This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12Q 1/68	A1	 (11) International Publication Number: WO 95/23874 (43) International Publication Date: 8 September 1995 (08.09.95)
(21) International Application Number: PCT/US9 (22) International Filing Date: 23 February 1995 (2 (30) Priority Data:	23.02.9 U U	7459, B-1200 Brussels (BE). BOON-FALLEUR, Thierry;

(71) Applicant: LUDWIG INSTITUTE FOR CANCER RE-SEARCH [US/US]; 1345 Avenue of the Americas, New York, NY 10105 (US).

- pocrate 74, UCL 7459, B-1200 Brussels (BE). PATARD, Jean-Jacques; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). WEYNANTS, P.; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). MARCHAND, M.; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE). VAN DER BRUGGEN, Pierre; Avenue Hippocrate 74, UCL 7459, B-1200 Brussels (BE).
- (74) Agent: HANSON, Norman, D.; Felfe & Lynch, 805 Third Avenue, New York, NY 10022 (US).
- (81) Designated States: AU, CA, FI, JP, KR, NO, NZ, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report. With amended claims.

(54) Title: DETERMINATION OF CANCEROUS CONDITIONS BY MAGE GENE EXPRESSION

(57) Abstract

A method for determining cancers is described. The method involves assaying for expression of a gene coding for at least one of MAGE tumor rejection antigen or its precursor expression product.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	GB	United Kingdom	MR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
ВJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JР	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gahon		•		- 100 1 10011

WO 95/23874 PCT/US95/02203

DETERMINATION OF CANCEROUS CONDITIONS BY MAGE GENE EXPRESSION

FIELD OF THE INVENTION

5

10

20

25

30

35

This invention relates to general methods for diagnosing cancers via determining expression of at least one member of the MAGE family of tumor rejection antigen precursors. More particularly, cancers such as lung adenocarcinoma, neck, squamous cell, prostate, and bladder cancers can be diagnosed by determining expression of one or more members of this family of genes. Also a part of the invention are primers which can be used in these methods, such as amplification methods, of which the polymerase chain reaction ("PCR") is the most well known.

15 BACKGROUND AND PRIOR ART

The study of the recognition or lack of recognition of cancer cells by a host organism has proceeded in many different directions. Understanding of the field presumes some understanding of both basic immunology and oncology.

Early research on mouse tumors revealed that these displayed molecules which led to rejection of tumor cells when transplanted into syngeneic animals. molecules are "recognized" by T-cells in the recipient animal, and provoke a cytolytic T-cell response with lysis of the transplanted cells. This evidence was first obtained with tumors induced in vitro by chemical carcinogens, such as methylcholanthrene. The antigens expressed by the tumors and which elicited the T-cell response were found to be different for each tumor. Prehn, et al., J. Natl. Canc. Inst. 18: 769-778 (1957); Klein et al., Cancer Res. 20: 1561-1572 (1960); Gross, Cancer Res. 3: 326-333 (1943), Basombrio, Cancer Res. 30: 2458-2462 (1970) for general teachings on inducing tumors with chemical carcinogens and differences in cell surface antigens. This class of antigens has come to be known as

10

15

20

25

30

35

grand to the strong

"tumor specific transplantation antigens" or "TSTAs". Following the observation of the presentation of such antigens when induced by chemical carcinogens, similar results were obtained when tumors were induced in vitro via ultraviolet radiation. See Kripke, J. Natl. Canc. Inst. 53: 333-1336 (1974).

While T-cell mediated immune responses were observed for the types of tumor described <u>supra</u>, spontaneous tumors were thought to be generally non-immunogenic. These were therefore believed not to present antigens which provoked a response to the tumor in the tumor carrying subject. See Hewitt, et al., Brit. J. Cancer 33: 241-259 (1976).

The family of tum antigen presenting cell lines are immunogenic variants obtained by mutagenesis of mouse tumor cells or cell lines, as described by Boon et al., J. Exp. Med. 152: 1184-1193 (1980), the disclosure of which is incorporated by reference. To elaborate, tum antigens are obtained by mutating tumor cells which do not generate an immune response in syngeneic mice and will form tumors When these tum+ cells (i.e., "tum+" cells). mutagenized, they are rejected by syngeneic mice, and fail to form tumors (thus "tum"). See Boon et al., Proc. Natl. Acad. Sci. USA 74: 272 (1977), the disclosure of which is Many tumor types have been incorporated by reference. shown to exhibit this phenomenon. See, e.g., Frost et al., Cancer Res. 43: 125 (1983).

It appears that tum variants fail to form progressive tumors because they initiate an immune rejection process. The evidence in favor of this hypothesis includes the ability of "tum" variants of tumors, i.e., those which do not normally form tumors, to do so in mice with immune systems suppressed by sublethal irradiation, Van Pel et al., Proc. Natl. Acad. Sci. USA 76: 5282-5285 (1979); and the observation that intraperitoneally injected tum cells of mastocytoma P815 multiply exponentially for 12-15 days, and then are eliminated in only a few days in the midst of

WO 95/23874 PCT/US95/02203

3

an influx of lymphocytes and macrophages (Uyttenhove et al., J. Exp. Med. 152: 1175-1183 (1980)). Further evidence includes the observation that mice acquire an immune memory which permits them to resist subsequent challenge to the same tum variant, even when immunosuppressive amounts of radiation are administered with the following challenge of cells (Boon et al., Proc. Natl, Acad. Sci. USA 74: 272-275 (1977); Van Pel et al., supra; Uyttenhove et al., supra).

Later research found that when spontaneous tumors were subjected to mutagenesis, immunogenic variants were produced which did generate a response. Indeed, these variants were able to elicit an immune protective response against the original tumor. See Van Pel et al., J. Exp. Med. 157: 1992-2001 (1983). Thus, it has been shown that it is possible to elicit presentation of a so-called "tumor rejection antigen" in a tumor which is a target for a syngeneic rejection response. Similar results have been obtained when foreign genes have been transfected into spontaneous tumors. See Fearon et al., Cancer Res. 48: 2975-1980 (1988) in this regard.

A class of antigens has been recognized which are presented on the surface of tumor cells and are recognized by cytolytic T cells, leading to lysis. This class of antigens will be referred to as "tumor rejection antigens" or "TRAs" hereafter. TRAs may or may not elicit antibody The extent to which these antigens have been studied, has been via cytolytic T cell characterization studies, in vitro i.e., the study of the identification of the antigen by a particular cytolytic T cell ("CTL" hereafter) subset. The subset proliferates recognition of the presented tumor rejection antigen, and cells presenting the antigen are Characterization studies have identified CTL clones which specifically lyse cells expressing the antigens. of this work may be found in Levy et al., Adv. Cancer Res. 24: 1-59 (1977); Boon et al., J. Exp. Med. 152: 1184-1193 (1980); Brunner et al., J. Immunol. 124: 1627-1634 (1980);

5

10

15

20

25

30

35

4

Maryanski et al., Eur. J. Immunol. 124: 1627-1634 (1980); Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982); Palladino et al., Canc. Res. 47: 5074-5079 (1987). This type of analysis is required for other types of antigens recognized by CTLs, including minor histocompatibility antigens, the male specific H-Y antigens, and the class of antigens referred to as "tum-" antigens, and discussed herein.

A tumor exemplary of the subject matter described supra is known as P815. See DePlaen et al., Proc. Natl. 10 Acad. Sci. USA 85: 2274-2278 (1988); Szikora et al., EMBO J 9: 1041-1050 (1990), and Sibille et al., J. Exp. Med. 172: 35-45 (1990), the disclosures of which incorporated reference. The P815 tumor is by a 15 induced in а DBA/2 mastocytoma, mouse with methylcholanthrene and cultured as both an in vitro tumor The P815 line has generated many tum and a cell line. variants following mutagenesis, including variants referred to as P91A (DePlaen, supra), 35B (Szikora, supra), and P198 20 (Sibille, supra). In contrast to tumor rejection antigens - and this is a key distinction - the tum antigens are only present after the tumor cells are mutagenized. rejection antigens are present on cells of a given tumor without mutagenesis. Hence, with reference to 25 literature, a cell line can be tum+, such as the line referred to as "P1", and can be provoked to produce tumvariants. Since the tum phenotype differs from that of the parent cell line, one expects a difference in the DNA of tum cell lines as compared to their tum parental lines, 30 and this difference can be exploited to locate the gene of interest in tum cells. As a result, it was found that genes of tum variants such as P91A, 35B and P198 differ from their normal alleles by point mutations in the coding regions of the gene. See Szikora and Sibille, supra, and Lurquin et al., Cell 58: 293-303 (1989). This has proved 35 not to be the case with the TRAs of this invention.

10

15

20

25

30

35

papers also demonstrated that peptides derived from the tumantigen are presented by the L^d molecule for recognition by CTLs. P91A is presented by L^d , P35 by D^d and P198 by K^d .

PCT application PCT/US92/04354, filed on May 22, 1992 assigned to the same assignee as the subject application, teaches a family of human tumor rejection antigen precursor coding genes, referred to as the MAGE family, and their expression in various tumor types. Lung adenocarcinoma is not among these. Several of these genes are also discussed in van der Bruggen et al., Science 254: 1643 (1991). now clear that the various genes of the MAGE family are expressed in tumor cells, and can serve as markers for the diagnosis of such tumors, as well as for other purposes discussed therein. See also Traversari Immunogenetics 35: 145 (1992); van der Bruggen et al., Science 254: 1643 (1991). The mechanism by which a protein is processed and presented on a cell surface has now been fairly well documented. Α cursory review development of the field may be found in Barinaga, "Getting Some 'Backbone': How MHC Binds Peptides", Science 257: 880 (1992); also, see Fremont et al., Science 257: 919 (1992); Matsumura et al., Science 257: 927 (1992); Latron et al., Science 257: 964 (1992). These papers generally point to a requirement that the peptide which binds to an MHC/HLA molecule be nine amino acids long (a "nonapeptide"), and to the importance of the first and ninth residues of the nonapeptide.

Studies on the MAGE family of genes have now revealed that, in some cases a nonapeptide is presented on the surface of tumor cells, and that the presentation of the nonapeptide requires that the presenting molecule be HLA-A1. Complexes of the MAGE-1 tumor rejection antigen (the "TRA" or nonapeptide") leads to lysis of the cell presenting it by cytolytic T cells ("CTLs"). Additional research has correlated other nonapeptides derived from MAGE and genes to HLA-A1 and other MHC class I molecules.

10

15

20

25

30

Research presented in, e.g., U.S. patent application Serial No. 07/938,334 filed August 31, 1992, showed that, when comparing homologous regions of various MAGE genes to the region of the MAGE-1 gene coding for the relevant nonapeptide, there is a great deal of homology.

The nucleic acid sequences which code for the nonapeptides were also described therein. These nucleic acid molecules were described as also being useful as diagnostic probes for tumor presence.

The application also showed how it had been found that a cellular model could be used, wherein a non-human cell can be transfected with a nucleic acid sequence coding for a human HLA molecule. The resulting transfectant could then be used to test for nonapeptide specificity of the particular HLA molecule, or as the object of a second transfection with a MAGE gene. The co-transfectant could be used to determine whether the particular MAGE based TRA is presented by the particular HLA molecule.

Many of the references referred to supra present data on the expression pattern of various MAGE genes in different types of cell lines and tumor tissues. What is evident from these data is that there is no "unifying principle" which allows one to predict which MAGE gene will be expressed by a particular tumor type. Thus, while on one level one can say that MAGE genes are "markers" for tumors, on the level of specific tumor types, the correlation of marker and tumor type is not predictable, and must be determined empirically.

It has now been found that one can carry out cancer determination assays by assaying for expression of one or more members of the MAGE family of tumor rejection antigen precursors. How this is accomplished is shown in the examples which follow.

7

BRIEF DESCRIPTION OF THE FIGURES

Figures 1A and 1B depict detection of transfectants expressing antigen P815A.

Figure 2 shows the sensitivity of clones P1.HTR, PO.HTR, genomic transfectant P1A.T2 and cosmid transfectant P1A.TC3.1 to lysis by various CTLs, as determined by chromium release assays.

Figure 3 is a restriction map of cosmid C1A.3.1.

Figure 4 shows Northern Blot analysis of expression of gene 10 P1A.

Figure 5 sets forth the structure of gene P1A with its restriction sites.

Figure 6 shows the results obtained when cells were transfected with the gene for P1A, either isolated from P815 or normal cells and then tested with CTL lysis.

Figure 7 shows lytic studies using mast cell line L138. 8A.

Figure 8 is a map of subfragments of the 2.4 kb antigen E fragment which also express the antigen.

Figure 9 shows homology of sections of exon 3 from genes mage 1, 2 and 3.

Figure 10 shows the result of Northern blots for MAGE genes on various tissues.

Figure 11 presents the data of Figure 13 in table form.

Figure 12 shows Southern Blot experiments using the various human melanoma cell lines employed in this application.

Figure 13 is a generalized schematic of the expression of MAGE 1, 2 and 3 genes by tumor and normal tissues.

Figure 14 shows results from a chromium release assay using CTL clone 20/38 on various cell lines.

5 Figure 15 presents the result of assays undertaken to determine antigenic specificity of CTL clone 20/38.

Figure 16 shows the results obtained when a TNF release assay was carried out on various transfected cells.

Figure 17 shows results secured from qualitative PCR assays for MAGE-1 in lung adenocarcinomas.

Figure 18 presents data pertaining to quantitative measurement of MAGE-1 expression in lung adenocarcinomas.

Figure 19 shows reverse transcription/PCR amplification production of mRNA extracted from the bladder tumor of a patient referred to as "HM15". This is shown in all lanes marked "R". In lanes marked "D", amplification products of the genomic DNA from the patient are shown.

Figure 20 displays the fraction of tumors expressing genes MAGE-1, 2, 3 and 4 among the superficial and invasive transitional cell carcinomas of the bladder.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Many different "MAGE" genes have been identified, as will be seen from the sequences which follow the application. The protocols described in the following examples were used to isolate these genes and cDNA sequences.

"MAGE" as used herein refers to a nucleic acid sequence isolated from human cells. The acronym "smage" is used to describe sequences of murine origin.

15

20

25

10

15

20

25

30

35

When "TRAP" or "TRAS" are discussed herein as being specific to a tumor type, this means that the molecule under consideration is associated with that type of tumor, although not necessarily to the exclusion of other tumor types.

Example 1

In order to identify and isolate the gene coding for antigen P815A, gene transfection was used. This approach requires both a source of the gene, and a recipient cell line. Highly transfectable cell line P1.HTR was the starting material for the recipient, but it could not be used without further treatment, as it presents "antigen A", one of four recognized P815 tumor antigens. See Van Pel et al., Molecular Genetics 11: 467-475 (1985). Thus, screening experiments were carried out to isolate cell lines which did not express the antigen and which nonetheless possessed P1.HTR's desirable qualities.

To do this, P1.HTR was screened with CTLs which were specific for each of tumor antigens A, B, C and D. Such CTLs are described by Uyttenhove et al., J. Exp. Med. 157: 1040-1052 (1983).

To carry out the selection, 106 cells of P1.HTR were mixed with $2-4\times10^6$ cells of the CTL clone in a round bottom tube in 2 ml of medium, and centrifuged for three minutes at 150xg. After four hours at 37°C, the cells were washed and resuspended in 10 ml of medium, following Maryanski et al., Eur. J. Immunol. 12: 406-412 (1982). Additional information on the CTL assay and screening protocol, in general may be found in Boon et al., J. Exp. Med. 152: 1184-1193 (1980), and Maryanski et al., Eur. J. Immunol. 406-412 (1982),disclosures the of are incorporated by reference.

When these selections were carried out, a cell line variant was found which expressed neither antigen A or B. Additional selections with CTLs specific for antigen C then yielded a variant which also lacked antigen C. Please see

10

15

20

25

30

35

figure 2 for a summary of the results of these screenings. The variant PO.HTR is negative for antigens A, B and C, and was therefore chosen for the transfection experiments.

The cell line PO.HTR has been deposited in accordance with the Budapest Treaty at the Institute Pasteur Collection Nationale De Cultures De Microorganismes, 28, Rue de Docteur Roux, 75724 Paris France, and has accession number I-1117.

This methodology is adaptable to secure other cell lines which are variants of a cell type which normally presents at least one of the four recognized P815 tumor antigens, i.e., antigens A, B, C and D, where the variants present none of antigens A, B and C. P1.HTR is a mastocytoma cell line, so it will be seen that the protocol enables the isolation of biologically pure mastocytoma cell lines which express none of P815 antigens A, B and C, but which are highly transfectable. Other tumor types may also be screened in this fashion to secure desired, biologically pure cell lines. The resulting cell lines should be at least as transfectable with foreign DNA as is P1.HTR, and should be selected so as to not express a specific antigen.

Example 2

Previous work reported by DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988) the disclosure of which is incorporated by reference herein had shown the efficacy of using cosmid library transfection to recover genes coding for tum antigens.

Selective plasmid and genomic DNAs of P1.HTR were prepared, following Wölfel et al., Immunogenetics $\underline{26}$: 178-187 (1987). The transfection procedure followed Corsaro et al., Somatic Cell Molec. Genet 7: 603-616 (1981), with some modifications. Briefly, 60 μ g of cellular DNA and 3 μ g of DNA of plasmid pHMR272, described by Bernard et al., Exp. Cell. Biol. 158: 237-243 (1985) were mixed. This plasmid confers hygromycin resistance upon recipient cells,

10

15

20

25

30

35

and therefore provides a convenient way to screen for transfectants. The mixed DNA was combined with 940 ul of 1 mM Tris-HCl (pH 7.5), 0.1 mM EDTA, and 310 ul 1M CaCl₂. The solution was added slowly, and under constant agitation to 1.25 ml of 50 mM Hepes, 280 mM NaCl, 1.5 mM Na2HPO4, adjusted to pH 7.1 with NaOH. Calcium phosphate - DNA precipitates were allowed to form for 30-45 minutes at room temperature. Following this, fifteen groups of PO.HTR cells (5x106 per group) were centrifuged for 10 minutes at Supernatants were removed, and pellets were resuspended directly into the medium containing the DNA precipitates. This mixture was incubated for 20 minutes at 37°C, after which it was added to an 80 cm2 tissue culture flask containing 22.5 ml DMEM, supplemented with 10% fetal calf serum. After 24 hours, medium was replaced. eight hours after transfection, cells were collected and Transfected cells were selected in mass culture using culture medium supplemented with hygromycin B (350 ug/ml). This treatment selected cells for hygromycin resistance.

For each group, two flasks were prepared, each containing 8x10⁶ cells in 40 ml of medium. In order to estimate the number of transfectants, 1x10⁶ cells from each group were plated in 5 ml DMEM with 10% fetal calf serum (FCS), 0.4% bactoagar, and 300 ug/ml hygromycin B. The colonies were then counted 12 days later. Two independent determinations were carried out and the average taken. This was multiplied by 5 to estimate the number of transfectants in the corresponding group. Correction had to be made for the cloning efficiency of P815 cells, known to be about 0.3.

Example 3

Eight days after transfection as described in example 2, <u>supra</u>, antibiotic resistant transfectants were separated from dead cells, using density centrifugation with Ficoll-

10

15

20

25

30

35

Paque. These cells were maintained in non-selective medium for 1 or 2 days. The cells were plated in 96 well microplates (round bottom), at 30 cells/microwell in 200 ul of culture medium. Anywhere from 100-400 microwells were prepared, depending on the number of transfectants prepared. Agar colony tests gave estimates of 500-3000. After 5 days, the wells contained about 6x104 cells and replicate plates were prepared by transferring 1/10 of the wells to microplates which were then incubated at 30°C. One day later, master plates were centrifuged, medium removed, and 750 CTLs against P815 antigen A (CTL·P1:5) were added to each well together with 106 irradiated syngeneic feeder spleen cells in CTL culture containing 40 U/ml recombinant human IL-2, and HAT medium to kill stimulator cells. Six days later, plates were examined visually to identify wells where CTLs proliferated. Where plates showed proliferating microcultures, aliquots of 100 ul of the wells were transferred to another plate containing 51Cr labeled P1.HTR target cells $(2x10^3 - 4x10^3 \text{ per well})$, and chromium release was measured after 4 hours. Replicate microcultures corresponding to those showing high CTL activity were expanded and cloned by limited dilution in DMEM with 10% Five days later, about 200 clones were collected and screened with the CTL.P1:5 cell line, described supra, in a visual lysis assay. See figure 1A for these results.

In these experiments, three of the fifteen groups of transfectants yielded a few positive microcultures. These microcultures were tested for lytic activity against P1.HTR, as described <u>supra</u>. Most of the microcultures where proliferation was observed showed lytic activity. This activity was well above background, as shown in figure 1B. This figure summarizes data wherein two groups of cells (groups "5" and "14"), 400 and 300 microwells were seeded with 30 hygromycin resistant transfected cells. Amplification and duplication of the microcultures was followed by addition of anti-A CTL P1:5. Six days later,

10

15

20

25

30

35

lytic activity against P1.HTR was tested. In the figure, each point represents lytic activity of a single microculture.

Duplicate microcultures corresponding to several positive wells were subcloned, and more than 1% of the subclones were found to be lysed by anti-A CTL. Thus, three independent transfectants expressing P815A were obtained from 33,000 hygromycin resistant transfectants. One of these lines, referred to hereafter as P1A.T2 was tested further.

The relevant antigen profile of P1A.T2 is shown in figure 2, this being obtained via anti-CTL assays of the type described <u>supra</u>.

Example 4

The CTL assays carried out for P1A.T2 demonstrated that it presented antigen A ("P815A"), and therefore had received the gene from P1.HTR. To that end, this cell line was used as a source for the gene for the antigen precursor in the following experiments.

Prior work had shown that genes coding for tum antigens could be recovered directly from transfectants obtained with a cosmid library. See DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278 (1988). This procedure was followed for recovery of the P815 gene.

Total genomic DNA of P1A.T2 was partially digested with restriction endonuclease Sau 3A1, and fractionated by NaCl density gradient ultracentrifugation to enrich for 35-50 kb DNA fragments, following Grosveld et al., Gene 10:6715-6732 (1982). These fragments were ligated to cosmid arms of C2RB, described by Bates et al., Gene 26: 137-146 (1983), the disclosure of which is incorporated by reference. These cosmid arms had been obtained by cleavage with SmaI and treatment with calf intestinal phosphatase, followed by digestion with BamHI. Ligated DNA was packaged into lambda phage components, and titrated on E. coli ED 8767, following Grosveld et al., supra. Approximately 9x105

10

15

20

25

ampicillin resistant colonies were obtained per microgram of DNA insert.

The cosmid groups were amplified by mixing 30,000 independent cosmids with 2 ml of ED 8767 in 10 mM MgCl₂, incubated 20 minutes at 37°C, diluted with 20 ml of Luria Bertani ("LB") medium, followed by incubation for one hour. This suspension was titrated and used to inoculate 1 liter of LB medium in the presence of ampicillin (50 ug/ml). At a bacterial concentration of 2×10^8 cells/ml (OD₆₀₀=0.8), a 10 ml aliquot was frozen, and 200 ug/ml chloramphenicol was added to the culture for overnight incubation. Total cosmid DNA was isolated by alkaline lysis procedure, and purified on CsCl gradient.

In these experiments, a library of 650,000 cosmids was prepared. The amplification protocol involved the use of 21 groups of approximately 30,000 cosmids.

Example 5

Using the twenty-one groups of cosmids alluded to supra, (60 ug) and 4 ug of pHMR272, described supra, groups of 5x106 PO.HTR cells were used as transfectant hosts. Transfection was carried out in the same manner described in the preceding experiments. An average of 3000 transfectants per group were tested for antigen presentation, again using CTL assays as described. group of cosmids repeatedly yielded positive transfectants, frequency of about 1/5,000 drug resistant transfectants. The transfectants, as with P1A.T2, also showed expression of both antigen A and B. The pattern of expression of transfectant PlA.TC3.1 is shown in figure 2.

30 Example 6

As indicated in Example 5, <u>supra</u>, three independent cosmid transfected cells presenting P815A antigen were isolated. The DNA of these transfectants was isolated and packaged directly with lambda phage extracts, following DePlaen et al., Proc. Natl. Acad. Sci. USA 85: 2274-2278

35

20

25

30

35

(1988). The resulting product was titrated on <u>E. coli</u> ED 8767 with ampicillin selection, as in Example 5. Similarly, amplification of the cosmids and transfection followed Example 5, again using PO.HTR.

High frequencies of transfection were observed, as described in Table 1, which follows:

Table 1. Transfer of the expression of antigen P815A by cosmids obtained by direct packaging

10	Transfectant obtained with the cosmid library	No. of cosmids obtained by direct packaging of 0.5 μ g of DNA	No. of transfectants expressing P815A / no. of HmB' transfectants
15	TC3.1	32	87/192
	TC3.2	32000	49/384
	TC3.3	44	25/72

The cosmids were analyzed with restriction enzymes and it was found that directly packaged transfectant P1A.TC3.1 contained 32 cosmids, 7 of which were different. these 7 cosmids was transfected into PO.HTR, in the manner described supra. and again, following the protocols described above, transfectants were studied presentation of P815A. Four of the cosmid transfectants showed P815A presentation and, as with all experiments described herein, P815B was co-expressed.

Of the four cosmids showing presentation of the two antigens, cosmid C1A.3.1 was only 16.7 kilobases long, and was selected for further analysis as described infra.

The cosmid C1A.3.1 was subjected to restriction endonuclease analysis, yielding the map shown in Figure 3.

All EcoRI fragments were transfected, again using the above described protocols, and only the 7.4 kilobase fragment produced a transfectant that anti-A CTLs could lyse. Similar experiments were carried out on the PstI

10

15

20

25

30

35

fragments, and only a 4.1 kb fragment fully contained within the 7.4 kb EcoRI fragment produced lysable transfectants.

This fragment (i.e., the 4.1 kb PstI fragment), was digested with SmaI, giving a 2.3 kb fragment which also yielded host cells presenting antigens A and B after transfection. Finally, a fragment 900 bases long, secured with SmaI/XbaI, also transferred expression of the precursors of these two antigens, i.e., the transfected host cell presented both antigen A and antigen B.

Example 7

The 900 base fragment described above was used as a probe to detect the expression of the P815A gene in parent cell line P1.HTR. To accomplish this, total cellular RNA was first isolated using the guanidine-isothiocyanate procedure of Davis et al., <u>Basic Methods In Molecular Biology</u> (Elsevier Science Publishing Co, New York) (1986). The same reference was the source of the method used to isolate and purify polyA⁺ mRNA using oligodT cellulose column chromatography.

Samples were then subjected to Northern Blot analysis. RNA samples were fractionated on 1% agarose gels containing 0.66 M formaldehyde. The gels were treated with 10xSSC (SSC: 0.15 M NaCl; 0.015 M sodium citrate, pH 7.0) for 30 before overnight blotting nitrocellulose minutes on These were baked for two hours at 80°C, after membranes. which the membranes were prehybridized for 15 minutes at 60°C in a solution containing 10% dextran sulfate, 1% SDS Hybridization was then carried out using and 1M NaCl. denatured probe (the 900 base fragment), together with 100 ug/ml salmon sperm DNA.

When this protocol was carried out using P1.HTR poly A^+ RNA, a band of 1.2 kb and two fainter bands were identified, as shown in Figure 4, lane 1 (6 ug of the RNA).

The same probe was used to screen a cDNA library, prepared from poly-A+ RNA from the cell line. This yielded

WO 95/23874 PCT/US95/02203

17

a clone with a 1kb insert, suggesting a missing 5' end. The Northern blots for the cDNA are not shown.

Hybridization experiments in each case were carried out overnight at 60°C. The blots were washed twice at room temperature with 2xSSC and twice at 60°C with 2xSSC supplemented with 1% SDS.

The foregoing experiments delineated the DNA expressing the P815A antigen precursor sufficiently to allow sequencing, using the well known Sanger dideoxy chain termination method. This was carried out on clones generated using a variety of restriction endonucleases and by specific priming with synthetic oligonucleotide primers. The results for exons of the gene are set forth in SEQUENCE ID NO: 4.

15 Example 8

5

10

20

25

The Northern analysis described supra suggested that the 5' end of the cDNA was missing. To obtain this sequence, cDNA was prepared from P1.HTR RNA using a primer corresponding to positions 320-303. The sequence was then amplified using the polymerase chain reaction using a 3' primer corresponding to positions 286-266 and a 5' primer described by Frohman et al., Proc. Natl. Acad. Sci. USA 85: 8998-9002 (1988). A band of the expected size (270 bases) was found, which hybridized to the 900 bp SmaI/XbaI fragment described supra on a Southern blot. Following cloning into m13tg 130 and tg 131, the small, 270 bp fragment was sequenced. The sequence is shown in SEQUENCE ID NO: 1.

Example 9

Following the procurement of the sequences described in Examples 7 and 8 and depicted in SEQ ID NO: 4, a 5.7 kb region of cosmid C1A.3.1 was sequenced. This fragment was known to contain the 900 base fragment which expressed P815A in transfectants. This experiment permitted

delineation of introns and exons, since the cosmid is genomic in origin.

The delineated structure of the gene is shown in Together with SEQ ID NO: 4, these data show that the gene for the antigen precursor, referred to as "PlA" hereafter, is approximately 5 kilobases long and contains 3 exons. An ORF for a protein of 224 amino acids starts in exon 1, ending in exon 2. The 900 base pair fragment which transfers expression of precursors for antigens A and B only contains exon 1. The promoter region contains a CAAT as indicated in SEQ ID NO: 1, and an enhancer This latter feature has been observed promoters of most MHC class I genes, as observed by Geraghty et al., J. Exp. Med 171: 1-18 (1990); Kimura et al., Cell 44: 261-272 (1986).

A computer homology search was carried out, using program FASTA with K-triple parameters of 3 and 6, suggested by Lipman et al., Science 227: 1435-1441 (1985), and using Genbank database release 65 (October 1990). homology was found except for a stretch of 95 bases corresponding to part of an acid region coded by exon 1 (positions 524-618), which is similar to sequences coding for acidic regions in mouse nucleolar protein NO38/B23, as described by Bourbon et al., Mol. Biol. 200: 627-638 (1988), and Schmidt-Zachmann et al., Chromosoma 96: 417-426 (1988). Fifty six of 95 bases were identical. In order to test whether these homologies were the reason for cross hybridizing, experiments were carried out using a mouse spleen cDNA library screened with the 900 base fragment. cDNA clones corresponding closely to the sizes of the cross hybridizing bands were obtained. These were partially sequenced, and the 2.6 kb cDNA was found to correspond exactly to reported cDNA sequence of mouse nucleolin, while the 1.5 kb cDNA corresponded to mouse nucleolar protein NO38/B23.

Analysis of the nucleotide sequence of the gene, referred to as "P1A" hereafter, suggests that its coded

5

10

15

20

25

30

35

10

15

20

25

30

35

product has a molecular mass of 25 kd. Analysis of the SEQUENCE ID NO: 4 shows a potential nuclear targeting signal at residues 5-9 (Dingwall et al., Ann. Rev. Cell Biol. 2: 367-390 (1986)), as well as a large acidic domain at positions 83-118. As indicated supra, this contains the region of homology between P1A and the two nucleolar proteins. A putative phosphorylation site can be found at position 125 (serine). Also, a second acidic domain is found close to the C-terminus as an uninterrupted stretch of 14 glutamate residues. A similar C-terminal structure has been found by Kessel et al. Proc. Natl. Acad. Sci. USA 84: 5306-5310 (1987), in a murine homeodomain protein having nuclear localization.

In studies comparing the sequence of gene PlA to the sequences for P91A, P35B and P198, no similarities were found, showing that P1A is indicative of a different class of genes and antigens.

