What Is Claimed Is:

1, × 4.	1. In a digital device, a method of generating an output signal that represents
2	a polar angle ϕ for a complex input signal, the method comprising the steps of:
3	(1) receiving the complex input signal having a real X_0 component and
4	an imaginary Y ₀ component;
5	(2) determining an angle ϕ_1 that is a coarse approximation to the angle
6	φ, including the steps of
7	(2a) determining a Z_0 value that approximates a $[1/X_0]$ value
8	wherein $[X_0]$ is a truncated approximation of said X_0 component,
9	(2b) digitally multiplying said Z_0 value by Y_0 , resulting in a [Y ₀]
10	Z ₀] value, and
11	(2c) determining an arctan of said $[Y_0Z_0]$ value, resulting in said
12	angle ϕ_1 ;
13	(3) determining a fine adjustment angle ϕ_2 , including the steps of
14	(3a) digitally computing an intermediate complex number, based
15	on said [Y ₀ /X ₀] value, said intermediate complex number having a real X
16	component and an imaginary Y ₁ component,
17	(3b) determining a Z_1 that approximates a $[1/X_1]$ value, wherein
18	$[X_1]$ is a truncated approximation of said X_1 component,
19	(3c) digitally multiplying said X_1 component by said $[Z_1]$ value
20	to produce a Z_1X_1 component, and digitally multiplying said Y_1 component by said
21	[Z ₁] component to produce a Z ₁ Y ₁ component,
22	(3d) determining a one's complement of said Z_1X_1 component,
23	and
24	(3e) digitally multiplying said two's complement of said Z_1X_1
25	component by said Z_1Y_1 component, resulting in said fine adjustment angle φ_2
26	and

27	(4) adding said fine adjustment angle ϕ_2 to said angle ϕ_1 to form said
28	output signal that is data used by said digital device.
1	2. The method of claim 1, wherein step (2a) comprises the step of retrieving
2	said [Z ₀] value from a memory device.
1	3. The method of claim 1, wherein step (2c) comprises the step of retrieving
2	, was the original the step of removing
2	said angle ϕ_1 value from a memory device.
1	4. The method of claim 1, wherein step (3b) comprises the step of retrieving
2	said [Z ₁] value from a memory device.
1	5. The method of claim 1, wherein step (2a) comprises the step of retrieving
2	said $[Z_0]$ value from a memory device, and wherein step (3b) comprises the step
3	of retrieving said $[Z_1]$ value from said memory device.
1	6. The method of claim 1, wherein said step (3a) comprises the step of
2	multiplying said X_0 component and said Y_0 component by a tan ϕ_1 .
1	7. The method of claim 1, wherein said step (3a) comprises the step of
2	multiplying said X_0 component and said Y_0 component by said $[Z_0Y_0]$ value.
1	8. An apparatus that generates an output signal that represents a polar angle
2	Affiliation series Benefit and all part in Britain that represents a polar aligie
3	ϕ for a complex input signal having a X_0 component and a Y_0 component,
	comprising:
4	a first memory that stores one or more Z_0 values indexed by $[X_0]$, wherein
5	$[X_0]$ is a bit truncated version of said X_0 value, wherein said Z_0 value is
6	approximately 1/[X ₀];

7	a multiplier that multiplies said Z_0 value by the Y_0 component, resulting in
8	a $[Z_0Y_0]$ value;
9	a second memory that stores one or more ϕ_1 angles, wherein said ϕ_1 angle
10	is approximately an arctan of $[Z_0Y_0]$;
11	a digital circuit that multiples said X ₀ component and said Y ₀ component
12	by said
13	[Z ₀ Y ₀] value, resulting in an intermediate complex number having an X ₁
14	component and a Y ₁ component;
15	a fine angle computation stage that determines an angle ϕ_2 based on Y_1/X_1 ;
16	and
17	an adder that adds $\phi_1 + \phi_2$ to produce said angle ϕ to form the output
18	signal that is data processed by said apparatus.
1	9. The apparatus of claim 8, wherein said fine angle computation stage
2	includes:
3	a set of multipliers that multiply said X_1 component and said Y_1 component
4	by a Z_1 value resulting in a X_1Z_1 component and a Y_1Z_1 component, wherein Z_1
5 .	is a bit truncated version of $1/[X_1]$, and wherein $[X_1]$ is a bit truncated version of
6	X_{1} .
1	10. The apparatus of claim 9, wherein said Z_1 value is retrieved from said first
2	memory based on said [X1] value.
1	11. The apparatus of claim 9, wherein said fine angle computation stage
2	further includes:
3	a means for implementing a one's complement of said X_1Z_1 ; and
4	a second multiplier for multiplying said one's complement of X_1Z_1 by said
5	Y_1Z_1 component.

