Question Number	Answer		Mark
20(a)	There is a (resultant) force that is	(4)	
	proportional to the displacement from the equilibrium position	(1)	
	and (always) acting towards the equilibrium position	(1)	2
	(Allow references to acceleration. An equation with symbols defined correctly is a valid response for both marks. For equilibrium position accept: undisplaced point/position or fixed point/position or central point/position.)		
20(b)	EITHER	(1)	
	Use of $F = mg$	(1)	
	Use of $\Delta F = (-)k\Delta x$	(1)	
	Use of $T = 2\pi \sqrt{\frac{m}{k}}$	(1)	
	Use of $\omega = \frac{2\pi}{T}$ [Allow use of $\omega = \sqrt{\frac{k}{m}}$ for MP3 and MP4]	(1)	
	Use of $v = \omega x_0 \sin \omega t$	(1)	
	$v_{\rm max} = 0.34 \text{m s}^{-1}$	(1)	
	OR		
	Use of $F = mg$	(1)	
	Use of $\Delta F = (-)k\Delta x$	(1)	
	Use of $\Delta E_{el} = \frac{1}{2} F \Delta x$	(1)	
	2	(1)	
	Use of $E_k = \frac{1}{2}mv^2$	(1)	
	Use of energy conservation	(1)	6
	$v_{\rm max} = 0.34 \text{m s}^{-1}$		
	If $T = 2\pi \sqrt{\frac{\ell}{g}}$ is used, then correct answer scores 6 marks.		
	If answer is incorrect, then credit may be obtained for MP1, MP2, MP4, MP5]		
	Example of calculation $F = 0.150 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.47 \text{ N}$		
	$k = \frac{1.47 \text{ N}}{7.5 \times 10^{-2} \text{ m}} = 19.6 \text{ N m}^{-1}$		
	$T = 2\pi \sqrt{\frac{0.150 \text{ kg}}{19.6 \text{ N m}^{-1}}} = 0.549 \text{ s}$		
	$\omega = \frac{2\pi \text{ rad}}{0.549 \text{ s}} = 11.4 \text{ rad s}^{-1}$		
	$v_{\text{max}} = 11.4 \text{ rad s}^{-1} \times 3.0 \times 10^{-2} \text{ m} = 0.343 \text{ m s}^{-1}$		