Homework Assignment 2

Harshitha Chidananda

Winter Quarter 2017

CS 292F Elliptic Curve Cryptography : Discrete Logarithm Problem

Consider the discrete logarithm problem:

$$y = g^x \pmod{2017}$$

for the primitive g = 5 and y = 1736

1. Write a simple exhaustive search code to find x and verify.

```
#using python for Simple Exhaustive search code to find the value of x y=1736

for i in range (1,2016):

z=(5**i)\%2017

if z==y:

print "Value of x is :", i
```

Listing 1: Simple Exhaustive search code

Value of x is : 1234

Verification:

 $5^{1234} = 1736 \pmod{2017}$

Therefore, value of x is 1234

2. Find x using Shank's algorithm. Show the steps, and produce the S and T tables.

$$m = \lceil \sqrt{2017} \rceil = 45$$

$$S = (i, 5^{45*i}) \mid i = 0, 1, \dots, 45$$

$$T = (j, 1736 * 5^j \mid j = 0, 1, \dots, 45$$

```
#using python for Shank's algorithm
з #S Table
4 print "Shank's algorithm!\n"
_{5} print "\n S table \n"
for x in range (0,46):
      val = (5**(45*x))\%2017;
      print x," ",val,"\n";
10 #T table
  print "\n T table \n"
  for y in range (0,46):
      val = (1736*(5**y))\% 2017;
      print y," ",val,"\n";
_{\rm 16} #Finding values from S and T table to compute x
  for x in range (0,46):
      x_val = (5**(45*x))\%2017;
      for y in range (0,46):
          y_val = (1736*(5**y))\% 2017;
          if x_val = y_val:
               print x," ",y,"\n"
```

Listing 2: Shank's algorithm

S table

i	S	i	S	i	S	i	S	i	S
0	1	10	496	20	1959	30	1487	40	1347
1	45	11	133	21	1424	31	354	41	105
2	8	12	1951	22	1553	32	1811	42	691
3	360	13	1064	23	1307	33	815	43	840
4	64	14	1489	24	322	34	369	44	1494
5	863	15	444	25	371	35	469	45	669
6	512	16	1827	26	559	36	935		
7	853	17	1535	27	951	37	1735		
8	62	18	497	28	438	38	1429		
9	773	19	178	29	1557	39	1778		

T table

+										
	j	T	j	T	j	T	j	T	j	Т
	0	1736	10	1994	20	1728	30	1455	40	1971
	1	612	11	1902	21	572	31	1224	41	1787
	2	1043	12	1442	22	843	32	69	42	867
	3	1181	13	1159	23	181	33	345	43	301
	4	1871	14	1761	24	905	34	1725	44	1505
	5	1287	15	737	25	491	35	557	45	1474
	6	384	16	1668	26	438	36	768		
	7	1920	17	272	27	173	37	1823		
	8	1532	18	1360	28	865	38	1047		
	9	1609	19	749	29	291	39	1201		

ith value of 28 in S table has the same value as jth value of 26 in T table. That is 438

x = 28*45 - 26

```
x = 1234
```

Verification:

```
5^{1234} = 1736 \pmod{2017}
```

Therefore, value of x is 1234

3. Find x using Pollard Rho algorithm. Show the steps, and produce the sequence

```
y = 1736 = 5^x \pmod{2017}
```

On dividing the set $S=\{1,2,3,...,2016\}$ into 3 sets such that :

