BRUTE UDESC

Eliton Machado da Silva, Enzo de Almeida Rodrigues, Eric Grochowicz, João Vitor Frölich, João Marcos de Oliveira e Rafael Granza de Mello

7 de janeiro de 2024

Índice

1	Matemática	
	.1 Sum of floor(n div i)	. 6
	.2 Eliminação Gaussiana	
	.3 FFT	
	.4 Primos	
	.5 Inverso Modular	
	.6 NTT	. 14
	.7 Teorema do Resto Chinês	
	.8 Fatoração	. 17
	.9 Totiente de Euler	
	.10 GCD	
	.11 Exponenciação Modular Rápida	. 22
2	Estruturas de Dados	23
_		20
	.1 Fenwick Tree	. 23

ÍNDICE 2

2.2	MergeSort Tree	24
2.3	Operation Queue	27
2.4	Ordered Set	28
2.5	Disjoint Set Union	29
	2.5.1 DSU Rollback	29
	2.5.2 DSU Bipartido	31
	2.5.3 DSU Simples	32
	2.5.4 DSU Completo	32
2.6	LiChao Tree	35
2.7	Operation Stack	37
2.8	Interval Tree	37
2.9	Sparse Table	36
	2.9.1 Disjoint Sparse Table	39
	2.9.2 Sparse Table	40
2.10	Kd Fenwick Tree	41
2.11	Segment Tree	42
	2.11.1 Segment Tree Beats Max And Sum Update	42
	2.11.2 Segment Tree Esparsa	44
	2.11.3 Segment Tree Beats Max Update	47
	2.11.4 Segment Tree Kadani	49
	2.11.5 Segment Tree Persisente	51
	2.11.6 Segment Tree 2D	52

ÍNDICE

•	

		2.11.7 Segment Tree	54
		2.11.8 Segment Tree Lazy	55
0			
3	Gra		57
	3.1	Stoer-Wagner Min Cut	57
	3.2	Shortest Paths	58
		3.2.1 Dijkstra	58
		3.2.2 SPFA	60
	3.3	Inverse Graph	61
	3.4	2 SAT	62
	3.5	Fluxo	63
	3.6	Kruskal	67
	3.7	Graph Center	68
	3.8	Bridge	69
	3.9	HLD	70
	3.10	Matching	72
		3.10.1 Hungaro	72
	3.11	Binary Lifting	73
	3.12	LCA	74
4	Stri	ing	77
	4.1	Aho Corasick	77
	4.0		

ÍNDICE 4

	4.3	Suffix Array	79
	4.4	Manacher	81
	4.5	Patricia Tree	82
	4.6	Prefix Function	83
	4.7	Hashing	85
	4.8	Lyndon	86
5	Par	adigmas	88
	5.1	Busca Ternaria	88
	5.2	Convex Hull Trick	89
	5.3	Busca Binaria Paralela	91
	5.4	All Submasks	92
	5.5	Divide and Conquer	92
	5.6	Exponenciação de Matriz	95
	5.7	DP de Permutacao	97
	5.8	Mo	98
6	$\operatorname{Th}\epsilon$	eoretical	101
	6.1	Some Prime Numbers	102
		6.1.1 Left-Truncatable Prime	102
		6.1.2 Mersenne Primes	102
	6.2	C++ constants	102
	6.3	Linear Operators	102

6.3.1	Rotate counter-clockwise by θ°	102
6.3.2	Reflect about the line $y = mx$	102
6.3.3	Inverse of a 2x2 matrix A	103
6.3.4	Horizontal shear by K	103
6.3.5	Vertical shear by K	103
6.3.6	Change of basis	103
6.3.7	Properties of matrix operations	103

Capítulo 1

Matemática

1.1 Sum of floor(n div i)

```
Computa \sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor
```

Computa o somatório de n dividido de 1 a n (divisão arredondado pra baixo).

 \bullet Complexidade de tempo: O($\operatorname{sqrt}(n)$).

```
const int MOD = 1e9 + 7;
long long sumoffloor(long long n) {
    long long answer = 0, i;
    for (i = 1; i * i <= n; i++) {
        answer += n / i;
        answer %= MOD;
    }</pre>
```

```
\begin{array}{l} i\,--;\\ \mbox{for (int }j=1;\; n\;/\; (j+1)>=\; i\;;\;\; j++)\; \{\\ &\mbox{answer }+=\; (((n\;/\; j-n\;/\; (j+1))\;\%\; \mbox{MOD)}\;\; *\;\; j)\; \%\; \mbox{MOD};\\ &\mbox{answer }\%=\mbox{MOD};\\ \}\\ \mbox{return answer}\; ; \end{array}
```

1.2 Eliminação Gaussiana

Método de eliminação gaussiana para resolução de sistemas lineares.

• Complexidade de tempo: $O(n^3)$.

Dica: Se os valores forem apenas 0 e 1 o algoritmo [gauss_mod2](gauss_mod2.cpp) é muito mais rápido.

```
const int N = 105;
const int INF = 2; // tanto faz
// n -> numero de equações, m -> numero de
// variaveis a[i][j] para j em [0, m-1] \rightarrow
// coeficiente da variavel j na iesima equacao
// a[i][j] para j == m -> resultado da equação da
// iesima linha ans -> bitset vazio, que retornara
// a solucao do sistema (caso exista)
int gauss (vector < bitset <N>> a, int n, int m, bitset <N> &ans) {
    vector < int > where (m, -1);
    for (int col = 0, row = 0; col < m && row < n; col++) {
        for (int i = row; i < n; i++) {
            if (a[i][col]) {
                swap(a[i], a[row]);
                break;
        if (!a[row][col]) {
            continue:
        where [col] = row;
```

```
for (int i = 0; i < n; i++) {
    if (i != row && a[i][col]) {
        a[i] ^= a[row];
    }
}
row++;
}

for (int i = 0; i < m; i++) {
    if (where[i] != -1) {
        ans[i] = a[where[i]][m] / a[where[i]][i];
    }
}

for (int i = 0; i < n; i++) {
    int sum = 0;
    for (int j = 0; j < m; j++) {
        sum += ans[j] * a[i][j];
    }
    if (abs(sum - a[i][m]) > 0) {
        return 0; // Sem solucao
    }
}

for (int i = 0; i < m; i++) {</pre>
```

if (where [i] == -1) {

```
return INF; // Infinitas solucoes
    }
const double EPS = 1e-9;
const int INF = 2; // it doesn't actually have to
                   // be infinity or a big number
int gauss (vector < vector < double >> a, vector < double > & ans) {
    int n = (int)a.size();
    int m = (int)a[0]. size() - 1;
    vector < int > where (m, -1);
    for (int col = 0, row = 0; col < m && row < n; ++col) {
        int sel = row;
        for (int i = row; i < n; ++i) {
            if (abs(a[i][col]) > abs(a[sel][col])) {
                sel = i;
        if (abs(a[sel][col]) < EPS) {
            continue;
        for (int i = col; i \le m; ++i) {
            swap(a[sel][i], a[row][i]);
        where [col] = row;
        for (int i = 0; i < n; ++i) {
            if (i != row) {
                double c = a[i][col] / a[row][col];
                for (int j = col; j \ll m; ++j) {
                    a[i][j] -= a[row][j] * c;
```

```
++row;
ans.assign(m, 0);
for (int i = 0; i < m; ++i) {
    if (where [i] != -1) {
        ans[i] = a[where[i]][m] / a[where[i]][i];
for (int i = 0; i < n; ++i) {
    double sum = 0;
    for (int j = 0; j < m; ++j) {
        sum += ans[j] * a[i][j];
    if (abs(sum - a[i][m]) > EPS) {
        return 0;
for (int i = 0; i < m; ++i) {
    if (where [i] == -1) {
        return INF;
return 1;
```

return 1; // Unica solucao (retornada no

// bitset ans)

1.3 FFT

Algoritmo que computa a transformada rápida de fourier para convolução de polinômios.

Computa convolução (multiplicação) de polinômios.

- Complexidade de tempo (caso médio): O(N * log(N))
- Complexidade de tempo (considerando alto overhead): $O(n * log^2(n) * log(log(n)))$

Garante que não haja erro de precisão para polinômios com grau até $3*10^5$ e constantes até 10^6 .

```
typedef complex<double> cd;
typedef vector < cd> poly;
const double PI = acos(-1);
void fft (poly &a, bool invert = 0) {
    int n = a.size(), log n = 0;
    while ((1 << log n) < n)  {
        log n++;
    for (int i = 1, j = 0; i < n; ++i) {
       int bit = n \gg 1;
        for (; j >= bit; bit >>= 1) {
           i = bit;
       j += bit;
        if (i < j) {
            swap(a[i], a[j]);
    double angle = 2 * PI / n * (invert ? -1 : 1);
    poly root (n / 2);
    for (int i = 0; i < n / 2; ++i) {
        root[i] = cd(cos(angle * i), sin(angle * i));
    }
```

```
for (long long len = 2; len \leq n; len \leq 1) {
        long long step = n / len;
        long long aux = len / 2;
        for (long long i = 0; i < n; i += len) {
            for (int j = 0; j < aux; ++j) {
                cd\ u = a[i + j],\ v = a[i + j + aux] * root[step * j];
                a[i + j] = u + v;
                a[i + j + aux] = u - v;
   if (invert) {
        for (int i = 0; i < n; ++i) {
            a[i] /= n;
vector<long long> convolution(vector<long long> &a, vector<long long>
   &b) {
   int n = 1, len = a.size() + b.size();
   \mathbf{while} (n < len) {
        n <<= 1;
   a.resize(n);
```

```
b. resize(n);
poly fft_a(a.begin(), a.end());
fft(fft_a);
poly fft_b(b.begin(), b.end());
fft(fft_b);

poly c(n);
for (int i = 0; i < n; ++i) {
    c[i] = fft_a[i] * fft_b[i];
}
fft(c, 1);</pre>
```

1.4 Primos

Algortimos relacionados a números primos.

Crivo de Eratóstenes

Computa a primalidade de todos os números até N, quase tão rápido quanto o crivo linear.

• Complexidade de tempo: O(N * log(log(N)))

Demora 1 segundo para LIM igual a $3 * 10^7$.

Miller-Rabin

Teste de primalidade garantido para números menores do que 2^64 .

 \bullet Complexidade de tempo: $O(\log(N))$

Teste Ingênuo

Computa a primalidade de um número N.

• Complexidade de tempo: $O(N^{(1/2)})$

```
long long power(long long base, long long e, long long mod) {
    long long result = 1;
                                                                                   return true;
    base \% = \text{mod};
    while (e) {
        if (e & 1) {
                                                                              bool miller rabin (long long n) {
             result = ( int128) result * base % mod;
                                                                                   if (n < 2) {
                                                                                       return false;
        base = (int128) base * base % mod;
        e >>= 1;
                                                                                   int r = 0;
                                                                                  long long d = n - 1;
    return result;
                                                                                   while ((d \& 1) == 0) {
                                                                                       d >>= 1, ++r;
bool is composite (long long n, long long a, long long d, int s) {
                                                                                   for (int a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
    long long x = power(a, d, n);
                                                                                       if (n == a) {
    if (x = 1 | | x = n - 1) {
                                                                                           return true;
        return false;
                                                                                       if (is composite(n, a, d, r)) {
    for (int r = 1; r < s; r++) {
                                                                                           return false;
        \mathbf{x} = (\mathbf{int} 128) \mathbf{x} * \mathbf{x} \% \mathbf{n};
        if (x = n - 1) {
             return false;
                                                                                   return true;
bool is prime(int n) {
    for (long long d = 2; d * d \le n; d++) {
        if (n \% d == 0) {
             return false;
```

1.5 Inverso Modular

Algoritmos para calcular o inverso modular de um número. O inverso modular de um inteiro a é outro inteiro x tal que $a \cdot x \equiv 1 \pmod{MOD}$

The modular inverse of an integer a is another integer x such that a * x is congruent to 1 (mod MOD).

Modular Inverse

Calculates the modular inverse of a.

Uses the [exp_mod](/Matemática/Exponenciação%20Modular%20Rápida/exp_mod.cpp) algorithm, thus expects MOD to be prime.

- * Time Complexity: O(log(MOD)).
- * Space Complexity: O(1).

Modular Inverse by Extended GDC

Calculates the modular inverse of a.

Uses the [extended gcd](/Matemática/GCD/extended gcd.cpp) algorithm, thus expects MOD to be coprime with a.

Returns -1 if this assumption is broken.

- * Time Complexity: $O(\log(MOD))$.
- * Space Complexity: O(1).

Modular Inverse for 1 to MAX

Calculates the modular inverse for all numbers between 1 and MAX.

expects MOD to be prime.

- * Time Complexity: O(MAX).
- * Space Complexity: O(MAX).

Modular Inverse for all powers

Let b be any integer.

Calculates the modular inverse for all powers of b between b^0 and b^MAX.

Needs you calculate beforehand the modular inverse of b, for 2 it is always (MOD+1)/2.

expects MOD to be coprime with b.

- * Time Complexity: O(MAX).
- * Space Complexity: O(MAX).

```
int inv(int a) {
    int x, y;
    int g = extended_gcd(a, MOD, x, y);
    if (g == 1) {

for (int i = 2; i < MAX; i++) {
        inv[i] = m - (m / i) * inv[m % i] % m;
    }

void compute_inv(const l1 m = MOD) {
    inv[1] = 1;
}</pre>
```

```
14
```

1.6 NTT

Computa a multiplicação de polinômios com coeficientes inteiros módulo um número primo.

Computa multiplicação de polinômino; Somente para inteiros.

• Complexidade de tempo: O(N * log(N))

Constantes finais devem ser menor do que 10^9 .

Para constantes entre 10^9 e 10^{18} é necessário codar também [big convolution](big convolution.cpp).

```
if (e & 1) {
            res = (res * b) \% m;
        e /= 2;
        b = (b * b) \% m;
    return res;
void ntt(poly &a, bool invert, int id) {
    ll n = (ll)a.size(), m = mod[id];
    for (ll i = 1, j = 0; i < n; ++i)
        ll bit = n \gg 1;
        for (; j >= bit; bit >>= 1) {
            i -= bit;
        j += bit;
        if (i < j) {
            swap(a[i], a[j]);
    for (ll len = 2, wlen; len \langle = n; len \langle = 1 \rangle) {
        wlen = invert ? root 1[id] : root[id];
        for (ll i = len; i < root pw[id]; i <<= 1) {
            wlen = (wlen * wlen) \% m;
        for (11 i = 0; i < n; i += len) {
            ll w = 1;
            for (11 j = 0; j < len / 2; j++) {
                ll u = a[i + j], v = (a[i + j + len / 2] * w) \% m;
```

```
a[i + j] = (u + v) \% m;
                 a[i + j + len / 2] = (u - v + m) \% m;
                 w = (w * wlen) \% m;
    if (invert) {
        11 \text{ inv} = \text{modInv}(n, m);
        for (11 i = 0; i < n; i++) {
            a[i] = (a[i] * inv) \% m;
poly convolution (poly a, poly b, int id = 0) {
    11 n = 1LL, len = (1LL + a.size() + b.size());
    \mathbf{while} \ (n < len) 
        n *= 2;
    a.resize(n);
    b.resize(n);
    ntt(a, 0, id);
    ntt(b, 0, id);
    poly answer(n);
    for (11 i = 0; i < n; i++) {
        answer[i] = (a[i] * b[i]);
    ntt(answer, 1, id);
    return answer;
```

```
11 mod_mul(11 a, 11 b, 11 m) {
    return (__int128)a * b % m;
}
11 ext_gcd(11 a, 11 b, 11 &x, 11 &y) {
```

```
if (!b) {
    x = 1;
    y = 0;
    return a;
} else {
```

```
11 g = ext_gcd(b, a % b, y, x);
    y -= a / b * x;
    return g;
}

// convolution mod 1,097,572,091,361,755,137
poly big_convolution(poly a, poly b) {
    poly r0, r1, answer;
    r0 = convolution(a, b, 1);
    r1 = convolution(a, b, 2);
```

1.7 Teorema do Resto Chinês

Algoritmo que resolve o sistema $x \equiv a_i \pmod{m_i}$, onde m_i são primos entre si.

```
11 extended_gcd(ll a, ll b, ll &x, ll &y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    } else {
        ll g = extended_gcd(b, a % b, y, x);
        y -= a / b * x;
        return g;
    }
}

11 crt(vector<ll> rem, vector<ll> mod) {
    int n = rem.size();
    if (n == 0) {
```

```
return 0;
}
__int128 ans = rem[0], m = mod[0];
for (int i = 1; i < n; i++) {
    ll x, y;
    ll g = extended_gcd(mod[i], m, x, y);
    if ((ans - rem[i]) % g != 0) {
        return -1;
    }
    ans = ans + (__int128)1 * (rem[i] - ans) * (m / g) * y;
    m = (__int128)(mod[i] / g) * (m / g) * g;
    ans = (ans % m + m) % m;
}
return ans;</pre>
```

1.8 Fatoração

Algortimos para fatorar um número.

