

Previsão de Tendências de Preços de Ações com a WiSARD

Aluno: Cleiton Moya de Almeida

Disciplina: CPS841 – Redes Neurais Sem Peso

Prof.: Priscila Vieira Machado Lima

Apresentado em: 16/07/2020 Revisão final: 21/07/2020

- 1. Motivação
- 2. Breve Revisão da Literatura
- 3. Objetivo
- 4. Construção da Retina
- 5. Rotulagem
- 6. Treinamento e Ajustes
- 7. Resultados
- 8. Conclusão

Motivação

• Quantitative Trading:

- √ 80% dos negócios no mercado futuro dos EUA são realizados por robôs de alta frequência (HFT) (Jansen, 2018);
- ✓ 2017: fundos quants cresceram 15% ao ano desde 2011 e controlaram US\$ 1,5 trilhões (Jansen, 2018);
- ✓ Medallion Fund: 39%a.a. de 1988 a 2018;

• Machine Learning em Finanças:

- ✓ Séries temporais financeiras:
 - Hipótese do Mercado Eficiente passeio aleatório:
 - $Y_{t+1} = Y_t + \varepsilon$, onde ε é um ruído aleatório.
- ✓ Dificuldades no teste / validação:
 - Ex.: *K-fold* não se aplica;
- ✓ Maioria dos algoritmos fracassam na prática (Prado, 2019);
- ✓ Estratégias de sucesso não são divulgadas.
- ✓ "Uma taxa de acerto 52% pode parecer modesta, mas se for consistente você pode fazer muito dinheiro" (Mustafa, Y., 2012).

Jim Simons – "The man who solved the market"

The World's Top Investors

Investor, Key Fund/Vehicle	Period	Average Annual Returns After Fees	
Jim Simons, Medallion	1988-2018	39%	
George Soros, Quantum	1969-2000	32%	
Steven Cohen, SAC	1992-2003	30%	
Peter Lynch, Magellan	1977-1990	29%	
Warren Buffett, Berkshire Hathaway	1965-2018	21%	
Ray Dalio, Pure Alpha	1991-2018	12%	

Source: The Wall Street Journal

www.libertythroughwealth.com

Dois problemas principais:

- ✓ Previsão de preços ou retornos: regressão;
- ✓ Previsão da tendência (movimento): classificação.

• Tipos de Dados (Prado, 2018):

- ✓ Dados de mercado (raw data);
- ✓ Dados analíticos (derivados);
- ✓ Dados alternativos (Ex.: Ocupação de estacionamentos)

Séries temporais financeiras com WiSARD:

- ✓ Samara Alves (2017) utilizou a WiSARD para a previsão de tendências;
- ✓ 6 fases: Recuperação, Acumulação, Altista, Aviso, Distribuição, Baixista;
- ✓ Utilização somente do preço de fechamento para o cálculo das fases;
- ✓ Rotulagem com base nestas 6 regiões;
- ✓ Retina: fases dos 5 dias anteriores;

Estratégia testada por Samara Alves (2017)

Proposta

- ✓ Explorar a WiSARD para a predição de tendências de ações com para o horizonte de negociação em dias (swing trading);
- √ 3 ações: BBDC4, PETR4, VALE3;
- ✓ Features:
 - Indicadores da Análise Técnica
 - Calculados a partir de dados de mercado:
 - o Preço de abertura, máx., mín., fechamento e volume.
- ✓ Banchmarking: (Alves, 2017).
- ✓ Base de dados:
 - ✓ Dados de mercado extraídos da plataforma *ProfitChart Clear Trader©*.

• Inspiração:

"Backtesting não é uma ferramenta de pesquisa. Análise de importância de atributos é.

M. L. Prado in Advances on Financial Machine Learning

Construção da Retina

• Indicadores técnicos⁽¹⁾:

- ✓ 11 indicadores: volume, tendência, média móvel, Bandas de Bollinger, MACD, RSI, Canal de Donchian, Canal de Keltner, ADX, Aroon;
- √ 20 parâmetros associados;
- ✓ Geração de 28 sinais de saída binários para cada instante t;
- ✓ Exemplos de sinais:
 - Volume de negociações está crescente?
 - Houve cruzamento de médias móveis?
 - Bandas de Bollinger indicam compra?

