Introduction to Deep Learning

Ismini Lourentzou 11-30-2017

Outline

- Machine Learning basics
- ☐ Introduction to Deep Learning
 - what is Deep Learning
 - why is it useful
- Main components/hyper-parameters:
 - activation functions
 - optimizers, cost functions and training
 - regularization methods
 - tuning
 - classification vs. regression tasks
- ☐ DNN basic architectures:
 - convolutional
 - recurrent
 - attention mechanism
- Application example: Relation Extraction

Backpropagation
GANs & Adversarial training
Bayesian Deep Learning
General Vernodels
Unsupervised / Netraining

Most material from <u>CS224 NLP with DL course at Stanford</u>

Machine Learning Basics

Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed

Methods that can learn from and make predictions on data

Types of Learning

Supervised: Learning with a labeled training set

Example: email classification with already labeled emails

Unsupervised: Discover **patterns** in **unlabeled** data Example: *cluster* similar documents based on text

Reinforcement learning: learn to act based on feedback/reward

Example: learn to play Go, reward: win or lose

Anomaly Detection Sequence labeling

ML vs. Deep Learning

Most machine learning methods work well because of **human-designed** representations and input features

ML becomes just optimizing weights to best make a final prediction

Feature	NER
Current Word	✓
Previous Word	✓
Next Word	✓
Current Word Character n-gram	all
Current POS Tag	✓
Surrounding POS Tag Sequence	✓
Current Word Shape	✓
Surrounding Word Shape Sequence	✓
Presence of Word in Left Window	size 4
Presence of Word in Right Window	size 4

What is Deep Learning (DL)?

A machine learning subfield of learning representations of data. Exceptional effective at learning patterns.

Deep learning algorithms attempt to learn (multiple levels of) representation by using a hierarchy of multiple layers

If you provide the system tons of information, it begins to understand it and respond in useful ways.

Machine Learning

Why is DL useful?

- Manually designed features are often over-specified, incomplete and take a long time to design and validate
- o Learned Features are easy to adapt, fast to learn
- Deep learning provides a very flexible, (almost?) universal, learnable framework for representing world, visual and linguistic information.
- o Can learn both unsupervised and supervised
- Effective end-to-end joint system learning
- Utilize large amounts of training data

In ~2010 DL started outperforming other ML techniques first in speech and vision, then NLP

State of the art in ...

ImageNet: The "computer vision World Cup"

Several big improvements in recent years in NLP

- ✓ Machine Translation
- ✓ Sentiment Analysis
- ✓ Dialogue Agents
- ✓ Question Answering
- ✓ Text Classification .

Leverage different levels of representation

- o words & characters
- syntax & semantics

Neural Network Intro

Activation functions

How do we train?

$$4 + 2 = 6$$
 neurons (not counting inputs)
 $[3 \times 4] + [4 \times 2] = 20$ weights
 $4 + 2 = 6$ biases

26 learnable parameters

Training

tangent line

slope=f(x)

Use error signal to change the weights and get more accurate predictions
Subtracting a fraction of the gradient moves you towards the (local) minimum of the cost function

Gradient Descent

objective/cost function $J(\theta)$

Review of backpropagation

$$\theta_j^{new} = \theta_j^{old} - \alpha \frac{d}{d\theta_j^{old}} J(\theta)$$
 Update each element of θ

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$
learning rate

Matrix notation for all parameters

Recursively apply chain rule though each node

One forward pass

TFIDF Word embeddings

0.2	-0.5	0.1
2.0	1.5	1.3
0.5	0.0	0.25
-0.3	2.0	0.0

 $\boldsymbol{x_i}$

0.95

3.89

 $\sigma(x_i; W, b)$

Activation functions

Non-linearities needed to learn complex (non-linear) representations of data, otherwise the NN would be just a linear function $W_1W_2x = Wx$

http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

More layers and neurons can approximate more complex functions

Full list: https://en.wikipedia.org/wiki/Activation_function

Activation: Sigmoid

Takes a real-valued number and "squashes" it into range between 0 and 1.

$$R^n \rightarrow [0,1]$$

- + Nice interpretation as the firing rate of a neuron
 - 0 = not firing at all
 - 1 = fully firing
- Sigmoid neurons saturate and kill gradients, thus NN will barely learn
 - when the neuron's activation are 0 or 1 (saturate)
 - gradient at these regions almost zero
 - almost no signal will flow to its weights
 - if initial weights are too large then most neurons would saturate

Activation: Tanh

http://adilmoujahid.com/images/activation.png

Takes a real-valued number and "squashes" it into range between -1 and 1.

$$R^n \rightarrow [-1,1]$$

- Like sigmoid, tanh neurons saturate
- Unlike sigmoid, output is zero-centered
- Tanh is a scaled sigmoid: tanh(x) = 2sigm(2x) 1

