구강 이미지 합성 데이터 segmentation

<구강 이미지 합성 데이터 확인 내용>

데이터 소개

본 데이터 세트는 145,140장의 구도별 구강 합성이미지(PNG)와 그에 대한 충치 치아 및 치아 경계 어노테이션(JSON) 정보를 포함하는 라벨데이터 파일 145,140개 그리고, 임상적 치열 복잡도 분류 기준에 따른 카테고리 정보를 메타데이터(JSON) 파일 1개로 구성되어있다.

치아 경계 : segmentation, 충치 유무 : classification

라벨링 형식: json

라벨 데이터 형식

teeth_num	number	치아번호	11 ~ 16	치과임상에서 사용하는 FDI 명명법
			21 ~ 26	
			31 ~ 36	
			41 ~ 46	
segmentatio n	array	segmentatio n정보		
decayed	string	충치정보	T or F	충치있는치 아: T
				충치없는치 아: F

구강 이미지 데이터의 활용 AI 모델 및 코드 항목에서 하위 항목 AI 모델 다운로드 진행 후 3가지 경우에 대한 사전 학습모델과 학습모델데이터가 존재

모델이 존재하기는 하나 실제로 구동이 되지 않아 원래 있던 모델과 같이 두가지의 역할로 분류 1. 치아 번호 생성 및 분류 모델 - 목표 : 치아 번호 생성 및 분류

2. 충치 탐지 모델 - 목표: 치아별 충치 탐지

<데모 모델 정보>

- ░ 치아 번호 생성 및 분류 모델 정보
- ☑ 모델 개요

🍑 클래스 구성 (총 33개)

클래스 번호	라벨 이름	설명
1~8	11~18	우측 상악 치아
9~16	21~28	좌측 상악 치아
17~24	31~38	좌측 하악 치아
25~32	41~48	우측 하악 치아

💡 라벨 번호는 치과임상에서 사용하는 FDI 명명법

목적

구강 이미지 내에서 각 치아의 위치와 번호를 분할 및 시각화하는 segmentation 모델 모델은 픽셀 단위로 치아 번호를 분류하여 치과 진단 및 차트 자동화에 활용 가능

모델 학습 방법

원 데이터(이미지, json파일)의 0.5%만 압축 해제(744개의 이미지)

json → txt 변환

train/val 분류, 확인

yaml 파일 생성

학습(early_stopping 기준: mAP50이 4 epoch 동안 개선되지 않을때 정지

<u>best.pt</u> load → validation 폴더 이미지로 검증

📌 주요 특이사항

• best.pt를 load하여 검증한 결과는 저장

🦷 충치 탐지 모델 정보

📌 모델 기본 정보

항목	내용
모델 아키텍처	
백본(Encoder)	
사전 학습 가중치	
입력 크기	
출력 클래스 수	
손실 함수	
후처리 방식	
시각화 결과 저장	
성능 평가 지표	

🧠 클래스 구성 및 의미 (총 10개)

라벨 번호	클래스명	설명

❷ 추론 결과						
🎨 시각화						
• 원본 이미	미지 + YOLOv8-seg 모델어	네 맞게 변경한 txt 파일을 (기용하여 시각화			
<데모 이	<데모 이미지>					
치아 번호 생성	성 및 분류 모델 - 목표 : 치아 번호	호생성 및 분류에 대한 데모 결과	이미지			
충치 탐지 모델	델 - 목표 : 충치 탐지에 대한 데모	. 결과 이미지				
☑ 작업 중	겪은 주요 문제 요약					
📁 1. ~ 문제						
• 문제점:						
• 조치:						
• 추후 계획	듹 :					
2. ~						
• 문제점:						
• 조치:	• 조치:					
€ 3. ~						
• 문제점:	• 문제점:					
• 조치:						
a.						
b.						
 ! 남아 있	는 문제점					
4 .						
• 관찰:	· 관찰:					

• 원인 추정:

📌 추가 확인한 사항

•

📌 앞으로 추가할 사항

현재 segmentation과 충치 탐지가 동시에 되기엔 어려움

그래서 충치 탐지 모델은 따로 만들어야 함

한 장의 사진 입력으로 두 개의 모델을 병렬로 통과하여 결과물을 합칠지, 직렬로 두 번의 단계를 거칠지는 고민