LAPORAN TUGAS I IF2220 TEORI BAHASA FORMAL DAN AUTOMATA APLIKASI PERMAINAN "TIC TAC TOE" DENGAN MENGGUNAKAN FINITE AUTOMATA

LOUIS CAHYADI 13517126

PROGRAM STUDI TEKNIK INFORMATIKA SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG

DESKRIPSI PERSOALAN

Tic-tac-toe adalah sebuah permainan untuk dua orang yang secara bergiliran saling membuat huruf X dan O di dalam sebuah kotak 3×3 . Pemenang dari permainan ini adalah pemain pertama yang berhasil membuat tiga tanda "X" atau tanda "O" berurutan di dalam suatu permainan, baik horizontal, vertikal maupun diagonal.

Dalam tugas ini, dibuat sebuah aplikasi permainan tic-tac-toe sederhana, yang mana permainan ini akan dimainkan komputer dan player. Program harus bisa dipastikan bahwa komputer tidak mungkin kalah dalam permainan. Aplikasi juga dibuat dengan menggunakan finite automata.

Aplikasi akan membuka file yang berisi informasi mengenai daftar state, daftar simbol, state awal, state akhir, dan transition function. Informasi dari file tersebut akan digunakan untuk mengecek masukan dari pengguna.

Pada aplikasi, konvensi yang digunakan ialah petak pada sudut kiri atas adalah petak 1,2, dan 3, kemudian baris selanjutnya dilanjutkan dengan petak 4,5,6, dan baris terakhir adalah petak 7,8, dan 9.

Batasan masalah:

Pada langkah pertama dalam setiap permainan, player atau CPU dipastikan meletakan tanda "X" atau "O" di bagian tengah papan.

Implementasi:

- 1. Program dibuat dalam bahasa pemrograman prosedural C.
- 2. Program akan membaca file text yang berisi deskripsi state machine.
- 3. Program akan menerima masukan aksi terhadap state machine, sebagai contoh:
 - a. 5 berarti memasukan pada petak ke 5
 - b. 7 berarti memasukan pada petak ke 7
- 4. Pemain memainkan tanda X, sementara komputer memainkan tanda O
- 5. Keluaran berupa papan permainan tic-tac-toe setelah state dimasukan, serta kondisi terakhir permainan jika telah diketahui hasilnya (menang/kalah/seri). Pada kondisi terakhir, program juga harus menampilkan state mana saja yang sudah dilalui selama permainan.
- 6. Tidak menggunakan library terkait finite automata yang sudah ada.

DFA

1. Daftar state:

1. AAAAAAAA	48. OXXOXAOOX	95. OXAAOAAXO
2. AAAAXAOAA	49. OXAOXXOOX	96. XAXOOOAAA
3. XAAAXAOAO	50. XXOXXOOAO	97. AXXOOOAAA
4. AXAAXAOOA	51. XAXXXOOOO	98. AAXOOOXAA
5. OAXAXAOAA	52. XAOXXOOXO	99. AAXOOOAXA
6. AAAXXOOAA	53. XXAXXOOOO	100. AAXOOOAAX
7. AAAOXXOAA	54. AXXXXOOOO	101. XAOXOAOAA
8. AOAAXAOXA	55. XXAOXXOOO	102. AXOXOAOAA
9. OAAAXAOAX	56. XAXOXXOOO	103. AAOXOXOAA
10. XOAAXAOXO	57. OOXOXXOXA	104. AAOXOAOXA
11. OXAAXAOOX	58. OOAOXXOXX	105. AAOXOAOAX
12. OAXXXOOAA	59. OOXOXAOXX	106. XAOAOXOAA
13. XAAXXOOAO	60. OOOXXAOXX	107. AXOAOXOAA
14. AXAXXOOOA	61. XOXXXOOXO	108. AAOAOXOXA
15. AOXXXOOAA	62. XOXOXXOXO	109. AAOAOXOAX
16. AOAXXOOXA	63. OXXXXOOOX	110. XAAOOOXAA
17. OAAXXOOAX	64. OOXXXOOXX	111. AXAOOOXAA
18. XAAOXXOAO	65. AAAAOAAAA	112. AAAOOOXXA
19. AOXAXOOXA	66. XOAAOAAAA	113. AAAOOOXAX
20. AOAOXXOXA	67. OXAAOAAAA	114. OAXAOAAXO
21. OOAAXAOXX	68. AAXAOOAAA	115. OAAXOAAXO
22. XOXAXOOXO	69. AAAXOAOAA	116. OAAAOXAXO
23. XOAXXOOXO	70. AAOAOXAAA	117. OAAAOAXXO
24. XOAOXXOXO	71. AAAOOAXAA	118. AOXAOAAOX
25. OXAXXOOOX	72. AAAAOAAXO	119. AOAXOAAOX
26. OXXXXOOOA	73. AAAAOAAOX	120. AOAAOXAOX
27. OOXXXOOXA	74. XOAAOOAXA	121. AOAAOAXOX
28. OOXXXOOAX	75. OXAOOAAAX	122. XOXOOOAXA
29. XOXXXOOAO	76. AAXXOOAOA	123. XOAOOOXXA
30. OOAXXOOXX	77. AAXXOAOOA	124. XOAOOOAXX
31. OOXAXOOXX	78. AOOAOXXAA	125. OXXOOOAAX
32. XXAAXAOOO	79. AOAOOXXAA	126. OXAOOXOAX
33. XAXAXAOOO	80. XAAAOOAXO	127. OXAOOOXAX
34. XAAAXXOOO	81. AXAOOAAOX	128. OXAOOOAXX
35. XAAXXAOOO	82. XOAXOOOXA	129. XOXXOOAOA
36. AXXAXAOOO	83. OXXXOOAOA	130. AOXXOOXOA
37. AXAXXAOOO	84. AOAOOXXXO	131. AOXXOOAOX
38. AXAAXXOOO	85. AXOOOXAOX	132. XOXXOAOOA
39. OXXOXAOAA	86. XOXAOAAOA	133. AXXXOAOOO
40. OAXOXXOAA	87. XOAXOAAOA	134. AOXXOXOOA
41. OAXOXAOXA	88. XOAAOAXOA	135. AOXXOAOOX
42. OAXOXAOAX	89. XOAAOXAOA	136. XOOAOXXOA
43. OXAOXXOAA	90. XOAAOAAOX	137. OOOXOXXAA
44. OAAOXXOXA	91. OXXAOAAAO	138. OOOAOXXXA
45. OAAOXXOAX	92. OXAXOAAAO	139. OOOAOXXAX
46. OXAOXAOAX	93. OXAAOXAAO	140. XOAOOXXOA
47. OAAOXAOXX	94. OXAAOAXAO	141. AOXOOXXOA
.,. 5111511151111		111.1101100111011

