

Probability and Random Process

Aimin Tang

The University of Michigan- Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University

Sep. 8 2020

Based on Lecture Notes by Prof. Yong Long

- 1. Introduction to Probability
 - Application example
 - Review of set and functions
 - Models of random experiments
 - Axioms and properties of probability
 - Conditional probability
 - Independence of events
 - Combinatorics and probability

- Application areas of probability and random processes
 - Signal processing
 - Communications
 - Control
 - Industrial engineering
 - Economics
 - Aerospace
 - Information science
 - Computer science

— ...

Example: Signal Processing

Figure 1.1. Block diagram of radar detection system.

- To determine the presence of an aircraft, a known radar pulse v(t) is sent out.
- The overall goal is to decide whether the received waveform is noise only or signal plus noise.
 - No object in range of radar, noise waveform only X_t .
 - An object in range, reflected radar pulse plus noise $v(t) + X_t$.

Example: Signal Processing

Figure 1.2. Matched filter input (top) in which the signal is hidden by noise. Matched filter output (bottom) in which the signal presence is obvious.

- How to describe/capture uncertainty in the behavior of engineering systems?
- What type of calculus does one develop to quantify uncertainty and show how uncertainty propagates through time?
- One way is through probability theory, random variables and random processes.

Review of set and functions

Set definition and representations

- A set is a collection of objects called elements or members of the set.
- Methods of specifying a set
 - 1. list them in curly brackets separately by commas{a, b, t, . . .}
 - 2. predicate: {real number $X : 0 \le X \le 1$ } (colon means such that)
 - 3. intervals of the real line

$$[a, b) = \{ \text{real number } x : a \le x < b \}$$

(a, b), (a, b], [a, b], (a < b)

- 4. in terms of other sets: $A = B \cup C$
- 5. Venn diagrams (Picture)

Figure 1.7. (a) Venn diagram of $A \subset B$. (b) The complement of the disk A, denoted by A^c , is the shaded part of the diagram.

Figure 1.8. (a) The shaded region is $A \cup B$. (b) The shaded region is $A \cap B$.

- · convention:

 whole set: \(\Omega\) element: \(\warma\)
- Let Ω be a set of points. Let A and B be two collections of points in Ω .
 - element/member/point of a set

 $\omega \in \Omega$, ω is an element of Ω , Ω contains ω

- Subset
 - $A \subset B$. A is contained in B (A is a subset of B). Every element of A is also in B.
 - $A \supset B$ (superset). B is a subset of A (A contains B)
- Equality

A = B. A equals B. A and B have the same elements.

 $A \subset B$ and $A \supset B$ is a way to prove A = B

 $A \subset A$

- proper subset
 - If $A \subseteq B$ but $A \ne B$, we say that A is a proper subset of B

Set operations: complement

- If $A \subset \Omega$ and $\omega \in \Omega$ does not belong to A, we write $\omega \notin A$. The set of all such ω is called the **complement** of A in , i.e. $A^c = \{\omega \in \Omega : \omega \notin A\}$
- The empty set or null set contains no points in Ω . It is denoted \emptyset
 - for any $A \subset \Omega$, $\emptyset \subset A$
 - $-\Omega^c = \emptyset$

• The **union** of two subsets A and B is $A \cup B \triangleq \{\omega \in \Omega : \omega \in A \text{ or } \omega \in B\}$

It is a set contains all elements of A and all elements of B.

– Here "or" is inclusive; i.e., if $\omega \in A \cup B$, we permit ω to belong either to A or to B or to both.

Set operations: infinite union

• Suppose $A_i \subset \Omega$, i = 1,2,... Then the **infinite union** is

$$\bigcup_{i=1} A_i \triangleq \{\omega \in \Omega, \omega \in A_i \text{ for some } 1 \le i < \infty\}$$

 $\omega \in \bigcup_{i=1}^{\infty} A_i$ iff for at least one integer i satisfying $1 \le i < \infty$, $\omega \in A_i$.

