Agentes guiados por utilidad

Sistemas Inteligentes Distribuidos

Sergio Alvarez Javier Vázquez

Bibliografía

- Artificial intelligence: a modern approach (Russell & Norvig), cap. 2, 16
- Reinforcement Learning: An Introduction (Sutton & Barto), cap. 3, 4
- Multi-Agent Reinforcement Learning (Albrecht et al.), cap. 2

Utilidad

Agentes guiados por utilidad

Agente deliberativo por utilidad

Objetivos vs utilidad

- Dependiendo del entorno, es posible que guiar por objetivos no sea lo más adecuado
 - ¿Qué ocurre si tenemos diversas maneras válidas de cumplir con los objetivos? ¿Son todas igual de racionales?
 - La única distinción que tenemos es valido o no válido según el formalismo lógico que escojamos
 - ¿Cómo gestionamos entornos parcialmente observables o no deterministas?
 - Si aumentamos la complejidad de la representación de los objetivos, podemos aumentar la complejidad del razonamiento
- Alternativa: función de utilidad
 - Representación subsimbólica en lugar de simbólica

Utilidad y recompensa

Agentes guiados por utilidad

Función de utilidad

- Internalización de una métrica numérica de rendimiento
 - Idealmente, alineada con una optimización de la racionalidad
- Pros:
 - Más flexibilidad, e.g. gestión de la incertidumbre
 - Más adaptable
 - Permite diferenciar entre posibilidades válidas
- Contras
 - Partimos de la suposición de que es posible reducir la racionalidad a un valor numérico
 - ¿De dónde sale esta función de utilidad? Normalmente no pensamos en términos de una función de este tipo
 - Según como se modele la utilidad, es posible que no haya transparencia en la toma de decisiones
 - No hay una única manera de modelar utilidades

Utilidad por estado

• Una función de utilidad (o también función de valor) se define como:

$$\mathcal{U}:S\to\mathbb{R}$$

que asocia un número real a cada estado del entorno

- Sin embargo, cuál es el valor de una ejecución...
 - ¿es la utilidad máxima de un estado dentro de una ejecución?
 - ¿es la suma de utilidades de todos los estados de una ejecución?
 - ¿es la media aritmética de las utilidades de todos los estados de una ejecución?
- Problema: es difícil especificar una visión a largo plazo cuando asignamos utilidades a estados individuales
 - Veremos más adelante el concepto de factor de descuento para abordar esto
- Problema: no tenemos en cuenta las acciones tomadas por el agente

Utilidad por ejecución

 Otra posibilidad: asignar una utilidad no a estados individuales, sino a ejecuciones (secuencias de pasos)

$$\mathcal{U}: S \times \cdots \times S \to \mathbb{R}$$

- Este enfoque implementa una visión a largo plazo
- Problema: hemos de tener en cuenta la probabilidad de la ocurrencia de los estados
- ¿Cómo podemos combinar estas dos visiones, estado vs ejecución?

Señal de recompensa

- Señal (o función) que guía al agente basándose en:
 - el estado en el que estaba,
 - la acción que ha tomado y
 - el estado al que llega

$$\mathcal{R}: S \times A \times S \rightarrow \mathbb{R}$$

- La función de utilidad se puede calcular a partir de esta señal
 - Habitualmente: el valor esperado de la utilidad es una función sobre la suma de recompensas recibidas durante la ejecución
- ¿De dónde viene esta señal? Generalmente, del entorno

La hipótesis de recompensa

That all of what we mean by goals and purposes can be well thought of as maximization of the expected value of the cumulative sum of a received scalar signal (reward).

The reward hypothesis, Richard Sutton

http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

Agentes guiados por utilidad

- Queremos modelar el proceso de razonamiento que permite a un agente tomar decisiones en un entorno
- Vamos a suponer (por ahora) que...
 - Tenemos acceso a una señal de recompensa
 - El entorno es observable
 - Las acciones del agente sobre el entorno tienen un efecto aleatorio pero conocido: el entorno es determinista y estocástico

Ejemplo: Grid World 4x3 (AIMA)

La acción **moverse** tiene efecto estocástico: 80% de moverse en la dirección intencionada, 0% si la dirección es una pared Recompensa = -0.04 tras moverse, excepto en los estados finales marcados

• ¿Qué estrategia debería seguir el agente?

