ANALITICA DE DATOS Y
HERRAMIENTAS DE INTELIGENCIA
ARTIFICIAL II

REGRESIÓN DATAFORGE NO LINEAL

10 OCT, 2025

TEAM MEMBERS (DATAFORGE)

JESÚS EDUARDO VALLE
VILLEGAS

FINANZAS A01770616

DIEGO ANTONIO OROPEZA
LINARTE

BGB
A01733018

MANUEL EDUARDO
COVARRUBIAS RODRÍGUEZ

ITC A01737781

ITHANDEHUI JOSELYN ESPINOZA

ITC A01734547

MAURICIO GRAU GUTIERREZ
RUBIO

LEM A01734914

Analizar la relación entre las variables TaxonName, TaxonCode, SamplingOperations_code, CodeSite_SamplingOperations, Date_SamplingOperation, Abundance_nbcell, TotalAbundance_SamplingOperation y Abundance_pm del conjunto de datos O1_DiatomInventories_GTstudentproject_B.csv, aplicando y comparando dos modelos de regresión no lineal para determinar el grado de correlación y la capacidad explicativa de cada modelo mediante los coeficientes de determinación (R²) y correlación.

METODOLOGÍA

Dataset1: 01_DiatomInventories_GTstudentproject_B.csv

Dataset2: proyectos_forvia.csv

LIMPIEZA Y PREPARACIÓN

Revisión de estructura y nulos; codificación numérica de TaxonName, TaxonCode, SamplingOperations_code, CodeSite_SamplingOperations; Date_SamplingOperation → numérico (ordinal/continuo).

Project Type, Geographical scope, Project manager, State, Project size, Project organization, BG, On-hold, Percent complete y Project Health.

VARIABLES ANALIZADAS

TaxonName, TaxonCode,
SamplingOperations_code,
CodeSite_SamplingOperations,
Date_SamplingOperation,
Abundance_nbcell,
TotalAbundance_SamplingOperation,
Abundance_pm
(combinaciones diversas).

Project Type, Geographical scope, Project manager, State, Project size, Project organization, BG, On-hold, Percent complete y Project Health.

MODELOS NO LINEALES:

- Polinómico (grados 2–3) para capturar curvatura.
- Exponencial/Potencial para explorar patrones de crecimiento/decrecimiento.

ANÁLISIS COMPARATIVO DE RESULTADOS

- Evaluación del ajuste: se calcularon R² y correlaciones (Pearson/Spearman según el tipo de variable) para medir fuerza y dirección de la relación; además, se revisaron residuales para verificar la adecuación del modelo y detectar desviaciones.
- Comparativo de resultados: se elaboró una tabla resumen con R² y correlaciones por cada relación evaluada, identificando el mejor desempeño.

Transformacion de variables

Mapeo con un ciclo for

Index	TaxonName_num	TaxonCode_num	SamplingOperatio ns_code_num	CodeSite_SamplingO perations_num	Date_SamplingOp eration_num
0	1	1	1	1	1
1	1	1	2	2	2
2	2	2	2	3	3
3	2	2	3	4	4
4	2	2	4	5	5
5	2	2	5	6	6
6	2	2	6	7	7
7	2	2	7	8	8
8	2	2	8	9	9
9	2	2	9	10	10

Fue necesario transformar las variables categóricas en variables numéricas. Para ello, se utilizó la jerarquía de frecuencias, asignando valores más bajos a las categorías con mayor frecuencia de aparición.

Transformacion de variables

Mapeo con un ciclo for

Index	Project Type	Geographical scope	Project manager	State	Project size	Project Org	BG	Project Health	On-Hold
0	1	63	2	1	3	1	1	1	1
1	1	62	15	1	2	1	2	2	2
2	1	51	20	1	1	1	2	2	1
3	1	51	15	1	3	1	2	1	2
4	1	61	2	1	1	1	2	1	1
241	6	43	119	1	2	9	3	1	1
242	8	126	27	1	1	4	3	1	1
243	8	42	27	1	1	4	3	1	1
244	1	42	120	1	3	4	3	1	1
245	12	127	121	4	4	35	11	3	3

HEATMAP COMPLETO - Matriz de Correlación de Todas las Variables

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

ACTIVIDAD 3.1

DATATHON

Total de modelos analizados:	16
Correlación lineal promedio:	0.2344
Correlación no lineal promedio:	0.2325
Modelos que mejoraron:	11/16 (68.8%)
TOP 3 MODELOS CON MAYOR MEJORA:	 Date_SamplingOperation vs SamplingOperations (Logarítmica) Lineal: 0.1207 → No Lineal: 0.1580 (Mejora: +0.0373) Date_SamplingOperation vs SamplingOperations (Exponencial) Lineal: 0.1207 → No Lineal: 0.1580 (Mejora: +0.0373) SamplingOperations vs CodeSite (Exponencial) Lineal: 0.3836 → No Lineal: 0.4105 (Mejora: +0.0269)

