Mathématiques (Analyse II)

Dans les propositions de réponses des questions de chaque exercice, une seule est la bonne. Répondre en choisissant la lettre correspondant à la bonne réponse de l'exercice sur l'épreuve et utiliser la feuille de composition comme brouillon de justification de votre choix.

NB: Une mauvaise réponse annule une bonne réponse.

Exercice 1

Soit a un nombre réel non nul. On considère les équations différentielles suivantes : y'' + ay = 0, (H_a) et $y'' + ay = t^2$ (E_a) .

Question 1

On suppose que a>0. L'équation différentielle (H_a) admet une solution générale de la forme

A) $t \mapsto y(t) = (\alpha + \beta)e^{-\alpha t}$ où $(\alpha, \beta) \in \mathbb{R}^2$

B) $t \mapsto y(t) = \alpha \cos(-at) + \beta \sin(-at)$ où $(\alpha, \beta) \in \mathbb{C}^2$

C) $t \mapsto y(t) = \alpha \cos(\sqrt{a}t) + \beta \sin(\sqrt{a}t)$ où $(\alpha, \beta) \in \mathbb{R}^2$

D) $t \mapsto y(t) = \alpha \cos(\sqrt{a}t) + \beta \sin(\sqrt{a}t)$ où $(\alpha, \beta) \in \mathbb{C}^2$

Question 2

On suppose que a < 0. L'équation différentielle (H_a) admet une solution générale de la forme

A) $t \mapsto y(t) = \alpha e^t + \beta e^{-t}$ où $(\alpha, \beta) \in \mathbb{R}^2$

 $B \rightarrow t \mapsto y(t) = \alpha c^{-\alpha t} + \beta c^{\dagger} \circ \hat{u}(\alpha, \beta) \in \mathbb{P}^2$

C) $t \mapsto y(t) = \alpha e^{\sqrt{-a}t} + \beta e^{-\sqrt{-a}t}$ où $(\alpha, \beta) \in \mathbb{R}^2$

D) $t \mapsto y(t) = \alpha e^{at} + \beta e^{-t}$ où $(\alpha, \beta) \in \mathbb{R}^2$

Question 3

L'équation différentielle (E_a) admet une solution particulière de la forme

A) $t \mapsto y_p(t) = \frac{1}{a}t^2 + \frac{2}{a^2}$

B) $t \mapsto y_p(t) = \frac{1}{a}t^2 - \frac{a^2}{a^2}$ C) $t \mapsto y_p(t) = at^2 - 2$

D) $t \longmapsto y_p(t) = t^2$

Question 4

On suppose que a < 0. L'équation différentielle (E_a) admet une solution générale de la forme

A) $t \mapsto y(t) = \alpha e^t + \beta e^{-t} + at^2 - 2$ où $(\alpha, \beta) \in \mathbb{R}^2$

B) $t \mapsto y(t) = \alpha e^{-at} + \beta e^t + t^2$ où $(\alpha, \beta) \in \mathbb{R}^2$

C) $t \mapsto y(t) = \alpha e^{\sqrt{-at}} + \beta e^{-\sqrt{-at}} + \frac{1}{a}t^2 - \frac{2}{a^2}$ où $(\alpha, \beta) \in \mathbb{R}^2$ D) $t \mapsto y(t) = \alpha e^{at} + \beta e^{-t} + \frac{1}{a}t^2 + \frac{2}{a^2}$ où $(\alpha, \beta) \in \mathbb{R}^2$

Exercice 2

Soit f la fonction définie par $f:(x,y)\mapsto \left\{\begin{array}{ll} \frac{x^2y}{x^2+y^2} & \text{si }(x,y)\neq (0,0)\\ 0 & \text{sinon.} \end{array}\right.$

Question 1

L'ensemble de définition D_f de la fonction f. Quelle est la bonne réponse?

A) $D_f = \mathbb{R}^2$

B) $D_f = \mathbb{R}^2 \setminus \{(0,0)\}$

 $C)D_f=\mathbb{R}$

 $D) D_f = \mathbb{R} \setminus \{0\}$

Question 2

Quelle est la bonne réponse?

