BESHINCHI AMALIY MASHGʻULOT.

MAVZU: BOGʻLIQMAS SINOVLAR KETMA – KETLIGI. BENULLI FORMULASI.

Reja

- 1.Bogʻliqmas sinovlar ketma ketligi
- 2. Bernulli formulasi.

Bogʻliqmas sinovlar ketma — **ketligi.** Takrorlanadigan sinovlardan har birining u yoki bu natijasining ehtimolligi boshqa sinovlarda qanday natijalar boʻlganligiga bogʻliq boʻlmasa, ular *bogʻliqmas sinovlar ketma* —*ketligini* hosil qildi deyiladi.

Bernulli formulasi. Har bir hodisaning ro'y berish ehtimoli p (0) o'zgarmasga teng bo'lgan <math>n ta erkli sinovda hodisaning (qaysi tartibda bo'lishidan qat'iy nazar) rosa k marta ro'y berish ehtimoli

$$P_n(k) = C_n^k p^k q^{n-k} \text{ yoki}$$
 $P_n(k) = \frac{n!}{k!(n-k)!} p^k q^{n-k} (5.1)$

ga teng, bu yerda q = 1 - p. (5.1) formulaga *Bernulli formulasi* deyiladi.

n marta sinashda hodisaning: 1) kamida k_1 marta; 2) koʻpi bilan k_1 gacha roʻy berish; 3) k_1 bilan k_2 oraligʻida roʻy berish ehtimollari mos holda quyidagi formulalar boʻyicha hisoblanadi:

1)
$$P_n(k \ge k_1) = P_n(k_1) + P_n(k_1 + 1) + ... + P_n(n)$$
;

2)
$$P_n(k < k_1) = P_n(0) + P_n(1) + ... + P_n(k_1 - 1)$$
;

3)
$$P_n(k_1 \le k \le k_2) = P_n(k_1) + P_n(k_1 + 1) + \dots + P_n(k_2)$$
.

n ta tajriba seriyasida A hodisa ro'y berishlarining ehtimoli eng katta bo'lgan k_0 soni A hodisaning n ta tajribada ro'y berishining eng ehtimolli soni deyiladi. Bu son

$$k_0 = [np + q] \tag{5.2}$$

formula boʻyicha topiladi. Bu yerda [x] simvol orqali x sonining butun qismi belgilangan. Uni topish uchun x sonining kasr qismi tashlab yuboriladi. Masalan, agar np+q son butun boʻlsa, u holda k_0-1 son ham oʻsha $P_n(k_0)$ ehtimol bilan eng ehtimolli son boʻladi.

5.1-misol. Bitta o'q uzishda nishonga tegish ehtimoli p = 0.8 ga teng. 10 ta o'q uzishda nishonga etti marta tegish ehtimolini toping.

Yechilishi. Bu yerda n = 10, k = 7, p = 0.8, q = 0.2.Bernulli formulasi (5.1) ga koʻra:

$$P_{10}(7) = \frac{10!}{7!(10-7)!} \cdot (0.8)^2 \cdot (0.2)^{10-7} = \frac{10!}{7!3!} \cdot (0.8)^7 \cdot (0.2)^3 = 0.2.$$

5.2-misol. Ishchi ishlov berayotgan detallar orasida oʻrtacha 4% i nostandart boʻladi. Sinash uchun olingan 30 ta detaldan ikkitasi nostandart boʻlish ehtimolini toping. Qaralayotgan 30 ta detaldan iborat tanlanmada nostandart detallarning eng ehtimolli soni qancha va uning ehtimoli qancha?

