PATENT ABSTRACTS OF JAPAN

(-11-)Publication number_:

10-072217

(43) Date of publication of application: 17.03.1998

(51)Int.CI.

C04B 35/38 H01F 1/34 H01F 19/04

(21) Application number: 09-056699

(71)Applicant:

HITACHI METALS LTD

(22)Date of filing:

11.03.1997

(72)Inventor:

HIGUCHI YUTAKA

KIGUCHI KATSUYUKI

UEDA HITOSHI

(54) HIGH PERMEABILITY MN-ZN FERRITE AND PULSE TRANSFORMER

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain high permeability Mn-Zn ferrite excellent in temp. characteristics of permeability by using Mn-Zn ferrite having a specified initial permeability and a specified molar ratio.

SOLUTION: This high permeability Mn-Zn ferrite consists of 52.5-53.0mol% Fe2O3, 22-25mol% ZnO and the balance MnO and has an initial permeability μ i of ≥8,000 in the temp. range of 20 to +100°C and ≤70% rate of variation of the initial permeability. The secondary peak (Ts) of the initial permeability μ is preferably within the range of -25 to +10°C.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

Date of requesting appeal against examiner's decision of rejection

[Date of extinction of right]

Copyright (C), 1998,2000 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The high permeability Mn-Zn system ferrite characterized by for Fe 2O3 being 8000 or more in a Mn-Zn system ferrite in 52.5-53.0-mol the range whose initial permeability mui it is %, ZnO is 22-25-mol % and ** MnO, and is the temperature of -20-100 degrees C, and the rate of change being less than 70%.

[Claim 2] The high permeability Mn-Zn system ferrite characterized by being in the range whose secondary peak (Ts) of mui is -25-10 degrees C in the temperature characteristic of initial permeability mui in the Mn-Zn system ferrite indicated by the claim 1.

[Claim 3] The pulse transformer characterized by using the Mn-Zn system ferrite core the rate of change of whose it is 8000 or more in the range whose initial permeability mui is the temperature of -20-100 degrees C, and is less than 70%.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] this invention relates to the Mn-Zn system ferrite and pulse transformer which excelled [permeability/high] in the temperature characteristic.

[0002]

[Description of the Prior Art] The Mn-Zn system ferrite which has high permeability was constituted considering Fe 2O3, and ZnO and MnO as a principal component, and had become the material which added various additives (calcium, Si, V, Bi) to this principal component. This Mn-Zn system ferrite is used as cores, such as a transformer and a noise filter, and the miniaturization of parts is advanced using the high permeability property.

[0003]

[Problem(s) to be Solved by the Invention] For example, it is CCITT to carry out 20mH reservation of the inductance by the side of the circuit in the pulse transformer used for the S/T point interface of ISDN. It becomes an indispensable condition for satisfying the impedance mask set to I-430.

[0004] Here, considering the device used, what is installed in the outdoors or under the eaves like a public telephone or a Data Circuit Terminating Equipment (DSU) can be considered, and, as for the environmental condition, -10-70 degrees C is guaranteed by LSI now. Therefore, the temperature guarantee which has a desired inductance at -10-70 degrees C in a pulse transformer similarly is needed.

[0005] However, in the case of the conventional Mn-Zn system quantity permeability ferrite, it has the property that initial permeability falls remarkably by the low temperature side (20 degrees C or less). For example, when it is the conventional high permeability materials whose initial permeability mui is about 10000 at a room temperature, at -20 degrees C, initial permeability mui will be halved about with 5000.

