Structural Estimation of Dynamic Stochastic Optimizing Models of Intertemporal Choice For Dummies!

Christopher Carroll¹

¹Johns Hopkins University and NBER ccarroll@jhu.edu

June 2012

http://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs-Slides.pdf

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

The Basic Problem at Date t

$$\max \mathbb{E}_t \left[\sum_{n=0}^{T-t} \beth^n \mathbf{u}(\mathbf{c}_{t+n}) \right]. \tag{1}$$

$$y_t = \boldsymbol{\rho}_t \boldsymbol{\theta}_t \tag{2}$$

$$\mathbf{p}_{t+1} = \mathcal{G}_{t+1}\mathbf{p}_t$$
 - permanent labor income dynamics $\log \ \boldsymbol{\theta}_{t+n} \sim \ \mathcal{N}(-\sigma_{\boldsymbol{\theta}}^2/2, \sigma_{\boldsymbol{\theta}}^2)$ - lognormal transitory shocks $\forall \ n>0$ (3)

Bellman Equation

$$\mathbf{v}_t(\mathbf{m}_t, \mathbf{p}_t) = \max_{\mathbf{c}_t} \ \mathrm{u}(\mathbf{c}_t) + \exists \mathbb{E}_t[\mathbf{v}_{t+1}(\mathbf{m}_{t+1}, \mathbf{p}_{t+1})]$$
(4)

m- 'market resources' (net worth plus current income) $oldsymbol{p}-$ permanent labor income

Trick: Normalize the Problem

$$v_{t}(m_{t}) = \max_{c_{t}} u(c_{t}) + \beta \mathbb{E}_{t}[\mathcal{G}_{t+1}^{1-\rho} v_{t+1}(m_{t+1})]$$
s.t.
$$a_{t} = m_{t} - c_{t}$$

$$m_{t+1} = \underbrace{(R/\mathcal{G}_{t+1})}_{\equiv \mathcal{R}_{t+1}} a_{t} + \boldsymbol{\theta}_{t+1}.$$
(5)

where nonbold variables are bold ones normalized by \boldsymbol{p} :

$$m_t = m_t/\boldsymbol{p}_t \tag{6}$$

Yields $c_t(m)$ from which we can obtain

$$c_t(m_t, \boldsymbol{\rho}_t) = c_t(m_t/\boldsymbol{\rho}_t)\boldsymbol{\rho}_t \tag{7}$$

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1)
 - But micro evidence is consistent with Friedman

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1)
 - But micro evidence is consistent with Friedman

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1)
 - But micro evidence is consistent with Friedman

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1)
 - But micro evidence is consistent with Friedman

Trick: View Everything from End of Period

Define

$$\mathbf{v}_{+s}(a_s) = \mathbb{E}_s[\beta \mathcal{G}_{s+1}^{1-\rho} \mathbf{v}_{s+1}(\mathcal{R}_{s+1} a_s + \boldsymbol{\theta}_{s+1})] \tag{8}$$

SO

$$v_t(m_t) = \max_{c_t} \ u(c_t) + v_t(m_t - c_t) \tag{9}$$

with FOC

$$u^{c}(c_{s}) = v_{+s}^{a}(m_{s} - c_{s}).$$
 (10)

and Envelope relation

$$\mathbf{u}^{c}(c_{t}) = \mathbf{v}_{t}^{m}(m_{t}) \tag{11}$$

Trick: Discretize the Risks

E.g. use an equiprobable 7-point distribution:

Trick: Discretize the Risks

$$v_t'(a_t) = \beta R \mathcal{G}_{t+1}^{-\rho} \left(\frac{1}{n}\right) \sum_{i=1}^n u' \left(c_{t+1}(\mathcal{R}_{t+1}a_t + \boldsymbol{\theta}_i)\right)$$
(12)

So for any particular m_{T-1} the corresponding c_{T-1} can be found using the FOC:

$$u^{c}(c_{s}) = v_{+s}^{a}(m_{s} - c_{s}).$$
 (13)

Trick: Discretize the Risks

$$v_t'(a_t) = \beta R \mathcal{G}_{t+1}^{-\rho} \left(\frac{1}{n}\right) \sum_{i=1}^n u' \left(c_{t+1}(\mathcal{R}_{t+1}a_t + \boldsymbol{\theta}_i)\right)$$
(12)