1	12. The apparatus of claim 9, wherein said the angle computation stage
2	further includes:
3	a means for implementing a two's complement of said X_1Z_1 ; and
4	a second multiplier for multiplying said two's complement of X_1Z_1 by said
5	Y_1Z_1 component.
1	13. The apparatus of claim 8, further comprising:
2	a scaling shifter, coupled to said digital circuit, wherein said scaling shifter
3	scales said X1 component in accordance with reciprocal values that are stored in
4	said first memory.
1	14. The apparatus of claim 13, wherein said scaling shifter also scales said Y_1
2	component similar to said scaling of said X_1 component.
1	15. The apparatus of claim 8, wherein said digital circuit is a butterfly circuit
2	that is coupled to an output of said multiplier.
1	16 To a digital desires a mostly discount of the second of
	In a digital device, a method of generating an output signal that represents
2	a polar angle φ for a complex input signal, the method comprising the steps of:
3	(1) receiving the complex input signal having a real X_0 component and
4	an imaginary Y ₀ component;
5	(2) retrieving a Z_0 value from a first memory, wherein Z_0 is a bit
6	truncated approximation for 1/X ₀ ;
7	(3) digitally multiplying said Z_0 value by said Y_0 component, resulting
8	in a $[Y_0Z_0]$ value;
9	(4) retrieving an angle ϕ_1 from a second memory, wherein ϕ_1 is based
10	on an arctan of said $[Y_0Z_0]$ value;

1904.0140003

11	(5)	digitally rotating said input complex signal in a complex plane by
12	said angle ϕ_1	to produce an intermediate complex signal having an X_1 component
13	and a Y ₁ com	nponent;
14	(6)	digitally computing an angle ϕ_2 that is an approximation to an
15	arctan Y ₁ /X ₁ ;	and
16	(7)	adding said angle ϕ_2 to said angle ϕ_1 to form the output signal that
17	is data used b	by said digital device.
1	17. The n	nethod of claim 16, wherein said step (6) comprises step of:
2	(a)	retrieving a Z_1 value from said first memory, wherein said Z_1 value
3	is a bit trunca	ted approximation of 1/X ₁ ; and
4	(b)	digitally multiplying said X_1 component by said Z_1 value to produce
5	a Z ₁ X ₁ compo	onent, and digitally multiplying said Y_1 component by said Z_1 value
6	to produce a	Z_1Y_1 component;
7	(c)	determining a one's complement of said Z_1X_1 component; and
8	(d)	multiplying said one's complement of said Z_1X_1 component by said
9	Z_1Y_1 component	ent.
1	18. The m	ethod of claim 16, wherein step (5) comprises the step of multiplying
2	said input cor	nplex signal by a tan ϕ_1 .
1	19. The m	ethod of claim 16, wherein step (5) comprises the step of multiplying
2	said input cor	mplex signal by said $[Y_0Z_0]$ value.
1	20. In a di	gital device, a method of symbol timing synchronization, the method
2	comprising th	e steps of:
3	(1)	receiving complex data samples of one or more symbols;
4	(2)	correlating said complex data samples with a complex conjugate
5	of a preambl	e data set, resulting in correlated complex data samples, each

