General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

Department of Aerospace Engineering University of Cincinnati

A TWO-DIMENSIONAL FINITE-DIFFERENCE SOLUTION FOR THE TEMPERATURE DISTRIBUTION IN A RADIAL GAS TURBINE GUIDE VANE BLADE

BY

W.M. HOSNY AND W. TABAKOFF

(NASA-CR-137633) A TWO-DIMENSIONAL
FINITE-DIFFERENCE SOLUTION FOR THE
TEMPERATURE DISTRIBUTION IN A RADIAL GAS
TURBINE GUIDE VANE BLADE (Cincinnati Univ.)
57 p HC \$4.50

CSCL 21E G3/07 14788

RECEIVED

Supported by:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Ames Research Center

Contract No. NAS2-7850

1. Report No. NASA CR 137633	2. Government Accessi	on No.	3. Recipient's Catalog N	lo,
4. Title and Subtitle A Two-Dimensional Finite-Difference Softor the Temperature Distribution in a Gas Turbine Guide Vane Blade		olution	5. Report Date September 19	75 -
			6. Performing Organization Code	
7. Author(s) W.M. Hosny and W. Tabakoff		:	8. Performing Organization Report No.	
			10. Work Unit No.	
9. Performing Organization Name and Address Department of Aerospace Engineering University of Cincinnati				
			11. Contract or Grant N	o. 1
Cincinnati, Ohio 45221	•		NAS2-7850	1
			13. Type of Report and	
2. Sponsoring Agency Name and Address			Contractor Report	
National Aeronautics and Washington, D.C. 20546	Space Adminis	stration	14. Sponsoring Agency Code	
15. Supplementary Notes				
Project Manager, Major G. Development Laboratory, A			tt Field, Cal:	
6. Abstract				
A two-dimensional fi is presented to determine solid blade of a radial t	the temperat	ure distributi		
A computer program i 370/165 computer. The coprograms have a similar by experimental results.	mputer result	s obtained fro	om these	
			•	· · · · · · · · · · · · · · · · · · ·
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
		18. Distribution Statement Unclassified		
Heat Transfer		Unclassified	- unlimited	
17. Key Words (Suggested by Author(s)) Heat Transfer 19. Security Classif. (of this report)	20. Security Classif. (o	Unclassified		22. Price*

TABLE OF CONTENTS

	Page
SUMMARY	1
INTRODUCTION	2
GOVERNING EQUATIONS	3
COMPUTER PROGRAM	6
COMPUTATION PROCEDURE AND DISCUSSION	7
CONCLUSIONS	9
REFERENCES	10
LIST OF SYMBOLS · · · · · · · · · · · · · · · · · · ·	11
TABLE I	13
FIGURES	14
APPENDIX A	23
APPENDIX B	26
APPENDIX C	40

SUMMARY

A two-dimensional finite-difference numerical technique is presented to determine the temperature distribution in a solid blade of a radial turbine guide vane.

A computer program is written in Fortran IV for IBM 370/165 computer. The computer results obtained from these programs have a similar behavior and trend as these obtained by experimental results.

INTRODUCTION

The power output of a radial gas turbine is directly proportional to the inlet temperature of the combustion gases. Generally, higher inlet temperatures are desired in order to achieve higher power outputs. Due to the limitations on the material strength, the operating temperature is limited for the safe operation of the blading without failure. One way of ensuring the safe operation of gas turbine blades is to provide adequate cooling for the blades. The cooling of the blades helps the safe operation of an engine by reducing the temperature level in the blade material and by equalizing the temperature differences throughout the blade sections. By determining the temperature distribution in the blades of a gas turbine, the critical stress areas could be located and hence could be provided with sufficient cooling mechanisms. Kuhl (1) reported the temperature measurements that were taken in the rotor blades of a gas turbine. He used the analogy between the heat flux and the electric current within a three-dimensional model to determine the heat flow in a complete blade.

Calculating the temperature distribution at a cross section of a gas turbine blading using analytical methods poses some problems due to the irregular shape of the boundary of the blade and the fact that the temperature and the velocity of the gas around the blade surface are variable from one point to another. The variable gas velocity around the blade results in a variable heat transfer coefficient. Due to these circumstances, it is necessary to resort to numerical techniques using a finite-difference or a finite element method of solution. In the present study, a computer program is written using a two-dimensional finite-difference numerical technique to determine the temperature distribution at a cross section of a solid blade. Data concerning the geometry of the blade surface is given as an input in the form of the coordinates of the points intersection of the mesh lines of

Figure 1 with the boundary of the blade. The gas temperatures and the corresponding heat transfer coefficients at these blade boundary points are also given in the input data.

This computer program determines the two-dimensional temperature distribution in the cross section of a blade without It can be modified however to handle the case of a hollow blade utilizing internal cooling as in Reference [2]. It is assumed that the thermal conductivity of the blade material is the same everywhere since the variations in the conductivity will not be significant except for very large temperature differences within the blade. A subroutine can be added to the program however if it is desired to take into account the local variation of the thermal conductivity with temperature. The second order derivatives in the partial differential equation governing the temperature distribution in the blade are expressed in terms of second order accurate finite-differences and the resulting algebraic equation in the mesh point temperatures are solved using the Gauss-Seidel iteration technique. Over-relaxation factors are used to accelerate the convergence process.

GOVERNING EQUATIONS

In plane rectangular coordinate system, the differential equation governing the temperature distribution in the turbine blade is given by:

$$\frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{T}}{\partial \mathbf{y}^2} = 0 \tag{1}$$

In the above equation it is assumed that there is no heat generation in the blade body and that the thermal conductivity of the material is constant.

The boundary condition at any point on the blade surface can be expressed as:

$$K \frac{\partial T}{\partial n} = h (T_{q} - T_{s})$$
 (2)

Where K is the thermal conductivity of the blade material

n is the normal to the blade surface at a given point

T is the gas temperature at the surface of the blade

and T_s is the blade surface temperature at the particular point in question

The turbine blade and the grid network used in the present case is shown in Figure 1. The particulars of the blade are given in Table 1. The grid spacings in the x-direction, DX, are uniform as well as the spacing DY in the y-direction.

Referring to Figure 2, the partial differential Equation (1) can be written in a finite-difference form at any mesh point P(i,j) inside the blade surface in terms of the temperatures at the neighboring points A, B, C and D as follows:

$$\frac{T_{i-1,j} - 2T_{i,j} + T_{i+1,j}}{Dx^{2}} + \frac{T_{i,j-1} - 2T_{i,j} + T_{i,j+1}}{Dy^{2}} = 0$$

or

$$T_{i,j} = \frac{1}{2(DX^2 + DY^2)} [DY^2 (T_{i+1,j} + T_{i-1,j}) + DX^2 (T_{i,j+1} + T_{i,j-1})]$$
(3)

Equation (3) is second order accurate, and is valid at all interior points whose four closest neighboring points happen to be at regular mesh locations. For points near the boundary of the blade, in Figure 3, the neighboring points A, B, C and D do not occupy normal mesh locations and hence the expression given by Equation (3) has to be modified to take into account the nonsymmetrical locations of the neighboring mesh points. In a general case such as in Figure 4, where points A and C are located at ζ_1 and ζ_2 fractions of DX and points B and D are at δ_1 and δ_2 fractions of DY relative to P, the difference Equation (4) will be used. This equation is arrived at by expressing the temperatures at A, B, C and D in terms of Taylor series expansions at P, and then eliminating the first order derivatives between these expressions to obtain the following equation:

$$\frac{2}{DX^{2}(\zeta_{1}+\zeta_{2})} \left[\frac{T_{i-1,j}}{\zeta_{1}} - T_{i,j} \left(\frac{1}{\zeta_{1}} + \frac{1}{\zeta_{2}}\right) + \frac{T_{i+1,j}}{\zeta_{2}}\right] + \frac{2}{D^{2}(\delta_{1}+\delta_{2})} \left[\frac{T_{i,j-1}}{\delta_{1}} - T_{i,j} \left(\frac{1}{\delta_{1}} + \frac{1}{\delta_{2}}\right) + \frac{T_{i,j+1}}{\delta_{2}}\right] = 0 \quad (4)$$

Equation (4) can be written in a more convenient form as follows:

$$T_{i,j} = \frac{1}{E} \left[\frac{T_{i-1,j}}{\zeta_{1}(\zeta_{1}+\zeta_{2})} + \frac{T_{i,j+1}}{\zeta_{2}(\zeta_{1}+\zeta_{2})} + \left(\frac{DX}{DY} \right)^{2} \left\{ \frac{T_{i,j-1}}{\delta_{1}(\delta_{1}+\delta_{2})} + \frac{T_{i,j+1}}{\delta_{2}(\delta_{1}+\delta_{2})} \right\} \right]$$
(5)

Where

$$E = \left[\frac{1}{\zeta_1 \zeta_2} + \left(\frac{DX}{DY}\right)^2 \frac{1}{\delta_1 \delta_2}\right] \tag{6}$$

The above equations are second order accurate when $\delta_1 = \delta_2$ and $\zeta_1 = \zeta_2$. For equally spaced grid lines, the factors ζ_1 , ζ_2 , δ_1 and δ_2 will all be equal to 1.0 and Equations (5) and (6) will ultimately reduce to Equation (3). Equation (5) is used instead of Equation (3) at grid locations next to the boundary of the blade such as at the point P in Figure 3. At the blade boundary points such as C or D in Figure 3, the convective boundary condition given by Equation (2) has to be used to evaluate the surface temperature of the blade. In order to apply Equation (2), the normal gradient of the temperature normal to the boundary point has to be expressed in a finite difference form. Referring to Figure 3, if NDN' is the normal to the blade surface at the boundary point D, then the temperature gradient D is approximated by:

$$\frac{\partial T}{\partial n} = \frac{T_D - T_N}{DN} = \frac{h_D}{K} (T_g - T_D)$$
 (7)

Rearranging Equation (7), the temperature at the boundary point D is given by:

$$T_{D} = \frac{\left[T_{N} + \frac{h_{D} DN}{K} T_{g}\right]}{\left[1 + \frac{h_{D} DN}{K}\right]}$$
(8)

The solution of Equation (3) at the interior points, (5) at the points next to the boundary, along with Equation (8) at the boundary points will give the temperature distribution in the blade.

COMPUTER PROGRAM

The details of the input to the computer program are given in Appendix A. From the blade boundary points, the program calculates ζ_1 , ζ_2 , δ_1 and δ_2 from the data concerning the mesh structure and the boundary point coordinates. As an initial guess the temperature matrix T is set to any convenient value. The Gauss-Seidel method of iteration then starts with the interior points of the blade. The computations giving new temperatures of mesh points on each I line proceed in the x direction. Equation (3) is used for all points which do not lie next to a boundary and Equation (5) is used for all the points which lie next to a boundary. Once this is completed, the temperatures on the blade surface are evaluated using the convective boundary condition expressed by the finite-difference Equation (8). The normal to the boundary at any point is determined by fitting a least squares parabolic curve through the three boundary points consisting of the one under consideration and the two adjacent points on both its sides. From the parabolic equation of the curve, the slope of the tangent to the surface at the point can be found and hence the slope of the normal to the curve at the required. The coordinates of the intersection of the normal with the closest mesh line inside the blade, point N in Figure 3, can thus be found. temperature at the intersection point, N, is determined by linear interpolation from the temperatures of the neighboring

points A and P of Figure 3. The length DN is determined from the coordinates of N and D which are known from previous steps. In each iteration, the boundary temperatures are first evaluated at points on the I lines and then the temperatures at the boundary points on the J lines are determined in a similar fashion. This iteration process is repeated until the sum of the squares of the differences between two successive iterations is less than a prescribed small quantity.

i.e.
$$\sum_{\text{all points}} (T_n - T_{n-1})^2 \le \varepsilon$$
 (9)

Where T_n is the temperature after n^{th} iteration T_{n-1} is the temperature after (n-1)th iteration and ϵ is the prescribed error limit.

The process of convergence could be accelerated by using an over-relaxation factor, ω , thus:

$$T_n = \omega T_n' + (1 - \omega) T_{n-1}$$
 (10)

Where T_{n-1} is the temperature after (n-1) iterations

T is the temperature computed after n iterations

 ω is the over-relaxation factor

 T_n is the temperature used for the $(n+1)^{st}$ iteration.

After the final iteration, all the grid temperatures are printed and the locations for isothermals are found by linear interpolation.

COMPUTATION PROCEDURE AND DISCUSSION

To use the program for determining the temperature distribution, the input data has to be prepared. The details of input parameters required are given in Appendix A. Defining the blade boundaries can be most easily done graphically as

shown in Figure 1. To find the gas temperatures and heat transfer coefficients around the blade, the flow behavior around the blade should be obtained first.

The velocities on a radial gas turbine blade are determined from the computer program given by Dastanis (3). can be used to determine the flow properties on a blade-toblade surface in a turbomachine. The solution is obtained using a velocity gradient method; which uses information obtained from a finite-difference stream function solution at a reduced weight flow. From the velocity distribution, the temperature of gas around the blade can be determined. A typical velocity distribution for the case used in this investigation is shown in Figure 5. For convenience, the blade surface flow velocities are plotted as a function of surface distance; which are measured from the point, S_{0} in Figure 1. The temperature distribution is computed using the energy equation and is shown in Figure 6 as a function of the blade surface distance from the leading edge. The heat transfer coefficient is determined from the Reynold's Analogy and the boundary layer characteristics.

The boundary layer solution is determined using the computer program written by Herring and Mellor (4). The velocity distribution of Figure 5 is used as input for the boundary layer computations. The details of the program input and method of solution are given in Reference (4). This program can be used for both laminar and turbulent boundary layers over two-dimensional or axi-symmetric bodies. The program also takes into consideration the effects of pressure gradients, Reynolds Number, wall transpiration and surface roughness. This program solves the boundary layer equations numerically by using Crank-Nicolson method in combination with a fourth order Runge-Kutta solution scheme. In its output, the program gives the boundary layer parameters on the blade surface, such as the displacement thickness, the momentum thickness, the friction coefficient, and the energy thickness. the friction coefficient along the surface from the boundary

layer computations, the heat transfer coefficient is determined using Reynold's Analogy. The convection heat transfer coefficient shown in Figure 7 is calculated using the gas velocity and temperature distributions of Figures 5 and 6. The temperature and the heat transfer coefficients around the stagnation point are not expected to be accurate, however, since the velocity distribution calculated using the method of Reference (3) is not accurate in this region.

The present conduction heat transfer program uses a 40 x 12 mesh point with DX = 1.27 mm and DY = 0.635 mm. The over-relaxation factor for faster convergence is determined by trial and error. Figure 8 gives the variation of the number of iterations needed for a certain convergence with the relaxation factor, ω . Three different error limits, ε = 0.1, 0.05, and 0.02 were considered for convergence. With an error of $\varepsilon \leq 1$, the minimum number of iterations occurs at ω = 1.75. Similar behavior was observed with the other error limits, with the minimum number of iterations being obtained with ω = 1.7 and 1.6 for $\varepsilon \leq$ 0.05 and 0.02 respectively. The solution was found to oscillate at higher values of the over relaxation factor ω .

