	L #	Hits	Search Text	DBs
1 ·	L3		(reorder\$3 order\$3) near99 mask\$3 near99 (swap\$4 centrifug\$3)	USPAT; US-PGPUB

04/30/2004, EAST Version: 1.4.1

FIG. 76A

FIG. 76B

	Docum ent ID	σ	Title	Current
1	US 20030 20724 7 A1		Preparation of red blood cells having reduced immunogenicity	435/2
2	US 20020 16980 8 A1		System and method for reordering data	708/204
3	US 20020 13143 2 A1		Method and apparatus for ternary content addressable memory (TCAM) table management	370/408
4	US 20020 05521 9 A1		Swapped drain structures for electrostatic discharge protection	438/231
5	US 66836 15 B1		Doubly-virtualized texture memory	345/543
6	US 66779 52 B1		Texture download DMA controller synching multiple independently-running rasterizers	345/505
7	US 66503 33 B1		Multi-pool texture memory management	345/552
8	US 66188 04 B1		System and method for rearranging bits of a data word in accordance with a mask using sorting	712/300
9	US 65873 22 B2		Swapped drain structures for electrostatic discharge protection	361/56
10	US 65871 13 B1		Texture caching with change of update rules at line end	345/557
11	US 63593 14 B1		Swapped drain structures for electrostatic discharge protection	257/355
12	US 62970 82 B1		Method of fabricating a MOS transistor with local channel ion implantation regions	438/217
13	US 61768 62 B1		Hair-removing device with rotary roller equipped with pain-soothing device	606/133
14	US 61191 98 A		Recursive address centrifuge for distributed memory massively parallel processing systems	711/5
15	US 60947 15 A		SIMD/MIMD processing synchronization	712/20
16	US 59665 28 A		SIMD/MIMD array processor with vector processing	712/222
17	US 59637 46 A		Fully distributed processing memory element	712/20
18	US 59637 45 A		APAP I/O programmable router	712/13
19	US 58782 41 A		Partitioning of processing elements in a SIMD/MIMD array processor	712/203
20	US 58706 19 A		Array processor with asynchronous availability of a next SIMD instruction	712/20
21	US 58571 09 A		Programmable logic device for real time video processing	712/37

FIG. 77A

FIG 77B

	Docum ent ID	ט	Title	Current
22	US 58420 31 A		Advanced parallel array processor (APAP)	712/23
23	US 57940 59 A		N-dimensional modified hypercube	712/10
24	US 57651 81 A		System and method of addressing distributed memory within a massively parallel processing system	711/5
25	US 57650 11 A		Parallel processing system having a synchronous SIMD processing with processing elements emulating SIMD operation using individual instruction streams	712/20
26	US 57615 23 A		Parallel processing system having asynchronous SIMD processing and data parallel coding	712/20
27	US 57548 71 A		Parallel processing system having asynchronous SIMD processing	712/20
28	US 57520 67 A		Fully scalable parallel processing system having asynchronous SIMD processing	712/16
29	US 57349 21 A		Advanced parallel array processor computer package	712/10
30	US 57179 44 A		Autonomous SIMD/MIMD processor memory elements	712/20
31	US 57179 43 A		Advanced parallel array processor (APAP)	712/20
32	US 57130 37 A		Slide bus communication functions for SIMD/MIMD array processor	702/33
33	US 57109 35 A		Advanced parallel array processor (APAP)	712/20
34	US 57088 36 A		SIMD/MIMD inter-processor communication	712/20
35	US 56969 22 A		Recursive address centrifuge for distributed memory massively parallel processing systems	711/5
36	US 56258 36 A		SIMD/MIMD processing memory element (PME)	709/214
37	US 55903 45 A		Advanced parallel array processor(APAP)	712/11
38	US 55881 52 A		Advanced parallel processor including advanced support hardware	712/16
39	US 54974 98 A		Video processing module using a second programmable logic device which reconfigures a first programmable logic device for data transformation	710/104
40	US 49673 36 A		High voltage bridge interface	363/132
41	US 43777 31 A		Device for automatically interrupting the supply of electric power to a motor and its utilization	200/80R
42	US 42714 69 A		Method for detecting knocking in internal combustion engine	701/111
43	US 36838 77 A		FUEL FEED DEVICES FOR INTERNAL COMBUSTION ENGINES	123/477
44	US 36173 39 A		SPRAY COATING METHODS	427/240

t96'71*L*'S

Jan. 27, 1998 --- Sheet 70 of 80

CHILDREN

POINTER TO POINTER

POINTER TO CHILD NODE

NUMBER OF

MATRIX INFORMATION (NOT EXISTING IF ATTRIBUTE IS INHERITED FROM PARENT)

TEXTURE INFORMATION (NOT EXISTING IF ATTRIBUTE IS INHERITED FROM PARENT)	POINTER TO PARENT NODE COLOR INFORMATION (NOT EXISTING IF ATTRIBUTE IS INHERITED FROM PARENT) TEXTURE INFORMATION (NOT EXISTING IF ATTRIBUTE IS INHERITED FROM PARENT)
	щ
щ	POINTER TO PARENT NODE

FIG. 78

U.S. Patent

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)