Total de modelos analizados:	16
Mejor R ² :	0.9783
Mejor Correlación:	0.9891
R ² Promedio:	0.1451
Correlación Promedio:	0.2325
TOP 5 MEJORES MODELOS:	Abundance_pm vs Abundance_nbcell (Cuadrática) Abundance_pm vs Abundance_nbcell (Exponencial) SamplingOperations vs CodeSite (Exponencial) SamplingOperations vs CodeSite (Logarítmica) Date_SamplingOperation vs SamplingOperations (Logarítmica)
ANÁLISIS POR TIPO DE FUNCIÓN	Exponencial: R² promedio = 0.2004 (6 modelos)

TaxonName vs Abundance_nbcell

- Distribución discreta: Bandas horizontales
- Alta dispersión: Los puntos están muy esparcidos
- Concentración de datos: Abundance_nbcell

TaxonCode vs Abundance_pm

- Bandas discretas más pronunciadas: TaxonCode_num
- **Distribución uniforme:** a lo largo del rango de Abundance_pm
- Mayor dispersión horizontal

	Correlación Lineal / Múltiple (r)	r = -0.1006 / 0.1016
74 J. J. H. C.	Correlación No Lineal (r)	r = 0.1011

Correlación L (r)	r = -0.1006
Correlación No Lineal (r)	r = 0.1006

SamplingOperations_code vs CodeSite_SamplingOperetions_num

- Líneas verticales marcadas: Los datos se agrupan en columnas verticales
- Distribución escalonada
- Patrón estructurado: Estructura más organizada comparada

Correlación Lineal / Múltiple (r)	r = 0.3836 / 0.3903	
Correlación No Lineal (r)	r = 0.2558	

Correlación L (r)	r = 0.3836	
Correlación No Lineal (r)	r = 0.4105	

CodeSite_SamplingOperations vs Date_SamplingOperation_num

- Distribución triangular: Formación de puntos
- Mayor dispersión
- Concentración en valores bajos: Inferior izquierda

Date_SamplingOperation_num vs SamplingOperations_code_num

- Bandas horizontales discretas: Líneas horizontales muy marcadas
- Concentración masiva
- Expansión gradual: Conforme aumenta SamplingOperations_code, se van "abriendo" más fechas

Correlación Lineal / Múltiple (r)	r = 0.1207 / 0.1490
Correlación No Lineal (r)	r = 0.1580

Correlación L (r)	r = 0.1207
Correlación No Lineal (r)	r = 0.1580

Abundance_nbcell vs SamplingOperations_code_num

- Distribución horizontal dominante: Abundance_nbcell
- Patrón de bandas discretas: Se agrupan en líneas horizontales separadas.
- Concentración extrema en la base

Correlación Lineal / Múltiple (r)	r = 0.0395 / 0.1040
Correlación No Lineal (r)	r = 0.0395

Correlación L (r)	r = 0.0395
Correlación No Lineal (r)	r = 0.0015

TotalAbundance_SamplingOperation vs CodeSite_SamplingOperations_num

- Distribución rectangular densa: Patrón rectangular muy denso con límites bien definidos.
- Concentración superior
- Banda principal dominante

Correlación Lineal / Múltiple (r)	r = 0.0146 / 0.0290
Correlación No Lineal (r)	r = 0.0211

Correlación L (r)	r = 0.0146
Correlación No Lineal (r)	r = 0.0174

Abundance_pm vs Abundance_nbcell

- Correlación lineal muy fuerte: Nube alargada con una tendencia lineal positiva
- **Dispersión creciente**: Aumenta ligeramente con valores más altos
- Concentración en origen: Alta densidad de puntos

Correlación Lineal / Múltiple (r)	r = 0.9890 / 0.1080
Correlación No Lineal (r)	r = 0.9891

Correlación L (r)	r = 0.9890	
Correlación No Lineal (r)	r = 0.9890	

ANÁLISIS DE INSIGHTS

Cada diatomea
está correctamente
identificada y
codificada

TAXONNAME Y TAXONCODE:
CADA ORGANISMO TIENE IDENTIDAD BIOLÓGICA
PRECISA

Las diatomeas viven en ambientes muy predecibles, estables y consistente a lo largo del tiempo

