Cruce de ferrocarril en

Statecharts

Introducción a la concurrencia Requisitos temporales simples

Statecharts

- Lenguaje gráfico con semántica ejecutable
 - □ Se basa en el formalismo típico para describir FSM, aunque lo extiende de manera brillante.
- Imposible hablar de tipos
- Los conceptos básicos son eventos y estados; a ellos se agregan condiciones para las transiciones, super-estados, concurrencia, temporización, historia, etc.

Cruce ferroviario

- Se desea automatizar el control de la barrera de un cruce de ferrocarril en dos sentidos.
- Por tal motivo, se instalará un *chip* que ejecutará un programa que recibirá datos desde varios sensores y actuará sobre las barreras, los semáforos y una alarma.
- □ Los requerimientos del cliente son los siguientes:
 - □ Si un convoy llega a *x* metros del centro del cruce, se deben bajar las barreras, poner los semáforos en rojo y debe sonar la alarma.

Cruce ferroviario (2)

- Una vez que el último vagón del convoy está a más de y metros del centro del cruce y alejándose, se debe subir la barrera, poner el semáforo en verde y apagar la alarma.
- □ Si por alguna razón un convoy llega a *x* metros del cruce pero nunca alcanza la zona de la carretera, se debe proceder como si el tren hubiese superado los *y* metros.
- Si, luego el convoy reanuda la marcha, se deberán activar las protecciones inmediatamente y el sistema continuará con su funcionamiento normal.

Cruce ferroviario (3) Zona de carretera

Algunas designaciones

- □ La distancia de seguridad para bajar la barrera $\approx X$
- \square La distancia de seguridad para subir la barrera $\approx Y$
- Un tren cruza la distancia X acercándose al cruce por la vía $v \approx TrenX(v)$
- ☐ Un tren alcanza la zona de carretera por la vía $v \approx TrenC(v)$
- ☐ Un tren se detiene en la vía v en la zona de peligro \approx TrenD(v)
- □ El último vagón de un tren pasa la distancia Y alejándose del cruce por la vía $v \approx TrenY(v)$

Algunas designaciones (2)

- \square El sistema enciende la alarma \approx AOn
- \square El sistema apaga la alarma \approx AOff
- \blacksquare El sistema baja la barrera $b \approx BBarrera(b)$
- \square El sistema sube la barrera $b \approx SBarrera(b)$
- \square El sistema pone el semáforo s en rojo $\approx Rojo(s)$
- \square El sistema pone el semáforo s en verde $\approx Verde(s)$

Control

F	MC	EC	U	S	F	MC	EC	U	S
X					AOn				
Υ					AOff				
TrenX					BBarrera				
TrenY					SBarrera				
TrenC					Rojo				
TrenD					Verde				
TrenE					TrenS				

Alarma y barrera

El semáforo es idéntico

Super-estado Estado por defecto Eventos y designaciones

Una vía

Salida común de un super-estado Entrada común a un super-estado

RQ simple para una vía

Eventos cerrados por ∧ y ∨ Concurrencia

RQ completo para una vía

Peligro $\stackrel{\text{def}}{=}$ AOn \land BBarrera \land Rojo Pasar $\stackrel{\text{def}}{=}$ AOff \land SBarrera \land Verde

Conector de selección

RQ para dos vías

- No es tan simple pues hay que considerar el caso en que dos trenes pasan uno por cada vía y casi al mismo tiempo.
- La propiedad que hay que preservar es que se permite el paso recién cuando el último de los trenes terminó de pasar.
- ☐ La coordinación entre las dos vías la lograremos utilizando transiciones condicionales.

RQ para dos vías (2)

- RQ no es S por dos motivos:
 - hay varios fenómenos no compartidos (*TrenX*)
 - hay referencia al futuro (*TrenY*)
- Los fenómenos no compartidos se reemplazarán por señales enviadas por detectores.
- Las referencias al futuro se reemplazarán por tiempos de espera.
- Para describir los tiempos de espera utilizaremos los estados temporizados de Statecharts.

Cruce ferroviario con sensores

Más designaciones

- Los sensores X y Z envían una señal sólo cuando el convoy se dirige hacia el cruce; los sensores Y sólo cuando el convoy se aleja.
- □ El sensor de distancia X de la vía v envía una señal \approx XSens(v)
- □ El sensor de distancia Y de la vía v envía una señal ≈
 YSens(v)
- □ El sensor de zona de carretera de la vía v envía una señal ≈
 ZSens(v)
- ☐ Tiempo de espera para determinar la detención de un tren ≈ *td*
- Tiempo de espera desde que se recibió la "última" señal de un sensor $Y \approx ty$

La especificación

Otra especificación posible

- □ Otra forma de transformar la referencia a futuro generada por el evento *TrenY* en algo implementable, consiste en contar la cantidad de señales *XSens* e *YSens* hasta que ambas coinciden.
- Para describir esto con Statecharts es necesario utilizar estados parametrizados.
- Además, habría que designar la cantidad máxima de ejes que puede tener un tren (N).
- Mostraremos la solución para una sola vía.

La especificación (2)