So for any particular m_{T-1} the corresponding c_{T-1} can be found using the FOC:

$$u^{c}(c_{s}) = v_{+s}^{a}(m_{s} - c_{s}).$$
 (13)

- **1** Define a grid of points \vec{m} (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$ • The c that solves this becomes c[i]
- Construct interpolating function è by linear interpolation
 'Connect-the-dots'

- Define a grid of points \vec{m} (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Onstruct interpolating function è by linear interpolation
 - 'Connect-the-dots'

- Define a grid of points \vec{m} (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Onstruct interpolating function è by linear interpolation
 - 'Connect-the-dots'

- Define a grid of points \vec{m} (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Onstruct interpolating function è by linear interpolation
 - 'Connect-the-dots'

- Define a grid of points \vec{m} (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Construct interpolating function è by linear interpolation
 - 'Connect-the-dots'

Example: $\vec{m}_{T-1} = \{0., 1., 2., 3., 4.\}$ (solid is 'correct' soln)

Problem: Numerical Rootfinding is Slow

Numerical search for values of c_{T-1} satisfying $u'(c) = v'_t(m[i] - c)$ at, say, 6 gridpoints of \vec{m}_{T-1} may require hundreds or even thousands of evaluations of

$$\mathfrak{v}_{T-1}'(\overbrace{m_{T-1}-c_{T-1}})=\beta_T\mathcal{G}_T^{1-\rho}\left(\frac{1}{n}\right)\sum_{i=1}^n\left(\mathcal{R}_T\mathsf{a}_{T-1}+\pmb{\theta}_i\right)^{-\rho}$$

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v_t' at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

• Define vector of end-of-period asset values \vec{a}

• For each a[i] compute $v'_{+}(a[i])$

$$c[j]^{-\rho} = v_t'(a[j])$$

$$c[j] = (v_t'(a[j]))^{-1/\rho}$$
(14)

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v_t' at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v_t' at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v'_t at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v_t' at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v'_t at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

- Define vector of end-of-period asset values \vec{a}
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v'_t at a vector of \vec{a} values has produced for us the corresponding \vec{c} and \vec{m} values at virtually no cost!

Why Directly Approximating v_t is a Bad Idea

Principles of Approximation

- ullet Hard to approximate things that approach ∞ for relevant m
 - ullet Not a prob for Rep Agent models: 'relevant' m's are pprox SS
- Hard to approximate things that are highly nonlinear

Why Directly Approximating v_t is a Bad Idea

Principles of Approximation

- Hard to approximate things that approach ∞ for relevant m
 - ullet Not a prob for Rep Agent models: 'relevant' \emph{m} 's are pprox SS
- Hard to approximate things that are highly nonlinear

Why Directly Approximating v_t is a Bad Idea

Principles of Approximation

- Hard to approximate things that approach ∞ for relevant m
 - ullet Not a prob for Rep Agent models: 'relevant' \emph{m} 's are pprox SS
- Hard to approximate things that are highly nonlinear

Approximate Something That Would Be Linear in PF Case

Perfect Foresight Theory:

$$c_t(m) = (m + \mathfrak{h}_t)\underline{\kappa}_t \tag{16}$$

for market resources m and end-of-period human wealth \mathfrak{h} .

This is why it's a good idea to approximate c_t

Bonus: Easy to debug programs by setting $\sigma^2 = 0$ and testing whether numerical solution matches analytical!

Approximate Something That Would Be Linear in PF Case

Perfect Foresight Theory:

$$c_t(m) = (m + \mathfrak{h}_t)\underline{\kappa}_t \tag{16}$$

for market resources m and end-of-period human wealth \mathfrak{h} .

This is why it's a good idea to approximate c_t

Bonus: Easy to debug programs by setting $\sigma^2 = 0$ and testing whether numerical solution matches analytical!

Approximate Something That Would Be Linear in PF Case

Perfect Foresight Theory:

$$c_t(m) = (m + \mathfrak{h}_t)\underline{\kappa}_t \tag{16}$$

for market resources m and end-of-period human wealth \mathfrak{h} .

This is why it's a good idea to approximate c_t

Bonus: Easy to debug programs by setting $\sigma^2 = 0$ and testing whether numerical solution matches analytical!

But What if You *Need* the Value Function?

