2 MAY 2013 LINEAR ALG & MULTIVARIABLE CALC

10.1 EIGENVECTORS AND EIGENVALUES AND EIGENSPACES

Definition r. For a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$, define a scalar λ to be an *eigenvalue* and a nonzero vector v to be an *eigenvector* (with eigenvalue λ) if $T(v) = \lambda v$. The λ -eigenspace is the set of all v such that $T(v) = \lambda v$.

Analogously, for an $n \times n$ matrix A, define a scalar λ to be an *eigenvalue* and a nonzero vector v to be an *eigenvector* (with eigenvalue λ) if $Av = \lambda v$. The λ -eigenspace is the set of all v such that $Av = \lambda v$.

Note 1. Note that the scalar 0 may be an eigenvalue, but by definition the vector $\mathbf{0}$ cannot be an eigenvector. The vector $\mathbf{0}$, however, is an element of the λ -eigenspace.

10.1.1 Conceptual

The vector v is an eigenvector for a linear transformation T means that T acts as a scalar transformation on the line spanned by v. The scalar is called the eigenvalue λ .

For a matrix A, the meaning is that the linear transformation defined by A (and standard coordinates) acts as a scalar transformation, with scalar λ , on the line spanned by v.

Note that an eigenvector must be nonzero, which is necessary here so that its span is a line.

Example 1. Let $P: \mathbb{R}^2 \to \mathbb{R}^2$ be orthogonal projection onto the line that is the counterclockwise rotation of the x-axis through the angle θ . Consider the two vectors:

$$v_1 = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$

Since the vector v_1 lies on the line of projection, $P(v_1) = v_1 = 1v_1$. Since the vector v_2 is perpendicular to the line of projection, $P(v_2) = 0 = 0v_2$. Therefore v_1 is an eigenvector with eigenvalue 1 and v_2 is an eigenvector with eigenvalue 0.

The matrix for P (in standard coordinates) is:

$$\begin{bmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{bmatrix}$$

Using $\sin^2 \theta + \cos^2 \theta = 1$, check that:

$$\begin{bmatrix} \cos^{2}\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & \sin^{2}\theta \end{bmatrix} \begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix} = 1 \begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$$
$$\begin{bmatrix} \cos^{2}\theta & \sin\theta\cos\theta \\ \sin\theta\cos\theta & \sin^{2}\theta \end{bmatrix} \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix} = 0 \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$$

10.1.2 Computational

Steps to find eigenvectors/values/space for $n \times n$ matrix A.

- (i) Write the *characteristic polynomial*: $det(A \lambda I_n)$ or $det(\lambda I_n A)$.
- (ii) Calculate the *eigenvalues*, the roots of the characteristic polynomial from (i).
- (iii) For each eigenvalue λ_0 , form either of the matrices (they are negatives of one another)

$$A - \lambda_0 I_n$$
 or $\lambda_0 I_n - A$

and compute a basis for its null space. The null space is the λ_0 -eigenspace and each basis vector is a λ_0 -eigenvector.

Note 2. In step (i), the two polynomials differ only by a factor of $(-1)^n$ so either may be used to find the eigenvalues. I recommend $\det(A - \lambda I_n)$, because it only involves subtracting λ from the diagonal entries of A, as opposed to $\det(\lambda I_n - A)$, which involves negating all of the entries of A and then adding λ to the diagonal entries. The advantage of $\det(\lambda I_n - A)$ over $\det(A - \lambda I_n)$ is that $\det(\lambda I_n - A)$ is always monic (highest power of λ has coefficient 1), whereas $\det(A - \lambda I_n)$ is monic only when n is even.

Note 3. For 2×2 matrices:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \Longrightarrow p_A(\lambda) = \lambda^2 - (a+d)\lambda + ad - bc$$

The trace and determinant of a 2×2 matrix are given by $\operatorname{tr} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d$ and $\operatorname{det} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$, so the above identity may also be written as:

A is
$$2 \times 2 \implies p_A(\lambda) = \lambda^2 - (\operatorname{tr} A)\lambda + \operatorname{det} A$$

10.2 DIAGONALIZABLE

- An $n \times n$ matrix A is diagonalizable if and only there is a basis of \mathbb{R}^n consisting of eigenvectors for A.
- An $n \times n$ matrix A is diagonalizable if it has n distinct eigenvalues.
- An n × n matrix A need not have n distinct eigenvalues to be diagonalizable. For example, the identity matrix

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

is diagonalizable (in fact diagonal), but it does not have n distinct eigenvalues (unless n = 1).

