Álgebra Linear

Independência Linear Conjuntos Linearmente Independentes

GEOMETRIA ANALÍTICA E ÁLGEBRA LINEAR PROFA. MS.MAGDA MANTOVANI LORANDI

Período 2022-4

LIVRO-TEXTO

LAY, David C. Álgebra linear e suas aplicações. 5 ed. Rio de Janeiro: LTC,2018.

INDEPENDÊNCIA LINEAR SEÇÃO 1.7 (PÁGS. 46-52)

Vimos por definição que um vetor b do Rⁿ é combinação linear dos vetores v₁, v₂,, vp quando

$$X_1 V_{1+} X_2 V_{2+....+} X_p V_p = b$$
 (1)

Vimos também que para verificar se o vetor b é combinação linear dos vetores v_1, v_2, \dots, v_p devemos verificar se existem estes números reais x_1, x_2, \dots, x_p que satisfazem a equação vetorial (1).

Para isso temos que resolver o sistema Ax = b, cuja matriz completa associada é

$$[v_1 \ v_2 \dots v_p \ b]$$

Agora dizemos que um conjunto de vetores é LINEARMENTE INDEPENDENTES (LI) quando nenhum dos vetores do conjunto puder se escrito como combinação linear dos demais.

Definição - pág. 46

Um conjunto indexado de vetores $\{\mathbf v_1, ..., \mathbf v_p\}$ em $\mathbb R^n$ é dito **linearmente independente** se a equação vetorial

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{0}$$

tiver apenas a solução trivial. O conjunto $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ é dito **linearmente dependente** se existirem constantes $c_1, ..., c_p$, nem todas nulas, tais que

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p = \mathbf{0} \tag{2}$$

EXEMPLO 1 Sejam
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ e $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

pág. 46

- a. Determine se o conjunto $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ é linearmente independente.
- b. Se possível, encontre uma relação de dependência linear entre \mathbf{v}_1 , \mathbf{v}_2 e \mathbf{v}_3 .
- É preciso determinar se existe uma solução não trivial da equação (1) anterior. As operações elementares
 na matriz aumentada associada mostram que

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

É claro que x_1 e x_2 são variáveis dependentes e x_3 é livre. Cada valor não nulo de x_3 determina uma solução não trivial de (1). Portanto, v_1 , v_2 e v_3 são linearmente dependentes (e não linearmente independentes).

Para determinar uma relação de dependência linear para v₁, v₂ e v₃, complete o escalonamento da matriz aumentada e reescreva o novo sistema:

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_1 & -2x_3 = 0 \\ x_2 + x_3 = 0 \\ 0 = 0 \end{array}$$

Assim, $x_1 = 2x_3$, $x_2 = -x_3$ e x_3 é livre. Escolha um valor não nulo para x_3 , digamos, $x_3 = 5$. Então, $x_1 = 10$ e $x_2 = -5$. Substitua esses valores em (1) e obtenha

$$10\mathbf{v}_1 - 5\mathbf{v}_2 + 5\mathbf{v}_3 = \mathbf{0}$$

Essa é uma dentre uma infinidade de relações de dependência linear possíveis para v₁, v₂ e v₃.

Independência Linear das Colunas de uma Matriz

As colunas de uma matriz A são linearmente independentes se e somente se a equação Ax = 0 tiver a solução trivial (solução nula)

Vejamos o Exemplo 2 - pág. 47

EXEMPLO 2 Determine se as colunas da matriz
$$A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$
 são linearmente independentes.

SOLUÇÃO Para estudar $A\mathbf{x} = \mathbf{Q}$ escalone a matriz aumentada:

$$\begin{bmatrix} 0 & 1 & 4 & 0 \\ 1 & 2 & -1 & 0 \\ 5 & 8 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & -2 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 13 & 0 \end{bmatrix}$$

Agora, está claro que existem três variáveis dependentes e nenhuma variável livre. Portanto, a equação $A\mathbf{x} = \mathbf{O}$ tem somente a solução trivial, e as colunas de A são linearmente independentes.

