MINEX III Report Card

Matcher nec+8210

Last Updated: October 23, 2020

Participant Details

Company: NEC

Provided CBEFF PID: 0011 8260

Date Application Received: 12/12/2016

Date Validated: 12/22/2016 **Date Completed:** 12/22/2016

Library	Size (bytes)	MD5 Checksum
libminexiii_nec_8210.so	44388010	222b11794a82a9f075afb1aae8760742

Compliance Test Results

The following presents **PIV compliance** results per the criteria detailed in NIST Special Publication 800-76-2: Biometric Specifications for Personal Identity Verification.

It also includes **MINEX III compliance** results per the criteria detailed in sections 4 through 8 of the Minutiae Interoperability Exchange (MINEX) III Test Plan and Application Programming Interface.

PIV Level One: PASS

- Must match templates from all certified template generators with an FNMR_{FMR}(0.01) ≤ 0.01 using two fingers (4.5.2.1-4). ✓
- Average template comparison time must be no more than 10 milliseconds (6.4). ✓

PIV Level Two: PASS

- Must pass PIV level one compliance. ✓
- Native template generator must pass level one compliance.
- Must match templates from native template generator with an FNMR_{FMR}(0.0001) ≤ 0.02 using one finger (4.5.3-2) ✓

MINEX III: PASS

- Must pass MINEX III validation. ✓
- Must pass PIV level two matcher compliance. ✓
- Matcher must produce at least 512 distinct comparison scores over the entire dataset when comparing templates from different subjects. (3117) ✓

Notes

- This report will be updated as new matching algorithms and template generators pass the compliance test. These updates will not change the PASS/FAIL decision above.
- NIST reserves the right to decertify a matcher if it later discovers the matcher violates MINEX III or PIV specifications in some previously undetected way.
- This is the "best" compliant submission from NEC, and is therefore a member of the pooled DET curves published throughout all MINEX III report cards.

Contents

Pa	ticipant Details	1
Co	mpliance Test Results	ts 1 1 3 3 3 ics 3 4 timation 4 timation 4 5 5 6 7 7 12 istics 12 istics 13 Count on Accuracy 15 Ongoing MINEX 16 18 22 roperability Test Setup 4 iger) 5 lex) 6 x) 7 ti (Single Finger) 7 ti (Single Finger) 8 ti (Single Finger) 9 ger) 9 ger
N	tes	
1	Introduction	3
2	Methodology 2.1 Dataset	. 3
3	Results 3.1 Single Finger	
	3.2 Two Finger 3.3 Match Times 3.4 Threshold Statistics 3.5 Q-Q Plot 3.6 Effect of Minutia Count on Accuracy 3.7 Comparison to Ongoing MINEX	. 12. 13. 14. 15
4	Performance Tables	18
5	References	22
L	st of Figures	
T	MINEX III Interoperability Test Setup DET (Single Finger) DET (Right Index) DET (Left Index) FNMR @ FMR = 0.01 (Single Finger) DET Scatterplot (Single Finger) DET (Two Finger) FNMR @ FMR = 0.01 (Two Finger) DET Scatterplot (Two Finger) DET Scatterplot (Two Finger) Cummulative Score Functions (Single Finger) Cummulative Score Functions (Two Finger) Q-Q Plot (Left vs. Right Index) FNMR and FMR vs. Minutia Count FNMR and FMR vs. Minutia Count	. 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 13 . 14
L	st of Tables1Threshold calibration table	. 16. 16. 18. 19. 20

2

1 Introduction

This report card presents measurements of performance and interoperability for a single fingerprint matching algorithm submitted to NIST as part of the ongoing MINEX III Evaluation. It reports whether the matcher passes the technical requirements for MINEX III as described in Section 8 of the MINEX III Test Plan and Application Programming Interface. Full details on the ongoing MINEX III program can be found on the MINEX III homepage. Questions should be directed to minex@nist.gov.

2 Methodology

Testing is performed at a NIST facility. Each participant's submission is validated by NIST (https://github.com/usnistgov/minex/tree/master/minexiii/validation) before undergoing full testing to ensure it operates correctly. If the matcher passes the validation procedure, it is then used to compare standard fingerprint templates. Performance is assessed against templates created by a template generation algorithm submitted by the participant as well as templates created by other MINEX III compliant template generators.

2.1 Dataset

Testing is performed over a single dataset of sequestered fingerprint images. The images were collected by U.S. Visit at ports of entry into the United States. They consist of Live-scan plain impressions of left and right index fingers. WSQ [1] compression was applied to all images at a ratio of 15:1. The most recent capture of each subject was treated as the authentication sample, and the next most recent as the enrolled sample.

The dataset was divided into $533\,767$ mated and $1\,067\,530$ non-mated subject pairings. Since both left and right index fingerprints are available for each subject, this provides $1\,061\,657$ mated and $2\,127\,712$ non-mated single-finger comparisons (after database consolidation). When left and right index fingers are fused at the score level [3, 7], the sets condense to $530\,394$ mated and $1\,062\,814$ non-mated comparison scores.

2.2 Accuracy Metrics

Core matching accuracy is presented in the form of Detection Error Tradeoff (DET) plots [6], which show the trade-off between the False Match Rate (FMR) and the False Non-Match Rate (FNMR) as a decision threshold is adjusted. Formally, let m_i (i=1...M) be the ith mated comparison score, and n_j (j=1...N) the jth non-mated comparison score. Then the statistics are

$$FNMR(\tau) = \frac{1}{M} \sum_{i=1}^{M} \mathbb{1}\{m_i < \tau\},$$
 (1)

$$FMR(\tau) = \frac{1}{N} \sum_{j=1}^{N} \mathbb{1}\{n_j \ge \tau\}.$$
 (2)

where $\mathbb{1}\{A\}$ is the indicator [4] of event A. Equations 1 and 2 define the curve parametrically with the decision threshold, τ , as the free parameter. In some figures and tables, FNMR is presented as a function of FMR. This relationship is determined by

$$FNMR_{FMR}(\alpha) = \min_{\tau} \{ FNMR(\tau) \mid FMR(\tau) \le \alpha \},$$
 (3)

which reads as the smallest FNMR that can be achieved while maintaining an FMR less than or equal to α , the targeted FMR. This method of relating the two error statistics ensures FNMR is well-defined for all $0 \le \alpha \le 1$. When the matching algorithm produces only a few unique comparison scores, the maximum threshold, τ_0 , that elicits an FMR(τ_0) $\le \alpha$ may, in fact, be quite a bit lower than α . Thus, Equation 3 imposes a natural penalty on matching algorithms that produce overly discretized scores.

Some figures show *pooled* DET accuracy, which is a measure of the accuracy of the matcher against all compliant template generators. Accuracy is measured by concatenating all comparison scores involving the matcher together and computing FMR and FNMR using Equations 2 and 1. This roughly simulates performance for a biometric system that employs one matcher and templates created by several template generators.

MINEX III: Matcher Report Card

Figure 1: MINEX III Interoperability Test Setup

2.3 Interoperability

Interoperability is tested in a manner similar to *Scenario 1* from the MINEX Evaluation Report [5] (see Figure 1). An enrolment template is prepared using submission X. Submission Y is used to prepare the authentication template and perform the match. The authentication template is always prepared by the same submission used to compare the templates. However, enrolment templates need not originate from the same submission. When they do, we refer to it as "native" mode.

2.4 Uncertainty Estimation

Some figures in this report include boxplots that convey the uncertainty associated with a statistic. The boxplots are intended to show the expected variation in the observed value if one assumes repeated iid sampling from the same population. They are not intended to reflect how the statistic might change over different test data or even different sampling strategies over the same data.

Estimates of uncertainty are computed using the Wilson Score method [8] which overcomes certain problems associated with applying the Central Limit Theorem to a discretized estimator. We make several simplifying assumptions when applying the method to biometric identification. Most notably, separate searches against the same enrollment database are treated as independent samples, yet we know positive correlations exist due to Doddingtons Zoo [2]. We also report estimates of the variability of FNIR at a fixed FPIR when in fact it is the decision threshold that is fixed. Uncertainty with respect to what decision threshold corresponds to the targeted FPIR results in increased uncertainty about the true value of FNIR. However, our estimates of FPIR are fairly tight due to the large number of non-mated searches performed, so they are not expected to have a large impact on the estimates.

3 Results

This section details the performance of matcher nec+8210 when it compares verification templates created by its own template generator to enrolment templates created by all MINEX III compliant template generators. Sections 3.1 and 3.2 present accuracy results for single finger and two finger matching respectively. Sections 3.4 and 3.5 present potentially useful statistics not directly related to the performance of the matcher.

3.1 Single Finger

Singe finger comparison results show the combined results for left and right index comparisons. For reference, *NIST Special Publication 800-76-2* requires that the matcher and template generator achieve a native accuracy of $FNMR_{FMR}(0.0001) \leq 0.02$.

Figure 2: Single finger DET statistics for matcher nec+8210. Each box shows the distribution of FNMRs at a fixed FMR across all MINEX III compliant template generators. The ends of the whiskers show the minimum and maximum FNMRs. The orange DET curve shows pooled performance against all template generators.

Figure 3: Right index finger DET statistics for matcher nec+8210. Each box shows the distribution of FNMR at a fixed FMR across all MINEX III compliant template generators. The ends of the whiskers show the minimum and maximum FNMRs. The orange DET curve shows pooled performance against all template generators.

