

Q2 : Differentiate the function with respect to \boldsymbol{x} .

$$\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

Answer:

Let
$$y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

Taking logarithm on both the sides, we obtain

$$\log y = \log \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

$$\Rightarrow \log y = \frac{1}{2} \log \left[\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right]$$

$$\Rightarrow \log y = \frac{1}{2} \left[\log \left\{ (x-1)(x-2) \right\} - \log \left\{ (x-3)(x-4)(x-5) \right\} \right]$$

$$\Rightarrow \log y = \frac{1}{2} \left[\log (x-1) + \log (x-2) - \log (x-3) - \log (x-4) - \log (x-5) \right]$$

Differentiating both sides with respect to x, we obtain

Differentiating both sides with respect to
$$x_i$$
 we obtain
$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2} \begin{bmatrix}
\frac{1}{x-1} \cdot \frac{d}{dx}(x-1) + \frac{1}{x-2} \cdot \frac{d}{dx}(x-2) - \frac{1}{x-3} \cdot \frac{d}{dx}(x-3) \\
-\frac{1}{x-4} \cdot \frac{d}{dx}(x-4) - \frac{1}{x-5} \cdot \frac{d}{dx}(x-5)
\end{bmatrix}$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{2} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} - \frac{1}{x-5}\right)$$

$$\therefore \frac{dy}{dx} = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \left[\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} - \frac{1}{x-5}\right]$$

Answer needs Correction? Click Here

Q3 : Differentiate the function with respect to x.

$$(\log x)^{\cos x}$$

Answer:

Let
$$y = (\log x)^{\cos x}$$

Taking logarithm on both the sides, we obtain

$$\log y = \cos x \cdot \log(\log x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} (\cos x) \times \log(\log x) + \cos x \times \frac{d}{dx} \left[\log(\log x) \right]$$

$$\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = -\sin x \log(\log x) + \cos x \times \frac{1}{\log x} \cdot \frac{d}{dx} (\log x)$$

$$\Rightarrow \frac{dy}{dx} = y \left[-\sin x \log(\log x) + \frac{\cos x}{\log x} \times \frac{1}{x} \right]$$

$$\therefore \frac{dy}{dx} = (\log x)^{\cos x} \left[\frac{\cos x}{x \log x} - \sin x \log(\log x) \right]$$

Answer needs Correction? Click Here

Q4: Differentiate the function with respect to x.

$$x^x - 2^{\sin x}$$

Answer:

Let
$$y = x^x - 2^{\sin x}$$

Also, let $x^x = u$ and $2^{\sin x} = v$
 $\therefore y = u - v$
 $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} - \frac{dv}{dx}$

Taking logarithm on both the sides, we obtain

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \left[\frac{d}{dx}(x) \times \log x + x \times \frac{d}{dx}(\log x)\right]$$

$$\Rightarrow \frac{du}{dx} = u\left[1 \times \log x + x \times \frac{1}{x}\right]$$

$$\Rightarrow \frac{du}{dx} = x^{x}(\log x + 1)$$

$$\Rightarrow \frac{du}{dx} = x^{x}(1 + \log x)$$

$$v = 2^{\sin x}$$

Taking logarithm on both the sides with respect to x, we obtain

 $\log v = \sin x \cdot \log 2$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v} \cdot \frac{dv}{dx} = \log 2 \cdot \frac{d}{dx} (\sin x)$$

$$\Rightarrow \frac{dv}{dx} = v \log 2 \cos x$$

$$\Rightarrow \frac{dv}{dx} = 2^{\sin x} \cos x \log 2$$

$$\therefore \frac{dy}{dx} = x^{x} (1 + \log x) - 2^{\sin x} \cos x \log 2$$

Answer needs Correction? Click Here

Q5: Differentiate the function with respect to x.

$$(x+3)^2.(x+4)^3.(x+5)^4$$

Answer:

Let
$$y = (x+3)^2 \cdot (x+4)^3 \cdot (x+5)^4$$

Taking logarithm on both the sides, we obtain

$$\log y = \log(x+3)^2 + \log(x+4)^3 + \log(x+5)^4$$

$$\Rightarrow \log y = 2\log(x+3) + 3\log(x+4) + 4\log(x+5)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \cdot \frac{dy}{dx} = 2 \cdot \frac{1}{x+3} \cdot \frac{d}{dx} (x+3) + 3 \cdot \frac{1}{x+4} \cdot \frac{d}{dx} (x+4) + 4 \cdot \frac{1}{x+5} \cdot \frac{d}{dx} (x+5)$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \cdot \left[\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \cdot \left[\frac{2(x+4)(x+5) + 3(x+3)(x+5) + 4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)(x+4)^2 (x+5)^3 \cdot \left[2(x^2 + 9x + 20) + 3(x^2 + 8x + 15) + 4(x^2 + 7x + 12) \right]$$

$$\therefore \frac{dy}{dx} = (x+3)(x+4)^2 (x+5)^3 (9x^2 + 70x + 133)$$

Answer needs Correction? Click Here

Q6: Differentiate the function with respect to x.

$$(x+3)^2.(x+4)^3.(x+5)^4$$

Answer:

Let
$$y = (x+3)^2 \cdot (x+4)^3 \cdot (x+5)^4$$

Taking logarithm on both the sides, we obtain

$$\log y = \log(x+3)^{2} + \log(x+4)^{3} + \log(x+5)^{4}$$

$$\Rightarrow \log y = 2\log(x+3) + 3\log(x+4) + 4\log(x+5)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \cdot \frac{dy}{dx} = 2 \cdot \frac{1}{x+3} \cdot \frac{d}{dx} (x+3) + 3 \cdot \frac{1}{x+4} \cdot \frac{d}{dx} (x+4) + 4 \cdot \frac{1}{x+5} \cdot \frac{d}{dx} (x+5)$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \cdot \left[\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \cdot \left[\frac{2(x+4)(x+5) + 3(x+3)(x+5) + 4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)(x+4)^2 (x+5)^3 \cdot \left[2(x^2 + 9x + 20) + 3(x^2 + 8x + 15) + 4(x^2 + 7x + 12) \right]$$

$$\therefore \frac{dy}{dx} = (x+3)(x+4)^2 (x+5)^3 (9x^2 + 70x + 133)$$

Answer needs Correction? Click Here

$$(\log x)^x + x^{\log x}$$

Answer:

Let
$$y = (\log x)^x + x^{\log x}$$

Also, let $u = (\log x)^x$ and $v = x^{\log x}$
 $\therefore y = u + v$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad ...(1)$$

$$u = (\log x)^x$$

$$\Rightarrow \log u = \log[(\log x)^x]$$

 $\Rightarrow \log u = x \log(\log x)$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x) \times \log(\log x) + x \cdot \frac{d}{dx} \left[\log(\log x) \right]
\Rightarrow \frac{du}{dx} = u \left[1 \times \log(\log x) + x \cdot \frac{1}{\log x} \cdot \frac{d}{dx} (\log x) \right]
\Rightarrow \frac{du}{dx} = (\log x)^x \left[\log(\log x) + \frac{x}{\log x} \cdot \frac{1}{x} \right]
\Rightarrow \frac{du}{dx} = (\log x)^x \left[\log(\log x) + \frac{1}{\log x} \right]
\Rightarrow \frac{du}{dx} = (\log x)^x \left[\frac{\log(\log x) \cdot \log x + 1}{\log x} \right]
\Rightarrow \frac{du}{dx} = (\log x)^{x-1} \left[1 + \log x \cdot \log(\log x) \right]$$
...(2)
$$v = x^{\log x}
\Rightarrow \log v = \log(x^{\log x})
\Rightarrow \log v = \log(x \log x) = (\log x)^2$$

Differentiating both sides with respect to *x*, we obtain

$$\frac{1}{v} \cdot \frac{dv}{dx} = \frac{d}{dx} \left[(\log x)^2 \right]$$

$$\Rightarrow \frac{1}{v} \cdot \frac{dv}{dx} = 2(\log x) \cdot \frac{d}{dx} (\log x)$$

$$\Rightarrow \frac{dv}{dx} = 2v(\log x) \cdot \frac{1}{x}$$

$$\Rightarrow \frac{dv}{dx} = 2x^{\log x} \cdot \frac{\log x}{x}$$

$$\Rightarrow \frac{dv}{dx} = 2x^{\log x - 1} \cdot \log x \qquad ...(3)$$

Therefore, from (1), (2), and (3), we obtain

$$\frac{dy}{dx} = \left(\log x\right)^{x-1} \left[1 + \log x \cdot \log\left(\log x\right)\right] + 2x^{\log x - 1} \cdot \log x$$

