DER MATHEMATISCHE ZUSATZTEST

AM STUDIENKOLLEG BOCHUM Die nachfolgenden Informationen enthalten

- 1. Allgemeine Hinweise
- 2. Inhaltliche Hinweise
- 3. Beispielaufgaben
- 4. Lösungshinweise
- 5. Online-Materialien zur Vorbereitung

zum Aufnahmetest Mathematik.

1. Allgemeine Hinweise:

Die Aufnahmeprüfung zum Studienkolleg Bochum besteht aus einem sprachlichen und einem mathematischen Teil. Die Mathematikprüfung mit ca. sechs Aufgaben dauert 30 Minuten. Hilfsmittel sind bei der Bearbeitung nicht zugelassen.

2. inhaltliche Hinweise:

Die meisten Aufgaben entsprechen dem Niveau des Mathematikunterrichtes bis zur Klasse 10. Einige wenige Aufgaben gehören zum Unterrichtsstoff der Klassen 11 und 12.

Schwerpunkte:

- Rechenregeln zu Brüchen, Potenzen, Logarithmen und Termumformungen mit Variablen
- Rechnen mit einfachen Polynomen und rationalen Funktionen, Polynomdivision
- Lösen von linearen und quadratischen Gleichungen
- Lösen von einfachen linearen Gleichungssystemen
- Graphen von linearen und quadratischen Funktionen
- Berechnungen an einfachen ebenen und räumlichen geometrischen Figuren (Dreieck, Quadrat, Rechteck, Kugel, Zylinder und Kegel, sowie Zusammensetzungen dieser Figuren).
- Anwenden von Eigenschaften trigonometrischer Funktionen (sin, cos, tan, cot)
- Graphen von einfachen trigonometrischen Funktionen
- Anwendung von einfachen Differentiations- und Integrationsregeln
- Algebraische und geometrische Eigenschaften von Vektoren
- Linearkombinationen, parallele und orthogonale Vektoren, Rechengesetze für Vektoren

3. Beispielaufgaben

Die folgenden Aufgaben sind typische Beispiele für den Stoff. Damit werden inhaltliche Schwerpunkte - ohne Anspruch auf Vollständigkeit - erläutert.

Aufgabe 1

Verolnfachen Sie:
$$1 + (2 + 3(x - 4 + (5x - 6))) =$$

$$\frac{4x^3 - 19x^2 + 16x - 16}{x - 4} =$$

Aufgabe 2

$$\overline{AE} = 3 \text{cm}, \quad \overline{AB} = 8 \text{cm}, \quad F = 26 \text{ cm}^2$$

$$\overline{DC} = , \quad \overline{DE} = , \quad \overline{AD} =$$

Aufgabe 3

$$\sqrt{x-2}+2=x, x \in \mathbb{R}.$$

$$x_1 =$$
 , $x_2 =$

Aufgabe 4

$$\vec{a} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}, \qquad \vec{b} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

$$3 \cdot \vec{a} - 4 \cdot \vec{b} = \left(\right) - \left(\right) = \left(\right), \quad \vec{a} \cdot \vec{b} = \left(\right)$$

Aufgabe 5

$$\begin{array}{rcl}
x - y & = & -1 \\
-2x - y & = & -4
\end{array}$$

$$x =$$
 , $y =$

Aufgabe 6

Skizzieren Sie die Graphen von $y = x^2 + 1$ und y = 3 - x in das Koordinatensystem:

An welchen Punkten schneiden sich die Graphen?

$$x_1 = , y_1 =$$
und $x_2 = , y_2 =$

Aufgabe 7

Die Höhe des Kegels beträgt $h=10\ cm$.

Der Durchmesser der Grundfläche beträgt r = 3 cm.

Der Kegelstumpf hat die halbe Höhe. Berechnen Sie das Volumen des Kegelstumpfs:

$$V = cm^3$$

Aufgabe 8

$$\cos\left(\frac{\pi}{4}\right) =$$
 , $\tan(x) = 1 \implies x =$

Aufgabe 9

$$f'(x) = \frac{df(x)}{dx} = \cdots$$

$$f(x) = \sin(x^2), \quad g(x) = x^2 + 2x + 1, \quad h(x) = \frac{1}{2 - 3x}$$

$$f'(x) = , \quad g'(x) = , \quad h'(x) =$$

Aufgabe 10

$$\int x^2 dx = , \quad \int_0^1 x^2 (1-x) dx = , \quad \int_{-\pi}^{3\pi} \sin(x) dx =$$

