Probability and Random Process (SWE3026)

Introduction to Random Processes

JinYeong Bak
jy.bak@skku.edu
College of Computing, SKKU

H. Pishro-Nik, "Introduction to probability, statistics, and random processes", available at https://www.probabilitycourse.com, Kappa Research LLC, 2014.

A continuous-time random process $\{X(t),t\in\mathbb{R}\}$ is strict-sense stationary or simply stationary if, for all $t_1,t_2,\cdots,t_r\in\mathbb{R}$ and all $\Delta\in\mathbb{R}$, the joint CDF of

$$X(t_1), X(t_2), \cdots, X(t_r)$$

is the same as the joint CDF of

$$X(t_1+\Delta), X(t_2+\Delta), \cdots, X(t_r+\Delta).$$

That is, for all real numbers x_1, x_2, \cdots, x_r , we have

$$egin{aligned} F_{X(t_1)X(t_2)\cdots X(t_r)}(x_1,x_2,\cdots,x_r) \ &= F_{X(t_1+\Delta)X(t_2+\Delta)\cdots X(t_r+\Delta)}(x_1,x_2,\cdots,x_r). \end{aligned}$$

A discrete-time random process $\{X(n),n\in\Z\}$ is strict-sense stationary or simply stationary, if for all $n_1,n_2,\cdots,n_r\in\Z$ and all $D\in\Z$, the joint CDF of

$$X(n_1), X(n_2), \cdots, X(n_r)$$

is the same as the joint CDF of

$$X(n_1 + D), X(n_2 + D), \cdots, X(n_r + D).$$

That is, for all real numbers x_1, x_2, \cdots, x_r , we have

$$egin{aligned} F_{X(n_1)X(n_2)\cdots X(n_r)}(x_1,x_2,\cdots,x_n) \ &= F_{X(n_1+D)X(n_2+D)\cdots X(n_r+D)}(x_1,x_2,\cdots,x_r). \end{aligned}$$

Weak-Sense Stationary Processes:

A continuous-time random process $\{X(t), t \in \mathbb{R}\}$ is weak-sense stationary or wide-stationary (WSS) if

- 1) $\mu_X(t) = \mu_X$, for all $t \in \mathbb{R}$.
- 2) $R_X(t_1,t_2)=R_X(t_1-t_2), \text{ for all } t_1,t_2\in\mathbb{R}.$

Weak-Sense Stationary Processes:

A discrete-time random process $\{X(n), n \in \mathbb{Z}\}$ is weak-sense stationary or wide-stationary (WSS) if

- 1) $\mu_X(n) = \mu_X$, for all $n \in \mathbb{Z}$.
- 2) $R_X(n_1, n_2) = R_X(n_1 n_2)$, for all $n_1, n_2 \in \mathbb{Z}$.

Properties of $R_X(au)$:

$$\tau = t_1 - t_2$$

If
$$X(t)$$
 WSS, $R_X(t_1-t_2)=R_X(au)$

1)
$$t_1 = t_2 \rightarrow E[X(t_1)^2] \geq 0 \Rightarrow R_X(0) = E[X(t)^2] \geq 0$$
,

2)
$$R_X(- au) = E[X(t- au)X(t)] = E[X(t)X(t- au)] = R_X(au)$$

$$\Rightarrow R_X(au) = R_X(- au), \text{ for all } au \in \mathbb{R}.$$

3) $|R_X(au)| \leq R_X(0), \quad ext{for all } au \in \mathbb{R}.$

Proof:

$$X = X(t)$$
 $Y = X(t - au)$
 $\underbrace{|EXY|} \leq \sqrt{\underbrace{E[X^2]}_{R_X(0)}\underbrace{E[Y^2]}_{R_X(0)}}_{R_X(0)}$

Jointly Wide-Sense Stationary Processes:

Two random processes $\{X(t), t \in \mathbb{R}\}$ and $\{Y(t), t \in \mathbb{R}\}$ are said to be jointly wide-sense stationary if

- 1) X(t) and Y(t) are each wide-sense stationary.
- 2) $R_{XY}(t_1,t_2)=R_{XY}(t_1-t_2)$.
- \succ For WSS X(t) & Y(t), ightarrow $R_{XY}(au) = R_{XY}(- au)$.

Cross Covariance:

$$C_{XY}(t_1, t_2) = R_{XY}(t_1, t_2) - \mu_X(t_1) \cdot \mu_Y(t_2).$$

Summary of Random Process

$$X(t), t \in (0, \infty) \text{ or } (-\infty, \infty)$$
 Continuous-time

$$X(n), n \in \mathbb{Z}$$
 Discrete-time

$$\mu_X(t) = E[X(t)] = \mu_X,$$

$$R_X(t_1, t_2) = E[X(t_1)X(t_2)] = R_X(t_1 - t_2)$$
 for WSS

Summary of Random Process

$$R_X(0) = E[X(t)^2] \ge 0$$

$$R_X(au) = R_X(- au), \quad ext{for all } au \in \mathbb{R}.$$

$$|R_X(au)| \leq R_X(0), \quad ext{for all } au \in \mathbb{R}.$$

Gaussian Random Processes

A random process $ig\{ m{X}(t), t \in m{J} ig\}$ is said to be a Gaussian (normal) random process if, for all

$$t_1, t_2, \ldots, t_n \in J$$

the random variables $X(t_1), X(t_2), \cdots, X(t_n)$ are jointly normal.