GSERM - St. Gallen 2025 Analyzing Panel Data

June 18, 2025

Data on Github

Download via the "Raw" button...

Can also use (e.g.) read.csv:

> Data<-read.csv("https://raw.githubusercontent.com/PrisonRodeo/GSERM-Panel-2025/main/ Exercises/GSERM-Panel-Exercise-June-2025.csv")

Generalized Least Squares Models

Start with a focus on residuals...

For:

$$Y_{it} = \mathbf{X}_{it}\beta + u_{it}$$

i.i.d. OLS *uits* require:

$$\mathbf{u}\mathbf{u}' \equiv \mathbf{\Omega} = \sigma^2 \mathbf{I}$$

$$= \begin{pmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{pmatrix}$$

GLS Models

This means that within units:

- $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s$ (temporal homoscedasticity)
- $Cov(u_{it}, u_{is}) = 0 \ \forall \ t \neq s$ (no within-unit autocorrelation)

and between units:

- $Var(u_{it}) = Var(u_{jt}) \ \forall \ i \neq j \ (cross-unit homoscedasticity)$
- Cov $(u_{it}, u_{jt}) = 0 \ \forall \ i \neq j$ (no between-unit / spatial correlation)

Estimator:

$$\hat{\beta}_{\textit{GLS}} = (\mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{Y}$$

with:

$$\widehat{\mathsf{V}(eta_{\mathit{GLS}})} = (\mathsf{X}' \mathbf{\Omega}^{-1} \mathsf{X})^{-1}$$

Two approaches:

- ullet Use OLS \hat{u}_{it} s to get $\hat{\Omega}$ ("feasible GLS" / "weighted least squares")
- \bullet Use substantive knowledge about the data to structure Ω

Getting to Know WLS

The variance-covariance matrix is:

$$Var(\hat{\beta}_{WLS}) = \sigma^2 (\mathbf{X}' \mathbf{W}^{-1} \mathbf{X})^{-1}$$
$$\equiv (\mathbf{X}' \Omega^{-1} \mathbf{X})^{-1}$$

A common case is:

$$\mathsf{Var}(u_i) = \sigma^2 \frac{1}{N_i}$$

where N_i is the number of observations upon which (aggregate) observation i is based.

"Robust" Variance Estimators

Recall that, if $\sigma_i^2 \neq \sigma_i^2 \ \forall \ i \neq j$,

$$Var(\beta_{\text{Het.}}) = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\Omega^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}$$
$$= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{Q}(\mathbf{X}'\mathbf{X})^{-1}$$

where $\mathbf{Q} = (\mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{X})$ and $\mathbf{\Omega} = \sigma^2 \mathbf{W}$.

We can rewrite **Q** as:

$$\mathbf{Q} = \sigma^{2}(\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})$$
$$= \sum_{i=1}^{N} \sigma_{i}^{2}\mathbf{X}_{i}\mathbf{X}_{i}'$$

Huber's Insight

Estimate **Q** as:

$$\widehat{\mathbf{Q}} = \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{X}_i \mathbf{X}_i'$$

Yields:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Robust}} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\widehat{\mathbf{Q}}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1} \\
= (\mathbf{X}'\mathbf{X})^{-1} \left[\mathbf{X}' \left(\sum_{i=1}^{N} \hat{u}_{i}^{2}\mathbf{X}_{i}\mathbf{X}_{i}' \right)^{-1} \mathbf{X} \right] (\mathbf{X}'\mathbf{X})^{-1}$$

Practical Things

"Robust" VCV estimates:

- are heteroscedasticity-consistent, but
- are biased in small samples, and
- are less efficient than "naive" estimates when $Var(u) = \sigma^2 I$.

In practice, they've become the "default;" but it's important to understand their limitations

"Clustering"

Huber / White

????????

WLS / GLS

I know very little about my error variances... I know a great deal about my error variances...

"Clustering"

A common case:

$$Y_{ij} = \mathbf{X}_{ij}\boldsymbol{\beta} + u_{ij}$$

with

$$\sigma_{ij}^2 = \sigma_{ik}^2$$
.

"Robust, clustered" estimator:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Clustered}} = (\mathbf{X}'\mathbf{X})^{-1} \left\{ \mathbf{X}' \left[\sum_{i=1}^{N} \left(\sum_{j=1}^{n_j} \hat{u}_{ij}^2 \mathbf{X}_{ij} \mathbf{X}_{ij}' \right) \right]^{-1} \mathbf{X} \right\} (\mathbf{X}'\mathbf{X})^{-1}$$

Robust / Clustered SEs: A Simulation

```
> set.seed(3844469)
> X <- rnorm(10)
> Y <- 1 + X + rnorm(10)
> df10 <- data.frame(ID=seq(1:10),X=X,Y=Y)
> fit10 <- feols(Y"X,data=df10)
> summary(fit10)
OLS estimation, Dep. Var.: Y
Observations: 10
Standard-errors: IID
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.9536 0.3114 3.062 0.015534 *
            Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.880655 Adi. R2: 0.256783
> fit10robust <- feols(Y~X,data=df10,vcov="hetero")
> summary(fit10robust)
OLS estimation, Dep. Var.: Y
Observations: 10
Standard-errors: Heteroskedasticity-robust
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.9536 0.3147 3.030 0.016298 *
            0.5893
                      0.2850 2.067 0.072517 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
RMSE: 0.880655 Adi. R2: 0.256783
```

Robust / Clustered SEs: A Simulation (continued)

```
> # "Clone" each observation 100 times:
> df1K <- df10[rep(seq_len(nrow(df10)),each=100),]
> df1K <- pdata.frame(df1K, index="ID")
> fit1K <- feols(Y~X.data=df1K)
> summary(fit1K)
OLS estimation, Dep. Var.: Y
Observations: 1,000
Standard-errors: IID
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.9536 0.02788 34.20 < 2.2e-16 ***
            Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
RMSE: 0.880655 Adj. R2: 0.3387
> # Robust, clustered SEs:
> fit1Krobust <- feols(Y~X,data=df1K,cluster="ID")
> summary(fit1Krobust)
OLS estimation, Dep. Var.: Y
Observations: 1,000
Standard-errors: Clustered (ID)
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.9536 0.2968 3.213 0.010613 *
X
            0.5893
                      0.2689 2.192 0.056090 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.880655 Adj. R2: 0.3387
```

Serial Residual Correlation

Example:

$$Y_t = \beta_0 + \beta_1 X_t + u_t$$

$$u_t = \rho u_{t-1} + e_t$$

with $e_t \sim i.i.d. N(0, \sigma_u^2)$ and $\rho \in [-1, 1]$ (typically).