Figure 4: Left index finger DET statistics for matcher nec+8210. Each box shows the distribution of FNMRs at a fixed FMR across all MINEX III compliant template generators. The ends of whiskers show the minimum and maximum FNMRs. The orange DET curve shows pooled performance against all template generators.

Single Finger Matcher = nec+8210 Num Mated = 1061657, Num Nonmated = 2127712 Neurotechnology+0206 0.0088 0.0088 Neurotechnology+010A nec+8210 0.0089 0.0097 sonda+0119 Tech5+0103 0.0097 morpho+0109 0.0100 morpho+0108 0.0101 005B+0015 0.0102 aatec+0201 0.0103 id3tech+1250 0.0104 gemalto+0108 0.0104 cogent+0507 0.0104 id3tech+1252 0.0104 innovatrics+0017 0.0106 hongda+0007 0.0118 Template Generator 0059+0816 0.0119 aatec+0300 0.0122 hongda+0004 0.0125 0064+0002 0.0126 dermalog+0006 0.0127 griaule+0108 0.0128 startek+0009 0.0128 006A+0292 0.0129 inesc+0016 0.0144 aware+0311 0.0146 0.0151 006D+0013 0.0169 SupremaUFCore+2022 0.0171 liquid+0107 0.0177 0071+0011 0.0183 aratek+0011 0.0186 0.0205 secugen+0037 0.0205 0.0255 ast Updated: Oct 23, 2020 0.02 0.01

Figure 5: Single finger FNMRs at FMR = 0.0001 when matcher nec+8210 compares templates created by different template generators. The ends of the whiskers show the minimum and maximum FNMRs. Each box represents uncertainty about the true FNMR. The box edges mark the 50% confidence intervals while the whiskers mark the 90% confidence intervals. The numbers on the right show the actual computed FNMRs.

FNMR

generators at a fixed decision threshold. Each point corresponds to an (EMR, FNMR) pair for a specific template generator at a particular decision threshold. Four clusters are produced corresponding to four decision thresholds which produce pooled FMRS of 10^{-1} , 10^{-2} , 10^{-3} , and 10^{-4} . The orange DET curve shows pooled Figure 6: Single finger DET accuracy for matcher nec+8210. Each cluster of points represents the variation in FMR and FNMR across MINEX III compliant template performance against all template generators.

8

3.2 Two Finger

This section presents accuracy when matcher nec+8210 compares templates created by all MINEX III compliant template generators. Two-finger fusion is achieved by averaging the scores for left and right index fingers for each person. NIST Special Publication 800-76-2 requires the matcher to achieve an accuracy of FNMR_{FMR} $(0.01) \le 0.01$ for all MINEX III compliant template generators.

Figure 7: Two finger DET statistics for matcher nec+8210. Each box shows the distribution of FNMRs at a fixed FMR across all MINEX III compliant template generators. The whisker ends show the minimum and maximum FNMRs. The orange DET curve shows pooled performance against all template generators. Score-level fusion is achieved by averaging the scores for left and right index fingers.

Figure 8: Two finger FNMR at FMR=0.01 when matcher nec+8210 compares templates created by different template generators. Each box represents uncertainty about the true FNMR. The box edges mark the 50% confidence intervals while the whiskers mark the 90% confidence intervals. The numbers on the right show the actual computed FNMRs. Score-level fusion is achieved by averaging the scores for left and right index fingers.

Figure 9: Two finger DET accuracy for matcher nec+8210. Each cluster of points represents the variation in FMR and FNMR across MINEX III compliant template generators at a fixed decision threshold. Each point corresponds to an (FMR, FNMR) pair for a specific template generator at a particular decision thresholds. Four clusters are produced corresponding to four decision thresholds which produce pooled FMRs of 10^{-1} , 10^{-2} , 10^{-3} , and 10^{-4} . The orange DET curve shows pooled performance against all template generators. Score-level fusion is achieved by averaging the scores for left and right index fingers.

3.3 Match Times

To achieve PIV compliance, the matcher must average no more than 10 milliseconds (0.01 seconds) per comparison. Speeds are timed on a machine with an Intel Xeon E5-2680 CPU.

Figure 10: Boxplot of match times for single finger comparisons. The box edges mark the 10th and 90th percentiles while the whiskers mark the maximum and minimum comparison times.

3.4 Threshold Statistics

Results in this section are computed by concatenating comparison scores for matcher nec+8210 across all MINEX III compliant template generators.

Figure 11: Single finger FMR and FNMR as a function of score threshold for matcher nec+8210 using templates created by all MINEX III compliant template generators. Separate curves are presented for left and right index fingers.

Figure 12: Two finger FMR and FNMR as a function of score threshold for matcher nec+8210 using templates created by all MINEX III compliant template generators. Score-level fusion is achieved by averaging scores for the left and right index fingers.

	FMR=0.1	FMR=0.01	FMR=0.001	FMR=0.0001
Right index finger	273	1009	2006.0	3054.0
Left index finger	319	1080	2051.0	3023.0
Single finger	297	1046	2029.0	3037.0
Two finger	280	773	1324.5	1883.5

Table 1: Threshold calibration table. The cells show the thresholds corresponding to the FMR indicated by the column header.

3.5 Q-Q Plot

The Q-Q plot compares two probability distributions. It plots the quantile of one distribution as a function of the other. If the curve follows the y=x line, then the distributions are identical. If the FMR curve is above the y=x line, then the left index finger tends to produce lower non-mated scores than the right index finger. If the FNMR curve is above the y=x line, then the left index finger tends to produce lower mated scores than the right index finger. A jagged and/or truncated curve is indicative of discretized scores.

Figure 13: Q-Q plot comparing score distributions for left and right index fingers.

3.6 Effect of Minutia Count on Accuracy

This section shows how the number of minutia found in the samples affects recognition accuracy. To be robust to spoofing and other active attacks, the algorithm should not allow FMR to rise sharply as the number of available minutia decreases. Nor should it allow FMR to rise sharply as the number of detected minutia increases.

Figure 14: FNMR and FMR as a function of the number of minutia found by the template generator. The vertical axis defines a filter criterion such that FNMR and FMR are computed over only those comparisons where at least one of the compared templates has no more than the specified number of minutia. The threshold is fixed separately for FNMR and FMR to elicit an error rate of approximately 0.01 over unfiltered comparisons.

Figure 15: FNMR and FMR as a function of the number of minutia found by the template generator. The vertical axis defines a filter criterion such that FNMR and FMR are computed over only those comparisons where at least one of the compared templates has at least the indicated number of minutia. The threshold is fixed separately for FNMR and FMR to elicit an error rate of approximately 0.01 over unfiltered comparisons.

3.7 Comparison to Ongoing MINEX

MINEX III uses a larger set of comparisons than the older ongoing MINEX evaluation. Although this is generally good because it provides more accurate estimates of performance in MINEX III, it makes it more difficult to directly compare the results in this report to the archived ones from ongoing MINEX. The tables below report DET accuracy at fixed FMRs computed over the same set of comparisons that were used in ongoing MINEX. Ongoing MINEX reported FNMR at FMR = 0.01 for two-finger.

Table 2: Single finger FNMRs at various FMRs when matcher nec+8210 compares templates created by its template generator and PIV-compliant template generators.

Enroller	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
0059+0816	0.0049 ± 0.0002	0.0080 ± 0.0003	0.0113 ± 0.0003
005B+0015	0.0042 ± 0.0002	0.0068 ± 0.0003	0.0102 ± 0.0003
0064+0002	0.0048 ± 0.0002	0.0083 ± 0.0003	0.0123 ± 0.0004
006A+0292	0.0051 ± 0.0002	0.0081 ± 0.0003	0.0118 ± 0.0004
006D+0013	0.0070 ± 0.0003	0.0121 ± 0.0004	0.0188 ± 0.0004
0071+0011	0.0079 ± 0.0003	0.0132 ± 0.0004	0.0194 ± 0.0005
2D	0.0081 ± 0.0003	0.0147 ± 0.0004	0.0226 ± 0.0005
2F	0.0059 ± 0.0003	0.0101 ± 0.0003	0.0157 ± 0.0004
aatec+0201	0.0045 ± 0.0002	0.0070 ± 0.0003	0.0103 ± 0.0003
aatec+0300	0.0051 ± 0.0002	0.0082 ± 0.0003	0.0117 ± 0.0004
aratek+0011	0.0074 ± 0.0003	0.0135 ± 0.0004	0.0214 ± 0.0005
aware+0311	0.0057 ± 0.0002	0.0096 ± 0.0003	0.0142 ± 0.0004
cogent+0507	0.0041 ± 0.0002	0.0068 ± 0.0003	0.0101 ± 0.0003
dermalog+0006	0.0061 ± 0.0003	0.0094 ± 0.0003	0.0134 ± 0.0004
gemalto+0108	0.0041 ± 0.0002	0.0069 ± 0.0003	0.0102 ± 0.0003
griaule+0108	0.0048 ± 0.0002	0.0083 ± 0.0003	0.0123 ± 0.0004
hongda+0004	0.0052 ± 0.0002	0.0084 ± 0.0003	0.0134 ± 0.0004
hongda+0007	0.0052 ± 0.0002	0.0085 ± 0.0003	0.0121 ± 0.0004
id3tech+1250	0.0039 ± 0.0002	0.0063 ± 0.0003	0.0097 ± 0.0003
id3tech+1252	0.0039 ± 0.0002	0.0063 ± 0.0003	0.0097 ± 0.0003
inesc+0016	0.0054 ± 0.0002	0.0094 ± 0.0003	0.0143 ± 0.0004
innovatrics+0017	0.0040 ± 0.0002	0.0067 ± 0.0003	0.0099 ± 0.0003
liquid+0107	0.0063 ± 0.0003	0.0114 ± 0.0004	0.0174 ± 0.0004
morpho+0108	0.0042 ± 0.0002	0.0066 ± 0.0003	0.0101 ± 0.0003
morpho+0109	0.0042 ± 0.0002	0.0066 ± 0.0003	0.0102 ± 0.0003
N	0.0125 ± 0.0004	0.0205 ± 0.0005	0.0321 ± 0.0006
nec+8210	0.0035 ± 0.0002	0.0057 ± 0.0002	0.0085 ± 0.0003
Neurotechnology+010A	0.0033 ± 0.0002	0.0052 ± 0.0002	0.0078 ± 0.0003
Neurotechnology+0206	0.0033 ± 0.0002	0.0053 ± 0.0002	0.0078 ± 0.0003
secugen+0037	0.0091 ± 0.0003	0.0153 ± 0.0004	0.0234 ± 0.0005
sonda+0119	0.0040 ± 0.0002	0.0064 ± 0.0003	0.0093 ± 0.0003
startek+0009	0.0051 ± 0.0002	0.0082 ± 0.0003	0.0128 ± 0.0004
SupremaUFCore+2022	0.0071 ± 0.0003	0.0122 ± 0.0004	0.0180 ± 0.0004
Tech5+0103	0.0040 ± 0.0002	0.0064 ± 0.0003	0.0092 ± 0.0003