The program written in FORTRAN IV for an IBM 370/165 computer, is given in Appendix B. The computation time was 14 cpu seconds for 280 iterations. An explanation of the program input and its preparation is given in Appendix A while in Appendix C, a sample output is given. Figure 9 shows some of isothermals for the blade profile considered. From Figures 6 and 9 it can be observed that the upper surface of the blade is generally at a higher temperature than the lower surface. The isothermal lines, which are obtained using the present numerical methods are found to have similar behavior and trends as those found experimentally by Kuhl (1).

CONCLUSIONS

The computer program presented here gives a two-dimensional theoretical temperature distribution for a radial turbine guide vane blade. The temperature distribution agrees with the experimental results obtained by other investigators.

REFERENCES

- 1. Kuhl, W., "Experimental Investigation on a Single-Stage Air-Cooled Gas Turbine," AGARD Conference Proceedings No. 73. AGARD CP 73 71.
- 2. Hosny, W. and Tabakoff, W., "Numerical Solution for the Temperature Distribution in a Cooled Guide Vane of a Radial Gas Turbine, to be published as a NASA Report.
- 3. Kastanis, T., "Fortran Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbine," NASA-TN-D-5427, September 1969.
- 4. Herring, H.J., and Mellor, G.L., "A Computer Program to Calculate Incompressible Laminar and Turbulent Boundary Layer Development," NASA-CR-1564, March 1970.
- 5. Schneider, P.J., Conduction Heat Transfer, Addison-Wesley Publishing Co., Cambridge, Massachusetts, 1955.

LIST OF SYMBOLS

A,B,C,D	Points indicated in Figure 2				
DN	Distance along normal to surface of blade (Figure 3)				
DX	Grid spacing in x direction (m)				
DY	Grid spacing in y direction (m)				
E	Constant defined by Equation (6)				
h	Heat transfer coefficient (J hr m ² °K				
I	Grid line numbers in x direction				
J	Grid line numbers in y direction				
K	Thermal conductivity of material of the blade $(\frac{J}{hr m} \circ K)$				
n	Normal direction to the blade surface				
P	A point of grid structure as in Figure 2				
T	Temperature				
X	X-coordinate				
Y	y-coordinate				
δ ₁	Fraction of grid spacing for point B in Figure 4				
δ ₂	Fraction of grid spacing for point D in Figure 4				
ζ ₁	Fraction of grid spacing for point A in Figure 4				
^ζ 2	Fraction of grid spacing for point C in Figure 4				
ε	Error term as defined in Equation (9)				
Subscripts:					

Corresponds to boundary point in Figure 3

g	Corresponds to gas
i,j	Mesh line numbers in x and y directions
N	Corresponds to the point where normal NN to the boundary at D cuts the mesh line AP (Figure 3)
S	Surface

TABLE I

PARTICULARS OF RADIAL TURBINE NOZZLE BLADE:

Leading edge Radius = 2.07 mm

Trailing edge Radius = 0.40 mm

c = 49.3 mm

Thermal conductivity = $0.7476 \times 10^5 \frac{J}{hr m °K}$

Boundary points:

X mm	Y (Lower)	mm Y	(Upper)	mm
0.0	2.54		2.54	
2.54	0.71		4.57	
5.08	0.63		5.16	
10.16	1.73		5.92	
15.24	2.67		6.32	
20.32	3.38		6.48	
25.40	3.76		6.35	
30.48	3.94		6.04	
35.56	3.73		5.46	
40.64	3.22		4.65	
45.72	2.54		3.63	
49.27	2.54		2.54	

DX = 1.27 mm; DY = 0.635 mm.

ee. = X3(6)

SURFACE DIST. OF SO FROM NN = 1.016 mm

ef. = X4(6)

ef = X5(6)

eg = X6(6)

DX = 1,27 mm

DY = 0.635 mm

FIGURE 1. TURBINE BLADE WITH MESH LINES

FIGURE 2 GRID STRUCTURE FOR INTERIOR POINTS

FIGURE 3. POINTS NEAR A BOUNDARY

FIGURE 4 GENERAL GRID POINT WITH UNEQUAL SPACINGS

FIGURE 5. VELOCITY DIST. AROUND THE BLADE

FIGURE 6 TEMPERATURE DIST. AROUND THE BLADE

FIGURE 7 HEAT TRANSFER COEFF. AROUND THE BLADE

WITH

ISOTHERMALS IN THE BLADE

FIGURE 9.

APPENDIX A

Input for the computer Program:

The input to the computer program consists of the following parts:

- Physical parameters for the grid system, blade material properties, allowable error, and number of iterations.
- 2. Blade geometry.
- 3. Convection heat transfer coefficients around the blade at the mesh line intersections.
- 4. The gas temperatures around the blade at the mesh line intersections.

The first part consists of the following items: DX, DY, XK, ØME, NX, NY, SUMM, NITE, NTE, N4, N5, NN, N1, N2, N6. These items are specified according to the Format 4F5.3, 2I2, F6.3, 2I3, 6I2.

DX: The grid spacing in the x-direction (m).

DY: The grid spacing in the y-direction (m).

XK: Thermal conductivity of the material of the blade $(\frac{J}{hr m \circ K})$.

ØME: Relaxation Factor (If not known give a value of 0.0), and the program would assume a value of 1.0).

NX: The number of grid lines in the x-direction (≤ 40).

NY: The number of grid lines in y-direction (< 20).

SUMM: Maximum allowable error, ϵ , which is the sum of the squares of temperature differences between two successive iterations.

NITE: Maximum number of iterations. This would terminate the computations if the required convergence is not achieved at or below the specified number of iterations.

NTE: Print out of temperature required at every NTE iteration.

N4: The first J line that intersects the blade in more than two points. Specify N4 = 99 if the above phenomenon does not occur. (In the example of Figure 1, N4 = 5).

- N5: Final J line that intersects the blade in four points.

 When N4 = 99, N5 represents the J line which differentiates the top and bottom portions of the blade near the trailing edge of the blade. In the example of Figure 1, N5 = 7.
- NN: This corresponds to the J mesh line which differentiates the top and bottom portions of the blade near the front end of the blade. In Figure 1, NN = 5.
- N1: This corresponds to the I mesh line, which separates the two points 'a' and 'b' on the bottom blade surface intersected by the J line: N5. (If N4 = 99, take N1 = NX). In Figure 1, N1 can be any number between 22 and 27.
- N2: This corresponds to the I mesh line upstream of the point C in Figure 1, which is the last point on the top surface intersected by the N5 mesh line. If N4 = 99, N2 will be equal to NX.
- N6: Corresponds to the J value at the point d of Figure 1, which is the center of the trailing edge radius.

The second part consists of three items. The first set of cards contain the y coordinates where each I mesh line intersects the blade. The first coordinate, Yl(I), refers to the lower surface of the blade and Y2(I) refers to the upper surface of the blade, both are given in inches according to the Format 12F6.3. These values are given in pairs of coordinates corresponding to the bottom and top boundaries at each I mesh line. If the I line does not intersect the blade, give the two coordinates as (NY-1)DY. The program reads in NX pairs of numbers with 6 pairs to a card, with a total cards read = NX/6 or the next whole number if NX is not of multiple of six.

The next set of cards contain the x-coordinates where each J grid line intersects the blade surface where X3(J) refers to the point closer to the Y axis and X4(J) refers to the next intersection further from the Y axis. Both are given in inches according to the same Format, the 12F6.3 as before. The program reads in NY pairs of numbers with 6 pairs to a card

with a total of NY/6 cards read. If N4 is not equal to 99, the third set of cards are given, which specify the other pair of x-coordinates for the mesh lines J=N4 to N5. These x-coordinates are given as X5(J) and X6(J) in inches and according to the same Format 12F6.3. If N4 = 99, the third set of cards does not exist. The various parameters are shown in Figure 1.

The third part of the input is the convection heat transfer J/hr m² °K. These values are given in three coefficients in sets of cards. The Format used here is 12F6.3. The first set of cards contain all H(I) values (for I=1, NX) corresponding to the top surface. The computer program stores the bottom surface coefficients in locations H(I,1) and top surface coefficients in the locations H(I,2). The second set of cards corresponds to all HX(J) values (for J=1, NY) corresponding to to the nearer surface and then all the HX(J) values corresponding to X4(J) points. These values are given in the same units and according to the same Format as before. The computer program stores these coefficients in the locations HX(1,J) and HX(2,J). If N4 is 99, the third set of cards are omitted. Otherwise the third set of cards are given corresponding to HXL(J) values and HX1(J) values for J = N4 to N5. The HXL(J) corresponds to X5(J) point and HX1(J) to X6(J).

The fourth part of the program input gives the gas temperature values in ${}^{\circ}K$. These values are given in three sets of cards similar to part three. These are given according to the Format 10F8.2 with 10 values to a card. The first set of cards contain all TG(I) values corresponding to bottom surface and then all TG(I) values. These values are stored in the computer in locations TG(I,1) and TG(I,2). These two correspond to H(I,1) and H(I,2) respectively. The second set contain all TGX(1,J) values and then all TGX(2,J) values corresponding to X3(J) and X4(J) points respectively. Finally, if N4 is not equal to 99, the third set of cards are given containing TGX1(1,J) values for J = N4 to N5. This set is omitted if N4 = 99.

APPENDIX B

PROGRAM LISTING

In the following pages 27 to 39 is a listing of the main program and the subroutines SLO and BUN.

```
DIMENSION T(40,20), TX(2,20), TX1(2,20), H(40,2), HX(2,20), HX1(2,20), T
     1G(40,2), TGX(2,20), TGX1(2,20), S1(40,2), S2(40,2), D1(40,2), D2(40,2), Y
     21(40), y2(40), x3(20), x4(20), x5(20), x6(20), IN(2,40), IM(2,20), IM1(2,2
      DIMENSION SI(20)
      CALL UNDFLW
      WRITE(6,451)
      FORMAT(//,40x, TEMPERATURE DISTRIBUTION IN A TURBINE BLADE 1,///)
 451
      READ(5,1) DX,DY,XK,OME,NX,NY,SUMM,NITE,NTE,N4,N5,NN,N1,N2,N6
      FORMAT(4F5.3.212.F6.3.213.612)
    READS IN INPUT DATA BOUD. PTS., ETC.
      IF(OME.EQ.O.) OME=1.0
      IF(NX.GT.40.OR.NY.GT.20) GO TO 505
      WRITE(6,3) DX,DY, DME, XK, NX, NY, SUMM
      FORMAT(//,5X,*DX = *, F8.4,5X, *DY = *, F8.4,4X, *OMEGA = *, F6.3,4X, *THER
3
     1M. COND. = , F8.4/, 5X, NX = , 18,5X, NY = , 18,4X, MAX. ERR. = , F8.4/)
      NX1=NX-1
      NY1=NY-1
      READ(5,5) (Y1(I),Y2(I),I=1,NX)
      FORMAT ((12F6.31)
 5
      READ(5,5) (X3(J),X4(J),J=1,NY)
      IF(N4.EQ.99) GD TO 26
      READ(5,5) (X5(J),X6(J),J=N4,N5)
 26
      CONTINUE
      DO 6 I=1.NX1
      XM = {Y1(I) + 0.0001}/DY
      LM=XM
      S1(1,1)=1.
      S2(I,1)=1.
      S1(1,2)=1.
      S2(1,2)=1.
      D2(I,1)=1.
      DI(I,1) = FLOAT(LM+1) - YI(I)/DY
      IN(1,I) = LM + 2
      XM = (Y2(I) + 0.0001)/DY
      LM = XM
      D1(1,2)=1.
      IN(2,1) = LM+1
      IF(ABS(Y2(I)-FLOAT(LM)*DY).LT.0.0001) IN(2.1)=LM
      D2(I,2)=Y2(I)/DY-FLGAT(IN(2,I)-1)
      CONTINUE
 30
      FORMAT(5X, 13, 2(15, F10.4))
      DO 7 J=2.NY1
      XM = (X3(J) + 0.0001) / DX
      LM=XM
      IM(1,J)=LM+2
      1J=IM(1,J)
      S1(JJ,1)=FLOAT(LM+1)-X3(J)/DX
                                        ORIGINAL PAGE IS
      IF(J.GT.NN) S1(JJ.2)=S1(JJ.1)
                                        OF POOR QUALITY
      IF(J.GT.NN) SI(JJ.1)=1.
      XM = (X4(J) + 0.0001) / DX
     LM=XM
      IM(2,J)=LM+1
```

```
IF (ABS(X4(J)-FLOAT(LM)*DX).LT.0.0001) IM(2,J)=LM
      JJJ=[M(2,J)
     S2(JJJ,1)=X4(J)/DX-FLOAT(JJJ-1)
      [F(J_GT_N5) S2(JJJ_12)=S2(JJJ_11)
      IF(J.GT.N5) S2(JJJ,1)=1.
     CONTINUE
       FORMAT(5X, 15, 2(15, 2F10.4))
35
      S1(2,1)=1.-X3(IN(1,2))/DX
      IA = IN(1,2) + 1
      IB = IN(2,2)-1
      DO 9 I=IA, IB
9
      SI(I-IA+1)=1.-X3(IA)/DX
      IF(N4.EQ.99) GO TO 12
      DO 8 J=N4,N5
     XM = (X5(J) + 0.00001)/DX
      LM=XM
      IM1(1,J)=LM+2
      JJ=IM1(1,J)
      S1(JJ,1)=FLOAT(LM+1)-X5(J)/DX
      XM = (X6(J) + 0.00001)/DX
      LM=XM
      IM1(2,J)=LM+1
      IF(X6(J).EQ.FLOAT(LM)*DX) IM1(2,J)=LM
      JJJ=IM1(2,J)
      S2(JJJ+2)=X6(J)/DX-FLOAT(JJJ-1)
      CONTINUE
8
12
      CONTINUE
      FORMAT (4012)
10
      FORMAT(16F5.3)
15
      READ(5,20) ((H(I,J), i=1,NX), J=1,2)
      FORMAT (12F6.3)
20
      READ(5,20) ((HX(I,J),J=1,NY), I=1,2)
      IF(N4.EQ.99) GO TO 33
      READ(5,20) ((HX1(I,J),J=N4,N5),I=1,2)
      CONTINUE
33
      READ(5,25) (\{TG(I,J),I=1,NX\},J=1,2\}
25
      FORMAT(10F8.2)
      READ(5.25) ((TGX(I,J),J=1,NY),I=1,2)
      IF(N4.EG.99) GO TO 34
      READ(5,25) ((TGX1(I,J),J=N4,N5),I=1,2)
34
      CONTINUE
   SETS INITIAL VALUES AND BOUNDARY POINTS
C
      YG/YG/XG*XG=YXG
      DO 100 I=2,NX1
      IA=IN(1,I)-1
      IB=IN(2,1)+1
      DO 100 II=IA, IB
 100
       T(I,II)=1900.
      DO 110 J=2,NY1
      TX(1,J)=1900.
      TX(2,J)=1900.
 110
      IF(N4.EQ.99) GO TO 36
      DD 115 J=N4, N5
```

