消華大学物理实验报告

班级: <u>软件 71</u> 姓名: <u>骆炳君</u> 学号: <u>2017013573</u> 日期: <u>2019-4-25</u>

实验名称: 逸出功的测量

目 录

— 、	实验目的·····	2
二、	数据处理	2
	1. 电路图······	2
	2. 不同温度 T 下的 $\lg U'_e \sim \sqrt{U_a}$ 直线拟合 · · · · · · · · · · · · · · · · · · ·	
	$3.$ lg $\frac{U_e}{T^2} \sim \frac{1}{T}$ 直线拟合 · · · · · · · · · · · · · · · · · · ·	
	4. 逸出功的计算	3
三、	实验小结·····	3
四、	思考题	4
五、	拟合曲线	5
六、	原始数据表格·····	6

一、 实验目的

- (1) 学习用里查孙直线法测定阴极材料的电子逸出功.
- (2) 了解热电子发射规律和现象.
- (3) 学习针对难以测量的物理量的处理方法.

二、数据处理

1. 电路图

2. 不同温度 T 下的 $\lg U_e' \sim \sqrt{U_a}$ 直线拟合

通过调节通过钨丝的电流来调节温度 T,测量不同 T 下的 U_e 和 U_a ,经过直线拟合(见附图)得到以下数据:

$I_f/{ m A}$	T/K	截距 $\lg U_e$	U_e/V
0.502	1729.32	0.904517	2.470739
0.544	1799.04	1.468202	4.341424
0.581	1869.04	1.980184	7.244075
0.624	1936.52	2.420013	11.246
0.662	1995.16	2.825889	16.87593
0.702	2062.08	3.183054	24.12031

3. $\lg \frac{U_e}{T^2} \sim \frac{1}{T}$ 直线拟合

由实验讲义表格使用直线插值法可求出钨丝温度 T, 得到以下数据:

T/K	1729.32	1799.04	1869.04	1936.52	1995.16	2062.08
$\frac{1}{T}/K^{-1}$	0.000578	0.000556	0.000535	0.000516	0.000501	0.000485
$\lg \frac{U_e}{T^2}$	-5.57123	-5.04188	-4.56305	-4.15403	-3.77407	-3.44556

使用计算机对数据进行拟合处理(见附图),可得拟合直线方程为

$$\lg \frac{U_e}{T^2} = -22876 \frac{1}{T} + 7.6676, \quad R^2 = 0.9996$$

相关系数 R 非常接近 1,数据拟合程度较好.

4. 逸出功的计算

由直线方程

$$\lg \frac{U_e}{T^2} = \lg AS + \lg R - 5.039 \times 10^3 \frac{\phi}{T}$$

可得

$$\phi = \frac{k}{-5.039 \times 10^3} = \frac{-22876}{-5.039 \times 10^3} = 4.540(V)$$

所以逸出功

$$W = e\phi = 4.540eV$$

三、 实验小结

本次实验是电学实验,正确连接电路是实验成功的关键,需要我们对实验原理和仪器都有比较深入的了解.在实验过程中暴露了我的很多不足之处,例如实验电路设计出错,对仪器读数不够熟悉等.感谢助教和老师的悉心指导!

四、思考题

1. I_f 系统误差修正的必要性?

不需要修正,因为有两个 $18k\Omega$ 的电阻串联,其总阻值远大于灯丝的电阻,分流远小于电流表的仪器误差,可以忽略不计.

2. U_a 系统误差修正的必要性?

不需要修正,因为 $\frac{R_4}{R_5}=1000$,所以 U_a 的测量系统误差为 $\frac{1}{1000}$,可以忽略不计.

3. U_e' 是否必须化成 I_e' 再进行数据处理?

不需要,因为 $U'_e=I'_eR$, U'_e 仅为 I'_e 的常数倍,而在后续的数据处理中可以得到 $\lg \frac{U_e}{T^2}=\lg AS+\lg R-5.039\times 10^3\frac{\phi}{T}$,无需引入 R 即可由直线斜率求出 ϕ ,而且化为 I'_e 会引入有效数字带来的误差,使得计算更加繁琐.

4. C 点是否为灯丝中点电位等效点?

C 点是灯丝中点电位等效点,因为灯丝可近似看作是均匀材料, C 点到灯丝两端的电阻相等,电压相等,所以是中点电位等效点.

五、 拟合曲线

六、 原始数据表格