \text{(введение} \to \text{)} & \frac{\Gamma, x \colon \sigma \vdash M \colon \tau}{\Gamma \vdash \lambda x^{\sigma} \colon M \colon \sigma \to \tau} \end{array}$$

Правила даны для системы Черча, для Карри достаточно убрать атрибуцию переменной в лямбда-абстракции.

Типизация в $\lambda_{ ightarrow}$: пример

Вывод типа для $\lambda x^{\alpha} y^{\beta}. x$

$$\frac{x:\alpha,y:\beta\vdash x:\alpha}{x:\alpha\vdash\lambda y^\beta.x:\beta\rightarrow\alpha}\\ \vdash \lambda x^\alpha.\lambda y^\beta.x:\alpha\rightarrow\beta\rightarrow\alpha$$

Если α и β рассматривать как метапеременные, то можно говорить о *схеме вывода*.

Лемма подстановки типа

$$\begin{array}{l} \Gamma \vdash M \colon \sigma \ \Rightarrow \ [\alpha := \tau] \Gamma \vdash M \colon [\alpha := \tau] \sigma. \ (\lambda_{\rightarrow} \text{ а ля Карри}) \\ \Gamma \vdash M \colon \sigma \ \Rightarrow \ [\alpha := \tau] \Gamma \vdash [\alpha := \tau] M \colon [\alpha := \tau] \sigma. \ (\lambda_{\rightarrow} \text{ а ля Чёрч}) \end{array}$$

Проблемы разрешимости

• Есть ли алгоритм, который позволяют решить задачу?

Γ	∵ ⊢ M:σ?	Задача проверки типа Type Checking Problem	3ПТ ТСР
?	'⊢M:?	Задача синтеза типа Type Synthesis (or Assgnment) Problem	3CT TSP, TAP
Γ	ጉ⊢?:σ	Задача обитаемости типа Type Inhabitation Problem	30T TIP

- Для λ_{\to} (и в стиле Чёрча, и в стиле Карри) все эти задачи разрешимы.
- ЗОТ может быть обобщена до задачи перечисления всех (нормальных) обитателей данного типа.

План лекции

- 1 Просто типизированное λ-исчисление
- 2 Вычислительный аспект
- ③ Обитаемость типов
- 4 Обитаемость типов: сходимость алгоритма

Редексы

Определение

Терм вида $(\lambda_{\mathbf{X}}, M) \mathbf{N}$ называется β -*редексом*.

Определение

Терм $M[\mathbf{x} := \mathbf{N}]$ называется *сокращением* редекса $(\lambda \mathbf{x}. M) \mathbf{N}.$

Пример

Терм I (K I) содержит два редекса

$$(\lambda x. x) ((\lambda y z. y) (\lambda p. p)) (\lambda x. x) ((\lambda y z. y) (\lambda p. p))$$

Может ли сокращение увеличить число редексов?

Редукция за один шаг $ightarrow_{eta}$

Определение

Бинарное отношение β -*редукции за один шаг* $ightarrow_{eta}$ над Λ :

$$\begin{array}{cccc} (\lambda x.\,M)\,N & \to_{\beta} & M[x:=N] \\ M \to_{\beta} N & \Rightarrow & Z\,M \to_{\beta} Z\,N \\ M \to_{\beta} N & \Rightarrow & M\,Z \to_{\beta} N\,Z \\ M \to_{\beta} N & \Rightarrow & \lambda x.\,M \to_{\beta} \lambda x.\,N \end{array}$$

Пример: редуцируем терм I (K I)

$$\begin{array}{lll} (\lambda x.\,x)\,((\lambda\,y\,z.\,y)\,(\lambda\,p.\,p)) & \rightarrow_{\beta} & (\lambda\,y\,z.\,y)\,(\lambda\,p.\,p) & \rightarrow_{\beta} & \lambda\,z\,p.\,p \\ (\lambda x.\,x)\,((\lambda\,y\,z.\,y)\,(\lambda\,p.\,p)) & \rightarrow_{\beta} & (\lambda x.\,x)\,(\lambda\,z\,p.\,p) & \rightarrow_{\beta} & \lambda\,z\,p.\,p \end{array}$$