[0006] Although it is one side, for example, changes also with a configuration or number of turns, in order to satisfy the impedance specification of the above-mentioned pulse transformer, in -20-100 degrees C, 7000 or more are needed for initial permeability mui. When it is going to obtain the Mn-Zn system ferrite with which it is satisfied of mui>=7000 in these -20-100 degrees C, in the case of the conventional material, in consideration of the above-mentioned degradation, mui will use 7000 or more material by -20. For example, the conventional high permeability material shown in drawing 1 hits it. According to this conventional material, at a room temperature, it is necessary for mui to use 15000 or more material of very high permeability. [0007] In order to obtain this Mn-Zn system ferrite of high permeability of mui>=15000, there was a problem that quality raw material and the quality baking method, and baking conditions needed to be controlled strict, and cost and a man day increased. Moreover, the frequency characteristic of mui deteriorates, so that mui generally becomes high. For this reason, in the case of high permeability materials like mui>=15000, especially mui produces degradation of the frequency characteristic in the high temperature field which becomes high. For this reason, to the RF field (-1MHz), as a pulse transformer by which an impedance is standardized, it became unstable to the temperature change, and was not desirable.

[0008] Thus, if it designs by the conventional material, in order to satisfy the impedance specification by the side of low temperature, there were troubles, such as becoming very inefficient as it said that number of turns were increased or the material of higher permeability than required was used.

[0009] In view of the above-mentioned thing, this invention is high permeability and aims at obtaining the Mn-Zn system ferrite which was moreover excellent in the temperature characteristic of permeability, and obtaining the pulse transformer which employed the property efficiently.

[0010]

[Means for Solving the Problem] this invention is a high permeability Mn-Zn system ferrite characterized by for Fe 2O3 being 8000 or more in a Mn-Zn system ferrite in 52.5-53.0-mol the range whose initial permeability mui it is %, ZnO is 22-25-mol % and ** MnO, and is the temperature of -20-100 degrees C, and the rate of change being less than 70%.

[0011] Moreover, this invention is a high permeability Mn-Zn system ferrite characterized by being in the range whose secondary peak (Ts) of mui is -25-10 degrees C in the temperature characteristic of initial permeability mui in the above-mentioned Mn-Zn system ferrite.

[0012] Moreover, this invention is a pulse transformer characterized by using the Mn-Zn system ferrite core the rate of change of whose it is 8000 or more in the range whose initial permeability mui is the temperature of -20-100 degrees C, and is less than 70%.

[0013] Moreover, in this invention, the aforementioned rate of change can also obtain less than 40% of thing. [0014] Moreover, as an accessory constituent, this invention may contain SiO2 for CaO 0.05 or less % of the weight, and may contain Bi 2O3 for V2O5 0.1 or less % of the weight 0.05 or less % of the weight 0.01 or less % of the weight. [0015] In this invention, if, as for the reason which limited the principal component, Fe 2O3 exceeds 53-mol %, a secondary peak (Ts) consists of -25 degrees C a minus side by the temperature characteristic of initial permeability mui, and initial permeability mui near a room temperature cannot obtain 8000 or more. This example is shown in the example of comparison of drawing 2 (No.9). Moreover, it is because a secondary peak consists of 10 degrees C an elevated-temperature side and -20-0 degree C mui cannot obtain 8000 or more, if Fe 2O3 becomes less than [52.5 mol %].

[0016] On the other hand, if ZnO exceeds 25-mol %, since Curie temperature (Tc) falls to near 100 degree C and a temperature guarantee band becomes narrow, it is not desirable. Furthermore, it is because mui cannot obtain 8000 or more in -20 degrees C -0 degree C in connection with Curie temperature becoming high and the wave of a temperature characteristic curve becoming large if ZnO becomes less than [22 mol %]. This example is shown in the example of comparison of drawing 2 (No.13). [0017] In this invention, it is 8000 or more in the range whose initial permeability mui is the temperature of -20-100 degrees C, and the rate of change can obtain less than 70% of Mn-Zn system ferrite. As described above, in order to satisfy the impedance specification of a pulse transformer, in -20-100 degrees C, initial permeability mui is required for 7000 or more. Therefore, according to this invention, it turns out that it is useful as a pulse transformer used for the S/T point interface of ISDN. [0018]

[Example]

The raw material with principal component composition as shows example 1Fe 2O3, and MnO and ZnO in Table 1 was produced, the ball mill ground this temporary quenching and after that at 850 degrees C for 8 hours for 2 hours, and it pressed in the shape of a ring, and calcinated by 5% of oxygen densities at 1360 degrees C for 5 hours.