Perfect foresight value function:

$$\bar{\mathbf{v}}_{t}(m_{t}) = \mathbf{u}(\bar{c}_{t})\mathbb{C}_{t}^{T}
= \mathbf{u}(\bar{c}_{t})\underline{\kappa}_{t}^{-1}
= \mathbf{u}((\mathbf{A}m_{t} + \mathbf{A}\mathfrak{h}_{t})\underline{\kappa}_{t})\underline{\kappa}_{t}^{-1}
= \mathbf{u}(\mathbf{A}m_{t} + \mathbf{A}\mathfrak{h}_{t})\underline{\kappa}_{t}^{1-\rho}\underline{\kappa}_{t}^{-1}
= \mathbf{u}(\mathbf{A}m_{t} + \mathbf{A}\mathfrak{h}_{t})\underline{\kappa}_{t}^{-\rho}$$
(17)

where the second line uses the fact demonstrated in Carroll (2023) that $\mathbb{C}_t = \kappa_t^{-1}$.

This can be transformed as

$$egin{aligned} ar{eta}_t &\equiv \left((1-
ho)ar{f v}_t
ight)^{1/(1-
ho)} \ &= c_t (\mathbb{C}_t^T)^{1/(1-
ho)} \ &= (lacktriangle m_t + lacktriangle \mathfrak{h}_t) \underline{\kappa}_t^{-
ho/(1-
ho)} \end{aligned}$$

which is linear.

But What if You *Need* the Value Function?

Perfect foresight value function:

$$\bar{\mathbf{v}}_{t}(m_{t}) = \mathbf{u}(\bar{c}_{t})\mathbb{C}_{t}^{T}
= \mathbf{u}(\bar{c}_{t})\underline{\kappa}_{t}^{-1}
= \mathbf{u}((\mathbf{A}m_{t} + \mathbf{A}\mathfrak{h}_{t})\underline{\kappa}_{t})\underline{\kappa}_{t}^{-1}
= \mathbf{u}(\mathbf{A}m_{t} + \mathbf{A}\mathfrak{h}_{t})\underline{\kappa}_{t}^{1-\rho}\underline{\kappa}_{t}^{-1}
= \mathbf{u}(\mathbf{A}m_{t} + \mathbf{A}\mathfrak{h}_{t})\underline{\kappa}_{t}^{-\rho}$$
(17)

where the second line uses the fact demonstrated in Carroll (2023) that $\mathbb{C}_t = \kappa_t^{-1}$.

This can be transformed as

$$egin{aligned} ar{eta}_t &\equiv \left((1-
ho)ar{f v}_t
ight)^{1/(1-
ho)} \ &= c_t (\mathbb{C}_t^T)^{1/(1-
ho)} \ &= (lacktriangle m_t + lacktriangle \mathfrak{h}_t) \underline{\kappa}_t^{-
ho/(1-
ho)} \end{aligned}$$

which is linear.

Approximate Slope Too

Carroll (2023) shows that c_t^m exists everywhere.

Define consumed function and its derivative as

$$c_t(a) = (v_t'(a))^{-1/\rho}$$

$$c_t^a(a) = -(1/\rho) (v_t'(a))^{-1-1/\rho} v_t''(a)$$
(19)

and using chain rule it is easy to show that

$$\mathbf{c}_t^m = \mathbf{c}_t^a / (1 + \mathbf{c}_t^a) \tag{20}$$

Approximate Slope Too

Carroll (2023) shows that c_t^m exists everywhere.

Define consumed function and its derivative as

$$c_t(a) = (v_t'(a))^{-1/\rho}$$

$$c_t^a(a) = -(1/\rho) (v_t'(a))^{-1-1/\rho} v_t''(a)$$
(19)

and using chain rule it is easy to show that

$$c_t^m = c_t^a / (1 + c_t^a) \tag{20}$$

Approximate Slope Too

Carroll (2023) shows that c_t^m exists everywhere.

