CS323 Assignment 1 - Answers

(For reference only. DO NOT distribute.)

1 Required Exercises (100 points)

Exercise 1: 7

Exercise 2:

- 1. n+1
- 2. n-1
- 3. 1
- 4. 1
- 5. 1 if m < n; 0 if m = n
- 6. $n \times (n+1)/2 + 1$ or $C_{n+1}^2 + 1$
- 7. $\sum_{i=0}^{n} C_n^i$

Exercise 3:

- 1. Strings of a's and b's.
- 2. Strings of a's and b's that the third character from the last is a.
- 3. Strings of a's and b's that only contain three b's.

Exercise 4:

- 1. $digit \rightarrow [0-9]$ $nonZeroDigit \rightarrow [1-9]$ $countryCode \rightarrow 86$ $countryCode \rightarrow 755$ $phoneNumber \rightarrow countryCode - areaCode - nonZeroDigit digit^7$
- 2. $a(a|b)^*b$ [5 points]
- 3. $consonant \rightarrow [bcdfghjklmnpqrstvwxyz]$ $d \rightarrow consonant^* \ a \ (consonant|a)^* \ e \ (consonant|e)^* \ i \ (consonant|i)^* \ o \ (consonant|o)^* \ u \ (consonant|u)^*$

2 Optional Exercises (10 bonus points)

 L_1 is equivalent to L_2 and we can prove this by contradition (there may be other ways to prove this). Since L_1 and L_2 are essentially two sets, to prove that they are equivalent is basically to prove that (1) $L_1 \subseteq L_2$ and (2) $L_2 \subseteq L_1$.

Part 1: We first prove that $L_1 \subseteq L_2$.

Suppose that $L_1 \subseteq L_2$ does not hold, then we can find a string s such that $s \in L_1$ but $s \notin L_2$. Without loss of generality, let's assume that |s| = n and we use (i, j) to denote a substring of s, where i indicates the index of the starting character and j indicates the index of the ending character. Here, the index starts from $1, 1 \le i, j \le n$, and $i \le j$.

If s is not in L_2 , then its substring (1, n - 1) is also not in L_2 , because if (1, n - 1) is in L_2 , then obviously s is also in L_2 according to the language definition. Next, we can show that substrings $(1, n - 2), \ldots, (1, 1)$ are not in L_2 . This is impossible since (1, 1) is either the string "a" or "b", which must be in L_2 .

So $L_1 \subseteq L_2$ must hold.

Part 2: We then prove that $L_2 \subseteq L_1$.

Suppose that $L_2 \subseteq L_1$ does not hold, then we can find a string s such tat $s \in L_2$ but $s \notin L_1$. Without loss of generality, let's assume that |s| = n and we use (i, j) to denote a substring of s, where i indicates the index of the starting character and j indicates the index of the ending character. Here, the index starts from $1, 1 \le i, j \le n$, and $i \le j$.

The language $L(a^*b^*)$ is equivalent to the language $L(a|b|a^*b^*)$, i.e., adding two strings "a" and "b" does not change the set. Then $L((a^*b^*)^*)$ is equivalent to $L((a|b|a^*b^*)^*)$.

If s is not in L_1 , then its substring (1, n - 1) is not in L_1 , because if (1, n - 1) is in L_1 , then obviously s is also in L_1 according to the language definition. Next, we can show that substring $(1, n - 2), \ldots, (1, 1)$ are not in L_1 . This is impossible since (1, 1) is either the string "a" or "b", which must be in L_1 .

So $L_2 \subseteq L_1$ must hold.