 \rightarrow "First-order autoregressive" ["AR(1)"] errors.

Serially Correlated Errors and OLS

Detection

- Plot of residuals vs. lagged residuals
- Runs test (Geary test)
- Durbin-Watson d
 - · Calculated as:

$$d = \frac{\sum_{t=2}^{N} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{N} \hat{u}_t^2}$$

- · Non-standard distribution ($d \in [0, 4]$)
- · Null: No autocorrelation
- · Only detects first-order autocorrelation

Serially Correlated Errors and OLS

What to do about it?

- GLS, incorporating $\rho / \hat{\rho}$ into the equation
- First-difference models (regressing changes of Y on changes of X)
- Cochrane-Orcutt / Prais-Winsten:
 - 1. Estimate the basic equation via OLS, and obtain residuals
 - 2. Use the residuals to consistently estimate $\hat{\rho}$ (i.e. the empirical correlation between u_t and u_{t-1})
 - 3. Use this estimate of $\hat{\rho}$ to estimate the difference equation:

$$(Y_t - \rho Y_{t-1}) = \beta_0(1 - \rho) + \beta_1(X_t - \rho X_{t-1}) + (u_t - \rho u_{t-1})$$

- 4. Save the residuals, and use them to estimate $\hat{\rho}$ again
- 5. Repeat this process until successive estimates of $\hat{\rho}$ differ by a very small amount

Running Example Redux

The World Development Indicators:

- Cross-national country-level time series data
- N = 215 countries, T = 65 years (1960-2024) + missingness
- Full descriptions are listed in the Github repo here

Regression model:

```
\begin{aligned} \mathsf{WBLI}_{it} &= \beta_0 + \beta_1 \mathsf{Population} \; \mathsf{Growth}_{it} + \beta_2 \mathsf{Urban} \; \mathsf{Population}_{it} + \beta_3 \mathsf{Fertility} \; \mathsf{Rate}_{it} + \\ & \beta_4 \mathsf{In} \big(\mathsf{GDP} \; \mathsf{Per} \; \mathsf{Capita}\big)_{it} + \beta_5 \mathsf{Natural} \; \mathsf{Resource} \; \mathsf{Rents}_{it} + \beta_6 \mathsf{Post-Cold} \; \mathsf{War}_{t} + u_{it} \end{aligned}
```

Descriptive Statistics:

	vars	n	mean	sd	median	min	max	range	skew	kurtosis	se
WomenBusLawIndex	1	8318	60.44	19.03	60.62	17.50	100.00	82.50	-0.03	-0.69	0.21
PopGrowth	2	8318	1.67	1.67	1.64	-27.47	21.70	49.17	-0.06	30.06	0.02
UrbanPopulation	3	8318	52.09	24.06	51.93	2.85	100.00	97.16	0.06	-1.04	0.26
FertilityRate	4	8318	3.61	1.90	3.09	0.77	8.61	7.83	0.51	-1.04	0.02
NaturalResourceRents	5	8318	7.19	11.14	2.42	0.00	88.59	88.59	2.53	7.58	0.12
PostColdWar	6	8318	0.69	0.46	1.00	0.00	1.00	1.00	-0.83	-1.31	0.01
lnGDPPerCap	7	8318	8.33	1.46	8.24	4.93	11.68	6.75	0.12	-0.90	0.02

A Digression: Rescaling Covariates

A la Gelman (2008) (and an updated blog post here):

- Continuous = divide by one standard deviation
- Binary = recode to $\{-1,1\}$

Doing this yields:

	vars	n	mean	sd	median	min	max	range	skew	kurtosis
WomenBusLawIndex	1 8	8318	60.44	19.03	60.62	17.50	100.00	82.50	-0.03	-0.69
PopGrowth	2 8	8318	1.00	1.00	0.98	-16.42	12.97	29.39	-0.06	30.06
UrbanPopulation	3 8	8318	2.17	1.00	2.16	0.12	4.16	4.04	0.06	-1.04
FertilityRate	4 8	8318	1.90	1.00	1.63	0.41	4.53	4.12	0.51	-1.04
NaturalResourceRents	5 8	8318	0.65	1.00	0.22	0.00	7.95	7.95	2.53	7.58
PostColdWar	6 8	8318	0.38	0.92	1.00	-1.00	1.00	2.00	-0.83	-1.31
lnGDPPerCap	7 8	8318	5.72	1.00	5.65	3.38	8.02	4.63	0.12	-0.90

How Much Autocorrelation in *Y*?

Note that:

$$d = 2(1 - \rho)$$

which means that we can calculate:

$$\rho=1-\frac{d}{2}.$$

So:

- > WI<-pdwtest(WomenBusLawIndex~1,data=smol)
- > WT

Durbin-Watson test for serial correlation in panel models

data: WomenBusLawIndex ~ 1
DW = 0.096, p-value <2e-16</pre>

alternative hypothesis: serial correlation in idiosyncratic errors

> print(paste("Rho =",round(1 - (WI\$statistic/2),3)))
[1] "Rho = 0.952"

How Much Autocorrelation in X?

