Theory of Computation

(Turing Machines)

Rezaul Chowdhury (Slides by Pramod Ganapathi)

Department of Computer Science State University of New York at Stony Brook Fall 2021

Contents

Contents

- Turing Machines
- Universal Turing Machines

The Accidental Birth of Computer Science! (Video)

Turing Machines

What was the aim of Alan Turing?

Turing's aim

Design a model that is:

- Simple,
- Intuitive,
- Generic, and
- Formalizes computation performed by a human mind

How does a human compute?

- Write input on a paper
- Do the computation (think and write the intermediate results on the paper)
- Write output on the paper

How did Turing formalize human computation?

- Turing = Named after Alan Mathison Turing
- Machine = Computing machine

Human computation	Machine computation
	Таре
	Tape head
	Transition function

Diagram of a Turing machine (TM)

Source: Lewis and Papadimitriou. Elements of the Theory of Computation.

Operation	Explanation
Write	(Optionally) writes a new symbol at the current tape position.
Move	(Optionally) moves either left or right.
Think	(Optionally) changes to a new state.

Diagram of a Turing machine (TM)

Source: Lewis and Papadimitriou. Elements of the Theory of Computation.

Concept	Meaning
Tape	Simulates unlimited sheets of paper for computation.
Tape head	Read/write onto a tape cell. Moves left/right.
States	Simulates states of a human mind.
Input	Finite number of symbols initially on the tape.
Output	Finite number of symbols finally on the tape.
Computation	State transitions based on rules and input symbols.

What is a Turing machine (TM)?

Definition

A Turing machine (TM) M is a 6-tuple

$$M = (Q, \Sigma, \Gamma, \delta, q_0, H)$$
, where,

- 1. Q: A finite set (set of states).
- 2. Σ : A finite set (input alphabet). Σ excludes \triangleright , \square , \leftarrow , \rightarrow .
- 3. Γ : A finite set (tape alphabet). $\Sigma \cup \{\triangleright, \square\} \subseteq \Gamma$. Γ excludes \leftarrow, \rightarrow .
- 4. $\delta:(Q-H)\times\Gamma$ to $Q\times(\Gamma\cup\{\leftarrow,\rightarrow\})$ is the transition function such that the tape head never falls off or erases \vartriangleright symbol

- 5. q_0 : The start state (belongs to Q).
- 6. $H = \{q_{acc}, q_{rej}\}$: The set of halting states (subset of Q).

Some notes on the Turing machine

Symbols

- ▷ : Left end symbol
- : Blank symbol
- \bullet \leftarrow , \rightarrow : Left and right movement symbols
- ullet Σ : Represents input/output/special symbols
- ullet Γ : Represents symbols that can be present on the tape

Transition

- M never falls off the left end of the tape i.e.,
 when the current symbol is ▷, the tape head has to move right
- M stops when it reaches an accept or a reject state i.e., δ is not defined for states in H

Problem

• Construct a TM to erase the input string

Problem

Construct a TM to erase the input string

Solution

- Language recognizers such as DFA's cannot perform computational tasks such as erasing strings.
 - So, no DFA can be used for erasing strings.
- Language generators such as CFG's cannot perform computational tasks such as erasing strings.
 - So, no CFG can be used for erasing strings.
- TM's are more powerful than language recognizers and language generators.
 - A TM can be used for erasing strings.

Problem

• Construct a TM to erase the input string

Time	State	Tape						
0	q_0	Δ	a	a	a			
1	q_0	Δ	a	a	a			
2	q_1	Δ		a	a			
3	q_0	Δ		a	a			
4	q_1	Δ			a			
5	q_0	Δ			a			
6	q_1	Δ						
7	q_0	Δ						
8	q_h	\triangleright					[···]	

Problem

• Construct a TM to erase the input string

	Current symbol (Γ)					
Current state $(Q-H)$	Δ	a				
q_0	(q_0, \rightarrow)	(q_1, \square)	(q_h, \square)			
q_1	_	(q_0, a)	(q_0, \rightarrow)			

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{ {\rm strings\ containing\ } ab {\rm\ or\ end\ } with {\rm\ } ba\}$

Solution

- Expression: $((a|b)^*ab(a|b)^*) \mid ((a|b)^*ba)$
- DFA:

Problem

 \bullet Construct a Turing machine that accepts all strings from the language $L=\{\text{strings containing }ab\text{ or end with }ba\}$

Problem

ullet Construct a Turing machine that accepts all strings from the language $L=\{ {
m strings \ containing \ } ab \ {
m or \ end \ with \ } ba \}$