3

6	correlate	d complex data sample represented by a real sample and an imaginary
7	sample;	
8	(2	selecting between said real samples and said imaginary samples,
9	resulting	in a set of selected samples;
10	(4	generating a complex number based on said set of selected
11		samples; and
12	(5	determining an angle in a complex plane associated with said
13	complex	number, whereby said angle represents symbol synchronization for the
14	communi	cations device.
1	21. T	he method of claim 20, further comprising the step of:
2	(5	multiplying said angle by $\pi/2$ to determine an offset μ that indicates
3	symbol sy	enchronization.
1 .	22. T	ne method of claim 20, wherein step (2) comprises the step of multiplying
2	said recei	ved complex data samples with said preamble data set.
1		ne method of claim 20, wherein said step (3) comprises the step of
2	selecting t	the larger of said real samples and said imaginary samples.
	- ·	
1		ne method of claim 20, wherein step (4) comprises the steps of:
2	(a)	
3		samples; and
4	(b)	evaluating said Fourier transform at $\pi/2$.
,		
1		ne method of claim 20, wherein step (4) comprises the steps of:
2	(a)	determining which of said selected data samples has the largest

magnitude;

4	(a)	selecting if adjacent samples from the selected data samples that
5	includes said	largest magnitude sample;
1	(c)	determining a Fourier transform of said n adjacent data samples;
2		and
3	(d)	evaluating said Fourier transform at $\pi/2$, resulting in said complex
		number.
1		
2	26. The	method of claim 20, wherein said complex number is in a rectangular
3	format, and	wherein step (5) comprises the step of:
4	conv	erting said complex number to polar format having a magnitude and
5	said angle.	
1	27. The	method of claim 20, where step (4) comprises the steps of:
2	(a)	determining which of said selected data samples has the largest
3	magnitude;	
4	(a)	selecting 4 adjacent samples from the selected data samples,
5	represented	by r(-1), r(0), r(1), and r(2), wherein said largest magnitude data
6	sample is on	e of r(0) and r(1);
7	(c)	determining a Fourier transform of said 4 adjacent data samples;
8		and
9	(d)	evaluating said Fourier transform at $\pi/2$, resulting in said complex
10		number.
1	28. The	method of claim 27, wherein step (c) comprises the steps of:
2	(I)	determining r(0) - r(2), to produce in a real part of said complex
3		number; and
4	(ii)	determining r(-1) - r(1), to produce in an imaginary part of said
5	complex nur	mber.

1	29. In a digital device, a method of carrier recovery, the method comprising
2	the steps of:
3	(1) receiving complex data samples of one or more symbols;
4	(2) correlating said complex data samples with a complex conjugate
5	of a preamble data set, resulting in correlated complex data samples;
6	(3) selecting one of said correlated complex data samples;
7	(4) determining an angle in said complex plane based on said selected
8	correlated complex data sample, whereby said angle represents a carrier phase
9	offset in the digital device.
1	30. The method of claim 29, wherein step (3) comprises the step of selecting
2	a largest of said correlated complex data samples.
1	The method of claim 29, wherein said complex number is in a rectangular
2	format, wherein step (4) comprises the step of converting said complex number
3	to a polar format having a magnitude and said angle.
1	32. In a digital device for generating an output signal that represents a polar
2	angle φ for a complex input digital signal, a method of converting Cartesian data
3	of said input digital signal to polar angle data of said output signal, comprising the
4	steps of:
5	(1) receiving the input digital signal; and
6	(2) determining at least two subangles, the combination of which
7	subangles represents the polar angle φ.
1	33. The method of claim 32, wherein step (2) comprises the step of: (a)
2	determining at least one subangle by using a memory device.
	,
1	34. The method of claim 32, wherein said step (2) comprises the step of:
	1904.0140003

2
3
1
2
3
1
2
3

(a)	determining at least one subangle by using a trigonometric function
of a subangle	as an approximation for the subangle.

- 35. The method of claim 34, wherein said step (a) comprises of the step of:
- (i) determining said trigonometric function using a previously determined subangle and said Cartesian data of said input digital signal.
- 36. The method of claim 35, wherein said step (i) comprises the step of determining said trigonometric function by rotating said Cartesian data of said input digital signal by said previously determined subangle.