Variable	Rho
Population Growth	0.780
Urban Population	0.975
Fertility Rate	0.966
GDP Per Capita	0.978
Natural Resource Rents	0.915
Post Cold War	0.916

Baseline Model: OLS (+ D-W Test)

```
> OLS<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilitvRate+lnGDPPerCap+NaturalResourceRents+
            PostColdWar.data=smol.model="pooling")
> summary(OLS)
Pooling Model
Unbalanced Panel: n = 187, T = 8-52, N = 8318
Residuals:
  Min. 1st Qu. Median 3rd Qu.
 -78 61 -8 48
                 1.05
                         9.24
                                45 58
Coefficients:
                   Estimate Std. Error t-value
                                                  Pr(>|t|)
(Intercept)
                     57 697
                                 1 717 33 60
                                                 < 20-16 ***
PopGrowth
                     -2.971
                            0.195 -15.24
                                                   < 2e-16 ***
UrbanPopulation
                     -1.586 0.250 -6.33 0.00000000025 ***
FertilityRate
                                                   < 2e-16 ***
                    -5.669 0.293 -19.38
1nGDPPerCap
                     3.597 0.278 12.93 < 2e-16 ***
NaturalResourceRents -4.047 0.167 -24.17 < 2e-16 ***
                     5.138
                             0.183 28.14
PostColdWar
                                                   < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                       3010000
Residual Sum of Squares: 1500000
R-Squared:
              0.5
Adj. R-Squared: 0.5
F-statistic: 1387.87 on 6 and 8311 DF, p-value: <2e-16
> pdwtest(OLS)
Durbin-Watson test for serial correlation in panel models
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
DW = 0.14, p-value <2e-16
alternative hypothesis: serial correlation in idiosyncratic errors
```

Residual Autocorrelation?

Unit-Specific Autocorrelation...

Fit N=188 country-specific regressions, and examine the $\hat{\rho}_i$ s...

Another Model: Prais-Winsten

> PraisWinsten<-panelAR(WomenBusLavIndex"PopGrowth+UrbanPopulation+FertilityRate+InGDPPerCap+NaturalResourceRents+
+ PostColdWar, data=smol,panelVar="ISO3",timeVar="Year",autoCorr="ar1",panelCorrMethod="none",rho.na.rm=TRUE)

> summary(PraisWinsten)

Panel Regression with AR(1) Prais-Winsten correction and homoskedastic variance

P-43-4- 043 P-4-4 4 -- 1-- P-(NI41)

```
Unbalanced Panel Design:
```

Total obs.: 8318 Avg obs. per panel 44.481 Number of panels: 187 Max obs. per panel 52 Number of times: 52 Min obs. per panel 8

Coefficients:

	Estimate	Std. Error	t varue	Pr(> t)	
(Intercept)	68.10534	2.88611	23.60	< 2e-16	***
PopGrowth	-0.00489	0.04634	-0.11	0.92	
UrbanPopulation	0.00375	0.58036	0.01	0.99	
FertilityRate	-9.70035	0.42217	-22.98	< 2e-16	***
1nGDPPerCap	1.98821	0.49708	4.00	0.0000640	***
NaturalResourceRents	-0.07378	0.08477	-0.87	0.38	
PostColdWar	0.46774	0.10465	4.47	0.0000079	***
Signif. codes: 0 '*	**' 0.001	'**' 0.01 '	* 0.05	'.' 0.1 '	' 1

R-squared: 0.2949

Wald statistic: 1067.1832, Pr(>Chisq(6)): 0

[1] 0.9547

> PraisWinstenpanelStructurerho

Better in a Table

WBLI Regressions

	OLS	Prais-Winsten
Intercept	57.70*	68.10*
	(1.72)	(2.89)
Population Growth	-2.97*	-0.005
	(0.19)	(0.046)
Urban Population	-1.59*	0.004
	(0.25)	(0.580)
Fertility Rate	-5.67*	-9.70*
	(0.29)	(0.422)
In(GDP Per Capita)	3.60*	1.99*
	(0.28)	(0.50)
Natural Resource Rents	-4.05^{*}	-0.07
	(0.17)	(0.09)
Cold War	5.14*	0.47*
	(0.18)	(0.11)
\mathbb{R}^2	0.50	0.29
Adj. R ²	0.50	
Num. obs.	8318	8318

Variables are standardized a la Gelman (2009). $^{*}p < 0.05$

Some Panel Data Challenges

Consider the error terms in the model:

In Marda

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + u_{it}$$

Issues:

<u>in vvoras</u> :	<u>in a Formula</u> :					
Variances:						
Unit-Wise Heteroscedasticity	$Var(u_{it}) \neq Var(u_{jt})$					
Temporal Heteroscedasticity	$Var(u_{it}) \neq Var(u_{is})$					
Covariances:						
Contemporary Cross-Unit Correlation	$Cov(u_{it}, u_{jt}) \neq 0$					
Within-Unit Serial Correlation	$Cov(u_{it}, u_{is}) \neq 0$					
Non-Contemporaraneous Cross-Unit Correlation	$Cov(u_{it},u_{js}) \neq 0$					

Parks' (1967) Approach

Assume:

- $Var(u_{it}, u_{jt}) = \sigma^2$ or σ_i^2 (Common or unit-specific error variances)
- $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s$ (Temporal homoscedasticity)
- $Cov(u_{it}, u_{it}) = \sigma_{ii} \ \forall \ i \neq j$ (Pairwise contemporaneous cross-unit correlation)
- $Cov(u_{it}, u_{is}) = \rho$ or ρ_i (Common or unit-specific temporal correlation)
- Cov $(u_{it}, u_{js}) = 0 \ \forall \ i \neq j, t \neq s$ (No non-contemporaneous cross-unit correlation)

(Beck & Katz (1995): "panel error assumptions").

