Number classification on Mnist database also optimizing

Feladat:

A feladat, hogy egy 0-tól 9-ig való számokból álló adatbázison végezzünk classificationt. Ehhez az Mnist adatbázist használom. Itt próbálkoztam kisebb optimalizálással amiket később felhasználtam már, earlystopping dropout továbbá visszatöltöttem a legjobb modellt a végén, kicsit használtam a seaborn és megnéztem a konfúziós mátrixot is.

A modell felépítése:

- 1. Adatok betöltése
- 2. Alapmodell felépítése
- 3. EarlyStopping + Best model
- 4. Training
- 5. Best model visszatöltése
- 6. Konfúziós mátrix + seaborn

A modell felépítése:

print(model.summary())

Model: "sequential"

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	24, 24, 32)	832
conv2d_1 (Conv2D)	(None,	20, 20, 64)	51264
max_pooling2d (MaxPooling2D)	(None,	10, 10, 64)	0
dropout (Dropout)	(None,	10, 10, 64)	0
flatten (Flatten)	(None,	6400)	0
dense (Dense)	(None,	128)	819328
dropout_1 (Dropout)	(None,	128)	0
dense_1 (Dense)	(None,	10)	1290

Total params: 872,714
Trainable params: 872,714
Non-trainable params: 0

None

A dropoutról más meséltem a data augmentációs dokumentációban, ebben a munkában használtam először ilyet, ebben a modellben mondjuk nem annyira fontos a dropout mint a másikban, ott többet segít. A flattening azért fontos, hogy az adatokból 1ds adatokat csináljunk, mert csak azt tudjuk a dense rétegnek átadni. A képeket 28X28-as képekké alakítom. Az első modellben próbálkoztam, csak dense régeteggel de az nagyon rossz eredményeket hozott, a dropoutot egy videóban láttam és azért tettem bele, de itt szinte mindegy a szerepe , amúgy elég hasznos tud lenni az augmentációs modellemben segített valamennyit.

Optimizernek az adamot használtam, észrevételeim alapján szinte mindig az a legjobb, kipróbáltam még egyet kettőt de semelyik sem adott olyan jó eredményeket bár azért volt ami megközelítette.

Egy teszt futtatása:

A modell nagyon jól működik, szinte 100%-os a tanítási ráta. Nem futtattam túl sokáig, mert nagyon sok időbe telt volna.

A teszthet tartozó legjobb modell visszatöltve és lefuttatva:

Egy másik teszt végig futtatva, dropout rétegek nélkül:

```
Epoch 1/10
Epoch 00001: val loss improved from 0.05950 to 0.04928, saving model to model.hdf5
Epoch 2/10
960/960 [=========] - ETA: 0s - loss: 0.0275 - accuracy: 0.9911
Epoch 00002: val_loss did not improve from 0.04928
960/960 [======] - 170s 178ms/step - loss: 0.0275 - accuracy: 0.9911 - val loss: 0.0625 - val accuracy: 0.9827
960/960 [========] - ETA: 0s - loss: 0.0184 - accuracy: 0.9941
Epoch 00003: val loss improved from 0.04928 to 0.04014, saving model to model.hdf5
960/960 [=======] - 167s 174ms/step - loss: 0.0184 - accuracy: 0.9941 - val loss: 0.0401 - val accuracy: 0.9886
Epoch 00004: val_loss did not improve from 0.04014
Epoch 5/10
960/960 [=========] - ETA: 0s - loss: 0.0111 - accuracy: 0.9963
Epoch 00005: val loss did not improve from 0.04014
Epoch 00006: val loss did not improve from 0.04014
Epoch 7/10
960/960 [==========] - ETA: 0s - loss: 0.0073 - accuracy: 0.9975
Epoch 00007: val_loss did not improve from 0.04014
960/960 [======= ] - 167s 174ms/step - loss: 0.0073 - accuracy: 0.9975 - val_loss: 0.0460 - val_accuracy: 0.9893
Epoch 00007: early stopping
```

A futást megállította az early stopping, mert 4 epochon keresztül nem tudott a modell javulni.

A teszthez tartozó konfúzis mátrix továbbá a test accuracy és egyéb tulajdonságok. Az f1 score érdekes, mert ezt a precisionből és a recallból kalkulálják és elméletileg egy írja le az egyik legjobban a modellt, ennek ha jól olvastam így számítják ki az eredményét:

$$F_1 = \frac{2}{\text{recall}^{-1} + \text{precision}^{-1}} = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} = \frac{\text{tp}}{\text{tp} + \frac{1}{2}(\text{fp} + \text{fn})}.$$

Konfúziós mátrix és test adatok:

test accuracy: 0.9873

Precision 0.9872902600199783

Recall 0.987222221639535

f1_score 0.9872256478534117

Konfúziós mátrix:

[[976	0	1	0	0	0	1	1	1	0]
[0	1122	2	2	0	2	3	1	3	0]
[2	0	1027	0	0	0	0	2	1	0]
[0	0	3	1006	0	1	0	0	0	0]
[1	0	2	1	959	0	5	0	3	11]
[1	0	1	9	0	878	2	1	0	0]
[7	2	1	0	1	1	944	0	2	0]
[0	1	8	3	0	0	0	1013	1	2]
[3	0	2	1	0	0	1	4	962	1]
[5	1	1	1	2	5	0	5	3	986]]

A végére maradt, a seaborn amivel meg tudjuk jeleníteni, hogy a modell miket tippelt félre és miket talált el.

Az átlóban található az amikor a modell azt tippelte ami a szám. Y tengelyes a tényleges szám míg x tengelyen a tipp látható és az adott x,y-hoz tartozó szám pedig hogy mennyire történt ez meg. Látszik, hogy a modell legjobban a 4-est keverte fel a 9-sel, ennek valószínűsíthetően az az oka, hogy mind a kettő és zárt "köralakú" dologgal indul a tetején (4-nél ez nem annyira kör de hasonlít) majd lefele van egy kis szár. Ahogy néztem érdekes dolgokat néznek meg ezek konvolúciós rétegek, pont valami hasonlót, amit leírtam nagyon nagy vonalakban.