Table 3: Two finger FNMRs at various FMRs when matcher nec+8210 compares templates created by its template generator and PIV-compliant template generators.

Enroller	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
0059+0816	0.00044 ± 0.00010	0.0007 ± 0.0001	0.0011 ± 0.0002
005B+0015	0.00031 ± 0.00008	0.0005 ± 0.0001	0.0008 ± 0.0001
0064+0002	0.00042 ± 0.00010	0.0008 ± 0.0001	0.0012 ± 0.0002
006A+0292	0.00044 ± 0.00010	0.0008 ± 0.0001	0.0011 ± 0.0002

Table 3: (continued)

$\begin{array}{c} 006D+0013 & 0.0007\pm0.0001 & 0.0013\pm0.0002 & 0.0023\pm0.0002 \\ 0071+0011 & 0.0008\pm0.0001 & 0.0015\pm0.0002 & 0.0023\pm0.0002 \\ 2D & 0.0008\pm0.0001 & 0.0016\pm0.0002 & 0.0028\pm0.0002 \\ 2F & 0.00045\pm0.00010 & 0.0009\pm0.0001 & 0.0016\pm0.0002 \\ aatec+0201 & 0.00037\pm0.00009 & 0.0006\pm0.0001 & 0.0016\pm0.0001 \\ aatec+0300 & 0.00038\pm0.00009 & 0.0006\pm0.0001 & 0.0011\pm0.0001 \\ aatec+0311 & 0.0007\pm0.0001 & 0.0014\pm0.0002 & 0.0025\pm0.0002 \\ aware+0311 & 0.0005\pm0.0001 & 0.0014\pm0.0001 & 0.0015\pm0.0002 \\ cogent+0507 & 0.00030\pm0.00008 & 0.0005\pm0.0001 & 0.0015\pm0.0002 \\ dermalog+0006 & 0.0005\pm0.0001 & 0.0011\pm0.0002 & 0.0016\pm0.0001 \\ dermalog+0006 & 0.0005\pm0.0001 & 0.0011\pm0.0002 & 0.0016\pm0.0001 \\ griaule+0108 & 0.00031\pm0.00008 & 0.0005\pm0.0001 & 0.0008\pm0.0001 \\ griaule+0108 & 0.00041\pm0.00010 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0004 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0007 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0007 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0012\pm0.0002 \\ id3tech+1250 & 0.00027\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ id3tech+1252 & 0.00028\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ inesc+0016 & 0.0005\pm0.0001 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ inesc+0016 & 0.0005\pm0.0001 & 0.0006\pm0.0001 & 0.0014\pm0.0002 \\ morpho+0108 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0014\pm0.0002 \\ morpho+0108 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0014\pm0.0002 \\ morpho+0108 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0017\pm0.0002 \\ morpho+0108 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0008\pm0.0001 \\ N & 0.0016\pm0.0002 & 0.0033\pm0.0003 & 0.0052\pm0.0001 \\ N & 0.0016\pm0.0002 & 0.0030\pm0.0001 & 0.0007\pm0.0001 \\ Neurotechnology+010A & 0.00021\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ Neurotechnology+0206 & 0.00023\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ Neurotechnology+0206 & 0.00023\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ Neurotechnology+0206 & 0.00023\pm0.00001 & 0.0008\pm0.0001 & 0.0007\pm0.0001 \\ secugen+0037 & 0.00042\pm0.00010 & 0.0008\pm0.0001 & 0.0007\pm0.0001 \\ setatek+0009 & 0.00042\pm0.00010 & 0.0003\pm0.0002 & 0.0021\pm0.0002 \\ SupremaUF$	Enroller	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
$\begin{array}{c} 0071+0011 \\ 2D \\ 0.0008\pm0.0001 \\ 0.0016\pm0.0002 \\ 0.0028\pm0.0002 \\ 0.0016\pm0.0001 \\ 0.0016\pm0.0001 \\ 0.0016\pm0.0001 \\ 0.0016\pm0.0001 \\ 0.0016\pm0.0001 \\ 0.0011\pm0.0002 \\ 0.0025\pm0.0002 \\ 0.0025\pm0.0002 \\ 0.0025\pm0.0002 \\ 0.0025\pm0.0002 \\ 0.0025\pm0.0002 \\ 0.0025\pm0.0002 \\ 0.0015\pm0.0001 \\ 0.0010\pm0.0001 \\ 0.0010\pm0.0001 \\ 0.0015\pm0.0002 \\ 0.0015\pm0.0002 \\ 0.0015\pm0.0001 \\ 0.00010\pm0.0001 \\ 0.00015\pm0.0002 \\ 0.0016\pm0.0002 \\ 0.0016\pm0.0001 \\ 0.0011\pm0.0002 \\ 0.00011\pm0.0002 \\ 0.00011\pm0.0002 \\ 0.00011\pm0.0001 \\ 0.00011\pm0.0001$				
$\begin{array}{c} 2D \\ 2F \\ 0.00045 \pm 0.0001 \\ 0.0009 \pm 0.0001 \\ 0.0009 \pm 0.0001 \\ 0.0016 \pm 0.0002 \\ 0.0016 \pm 0.0002 \\ 0.0016 \pm 0.0002 \\ 0.00016 \pm 0.0001 \\ 0.0016 \pm 0.0002 \\ 0.0016 \pm 0.0001 \\ 0.0016 \pm 0.0001 \\ 0.0016 \pm 0.0001 \\ 0.0010 \pm 0.0001 \\ 0.0010 \pm 0.0001 \\ 0.0011 \pm 0.0001 \\ 0.0011 \pm 0.0001 \\ 0.0012 \pm 0.0002 \\ 0.0025 \pm 0.0002 \\ 0.0025 \pm 0.0002 \\ 0.0025 \pm 0.0002 \\ 0.0025 \pm 0.0002 \\ 0.0005 \pm 0.0001 \\ 0.0010 \pm 0.0001 \\ 0.0010 \pm 0.0001 \\ 0.0010 \pm 0.0001 \\ 0.0015 \pm 0.0002 \\ 0.0005 \pm 0.0001 \\ 0.0005 \pm 0.0001 \\ 0.0005 \pm 0.0001 \\ 0.0005 \pm 0.0001 \\ 0.00011 \pm 0.0002 \\ 0.0016 \pm 0.0001 \\ 0.0011 \pm 0.0002 \\ 0.0016 \pm 0.0001 \\ 0.00011 \pm 0.0002 \\ 0.0016 \pm 0.0001 \\ 0.0011 \pm 0.0002 \\ 0.0016 \pm 0.0001 \\ 0.00011 \pm 0.0001 \\ 0.00011 \pm 0.0001 \\ 0.00011 \pm 0.0001 \\ 0.00011 \pm 0.0001 \\ 0.0011 \pm 0.0001 \\ 0.0011 \pm 0.0001 \\ 0.0012 \pm 0.0002 \\ 0.0002 \pm 0.0001 \\ 0.0009 \pm 0.0001 \\ 0.0009 \pm 0.0001 \\ 0.0009 \pm 0.0001 \\ 0.0009 \pm 0.0001 \\ 0.0014 \pm 0.0002 \\ 0.0017 \pm 0.0001 \\ 0.0008 \pm 0.0001 \\ 0.0009 \pm 0.0001 \\ 0.$				
$\begin{array}{c} 2F \\ \text{aatec} + 0201 \\ \text{aatec} + 0300 \\ \text{0} \\ 0$	***			
$\begin{array}{c} \text{aatec} + 0201 & 0.00037 \pm 0.00009 & 0.0006 \pm 0.0001 & 0.0010 \pm 0.0001 \\ \text{aatec} + 0300 & 0.00038 \pm 0.00009 & 0.0008 \pm 0.0001 & 0.0011 \pm 0.0002 \\ \text{aratek} + 0011 & 0.0007 \pm 0.0001 & 0.0014 \pm 0.0002 & 0.0025 \pm 0.0002 \\ \text{aware} + 0311 & 0.0005 \pm 0.0001 & 0.0010 \pm 0.0001 & 0.0015 \pm 0.0002 \\ \text{cogent} + 0507 & 0.00030 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0008 \pm 0.0001 \\ \text{dermalog} + 0006 & 0.0005 \pm 0.0001 & 0.0011 \pm 0.0002 & 0.0016 \pm 0.0002 \\ \text{gemalto} + 0108 & 0.00031 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0008 \pm 0.0001 \\ \text{griaule} + 0108 & 0.00041 \pm 0.00010 & 0.0007 \pm 0.0001 & 0.0011 \pm 0.0002 \\ \text{hongda} + 0004 & 0.00040 \pm 0.00009 & 0.0007 \pm 0.0001 & 0.0011 \pm 0.0002 \\ \text{hongda} + 0007 & 0.00040 \pm 0.00009 & 0.0007 \pm 0.0001 & 0.0011 \pm 0.0002 \\ \text{hongda} + 0007 & 0.00040 \pm 0.00009 & 0.0007 \pm 0.0001 & 0.0011 \pm 0.0002 \\ \text{id3tech} + 1250 & 0.00027 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0009 \pm 0.0001 \\ \text{id3tech} + 1252 & 0.00028 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0009 \pm 0.0001 \\ \text{inesc} + 0016 & 0.0005 \pm 0.0001 & 0.0009 \pm 0.0001 & 0.0014 \pm 0.0002 \\ \text{innovatrics} + 0017 & 0.00027 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0014 \pm 0.0002 \\ \text{morpho} + 0108 & 0.00031 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0014 \pm 0.0002 \\ \text{morpho} + 0109 & 0.00031 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0008 \pm 0.0001 \\ \text{N} & 0.0016 \pm 0.0002 & 0.0030 \pm 0.0001 & 0.0008 \pm 0.0001 \\ \text{Neurotechnology} + 010A & 0.00021 \pm 0.00007 & 0.00044 \pm 0.00010 & 0.0007 \pm 0.0001 \\ \text{Neurotechnology} + 0206 & 0.00023 \pm 0.00007 & 0.00044 \pm 0.00010 & 0.0007 \pm 0.0001 \\ \text{Neurotechnology} + 0206 & 0.00023 \pm 0.00007 & 0.00044 \pm 0.00010 & 0.0007 \pm 0.0001 \\ \text{secugen} + 037 & 0.00094 \pm 0.0001 & 0.0008 \pm 0.0001 & 0.0007 \pm 0.0001 \\ \text{secugen} + 0037 & 0.00094 \pm 0.00010 & 0.0008 \pm 0.0001 & 0.0007 \pm 0.0001 \\ \text{startek} + 0009 & 0.00042 \pm 0.00010 & 0.0008 \pm 0.0001 & 0.00012 \pm 0.0002 \\ \text{SupremaUFCore} + 2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ \text{SupremaUFCore} + 2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ \text{SupremaUFCore} + 2022 & 0.0006 \pm 0.0001 & 0.00013 \pm 0.000$				
