DTM $Deterministische\ Turing-Maschine$	NTM $Nicht determinist is che Turing-Maschine$	Entscheidungsproblem 3
$(Un ext{-})Entscheidbarkeit$	$Semi ext{-}Entscheidbarke it$	${\it Co-Semi-Entscheidbarkeit}$
$Aufz\"{a}hlbarke it$	$Abz\"{a}hlbarke it$ 8	Überabzählbarkeit
Halte problem	$Cantor ext{-}Funktion$	Cantor-Diagonalisierung
Cantors erstes Diagonalargument	Cantors zweites Diagonalargument	Cantorsche Paarungsfunktion
Ackermann funktion	Topologie	$G\"{o}delsche~unvollst\"{a}ndigkeitss\"{a}tze$ 18
LOOP-Programm: Definition	$LOOP ext{-}Programm: ADD ext{-}Funktion$	LOOP-Programm: SUB-Funktion
LOOP-Programm: MUL-Funktion	LOOP-Programm: POT-Funktion	LOOP-Programm: DIV-Funktion

Frage nach Entscheidbarkeit	$M{=}(Q,\Sigma,\Gamma,\delta,q_0,F)$ $QZustandsmenge \ \SigmaEingabealphabet$ $\GammaBandalphabet \ mit \ \Gamma{\subseteq}\Sigma{\cup}\{{\bot}\}$ $\delta \ddot{U}bergangsfkt. \ Q{\times}\Gamma{\to}2^{Q{\times}\Gamma{\times}\{L,R,N\}}$ $q_0Startzustand \ q_0{\in}Q$ $Fakzeptierende \ Endzust \ddot{a}nde \ F{\subseteq}Q$ 2	$M{=}(Q,\Sigma,\Gamma,\delta,q_0,F)$ $QZustandsmenge\ \SigmaEingabealphabet$ $\GammaBandalphabet\ mit\ \Gamma{\subseteq}\Sigma{\cup}\{{\llcorner}\}$ $\delta \ddot{U}bergangsfkt.\ Q{\times}\Gamma{\to}Q{\times}\Gamma{\times}\{L,R,N\}$ $q_0Startzustand\ q_0{\in}Q$ $Fakzeptierende\ Endzustände\ F{\subseteq}Q$
Ob den Elementen einer Menge, die die Eigenschaft nicht haben, das Gegenteil der Eigenschaft eindeutig nachgewiesen werden kann.	Ob den Elementen einer Menge, die die Eigenschaft haben, die Eigenschaft eindeutig nachgewiesen werden kann.	Ob allen Elementen einer Menge eine Eigenschaft eindeutig nachgewiesen (bzw das Gegenteil nachgewiesen) werden kann.
6	5	4
Eigenschaft einer Menge, nicht abzählbar zu sein (keine Bijektion auf N)	Menge, die die gleiche Mächtigkeit wie ℕ hat (eindimensional unendlich bzw abzählbar unendlich)	Eigenschaft einer Menge, dass es eine "Generatorfunktion"gibt, die alle Elemente aufzählt
9	8	7
tbd	tbd	Frage, ob eine Maschine (zB eine TM) auf einer bestimmten Eingabe hält (oder in eine Endlosschleife geht). Ist unentscheidbar (semi-, nicht co-semi-), NP-hart
12	11	10
tbd	tbd	tbd 13
tbd 18	tbd	tbd
$SUBx_1x_2:$ $x_0:=x_1+0;$ $LOOPx_2DOx_0=x_0-1END$ 21	$ADDx_1x_2:$ $x_0:=x_1+0;$ $LOOPx_2DOx_0=x_0+1END$ 20	tbd
tbd 24	$POTx_{1}x_{2}:$ $x_{0}:=x_{1}+0;$ $LOOPx_{2}DOMULx_{0}x_{1}END$ 23	$MULx_1x_2:$ $x_0:=x_1+0;$ $LOOPx_2DOADDx_0x_1END$ 22

LOOP-Programm: MAX-Funktion	$LOOP ext{-}Programm: MIN ext{-}Funktion$	LOOP-Programm: MOD-Funktion
25	26	27
LOOP-Programm: GGT-Funktion	$LOOP ext{-}Programm: Fallunterscheidung}$	WHILE-Programm: Definition
WHILE-Programm: Syntax 31	$Kolmogorov ext{-}Komplexit \"{a}t$	Many-One-Reduktion
$Turing ext{-}Reduktion$	Schubfach prinzip 35	Satz von Rice
Postsches Korrespondenzproblem	$\ddot{A} quivalenz problem$ 38	P, NP, coNP, PSPACE
P,NP,PSPACE-hart	$P,NP,PSPACE ext{-}vollst\"{a}ndig$	Wortproblem Deterministischer Endlicher Automaten
$Er f\"{u}ll barke its problem$ 43	$Kleene ext{-}Stern$	Liste von P-vollständigen Problemen 45
Liste von NP-vollständigen Problemen 46	$Formalisieren \ (Ablauf)$	SAT 48

$MODx_1x_2$:	$MINx_1x_2$:	$MAXx_1x_2$:
$LOOPx_2DO:$	$x_0 = x_1 + 0;$	$x_0 := x_1 + 0;$
$LOOPx_1DOx_0 = x_1 + 0END;$	$MAXx_1x_2;$	$SUBx_0x_2;$
$SUBx_1x_2$	$ADDx_0x_2;$	$ADDx_0x_2$
END	$SUBx_0x_1$	25
27	26	20
		$GGTx_1x_2$:
	IFx!=0THENPEND:	$x_4 = x_1 + 0;$
tbd	LOOPxDOy:=1END;	$LOOPx_4DO$:
	LOOPyDOPEND	
		$LOOPx_2DO$:
30	29	$x_5 = x_2 + 0;$
		$MODx_5x_1;$
		$x_1 = x_2 + 0$
		END;
tbd	tbd	$x_2^{tbd}x_5+0$
		END;
33	32	$x_0 = x_1$ 31
		28
tbd	tbd	tbd
36	35	34
	33	
tbd	tbd	tbd
39	38	37
tbd	tbd	tbd
42	41	40
41. 3	41. 1	11. 1
tbd	tbd	tbd
45	44	43
tbd	tbd	tbd
48	47	46
48	47	46

3SAT	QBF	LBA $Linear\ Bounded\ Automaton$
Pränexform 5:	Skolem form 53	Klausel form 54
= - 5.	Resolution	Unifikator
$All gemeinster\ Unifikator$,

tbd	tbd	tbd
51	50	49
tbd	tbd	tbd
54	53	52
tbd	tbd	tbd
57	56	55
31	30	50
		tbd
		58