ORIGINAL PAGE IS OF POOR QUALITY

```
TX1(1,J)=1900.
115
           TX1(2,J)=1900.
36
           CONTINUE
           DO 120 I=1.NX
           IA = IN(1,I)-2
            IB = IN(2, I) + 2
           DO 120 J=1,NY
            IF(J.GT.IA.AND.J.LT.IB) GO TO 120
            IF(J_LE_{\bullet}IA) T(I_{\bullet}J)=TG(I_{\bullet}I)
              IF(J_{\bullet}GE_{\bullet}IB) T(I_{\bullet}J)=TG(I_{\bullet}2)
120
              CONTINUE
           WRITE(6,458)
458 FORMAT(1H1)
           WR ITE(6,455)
455 FORMAT(/,5X,*TEMPERATURE AT GRID POINTS*,//,4X,*J=*,5X,*1*,9X,*2*,
         19X, *3*, 9X, *4*, 9X, *5*, 9X, *6*, 9X, *7*, 9X, *8*, 8X, *9*, 8X, *10*, 8X, *11*, 8
         2X, 1121/, 4X, 11/)
           DO 124 I=1.NX
           WRITE(6,440) I, (T(I,J),J=1,NY)
124
       ITERATIONS... LOWER, MIDDLE AND TOP POINTS
            WRITE(6.456)
           FORMAT(//,5x, 1(B2,C2) IS THE POINT ON THE BOUNDARY AND (B1,C1),(B3
456
         1,C3) ARE THE SURROUNDING POINTS ON BLADE 1,75x, A,B,C ARE THE COE
         2FFICIENTS OF THE PARABOLIC CURVE Y=A+B*X+C*X*X*/)
            SUM=0.
            ITER=1
125
              CONTINUE
            AL=H(1,1)/XK
            T(1.5)=(DX*AL*TG(1.1)+T(2.5))/(1.+AL*DX)
            DO 150 I=2,NX1
            IA=IN(1,1)+1
            IB = IN(2, I) - 1
            A=1./(S1(I,1)*S2(I,1))+4./(D1(I,1)*D2(I,1))
            A1=T(I-1,IA-1)/S1(I,I)/(S1(I,I)+S2(I,I))
            A2=T(I+1,IA-1)/S2(I,I)/(S1(I,I)+S2(I,I))
            IF(I.GT.N1) GO TO 130
            IF(S1(I,1).NE.1.) A1=TX(1, IA-1)/S1(I,1)/(S1(I,1)+S2(I,1))
            IF(S_2(I,1),NE.1.) A2=T_X(2,IA-1)/S_2(I,1)/(S_1(I,1)+S_2(I,1))
            GO TO 135
              CONTINUE
130
            IF(S1([,1).NE.1.) Al=TX1(1,TA-1)/S1(I,1)/(S1(I,1)+S2(I,1))
            IF(S2([,1).NE.1.) A2=TX1(2,[A-1)/S2([,1)/(S1([,1)+S2([,1))
              A3=T(I,IA-2)/D1(I,I)/(D1(I,I)+D2(I,I))
135
            A4=T(I+IA)/D2(I+I)/(D1(I+I)+D2(I+I))
            TNEW=(A1+A2+DXY*(A3+A4))/A
            TNEW=(1.-OME)*T(I, IA-1)+OME*TNEW
            SUM=SUM+(T(I,IA-1)-TNEW)*(T(I,IA-1)-TNEW)
            T(I.IA-1)=TNEW
            IF(IA.GT.IB) GO TO 142
            DO 140 J= IA, IB
            IF(1.EQ.2) GO TO 138
            {YXG+...}}\((1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\(1-1...)\
              TNEW=(1.-UME)*T(1.J)+OME*TNEW
```

15/22/49

```
SUM=SUM+(T(I.J)-TNEW)*(T(I.J)-TNEW)
      T(I,J) = TNEW
      GO TO 140
 138
      CONTINUE
      S=SI(J-IA+1)
       TNEW=(1.-OME)*T(I,J)+OME*TNEW
      TNEW=S*(TX(1,J)/(S*(1,+S)))+T(1+1,J)/(C+S)+O.5*DXY*(T(1,J-1)+T(1,J
     1+1)))/(1.+S*DXY)
      SUM=SUM+(T(I,J)-TNEW)*(T(I,J)-TNEW)
      T(I,J) = TNEW
 140
       CONTINUE
 142
      A=1./(S1(I,2)*S2(I,2))+DXY/(D1(I,2)*D2(I,2))
      A1=T(I-1,IB+1)/S1(I,2)/(S1(I,2)+S2(I,2))
      A2=T(I+1, IB+1)/S2(I,2)/(S1(I,2)+S2(I,2))
      IF(I.GE.N2) GO TO 145
      [F(S1(I,2).NE.1.) A1=TX(1.IB+1)/S1(I.2)/(S1(I.2)+S2(I.2))
      IF(S2(I,2).NE.1.) A2=TX(2, IB+1)/S2(I,2)/(S1(I,2)+S2(I,2))
      GO TO 146
 145
      IF(S1(I,2).NE.1.) A1=TX1(1,IB+1)/S1(I,2)/(S1(I,2)+S2(I,2))
      IF(S2(I,2).NE.1.) A2=TX1(2,IB+1)/S2(I,2)/(S1(I,2)+S2(I,2))
 146
      CONTINUE
      A3=T(I,IB)/D1(I,2)/(D1(I,2)+D2(I,2))
      A4=T(I_1,IB+2)/D2(I_1,2)/(D1(I_1,2)+D2(I_1,2))
      TNEW=(A1+A2+DXY*(A3+A4))/A
      TNEW=(1.-CME)*T(1.18+1)+GME*TNEW
      SUM=SUM+(T(I, IB+1)-TNEW)*(T(I, IB+1)-TNEW)
      T(I \cdot IB + 1) = TNEW
 150
       CONTINUE
    BOUND. POINTS
                     LINES PARLL. TO Y AXIS .. LOWER AND TOP
      IF(ITER.EQ.1) WRITE(6,457)
     FDRMAT(/,7X,'I',7X,'B1',8X,'C1',8X,'B2',8X,'C2',8X,'B3',8X,'C3',9X
     1, A, 9X, B, 9X, C, / )
      DO 200 I=2.NX1
      XI = I - 1
      B2=XI*DX
C
     LOWER
      C2=Y1(I)
      XM = (C2 + 0.0001)/DY
      M = XM + 2
      DM=X3(M)
      IF(I_{\bullet}GT_{\bullet}N1) DM=X5(M)
      IF(ABS(B2-DM).LT.DX) GO TO 155
      B1=B2-DX
      C1=YI(I-1)
      GO TO 156
 155
       B1=DM .
      C1=(FLOAT(M)-1.)*DY
 156
      CONTINUE
      DM=X4(M)
      IF(I.GT.NI) DM=X6(M)
      IF (ABS(B2-DM).LT.DX) GO TO 160
      B3=B2+DX
      C3 = Y1(I+1)
```

15/22/49

```
GO TO 161
 160
      CONTINUE
      B3 = DM
      C3=FLOAT(M-1)*DY
      CALL SLO(B1,C1,B2,C2,B3,C3,A,B,C)
      IF(ITER.E0.1) WRITE(6,490)I,81,C1,B2,C2,B3,C3,A,B,C
      XMN=B+2.*C*B2
      XT=FLOAT(M-1)*DY
      IF(ABS(XNN).LE.0.015) GO TO 170
      X = (C2 - XT) \pm XMN + B2
      IF(X.LE.B2) GO TO 165
      TTT=T(I,M)+(T(I+1,M)-T(I,M))+(X-92)/DX
      GO TO 166
 165
       TTT=T(I,M)-(T(I,M)-T(I-1,M))*(B2-X)/DX
 166
      XNL=(X-B2)*(X-B2)+(Y1(I)-XT)*(Y1(I)-XT)
      XNL=SGRT(XNL)
      GO TO 171
 170
       TTT=T(I,M)
      XNL=XI-YI(I)
 171
       AL=H(I,1)/XK
      TNEW=(XNL*AL*TG(I,1)+TTT)/(I.+XNL*AL)
      TNEW=(1.-GME)*T(I,IN(1.I)-1)+OME*TNEW
      SUM=SUM+(T(I,IN(1,I)-1)-TNEW)*(T(I,IN(1,I)-1)-TNEW)
      T(I, IN(1, I)-1)=TMEW
C
     UPPER POINTS
      C2=Y2(1)
      XM = (C2 + 0.0001)/DY
      M = XM + 1
      DM=X3(M)
      IF(I.GE.N2) DM=X5(M)
      IF(ABS(B2-DM).LT.0.0001) GO TO 174
      IF (ABS(B2-DM).LT.DX) GO TO 175
174
      B1=82-DX
      C1 = y2(I-1)
      GO TO 176
175
      B1 = DM
      C1=FLOAT(M-1)*DY
176
       DM=X4(M)
      IF(I.GE.N2) DM=X6(M)
      IF(ABS(B2-DM).LT.0.0001) GO TO 179
      IF (ABS(B2-DM).LT.DX) GO TO 180
179
      B3=B2+DX
      C3 = Y2(I+1)
      GO TO 181
 180
      83=DM
      C3=FLOAT(M-1)*DY
      IF (I.EQ.NX1) B3=X6(IN(2,I)+1)
      IF(I.EQ.NXI) C3=FLGAT(IN(2,I)) #DY
181
      CALL SLC(B1,C1,B2,C2,B3,C3,A,B,C)
      TF(ITER -EQ.1) WPITE(6,490) 1,81,C1,B2,C2,B3,C3,A,B,C
490
      FORMAT(5x, 13, 2x, 9F10.6)
      XMN=B+2. *C*B2
      IF(D2(I.2).EQ.1.) GO TO 192
```

```
XT=FLOAT(M-1)*DY
      IF(ABS(XMN).LE.0.015) GO TO 190
      X=(C2-XT)*XMN+B2
      IF(X.LE.B2) GO TO 185
      TTT=T(I,M)+(T(I+1,M)-T(I,M))+(X-B2)/DX
      GO TO 186
      TTT=T(I,M)-(T(I,M)-T(I-1,M))*(B2-X)/DX
185
 186
      XNL=(X-B2)*(X-B2)+(Y2(I)-XT)*(Y2(I)-XT)
      XNL=SQRT(XNL)
      GO TO 191
 192
       X=DY*XMN+B2
      XNL = SQRT(DY*DY+(B2-X)*(B2-X))
      IF(X.LE.B2) GO TO 193
      TTT=T(I,M-1)+(T(I+1,M-1)-T(I,M-1))*(X-B2)/DX
      GO TO 191
       TTT=T(I.M-1)+(T(I.M-1)-T(I-1.M-1))*(B2-X)/DX
 193
      GO TO 191
      TTT=T(I,M)
 190
      XNL=Y2(I)-XT
191
       AL=H(I,2)/XK
      TNEW=(XNL*AL*TG(I,2)+TTT)/(1.+XNL*AL)
      TNEW=(1.-CME)*T(1,1N(2,1)+1)+CME*TNEW
      SUM=SUM+\{T(I,IN(2,I)+1\}-TNEW\}*(T(I,IN(2,I)+1)-TNEW)
      T(I,IN(2,I)+1)=TNEW
      CONTINUE
    BOUND. POINTS.. NEARER AND FARTHER POINTS.
    POINTS ON LINES PARLL. TO X AXIS
C
      DO 300 J=2,NY1
      YJ=J-1
      B2=X3(J)
C
     NEARER
      C2=YJ*DY
      XN = (X3(J) + 0.0001)/DX
      N=XN+2
      IF((Y2(N)-C2).LT.(C2-Y1(N))) GO TO 220
      IF(ABS(C2-Y1(N)).LT.ABS(C2-FLOAT(J-2)*DY)) GO TO 206
      81=X3(J-1)
      C1=FLOAT(J-2)*DY
      GO TO 208
206
      B1=FLOAT(N-1) *DX
      C1=Y1(N)
      IF(ABS(B2-FLOAT(N-2)*DX).LE.0.0001) N=N-1
208
      IF(ABS(C2-FLOAT(J)*CY).LT.ABS(C2-Y1(N-1))) GC TO 210
      B3=FLOAT(N-2)*DX
      C3=Y1(N-1)
      GO TO 240
210
      B3=X3(J+1)
      C3=FLOAT(J)*DY
      GO TO 240
      IF (ABS (C2-Y2(N)). [T.ABS(C2-FLOAT (J)*DY)) GO TC 225
 220
      B1 = X3(J+1)
      C1=FLDAT(J)*DY
      GO TO 226
```

```
225
      B1=FLOAT(N-1)*DX
      C1=Y2(N)
 226
      IF(ABS(B2-FLOAT(N-2)*DX).LT.0.0001) N=N-1
      IF(ABS(C2-FLOAT(J-2)*DY).LT.ABS(C2-Y2(N-1))) GO TO 230
      B3=FLOAT(N-2)*DX
      C3=Y2(N-1)
      GO TO 240
 230
      B3=X3(J-1)
      C3=FLGAT(J-2)*DY
      GO TO 240
 240
      CALL SLO(B1,C1,B2,C2,B3,C3,A,B,C)
      IF(ITER.EQ.1) WRITE(6,490)J,81,C1,B2,C2,B3,C3,A,B,C
      XMN=B+2.*C*B2
      YT=FLOAT(N-1)*DX
      IF(ABS(XMN).GE.60.) GO TO 250
      Y=C2-(YT-B2)/XMN
      IF(Y.LE.C2) GO TO 245
      TTT=T(N,J)+(T(N,J+1)-T(N,J))*(Y-C2)/DY
      GO TO 246
 245
        TTT=T(N,J)-(T(N,J)-T(N,J-1))*(C2-Y)/DY
 246
       XNL=(YT-B2)*(YT-B2)+(Y-C2)*(Y-C2)
      XNL=SORT(XNL)
      GO TO 251
 250
       TTT=T(N,J)
      XNL=YT-B2
 251
      AL=HX(1,J)/XK
      TNEW=(TTT+AL*XNL*TGX(1,J))/(1.+XNL*AL)
      TNEW=(1.-OME)*TX(1.J)+CME*TNEW
      SUM=SUM+(TNEW-TX(1.J))*(TNEW-TX(1.J))
      TX(1.J)=TNEW
C
     FARTHER
      B2=X4(J)
      XN = (X4(J) + 0.0001)/DX
      N = XN + 1
      IF (ABS(B2-FLOAT(N-1)*DX).LT.0.0001) N=N-1
      IF((Y2(N)-C2).LT.(C2-Y1(N))) GO TO 290
      IF(ABS(B2-FLOAT(N-1)*DX)*LT.ABS(B2-X4(J-1))) GO TO 282
      B1=X4(J-1)
      Cl=FLOAT(J-2)*DY
      GO TO 283
      B1=FLOAT(N-1) *DX
 282
283
      IF(ABS(B2-FLOAT(N)*DX).LT.0.0001) N=N+1
      IF(ABS(B2-FLOAT(N)*DX).LT.ABS(B2-X4(J+1))) GC TO 284
      B3 = X4(J+1)
      C3=FLOAT(J) #DY
      GO TO 261
 284
      B3=FLOAT(N)*DX
      C3=Y1(N+1)
      GO TO 261
      IF(ABS(B2-FLOAT(N-1)*DX) \cdot LT \cdot ABS(B2-X4(J+1))) GO TO 292
290
      B1 = X4(J+1)
      C1=FLOAT(J)*DY
```