Then:

- 1. Use OLS to generate \hat{u} s $\rightarrow \hat{
 ho} \ (\rightarrow \hat{m{\Omega}})$,
- 2. Use $\hat{\rho}$ for Prais-Winsten.

This method was widely used prior to Beck & Katz (1995)...

Parks' Problems

The variance-covariance matrix is:

$$\boldsymbol{\Omega} = \begin{pmatrix} \boldsymbol{\Sigma} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma} & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{\Sigma} \end{pmatrix} = \boldsymbol{\Sigma} \otimes \boldsymbol{I}_{\mathcal{T}}$$

where

$$\sum_{N\times N} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1N} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1N} & \sigma_{2N} & \cdots & \sigma_N^2 \end{pmatrix}$$

Means:

- $\frac{N(N-1)}{2}$ distinct contemporaneous covariances σ_{ij} ,
- NT observations,
- ullet ightarrow 2T/(N+1) observations per $\hat{\sigma}$

More Parks Problems

From PROC PANEL in SAS:

Standard Corrections

For the PARKS option, the first-order autocorrelation coefficient must be estimated for each cross section. Let ρ be the $N \times 1$ vector of true parameters and $R = (r_1, \dots, r_N)'$ be the corresponding vector of estimates. Then, to ensure that only range-preserving estimates are used in PROC PANEL, the following modification for R is made:

$$r_i = \begin{cases} r_i & \text{if } |r_i| < 1\\ \max(.95, \text{rmax}) & \text{if } r_i \ge 1\\ \min(-.95, \text{rmin}) & \text{if } r_i \le -1 \end{cases}$$

where

$$\operatorname{rmax} = \begin{cases} 0 & \text{if} \quad r_i < 0 \quad \text{or} \quad r_i \ge 1 \quad \forall i \\ \max_j [r_j : 0 \le r_j < 1] & \text{otherwise} \end{cases}$$

and

$$\mathrm{rmin} = \begin{cases} 0 & \text{if} \quad r_i > 0 \quad \text{or} \quad r_i \leq -1 \quad \forall i \\ \max_j [r_j: -1 < r_j \leq 0] & \text{otherwise} \end{cases}$$

Whenever this correction is made, a warning message is printed.

Panel-Corrected Standard Errors

Key to PCSEs:

$$\hat{\sigma}_{ij} = \frac{\sum_{t=1}^{T} \hat{u}_{it} \hat{u}_{jt}}{T}$$

Define:

$$\mathbf{U}_{T \times N} = \begin{pmatrix} \hat{u}_{11} & \hat{u}_{21} & \cdots & \hat{u}_{N1} \\ \hat{u}_{12} & \hat{u}_{22} & \cdots & \hat{u}_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{u}_{1T} & \hat{u}_{2T} & \cdots & \hat{u}_{NT} \end{pmatrix}$$

$$\hat{\mathbf{\Sigma}} = \frac{(\mathbf{U}'\mathbf{U})}{T}$$

$$\hat{\Omega}_{\textit{PCSE}} = \frac{(\textbf{U}'\textbf{U})}{\textit{T}} \otimes \textbf{I}_{\textit{T}}$$

Panel-Corrected Standard Errors

Correct formula:

$$\mathsf{Cov}(\hat{\beta}_{\mathit{PCSE}}) = (\mathbf{X}'\mathbf{X})^{-1}[\mathbf{X}'\hat{\boldsymbol{\Omega}}_{\mathit{PCSE}}\mathbf{X}](\mathbf{X}'\mathbf{X})^{-1}$$

General Issues:

- PCSEs do not fix unit-level heterogeneity (a la "fixed" / "random" effects)
- They also do not deal with dynamics
- They depend critically on the "panel data assumptions" of Park / Beck & Katz

Panel Assumptions and Numbers of Parameters

Panel Assumptions	No AR(1)	Common $\hat{ ho}$	Separate $\hat{ ho}_i$ s
$\sigma_i^2 = \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) = 0$	k+1	k + 2	k + N + 1
$\sigma_i^2 \neq \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) = 0$	k + N	k + N + 1	k + 2N
$\sigma_i^2 \neq \sigma^2$, $Cov(\sigma_{it}, \sigma_{jt}) \neq 0$	$\frac{N(N-1)}{2} + k + N$	$\frac{N(N-1)}{2} + k + N + 1$	$\frac{N(N-1)}{2} + k + 2N$

Example: GLS with Homoscedastic AR(1) Errors

```
> GLS<-gls(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilitvRate+lnGDPPerCap+NaturalResourceRents+
          PostColdWar.data=smol.correlation=corAR1(form=~1|ISO3).na.action="na.omit")
> summarv(GLS)
Generalized least squares fit by REML
 Model: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + lnGDPPerCap + NaturalResourceRents + PostColdWar
 Data: smol
   AIC BIC logLik
 38995 39058 -19489
Correlation Structure: AR(1)
Formula: ~1 | ISO3
Parameter estimate(s).
  Phi
0 9897
Coefficients:
                   Value Std.Error t-value p-value
(Intercept)
                   47.95
                             3.867 12.400 0.0000
                   0.00 0.043 -0.028 0.9779
PopGrowth
UrbanPopulation
                  6.05 0.954 6.336 0.0000
FertilityRate
                   -6.48 0.528 -12.285 0.0000
lnGDPPerCap
                   2.28 0.598 3.813 0.0001
NaturalResourceRents 0.22 0.077 2.836 0.0046
PostColdWar
                  0.23 0.100 2.277 0.0228
Correlation:
                    (Intr) PpGrwt UrbnPp FrtltR 1GDPPC NtrlRR
PopGrowth
                   0.037
UrbanPopulation
                  -0.319 -0.008
FertilityRate
                  -0.517 -0.055 0.430
lnGDPPerCap
                  -0.694 -0.032 -0.367 0.028
NaturalResourceRents 0.009 -0.008 0.030 0.036 -0.053
PostColdWar
                   -0.002 0.029 -0.050 0.057 0.008 -0.019
```