- This definition admits the possibility that $\omega \in A_i$ for more than one value of i.

Set operations: intersection

- The **intersection** of two subsets A and B is $A \cap B \triangleq \{\omega \in \Omega : \omega \in A \text{ and } \omega \in B\}$ $\omega \in A \cap B$ iff ω belongs to both A and B.
- Suppose $A_i \subset \Omega$, i = 1,2,... Then the **infinite** intersection is

$$\bigcap_{i=1}^{\infty} A_i \triangleq \{\omega \in \Omega, \omega \in A_i \text{ for all } 1 \leq i < \infty\}$$

 $\omega \in \bigcap_{i=1}^{\infty} A_i$ iff for every integer i satisfying $1 \le i < \infty$, $\omega \in A_i$.

$$\bullet \quad \bigcap_{n=1}^{\infty} (0, \frac{1}{n}) = ? \ \phi$$

•
$$\bigcup_{n=1}^{\infty} \left(\frac{1}{n}, 2\right] = ? (0, 2)$$

Set operations: difference

• The **difference** of two subsets A and B is $B \setminus A \triangleq B - A \triangleq B \cap A^c = \{ \omega \in \Omega : \omega \in B \text{ and } \omega \notin A \}$ badeslesh $B \cap A^c$ is a set $\omega \in B$ that do not A.

• B\A is found by starting with all the points in B and then removing those that belong to A.

Set operations: disjoint

• Two subsets A and B are **disjoint** or **mutually** exclusive if $A \cap B = \emptyset$, i.e., there is not point in Ω that belongs to both A and B.

• Subsets $A_i \subset \Omega$, i = 1,2,... are **pairwise disjoint** if $A_i \cap A_j = \emptyset$, for all $i \neq j$.

Let A, B and C be subsets of Ω .

communicative law

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

associative law

$$A \cap (B \cap C) = (A \cap B) \cap C$$

 $A \cup (B \cup C) = (A \cup B) \cup C$

distributive law

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

generalized distributive law

$$B \cap \left(\bigcup_{i=1}^{\infty} A_i\right) = \bigcup_{i=1}^{\infty} (B \cap A_i), B \cap \left(\bigcap_{i=1}^{\infty} A_i\right) = \bigcap_{i=1}^{\infty} (B \cap A_i)$$

• De Morgan's law $(A \sqcup B)^c - (A^c \cap B^c) \qquad (A \cap B)^c - (A^c \sqcup B^c)$

$$(A \cup B)^c = (A^c \cap B^c), \qquad (A \cap B)^c = (A^c \cup B^c)$$

generalized De Morgan's law

$$\left(\bigcap_{i=1}^{\infty} A_i\right)^c = \bigcup_{i=1}^{\infty} A_i^c, \qquad \left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c$$

- Set size/cardinality is the number of elements in a set A, denoted by |A|.
 - finite: countably finite
 - infinite: countably/uncountably infinite
- A set A is said to be **countable** iff it is either **finite**, or its elements can be **enumerated** or listed in a sequence: $a_1, a_2, ...,$ i.e., A can be written in the form

$$A = \bigcup_{k=1}^{\infty} \{a_k\}$$

 In other words, there is a one-to-one correspondence between elements of the set and positive integers

• A set is uncountably infinite if its cardinality is infinite but not countably.

- Example:
 - Real number R
 - The interval of real number [0, 1)

• Which of the following sets are countable? Enumerate the countable sets.

empty set Ø

- $\emptyset \subset A, A \cup \emptyset = A, A \cap \emptyset = \emptyset$
- $-A \cap B = \emptyset$ iff A, B are disjoint.