$\begin{array}{c} aatec+0300 & 0.00038\pm0.00009 & 0.0008\pm0.0001 & 0.0011\pm0.0002 \\ aratek+0011 & 0.0007\pm0.0001 & 0.0014\pm0.0002 & 0.0025\pm0.0002 \\ aware+0311 & 0.0005\pm0.0001 & 0.0010\pm0.0001 & 0.0015\pm0.0002 \\ cogent+0507 & 0.00030\pm0.00008 & 0.0005\pm0.0001 & 0.0008\pm0.0001 \\ dermalog+0006 & 0.0005\pm0.0001 & 0.0011\pm0.0002 & 0.0016\pm0.0002 \\ gemalto+0108 & 0.00031\pm0.00008 & 0.0005\pm0.0001 & 0.0008\pm0.0001 \\ griaule+0108 & 0.00031\pm0.00008 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0004 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0007 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0007 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0012\pm0.0002 \\ id3tech+1250 & 0.00027\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ id3tech+1252 & 0.00028\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ inesc+0016 & 0.0005\pm0.0001 & 0.0009\pm0.0001 & 0.0014\pm0.0002 \\ innovatrics+0017 & 0.00027\pm0.00008 & 0.0005\pm0.0001 & 0.0014\pm0.0002 \\ innovatrics+0018 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0014\pm0.0002 \\ morpho+0108 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0008\pm0.0001 \\ N & 0.0016\pm0.0002 & 0.0030\pm0.0001 & 0.0008\pm0.0001 \\ N & 0.0016\pm0.0002 & 0.0030\pm0.0001 & 0.0008\pm0.0001 \\ Neurotechnology+010A & 0.00021\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ Neurotechnology+010A & 0.00021\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ Neurotechnology+0206 & 0.00023\pm0.00007 & 0.00044\pm0.00001 & 0.0007\pm0.0001 \\ secugen+037 & 0.0009\pm0.0001 & 0.0008\pm0.0001 & 0.0007\pm0.0001 \\ startek+0009 & 0.00031\pm0.00008 & 0.0005\pm0.0001 & 0.0007\pm0.0001 \\ startek+0009 & 0.00042\pm0.00010 & 0.0008\pm0.0001 & 0.0012\pm0.0002 \\ SupremaUFCore+2022 & 0.0006\pm0.0001 & 0.0013\pm0.0002 & 0.0021\pm0.0002 \\ Suprem$				
$\begin{array}{c} aratek+0011 & 0.0007\pm0.0001 & 0.0014\pm0.0002 & 0.0025\pm0.0002 \\ aware+0311 & 0.0005\pm0.0001 & 0.0010\pm0.0001 & 0.0015\pm0.0002 \\ cogent+0507 & 0.00030\pm0.00008 & 0.0005\pm0.0001 & 0.0008\pm0.0001 \\ dermalog+0006 & 0.0005\pm0.0001 & 0.0011\pm0.0002 & 0.0016\pm0.0002 \\ gemalto+0108 & 0.00031\pm0.00008 & 0.0005\pm0.0001 & 0.0008\pm0.0001 \\ griaule+0108 & 0.00041\pm0.00010 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0004 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0007 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ id3tech+1250 & 0.00027\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ id3tech+1252 & 0.00028\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ inesc+0016 & 0.0005\pm0.0001 & 0.0009\pm0.0001 & 0.0014\pm0.0002 \\ innovatrics+0017 & 0.00027\pm0.00008 & 0.0005\pm0.0001 & 0.0014\pm0.0002 \\ innovatrics+0108 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0010\pm0.0001 \\ liquid+0107 & 0.0005\pm0.0001 & 0.0011\pm0.0002 & 0.0017\pm0.0002 \\ morpho+0108 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0008\pm0.0001 \\ N & 0.0016\pm0.0002 & 0.0030\pm0.0003 & 0.0005\pm0.0001 \\ N & 0.0016\pm0.0002 & 0.0030\pm0.0003 & 0.0052\pm0.0003 \\ nec+8210 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0007\pm0.0001 \\ Neurotechnology+010A & 0.00021\pm0.00008 & 0.0005\pm0.0001 & 0.0007\pm0.0001 \\ Neurotechnology+0206 & 0.00023\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ secugen+0037 & 0.0009\pm0.0001 & 0.0008\pm0.0001 & 0.0007\pm0.0001 \\ startek+0009 & 0.00042\pm0.0001 & 0.0008\pm0.0001 & 0.0007\pm0.0001 \\ startek+0009 & 0.00042\pm0.0001 & 0.0008\pm0.0001 & 0.0007\pm0.0001 \\ SupremaUFCore+2022 & 0.0006\pm0.0001 & 0.0013\pm0.0002 & 0.0021\pm0.0002 \\ SupremaUFCore+2022 $				
$\begin{array}{c} aware+0311 \\ cogent+0507 \\ cogent+0507 \\ dermalog+0006 \\ dermalog+0006 \\ dermalog+0108 \\ dermalog+0109 $				
$\begin{array}{c} cogent+0507 & 0.00030 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0008 \pm 0.0001 \\ dermalog+0006 & 0.0005 \pm 0.0001 & 0.0011 \pm 0.0002 & 0.0016 \pm 0.0002 \\ gemalto+0108 & 0.00031 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0008 \pm 0.0001 \\ griaule+0108 & 0.00041 \pm 0.00010 & 0.0007 \pm 0.0001 & 0.0011 \pm 0.0002 \\ hongda+0004 & 0.00040 \pm 0.00009 & 0.0007 \pm 0.0001 & 0.0011 \pm 0.0002 \\ hongda+0007 & 0.00040 \pm 0.00009 & 0.0007 \pm 0.0001 & 0.0012 \pm 0.0002 \\ id3tech+1250 & 0.00027 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0009 \pm 0.0001 \\ id3tech+1252 & 0.00028 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0009 \pm 0.0001 \\ inesc+0016 & 0.0005 \pm 0.0001 & 0.0009 \pm 0.0001 & 0.0014 \pm 0.0002 \\ innovatrics+0017 & 0.00027 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0014 \pm 0.0002 \\ morpho+0108 & 0.00031 \pm 0.00008 & 0.0001 \pm 0.0002 & 0.0017 \pm 0.0002 \\ morpho+0108 & 0.00031 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0008 \pm 0.0001 \\ morpho+0109 & 0.00031 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0008 \pm 0.0001 \\ N & 0.0016 \pm 0.0002 & 0.0030 \pm 0.0003 & 0.0052 \pm 0.0003 \\ nec+8210 & 0.00030 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0007 \pm 0.0001 \\ Neurotechnology+010A & 0.00021 \pm 0.00007 & 0.00044 \pm 0.00010 & 0.0007 \pm 0.0001 \\ Neurotechnology+0206 & 0.00023 \pm 0.00007 & 0.00044 \pm 0.00010 & 0.0007 \pm 0.0001 \\ secugen+0037 & 0.0009 \pm 0.0001 & 0.0018 \pm 0.0001 & 0.0007 \pm 0.0001 \\ startek+0009 & 0.00042 \pm 0.00010 & 0.0008 \pm 0.0001 & 0.0007 \pm 0.0001 \\ startek+0009 & 0.00042 \pm 0.00010 & 0.0008 \pm 0.0001 & 0.0007 \pm 0.0001 \\ SupremaUFCore+2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ SupremaUFCore+2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ SupremaUFCore+2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ SupremaUFCore+2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ SupremaUFCore+2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ SupremaUFCore+2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ SupremaUFCore+2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ SupremaUFCore+2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ SupremaUFCore+2022 & 0.00$	***************************************			
$\begin{array}{c} dermalog+0006 & 0.0005\pm0.0001 & 0.0011\pm0.0002 & 0.0016\pm0.0002 \\ gemalto+0108 & 0.00031\pm0.00008 & 0.0005\pm0.0001 & 0.0008\pm0.0001 \\ griaule+0108 & 0.00041\pm0.00010 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0004 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0007 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0012\pm0.0002 \\ id3tech+1250 & 0.00027\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ id3tech+1252 & 0.00028\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ inesc+0016 & 0.0005\pm0.0001 & 0.0009\pm0.0001 & 0.0014\pm0.0002 \\ innovatrics+0017 & 0.00027\pm0.00008 & 0.0005\pm0.0001 & 0.0010\pm0.0001 \\ liquid+0107 & 0.0005\pm0.0001 & 0.0011\pm0.0002 & 0.0017\pm0.0002 \\ morpho+0108 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0008\pm0.0001 \\ morpho+0109 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0008\pm0.0001 \\ N & 0.0016\pm0.0002 & 0.0030\pm0.0003 & 0.0052\pm0.0003 \\ nec+8210 & 0.00030\pm0.00008 & 0.0005\pm0.0001 & 0.0007\pm0.0001 \\ Neurotechnology+010A & 0.00021\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ Neurotechnology+0206 & 0.00023\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ secugen+0037 & 0.0009\pm0.0001 & 0.0018\pm0.0002 & 0.0032\pm0.0003 \\ sonda+0119 & 0.00031\pm0.00008 & 0.0005\pm0.0001 & 0.0007\pm0.0001 \\ startek+0009 & 0.00042\pm0.00010 & 0.0008\pm0.0001 & 0.0007\pm0.0001 \\ startek+0009 & 0.00042\pm0.00010 & 0.0008\pm0.0001 & 0.0007\pm0.0001 \\ SupremaUFCore+2022 & 0.0006\pm0.0001 & 0.0013\pm0.0002 & 0.0021\pm0.0002 \\ SupremaUFCore+2022 & 0.0006\pm0.0001 & 0.0013\pm0.0002 & 0.0021\pm0.0002 \\ \end{array}$				
$\begin{array}{c} gemalto+0108 & 0.00031\pm0.00008 & 0.0005\pm0.0001 & 0.0008\pm0.0001 \\ griaule+0108 & 0.00041\pm0.00010 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0004 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0007 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0012\pm0.0002 \\ id3tech+1250 & 0.00027\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ id3tech+1252 & 0.00028\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ inesc+0016 & 0.0005\pm0.0001 & 0.0009\pm0.0001 & 0.0014\pm0.0002 \\ innovatrics+0017 & 0.00027\pm0.00008 & 0.0005\pm0.0001 & 0.0010\pm0.0001 \\ liquid+0107 & 0.0005\pm0.0001 & 0.0011\pm0.0002 & 0.0017\pm0.0002 \\ morpho+0108 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0008\pm0.0001 \\ morpho+0109 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0008\pm0.0001 \\ N & 0.0016\pm0.0002 & 0.0030\pm0.0003 & 0.0052\pm0.0003 \\ nec+8210 & 0.00030\pm0.00008 & 0.0005\pm0.0001 & 0.0007\pm0.0001 \\ Neurotechnology+010A & 0.00021\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ Neurotechnology+0206 & 0.00023\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ secugen+0037 & 0.0009\pm0.0001 & 0.0018\pm0.0002 & 0.0032\pm0.0003 \\ sonda+0119 & 0.00031\pm0.00008 & 0.0005\pm0.0001 & 0.0007\pm0.0001 \\ startek+0009 & 0.00042\pm0.00010 & 0.0008\pm0.0001 & 0.0007\pm0.0001 \\ SupremaUFCore+2022 & 0.0006\pm0.0001 & 0.0013\pm0.0002 & 0.0021\pm0.0002 \\ SupremaUFCore+2022 & 0.0006\pm0.0001 & 0.0013\pm0.0002 & 0.0021\pm0.0002 \\ \end{array}$		0.00030 ± 0.00008	0.0005 ± 0.0001	0.0008 ± 0.0001
