Semestre: 2025-1

Profesor del curso: Roberto Villaflor

Hecho por: Jorge Bravo

MAT-379 - Matematica Discreta

Tarea I - Matematica Discreta

Solución 1. Dada una coloracion C sobre G, consideramos

$$f(C) = |\{e \in E(G) \mid \text{Los extremos de } e \text{ tienen el mismo color }\}|$$

Tomemos una coloración que minimiza esta función. Supongamos que C no cumple la propiedad para algún vértice $v \in V(G)$, esto significa que más de la mitad de los vértices adyacentes tienen el mismo color, cambiando el color de v tenemos que la cantidad de aristas que conectan vértices del mismo color disminuyo, pues teníamos que más de la mitad de los vecinos de v tenían su color anterior. Por lo tanto una coloración que minimice f a de cumplir la propiedad que queremos.

Solución 2. Considere v un vértice con $d(v) = \Delta(T)$. Luego hay una única arista por cada vecino, consideremos para cada arista e incidente en v un camino maximal P_v . Estos caminos han de terminar en una hoja, pues de otra forma lo podemos continuar. Estos caminos no se pueden intersectar, dado que si se intersectaran entonces en el primer vértice que se intersectan podríamos armar un ciclo con ambos caminos. Dado que tenemos $\Delta(T)$ caminos disjuntos que terminan en hojas, a lo menos tenemos $|\Delta(T)|$ hojas.

Solución 3. Notemos que resultado es trivial para K_3 , pues K_3 es un triangulo por lo que 2 de las aristas tienen que tener el mismo color y por tanto esas 2 forman un árbol generador del mismo color. Consideramos K_{n+1} , para n > 3, considerando el subgrafo conformado por $G - v_{n+1}$, este es isomorfo a K_n y cumple la propiedad por lo tanto existe un árbol generador T del mismo color, digamos C, para este subgrafo. Si existiese una arista incidente en v_{n+1} de color C, entonces uniendo v_{n+1} al árbol mediante esa arista tendríamos el árbol generador. Si no existiese ninguna arista incidente en v_{n+1} de color C, entonces todas las aristas incidentes en v_{n+1} son del mismo color, esto pues dado e, f aristas incidentes en v_{n+1} estas conectan v_{n+1} con v_e y v_f respectivamente, dado que estas están conectadas por el árbol T, existe un camino v_e, v_1, \ldots, v_f , de color C, considerando los triángulos formados por vértices adyacentes en el camino y v_{n+1} , tenemos que las 2 aristas incidentes en v_{n+1} tienen que tener mismo color, pues ninguno puede tener color C. Repitiendo esto tenemos que todas las aristas que conectan v_{n+1} con vértices del camino tienen que tener el mismo color, en particular e y f. Por lo tanto en ese caso el árbol generador es el grafo generado por todos los vértices y las aristas incidente en v_{n+1} .

Solución 4. Consideremos $v_0 ldots v_k$ un camino maximal y supongamos por contradiccion que no existe v_i en el camino de tal forma que v_i sea vecino de v_0 y v_{i-1} vecino de v_k . Notemos que por la maximalidad del camino todos los vecinos de v_0 y v_k han de estar en el camino. Luego tomemos los conjuntos

$$A = \{v_i \mid ; v_i \in \mathcal{N}(v_0)\} \subset \{v_1, \dots, v_k\}$$

$$B = \{v_{i-1} \mid v_i \in \mathcal{N}(v_k)\} \subset \{v_0, \dots, v_{k-1}\}$$

Por hipotesis estos conjuntos son disjuntos, por lo tanto

$$|A \cup B| = |A| + |B| \ge |V(G)| \implies A \cup B = V(G)$$

Por lo tanto obtenemos que $v_0 \in B$, es decir $v_1 \in \mathcal{N}(v_k)$. Por lo tanto v_1 es vecino de v_k lo cual es una contradicción, pues entonces $v_1 \in A \cap B$.

El ciclo que buscamos es

$$v_0v_1\ldots v_{i-1}v_kv_{k-1}\ldots v_iv_0$$

Si el camino no pasara por todos los vertices, entonces existe v que no esta en el camino y es adyacente a v_j en el camino. Si $v_j = v_0$ o $v_j = v_k$ entonces la contradiccion es directa. En caso que no, podemos obtener un camino a partir del ciclo que termine en v_j y tendriamos la contradiccion. Por lo tanto es hamiltoniano.

Semestre: 2025-1

Profesor del curso: Roberto Villaflor

Hecho por: Jorge Bravo

MAT-379 - Matematica Discreta

Solución 5. .

$$\ell(x) = \int_0^{\frac{1}{2}} x(t)dt - \int_{\frac{1}{2}}^1 x(t)dt$$
$$||\ell||_{\star} \le 1$$

$$(x_n)_{n\in\mathbb{N}}\subset\mathscr{C}([0,1]), \lim_{n\to\infty}\ell(x_n)=1\wedge||x_n||_{\infty}=1$$