

In deep learning applications, inference accounts for up to 90% of compute cost.

AWS (Source)

ONNX (Open Neural Network Exchange)

An open format to represent both deep learning and traditional models

- Developed and maintained by community of partners (Microsoft, Facebook & AWS)
- Designed to offer interoperability across different frameworks.
- ONNXRuntime Runtime library to maximize performance on Intel hardware for ONNX inference.

Intel® Deep Learning Boost - VNNI

Intel® Neural Compressor - Architecture

Intel® Neural Compressor - Architecture

Demo Overview

Part 1 – Finetune full & pruned models and run benchmarks.

Demo Overview

Model details:

- MiniLM distilled approach created by Microsoft Research.
- The 12 Layer version from the paper shared in microsoft/MiniLM-L12-H384-uncased.
- This is a 6-layer version of that model, by keeping only every second layer.

MINILM: Deep Self-Attention Distillation for

Demo Overview

Part 2 – Covert pruned models to INT8 and run benchmarks.

Intel® Neural Compressor – Quantization Workflow

Intel® Neural Compressor - Configurations

Model Configurations

- "model" and "device" sections are mandatory
- "name" and "framework" fields are mandatory
- Possible values for framework are "tensorflow", "mxnet", "pytorch", "pytorch_ipex", "onnxrt_integerops" and "onnxrt_qlinearops"

Intel® Neural Compressor - Configurations

Quantization Configurations

 "approach" – to specify quantization method to be used post training (static/dynamic) quantization, or quantization aware training.

```
model:
  name: bert
  framework: pytorch
device: cpu
quantization:
  approach: post training dynamic quant
tuning:
  accuracy criterion:
    relative: 0.01
  exit policy:
    timeout: 0
    max trials: 1200
  random seed: 9527
```

Intel® Neural Compressor - Configurations

Tuning Configurations

- "accuracy_criterion" could have "relative" or "obsolete" as fields.
- Example shown here allows relative accuracy loss of 1%
- "exit_policy" decides when to exit tuning.
 Here "timeout" (specified in seconds) is set at 0 which means early stop.
- "max_trials" indicates the maximum number of iterations to be tried.
- "random_seed" for deterministic tuning.

Further reading

- https://github.com/intel/neural-compressor/blob/master/docs/dynamic_quantization.md
- https://community.intel.com/t5/Blogs/Tech-Innovation/Artificial-Intelligence-AI/Quantizing-ONNX-Models-using-Intel-Neural-Compressor/post/1355237
- https://pytorch.org/docs/stable/quantization.html
- https://github.com/intel/neural-compressor/blob/master/docs/tuning_strategies.md

Thank you