Objetivos a cubrir

Código: MAT4-CDI.2

- Series numéricas.
- Serie geométrica. Serie telescópica. Convergencia y divergencia de una serie numérica.
- 1. Escribir la fórmula del término general para las siguientes series

1.
$$1+2+3+4+5+\dots$$
 2. $2+4+6+8+\dots$

$$2. \quad 2+4+6+8+\dots$$

3.
$$1+3+5+7+...$$

4.
$$1+2+4+8+16+...$$

5.
$$\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \dots$$

4.
$$1+2+4+8+16+\ldots$$
 5. $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+\ldots$ 6. $\frac{3}{7}+\frac{4}{8}+\frac{5}{9}+\frac{6}{10}+\ldots$

7.
$$\frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \dots$$

8.
$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \dots$$

7.
$$\frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \frac{1}{13} + \dots$$
 8. $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \dots$ 9. $2 + \frac{3}{2} + \frac{9}{8} + \frac{27}{32} + \frac{81}{128} + \dots$

10.
$$3 - \frac{9}{2} + \frac{27}{4} - \frac{81}{8} + \frac{243}{16} - \dots$$
 11. $2 - 1 + \frac{1}{2} - \frac{1}{4} + \frac{1}{8} - \dots$ 12. $x + x^2 + x^3 + x^4 + \dots$

11.
$$2-1+\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\dots$$

12.
$$x + x^2 + x^3 + x^4 + \dots$$

13.
$$\sqrt{3} + \sqrt{4} + \sqrt{5} + \sqrt{6} + \dots$$

14.
$$1 - x + x^2 - x^3 + \dots$$

13.
$$\sqrt{3} + \sqrt{4} + \sqrt{5} + \sqrt{6} + \dots$$
 14. $1 - x + x^2 - x^3 + \dots$ 15. $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$

16.
$$1 + e^{-1} + e^{-2} + e^{-3} + \dots$$

17.
$$1-2+4-8+\dots$$

16.
$$1 + e^{-1} + e^{-2} + e^{-3} + \dots$$
 17. $1 - 2 + 4 - 8 + \dots$ 18. $\frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[4]{2}} + \dots$

19.
$$\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} + \dots$$
 20. $1 - \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \dots$ 21. $4 + \frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \dots$

20.
$$1 - \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \dots$$

21.
$$4 + \frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \dots$$

22.
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{3}} + \frac{1}{\sqrt[4]{4}} + \dots$$

22.
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{3}} + \frac{1}{\sqrt[4]{4}} + \dots$$
 23. $1 + (1.01) + (1.01)^2 + (1.01)^3 + \dots$

$$24. \quad \frac{1}{2} + \frac{8}{3} + \frac{27}{4} + .$$

$$24. \quad \frac{1}{2} + \frac{8}{3} + \frac{27}{4} + \dots \qquad 25. \quad \frac{1}{2} + \frac{4}{4} + \frac{9}{8} + \frac{16}{16} + \frac{25}{32} + \dots \qquad 26. \quad \frac{2}{3} + \frac{6}{8} + \frac{24}{15} + \frac{120}{24} + \dots$$

26.
$$\frac{2}{3} + \frac{6}{8} + \frac{24}{15} + \frac{120}{24} + \dots$$

27.
$$\frac{1}{2} + \frac{2}{5} + \frac{3}{10} + \frac{4}{17} + \dots$$

27.
$$\frac{1}{2} + \frac{2}{5} + \frac{3}{10} + \frac{4}{17} + \dots$$
 28. $-1 + 0 + \frac{3}{2} + 4\frac{\sqrt{2}}{2} + 5\cos\frac{\pi}{5} + 6\frac{\sqrt{3}}{2} + \dots$

2. Verificar que la serie dada es convergente

1.
$$\sum_{i=1}^{\infty} \left(\frac{1}{i+1} - \frac{1}{i} \right)$$

1.
$$\sum_{i=1}^{\infty} \left(\frac{1}{i+1} - \frac{1}{i} \right)$$
 2. $\sum_{i=1}^{\infty} \left(\frac{1}{2i-1} - \frac{1}{2i+1} \right)$ 3. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

$$3. \quad \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

$$4. \qquad \sum_{n=1}^{\infty} \frac{1}{n(n+3)}$$

$$5. \quad \sum_{i=7}^{\infty} \frac{1}{i^2 + i}$$

6.
$$\sum_{k=1}^{\infty} \frac{3}{k(k+3)}$$

4.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$$
 5. $\sum_{i=7}^{\infty} \frac{1}{i^2+i}$ 6. $\sum_{k=1}^{\infty} \frac{3}{k(k+3)}$ 7. $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+5)}$

