Appeal statement

Yang Zou Yza497 301385615 Exchange Course: CS 188 at UC Berkeley

SFU Credit that I am seeking: CMPT 417

Reasons:

- CS 188 is a fourth-year-level course at UC Berkeley.
- CS 188 covers almost all the topics of CMPT 417:

CS188 syllabus:

https://inst.eecs.berkeley.edu//~cs188/su21/

CMPT 417 syllabus:

http://www.sfu.ca/outlines.html?2021/spring/cmpt/417/d100

- Intractable AI and optimization problems
- · Combinatorial and heuristic search
- · Best-first search, bounded-suboptimal search, advanced heuristic search techniques
- A case study of the multi-agent pathfinding problem
- (Selective) applications in planning, multi-agent/robot systems, games, etc.

Lecture slides of CS 188 below shows the topics taught in CS 188(please see the attached files for more details.

2 Uniformed Search	2021/7/15 16:20	WPS PDF 文档	22,795 KB
3 A Search and Heuristics	2021/7/15 9:50	WPS PDF 文档	26,703 KB
4 Game Trees I	2021/7/15 10:06	WPS PDF 文档	13,477 KB
5 Game Trees II	2021/7/15 10:47	WPS PDF 文档	19,348 KB
6 MDP	2021/7/15 16:20	WPS PDF 文档	28,938 KB
7 Reinforcement Learning I	2021/7/15 7:23	WPS PDF 文档	21,163 KB
8 Reinforcement Learning II	2021/7/15 7:24	WPS PDF 文档	13,563 KB
9 Probability	2021/7/15 7:25	WPS PDF 文档	6,927 KB
10 Bayes Net Representation	2021/7/25 13:01	WPS PDF 文档	17,519 KB
11 Bayes Net Independence	2021/7/25 13:02	WPS PDF 文档	10,923 KB
12 Bayes Net Inference	2021/7/25 13:02	WPS PDF 文档	17,111 KB
13 Bayes Net Sampling	2021/7/25 13:03	WPS PDF 文档	12,980 KB
14 Hidden Markov Models	2021/7/25 13:03	WPS PDF 文档	12,711 KB
15 Particle Filtering	2021/7/25 13:03	WPS PDF 文档	10,733 KB
16 Decision Networks	2021/7/25 13:04	WPS PDF 文档	10,704 KB
17 Naive Bayes I	2021/7/25 13:04	WPS PDF 文档	8,580 KB
18 Naive Bayes II	2021/8/17 17:14	WPS PDF 文档	10,244 KB
19 Perceptrons	2021/8/17 17:14	WPS PDF 文档	8,601 KB
20 Neural Networks I	2021/8/17 17:15	WPS PDF 文档	12,631 KB
21 Neural Networks II	2021/8/17 17:15	WPS PDF 文档	33,319 KB
2021_06_xx_CVPR-keynote-Abbeel	2021/8/17 17:16	WPS PDF 文档	26,348 KB

It is obvious that **optimization problem, heuristic, all the tree searches, adversarial searches, offline/online search algorithms, MDP, Q learning for single/multiple agent game AI algorithms** are covered in the topics of CS188.

The assignments of CS188 shows the application of all algorithms, and apply to create the AI
for Pacman games which also matches the principle of CMPT 417(AI for multiple-agent game
system).

Project syllabus of CS188:

https://inst.eecs.berkeley.edu/~cs188/su21/projects/

Projects Overview

Coding Diagnostic

This short UNIX/Python tutorial introduces students to the Python programming language and the UNIX environment.

P1: Search

Students implement depth-first, breadth-first, uniform cost, and A^* search algorithms. These algorithms are used to solve navigation and traveling salesman problems in the Pacman world.

P2: Multi-Agent Search

Classic Pacman is modeled as both an adversarial and a stochastic search problem. Students implement multiagent minimax and expectimax algorithms, as well as designing evaluation functions.

P3: Reinforcement Learning

Students implement model-based and model-free reinforcement learning algorithms, applied to the AIMA textbook's Gridworld, Pacman, and a simulated crawling robot.

P4: BNs and HMMs: Ghostbusters

Probabilistic inference in a Hidden Markov Model tracks the movement of hidden ghosts in the Pacman world. Students implement exact inference using the forward algorithm and approximate inference via particle filters.

P5: Machine Learning: Classification

Students implement the perceptron algorithm and neural network models, and apply the models to several tasks including digit classification.