Answer needs Correction? Click Here

Q8: Differentiate the function with respect to x.

$$\left(\sin x\right)^x + \sin^{-1}\sqrt{x}$$

Answer:

Let
$$y = (\sin x)^x + \sin^{-1} \sqrt{x}$$

Also, let $u = (\sin x)^x$ and $v = \sin^{-1} \sqrt{x}$
 $\therefore y = u + v$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad ...(1)$$

$$u = (\sin x)^x$$

$$\Rightarrow \log u = \log(\sin x)^{x}$$

$$\Rightarrow \log u = x \log(\sin x)$$
Differentiating both sides with respect to x, we obtain
$$\Rightarrow \frac{1}{u} \frac{du}{dx} = \frac{d}{dx}(x) \times \log(\sin x) + x \times \frac{d}{dx} \left[\log(\sin x) \right]$$

$$\Rightarrow \frac{du}{dx} = u \left[1 \cdot \log(\sin x) + x \cdot \frac{1}{\sin x} \cdot \frac{d}{dx} (\sin x) \right]$$

$$\Rightarrow \frac{du}{dx} = (\sin x)^{x} \left[\log(\sin x) + \frac{x}{\sin x} \cdot \cos x \right]$$

$$\Rightarrow \frac{du}{dx} = (\sin x)^{x} (x \cot x + \log \sin x) \qquad ...(2)$$

$$v = \sin^{-1} \sqrt{x}$$

Differentiating both sides with respect to x, we obtain

$$\frac{dv}{dx} = \frac{1}{\sqrt{1 - (\sqrt{x})^2}} \cdot \frac{d}{dx} (\sqrt{x})$$

$$\Rightarrow \frac{dv}{dx} = \frac{1}{\sqrt{1 - x}} \cdot \frac{1}{2\sqrt{x}}$$

$$\Rightarrow \frac{dv}{dx} = \frac{1}{\sqrt{1 - x}} \quad ...(3)$$

Therefore, from (1), (2), and (3), we obtain

$$\frac{dy}{dx} = \left(\sin x\right)^x \left(x \cot x + \log \sin x\right) + \frac{1}{2\sqrt{x - x^2}}$$

Answer needs Correction? Click Here

Q9: Differentiate the function with respect to x.

$$x^{\sin x} + (\sin x)^{\cos x}$$

Answer:

Let
$$y = x^{\sin x} + (\sin x)^{\cos x}$$

Also, let $u = x^{\sin x}$ and $v = (\sin x)^{\cos x}$
 $\therefore y = u + v$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad ...(1)$$

$$u = x^{\sin x}$$

$$\Rightarrow \log u = \log(x^{\sin x})$$

$$\Rightarrow \log u = \sin x \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(\sin x) \cdot \log x + \sin x \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[\cos x \log x + \sin x \cdot \frac{1}{x}\right]$$

$$\Rightarrow \frac{du}{dx} = x^{\sin x} \left[\cos x \log x + \frac{\sin x}{x}\right] \qquad \dots(2)$$

$$v = (\sin x)^{\cos x}$$

$$\Rightarrow \log v = \log(\sin x)^{\cos x}$$

$$\Rightarrow \log v = \cos x \log (\sin x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}(\cos x) \times \log(\sin x) + \cos x \times \frac{d}{dx}\left[\log(\sin x)\right]$$

$$\Rightarrow \frac{dv}{dx} = v\left[-\sin x.\log(\sin x) + \cos x \cdot \frac{1}{\sin x} \cdot \frac{d}{dx}(\sin x)\right]$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x}\left[-\sin x\log\sin x + \frac{\cos x}{\sin x}\cos x\right]$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x}\left[-\sin x\log\sin x + \cot x\cos x\right]$$

$$\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x}\left[\cot x\cos x - \sin x\log\sin x\right] \qquad ...(3)$$