- Ejemplo: dados
 - CS221 Stanford
- Para cada turno t = 1, 2, ...
 - Escoge: jugar o parar
 - Efecto de jugar:
 - Recibes 4 euros
 - Lanzas un dado de 6 caras
 - Si el resultado es 1 o 2, se acaba el juego
 - Si el resultado es otro, se avanza al siguiente turno
 - Efecto de parar:
 - Recibes 10 euros
 - Se acaba el juego

Formalización

- Ambos ejemplos tienen elementos comunes
- Queremos ser capaces de formalizar, de manera abstracta, cualquier problema de este tipo
- ¿Nos sirven los métodos que hemos visto hasta ahora?
 - Algoritmos de búsqueda
 - Deliberación por objetivos

Formalización: MDPs

Un proceso de decisión de Markov (MDP) se define como una tupla $\langle S, A, \mathcal{R}, \mathcal{T}, \mu, \gamma \rangle$ tal que:

S es el conjunto de estados, del cual $\overline{S} \subset S$ es el conjunto de estados finales

A es el conjunto de acciones

 $\mathcal{R}: S \times A \times S \to \mathbb{R}$ es la función de recompensa, normalmente formulada como r(s, a, s')

 $\mathcal{T}: S \times A \times S \rightarrow [0,1]$ es la función de probabilidad de transición entre estados, normalmente formulada como p(s'|s,a)

 $\mu: S \to [0,1]$ es la función de distribución del estado inicial

 $\gamma \in [0,1]$ es el factor de descuento

Formalización: MDPs

• La función de transición \mathcal{T} cumple:

$$\forall s \in S \setminus \overline{S}, \forall a \in A : \sum_{s' \in S} p(s'|s,a) = 1$$

$$\forall s, s' \in \overline{S}, \forall a \in A: p(s'|s, a) = 0$$

• La función de distribución del estado inicial μ cumple:

$$\sum_{s \in S} \mu(s) = 1$$

$$\forall s \in \bar{S}: \mu(s) = 0$$

Formalización: MDPs

- Es posible convertir problemas de búsqueda en MDPs
 - Si suponemos que un algoritmo de búsqueda ramifica en base a una función de sucesores Sucesor(s, a) entonces:

$$p(s'|s,a) = \begin{cases} 1 & \text{si } s' = Sucesor(s,a) \\ 0 & \text{en cualquier otro caso} \end{cases}$$

- También habría que reconvertir la función de coste en \mathcal{R} , maximizando en lugar de minimizando
- ¿Podemos usar el formalismo de MDPs para encontrar estrategias óptimas para un agente?
 - ¿Nos hace falta tener un histórico de las decisiones pasadas tomadas por el agente?

Suposición de Markov

- El futuro es independiente del pasado
- El próximo estado y el siguiente valor de recompensa son dependientes, únicamente, del estado actual y de la siguiente acción tomada por el agente
- Esta suposición permite simplificar el modelo y el cálculo de estrategias óptimas a partir de él
- Si la historia o el estado interno del agente es relevante, hay que modelar el espacio de estados de manera acorde
- Si el entorno no es totalmente observable: POMDPs

Volviendo al ejemplo de los dados...

- Para cada turno t = 1, 2, ...
 - Escoge: jugar o parar
 - Efecto de jugar:
 - Recibes 4 euros
 - Lanzas un dado de 6 caras
 - Si el resultado es 1 o 2, se acaba el juego
 - Si el resultado es otro, se avanza al siguiente turno
 - Efecto de parar:
 - Recibes 10 euros
 - Se acaba el juego

Vamos a modelar este juego como un MDP

MDP: juego de los dados

- Para cada turno t = 1, 2, ...
 - Escoge: jugar o parar
 - Efecto de jugar:
 - Recibes 4 euros
 - Lanzas un dado de 6 caras
 - Si el resultado es 1 o 2, se acaba el juego
 - Si el resultado es otro, se avanza al siguiente turno
 - Efecto de parar:
 - Recibes 10 euros
 - Se acaba el juego

$$S = \{\text{jugando, fin}\}, \overline{S} = \{\text{fin}\}, \mu(\text{jugando}) = 1$$

