Chapitre 1 - Limites de fonctions

Terminales Spé Maths

1 Histoire des mathématiques

On peut considérer que le concept de limite est né avec le philosophe grec **Zénon d'Elée** au 4^{ème} siècle avant notre ère. Il est l'auteur de célèbres paradoxes dont celui d'Achille et la tortue.

Aux 17^{ème} et au 18^{ème} siècles, les mathématiques ont une intuition claire de la notion de limite. Par exemple, Gottfried Leibniz, utilise des écritures telles que :

$$\pi = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \frac{1}{13} - \dots\right).$$

Au 19^{ème} siècle, le besoin de définir rigoureusement le concept de limite se fait sentir. Le mathématicien français **Augustin Cauchy** donne une place centrale à la notion de limite en analyse. Plus tard, le mathématicien allemand **Karl Weierstrass** surnommé le père de l'analyse moderne en donne la première définition précise et introduit la notation $\lim_{x\to x_0} f(x)$ pour la limite d'une fonction f en x_0 .

EXERCICE 1Rechercher le paradoxe d'Achille et la tortue (un des **Paradoxes de Zénon**)

2 Limites de fonctions : définitions et premières propriétés

2.1 Limites en $+\infty$ et en $-\infty$

Définition 2.1.

Limite infinie à l'infini

• Une fonction f a pour limite $+\infty$ en $+\infty$ si tout intervalle ouvert de la forme $]A, +\infty[$ contient toutes les valeurs de f(x) pour x suffisamment grand. On note

$$\lim_{x \to +\infty} f(x) = +\infty$$

• Une fonction f a pour limite $-\infty$ en $+\infty$ si tout intervalle ouvert de la forme $]-\infty,A[$ contient toutes les valeurs de f(x) pour x suffisamment grand. On note

$$\lim_{x \to +\infty} f(x) = -\infty$$

• On définit de façon analogue les limites infinies en $-\infty$. On les note

$$\lim_{x \to -\infty} f(x) = +\infty; \lim_{x \to -\infty} f(x) = -\infty$$

Remarque.

Ces définitions sont formalisées dans un langage mathématiques :

• $\lim_{x\to +\infty} f(x) = +\infty$: Pour tout A>0, il existe un réel m réel (dépendant de A à chercher) tel que si x>m alors f(x)>A

Dans certains livres vous pouvez voir les notations suivantes (non demandées en terminale, mais anticipons sur vos études supérieures) :

$$\forall A > 0; \exists m > 0 : (x > m) \Rightarrow f(x) > A$$

• N° 37 p 178 : écrire dans le même formalisme les autres limites en $+\infty$ ou $-\infty$.

Propriété 2.1.

Soit n en entier supérieur ou égal à 1. On a :

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

$$\lim_{x \to +\infty} x^n = +\infty$$

$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{si } n \text{ est pair} \\ -\infty & \text{si } n \text{ est impair} \end{cases}$$

$$\lim_{x \to +\infty} e^x = +\infty$$

Démonstration. Montrons la limite de \sqrt{x} en l'infini. Soit A un réel strictement positif. A partir d'un rang $x > A^2$ alors $\sqrt{x} > A$ donc $\sqrt{x} \in]A; +\infty[$. Donc

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Les autres limites sont démontrées sur le cahier.

CQFD

Définition 2.2.

Soit une fonction f définie sur un ensemble \mathcal{D}_f telle qu'il existe un réel a pour lequel $[a; +\infty[\subset \mathcal{D}_f]]$ Soit l un nombre réel, dire que f tend vers la limite l quand x tend vers $+\infty$ signifie que quelque soit un ε donné strictement positif, il existe un rang $x_0 \geqslant a$ tel que pour tout x de \mathcal{D}_f , si $x > x_0$ alors $|f(x) - l| \le \varepsilon$ On note

$$\lim_{x \to +\infty} f(x) = l$$

On définit de façon analogue la limite réelle de f en $-\infty$

Définition 2.3.

Lorsqu'une fonction f a pour limite un réel l en $+\infty$ ou en $-\infty$, on dit que la courbe représentation de f admet une asymptote horizontale en $+\infty$ ou en $-\infty$ d'équation y=l.

Remarque.

Dans l'exemple précédent, la courbe représentative de f admet une asymptote en $+\infty$ d'équation y=1

Propriété 2.2.

Soit n un entier supérieur ou égal à 1. On a

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x^n} = 0$$

$$\lim_{x \to -\infty} \frac{1}{x^n} = 0$$

$$\lim_{x \to -\infty} e^x = 0$$

Démonstration. Démonstration en cours

CQFD

2.2 Limite en un réel

Définition 2.4.