7

Conjuntos com um vetor

Um conjunto com apenas UM VETOR NULO é LINEARMENTE DEPENDENTE

O vetor nulo é linearmente dependente porque $x_10 = 0$ tem muitas soluções não triviais

Um conjunto com apenas UM VETOR NÃO NULO é LINEARMENTE INDEPENDENTE

Isso ocorre porque a equação vetorial $x_1v=0$, tem apenas a solução trivial quando $v\neq 0$

Conjuntos com dois vetores

Um conjunto de vetores $\{v_1, v_2\}$ é LINEARMENTE DEPENDENTE, se e somente se eles forem múltiplo um do outro, portanto colineares. Caso contrário são Linearmente independentes.

Exemplo 3 - pág. 47

EXEMPLO 3 Determine se os seguintes conjuntos de vetores são linearmente independentes.

a.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

a.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$ b. $\mathbf{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

Conjuntos com dois ou mais vetores

Um conjunto de dois ou mais vetores $\{v_1, v_2, ..., v_n\}$ é LINEARMENTE DEPENDENTE, se e somente se, pelo menos um dos vetores do conjunto for combinação linear dos demais

Exemplo 4 - pág. 48

EXEMPLO 4 Sejam
$$\mathbf{u} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 e $\mathbf{v} = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Descreva o conjunto gerado por \mathbf{u} e \mathbf{v} e explique por

que um vetor \mathbf{w} pertence a $\mathcal{L}\{\mathbf{u}, \mathbf{v}\}$ se e somente se $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ for linearmente dependente.

SOLUÇÃO Os vetores \mathbf{u} e \mathbf{v} são linearmente independentes porque nenhum dos dois é múltiplo do outro e, portanto, eles geram um plano em \mathbb{R}^3 . (Veja a Seção 1.3.) Na verdade, $\mathcal{L}\{\mathbf{u}, \mathbf{v}\}$ é o plano x_1x_2 (com $x_3=0$). Se \mathbf{w} for uma combinação linear de \mathbf{u} e \mathbf{v} , então $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ será linearmente de-

pendente

Conjuntos com dois ou mais vetores

Teorema - pág. 49

Se um conjunto contiver mais vetores que o número de componentes de cada vetor, então o conjunto será linearmente dependente. Em outras palavras, todo conjunto $\{\mathbf{v}_1, ..., \mathbf{v}_p\}$ em \mathbb{R}^n é linearmente dependente se p > n.

Exemplo 5 - pág. 49

EXEMPLO 5 Os vetores
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 4 \\ -1 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 2 \end{bmatrix}$ são linearmente dependentes

existem três vetores no conjunto e apenas duas componentes em cada vetor. Observe, no entanto, que nenhum dos vetores é múltiplo de um dos outros.

FIGURA Um conjunto linearmente dependente em \mathbb{R}^2 .

Conjuntos com dois ou mais vetores

Teorema - pág. 49

Se um conjunto $S = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ em \mathbb{R}^n contiver o vetor nulo, então o conjunto será linearmente dependente.

Exemplo 6 - pág. 49

EXEMPLO 6 Determine, por simples inspeção, se o conjunto dado é linearmente dependente.

a.
$$\begin{bmatrix} 1 \\ 7 \\ 6 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 0 \\ 9 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$ b. $\begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 8 \end{bmatrix}$ c. $\begin{bmatrix} -2 \\ 4 \\ 6 \\ 10 \end{bmatrix}$, $\begin{bmatrix} 3 \\ -6 \\ -9 \\ 15 \end{bmatrix}$

c.
$$\begin{bmatrix} -2 \\ 4 \\ 6 \\ 10 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ -6 \\ -9 \\ 15 \end{bmatrix}$

Solução:

- a. O conjunto é LD, pois TEM MAIS VETORES QUE COMPONENTES (4 vetores de 3 componentes)
- b. O conjunto é LD, pois CONTEM O VETOR NULO
- c. O conjunto é LI, pois os vetores NÃO SÃO MÚLTIPLOS

EXERCÍCIOS SUGERIDOS

pág. 50 - Livro-texto
1, 3, 5, 7, 9, 11, 15, 17, 19, 27, 31