Example 10

With the P1A probe and sequence in investigations were carried out to determine whether the gene present in normal tissue was identical to that expressed by the tumor. To do this, phage libraries were prepared, using lambda zapII 10 and genomic DNA of DBA/2 kidney murine cells. P1A was used as a probe. Hybridization conditions were as described supra, and a hybridizing clone was found. The clone contained exons one and two of the P1A gene, and corresponded to positions -0.7 to 3.8 of figure 5. Following localization of this sequence, PCR amplification was carried out to obtain the sequence corresponding to 3.8 to 4.5 of figure 5.

Sequence analysis was carried out, and no differences were found between the gene from normal kidneys and the P1A gene as obtained from the P815 tumor cells.

In further experiments, the gene as found in DBA/2 kidney cells was transfected into PO.HTR, as described supra. These experiments, presented pictorially in figure

6, showed that antigens A and B were expressed as efficiently by the kidney gene isolated from normal P815 cells as with the P1A gene isolated from normal kidney cells.

These experiments lead to the conclusion that the gene coding for the tumor rejection antigen precursor is a gene that does not result from a mutation; rather, it would appear that the gene is the same as one present in normal cells, but is not expressed therein. The ramifications of this finding are important, and are discussed <u>infra</u>.

In studies not elaborated upon herein, it was found that variants of the gene were available. Some cells were "PlAB+", rather than the normal "PlA". The only difference between these is a point mutation in exon 1, with the 18th triplet coding for Ala in the variant instead of Val.

Example 11

5

10

15

20

25

30

35

Additional experiments were carried out with other cell types. Following the protocols described for Northern blot hybridizations <u>supra</u>, RNA of normal liver and spleen cells was tested to determine if a transcript of the P1A gene could be found. The Northern blot data are presented in figure 4 and, as can be seen, there is no evidence of expression.

The murine P815 cell line from which P1A was isolated is a mastocytoma. Therefore, mast cell lines were studied to determine if they expressed the gene. Mast cell line MC/9, described by Nabel et al., Cell 23: 19-28 (1981), and short term cultures of bone marrow derived mast cells were tested in the manner described supra (Northern blotting), but no transcript was found. In contrast when a BALB/C derived IL-3 dependent cell line L138.8A (Hültner et al., J. Immunol. 142: 3440-3446 (1989)) was tested, a strong signal was found. The mast cell work is shown in figure 4.

It is known that both BALB/C and DBA/2 mice share H-2^d haplotype, and thus it was possible to test sensitivity to lysis using the CTLs described <u>supra</u>. Figure 7 shows these

20

results, which essentially prove that anti-A and anti-B CTLs lysed the cells strongly, whereas anti-C and anti-D lines did not.

Further tests were carried out on other murine tumor cell lines, i.e., teratocarcinoma cell line PCC4 (Boon et al., Proc. Natl. Acad. Sci. USA 74: 272-275 (1977), and leukemias LEC and WEHI-3B. Expression could not be detected in any of these samples.

Example 12

The actual presentation of the P1A antigen by MHC molecules was of interest. To test this, cosmid C1A.3.1 was transfected into fibroblast cell line DAP, which shows phenotype H-2^k. The cell lines were transfected with genes expressing one of the K^d, D^d, and L^d antigen. Following transfection with both the cosmid and the MHC gene, lysis with CTLs was studied, again as described <u>supra</u>. These studies, summarized in Table 2, show that L^d is required for presentation of the P1A antigens A and B.

Table 2. H-2-restriction of antigens P815A and P815B

	Recipient cell*	No. of clones lysed by the CTL/no. of HmB' clones		
		CTL anti-A	CTL anti-B	
25	DAP (H-2k)	0/208	0/194	
	DAP + Kd	0/165	0/162	
	DAP + Dd	0/157	0/129	
	DAP + L ^d	25/33	15/20	

Cosmid C1A.3.1 containing the entire P1A gene was transfected in DAP cells previously transfected with $H-2^d$ class I genes as indicated.

^{*}Independent drug-resistant colonies were tested by lysis by anti-A or anti-B CTL in a visual assay.

The observation that one may associate presentation of a tumor rejection antigen with a particular MHC molecule was confirmed in experiments with human cells and HLA molecules, as elaborated upon <u>infra</u>.

5 Example 13

10

15

20

25

30

Using the sequence of the P1A gene as well as the amino acid sequence derivable therefrom, antigenic peptides which were A⁺ B⁺ (i.e., characteristic of cells which express both the A and B antigens), and those which are A⁻B⁺ were identified. The peptide is presented in SEQ ID NO: 26. This peptide when administered to samples of PO.HTR cells in the presence of CTL cell lines specific to cells presenting it, led to lysis of the PO.HTR cells, lending support to the view that peptides based on the product expressed by the gene can be used as vaccines.

Example 14

The human melanoma cell line referred to hereafter as MZ2-MEL is not a clonal cell line. It expresses four stable antigens recognized by autologous CTLs, known as antigens "D, E, F, and A". In addition, two other antigens "B" and "C" are expressed by some sublines of the tumor. CTL clones specific for these six antigens are described by Van den Eynde et al., Int. J. Canc. 44: 634-640 (1989). Among the recognized subclones of MZ2-MEL are MEL.43, MEL3.0 and MEL3.1. (Van den Eynde et al., supra). Cell line MEL3.1 expresses antigen E, as determined by CTL studies as described for P815 variants, supra, so it was chosen as a source for the nucleic acid sequence expressing the antigen precursor.

In isolating the pertinent nucleic acid molecule for a tumor rejection antigen precursor, the techniques developed <u>supra</u>, showed that a recipient cell is needed which fulfills two criteria: (i) the recipient cell must not express the TRAP of interest under normal conditions,

10

15

20

25

30

35

and (ii) it must express the relevant class I HLA molecule.

Also, the recipient cell must have a high transfection frequency, i.e., it must be a "good" recipient.

In order to secure such a cell line, the clonal subline MEL3.1 was subjected to repeated selection with anti-E CTL 82/30 as described by Van den Eynde, supra. The repeated cycles of selection led to isolation of subclone MZ2-MEL-2.2 isc E. This subclone is also HPRT, (i.e., sensitive to HAT medium: 10^4 M hypoxanthine, 3.8×10^{-7} aminopterine, 1.6×10^{-5} M 2-deoxythymidine). The subclone is referred to as "MEL-2.2" for simplicity hereafter.

Example 15

The genomic DNA of MEL3.0 was prepared following Wölfel et al., Immunogenetics 26: 178-187 (1987), the disclosure of which is incorporated by reference. The plasmid pSVtkneoß, as described by Nicolas et al., Cold Spring Harb., Conf. Cell Prolif. 10: 469-485 (1983) confers geneticin resistance, so it can be used as a marker for cotransfection, as it was in this experiment.

Following a procedure similar but not identical to that of Corsaro et al., Somatic Cell Molec. Genet 7: 603-616 (1981), total genomic DNA and the plasmid were cotransfected. The genomic DNA (60 μ g) and plasmid DNA (6 μ g) were mixed in 940 μ l of 1 mM Tris·HCl (pH 7.5), 0.1 mM EDTA, after which 310 μ l of 1M CaCl₂ was added. solution was slowly added, under constant agitation, to 1.25 ml of 2xHBS (50 mM HEPES, 280 mM NaCl 1.5 mM Na2HPO4, adjusted to pH 7.1 with NaOH). The calcium phosphate DNA precipitates were allowed to form for 30-45 minutes at room temperature, after which they were applied to 80 cm2 tissue culture flasks which had been seeded 24 hours previously with 3x106 MEL2.2 cells, in 22.5 ml of melanoma culture medium (Dulbecco's Modified Eagle's Medium) supplemented with 10% fetal calf serum. After 24 hours, the medium was replaced. Forty eight hours after transfection, the cells WO 95/23874 PCT/US95/02203

24

were harvested and seeded at 4×10^6 cells per 80 cm^2 flask in melanoma culture medium supplemented with 2 mg/ml of geneticin. The geneticin serves as a selection marker.

Example 16

5

10

15

20

25

30

35

Thirteen days after transfection, geneticin-resistant colonies were counted, harvested, and cultured in nonselective medium for 2 or 3 days. Transfected cells were then plated in 96-well microplates at 200 cells/well in 200 ul of culture medium with 20% fetal calf serum (FCS) in order to obtain approximately 30 growing colonies per well. The number of microcultures was aimed at achieving redundancy, i.e., such that every independent transfectant should be represented at least four times.

After 10 days, wells contained approximately 6×10^4 cells. These cells were detached, and 1/3 of each microculture was transferred to a duplicate plate. After 6 hours, i.e., after readherence, medium was removed and 1500 anti-E CTL (CTL 82/30), were added to each well in 100 μ l of CTL culture medium with 35 U/ml of IL-2. One day later, the supernatant (50 μ l) was harvested and examined for TNF concentration, for reasons set forth in the following example.

Example 17

The size of the mammalian genome is 6x106 kb. As the average amount of DNA integrated in each drug-resistant transfectant was expected to be about 200 kb, a minimum of 30,000 transfectants would need to be examined to ascertain whether antigen E had been transfected. Prior work with murine cells had shown that when a CTL stimulation assay was used, groups containing only 3% of cells expressing the antigen of interested could be identified. This should reduce the number of assays by a factor of 30. While an anti-E CTL assay, as described supra, in mixed E+/E cells was helpful, it was not sufficient in that consistent results could not be obtained.

10

15

20

25

30

result, an alternative test was Stimulation of CTLs was studied by release of tumor necrosis factor ("TNF") using well known methodologies which need not be repeated here. As described in Example 1500 CTL 82/30 cells had been added per well of These CTLs were collected 6 days after stimulation. As indicated supra, after 1/3 of the cells in each well had been removed and the remaining 2/3 (4x104) had readhered, the CTLs and IL-2 were added thereto. The 50 μ l of supernatant was removed 24 hours later and transferred to a microplate containing 3x104 W13 (WEHI-164 clone 13; Espevik et al., J. Immunol. Meth. 95: 99-105 (1986)) cells in 50 μ l of W13 culture medium (RPMI-1640, supplemented with L-arginine (116 mg/l), L-asparagine (36 mg/l), Lglutamine (216 mg/l), and 10% FCS supplemented with 2 μ g of actinomycin D at 37°C in an 8% CO2 atmosphere. The cell line W13 is a mouse fibrosarcoma cell line sensitive to Dilutions of recombinant TNF-B in RPMI 1640 were added to target cell controls.

The W13 cultures were evaluated after 20 hours of incubation, and dead cell percentage was measured using an adaptation of the colorimetric assay of Hansen et al., J. Immunol. Meth. 119: 203-210 (1989). This involved adding 50 ml (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide at 2.5 mg/ml in PBS, followed by two hours of incubation at 37°C. Dark blue formazan crystals were dissolved by adding 100 μ l of lysis solution (1 volume N,N dimethyl formamide mixed at 37°C with two volumes of water containing 30% (w/v) sodium dodecyl sulphate, at pH 4.7 from 1.6% acetic acid and 2.5% 1N HCl). Plates were incubated at 37°C overnight, and ODs were taken at 570 nm using 650 nm as control. Dead cell percentage was determined via the formula:

35 100 x 1 -
$$\frac{100-(OD_{570} \text{ sample well})}{OD_{570} \text{ well + medium}}$$

10

15

20

25

30

following Espevik et al., J. Immunol. Meth. 95: 99-105 (1986). The results showed that even when the ratio of E^+/E^- cells was as low as 1/45, significant production of TNF was observed, thus showing active CTLs. This led to the decision to test the drug resistant transfectants in groups of 30.

Example 18

Cells were tested for TNF production as discussed in Example 17, supra. A total of 100 groups of E^- cells $(4\times10^6$ cells/group) were tested following transfection, and 7x104 transfectants geneticin resistant independent obtained, for an average of 700 per group. Only one group of transfected cells led to a microculture which caused anti-E antigen CTL clone 82/30 to produce TNF. These clones were then clones tested, 8 were positive. tested for lysis by anti-E CTL, using the standard 51Cr release assay, and were found to be lysed as efficiently as the original E+ cell line. The transfectant E.T1, discussed herein, had the same lysis pattern as did MEL2.2 for CTLs against antigens B,C,D and F.

The fact that only one transfectant presented the antigen out of 70,000 geneticin resistance transfectants may at first seem very low, but it is not. The work described <u>supra</u> for P815 showed an average frequency of 1/13,000. Human DNA recipient MEL2.2 appears to integrate 5 times less DNA than P1.HTR.

Example 19

Once transfectant E.T1 was found, analysis had to address several questions including whether an E⁺ contaminant of the cell population was the cause. The analysis of antigen presentation, described <u>supra</u>, shows that E.T1 is B and C, just like the recipient cell MEL2.2. It was also found to be HPRT, using standard selection

. .

5

10

15

20

30

35

procedures. All E^+ cells used in the work described herein, however, were $HPRT^+$.

It was also possible that an E+ revertant of MEL2.2 was To test this, the observation by the source for E.T1. Perucho et al., Cell 22: 309-317 (1980), that cotransfected sequences usually integrate together at a single location of recipient genome was employed. If antigen E in a transfectant results from cotransfec-tion with pSVtkneoß, then sequences should be linked and deletion of the antigen might also delete the neighboring pSVtkneoß sequences. Wölfel et al., supra, has shown this to be true. normally E cell is transfected with pSVtkneoß, sequences should be linked and deletion of the antigen might also delete the neighboring pSVtkneoß sequences. a normally E+ cell transfected with pSVtkneoß is E.T1, however, "co-deletion" should not take place. To test the transfectant E.T1 was subjected immunoselection with 82/30, as described supra. antigen loss variants were obtained, which resisted lysis by this CTL. Neither of these had lost geneticin resistance; however, Southern blot analysis showed loss of several neo' sequences in the variants, showing close linkage between the E gene and neo' gene in E.T1, leading to the conclusion that E.T1 was a transfectant.

25 Example 20

The E⁺ subclone MZ2-MEL 43 was used as a source of DNA for preparation of a cosmid library. This library of nearly 700,000 cosmids was transfected into MZ2-MEL 2.2 cells, following the cosmid transfection protocols described <u>supra</u>.

By packaging the DNA of cosmid transfectants directly into lambda phage components, it is sometimes possible to retrieve cosmids that contain the sequences of interest. This procedure was unsuccessful here, so rescue of the transfected sequence was accomplished by ligating DNA of

10

15

20

25

30

35

the transfectant to appropriate restriction fragments of cosmid vector pTL6. This was tried with two transfectants and was successful with one of them. One cosmid, referred to as B3, was recovered from this experiment, and subjected to restriction endonuclease digestion via XmaI, or by BamHI digestion of a large, 12 kb XmaI transfected fragment. The fragments were cloned into vector pTZ 18R, and then transfected into MEL2.2. Again, TNF production was the measure by which successful transfection was determined. The experiments led to the determination of a gene sequence capable of transfecting antigen E on the 12 kb XmaI fragment, and then on the 2.4 kb fragment of BamHI digestion of the 12 kb seqment.

The 2.4 kb fragment hybridizes with a 2.4 kb fragment from MZ2-MEL and with a T cell clone of patient MZ-2, as determined by Southern Blots (BamHI digested DNA). The band is absent from E antigen loss variants of MZ2-MEL, as seen in SEQ ID NO: 7.

The sequence for the E antigen precursor gene has been determined, and is presented herein:

Example 21

After the 2.4 kb genomic segment had been identified, studies were carried out to determine if an "E'" subline expressed any homologous DNA. Cell line MZ2-MEL 3.0 was used as a source, and a cDNA library was prepared from its mRNA, using art known techniques. The 2.4 kb segment was used as a probe, and an mRNA of about 1.8 kb was identified as homologous, using Northern blot analysis. When cDNA was screened, clones were obtained showing almost complete identity to parts of the 2.4 kb fragment. Two exons were thus identified. An additional exon was located upstream of these, via sequencing segments of cosmid B3 located in front of the 2.4 kb BamHI fragment. The gene extends over about 4.5 kb, as shown in Figure 8. The starting point of the transcribed region was confirmed using PCR for the 5' end of the cDNA. The three exons comprise 65, 73, and 1551

di

Ä

Š

1

£

5

base pairs. An ATG is located at position 66 of exon 3, followed by a 927 base pair reading frame.

Example 22

To determine if smaller segments of the 2.4 kb fragment could transfer the expression of antigen E, smaller pieces corresponding to the larger gene were prepared, using art recognized techniques, and transferred into E cells. Figure 8 shows the boundaries of the three segments.

Transfer of antigen expression in this manner indicates that the gene codes for the antigen precursor, rather than coding for a protein which activates the antigen.

Example 23

15 probing of CDNA described supra revealed, surprisingly, two different but closely related cDNAs. These cDNAs, when tested, did not transfer expression of antigen E, but they do show substantial homology to the first cDNA segment. The three segments, appear to indicate 20 a newly recognized family of genes, referred to as "MAGE" for "melanoma antigen". In Figure 9, MAGE-1" directs expression of the antigen from MZ2 cells. Portions of the third exon of each gene are presented in Figure 9. second and third sequences are more closely related to each 25 other than the first (18.1 and 18.9% difference compared to the first; 12% with each other). Out of 9 cDNA clones obtained, three of each type were obtained, suggesting equal expression. "MAGE" as used hereafter refers to a family of molecules, and the nucleic acids coding for them. 30 These nucleic acids share a certain degree of homology and are expressed in tumor cells including several types of human tumor cells as well as in human tumors. The family is referred to as "MAGE" because the first members were identified in human melanoma cells. As the experiments which follow indicate, however, the members of the MAGE 35

WO 95/23874 PCT/US95/02203

30

family are not at all restricted to melanoma tumors; rather, MAGE refers to a family of tumor rejection antigen precursors and the nucleic acid sequences coding therefore. The antigens resulting therefrom are referred to herein as "MAGE TRAS" or "melanoma antigen tumor rejection antigens"

Example 24

5

10

15

20

25

30

35

Experiments with mouse tumors have demonstrated that new antigens recognized by T cells can result from point mutations that modify active genes in a region that codes for the new antigenic peptide. New antigens can also arise from the activation of genes that are not expressed in most normal cells. To clarify this issue for antigen MZ2-E, the MAGE-1 gene present in the melanoma cells was compared to that present in normal cells of patient MZ2. Amplification polymerase chain reaction (PCR) of DNA phytohemagglutinin-activated blood lymphocytes using primers surrounding a 1300 bp stretch covering the first half of the 2.4 kb fragment was carried out. As expected, a PCR product was obtained whereas none was obtained with the DNA of the E variant. The sequence of this PCR product proved identical to the corresponding sequence of the gene carried by the E⁺ melanoma cells. Moreover, it was found that antigen MZ2-E was expressed by cells transfected with the cloned PCR product. This result suggests that the activation of a gene normally silent is responsible for the appearance of tumor rejection antigen MZ2-E.

Example 25

In order to evaluate the expression of gene MAGE-1 by various normal and tumor cells, Northern blots were hybridized with a probe covering most of the third exon. In contrast with the result observed with human tumor cell line MZ2-MEL 3.0, no band was observed with RNA isolated from a CTL clone of patient MZ2 and phytohemagglutininactivated blood lymphocytes of the same patient. Also negative were several normal tissues of other individuals

(Figure 10 and Figure 11). Fourteen melanoma cell lines of other patients were tested. Eleven were positive with bands of varying intensities. In addition to these cultured cell lines, four samples of melanoma tumor tissue 5 were analyzed. Two samples, including a metastasis of patient MZ2, proved positive, excluding the possibility that expression of the gene represented a tissue culture artefact. A few tumors of other histological types, including lung tumors were tested. Most of these tumors 10 were positive (Figures 10 and 11). These results indicated that the MAGE gene family is expressed by many melanomas and also by other tumors. However, they provided no clear indication as to which of genes MAGE-1, 2 or 3 were expressed these cells, because by the DNA probes 15 corresponding to the three genes cross-hybridized to a considerable extent. To render this analysis specific, PCR amplification and hybridization with highly specific oligonucleotide probes were used. obtained and amplified by PCR using oligonucleotide primers 20 corresponding to sequences of exon 3 that were identical for the three MAGE genes discussed herein. products were then tested for their ability to hybridize to other oligonucleotides that showed complete specificity for one of the three genes (Figure 9). Control 25 experiments carried out by diluting RNA of melanoma MZ2-MEL 3.0 in RNA from negative cells indicated that under the conditions used herein the intensity of the decreased proportionally to the dilution and that positive signals could still be detected at a dilution of 1/300. 30 The normal cells (lymphocytes) that were tested by PCR were confirmed to be negative for the expression of the three MAGE genes, suggesting therefore a level of expression of less than 1/300th that of the MZ2 melanoma cell line (Figure For the panel of melanoma cell lines, the results 35 clearly showed that some melanomas expressed MAGE genes mage 1, 2 and 3 whereas other expressed only mage-2 and 3 (Figures 11 and 10). Some of the other tumors also

10

15

20

25

30

35

expressed all three genes whereas others expressed only MAGE-2 and 3 or only MAGE-3. It is impossible to exclud formally that some positive PCR results do not reflect the expression of one of the three characterized MAGE genes but that of yet another closely related gene that would share the sequence of the priming and hybridizing oligonucleotides. It can be concluded that the MAGE gene family is expressed by a large array of different tumors and that these genes are silent in the normal cells tested to this point.

Example 26

The availability of a sequence that transfects at high efficiency and efficiently expresses a TRAP made to search for the associated major possible histocompatibility complex (MHC) class I molecule. class I specificities of patient MZ2 are HLA-A1, A29, B37, B44 and C6. Four other melanomas of patients that had A1 in common with MZ2 were cotransfected with the 2.4 kb fragment and pSVtkneoß. Three of them yielded neo' transfectants that stimulated TNF release by anti-E CTL clone 82/30, which is CD8+ (Figure 11). No E- transfectant was obtained with four other melanomas, some of which shared A29, B44 or C6 with MZ2. This suggests that the presenting molecule for antigen MZ2-E is HLA-A1. confirmation, it was found that, out of 6 melanoma cell derived from tumors of HLA-A1 patients, stimulated TNF release by anti-E CTL clone 82/30 of patient One of these tumor cell lines, MI13443-MEL, also showed high sensitivity to lysis by these anti-E CTL, These two melanomas were those that expressed MAGE-1 gene Eight melanomas of patients with (Figure 11). haplotypes that did not include A1 were examined for their sensitivity to lysis and for their ability to stimulate TNF release by the CTL. None was found to be positive. ability of some human anti-tumor CTL to lyse allogeneic tumors sharing an appropriate HLA specificity with the

10

15

20

25

30

35

original tumor has been reported previously (Darrow, et al., J. Immunol. 142: 3329 (1989)). It is quite possible that antigenic peptides encoded by genes MAGE 2 and 3 can also be presented to autologous CTL by HLA-A1 or other class I molecules, especially in view of the similar results found with murine tumors, as elaborated upon supra.

Example 27

As indicated <u>supra</u>, melanoma MZ2 expressed antigens F, D and A', in addition to antigen E. Following the isolation of the nucleic acid sequence coding for antigen E, similar experiments were carried out to isolate the nucleic acid sequence coding for antigen F.

To do this, cultures of cell line MZ2-MEL2.2, an E cell line described <u>supra</u>, were treated with anti-F CTL clone 76/6, in the same manner described for treatment with anti-E CTL clones. This resulted in the isolation of an F antigen loss variant, which was then subjected to several rounds of selection. The resulting cell line, "MZ2-MEL2.2.5" was completely resistant to lysis by anti-F CTLs, yet proved to be lysed by anti-D CTLs.

Again, following the protocols set forth for isolation of antigen -E precursor DNA, the F variant was transfected with genomic DNA from F⁺ cell line MZ2-MEL3.0. The experiments yielded 90,000 drug resistant transfectants. These were tested for MZ2-F expression by using pools of 30 cells in the TNF detection assay elaborated upon supra. One pool stimulated TNF release by anti-F CTLs, and was cloned. Five of 145 clones were found to stimulate anti-F CTLs. Lysis assays, also following protocols described supra, confirmed (i) expression of the gene coding for antigen F, and (ii) presentation of antigen F itself.

Example 28

Following identification of F⁺ cell lines, the DNA therefrom was used to transfect cells. To do this, a cosmid library of F⁺ cell line MZ2-MEL.43 was prepared,

10

15

20

25

30

35

again using the protocols described supra. The library was divided into 14 groups of about 50,000 cosmids, and DNA each group was transfected into MZ2-MEL2.2.5. Transfectants were then tested for their ability to stimulate TNF release from anti-F CTL clone 76/6. of cosmids, one produced two independent transfectants expressing antigen F; а yield positives out of 17,500 geniticin resistant transfectants.

Example 29

The existence of a gene family was suggested by the pattern observed on the Southern blot (Figure 12). this, the 2.4 kb BamHI fragment, which transferred the expression of antigen MZ2-E, was labelled with 32p and used as a probe on a Southern Blot of BamHI digested DNA of E + subclone MZ2-MEL2.2. Hybridization conditions included 50 μ l/cm² of 3.5xSSC, 1xDenhardt's solution; 25 mM sodium phosphate buffer (pH 7.0), 0.5% SDS, 2mM EDTA, where the 2.4 kb probes had been labelled with $[\alpha^{32}p]dCTP$ (2-3000 Ci/mole), at 3x106 cpm/ml. Hybridization was carried out for 18 hours at 65°C. After this, the membranes were washed at 65°C four times for one hour each in 2xSSC, 0.1% SDS, and finally for 30 minutes in 0.1xSSC, 0.1% SDS. identify hybridization, membranes were autoradiographed using Kodak X-AR film and Kodak X-Omatic fine intensifying screens.

In the following examples, whenever "hybridization" is referred to, the stringency conditions used were similar to those described <u>supra</u>. "Stringent conditions" as used herein thus refers to the foregoing conditions; subject to routine, art recognized modification.

Example 30

The cDNA coding for MAGE 4 was identified from a sample of the human sarcoma cell line LB23-SAR. This cell line was found to not express MAGE 1, 2 or 3, but the mRNA of the cell line did hybridize to the 2.4 kb sequence for

10

15

20

25

30

35

35

MAGE 1. To study this further, a cDNA library was prepared from total LB23-SAR mRNA, and was then hybridized to the 2.4 kb fragment. A cDNA sequence was identified as hybridizing to this probe, and is identified hereafter as MAGE 4.

Example 31

Experiments were carried out using PHA-activated lymphocytes from patient "MZ2", the source of the "MZ" cells discussed supra. An oligonucleotide probe which showed homology to MAGE 1 but not MAGE 2 or 3 was hybridized with a cosmid library derived from the PHA activated cells. The size of the hybridizing BamHI cosmid fragment, however, was 4.5 kb, thus indicating that the material was not mage 1; however, on the basis of homology to mage 1-4, the fragment can be referred to as "MAGE 5". The sequence of MAGE 5 is presented in SEQ ID NO: 16.

Example 32

Melanoma cell line LB-33-MEL was tested. Total mRNA from the cell line was used to prepare cDNA, which was then amplified with oligos CHO9: (ACTCAGCTCCTCCCAGATTT) (SEQ ID NO: 53), and CHO10: (GAAGAGGAGGGCCCAAG) (SEQ ID NO: 54). These oligos correspond to regions of exon 3 that are common to previously described mage 1, 2 and 3.

To do this, 1 μ g of RNA was diluted to a total volume of 20 μ l, using 2 μ l of 10x PCR buffer, 2 μ l of each of 10 mM dNTP, 1.2 μ l of 25 mM MgCl₂, 1 μ l of an 80 mM solution of CHO9, described supra, 20 units of RNAsin, and 200 units of M-MLV reverse transcriptase. This was followed by incubation for 40 minutes at 42°C. PCR amplification followed, using 8 μ l of 10x PCR buffer, 4.8 μ l of 25 mM $MgCl_2$, 1 μl of CHO10, 2.5 units of Thermus acquaticus ("Taq") polymerase, and water to a total volume of 100 μ l. Amplification was then carried out for 30 cycles (1 minute 94°C; 2 minutes at 52°C, 3 minutes at 72°C). each reaction were then size fractionated on agarose gel,

10

15

20

25

30

35

followed by nitrocellulose blotting. The product was found hybridize with oligonucleotide probe (TCTTGTATCCTGGAGTCC) (SEQ ID NO: 55). This probe identified mage 1 but not mage 2 or 3. However, product did not hybridize to probe SEQ (TTGCCAAGATCTCAGGAA) (SEQ ID NO: 56). This probe also binds mage 1 but not 2 and 3. This indicated that the PCR product contained a sequence that differed from MAGE 1, 2 Sequencing of this fragment also indicated differences with respect to MAGE 4 and 5. These results indicate a sequence differing from previously identified MAGE 1, 2, 3, 4 and 5, and is named MAGE 6.

Example 33

In additional experiments using cosmid libraries from PHA-activated lymphocytes of MZ2, the 2.4 kb MAGE fragment was used as a probe and isolated a complementary fragment. This clone, not however, did oligonucleotides specific for MAGE 1, 2, 3 or 4. The sequence obtained shows some homology to exon 3 of mage 1, and differs from MAGES 1-6. It is referred to as mage 7 hereafter. Additional screenings yielded MAGE 8-11. MAGE sequences identified are presented as SEQ ID's.

Example 34

The usefulness of the TRAPs, as well as TRAs derived therefrom, was exemplified by the following.

Exon 3 of MAGE 1 was shown to transfer expression of antigen E. As a result, it was decided to test whether synthetic peptides derived from this exon 3 could be used to confer sensitivity to anti-E CTL.

To do this, and using standard protocols, cells normally insensitive to anti-E/CTLs were incubated with the synthetic peptides derived from Exon 3.1. Using the CTL lytic assays described supra on P815A, and a peptide concentration of 3 mM, the peptide Glu-Ala-Asp-Pro-Thr-Gly-His-Ser-Tyr (SEQ ID NO: 26) was shown to be best. The

滇

5

10

15

20

25

30

assay showed lysis of 30%, indicating conferring of sensitivity to the anti-E CTL.

Example 35

Nucleic acid sequences referred to as "smage" were isolated from murine cells. Using the protocols described supra, a cosmid library was prepared from the DNA of normal DBA/2 kidney cells, using cosmid vector C2RB. As a probe, the 2.4 kb BamHI fragment of MAGE-1 was used. The DNA was blotted to nylon filters, and these were washed in 2xSSC at 65°C to identify the smage material.

Example 36

Further tissue samples were tested for the presence of MAGE genes, using the protocols discussed <u>supra</u>. Some of these results follow.

There was no expression of the MAGE genes in brain or kidney tumor tissue. Colon tumor tissue showed expression of MAGE 1, 2, 3 and 4, although not all tumors tested showed expression of all MAGE genes. This is also true for pancreatic tumor (MAGE 1); non-small cell lung (MAGE 1, 2, 3 and 4), prostate (MAGE 1), sarcomas (MAGE 1, 2, 3 and 4), breast (MAGE 1, 2 and 3), and larynx (MAGE 1 and 4).

Example 37

A cytolytic CTL clone "20/38" was obtained from peripheral blood lymphocytes of melanoma patient MZ2. This clone is described by Van den Eynde et al., Int. J. Cancer 44: 634-640 (1989), the disclosure of which is incorporated by reference. The CTL clone was isolated following Herin et al., Int. J. Cancer 39: 390-396 (1987), which is incorporated by reference. The assay is described herein, however. Autologous melanoma cells were grown in vitro, and then resuspended at 10^7 cells/ml in DMEM, supplemented with 10^8 HEPES and 30 mM FCS, and incubated for 45 minutes at 37° C with $200 \ \mu$ Ci/ml of Na(51 Cr)O₄. Labelled cells were washed three times with DMEM, supplemented with 10 mM

10

15

20

25

30

HEPES. These were then resuspended in DMEM supplemented with 10 mM HEPES and 10% FCS, after which 100 μ l aliquots containing 10^3 cells, were distributed into 96 well microplates. Samples of the CTL clone were added in 100 ul of the same medium, and assays were carried out in duplicate. Plates were centrifuged for four minutes at 100g, and incubated for four hours at 37°C in a 5.5% CO₂ atmosphere.

