Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

Review: Inner products on real linear space

An inner product on V is a function $\langle , \rangle : V \times V \to \mathbb{R}$ such that

- $\langle v, v \rangle \ge 0$ for all $v \in V$.
- $\langle v, v \rangle = 0$ if and only if v = 0.

Review: Inner products on linear space

- ullet The definition of the above inner product is not useful for complex vector spaces V.
- Let $0 \neq u \in V$ and $i \in \mathbb{C}$.

$$\langle iu, iu \rangle = i^2 \langle u, u \rangle < 0.$$

Review: Inner products on complex linear space

An inner product on V is a function $\langle , \rangle : V \times V \to \mathbb{C}$ such that

- $\langle v, v \rangle = 0$ if and only if v = 0.

Review: Notes

Let V be an inner product, Then

Review: Symmetric matrices

Definition

A symmetric matrix is a square matrix that is equal to its transpose.

Let $A \in M_n(\mathbb{R})$, then there is a matrix $B \in M_n(\mathbb{R})$ such that $\langle Ax, y \rangle = \langle x, By \rangle$ for each $x, y \in \mathbb{R}^n$.

Review: Hermitian matrices

Definition

A hermitian matrix is a square matrix, which is equal to its conjugate transpose matrix.

Let $A \in M_n(\mathbb{C})$, then there is a matrix $B \in M_n(\mathbb{C})$ such that $\langle Ax, y \rangle = \langle x, By \rangle$ for each $x, y \in \mathbb{C}^n$.

Review: Self-adjoint matrices

Definition

A matrix $A \in M_n(\mathbb{F})$ is self-adjoint if $A^* = A$.

Definition

A matrix $A \in M_n(\mathbb{R})$ is symmetric if $A^T = A$.

Definition

A matrix $A \in M_n(\mathbb{C})$ is Hermitian if $A^H = A$.

Review: Unitary matrices

Definition

A matrix $U \in \mathbb{F}$ is unitary if $U^*U = UU^* = I$.

• For each $x, y \in \mathbb{F}^n$,

$$\langle Ux, Uy \rangle = \langle x, U^*Uy \rangle.$$

 \bullet If U is unitary, then

$$\langle Ux, Uy \rangle = \langle x, y \rangle$$
.

That means U preserves inner product.

Review: Inner product on finite-dimensional linear spaces

- Suppose that V is finite-dimensional linear space where $B = \{v_1, \ldots, v_n\}$ is an ordered basis for V.
- lacksquare The inner product is completely determined by the entries of matrix G where

$$G_{ij} = \langle v_j, v_i \rangle.$$

• Let $v, w \in V$. If $x = [v]_B$ and $y = [w]_B$, then

$$\langle v, w \rangle = y^* G x.$$

1 If $V = \mathbb{F}^n$. Then for each $x, y \in V$,

$$\langle x, y \rangle = y^* x,$$

if we consider standard basis for V.

Inner product on V and change basis

- Suppose that $B = \{v_1, \dots, v_n\}$ and $B' = \{v'_1, \dots, v'_n\}$ are two bases for a linear space V.
- For each $w \in V$, $[w]_B = P[w]_{B'}$, where the *i*-th column of P is $[v'_i]_B$. So $v'_i = \sum_{r=1}^n P_{ri} v_r$.
- A matrix H as the inner product matrix respect to B':

$$H_{ij} = \left\langle v_j', v_i' \right\rangle = \left\langle \sum_{r=1}^n P_{rj} v_r, \sum_{k=1}^n P_{ki} v_r \right\rangle$$
$$= \sum_{r=1}^n \sum_{k=1}^n P_{rj} \bar{P}_{ki} \left\langle v_r, v_k \right\rangle G_{kr}$$
$$= (P^* G P)_{ij}$$

where G is the inner product respect to B.

• Consequently, $H = P^*GP$.

Review: The properties of G

- $G_{ii} > 0$, for each $1 \leq i \leq n$.
- \odot G self-adjoint.
- \odot G is invertible.
- **4** $\det G > 0$.

Review: Is the above process reversible?

