Introduzione al Machine Learning: Modelli e metodi di regressione

Vincenzo Bonifaci

Esempio: Ritorno da investimenti pubblicitari

Input: investimenti pubblicitari via TV, radio e giornali in un mercato (in migliaia di Euro)

Output: unità di prodotto vendute in quel mercato (in migliaia)

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

Esempio: Ritorno da investimenti pubblicitari

Regressione lineare

Nella *regressione lineare*, l'insieme delle ipotesi è l'insieme \mathcal{H}_{lin} delle funzioni lineari (affini) da $\mathcal{X} \equiv \mathbb{R}^d$ a $\mathcal{Y} \equiv \mathbb{R}$:

$$h \in \mathcal{H}_{lin} \Leftrightarrow h(x) = w_0 + w_1 x_1 + \ldots + w_d x_d \qquad (w_0, \ldots, w_d \in \mathbb{R})$$

Useremo spesso la convenzione $x_0 \stackrel{\text{def}}{=} 1$, così da poter scrivere $h(x) = w^\top x$

- w_0 è l'*intercetta* (valore previsto dal modello quando x è nullo)
- w_k è il coefficiente che esprime la dipendenza di h(x) dalla k-esima componente di x

Una funzione di costo comunemente utilizzata è quella quadratica:

$$\ell(h,(x,y)) = (h(x) - y)^2$$

Regressione lineare

ERM per la regressione lineare

Nella regressione lineare con costo quadratico, il rischio empirico è dato dall'errore quadratico medio [mean squared error]:

Mean Squared Error (MSE)

$$RE_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2} = \frac{1}{m} \|Xw - y\|^{2}$$

ERM per la regressione lineare

Minimizzare l'errore quadratico medio significa trovare il vettore $w \in \mathbb{R}^{d+1}$ che minimizza:

$$||Xw - y||^2$$

Equazioni normali

Se w^* minimizza l'errore quadratico medio, allora

$$X^{\top}Xw^* = X^{\top}y$$
, quindi $w^* = (X^{\top}X)^{-1}y$

Nella pratica, w^* è calcolato con metodi numerici di fattorizzazione (Singular Value Decomposition – SVD), più stabili rispetto alle equazioni normali e che non richiedono l'esistenza dell'inversa

Esempio: regressione di sales su TV

 ${\tt sales} \approx w_0 + w_1 \cdot {\tt TV}$

- Intercetta $w_0 = 7.03 \Rightarrow 7030$ unità di prodotto vendute senza investimenti
- Coefficiente $w_1 = 0.047 \Rightarrow 47$ unità di prodotto in più ogni 1000\$ di pubblicità in TV

Vincenzo Bonifaci

Come valutare la qualità del fit?

In generale, si usa il rischio empirico (in questo caso: l'errore quadratico medio)

Nella regressione lineare, si può usare anche la statistica R^2 :

Coefficiente R^2

$$R^2 \stackrel{\text{def}}{=} 1 - \frac{\text{RE}_*}{\text{RE}_0},$$

- RE_{*} è l'errore quadratico medio della migliore ipotesi lineare $h(x) = w_0 + w_1 x_1 + ... + w_d x_d$ calcolata sul campione
- RE₀ è l'errore quadratico medio della migliore ipotesi costante $h(x) = w_0$, data da $h_0(x) = \frac{1}{m} \sum_i y_i$

Come valutare la qualità del fit?

Se calcolato sul campione, R^2 è un valore tra 0 e 1 ed è il quadrato del coefficiente di correlazione tra il responso osservato (y) e quello previsto dal modello (h(x))

- Rispetto al rischio empirico, R² ha il vantaggio di essere normalizzato
- R² è specifico per la funzione costo quadratica
- Se gli errori quadratici sono calcolati rispetto ad un campione diverso da quello usato per costruire la regressione, si parla di R² fuori campione
- ullet Se R^2 è calcolato fuori campione, può essere negativo

Come valutare la qualità del modello?