Plates were centrifuged again, and 100 ul aliquots of supernatant were collected and counted. Percentage of ⁵¹Cr release was calculated as follows:

$$% ^{51}$$
Cr release = $(ER-SR)$ x 100 $(MR-SR)$

where ER is observed, experimental ⁵¹Cr release, SR is spontaneous release measured by incubating 10³ labeled cells in 200 ul of medium alone, and MR is maximum release, obtained by adding 100 ul 0.3% Triton X-100 to target cells.

Those mononuclear blood samples which showed high CTL activity were expanded and cloned via limiting dilution, and were screened again, using the same methodology.

The same method was used to test target K562 cells. When EBV-B cells were used, the only change was the replacement of DMEM medium by Hank's medium, supplemented with 5% FCS.

These experiments led to isolation of CTL clone 20/38.

Figure 14 presents the results of these assays. Specifically, it will be seen that the CTL clone lysed autologous melanoma cell line MZ2-MEL.3.0, but did not lyse EBV-B cell lines, fibroblasts, K562 or non-autologous melanoma cell line SK-MEL-29.

Exampl 38

Once the CTL clone was recognized as being specific for the autologous cell line, it was tested for antigenic

10

15

2.0

25

30

35

specificity. To do this, antigen loss variants derived from melanoma cell line MEL-MZ2 were tested in the same type of chromium release assay described above. These target lines were MZ2-MEL 3.0, which is D⁺, E⁺, F⁺, A⁺, MZ2-MEL.61, which is D⁻, MZ2-MEL 2.2, which is E⁻, and MZ2-MEL.4, which is F⁻. In addition to CTL clone 20/38, clones which are known to be anti-A (CTL 28/336), anti-F (CTL 76/6), and anti-E (CTL 22/13) were tested.

These results are set forth in figure 15. It will be seen that CTL clone 20/38 lysed all the cell lines leading to chromium release except D cell line MZ2-MEL.61, thus indicating that the CTL clone is anti-D. This result was confirmed, in experiments not included herein, by experiments where TNF release by the CTL clone was observed only in the presence of melanoma lines presenting antigen D.

Example 39

Once antigen D was identified as the target molecule, studies were carried out to determine the HLA type which presented it. The experiments described in example 38 showed that antigen D was presented by MZ2-MEL, and this cell line's HLA specificity is known (i.e., A1, A29, B37, B44, Cw6, C.cl.10). It was also known, however, that a variant of MZ2-MEL which had lost HLA molecules A29, B44 and C.cl.10 still expressed antigen D, so these could be eliminated from consideration. Studies were not carried out on lines expressing B37, as none could be found.

In all, 13 allogeneic lines were tested, which expressed either HLA-Al (10 of 13), or Cw6 (3 of 13). The cell lines were tested for their ability to stimulate release of TNF by CTL clone 20/38, using the method of Traversari et al., Immunogenetics 35: 145-152 (1992), the disclosure of which is incorporated by reference. This assay measures TNF release via testing toxicity of supernatants on WEHI 164-13 cells.

In the assays, cell samples (3000, 10,000 or 30,000 cells) from the allogeneic lines were cultured in the presence of 1500 cells of the CTL clone, and 25 u/ml of IL-2. Twenty-four hours later, the supernatant from the culture was tested against the WEHI cells for toxicity. The results are presented in Table 3, which follows.

Eight cell lines were found to stimulate TNF release from the CTL clone 20/38. All of these lines were HLA-A1. None of the Cw6 presenting lines did so.

The cell lines were also assayed to determine MAGE expression. All eight of the lines which stimulated TNF release expressed MAGE-3, whereas the two HLA-Al lines which were negative did not.

Table 3

			Table	-3		D	
Melanoma			TNI	P9/m	1	Expression of Mage-3	Expression of HLA-A-1
	Number of Cells	1	Exp 1		Exp 2	<u> </u>	·
			+CTL		+CIL	_	
MZ2-MEL.61.2	50000		20/38 1	· · · ·	20/3E 4	+++	•
KZ2-KEL-ET1	50000 1666		>120 66		>120 >120	: ***	• •
LY-1-MEL	30000 10000 3000	1 1 <1	>120 >120 114	1 1 2	>120 >120 >120	***	· •
KI-10221	30000 10000 3000	<1 <1 <1	>120 71 74			***	+
LY-2-MEL	30000 10000 3000	111	57 86 91			+++	•
LY-4-MEL	30000 10000 3000	111	>120 >120 >120			· +++	•
SK23-MEL	30000 10000	1	112			+++	+
	3000	1	116 105				
MI-665/2-MEL	30000 10000 3000	1 1 1	3 2 5,2	2 2 1	4 5 5	-	+ ,
LE34-MEL	30000 10000 3000	1 1 1	>120 >120 >120			+++	+
LB45-MEL	30000 10000 3000	1 1 1	11 6 2	1 1 <1	30 12 7	-	. +
NA-6-MEL	30000 10000 3000	1 1 1	77 104 110	5 5 4	98 >120 >120	+++	+
MI-13443-MEL	30000 10000 3000	1 1 1	>120 >120 >120			+++	→
LB5-MEL	30000 10000 3000	1 <1 <1	8 5 5	4 4 1	9 11 5	+	• .
5K64-MEL	30000 10000 3000	1 1 1	4 2 1	2	5 5 4	7	- '
LE33-MEL	30000 10000 3000			1 1 1	3,5 4 3	+++	-
LB73-MEL	50000	•	16			•	-

1500 CTL 20/38 and $25\mu/\text{ml}$ IL2 were mixed with the indicated number of cells of the different allogeneic melanomas. 24 hours later, the amount of TNF present in the supernatant was assayed by testing its sytotoxicity for WEHI-164-13 cells.

10

15

20

25

30

35

Example 40

In view of the results set forth in example 39, experiments were carried out to determine if antigen D was in fact a tumor rejection antigen derived from MAGE-3. do this, recipient COS-7 cells were transfected with 100ng of the gene for HLA-A1 cloned into pcDNA I/Amp, and 100 ng of one of (a) cDNA for MAGE-1 cloned into pcDNA I/Amp, (b) cDNA for MAGE-2 cloned into pcDSRa, or (c) cDNA for MAGE-3 cloned into pcDSRa. The transfecting sequences were ligated into the plasmids in accordance with manufacturer's Samples of COS-7 cells were seeded. 15,000 cells/well into tissue culture flat microwells, in Dulbeco's modified Eagles Medium ("DMEM") supplemented with 10% fetal calf serum. The cells were incubated overnight at 37°C, medium was removed and then replaced by 30 μ l/well of DMEM medium containing 10% Nu serum, 400 μ g/ml DEAE-dextran, 100 μ M chloroquine, and the plasmids described above. Following four hours incubation at 37°C, the medium was removed, and replaced by 50 μ l of PBS containing 10% DMSO. This medium was removed two minutes and replaced by 200 μ 1 **DMEM** supplemented with 10% of FCS.

Following this change in medium, COS cells were incubated for 24 hours at 37°C. Medium was then discarded, and 1500 cells of CTL clone 20/38 were added, in 100 μ l of Iscove's medium containing 10% pooled human serum, supplemented with 25 u/ml of IL-2. Supernatant was removed after 24 hours, and TNF content was determined in an assay on WEHI cells, as described by Traversari et al., Immunogenetics 35: 145-152 (1992), the disclosure of which is incorporated by reference. These results are shown in figure 16.

It will be seen that the CTL clone was strongly stimulated by COS-7 cells transfected with HLA-A1 and MAGE-3, but not by the cells transfected with the other Mage genes. This leads to the conclusion that antigen D is a tumor rejection antigen derived from the tumor rejection

10.

5

antigen precursor coded by gene MAGE-3, and that this TRA is presented by HLA-A1 molecules.

Example 41

It is well known that different alleles of genes may produce different proteins. This principle should extend to the MAGE family of genes as well, and is an important consideration in view of diagnostic and therapeutic ramifications. Thus, polymorphism in the MAGE family was studied.

10 the issue of To address polymorphism, lymphocytes of ten individuals were collected, and genomic DNA extracted. This DNA was subjected to Southern blotting in accordance with James et al., Canc. Res. 48: 5546-5551 (1988), incorporated by reference. Briefly, the labelled 15 2.4 kb genomic DNA fragment of MAGE-1, containing the last two exons of MAGE-1, described supra, was hybridized with the filter carrying the digested DNA, at 42°C for at least 16 hours, in 50% formamide, 5% dextran sulfate, 6xSSC, 1% SDS and 0.1 mg/ml heterologous DNA. The hybridization 20 filters were washed, consecutively, in 2xSSC, 0.1% SDS (room temperature, 15 minutes), and twice in 0.1xSSC, 0.1% SDS at 67°C for 30 minutes, each wash. Autoradiography was carried out at -70°C for 7-10 days, using standard film.

A pattern of 13 hybridizing bands was observed, which was conserved over all individuals. One individual did show an additional band, but also showed the 13 band pattern.

Example 42

It was of interest to determine which chromosome or chromosomes bear the MAGE genes. To ascertain this, a panel of hamster/human somatic cell hybrids was used. The hybrids were obtained either from the Human Genetic Mutant Cell Repository ("GM" prefix), or from Johns Hopkins University ("A₃" prefix). Each hybrid was cytogenetically studied to determine human chromosome content.

25

30

PCT/US95/02203

5

44

Total genomic DNA of the hybrids was probed in the same manner described in Example 41, supra (the conditions of stringency used prevented cross hybridization with hamster DNA).

Table 4, which follows, summarizes the result of the probe work. Analysis of the data led to the conclusion that the pattern of hybridization was only concordant with location of MAGE-1 on the X chromosome.

- Segregation of MAGE-1 with human chromosomes in human-hamster hybrid cell DNA TABLE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 100318 +	+ + + + + + + + + + + + + + + + + + +	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X +	Hybrid	MAGE-1	Hur	Human chromosome	hror	noson	ne																		
+ +	+	##			-	2	3		1		l	ļ	2	ļ	ļ	1	=	1	1	1	_ ∞	2	2	=	21	-	>
+ + + + + + + - + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ +	GM06317	,	,	,	۱,				'	'	'	'	'	'	,		1		1			1		1	
+ + + + + + - + - + + + + + + +	+ + + + + + + - +	+ + + + + + + + + + + + + + + + + + +	GM06318B	+	1	1	ı		'		1	1	ŧ	į	ı	- 1		٠ .	,	ı	ı	ı	ı	í	ı		+
##	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	GM07300	+	ı	1	1	,	+		+	f	ı	+	ı	ı	1	1		1	i	ı	ł	ı	,	+	t
## Present; — chromosome absent; ## Present; — chromosome absent; — c	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	GM07301	+	ı	1	1	,		'	•	ı	1	. 1	+	1	ı			l	ı	ı	,	ı	ı	+	ı
+ +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	GM08854	ı	ı	1		,	,	1				l	٢	ı	1	;	,	ŀ	1	ı	ı	ı	ı	· +	,
+	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	GM09142	,	ı		4	, ,	ا ا			t	!	ı	ı	ı	1	1	1	f	,	ı	ı	+ .	1		1
	(+++) 2 3 4 5 5 5 5 6 6 6 6 6 6	(++) 2 1 3 2 1 3 4 2 1 2 4 2 5 6 7 6 6 7 6 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	GM10095	4			٠.	•		ì		1 6	ı	ŀ	l	ı	1	1	ı	ŀ	ı	ŀ	ı	_	1	را	
	(+++) 2 3 4 5 5 6 6 6 6 6 6 6 6	(++) 2 1 3 2 1 3 3 4 2 1 3 5 0 2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GMIOLIS	- 1		,	1			1	1	~	1	ł	1	ı	ı	ŧ	ı	ı	ı	ł	ı	ı	1	· - 1	
		## Present; -= chromosome absent; ## Present; -= chromosome a deleted chromosome (not included in calculation of percent ## Present; -= chromosome a and is missing 2p23-p24	CMIDISED	ı	ı	4	ı	· +		1	1	1	ŧ	t	ŧ	1	ı	1	1	ı	ı	1	ŀ	ı	,	,	,
		## Property of the contraction of percent and substitute of the colls and part of chromosomes X and 21, der 21 1(x;2) The contains only part of chromosomes X and 9, der 9 1(x;9) The chromosome A and 19 missing 2p23-p24	CM10130B	ı	ı	1			1	F.	+	ı	1	ı	ı	ı	1	1	ı	1	1	1	1	ı	į	,	
			CM10233	ı		ı	+		1 '	i	1	f	1	1	ı	ı	ı	1	ı	ţ	ı	ı	ı	ı	1		,
			GM10322	ı	,	1				ı	1	1	ŧ	ı	1	1	1	1	ı	1	ł		1	+	+	,	
			GM104/8	1	ı	1		+	1	ł	1	1	1	1	ı	1	1	1	ı	ı	1	,	+	ŧ			
	## Present; -= chromosome absent; mit bands, indicating that only a small percentage of the cells 2 contains only part of chromosomes X and 21, der 2 1 (X;21)		GM10479	ı	ı	1	,	'	1	1	1	١	1	1	ı	1	+	1	1	1	1	,	ı		,		
			GM10498	1	ı		1	,	1	!	1	ı	1	ı	1	,	ı	ı	1	+	•	,					
		## Present; -= chromosome absent; ## present; -= chromosome x and 21, der 21 1(x;21) Contains only part of chromosome x and 9, der 9 1(x;9) Contains only part of chromosome x and 19, der 9 1(x;9) Contains only part of chromosome x and 19, der 9 1(x;9) Contains only part of chromosome x and 19, der 9 1(x;9) Contains only part of chromosome x and 19, der 9 1(x;9) Contains only part of chromosome x and 19, der 9 1(x;9)	GM10567	,	ı		,	'		1	1	1	ŀ	1	1	ı	ı	1	+	٠ ،		: 1					
			GM10611		ı	· 1	į	'		ı	1	+	ı	1	ı	ł	ı	ı	. 1	۱ ,	,						
			GM10612	,	ı	1	,	1		1	1	1	1	i	ı	,	1	,	,			١ -	I !			1	
	- + + + +		GM10629	1	1	1		'	+	ŀ	1	1	ı	ı	•	ſ	,	(١,	l i	-					
- + + + + + + + +	- +	- +	GM10791	ı		'	1	'		+	ı	,	1	ı	(١		ı	ı	1	,					,	
		- + - + + + + + + + + + + + + + + +	GM10880	ı	+	,	,	,	1	- 1	١	1	1			+	1 +	ı		ı	ı	ı		ı			
+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	GM10888	•	. ,	'			1		1 1	1	1	•	ı	۲	٠	1	i	ı	ı	1	1		•		
+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + - + + + + + + + + + + + + + + +	AADA IDI2	1	4	7	۰ د	· •			-	i	ı	ı			1	1	1	1	1	1	1		+	'	
+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	A A DA 6F5	+	- 4				1 4	1 +	٠ -	ı	1	ı	+ -	+ .	+ -		+	1	,	I	+	· +	•	1	_
++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	A, A D A 13	. 4					٠	٠ ٠	٠ ٠	ı	ı	1	+	+	+	+	,	+	+	· +	,	+	· +	+	_
+ + + + + + + + + + + + + + + + + + +	++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + +	ASADALS A.ADALS	٠	· +		_		į	+	+	ł	ı	+	+	+	+	+	+1	ı	ı	· +	1	· +	Ţ	+	_
+ + + - 6 - ± + + + + - + + + + + + + +	+ + + - 6 - ± + + + - + - + - + - + + + + +	+ + + 6 - ± + + + - + - + - + - + + + +	יין אַראַראַדּאַ יין אַראַראַדּאַ	ı		·	_	+	1	1	+	i	+	+	+	+	+	+1	1	i	1		· +	· +	, +	_	
(+/+) 2 1 3 2 1 3 4 2 1 3 4 3 3 0 3 (-/-) 17 19 14 15 18 18 16 17 18 17 17 16 14 18 17 17 16 (-/-) 17 19 14 14 15 18 18 16 17 18 17 17 16 14 18 17 17 16 (-/-) 6 6 5 6 7 3 5 3 6 7 5 4 5 5 4 7 5 (-/+) 2 0 5 5 4 2 1 3 2 1 2 2 3 5 0 2 2 2 2 23 38 37 41 24 22 23 30 30 26 22 30 37 16 33 26 2 me present;= chromosome absent; nt bands, indicating that only a small percentage of the ed the chromosome (not included in calculation of percentage of the ancy	+++ + + + + + + + + + + + + + + + +	+++ + + + + + + + + + + + + + + + +	Aici	+		1	⊤	1	ç	ł	+-1	+	+	ı	1	1	ι	+1	t	+	ı	++	+	ı	+1	_	
(+/+) 2 1 3 2 1 3 3 4 2 1 3 4 3 3 3 0 3 (-/-) 17 19 14 14 15 18 18 16 17 18 17 17 16 14 18 17 17 17 (+/-) 6 6 5 6 7 3 5 3 6 7 5 4 5 5 4 7 5 (-/+) 2 0 5 5 4 2 1 3 2 1 2 2 3 5 0 2 2 2 2 23 38 37 41 24 22 23 30 30 26 22 30 37 16 33 26 2 and bands, indicating that only a small percentage of the ed the chromosome (not included in calculation of percentage of the analy mart of chromosome v and 21 4 2 2 2 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 3	+ 5 + + + + + + + + + + + + +	+ 5 + + + + + + + + + + + + +	A;HK20	ı	1	T	+	+	+	•	1	+	ſ	+	ŧ	ŀ	+	i	1	+				,	' ا+ ا		
(+/+) 2 1 3 2 1 3 3 4 2 1 3 4 3 3 9 3 3 0 3 (-/-) 17 19 14 14 15 18 18 16 17 18 17 17 16 14 18 17 17 17 17 17 17 17 17 17 17 17 17 17	(+/+) 2 3 2 1 3 3 4 2 1 3 4 3 3 3 0 3 1 2 1 3 1 8 1 1 1 1 1 1 1 1	(+/+) 2 1 3 2 1 3 3 4 2 1 3 4 3 3 3 0 3 1 2 1 3 1 8 8 16 1/-) 17 19 18 17 17 19 18 16 14 15 18 18 (+/-) 6 6 5 6 7 3 5 3 6 7 5 4 5 5 4 7 5 7 5 6 5 6 0 (-/+) 2 0 5 5 4 2 1 3 2 1 2 2 3 3 5 0 2 2 0 1 3 5 3 0 0 2 2 0 1 3 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PgMe4	+	1	Υ.	ا ـ		+	+	+	ŧ	ı	+	+	+	+	+	1	+	•		+1	, +	1 .	+	
(-/-) 17 19 14 14 15 18 18 16 17 18 17 17 16 14 18 17 17 16 14 18 17 17 17 16 14 18 17 17 17 16 14 18 17 17 17 17 17 17 17 17 17 17 17 17 17	(-/-) 17 19 14 14 15 18 18 16 17 18 17 17 16 14 18 17 17 19 18 16 14 15 18 18 (+/-) 6 6 5 6 7 3 5 3 6 7 5 4 5 5 4 7 5 7 5 6 5 6 0 (-/+) 2 0 5 5 4 2 1 3 2 1 2 2 3 3 5 0 2 2 0 1 3 5 3 0 0 2 2 2 0 1 3 5 3 0 0 2 2 2 3 38 37 41 24 22 23 30 30 26 22 30 37 16 33 26 27 23 35 37 36 0 archerentage of the chromosome absent; nt bands, indicating that only a small percentage of the cells ancy ancy 2 contains only part of chromosomes X and 21, der 21 1(X;21) 5 contains only part of chromosomes X and 9, der 9 1(X;9)	(-/-) 17 19 14 14 15 18 18 16 17 18 17 17 16 14 18 17 17 19 18 16 14 15 18 18 (+/-) 6 6 5 6 7 3 5 3 6 7 5 4 5 5 4 7 5 7 5 6 5 6 0 (-/+) 2 0 5 5 4 2 1 3 2 1 2 2 3 3 5 16 2 2 0 1 3 5 3 0 0 2 2 2 0 1 3 5 3 0 0 2 2 2 3 38 37 41 24 22 23 30 30 26 22 30 37 16 33 26 27 23 35 37 36 0 and bands, indicating that only a small percentage of the chromosome (not included in calculation of percent ancy 2 contains only part of chromosomes X and 21, der 21 1(X;21) 5 contains only part of chromosomes X and 9, der 9 1(X;9) 4 part of chromosome 2 and is missing 2p23-p24	Number of	(+/+)	7	_	"	2	-				-	~	7	~	-	,	•	,	-	,	-	,		, ,	
(+/-) 6 6 5 6 7 3 5 3 6 7 5 4 5 5 4 7 5 6 (-/+) 2 0 5 5 4 2 1 3 2 1 2 2 3 5 0 2 2 2 2 2 2 3 38 37 41 24 22 23 30 30 26 22 30 37 16 33 26 2 nt bands, indicating that only a small percentage of the ed the chromosome (not included in calculation of percentage of the ancy	(+/-) 6 6 5 6 7 3 5 3 6 7 5 4 5 5 4 7 5 7 5 6 5 6 0 22 23 38 37 41 24 22 23 30 30 26 22 30 37 16 33 26 27 23 35 37 36 0 me present; -= chromosome absent; nt bands, indicating that only a small percentage of the cells ancy 2 contains only part of chromosomes X and 21, der 21 1(X;21) 5 contains only part of chromosomes X and 9, der 9 1(X;9)	(+/-) 6 6 5 6 7 3 5 3 6 7 5 4 5 5 4 7 5 7 5 6 5 6 0 22 23 38 37 41 24 22 23 30 30 26 22 30 37 16 33 26 27 23 35 37 36 0 me present; -= chromosome absent; nt bands, indicating that only a small percentage of the cells ancy 2 contains only part of chromosomes X and 21, der 21 1(X;21) 5 contains only part of chromosomes X and 9, der 9 1(X;9) 4 phasins a deleted chromosome 2 and is missing 2p23-p24	concordant hybrids	(-/-)	11	_	_		_	_		_	- 8:	12		9	7 7	. <u>8</u>	- 1	٠ 1	- 6	~ <u>~</u>	- 9	า <u>±</u>	- <u>-</u>	– ∞ ∞	4 L
me present; - = chromosome absent; the bands, indicating that only a small percentage of the ancy and the chromosome (not included in calculation of percentage of the ancy and the chromosome (not included in calculation of percentage of the ancy and the chromosome (not included in calculation of percentage).	me present; -= chromosome absent; the bands, indicating that only a small percentage of the cells ancy contains only part of chromosomes X and 9, der 9 1(X;21) contains only part of chromosomes X and 9, der 9 1(X;9)	me present; -= chromosome absent; the bands, indicating that only a small percentage of the cells ancy contains only part of chromosomes X and 9, der 9 1(X;9) httains a deleted chromosome 2 and is missing 2p23-p24	Number of	(-/+)	v	9	~	v	,				7	•	7	v	V	-	٢	ų	r	4	,	•			
me present; - = chromosome absent; nt bands, indicating that only a small percentage of the add the chromosome (not included in calculation of percentage).	ume present; -= chromosome absent; nt bands, indicating that only a small percentage of the cells ancy 2 contains only part of chromosomes X and 21, der 21 1(X;21) 5 contains only part of chromosomes X and 9, der 9 1(X;9) 4)	ume present; -= chromosome absent; nt bands, indicating that only a small percentage of the cells ancy 2 contains only part of chromosomes X and 21, der 21 1(X;21) 5 contains only part of chromosomes X and 9, der 9 1(X;9) 4) htains a deleted chromosome 2 and is missing 2p23-p24	discordant hybrids	(+/-)	· ~1	0	۰ ۲						-	. 4	t (1	. w	ۍ د	₹ C	- ~	n	· c	^ -	۰ ~	n v	۰, م	0 0	4 c
<pre>ime present; -= chromosome absent; int bands, indicating that only a small percentage of the ed the chromosome (not included in calculation of percentage).</pre>	<pre>mme present; -= chromosome absent; nt bands, indicating that only a small percentage of the cells ancy contains only part of chromosomes X and 21, der 21 1(X;21) 5 contains only part of chromosomes X and 9, der 9 1(X;9) 4)</pre>	<pre>me present; -= chromosome absent; nt bands, indicating that only a small percentage of the cells ancy contains only part of chromosomes X and 21, der 21 1(X;21) 5 contains only part of chromosomes X and 9, der 9 1(X;9) ntains a deleted chromosome 2 and is missing 2p23-p24</pre>	Percent discordancy											ž	ξ	(2	ŗ	, ;	٠ ;						•		4
<pre>= chromosome present; - = chromosome absent; = very faint bands, indicating that only a small percentage of the contained the chromosome (not included in calculation of percent discordancy contains only part of chromosomes value of the chromosomes value of the chromosomes value.</pre>	<pre>= chromosome present; - = chromosome absent; = very faint bands, indicating that only a small percentage of the contained the chromosome (not included in calculation of percent discordancy ,2 - GM09142 contains only part of chromosomes X and 21, der 21 1(X; ,4 - GM10095 contains only part of chromosomes X and 9, der 9 1(X;9) (q13;q34)</pre>	<pre>= chromosome present; - = chromosome absent; = very faint bands, indicating that only a small percentage of the</pre>	circuit discoludines		- 1	- 1		- 1	- 1	- 1	- 1	- 1	- 1	۾	22	8	33	9	33						9		9
discordancy 2 - GMO9142 contains only mart of chromosomes v and 21	alscordancy 72 - GM09142 contains only part of chromosomes X and 21, 74 - GM10095 contains only part of chromosomes X and 9, d (q13;q34)	alscordancy 72 - (609142) contains only part of chromosomes X and 21, 74 - GM10095 contains only part of chromosomes X and 9, d (913;934) PgMe4 contains a deleted chromosome 2 and is missing 2p	= chromos = very fa	present bands the ch	ind.	ica Som	chr tin	omc g t not	som hat in	e a or clu	ıbse 11y idec	ent; a s	ma]	- I	Jer 11a	cen	tag noor	. 64-i	of t	the	G.	118		Ì			1
Lary 1215 Concarns out y part of curomosomes A and 21,	(prijula) 4 - GM10095 contains only part of chromosomes X and 9, d (q13;q34)	(4 - GM10095 contains only part of chromosomes X and 9, d (413;q34) - PgMe4 contains a deleted chromosome 2 and is missing 2p	2 - GM091	ַט טַ	o	1у	par	t o		hrc	SOM!	ome			ď	21,		ř 2	-	×	21	_					
,4 - GM10095 contains only part of chromosomes X and 9, d	(913;934)	(q13,q34) - PgMe4 contains a deleted chromosome 2 and is missing 2p23-p2	,4 - GM1	_	o	ly.	par	t o	r)	hrc	SOM.	ome	Š				der	9	1	6:3	_						
(913;934)		- PgMe4 contains a deleted chromosome 2 and is missing	(q13;																		_						

10

Example 43

In this experiment, a study was carried out to determine if all twelve known MAGE genes were located on the X chromosome. This was accomplished via the use of polymerase chain reaction ("PCR") technology.

RNA purification and cDNA synthesis were first carried out, in accordance with Weynants et al., Int. J. Cancer 56: 826-829 (1994), incorporated by reference herein. Next, 1/20 of the cDNA produced from 2 ug of total RNA was supplemented with 5 ul of PCR buffer (500 mM KCl, 100 mM Tris pH 8.3), 1 ul each of 10 mM dNTPs, 25 pmoles of each primer (see below), 3 ul of 25 mM MgCl₂, and 1.25 units of Taq polymerase, with water added to final volume of 50 ul.

The primers were as follows:

- MAGE-3: 5'-TGGAGGACCAGAGGCCCCC, 5'-GGACGATTATCAGGAGGCCTGC (725 bp) (SEQ ID NOS: 27 AND 28)
 - MAGE-4: 5'-GAGCAGACAGGCCAACCG, 5'-AAGGACTCTGCGTCAGGC (446 bp) (SEQ ID NOS; 29 AND 30)
 - MAGE-5: 5'CTAGAGGAGCACCAAAGGAGAAG, 5'-TGCTCGGAACACAGACTCTGG
- 20 (413 bp) (SEQ ID NOS: 31 AND 32)
 - MAGE-6: 5'-TGGAGGACCAGAGGCCCCC, 5'-CAGGATGATTATCAGGAAGCCTGT (727 bp) (SEQ ID NOS: 33 AND 34)
 - MAGE-7: 5'-CAGAGGAGCACCGAAGGAGAA, 5'-CAGGTGAGCGGGGTGTGTC (405 bp) (SEQ ID NOS: 35 AND 36)
- MAGE-8: 5'-CCCCAGAGAAGCACTGAAGAAG, 5'-GGTGAGCTGGGTCCGGG (399 bp) (SEQ ID NOS: 37 AND 38)
 - MAGE-9: 5'-CCCCAGAGCAGCACTGACG, 5'-CAGCTGAGCTGGGTCGACC (391 bp) (SEQ ID NOS: 39 AND 40)
 - MAGE-10: 5'-CACAGAGCAGCACTGAAGGAG, 5'-CTGGGTAAAGACTCACTGTCTGG
- 30 (485 bp) (SEQ ID NOS: 41 AND 42)
 - MAGE-11: 5'-GAGAACCCAGAGGATCACTGGA, 5'-GGGAAAAGGACTCAGGGTCTATC (422 bp) (SEQ ID NOS: 43 AND 44)
 - MAGE-12: 5'-GGTGGAAGTGGTCCGCATCG, 5'-GCCCTCCACTGATCTTTAGCAA (392 bp) (SEQ ID NOS: 45 AND 46)
- Amplification was carried out for 30 cycles (MAGE-3, 4, 6, 12) or 32 cycles (MAGE-5, 7-11), where a cycle was one minute at 94°C followed by two minutes at 65°C for MAGE-5, 7-12, or two

SUBSTITUTE SHEET (RULE 26)

minutes at 68°C (MAGE-4), or two minutes at 71°C (MAGE-3 and MAGE-6); followed by three minutes at 72°C (MAGE-3, 5-12), or two minutes at 72°C (MAGE-4). The analysis was carried out on hybrid cell line GM 10868, which contains human chromosome 12, and GM 07301, which contains chromosome 12 and the X-chromosome. All assays were negative with the human GM 10868 line, and all were positive with the GM 07301 cell line, which indicated that all 12 genes are found on the X-chromosome.

Example 44

The sizes of mRNAs for the different MAGE genes are similar, and thus Northern blot analysis cannot be used to determine expression of the various MAGE genes in different tissues, both normal and tumor. PCR analysis, along the lines of the study in example 43, <u>supra</u>, however, was believed to be useful.

To this end, a series of various tumors and normal tissues were tested for expression of MAGE genes.

Total RNA of the cells tested was extracted, and was then oligo dT primed, following art known techniques. The resulting material was then subjected to PCR, following the protocols of example 43, <u>supra</u>. For MAGE-1 and MAGE-2, the protocols of Brasseur et al., Int. J. Cancer. 52: 839-841 (1992), and DeSmet et al., Immunogenetics 39: 121-120 (1994), both of which are incorporated by reference, were used.