	Current symbol (Γ)								
Current state $(Q-H)$	Δ	a	b						
q_0	(q_1, \rightarrow)	_	_	_					
q_1	_	(q_2, \rightarrow)	(q_4, \rightarrow)	_					
q_2	_	(q_2, \rightarrow)	$(q_4, \to) (q_3, \to)$	-					
q_3	_	(q_{acc}, o)	(q_{acc}, o)	(q_{acc}, o)					
q_4	_	(q_5, \rightarrow)	(q_4, \rightarrow)	_					
q_5	_	(q_2, \rightarrow)	(q_3, \rightarrow)	(q_{acc}, o)					

Problem

 \bullet Construct a Turing machine that accepts all strings from the language $L=\{\text{strings containing }ab\text{ or end with }ba\}$

Solution (continued)

 \bullet TM accepts the string bba because it enters the $q_{\rm acc}$ state

Time	State	Tape							
0	q_0	Δ	b	b	a				
1	q_1	Δ	b	b	a				
2	q_4	Δ	b	b	a				
3	q_4	Δ	b	b	a				
4	q_5	Δ	b	b	a				
5	$q_{\sf acc}$	Δ	b	b	a				

Problem

 \bullet Construct a Turing machine that accepts all strings from the language $L=\{\text{strings containing }ab\text{ or end with }ba\}$

Solution (continued)

 \bullet TM rejects the string bbb because it enters the $q_{\rm rej}$ state

Time	State	Tape							
0	q_0	Δ	b	b	b				
1	q_1	Δ	b	b	b				
2	q_4	\triangle	b	b	b				
3	q_4	\triangle	b	b	b				
4	q_4	\triangle	b	b	b				
5	q_{rej}	Δ	b	b	b				

Problem

• Construct a Turing machine that accepts all strings from the language $L = \{ \text{strings containing } ab \text{ or end with } ba \}$

- \bullet TM accepts the string aabbbbb because it enters the $q_{\rm acc}$ state
- Unlike DFA and CFG, a TM can accept a string without scanning the string completely

Time	State	Tape									
0	q_0	Δ	a	a	b	b	b	b	b		
1	q_1	Δ	a	a	b	b	b	b	b		
2	q_2	\triangleright	a	a	b	b	b	b	b		
3	q_2	\triangleright	a	a	b	b	b	b	b		
4	q_3	\triangleright	a	a	b	b	b	b	b		
5	$q_{\sf acc}$	\triangleright	a	a	b	b	b	b	b		

More problems

Use the TM to check acceptance of the following strings:

- \bullet ϵ
- aba

ightharpoonup contains ab and ends with ba

- aaa
- *aab*
- baa

The LEGO Turing Machine!

(Video)

TM's with different features

Problem

• Suppose you have TM's with the following characteristics. What are the computational powers of the TM's?

← movement	ightarrow movement	Write	Computational power
×	✓	X	?
✓	✓	X	?
×	×	✓	?
×	✓	✓	?
/	✓	✓	TM

Problem

• Construct a Turing machine that copies a string from the language $L=\Sigma^*$ where $\Sigma=\{a,b\}.$

Problem

• Construct a Turing machine that copies a string from the language $L=\Sigma^*$ where $\Sigma=\{a,b\}.$

Solution

- Language recognizers such as DFA's cannot perform computational tasks such as copying strings.
 - So, no DFA can be used for copying strings.
- Language generators such as CFG's cannot perform computational tasks such as copying strings.
 - So, no CFG can be used for copying strings.
- TM's are more powerful than language recognizers and language generators.
 - A TM can be used for copying strings.

State		Tape											
q_0	Δ	b	b	a									
q_2	Δ	b	b	a	#								
q_2	Δ	b	b	a	#								
q_5	Δ	2	b	a	#								
q_6	Δ	2	b	a	#	b							
q_7	Δ	b	b	a	#	b							
q_5	Δ	b	2	a	#	b							
q_6	\triangleright	b	2	a	#	b	b						
q_7	Δ	b	b	a	#	b	b						
q_4	Δ	b	b	1	#	b	b						
q_6	Δ	b	b	1	#	b	b	a					
q_7	Δ	b	b	a	#	b	b	a					
q_3	Δ	b	b	a	#	b	b	a					
$q_{\sf acc}$	Δ	b	b	a	#	b	b	a					

Problem

• Construct a Turing machine that copies a string from the language $L=\Sigma^*$ where $\Sigma=\{a,b\}.$

- $\Gamma = \Sigma \cup \{ \triangleright, \square, \#, 1, 2 \}$
- ullet Cells with "—" means that the TM terminates in q_{rej} state