Fatoração Simples

Fatora um número N.

• Complexidade de tempo: $O(\sqrt{n})$

Crivo Linear

Pré-computa todos os fatores primos até MAX.

Utilizado para fatorar um número N menor que MAX.

- \bullet Complexidade de tempo: Pré-processamento $\mathcal{O}(\mathcal{MAX})$
- Complexidade de tempo: Fatoraração O(quantidade de fatores de N)
- Complexidade de espaço: O(MAX)

Fatoração Rápida

Utiliza Pollar-Rho e Miller-Rabin (ver em Primos) para fatorar um número N.

Pollard-Rho

Descobre um divisor de um número N.

```
• Complexidade de tempo: O(N^{1/4} \cdot log(N))
• Complexidade de espaço: O(N^{1/2})
```

```
// usa miller rabin.cpp!! olhar em
// matematica/primos usa pollar rho.cpp!! olhar em
// matematica/fatoracao
vector < long long > factorize (long long n) {
    if (n = 1) {
        return {};
long long mod mul(long long a, long long b, long long m) {
   return ( int128)a * b % m;
long long pollard rho(long long n) {
    auto f = [n](long long x) {
        return mod mul(x, x, n) + 1;
    };
   long long x = 0, y = 0, t = 30, prd = 2, i = 1, q;
    while (t++\% 40 | | \gcd(prd, n) == 1) {
namespace sieve {
    const int MAX = 1e4;
    int lp[MAX + 1], factor[MAX + 1];
    vector < int > pr;
    void build() {
```

```
if (miller rabin(n)) {
    return {n};
long long x = pollard rho(n);
auto l = factorize(x), r = factorize(n / x);
l.insert(l.end(), all(r));
return 1;
        x = ++i, y = f(x);
   if ((q = mod_mul(prd, max(x, y) - min(x, y), n))) {
return __gcd(prd, n);
    for (int i = 2; i \le MAX; ++i) {
        if (lp[i] = 0) {
            lp[i] = i;
            pr.push back(i);
```

1.9 Totiente de Euler

Código para computar o totiente de Euler.

Totiente de Euler (Phi) para um número

Computa o totiente para um único número N.

• Complexidade de tempo: $O(N^{(1/2)})$

Totiente de Euler (Phi) entre 1 e N

```
if (x < 2) {
    return {};
}

vector < int > v;
for (int lpx = lp[x]; x >= lpx; x = factor[x]) {
    v.emplace_back(lp[x]);
}

return v;
}

if (n != 1) {
    factors.push_back(n);
}

return factors;
}
```

Computa o totiente entre 1 e N.

• Complexidade de tempo: O(N * log(log(N)))

1.10 GCD

Algoritmo Euclides para computar o Máximo Divisor Comum (MDC em português; GCD em inglês), e variações.

Read in [English](README.en.md)

Algoritmo de Euclides

Computa o Máximo Divisor Comum (MDC em português; GCD em inglês).

 \bullet Complexidade de tempo: O(log(n))

Mais demorado que usar a função do compilador C++ __gcd(a,b).

Algoritmo de Euclides Estendido

Algoritmo extendido de euclides que computa o Máximo Divisor Comum e os valores x e y tal que a * x + b * y = gcd(a, b).

• Complexidade de tempo: O(log(n))

```
1l extended_gcd(ll a, ll b, ll &x, ll &y) {
    if (b = 0) {
        x = 1;
        y = 0;
        return a;
    } else {

int extended_gcd(int a, int b, int &x, int &y) {
    x = 1, y = 0;
    int xl = 0, yl = 1;
    while (b) {
    int q = a / b;
    it is (x, xl) = make tuple(xl, x - q * xl);
    }
}

ll g = extended_gcd(b, a % b, y, x);
    y -= a / b * x;
    return g;
}

tie (y, yl) = make_tuple(yl, y - q * yl);
    tie (a, b) = make_tuple(b, a - q * b);
}

return a;
}
```

```
long long gcd(long long a, long long b) {
  return (b == 0) ? a : gcd(b, a % b);
```

1.11 Exponenciação Modular Rápida

Computa $(base^{exp})\%mod$.

- Complexidade de tempo: O(log(exp)).
- Complexidade de espaço: O(1)

```
11 exp_mod(ll base, ll exp) {
    ll b = base, res = 1;
    while (exp) {
        if (exp & 1) {
            res = (res * b) % MOD;
        }
}
```

```
egin{array}{lll} b &=& (b \; * \; b) \; \% \; MOD; \\ exp \; /= \; 2; \\ \} \\ {f return} \; \; {
m res} \; ; \end{array}
```

Capítulo 2

Estruturas de Dados

Consultas e atualizações de soma em intervalo.

2.1 Fenwick Tree

```
O vetor precisa obrigatoriamente estar indexado em 1. 
* Complexidade de tempo (Pre-processamento): O(N*log(N))
```

* Complexidade de tempo (Consulta em intervalo): $O(\log(N))$

* Complexidade de tempo (Update em ponto): O(log(N))

* Complexidade de espaço: 2 * N = O(N)

```
struct FenwickTree {
    int n;
    vector < int > tree;
    FenwickTree(int n) : n(n) {
        tree.assign(n, 0);
    }
    FenwickTree(vector < int > v) : FenwickTree(v.size()) {
        for (size_t i = 1; i < v.size(); i++) {</pre>
```

```
update(i, v[i]);
}
int lsONE(int x) {
    return x & (-x);
}
int query(int x) {
    int soma = 0;
```

```
for (; x > 0; x -= lsONE(x)) {
        soma += tree[x];
    }
    return soma;
}
int query(int 1, int r) {
    return query(r) - query(1 - 1);
```

```
}
void update(int x, int v) {
    for (; x < n; x += lsONE(x)) {
        tree[x] += v;
    }
}
};
</pre>
```

2.2 MergeSort Tree

Árvore que resolve queries que envolvam ordenação em range.

- Complexidade de construção : O(N * log(N))
- Complexidade de consulta : $O(log^2(N))$

MergeSort Tree com Update Pontual

Resolve Queries que envolvam ordenação em Range. (COM UPDATE)

1 segundo para vetores de tamanho $3*10^5$

- Complexidade de construção : $O(N * log^2(N))$
- Complexidade de consulta : $O(log^2(N))$
- Complexidade de update : $O(log^2(N))$

```
namespace mergesort {
    const int MAX = 1e5 + 5;
    int n;
    vi mgtree [4 * MAX];
    int le(int n) {
        return 2 * n + 1:
    int ri(int n) {
        return 2 * n + 2;
    void build (int n, int esq, int dir, vi &v) {
        mgtree[n] = vi(dir - esq + 1, 0);
        if (esq = dir) {
            mgtree[n][0] = v[esq];
        } else {
            int mid = (esq + dir) / 2;
            build (le(n), esq, mid, v);
            build (ri(n), mid + 1, dir, v);
            merge (mgtree [le(n)].begin(),
                  mgtree [le(n)].end(),
                  mgtree [ri(n)]. begin(),
                  mgtree[ri(n)].end(),
                  mgtree[n].begin());
    void build (vi &v) {
        n = v.size();
        build (0, 0, n - 1, v);
```

```
int less (int n, int esq, int dir, int l, int r, int k) {
    if (esq > r \mid \mid dir < 1) {
        return 0:
    if (1 \le esq \&\& dir \le r) {
        return lower bound (mgtree [n]. begin (), mgtree [n]. end (), k)
            - mgtree[n].begin();
    int mid = (esq + dir) / 2;
    return less (le(n), esq, mid, l, r, k) + less (ri(n), mid + 1,
        dir, l, r, k);
int less(int l, int r, int k) {
    return less (0, 0, n-1, 1, r, k);
// vi debug query(int n, int esq, int dir, int
// 1. int r) {
       if (esq > r \mid \mid dir < 1) return vi();
       if (1 \le esq \&\& dir \le r) return
       mgtree[n]; int mid = (esq + dir) / 2;
       auto vl = debug query(le(n), esq, mid,
       l, r); auto vr = debug query(ri(n),
       mid+1, dir, l, r); vi ans =
       vi(vl.size() + vr.size());
       merge(vl.begin(), vl.end(),
           vr.begin(), vr.end(),
           ans.begin());
       return ans;
// vi debug query(int l, int r) {return
// debug query(0, 0, n-1, 1, r);}
```

```
#include <ext/pb ds/assoc container.hpp>
#include <ext/pb ds/tree policy.hpp>
using namespace gnu pbds;
namespace mergesort {
    typedef tree<ii, null type, less<ii>, rb tree tag,
        tree order statistics node update>
        ordered set;
    const int MAX = 1e5 + 5;
    int n;
    ordered set mgtree [4 * MAX];
    vi values;
    int le(int n) {
        return 2 * n + 1;
    int ri(int n) {
        return 2 * n + 2;
    ordered set join (ordered set set 1, ordered set set r) {
        for (auto v : set r) {
            set l.insert(v);
        return set 1;
    void build(int n, int esq, int dir) {
        if (esq = dir)
            mgtree[n]. insert (ii (values [esq], esq));
        } else {
            int mid = (esq + dir) / 2;
            build (le(n), esq, mid);
            build (ri(n), mid + 1, dir);
            mgtree[n] = join(mgtree[le(n)], mgtree[ri(n)]);
    void build (vi &v) {
        n = v. size();
```

```
values = v;
    build (0, 0, n-1);
int less (int n, int esq, int dir, int l, int r, int k) {
    if (esq > r \mid \mid dir < 1) {
        return 0;
    if (1 \le esq \&\& dir \le r) {
        return mgtree [n]. order of key(\{k, -1\});
    int mid = (esq + dir) / 2;
    return less (le(n), esq, mid, l, r, k) + less (ri(n), mid + 1,
        dir, l, r, k);
int less(int l, int r, int k) {
    return less (0, 0, n-1, l, r, k);
void update(int n, int esq, int dir, int x, int v) {
    if (esq > x \mid | dir < x) {
        return;
    if (esq = dir) {
        mgtree[n].clear(), mgtree[n].insert(ii(v, x));
    } else {
        int mid = (esq + dir) / 2;
        if (x \le mid) {
            update(le(n), esq, mid, x, v);
        } else {
            update(ri(n), mid + 1, dir, x, v);
        mgtree[n].erase(ii(values[x], x));
        mgtree[n].insert(ii(v, x));
void update(int x, int v) {
    update(0, 0, n - 1, x, v);
    values[x] = v;
```

```
// ordered_set debug_query(int n, int esq, int
// dir, int l, int r) {
// if (esq > r || dir < l) return
// ordered_set(); if (l <= esq && dir <=
// r) return mgtree[n]; int mid = (esq +
dir) / 2; return
// join(debug_query(le(n), esq, mid, l,
r), debug_query(ri(n), mid+1, dir, l,
r));
// r)
// ordered_set debug_query(int l, int r)
// {return debug_query(0, 0, n-1, l, r);}</pre>
```

2.3 Operation Queue

Fila que armazena o resultado do operatório dos itens.

- * Complexidade de tempo (Push): O(1)
- * Complexidade de tempo (Pop): O(1)

```
// int greater(int n, int esq, int dir, int l,
    // int r, int k) {
    // if (esq > r || dir < l) return 0;
    // if (l <= esq && dir <= r) return
    // (r-l+1) - mgtree[n].order_of_key({k,
    // les}); int mid = (esq + dir) / 2;
    // return greater(le(n), esq, mid, l, r,
    // k) + greater(ri(n), mid+1, dir, l, r,
    // k);
    // }
    // int greater(int l, int r, int k) {return
    // greater(0, 0, n-1, l, r, k);}
};</pre>
```

```
s2.push({elem, result});
void remove() {
    if (s2.empty()) {
        while (!s1.empty()) {
            T elem = s1.top().first;
            s1.pop();
            T result = s2.empty() ? elem : op(elem,
            s2.top().second);
    }
};
s2.push({elem, result});
}
```

2.4 Ordered Set

Set com operações de busca por ordem e índice.

Pode ser usado como um set normal, a principal diferença são duas novas operações possíveis:

- find_by_order(x): retorna o item na posição x.
- order of key(k): retorna o número de elementos menores que k. (o índice de k)

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/trie_policy.hpp>

using namespace __gnu_pbds;
typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;

ordered_set X;
X. insert (1);
X. insert (2);
X. insert (4);
X. insert (8);
X. insert (8);
X. insert (16);
```

```
cout << *X. find by order(1) << endl; // 2
cout <<*X. find by order (2) << endl; // 4
cout <<*X. find by order (4) << endl; // 16
cout << (end(X) = X. find by order(6)) << endl; // true
cout \ll X.order of key(-5) \ll endl; // 0
cout \ll X. order of key(1) \ll endl; // 0
cout << X. order of key (3) << endl;
cout \ll X. order of key (4) \ll endl; // 2
cout << X. order_of_key (400) << endl; // 5
#include <ext/pb ds/assoc container.hpp>
                                                                               template <typename T>
#include <ext/pb ds/trie policy.hpp>
                                                                               typedef tree<T, null type, less<T>, rb tree tag,
                                                                                   tree\_order\_statistics\_node\_update>
                                                                                    ordered set;
using namespace gnu pbds;
```

2.5 Disjoint Set Union

2.5.1 DSU Rollback

Desfaz as últimas K uniões

• Complexidade de tempo: O(K).

É possivel usar um checkpoint, bastando chamar rollback() para ir até o último checkpoint.

O rollback não altera a complexidade, uma vez que $K \le q$ ueries.

Só funciona sem compressão de caminho

• Complexidade de tempo: O(log(N))

```
struct rollback dsu {
    struct change {
        int node, old size;
    stack<change> changes;
    vector < int > parent, size;
    int number of sets;
    rollback dsu(int n) {
        size.resize(n + 5, 1);
        number of sets = n;
        for (int i = 0; i < n + 5; ++i) {
            parent.push back(i);
    int get(int a) {
        return (a == parent[a]) ? a : get(parent[a]);
    bool same(int a, int b) {
        return get(a) = get(b);
    void checkpoint() {
        changes.push(\{-2, 0\});
    void join(int a, int b) {
        a = get(a);
        b = get(b);
        if (a == b) 
            changes.push(\{-1, -1\});
```

```
return;
        if (size[a] > size[b]) 
            swap(a, b);
        changes.push({a, size[b]});
        parent[a] = b;
        size[b] += size[a];
        —number of sets;
    void rollback (int qnt = 1 \ll 31) {
        for (int i = 0; i < qnt; ++i) {
            auto ch = changes.top();
            changes.pop();
            if (ch.node == -1) {
                continue;
            if (ch.node == -2) {
                if (qnt == 1 << 31) {
                    break;
                —i;
                continue;
            size [parent [ch.node]] = ch.old size;
            parent[ch.node] = ch.node;
            ++number of sets;
};
```

2.5.2 DSU Bipartido

DSU para grafo bipartido, é possível verificar se uma aresta é possível antes de adicioná-la.

Para todas as operações:

• Complexidade de tempo: O(1) amortizado.

