Team 5 - Advanced Analytics using Statistics Exam

EDA on Bank Loan Application Dataset

Team Members

Tushar Shirsath: 220940325083
 Saurav Sharma: 220940325063
 Srujak Gedam: 220940325078
 Somesh Rewadkar: 220940325075
 Ayush Singh: 220940325018

In [36]:

```
# Import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing Dataset

In [37]:

```
df1 = pd.read_csv("application_data (1).csv")
df1.head()
```

Out[37]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_(
0	100002	1	Cash loans	М	N	
1	100003	0	Cash loans	F	N	
2	100004	0	Revolving loans	М	Υ	
3	100006	0	Cash loans	F	N	
4	100007	0	Cash loans	M	N	

5 rows × 122 columns

Understanding the Dataset

Inspect the dataframe for dimensions, null-values, and summary of different numeric columns.

In [38]:

```
# Check the number of rows and columns in the dataset df1.shape
```

Out[38]:

(307511, 122)

• The dataset has 307511 rows and 122 columns

In [39]:

```
# Checking the numeric variables of the dataframes
df1.describe(include='all')
```

Out[39]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_C
count	307511.000000	307511.000000	307511	307511	307
unique	NaN	NaN	2	3	
top	NaN	NaN	Cash loans	F	
freq	NaN	NaN	278232	202448	202!
mean	278180.518577	0.080729	NaN	NaN	Ν
std	102790.175348	0.272419	NaN	NaN	Ν
min	100002.000000	0.000000	NaN	NaN	Ν
25%	189145.500000	0.000000	NaN	NaN	Ν
50%	278202.000000	0.000000	NaN	NaN	Ν
75%	367142.500000	0.000000	NaN	NaN	Ν
max	456255.000000	1.000000	NaN	NaN	N
11 rows × 122 columns					
4					•

In [54]:

#Checking information of all the columns like data types						
df1.i	nfo("all")					
6/	LANDAKEA_MODE	T10at64				
68	LIVINGAPARTMENTS_MODE	float64				
69	LIVINGAREA_MODE	float64				
70	NONLIVINGAPARTMENTS_MODE	float64				
71	NONLIVINGAREA_MODE	float64				
72	APARTMENTS_MEDI	float64				
73	BASEMENTAREA_MEDI	float64				
74	YEARS_BEGINEXPLUATATION_MEDI	float64				
75	YEARS_BUILD_MEDI	float64				
76	COMMONAREA_MEDI	float64				
77	ELEVATORS_MEDI	float64				
78	ENTRANCES_MEDI	float64				
79	FLOORSMAX_MEDI	float64				
80	FLOORSMIN_MEDI	float64				
81	LANDAREA_MEDI	float64				
82	LIVINGAPARTMENTS_MEDI	float64				
83	LIVINGAREA_MEDI	float64				
84	NONLIVINGAPARTMENTS_MEDI	float64				
85	NONLIVINGAREA_MEDI	float64	_			
86	FONDKAPREMONT MODE	ohiect	•			

• In dataset there are 122 columns having data-type object, int and float

Handling NULL Values

In [40]:

```
#checking how many null values are present in each of the columns
#creating a function to find null values for the dataframe
def null_values(df):
    return round((df.isnull().sum()*100/len(df)).sort_values(ascending = False),2)
```

In [56]:

```
null_values(df1).head(30)
```

Out[56]:

COMMONAREA_MEDI	69.87
COMMONAREA_AVG	69.87
COMMONAREA_MODE	69.87
NONLIVINGAPARTMENTS_MODE	69.43
NONLIVINGAPARTMENTS_AVG	69.43
NONLIVINGAPARTMENTS_MEDI	69.43
FONDKAPREMONT_MODE	68.39
LIVINGAPARTMENTS_MODE	68.35
LIVINGAPARTMENTS_AVG	68.35
LIVINGAPARTMENTS_MEDI	68.35
FLOORSMIN_AVG	67.85
FLOORSMIN_MODE	67.85
FLOORSMIN_MEDI	67.85
YEARS_BUILD_MEDI	66.50
YEARS_BUILD_MODE	66.50
YEARS_BUILD_AVG	66.50
OWN_CAR_AGE	65.99
LANDAREA_MEDI	59.38
LANDAREA_MODE	59.38
LANDAREA_AVG	59.38
BASEMENTAREA_MEDI	58.52
BASEMENTAREA_AVG	58.52
BASEMENTAREA_MODE	58.52
EXT_SOURCE_1	56.38
NONLIVINGAREA_MODE	55.18
NONLIVINGAREA_AVG	55.18
NONLIVINGAREA_MEDI	55.18
ELEVATORS_MEDI	53.30
ELEVATORS_AVG	53.30
ELEVATORS_MODE	53.30
dtype: float64	

Dealing with Null values more than 40 %

In [41]:

```
#Displaying null columns having missing values more than 40%
null_40 = null_values(df1)[null_values(df1)>40]
print(null_40,'\n')
print("There are over",len(null_40),"columns having greater than 40%")
COMMONAREA MEDI
                                 69.87
COMMONAREA_AVG
                                 69.87
COMMONAREA_MODE
                                 69.87
NONLIVINGAPARTMENTS_MODE
                                 69.43
NONLIVINGAPARTMENTS_AVG
                                 69.43
NONLIVINGAPARTMENTS_MEDI
                                 69.43
FONDKAPREMONT_MODE
                                 68.39
LIVINGAPARTMENTS MODE
                                 68.35
LIVINGAPARTMENTS_AVG
                                 68.35
LIVINGAPARTMENTS_MEDI
                                 68.35
FLOORSMIN_AVG
                                 67.85
FLOORSMIN_MODE
                                 67.85
FLOORSMIN_MEDI
                                 67.85
YEARS_BUILD_MEDI
                                 66.50
YEARS_BUILD_MODE
                                 66.50
YEARS_BUILD_AVG
                                 66.50
OWN_CAR_AGE
                                 65.99
LANDAREA_MEDI
                                 59.38
LANDAREA MODE
                                 59.38
LANDAREA_AVG
                                 59.38
BASEMENTAREA_MEDI
                                 58.52
BASEMENTAREA_AVG
                                 58.52
BASEMENTAREA_MODE
                                 58.52
EXT_SOURCE_1
                                 56.38
NONLIVINGAREA MODE
                                 55.18
NONLIVINGAREA_AVG
                                 55.18
NONLIVINGAREA_MEDI
                                 55.18
ELEVATORS_MEDI
                                 53.30
ELEVATORS_AVG
                                 53.30
ELEVATORS_MODE
                                 53.30
WALLSMATERIAL MODE
                                 50.84
APARTMENTS_MEDI
                                 50.75
APARTMENTS AVG
                                 50.75
APARTMENTS_MODE
                                 50.75
ENTRANCES_MEDI
                                 50.35
ENTRANCES_AVG
                                 50.35
ENTRANCES MODE
                                 50.35
                                 50.19
LIVINGAREA_AVG
LIVINGAREA MODE
                                 50.19
                                 50.19
LIVINGAREA_MEDI
HOUSETYPE MODE
                                 50.18
FLOORSMAX_MODE
                                 49.76
FLOORSMAX MEDI
                                 49.76
FLOORSMAX AVG
                                 49.76
YEARS_BEGINEXPLUATATION_MODE
                                 48.78
                                 48.78
YEARS_BEGINEXPLUATATION_MEDI
YEARS_BEGINEXPLUATATION_AVG
                                 48.78
TOTALAREA_MODE
                                 48.27
EMERGENCYSTATE MODE
                                 47.40
```

There are over 49 columns having greater than 40%

dtype: float64

```
In [42]:
```

null 40.index

Out[42]:

```
Index(['COMMONAREA_MEDI', 'COMMONAREA_AVG', 'COMMONAREA_MODE',
        'NONLIVINGAPARTMENTS_MODE', 'NONLIVINGAPARTMENTS_AVG', 'NONLIVINGAPARTMENTS_MEDI', 'FONDKAPREMONT_MODE',
        'LIVINGAPARTMENTS_MODE', 'LIVINGAPARTMENTS_AVG',
        'LIVINGAPARTMENTS_MEDI', 'FLOORSMIN_AVG', 'FLOORSMIN_MODE',
        'FLOORSMIN_MEDI', 'YEARS_BUILD_MEDI', 'YEARS_BUILD_MODE',
        'YEARS_BUILD_AVG', 'OWN_CAR_AGE', 'LANDAREA_MEDI', 'LANDAREA_MODE',
        'LANDAREA_AVG', 'BASEMENTAREA_MEDI', 'BASEMENTAREA_AVG', 'BASEMENTAREA_MODE', 'EXT_SOURCE_1', 'NONLIVINGAREA_MODE',
        'NONLIVINGAREA_AVG', 'NONLIVINGAREA_MEDI', 'ELEVATORS_MEDI',
        'ELEVATORS_AVG', 'ELEVATORS_MODE', 'WALLSMATERIAL_MODE', 'APARTMENTS_MEDI', 'APARTMENTS_AVG', 'APARTMENTS_MODE',
        'ENTRANCES_MEDI', 'ENTRANCES_AVG', 'ENTRANCES_MODE', 'LIVINGAREA AV
G',
        'LIVINGAREA_MODE', 'LIVINGAREA_MEDI', 'HOUSETYPE_MODE',
        'FLOORSMAX_MODE', 'FLOORSMAX_MEDI', 'FLOORSMAX_AVG',
        'YEARS_BEGINEXPLUATATION_MODE', 'YEARS_BEGINEXPLUATATION_MEDI',
        'YEARS_BEGINEXPLUATATION_AVG', 'TOTALAREA_MODE', 'EMERGENCYSTATE_MOD
E'],
       dtype='object')
```

In [44]:

```
#Bar Chart for null values
plt.figure(figsize = (10,6))
null_40.plot.bar()
plt.title('Columns having NULL values greater than 40%',fontdict={'fontsize':20,'color':'Gr
plt.xlabel('Columns',fontdict={'fontsize':14,'fontweight':7,'color':'Red'})
plt.ylabel('Percentage of NULL',fontdict={'fontsize':14,'fontweight':7,'color':'Red'})
plt.show()
```


In [45]:

```
#Dropping the columns
df1.drop(labels = null_40.index,axis=1,inplace=True)
```

In [46]:

```
df1.shape
```

Out[46]:

(307511, 73)

```
In [ ]:
```

In [47]:

```
# Checking the null percentage in new columns
new_null = df1.isnull().sum()/len(df1)*100
new_null[new_null.values>0]
```

Out[47]:

```
AMT_ANNUITY
                                0.003902
AMT_GOODS_PRICE
                                0.090403
NAME_TYPE_SUITE
                                0.420148
OCCUPATION_TYPE
                               31.345545
CNT_FAM_MEMBERS
                                0.000650
EXT_SOURCE_2
                                0.214626
EXT_SOURCE_3
                               19.825307
OBS_30_CNT_SOCIAL_CIRCLE
                                0.332021
DEF_30_CNT_SOCIAL_CIRCLE
                                0.332021
OBS_60_CNT_SOCIAL_CIRCLE
                                0.332021
DEF_60_CNT_SOCIAL_CIRCLE
                                0.332021
DAYS_LAST_PHONE_CHANGE
                                0.000325
AMT_REQ_CREDIT_BUREAU_HOUR
                               13.501631
AMT_REQ_CREDIT_BUREAU_DAY
                               13.501631
AMT_REQ_CREDIT_BUREAU_WEEK
                               13.501631
AMT_REQ_CREDIT_BUREAU_MON
                               13.501631
AMT_REQ_CREDIT_BUREAU_QRT
                               13.501631
AMT_REQ_CREDIT_BUREAU_YEAR
                               13.501631
dtype: float64
```

In [48]:

df1.shape

Out[48]:

(307511, 73)

In [49]:

df1[df1.AMT_ANNUITY.isna()]

Out[49]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FI
47531	155054	0	Cash loans	М	N	
50035	157917	0	Cash loans	F	N	
51594	159744	0	Cash loans	F	N	
55025	163757	0	Cash loans	F	N	
59934	169487	0	Cash loans	M	Υ	
75873	187985	0	Cash loans	M	Υ	
89343	203726	0	Cash loans	F	Υ	
123872	243648	0	Cash loans	F	N	
207186	340147	0	Cash loans	M	N	
227939	364022	0	Cash loans	F	N	
239329	377174	0	Cash loans	F	N	
241835	379997	0	Cash loans	F	N	

12 rows × 73 columns

In [50]:

#Droping records with AMT_ANNUITY as the percentage of records missing are very less
df2 = df1[~df1.AMT_ANNUITY.isna()].copy()

In [51]:

df2.shape

Out[51]:

(307499, 73)

```
In [52]:
```

```
new_null = df2.isnull().sum()/len(df2)*100
new_null[new_null.values>0]
```

Out[52]:

```
AMT GOODS PRICE
                                0.090407
                                0.420164
NAME_TYPE_SUITE
OCCUPATION_TYPE
                               31.346769
CNT_FAM_MEMBERS
                                0.000650
EXT_SOURCE_ 2
                                0.214635
EXT_SOURCE_3
                               19.825756
OBS_30_CNT_SOCIAL_CIRCLE
                                0.332034
DEF_30_CNT_SOCIAL_CIRCLE
                                0.332034
OBS_60_CNT_SOCIAL_CIRCLE
                                0.332034
DEF_60_CNT_SOCIAL_CIRCLE
                                0.332034
DAYS_LAST_PHONE_CHANGE
                                0.000325
AMT REQ CREDIT BUREAU HOUR
                               13.501833
AMT_REQ_CREDIT_BUREAU_DAY
                               13.501833
AMT_REQ_CREDIT_BUREAU_WEEK
                               13.501833
AMT_REQ_CREDIT_BUREAU_MON
                               13.501833
AMT_REQ_CREDIT_BUREAU_QRT
                               13.501833
AMT_REQ_CREDIT_BUREAU_YEAR
                               13.501833
dtype: float64
```

We can see that most of the values is equal to 0. Let's check the mode for it

```
In [53]:
```

```
df2.AMT_REQ_CREDIT_BUREAU_HOUR.value_counts()
```

Out[53]:

```
0.0 264355
1.0 1560
2.0 56
3.0 9
4.0 1
```

Name: AMT_REQ_CREDIT_BUREAU_HOUR, dtype: int64

In [54]:

```
df2.AMT_REQ_CREDIT_BUREAU_DAY.value_counts()
```

Out[54]:

```
264492
0.0
1.0
         1292
          106
2.0
            45
3.0
            26
4.0
             9
5.0
             8
6.0
             2
9.0
Name: AMT_REQ_CREDIT_BUREAU_DAY, dtype: int64
```

```
In [55]:
```

```
df2.AMT_REQ_CREDIT_BUREAU_WEEK.value_counts()
```

Out[55]:

```
0.0
       257448
1.0
         8205
          199
2.0
           58
3.0
           34
4.0
6.0
           20
           10
5.0
8.0
            5
7.0
            2
Name: AMT_REQ_CREDIT_BUREAU_WEEK, dtype: int64
```

In [56]:

```
df2.AMT_REQ_CREDIT_BUREAU_MON.value_counts()
```

Out[56]:

```
0.0
        222227
1.0
         33143
2.0
          5385
3.0
          1991
4.0
          1076
5.0
           602
           343
6.0
7.0
           298
9.0
           206
           185
8.0
10.0
           132
           119
11.0
12.0
            77
13.0
            72
14.0
            40
15.0
            35
            23
16.0
17.0
            14
18.0
             6
19.0
             3
24.0
             1
23.0
             1
27.0
             1
22.0
             1
```

Name: AMT_REQ_CREDIT_BUREAU_MON, dtype: int64

```
In [57]:
df2.AMT_REQ_CREDIT_BUREAU_QRT.value_counts()
Out[57]:
0.0
         215409
1.0
          33859
2.0
         14412
3.0
          1717
            476
4.0
5.0
             64
             28
6.0
8.0
             7
7.0
              7
261.0
              1
19.0
              1
Name: AMT_REQ_CREDIT_BUREAU_QRT, dtype: int64
In [58]:
df2.AMT_REQ_CREDIT_BUREAU_YEAR.value_counts()
Out[58]:
0.0
       71800
1.0
        63401
2.0
        50190
3.0
        33628
4.0
       20713
5.0
       12051
6.0
        6966
7.0
         3869
8.0
        2127
9.0
        1096
           30
12.0
11.0
           30
           22
10.0
           19
13.0
14.0
           10
            7
17.0
15.0
            6
            4
19.0
18.0
            4
            3
16.0
25.0
            1
23.0
            1
```

For all above columns we can replace it with 0

Name: AMT_REQ_CREDIT_BUREAU_YEAR, dtype: int64

1

1

1

22.0 21.0

20.0

In [59]:

```
df2.AMT_REQ_CREDIT_BUREAU_HOUR.fillna(0,inplace=True)
df2.AMT_REQ_CREDIT_BUREAU_DAY.fillna(0,inplace=True)
df2.AMT_REQ_CREDIT_BUREAU_WEEK.fillna(0,inplace=True)
df2.AMT_REQ_CREDIT_BUREAU_MON.fillna(0,inplace=True)
df2.AMT_REQ_CREDIT_BUREAU_QRT.fillna(0,inplace=True)
df2.AMT_REQ_CREDIT_BUREAU_YEAR.fillna(0,inplace=True)
```

In [29]:

```
new_null = df2.isnull().sum()/len(df2)*100
new_null[new_null.values>0]
```

Out[29]:

AMT_GOODS_PRICE	0.090407
NAME_TYPE_SUITE	0.420164
OCCUPATION_TYPE	31.346769
CNT_FAM_MEMBERS	0.000650
EXT_SOURCE_2	0.214635
EXT_SOURCE_3	19.825756
YEARS_BEGINEXPLUATATION_AVG	48.780972
FLOORSMAX_AVG	49.760812
YEARS_BEGINEXPLUATATION_MODE	48.780972
FLOORSMAX_MODE	49.760812
YEARS_BEGINEXPLUATATION_MEDI	48.780972
FLOORSMAX_MEDI	49.760812
TOTALAREA_MODE	48.268450
EMERGENCYSTATE_MODE	47.398203
OBS_30_CNT_SOCIAL_CIRCLE	0.332034
DEF_30_CNT_SOCIAL_CIRCLE	0.332034
OBS_60_CNT_SOCIAL_CIRCLE	0.332034
DEF_60_CNT_SOCIAL_CIRCLE	0.332034
DAYS_LAST_PHONE_CHANGE	0.000325
dtype: float64	

After seeing above result we can say that occupation has 31.34% null values

In [60]:

```
df2.OCCUPATION_TYPE.value_counts()
```

Out[60]:

Laborers	55184		
Sales staff	32101		
Core staff	27569		
Managers	21370		
Drivers	18602		
High skill tech staff	11379		
Accountants	9812		
Medicine staff	8536		
Security staff	6720		
Cooking staff	5945		
Cleaning staff	4653		
Private service staff	2652		
Low-skill Laborers	2093		
Waiters/barmen staff	1348		
Secretaries	1304		
Realty agents	751		
HR staff	563		
IT staff	526		
Name: OCCUPATION_TYPE,	dtype: int64		

In [31]:

```
plt.figure(figsize = (12,5))
plt.title('Occupation Count',fontdict={'fontsize':20,'color':'Green'})
df2.OCCUPATION_TYPE.value_counts().plot.barh()
plt.xlabel('Occupation Type',fontdict={'fontsize':14,'fontweight':5,'color':'Red'})
plt.ylabel('Count',fontdict={'fontsize':14,'fontweight':5,'color':'Red'})
plt.show()
```


 Labourers has the highest number of occupation replacing the missing data with most numbers of occupation is not sensible as this will make the data wrong. Therefore all the missing values are replaced with new group as "uncertain" entries

In [61]:

```
df2.OCCUPATION_TYPE.fillna(value='Uncertain',inplace=True)
plt.figure(figsize = (10,5))
plt.title('Occupation Count',fontdict={'fontsize':18,'color':'Green'})
df2.OCCUPATION_TYPE.value_counts().plot.bar()
plt.xlabel('OCCUPATION_TYPE',fontdict={'fontsize':12,'fontweight':5,'color':'Red'})
plt.ylabel('Count',fontdict={'fontsize':12,'fontweight':5,'color':'Red'})
plt.show()
```


In [62]:

```
new_null = df2.isnull().sum()/len(df2)*100
new_null[new_null.values>0]
```

Out[62]:

AMT GOODS PRICE	0.090407
NAME TYPE SUITE	0.420164
CNT_FAM_MEMBERS	0.000650
EXT_SOURCE_2	0.214635
EXT_SOURCE_3	19.825756
OBS_30_CNT_SOCIAL_CIRCLE	0.332034
DEF_30_CNT_SOCIAL_CIRCLE	0.332034
OBS_60_CNT_SOCIAL_CIRCLE	0.332034
DEF_60_CNT_SOCIAL_CIRCLE	0.332034
DAYS_LAST_PHONE_CHANGE	0.000325
dtype: float64	

Working on EXT_SOURCE_3

```
In [63]:
```

```
df2.EXT_SOURCE_3.value_counts().head()

Out[63]:

0.746300    1460
0.713631    1315
0.694093    1276
0.670652    1191
0.652897    1154
Name: EXT_SOURCE_3, dtype: int64
```

Not changing any value of EXT_SOURCE as the missing percentage is very high.

