EE 330 Fall 2012 Homework 6

Due Friday September 28 at the beginning of the lecture. You MUST <u>clearly</u> indicate your name and <u>SECTION</u> on the first page of your HW. Submissions that do not include the section <u>WILL NOT</u> be graded.

If parameters are needed for process characterization beyond what is specified in a problem, use the measured parameters from the AMI 0.5μ (now ON) or the IBM 0.13μ process runs that are attached.

Problem 1 (10 points):

Size an n-channel transistor in the AMI 0.5u CMOS process so that the impedance in the switch-level model is 1000Ω when operating with a 3.5V power supply. Repeat for an n-channel transistor in the IBM 0.13u CMOS process when operating with a 1.5V supply.

Problem 2 (5 points):

If a minimum-sized inverter designed in the IBM 0.13u CMOS process could directly drive a minimum-sized inverter designed in the AMI 0.5u CMOS process, what would be t_{HL} and t_{LH}? Assume a supply voltage of 1.5V. Neglect any interconnect parasitics.

Problem 3 (5 points):

Using the short-channel α -law model, determine the impedance in the switch-level model of the MOSFET for a square (W=L) n-channel device if the short-channel device has the same μC_{OX} and V_T as in the IBM 0.13 μ process but with short-channel parameters $\theta 1=\theta_2=1/2$ and $\alpha=1.25$. Comment on how the short-channel effect changes the switching performance of the MOSFET.

Problem 4 (10 points):

Consider the below circuit

- a) Obtain the voltage V_{OUT} if V_{IN} =-8V.
- b) Obtain the current through R_2 if $V_{IN}=5V$
- c) Obtain an expression for V_{OUT} and plot it for one period of the input is $V_{IN} = 5\sin 1000t$

Page 1 of 9

Problem 5 (10 points):

Assume the junction area of D_1 is $100\mu^2$ and that of D_2 is 4 times as large. Determine the current I_{D1} if V_X =1.5V. Assume J_S to be $5fA/\mu^2$.

Problem 6 (10 points):

Analytically determine the variable indicated by a "?" in the below circuits. Assume the devices are in a process with V_{TN} =1V, and $\mu_n C_{OX}$ =100 μ AV⁻²

Problem 7 (10 points):

Analytically determine the variable indicated by a "?" in the below circuits. Assume the devices are in a process with V_{TN} =1V, V_{TP} =-1V, $\mu_n C_{OX}$ =100 μ AV⁻² and $\mu_p C_{OX}$ =33 μ AV⁻².

Problem 8 (15 points):

Consider the below circuit.

- a) If V_{IN} =3V, determine the dimensions of M_1 that will result in an output voltage of 2V. Assume that the dimensions of M_2 are W_2 =10u and L_2 =1u. The model parameters of the devices are V_{TN} =1V, V_{TP} =-1V, $\mu_n C_{OX}$ =100 μ AV⁻² and $\mu_p C_{OX}$ =33 μ AV⁻².
- b) Repeat part a) if the goal is to have an output voltage of 0.5V.

Problem 9 (10 points):

Determine the currents indicated with a "?" in the below circuits. Assume the diodes are ideal.

Problem 10 (10 points):

Determine V_{OUT} for the below circuit. Assume the devices M_1 and M_2 are identically sized with W=L=5u. The model parameters of the devices are VTN=1V, V_{TP} =-1V, $\mu_n C_{OX}$ =100 μ AV⁻² and $\mu_p C_{OX}$ =33 μ AV⁻².

Problem 11 (Extra Credit of 10 points):

Determine the currents indicated with a "?" in the below circuits. Assume the diodes are ideal.

Problem 12 (Extra Credit of 10 points):

Assume the op amp is ideal and biased with V_{DD} =20Vand V_{SS} =-20V and the diode is characterized by model parameters: J_{SX} =0.5A/ μ^2 , V_{G0} =1.17V, m=2.3. Assume the area of the junction is $100u^2$.