Let V in a lienar space on \mathbb{R} with dimension n with a basis B. **Question.** When a bilinear function $\langle , \rangle : V \times V \to \mathbb{F}$ such that

$$\langle v, w \rangle = y^* G x$$

and $x = [v]_B$ and $y = [w]_B$, is an inner product for $G \in M_n(\mathbb{F})$.

Is the above process reversible?

By the definition of an inner product, we should have

- ② G is self-adjoint $(G^* = G)$.

Definition

A self-adjoint matrix $A \in M_n(\mathbb{F})$ is called

- **1 positive definite** if $x^T A x > 0$ for each $0 \neq x \in \mathbb{F}^n$.
- **2** positive semi-definite if $x^T A x \ge 0$ for each $x \in \mathbb{F}^n$.

Self-adjoint matrices

Theorem

If A is a self-adjoint matrix, then an invertible matrix $P \in M_n(\mathbb{F})$ such that $P^*P = I$ and

$$P^*AP = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

Tests for positive definiteness

Theorem

Each of the following tests is a necessary and sufficient condition for the self-adjoint matrix A to be positive definite:

- All eigenvalues of A are positive.
- **2** All upper left submatrices A_k have positive determinants.
- 3 All pivots (without row exchanges) are positive.

- The test brings together three of the most basic ideas in the book:
 - pivots,
 - 2 determinants,
 - 3 eigenvalues.

• First, we show that a self-adjoint matrix A is positive definite if and only if all eigenvalues of A are positive.

• Second, we show that if all eigenvalues of self-adjoint matrix A is positive then all upper left submatrices A_k have positive determinants.

• Third, we show that if all upper left submatrices A_k of self-adjoint matrix A are positive then all pivots (without row exchanges) are positive.

• Fourth, we show that if all pivots (without row exchanges) of self-adjoint matrix A are positive then A is positive definite.

Example

• Let
$$A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$
. The matrix A is positive semidefinite, by all three tests. For instance

• The eigenvalues are $\lambda_1 = 0, \lambda_2 = \lambda_3 = 3$ (a zero eigenvalue).

Positive definite matrices

Theorem

A matrix A is positive definite if and only if there is an inevitable matrix R such that $A = R^*R$.

Cholesky decomposition

• Every positive definite matrix A can be factored as

$$A = R^*R,$$

where R is upper triangular with positive diagonal elements.

- R^*R is called Cholesky decomposition for A.
- R is called the Cholesky factor of A.

Positive definite square root

• Every positive definite matrix A can be factored as

$$A = PDP^* = (P\sqrt{D})(\sqrt{D}P^*),$$

where P is invertible matrix.

- So $A = PDP^* = (P\sqrt{D}P^*)(P\sqrt{D}P^*)$
- $P\sqrt{D}P^*$ is called **positive definite square root** of A.

Review: Positive definite and positive semi-definite matrices

Definition

A hermitian matrix $A \in M_n(\mathbb{C})$ is called

- positive definite if $x^H Ax > 0$ for each $0 \neq x \in \mathbb{C}$.
- **2** positive semi-definite if $x^H Ax \ge 0$ for each $x \in \mathbb{C}$.

Remark

- Remark. The conditions for semidefiniteness could also be deduced from *tests for definiteness* by the following trick:
 - Add a small multiple of the identity to get a positive definite matrix

$$A + \epsilon I$$
.

- 2 Then let ϵ approach zero.
- **3** At ϵ they must still be nonnegative.

Tests for positive semi-definiteness

Theorem

Each of the following tests is a necessary and sufficient condition for the self-adjoint matrix A to be positive semi-definite:

- All eigenvalues of A are non-negative.
- **2** All upper left submatrices A_k have non-negative determinants.
- All pivots (without row exchanges) are non-negative.

A useful lemma for self-adjoint matrices

Lemma

Let $A \in M_n(\mathbb{F})$ be a self-adjoint matrix then there is an invertible matrix $P \in M_n(\mathbb{F})$ such that $P^*P = I$ and

$$A = P \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} P^*.$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A.

- A singular value decomposition (SVD) is a generalization of this where $A \in M_{mn}(\mathbb{F})$ does not have to be self-adjoint or even square.

• • •

Thank You!