Roll No. 616013007

Total No. of Questions: 9] [Total No. of Printed Pages: 3 (1047)

BCA (CBCS) RUSA IInd Semester

DIGITAL ELECTRONICS

Paper: BCA-203

[Maximum Marks: 70 Time: 3 Hours]

Note: - Attempt five questions in all. Select one question from each Units I, II, III and IV. Question No. 9 (Unit-V) is compulsory.

Unit-I

- Differentiate between conductor, insulator and semiconductor on the basis of energy gap. Explain depletion region. How is it formed in (b)
 - forward and reverse biasing? 7
- Discuss the working of diode as switch. 2. (a)
 - Explain transistor different types (b) of configurations.

C - 538

(1)

Turn Over

Unit-II 3. (a) Prove the following using Boolean Algebra: (i) A + AB+AB=A+B (ii) XYZ+XYZ+XYZ+XYZ=Z (b) Give the logic symbol and truth tables for NAND and NOR gates. 4. Explain the basic laws of Boolean Algebra with suitable examples. Apply Demorgan's theorem to the following	8
expressions:	
(i) $\overline{(A+\overline{B})(\overline{C}+D)}$	mil '
(ii) $\overline{(A+B)C}$	6
(iii) $\overline{(\overline{A} + \overline{B} + \overline{C})}$	O
Unit–III	
Obtain the minimal POS expression for f(ABCD)	
Obtain the minimal POS expression for $J(1202)$	*
$= \pi M (0, 1, 2, 4, 5, 6, 9, 11, 12, 13, 14, 15)$	0
and implement it using NOR gates.	9
(b) Give the Venn diagram for $\overline{B}+A$.	5
(a) Explain Don't-Care conditions in K-map using	
suitable example.	7
	A1

(b) Explain SOP and POS expressions with suitable examples. Unit-IV Give the logic diagram and truth table for a full	7
Adder. (b) What is race-around condition in JK flip flops? How it can be avoided?	6
8. (a) Design a 16 × 1 MUX using four 4 × 1 multiplexers. What is a shift register? Explain their types.	8 6
What is a shift register? Explain and The Unit-V (Compulsory Question)	
9. Explain the following:	
(a) Bipolar Junction transistor	3.
(b) Integrated circuits	
(c) NAND gate as universal gate	
(d) Karnaugh map	
(e) Encoder	
(f) Master-Slave flip flop	
(g) BCD adder	7×2=14

C-538

(3)