 $S_0 = \{1, 2, \dots, 672\}$

 $S_1 = \{673, \dots, 1345\}$

 $S_2 = \{1346, \dots, 2016\}$

Choosing a random value for α : $\alpha = 7$

```
1 #using python for Pollard Rho Algorithm
val = (5**30) \% 2017
4 print "S1 ", val , "\n";
my_list = list()
6 for i in range (1,10):
      val2 = (val**2)\%2017
      if val2 >=1 and val2 <=672:
           print "S0 ", val2 , "\n";
      elif val2 >= 673 and val2 <= 1345:
           print "S1 ", val2 , "\n";
      elif val2>=1346 and val2<=2016:
12
           print "S2 " , val2 , "\n"
13
      else:
           print "oops \n"
      my_list.append(val)
17
      my_list.append(val2)
18
      val = (1736*val2) \%2017
19
      if val >= 1 and val <= 672:
21
           print "S0 ", val , "\n";
      elif val >=673 and val <=1345:
```

```
print "S1 ", val , "\n";
elif val>=1346 and val<=2016 :
    print "S2 " , val , "\n"
else:
    print "oops \n"

print my_list
map(lambda val: (val, [i for i in xrange(len(my_list)) if my_list[i] == val]), my_list)</pre>
```

Listing 3: Pollard Rho algorithm

Using Pollard Rho algorithm and using α as 7, we obtain the value of x to be 1234

Verification: (5^{1234}) mod 2017 results in the value of y which is 1736

4. Find x using Pohlig-Hellman algorithm. You can use the factorization of $2016 = 2^5 3^2 7$ to create two smaller discrete log problems, for example $2016 = 36 \cdot 56$. Show the steps.

```
y = 1736 = g^x \pmod{p}
g=5, p = 2017
p - 1 = 2016
2016 = 36.56
a=36, b=56
Step 1: Find r
Solve for r in
(g^a)^r = y^a \pmod{p}
g=5, a=36, r=?, y=1736, p=2017
(5^{36})^r = 1736^{36} \pmod{2017}
995^r = 1695 \pmod{2017}
Since 995 is of order b = 56, we solve a smaller DLP.
The solution r is in the set [0, b - 1] = [0, 55]
This DLP gives r = 2 since 995^2 = 1695 \mod 2017
r=2
Step 2: Find s
(g^b)^s = y \cdot g^{-r} \pmod{p}
```

5. Find x using the Index Calculus algorithm. Try the prime base $\{2,3,5\}$ and if this does not work, try $\{2,3,5,7\}$. Show the steps.

Trying the prime base for $\{2,3,5\}$

Step 1:

 g^{α}

From the program written below, found 3 smooth values: 75,76 and 106

```
#using python to find the suitable value of alpha

for i in range (1,110):
    smooth = (5**i)%2017
    if smooth%2==0 and smooth%3==0 and smooth%5==0:
        print i," ",smooth,"\n"
```

Listing 4: Finding if the value of alpha leads to smooth

$$5^{75} = 90 \pmod{2017} = 2^1 * 3^2 * 5 \pmod{2017}$$

 $1.log_5 2 + 2.log_5 3 + 1.log_5 5 \pmod{2016}$
 $5^{76} = 450 \pmod{2017} = 2^1 * 3^2 * 5^2 \pmod{2017}$

```
1.log_52 + 2.log_53 + 2.log_55 \pmod{2016}

5^{106} = 900(\text{mod } 2017) = 2^2 * 3^2 * 5^2 \pmod{2017}

2.log_52 + 2.log_53 + 2.log_55 \pmod{2016}
```

Step 2: Solving equations

$$1.log_52 + 2.log_53 + 1.log_55 \pmod{2016}$$

$$1.log_52 + 2.log_53 + 2.log_55 \pmod{2016}$$

$$2.log_52 + 2.log_53 + 2.log_55 \pmod{2016}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} \log_5 2 \\ \log_5 3 \\ \log_5 5 \end{bmatrix} = \begin{bmatrix} 75 \\ 76 \\ 106 \end{bmatrix}$$

We find the solution as

 $log_530=2 \pmod{2017}$

 $log_522=3 \pmod{2017}$

 $log_51 = 5 \pmod{2017}$

Step 3: Finding the value of x

For y = 1736

Finding α such that the value is smooth

$$\alpha = 690$$

Applying the formula $log_g y = -\alpha + \sum_{p_i \in S} \alpha_i log_g p^i \pmod{\text{p-1}}$

