ЛАБОРАТОРНАЯ РАБОТА № 4.7.2

Эффект Поккельса

выполнила студентка группы Б03-303 Мария Шишкарёва

Долгопрудный, 2025 г.

Цель: исследовать интерференцию рассеянного света, прошедшего кристалл; наблюдать изменение характера поляризации света при наложении на кристалл электрического поля.

Оборудование: гелий-неоновый лазер, поляризатор, кристалл ниобата лития, матовая пластинка, экран, источник высоковольтного переменного и постоянного напряжения, фотодиод, осциллограф, линейка.

1 Теоретические сведения

Эффект Поккельса — изменение показателя преломления света в кристалле под действием электрического поля.

Рассмотрим кристалл ниобата лития LiNbO₃ с цетральноосевой симметрией вдоль оси Z. Для световой волны с \mathbf{E} перпендикулярно Z показатель преломления будет n_o , а для волны с \mathbf{E} вдоль $Z-n_e$. В случае, когда луч света идёт под углом θ к оси, есть два значение показателя преломления n_1 и n_2 : $n_1=n_o$ для волны с \mathbf{E} перпендикулярным плоскости (\mathbf{k} , \mathbf{Z}) (обыкновенная волна) и n_2 для волны с \mathbf{E} в этой плоскости (необыкновенная волна). В последнем случае

$$\frac{1}{n_2^2} = \frac{\cos^2 \theta}{n_0^2} + \frac{\sin^2 \theta}{n_e^2}.\tag{1}$$

Рис. 1: Оптическая часть экспериментальной установки

Если перед кристаллом, помещённым между поляроидами, расположить линзу или матовую пластинку, то на экране за поляроидом мы увидим тёмные концентрические окружности — результат интерференции обыкновенной и необыкновенной волн. При повороте выходного поляроида на 90° картина меняется с позитива на негатив (на месте светлых пятен появляются тёмные и наоборот). В случае, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения, радиус тёмного кольца с номером

$$r_m^2 = \frac{\lambda}{l} \frac{(n_o L)^2}{n_0 - n_e} m,\tag{2}$$

Рис. 2: Экспериментальная установка

где L – расстояние от центра кристалла до экрана, l – длина кристалла.

Теперь поместим кристалл в постоянное электрическое поле $E_{\text{эл}}$, направленное вдоль оси X, перпендикулярной Z. Показатель преломления для луча, распространяющего вдоль Z, всегда n_o . В плоскости (X,Y) возникают два главных направления под углами 45° к X и Y с показателями преломления $n_0 - \Delta n$ и $n_o + \Delta n$ (быстрая и медленная ось), причём $\Delta n = AE_{\text{эл}}$. Для поляризованного вертикально света и анализатора, пропускающего горизонтальную поляризацию, на выходе интенсивность на выходе будет иметь вид

$$I_{\text{BMX}} = I_0 \sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}} \right), \tag{3}$$

где $U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{l}$ — полуволновое напряжение, d — поперечный размер кристалла. При напряжении $U = E_{\text{эл}} d$ равном полуволновому сдвиг фаз между двумя волнами равен π , а интенсивность света на выходе максимальна.

На Рис. 2 представлена схема всей установки (оптическая часть изорбажена на Рис. 1). Свет лазера, проходя через сквозь пластину, рассеивается и падает на двоякопреломляющий кристалл. На экране за поляроидом видна интерференционная картина. Убрав рассеивающую пластину и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию с помощью осциллографа.

2 Ход работы и обработка данных

Собираем схему 1, проводим юстировку, получаем интерференционную картину. Убедились, что при провороте анализатора на 90° картина изменилась на негативную (тёмные кольца стали светлыми, светлые - тёмными)

параметры установки:

1.
$$\lambda = 632.8 \; \text{HM}$$

$$2. l = (3.0 \pm 0.5) cm$$

3.
$$L = (75 \pm 1) \text{ cm}$$

$$4. n0 = 2.29$$

Измеряем радиусы тёмных колец, результаты заносим в таблицу:

№ измерения	1	2	3	4
r_0 , MM	8	9	9	8
r_1 , MM	29	30	30	30
r_2 , MM	41	43	42	41
r_3 , MM	50	51	51	51
r_4 , MM	58	59	59	58
r_5 , MM	64	65	65	65
r_6 , MM	70	71	71	70
r_7 , MM	76	76	76	76
r_8 , MM	80	81	80	81
$\sigma_{ ext{cuct}}$	1 мм			