MAIN

```
GO TO 293
      B1=FLOAT(N-1)*DX
 292
      C1=Y2(N)
      IF(ABS(B2-FLOAT(N)*DX).LT.0.0001) N=N+1
 293
      IF (ABS(B2-FLOAT(N)*DX).LT.ABS(B2-X4(J-1))) GO TO 295
      B3=X4(J-1)
      C3=FLOAT(J-2)*DY
       GO TO 261
 295
      B3=FLOAT(N)*DX
      C3=Y2(N+1)
      CALL SLO(B1,C1,B2,C2,B3,C3,A,B,C)
 261
      IF(ITER.EQ.1) WRITE(6,490)J,B1,C1,B2,C2,B3,C3,A,B,C
      XMN=B+2.*C*B2
      YT=FLOAT(N-1)*DX
      IF(ABS(XMN).GE.60.) GO TO 270
      Y = C_2 - (YT - B_2) / XMN
      IF(Y.LE.C2) GO TO 265
      TTT=T(N,J)+(T(N,J+1)-T(N,J))*(Y-C2)/DY
      Gn Tn 266
      T:T=T(N,J)-(T(N,J)-T(N,J-1))*(C2-Y)/DY
 265
      XNL = (YT-B2) * (YT-B2) + (Y-C2) * (Y-C2)
 266
      XNL=SQRT(XNL)
      GO TO 271
 270
       TTT=T(N,J)
      XNL=B2-YT
271
      AL=HX(2,J)/XK
      TNEW=(TTT+AL*XNL*TGX(2,J))/(1,+XNL*AL)
      TNEW=(1.-OME)#TX(2,J)+CME#TNEW
      SUM=SUM+(TNEW-TX(2,J))*(TNEW-TX(2,J))
300
      \Upsilon X(2,J) = TNEW
      BOUNDARY POINTS FOR J=N4 TO N5
Ċ
      IF(N4.EQ.99) GD TD 351
      DO 350 J=N4.N5
      YJ=J-1
      B2=X5(J)
      C2=YJ*DY
      XN = (X5(J) + 0.0001)/DX
      N = XN + 2
      BI=FLOAT(N-1)*DX
      C1=Y1(N)
      83=B1-DX
      C3 = Y1(N-1)
      IF(B3.EQ.B2) B3=33-DX
      IF(C3.EQ.C2) C3=Y1(N-2)
      CALL SLO(B1,C1,B2,C2,B3,C3,A,B,C)
      XMN=B+2.*C*B2
      IF(ABS(XMN).GF.60.) GD TO 320
      YT=FLOAT(J) *DY
      X=82+(C2-YT)*XMN
      IND=X/DX
      IN1 = IND + I
      TTT=T(IND.J+1)+(T(IN1,J+1)-T(IND,J+1))*(X-FLOAT(IND-1)*DX)/DX
      XNL=(X-B2)*(X-B2)+(YT-C2)*(YT-C2)
```

```
XNL=SQRT(XNL)
     GO TO 322
320
      TTT=T(N, J)
     XNL=FLOAT(N-1)*DX-X5(J)
322
     AL = HX1(1,J)/XK
     TNEW=(TTT+AL *XNL*TGX1(1, J))/(1.+AL*XNL)
     TNEW=(1.-GME)*TX1(1,J)+OME*TNEW
     SUM = SUM + (TX1(1,J) - TNEW) + (TX1(1,J) - TNEW)
     TX1(1,J)=TNEW
     82=X6(J)
     XN = (X6(J) \div 0.0001)/DX
     N = XN + 1
     IF (FLOAT (N) * DX.EQ.B2) N=N-1
     IF (ABS(Y1(N)-C2).LT.DY) GO TO 325
     IF (ABS(FLOAT(N)*DX-82).LT.0.0001) GO TO 324
     IF(N.GE.NX) GO TO 327
     B1=FLOAT(N)*DX
     C1=Y2(N+1)
     GO TO 323
327
      B3=X6(J-1)
     C3=FLOAT(J-2)*DY
     GO TO 323
324
     B1=FLOAT(N+1)*DX .
     C1=Y2(N+2)
     GO TO 323
325
      B1=FLOAT(N-1) *DX
     Cl=Yl(N)
323
      IF(ABS(Y2(N)-C2).LT.DY) GC TO 326
     B3 = X6(J+1)
     IF((J+1).GT.N5) B3=X4(J+1)
     C3=FLOAT(J) *DY
     GO TO 328
326
      B3=FLOAT(N-1) *DX
     C3=Y2(N)
328
     CONTINUE
     CALL SLO(B1,C1,B2,C2,B3,C3,A,B,C)
     XMN=B+2.*C*P2
      IF(J.EQ.N6) GO TO 335
     XT = 83
     Y=C2-(XT-B2)/XMN
     TTT=T(N-1,J)-(T(N-1,J)-T(N-1,J-1))*(C2-Y)/DY
     XNL = (C2-J) + (C2-J) + (B2-B3) + (B2-B3)
     XNL=SQRT(XNL)
     GO TO 336
335
     TTT=T(NX1,N6)
     XNL=B2-FLCAT(NX-2)*CX
336
     AL=HX1(2,J)/XK
     TNEW=(TTT+AL*XNL*TGX1(2,J))/(1.+AL*XNL)
     SUM=SUM+(TX1(2,J)-TNFW)*(TX1(2,J)-TNEW)
     TNEW=(1.-OME)*TX1(2.J)+OME*TNEW
     TX1(2,J)=THFW
350
      CONTINUE
351
      CONTINUE
```

MAIN

```
T(1,4)=TX(1,4)
     T(1,6) = TX(1,6)
     T(40,4)=1982
     T(40,5)=TX1(2,5)
     T(40,6)=1982.
     WRITE(6,420) ITER, SUM
420
     FORMAT(4X, TTERATION = 1, 13, 4X, SUM=1, E12.5)
     IF (SUM.LE.SUMM) GO TO 400
     IF(ITER/NTE*NTE.EQ.ITER) GO TO 400
     SUM=0.
     ITER=ITER+1
     GO TO 125
400
     CONTINUE
     WRITE(6,458)
     IF(SUM.LE.SUMM) WRITE(6,461)
     FORMAT(/, 20X, THE FINAL ITERATIVE )
461
440
     FORMAT(3X,12,12F10.3/)
     WRITE(6,455)
     DO 450 I=1.NX
     WRITE(6,440) I,(T(I,J),J=1,NY)
450
     CONTINUE
     IF(SUM.LE.SUMM) GO TO 410
     IF(ITER.GE.NITE) GO TO 410
415
     CONTINUE
     ITER=ITER+1
     SUM=0.
     GO TO 125
410
     CONTINUE
     WRITE(6,460)
     FORMAT(1H1,38X, "ISOTHERMAL LINE LOCATIONS "/,9X, "I",4X, "J",3X, "T",
    14X, "T-LOW", 6X, "T-HIGH", 8X, "FRAC", /)
     DO 500 I=2,NX1
     IA=IN(1,I)-1
     IB=IN(2,I)
     IT1=T(I,IA)
     IT2=T(I,IB+1)
     IF(IT1.GE.IT2) GO TO 470
     IL=IT1
     IH=IT2
     GO TO 471
470
     IL=112
     IH=IT1
471
     CONTINUE
     DO 482 II = IL, IH
     DO 480 J=IA, IB
     IF(T(I,J).LT.FLOAT(II).AND.T(I,J+1).GT.FLOAT(II)) GO TO 481
     IF(T(I,J).GT.FLOAT(II).AND.T(I,J+1).LT.FLOAT(II)) GO TO 483
     GO TO 480
     RX = (FLOAT(II) - T(I, J))/(T(I, J+1) - T(I, J))
481
     GO TO 484
483
     RX=(T(I,J)-FLOAT(II))/(T(I,J)-T(I,J+1))
484
      CONTINUE
     WRITE(6:485) I,J, II, T(1,J), T(1,J+1), RX
```

485 FORMAT(5X,315,3F11.4)
480 CONTINUE
482 CONTINUE
500 CONTINUE
CALL BUN(T,NX,NY)
505 CONTINUE
STOP
END

ORIGINAL PAGE IS OF POOR QUALITY

```
SUBROUTINE SLO(X1,Y1,X2,Y2,X3,Y3,A,B,C)
    FINDS EQUATION THRU THREE POINTS AS Y=A+B$X+C*X*X
C
      CALL UNDFLW
      IF(ABS(X1-X2).LE.O.001.AND.ABS(X2-X3).LE.O.001) GO TO 10
      XS3=X3*X3
      XS2=X2*X2
      XS1=X1*X1
      D1=X2*XS3-X3*XS2
      D2=X1*XS3-X3*XS1
      D3=X1*XS2-X2*XS1
      D = D1 - D2 + D3
       IF(ABS(D).LE.O.000001) GO TO 10
      A1=Y1*(X2*XS3-X3*XS2)
      A2=Y2*(X1*XS3-X3*XS1)
      A3=Y3*(X1*XS2-X2*XS1)
      A=(A1-A2+A3)/D
      B1=Y2*XS3-Y3*XS2
      B2=Y1*XS3-Y3*XS1
      B3=Y1*XS2-Y2*XS1
      B = (B1 - B2 + B3)/D
      C1=X2*Y3-X3*Y2
      C2=X1*Y3-X3*Y1
      C3=X1*Y2-X2*Y1
      C = (C1 - C2 + C3)/D
      RETURN
      A=100.
 10
      B=100.
      C=100.
       RETURN
      END
```

SLO

```
SUBROUTINE BUNKT, NX, NY)
     DIMENSION T(40,20)
     LOGICAL*1 KP(60), LIT(15)/*0*, *1*, *2*, *3*, *4*, *5*, *6*, *7*, *8*, *9*, *
    1.1.1.171.141.151.141/
     TMA=T(1,1)
     TMI=T(1.1)
     DO 10 I=1,NX
     DO 10 J=1,NY
     IF(T(I,J).GT.TMA) TMA=T(I,J)
     (L, I)T = IMT (IMT.TJ.(L, I)T)
10
     CONTINUE
     WRITE(6,20) TMA, TMI
20 . FORMAT (1H1,5X,*MAX=*,F12.5,2X,*MIN=*,F12.5/,5X,*TEMP. INCREASES AS
    1: 0-1-2-3-4-5-6-7-8-9-.-?-+-$-*', 5(/))
     WRITE(6,5)
5
     FORMAT (35x, 'PICTORIAL VIEW OF TEMPERATURE', 15(/))
     RC=14.99999/(TMA-TMI)
     DO 30 JX=1,NY
     J=NY+1-JX
     DO 29 I=1,NX
     S=RC*(T(I,J)-TMI)
     KP(I)=LIT(1+IFIX(S))
29
     WRITE(6,35) (KP(I), I=1,NX)
     CONTINUE
30
35
     FORMAT(1H , . . , 25x, 50(A1, 1X))
     RETURN
     END
```

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX C

SAMPLE PROGRAM OUTPUT

The program output includes the boundary point coordinates which can be used to check the program input parameters. The program also prints out, ε , for every iteration and this allows monitoring of the convergence process. After the final iteration, the grid temperatures are printed as well as the isothermal lines locations. A sample of the program output is given in the pages 41 through 56.

