

FAKTORSKA ANALIZA

Predavač: doc. dr Bojana Dinić

⋈ bojana.dinic@ff.uns.ac.rs

Materijal je namenjen isključivo za internu upotrebu. Dalja distribucija u bilo kojem obliku nije dozvoljena.
© 2011 – 2017 Centre for Behavioral Genetics ALL RIGHTS RESERVED

Čemu služi faktorska analiza?

- opis međuzavisnosti velikog broja varijabli utvrđivanjem manjeg broja zajedničkih dimenzija
- grupisanje varijabli po sličnosti

Eksplorativna faktorska analiza

bez unapred definisanih pretpostavki o broju i strukturi faktora

Cilj:

1. redukcija podataka

analiza glavnih komponenti

eng. Principal Components Analysis - PCA

2. uvid u latentnu strukturu podataka

faktorska analiza u užem smislu ili analiza zajedničkog faktora

eng. Common factor analysis, ali najčešće se navodi konkretan metod ekstrakcije (npr. Principal Axis, Maximum Likelihood...)

Šta je latentna struktura?

Šta je latentna struktura?

Šta je latentna struktura?

Redukcija vs. latentna struktura

Često sam nervozan.

Često mi se znoje dlanovi.

Brinem o budućnosti.

Srce mi ubrzano lupa kad treba da govorim pred ljudima.

Često se osećam utučeno.

Mislim da mi ništa ne polazi od ruke.

Kajem se zbog mnogih odluka.

Često mislim da život nema smisla

Materiial je namenjen isključivo za internu unotrehu. Dalja distrihucija u hilo kojem obliku nije dozvoljena

Varijansa manifestne varijable

Analiza glavnih komponenti

Matrica korelacija manifestnih varijabli

	Često sam nervozan	Znoje mi se dlanovi	Brinem o budućnos ti	Često sam utučen	Kajem se	Život nema smisla
Često sam nervozan	1					
Znoje mi se dlanovi	.72	1				
Brinem o budućnosti	.64	.53	1			
Često sam utučen	.10	02	12	1		
Kajem se	.17	.23	.10	.36	1	
Život nema smisla	.05	.08	.07	.37	.44	1

Matrica korelacija manifestnih varijabli

	Često sam nervozan	Znoje mi se dl F	Brinem o	Često sam utučen	Kajem se	Život nema smisla
Često sam nervozan	1					
Znoje mi se dlanovi	.72	1				
Brinem o budućnosti	.64	.53	1			aktor 2
Često sam utučen	.10	02	12	1		
Kajem se	.17	.23	.10	.36		
Život nema smisla	.05	.08	.07	.37	.44	1

Primer: analiza glavnih komponenti

Problem: Utvrditi strukturu upitnika NN

Manifestne varijable – odgovori na stavkama upitnika NN

Šta čekirati u SPSS-u?

- Analyze/Dimension Reduction/Factor...
- prebaciti manifestne varijable u polje Variables
- dugme Extraction... odabrati metod ekstrakcije u okviru Method, čekirati Scree plot. Nakon odluke o broju faktora, zadati broj faktora - u okviru polja Extract čekirati Fixed number of factors i uneti broj faktora. Maksimalni broj iteracija promeniti iz 25 u 999.
- dugme Rotation... odabrati vrstu rotacije. Maksimalni broj iteracija promeniti iz 25 u 999.
- dugme Scores... ukoliko želite da sačuvate faktorske skorove, čekirati Save as variables
- dugme Options... za bolji prikaz, čekirati Sorted by size i Suppress small coefficients i umesto ,10 staviti ,30 (ili ,32)

Ne zaboraviti - faktorska analiza je iterativni postupak

Metodi ekstrakcije

Analiza glavnih komponenti:

PCA (eng. Principal components analysis)

Faktorska analiza u užem smislu:

- ML (eng. Maximum likelihood) traži se matrica koja najbolje reprodukuje matricu korelacija u populaciji nedostatak: ne daje najbolje rešenje ako su faktori "slabi" i ako je uzorak mali
- PA (eng. Principal axis factoring) radi se komponentna analiza, ali nad redukovanom matricom komunaliteta prednost: manje osetljiva na odstupanje od multivarijatne normalnosti

• ...

Tradicionalni kriterijumi za odabir broja faktora

- Guttman-Kaiser-ov kriterijum
- zadržati onoliko faktora koliko ima karakterističnih korenova (kk.) preko 1
- kk. ukupna varijansa svih varijabli objašnjena faktorom
- kk. > 1 faktor opisuje više varijanse nego pojedinačna varijabla

nedostatak: prefaktorizuje

Guttman-Kaiser-ov kriterijum

Tradicionalni kriterijumi za odabir broja faktora

Scree dijagram

zadržati onoliko faktora koliko je tačaka iznad preloma/lakta

nedostatak: podfaktorizuje

Scree dijagram

Tradicionalni kriterijumi za odabir broja faktora

 unapred definisan broj, u skladu s očekivanjima

npr. prema teoriji očekujemo 2 faktora

zadat % objašnjene varijanse

npr. 40%

interpretabilnost

Dodatna literatura:

http://primenjena.psihologija.ff.uns.ac.rs/index.php/pp/article/view/1083/1097

Rotacija

ortogonalna (r = 0)

kosa $(r \neq 0)$

Materijal je pamenjen isključivo za internu upotrebu. Dalja distribucija u bilo kojem obliku nije dozvoljena.
© 2011 – 2019 Centre for Behavioral Genetics ALL RIGHTS RESERVED