$\begin{array}{c} griaule+0108 & 0.00041 \pm 0.00010 & 0.0007 \pm 0.0001 & 0.0011 \pm 0.0002 \\ hongda+0004 & 0.00040 \pm 0.00009 & 0.0007 \pm 0.0001 & 0.0011 \pm 0.0002 \\ hongda+0007 & 0.00040 \pm 0.00009 & 0.0007 \pm 0.0001 & 0.0012 \pm 0.0002 \\ id3tech+1250 & 0.00027 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0009 \pm 0.0001 \\ id3tech+1252 & 0.00028 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0009 \pm 0.0001 \\ inesc+0016 & 0.0005 \pm 0.0001 & 0.0009 \pm 0.0001 & 0.0014 \pm 0.0002 \\ innovatrics+0017 & 0.00027 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0010 \pm 0.0001 \\ liquid+0107 & 0.0005 \pm 0.0001 & 0.0011 \pm 0.0002 & 0.0017 \pm 0.0002 \\ morpho+0108 & 0.00031 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0008 \pm 0.0001 \\ morpho+0109 & 0.00031 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0008 \pm 0.0001 \\ N & 0.0016 \pm 0.0002 & 0.0030 \pm 0.0003 & 0.0052 \pm 0.0003 \\ nec+8210 & 0.00030 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0007 \pm 0.0001 \\ Neurotechnology+010A & 0.00021 \pm 0.00007 & 0.00044 \pm 0.00010 & 0.0007 \pm 0.0001 \\ Neurotechnology+0206 & 0.00023 \pm 0.00007 & 0.00044 \pm 0.00010 & 0.0007 \pm 0.0001 \\ secugen+0037 & 0.0009 \pm 0.0001 & 0.0018 \pm 0.0002 & 0.0032 \pm 0.0003 \\ sonda+0119 & 0.00031 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0007 \pm 0.0001 \\ startek+0009 & 0.00042 \pm 0.00010 & 0.0008 \pm 0.0001 & 0.0012 \pm 0.0002 \\ SupremaUFCore+2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ SupremaUFCore+2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ \end{array}$				
$\begin{array}{c} hongda+0004 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ hongda+0007 & 0.00040\pm0.00009 & 0.0007\pm0.0001 & 0.0011\pm0.0002 \\ id3tech+1250 & 0.00027\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ id3tech+1252 & 0.00028\pm0.00008 & 0.0006\pm0.0001 & 0.0009\pm0.0001 \\ inesc+0016 & 0.0005\pm0.0001 & 0.0009\pm0.0001 & 0.0014\pm0.0002 \\ innovatrics+0017 & 0.00027\pm0.00008 & 0.0005\pm0.0001 & 0.0010\pm0.0001 \\ liquid+0107 & 0.0005\pm0.0001 & 0.0011\pm0.0002 & 0.0017\pm0.0002 \\ morpho+0108 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0008\pm0.0001 \\ morpho+0109 & 0.00031\pm0.00008 & 0.0006\pm0.0001 & 0.0008\pm0.0001 \\ N & 0.0016\pm0.0002 & 0.0030\pm0.0003 & 0.0052\pm0.0003 \\ nec+8210 & 0.00030\pm0.00008 & 0.0005\pm0.0001 & 0.0007\pm0.0001 \\ Neurotechnology+010A & 0.00021\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ Neurotechnology+0206 & 0.00023\pm0.00007 & 0.00044\pm0.00010 & 0.0007\pm0.0001 \\ secugen+0037 & 0.0009\pm0.0001 & 0.0018\pm0.0002 & 0.0032\pm0.0003 \\ sonda+0119 & 0.00031\pm0.00008 & 0.0005\pm0.0001 & 0.0007\pm0.0001 \\ startek+0009 & 0.00042\pm0.00010 & 0.0008\pm0.0001 & 0.0007\pm0.0001 \\ SupremaUFCore+2022 & 0.0006\pm0.0001 & 0.0013\pm0.0002 & 0.0021\pm0.0002 \\ SupremaUFCore+2022 & 0.0006\pm0.0001 & 0.0013\pm0.0002 & 0.0021\pm0.0002 \\ \end{array}$	gemalto+0108	0.00031 ± 0.00008	0.0005 ± 0.0001	0.0008 ± 0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00041 ± 0.00010	0.0007 ± 0.0001	0.0011 ± 0.0002
$\begin{array}{c} id3 tech + 1250 & 0.00027 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0009 \pm 0.0001 \\ id3 tech + 1252 & 0.00028 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0009 \pm 0.0001 \\ inesc + 0016 & 0.0005 \pm 0.0001 & 0.0009 \pm 0.0001 & 0.0014 \pm 0.0002 \\ innovatrics + 0017 & 0.00027 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0010 \pm 0.0001 \\ liquid + 0107 & 0.0005 \pm 0.0001 & 0.0011 \pm 0.0002 & 0.0017 \pm 0.0002 \\ morpho + 0108 & 0.00031 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0008 \pm 0.0001 \\ morpho + 0109 & 0.00031 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0008 \pm 0.0001 \\ N & 0.0016 \pm 0.0002 & 0.0030 \pm 0.0003 & 0.0052 \pm 0.0003 \\ nec + 8210 & 0.00030 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0007 \pm 0.0001 \\ Neurotechnology + 010A & 0.00021 \pm 0.00007 & 0.00044 \pm 0.00010 & 0.0007 \pm 0.0001 \\ Neurotechnology + 0206 & 0.00023 \pm 0.00007 & 0.00044 \pm 0.00010 & 0.0007 \pm 0.0001 \\ secugen + 0037 & 0.0009 \pm 0.0001 & 0.0018 \pm 0.0002 & 0.0032 \pm 0.0003 \\ sonda + 0119 & 0.00031 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0007 \pm 0.0001 \\ startek + 0009 & 0.00042 \pm 0.00010 & 0.0008 \pm 0.0001 & 0.0007 \pm 0.0001 \\ SupremaUFCore + 2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ SupremaUFCore + 2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ \end{array}$	hongda+0004	0.00040 ± 0.00009	0.0007 ± 0.0001	0.0011 ± 0.0002
$\begin{array}{c} id3 tech + 1252 & 0.00028 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0009 \pm 0.0001 \\ inesc + 0016 & 0.0005 \pm 0.0001 & 0.0009 \pm 0.0001 & 0.0014 \pm 0.0002 \\ innovatrics + 0017 & 0.00027 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0010 \pm 0.0001 \\ liquid + 0107 & 0.0005 \pm 0.0001 & 0.0011 \pm 0.0002 & 0.0017 \pm 0.0002 \\ morpho + 0108 & 0.00031 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0008 \pm 0.0001 \\ morpho + 0109 & 0.00031 \pm 0.00008 & 0.0006 \pm 0.0001 & 0.0008 \pm 0.0001 \\ N & 0.0016 \pm 0.0002 & 0.0030 \pm 0.0003 & 0.0052 \pm 0.0003 \\ nec + 8210 & 0.00030 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0007 \pm 0.0001 \\ Neurotechnology + 010A & 0.00021 \pm 0.00007 & 0.00044 \pm 0.00010 & 0.0007 \pm 0.0001 \\ Neurotechnology + 0206 & 0.00023 \pm 0.00007 & 0.00044 \pm 0.00010 & 0.0007 \pm 0.0001 \\ secugen + 0037 & 0.0009 \pm 0.0001 & 0.0018 \pm 0.0002 & 0.0032 \pm 0.0003 \\ sonda + 0119 & 0.00031 \pm 0.00008 & 0.0005 \pm 0.0001 & 0.0007 \pm 0.0001 \\ startek + 0009 & 0.00042 \pm 0.00010 & 0.0008 \pm 0.0001 & 0.0012 \pm 0.0002 \\ Suprema UFC or e + 2022 & 0.0006 \pm 0.0001 & 0.0013 \pm 0.0002 & 0.0021 \pm 0.0002 \\ \end{array}$	hongda+0007	0.00040 ± 0.00009	0.0007 ± 0.0001	0.0012 ± 0.0002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	id3tech+1250	0.00027 ± 0.00008	0.0006 ± 0.0001	0.0009 ± 0.0001
$\begin{array}{llllllllllllllllllllllllllllllllllll$	id3tech+1252	0.00028 ± 0.00008	0.0006 ± 0.0001	0.0009 ± 0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	inesc+0016	0.0005 ± 0.0001	0.0009 ± 0.0001	0.0014 ± 0.0002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	innovatrics+0017	0.00027 ± 0.00008	0.0005 ± 0.0001	0.0010 ± 0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	liquid+0107	0.0005 ± 0.0001	0.0011 ± 0.0002	0.0017 ± 0.0002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	morpho+0108	0.00031 ± 0.00008	0.0006 ± 0.0001	0.0008 ± 0.0001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.00031 ± 0.00008	0.0006 ± 0.0001	0.0008 ± 0.0001
$\begin{array}{llllllllllllllllllllllllllllllllllll$		0.0016 ± 0.0002	0.0030 ± 0.0003	0.0052 ± 0.0003
$\begin{array}{llllllllllllllllllllllllllllllllllll$	nec+8210	0.00030 ± 0.00008	0.0005 ± 0.0001	0.0007 ± 0.0001
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Neurotechnology+010A	0.00021 ± 0.00007	0.00044 ± 0.00010	0.0007 ± 0.0001
$\begin{array}{llllllllllllllllllllllllllllllllllll$		0.00023 ± 0.00007	0.00044 ± 0.00010	0.0007 ± 0.0001
$\begin{array}{llllllllllllllllllllllllllllllllllll$		0.0009 ± 0.0001	0.0018 ± 0.0002	0.0032 ± 0.0003
$\begin{array}{llllllllllllllllllllllllllllllllllll$		0.00031 ± 0.00008	0.0005 ± 0.0001	
SupremaUFCore+2022 0.0006 ± 0.0001 0.0013 ± 0.0002 0.0021 ± 0.0002				
	SupremaUFCore+2022			
Tech5+0103 0.00031 ± 0.00008 0.0005 ± 0.0001 0.0007 ± 0.0001	Tech5+0103	0.00031 ± 0.00008	0.0005 ± 0.0001	0.0007 ± 0.0001