TEMPERATURE DISTRIBUTION IN A TURBINE BLADE

DX = 0.0500 DY = 0.0250 DMEGA = 1.600 THERM. COND. = 1.0000 NX = 40 NY = 12 MAX. ERR. = 0.0200

1	81	CI	A2	CZ	B 3	£3	A	8	С
2	0.040000	0.050000	0.050000	0.045000	0.100000	0.028000		-0.739998	2.666591
2	0.028000 0.050000	0.150000 5.045000	0.050000	0.163000	0.100000	0.180000	0.128576		-3.484890 1.999998
3	0.080000	0.175000	0.100000	0.180000	0.150000	0.193000	0.156143	0.224286	0.142838
4	0.120000 0.100000	0.025000	0.150000	0.021000	0.200000 0.200000	0.025000	0.088998		2.666578 -0.599987
5	0.150000	0.021000	0.200000	0.025000	0.250000	0.035000	0.045000	-0.337995	1.199980
5 6	0.185000	0.200000	0.200000 0.250000	0.203000	0.300000	0.211000	0.140232 -0.014999	0.436956 0.199996	-0.615390 0.000015
6	0.200000	0.2 03000	0.250000	0.211000	0.300000	0.220000	0.180999	0.069991	0.200048
7 7	0.250000	0.035000	0.300000	0.045000 0.220000	0.320000	0.050000	0.038572	-0.192872 0.399985	0.714225
В	0.300000	0.045000	0.350000	0.055000	0.400000	0.068000	0.047999	-0.190004	0.599994
8	0.340000 0.350000	0.225000	0.350000	0.227000	0.400000	0.233000	-0.001676 -0.168126	1.120079	-1.333167 -0.944040
G	0.350000	0.227000	0.400000	0.233000	0.450000	0.238000	0.156997	0.270025	-0.200045
10 10	0.400000	0.068000	0.450000 0.450000	0.077000	0.500000 0.500000	0.086000	-0.004005 0.193003	0.180019	0.000238
11	0.450000	0.077000	0.500000	0.086000	0.550000	0.095000	-0.003984	0.179961	0.0
11 12	0.450000 0.500000	0.238000	0.500000	0.243000	0.550000	0.245000	0.058038	0.670009 -0.099905	-0.600000 0.266479
12	0.500000	0.243000	0.550000	0.245000	0.600000	0.249000	0.333022	-0.380336	0.400429
13 13	0.550000	0.095000	0.600000	0.105000 0.249000	0.650000 0.650000	0.113000	-0.146953 0.069040	0.659878 0.539928	-0.400060
14	0.600000	0.105000	0.650000	0.113000	0.700000	0.120000	-0.069015	0.410035	-0.200048
14 15	0.630000 0.650000	0.250000	0.650000 0.700000	0.251000	0.700000	0.254000	0.276955		0.142979
15	0.650000	0.251000	0.700000	0.254000	0.750000	0.255000	0.030036	0.094226	0.034054
16	0.700000 0.700000	0.120000	0.750000	0.128000	0.800000		-0.307027		-0.600381
16 17	0.750000	0.128000	0.800000	0.255000	0.800000 0.850000	0.255000	0.134984		-0.199809 -0.000238
17	0.750000 0.800000	0.255000	0.800000	0.255000	0.850000	0.255000	0.254992	0.0	0.0
18 13	0.800000	0.133000 0.255000	0.850000	0.138000 0.255000	0.900000	0.143000	0.052977 0.118979		-0.000238 -0.200286
19	0.850000	0.138000	0.900000	0.143000	0.950000	0.145000	-0.406026	1.150214	-0.600143
19 20	0.850000	0.255000	0.900000	0.254000	0.950000 1.000000	0.148000	-0.034022 0.277950	-0.329917	0.200000
20	0.900000	0.254000	0.950000	0.251000	1.000000	0.250000	0.649940	-0.799762	0.399762
21 21	0.950000 0.950000	0.145000 0.251000	1.000000	0.148000	1.040000	0.150000	-0.016815 0.080087		-0.110452 -0.200143
22	0.999999	0.148000	1.049999	0.151000	1.099998	0.154000	0.087965	0.059876	-0.000239
22 23	0.999999	0.250000	1.049999	0.248000 0.154000	1.099998 1.149999	0.245000	0.079914		-0.200143 -0.398764
23	1.049999	0.248000	1.099999	0.245000	1-149999	0.242000	0.310792	-0.059886	-0.000238
24 24	1.099999	0.154000 0.245000	1.150000 1.150000	0.155000 0.242000	1.199999	0.155000	-0.120099 0.058564		-0.199144 -0.199144
25	1.150000	0.155000	1.200000	0.155000	1.249999	0.155000	0.154988	0.0	0.0
25 26	1.150000	0.242000	1.200000 1.249999	0.238000 0.155000	1.249999 1.299998		-0.216537 -0.145172		-0.398527 -0.200143
26	1.199999	0.238000	1.249999	0.232000	1.299998	0.228000	0.982362	-1.100429	0.400286
27 27	1.249999	0.155000	1.299999	0.154000 0.228000	1.349998 1.3.5000		-0.468007 -0.529317		-0.393764 -0.529040
28	1.299999	0.154000	1.349999	0.151000	1.399999	0.147000	-0.118138		-0.199620
28 29	1.299999	0.223000 0.151000	1.400000	0.222000 0.147000	1.399999 1.449999	0.215000	0.033582		-0.199382 -0.200143
29	1.349999	0.222000	1.400000	0.215000	1.449999	0.208000		-0.140267	0.0
30 30	1.400000	0.147000	1.450000	0-142000 0-208000	1.499999	0.138000	0.691154	-0.667538	0.199144
31	1.449999	0.142000	1.499999	0.138000	1.549998	0.133000	-0.177242		-0.199905
3 i 32	1.449999	0.208000 0.138000	1.499999	0.200000 0.133000	1.549998 1.599998	0.193000	0.875194	-0.750000	0.200143
32	1.499999	0.200000	1.549999	0.193000	1.599998		-0.981226		-0.598384
33 33	1.549999 1.549999	0.133000	1.599999	0.127000	1.649999	0.123000		-1.380725	
34	1.625000	0.125000	1.650000	0.123000	1.645000 1.699999	0.175000 0.115000	-2.585740	-0.937500 3.389520	0.234096
34 35	1.599999	0.187000 0.123000	1.650000	0.174000	1.699999	0.165000		-0.180105	
35	1.650000	0.174000	1.700000	0.115000 0.165000	1.749999	0.108000	-1.212815	-0.830153 1.831106	0.199905
36 36	1.699999	0.115000 0.165000	1.749999	0.108000 0.153000	1.799998		-0.242292		-0.200143
37	1.749999	0.108000	1.799999	0.100000	1.770000 1.649998	0.150000		-4.637669 -3.698194	1.275337
37 38	1.749999	0.153000	1.799999	0.143000	1.849998	0.133000		-0.199144	
38	1.799999	0.100000	1.849999	0.097000 0.133000	1.899999 1.884999		-5.789301 -0.616411		-1.801049 -0.335737
39	1.849999	0.097000	1.900000	0.085000	1.940000	0.100000	24.526886-	-25.830017	6.824074
39 2	0.150000	0.133000	1.900000 0.120000	0.120000 0.025000	1.884999 0.100000	0.028000	-6.883969 0.047001	-0.223317	-2.134259 0.333261
2	0.150000	0.021000	0.200000	0.025000	0.250000	0.035000	0.045000	-0.339995	1.199980
3	0.050000 0.300000	0.045000	0.040000 0.320000	0.050000 0.050000	0.010000	0.075000	-0.190000	-1.249997 1.283372	8.333333 -1.666832
4	0.040000	0.050000	0.010000	0.075000	0.0	0.100000	0.100000	-2.916664	41.666534
: 4 5	0.400000 0.010000	0.068000	0.440000 0.0	0.075000 0.100000	0.450000 0.005000	0.077000		0.243880 100.0000001	0.497774
5	0.550000	0.095000	0.575000	0.100000	0.600000	0.105000	-0.014836	0.199643	0.000119
6	0.028000	0.150000 0.120000	0.005000 0.735000	0.125000 0.125000	0.0 0.750000	0.100000	0.100000	5.6987564 -1.492646	1.138008
7	0.050000	0.163000	0.028000	0.150000	0.005000	0.125000	0.118022	1.450722-	11.023401
7 8	0.100000	0.148000	0.080000	0.150000 0.175000	0.050000	0.151000	1.136719 0.130999	-1.988094	1.000000
8	1.599999	0.183000	1.645000	0-175000	1.650000	0.174000	-0.766335	1.357954	-0.471591
9	0.200000 1.450000	0.203000	1.500000	0.200000 0.200000	0.150000 1.549999	0.193000	0-163001	0.200255	-0.000142 0.200670
10	0.350000	0.227000	0.340000	0.225000	0.300000	0.270000	0.335491	-0.834979	1.498975
10 11	1.299999	0.228000 0.251000	1.325000 0.630000	0.225000 0.250000	1.349999 0.600000	0.222000		-0.117424 -0.377734	0.001894
11	0.950000	0.251000	1.000000	0.250000	1.049999	0.248000	0.080157		0.333996 -0.199857

CHRISTONAL, PAGE BO

```
ITERATION =
                   SUM= 0.17129E 05
             1
              2
ITERATION =
                   SUM= 0.10122F 05
              3
                   SUM= 0.47786E 04
ITERATION =
ITERATION =
             4
                   SUM= 0.23836E
ITERATION =
                   SUM= 0.20500E 04
             5
ITERATION =
                   SUM= 0.16037E 04
              6
             7
                   SUM= 0.14074E 04
ITERATION =
ITERATION =
                   SUM= 0.11516E 04
             8
ITERATION =
             9
                   SUM= 0.114135 04
ITERATION = 10
                   SUM= 0.96032E 03
                   SUM= 0.91320E 03
ITERATION = 11
ITERATION = 12
                   SUM= 0.81725E 03
ITERATION = 13
                   SUM= 0.75635E 03
ITERATION = 14
                   SUM= 0.69111E 03
ITERATION = 15
                   SUM= 0.64236E 03
                   SUM= 0.58774E 03
ITERATION = 16
ITERATION = 17
                   SUM= 0.54829E.03
ITERATION = 18
                   SUM= 0.50517E 03
                   SUM= 0.46995E 03
ITERATION = 19
ITERATION = 20
                   SUM= 0.43643E 03
                   SUM= 0.40529E 03
ITERATION = 21
ITERATION = 22
                   SUM= 0.37849E 03
ITERATION = 23
                   SUM= 0.35362E 03
ITERATION = 24
                   SUM= 0.32970E 03
ITERATION = 25
                   SUM= 0.309145
                                 03
ITERATION = 26
                   SUM= 0.28921E 03
ITERATION = 27
                   SUM= 0.27139E 03
ITERATION = 28
                   SUM= 0.25468E 03
ITERATION = 29
                   SUM= 0.24000E 03
ITERATION = 30
                   SUM= 0.22515E 03
ITERATION = 31
                   SUM= 0.21254E 03
ITERATION = 32
                   SUM= 0.19997E 03
ITERATION =
                   SUM= 0.18928E 03
            33
ITERATION = 34
                   SUM= 0.17843E 03
ITERATION = 35
                   SUM= 0.16879E 03
ITERATION = 36
                   SUM= 0.15971E 03
ITERATION = 37
                   SUM= 0.15140E 03
TTERATION = 38
                   SUM= 0.14321E 03
ITERATION = 39
                   SUM= 0.13610E 03
ITERATION = 40
                   SUM= 0.1288SE
                                 03
ITERATION = 41
                   SUM= 0.12272E
                                 03
ITERATION = 42
                   SUM= 0.11644E 03
ITERATION = 43
                   SUM= 0.11079E 03
ITERATION = 44
                   SUM= 0.10526E 03
ITERATION = 45
                   SUM= 0.10031E 03
ITERATION = 46
                   SUM= 0.95471E 02
ITERATION = 47
                   SUM= 0.90899E 02
ITFRATION = 48
                   SUM= 0.86741E 02
ITERATION = 49
                   SUM= 0.82651E 02
ITERATION = 50
                   SUM= 0.78813E 02
```

	Ţ	EMPERATURE	AT GRID P	DINTS										
	j=	. 1	2	3	4	5	6	7	8	9	10	11	12	
	1	1961.000	1961.000	1961-000	1953.493	1952.895	1954-163	1961.000	1961.000	1961.000	1961.000	1961.000	1961.000	
	Ź	1966.000	1952.318	1951.977	1952-025	1952.434	1953.486	1955.266	1956.594	1998.500	1998.500	1998.500	1998.500	
	3	1975.500	1952.739	1952.077	1952.193	1952.566	1953.208	1954.050	1954.897	1955.272	1998,500	1998.500	1998.500	
	4	1952.426	1952.111	1952.009	1952.098	1952.386	1952.874	1953.543	1954.387	1955.243	1998.350	1998.350	1998.350	
	5	1975.200	1952.773	1951.976	1951.994	1952.198	1952.575	1953,105	1953.743	1954.423	1954.785	1998.200	1998.200	
	6	1976.200	1952.551	1951.949	1551.958	1952.125	1952-468	1952.997	1953.723	1954.665	1955.395	1998.150	1998.150	
	7	1977.200	1952.642	1952.284	1952.112	1952.157	1952.414	1952.885	1953.593	1954.582	1955.737	1998.100	1998.100	
	8	1977,900	1977.900	1952.967	1952.223	1952.177	1952.309	1952.622	1953.097	1953.693	1954.304	1954.637	1997.500	
	9	1978.600	1978.600	1952-995	1952.574	1952.313	1952.306	1952.518	1952.933	1953.536	1954.320	1954.898	1996.900	
	10	1978.800	1978.800	1978,800	1953.180	1952.294	1952.243	1952.423	1952.819	1953.433	1954.263	1954.990	1996.700	
	11	1979.000	1979.000	1979.000	1952.812	1952.145	1952.106	1952.271	1952.646	1953.234	1954.039	1954.877	1996.500	
	12	1979.000	1979.000	1979-000	1952-298	1952,050	1951-992	1952.105	1952.419	1952.948	1953.706	1954.576	1996.500	
	13	1979,000	1979.000	1979.000	1979.000	1952.889	1952-037	1951.971	1952.136	1952.532	1953.184	1954.134	1996.500	
	14	1978.900	1978.900	1978.900	1978.900	1952.518	1951.881	1951.754	1951.762	1951.905	1952.154	1952.434	1952.719	
	15	1978, 200	1978.800	1978.800	1978.800	1952.616	1952-211	1951.858	1951.700	1951.705	1951.843	1952.070	1952.472	
	16	1978.400	1978.400	1978.400	1978.400	1978.400	1953.045	1952.056	1951.847	1951.840	1952.027	1952.410	1952.858	
	17	1978.000	1978.000	1978.000	1978.000	1978.000	1953-102	1952.256	1952.057	1952,065	1952.276	1952.701	1953,158	
	18	1976.900	1976.900	1976, 900	1976.900	1976.900	1953.136	1952.462	1952.313	1952.324	1952.507	1952.911	1953.372	
	19	1975.800	1975.800	1975.800	1975.800	1975.800	1953.324	1952.832	1952.803	1952.748	1952.700	1952.781	1953.206	
	20	1974.850	1974.850	1974-850	1974.850	1974.850	1954-561	1954.164	1954.240	1953.993	.1953.241	1951.490	1951.804	
	21	1973.900	1973.900	1973.900	1973.900	1973-900	1957.775	1957.516	1957.746	1958.091	1958.703	1959.905	1993.500	
	22	1973.050	1973.050	1973.050	1973.050	1973.050	1973.050	1961.964	1961.430	1561.720	1962.350	1963-259	1992.500	
	23	1972.200	1972.200	1972.200	1972.200	1972.200	1972.200	.1964.589	1964.200	1964.502	1955.118	1965.892	1991.500	
	24	1971.700	1971.700	1971.700	1971.700	1971.700	1971.700	1966.511	1966.190	1966.494	1967.083	1967.724	1990.050	
i	25	1971.200	1971.200	1971.200	1971-200	1971-200	1971-200	1967.716	1967.465	1967.779	1968.332	1968.830	1988.600	
	26	1971.200	1971.200	1971.200	1971.200	1971.200	1971.200	1968.448	1968.229	1968.516	1968.977	1969.291	1986.900	
	27	1971.200	1971,200	1971.200	1971-200	1971-200	1971-200	1968.870	1968.667	1958.955	1969.393	1969.587	1985.200	
	28	1970.900	1970.900	1970.900	1970.900	1970.900	1970.900	1968,947	1968.775	1969.177	1969.767	1983.350	1983.350	
	25	1970,600	1970.600	1970.600	1970.600	1970.600	1967.701	1967.559	1968.160	1968.719	1969.154	1981.500	1981.500	
	30	1969.650	1969.650	1969.650	1969.650	1969.650	1967.812	1967.677	1968,029	1968.427	1968.678	1979.550	1979.550	
	31	1968.700	1968,700	1965.700	1968.700	1968.700	1967:801	1967.692	1968.010	1968.461	1977.600	1977.600	1977.600	
.:	32	1968.350	1968.350	1968.350	1968.350	1968.350	1967.504	1967.411	1967.693	1968.015	1975.800	1975.800	1975.800	
	33	1968.000	1958.000	1968.000	1968.000	1968-000	1966.953	1966.863	1967.124	1967.305	1974.000	1974.000	1974.000	
	34	1967.250	1967.250	1967.250	1967.250	1965,681	1965.583	1966.057	1966-424	1972.500	1972.500	1972.500	1972.500	
	35	1966.500	1966.500	1966.500	1966.500	1965.678	1965.598	1965.867	1966.046	1970.500	1970.500	1970.500	1970.500	
٠,	36	1965.750	1965.750	1965.750	1965.750	1955.290	1965.337	1966.127	1966.188	1969.000	1969.000	1969.000	1969.000	
	37	1965.000	1965.000	1965.000	1965.000	1963.041	1962.869	1963.242	1967.500	1967.500	1967.500	1967.500	1967.500	
٠,	38	1964.250	1964.250	1964.250	1962.083	1961.991	1962.668	1962.783	1965.850	1965.850	1965.850	1965.850	1965.850	

