Decision Theory

Lecture 8

Time to make a decision...

Exercise inspired by Mausam, University of Washington, CSE573

Poor	market
perfor	mance
_	

Good market performance

Payoff	

-2,000

Payoff

Buy Apple

-1,000 | 1,700

Buy Google

2,100

Buy bonds

10 10

How to invest?

Maximax

	4			
0	nt	m	IS	m
	P			

	State of	Criterion	
	Poor market performance Payoff	Good market performance Payoff	Maximum payoff for an action
Buy Apple	-1,000	1,700	1,700
Buy Google	-2,000	2,100	2,100
Buy bonds	10	10	10

Select the maximum of the maximum payoff

← Maximax

Maximin

Pessimism

	State of	Criterion	
	Poor market performance Payoff	Good market performance Payoff	Minimum payoff for an action
Buy Apple	-1,000	1,700	-1,000
Buy Google	-2,000	2,100	-2,000
Buy bonds	10	10	10

Select the maximum of the minimum payoffs

← Maximin

Minimax

Select the minimum maximum regret

Criterion

Maximum Poor market performance Good market performance

	Poor market performance		Good market performance		regret for	
	Payoff	Regret	Payoff	Regret	an action	_
Buy Apple	-1,000	1,010	1,700	400	1,010]
Buy Google	-2,000	2,010	2,100	0	2,010	
Buy bonds	10	0	10	2,090	2,090	

Minimax

Which decision would I regret least?

Regret = Opportunity loss

Next: factor in probabilities of different outcomes

Expected Payoff: Equal likelihood

	State of	Criterion	
	Poor market performance Payoff	Good market performance Payoff	Expected reward/ payoff
Buy Apple	-1,000	1,700	350
Buy Google	-2,000	2,100	50
Buy bonds	10	10	10

Select the highest average payoff ASSUMING all states are of equal probability

State Probability:

0.5

0.5

Expected Payoff

	State of	Criterion	
	Poor market performance Payoff	Good market performance Payoff	Expected reward/ payoff
Buy Apple	-1,000	1,700	-190
Buy Google	-2,000	2,100	-770
Buy bonds	10	10	10
ate			

Select the highest average payoff assuming state probabilities from prior knowledge

Maximum
Expected
Reward

State Probability:

0.7

0.3

Decision making design pattern

1. Define a measure of risk or reward

2. Select the action that optimizes that metric

Notation

$EV(a_i) = V(a_i|s_0)P(s_0) + V(a_i|s_1)P(s_1)$ Expected reward / payoff

State of Nature (s)

Buy Apple $a = a_0$

Buy Google $a = a_1$

Buy bonds $a = a_2$

Poor market performance $s = s_0$

Excellent market performance $S = S_1$

 $V(a_0|s_0)$ $V(a_0|s_1)$ -1,000 1,700 $V(a_1|s_1)$ $V(a_1|s_0)$ -2,000 2,100 $V(a_2|s_0)$ $V(a_2|s_1)$

Expected Reward

 $EV(a_i)$

(0.7)(-1000) + (0.3)(1700)= -190

(0.7)(-2000) + (0.3)(2100)= -770

(0.7)(10) + (0.3)(10)= 10

State Probability: $P(s_0) = 0.7$

$$P(s_0) = 0.7$$

$$P(s_1) = 0.3$$

Risk = expected loss (cost)

$$\lambda(a_i|s_j) \triangleq \Box$$

Loss incurred by choosing action *i* and the state of nature being state *j*

$$R(a_i) = \sum_{j=1}^{N_s} \lambda(a_i|s_j) P(s_j)$$

Goal:

Select action i for which $R(a_i)$ is minimum

Payoff

State of Nature

Good market Poor market performance performance -1,000 1,700 Buy Google 2,100 -2,000 Buy bonds 10 10

Buy Apple

Loss

(here we define loss in terms of opportunity cost)

State of Nature

	Poor market performance	Good market performance
Buy Apple	1,010	400
Buy Google	2,010	0
Buy bonds	0	2,090

Kyle Bradbury 13 **Decision Theory** Lecture 8

Investments: loss

 $R(a_i) = \lambda(a_i|s_0)P(s_0) + \lambda(a_i|s_1)P(s_1)$ \uparrow Risk (Expected loss)

State of Nature (s)

Buy Apple $a = a_0$

Buy Google $a = a_1$

Buy bonds $a = a_2$

Poor market
performance
$s = s_0$

Excellent market performance
$$s = s_1$$

Risk (Expected Loss)
$$R(a_i)$$

$$(0.7)(1010) + (0.3)(400)$$

= **827**

$$(0.7)(2010) + (0.3)(0)$$

= **1407**

$$(0.7)(0) + (0.3)(2090)$$

= **627**

State Probability:

$$P(s_0) = 0.7$$

$$P(s_1) = 0.3$$

How does this relate to supervised learning?

Where to operate along ROC?

State of Nature

Class 0

Class 1

Estimate

Class 0

Class 1

$\lambda_{00} = 0$	$\lambda_{01} = 100$ False negative
$\lambda_{10} = 1$ False positive	$\lambda_{11} = 0$

$$\lambda_{ij} = \lambda(a_i|s_j)$$

Loss from classifying as class *i* when state of nature is class *j*

- Assume our classification problem is landmine detection
- A false alarm wastes some time and resources, but a missed detection may cost a life

Where to operate along ROC?