[0019] The rate of change (**mui/mui) of mui in the range of 100 degrees C is shown in Table 1 from initial permeability mui under each temperature in the frequency of 10kHz of a sample with different principal component composition, and temperature -20. Moreover, the secondary peak (Ts) of the temperature characteristic of 20 degrees C tan delta/mu i and mui is written together. In this table 1, the thing of this invention within the limits considers as an example, and the thing out of range is taken as the example of comparison. Moreover, the graph of the change to the temperature of initial permeability mui of sample No.2 (example 2), sample No.9 (example 3 of comparison), and sample No.13 (example 5 of comparison) is shown in drawing 2. It turns out that mui has 8000 or more and high permeability in each temperature of the temperature of -20 degrees C, and 100 degrees C, the rate of change of mui is moreover 70% or less among -20 degrees C - the 100 degrees C, and the example of this invention is moreover material with the small change of initial permeability to temperature in high permeability as this drawing 2 also shows. Moreover, the graph of the change to the temperature of initial permeability mui of sample No.2 (example 2) is shown also in drawing 1. As compared with the conventional material, it turns out that the material of this invention is the material extremely stabilized to the temperature change.

[Table 1]

<u> </u>	010 1									·
試料	主成分	和成(sol%)		βi		Δμ1/μ1	ten 8 / 4 f	Te	
No	Fe ₂ 0 ₃	MnO	ZnO	-20°C	20°C	100,C	(%)	(×10°°)	(%)	雅 考
1	52.6	22.4	25.0	8800	9800	8800	80	11	6	突放例 1
2	52.6	22.9	24.5	8300	9800	9600	40	10	5	奥拉得 2
3	52.4	23.4	24.2	7200	10600	10800	77	8	15	比較例1
4	52.6	23.1	24.3	8000	8700	10300	50	- 9		突施例8
5	52.9	22.8	24.3	8700	8200	10700	. 40	10	-20	实施例4
В	53.1	22.6	24.3	6800	6600	10200	67	10	<−40	比較例2
7	52,7	23,8	23.5	8100	8900	13500	68	7	В	実施例 5
В	53.0	23.6	23.4	8900	8000	11800	48	11	-20	吳施何 8
8	53.2	23.4	23.4	7200	6300	11600	.84	- 12	<-40	比較例3
10	52.7	24.7	22.6	8200	9200	13800	689	8	0	実施例7
11	53.0	24,5	22.6	9100	8000	13000	63	10	- 15	実施例8
12	53.3	24.2	22.5	7300	6000	10200	70	11	<-40	比較例4
18	52.5	25.6	21.9	5500	10400	15800	187	6	40	比較例 5
14	52,7	25.5	21.8	6900	9400	19200	99	7	15	比較何8
15	53.1	25.0	21.8	8000	7100	11600	85	8	0	比較例7
18	62.6	21.9	25.5	8500	9700	4150	150	10	- 5	比較例8
17	52.8	21.7	25.5	8000	8200	7500	30	11	-25	此數例9
18	53.1	21.4	25.5	6700	7100	7100	38	12	4	比較例10

[0021] Example 2Fe 2O3 52.6-mol %, MnO 22.9-mol %, ZnO 24.5-mol % was made into the principal component, the raw material which shows CaO, SiO2, V2O5, and Bi2O3 in Table 2 at this and which carries out quantity content was produced, the ball mill ground this temporary quenching and after that at 850 degrees C for 8 hours for 2 hours, and it pressed in the shape of a ring, and calcinated by 5% of oxygen densities at 1360 degrees C for 5 hours. The rate of change of mui under each temperature in the frequency of 100kHz and mui is shown in Table 2 like [sample / the] an example 1. Moreover, mui in the frequency of 300kHz is also written together. As shown in this table 2, the example of this invention is excellent also in the frequency

characteristic of mui. In addition, when CaO became 0.06 % of the weight, -20 degrees C mui fell. Moreover, when SiO2 became 0.013 % of the weight, -20 degrees C mui fell. Moreover, when Bi 2O3 became 0.12 % of the weight, -20 degrees C mui fell. [0022]

