Zastosowanie algorytmów ewolucyjnych do wyznaczania przybliżonych reduktów

Dyplomant: Jan Gromko

Promotor: prof. dr hab. Jarosław Stepaniuk

19 kwietnia 2017 r.

Plan referatu

Redukcja

reduktów

Czym jest redukcja Prosty algorytm wyznaczania reduktu Problem złożoności dokładnych algorytmów redukcji

Propozycja algorytmu genetycznego do wyznaczania przybliżonych

Założenia algorytmu Schemat działania

Alternatywne metody redukcji

Propozycja algorytmu genetycznego – źródło

Lian Chen, Hongling Liu, Zilong Wan Computer Center, Nanchang University

An Attribute Reduction Algorithm Based on Rough Set Theory and an Improved Genetic Algorithm (2014)

Dane wejściowe i wyjściowe algorytmu

Wejście

System informacyjny S = (U, Q, V, f), gdzie $Q = A \cup D$.

Wyjście

Wynik optymalnej redukcji zbioru.

Metoda kodowania informacji

Chromosomem będzie jednowymiarowa tablica binarna o stałej długości. Długość chromosomu odpowiada liczbie atrybutów warunkowych.

Każdy z genów odpowiada dokładnie jednemu atryutowi warunkowemu, przy czym wartość 1 będzie ozbaczała, iż atrybut jest wybrany, 0 w przeciwnym wypadku.

Generowanie początkowej populacji

Wartość genów odpowiadających atrybutom należącym do rdzenia ustawiana jest na 1, wartość pozostałych genów ustawiana jest losowo na 0 lub 1.

Funkcja przystosowania

Jakość przystosowania pojedynczego osobnika, zgodnie z definicją redukcji, opiera się na dwóch aspektach – liczbie atrybutów, które zawiera (powinna ona być możliwie jak najmniejsza) oraz zachowanej rozróżnialności obiektów (powinna być jak największa).

Funkcja przystosowania

Zgodnie z tymi wymaganiami, funkcja przystosowania ma postać:

$$f(x) = \frac{1}{rozmiar(x)} + \sigma(x),$$

gdzie rozmiar(x) oznacza liczbę atrybutów, które zawiera chromosom, natomiast $\sigma(x)$ jest znormalizowanym współczynnikiem istotności zbioru atrybutów chromosomu.

Selekcja osobników

Prawdopodobieństwo wybrania danego osobnika i wynosi $p_{si} = \frac{f_i}{\sum\limits_i f_i}$, gdzie f_i jest wartością funkcji przystosowania dla pojedynczego osobnika i, natomiast n jest rozmiarem populacji.

Jeśli wartość funkcji przystosowania najsłabiej przystosowanego osobnika w bieżącym pokoleniu jest niższa, niż wartość funkcji przystosowania najlepiej przystosowanego osobnika z poprzedniego pokolenia, wówczas najsłabszy osobnik z bieżącego pokolenia jest zastępowany najlepszym osobnikiem z poprzedniego pokolenia.

Operacja krzyżowania

Algorytm zakłada krzyżowanie jednopunktowe – dla każdej pary osobników (w tym wypadku – chromosomów), losowo wybierany jeden punkt, a następnie części chromosomów zamieniane są między osobnikami według tego punktu, co tworzy osobniki kolejnego pokolenia.

Operacja mutacji

Poszczególne geny w chromosomach zmieniane są losowo z pewnym ustalonym prawdopodobieństwem.

Przy przeprowadzaniu mutacji chronione przed mutacją są geny związane z atrybutami należącymi do rdzenia.

Algorytm

- 1. Wygenerowanie populacji początkowej.
- Obliczenie znormalizowanego współczynnika istotności dla każdego chromosomu.
- 3. Selekcja osobników na podstawie algorytmu koła ruletki.
- 4. Krzyżowanie.
- 5. Mutacje.
- Obliczenie wartości funkcji przystosowania dla każdego chromosomu.
- Sprawdzenie warunku zatrzymania algorytmu jeśli warunek jest spełniony, algorytm jest zatrzymywany.
 W przeciwnym razie powrót do punktu 3.

Redukcja na podstawie najlepszego osobnika

- Jeśli zbiór atrybutów najlepszego osobnika zawiera atrybuty, których współczynnik istotności nie został obliczony, przejście do punktu 2.; w przeciwnym razie przejście do punktu 3.
- 2. Obliczany jest współczynnik istotności każdego atrybutu, dla którego nie został on wcześniej wyliczony. Jeśli $\sigma(a)=0$, wartość genu zmieniana jest z 1 na 0.
- Wyznaczonym reduktem jest fenotyp najlepszego znalezionego osobnika, po ewentualnych modyfikacjach z punktu 2.

Bibliografia

- Zdzisław Pawlak
 Zbiory przybliżone nowa matematyczna metoda analizy danych
- [2] Leszek Rutkowski Metody i techniki sztucznej inteligencji
- [3] Jakub WróblewskiAdaptacyjne metody klasyfikacji obiektów
- [4] Maciej Kopczyński
 Wspomaganie decyzji oparte na sprzętowej realizacji metod zbiorów przybliżonych

Pytania

