Resistor Network Sensing Breadboard

by

Joshua Muffin Gordonson

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

© Joshua Muffin Gordonson, MMXV. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created.

Author.	
	Department of Electrical Engineering and Computer Science
	September 07, 2015
Certified	by
	Gerald Jay Sussman
	Panasonic Professor of Electrical Engineering
	Thesis Supervisor
Accepted	l by
	Leslie A. Kolodziejski
	Chairman, Department Committee on Graduate Theses

Resistor Network Sensing Breadboard

by

Joshua Muffin Gordonson

Submitted to the Department of Electrical Engineering and Computer Science on September 07, 2015, in partial fulfillment of the requirements for the degree of Master of Engineering in Electrical Science and Engineering

Abstract

Blah Blah Blah

Thesis Supervisor: Gerald Jay Sussman

Title: Panasonic Professor of Electrical Engineering

Acknowledgments

For Jim

Contents

1	Intr	roduction	15
	1.1	History of Breadboards	15
	1.2	Modern Breadboards	15
	1.3	Proposed Solution	15
	1.4	Implementation to Date	15
2	The	eory	17
	2.1	RLC Elements	17
	2.2	Frequency Domain Perspective	17
	2.3	Network Analysis	17
3	Net	work Sensing Algorithm	19
	3.1	Grounding Clause	19
	3.2	Two Node Network	19
	3.3	Three Node Network	19
	3.4	N Node Network	19
	3.5	Element Identification	20
		3.5.1 From Resistance to Impedance	20
		3.5.2 Parallel RLC Branches	20
		3.5.3 Finite Difference Stencil	20
		3.5.4 Component Value Calculation	20
	3.6	Reconstructing the Network	20

4	Sim	nulation	21
	4.1	NgSpice and Netlists	21
	4.2	Methods	21
		4.2.1 Generate Random Netlist	21
		4.2.2 Inserting Voltage Sources	21
		4.2.3 Inserting Voltage Probes	21
		4.2.4 Inserting Grounds	21
	4.3	Executing NSA	21
		4.3.1 Calculate $Z_{ }(f)$	22
		4.3.2 Calculate $V_n(f)$	22
		4.3.3 Calculate $Z_{nm}(f)$	22
		4.3.4 Finite Difference	22
		4.3.5 Element Identification	22
		4.3.6 Network Reconstruction	22
	4.4	Output to JSON	22
	4.5	D3?	22
5	Наг	rdware	23
J	5.1	Low Cost	23 23
	5.2	Node Voltage Reading	23
	5.3	Signal Generator	23
	5.4	Test Voltage Current Sensing	23
	5.5	High-side Switches	24
	5.6	Low-side Switches	24
	5.7	PCB Mounted Breadboard	24 24
	5.8	Hardware Prototypes	24
	5.6	nardware Frototypes	24
6	Firm	mware	25
	6.1	Fast and Scalable [rename]	25
	6.2	ADC	26
		6.2.1 ADC Timers	26

		6.2.2	ADC DMA	26
		6.2.3	Data Reconstruction	26
	6.3	DAC		26
		6.3.1	DAC Timer	26
		6.3.2	DAC DMA	26
		6.3.3	DAC Wavetables	26
	6.4	USB		26
		6.4.1	USBACM	26
		6.4.2	Command List	26
7	Soft	wara (Control	27
•	7.1		ine Routine	27
	1.1	7.1.1	Data Reconstruction	27
	7.2	,	ng Amplitude	27
	1.4	7.2.1	Tracking Method?	27
		7.2.1		27
	7.3		FFT	28
	1.3		Iteration Loop	
		7.3.1	Sampling	28
		7.3.2	Finite Differencing	28
		7.3.3	Resistor Characterizing	28
	7.4	JSON	Update	28
8	Res	${ m ults}$		29
	8.1	Simula	ation Performance	29
	8.2	Hardw	vare Performance	29
		8.2.1	Block Performance	29
		8.2.2	Capacitive Coupling	29
		8.2.3	Limits of Operation	29
	8.3	System	n Performance	30
		8.3.1	Speed of Operation	30
		8.3.2	Accuracy	30

		8.3.3	Dynamic Range	30
		8.3.4	Odd Behavior	30
	8.4	Impro	vements	30
		8.4.1	L, C, D	30
		8.4.2	VGA for ADC's, DAC, and Differential Amplifier	30
		8.4.3	Variable Sense Resistor	30
		8.4.4	Better Switches	30
		8.4.5	Three Terminal Devices	30
		8.4.6	Better Schematic Display	30
		8.4.7	Faster Algorithm	30
A	Tab	oles		31
В	Figu	ures		33

