Predicting Highest Scoring Players for Fantasy Premier League

Anna Li, Hisham Aziz, Iishaan Shekhar, Katherine Voss-Robinson We are motivated by the goal of optimizing a starting 11 for a Fantasy Premier League (FPL) game week

- Research Question: How can we predict FPL player performance per game week?
- FPL is extremely popular, with over 11 million players worldwide
- Creating a high-scoring team is challenging and can be <u>lucrative</u>
 - Additionally, this topic comes with a wealth of data
 - This problem is ripe for an ML solution

Speaker: Hisham

- When presenting, hit home that it's an interesting, challenging question
- English Premier League

We will use an FPL library containing game week-level data from 2016 through the present to build our model(s)

Data source

Link: https://github.com/vaastav/Fantasy-Premier-League/tree/master/data

Columns

In total, we have 37 columns (split between **continuous** and **categorical** variables) and ~140k rows (one for each player and game week in the data)

```
['season_x', 'name', 'position', 'team_x', 'assists', 'bonus', 'bps', 'clean_sheets', 'creativity', 'element', 'fixture', 'goals_conceded', 'goals_scored', 'ict_index', 'influence', 'kickoff_time', 'minutes', 'opponent_team', 'opp_team_name', 'own_goals', 'penalties_missed', 'penalties_saved', 'red_cards', 'round', 'saves', 'selected', 'team_a_score', 'team_h_score', 'threat', 'total_points', 'transfers_balance', 'transfers_in', 'transfers_out', 'value', 'was_home', 'yellow_cards', 'GW']
```

Speaker: Hisham

Very importantly, one that is updated every week as the current season unfolds

After excluding records missing team name and for players who played o minutes, we are left with $\sim 32 \mathrm{k}$ rows

Season	Overall Records	Played >0 Minutes	Record Contains Team Name	Distinct Players with > 0 Minutes	
2016-17	8,567	5,139	-	-	
2017-18	11,285	6,584	-	-	
2018-19	21,790	10,480	-	-	
2019-20	22,560	10,614	-	-	
2020-21	24,365	10,393	10,393	524	
2021-22	25,447	10,485	10,485	537	
2022-23	26,505	11,345	11,345	554	

Speaker: Hisham

- Notable observations:
 - Records are sparse in 2016-2017 we may exclude if we can't figure out why
 - We suspect we can get team name from an alternate source, so we're not counting out these rows yet

Speaker: Katherine

- This is an illustrative subset of our features
- It highlights how much the volume of the "no minutes" players overwhelms the rest
 - We will either remove rows that didn't play or downsample them so that they don't overwhelm our model
- Also note that the variables are on different scales; we'll need to normalize
 - Here, value is in hundreds of millions

Continuous Variables

Many of our numerical features are on different scales; we will standardize them before building our model

	Clean Sheets	Yellow Cards	Assists	Goals Scored	ICT Index	Minutes	Value (in \$100M)
Mean	0.22	0.12	0.086	0.095	3.58	69.76	54.82
Standard Deviation	0.42	0.32	0.30	0.33	3.45	29.94	14.25
Min	0	0	0	0	0	1	37
Max	1	1	4	4	32.8	90	133

Speaker: Katherine

- Again, these are an illustrative subset of variables
 - O Data has been filtered for play time, which is why minutes has a minimum of 1

Speaker: Katherine

- These variables are a subset of our numerical variables chosen based on domain knowledge for the sake of this presentation (we will analyze all of them)
- Notable strong correlations: goals_scored, clean_sheets, ict_index (all unsurprising, as is the fact that yellow cards is negative)
- Data dictionary for less obvious terms:
 - Clean Sheets when a team concedes zero goals in a match
 - Value FPL dollar value for a given player
 - ICT Index statistical index generating a single score for three key areas: influence, creativity, and threat
 - Influence evaluates the degree to which a player has made an impact on a single match or throughout the season
 - Creativity assesses player performance in terms of producing goalscoring opportunities for others. It can be used as a guide to identify the players most likely to supply assists
 - Threat examines a player's threat on goal. It gauges the individuals most likely to score goals

Speaker: Anna

Speaker: Anna

We plan to evaluate and choose between several types of predictive algorithms

- We will aim to use regression to predict points for a given player in a given game week
- Target variable: total_points
- Prediction algorithm options:
 - Linear regression
 - o Random forest of regressive decision trees
 - Additional optimized versions using ensemble methods (e.g., boosting, bagging, and stacking)
 - o Feed forward neural networks

Speaker: Iishaan

• Link

We will evaluate our results using test data, measurements of loss, and a t-test to choose our final model

- We will choose between two methodologies to split our data:
 - **Simple holdout** use the 2016-17 through 2020-21 seasons for train, the 2021-22 season for validation, and the 2022-23 season for test (a roughly 60/20/20 split)
 - **K-fold cross-validation** ignoring the order of data, split the rows in our data set randomly across seasons in a 60/20/20 split
- We will compare our model to our baseline using root mean squared error (RMSE) and mean absolute percentage error (MAPE)
- We will conduct a t-test on the above metrics for each of our possible models and select the best among them, using simplicity as a tie break, and, as new data streams from the current premier league season (23-24), we will test the top model's performance against this 'unseen' data.

Speaker: Iishaan

• Potentially ask - would looking at R² be valuable?