Janela móvel:

- ✓ Cada instante de tempo **t** da série é representada por uma sequência de **T** dias anteriores:
 - $S[t] = \{E[t], E[t-1], ..., E[t-T]\}$
- ✓ Retina: até **28 x T** bits

Exemplos de indicadores técnicos Fonte: https://br.tradingview.com

(1) Detalhes sobre indicadores técnicos podem ser encontrados no livro de Flávio Lemos: **Análise Técnica dos Mercado Financeiros**. 2018.

Abordagem testada inicialmente:

- ✓ 3 classes baseadas no retorno no horizonte *h*:
 - Tendência de baixa ($retorno < R_1$);
 - Tendência neutra ($R_1 \le retorno < R_2$)
 - Tendência de alta ($retorno \ge R_2$)
- ✓ Constatação na prática:
 - Elevado desequilíbrio;
 - Tendência neutra com poucos exemplares;

• Abordagem selecionada:

- ✓ Apenas 2 classes;
- ✓ $Preço(t + h) \le Preço(t)$:
 - Tendência de baixa (0)
- ✓ Preço(t+h) > Preço(t):
 - Tendência de alta (1)

Treinamento:

- ✓ Estratégia "online":
 - Após a classificação de um exemplar da fase de teste, independente do resultado, a rede é treinada com este exemplar antes de uma nova classificação;
- ✓ Tempos de treinamento e classificação da ordem de milissegundos.

Parâmetros da WiSARD:

- ✓ Utilização de Bleaching;
- ✓ Tamanho de endereçamento testados: [4, 8, 16, 24]
- ✓ Selecionado para testes: 4

Janela deslizante e horizonte de predição:

- ✓ Janelas testadas: [1, 3, 5, 15]
- ✓ Janela selecionada para testes: 3
- ✓ Horizontes testados: [1, 3, 5, 10]
- ✓ Horizonte selecionado para testes: 3

Parâmetros dos Indicadores:

- ✓ Busca heurística realizada com o ativo BBDC4;
- \checkmark Combinações desejadas: $3^{20} = 3.486.784.401$
- ✓ Tentou-se testar: $4^3 \times 3^7 = 139.968$
 - Se cada teste durasse 1s, seriam necessárias ~39h
 - Após 8 horas, a busca foi interrompida.

- Testaram-se diversas combinações de parâmetros, algumas aparentavam melhores resultados. Porém:
- Após a execução de 1000
 experimentos, verificou-se que os
 parâmetros testados pouco
 influenciam a acurácia média.

• Predição de tendências

✓ Acurácia:

	(Alves, 2017)* 2008 a 2015	Este trabalho 2008 a 2015	Este trabalho 2015 a 2020
BBDC4	40,21%	(50,9 ± 2,2) %	(53,6 ± 2,6) %
PETR4	65,26%	(51,8 ± 2,0) %	(49,5 ± 3,5) %
VALE3	55,09%	(52,0 ± 2,3) %	(51,2 ± 2,7) %

^{*}Tabela 9, classificador WiSARD

Após 1000 execuções para o cálculo da média e desvio-padrão:

- 50%, considerando o limite de erro;
- Acurácias não satisfatórias.
- Melhor resultado para BBDC4;

✓ Matrizes de confusão:

	BBDC4		
	2015 a 2020		
Baixa [0]	0,55	0,45	
Alta [1]	0,48	0,52	

PETR4		
2015 a 2020 0,58 0,42		
,	,	
0,40	0,60	

VALE3		
2015 a 2020		
0,32	0,68	
0,26	0,74	

- Maior dificuldade de previsão de tendência de baixa em VALE3;
- Bias pode ser explorado em algoritmos negociadores.

