Математическая логика. Домашнее задание №6

Горбунов Егор Алексеевич

4 апреля 2016 г.

Задание №1 Закончите доказательство того, что интерпретация логики с \wedge и \vee в дистрибутивных решетках корректна. То есть нужно доказать, что если $\gamma \leq \phi \vee \psi$, $\gamma \wedge \phi \leq \chi$ и $\gamma \wedge \psi \leq \chi$, то $\gamma \leq \chi$.

Решение: Свойство дистрибутивности решётки:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

Т.к. верно, что $\gamma \leq \phi \vee \psi$, то $\gamma = \gamma \wedge (\phi \vee \psi)$, далее по свойству дистрибутивности $\gamma = (\gamma \wedge \phi) \vee (\gamma \wedge \psi)$. По определению инфимума:

$$\frac{\gamma \land \varphi \le \chi}{\gamma \land \psi \le \chi} \implies (\gamma \land \varphi) \lor (\gamma \land \psi) \le \chi$$

Но то, что слева от стрелочки, верно по условию, а тогда $\gamma \leq \chi$.

Задание №2 Докажите, что в любой решетке для любых элементов x, ϕ и ψ следующие утверждения эквивалентны:

- (a) Для любого γ если $\gamma \leq x$, то $\gamma \wedge \phi \leq \psi$.
- (b) Для любого γ если $\gamma \leq x$ и $\gamma \leq \phi$, то $\gamma \leq \psi$.
- (c) $x \wedge \phi \leq \psi$.

Решение:

- $\text{(a)} \Rightarrow \text{(b)} \ \ \text{Имеем} \ \gamma \leq x \ \text{и} \ \gamma \leq \phi \text{, тогда по (a) верно, что} \ \gamma \wedge \phi \leq \psi \text{, но} \ \gamma \leq \phi \Leftrightarrow \gamma = \gamma \wedge \varphi \leq \psi \text{, откуда} \ \gamma \leq \psi \ \blacksquare$
- $(b) \Rightarrow (c) \ \ \text{Рассмотрим} \ \gamma = \chi \wedge \phi \text{, тогда, т.к.} \ (b) \ \text{верно, то сразу из того, что} \ \chi \wedge \phi \leq \chi \ \text{и} \ \chi \wedge \phi \leq \phi \ (\text{по свойству }$ $\text{инфимума)} \ \text{имеем} \ \chi \wedge \phi \leq \psi$
- (c) ⇒ (a) Имеем $\gamma \le x$ и $x \land \phi \le \psi$. Заметим, что:

$$\gamma \le x \Rightarrow \gamma = \gamma \land x \Rightarrow \gamma \land \varphi = (\gamma \land \varphi) \land x$$
$$\Rightarrow (\gamma \land \varphi) = (\gamma \land \varphi) \land \varphi = (\gamma \land \varphi) \land (x \land \varphi)$$
$$\Rightarrow \gamma \land \varphi \le x \land \varphi$$

Но т.к. по условию $x \land \phi \le \psi$, то $\gamma \land \phi \le \psi$

Задание №3 Пусть ϕ , ψ , χ и χ' – элементы решетки. Допустим в ней верны следующие свойства:

(а) Для любого γ

$$\gamma \le x \Leftrightarrow \gamma \land \varphi \le \psi$$

(b) Для любого ү

$$\gamma \le \chi' \Leftrightarrow \gamma \land \varphi \le \psi$$

Докажите, что тогда x = x'.

Решение: Рассмотрим $\gamma = x$, т.к. верно, что $x \le x$, то по (a) имеем $x \land \phi \le \psi$, но тогда по стрелке в обратную сторону в (b) имеем $x \le x'$. Теперь аналогичным образом рассматриваем $\gamma = x'$, и пользуясь сначала пунктом (b) вправо, а потом пунктом (a) влево получаем, что $x' \le x$. В силу антисимметричности \le получаем: x = x'.

Задание №4 Покажите, что в любой алгебре Гейтинга М верны следующие свойства:

- (a) В M существует наибольший элемент, то есть элемент \top , удовлетворяющий условию, что $x \le \top$ для любого x.
- (b) Для любых $\varphi, \psi \in M$ верно $\varphi \leq \psi \Leftrightarrow (\varphi \rightarrow \psi) = \top$

Решение:

(a) В M существует минимальный элемент \bot . Тогда введём $\top = \bot \to \bot$. Такой элемент существует по определению алгебры Гейтинга. Рассмотрим тогда любой $x \in M$. Очевидно, что $\gamma \land \bot = \bot$, т.к. $\bot -$ минимальный. Т.е. $x \land \bot \le \bot$, а значит в силу определения алгебры Гейтинга:

$$x \land \bot \le \bot \Rightarrow x \le (\bot \to \bot) = x \le \top$$

В силу того, что x — любое, то \top — максимальный элемент.

(b) Пускай $\phi \leq \psi$, тогда из определения максимального элемента получаем $\top \wedge \phi = \phi \leq \psi$, откуда $\top \wedge \phi \leq \psi$. Тогда по определению алгебры Гейтинга, т.к. существует элемент $\phi \to \psi$

$$T \le \phi \to \psi \Rightarrow \phi \to \psi = T$$

Теперь в обратную сторону: $\phi \to \psi = \top \Rightarrow \phi \to \psi \ge \top$, ну а тогда по свойству для стрелки (вправо) получаем, что $\phi \to \psi = \top \Rightarrow \phi \le \psi$.

Задание №5 Докажите, что любая алгебра Гейтинга дистрибутивна.

Решение:

• Покажем, что $(x \land y) \lor (x \land z) \le x \land (y \lor z)$. По свойствам супремума:

$$\begin{array}{ccc} y \lor z \ge y & \Rightarrow & x \land (y \lor z) \ge x \land y \\ y \lor z \ge z & \Rightarrow & x \land (y \lor z) \ge x \land z \end{array} \Rightarrow x \land (y \lor z) \ge (x \land y) \lor (x \land z) \end{array}$$

Окей, показали.

• Покажем теперь обратное. Нужно туда-обратно применять свойство для импликации:

$$x \wedge (y \vee z) \leq (x \wedge y) \vee (x \wedge z)$$
 \downarrow (свойство импликации влево)

 $y \vee z \leq x \rightarrow (x \wedge y) \vee (x \wedge z)$
 \downarrow (свойство супремума)

 $\begin{cases} y \leq x \rightarrow (x \wedge y) \vee (x \wedge z) \\ z \leq x \rightarrow (x \wedge y) \vee (x \wedge z) \end{cases}$
 \downarrow (свойство импликации вправо)

 $\begin{cases} x \wedge y \leq (x \wedge y) \vee (x \wedge z) \\ x \wedge z \leq (x \wedge y) \vee (x \wedge z) \end{cases}$ (а это верно по свойству супремума)