M ногошаговая редукция $woheadrightarrow_{eta}$

Определение

Бинарное отношение β -*редукции* $\twoheadrightarrow_{\beta}$ над Λ (индуктивно):

- (a) $M \rightarrow_{\beta} M$
- (b) $M \rightarrow_{\beta} N \Rightarrow M \twoheadrightarrow_{\beta} N$
- (c) $M \twoheadrightarrow_{\beta} N, N \twoheadrightarrow_{\beta} L \Rightarrow M \twoheadrightarrow_{\beta} L$

Отношение $\twoheadrightarrow_{\beta}$ является транзитивным рефлексивным замыканием \rightarrow_{β} .

Примеры

$$\begin{array}{lll} (\lambda x.\,x)\,((\lambda\,y\,z.\,y)\,(\lambda\,p.\,p)) & \twoheadrightarrow_{\beta} & (\lambda x.\,x)\,((\lambda\,y\,z.\,y)\,(\lambda\,p.\,p)) \\ (\lambda x.\,x)\,((\lambda\,y\,z.\,y)\,(\lambda\,p.\,p)) & \twoheadrightarrow_{\beta} & (\lambda\,y\,z.\,y)\,(\lambda\,p.\,p) \\ (\lambda x.\,x)\,((\lambda\,y\,z.\,y)\,(\lambda\,p.\,p)) & \twoheadrightarrow_{\beta} & \lambda\,z\,p.\,p \end{array}$$

Отношение конвертируемости $=_{\beta}$

Определение

Бинарное отношение $=_{\beta}$ над Λ (индуктивно):

- (a) $M \rightarrow_{\beta} N \Rightarrow M =_{\beta} N$
- (b) $M =_{\beta} N \Rightarrow N =_{\beta} M$
- (c) $M =_{\beta} N, N =_{\beta} L \Rightarrow M =_{\beta} L$

Интуитивно: два терма M и N связаны отношением $=_{\beta}$, если есть связывающая их цепочка \to_{β} -стрелок:

β-нормальная форма

Определение

 λ -терм M находится в β -нормальной форме (β -NF), если в нем нет подтермов, являющихся β -редексами.

Определение

 λ -терм M имеет β -нормальную форму, если для некоторого N выполняется $M=_{\beta}N$ и N находится в β -NF.

Примеры

- Терм $\lambda x y. x (\lambda z. zx) y$ находится в β -нормальной форме.
- Терм $(\lambda x. xx)$ у не находится в β -нормальной форме, но имеет в качестве β -nf терм у у.

η-редукция и βη-нормальная форма

Определение

Бинарное отношение η -*редукции за один шаг* \to_η над Λ строится на основе правила

$$\lambda x. M x \rightarrow_{\eta} M$$

аналогично β -редукции. Предполагается, что $\chi \notin FV(M)$.

Определение

 λ -терм M находится в η -нормальной форме (η -NF), если в нем нет подтермов, являющихся η -редексами.

Пример

- $\lambda s z. s z \rightarrow_{\eta} \lambda s. s.$
- $\lambda f x y. f x y \rightarrow_n \dots$

Аппликативная структура бестипового терма

Теорема

Лямбда-терм может иметь одну из двух форм:

$$\begin{array}{cccc} \lambda \overrightarrow{x}. y \overrightarrow{N} & \equiv & \lambda x_1 \dots x_n. y \ N_1 \dots N_k \\ \lambda \overrightarrow{x}. (\lambda z. P) \ Q \ \overrightarrow{N} & \equiv & \lambda x_1 \dots x_n. (\lambda z. P) \ Q \ N_1 \dots N_k \end{array}$$

Здесь $n\geqslant 0,\ k\geqslant 0,\ a$ переменная y может совпадать с одной из $x_i,\ u$ *обязана* совпадать, если терм замкнут.