Activation: ReLU

Takes a real-valued number and thresholds it at zero f(x) = max(0,x)

$$R^n \to R^n_+$$

Most Deep Networks use ReLU nowadays

- Trains much faster
 - accelerates the convergence of SGD
 - due to linear, non-saturating form
- Less expensive operations
 - compared to sigmoid/tanh (exponentials etc.)
 - implemented by simply thresholding a matrix at zero
- ? More expressive
- Prevents the gradient vanishing problem

Overfitting

Learned hypothesis may fit the training data very well, even outliers (noise) but fail to generalize to new examples (test data)

https://www.neuraldesigner.com/images/learning/selection_error.svg

Regularization

Dropout

- Randomly drop units (along with their connections) during training
- Each unit retained with fixed probability p, independent of other units
- Hyper-parameter p to be chosen (tuned)

Srivastava, Nitish, et al. <u>"Dropout: a simple way to prevent neural networks from overfitting."</u> Journal of machine learning research (2014)

L2 = weight decay

 Regularization term that penalizes big weights, added to the objective

 Weight decay value determines how dominant regularization is during gradient computation

$$J_{reg}(\theta) = J(\theta) + \lambda \sum_{k} \theta_k^2$$

Big weight decay coefficient → big penalty for big weights

Early-stopping

- Use validation error to decide when to stop training
- Stop when monitored quantity has not improved after n subsequent epochs
- n is called patience

Tuning hyper-parameters

 $g(x) \approx g(x) + h(y)$

g(x) shown in green h(y) is shown in yellow

Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of Machine Learning Research, Feb (2012)

"Grid and random search of 9 trials for optimizing function $g(x) \approx g(x) + h(y)$ With grid search, nine trials only test g(x) in three distinct places. With random search, all nine trials explore distinct values of g."

Both try configurations randomly and **blindly**Next trial is independent to all the trials done before

Bayesian optimization for hyper-parameter tuning:

Library available!

Make smarter choice for the next trial, minimize the number of trials

- 1. Collect the performance at several configurations
- 2. Make inference and decide what configuration to try next

Loss functions and output

Classification

Training examples

Rⁿ x {class_1, ..., class_n} (one-hot encoding)

Output Layer

Soft-max [map Rⁿ to a probability_distribution]

$$P(y = j \mid \mathbf{x}) = rac{e^{\mathbf{x}^{\intercal} \mathbf{w}_j}}{\sum_{k=1}^{K} e^{\mathbf{x}^{\intercal} \mathbf{w}_k}}$$

Cost (loss) function

Cross-entropy

$$J(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} \left[y_k^{(i)} \log \hat{y}_k^{(i)} + \left(1 - y_k^{(i)} \right) \log \left(1 - \hat{y}_k^{(i)} \right) \right]$$

Regression

 $R^n \times R^m$

Linear (Identity) or Sigmoid

Mean Squared Error

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$

Mean Absolute Error

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$$

<u>List of loss functions</u>

Convolutional Neural Networks (CNNs)

Main CNN idea for text:

Compute vectors for n-grams and group them afterwards

Example: "this takes too long" compute vectors for:

This takes, takes too, too long, this takes too, takes too long, this takes too long

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

Convolutional Neural Networks (CNNs)

Main CNN idea for text:
Compute vectors for n-grams and group them afterwards

Feature Map

6	4	8	5	Max-Pooling max pool
5	4	5	8	2x2 filters and stride 2
3	6	7	7	
7	9	7	2	

CNN for text classification

Severyn, Aliaksei, and Alessandro Moschitti. "UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment Classification." SemEval@NAACL-HLT. 2015.

CNN with multiple filters

Kim, Y. "Convolutional Neural Networks for Sentence Classification", EMNLP (2014)

sliding over 3, 4 or 5 words at a time

Recurrent Neural Networks (RNNs)

Main RNN idea for text:

Condition on all previous words

Use same set of weights at all time steps

$$h_t = \sigma(W^{(hh)}h_{t-1} + W^{(hx)}x_t)$$

https://pbs.twimg.com/media/C2j-8j5UsAACgEK.jpg

Stack them up, Lego fun!