 $A = \{\text{jugar, parar}\}$

$$p(\mathbf{s} = \text{jugando} \mid \mathbf{s} = \text{jugando}, \mathbf{a} = \text{jugar}) = \frac{2}{3}$$

p(fin | jugando, jugar) =
$$\frac{1}{3}$$

$$p(fin | jugando, parar) = 1$$

$$\mathcal{R}(\mathbf{s} = \text{jugando}, \mathbf{a} = \text{jugar}, \mathbf{s}' = \text{jugando}) = 4$$

 $\mathcal{R}(\text{jugando}, \text{jugar}, \text{fin}) = 4$
 $\mathcal{R}(\text{jugando}, \text{parar}, \text{fin}) = 10$

MDPs como grafos

MDP: juego de los dados

Políticas y trayectorias

Agentes guiados por utilidad

Política

• Una solución a un MDP se llama política y se define como:

$$\pi: A \times S \rightarrow [0,1]$$

- Una política es una asignación, para cada par acción $a \in A$, estado $s \in S \setminus \overline{S}$, de una probabilidad $\pi(a|s)$:
 - 1 si a es la opción escogida cuando el agente está en el estado s,
 - 0 en cualquier otro caso, i.e. para todas las acciones no escogidas en el estado s

Política

- Por ejemplo, para el juego de los dados, las dos únicas políticas posibles son:
 - $\pi(\text{jugar} \mid \text{jugando}) = 1 \text{ y } 0 \text{ en el resto de los casos, o}$
 - $\pi(\text{parar} \mid \text{jugando}) = 1 \text{ y } 0 \text{ en el resto de los casos}$
 - Es irrelevante asignar $\pi(? \mid fin)$ porque es estado final
- ¿Tendría sentido tener una política que sea dinámica, es decir, que elija una acción u otra dependiendo del turno t?
- ¿Tendría sentido tener una política que asigne probabilidades en el rango (0,1)? Es decir, permitiendo más de una acción escogida en un estado
- Repasad los conceptos vistos hasta ahora para responder a estas preguntas

Política

- Queremos saber qué estados son buenos o malos para que la política tome buenas decisiones
- Para ello, nos vendría bien saber cuán bueno es un estado...
 - ...pero mirar la recompensa inmediata no nos sirve: el futuro sigue siendo relevante
- Hay que mirar las recompensas de las trayectorias que parten de un estado

Trayectoria

- Dado un MDP, una política nos da trayectorias aleatorias
- La utilidad de una política se define como la suma (descontada) de las recompensas de la trayectoria
 - · Por lo tanto, podemos formular la utilidad como una variable aleatoria
- El valor de una política en un estado concreto es la utilidad esperada en ese estado
- Una trayectoria se expresa concatenando estados y acciones:

$$[s_0, a_0, s_1, a_1, s_2, a_2, \dots]$$

 Cada trayectoria además va asociada a una secuencia de recompensas:

$$[r_0, r_1, r_2, \dots] = [\mathcal{R}(s_0, a_0, s_1), \mathcal{R}(s_1, a_1, s_2), \mathcal{R}(s_2, a_2, s_3), \dots]$$

Trayectorias del juego de los dados

Suponiendo que la utilidad es la suma de recompensas...

Trayectoria (π (jugando) = parar)	Recompensas	Utilidad
[jugando, parar, fin]	[10]	10

Trayectoria ($\pi(jugando) = jugar$)	Recompensas	Utilidad
[jugando, jugar, fin]	[4]	4
[jugando, jugar, jugando, jugar, fin]	[4, 4]	8
[jugando, jugar, jugando, jugar, fin]	[4, 4, 4]	12
[jugando, jugar, jugando, jugar, jugando, jugar, fin]	[4, 4, 4, 4]	16
•••		•••

El factor de descuento

- El elemento γ del MDP representa la preferencia del agente en favor de las recompensas inmediatas con respecto de las recompensas futuras
 - A medida que γ se acerca a 0, las recompensas futuras se consideran insignificantes
 - A medida γ se acerca a 1, las recompensas futuras tienden a ser tan importantes como las inmediatas
 - Cuando $\gamma = 1$, hablamos de recompensas puramente aditivas

El factor de descuento

 La fórmula de la utilidad para una trayectoria, teniendo en cuenta el factor de descuento, queda así:

$$\mathcal{U}([s_0, a_0, s_1, a_1, a_2, \dots]) = r_0 + \gamma r_1 + \gamma^2 r_2 + \dots = \sum_{t=0}^{\infty} \gamma^t r_t = \sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t, s_{t+1})$$

• Teniendo en cuenta que, sea cual sea la política, cada trayectoria puede ser aleatoria (por μ y \mathcal{T}), el objetivo del agente es maximizar el valor esperado de la utilidad:

$$\mathbb{E}_{\pi}[r_0 + \gamma r_1 + \gamma^2 r_2 + \dots] = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t r_t\right] = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t, s_{t+1})\right]$$

$$\pi(a|s)$$

$$p(s'|s, a)$$

¿Por qué definir un factor de descuento?