142. AOAOOXXOX	148. AXXOOOAOX	154. XOOOOXXXO
143. XXOAOOAXO	149. AXAOOOXOX	155. OOXOOXXXO
144. XAXOOOAXO	150. XOXXOOOXO	156. XXOOOXOOX
145. XAOXOOAXO	151. XOOXOOOXX	157. OXOOOXXOX
146. XAAOOOXXO	152. OXXXOOXOO	
147. XXAOOOAOX	153. OXXXOOOOX	

- 2. Alfabet yang digunakan = $\{1,2,3,4,5,6,7,8,9\}$
- 3. Start state = AAAAAAAA

4. Final state:

1. XXAAXAOOO	36. XOAAOAXOA	71. XOAOOOXXA
2. XAXAXAOOO	37. XOAAOXAOA	72. XOAOOOAXX
3. XAAAXXOOO	38. XOAAOAAOX	73. OXXOOOAAX
4. XAAXXAOOO	39. OXXAOAAAO	74. OXAOOXOAX
5. AXXAXAOOO	40. OXAXOAAAO	75. OXAOOOXAX
6. AXAXXAOOO	41. OXAAOXAAO	76. OXAOOOAXX
7. AXAAXXOOO	42. OXAAOAXAO	77. XOXXOOAOA
8. OXXOXAOAA	43. OXAAOAAXO	78. AOXXOOXOA
9. OAXOXXOAA	44. XAXOOOAAA	79. AOXXOOAOX
10. OAXOXAOXA	45. AXXOOOAAA	80. XOXXOAOOA
11. OAXOXAOAX	46. AAXOOOXAA	81. AXXXOAOOO
12. OXAOXXOAA	47. AAXOOOAXA	82. AOXXOXOOA
13. OAAOXXOXA	48. AAXOOOAAX	83. AOXXOAOOX
14. OAAOXXOAX	49. XAOXOAOAA	84. XOOAOXXOA
15. OXAOXAOAX	50. AXOXOAOAA	85. OOOXOXXAA
16. OAAOXAOXX	51. AAOXOXOAA	86. OOOAOXXXA
17. OXXOXAOOX	52. AAOXOAOXA	87. OOOAOXXAX
18. OXAOXXOOX	53. AAOXOAOAX	88. XOAOOXXOA
19. XXOXXOOAO	54. XAOAOXOAA	89. AOXOOXXOA
20. XAXXXOOOO	55. AXOAOXOAA	90. AOAOOXXOX
21. XAOXXOOXO	56. AAOAOXOXA	91. XXOAOOAXO
22. XXAXXOOOO	57. AAOAOXOAX	92. XAXOOOAXO
23. AXXXXOOOO	58. XAAOOOXAA	93. XAOXOOAXO
24. XXAOXXOOO	59. AXAOOOXAA	94. XAAOOOXXO
25. XAXOXXOOO	60. AAAOOOXXA	95. XXAOOOAOX
26. OOXOXXOXA	61. AAAOOOXAX	96. AXXOOOAOX
27. OOAOXXOXX	62. OAXAOAAXO	97. AXAOOOXOX
28. OOXOXAOXX	63. OAAXOAAXO	98. XOXXOOOXO
29. OOOXXAOXX	64. OAAAOXAXO	99. XOOXOOOXX
30. XOXXXOOXO	65. OAAAOAXXO	100. OXXXOOXOO
31. XOXOXXOXO	66. AOXAOAAOX	101. OXXXOOOOX
32. OXXXXOOOX	67. AOAXOAAOX	102. XOOOOXXXO
33. OOXXXOOXX	68. AOAAOXAOX	103. OOXOOXXXO
34. XOXAOAAOA	69. AOAAOAXOX	104. XXOOOXOOX
35. XOAXOAAOA	70. XOXOOOAXA	105. OXOOOXXOX

