FEATURES

- Wide Operating Voltage Range of 2.0V to 6.0V
- 8-Bit Serial-Input, Serial or Parallel-Out Shift
- · Outputs Directly Interface to CMOS, NMOS, and TTL
- Low Input Current: 1.0µA
- High Noise Immunity Characteristic of CMOS Devices

APPLICATIONS

- · Network Switches
- · Power Infrastructure
- LED Displays
- Servers

The 74HC595 devices contain and 8-bit, serial-in, parallel-out shift register that feeds an 8-bit D-type latch with parallel 3-state outputs. Separate clocks are provided for both the shift register and latch. The shift register has a direct overriding clear input, serial input, and serial outputs for cascading. This device also has an asynchronous reset for the shift register.

ORDERING INFORMATION

Device	Package			
74HC595D	SOP-16			
74HC595TD	TSSOP-16			
74HC595N	DIP-16			

ABSOLUTE MAXIMUM RATINGS (Note 1)

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
DC Supply Voltage (Referenced to GND)	Vcc	-0.5	7.0	V
DC Input Voltage (Referenced to GND)	V _{IN}	-0.5	V _{CC} + 0.5	V
DC Output Voltage (Referenced to GND)	V _{OUT}	-0.5	V _{CC} + 0.5	V
DC Input Current	l _{IN}	-	±20	mA
DC Output Current	l _{оит}	-	±35	mA
DC Supply Current	I _{CC}	-	±75	mA
Maximum Junction Temperature	TJ	-	150	°C
Storage Temperature	T _{STG}	-65	150	°C

Note1. Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS (Note 2)

CHARACTERISTIC	SYMBOL	MIN.	MAX.	UNIT
Supply Voltage	V _{CC}	2.0	6.0	V
DC Input Voltage	V_{IN}	0	Vcc	V
DC Output Voltage	V _{OUT}	0	Vcc	V
Operating Free-Air Temperature Range	T _A	-55	125	°C

Note 2. The device is not guaranteed to function outside its operating ratings.

ORDERING INFORMATION

Package	Order No.	Description	Package Marking	Status
SOP-16	74HC595D	8-Bit Shift Resisters	74HC595	Active
TSSOP-16	74HC595TD	8-Bit Shift Resisters	74HC595	Active
DIP-16	74HC595N	8-Bit Shift Resisters	74HC595	Active

PIN CONFIGURATION

SOP-16 / TSSOP-16 / DIP-16

PIN DESCRIPTION

	Pin No.		Pin Name	Pin Function
SOP-16	TSSOP-16	DIP-16	Pin Name	Pin Function
1	1	1	Q _B	Parallel Data Q _B Output
2	2	2	Qc	Parallel Data Q _C Output
3	3	3	Q_D	Parallel Data Q _D Output
4	4	4	Q _E	Parallel Data Q _E Output
5	5	5	Q _F	Parallel Data Q _F Output
6	6	6	Q_G	Parallel Data Q _G Output
7	7	7	Q _H	Parallel Data Q _H Output
8	8	8	GND	Ground
9	9	9	SQH	Serial Data Output
10	10	10	RESET	Shift Register Reset Input
11	11	11	SHIFT CLOCK	Shift Register Clock Input.
12	12	12	LATCH CLOCK	Parallel Latch Clock Input
13	13	13	OUTPUT ENABLE	Output Enable
14	14	14	А	Serial Data Input
15	15	15	Q _A	Parallel Data Q _A Output
16	16	16	VCC	Power Supply

BLOCK DIAGRAM

8-Bit Shift Registers With Latched 3-State Outputs

DC ELECTRICAL CHARACTERISTICS

Voltages referenced to ground.

