FIT3158 Note - W11 Queuing theory

	Post
O Created date	@October 26, 2022 9:09 PM
	Business
∷ tags	Decision Making
	Published
From	School
≡ summary	
≡ slug	
≡ password	
:≡ Author	
Priority	
Ø Origin	
Ø URL	
≡ icon	

What is the In-The-System (L) and Queue (L_q) ?

L refers to number of unit / People in the system.

What is W?

Same sense as above, but $W=time\ spent\ waiting\ in\ the\ queue\ +\ time\ being\ served\ in\ the\ system.$

Whereas $W_q = time\ spent\ waiting\ in\ the\ queue.$

What are μ ?

 $\mu = Service \ rate$; so $Service \ time = 1/\mu$?

The difference between service rate and service hour is for example $\mu=25$ (Customers/hour)

• if it is 1/25*60, this is your service time.

Queuing, Probability and Simulation

Service and waiting times for a single server queue, Poisson arrivals, Exponential service:

 λ = the average number of arrivals per time period (arrival rate)

 $\frac{1}{\lambda}$ = the average time between arrivals

 μ = the average number of services per time period (service rate)

 $\frac{1}{\mu}$ = the average time taken for each service

 $P_0 = 1 - \frac{\lambda}{\mu}$ the probability that no units are in the system

 $L_q = \frac{\lambda^2}{\mu(\mu - \lambda)}$ the average number of units in the waiting line

 $L = L_q + \frac{\lambda}{\mu}$ the average number of units in the system

 $W_q = \frac{L_q}{\lambda}$ the average time a unit spends in the waiting line

 $W = W_q + \frac{1}{\mu}$ the average time a unit spends in the system

 $P_{\rm w} = \frac{\lambda}{\mu}$ the probability that an arriving unit has to wait for service

 $P_n = \left(\frac{\lambda}{u}\right)^n P_0$ the probability of *n* units in the system

Probability distributions:

The Poisson distribution
$$f(x) = \frac{\theta^r e^{-\theta}}{x!} \text{ for a distribution having mean } \theta, (e=2.71828...)$$

 $f(x) = \frac{1}{\theta} e^{-x/\theta}$ for a distribution having mean θ , (e = 2.71828...)

 θ $P(x \le x_0) = 1 - e^{-x_0/\theta}$ $P(x \ge x_0) = e^{-x_0/\theta} \text{ for a given value of } x_0$

Let X_0 be an integer chosen at random (the random seed) then uniformly distributed integers are generated as $X_{n+1} = AX_n \mod B$ where A and B are large co-prime integers. Random numbers between 0 and 1 are calculated as $r_n = \frac{X_n - 1}{B - 2}$.

Exponential variates with mean b are generated from uniform [0,1] random numbers, r_u , by the transformation $t_n = -b\log_e(r_n).$

Service and waiting times for an M/M/S queue:

$$\begin{split} P_0 &= \sqrt{\left[\frac{1}{\sum_{n=0}^{4-1} \left(\lambda / \mu\right)^n}{n!} + \frac{(\lambda / \mu)^3}{S!} \left(\frac{1}{1-\lambda / S\mu}\right)\right]} & L = L_q + \frac{\lambda}{\mu} \\ P_n &= \begin{bmatrix} \left(\lambda / \mu\right)^n}{n!} P_0 & \text{if } 0 \le n \le S \\ \frac{|\lambda / \mu|^n}{N!} P_0 & \text{if } n \ge S \end{bmatrix} & W_q = \frac{L_q}{\lambda} \\ \frac{|\lambda / \mu|^n}{S! S^{n-2}} P_0 & \text{if } n \ge S \end{bmatrix} & W = W_q + \frac{1}{\mu} \\ L_q &= \frac{(\lambda / \mu)^2 (\lambda / S\mu)}{S! (1-\lambda / S\mu)^2} P_0 & \rho = \frac{\lambda}{S\mu} \end{split}$$

- General, Brobelitis, and Statistical Stat