Define consumed function and its derivative as

$$c_t(a) = (v_t'(a))^{-1/\rho}$$

$$c_t^a(a) = -(1/\rho) (v_t'(a))^{-1-1/\rho} v_t''(a)$$
(19)

and using chain rule it is easy to show that

$$\mathbf{c}_t^m = \mathfrak{c}_t^{\mathsf{a}} / (1 + \mathfrak{c}_t^{\mathsf{a}}) \tag{20}$$

To Implement: Modify Prior Procedures in Two Ways

- Construct \vec{c}_t^m along with \vec{c}_t in EGM algorithm
- ② Approximate $c_t(m)$ using piecewise Hermite polynomial • Exact match to both level and derivative at set of points

To Implement: Modify Prior Procedures in Two Ways

- Construct \vec{c}_t^m along with \vec{c}_t in EGM algorithm
- ② Approximate $c_t(m)$ using piecewise Hermite polynomial
 - Exact match to both level and derivative at set of points

To Implement: Modify Prior Procedures in Two Ways

- Construct \vec{c}_t^m along with \vec{c}_t in EGM algorithm
- 2 Approximate $c_t(m)$ using piecewise Hermite polynomial
 - Exact match to both level and derivative at set of points

Consider what happens as a_{T-1} approaches $\underline{a}_{T-1} \equiv -\underline{\boldsymbol{\theta}} \mathcal{R}_T^{-1}$,

$$\lim_{a \downarrow \underline{a}_{T-1}} \mathfrak{v}'_{T-1}(a) = \lim_{a \downarrow \underline{a}_{T-1}} \beta R \mathcal{G}_{T}^{-\rho} \left(\frac{1}{n}\right) \sum_{i=1}^{n} \left(a \mathcal{R}_{T} + \boldsymbol{\theta}_{i}\right)^{-\rho}$$
$$= \infty$$

This means our lowest value in \vec{a}_{T-1} should be $> \underline{a}_{T-1}$.

Suppose we construct \grave{c} by linear interpolation:

$$\grave{c}_{T-1}(m) = \grave{c}_{T-1}(\vec{m}_{T-1}[1]) + \grave{c}_{T-1}'(\vec{m}_{T-1}[1])(m - \vec{m}_{T-1}[1])$$

True c is strictly concave $\Rightarrow \exists m^- > \underline{m}_{T-1}$ for which $m^- - \grave{c}_{T-1}(m^-) < a_{T-1}$

Theory says that

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}(m) = 0$$

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
(21)

- **1** Redefine \vec{a} relative to \underline{a}_{T-1}
- ② Construct corresponding \vec{m}_{T-1} and \vec{c}_{T-1}
- 3 Prepend \underline{m}_{T-1} to \vec{m}_{T-1}
- Prepend 0. to \vec{c}_{T-1}
- **5** Prepend $\bar{\kappa}_{T-1}$ to $\vec{\kappa}_{T-1}$

Theory says that

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}(m) = 0$$

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
(21)

- **1** Redefine \vec{a} relative to \underline{a}_{T-1}
- ② Construct corresponding \vec{m}_{T-1} and \vec{c}_{T-1}
- \bigcirc Prepend \underline{m}_{T-1} to \vec{m}_{T-1}
- $^{\circ}$ Prepend 0. to \vec{c}_{T-1}
- **5** Prepend $\bar{\kappa}_{T-1}$ to $\vec{\kappa}_{T-1}$

Theory says that

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}(m) = 0$$

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
(21)

- **1** Redefine \vec{a} relative to \underline{a}_{T-1}
- ② Construct corresponding \vec{m}_{T-1} and \vec{c}_{T-1}
- **3** Prepend \underline{m}_{T-1} to \vec{m}_{T-1}
- ① Prepend 0. to \vec{c}_{T-1}
- \odot Prepend $\vec{\kappa}_{T-1}$ to $\vec{\kappa}_{T-1}$

Theory says that

$$\lim_{\substack{m \downarrow \underline{m}_{T-1}}} c_{T-1}(m) = 0$$

$$\lim_{\substack{m \downarrow \underline{m}_{T-1}}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
(21)

- **1** Redefine \vec{a} relative to \underline{a}_{T-1}
- ② Construct corresponding \vec{m}_{T-1} and \vec{c}_{T-1}
- 3 Prepend \underline{m}_{T-1} to \vec{m}_{T-1}
- Prepend 0. to \vec{c}_{T-1}
- **1** Prepend $\bar{\kappa}_{T-1}$ to $\vec{\kappa}_{T-1}$

Theory says that

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}(m) = 0$$

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
(21)

- **1** Redefine \vec{a} relative to \underline{a}_{T-1}
- ② Construct corresponding \vec{m}_{T-1} and \vec{c}_{T-1}
- 3 Prepend \underline{m}_{T-1} to \vec{m}_{T-1}
- **9** Prepend 0. to \vec{c}_{T-1}
- **5** Prepend $\bar{\kappa}_{T-1}$ to $\vec{\kappa}_{T-1}$