```
In [66]:
```

```
#Columns having null values between 0 and 1
new_null = df2.isnull().sum()/len(df2)*100
new_null[(new_null.values>0) & (new_null.values<1) ]</pre>
```

Out[66]:

```
AMT_GOODS_PRICE
                            0.090407
NAME_TYPE_SUITE
                            0.420164
CNT_FAM_MEMBERS
                            0.000650
EXT_SOURCE_2
                            0.214635
OBS_30_CNT_SOCIAL_CIRCLE
                            0.332034
DEF_30_CNT_SOCIAL_CIRCLE
                            0.332034
OBS_60_CNT_SOCIAL_CIRCLE
                            0.332034
DEF_60_CNT_SOCIAL_CIRCLE
                            0.332034
DAYS_LAST_PHONE_CHANGE
                            0.000325
dtype: float64
```

Working with Box Plot

Handling null values in AMT_GOODS_PRICE

In [67]:

```
df2.AMT_GOODS_PRICE.value_counts().head()
```

Out[67]:

```
450000.0 26019

225000.0 25281

675000.0 24962

900000.0 15416

270000.0 11428

Name: AMT_GOODS_PRICE, dtype: int64
```

```
In [69]:
#Checking the percentile of AMT_GOODS_PRICE
df2.AMT_GOODS_PRICE.quantile(q=[0.25,0.5,0.75,0.95,0.99,1])
Out[69]:
0.25
         238500.0
0.50
         450000.0
0.75
         679500.0
0.95
        1305000.0
0.99
        1800000.0
1.00
        4050000.0
Name: AMT_GOODS_PRICE, dtype: float64
In [71]:
#Most occuring value
df2.AMT_GOODS_PRICE.mode()[0]
Out[71]:
450000.0
In [75]:
df2.AMT_GOODS_PRICE.median()
Out[75]:
450000.0
In [76]:
df2.AMT_GOODS_PRICE.mean()
Out[76]:
```

538397.3458747937

In [70]:

```
sns.boxplot(df2.AMT_GOODS_PRICE)
plt.show()
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

- · Mean and median are very close to each other.
- Mode and Median are same i.e 45000.
- · Since mode and median are similar we can use either of them.

In [77]:

```
#Replacing null values with mode
df2.AMT_GOODS_PRICE.fillna(df2.AMT_GOODS_PRICE.mode()[0],inplace=True)
```

```
**Working with NAME_TYPE_SUITE**
```

In [79]:

```
df2.NAME_TYPE_SUITE.value_counts()
```

Out[79]:

Unaccompanied 248515
Family 40148
Spouse, partner 11370
Children 3267
Other_B 1770
Other_A 866
Group of people 271

Name: NAME_TYPE_SUITE, dtype: int64

In [81]:

```
# Percentage of each category in NAME_TYPE_SUITE
df2.NAME_TYPE_SUITE.value_counts(normalize=True)*100
```

Out[81]:

Unaccompanied 81.159151
Family 13.111392
Spouse, partner 3.713174
Children 1.066925
Other_B 0.578040
Other_A 0.282815
Group of people 0.088502

Name: NAME_TYPE_SUITE, dtype: float64

In [87]:

```
plt.figure(figsize = (10,5))
df2.NAME_TYPE_SUITE.value_counts().plot.bar(color={'pink','green','red','blue'})
plt.title('NAME_TYPE_SUITE Count',fontdict={'fontsize':18,'color':'green'})
plt.xlabel('ACCOMPAINED_BY',fontdict={'fontsize':12,'fontweight':5,'color':'green'})
plt.ylabel('Count',fontdict={'fontsize':12,'fontweight':5,'color':'green'})
plt.show()
```


Obeservation:

- 1. It can be conclude that 80% of the loan applicant are Unaccompained.
- 2. Missing values can be replaced by unaccompained.

```
In [90]:
```

```
#Impute Null values in NAME_TYPE_SUITE by Unaccompained
df2.NAME_TYPE_SUITE.fillna('Unaccompanied',inplace=True)
```

Working with OBS_30_CNT_SOCIAL_CIRCLE

```
In [91]:
```

```
df2.OBS_30_CNT_SOCIAL_CIRCLE.value_counts().head()
```

Out[91]:

```
0.0
       163901
        48780
1.0
2.0
        29808
        20322
3.0
4.0
        14143
Name: OBS_30_CNT_SOCIAL_CIRCLE, dtype: int64
```

In [92]:

```
#Percentile values for DEF_30_CNT_SOCIAL_CIRCLE
df2.OBS_30_CNT_SOCIAL_CIRCLE.quantile(q = [0.25,0.5,0.75,0.99,1])
```

Out[92]:

```
0.25
          0.0
          0.0
0.50
0.75
          2.0
         10.0
0.99
1.00
        348.0
```

Name: OBS_30_CNT_SOCIAL_CIRCLE, dtype: float64

In [93]:

```
sns.boxplot(df2.0BS_30_CNT_SOCIAL_CIRCLE)
plt.show()
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

In [94]:

```
#Checking the mode of DEF_30_CNT_SOCIAL_CIRCLE
df2.OBS_30_CNT_SOCIAL_CIRCLE.mode()[0]
```

Out[94]:

```
In [97]:
df2.OBS_30_CNT_SOCIAL_CIRCLE.median()
```

Out[97]:

0.0

In [95]:

```
df2.OBS_30_CNT_SOCIAL_CIRCLE.mean()
```

Out[95]:

1.4222913227050555

Observation:

- Till 50th percentile all the values are 0, above it there are two outliers
- Mean and mode are closer, so we can use it for imputation.
- Median and mode are same i.e '0'

In [71]:

```
# Replacing missing values in OBS_30_CNT_SOCIAL_CIRCLE with 0
df2.OBS_30_CNT_SOCIAL_CIRCLE.fillna(0,inplace=True)
```

Working with DEF_30_CNT_SOCIAL_CIRCLE

```
In [98]:
```

```
df2.DEF_30_CNT_SOCIAL_CIRCLE.value_counts()
```

Out[98]:

```
271312
0.0
          28328
1.0
2.0
           5323
3.0
           1192
            253
4.0
5.0
             56
             11
6.0
7.0
              1
              1
34.0
8.0
```

Name: DEF_30_CNT_SOCIAL_CIRCLE, dtype: int64

In [99]:

```
#Percentile values for DEF_30_CNT_SOCIAL_CIRCLE
df2.DEF_30_CNT_SOCIAL_CIRCLE.quantile(q = [0.25,0.5,0.75,0.99,1])
```

Out[99]:

```
0.25     0.0
0.50     0.0
0.75     0.0
0.99     2.0
1.00     34.0
Name: DEF_30_CNT_SOCIAL_CIRCLE, dtype: float64
```

In [100]:

```
sns.boxplot(df2.DEF_30_CNT_SOCIAL_CIRCLE)
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[100]:

<AxesSubplot:xlabel='DEF_30_CNT_SOCIAL_CIRCLE'>


```
In [101]:
#Checking the most recurring value in DEF_30_CNT_SOCIAL_CIRCLE
df2.DEF_30_CNT_SOCIAL_CIRCLE.mode()[0]

Out[101]:
0.0
In [103]:
df2.DEF_30_CNT_SOCIAL_CIRCLE.median()

Out[103]:
0.0
In [102]:
df2.DEF_30_CNT_SOCIAL_CIRCLE.mean()
```

0.1434262818212074

Observation:

- Median and mode are same i.e '0'
- Till 75th percentile all the values are 0, above it there are 9 outliers.
- Mean and mode are closer, so we can use it for replaceing with missing values.

In [104]:

```
# Replacing missing values in DEF_30_CNT_SOCIAL_CIRCLE with 0
df2.DEF_30_CNT_SOCIAL_CIRCLE.fillna(0,inplace=True)
```

Working with DEF_60_CNT_SOCIAL_CIRCLE

```
In [106]:
```

```
df2.DEF_60_CNT_SOCIAL_CIRCLE.value_counts()
```

Out[106]:

```
280709
0.0
         21841
1.0
2.0
          3170
3.0
           598
           135
4.0
5.0
             20
6.0
              3
7.0
              1
24.0
Name: DEF_60_CNT_SOCIAL_CIRCLE, dtype: int64
```

In [109]:

```
#Percentile values for DEF_60_CNT_SOCIAL_CIRCLE
df2.DEF_60_CNT_SOCIAL_CIRCLE.quantile(q = [0.25,0.5,0.75,0.99,1])
```

Out[109]:

In [110]:

```
sns.boxplot(df2.DEF_60_CNT_SOCIAL_CIRCLE)
plt.show()
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

In [111]:

```
#Checking the most recurring value in DEF_60_CNT_SOCIAL_CIRCLE
df2.DEF_60_CNT_SOCIAL_CIRCLE.mode()[0]
```

Out[111]:

```
In [113]:
df2.DEF_60_CNT_SOCIAL_CIRCLE.median()
Out[113]:
0.0
In [114]:
df2.DEF_60_CNT_SOCIAL_CIRCLE.mean()
Out[114]:
0.10005285860649052
Observation:
 • Median and mode are same i.e '0'
 • Till 75th percentile all the values are 0, above it there are 8 outliers

    Mean and mode are closer, so we can use it for imputation.