COEFICIENTE DE VARIACIÓN TEMPORAL: 0.0469

Hay guerra ecológica entre especies por los recursos

CORRELACIÓN DIVERSIDAD-VARIABILIDAD: R=-0.160

La abundancia total es independiente de qué especies hay

CORRELACIÓN ABUNDANCIA TOTAL ↔
DIVERSIDAD: R=-0.048
SI UNA ESPECIE AUMENTA, OTRAS DEBEN
DISMINUIR PROPORCIONALMENTE

Tienes datos de alta calidad de un ecosistema con patrones ecológicos claros que revelan competencia, estabilidad temporal, y gradientes espaciales interesantes para investigar.

ACTIVIDAD 3.2 FORVIA fourecia

Total de modelos analizados:	20
Mejor R ² :	0.4473
Mejor correlación:	0.6688
R ² promedio:	0.1720
Correlación promedio:	0.3773
MEJOR MODELO:	Variables: State vs Project Health Función: Senoidal R²: 0.4473
TIPOS DE FUNCIÓN:	Cuadrática: 8 modelo(s) Valor Absoluto: 4 modelo(s) Cociente Polinomios: 3 modelo(s) Logarítmica: 2 modelo(s) Exponencial: 1 modelo(s) Senoidal: 1 modelo(s) Polinomial Inversa: 1 modelo(s)

BG - Project Type

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCIÓN EXPONENCIAL: Y = A*EXP(-BX) + C

- Resultados:
- Cuadrático: $R^2 = 0.1502$, r = 0.3876
- Exponencial: $R^2 = 3.3306$, r = 1.8250
- La función cuadrática es la mejor ya que a pesar que esta no crece mucho los datos de la formula exponencial son exagerados para una correlación.
- Visualmente: alta dispersión sin tendencia clara ni agrupamientos definidos.

Funcion R2	0.1502
Correlación NL (r)	0.386
Correlación L (r)	0.3876

Project manager - Geographical scope

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCIÓN COCIENTE ENTRE POLINOMIOS: Y = (A*X**2 + B)/ C*X**2

- Resultados:
- Cuadrático: $R^2 = 0.0365$, r = 0.1912
- Co entre Polinomios: R² = 0.0407, r = 0.2018
- Interpretación: La correlación en ambas es la mejor entre las demás ambas mejoran.
- Visualmente: alta dispersión con tendencia clara y determinada con agrupamientos definidos.

THE THE PARTY OF T	
Funcion R2	0.0407
Correlación NL (r)	0.0999
Correlación L (r)	0.2018

Project organization - Project manager

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- LOGARITMICA: Y=AE-BX+CY = A E^{-BX} + CY=AE-BX+C

- Resultados:
- Cuadrático: $R^2 = 0.2723$, r = 0.5219
- Logaritmica: $R^2 = 0.2885$, r = 0.5371
- Interpretación: Las correlaciones mejoran en ambos casos.
- Visualmente: alta dispersión con tendencia clara y agrupamientos mejorados.

Funcion R2	0.2885
Correlación NL (r)	0.5022
Correlación L (r)	0.5371

Project Health - State

- FUNCIÓN SENOIDAL: Y = A*NP.SIN(X) + B
- FUNCION VALOR ABSOLUTO: Y = A*NP.ABS(X) + B*X + C

- Resultados:
- Senoidal: $R^2 = 0.4473$, r = 0.6688
- Val. Absoluto: $R^2 = 0.2438 r = 0.4937$
- Interpretación: De las dos mayores correlaciones la senodial es la unica coherente ya que es la unica que supera a la correlación inicial.
- Visualmente: alta dispersión sin tendencia clara ni agrupamientos definidos.

Funcion R2	0.4473
Correlación NL (r)	0.4937
Correlación L (r)	0.6688

On-hold - Project size

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCION VALOR ABSOLUTO: Y = A*NP.ABS(X) + B*X + C

- Resultados:
- Cuadrático: $R^2 = 0.0379$, r = 0.1949
- Valor A.: $R^2 = 0.0188$, r = 0.1374
- Interpretación: La correlacion de la regresion cuadratica es considerablemente mejor.
- Visualmente: alta dispersión sin tendencia clara ni agrupamientos definidos.