Trick: Improving the a Grid

Grid Spacing: Uniform

$$(u_{T-1}(a_{T-1}))^{-1/\rho}$$
, $\dot{c}_{T-1}(a_{T-1})$

5

4

3

2

1

2

3

4

 a_{T-1}

Trick: Improving the a Grid

Grid Spacing: Same $\{\underline{a}, \bar{a}\}$ But Triple Exponential $e^{e^{e^{\cdot\cdot\cdot}}}$ Growth

$$(v_{T-1}(a_{T-1}))^{-1/\rho}$$
, $\dot{c}_{T-1}(a_{T-1})$

The Method of Moderation

- Further improves speed and accuracy of solution
- See my talk at the conference!

The Method of Moderation

- Further improves speed and accuracy of solution
- See my talk at the conference!

$$v_{T-1}(m_{T-1}) = \max_{c_{T-1}} u(c_{T-1}) + \mathbb{E}_{T-1}[\beta \mathcal{G}_{T}^{1-\rho} v_{T}(m_{T})]$$
s.t.
$$a_{T-1} = m_{T-1} - c_{T-1}$$

$$m_{T} = \mathcal{R}_{T} a_{T-1} + \boldsymbol{\theta}_{T}$$

$$a_{T-1} \geq 0.$$

Define c^{*} as soln to unconstrained problem. Then

$$\dot{c}_{T-1}(m_{T-1}) = \min[m_{T-1}, \dot{c}_{T-1}^*(m_{T-1})].$$
(22)

$$v_{T-1}(m_{T-1}) = \max_{\substack{c_{T-1} \\ c_{T-1}}} u(c_{T-1}) + \mathbb{E}_{T-1}[\beta \mathcal{G}_{T}^{1-\rho} v_{T}(m_{T})]$$
s.t.
$$a_{T-1} = m_{T-1} - c_{T-1}$$

$$m_{T} = \mathcal{R}_{T} a_{T-1} + \boldsymbol{\theta}_{T}$$

$$a_{T-1} \geq 0.$$

Define \grave{c}_{t}^{*} as soln to unconstrained problem. Then

$$\dot{\mathbf{c}}_{T-1}(m_{T-1}) = \min[m_{T-1}, \dot{\mathbf{c}}_{T-1}^*(m_{T-1})].$$
 (22)

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = \mathfrak{v}'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (\mathfrak{v}'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in \vec{a}
- $\bullet \Rightarrow \vec{m}[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $\grave{c}_{T-1}(m)$ obtained as before
- Below $m_{\tau-1}^{\#}$, $c_{\tau-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in \vec{a}
- $\bullet \Rightarrow \vec{m}[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $\grave{c}_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in \vec{a}
- $\bullet \Rightarrow \vec{m}[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $c_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in \vec{a}
- $\bullet \Rightarrow \vec{m}[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $\grave{c}_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = \mathfrak{v}'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (\mathfrak{v}'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in \vec{a}
- $\bullet \Rightarrow \vec{m}[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $\grave{c}_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Figure: Constrained (solid) and Unconstrained (dashed) Consumption

Recursion: Period t Solution Given Period t + 1

Construct

$$c_{\bar{t},i} = (v'_{+s}(a_{t,i}))^{-1/\rho},$$

$$= \left(\beta \mathbb{E}_t \left[R\mathcal{G}_{t+1}^{-\rho} (\dot{c}_{t+1}(\mathcal{R}_{t+1}a_{t,i} + \boldsymbol{\theta}_{t+1}))^{-\rho} \right] \right)^{-1/\rho},$$
(23)

- ② Call the result $\vec{c_t}$ and generate the corresponding $\vec{m_t} = \vec{c_t} + \vec{a_t}$
- \odot Interpolate to create $\dot{c}_t(m)$

Recursion: Period t Solution Given Period t + 1

Construct

$$c_{\bar{t},i} = (v'_{+s}(a_{t,i}))^{-1/\rho},$$

$$= \left(\beta \mathbb{E}_t \left[\mathsf{R} \mathcal{G}_{t+1}^{-\rho} (\grave{c}_{t+1}(\mathcal{R}_{t+1}a_{t,i} + \boldsymbol{\theta}_{t+1}))^{-\rho} \right] \right)^{-1/\rho},$$
(23)