Определение

Первая форма называется *головной нормальной формой* (HNF). Переменная y называется *головной переменной*, а редекс $(\lambda z. P) \ Q$ — *головным редексом*.

Слабая и сильная нормализация для терма

Определение

Терм называют *слабо (weak) нормализуемым* (WN), если существует последовательность редукций, приводящих его к нормальной форме.

Определение

Терм называют *сильно (strong) нормализуемым* (SN), если любая последовательность редукций, приводит его к нормальной форме.

Примеры

Терм **КІК** — сильно нормализуем,

терм $K I \Omega$ — слабо нормализуем,

терм Ω — не нормализуем.

Слабая и сильная нормализация для системы типов

Определение

Систему типов называют *слабо нормализуемой* если все её допустимые термы слабо нормализуемы.

Определение

Систему типов называют *сильно нормализуемой* если все её допустимые термы сильно нормализуемы.

Системы λ_{\rightarrow} (карриевская и черчевская) являются сильно нормализуемыми.

Редукция субъекта в $\lambda_{ ightarrow}$

Теорема о редукции субъекта

Пусть $M woheadrightarrow_{\beta} N$. Тогда $\Gamma \vdash M : \sigma \Rightarrow \Gamma \vdash N : \sigma$.

- Тип терма сохраняется при β-редукциях.
- Если обернуть стрелку в β-правиле, то получится обратная к редукции процедура, β-экспансия.
- В λ_{\rightarrow} экспансия не всегда сохраняет тип.

Примеры

$$\begin{array}{l} K\,I\,\Omega \to_\beta I,\\ \omega\,I \to_\beta I\,I. \end{array}$$

Типизация нормальной формы

Структура типизированной β-NF

Если M находится в β-NF, и $\Gamma \vdash M : \sigma$, то он (с точностью до α -эквивалентности) имеет вид

$$\lambda x_1^{\sigma_1} \dots x_n^{\sigma_n} \cdot y^{\tau_1 \to \dots \to \tau_k \to \rho} N_1^{\tau_1} \dots N_k^{\tau_k}$$

При этом $\sigma = \sigma_1 \to \ldots \to \sigma_n \to \rho$.

- Здесь $n \ge 0$, $k \ge 0$, а переменная y может совпадать с одной из x_i , и *обязана* совпадать, если терм замкнут.
- При этом каждый N_i находится в β -NF и

$$\Gamma, x_1 : \sigma_1, \dots, x_n : \sigma_n \vdash N_i : \tau_i$$

• Тип ρ не обязан быть переменной (то есть может быть стрелкой).

План лекции

- 1 Просто типизированное λ-исчисление
- Вычислительный аспект
- 3 Обитаемость типов
- Обитаемость типов: сходимость алгоритма

Булева модель для типов

- Переменную типа проинтерпретируем как пробегающую значения из $\mathbb{B} = \{0, 1\}$, а стрелку $x \to y$ как 1 x + xy.
- *Булевой оценкой* (valuation) назовем функцию $\rho: \mathbb{V} \to \mathbb{B}$.
- *Интерпретация* $[[\sigma]]_{\rho}$ типа σ на оценке ρ :

$$\begin{array}{lcl} [[\alpha]]_{\rho} & = & \rho(\alpha); \\ [[\sigma \! \to \! \tau]]_{\rho} & = & [[\sigma]]_{\rho} \! \to \! [[\tau]]_{\rho}. \end{array}$$

- Оценка р *удовлетворяет* типу σ ($\rho \models \sigma$), если $[[\sigma]]_{\rho} = 1$.
- Оценка р *удовлетворяет* контексту Γ ($\rho \models \Gamma$), если она удовлетворяет всем типам этого контекста.
- В частности, пустому контексту удовлетворяет любая оценка.

Булева модель и населенность

Утверждение

Пусть $\Gamma \vdash M : \sigma$. Тогда $\forall \rho$. $\rho \models \Gamma \Rightarrow \rho \models \sigma$.

