riptografie și Securitate

- Prelegerea 5 - Criptografie computațională

Adela Georgescu, Ruxandra F. Olimid

Facultatea de Matematică și Informatică Universitatea din București

Cuprins

1. Securitate perfectă vs. Criptografie Computațională

2. Criptografie computațională

 Am vazut scheme de criptare care pot fi demonstrate ca fiind sigure în prezența unui adversar cu putere computațională nelimitată;

- Am vazut scheme de criptare care pot fi demonstrate ca fiind sigure în prezența unui adversar cu putere computațională nelimitată;
- Se mai numesc și informational-teoretic sigure;

- Am vazut scheme de criptare care pot fi demonstrate ca fiind sigure în prezența unui adversar cu putere computațională nelimitată;
- Se mai numesc și informational-teoretic sigure;
- Adversarul nu are suficientă informație pentru a efectua un atac;

- Am vazut scheme de criptare care pot fi demonstrate ca fiind sigure în prezența unui adversar cu putere computațională nelimitată;
- Se mai numesc și informational-teoretic sigure;
- Adversarul nu are suficientă informație pentru a efectua un atac;
- ► Majoritatea construcțiilor criptografice moderne → securitate computațională;

- Am vazut scheme de criptare care pot fi demonstrate ca fiind sigure în prezența unui adversar cu putere computațională nelimitată;
- ► Se mai numesc și informational-teoretic sigure;
- Adversarul nu are suficientă informație pentru a efectua un atac;
- ► Majoritatea construcțiilor criptografice moderne → securitate computațională;
- Schemele moderne pot fi sparte dacă un atacator are la dispoziție suficient spațiu și putere de calcul.

 Securitatea computațională mai slabă decât securitatea informațional-teoretică;

- Securitatea computațională mai slabă decât securitatea informațional-teoretică;
- Prima se bazează pe prezumpţii de securitate; a doua este necondiţionată;

- Securitatea computațională mai slabă decât securitatea informațional-teoretică;
- Prima se bazează pe prezumpţii de securitate; a doua este necondiţionată;
- Întrebare: de ce renunțăm la securitatea perfectă?

- Securitatea computațională mai slabă decât securitatea informațional-teoretică;
- Prima se bazează pe prezumpţii de securitate; a doua este necondiţionată;
- Întrebare: de ce renunțăm la securitatea perfectă?
- Raspuns: datorită limitărilor practice!

- Securitatea computațională mai slabă decât securitatea informațional-teoretică;
- Prima se bazează pe prezumpţii de securitate; a doua este necondiţionată;
- Întrebare: de ce renunțăm la securitatea perfectă?
- Raspuns: datorită limitărilor practice!
- Preferăm un compromis de securitate pentru a obţine construcţii practice.

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

Un cifru trebuie să fie practic, dacă nu matematic, indescifrabil.

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

Un cifru trebuie să fie practic, dacă nu matematic, indescifrabil.

 Sunt de interes mai mare schemele care practic nu pot fi sparte deși nu beneficiază de securitate perfectă;

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

Un cifru trebuie să fie practic, dacă nu matematic, indescifrabil.

- Sunt de interes mai mare schemele care practic nu pot fi sparte deşi nu beneficiază de securitate perfectă;
 - Sunt sigure în fața adversarilor eficienți care execută atacul într-un interval de timp realizabil/fezabil;

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

Un cifru trebuie să fie practic, dacă nu matematic, indescifrabil.

- Sunt de interes mai mare schemele care practic nu pot fi sparte deşi nu beneficiază de securitate perfectă;
 - Sunt sigure în fața adversarilor eficienți care execută atacul într-un interval de timp realizabil/fezabil;
 - Adversarii pot efectua un atac cu succes cu o probabilitate foarte mică;

▶ Ideea de bază: principiul 1 al lui Kerckhoffs

Un cifru trebuie să fie practic, dacă nu matematic, indescifrabil.

- Sunt de interes mai mare schemele care practic nu pot fi sparte deşi nu beneficiază de securitate perfectă;
 - Sunt sigure în fața adversarilor eficienți care execută atacul într-un interval de timp realizabil/fezabil;
 - Adversarii pot efectua un atac cu succes cu o probabilitate foarte mică;
 - 3. Se impune un nouă modalitate de a defini securitatea:

Definiție

O schemă este sigură dacă orice adversar care dispune de timp polinomial în n (parametrul de securitate) efectuează un atac cu succes numai cu o probabilitate neglijabilă.

▶ Întrebare: de ce nu cerem ca probabilitatea de succes a adversarului să fie 0 (ci cerem să fie neglijabilă)?

- ▶ Întrebare: de ce nu cerem ca probabilitatea de succes a adversarului să fie 0 (ci cerem să fie neglijabilă)?
- Raspuns: pentru că adversarul poate să ghicească (cheia, mesajul clar, etc.)