	Current symbol (Γ)									
State	\triangle	a	b	#	1	2				
q_0	(q_1, \rightarrow)	-	-		_	_	_			
q_1	_	(q_1, \rightarrow)	(q_1, \rightarrow)	_	_	_	$(q_2, \#)$			
q_2	(q_3, \rightarrow)	(q_2, \leftarrow)	(q_2, \leftarrow)	(q_2, \leftarrow)	_	_	_			
q_3	_	$(q_4, 1)$	$(q_5, 2)$	$(q_{acc},\#)$	_	_	_			
q_4	_	(q_4, \rightarrow)	(q_4, \rightarrow)	(q_4, \rightarrow)	(q_4, \rightarrow)	_	(q_6, a)			
q_5	_	(q_5, \rightarrow)	(q_5, \rightarrow)	(q_5, \rightarrow)	_	(q_5, \rightarrow)	(q_6,b)			
q_6	_	(q_6, \leftarrow)	(q_6, \leftarrow)	(q_6, \leftarrow)	(q_7,a)	(q_7,b)	_			
q_7	_	(q_3, \rightarrow)	(q_3, \rightarrow)	_	_	_				

More problems

Use the TM to copy the following strings:

- \bullet ϵ
- a
- b
- *aab*

Problem

 Construct a Turing machine to accept all strings from the language $L=\{a^nb^nc^n\mid n\geq 1\}$

Problem

 Construct a Turing machine to accept all strings from the language $L=\{a^nb^nc^n\mid n\geq 1\}$

Solution

Language $A = \{abc, aabbcc, aaabbbccc, \ldots\}$

- A TM accepts this language.

Problem

 Construct a Turing machine to accept all strings from the language $L=\{a^nb^nc^n\mid n\geq 1\}$

State	Tape									
q_0	Δ	a	a	b	b	c	c			
q_2	Δ	\boldsymbol{x}	a	b	b	c	c			
q_3	Δ	\boldsymbol{x}	a	y	b	c	c			
q_4	Δ	\boldsymbol{x}	a	y	b	z	c			
q_2	Δ	\boldsymbol{x}	\boldsymbol{x}	y	b	z	c			
q_3	Δ	\boldsymbol{x}	\boldsymbol{x}	y	y	z	c			
q_4	Δ	\boldsymbol{x}	\boldsymbol{x}	y	y	z	z			
q_5	\triangleright	\boldsymbol{x}	x	y	y	z	z			
$q_{\sf acc}$	Δ	\boldsymbol{x}	\boldsymbol{x}	y	y	z	z			

Problem

• Construct a Turing machine to accept all strings from the language $L=\{a^nb^nc^n\mid n\geq 1\}$

- $\bullet \ \Gamma = \Sigma \cup \{\triangleright, \square, x, y, z\}$
- \bullet Cells with "—" means that the TM terminates in $q_{\rm rej}$ state

		Current symbol (Γ)										
St.	Δ	a	b	c	x	y	z					
q_0	(q_1, \rightarrow)	_	_	_	_	_	_	_				
q_1	_	(q_2,x)	_	_	_	(q_5, \rightarrow)	_	_				
q_2	_	(q_2, \rightarrow)	(q_3, y)	_	(q_2, \rightarrow)	(q_2, \rightarrow)	_	_				
q_3	_	_	(q_3, \rightarrow)	(q_4,z)	_	(q_3, \rightarrow)	(q_3, \rightarrow)	_				
q_4	_	(q_4, \leftarrow)	(q_4, \leftarrow)	_		(q_4, \leftarrow)	(q_4, \leftarrow)	_				
q_5	_	_	_	_	_	(q_5, \rightarrow)	(q_5, \rightarrow)	(q_{acc}, \square)				

Problem

 Construct a Turing machine to accept all strings from the language $L=\{a^nb^nc^n\mid n\geq 1\}$

More problems

- Use the TM to check acceptance of the following strings: abc, aa, c, abbc, aabc, abcc, ϵ .
- $\bullet \ \, \text{Construct a TM that accepts language} \,\, L = \{a^nb^nc^n \mid n \geq 0\}.$

How are TM's different from DFA's and PDA's?

Feature	DFA	PDA	TM	
Memory size	Finite	Infinite	Infinite	
Halts?	✓	1	√, X	
Input scanning	Left-to-right	Left-to-right	Arbitrary	
#Passes	1 pass	1 pass	Any	
Halting	End of input	End of input	Accept state	
Computing power	Least	Medium	Highest	
Computing power Language recognizer?	Least ✓	Medium ✓	Highest ✓	
	Least ✓ ✗	Medium ✓ X	Highest ✓	
Language recognizer?	✓	1	Highest ✓ ✓	
Language recognizer? Function calculator?	✓	1	Highest ✓ ✓ ✓	

What is a computation?