Action: select operating point <i>i</i>	Probability of false alarm P_{FA}	Probability of missed detection $(1-Pd)$	Risk $R(a_i)$
1	0	1	100
2	0	0.33	33
3	0.5	0.33	33.5
4	0.5	0	0.5
5	1	0	1

State of Nature

Class 0

 $\lambda_{00} = 0$

Class 1

 $\lambda_{01} = 100$

 $\lambda_{11} = 0$

17

⊏	
_	
S	
H	

Class 0

 $\lambda_{10} = 1$

$R(a_i) = \lambda_{10} P_{FA}(i) +$	$\lambda_{01}(\underline{1-P_D(i)})$:
Prob of false alarm	Prob of missed detection	

Kyle Bradbury

Decision Theory Lecture 8

Class 1

Let's generalize this to any binary classifier

This is how to pick what decision threshold to use for a binary classifier

State of Nature

Class 1

$$s = s_0$$

$$s = s_1$$

Class 0 $a = a_0$ Class 1

 $\lambda(a_0|s_0)$ $\lambda(a_0|s_1)$

 λ_{01}

Class 1 $a = a_1$

 $\lambda (a_1|s_0)$ $\lambda (a_1|s_1)$ λ

 λ_{ij} = Loss when you classify as class i when state of nature is class j

$$R(a_0|\mathbf{x}) = \lambda_{00}P(s_0|\mathbf{x}) + \lambda_{01}P(s_1|\mathbf{x})$$

$$R(a_1|x) = \lambda_{10}P(s_0|x) + \lambda_{11}P(s_1|x)$$

Probability from classifier $P(s_i|x) = \frac{P(x|s_i)P(s_i)}{P(x)}$

Define the risk associated with each of the two actions

$R(a_0|x) = \lambda_{00}P(s_0|x) + \lambda_{01}P(s_1|x)$

$$R(a_1|\mathbf{x}) = \lambda_{10}P(s_0|\mathbf{x}) + \lambda_{11}P(s_1|\mathbf{x})$$

Create a decision rule based on the data

If
$$R(a_0|\mathbf{x}) < R(a_1|\mathbf{x})$$
 then a_0 (decide class 0)

Else
$$R(a_0|\mathbf{x}) > R(a_1|\mathbf{x})$$
 then a_1 (decide class 1)

We choose the rule to **minimize the risk**

Express this rule in terms of the output from the classifier

$$\lambda_{00}P(s_0|\mathbf{x}) + \lambda_{01}P(s_1|\mathbf{x}) > \lambda_{10}P(s_0|\mathbf{x}) + \lambda_{11}P(s_1|\mathbf{x})$$

$$\frac{P(s_1|\mathbf{x})}{P(s_0|\mathbf{x})} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}$$

then a_1

This can be applied to any model that outputs posterior probabilities (discriminative or generative models)

20

Use Bayes rule to express this as a function of likelihoods

$$\frac{P(s_1|\mathbf{x})}{P(s_0|\mathbf{x})} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}$$

$$P(s_i|\mathbf{x}) = \frac{P(\mathbf{x}|s_i)P(s_i)}{P(\mathbf{x})}$$

Can easily factor in prior

knowledge about the classes

$$\frac{P(\mathbf{x}|s_1)P(s_1)}{P(\mathbf{x}|s_0)P(s_0)} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}$$

then a_1 (decide class 1)

The decision rule can be expressed as a likelihood ratio

$$\frac{P(\pmb{x}|s_1)}{P(\pmb{x}|s_0)} > \left(\frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}}\right) \frac{P(s_0)}{P(s_1)} \quad \text{then} \quad a_1 \; \text{(decide class 1)}$$

This can be readily applied to generative models

 a_0 (decide class 0) else

Special case: Minimizing the misclassification rate

$$\frac{P(s_1|\mathbf{x})}{P(s_0|\mathbf{x})} > \frac{\lambda_{10} - \lambda_{00}}{\lambda_{01} - \lambda_{11}} \quad \text{then} \quad a_1 \text{ (decide class 1)}$$

Assume that the loss is only for error, and it's the same for both types of error:

$$\lambda_{10} = \lambda_{01}$$
 and $\lambda_{00} = \lambda_{11} = 0$

Then the decision rule simplifies to the following:

$$\frac{P(s_1|x)}{P(s_0|x)} > 1 \quad \text{then} \quad a_1 \text{ (decide class 1)}$$

Pick whichever class is more likely given the data

else a_0 (decide class 0)

Recall Bayes' Rule

Note: The **evidence** is just a normalizing constant to make sure the posterior integrates to 1

Posterior

Answers the question: after seeing the data – which class is it most likely to belong to? Summing this across classes equals 1.

Likelihood

Answers the question: if I knew which class a sample belongs to, how are the data distributed?

Prior

Answers the question: what do I anticipate is the balance between my classes?

Discriminative models estimate this

Generative models estimate this

Generative and discriminative models

Unobservable state of the world

Data Generating Process

p(X,Y)

Target Function for predicting y from x

$$f(x) \rightarrow y$$

Types of models. We can either model the full data generating process **OR** the target function, the mapping of x to y

If we model this process, it's a generative model

- Models P(x|y)
- Can be used to generate synthetic data and impute missing values
- Examples: naïve Bayes, linear discriminant analysis, hidden Markov models

If we model this function, it's a discriminative model

- Model P(y|x) OR directly map x to y without probabilities
- Often better performance for large sample sizes
- Examples: logistic regression, support vector machines, neural networks, k nearest neighbors

Takeaways

To make a decision:

- 1. Define a measure of risk or reward
- 2. Select the action that optimizes that metric

Decision theory informs how to operate supervised learning algorithms in practice

Decision theory incorporates relative importance of different error types

Generative models estimate P(x|y), while discriminative models estimate P(y|x)