- 2 Call the result $\vec{c_t}$ and generate the corresponding $\vec{m_t} = \vec{c_t} + \vec{a_t}$
- 3 Interpolate to create $c_t(m)$

Recursion: Period t Solution Given Period t + 1

Construct

$$c_{\bar{t},i} = (v'_{+s}(a_{t,i}))^{-1/\rho},$$

$$= \left(\beta \mathbb{E}_t \left[\mathsf{R} \mathcal{G}_{t+1}^{-\rho} (\grave{c}_{t+1}(\mathcal{R}_{t+1}a_{t,i} + \boldsymbol{\theta}_{t+1}))^{-\rho} \right] \right)^{-1/\rho},$$
(23)

- ② Call the result \vec{c}_t and generate the corresponding $\vec{m}_t = \vec{c}_t + \vec{a}_t$
- **1** Interpolate to create $\dot{c}_t(m)$

Consumption Rules c_{T-n} Converge

Figure: Converging $\grave{\mathbf{c}}_{T-n}(m)$ Functions for $n=\{1,5,10,15,20\}$

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset.

The portfolio return is

$$\mathfrak{R}_{t+1} = \mathsf{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t$$

= $\mathsf{R} + (\mathbf{R}_{t+1} - \mathsf{R})\varsigma_t$ (24)

so (setting $\mathcal{G}=1$) the maximization problem is

$$\mathbf{v}_{t}(m_{t}) = \max_{\{c_{t},\varsigma_{t}\}} \mathbf{u}(c_{t}) + \beta \mathbb{E}_{t}[\mathbf{v}_{t+1}(m_{t+1})]$$
s.t.
$$\mathfrak{R}_{t+1} = \mathbf{R} + (\mathbf{R}_{t+1} - \mathbf{R})\varsigma_{t}$$

$$m_{t+1} = (m_{t} - c_{t})\mathfrak{R}_{t+1} + \theta_{t+1}$$

$$0 \le c_{t} \le 1$$

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset. The portfolio return is

$$\mathfrak{R}_{t+1} = \mathsf{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t$$

= $\mathsf{R} + (\mathbf{R}_{t+1} - \mathsf{R})\varsigma_t$ (24)

so (setting $\mathcal{G}=1)$ the maximization problem is

$$\mathbf{v}_{t}(m_{t}) = \max_{\{c_{t}, \varsigma_{t}\}} \mathbf{u}(c_{t}) + \beta \mathbb{E}_{t}[\mathbf{v}_{t+1}(m_{t+1})]$$
s.t.
$$\mathfrak{R}_{t+1} = \mathbf{R} + (\mathbf{R}_{t+1} - \mathbf{R})\varsigma_{t}$$

$$m_{t+1} = (m_{t} - c_{t})\mathfrak{R}_{t+1} + \boldsymbol{\theta}_{t+1}$$

$$0 < \varsigma_{t} < 1.$$

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset. The portfolio return is

$$\mathfrak{R}_{t+1} = \mathsf{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t$$

= $\mathsf{R} + (\mathbf{R}_{t+1} - \mathsf{R})\varsigma_t$ (24)

so (setting $\mathcal{G}=1$) the maximization problem is

$$egin{aligned} \mathbf{v}_t(m_t) &= \max_{\{c_t, \varsigma_t\}} & \mathbf{u}(c_t) + eta \mathbb{E}_t [\mathbf{v}_{t+1}(m_{t+1})] \\ & ext{s.t.} \end{aligned}$$
 s.t. $\mathfrak{R}_{t+1} &= \mathsf{R} + (\mathbf{R}_{t+1} - \mathsf{R}) \varsigma_t \\ m_{t+1} &= (m_t - c_t) \mathfrak{R}_{t+1} + oldsymbol{ heta}_{t+1} \\ 0 &\leq \varsigma_t \leq 1. \end{aligned}$

