Plug $dP_1/dI_{c1} = 0$ to get $I_{c1} = V_{CC}/(2R_L)$

This is the *mid-point of the load line*, with *coordinates* $[V_{CC}/2, V_{CC}/(2R_L)]$

$$\Rightarrow P_{\text{max}} = \frac{V_{\text{CC}}^2}{2R_{\text{L}}} \text{ (using a Safety Factor of 2)}$$

There is also *standby power*:

$$P_{Standby} = V_{CC} \times I_{Standby}$$

- ightharpoonup In general, $P_{max} >> P_{Standby}$
- * Refer to the figure in the next slide
 - o V_{cel} oscillates between 0 and $2V_{CC}$
 - o I_{c1} appears only during the positive half cycle, with peak value of V_{CC}/R_L (when $V_{cel} = 0$)
 - o P_1 (= $V_{ce1} \times I_{c1}$) oscillates between 0 and $V_{CC}^2/(4R_L)$ at twice the frequency only during the positive half cycle

- * Two Special Cases:
 - o $R_L \rightarrow \infty$ (open-circuit):

Load line becomes horizontal with $I_{c1} = 0$

$$\Rightarrow P_1 = 0 \Rightarrow no issue$$

o $R_L = 0$ (short-circuit):

Load line becomes vertical with $I_{c1} \rightarrow \infty$

Potentially dangerous situation

Resulting power dissipation and consequent heat generation can completely damage the device

- **!** In actual situation, I_{c1} won't reach infinite value due to:
 - o Limited current driving capability of the driver stage
 - o Fall of β at high current levels due to High-Level Injection or Kirk Effect
- ❖ These two are *in-built self-protection mechanisms*
- ❖ Nevertheless, practical output stages need short-circuit protection

> Linearity and Output Resistance:

• While supplying/sinking current to/from load, Q_1/Q_2 operate in CC mode

$$\Rightarrow A_v = R_L/(R_L + r_{Ei})$$
 (i = 1,2) ($r_{Ei} = V_T/I_{Ci}$)

- Thus, if $R_L >> r_{Ei}$, then $A_v \to I$, and very high linearity in the VTC can be achieved
- However, *r_{Ei}* is not constant rather it changes with the load current
- Thus, A_v can depart significantly from unity, when the load current is very small (large r_{Ei})
- Referring to the VTC, the slope of the characteristic near $\pm V_{\gamma}$ will be significantly less than unity (Class B)

- However, as V_o \uparrow , load current \uparrow , r_{Ei} \checkmark , and the VTC starts to attain its maximum slope of unity
- Thus, for major part, the VTC is highly linear and produces an almost distortionless output
- Output Resistance:
 - o *Open R_L* and *look back from the output*
 - o $R_0 = r_{Ei}$ (by inpsection), since bases of Q_1 - Q_2 can be considered to be at ac ground
 - o R_0 is variable, but for major part, extremely small
- Generally, the *linearity and output resistance* are calculated at the region of maximum slope of the VTC