Yechilishi. Bu yerda tajriba 30 ta detalning har biri sifatidan iborat. *A* hodisa – nostandart detal chiqish hodisasi; uning ehtimoli p = 0.04, u holda q = 0.96. Bu yerdan Bernulli formulasi boʻyicha

$$P_{30}(2) = C_{30}^2(0.04)^2(0.96)^2 \approx 0.202$$

ni topamiz. Berilgan tanlanmadagi nostandart detallarning eng ehtimolli son (5.2) formula boʻyicha topiladi:

$$k_0 = [30 \cdot 0.04] = [1.24] = 1,$$

uningehtimoliesa

$$P_{30}(1) = C_{30}^1 \cdot 0.04^1 \cdot (0.96)^{29} \approx 0.305.$$

5.3-misol.Bittaoʻquzilgandanishongategishehtimoli 0,8 gateng.
Toʻrttaoʻquzishseriyasida 1) kamidabirmartanishongategish; 2)
nishongakamidauchmartategish; 3)
nishongakoʻpibilanbirmartategishehtimolinitoping.

Yechilishi. Buyerda n = 4, p = 0.8, q = 0.2. 1) qaramaqarshihodisa — 4 taoʻquzishseriyasidabirmartahamnishongategmaslikehtimolitopamiz:

$$P_4(0) = C_4^0 p^0 q^4 = 0.2^4 = 0.016.$$

Buyerdankamidabirmartanishongatekkizishehtimolinitopamiz:

$$P_4(k \ge 1) = 1 - 0.0016 = 0.9984.$$

2) 4 taoʻquzishseriyasidakamidauchmartanishongategishdaniborat B hodisayouchmartanishongatekkizishni (Chodisa), yokitoʻrtmartanishongatekkizishni (D hodisa) bildiradi, ya'ni B = C + D. Bundan P(B) = P(C) + P(D), demak,

$$P_4(k \ge 3) = P_4(3) + P_4(4) = C_4^3 p^3 q^1 + C_4^4 p^4 q^0 = 4 \cdot 0, 8^3 \cdot 0, 2 + 0, 8^4 = 0,8192$$
.

3) nishongakoʻpibilanbirmartategishehtimolishungaoʻxshashtopiladi:

$$P_4(k \le 1) = P_4(0) + P_4(1) = 0.016 + C_4^1 p^1 q^3 = 0.0016 + 4.0.8 \cdot 0.2^3 = 0.2576$$
.

5.4-misol. Har bir detalning standart bo'lish ehtimolligi p = 0.8 bo'lsa, tavakkaliga olingan 5 ta detaldan rosa 2 tasining standart bo'lish ehtimolini toping.

Yechilishi. Izlanayotgan ehtimollikni n = 5, m = 2, p = 0.8 va q = 0.2 da (5.1) Bernulli formulasidan quyidagini topamiz:

$$P_5(2) = C_5^2 \cdot 0.8^2 \cdot 0.2^3 = \frac{5!}{3! \cdot 2!} \cdot 0.00512 = 0.0512.$$

5.5-misol. Har bir otilgan o'qning nishonga tegish ehtimoli p = 2/3. Otilgan 10 ta o'qdan 3tasining nishonga tegish ehtimolini toping.

Yechilishi.Masala shartidan n = 10, k = 3, p = 2/3, q = 1/3 ni olamiz. U holda Bernulli formulasi (5.1) ga asosan:

$$P_{10}(3) = C_{10}^3 \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)^7.$$

5.6-misol. Ikki teng kuchli shaxmatchi shaxmat o'ynashmoqda: to'rt partiyadan ikkitasini yutish ehtimoli kattami yoki olti partiyadan uchtasini yutish ehtimoli kattami (durang natijalar hisobga olinmaydi)?

Yechilishi. Teng kuchli shaxmatchilar o'ynashmoqda, shu sababli o'yinchining har bir partiyada yutish ehtimoli p=1/2, demak, partiyani yutqazish ehtimoli q ham 1/2 ga teng. Hamma partiyalarda yutish ehtimoli o'zgarmas va partiyalarni qaysi tartibda yutishning farqi yo'qligi sababli Bernulli formulasi (5.1) ni qo'llash mumkin.

