Algorithmen für Fortgeschrittene

Jan Sebastian Siwy Martin Spickermann

2. Vorlesung vom 15. April 2004

Nachtrag: Bildung des Restnetzes aus der letzten Vorlesung.

Kanten mit der Kapazität 0 können weggelassen werden.

Korollar: Der Wert jedes Flusses im Netz G ist durch die minimale Kapazität aller denkbarer Schnitte nach oben beschränkt, denn

$$f(S,T) \le c(s,t).$$

Im Beispiel kann der Fluss nicht größer sein als 23 (Schnittverlauf laut Skizze):

Satz 1: Sei f Fluss im Netz G_f , dann sind folgende Aussagen äquivalent:

- 1. f ist maximal.
- 2. Es gibt keine augmentierenden Wege bzgl. G, c, f.
- 3. Es gibt einen Schnitt S,T mit |f|=c(S,T). (Bemerkung: Dieser Schnitt hat minimale Kapazität.)

Beweis:

- $1 \Rightarrow 2$: trivial
- $2 \Rightarrow 3$:

Es gibt in G keinen augmentierenden Weg, d.h. in G_f gibt es keinen Weg von s nach t.

Sei $S = \{v \in V \mid \exists \text{ Weg von } s \text{ nach } v \text{ in } G_f\} \text{ und } T = V \setminus S.$

Betrachte Schnitt S, T, bei dem f(u, v) = c(u, v) für alle $u \in S$ und $v \in T$.

Daraus folgt:

$$|f| = f(S,T)$$
 (nach Lemma 2)
= $c(S,T)$

• $3 \Rightarrow 1$:

Nach dem Korollar gilt $|f| \leq c(S,T)$ für alle Flüsse und Schnitte, also auch für diesen.

Da |f| = c(S, T) gilt, ist f maximal.

Ford-Fulkerson-Algorithmus (Schema):

- 1: Initialisiere den Fluss f auf 0.
- 2: while \exists augmentierender Weg p von s nach t im Restnetz G_f do
- 3: \forall Kante $e \in p$ erhöhe den Fluss f um die Kapazität $c_f(p)$ dieses Weges, wobei $c_f(p) = \min c_f(e)$
- 4: end while

In unserem Beispiel:

• Initialisierung:

- Schritt 1 (Weg über s, v_1, v_3, v_4, v_2, t mit Minimum 7):

• Schritt 4 (Weg über s, v_3, v_1, v_2, t mit Minimum 3):

• Lösung:

Einzelheiten des Algorithmus:

• Schritt 1:

Variable für Fluss f definieren und diese auf 0 setzen.

• Schritt 2:

Finden eines Weges. Konstruiere dazu als Datenstruktur einen Graphen G':

$$G' = (V, E')$$
 mit $E' = E \cup \{(u, v) \mid (v, u) \in E\}$

Jedes Restnetz ist Teilgraph von G'. Kanten mit Rest 0 können ignoriert werden.

• Schritt 3:

Konstruktion bzw. Aktualisierung des Restnetzes.

Laufzeitanalyse:

• Schritt 1:

Kostet $\mathcal{O}(|E|)$.

• Schritt 2:

Kostet $\mathcal{O}(|E|)$ mit Breiten- oder Tiefensuche pro Durchlauf.

• Schritt 3:

Kostet $\mathcal{O}(|E|)$ pro Durchlauf.

Jede Kante auf p und die Gegenkante muss aktualisiert werden.

Wie viele Durchläufe benötigt nun der Algorithmus insgesamt?

- Bei jedem Durchlauf wird der Fluss erhöht.
- Wenn wir annehmen, dass die Kapazitäten ganze Zahlen sind, erhöht sich der Fluss um mindestens 1 je Durchgang.

Wenn f^* der maximale Fluss ist, so gibt es höchstens $|f^*|$ Durchläufe. Die Laufzeit des Ford-Fulkerson-Algorithmus ist also $\mathcal{O}(|E| \cdot |f^*|)$.

Bemerkungen durch Laufzeitanalyse: Diese Aussage zur Laufzeit ist unbefriedigend, weil

- wir angenommen haben, dass die Kapazitäten ganze Zahlen sind und
- \bullet der maximale Fluss $|f^*|$ exponentiell zur Eingabegröße sein kann.

Der maximale Fluss $|f^*|$ ist tatsächlich möglich!

Es werden 2000 Durchläufe erreicht, wenn abwechselnd die Pfade s,u,v,t und s,v,u,t gewählt werden.

Edmond-Karp-Algorithmus: Dieser findet immer den kürzesten Weg durch Breitensuche in Schritt 2.

Lemma 3: Sei $\delta_f(u, v)$ der Abstand $u, v \in V$ im Restnetz G_f .

Beim Edmond-Karp-Algorithmus gilt für alle Knoten $v \in V \setminus \{s, t\}$, dass in jedem augmentierendem Schritt der Abstand $\delta_f(u, v)$ monoton wächst.

Beweis: Angenommen das Lemma gilt nicht, d.h. es existieren ein augmentierender Schritt und ein Knoten v, so dass $\delta_{f'}(s,v) < \delta_f(s,v)$ gilt mit f Fluss vor und f' Fluss nach dem augmentierendem Schritt.

O.b.d.A. sei v der Knoten mit der Eigenschaft, dass der Abstand $\delta_f(s,v)$ minimal ist. Der kürzeste Weg von s nach v in $G_{f'}$ sei p'. Der Knoten u sei der vorletzte Knoten auf diesem Weg p'.

Wegen der Minimalität von v gilt $\delta_{f'}(s,v) \geq \delta_f(s,u)$. Betrachte den Fluss f(u,v) vor dem augmentierenden Schritt:

• Fall 1: f(u, v) < c(u, v), d.h. (u, v) ist eine Kante in G_f .

$$\delta_f(s, v) \le \delta_f(s, u) + 1$$

$$\le \delta_{f'}(s, u) + 1$$

$$= \delta_{f'}(s, v)$$
 (Widerspruch!)

• Fall 2: f(u, v) = c(u, v), d.h. (u, v) ist keine Kante in G_f . Damit muss der augmentierende Weg p die Kante (u, v) enthalten haben.

$$\begin{split} \delta_f(s,v) &= \delta_f(s,u) - 1 \\ &\leq \delta_{f'}(s,u) - 1 \\ &= \delta_{f'}(s,v) - 2 \\ &< \delta_{f'}(s,v) \end{split} \tag{Widerspruch!}$$