Dr. D. Sinden

CA-MATH-804: Numerical Analysis

Assignment Sheet 3. Due: February 23, 2022

Exercise 1 [5 Points]: Consider the matrix

$$A = \left(\begin{array}{cc} 1 & \gamma \\ 0 & 1 \end{array}\right).$$

- a) Show that for $\gamma \leq 0$ we have $K_{\infty}(A) = K_1(A) = (1 + \gamma)^2$.
- **b)** For the linear system Ax = b, where b is such that $x = (1 \gamma, 1)^T$ is the solution, find a bound for $\|\delta x\|_{\infty} / \|x\|_{\infty}$ in terms of $\|\delta b\|_{\infty} / \|b\|_{\infty}$ when $\delta b = (\delta_1, \delta_2)^T$. What can you say about the condition of the problem?

Exercise 2 [5 Points]: Check that the matrix $A = \operatorname{tridiag}_n(-1, \alpha, -1)$ with $\alpha \in \mathbb{R}$ has eigenvalues given by

$$\lambda_i = \alpha - 2\cos(i\theta), \quad i = 1, \dots, n,$$

and the corresponding eigenvectors are

$$v_i = (\sin(i\theta), \sin(2i\theta), \dots, \sin(ni\theta))^T$$

where $\theta = \frac{\pi}{n+1}$.

Exercise 3 [5 Points]: Consider the linear system Ax = b, where

$$A = \left(\begin{array}{ccc} 1 & 1 & 1\\ \alpha & 1 & 1\\ \beta & \gamma & 1 \end{array}\right)$$

and $\alpha, \beta, \gamma \in \mathbb{R}$. Define an iterative method for $k \geq 0$ as

$$x^{(k+1)} = U^{-1} \left(b - Lx^{(k)} \right),$$

where

$$U = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad L = \begin{pmatrix} 0 & 0 & 0 \\ \alpha & 0 & 0 \\ \beta & \gamma & 0 \end{pmatrix}.$$

- a) Find all values of α, β, γ such that the sequence of iterates $\{x^{(k)}\}$ converges for every initial guess $x^{(0)}$ and every right hand side.
- **b)** Give an example for b leading to non-convergence in the case $\alpha = \beta = \gamma = -1$.
- c) Is the solution always found with at most two iterations if $\alpha = \gamma = 0$?

Exercise 4 [3 \times **2 Points]**: Compute the following derivatives:

- a) $\frac{\mathrm{d}}{\mathrm{d}s} \|x + sp\|_q^2$ for $x, p \in \mathbb{R}$ and $1 \le q < \infty$,
- **b)** $\nabla \|u(x)\|_2^2$ where $u: \mathbb{R}^n \to \mathbb{R}^n$ is sufficiently smooth,
- **c**) $\Delta \|x\|_2^2 := \operatorname{div}\left(\|x\|_2^2\right) := \nabla \cdot \left(\nabla \|x\|_2^2\right) \text{ for } x \in \mathbb{R}^n.$

Exercise 5 [5 Points]: Given n+1 distinct points $x_0, \ldots, x_n \in \mathbb{R}$ consider the functions

$$l_i = \prod_{\substack{j=0\\i\neq j}}^{n} \frac{x - x_j}{x_i - x_j}, \quad i = 0, \dots n.$$

Show that these functions form a basis for the polynomials \mathbb{P}_n of degree $\leq n$ over \mathbb{R} .

Exercise 6 [6 Points]: Consider the linear system Ax = b with

$$A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right), \quad b = \left(\begin{array}{c} 3 \\ 5 \end{array}\right),$$

and the following iterative method

$$x^{(k+1)} = B(\theta) x^{(k)} + g(\theta)$$

for $k \geq 0$ and a given $x^{(0)}$, where $\theta \in \mathbb{R}$ and

$$B\left(\theta\right) = \frac{1}{4} \left(\begin{array}{cc} 2\theta^2 + 2\theta + 1 & -2\theta^2 + 2\theta + 1 \\ -2\theta^2 + 2\theta + 1 & 2\theta^2 + 2\theta + 1 \end{array} \right), \quad g(\theta) = \left(\begin{array}{c} \frac{1}{2} - \theta \\ \frac{1}{2} - \theta \end{array} \right).$$

- **a)** Show that the method is consistent for all $\theta \in \mathbb{R}$.
- **b)** Show that the method is convergent if and only if $-1 < \theta < \frac{1}{2}$.
- **c)** Show that the rate of convergence is maximal for the value $\theta = \frac{1}{2} (1 \sqrt{3})$.