SYMBOL	DADAMETED	TEST CO	MOITION	VCC	Limit			UNIT	
STIVIBUL	PARAMETER	TEST CC	NDITION	VCC	≤ 25°C	≤ 85°C	≤ 125°C	UNIT	
		.,		2.0 V	1.50	1.50	1.50		
V_{IH}	Minimum High-Level Input Voltage	$V_{OUT} = 0.1V \text{ or } V$ $ I_{OUT} \le 20 \mu\text{A}$	_{CC} – 0.1V	4.5 V	3.15	3.15	3.15	٧	
	voltage	100π = 20 μA	6.0 V	4.20	4.20	4.20			
				2.0 V	0.50	0.50	0.50		
V_{IL}	V _{IL} Maximum Low-Level Input Voltage	$V_{OUT} = 0.1V \text{ or } V$ $ I_{OUT} \le 20 \mu\text{A}$	_{CC} – 0.1V	4.5 V	1.35	1.35	1.35	V	
	voltage			6.0 V	1.80	1.80	1.80		
				2.0 V	1.9	1.9	1.9		
	Minimum High-Level Output Voltage, Q _A − Q _H		I _{OUT} ≤ 20 μA	4.5 V	4.4	4.4	4.4		
V_{OH}		V _{IN} = V _{IH} or V _{IL}		6.0 V	5.9	5.9	5.9	V	
			I _{OUT} ≤ 6.0 mA	4.5 V	3.98	3.84	3.7		
			I _{OUT} ≤ 7.8 mA	6.0 V	5.48	5.34	5.2		
		$V_{IN} = V_{IH}$ or V_{IL}	I _{Ουτ} ≤ 20 μA	2.0 V	0.1	0.1	0.1		
				4.5 V	0.1	0.1	0.1		
Vol	Maximum Low-Level Output Voltage, Q _A – Q _H			6.0 V	0.1	0.1	0.1	٧	
			I _{OUT} ≤ 6.0 mA	4.5 V	0.26	0.33	0.4		
			I _{OUT} ≤ 7.8 mA	6.0 V	0.26	0.33	0.4		
			I _{OUT} ≤ 20 μA	2.0 V	1.9	1.9	1.9		
				4.5 V	4.4	4.4	4.4		
V_{OH}	Minimum High-Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$		6.0 V	5.9	5.9	5.9	V	
	Voltage, SQ _H		I _{OUT} ≤ 4.0 mA	4.5 V	3.98	3.84	3.7		
			I _{OUT} ≤ 5.2 mA	6.0 V	5.48	5.34	5.2		
				2.0 V	0.1	0.1	0.1		
			I _{OUT} ≤ 20 μA	4.5 V	0.1	0.1	0.1		
V_{OL}	Maximum Low-Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$		6.0 V	0.1	0.1	0.1	V	
	Voltage, SQ _H		I _{OUT} ≤ 4.0 mA	4.5 V	0.26	0.33	0.4		
			I _{OUT} ≤ 5.2 mA	6.0 V	0.26	0.33	0.4		
I _{IN}	Maximum Input Leakage Current	V _{IN} = V _{CC} or GNI	6.0 V	±0.1	±1.0	±1.0	μΑ		
l _{OZ}	Maximum Three-State Leakage Current, Q _A – Q _H	Output in High-Ir $V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or Gi	6.0 V	±0.5	±5.0	±10	μΑ		
Icc	Maximum Quiescent Supply Current (per Pacakge)	$V_{IN} = V_{CC}$ or GNI $I_{OUT} = 0 \mu A$)	6.0 V	4.0	40	160	μΑ	

AC ELECTRICAL CHARACTERISTICS

 C_L = 50 pF, Input t_r = t_f = 6.0 ns

SYMBOL	PARAMETER	vcc		UNIT		
STIVIBUL	PARAMETER	VCC	≤ 25°C	≤ 85°C	≤ 125°C	OIVII
		2.0 V	6.0	4.8	4.0	
f_{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 1 and 7)	4.5 V	30	24	20	MHz
	(rigules i and r)	6.0 V	35	28	24	
		2.0 V	140	175	210	
t _{PLH} ,	Maximum Propagation Delay, Shift Clock to SQ _H (Figures 1 and 7)	4.5 V	28	35	42	ns
t _{PHL}	(rigules i and r)	6.0 V	24	30	36	
		2.0 V	145	180	220	
t_{PHL}	Maximum Propagation Delay, Reset to SQ _H (Figures 2 and 7)	4.5 V	29	36	44	ns
	(Figures 2 and 7)	6.0 V	25	31	38	
		2.0 V	140	175	210	
t _{PLH} ,	Maximum Propagation Delay, Latch Clock to $Q_A - Q_H$ (Figures 3 and 7)	4.5 V	28	35	42	ns
t _{PHL}	(Figures 3 and 7)	6.0 V	24	30	36	
	Maximum Propagation Delay, Output Enable to $Q_A - Q_H$ (Figures 4 and 8)	2.0 V	150	190	225	
t _{PLZ} ,		4.5 V	30	38	45	ns
t _{PHZ}	(Figures 4 and 6)	6.0 V	26	33	38	İ
		2.0 V	135	170	205	ns
t _{PZL} , ◆	Maximum Propagation Delay, Output Enable to Q _A – Q _H	4.5 V	27	34	41	
t _{PZH}	(Figures 4 and 8)	6.0 V	23	29	35	
		2.0 V	60	75	90	
t⊤∟H,	Maximum Output Transition Time, Q _A − Q _H (Figures 3 and 7)	4.5 V	12	15	18	ns
t _{THL}	(Figures 3 and 7)	6.0 V	10	13	15	
		2.0 V	75	95	110	
t _{⊤LH} ,	Maximum Output Transition Time, SQ _H	4.5 V	15	19	22	ns
t _{THL}	(Figures 1 and 7)	6.0 V	13	16	19	
C _{IN}	Maximum Input Capacitance	_	10	10	10	pF
C _{OUT}	Maximum Three-State Output Capacitance (Output in High- Impedance State), $Q_A - Q_H$	_	15	15	15	pF
C _{PD}	Power Dissipation Capacitance (per Package) (Note 3)	5.0 V	3	00 @ 25°	С	pF

Note 3. Used to determine the no-load dynamic power consumption: $P_D = C_{PD}V_{CC}^2f + I_{CC}V_{CC}$.

