Advanced Algorithms

Module 2

Parallel Computing

Why Parallel Computing?

- Save time, resources, memory, ...
- Who is using it?
 - Academia
 - Industry
 - Government
 - Individuals?
- Two practical motivations:
 - Application requirements
 - Architectural concerns.
- Why now?
 - Most computers including laptops are multi-core!
 - Need to therefore study how to use parallel computers.

Conventional Wisdom in Computer Architecture

- Power Wall + Memory Wall + ILP Wall = Brick Wall
- Old CW: Uniprocessor performance 2X / 1.5 yrs
- New CW: Uniprocessor performance only 2X / 5 yrs?

The Academic Interest

- Algorithmics and compelxity
 - How to design parallel algorithms?
 - What are good theoretical models for parallel computing?
 - How to analyze parallel algorithms?
 - Can every sequential algorithm be parallelized?
 - What are some complexity classes wrt parallel computing?

The Academic Interest

- Systems and Programming
 - How to write parallel programs?
 - What are some tools and environments.
 - How to convert algorithms to efficient implementations.
 - What are the differences to sequential programming?
 - What are the performance measures?
 - Can sequential programs be automatically converted to parallel programs?

The Academic Interest

- Architectures
 - What are standard architectural designs?
 - What new issues are raised due to multiple cores?
 - Downstream concerns
 - Does a programmer have to worry about this?
 - How to support the systems software as architecture changes?

The Course Coverage

- Focus on algorithms and complexity
- Models for parallel algorithms
- Algorithm design methodologies with application
 - Semi-numerical
 - Lists
 - Trees and graphs
- Complexity, characterization, and connection to sequential complexity classes.

The PRAM Model

The von Neumann model.

The PRAM Model ■

An extension of the von Neumann model.

The PRAM Model

- A set of n identical processors ≡
- A common access shared memory
- Synchronous time steps ≡
- Access to the shared memory costs the same as a unit of computation.
- Different models to provide semantics for concurrent access to the shared memory
 - EREW, CREW, CRCW(Common, Aribitrary, Priority, ...)

The Semantics

- In all cases, it is the programmer to ensure that his program meets the required semantics.
- - No scope for memory contention.
 - Usually the weakest model, and hence algorithm design is tough.
- CREW: Concurrent Read, Exclusive Write
 - Allow processors to read simultaneously from the same memory location at the same instant.
 - Can be made practically feasible with additional hardware

The Semantics

- CRCW: Concurrent Read, Concurrent Write
 - Allow processors to read/write simultaneously from/to the same memory location at the same instant.
 - Requires further specification of semantics for concurrent write. Popular variants include
 - COMMON: Concurrent write is allowed so long as the all the values being attempted are equal. Example: Consider finding the Boolean OR of n bits.
 - ARBITRARY: In case of a concurrent write, it is guaranteed that some processor succeeds and its write takes effect.
 - PRIORITY: Assumes that processors have numbers that can be used to decide which write succeeds.

PRAM Model – Advantages and Drawbacks

Advantages

- A simple model for algorithm design
- Hides architectural details for the designer.
- A good starting point

Disadvantages

- Ignores architectural features such as:
 - memory bandwidth,
 - communication cost and latency,
 - scheduling, ...
- Hardware may be difficult to realize

Example 1 – Matrix Multiplication

- One of the fundamental parallel processing tasks.
- Applications to several important problems in linear algebra, signal processing and optimization.
- Several techniques that work in parallel also.

Example I – Matrix Multiplication

- Recall that in C = A x B, $C[i,j] = \sum A[i,k].B[k,j]$.
- Consider the following recursive approach: ≡
 - —Works well in practice.

Example I – Matrix Multiplication

Other approaches include Cannon's algorithm

- Can overlap computation with communication.
- Works well when the number of processors is more.

Example 2 – New Parallel Algorithm

```
Listing 1:

S(1) = A(1)

for i = 2 to n do

S(i) = S(i-1) o A(i)
```

- Prefix Computations: Given an array A of n elements and an associative operation o, compute A(1) o A(2) o ... A(i) for each i.
- A very simple sequential algorithm exists for this problem.
- Many computations can be expressed in terms of prefix computations.

Parallel Prefix Computation

- The sequential algorithm in Listing 1 is not efficient in parallel.
 - In particular, has to wait for the output of S(i) to compute the output S(i+1).
- Need a new algorithm approach.
 - Balanced Binary Tree

Balanced Binary Tree

- An algorithm design approach for parallel algorithms
- Many problems can be solved with this design technique.
- Easily amenable to parallelization and analysis.

Balanced Binary Tree

- A complete binary tree with processors at each internal node.
- Input is at the leaf nodes ≡
- Define operations to be executed at the internal nodes.
 - Inputs for this operation at a node are the values at the children of this node.
- Computation as a tree traversal from leaf to root.

Balanced Binary Tree – Prefix Sums

Balanced Binary Tree – Sum

Balanced Binary Tree – Sum

- The above approach called as an ``upward traversal''
 - Data flow from the children to the root.
 - Helpful in other situations also such as computing the max, expression evaluation.
- Analogously, can define a downward traversal
 - Data flows from root to leaf
 - Helps in settings such as element broadcast

Balanced Binary Tree

- Can use a combination of both upward and downward traversal.
- Prefix computation requires that.
- Illustration in the next slide.