From (1), (2), and (3), we obtain

$$\frac{dy}{dx} = x^{\sin x} \left(\cos x \log x + \frac{\sin x}{x}\right) + \left(\sin x\right)^{\cos x} \left[\cos x \cot x - \sin x \log \sin x\right]$$

Answer needs Correction? Click Here

Q10 : Differentiate the function with respect to x.

$$x^{x\cos x} + \frac{x^2 + 1}{x^2 - 1}$$

Answer:

Let
$$y = x^{x\cos x} + \frac{x^2 + 1}{x^2 - 1}$$

Also, let
$$u = x^{x\cos x}$$
 and $v = \frac{x^2 + 1}{x^2 - 1}$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad ...(1)$$

$$u = x^{x\cos x}$$

$$\Rightarrow \log u = \log(x^{x\cos x})$$

$$\Rightarrow \log u = x \cos x \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x) \cdot \cos x \cdot \log x + x \cdot \frac{d}{dx}(\cos x) \cdot \log x + x \cos x \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[1 \cdot \cos x \cdot \log x + x \cdot (-\sin x) \log x + x \cos x \cdot \frac{1}{x} \right]$$

$$\Rightarrow \frac{du}{dx} = x^{\text{roos}x} \left[\cos x \log x - x \sin x \log x + \cos x \right]$$

$$\Rightarrow \frac{du}{dx} = x^{\text{roos}x} \left[\cos x (1 + \log x) - x \sin x \log x \right] \qquad \dots(2)$$

$$\Rightarrow \frac{du}{dx} = x^{\text{roos}x} \Big[\cos x \big(1 + \log x \big) - x \sin x \log x \Big]$$

$$v = \frac{x+1}{x^2 - 1}$$

$$\Rightarrow \log v = \log(x^2 + 1) - \log(x^2 - 1)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v}\frac{dv}{dx} = \frac{2x}{x^2 + 1} - \frac{2x}{x^2 - 1}$$

$$\Rightarrow \frac{dv}{dx} = v \left[\frac{2x(x^2 - 1) - 2x(x^2 + 1)}{(x^2 + 1)(x^2 - 1)} \right]$$

$$\Rightarrow \frac{dv}{dx} = \frac{x^2 + 1}{x^2 - 1} \times \left[\frac{-4x}{(x^2 + 1)(x^2 - 1)} \right]$$

$$\Rightarrow \frac{dv}{dx} = \frac{-4x}{(x^2 - 1)^2} \qquad ...(3)$$

From (1), (2), and (3), we obtain

$$\frac{dy}{dx} = x^{x\cos x} \left[\cos x \left(1 + \log x\right) - x\sin x \log x\right] - \frac{4x}{\left(x^2 - 1\right)^2}$$

Answer needs Correction? Click Here

Q11: Differentiate the function with respect to x.

$$(x\cos x)^x + (x\sin x)^{\frac{1}{x}}$$

Answer:

Let
$$y = (x \cos x)^{x} + (x \sin x)^{\frac{1}{x}}$$

Also, let $u = (x \cos x)^{x}$ and $v = (x \sin x)^{\frac{1}{x}}$
 $\therefore y = u + v$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \qquad ...(1)$$

$$u = (x \cos x)^{x}$$

$$\Rightarrow \log u = \log (x \cos x)^x$$

$$\Rightarrow \log u = x \log(x \cos x)$$

$$\Rightarrow \log u = x [\log x + \log \cos x]$$

$$\Rightarrow \log u = x \log x + x \log \cos x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x\log x) + \frac{d}{dx}(x\log\cos x)$$

$$\Rightarrow \frac{du}{dx} = u \left[\left\{ \log x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log x) \right\} + \left\{ \log\cos x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log\cos x) \right\} \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[\left(\log x \cdot 1 + x \cdot \frac{1}{x} \right) + \left\{ \log\cos x \cdot 1 + x \cdot \frac{1}{\cos x} \cdot \frac{d}{dx}(\cos x) \right\} \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[\left(\log x + 1 \right) + \left\{ \log\cos x + \frac{x}{\cos x} \cdot \left(-\sin x \right) \right\} \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[\left(1 + \log x \right) + \left(\log\cos x - x \tan x \right) \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[1 - x \tan x + \log(x\cos x) \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^x \left[1 - x \tan x + \log(x\cos x) \right]$$
...(2)

