Дата: 05.02.2024

Клас: 8Б

Вчитель: Родіна А.О.

Класифікація неорганічних сполук, їхні склад і номенклатура

Класифікація неорганічних речовин

Оксиди

Це складні речовини, що складаються з 2-х елементів, один з яких - *Оксиген* у ступені окиснення -2

Елемент + Оксиген (ступінь окиснення -2) = Оксид

Загальна формула - ЕхОу

Назви оксидів

Назви оксидів, утворених елементами з постійною валентністю

Алюміній

+

Оксид

 \rightarrow

+

Алюміній оксид

Назви оксидів, утворених елементами із змінною валентністю

Ферум

Валентність елемента — II

Оксид

 \rightarrow

Ферум(II) оксид

Група оксидів	Які елементи утворюють?	Приклади, подані формулами
	Солетворні оксиди	
Основні	Металічні (лужні, лужноземельні, Li, Na, K, Rb, Ca, Ba, Sr)	Na2O, K2O, CaO, BaO, SrO
<u>Кислотні</u>	Неметалічні (S, Si, N, P, C, Cl) і металічні елементи зі ступенями окиснення +5, +6, +7 (Mn2O7)	SO3, P2O5, NO2, Mn2O7
<u>Амфотерні</u>	Ті, що в періодах розміщені на межі між металічними та неметалічними елементами (Be, Zn, Al)	BeO, ZnO, Al2O3
	Несолетворні оксиди	

До групи несолетворних оксидів належать такі, що не виявляють ні основних, ні кислотних властивостей. Їх утворюють кілька неметалічних елементів.

CO, SiO, N2O, NO

Кислоти

Це складні речовини, які складаються з 1-го або кількох атомів Гідрогену (H) та кислотного залишку.

Кислотний залишок — це атом або група атомів.

Атоми Гідрогену (1 або кілька) + кислотний залишок = <u>кислота</u>

Загальна формула - <u>HnR</u>

R - кислотний залишок

Валентність кислотного залишку = кількості атомів Гідрогену!

Кислота		Кислотний залишок		
Формула	Назва за сучасною номенклатурою	Формула кислотного залишку	Валентність	Назва кислотного залишку*
HCl	хлоридна	Cl	I	хлорид
H ₂ S	сульфідна	S	П	сульфід
HNO ₃	нітратна	NO ₃	I	нітрат
H ₂ SO ₄	сульфатна	SO ₄	П	сульфат
H ₂ SO ₃	сульфітна	SO ₃	II	сульфіт
H ₂ SiO ₃	силікатна	SiO ₃	II	силікат
H ₂ CO ₃	карбонатна	CO ₃	П	карбонат
H ₂ PO ₄	ортофосфатна	PO ₄	III	ортофосфат

Назви кислотних залишків походять від назви відповідної кислоти, якщо забрати закінчення -на.

За назвами кислотних залишків називають солі.

Загальна формула кислот така:

1 n H_n(K3),

де *n* — число атомів Гідрогену й, відповідно, валентність кислотного залишку;

КЗ — кислотний залишок.

Солі

Це складні речовини утворені катіонами металічних елементів та аніонами кислотних залишків.

Метал + кислотний залишок = <u>Сіль</u>

Загальна формула - MexRy

Ме - атом металічного елемента, R - кислотний залишок.

Назва солі = назва металічного елемента + назва кислотного залишку в називному відмінку

NaCl — натрій хлорид

Основи (гідроксиди)

Сполуки, які містять катіони металічних елементів і гідроксиданіони ОН

Метал + ОН група = <u>ОСНОВа</u>

Загальна формула - Ме(ОН)п

n - число груп ОН, що відповідає валентності металічного елемента. Me - символ металічного елемента

NaOH - натрій гідроксид

Fe(OH)3 - феррум (III) гідроксид

До розчинних основ належать

- •гідроксиди лужних металів (LiOH, NaOH, KOH, RbOH, CsOH);
- •гідроксиди лужно-земельних металів (Ca(OH)2, Ba(OH)2, Sr(OH)2).

Всі інші основи - нерозчинні.

Однокислотні основи містять одну гідроксильну групу: NaOH, CuOH.

Двокислотні основи містять дві гідроксильні групи: Ca(OH)2, Cu(OH)2.

Багатокислотні основи містять більше, ніж дві гідроксильні групи

Домашне завдання

- >Зробити конспект
- >Вивчити тему
- >Назвати формули речовин