5. Transition table

TRANSITION TABLE

AAAAAAAA AAAAOAAAA AAAAXAOAA AAAAAAAA AAAAAAAA AAAAAAAA AAAAAAA AAAAAAAA AAAAAAAA AAAAÁAAAA AAAAXAOAA OAOAXAAAX AXAAXAOOA **OAXAXAOAA** AAAXX00AA AAAAXAOAA AAAOXXOAA AAAAXAOAA ANAAXAOXA OAAAXAOAX XAAAXA0A0 XAAAXA0A0 XXAAXA000 XAXAXA000 XAAAXA0A0 XAAAXA0A0 XAAXXA000 XAAAXX000 XOAAXAOXO XAAAXAOAO AXAAXA00A 000AXAAXX AXAAXA00A AXXAXA000 AXAXXA000 AXAAXA00A AXAAXX000 AXAAXA00A AXAAXA00A 0XAAXA00X 0AXAXA0AA 0AXAXA0AA 0XX0XA0AA 0AXAXA0AA 0AXXX00AA 0AXAXA0AA 0AX0XX0AA 0AXAXA0AA 0AX0XA0XA 0AX0XA0AX AAAXX00AA XAAXX00A0 AXAXX000A A0XXX00AA AAAXX00AA AAAXX00AA AAAXX00AA AAAXX00AA AXXXXA0A 0AAXX00AX AAA0XX0AA XAA0XX0A0 OXAOXXOAA 0AX0XX0AA AAA0XX0AA AAA0XX0AA AAA0XX0AA AAA0XX0AA 0AA0XX0XA 0AA0XX0AX AOAAXAOXA ACAAXAOXA 00AAXA0XX OXOAXAOXO A0AXA0XA AXXXXXX A0AXX00XA AXAAXAOXA A0A0XX0XA AXAAXAOXA 0AAAXA0AX 0AAAXA0AX 0XA0XA0AX 0AX0XA0AX 0AAXX00AX 0AAAXA0AX 0AA0XX0AX 0AAAXA0AX 0AA0XA0XX 0AAAXA0AX X0AAXA0X0 X0AAXA0X0 X0AAXA0X0 X0AXX00X0 X0AAXA0X0 X0A0XX0X0 X0AXA0X0 X0AAXA0X0 X0AAXA0X0 X0XAX00X0 0XAAXA00X 0XAAXA00X 0XAAXA00X 0XX0XA00X 0XAXX000X 0XAAXA00X 0XA0XX00X 0XAAXA00X 0XAAXA00X 0XAAXA00X 0AXXX00AA 0AXXX00AA 0XXXX000A 0AXXX00AA 0AXXX00AA 0AXXX00AA 0AXXX00AA 0AXXX00AA 00XXX00XA 00XXX00AX XAAXX00A0 DADOXXAAX XX0XX00A0 XAXXX0000 XAAXX00A0 XAAXX00A0 XAAXX00A0 XAAXX00A0 XA0XX00X0 XAAXX00A0 AXAXX000A AXAXX000A AXXXX0000 AXAXX000A AXAXX000A AXAXX000A AXAXX000A AXAXX000A 0XAXX000X 0000XXAXX AOXXXXOAA XOXXXOOAO AOXXXOOAA AOXXXXOOAA AOXXXOOAA AOXXXXOOAA AOXXXOOAA AOXXXOOAA 00XXX00XA OOXXXOOAX A0AXX00XA A00XXA0XA AXOAXXOOA 0X00XXA0X A00XXA0XA 00XXX00XA A00XXA0XA AXOAXXOOA AXOAXXOOA 00AXX00XX XAOOXXAAO OAOXXOAAX XAOOXXAAO XAOXXOAX 0XAXX000X XXA0XX000 XAOOXXXOO XAOOXXAAO XAOOXXOAX XAOOXXAAO XAOXXOAX 0AAXX00AX 0AAXX00AX 00AXX00XX 0AAXX00AX XAAOXXOAO XAAOXXOAO XOAOXXOXO XAA0XX0A0 ΔΟΧΑΧΟΟΧΑ XUXXXUUXUΔΟΧΑΧΟΟΧΑ ANXAXOOXA ANXAXOOXA ΔΟΧΑΧΟΟΧΑ ACCAZACA ΔΟΧΑΧΟΟΧΑ ΠΩΧΑΧΠΩΧΧ AOAOXXOXA XOAOXXOXO AOAOXXOXA 00X0XX0XA AOAOXXOXA A0A0XX0XA AOAOXXOXA AOAOXXOXA AOAOXXOXA 00A0XX0XX OOAAXAOXX 00AAXA0XX X0XAX00X0 OOAAXAOXX 00X0XA0XX 000XXA0XX XXOAXAAOO 0XOOXAXOX 00A0XX0XX XXOAXAAOO 0XOOXAXOX OOAAXAOXX 00AAXA0XX X0XAX00X0 X0XAX00X0 X0XAX00X0 XOXXXXOX X0XAX00X0 X0XAX00X0 X0XAX00X0 0X00XXA0X 0X0XX0A0X XOAXXOOXO XOAXXOOXO XOAXXOOXO X0XXX00X0 XOAXXOOXO XOAXXOOXO XOAXXOOXO XOAXXOOXO XOAXXOOXO X0X0XX0X0 XOAOXXOXO X0A0XX0X0 X0A0XX0X0 X0A0XX0X0 X0A0XX0X0 X0A0XX0X0 X0A0XX0X0 X0A0XX0X0 OXAXXOOOX OXAXXOOOX NXAXXOOOX 0XXXX000X 0XAXX000X OXAXXOOOX OXAXXOOOX 0XAXX000X OXAXXOOOX OXAXXOOOX 0XXXX000A 0XXXX000A 0XXXX000A 0XXXX000A 0XXXX000A 0XXXX000A 0XXXX000A 0XXXX000A 0XXXX000X 0XXXX000A ΛΩΧΧΧΩΩΧΔ ΛΩΧΧΧΩΩΧΔ ΛΩΧΧΧΩΩΧΔ ΛΩΧΧΧΩΩΧΔ 00XXX00AX 00XXX00AX 00XXX00AX 00XXX00AX 00XXX00AX 00XXX00AX 00XXX00AX 00XXX00AX 00XXX00XX 00XXX00AX XOXXXODAO NANOXXXOX NANOXXXOX XOXXXODAO XOXXXODAO XOXXXODAO XOXXXODAO XOXXXODAO xuxxxuuxu XOXXXODAO 