Example computation of a TM M

Time	Configuration	State	Tape						
0	C_0	q_0	\triangleright	b	b	b			
1	C_1	q_1	\triangle	b	b	b			
2	C_2	q_4	\triangle	b	b	b			
3	C_3	q_4	\triangle	b	b	b			
4	C_4	q_4	\triangleright	b	b	b			
5	C_5	q_{rej}	\triangleright	b	b	b			

- Configurations: Information about the current state, tape head position, and the tape content. e.g.: $(q_4, \triangleright bbb \square)$ $C_0, C_1, C_2, C_3, C_4, C_5$
- Starting, accepting, rejecting, halting configurations
- Computation: Sequence of successive configurations $C_0 \vdash_M C_1 \vdash_M C_2 \vdash_M C_3 \vdash_M C_4 \vdash_M C_5$
- Computation time/length: 5, written as $C_0 \vdash_M^5 C_5$
- Yields: e.g.: $C_1 \vdash_M^* C_4$

Let's think!

Deep problems

- How does a computer really work?
 Sequence of computer states, i.e., a computation.
- How does a human brain really work? The brain consists of, say, 86 billion neurons. Each neuron might temporarily store some information. Each neuron is connected to, say, 10,000 neurons. So, there might be 860 trillion neural connections. Suppose we represent the brain using a dynamic graph. Then, the human thinking and the human experience might just be sequences of configurations of neurons, i.e., a giant computation.
- How does the universe really work? The number of atoms in the observable universe is, say, 10⁸⁰ in a higher dimensional space. The number of types of atoms might be finite. An atom moves from one point in space to another. Then, the happenings in the observe universe might just be a sequence of configurations, i.e., a gigantic computation.

Let's think!

Deep problems

- Suppose the workings of computers, human brains, and the observable universe is really a computation. What does that mean?
 - We can simulate them on a real computer, if we have enough resources such as memory and processing power.
- What is the biggest assumption when we defined a Turing machine?
 - **Finiteness**
- What happens when we move out of this assumption?
 - 7

How to construct complicated TM's?

Constructing complicated TM's

- We can make complicated TM's from simpler TM's using the structure of a finite automaton
- Nodes of the automaton are the simpler TM's
- A connection $M_i \xrightarrow{k} M_j$ means when TM M_i halts and the current tape symbol is k, then TM M_j can start.

 Can you think of some examples of complicated TM's built from simpler TM's?

The Story of Information

(Video)

(try to watch the entire video from the start)

Universal Turing Machines

Universal Turing machine (UTM)

Definition

 \bullet A Universal Turing machine (UTM) MU can simulate the execution of any Turing machine M on any input w.

Working of UTM $U(\langle M, w \rangle)$

- ullet Halt iff M halts on input w.
- ullet If M is a deciding/semideciding machine, then
 - If M accepts, accept.
 - If M rejects, reject.
- \bullet If M computes a function, then $U(\langle M,w\rangle)$ must equal M(w).

Simulating a TM

Theorem

- \bullet Given any Turing machine M and an input string w, there exists a Turing machine M' that simulates the execution of M on w and
 - ullet Halts iff M halts on w, and
 - ullet If it halts, returns whatever result M returns.

Universal machines

Problem

- We can construct a universal TM that accepts the language $L = \{\langle M, w \rangle \mid M \text{ is a TM and } w \in L(M)\}$
- Can we construct a universal DFA that accepts the language $L = \{\langle M, w \rangle \mid M \text{ is a DFA and } w \in L(M)\}$?
- Can we construct a universal CFG that accepts the language $L = \{\langle M, w \rangle \mid M \text{ is a CFG and } w \in L(M)\}$?

Universal machines

Problem

- We can construct a universal TM that accepts the language $L = \{\langle M, w \rangle \mid M \text{ is a TM and } w \in L(M)\}$
- Can we construct a universal DFA that accepts the language $L = \{\langle M, w \rangle \mid M \text{ is a DFA and } w \in L(M)\}$?
- Can we construct a universal CFG that accepts the language $L = \{\langle M, w \rangle \mid M \text{ is a CFG and } w \in L(M)\}$?

Solution

- No!
- No!

- → Why?
- → Why?

Compilers

Problem

• Suppose you discover a new programming language X. You want to write and compile your first program in X. Of course, a compiler for X is not available as it is a new language discovered by you. You know that you can use C++ or Java to write your compiler. But, is it possible to write your compiler in X that can be used to compile your program written in X?

Compilers

Problem

• Suppose you discover a new programming language X. You want to write and compile your first program in X. Of course, a compiler for X is not available as it is a new language discovered by you. You know that you can use C++ or Java to write your compiler. But, is it possible to write your compiler in X that can be used to compile your program written in X?

Solution

• Yes! > How?

Universal Turing Machine in Minecraft!

(Video)

A Computer that Runs on Marbles!

(Video)