

Big Data

Introduction

Rachana B S, Usha Devi B G, Resma K S, Prafullata K A, Subramaniam K V

Department of Computer Science and Engineering {rachanabs,ushadevibg, resma, prafullatak, subramaniamkv}@pes.edu

+91 80 6666 3333 Extn 877

What is Big Data?

There is no one standard single definition.

Big Data is data whose scale, diversity, and complexity require new architecture, techniques, algorithms, and analytics to manage it and extract value and hidden knowledge from it...

Big Data and Analytics

Model – is a human construct that better helps us understand real-world systems/phenomena.

With Big Data, this means....

Big Data themes

 How to manage very large amounts of data (data management) Google: store index to WWW and search Large-Scale Data Management

Big Data Analytics

Data Science and Analytics

 and extract value and knowledge from them (analytics) Amazon: store user purchases and make recommendations

Big Data: Motivating Example

Big Data themes

 How to manage very large amounts of data (data management) Google: store index to WWW and search Large-Scale Data Management

Big Data Analytics

Data Science and Analytics

 and extract value and knowledge from them (analytics)

 Amazon: store user purchases and make recommendations

High level approach: motivating example

Machine Translation

Translating a sentence from English → Hindi

English Hindi

Can you teach me? क्या तुम मुझे सिखा सकते हो?

You make mistakes if you do things in a hurry. जल्दबाज़ी में काम करोगे तो ग़लतियाँ तो होंगीं ही।

What would be the traditional approach?

How will it differ from the Big Data approach?

https://towardsdatascience.com/intuitive-explanation-of-neural-machine-translation-129789e3c59f

Traditional Approach

- Understand the system linguistic approach rule
 - based
- lexical lexical structural transfer generator, analyser generator Requires a linguistic expert to build a model
- Model should include
 - Language structure → morphology, grammar
 - Meaning of the words
 - Mapping words from one language to another

https://towardsdatascience.com/machine-translation-a-shortoverview-91343ff39c9f

Big Data Approach

PES UNIVERSITY ONLINE

- No attempt to understand language
- Gather data about different sentences and translations
 - Requires a parallel corpus
 - Millions of sentences and their translations
- Build a statistical model
- For example:
 - Every time the word cat appears in the English sentence
 - The hindi equivalent has billi
 - So infer that <u>cat</u> can be translated as <u>billi</u>

https://techmediahub.com/machine-translation-complete-useful-guide/

Big Data and Analytics

Traditional Approach

The model is human generated

Big Data Approach

The model is machine generated

What about domain knowledge?

PES UNIVERSITY ONLINE

- Correlation is enough?
- Gene sequencing of DNA fragments found in ocean by J. Craig Venter
 - 1000s of new species
 - No idea of what species looks like or any other info
- All models are wrong, and increasingly you can succeed without them
 - Peter Norvig, Google's research director
 - "The unreasonable effectiveness of data"

v Chris Anderson M 06.23.

Conclusions from Peter Norvig's talk

- Algorithms are not important, data is
 - Domain knowledge (e.g., physics/grammar) is not important
- Demonstrates how images can be merged together using just data
- And translation of text giving examples of issues in segmentation

EXPERT OPINION

Contact Editor: Brian Brannon, bbrannon@computer.org

The Unreasonable Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

 Peter Norvig, Head Google Research, The Unreasonable Effectiveness of Data https://www.youtube.com/watch?v=yvDCzhbjYWs

What about domain knowledge?

Can we rely only on data alone?

 Does this mean that domain knowledge is obsolete?

Big Data: Pitfalls in Analysis

Issues in machine translation

- What about let the cat out of the bag?
 - Naïve translation billi ko bag ke bahar chhod diya
 - English meaning: reveal a secret

 To be able to solve this, we need information about the language → domain knowledge and some experimentation

EXPERT OPINION

Contact Editor: Brian Brannon, bbrannon@computer.org

The Unreasonable Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

 Peter Norvig, Head Google Research, The Unreasonable Effectiveness of Data https://www.youtube.com/watch?v=yvDCzhbjYWs

Pitfall: Spurious correlation

- C->A, C->B
 - Does A->B?

- Example:
 - Do storks deliver babies?
- Chart shows positive correlation between
 - Stork population and human birth rates in European countries
 - What it does not show is a hidden variable
 - Available nesting area?
- http://en.wikipedia.org/wiki/Spurious_relationship
- http://www.cut-the-knot.org/do_you_know/misuse.shtml

Pitfall: Gaps in the data

PES UNIVERSITY

- Selection bias
- Convenience
- Example
 - Rutgers University study
 - Examine decision-making process in emergency
 - Study tweets during Hurricane Sandy
 - Most tweets from Manhattan!
 - If studying impact of Sandy: <u>Manhattan most</u> <u>impacted!</u>
- More Data, More Problems: Is Big Data Always Right? ARI ZOLDAN http://www.wired.com/insights/2013/05/more-data-more-problems-is-big-data-always-right/

Pitfall: Gaps in the data

PES UNIVERSITY ONLINE

- Another example: medicine
- Missing data is always a challenge
 - but we also know that "negative results" are more likely to go missing.
 - This means we have a <u>biased sample</u>, overestimating the benefits of treatments.

- The Information Architecture of Medicine is Broken Ben Goldacre http://strataconf.com/strata2012/public/schedule/detail/22941
- https://www.youtube.com/watch?v=AK_EUKJyusg

Big Data: How to address the issues?

Summary of the methods

- Use domain knowledge to check model for validity
- Estimate errors

Let's look to some experts

- Nate Silver book
 - The Signal and the noise
- On Time Magazine 2009 100 most influential people
- Correctly predict US 2008/2012 elections

the signal and the and the noise and predictions fail—but some don't the noise and the

Example: Weather Forecasting

Why is weather forecasting very successful?

Chaotic (dynamic, non-linear system)

• Lorenz: 29.5168 instead of 29.517

Adjustment by humans

- Compute probabilities: how often predict rain, didn't rain?
- On ground reality

The effect of marketing/customer satisfaction in commercial weather forecasting.

More sensitive about errors in predicting no rain than rain

Big Data Error Estimation

- Purely empirical: cannot be analysed by theory
- Divide data into training set and testing set
- Develop algorithm using training set; estimate error from testing set
 - Can be used to compare analytics algorithms
- Examples
 - Nate Silver: weather prediction: human adjustment
 - Amazon recommendations
 - Derive model using historical data; make recommendations
 - Get statistics on how many people look at or buy recommendations

Big Data: Summary and architecture

Big Data themes

 How to manage very large amounts of data (data management) Google: store index to WWW and search Large-Scale Data Management

Big Data Analytics

Data Science and Analytics

 and extract value and knowledge from them (analytics) Amazon: store user purchases and make recommendations

Big Data and Analytics

Big Data Pipeline

Management

THANK YOU

K V Subramaniam

Department of Computer Science and Engineering

subramaniamkv@pes.edu

+91 80 6666 3333 Extn 877

Content Creators

Prof Prafullata K A

Prof Usha Devi

Prof Rachana

Prof Resma