Hochschule München University of Applied Sciences

Fakultät 7

Prof. Dr. Markus Friedrich

Advanced Deep LearningTeam Project

Goals

- Work together in a team on a machine learning task that is solved with several deep learning techniques.
- Implement DL models and use existing implementations.
- Learn how to evaluate DL models.
- Use state-of-the-art tools.

System Description

Webcam

- Records images when triggered by user input.
- Tools / packages: opency-python

Image Classifier

- Receives, pre-processes and classifies webcam images
- packages: pytorch, pytorch lightning, captum, autodistill, (optuna) | services: w&b

	Implementation	Training	Evaluation
AlexNet	implement	from scratch on ds1 on ds2	 On ds1 and ds2: Test set results (sensible metrics) Training loop profiler results (pytorch lightning) Loss curves Worst and best case examples with explainable visualization (captum)
Reset-50	use existing	pre-trained on ImageNetfine-tuned on ds1fine-tuned on ds2	
Vision Transformer	use existing	pre-trained on ImageNetfine-tuned on ds1fine-tuned on ds2	

ds1: existing data set (e.g. found on kaggle)
 ds2: extended dataset with additional self-curated data. Data auto-labeled (autodistill).
 Selection of images based on evaluation and examination of best and worst case examples (captum).

Image Classifier

- Training:
 - Choose sensible train/validate/test split
 - Experiment with hyper parameters!
 - Experiment with data augmentation!
 - Store run results on w&b!
- Bonus task: Tune hyper parameters automatically (optuna)

Article Agent

The article agent uses LLM agents (langchain) to interact with external services.

• These external services (e.g. wikipedia) are used to gather information based on the set of predicted

image class labels.

Source: https://miro.medium.com/v2/resize:fit:1200/1*5TnpUZnp4-sq8TuJGYe_-w.png

Article Assembler

- Takes texts and image descriptions from the article agent and images from the diffusion model and generates an article
- An Article contains:
 - Text paragraphs (min. 1000 words, min. 4 paragraphs)
 - Figures with caption (min. 4 figures)
- Proposed transformation pipeline: take input and put it in a markdown template, use pandoc for markdown → PDF conversion
- Important: text must make sense (facts can be LLM-ish off).

System Description

Overall System & Usability

- The system connects the aforementioned parts seamlessly in a single application.
- The UI can be very restricted (command line is also fine).
- User guidance:
 - The user is prompted to point the webcam at an object and press a key / button.
 - 2. The system responds with an "image recorded" message and goes to 1).
 - 3. If the user presses a certain start-key / button, the generation process starts with the set of recorded images.
 - 4. The system returns the article as a PDF.

System Description

First steps

- Form teams
- Come up with a good domain (potentially sensible articles? suitable data sets available? Search e.g. on kaggle / papers with code, google dataset search)
- 3. Setup infrastructure (git, service accounts)
- Distribute work
 (important: equal workload)

