можно искать частное решение в виде

$$y_1 = x^s e^{\alpha x} (R_m(x) \cos \beta x + T_m(x) \sin \beta x), \tag{7}$$

где s=0, если $\alpha+\beta i$ не корень характеристического уравнения, и s равно кратности корня $\alpha+\beta i$ в противном случае, а R_m и T_m — многочлены степени m, равной наибольшей из степеней многочленов P и Q. Чтобы найти коэффициенты многочленов R_m и T_m , надо подставить решение (7) в уравнение и приравнять коэффициенты при подобных членах.

Еще один метод отыскания частного решения уравнения с вещественными коэффициентами и правой частью вида (6) состоит в следующем. Сначала решают уравнение с правой частью $P(x)e^{(\alpha+\beta i)x}$. Вещественная часть этого решения будет решением уравнения с правой частью $P(x)e^{\alpha x}\cos\beta x$, а мнимая — решением уравнения с правой частью $P(x)e^{\alpha x}\sin\beta x$.

Если правая часть уравнения равна сумме нескольких функций вида $P(x)e^{\gamma x}$ и вида (6), то частное решение отыскивается по следующему правилу.

Частное решение линейного уравнения с правой частью $f_1+\ldots+f_p$ равно сумме частных решений уравнений с той же левой частью и правыми частями f_1,\ldots,f_p .

Общее решение линейного неоднородного уравнения во всех случаях равно сумме частного решения этого уравнения и общего решения однородного уравнения с той же левой частью.

Пример. Решить уравнение

$$y''' - 6y'' + 9y' = xe^{3x} + e^{3x}\cos 2x.$$
 (8)

Характеристическое уравнение $\lambda^3 - 6\lambda^2 + 9\lambda = 0$ имеет корень $\lambda = 3$ кратности 2 и корень $\lambda = 0$ кратности 1. Поэтому общее решение однородного уравнения имеет вид $y_0 = (C_1 + C_2 x) e^{3x} + C_3$.

Правая часть (8) состоит из двух слагаемых вида (6); для первого $\gamma=\alpha+\beta i=3$, а для второго $\alpha+\beta i=3+2i$. Так как эти числа различны, то надо искать отдельно частные решения уравнений

$$y''' - 6y'' + 9y' = xe^{3x}, (9)$$

$$y''' - 6y'' + 9y' = e^{3x} \cos 2x. \tag{10}$$

Число $\gamma=3$ является корнем кратности s=2, поэтому частное решение уравнения (9) согласно (4) имеет вид $y_1=x^2(ax+b)e^{3x}$. Подставив $y=y_1$ в (9), найдем $a=1/18,\ b=-1/18$.

Далее, число $\alpha+\beta i=3+2i$ не является корнем характеристического уравнения, поэтому частное решение уравнения (10) согласно (7) имеет вид $y_2=\mathrm{e}^{3x}(c\cos 2x+d\sin 2x)$. Подставив $y=y_2$ в (10), найдем c=-3/52, d=-1/26.

Общее решение уравнения (8) равно $y=y_0+y_1+y_2,$ где $y_0,$ $y_1,$ y_2 уже найдены.

3. Линейное неоднородное уравнение

$$a_0 y^{(n)} + a_1 y^{(n-1)} + \ldots + a_n y = f(x)$$
 (11)

с любой правой частью f(x) решается методом вариации постоянных. Пусть найдено общее решение $y=C_1y_1+\ldots+C_ny_n$ линейного однородного уравнения с той же левой частью. Тогда решение уравнения (11) ищется в виде

$$y = C_1(x)y_1 + \ldots + C_n(x)y_n.$$

Функции $C_i(x)$ определяются из системы

$$C'_1y_1 + \dots + C'_ny_n = 0$$

$$C'_1y'_1 + \dots + C'_ny'_n = 0$$

$$\dots$$

$$C'_1y_1^{(n-2)} + \dots + C'_ny_n^{(n-2)} = 0$$

$$a_0(C'_1y_1^{(n-1)} + \dots + C'_ny_n^{(n-1)}) = f(x).$$

4. Уравнение Эйлера

$$a_0 x^n y^{(n)} + a_1 x^{n-1} y^{(n-1)} + \dots + a_{n-1} x y' + a_n y = f(x)$$
 (12)

сводится к линейному уравнению с постоянными коэффициентами заменой независимого переменного $x=\mathrm{e}^t$ при x>0 (или $x=-\mathrm{e}^t$ при x<0). Для полученного уравнения с постоянными коэффициентами характеристическое уравнение имеет вид

$$a_0\lambda(\lambda-1)(\lambda-2)\dots(\lambda-n+1)+\dots+a_{n-2}\lambda(\lambda-1)+a_{n-1}\lambda+a_n=0.$$