```
struct bipartite dsu {
    vector < int > parent;
    vector < int > color;
    int size;
    bipartite dsu(int n) {
        size = n;
        color.resize(n + 5, 0);
        for (int i = 0; i < n + 5; ++i) {
            parent.push back(i);
    }
    pair < int, bool > get(int a) {
        if (parent[a] == a) {
            return {a, 0};
        auto val = get(parent[a]);
        parent[a] = val. fi;
        color[a] = (color[a] + val.se) \% 2;
        return {parent[a], color[a]};
```

```
bool same_color(int a, int b) {
    get(a);
    get(b);
    return color[a] == color[b];
}
bool same_group(int a, int b) {
    get(a);
    get(b);
    return parent[a] == parent[b];
}
bool possible_edge(int a, int b) {
    return !same_color(a, b) || !same_group(a, b);
}

void join(int a, int b) {
    auto val_a = get(a), val_b = get(b);
    parent[val_a.fi] = val_b.fi;
    color[val_a.fi] = (val_a.se + val_b.se + 1) % 2;
}
};
```

2.5.3 DSU Simples

Verifica se dois itens pertencem a um mesmo grupo.

• Complexidade de tempo: O(1) amortizado.

Une grupos.

• Complexidade de tempo: O(1) amortizado.

```
struct DSU {
                                                                                  int ra = root(a), rb = root(b);
                                                                                  if (ra == rb) {
    vector < int > pa, sz;
   DSU(int n) : pa(n + 1), sz(n + 1, 1) {
                                                                                      return;
        iota(pa.begin(), pa.end(), 0);
                                                                                  if (sz[ra] > sz[rb])  {
   int root(int a) {
                                                                                      swap(ra, rb);
       return pa[a] = (a = pa[a] ? a : root(pa[a]));
                                                                                  pa[ra] = rb;
   bool find (int a, int b) {
                                                                                  sz[rb] += sz[ra];
       return root(a) == root(b);
   void uni(int a, int b) {
```

2.5.4 DSU Completo

 DSU com capacidade de adicionar e remover vértices.

EXTREMAMENTE PODEROSO!

Funciona de maneira off-line, recebendo as operações e dando as respostas das consultas no retorno da função solve()

• Complexidade de tempo: O(Q * log(Q) * log(N)); Onde Q é o número de consultas e N o número de nodos

Roda em 0.6ms para $3 * 10^5$ queries e nodos com printf e scanf.

Possivelmente aguenta 10⁶ em 3s

```
struct full dsu {
    struct change {
        int node, old size;
    struct query {
        int l, r, u, v, type;
    };
    stack<change> changes;
   map<pair<int, int>, vector<query>> edges;
    vector<query> queries;
    vector < int > parent, size;
    int number of sets, time;
    full dsu(int n) {
        time = 0;
        size.resize(n + 5, 1);
        number of sets = n;
        loop(i, 0, n + 5) parent.push back(i);
    int get(int a) {
        return (parent[a] == a ? a : get(parent[a]));
    bool same(int a, int b) {
        return get(a) = get(b);
    void checkpoint() {
        changes.push(\{-2, 0\});
    void join(int a, int b) {
        a = get(a);
       b = get(b);
        if (a == b) {
```

```
return;
    if (size[a] > size[b]) {
        swap(a, b);
    changes.push({a, size[b]});
    parent[a] = b;
    size[b] += size[a];
    —number of sets;
void rollback() {
    while (!changes.empty()) {
        auto ch = changes.top();
        changes.pop();
        if (ch.node == -2) {
            break:
        size [parent [ch.node]] = ch.old size;
        parent[ch.node] = ch.node;
        ++number of_sets;
void ord(int &a, int &b) {
    if (a > b) 
        swap(a, b);
void add(int u, int v) {
    ord(u, v):
    edges [\{u, v\}]. push back (\{time++, (int)1e9, u, v, 0\});
```

```
void remove(int u, int v) {
    ord(u, v);
    edges[\{u, v\}].back().r = time++;
// consulta se dois vertices estao no mesmo
// grupo
void question(int u, int v) {
    ord(u, v);
    queries.push back({time, time, u, v, 1});
    ++time;
// consulta a quantidade de grupos distintos
void question() {
    queries.push back({time, time, 0, 0, 1});
    ++time;
vector < int > solve() {
    for (auto [p, v] : edges) {
        queries.insert(queries.end(), all(v));
    vector < int > vec(time, -1), ans;
    run (queries, 0, time, vec);
    for (int i : vec) {
        if (i != -1) {
            ans.push back(i);
    return ans;
```

```
void run(const vector<query> &qrs, int l, int r, vector<int>
        &ans) {
        if (l > r) 
             return;
         checkpoint();
         vector <query> qrs aux;
         for (auto &q : qrs) {
             if (!q.type \&\& q.l <= l \&\& r <= q.r) {
                 join(q.u, q.v);
             else\ if\ (r < q.l | | l > q.r)
                 continue;
             } else {
                 qrs aux.push back(q);
        if (1 = r) {
             for (auto &q : qrs) {
                 if (q.type && q.l == 1) {
                      ans[1] = number of sets;
                     // numero de grupos nesse tempo
                      // \operatorname{ans}[1] = \operatorname{same}(q.u, q.v);
                     // se u e v estao no mesmo grupo
             rollback();
             return;
        int m = (1 + r) / 2;
        run(qrs aux, l, m, ans);
         run(qrs aux, m + 1, r, ans);
         rollback();
};
```

2.6 LiChao Tree

Uma árvore de Funções. Retorna o F(x) máximo em um ponto X.

Para retornar o minimo deve-se inserir o negativo da função e pegar o negativo do resultado.

Está pronta para usar função linear do tipo F(x) = mx + b.

Funciona para funções com a seguinte propriedade, sejam duas funções f(x) e g(x), uma vez que f(x) ganha/perde de g(x), f(x) vai continuar ganhando/perdendo de g(x),

ou seja f(x) e g(x) se intersectam apenas uma vez.

- * Complexidade de consulta : O(log(N))
- * Complexidade de update: O(log(N))

LiChao Tree Sparse

O mesmo que a superior, no entanto suporta consultas com $|x| \le 1e18$.

- * Complexidade de consulta : O(log(tamanho do intervalo))
- * Complexidade de update: O(log(tamanho do intervalo))

```
typedef long long ll;

const ll MAXN = 1e5 + 5, INF = 1e18 + 9;

struct Line {
    ll a, b = -INF;
    ll operator()(ll x) {
        return a * x + b;
    }
} tree [4 * MAXN];

int le(int n) {
    return 2 * n + 1;
}
```

```
int ri(int n) {
    return 2 * n + 2;
}

void insert(Line line, int n = 0, int l = 0, int r = MAXN) {
    int mid = (1 + r) / 2;
    bool bl = line(1) < tree[n](1);
    bool bm = line(mid) < tree[n](mid);
    if (!bm) {
        swap(tree[n], line);
    }
    if (l == r) {
        return;
    }
}</pre>
```

```
if (bl != bm) {
        insert (line, le(n), l, mid);
    } else {
        insert(line, ri(n), mid + 1, r);
ll query (int x, int n = 0, int l = 0, int r = MAXN) {
    if (l = r) {
typedef long long ll;
const 11 MAXN = 1e5 + 5, INF = 1e18 + 9, MAXR = 1e18;
struct Line {
    11 a, b = -INF;
    __int128 operator()(ll x) {
        return ( int128) a * x + b;
} tree [4 * MAXN];
int idx = 0, L[4 * MAXN], R[4 * MAXN];
int le(int n) {
    if (!L[n]) {
        L[n] = ++idx;
    return L[n];
int ri(int n) {
    if (!R[n]) {
        R[n] = ++idx;
    return R[n];
void insert (Line line, int n = 0, ll l = -MAXR, ll r = MAXR) {
    11 \mod = (1 + r) / 2;
```

```
return tree[n](x);
}
int mid = (1 + r) / 2;
if (x < mid) {
    return max(tree[n](x), query(x, le(n), l, mid));
} else {
    return max(tree[n](x), query(x, ri(n), mid + 1, r));
}
}</pre>
```

```
bool bl = line(1) < tree[n](1);
    bool bm = line(mid) < tree[n](mid);
    if (!bm) {
         swap(tree[n], line);
    if (l = r) {
         return;
    if (bl != bm) {
         insert (line, le(n), l, mid);
         insert(line, ri(n), mid + 1, r);
\_\_int128 \text{ query}(int x, int n = 0, ll l = -MAXR, ll r = MAXR)  {
    if (1 = r) {
         return tree [n](x);
    11 \mod = (1 + r) / 2;
    if (x < mid) 
         return \max(\text{tree}[n](x), \text{query}(x, \text{le}(n), 1, \text{mid}));
    } else {
         return \max(\text{tree}[n](x), \text{query}(x, \text{ri}(n), \text{mid} + 1, \text{r}));
```

2.7 Operation Stack

Pilha que armazena o resultado do operatório dos itens.

- * Complexidade de tempo (Push): O(1)
- * Complexidade de tempo (Pop): O(1)

```
    void add(T element) {
        result = st.empty() ? element : op(element, st.top().second);
        st.push({element, result});
}

    void remove() {
        T removed_element = st.top().first;
        st.pop();
}

};
```

2.8 Interval Tree

Por Rafael Granza de Mello

Estrutura que trata intersecções de intervalos.

Capaz de retornar todos os intervalos que intersectam [L, R]. L e R inclusos

 $Cont\'em \ funç\~oes \ insert(L,\ R,\ ID),\ erase(L,\ R,\ ID)\ ,\ overlaps(L,\ R)\ e\ find(L,\ R,\ ID).$

É necessário inserir e apagar indicando tanto os limites quanto o ID do intervalo.

• Complexidade de tempo: O(N * log(N)).

Podem ser usadas as operações em Set:

- insert()
- erase()
- upper_bound()
- etc

```
queue < CNI> q;
q.push(node begin());
vector<int> vec;
while (!q.empty()) {
    CNI it = q.front();
    q.pop();
    if (it == node end()) {
        continue;
    if (r >= (*it) -> lo && l <= (*it) -> hi) {
        vec.push back((*it)->id);
    CNI l it = it.get l child();
    long long l max = (1 \text{ it} = \text{node end}()) ? -INF :
        l it.get metadata();
    if (l max >= l) 
        q.push(l it);
    if ((* it )—>lo <= r) {
        q.push(it.get r child());
```

```
}
return vec;
}
inline void operator()(NI it , CNI end_it) {
   const long long l_max =
      (it.get_l_child() == end_it) ? -INF :
      it.get_l_child().get_metadata();
   const long long r_max =
}
```

2.9 Sparse Table

2.9.1 Disjoint Sparse Table

Resolve query de range para qualquer operação associativa em O(1).

Pré-processamento em $O(n \log n)$.

```
struct dst {
    const int neutral = 1;
#define comp(a, b) (a | b)
    vector<vector<int>> t;
    dst(vector<int> v) {
        int n, k, sz = v.size();
        for (n = 1, k = 0; n < sz; n <<= 1, k++)
            ;
        t.assign(k, vector<int>(n));
        for (int i = 0; i < n; i++) {
            t[0][i] = i < sz ? v[i] : neutral;
        }
        for (int j = 0, len = 1; j <= k; j++, len <<= 1) {
            for (int s = len; s < n; s += (len << 1)) {
                 t[j][s] = v[s];
                 t[j][s] = v[s];
                 t[j][s] = v[s];
                 t[j][s] = v[s];
                 t[j][s] = v[s];
                t[j][s] = v[s];
                 t[j][s] = v[s];
                t[j][s] = v[s];
                 t[j][s] = v[s];
                t[j][s] = v[s];
                 t[j][s] = v[s];
                 t[j][s] = v[s];
                 t[j][s] = v[s];
                 t[j][s] = v[s];
                 t[j][s] = v[s];
                 t[s] = v[s];
                t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                 t[s] = v[s];
                t[s] = v[s];
                 t[s] = v[s];
```

2.9.2 Sparse Table

Read in [English](README.en.md)

Responde consultas de maneira eficiente em um conjunto de dados estáticos.

Realiza um pré-processamento para diminuir o tempo de cada consulta.

- Complexidade de tempo (Pré-processamento): O(N * log(N))
- Complexidade de tempo (Consulta para operações sem sobreposição amigável): O(N * log(N))
- Complexidade de tempo (Consulta para operações com sobreposição amigável): O(1)
- Complexidade de espaço: O(N * log(N))

Exemplo de operações com sobreposição amigável: max(), min(), gcd(), f(x, y) = x

```
struct SparseTable {
   int n, e;
   vector < vector < int >> st;
   SparseTable(vector < int >> &v) : n(v.size()), e(floor(log2(n))) {
      st.assign(e + 1, vector < int >(n));
      for (int i = 0; i < n; i++) {
            st[0][i] = v[i];
      }
      for (int i = 1; i <= e; i++) {
            for (int j = 0; j + (1 << i) <= n; j++) {
                st[i][j] = min(st[i - 1][j], st[i - 1][j + (1 << (i - 1))]);
            }
      }
    }
}</pre>
```

```
// O(log(N)) Query for non overlap friendly
// operations
int logquery(int l, int r) {
    int res = 2e9;
    for (int i = e; i >= 0; i--) {
        if ((1 << i) <= r - l + 1) {
            res = min(res, st[i][l]);
            l += 1 << i;
        }
    }
    return res;
}

// O(1) Query for overlab friendly operations
// ex: max(), min(), gcd(), f(x, y) = x
int query(int l, int r) {</pre>
```

```
// if (l > r) return 2e9;

int i = ilogb(r - l + 1);

return min(st[i][l], st[i][r - (1 << i) + 1]);
```

2.10 Kd Fenwick Tree

KD Fenwick Tree

const int MAX = 10;

Fenwick Tree em K dimensoes.

