Laboratorio 4 - Redes e programação Linear

Gabriel Hidasy Rezende, RA116928

October 26, 2015

Problema

Dado um grafo G=(V,E), uma função de latência das arestas $l:E\to R^+$, uma função de capacidade das arestas $d:E\to R^+$, uma função do custo das arestas $c:E\to R^+$ e uma lista de k elementos $P=(s_1,t_1,q_1,T_1),(s_2,t_2,q_2,T_2)...$ onde cada elemento indica que o nó s_i quer transmitir q_i dados para t_i em tempo $\leq T_i$ (ie $T_i \leq \sum e \quad \forall e$ caminho (s_i,t_i) .

Um detalhe que distingue esse problema do fluxo máximo é que consideramos os dados q_i indivisíveis, isso é, eles devem trafegar todos pelo mesmo caminho

Estrategia

Será usada programação linear inteira. O problema consiste em encontrar uma série de caminhos de tal que todas as restrições sejam satisfeitas.

Começando com a formulação base do problema de caminhos mínimos:

$$Minimize \sum_{ij} c_{ij} x_{ij} \quad (i,j) \in E$$

Sujeito a:

$$\sum x_{ij} - x_{ji} = 1 \rightarrow i = s$$

$$= -1 \rightarrow i = t$$

$$= 0 \rightarrow i = \text{Others}$$

Adicionamos ao modelo as restrições de latência e capacidade, e adicionando o numero de bits a função de minimização.

$$\text{Minimize } \sum_{ij} c_{ij} x_{ij} q \quad (i,j) \in E$$

Sujeito a:

$$\sum_{i,j} x_{ij} + x_{ji} \le T$$

$$\forall (i,j)(x_{ij} + x_{ji})q \le w_{ij}$$

E finalmente generalizando a tarefa para n pares

$$Minimize \sum_{z} \sum_{ij} c_{ij} x_{ijz} q_z \qquad (i,j) \in E$$

Sujeito a:

$$\forall z \sum (x_{ijz} + x_{jiz})l_{ij} \leq T_z$$

$$\forall (i,j) \sum (x_{ijz} + x_{jiz})q_z \leq w_{ij}$$

$$\forall z \sum x_{ijz} - x_{jiz} = 1 \rightarrow i = z(s)$$

$$= -1 \rightarrow i = z(t)$$

$$= 0 \rightarrow \text{Others}$$

Implementação

Segue no anexo.

Experimentos

Para os experimentos usei o gerador disponibilizado para criar um conjunto de entradas, tanto de entradas onde o gerador podia fornecer uma solução ótima quanto para problemas sem ótimo conhecido. Para os problemas com ótimo conhecido a resposta sempre foi próxima (exata até a terceira casa decimal) da ótima conhecida devido a erros de arredondamento.

O programa foi testado contra entradas com tamanho variando de 100 a 2000 nós e de 5 a 50 conexões para os testes com resposta ótima conhecida, e de 100 até 450 nós de 5 até 50 conexões (É interessante notar o caso com 45 conexões e 100 nós, que foi um caso onde o programa demorou MUITO mais do que o esperado para resolver o problema (470s), no gráfico substitui o mesmo por 12 para não achatar os demais)

Resultados

Seguem abaixo as tabelas com os tempos coletados para cada execução do programa com entradas conhecidas:

n/p	100	400	700	1000	1300	1600	1900	2000
5	0.050887	0.17113	0.36009	0.62692	1.08667	1.16733	1.25892	1.95130
10	0.109931	0.41025	1.11885	1.30583	2.63491	2.91770	4.29974	4.10567
15	0.169644	0.68096	1.38437	2.54122	2.99534	4.61477	6.11132	6.73419
20	0.231992	1.35648	2.72076	3.16017	4.55223	8.73329	8.01861	8.17655
25	0.295344	1.31960	3.03287	4.27775	9.36292	10.0769	13.2401	15.7380
30	0.346487	1.88953	3.72942	7.15288	6.80763	9.21231	18.3581	14.1724
35	0.453721	2.49261	4.98895	6.64401	11.7983	15.0093	17.2614	18.6811
40	0.539139	2.89146	4.33689	8.30682	12.6869	18.3852	19.6628	22.1970
45	0.575044	3.53962	6.28981	12.0244	19.6412	26.3799	27.8474	24.0224
50	0.663847	3.55586	5.95327	11.5242	19.5810	22.2215	28.6196	28.8540

E a mesma tabela repetida em casos sem a solução conhecida, nesse caso o tamanho dos problemas é bem menor para permitir que o programa termine em um tempo razoável.

n/p	100	150	200	250	300	350	400	450
5	0.05444	0.32642	0.27151	0.10360	0.07055	0.23850	0.25654	0.12259
10	0.08720	0.75095	0.75788	0.58290	1.26851	0.41367	1.39200	0.58620
15	0.16639	0.81763	0.99769	1.67869	1.86789	0.72099	2.27418	1.02499
20	0.43913	1.39768	1.67676	2.06044	3.13629	1.29749	5.28618	1.49889
25	0.49088	1.68882	1.75044	3.74337	1.97310	1.63258	4.22772	2.68861
30	0.72422	3.57542	2.52983	5.09696	4.03528	3.59689	4.50125	3.77938
35	1.44865	2.62594	2.40432	6.12104	5.60085	3.39431	9.89985	3.88167
40	11.1556	8.03197	8.41365	7.77423	13.0921	6.06245	10.9787	12.2957
45	740.516	3.27903	11.3131	7.69732	7.37726	8.92662	7.67648	12.5595
50	15.3100	15.2817	11.1226	8.21201	22.8836	6.72498	9.32185	15.5944

Tempo médio

Para solução desconhecida, cada linha indica um número de pares