We obtain $log_q 1736 = 1234 \pmod{2016}$

The value of x is 1234

The solution is x = 1234 in $1736 = 5^x \pmod{2017}$, since $5^{1234} = 1736 \pmod{2017}$

Also trying the prime base for $\{2, 3, 5, 7\}$

Step 1: Finding α in g^{α}

From the program written below, found 4 α which lead to smooth values: 673, 889, 919 and 1875

```
#using python to find the suitable value of alpha

for i in range (1,110):

smooth = (5**i)%2017

if smooth%2==0 and smooth%3==0 and smooth%5==0 and smooth%7==0:
```

Listing 5: Finding if the value of alpha leads to smooth

$$5^{673} = 1470 \pmod{2017} = 2^1 * 3^1 * 5^1 * 7^2 \pmod{2017}$$

$$1.log_5 2 + 1.log_5 3 + 1.log_5 5 + 2.log_5 7 \pmod{2016}$$

$$5^{889} = 630 \pmod{2017} = 2^1 * 3^2 * 5^1 * 7^1 \pmod{2017}$$

$$1.log_5 2 + 2.log_5 3 + 1.log_5 5 + 1.log_5 7 \pmod{2016}$$

$$5^{919} = 1260 \pmod{2017} = 2^2 * 3^2 * 5^1 * 7^1 \pmod{2017}$$

$$2.log_5 2 + 2.log_5 3 + 1.log_5 5 + 1.log_5 7 \pmod{2016}$$

$$5^{1875} = 210 \pmod{2017} = 2^1 * 3^1 * 5^1 * 7^1 \pmod{2017}$$

$$1.log_5 2 + 1.log_5 3 + 1.log_5 5 + 1.log_5 7 \pmod{2016}$$

Step 2: Solving equations

$$1.log_52 + 1.log_53 + 1.log_55 + 2.log_57 \pmod{2016}$$

 $1.log_52 + 2.log_53 + 1.log_55 + 1.log_57 \pmod{2016}$
 $2.log_52 + 2.log_53 + 1.log_55 + 1.log_57 \pmod{2016}$
 $1.log_52 + 1.log_53 + 1.log_55 + 1.log_57 \pmod{2016}$

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \log_5 2 \\ \log_5 3 \\ \log_5 5 \\ \log_5 7 \end{bmatrix} = \begin{bmatrix} 673 \\ 889 \\ 919 \\ 1875 \end{bmatrix}$$

We find the solution as

$$log_52 = 30$$

$$log_5 3 = 1030$$

$$log_5 5 = 1$$

$$log_57 = 814$$

These are verified as:

$$5^{30} = 2 \pmod{2017}$$

$$5^{1030} = 3 \pmod{2017}$$

$$5^1 = 5 \pmod{2017}$$

$$5^{814} = 7 \pmod{2017}$$

Step 3: Finding the value of x

For y = 1736:

Finding α such that the value is smooth

 $\alpha = 641$

$$y.g^{\alpha} = 1736.5^{641} \pmod{2017}$$

 $=210 \pmod{2017}$

The number factors as 210 are $2^1.3^1.5^1.7^1$

$$log_g y = -\alpha + \sum_{p_i \in S} \alpha_i log_g p^i (mod \text{ p-1})$$

$$log_51736 = -641 + \sum_{p_i \in S} \alpha_i log_5 p^i \pmod{2016}$$

$$log_q 1736 = -641 + 1.log_5 2 + 1.log_5 3 + 1.log_5 5 + 1.log_5 7 \pmod{2016}$$

$$log_g 1736 = -641 + 30 + 1030 + 1 + 814 \pmod{2016}$$

 $log_q 1736 = 1234 \pmod{2016}$

The value of x is 1234

The solution is x = 1234 in $1736 = 5^x \pmod{2017}$, since $5^{1234} = 1736 \pmod{2017}$

_____ Thank You _____