```
* Complexidade de update: O(log^k(N)).
```

* Complexidade de query: $O(log^k(N))$.

2.11 Segment Tree

2.11.1 Segment Tree Beats Max And Sum Update

Seg Tree que suporta update de maximo, update de soma e query de soma.

Utiliza uma fila de lazy para diferenciar os updates

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- \bullet Complexidade de tempo (Update em ponto): $O(\log(N))$
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

```
#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define INF 1e9
#define fi first
#define se second

typedef pair<int, int> ii;

struct Node {
   int m1 = INF, m2 = INF, cont = 0;
   ll soma = 0;
   queue<ii>> lazy;

   void set(int v) {
      m1 = v;
   }
}
```

```
cont = 1;
soma = v;
}

void merge(Node a, Node b) {
    m1 = min(a.m1, b.m1);
    m2 = INF;
    if (a.m1 != b.m1) {
        m2 = min(m2, max(a.m1, b.m1));
    }
    if (a.m2 != m1) {
        m2 = min(m2, a.m2);
    }
    if (b.m2 != m1) {
        m2 = min(m2, b.m2);
    }
    cont = (a.m1 == m1 ? a.cont : 0) + (b.m1 == m1 ? b.cont : 0);
```

```
soma = a.soma + b.soma;
    void print() {
        printf("%d %d %d %lld\n", m1, m2, cont, soma);
};
int n, q;
vector < Node > tree;
int le(int n) {
    return 2 * n + 1;
int ri(int n) {
    return 2 * n + 2;
void push(int n, int esq, int dir) {
    while (!tree[n].lazy.empty()) {
        ii p = tree[n].lazy.front();
        tree[n].lazy.pop();
        int op = p. fi, v = p. se;
        if (op = 0) {
            if (v \le tree[n].m1) 
                 continue;
            tree[n].soma += (11)abs(tree[n].m1 - v) * tree[n].cont;
            tree[n].m1 = v;
            if (esq != dir) {
                 tree [le(n)]. lazy. push(\{0, v\});
                 tree [ri(n)]. lazy. push(\{0, v\});
        \} else if (op == 1) {
            tree[n].soma += v * (dir - esq + 1);
             tree[n].m1 += v;
            tree[n].m2 += v;
            if (esq != dir) {
                 tree [le(n)]. lazy. push(\{1, v\});
                 tree [ri(n)]. lazy. push(\{1, v\});
```

```
void build(int n, int esq, int dir, vector<int> &v) {
    if (esq = dir) {
        tree[n].set(v[esq]);
    } else {
        int mid = (esq + dir) / 2;
        build (le(n), esq, mid, v);
        build (ri(n), mid + 1, dir, v);
        tree[n].merge(tree[le(n)], tree[ri(n)]);
void build (vector < int > &v) {
    build (0, 0, n - 1, v);
// ai = max(ai, mi) em [l, r]
void update(int n, int esq, int dir, int l, int r, int mi) {
    push(n, esq, dir);
    if (esq > r || dir < l || mi <= tree[n].m1) {
        return;
    if (1 \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
        tree[n].soma += (ll)abs(tree[n].m1 - mi) * tree[n].cont;
        tree[n].m1 = mi;
        if (esq != dir) {
            tree [le(n)]. lazy. push(\{0, mi\});
            tree[ri(n)].lazv.push({0, mi});
    } else {
        int mid = (esq + dir) / 2;
        update(le(n), esq, mid, l, r, mi);
        update(ri(n), mid + 1, dir, l, r, mi);
        tree[n].merge(tree[le(n)], tree[ri(n)]);
void update(int 1, int r, int mi) {
    update(0, 0, n-1, l, r, mi);
```

```
// soma v em [1, r]
void upsoma(int n, int esq, int dir, int l, int r, int v) {
   push(n, esq, dir);
    if (esq > r | | dir < 1) {
        return;
    if (l \le esq \&\& dir \le r)  {
        tree[n].soma += v * (dir - esq + 1);
        tree[n].m1 += v;
        tree[n].m2 += v;
        if (esq != dir) {
            tree [le(n)]. lazy. push(\{1, v\});
            tree[ri(n)].lazy.push({1, v});
    } else {
        int mid = (esq + dir) / 2;
        upsoma(le(n), esq, mid, l, r, v);
        upsoma(ri(n), mid + 1, dir, l, r, v);
        tree[n].merge(tree[le(n)], tree[ri(n)]);
    }
void upsoma(int 1, int r, int v) {
    upsoma(0, 0, n - 1, l, r, v);
```

2.11.2 Segment Tree Esparsa

Consultas e atualizações em intervalos.

Seg Tree

Implementação padrão de Seg Tree

• Complexidade de tempo (Pré-processamento): O(N)

```
// soma de [1, r]
int query(int n, int esq, int dir, int l, int r) {
    push(n, esq, dir);
    if (esq > r \mid \mid dir < l)
        return 0;
    if (l <= esq && dir <= r) {
        return tree[n].soma;
    int mid = (esq + dir) / 2;
    return query (le(n), esq, mid, l, r) + query (ri(n), mid + 1, dir,
       1, r);
int query(int 1, int r) {
    return query (0, 0, n-1, 1, r);
int main() {
    cin >> n;
    tree.assign(4 * n, Node());
    build(v);
```

- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de espaço: 4 *N = O(N)

Seg Tree Lazy

Implementação padrão de Seg Tree com lazy update

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- \bullet Complexidade de espaço: 2 *4 *N = O(N)

Sparse Seg Tree

Seg Tree Esparsa:

- Complexidade de tempo (Pré-processamento): O(1)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- \bullet Complexidade de tempo (Update em ponto): O(log(N))

Persistent Seg Tree

Seg Tree Esparsa com histórico de Updates:

• Complexidade de tempo (Pré-processamento): O(N *log(N))

- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Para fazer consulta em um tempo específico basta indicar o tempo na query

Seg Tree Beats

Seg Tree que suporta update de maximo e query de soma

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- Complexidade de espaço: 2 *4 *N = O(N)

Seg Tree Beats Max and Sum update

Seg Tree que suporta update de maximo, update de soma e query de soma.

Utiliza uma fila de lazy para diferenciar os updates

- Complexidade de tempo (Pré-processamento): O(N)
- \bullet Complexidade de tempo (Consulta em intervalo): $O(\log(N))$
- Complexidade de tempo (Update em ponto): O(log(N))
- \bullet Complexidade de tempo (Update em intervalo): $O(\log(N))$
- Complexidade de espaço: 2 *4 *N = O(N)

```
const int SEGMAX = 8e6 + 5; // should be Q * log(DIR-ESQ+1)
const ll ESQ = 0, DIR = 1e9 + 7;
struct seg {
    ll tree [SEGMAX];
    int R[SEGMAX], L[SEGMAX]
        ptr = 2; // 0 is NULL; 1 is First Root
    ll op(ll a, ll b) {
       return (a + b) \% MOD;
    int le(int i) {
        if (L[i] = 0) {
           L[i] = ptr++;
        return L[i];
    int ri(int i) {
        if (R[i] = 0) {
           R[i] = ptr++;
        return R[i];
    ll query(ll l, ll r, int n = 1, ll esq = ESQ, ll dir = DIR) {
        if (r < esq | | dir < l) {
```

2.11.3 Segment Tree Beats Max Update

Seg Tree que suporta update de maximo e query de soma

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))

```
return 0;
    if (1 \le esq \&\& dir \le r) {
        return tree[n];
    11 \quad mid = (esq + dir) / 2;
    return op(query(l, r, le(n), esq, mid), query(<math>l, r, ri(n), esq, mid)
        mid + 1, dir);
void update(ll x, ll v, int n = 1, ll esq = ESQ, ll dir = DIR) {
    if (esq = dir) {
        tree[n] = (tree[n] + v) \% MOD;
    } else {
         11 \quad mid = (esq + dir) / 2;
         if (x \le mid) {
             update(x, v, le(n), esq, mid);
        } else {
             update(x, v, ri(n), mid + 1, dir);
        tree[n] = op(tree[le(n)], tree[ri(n)]);
```

• Complexidade de espaço: 2 *4 *N = O(N)

```
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 1e9
struct Node {
    int m1 = INF, m2 = INF, cont = 0, lazy = 0;
    11 \text{ soma} = 0;
    void set(int v) {
        m1 = v;
        cont = 1;
        soma = v;
    void merge (Node a, Node b) {
        m1 = min(a.m1, b.m1);
        m2 = INF;
        if (a.m1 != b.m1) {
            m2 = min(m2, max(a.m1, b.m1));
        if (a.m2 != m1) {
            m2 = min(m2, a.m2);
        if (b.m2 != m1) {
            m2 = min(m2, b.m2);
        cont = (a.m1 = m1 ? a.cont : 0) + (b.m1 = m1 ? b.cont : 0);
        soma = a.soma + b.soma;
    void print() {
         printf("%d %d %d %lld %d\n", m1, m2, cont, soma, lazy);
```

```
};
int n, q;
vector < Node> tree;
int le(int n) {
    return 2 * n + 1;
int ri(int n) {
    return 2 * n + 2;
void push(int n, int esq, int dir) {
    if (tree[n].lazy \ll tree[n].m1) {
        return;
    tree[n].soma += (11)abs(tree[n].m1 - tree[n].lazy) * tree[n].cont;
    tree[n].m1 = tree[n].lazy;
    if (esq != dir) {
        tree[le(n)].lazy = max(tree[le(n)].lazy, tree[n].lazy);
        tree[ri(n)]. lazy = max(tree[ri(n)]. lazy, tree[n]. lazy);
    tree[n].lazy = 0;
void build(int n, int esq, int dir, vector<int> &v) {
    if (esq = dir) {
        tree[n].set(v[esq]);
    } else {
        int mid = (esq + dir) / 2;
        build (le(n), esq, mid, v);
        build(ri(n), mid + 1, dir, v);
        tree[n].merge(tree[le(n)], tree[ri(n)]);
```

```
void build(vector<int> &v) {
    build (0, 0, n - 1, v);
// ai = max(ai, mi) em [1, r]
void update(int n, int esq, int dir, int l, int r, int mi) {
    push(n, esq, dir);
    if (esq > r | | dir < l | | mi <= tree[n].m1) {
        return;
    if (1 \le esq \&\& dir \le r \&\& mi < tree[n].m2) {
        tree[n].lazy = mi;
        push(n, esq, dir);
    } else {
        int mid = (esq + dir) / 2;
        update(le(n), esq, mid, l, r, mi);
        update(ri(n), mid + 1, dir, l, r, mi);
        tree[n].merge(tree[le(n)], tree[ri(n)]);
void update(int 1, int r, int mi) {
    update(0, 0, n-1, l, r, mi);
```

```
// soma de [l, r]
int query(int n, int esq, int dir, int l, int r) {
    push(n, esq, dir);
    if (esq > r || dir < l) {
        return 0;
    }
    if (l <= esq && dir <= r) {
        return tree[n].soma;
    }
    int mid = (esq + dir) / 2;
    return query(le(n), esq, mid, l, r) + query(ri(n), mid + 1, dir, l, r);
}
int query(int l, int r) {
    return query(0, 0, n - 1, l, r);
}
int main() {
    cin >> n;
    tree.assign(4 * n, Node());
}
```

2.11.4 Segment Tree Kadani

Implementação de uma Seg Tree que suporta update de soma e query de soma máxima em intervalo.

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de espaço: 4 * N = O(N)

```
namespace seg {
    const int MAX = 1e5 + 5;
    struct node {
         ll pref, suff, sum, best;
    };
    node new node(ll v) {
         return node\{v, v, v, v\};
    const node NEUTRAL = \{0, 0, 0, 0\};
    node tree [4 * MAX];
    node merge(node a, node b) {
         11 \text{ pref} = \max(a.\text{pref}, a.\text{sum} + b.\text{pref});
         ll \ suff = max(b.suff, b.sum + a.suff);
         11 \text{ sum} = a.\text{sum} + b.\text{sum};
         11 best = max(a.suff + b.pref, max(a.best, b.best));
        return node{pref, suff, sum, best};
    int n;
    int le(int n) {
         return 2 * n + 1;
    int ri(int n) {
         return 2 * n + 2;
    void build (int n, int esq, int dir, const vector < ll > &v) {
         if (esq = dir) 
             tree[n] = new node(v[esq]);
        } else {
             int mid = (esq + dir) / 2;
             build (le (n), esq, mid, v);
             build (ri(n), mid + 1, dir, v);
             tree[n] = merge(tree[le(n)], tree[ri(n)]);
    void build (const vector < ll > &v) {
        n = v. size();
```

```
build (0, 0, n - 1, v);
node query(int n, int esq, int dir, int l, int r) {
    if (esq > r \mid \mid dir < 1) {
        return NEUTRAL;
    if (l \le esq \&\& dir \le r) {
        return tree[n];
    int mid = (esq + dir) / 2;
    return merge (query (le (n), esq, mid, l, r), query (ri (n), mid +
        1, dir, l, r));
11 query(int 1, int r) {
    return query (0, 0, n-1, l, r). best;
void update(int n, int esq, int dir, int x, ll v) {
    if (esq > x \mid | dir < x) {
        return;
    if (esq = dir) {
        tree[n] = new node(v);
    } else {
        int mid = (esq + dir) / 2;
        if (x \le mid) {
            update(le(n), esq, mid, x, v);
            update(ri(n), mid + 1, dir, x, v);
        tree[n] = merge(tree[le(n)], tree[ri(n)]);
void update(int x, ll v) {
    update (0, 0, n - 1, x, v);
```

2.11.5 Segment Tree Persisente

Seg Tree Esparsa com histórico de Updates:

- \bullet Complexidade de tempo (Pré-processamento): O(N *log(N))
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Para fazer consulta em um tempo específico basta indicar o tempo na query

```
vector<node *> roots;
void build() {
    roots.push_back(new node());
}

void push(node *n, int esq, int dir) {
    if (esq != dir) {
        n->apply();
    }
}

// sum v on x

node *update(node *n, int esq, int dir, int x, int v) {
    push(n, esq, dir);
    if (esq == dir) {
        return new node(n->v + v);
    }

int mid = (esq + dir) / 2;
    if (x <= mid) {
        return new node(update(n->l, esq, mid, x, v), n->r);
    } else {
        return new node(n->l, update(n->r, mid + 1, dir, x, v));
    }
}
```

```
int update(int root, int pos, int val) {
    node *novo = update(roots[root], ESQ, DIR, pos, val);
    roots.push back(novo);
    return roots. size () - 1;
// sum in [L, R]
ll query(node *n, int esq, int dir, int l, int r) {
    push(n, esq, dir);
    if (esq > r \mid \mid dir < l) {
        return 0;
    if (l <= esq && dir <= r) {
        return n\rightarrow v;
    int mid = (esq + dir) / 2;
    return query (n->l, esq, mid, l, r) + query (n->r, mid + 1,
        dir, l, r);
ll query(int root, int l, int r) {
    return query (roots [root], ESQ, DIR, 1, r);
```

2.11.6 Segment Tree 2D

Segment Tree em 2 dimensões.

- Complexidade de tempo (Pré-processamento): O(N*M)
- Complexidade de tempo (Consulta em intervalo): O(log(N)*log(M))
- Complexidade de tempo (Update em ponto): O(log(N)*log(M))
- \bullet Complexidade de espaço: 4 * N * 4 * M = O(N*M)

```
// kth min number in [L, R] (l root can not be
     // 0)
     int kth(node *L, node *R, int esq, int dir, int k) {
         push(L, esq, dir);
         push (R, esq, dir);
         if (esq = dir) {
              return esq;
         int mid = (esq + dir) / 2;
         int cont = R \rightarrow l \rightarrow v - L \rightarrow v;
         if (cont >= k) 
              return kth(L\rightarrow l, R\rightarrow l, esq, mid, k);
          } else {
              return kth(L\rightarrowr, R\rightarrowr, mid + 1, dir, k - cont);
     int kth(int | root, int r root, int k) {
         return kth(roots[1 root - 1], roots[r root], ESQ, DIR, k);
};
```

```
const int MAX = 2505;
int n, m, mat[MAX][MAX], tree[4 * MAX][4 * MAX];
int le(int x) {
    return 2 * x + 1;
int ri(int x) {
    return 2 * x + 2;
void build y(int nx, int lx, int rx, int ny, int ly, int ry) {
    if (ly = ry) {
        if (lx = rx) 
            tree[nx][ny] = mat[lx][ly];
       } else {
            tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
    } else {
        int my = (ly + ry) / 2;
        build y(nx, lx, rx, le(ny), ly, my);
       build y(nx, lx, rx, ri(ny), my + 1, ry);
        tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
   }
void build x(int nx, int lx, int rx) {
    if (lx != rx) {
        int mx = (lx + rx) / 2;
       build x(le(nx), lx, mx);
       build x(ri(nx), mx + 1, rx);
    build y(nx, lx, rx, 0, 0, m-1);
void build() {
    build x(0, 0, n-1);
void update y(int nx, int lx, int rx, int ny, int ly, int ry, int x,
   int y, int v) {
    if (ly = ry) {
        if (lx = rx)
```