- Para reflejar la tendencia humana a tener más en cuenta las ganancias a corto plazo
- Razón económica: las ganancias inmediatas pueden suponer un mayor margen de ahorro e inversión
- Si la función de transición no es perfecta, es preferible quedarse con las recompensas más accesibles por si las recompensas futuras son inalcanzables
- Razón pragmática: hace desaparecer el problema del horizonte infinito
- La preferencia entre trayectorias es estable, por lo que un factor de descuento no modificará esta preferencia (a menos que el entorno sea dinámico)

Garantías de convergencia

- Un MDP tiene una utilidad finita cuando se cumple al menos una de las siguientes condiciones:
 - El factor de descuento cumple $\gamma < 1$
 - Aplicación de la suma de progresiones geométricas infinitas

$$\mathcal{U}([s_0, a_0, s_1, a_1, \dots]) \le \sum_{t=0}^{\infty} \gamma^t \mathcal{R}_{max} = \frac{\mathcal{R}_{max}}{1 - \gamma}$$

- El entorno define estados finales y se garantiza que uno de ellos se visita en cada trayectoria
- No hay ciclos en el grafo generado a partir del MDP

Utilidad con descuento

Trayectoria ($\pi(jugando) = jugar$)	$\mathcal{R}(s,a,s')$	$\gamma = 0$	$\gamma = 0.5$	$\gamma = 1$
[jugando, jugar, fin]	[4]	4	4	4
[jugando, jugar, jugando, jugar, fin]	[4, 4]	4	6	8
[jugando, jugar, jugando, jugar, fin]	[4, 4, 4]	4	7	12
[jugando, jugar, jugando, jugar, jugando, jugar, jugando, jugar, fin]	[4, 4, 4, 4]	4	7.5	16
•••	•••	•••	•••	•••

Utilidad con descuento

Trayectoria ($\pi(jugando) = jugar$)	$\mathcal{R}(s,a,s')$	$\gamma = 0$	$\gamma = 0.5$	$\gamma=1$
[jugando, jugar, fin]	[4]	4	4	4
[jugando, jugar, jugando, jugar, fin]	[4, 4]	4	6	8
[jugando, jugar, jugando, jugar, fin]	[4, 4, 4]	4	7	12
[jugando, jugar, jugando, jugar, jugando, jugar, jugando, jugar, fin]	[4, 4, 4, 4]	4	7.5	16
•••	•••		•••	•••

Esta es la función que buscábamos: la que nos da el valor de un estado (V^{π})

Evaluación de política

Agentes guiados por utilidad

Evaluación de política

- Si se dan las siguientes premisas:
 - Tenemos acceso a una señal de recompensa
 - El entorno es observable
 - Las acciones del agente sobre el entorno tienen un efecto aleatorio pero conocido: el entorno es determinista y estocástico
 - Hay garantía de convergencia
 - Conocemos la política del agente
- Entonces podemos aplicar el método de evaluación de política para calcular la utilidad esperada en cada estado

Valor de estado, valor de acción

- Valor de un estado bajo una política: $V^{\pi}(s)$
 - Utilidad esperada al seguir la política π desde el estado s
- Valor de una acción en un estado bajo una política: $Q^{\pi}(s,a)$
 - Utilidad esperada al seguir la política π tomando la acción a desde el estado s

Valor de estado, valor de acción

$$Q^{\pi}(s,a) = \sum_{s' \in S} p(s'|s,a) [\mathcal{R}(s,a,s') + \gamma V^{\pi}(s')]$$

Valor de estado, valor de acción

$$Q^{\pi}(s,a) = \sum_{s' \in S} p(s'|s,a) [\mathcal{R}(s,a,s') + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s) = \begin{cases} 0 & \text{si } s \in \overline{S} \\ Q^{\pi}(s, a) & \text{en cualquier otro caso, donde } a \sim \pi(\cdot | s) \end{cases}$$