Table 5, which follows, elaborates these results, with a representative but by no means exhaustive listing of tissues tested. Each of MAGE 1-4, 6 and 12 showed significant expression in a number of tumors of varied tissue types. MAGE-5 and 8-11 were expressed very weakly in all tissues tested, whereas MAGE-7 RNA was not detectable at all. With respect to normal tissues, including tissues taken from a >20 week fetus, all were negative for MAGE RNA but for testis and placenta. Testis expressed all MAGE genes but MAGE-7, while placenta expressed MAGE-3, 4, and 8-11.

20

25

TABLE 5. Expression of Mage-1, 2, 3, 4, 6 and -12 by tumors and normal tissues

·	MAGE 1	MAGE 2	MAGE 3	MAGE 4	MAGE 6	MAGE 1
				•		
COLON CARCINOMAS	}					
MZ-CO-2 ¶	++	++	+	•	-	+
SK-CO-11 ¶	-	++	+++	•	+	++
LB150 **	-	•	-	+	-	• •
HSR 320 ¶	-	+++	+++	+	++	+++
EUKEMIAS						
K562¶	-	++	+++	-	++	+++
MELANOMAS						
MI10221 ¶	-	+++	+++	+++	+++	+++
MZ2-MEL 3.0 ¶	+++	+++	+++	•	+++	+
LB265 **	-	++	-	• .	-	+
LG7 **	-	++	•	•	•	-
LG11 **	++	++	++	-	-	+++
LB271 **	-	++	+++	-	++	+++
UNG CANCERS						
LB178 (NSCLC) **	++	-	-	+++	-	-
LB175 (NSCLC) **	•	++	+++	+++	-	+++
LB11 (SCLC) 1	++	+++	+++	-	-	+++
LB12 (SCLC) ¶	-	+++	+++	-	-	+++
SARCOMAS						
LB23 ¶	-	-	-	++	-	-
LB408 **	-	-	•	++	-	•
L5258 **.	+	++	+	-	-	++
BREAST CARCINOMA	S					
LB280 **	++	-	++	-	•	+
L5284 **	++	++	++	+	-	++
Stomach		•	-			-
Lung	-	-	-	-	-	_
Breast	_	-	•	•	-	-
Colon	•	-	-	-	-	-
Skin	-	_	-	-	-	•
Uterus	-	-	-	_	-	-
Testis	++	++	++	++	44	**
Thymocytes	-	-	_	-	•	•
EBV-lymphocytes		-	•	-	•	-
Foetal liver	•	_	•	-	•	
Foetal brain	•	-		-	•	•
Placenta LB694		•	_		_	-

RNA from tumor cell lines (¶), tumor samples (¬) and normal tissues were tested by RT-PCR for the expression of MAGE genes. PCR primers were chosen as indicated in methods. For MAGE-12, PCR amplification of RNA in the absence of reverse transcription indicated that in our conditions the contamination by genomic DNA was negligible. The level of expression evaluated by band intensity of PCR products fractionated in agarose gels is represented by +++, ++, +. Absence of product is indicated by -.

10

15

20

25

49

Exampl 45

The expression of the MAGE-1, 2 and 3 genes in various tumors and normal tissues was evaluated, using both reverse polymerase chain reaction ("PCR") transcription and amplification. To perform these assays, the total RNA of the cells of interest was extracted via the well known guanidine-isothiocyanate procedure of Davis et al., Basic Methods in Molecular Biology, 1986 (New York, Elsevier, pp. 130), which is incorporated by reference in its entirety. cDNA was then synthesized, by taking 2 ug of the RNA, diluting it with water, and then adding the following materials: 4 ul of 5X reverse transcriptase buffer, 1 ul each of each dNTP (10 mM), 1 ul of a 40 μ M solution of 2 ul of 0.1 oligo dT(15), 20 units of RNAsin, M dithiothreitol, and 200 units of MoMLV transcriptase. All materials were mixed in a 20 ul reaction volume, and incubated at 42°C for 60 minutes and diluted to 100 ul with water.

Presence or absence of each of MAGE-1, -2, and -3 cDNA was detected via PCR amplification, in separate reactions, using oligonucleotide primers located in different exons of the MAGE gene of interest. For MAGE-1, the primers were:

5'-CGGCCGAAGGAACCTGACCCAG-3'
(SEQ ID NO: 47)

5'-GCTGGAACCCTCACTGGGTTGCC-3'
(SEQ ID NO: 48)

These are described by Brasseur et al., Int. J. Cancer 52: 839-841 (1992).

For MAGE-2, the primers were:

5'-AAGTAGGACCCGAGGCACTG-3'
(SEQ ID NO: 49)

5'-GAAGAGGAAGAGCGGTCTG-3'
(SEQ ID NO: 50)

(DeSmet et al., Immunogenetics 39: 121-129 (1994)).

WO 95/23874 PCT/US95/02203

50

For MAGE-3, the primers were:

5'-TGGAGGACCAGAGGCCCCC-3'
(SEQ ID NO: 27)

5'-GGACGATTATCAGGAGGCCTGC-3'
(SEQ ID NO: 28)

(Serial No. 08/204,727 filed March 1, 1994 to Gaugler et al. incorporated by reference).

For each PCR reaction, 5 ul of cDNA were supplemented with 5 ul of 10XPCR buffer, 1 ul of each dNTP (10 mM), 1 ul each of 40 μM primer solutions, 1.25 units of Taq polymerase, and water, to a total volume of 50 ul. Each mixture was heated for five minutes at 94°C. Amplification was then carried out for 30 cycles (MAGE-1: 1 minute at 94°C, 3 minutes at 72°C; MAGE-2: 1 minute at 94°C, 2 minutes at 67°C; MAGE-3: 1 minute at 94°C, 4 minutes at 72°C). Cycling was concluded, in each case, with a final extension at 72°C for 15 minutes. A 10 ul sample of each reaction was run on a 1% agarose gel, and visualized by ethidium bromide fluorescence. To ensure that RNA was not degraded, a PCR assay with primers specific for B-actin was carried out, following the listed protocols, except that only 20 cycles were carried out with the annealing step at 65°C. Date are summarized in the Table which follows:

5

10

15

Table 6 Expression of gene MAGE-1, 2 and 3 in lung tumors

	Prop	ortion of positiv	e samples	_
	MAGE-1	MAGE-2	MAGE-3	
Non-small cell lung cancer	16/46	16/46	14/46	
squamous cell carcinoma adenocarcinoma large cell carcinoma	8/26 8/18 0/2	6/26 9/18 1/2	7/26 7/18 0/2	
Small cell cancer	1/3	2 /3	2/3	
Normal lung samples	0/8	0/8	0/8	

Example 46

The previous example showed how to identify expression of various MAGE genes. This example explains quantitation of the expression.

5

First, cDNA was synthesized in the same way described in example 1, except that the oligo dT consisted solely of dT15, and the reaction mixture was preincubated at room temperature for 10 minutes to optimize annealing. Also, following the incubation, the transcriptase activity was terminated by heating the mixture at 95°C for 15 minutes. PCR amplification was carried out, by combining 5 ul of 10x PCR buffer, 0.5 ul of a 2.5 mM dNTP mix, 0.2 μ Ci of α^{32} P-dCTP, 0.5 ul of each primer (40 μ M solution), 1.25 units of Taq polymerase, and water, to a total of 50 ul. The mixtures were chilled on ice, and then 5 ul of chilled cDNA solution (100 ng total RNA) were added thereto. The

15

10

15

mixture was heated to 94°C for five minutes, and 24 cycles of amplification were carried out (one minute at 94°C, three minutes at 72°C per cycle). Cycling concluded with a final extension at 72°C, for 15 minutes. A 15 ul sample of PCR product was run on an agarose gel which was then fixed in 10% trichloroacetic acid for 30 minutes, dried, and then exposed to a phospho-screen for 90 minutes before scanning by Phosphor-Imager to measure incorporated ³²P. This was compared to the incorporations from various dilutions of RNA of reference melanoma cell line MZ2-MEL-3.0.

Quantitative measurements of β -actin messenger and "GAPDH" (i.e., glyceraldehyde 3-phosphate dehydrogenase) was carried out on each cDNA sample, under similar conditions. The one difference was that only 18 amplification cycles were carried out. A separate PCR reaction was set up with primers for β -actin and GAPDH, with only β -actin used for normalization. Results were expressed via formula:

where: S = product from tumor sample
MEL = product from MZ2-MEL 3.0

The results obtained were comparable to those obtained previously with melanoma tumors. Level of expression varied, from 1 to 160% of the amount expressed by the reference cell line. Figure 2 presents some of these results (i.e., normalized results, relative to levels of ß-actin expression). Values are percent of the level of MAGE-1 expression measured with RNA of the reference line

30

MZ2-MEL-3.0. Values are for MAGE-1 positive tumors of Table 2). Table 7, which follows, summarizes patterns of expression for various tumors.

Table 7. Pattern of expression of genes MAGE-1,2 and 3 by MAGE-positive lung tumor samples

	MAGE-1°	MAGE-2	MAGE-3
Squamous cell carcinoma			
LB 175	++	. ++	+++
LB 178	++	•	-
LB 182 (A1)*	•	+	-
LB 195	+	++	+++
LB 206	+++	+	++
LB 321	+	-	•
LB 323	+++	+	+++
LB 424	+	•	+
LB 425	-	-	+
LB 498 (A1)	+++	• .	-
LB 557		+++	+++
Adenocarcinoma			
LB 117 (A1)	+	++	++
LB 212	++	+	-
LB 264 (A1)	+++	++	+++
LB 292	•	++	+++
LB 306	++	+	++
LB 322	•	+	+
LB 474 (A1)	+	++	-
LB 497	++	+++	+++
LB 510	+++	•	-
LB 558 (A1)	+	+	+
Large cell carcinoma			
LB 259	-	+	•,
Small cell lung cancer			
LB 444	•	++	+++
LB 648 (A1)	+	++	+++

10

15

20

25

30

54

Exampl 47

The expression of the MAGE-3 gene in various tumors and normal tissues was evaluated, using both reverse transcription and polymerase chain reaction amplification. To perform these assays, the total RNA of the cells of interest was extracted via the well known quanidine-isothiocyanate procedure of Davis et al., Basic Methods in Molecular Biology, 1986 (New York, Elsevier, pp. 130), which is incorporated by reference in its entirety. cDNA was then synthesized, by taking 2 ug of the RNA, diluting it with water, and then adding the following 4 ul of 5X reverse transcriptase buffer, 1 ul each of each dNTP (10 mM), 2 ul of a 20 μ M solution of oligo dT, 20 units of RNAsin, 2 ul of 0.1 M dithiothreitol, and 200 units of MoMLV reverse transcriptase. materials were mixed in a 20 ul reaction volume, incubated at 42°C for 60 minutes. For the amplification of CDNA reaction, 1/20 the reaction product supplemented with 5 ul of PCR buffer, 0.5 ul of each of the dNTPs (10 mM), 1 ul each of 20 μ M solutions of primer (see infra), and 1.25 units of Taq polymerase. Water was added to a final volume of 50 uls. The primers used for MAGE-3 were:

5'-TGGAGGACCAGAGGCCCCC-3'
(SEQ ID NO: 27)

5'-GGACGATTATCAGGAGGCCTGC-3'
(SEQ ID NO: 28)

These correspond to a sense sequence in exon 2 of the gene (SEQ ID NO: 27), and an antisense sequence in exon 3 (SEQ ID NO: 28).

PCR was performed for 30 cycles (one minute at 94°C, four minutes at 72°C). PCR products were size fractionated on a 1% agarose gel, and then analyzed. The results are presented in the table which follows. These data confirm

some results obtained previously, but also show the expression of MAGE-3 in head and neck squamous cell carcinomas, a result not suggested by previous work.

Table 8. Expression of gene MAGE-3 by tumoral, normal and fetal tissues.

TUMORS			NORMAL TISSUES	
IIISTOLOGICAL TYPE	Number of		HISTOLOGICAL TYPE	MAGE-3
	cell lines	nunors samples	ADULT TISSUES	
			Drain	•
Melanomas	50/62 (81%)	17/105 (69%)	Colon	•
	•		Stomach	•
Head and neck squamous cell carcinomas	•	20/36 (56%)	Liver	•
			Ovary Skin	
NSCLC #	1/2	14/46 (30%)	Lung	•
SCIC	18/22 (82%)	2/3	Kidney Bread	
Colorectal carcinomas	5/16	5/31 (16%)	Testis	‡
Mammary carcinomas	2/6	16/132 (12%)	FETAL TISSUES	
Bladder tumors	•	276	Brain Liver	
Sarcomas	1/4	3/10	Spleen	•
Prostatic carcinomas		3/20		
Renal carcinomas	0/5	07.38		
Leukemias	2/6	0/20		
Lymphomas	9/0	0//5		

*Expression of gene MAGE-3 was tested by RT-PCR amplification on total RNA, with the primers described in methods. These primers distinguish MAGE-3 from the 11 other MAGE genes that have been identified.

‡ NSCLC are non-small cell lung carcinomas, SCLC are small cell lung carcinomas.

SUBSTITUTE SHEET (RULE 26)

10

15

Example 48

Bladder tumor specimens were collected at surgery. They were divided into two portions, one of which was used for routine histopathological evaluation. The other portion was frozen in liquid nitrogen immediately after transurethral resection, or radical cystectomy. frozen samples were stored at -80°C until used for RNA extraction. Normal bladder tissue was obtained by biopsies of cadavers from donors in an organ transplant program.

Total RNA was extracted from the samples by the classic guanidine-isothiocyanate/cesium chloride method of Davis et al, Basic Methods in Molecular Biology, pp. 130-135, Elsevier, New York (1986). Synthesis of cDNA was then carried out by extension with oligo(dT) using 2 ug of RNA in a 20 ul reaction volume following DeSmet et al., Immunogenetics 39: 121-129 (1994), incorporated Following incubation at 42°C for one reference herein. hour, the cDNA reaction mixture was diluted to 100 ul with Separate polymerase chain reaction amplification were then carried out to determine whether any of MAGE-1, 20 The amplifications were 2, 3 or 4 cDNA were present. carried out using oligonucleotide primers different exons of the MAGE genes. PCR amplification was also carried out using primers for HLA-A1.

25 The primers used were the following: 5'-TGGAGGACCAGAGGCCCCC-3 (sense, exon 2) (SEQ ID NO: 27) and

> 5'-GGACGATTATCAGGAGGCCTGC-3' (antisense, exon 3) (SEQ ID NO: 28) for MAGE-3

5'-CGGCCGAAGGAACCTGACCCAG-3' (sense, exon 1) (SEQ ID NO: 30 47) and

> 5'GCTGGAACCCTCACTGGGTTGCC-3' (anti-sense, exon 3) (SEQ ID NO: 48) for MAGE-1

5'-AAGTAGGACCCGAGGCACTG-3' (sense, exon 2) (SEQ ID NO: 49) 35 and

> 5'-GAAGAGGAAGAAGCGGTCTG-3' (anti-sense, exon 3) (SEQ ID NO: 50) for MAGE-2

15

20

25

30

35

5'-GAGCAGACAGGCCAACCG-3' (sense, exon 2) (SEQ ID NO: 29) and

5'-AAGGACTCTGCGTCAGGC-3' (anti-sense, exon 3) (SEQ ID NO: 30) for MAGE-4

5'-GGGACCAGGAGACACGGAATA-3' (sense, exon 2) (SEQ ID NO: 51) and

5'-AGCCCGTCCACGCACCG-3' (anti-sense, exon 3) (SEQ ID NO: 52) for HLA-A1

SEQ ID NOS: 27 and 28 are described by Weynants et al., Int. J. Cancer 56: 826-829 (1994). SEQ ID NOS: 47 and 48 are described in Brasseur et al., Int. J. Cancer 52: 839-841 (1992). SEQ ID NOS: 49 and 50 are disclosed in DeSmet et al., Immunogenetics 39: 121-129 (1994). SEQ ID NOS: 29 and 30 are disclosed in copending application Serial No. 08/299,849 filed September 1, 1994 to DePlaen et al., and incorporated by reference. SEQ ID NOS: 51 and 52 are found in Gaugler et al., J. Exp. Med. 179: 921-930 (1994), as well as the above-identified parent application. All of these references are incorporated by reference.

The amplification protocol was as follows. Each PCR reaction used 5 ul of cDNA, supplemented with 5 ul of 10x PCR buffer, 1 ul each of 10 mM dNTP, 0.5 ul each of 80 uM solutions of primers, 1.25 units of Taq DNA polymerase, and water to achieve a total volume of 50 ul. The mixtures 5 followed heated to 94°C for minutes, by amplification in a thermal cycler, for 30 cycles. MAGE-1, 1 cycle was one minute at 94°C followed by three minutes at 72°C. For MAGE-2, one cycle was 94°C for one minute, followed by two minutes at 67°C and two minutes at For MAGE-3, one cycle was one minute at 94°C; followed by four minutes at 72°C. For MAGE-4, one cycle was one minute at 94°C, two minutes at 68°C, and two The cycle for HLA-A1 was the same as that minutes at 72°C. for MAGE-4. A 10 ul sample of each reaction was run on a 1% agarose gel, and then visualized by ethidium bromide In order to provide a control for RNA fluorescence.

integrity, a 20 cycle PCR assay, using primers specific for ß actin, was carried out in each case, following Weynants et al., supra.

The protocols described were developed with certain goals in mind. Primers were selected so as to be in different exons, thus preventing false positives due to DNA contamination of the RNA preparations. Under conditions used, DNA generates either no PCR product, or longer products which are readily distinguishable from amplified cDNA. This is shown by figure 19. In figure 19, a bladder tumor sample from a patient, referred to as "HM15" is shown in each "R" lane. Lanes marked "D" show products obtained from amplification of the patients' genomic DNA. The PCR products were run on a 2.5% low melting agarose gel, but the assays were identical to the protocol of this example in all other ways. Size markers are on the left hand side. There was no band in the MAGE-1 reaction, because of the large intron between the two primers.

Table 10, which follows, shows the results obtained for a number of tumors (nomenclature is explained below). Of 57 samples of primary transitional cell carcinoma, 21% expressed MAGE-1, 30% expressed MAGE-2, 35% expressed MAGE-3, and 33% expressed MAGE-4. Ta tumors and low grade T1 tumors expressed none of these, or expressed only a single Higher stage tumors, in contrast, gene, at low levels. frequently expressed high levels of several genes. also found that the fraction of invasive tumors which expressed MAGE genes was 2-5 times higher than the fraction observed with superficial tumors, as is depicted in figure 2 (this figure is based upon data from Table 10). expressing at least one of the four MAGE genes accounted for 61% of the 28 invasive tumors studied. Among the 29 superficial tumors, the proportion was only 28%. Results paralleled other results reported previously for melanoma, in that all but one of the tumors expressing MAGE-1 also expressed MAGE-3.

WO 95/23874

5

10

15

20

25

30

10

15

20

25

30

None of the six biopsies of normal bladder examined expressed any of the MAGE genes discussed herein.

In some instances, several tumor samples were obtained The analysis of these patients is from the same patient. set out in Table 9. Patient HM61 had a primary tumor and They displayed a very similar an invaded lymph node. pattern of expression of MAGE-1, 2, and 3, with MAGE-1 predominating. Normal mucosa adjacent to the tumor was completely negative for MAGE-2 and MAGE-3, with a very low level of MAGE-1 expression, which was probably due to the presence of a few tumor cells. In patient "HM25", the initial tumor, and an early recurrence, both expressed MAGE-1, 2, 3 and 4. A recurrence which occurred two years after the first displayed a very different pattern, expressing only MAGE-2 and MAGE-3. A similar discordance between primary tumor and recurrence was observed with patient "HM20". Patients HM30 and LB526 showed differences in the pattern of MAGE-expression in different samples of the same primary tumor.

In the tables which follow, "Ta" stands superficial lesion, limited to bladder mucosa (also known "stage Ta"). "Stage T1", or "T1" is used superficial lesions limited to subepithelial connective "Stages T2-T4", or "T2-T4" refer to tumors which have invaded bladder muscle. The nomenclature "G1", "G2" and "G3" refers to the degree of differentiation, histopathological grade. "G1" superficial tumor is well differentiated, while "G3" is a tumor differentiated. See Mostofi et al., "Histological Typing of Urinary Bladder Tumors. WHO International Histological Classification of Tumors" (1973).

TABLE 9 - EXPRESSION OF GENES MAGE-1, 2, 3 AND 4 IN MULTIPLE SAMPLES FROM BLADDER CARCINOMA PATIENTS

Patients	Tumor stage	and grade MAGE-1 MAGE-2 MAGE-3 MAGE-	MAGE-1	MAGE-2	MAGE-3	MAGE-
		\				
HM 61	Primary tumor	T2 G3	‡	+	+	1
	Metastatic iliac lymph node		‡ ‡ ‡	+	+	
	Mucosa adjacent to the tumor		+	1	i	i
HM 25	Primary tumor	T2 G2	+	‡	+	‡
	Tumor recurrence after 1 month	T2 G2	‡	‡	‡	‡
	Tumor recurrence after 2 years	T1 G2	i	+ + +	+ + +	ı
HM 20	Primary tumor	T1 G1	+	ı	ı	1
	Tumor recurrence after 2 months	T1 G1	•	•	1	t
HM 30	Primary tumor, 1st sample	T2 G2	ı	1	‡	ı
	Primary tumor, 2nd sample	T2 G2	ı	ı	ı	1
LB 526	Primary tumor, radical cystectomy	T3 G2	+	+	‡	+
•	Primary tumor, 9-day pre-operative blopsy	ову Т3 G2	+	+	+	1

Table 10. EXPRESSION OF GENES MAGE-1. 2. 3 AND 4 IN BLADDER TRANSITIONAL CELL CARCINOMA SAMPLES

Tumor Stage and		Patients		MAGE-1	MAGE-2	MAGE-3	MAGE-49
Supericial tumor	s (n=29)						******
Ta (n=7)	G1	HM 7		•	_	_	_
		HM 32	(A1)*	•	4.	•	-
		HM 33	(A1)	•	-		_
		HM 49		•	-	•	•-
	G2	LB 523		•	•	-	_
		LB 817		•	-	•	•
51 / 50		LB 818		•	•	-	-
T1 (n=22)	- G1	HM 2	/ 4 4 3	•	-	-	•
		HM 6 HM 17	(A1)	-	•	-	•
		HM 20		-	-	-	•
		HM 22		•	•	-	-
		HM 34		•	•	•	-
		HM 35		•	-	•	•
	G2	HM 4		•	•	•	•
		HM 5 HM 9		•	•	-	-
		HM 27		•	•	•	•
		HM 37		-	•	•	***
		HM 38	(A1)	•	-		-
		HM 39			-	•	+
		HM 40 HM 41	(A1)	-	-	-	•
				-	-	-	•
	C3	HM 14 HM 23		**	***	+++	**
		HM 26		-	-	•	-
		HM 42	(A1)	•	***	+++	***
		HM 53		•	•	•	-
nvasive tumors (n	- 201	LB 767	(A1)	<u> </u>	-		
T2 (n=15)	G2	нм в					
		HM 13	(A1)		-	-	•
		HM 24	(A1)	•	+++	+++	•
	•	HM 25		•	**	•	**
		HM 30		•	•	++	-
	G 3		/A 1\	•	•	-	-
	U 3		(A1)	•	•	•	-
		LB 796 HM 3 HM 10 HM 12		-	+	**	++
		HM 15	(A1) (A1) (A1)	+++	***	•••	-
		HM 61		**	•	+	•
		LB 524	(A1)	•	-	***	•
		LB 824 LB 825		-	**	+++	• •
		LB 831			**	*	+
T3 (n=11)	G2	HM 44		_	**	***	**
		HM 45		•	•		-
		HM 46	(A1)	•	•	•	-
		LB 526		+	•	++	•
	C3	HM 11		**	+	**	•
		HM 18		•	•	•	•
		HM 21 HM 47		•	•	•	•
		HM 48		•	***	***	+++
		HM 50		+++	-	•	•
•		HM 52	(A1)	-	•	•	•
T4 (n=2)	G3	HM 1		•	-	_	- -
		HM 51		-	-	-	•

10

15

20

25

30

35

The foregoing examples show that expression of MAGE tumor rejection antigen precursors is correlated to various One aspect of the invention, then, is a method for determining these cancers by assaying a sample for expression of at least one MAGE tumor rejection antigen precursor. As MAGE genes are nearly without exception expressed only by tumor cells, there can be no question but that expression of a MAGE gene or genes is indicative of The fact that the cancer is a particular type, cancer. such as lung adenocarcinoma, is easily ascertainable, as adenocarcinoma cells have distinct morphologies which are identifiable by the skilled artisan. Similarly, the fact that the tumor of interest is a lung adenocarcinoma as compared to a tumor from a different body part is self evident; one does not find lung adenocarcinoma in, e.g., Analogous statements can be made large intestine tissue. for bladder and other cancers.

The assay for the MAGE genes can take many forms. Most preferably, the assay is done via determining gene expression, such as by determining mRNA transcription products. For example, amplification protocols, including but not being limited to polymerase chain reaction (PCR), and ligase chain reaction (LCR), are preferred. can also be carried out using nucleic acid molecule probes, which are labelled or unlabelled, and which specifically hybridize to sequences characteristic of the MAGE gene of interest. Labelling nucleotide probes is well known to the labels including radioactive, chromophoric, magnetic, and other identifiable materials. biotin, (strept) avidin, Antibodies, haptens such as digoxin, digoxigenin, and so forth, can all be used. Nonlabelled probes can also be used. In such a case, the probes will form a double stranded molecule with their Any remaining single stranded material can be target. enzymatically digested, and when something remains, it is For the case of polymerase a sign of MAGE expression. chain reaction or other methodologies where a primer or

10

15

20

primers are required, the molecules represented by SEQ ID NO: 47 and SEQ ID NO: 48 are especially preferred for MAGE-1, SEQ ID NO: 49 and 50 for MAGE-2, SEQ ID NOS: 27 and 28 for MAGE-3 and SEQ ID NOS: 29 and 30 for MAGE-4. Similarly, these molecules are preferred as probes.

Quantitation of MAGE expression is shown herein as well. This is an important feature of the invention because in a given tumor sample (as compared to tumor cell lines) there will always be an undetermined proportion of normal cells.

One may also assay for the expression product of the MAGE gene, e.g., the tumor rejection antigen precursor protein, via assays such as immunoassays. See, e.g., U.S. Patent Application Serial No. 08/190,411 filed February 1, 1994, and Chen, et al., Proc. Natl. Acad. Sci. USA 91(3): 1004-1008 (1994), both of which are incorporated by reference, teaching MAGE-1 specific mAbs.

The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention.

(1) GENERAL INFORMATION:

- APPLICANTS: De Plaen, Etienne; Boon-Falleur, Thierry; Lethé, Bernard; Szikora, Jean-Pierre; De Smet, Charles; Chomez, Patrick; Weynants, P.; Brasseur, Francis; Marchand, M.; Gaugler, Béatrice; Van den Eynde, Benoit; van der Bruggen, Pierre; Patard, Jean-Jacques
- TITLE OF INVENTION: Method For Determining A Cancerous (ii) Condition by Assaying For Expression Of One Or More Mage Tumor Rejection Antigen Precursors
- (iii) NUMBER OF SEQUENCES: 56
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Felfe & Lynch
 - (B) STREET: 805 Third Avenue
 - (C) CITY: New York City (D) STATE: New York (F) ZIP: 10022
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette, 5.25 inch, 360 kb storage
 - (B) COMPUTER: IBM
 - (C) OPERATING SYSTEM: PC-DOS
 - (D) SOFTWARE: Wordperfect
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Hanson, Norman D.
 - (B) REGISTRATION NUMBER: 30,946
 - (C) REFERENCE/DOCKET NUMBER: LUD 5356-PCT
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (212) 688-9200
 - (B) TELEFAX: (212) 838-3884

(2)			QUEN (A) (B)	N FOICE C	HARA TH:	CTER 462 ucle	ISTI bas ic a	CS: e pa cid								
	i) (x)	i) M	OLEC	ULE ENCE	TYPE): c	renom	ic D	AN Q IE	NO:	1:					
GAAG CAGC AAGT	ATCC CAAT	CTG P CGA C CCA P	ATCAC SCTTA AGTTC	ACTG1	T GG	GTG1 CGTG AGC1	CTGA GGGG CTAG	GTI GTI GTI	CTGC TGTGA	GAT GAGC ATT	ATTO CTTO TGTA	ATCC GGTA CCCI	CT LGG TT		50 100 150 200	
				TCC											250	
CCTC	GTGC	CTG 1	CCTC	AGTI	T AG	AAGI	CTTC	CTI	COCC	AAG	TCTT	CCGI	TAT		300 350	
AGAA	CTCI	TTC C	CGGAC	GAAG	א ספ	CCAC	TCAC	CTC	CTCC	TAAC	AAGT	אממי	CC		400	
				CACTO											450	
		TG C													462	
	(<u>i</u>	ii) 1	(A) (B) (D) 40LE(NCE C LENC TYPE TOPC CULE ENCE	TH: CLOGY TYPE	679 nucle (:]	bas eic a linea genom	se pa acid ar aic I	ONA	O NO:	: 2:					
ATG	TCT	GAT	AAC	AAG	AAA	CCA	GAC	AAA	GCC	CAC	AGT	GGC	TCA	GGT	GGT	48
		_		Lys 5	_				10					15		
GAC	GGT	GAT	GGG	AAT	AGG	TGC	AAT	TTA	TTG	CAC	CGG	TAC	TCC	CTG	GAA	96
_	_	• -	20	Asn				25					30			
GAA	ATT	CTG	CCT	TAT	CTA	GGG	TGG	CTG	GTC	TTC	GCT	GTT	GTC	ACA	ACA	144
Glu	Ile	Leu 35	Pro	Tyr	Leu	Gly	Trp 40	Leu	Val	Phe	Ala	Val 45	Val	Thr	Thr	
				CTC												192
	50			Leu		55			_		60	_				
TAT	GAA	AGG	GAT	GTG	GCC	TGG	ATA	GCC	AGG	CAA	AGC	AAG	CGC	ATG	TCC	240
Tyr	Glu	Arg	Asp	Val	Ala	Trp	Ile	Ala	Arg	Gln	Ser	Lys	Arg	Met	Ser	

CTG GTG TCT ATA CCA GTG AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT Leu Val Ser Ile Pro Val Asn Pro Lys Glu Gln Met Glu Cys Arg Cys

175

GAA	AAT	GCT	GAT	GAA	GAG	GTT	GCA	ATG	GAA	GAG	GAA	GAA	GAA	GAA	GAG	624
Glu	Asn	Ala	Asp	Glu	Glu	Val	Ala	Met	Glu	Glu	Glu	Glu	Glu	Glu'	Glu	
		195	_				200				210					
GAG	GAG	GAG	GAG	GAA	GAG	GAA	ATG	GGA	AAC	CCG	GAT	GGC	TTC	TCA	CCT	672
Glu	Met	Gly	Asn	Pro	Asp	Gly	Phe	Ser	Pro							
220					225					230					235	
TAG																675

- INFORMATION FOR SEQUENCE ID NO: 3: (2)
 - (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 228 base pairs

 (B) TYPE: nucleic acid

 (D) TOPOLOGY: linear

 (ii) MOLECULE TYPE: genomic DNA

 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GCATGCAGTT	GCAAAGCCCA	GAAGAAAGAA	ATGGACAGCG	GAAGAAGTGG	TTGTTTTTT	60
TTCCCCTTCA	TTAATTTTCT	AGTTTTTAGT	AATCCAGAAA	ATTTGATTTT	GTTCTAAAGT	120
TCATTATGCA	AAGATGTCAC	CAACAGACTT	CTGACTGCAT	GGTGAACTTT	CATATGATAC	180
ATAGGATTAC	ACTTGTACCT	GTTAAAAATA	AAAGTTTGAC	TTGCATAC		228

