

Everyone is already comfortable with heat pumps (for cooling):

What is a heat pump?

- Your fridge at home is cold inside and hot at the back. The fridge absorbs heat from the inside and rejects it out the back.
- If you cut a large hole in the kitchen wall and install the fridge half inside and half outside with door open:
 - It will remove heat from the kitchen and pump it outdoors
 - In a crude way this would cool the kitchen...
- If you turned it around, the cold end (evaporator) would be outside and the hot end (condenser) would be inside
 - This fridge will now absorb heat from outside and transport it into your kitchen
 - It will therefore heat the room
- Essentially this is what a heat pump system does

Cycling and design temperature

F Robert Heath a member of **DAIKIN** group

Cycling:

- Cycling is when a compressor turns on and off known as a cycle, third party thermostats with TPI (time proportional & integral) control will cycle when close to set point, this should be avoided at all costs
- A compressors life is affected by cycling along with running hours, like a car engine
- Starting a compressor takes more energy than maintaining it at low modulation thus costing more to run
- Modern compressors are designed to modulate not cycle typically 30%-100% range

Design flow temperature:

- Lower flow temp = higher COP
- Not all emitters are equal: Underfloor 35c Radiators 45c [generally]
- To lower flow temperature you need to increase emitter surface area
- More energy is required to achieve higher temperatures as it requires more compressor/fan (electrical) input

Weather compensation [dependant]

Automated system flow temperature based on the outdoor temperature, This has two benefits, increased comfort by maintaining a more stable space temperature, as less likely to overshoot room set point. As we are lowing the designed flow temperature this will increase efficiency [SCOP].

- These are adjustable an engineer changing the main points of the WC, by the homeowner by using an offset +/-.
- These settings can have a negative impact on SCOP if the operator does not know what they are doing.
- Increases flow temperature during cold weather up to set limit on curve to meet heat demand
- Decreases flow temperature during warmer weather to increase efficiency

Example:

45°C flow at -4 °C and below 33°C flow at 16 °C and above

Design – Not all surveys are equal

Fossil fuel boilers:

Extremely forgiving with simple commissioning.

Q: Does the wider system impact heating performance?

A: Yes for efficiency but this is not always automatically calculated and available to see, in some cases the home will still heat to target temperature

Q: Are room by room heat loss calculations carried out for gas boiler replacements

A: They should be but often are not carried out, sometimes even a full home heat loss is lacking

Q: Does the declared boiler efficiency consider system design

A: No a boiler is assessed as a product and its efficiency declared, yes for a heat pump (MCS cert)

Q: Does an EPC take into account the wider emitter and pipe sizing

A: No RDSAP is basic and declares the known boiler efficiency assuming SAP tables are not used, for a heat pump there is an option to select the system design temperature but this is not always used (this temp is on the MCS Cert)

Comparison – Gas boiler and Heat pump

- Very forgiving on poor design, but efficiency is sacrificed (less obvious due to low gas cost)
- Understood and simple controls
- Instant hot water (combi) Faster heating stored
- Long established vast skilled workforce
- Stable efficiency throughout seasons
- Weather compensation is optional

- Designed to slowly (ish) achieve and maintain temperature
- Good system design essential to optimal efficiency
- Different control principles lesser known
- Stored priority hot water system
- Small but growing workforce skilled people in high demand
- Variable efficiency across seasons seasonal average used
- Weather compensation is often a standard feature

Design

Surveyor knowledge and qualifications heat pumps vs gas boiler

Higher or Lower

Design – The gas boiler surveyor

Robert Heath a member of **DAIKIN** group

Essential skills for an effective heat pump survey:

- Building fabric and ability to recognise it in real world
- Full heating system installations knowledge & understanding
- General building knowledge
- Asbestos recognition

Essential qualifications:

- L3 Water bylaws
- L3 Part L energy efficiency
- L3 G3 unvented hot water
- NVQ L2/3 plumbing/heating or gas safe

4

4

Note not all businesses use qualified surveyors

Design – The heat pump surveyor

Essential skills for an effective heat pump survey:

- Building fabric and ability to recognise it in real world
- Full heating system installations knowledge & understanding
- General building knowledge
- Asbestos recognition
- Understanding of priority hot water
- Retrofit and its sequencing
- Electrical loads and the load checking process
- MCS process
- MCS 023/PAS 2030 additional requirements to MCS 3005(usually funded and LAHA work only)