$$v = (x \sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \log (x \sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \frac{1}{2} \log(x \sin x)$$

$$\Rightarrow \log v = \frac{1}{2} (\log x + \log \sin x)$$

$$\Rightarrow \log v = \frac{1}{x} (\log x + \log \sin x)$$
$$\Rightarrow \log v = \frac{1}{x} \log x + \frac{1}{x} \log \sin x$$

$$\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{x}\log x\right) + \frac{d}{dx}\left[\frac{1}{x}\log(\sin x)\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[\log x \cdot \frac{d}{dx}\left(\frac{1}{x}\right) + \frac{1}{x} \cdot \frac{d}{dx}(\log x)\right] + \left[\log(\sin x) \cdot \frac{d}{dx}\left(\frac{1}{x}\right) + \frac{1}{x} \cdot \frac{d}{dx}\{\log(\sin x)\}\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \left[\log x \cdot \left(-\frac{1}{x^2}\right) + \frac{1}{x} \cdot \frac{1}{x}\right] + \left[\log(\sin x) \cdot \left(-\frac{1}{x^2}\right) + \frac{1}{x} \cdot \frac{1}{\sin x} \cdot \frac{d}{dx}(\sin x)\right]$$

$$\Rightarrow \frac{1}{v}\frac{dv}{dx} = \frac{1}{x^2}(1 - \log x) + \left[-\frac{\log(\sin x)}{x^2} + \frac{1}{x \sin x} \cdot \cos x\right]$$

$$\Rightarrow \frac{dv}{dx} = (x \sin x)^{\frac{1}{x}} \left[\frac{1 - \log x}{x^2} + \frac{-\log(\sin x) + x \cot x}{x^2}\right]$$

$$\Rightarrow \frac{dv}{dx} = (x \sin x)^{\frac{1}{x}} \left[\frac{1 - \log(x - \log(\sin x) + x \cot x}{x^2}\right]$$

$$\Rightarrow \frac{dv}{dx} = (x \sin x)^{\frac{1}{x}} \left[\frac{1 - \log(x \sin x) + x \cot x}{x^2}\right]$$

$$\Rightarrow \frac{dv}{dx} = (x \sin x)^{\frac{1}{x}} \left[\frac{1 - \log(x \sin x) + x \cot x}{x^2}\right]$$
...(3)

From (1), (2), and (3), we obtain

$$\frac{dy}{dx} = (x\cos x)^x \left[1 - x\tan x + \log(x\cos x)\right] + (x\sin x)^{\frac{1}{x}} \left[\frac{x\cot x + 1 - \log(x\sin x)}{x^2}\right]$$

Answer needs Correction? Click Here

Q12: Find $\frac{dy}{dx}$ of function.

$$x^y + y^x = 1$$

Answer:

The given function is $x^y + y^x = 1$

Let
$$x^y = u$$
 and $y^x = v$

Then, the function becomes u + v = 1

$$\therefore \frac{du}{dx} + \frac{dv}{dx} = 0 \qquad \dots (1)$$

$$\Rightarrow \log u = \log(x^y)$$

$$\Rightarrow \log u = y \log x$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \log x \frac{dy}{dx} + y \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{du}{dx} = u \left[\log x \frac{dy}{dx} + y \cdot \frac{1}{x}\right]$$

$$\Rightarrow \frac{du}{dx} = x^{y} \left(\log x \frac{dy}{dx} + \frac{y}{x}\right) \qquad \dots(2)$$

$$v = v^x$$

$$\Rightarrow \log v = \log(y^x)$$

$$\Rightarrow \log v = x \log y$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{v} \cdot \frac{dv}{dx} = \log y \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log y)$$

$$\Rightarrow \frac{dv}{dx} = v \left(\log y \cdot 1 + x \cdot \frac{1}{y} \cdot \frac{dy}{dx}\right)$$

$$\Rightarrow \frac{dv}{dx} = y^{x} \left(\log y + \frac{x}{y} \cdot \frac{dy}{dx}\right) \qquad ...(3)$$