Degrees of freedom: 8318 total; 8311 residual

Residual standard error: 16 87

Example: PCSEs

> PCSE<-panelAR(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+lngDPPerCap+NaturalResourceRents+

+ PostColdWar,data=smol,panelVar="ISO3",timeVar="Year",autoCorr="ar1",

Estimate Std. Error t value Pr(>|t|)

panelCorrMethod="pcse",rho.na.rm=TRUE)

> summary(PCSE)

Panel Regression with AR(1) Prais-Winsten correction and panel-corrected standard errors

Unbalanced Panel Design:

Total obs.: 8318 Avg obs. per panel 44.481 Number of panels: 187 Max obs. per panel 52 Number of times: 52 Min obs. per panel 8

Coefficients:

(Intercept)	68.10534	4.29042	15.87	<2e-16	***
PopGrowth	-0.00489	0.05089	-0.10	0.9235	
UrbanPopulation	0.00375	0.68342	0.01	0.9956	
FertilityRate	-9.70035	0.66742	-14.53	<2e-16	***
1nGDPPerCap	1.98821	0.66281	3.00	0.0027	**
NaturalResourceRents	-0.07378	0.13521	-0.55	0.5853	
PostColdWar	0.46774	0.27871	1.68	0.0933	

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

R-squared: 0.2949

Wald statistic: 362.7486, Pr(>Chisq(6)): 0

> PCSE\$panelStructure\$rho

[1] 0.9547

Estimate Comparisons

Dynamics!

Time Series: Stationarity

Stationarity: A constant d.g.p. over time.¹

Mean stationarity:

$$E(Y_t) = \mu \ \forall \ t$$

Variance stationarity:

$$Var(Y_t) = E[(Y_t - \mu)^2] \equiv \sigma_Y^2 \ \forall \ t$$

Covariance stationarity:

$$Cov(Y_t, Y_{t-s}) = E[(Y_t - \mu)(Y_{t-s} - \mu)] = \gamma_s \ \forall \ s$$

 $^{^1}A$ stricter form of stationarity requires that the joint probability distribution (in other words, all the moments) of series of observations $\{Y_1,Y_2,...Y_t\}$ is the same as that for $\{Y_{1+s},Y_{2+s},...Y_{t+s}\}$ for all t and s.

The "ARIMA" Approach

"ARIMA" = Autoregressive Integrated Moving Average...

A (first-order) integrated series ("random walk") is:

$$Y_t = Y_{t-1} + u_t, \ u_t \sim i.i.d.(0, \sigma_u^2)$$

...a/k/a a "random walk":

$$Y_{t} = Y_{t-2} + u_{t-1} + u_{t}$$

$$= Y_{t-3} + u_{t-2} + u_{t-1} + u_{t}$$

$$= \sum_{t=0}^{T} u_{t}$$

I(1) Series Properties

I(1) series are not stationary.

Variance:

$$Var(Y_t) \equiv E(Y_t)^2 = t\sigma^2$$

Autocovariance:

$$Cov(Y_t, Y_{t-s}) = |t - s|\sigma^2.$$

Both depend on t...

I(1) series (continued)

More generally:

- $|\rho| > 1$
 - Series is nonstationary / explosive
 - Past shocks have a greater impact than current ones
 - Uncommon
- $|\rho| < 1$
 - Stationary series
 - ullet Effects of shocks die out exponentially according to ho
 - Is mean-reverting
- \bullet $|\rho|=1$
 - Nonstationary series
 - Shocks persist at full force
 - Not mean-reverting; variance increases with t

Time Series Types, Illustrated

I(1) Series: Differencing

For an I(1) series:

$$Y_t - Y_{t-1} = u_t$$

which we often write in terms of the difference operator Δ (or sometimes ∇):

$$\Delta Y_t = u_t$$

The differenced series is just the (stationary, ergoditic) white-noise process u_t .

Unit Root Tests Review: Dickey-Fuller

Two steps:

- Estimate $Y_t = \rho Y_{t-1} + u_t$,
- test the hypothesis that $\hat{\rho} = 1$, but
- this requires that the *u*s are uncorrelated.

But suppose:

$$\Delta Y_t = \sum_{i=1}^p d_i \Delta Y_{t-i} + u_t$$

which yields

$$Y_t = Y_{t-1} + \sum_{i=1}^{p} d_i \Delta Y_{t-i} + u_t.$$

D.F. tests will be incorrect.

Unit Root Alternatives

Augmented Dickey-Fuller Tests:

Estimate

$$\Delta Y_t = \rho Y_{t-1} + \sum_{i=1}^p d_i \Delta Y_{t-i} + u_t$$

• Test $\hat{
ho}=0$ (vs. alternative that $\hat{
ho}<0$)

Phillips-Perron Tests:

• Estimate:

$$\Delta Y_t = \alpha + \rho Y_{t-1} + u_t$$

- Calculate modified test statistics (Z_{ρ} and Z_{t})
- Test $\hat{\rho} = 0$

Issues with Unit Roots in Panel Data

- Short series + Asymptotic tests → "borrow strength"
- Requires uniform unit roots across cross-sectional units
- Many tests require balanced panels...
- Various alternatives:
 - Maddala and Wu (1999)
 - Hadri (2000)
 - Levin, Lin and Chu (2002)
 - Im, Pesaran, and Shin (2003)
- What to do?
 - Difference the data...
 - Error-correction models

Panel Unit Root Tests: R

```
[data wrangling...]
> purtest(WBLI.W,exo="trend",test="levinlin",pmax=2)
Levin-Lin-Chu Unit-Root Test (ex. var.: Individual Intercepts and
Trend)
data: WBLT.W
z = -2.5, p-value = 0.007
alternative hypothesis: stationarity
> purtest(WBLI.W,exo="trend",test="hadri",pmax=2)
Hadri Test (ex. var.: Individual Intercepts and Trend) (Heterosked.
 Consistent)
data: WBLT.W
z = 200, p-value <2e-16
alternative hypothesis: at least one series has a unit root
> purtest(WBLI.W,exo="trend",test="madwu",pmax=2)
Maddala-Wu Unit-Root Test (ex. var.: Individual Intercepts and Trend)
data: WBLI.W
chisq = 336, df = 376, p-value = 0.9
alternative hypothesis: stationarity
> purtest(WBLI.W,exo="trend",test="ips",pmax=2)
 Im-Pesaran-Shin Unit-Root Test (ex. var.: Individual Intercepts and
Trend)
data: WRLT W
Wtbar = 2.9, p-value = 1
alternative hypothesis: stationarity
```

A Better Table

Table: Panel Unit Root Tests: WBRI

	Test	Alternative	Statistic	Estimate	P-Value
1	Levin-Lin-Chu	stationarity	Z	-2.476	0.0066
2	Hadri	at least one series has a unit root	z	199.634	< 0.0001
3	Maddala-Wu	stationarity	χ^2	335.94	0.9321
4	Im-Pesaran-Shin	stationarity	$\hat{ar{W}}_t$	2.851	0.9978

Note: All assume individual intercepts and trends.

"Lagged dependent variable":

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \beta_{LDV} + \epsilon_{it}$$

If ϵ_{it} is perfect, then:

- $\hat{\beta}_{LDV}$ is biased (but consistent),
- O(bias) = $\frac{-1+3\beta_{LDV}}{T}$

If ϵ_{it} is autocorrelated...

- $\hat{\beta}_{LDV}$ is biased and inconsistent
- IV is one (bad) option...

Lagged Ys and GLS-ARMA

Can rewrite:

$$Y_{it} = \mathbf{X}_{it} \boldsymbol{\beta}_{AR} + u_{it}$$

 $u_{it} = \phi u_{it-1} + \eta_{it}$

as

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta}_{AR} + \phi u_{it-1} + \eta_{it}$$

$$= \mathbf{X}_{it}\boldsymbol{\beta}_{AR} + \phi(\mathbf{Y}_{it-1} - \mathbf{X}_{it-1}\boldsymbol{\beta}_{AR}) + \eta_{it}$$

$$= \phi \mathbf{Y}_{it-1} + \mathbf{X}_{it}\boldsymbol{\beta}_{AR} + \mathbf{X}_{it-1}\psi + \eta_{it}$$

where $\psi = \phi \beta_{AR}$ and $\psi = 0$ (by assumption).

Lagged Ys and World Domination

In:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta}_{LDV} + \epsilon_{it}$$

Achen: Bias "deflates" $\hat{\beta}_{LDV}$ relative to $\hat{\phi}$, "suppress" the effects of **X**...

Keele & Kelly (2006):

- Contingent on ϵ s having autocorrelation
- Key: In LDV, long-run impact of a unit change in X is:

$$\hat{eta}_{LR} = rac{\hat{eta}_{LDV}}{1 - \hat{\phi}}$$

Long-Run Impact for $\hat{eta}=1$

Lagged Ys and Unit Effects

Consider:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + \alpha_i + u_{it}.$$

If we omit the unit effects, we have:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + u_{it}^*$$

with

$$u_{it}^* = \alpha_i + u_{it}$$

Lagging yields:

$$Y_{it-1} = \phi Y_{it-2} + \mathbf{X}_{it-1} \boldsymbol{\beta} + \alpha_i + u_{it-1}$$

which means

$$Cov(Y_{it-1}, u_{it}^*) \neq 0. \rightarrow bias in \hat{\phi}, \hat{\beta}$$

"Nickell" Bias

Bias in $\hat{\phi}$ is

- toward zero when $\phi > 0$,
- increasing in ϕ .

Including unit effects still yields bias in $\hat{\phi}$ of $O(\frac{1}{T})$, and bias in $\hat{\beta}$.

Solutions:

- Difference/GMM estimation
- Bias correction approaches

First Difference Estimation

$$Y_{it} - Y_{it-1} = \phi(Y_{it-1} - Y_{it-2}) + (\mathbf{X}_{it} - \mathbf{X}_{it-1})\beta + (\alpha_i - \alpha_i) + (u_{it} - u_{it-1})$$

$$\Delta Y_{it} = \phi\Delta Y_{it-1} + \Delta \mathbf{X}_{it}\beta + \Delta u_{it}$$

Anderson/Hsiao: If \nexists autocorrelation, then use ΔY_{it-2} or Y_{it-2} as instruments for ΔY_{it-1} ...

- Consistent in theory,
- in practice, the former is preferred, and both have issues if ϕ is high;
- both are inefficient.

$A&H \rightarrow A&B$

Arellano & Bond (also Wawro): Use *all* lags of Y_{it} and \mathbf{X}_{it} from t-2 and before.

- "Good" estimates, better as $T \to \infty$,
- Easy to handle higher-order lags of Y,
- Easy software (plm in R , xtabond in Stata).
- Model is fixed effects...
- \mathbf{Z}_i has T-p-1 rows, $\sum_{i=p}^{T-2} i$ columns \rightarrow difficulty of estimation declines in p, grows in T.

Bias-Correction Models

Kiviet (1995, 1999; Bun and Kiviet 2003; Bruno 2005a,b): Derive the bias in $\hat{\phi}$ and $\hat{\beta}$, then correct it...

- \bullet More accurate than the instrumental-variables/GMM estimators of A&H/A&B...
- ...especially when T is small; but not as T gets reasonably large ($T \approx 20$)

Some Dynamic Models

	OLS	Lagged Y	First Difference	Fixed Effects	$FE + Lagged \; Y$	Anderson-Hsaio
(Intercept)	57.697	2.121	0.632			-0.162
	(1.717)	(0.322)	(0.037)			(0.271)
Population Growth	-2.971	-0.051	0.005	-0.316	-0.073	0.018
	(0.195)	(0.035)	(0.043)	(0.135)	(0.041)	(0.199)
Urban Population	-1.586	0.066	-0.517	7.459	0.323	3.025
	(0.250)	(0.044)	(1.452)	(0.471)	(0.146)	(22.721)
Fertility Rate	-5.669	-0.183	-1.155	-3.350	-0.476	-0.627
	(0.293)	(0.053)	(0.603)	(0.293)	(0.090)	(9.234)
In(GDP Per Capita)	3.597	-0.071	1.087	12.789	0.218	-2.406
	(0.278)	(0.050)	(0.632)	(0.428)	(0.137)	(9.027)
Natural Resource Rents	-4.047	-0.104	0.282	0.800	-0.017	-0.085
	(0.167)	(0.031)	(0.076)	(0.185)	(0.057)	(0.652)
Post-Cold War	5.138	0.122	0.009	3.472	0.184	0.078
	(0.183)	(0.034)	(0.098)	(0.144)	(0.044)	(1.229)
Lagged WBLI		0.987			0.953	1.188
		(0.002)			(0.003)	(0.289)
Num.Obs.	8318	8120	8131	8318	8120	7923
R2	0.500	0.985	0.003	0.528	0.958	0.003
R2 Adj.	0.500	0.985	0.002	0.517	0.957	0.003
Log.Lik.		-18427.767				
RMSE	13.45	2.34	2.37	7.79	2.30	3.56

Anderson-Hsiao, Arellano-Bond, etc.

In R:

- Anderson-Hsiao can be fit using Im or (more easily) plm in the plm package
- Arellano-Bond is most easily fit using pgmm ("panel gmm") in the plm package
- See Criossant and Millo (2018, Chapter 7) for statistics + code details
- This post is also useful...

Stata:

- xtabond / xtdpdsys / xtdpd fit both A-H and A-B / Blundell-Bond models (among others)
- This is also a good (slightly dated) reference

Another Approach: Orthogonalization

Note: We're rarely substantively interested in the fixed effects $\hat{\alpha}...$

- \rightarrow reparameterize the α s so that they are *information-orthogonal* to the other parameters in the model (including the β s and ϕ)
- Key idea: Transform the α s so that (for example):

$$\mathsf{E}\left(\frac{\partial^2 L_i}{\partial \alpha \partial \beta}\right) = 0$$

- Can do this via imposition of priors, in a Bayesian framework...
- In general, this approach is less assumption-laden and more efficient than the IV/GMM-based approaches discussed above.
- Provides consistent-in-N estimates for T as low as 2...

References:

- Lancaster, T. 2002. "Orthogonal Parameters and Panel Data." Review of Economic Studies 69:647-666.
- Pickup et al. (2017) [the "orthogonalized panel model" ("OPM")]

FE + Dynamics Using Orthogonalization

- > library(OrthoPanels)
- > set.seed(7222009)
- > OPM.fit <- opm(WomenBusLawIndex"PopGrowth+UrbanPopulation+FertilityRate+ InGDPPerCap+NaturalResourceRents+PostColdWar,data=smol, index=c("ISO3","Year"),n.samp=1000)

OPM Results: Short- and Long-Run Effects

For $\hat{\phi} \approx 0.98$:

Parameter	Short-Run	Long-Run
Population Growth	-0.05	-3.93
Urban Population	0.10	6.87
Fertility Rate	-0.34	-24.90
In(GDP Per Capita)	-0.34	-25.27
Natural Resource Rents	-0.06	-4.55
Post-Cold War	0.12	9.22

Trends!

What if Y is trending over time?

- First Question: Why?
 - · Organic growth (e.g., populations)
 - · Temporary / short-term factors
 - · Covariates...
- Second question: Should we care?
 (A: Yes, usually... → "spurious regressions")
- Third question: What to do?
 - · Ignore it...
 - · Include a counter / trend term...

In general, adding a trend term will decrease the magnitudes of $\hat{\beta}$...

Trends Matter, Illustrated

Data generating processes:

$$Y_{1t} = 10 + (1 \times X_t) + u_t$$

$$Y_{2t} = 5 + (1 \times X_t) + (0.5 \times T) + u_t$$

	Dependent variable:			
	Y ₁	}	´2	
x	0.921*** (0.245)	-0.382 (0.786)	0.874*** (0.255)	
Т			0.482*** (0.026)	
Constant	10.320*** (0.917)	20.220*** (2.948)	5.855*** (1.200)	
Observations	40	40	40	
R ²	0.272	0.006	0.905	
Adjusted R ²	0.253	-0.020	0.900	
Residual Std. Error	1.802 (df = 38)	5.793 (df = 38)	1.814 (df = 37)	

Trends Matter, Part II

Table: FE Models of WBLI

	FE	FE.trend	FE.intx
Population Growth	-0.316**	-0.488***	-0.458***
•	(0.135)	(0.113)	(0.113)
Urban Population	7.459***	0.393	0.762*
	(0.471)	(0.412)	(0.414)
Fertility Rate	-3.350***	2.573***	2.488***
	(0.293)	(0.265)	(0.264)
In(GDP Per Capita)	12.790***	3.486***	3.179***
	(0.428)	(0.391)	(0.392)
Natural Resource Rents	0.800***	0.500***	0.514***
	(0.185)	(0.155)	(0.154)
Post-Cold War	3.472***	-0.865***	-3.943***
	(0.144)	(0.141)	(0.454)
Trend (1950=0)		0.732***	0.666***
, ,		(0.012)	(0.015)
Post-Cold War x Trend			0.090***
			(0.013)
Observations	8,318	8,318	8,318
R^2	0.528	0.670	0.672
Adjusted R ²	0.517	0.662	0.664