Доказательство: индукция по дереву вывода типа.

Следствие 1

Если σ населен (то есть существует M, такой что $\vdash M : \sigma$), то σ — тавтология классической логики.

Обратное неверно (например, закон Пирса). Но, если ограничится системой только с одной переменной (α) , то это утверждение станет верным. (Вывести из теоремы Статмана.)

Следствие 2

Никакой тип-переменная не населен.

Система с одной типовой переменной

Теорема [Statman 1982]

Если
$$\mathbb{V}=\{\alpha\}$$
 и $\sigma=\sigma_1\to\ldots\to\sigma_n\to\alpha$ $(n\geqslant 1)$, то
$$\sigma \text{ населен} \quad\Leftrightarrow\quad \exists i.\ \sigma_i \text{ не населен}.$$

- (\Rightarrow) . Если все аргументы населены, передадим в качестве аргументов их обитателей и тем самым населим α .
- (\Leftarrow) . Индукция по структуре σ . Пусть σ_i не населен.
- (1): $\sigma_i = \alpha$.

$$\begin{array}{lll} x_1 \colon \sigma_1, \dots, x_n \colon \sigma_n & \vdash & x_i \colon \alpha \\ \vdash & \lambda x_1^{\sigma_1} \dots x_n^{\sigma_n} \cdot x_i \colon \sigma_1 \to \dots \to \sigma_n \to \alpha \end{array}$$

(2): $\sigma_i = \tau_1 {\,\rightarrow\,} \dots {\,\rightarrow\,} \tau_k {\,\rightarrow\,} \alpha$. По (контропозиции) ІН для σ_i все τ_j населены: существуют N_j , такие что $\vdash N_j {\,:\,} \tau_j$.

$$\begin{array}{llll} x_1\!:\!\sigma_1,\ldots,x_n\!:\!\sigma_n \;\vdash\; x_i\!:\!\tau_1\!\to\!\ldots\!\to\!\tau_k\!\to\!\alpha \\ x_1\!:\!\sigma_1,\ldots,x_n\!:\!\sigma_n \;\vdash\; x_i\;N_1\ldots N_k:\alpha \\ \vdash\; \lambda x_1^{\sigma_1}\ldots x_n^{\sigma_n}.x_i\;N_1\ldots N_k:\sigma_1\!\to\!\ldots\!\to\!\sigma_n\!\to\!\alpha \end{array}$$

Система с одной типовой переменной: подсчет обитателей

Teopeмa [Ben-Yelles 1979]

Если
$$\mathbb{V}=\{lpha\}$$
 и $\sigma=\sigma_1{\,\rightarrow\,}\dots{\,\rightarrow\,}\sigma_n{\,\rightarrow\,}lpha$ $(n\geqslant 1)$, то

- если все $\sigma_i = \alpha$, то число нормальных обитателей σ равно n;
- если хотя бы один σ_i стрелочный, число нормальных обитателей 0 или ∞ .

Нормальные обитатели типов

- Какое количество разных нормальных обитателей есть у типа (с точностью до α -эквивалентности)?
- ullet Для lpha ightarrow lpha такой обитатель один: $\lambda x^{lpha}.x.$
- А для $(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta$?

Нормальные обитатели типов

- Какое количество разных нормальных обитателей есть у типа (с точностью до α -эквивалентности)?
- ullet Для lpha ightarrow такой обитатель один: $\lambda x^{lpha}.x.$
- ullet А для $(\alpha \longrightarrow \beta) \longrightarrow \alpha \longrightarrow \beta$? Два: $\lambda f^{\alpha \longrightarrow \beta}$. f и $\lambda f^{\alpha \longrightarrow \beta} \chi^{\alpha}$. $f\chi$
- Они η-эквивалентны, второй получается из первого η-экспансией.