```
tree[nx][ny] = v;
        } else {
            tree[nx][ny] = tree[le(nx)][ny] + tree[ri(nx)][ny];
    } else {
        int my = (ly + ry) / 2;
        if (v \ll mv) {
            update y(nx, lx, rx, le(ny), ly, my, x, y, v);
            update y(nx, lx, rx, ri(ny), my + 1, ry, x, y, v);
        tree[nx][ny] = tree[nx][le(ny)] + tree[nx][ri(ny)];
void update x(int nx, int lx, int rx, int x, int v, int v) {
    if (lx != rx) {
        int mx = (lx + rx) / 2;
        if (x \ll mx) {
            update x(le(nx), lx, mx, x, y, v);
        } else {
            update x(ri(nx), mx + 1, rx, x, y, v);
    update y(nx, lx, rx, 0, 0, m-1, x, y, v):
void update(int x, int y, int v) {
    update x(0, 0, n-1, x, y, v);
int sum y(int nx, int ny, int ly, int ry, int qly, int qry) {
    if (ry < qly \mid | ly > qry) {
        return 0;
    if (qly <= ly && ry <= qry) {
        return tree [nx][ny];
    int my = (ly + ry) / 2;
    return sum y(nx, le(ny), ly, my, qly, qry) + sum y(nx, ri(ny), my
       + 1, ry, qly, qry);
int sum x(int nx, int lx, int rx, int qlx, int qrx, int qly, int qry)
```

```
{
   if (rx < qlx || lx > qrx) {
      return 0;
}

if (qlx <= lx && rx <= qrx) {
      return sum_y(nx, 0, 0, m - 1, qly, qry);
}</pre>
```

2.11.7 Segment Tree

Implementação padrão de Seg Tree

- Complexidade de tempo (Pré-processamento): O(N)
- Complexidade de tempo (Consulta em intervalo): O(log(N))
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de espaço: 4 *N = O(N)

```
namespace seg {
   const int MAX = 2e5 + 5;
   int n;
   ll tree[4 * MAX];
   ll merge(ll a, ll b) {
      return a + b;
   }
   int le(int n) {
      return 2 * n + 1;
   }
   int ri(int n) {
```

```
\begin{array}{l} \mbox{int } mx = (\,lx \, + \, rx\,) \, / \, \, 2; \\ \mbox{return } sum\_x(\,le\,(nx\,) \, , \, lx \, , \, mx, \, \, qlx \, , \, \, qrx \, , \, \, qly \, , \, \, qry\,) \, + \\ \mbox{sum\_x}(\,ri\,(nx\,) \, , \, mx \, + \, 1 \, , \, \, rx \, , \, \, qlx \, , \, \, qrx \, , \, \, qly \, , \, \, qry\,) \, ; \\ \mbox{int } sum(\,\mbox{int } \, lx \, , \, \, \mbox{int } \, rx \, , \, \, \mbox{int } \, ly \, , \, \, \mbox{int } \, ry\,) \, \, \{ \\ \mbox{return } sum\_x(0 \, , \, 0 \, , \, n \, - \, 1 \, , \, \, lx \, , \, \, rx \, , \, \, ly \, , \, \, ry\,) \, ; \\ \mbox{} \end{array}
```

```
return 2 * n + 2;
}
void build(int n, int esq, int dir, const vector<ll> &v) {
    if (esq == dir) {
        tree[n] = v[esq];
    } else {
        int mid = (esq + dir) / 2;
        build(le(n), esq, mid, v);
        build(ri(n), mid + 1, dir, v);
        tree[n] = merge(tree[le(n)], tree[ri(n)]);
}
```

```
Void build(const vector<ll> &v) {
    n = v.size();
    build(0, 0, n - 1, v);
}

ll query(int n, int esq, int dir, int l, int r) {
    if (esq > r || dir < l) {
        return 0;
    }
    if (l <= esq && dir <= r) {
        return tree[n];
    }
    int mid = (esq + dir) / 2;
    return merge(query(le(n), esq, mid, l, r), query(ri(n), mid + l, dir, l, r));
}

ll query(int l, int r) {
    return query(0, 0, n - 1, l, r);
}

void update(int n, int esq, int dir, int x, ll v) {
</pre>
```

2.11.8 Segment Tree Lazy

Implementação padrão de Seg Tree com lazy update

- \bullet Complexidade de tempo (Pré-processamento): $\mathcal{O}(\mathcal{N})$
- \bullet Complexidade de tempo (Consulta em intervalo): $O(\log(N))$
- Complexidade de tempo (Update em ponto): O(log(N))
- Complexidade de tempo (Update em intervalo): O(log(N))
- \bullet Complexidade de espaço: 2 * 4 * N = O(N)

```
if (esq > x || dir < x) {
    return;
}
if (esq == dir) {
    tree[n] = v;
} else {
    int mid = (esq + dir) / 2;
    if (x <= mid) {
        update(le(n), esq, mid, x, v);
    } else {
        update(ri(n), mid + 1, dir, x, v);
    }
    tree[n] = merge(tree[le(n)], tree[ri(n)]);
}
void update(int x, ll v) {
    update(0, 0, n - 1, x, v);
}</pre>
```

```
namespace seg {
    const int MAX = 2e5 + 5;
    const 11 NEUTRAL = 0; // merge(a, neutral) = a
    ll merge(ll a, ll b) {
        return a + b;
    int sz; // size of the array
    11 \text{ tree} \left[4 * \text{MAX}\right], \text{ lazy} \left[4 * \text{MAX}\right];
    int le(int n) {
         return 2 * n + 1;
    int ri(int n) {
         return 2 * n + 2;
    void push(int n, int esq, int dir) {
         if (lazy[n] == 0) {
             return;
        tree[n] += lazv[n] * (dir - esq + 1);
         if (esq != dir) {
            lazy[le(n)] += lazy[n];
             lazy[ri(n)] += lazy[n];
        lazy[n] = 0;
    void build (span < const ll > v, int n, int esq, int dir) {
         if (esq = dir)
             tree[n] = v[esq];
        } else {
             int mid = (esq + dir) / 2;
             build (v, le(n), esq, mid);
             build(v, ri(n), mid + 1, dir);
             tree[n] = merge(tree[le(n)], tree[ri(n)]);
        }
```

```
void build (span < const ll > v) {
    sz = v.size();
    build (v, 0, 0, sz - 1);
11 query (int 1, int r, int n = 0, int ext{esq} = 0, int dir = sz - 1) {
    push(n, esq, dir);
    if (esq > r \mid | dir < 1) {
        return NEUTRAL;
    if (1 \le esq \&\& dir \le r) {
        return tree[n];
    int mid = (esq + dir) / 2;
    return merge(query(1, r, le(n), esq, mid), query(1, r, ri(n),
       mid + 1, dir);
void update(int 1, int r, 11 v, int n = 0, int esq = 0, int dir = 0
    sz - 1) {
    push(n, esq, dir);
    if (esq > r \mid \mid dir < 1) {
        return;
    if (1 \le esq \&\& dir \le r) {
        lazy[n] += v;
        push(n, esq, dir);
    } else {
        int mid = (esq + dir) / 2;
        update(1, r, v, le(n), esq, mid);
        update(l, r, v, ri(n), mid + 1, dir);
        tree[n] = merge(tree[le(n)], tree[ri(n)]);
```

Capítulo 3

Grafos

3.1 Stoer-Wagner Min Cut

Algortimo de Stoer-Wagner para encontrar o corte mínimo de um grafo.

O algoritmo de Stoer-Wagner é um algoritmo para resolver o problema de corte mínimo em grafos não direcionados com pesos não negativos. A ideia essencial deste algoritmo é encolher o grafo mesclando os vértices mais intensos até que o grafo contenha apenas dois conjuntos de vértices combinados

Complexidade de tempo: $O(V^3)$

```
const int MAXN = 555, INF = 1e9 + 7;
int n, e, adj [MAXN] [MAXN];
vector < int > bestCut;

int mincut() {
    int bestCost = INF;
    vector < int > v [MAXN];
    for (int i = 0; i < n; i++) {
        v[i].assign(1, i);
    }
}</pre>
```

```
int w[MAXN], sel;
bool exist [MAXN], added [MAXN];
memset(exist, true, sizeof(exist));
for (int phase = 0; phase < n - 1; phase++) {
    memset(added, false, sizeof(added));
    memset(w, 0, sizeof(w));
    for (int j = 0, prev; j < n - phase; j++) {
        sel = -1;
        for (int i = 0; i < n; i++) {
    }
}
</pre>
```

```
if (exist[i] && !added[i] && (sel == -1 || w[i] >
                                                                             exist[sel] = false;
       w[sel])) {
        sel = i;
                                                                          } else {
                                                                              added[sel] = true;
                                                                             for (int i = 0; i < n; i++) {
if (j = n - phase - 1) 
                                                                                 w[i] += adj[sel][i];
    if (w[sel] < bestCost) {</pre>
        bestCost = w[sel];
                                                                              prev = sel;
        bestCut = v[sel];
    v[prev].insert(v[prev].end(), v[sel].begin(),
       v[sel].end());
                                                                 return bestCost;
    for (int i = 0; i < n; i++) {
        adj[prev][i] = adj[i][prev] += adj[sel][i];
```

3.2 Shortest Paths

3.2.1 Dijkstra

Computa o menor caminho entre nós de um grafo.

Dado dois nós u e v, computa o menor caminho de u para v.

Complexidade de tempo: O((E + V) * log(E))

Dado um nó u, computa o menor caminho de u para todos os nós.

Complexidade de tempo: O((E + V) * log(E))

Computa o menor caminho de todos os nós para todos os nós

Complexidade de tempo: O(V * ((E + V) * log(E)))

```
const int MAX = 1e5 + 5, INF = 1e9 + 9;
vector < ii > adj [MAX];
int dist[MAX];
int dk(int s, int t) {
    priority queue<ii , vector<ii>>, greater<ii>>> fila;
    fill (begin (dist), end (dist), INF);
    dist[s] = 0;
    fila.emplace(dist[s], s);
    while (!fila.empty()) {
        auto [d, u] = fila.top();
        fila.pop();
        if (u == t) {
const int MAX = 505, INF = 1e9 + 9;
vector < ii > adj [MAX];
int dist[MAX][MAX];
void dk(int n) {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            dist[i][j] = INF;
    for (int s = 0; s < n; s++) {
        priority queue<ii, vector<ii>, greater<ii>>> fila;
        dist[s][s] = 0;
        fila.emplace(dist[s][s], s);
```

```
return dist[t];
    if (d != dist[u]) {
        continue;
    for (auto [w, v] : adj[u]) {
        if (dist[v] > d + w)  {
            dist[v] = d + w;
            fila.emplace(dist[v], v);
return -1;
    while (! fila.empty()) {
        auto [d, u] = fila.top();
        fila.pop();
        if (d != dist[s][u]) {
            continue;
        for (auto [w, v] : adj[u]) {
            if (dist[s][v] > d + w) {
                dist[s][v] = d + w;
                fila.emplace(dist[s][v], v);
```

```
{f const} \ \ {f int} \ \ {f MAX} = \ 1\,{f e} \ 5 \ , \ \ {f INF} \ = \ 1\,{f e} \ 9 \ ;
                                                                                              fila.pop();
                                                                                             if (d != dist[u]) {
vector < ii > adj [MAX];
                                                                                                  continue;
int dist[MAX];
                                                                                              for (auto [w, v] : adj[u]) {
void dk(int s) {
                                                                                                  if (dist[v] > d + w)  {
    priority queue<ii, vector<ii>, greater<ii>>> fila;
                                                                                                       dist[v] = d + w;
    fill (begin (dist), end (dist), INF);
                                                                                                       fila.emplace(dist[v], v);
    dist[s] = 0;
    fila.emplace(dist[s], s);
    while (!fila.empty()) {
         auto [d, u] = fila.top();
```

3.2.2 SPFA

Encontra o caminho mais curto entre um vértice e todos os outros vértices de um grafo.

Detecta ciclos negativos.

Complexidade de tempo: O(|V| * |E|)

```
const int MAX = 1e4 + 4;
const ll INF = 1e18 + 18;

vector < ii > adj [MAX];

ll dist [MAX];

void spfa(int s, int n) {
    fill (dist, dist + n, INF);
    vector < int > cnt(n, 0);
    vector < bool > inq(n, false);
    queue < int > fila;
    fila.push(s);
```

```
inq[s] = true;
dist[s] = 0;
while (!fila.empty()) {
    int u = fila.front();
    fila.pop();
    inq[u] = false;
    for (auto [w, v] : adj[u]) {
        ll newd = (dist[u] == -INF ? -INF : max(w + dist[u], -INF));
        if (newd < dist[v]) {
            dist[v] = newd;
            if (!inq[v]) {</pre>
```

```
fila.push(v);
inq[v] = true;
cnt[v]++;
if (cnt[v] > n) { // negative cycle
    dist[v] = -INF;
}
```

3.3 Inverse Graph

Algoritmo que encontra as componentes conexas quando se é dado o grafo complemento.

Resolve problemas em que se deseja encontrar as componentes conexas quando são dadas as arestas que não pertencem ao grafo

 \bullet Complexidade de tempo: O(N log N + N log M)

```
#include <bits/stdc++.h>
                                                                                     for (int y : nodes) {
using namespace std;
                                                                                         if (adj[x].count(y) == 0) {
set < int > nodes;
                                                                                             aux.insert(y);
vector < set < int >> adj;
                                                                                     for (int y : aux) {
void bfs(int s) {
    queue<int> f;
                                                                                         f.push(y);
    f.push(s);
                                                                                         nodes.erase(y);
    nodes.erase(s);
    set < int > aux;
                                                                                     aux.clear();
    while (!f.empty()) {
        int x = f.front();
```

3.4 2 SAT

Resolve problema do 2-SAT.

• Complexidade de tempo (caso médio): O(N + M)

N é o número de variáveis e M é o número de cláusulas.

A configuração da solução fica guardada no vetor *assignment*.

Em relaçõa ao sinal, tanto faz se 0 liga ou desliga, apenas siga o mesmo padrão.

```
struct sat2 {
    int n;
    vector < vector < int >> g, gt;
    vector < bool > used;
    vector < int > order, comp;
    vector < bool > assignment;
    // number of variables
    sat2(int n) {
        n = 2 * (n + 5);
        g.assign(n, vector<int>());
        gt.assign(n, vector < int > ());
    void add edge(int v, int u, bool v sign, bool u sign) {
        g[2 * v + v sign].push back(2 * u + !u sign);
        g[2 * u + u sign].push back(2 * v + !v sign);
        gt [2 * u + !u \text{ sign}]. push back (2 * v + v \text{ sign});
        gt[2 * v + !v sign].push back(2 * u + u sign);
    void dfs1(int v) {
        used[v] = true;
        for (int u : g[v]) {
            if (!used[u]) {
                 dfs1(u);
```

```
}
}
order.push_back(v);
}
void dfs2(int v, int cl) {
    comp[v] = cl;
    for (int u : gt[v]) {
        if (comp[u] == -1) {
            dfs2(u, cl);
        }
}
bool solve() {
    order.clear();
    used.assign(n, false);
    for (int i = 0; i < n; ++i) {
        if (!used[i]) {
            dfs1(i);
        }
}

comp.assign(n, -1);
    for (int i = 0, j = 0; i < n; ++i) {
        int v = order[n - i - 1];
}</pre>
```

3.5 Fluxo

Conjunto de algoritmos para calcular o fluxo máximo em redes de fluxo.

Muito útil para grafos bipartidos e para grafos com muitas arestas

Complexidade de tempo: $O(V^2 * E)$, mas em grafo bipartido a complexidade é $O(\operatorname{sqrt}(V) * E)$

Útil para grafos com poucas arestas

Complexidade de tempo: O(V * E²)

Computa o fluxo máximo com custo mínimo

Complexidade de tempo: $O(V^2 * E^2)$

```
 \begin{array}{|l|l|} \textbf{const long long INF} = 1e18\,; \\  & \textbf{long long } cap\,, \ flow = 0\,; \\  & \textbf{struct FlowEdge} \ \{ \\  & \textbf{FlowEdge}(\textbf{int } u, \ \textbf{int } v, \ \textbf{long long } cap) \ : \ u(u)\,, \ v(v)\,, \ cap(cap) \ \{ \\  & \textbf{long long } cap \ \} \\
```