При составлении этого уравнения каждое произведение $x^ky^{(k)}$ в (12) заменяется на произведение k убывающих на 1 чисел: $\lambda(\lambda-1)(\lambda-2)\dots(\lambda-k+1).$

Пример. Решить уравнение

$$x^{3}y''' - x^{2}y'' + 2xy' - 2y = x^{3}. (13)$$

Сразу пишем характеристическое уравнение и решаем его:

$$\lambda(\lambda - 1)(\lambda - 2) - \lambda(\lambda - 1) + 2\lambda - 2 = 0,$$

$$(\lambda - 1)(\lambda^2 - 3\lambda + 2) = 0, \ \lambda_1 = \lambda_2 = 1, \ \lambda_3 = 2.$$
(14)

При таких λ общее решение однородного уравнения с постоянными коэффициентами имеет вид (согласно п. 1)

$$y_0 = (C_1 + C_2 t)e^t + C_3 e^{2t}.$$

Чтобы решить неоднородное уравнение (13), сначала раскроем скобки в (14): $\lambda^3-4\lambda^2+5\lambda-2=0$. По этому характеристическому уравнению составляем левую часть дифференциального уравнения, а правую часть получаем из правой части (13) заменой $x=\mathrm{e}^t$:

$$y_t''' - 4y_t'' + 5y_t' - 2y = e^{3t}.$$

Так как число 3 не является корнем характеристического уравнения, то частное решение ищем в виде $y_1=a\mathrm{e}^{3t}$. Подставляя в уравнение, находим a=1/4.

Следовательно, общее решение имеет вид

$$y = y_0 + y_1 = (C_1 + C_2 t)e^t + C_3 e^{2t} + \frac{1}{4}e^{3t} =$$
$$= (C_1 + C_2 \ln x)x + C_3 x^2 + \frac{1}{4}x^3 \quad (x > 0).$$

При x < 0 получается аналогичная формула, но с $\ln |x|$ вместо $\ln x$.

5. Для решения задач 635-640 и 879 можно пользоваться следующими законами теории электрических цепей (см. также [3], \S 13).

Для каждого узла цепи сумма всех притекающих токов равна сумме вытекающих токов.

Алгебраическая сумма напряжений источников тока, содержащихся в любом замкнутом контуре цепи, равна алгебраической сумме падений напряжений на всех остальных участках этого контура.

Падение напряжения на сопротивлении R равно RI; падение напряжения на самоиндукции L равно $L\frac{\mathrm{d}I}{\mathrm{d}t}$; падение напряжения на конденсаторе емкости C равно q/C, где q=q(t) — заряд конденсатора в момент t; при этом $\frac{\mathrm{d}q}{\mathrm{d}t}=I$; во всех трех случаях I=I(t) — сила тока, протекающего через рассматриваемый участок цепи в данный момент t. В этих формулах I выражается в амперах, R — в омах, L — в генри, q — в кулонах, C — в фарадах, t — в секундах, напряжение — в вольтах.

Пример. Последовательно включены: источник тока, напряжение которого меняется по закону $E=V\sin\omega t$, сопротивление R и емкость C. Найти силу тока в цепи при установившемся режиме 1 .

Решение. Сила тока I=I(t) на любом участке цепи одна и та же (по закону о последовательном соединении). Падение напряжения на сопротивлении равно RI, а на емкости q/C. Следовательно, $RI+\frac{q}{C}=V\sin\omega t$. Дифференцируя и пользуясь тем, что $\frac{\mathrm{d}q}{\mathrm{d}t}=I$, получим уравнение

$$R\frac{\mathrm{d}I}{\mathrm{d}t} + \frac{I}{C} = V\omega\cos\omega t. \tag{15}$$

Это — линейное уравнение с постоянными коэффициентами. Для отыскания установившегося режима найдем периодическое решение этого уравнения. Исходя из вида правой части уравнения, ищем решение в виде

$$I = A_1 \cos \omega t + B_1 \sin \omega t. \tag{16}$$

Подставляя (16) в (15) и приравнивая коэффициенты при подобных членах, получим систему двух уравнений, из которой можно найти A_1 и B_1 . Но в электротехнике важнее знать не коэффициенты A_1 и B_1 , а амплитуду изменения силы тока. Поэтому выражение (16) переписывают в виде

$$I = A\sin(\omega t - \varphi). \tag{17}$$

Подставляя (17) в (15), переходя к тригонометрическим функциям углов ωt и φ , приравнивая коэффициенты сначала при $\sin \omega t$, а затем при $\cos \omega t$, получим

$$RA\omega\sin\varphi + \frac{A}{C}\cos\varphi = 0, \quad RA\omega\cos\varphi - \frac{A}{C}\sin\varphi = V\omega.$$

Отсюда найдем

$$\label{eq:phi} \operatorname{tg} \varphi = -\frac{1}{RC\omega}, \quad A = \frac{V}{\sqrt{R^2 + (\omega C)^{-2}}}.$$

Поясним, почему найденное периодическое решение называется установившимся режимом. Общее решение уравнения (15) равно

 $^{^{1}}$ Установившимся режимом называется такой, при котором сила тока постоянна или меняется периодически.

