Alumno:	DNI:

Fundamentos Lógicos de la Programación

Ingeniería Informática de Sistemas (grupo A) Septiembre (15/09/09)

Toda respuesta debe venir justificada. La falta de justificación supondrá la no puntuación.

1. ¿Cuál de las siguientes asignaciones nos muestra que la implicación:

$$a \to (\neg b \lor c), \ \neg a \leftrightarrow (b \lor c), \ \neg a \land (b \leftrightarrow c) \vDash (b \to \neg a) \to \neg c$$

es falsa?

- a) v(a) = 1; v(b) = 1; v(c) = 1.
- b) v(a) = 0; v(b) = 0; v(c) = 1.
- c) v(a) = 1; v(b) = 1; v(c) = 0.
- d) v(a) = 0; v(b) = 1; v(c) = 1.

- 2. ¿Cuál de las siguientes fórmulas es equivalente a $\neg(\alpha \leftrightarrow \beta)$
 - $a) \neg \alpha \leftrightarrow \neg \beta.$
 - b) $\neg \alpha \leftrightarrow \beta$.
 - $c) (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha).$
 - $d) (\alpha \wedge \beta) \vee (\neg \alpha \wedge \neg \beta).$

- 3. ¿Cuál de las siguientes fórmulas es universalmente válida?
 - a) $\exists x p(x, a) \land \exists y q(y, f(b)) \rightarrow \exists x (p(x, a) \land q(y, f(b))).$
 - b) $\forall x(p(x) \land \neg q(x, a)) \lor (q(x, a) \land \exists x \neg p(x))$
 - $c) \ (\exists xr(x,a) \to \forall yq(y)) \to (\forall xr(x,a) \to \forall zq(z))$
 - $d) \ \exists x (p(x) \lor q(x)) \to \forall x (p(x) \lor q(x))$

- 4. Dado el lenguaje de primer orden con símbolos de constante a, símbolos de función f^1 y símbolos de relación p^1 y eq^2 , consideremos la estructura $\bf A$ definida por:
 - $a) A = \mathbb{N}$
 - $b) \ a^{\mathbf{A}} = 0$
 - $c) f^{\mathbf{A}}(n) = 2n + 1$
 - $d) \ p^{\mathbf{A}} = \{n \colon n \in \mathbb{N}, n \text{ es primo}\}\$
 - $e) \ eq^{\mathbf{A}} = \{(m, n) \colon m \in \mathbb{N}, n \in \mathbb{N}, m = n\}$

Decir qué fórmula de las siguientes significa la negación de

"para cualquier número primo mhay un número ntal que m=2n+1"

- $a) \exists x \forall y (\neg p(x) \lor eq(x, h(y)))$
- b) $\neg(\forall x p(x) \rightarrow \exists y eq(h(y), x))$
- $c) \exists x (p(x) \land \forall y \neg eq(x, h(y)))$
- $d) \ \forall x(\neg p(x) \rightarrow \exists yeq(x,h(y)))$

- 5. Para un lenguaje de primer orden ${f L}$ se considera la siguiente interpretación:
 - Como L-estructura A la determinada por:
 - $A = \mathbb{Z}$
 - $a^{\mathbf{A}} = 1$
 - $f^{\mathbf{A}}(x,y) = x + y$, para cualesquiera $x, y \in \mathbb{Z}$
 - $r^{\mathbf{A}} = \{(x, y) : x \in \mathbb{Z}, y \in \mathbb{Z}, \text{ existe } z \in \mathbb{Z} \text{ tal que } x \cdot z = y\}$
 - $q^{\mathbf{A}} = \{(x, y) : x \in \mathbb{Z}, y \in \mathbb{Z}, x = y\}$
 - Como asignación: una cualquiera, digamos s, cumpliendo s(x) = 3.

¿Cuál de las siguientes fórmulas de L no se hace verdadera bajo la interpretación $I_{\mathbf{A}}^{s}$?