Soit f une fonction définie sur un ensemble \mathcal{D}_f . La fonction f a pour limite $+\infty$ en a si tout intervalle de \mathbb{R} du type]A; $+\infty[$ contient toutes les valeurs de f(x) pour x assez proche de a. On note alors: $\lim_{x\to a} f(x) = +\infty$.

Quel que soit A, il existe un réel $\delta > 0$ tel que pour tout $x \in \mathcal{D}_f$ si $|x - a| < \delta$ alors f(x) > A.

On définit de la même manière $\lim_{x\to a} f(x) = -\infty$.

Dans cet exemple la fonction f définie par $f(x) = \frac{1}{x-1}$ tend vers $+\infty$ lorsque x tend vers 1.

Propriété 2.3. • Pour tout $n \in \mathbb{N}^*$ si n est pair $\lim_{x \to 0} \frac{1}{x^n} = +\infty$.

- Pour tout $n \in \mathbb{N}^*$ si n est impair $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x^n} = +\infty$.
- Pour tout $n \in \mathbb{N}^*$ si n est impair $\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x^n} = -\infty$.
- $\bullet \lim_{x \to 0} \frac{1}{\sqrt{x}} = +\infty.$

Remarque.

 $\lim_{x \to a} f(x)$ est appelée limite à droite en a.

 $\lim_{\substack{x \to a \\ x < a}} f(x)$ est appelée limite à gauche en a.

Définition 2.5.

Lorsque la limite de f en a réel a est $+\infty$ ou $-\infty$, on dit que la droite d'équation x=a est une asymptote horizontale de la courbe C_f .

Remarque.

Dans l'exemple ci-dessus, la droite d'équation x = 1 est une asymptote à la courbe.

Définition 2.6.

Soit l un nombre réel. Une fonction a pour limite l en a si tout intervalle ouvert contenant l contient toutes les valeurs de f(x) pour x suffisamment proche de a. On note $\lim_{x\to a} f(x) = l$.

Pour tout $\varepsilon > 0$, il existe un réel $\delta > 0$ tel que, pour tout $x \in \mathcal{D}_f$ si $|x - a| < \delta$ alors $|f(x) - l| < \varepsilon$.

Propriété 2.4.

Soit a un réel,

- Si $a \geqslant 0$; $\lim_{x \to a} \sqrt{x} = \sqrt{a}$
- Si P est un polynôme, alors $\lim_{x\to a} P(x) = P(a)$
- Si F est une fonction rationnelle, (quotient de deux polynômes) définie en a, alors $\lim_{x\to a} F(x) =$
- $\lim \cos(x) = \cos(a)$ et $\lim \sin(x) = \sin(a)$
- $\lim e^x = e^a$

3 Opérations sur les limites

Propriété 3.1.

— Limite d'une somme :

Emirie d'une somme.		
f	g	f + g
ℓ	ℓ'	$\ell + \ell'$
ℓ	∞	∞
$+\infty$	$+\infty$	$+\infty$
$-\infty$	$-\infty$	$-\infty$
$+\infty$	$-\infty$	Forme Indéterminée

— Limite d'un produit :

f	g	fg
ℓ	ℓ'	$\ell\ell'$
$\ell \neq 0$	∞	∞
∞	∞	∞
0	∞	Forme Indéterminée

— Limite d'un quotient :

f	g	f/g
ℓ	$\ell' \neq 0$	ℓ/ℓ'
$\ell \neq 0$	0	∞
ℓ	∞	0
0	0	Forme Indéterminée
∞	∞	Forme Indéterminée

 $\bullet \infty$ peut signifier $+\infty$ ou $-\infty$. Les règles du signe d'un produit ou d'un quotient Remarque.

• Pour la limite de la différence f - g, on considère la limite de la somme f + (-g).

Exemple

Soit $f: x \mapsto (1-x)\left(x^3 + \frac{1}{x}\right)$ définie sur \mathbb{R}^* . Calculons $\lim_{x \to +\infty} f(x)$. Par somme, $\lim_{x \to +\infty} (1-x) = -\infty$ et $\lim_{x \to +\infty} \left(x^3 + \frac{1}{x}\right) = +\infty$ donc, par produit, $\lim_{x \to +\infty} f(x) = -\infty$.

4 Limites de composée de fonctions

4.1 Fonctions composées

Une composée de deux fonctions correspond à un enchaînement de deux fonctions l'une après l'autre. Par exemple, composons la fonction $f: x \mapsto 1-x$ suivie de $g: x \mapsto \sqrt{x}$. On peut ainsi schématiser :

$$x \mapsto 1 - x \mapsto \sqrt{1 - x}.$$

Cependant, on voit que la fonction g ne peut s'appliquer que si l'ensemble des images par la fonction f est inclus dans l'ensemble de définition de g.

