Package 'CWT'

June 28, 2024

```
Type Package
Title Continuous Wavelet Transformation for Spectroscopy
Version 0.2.1
Maintainer J. Antonio Guzmán Q. <antguz06@gmail.com>
Description Fast application of Continuous Wavelet Transformation ('CWT') on time
     series with special attention to spectroscopy. It is written using
     data.table and 'C++' language and in some functions it is possible to
     use parallel processing to speed-up the computation over samples. Currently,
     only the second derivative of a Gaussian wavelet function is implemented.
License GPL (>= 3)
URL https://github.com/Antguz/CWT
BugReports https://github.com/Antguz/CWT/issues
Depends R (>= 4.0.0)
Imports data.table (>= 1.14.0), Rcpp
Suggests testthat (>= 3.2.0)
LinkingTo Rcpp, RcppArmadillo
ByteCompile true
Config/testthat/edition 3
Encoding UTF-8
Language en-US
RoxygenNote 7.3.1
SystemRequirements GNU make
NeedsCompilation yes
Author J. Antonio Guzmán Q. [cre, aut, cph]
     (<https://orcid.org/0000-0002-0721-148X>)
Repository CRAN
Date/Publication 2024-06-28 03:50:02 UTC
```

2 cwt

Contents

	CWT-package	2
	cwt	2
	resampling_FWHM	4
Index		6

CWT-package

Continuous Wavelet Transformation for Spectroscopy

Description

Fast application of Continuous Wavelet Transformation on time series with special attention to spectroscopy. It is written using 'data.table' and 'C++' language and in some functions it is possible to use parallel processing to speed-up the computation over samples.

Author(s)

Maintainer: J. Antonio Guzmán Q. <antguz06@gmail.com> (ORCID) [copyright holder]

See Also

Useful links:

- https://github.com/Antguz/CWT
- Report bugs at https://github.com/Antguz/CWT/issues

cwt

Continuous Wavelet Transform

Description

Compute a 1D continuous wavelet transformation using 2st order derivative Gaussian wavelet.

Usage

```
cwt(t, scales, variance = 1, summed_wavelet = FALSE, threads = 1L)
```

cwt 3

Arguments

t A data.table, matrix, or numeric vector where columns or values represent time (i.e., bands) and rows samples (i.e., pixels). Remember the transformation

assume that columns or values are evenly spaced though time (i.e., bands at

equal to sampling interval).

scales A positive numeric vector describing the scales to compute. The minimum scale

(i.e., scales = 1) is equal to sampling interval between columns.

variance A positive numerber describing the variance of the Gaussian PDF used to scale.

Default variance = 1.

summed_wavelet If TRUE, it returns the sum of scales. If FALSE, each scale is returned.

threads An integer specifying the number of threads to use. Experiment to see what

works best for your data on your hardware.

Value

If summed_wavelet = TRUE, it returns a data.table where columns are the sum of wavelet scales. If summed_wavelet = FALSE, it returns an array (i.e., time, samples, and scales).

Author(s)

J. Antonio Guzmán Q.

Examples

```
time_series <- sin(seq(0, 20 * pi, length.out = 100))
# Using a numeric vector
cwt(t = time_series,
    scales = c(1, 2, 3, 4, 5),
    summed_wavelet = FALSE)
cwt(t = time_series,
    scales = c(1, 2, 3, 4, 5),
    summed_wavelet = TRUE)
# Using a matrix
times <- 100
frame <- matrix(rep(time_series, times),</pre>
                nrow = times,
                byrow = TRUE)
cwt(t = frame,
    scales = c(1, 2, 3, 4, 5),
    summed_wavelet = FALSE)
cwt(t = frame,
    scales = c(1, 2, 3, 4, 5),
    summed_wavelet = TRUE)
```

4 resampling_FWHM

resampling_FWHM

Full Width Half Maximum Resampling

Description

It resample spectra data using Full Width Half Maximum (FWHM).

Usage

```
resampling_FWHM(spectra, wavelengths, new_wavelengths, FWHM, threads = 1L)
```

Arguments

spectra A data.table, data.frame, or matrix where columns represent bands and

rows samples (i.e., pixels).

wavelengths A numeric vector describing the current positioning of the spectral bands within

spectra.

new_wavelengths

A numeric vector describing positioning of the new spectral bands to resample.

FWHM A numeric vector describing the Full Width Half Maximums of the new spectral

bands. The length of this vector should be equal than the length of new_wavelengths.

threads An integer specifying the number of threads to use. Experiment to see what

works best for your data on your hardware.

Value

It returns a data.table with the resampled spectra, where columns are the new bands and rows are samples.

Author(s)

J. Antonio Guzmán Q.

Examples

resampling_FWHM 5

Index

```
CWT (CWT-package), 2
cwt, 2
CWT-package, 2
resampling_FWHM, 4
```