

Assignment Broject Exam Help

https://epaywoodaneom

Add WeChat powcoder

Integrity Constraints over Relations

- Constraints are conditions that must hold on all relations in a database state.
- That psof contrans When de letta receitance
 - Domain constraints;
 - Add We Chat powcoder
 - Entity integrity constraints;
 - Referential integrity constraints.

(1) Domain Constraints

- Every value in a tuple/must be from the domain of its attribute. https://powcoder.com
 - VARCHAR
 - DATE
 - Add WeChat powcoder

(2) Key Constraints - Observation

As Swignlind id a leations. To ject Exam Help

No two students have the same student ID:

1. 44	11	_	STUDENT 1		
ntins	Studer (IL	Na 70.		Enail O1	m
	456	Tom	25/01/1988	tom@gmail.com	
-	458	Peter	23/05/1993	peter@gmail.com	
	459	Fran	11/09/1987	frankk@gmail.com	

No the enterior average same suftening the same course remiber in the same sentester:

ENROL						
StudentID	CourseNo	Semester	Status	EnrolDate		
456	COMP2400	2016 S2	active	25/05/2016		
458	COMP1130	2016 S1	active	20/02/2016		
459	COMP2400	2016 S2	active	11/06/2016		

(2) Key Constraints - Definitions

- A superkey SK of R is a subset of attributes of R, i.e., $SK \subseteq \{A_1, \ldots, A_n\}$, such that the subset of attributes of R, i.e., $SK \subseteq \{A_1, \ldots, A_n\}$, such that the subset of attributes of R, i.e., $SK \subseteq \{A_1, \ldots, A_n\}$, such that the subset of attributes of R, i.e., $SK \subseteq \{A_1, \ldots, A_n\}$, such that the subset of attributes of R, i.e., R is a subset of attributes of R, i.e., R is a subset of attributes of R, i.e., R is a subset of attributes of R, i.e., R is a subset of attributes of R.
- A superkey SK of R is minimal if there is no other superkey $SK' \subset SK$ held on R. A minimal superkey is also known as cardidate key C
- A primary key PK of R is a minimal superkey of R, (i.e., a primary key is one of the candidate keys). If a relation has only one candidate key then that would be the primary key.

(2) Key Constraints - Example

	StudentiD	Name	DeR	Email
	456	Tom	25/01/1988	tom@gmail.com
_	458	Peter	23/05/1993	peter@gmail.com
ht	459 • /	Fran	-11/09/1987	frankk@gmail.com
	460 ./	7 µ/0\n	V1V0\/1987	lytion@hotmailcom

- Is {DoB} a superkey of STUDENT? No!
- Is Add to Watchato powcoder
- Is {StudentID, DoB} a candidate key of STUDENT? No!
- Is {StudentID} a candidate key of STUDENT? Yes!
- Can {StudentID} be chosen as a primary key of STUDENT? Yes!
- Can {DoB} be chosen as a primary key of STUDENT? No!

(2) Key Constraints - Example

Assignment Project Exam Help

			ENROL		
	StudentID	CourseNo	Semester	Status	EnrolDate
4	456	GOMP2400	2016 S2	active	25/05/2016
h	11458 C	COMP1#30T	x 2016 61	antive	20/02/2016
L.	5g D	/OOMP2400	V2046 S2	active	11/06/2016
	458	COMP1130	2015 S1	inactive	20/02/2015

Add WeChat powcoder Is {CourseNo, Semester} a superkey of ENROL? No!

- Is {StudentID, CourseNo, Semester} a candidate key of ENROL? Yes!
- Can {StudentID, CourseNo} be chosen as a primary key of ENROL? No!

(3) Entity Integrity Constraints

Assignment Project FxamuelPlp

- null is a special value, which represents the value of an attribute that may be interpreted by the power of the power of
- The entity integrity constraint states that no primary key value can be NULL.
 - This is the cause primary key values an energy identify individual tupies in a relation.

 Note: Other attributes of R may be constrained to disallow null values, even though they are not attributes in the primary key.

