Problemas do Curso de Combinatória do IMPA Anotações de Aula

Guilherme Zeus Dantas e Moura zeusdanmou@gmail.com

Definicões

- $[n] = \{1, 2, \dots, n\};$
- $\mathcal{P}(S)$ é o conjunto de todos os subconjuntos de S.
- $\binom{S}{k}$ é o conjunto de todos os subconjuntos de S que possuem exatamente k elementos.
- $S \subset \mathcal{P}([n])$ é uma cadeia se $A \subset B$ ou $B \subset A$, para quaisquer $A, B \in S$, $A \neq B$.
- $\mathcal{S} \subset \mathcal{P}([n])$ é uma anti-cadeia se $A \not\subset B$, para quaisquer $A, B \in \mathcal{S}, A \neq B$.
- $S \subset \mathcal{P}([n])$ é intersectante se $A \cap B \neq \emptyset$, para quaisquer $A, B \in \mathcal{S}$.
- Seja ex(n, H) o número máximo de arestas que um grafo G com n vértices pode ter de modo que não existam cópias de H em G.

Problemas

Problema 1 (Sperner, 1910's). Se $\mathcal{S} \subset \mathcal{P}([n])$ é uma anti-cadeia, então $|\mathcal{S}| \leq \binom{n}{n/2}$.

Solução (of Sperner, 1910's). The example is $\binom{[n]}{n/2}$.

Lema 1 (LYMB, 1960's). If $S \subset \mathcal{P}([n])$ is an anti-chain, then $\sum_{A \in \mathcal{S}} \frac{1}{\binom{n}{(A+1)}} \leq 1$.

Demonstração (of LYMB, 1960's). Let's count the pairs (π, A) such that π is a permutation of [n], $A \in \mathcal{S}$, and $\{\pi(1), \pi(2), \dots, \pi(|A|)\} = A$.

For each $A \in \mathcal{S}$, the number of π such that $\{\pi(1), \pi(2), \dots, \pi(|A|)\}$ is equal to |A|!(n-|A|)!.

For each π , the number of $A \in \mathcal{S}$ such that $\{\pi(1), \dots, \pi(|A|)\}$ is at most 1, since \mathcal{S} is an anti-chain. Therefore,

$$\sum_{A \in \mathcal{S}} |A|! (n - |A|)! \le n! \implies \sum_{A \in \mathcal{S}} \frac{1}{\binom{n}{|A|}} \le 1.$$

We know that $\binom{n}{k} \leq \binom{n}{n/2}$. Thus, by LYMB, 1960's,

$$1 \ge \sum_{A \in \mathcal{S}} \frac{1}{\binom{n}{|A|}} \ge \sum_{A \in \mathcal{S}} \frac{1}{\binom{n}{n/2}} = \frac{|\mathcal{S}|}{\binom{n}{n/2}}$$

Problema 2. Suponha que $S \subset \mathcal{P}([n])$ é intersectante. Prove que $|S| \leq 2^{n-1}$.

Esboço. The example is $\{A \in \mathcal{P}([n]) : 1 \in A\}$. At most one of (A, \overline{A}) can be on S. Therefore, $|S| \leq$

Problema 3 (Erdős-Ko-Rado, 1961). Sejam $k \in n$ inteiros positivos tais que $k < \frac{n+1}{2}$. Suponha que $\mathcal{S} \subset {[n] \choose k}$ é intersectante. Prove que $|\mathcal{S}| \leq {n-1 \choose k-1}$.

Esboço. O exemplo é $\{A \in {[n] \choose k}: 1 \in A\}$. A ideia é contar os pares (π, A) tais que π é uma permutação cíclica, $A \in \mathcal{S}$, e $A = \{\pi(t+1), \pi(t+1), \pi$ $(2), \ldots, \pi(t+k)$, for some t. Contando por π , a quantidade é no máximo k(n-1)!. Contando por A, a quantidade é exatamente $|S| \, k! (n-k)!$. Portanto, $|S| \leq {k-1 \choose n-1}$. Mais detalhes em Department of Computer Science and Technology at Nanjing University.

Problema 4. Sejam k e r inteiros positivos. Todo inteiro positivo é pintado com uma de r cores. Prove que existe uma progressão aritmética monocromática com k termos.

Solução. We will use induction on k. Note that W(r,1)=1. We shall find r color-focused (k-1)-arithmetic progressions.

Lema 2. There exists n = n(s, r) such that, for every coloring $c: [n] \to [r]$, there exists a monochromatic k-arithmetic progression or s color-focused (k-1)-arithmetic progressions.

Demonstração. Induction on s. If s = 1, then $n(1, r) = W(r, k - 1) < \infty$.

Suppose s > 1. Let N = 2n(s-1,r). Consider $W(r^N, k-1) < \infty$ blocks of size N. There is an arithmetic progression of equally-colored blocks of size k-1, let D be the distance of consecutive blocks in the arithmetic progression of blocks. Since the first half of the block has n(s-1,r) elements, there exists a monochromatic k-arithmetic progression (which means we're done), or s-1 color-focused (k-1)-arithmetic progressions – their focus f surely lies inside the block of size N.

Let the s-1 color-focused (k-1)-arithmetic progressions in the first block be $PA_{k-1}(a_1, d_1), \ldots, PA_{k-1}(a_{s-1}, d_{s-1})$, with focus f_1 . The proposed s color-focused (k-1)-arithmetic progressions are $PA_{k-1}(a_1, d_1 + d), \ldots, PA_{k-1}(a_{s-1}, d_{s-1} + d), PA_{k-1}(f_1, d)$.

$$n(s,r) \le 2 \cdot W(r^{2n(s-1,r)}, k-1) \cdot 2n(s-1,r).$$

Therefore, for suitable large n, there must exist a large k-arithmetic progression.