- INFORMATION FOR SEQUENCE ID NO: 4: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1365 base pairs (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT	50 ·
GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT ATTCATCCCT	100
CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGTGAGC CTTGGGTAGG	150
AAGTTTTGCA AGTTCCGCCT ACAGCTCTAG CTTGTGAATT TGTACCCTTT	200
CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC CCCCCTCCCA	250
CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG TCTTCCGTAT	300
AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCTTT GCTCTCCCAG	350
CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCGAAG AAGTAAGCCG	400
CTAGCTTGCG ACTCTACTCT TATCTTAACT TAGCTCGGCT TCCTGCTGGT	450
ACCCTTTGTG CC	462
ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC AGT GGC TCA	504
GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA TTG CAC CGG	546
TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG TGG CTG GTC	588
TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC CAG ATG TTC	630
ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG GAT GTG GCC	672
TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT GTC GAT GAG	714
GAT GAA GAC GAT GAG GAT GAG GAT GAC TAC GAC GAC	756
GAG GAC GAC GAC GAT GCC TTC TAT GAT GAT GAG GAT GAT	798
GAG GAA GAA TTG GAG AAC CTG ATG GAT GAA TCA GAA	840
GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG GGT GCC GGA	882
GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC TGT GTT CCT	924
GGC CAT CAT TTA AGG AAG AAT GAA GTG AAG TGT AGG ATG AT	966
TAT TTC TTC CAC GAC CCT AAT TTC CTG GTG TCT ATA CCA GTG	1008
AAC CCT AAG GAA CAA ATG GAG TGT AGG TGT GAA AAT GCT GAT	1050
GAA GAG GTT GCA ATG GAA GAA GAA GAA GAG GAG GAG	1092
GAG GAG GAA GAG GAA ATG GGA AAC CCG GAT GGC TTC TCA CCT	1134
TAG	1137
GCATGCAGTT GCAAAGCCCA GAAGAAAGAA ATGGACAGCG GAAGAAGTGG	1187
TTGTTTTTTT TTCCCCTTCA TTAATTTTCT AGTTTTTAGT AATCCAGAAA	1237
ATTTGATTTT GTTCTAAAGT TCATTATGCA AAGATGTCAC CAACAGACTT	1287
CTGACTGCAT GGTGAACTTT CATATGATAC ATAGGATTAC ACTTGTACCT	1337
GTTAAAAATA AAAGTTTGAC TTGCATAC	1365

(2)

68

INFORMATION FOR SEQUENCE ID NO: 5: (i) SEQUENCE CHARACTERISTICS:

```
(A) LENGTH: 4698 base pairs
                (B) TYPE: nucleic acid
        (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
ACCACAGGAG AATGAAAAGA ACCCGGGACT CCCAAAGACG CTAGATGTGT GAAGATCCTG ATCACTCATT GGGTGTCTGA GTTCTGCGAT ATTCATCCCT
                                                                                50
                                                                                100
CAGCCAATGA GCTTACTGTT CTCGTGGGGG GTTTGTGAGC CTTGGGTAGG
                                                                                150
AAGTTTTGCA AGTTCCGCCT ACAGCTCTAG CTTGTGAATT TGTACCCTTT
CACGTAAAAA AGTAGTCCAG AGTTTACTAC ACCCTCCCTC CCCCCTCCCA
                                                                               250
CCTCGTGCTG TGCTGAGTTT AGAAGTCTTC CTTATAGAAG TCTTCCGTAT AGAACTCTTC CGGAGGAAGG AGGGAGGACC CCCCCCTTT GCTCTCCCAG
                                                                                300
                                                                                350
CATGCATTGT GTCAACGCCA TTGCACTGAG CTGGTCGAAG AAGTAAGCCG
CTAGCTTGCG ACTCTACTCT TATCTTAACT TAGCTCGGCT TCCTGCTGGT
                                                                               450
ACCCTTTGTG CC
                                                                                462
ATG TCT GAT AAC AAG AAA CCA GAC AAA GCC CAC AGT GGC TCA
                                                                               504
GGT GGT GAC GGT GAT GGG AAT AGG TGC AAT TTA TTG CAC CGG
                                                                               546
TAC TCC CTG GAA GAA ATT CTG CCT TAT CTA GGG TGG CTG GTC
TTC GCT GTT GTC ACA ACA AGT TTT CTG GCG CTC CAG ATG TTC
                                                                               630
ATA GAC GCC CTT TAT GAG GAG CAG TAT GAA AGG GAT GTG GCC TGG ATA GCC AGG CAA AGC AAG CGC ATG TCC TCT GTC GAT GAG
                                                                               714
GAT GAA GAC GAT GAG GAT GAG GAT GAC TAC TAC GAC GAC
                                                                               756
GAG GAC GAC GAC GAT GCC TTC TAT GAT GAT GAG GAT GAT
                                                                               798
GAG GAA GAA TTG GAG AAC CTG ATG GAT GAA TCA GAA
                                                                              840
GAT GAG GCC GAA GAA GAG ATG AGC GTG GAA ATG GGT GCC GGA
GCT GAG GAA ATG GGT GCT GGC GCT AAC TGT GCC T
                                                                               882
                                                                               916
GTGAGTAACC CGTGGTCTTT ACTCTAGATT CAGGTGGGGT GCATTCTTTA
                                                                               966
CTCTTGCCCA CATCTGTAGT AAAGACCACA TTTTGGTTGG GGGTCATTGC
                                                                              1016
TGGAGCCATT CCTGGCTCTC CTGTCCACGC CTATCCCCGC TCCTCCCATC CCCCACTCCT TGCTCCGCTC TCTTTCCTTT TCCCACCTTG CCTCTGGAGC TTCAGTCCAT CCTGCTCTCC TCCCTTTCCC CTTTGCTCTC CTTGCTCCC
                                                                              1066
                                                                              1116
                                                                              1166
TCCCCCTCGG CTCAACTTTT CGTGCCTTCT GCTCTCTGAT CCCCACCCTC
                                                                              1216
TTCAGGCTTC CCCATTTGCT CCTCTCCGA AACCCTCCCC TTCCTGTTCC
CCTTTTCGCG CCTTTTCTTT CCTGCTCCCC TCCCCCTCCC TATTTACCTT
TCACCAGCTT TGCTCTCCCT GCTCCCCTCC CCCTTTTGCA CCTTTTCTTT
                                                                              1266
                                                                               1316
                                                                              1366
TCCTGCTCCC CTCCCCTCC CCTCCCTGTT TACCCTTCAC CGCTTTTCCT
                                                                              1416
1466
                                                                              1566
TTGGTTTTTC GAGACAGGGT TTCTCTTTGT ATCCCTGGCT GTCCTGGCAC
TCACTCTGTA GACCAGGCTG GCCTCAAACT CAGAAATCTG CCTGCCTCTG
CCTCCCAAAT GCTGGGATTA AAGGCTTGCA CCAGGACTGC CCCAGTGCAG
GCCTTTCTTT TTTCTCCTCT CTGGTCTCCC TAATCCCTTT TCTGCATGTT
AACTCCCCTT TTGGCACCTT TCCTTTACAG GACCCCCTCC CCCTCCCTGT
                                                                              1716
                                                                               1766
                                                                              1816
TTCCCTTCCG GCACCCTTCC TAGCCCTGCT CTGTTCCCTC TCCCTGCTCC
                                                                              1866
CCTCCCCCTC TTTGCTCGAC TTTTAGCAGC CTTACCTCTC CCTGCTTTCT
                                                                              1916
1966
                                                                               2016
                                                                               2066
                                                                               2116
                                                                               2166
                                                                               2266
CCTTTCTCCA GCCTGTCACC CCTCCTTCTC TCCTCTGT TTCTCCCACT
TCCTGCTTCC TTTACCCCTT CCCTCTCCT ACTCTCCTC CTGCCTGCTG
GACTTCCTCT CCAGCCGCCC AGTTCCCTGC AGTCCTGGAG TCTTTCCTGC
CTCTCTGTCC ATCACTTCCC CCTAGTTTCA CTTCCCTTTC ACTCTCCCCT
                                                                               2316
                                                                               2366
                                                                              2466
ATGTGTCTCT CTTCCTATCT ATCCCTTCCT TTCTGTCCCC TCTCCTCTGT
CCATCACCTC TCTCCTCCT TCCCTTTCCT CTCTCTTCCA TTTTCTTCCA CCTGCTTCTT TACCCTGCCT CTCCCATTGC CCTCTTACCT TTATGCCCAT TCCATGTCCC CTCTCAATTC CCTGTCCCAT TGTGCTCCCT CACATCTTCC
                                                                              2566
                                                                               2616
ATTTCCCTCT TTCTCCCTTA GCCTCTTCTT CCTCTTCTCT TGTATCTCCC
                                                                              2666
                                                                              2716
```

发展进入

TTCCCTTTGC TTCTCCC	TCC TCCTTTCCCC TTCCC	CTATG CCCTCTACTC	2766
TACTTGATCT TCTCTCC	CT CCACATACCC TTTTT	CCTTT CCACCCTGCC .	2816
CTTTGTCCCC AGACCCTI	ACA GTATCCTGTG CACAG	GAAGT GGGAGGTGCC	2866
ATCAACAACA AGGAGGC	AAG AAACAGAGCA AAATC	CCAAA ATCAGCAGGA	2916
AAGGCTGGAT GAAAATA	AGG CCAGGTTCTG AGGAC		2966
AAGTGGCTCC TATAACC	CTA AGTACCAAGG GAGAA	AGTGA TGGTGAAGTT	3016
CTTGATCCTT GCTGCTTC	CTT TTACATATGT TGGCA	CATCT TTCTCAAATG	3066
CAGGCCATGC TCCATGC	TTG GCGCTTGCTC AGCGT	GGTTA AGTAATGGGA	3116
GAATCTGAAA ACTAGGG	SCC AGTGGTTTGT TTTGG	GGACA AATTAGCACG	3166
TAGTGATATT TCCCCCT	AAA AATTATAACA AACAG	ATTCA TGATTTGAGA	3216
TCCTTCTACA GGTGAGAI	AGT GGAAAAATTG TCACT.	ATGAA GTTCTTTTTA	3266
GGCTAAAGAT ACTTGGA	ACC ATAGAAGCGT TGTTA	AAATA CTGCTTTCTT	3316
TTGCTAAAAT ATTCTTTC	CTC ACATATTCAT ATTCT	CCAG	3355
GT GTT CCT GGC CAT	r cat tta agg aag aa	T GAA GTG AAG TGT	3396
AGG ATG ATT TAT TTO	TTC CAC GAC CCT AA	T TTC CTG GTG TCT	3438
ATA CCA GTG AAC CC	r aag gaa caa atg ga	G TGT AGG TGT GAA	3480
AAT GCT GAT GAA GAG	G GTT GCA ATG GAA GA	G GAA GAA GAA	3522
GAG GAG GAG GAG	GAA GAG GAA ATG GG	A AAC CCG GAT GGC	3564
TTC TCA CCT TAG			3576
GCATGCAGGT ACTGGCT	CA CTAACCAACC ATTCC	TAACA TATGCCTGTA	3626
GCTAAGAGCA TCTTTTT	AAA AAATATTATT GGTAA	ACTAA ACAATTGTTA	3676
TCTTTTTACA TTAATAA	STA TTAAATTAAT CCAGT	ATACA GTTTTAAGAA	3726
CCCTAAGTTA AACAGAAG	STC AATGATGTCT AGATG	CCTGT TCTTTAGATT	3776
GTAGTGAGAC TACTTACT	PAC AGATGAGAAG TTGTT	AGACT CGGGAGTAGA	3826
GACCAGTAAA AGATCATO	CA GTGAAATGTG GCCAT	GGAAA TCGCATATTG	3876
TTCTTATAGT ACCTTTG	AGA CAGCTGATAA CAGCT	GACAA AAATAAGTGT	3926
TTCAAGAAAG ATCACAC	GCC ATGGTTCACA TGCAA	ATTAT TATTTTGTCG	3976
TTCTGATTTT TTTCATT	CT AGACCTGTGG TTTTA	AAGAG ATGAAAATCT	4026
CTTAAAATTT CCTTCAT	CTT TAATTTTCCT TAACT	TTAGT TTTTTTCACT	4076
TAGAATTCAA TTCAAAT	ICT TAATTCAATC TTAAT	TTTTA GATTTCTTAA	4126
AATGTTTTTT AAAAAAA	ATG CAAATCTCAT TTTTA	AGAGA TGAAAGCAGA	4176
GTAACTGGGG GGCTTAG	GGA ATCTGTAGGG TTGCG	GTATA GCAATAGGGA	4226
GTTCTGGTCT CTGAGAA	GCA GTCAGAGAGA ATGGA		4276
CAGTAGGTTA GTGAGGT	IGA TATGATCAGA TTATG	GACAC TCTCCAAATC	4326
ATAAATACTC TAACAGC	raa ggatctctga gggaa	ACACA ACAGGGAAAT	4376
ATTTTAGTTT CTCCTTG	AGA AACAATGACA AGACA	TAAAA TTGGCAAGAA	4426
AGTCAGGAGT GTATTCT	AAT AAGTGTTGCT TATCT	CTTAT TTTCTTCTAC	4476
AGTTGCAAAG CCCAGAA		AAGAA GTGGTTGTTT	4526
TTTTTTCCCC TTCATTA		ATCCA GAAAATTTGA	4576
TTTTGTTCTA AAGTTCA		AACAG ACTTCTGACT	4626
GCATGGTGAA CTTTCAT		CTTGT ACCTGTTAAA	4676
AATAAAAGTT TGACTTG	CAT AC		4698

- (2) INFORMATION FOR SEQUENCE ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9 amino acids
 - (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: protein
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Leu Pro Tyr Leu Gly Trp Leu Val Phe

- INFORMATION FOR SEQUENCE ID NO: 7: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2418 base pairs (B) TYPE: nucleic acid
 - (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GGATCCAGGC CCTGCCAGGA AAAATATAAG GGCCCTGCGT GAGAACAGAG 50 100 GGGGTCATCC ACTGCATGAG AGTGGGGATG TCACAGAGTC CAGCCCACCC

TCCTGGTAGC	ACTGAGAAGC	CAGGGCTGTG	CTTGCGGTCT	GCACCCTGAG	150
GGCCCGTGGA	TTCCTCTTCC	TGGAGCTCCA	GGAACCAGGC	AGTGAGGCCT	200
TGGTCTGAGA	CAGTATCCTC	AGGTCACAGA	GCAGAGGATG	CACAGGGTGT	250
GCCAGCAGTG	AATGTTTGCC	CTGAATGCAC	ACCAAGGGCC	CCACCTGCCA	300
CAGGACACAT	AGGACTCCAC	AGAGTCTGGC	CTCACCTCCC	TACTGTCAGT	350
CCTGTAGAAT	CGACCTCTGC	TGGCCGGCTG	TACCCTGAGT	ACCCTCTCAC	400
TTCCTCCTTC	AGGTTTTCAG	GGGACAGGCC	AACCCAGAGG	ACAGGATTCC	450
CTGGAGGCCA	CAGAGGAGCA	CCAAGGAGAA	GATCTGTAAG	TAGGCCTTTG	500
TTAGAGTCTC	CAAGGTTCAG	TTCTCAGCTG	AGGCCTCTCA	CACACTCCCT	550
CTCTCCCCAG	GCCTGTGGGT	CTTCATTGCC	CAGCTCCTGC	CCACACTCCT	600
GCCTGCTGCC	CTGACGAGAG	TCATCATGTC	TCTTGAGCAG	AGGAGTCTGC	650
ACTGCAAGCC	TGAGGAAGCC	CTTGAGGCCC	AACAAGAGGC	CCTGGGCCTG	700
GTGTGTGTGC	AGGCTGCCAC	CTCCTCCTCC	TCTCCTCTGG	TCCTGGGCAC	750
CCTGGAGGAG	GTGCCCACTG	CTGGGTCAAC	AGATCCTCCC	CAGAGTCCTC	800
AGGGAGCCTC	CGCCTTTCCC	ACTACCATCA	ACTTCACTCG	ACAGAGGCAA	850
CCCAGTGAGG	GTTCCAGCAG	CCGTGAAGAG			900
			GAGGGGCCAA	GCACCTCTTG	950
TATCCTGGAG	TCCTTGTTCC	GAGCAGTAAT	CACTAAGAAG	GTGGCTGATT	
TGGTTGGTTT	TCTGCTCCTC	AAATATCGAG	CCAGGGAGCC	AGTCACAAAG	1000
GCAGAAATGC	TGGAGAGTGT	CATCAAAAAT	TACAAGCACT	GTTTTCCTGA	1050
GATCTTCGGC	AAAGCCTCTG	AGTCCTTGCA	GCTGGTCTTT	GGCATTGACG	1100
TGAAGGAAGC	AGACCCCACC	GGCCACTCCT	ATGTCCTTGT	CACCTGCCTA	1150
GGTCTCTCCT	ATGATGGCCT	GCTGGGTGAT	AATCAGATCA	TGCCCAAGAC	1200
AGGCTTCCTG	ATAATTGTCC	TGGTCATGAT	TGCAATGGAG	GGCGGCCATG	1250
CTCCTGAGGA	GGAAATCTGG	GAGGAGCTGA	GTGTGATGGA	GGTGTATGAT	1300
GGGAGGGAGC	ACAGTGCCTA	TGGGGAGCCC	AGGAAGCTGC	TCACCCAAGA	1350
TTTGGTGCAG	GAAAAGTACC	TGGAGTACGG	CAGGTGCCGG	ACAGTGATCC	1400
CGCACGCTAT	GAGTTCCTGT	GGGGTCCAAG	GGCCCTCGCT	GAAACCAGCT	1450
ATGTGAAAGT	CCTTGAGTAT	GTGATCAAGG	TCAGTGCAAG	AGTTCGCTTT	1500
TTCTTCCCAT	CCCTGCGTGA	AGCAGCTTTG	AGAGAGGAGG	AAGAGGGAGT	1550
CTGAGCATGA	GTTGCAGCCA	AGGCCAGTGG	GAGGGGGACT	GGGCCAGTGC	1600
ACCTTCCAGG	GCCGCGTCCA	GCAGCTTCCC	CTGCCTCGTG	TGACATGAGG	1650
CCCATTCTTC	ACTCTGAAGA	GAGCGGTCAG	TGTTCTCAGT	AGTAGGTTTC	1700
TGTTCTATTG	GGTGACTTGG	AGATTTATCT	TTGTTCTCTT	TTGGAATTGT	1750
TCAAATGTTT	TTTTTTAAGG	GATGGTTGAA	TGAACTTCAG	CATCCAAGTT	1800
· TATGAATGAC	AGCAGTCACA	CAGTTCTGTG	TATATAGTTT	AAGGGTAAGA	1850
GTCTTGTGTT	TTATTCAGAT	TGGGAAATCC	ATTCTATTTT	GTGAATTGGG	1900
ATAATAACAG	CAGTGGAATA	AGTACTTAGA	AATGTGAAAA	ATGAGCAGTA	1950
AAATAGATGA	GATAAAGAAC	TAAAGAAATT	AAGAGATAGT	CAATTCTTGC	2000
CTTATACCTC	AGTCTATTCT	GTAAAATTTT	TAAAGATATA	TGCATACCTG	2050
GATTTCCTTG	GCTTCTTTGA	GAATGTAAGA	GAAATTAAAT	CTGAATAAAG	2100
AATTCTTCCT	GTTCACTGGC	TCTTTTCTTC	TCCATGCACT	GAGCATCTGC	2150
TTTTTGGAAG	GCCCTGGGTT	AGTAGTGGAG	ATGCTAAGGT	AAGCCAGACT	2200
CATACCCACC	CATAGGGTCG	TAGAGTCTAG	GAGCTGCAGT	CACGTAATCG	2250
AGGTGGCAAG	ATGTCCTCTA	AAGATGTAGG	GAAAAGTGAG	AGAGGGGTGA	2300
GGGTGTGGGG	CTCCGGGTGA	GAGTGGTGGA	GTGTCAATGC		2350
GGCATTTTGG	GCTTTGGGAA	ACTGCAGTTC		CCTGAGCTGG	
		ACIGCAGTTC	CTTCTGGGGG	AGCTGATTGT	2400
AATGATCTTG	GGTGGATCC				2418

- INFORMATION FOR SEQUENCE ID NO: 8: (2)
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5724 base pairs
 (B) TYPE: nucleic acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-1 gene (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

CCCGGGGCAC	CACTGGCATC	CCTCCCCCTA	CCACCCCAA	TCCCTCCCTT	50
TACGCCACCC	ATCCAAACAT	CTTCACGCTC	ACCCCCAGCC	CAAGCCAGGC	100
AGAATCCGGT	TCCACCCCTG	CTCTCAACCC	AGGGAAGCCC	AGGTGCCCAG	150
ATGTGACGCC	ACTGACTTGA	GCATTAGTGG	TTAGAGAGAA	GCGAGGTTTT	200
CGGTCTGAGG	GGCGGCTTGA	GATCGGTGGA	GGGAAGCGGG	CCCAGCTCTG	250

TAAGGAGGCA	AGGTGACATG	CTGAGGGAGG	ACTGAGGACC	CACTTACCCC	300
	CCCCAAATAA				350
	TCAGGCTGGG			GCTTAAACCA	400
	GAAGTCAGAG				450
AGAGGGCAGC	GTCCAGGCTC	TGCCAGACAT	CATGCTCAGG	ATTCTCAAGG	500
AGGGCTGAGG	GTCCCTAAGA	CCCCACTCCC	GTGACCCAAC	CCCCACTCCA	550
	CCGTGACCCA		CATTGTCATT	CCAACCCCCA	600
CCCCACATCC				CCGCCCAGCC	650
ATTCCACCCT	CACCCCCACC	CCCACCCCCA	CGCCCACTCC	CACCCCCACC	700
CAGGCAGGAT	CCGGTTCCCG	CCAGGAAACA	TCCGGGTGCC	CGGATGTGAC	750
GCCACTGACT	TGCGCATTGT	GGGGCAGAGA	GAAGCGAGGT	TTCCATTCTG	800
				CTCTGTGAGG	850
	TAGAGTTCGG	CCGAAGGAAC			
AGGCAAGGTG	AGAGGCTGAG	GGAGGACTGA	GGACCCCGCC	ACTCCAAATA	900
GAGAGCCCCA	AATATTCCAG	CCCCGCCCTT	GCTGCCAGCC	CTGGCCCACC	950
CGCGGGAAGA	CGTCTCAGCC	TGGGCTGCCC	CCAGACCCCT	GCTCCAAAAG	1000
	CACCAGGTTC	TTCTCCCCAA		CAGAGGTTGC	1050
	GCAGGACTGG		GCAGGGCACA		1100
GGCATCAAGA	TCAGCACCCA	AGAGGGAGGG	CTGTGGGCCC	CCAAGACTGC	1150
ACTCCAATCC	CCACTCCCAC	CCCATTCGCA	TTCCCATTCC	CCACCCAACC	1200
	CAGCTACACC	TCCACCCCCA		TACTCCGTCA	1250
					1300
	ACCCTCCAGC	CCCAGCACCA		TTCTGCCACC	
TCACCCTCAC	TGCCCCCAAC	CCCACCCTCA	TCTCTCTCAT	GTGCCCCACT	1350
CCCATCGCCT	CCCCCATTCT	GGCAGAATCC	GGTTTGCCCC	TGCTCTCAAC	1400
CCAGGGAAGC	CCTGGTAGGC	CCGATGTGAA	ACCACTGACT	TGAACCTCAC	1450
	GAAGCCAGGT				1500
	GGGAGTGGTT	TTAGGCTCTG		AGGTGAGATG	1550
CTGAGGGAGG	ACTGAGGAGG	CACACACCCC	AGGTAGATGG	CCCCAAAATG	1600
ATCCAGTACC	ACCCCTGCTG	CCAGCCCTGG	ACCACCCGGC	CAGGACAGAT	1650
GTCTCAGCTG	GACCACCCC	CGTCCCGTCC	CACTGCCACT	TAACCCACAG	1700
	AGTCATAGCT				1750
		TATGTGACCG		GGTCAGGAGA	
GGCAGGGCCC	AGGCATCAAG	GTCCAGCATC	CGCCCGGCAT	TAGGGTCAGG	1800
ACCCTGGGAG	GGAACTGAGG	GTTCCCCACC	CACACCTGTC	TCCTCATCTC	1850
CACCGCCACC	CCACTCACAT	TCCCATACCT	ACCCCCTACC	CCCAACCTCA	1900
	ATCCCTGCTG	TCAACCCACG		GAATGGCGGC	1950
	GATCTTGACG		GGGTCTGATG		2000
		GAGCAGAGGG		TGCGAGATGA	2050
GGGAGGCCTC	AGAGGACCCA	GCACCCTAGG	ACACCGCACC	CCTGTCTGAG	2100 -
		CCTCAAGAAT			2150
	GTGGGACCCA				2200 ***
	AGGGGACCTT	GGAATCCAGA	_		2250
GAGAGGTCCA	GGGCACGGTG	GCCACATATG	GCCCATATTT	CCTGCATCTT	2300
TGAGGTGACA	GGACAGAGCT	GTGGTCTGAG	AAGTGGGGCC	TCAGGTCAAC	2350
AGAGGGAGGA	GTTCCAGGAT	CCATATGGCC	CAAGATGTGC	CCCCTTCATG	2400
			AGGGACTCCA		2450
	ATATCCCCGG				
CTGTCCCCTT	TTAGTAGCTC		AGATCAGGGA		2500
TTCCATTCTC	ACTTGTACCA	CAGGCAGGAA	GTTGGGGGGC	CCTCAGGGAG	2550
ATGGGGTCTT	GGGGTAAAGG	GGGGATGTCT	ACTCATGTCA	GGGAATTGGG	2600
	GCACAGGCGC				2650
	AATCCACACC				2700
TCACCCAGGA	TGTGGCTTCT	TTTTCACTCC	TGTTTCCAGA	TCTGGGGCAG	2750
GTGAGGACCT	CATTCTCAGA	GGGTGACTCA	GGTCAACGTA	GGGACCCCCA	2800
	AGACAGAGCG				2850
					2900
	GAGGACTGAG				•
	ATCAGCCCTG				2950
GGGCCGTCTG	CCGAGGTCCT	TCCGTTATCC	TGGGATCATT	GATGTCAGGG	3000
ACGGGGAGGC	CTTGGTCTGA	GAAGGCTGCG	CTCAGGTCAG	TAGAGGGAGC	3050
	CTGCCAGGAG				3150
	TAATTCCAAT				3200
	GCACGTGTGG				3250
TCCTTATCAT	GGATGTGAAC	TCTTGATTTG	GATTTCTCAG	ACCAGCAAAA	3300
	CAGGCCCTGC				3350
	CATCCACTGC				3400
	GTAGCACTGA				3450
	GTGGATTCCT				3500
GGCCTTGGTC	TGAGACAGTA	TCCTCAGGTC	ACAGAGCAGA	GGATGCACAG	3550
	CAGTGAATGT				3600
GGIGIGCCNG	CUGIGUUIGI	* IGCCCIGNU	TOUNOUND	Josephon	3000

TGCCACAGGA CACATAGGAC TCCACAGAGT CTGGCCTCAC	CTCCCTACTG	3650
TCAGTCCTGT AGAATCGACC TCTGCTGGCC GGCTGTACCC	TGAGTACCCT	3700
CTCACTTCCT CCTTCAGGTT TTCAGGGGAC AGGCCAACCC	AGAGGACAGG	3750
ATTCCCTGGA GGCCACAGAG GAGCACCAAG GAGAAGATCT	CONTRACTOR	
ATTCCCTOCK GOCCACAGAG GAGCACCAAG GAGAAGATCT	GTAAGTAGGC	3800
CTTTGTTAGA GTCTCCAAGG TTCAGTTCTC AGCTGAGGCC	TCTCACACAC	3850
TCCCTCTCTC CCCAGGCCTG TGGGTCTTCA TTGCCCAGCT	CCTGCCCACA	3900
CTCCTGCCTG CTGCCCTGAC GAGAGTCATC		3930
ATG TCT CTT GAG CAG AGG AGT CTG CAC TGC AAG	CCT CAC CAA	3972
and the circumstance and the circumstance and	CCI GAG GAA	
GCC CTT GAG GCC CAA CAA GAG GCC CTG GGC CTG		4014
CAG GCT GCC ACC TCC TCC TCT CCT CTG GTC	CTG GGC ACC	4056
CTG GAG GAG GTG CCC ACT GCT GGG TCA ACA GAT	CCT CCC CAG	4098
AGT CCT CAG GGA GCC TCC GCC TTT CCC ACT ACC		4140
ACT CON CAG AGG CAN CCC AGT GAG GGT TCC AGC	AGC CGT GAA	4182
GAG GAG GGG CCA AGC ACC TCT TGT ATC CTG GAG		4224
	GTT GGT TTT	4266
CTG CTC CTC AAA TAT CGA GCC AGG GAG CCA GTC	ACA AAG GCA	4308
	CAC TGT TTT	4350
	CAG CTG GTC	4392
TTT GGC ATT GAC GTG AAG GAA GCA GAC CCC ACC	GGC CAC TCC	4434
TAT GTC CTT GTC ACC TGC CTA GGT CTC TCC TAT	GAT GGC CTG	4476
CTG GGT GAT AAT CAG ATC ATG CCC AAG ACA GGC	TTC CTC ATA	4518
ATT GTC CTG GTC ATG ATT GCA ATG GAG GGC GGC	CAM COM COM	
		4560
GAG GAG GAA ATC TGG GAG GAG CTG AGT GTG ATG	GAG GTG TAT	4602
GAT GGG AGG GAG CAC AGT GCC TAT GGG GAG CCC	AGG AAG CTG	4644
CTC ACC CAA GAT TTG GTG CAG GAA AAG TAC CTG	GAG TAC GGC	4686
AGG TGC CGG ACA GTG ATC CCG CAC GCT ATG AGT		4728
GTC CAA GGG CCC TCG CTG AAA CCA GCT ATG TGA	100 101 000	
		4761
AAGTCCTTGA GTATGTGATC AAGGTCAGTG CAAGAGTTC		4800
GCTTTTCTT CCCATCCCTG CGTGAAGCAG CTTTGAGAGA	GGAGGAAGAG	4850
GGAGTCTGAG CATGAGTTGC AGCCAAGGCC AGTGGGAGGG		4900
AGTGCACCTT CCAGGGCCGC GTCCAGCAGC TTCCCCTGCC		4950
	TCGTGTGACA	
TGAGGCCCAT TCTTCACTCT GAAGAGAGCG GTCAGTGTTC		5000
	CTCTTTTGGA	5050
ATTGTTCAAA TGTTTTTTTT TAAGGGATGG TTGAATGAAC	TTCAGCATCC	5100
AAGTTTATGA ATGACAGCAG TCACACAGTT CTGTGTATAT	AGTTTAAGGG	5150
TAAGAGTCTT GTGTTTTATT CAGATTGGGA AATCCATTCT		5200
		-
	GAAAAATGAG	5250
CAGTAAAATA GATGAGATAA AGAACTAAAG AAATTAAGAG	ATAGTCAATT	5300
CTTGCCTTAT ACCTCAGTCT ATTCTGTAAA ATTTTTAAAG	ATATATGCAT	5350
ACCTGGATTT CCTTGGCTTC TTTGAGAATG TAAGAGAAAT	TAAATCTGAA	5400
	GCACTGAGCA	5450
	AAGGTAAGCC	5500
	GCAGTCACGT	5550
AATCGAGGTG GCAAGATGTC CTCTAAAGAT GTAGGGAAAA	GTGAGAGAGG	5600
	AATGCCCTGA	5650
GCTGGGGCAT TTTGGGCTTT GGGAAACTGC AGTTCCTTCT		
	GGGGGAGCTG	5700
ATTGTAATGA TCTTGGGTGG ATCC		5724

