Text Classification (Part II)

[DAT640] Information Retrieval and Text Mining

Krisztian Balog University of Stavanger

August 26, 2019

Recap

- Problem of text classification
- Evaluation measures
- Preparing hold-out data for model development

Multiclass classification

 Imagine that you need to automatically sort news stories according to their topical categories

comp.graphics	rec.autos	sci.crypt
comp.os.ms-windows.misc	rec.motorcycles	sci.electronics
comp.sys.ibm.pc.hardware	rec.sport.baseball	sci.med
comp.sys.mac.hardware	rec.sport.hockey	sci.space
comp.windows.x		
misc.forsale	talk.politics.misc	talk.religion.misc
	talk.politics.guns	alt.atheism
	talk.politics.mideast	soc.religion.christian

Table: Categories in the 20-Newsgroups dataset

Multiclass classification

- · Many classification algorithms are originally designed for binary classification
- Two main strategies for applying binary classification approaches to the multiclass case
 - One-against-rest
 - One-against-one
- Both apply a voting scheme to combine predictions
 - A tie-breaking procedure is needed (not detailed here)

One-against-rest

- Assume there are k possible target classes (y_1, \ldots, y_k)
- For each target class
 - \circ Instances that belong to y_i are positive examples
 - o All other instances y_j , $j \neq i$ are negative examples
- Combining predictions
 - o If an instance is classified positive, the positive class gets a vote
 - If an instance is classified negative, all classes except for the positive class receive a vote

Example

- 4 classes (y_1, y_2, y_3, y_4)
- Classifying a given test instance (dots indicate the votes cast):

y_1	+	•	y_1	-	•	y_1	-	•	y_1	-	•
y_2	-		y_2	+		y_2	-	•	y_2	-	•
y_3	-	•	y_3	-	•	y_3	+		y_3	-	•
y_4	-		y_4	-	•	y_4	-	•	y_4	+	
Pred.	+		Pred.	-		Pred.	-		Pred.	-	

• Sum votes received: $(y_1, \bullet \bullet \bullet)$, $(y_2, \bullet \bullet)$, $(y_3, \bullet \bullet)$, $(y_4, \bullet \bullet)$

One-against-one

- Assume there are k possible target classes (y_1, \ldots, y_k)
- Construct a binary classifier for each pair of classes (y_i, y_j)
 - $\circ \frac{k \cdot (k-1)}{2}$ binary classifiers in total
- Combining predictions
 - The positive class receives a vote in each pairwise comparison

Example

- 4 classes (y_1, y_2, y_3, y_4)
- Classifying a given test instance (dots indicate the votes cast):

y_1	+	•	y_1	+	•	y_1	+	
y_2	-		y_3	-		y_4	-	•
Pred.	+		Pred.	+		Pred.	-	
		'			'			
y_2	+	•	y_2	+		y_3	+	•
$egin{array}{c} y_2 \ y_3 \end{array}$	+	•	$egin{array}{c} y_2 \ y_4 \end{array}$	+	•	y_3 y_4	+	•

• Sum votes received: $(y_1, \bullet \bullet)$, (y_2, \bullet) , (y_3, \bullet) , $(y_4, \bullet \bullet)$

Discussion

Question

How to evaluate multiclass classification?

Which of the evaluation measures from binary classification can be applied?

Evaluating multiclass classification

Accuracy can still be computed as

$$ACC = \frac{\text{\#correctly classified instances}}{\text{\#total number of instances}}$$

- For other metrics
 - \circ View it as a set of k binary classification problems (k is the number of classes)
 - Create confusion matrix for each class by evaluating "one against the rest"
 - Average over all classes

Confusion matrix

	_	_
	C	5
	=	3
	÷	₹
	٥	;
•	5	L

	Predicted						
	1	2	3		k		
1	24	0	2		0		
2	0	10	1		1		
3	1	0	9		0		
k	2	0	1		30		

Binary confusion matrices, one-against-rest

		Predicted					
		1	2	3		k	
	1	24	0	2		0	
Б	2	0	10	1		1	
Actual	3	1	0	9		0	
Ĭ							
	k	2	0	1		30	

 \Rightarrow

For the sake of this illustration, we assume that the cells which are not shown are all zeros.

		Pred	licted
		1	$\neg 1$
;	1	TP=24	FN=3
Ĭ	$\neg 1$	FP=2	TN=52

		Predicted			
		2	¬2		
بب	2	TP=10	FN=2		
Ă	¬2	FP=0	TN=69		

. . .

Averaging over classes

- Averaging can be performed on the instance level or on the class level
- Micro-averaging aggregates the results of individual instances across all classes
 - All instances are treated equal
- Macro-averaging computes the measure independently for each class and then take the average
 - o All classes are treated equal

Micro-averaging

Precision

$$P_{\mu} = \frac{\sum_{i=1}^{k} TP_{i}}{\sum_{i=1}^{k} (TP_{i} + FP_{i})}$$

Recall

$$R_{\mu} = \frac{\sum_{i=1}^{k} TP_{i}}{\sum_{i=1}^{k} (TP_{i} + FN_{i})}$$

• F1-score

$$F1_{\mu} = \frac{2 \cdot P_{\mu} \cdot R_{\mu}}{P_{\mu} + R_{\mu}}$$

 $\begin{array}{c|c} & \text{predicted} \\ \hline i & \hline i & \hline ri \\ \hline i & TP_i & FN_i \\ \hline -i & FP_i & TN_i \\ \hline \end{array}$

Macro-averaging

Precision

$$P_M = \frac{\sum_{i=1}^k \frac{TP_i}{TP_i + FP_i}}{k}$$

Recall

$$R_M = \frac{\sum_{i=1}^k \frac{TP_i}{TP_i + FN_i}}{k}$$

• F1-score

$$F1_M = \frac{\sum_{i=1}^k \frac{2 \cdot P_i \cdot R_i}{P_i + R_i}}{k}$$

 \circ where P_i and R_i are Precision and Recall, respectively, for class i

Discussion

Question

In which cases should micro- or macro-averaging be preferred over the other? What are the caveats?

Exercise #1 (paper-based)

Compute both micro- and macro-averaged Accuracy, Precision, Recall, and F1-score for a multiclass classifier that made the following predictions

	ld	Actual	Predicted
•	1	1	1
	2	1	1
	3	2	1
	4	2	2
	5	2	3
	6	3	2
	2 3 4 5 6 7 8	2 2 2 3 3 3	3
	8	3	1
	9	3	3
	10	4	4
	11	4	2
	12	4	3

Exercise #2 (coding)

Implement the computation of Accuracy, and both micro- and macro-averaged Precision, Recall, and F1-score in Python