In [115]:
# Replacing missing values in DEF_60_CNT_SOCIAL_CIRCLE with 0
df2.DEF_60_CNT_SOCIAL_CIRCLE.fillna(0,inplace=True)
In [116]:
df2.DEF_60_CNT_SOCIAL_CIRCLE.isnull().sum()
Out[116]:
0
Wokring OBS_60_CNT_SOCIAL_CIRCLE
In [117]:
df2.0BS_60_CNT_SOCIAL_CIRCLE.value_counts().head()
Out[117]:
0.0
       164657
        48867
1.0
        29766
2.0
        20215
3.0
4.0
        13946
Name: OBS_60_CNT_SOCIAL_CIRCLE, dtype: int64
```

In [118]:

```
#Percentile values for OBS_60_CNT_SOCIAL_CIRCLE
df2.OBS_60_CNT_SOCIAL_CIRCLE.quantile(q = [0.25,0.5,0.75,0.99,1])
```

Out[118]:

In [119]:

```
sns.boxplot(df2.OBS_60_CNT_SOCIAL_CIRCLE)
plt.show()
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(


```
In [90]:
#Checking the most recurring value in OBS_60_CNT_SOCIAL_CIRCLE
df2.OBS_60_CNT_SOCIAL_CIRCLE.mode()[0]
Out[90]:
0.0
In [120]:
df2.OBS_60_CNT_SOCIAL_CIRCLE.median()
Out[120]:
0.0
In [121]:
df2.OBS_60_CNT_SOCIAL_CIRCLE.mean()
Out[121]:
1.4053374141047645
Observation:
 · Median and mode are same is 0.

    Till 50th percentile all the values are 0, above it there are 2 outliers

    Mean and mode are closer, so we can use it for imputation.

In [125]:
# Replacing missing values in OBS_30_CNT_SOCIAL_CIRCLE with 0
df2.0BS_60_CNT_SOCIAL_CIRCLE.fillna(0,inplace=True)
In [126]:
df2.OBS_60_CNT_SOCIAL_CIRCLE.isnull().sum()
Out[126]:
0
In [127]:
#Checking the null values in all columns
new_null = df2.isnull().sum()/len(df2)*100
new_null[(new_null.values>0) & (new_null.values<1)]</pre>
```

```
Out[127]:
```

CNT_FAM_MEMBERS 0.000650 EXT_SOURCE_2 0.214635 OBS_30_CNT_SOCIAL_CIRCLE 0.332034 DAYS_LAST_PHONE_CHANGE 0.000325

dtype: float64

Treating errors in Data types and data

#Lets analyze data types and values of other columns df2.info(verbose=True)

<class 'pandas.core.frame.DataFrame'>
Int64Index: 307499 entries, 0 to 307510
Data columns (total 73 columns):

Data	<pre>columns (total 73 columns):</pre>		
#	Column	Non-Null Count	Dtype
0	SK_ID_CURR	307499 non-null	int64
1	TARGET	307499 non-null	int64
2	NAME_CONTRACT_TYPE	307499 non-null	object
3	CODE_GENDER	307499 non-null	object
4	FLAG_OWN_CAR	307499 non-null	object
5	FLAG_OWN_REALTY	307499 non-null	object
6	CNT_CHILDREN	307499 non-null	int64
7	AMT_INCOME_TOTAL	307499 non-null	float64
8	AMT_CREDIT	307499 non-null	float64
9	AMT_ANNUITY	307499 non-null	float64
10	AMT_GOODS_PRICE	307499 non-null	float64
11	NAME_TYPE_SUITE	307499 non-null	object
12	NAME_INCOME_TYPE	307499 non-null	object
13	NAME_EDUCATION_TYPE	307499 non-null	object
14	NAME_FAMILY_STATUS	307499 non-null	object
15	NAME_HOUSING_TYPE	307499 non-null	object
16	REGION_POPULATION_RELATIVE	307499 non-null	float64
17	DAYS_BIRTH	307499 non-null	int64
18	DAYS_EMPLOYED	307499 non-null	int64
19	DAYS_REGISTRATION	307499 non-null	float64
20	DAYS_ID_PUBLISH	307499 non-null	int64
21	FLAG_MOBIL	307499 non-null	int64
22	FLAG_EMP_PHONE	307499 non-null	int64
23	FLAG_WORK_PHONE	307499 non-null	int64
24	FLAG_CONT_MOBILE	307499 non-null	int64
25	FLAG_PHONE	307499 non-null	int64
26	FLAG_EMAIL	307499 non-null	int64
27	OCCUPATION_TYPE	307499 non-null	object
28	CNT_FAM_MEMBERS	307497 non-null	float64
29	REGION_RATING_CLIENT	307499 non-null	int64
30	REGION_RATING_CLIENT_W_CITY	307499 non-null	int64
31	WEEKDAY_APPR_PROCESS_START	307499 non-null	object
32	HOUR_APPR_PROCESS_START	307499 non-null	int64
33	REG_REGION_NOT_LIVE_REGION	307499 non-null	int64
34	REG_REGION_NOT_WORK_REGION	307499 non-null	int64
35	LIVE_REGION_NOT_WORK_REGION	307499 non-null	int64
36	REG_CITY_NOT_LIVE_CITY	307499 non-null	int64
37	REG_CITY_NOT_WORK_CITY	307499 non-null	int64
38	LIVE_CITY_NOT_WORK_CITY	307499 non-null	int64
39	ORGANIZATION_TYPE	307499 non-null	object
40	EXT_SOURCE_2	306839 non-null	float64
41	EXT_SOURCE_3	246535 non-null	float64
42	OBS_30_CNT_SOCIAL_CIRCLE	306478 non-null	float64
43	DEF_30_CNT_SOCIAL_CIRCLE	307499 non-null	float64
44	OBS_60_CNT_SOCIAL_CIRCLE	307499 non-null	float64
45	DEF_60_CNT_SOCIAL_CIRCLE	307499 non-null	float64
46	DAYS_LAST_PHONE_CHANGE	307498 non-null	float64
47	FLAG_DOCUMENT_2	307499 non-null	int64
48	FLAG_DOCUMENT_3	307499 non-null	int64
49	FLAG_DOCUMENT_4	307499 non-null	int64

```
FLAG DOCUMENT 5
 50
                                307499 non-null
                                                 int64
 51 FLAG DOCUMENT 6
                                307499 non-null
                                                 int64
 52 FLAG DOCUMENT 7
                                307499 non-null
                                                 int64
 53 FLAG DOCUMENT 8
                                307499 non-null
                                                 int64
54 FLAG DOCUMENT 9
                                307499 non-null
                                                 int64
55 FLAG_DOCUMENT_10
                                307499 non-null
                                                 int64
56 FLAG DOCUMENT 11
                                307499 non-null
                                                 int64
   FLAG_DOCUMENT_12
                                307499 non-null int64
57
58 FLAG DOCUMENT 13
                                307499 non-null int64
59 FLAG DOCUMENT 14
                                307499 non-null int64
                                307499 non-null int64
60 FLAG DOCUMENT 15
61 FLAG_DOCUMENT_16
                                307499 non-null int64
62 FLAG_DOCUMENT_17
                                307499 non-null int64
63 FLAG_DOCUMENT_18
                                307499 non-null int64
64 FLAG DOCUMENT 19
                                307499 non-null int64
65 FLAG DOCUMENT 20
                                307499 non-null int64
66 FLAG_DOCUMENT_21
                                307499 non-null int64
                                307499 non-null float64
67
    AMT_REQ_CREDIT_BUREAU_HOUR
68 AMT_REQ_CREDIT_BUREAU_DAY
                                307499 non-null float64
69 AMT_REQ_CREDIT_BUREAU_WEEK
                                307499 non-null float64
70 AMT REQ CREDIT BUREAU MON
                                307499 non-null float64
71 AMT_REQ_CREDIT_BUREAU_QRT
                                307499 non-null float64
                                307499 non-null float64
72 AMT_REQ_CREDIT_BUREAU_YEAR
dtypes: float64(20), int64(41), object(12)
memory usage: 173.6+ MB
```

Lets analysze all the columns

```
In [138]:
```

```
df2.CODE_GENDER.value_counts()

Out[138]:
F     202440
M     105055
XNA      4
Name: CODE_GENDER, dtype: int64

In [139]:

df2.CODE_GENDER.value_counts(normalize=True)
```

```
Out[139]:
```

F 0.658344 M 0.341643 XNA 0.000013

Name: CODE_GENDER, dtype: float64

We need to replace XNA with some value. If we observe value count percentage, aroung 65% loan applicants are female. Hence we can impute it with 'F'

```
In [140]:
#Replacing XNA with 'F' by using function
def replace(Gender):
    if Gender == 'XNA':
        return 'F'
    else:
        return Gender
In [141]:
df2.CODE_GENDER = df2.CODE_GENDER.apply(replace)
In [142]:
df2.CODE_GENDER.value_counts()
Out[142]:
F
     202444
     105055
М
Name: CODE_GENDER, dtype: int64
In [143]:
# Data in below mentioned columns is negative
print(df2['DAYS_BIRTH'].unique())
print(df2['DAYS_EMPLOYED'].unique())
print(df2['DAYS_REGISTRATION'].unique())
print(df2['DAYS_ID_PUBLISH'].unique())
print(df2['DAYS_LAST_PHONE_CHANGE'].unique())
[ -9461 -16765 -19046 ... -7951 -7857 -25061]
  -637 -1188
                -225 ... -12971 -11084 -8694]
[ -3648. -1186. -4260. ... -16396. -14558. -14798.]
[-2120 -291 -2531 ... -6194 -5854 -6211]
[-1134. -828. -815. ... -3988. -3899. -3538.]
In [144]:
#Creating series for columns which has days, and converting them to positive value because
Days_negative = [column for column in df2 if column.startswith('DAYS')]
Days_negative
Out[144]:
['DAYS_BIRTH',
 'DAYS EMPLOYED',
 'DAYS REGISTRATION',
 'DAYS ID PUBLISH',
 'DAYS_LAST_PHONE_CHANGE']
In [145]:
#Converting to absolute values
```

df2[Days_negative] = abs(df2[Days_negative])