Rotacija

ortogonalna

Varimax – maksimizira opterećenja na jednom i minimizira na ostalim faktorima

kosa

Oblimin

Promax – ortogonalni (Varimax) faktori se rotiraju u kosu poziciju (Oblimin); kako polazi od Varimax-a, daje slično rešenje kao i Varimax

Rešenje nakon rotacije

Napomena: % objašnjene varijanse nakon rotacije se dobija samo za ortogonalnu rotaciju

0		Initial Eigenvalues		Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Component -	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	2,489	41,481	41,481	2,489	41,481	41,481	2,212	36,869	36,869
2	1,934	32,226	73,707	1,934	32,226	73,707	2,210	36,838	73,707
3	,544	9,067	82,774						
4	,498	8,306	91,080						
5	,358	5,964	97,044						
6	,177	2,956	100,000						

inicijalna solucija – pod modelom AGK nakon ekstrakcije

nakon rotacije

Matrica komponenti

- korelacija manifestne varijable s nerotiranim komponentama/faktorima
- koristi se za interpretaciju samo kada dobijemo ili se odlučimo za jednofaktorsko rešenje

Component Matrix^a

	Component			
	1	2		
frekvenca	,648	,510		
br.slova	,626	,564		
br.slogova	,652	,629		
valenca	,645	-,559		
konkretnost	,620	-,578		
pobudjenost	,671	-,558		

Extraction Method: Principal

Ortogonalna rotacija: matrica rotiranih komponenti

- u slučaju 2 i više faktora
- korelacije manifestnih varijabli s faktorima

Rotated Component Matrix^a

	Component		
	1	2	
frekvenca	,099	,819	
br.slova	,045	,842	
br.slogova	,018	,906	
valenca	,852	,059	
konkretnost	,847	,028	
pobudjenost	,870	,079	

Extraction Method: Principal

Component Analysis.

Rotation Method: Varimax with

Kaiser Normalization.

Kosa rotacija: matrica sklopa i strukture

parcijalne korelacije

Pattern Matrix^a

	Component		
	1	2	
frekvenca	,049	,817	
br.slova	-,007	,844	
br.slogova	-,038	,910	
valenca	,853	,005	
konkretnost	,850	-,026	
pobudjenost	,870	,024	

Extraction Method: Principal

Component Analysis.

Rotation Method: Promax with

Kaiser Normalization.

a. Rotation converged in 3 it

obične korelacije

Structure Matrix

	Component			
	1	2		
frekvenca	,150	,823		
br.slova	,098	,843		
br.slogova	,075	,905		
valenca	,854	,112		
konkretnost	,847	,080,		
pobudjenost	,873	,132		

Extraction Method: Principal

Component Analysis

Rotation Met

Kaisar Norm

Napomena: ako je korelacija < .32, ortogonalna rotacija je bolja, ako je > .32, kosa rotacija je bolja

Component Correlation Matrix

Component	1	2
1	1,000	,125
2	,125	1,000

Extraction Method: Principal Component Analysis.

Rotation Method: Promax with Kaiser Normalization.

bilo kojem obliku nije dozvoljena. **iHTS RESERVED**

Kako napisati izveštaj o rezultatima?

U cilju utvrđivanja strukture upitnika NN, primenjena je analiza glavnih komponenti. Na osnovu Scree dijagrama, zadržane su dve komponente koje objašnjavaju 73.71% ukupne varijanse. Komponente su dovedene u ortogonalnu Varimax rotaciju i interpretirane kao anksioznost i depresivnost (Tabela 1).

Tabela 1 *Matrica sklopa upitnika NN*

Uslovi za primenu

1. veliki uzorak: što veći, to bolji

Različite preporuke:

- minimum 300 (ali može i manje, npr. 150 ako postoji nekoliko visokih opterećenja > .80)
- 10 ispitanika po varijabli (neki tvrde da dovljno 5, čak i 3)

2. jačina povezanosti između varijabli

značajan Bartletov test sferičnosti i KMO > .60

Šta ako uslovi nisu zadovoljeni?

- 1. velik uzorak: što veći, to bolji
- dopuniti uzorak; proveriti opterećenja ako su visoka i manji uzorci (npr. 150) mogu biti ok
- 2. jačina povezanosti između varijabli
- ako je KMO testa < .60, izbaciti varijable s niskom KMO vrednošću (matrica Anti-image correlations)

Provera uslova: jačina povezanosti između varijabli

- dugme Descriptives... čekirati KMO and Bartlett's test of sphericity
- KMO (Kaiser-Mayer-Olkinov) koeficijent je mera reprezentativnosti

 količina informacija dobijena datim uzorkom varijabli u odnosu
 na beskonačni broj varijabli iz domena
- označava se i sa MSA Measure Sampling Adequacy

Tumačenje: do .59 - neprihvatljiv

od .60 do .69 – osrednji

od .70 do .79 – dobar

od 80 do .89 – odličan

.90 i više – divan

u praksi:

od .70 do .79 - zadovoljavajući

od .80 do .90 - dobar

.90 i više - odličan

- Bartlettov test sferičnosti da li su korelacije između varijabli značajno različite od nule?
 - treba da bude značajan

Hvala na pažnji!

Pitanja?

Predavač: doc. dr Bojana Dinić

⋈ bojana.dinic@ff.uns.ac.rs

Materijal je namenjen isključivo za internu upotrebu. Dalja distribucija u bilo kojem obliku nije dozvoljena.
© 2011 – 2019 Centre for Behavioral Genetics ALL RIGHTS RESERVED