Ecuación de Bellman

$$V^{\pi}(s) = \mathbb{E}_{\pi}[\mathcal{U}_t|s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma \mathcal{U}_{t+1}|s_t = s] =$$

$$= \sum_{a \in A} \pi(a|s) \sum_{s' \in S} p(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma \mathbb{E}_{\pi} [\mathcal{U}_{t+1}|s_{t+1} = s'] \right] =$$

$$= \sum_{a \in A} \pi(a|s) \sum_{s' \in S} p(s'|s,a) \left[\mathcal{R}(s,a,s') + \gamma V^{\pi}(s') \right]$$

1 sólo para $a \sim \pi(\cdot | s)$

 $Q^{\pi}(s,a)$

Valor de estado: juego de los dados

Escogemos π tal que π (jugando) = jugar Asumimos $\gamma=1$

$$V^{\pi}(\text{fin}) = 0$$

$$V^{\pi}(\text{jugando}) = \frac{1}{3} \left(4 + V^{\pi}(\text{fin}) \right) + \frac{2}{3} \left(4 + V^{\pi}(\text{jugando}) \right)$$

¿Podemos calcular V^{π} (jugando) en este caso?

Algoritmo: evaluación de política

- Programación dinámica
 - Inicializamos con valores arbitrarios e iteramos, actualizando los valores, hasta que converjan
- Pseudocódigo:
 - Inicializar $V_0^{\pi}(s) \leftarrow 0, \forall s \in S$
 - Para cada iteración $t = 1, ..., t_{MAX}$
 - Para cada estado $s \in S$:

$$V_t^{\pi}(s) \leftarrow \sum_{s' \in S} p(s'|s,a) [\mathcal{R}(s,\pi(s),s') + \gamma V_{t-1}^{\pi}(s')]$$

$$Q_{t-1}^{\pi}(s,\pi(s))$$

Algoritmo: evaluación de política

• Condición de convergencia, definimos ϵ :

$$\max_{s \in S} |V_t^{\pi}(s) - V_{t-1}^{\pi}(s)| \le \epsilon$$

Si $\epsilon = 0$, la convergencia es total

- Únicamente es necesario guardar dos iteraciones: la actual y la anterior
- Complejidad: $O(t_{MAX}S^2)$

Iteración de valor

Agentes guiados por utilidad

Iteración de valor

- Si se dan las siguientes premisas:
 - Tenemos acceso a una señal de recompensa
 - El entorno es observable
 - Las acciones del agente sobre el entorno tienen un efecto aleatorio pero conocido: el entorno es determinista y estocástico
 - Hay garantía de convergencia
 - NO conocemos la política del agente
- En este caso podemos aplicar el método de **iteración de valor** para encontrar la **política óptima**

Valor óptimo

- No tenemos una política, así que queremos encontrar la óptima
- Llamaremos $V^*(s)$ a la función que retorna el valor máximo posible para un estado s
- Llamaremos $Q^*(s,a)$ a la función que retorna el valor máximo posible para una acción a en un estado s

Valor acción-estado óptimo

$$Q^*(s,a) = \sum_{s' \in S} p(s'|s,a) [\mathcal{R}(s,a,s') + \gamma V^*(s')]$$

Valor estado óptimo

Política óptima

La política óptima se puede obtener simplemente escogiendo la acción $a \in A$ que maximiza la función $Q^*(s, a)$ para el estado s:

$$\pi^*(a|s) = \begin{cases} 1 & \text{si } a = \arg\max_{a' \in A} Q^*(s, a') \\ 0 & \text{en cualquier otro caso} \end{cases}$$

Esta fórmula es equivalente, por substitución, a:

$$\pi^*(a|s) = \begin{cases} 1 & \text{si } a = \arg\max_{a' \in A} \sum_{s' \in S} p(s'|s, a') [\mathcal{R}(s, a', s') + \gamma V^*(s')] \\ 0 & \text{en cualquier otro caso} \end{cases}$$