8.
$$\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+2)}$$
 9. $\sum_{i=2}^{\infty} \frac{2}{i^2-1}$ 10. $\sum_{i=3}^{\infty} \frac{1}{2i^2-6i+4}$ 11. $\sum_{n=1}^{\infty} \frac{1}{4n^2-1}$

9.
$$\sum_{i=2}^{\infty} \frac{2}{i^2 - 1}$$

10.
$$\sum_{i=2}^{\infty} \frac{1}{2i^2 - 6i + 4}$$

11.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

12.
$$\sum_{i=1}^{\infty} \frac{2}{i^2 + 4i + 3}$$

13.
$$\sum_{n=1}^{\infty} \frac{1}{9n^2 - 3n - 2}$$

12.
$$\sum_{i=1}^{\infty} \frac{2}{i^2 + 4i + 3}$$
 13. $\sum_{i=1}^{\infty} \frac{1}{9n^2 - 3n - 2}$ 14. $\sum_{i=1}^{\infty} \frac{1}{m^2 + 7m + 12}$

15.
$$\sum_{n=1}^{\infty} \frac{2}{n(n+1)(n+2)}$$

16.
$$\sum_{1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$

15.
$$\sum_{n=1}^{\infty} \frac{2}{n(n+1)(n+2)}$$
 16.
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$
 17.
$$\sum_{n=1}^{\infty} \frac{1-4n^2-4n}{(2n-1)^2(2n+1)^2}$$

18.
$$\sum_{n=3}^{\infty} \frac{6n}{n^4 - 5n^2 + 4n}$$

18.
$$\sum_{n=3}^{\infty} \frac{6n}{n^4 - 5n^2 + 4}$$
 19. $\sum_{n=1}^{\infty} \frac{6}{n(n+1)(n+2)(n+3)}$ 20. $\sum_{n=1}^{\infty} (\sqrt{n} - \sqrt{n-1})$

1

$$20. \quad \sum_{n=1}^{\infty} \left(\sqrt{n} - \sqrt{n-1} \right)$$

3. Verificar que la serie dada es convergente

1.
$$2-1+\frac{1}{2}-\frac{1}{4}+\frac{1}{8}+\dots$$
 2. $\sum_{n=0}^{\infty} (0.9)^n$ 3. $\sum_{n=0}^{\infty} (-0.6)^n$ 4. $\sum_{n=0}^{\infty} \frac{2^k-1}{4^k}$

2.
$$\sum_{n=0}^{\infty} (0.9)^n$$

$$3. \quad \sum_{i=1}^{\infty} \left(-0.6\right)^{r}$$

4.
$$\sum_{k=1}^{\infty} \frac{2^k - 1}{4^k}$$

5.
$$2 + \frac{3}{2} + \frac{9}{8} + \frac{27}{32} + \frac{81}{128} + \dots$$
 6. $\sum_{n=0}^{\infty} \frac{2^{n+1}}{3^n}$ 7. $\sum_{n=1}^{\infty} \left[\left(\frac{1}{3} \right)^{k-1} + \left(\frac{1}{4} \right)^{k-1} \right]$

6.
$$\sum_{n=0}^{\infty} \frac{2^{n+1}}{3^n}$$

7.
$$\sum_{k=1}^{\infty} \left[\left(\frac{1}{3} \right)^{k-1} + \left(\frac{1}{4} \right)^{k-1} \right]$$