00XXX00XX 00AXX00XX 00AXX00XX 00AXX00XX 00AXX00XX 00AXX00XX 00AXX00XX 00AXX00XX 00AXX00XX 00AXX00XX OOXAXOOXX OOXAXOOXX OOXAXOOXX OOXAXOOXX OUXXXOUXX OOXAXOOXX OOXAXOOXX OOXAXOOXX OOXAXOOXX OOXAXOOXX AAAAOAAAA XOAAOAAAA OXAAOAAAA AAXA00AAA AAAX0A0AA AAAAOAAAA AA0A0XAAA AAA00AXAA AAAAOAAXO AAAAOAAOX ΧΠΔΔΠΔΔΔΔ ΧΠΔΔΠΔΔΔΔ ΧΠΔΔΠΔΔΔΔ XOXAOAAOA ΧΠΔΧΠΔΔΠΔ ΧΠΔΔΠΔΔΔΔ ΧΠΔΔΠΧΔΠΔ XOAAOAXOA ΧΠΔΔΠΠΔΧΔ ΧΠΔΔΠΔΔΠΧ OXAAOXAAO OXAAOAAA ΑΑΧΑΟΟΑΧΑΑ XAXOOOAAA AXXOOOAAA ΑΑΧΑΟΟΑΑΑ AAXXOOAOA ΑΑΧΑΠΟΑΑΑ ΑΑΧΑΠΟΑΑΑ AAXOOOXAA AXAOOOAXA AAXOOOAAX AAAX0A0AA XA0X0A0AA AX0X0A0AA AAXX0A00A AAAXOAOAA AAAX0A0AA AA0X0X0AA AAAX0A0AA AX0A0XA AA0X0A0AX AAOAOXAAA XAOAOXOAA AXOAOXOAA AAOAOXAAA AAOXOXOAA AAOAOXAAA AA0A0XAAA A00A0XXAA AX0X0X0XA AAOAOXOAX AAA00AXAA XAA000XAA AXA000XAA AAX000XAA AAA00AXAA AAA00AXAA A0A00XXAA AAA00AXAA AAA000XXA AAA000XAX ΔΔΔΔΔΔΧΛ ΧΔΔΛΛΔΧΛ ΠΧΔΔΠΔΔΧΠ ΠΔΧΔΠΔΔΧΠ ΠΔΔΧΠΔΔΧΠ ΔΔΔΔΩΔΧΩ ΠΔΔΔΠΧΔΧΠ ΠΔΔΔΠΔΧΧΠ ΔΔΔΔΛΔΔΧΛ ΔΔΔΔΔΔΧΛ AAAAOAAOX AOAAOAXOX AXAOOAAOX AXAOOAAOX AXAOOAAOX X0X000AXA AXOOOXAOX AXAOOAAOX AXAOOAAOX AXX000A0X AXAOOAAOX XXAOOOAXX 0XA00AAAX 0XA00AAAX 0XA00AAAX 0XX000AAX 0XA00AAAX 0XA00AAAX 0XA00X0AX 0XA000XAX 0XA000AXX 0XA00AAAX AAXX00A0A XOXXOOAOA OXXXOOAOA AAXX00A0A AAXX00A0A AAXX00A0A A0A00XXAA A0XX00X0A AAXX00A0A A0XX00A0X X0XX0A00A AXXX0A000 AAXX0A00A AAXX0A00A AAXX0A00A A0XX0X0A AAXX0A00A A0XX0A00X A00A0XXAA X00A0XX0A A00A0XXAA A00A0XXAA 000X0XXAA A00A0XXAA A00A0XXAA A00A0XXAA 000A0XXXA 000A0XXAX A0A00XXAA X0A00XX0A A0A00XXAA A0XX00XX0A A0A00XXAA A0A00XXAA A0A00XXAA A0A00XXAA A0A00XXX0 A0A00XX0X OXAGOAAAX OXAGGAAAX OXADDADXX OXAGOOXAX OXAOOXOAXO OXAGGAAAX OXAGGAAX OXXOOOAAX OXAGGAAAX OXAGGAAAX AXA00AA0X XXA000A0X AXA00AA0X AXX000A0X AXA00AA0X AXA00AA0X AX000XA0X AXA000X0X AXA00AA0X AXA00AA0X AX000XA0X X000XA0X X0AX000XA X0XX000X0 AX000XA AX000XA0X AX000XA0X AX000XA AX000XA X00X000XX 0XXX00A0A 0XXX00A0A 0XXX00A0A 0XXX00A0A 0XXX00A0A 0XXX00A0A 0XXX00A0A 0XXX00X00 0XXX00A0A 0XXX00000X A0A00XXX0 A0A00XXX0 00X00XXX0 A0A00XXX0 A0A00XXX0 A0A00XXX0 A0A00XXX0 X0000XXX0 A0A00XXX0 A0A00XXX0 AX000XA0X AX000XA0X AX000XA0X AX000XA0X XX000X00X AX000XA0X AX000XA0X 0X000XX0X AX000XA0X AX000XA0X XXAAXA0001 OOOAXAAXX OOOAXAAXX OOOAXAAXX OOOAXAAXX OOOAXAAXX OOOAXAAXX OOOAXAAXX OOOAXAAXX OOOAXAAXX XAXAXA0001 XAXAXA000 XAXAXA000 XAXAXA000 XAXAXA000 XAXAXA000 XAXAXA000 XAXAXA000 XAXAXA000 XAXAXA000 XAAAXX0001 XAAAXX000 XAAAXX000 XAAAXX000 XAAAXX000 XAAAXXOOO XAAAXX000 XAAAXX000 XAAAXX000 XAAAXXOOO XAAXXAOOO1 XAAXXAOOO AXXAXAOOO1 AXXAXAOOO XAAXXA000 XAAXXA000 XAAXXA000 XAAXXA000 XAAXXA000 XAAXXA000 XAAXXA000 XAAXXA000 AXXAXA000 AXXAXA000 AXXAXA000 AXXAXA000 AXXAXA000 AXXAXA000 AXXAXA000 AXXAXA000 AXAXXA0001 AXAXXA000 AXAAXX0001 AXAAXX000 AXAXXA000 AXAXXA000 AXAXXA000 AXAAXXO00 AXAXXA000 AXAAXXO00 AXAXXA000 AXAAXXO00 AXAXXA000 AXAXXA000 AXAAXX000 AXAXXA000 AXAAXX000 AXAAXX000 AXAAXX000 AXAAXX000 OXXOXAOAA1 OXXOXAOAA 0XX0XA0AA 