- (2) INFORMATION FOR SEQUENCE ID NO: 9:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4157 base pairs
 (B) TYPE: nucleic acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-2 gene (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

CCCATCCAGA	TCCCCATCCG	GGCAGAATCC	GGTTCCACCC	TTGCCGTGAA	50
CCCAGGGAAG	TCACGGGCCC	GGATGTGACG	CCACTGACTT	GCACATTGGA	100
GGTCAGAGGA	CAGCGAGATT	CTCGCCCTGA	GCAACGGCCT	GACGTCGGCG	150
GAGGGAAGCA	GGCGCAGGCT	CCGTGAGGAG	GCAAGGTAAG	ACGCCGAGGG	200
AGGACTGAGG	CGGGCCTCAC	CCCAGACAGA	GGGCCCCCAA	TTAATCCAGC	250

				•	
GCTGCCTCTG	CTGCCGGGCC	TGGACCACCC	TGCAGGGGAA	GACTTCTCAG	300
GCTCAGTCGC	CACCACCTCA	CCCCGCCACC	CCCCGCCGCT	TTAACCGCAG	350
GGAACTCTGG	CGTAAGAGCT	TTGTGTGACC	AGGGCAGGGC	TGGTTAGAAG	400
TGCTCAGGGC	CCAGACTCAG	CCAGGAATCA	AGGTCAGGAC	CCCAAGAGGG	450
GACTGAGGGC	AACCCACCCC	CTACCCTCAC	TACCAATCCC	ATCCCCCAAC	500
ACCAACCCCA	CCCCCATCCC		ACCCCACCC	CAAACCCCAT	550
TCCCATCTCC		CCATCCTGGC	AGAATCCGCC	TTTCCCCCTC	
	ACCGAACCTC	CGGGAATGGC	GGCCAACCAC	CCCCARCORC	600
ACGTTCACAT	GTACGGCTAA	GGGAGGGAAG	CCCTTCCCTC		650
	ATGCAGAGGA				700
TCCTTACCCC	ACCCACCAGG	CCAGGACAGG	CCTCCTGGAA	GACAGTGGAG	750
TCAAACTCAC					800
CCCACCTGAG	CCACCITITC	ATTCAGCCGA	GGGAATCCTA	GGGATGCAGA	850
CCCACTTCAG	GGGGTTGGGG	CCCAGCCTGC	GAGGAGTCAA	GGGGAGGAAG	900
AAGAGGGAGG	ACTGAGGGGA	CCTTGGAGTC	CAGATCAGTG	GCAACCTTGG	950
GCTGGGGGAT	CCTGGGCACA		GTGCCCCGTG	CTCATTGCAC	1000
	ACAGAGAGTT	GAGGGCTGTG	GTCTGAGGGC	TGGGACTTCA	1050
GGTCAGCAGA	GGGAGGAATC	CCAGGATCTG	CCGGACCCAA	GGTGTGCCCC	1100
CTTCATGAGG	ACTCCCCATA	CCCCCGGCCC	AGAAAGAAGG	GATGCCACAG	1150
AGTCTGGAAG	TAAATTGTTC	TTAGCTCTGG	GGGAACCTGA	TCAGGGATGG	1200
CCCTAAGTGA	CAATCTCATT	TGTACCACAG	GCAGGAGGTT	GGGGAACCCT	1250
CAGGGAGATA	AGGTGTTGGT	GTAAAGAGGA	GCTGTCTGCT	CATTTCAGGG	1300
GGTTCCCCCT	TGAGAAAGGG	CAGTCCCTGG	CAGGAGTAAA	GATGAGTAAC	1350
CCACAGGAGG	CCATCATAAC	GTTCACCCTA	GAACCAAAGG	GGTCAGCCCT	1400
GGACAACGCA	CGTGGGGTAA	CAGGATGTGG	CCCCTCCTCA	CTTCTCTTTTC	
CAGATCTCAG	GGAGTTGATG	ACCTTGTTTT	CACAACCTCA	CTCACTCAAC	1450
ACAGGGGCCC	CTCTGGTCGA	CAGATGCAGT	GGTTCTACCA	TOTOGORAGO	1500
ATCCAGGTGG	AGAGCCTGAG	GTAGGATTGA	CCCTACCCCT	CCCCCAAGC	1550
GCAGCAAGGG	GGCCCCATAG	AAATCTCCCC			1600
AGACCCTGGG	CAGGGCTGTC		TGCCCCTGCG	GTTACTTCAG	1650
TGATGTCAGG			CCTCCATTAT	CTGGGATCTT	1700
GTAGAGGGAG		CCTTGGTCTG	AAGGGGCTGG	AGTCAGGTCA	1750
	CCAGGACACC	CCTGCCAGGA	GTGGACGTGA	GGACCAAGCG	1800
	GAGGACCTGG	TGGACTCCAA			1850
				GTCCCCTCTA	1900
	TACCATATCA		TTCTTGACAT	GAGAGATTCT	1950
	AAAGGGTGGG	ATTAGGCCCT	ACAAGGAGAA	AGGTGAGGGC	2000
CCTGAGTGAG	CACAGAGGGG	ACCCTCCACC	CAAGTAGAGT	GGGGACCTCA	2050
CGGAGTCTGG		TGAGACTTCT	GGGAATCCGT	GGCTGTGCTT	2100
GCAGTCTGCA		CCGTGCATTC	CTCTCCCAGG	AATCAGGAGC	2150
TCCAGGAACC	AGGCAGTGAG		GAGTCAGTGC	CTCAGGTCAC	2200
AGAGCAGAGG		AGTGCCAACA		GCCTGGAATG	2250
CACACCAAGG	GCCCCACCCG	CCCAGAACAA	ATGGGACTCC	AGAGGGCCTG	2300
GCCTCACCCT	CCCTATTCTC	AGTCCTGCAG	CCTGAGCATG	TGCTGGCCGG	2350
CTGTACCCTG	AGGTGCCCTC			TGAGGGGGAC	2400
AGGCTGACAA		AGGCACTGGA	GGAGCATTGA	AGGAGAAGAT	2450
CTGTAAGTAA	GCCTTTGTCA	GAGCCTCCAA	GGTTCAGTTC	AGTTCTCACC	2500
TAAGGCCTCA	CACACGCTCC	TTCTCTCCCC	AGGCCTGTGG	CTCTTCATTC	2550
CCCAGCTCCT	GCCCGCACTC	CTGCCTGCTG	CCCTGACCAG	ACTCATC	2597
ATG CCT CTT	GAG CAG AG	G AGT CAG C	AC TGC AAG	CCT GAA GAA	2639
GGC CTT GAG	GCC CGA GG	A GAG GCC C	TG GGC CTG	CTC CCT CCC	
CAG GCT CCT	GCT ACT GA	G GAG CAG C	AC ACC CCM	TO GGI GCG	2681
TCT ACT CTA	GTG GAA GT	T ACC CTG G	CC CAC COC	TOT TOO TOT	2723
GAC TCA CCG	AGT CCT CC	C CAC AGT C	CE CAC GIG	CCT GCT GCC	2765
TTC TCC ACT	DOC ATO AN	C TAC ACT C	CI CAG GGA	GCC TCC AGC	2807
GAG GGC TCC	DCC DDC CD	A CAR GAG G	TT TGG AGA	CAA TCC GAT	2849
CCC CAC CTC	CAC MAC CA	A GAA GAG G	AG GGG CCA	AGA ATG TTT	2891
ATC CEE CAC	DEC CEE	G TTC CAA G	CA GCA ATC	AGT AGG AAG	2933
ALC CIT CAC	TIG GIT CA	T TTT CTG C	TC CTC AAG	TAT CGA GCC	2975
AGG GAG CCG	GTC ACA AA	G GCA GAA A	TG CTG GAG	AGT GTC CTC	3017
AGA AAT TGC	CAG GAC TT	C TTT CCC G	TG ATC TTC	AGC AAA GCC	3059
TOO GAG TAC	TTG CAG CT	G GTC TTT G	GC ATC GAG	GTG GTG GAA	3101
GTG GTC CCC	ATC AGC CA	C TTG TAC A	TC CTT GTC	ACC TGC CTG	3143
GGC CTC TCC	TAC GAT GG	C CTG CTG G	GC GAC AAT	CAG GTC ATG	3185
CCC AAG ACA	GGC CTC CT	G ATA ATC G	TC CTG GCC	ATA ATC GCA	3227
ATA GAG GGC	GAC TGT GC	C CCT GAG G	AG AAA ATC '	TGG GAG GAG	3269
CTG AGT ATG	TTG GAG GT	G TTT GAG G	GG AGG GAG	GAC AGT GTC	3311
TTC GCA CAI	'CCC AGG AA	G CTG CTC A	TG CAA GAT	CTG GTG CAG	3353
GAA AAC TAC	CTG GAG TA	C CGG CAG G	TG CCC GGC	AGT GAT COT	3395
				GAI CCI	2273

	74
GCA TGC TAC GAG TTC CTG TGG GGT CACC AGC TAT GTG AAA GTC CTG CAC CGGA GAA CCT CAC ATT TCC TAC CCA CTTG AGA GAG GGA GAA GAG GGA GAA GAG TGA GTCTCCAGCAC ATGTTGCAGC CAGGGCCAGT GCACCTTCCA GGCCCCATC CATTAGCTTC GGCCCATTCC TGCCTCTTTG AAGAGAGCAG TTTCTGTTCT GTTGGATGAC TTTGAGATTT TTGTTCAAAT GTTCCTTTTA ACAAATGGTT GTTTATGAAT GACAGTAGTC ACACATAGTG TAAGAGTCCT GTTTTTATT CAGATTGGGA TTGTCACATA ATAACAGCAG TGGAATATGT AATTAGCAGT AAAATACATG ATACAAGGAA TGCCTTATAC CTCAGTCTAT TATGTAAAAT TGCTTCTTTG AGAATGCAAA AGAAATTAAA TCACTGGCTC ATTTCTTTAC CATTCACTCA CCTGGTAGTA GTGGG	AT ACA CTA AAG ATC GGT 3479 CC CTG CAT GAA CGG GCT 3521 GGGAGGGGT CTGGGCCAGT 3592 CACTGCCTCG TGTGATATGA 3642 TCAGCATTCT TAGCAGTGAG 3692 ATCTTTCTTT CCTGTTGGAA 3742 GGATGAACTT CAGCATCCAA 3792 CTGTTTATAT AGTTTAGGGG 3842 AATCCATTCC ATTTTGTGAG 3892 ATTTGCCTAT ATTGTGAG 3942 CTCAAAAGAT AGTTAATTCT 3992 TAAAAATATG TGTATGTTTT 4042 TCTGAATAAA TTCTTCCTGT 4092
(2) INFORMATION FOR SEQUENCE IN (i) SEQUENCE CHARACTERISTIC (A) LENGTH: 662 base (B) TYPE: nucleic a (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomi (ix) FEATURE: (A) NAME/KEY: MAGE-2 (xi) SEQUENCE DESCRIPTION:	NO: 10: S: pairs cid c DNA 1 gene

			TCCACCCCTG		50
			CTGACTTGCG		100
CAGAGAACAG	CGAGATTCTC	GCCCTGAGCA	ACGGCCTGAC	GTCGGCGGAG	150
GGAAGCAGGC	GCAGGCTCCG	TGAGGAGGCA	AGGTAAGATG	CCGAGGGAGG	200
ACTGAGGCGG	GCCTCACCCC	AGACAGAGGG	CCCCCAATAA	TCCAGCGCTG	250
CCTCTGCTGC	CAGGCCTGGA	CCACCCTGCA	GGGGAAGACT	TCTCAGGCTC	300
AGTCGCCACC	ACCTCACCCC	GCCACCCCC	GCCGCTTTAA	CCGCAGGGAA	350
CTCTGGTGTA	AGAGCTTTGT	GTGACCAGGG	CAGGGCTGGT	TAGAAGTGCT	400
CAGGGCCCAG	ACTCAGCCAG	GAATCAAGGT	CAGGACCCCA	AGAGGGGACT	450
GAGGGTAACC	CCCCGCACC	CCCACCACCA	TTCCCATCCC	CCAACACCAA	500
CCCCACCCC	ATCCCCCAAC	ACCAAACCCA	CCACCATCGC	TCAAACATCA	550
ACGGCACCCC	CAAACCCCGA	TTCCCATCCC	CACCCATCCT	GGCAGAATCG	600
GAGCTTTGCC	CCTGCAATCA	ACCCACGGAA	GCTCCGGGAA	TGGCGGCCAA	650
GCACGCGGAT	CC				662

- (2) INFORMATION FOR SEQUENCE ID NO: 11: (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 1640 base pairs
 (B) TYPE: nucleic acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: cDNA to mRNA
 (ix) FEATURE:

 - (A) NAME/KEY: cDNA MAGE-3
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GCCGCGAGGG AAGCCGGCCC AGGCTCGGTG AGGAGGCAAG GTTCTGAGGG	50
GACAGGCTGA CCTGGAGGAC CAGAGGCCCC CGGAGGAGCA CTGAAGGAGA	100
AGATCTGCCA GTGGGTCTCC ATTGCCCAGC TCCTGCCCAC ACTCCCGCCT	150
GTTGCCCTGA CCAGAGTCAT C	171
ATG CCT CTT GAG CAG AGG AGT CAG CAC TGC AAG CCT GAA GAA	213
GGC CTT GAG GCC CGA GGA GAG GCC CTG GGC CTG GGT GCG	255
CAG GCT CCT GCT ACT GAG GAG CAG GAG GCT GCC TCC TCT	297
TCT ACT CTA GTT GAA GTC ACC CTG GGG GAG GTG CCT GCC	339

GAG	TCA	CCA	GAT	CCT	CCC	CAG	AGT	CCT	CAG	GGA	GCC	TCC	AGC	- 381
CTC	CCC	ACT	ACC	ATG	AAC	TAC	CCT	CTC	TGG	AGC	CAA	TCC	TAT	423
GAG	GAC	TCC	AGC	AAC	CAA	GAA	GAG	GAG	GGG	CCA	AGC	ACC	TTC	465
CCT	GAC	CTG	GAG	TCC	GAG	TTC	CAA	GCA	GCA	CTC	AGT	AGG	AAG	507
GTG	GCC	GAG	TTG	GTT	CAT	TTT	CTG	CTC	CTC	AAG	TAT	CGA	GCC	549
AGG	GAG	CCG	GTC	ACA	AAG	GCA	GAA	ATG	CTG	GGG	AGT	GTC	GTC	591
GGA	AAT	TGG	CAG	TAT	TTC	TTT	CCT	GTG	ATC	TTC	AGC	AAA	GCT	633
TCC	AGT	TCC	TTG	CAG	CTG	GTC	TTT	GGC	ATC	GAG	CTG	ATG	GAA	675
GTG	GAC	CCC	ATC	GGC	CAC	TTG	TAC	ATC	TTT	GCC	ACC	TGC	CTG	717
GGC	CTC	TCC	TAC	GAT	GGC	CTG	CTG	GGT	GAC	AAT	CAG	ATC	ATG	759
CCC	AAG	GCA	GGC	CTC	CTG	ATA	ATC	GTC	CTG	GCC	ATA	ATC	GCA	801
AGA	GAG	GGC	GAC	TGT	GCC	CCT	GAG	GAG	AAA	ATC	TGG	GAG	GAG	843
CTG	AGT	GTG	TTA	GAG	GTG	TTT	GAG	GGG	AGG	GAA	GAC	AGT	ATG	885
TTG	GGG	GAT	CCC	AAG	AAG	CTG	CTC	ACC	CAA	CAT	TTC	GTG	CAG	927
GAA	AAC	TAC	CTG	GAG	TAC	CGG	CAG	GTC	CCC	GGC	AGT	GAT	CCT	969
GCA	TGT	TAT	GAA	TTC	CTG	TGG	GGT	CCA	AGG	GCC	CTC	GTT	GAA	1011
ACC	AGC	TAT	GTG	AAA	GTC	CTG	CAC	CAT	ATG	GTA	AAG	ATC	AGT	1053
GGA	GGA	CCT	CAC	ATT	TCC	TAC	CCA	CCC	CTG	CAT	GAG	TGG	GTT	1095
TTG	AGA	GAG	GGG	GAA	GAG	TGA								1116
GTCT	GAG	CAC	GAGT	rgca(C C	AGGG	CCAG	CGC	BAGG	GGGT	CTG	GCC1	AGT	1166
GCAC	CTTC	CCG (GGC	CGCA	rc co	CTTAC	STTTC	CAC	CTGC	CTCC	TGT	GACG?	TGA	1216
GGCC	CAT	rcr :	CAC:	rctt?	rg Ai	AĞCGZ	AGCAC	TC	AGCA	TTCT	TAG	PAGT	GGG	1266
TTTC	CTGT	CT (STTG	GATG	AC T	TGAC	SATT	A TTC	CTTTC	STTT	CCT	GTTG	GAG	1316
TTGI	TCA	AAT (GTTC	CTTT	CA AC	CGGA	rggti	C GA	ATGAC	CGT	CAG	CATC	CAG	1366
GTTI	CATG	AAT (GACA	GTAG	C A	CACA	PAGTO	CTO	STTTI	TAT	AGT:	TTAG	GAG	1416
TAAC	AGT	CTT (GttT'	CTTAC	CT C	AAAT?	rgGG <i>I</i>	AA A	CCA?	TTCC	ATT:	rtgt	GAA	1466
TTGT	rgaci	ATA A	ATAA:	ragc?	AG TO	GTA	AAAG?	TA T	rtgc:	TAA	AAT:	rgtg!	AGC	1516
			raac:											1566
ATTO	CTTG	CCT ?	rgta(CCTC			CTG	IAA 1	ATTA	AAAC	AAA:	ratgo	CAA	1616
ACC	GGA:	TTT (CCTT	GACT:	rc T	ГТG								1640

- INFORMATION FOR SEQUENCE ID NO: 12: (i) SEQUENCE CHARACTERISTICS: (2)

 - (A) LENGTH: 943 base pairs
 (B) TYPE: nucleic acid
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: genomic DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: MAGE-31 gene (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

GGATCCTCCA	CCCCAGT	AGA GTGGG	GACCT	CACAGAG	TCT	GGCCAACC	CT	50
CCTGACAGTT	CTGGGAAT	CC GTGGC	TGCGT	TTGCTGT	CTG	CACATTGG	GG	100
GCCCGTGGAT	TCCTCTCC	CA GGAAT	CAGGA	GCTCCAG	GAA	CAAGGCAG	TG	150
AGGACTTGGT	CTGAGGC	GT GTCCT	CAGGT	CACAGAG	TAG	AGGGGGCT	CA	200
GATAGTGCCA	ACGGTGA	AGG TTTGC	CTTGG	ATTCAAA	CCA	AGGGCCCC	AC	250
CTGCCCCAGA	ACACATGO	AC TCCAG	AGCGC	CTGGCCT	CAC	CCTCAATA	CT	300
TTCAGTCCTG	CAGCCTC	AGC ATGCG	CTGGC	CGGATGI	ACC	CTGAGGTG	CC	350
CTCTCACTTC	CTCCTTC	AGG TTCTG	AGGGG	ACAGGCT	GAC	CTGGAGGA	CC	400
AGAGGCCCCC	GGAGGAGG	CAC TGAAG	GAGAA	GATCTGT	AAG	TAAGCCTT	TG	450
TTAGAGCCTC	CAAGGTT	CCA TTCAG	TACTC	AGCTGAG	GTC	TCTCACAT	GC	500
TCCCTCTCTC	CCCAGGC	CAG TGGGT	CTCCA	TTGCCCA	GCT	CCTGCCCA	CA	550
CTCCCGCCTG	TTGCCCT	AC CAGAG	TCATC					580
ATG CCT CT	T GAG CAG	AGG AGT	CAG	CAC TGC	AAG	CCT GAA	GAA	622
GGC CTT GA	G GCC CG?	A GGA GAG	GCC	CTG GGC	CTG	GTG GGT	GCG	664
CAG GCT CC	T GCT ACT	C GAG GAG	CAG	GAG GCT	GCC	TÇC TCC	TCT	706
TCT AGT GT	A GTT GAI	A GTC ACC	CTG	GGG GAG	GTG	CCT GCT	GCC	748
GAG TCA CC	A GAT CC	CCC CAG	AGT	CCT CAG	GGA	GCC TCC	AGC	790
CTC CCC AC	T ACC ATO	AAC TAC	CCT	CTC TGG	AGC	CAA TCC	TAT	832
GAG GAC TO	C AGC AAG	CAA GAA	GAG	GAG GGG	CCA	AGC ACC	TTC	874
CCT GAC CT	G GAG TC	r GAG TTC	CAA	GCA GCA	CTC	AGT AGG	AAG	916
GTG GCC AA	G TTG GT	r cat tti	CTG	CTC				943

76

(2) INFORMATION FOR SEQUENCE ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2531 base pairs

(B) TYPE: nucleic acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-4 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

			GCCCTGAGT		50
GGGATCATCC .	ACTCCATGAG	AGTGGGGAC	CTCACAGAGTC	CAGCCTACCC	100
			CTTACAGTCT		150
GGCCCATGGA	TTCCTCTCCT	AGGAGCTCC	GGAACAAGGC	AGTGAGGCCT	200
			GCAGAGGATG		250
			ACCAAGGCC		300
			CTCACCTCCC		350
			TACCCTGAGG		400
			CAACCGGAGA		450
			ATCTGTAAGT		500
			GGTCTCTCAC		550
			AGCTTTTGCC	TGCACTCTTG	600
CCTGCTGCCC					624
			CAC TGC AAG		666
			CTG GGC CTG		708
			GAG GCT GCT		750
TCC TCT CCT	CTG GTC CC	T GGC ACC	CTG GAG GAA	GTG CCT GCT	792
GCT GAG TCA	GCA GGT CC	T CCC CAG	AGT CCT CAG	GGA GCC TCT	834
GCC TTA CCC	ACT ACC AT	C AGC TTC	ACT TGC TGG	AGG CAA CCC	876
AAT GAG GGT	TCC AGC AG	C CAA GAA	GAG GAG GGG	CCA AGC ACC	918
TCG CCT GAC	GCA GAG TO	C TTG TTC	CGA GAA GCA	CTC AGT AAC	960
			CTG CTC CGC		1002
			GAA ATG CTG		1044
			CCT GTG ATC		1086
			TTT GGC ATT		1128
			TAC ACC CTT		1170
			CTG GGT AAT		1212
			ATC GTC CTG		1254
			GAG GAG GAA		1296
			GAT GGG AGG		1338
			CTC ACC CAA		1380
			CAG GTA CCC		1422
			GGT CCA AGG		1464
			GAG CAT GTG		
			CCA TCC CTG		1506
GCT TTG TTA				CGT GAA GCA	1548
				~~~~	1578
			GGGCAGGGCT		1628
			GCCTCGTGTA		1678
			AGTGTTCTTA		1728
			CTCTGTTTCC		1778
			ATTAACTTCA		1828
			TAATATAGTT		1878
			CCTTCTATTT		1928
			TAGAAGTGTG		1978
			P AATTCCCGCC		2028
			C GCATACCTGG		2078
			TTAATAATA F		2128
			C ATCTGCTCTG		2178
AGGATTAGTA	GTGGAGATAC	TAGGGTAAG	CAGACACACA	CCTACCGATA	2228
			TAATTAAGGT		2278
CCTCTAAGAT	GTAGGGGAAA	AGTAACGAG!	GTGGGTATGG	GGCTCCAGGT	2328
GAGAGTGGTC	GGGTGTAAAT	TCCCTGTGTG	GGGCCTTTTG	GGCTTTGGGA	2378
AACTGCATTT	TCTTCTGAGG	GATCTGATT	CTAATGAAGCT	TGGTGGGTCC	2428

AGGGCCAGAT TCTCAGAGGG AGAGGGAAAA GCCCAGATTG GAAAAGTTGC

TCTGAGCAGT	TCCTTTGTGA	CAATGGATGA	ACAGAGAGGA	GCCTCTACCT	2528
GGG					2531

- INFORMATION FOR SEQUENCE ID NO: 14:

  (i) SEQUENCE CHARACTERISTICS:

  (A) LENGTH: 2531 base pairs

  (B) TYPE: nucleic acid

  (D) TOPOLOGY: linear

  (ii) MOLECULE TYPE: genomic DNA

  (ix) FEATURE: (2)

  - (ix) FEATURE:
  - (A) NAME/KEY: MAGE-41 gene (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

GGATCCAGGC CCTGCCTGGA GAAATG	TGAG GGCCCTGAGT	GAACACAGTG	50
GGGATCATCC ACTCCATGAG AGTGGGG	GACC TCACAGAGTC	CAGCCTACCC	100
TCTTGATGGC ACTGAGGGAC CGGGGC	TGTG CTTACAGTCT	GCACCCTAAG	150
GGCCCATGGA TTCCTCTCT AGGAGC	TCCA GGAACAAGGC	AGTGAGGCCT	200
TGGTCTGAGA CAGTGTCCTC AGGTTAG			250
GCCAGCAGTG AATGTTTGCC CTGAATG	+		300
CAAGACACAT AGGACTCCAA AGAGTC			350
			400
CCTGCAGAAT CGACCTCTGC TGGCCGC			
CTTCCTCCTT CAGGTTCTGA GCAGAC			450
TGGAGGCCAC AGAGGAGCAC CAAGGAG			500
TAGAGCCTCT AAGATTTGGT TCTCAG			550
TCTCCGTAGG CCTGTGGGTC CCCATT	GCCC AGCTTTTGCC	TGCACTCTTG	600
CCTGCTGCCC TGAGCAGAGT CATC			624
ATG TCT TCT GAG CAG AAG AGT			666
GGC GTT GAG GCC CAA GAA GAG	GCC CTG GGC CTG	GTG GGT GCG	708
CAG GCT CCT ACT ACT GAG GAG	CAG GAG GCT GCT	GTC TCC TCC	750
TCC TCT CCT CTG GTC CCT GGC	ACC CTG GAG GAA	GTG CCT GCT	792
GCT GAG TCA GCA GGT CCT CCC	CAG AGT CCT CAG	GGA GCC TCT	834
GCC TTA CCC ACT ACC ATC AGC '	TTC ACT TGC TGG	AGG CAA CCC	876
AAT GAG GGT TCC AGC AGC CAA	GAA GAG GAG GGG	CCA AGC ACC	918
TCG CCT GAC GCA GAG TCC TTG	TTC CGA GAA GCA	CTC AGT AAC	960
AAG GTG GAT GAG TTG GCT CAT	TTT CTG CTC CGC	AAG TAT CGA	1002
GCC AAG GAG CTG GTC ACA AAG			1044
	TTT CCT GTG ATC		1086
GCC TCC GAG TCC CTG AAG ATG			1128
GAA GTG GAC CCC ACC AGC AAC			1170
CTG GGC CTT TCC TAT GAT GGC			1212
			1254
GCA ATG GAG GGC GAC AGC GCC			1296
GAG CTG GGT GTG ATG GGG GTG			1338
GTC TAT GGG GAG CCC AGG AAA			1380
CAG GAA AAC TAC CTG GAG TAC			1422
CCT GCG CGC TAT GAG TTC CTG			1464
GAA ACC AGC TAT GTG AAA GTC			1506
AAT GCA AGA GTT CGC ATT GCC	TAC CCA TCC CTG	CGT GAA GCA	1548
GCT TTG TTA GAG GAG GAA GAG	GGA GTC TGA		1578
GCATGAGTTG CAGCCAGGGC TGTGGG	GAAG GGGCAGGGCT	GGGCCAGTGC	1628
ATCTAACAGC CCTGTGCAGC AGCTTC	CCTT GCCTCGTGTA	ACATGAGGCC	1678
CATTCTTCAC TCTGTTTGAA GAAAAT.	AGTC AGTGTTCTTA	GTAGTGGGTT	1728
TCTATTTTGT TGGATGACTT GGAGAT	TTAT CTCTGTTTCC	TTTTACAATT	1778
GTTGAAATGT TCCTTTTAAT GGATGG	TTGA ATTAACTTCA	GCATCCAAGT	1828
TTATGAATCG TAGTTAACGT ATATTG			1878
AGTCTTGTTT TTTATTCAGA TTGGGA			1928
GGACATAATA ACAGCAGTGG AGTAAG			1978
GAAATAGGTG AGATAAATTA AAAGAT		TTATGCCTCA	2028
GTCTATTCTG TAAAATTTAA AAATAT			2078
CTTCGTGAAT GTAAGAGAAA TTAAAT		CTTTCTGTTA	2128
			2178
ACTGGCTCAT TTCTTCTCTA TGCACT			
AGGATTAGTA GTGGAGATAC TAGGGT	TAAGC CAGACACACA	CCTACCGATA	2228

				GACAAGATGT	2278
				GGCTCCAGGT	2328
				GGCTTTGGGA	2378
				TGGTGGGTCC	2428
				GAAAAGTTGC	2478
	TCCTTTGTGA	CAATGGATGA	ACAGAGAGGA	GCCTCTACCT	2528
GGG					2531

- INFORMATION FOR SEQUENCE ID NO: 15: (2)
  - (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1068 base pairs
    (B) TYPE: nucleic acid
    (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: cDNA to mRNA
  - (ix) FEATURE:
    - (A) NAME/KEY: cDNA MAGE-4
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

G GGG CCA AGC ACC TCG CCT GAC GCA GAG TCC TTG TTC	CGA 40
GAA GCA CTC AGT AAC AAG GTG GAT GAG TTG GCT CAT TTT	CTG 82
CTC CGC AAG TAT CGA GCC AAG GAG CTG GTC ACA AAG GCA	GAA 124
ATG CTG GAG AGA GTC ATC AAA AAT TAC AAG CGC TGC TTT	CCT 166
GTG ATC TTC GGC AAA GCC TCC GAG TCC CTG AAG ATG ATC	TTT 208
	TAC 250
ACC CTT GTC ACC TGC CTG GGC CTT TCC TAT GAT GGC CTG	CTG 292
GGT AAT AAT CAG ATC TTT CCC AAG ACA GGC CTT CTG ATA	ATC 334
GTC CTG GGC ACA ATT GCA ATG GAG GGC GAC AGC GCC TCT	<b>GAG</b> 376
GAG GAA ATC TGG GAG GAG CTG GGT GTG ATG GGG GTG TAT	GAT 418
GGG AGG GAG CAC ACT GTC TAT GGG GAG CCC AGG AAA CTG	CTC 460
ACC CAA GAT TGG GTG CAG GAA AAC TAC CTG GAG TAC CGG	CAG 502
GTA CCC GGC AGT AAT CCT GCG CGC TAT GAG TTC CTG TGG	GGT 544
CCA AGG GCT CTG GCT GAA ACC AGC TAT GTG AAA GTC CTG	GAG 586
CAT GTG GTC AGG GTC AAT GCA AGA GTT CGC ATT GCC TAC	CCA 628
TCC CTG CGT GAA GCA GCT TTG TTA GAG GAG GAA GAG GGA	GTC 670
TGAGCATGAG TTGCAGCCAG GGCTGTGGGG AAGGGGCAGG GCTGGGCC	CAG 720
TGCATCTAAC AGCCCTGTGC AGCAGCTTCC CTTGCCTCGT GTAACATC	GAG 770
GCCCATTCTT CACTCTGTTT GAAGAAAATA GTCAGTGTTC TTAGTAGT	rgg 820
GTTTCTATTT TGTTGGATGA CTTGGAGATT TATCTCTGTT TCCTTTTA	ACA 870
ATTGTTGAAA TGTTCCTTTT AATGGATGGT TGAATTAACT TCAGCATC	CA 920
AGTTTATGAA TCGTAGTTAA CGTATATTGC TGTTAATATA GTTTAGGA	AGT 970
AAGAGTCTTG TTTTTTATTC AGATTGGGAA ATCCGTTCTA TTTTGTGA	AAT 1020
TTGGGACATA ATAACAGCAG TGGAGTAAGT ATTTAGAAGT GTGAATTC	1068

