決定木を用いた Run-Based Trie の探索法

原田崇司

神奈川大学大学院 理学研究科 情報科学専攻 田中研究室

パケットフィルタリング

入ってくるパケットをポリシーに従ってルータで分類

パケットフィルタリングの方法

線型探索 その他

Run-Based Trie (三河, 田中, 2011)

連の開始位置iビット目ごとにトライ Ti を構成

			T	1		2	13
-	Filter	F	0 /	\ 1	0/	^ 1	<u>^1</u>
	R ₁	0 * 1		,		,	
	R_2	* 0 0	$R_1^{1} R_5^{1}$	\1	0/	\tilde{R}_{6}^{1}	\tilde{R}_1^2
	R_3	110		R_4^1	51		<u></u>
	R_4	11*		<u> </u>	$\frac{R_2}{}$		
	R_5	0 * *		D 1			
	R_6	* 1 *		$\frac{\kappa_3}{}$			

Simple Search でパケット 011 を分類

Filter	F
R ₁	0 * 1
R_2	* 0 0
R_3	110
R_4	11*
R_5	0 * *
R_6	* 1 *

最優先ルール	R ₁	R_2	R_3	R ₄	R ₅	R ₆
$-1 \rightarrow 5$	0 → 1	0	0	0	0 → 1	0

Simple Search でパケット 011 を分類

Filter	F
R_1	0 * 1
R_2	* 0 0
R_3	110
R_4	11*
R_5	0 * *
R_6	* 1 *

最優先ルール	R_1	R_2	R_3	R_4	R_5	R ₆
5	1	0	0	0	1	0 → 1

Simple Search でパケット 011 を分類

Filter	F
R_1	0 * 1
R_2	* 0 0
R_3	110
R_4	11*
R_5	0 * *
R ₆	* 1 *

最優先ルール	R ₁	R ₂	R_3	R_4	R_5	R ₆
5 → 1	1 → 2	0	0	0	1	1

探索終了. パケット 011 に合致する最優先ルールは R_1

集合族(Simple Search での T_i の辿り方の場合分け)

$$\begin{split} S_1 &= \{ \{R_1^1, \ \underline{R_5^1}\}, \ \{\underline{R_4^1}\}, \ \{\underline{R_3^1}, \ \underline{R_4^1}\}, \ \varphi \} \\ S_2 &= \{ \{\underline{R_2^1}\}, \ \{\underline{R_6^1}\}, \ \varphi \} \\ S_3 &= \{ \{R_1^2\}, \ \varphi \} \end{split}$$

集合族の直積 $|S_1| imes |S_2| imes |S_3|$ を取り、対応するルールを付与連の合致の組み合わせを全て列挙

決定木

Run-Based Trie に従って決定木を辿るだけで、パケットを分類可能

決定木によりパケット 011 を探索

Run-Based Trie を用いて決定木を辿る. 最優先ルールは R₁

実験結果

ビットの長さ dW 8 ビット ルール数 N 1 ~ 45 パケット数 1000

※探索時間は1パケットあたりの平均探索時間をマイクロ秒単位で示している。

まとめと今後の課題

決定木を用いて Run-Based Trie を探索することにより、 フィルタリングルールの数 N に依存せず探索

今後の課題

- ▶ Simple Search の全ての辿り方を組み合わせるので、 決定木の空間計算量が膨大 → 枝刈りアルゴリズムが必要
- 決定木の空間計算量の算出
- ▶ プログラムを作成して、16 ビット以上での実装実験