Определение

Замкнутый терм $M:\sigma_1\to\ldots\to\sigma_n\to\alpha$ находится в **длинной нормальной форме** (LNF), если он имеет вид $\lambda x_1^{\sigma_1}\ldots x_n^{\sigma_n}.x_i\,M_1\ldots M_k$ и все M_j тоже находятся в LNF.

Здесь $M_j: au_j$ и $x_i:: \sigma_i$, причем $\sigma_i = au_1 o \ldots o au_k o lpha$ и $k \geqslant 0$.

• Можно расширить определение на незамкнутые термы.

LNF и βη-NF

- Какое количество разных нормальных обитателей есть у типа (с точностью до α -эквивалентности)?
- ullet Для $lpha\!
 ightarrow\!lpha$ такой обитатель один: $\lambda x^lpha.x.$
- А для $(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta$?

LNF и βη-NF

- Какое количество разных нормальных обитателей есть у типа (с точностью до α -эквивалентности)?
- Для $\alpha \rightarrow \alpha$ такой обитатель один: λx^{α} . x.
- ullet А для $(\alpha \longrightarrow \beta) \longrightarrow \alpha \longrightarrow \beta$? Два: $\lambda f^{\alpha \longrightarrow \beta}$. f и $\lambda f^{\alpha \longrightarrow \beta} \chi^{\alpha}$. $f\chi$
- Они η-эквивалентны, второй получается из первого η-экспансией.

Определение

Замкнутый терм $M: \sigma_1 \to \ldots \to \sigma_n \to \alpha$ находится в **длинной нормальной форме** (LNF), если он имеет вид $\lambda x_1^{\sigma_1} \ldots x_n^{\sigma_n} . x_i \, M_1 \ldots M_k$ и все M_j тоже находятся в LNF.

Здесь $M_j: au_j$ и $x_i :: \sigma_i$, причем $\sigma_i = au_1 o \ldots o au_k o lpha$ и $k \geqslant 0$.

• Можно расширить определение на незамкнутые термы.

Грамматика для построения обитателей

Зададим порождающую двухуровневую грамматику со следующими правилами вывода:

$$\begin{array}{ccc} L(\alpha;\Gamma) & \Longrightarrow & x\,L(\sigma_1;\Gamma)\,\dots\,L(\sigma_n;\Gamma), \\ & & \text{если } (x\!:\!\sigma_1\!\to\!\dots\!\to\!\sigma_n\!\to\!\alpha) \in \Gamma; \\ L(\sigma\to\tau;\Gamma) & \Longrightarrow & \lambda y^\sigma.\,L(\tau;\Gamma,y\!:\!\sigma), \end{array}$$

где переменная y — свежая и $n \geqslant 0$.

Пример вывода

$$L((\alpha \to \beta) \to (\alpha \to \beta); \emptyset) \Longrightarrow \lambda f^{\alpha \to \beta}. L(\alpha \to \beta; \{f : \alpha \to \beta\})$$

$$\Longrightarrow \lambda f^{\alpha \to \beta}. \lambda x^{\alpha}. L(\beta; \{f : \alpha \to \beta, x : \alpha\})$$

$$\Longrightarrow \lambda f^{\alpha \to \beta}. \lambda x^{\alpha}. f L(\alpha; \{f : \alpha \to \beta, x : \alpha\}) \Longrightarrow \lambda f^{\alpha \to \beta}. \lambda x^{\alpha}. f x$$

Порождение обитателей типов

- Введем операцию \implies как рефлексивное транзитивное замыкание \implies .
- Тогда продукцию с предыдущего слайда можно записать так

$$L((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta); \emptyset) \implies \lambda f^{\alpha \rightarrow \beta} x^{\alpha}. f x$$

Утверждение

Для заданных о, Г и М

$$L(\sigma;\Gamma) \Longrightarrow M \Leftrightarrow \Gamma \vdash M : \sigma \land M \text{ B LNF.}$$

Доказательство: по построению.

Населяющие машины

Для каждого типа σ вывод терминалов можно описать с помощью *населяющей машины (Inhabitation Machine)* M_{σ} .