In [146]:

```
# After converting
print(df2['DAYS_BIRTH'].unique())
print(df2['DAYS_EMPLOYED'].unique())
print(df2['DAYS_REGISTRATION'].unique())
print(df2['DAYS_ID_PUBLISH'].unique())
print(df2['DAYS_LAST_PHONE_CHANGE'].unique())
```

```
[ 9461 16765 19046 ... 7951 7857 25061]
[ 637 1188 225 ... 12971 11084 8694]
[ 3648. 1186. 4260. ... 16396. 14558. 14798.]
[2120 291 2531 ... 6194 5854 6211]
[1134. 828. 815. ... 3988. 3899. 3538.]
```

In [147]:

Analyze Organization Type column df2.ORGANIZATION_TYPE.value_counts()

Out[147]:

Business Entity Type 3	67989
XNA	55374
Self-employed	38409
Other	16681
Medicine	11192
Business Entity Type 2	10553
Government	10403
School	8893
Trade: type 7	7831
Kindergarten	6880
Construction	6721
Business Entity Type 1	5983
Transport: type 4	5398
Trade: type 3	3492
Industry: type 9	3368
<pre>Industry: type 3 Security</pre>	3278 3246
Housing	2958
Industry: type 11	2938
Military	2634
Bank	2507
Agriculture	2454
Police	2341
Transport: type 2	2204
Postal	2157
Security Ministries	1974
Trade: type 2	1900
Restaurant	1811
Services	1575
University	1327
Industry: type 7	1307
Transport: type 3	1187
Industry: type 1	1039
Hotel	966
Electricity	950
Industry: type 4	877
Trade: type 6	631
Industry: type 5	599
Insurance	597
Telecom	577
Emergency	560
Industry: type 2	458
Advertising	429
Realtor	396
Culture	379
Industry: type 12	369
Trade: type 1	348
Mobile	317
Legal Services	305
Cleaning Thansport: type 1	260
Transport: type 1	201 112
<pre>Industry: type 6 Industry: type 10</pre>	109
Religion	85
VETTRIOII	0.5

Industry: type 13 67
Trade: type 4 64
Trade: type 5 49
Industry: type 8 24

Name: ORGANIZATION_TYPE, dtype: int64

In [148]:

```
(df2.ORGANIZATION_TYPE.value_counts(normalize=True)*100).head()
```

Out[148]:

Business Entity Type 3 22.110316 XNA 18.007863 Self-employed 12.490772 Other 5.424733 Medicine 3.639687 Name: ORGANIZATION_TYPE, dtype: float64

We can observe 18% of the data is XNA, we cannot impute by mean/mode because then the result may get biased. We will create new category as unknown

In [149]:

```
df2.ORGANIZATION_TYPE = df2.ORGANIZATION_TYPE.apply(lambda x: 'Unknown' if x == 'XNA' else
```

In [150]:

```
(df2.ORGANIZATION_TYPE.value_counts(normalize=True)*100).head()
```

Out[150]:

Business Entity Type 3 22.110316
Unknown 18.007863
Self-employed 12.490772
Other 5.424733
Medicine 3.639687
Name: ORGANIZATION_TYPE, dtype: float64

Converting all the Days column to Year

In [151]:

```
Days_column = [column for column in df2 if column.startswith('DAYS')]
df2[Days_column] = df2[Days_column]/365
df2[Days_column].describe()
```

Out[151]:

	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_REGISTRATION	DAYS_ID_PUBLISH	DAYS_LAS1			
count	307499.000000	307499.000000	307499.000000	307499.000000				
mean	43.937135	185.554239	13.660574	8.203322				
std	11.956166	382.043486	9.651664	4.135487				
min	20.517808	0.000000	0.000000	0.000000				
25%	34.008219	2.556164	5.506849	4.712329				
50%	43.150685	6.079452	12.339726	8.915068				
75%	53.923288	15.635616	20.490411	11.778082				
max	69.120548	1000.665753	67.594521	19.717808				
4					•			
In [152]:								
#We need to rename columns								

'DAYS_REGISTRATION':'YEARS_REGISTRATION', 'DAYS_ID_PUBLISH':'ID_CHANGE_YEAR', 'DAYS_LAST

df2.rename(columns={'DAYS_BIRTH':'AGE' ,'DAYS_EMPLOYED':'WORK_EXPERIENCE' ,

Checking Outliers

In [153]:

```
# Finding outlier on AMT_INCOME_TOTAL column
sns.boxplot(df2.AMT_INCOME_TOTAL)
plt.show()
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(


```
In [154]:
#Let's check the spread of AMT INCOME TOTAL
df2.AMT_INCOME_TOTAL.quantile(q=[0.25,0.5,0.75,0.95,0.99,1])
Out[154]:
0.25
           112500.0
0.50
           146997.0
0.75
           202500.0
0.95
           337500.0
0.99
           472500.0
        117000000.0
1.00
Name: AMT_INCOME_TOTAL, dtype: float64
In [155]:
#In the above case we can see a large value, let's check the data
Max_Annual_income =df2[df2.AMT_INCOME_TOTAL == df2.AMT_INCOME_TOTAL.max()]
Max_Annual_income
Out[155]:
       SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FL
 12840
            114967
                        1
                                       Cash loans
                                                            F
1 rows × 73 columns
In [156]:
Max_Annual_income.OCCUPATION_TYPE
Out[156]:
12840
         Laborers
Name: OCCUPATION_TYPE, dtype: object
In [157]:
#Before deleting
df2.shape
Out[157]:
(307499, 73)
In [158]:
#From above two results we can infer that this a outlier since the person is a labourer and
#We will remove this row as we don't want this data to impact our analysis
df3 = df2[df2.index!=12840]
```

In [159]:

```
#After deleting df3.shape
```

Out[159]:

(307498, 73)

In [160]:

```
# Finding outlier on WORK_EXPERIENCE column
sns.boxplot(df3.WORK_EXPERIENCE)
plt.show()
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

In [163]:

#In the above boxplot we can see work_experience as more than 1000 which is not possible. df3[df3.WORK_EXPERIENCE>999]

Out[163]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FI
8	100011	0	Cash loans	F	N	
11	100015	0	Cash loans	F	N	
23	100027	0	Cash loans	F	N	
38	100045	0	Cash loans	F	N	
43	100050	0	Cash loans	F	N	
307469	456209	0	Cash loans	F	N	
307483	456227	0	Cash loans	F	N	
307487	456231	0	Cash loans	M	N	
307505	456249	0	Cash loans	F	N	
307507	456252	0	Cash loans	F	N	

55374 rows × 73 columns

→

In [164]:

#We can see there are 55374 records we cannot drop the data completetly, let's check the in df3.WORK_EXPERIENCE.quantile([0.25,0.5,0.75,0.8,0.9,0.95,0.99])
80% data is below 25 years

Out[164]:

2.556164		
6.079452		
15.635616		
25.178082		
1000.665753		
1000.665753		
1000.665753		
WORK_EXPERIENCE,	<pre>dtype:</pre>	float64
	6.079452 15.635616 25.178082 1000.665753 1000.665753	6.079452 15.635616 25.178082 1000.665753

The values above 1000 WORK_EXPERIENCE are outliers

In [165]:

```
# Finding outlier on AMT_ANNUITY column
sns.boxplot(df3['AMT_ANNUITY'])
plt.show()
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

In [166]:

#In the above boxplot we can observe there is one value which is above 2500000, let's check df3[df3.AMT_ANNUITY>250000] #By observing the AMT_CREDIT and AMT_INCOME_TOTAL we can say that AMT_ANNUITY is not a outl

Out[166]:

plt.show()

warnings.warn(

17948	120926	0	Cash loans	М	Y		
1 rows × 73 columns							
4					•		
In [167]	:						
<pre># Finding outlier on YEARS_REGISTRATION column sns.boxplot(df3['YEARS_REGISTRATION'])</pre>							

SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FL

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future Warning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other argumen ts without an explicit keyword will result in an error or misinterpretation.

0 10 20 30 40 50 60 70
YEARS_REGISTRATION

In [168]:

```
#Let's check the value were YEARS_REGISTRATION is greater than 65
df3[df3.YEARS_REGISTRATION>65]
#These values can be considered as outliers
```

Out[168]:

'EQ_CREDIT_BUREAU_MON AMT_REQ_CREDIT_BUREAU_QRT AMT_REQ_CREDIT_BUREAU_YEAR

0.0	0.0	0.0
1.0	0.0	2.0

←

Binning the values for AMT_INCOME_RANGE

In [169]:

```
#Binning makes it easier to analyze continuous variables
# Binning 'AMT_INCOME_RANGE'
# 0-0.2 as Extremly Low
# 0.2-0.5 as Low
# 0.5-0.8 as Medium
# 0.8-0.95 as High
# 0.95 - 1 as Extremely High
df3['AMT_INCOME_RANGE'] = pd.qcut(df3.AMT_INCOME_TOTAL, q=[0, 0.2, 0.5, 0.8, 0.95, 1], labe
df3['AMT_INCOME_RANGE'].head()
```

C:\Users\somes\AppData\Local\Temp\ipykernel_12308\3074512057.py:8: SettingWi
thCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df3['AMT_INCOME_RANGE'] = pd.qcut(df3.AMT_INCOME_TOTAL, q=[0, 0.2, 0.5, 0.8, 0.95, 1], labels=['EXTREMLY_LOW', 'LOW', "MEDIUM", 'HIGH', 'EXTREMLY_HIGH'])

Out[169]:

```
0     MEDIUM
1     HIGH
2     EXTREMLY_LOW
3     LOW
4     LOW
Name: AMT_INCOME_RANGE, dtype: category
Categories (5, object): ['EXTREMLY_LOW' < 'LOW' < 'MEDIUM' < 'HIGH' < 'EXTREMLY_HIGH']</pre>
```

