Numerical modeling in Geophysics

S. No	Theory	Lab	Theory hours	Lab hours			
1	Intro to forward and inverse problems	Intro to MATLAB and GitHub	2	2			
2	Discretization Projectile motion example Overdetermined-underdetermined Seismic tomo example	Projectile motion example	4	2			
3	Interpolation and linear regression	(1) Polynomial interpolation(2) Lagrange and splineinterpolation	4	6			
4	Taylor series and Newtons method	Taylor series example	2	2			
5	Numerical differentiation, Generalized matrix method for numerical derivatives	Solutions to ODE using Euler and RK4	4	2			
6	Numerical integration	Difference in trapezoidal and Simpon's solutions	2	2			
7	Iterative solvers	Jacobi and Gauss Seidel method	2	2			
	Mid Sem						
8	Basic elements of Finite difference method (explicit, implicit, crank- Nicolson)	-	4	0			
9	Heat equation using Finite difference method	Example 1: Numerical solution to heat equation using FDM	2	4			
10	Acoustic equation using Finite difference method	Example 2: Numerical solution to acoustic equation using FDM	2	4			
11	Basic idea of finite element method	-	2	0			
	End Sem						
			30	26			

Geophysical Inversion

S.	Theory	Lab	Theory	Lab	
No			hours	hours	
1	Intro to forward and inverse	Intro to MATLAB and	2	0	
	problems	GitHub			
	Treasure hunt problem				
2	Revision of linear algebra (null	Properties eigenvalues	2	2	
	space, rank, eigenvectors)	and eigenvectors			
3	Taylor series (gradient and hessian)	Linear regression	4	2	
		problem			
4	Linear and non-linear inverse	Example 1: Vertical	4	4	
	problems	Seismic Profiling (VSP)			
		linear vs non-linear			
5	Iterative methods	Gradient vs newton	2	2	
		method			
6	Earthquake location problem	Example 2: Hypocenter	2	2	
		Inversion			
		1id Sem			
7	Probabilistic viewpoint: Weighted	-	4	0	
	least-square and gaussian pdf				
8	Regularization and Lagrange	An example of Lagrange	2	2	
	multiplier	multipliers			
9	SVD	(1) Properties of SVD	4	4	
		(2) Image compression			
10	Tomography inversion	Example 3: Crosswell	2	4	
		Borehole tomography			
11	Inverse problems using basis	Shaw Problem	4	2	
	functions				
End Sem					
			32	24	