Mark Villar

August 14, 2011

Question 1

The reduced cubic equation $y^3 + 3py + 2q = 0$ has one real and two complex solutions when $D = q^2 + p^3 > 0$. These are given by Cardano's formula as

$$y_1 = u + v$$
, $y_2 = -\frac{u+v}{2} + \frac{i}{2}\sqrt{3}(u-v)$, $y_3 = -\frac{u+v}{2} - \frac{i}{2}\sqrt{3}(u-v)$

where

$$u = \sqrt[3]{-q + \sqrt{q^2 + p^3}}, \qquad v = \sqrt[3]{-q - \sqrt{q^2 + p^3}}$$

Question 2

An $n \times n$ matrix **A** is non-singular if it satisfies any one of the following equivalent conditions:

1. **A** has an inverse, i.e. there is a matrix \mathbf{A}^{-1} such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

- 2. $\det \mathbf{A} \neq 0$.
- 3. rank $\mathbf{A} = n$. (The rank of a matrix is the maximum number of linearly independent rows or columns of the matrix.)
- 4. For every non-zero vector \mathbf{z} , $\mathbf{Az} \neq 0$.

Question 3

The gamma function $\Gamma(x)$ is defined by

$$\Gamma(x) \equiv \lim_{n \to \infty} \prod_{\nu=0}^{n-1} \frac{n! \, n^{x-1}}{x+\nu}$$

$$= \lim_{n \to \infty} \frac{n! \, n^{x-1}}{x(x+1)\cdots(x+n-1)}$$

$$= \int_0^\infty e^{-t} t^{x-1} \, dt$$

The integral definition is only valid for x > 0.

Question 4

Given an *n*-vector **a**, we can annihilate **all** of its entries below the *k*th position, provided that $a_k \neq 0$, by the following transformation:

$$\mathbf{M}_{k}\mathbf{a} = \begin{bmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & \dots & 0 \\ 0 & \dots & -m_{k+1} & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & -m_{n} & 0 & \dots & 1 \end{bmatrix} \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ a_{k+1} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where $m_i = a_i/a_k, i = k + 1, ..., n$.

Question 5

The absolute and relative error are defined by

Absolute error
$$=$$
 Approximate value $-$ True value (1)

Relative error
$$=\frac{\text{Absolute error}}{\text{True value}}$$
 (2)

A useful way to think of relative error is via the expression

Approximate value = True value
$$\times$$
 (1 + Relative error) (3)

Question 6

Differentiating the differential equation

$$\frac{dy}{dt} = f(t, y)$$

gives

$$\frac{d^2y}{dt^2} = \frac{d}{dt}f(t,y) = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial y}\frac{dy}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial y}f$$

and we have the Taylor series approximation

$$y(t+h) \approx y(t) + y'(t)h + \frac{1}{2}y''(t)h^{2}$$
$$= y(t) + hf(t,y) + \frac{h^{2}}{2} \left(\frac{\partial f}{\partial t}(t,y) + \frac{\partial f}{\partial y}(t,y)f(t,y) \right)$$

${\bf Question}~{\bf 7}$

No Pivoting		Partial Pivoting		Complete Pivoting	
Error	Residual	Error	Residual	Error	Residual
	2.07×10^{-14}				
1.426	2.77×10^{-15}				2.93×10^{-16}
0.883	3.60×10^{-16}	0.080	2.97×10^{-16}	0.036	3.48×10^{-16}

Table 1: Errors and residuals for 3 random 100×100 matrices.

Question 8

Payoff (\$)							
	Pl	ayeı	Play	Player 2			
	1	2	3	1	3		
	4	5	6	$\frac{2}{2}$	5		
				3	6		