# Projektowanie i Analiza Algorytmów Sprawozdanie

Projekt 3 – Algorytm MinMax z alfa-beta cięciami w "kółku i krzyżyk"

Jakub Piekarek
Indeks 264202
Prowadzący dr inż. Krzysztof Halawa
Kod grupy K00-37d
Poniedziałek 11<sup>15</sup> – 13<sup>00</sup>



### 1. Wstęp

Celem tego projektu jest zaimplementowanie gry w kółko i krzyżyk z wykorzystaniem algorytmu MinMax z alfa-beta cięciami. Gra w kółko i krzyżyk, jest to prosta gra logiczna, w której dwóch graczy kolejno stawia znaki "X" i "O" na planszy o rozmiarze NxN. Gracz, który jako pierwszy ułoży M znaków w jednym rzędzie (poziomo, pionowo lub na skos), wygrywa grę. W naszym projekcie gracz będzie miał możliwość definiowania rozmiaru planszy kwadratowej oraz ilości znaków w rzędzie potrzebnych do wygranej. Dzięki temu gra będzie bardziej elastyczna i można ją dostosować do różnych wariantów.

## 2. Opis zastosowanych algorytmów

Algorytm Minimax to metoda minimalizowania maksymalnych strat lub maksymalizacji minimalnego zysku w teorii gier o sumie zerowej. Jest używana do podejmowania decyzji w grach, zarówno tych, gdzie gracze wykonują ruchy naprzemiennie, jak i tych, gdzie wykonują ruchy jednocześnie.

Algorytm Alfa-Beta jest techniką przeszukiwania drzewa, która redukuje liczbę węzłów do analizy, przyspieszając tym samym obliczenia w algorytmie Minimax. Jest stosowany w grach dwuosobowych, takich jak kółko i krzyżyk, szachy czy go. Wykorzystuje on warunek stopu, który pozwala przerwać analizę gałęzi drzewa, jeśli znaleziono opcję ruchu gorszą od poprzednio zbadanych. To oszczędza czas, nie zmieniając wyniku algorytmu.

| Algorytm | Złożoność obliczeniowa        | Złożoność pamięciowa |
|----------|-------------------------------|----------------------|
| MinMax   | $O(b^d)$                      | $O(b^d)$             |
| AlfaBeta | $O\left(\frac{b^d}{2}\right)$ | $O(b^d)$             |

Tabela 1 Złożoności algorytmów, gdzie b to średnia liczba możliwych ruchów w stanie gry, a d to głębokość drzewa gry

#### 3. Zastosowanie techniki SI

W grach o sumie zerowej, powszechnie stosuje się **algorytm minmax**, aby umożliwić komputerowi podejmowanie optymalnych decyzji. Opiera się on na analizie drzewa gry, które przedstawia wszystkie możliwe stany planszy i ruchy graczy. Na początku gry korzeń drzewa reprezentuje bieżący stan planszy.

Algorytm przypisuje wartości do liści drzewa, które odpowiadają stanom planszy kończącym grę. W zależności od tego, czy taki stan jest wygraną, remisem czy porażką dla komputera, przypisywana jest odpowiednia wartość.

W węzłach wewnętrznych drzewa, wartość jest przypisywana na podstawie najlepszej ścieżki do zwycięstwa lub przegranej. Jeśli dany ruch prowadzi do przewagi gracza, wartość jest dodatnia, a jeśli prowadzi do przewagi przeciwnika, jest ujemna.

Następnie podejmuje decyzje, wybierając ruch, który maksymalizuje wartość dla gracza, minimalizując jednocześnie wartość dla przeciwnika. Przechodząc przez drzewo gry, algorytm naprzemiennie maksymalizuje i minimalizuje wartość dla kolejnych ruchów.

Aby zoptymalizować działanie algorytmu Minmax, wykorzystuje się przycinanie alfa-beta. Ta technika pozwala na pominięcie analizy niektórych gałęzi drzewa, które nie mają wpływu na ostateczną decyzję, przyspieszając tym samym obliczenia.

## 4. Interfejs kółka i krzyżyk

```
. Ustawienia gry
2. Nowa gra aby wybrac nalezy przejsc przez punkt pierwszy
3. Krotka instrukcja jak grac
4. Wyjscie
√pisz numer polecnia z listy menu ---> 2
    1 2
   ===#===#===#===
   ===#===#===#===
   ===#===#===#===
   ===#===#===#===
Ruch gracza
 > 3
 > 3
       2
   ===#===#===#===
   ===#===#===#===
3
   ===#===#===#===
Komputer wykonuje ruch
   ===#===#===#===
   ===#===#===#===
   ===#===#===#===
   ===#===#===#===
Ruch gracza
```

Rysunek 1 Interfejs konsolowy dla gry kółko i krzyżyk

#### 5. Wnioski

Podczas implementacji gry w kółko i krzyżyk z algorytmem MinMax z alfabeta cięciami, zaobserwowano kilka istotnych wniosków. Oto one:

- Algorytm MinMax dla kółka i krzyżyk działa na zasadzie przewidywania ruchów przeciwnika i wybierania najlepszego możliwego ruchu dla danego stanu gry.
- Wykorzystanie alfa-beta cięć w algorytmie MinMax pozwala na znaczące ograniczenie przestrzeni przeszukiwań, co prowadzi do efektywniejszego działania. Dzięki temu można uniknąć analizowania niepotrzebnych gałęzi drzewa gry.
- Przy definiowaniu rozmiaru pola i ilości znaków w rzędzie, istotne jest odpowiednie dostosowanie algorytmu MinMax. Im większa plansza i więcej znaków potrzebnych do wygranej, tym trudniejsze staje się przeszukiwanie wszystkich możliwych ruchów, co może wpływać na wydajność gry.
- W przypadku większych plansz i bardziej złożonych układów, algorytm MinMax z alfa-beta cięciami może wymagać dużo czasu i zasobów obliczeniowych.