Balanced Binary Tree – Sum

Balanced Binary Tree – Prefix Sum

Balanced Binary Tree - Prefix Sum

Balanced Binary Tree – Prefix Sums

- Two traversals of a complete binary tree.
- The tree is only a visual aid.
 - Map processors to locations in the tree
 - Perform equivalent computations.
 - Algorithm designed in the PRAM model.
 - Works in logarithmic time, and optimal number of operations.

//upward traversal

1. for i = 1 to n/2 do in parallel

$$b_i = a_{2i-2} o a_{2i}$$

2. Recursively compute the prefix sums of B= $(b_1, b_2, ..., b_{n/2})$ and store them in C = $(c_1, c_2, ..., b_{n/2})$

```
c_{n/2}
```

//downward traversal

3. for i = 1 to n do in parallel

```
i is even: s_i = c_i

i= 1: s_1 = c_1

i is odd: s_i = c_{(i-1)/2} o a_i
```

Analysis of Parallel Algorithms

- To analyze parallel algorithms, we rely on asymptotics and recurrences.
- Each operation costs 1 unit, only sequential time needs to be counted. We assume as many processors as can be used are available.
- In the prefix sum example, let T(n) be the time in parallel for an input of size n.
 - Step 1 can use n/2 processors in parallel each taking 1 unit of time.
 - Step 2 is a recursive call and takes T(n/2) time.
 - Step 3 uses n processors each taking 1 unit of time.

Analysis of Parallel Algorithms

- The recurrence relation is:
 - $T(n) = T(n/2) + O(1) \equiv$
 - Can ignore effects due to constant factors, such as the difference in the number of processors between steps 1 and 3.
- The solution to the above recurrence is T(n) = O(log n).
- Another parameter of interest in parallel algorithms is the work done.
- Can be stated as the sum of the works done by each of the processors.

Analysis of Parallel Algorithms

- The work done by the prefix algorithm can be expressed by the recurrence
 - W(n) = W(n/2) + O(n).
 - The O(n) accounts for the work in the first and the third steps.

 ■
 - Solution: W(n) = O(n).
- Work done can indicate if the algorithm is doing about the same amount of operations as the best known sequential algorithm.
- Such a parallel algorithm is called an optimal algorithm.

Other Design Paradigms

Partitioning

- Similar to divide and conquer
- But no need to combine solutions
- Can treat problems independently and solve in parallel.
- Example: Parallel merging, searching.

Merging in Parallel by Partitioning

- Two sorted arrays A and B to be merged into C.
- Let A be a sorted array. Let Rank(x, A) be the number of elements smaller than x in A. ■
- Claim: Rank(x, C) = Rank(x, A) + Rank(x, B)
- For x in A, Rank(x,A) is immediately available. To find Rank(x, B)
 can use binary search in parallel.

Quick Example ■

A = [8 10 12 24]

 $B = [15 \ 17 \ 27 \ 32]$

Element	8	10	12	24	15	17	27	32
Rank in A	0	1	2	3	3	3	4	4
Rank in B	0	0	0	2	0	1	2	3
Rank in	0	1	2	5	3	4	6	7

C = [8 10 12 15 17 24 27 32]

Merging in Parallel by Partitioning

- Time for each binary search is O(log n)
- Total time for merging = O(log n), the total work is
 O(n log n). ≡
 - Not work optimal as compared to the best possible sequential time complexity of O(n).
- Can reduce the total work to O(n).
 - Induce equal-sized partitions in the arrays
 - Rank one element, say the first element, from each partition
 - Use these ranks to find the ranks of the other elements, sequentially.

An Improved Optimal Algorithm

General technique

- Solve a smaller problem in parallel
- > Extend the solution to the entire problem.
- For the first step, the problem size to be solved is guided by the factor of non-optimality of an existing parallel algorithm.

An Improved Parallel Algorithm

- Our simple parallel algorithm is away from work optimality by a factor of O(log n).
- So, we should solve a problem of size O(n/log n).
- For this purpose, we pick every log nth element of A, and similarly in B.
- Use the simple parallel algorithm on these elements of A and B.
 - Binary search however in the entire A and B.

An Improved Parallel Algorithm

- Let A₁, A₂,...,A_{n/log n} be the elements of A ranked in B.
- These ranks induce partitions in B.
 - Define $[B_{r(i)}...B_{r(i+1)}]$ as the portion of B so that [A(i)...A(i+1)] have ranks in.
- Can therefore merge [A(i)...A(i+1)] with $[B_{r(i)}...B_{r(i+1)}]$ sequentially.

An Improved Parallel Algorithm

- Such sequential merges can happen in parallel, at each index of A[i].
- Time taken for the sequential merge is $O(\log n + B_{r(i+1)} B_{r(i)})$.
- Time:
 - Binary search: O(log n), with n/log n processors.
 - Sequential merge: O(log n), subject to certain conditions.
 There are also n/log n such merges in parallel.

• Work:

- > There are $n/\log n$ binary searches in parallel. Work = O(n).
- \rightarrow For the sequential merges too, work = O(n).