- - ϵ ne-neglijabil dacă $\epsilon \geq 1/2^{30}$

- - ϵ ne-neglijabil dacă $\epsilon \geq 1/2^{30}$
 - ϵ neglijabil dacă $\epsilon \leq 1/2^{80}$

- - ϵ ne-neglijabil dacă $\epsilon \geq 1/2^{30}$
 - ϵ neglijabil dacă $\epsilon \leq 1/2^{80}$
- ▶ în teorie: ϵ este funcție ϵ : $\mathbb{Z}_{\geq 0} \to \mathbb{R}_{\geq 0}$ și p(n) este o funcție polinomială în n (ex.: $p(n) = n^d$, d constantă)

- - ϵ ne-neglijabil dacă $\epsilon \geq 1/2^{30}$
 - ϵ neglijabil dacă $\epsilon < 1/2^{80}$
- ▶ în teorie: ϵ este funcție ϵ : $\mathbb{Z}_{\geq 0} \to \mathbb{R}_{\geq 0}$ și p(n) este o funcție polinomială în n (ex.: $p(n) = n^d$, d constantă)
 - ϵ ne-neglijabiă în n dacă $\exists p(n) : \epsilon(n) \geq 1/p(n)$

- - ϵ ne-neglijabil dacă $\epsilon \geq 1/2^{30}$
 - ϵ neglijabil dacă $\epsilon < 1/2^{80}$
- ▶ în teorie: ϵ este funcție ϵ : $\mathbb{Z}_{\geq 0} \to \mathbb{R}_{\geq 0}$ și p(n) este o funcție polinomială în n (ex.: $p(n) = n^d$, d constantă)
 - lacktriangledown ne-neglijabiă în n dacă $\exists p(n): \epsilon(n) \geq 1/p(n)$
 - ϵ neglijabilă în n dacă $\forall p(n), \exists n_d$ a.î. $\forall n \geq n_d : \epsilon(n) < 1/p(n)$

▶ Întrebare: de ce această definiție și nu alta? $\epsilon(n)$ negl. în $n \Leftrightarrow \forall p(n), \exists n_d$ a.î. $\forall n \geq n_d : \epsilon(n) < 1/p(n)$

- ▶ Întrebare: de ce această definiție și nu alta? $\epsilon(n)$ negl. în $n \Leftrightarrow \forall p(n), \exists n_d$ a.î. $\forall n \geq n_d : \epsilon(n) < 1/p(n)$
- ► Răspuns:
 - Atacul are loc cu probabilitate $\epsilon(n)$...

- ▶ Întrebare: de ce această definiție și nu alta? $\epsilon(n)$ negl. în $n \Leftrightarrow \forall p(n), \exists n_d$ a.î. $\forall n \geq n_d : \epsilon(n) < 1/p(n)$
- ► Răspuns:
 - ▶ Atacul are loc cu probabilitate $\epsilon(n)$...
 - ightharpoonup ... deci trebuie repetat de aprox. $1/\epsilon(n)$ ori ca să reușească

- ▶ Întrebare: de ce această definiție și nu alta? $\epsilon(n)$ negl. în $n \Leftrightarrow \forall p(n), \exists n_d$ a.î. $\forall n \geq n_d : \epsilon(n) < 1/p(n)$
- ► Răspuns:
 - ▶ Atacul are loc cu probabilitate $\epsilon(n)$...
 - lacktriangleright ... deci trebuie repetat de aprox. $1/\epsilon(n)$ ori ca să reușească
 - ▶ Dar din definiție $1/\epsilon(n) > p(n)$...

- ▶ Întrebare: de ce această definiție și nu alta? $\epsilon(n)$ negl. în $n \Leftrightarrow \forall p(n), \exists n_d$ a.î. $\forall n \geq n_d : \epsilon(n) < 1/p(n)$
- ► Răspuns:
 - ▶ Atacul are loc cu probabilitate $\epsilon(n)$...
 - lacktriangle ... deci trebuie repetat de aprox. $1/\epsilon(n)$ ori ca să reușească
 - ▶ Dar din definiție $1/\epsilon(n) > p(n)$...
 - ... deci necesită un timp super-polinomial în n

- ▶ Întrebare: de ce această definiție și nu alta? $\epsilon(n)$ negl. în $n \Leftrightarrow \forall p(n), \exists n_d$ a.î. $\forall n \geq n_d : \epsilon(n) < 1/p(n)$
- ► Răspuns:
 - Atacul are loc cu probabilitate $\epsilon(n)$...
 - lacktriangleright ... deci trebuie repetat de aprox. $1/\epsilon(n)$ ori ca să reușească
 - ▶ Dar din definiție $1/\epsilon(n) > p(n)$...
 - ... deci necesită un timp super-polinomial în n

Definiția semnifică faptul că sistemul rămâne sigur pentru un adversar PPT (Probabilistic Polinomial în Timp)

Important de reținut!

- Securitate perfectă vs. securitate computațională
- Neglijabil vs. ne-neglijabil