Review of Group Project

C. Funck & M. Dittberner

Friday 10th May, 2013

1 Done so far...

- Simulation procedure automatized
- Build a DB with simulation data
- Toolbox to visualize the simulation data

2 Outlook

- Poster of Quantum Dot & Solar Cell processing
- \bullet Documentation: Interpreting results, MAT-LAB

3 Questions

- Difference Quantum Dot & Nanocrystal? (Semiconductor nanocrystals in the sub-10 nm size range are often referred to as quantum dots)?
- Simulation of other materials?
- What is the date of the presentation?
- $\bullet\,$ Need more disc space.
- How relevant is MATLAB work, are the Simulation data?
 - \rightarrow Storage on a server?
 - → Documenting MATLAB work (User, Maintainer)?
 - \rightarrow Installer for scripts and functions (*Toolbox*)?

4 Some Examples of the Simulation Results

4.1 Quantum Dot Structure

Figure 1: Atomic Structure of a PbS Quantum Dot of 4nm diameter

Figure 2: Atomic Structure of a CdSe-CdS Quantum Dot with 6nm core diameter (CdSe) and a 7nm shell diameter (CdS)

4.2 Wavefunctions

Wavefunctions of different radii

ID 1

Figure 3: Quantum Dot structure showing axes along which wavefunctions are plotted. Red dots are atoms that are taken into account for the function

VB,Parameter: geometry.radius

Figure 4: Wavefunctions for different radii and directions in the Valence Band Mode 1. The radii are normalized!

mode 3, dir [1 0 0] — ID 1: 1.5 — ID 2: 2 — ID 3: 2.5 — ID 4: 3 mode 3, dir [0 1 0] 0.01 ID 1: 1.5 ID 2: 2 ID 3: 2.5 ID 4: 3 0.008 0.006 0.004 0.002 mode 3, dir [0 0 1] 0.01 — ID 1: 1.5 — ID 2: 2 — ID 3: 2.5 0.008 -ID 4: 3 0.006 0.004 0.002

VB,Parameter: geometry.radius

Figure 5: Wavefunctions for different radii and directions in the Valence Band Mode 3. The radii are normalized!

3D Wavefunctions for different Voltages

Figure 6: 3D Wavefunctions for 0V of a PbS Quantum Dot with 4 nm diameter

Figure 7: 3D Wavefunctions for 0.5V of a PbS Quantum Dot with 4 nm diameter

4.3 Band Gaps

Figure 8: Plotting Band Gap against Radius of a Quantum Dot, including applied Voltage and different materials. Size of the circle indicates the material; from smallest to largest: PbSe_allan, PbSe_lent, PbS_lent. Solid blue line: $1/R^2$ dependence of the Band Gap.

Figure 9: Green lines: Energy levels in the Conduction Band, Black lines: Energy levels in the Valence Band