Essential qualifications:

- L3 Water bylaws
- L3 Part L energy efficiency
- L3 G3 unvented hot water
- NVQ L2/3 plumbing/heating or gas safe
- L3 installation and maintenance of heat pumps

qualified surveyors

Design & install – Key considerations

- Heat demand of home (at point of install)
- Heat demand for each room
- System design temperature
- Outside unit positioning
- Cylinder/inside unit positioning
- Minimum water volume
- Minimum external design temperature
- Hot water capacity
- Electrical load of home
- Other measures that may interact with the unit
- Planning permission/permitted development
- Sequencing if part of a wider retrofit
- Controls including location
- Future plans for the home
- Pipe and cable routes
- Disruption

Design & install—Key considerations

- Heat demand of home (at point of install)
- Heat demand for each room
- System design temperature
- Outside unit positioning
- Cylinder/inside unit positioning
- Minimum water volume
- Minimum external design temperature
- Hot water capacity
- Electrical load of home
- Other measures that may interact with the unit
- Planning permission/permitted development
- Sequencing if part of a wider retrofit
- Controls including location
- Future plans for the home
- Pipe and cable routes
- Disruption

Undersized or oversized unit

Comfort & performance

Efficiency and pipe & emitter sizing

Air flow, noise, planning/PDR

Maximum MI distance to external unit

Anti-freeze cycle and compressor cycling

Anti-freeze cycle and unit sizing

Resident comfort

Electrical damage to home or grid

Over/under sizing, efficiency, compatibility

Regulatory liability

Over/under sizing risk

Comfort and efficiency

Over/under sizing or comfort

Short cycling or poor comfort

Customer satisfaction

Design & install – Key considerations	Potential issues	Data insight
 Heat demand of home (at point of install) 	Undersized or oversized unit	Low COP, iTemp, High energy use
Heat demand for each room	Comfort & performance	Low itemp, High energy use, Low COP
System design temperature	Efficiency, pipe & emitter sizing	Unusually high or low cop
Outside unit positioning	Air flow, noise, planning/PDR	Low COP or low temp
 Cylinder/inside unit positioning 	Maximum MI distance to external unit	Unlikely to identify
Minimum water volume	Anti-freeze cycle and compressor cycling	High energy, no heat output, low COP
Minimum external design temperature	Anti-freeze cycle and unit sizing	Failure in extreme temps
Hot water capacity	Low COP, prolonged heat pump operation	COP, running time, drops in itemp
Electrical load of home	Nuisance tripping, damage to home or grid	Drop-outs in data
Other measures that may interact with the unit	Over sizing, efficiency, compatibility	Cycling reduced COP
Other measures that may interact with the unit	Under sizing, efficiency, compatibility	Low int itemp, high energy use
 Planning permission/permitted development 	Regulatory liability	Unlikely to identify
 Sequencing if part of a wider retrofit 	Over sizing risk	Cycling reduced COP
 Sequencing if part of a wider retrofit 	Under sizing risk	Low itemp, high energy use
Controls including location	Comfort and efficiency	low COP, erratic itemp, high energy use
Future plans for the home	Over/under sizing or comfort	See Sequencing response's
Pipe and cable routes	Short cycling or poor comfort	Low temp, low COP
• Disruption	Customer satisfaction	Unlikely to identify

Post install – Potential issues	Symptom	Fix
 Restricted air flow to external unit 	Low COP, Low temp	Remove blockage
 User controls input 	Erratic temp & low cop	Educate on controls & principles
 Debris in the system/quality of water 	Failure & error code [7H]	Clear strainer and fix water quality
Glycol mix	Low temp, COP or error code	Fix glycol level & ensure mixed
Short cycling	Low cop, frequent power cycles	Check system design & control
Home not achieving temp	Low temp, unit size	Check system design & control
High running costs	High electric bills	Check system design, check other
Poor COP	COP is just a snapshot	Check SCOP
• Poor SCOP	All of the above	SCOP VS running cost
Pump noise	complaint of pump noise	sample speed can be adjusted

Please consider the reason could be setting related