```
In [170]:
#Binning Amount credit range
df3['AMT_CREDIT_RANGE'] = pd.qcut(df3.AMT_CREDIT, q=[0, 0.2, 0.5, 0.8, 0.95, 1], labels=['V
df3['AMT_CREDIT_RANGE'].head()
C:\Users\somes\AppData\Local\Temp\ipykernel_12308\3726798758.py:2: SettingWi
thCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pand
as.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-v
ersus-a-copy)
  df3['AMT_CREDIT_RANGE'] = pd.qcut(df3.AMT_CREDIT, q=[0, 0.2, 0.5, 0.8, 0.9
5, 1], labels=['VERY_LOW', 'LOW', "MEDIUM", 'HIGH', 'VERY_HIGH'])
Out[170]:
0
          LOW
1
         HIGH
2
    VERY LOW
3
          LOW
Name: AMT_CREDIT_RANGE, dtype: category
Categories (5, object): ['VERY_LOW' < 'LOW' < 'MEDIUM' < 'HIGH' < 'VERY_HIG
Data Imbalance for target variable
In [171]:
df3.TARGET.value_counts()
Out[171]:
     282674
      24824
1
Name: TARGET, dtype: int64
In [172]:
df3.TARGET.value_counts(normalize=True)*100
Out[172]:
    91,927102
a
      8.072898
Name: TARGET, dtype: float64
```

We can see clearly that there is imbalance in TARGET variable, let's plot a bar chart to support our inference

```
In [173]:
```

```
plt.figure(figsize=[10,4])
sns.countplot(x = df3['TARGET'], data = df3)
plt.title('Imbalance of Target',fontdict={'fontsize':18})
plt.show()
```


In [175]:

```
#We will divide the dataset into two dataframe, one for client's with payment difficulties(
df_target0 = df3[df3.TARGET==0]
df_target1 = df3[df3.TARGET==1]
```

In [176]:

```
df_target0.shape
```

Out[176]:

(282674, 75)

In [177]:

```
df_target1.shape
```

Out[177]:

(24824, 75)

Univariate Analysis

In [179]:

```
#The most important column in deciding target variable could be Total income of applicant.
plt.figure(figsize=[14,6])

plt.subplot(1,2,1)
ax = sns.boxplot(y=df_target1['AMT_INCOME_TOTAL'])
plt.title('Client with payment difficulties')

plt.subplot(1,2,2)
ax = sns.boxplot(y=df_target0['AMT_INCOME_TOTAL'])
plt.title('Client without payment difficulties')
plt.show()
```


Inference: Total income is higher for client without payment difficulties as compared to client with payment difficulties

In [133]:

```
#Let's analyze the age group of applicants
plt.figure(figsize=[14,6])

plt.subplot(1,2,1)
ax = sns.boxplot(y=df_target1.AGE)
plt.title('Client with payment difficulties')

plt.subplot(1,2,2)
ax = sns.boxplot(y=df_target0.AGE)
plt.title('Client without payment difficulties')

plt.show()

#By observing the boxplot, we can infer that Client with payment difficulties are in range
#client without payment difficulties are in range 34-54
```


Categorical Variable

In [180]:

```
g_count = df_target0.CODE_GENDER.value_counts()
f_count = df_target1.CODE_GENDER.value_counts()

plt.figure(figsize=[10,4])
plt.subplot(1,2,1)
plt.pie(g_count.values,labels=g_count.index,colors=['orange','blue'], autopct='%1.1f%',sha
plt.title("Gender Distibution of Loan- Without payment diffulties")

plt.subplot(1,2,2)
plt.pie(f_count.values,labels=f_count.index,colors=['orange','blue'], autopct='%1.1f%',sha
plt.title("Gender Distibution of Loan- With payment difficulties")
plt.tight_layout()
plt.show()
# Here we observe that Females have more Loan payment difficulties as compared to Male's.
```

57.1%

Gender Distibution of Loan- Without payment diffulties Gender Distibution of Loan- With payment difficulties

In [181]:

```
#Based on NAME_CONTRACT_TYPE
plt.figure(figsize=(18,7))

plt.subplot(1,2,1)
ax = sns.countplot(df_target0['NAME_CONTRACT_TYPE'])
plt.title('Client without payment difficulties')

plt.subplot(1,2,2)
ax = sns.countplot(df_target1['NAME_CONTRACT_TYPE'])
plt.title('Client with payment difficulties')

plt.title('Client with payment difficulties')
plt.show()

#Observing the countplot, we don't see significant difference in NAME_CONTRACT_TYPE
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

In [182]:

```
# Based on the OCCUPATION TYPE
plt.figure(figsize=(18,6))
plt.subplot(1,2,1)
ax = sns.countplot(df_target0['OCCUPATION_TYPE'])
plt.title('Client without payment difficulties')
plt.xticks(rotation=90)
plt.subplot(1,2,2)
ax = sns.countplot(df target1['OCCUPATION TYPE'])
plt.title('Client with payment difficulties')
plt.xticks(rotation=90)
plt.show()
```

#We can clearly observe that labourers are the highest in both categories i.e client with a

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future Warning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other argumen ts without an explicit keyword will result in an error or misinterpretation. warnings.warn(

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future Warning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other argumen ts without an explicit keyword will result in an error or misinterpretation. warnings.warn(

In [183]:

```
# Based on NAME_EDUCATION_TYPE
plt.figure(figsize=(20,8))

plt.subplot(1,2,1)
ax = sns.countplot(df_target0['NAME_EDUCATION_TYPE'])
plt.title('Client without payment difficulties')
plt.xticks(rotation=90)

plt.subplot(1,2,2)
ax = sns.countplot(df_target1['NAME_EDUCATION_TYPE'])
plt.title('Client with payment difficulties')
plt.xticks(rotation=90)
plt.show()

# .
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

In [184]:

```
# Based upon the NAME_INCOME_TYPE
plt.figure(figsize=(20,8))

plt.subplot(1,2,1)
ax = sns.countplot(df_target0['NAME_INCOME_TYPE'])
plt.title('Client without payment difficulties')
plt.xticks(rotation=90)

plt.subplot(1,2,2)
ax = sns.countplot(df_target1['NAME_INCOME_TYPE'])
plt.title('Client with payment difficulties')
plt.xticks(rotation=90)
plt.show()

#Pensioner and Govt Employees have better on-time payments.
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

In [188]:

```
previous_app= pd.read_csv('previous_application.csv')
```

Cleaning the previous_app Dataframe

In [189]:

previous_app.head(5)

Out[189]:

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	Αľ
0	2030495	271877	Consumer loans	1730.430	17145.0	
1	2802425	108129	Cash loans	25188.615	607500.0	
2	2523466	122040	Cash loans	15060.735	112500.0	
3	2819243	176158	Cash loans	47041.335	450000.0	
4	1784265	202054	Cash loans	31924.395	337500.0	

5 rows × 37 columns

 \blacksquare

In [191]:

```
#check for missing value percentage
nul=(previous_app.isnull().sum()*100)/len(previous_app)
nul
```

Out[191]:

SK_ID_PREV	0.000000
SK_ID_CURR	0.000000
NAME_CONTRACT_TYPE	0.000000
AMT_ANNUITY	22.286665
AMT_APPLICATION	0.000000
AMT_CREDIT	0.000060
AMT_DOWN_PAYMENT	53.636480
AMT_GOODS_PRICE	23.081773
WEEKDAY_APPR_PROCESS_START	0.000000
HOUR_APPR_PROCESS_START	0.000000
FLAG_LAST_APPL_PER_CONTRACT	0.000000
NFLAG_LAST_APPL_IN_DAY	0.000000
RATE_DOWN_PAYMENT	53.636480
RATE_INTEREST_PRIMARY	99.643698
RATE_INTEREST_PRIVILEGED	99.643698
NAME_CASH_LOAN_PURPOSE	0.000000
NAME_CONTRACT_STATUS	0.000000
DAYS_DECISION	0.000000
NAME_PAYMENT_TYPE	0.000000
CODE_REJECT_REASON	0.000000
NAME_TYPE_SUITE	49.119754
NAME_CLIENT_TYPE	0.000000
NAME_GOODS_CATEGORY	0.000000
NAME_PORTFOLIO	0.000000
NAME_PRODUCT_TYPE	0.000000
CHANNEL_TYPE	0.000000
SELLERPLACE_AREA	0.000000
NAME_SELLER_INDUSTRY	0.000000
CNT_PAYMENT	22.286366
NAME_YIELD_GROUP	0.000000
PRODUCT_COMBINATION	0.020716
DAYS_FIRST_DRAWING	40.298129
DAYS_FIRST_DUE	40.298129
DAYS_LAST_DUE_1ST_VERSION	40.298129
DAYS_LAST_DUE	40.298129
DAYS_TERMINATION	40.298129
NFLAG_INSURED_ON_APPROVAL	40.298129
dtype: float64	

```
In [192]:
```

```
#Check for the columns which have missing values more than 40%
nul=nul[nul>40]
nul
```

Out[192]:

```
AMT DOWN PAYMENT
                             53.636480
RATE_DOWN_PAYMENT
                             53.636480
RATE_INTEREST_PRIMARY
                             99.643698
RATE_INTEREST_PRIVILEGED
                             99.643698
NAME TYPE SUITE
                             49.119754
DAYS_FIRST_DRAWING
                             40.298129
DAYS_FIRST_DUE
                             40.298129
DAYS_LAST_DUE_1ST_VERSION
                             40.298129
DAYS_LAST_DUE
                             40.298129
DAYS TERMINATION
                             40.298129
NFLAG_INSURED_ON_APPROVAL
                             40.298129
dtype: float64
```

In [193]:

```
#Getting the indexes where null value percentage is more than 40%
col_Drop=nul[nul.values>40]
col_Drop.index
```

Out[193]:

In [194]:

In [195]:

```
#Dropping the unused columns from Dataframe
previous_app.drop(["WEEKDAY_APPR_PROCESS_START","HOUR_APPR_PROCESS_START","NAME_CASH_LOAN_P
previous_app.head(2)
```

Out[195]:

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_APPLICATION	AMT_CREDIT	FLA
0	2030495	271877	Consumer loans	17145.0	17145.0	
1	2802425	108129	Cash loans	607500.0	679671.0	

Handling null values in AMT_APPLICATION

23.494115

In [196]:

```
#Checking out the values percentage in AMT_APPLICATION

previous_app["AMT_APPLICATION"].value_counts(normalize=True)*100
```

Out[196]:

0.00

45000.00	2.863765				
225000.00	2.607031				
135000.00	2.435496				
450000.00	2.329342				
185292.00	0.000060				
225054.00	0.000060				
156212.55	0.000060				
99896.31	0.000060				
267295.50	0.000060				
Name: AMT_	_APPLICATION,	Length:	93885,	dtype:	float64

Observation

1. As we can see there are approx 23% values which are 0 in AMT_APPLICATION column. We need to remove it as it may affect the EDA process

In [197]:

```
#Checking out the percentage contribution in AMT APPLICATION using quantile
previous_app["AMT_APPLICATION"].quantile([0,.25,.50,.75,.99,1])
```

Out[197]:

```
0.00
              0.0
          18720.0
0.25
0.50
          71046.0
0.75
         180360.0
0.99
        1350000.0
1.00
        6905160.0
```

Name: AMT_APPLICATION, dtype: float64

In [198]:

```
#Checking out the outliers using the boxplot
sns.boxplot(previous_app["AMT_APPLICATION"])
plt.show()
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future Warning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other argumen ts without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Observation

1. As we have seen there is no null values in AMT_APPLICATION column but there are some values which are 0. we need to replace them with another value.

2. Also there are some outliers also present which can affect the analysis. it is better approach to remove them

In [199]:

In [200]:

```
sns.boxplot(previous_app["AMT_APPLICATION"])
plt.show()
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

After removing the outliers and considering the 99% of AMT_APPLICATION. we can remove those rows which have **AMT_APPLICATION** value as 0.

