

Course Name	Master of Science in Business Analytics
Module Name	APPLIED BIG DATA AND VISUALIZATION (CS6502)
Module Leader	Dr. Patrick Healy
Batch	2019-2020
Semester	Spring

ML Project Assignment

Submitted by:

Aishwarya C Inamdar 19084404

Table of Contents

Query to select 1000 rows	3
Key steps for PCA	3
Data Analysis	3
SQL query for data analysis	3
Checking the outlier data	4
SQL query for checking the outliers data	4
SQL query for setting a benchmark value	4
Creating a Linear Regression model over the selected features	6
Model description	6
SQL query creating the linear regression model creation	6
Screenshot of the model evaluation report	7
SQL query for Model Evaluation	7
SOL query for Model Prediction	8

Query to select 1000 rows

SELECT * FROM `bigquery-public-data.chicago_taxi_trips.taxi_trips` where pickup_latitude IS NOT NULL and dropoff_latitude IS NOT NULL LIMIT 1000

(Refer taxi_records.csv for the extracted output)

Key steps for PCA

Following are the steps carried out for PCA:

- 1) Exploratory Data Analysis: In this step, I have understood and summarized the dataset. It is a crucial step before building the machine learning model so as to create models that correctly interpret the results.
- 2) Feature Extraction: In this step, we have used a feature selection technique, heat map to find correlation between features which helped us in deciding on the features that created an impact for creating the model.
- 3) Standardize the data: Before applying PCA, the features in the dataset needs to be scaled.
- 4) PCA projection to 2D: The dataset of 23 columns is projected in 5 components.
- 5) Plotting the principle components: To visualize the variance, I have plotted the principle components.

(Refer file PCA.ipynb for the python code)

Data Analysis

Before creating the model, analyse the data and observe that tips and extras are included in the trip_total.

SQL query for data analysis

SELECT

fare, tips, tolls, extras, trip_total

FROM

'bigquery-public-data.chicago taxi trips.taxi trips'

WHERE

extract(year from trip_start_timestamp) IN (2013,2014,2015,2016,2017);

Row	fare	tips	tolls	extras	trip_total
1	12.5	0.0	null	0.0	12.5
2	13.75	0.0	null	1.0	14.75
3	11.0	0.0	null	0.0	11.0
4	25.25	5.25	null	1.0	31.5
5	45.5	9.9	null	4.0	59.4
6	14.0	3.5	null	0.0	17.5

Checking the outlier data

I don't want to include tips in our model, because it's too random, so we use tolls + fare for total price.

SQL query for checking the outliers data

```
SELECT

CAST(IF(Min(pickup_latitude) > Min(dropoff_latitude),Min(dropoff_latitude),Min(pickup_latitude))
as INT64) as min_latitude,

CAST(IF(MAX(pickup_latitude) <

MAX(dropoff_latitude),MAX(dropoff_latitude),MAX(pickup_latitude)) as INT64) as max_latitude,

CAST(IF(Min(pickup_longitude) >

Min(dropoff_longitude),Min(dropoff_longitude),Min(pickup_longitude)) as INT64) as

min_longitude,

CAST(IF(MAX(pickup_longitude) <

MAX(dropoff_longitude),MAX(dropoff_longitude),MAX(pickup_longitude)) as INT64) as

max_longitude,

MIN(tolls + fare) as min_price,

Max (tolls + fare) as max_price

FROM

'bigquery-public-data.chicago_taxi_trips.taxi_trips`
```

Row	min_latitude	max_latitude	min_longitude	max_longitude	min_price	max_price
1	42	42	-88	-88	0.0	9999.99

I am taking prices greater than \$0 and lower than \$2000.

For the benchmark, we choose to calculate the average cost per distance and predict for each trip the cost with this formula:

taxiPrice = euclidianDist *avgCostPerDist

SQL query for setting a benchmark value

```
With avg as (
SELECT

AVG(tolls+ fare) / AVG(dist) as price_per_dist

FROM

(SELECT

tolls,
fare,
SQRT(POW((pickup_longitude - dropoff_longitude),2) + POW(( pickup_latitude - dropoff_latitude),
2)) as dist
FROM

`bigquery-public-data.chicago_taxi_trips.taxi_trips`
WHERE
```

```
extract(year from trip_start_timestamp) IN (2013,2014,2015,2016,2017)
 AND (tolls+ fare) BETWEEN 0 and 2000
WHERE dist > 0
)
SELECT
AVG( POW(( predict_price - price),2)) as mse
FROM
(SELECT
(tolls+ fare) as price,
SQRT(POW((pickup_longitude - dropoff_longitude),2) + POW(( pickup_latitude - dropoff_latitude),
2)) * price_per_dist as predict_price
FROM
 `bigquery-public-data.chicago_taxi_trips.taxi_trips`
 CROSS JOIN avg
WHERE
(tolls+ fare) BETWEEN 0 and 2000)
```


I got a 116.77260339899956 in MSE (Mean Square Error). This means that when we predict with our benchmark model, we got an average of \$ 10.8061373024 difference with truth. We got our initial benchmark.

