Signals and Systems

Lab experience 3

Report deadline: 7th January 2025

Exercise 1: DTF and FFT

- Load a music file of at least 20 seconds (you are free to choose the file) and determine the sampling frequency F_s
 - To load the file you can use
 - The function audioread in Matlab
 - The function scipy.io.wavfile.read() in Python (or other equivalent functions depending on the file format)
 - Read carefully the manual to understand how these functions work
- Estimate the spectrum of energy over temporal windows, using two approaches:
 - Implementing yourself the DFT (Discrete Fourier Transform)
 - Using the built-in FFT (Fast Fourier Transform) function
- Compare the obtained results

Exercise 1: DTF and FFT

- The music file should be divided into K temporal windows of length M seconds
 - Knowing the sampling frequency F_s you can determine how many samples N are contained in each window
 - Try different values for M
- For each window, plot the resulting spectrum of energy
 - It is convenient to plot the spectrum in dB
 - Pay particular attention to the frequency axis that should be quoted in kHz
 - You may need to use the fftshift() function: read what it is and what it does

Exercise 1: DTF and FFT

- Required outputs:
 - Plot of the spectra of energy for different windows and considering different M values
 - There is no need to put all the figures in the report, but only a subset of them which are more significant
 - Comparison of the computational time required by your implementation and the built-in FFT function
 - Use tic() and toc() functions

Discrete Fourier Transform (DFT)

• Given a signal x(n) of N samples, the **discrete Fourier transform** is defined as

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi n \frac{k}{N}}, \quad \forall k = 0,1,2,...,N-1$$

• X(k) an be interpreted as the DTFT $X(e^{j2\pi f})$ evaluated at the N equispaced frequencies:

$$f_k = \frac{k}{N}, \quad \forall k = 0, 1, 2, ..., N-1$$
 $X(k) = DFT[x(n)] = X(e^{j2\pi f_k})$

• The spectrum of energy is defined as: $S_x = |X(k)|^2$

Exercise 2: DFT and circular convolution

- Consider a portion of the music file of exercise 1 (e.g. 10 seconds) and filter it using a given FIR filter
 - The impulse response h[n] of the filter is contained in the file «FIR_impluse_response.mat»
 - It is a raised-cosine with bandwidth equal to the 10% of the total bandwidth
- Perform the filtering in two ways:
 - In time domain using the convolution
 - Using the circular convolution, i.e. applying the DFT

Exercise 2: DFT and circular convolution

- Required outputs:
 - Compare the filtered signals in time domain
 - Plot of the spectra of energy before and after the filtering for both implementations
- Suggestion: to play the music and listen to the impact of filtering, in Matlab
 you can use the function soundsc

DFT and circular convolution

• Given a non-periodic signal x[n] and a filter describing an LTI system with impulse response h[n], the filtered signal at the output of the system can be computed as:

$$y[n] = h[n] * x[n]$$
$$Y(k) = H(k)X(k)$$

- Where x[n] and h[n] have extensions $[0, N_x 1]$ and $[0, N_h 1]$, respectively, with $N_x \neq N_h$, and x[n] has extension $[0, N_y 1]$ with $N_y = N_x + N_{h-1}$
- $X(k) = DFT\{x[n]\}$ and $Y(k) = DFT\{y[n]\}$

DFT and circular convolution

To perform filtering in frequency domain using the DFT

$$Y(k) = H(k)X(k)$$

- X(k) and H(k) should have the same size N
- For this reason zero-padding can be performed, consisting in adding a sufficient number of zeros such that

$$N \ge N_x + N_h - 1$$

• If you use the FFT, N can be chosen equal to 2^m , where $m = log_2(N_x + N_h - 1)$

