Quiz #10, 4/11 Math 157 (Calculus II), Spring 2024

Problem 1 is worth 6 points, and Problem 2 is worth 4 points, for a total of 10 points. Remember to $show\ your\ work$ on all problems!

- 1. Consider the series $s = \sum_{n=1}^{\infty} \frac{1}{n^3}$. Let $s_n = \sum_{k=1}^n \frac{1}{k^3}$ be the *n*th partial sum for this series.
 - (a) Compute s_2 , the second partial sum, as an estimate for the true value s of the series.
 - (b) Let $R_2 = s s_2$ denote the error of your estimate. Compute upper and lower bounds on this error. **Hint**: recall that $\int_{n+1}^{\infty} f(x) dx \le R_n \le \int_n^{\infty} f(x) dx$ for the appropriate f(x).

2. For each of the following series, decide if it converges or diverges. Explain your answer.

(a)
$$\sum_{n=1}^{\infty} \frac{4n^2 - n + 4}{3n^2 + 3n - 1}$$

(Hint: look at the limit of the terms.)

(b)
$$\sum_{n=1}^{\infty} \frac{1}{3^n + 1}$$

(Hint: compare to a series you know.)

$$(c) \sum_{n=1}^{\infty} \frac{2}{2n-1}$$

(Hint: compare to a series you know.)

(d)
$$\sum_{n=1}^{\infty} \frac{2}{2n^2 - 1}$$

(Hint: compare to a series you know.)