Determinants

Dilluv Rolli

iviotivation

Introduction

Properties of the

Determinant

Formulas f

Determinar

Bibliography

Reference

Determinants

Dhruv Kohli

Department of Mathematics Indian Institute of Technology, Guwahati

Outline

Determinants

Dhruv Kohl

Introduction

Properties of the

Determinan

the

Determinant

ыынодгарпу

Referenc

- 1 Motivation
- 2 Introduction
- 3 Properties of the Determinant
- 4 Formulas for the Determinant
- 5 Bibliography

Motivation

Determinants

Dhruv Kohl

${\sf Motivation}$

Introductio

Properties of the

Formulas for the

Bibliography

Referenc

- How to test invertibility of a matrix?
- How to compute volume of a box in *n* dimensions?
- Any explicit formula for the solution of Ax = b?
- Any explicit formula for pivots of A?
- What is the dependence of $A^{-1}b$ on each element of b?

Introduction

Determinants

Introduction

- 1 Determinant is defined only for square matrices.
- 2 $det A = 0 \iff A$ is singular.
- 3 detA =volume of a box in *n*-dimensional space.
- 4 $detA = \pm (product of pivots)$ where the sign depends on number of row exchanges in elimination. Even number of exchanges implies positive sign.
- The simple things about the determinant are not the explicit formulas, but the properties it possesses.

Properties of the Determinant

Determinants

Dhruv Kohl

IVIOLIVALION

Introduction

Properties of the Determinant

Formulas for the Determinant

Bibliography

Reference

1 det I = 1.

- 2 Determinant changes sign when two rows are exchanged because determinant of a permutation matrix P is ± 1 . If the number of row exchanges required to bring P to I is even then detP=1 else -1.
- 3 Determinant depends linearly on a row. Proof by determinant computing determinant along that row.

$$\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$
$$\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Properties of the Determinant

Determinants

Dhruv Kohl

Motivation

Introduction

Properties of the Determinant

the
Determinant

Bibliography

Reference

- 4 If two rows of A are equal then det A = 0. Proof: use 2.
- **5** Subtracting a multiple of one row from another leaves the same determinant. Proof: use 3 and 4.
- 6 If A has a zero row, then det A = 0. Proof: use 5 and 4.
- If A is triangular then detA = product of diagonal entries. Proof: use 5 to derive diagonal matrix, then use 3 and 1.
- 8 $det A = \pm (product of pivots), det A = 0 \iff A$ is singular. Proof: elimination leads to U which has pivots on the diagonal. For singular matrices one of the row will be zero. Then use 7.
- det $A = detA^T$. Proof: $A = P^TLU$, $A^T = U^TL^TP$ and $detP^TP = detI = 1$. This means we can exchange rows by columns in above results.¹

¹Singular case separately for 7,8,9,10

Formulas for the Determinant

Determinants

Dhruv Kohl

Introduction

Properties of the

Formulas for the Determinant

Bibliography

Reference

If A is invertible then PA = LDU, $detP = \pm 1$ and product rule gives $detA = \pm detLdetDdetU = \pm (product of pivots)$

2 Suppose $A_{n \times n}$ is split into n^n terms by applying property 3 to each row in the following way -

$$\begin{vmatrix} a+0 & 0+b \\ c & d \end{vmatrix} = \begin{vmatrix} a & 0 \\ c & d \end{vmatrix} + \begin{vmatrix} 0 & b \\ c & d \end{vmatrix}$$

Among n^n terms only n! terms will be non-zero when the non-zero terms are in different columns otherwise there will be atleast one column of 0s making determinant 0. The n! terms correspond to n! permutations of $(1, \ldots, n)$ which gives another formula for determinant:

$$det A = \sum_{\mathbf{a} | \mathbf{l}, \mathbf{P}' \mathbf{s}} a_{1\alpha} a_{2\beta} \dots a_{n\gamma} det P$$

Formulas for the Determinant

Determinants

Dhruv Kohl

Later de la Co

Introduction

the

Formulas for the Determinant

Bibliography

Reference

o Consider the terms involving a_11 . This means $\alpha=1$. This leaves some permutation (β,\ldots,γ) of resulting columns $(2,\ldots,n)$. We collect all those terms as C_{11} which is the determinant of the submatrix formed by deleting row 1 and column 1.

$$C_{11} = \sum_{\mathsf{all}\ P'\mathsf{s}\ \mathsf{s.t.}\ P_{11} = 1} a_{2eta} \dots a_{n\gamma} det P$$
 $det A = a_{11} C_{11} + a_{12} C_{12} + \dots + a_{1n} C_{1n}$ $C_{ij} = (-1)^{i+j} M_{ij}$

Bibliography

Determinants

Dhruv Kohl

Motivation

minoduction

the

Determinan

Formulas f

Determinar

Bibliography

References

Gilbert Strang. *Linear algebra and its applications*. Belmont, CA: Thomson, Brooks/Cole, 2006.