- (2) INFORMATION FOR SEQUENCE ID NO: 16:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2226 base pairs
    - (B) TYPE: nucleic acid (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
    (ix) FEATURE:
  - - (A) NAME/KEY: MAGE-5 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

. GGATCCAGGC	CTTGCCAGGA	GAAAGGTGAG	GGCCCTGTGT	GAGCACAGAG	50
GGGACCATTC	ACCCCAAGAG	GGTGGAGACC	TCACAGATTC	CAGCCTACCC	100
TCCTGTTAGC	ACTGGGGGCC	TGAGGCTGTG	CTTGCAGTCT	GCACCCTGAG	150
GGCCCATGCA	TTCCTCTTCC	AGGAGCTCCA	GGAAACAGAC	ACTGAGGCCT	200
TGGTCTGAGG					250
TAGTGCCAGC					300

GCCCCAGAAC	<b>ATATGGGACT</b>	CCAGAGCAC	TGGCCTCACC	CTCTCTACTG	¹ 350
TCAGTCCTGC	<b>AGAATCAGCC</b>	TCTGCTTGCT	TGTGTACCCT	GAGGTGCCCT	· 400
CTCACTTTTT	CCTTCAGGTT	CTCAGGGGA	CAGGCTGACCA	GGATCACCAG	-450
GAAGCTCCAG	<b>AGGATCCCCA</b>	GGAGGCCCT	A GAGGAGCACC	AAAGGAGAAG	500
ATCTGTAAGT	<b>AAGCCTTTGT</b>	TAGAGCCTC	C AAGGTTCAGT	TTTTAGCTGA	550
GGCTTCTCAC	ATGCTCCCTC	TCTCTCCAG	CCAGTGGGTC	TCCATTGCCC	600
AGCTCCTGCC	CACACTCCTG	CCTGTTGCGC	TGACCAGAGT	CGTC	644
ATG TCT CTT	GAG CAG A	AG AGT CAG	CAC TGC AAG	CCT GAG GAA	684
CTC CTC TGG	TCC CAG G	CA CCC TGG	GGG AGG TGC	CTG CTG CTG	728
GGT CAC CAC	GTC CTC T	CA AGA GTC	CTC AGG GAG	CCT CCG CCA	770
TCC CCA CTC	CCA TCG A	TT TCA CTC	TAT GGA GGC	AAT CCA TTA	812
AGG GCT CCA	A GCA ACC A	AG AAG AGG	AGG GGC CAA	GCA CCT CCC	854
CTG ACC CAG	AGT CTG T	GT TCC GAG	CAG CAC TCA	GTA AGA AGG	896
TGG CTG ACT	TGA				908
TTCATTTTCT	GCTCCTCAAG	TATTAAGTC	A AGGAGCTGGT	CACAAAGGCA	958
GAAATGCTGG	AGAGCGTCAT	CAAAAATTAG	C AAGCGCTGCT	TTCCTGAGAT	1008
CTTCGGCAAA	GCCTCCGAGT	CCTTGCAGC	GGTCTTTGGC	ATTGACGTGA	1058
AGGAAGCGGA	CCCCACCAGC	AACACCTAC	A CCCTTGTCAC	CTGCCTGGGA	1108
CTCCTATGAT	GGCCTGCTGG	TTGATAATA	A TCAGATCATG	CCCAAGACGG	1158
GCCTCCTGAT	AATCGTCTTG	GGCATGATTO	CAATGGAGGG	CAAATGCGTC	1208
CCTGAGGAGA	AAATCTGGGA	GGAGCTGAG?	C GTGATGAAGG	TGTATGTTGG	1258
GAGGGAGCAC	AGTGTCTGTG	GGGAGCCCA	G GAAGCTGCTC	ACCCAAGATT	1308
TGGTGCAGGA	AAACTACCTG	GAGTACCGG	CAGGTGCCCAG	CAGTGATCCC	1358
ATATGCTATG	AGTTACTGTG	GGGTCCAAG	GCACTCGCTG	CTTGAAAGTA	1408
CTGGAGCACG	TGGTCAGGGT	CAATGCAAG	A GTTCTCATTT	CCTACCCATC	1458
CCTGCGTGAA	GCAGCTTTGA	GAGAGGAGG	A AGAGGGAGTC	TGAGCATGAG	1508
CTGCAGCCAG	GGCCACTGCG	AGGGGGGCTG	GGCCAGTGCA	CCTTCCAGGG	1558
CTCCGTCCAG	TAGTTTCCCC	TGCCTTAAT	G TGACATGAGG	CCCATTCTTC	1608.
TCTCTTTGAA	GAGAGCAGTC	AACATTCTT	A GTAGTGGGTT	TCTGTTCTAT	1658
TGGATGACTT	TGAGATTTGT	CTTTGTTTC	C TTTTGGAATT	GTTCAAATGT	1708
TTCTTTTAAT	GGGTGGTTGA	ATGAACTTC	A GCATTCAAAT	TTATGAATGA	1758
CAGTAGTCAC	ACATAGTGCT	GTTTATATA	G TTTAGGAGTA	AGAGTCTTGT	1808
TTTTTATTCA	GATTGGGAAA	TCCATTCCAT	TTTGTGAATT	GGGACATAGT	1858
TACAGCAGTG	GAATAAGTAT	TCATTTAGA	A ATGTGAATGA	GCAGTAAAAC	1908
TGATGACATA	AAGAAATTAA	AAGATATTT	A ATTCTTGCTT	ATACTCAGTC	1958
TATTCGGTAA	AATTTTTTTT	AAAAAATGT	G CATACCTGGA	TTTCCTTGGC	2008
TTCTTTGAGA	ATGTAAGACA	AATTAAATC'	T GAATAAATCA	TTCTCCCTGT	2058
TCACTGGCTC	ATTTATTCTC			TGTGGAAGGC	2108
CCTGGGTTAA			A GCCAGACTCA		2158
		GCAGCAGTC	A TATAATTAAG	GTGGAGAGAT	2208
GCCCTCTAAG	ATGTAGAG	•			2226

- INFORMATION FOR SEQUENCE ID NO: 17: (2)

  - (i) SEQUENCE CHARACTERISTICS:

    (A) LENGTH: 2305 base pairs

    (B) TYPE: nucleic acid

    (D) TOPOLOGY: linear

    (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
  - (A) NAME/KEY: MAGE-51 gene (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

GGATCCAGGC	CTTGCCAGGA	GAAAGGTGAG	GGCCCTGTGT	GAGCACAGAG	50
GGGACCATTC	ACCCCAAGAG	GGTGGAGACC	TCACAGATTC	CAGCCTACCC	100
TCCTGTTAGC	ACTGGGGGCC	TGAGGCTGTG	CTTGCAGTCT	GCACCCTGAG	150
GGCCCATGCA	TTCCTCTTCC	AGGAGCTCCA	GGAAACAGAC	ACTGAGGCCT	200
TGGTCTGAGG	CCGTGCCCTC	AGGTCACAGA	GCAGAGGAGA	TGCAGACGTC	250
TAGTGCCAGC	AGTGAACGTT	TGCCTTGAAT	GCACACTAAT	GGCCCCCATC	300
GCCCCAGAAC	ATATGGGACT	CCAGAGCACC	TGGCCTCACC	CTCTCTACTG	350
TCAGTCCTGC	AGAATCAGCC	TCTGCTTGCT	TGTGTACCCT	GAGGTGCCCT	400
CTCACTTTTT	CCTTCAGGTT	CTCAGGGGAC	AGGCTGACCA	GGATCACCAG	450
GAAGCTCCAG	AGGATCCCCA	GGAGGCCCTA	GAGGAGCACC	AAAGGAGAAG	500
ATCTGTAAGT	AAGCCTTTGT	TAGAGCCTCC	AAGGTTCAGT	TTTTAGCTGA	550

CCCMMCMC) C	\				
ACCORDENSES	ATGCTCCCTC	TCTCTCCAGG	CCAGTGGGTC		600
	CACACTCCTG	CCTGTTGCGG	TGACCAGAGT	CGTC	644
GGC CTT GAC			CAC TGC AAG		686
			TGG GCC TGG	TGG GTG TGC	728
AGG CTG CCA			AGG CTG TGT	CCT CCT CCT	770
CTC CTC TGC			GGG AGG TGC		812
GGT CAC CAC			CTC AGG GAG		854
TCC CCA CTC		TT TCA CTC	TAT GGA GGC		896
	A GCA ACC A			GCA CCT CCC	938
	AGT CTG T	GT TCC GAG	CAG CAC TCA	GTA AGA AGG	980
TGG CTG ACT					992
_	GCTCCTCAAG		AGGAGCCGGT	CACAAAGGCA	1042
	AGAGCGTCAT		AAGCGCTGCT	TTCCTGAGAT	1092
	GCCTCCGAGT		GGTCTTTGGC	ATTGACGTGA	1142
AGGAAGCGGA	CCCCACCAGC	AACACCTACA	CCCTTGTCAC	CTGCCTGGGA	1192
	GGCCTGGTGG	TTTAATCAGA	TCATGCCCAA	GACGGGCCTC	1242
CTGATAATCG	TCTTGGGCAT	GATTGCAATG	GAGGGCAAAT	GCGTCCCTGA	1292
GGAGAAAATC	TGGGAGGAGC	TGGGTGTGAT	GAAGGTGTAT	GTTGGGAGGG	1342
AGCACAGTGT	CTGTGGGGAG	CCCAGGAAGC	TGCTCACCCA	AGATTTGGTG	1392
CAGGAAAACT	ACCTGGAGTA		CCAGCAGTGA	TCCCATATGC	1442
TATGAGTTAC	TGTGGGGTCC	AAGGGCACTC	GCTGCTTGAA	AGTACTGGAG	1492
	GGGTCAATGC	AAGAGTTCTC	ATTTCCTACC	CATCCCTGCA	1542
	TTGAGAGAGG	AGGAAGAGGG	AGTCTGAGCA	TGAGCTGCAG	1592
CCAGGGCCAC	TGCGAGGGG	GCTGGGCCAG	TGCACCTTCC	AGGGCTCCGT	1642
CCAGTAGTTT	CCCCTGCCTT	AATGTGACAT	GAGGCCCATT	CTTCTCTCTT	1692
TGAAGAGAGC	<b>AGTCAACATT</b>	CTTAGTAGTG	GGTTTCTGTT	CTATTGGATG	1742
ACTTTGAGAT	TTGTCTTTGT	TTCCTTTTGG	AATTGTTCAA	ATGTTCCTTT	1792
TAATGGGTGG	TTGAATGAAC	TTCAGCATTC	AAATTTATGA	ATGACAGTAG	1842
TCACACATAG	TGCTGTTTAT	ATAGTTTAGG	AGTAAGAGTC	TTGTTTTTTA	1892
TTCAGATTGG	GAAATCCATT	CCATTTTGTG	AATTGGGACA	TAGTTACAGC	1942
AGTGGAATAA	GTATTCATTT	AGAAATGTGA	ATGAGCAGTA	AAACTGATGA	1992
GATAAAGAAA	TTAAAAGATA	TTTAATTCTT	GCCTTATACT	CAGTCTATTC	2042
GGTAAAATTT	TTTTTTAAAA	ATGTGCATAC	CTGGATTTCC	TTGGCTTCTT	2092
	AGACAAATTA	AATCTGAATA	AATCATTCTC	CCTGTTCACT	2142
GGCTCATTTA	TTCTCTATGC	ACTGAGCATT	TGCTCTGTGG	AAGGCCCTGG	2142
GTTAATAGTG	GAGATGCTAA	GGTAAGCCAG	ACTCACCCCT	ACCCACAGGG	2242
		AGTCATATAA			2242
CTAAGATGTA					2305
					2303

- (2) INFORMATION FOR SEQUENCE ID NO: 18:
  - (i) SEQUENCE CHARACTERISTICS:

    (A) LENGTH: 225 base pairs

    (B) TYPE: nucleic acid

    (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: cDNA (ix) FEATURE:

  - (A) NAME/KEY: MAGE-6 gene (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

TAT	TTC	TTT	CCT	GTG	ATC	TTC	AGC	AAA	GCT	TCC	GAT	TCC	TTG	42
CAG	CTG	GTC	$\mathtt{TTT}$	GGC	ATC	GAG	CTG	ATG	GAA	GTG	GAC	CCC	ATC	84
GGC	CAC	GTG	TAC	ATC	TTT	GCC	ACC	TGC	CTG	GGC	CTC	TCC	TAC	126
GAT	GGC	CTG	CTG	GGT	GAC	AAT	CAG	ATC	ATG	CCC	AGG	ACA	GGC	168
TTC	CTG	ATA	ATC	ATC	CTG	GCC	ATA	ATC	GCA	AGA	GAG	GGC	GAC	210
TGT	GCC	CCT	GAG	GAG									0	225

```
INFORMATION FOR SEQUENCE ID NO: 19:
(2)
        (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 1947 base pairs
                (B) TYPE: nucleic acid
               (D) TOPOLOGY: linear
        (ii) MOLECULE TYPE: genomic DNA
        (ix) FEATURE:
               (A) NAME/KEY: MAGE-7 gene
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:
TGAATGGACA ACAAGGGCCC CACACTCCCC AGAACACAAG GGACTCCAGA
GAGCCCAGCC TCACCTTCCC TACTGTCAGT CCTGCAGCCT CAGCCTCTGC
                                                                               100
TGGCCGGCTG TACCCTGAGG TGCCCTCTCA CTTCCTCCTT CAGGTTCTCA
GCGGACAGGC CGGCCAGGAG GTCAGAAGCC CCAGGAGGCC CCAGAGGAGC
ACCGAAGGAG AAGATCTGTA AGTAGGCCTT TGTTAGGGCC TCCAGGGCGT
                                                                               150
                                                                               200
                                                                               250
GGTTCACAAA TGAGGCCCCT CACAAGCTCC TTCTCTCCCC AGATCTGTGG
                                                                               300
GTTCCTCCCC ATCGCCCAGC TGCTGCCCGC ACTCCAGCCT GCTGCCCTGA
                                                                               350
CCAGAGTCAT CATGTCTTCT GAGCAGAGGA GTCAGCACTG CAAGCCTGAG
GATGCCTTGA GGCCCAAGGA CAGGAGGCTC TGGGCCTGGT GGGTGCGCAG
                                                                               400
                                                                               450
GCTCCCGCCA CCGAGGAGCA CGAGGCTGCC TCCTCCTTCA CTCTGATTGA
                                                                               500
AGGCACCCTG GAGGAGGTGC CTGCTGCTGG GTCCCCCAGT CCTCCCCTGA
                                                                               550
GTCTCAGGGT TCCTCCTTTT CCCTGACCAT CAGCAACAAC ACTCTATGGA
                                                                               600
GCCAATCCAG TGAGGGCACC AGCAGCCGGG AAGAGGAGGG GCCAACCACC TAGACACCC CCGCTCACCT GGCGTCCTTG TTCCA
                                                                               650
                                                                               685
ATG GGA AGG TGG CTG AGT TGG TTC GCT TCC TGC TGC ACA AGT ATC GAG TCA AGG AGC TGG TCA CAA AGG CAG AAA TGC TGG ACA
                                                                               727
                                                                               769
GTG TCA TCA AAA ATT ACA AGC ACT AGT TTC CTT GTG ATC TAT GGC AAA GCC TCA GAG TGC ATG CAG GTG ATG TTT GGC ATT GAC
                                                                               811
                                                                               853
ATG AAG GAA GTG GAC CCC GCG GCC ACT CCT ACG TCC TTG TCA CCT GCT TGG GCC TCT CCT ACA ATG GCC TGC TGG GTG ATG ATC
                                                                               895
                                                                               937
AGA GCA TGC CCG AGA CCG GCC TTC TGA
                                                                               964
TTATGGTCTT GACCATGATC TTAATGGAGG GCCACTGTGC CCCTGAGGAG
GCAATCTGGG AAGCGTTGAG TGTAATGGTG TATGATGGGA TGGAGCAGTT
                                                                              1014
                                                                              1064
TCTTTGGGCA GCTGAGGAAG CTGCTCACCC AAGATTGGGT GCAGGAAAAC
                                                                              1114
TACCTGCAAT ACCGCCAGGT GCCCAGCAGT GATCCCCGT GCTACCAGTT CCTGTGGGGT CCAAGGGCCC TCATTGAAAC CAGCTATGTG AAAGTCCTGG
                                                                              1164
                                                                              1214
AGTATGCAGC CAGGGTCAGT ACTAAAGAGA GCATTTCCTA CCCATCCCTG
                                                                              1264
CATGAAGAG CTTTGGGAGA GGAGGAAGAG GGAGTCTGAG CAGAAGTTGC
AGCCAGGGCC AGTGGGGCAG ATTGGGGGAG GGCCTGGGCA GTGCACGTTC
                                                                              1364
CACACATCCA CCACCTTCCC TGTCCTGTTA CATGAGGCCC ATTCTTCACT CTGTGTTTGA AGAGAGCAGT CAATGTTCTC AGTAGCGGG AGTGTGTTGG
                                                                              1414
                                                                              1464
GTGTGAGGGA ATACAAGGTG GACCATCTCT CAGTTCCTGT TCTCTTGGGC
GATTTGGAGG TTTATCTTTG TTTCCTTTTG CAGTCGTTCA AATGTTCCTT
TTAATGGATG GTGTAATGAA CTTCAACATT CATTTCATGT ATGACAGTAG
                                                                              1614
GCAGACTTAC TGTTTTTAT ATAGTTAAAA GTAAGTGCAT TGTTTTTAT
TTATGTAAGA AAATCTATGT TATTTCTTGA ATTGGGACAA CATAACATAG
                                                                              1714
CAGAGGATTA AGTACCTTTT ATAATGTGAA AGAACAAAGC GGTAAAATGG
GTGAGATAAA GAAATAAAGA AATTAAATTG GCTGGGCACG GTGGCTCACG
                                                                              1814
CCTGTAATCC CAGCACTTTA GGAGGCAGAG GCACGGGGAT CACGAGGTCA
GGAGATCGAG ACCATTCTGG CTAACACAGT GAAACACCAT CTCTATTAAA
                                                                              1864
                                                                              1914
AATACAAAAC TTAGCCGGGC GTGGTGGCGG GTG
(2)
        INFORMATION FOR SEQUENCE ID NO: 20:
        (i) SEQUENCE CHARACTERISTICS:
                (A) LENGTH: 1810 base pairs
                (B) TYPE: nucleic acid
                (D) TOPOLOGY: linear
OLECULE TYPE: genomic DNA
        (ii) MOLECULE TYPE:
        (ix) FEATURE:
                (A) NAME/KEY: MAGE-8 gene
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:
GAGCTCCAGG AACCAGGCTG TGAGGTCTTG GTCTGAGGCA GTATCTTCAA
                                                                                 50
```

TCACAGAGCA TAAGAGGCCC AGGCAGTAGT AGCAGTCAAG CTGAGGTGGT

GTTTCCCCTG TATGTATACC AGAGGCCCCT CTGGCATCAG	AACAGCAGGA	150
		150
ACCCCACAGT TCCTGGCCCT ACCAGCCCTT TTGTCAGTCC		200
GCCTTTGCCA GGAGGCTGCA CCCTGAGATG CCCTCTCAAT		250
GGTTCGCAGA GAACAGGCCA GCCAGGAGGT CAGGAGGCCC		300
	GGGTGTAGTA	350
CCCAGCTGAG GCCTCTCACA CGCTTCCTCT CTCCCCAGGC		400
	CCTGAGTCAT	450
C		451
ATG CTT CTT GGG CAG AAG AGT CAG CGC TAC AAG	GCT GAG GAA	493
GGC CTT CAG GCC CAA GGA GAG GCA CCA GGG CTT	ATG GAT GTG	535
CAG ATT CCC ACA GCT GAG GAG CAG AAG GCT GCA	TCC TCC TCC	577
TCT ACT CTG ATC ATG GGA ACC CTT GAG GAG GTG	ACT GAT TCT	619
GGG TCA CCA AGT CCT CCC CAG AGT CCT GAG GGT	GCC TCC TCT	661
TCC CTG ACT GTC ACC GAC AGC ACT CTG TGG AGC	CAA TCC GAT	703
GAG GGT TCC AGC AGC AAT GAA GAG GAG GGG CCA	AGC ACC TCC	745
CCG GAC CCA GCT CAC CTG GAG TCC CTG TTC CGG	GAA GCA CTT	787
GAT GAG AAA GTG GCT GAG TTA GTT CGT TTC CTG	CTC CGC AAA	829
TAT CAA ATT AAG GAG CCG GTC ACA AAG GCA GAA	ATG CTT GAG	871
AGT GTC ATC AAA AAT TAC AAG AAC CAC TTT CCT	GAT ATC TTC	913
AGC AAA GCC TCT GAG TGC ATG CAG GTG ATC TTT	GGC ATT GAT	955
GTG AAG GAA GTG GAC CCT GCC GGC CAC TCC TAC	ATC CTT GTC	997
ACC TGC CTG GGC CTC TCC TAT GAT GGC CTG CTG	GGT GAT GAT	1039
CAG AGT ACG CCC AAG ACC GGC CTC CTG ATA ATC		1081
ATG ATC TTA ATG GAG GGC AGC CGC GCC CCG GAG		1123
TGG GAA GCA TTG AGT GTG ATG GGG GCT GTA TGA	dag dea ale	1156
TGGGAGGGAG CACAGTGTCT ATTGGAAGCT CAGGAAGCTG	CTCACCCAAG	1206
AGTGGGTGCA GGAGAACTAC CTGGAGTACC GCCAGGCGCC	CGGCAGTGAT	1256
CCTGTGCGCT ACGAGTTCCT GTGGGGTCCA AGGGCCCTTG	CTGAAACCAG	1306
		1356
TTTCCTACCC ATCCCTGCAT GAAGAGGCTT TGGGAGAGGA	GAAAGGAGTT	1406
TGAGCAGGAG TTGCAGCTAG GGCCAGTGGG GCAGGTTGTG	GGAGGGCCTG	1456
GGCCAGTGCA CGTTCCAGGG CCACATCCAC CACTTTCCCT	GCTCTGTTAC	1506
ATGAGGCCCA TTCTTCACTC TGTGTTTGAA GAGAGCAGTC	ACAGTTCTCA	1556
GTAGTGGGGA GCATGTTGGG TGTGAGGGAA CACAGTGTGG		
AGTTCCTGTT CTATTGGGCG ATTTGGAGGT TTATCTTTGT	ACCATCTCTC	1606
AATTGTTCCA ATGTTCCTTC TAATGGATGG TGTAATGAAC	TTCCTTTTGG	1656
ATTTTATGTA TGACAGTAGA CAGACTTACT GCTTTTTATA	TTCAACATTC	1706
	TAGTTTAGGA	1756
GTAAGAGTCT TGCTTTTCAT TTATACTGGG AAACCCATGT	TATTTCTTGA	1806
ALIC		1810

- (2) INFORMATION FOR SEQUENCE ID NO: 21: (i) SEQUENCE CHARACTERISTICS:

  - (A) LENGTH: 1412 base pairs
    (B) TYPE: nucleic acid
    (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: genomic DNA
    (ix) FEATURE:
  - - (A) NAME/KEY: MAGE-9 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

TCTGAGACAG TGTCCTCAGG TCGCAGAGCA GAGGAGACCC AGGCAGTGTC	50
AGCAGTGAAG GTGAAGTGTT CACCCTGAAT GTGCACCAAG GGCCCCACCT	100
GCCCCAGCAC ACATGGGACC CCATAGCACC TGGCCCCATT CCCCCTACTG	150
TCACTCATAG AGCCTTGATC TCTGCAGGCT AGCTGCACGC TGAGTAGCCC	200
TCTCACTTCC TCCCTCAGGT TCTCGGGACA GGCTAACCAG GAGGACAGGA	250
GCCCCAAGAG GCCCCAGAGC AGCACTGACG AAGACCTGTA AGTCAGCCTT	300
TGTTAGAACC TCCAAGGTTC GGTTCTCAGC TGAAGTCTCT CACACTCC	350
CTCTCTCCCC AGGCCTGTGG GTCTCCATCG CCCAGCTCCT GCCCACGCTC	400
CTGACTGCTG CCCTGACCAG AGTCATC .	427
ATG TCT CTC GAG CAG AGG AGT CCG CAC TGC AAG CCT GAT GAA	469
GAC CTT GAA GCC CAA GGA GAG GAC TTG GGC CTG ATG GGT GCA	511
CAG GAA CCC ACA GGC GAG GAG GAG ACT ACC TCC TCT	553
GAC AGC AAG GAG GAG GTG TCT GCT GCT GGG TCA TCA AGT	595

-	CCT	CCC	CAG	AGT	CCT	CAG	GGA	GGC	GCT	TCC	TCC	TCC	ATT	TCC	637
	GTC	TAC	TAC	ACT	TTA	TGG	AGC	CAA	TTC	GAT	GAG	GGC	TCC	AGC	679
	AGT	CAA	GAA	GAG	GAA	GAG	CCA	AGC	TCC	TCG	GTC	GAC	CCA	GCT	721
	CAG	CTG	GAG	TTC	ATG	TTC	CAA	GAA	GCA	CTG	AAA	TTG	AAG	GTG	763
	GCT	GAG	TTG	GTT	CAT	TTC	CTG	CTC	CAC	AAA	TAT	CGA	GTC	AAG	805
	GAG	CCG	GTC	ACA	AAG	GCA	GAA	ATG	CTG	GAG	AGC	GTC	ATC	AAA	847
	AAT	TAC	AAG	CGC	TAC	TTT	CCT	GTG	ATC	TTC	GGC	AAA	GCC	TCC	889
	GAG	TTC	ATG	CAG	GTG	ATC	TTT	GGC	ACT	GAT	GTG	AAG	GAG	GTG	931
	GAC	CCC	GCC	GGC	CAC	TCC	TAC	ATC	CTT	GTC	ACT	GCT	CTT	GGC	973
	CTC	TCG	TGC	GAT	AGC	ATG	CTG	GGT	GAT	GGT	CAT	AGC	ATG	CCC	1015
	AAG	GCC	GCC	CTC	CTG	ATC	ATT	GTC	CTG	GGT	GTG	ATC	CTA	ACC	1057
	AAA	GAC	AAC	TGC	GCC	CCT	GAA	GAG	GTT	ATC	TGG	GAA	GCG	TTG	1099
	AGT	GTG	ATG	GGG	GTG	TAT	GTT	GGG	AAG	GAG	CAC	ATG	TTC	TAC	1141
	GGG	GAG	CCC	AGG	AAG	CTG	CTC	ACC	CAA	GAT	TGG	GTG	CAG	GAA	1183
	AAC	TAC	CTG	GAG	TAC	CGG	CAG	GTG	CCC	GGC	AGT	GAT	CCT	GCG	1225
	CAC	TAC	GAG	TTC	CTG	TGG	GGT	TCC	AAG	GCC	CAC	GCT	GAA	ACC	1267
	AGC	TAT	GAG	AAG	GTC	ATA	AAT	TAT	TTG	GTC	ATG	CTC	AAT	GCA	1309
	AGA	GAG	CCC	ATC	TGC	TAC	CCA	TCC	CTT	TAT	GAA	GAG	GTT	TTG	1351
	GGA	GAG	GAG	CAA	GAG	GGA	GTC	TGA							1375
	GCA	CCAG	CCG (	CAGC	CGGGG	GC C	AAAG:	rttg:	r GGC	GTC	A				1412

- INFORMATION FOR SEQUENCE ID NO: 22: (2)
  - (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 920 base pairs
    (B) TYPE: nucleic acid
    (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: genomic DNA
    (ix) FEATURE:
  - - (A) NAME/KEY: MAGE-10 gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

ACCTGCTCCA G	GACAAAGI	rg gacco	CACTO	CAT	CAGC	CTCC	ACCI	CACCO	CTA	50
CTGTCAGTCC T	GGAGCCTI	rg gcctc	TGCCC	GC1	CGCAT	CCT	GAGG	AGC	CAT	100
CTCTCACTTC C	TTCTTCAC	G TTCTC	AGGGC	ACA	AGGGP	GAG	CAAC	AGGT	CA	150
AGAGCTGTGG G	ACACCACA	AG AGCAG	CACTO	AAC	GAGA	AGA	CCTC	TAAC	FTT	200
GGCCTTTGTT A	GAACCTC	CA GGGTG	TGGT	CTC	CAGCI	GTG	GCC	CTT	ACA	250
CCCTCCCTCT C	TCCCCAG	SC CTGTG	GGTC	CCF	ATCGC	CCA	AGTO	CTG	CCC	300
ACACTCCCAC C	TGCTACC	CT GATCA	GAGT	CATO	2					333
ATG CCT CGA	GCT CCA	AAG CGT	CAG	CGC	TGC	ATG	CCT	GAA	GAA	375
GAT CTT CAA	TCC CAA	AGT GAG	ACA	CAG	GGC	CTC	GAG	GGT	GCA	417
CAG GCT CCC	CTG GCT	GTG GAG	GAG	GAT	GCT	TCA	TCA	TCC	ACT	459
TCC ACC AGC	TCC TCT	TTT CCA	TCC	TCT	TTT	CCC	TCC	TCC	TCC	501
TCT TCC TCC	TCC TCC	TCC TGC	TAT	CCT	CTA	ATA	CCA	AGC	ACC	543
CCA GAG GAG	GTT TCT	GCT GAT	GAT	GAG	ACA	CCA	AAT	CCT	CCC	585
CAG AGT GCT	CAG ATA	GCC TGC	TCC	TCC	CCC	TCG	GTC	GTT	GCT	627
TCC CTT CCA	TTA GAT	CAA TCT	GAT	GAG	GGC	TCC	AGC	AGC	CAA	669
AAG GAG GAG	AGT CCA	AGC ACC	CTA	CAG	GTC	CTG	CCA	GAC	AGT	711
GAG TCT TTA	CCC AGA	AGT GAG	ATA	GAT	GAA	AAG	GTG	ACT	GAT	753
TTG GTG CAG	TTT CTG	CTC TTC	: AAG	TAT	CAA	ATG	AAG	GAG	CCG	795
ATC ACA AAG	GCA GAA	ATA CTO	GAG	AGT	GTC	ATA	AAA	AAT	TAT	837
GAA GAC CAC	TTC CCT	TTG TTG	TTT	AGT	GAA	GCC	TCC	GAG	TGC	879
ATG CTG CTG	GTC TTT	GGC ATT	GAT	GTA	AAG	GAA	GTG	GAT	CC	920

INFORMATION FOR SEQUENCE ID NO: 23: (2) (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1107 base pairs (B) TYPE: nucleic acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

(ix) FEATURE:

(A) NAME/KEY: MAGE-11 gene

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

AGAGAACAGG	CCAACCTO	GA GGAC	AGGAGI	ccc	AGGA	GAA	CCCA	GAGG	AT	50
CACTGGAGGA	GAACAAGT	GT AAGT	AGGCCI	TTG	TTAG	ATT	CTCC	ATGG	TT	100
CATATCTCAT	CTGAGTCT	GT TCTC	ACGCTC	CCT	CTCT	CCC	CAGG	CTGI	'GG	150
GGCCCCATCA	CCCAGATA	ATT TCCC	ACAGTI	CGG	CCTG	CTG	ACCI	AACC	CAG	200
AGTCATCATG	CCTCTTG	AGC AAAG	AAGTCA	GCA	CTGC	AAG	CCTG	AGGA	AG	250
CCTTCAGGCC	CAAGAAGA	AG ACCT	GGGCCI	GGT	GGGT	GCA	CAGG	CTCI	CC	300
AAGCTGAGGA			TCTTCI					-		350
ACTCTAGAGG										400
TCAGGAAGAG										450
TATCTGATGA										500
CCTGACCTGA										550
GATAATTGAT	TTGGTTC	TTAT TATT	CTCCGC	AAG	TATC	GAG	TCAP	GGGG	CT	600
GATCACAAAG	GCAGAA									616
ATG CTG GG										658
GAG ATA TT		A GCC TC								700
GGC ATT GAT		G GAA GT								742
GTC CTT GT										784
	G CAG AG							ATA		826
GTC CTG GG									GAA	868
GAG GTT AT		A GTC CT					GTG	TAT	GCT	910
GGA AGG GAG				GAG			AGG	CTC	CTT	952
ACC CAA AA'				TAC		GTG	TAC		CAG	994
	C ACT GA			TAT			CTG	TGG		1036
CCA AGG GC						AAA	GTT	CTT	GAG	1078
TAC ATA GC	C AAT GC	C AAT GG	G AGG	GAT	CC					1107

- INFORMATION FOR SEQUENCE ID NO: 24: (2)
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2150 base pairs
      (B) TYPE: nucleic acid
      (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA

  - (ix) FEATURE:
  - (A) NAME/KEY: smage-I
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

TCTGTCTGCA TATGCCTCCA CTTGTGTGTA GCAGTCTCAA AT	GGATCTCT 50
CTCTACAGAC CTCTGTCTGT GTCTGGCACC CTAAGTGGCT TT	GCATGGGC 100
ACAGGTTTCT GCCCCTGCAT GGAGCTTAAA TAGATCTTTC TC	CACAGGCC 150
TATACCCCTG CATTGTAAGT TTAAGTGGCT TTATGTGGAT AC	AGGTCTCT 200
GCCCTTGTAT GCAGGCCTAA GTTTTTCTGT CTGCTTAACC CC	TCCAAGTG 250
AAGCTAGTGA AAGATCTAAC CCACTTTTGG AAGTCTGAAA CT	AGACTTTT 300
ATGCAGTGGC CTAACAAGTT TTAATTTCTT CCACAGGGTT TG	CAGAAAAG 350
AGCTTGATCC ACGAGTTCAG AAGTCCTGGT ATGTTCCTAG AA	AG 394
ATG TTC TCC TGG AAA GCT TCA AAA GCC AGG TCT CC	A TTA AGT 436
CCA AGG TAT TCT CTA CCT GGT AGT ACA GAG GTA CT	T ACA GGT 478
TGT CAT TCT TAT CCT TCC AGA TTC CTG TCT GCC AG	C TCT TTT 520
ACT TCA GCC CTG AGC ACA GTC AAC ATG CCT AGG GG	T CAA AAG 565
AGT AAG ACC CGC TCC CGT GCA AAA CGA CAG CAG TC	A CGC AGG 604
GAG GTT CCA GTA GTT CAG CCC ACT GCA GAG GAA GC	A GGG TCT 646
TCT CCT GTT GAC CAG AGT GCT GGG TCC AGC TTC CC	T GGT GGT 688

ጥርጥ	GCT	CCT	CAG	GGT	GTG	AAA	ACC	CCT	GGA	TCT	TTT	GGT	GCA	730
GGT	GTA			ACA						GGT				772
GCT		CTG		GAT				TCA	GAT	GGC	ACC	CAG	GCA	814
GGG	ACT						CTG	AAA	GAT	CCT	ATC	ATG	AGG	856
AAG				CTG						GAT		TTT	AAG	898
	AAA							GAA	ATG	CTG	GCA	GTA	GTT	940
AAC		AAG		AAG				CCT		ATC			AGA	982
ACT		GCA		CTA				TTT	GGT	CTT	GAG	TTG	AAG	1024
		GAT		AGC		CAT	TCC	TAT	TTG	CTG	GTA	GGC	AAA	1066
CTG	GGT	CTT		ACT		GGA	AGT	TTG	AGT	AGT	AAC	TGG	GGG	1108
TTG			ACA		CTC		ATG	TCT	GTC	CTA	GGT	GTG	ATC	1150
TTC				AAC	CGT	GCC	ACT	GAG	CAA	GAG	GTC	TGG	CAA	1192
TTT	CTG					GTA	TAT	GCT	GGG	AAG	AAG	CAC	TTG	1234
ATC	TTT	GGC	GAG	CCT		GAG				GAT		GTG	CGG	1276
	AAT	TAC	CTG	GAG	TAC	CGC	CAG	GTA	CCT	GGC	AGT	GAT	CCC	1314
CCA		TAT	GAG	TTC	CTG	TGG	GGA	CCC	AGA	GCC	CAT	GCT	GAA	1360
	ACC			AAA			GAA		TTA		AAA	GTC	AAT	1402
GGC		GTC	CCT	AGT	GCC	TTC	CCT	AAT	CTC	TAC	CAG	TTG	GCT	1444
CTT		GAT				GGG	GTG	CCA	AGA	AGG	AGA	GTT	CAA	1486
	AAG												TCT	1528
	ATG			•										1537
	AGTC'		тстс	TTGT	GT T	TGAA	AAAC	A GT	CAGG	CTCC	TAA'	TCAG'	<b>TAG</b>	1587
	GTTC						CATG			TCTT		CTGT'		1637
	TTAG'			GAGG			TGTT		TTTC	TAAA	GTT'	TGTT'	TAA	1687
	AACA		CTTT	TTGC	CA T	GCTT	CTTG	TA.	ACTG	CATA	AAG	AGGT	AAC	1737
	CACT'			TTAG		TTGT	TTTG	TA'	TTTG	CAAC	AAA	CTGG	AAA	1787
	TTAT'			TTAC		AACA	TTGT	G TA	ACAT	TGCA	TTG	GAGA	AGG	1837
	TGTC		GCAA	TGTG	AT A	TCAT	ACAG	T GG	TGAA	ACAA	CAG	TGAA	GTG	1887
GGA	AAGT	TTA	TATT	GTTA	AT T	TTGA	AAAT	T TT.	ATGA	GTGT	GAT	TGCT	GTA	1937
	TTTT		TTTT	TTGT	AT A	ATGC	TAAG	T GA	AATA	AAGT	TGG	ATTT	GAT	1987
	TTTA		AAAT	TCAT	TA G	AAAG	TAAA	T CG	TAAA	ACTC	TAT	TACT	TTA	2037
TTA	TTTT	CTT	CAAT	TATG	AA T	TAAG	CATT	G GT	TATC	TGGA	AGT	TTCT	CCA	2087
GTA	GCAC	AGG	ATCT	AGTA	TG A	AATG	TATC	T AG	TATA	GGCA	CTG	ACAG	TGA	2137
GTT	ATCA	GAG	TCT											2150

- INFORMATION FOR SEQUENCE ID NO: 25: (2)
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 2099 base pairs
      (B) TYPE: nucleic acid
      (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: genomic DNA
  - (ix) FEATURE:
  - (A) NAME/KEY: smage-II
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

ACCTTATTGG	GTCTGTCTGC	ATATGCCTCC	ACTTGTGTGT	AGCAGTCTCA	50
AATGGATCTC	TCTCTACAGA	CCTCTGTCTG	TGTCTGGCAC	CCTAAGTGGC	100
TTTGCATGGG	CACAGGTTTC	TGCCCCTGCA	TGGAGCTTAA	ATAGATCTTT	150
CTCCACAGGC	CTATACCCCT	GCATTGTAAG	TTTAAGTGGC	TTTATGTGGA	200
TACAGGTCTC	TGCCCTTGTA	TGCAGGCCTA	AGTTTTTCTG	TCTGCTTAGC	250
CCCTCCAAGT	GAAGCTAGTG	AAAGATCTAA	CCCACTTTTG	GAAGTCTGAA	300
ACTAGACTTT	TATGCAGTGG	CCTAACAAGT	TTTAATTTCT	TCCACAGGGT	350
TTGCAGAAAA	GAGCTTGATC	CACGAGTTCG	GAAGTCCTGG	TATGTTCCTA	400
GAAAGATGTT	CTCCTGGAAA	GCTTCAAAAG	CCAGGTCTCC	ATTAAGTCCA	450
AGGTATTCTC	TACCTGGTAG	TACAGAGGTA	CTTACAGGTT	GTCATTCTTA	500
TCTTTCCAGA	TTCCTGTCTG	CCAGCTCTTT	TACTTCAGCC	CTGAGCACAG	550
TCAACATGCC	TAGGGGTCAA	AAGAGTAAGA	CCCGCTCCCG	TGCAAAACGA	600
CAGCAGTCAC	GCAGGGAGGT	TCCAGTAGTT	CAGCCCACTG	CAGAGGAAGC	650
AGGGTCTTCT	CCTGTTGACC	AGAGTGCTGG	GTCCAGCTTC	CCTGGTGGTT	700
CTGCTCCTCA	GGGTGTGAAA	ACCCCTGGAT	CTTTTGGTGC	AGGTGTATCC	750
TGCACAGGCT	CTGGTATAGG	TGGTAGAAAT	GCTGCTGTCC	TGCCTGATAC	800
AAAAAGTTCA	GATGGCACCC	AGGCAGGGAC	TTCCATTCAG	CACACACTGA	850
AAGATCCTAT	CATGAGGAAG	GCTAGTGTGC	TGATAGAATT	CCTGCTAGAT	900

AAGTTTAAGA	TGAAAGAAGC	AGTTACAAGG	AGTGAAATGC	TGGCAGTAGT	950
TAACAAGAAG	TATAAGGAGC	AATTCCCTGA	GATCCTCAGG	AGAACTTCTG	1000
CACGCCTAGA	ATTAGTCTTT	GGTCTTGAGT	TGAAGGAAAT	TGATCCCAGC	1050
ACTCATTCCT	ATTTGCTGGT	AGGCAAACTG	GGTCTTTCCA	CTGAGGGAAG	1100
TTTGAGTAGT	AACTGGGGGT	TGCCTAGGAC	AGGTCTCCTA	ATGTCTGTCC	1150
TAGGTGTGAT	CTTCATGAAG	GGTAACCGTG	CCACTGAGCA	AGAGGTCTGG	1200
CAATTTCTGC	ATGGAGTGGG	GGTATATGCT	GGGAAGAAGC	ACTTGATCTT	1250
TGGCGAGCCT	GAGGAGTTTA	TAAGAGATGT	AGTGCGGGAA	AATTACCTGG	1300
AGTACCGCCA	GGTACCTGGC	AGTGATCCCC	CAAGCTATGA	GTTCCTGTGG	1350
GGACCCAGAG	CCCATGCTGA	AACAACCAAG	ATGAAAGTCC	TGGAAGTTTT	1400
AGCTAAAGTC	AATGGCACAG	TCCCTAGTGC	CTTCCCTAAT	CTCTACCAGT	1450
TGGCTCTTAG	AGATCAGGCA	GGAGGGGTGC	CAAGAAGGAG	AGTTCAAGGC	1500
AAGGGTGTTC	ATTCCAAGGC	CCCATCCCAA	AAGTCCTCTA	ACATGTAGTT	1550
GAGTCTGTTC	TGTTGTGTTT	GAAAAACAGT	CAGGCTCCTA	ATCAGTAGAG	1600
AGTTCATAGC	CTACCAGAAC	CAACATGCAT	CCATTCTTGG	CCTGTTATAC	1650
ATTAGTAGAA	TGGAGGCTAT	TTTTGTTACT	TTTCAAATGT	TTGTTTAACT	1700
AAACAGTGCT	TTTTGCCATG	CTTCTTGTTA	ACTGCATAAA	GAGGTAACTG	1750
TCACTTGTCA	GATTAGGACT	TGTTTTGTTA	TTTGCAACAA	ACTGGAAAAC	1800
ATTATTTTGT	TTTTACTAAA	ACATTGTGTA	ACATTGCATT	GGAGAAGGGA	1850
TTGTCATGGC	AATGTGATAT	CATACAGTGG	TGAAACAACA	GTGAAGTGGG	1900
AAAGTTTATA	TTGTTAGTTT	TGAAAATTTT	ATGAGTGTGA	TTGCTGTATA	1950
CTTTTTTCTT	TTTTGTATAA	TGCTAAGTGA	AATAAAGTTG	GATTTGATGA	2000
CTTTACTCAA	ATTCATTAGA	AAGTAAATCA	TAAAACTCTA	TTACTTTATT	2050
ATTTTCTTCA	ATTATTAATT	AAGCATTGGT	TATCTGGAAG	TTTCTCCAG	2099

- INFORMATION FOR SEQUENCE ID NO: 26: (2)
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 9 amino acids (B) TYPE: amino acids
  - (D) TOPOLOGY: linear (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

Glu Ala Asp Pro Thr Gly His Ser Tyr

- INFORMATION FOR SEQUENCE ID NO: 27: (2)
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 19 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

## TGGAGGACCA GAGGCCCCC

19

- INFORMATION FOR SEQUENCE ID NO: 28: (2)
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid

    - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

GGACGATTAT CAGGAGGCCT GC

	(2)	INFORMATION FOR SEQUENCE ID NO: 29:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 18 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	•••
	GAGCA	GACAG GCCAACCG	18
-	(2)	<pre>INFORMATION FOR SEQUENCE ID NO: 30: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 18 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:</pre>	
	AAGGA	CTCTG CGTCAGGC	18
	(2)	<pre>INFORMATION FOR SEQUENCE ID NO: 31: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 23 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:</pre>	
	CTAGA	GGAGC ACCAAAGGAG AAG	23
	(2)	INFORMATION FOR SEQUENCE ID NO: 32:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 21 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
	TGCTC	GGAAC ACAGACTCTG G	21
	(2)	<pre>INFORMATION FOR SEQUENCE ID NO: 33: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 19 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:</pre>	
	тссас	GACCA GAGGCCCC	19

(2)	INFORMATION FOR SEQUENCE ID NO: 34:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 24 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
CAGGAT	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	24
(2)	<ul> <li>(i) SEQUENCE CHARACTERISTICS:         <ul> <li>(A) LENGTH: 21 base pairs</li> <li>(B) TYPE: nucleic acid</li> <li>(C) STRANDEDNESS: single</li> <li>(D) TOPOLOGY: linear</li> </ul> </li> </ul>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
CAGAGO	GAGCA CCGAAGGAGA A	21
(2)	INFORMATION FOR SEQUENCE ID NO: 36:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SÈQUENCE DESCRIPTION: SEQ ID NO: 36:	
CAGGTO	GAGCG GGGTGTGTC	19
(2)	<pre>INFORMATION FOR SEQUENCE ID NO: 37: (i) SEQUENCE CHARACTERISTICS:     (A) LENGTH: 22 base pairs     (B) TYPE: nucleic acid     (C) STRANDEDNESS: single     (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:</pre>	
CCCCAC	GAGAA GCACTGAAGA AG	22
(2)	INFORMATION FOR SEQUENCE ID NO: 38:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 17 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	

(2)	(i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
CCCCAC	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39: GAGCA GCACTGACG	19
÷		
(2)	INFORMATION FOR SEQUENCE ID NO: 40:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
CAGCTO	GAGCT GGGTCGACC	19
(2)	INFORMATION FOR SEQUENCE ID NO: 41:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 21 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
CACAGA	AGCAG CACTGAAGGA G	21
(2)	<pre>INFORMATION FOR SEQUENCE ID NO: 42: (i) SEQUENCE CHARACTERISTICS:      (A) LENGTH: 23 base pairs      (B) TYPE: nucleic acid      (C) STRANDEDNESS: single      (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:</pre>	
CTGGG	TAAAG ACTCACTGTC TGG	23
(2)	INFORMATION FOR SEQUENCE ID NO: 43:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
CACAA	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:	22
GMGMA	CCMG MGGMICMCIG GM	44

(2)	INFORMATION FOR SEQUENCE ID NO: 44:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
GGGAA	AAGGA CTCAGGGTCT ATC	23
(2)	INFORMATION FOR SEQUENCE ID NO: 45:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
GGTGG	AAGTG GTCCGCATCG	20
(2)	INFORMATION FOR SEQUENCE ID NO: 46:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
GCCCT	CCACT GATCTTTAGC AA	22
(2)	INFORMATION FOR SEQ ID NO: 47:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
CGGCC	GAAGG AACCTGACCC AG	22
(2)	INFORMATION FOR SEQ ID NO: 48:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 23 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
GCTGG	AACCC TCACTGGGTT GCC	23

(2)	INFORMATION FOR SEQ ID NO: 49:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
AAGTA	GGACC CGAGGCACTG	20
	·	
(2)	INFORMATION FOR SEQ ID NO: 50:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
GAAGA	GGAAG AAGCGGTCTG	20
		20
(2)	INFORMATION FOR SEQ ID NO: 51:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 19 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
TGGAGG	GACCA GAGGCCCC	19
	•	
(2)	INFORMATION FOR SEQ ID NO: 52:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 22 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
GGACGA	ATTAT CAGGAGGCCT GC	22
(2)	INFORMATION FOR SEQ ID NO: 53:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 20 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
ACTCAG	CTCC TCCCAGATTT	20

(2)	INFORMATION FOR SEQ ID NO: 54:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 17 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear	
	(xi) SÈQUENCE DESCRIPTION: SEQ ID NO: 54:	
GAAGA	GGAGG GGCCAAG	17
(2)	INFORMATION FOR SEQ ID NO: 55:  (i) SEQUENCE CHARACTERISTICS:  (A) LENGTH: 18 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: single  (D) TOPOLOGY: linear  (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
TCTTG	STATCC TGGAGTCC	18
(2)	<pre>INFORMATION FOR SEQ ID NO: 56: (i) SEQUENCE CHARACTERISTICS:         (A) LENGTH: 18 base pairs         (B) TYPE: nucleic acid         (C) STRANDEDNESS: single         (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:</pre>	
TTGC	CAAGAT CTCAGGAA	18

## Claims:

- 1. Isolated nucleic acid molecule useful as a primer in specifically determining expression of a member of the MAGE family of tumor rejection antigen precursor.
- The isolated nucleic acid molecule of claim 1, selected from the group consisting of one of SEQ ID NOS: 27-48.
- 3. A kit useful in determining expression of a MAGE tumor rejection antigen precursor, comprising at least one part of SEQ ID NOS: 27 and 28, 29 and 30, 31 and 32, 33 and 34, 35 and 36, 37 and 38, 39 and 40, 41 and 42, 43 and 44, 45 and 46, and 47-48.
- 4. Method for determining expression of a MAGE tumor rejection antigen precursor in a cell comprising contacting said cell sample with at least one of the nucleic acid molecules of claim 2 and determining hybridization of said nucleic acid molecule to a target as a determination of expression of MAGE tumor rejection antigen precursor.
- 5. Method of claim 3, wherein said expression of said tumor rejection antigen precursor is a determination of presence, regression of spread of cancer.
- 6. The method of claim 5, wherein said cancer is melanoma.
- 7. The method of claim 5, wherein said cancer is lung adenocarcinoma, said method comprising contacting said sample with a pair of: SEQ ID NOS: 27 and 28, SEQ ID NOS: 47 and 48, or SEQ ID NOS: 49 and 50.

- 8. The method of claim 4, wherein said cancer is a head squamous cell carcinoma, a neck squamous cell carcinoma, a prostate carcinoma, and a bladder tumor, the method comprising contacting sample with SEQ ID NOS: 27 AND 28, SEQ ID NOS: 29 and 30, SEQ ID NOS: 47 and 48, or SEQ ID NOS: 49 and 50.
- 9. The method of claim 4, wherein said cancer is a bladder tumor, the method comprising contacting said sample with SEQ ID NOS: 47 and 48, SEQ ID NOS: 49 and 50, or SEQ ID NOS: 51 and 52, followed by amplification.
- 10. The method of claim 4, wherein said MAGE tumor rejection antigen precursor is MAGE-1, MAGE-2, MAGE-3 or MAGE-4.

## AMENDED CLAIMS

[received by the International Bureau on 27 June 1995 (27.06.95); original claims 1-10 replaced by amended claims 1,9 (2 pages)]

- Isolated nucleic acid molecule useful as a primer in specifically determining expression of a member of the MAGE group of tumor rejection antigen precursors, selected from the group consisting of SEQ ID NOS: 27-46.
- 2. Kit useful in determining expression of a MAGE tumor rejection antigen precursor, comprising at least one pair of:

SEQ ID NOS: 27 and 28
SEQ ID NOS: 29 and 30
SEQ ID NOS: 31 and 32
SEQ ID NOS: 33 and 34
SEQ ID NOS: 35 and 36
SEQ ID NOS: 37 and 38
SEQ ID NOS: 39 and 40
SEQ ID NOS: 41 and 42
SEQ ID NOS: 43 and 44
SEQ ID NOS: 45 and 46.

- 3. Method for determining expression of a MAGE tumor rejection antigen precursor in a cell comprising contacting said cell sample with at least one isolated nucleic acid molecule of claim 1 and determining hybridization of said nucleic acid molecule to a target as a determination of expression of MAGE tumor rejection antigen precursor.
- 4. The method of claim 3, wherein said expression of said tumor rejection antigen precursor is a determination of presence, regression of spread of cancer.
- 5. The method of claim 4, wherein said cancer is melanoma.

- 6. The method of claim 4, comprising contacting said sample with SEQ ID NOS: 27 and 28.
- 7. The method of claim 4, wherein said cancer is a bead squamous cell carcinoma, a neck squamous cell carcinoma, a prostate carcinoma and a bladder tumor, the method comprising contacting said sample with SEQ ID NOS: 27 and 28 or SEQ ID NOS: 29 and 30.
- 8. The method of claim 4, wherein said cancer is a bladder tumor, said method comprising contacting said sample with SEQ ID NOS: 51 and 52, followed by amplification.
- 9. The method of claim 4, wherein said MAGE tumor rejection antigen precursor is MAGE-1, MAGE-2, MAGE-3 or MAGE-4.

FIG. 1A



2/22



SUBSTITUTE SHEET (RULE 26)

3/22

FIG. 2



4/22

FIG. 3







7/22

FIG. 6



WO 95/23874 PCT/US95/02203





FIG. 8



FIG. 9

### 9/22

CAGATCATGCCCAAGGCAGGCCTCCTGATAATcGTCCTGGcCATaATcGCAAgaGAGGGCGCCTGTGTCCCCTGAGAAAATCTGGGAGGAGCTGAGTG GGICTITIGGCATTIGACGIGAAGGAAGCAGACCCCACCGGCCACTCCTATGTCTCACCTGCCTAGGTCTCCTATGATGATGGCCCTGCTGGTGATAAT CAGATCATGCCCAAGACAGGCTTCCTGATAATTGTCCTGGTCATGATTGCAATGGAGGGCGGCCATGCTCGAGGAGGAAATCTGGGAGGAGGAGGTGGTTG III GGTCTTTGGCATcGAGCTGALGGAAGLGGACCCCALCGGCCACTLGTAcaTCLTTGcCACCTGCCTGGGcCTCTCCTAcGATGGCCTGCTGGGTGACAAT GGICTITGGCAICGAGGIGG LGCAAGLGG LCCCCALCAGCCACILGIACAICCIIGICACCIGCCIGGCCICTCCTACGAIGGCCTGCTGGGCGACAAI // CAGGTCATGCCCAAGACAGGCCTCCTGATAATcGTC-TGGcCATaATcGCAATaGAGGGCGaCtgTGCcCCTGAGGAGAAATCTGGGAGGAGCTGAGTa MAGE—1 / cotococagagicotoaggagoctocgcotiticocactacoatoaacitocacagaggaagcaacocagigagggitocaggaggaggaaggagg /// GGCCAAGCACCTtcccTgaCC-TGGAGTCCgaGTTCCaAGCACTCAgTAgGAAGGTGGCcGAgTTGGTTcaTTTTCTGCTCCTCAAgTATCGAGCCA H GGCCAAGAALGTTTcccgaCCLTGCAGTTCCCAAGCAGCAATCAGTAGGAAGATGGLTGAGTTGGTTCATTTTCTGCTCCTCAAGTATCGAGCCA GGGAGCCGGTCACAAAGGCAGAAATGCTGGGGAGTGTCGTCGGAAATTGGCAGLALTLCTTTCCTGLGATCTTCAGCAAAGCLTCCagtTCCTTGCAGCT GGGAGCCGGTCACAAAGGCAGAAATGCTGGAGAGTGTCTCAGAAATTGCCAGGACTtcTTTCCcGtGATCTTCAGCAAAGCCTCcGAGTACTTGCAGCT GGGAGCCAGTCACAAAGGCAGAAATGCTGGAGAGTGTCAAAAAATTACAAGCACTGTTTTCCTGAGATCTTCGGCAAAGCCTCTGAGTCCTTGCAGCT  $\equiv$ MAGE-2 //

PCT/US95/02203

#### 10/22



	Expression of antigen MZ2-E after transfection**		11/22	++ ++
RECOGNITION BY ANI-E CTL	tested by: TNF release‡ Lysis§	+ 1		+ 1 1 + 1 1
EXPRSSION OF MAGE GENE FAMILY	cDNA-PCR product probed with oligonucleotide specific for:	# # # ! ! ! # # # ! ! ! # # # ! ! !		‡,‡‡‡ ‡,‡‡‡ ‡,;‡,
W YE CILL	Northern blot probed with cross-reactive MAGE-1 probe*	melanoma cell line MZ2-MEL.3.0 + tumor sample MZ2 (1982) + antigen-loss variant MZ2-MEL.2.2 + CTL clone MZ2-CTL.82/30 - PHA-activated blood lymphocytes -	Liver Muscle Skin Lung Brain Kidney	LB34-MEL + MI665/2-MEL - MI10221-MEL + MI13443-MEL + SK33-MEL + SK33-MEL + SK23-MEL +
	_	Cells of patient MZ2	Normal tissues	Melanoma cell lines of HLA-A1 patients

* Data obtained in the conditions of figure 5.

† Data obtained as described in figure 6. ‡ TNF release by CTL 82/30 after stimulation with the tumor cells as described in (11). § Lysis of 51 Cr labelled target by CTL 82/30 in the conditions of figure 1. **Cells transfected with the 2.4 kb fragment of gene MAGE-1 were tested for their ability fo stimulate TNF release by CTL 82/30

	Expression of antigen MZ2-E after transfection**		ı	1					1	12/	/22											
RECOGNITION BY ANI-E CTL	tested by: TNF anteleaset Lysis6		1	1	1	1	1	1	1	1								-	ı			
EXPRSSION OF MAGE GENE FAMILY	cDNA-PCR product probed with oligonucleotide specific for:		‡	<b>+</b>	ı	1	‡	i	‡	‡	+++	‡	‡	‡	‡	† † †	‡	‡	1	ı	ı	
	DNA-PCR product probed with oligonucleotide specific for:	‡	‡	ı	i	‡	1	‡	‡	‡	‡	‡	‡	‡	ł	‡	+++	ı	ı	ı		
	cDNA-PCF oligonuc		+	i		ı	+ + +	1	+	ı	‡ ‡	ı	i	ı	+	i	‡	ı	ı	i	ı	
	Northern blot probed with cross-reactive MAGE-1 probe*		+	+	i	ı	+	1	+	+	+	+	+	+	+	oma LB37 +	+	+	i	ţ	ì	
FIG. 11B		LB17-MEL	LB33-MEL	LB4-MEL	LB41-MEL	MI4024-MEL	SK29-MEL	MZ3-MEL	MZ5-MEL	BB5-MEL	small cell lung cancer H209	small cell lung cancer H345	small cell lung cancer H510	small cell lung cancer LB11	bronchial squamous cell carcinoma LB37	thyroid medullary carcinoma TT	colon carcinoma LB31	colon carcinoma LS411	chronic myeloid leukemia LLC5	acute myeloid leukemia TA		
		Melanoma cell	lines of other	patients	-					Melanoma tumor sample	Other tumor cell	lines				-			Other tumor	samples		

^{*} Data obtained in the conditions of figure 5.
† Data obtained as described in figure 6.
‡ The selease by CTL 82/30 after stimulation with the tumor cells as described in (11).
‡ TNF release by CTL 82/30 after stimulation with the conditions of figure 1.
§ Lysis of 51 Cr labelled target by CTL 82/30 in the conditions of figure 1.
**Cells transfected with the 2.4 kb fragment of gene MAGE-1 were tested for their ability fo stimulate TNF release by CTL 82/30

13/22

FIG. 12

2-CTL 82/30	?-MEL.3.0 (E+)	:-MEL.2.2 (E-)
M22-C	MZ2-N	MZ2-M



FIG. 13





**SUBSTITUTE SHEET (RULE 26)** 

PCT/US95/02203

16/22

# **FIG. 15A**



**FIG. 15B** 



17/22 **FIG. 15C** 



**FIG. 15D** 



18/22



SUBSTITUTE SHEET (RULE 26)

19/22



SUBSTITUTE SHEET (RULE 26)

20/22



21/22

# FIG. 19



WO 95/23874 PCT/US95/02203

## 22/22

FIG. 20



 $\Delta$  mivasive taillors (stages 12-14), H=20

mational application No. PCT/US95/02203

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :C12Q 1/68								
US CL :435/6 According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIE	LDS SEARCHED							
Minimum d	locumentation searched (classification system followed	d by classification symbols)						
U.S. :	435/6							
Documenta	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched					
Electronic o	data base consulted during the international search (na	me of data base and, where practicable	, search terms used)					
CAS, BI	IOSIS, APS							
	·····							
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.					
Υ	IMMUNOGENETICS, VOLUME 39,		1-10					
	AL. "SEQUENCE AND EXPRESSION MAGE2 GENE", PAGES 121-129,							
	WAGEZ GENE , FAGES 121-125,	OLL ENTINE BOCOMENT.						
Υ	INTERNATIONAL JOURNAL OF	•	1-10					
	WEYNANTS ET AL, "EXPRESSIC NON-SMALL-CELL LUNG CARCING							
	SEE ENTIRE DOCUMENT.	JIMAS , PAGES 826-829,						
Y	26 NOVEMBER 1992, SEE	1-10						
	ENTIRE DOCUMENT.							
A,P	1-10							
:								
<del></del>								
Further documents are listed in the continuation of Box C. See patent family annex.								
*A* Special categories of cited documents:  *T* later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention								
to be of particular relevance  *X* document of particular relevance; the claimed invention cannot be								
*L* document which may throw doubts on priority claim(s) or which is when the document is taken alone  "L" document which may throw doubts on priority claim(s) or which is when the document is taken alone								
special reason (as specified)  Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is								
034	comment referring to an oral disclosure, use, exhibition or other	combined with one or more other such documents, such combination being obvious to a person skilled in the art						
the priority date claimed								
Date of the actual completion of the international search  Date of mailing of the international search report								
01 MAY 1995 <b>24 MAY 1995</b>								
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Roy PCT								
_	n, D.C. 20231	EGGERTON CAMPBELL	1					

Form PCT/ISA/210 (second sheet)(July 1992)★

THIS PAGE BLANK (USPTO)