	1 1		Δ
Ta	nı	0	71
. I . U	U	·	~

			_							
PCH	T)	成分量	(田量)	6)	<u>#1</u>	(f=100	KHz)	μ1(f=300kHz)	Tu/1/41	
No	CaO	S102	₹205	B1 203	-20°C	20°C	100°C	(20°C)	(%)	*
19	0.01	0.01	0,01	0,04	8100	8500	10600	4200	42	実施例 9
20	0.01	0.007	0,01	0.04	8300	B800	8600	4000	40	実施例10
21	0.02	0.007	0,01	0,04	8000	8300	11000	4100	38	実施領11
22	0.006	0.007	0.04	0.04	8200	8600	9800	8700	4.7	突施例12
23	0.005	0.01	0.01	0.04	8200	9700	11500	3800	59	実施例13
24	0.005	0.013	0.01	0.04	6800	8900	9000	1600	S 2	比較例11
						ŀ				異常數成長
25	0.02	0.007	0.01	0.08	8500	10700	11600	4500	36	实施例14
28	0.08	0.007	0.01	0.08	7700	10200	11700	4500	38	比較例12
27	0.02	0.007	0.01	0.12	7200	9700	11500	1200	60	比較例18
Ш										異常粒成長

[0023]

[Effect of the Invention] In the narrow range especially of the range which Fe 2O3 calls and ZnO calls 22-25-mol % and ** MnO 52.5-53.0-mol% according to this invention and which was limited extremely, and 52.5-53.0-mol % in Fe 2O3 It has permeability (8000 or more) high from a low temperature side (-20 degrees C) to an elevated-temperature side (100 degrees C), and moreover, the rate of change of permeability can obtain a small (less than 70%) Mn-Zn system ferrite by the temperature gradient, and the material of the extremely excellent property can be obtained. Moreover, it is very useful as an object for pulse transformers, and is very useful as an object for pulse transformers especially.

[Translation done.]

(19)日本国特許庁 (JP)

(12)-公-開-特-許-公-報-(A)

(11)特許出願公開番号

特開平10-72217

(43)公開日 平成10年(1998) 3月17日

(51) Int.Cl. ⁸	` 識別配号 庁内整理番号	F I	技術表示箇所
C01G 49/00		C 0 1 G 49/00	В
C 0 4 B 35/38		C 0 4 B 35/38	Z
H01F 1/34		H01F 1/34	\cdot B
19/04		19/04	
		審查請求 未請求 請	求項の数3 OL (全 5 頁)
(21)出願番号	特願平9-56699	(71)出顧人 000005083	
(62)分割の表示	特願平8-62271の分割	日立金属株式	(会 社
(22)出顧日	平成5年(1993)3月5日	東京都千代日	田区丸の内2丁目1番2号
	•	(72)発明者 樋口 豊	
		鳥取県鳥取市	ド南栄町33番地12号日立フェラ
		イト株式会社	土内
•		(72)発明者 城口 勝之	
		鳥取県鳥取市	ド南栄町33番地12号日立フェラ
	•	イト株式会社	上内
		(72)発明者 上田 等	
		鳥取県鳥取で	b南栄町33番地12号日立フェラ
		イト株式会社	上内
•			
		,	

(54) 【発明の名称】 高透磁率Mn-Zn系フェライト及びパルストランス

(57)【要約】

【目的】 高透磁率であって、しかも透磁率の温度特性 の優れたMn-Zn系フェライトを得ること、及びその 特性を生かしたパルストランスを得ること。

【構成】 Mn-Zn系フェライトにおいて、Fe₂O3が52.5~53.0モル%、ZnOが22~25モル%、残MnOであり、初透磁率μiが温度-20~100℃の範囲で800以上で、かつその変化率が70%以内である高透磁率Mn-Zn系フェライト及びその磁心を用いたパルストランス。

【特許請求の範囲】

【請求項1】 Mn-Zn系フェライトにおいて、Fe 203が52.5~53.0モル%、ZnOが22~25モル%、残MnOであり、初透磁率μiが温度-20~100℃の範囲で8000以上で、かつその変化率が70%以内である事を特徴とする高透磁率Mn-Zn系フェライト。