0XX0XA0AA 0XX0XA0AA 0XX0XA0AA 0XX0XA0AA 0XX0XA0AA 0XX0XA0AA OXXOXA0AA OAXOXXOAA1 OAXOXXOAA OAXOXXOAA OAXOXXOAA 0AX0XX0AA 0AX0XX0AA 0AX0XX0AA 0AX0XX0AA 0AX0XX0AA OAXOXXOAA OAXOXAOXA1 OAXOXAOXA OAXOXAOXA OAXOXAOXA OAXOXAOXA OAXOXAOXA OAXOXAOXA OAXOXAOXA OAXOXAOXA OAXOXAOXA 0AX0XA0AX 0AX0XA0AX 0AX0XA0AX 0AX0XA0AX 0AX0XA0AX 0AX0XA0AX OAXOXAOAX1 OAXOXAOAX 0AX0XA0AX 0AX0XA0AX ΟΧΑΟΧΧΟΑΑ1 ΟΧΑΟΧΧΟΑΑ AAOXXOAX OXAOXXOAA OXAOXXOAA OXAOXXOAA **AAOXXOAA AAOXXOAXO** AAOXXOAXO OXAOXXOAA OAAOXXOXA1 OAAOXXOXA 0AA0XX0XA 0AA0XX0XA 0AA0XX0XA 0AA0XX0XA 0AA0XX0XA 0AA0XX0XA 0AA0XX0XA 0AA0XX0XA OAAOXXOAX1 OAAOXXOAX OXAOXAOAX1 OXAOXAOAX ΠΛΛΟΧΧΟΛΧ NAANXXNAX ΠΛΛΠΧΧΠΛΧ ΠΑΛΠΥΥΠΑΥ ΠΑΛΠΥΥΠΑΥ NAANXXNAX ΠΑΛΠΥΥΠΑΥ ΟΑΑΟΧΧΟΑΧ 0XA0XA0AX 0XA0XA0AX 0XA0XA0AX 0XA0XA0AX 0XA0XA0AX 0XA0XA0AX 0XA0XA0AX OXAOXAOAX OAAOXAOXX1 OAAOXAOXX OXXOXAOOX1 OXXOXAOOX OAAOXAOXX XXOAXOAXO XOOAXOXXO 0AA0XA0XX XXOAXOAXO XOOAXOXXO OAAOXAOXX XXOAXOAXO XOOAXOXXO OAAOXAOXX 0AA0XA0XX 0XX0XA00X 0XX0XA00X 0XX0XA00X 0XX0XA00X 0XX0XA00X OXAOXXOOX1 OXAOXXOOX OXAOXXOOX OXAOXXOOX OXAOXXOOX CXACXXCCX CXACXXCCX CXACXXCCX OXAOXXOOX OXAOXXOOX XX0XX00A01 XX0XX00A0 XX0XX00A0 XX0XX00A0 XX0XX00A0 XX0XX00A0 XX0XX00A0 XX0XX00A0 XX0XX00A0 XX0XX00A0 XAXXX00001 XAXXX0000 xxxxxvvvvvXXXXXUUUU XXXXXUUUU **XXXXXUUUU XXXXXUUUU XXXXXUUUU** XXXXXVVVVVXXXXXUUUU XAOXXOOXO1 XAOXXOOXO XA0XX00X0 XA0XX00X0 XA0XX00X0 XA0XX00X0 XA0XX00X0 XA0XX00X0 XA0XX00X0 XA0XX00X0 XXAXX00001 XXAXX0000 0000XXAXX XXAXX0000 XXAXX0000 0000XXAXX 0000XXAXX 0000XXAXX XXAXX0000 XXAXX0000 AXXXX0000 AXXXXX0000 AXXXX0000 AXXXX00001 AXXXX0000 AXXXX0000 AXXXX0000 AXXXX0000 AXXXX0000 AXXXX0000 XXA0XX0001 XXA0XX000 OOOXXOAXX OUUXXUVXX OUUXXUVXX OUUXXUVXX OUUXXUVXX OUUXXUVX OOOXXOAXX XXAOXXOOO XAXOXXOOO1 XAXOXXOOO XAX0XX000 XAX0XX000 XAX0XX000 XAX0XX000 XAX0XX000 XAX0XX000 XAX0XX000 XAX0XX000 OOXOXXOXA1 OOXOXXOXA 00X0XX0XA 00X0XX0XA 00X0XX0XA 00X0XX0XA 00X0XX0XA 00X0XX0XA 00X0XX0XA OOXOXXOXA OOAOXXOXX1 OOAOXXOXX 00A0XX0XX 00A0XX0XX 00A0XX0XX 00A0XX0XX 00A0XX0XX 00A0XX0XX 00A0XX0XX 00A0XX0XX 00X0XA0XX1 00X0XA0XX 000XXA0XX1 000XXA0XX **ΛΟΧΟΧΔΟΧΧ ΠΠΧΠΧΔΠΧΧ** ΛΩΧΩΧΔΩΧΧ **ΠΠΧΠΧΔΠΧΧ ΠΠΧΠΧΔΠΧΧ** ΛΩΧΩΧΔΩΧΧ ΛΩΧΩΧΔΩΧΧ ΛΩΧΩΧΔΩΧΧ 000XXA0XX 000XXA0XX 000XXA0XX 000XXA0XX 000XXA0XX 000XXA0XX 000XXA0XX OOOXXAOXX X0XXX00X02 X0XXX00X0 xoxxxooxo xoxxxooxo xuxxxuuxu xuxxxuuxu xuxxxuuxu xuxxxuuxu xuxxxux xoxxxooxo X0X0XX0X02 X0X0XX0X0 X0X0XX0X0 X0X0XX0X0 X0X0XX0X0 X0X0XX0X0 X0X0XX0X0 X0X0XX0X0 X0X0XX0X0 X0X0XX0X0 0XXXX000X2 0XXXX000X OXXXXXOOOX 0XXXX000X 0XXXXX000X 0XXXXX000X 0XXXXX000X 0XXXXX000X 0XXXXX000X 0XXXX000X 00XXX00XX2 00XXX00XX 00XXX00XX 00XXX00XX 00XXX00XX 00XXX00XX 00XXX00XX 00XXX00XX 00XXX00XX 00XXX00XX ΧΟΧΔΟΔΔΟΔ1 ΧΟΧΔΟΔΔΟΔ ΧΟΧΔΟΔΔΟΔ ΧΟΧΔΟΔΔΟΔ ΧΟΧΔΟΔΔΟΔ ΧΟΧΔΟΔΔΟΔ ΧΟΧΔΟΔΔΟΔ ΧΟΧΔΟΔΔΟΔ ΧΟΧΔΟΔΔΟΔ ΧΟΧΔΟΔΔΟΔ X0AX0AA0A XOAXOAAOA XOAXOAAOA ΧΟΔΑΟΑΧΟΔ1 ΧΟΔΑΟΑΧΟΔ AUXAUAYUA AUXAUAYUX AUXAUAYUA AUXYUAYUX AUXAUAYUX AUXAUAUX AUXAUAYUA AUXAUAYUX

