```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [2]: | df1 = sns.load dataset('tips')
         df1.head()
In [3]:
Out[3]:
            total_bill
                      tip
                             sex smoker day
                                               time size
          0
               16.99
                     1.01 Female
                                     No Sun Dinner
                                                      2
          1
               10.34
                    1.66
                                         Sun
                                             Dinner
                                                      3
                            Male
                                     No
          2
               21.01 3.50
                            Male
                                     No
                                        Sun
                                             Dinner
                                                      3
          3
               23.68 3.31
                                         Sun Dinner
                            Male
                                     No
                                                      2
               24.59 3.61 Female
                                     No Sun Dinner
                                                      4
In [4]:
         df1['SQRT TB'] = np.sqrt(df1['total bill'])
         df1['LOG TB'] = np.log(df1['total_bill'])
In [5]:
         df1.head()
Out[5]:
            total_bill
                                               time size SQRT TB
                                                                  LOG TB
                      tip
                             sex smoker day
                     1.01 Female
          0
               16.99
                                     No Sun Dinner
                                                         4.121893
                                                                  2.832625
               10.34
                    1.66
                                     No Sun Dinner
          1
                            Male
                                                         3.215587
                                                                 2.336020
          2
               21.01 3.50
                            Male
                                     No
                                         Sun
                                             Dinner
                                                         4.583667
                                                                  3.044999
               23.68 3.31
          3
                            Male
                                     No
                                        Sun Dinner
                                                         4.866210 3.164631
               24.59 3.61 Female
                                                         4.958831 3.202340
                                     No Sun Dinner
         print('Skewness of Original Total Bill column',df1['total bill'].skew())
In [7]:
         print('Skewness of SQRT transformed Total Bill column',df1['SQRT TB'].skew())
         print('Skewness of Log transformed Total Bill column',df1['LOG TB'].skew())
         Skewness of Original Total Bill column 1.1332130376158205
         Skewness of SQRT transformed Total Bill column 0.5661281592596766
         Skewness of Log transformed Total Bill column -0.11623079290253824
         print('Kurtosis of Original Total Bill column',df1['total bill'].kurt())
In [8]:
         print('Kurtosis of SQRT transformed Total Bill column',df1['SQRT TB'].kurt())
         print('Kurtosis of Log transformed Total Bill column',df1['LOG TB'].kurt())
         Kurtosis of Original Total Bill column 1.2184840156638854
         Kurtosis of SQRT transformed Total Bill column 0.19520953466627722
         Kurtosis of Log transformed Total Bill column 0.4734793671474513
```

```
In [9]: sns.distplot(df1['total_bill'])
   plt.show()
   sns.distplot(df1['SQRT TB'])
   plt.show()
   sns.distplot(df1['LOG TB'])
   plt.show()
```

/Users/aniruddhakalbande/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/Users/aniruddhakalbande/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

/Users/aniruddhakalbande/opt/anaconda3/lib/python3.8/site-packages/seaborn/distributions.py:2551: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an ax es-level function for histograms).

warnings.warn(msg, FutureWarning)

Handling Categorical Data

Label Encoding

```
In [12]: df1['Sex LE1'] = df1['sex'].replace({'Male':1, 'Female':0})
           df1['Sex LE2'] = df1['sex'].map({'Male':1, 'Female':0})
In [13]:
          df1.head()
Out[13]:
              total_bill
                        tip
                               sex smoker
                                           day
                                                   time size
                                                             SQRT TB
                                                                        LOG TB Sex LE1 Sex LE2
           0
                 16.99
                       1.01
                                                 Dinner
                                                              4.121893
                                                                                      0
                                                                                               0
                            Female
                                            Sun
                                                                       2.832625
                                        No
                 10.34
                       1.66
           1
                               Male
                                            Sun
                                                 Dinner
                                                              3.215587
                                                                       2.336020
                                                                                               1
           2
                 21.01
                       3.50
                                                              4.583667
                                                                       3.044999
                                                                                               1
                               Male
                                        No
                                            Sun
                                                 Dinner
           3
                                                                                               1
                 23.68
                       3.31
                               Male
                                        No
                                            Sun
                                                 Dinner
                                                              4.866210
                                                                       3.164631
                                                                                               0
                 24.59 3.61 Female
                                        No
                                            Sun
                                                 Dinner
                                                              4.958831
                                                                       3.202340
          from sklearn.preprocessing import LabelEncoder
In [14]:
In [15]:
          LE = LabelEncoder()
In [16]: | df1['day LE'] = LE.fit_transform(df1['day'])
```

```
LOG TB
     total_bill
                tip
                       sex smoker
                                     day
                                            time size
                                                                            LE1
                                                                                  LE2
                                                                                         LE
239
        29.03 5.92
                                                                                           1
                                      Sat
                                           Dinner
                                                     3 5.387950
                                                                  3.368330
                                                                                     1
                      Male
                                No
                                                                               1
240
        27.18 2.00 Female
                                Yes
                                      Sat
                                          Dinner
                                                     2 5.213444 3.302481
                                                                                     0
                                                                                           1
                                                     2 4.761302 3.121042
241
        22.67 2.00
                      Male
                                Yes
                                      Sat Dinner
                                                                                          1
                                                                                     1
242
        17.82 1.75
                      Male
                                      Sat
                                           Dinner
                                                     2 4.221374 2.880321
                                                                                          1
                                Νo
243
        18.78 3.00 Female
                                No
                                     Thur
                                           Dinner
                                                     2 4.333590 2.932792
                                                                                     0
                                                                                          3
```