Funcion R2	0.0379
Correlación NL (r)	0.1375
Correlación L (r)	0.1949

Project manager - Project organization

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCION VALOR ABSOLUTO: Y = A*NP.ABS(X) + B*X + C

- Resultados:
- Cuadrático: $R^2 = 0.2579$, r = 0.5078
- Valor A.: $R^2 = 0.2522$, r = 0.5022
- Interpretación: Ambas regresiones ayudaron a crecer la correlación considerablemente siendo estas muy similares.
- Visualmente: alta dispersión con tendencia clara y agrupamientos definidos.

Funcion R2	0.2579
Correlación NL (r)	0.5022
Correlación L (r)	0.5078

Project Type - BG

- FUNCIÓN COCIENTE ENTRE POLINOMIOS: Y = (A*X**2 + B)/ C*X**2
- FUNCIÓN LOGARITMICA: Y = A*NP.LOG(X) + B

- Resultados:
- Cociente: $R^2 = 0.2128$, r = 0.4613
- Logaritmica: $R^2 = 0.2039$, r = 0.4515
- Interpretación: La correlacion mejora en ambos casos y tienen resultados similares respecto a la correlación
- Visualmente: alta dispersión con tendencia clara ni agrupamientos definidos.

Funcion R2	0.2128
Correlación NL (r)	0.3869
Correlación L (r)	0.4613

Project Health - On-hold

- CUADRÁTICO: Y=AX2+BX+CY = AXA2 + BX + CY=AX2+BX+C
- FUNCION VALOR ABSOLUTO: Y = A*NP.ABS(X) + B*X + C

- Resultados:
- Cuadrático: $R^2 = 0.1178$, r = 0.3433
- Exponencial: $R^2 = 0.1118$, r = 0.3343
- Interpretación: Parecida R2 y correlación mejoran por lo mínimo.
- Visualmente: alta dispersión con tendencias claras pero no hay agrupamientos definidos.

Funcion R2	0.1178
Correlación NL (r)	0.3344
Correlación L (r)	0.3433

Project Health - Percent complete

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCIÓN POLINOMIAL INVERSA: Y = A/B*X**2 + C*X

- Resultados:
- Cuadrático: $R^2 = 0.0709$, r = 0.2663
- Exponencial: $R^2 = 0.0707$, r = 0.2660
- Interpretación: Similares correlaciones y R", ambas subieron considerablemente.
- Visualmente: alta dispersión con tendencias nada claras y no hay agrupamientos definidos.

Funcion R2	0.0709
Correlación NL (r)	-0.1784
Correlación L (r)	0.2663

State - Project Health

MODELOS NO LINEALES:

- CUADRÁTICO: Y=AX2+BX+CY = AX^2 + BX + CY=AX2+BX+C
- FUNCIÓN COCIENTE ENTRE POLINOMIOS: Y = (A*X**2 + B)/ C*X**2

• Resultados:

• Cuadrático: $R^2 = 0.3045$, r = 0.5518

• Polinomios: $R^2 = 0.3154$, r = 0.5616

• Interpretación: relación extremadamente débil (~1% de variabilidad explicada) con ligera pendiente negativa casi nula.

 Visualmente: alta dispersión sin tendencia clara ni agrupamientos

definidos.

Funcion R2	0.3154
Correlación NL (r)	0.4938
Correlación L (r)	0.5616

ANÁLISIS DE INSIGHTS

Patrones de Registro

- DISTRIBUCIÓN CONTROLADA EN MÉTRICAS
- SISTEMAS DE REGISTRO MADUROS
- PROCESOS ESTANDARIZADOS DE DOCUMENTACIÓN Y SEGUIMIENTO

Campos No Independientes

- COHERENCIA ESTRATÉGICA EN DECISIONES ORGANIZACIONALES
- PLANIFICACIÓN SOFISTICADA EVIDENCIADA POR PATRONES INTERCONECTADOS

Estandarización de Procesos

- PROCESOS ALTAMENTE ESTANDARIZADOS A NIVEL ORGANIZACIONAL
- MADUREZ OPERATIVA DEMOSTRADA POR DISTRIBUCIONES ESTRUCTURADAS
- LÍMITES OPERATIVOS BIEN DEFINIDOS Y RESPETADOS

Correlación: Project Manager ↔ Project Organization (0.505)

- ASIGNACIÓN ESTRATÉGICA DE GERENTES SEGÚN ESTRUCTURA ORGANIZACIONAL
- OPTIMIZACIÓN DE RECURSOS Y GESTIÓN DEL TALENTO SOFISTICADA

Forvia es una organización madura con sistemas sofisticados de gestión de proyectos, operaciones globales diversificadas, y una estructura organizacional adaptable que les permite manejar eficientemente un portfolio complejo y variado de proyectos.

GRACIAS POR SUATENCION