1963.500 1963.500 1963.500 1961.049 1960.837 1961.189 1964.200 1964.200 1964.200 1964.200 1964.200 1964.200 1963.000 1963.000 1963.000 1982.000 1961.034 1982.000 1963.000 1963.000 1963.000 1963.000 1963.000

```
SUM= 0.75354E 02
ITERATION = 51
                   SUM= 0.71660E 02
ITERATION = 52
ITERATION =
                   SUM= 0.68604F 02
             53
                   SUM= 0.65328E 02
ITERATION =
             54
ITERATION =
             55
                   SUM= 0.62547E 02
ITERATION = 56
                   SUM= 0.59759E 02
ITERATION = 57
                   SUM= 0.57002E
ITERATION =
             58
                   SUM= 0.54649E
                                  02
                   SUM= 0.52126E 02
ITERATION = 59
                   SUM= 0.49842E 02
ITERATION = 60
ITERATION = 61
                   SUM= 0.47804E 02
                   SUM= 0.45589E
ITERATION = 62
                                  02
ITERATION =
             63
                   SUM= 0.43684E
                                  02
                   SUM= 0.41854E 02
ITERATION = 64
ITERATION = 65
                   SUM= 0.39955E
                                  02
                   SUM= 0.38292E
ITERATION = 66
                                  02
ITERATION = 67
                   SUM= 0.36718E 02
ITERATION =
             68
                   SUM= 0.35006E
                                  02
                   SUM= 0.33649E
ITERATION = 69
                                  02
ITERATION = 70
                   SUM= 0.32085E 02
ITERATION = 71
                   SUM= 0.30886E 02
ITERATION = 72
                   SUM= 0.29443E
                   SUM= 0.28252E
ITERATION = 73
                                  02
ITERATION = 74
                   SUM= 0.27132E 02
ITERATION = 75
                   SUM= 0.25903E 02
                   SUM= 0.24887E 02
ITERATION = 76
ITERATION = 77
                   SUM= 0.23816E 02
                   SUM= 0.22734E
ITERATION = 78
                                  02
ITERATION = 79
                   SUM= 0.21840E 02
ITERATION = 80
                   SUM= 0.20906E 02
ITERATION = 81
                   SUM= 0.20005E 02
ITERATION = 82
                   SUM= 0.1915BE 02
ITERATION =
            83
                   SUM= 0.18422E
                                  02
ITERATION = 84
                   SUM= 0.17635E 02
ITERATION = 85
                   SUM= 0.16858E 02
ITERATION = 86
                   SUM= 0.16230E 02
ITERATION = 87
                   SUM= 0.15522E 02
ITERATION =
            -8.8
                   SUM= 0.14850E
                                  02
TTERATION = 89
                   SUM= 0.14329E 02
ITERATION = 90
                   SUM= 0.13595E 02
                   SUM= 0.13116E 02
ITERATION = 91
ITERATION =
            92
                   SUM= 0.12549E
                                  02
ITERATION =
                   SUM= 0.12022E
            93
                                  02
                   SUM= 0.11503E
ITERATION = 94
                                 02
                   SUM= 0.11082E 02
ITERATION = 95
ITERATION = 96
                   SUM= 0.10578E
                                 02
ITERATION = 97
                 -- SUM= 0.10145E 02
ITERATION = 98
                   SUM= 0.97.095E
                                  0.1
ITERATION = 99
                   SUM= 0.930365 01
                   SUM= 0.89175E 01
ITERATION =100
```

TEMPERAT	HEF	ΛT	COIN	DOINTS

j: I		2	3 .	4.	5	6	7	8	9	10	11	12
1	1961.000	1961.000	1961.000	1968.999	1968.609	1969.437	1961.000	1961.000	1961.000	1961.000	1961.000	1961.000
2	1966.000	1969.377	1969.282	1969.435	1969.778	1970.541	1971.797	1972.674	1998,500	1998.500	1998.500	1998-500
3	1975.500	1970.565	1970.328	1976.461	1970.771	1971.261	1971.891	1972.538	1972.720	1998.500	1998.500	1998.500
4	1970.979	1970.880	1970.904	1971.048	1971.313	1971.694	1972.173	1972.729	1973.219	1998.350	1998.350	1998.350
5	1975.200	1971.438	1971.289	1971,440	1971.681	1972.007	1972.409	1972.869	1973.360	1973.519	1998.200	1998.200
6	1976.200	1971.759	1971.627	1971.777	1971.998	1972.302	1972.691	1973.169	1973.742	1974.115	1998.150	1998.150
7	1977.200	1972.153	1972.052	1972.121	1972.288	1972.545	1972.899	1973.357	1973.939	1974.554	1998.100	1998.100
8	1977.900	1977.900	1972.562	1972.390	1972.508	1972.706	1972.985	1973.336	1973.749	1974.186	1974.324	1997.500
9	1978.600	1978.600	1972.821	1972.699	1972.717	1972-844	1973.063	1973.370	1973.757	1974.219	1974.488	1996.900
10	1978.800	1978.800	1978.800	1973.033	1972.808	1972.908	1973.102	1973.384	1973.753	1974.209	1974.557	1996.700
11	1979.000	1979.000	1979.000	1973.002	1972.817	1972.911	1973.086	1973.346	1973.689	1974.117	1974.522	1996.500
12	1979.000	1979.000	1979.000	1972.936	1972.846	1972.903	1973.042	1973.265	1973.577	1973.979	1974.400	1996.500
13	1979.000	1979.000	1979.000	1979.000	1973.107	1972-878	1972.961	1973.134	1973.396	1973.755	1974.220	1996.500
14	1978.900	1,978.900	1978.900	1978.900	1972.948	1972.766	1972.835	1972.956	1973.129	1973.345	1973.575	1973-684
15	1978.800	1978.800	1978.800	1978.800	1972.953	1972-829	1972.817	1972.880	1973.009	1973.191	1973.409	1973.576
16	1978.400	1978.400	1978.400	1978.400	1978.400	1973.055	1972.807	1972.859	1972.991	1973.198	1973.482	1973.672
17	1978.000	1978.000	1978.000	1978.000	1978.000	1972.971	1972.760	1972.825	1972.973	1973.201	1973.510	1973.702
18	1976.900	1976.900	1976.900	1976.900	1976.900	1972-824	1972.662	1972.766	1972.932	1973.164	1973.478	1973.669
19	1975,800	1975.800	1975.800	1975.800	1975.800	1972.699	1972.583	1972.748	1972.909	1973.079	1973.299	1973.470
20	1974.850	1974.850	1974.850	1974.850	1974.850	1972-896	1972.806	1973.015	1973.125	1973.077	1972.710	1972.817
21	1973.900	1973.900	1973.900	1973.900	1973.900	1973.716	1973.653	1973.925	1974.233	1974.627	1975.210	1993.500
22	1973-050	1973.050	1973.050	1973.050	1973.050	1973-050	1974.827	1974.873	1975.176	1975.587	1976.073	1992.500
23	1972.200	1972.200	1972.200	1972.200	1572.200	1972.200	1975.423	1975.508	1975.821	1976.237	1976.658	1991.500
24	1971.700	1971.700	1971.700	1971.700	1971.700	1971.700	1975.765	1975.867	1976.182	1976.586	1976.932	1990.050
25	1971-200	1971.200	1971.200	1571.200	1971.200	1971.200	1975.843	1975.967	1976.278	1976.669	1976.929	1988.600
26	1971-200	1971-200	1971-200	1971.200	1571-200	1971-200	1975.728	1975.852	1976.141	1976.495	1976.635	1986.900
27	1971.200	1971.200	1971.200	1971.200	1971.200	1971.200	1975.397	1975.529	1975.808	1976.154	1975.220	1985.200
28	1970.900	1970.900	1970.900	1,970.900	1970.900	1970.900	1974.817	1974.981	1975.272	1975.597	1983.350	1983.350
29	1970.600	1970.600	1970.600	1970.600	1970.600	1973.882	1973.888	1974.164	1974.470	1974.684	1981.500	1981.500
30	1969.650	1969-650	1969.650	1969.650	1969.650	1972.992	1973.039	1973.278	1973.542	1973.649	1979.550	1979.550
31	1968.700	1968.700	1968.700	1968.700	1968.700	1972.068	1972.145	1972.330	1972.470	1977.600	1977.600	1977.600
32	1968.350	1968.350	1968.350	1968.350	1968.350	1971.282	1971.391	1971.592	1971.758	1975.800	1975.800	1975.800
33	1968.000	1968.000	1968.000	1968.000	1968.000	1970.461	1970.593	1970.774	1970.843	1974.000	1974-000	1974.000
34	1967.250	1967,250	1967-250	1967.250	1969.544	1969.548	1969.733	1969.905	1972.500	1972.500	1972.500	1972.500
35	1966,500	1966.500	1966.500	1966.500	1968.596	1968.752	1968.920	1969.009	1970.500	1970.500	1970.500	1970.500
36	1965.750	1965.750	1965.750	1965.750	1967.903	1968-015	1968.267	1968.281	1969.000	1969.000	1969.000	1969.000
3,7	1965.000	1965.000	1965.000	1965.000	1966.843	1966.975	1967.066	1967.500	1967.500	1967.500	1967.500	1967.500
38	1964.250	1964.250	1964.250	1965.884	1965.890	1965.944	1965.984	1965.850	1965.850	1965.650	1965-850	1965.850
35	1963.500	1963,500	1963.500	1965,565	1965.605	1965-618	1964.200	1964-200	1964.200	1964.200	1964.200	1964.200
40	1963.000	1963.000	1963.000	1982.000	1965.501	1982.000	1963.000	1963.000	1963.000	1963.000	1963.000	1963.000

ORIGINAL PAGE IS OF POOR QUALITY

```
. ITERATION =101
                    SUM= 0.85878E 01
 ITERATION =102
                    SUM= 0.81821E 01
 ITERATION =103
                    SUM= 0.78801E 01
 ITERATION =104
                    SUM= 0.75418E 01
 ITERATION =105
                    SUM= 0.72450E 01
 ITERATION =106
                    SUM= 0.69065E 01
 ITERATION =107
                    SUM= 0.66719E 01
 ITERATION =108
                    SUM= 0.63550E 01
 ITERATION =109
                    SUM= 0.61287E 01
 ITERATION =110
                    SUM= 0.58460E 01
 ITERATION =111
                    SUM= 0.56228E 01
 ITERATION =112
                    SUM= 0.53530E 01
 ITERATION =113
                    SUM= 0.51897E 01
 ITERATION =114
                    SUM= 0.49356E 01
ITERATION =115
                    SUM= 0.47412E 01
ITERATION =116
                    SUM= 0.45443E 01
ITERATION =117
                    SUM= 0.43495E 01
ITERATION =118
                    SUM= 0.41741E 01
ITERATION =119
                    SUM= 0.40085E 01
ITERATION =120
                    SUM= 0.38259E 01
ITERATION = 121
                    SUM= 0.36889E 01
ITERATION =122
                    SUM= 0.35259E 01
                    SUM= 0.33984E 01
ITERATION =123
                    SUM= 0.32260E 01
ITERATION =124
                    SUM= 0.30942E 01
ITERATION =125
ITERATION =126
                    SUM= 0.29916E 01
ITERATION =127
                    SUM= 0.28456E 01
ITERATION =128
                    SUM= 0.27564E 01
ITERATION =129
                    SUM= 0.26040E 01
ITERATION =130
                    SUM= 0.25450E 01
ITERATION =131
                    SUM= 0.23825E 01
ITERATION =132
                    SUM= 0.23447E
                                  01
ITERATION =133
                    SUM= 0.22002E 01
ITERATION =134
                    SUM= 0.21550E 01
ITERATION =135
                    SUM= 0.20353E 01
ITERATION =136
                    SUM= 0.19933E 01
ITERATION =137
                    SUM= 0.18697E 01
ITERATION =138
                    SUM= 0.18322E 01
ITERATION =139
                    SUM= 0.17353E 01
ITERATION =140
                    SUM= 0.16836E 01
ITERATION =141
                    SUM= 0.15795E 01
ITERATION =142
                    SUM= 0.15358E 01
ITERATION =143
                   SUM= 0.14590E 01
ITERATION =144
                    SUM= 0.13990E 01
ITERATION =145
                    SUM= 0.13506E 01
ITERATION =146
                    SUM= 0.12773E 01
ITERATION =147
                    SUM= 0.12664E 01
ITERATION =148
                    SUM= 0.11726E 01
ITERATION =149
                    SUM= 0.11372E 01
 ITERATION =150
                    SUM= 0.10899E 01
```

TEMPERATURE AT GRID POINTS	TF	MPF	RATURE	Αт	GRID	PRINTS
----------------------------	----	-----	--------	----	------	--------

