Preliminaries

Graph Convolutional Networks

- GCN is one of the most effective convolution models
 - Considered as a general "message-passing" architecture
 - $\mathbf{H}_k = M\left(\mathbf{A}, \mathbf{H}_{k-1}; W_{k-1}\right)$: hidden feature matrix computed by k-th GCL
 - A: adjacency matrix
 - \mathbf{H}_{k-1} : hidden feature matrix
 - W_{k-1} : trainable parameters
 - M: message propagation function for GCN

Preliminaries

Graph Convolutional Networks

• M defined in 1stChebNet (Kipf and Welling 2017) as follow:

•
$$\mathbf{H}_{k} = M(\mathbf{A}, \mathbf{H}_{k-1}; W_{k-1}) = \sigma(\hat{\mathbf{A}}\mathbf{H}_{k-1}W_{k-1})$$

- $\hat{\mathbf{A}} = \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}}$: normalized adjacency matrix
- $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}_N$: adding self-connection
- $\tilde{\mathbf{D}}_{ii} = \Sigma_{j} \tilde{\mathbf{A}}_{ij}$: degree of the i-th node