- A) f admet des dérivées partielles premières en (0,0) par rapport aux variables x et y qui sont toutes nulles.
- B) f admet des dérivées partielles premières en (0,0) par rapport à x et non par rapport à

C) f n'admet des dérivées partielles premières en (0,0).

D) f admet des dérivées partielles premières en (0,0) qui sont non nulles.

Question 3

Quelle est la bonne réponse ?

A) f est différentiable en tout point de son ensemble de définition

B) f est de classe C^1 sur $\mathbb R$

C) f est de classe C^1 sur \mathbb{R}^2

D) f n'est pas différentiable en (0,0).

Exercice 3

La fonction de production d'un entrepreneur est donné par $g(K,L) = \sqrt{K}\sqrt[4]{L}$, où K représente le capital utilisé et L le travail.

Question 1

L'ensemble de définition D_g de la fonction g. Quelle est la bonne réponse?

A) $D_g = \mathbb{R}^2$

$$\begin{array}{c} \mathbf{B} \) \ D_g = \mathbb{R}^2 \backslash \{(0,0)\} \end{array}$$

C)
$$D_g = \mathbb{R}^2_+$$

D) $D_g = \mathbb{C}^2 \setminus \{(0,0)\}$

Question 2

La fonction f est différentiable sur : Quelle est la bonne réponse?

A) $E=\mathbb{R}^2$

$$B) E = \mathbb{R}^2 \setminus \{(0,0)\}$$

 $C)E=\mathbb{R}^2_+$

$$D') E = \mathbb{R}^{*2}_{+}$$

Question 3

Pour tout $(L, K) \in E$, on a . Quelle est la bonne réponse ?

A)
$$\frac{\partial g}{\partial K}(L,K) = \frac{\sqrt[4]{L}}{2\sqrt{K}}$$
 et $\frac{\partial g}{\partial L}(L,K) = \frac{\sqrt{K}}{4\sqrt[4]{L^3}}$

B)
$$\frac{\partial g}{\partial K}(L,K) = \frac{\sqrt[4]{L}}{\sqrt{K}}$$
 et $\frac{\partial g}{\partial L}(L,K) = \frac{\sqrt{K}}{4\sqrt[4]{L^3}}$

C)
$$\frac{\partial g}{\partial K}(L, K) = \frac{\sqrt[4]{L}}{\sqrt{K}}$$
 et $\frac{\partial g}{\partial L}(L, K) = \frac{\sqrt[4]{K}}{\sqrt[4]{L^3}}$

D)
$$\frac{\partial g}{\partial K}(L,K) = \frac{\sqrt[4]{L}}{2\sqrt[4]{K}}$$
 et $\frac{\partial g}{\partial L}(L,K) = \frac{\sqrt[4]{K}}{\sqrt[4]{L^3}}$

Exercice 4

On considère les intégrales suivantes : $I_1 = \int_0^1 \frac{\ln(1+t)}{t} dt$, $I_2 = \int_0^{+\infty} \frac{1+t}{t^3+5t^2+1} dt$ $I_3 = \int_0^{+\infty} e^{-at} \sin t \, dt, \quad a > 0 \text{ et } I_4 = \int_0^{+\infty} \frac{1}{(t^2 + 1)^{n+1}} \, dt, \quad n \in \mathbb{N}.$

Quelle est la bonne réponse?

- A) Les intégrales I_1 et I_2 sont divergentes
- B) Les intégrales I_1 et I_2 sont convergentes
- C)L'intégrale I_1 est convergente et I_2 divergente.
- D) L'intégrale I_1 est divergente et I_2 converge.

Question 2

Quelle est la bonne réponse?

- A) L'intégrale I_3 est divergente
- B) L'intégrale I_3 est convergente et vaut $\frac{1}{a}$ C) L'intégrale I_3 est convergente et vaut $\frac{1}{a^2+1}$.
- D) L'intégrale I_3 est convergente et vaut $\frac{1}{a^2}$.

Question 3

Quelle est la bonne réponse?

- A) L'intégrale I_4 est divergente
- B) L'intégrale I_4 est convergente pour $n \geq 2$ et diverge dans les autres cas.
- C)L'intégrale I_4 est convergente pour $n \in \mathbb{N}^*$ et diverge pour n = 0.
- D) L'intégrale I_4 est convergente pour tout entier naturel n.