(3) Entity Integrity Constraints – Example

Assignment Project Exam Help If STUDENTID is specified as the primary key of STUDENT, then the

If STUDENTID is specified as the primary key of STUDENT, then the following relation violates the entity integrity constraint.

Answer: The relation does not violate the entity integrity constraint.

(4) Referential Integrity Constraints - Observation

Assignment Project Exam Help

Every course number appearing in ENROL must exist in COURSE:

ı	ENROL						
	StudentID	CourseNo	Semester	Status	EnrolDate		
ĺ	456	COMP2400	2016 S2	active	25/05/2016		
ı	458	COMP1130	2016 S1	active	20/02/2016		
	459	COMP2400	2016 S2	active	11/06/2016		

(4) Referential Integrity Constraints - Definition

ASSWegsen[Anto dampethe Page of attribute thin tuplezt.am Help Example: For the tuple t=(459,Fran.11/09/1987,frankk@gmail.com), t[Name]=Fran and t[DoB]=11/09/1987.

- A referential integrity constraint specifies a reference between two relations while the prefix script and six of the entry one elation.
- Let R_1 and R_2 be relation schemas in a database schema S, and R_2 has the primary key $\{B_1, \ldots, B_n\}$.
- A foreign key or A_1 is a statement $[A_1, \ldots, A_n] \subseteq B_2[B_1, \ldots, B_n]$ restricting states of o satisfy here lowing protects: $O \times COCC$
 - for each tuple $t \in r(R_1)$ there exists a tuple $t' \in r(R_2)$ with $t[A_i] = t'[B_i]$ for i = 1, ..., n.
- R₁ is called the referencing relation and R₂ is called the referenced relation.

(4) Referential Integrity Constraints – Example

Assignmente Principle to the Late Principle of the Control of the

	STUDENT				
	StudentID	Name	DoB	Email	
	456	Tom	25/01/1988	tom@gmail.com	
1-44	458	Peter_	23/05/1993	peter@gmail.com	
min	459	rai	1/1/09/1187	a ikk@ gmai .con) T T
TICP	D•//			GC1.CC	

	<u>No</u>	Cname	Unit	
Add	COMP 137 COMP 24 70	In oduct on to Advanced Computing L	76 (oder

ENROL						
StudentID	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate		
456	COMP2400	2016 S2	active	25/05/2016		
458	COMP1130	2016 S1	active	20/02/2016		
459	COMP2400	2016 S2	active	11/06/2016		

(4) Referential Integrity Constraints – Example

Assignment Project Exam Help

OurseNo] Course[No];

https://poweoder.com

This database state satisfies the above two foreign keys because

Aor each tuple Vir \bigcirc ROL There is a fth right. WOUR from that the Course No value in t_1 is the same with the No value in t_2 ;

• for each tuple t_1' in ENROL, there is a tuple t_2' in STUDENT such that the StudentID value in t_1' is the same with the StudentID value in t_2' .

(4) Referential Integrity Constraints – Question

As Schriggs as It is still satisfy the foreign keys better previous exchanged in the previous ex

ENROL						
StudentID	<u>CourseNo</u>	<u>Semester</u>	Status	EnrolDate		
456	COMP2400	2016 S2	active	25/05/2016		
458	COMP1130	2016 S1	active	20/02/2016		
459	COMP2600	2016 S2	active	11/06/2016		

(4) Referential Integrity Constraints – Question

Assimplified upon black of the following of the base does not salisty, the foreign revolution of the land of the l

	ENROL						
StudentID	CourseNo	<u>Semester</u>	Status	EnrolDate			
456	COMP2400	2016 S2	active	25/05/2016			
458	COMP1130	2016 S1	active	20/02/2016			
459	COMP2600	2016 S2	active	11/06/2016			

Constraint Violations

Assignment periodicacian Externate Help

- Insert: insert one or more new tuples in a relation;
- Delete: delete tuples in a relation;

 The Control of Marketing tuples.
- Whenever these operations are applied, the integrity constraints specified in a database schema should not be violated.
- нуAedd WeChat powcoder
 - Insert may violate ...
 - Delete may violate ...
 - Update may violate ...