From (1), (2), and (3), we obtain

$$x^{y} \left(\log x \frac{dy}{dx} + \frac{y}{x} \right) + y^{x} \left(\log y + \frac{x}{y} \frac{dy}{dx} \right) = 0$$

$$\Rightarrow \left(x^{y} \log x + xy^{x-1} \right) \frac{dy}{dx} = -\left(yx^{y-1} + y^{x} \log y \right)$$

$$\therefore \frac{dy}{dx} = -\frac{yx^{y-1} + y^{x} \log y}{x^{y} \log x + xy^{x-1}}$$

Answer needs Correction? Click Here

Q13: Find $\frac{dy}{dx}$ of function.

$$v^x = x^1$$

Answer:

The given function is $y^x = x^y$

Taking logarithm on both the sides, we obtain

$$x\log y = y\log x$$

Differentiating both sides with respect to x, we obtain

$$\log y \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log y) = \log x \cdot \frac{d}{dx}(y) + y \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \log y \cdot 1 + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} = \log x \cdot \frac{dy}{dx} + y \cdot \frac{1}{x}$$

$$\Rightarrow \log y + \frac{x}{y} \cdot \frac{dy}{dx} = \log x \cdot \frac{dy}{dx} + \frac{y}{x}$$

$$\Rightarrow \left(\frac{x}{y} - \log x\right) \frac{dy}{dx} = \frac{y}{x} - \log y$$

$$\Rightarrow \left(\frac{x - y \log x}{y}\right) \frac{dy}{dx} = \frac{y - x \log y}{x}$$

$$\therefore \frac{dy}{dx} = \frac{y}{x} \left(\frac{y - x \log y}{x - y \log x}\right)$$

Answer needs Correction? Click Here

Q14: Find $\frac{dy}{dx}$ of function.

$$(\cos x)^y = (\cos y)^x$$

Answer:

The given function is $(\cos x)^y = (\cos y)^x$

Taking logarithm on both the sides, we obtain

 $y \log \cos x = x \log \cos y$

Differentiating both sides, we obtain

$$\log \cos x \cdot \frac{dy}{dx} + y \cdot \frac{d}{dx} (\log \cos x) = \log \cos y \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} (\log \cos y)$$

$$\Rightarrow \log \cos x \frac{dy}{dx} + y \cdot \frac{1}{\cos x} \cdot \frac{d}{dx} (\cos x) = \log \cos y \cdot 1 + x \cdot \frac{1}{\cos y} \cdot \frac{d}{dx} (\cos y)$$

$$\Rightarrow \log \cos x \frac{dy}{dx} + \frac{y}{\cos x} \cdot (-\sin x) = \log \cos y + \frac{x}{\cos y} (-\sin y) \cdot \frac{dy}{dx}$$

$$\Rightarrow \log \cos x \frac{dy}{dx} - y \tan x = \log \cos y - x \tan y \frac{dy}{dx}$$

$$\Rightarrow (\log \cos x + x \tan y) \frac{dy}{dx} = y \tan x + \log \cos y$$

$$\therefore \frac{dy}{dx} = \frac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$$

Answer needs Correction? Click Here

Q15: Find $\frac{dy}{dx}$ of function.

$$\mathbf{r}\mathbf{v} = e^{(x-y)}$$

Answer:

The given function is $xy = e^{(x-y)}$

Taking logarithm on both the sides, we obtain

$$\log(xy) = \log(e^{x-y})$$

$$\Rightarrow \log x + \log y = (x - y) \log e$$

$$\Rightarrow \log x + \log y = (x - y) \times 1$$

$$\Rightarrow \log x + \log y = x - y$$

Differentiating both sides with respect to x, we obtain

$$\begin{aligned} &\frac{d}{dx} \left(\log x \right) + \frac{d}{dx} \left(\log y \right) = \frac{d}{dx} \left(x \right) - \frac{dy}{dx} \\ &\Rightarrow \frac{1}{x} + \frac{1}{y} \frac{dy}{dx} = 1 - \frac{dy}{dx} \\ &\Rightarrow \left(1 + \frac{1}{y} \right) \frac{dy}{dx} = 1 - \frac{1}{x} \\ &\Rightarrow \left(\frac{y+1}{y} \right) \frac{dy}{dx} = \frac{x-1}{x} \\ &\therefore \frac{dy}{dx} = \frac{y(x-1)}{x(y+1)} \end{aligned}$$

Answer needs Correction? Click Here

Q16: Find the derivative of the function given by $f(x) = (1+x)(1+x^2)(1+x^4)(1+x^8)$ and hence find f'(1).