j= I	1	2	3	4	5	6	7	8	9	10	11	12
i	1961.000	1961-000	1961.000	1974.476	1974.154	1974.833	961.000	1961.000	1961.000	1951.000	1961.000	1961.000
2	1966.000	1975.403	1975.392	1975.583	1975.901	1976.566	1977.641	1978.361	1998.500	1998.500	1998.500	1998,500
3	1975.500	1976.879	1976.789	1976.929	1977.218	1977.656	1978.212	1978.791	1978.908	1998.500	1998.500	1998.500
4	1977.564	1977.541	1977.612	1977.777	1978.035	1978.378	1978.790	1979.248	1979.610	1998.350	1998.350	1998.350
5	1975.200	1978.079	1978.160	1978.363	1978.617	1978.927	1979.286	1979.683	1980.110	1980.198	1998.200	1998.200
6	1976.200	1978.611	1978.647	1978.849	1979.093	1979.384	1979.725	1980.115	1980,560	1980,806	1998.150	1998.150
7	1977.200	1979.132	1979.123	1979.282	1979.491	1979.751	1980.065	1980.436	1980.974	1981.297	1999.100	1998.100
8	1977.900	1977.900	1979,587	1979.623	1979.799	1980.019	1980-284	1980.594	1980,945	1981.323	1981.390	1997.500
9	1978.600	1978.600	1979.930	1979.919	1,980.039	1980-213	1980.437	1980.706	1981.011	1981.356	1981.512	1996.900
10	1978.800	1978.800	1978-800	1980-163	1980.177	1980.327	1980.522	1980.762	1981.041	1981.360	1981.569	1996.700
11	1979.000	1979.000	1979.000	1980.248	1980.238	1980.375	1980.548	1980.762	1981.015	1981.306	1981.554	1996.500
12	1979.000	1979.000	1979.000	1980.326	1980.295	1980.386	1980.527	1980.714	1980,944	1991.215	1991.473	1996.500
13	1979.000	1979.000	1979.000	1979.000	1980.312	1980.305	1980.435	1980.605	1990.814	1981.065	1991.353	1996.500
14	1978.900	1978.900	1978.900	1978.900	1980-184	1980.166	1980.293	1980.447	1980.628	1980.332	1981.045	1991.089
15	1978.800	1978.800	1976.800	1978.800	1980.088	1980.064	1980.158	1980.294	1980.463	1980.660	1980-879	1980-959
16	1978.400	1978.400	1978.400	1978.400	1978.400	1979.976	1979.981	1980.116	1980.275	1980.510	1980.765	1980.862
17	1978.000	1978.000	1978.000,	1978.000	1978.000	1975.730	1979.733	1979.882	1980.075	1980.366	1980.578	1980.678
18	1976.900	1976.900	1976.900	1976.900	1976.900	1979.395	1979.403	1979.582	1979, 794	1980.041	1980.325	1980.427
19	1975.800	1975.800	1975.800	1975.800	1975.800	1979.022	1979.029	1979.252	1979.479	1979.718	1979.979	1980.067
20	1974.850	1974.850	1974.850	1974.850	1974.850	1978.732	1978.738	1978.991	1979.213	1979.386	1979.458	1979,501
21	1973.900	1273.900	1973.900	1973.900	1973.900	1978.658	1978.653	1978.937	1979.234	1979.563	1979.954	1993.500
22	1973.050	1973.050	1973.050	1973.050	1973.050	1973.050	1978.673	1978.885	1979.195	1979.548	1979.915	1992.500
23	1972.200	1972.200	1972.200	1972.200	1972.200	1972.200	1978.500	1978.709	1979.035	1979.403	1979.734	1991.500
24	1971.700	1971.700	1971.700	1971.700	1971.700	1971.700	1978.214	1978.423	1978.750	1979.116	1979.394	1990.050
25	1971-200	1971.200	1971.200	1971.200	1571.200	1971.200	1977.810	1978.020	1978.344	1978.705	1978-919	1986.600
26	1971.200	1971-200	1971-200	1971.200	1971-200	1571-200	1977.311	1977.503	1977.805	1978.144	1978,256	1986.900
27	1971.200	1971.200	1971.200	1971.200	1971.200	1571.200	1976.651	1976.844	1977.130	1977.460	1977.508	1985.200
28	1970.900	1970-900	1970-900	1970.900	1970.900	1970.900	1975.802	1976.022	1976,309	1976.602	1983.350	1983.350
29	1970.600	1970-600	1970.600	1970.600	1970.600	1974.740	1974.762	1975.024	1975.312	1975.504	1981.500	1981.500
30	1965-650	1969-650	1969-650	1969.650	1969.650	1973.633	1973.700	1973.937	1974.190	1974.285	1979.550	1979.550
31	1968.700	1968.700	1968.700	1968.700	1968.700	1972.529	1972.626	1972.800	1972.907	1977.600	1977.600	1977.600
32	1968.350	1968.350	1968.350	1968.350	1968.350	1971-643	1971.772	1971.972	1972,126	1975.800	1975,800	1975.800
33	1568.000	1968.000	1968.000	1968.000	1968.000	1970.758	1970.908	1971.088	1971.152	1974.000	1974.000	1974.000
34	1967.250	1967-250	1967-250	1967.250	1969.822	1969.833	1970.005	1970.166	1972.500	1972.500	1972.500	1972.500
35	1966.500	1966.500	1966.500	1966.500	1968.905	1968,971	1969.134	1969.216	1970.500	1970.500	1970.500	1970.500
36	1965.750	1965.750	1965.750	1965.750	1968.063	1968-181	1968.398	1968.411	1969.000	1969,000	1969.000	1969-000
37	1965.000	1965.000	1965.000	1965.000	1967.063	1967-212	1967.288	1967.500	1967.500	1967.500	1967.500	1967.500
38	1964.250	1964.250	1964.250	1966.106	1966-116	1966.131	1966.167	1965.850	1965.850	1965.850	1965.850	1965.850
39	1963.500	1963.500	1963.500	1965.821	1965.874	1965-870	1964.200	1964-200	1964.200	1964.200	1964.200	1964.200
40	1963.000	1963.000	1963.000	1982.000	1965.754	1982.000	1963.000	1963.000	1963.000	1963.000	1963.000	1963.000

```
SUM= 0.10474E 01
 ITERATION =151
· ITERATION =152
                    SUM= 0.10058E 01
 ITERATION =153
                    SUM= 0.97168E 00
 ITERATION =154
                    SUM= 0.91890E 00
 ITERATION =155
                    SUM= 0.90131E 00
 ITERATION =156
                    SUM= 0.84379E 00
 ITERATION =157
                    SUM= 0.82349E 00
 ITERATION =158
                    SUM= 0.77880E 00
 ITERATION =159
                    SUM= 0.74847E 00
 ITERATION =160
                    SUM= 0.71357E 00
 ITERATION =161
                    SUM= 0.68149E 00
 ITERATION =162
                    SUM= 0.66571E 00
 ITERATION =163
                    SUM= 0.62334E 00
 ITERATION =164
                    SUM= 0.61099E 00
 ITERATION =165
                    SUM= 0.58113E 00
 ITERATION =166
                    SUM= 0.55107E 00
 ITERATION =167
                    SUM= 0.54886E 00
 ITERATION =168
                    SUM= 0.51087E 00
 ITERATION =169
                    SUM= 0.50309E 00
                    SUM= 0.47725E 00
 ITERATION =170
 ITERATION =171
                    SUM= 0.46802E 00
 ITERATION =172
                    SUM= 0.43689E 00
 ITERATION =173
                    SUM= 0.43087E 00
 ITERATION =174
                    SUM= 0.40218E 00
 ITERATION =175
                    SUM= 0.38674E 00
                    SUM= 0.37460E 00
 TTERATION =176
 ITERATION =177
                    SUM= 0.35311E 00
 TTERATION =178
                    SUM= 0.34274E 00
 ITERATION =179
                    SUM= 0.33164E 00
 ITERATION =180
                    SUM= 0.31819E 00
 ITERATION =181
                    SUM= 0.30598E 00
                    SUM= 0.28902E 00
 ITERATION =182
 ITERATION =183
                    SUM= 0.28203E 00
 ITERATION =184
                    SUM= 0.26825E 00
                    SUM= 0.25814E 00
 ITERATION =185
 ITERATION =186
                    SUM= 0.25256E 00
 ITERATION =187
                    SUM= 0.24203E 00
 ITERATION =188
                    SUM= 0.22884E 00
 ITERATION =189
                    SUM= 0.21402E 00
                    SUM= 0.21737E 00
 ITERATION =190
 ITERATION =191
                    SUM= 0.20035E 00
 ITERATION =192
                    SUM= 0.20713E 00
 ITERATION =193
                    SUM= 0.19532E 00
ITERATION =194
                    SUM= 0.18889E 00
                    SUM= 0.18265E 00
 ITERATION =195
 ITERATION =196
                    SUM= 0.16749E 00
 ITERATION =197
                    SUM= 0.16794E 00
 ITERATION =198
                    SUM= 0.15877E 00
 ITERATION =199
                    SUM= 0.14928E 00
 ITERATION = 200
                    SUM= 0.14393E 00
```

TEMPERATURE AT GRID PO	O I NI	7
------------------------	--------	---

J=	1	2	3 .	4	5	6	7	8	9	10	11	12
1	1961.000	1961.000	1961.000	1976.419	1976.123	1976.750	1961.000	1961.000	1961.000	1961.000	1961.000	1961.000
2	1966.000	1977.541	1977.560	1977.765	1978.075	1978.706	1979.716	1980.380	1998.500	1998.500	1998.500	1998.500
3	1975.500	1979.118	1979.082	1979.224	1979.505	1979.926	1980.456	1981.010	1981.103	1598.500	1998.500	1998.500
4	1579.900	1979.905	1979.991	1960.165	1980.420	1980.750	1981.138	1981.560	1981-877	1998.350	1998.350	1998.350
5	1975.200	1980.433	1980.595	1980.816	1981,076	1981.379	1981.721	1982.097	1982.499	1982.559	1998.200	1998.200
6	1976.200	1981.034	1981-130	1981.351	1981.604	1981.889	1982.211	1982.571	1982.969	1983-169	1998.150	1998-150
7	1977.200	1981.597	1981.619	1981.809	1982.034	1982.295	1982.594	1982.934	1983.319	1983.673	1998.100	1998.100
8	1977.900	1977.900	1982.061	1982-169	1982.365	1982.593	1982.856	1983.151	1983.479	1983.636	1983.875	1997-500
9	1978,600	1978.600	1982.433	1982.459	1982.613	1982.804	1983.027	1983.280	1983.561	1983.865	1983.982	1996.900
10	1978.800	1978.800	1978.800	1982.659	1982.757	1982.926	1983.122	1983.345	1983.592	1983,863	1984.023	1996.700
.11	1979.000	1979.000	1979.000	1982.779	1982.830	1982.981	1983.152	1983.348	1983.570	1983.812	1984.003	1996.500
12	1979.000	1979.000	1979.000	1982.899	1982.888	1982.989	1983.129	1983.302	1983.502	1983.726	1983.926	1996.500
13	1979.000	1979.000	1979.000	1979.000	1982.807	1982.876	1983.020	1983.186	1983.375	1983.587	1983.814	1996.500
14	1978.900	1978.900	1978.900	1978.900	1982.674	1982.712	1982.856	1983.019	1983.201	1983.400	1983.611	1983.631
15	1978.800	1978-800	1978.800	1978.800	1982.524	1982.536	1982.667	1982.823	1983.004	1983.205	1983.423	1983.475
16	1978.400	1978.400	1978,400	1978.400	1978.400	1982.320	1982.412	1982.575	1982.767	1982.983	1983.228	1983.295
17	1978.000	1978.000	1978.000	1978.000	.1978.000	1982.004	1982.079	1982.254	1982.460	1982.692	1982.952	1983.021
18	1976.900	1976.900	1976.900	1976.900	1976.900	1981.589	1981.653	1981.857	1982.083	1982.333	1982.608	1982.679
15	1975.800	1975.800	1975.800	1975.800	1975.800	1981.116	1981.163	1981-404	1981.652	1981.911	1982.188	1982.249
20	1974.850	1974.850	1974.850	1974.850	1974.850	1980.649	1980.687	1960.955	1981.212	1901.456	1981.666	1981.689
21	1973.900	1973.900	1973.900	1973.900	1973.900	1980.273	1580.287	1980.574	1980-868	1981.176	1981.505	1993.500
22	1973-050	1973.050	1973.050	1973.050	1973.050	1973.050	1979.923	1980.187	1980.499	1980.832	1981.160	1992.500
23	1972.200	1972.200	1972.200	1972.200	1972.200	1972.200	1979.489	1979.739	1980-068	1980.419	1980.721	1991.500
24	1971.700	1971.700	1971.700	1971.700	1971.700	1971.700	1978.988	1979-230	1979.563	1979.918	1980.175	1990.050
25	1971.200	1971.200	1971.200	1971.200	1971.200	1971-200	1978.422	1978-658	1978.985	1979.340	1979.540	1988.600
26	1971.200	1971.200	1971.200	1971.200	1971.200	1971.200	1977.792	1978.004	1978.307	1978.643	1978.746	1986.900
27	1971.200	1971.200	1971-200	1971-200	1971.200	1971.200	1977.017	1977.228	1977.518	1977.847	1977.892	1985.200
28	1970.900	1970.900	1970.900	1970.900	1970.900	1970.900	1976.075	1976.310	1976-598	1976.884	1983.350	1983.350
29	1970.600	1970.600	1970.600	1970.600	1970-600	1974.963	1974.986	1975.248	1975.532	1975.720	1981.500	1981.500
	.969.650	1969.650	1969.650	1969.650	1969.650	1973.791	1973.861	1974.101	1974.352	1974.445	1979.550	1979.550
a k	1968.700	1968.700	1968.700	1968.700	1968.700	1972.636	1972.737	1972.909	1973.001	1977.600	1977.600	1977.600
32	1968.350	1968,350	1968.350	1968.350	1968.350	1971.723	1571.855	1972-054	1972.207	1975.800	1975.800	1975-800
33	1968.000	1968.000	1968.000	1968.000	1968.000	1970.818	1970.972	1971-153	1971.215	1974.000	1974.000	1974.000
34	1967.250	1967.250	1967.250	1967.250	1969.879	1969.890	1970-060	1970.219	1972.500	1972.500	1972.500	1972.500
35	1966.500	1966,500	1966-500	1966.500	1968.943	1969.011	1969.173	1969.256	1970.500	1970.500	1970.500	1970.500
36	1965.750	1965.750	1965.750	1965.750	1968.087	1968.206	1968.424	1968.436	1969.000	1969.000	1969.000	1969.000
37	1965,000	1965.000	1965.000	1965.000	1967.080	1967.230	1967-307	1967.500	1967.500	1967.500	1967.500	1967.500
38	1964.250	1964.250	1964.250	1966.108	1966.119	1966-138	1966.174	1965.850	1965.850	1965.850	1965.850	1965.850
39	1963.500	1963.500	1963.500	1965.825	1965.880	1965.875	1964.200	1964.200	1964.200	1964,200	1964.200	1964.200
40	1963.000	1963.000	1963.000	1982.000	1965.759	1982.000	1963.000	1963.000	1963.000	1963.000	1963.000	1963.000

```
ITERATION =201
                   SUM= 0.13653E 00
ITERATION =202
                   SUM= 0.13276E 00
ITERATION =203
                   SUM= 0.12584F 00
ITERATION =204
                   SUM= 0.131485 00
ITERATION =205
                   SUM= 0.12049E 00
ITERATION =206
                   SUM= 0.12342E 00
ITERATION =207
                   SUM= 0.11000E 00
ITERATION =208
                   SUM= 0.10766E 00
ITERATION =209
                   SUM= 0.10171E 00
ITERATION =210
                   SUM= 0.101615 00
TTERATION =211
                   SUM= 0.91683E-01
ITERATION =212
                   SUM= 0.90595E-01
ITERATION =213
                   SUM= 0.84856E-01
                   SUM= 0.87407E-01
ITERATION =214
ITERATION =215
                   SUM= 0.81052E-01
ITERATION =216
                   SUM= 0.84283E-01
ITERATION =217
                   SUM= 0.80870E-01
ITERATION =218
                   SUM= 0.73778E-01
ITERATION =219
                   SUM= 0.74146E-01
ITERATION =220
                   SUM= 0.70855E-01
ITERATION =221
                   SUM= 0.66330E-01
ITERATION =222
                   SUM= 0.64120E-01
ITERATION =223
                   SUM= 0.61972E-01
ITERATION =224
                   SUM= 0.61971E-01
ITERATION =225
                   SUM= 0.65674E-01
ITERATION =226
                   SUM= 0.57977E-01
ITERATION =227
                   SUM= 0.56381E-01
ITERATION =228
                   SUM= 0.52466E-01
ITERATION =229
                   SUM= 0.519625-01
ITERATION =230
                   SUM= 0.53538E-01
ITERATION =231
                   SUM= 0.54815E-01
ITERATION =232
                   SUM= 0.56712E-01
ITERATION =233
                   SUM= 0.56410E-01
                   SUM= 0.53056E-01
ITERATION =234
ITERATION =235
                   SUM= 0.48655E-01
ITERATION =236
                   SUM= 0.43210E-01
ITERATION =237
                   SUM= 0.46932E-01
ITERATION =238
                   SUM= 0.53584E-01
ITERATION =239
                   SUM= 0.46352E-01
ITERATION =240
                   SUM= 0.43471E-01
ITERATION =241
                   SUM= 0.41423E-01
ITERATION =242
                   SUM= 0.438285-01
ITERATION =243
                   SUM= 0.371515-01
ITERATION =244
                   SUM= 0.368635-01
ITERATION =245
                   SUM= 0.406205-01
ITERATION =246
                   SUM= 0.42971E-01
ITERATION =247
                   SUM= 0.44084E-01
ITERATION =243
                   SUM= 0.37393E-01
ITERATION =249
                   SUM= 0.37546E-01
ITERATION =250
                   SUM= 0.37300E-01
```