- a) Determine V_{OUT} if $T = -20^{\circ}$ C
- b) Repeat part a) if $T = 40^{\circ}$ C.
- c) Repeat part a) if T=120°C

Problem 13 (Extra Credit of 20 points):

Using Verilog, build a counter that outputs to a seven segment display. Whenever the INPUT makes a low to high transition, the counter should increase by one. This should be reflected by the seven segment display. Each bit of the seven segment display is controlled by an individual output. A high output corresponds to a lit segment while a low output causes an unlit segment. The counter should go back to zero upon passing 9. Label your outputs clearly and prove your design with sufficient testing.

MOSIS WAFER ACCEPTANCE TESTS

RUN: T86S VENDOR: AMIS

TECHNOLOGY: SCNO5 FEATURE SIZE: 0.5 microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: American Microsystems, Inc. C5

TRANSISTOR	PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM Vth		3.0/0.6	0.79	-0.92	volts
SHORT		20.0/0.6			
Idss			463	-248	uA/um
Vth			0.67	-0.91	volts
Vpt			10.0	-10.0	volts
WIDE		20.0/0.6			
Ids0			< 2.5	< 2.5	pA/um
LARGE		50/50			
Vth			0.68	-0.95	volts
Vjbkd			10.8	-11.7	volts
Ijlk			<50.0	<50.0	рA
Gamma			0.49	0.57	V^0.5
K' (Uo*Cox	¢/2)		57.8	-19.1	uA/V^2
Low-field	Mobility		475.38	157.09	cm^2/V*s

COMMENTS: Poly bias varies with design technology. To account for mask bias use the appropriate value for the parameter XL in your SPICE model card.

Design Technology	XL (um)	XW (um)
SCMOS_SUBM (lambda=0.30)	0.10	0.00
SCMOS (lambda=0.35)	0.00	0.20

FOX TRANSISTORS GATE N+ACTIVE P+ACTIVE UNITS

Vth Poly >15.0 <-15.0 volts

AMI Continued	0.5u			P	Description				
PROCESS PARAMETERS Sheet Resistance Contact Resistance Gate Oxide Thickness	N+ 84.4 60.9 142	P+ 109.2 150.6	POLY 22.9 15.8	PLY 110	2	POLY2 41.9 26.8	M1 0.09	M2 0.09 0.81	UNITS ohms/sq ohms angstrom
PROCESS PARAMETERS Sheet Resistance Contact Resistance		M3 0.05 0.81	N\PLY 818		808 808		ITS ms/sq ms		
COMMENTS: N\POLY is N	-well u	nder po	olysilio	con.					
CAPACITANCE PARAMETER: Area (substrate)	5 N+ 426	P+ 724	POLY 85	POLY	30	15	M3 9	N_W 37	UNITS aF/um^2
Area (N+active) Area (P+active) Area (poly)			:434 :351	899	34 56		12 9		aF/um^2 aF/um^2 aF/um^2
Area (poly2) Area (metal1) Area (metal2)					46	33	13 32		aF/um^2 aF/um^2 aF/um^2
Fringe (substrate) Fringe (poly) Fringe (metal1)	361	241			71 59		33 28 34		aF/um aF/um aF/um
Fringe (metal2) Overlap (N+active) Overlap (P+active)			292 387				54		aF/um aF/um aF/um
CIRCUIT PARAMETERS					UNITS				
Inverters Vinv Vinv		K 1.0 1.5			volts volts				
Vol (100 uA) Voh (100 uA) Vinv		2.0 2.0 2.0	4.	.86	volts volts volts				
Gain Ring Oscillator Freq		2.0	-18	.26					
DIV256 (31-stg,5.0V) D256_WIDE (31-stg,5 Ring Oscillator Power	.OV)		98. 153.		MHz MHz				
DIV256 (31-stg,5.0V) D256_WIDE (31-stg,5					uW/MHz uW/MHz	_			

COMMENTS: SUBMICRON

MOSIS WAFER ACCEPTANCE TESTS

RUN: T85X (8WL_8LM_OL) VENDOR: IBM-BURLINGTON
TECHNOLOGY: SIGEO13 FEATURE SIZE: 0.13 microns

Run type: SKD

INTRODUCTION: This report contains the lot average results obtained by MOSIS from measurements of MOSIS test structures on each wafer of this fabrication lot. SPICE parameters obtained from similar measurements on a selected wafer are also attached.