4. Verificar que la serie es divergente

$$1. \quad \sum_{n=1}^{\infty} \frac{3n}{n+1}$$

$$2. \qquad \sum_{n=1}^{\infty} \frac{n}{2n+3}$$

$$3. \quad \sum_{n=1}^{\infty} \frac{n^2}{n^2 + 1}$$

1.
$$\sum_{n=1}^{\infty} \frac{3n}{n+1}$$
 2. $\sum_{n=1}^{\infty} \frac{n}{2n+3}$ 3. $\sum_{n=1}^{\infty} \frac{n^2}{n^2+1}$ 4. $\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \dots$

$$5. \quad \sum_{n=0}^{\infty} \left(\frac{4}{3}\right)^n$$

$$6. \qquad \sum_{n=0}^{\infty} 3\left(\frac{3}{2}\right)^n$$

$$7. \qquad \sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 1}}$$

5.
$$\sum_{n=0}^{\infty} \left(\frac{4}{3}\right)^n$$
 6. $\sum_{n=0}^{\infty} 3\left(\frac{3}{2}\right)^n$ 7. $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+1}}$ 8. $3-\frac{9}{2}+\frac{27}{4}-\frac{81}{8}+\frac{243}{16}-\dots$

9.
$$\sum_{n=1}^{\infty} \frac{n!}{2^n}$$

10.
$$\sum_{n=1}^{\infty} \frac{2^n + 1}{2^{n+1}}$$

11.
$$\sum_{n=0}^{\infty} 2(-1.03)^n$$

9.
$$\sum_{n=1}^{\infty} \frac{n!}{2^n}$$
 10. $\sum_{n=1}^{\infty} \frac{2^n + 1}{2^{n+1}}$ 11. $\sum_{n=0}^{\infty} 2(-1.03)^n$ 12. $\sum_{n=0}^{\infty} 1000(1.055)^n$

5. Determine si la serie dada converge o diverge. Si converge encuentre su suma.

1.
$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$$
 2. $1 + e^{-1} + e^{-2} + e^{-3} + \dots$ 3. $1 + 3 + 5 + 7 + \dots$

2.
$$1 + e^{-1} + e^{-2} + e^{-3} + \dots$$

3.
$$1+3+5+7+...$$

4.
$$\frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[4]{2}} + \dots$$
 5. $1 - 2 + 4 - 8 + \dots$ 6. $1 - \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \dots$

5.
$$1-2+4-8+\dots$$

6.
$$1 - \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \dots$$

7.
$$4 + \frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \dots$$

8.
$$\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} + \dots$$

7.
$$4 + \frac{4}{3} + \frac{4}{9} + \frac{4}{27} + \dots$$
 8. $\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} + \dots$ 9. $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt[3]{3}} + \frac{1}{\sqrt[4]{4}} + \dots$

10.
$$1 + (1.01) + (1.01)^2 + (1.01)^3 + \dots$$
 11. $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$ 12. $\sum_{n=1}^{\infty} \left(\frac{e}{10}\right)^n$

11.
$$\sum_{n=0}^{\infty} \frac{(-1)^n n}{n+1}$$

12.
$$\sum_{n=1}^{\infty} \left(\frac{e}{10}\right)^n$$

13.
$$\sum_{n=0}^{\infty} (-1)^n \left(\frac{3}{e}\right)^n$$
 14. $\sum_{n=0}^{\infty} \frac{3^n - 2^n}{4^n}$ 15. $\sum_{n=1}^{\infty} (\sqrt{2})^{1-n}$ 16. $\sum_{n=1}^{\infty} \left(\frac{2}{n} - \frac{1}{2^n}\right)$

14.
$$\sum_{n=0}^{\infty} \frac{3^n - 2^n}{4^n}$$

15.
$$\sum_{n=1}^{\infty} \left(\sqrt{2}\right)^{1-n}$$

$$16. \quad \sum_{n=1}^{\infty} \left(\frac{2}{n} - \frac{1}{2^n} \right)$$

17.
$$\sum_{n=1}^{\infty} \frac{n}{10n+17}$$

18.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\ln(n+1)}$$

17.
$$\sum_{n=1}^{\infty} \frac{n}{10n+17}$$
 18.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\ln(n+1)}$$
 19.
$$\sum_{n=1}^{\infty} (5^{-n}-7^{-n})$$
 20.
$$\sum_{n=0}^{\infty} \frac{1}{1+\left(\frac{9}{10}\right)^n}$$

20.
$$\sum_{n=0}^{\infty} \frac{1}{1 + \left(\frac{9}{10}\right)^n}$$

21.
$$\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$$

22.
$$\sum_{n=1}^{\infty} \left(\frac{\pi}{e}\right)^n$$

23.
$$\sum_{n=0}^{\infty} \left(\frac{100}{99}\right)^n$$

21.
$$\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$$
 22. $\sum_{n=1}^{\infty} \left(\frac{\pi}{e}\right)^n$ 23. $\sum_{n=0}^{\infty} \left(\frac{100}{99}\right)^n$ 24. $\sum_{n=0}^{\infty} \left(\frac{99}{100}\right)^n$