Qualità del fit (rischio empirico)
$$\neq$$
 qualità del modello (rischio atteso)

Possiamo stimare il rischio atteso di un'ipotesi h utilizzando un insieme di esempi di test T ($test\ set$)

Se gli esempi in T provengono dalla distribuzione (ignota) \mathcal{D} , allora con sufficienti esempi, il rischio empirico su T sarà una buona stima del rischio atteso:

$$RE_T(h) \approx RA(h)$$
 per T grande

Regressione lineare multipla

Come dipendono le vendite dagli investimenti in TV e radio?

sales $\approx w_0 + w_1 \cdot \mathsf{TV} + w_2 \cdot \mathsf{radio}$

Vincenzo Bonifaci Intro ML: Regressione

Regressione lineare semplice vs. multipla

Variabili utilizzate	R_{train}^2	MSE_{train}	MSE_{test}
TV	58.8%	10.6	10.2
radio	35.6%	16.6	24.2
newspaper	6.4%	24.1	32.1
TV, radio, newspaper	90.7%	2.4	4.4
TV, radio	90.7%	2.4	4.4

Il problema di individuare le variabili più rilevanti è detto *feature* selection

Vincenzo Bonifaci

Intro ML: Regressione

Variabili qualitative

Finora abbiamo assunto che tutti gli input siano numerici

Come trattare input di tipo categorici?

Es.: Se vogliamo stimare il reddito di un dipendente, potremmo avere a disposizione un dato sul sesso del dipendente (maschio/femmina)

Possiamo definire la variabile

$$x_{\text{sesso}}^{(i)} = \begin{cases} 1 & \text{se il dipendente } i\text{-esimo è femmina} \\ 0 & \text{se il dipendente } i\text{-esimo è maschio} \end{cases}$$

Il coefficiente w_{sesso} relativo a questa variabile indicherà la dipendenza del reddito dal sesso (differenza media di reddito tra dipendenti femmine e maschi)

Vincenzo Bonifaci

Intro ML: Regressione

One-hot encoding

Se le categorie possibili sono K > 2, non è corretto rappresentare il dato con una sola variabile, ma possiamo creare K variabili binarie

Esempio: dieta \in {vegetariana, vegana, onnivora}

```
(\dots 1\ 0\ 0\dots) vegetariana (\dots 0\ 1\ 0\dots) vegana (\dots 0\ 0\ 1\dots) onnivora
```

Questo schema è detto one-hot encoding

Modellare interazioni tra le variabili (feature crossing)

C'è una sinergia tra gli investimenti in TV e radio?

Proviamo a includere una *variabile sintetica*: TV × radio

Variabili utilizzate	R_{train}^2	MSE_{train}	MSE_{test}
TV, radio, TV $ imes$ radio	97.3%	0.7	1.6

Vincenzo Bonifaci

Intro ML: Regressione

Regressione polinomiale (unidimensionale)

Per alcuni problemi, sembrano utili regole di predizione non-lineari

La classe dei *regressori polinomiali* di grado *n* è

$$\mathcal{H}_{poly}^n = \{x \mapsto h(x)\}$$

dove h è un polinomio di grado n: $h(x) = w_0 + w_1 x + ... + w_n x^n$

Regressione polinomiale (unidimensionale)

Definiamo la funzione $\phi: \mathbb{R} \to \mathbb{R}^{n+1}$

$$\phi(x) = (1, x, x^2, \dots, x^n)$$

$$h(x) = w_0 + w_1 x + \ldots + w_n x^n = w^{\top} \phi(x)$$

è ora una funzione lineare di w e dell'input "espanso" $\phi(x)$

Quindi il vettore w può essere determinato con una regressione lineare, usando gli input espansi $\phi(x)$

Regressione lineare generalizzata

In effetti possiamo usare un qualunque vettore di nuove feature $\phi:\mathbb{R}^d\to\mathbb{R}^{n+1}$ definite a partire dall'input x, per esempio

$$\phi(x) = (1, x_2^3, \sin x_1, \sqrt{|x_3 - x_4|})$$

con ipotesi della forma

$$h(x) = w_0 \phi_0 + w_1 \phi_1 + \dots w_n \phi_n = w^{\top} \phi$$

L'ipotesi è ancora lineare rispetto al vettore dei parametri w (anche se non lo è più rispetto all'input x)

Possiamo ottimizzare w allo stesso modo, usando ϕ al posto di x

Senza il principio ERM: Regressione non parametrica

Gli approcci visti finora sono *parametrici*: le ipotesi sono rappresentabili con un numero prefissato di parametri (ad es. w_0, w_1, \ldots, w_d), scelti secondo il principio ERM

Nei metodi *non parametrici* le ipotesi non sono rappresentabili con un numero prefissato di parametri