COMMENTS: SIGESWL_IBM-BU

TRANSISTOR PARAMETERS	W/L	N-CHANNEL	P-CHANNEL	UNITS
MINIMUM Vth	0.16/0.12	0.41	-0.42	volts
V C11		0.11	-0.12	VOICD
SHORT	20.0/0.12			
Idss		406	-178	uA/um
Vth		0.43	-0.42	volts
Vpt		3.6	-3.6	volts
WIDE	20.0/0.12			
Ids0		155.2	-127.9	pA/um
LARGE	20.0/20.0			
Vth		0.12	-0.23	volts
Vjbkd		2.7	-3.2	volts
Ijlk		<50.0	<50.0	рA
Gamma		0.28	0.23	V^0.5
K' (Uo*Cox/2)		308.0	-48.8	uA/V^2
Low-field Mobility		553.02	87.62	cm^2/V*s

IIBM 0.13u Process Description Continued

N+	P+	POLY	M1	M2	M 3	M4	UNITS
6.7	6.3	6.6					ohms/sq
			78	51	50	50	mohms/sq
9.4	9.2	8.3		0.68	1.37	2.00	ohms
31							angstrom
	6.7	6.7 6.3 9.4 9.2	6.7 6.3 6.6 9.4 9.2 8.3	6.7 6.3 6.6 78 9.4 9.2 8.3	6.7 6.3 6.6 78 51 9.4 9.2 8.3 0.68	6.7 6.3 6.6 78 51 50 9.4 9.2 8.3 0.68 1.37	6.7 6.3 6.6 78 51 50 50 9.4 9.2 8.3 0.68 1.37 2.00

 PROCESS PARAMETERS
 M5
 M6
 M7
 M8
 N_W PPLY+BLK N+BLK POLY_NON POLY_NON TAN UNITS

 Sheet Resistance
 41
 44
 7
 7.4
 mohms/sq

 Sheet Resistance
 327
 321.2
 73.4
 231.6
 1547.4
 58.9
 ohms/sq

 Contact Resistance
 2.19
 2.51
 2.51
 2.53
 ohms

COMMENTS: BLK is silicide block.

CAPACITANCE PARAMETERS	N+	P+	POLY	M1	M 2	МЗ	M4	M5	M 6	М7	M 8	TaN	${\tt MiM}$	UNITS
Area (substrate)	973	1203	109	57	41	32	27	23	20	17	14	24		aF/um^2
Area (N+active)		1:	1176											aF/um^2
Area (P+active)		10	0496											aF/um^2
Area (r well)	605													aF/um^2
Area (N+ HA varactor)		2390												aF/um^2
Area (M1)			128											aF/um^2
Area (M2)				171										aF/um^2
Area (M3)					182									aF/um^2
Area (M4)						176								aF/um^2
Area (M5)							82							aF/um^2
Area (M6)								81						aF/um^2
Area (M7)									45					aF/um^2
Area (M8)										85				aF/um^2
Area (MiM)												4	100	aF/um^2
Fringe (substrate)	60	68												aF/um

CIRCUIT PARAMETERS			UNITS
Inverters	K		
Vinv	1.0	0.50	volts
Vinv	1.5	0.52	volts
Vol (100 uA)	2.0	0.01	volts
Voh (100 uA)	2.0	1.18	volts
Vinv	2.0	0.53	volts
Gain	2.0	-18.48	
Ring Oscillator Freq.			
DIV1024 (31-stg,1.2V)		376.81	MHz
D1024_THK (31-stg,2.5V)		279.93	MHz
Ring Oscillator Power			
DIV1024 (31-stg,1.2V)		5.13	nW/MHz/gate
D1024_THK (31-stg,2.5V)		26.50	nW/MHz/gate
Operational Amplifier			
Gain		10	

COMMENTS: DEEP_SUBMICRON