TEMP	FRAT	URE	AT	GRID	POINTS	

j=	1	2	3	4	5	6	7	ß	9	10	11	12
1	1961.000	1961,000	1961.000	1977.104	1976.817	1977.423	1961.000	1961.000	1961.000	1961.000	1961.000	1961.000
2	1966.000	1978.295	1978.325	1978.535	1978.841	1979.458	1980.444	1981.089	1998.500	1998.500	1998.500	1778.500
3	1975.500	1979.904	1979.887	1980.031	1980.309	1980.722	1981.243	1981.786	1981.870	1998.500	1998.500	1998.500
4	1980.716	1980.730	1980.823	1980.999	1981.252	1981.577	1981.958	1982.367	1982.668	1998.350	1998.350	1998.350
5	1975.200	1981.255	1981.446	1981.673	1981.934	1982.235	1982.573	1982.939	1983.335	1983.388	1998.200	1978.200
6	1976.200	1981.882	1981.999	1982.226	1982.478	1982.762	1983.079	1983.426	1983,806	1983.990	1998.150	1998.150
7	1977-200	1982.456	1982.491	1982.691	1982.921	1983.181	1983.474	1983.802	1984,169	1984.499	1998-100	1998.100
8	1977.400	1977.900	1982.922	1983.055	1983.258	1983.490	1983.749	1984-039	1984.357	1984.710	1984.743	1997.500
9	1978.600	1978.600	1983.305	1983.344	1983.508	1983.703	1983.925	1984.175	1984.447	1984.739	1984.841	1996.900
10	1978.800	1978.800	1978.800	1983.527	1983.652	1983.825	1984.020	1984.239	1984.475	1964.730	1984.873	1996.700
11	1979.000	1979.000	1979.000	1983.651	1983.723	1983.8/7	1984.049	1984.240	1984.449	1984,674	1984.847	1996.500
12	1579.000	1979,000	1979.000	1983.778	1983.775	1983.880	1984.020	1984.188	1984.377	1984.585	1984.765	1996.500
13	1979.000	1979.000	1979.000	1979.000	1983.655	1983.751	1983.900	1984.068	1984.251	1984.448	1984.654	1996.500
14	1978.900	1978.900	1978.900	1978.900	1983.523	1983.579	1983.732	1983.897	1984.080	1984.277	1984.484	1984.497
15	1978.800	1978.800	1978.800	1978.800	1983.355	1983.377	1983.519	1983.684	1983.869	1984.073	1984-293	1984.335
16	1978.400	1978.400	1978.400	1978.400	1976.400	1983.117	1983.236	1983.407	1983.603	1983.823	1984.064	1984.120
17	1978.000	1978.000	1978.000	1978.000	1978.000	1982.771	1982.871	1983-054	1983.264	1983.498	1983.753	1983.812
18	1976.900	1976.900	1976-900	1976.900	1976.900	1982.326	1982-409	1982-620	1982.852	1983.103	1983.375	1963.436
19	1975.800	1975.800	1975.800	1975.800	1975.800	1981.817	1981.877	1982.124	1982.380	1982.645	1982-926	1982.979
80	1974.950	1974.850	1974-850	1974.850	1974.850	1981.291	1981.338	1981.609	1981.880	1982.147	1982.403	1992.419
21	1973.900	1973.900	1973.900	1973.900	1973.900	1980.810	1980-830	1981.118	1981.411	1981.711	1982.020	1993.500
22	1973.050	1973.050	1973.050	1973.050	1973.050	1973.050	1980.336	1980,618	1980.932	1981.259	1981.575	1992.500
23	1972.200	1972.200	1972.200	1972.200	1972.200	1972.200	1979.813	1980.075	1980.407	1980.755	1981-049	1991.500
24	1971.700	1971.700	1971.700	1971.700	1971.700	1971-700	1979-240	1979.493	1979.827	1980.178	1980.428	1990.050
25	1971.200	1971.200	1971.200	1971.200	1971.200	1571.200	1978.618	1978.863	1979.190	1979.542	1979.737	1988.600
26	1971.200	1971,200	1971-200	1971.200	1971.200	1971-200	1977.943	1978.161	1978.466	1978.800	1978.902	1986.900
27	1971.200	1971.200	1971.200	1971.200	1971.200	1571-200		1977.347	1977.639	1977.967	1978-010	1985.200
28	1970.900	1970.900	1970-900	1,970.900	1970.900	1970.900	1976.156	1976.395	1976.685	1976.969	1983.350	1983.350
25		1970.600	1970.600	1970.600			1975.035			1975.777	1981-500	1981.500
30	1969.650	1969.650	1969.650	1969,650				1974.140			1979.550	1979.550
31	1968.700	1968.700	1968.700	1968.700	1968.700	1972.657		1972.932	1973.022	1977.600	1977.600	1977.600
32	1968.350	1968.350	1968.350	1968.350	1968.350	1971.738		1972.071	1972.224	1975.800	1975.800	1975.800
33	1968.000	1968.000	1968.000	1968.000	1968.000	1970.826	1970.982		1971.224	1974.000	1974.000	1974.000
34	1967-250	1967.250	1967.250	1967.250	1969.881	1969,892	1970.062	1970.222	1972.500	1972.500	1972.500	1972.500
35	1966.500	1966.500	1966,500	1966.500	1968.944	1969-010		1969.257	1970.500	1970.500	1970.500	1970.500
36	1965-750	1965.750	1965.750	1965.750	1968.093	1968-213	1968.428	1968,438	1969.000	1969.000	1969.000	1969.000
37	1965.000	1965.000	1965.000	1965.000	1967.085	1967.237	1967.313	1967.500	1967.500	1967.500	1967.500	1967.500
38	1964-250	1964.250	1964.250	1966-113	1966.124	1966-142	1966.177	1965.850	1965.850	1965.850	1965.850	1965.850
3.9	1963.500	1963.500	1963.500	1965.833	1965.887	1965-882	1964.200	1964.200	1964.200	1964.200	1964.200	1964.200
40	1963.000	1963.000	1963.000	1982.000	1965.766	1982.000	1963.000	1963.000	1963.000	1963.000	1963.000	1963.000

```
ITERATION =251
                   SUM= 0.38978E-01
ITERATION =252
                   SUM= 0.35360E-01
ITERATION =253
                   SUM= 0.34429E-01
ITERATION =254
                   SUM= 0.41140E-01
                   SUM= 0.38234F-01
ITERATION =255
ITERATION =256
                   SUM= 0.33365E-01
                   SUM= 0.32531E-01
ITERATION =257
ITERATION =258
                   SUM= 0.26938E-01
ITERATION =259
                   SUM= 0.26548E-01
TTERATION =260
                   SUM= 0.30519E-01
ITERATION =261
                   SUM= 0.25117E-01
ITERATION =262
                   SUM= 0.27695E-01
ITERATION =263
                   SUM= 0.28535E-01
                   SUM= 0.25115E-01
ITERATION =264
ITERATION =265
                   SUM= 0.28758E-01
ITERATION =266
                   SUM= 0.26751E-01
ITERATION =267
                   SUM= 0.23366E-01
ITERATION =268
                   SUM= 0.25677E-01
ITERATION =269
                   SUM= 0.23795E-01
ITERATION =270
                   SUM= 0.24985E-01
ITERATION =271
                   SUM= 0.21331E-01
ITERATION =272
                   SUM= 0.22153E-01
ITERATION =273
                   SUM= 0.21594E-01
ITERATION =274
                   SUM= 0.23230E-01
ITERATION =275
                   SUM= 0.25258E-01
ITERATION =276
                   SUM= 0.27588E-01
ITERATION =277
                   SUM= 0.24965E-01
ITERATION =278
                   SUM= 0.19849E-01
```

THE FINAL ITERATIVE

TEMPERATURE AT GRID POINTS

,	FMPERATURE	AI GKID P	UINIS										
J= I	. 1	2	3	4	5	6	7	8	9	10	11	12	
1	1961.000	1961.000	1961.000	1977.264	1976.979	1977.580	1961.000	1961.000	1961.000	1961.000	1961,000	1961.000	
2	1966.000	1978.469	1978.503	1978.715	1979.020	1979.634	1980-615	1981.255	1998.500	1998.500	1998.500	1998.500	
3	1975.500	1980.090	1980.077	1980.219	1980.498	1980.910	1981.427	1981.971	1982.055	1998.500	1998.500	1998.500	
4	1980.912	1980.928	1981.021	i981.197	1981.451	1981.774	1982.151	1982.558	1982.856	1998.350	1998.350	1998.350	
5	1975.200	1981.451	1981.649	1981.876	1982.138	1982.437	1982.773	1983.140	1983.532	1983.583	1998-200	1998.200	
ŧ	1976.200	1982.083	1902.204	1982.432	1982-687	1982.969	1983.284	1983.629	1984.007	1984.188	1998.150	1998.150	
7	1977.200	1982.662	1982.698	1982.900	1983.132	1983.392	1983.683	1984.009	1984.371	1984,695	1993,100	1998.100	
8	1977.900	1977.900	1983.129	1983.267	1983.471	1983.703	1983.962	1984.250	1984, 565	1984.914	1984.944	1997.500	
9	1978.600	1978.600	1983.510	1983.552	1983.720	1983.916	1984.139	1984.385	1984,653	1934.940	1985.041	1596.900	
10	1978.800	1978-800	1978.800	1983.730	1983.863	1984.037	1984,232	1984.447	1984.661	1964.932	1985.071	1996.700	
11	1979.000	1979.000	1979.000	1983.857	1983.933	1984.089	1984.259	1984.449	1984.655	1984.876	1985.043	1996.500	
12	1979.000	1979.000	1979.000	1983.987	1983.986	1984.089	1984.230	1984.396	1984.583	1984.787	1984.962	1996.500	
13	1979.000	1979.000	1979.000	1979.000	1983.657	1983.958	1984-108	1984.273	1984.455	1984.651	1984.850	1996.500	
14	1578.900	1978.900	1978.900	1978.900	1983.721	1983.782	1983.935	1984.102	1984.284	1984.481	1984.690	1984.701	
15	1978.800	1978.800	1978.800	1978.800	1983.550	1983.575	1983.719	1983.885	1984.070	1984.272	1984.490	1984.530	
16	1978.400	1978-400	1978.400	1978.400	1978.400	1983.303	1983.429	1983.602	1983,797	1984.016	1984.254	1984.307	
17	1978.000	1978.000	1978.000	1978.000	1978.000	1982.949	1983.055	1983.243	1983,453	1983.687	1983,941	1983.996	
18	1976.900	1976.900	1976.900	1976.900	1976.900	1982.496	1982-584	1982.797	1983.032	1983.284	1983.555	1983.614	
15	1975.800	1975.800	1975.800	1975.800	1975.800	1981-982	1982-043	1982.292	1982.550	1982.817	1963.099	1983.149	
2 C	1974.850	1974.850	1974-850	1974.850	1974.850	1981-438	1981.488	1981.760	1982.034	1982.304	1982.567	1982.581	
21 .	1973.900	1973.900	1973.900	1973.900	1973.900	1980.929	1980.950	1981.241	1981.535	1981.834	1982.136	1993.500	
22	1973.050	1973.050	1973.050	1973.050	1973.050	1973.050	1980-429	1980.716	1981.030	1981.357	1981.670	1992.500	
23	1972.200	1972.200	1972.200	1972.200	1572.200	1972.200	1979.888	1980.155	1980.487	1980.833	1981-124	1991.500	
24	1971.700	1971.700	1971.700	1971.700	1971.700	1971.700	1979.302	1979.557	1979.892	1980.242	1980.490	1990.050	
25	1971.200	1971.200	1971.200	1971.200	1971.200	1971-200	1978.667	1978-914	1979.242	1979.594	1979.788	1988.600	
26	1971.200	1971-200	1971.200	1971-200	1971.200.	1971-200	1977.982	1978.203	1978.507	1978.841	1978.942	1986.900	
27	1971-200	1971-200	1,971.200	1971.200	1971.200	1971.200	1977-162	1977.379	1977.672	1977.997	1978-038	1905.200	
28	1970.900	1970.900	1970.900	1970.900	1970.900	1970.900	1976.185	1976.426	1976.713	1976.996	1983.350	1963,350	
25	1970.600	1970.600	1970.600	1970.600	1970.600	1975-046	1975.073	1975.335	1975.620	1975.806	1981.500	1981.500	
30	1969.650	1969.650	1969.650	1969.650	1969.650	1973.847	1973.920	1974.161	1974.414	1974.507	1979.550	1979.550	
31	1968.700	1968.700	1968.700	1968.700	1968.700	1972-669	1972.769	1972.944	1973.033	1977.600	1977,600	1977.600	
32	1968.350	1968.350	1968.350	1968.350	1968.350	1971-743	1971.876	1972.077	1972.231	1975.800	1975.800	1975.800	
33	1968.000	1968.000	1968-000	1968.000	1968.000	1970.830	1970.986	1971.167	1971.229	1974.000	1974.000	1974.000	
34	1967.250	1967.250	1967-250	1967.250	1969.881	1969-892	1970-064	1970.224	1972.500	1972.500	1972.500	1972.500	
35	1966.500	1966-500	1966.500	1966.500	1968.941	1969.008	1969.173	1969.257	1970-500	1970.500	1970-500	1970.500	
36	1965.750	1965.750	1965.750	1965.750	1968.093	1968-212	1968.431	1968.442	1969.000	1969.000	1969.000	1969.000	
37	1965.000	1965-000	1965.000	1965.000	1967.084	1967-235	1967.312	1967.500	1967.500	1967.500	1967.500	1967.500	
38	1964-250	1964, 250	1964.250	1966.113	1966.124	1966-142	1966-177	1965.850	1965.850	1965.850	1965.850	1965.850	
39	1963.500	1963.500	1963.500	1965.833	1965.887	1965.883	1964.200	1964.200	1964.200	1964.200	1964.200	1964.200	
40	1963.000	1963.000	1963.000	1982.000	1965.767	1982.000	1963.000	1963.000	1963.000	1963.000	1963.000	1963.000	

ISOTHERMAL LINE LOCATIONS T-HIGH FRAC I T T-LOW 0.9352 1979.0198 2 4 1979 1978.7146 1980.6155 0.3732 2 6 1980 1979.6335 2 7 1981 1980.6155 1981.2554 0.6009 3 0.1744 6 1981 1980,9097 1981.4275 0.3450 3 8 1982 1982.0547 1981.9712 0.7702 4 2 1981 1981.0215 1980,9280 4 0.5995 6 1982 1981.7742 1982-1509 5 1982.1379 0.4734 4 1982 1981.876C 5 0.6178 7 1983 1982,7734 1983.1401 6 0.0971 6 1983 1982,9695 1983.2837 6 1984.0066 0.9825 8 1984 1983.6292 7 4 1983 1982.9004 1983.1318 0.4304 7 0.9716 7 1984 1983.6831 1984.0093 8 7 1984 1983.9622 1984.2495 0.1317 9 0.3764 6 1984 1983.9160 1984,1392 9 0.5961 10 1985 1984.9402 1985.0405 10 5 1984 1983.8633 1984,0369 0.7876 10 10 1985 1984.9324 1985.0713 0.4863 5 1984 0.4292 11 1983.9333 1984.0886 10 1985 1984.8757 1985.0435 0.7409 1.1 12 5 1984 1983.9861 1984.0894 0.1348 1984.1084 0.2780 13 6 1984 1983.9583 14 7 1984 1983.9353 1984.1018 0.3886 8 1984 1984.0696 0.6240 15 1983.8845 9 1984 1984.0156 0.9285 16 1983.7971 6 1983 1982.9492 1983.0552 0.4793 17 1982.7974 1983,0322 0.8628 18 8 1983 1981,9819 19 6 1982 1982.0435 0.2937 19 10 1983 1982.8171 1983.0991 0.6485 20 8 1982 1981.7603 1982.0337 0.3768 7 1981 21 1980.9497 1981-2412 0.1725 1982.1360 21 10 1982 1981.8337 0.5501 0,9059 22 8 1981 1980.7156 1981.0295 23 7 1980 1979.8884 1980.1545 0.4193 23 10 1981 1980.8328 1931,1240 0.5742 24 9 1980 1979.8916 1930,2419 0.3094 25 8 1979 1978.9136 1979.2422 0.2630 26 7 1978 1977.9819 1978,2026 0.0819

1978.0378

1974.1611

1973.0330

1972.0774

1971.1570

1970.0642

1969.0083

0.0719

0.3327

0.6311

0.5148

0.0769

0.6254

0.8758

27

30 31

32

33

34

35

10 1978

7 1974

7 1972

6 1970

1973

1971

1969

1977.9971

1973.9197

1972.9436

1971.8765

1970.9861

1969.8923

1968.9409

PICTORIAL VIEW OF TEMPERATURE