```
struct EdmondsKarp {
    int n, s, t, m = 0, vistoken = 0;
    vector < Flow Edge > edges;
    vector < vector < int >> adj;
    vector < int > visto;
    EdmondsKarp(int n, int s, int t) : n(n), s(s), t(t) {
        adj.resize(n);
        visto.resize(n);
    }
    void add edge(int u, int v, long long cap) {
        edges.emplace back(u, v, cap);
        edges.emplace back(v, u, 0);
        adj [u]. push back (m);
        adj[v].push back(m + 1);
        m += 2;
    }
    int bfs() {
        vistoken++;
        queue<int> fila;
        fila.push(s);
        vector < int > pego(n, -1);
        while (!fila.empty()) {
            int u = fila.front();
            if (u = t) 
                break;
            fila.pop();
            visto[u] = vistoken;
```

```
for (int id : adj[u]) {
                 if (edges[id].cap - edges[id].flow < 1) {
                     continue:
                 int v = edges[id].v;
                if (visto[v] = -1) {
                     continue;
                 fila.push(v);
                 pego[v] = id;
        if (pego[t] == -1) {
            return 0;
        long long f = INF;
        for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
            f = min(f, edges[id].cap - edges[id].flow);
        for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
            edges [id]. flow += f;
            edges [id ^{\circ} 1]. flow = f;
        return f;
    long long flow() {
        long long maxflow = 0;
        while (long long f = bfs()) {
            \max flow += f;
        return maxflow;
};
```

```
typedef long long ll;
const 11 \text{ INF} = 1e18;
struct FlowEdge {
    int u, v;
    11 cap, flow = 0;
    FlowEdge(int u, int v, ll cap) : u(u), v(v), cap(cap) {
};
struct Dinic {
    vector < Flow Edge > edges;
    vector<vector<int>> adj;
    int n, s, t, m = 0;
    vector < int > level, ptr;
    queue < int > q;
    Dinic(int n, int s, int t) : n(n), s(s), t(t) {
        adj.resize(n);
        level.resize(n);
        ptr.resize(n);
    }
    void add edge(int u, int v, ll cap) {
        edges.emplace back(u, v, cap);
        edges.emplace back(v, u, 0);
        adj[u].push back(m);
        adj[v].push back(m + 1);
        m += 2;
    bool bfs() {
        while (!q.empty()) {
            int u = q.front();
            q.pop();
            for (int id : adj[u]) {
                 if (edges[id].cap - edges[id].flow < 1) {
                     continue:
                 int v = edges[id].v;
```

```
if (level[v] != -1) {
                continue;
            level[v] = level[u] + 1;
            q.push(v);
    return level [t] !=-1;
ll dfs(int u, ll f) {
    if (f == 0)  {
        return 0;
    if (u = t) {
        return f;
    for (int &cid = ptr[u]; cid < (int)adj[u].size(); cid++) {
        int id = adj[u][cid];
        int v = edges[id].v;
        if (level[u] + 1 != level[v] || edges[id].cap -
            edges[id].flow < 1) {
            continue;
        ll tr = dfs(v, min(f, edges[id].cap - edges[id].flow));
        if (tr == 0) {
            continue;
        edges[id].flow += tr;
        edges[id ^ 1].flow -= tr;
        return tr;
   return 0;
11 flow() {
    11 \text{ maxflow} = 0;
    while (true) {
        fill (level.begin(), level.end(), -1);
        level[s] = 0;
        q.push(s);
```

```
if (! bfs()) {
                 break;
             fill(ptr.begin(), ptr.end(), 0);
             while (ll\ f = dfs(s, INF)) {
                \max flow += f;
struct MinCostMaxFlow {
    int n, s, t, m = 0;
    11 \text{ maxflow} = 0, \text{ mincost} = 0;
    vector<FlowEdge> edges;
    vector < vector < int >> adj;
    MinCostMaxFlow(int n, int s, int t) : n(n), s(s), t(t) 
        adj.resize(n);
    }
    void add edge(int u, int v, ll cap, ll cost) {
        edges.emplace back(u, v, cap, cost);
        edges.emplace back(v, u, 0, -cost);
        adj[u].push back(m);
        adj[v].push back(m + 1);
        m += 2;
    bool spfa() {
        vector < int > pego(n, -1);
        vector < ll > dis(n, INF);
        vector < bool > inq(n, false);
        queue<int> fila;
        fila.push(s);
        dis[s] = 0;
        inq[s] = 1;
        while (! fila.empty()) {
            int u = fila.front();
            fila.pop();
            inq[u] = false;
```

```
for (int id : adj[u]) {
        if (edges[id].cap - edges[id].flow < 1) {
            continue;
        int v = edges[id].v;
        if (dis[v] > dis[u] + edges[id].cost) {
            dis[v] = dis[u] + edges[id].cost;
            pego[v] = id;
            if (!ing[v]) {
                inq[v] = true;
                fila.push(v);
if (pego[t] == -1) {
    return 0;
11 	ext{ f} = INF;
for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
    f = min(f, edges[id].cap - edges[id].flow);
    mincost += edges[id].cost;
for (int id = pego[t]; id != -1; id = pego[edges[id].u]) {
    edges [id]. flow += f;
    edges [id ^1]. flow = f;
\max flow += f;
return 1;
```

```
}

ll flow() {
    while (spfa())

;
    return maxflow;
}
};
```

3.6 Kruskal

Algoritimo para encontrar a MST (minimum spanning tree) de um grafo.

Utiliza [DSU](../../Estruturas%20de%20Dados/DSU/dsu.cpp) - (disjoint set union) - para construir MST - (minimum spanning tree)

• Complexidade de tempo (Construção): O(M log N)

```
struct Edge {
    int u, v, w;
    bool operator < (Edge const & other) {
        return w < other.w;
    }
};

vector < Edge > edges , result;
int cost;

struct DSU {
    vector < int > pa, sz;
    DSU(int n) {
        sz.assign(n + 5, 1);
        for (int i = 0; i < n + 5; i++) {
            pa.push_back(i);
        }
}</pre>
```

```
int root(int a) {
    return pa[a] = (a == pa[a] ? a : root(pa[a]));
}
bool find(int a, int b) {
    return root(a) == root(b);
}

void uni(int a, int b) {
    int ra = root(a), rb = root(b);
    if (ra == rb) {
        return;
    }
    if (sz[ra] > sz[rb]) {
        swap(ra, rb);
    }
    pa[ra] = rb;
    sz[rb] += sz[ra];
}
```

```
};

void kruskal(int m, int n) {
    DSU dsu(n);

sort(edges.begin(), edges.end());
```

3.7 Graph Center

Encontra o centro e o diâmetro de um grafo

Complexidade de tempo: O(N)

```
const int INF = 1e9 + 9;

vector < vector < int >>> adj;

struct GraphCenter {
    int n, diam = 0;
    vector < int > centros, dist, pai;
    int bfs(int s) {
        queue < int > q;
        q. push(s);
        dist.assign(n + 5, INF);
        pai.assign(n + 5, -1);
        dist[s] = 0;
    int maxidist = 0, maxinode = 0;
    while (!q.empty()) {
        int u = q.front();
        q.pop();
    }
}
```

```
for (Edge e : edges) {
    if (!dsu.find(e.u, e.v)) {
        cost += e.w;
        result.push_back(e); // remove if need only cost
        dsu.uni(e.u, e.v);
    }
}
```

```
vector<int> path;
for (int u = d2; u != -1; u = pai[u]) {
    path.push_back(u);
}
int len = path.size();
if (len % 2 == 1) {
    centros.push_back(path[len / 2]);
```

3.8 Bridge

Algoritmo que acha pontes utilizando uma dfs

Complexidade de tempo: O(N + M)

```
// number of nodes
int n;
vector < vector < int >> adj; // adjacency list of graph
vector < bool > visited;
vector < int > tin , low;
int timer;
void dfs (int u, int p = -1) {
    visited [u] = true;
    tin[u] = low[u] = timer++;
    for (int v : adj[u]) {
        if (v = p) 
            continue;
        if (visited[v]) {
            low[u] = min(low[u], tin[v]);
        } else {
            dfs(v, u);
            low[u] = min(low[u], low[v]);
```

3.9 HLD

Técnica usada para otimizar a execução de operações em árvores.

- \bullet Pré-Processamento: O(N)
- Range Query/Update: O(Log(N)) * O(Complexidade de query da estrutura)
- Point Query/Update: O(Complexidade de query da estrutura)
- LCA: O(Log(N))
- Subtree Query: O(Complexidade de query da estrutura)
- Complexidade de espaço: O(N)

70

```
pai[root] = root;
   head[root] = root;
    dfs hld(root);
void build (int root, vector < ll > &v) {
    build(root);
    vector < ll > aux(v.size());
    for (int i = 0; i < (int)v.size(); i++) {
        aux[pos[i]] = v[i];
    seg::build(aux);
void build (int root,
           vector <i3> &edges) { // use this if
                                 // weighted edges
    build(root);
    e = 1;
    vector < ll > aux (edges.size() + 1);
    for (auto [u, v, w] : edges) {
        if (pos[u] > pos[v]) 
            swap(u, v);
        aux[pos[v]] = w;
    seg::build(aux);
11 query(int u, int v) {
    if (pos[u] > pos[v]) {
        swap(u, v);
```

```
if (head[u] = head[v]) 
          return seg::query(pos[u] + e, pos[v]);
     } else {
           11 \text{ qv} = \text{seg} :: \text{query}(\text{pos}[\text{head}[\text{v}]], \text{pos}[\text{v}]);
          ll qu = query(u, pai[head[v]]);
          return merge(qu, qv);
void update(int u, int v, ll k) {
     if (pos[u] > pos[v]) {
          swap(u, v);
     if (head[u] = head[v]) 
          seg :: update(pos[u] + e, pos[v], k);
          seg::update(pos[head[v]], pos[v], k);
          update(u, pai[head[v]], k);
int lca(int u, int v) {
     if (pos[u] > pos[v]) {
          swap(u, v);
     \mathbf{return} \ (\mathbf{head}[\mathbf{u}] = \mathbf{head}[\mathbf{v}] \ ? \ \mathbf{u} : \mathbf{lca}(\mathbf{u}, \ \mathbf{pai}[\mathbf{head}[\mathbf{v}]]));
11 query subtree(int u) {
     return seg::query(pos[u], pos[u] + sz[u] - 1);
```

CAPÍTULO 3. GRAFOS

3.10 Matching

3.10.1 Hungaro

Resolve o problema de Matching para uma matriz A[n][m], onde $n \leq m$.

A implementação minimiza os custos, para maximizar basta multiplicar os pesos por -1.

A matriz de entrada precisa ser indexada em 1 !!!

O vetor result guarda os pares do matching.

Complexidade de tempo: $O(n^2 * m)$

```
const 11 \text{ INF} = 1e18 + 18;
vector<pair<int, int>> result;
ll hungarian(int n, int m, vector<vector<int>>> &A) {
    vector < int > u(n + 1), v(m + 1), p(m + 1), way(m + 1);
    for (int i = 1; i <= n; i++) {
        p[0] = i;
        int j0 = 0;
        vector < int > minv(m + 1, INF);
        vector < char > used(m + 1, false);
        do {
             used[j0] = true;
             11 i0 = p[j0], delta = INF, j1;
             for (int j = 1; j \leq m; j++) {
                 if (!used[j]) {
                      int cur = A[i0][j] - u[i0] - v[j];
                      if (cur < minv[j]) 
                          \min [j] = \operatorname{cur}, \operatorname{way}[j] = j0;
                      if (minv[j] < delta) 
                          delta = minv[j], j1 = j;
```

```
}
for (int j = 0; j <= m; j++) {
    if (used[j]) {
        u[p[j]] += delta, v[j] -= delta;
    } else {
        minv[j] -= delta;
    }

    j0 = j1;
} while (p[j0] != 0);
do {
    int j1 = way[j0];
    p[j0] = p[j1];
    j0 = j1;
} while (j0);
}
for (int i = 1; i <= m; i++) {
    result.emplace_back(p[i], i);
}
return -v[0];
</pre>
```

72

CAPÍTULO 3. GRAFOS

3.11 Binary Lifting

Usa uma sparse table para calcular o k-ésimo ancestral de u.

Pode ser usada com o algoritmo de EulerTour para calcular o LCA.

Complexidade de tempo:

- Pré-processamento: O(N * log(N))
- Consulta do k-ésimo ancestral de u: O(log(N))
- LCA: O(log(N))

Complexidade de espaço: O(Nlog(N))

```
namespace st {
   int n, me;
   vector<vector<int>>> st;
   void bl_dfs(int u, int p) {
      st[u][0] = p;
      for (int i = 1; i <= me; i++) {
            st[u][i] = st[st[u][i - 1]][i - 1];
      }
      for (int v : adj[u]) {
        if (v != p) {
            bl_dfs(v, u);
            }
      }
   }
   void build(int _n, int root = 0) {</pre>
```

```
namespace st {
    int n, me, timer;
    vector < int > tin, tout;
    vector<vector<int>> st;
    void et dfs(int u, int p) {
        tin[u] = ++timer;
        st[u][0] = p;
        for (int i = 1; i \le me; i++) {
            st[u][i] = st[st[u][i-1]][i-1];
        for (int v : adj[u]) {
            if (v != p) {
                et dfs(v, u);
        tout[u] = ++timer;
    void build(int n, int root = 0) {
        n = n;
        tin.assign(n, 0);
        tout.assign(n, 0);
        timer = 0;
        me = floor(log2(n));
        st.assign(n, vector < int > (me + 1, 0));
        et dfs(root, root);
    bool is ancestor(int u, int v) {
```

3.12 LCA

Algoritmo de Lowest Common Ancestor usando EulerTour e Sparse Table Complexidade de tempo:

 \bullet O(Nlog(N)) Preprocessing

```
return tin[u] \ll tin[v] \&\& tout[u] \gg tout[v];
int lca(int u, int v) {
    if (is ancestor(u, v)) {
        return u;
    if (is ancestor(v, u)) {
        return v;
    for (int i = me; i >= 0; i--) {
        if (!is_ancestor(st[u][i], v)) {
            u = st[u][i];
    return st [u][0];
int ancestor (int u,
             int k) { // k-th ancestor of u
    for (int i = me; i >= 0; i--) {
        if ((1 << i) & k) {
            u = st[u][i];
    return u;
```

• O(1) Query LCA

Complexidade de espaço: O(Nlog(N))

```
#include <bits/stdc++.h>
using namespace std;
#define INF 1e9
#define fi first
#define se second
typedef pair < int, int > ii;
vector < int > tin, tout;
vector < vector < int >> adj;
vector<ii> prof;
vector<vector<ii>>> st;
int n, timer;
void SparseTable(vector<ii> &v) {
    int n = v. size();
    int e = floor(log2(n));
    st.assign(e + 1, vector < ii > (n));
    for (int i = 0; i < n; i++) {
        st[0][i] = v[i];
    for (int i = 1; i \le e; i++) {
        for (int j = 0; j + (1 << i) <= n; j++) {
            st[i][j] = min(st[i-1][j], st[i-1][j+(1 << (i-1)[j])
                1))]);
void et dfs(int u, int p, int h) {
    tin[u] = timer++;
    prof.emplace back(h, u);
```

```
for (int v : adj[u]) {
        if (v != p) {
            et dfs(v, u, h + 1);
            prof.emplace back(h, u);
    tout[u] = timer++;
void build(int root = 0) {
    tin.assign(n, 0);
    tout.assign(n, 0);
    prof.clear();
    timer = 0;
    et dfs(root, root, 0);
    SparseTable(prof);
int lca(int u, int v) {
    int l = tout[u], r = tin[v];
    if (1 > r)  {
        swap(l, r);
    int i = floor(log2(r - 1 + 1));
    return \min(st[i][l], st[i][r - (1 << i) + 1]).se;
int main() {
    cin >> n;
    adj.assign(n, vector < int > (0));
    for (int i = 0; i < n - 1; i++) {
        int a, b;
```

CAPÍTULO 3. GRAFOS