- Sono più flessibili (minore bias)
- Richiedono più esempi (maggiore varianza)

In generale, non si conformano al principio ERM ma si appoggiano direttamente alle osservazioni

(instance-based learning o memory-based learning)

Regressione K-Nearest Neighbor (K-NN)

Regressione K-Nearest Neighbor (K-NN)

Sia $K \ge 1$ e sia x il punto di cui si vuole stimare il responso h(x)

- Identifica i K esempi $x^{(1)}, \dots, x^{(K)}$ più vicini ad x (in termini di distanza euclidea, o altra funzione distanza)
- **2** Restituisci la media del responso su quei K esempi: $h(x) = \frac{1}{K} \sum_{i=1}^{K} y^{(i)}$

Regressione K-NN: Esempio

Regressione K-NN su un dataset bidimensionale di 64 osservazioni (punti arancioni) Sinistra: K=1, destra: K=9

Vincenzo Bonifaci

Intro ML: Regressione

Regressione K-NN: Considerazioni

- Il metodo NN richiede accesso a tutti gli esempi ogni volta che effettua una predizione
- Tende ad essere efficace per d piccolo (ad esempio, $d \le 4$) e m relativamente grande
- Può dare risultati scarsi per d grande: in molte dimensioni, i
 K punti più vicini possono essere relativamente lontani

Regressione K-NN vs. regressione lineare

MSE di test per una regressione lineare (linea tratteggiata nera) vs. quello di una regressione K-NN (curva verde) per una distribuzione non-lineare in 1 variabile e indipendente dalle altre p-1 variabili

Tipologie di regressione viste finora

Nome Forma delle ipotesi $h(x)$		Funzione costo $\ell(h,(x,y))$	
Regressione lineare (semplice)	$w_0 + w_1 \times$	$(h(x)-y)^2$	
Regressione lineare (multipla)	$w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d$	$(h(x)-y)^2$	
Regressione lineare generalizzata	$w_0 + w_1\phi_1(x) + \ldots + w_n\phi_n(x)$	$(h(x)-y)^2$	
Regressione <i>K</i> -NN	nessuna	$(h(x)-y)^2$	

Vincenzo Bonifaci

Intro ML: Regressione

Regressione con altre funzioni di costo

Come trattare funzioni di costo diverse da quella quadratica?

Per esempio, nella regressione Least Absolute Deviation (LAD),

$$\ell(h,(x,y)) \stackrel{\mathrm{def}}{=} |h(x) - y|$$

Per una vasta classe di funzioni di costo (convesse e/o differenziabili) esiste una metodologia generale di ottimizzazione: la discesa del gradiente

Influenza di un esempio "anomalo" (outlier)

Il costo quadratico assegna enorme importanza agli errori grandi ($\gg 1$)

Vincenzo Bonifaci Intro ML: Regressione

Outlier: Metodo dei minimi quadrati vs. LAD

- Il costo LAD è più robusto rispetto agli outlier
- L'ipotesi ottima LAD non è esprimibile in forma chiusa

Influenza di esempi duplicati nella regressione lineare

Supponiamo che l'esempio $(x^{(i)}, y^{(i)})$ compaia β_i volte II rischio empirico (con costo quadratico) diventa

$$RE_{S}(h) = \frac{1}{\beta_{1} + \ldots + \beta_{m}} \sum_{i=1}^{m} \beta_{i} (h(x^{(i)}) - y^{(i)})^{2}$$

Esempi duplicati e regressione lineare pesata

La minimizzazione del rischio empirico

$$RE_{S}(h) = \frac{1}{\beta_{1} + \ldots + \beta_{m}} \sum_{i=1}^{m} \beta_{i} (h(x^{(i)}) - y^{(i)})^{2}$$

può essere interpretata come una regressione lineare pesata

L'esempio $(x^{(i)}, y^{(i)})$ è pesato con un fattore β_i

Regressione multi-output

Abbiamo supposto un singolo output: $y^{(i)} \in \mathbb{R}^{1 \times 1}$

Come gestire più variabili di output? Es. $y^{(i)} \in \mathbb{R}^{1 \times c}$ Il vettore di parametri w diventa una matrice $W \in \mathbb{R}^{(d+1) \times c}$

Ciascuna colonna $w^{(k)}$ di W può essere ottimizzata separatamente

Problema equivalente a c regressioni con output singolo