^{*}p<0.1; **p<0.05; ***p<0.01

Another Approach: FEIS

"Fixed Effects Individual Slope" models

- Cite: Bruederl, Josef, and Volker Ludwig. 2015. "Fixed-Effects Panel Regression." In *The Sage Handbook of Regression Analysis* and Causal Inference, Eds. Henning Best and Christof Wolf. Los Angeles: Sage, pp. 327-357.
- FE + unit-level slopes for (some / all) predictor variables
- Equivalent to including N-1 interactions between a predictor ${\bf X}$ and each of the $\alpha_i{\bf s}$
- Also can test for homogeneity of estimated slopes (Hausman-like test)
- See the feisr R package, and its accompanying vignette, or xtfeis in Stata

FEIS Example: Post-Cold War

```
> FEIS<-feis(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+lnGDPPerCap+NaturalResourceRents | PostColdWar.
            data=(smol),id="ID",robust=FALSE)
> summary(FEIS)
Call:
feis(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + lnGDPPerCap + NaturalResourceRents | PostColdWar.
   data = (smol), id = "ID", robust = FALSE)
Residuals:
  Min. 1st Qu. Median 3rd Qu.
                                 Max.
-26.445 -3.265 0.027 3.214 48.843
Coefficients:
                    Estimate Std. Error t-value Pr(>|t|)
PopGrowth
                                 0.109 -5.08 0.00000039 ***
                     -0.551
UrbanPopulation
                    9.151
                                 0.554 16.52 < 2e-16 ***
FertilityRate
                     -7.165
                                 0.321 -22.31
                                               < 2e-16 ***
                                 0.476 33.95 < 2e-16 ***
lnGDPPerCap
                     16.151
NaturalResourceRents 0.130
                                 0.161
                                          0.81
                                                    0.42
Signif, codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Normal standard errors
Slope parameters: PostColdWar
Total Sum of Squares:
                        513000
```

Residual Sum of Squares: 297000

0.421

R-Squared:

Adj. R-Squared: 0.421

FEIS: Testing

```
> FEIS.test<-feistest(FEIS)
> summary(FEIS.test)
Ca11 ·
feis(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
    FertilityRate + lnGDPPerCap + NaturalResourceRents | PostColdWar,
    data = (smol), id = "ID", robust = FALSE)
Artificial Regression Test
FEIS vs. FE:
HO: FETS and FE estimates consistent
Alternative H1: FE inconsistent
Model constraints: PopGrowth hat. UrbanPopulation hat. FertilityRate hat.
lnGDPPerCap_hat, NaturalResourceRents_hat = 0
Chi-squared test:
Chisa = 1403.0, df = 5, P(> X2) = 0.0
FF we RF.
HO: FE and RE estimates consistent
Alternative H1: RE inconsistent
Model constraints: PopGrowth_mean, UrbanPopulation_mean, FertilityRate_mean,
lnGDPPerCap mean. NaturalResourceRents mean. PostColdWar mean = 0
Chi-squared test:
Chisa = 420.9, df = 6, P(> X2) = 0.0
FFIS we RF.
HO: FETS and RE estimates consistent
Alternative H1: RE inconsistent
Model constraints: PopGrowth_hat, UrbanPopulation_hat, FertilityRate_hat,
lnGDPPerCap hat. NaturalResourceRents hat = 0
Chi-squared test:
Chisa = 1566.7, df = 5, P(> X2) = 0.0
```

FEIS: Unit-Specific Slopes

Distribution of Unit-Specific Slopes for Post-Cold War

FEIS: Unit-Specific Trends

```
> FEIS2<-feis(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+lngDPPerCap+NaturalResourceRents+PostColdWar | Year.
            data=(smol),id="ID",robust=FALSE)
> summary(FEIS2)
Call:
feis(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + lnGDPPerCap + NaturalResourceRents + PostColdWar |
    Year, data = (smol), id = "ID", robust = FALSE)
Residuals:
    Min. 1st On.
                      Median 3rd Qu.
                                           Max.
-18.35028 -2.44970 -0.00667 2.41306 40.80105
Coefficients:
                    Estimate Std. Error t-value Pr(>|t|)
PopGrowth
                    -0.3977
                                0.0817
                                        -4.87 1.1e-06 ***
UrbanPopulation
                    0.6252
                             0.7412
                                          0.84
                                                  0.40
FertilityRate
                      0.1747
                             0.3341
                                         0.52
                                                  0.60
1nGDPPerCap
                      4.5056
                             0.5445
                                        8.27 < 2e-16 ***
NaturalResourceRents -0.1474
                             0.1214
                                        -1.21
                                                  0.22
PostColdWar
                     -0.7071
                                0.1032 -6.85 7.8e-12 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Normal standard errors
Slope parameters: Year
Total Sum of Squares:
                        164000
Residual Sum of Squares: 161000
R-Squared:
               0.0183
Adj. R-Squared: 0.0176
```

FEIS: Unit-Specific Trends

Distribution of Unit-Specific Trend Estimates

Dynamic Models: Software

R:

- the plm package (purtest for unit roots; plm for first-difference models; pgmm for Arellano-Bond)
- the panelvar package (FD, A&B; Blundell and Bond (FOD))
- the panelAR package (GLS-ARMA models)
- the gls package (GLS)
- the pdynmc package (GMM models via moment conditions)
- the dynpanel package (A&H, A&B; minimal...)

Stata:

- xtgls (GLS)
- xtpcse (PCSEs)
- xtabond / xtabond2 / xtdpd / xtdpdsys (A&H + A&B + etc. + dynamic models)
- Others...

Final Thoughts: Dynamic Panel Models

Things to consider:

- N vs. T...
- Are dynamics nuisance or substance?
- What problem(s) do you *really* care about?