【請求項2】 請求項1に記載されるMn—Zn系フェライトにおいて、初透磁率μiの温度特性でμiのセカンダリーピーク(Ts)が-25~10℃の範囲にある事を特徴とする高透磁率Mn—Zn系フェライト。

【請求項3】 初透磁率μiが温度-20~100℃の 範囲で8000以上で、かつその変化率が70%以内で あるMn-Zn系フェライト磁心を用いることを特徴と するパルストランス。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、高透磁率で温度特性の 優れたMn-Zn系フェライト及びパルストランスに関 する。

[0002]

【従来の技術】高透磁率を有するMn-Zn系フェライトはFe2O3、ZnO、MnOを主成分として構成され、この主成分に対し、種々の添加物(Ca、Si、V、Bi)を加えた材料となっていた。このMn-Zn系フェライトは、トランスやノイズフィルタ等の磁心として用いられ、高透磁率特性を利用して部品の小型化が進められている。

[0003]

【発明が解決しようとする課題】例えばISDNのS/ 30 T点インターフェースに使用するパルストランスでは、その回線側のインダクタンスを20mH確保することが、CCITT I・430に定めるインピーダンスマスクを満足するための必須条件となる。

【0004】ここで、その使用される機器を考えると、公衆電話や回線終端装置(DSU)のように屋外や軒下に設置されるものが考えられ、その環境条件は、LSIでは現在-10~70℃が保証されている。従って、同様にパルストランスにおいても-10~70℃で所望のインダクタンスを有する温度保証が必要となる。

【0005】ところが、従来のMn—Zn系高透磁率フェライトの場合、低温側(20℃以下)で初透磁率が著しく低下する特性を有する。例えば、室温で初透磁率μiが10000程度の従来の高透磁率材料の場合、-20℃では初透磁率μiが5000程度と半減してしまう。

【0006】一方で、例えば形状や巻数によっても異なるが、上記パルストランスのインピーダンス規格を満足するためには、-20~100℃において初透磁率μiが7000以上が必要となる。この-20~100℃に 50

おいてμi≥7000を満足するMn-Zn系フェライトを得ようとすると、従来材の場合、上記の劣化を考慮して-20でμiが7000以上の材料を用いることになる。例えば、図1に示す従来の高透磁率材がそれに当たる。この従来材によれば、室温ではμiが15000以上の極めて高透磁率の材料を使用することが必要となる。

【0007】この μ i \geq 15000の高透磁率のM n - Z n \Re フェライトを得るためには、高品質の原材料や焼成方法、焼成条件の厳密なコントロールが必要であり、コストや工数が増加するという問題があった。また、一般的に μ i が高くなる程、 μ i の周波数特性が劣化する。このため、 μ i \geq 15000のような高透磁率材料の場合、特に μ i が高くなる高温度領域において、周波数特性の劣化を生じる。このため、高周波領域(\sim 1 M Hz)までインピーダンスが規格化されるパルストランスとしては、温度変化に対して不安定となり、望ましくなかった。

【0008】このように、従来材で設計すると低温側でのインピーダンス規格を満足するために、巻数を増やしたり、必要以上に高い透磁率の材料を用いるといった様に非常に非効率になる等の問題点があった。

【0009】本発明は、上記の事を鑑みて、高透磁率であって、しかも透磁率の温度特性の優れたMn-Zn系フェライトを得ること、及びその特性を生かしたパルストランスを得ることを目的とする。

[0010]

【課題を解決するための手段】本発明はMn-Zn系フェライトにおいて、Fe2O3が52.5~53.0モル%、ZnOが22~25モル%、残MnOであり、初透磁率μiが温度-20~100℃の範囲で8000以上で、かつその変化率が70%以内であることを特徴とする高透磁率Mn-Zn系フェライトである。

【0011】また本発明は上記Mn—Zn系フェライトにおいて、初透磁率μiの温度特性でμiのセカンダリーピーク(Ts)が-25~10℃の範囲にある事を特徴とする高透磁率Mn—Zn系フェライトである。