сумме найденного частного решения (17) и общего решения линейного однородного уравнения

$$R\frac{\mathrm{d}I}{\mathrm{d}t} + \frac{I}{C} = 0. \tag{18}$$

530. $y^{V} + 8y''' + 16y' = 0$.

532. $u^{\text{IV}} + 4u'' + 3u = 0$.

534. $y'' + y = 4xe^x$.

Так как решение уравнения (18) $I = K e^{-t/RC}$ (здесь K — произвольная постоянная) стремится к нулю при $t \to +\infty$, то любое решение уравнения (15) при $t \to +\infty$ неограниченно приближается (и притом весьма быстро) к найденному периодическому решению (17).

Решить vравнения **511—548**.

511.
$$y'' + y' - 2y = 0$$
.

511.
$$y'' + y' - 2y = 0$$
. **512.** $y'' + 4y' + 3y = 0$.

513.
$$y'' - 2y' = 0$$
. **514.** $2y'' - 5y' + 2y = 0$.

515.
$$y'' - 4y' + 5y = 0$$
. **516.** $y'' + 2y' + 10y = 0$.

517.
$$y'' + 4y = 0$$
. **518.** $y''' - 8y = 0$.

519.
$$y^{\text{IV}} - y = 0.$$
 520. $y^{\text{IV}} + 4y = 0.$

521.
$$y^{VI} + 64y = 0$$
. **522.** $y'' - 2y' + y = 0$.

523.
$$4y'' + 4y' + y = 0$$
. **524.** $y^{V} - 6y^{IV} + 9y''' = 0$.

525.
$$y^{V} - 10y''' + 9y' = 0$$
.

526.
$$y^{IV} + 2y'' + y = 0$$
.

527.
$$y''' - 3y'' + 3y' - y = 0$$
.

528.
$$y''' - y'' - y' + y = 0$$
.

529.
$$y^{IV} - 5y'' + 4y = 0$$
.

531.
$$y''' - 3y' + 2y = 0$$
.

533.
$$y'' - 2y' - 3y = e^{4x}$$
.

533.
$$y^{-} - 2y^{-} - 3y = e^{-x}$$
.

535.
$$y'' - y = 2e^x - x^2$$
.

536.
$$y'' + y' - 2y = 3xe^x$$
.

537.
$$y'' - 3y' + 2y = \sin x$$
.

538.
$$y'' + y = 4 \sin x$$
.

539.
$$y'' - 5y' + 4y = 4x^2e^{2x}$$
.

540.
$$y'' - 3y' + 2y = x \cos x$$
.

541.
$$y'' + 3y' - 4y = e^{-4x} + xe^{-x}$$
.

542.
$$y'' + 2y' - 3y = x^2 e^x$$
.

543.
$$y'' - 4y' + 8y = e^{2x} + \sin 2x$$
.

544.
$$y'' - 9y = e^{3x} \cos x$$
.

545.
$$y'' - 2y' + y = 6xe^x$$
.

546.
$$y'' + y = x \sin x$$
.

547.
$$y'' + 4y' + 4y = xe^{2x}$$
.

548.
$$y'' - 5y' = 3x^2 + \sin 5x$$
.

В задачах **549**—**574** для каждого из данных уравнений написать его частное решение с неопределенными коэффициентами (числовых значений коэффициентов не находить).

549.
$$y'' - 2y' + 2y = e^x + x \cos x$$
.

550.
$$y'' + 6y' + 10y = 3xe^{-3x} - 2e^{3x}\cos x$$
.

551.
$$y'' - 8y' + 20y = 5xe^{4x}\sin 2x$$
.

552.
$$y'' + 7y' + 10y = xe^{-2x}\cos 5x$$
.

553.
$$y'' - 2y' + 5y = 2xe^x + e^x \sin 2x$$
.

554.
$$y'' - 2y' + y = 2xe^x + e^x \sin 2x$$
.

555.
$$y'' - 8y' + 17y = e^{4x}(x^2 - 3x\sin x)$$
.

556.
$$y''' + y' = \sin x + x \cos x$$
.

557.
$$y''' - 2y'' + 4y' - 8y = e^{2x} \sin 2x + 2x^2$$
.

558.
$$y'' - 6y' + 8y = 5xe^{2x} + 2e^{4x}\sin x$$
.

559.
$$y'' + 2y' + y = x(e^{-x} - \cos x)$$
.