Answer:

The given relationship is $f(x) = (1+x)(1+x^2)(1+x^4)(1+x^8)$

Taking logarithm on both the sides, we obtain

$$\log f(x) = \log(1+x) + \log(1+x^2) + \log(1+x^4) + \log(1+x^8)$$

Differentiating both sides with respect to x, we obtain

$$\begin{split} &\frac{1}{f(x)} \cdot \frac{d}{dx} \Big[f(x) \Big] = \frac{d}{dx} \log(1+x) + \frac{d}{dx} \log(1+x^2) + \frac{d}{dx} \log(1+x^4) + \frac{d}{dx} \log(1+x^8) \\ &\Rightarrow \frac{1}{f(x)} \cdot f'(x) = \frac{1}{1+x} \cdot \frac{d}{dx} (1+x) + \frac{1}{1+x^2} \cdot \frac{d}{dx} (1+x^2) + \frac{1}{1+x^4} \cdot \frac{d}{dx} (1+x^4) + \frac{1}{1+x^8} \cdot \frac{d}{dx} (1+x^8) \\ &\Rightarrow f'(x) = f(x) \Big[\frac{1}{1+x} + \frac{1}{1+x^2} \cdot 2x + \frac{1}{1+x^4} \cdot 4x^3 + \frac{1}{1+x^8} \cdot 8x^7 \Big] \\ &\therefore f'(x) = (1+x)(1+x^2)(1+x^4)(1+x^8) \Big[\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} \Big] \\ &\text{Hence, } f'(1) = (1+1)(1+1^2)(1+1^4)(1+1^8) \Big[\frac{1}{1+1} + \frac{2\times 1}{1+1^2} + \frac{4\times 1^3}{1+1^4} + \frac{8\times 1^7}{1+1^8} \Big] \\ &= 2\times 2\times 2\times 2 \Big[\frac{1}{2} + \frac{2}{2} + \frac{4}{2} + \frac{8}{2} \Big] \\ &= 16\times \Big(\frac{1+2+4+8}{2} \Big) \\ &= 16\times \frac{1}{5} = 120 \end{split}$$

Answer needs Correction? Click Here

Q17: Differentiate $(x^5 - 5x + 8)(x^3 + 7x + 9)$ in three ways mentioned below

- (i) By using product rule.
- (ii) By expanding the product to obtain a single polynomial.
- (iii By logarithmic differentiation.

Do thou all give the came anguer

Answer:

Let
$$y = (x^5 - 5x + 8)(x^3 + 7x + 9)$$

(i)

Let
$$x^2 - 5x + 8 = u$$
 and $x^3 + 7x + 9 = v$
 $\therefore y = uv$
 $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} \cdot v + u \cdot \frac{dv}{dx}$ (By using product rule)
 $\Rightarrow \frac{dy}{dx} = \frac{d}{dx} \left(x^2 - 5x + 8\right) \cdot \left(x^3 + 7x + 9\right) + \left(x^2 - 5x + 8\right) \cdot \frac{d}{dx} \left(x^3 + 7x + 9\right)$
 $\Rightarrow \frac{dy}{dx} = (2x - 5)\left(x^3 + 7x + 9\right) + \left(x^2 - 5x + 8\right)\left(3x^2 + 7\right)$
 $\Rightarrow \frac{dy}{dx} = 2x\left(x^3 + 7x + 9\right) - 5\left(x^3 + 7x + 9\right) + x^2\left(3x^2 + 7\right) - 5x\left(3x^2 + 7\right) + 8\left(3x^2 + 7\right)$
 $\Rightarrow \frac{dy}{dx} = \left(2x^4 + 14x^2 + 18x\right) - 5x^3 - 35x - 45 + \left(3x^4 + 7x^2\right) - 15x^3 - 35x + 24x^2 + 56$
 $\therefore \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11$