【0012】また本発明は、初透磁率μiが温度-20~100℃の範囲で8000以上で、かつその変化率が70%以内であるMn-Zn系フェライト磁心を用いることを特徴とするパルストランスである。

【0013】また、本発明では、前記変化率が40%以内のものを得ることもできる。

【0014】また本発明は、副成分としてCaOを0.05重量%以下、SiO2を0.01重量%以下、V2O5を0.05重量%以下、Bi2O3を0.1重量%以下含有していても良い。

【0015】本発明において、主成分を限定した理由は、Fe2O3が53モル%を越えると初透磁率μiの温度特性でセカングリーピーク(Ts)が-25℃よりマ

3

一イナス側となり。室温付近での初透磁率μiが8000
 以上を得られない。この例を図2の比較例(No.9)
 に示す。またFe2O3が52.5モル%未満になるとセカンダリーピークが10℃より高温側となり-20~0℃でのμiが8000以上を得られないからである。

【0016】一方、ZnOが25モル%を越えると、キュリー温度(Tc)が100℃付近まで低下して温度保証帯域が狭くなるため望ましくない。さらに、ZnOが22モル%未満となるとキュリー温度が高くなり、温度特性カーブのうねりが大きくなるのに伴い、-20℃~0℃においてμiが8000以上を得られないからである。この例を図2の比較例(No.13)に示す。

【0017】本発明では、初透磁率μiが温度-20~100℃の範囲で8000以上で、かつその変化率が70%以内のMn-Zn系フェライトを得ることが出来る。上記したようにパルストランスのインピーダンス規格を満足するためには、-20~100℃において初透磁率μiが7000以上が必要である。従って、本発明によれば、ISDNのS/T点インターフェースに使用するパルストランスとして、有用であることが分かる。【0018】

【実施例】

実施例1

Fe2O3、MnO、ZnOを表1に示す様な主成分組成*

*をもつ原料を作製し、これを850℃で2時間仮焼、その後ボールミルで8時間粉砕し、リング状に圧縮成形して1360℃で5時間、酸素濃度5%で焼成した。

【0019】表1には、異なった主成分組成をもつ試料 の周波数10kHzにおける各温度下での初透磁率μi と温度-20から100℃の範囲におけるμiの変化率 (△μi/μi)を示す。また、20℃でのtanδ/ μ i と μ i の温度特性のセカンダリーピーク (Ts) も 併記する。この表1において、本発明の範囲内のものは 実施例とし、範囲外のものは比較例としている。また、 試料No. 2 (実施例2)と試料No. 9 (比較例3) と試料No. 13 (比較例5)との初透磁率μiの温度 に対する変化のグラフを図2に示す。この図2からもわ かるとおり本発明の実施例は、温度-20℃、20℃、 100℃の各温度において、μⅰが8000以上と高透 磁率を有しており、しかもその-20℃~100℃の間 でμiの変化率が70%以下であり、高透磁率でしかも 温度に対する初透磁率の変化が小さい材料であることが わかる。また、試料No. 2 (実施例2)の初透磁率 μ iの温度に対する変化のグラフを図1にも示す。従来材 に比較し、本発明の材料は温度変化に対して極めて安定 した材料であることがわかる。

[0020]