25.
$$\sum_{n=0}^{\infty} \frac{1+2^n+3^n}{5^n}$$

26.
$$\sum_{n=0}^{\infty} \frac{1+2^n+5^n}{3^n}$$

27.
$$\sum_{n=1}^{\infty} \sqrt[n]{2}$$

25.
$$\sum_{n=0}^{\infty} \frac{1+2^n+3^n}{5^n}$$
 26.
$$\sum_{n=0}^{\infty} \frac{1+2^n+5^n}{3^n}$$
 27.
$$\sum_{n=1}^{\infty} \sqrt[n]{2}$$
 28.
$$\sum_{n=0}^{\infty} \frac{7 \cdot 5^n+3 \cdot 11^n}{13^n}$$

29.
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{3n^2 + 1}$$

$$30. \quad \sum_{n=1}^{\infty} \frac{2n}{\sqrt{4n^2 + 3}}$$

31.
$$\sum_{n=1}^{\infty} \operatorname{sen}^n$$

29.
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{3n^2 + 1}$$
 30. $\sum_{n=1}^{\infty} \frac{2n}{\sqrt{4n^2 + 3}}$ 31. $\sum_{n=1}^{\infty} \operatorname{sen}^n 1$ 32. $\sum_{n=1}^{\infty} \left[\left(\frac{7}{11} \right)^n - \left(\frac{3}{5} \right)^n \right]$

33.
$$\sum_{n=1}^{\infty} \tan^n x$$

34.
$$\sum_{i=1}^{\infty} (\arcsin 1)^{i}$$

33.
$$\sum_{n=1}^{\infty} \tan^n 1$$
 34. $\sum_{n=1}^{\infty} (\arcsin 1)^n$ 35. $\sum_{n=1}^{\infty} (\arctan 1)^n$ 36. $\sum_{n=1}^{\infty} \arctan n$

36.
$$\sum_{n=1}^{\infty} \arctan n$$

$$37. \quad \sum_{k=1}^{\infty} \ln \left(\frac{k}{k+1} \right)$$

38.
$$\sum_{n=1}^{\infty} \frac{3^n + 2^n}{6^n}$$

37.
$$\sum_{k=1}^{\infty} \ln \left(\frac{k}{k+1} \right)$$
 38. $\sum_{n=1}^{\infty} \frac{3^n + 2^n}{6^n}$ 39. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$

40.
$$\sum_{n=1}^{\infty} \frac{6n^2 + 2n - 1}{n(n+1)(4n^2 - 1)}$$
 41.
$$\sum_{n=1}^{\infty} \arctan\left(\frac{1}{2n^2}\right)$$
 42.
$$\sum_{n=1}^{\infty} \left(\frac{1 + n^2}{1 - 3n^2}\right)^2$$

41.
$$\sum_{n=1}^{\infty} \arctan\left(\frac{1}{2n^2}\right)$$

42.
$$\sum_{n=1}^{\infty} \left(\frac{1+n^2}{1-3n^2} \right)^2$$

6. Encuentre el conjunto de todos los valores de x para que la serie dada es una serie geométrica convergente.

$$1. \quad \sum_{n=1}^{\infty} \left(2x\right)^n$$

$$2. \quad \sum_{n=1}^{\infty} \left(\frac{x}{3}\right)$$

$$3. \quad \sum_{k=1}^{\infty} \left(\frac{x}{2}\right)^{k-1}$$

1.
$$\sum_{n=1}^{\infty} (2x)^n$$
 2. $\sum_{n=1}^{\infty} \left(\frac{x}{3}\right)^n$ 3. $\sum_{k=1}^{\infty} \left(\frac{x}{2}\right)^{k-1}$ 4. $\sum_{k=1}^{\infty} (x+1)^k$ 5. $\sum_{n=1}^{\infty} (x-1)^n$

$$5. \quad \sum_{n=1}^{\infty} (x-1)^n$$

6.
$$\sum_{n=1}^{\infty} \left(\frac{x-2}{3} \right)^n$$

7.
$$\sum_{n=1}^{\infty} \left(\frac{x^2}{x^2 + 1} \right)^n$$

6.
$$\sum_{n=1}^{\infty} \left(\frac{x-2}{3}\right)^n$$
 7. $\sum_{n=1}^{\infty} \left(\frac{x^2}{x^2+1}\right)^n$ 8. $\sum_{n=1}^{\infty} \left(\frac{5x^2}{x^2+16}\right)^n$ 9. $\sum_{n=1}^{\infty} \left(\frac{1}{x}\right)^{n-1}$

