II.5 Théorie de Gellispie

Elle explique la forme géométrique des espèces chimiques (molécules ou ions) dans l'espace. Elle repose sur la répulsion électrostatique entre les doubles (liants et non liants) entourant un atome centrale. Elles est connue par **VSEPR** (Valence Shell Electron Pair Repulsion). Soit **A l**'atome centrale de la molécule, lié à n **ligands** (atome ou groupement d'atomes) et éventuellement entouré par **p** doublets libres (ou non liants), la formule sera symbolisée par :

Il en résulte que **A** est entouré par (**n**+**p**) doublets, ces n doublets vont s'éloigner au maximum les uns des autres de façon à minimiser leur énergie de répulsion. On peut alors prévoir, à partir d'un schéma de Lewis, la **GEOMETRIE** de la molécule

II.5.1 Géométrie des molécules type AX_n

Molécule type	Représentation	Géométrie
AX ₂	X — A X	Molécule linéaire ou digonale
AX ₃	120° A X	Molécule triangulaire (ou trigonale) plane
AX_4	109°28' X X	Molécule tétraédrique ou tétragonale

II.5.2 Géométrie des molécules type AX_nE_p

Les règles précédentes s'appliquent mais les angles idéaux sont modifiés à cause de la répulsion des doublets non liants. Dans ce cas on peut prévoir des géométries modifiées.

Exemples:

Exemple	Type	n + p	Géométrie	Représentation
SiH ₂ (Si: Z = 14)	AX ₂ E	3	■ AX ₃ Molécule triangulaire déformée	α>120°
NH ₃	AX ₃ E	4	■ AX ₄ Molécule tétraédrique déformée	a> 109°28' N ≈107°N
H ₂ O	AX_2E_2			H ≈104,5° H

Remarque:

Les liaisons multiples sont assimilées à des liaisons simples plus volumineuses

 $\underline{\textbf{Exercice 3:}} \ donner \ la \ représentation \ AX_nE_p \ et \ la \ géométrie \ des \ molécules \ données \ dans \ l'exercice 2$

