

**UNCLASSIFIED**

**AD 422311**

**DEFENSE DOCUMENTATION CENTER**

**FOR**

**SCIENTIFIC AND TECHNICAL INFORMATION**

**CAMERON STATION, ALEXANDRIA, VIRGINIA**



**UNCLASSIFIED**

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.



# NAVAL AIR ENGINEERING CENTER

PHILADELPHIA 12, PA.

IN REPLY REFER TO:

XM-411-WEM:1bg  
10330  
(1043)

QUALIFIED REQUESTERS MAY OBTAIN COPIES OF THIS  
REPORT DIRECT FROM ASTIA

30 September 1963

422311

From: Commanding Officer, Naval Air Engineering Center, Philadelphia 12, Pa.  
To: Chief, Bureau of Naval Weapons (RRMA-36)

Subj: PAN 3-24, Evaluation of Hydraulic Fluids - Report No. NAEC AML 1764,  
Results of Thermal and Hydraulic Stability Tests on Titanium Organic  
Compound Hydraulic Fluids Developed by New York University

Ref: (a) BUWEPS ltr RRMA-36:TM/2 of 26 Jul 1963  
(b) PAN 3-24, Evaluation of Hydraulic Fluids submitted by Industry or  
Government Contractors

1. The Chief, Bureau of Naval Weapons requested by reference (a), that  
stability tests be conducted on two experimental hydraulic fluid samples  
prepared by the New York University under BUWEPS Contract N0W 62-0647-d.  
These fluids are identified as follows:

Sample A - Reaction Product Modified with Tetrabutyltin  
Sample B - Reaction Product Modified with Tri-Isopropylborate

2. The fluids were tested in accordance with the methods of paragraphs  
4.5.1, (Oxidation-corrosion stability test at 400°F) and 4.5.12 (Hydrolytic  
stability) of Specification MIL-H-8446B, Hydraulic Fluid, Non-Petroleum  
Base, Aircraft.

3. The results of the oxidation-corrosion test are as follows:  
(a) Corrosion, wt. change (mg/cm<sup>2</sup>), max.

| Metal    | Spec. Limit | Sample A    | Sample B    |
|----------|-------------|-------------|-------------|
| Silver   | ±0.2        | nil         | nil         |
| Steel    | ±0.2        | nil         | nil         |
| Aluminum | ±0.2        | nil         | nil         |
| Copper   | ±0.4        | -2.41;-1.59 | -0.40;-0.30 |

(b) Appearance of Metals

| Metal    | Spec. Limit       | Sample A   | Sample B   |
|----------|-------------------|------------|------------|
| Silver   | no pitting or     | milky      | unchanged  |
| Steel    | etching. No black | darkened   | darkened   |
| Aluminum | or gray stain,    | unchanged  | unchanged  |
| Copper   | slight stain on   | dark brown | dark brown |

(c) Appearance of Fluids

| Color         | Spec. Limit    | Sample A        | Sample B                 |
|---------------|----------------|-----------------|--------------------------|
| Sediment      | no requirement | very dark       | slightly darkened, clear |
|               | no sediment or | semi-solid type | semi-solid type          |
| V.I.s. change | ±35%           | +18%            | +10%                     |

THIS REPORT MAY BE RELEASED OUTSIDE OF THE MILITARY  
DEPARTMENTS AND EXECUTIVE AGENCIES OF THE UNITED  
STATES GOVERNMENT ONLY WITH PAGES REMOVED

XM-411-WEM:lbg  
10330  
(1048)

(d) Neutralization Numbers

|            | <u>Spec. Limit</u> | <u>Sample A</u> | <u>Sample B</u> |
|------------|--------------------|-----------------|-----------------|
| Original   | 0.2                | 138             | 150             |
| After test | +0.5 max.          | 129*            | 145*            |

\*Within experimental error for this range.

4. The results of the hydrolytic stability tests are as follows:

(a) Weight changes of copper (mg/cm<sup>2</sup>) max.

| <u>Spec. Limit</u> | ... <u>Sample A</u>    | <u>Sample A...</u>    | ... <u>Sample B</u>    | <u>Sample B...</u>    |
|--------------------|------------------------|-----------------------|------------------------|-----------------------|
|                    | <u>Before Brushing</u> | <u>After Brushing</u> | <u>Before Brushing</u> | <u>After Brushing</u> |
| ±0.5               | -0.28                  | -0.32                 | -0.19                  | -0.26                 |

(b) Appearance of Fluid

|                          | <u>Spec. Limit</u> | <u>Sample A</u> | <u>Sample B</u> |
|--------------------------|--------------------|-----------------|-----------------|
| Vis. change of oil layer | ±20%               | -19%            | -7%             |

Sample A formed a heavy cloudy oil layer and a thick emulsion in the water layer. Sample B formed a slightly cloudy lower oil layer and a clear water layer. Neither sample could be filtered without difficulty.

(c) Neutralization Numbers of the Oil Layers

|            | <u>Spec. Limit</u> | <u>Sample A</u> | <u>Sample B</u> |
|------------|--------------------|-----------------|-----------------|
| Original   | 0.2                | 138             | 150             |
| After test | +0.5               | 136*            | 144*            |

\*Within experimental error for this range.

Inasmuch as these materials are not required to meet the requirements of MIL-H-8446A, the specification limits are included for information only.

5. Although neither fluid meets the thermal and hydrolytic stability requirements of MIL-H-8446B entirely, Fluid B, the fluid modified with tri-isopropylborate, is the more stable of the two.

6. The results submitted herein were obtained by work conducted under the reference (b) problem assignment which is being kept open for future work of this nature.

*R.E. Fellowes*

R. E. FELLOWES  
By direction