TIMING REQUIREMENTS

 $C_L = 50 \text{ pF}$, Input $t_r = t_f = 6.0 \text{ ns}$

SYMBOL	PARAMETER	VCC		UNIT		
STIVIBUL	PARAIVIE I ER	VCC	≤ 25°C	≤ 85°C	≤ 125°C	UNIT
	Minimum Catus Time Coriel Data leavet A to Obite Cl		50	65	75	
t_{su}	Minimum Setup Time, Serial Data Input A to Shift Clock (Figure 5)	4.5 V	10	13	15	MHz
	(rigure 3)	6.0 V	9	11	13	
	N	2.0 V	75	95	110	
t_{su}	Minimum Setup Time, Shift Clock to Latch Clock (Figure 6)	4.5 V	15	19	22	ns
	(i iguie o)	6.0 V	13	16	19	
		2.0 V	5	5	5	
t_h	Minimum Hold Time, Shift Clock to Serial Data Input A (Figure 5)	4.5 V	5	5	5	ns
	(i iguie 3)	6.0 V	5	5	5	
	Minimum Recovery Time, Reset Inactive to Shift Clock (Figure 2)	2.0 V	50	65	75	ns
t_{rec}		4.5 V	10	13	15	
	(Figure 2)	6.0 V	9	11	13	
	Minimum Pulse Width, Reset (Figure 2)	2.0 V	60	75	90	ns
t_w		4.5 V	12	15	18	
	(i iguie 2)	6.0 V	10	13	15	
		2.0 V	50	65	75	
t_w	Minimum Pulse Width, Shift Clock (Figure 1)	4.5 V	10	13	15	ns
	(inguise i)	6.0 V	9	11	13	
		2.0 V	50	65	75	_
t _w	Minimum Pulse Width, Latch Clock (Figure 6)	4.5 V	10	13	15	ns
	(i iguie o)	6.0 V	9	11	13	
		2.0 V	1000	1000	1000	
$t_r,\ t_f$	Maximum Input Rise and Fall Times (Figure 1)	4.5 V	500	500	500	ns
	(rigure i)	6.0 V	400	400	400	

FUNCTION TABLE

	Inputs				Resulting Function				
Operation	Reset	Serial Input A	Shift Clock	Latch Clock	Output Enable	Shift Register Contents	Latch Register Contents	Serial Output SQ _H	Parallel Outputs Q _A – Q _H
Reset shift register	L	Х	Х	L, H, ↓	L	L	U	L	U
Shift data into shift register	Н	D	1	L, H, ↓	L	$D \rightarrow SR_A;$ $SR_N \rightarrow SR_{N+1}$	U	$SR_G \rightarrow SR_H$	U
Shift register remains unchanged	Н	Х	L, H, ↓	L, H, ↓	L	U	U	U	U
Transfer shift register contents to latch register	Н	х	L, H, ↓	1	L	U	$SR_N \rightarrow LR_N$	C	SR _N
Latch register remains unchanged	Х	Х	Х	L, H, ↓	L	*	U	*	U
Enable parallel outputs	Х	Х	Х	Х	L	*	**	*	Enabled
Force outputs into high impedance state	Х	Х	Х	Х	Н	*	**	*	Z

SR: shift register contents LR: latch register contents

D: data (L, H) logic level U: remains unchanged

↑: Low-to-High ↓: High-to-Low

X: don't care

*: depends on Reset and Shift Clock inputs

Z: high impedance

**: depends on Latch Clock input

SWITCHING WAVEFORMS

TEST CIRCUITS

*Includes all probe and jig capacitance

Fig. 7.

*Includes all probe and jig capacitance

Fig. 8.

TIMING DIAGRAM

FUNCTIONAL LOGIC DIAGRAM

8-Bit Shift Registers With Latched 3-State Outputs

74HC595

TYPICAL OPERATING CHARACTERISTICS

T.B.D.

8-Bit Shift Registers With Latched 3-State Outputs

74HC595

REVISION NOTICE

The description in this datasheet is subject to change without any notice to describe its electrical characteristics properly.