

RESULTADOS FINAIS PARA A AERONAVE E170 (RESUMO)

MODELO AERODINÂMICO, DE PESO E DE MOTOR FORAM CALIBRADOS E VALIDADOS COM DADOS PUBLICOS.

Geovana Neves, 15/08

Estimativa de Peso Vazio – DADO PUBLICO E BREAKDOWN CALCULADO

REFERENCE - E170	Value	Unit
MTOW	37200	kg
Operating Empty Weight/Basic Operating Weight	20737	kg
Takeoff Weight	37200	kg
MZFW	30140	kg
Cargo	0	kg
Maximum Payload	9404	kg
Maximum Fuel	9428	kg

EMPTY WEIGHT BREAKDOWN (SUAVE)	Value	Unit
Horizontal tail	646	kg
Propulsion	4092	kg
Rudder	116	kg
Systems	6573	kg
Fuselage	4131	kg
Landing gear	1488	kg
Vertical tail	291	kg
Wing	3401	kg
EMPTY WEIGHT	20737	kg

A estimativa de peso vazio cravou com o valor público de referencia. O ajuste fino foi através do peso vazio da fuselagem que é função da pressão diferencial máxima. Ou seja, considera-se que o método semi-empirico utilizado é coerente para o cálculo de peso vazio para aeronaves semelhantes ao E170 e será utilizado na otimização para avaliação das aeronaves.

Dados do Motor

Two General Electric Aircraft Engines (GE) models: CF34-8E5 or CF34-8E5A1. Dados publicos de motor são escassos e o que foi encontrado para ser utilizado como referência foi relacionado ao ponto de projeto do motor com o valor de tração e SFC para Mach 0.8 (aproxidamente 450 KTAS para o E170) a 35000 ft de altitude.

Maximum takeoff thrust with APR*	14,500
Bypass ratio	5:
Maximum overall pressure ratio	28.5:
Thrust/weight ratio	5.6
Fan diameter	46.2 i
Maximum diameter	53 i
Length	121 i
Weight	2,600 l
Noise	Meets or surpasses ICAO Chap. 4 requirement
Emissions	Meets or surpasses ICAO CAEP/6 requirement
Specific fuel consumption 35K/0.8 Mn max cruise	.6

Modelo do Motor – Variação de Tração com Velocidade

Modelo do Motor – Variação de SFC com Velocidade

Estimativa de Arrasto Parasita

-1	σ
нΙ	· /()
121	/ \ <i>/</i>

COMPONENT	CDO [-]	WETTED AREA [m2]	FORM FACTOR [-]	FLAT PLATE CF. I	REYNOLDS FACT. (COMPRES. FACT. [-]	
vertical_stabilizer	0.00152	32	1.21	0.00286	0.996	0.99	
main_wing	0.00718	145.4	1.249	0.00288	0.996	0.99	
horizontal_stabilizer	0.00239	46.5	1.216	0.00308	0.996	0.99	
Pylon (TOTAL)	0.00034	7	1.185	0.00297	0.996	0.99	
fuselage	0.00901	280	1.106	0.00212	0.996	0.99	
turbofan (EACH)	0.00085	17.6	1.185	0.00297	0.996	0.99	
Miscellaneous Drag	0.00141	-	-	-	-		
Drag Coefficient			Oar	rasto parasita para	E170 foi comparad	lo com a	
Increment	0	-		•	o E190 disponivel r		
				*	esma familia. Os res		
SUM	0.02356	546.1	1 -				
			*	próximos e considerados satisfatórios pelo orientador da			
				Embraer Tarik. O impacto desta estimativa foi			
		^ ^	principalmente analisada a partir do diagrama de carga				
Tuesday, 14. August 2018 0	05:59:01 PM		paga v	paga vs alcance visto que este dado é publico e oficial			

Diagrama de Carga Paga vs Alcance - Descrição

Para avaliar/calibrar o modelo de motor na condição de cruzeiro e o modelo aerodinâmico para a polar de arrasto, utilizou-se como referência o diagrama de carga paga vs alcance. O dado publico é disponibilizado no APM do E170

Diagrama de Carga Paga vs Alcance - Resultado, erro máximo de 3.1%

Estimativa de Clmax – Referencias: distância de decolagem e pouso

	CLmax	Flap	Slat
Flap 6	2.733	24.2	20.0
Flap 5	2.624	19.6	20.0
Flap 4	2.624	19.6	20.0
Flap 2	2.130	9.7	12.0
Flap 1	1.989	4.9	12.0
Flap 0	1.421	0.0	0.0

Para avaliar/calibrar o modelo de motor na condições típicas de pouso/decolagem e o modelo aerodinâmico para a polar estimativa de CLmax, utilizou-se como referência as curvas de distância de decolagem e pouso. O dado publico é disponibilizado no APM do E170

Distância de Decolagem

Visto que o modelo para calculo de distância de decolagem é semi-empirico e desta forma tem suas limitações, considerou-se como prioridade a calibração do modelo aerodinâmico e de motor de forma a aproximar as estimativas de 3 condições de interesse descritas abaixo.

Condition for Take-off Field Length Estimation	TOW (kg)	SUAVE TOFL (m)	Reference TOFL (m)	Difference (m)	Difference (%)	Reference
MTOW, ISA, SL	38600	1626.43	1644	-17.57	-1.1%	Brochura
TOW for 500nm, full PAX, ISA, SL	31406	1123.39	1151	-27.61	-2.4%	Brochura
Denver, MTOW, ISA +15°C, 5433 ft	37000	3117.05	3076.39	40.66	1.3%	APM

Distancia de Decolagem – Variação com TOW e altitude para ISA

Distancia de Decolagem – Variação com TOW e altitude para ISA+15

Distancia para Pouso – Variação com TOW e altitude