Ainsi, pour appliquer ici la racine carrée, il faut que $1-x\geqslant 0$ c'est-à-dire que $x\leqslant 1$.

La composée existe donc dans le schéma suivant où on précise les ensembles de départ et d'arrivée pour f:

$$[-\infty; 1] \rightarrow [0; +\infty[\rightarrow \mathbb{R} \atop x \mapsto 1-x \mapsto \sqrt{1-x} \atop g$$

En composant f suivie de g, on a ainsi défini sur $]-\infty$; 1] la fonction $x\mapsto \sqrt{1-x}$.

Définition 4.1.

Soit f une fonction définie sur E et à valeurs dans F, et soit g une fonction définie sur F.

La composée de f suivie de g est la fonction notée $g \circ f$ définie sur E par $g \circ f(x) = g(f(x))$.

Remarque.

Il ne faut pas confondre $q \circ f$ et $f \circ q$ qui sont, en général, différentes.

Exemple:

En reprenant f et q de l'exemple précédent, définissons $f \circ q$.

La composée de g suivie de f est possible en partant de l'ensemble de définition de g:

$$\begin{array}{ccc}
[0; +\infty[\to [0; +\infty[\to \mathbb{R} \\ x & \mapsto \sqrt{x} & \mapsto 1 - \sqrt{x}] \\
g & f
\end{array}$$

En composant g suivie de f, on a ainsi défini sur $[0; +\infty[$ la fonction $x \mapsto 1 - \sqrt{x}$.

4.2 Théorème de composition des limites

Théorème 4.1.

Soit h la composée de la fonction f suivie de g et α , β et γ trois réels ou $\pm \infty$.

Si
$$\lim_{x \to \alpha} f(x) = \beta$$
 et $\lim_{x \to \beta} g(x) = \gamma$, alors $\lim_{x \to \alpha} h(x) = \gamma$.

Exemple:

Déterminons la limite en $-\infty$ de la fonction $q \circ f$ de l'exemple précédent.

La composée de $f: x \mapsto 1-x$ suivie de $g: x \mapsto \sqrt{x}$ est $h: x \mapsto \sqrt{1-x}$ définie sur $]-\infty$; 1].

Or, $\lim_{x \to -\infty} (1-x) = +\infty$ (par somme) et $\lim_{x \to +\infty} \sqrt{x} = +\infty$ (limite de référence).

Donc, d'après le théorème de composition, $\lim_{x\to -\infty} \sqrt{1-x} = +\infty$.

Déterminer une limite de fonction

On applique les propriétés d'opérations sur les limites.

Si la limite est indéterminée, « $+\infty + (-\infty)$ », « $0 \times \infty$ », « $\frac{\infty}{\infty}$ » ou « $\frac{0}{0}$ », on essaye de :

- factoriser par le terme prépondérant;
- multiplier par la quantité conjuguée ¹ si des racines carrées interviennent;
- effectuer un changement de variable (voir théorème de composition des limites).

Calculer les limites suivantes :

$$1. \lim_{x \to +\infty} \left(\sqrt{x+1} - \sqrt{x} \right)$$

2.
$$\lim_{x \to +\infty} \frac{2x^2 - 3x + 1}{x^2 - 1}$$

3.
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x}-2}$$

Ces limites sont indéterminées (respectivement formes « $\infty - \infty$ », « $\frac{\infty}{\infty}$ » et « $\frac{0}{0}$ »).

1. On multiplie le numérateur et le dénominateur par la quantité conjuguée de $\sqrt{x+1}-\sqrt{x}$:

$$\sqrt{x+1} - \sqrt{x} = \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

Or, par composition: $\lim_{x \to +\infty} (x+1) = +\infty$ et $\lim_{x \to +\infty} \sqrt{x} = +\infty$ donc $\lim_{x \to +\infty} \sqrt{x+1} = +\infty$.

Et, par somme : $\lim_{x \to +\infty} \left(\sqrt{x+1} + \sqrt{x} \right) = +\infty$. Donc, par inverse : $\lim_{x \to +\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = 0$.

2. Divisons le numérateur et le dénominateur par x^2 . Alors, $\frac{2x^2-3x+1}{x^2-1}=\frac{2-\frac{3}{x}+\frac{1}{x^2}}{1-\frac{1}{x^2}}$.

Or, par somme :
$$\lim_{x \to +\infty} \left(2 - \frac{3}{x} + \frac{1}{x^2} \right) = 2$$
 et $\lim_{x \to +\infty} \left(1 - \frac{1}{x^2} \right) = 1$.