XOAAOXAOA1 XOAAOXAOA

XOAAOXAOA

XOAAOXAOA

XOAAOXAOA

XOAAOXAOA

XOAAOXAOA

XOAAOXAOA

X0AA0XA0A

X0AA0XA0A

XOAAOAAOX1 XOAAOAAOX	X0AA0AA0X	XOAAOAAOX						
OXXAOAAAO1 OXXAOAAAO	OAAAOAXXO	0XXA0AAA0						
OXAXOAAAO1 OXAXOAAAO				0XAX0AAA0	0XAX0AAA0			
	0XAX0AAA0	0XAX0AAA0	0XAX0AAA0			0XAX0AAA0	0XAX0AAA0	0XAX0AAA0
OXAAOXAAO1 OXAAOXAAO	0XAA0XAA0							
OXAAOAXAO1 OXAAOAXAO	0AXA0AXA0	OAXAOAXAO	OAXAOAXAO	0AXA0AXA0	OAXAOAXAO	OAXAOAXAO	0AXA0AXA0	OXAAOAXAO
OXAAOAAXO1 OXAAOAAXO	0XAA0AAX0							
XAX000AAA1 XAX000AAA	XAX000AAA	XAX000AAA	XAX000AAA	XAX000AAA	XAX000AAA	XAX000AAA	XAX000AAA	XAX000AAA
AXX000AAA1 AXX000AAA	AXX000AAA	AXX000AAA	AXX000AAA	AXX000AAA	AXX000AAA	AXX000AAA	AXX000AAA	AXX000AAA
AAX000XAA1 AAX000XAA	AAX000XAA	AAX000XAA	AAX000XAA	AAX000XAA	AAX000XAA	AAX000XAA	AAX000XAA	AAX000XAA
AAXOOOAXA1 AAXOOOAXA	AXX000AXA	AAX000AXA	AXX000AXA	AXX000AXA	AXX000AXA	AXX000AXA	AAX000AXA	AXX000AXA
AAX000AAX1 AAX000AAX	AAX000AAX	AAX000AAX	AAX000AAX	AAX000AAX	AAX000AAX	AAX000AAX	AAX000AAX	AAX000AAX
XAOXOAOAA1 XAOXOAOAA	XA0X0A0AA							
AXOXOAOAA1 AXOXOAOAA	AX0X0A0AA							
AAOXOXOAA1 AAOXOXOAA	AA0X0X0AA	AAOXOXOAA						
AAOXOAOXA1 AAOXOAOXA	AX0X0A0XA	AA0X0A0XA	AX0X0A0XA	AX0X0A0XA	AA0X0A0XA	AA0X0A0XA	AX0X0A0XA	AA0X0A0XA
AAOXOAOAX1 AAOXOAOAX	AA0X0A0AX							
XAOAOXOAA1 XAOAOXOAA	XA0A0X0AA							
AXOAOXOAA1 AXOAOXOAA	AX0A0X0AA							
AAOAOXOXA1 AAOAOXOXA	AA0A0X0XA	AX0A0X0XA	AA0A0X0XA	AA0A0X0XA	AA0A0X0XA	AX0X0XA	AA0A0X0XA	AA0A0X0XA
AAOAOXOAX1 AAOAOXOAX	AA0A0X0AX							
XAAOOOXAA1 XAAOOOXAA	XAA000XAA							
AXAOOOXAA1 AXAOOOXAA	AXA000XAA							
AAA000XXA1 AAA000XXA	AXX000XXA	AAA000XXA						
AAAOOOXAX1 AAAOOOXAX	AAA000XAX							
OAXAOAAXO1 OAXAOAAXO	0XA0AAX0	0XAA0AXX0	0AXA0AAX0	0AXA0AAX0	0XAA0AXX0	0AXA0AAX0	0AXA0AAX0	0XAA0AXX0
OAAXOAAXO1 OAAXOAAXO	0AAX0AAX0							
OAAAOXAXO1 OAAAOXAXO	0XAX0XAX0	0XAX0XAX0	0AAA0XAX0	0XAX0XAX0	0AAA0XAX0	0AAA0XAX0	0XAX0XAX0	0AAA0XAX0
OAAAOAXXO1 OAAAOAXXO	0AAA0AXX0	0XXA0AXX0	0XXA0AXX0	0XXA0AXX0	0AAA0AXX0	0XXA0AXX0	0XXA0AXX0	0XXA0AXX0
AOXAOAAOX1 AOXAOAAOX	A0XA0AA0X							
AOAXOAAOX1 AOAXOAAOX	AOAXOAAOX	AOAXOAAOX	AOAXOAAOX	AOAXOAAOX	AOAXOAAOX	AOAXOAAOX	AOAXOAAOX	AOAXOAAOX
AOAAOXAOX1 AOAAOXAOX	A0AA0XA0X							
AOAAOAXOX1 AOAAOAXOX	A0AA0AX0X	A0AA0AX0X	X0XA0AX0X	A0AA0AX0X	A0AA0AX0X	X0XA0AX0X	A0AA0AX0X	A0AA0AX0X
X0X000AXA1 X0X000AXA	XXX000AXA	XXX000AXA	XXX000AXA	X0X000AXA	X0X000AXA	XXA000AXA	X0X000AXA	X0X000AXA
XOAOOOXXA1 XOAOOOXXA	X0A000XXA	XXXXXXXX	XXXXXXXX	X0A000XXA	X0A000XXA	XXXXXXXX	X0A000XXA	XXX000AXXA
X0A000AXX1 X0A000AXX	XXA000AXX							
OXXOOOAAX1 OXXOOOAAX	0XX000AAX							
OXAOOXOAX1 OXAOOXOAX	0XA00X0AX							
OXAOOOXAX1 OXAOOOXAX	0XA000XAX							
OXAOOOAXX1 OXAOOOAXX	0XA000AXX							
X0XX00A0A1 X0XX00A0A	X0XX00A0A	X0XX00A0A	X0XX00A0A	X0XX00A0A	X0XX00A0A	X0XX00A0A	X0XX00A0A	X0XX00A0A
AOXXOOXOA1 AOXXOOXOA	A0XX00X0A							
AOXXOOAOX1 AOXXOOAOX							AOXXOOAOX	
	A0XX00A0X	A0XX00A0X	A0XX00A0X	A0XX00A0X	A0XX00A0X	A0XX00A0X		A0XX00A0X
X0XX0A00A1 X0XX0A00A	X0XX0A00A	X0XX0A00A	X0XX0A00A	X0XX0A00A	X0XX0A00A	X0XX0A00A	X0XX0A00A	X0XX0A00A
AXXX0A0001 AXXX0A000	AXXX0A000	AXXX0A000	AXXX0A000	AXXX0A000	AXXX0A000	AXXX0A000	AXXX0A000	AXXX0A000
AOXXOXOOA1 AOXXOXOOA	A0XX0X00A	A0XX0X00A	A00XX0X0A	A0XX0X00A	A0XX0X00A	A0XX0X0A	A0XX0X0A	A0XX0X00A
AOXXOAOOX1 AOXXOAOOX	A0XX0A00X							
X00A0XX0A1 X00A0XX0A	X00A0XX0A	X00A0XX0A	X00A0XX0A	X00A0XX0A	X00A0XX0A	X00A0XX0A	X00A0XX0A	X00A0XX0A
000X0XXAA1 000X0XXAA	AAXX0X000	AAXX0X000	AAXX0X000	AAXX0X000	000X0XXAA	AAXX0X000	AAXX0X000	AAXX0X000
000A0XXXA1 000A0XXXA	AXXX0A000							
000A0XXAX1 000A0XXAX	000A0XXAX	000A0XXAX	000A0XXAX	000A0XXAX	XAXX0A000	000A0XXAX	000A0XXAX	000A0XXAX
X0A00XX0A1 X0A00XX0A	X0A00XX0A	X0A00XX0A	X0A00XX0A	X0A00XX0A	X0A00XX0A	X0A00XX0A	X0A00XX0A	X0A00XX0A
AOXOOXXOA1 AOXOOXXOA	A0XX00XX0A							
AOAOOXXOX1 AOAOOXXOX	A0A00XX0X	A0A00XX0X	X0XX00A0A	A0A00XX0X	A0A00XX0X	X0XX00A0A	A0A00XX0X	A0A00XX0X
XX0A00AX01 XX0A00AX0	0XA00A0XX	0XA00AXX	XX0A00AX0	XX0A00AX0	0XA00A0XX	0XA00AXX	XX0A00AX0	XX0A00AX0
XAX000AX01 XAX000AX0	XAX000AX0	XAX000AX0	XAX000AX0	XAX000AX0	XAX000AX0	XAX000AX0	XAX000AX0	XAX000AX0
XA0X00AX01 XA0X00AX0	XA0X00AX0	XA0X00AX0	XA0X00AX0	XA0X00AX0	XA0X00AX0	XA0X00AX0	XA0X00AX0	XA0X00AX0
XAA000XX01 XAA000XX0	XXX000XX0	XXX000XX0	XXA000XX0	XXX000XX0	XXX000XX0	XAA000XX0	XXX000XX0	XAA000XX0
XXA000A0X1 XXA000A0X	XXA000A0X	XXA000A0X	XXA000A0X	XXA000A0X	XXA000A0X	XXA000A0X	XXA000A0X	XXA000A0X
AXX000A0X1 AXX000A0X	AXX000A0X	AXX000A0X	AXX000A0X	AXX000A0X	AXX0000A0X	AXX000A0X	AXX000A0X	AXX0000A0X
AXA000X0X1 AXA000X0X	AXA000X0X	AXA000X0X	AXA000X0X	AXA000X0X	AXA000X0X	AXA000X0X	AXA000X0X	AXA000X0X
X0XX000X02 X0XX000X0	X0XX000X0	X0XX000X0	X0XX000X0	X0XX000X0	X0XX000X0	X0XX000X0	X0XX000X0	X0XX000X0
X00X000XX1 X00X000XX	XX00X000XX							
0XXX00X001 0XXX00X00	0XXX00X00	0XXX00X00	0XXX00X00	0XXX00X00	0XXX00X00	0XXX00X00	0XXX00X00	0XXX00X00
0XXX000001 0XXX00000 0XXX0000X2 0XXX0000X	0XXX00X00	0XXX00X00	0XXX00X00	0XXX00X00	0XXX00X00		0XXX00X00	0XXX00X00X
						0XXX0000X		
X0000XXX02 X0000XXX0	X0000XXX0	X0000XXX0	X0000XXX0	X0000XXX0	X0000XXX0	X0000XXX0	X0000XXX0	X0000XXX0
00X00XXX01 00X00XXX0	00XXX00XXX0							
XX000X00X1 XX000X00X	XX000X00X	XX000X00X	XX000X00X	XX000X00X	XX000X00X	XX000X00X	XX000X00X	XX000X00X
0X000XX0X2 0X000XX0X	0X000XX0X	0X0000X0X	0X000XX0X	0X000XX0X	0X000XX0X	0X000XX0X	0X000XX0X	0X0000X0X
υλυυυλλυλ2 υλυυυλλυλ	υνουσννογ	υνουσννον	υνουσννον	υνουσννογ	υνουσννον	ολυυυλλυλ	υνουσννογ	υνουσννον