List of Figures

B-1	Armadillo slaying lawyer	33
B-2	Armadillo eradicating national debt	34

List of Tables

A.1	Armadillos																		3	;]

Introduction

Blah Blah Blah

1.1 History of Breadboards

Blah Blah

1.2 Modern Breadboards

Blah Blah

1.3 Proposed Solution

Blah Blah

1.4 Implementation to Date

Theory

Blah Blah

2.1 RLC Elements

Blah Blah

2.2 Frequency Domain Perspective

Blah Blah

2.3 Network Analysis

Network Sensing Algorithm

Blah Blah

3.1 Grounding Clause

Blah Blah

3.2 Two Node Network

Blah Blah

3.3 Three Node Network

Blah Blah

3.4 N Node Network

3.5 Element Identification

Blah Blah

3.5.1 From Resistance to Impedance

Blah Blah

3.5.2 Parallel RLC Branches

Blah Blah

3.5.3 Finite Difference Stencil

Blah Blah

3.5.4 Component Value Calculation

Blah Blah

3.6 Reconstructing the Network

Simulation

Overview + Block Diagram Blah Blah

4.1 NgSpice and Netlists

Blah Blah

4.2 Methods

- 4.2.1 Generate Random Netlist
- 4.2.2 Inserting Voltage Sources
- 4.2.3 Inserting Voltage Probes
- 4.2.4 Inserting Grounds

4.3 Executing NSA

Wouldn't we all?

- **4.3.1** Calculate $Z_{||}(f)$
- **4.3.2** Calculate $V_n(f)$
- **4.3.3** Calculate $Z_{nm}(f)$
- 4.3.4 Finite Difference
- 4.3.5 Element Identification
- 4.3.6 Network Reconstruction

4.4 Output to JSON

Blah Blah

4.5 D3?

???? maybe

Hardware

Block diagram / Schematic

5.1 Low Cost

'cause we're cheap!

5.2 Node Voltage Reading

 ${\rm ADC+multiplexer}$

5.3 Signal Generator

Vsource + buffer

5.4 Test Voltage Current Sensing

Diff amp + current sense + ADC

5.5 High-side Switches

hi

5.6 Low-side Switches

lo

- 5.7 PCB Mounted Breadboard
- 5.8 Hardware Prototypes

Firmware

Block Diagram

6.1 Fast and Scalable [rename]

 $16~1 \mathrm{MSPS}$ ADCs all at once, multiplexed out.

- 6.2 ADC
- 6.2.1 ADC Timers
- 6.2.2 ADC DMA
- 6.2.3 Data Reconstruction
- 6.3 DAC
- 6.3.1 DAC Timer
- 6.3.2 DAC DMA
- 6.3.3 DAC Wavetables
- **6.4** USB
- **6.4.1 USBACM**
- 6.4.2 Command List

Software Control

7.1 Medicine Routine

The routine that sends the obtuse control commands given a small number of sensible inputs

7.1.1 Data Reconstruction

10-bits from 8-bit serial data

7.2 Finding Amplitude

7.2.1 Tracking Method?

This one didn't work so well.

7.2.2 FFT

Yeah, this one works real well.

- 7.3 Node Iteration Loop
- 7.3.1 Sampling
- 7.3.2 Finite Differencing
- 7.3.3 Resistor Characterizing
- 7.4 JSON Update

Results

- 8.1 Simulation Performance
- 8.2 Hardware Performance
- 8.2.1 Block Performance

How each block of hardware performed individially and why

- 8.2.2 Capacitive Coupling
- 8.2.3 Limits of Operation

Theoretical limits of system performance based on block performance

- 8.3 System Performance
- 8.3.1 Speed of Operation
- 8.3.2 Accuracy
- 8.3.3 Dynamic Range
- 8.3.4 Odd Behavior

Capacitors

8.4 Improvements

- 8.4.1 L, C, D
- 8.4.2 VGA for ADC's, DAC, and Differential Amplifier
- 8.4.3 Variable Sense Resistor
- 8.4.4 Better Switches
- 8.4.5 Three Terminal Devices

Try Transistors

- 8.4.6 Better Schematic Display
- 8.4.7 Faster Algorithm

Appendix A

Tables

Table A.1: Armadillos

Armadillos	are
our	friends

Appendix B

Figures

Figure B-1: Armadillo slaying lawyer.

Figure B-2: Armadillo eradicating national debt.