4. Lösungshinweise zu den Beispielaufgaben

Zu Aufgabe 1:

$$1 + (2 + 3(x - 4 + (5x - 6))) = 1 + (2 + 3(6x - 10)) = 1 + (2 + 18x - 30) = 18x - 27.$$

$$(4x^3 - 19x^2 + 16x - 16): (x - 4) = 4x^2 - 3x + 4$$

Zu Aufgabe 2:

$$\overline{DC} = \overline{AB} - \overline{AE} = 5 \text{ cm}, \ 26 = \frac{3}{2} \overline{DE} + 5\overline{DE} = 6.5 \overline{DE} \implies \overline{DE} = 4, \ \overline{AD} = \sqrt{\overline{AE}^2 + \overline{DE}^2}$$
$$= \sqrt{3^2 + 4^2} = 5$$

Zu Aufgabe 3:

$$\sqrt{x-2} = x-2 \iff x-2 = x^2-4x+4 \iff x^2-5x+6 = (x-2)(x-3) = 0 \iff x_1 = 2,$$
 $x_2 = 3.$

Alternative Berechnung mit der (p,q)-Formel:

$$x^{2} - 5x + 6 = 0 \iff x_{1,2} = \frac{5}{2} \pm \sqrt{\frac{25}{4} - 6} = \frac{5}{2} \pm \sqrt{\frac{25}{4} - \frac{24}{4}} = \frac{5 \pm 1}{2} \iff x_{1} = 2, \qquad x_{2} = 3.$$

Zu Aufgabe 4:

$$3 \cdot \vec{a} - 4 \cdot \vec{b} = \begin{pmatrix} 6 \\ -9 \\ 15 \end{pmatrix} - \begin{pmatrix} 4 \\ 8 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -17 \\ 19 \end{pmatrix}, \ \vec{a} \cdot \vec{b} = 2 \cdot 1 - 3 \cdot 2 + 5 \cdot (-1) = 2 - 6 - 5 = -9.$$

Zu Aufgabe 5:

$$\begin{array}{rcl}
x - y & = & -1 \\
-2x - y & = & -4
\end{array} \iff \begin{array}{rcl}
x + 1 & = & y \\
4 - 2x & = & y
\end{array} \iff x + 1 = 4 - 2x \iff 3x = 3 \iff x = 1$$

$$\implies y = 2.$$

Zu Aufgabe 6:

$$x_1 = -2, \qquad y_1 = 5$$

$$x_2 = 1$$
, $y_2 = 2$

Zu Aufgabe 7:

$$V = V_1 - V_2 = \frac{1}{3}\pi \cdot 3^2 \cdot 10 - \frac{1}{3}\pi \cdot \left(\frac{3}{2}\right)^2 \cdot 5 = \frac{1}{3}\pi \cdot \left(90 - \frac{45}{4}\right) = \frac{105}{4}\pi = 26.25\pi.$$

Zu Aufgabe 8:

$$\cos\left(\frac{\pi}{4}\right) = \frac{1}{2}\sqrt{2}, \qquad \tan(x) = 1 \iff x = \frac{\pi}{4} + k \cdot \pi, \qquad k \in \mathbb{Z}.$$

Zu Aufgabe 9:

$$f'(x) = 2x \cdot cos(x^2), \quad g'(x) = 2x + 2, \quad h'(x) = \frac{3}{(2 - 3x)^2}.$$

Zu Aufgabe 10:

$$\int x^2 dx = \frac{1}{3}x^3 + c, \quad \int_0^1 x^2 (1 - x) dx = \int_0^1 x^2 - x^3 dx = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}, \quad \int_{-\pi}^{3\pi} \sin(x) dx = 0.$$

5. Online - Materialien zur Vorbereitung

• www.mathe-online.at

Multimediale Lernhilfen für Schule, Fachhochschule, Universität und Selbststudium. Beinhaltet auch mathematische Lehrtexte, Aufgaben zum Selbstlernen und ein Lexikon.

• <u>www.mathe1.de</u>

Das kostenlose online Mathematikbuch.

• www.arndt-bruenner.de/mathe/mathekurse.htm

Mathematiksammlung mit vielen Java-Applets zum Lernen und Selbstlernen

• www.kubach-mathe.de

Serviceseite mit Aufgaben, Übungen, Klausur- und Prüfungsbeispielen in Mathematik am Studienkolleg Bochum (vom Vorkurs bis zum zweiten Semester)