Населяющие машины: задачи

Постройте населяющие машины для типов:

$$\alpha \to ((\gamma \to \beta) \to \alpha) \to \beta \to \alpha$$

$$((\alpha \to \beta) \to \alpha) \to \alpha$$

$$(\alpha \to \alpha) \to (\alpha \to \alpha) \to \alpha \to \alpha$$

$$(\alpha \to \beta \to \gamma) \to \beta \to \alpha \to \gamma$$

$$(\alpha \to \alpha \to \alpha) \to \alpha \to \alpha$$

$$((\alpha \to \alpha) \to \alpha) \to \alpha \to \alpha$$

$$((\alpha \to \alpha) \to \alpha) \to \alpha$$

$$(((\alpha \to \alpha) \to \alpha) \to \alpha) \to \alpha \to \alpha$$

План лекции

- 1 Просто типизированное λ-исчисление
- 2 Вычислительный аспект
- Обитаемость типов
- Обитаемость типов: сходимость алгоритма

Глубина β-NF

Определение

Определим *глубину* β -*NF* так $(n \geqslant 0, k > 0)$:

$$\begin{split} \operatorname{Depth}(\lambda x_1 \dots x_n. y) &= 0 \\ \operatorname{Depth}(\lambda x_1 \dots x_n. y \: N_1 \dots N_k) &= 1 + \max_{1 \leqslant j \leqslant k} \operatorname{Depth}(N_j) \end{split}$$

Обозначения

Множество всех длинных нормальных обитателей типа σ обозначим $\mathrm{Long}(\sigma)$ и сконструируем семейство подмножеств:

$$\operatorname{Long}(\sigma,d) = \{M \mid M \in \operatorname{Long}(\sigma), \operatorname{Depth}(M) \leqslant d\}$$

Пример

Long(
$$(\alpha \to \alpha) \to \alpha \to \alpha, 3$$
) = { $\lambda s z. z, \lambda s z. s z, \lambda s z. s (s z), \lambda s z. s (s (s z))$ }

Метапеременные и NF-схемы

Введем множество *метапеременных*, отличных от всех термовых переменных. Будем обозначать их символами в верхнем регистре.

Определение

NF-схема это терм в NF, который помимо обычных термовых переменных может содержать метапеременные, причем:

- метапеременные не связываются, то есть $\lambda V. \ x \ V$ запрещено.
- Метапеременные могут стоять только в правой части аппликации, то есть $\lambda x. \ V \ x$ запрещено.
- Каждая метапеременная входит в NF-схему не более одного раза, то есть $\lambda x. \, x \, V \, V$ запрещено.

Обычный терм в NF — тоже NF-схема, но $\it heco6ctBehham$.

Аппроксимации

Teopeма о поиске (Ben-Yelles 1979)

Алгоритм поиска принимает на вход тип σ и возвращает конечную или бесконечную последовательность множеств $\mathcal{A}(\sigma,d)$, при этом

- ullet каждый элемент $\mathcal{A}(\sigma,d)$ это замкнутая типизированная длинная NF-схема типа σ , причем это
 - либо собственная NF-схема глубины d;
 - ullet либо терм глубины d-1.
- Множество $\mathcal{A}(\sigma,d)$ конечно.
- $\bullet \ \operatorname{Long}(\sigma,d) \subset \mathcal{A}(\sigma,0) \cup \ldots \cup \mathcal{A}(\sigma,d+1).$
- Введем «термовое» подмножество $\mathcal{A}_{\mathrm{term}}(\sigma,d)$ множества $\mathcal{A}(\sigma,d).$ Тогда

$$\mathrm{Long}(\sigma) = \bigcup_{d\geqslant 0} \mathcal{A}_{\mathrm{term}}(\sigma,d)$$