Таблица 1: Результаты измерений r_m

Значения r_m будем считать, как среднее арифметическое всех измерений. Среднеквадратичное отклонение считаем по формуле:

$$\sigma_{\text{ср.кв}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\tag{4}$$

Полную погрешность считаем по формуле:

$$\sigma = \sqrt{\sigma_{\text{сист}}^2 + \sigma_{\text{ср.кв}}} \tag{5}$$

Таким образом, получаем:

	m	0	1	2	3	4	5	6	7	8
r_n	$_{n}$, MM	8.50	29.75	41.75	50.75	58.50	64.75	70.50	76.00	80.50
σ_r	$_{m}$, MM	1.12	1.09	1.30	1.09	1.12	1.09	1.12	1.00	1.12

Таблица 2: Значения r_m

Строим график зависимосит $r_m^2(\mathbf{m})$, находим коэффициент наклона и по формуле (2) находим двулучепреломление n_0-n_e ниобата лития:

Рис. 3: График зависимости $r_m^2(\mathbf{m})$

 $n_0-n_e=0.077\pm0.013,$ что в пределах погрешности совпадает с табличным значением $(n_0-n_e)_{ ext{табл}}=0.083$ при длине волны $\lambda=632.8$ нм

Эффект Поккельса:

Для скрещенной поляризации, увеличиявая напряжение на кристалле, добыемся максимальной интенсивности картины и найдём значение напряжения $U_{\frac{\lambda}{2}}$. Добившись минимально интенсивности найдём значение напряжения U_{λ} . Проделаем тоже самое для параллельной поляризации (только напряжению $U_{\frac{\lambda}{2}}$ будет соответсвовать минимум интенсивности, а U_{λ} - максимум). Результаты занесём в таблицу.

	скрещен	кан	параллельная		
№ измерения	$U_{rac{\lambda}{2}}$, дел	U_{λ} , дел	$U_{\frac{\lambda}{2}}$, дел	U_{λ} , дел	
1	35	66	34	66	
2	33	66	34	64	
3	32	65	33	65	
4	34	64	32	64	
	$\sigma_{ ext{cuct}}=1$ дел $=15~ ext{B}$				

Таблица 3: Результаты измерений

Среднеквадратичное отклонение и полную погрешность считаем по формулам (4) и (5).

скрещенная		параллельная		
$U_{\frac{\lambda}{2}}, B$	U_{λ} , B	$U_{\frac{\lambda}{2}}$, B	U_{λ} , B	
502.50 ± 22.50	978.75 ± 19.49	501.00 ± 19.21	975.00 ± 20.12	

Убедились, что при напряжении $U_{\frac{\lambda}{4}}=250\pm15~\mathrm{B}$ наблюдаем круговую поляризацию (при вращении анализатора, интенсивность не меняется)

Поставим вместо экрана фотодиод и по фигурам Лиссажу на осцилографе определим полуволновое напряжение $U_{\frac{\lambda}{2}}.$

№ измерения	U_{max} , * 15 B	U_{min} , * 15 B	$U_{\frac{\lambda}{2}}, B$	σ , B
1	57	28	423.75	26.69
2	56	28		
3	56	30		
4	57	27		

Таблица 4: Результаты измерений

Получим фигуры Лиссажу для напряжений $U_{\frac{\lambda}{2}},\,U_{\lambda},\,U_{\frac{3\lambda}{2}}$:

Рис. 4: $U_{\frac{\lambda}{2}}$

Рис. 5: U_{λ}

Рис. 6: $U_{\frac{3\lambda}{2}}$

Рис. 7: Фигуры Лиссажу

3 Вывод

В работе с помощью интерференционной картины было определено двулучепреломления ниобата лития (по угловому коэффициенту зависимости квадрата радиуса тёмного пятна от номера тёмного пятна с помощью формулы 2), которое с хорошей точностью сошлось с табличным значением. Также был исследован эффект Поккельса и двумя способами определено полуволновое напряжение - с помощью наблюдением за изменением интенсивности и с помощью фигур Лиссажу, также полученное значение было проверено с помощью следующего факта: при напряжении $U_{\lambda/4}$ должна получиться круговая поляризация.