Ermittlung der Wärmekapazität von Wasser Wärmelehre

Heiko Schröter

19. Mai 2021

Wie viel Energie benötigt man, um 1 kg Wasser um 1 °C zu erwärmen?

Versuchsdurchführung:

Wir füllen in einen Wasserkocher 1 L Leitungswasser. Im Wasserkocher wird ein elektronischer Thermofühler angebracht. Nun erhitzen wir das Wasser bis zum Siedepunkt. Während dem Erhitzen zeichnen wir die Temperatur-Zeit-Kurve auf.

Versuchsbeobachtung:

Anfangstemperatur	$\vartheta_1 =$
Endtemperatur	$\vartheta_2 =$
Zeit bei 20 °C	$t_{20^{\circ}\text{C}} =$
Zeit bei 70°C	t _{70 °C} =
Masse in kg	m =
Leistung in W	P =

Temperaturkurve

Wie viel Energie benötigt man, um 1 kg Wasser um 1 °C zu erwärmen?

Ergebnis:

Um einen Liter Wasser von 20 °C auf 70 °C zu erwärmen, benötigt man mit einem 2000 W-Wasserkocher $t_{20 \, ^{\circ}\text{C}} - t_{70 \, ^{\circ}\text{C}}$ Sekunden.

Folgerung:

Satz

$$Leistung = \frac{Energie}{Zeit} \Rightarrow P \approx \frac{Q}{t}$$

Wie kann man die notwendige Energie berechnen?

$$Q = P \cdot t$$

$$= 2000 \,\mathrm{W} \cdot 119,05 \,\mathrm{s}$$

$$\approx 238,1 \,\mathrm{kJ}$$

Wie viel Energie benötigt man, um 1 kg Wasser um 1 °C zu erwärmen?

Um $1\,\mathrm{kg}$ Wasser um $50\,^{\circ}\mathrm{C}$ zu erhitzen benötigt man eine Energie von $238.1\,\mathrm{kJ}$.

Um 1 kg Wasser um 1 $^{\circ}$ C(1 K) zu erwärmen benötigt man eine Energie von 4,762 kJ.

Beachte

Der Wirkungsgrad eines Wasserkochers liegt bei ca. 88 %.

$$\Rightarrow$$
 4,762 kJ \cdot 88 % = 4,19 kJ