In [201]:

```
previous_app=previous_app[~(previous_app["AMT_APPLICATION"]==0.0)]
```

In [202]:

```
previous_app.shape
```

Out[202]:

(1277812, 9)

Cleaning of NAME_CONTRACT_TYPE column

In [203]:

```
#Checking the percentage value counts in NAME_CONTRACT_TYPE column
previous_app["NAME_CONTRACT_TYPE"].value_counts(normalize=True)*100
```

Out[203]:

Consumer loans 56.955640
Cash loans 36.174336
Revolving loans 6.870025

Name: NAME_CONTRACT_TYPE, dtype: float64

In [206]:

```
plt.figure(figsize = (10,6))
plt.title('count Contract type among people',fontdict={'fontsize':18,'color':'Green'})
previous_app.NAME_CONTRACT_TYPE.value_counts().plot.bar()
plt.xlabel('NAME_CONTRACT_TYPE',fontdict={'fontsize':12,'fontweight':5,'color':'Red'})
plt.ylabel('Count',fontdict={'fontsize':12,'fontweight':5,'color':'Red'})
plt.show()
```


• There is no null value in NAME_CONTRACT_TYPE column

Cleaning process in AMT_CREDIT Column

In [207]:

```
#Checking out the value percentage in DataFrame
previous_app["AMT_CREDIT"].value_counts(normalize=True)*100
```

Out[207]:

```
45000.00
            2.518133
            1.327895
225000.00
          1.016034
135000.00
450000.00 0.893793
180000.00
            0.755432
             . . .
337315.50 0.000078
412110.00 0.000078
331731.00 0.000078
            0.000078
338301.00
436370.22
            0.000078
```

Name: AMT_CREDIT, Length: 86803, dtype: float64

In [208]:

```
#Checking out the outliers in DataFrame using boxplot
sns.boxplot(previous_app["AMT_CREDIT"])
plt.show()
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

OBSERVATION

- As we can see from the above boxplot there are some outliers present in the data.
- There are some null value present in data.

In [209]:

```
#Checking out the percentage composition on the data
previous_app["AMT_CREDIT"].quantile([0,.25,.50,.75,.99,1])
```

Out[209]:

```
0.00 0.00

0.25 50553.00

0.50 112500.00

0.75 269550.00

0.99 1557135.54

1.00 6905160.00

Name: AMT_CREDIT, dtype: float64
```

In [210]:

```
#Outliers handling by taking the 99th percentile of the data
previous_app["AMT_CREDIT"]=(previous_app[previous_app["AMT_CREDIT"]crevious_app["AMT_CREDIT"]
```

In [211]:

```
sns.boxplot(previous_app["AMT_CREDIT"])
plt.show()
```

C:\Users\somes\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future
Warning: Pass the following variable as a keyword arg: x. From version 0.12,
the only valid positional argument will be `data`, and passing other argumen
ts without an explicit keyword will result in an error or misinterpretation.
 warnings.warn(

In [212]:

```
#Checking out the null values present in the data
previous_app["AMT_CREDIT"].isnull().sum()
```

Out[212]:

12779

In [213]:

```
previous_app["AMT_CREDIT"]=previous_app["AMT_CREDIT"].fillna(previous_app["AMT_CREDIT"].med
```

Univariate Analysis

In [218]:

```
#Univariate Analysis of NAME_CONTRACT_TYPE column
previous_app["NAME_CONTRACT_TYPE"].value_counts(normalize=True).plot.pie(autopct='%1.02f%%'
plt.legend(loc="upper right",bbox_to_anchor=(1.4,1))

plt.ylabel('')
plt.show()
```

pie chart of NAME_CONTRACT_TYPE

Observation

- 1. Maximum people approx 57% demands for Consumer Loans
- 2. only 7% people demands for Revolving Loans which is the least percentage

In [219]:

```
#Univariate Analysis of NAME_CONTRACT_STATUS column

previous_app["NAME_CONTRACT_STATUS"].value_counts(normalize=True).plot.pie(autopct='%1.02f%

plt.legend(loc="upper right",bbox_to_anchor=(1.4,1))

plt.ylabel('')

plt.show()
```

pie chart of NAME_CONTRACT_STATUS

Observation

- 1. Maximum loans has been approved by the banks(approx=78%)
- 2. Canceled loans percentage is very less approx 1%
- 3. Loans Refused percentage is approx 20%

BI-VARIATE ANALYSIS

In [224]:

```
#Bi-Variate Analysis of NAME_CONTRACT_STATUS vs NAME_CLIENT_TYPE
sns.countplot(data=previous_app,x="NAME_CONTRACT_STATUS",hue="NAME_CLIENT_TYPE")
plt.title("BAR PLOT FOR NAME_CONTRACT_STATUS VS NAME_CLIENT_TYPE")
plt.show()
```


Observation

1. The loan approval and refused rate for the repeaters is much higher than any other client types

MERGING BOTH THE DATAFRAMES

In [225]:

```
#Merging both the DataFrames
final=pd.merge(df2,previous_app,how='left',on='SK_ID_CURR')
final.head(5)
```

Out[225]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE_x	CODE_GENDER	FLAG_OWN_CAR	FLAG
0	100002	1	Cash loans	М	N	
1	100003	0	Cash loans	F	N	
2	100003	0	Cash loans	F	N	
3	100003	0	Cash loans	F	N	
4	100004	0	Revolving loans	M	Υ	

5 rows × 82 columns

→

#Checking the column values for the merged DataFrame final.columns

Out[226]:

```
Index(['SK_ID_CURR', 'TARGET', 'NAME_CONTRACT_TYPE_x', 'CODE GENDER',
        'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'CNT_CHILDREN', 'AMT_INCOME_TOTA
L',
        'AMT_CREDIT_x', 'AMT_ANNUITY', 'AMT_GOODS_PRICE', 'NAME_TYPE_SUITE',
       'NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS',
        'NAME_HOUSING_TYPE', 'REGION_POPULATION_RELATIVE', 'AGE',
        'WORK_EXPERIENCE', 'YEARS_REGISTRATION', 'ID_CHANGE_YEAR', 'FLAG_MOBI
L',
        'FLAG_EMP_PHONE', 'FLAG_WORK_PHONE', 'FLAG_CONT_MOBILE', 'FLAG_PHON
Ε',
       'FLAG_EMAIL', 'OCCUPATION_TYPE', 'CNT_FAM_MEMBERS',
        'REGION_RATING_CLIENT', 'REGION_RATING_CLIENT_W_CITY',
        'WEEKDAY_APPR_PROCESS_START', 'HOUR_APPR_PROCESS_START',
        'REG_REGION_NOT_LIVE_REGION', 'REG_REGION_NOT_WORK_REGION',
        'LIVE_REGION_NOT_WORK_REGION', 'REG_CITY_NOT_LIVE_CITY',
        'REG_CITY_NOT_WORK_CITY', 'LIVE_CITY_NOT_WORK_CITY',
        'ORGANIZATION_TYPE', 'EXT_SOURCE_2', 'EXT_SOURCE_3',
        'OBS_30_CNT_SOCIAL_CIRCLE', 'DEF_30_CNT_SOCIAL_CIRCLE',
       'OBS_60_CNT_SOCIAL_CIRCLE', 'DEF_60_CNT_SOCIAL_CIRCLE', 'YEARS_LAST_PHONE_CHANGE', 'FLAG_DOCUMENT_2', 'FLAG_DOCUMENT_3',
        'FLAG_DOCUMENT_4', 'FLAG_DOCUMENT_5', 'FLAG_DOCUMENT_6',
        'FLAG_DOCUMENT_7', 'FLAG_DOCUMENT_8', 'FLAG_DOCUMENT_9',
       'FLAG_DOCUMENT_10', 'FLAG_DOCUMENT_11', 'FLAG_DOCUMENT_12', 'FLAG_DOCUMENT_13', 'FLAG_DOCUMENT_14', 'FLAG_DOCUMENT_15',
        'FLAG_DOCUMENT_16', 'FLAG_DOCUMENT_17', 'FLAG_DOCUMENT_18',
        'FLAG_DOCUMENT_19', 'FLAG_DOCUMENT_20', 'FLAG_DOCUMENT_21',
        'AMT_REQ_CREDIT_BUREAU_HOUR', 'AMT_REQ_CREDIT_BUREAU_DAY',
        'AMT_REQ_CREDIT_BUREAU_WEEK', 'AMT_REQ_CREDIT_BUREAU_MON',
        'AMT_REQ_CREDIT_BUREAU_QRT', 'AMT_REQ_CREDIT_BUREAU_YEAR', 'SK ID PRE
۷',
        'NAME_CONTRACT_TYPE_y', 'AMT_APPLICATION', 'AMT_CREDIT y',
       'FLAG_LAST_APPL_PER_CONTRACT', 'NAME_CONTRACT_STATUS', 'DAYS_DECISIO
Ν',
       'NAME_CLIENT_TYPE', 'YEAR_DECISION'],
      dtype='object')
```

In [227]:

In [228]:

```
final.head(10)
```

Out[228]:

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE_x	CODE_GENDER	FLAG_OWN_CAR	FLAG			
0	100002	1	Cash loans	М	N				
1	100003	0	Cash loans	F	N				
2	100003	0	Cash loans	F	N				
3	100003	0	Cash loans	F	N				
4	100004	0	Revolving loans	М	Υ				
5	100006	0	Cash loans	F	N				
6	100006	0	Cash loans	F	N				
7	100006	0	Cash loans	F	N				
8	100006	0	Cash loans	F	N				
9	100006	0	Cash loans	F	N				
10 rows × 39 columns									
4						•			

UNIVARIATE ANALYSIS ON CATAGORICAL COLUMNS

In [229]:

final.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1105806 entries, 0 to 1105805
Data columns (total 39 columns):
                                      Non-Null Count
     Column
                                                           Dtype
     ----
                                       -----
     SK_ID_CURR
                                      1105806 non-null int64
 0
 1
     TARGET
                                      1105806 non-null int64
     NAME_CONTRACT_TYPE_x
                                      1105806 non-null object
 2
 3
     CODE_GENDER
                                      1105806 non-null object
                                    1105806 non-null object
1105806 non-null object
1105806 non-null int64
1105806 non-null float64
 4
     FLAG_OWN_CAR
 5
     FLAG_OWN_REALTY
 6
     CNT_CHILDREN
 7
     AMT_INCOME_TOTAL
 8
     AMT CREDIT x
 9
     AMT_ANNUITY
```

1105806 non-null float64 1105806 non-null float64 1105806 non-null float64 1105806 non-null object 1105806 non-null object 10 AMT_GOODS_PRICE 11 NAME_TYPE_SUITE 12 NAME_INCOME_TYPE 1105806 non-null object 13 NAME_EDUCATION_TYPE 14 NAME_FAMILY_STATUS 1105806 non-null object 15 NAME_HOUSING_TYPE 1105806 non-null object 16 AGE 1105806 non-null float64 1105806 non-null float64 17 WORK_EXPERIENCE 18 YEARS_REGISTRATION 1105806 non-null float64 19 OCCUPATION TYPE 1105806 non-null object 20 CNT_FAM_MEMBERS 1105804 non-null float64 1105806 non-null int64 21 REGION_RATING_CLIENT 22 REGION_RATING_CLIENT_W_CITY 1105806 non-null int64 ORGANIZATION_TYPE 1105806 non-null object 24 EXT_SOURCE_2 1104113 non-null float64 25 EXT_SOURCE_3 916911 non-null float64 26 OBS_30_CNT_SOCIAL_CIRCLE 1103079 non-null float64 27 DEF_30_CNT_SOCIAL_CIRCLE 1105806 non-null float64

27 DEF_30_CNT_SOCIAL_CIRCLE 1105806 non-null float64
28 OBS_60_CNT_SOCIAL_CIRCLE 1105806 non-null float64
29 DEF_60_CNT_SOCIAL_CIRCLE 1105806 non-null float64

30 SK_ID_PREV 1088337 non-null float64
31 NAME_CONTRACT_TYPE_y 1088337 non-null object
32 AMT_APPLICATION 1067450 non-null float64

33 AMT_CREDIT_y 1088337 non-null float64
34 FLAG_LAST_APPL_PER_CONTRACT 1088337 non-null object
35 NAME_CONTRACT_STATUS 1088337 non-null object

36 DAYS_DECISION 1088337 non-null float64
37 NAME_CLIENT_TYPE 1088337 non-null object
38 YEAR DECISION 1088337 non-null float64

dtypes: float64(19), int64(5), object(15)

memory usage: 337.5+ MB

```
In [230]:
```

```
categorical=["NAME_CONTRACT_TYPE_x","NAME_CONTRACT_TYPE_y","NAME_CLIENT_TYPE","NAME_INCOME_
plt.figure(figsize=(22,30))

for i in (enumerate(categorical)):
    plt.subplot(len(categorical)//2,2,i[0]+1)
    sns.countplot(x=i[1],hue='NAME_CONTRACT_STATUS',data=final)
    plt.xticks(rotation=90)
    plt.legend(loc="upper right")
plt.show()
```


Observation

- 1. Loan aprroval rates for **Consumer Loans** is much higher than any other loan.
- 2. Banks like to give loans to the **Repeaters**.
- 3. People with **Secondary Education or more** receives loan approval easily.
- 4. Occupation_type Laborers get the more loans then others.
- 5. Working class people receives more loan approvals than any other Income_type

UNIVARIATE ANALYSIS ON NUMERICAL

COLUMNS

In [231]:

```
Numerical=["CNT_CHILDREN","CNT_FAM_MEMBERS","AMT_CREDIT_x","AMT_CREDIT_y","AMT_GOODS_PRICE"
plt.figure(figsize=(22,25))
for i in (enumerate(Numerical)):
   plt.subplot(len(Numerical)//2,2,i[0]+1)
    sns.distplot(final.loc[final.NAME_CONTRACT_STATUS=='Approved',:][i[1]].dropna(),hist=Fa
   sns.distplot(final.loc[final.NAME_CONTRACT_STATUS=='Canceled',:][i[1]].dropna(),hist=Fa
    sns.distplot(final.loc[final.NAME_CONTRACT_STATUS=='Refused',:][i[1]].dropna(),hist=Fal
    # we added kde_kws={'bw':0.1} in parameter to overcome bandwidth Limitation.
    sns.distplot(final.loc[final.NAME_CONTRACT_STATUS=='Unused offer',:][i[1]].dropna(),his
    plt.legend(["Approved", "Canceled", "Refused", "Unused offer"], loc = "upper right")
plt.show()
C:\Users\somes\anaconda3\lib\site-packages\seaborn\distributions.py:2619:
FutureWarning: `distplot` is a deprecated function and will be removed in
a future version. Please adapt your code to use either `displot` (a figur
e-level function with similar flexibility) or `kdeplot` (an axes-level fu
nction for kernel density plots).
  warnings.warn(msg, FutureWarning)
C:\Users\somes\anaconda3\lib\site-packages\seaborn\distributions.py:2619:
FutureWarning: `distplot` is a deprecated function and will be removed in
a future version. Please adapt your code to use either `displot` (a figur
e-level function with similar flexibility) or `kdeplot` (an axes-level fu
nction for kernel density plots).
  warnings.warn(msg, FutureWarning)
C:\Users\somes\anaconda3\lib\site-packages\seaborn\distributions.py:1699:
FutureWarning: The `bw` parameter is deprecated in favor of `bw_method` a
nd `bw_adjust`. Using 0.1 for `bw_method`, but please see the docs for th
e new parameters and update your code.
  warnings.warn(msg, FutureWarning)
C:\Users\somes\anaconda3\lib\site-packages\seaborn\distributions.py:2619:
FutureWarning: `distplot` is a deprecated function and will be removed in
```

Observation

- 1. Loan cancellation rate is higher for a person if he has less number of child or no child.
- 2. Loan approval rate is higher for the family which has family member more than 2.
- 3. Previously bank has more **AMT_CREDIT** for unused offers but now it has more **AMT_CREDIT** for approved loans.
- 4. Loan approval rate is high for the loans which has AMT_GOODS_PRICE less than 1 lacs.
- 5. AMT_APPLICATION is high for unused offers.

BI-VARIATE ANALYSIS ON FINAL DATAFRAME

```
In [238]:
```

```
Target_0 = final[final.TARGET==0]
Target_1 = final[final.TARGET==1]
```

In [233]:

```
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
ax = sns.countplot(data=Target_0,x='NAME_INCOME_TYPE',hue='NAME_CLIENT_TYPE')
plt.title('Client without payment difficulties')
plt.xticks(rotation=90)
plt.legend(loc="upper right")

plt.subplot(1,2,2)
ax = sns.countplot(data=Target_1,x='NAME_INCOME_TYPE',hue='NAME_CLIENT_TYPE')
plt.title('Client with payment difficulties')
plt.xticks(rotation=90)
plt.legend(loc="upper right")

plt.show()
```


Obervations

- 1. Working Class people take most of the loans
- 2. Unemployed, Students, Businessman, Matrnity leaves people don't take loans

In [234]:

```
plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
ax = sns.countplot(data=Target_0,x='OCCUPATION_TYPE',hue='NAME_CLIENT_TYPE')
plt.title('Client without payment difficulties')
plt.xticks(rotation=90)
plt.legend(loc="upper right")
plt.ylim(10)

plt.subplot(1,2,2)
ax = sns.countplot(data=Target_1,x='OCCUPATION_TYPE',hue='NAME_CLIENT_TYPE')
plt.title('Client with payment difficulties')
plt.xticks(rotation=90)
plt.legend(loc="upper right")

plt.show()
```


Observation

- 1. Number of Repeaters are very large in both the payment with difficulties and payment without difficulties.
- 2. IT and HR staff are very less which apply for the loans.

In [235]:

```
plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
ax = sns.countplot(data=Target_0,x='NAME_FAMILY_STATUS',hue='NAME_CLIENT_TYPE')
plt.title('Client without payment difficulties')
plt.xticks(rotation=90)
plt.legend(loc="upper right")
plt.ylim(10)

plt.subplot(1,2,2)
ax = sns.countplot(data=Target_1,x='NAME_FAMILY_STATUS',hue='NAME_CLIENT_TYPE')
plt.title('Client with payment difficulties')
plt.xticks(rotation=90)
plt.legend(loc="upper right")

plt.show()
```


In []:

Observations

- 1. Married people are the repeators of the loans.
- 2. Widows and Separated people don't apply much for the loans.

Conclusion

- 1. Top most category which is facing the highest payment difficulties is married and working class people.
- 2. Loan cancellation rate is higher for a person if he has less number of child or no child.
- 3. These are some major variable which can be considered as loan predictors:-
- NAME_FAMILY_STATUS
- AMT CREDIT
- OCCUPATION_TYPE
- NAME_INCOME_TYPE
- CNT FAM MEMBERS
- CNT_GOODS_PRICE

In []:		