【表1】

試料	***	組成(105				1.11.1	tan 8 / 4 i	Ta	
r - 1	31,72,7	TREAD!	1017)		μi		Δμ i/μ i			
No	F0203	MnC	ZnO	-20°C	20°C	f00.€	(%)	(×10°°)	(%)	僧 考
1	52.6	22.4	25.0	8600	9800	8800	80	11	6	突越例 1
2	52.6	22.8	24.5	8300	9800	9600	40	10	5	実施例 2
3	52.4	23.4	24.2	7200	10800	10800	77	8	15	比較例1
4	52.6	23.1	24.3	8000	9700	10300	50	9	5	突旋例3
5	52.9	22.8	24.3	8700	8200	10700	40	10	-20	实施例4
8	53.1	22.6	24.3	6800	6600	10200	67	10	<-40	比較例 2
7	52.7	23,6	23.5	8100	8900	18500	- 68	7	5	実施例 5
8	53.0	23,6	23.4	8800	8000	11800	48	11	→20	実施例8
9	53.2	23.4	23.4	7200	6300	11600	84	12	<-40	比較例3
10	58.7	24.7	22.6	8200	9200	13800	66	8	O.	実施例7
11	53.0	24,5	22.5	9100	8000	13000	63	10	15	実施例8
12	53.3	24.2	22.5	7300	6000	10200	70	11	4	比較例4
13	52.5	25.6	21.9	5500	10400	15900	187	6	40	比較例 5
14	52,7	25.5	21.8	6900	9400	19200	93	7	15	比較何6
15	53.1	25.0	21.9	8000	7100	11500	65	8	. 0	比較例7
18	52,6	21.9	25.5	8500	8700	4150	150	10	– 5	比較例8
17	52.8	21.7	25.5	8000	8200	7300	30	11	- 25	此較例9
18	63.1	21.4	25.5	6700	7100	7100	38	12	<-40 ·	比較例10

【0021】実施例2

Fe2O3 52.6モル%、MnO 22.9モル%、 ZnO 24.5モル%を主成分とし、これにCaO、 SiO2、V2O5、Bi2O3を表2に示す分量含有する 原料を作製し、これを850℃で2時間仮焼、その後ボールミルで8時間粉砕し、リング状に圧縮成形して13 60℃で5時間、酸素濃度5%で焼成した。その試料に※50

※ついても実施例1と同様、周波数100kHzにおける 各温度下でのμiとμiの変化率を表2に示す。また、 周波数300kHzにおけるμiも併記する。この表2 に示すように、本発明の実施例は、μiの周波数特性も 優れている。尚、CaOが0.06重量%となると、-20℃でのμiが低下した。又、SiO₂が0.013 重量%となると-20℃でのμiが低下した。又、Bi 2 O3が0. 12重量%となると、-20℃でのµiが低-*-*【-0·0·2-2-】 【表2】

下した。

技	1	單成分量(重量%)				(f•100	kär)	μ1(f=300kHz)	141/41				
Xo	CaO	S102	₹20 <u>5</u>	B1203	-20°C	200	100°C	(20°C)	(%)	横考			
19	0.01	0.01	0.01	0.04	6100	8500	10600	4200	42	実施例 9			
20	0.01	0.007	0,01	0,04	8300	8800	9800	4000	40	実施例10			
21	0.02	0.007	0.01	0.04	8000	9300	11000	4100	38	実施例11			
22	0.006	0.007	0.04	0,04	8200	9600	9800	8700	47	宾施例12			
23	0.005	0.01	0.01	0.04	8200	9700	11500	3800	39	実施例13			
24	0.005	0.013	0.01	0.04	6800	8900	8000	1600	32	比較例11			
				L.						具常粒成员			
25	0,02	0,007	0.01	0,08	8500	10700	11600	4500	38	実施例14			
26	0.08	0.007	0.01	0.08	7700	10200	11700	4500	38	比較例12			
27	0.02	0.007	0.01	0.12	7200	9700	11500	1200	60	比較例18			
										異常粒成長			

[0023]

【発明の効果】本発明によれば、Fe2O3が52.5~ 53.0モル%、ZnOが22~25モル%、残MnO という極めて限定された範囲であり、とりわけFe2O3 は52.5~53.0モル%という狭い範囲において、 低温側 (-20℃) から高温側 (100℃) まで高い透 磁率(8000以上)を有し、しかも、その温度差で透 磁率の変化率が小さい(70%以内) Mn-Zn系フェ ライトを得ることができるものであり、極めて優れた特※ ※性の材料を得ることができる。またパルストランス用と して極めて有用であり、特にISDN用パルストランス 用として極めて有用である。

【図面の簡単な説明】

【図1】本発明に係る実施例と比較例との初透磁率μi の温度特性である。

【図2】本発明に係る実施例と比較例との初透磁率μi の温度特性である。

【図1】

