Stationarity	
	Yt
An "ideal" situation:	
Stide 12:	ol t
When g = 1 or p = 0 Diokey-Fuller (DF)	, we get from the
	,
yt = yt - 1 = Vt $yt = 1yt - 1 + Vt$	ndom walk nevently non-stationary)
Slide 18:	
Approximation of qu	
	ercentage changes in Yt:
	00. (lnyt - lnyt-1)

Example 1	
Ad a) & b)	PDF, pp. L-4
When T > Tel or p<0 unit root (non-stational	X, we reject the rity).
Add)	PDF,p.5.
Continuously compounded per	
$r_{y} = 100 \cdot \Delta \ln y_{t}$ $r_{y} = 100 \cdot (\ln y_{t} - \ln y_{t-1})$ $r_{y} = 100 \cdot \ln \left(\frac{y_{t}}{y_{t-1}}\right)$	
ARMA (Box - Jenkins) mo	odels
Slide 13:	
We distinguish among 3 1) AR processes; 2) MA processes; 3) ARMA processes.	types of processes:

AR(p) process

Slide 23

$$y_{t} = \mu + \sum_{i=1}^{n} y_{t-i} + u_{t}$$
 $y_{t} = \mu + \sum_{i=1}^{n} y_{i} + u_{t}$
 $y_{t} - \sum_{i=1}^{n} y_{i} = \mu + u_{t}$
 $y_{t} - y_{1} + y_{2} + y_{2} + \dots - y_{p} + y_{p} = \mu + u_{t}$
 $y_{t} + y_{1} + y_{2} + y_{2} + \dots - y_{p} + y_{p} = \mu + u_{t}$
 $y_{t} + y_{1} + y_{2} + y_{2} + \dots - y_{p} + y_{p} = \mu + u_{t}$
 $y_{t} + y_{1} + y_{2} + y_{2} + \dots - y_{p} + y_{p} = \mu + u_{t}$
 $y_{t} + y_{1} + y_{2} + y_{2} + \dots - y_{p} + y_{p} = \mu + u_{t}$
 $y_{t} + y_{t} + y_$

EXAMPLE 1:

Slide 24

$$y_t = y_{t-1} + u_t$$
 (random walk process)
 $y_t - y_{t-1} = u_t$
 $y_t - L y_t = u_t$
 $y_t (1 - L) = u_t$

Characteristic equation:

EXAMPLE 2:

$$y_{t} = 3y_{t-1} - 2.75y_{t-2} + 0.75y_{t-3} + u_{t}$$

 $y_{t} - 3y_{t-1} + 2.75y_{t-2} - 0.75y_{t-3} = u_{t}$
 $y_{t} - 3Ly_{t} + 2.75L^{2}y_{t} - 0.75L^{3}y_{t} = u_{t}$
 $y_{t} (1 - 3L + 2.75L^{2} - 0.75L^{3}) = u_{t}$

Characteristic equation:

$$(1-3z+1.75z^2-0.75z^3=0)$$

 $(1-z)(1-1.5z)(1-0.5z)=0$

$$\frac{2}{2} = \frac{1}{2} \times \frac{2}{2} \times \frac{2}$$

MA(q) process

Slide 26