MDM4U – Unit 5 Quiz: Pascal's Triangle & Probability Distributions

/18K

/1C (time)

1. Create a probability distribution table and probability histogram for the possible sums when rolling 2 dice:

{be sure to properly label the histogram}

e to properly laber the histogram?	
x	P(X = x)
2	P(X = x) 36 3/36 3/36 11/36 5/36 5/36
(3)	2/86
4	3/36
5	11/36
6	5/36
7	6/36
8	5/36
9	434
10	3/34
11	2/31
12	36 5/36 5/36 3/36 2/34 1/36

Distribution of Probabilities of Suns when Rolling 2 Dice

2. Use the probability distribution to find:

Show work for full marks

a)
$$P(X < 6)$$

$$b) P(X \neq 9)$$

$$P(X \angle 6) = P(X=2) + P(X=4) + P(X=5) + P(X=5) = \frac{1}{36} + \frac{2}{36} + \frac{3}{36} + \frac{4}{36}$$

$$= \frac{10}{36}$$

$$= \frac{5}{18}$$

$$= 0.278$$

$$\therefore The probability that the sum is less than 6 is $\frac{5}{16}$ or 0.278.$$

$$P(X \neq 9) = 1 - P(X = 9)$$

$$= 1 - \frac{4}{36}$$

$$= \frac{32}{36}$$

$$= \frac{8}{9}$$

$$\therefore The probability
that the sum isn't
$$9 : 5 = \frac{8}{9} \text{ or } 0.889$$$$

c) P(X is prime)prime = { 2,35,7,11} P(Xispaire) = P(x=2) + P(x=3) + P(x=5)+P(x=7) +P(x=11) = 1 + 2 + 4 + 6 + 2 = 36 + 7x + 3x + 3x The probability = $\frac{36}{12}$ that the sum isn't = $\frac{5}{12}$ 9 is $\frac{8}{9}$ or 0,889. Som is prime is $\frac{5}{12}$ or 0.4167.

Date: _____

Name: ______

3. Use binomial expansion (combinations) to expand and simplify each of the following:

<4 marks>

$$= \sum_{k=0}^{3} {\binom{n}{k}} a^{n-k}b^{k}$$

$$= \left(\frac{7}{6}\right) a^{7-2}b^{2} + \left(\frac{7}{6}\right) a^{7-2}b^{2} + \left(\frac{7}{3}\right) a^{7-2}b^{3} + \left(\frac{7}{4}\right) a^{7-4}b^{4} + \left(\frac{7}{5}\right) a^{7-5}b^{5} + \left(\frac{7}{6}\right) a^{7-4}b^{6}$$

$$+ \left(\frac{7}{7}\right) a^{7-7}b^{7}$$

$$= a^{7} + 7a^{6}b + 2a^{5}b^{2} + 35a^{4}b^{3} + 35a^{3}b^{4} + 2b^{2}b^{5} + 7ab^{6} + b^{7}$$

b)
$$(x-3)^4$$

$$= \sum_{i=0}^{1} {\binom{n}{i}} e^{n-i} e^{i}$$

$$= {\binom{4}{6}} x^{4-6} e^{-3} + {\binom{4}{1}} x^{4-1} e^{-3} + {\binom{4}{2}} x^{4-2} e^{-3} + {\binom{4}{3}} x^{4-3} e^{-3} + {\binom{4}{4}} x^{4-4} e^{-3}$$

$$= x^4 + 4x^3 e^{-3} + 6x^2 e^{-3} + 4x^2 e^{-2} + 81$$

$$= x^4 - 12x^3 + 54x^2 - 108x + 81$$

$$\therefore (x-3)^4 = x^4 - 12x^3 + 54x^2 - (0+x+8)$$

4. Using **Pascal's Identity** write an expression that is equivalent to each of the following:

Determining an equivalent value just taken from Pascal's Triangle will result in ½ mark

<2 marks>

a)
$$\binom{26}{22} + \binom{26}{23}$$

$$\binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1}$$

$$\binom{26}{22} + \binom{26}{23} = \binom{267}{28}$$

$$\binom{26}{22} + \binom{26}{23} = \binom{27}{23}$$

$$\binom{26}{22} + \binom{26}{23} = \binom{27}{23}$$

$$\binom{26}{22} + \binom{26}{23} = \binom{27}{23}$$

$$\therefore \text{ An expression for } \binom{26}{22} + \binom{26}{23}$$

$$\binom{27}{23}$$

.. An expression for (84) is (35) - (17)