Benchmark = \$ 10.8061373024

Creating a Linear Regression model over the selected features

Model description

- I have created a simple linear regression model for predicting the taxi fare using the Chicago Taxi Trips dataset. I have calculated the average cost per distance using the 'taxiPrice = euclidianDist *avgCostPerDist' logic, considering the fare from 0 to 100 and the total fare (fare + tolls) from 0 to 2000.
- The data is trained for years from 2013 to 2017 and is evaluated and predicted for the years 2018,2019 and 2020.

SQL query creating the linear regression model creation

```
CREATE MODEL
'taxi fares.model linear'
OPTIONS
(model_type='linear_reg',
labels = ['total amount'])
WITH taxitrips AS
SELECT
SQRT(POW((pickup_longitude - dropoff_longitude), 2) + POW((pickup_latitude - dropoff_latitude),
SQRT(POW((pickup_longitude - dropoff_longitude),2)) as longitude,
SQRT(POW((pickup_latitude - dropoff_latitude), 2)) as latitude,
(tolls + fare) as total amount,
EXTRACT(YEAR FROM trip_start_timestamp) as year
 `bigquery-public-data.chicago_taxi_trips.taxi_trips`
WHERE
   extras >0 AND fare >0 AND tips>0 AND tolls>0 AND trip_miles>0 AND
   extract(year from trip start timestamp) IN (2013,2014,2015,2016,2017)
   AND pickup_longitude > -88
   AND pickup longitude < -86
   AND dropoff longitude > -88
   AND dropoff_longitude < -86
   AND pickup_latitude > 41
   AND pickup latitude < 42
   AND dropoff_latitude > 41
   AND dropoff latitude < 42
   AND fare BETWEEN 0 and 100
   AND (tolls + fare) BETWEEN 0 AND 2000;
```

Query results Query complete (12.0 sec elapsed, 13.5 GB (ML) processed) Job information Results JSON Execution details 1 This statement created a new model named chicago-taxi-fares:taxi_fares.model_linear.

Screenshot of the model evaluation report

model_linear	
Details Training	Evaluation Schema
Mean absolute error	7.4489
Mean squared error	105.0004
Mean squared log erro	r 0.0684
Median absolute error	5.7523
R squared	0.6595

SQL query for Model Evaluation

```
WITH eval table as
(SELECT
SQRT(POW((pickup_longitude - dropoff_longitude), 2) + POW((pickup_latitude - dropoff_latitude),
SQRT(POW((pickup_longitude - dropoff_longitude),2)) as longitude,
SQRT(POW((pickup_latitude - dropoff_latitude), 2)) as latitude,
(tolls + fare) as total_amount
FROM
 `bigquery-public-data.chicago_taxi_trips.taxi_trips`
extras >0 AND fare >0 AND tips>0 AND tolls>0 AND trip_miles>0 AND
   extract(year from trip_start_timestamp) IN (2013,2014,2015,2016,2017)
   AND pickup_longitude > -88
   AND pickup_longitude < -86
   AND dropoff_longitude > -88
   AND dropoff longitude < -86
   AND pickup_latitude > 41
   AND pickup_latitude < 42
   AND dropoff_latitude > 41
```

We have a MSE of 105.00040256422845 and RMSE of \$ 10.2469704091

SQL query for Model Prediction

```
SELECT * FROM ml.PREDICT(MODEL `taxi fares.model linear`, (
WITH taxi_fares AS
(
SELECT
SQRT(POW((pickup_longitude - dropoff_longitude), 2) + POW((pickup_latitude - dropoff_latitude),
2)) as dist,
SQRT(POW((pickup longitude - dropoff longitude), 2)) as longitude,
SQRT(POW(( pickup_latitude - dropoff_latitude), 2)) as latitude,
(tolls + fare) as total amount,
EXTRACT(YEAR FROM trip_start_timestamp) as year
FROM
 `bigquery-public-data.chicago_taxi_trips.taxi_trips`
WHERE
   extras >0 AND fare >0 AND tips>0 AND tolls>0 AND trip miles>0 AND
   extract(year from trip_start_timestamp) IN (2018,2019,2020)
   AND pickup longitude > -88
   AND pickup_longitude < -86
   AND dropoff_longitude > -88
   AND dropoff longitude < -86
   AND pickup_latitude > 41
   AND pickup_latitude < 42
   AND dropoff_latitude > 41
   AND dropoff_latitude < 42
   AND fare BETWEEN 0 and 100
   AND (tolls + fare) BETWEEN 0 AND 2000
select * from taxi_fares
limit 1000
));
```


Refer predicted_results.csv for the output of the first 1000 records.