9.
$$\sum_{n=1}^{\infty} \left(\frac{1}{x}\right)^{n-1}$$

- 7. Demuestre que $\sum a_n$ diverge y c es una constante diferente de cero, entonces $\sum ca_n$ diverge
- 8. Suponga que $\sum a_n$ converge y que $\sum b_n$ diverge. Demuestre que $\sum (a_n + b_n)$ diverge.

Respuestas

$$1.1. \quad \sum_{n=1}^{\infty} n; \qquad 1.2. \quad \sum_{n=1}^{\infty} 2n; \qquad 1.3. \quad \sum_{n=1}^{\infty} (2n-1); \qquad 1.4. \quad \sum_{n=0}^{\infty} 2^n; \qquad 1.5. \quad \sum_{n=1}^{\infty} \frac{n}{n+1}; \qquad 1.6. \quad \sum_{n=3}^{\infty} \frac{n}{n+4}; \qquad 1.7. \quad \sum_{n=3}^{\infty} \frac{1}{2n+1}; \qquad 1.8. \quad \sum_{n=1}^{\infty} \frac{n}{n+1}; \qquad 1.8. \quad \sum_{n=1}^{\infty}$$

$$1.8. \quad \sum_{n=1}^{\infty} \frac{1}{n^2}; \qquad 1.9. \quad \sum_{n=0}^{\infty} \frac{3^n}{2^{2n-1}}; \qquad 1.10. \quad \sum_{n=3}^{\infty} 3 \left(-\frac{3}{2}\right)^n; \qquad 1.11. \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n-1}}; \qquad 1.12. \quad \sum_{n=1}^{\infty} x^n; \qquad 1.13. \quad \sum_{n=3}^{\infty} \sqrt{n}; = 1.13. \quad \sum_{n=1}^{\infty} \sqrt{n}; = 1.13. \quad \sum_{n=1}^$$

$$1.14. \quad \sum_{n=0}^{\infty} (-1)^n \, x^n; \qquad 1.15. \quad \sum_{n=0}^{\infty} \tfrac{1}{3^n}; \qquad 1.16. \quad \sum_{n=0}^{\infty} e^{-n}; \qquad 1.17. \quad \sum_{n=0}^{\infty} (-2)^n; \qquad 1.18. \quad \sum_{n=1}^{\infty} \tfrac{1}{\mathbb{Q}^2}; \qquad 1.19. \quad \sum_{n=0}^{\infty} \tfrac{2^n}{3^{n+1}}; \qquad 1.19. \quad \sum_{n=0}^{\infty} (-1)^n \, x^n; \qquad 1.19$$

$$1.20. \quad \sum_{n=0}^{\infty} \left(-\frac{1}{4}\right)^n; \qquad 1.21. \quad \sum_{n=0}^{\infty} \frac{4}{3^n}; \qquad 1.22. \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}; \qquad 1.23. \quad \sum_{n=0}^{\infty} (1.01)^n; \qquad 1.24. \quad \sum_{n=1}^{\infty} \frac{n^3}{n+1}; \qquad 1.25. \quad \sum_{n=1}^{\infty} \frac{n^2}{2^n}; \qquad 1.26. \quad \sum_{n=1}^{\infty} \frac{n^2}{\sqrt[3]{n}}; \qquad 1.27. \quad \sum_{n=1}^{\infty} \frac{n^2}{\sqrt[3]{n}}; \qquad 1.28. \quad \sum_{n=1}^{\infty} \frac{n^2}{\sqrt[3]{n}}; \qquad 1$$

1.26.
$$\sum_{n=1}^{\infty} \frac{(n+)!}{n}$$
; 1.27. $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$; 1.28. $\sum_{n=1}^{\infty} n \cos\left(\frac{\pi}{n}\right)$; 2.1. Conv. a -1; 2.2. Conv. a 1; 2.3. Conv. a 1;