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset. The portfolio return is

$$\mathfrak{R}_{t+1} = \mathsf{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t$$

$$= \mathsf{R} + (\mathbf{R}_{t+1} - \mathsf{R})\varsigma_t$$
(24)

so (setting $\mathcal{G}=1$) the maximization problem is

$$\mathbf{v}_{t}(m_{t}) = \max_{\{c_{t}, \varsigma_{t}\}} \mathbf{u}(c_{t}) + \beta \mathbb{E}_{t}[\mathbf{v}_{t+1}(m_{t+1})]$$
 s.t.
$$\mathfrak{R}_{t+1} = \mathsf{R} + (\mathbf{R}_{t+1} - \mathsf{R})\varsigma_{t}$$

$$m_{t+1} = (m_{t} - c_{t})\mathfrak{R}_{t+1} + \boldsymbol{\theta}_{t+1}$$

$$0 \le \varsigma_{t} \le 1,$$

Portfolio Choice

The FOC with respect to c_t now yields an Euler equation

$$\mathbf{u}^{c}(c_{t}) = \mathbb{E}_{t}[\beta \mathfrak{R}_{t+1} \mathbf{u}^{c}(c_{t+1})]. \tag{25}$$

while the FOC with respect to the portfolio share yields

$$0 = \mathbb{E}_{t}[\mathbf{v}_{t+1}^{m}(m_{t+1})(\mathbf{R}_{t+1} - \mathbf{R})a_{t}]$$

= $a_{t}\mathbb{E}_{t}[\mathbf{u}^{c}(\mathbf{c}_{t+1}(m_{t+1}))(\mathbf{R}_{t+1} - \mathbf{R})]$

Portfolio Choice

The FOC with respect to c_t now yields an Euler equation

$$\mathbf{u}^{c}(c_{t}) = \mathbb{E}_{t}[\beta \mathfrak{R}_{t+1} \mathbf{u}^{c}(c_{t+1})]. \tag{25}$$

while the FOC with respect to the portfolio share yields

$$0 = \mathbb{E}_{t}[v_{t+1}^{m}(m_{t+1})(\mathbf{R}_{t+1} - \mathbf{R})a_{t}]$$

= $a_{t}\mathbb{E}_{t}[\mathbf{u}^{c}(c_{t+1}(m_{t+1}))(\mathbf{R}_{t+1} - \mathbf{R})].$

Convergence

When the problem satisfies certain conditions (Carroll (2023)), it defines a 'converged' consumption rule with a 'target' ratio \check{m} that satisfies:

$$\mathbb{E}_t[m_{t+1}/m_t] = 1 \text{ if } m_t = \check{m} \tag{26}$$

Define the target m implied by the consumption rule c_t as \check{m}_t .

Then a plausible metric for convergence is to define some value ϵ and to declare the solution to have converged when

$$|\check{m}_{t+1} - \check{m}_t| < \epsilon \tag{27}$$

Convergence

When the problem satisfies certain conditions (Carroll (2023)), it defines a 'converged' consumption rule with a 'target' ratio \check{m} that satisfies:

$$\mathbb{E}_t[m_{t+1}/m_t] = 1 \text{ if } m_t = \check{m} \tag{26}$$

Define the target m implied by the consumption rule c_t as \check{m}_t .

Then a plausible metric for convergence is to define some value ϵ and to declare the solution to have converged when

$$|\check{m}_{t+1} - \check{m}_t| < \epsilon \tag{27}$$

Convergence

When the problem satisfies certain conditions (Carroll (2023)), it defines a 'converged' consumption rule with a 'target' ratio \check{m} that satisfies:

$$\mathbb{E}_t[m_{t+1}/m_t] = 1 \text{ if } m_t = \check{m} \tag{26}$$

Define the target m implied by the consumption rule c_t as \check{m}_t .

Then a plausible metric for convergence is to define some value ϵ and to declare the solution to have converged when

$$|\check{m}_{t+1} - \check{m}_t| < \epsilon \tag{27}$$

- **①** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- Solve for period T n 1 assuming c_{T-n}
- © Continue to convergence

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- **Or Solve for period** T n 1 assuming c_{T-n}
- 6 Continue to convergence

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- **○** Solve for period T n 1 assuming c_{T-n}
- Continue to convergence

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- **9** Solve for period T n 1 assuming \grave{c}_{T-n}
- Ontinue to convergence

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- **9** Solve for period T n 1 assuming \grave{c}_{T-n}
- Ontinue to convergence

- Start with coarse grid for \vec{a} (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for \vec{a} (say, 20 points)
- **Or Solve for period** T n 1 assuming c_{T-n}
- © Continue to convergence

- Start with coarse grid for \vec{a} (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for \vec{a} (say, 20 points)
- Solve for period T n 1 assuming c_{T-n}
- © Continue to convergence

- Start with coarse grid for \vec{a} (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for \vec{a} (say, 20 points)
- **○** Solve for period T n 1 assuming c_{T-n}
- 6 Continue to convergence