4 Performance Tables

The following tables present accuracy numbers, including estimates of uncertainty in the form of 90% confidence bounds. These tables are provided because most of the figures in the main body of this report do not present numerical results.

Table 4: Single finger FNMRs at various FMRs when matcher nec+8210 compares templates created by its template generator and PIV-compliant template generators.

Enroller	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
0059+0816	0.0058 ± 0.0001	0.0085 ± 0.0001	0.0119 ± 0.0002
005B+0015	0.0050 ± 0.0001	0.0074 ± 0.0001	0.0102 ± 0.0002
0064+0002	0.0056 ± 0.0001	0.0088 ± 0.0001	0.0126 ± 0.0002
006A+0292	0.0062 ± 0.0001	0.0092 ± 0.0002	0.0129 ± 0.0002
006D+0013	0.0072 ± 0.0001	0.0116 ± 0.0002	0.0169 ± 0.0002
0071+0011	0.0079 ± 0.0001	0.0125 ± 0.0002	0.0183 ± 0.0002
2D	0.0083 ± 0.0001	0.0138 ± 0.0002	0.0205 ± 0.0002
2F	0.0065 ± 0.0001	0.0102 ± 0.0002	0.0151 ± 0.0002
aatec+0201	0.0052 ± 0.0001	0.0076 ± 0.0001	0.0103 ± 0.0002
aatec+0300	0.0057 ± 0.0001	0.0086 ± 0.0001	0.0122 ± 0.0002
aratek+0011	0.0078 ± 0.0001	0.0128 ± 0.0002	0.0186 ± 0.0002
aware+0311	0.0063 ± 0.0001	0.0099 ± 0.0002	0.0146 ± 0.0002
cogent+0507	0.0049 ± 0.0001	0.0074 ± 0.0001	0.0104 ± 0.0002
dermalog+0006	0.0064 ± 0.0001	0.0093 ± 0.0002	0.0127 ± 0.0002
gemalto+0108	0.0049 ± 0.0001	0.0074 ± 0.0001	0.0104 ± 0.0002
griaule+0108	0.0055 ± 0.0001	0.0086 ± 0.0001	0.0128 ± 0.0002
hongda+0004	0.0059 ± 0.0001	0.0088 ± 0.0001	0.0125 ± 0.0002
hongda+0007	0.0057 ± 0.0001	0.0085 ± 0.0001	0.0118 ± 0.0002
id3tech+1250	0.0049 ± 0.0001	0.0074 ± 0.0001	0.0104 ± 0.0002
id3tech+1252	0.0049 ± 0.0001	0.0073 ± 0.0001	0.0104 ± 0.0002
inesc+0016	0.0059 ± 0.0001	0.0096 ± 0.0002	0.0144 ± 0.0002
innovatrics+0017	0.0049 ± 0.0001	0.0075 ± 0.0001	0.0106 ± 0.0002
liquid+0107	0.0070 ± 0.0001	0.0117 ± 0.0002	0.0177 ± 0.0002
morpho+0108	0.0050 ± 0.0001	0.0073 ± 0.0001	0.0101 ± 0.0002
morpho+0109	0.0050 ± 0.0001	0.0073 ± 0.0001	0.0100 ± 0.0002
N	0.0115 ± 0.0002	0.0180 ± 0.0002	0.0255 ± 0.0003
nec+8210	0.0043 ± 0.0001	0.0063 ± 0.0001	0.0089 ± 0.0001
Neurotechnology+010A	0.0043 ± 0.0001	0.0062 ± 0.0001	0.0088 ± 0.0001
Neurotechnology+0206	0.0042 ± 0.0001	0.0062 ± 0.0001	0.0088 ± 0.0001
secugen+0037	0.0090 ± 0.0002	0.0142 ± 0.0002	0.0205 ± 0.0002
sonda+0119	0.0048 ± 0.0001	0.0070 ± 0.0001	0.0097 ± 0.0002
startek+0009	0.0058 ± 0.0001	0.0089 ± 0.0001	0.0128 ± 0.0002
SupremaUFCore+2022	0.0074 ± 0.0001	0.0117 ± 0.0002	0.0171 ± 0.0002
Tech5+0103	0.0048 ± 0.0001	0.0070 ± 0.0001	0.0097 ± 0.0002
Pooled	0.0062 ± 0.0001	0.0096 ± 0.0002	0.0138 ± 0.0002