Примеры и обозначения

Пример для $\mathrm{Nat} = (lpha ightarrow lpha) ightarrow lpha ightarrow lpha$

$$\begin{split} &\mathcal{A}(\mathrm{Nat},0) = \{V\} \\ &\mathcal{A}(\mathrm{Nat},1) = \{\lambda s \, z. \, z, \lambda s \, z. \, s \, V\} \\ &\mathcal{A}(\mathrm{Nat},2) = \{\lambda s \, z. \, s \, z, \lambda s \, z. \, s (s \, V)\} \\ &\mathcal{A}(\mathrm{Nat},3) = \{\lambda s \, z. \, s (s \, z), \lambda s \, z. \, s (s \, (s \, V))\} \end{split}$$

Обозначения

$$\begin{split} \mathcal{A}(\sigma,\leqslant d) &= \mathcal{A}(\sigma,0) \cup \ldots \cup \mathcal{A}(\sigma,d) \\ \mathcal{A}_{\mathrm{term}}(\sigma,\leqslant d) &= \mathcal{A}_{\mathrm{term}}(\sigma,0) \cup \ldots \cup \mathcal{A}_{\mathrm{term}}(\sigma,d) \end{split}$$

Метрики для типа

Обозначим через $|\sigma|$ общее число атомов в типе σ .

Обозначим через $\|\sigma\|$ число различных атомов в типе σ .

Введем $\mathbb{D}(\sigma) = |\sigma| \cdot ||\sigma||$.

Важные вспомогательные факты

Stretching Lemma

Если существует $M\in \mathrm{Long}(\sigma)$ с $\mathrm{Depth}(M)\geqslant \|\sigma\|$, то в $\mathrm{Long}(\sigma)$ есть элементы высоты, превосходящей любое число, а само $\mathrm{Long}(\sigma)$ — бесконечно.

Идея доказательства. Если посылка выполнена, то всегда есть два компонента М одного типа, причем один — подтерм другого. Подставляя больший вместо меньшего в большем можем организовать бесконечный генератор.

Например, для $\operatorname{Nat}: \operatorname{Depth}(\lambda s z. s z) = 1 \geqslant ||\operatorname{Nat}||, z:\alpha, sz:\alpha.$

Shrinking Lemma

Если существует $M\in \mathrm{Long}(\sigma)$ с $\mathrm{Depth}(M)\geqslant \mathbb{D}(\sigma)$, то существует $N\in \mathrm{Long}(\sigma)$, такой что

$$\mathbb{D}(\sigma) - \|\sigma\| \leqslant \mathrm{Depth}(N) < \mathbb{D}(\sigma)$$

Алгоритм подсчета числа элементов $\mathrm{Long}(\sigma)$

Описание

Вход: тип σ . Выход: число обитателей σ и перечисление $\mathrm{Long}(\sigma)$.

Реализация

- Запускаем алгоритм поиска, генерируя последовательно $\mathcal{A}(\sigma,0),\,\mathcal{A}(\sigma,1),\,\dots$
- Останавливаемся, достигнув $\mathcal{A}(\sigma, \mathbb{D}(\sigma))$ и строим $\mathcal{A}_{\mathrm{term}}(\sigma, \leq \mathbb{D}(\sigma))$ (содержит всех обитателей σ длиной меньше $\mathbb{D}(\sigma)$).
- Анализируем:
 - $\mathcal{A}_{\mathrm{term}}(\sigma, \leqslant \mathbb{D}(\sigma)) = \varnothing$. Тогда $\mathrm{Long}(\sigma) = \varnothing$.
 - $\mathcal{A}_{\mathrm{term}}(\sigma,\leqslant \mathbb{D}(\sigma))$ не пусто, но все его элементы мельче $\|\sigma\|$. Тогда $\mathrm{Long}(\sigma)=\mathcal{A}_{\mathrm{term}}(\sigma,\leqslant \mathbb{D}(\sigma)).$
 - $\mathcal{A}_{\mathrm{term}}(\sigma, \leq \mathbb{D}(\sigma))$ не пусто, и есть элементы не мельче $\|\sigma\|$. Число элементов бесконечно, можно продолжить перечисление.