2.4. Conv. a
$$\frac{11}{18}$$
; 2.5. Conv. a $\frac{1}{7}$; 2.6. Conv. a $\frac{11}{6}$; 2.7. Conv. a $\frac{17}{60}$; 2.8. Conv. a $\frac{1}{2}$; 2.9. Conv. a 1;

2.10. Conv. a
$$\frac{1}{2}$$
; 2.11. Conv. a $\frac{1}{2}$; 2.12. Conv. a $\frac{5}{6}$; 2.13. Conv. a $\frac{1}{3}$; 2.14. Conv. a $\frac{1}{4}$; 2.15. Conv. a $\frac{1}{2}$;

$$2.16. \ \, \text{Conv. a } \ \, 1; \qquad 2.17. \ \, \text{Conv. a } \ \, -1; \qquad 2.18. \ \, \text{Conv. a } \ \, \frac{3}{4}; \qquad 2.19. \ \, \text{Conv. a } \ \, \frac{1}{30}; \qquad 2.20. \ \, \text{Div.}; \qquad \qquad 3.1. \ \, \text{Conv. a } \ \, \frac{4}{3}; \qquad 3.1. \ \, \text{$$

3.2. Conv. a 10; 3.3. Conv. a
$$-0.375$$
; 3.4. Conv. a $\frac{2}{3}$; 3.5. Conv. a 8; 3.6. Conv. a 6; 3.7. Conv. a $\frac{17}{6}$;

5.1. Conv. a
$$\frac{3}{2}$$
; 5.2. Conv. a $\frac{e}{e-1}$; 5.3. Div.; 5.4. Div.; 5.5. Div.; 5.6. Conv. a $\frac{4}{5}$; 5.7. Conv. a 6;

$$5.8. \ \, \text{Conv. a 1;} \qquad 5.9. \ \, \text{Div.;} \qquad 5.10. \ \, \text{Div.;} \qquad 5.11. \ \, \text{Div.;} \qquad 5.12. \ \, \text{Conv. a } \frac{e}{10-e}; \qquad 5.13. \ \, \text{Div.;} \qquad 5.14. \ \, \text{Conv. a 2;}$$

- 5.15. Conv. a $2+\sqrt{2}$; 5.16. Div.; 5.17. Div.; 5.18. Div.; 5.19. Conv. a $\frac{1}{12}$; 5.20. Div.;
- 5.21. Conv. a $\frac{e}{e-e}$; 5.22. Div.; 5.23. Div.; 5.24. Conv. a 100; 5.25. Conv. a $\frac{65}{12}$; 5.26. Div.;
- $5.28. \ \, \text{Conv. a} \ \, \frac{247}{8}; \qquad 5.29. \ \, \text{Div.}; \qquad 5.30. \ \, \text{Div.}; \qquad 5.31. \ \, \text{Conv. a} \ \, \frac{\text{sen 1}}{1-\text{sen 1}}; \qquad 5.32. \ \, \text{Conv. a} \ \, \frac{1}{4}; \qquad 5.33. \ \, \text{Div.};$
- 5.34. Div.; 5.35. Div.; 5.36. Div.; 5.37. Div.; 5.38. Conv. a $\frac{1}{2}$; 5.39. Conv. a $\frac{1}{4}$; 5.40. Conv. a 2;
- $5.41. \ \, \text{Div.}; \qquad 5.42. \ \, \text{Div.}; \qquad 6.1. \ \, x \in \left(-\frac{1}{2}, \frac{1}{2}\right); \qquad 6.2. \ \, x \in \left(-3, 3\right); \qquad 6.3. \ \, x \in \left(-2, 2\right); \qquad 6.4. \ \, x \in \left(-2, 0\right);$
- $6.5. \ \ x \in (0,2)\,; \qquad 6.6. \ \ x \in (-1,5)\,; \qquad 6.7. \ \ x \in \mathbb{R}; \qquad 6.8. \ \ x \in (-2,2)\,; \qquad 6.9. \ \ x \in (-\infty,-1) \cup (1,\infty)\,;$

Bibliografía

- 1. Purcell, E. Varberg, D. Rigdon, S.: "Cálculo". Novena Edición. Pearson Prentice Hall.
- 2. Stewart, J.: "Cálculo". Grupo Editorial Iberoamericano.