Table 5: Right index finger FNMRs at various FMRs when matcher nec+8210 compares templates created by its template generator and PIV-compliant template generators.

Enroller	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
0059+0816	0.0043 ± 0.0001	0.0061 ± 0.0002	0.0083 ± 0.0002
005B+0015	0.0040 ± 0.0001	0.0056 ± 0.0002	0.0076 ± 0.0002
0064+0002	0.0044 ± 0.0001	0.0065 ± 0.0002	0.0093 ± 0.0002
006A+0292	0.0047 ± 0.0002	0.0068 ± 0.0002	0.0094 ± 0.0002
006D+0013	0.0059 ± 0.0002	0.0095 ± 0.0002	0.0138 ± 0.0003
0071+0011	0.0065 ± 0.0002	0.0102 ± 0.0002	0.0151 ± 0.0003
2D	0.0066 ± 0.0002	0.0105 ± 0.0002	0.0158 ± 0.0003
2F	0.0051 ± 0.0002	0.0078 ± 0.0002	0.0114 ± 0.0002
aatec+0201	0.0041 ± 0.0001	0.0057 ± 0.0002	0.0078 ± 0.0002
aatec+0300	0.0045 ± 0.0002	0.0065 ± 0.0002	0.0090 ± 0.0002
aratek+0011	0.0060 ± 0.0002	0.0097 ± 0.0002	0.0143 ± 0.0003
aware+0311	0.0050 ± 0.0002	0.0074 ± 0.0002	0.0110 ± 0.0002
cogent+0507	0.0040 ± 0.0001	0.0057 ± 0.0002	0.0078 ± 0.0002
dermalog+0006	0.0052 ± 0.0002	0.0074 ± 0.0002	0.0099 ± 0.0002
gemalto+0108	0.0040 ± 0.0001	0.0057 ± 0.0002	0.0077 ± 0.0002
griaule+0108	0.0045 ± 0.0002	0.0067 ± 0.0002	0.0101 ± 0.0002
hongda+0004	0.0045 ± 0.0002	0.0064 ± 0.0002	0.0088 ± 0.0002
hongda+0007	0.0043 ± 0.0001	0.0061 ± 0.0002	0.0083 ± 0.0002
id3tech+1250	0.0040 ± 0.0001	0.0058 ± 0.0002	0.0080 ± 0.0002
id3tech+1252	0.0040 ± 0.0001	0.0058 ± 0.0002	0.0081 ± 0.0002
inesc+0016	0.0047 ± 0.0002	0.0076 ± 0.0002	0.0116 ± 0.0002
innovatrics+0017	0.0040 ± 0.0001	0.0058 ± 0.0002	0.0081 ± 0.0002
liquid+0107	0.0054 ± 0.0002	0.0088 ± 0.0002	0.0138 ± 0.0003
morpho+0108	0.0040 ± 0.0001	0.0055 ± 0.0002	0.0076 ± 0.0002
morpho+0109	0.0040 ± 0.0001	0.0055 ± 0.0002	0.0076 ± 0.0002
N	0.0089 ± 0.0002	0.0138 ± 0.0003	0.0195 ± 0.0003
nec+8210	0.0035 ± 0.0001	0.0048 ± 0.0002	0.0066 ± 0.0002
Neurotechnology+010A	0.0036 ± 0.0001	0.0049 ± 0.0002	0.0069 ± 0.0002
Neurotechnology+0206	0.0036 ± 0.0001	0.0049 ± 0.0002	0.0068 ± 0.0002
secugen+0037	0.0071 ± 0.0002	0.0109 ± 0.0002	0.0157 ± 0.0003
sonda+0119	0.0039 ± 0.0001	0.0053 ± 0.0002	0.0072 ± 0.0002
startek+0009	0.0046 ± 0.0002	0.0068 ± 0.0002	0.0098 ± 0.0002
SupremaUFCore+2022	0.0059 ± 0.0002	0.0091 ± 0.0002	0.0133 ± 0.0003
Tech5+0103	0.0039 ± 0.0001	0.0053 ± 0.0002	0.0072 ± 0.0002
Pooled	0.0049 ± 0.0002	0.0073 ± 0.0002	0.0105 ± 0.0002

 $\label{thm:compares} \textbf{Table 6: } \textit{Left index finger FNMRs at various FMRs when matcher nec+8210 compares templates created} \\ \textit{by its template generator and PIV-compliant template generators.} \\$

Enroller	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
0059+0816	0.0073 ± 0.0002	0.0109 ± 0.0002	0.0153 ± 0.0003
005B+0015	0.0061 ± 0.0002	0.0093 ± 0.0002	0.0130 ± 0.0003
0064+0002	0.0068 ± 0.0002	0.0111 ± 0.0002	0.0158 ± 0.0003
006A+0292	0.0077 ± 0.0002	0.0116 ± 0.0002	0.0164 ± 0.0003
006D+0013	0.0085 ± 0.0002	0.0137 ± 0.0003	0.0201 ± 0.0003
0071+0011	0.0093 ± 0.0002	0.0148 ± 0.0003	0.0212 ± 0.0003
2D	0.0102 ± 0.0002	0.0171 ± 0.0003	0.0252 ± 0.0004
2F	0.0079 ± 0.0002	0.0127 ± 0.0003	0.0188 ± 0.0003
aatec+0201	0.0063 ± 0.0002	0.0095 ± 0.0002	0.0128 ± 0.0003
aatec+0300	0.0070 ± 0.0002	0.0107 ± 0.0002	0.0154 ± 0.0003
aratek+0011	0.0096 ± 0.0002	0.0159 ± 0.0003	0.0229 ± 0.0003
aware+0311	0.0078 ± 0.0002	0.0125 ± 0.0003	0.0182 ± 0.0003
cogent+0507	0.0059 ± 0.0002	0.0091 ± 0.0002	0.0130 ± 0.0003
dermalog+0006	0.0077 ± 0.0002	0.0112 ± 0.0002	0.0154 ± 0.0003
gemalto+0108	0.0059 ± 0.0002	0.0091 ± 0.0002	0.0130 ± 0.0003
griaule+0108	0.0067 ± 0.0002	0.0105 ± 0.0002	0.0153 ± 0.0003
hongda+0004	0.0073 ± 0.0002	0.0114 ± 0.0002	0.0162 ± 0.0003
hongda+0007	0.0072 ± 0.0002	0.0109 ± 0.0002	0.0154 ± 0.0003
id3tech+1250	0.0059 ± 0.0002	0.0090 ± 0.0002	0.0126 ± 0.0003
id3tech+1252	0.0059 ± 0.0002	0.0089 ± 0.0002	0.0127 ± 0.0003
inesc+0016	0.0071 ± 0.0002	0.0116 ± 0.0002	0.0173 ± 0.0003
innovatrics+0017	0.0059 ± 0.0002	0.0092 ± 0.0002	0.0129 ± 0.0003
liquid+0107	0.0085 ± 0.0002	0.0145 ± 0.0003	0.0218 ± 0.0003
morpho+0108	0.0060 ± 0.0002	0.0091 ± 0.0002	0.0126 ± 0.0003
morpho+0109	0.0060 ± 0.0002	0.0091 ± 0.0002	0.0125 ± 0.0003
N	0.0141 ± 0.0003	0.0222 ± 0.0003	0.0315 ± 0.0004
nec+8210	0.0051 ± 0.0002	0.0078 ± 0.0002	0.0111 ± 0.0002
Neurotechnology+010A	0.0050 ± 0.0002	0.0074 ± 0.0002	0.0106 ± 0.0002
Neurotechnology+0206	0.0049 ± 0.0002	0.0075 ± 0.0002	0.0106 ± 0.0002
secugen+0037	0.0109 ± 0.0002	0.0175 ± 0.0003	0.0255 ± 0.0004
sonda+0119	0.0057 ± 0.0002	0.0087 ± 0.0002	0.0122 ± 0.0002
startek+0009	0.0070 ± 0.0002	0.0110 ± 0.0002	0.0159 ± 0.0003
SupremaUFCore+2022	0.0090 ± 0.0002	0.0144 ± 0.0003	0.0210 ± 0.0003
Tech5+0103	0.0057 ± 0.0002	0.0087 ± 0.0002	0.0121 ± 0.0002
Pooled	0.0075 ± 0.0002	0.0119 ± 0.0002	0.0170 ± 0.0003