O'yinchining to'rt partiyadan ikki partiyada yutish ehtimolini topamiz:

$$P_4(2) = C_4^2 p^2 q^2 = \frac{4 \cdot 3}{1 \cdot 2} \cdot \left(\frac{1}{2}\right)^2 \cdot \left(\frac{1}{2}\right)^2 = \frac{6}{16}$$
.

Olti partiyadan uch partiyada yutish ehtimolini topamiz:

$$P_6(3) = C_6^3 p^3 q^3 = \frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} \cdot \left(\frac{1}{2}\right)^3 \cdot \left(\frac{1}{2}\right)^3 = \frac{5}{16}$$
.

 $P_4(2) > P_6(3)$ boʻlgani uchun olti partiyadan uchtasida yutishdan koʻra toʻrt partiyada ikki marta yutishning ehtimoli kattaroq.

Mustaqil ishlash uchun misol va masalalar

- **1.**Ikki teng kuchli raqib shaxmat oʻynashmoqda. Qaysi birining yutish ehtimoli kattaroq: 1) ikki partiyadan bir partiyani yutishmi yoki toʻrt partiyadan ikkitasini yutishmi; 2) toʻrt partiyadan kamida ikkitasida yutishmi yoki besh partiyadan kamida uchtasida yutishmi? Durang natijalar e'tiborga olinmaydi.
- Javobi. 1) Ikki partiyadan bittasini yutish ehtimoli kattaroq: $P_2(1) = 1/2$; $P_4(2) = 3/8$; 2) toʻrt partiyadan kamida ikkitasini yutish ehtimoli kattaroq: $P_4(2) + P_4(3) + P_4(4) = 1 P_4(0) + P_4(1) = 11/16$; $P_5(3) + P_5(4) + P_5(5) = 8/16 = 1/2$.
- **2.**Tanga 5 marta tashlanadi. «Gerbli» tomon 1) ikki martadan kam tushish; 2) kamida ikki marta tushish ehtimolini toping.

Javobi. 1)
$$P = P_5(0) + P_5(1) = 3/16$$
; 2) $Q = 1 - [P_5(0) + P_5(1)] = 13/16$.

3. Agar bir marta sinashda A hodisaning roʻy berish ehtimoli 0,4 ga teng boʻlsa, u holda toʻrt marta erkli sinashda A hodisaning kamida uch marta roʻy berish ehtimolini toping.

Javobi.
$$P_4(3) + P_4(4) = 0,1792$$

4. A hodisa kamida toʻrt marta roʻy bergan holda B hodisa roʻy beradi. Agar har bir sinashda A hodisaning roʻy berish ehtimoli 0,8 ga teng boʻlgan 5 ta erkli sinash oʻtkaziladigan boʻlsa, B hodisaning roʻy berish ehtimolini toping.

Javobi.
$$P_5(4) + P_5(5) = 0.74$$
.

5. Oilada 5 ta farzand bor. Bu bolalar orasida : 1) ikkita oʻgʻil bola; 2) koʻpi bilan oʻgʻil bola 3) ikkitadan ortiq; 4) kamida ikkita va koʻpi bilan uchta oʻgʻil bolalar boʻlish ehtimolini toping. Oʻgʻil bolalar tugʻilish ehtimolini 0,51 ga teng deb olinadi.

6. Uzunligi 15 sm boʻlgan *AB* kesma *C* nuqta orqali 2:1 kabi nisbatda boʻlingan. Bu kesmaga tavakkaliga 4 ta nuqta tashlangan. Bu nuqtalardan ikkitasi *C* nuqtadan chapga, ikkitasi esa undan oʻngga tushish ehtimolini toping. Nuqtaning kesmaga tushish ehtimoli kesmaning uzunligiga proporsional boʻlib, uning joylashishiga esa bogʻliq emas deb faraz qilinadi.

Javobi.
$$P_4(2) = C_4^2 (2/3)^2 (1/3)^2 = 8/27$$
.