Vanishing gradient problem

Bidirectional RNNs

Main idea: incorporate both left and right context output may not only depend on the **previous** elements in the sequence, but also **future** elements.

$$\vec{h}_t = \sigma(\vec{W}^{(hh)}\vec{h}_{t-1} + \vec{W}^{(hx)}x_t)$$

$$\overleftarrow{h}_t = \sigma(\overleftarrow{W}^{(hh)}\overleftarrow{h}_{t+1} + \overleftarrow{W}^{(hx)}x_t)$$

$$y_t = f(\left[\vec{h}_t; \overleftarrow{h}_t\right])$$

past and future around a single token

http://www.wildml.com/2015/09/recurrent-neuralnetworks-tutorial-part-1-introduction-to-rnns/

two RNNs stacked on top of each other output is computed based on the hidden state of both RNNs $[\vec{h}_t; \vec{h}_t]$

Sequence 2 Sequence or Encoder Decoder model

Gated Recurrent Units (GRUs)

Main idea:

keep around memory to capture **long dependencies**Allow error messages to flow at **different strengths** depending on the inputs

Standard RNN computes hidden layer at next time step directly $h_t = \sigma(W^{(hh)}h_{t-1} + W^{(hx)}x_t)$

Compute an update gate based on current input word vector and hidden state

$$z_t = \sigma(U^{(z)}h_{t-1} + W^{(z)}x_t)$$

http://www.wildml.com/2015/10/recurrent-neural-networktutorial-part-4-implementing-a-grulstm-rnn-with-python-andtheano/

Controls how much of past state should matter now If z close to 1, then we can copy information in that unit through many steps!

Gated Recurrent Units (GRUs)

Main idea:

keep around memory to capture **long dependencies**Allow error messages to flow at **different strengths** depending on the inputs

Standard RNN computes hidden layer at next time step directly $h_t = \sigma(W^{(hh)}h_{t-1} + W^{(hx)}x_t)$

Compute an update gate based on current input word vector and hidden state

$$z_t = \sigma(U^{(z)}h_{t-1} + W^{(z)}x_t)$$

Compute a reset gate similarly but with different weights

$$r_t = \sigma \left(U^{(r)} h_{t-1} + W^{(r)} x_t \right)$$

http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/

If reset close to 0, ignore previous hidden state (allows model to drop information that is irrelevant in the future)

Units with **short-term** dependencies often have **reset** gates very active Units with **long-term** dependencies have active **update** gates z

Gated Recurrent Units (GRUs)

Main idea:

keep around memory to capture **long dependencies**Allow error messages to flow at **different strengths** depending on the inputs

Standard RNN computes hidden layer at next time step directly $h_t = \sigma(W^{(hh)}h_{t-1} + W^{(hx)}x_t)$

Compute an update gate based on current input word vector and hidden state

$$z_t = \sigma(U^{(z)}h_{t-1} + W^{(z)}x_t)$$

Compute a reset gate similarly but with different weights

$$r_t = \sigma \left(U^{(r)} h_{t-1} + W^{(r)} x_t \right)$$

New memory $\tilde{h}_t = tanh(r_t \circ Uh_{t-1} + Wx_t)$

http://www.wildml.com/2015/10/recurrent-neural-networktutorial-part-4-implementing-a-grulstm-rnn-with-python-andtheano/

LSTMs are a more complex form, but basically same intuition GRUs are often more preferred than LSTMs

Final memory $h_t = z_t \circ h_{t-1} + (1-z_t) \circ \tilde{h}_t$ combines current & previous time steps

Attention Mechanism

Bahdanau D. et al. "Neural machine translation by jointly learning to align and translate." ICLR (2015)

Main idea: retrieve as needed

Attention - Scoring

Compare target and source hidden states

Attention - Normalization 0.3 0.5 0.1 0.1

$$a_t(s) = \frac{e^{score(s)}}{\sum_{s'} e^{score(s')}}$$

Convert into alignment weights

Attention - Context

Build context vector: weighted average

Attention - Context

$$h_t = f(h_{t-1}, c_t, e_t)$$

Compute **next** hidden state

Application Example: IMDB Movie reviews sentiment classification

https://uofi.box.com/v/cs510DL

Binary Classification

Dataset of 25,000 movies reviews from IMDB, labeled by sentiment (positive/negative)

Application Example: Relation Extraction from text

Google CEO Larry Page announced that...

Steve Jobs has been Apple for a while...

Pixar lost its co-founder Steve Jobs...

I went to Paris, France for the summer...

http://www.mathcs.emory.edu/~dsavenk/slides/relation_extraction/img/distant.png

Useful for:

- knowledge base completion
- social media analysis
- question answering
- •

Task: binary (or multi-class) classification

sentence $S = w_1 w_2 ... e_1 ... w_j ... e_2 ... w_n$

e₁ and e₂ entities

"The new iPhone 7 Plus includes an improved camera to take amazing pictures"

Component-Whole(e₁, e₂)? YES / NO

It is also possible to include more than two entities as well: "At codons 12, the occurrence of point mutations from G to T were observed" → point mutation(codon, 12, G, T)