PENJELASAN STATE DAN AKSI

A. STATE

Setiap state yang ada merupakan string yang terdiri dari 9 karakter. Karakter pada posisi ke – i merepresentasikan kondisi pada petak nomor i, jika "A" berarti kosong, "X" berarti berisi tanda "X" dan "O" menandakan petak tersebut berisi tanda "O". Sebagai contoh state AXXOOOXOX pada nomor 149, merepresentasikan keadaan papan seperti berikut

Pada file state.txt yang dilampirkan bersamaan dengan laporan ini, setiap final state ditambahkan karakter ke 10 dengan karakter 1 untuk menandakan state tersebut merupakan final state dengan kondisi komputer menang, atau karakter 2 untuk menandakan state tersebut merupakan final state dengan kondisi permainan berakhir imbang.

B. AKSI

Pada source code terdapat tiga buah prosedur dan dua buah fungi. Prosedur pertama ialah menuAwal, yang menampilkan tampilan awal permainan serta menu awal permainan. Selanjutnya terdapat fungsi isMenang yang menerima input sebuah state q dan mengembalikan nilai true jika state q tersebut merupakan final state dalam kondisi komputer telah memenangkan permainan.

Lebih lanjut terdapat juga fungsi isSeri yang menerima input sebuah state q dan mengembalikan nilai true jika state q tersebut merupakan final state dalam kondisi permainan berakhir dengan imbang.

Berikutnya terdapat prosedur tulis state yang menerima masukan state q dan menampilkan papan permainan tic-tac-toe sesuai dengan keadaan state seperti yang dijelaskan pada bagian state. Dan yang terakhir terdapat prosedur pindahState yang menerima masukan state q dan sebuah bilangan bulat i. Prosedur tersebut merubah state q dengan state yang dituju jika menerima alfabet i dengan cara mengambil string mulai dari posisi (11*i) sebanyak 9 karakter pada transition table. Jika pengguna memberi input di tempat yang telah ada tandanya maka state akan kembali ke diri sendiri.

Pada program utama, pertama kali memunculkan menu awal dan assign stateSekarang sebagai AAAAAAAA, lalu dilanjutkan dengan menerima input siapa yang akan memulai giliran pertana. Selanjutnya lakukan pengulangan selama isMenang dan isSeri belum terpenuhi, untuk menerima input dari user dan melakukan prosedur pindah state serta ditampilkan. Jika sudah selesai print keadaan akhir serta menampilkan state-state yang telah dilewati.

