ST5215 Advanced Statistical Theory, Lecture 22

HUANG Dongming

National University of Singapore

3 Nov 2020

Overview

Last time

- Roots of the Likelihood Equation (RLE)
- Asymptotic Normality of RLEs and MLEs

Today

- Asymptotic Efficiency
- Linear Models

Recap: Asymptotics of RLEs

- Under some basic regularity conditions, there exists a sequence of roots of the likelihood equation (RLEs) $\hat{\theta}_n$ that is stronger consistent and $\sqrt{n}\left(\tilde{\theta}_n-\theta_*\right)\stackrel{\mathcal{D}}{\to} \textit{N}(\mathbf{0},[\textit{I}(\theta_*)]^{-1})$
- For the consistency, we use USLLN to get uniform control of $\frac{1}{n}\log\frac{L_n(\theta)}{L_n(\theta_*)}$ over $\{\theta: \|\theta-\theta_*\|=\rho\}$
- For the asymptotic normality,
 - we use the mean-value theorem (or Taylor expansion) to make a connection between $\left(\tilde{\theta}_n-\theta_*\right)$ and the score function

$$s_n(\theta) = \frac{\partial}{\partial \theta} \log L_n(\theta)$$

3 Nov 2020

3/27

- ▶ By CLT, $n^{-1/2}s_n(\theta_*)$ is asymptotically normal
- ▶ Then we use USLLN to control $||n^{-1}\nabla s_n(\theta) I(\theta_*)||$ over any small closed ball around θ_*

Asymptotic Efficiency (1)

- Let $\{\hat{\theta}_n\}$ be a sequence of estimators of θ based on a sequence of samples $\{X=(X_1,...,X_n):n=1,2,...\}$ and the distributions of the samples are in a parametric family indexed by $\theta\in\Theta\subset\mathcal{R}^k$
- Suppose that

$$[V_n(\theta)]^{-1/2}(\hat{\theta}_n - \theta) \stackrel{D}{\to} N_k(0, I_k), \tag{1}$$

4/27

where $V_n(\theta)$ is a $k \times k$ positive definite matrix depending on θ , and is called the asymptotic covariance matrix (or asymptotic variance if k = 1)

- Since the asymptotic covariance matrices are unique only in the limiting sense, we have to make our comparison based on their limits.
- When X_i 's are i.i.d., $V_n(\theta)$ is usually of the form $n^{-\delta}V(\theta)$ for some $\delta > 0$ (and = 1 in the majority of cases) and a positive definite matrix $V(\theta)$ that does not depend on n

Asymptotic Efficiency (2)

- Suppose two estimators $\hat{\theta}_{1n}$ and $\hat{\theta}_{2n}$ satisfy Equation (1) with $V_{1n}(\theta)$ and $V_{1n}(\theta)$. If $V_{1n}(\theta) \leq V_{2n}(\theta)$ for all $\theta \in \Theta$ and all large n and $V_{1n}(\theta) \prec V_{2n}(\theta)$ for at least one $\theta \in \Theta$, then $\hat{\theta}_{1n}$ is said to be asymptotically more efficient than $\hat{\theta}_{2n}$
 - ▶ For two $k \times k$ matrices, $A \leq B$ means B A is positive semi-definite; $A \prec B$ means B A is positive definite
- The Cramèr-Rao lower bound says that, if $\hat{\theta}_n$ is unbiased, then under some regularity conditions,

$$Var(\hat{\theta}_n) \succeq [I_n(\theta)]^{-1},$$

where $I_n(\theta)$ is the Fisher information matrix with n samples.

• If $\hat{\theta}_n$ satisfies Equation (1), it is asymptotically unbiased, but the following may not hold even if the regularity conditions in the Cramèr-Rao lower bound are satisfied:

$$V_n(\theta) \succeq [I_n(\theta)]^{-1} \tag{2}$$

Example: Hodges' estimator

Let $X_1,...,X_n$ be i.i.d. from $N(\theta,1)$, $\theta \in \mathcal{R}$. Then $I_n(\theta)=n$, and the CR-lower bound for estimating θ is 1/n

ullet For any constant 0 < t < 1, define

$$\hat{\theta}_n = \begin{cases} \bar{X}_n & |\bar{X}_n| \ge n^{-1/4} \\ t\bar{X}_n & |\bar{X}_n| < n^{-1/4}, \end{cases}$$
 (3)

- By Proposition 3.2, the conditions about exchanging the differentiation and the integration in C-R lower bound are satisfied
- If $\theta \neq 0$, we have

$$\sqrt{n}(\hat{\theta}_n - \theta) = \sqrt{n}(\bar{X}_n - \theta) - (1 - t)\sqrt{n}\bar{X}_n I_{|\bar{X}_n| < n^{-1/4}} \stackrel{\mathcal{D}}{\to} N(0, 1),$$
 because the second term $\stackrel{\mathcal{P}}{\to} 0$ and by using Slutsky's theorem

- If $\theta = 0$, then $\sqrt{n}(\hat{\theta}_n \theta) = t\sqrt{n}\bar{X}_n \stackrel{\mathcal{D}}{\to} N(0, t^2)$
- So

$$V_n(\theta) = \begin{cases} 1/n & \text{if } \theta \neq 0 \\ t^2/n, & \text{if } \theta = 0 \end{cases}$$

Remark

At first sight, $\hat{\theta}_n$ is an improvement on \bar{X}_n :

• For every $\theta \neq 0$, the estimators behave the same, while for $\theta = 0$, the sequence $\hat{\theta}_n$ has an smaller amse

However, this reasoning is a bad use of asymptotics

- The risk of \bar{X}_n is 1/n, which is a constant in θ
- The risk function of $\hat{\theta}_n$ is $R_n(\theta) = E_{\theta}(\hat{\theta}_n \theta)^2$

$R_n(\theta)/R_n(0)$

- The peak of $R_n(\theta)$ over θ is much higher than $R_n(0)$; as n increases, the ratio goes to ∞
- Compared to the UMVUE (\bar{X}_n) , $\hat{\theta}_n$ buys its better asymptotic behavior at 0 at the expense of worse performance for other θ 's with any n
- Because the values of θ at which $\hat{\theta}_n$ is bad differ from n to n, the erratic behavior is not visible in the point-wise limit distributions under fixed θ

- Points at which the information inequality (2) fails are called points of superefficiency
- The following result says that the set of points of superefficiency is often of Lebesgue measure 0 under some regularity conditions

Theorem (Theorem 4.16 in JS)

Under the same conditions in the theorem "Asymptotic Normality of RLEs" in Lecture 21, if $\hat{\theta}_n$ is an estimator of θ satisfies Equation (1), then there is a $\Theta_0 \subset \Theta$ with Lebesgue measure 0 such that the information inequality (2) holds for any $\theta \not\in \Theta_0$.

Asymptotic efficiency (3)

Definition

Assume that the Fisher information matrix $I_n(\theta)$ is well defined and positive definite for every n. A sequence of estimators $\{\hat{\theta}_n\}$ that satisfies Equation (1) is said to be asymptotically efficient or asymptotically optimal if and only if $V_n(\theta) = [I_n(\theta)]^{-1}$

- Suppose that we are interested in estimating $\vartheta = g(\theta)$, where g is a differentiable function from Θ to \mathbb{R}^p , $1 \le p \le k$
- If $\hat{\theta}_n$ satisfies Equation (1), then for $\hat{\vartheta}_n = g(\hat{\theta}_n)$, $([\nabla g(\theta)]^\top V_n(\theta) \nabla g(\theta))^{-1/2} (\hat{\vartheta}_n \vartheta) \stackrel{\mathcal{D}}{\longrightarrow} N(0, I_p)$
- If p=k and g is one-to-one, we can check that the information inequality for ϑ is equivalent to the one for θ
- For this reason, for general g, $\hat{\vartheta}_n$ is defined to be asymptotically efficient if and only if $\hat{\theta}_n$ is asymptotically efficient

3 Nov 2020

10 / 27

Asymptotically efficient estimators

• In lecture 21, we have show that under some regularity conditions, any consistent sequence of RLEs satisfies

$$\sqrt{n}\left(\tilde{\theta}_n - \theta\right) \stackrel{\mathcal{D}}{\rightarrow} N(\mathbf{0}, [I(\theta)]^{-1}),$$

which implies that this sequence of RLEs is asymptotically efficient

• The following *one-step MLE* is often also asymptotically efficient

We begin with any estimator $\hat{ heta}_n^{(0)}$, and define an estimator

$$\hat{\theta}_n^{(1)} = \hat{\theta}_n^{(0)} - \left[\nabla s_n \left(\hat{\theta}_n^{(0)}\right)\right]^{-1} s_n \left(\hat{\theta}_n^{(0)}\right),$$

where $s_n = \frac{\partial}{\partial \theta} \log L_n(\theta)$ is the score function.

- This is the first iteration in computing an MLE (or RLE) using the Newton–Raphson iteration method with $\hat{\theta}_n^{(0)}$ as the initial value.
- Under the same regularity conditions as before, and if $\hat{\theta}_n^{(0)}$ is \sqrt{n} -consistent, then $\hat{\theta}_n^{(1)}$ is asymptotically efficient (left for exercise; use the same techniques in Lecture 21 or check Theorem 4.19 (i) in JS)

Linear models

A linear model is given below:

$$X_i = Z_i^{\top} \boldsymbol{\beta} + \epsilon_i, \qquad i = 1, ..., n, \tag{4}$$

- X_i is the value of a response variable observed on the *i*th individual;
- Z_i is the value of a p-vector of explanatory variables (non-random covariates) observed on the *i*th individual;
- β is a p-vector of unknown parameters (main parameters of interest), p < n;
- ϵ_i is a random error (not observed) associated with the *i*th individual. Suppose that the range of β in model (5) is $B \subset \mathbb{R}^p$.

H.D. (NUS)

Matrix Forms

Let

- $X = (X_1, ..., X_n)^{\top}$: the vector of responses
- \bullet $\epsilon = (\epsilon_1, ..., \epsilon_n)^{\top}$: the vector of noise
- Z be the $n \times p$ matrix whose ith row is the vector Z_i^{\top} , i = 1, ..., n: the design matrix, or the matrix of covariates

A matrix form of the model is

$$X = Z\beta + \epsilon. (5)$$

LSE

• A least squares estimator (LSE) of $oldsymbol{eta}$ is defined to be any $\hat{oldsymbol{eta}} \in B$ such that

$$||X - Z\hat{\boldsymbol{\beta}}||^2 = \min_{\mathbf{b} \in \mathcal{B}} ||X - Z\mathbf{b}||^2.$$
 (6)

- For any $a \in \mathcal{R}^p$, $a^{\top} \hat{\beta}$ is called an *LSE* of $a^{\top} \beta$.
- From now on, assume $B = \mathcal{R}^p$ unless otherwise stated.
- Differentiating $||X Z\mathbf{b}||^2$ w.r.t. **b**, we obtain the normal equation

$$Z^{\top}Z\mathbf{b} = Z^{\top}X. \tag{7}$$

- ▶ $g(\mathbf{b}) = \|X Z\mathbf{b}\|^2 = (X Z\mathbf{b})^{\top}(X Z\mathbf{b})$ is a quadratic form ▶ $\frac{\partial}{\partial \mathbf{b}}(\mathbf{b}^{\top}A\mathbf{b}) = 2A\mathbf{b}$ and $\frac{\partial}{\partial \mathbf{b}}(\mathbf{b}^{\top}A\mathbf{c}) = A\mathbf{c}$
- Any solution of the normal equation is an LSE of β .

Expression for a LSE

The case of full rank Z: If the rank of the matrix Z is p, in which case $(Z^{\top}Z)^{-1}$ exists and Z is said to be of full rank, then there is a unique LSE, which is

$$\hat{\beta} = (Z^{\top}Z)^{-1}Z^{\top}X. \tag{8}$$

The case of non full rank Z: If Z is not of full rank, then β is not identifiable because there exist $\tilde{\beta} \neq \beta$ but $Z\beta = Z\tilde{\beta}$

- In terms of estimation, there are infinitely many LSE's of β .
- Any LSE of β is of the form

$$\hat{\beta} = (Z^{\top}Z)^{-}Z^{\top}X, \tag{9}$$

where $(Z^{T}Z)^{-}$ is called a *generalized inverse* of $Z^{T}Z$ and satisfies

$$Z^{\top}Z(Z^{\top}Z)^{-}Z^{\top}Z = Z^{\top}Z. \tag{10}$$

Some properties of generalized inverse

- If Z is of full rank, $(Z^TZ)^-$ is unique and equal to $(Z^TZ)^{-1}$
- If Z is not of full rank, generalized inverse matrices are not unique
- If the singular value decomposition of Z is UDV^{\top} , where U is an $n \times n$ orthogonal matrix, V is an $p \times p$ orthogonal matrix, and D is of the form $\begin{pmatrix} D_* & 0 \\ 0 & 0 \end{pmatrix}$, where $D_* = \operatorname{diag}\left\{\lambda_1, \ldots, \lambda_r\right\}$ with λ_i 's positive.

Then $(Z^{\top}Z)^{-}$ can be constructed by

$$V\left(\begin{array}{cc}D_*^{-2} & A\\A^\top & \tilde{D}\end{array}\right)V^\top,$$

where \tilde{D} is any $(p-r) \times (p-r)$ matrix and A is any $r \times (p-r)$ matrix

- $Z(Z^{\top}Z)^{-}Z^{\top}$ is a projection matrix in to the column space of Z
 - $|Z(Z^{\top}Z)^{-}Z^{\top}|^2 = Z(Z^{\top}Z)^{-}Z^{\top}$
 - $Z(Z^{\top}Z)^{-}Z^{\top}Z = Z$
 - ▶ The rank of $Z(Z^{\top}Z)^{-}Z^{\top}$ is $tr(Z(Z^{\top}Z)^{-}Z^{\top}) = r$

Simple linear regression

- Suppose p = 2. Let $\beta = (\beta_0, \beta_1) \in \mathbb{R}^2$ and $Z_i = (1, t_i), t_i \in \mathbb{R}, i = 1, \dots, n$.
- Then model (5) is called a simple linear regression model.
- It turns out that

$$Z^{\top}Z = \begin{pmatrix} n & \sum_{i=1}^{n} t_i \\ \sum_{i=1}^{n} t_i & \sum_{i=1}^{n} t_i^2 \end{pmatrix},$$

which is invertible if and only if some t_i 's are different.

- If some t_i 's are different, then the LSE $\hat{\beta}$ of β is given by $(Z^\top Z)^{-1} Z^\top X$
- If we assume ϵ_i 's are i.i.d. normal, then $\hat{\beta}$ has the normal distribution. Furthermore, we can check that this LSE is also the MLE for β

The result can be easily extended to the case of polynomial regression of order p in which $\beta=(\beta_0,\beta_1,\ldots,\beta_{p-1})$ and $Z_i=\left(1,t_i,\ldots,t_i^{p-1}\right)$

17 / 27

Tutorial

- Exercise 1.6.146 in JS
- 2 Exercise 1.6.155 in JS
- **(3)** [Neyman and Scott (1948)] Suppose we have a sample of size d from each of n normal populations with common unknown variance but possibly different unknown means

$$X_{ij} \in \mathcal{N}\left(\mu_i, \sigma^2\right), \quad I = 1, \dots, n, \quad j = 1, \dots, d$$

where all the X_{ij} are independent.

- (a) Find the maximum-likelihood estimate of σ^2 .
- (b) Show that for d fixed, the MLE of σ^2 is not consistent as $n \to \infty$. Why doesn't Theorem of Consistency of MLE apply?
- (c) Find a consistent estimate of σ^2 .
- **1** Let $X = (X_1, \ldots, X_n)$ be a random sample of random variables with probability density f_θ . Find an MLE of θ and its asymptotic distribution in each of the following cases

(i)
$$f_{\theta}(x) = e^{-(x-\theta)}I_{(\theta,\infty)}(x), \theta > 0$$

(ii)
$$f_{\theta}(x) = \theta(1-x)^{\theta-1}I_{(0,1)}(x), \theta > 1$$

Exercise 1.6.146 in JS

Let $U_1,\,U_2,\ldots$ be i.i.d. random variables having the uniform distribution on [0,1] and $Y_n=\left(\prod_{i=1}^n U_i\right)^{-1/n}$. Show that $\sqrt{n}\left(Y_n-e\right)\to_d N\left(0,e^2\right)$

Proof:

- Let $X_i = -\log U_i$. Then $X_1, X_2, ...$ are independent and identically distributed random variables with $EX_1 = 1$ and $Var(X_1) = 1$.
- By the CLT, $\sqrt{n}\left(\bar{X}_n-1\right) o_d N(0,1),$
- Note that $Y_n = e^{\bar{X}_n}$. Applying the δ -method with $g(t) = e^t$ to \bar{X}_n , we obtain that $\sqrt{n}(Y_n e) \stackrel{\mathcal{D}}{\to} N(0, e^2)$, since g(1) = e and g'(1) = e

Exercise 1.6.155 in JS

Let $\{X_n\}$ be a sequence of random variables and let $\bar{X} = \sum_{i=1}^n X_i/n$ (a) Show that if $X_n \to_{a.s.} 0$, then $\bar{X} \to_{a.s.} 0$

Proof:Part (a)

- Fixed any ω for which $X_n(\omega) \to 0$. Let $x_n = X_n(\omega)$.
- ullet Generally, if $x_n o 0$, then $rac{|\sum_{i=1}^n x_i|}{n} o 0$
- For any $\epsilon > 0$, there exists a N_1 s.t. for any $n \geq N_1$, $|x_n| < \epsilon$.
- ullet Let N_2 to be larger than $\mathit{N}_1 \max_{1 \leq i \leq \mathit{N}_1} |x_i|/\epsilon$.
- For any $n > \max(N_1, N_2)$,

$$\frac{|\sum_{i\leq n}x_i|}{n}\leq n^{-1}\sum_{N_1\leq i\leq n}|x_i|+n^{-1}\sum_{i< N_1}|x_i|\leq \epsilon+\epsilon,$$

which implies that $\frac{|\sum_{i \leq n} x_i|}{n} \to 0$

Part (b)

Show that if $X_n \to_{L_r} 0$, then $\bar{X} \to_{L_r} 0$, where $r \ge 1$ is a constant.

- When $r \ge 1$, $|x|^r$ is a convex function.
- By Jensen's inequality, $E |\bar{X}_n|^r \le n^{-1} \sum_{i=1}^n E |X_i|^r$.
- Since $\lim_n E |X_n|^r = 0$, by the result in part (a), $\lim_n n^{-1} \sum_{i=1}^n E |X_i|^r = 0$
- Hence, $\lim_n E \left| \bar{X}_n \right|^r = 0$.

Part (c)

Show that the result in (b) may not be true for $r \in (0,1)$

- Let $U \sim \mathsf{Unif}(0,1)$.
- Let $A_n = \{U \in (1/(n+1), 1/n)\}$ and $X_n = n(n+1)^{1/r}I_{A_n}$ for each n = 1, 2, ...
- Then $P(X_n \neq 0) = 1/(n(n+1))$ and $E|X_n|^r = n^{r-1} \to 0$ since r < 1
- Note that A_n 's are disjoint, so

$$E|\sum_{i\leq n}X_i|^r = \sum_{i\leq n}EI_{A_i}|X_i|^r = \sum_{i\leq n}n^{r-1} \geq \int_1^{n+1}x^{r-1}\,\mathrm{d}x = [(n+1)^r-1]$$

This implies that

$$E|\bar{X}_n|^r = n^{-r}E|\sum_{i \le n} X_i|^r \ge \left[(1+1/n)^r - n^{-r} \right]/r \to 1/r$$

Part (d)

- (d) Show that $X_n \to_p 0$ may not imply $\bar{X} \to_p 0$
 - Construct independent X_n 's such that $P(X_n = n) = 1 - P(X_n = 0) = 1/n.$
 - $P(|X_n| > 0) = 1/n \to 0$
 - Note that $EX_n = 1$ and $Var(X_n) = n 1$
 - For any small t such that $1-t>1/\sqrt{2}$, Chebyshev's inequality implies that

$$\begin{split} P(\sum_{i \le n} X_i < tn) &= P\left(n - \sum_{i \le n} X_i > (1 - t)n\right) \\ &\leq \operatorname{Var}\left(\sum_{i \le n} X_i\right) / \left((1 - t)^2 n^2\right) \\ &= \frac{n(n - 1)/2}{(1 - t)^2 n^2} < \left[2(1 - t)^2\right]^{-1} < 1 \end{split}$$

• So $P(\bar{X}_n \ge t) > 1 - \left\lceil 2(1-t)^2 \right\rceil^{-1} > 0$ for all n

3 Nov 2020

23 / 27

Exercise 3

Suppose we have a sample of size d from each of n normal populations with common unknown variance but possibly different unknown means

$$X_{ij} \in \mathcal{N}\left(\mu_i, \sigma^2\right), \quad I = 1, \dots, n, \quad j = 1, \dots, d$$

where all the X_{ij} are independent.

(a) Find the maximum-likelihood estimate of σ^2 .

Proof:

• The maximization over μ_i can be done as usual, and $\hat{\mu}_i = \bar{X}_i = d^{-1} \sum_{i < d} X_{ii}$

• The derivate of $\log L_n$ w.r.t. σ is

$$\frac{\partial}{\partial \sigma} \log L = -\frac{nd}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n \sum_{j=1}^d (X_{ij} - \mu_i)^2 = 0,$$

whose solution is

$$\widehat{\sigma^2} = \frac{1}{nd} \sum_{i=1}^n \sum_{j=1}^d (X_{ij} - \widehat{\mu}_i)^2 = \frac{1}{n} \sum_{i=1}^n s_i^2$$

• Here s_i^2 is the empirical variance for the *i*th population and $= (1/d) \sum_{i=1}^{d} (X_{ii} - \bar{X}_i)^2$

Part (b) and (c)

Show that for d fixed, the MLE of σ^2 is not consistent as $n \to \infty$. Why doesn't the Theorem of Consistency of MLE apply? Find a consistent estimate of σ^2 .

- The s_i^2 are i.i.d. with mean $Es_i^2 = ((d-1)/d)\sigma^2$.
- By SLLN, $\hat{\sigma}^2 \overset{a.s.}{\to} \frac{d-1}{d} \sigma^2$ almost surely. So $\hat{\sigma}^2$ is not consistent.
- Here the number of parameters grows to infinity as $n \to \infty$, so the structure of the problem differs from that of Theorem of Consistency of MLE.
- A consistent estimator is given by $\frac{d}{d-1}\hat{\sigma}^2$

Exercise 4

Let $X = (X_1, ..., X_n)$ be a random sample of random variables with probability density f_θ . Find an MLE of θ and its asymptotic distribution in each of the following cases

- (i) $f_{\theta}(x) = e^{-(x-\theta)}I_{(\theta,\infty)}(x), \theta > 0$
- (ii) $f_{\theta}(x) = \theta(1-x)^{\theta-1}I_{(0,1)}(x), \theta > 1$

Proof: Part (i)

- Let $X_{(1),n}$ be the smallest order statistic for data of size n.
- The likelihood function is $\ell(\theta) = \exp\left\{-\sum_{i=1}^{n} (X_i \theta)\right\} I_{(0,X_{(1),n})}(\theta)$, which is 0 when $\theta > X_{(1),n}$ and increasing on $(0,X_{(1),n})$.
- Hence, the MLE of θ is $X_{(1),n}$
- For any δ , $P(X_{(1),n} > \theta + \delta) = \prod_{i \le n} P(X_i \theta > \delta) = \left(\int_{\delta}^{\infty} e^{-x} dx \right)^n = e^{-n\delta}$
- By the second Borel-Cantelli lemma, we can show that $P(X_{(1),n} > \theta + \delta, i.o.) = 0$ so $X_{(1),n} \stackrel{a.s.}{\to} \theta$
- So for any t > 0, $P(n[X_{(1),n} \theta] \le t) = 1 e^{-t}$, or

$$n\left[X_{(1),n}-\theta\right] \stackrel{\mathcal{D}}{\to} \mathsf{E}(0,1)$$

Exercise 4 Part (ii)

$$f_{\theta}(x) = \theta(1-x)^{\theta-1}I_{(0,1)}(x), \theta > 1$$

• Note that $\ell(\theta) = \theta^n \prod_{i=1}^n (1-X_i)^{\theta-1} I_{(0,1)}(X_i)$ and, when $\theta > 1$

$$\frac{\partial \log \ell(\theta)}{\partial \theta} = \frac{n}{\theta} + \sum_{i=1}^{n} \log (1 - X_i) \quad \text{and} \quad \frac{\partial^2 \log \ell(\theta)}{\partial \theta^2} = -\frac{n}{\theta^2} < 0$$

- The equation $\frac{\partial \log \ell(\theta)}{\partial \theta} = 0$ has a unique solution $\hat{\theta} = -n/\sum_{i=1}^{n} \log(1-X_i)$
- If $\hat{\theta} > 1$, then it maximizes $\ell(\theta)$ and is the MLE
- If $\hat{\theta} \leq 1$, then $\ell(\theta)$ is decreasing on the interval $(1,\infty)$ and the MLE does not exist (or is 1 according to the general definition)
- Let $Y_i = -\log(1 X_i)$. Then p.d.f. of Y_i is $\theta \exp(-\theta y)I_{y>0}$
- By CLT, $\sqrt{n}\left(\bar{Y}_n-1/\theta\right)\stackrel{\mathcal{D}}{\to} \textit{N}(0,1/\theta^2)$
- By δ -method with g(t)=1/t and $g'(t)=-1/t^2$, $\sqrt{n}\left(\hat{\theta}-\theta\right)\overset{\mathcal{D}}{\to} \textit{N}(0,\theta^2)$