Algoritmo: iteración de valor

- De nuevo, programación dinámica
 - Inicializamos con valores arbitrarios e iteramos, actualizando los valores, hasta que converjan
- Pseudocódigo:
 - Inicializar $V_0^*(s) \leftarrow 0, \forall s \in S$
 - Para cada iteración $t = 1, ..., t_{MAX}$
 - Para cada estado $s \in S$:

$$V_t^*(s) \leftarrow \max_{a \in A} \sum_{s' \in S} p(s'|s,a) [\mathcal{R}(s,a,s') + \gamma V_{t-1}^*(s')]$$

$$Q_{t-1}^*(s,a)$$

Algoritmo: iteración de valor

- Convergencia:
 - Como en evaluación de política:

$$\max_{s \in S} |V_t^*(s) - V_{t-1}^*(s)| \le \epsilon$$

- Iteración de valor garantiza el óptimo si:
 - γ < 1, o bien
 - el grafo resultante del MDP es acíclico
- Complejidad: $O(t_{MAX}S^2A)$

Recapitulando

- Si tenemos la tarea objetivo formulada como un MDP y además tenemos una política
 - Evaluación de política nos permite obtener las funciones de valor y por lo tanto la utilidad esperada
- Si tenemos la tarea objetivo formulada como un MDP
 - Iteración de valor nos permite obtener la política óptima
- ¿Y si no tenemos observabilidad total?
 - Partially Observable Markov Decision Processes (POMDPs)
- ¿Y si no tenemos un MDP?
 - Aprendizaje por refuerzo (siguiente tema)

POMDPs (breve introducción)

Agentes guiados por utilidad

POMDPs

- Queremos modelar el proceso de razonamiento que permite a un agente tomar decisiones en un entorno parcialmente observable: Partially observable Markov decision process
- Vamos a suponer que...
 - Tenemos acceso a una señal de recompensa
 - El entorno es parcialmente observable
 - El entorno puede ser dinámico y/o no determinista

Formalización: POMDPs

Un POMDP se define como una tupla $(S, A, \mathcal{R}, \mathcal{T}, \mu, \gamma, \Omega, \mathcal{O}, \mathcal{B})$ tal que:

 S, A, T, μ, γ son los mismos elementos que en un MDP

 $\mathcal{R}: S \times A \to \mathbb{R}$ es la función de recompensa, definida aquí sólo sobre estado y acción

 Ω es el conjunto (finito) de observaciones

 \mathcal{O} : $A \times S \to \Delta\Omega$ es una función de observación, tal que $\mathcal{O}(o|a,s)$ denota la probabilidad de observar o cuando el agente toma la acción a y sucede una transición a s

 \mathcal{B} es una función de probabilidad sobre estados a partir de secuencias de acciones y observaciones: $\mathcal{B}(s_t) = Pr(s_t = s | s_0, a_1, o_1, a_2, o_2, ..., a_{t-1}, o_{t-1})$

Entonces, la política se define de esta manera:

$$\pi: \Omega \times \Omega \times \cdots \times \Omega \to A$$

De observaciones a creencias

• La probabilidad de una observación se puede calcular a partir de $\mathcal T$ iterando por estados posibles

$$Pr(o|a,b) = \sum_{s'} Pr(o|a,s',b) Pr(s'|a,b)$$

$$= \sum_{s'} \mathcal{O}(o|a,s') Pr(s'|a,b) = \sum_{s'} \mathcal{O}(o|a,s') \sum_{s} \mathcal{B}(s) p(s'|s,a)$$

• A partir de \mathcal{B} , se puede calcular la creencia usando la regla de Bayes:

$$\mathcal{B}'(s_t) = Pr(s'|b,a,o) = \frac{\mathcal{O}(o|a,s')\sum_{s\in S}\mathcal{B}(s)p(s'|s,a)}{Pr(o|a,b)}$$

De POMDPs a MDPs

• Un POMDP se puede reducir a un MDP con la función de transición \mathcal{T}' :

$$\mathcal{T}'(b, a, b') = \sum_{o \in \Omega} \Pr(b'|o, a, b) \Pr(o|a, b)$$

$$= \sum_{o \in \Omega} \Pr(b'|o, a, b) \sum_{s \in S} \mathcal{O}(o|a, s') \sum_{s \in S} \mathcal{B}(s) p(s'|s, a)$$

y la función de recompensa \mathcal{R}' :

$$\mathcal{R}(b,a) = \sum_{s \in S} \mathcal{B}(s)\mathcal{R}(s,a)$$