SOURCE CODE

```
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
//Membuat tipe bentukan state yang merupakan array of char
typedef struct {
  char T[10];
} state;
//Deklarasi array untuk menampung state-state yang telah dilewati
state arrOfState[100];
void menuAwal();
bool isMenang(state q);
bool isSeri(state q);
void tulisState(state q);
void pindahState(state *q, int i);
int main(){
  int pilihan;
  int i,j;
  state qSekarang; //Menampung state yang sedang terjadi sekarang
  state q;
  menuAwal();
  printf("\n>> ");
  scanf("%d",&pilihan);
  //inisiasi start state
  qSekarang.T[0] = 'A';
  qSekarang.T[1] = 'A';
  qSekarang.T[2] = 'A';
  qSekarang.T[3] = 'A';
  qSekarang.T[4] = 'A';
  qSekarang.T[5] = 'A';
  qSekarang.T[6] = 'A';
  qSekarang.T[7] = 'A';
  qSekarang.T[8] = 'A';
  qSekarang.T[9] = '\0';
  //masukan pertama
  pindahState(&qSekarang,pilihan);
  tulisState(qSekarang);
  arrOfState[1] = qSekarang;
  j = 2;
  while (!isMenang(qSekarang) && !isSeri(qSekarang)){
```

```
printf("\nMasukan nomor kotak yang ingin Anda beri tanda : ");
    scanf("%d",&i);
    pindahState(&qSekarang,i);
    tulisState(qSekarang);
    arrOfState[j] = qSekarang;
    j += 1;
  } //isMenang = true atau isSeri = true
  //Menampilkan status akhir permainan
  if (isMenang(qSekarang)){
    printf("\nPermainan telah selesai dan dimenangkan oleh komputer\n\n");
  } else if (isSeri(qSekarang)){
    printf("\nPermainan telah selesai dengan imbang\n\n");
  //Menampilkan daftar state yang telah dilewati
  printf("Berikut ini ialah daftar state yang telah dilewati :\n");
  for (i = 1; i < j; i++)
    printf("%d. %s\n",i,arrOfState[i]);
  printf("\nKetik sembarang angka untuk keluar : ");
  scanf("%d",&j);
  return 0;
}
void menuAwal(){
//Prosedur untuk menampilkan menu di awal permainan
  printf("-----\n");
  printf("-----\n");
  printf("----\n");
  printf("");
  printf("Siapa yang akan main pada giliran pertama?\n1. Komputer\n2. Anda\n");
bool isMenang(state q){
//Mengembalikan true bila state q merupakan final state dan dalam kondisi komputer menang
  FILE *pFile;
  char stateSebaris[110];
  char stateMenang[2] = "1";
  state qcek;
  state q1;
  pFile = fopen ("state.txt", "r");
  while (!feof(pFile)){
    if (fgets(stateSebaris, 111, pFile) == NULL){
       break;
     } else {
       memcpy(qcek.T, &stateSebaris[0],9);
       qcek.T[9] = '\0';
       if (strcmp(qcek.T,q.T) == 0){
         memcpy(q1.T, &stateSebaris[9],1);
         q1.T[1] = '\0';
         if (strcmp(q1.T, stateMenang) == 0){
            return true;
```

```
} else {
             return false;
     }
  fclose(pFile);
bool isSeri(state q){
//Mengembalikan true apabila state q merupakan final state dan dalam kondisi permainan berakhir imbang.
  FILE *pFile;
  char stateSebaris[110];
  char stateSeri[2] = "2";
  state qcek;
  state q1;
  pFile = fopen ("state.txt", "r");
  while (!feof(pFile)){
     if (fgets(stateSebaris, 111, pFile) == NULL){
       break;
     } else {
        memcpy(qcek.T, &stateSebaris[0],9);
        qcek.T[9] = '\0';
        if (strcmp(qcek.T,q.T) == 0){
          memcpy(q1.T, &stateSebaris[9],1);
          q1.T[1] = '\0';
          if (strcmp(q1.T, stateSeri) == 0){
             return true;
          } else {
             return false;
     }
  fclose(pFile);
void tulisState(state q){
//Menampilkan state q ke layar berupa papan permainan tictactoe
  int i;
  for (i=0; i \le 8; i++){
     if (q.T[i] == 'A'){}
        q.T[i] = ' ';
     }
  }
  printf("\n%c | %c | %c\n",q.T[0],q.T[1],q.T[2]);
  printf("----\n");
  printf("%c | %c | %c\n",q.T[3],q.T[4],q.T[5]);
  printf("----\n");
  printf("%c | %c | %c\n",q.T[6],q.T[7],q.T[8]);
```

```
void pindahState(state *q, int i){
//Merubah state q ke state yang dituju jika diberi input i
  FILE *pFile;
  int j;
  char stateSebaris[110];
  state qcek;
  state qi;
  pFile = fopen ("state.txt", "r");
  while (!feof(pFile)){
     if (fgets(stateSebaris, 111, pFile) == NULL){
       break;
     } else {
       memcpy(qcek.T, &stateSebaris[0],9);
       qcek.T[9] = \0;
       if (strcmp(qcek.T,(*q).T) == 0){
          memcpy(qi.T, &stateSebaris[11*i],9);
          qi.T[9] = '\0';
          *q = qi;
          break;
       }
     }
  fclose(pFile);
```

CONTOH MASUKAN DAN KELUARAN

```
Siapa yang akan main pada giliran pertama?

    Komputer
    Anda

>> 1
 0 |
Masukan nomor kotak yang ingin Anda beri tanda : 2
0 | X |
 0 |
Masukan nomor kotak yang ingin Anda beri tanda : 9
0 | X |
0 | 0 |
 | X
Masukan nomor kotak yang ingin Anda beri tanda : 6
0 | X |
0 | 0 | X
0 | X
Permainan telah selesai dan dimenangkan oleh komputer
Berikut ini ialah daftar state yang telah dilewati :
1. AAAAOAAAA
2. OXAAOAAAA
3. OXAOOAAAX
4. OXAOOXOAX
Ketik sembarang angka untuk keluar :
```

Contoh permainan yang mana komputer memulai permainan dan berakhir dengan komputer sebagai pemenang

```
----- TIC TAC TOE -----
Siapa yang akan main pada giliran pertama?
1. Komputer
2. Anda
>> 2
  | X |
0 | |
Masukan nomor kotak yang ingin Anda beri tanda : 1
X | |
  | X |
0 | 0
Masukan nomor kotak yang ingin Anda beri tanda : 1
X | |
 | X |
Masukan nomor kotak yang ingin Anda beri tanda : 3
x | | x
 | X |
0 | 0 | 0
Permainan telah selesai dan dimenangkan oleh komputer
Berikut ini ialah daftar state yang telah dilewati :
1. AAAAXAOAA
2. XAAAXAOAO
3. XAAAXAOAO
4. XAXAXA000
Ketik sembarang angka untuk keluar :
```

Contoh permainan yang mana pengguna memulai permainan dan sempat terjadi input ke kotak yang telah ada isinya serta berakhir dengan komputer sebagai pemenang

```
2. Anda
>> 2
  | X |
0 | |
Masukan nomor kotak yang ingin Anda beri tanda : 1
x | |
  | X |
0 | 0
Masukan nomor kotak yang ingin Anda beri tanda : 8
X | 0 |
  | X |
0 | X | 0
Masukan nomor kotak yang ingin Anda beri tanda : 6
x | 0 |
0 | X | X
0 | X | 0
Masukan nomor kotak yang ingin Anda beri tanda : 3
x \mid o \mid x
0 | X | X
0 | X | 0
Permainan telah selesai dengan imbang
Berikut ini ialah daftar state yang telah dilewati :
1. AAAAXAOAA
2. XAAAXAOAO
3. XOAAXAOXO
4. XOAOXXOXO
  XOXOXXOXO
```

Contoh permainan yang mana pengguna memulai permainan dan berakhir dengan imbang.