- $a) \ \forall x (r(x,a) \rightarrow r(a,x)).$
- b) $\forall yq(y,y) \land r(x,f(f(a,a),a)).$
- c) $\forall y((r(y,x) \land r(y,f(x,a))) \rightarrow q(y,a)).$
- $d) \exists z \forall y (r(z,y) \rightarrow q(z,y)).$

- 6. Supongamos que tenemos tres cláusulas φ_1 , φ_2 y φ_3 ; que $\varphi = \varphi_1 \wedge \varphi_2 \wedge \varphi_3$ y que ψ una resolvente de φ_1 y φ_2 . En esta situación, ¿cuál de las siguientes situaciones puede darse?
 - a) φ es satisfacible y ψ es insatisfacible.
 - b) $\varphi_1 \wedge \varphi_2$ es satisfacible, pero ψ no.
 - c) φ es insatisfacible y ψ es satisfacible.
 - $d)\ \varphi$ es satisfacible pero $\varphi\wedge\psi$ no.

7. ¿Cuál de las siguientes fórmulas es equivalente a la fórmula

$$\forall z \neg r(z, x) \rightarrow \forall x (r(x, y) \land \exists x \neg q(y, x))$$

- $a) \ \exists z \forall w (\neg r(z,x) \lor (r(w,y) \land \neg q(y,w))$
- $b) \ \forall w \exists x (r(w,x) \lor (r(w,y) \land \neg q(y,x)))$
- $c) \ \exists z \forall w ((r(z,x) \vee r(w,y)) \wedge (r(z,x) \vee \neg q(y,z)))$
- $d) \exists z \forall w \exists x \neg r(z, y) \lor (r(w, y) \land \neg q(y, x))$

8. Dados los literales $\varphi_1 = p(f(x), g(y), a)$ y $\varphi_2 = p(f(u), g(u), z)$, y las sustituciones

$$\sigma_1 = [(x|u)(y|u)(z|a)]$$
 y $\sigma_2 = [(u|x)(y|x)(z|a)],$

donde como es usual x,y,z,u denotan símbolos de variable y a denota símbolo de constante. Entonces:

- a) σ_1 y σ_2 son unificadores principales para φ_1 y φ_2 .
- b) σ_1 y σ_2 son unificadores para φ_1 y φ_2 . Además σ_1 es principal, mientras que σ_2 no lo es.
- c) σ_1 y σ_2 son unificadores para φ_1 y $\varphi_2,$ aunque ninguno de ellos es principal.
- d) $\sigma_3 = [(x|a)(y|a)(z|a)(u|a)]$ es un unificador principal para φ_1 y φ_2 .

9. Dado el conjunto de cláusulas:

$$\{p(x,a) \vee r(f(x)), \ q(x,b) \vee \neg r(x), \ \neg p(a,x) \vee q(f(x),x), \ p(y,y) \vee \neg q(x,z), \ \neg p(y,x) \vee \neg q(f(y),x)\}$$

Elegir la cierta entre las siguientes afirmaciones:

- a) No podemos saber si es satisfacible o insatisfacible, pues el sistema de Herbrand es infinito.
- b) Es satisfacible, pues no hay ninguna cláusula unitaria.
- c) Es insatisfacible, pues hay una deducción lineal de la cláusula vacía.
- d) Es satisfacible, pues no es un conjunto de Horn ni puede transformarse en un conjunto de Horn.

- 10. Dado un lenguaje de primer orden, supongamos que tenemos un conjunto Σ formado únicamente por cláusulas de Horn. Entonces:
 - a) Σ es satisfacible.
 - $b)~\Sigma$ es satisfacible sólo en el caso que no contenga cláusulas unitarias.
 - c) Σ es insatisfacible.
 - d) Las condiciones expresadas en el enunnciado no son suficientes para saber si Σ es satisfacible o insatisfacible.