• Example of non-diagonalizable:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Why?

10.3 APPLICATIONS

Example 2. The Fibonacci sequence F_0 , F_1 , F_2 , ... is defined recursively with the initial conditions $F_0 = 0$, $F_1 = 1$, and the recurrence relation:

$$F_{n+2} = F_{n+1} + F_n$$

The first few terms are:

$$F_0 = 0$$

$$F_1 = 1$$

$$F_2 = F_1 + F_0 = 1 + 0 = 1$$

$$F_3 = F_2 + F_1 = 1 + 1 = 2$$

$$F_4 = F_3 + F_2 = 2 + 1 = 3$$

$$F_5 = F_4 + F_3 = 3 + 2 = 5$$

Find a closed formula (without matrices) for the *n*th term of the Fibonacci sequence.

Solution. The recurrence relationship is linear, but the value of F_{n+2} involves both of the prior terms F_{n+1} and F_n . A standard trick in this context is to consider pairs $\begin{bmatrix} F_{n+2} \\ F_{n+1} \end{bmatrix}$ instead of single terms F_n . Then we want to express $\begin{bmatrix} F_{n+2} \\ F_{n+1} \end{bmatrix}$ in terms of $\begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix}$. The recurrence relation

$$F_{n+2} = F_{n+1} + F_n = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix}$$

expresses the top entry of $\begin{bmatrix} F_{n+2} \\ F_{n+1} \end{bmatrix}$ in terms of $\begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix}$. The trivial equality $F_{n+1} = F_{n+1}$ leads to

$$F_{n+1} = F_{n+1} + 0F_n = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix}$$

which expresses the bottom entry of $\begin{bmatrix} F_{n+2} \\ F_{n+1} \end{bmatrix}$ in terms of $\begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix}$. Thus

$$\begin{bmatrix} F_{n+2} \\ F_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix}$$

and, iterating, it follows that:

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

The following step is mainly cosmetic. Multiply both sides of the above equation by $\begin{bmatrix} 1 & 0 \end{bmatrix}$ on the left to obtain:

$$F_n = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

To compute the matrix exponential, diagonalize the matrix to obtain the identity:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix}$$

It follows that:

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n-1} \end{bmatrix} \begin{bmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix}$$
$$= \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -\frac{1-\sqrt{5}}{2} \\ -1 & \frac{1+\sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n-1} \end{bmatrix} \begin{bmatrix} \frac{1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} \\ 1 & 1 \end{bmatrix}$$

Computing matrix products from outside in, we obtain:

$$F_{n} = \frac{1}{\sqrt{5}} \left[1 - \frac{1 - \sqrt{5}}{2} \right] \begin{bmatrix} \left(\frac{1 + \sqrt{5}}{2}\right)^{n-1} & 0\\ 0 & \left(\frac{1 - \sqrt{5}}{2}\right)^{n-1} \end{bmatrix} \begin{bmatrix} \frac{1 + \sqrt{5}}{2}\\ 1 \end{bmatrix}$$
$$= \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2}\right)^{n} - \left(\frac{1 - \sqrt{5}}{2}\right)^{n} \right)$$

Example 3. Three people each start with some amount of money at step 0. Between steps, each of the three people (simultaneously) gives half of his/her wealth to each of other the two people. Describe the distribution of wealth at step n.

Solution. Arrange the wealth of the three people at step n in a vector w(n) in \mathbb{R}^3 whose ith component is the wealth of the ith person. Then w(0) is the initial wealth, and:

$$w(n) = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix} w(n-1) = \cdots = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}^{n} w(0)$$

Diagonalize the matrix to compute the matrix power. Use eigenvalues and eigenvectors to determine w(n). Possible eigenvalue and eigenvector pairs are:

$$\left(1, \begin{bmatrix} 1\\1\\1 \end{bmatrix}\right) \qquad \left(-\frac{1}{2}, \begin{bmatrix} -1\\1\\0 \end{bmatrix}\right) \qquad \left(-\frac{1}{2}, \begin{bmatrix} -1\\0\\1 \end{bmatrix}\right)$$

The 1-eigenvalue is fixed up to scaling, but the answers for the $(-\frac{1}{2})$ -eigenvectors may vary. (The 1-eigenvectors should have all components equal and the $(-\frac{1}{2})$ -eigenvectors should have components summing to 0.) The above information is enough for specific cases. One could also use the identity

$$\begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}^{n} = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & (-\frac{1}{2})^{n} \\ (-\frac{1}{2})^{n} \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

obtained from diagonalization.