One Hot Encoding

```
In [19]: df1.head()
```

Out[19]:

	total_bill	tip	sex	smoker	day	time	size	SQRT TB	LOG TB	Sex LE1	Sex LE2	day LE
0	16.99	1.01	Female	No	Sun	Dinner	2	4.121893	2.832625	0	0	2
1	10.34	1.66	Male	No	Sun	Dinner	3	3.215587	2.336020	1	1	2
2	21.01	3.50	Male	No	Sun	Dinner	3	4.583667	3.044999	1	1	2
3	23.68	3.31	Male	No	Sun	Dinner	2	4.866210	3.164631	1	1	2
4	24.59	3.61	Female	No	Sun	Dinner	4	4.958831	3.202340	0	0	2

```
In [21]: pd.get_dummies(df1['day']).tail()
```

Out[21]:

	Thur	Fri	Sat	Sun
239	0	0	1	0
240	0	0	1	0
241	0	0	1	0
242	0	0	1	0
243	1	0	0	0

In [22]: pd.get_dummies(df1['sex']).head()

Out[22]:

	Male	Female
0	0	1
1	1	0
2	1	0
3	1	0
4	0	1

In [23]: pd.get_dummies(df1['sex'],drop_first=True).head()

Out[23]:

	Female
0	1
1	0
2	0
3	0
4	1

In [24]: pd.get_dummies(df1['day'],drop_first=True).head()

Out[24]:

	Fri	Sat	Sun
0	0	0	1
1	0	0	1
2	0	0	1
3	0	0	1
4	0	0	1

In [25]: | pd.get_dummies(data=df1,columns=['day']).head()

Out[25]:

	total_bill	tip	sex	smoker	time	size	SQRT TB	LOG TB	Sex LE1	Sex LE2	day LE	day_Thur
0	16.99	1.01	Female	No	Dinner	2	4.121893	2.832625	0	0	2	0
1	10.34	1.66	Male	No	Dinner	3	3.215587	2.336020	1	1	2	0
2	21.01	3.50	Male	No	Dinner	3	4.583667	3.044999	1	1	2	0
3	23.68	3.31	Male	No	Dinner	2	4.866210	3.164631	1	1	2	0
4	24.59	3.61	Female	No	Dinner	4	4.958831	3.202340	0	0	2	0
4												•

In [26]: pd.get_dummies(data=df1,columns=['day'],drop_first=True).head()

Out[26]:

	total_bill	tip	sex	smoker	time	size	SQRT TB	LOG TB	Sex LE1	Sex LE2	day LE	day_Fri	d
0	16.99	1.01	Female	No	Dinner	2	4.121893	2.832625	0	0	2	0	
1	10.34	1.66	Male	No	Dinner	3	3.215587	2.336020	1	1	2	0	
2	21.01	3.50	Male	No	Dinner	3	4.583667	3.044999	1	1	2	0	
3	23.68	3.31	Male	No	Dinner	2	4.866210	3.164631	1	1	2	0	
4	24.59	3.61	Female	No	Dinner	4	4.958831	3.202340	0	0	2	0	
4												i	•

In [27]: pd.get_dummies(data=df1,columns=['sex'],drop_first=True).head()

Out[27]:

	total_bill	tip	smoker	day	time	size	SQRT TB	LOG TB	Sex LE1	Sex LE2	day LE	sex_Female
0	16.99	1.01	No	Sun	Dinner	2	4.121893	2.832625	0	0	2	1
1	10.34	1.66	No	Sun	Dinner	3	3.215587	2.336020	1	1	2	0
2	21.01	3.50	No	Sun	Dinner	3	4.583667	3.044999	1	1	2	0
3	23.68	3.31	No	Sun	Dinner	2	4.866210	3.164631	1	1	2	0
4	24.59	3.61	No	Sun	Dinner	4	4.958831	3.202340	0	0	2	1

In [28]: pd.get_dummies(data=df1,columns=['sex','day','time','smoker'],drop_first=True)
 .head()