(ii)

$$y = (x^{2} - 5x + 8)(x^{3} + 7x + 9)$$

$$= x^{2}(x^{3} + 7x + 9) - 5x(x^{3} + 7x + 9) + 8(x^{3} + 7x + 9)$$

$$= x^{5} + 7x^{3} + 9x^{2} - 5x^{4} - 35x^{2} - 45x + 8x^{3} + 56x + 72$$

$$= x^{5} - 5x^{4} + 15x^{3} - 26x^{2} + 11x + 72$$

$$\therefore \frac{dy}{dx} = \frac{d}{dx}(x^{5} - 5x^{4} + 15x^{3} - 26x^{2} + 11x + 72)$$

$$= \frac{d}{dx}(x^{5}) - 5\frac{d}{dx}(x^{4}) + 15\frac{d}{dx}(x^{3}) - 26\frac{d}{dx}(x^{2}) + 11\frac{d}{dx}(x) + \frac{d}{dx}(72)$$

$$= 5x^{4} - 5x + 4x^{3} + 15x + 3x^{2} - 26x + 2x + 11x + 1 + 0$$

$$= 5x^{4} - 20x^{3} + 45x^{2} - 52x + 11$$

(iii)
$$y = (x^2 - 5x + 8)(x^3 + 7x + 9)$$

Taking logarithm on both the sides, we obtain

$$\log y = \log(x^2 - 5x + 8) + \log(x^3 + 7x + 9)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\log(x^2 - 5x + 8) + \frac{d}{dx}\log(x^3 + 7x + 9)$$

$$\Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{1}{x^2 - 5x + 8} \cdot \frac{d}{dx}(x^2 - 5x + 8) + \frac{1}{x^3 + 7x + 9} \cdot \frac{d}{dx}(x^3 + 7x + 9)$$

$$\Rightarrow \frac{dy}{dx} = y\left[\frac{1}{x^2 - 5x + 8} \times (2x - 5) + \frac{1}{x^3 + 7x + 9} \times (3x^2 + 7)\right]$$

$$\Rightarrow \frac{dy}{dx} = (x^2 - 5x + 8)(x^3 + 7x + 9)\left[\frac{2x - 5}{x^2 - 5x + 8} + \frac{3x^2 + 7}{x^3 + 7x + 9}\right]$$

$$\Rightarrow \frac{dy}{dx} = (x^2 - 5x + 8)(x^3 + 7x + 9)\left[\frac{(2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)}{(x^2 - 5x + 8)(x^3 + 7x + 9)}\right]$$

$$\Rightarrow \frac{dy}{dx} = 2x(x^3 + 7x + 9) - 5(x^3 + 7x + 9) + 3x^2(x^2 - 5x + 8) + 7(x^2 - 5x + 8)$$

$$\Rightarrow \frac{dy}{dx} = (2x^4 + 14x^2 + 18x) - 5x^3 - 35x - 45 + (3x^4 - 15x^3 + 24x^2) + (7x^2 - 35x + 56)$$

$$\Rightarrow \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11$$

From the above three observations, it can be concluded that all the results of $\frac{dy}{dx}$ are same.

Answer needs Correction? Click Here

Q18: If u, v and w are functions of x, then show that

$$\frac{d}{dx}(u.v.w) = \frac{du}{dx}v.w + u.\frac{dv}{dx}.w + u.v.\frac{dw}{dx}$$

in two ways-first by repeated application of product rule, second by logarithmic differentiation.

Answer:

Let
$$y = u.v.w = u.(v.w)$$

By applying product rule, we obtain

$$\frac{dy}{dx} = \frac{du}{dx} \cdot (v \cdot w) + u \cdot \frac{d}{dx} \cdot (v \cdot w)$$

$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} \cdot v \cdot w + u \left[\frac{dv}{dx} \cdot w + v \cdot \frac{dw}{dx} \right]$$
(Again applying product rule)
$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} \cdot v \cdot w + u \cdot \frac{dv}{dx} \cdot w + u \cdot v \cdot \frac{dw}{dx}$$

By taking logarithm on both sides of the equation y = u.v.w, we obtain

 $\log y = \log u + \log v + \log w$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} (\log u) + \frac{d}{dx} (\log v) + \frac{d}{dx} (\log w)$$
$$\Rightarrow \frac{1}{x} \cdot \frac{dy}{dx} = \frac{1}{x} \cdot \frac{du}{dx} + \frac{1}{x} \cdot \frac{dw}{dx} + \frac{1}{x} \cdot \frac{dw}{dx}$$

Answer needs Correction? Click Here

********* END ********