- Start with coarse grid for \vec{a} (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for \vec{a} (say, 20 points)
- **4** Solve for period T n 1 assuming \grave{c}_{T-n}
- Ontinue to convergence

- Start with coarse grid for \vec{a} (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- **One of Struct 19** Solution **One of Struct 19** One of the or and of the original of the origi
- **4** Solve for period T n 1 assuming \grave{c}_{T-n}
- Ontinue to convergence

Life Cycle Maximization Problem

$$\begin{aligned} \mathbf{v}_t(m_t) &= \max_{c_t} \quad \mathbf{u}(c_t) + \mathbb{I} \mathcal{L}_{t+1} \hat{\beta}_{t+1} \mathbb{E}_t [(\mathbf{\Psi}_{t+1} \mathcal{G}_{t+1})^{1-\rho} \mathbf{v}_{t+1}(m_{t+1})] \\ \text{s.t.} \\ a_t &= m_t - c_t \\ m_{t+1} &= a_t \underbrace{\left(\frac{\mathsf{R}}{\mathbf{\Psi}_{t+1} \mathcal{G}_{t+1}}\right)}_{\equiv \mathcal{R}_{t+1}} + \boldsymbol{\theta}_{t+1} \end{aligned}$$

 \mathcal{L}_t^{t+n} : probability to \mathcal{L} ive until age t+n given alive at age t $\hat{\beta}_t^{t+n}$: age-varying discount factor between ages t and t+n Ψ_t : mean-one shock to permanent income \beth : time-invariant 'pure' discount factor

Details follow Cagetti (2003)

- Parameterization of Uncertainty
- Probability of Death
- ullet Demographic Adjustments to eta

Details follow Cagetti (2003)

- Parameterization of Uncertainty
- Probability of Death
- Demographic Adjustments to β

Details follow Cagetti (2003)

- Parameterization of Uncertainty
- Probability of Death
- \bullet Demographic Adjustments to β

Empirical Wealth Profiles

Figure: m from SCF (means (dashed) and medians (solid))

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical m data
- Draw shocks using calibrated $\sigma_{\Psi}^2, \sigma_{\theta}^2$
- ullet Consume according to solved c_t
- $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical m data
- Draw shocks using calibrated $\sigma_{\Psi}^2, \sigma_{\theta}^2$
- ullet Consume according to solved \mathbf{c}_t
- $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical *m* data
- Draw shocks using calibrated $\sigma_{\Psi}^2, \sigma_{\theta}^2$
- ullet Consume according to solved \mathbf{c}_t

 $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical *m* data
- Draw shocks using calibrated $\sigma_{\Psi}^2, \sigma_{\theta}^2$
- ullet Consume according to solved \mathbf{c}_t

 $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical m data
- Draw shocks using calibrated $\sigma_{\Psi}^2, \sigma_{\theta}^2$
- ullet Consume according to solved \mathbf{c}_t
- $\Rightarrow m$ distribution by age

Choose What to Simulate

```
GapEmpiricalSimulatedMedians[\rho, \beth]:=
[ ConstructcFuncLife[\rho, \beth];
Simulate;
\sum_{i}^{N} \omega_{i} |\varsigma_{i}^{\tau} - \mathbf{s}^{\tau}(\xi)|
];
```

Calculate Match Between Theory and Data

$$\xi = \{\rho, \beth\} \tag{28}$$

solve

$$\min_{\xi} \sum_{i}^{N} \omega_{i} \left| \varsigma_{i}^{\tau} - \mathbf{s}^{\tau}(\xi) \right| \tag{29}$$

Bootstrap Standard Errors (Horowitz (2001))

Yields estimates of

Table: Estimation Results

ρ	コ
3.69	0.88
(0.047)	(0.002)

Contour Plot

Figure: Point Estimate and Height of Minimized Function

References |

- CAGETTI, MARCO (2003): "Wealth Accumulation Over the Life Cycle and Precautionary Savings," <u>Journal of</u> Business and Economic Statistics, 21(3), 339–353.
- CARROLL, CHRISTOPHER D. (2023): "Theoretical Foundations of Buffer Stock Saving," Revise and Resubmit, Quantitative Economics.
- HOROWITZ, JOEL L. (2001): "The Bootstrap," in <u>Handbook of Econometrics</u>, ed. by James J. Heckman, and Edward Leamer, vol. 5. Elsevier/North Holland.