Comparação

- (Alves, 2017):
 - ✓ Saída predita / rótulos: fases calculadas com base nas médias móveis não necessariamente refletem a tendência real;

Saída real x predita (Alves, 2017) (Fonte: gráfico gerado pelo autor com base no trabalho de Alves).

• Este trabalho:

- ✓ Saída predita / rótulos: tendência "real";
- ✓ "Alta": sempre implica preço crescente;
- Apenas 2 rótulos;
- ✓ Maior complexidade: requer maior conhecimento;

Saída real x predita – Proposta testada neste trabalho

• Estratégia simples negociação

- ✓ A fim de melhor comparar os resultados com o trabalho de Alves (2017), definiu-se um agente negociador simples:
 - Caso a tendência prevista seja de alta:
 - Se não tiver posicionado, compra;
 - Senão, mantém;
 - Caso a tendência prevista seja de baixa:
 - Se tiver comprado, vende.
- ✓ Alves (2017) denominou esta estratégia de "Mercado", e também implementou outra estratégia utilizando um modelo Processo de Decisão de Markov (MDP).

• Estratégia Buy & Hold

- ✓ Implementou-se também a estratégia *Buy & Hold*:
 - Compra;
 - Mantém a posição por tempo indeterminado.

Obs.: Implementou-se este agente para caso se conseguisse acurácia satisfatória com o modelo. Como as acurácias não foram satisfatórias, o agente não é capaz de gerar lucro de forma consistente.

• Retorno financeiro (backtesting)

	02/01/2008 a 30/06/2015 ¹			01/1/2015 a 31/01/2020		
	Buy & Hold	Alves (2017) Estrat. "Mercado"	Alves (2017) Estrat. "MDP"	Este trabalho	Buy & Hold	Este trabalho
BBDC4	8,9%	-4,5%	+29,9%	+(17,2 ± 20,5)%	-3,7%	+(4,7 ± 9,1)%
PETR4	-26,0%	-45,6%	-26,6%	+(2,6 ± 30,1)%	10,9%	-(0,7 ± 11,0)%
VALE3	-34,2%	-86,6%	-5,7%	-(9,3 ± 16,9)%	24,8%	+(28,3 ± 20,5)%

⁽¹⁾ Os períodos de teste não foram exatamente iguais nos dois trabalhos devido a diferenças no split da base de dados;

- Conforme esperado, ↓ acurácia na prev. da tendência → ↑ desvio padrão;
- Como as acurácias não foram satisfatórias, o agente não é capaz de gerar lucro de forma consistente

Conclusões

- O modelo proposto neste trabalho não apresentou acurácia satisfatória para a predição de tendências de ações;
- Uma hipótese para a baixa acurácia é que a complexidade do sinal de saída (rótulos) demanda um alto grau de informação para a predição, e os sinais binários utilizados neste trabalho não são capazes de prover este grau de informação;
- Como sugestão para trabalho futuros, seria importante fazer uma análise mais criteriosa da importância e influência de cada feature no modelo, bem como suas correlações, de modo a verificar como se pode aumentar o nível de informação de cada feature;
- Caso se consiga uma acurácia satisfatória, como em (Alves, 2017), a WiSARD é bastante atrativa para a área de *Quantitative Trading* devido à sua rapidez e simplicidade.

Bibliografia

- Alves, Samara. A. Negociação no mercado financeiro utilizando a rede neural sem peso WiSARD.
 Dissertação de mestrado. 2017.
- George S. Atsalakis, Kimon P. Valavanis. **Surveying stock market forecasting techniques** Part II: Soft computing methods, Expert Systems with Applications, Volume 36, Issue 3, Part 2. Disponível em: https://doi.org/10.1016/j.eswa.2008.07.006.
- Mustafa, Y. Learning from Data. 2012.
- Kofi Nti et. al. A systematic review of fundamental and technical analysis of stock market predictions. Disponível em: https://doi.org/10.1007/s10462-019-09754-z
- Jansen, Stefan. Hands On Machine Learning for Alghoritmic Trading. Packet, 2018.
- Prado, Marcos López. Advances in Financial Machine Learning. Wiley, 2017.