Singleton

- $\{X\}$ = singleton set containing only X
- Power set 2^A of a set A is a set of all subsets of A.
- Example: $2^{\{1,2,3\}} = ?$
 - $-\{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\},\emptyset\}$
- cardinality: $|2^A| = 2^{|A|}$

Partition and Cartesian product

- **Partition** of a set A is a set of sets (called cells or atoms of the partition) $\{B_1, B_2, ...\}$ s.t. (such that) B_i 's are disjoint and their union is A: $\bigcup_{i=1}^{\infty} B_i = A$
- Cartesian product: $A \times B = \{(X, Y) : X \in A, Y \in B\}$
- Example:

$$[0,1] \times [2,3] = \{(X,Y) : 0 \le X \le 1, 2 \le Y \le 3\}$$

• A function consists of a set X of inputs called the domain and a rule or mapping f that associates to each $x \in X$ a value f(x) that belongs to a set Y called the co-domain.

We write

$$f: X \to Y$$

and say that f maps X into Y.

• The set of all possible values of f(x) is called the range. It is the set $\{f(x) : x \in X\}$.

Figure 1.11. The mapping f associates each x in the domain X to a point y in the co-domain Y. The range is the subset of Y consisting of those y that are associated by f to at least one $x \in X$. In general, the range is a proper subset of the co-domain.

Describing a function

• Graphically:

Braces or piecewise notation:

$$x(t) = \begin{cases} e^{-t}, t \ge 0 \\ e^t, t < 0 \end{cases}$$

• In terms of other functions: x(t) = s(t) + s(-t) where

$$s(t) = \begin{cases} e^{-t}, t > 0\\ 1/2, t = 0\\ 0, t < 0 \end{cases}$$

• f(X) is **one-to-one** if $f(X_1) \neq f(X_2)$ where $X_1, X_2 \in A$ and $X_1 \neq X_2$

- f(X) is **onto** if its range equal to its co-domain f(X) = Y
- f(X) is **invertible** if it is one-to-one and onto, *i.e.*, for every $y \in Y$ there is a unique $x \in X$ with f(x) = y

Image and inverse image

• If $f: X \to Y$ and if $A \subset X$, then the **image** of A is $f(A) = \{f(x) : x \in A\}$

• If $f: X \to Y$ and if $B \subset Y$, then the **inverse image** of B is $f^{-1}(B) = \{x \in X : f(x) \in B\}$

• This concept applies to any function whether or not it is invertible

- non-decreasing: $f(X_2) \ge f(X_1)$ whenever $X_2 > X_1$
- strictly increasing: $f(X_2) > f(X_1)$ whenever $X_2 > X_1$
- non-increasing: $f(X_2) \le f(X_1)$ whenever $X_2 > X_1$
- strictly decreasing: $f(X_2) < f(X_1)$ whenever $X_2 > X_1$

• $f: X \to Y(X, Y \text{ are intervals of the real line})$

• f is continuous if

$$x_n \to x \Rightarrow f(x_n) \to f(x)$$

• Equivalently, for all $\epsilon > 0$, there is a $\delta > 0$ *s.t.* $|f(x) - f(y)| < \epsilon$ whenever $|x - y| < \delta$

• For each of the following cases, determine if f is a valid function with domain A and co-domain B. For those that are valid functions, determine if they are one-to-one, onto, continuous, monotonic (if so, state the type of monotonicity), and find the **inverse image** of the set (-0.1, 0.2)

Not valid.

a)
$$A = [0, 1], B = [-1, 1], f(x) = \{y \in B : y^2 = x\}, \forall x \in A$$

b)
$$A = [-1, 1], B = [-\pi, \pi], f(x) = \{y \in B : siny = x\}, \forall x \in A$$

b)
$$A = [-1, 1], B = [-\pi, \pi], f(x) = \{y \in B : siny = x\}, \forall x \in A$$

c) $A = [0, 1], B = [-1, 1], f(x) = \{1, x \in [\frac{1}{4}, 1], \forall x \in A\}$
o, otherwise

Ve501 2020-2021 Fall

32

Thank You!