```
cin >> a >> b;
adj[a].push_back(b);
adj[b].push_back(a);
}
build();
```

Capítulo 4

String

4.1 Aho Corasick

Constrói uma estrutura de dados semelhante a um trie com links adicionais e, em seguida, constrói uma máquina de estados finitos (autômato). Útil para pattern matching de um set de strings em um texto.

 $Complexidade de tempo: \ O(|S|+|T|), \ onde \ |S| \ \acute{e} \ o \ somat\acute{o}rio \ do \ tamanho \ das \ strings \ e \ |T| \ \acute{e} \ o \ tamanho \ do \ texto$

```
const int K = 26;
struct Vertex {
   int next[K], p = -1, link = -1, exi = -1, go[K], cont = 0;
   bool term = false;
   vector<int> idxs;
   char pch;
   Vertex(int p = -1, char ch = '$') : p(p), pch(ch) {
      fill(begin(next), end(next), -1);
      fill(begin(go), end(go), -1);
   }
};
```

```
vector < Vertex > aho(1);
void add_string(const string &s, int idx) {
   int v = 0;
   for (char ch : s) {
      int c = ch - 'a';
      if (aho[v].next[c] == -1) {
            aho[v].next[c] = aho.size();
            aho.emplace_back(v, ch);
      }
      v = aho[v].next[c];
   }
   aho[v].term = true;
```

```
aho[v].idxs.push back(idx);
int go(int u, char ch);
int get link(int u) {
    if (aho[u]. link = -1) {
        if (u = 0 | | aho[u].p = 0)  {
            aho[u]. link = 0;
            aho[u]. link = go(get link(aho[u].p), aho[u].pch);
    return aho[u].link;
int go(int u, char ch) {
    int c = ch - 'a';
    if (aho[u].go[c] = -1) {
        if (aho[u]. next[c] != -1) {
            aho[u].go[c] = aho[u].next[c];
            aho[u].go[c] = u = 0 ? 0 : go(get link(u), ch);
    return aho[u].go[c];
int exi(int u) {
```

```
if (aho[u]. exi != -1) {
        return aho[u].exi;
    int v = get link(u);
    return aho[u]. exi = (v = 0 \mid | aho[v]. term ? v : <math>exi(v));
void process(const string &s) {
    int st = 0;
    for (char c : s) {
        st = go(st, c);
        for (int aux = st; aux; aux = exi(aux)) {
            aho[aux].cont++;
    for (int st = 1; st < aho sz; st++) {
        if (!aho[st].term) {
            continue;
        for (int i : aho[st].idxs) {
            // Do something here
            // idx i ocurs + aho[st].cont times
            h[i] += aho[st].cont;
```

4.2 Trie

Estrutura que guarda informações indexadas por palavra.

Útil encontrar todos os prefixos inseridos anteriormente de uma palavra específica.

- * Complexidade de tempo (Update): O(|S|)
- * Complexidade de tempo (Consulta de palavra): O(|S|)

```
struct trie {
                                                                              int get value(string &s) {
   map<char, int> trie[100005];
                                                                                  int id = 0;
    int value [100005];
    int n nodes = 0;
                                                                                  for (char c : s) {
    void insert(string &s, int v) {
                                                                                      if (!trie[id].count(c)) {
        int id = 0;
                                                                                          return -1;
        for (char c : s) {
            if (!trie[id].count(c)) {
                                                                                      id = trie[id][c];
                trie[id][c] = ++n nodes;
                                                                                  return value [id];
            id = trie[id][c];
        value[id] = v;
```

4.3 Suffix Array

Estrutura que conterá inteiros que representam os índices iniciais de todos os sufixos ordenados de uma determinada string.

Tambem Constroi a tabela LCP(Longest common prefix).

- * Complexidade de tempo (Pré-Processamento): O(|S|*log(|S|))
- * Complexidade de tempo (Contar ocorrencias de S em T): O(|S|*log(|T|))

```
} else {
         dir = mid - 1;
}

esq = range.first , dir = range.second;
while (esq <= dir) {
    int mid = (esq + dir) / 2;
    if (s[sa[mid] + i] == t[i]) {
        R = mid;
    }
}</pre>
```

```
int busca string (string &t) {
                                                                              pair < int, int > range = \{0, n-1\};
        if (s[sa[mid] + i] \le t[i]) 
            esq = mid + 1;
                                                                              for (int i = 0; i < t.size(); i++) {
       } else {
                                                                                 range = busca(t, i, range);
            dir = mid - 1;
                                                                                 if (range.first == -1) {
                                                                                     return 0;
   return {L, R};
                                                                             return range.second - range.first + 1;
// count ocurences of s on t
const int MAX N = 5e5 + 5;
                                                                                     auxra[sa[0]] = r = 0;
                                                                                     for (int i = 1; i < n; i++) {
struct suffix array {
                                                                                          auxra[sa[i]] =
                                                                                              (ra[sa[i]] = ra[sa[i-1]] \&\& ra[sa[i]+k] =
    string s;
                                                                                                 ra[sa[i - 1] + k])
    int n, sum, r, ra [MAX N], sa [MAX N], auxra [MAX N], auxsa [MAX N],
                                                                                                  ? r
       c[MAX N], lcp[MAX N];
    void counting sort(int k) {
                                                                                                  : ++r;
       memset(c, 0, sizeof(c));
        for (int i = 0; i < n; i++) {
                                                                                      for (int i = 0; i < n; i++) {
            c[(i + k < n) ? ra[i + k] : 0]++;
                                                                                          ra[i] = auxra[i];
                                                                                     if (ra[sa[n-1]] = n-1) {
        for (int i = sum = 0; i < max(256, n); i++) {
            sum += c[i], c[i] = sum - c[i];
                                                                                         break;
        for (int i = 0; i < n; i++) {
            auxsa[c[sa[i] + k < n ? ra[sa[i] + k] : 0]++] = sa[i];
                                                                             void build lcp() {
        for (int i = 0; i < n; i++) {
                                                                                  for (int i = 0, k = 0; i < n - 1; i++) {
            sa[i] = auxsa[i];
                                                                                     int j = sa[ra[i] - 1];
                                                                                     while (s[i + k] = s[j + k]) {
    }
                                                                                         k++;
    void build sa() {
        for (int k = 1; k < n; k <<= 1) {
                                                                                      lcp[ra[i]] = k;
            counting sort(k);
                                                                                      if (k) {
            counting sort(0);
                                                                                         k--:
```

```
build_lcp();

// for (int i = 0; i < n; i++)

// printf("%2d: %s\n", sa[i], s.c_str() +

// sa[i]);

s = _s + '$';

n = s.size();

for (int i = 0; i < n; i++) {
    ra[i] = s[i], sa[i] = i;
}

build_lcp();

// for (int i = 0; i < n; i++)

// sa[i]);

}

int operator[](int i) {
    return sa[i];

}

build_sa();</pre>
```

4.4 Manacher

Encontra todos os palindromos de uma string.

Dada uma string s de tamanho n, encontra todos os pares (i,j) tal que a substring s[i...j] seja um palindromo.

* Complexidade de tempo: O(N)

```
\begin{array}{c} \text{count} \; + = \; d1 \, [\, i\, ] \; = \; k - -; \\ & \quad \text{if} \; (\, i \; + \; k \; > \; r) \; \; \{ \\ & \quad l \; = \; i \; - \; k; \\ & \quad r \; = \; i \; + \; k; \\ & \quad \} \\ \\ \} \\ \text{void solve\_even} (\; \text{string \&s}) \; \; \{ \\ & \quad d2 \cdot \text{resize} \, (n); \\ & \quad \text{for} \; (\, \text{int} \; i \; = \; 0, \; l \; = \; 0, \; r \; = \; -1; \; i \; < \; n; \; i + +) \; \{ \\ & \quad \text{int} \; k \; = \; (i \; > \; r) \; ? \; 0 \; : \; \min(d2 \, [\, l \; + \; r \; - \; i \; + \; 1], \; r \; - \; i \; + \; 1); \\ & \quad \text{while} \; (0 \; < = \; i \; - \; k \; - \; 1 \; \&\& \; i \; + \; k \; < \; n \; \&\& \; s \, [\, i \; - \; k \; - \; 1] \; = \; s \, [\, i \; + \; k]) \; \{ \\ & \quad k + +; \\ \\ \} \\ & \quad \text{count} \; + = \; d2 \, [\, i \, ] \; = \; k - -; \\ \end{array}
```

```
82
```

4.5 Patricia Tree

Estrutura de dados que armazena strings e permite consultas por prefixo.

Implementação PB-DS, extremamente curta e confusa:

- Criar: patricia tree pat;
- Inserir: pat.insert("sei la");
- Remover: pat.erase("sei la");
- Verificar existência: pat.find("sei la") != pat.end();
- Pegar palavras que começam com um prefixo: auto match = pat.prefix range("sei");
- Percorrer *match*: for(auto it = match.first; it != match.second; ++it);
- $\bullet \ \ Pegar \ menor \ elemento \ lexicogr\'afico \ *maior \ ou \ igual* \ ao \ prefixo: \ *pat.lower_bound("sei");$
- Pegar menor elemento lexicográfico *maior* ao prefixo: *pat.upper_bound("sei");

TODAS AS OPERAÇÕES EM O(|S|)

NÃO ACEITA ELEMENTOS REPETIDOS

4.6 Prefix Function

Para cada prefixo k de uma dada string s, calcula o maior prefixo que tambem é sufixo de k.

Seja n o tamanho do texto e m o tamanho do padrão.

KMP

String matching em O(n + m).

Autômato de KMP

String matching em O(n) com O(m) de pré-processamento.

Prefix Count

Dada uma string s, calcula quantas vezes cada prefixo de s aparece em s com complexidade de tempo de O(n).

```
vector<int> pi(string &s) {
    vector < int > p(s.size());
    for (int i = 1, j = 0; i < s.size(); i++) {
        while (j > 0 \&\& s[i] != s[j]) {
            j = p[j - 1];
        if (s[i] = s[j]) {
            j++;
        p[i] = j;
    return p;
vector < int > kmp(string &s, string t) {
vector < int > pi(string s) {
    vector < int > p(s.size());
    for (int i = 1, j = 0; i < s.size(); i++) {
        while (j > 0 \&\& s[i] != s[j]) {
            j = p[j - 1];
        if (s[i] = s[j]) {
            j++;
        p[i] = j;
    return p;
vector < int > prefixCount(string s) {
```

```
t += '$';
vector < int > p = pi(t), match;
for (int i = 0, j = 0; i < s.size(); i++) {
    while (j > 0 \&\& s[i] != t[j]) {
        j = p[j - 1];
    if (s[i] = t[j]) {
        j++;
    if (j = t.size() - 1) {
        match.push back(i - j + 1);
return match;
vector < int > p = pi(s + '\#');
int n = s.size();
vector < int > cnt(n + 1, 0);
for (int i = 0; i < n; i++) {
    cnt[p[i]]++;
for (int i = n - 1; i > 0; i---) {
    \operatorname{cnt}[p[i-1]] += \operatorname{cnt}[i];
```

for (int i = 0; $i \le n$; i++) {

 $\operatorname{cnt}[i]++;$

return cnt;

```
struct AutKMP {
    vector<vector<int>> nxt;
    vector<int> pi(string &s) {
        vector < int > p(s.size());
        for (int i = 1, j = 0; i < s.size(); i++) {
            while (j > 0 \&\& s[i] != s[j]) {
                j = p[j - 1];
            if (s[i] = s[j]) {
                j++;
            p[i] = j;
        return p;
    void setString(string s) {
        s += '#';
        nxt.assign(s.size(), vector < int > (26));
        vector < int > p = pi(s);
        for (int c = 0; c < 26; c++) {
```

4.7 Hashing

Hashing para testar igualdade de duas strings.

A função *range(i, j)* retorna o hash da substring nesse range.

Pode ser necessário usar pares de hash para evitar colisões.

- * Complexidade de tempo (Construção): O(N)
- * Complexidade de tempo (Consulta de range): O(1)

```
struct hashing {
    const long long LIM = 10000006;
    long long p, m;
    vector < long long > pw, hsh;
    hashing(long long _p, long long _m) : p(_p), m(_m) {
        pw.resize(LIM);
        hsh.resize(LIM);
        pw[0] = 1;
        for (int i = 1; i < LIM; i++) {
            pw[i] = (pw[i - 1] * p) % m;
        }
    }
    void set_string(string &s) {
        hsh[0] = s[0];
    }
}</pre>
```

4.8 Lyndon

Strings em decomposição única em subcadeias que são ordenadas lexicograficamente e não podem ser mais reduzidas.

Duval

Gera a Lyndon Factorization de uma string

 $\ ^{*}$ Complexidade de tempo: O(N)

Min Cyclic Shift

Gera a menor rotação circular da string original que pode ser obtida por meio de deslocamentos cíclicos dos caracteres.

* Complexidade de tempo: O(N)

```
while (j < n \&\& s[k] <= s[j]) {
              if (s[k] < s[j]) {
                   k = i;
               } else {}
                    k++;
              j++;
vector<string> duval(string const &s) {
    int n = s.size();
     int i = 0;
     vector < string > factorization;
     \mathbf{while} (i < n) {
          \mathbf{int} \quad \mathbf{j} = \mathbf{i} + 1, \quad \mathbf{k} = \mathbf{i} ;
          while (j < n \&\& s[k] <= s[j]) {
               if(s[k] < s[j])  {
                    k = i;
               } else {
                    k++;
```

int j = i + 1, k = i;

```
 while (i <= k) {
    i += j - k;
    }
}
return s.substr(ans, n / 2);
}

while (i <= k) {
    factorization.push_back(s.substr(i, j - k));
    i += j - k;
    }
}
return factorization;
}</pre>
```

Capítulo 5

Paradigmas

5.1 Busca Ternaria

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

 $\bullet \ \ Complexidade \ de \ tempo: \ O(\log(N)\ *\ O(eval)). \ Onde\ N\ \'e\ o\ tamanho\ do\ espaço\ de\ busca\ e\ O(eval)\ o\ custo\ de\ avaliação\ da\ função.$

Busca Ternária em Espaço Discreto

Encontra um ponto ótimo em uma função que pode ser separada em duas funções estritamente monotônicas (e.g. parábolas).

Versão para espaços discretos.

 \bullet Complexidade de tempo: O(log(N) * O(eval)). Onde N é o tamanho do espaço de busca e O(eval) o custo de avaliação da função.