Out[28]:

	total_bill	tip	size	SQRT TB	LOG TB	Sex LE1	Sex LE2	day LE	sex_Female	day_Fri	day_Sat	day _.
0	16.99	1.01	2	4.121893	2.832625	0	0	2	1	0	0	
1	10.34	1.66	3	3.215587	2.336020	1	1	2	0	0	0	
2	21.01	3.50	3	4.583667	3.044999	1	1	2	0	0	0	
3	23.68	3.31	2	4.866210	3.164631	1	1	2	0	0	0	
4	24.59	3.61	4	4.958831	3.202340	0	0	2	1	0	0	
4												•

EDA 2 2/6/2021

Bivariate and Multivariate Analysis

1. Num to Num

- · Line Graph
- Scatter plot
- Jointplot
- Lmplot

1. Line Graph - Seasonility / Trend

```
In [30]:
          x = np.arange(1,13)
          positives = np.random.randint(1000,10000,12)
In [31]:
          plt.figure(figsize=(18,8))
          plt.plot(x,positives)
          plt.show()
           10000
           8000
           6000
           4000
           2000
In [32]:
          deaths = np.random.randint(1000,6000,12)
```

```
In [37]: plt.figure(figsize=(18,8))
  plt.plot(x,positives,label='Positives Cases',color='red',linestyle='-.',linewi
  dth=3,marker='*',markersize=13)
  plt.plot(x,deaths,label='Deaths',color='blue',linewidth=3,marker='s',markersiz
  e=13)
  plt.legend()
  plt.xlabel('Months')
  plt.ylabel('Count')
  plt.title('Count of Positives and deaths in COVID-19')
  plt.show()
```



```
In [38]: df1 = sns.load_dataset('tips')
    df1.head()
```

Out[38]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

Scatter Plot - Relation between 2 features, change of 1 over another.

```
In [41]: plt.figure(figsize=(18,8))
          plt.scatter(df1['total_bill'],df1['tip'])
          plt.xlabel('Total Bill')
          plt.ylabel('Tips')
          plt.show()
            10
           Tips
                                                    Total Bill
          plt.figure(figsize=(18,8))
In [44]:
          sns.scatterplot(data=df1,x='total_bill',y='tip',edgecolor='red')
          plt.show()
           ф
                                                    total_bill
```

```
plt.figure(figsize=(18,8))
          sns.scatterplot(data=df1,x='total_bill',y='tip',edgecolor='red',hue='sex')
          plt.show()
          ф
                                                   total_bill
In [47]:
          plt.figure(figsize=(18,8))
          sns.scatterplot(data=df1,x='total_bill',y='tip',hue='day')
          plt.show()
          ф
```

Jointplot - Histogram + Scatter plot

In [48]: sns.jointplot(x='total_bill',y='tip',data=df1)
plt.show()

In [49]: sns.jointplot(x='total_bill',y='tip',data=df1,kind='hex')
plt.show()

In [50]: sns.jointplot(x='total_bill',y='tip',data=df1,kind='hex',color='red')
 plt.show()

In [54]: sns.lmplot(data=df1,x='total_bill',y='tip',hue='sex')
plt.show()

2 Numerical to Categorical Plots

- 1. Bar Graph
- 2. Boxplot
- 3. Violin Plot
- 4. Stripplot
- 5. Swarm plot

1. Bar Graph

In [57]: df1.head()

Out[57]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4


```
In [62]: sns.boxplot(data=df1,x='day',y='total_bill')
plt.show()
```


In [63]: sns.boxplot(data=df1,x='day',y='total_bill',hue='sex')
plt.show()

In [67]: sns.violinplot(x='day',y='total_bill',data=df1,hue='sex')
 plt.show()


```
In [68]: sns.violinplot(x='day',y='total_bill',data=df1,hue='sex',split=True)
    plt.show()
```



```
In [71]: sns.stripplot(data=df1,x='day',y='total_bill')
    plt.grid()
    plt.show()
```



```
In [72]: sns.swarmplot(data=df1,x='day',y='total_bill')
plt.grid()
plt.show()

50
40
10
Thur Fri Sat Sun
```

Categorical - Categorical Graphs

- 1. Side by Side Bargraph
- 2. Stacked Bar Graph

Question - What was the count of Male and Female bill payers on each day?

```
In [75]: pd.crosstab(df1['sex'],df1['day']).plot(kind='bar')
   plt.show()
```


In [76]: sns.countplot(x='sex',hue='day',data=df1)
 plt.show()

In [77]: pd.crosstab(df1['sex'],df1['day'])

Out[77]:

day	Thur	Fri	Sat	Sun
sex				
Male	30	10	59	58
Female	32	9	28	18

In []: