

Advanced Artificial Intelligence

Introduction

Dr. Qurat Ul Ain

Assistant Professor
Dept. of AI & DS
FAST NUCES, Islamabad
Email: quratul.ain@isb.nu.edu.pk

Instructor Information

Instructor	Dr. Qurat Ul Ain	E-mail	quratul.ain@isb.nu.edu.pk
Current Position	Assistant Professor	Department	AI & DS

PhD : University of Engineering and Technology Taxila

Research Interest: Multimedia Forensics, Deepfakes Detection, Adversarial Machine Learning, Deep Learning,

Computer Vision

Personal profile:

https://scholar.google.com/citations?hl=en&view_op=list_works&authuser=3&gmla=AH8HC4w0juQlC7KlPC6qhpYw2l_6WTUp4xT_dAQOJ7uP4PSSvc_bwuZ_ill33lq0Do6f1LjbLa0sxtkwYghFWVRxPJe-&user=8FopwFEAAAAJ

Class Policies and Guidelines

• Attendance policy: will be marked at the start of the lecture

- Use of cell phones
- Discussion with fellows during class (unless needed for some announced task)
- Early leave (will result in absent)
- Frequent movement In-out during class

- Be interactive, ask questions
- Participate in the lecture
- Relax and learn ©

Announcements and course updates

- Slides and all other material will be available at Google Classroom.
- Assignments will be submitted through the Google Classroom.
- To register the course page at the Google Classroom you will must use your NU email.

Google Classroom Code

ayfrhbcg

What is this Course About?

Its about understanding, applying and developing AI systems

Al Programming

Assumptions: Prior knowledge of AI Basics

Marks Distribution (Tentative)

Assessments Type	Weight
Assignments	15%
Quizzes	10%
Project	10%
1 st Sessional	10%
2 nd Sessional	15%
Final Exam	40%

• There will be **Absolute Grading** as per the University policy

Retake Policy & Plagiarism

- Retake of missed assessment items (other than midterm/final exam) will not be held (no retake of assignment/quiz/project).
 - Late submission (even 1 minute) means no submission
- For a missed midterm/ final exam, an exam retake/ pretake application along with necessary evidence are required to be submitted to the department secretary. The examination assessment and retake committee decides the exam retake/ pretake cases.

Plagiarism

- Plagiarism in project or midterm/ final exam may result in F grade in the course.
- Plagiarism in an assignment or quiz will result in zero marks (or F grade) in that assessment item (all evaluation of that type).

Topics to be covered:

List of Topics	No. of Weeks	Contact Hours	CLO(s)
Introduction, History of AI, Problem Solving	1	3	1
Tree Search, Graph Search, BFS, DFS, IDS, DLS	1	3	1
A* Search, State Spaces, Problems with Search	1	3	1
Advanced Search – Minimax, alpha-beta pruning	1	3	1
Constraint Satisfaction Problems – Backtracking search for CSPs, Problem structure and problem decomposition, Local search for CSPs	1	3	1,2

1st Sessional Exam

<u> </u>				
Self-modifying algorithms (GA, PSO, ACO, Differential every evolution and Co-evolution, Evol	· · · · · · · · · · · · · · · · · · ·	2	6	2
FORMS OF LEARNING Unsupervised learning K-means clustering, Hierard Principle Component Analysis, A		1	3	3
Supervised learning Linear regression, Logisti Support-vector machines, Line analysis, KNN, Neural Network.			6	3
2 nd Sessional Exam				

Deep Neural Networks Convolutional Neural Network, Word Embeddings, Attention Mechanism, Transformers.	2	6	4
Reinforcement learning Q Learning, Deep Q Learning	1	3	4
Federated Learning (FL) • Federated Learning in health informatics. FL Challenges and opportunities. Future Research directions in FL • Few shot learning • Zero short learning • Meta transfer learning Hands on FedML		3	4
Project Presentations	1	3	4
Total	15	45	

01 What is Al?

02 A brief history

03 Applications of Al

04 The state of the art

Artificial Intelligence

Making computers that think?

• The automation of activities we associate with human thinking, like decision making, learning ... ?

 The art of creating machines that perform functions that require intelligence when performed by people?

- Artificial
 - Produced by human art or effort, rather than originating naturally.
- Intelligence
 - is the ability to acquire knowledge and use it" [Pigford and Baur]

So Al is defined as:

- All is the study of ideas that enable computers to be intelligent.
- Al is the part of computer science concerned with design of computer systems that exhibit human intelligence(From the Concise Oxford Dictionary)

- From the above two definitions, we can see that AI has two major roles:
 - Study the intelligent part concerned with humans.
 - Represent those actions using computers.

THOUGHT

Systems that think like humans

Systems that think rationally

BEHAVIOUR

Systems that act like humans

Systems that act rationally

HUMAN

RATIONAL

Systems that Act like Humans

• You enter a room which has a computer terminal. You have a fixed period of time to type what you want into the terminal, and study the replies. At the other end of the line is either a human being or a computer system.

• If it is a computer system, and at the end of the period you cannot reliably determine whether it is a system or a human, then the system is deemed to be intelligent.

Systems that Act like Humans

- The Turing Test approach
 - a human questioner cannot tell if
 - there is a computer or a human answering his question, via teletype (remote communication)
 - The computer must behave intelligently
- Intelligent behavior
 - to achieve human-level performance in all cognitive tasks

TURING TEST EXTRA CREDIT: CONVINCE THE EXAMINER THAT HE'S A COMPUTER.

Acting humanly

- Proposed by Alan Turing (1950)
- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in following 50 years

Systems that Act like Humans

Suggested major components of AI:

- Natural language processing
 - for communication with human
- Knowledge representation
 - to store information effectively & efficiently
- Automated reasoning
 - to retrieve & answer questions using the stored information
- Machine learning
 - to adapt to new circumstances

THOUGHT

Systems that think like humans

Systems that think rationally

BEHAVIOUR

Systems that act like humans

Systems that act rationally

HUMAN

RATIONAL

Systems that think like humans

Cognitive Science

- Humans as observed from 'inside'
- How do we know how humans think?
 - Introspection vs. psychological experiments

 "[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning ..."

Thinking humanly: Cognitive Science

- 1960s --cognitive revolution: information-processing psychology replaced prevailing orthodoxy of behaviorism
- Requires scientific theories of internal activities of the brain
- How to validate? Requires
- Predicting and testing behavior of human subjects (topdown) or
- Direct identification from neurological data (bottom-up)

THOUGHT Systems that think Systems that think like humans rationally **Systems that act Systems that act BEHAVIOUR** like humans rationally

HUMAN

RATIONAL

Systems that think 'rationally'

"laws of thought"

- Humans are not always 'rational'
- Rational defined in terms of logic?
- Logic can't express everything (e.g. uncertainty)
- Logical approach is often not feasible in terms of computation time (needs 'guidance')
- "The study of the computations that make it possible to perceive, reason, and act" (Winston)

Thinking rationally: Laws of Thought

- Normative (or prescriptive) rather than descriptive
- Aristotle: what are correct arguments/thought processes?
- Several Greek schools developed various forms of logic:
- notation and rules of derivation for thoughts
- Direct line through mathematics and philosophy to modern Al

THOUGHT	Systems that think like humans	Systems that think rationally
BEHAVIOUR	Systems that act like humans	Systems that act rationally
	HUMAN	RATIONAL

Systems that act 'rationally'

- Rational behavior: doing the right thing
- The right thing: that which is expected to maximize goal achievement, given the available information
- Giving answers to questions is 'acting'.
- I don't care whether a system:
 - Replicates human thought processes
 - Makes the same decisions as humans
 - Uses purely logical reasoning

Systems that act 'rationally'

- Logic □
 - Sometimes logic cannot reason a correct conclusion
 - At that time, some <u>specific (in domain) human knowledge</u> or information is used
- Thus, it covers more generally different situations of problems
 - Compensate the incorrectly reasoned conclusion

Al prehistory

- Philosophy
 - logic, methods of reasoning
 - mind as physical system
 - foundations of learning, language, rationality
- Mathematics
 - formal representation and proof
 - algorithms, computation, (un)decidability, (in)tractability
 - probability
- Psychology
 - adaptation
 - phenomena of perception and motor control
 - experimental techniques (psychophysics, etc.)

Al prehistory

- Economics
 - formal theory of rational decisions
- Linguistics
 - knowledge representation
 - grammar
- Neuroscience
 - physical substrate for mental activity
- Control theory
 - homeostatic systems, stability
 - simple optimal agent designs

History of Al

- 1943 McCulloch & Pitts: Boolean circuit model of brain
- 1950 Turing's Computing Machinery and Intelligence"
- 1950s Early Al programs, including Samuel's checkers program,
- Newell & Simon's Logic Theorist,
 Gelernter's Geometry Engine
- 1956 Dartmouth meeting: "Artificial Intelligence" adopted
- 1965 Robinson's complete algorithm for logical reasoning
- 1966--74 Al discovers computational complexity
- Neural network research almost disappears

- 1969--79 Early development of knowledge-based systems
- 1980--88 Expert systems industry booms
- 1988--93 Expert systems industry fall: "Al Winter"
- 1985--95 Neural networks return to popularity
- 1988--- Resurgence of probability; Nouvelle AI: A Life, GAs, soft computing
- 1995--Agents, agents, everywhere : :
- 2003-- Human-level AI back on the agenda.....

Applications of Al

- Autonomous Planning & Scheduling:
 - Autonomous rovers.

- Autonomous Planning & Scheduling:
 - Telescope scheduling

- Autonomous Planning & Scheduling:
 - Analysis of data

• Medicine:

- Image guided surgery
- Disease Prediction

• Medicine:

• Image analysis and enhancement

- Transportation:
 - Autonomous vehicle control:

• Transportation:

• Pedestrian detection

Games:

- Other application areas:
- Bioinformatics:
 - Gene expression data analysis
 - Prediction of protein structure
- Text classification, document sorting:
 - Web pages, e-mails
 - Articles in the news
- Video, image classification
- Music composition, picture drawing
- Natural Language Processing

State of the art

Which of the following can be done at present?

- Play a decent game of table tennis
- Drive safely along a curving mountain road
- Buy a week's worth of groceries on the web
- Play a decent game of bridge
- Discover and prove a new mathematical theorem
- Design and execute a research program in molecular biology
- Write an intentionally funny story
- Give competent legal advice in a specialized area of law
- Translate spoken English into spoken Swedish in real time
- Converse successfully with another person for an hour
- Perform a complex surgical operation