Donc, par quotient :
$$\lim_{x \to +\infty} \frac{2 - \frac{3}{x} + \frac{1}{x^2}}{1 - \frac{1}{x^2}} = 2.$$

3. Changeons de variable en posant $u = \sqrt{x}$. Si x tend vers 4, alors u tend vers 2.

Changeons de variable en posant
$$u = \sqrt{x}$$
. Si x tend vers 4, alors u tend vers 2.
$$\frac{x-4}{\sqrt{x}-2} = \frac{u^2-4}{u-2} = \frac{(u+2)(u-2)}{u-2} = u+2 \text{ pour } u \neq 2. \text{ Donc, par somme } : \lim_{u\to 2} (u+2) = 4.$$

1. on désigne généralement par $a-b\sqrt{c}$ la quantité conjuguée de $a+b\sqrt{c}$

Limites et comparaison 5

5.1Théorème de comparaison

Théorème 5.1.

Soit f et g deux fonctions telles que $f(x) \leq g(x)$ sur un intervalle α ; $+\infty$ de \mathbb{R} .

- $-\lim_{x \to +\infty} f(x) = +\infty \Rightarrow \lim_{x \to +\infty} g(x) = +\infty.$ $-\lim_{x \to +\infty} g(x) = -\infty \Rightarrow \lim_{x \to +\infty} f(x) = -\infty.$

Soit f et g deux fonctions telles que $f(x) \leq g(x)$ sur un intervalle $]-\infty$; $\beta[de \mathbb{R}]$.

- $-\lim_{x \to -\infty} f(x) = +\infty \Rightarrow \lim_{x \to -\infty} g(x) = +\infty.$ $-\lim_{x \to -\infty} g(x) = -\infty \Rightarrow \lim_{x \to -\infty} f(x) = -\infty.$

Soit f et g deux fonctions telles que $f(x) \leq g(x)$ sur un intervalle $]\alpha$; β [de \mathbb{R} et $x_0 \in]\alpha$; β [.

- $\lim_{x \to x_0} f(x) = +\infty \Rightarrow \lim_{x \to x_0} g(x) = +\infty.$ $-\lim_{x \to x_0} g(x) = -\infty \Rightarrow \lim_{x \to x_0} f(x) = -\infty.$

Exemple

Soit la fonction h définie sur \mathbb{R} par $h(x) = \sqrt{x^4 + 1}$, calculer $\lim h(x)$.

Pour tout $x, x^4 < x^4 + 1$

La fonction racine carrée est croissante sur $[0; +\infty[$, donc $\sqrt{x^4} < \sqrt{x^4 + 1} \Leftrightarrow x^2 < h(x)$. Or $\lim_{x\to +\infty} x^2 = +\infty$ d'après le théorème de comparaison $\lim_{x\to +\infty} h(x) = +\infty$

5.2Théorème d'encadrement dit « des gendarmes » ou « sandwich »

Théorème

Soit deux réels α et ℓ et trois fonctions f, g et h telles que, pour $x > \alpha$, on a $f(x) \leq g(x) \leq h(x)$. Si $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} h(x) = \ell$, alors $\lim_{x \to +\infty} g(x) = \ell$.

Remarque.

On a, comme pour le théorème de comparaison précédent, deux théorèmes analogues lorsque x tend vers $-\infty$ et lorsque x tend vers un réel x_0 .

Démonstration. Par hypothèse, les fonctions f et h ont pour limite ℓ .

Considérons un intervalle ouvert I qui contient ℓ . Il contient toutes les valeurs f(x) dès que x > a et toutes les valeurs h(x) dès que x > b. Notons $c = \max(a; b)$, I contient donc toutes les valeurs f(x) et h(x) dès que x > c.

Comme pour tout $x \in I, f(x) \leq g(x) \leq h(x)$, J contient toutes les valeurs g(x) dès que x > c. C'est vrai pour tout intervalle ouvert contenant ℓ donc $\lim_{x \to +\infty} g(x) = \ell$.

CQFD

Exemple

Soit la fonction f définie sur $I = [0; +\infty[$ telle que pour tout $x \in I$,

$$-\frac{1}{x} + 2 \leqslant f(x) \leqslant \frac{1}{x} + 2$$

Sachant que, par somme, $\lim_{x\to +\infty} -\frac{1}{x}+2=2$ et que $\lim_{x\to +\infty} \frac{1}{x}+2=2$; on a d'après le théorème d'encadrement "des gendarmes" $\lim_{x\to +\infty} f(x)=2$

5.3 Théorème des croissances comparées

Théorème 5.3. Pour tout $n \in \mathbb{N}^*$; $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$ et $\lim_{x \to -\infty} x^n e^x = 0$

Démonstration. Démonstration faite en cours.

CQFD