```
// minimizing. To maximize use >= to
long long eval(long long mid) {
    // implement the evaluation
                                                                                   if (eval(mid) \le eval(mid + 1))
                                                                                       ans = mid;
                                                                                       r = mid - 1;
long long discrete ternary search(long long l, long long r) {
                                                                                   } else {
    long long ans = -1;
                                                                                       l = mid + 1;
    r--; // to not space r
    while (l \ll r) {
        long long mid = (l + r) / 2;
                                                                               return ans;
                                                                                   // minimizing. To maximize use >= to
double eval (double mid) {
    // implement the evaluation
                                                                                   // compare
                                                                                   if (eval(mid 1) \le eval(mid 2)) {
                                                                                       r = mid \overline{2};
double ternary search(double l, double r) {
    int k = 100;
                                                                                       1 = mid 1;
    while (k--) {
        double step = (l + r) / 3;
        double mid 1 = 1 + step;
                                                                               return 1;
        double mid^2 = r - step;
```

5.2 Convex Hull Trick

Complexidade de tempo:

Otimização de DP onde se mantém as retas que formam um Convex Hull em uma estrutura que permite consultar qual o melhor valor para um determinado x. Só funciona quando as retas são monotônicas. Caso não forem, usar LiChao Tree para guardar as retas

- Inserir reta: O(1) amortizado
- Consultar x: O(log(N))
- Consultar x quando x tem crescimento monotônico: O(1)

```
const 11 INF = 1e18 + 18;
bool op(ll a, ll b) {
    return a >= b; // either >= or <=
struct line {
    ll a, b;
    ll get(ll x) {
        return a * x + b;
    ll intersect (line l) {
        return (l.b - b + a - l.a) / (a - l.a); // rounds up for
           integer
                                                 // only
deque<pair<line, ll>> fila;
void add line(ll a, ll b) {
    line nova = \{a, b\};
    if (!fila.empty() && fila.back().first.a == a &&
       fila.back().first.b == b) {
        return;
    while (!fila.empty() && op(fila.back().second,
       nova.intersect(fila.back().first))) {
        fila.pop back();
```

```
11 x = fila.empty() ? -INF : nova.intersect(fila.back().first);
    fila.emplace back(nova, x);
ll get binary search(ll x) {
    int esq = 0, dir = fila.size() - 1, r = -1;
    while (esq \ll dir) {
        int mid = (esq + dir) / 2;
        if (op(x, fila[mid].second)) {
            esq = mid + 1;
            r = mid;
        } else {
             dir = mid - 1;
    return fila[r].first.get(x);
// O(1), use only when QUERIES are monotonic!
11 \operatorname{get}(11 x) 
    while (fila.size() >= 2 \&\& op(x, fila[1].second)) {
        fila.pop front();
    return fila.front().first.get(x);
```

5.3 Busca Binaria Paralela

Faz a busca binária para múltiplas consultas quando a busca binária é muito pesada.

 $\bullet \ \ Complexidade \ de \ tempo: \ O((N+Q)log(N)\ *\ O(F)), \ onde \ N\ \'e\ o\ tamanho\ do\ espaço\ de\ busca,\ Q\ \'e\ o\ n\'umero\ de\ consultas\ e\ O(F),\ o\ custo\ de\ avalia\~{\it c}\~{\it a}\~{\it o}\ da\ fun\~{\it c}\~{\it a}\~{\it o}.$

```
namespace parallel binary search {
    typedef tuple < int, int, long long, long long > query; //{value,
       id, l, r}
    vector < query > queries [1123456];
                                                            // pode ser
       um mapa se
                                                            // for muito
                                                                esparso
    long long ans [1123456];
                                                            // definir
       pro tamanho
                                                           // das
                                                               queries
    long long l, r, mid;
    int id = 0;
    void set lim search(long long n) {
        1 = 0;
        r = n;
        mid = (1 + r) / 2;
    void add query(long long v) {
        queries [mid]. push back(\{v, id++, l, r\});
    }
    void advance search(long long v) {
        // advance search
    bool satisfies (long long mid, int v, long long l, long long r) {
        // implement the evaluation
```

```
bool get ans() {
    // implement the get ans
void parallel binary search(long long l, long long r) {
    bool go = 1;
    while (go) {
        go = 0;
        int i = 0; // outra logica se for usar
                   // um mapa
        for (auto &vec : queries) {
            advance search (i++);
            for (auto q : vec) {
                auto [v, id, l, r] = q;
                if (l > r) 
                    continue;
                go = 1;
                // return while satisfies
                if (satisfies(i, v, l, r)) {
                    ans[i] = get ans();
                    long long mid = (i + 1) / 2;
                    queries [mid] = query(v, id, l, i - 1);
                    long long mid = (i + r) / 2;
                    queries[mid] = query(v, id, i + 1, r);
```

```
92
```

```
}
vec.clear();
}
} // namespace name
```

5.4 All Submasks

Percorre todas as submáscaras de uma máscara.

* Complexidade de tempo: $O(3^N)$

int mask;

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin$

5.5 Divide and Conquer

Otimização para DP de prefixo quando se pretende separar o vetor em K subgrupos.

É preciso fazer a função query(i, j) que computa o custo do subgrupo

i, j

* Complexidade de tempo: O(n * k * log(n) * O(query))

Divide and Conquer com Query on demand

<!- *Read in [English](README.en.md)* ->

Usado para evitar queries pesadas ou o custo de pré-processamento.

É preciso fazer as funções da estrutura **janela**, eles adicionam e removem itens um a um como uma janela flutuante.

* Complexidade de tempo: O(n * k * log(n) * O(update da janela))

```
namespace DC {
                                                                                         compute (mid + 1, r, opt, optr);
    vi dp before, dp cur;
    void compute(int 1, int r, int optl, int optr) {
                                                                                     ll solve(int n, int k) {
        if (1 > r) {
             return;
                                                                                         dp before. assign (n + 5, 0);
                                                                                         dp cur.assign(n + 5, 0);
                                                                                         for (int i = 0; i < n; i++) {
        \mathbf{int} \ \mathrm{mid} = (1 + r) >> 1;
         pair < ll , int > best = \{0, -1\}; // \{INF, -1\}  se quiser minimizar
                                                                                              dp before [i] = query(0, i);
        for (int i = optl; i \le min(mid, optr); i++) {
             best = max(best,
                                                                                         for (int i = 1; i < k; i++) {
                                                                                             compute (0, n - 1, 0, n - 1);
                         \{(i ? dp before[i - 1] : 0) + query(i, mid), \}
                          i }); // min() se quiser minimizar
                                                                                             dp before = dp cur;
                                                                                         return dp before [n-1];
        dp cur[mid] = best.first;
        int opt = best.second;
        compute (1, \text{ mid} - 1, \text{ optl}, \text{ opt});
```

```
void back r(int v) { // Mover o 'r' do range
                           // para a esquerda
         freq [v]--;
        sum = freq[v];
        r ---;
    void clear(int n) { // Limpar range
        1 = 0;
        r = -1;
        sum = 0;
        freq.assign(n + 5, 0);
} s;
vi dp before, dp cur;
void compute(int 1, int r, int optl, int optr) {
    if (l > r) 
        return;
    int \ mid = (l + r) >> 1;
    pair < ll, int > best = \{0, -1\}; //\{INF, -1\} se quiser minimizar
    while (s.l < optl) {
        s.advance l(v[s.1]);
    while (s.l > optl) {
        s.back l(v[s.l-1]);
    \mathbf{while} \ (\mathbf{s.r} < \mathbf{mid}) \ \{
        s.advance r(v[s.r + 1]);
    while (s.r > mid) {
        s.back r(v[s.r]);
```

```
vi removed;
        for (int i = optl; i \le min(mid, optr); i++) {
            best =
                min (best,
                    \{(i ? dp before[i - 1] : 0) + s.sum, i\}); //
                        min() se quiser minimizar
            removed.push back(v[s.l]);
            s.advance l(v[s.1]);
        for (int rem : removed) {
            s.back l(v[s.l-1]);
        dp cur[mid] = best.first;
        int opt = best.second;
        compute(l, mid -1, optl, opt);
        compute(mid + 1, r, opt, optr);
    ll solve(int n, int k) {
        dp before.assign(n, 0);
        dp cur.assign(n, 0);
        s.clear(n);
        for (int i = 0; i < n; i++) {
            s.advance r(v[i]);
            dp before[i] = s.sum;
        for (int i = 1; i < k; i++) {
            s.clear(n);
            compute (0, n - 1, 0, n - 1);
            dp before = dp cur;
        return dp before [n-1];
};
```

5.6 Exponenciação de Matriz

Otimização para DP de prefixo quando o valor atual está em função dos últimos K valores já calculados.

* Complexidade de tempo: $O(log(n) * k^3)$

É preciso mapear a DP para uma exponenciação de matriz.

DP:

$$dp[n] = \sum_{i=1}^{k} c[i] \cdot dp[n-i]$$

Mapeamento:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ c[k] & c[k-1] & c[k-2] & \dots & c[1] & 0 \end{pmatrix}^n \times \begin{pmatrix} dp[0] \\ dp[1] \\ dp[2] \\ \dots \\ dp[k-1] \end{pmatrix}$$

• -

Exemplo de DP:

$$dp[i] = dp[i-1] + 2 \cdot i^2 + 3 \cdot i + 5$$

Nesses casos é preciso fazer uma linha para manter cada constante e potência do índice.

Mapeamento:

Exemplo de DP:

$$dp[n] = c \times \prod_{i=1}^{k} dp[n-i]$$

Nesses casos é preciso trabalhar com o logaritmo e temos o caso padrão:

$$\log(dp[n]) = \log(c) + \sum_{i=1}^{k} \log(dp[n-i])$$

Se a resposta precisar ser inteira, deve-se fatorar a constante e os valores inicias e então fazer uma exponenciação para cada fator primo. Depois é só juntar a resposta no final.

```
res = mult(res, b);
}
b = mult(b, b);
exp /= 2;
}
return res;
}

// MUDA MUITO DE ACORDO COM O PROBLEMA
// LEIA COMO FAZER O MAPEAMENIO NO README
11 solve(11 exp, 11 dim) {
   if (exp < dim) {
      return dp[exp];
   }

T.assign(dim, vi(dim));</pre>
```

```
// TO DO: Preencher a Matriz que vai ser
// exponenciada T[0][1] = 1; T[1][0] = 1;
// T[1][1] = 1;

mat prod = exp_mod(T, exp);

mat vec;
vec.assign(dim, vi(1));
for (int i = 0; i < dim; i++) {
    vec[i][0] = dp[i]; // Valores iniciais
}

mat ans = mult(prod, vec);
return ans[0][0];</pre>
```

5.7 DP de Permutacao

Otimização do problema do Caixeiro Viajante

* Complexidade de tempo: $O(n^2 * 2^n)$

Para rodar a função basta setar a matriz de adjacência 'dist' e chamar solve(0,0,n).

```
for (int i = 0; i < n; i++) {
    if (!(mask & (1 << i))) {
        long double aux = solve(i, mask | (1 << i), n);
        if (mask) {
            aux += dist[atual][i];
        }
}</pre>
res = min(res, aux);

}

return dp[atual][mask] = res;

}
```

5.8 Mo

Resolve Queries Complicadas Offline de forma rápida.

É preciso manter uma estrutura que adicione e remova elementos nas extremeidades de um range (tipo janela).

• Complexidade de tempo (Query offline): O(N * sqrt(N))

Mo com Update

Resolve Queries Complicadas Offline de forma rápida.

Permite que existam UPDATES PONTUAIS!

É preciso manter uma estrutura que adicione e remova elementos nas extremidades de um range (tipo janela).

• Complexidade de tempo: $O(Q * N^{(2/3)})$

```
typedef pair < int , int > ii;
int block_sz; // Better if 'const';
bool operator < (query q) const {
    int _l = l / block_sz;
    int _ql = q.l / block_sz;
    struct query {
        return ii(_l, (_l & 1 ? -r : r)) < ii(_ql, (_ql & 1 ?</pre>
```

```
-q.r : q.r));
    };
    vector < query > queries;
    void build(int n) {
        block sz = (int) sqrt(n);
        // TODO: initialize data structure
    inline void add query(int l, int r) {
        queries.push back({1, r, (int)queries.size()});
    inline void remove(int idx) {
        // TODO: remove value at idx from data
        // structure
    inline void add(int idx) {
        // TODO: add value at idx from data
        // structure
    inline int get answer() {
        // TODO: extract the current answer of the
        // data structure
        return 0;
typedef pair <int, int> ii;
typedef tuple<int, int, int> iii;
int block sz; // Better if 'const';
vector<int> vec;
namespace mo {
    struct query {
        int l, r, t, idx;
        bool operator < (query q) const {
            int l = l / block sz;
            int r = r / block sz;
```

```
vector < int > run() {
        vector<int> answers(queries.size());
        sort(queries.begin(), queries.end());
        int L = 0;
        int R = -1;
        for (query q : queries) {
            while (L > q.1) {
                add(--L);
            while (R < q.r) {
                add(++R);
            while (L < q.1) {
                remove (L++);
            while (R > q.r) {
                remove(R--);
            answers[q.idx] = get answer();
        return answers;
};
```

```
void build(int n) {
    block sz = pow(1.4142 * n, 2.0 / 3);
    // TODO: initialize data structure
inline void add query(int 1, int r) {
    queries.push back({1, r, (int)updates.size(),
       (int) queries. size() });
inline void add update(int x, int v) {
    updates.push back({x, v});
inline void remove(int idx) {
    // TODO: remove value at idx from data
    // structure
inline void add(int idx) {
    // TODO: add value at idx from data
    // structure
inline void update(int 1, int r, int t) {
    auto \&[x, v] = updates[t];
    if (1 \le x \&\& x \le r) 
        remove(x);
   swap(vec[x], v);
    if (1 \le x \&\& x \le r) {
        add(x);
inline int get answer() {
   // TODO: extract the current answer from
    // the data structure
    return 0;
```

```
vector<int> run() {
        vector < int > answers (queries.size());
        sort(queries.begin(), queries.end());
        int L = 0;
        int R = -1;
        int T = 0;
        for (query q : queries) {
            while (T < q.t)  {
                 update(L, R, T++);
            while (T > q.t)
                update(L, R, —T);
            while (L > q.l) {
                add(--L);
            while (R < q.r) {
                 add(++R);
            while (L < q.l) {
                 remove (L++);
            while (R > q.r) {
                remove (R--);
            answers [q.idx] = get answer();
        return answers;
};
```

Capítulo 6

Theoretical

CAPÍTULO 6. THEORETICAL

102

6.1 Some Prime Numbers

6.1.1 Left-Truncatable Prime

Prime number such that any suffix of it is a prime number 357,686,312,646,216,567,629,137

6.1.2 Mersenne Primes

Prime numbers of the form $2^m - 1$

Exponent (m)	Decimal representation
2	3
3	7
5	31
7	127
13	8,191
17	131,071
19	524,287
31	2,147,483,647
61	$2,3*10^{18}$
89	$6,1*10^{26}$
107	$1,6*10^{32}$
127	$1,7*10^{38}$

6.2 C++ constants

Constant	C++ Name	Value
π	M_PI	3.141592
$\pi/2$	M_PI_2	1.570796
$\pi/4$	M_PI_4	0.785398
$1/\pi$	M_1_PI	0.318309
$2/\pi$	M_2_PI	0.636619
$2/\sqrt{\pi}$	M_2_SQRTPI	1.128379
$\sqrt{2}$	M_SQRT2	1.414213
$1/\sqrt{2}$	M_SQRT1_2	0.707106
e	M_E	2.718281
$\log_2 e$	M_LOG2E	1.442695
$\log_{10} e$	M_LOG10E	0.434294
ln 2	M_LN2	0.693147
ln 10	M_LN10	2.302585

6.3 Linear Operators

6.3.1 Rotate counter-clockwise by θ°

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

6.3.2 Reflect about the line y = mx

$$\frac{1}{m^2+1} \begin{bmatrix} 1-m^2 & 2m\\ 2m & m^2-1 \end{bmatrix}$$

6.3.3 Inverse of a 2x2 matrix A

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

6.3.4 Horizontal shear by K

$$\begin{bmatrix} 1 & K \\ 0 & 1 \end{bmatrix}$$

6.3.5 Vertical shear by K

$$\begin{bmatrix} 1 & 0 \\ K & 1 \end{bmatrix}$$

6.3.6 Change of basis

 \vec{a}_{β} are the coordinates of vector \vec{a} in basis β .

 \vec{a} are the coordinates of vector \vec{a} in the canonical basis.

 $\vec{b1}$ and $\vec{b2}$ are the basis vectors for β .

C is a matrix that changes from basis β to the canonical basis.

$$C\vec{a}_{\beta} = \vec{a}$$

$$C^{-1}\vec{a} = \vec{a}_{\beta}$$

$$C = \begin{bmatrix} b1_x & b2_x \\ b1_y & b2_y \end{bmatrix}$$

6.3.7 Properties of matrix operations

$$(AB)^{-1} = A^{-1}B^{-1}$$
$$(AB)^{T} = B^{T}A^{T}$$
$$(A^{-1})^{T} = (A^{T})^{-1}$$
$$(A+B)^{T} = A^{T} + B^{T}$$
$$det(A) = det(A^{T})$$
$$det(AB) = det(A)det(B)$$

Let A be an NxN matrix:

$$det(kA) = K^N det(A)$$