 $\label{thm:compares} \textbf{Table 7: Two finger FNMRs at various FMRs when matcher nec+8210 compares templates created by its template generator and PIV-compliant template generators.}$

Enroller	FNMR @ FMR=0.01	FNMR @ FMR=0.001	FNMR @ FMR=0.0001
0059+0816	0.00045 ± 0.00005	0.00074 ± 0.00006	0.00114 ± 0.00008
005B+0015	0.00049 ± 0.00009 0.00032 ± 0.00004	0.00014 ± 0.00000 0.00062 ± 0.00006	0.00014 ± 0.00007 0.00092 ± 0.00007
0064+0002	0.00032 ± 0.00004 0.00041 ± 0.00005	0.00002 ± 0.00000 0.00078 ± 0.00006	0.00032 ± 0.00007 0.00128 ± 0.00008
006A+0292	0.00041 ± 0.00005 0.00053 ± 0.00005	0.00073 ± 0.00007 0.00093 ± 0.00007	0.00128 ± 0.00008 0.00141 ± 0.00008
006D+0013	0.00065 ± 0.00006 0.00065 ± 0.00006	0.00035 ± 0.00007 0.00125 ± 0.00008	0.00141 ± 0.00000 0.0021 ± 0.0001
0071+0013	0.00009 ± 0.00006 0.00079 ± 0.00006	0.00129 ± 0.00008 0.00149 ± 0.00009	0.0021 ± 0.0001 0.0024 ± 0.0001
2D	0.00079 ± 0.00006 0.00079 ± 0.00006	0.00149 ± 0.00009 0.00151 ± 0.00009	0.0024 ± 0.0001 0.0025 ± 0.0001
2F	0.00073 ± 0.00000 0.00054 ± 0.00005	0.00191 ± 0.00003 0.00095 ± 0.00007	0.0023 ± 0.0001 0.00163 ± 0.00009
aatec+0201	0.00034 ± 0.00003 0.00036 ± 0.00004	0.00033 ± 0.00007 0.00062 ± 0.00006	0.00103 ± 0.00003 0.00097 ± 0.00007
aatec+0300	0.00030 ± 0.00004 0.00044 ± 0.00005	0.00002 ± 0.00000 0.00081 ± 0.00006	0.00037 ± 0.00007 0.00119 ± 0.00008
aratek+0011	0.00044 ± 0.00005 0.00071 ± 0.00006	0.00031 ± 0.00000 0.00140 ± 0.00008	0.00113 ± 0.00000 0.0024 ± 0.0001
aware+0311	0.00071 ± 0.00000 0.00053 ± 0.00005	0.00140 ± 0.00008 0.00097 ± 0.00007	0.0024 ± 0.0001 0.00159 ± 0.00009
cogent+0507	0.00033 ± 0.00003 0.00031 ± 0.00004	0.00057 ± 0.00007 0.00058 ± 0.00005	0.00193 ± 0.00003 0.00088 ± 0.00007
dermalog+0006	0.00051 ± 0.00004 0.00055 ± 0.00005	0.00090 ± 0.00003 0.00100 ± 0.00007	0.00033 ± 0.00007 0.00149 ± 0.00009
gemalto+0108	0.00033 ± 0.00003 0.00031 ± 0.00004	0.00100 ± 0.00007 0.00060 ± 0.00006	0.00149 ± 0.00003 0.00089 ± 0.00007
griaule+0108	0.00031 ± 0.00004 0.00039 ± 0.00004	0.00005 ± 0.00006 0.00075 ± 0.00006	0.00039 ± 0.00007 0.00119 ± 0.00008
hongda+0004	0.00033 ± 0.00004 0.00041 ± 0.00005	0.00073 ± 0.00000 0.00074 ± 0.00006	0.00117 ± 0.00008 0.00117 ± 0.00008
hongda+0007	0.00041 ± 0.00003 0.00039 ± 0.00004	0.00074 ± 0.00006 0.00072 ± 0.00006	0.00117 ± 0.00008 0.00117 ± 0.00008
id3tech+1250	0.00033 ± 0.00004 0.00033 ± 0.00004	0.00012 ± 0.00000 0.00061 ± 0.00006	0.00017 ± 0.00007 0.00095 ± 0.00007
id3tech+1252	0.00033 ± 0.00004 0.00033 ± 0.00004	0.00001 ± 0.00000 0.00060 ± 0.00006	0.00096 ± 0.00007
inesc+0016	0.00035 ± 0.00004 0.00045 ± 0.00005	0.00000 ± 0.00000 0.00096 ± 0.00007	0.00030 ± 0.00007 0.00157 ± 0.00009
innovatrics+0017	0.00049 ± 0.00009 0.00032 ± 0.00004	0.00050 ± 0.00001 0.00059 ± 0.00005	0.00197 ± 0.00003 0.00092 ± 0.00007
liquid+0107	0.00052 ± 0.00004 0.00050 ± 0.00005	0.00095 ± 0.00005 0.00105 ± 0.00007	0.00032 ± 0.00001 0.00179 ± 0.00010
morpho+0108	0.00035 ± 0.00005 0.00035 ± 0.00004	0.00163 ± 0.00007 0.00063 ± 0.00006	0.000175 ± 0.00010 0.00095 ± 0.00007
morpho+0109	0.00035 ± 0.00004 0.00035 ± 0.00004	0.00003 ± 0.00000 0.00063 ± 0.00006	0.00093 ± 0.00007 0.00094 ± 0.00007
N	0.00033 ± 0.00004 0.00138 ± 0.00008	0.0026 ± 0.0001	0.00034 ± 0.00001 0.0040 ± 0.0001
nec+8210	0.00135 ± 0.00005 0.00025 ± 0.00004	0.0020 ± 0.0001 0.00046 ± 0.00005	0.0040 ± 0.0001 0.00069 ± 0.00006
Neurotechnology+010A	0.00029 ± 0.00004 0.00024 ± 0.00003	0.00040 ± 0.00005 0.00050 ± 0.00005	0.00003 ± 0.00006 0.00077 ± 0.00006
Neurotechnology+0206	0.00021 ± 0.00000 0.00026 ± 0.00004	0.00030 ± 0.00003 0.00049 ± 0.00005	0.00077 ± 0.00000 0.00078 ± 0.00006
secugen+0037	0.00020 ± 0.00001 0.00093 ± 0.00007	0.00013 ± 0.00009 0.00172 ± 0.00009	0.0028 ± 0.0001
sonda+0119	0.00039 ± 0.00007 0.00029 ± 0.00004	0.00172 ± 0.00005 0.00056 ± 0.00005	0.0028 ± 0.0001 0.00084 ± 0.00007
startek+0009	0.00023 ± 0.00004 0.00044 ± 0.00005	0.00080 ± 0.00006	0.00034 ± 0.00007 0.00128 ± 0.00008
SupremaUFCore+2022	0.00044 ± 0.00005 0.00067 ± 0.00006	0.00030 ± 0.00000 0.00126 ± 0.00008	0.00128 ± 0.00008 0.0021 ± 0.0001
Tech5+0103	0.00007 ± 0.00000 0.00029 ± 0.00004	0.00120 ± 0.00005 0.00055 ± 0.00005	0.0021 ± 0.0001 0.00086 ± 0.00007
Pooled	0.00023 ± 0.00004 0.00051 ± 0.00005	0.00095 ± 0.00005 0.00095 ± 0.00007	0.00050 ± 0.00001 0.00152 ± 0.00009
1 001611	0.00001 ± 0.00000	0.00000 ± 0.00001	0.00102 ± 0.00009

5 References

- [1] Jonathan N. Bradley, Christopher M. Brislawn, and Thomas Hopper. FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression. In *SPIE*, *Visual Information Processing II*, 1961. 3
- [2] George Doddington, Walter Liggett, Alvin Martin, Mark Przybocki, and Douglas Reynolds. Sheep, goats, lambs and wolves a statistical analysis of speaker performance in the nist 1998 speaker recognition evaluation. In INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING, 1998. 4
- [3] Patrick Grother Elham Tabassi, George W. Quinn. When to fuse two biometrics. In *IEEE Computer Society on Computer Vision and Pattern Recognition, Workshop on Multi-Biometrics*, 2006. 3
- [4] Robert Fontana, Giovanni Pistone, and Maria Rogantin. Classification of two-level factorial fractions. *Journal of Statistical Planning and Inference*, 87:149–172, 2000. 3
- [5] P. Grother, M. McCabe, C. Watson, M. Indovina, W. Salamon, P. Flanagan, E. Tabassi, E. Newton, and C. Wilson. Performance and Interoperability of the INCITS 378 Fingerprint Template. Technical report, NIST, 2006.
- [6] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki. The DET curve in assessment of detection task performance. In *Proc. Eurospeech*, pages 1895–1898, 1997. 3
- [7] George W. Quinn. Evaluation of latent fingerprint technologies: Fusion. In NIST Latent Fingerprint Testing Workshop Recognition, Workshop, 2009. 3
- [8] Edwin B. Wilson. Probable Inference, the Law of Succession, and Statistical Inference. *Journal of the American Statistical Association*, 22(158):209–212, 1927. 4