Features / Input representation

context-wise split **Embeddings Embeddings Embeddings** of the sentence Left Middle Right The new iPhone 7 Plus includes an improved camera that takes amazing pictures Position indices e₂ Word indices Position indices e₁ 2) word sequences [-1, 0, 1, 2, 3 ...][-4, -3, -2, -1, 0][5, 7, 12, 6, 90 ...] concatenated with positional features **Positional Positional** Word **Embeddings** emb. e₁ emb. e₂ 3) concatenating embeddings of two entities with average Embeddings e₁ Embeddings e₂ context embeddings of word embeddings for rest of the words The new iPhone 7 Plus includes an improved camera that takes amazing pictures

Models: MLP

Simple fully-connected multi-layer perceptron

Models: CNN

Zeng, D.et al. "Relation classication via convolutional deep neural network". COLING (2014)

Models: CNN (2)

Nguyen, T.H., Grishman, R. "Relation extraction: Perspective from convolutional neural networks." VS@ HLT-NAACL. (2015)

Models: Bi-GRU

Zhang, D., Wang, D. "Relation classication via recurrent neural network." -arXiv preprint arXiv:1508.01006 (2015) Zhou, P. et al. "Attention-based bidirectional LSTM networks for relation classication. ACL (2016)

Distant Supervision

Circumvent the **annotation** problem – create large dataset Exploit large knowledge bases to **automatically label** entities and their relations in text

Assumption:

when two entities co-occur in a sentence, a certain relation is expressed

knowledge base

Relation	Entity 1	Entity 2
place of birth	Michael Jackson	Gary
place of birth	Barack Obama	Hawaii
•••	•••	•••

For many ambiguous relations, mere co-occurrence does not guarantee the existence of the relation \rightarrow Distant supervision produces false positives

Attention over Instances

Lin et al. "Neural Relation Extraction with Selective Attention over Instances" ACL (2016) [code]

Sentence-level ATT results

NYT10 Dataset

Align Freebase relations with New York Times corpus (NYT)

53 possible relationships

+NA (no relation between entities)

Data	sentences	entity pairs
Training	522,611	281,270
Test	172,448	96,678

Lin et al. "Neural Relation Extraction with Selective Attention over Instances" ACL (2016) [code]

References

- ☐ Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." Journal of machine learning research (2014) ☐ Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter optimization." Journal of Machine Learning Research, Feb (2012) ☐ Kim, Y. "Convolutional Neural Networks for Sentence Classification", EMNLP (2014) □ Severyn, Aliaksei, and Alessandro Moschitti. "UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment Classification." SemEval@NAACL-HLT (2015) ☐ Cho, Kyunghyun, et al. "Learning phrase representations using RNN encoder-decoder for statistical machine translation." EMNLP (2014) ☐ Ilya Sutskever et al. "Sequence to sequence learning with neural networks." NIPS (2014) □ Bahdanau et al. "Neural machine translation by jointly learning to align and translate." ICLR (2015) ☐ Gal, Y., Islam, R., Ghahramani, Z. "Deep Bayesian Active Learning with Image Data." ICML (2017) □ Nair, V., Hinton, G.E. "Rectified linear units improve restricted boltzmann machines." ICML (2010) □ Ronan Collobert, et al. "Natural language processing (almost) from scratch." JMLR (2011) ☐ Kumar, Shantanu. "A Survey of Deep Learning Methods for Relation Extraction." arXiv preprint
- arXiv:1705.03645 (2017)
- □ Lin et al. "Neural Relation Extraction with Selective Attention over Instances" ACL (2016) [code]
- □ Zeng, D.et al. "Relation classification via convolutional deep neural network". COLING (2014)
- □ Nguyen, T.H., Grishman, R. "Relation extraction: Perspective from CNNs." VS@ HLT-NAACL. (2015)
- □ Zhang, D., Wang, D. "Relation classification via recurrent NN." -arXiv preprint arXiv:1508.01006 (2015)
- □ Zhou, P. et al. "Attention-based bidirectional LSTM networks for relation classification. ACL (2016)
- ☐ Mike Mintz et al. "Distant supervision for relation extraction without labeled data." ACL-IJCNLP (2009)

References & Resources

- http://web.stanford.edu/class/cs224n
- https://www.coursera.org/specializations/deep-learning
- https://chrisalbon.com/#Deep-Learning
- http://www.asimovinstitute.org/neural-network-zoo
- http://cs231n.github.io/optimization-2
- https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimizationalgorithm-4106a6702d39
- https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning
- http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow
- http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp
- https://medium.com/technologymadeeasy/the-best-explanation-of-convolutional-neuralnetworks-on-the-internet-fbb8b1ad5df8
- http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
- <u>http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/</u>
- http://colah.github.io/posts/2015-08-Understanding-LSTMs
- https://github.com/hyperopt/hyperopt
- https://github.com/tensorflow/nmt