560.
$$y''' - y'' - y' + y = 3e^x + 5x \sin x$$
.

561.
$$y'' - 6y' + 13y = x^2 e^{3x} - 3\cos 2x$$
.

562.
$$y'' - 9y = e^{-3x}(x^2 + \sin 3x)$$
.

563.
$$y^{\text{IV}} + y'' = 7x - 3\cos x$$
.

564.
$$y'' + 4y = \cos x \cdot \cos 3x$$
.

565.
$$y''' - 4y'' + 3y' = x^2 + xe^{2x}$$
.

566.
$$y'' - 4y' + 5y = e^{2x} \sin^2 x$$
.

567.
$$y'' + 3y' + 2y = e^{-x} \cos^2 x$$
.

568.
$$y'' - 2y' + 2y = (x + e^x) \sin x$$
.

569.
$$y^{\text{IV}} + 5y'' + 4y = \sin x \cdot \cos 2x$$
.

570.
$$y'' - 3y' + 2y = 2^x$$
.

571.
$$y'' - y = 4 \operatorname{sh} x$$
.

572.
$$y'' + 4y' + 3y = \operatorname{ch} x$$
.

573.
$$y'' + 4y = \sin x \cdot \sin 2x$$
.

574.
$$y'' + 2y' + 2y = \operatorname{ch} x \cdot \sin x$$
.

Решить уравнения **575—581** способом вариации постоянных.

575.
$$y'' - 2y' + y = \frac{e^x}{x}$$
.

576.
$$y'' + 3y' + 2y = \frac{1}{e^x + 1}$$
.

577.
$$y'' + y = \frac{1}{\sin x}$$
.

578.
$$y'' + 4y = 2 \operatorname{tg} x$$
.

579.
$$y'' + 2y' + y = 3e^{-x}\sqrt{x+1}$$
.

580.
$$y'' + y = 2 \sec^3 x$$
.

581*.
$$x^3(y''-y)=x^2-2$$
.

Найти решения уравнений **582—588**, удовлетворяющие указанным начальным условиям.

582.
$$y'' - 2y' + y = 0$$
; $y(2) = 1$, $y'(2) = -2$.

583.
$$y'' + y = 4e^x$$
; $y(0) = 4$, $y'(0) = -3$.

584.
$$y'' - 2y' = 2e^x$$
; $y(1) = -1$, $y'(1) = 0$.

585.
$$y'' + 2y' + 2y = xe^{-x}$$
; $y(0) = y'(0) = 0$.

586.
$$y''' - y' = 0$$
; $y(0) = 3$, $y'(0) = -1$, $y''(0) = 1$.

58 § 11. Линейные уравнения с постоянными коэффициентами

587.
$$y''' - 3y' - 2y = 9e^{2x}$$
; $y(0) = 0$, $y'(0) = -3$, $y''(0) = 3$.

588.
$$y^{\text{IV}} + y'' = 2\cos x$$
; $y(0) = -2$, $y'(0) = 1$, $y''(0) = y'''(0) = 0$.

В задачах 589—600 решить уравнения Эйлера

589.
$$x^2y'' - 4xy' + 6y = 0$$
.

590.
$$x^2y'' - xy' - 3y = 0$$
.

591.
$$x^3y''' + xy' - y = 0$$
.

592.
$$x^2y''' = 2y'$$
.

593.
$$x^2y'' - xy' + y = 8x^3$$
.

594.
$$x^2y'' + xy' + 4y = 10x$$
.

595.
$$x^3y'' - 2xy = 6 \ln x$$
.

596.
$$x^2y'' - 3xy' + 5y = 3x^2$$
.

597.
$$x^2y'' - 6y = 5x^3 + 8x^2$$
.

598.
$$x^2y'' - 2y = \sin \ln x$$
.

599.
$$(x-2)^2y''-3(x-2)y'+4y=x$$
.

600.
$$(2x+3)^3y'''+3(2x+3)y'-6y=0$$
.

Применяя различные методы, решить уравнения **601**—**611**.

601.
$$y'' + 2y' + y = \cos ix$$
.

602.
$$y'' - 2y' + y = xe^x \sin^2 ix$$
.

603.
$$y'' + 2iy = 8e^x \sin x$$
.

604.
$$y'' + 2iy' - y = 8\cos x$$
.

605.
$$y''' - 8iy = \cos 2x$$
.

606.
$$y'' - \frac{2y}{x^2} = 3\ln(-x)$$
.

607.
$$y'' + 2y' + y = xe^x + \frac{1}{xe^x}$$
.

608.
$$y'' + 2y' + 5y = e^{-x}(\cos^2 x + \operatorname{tg} x)$$
.

609.
$$x^2y'' - 2y = \frac{3x^2}{x+1}$$
.

610.
$$x^2y'' - xy' + y = \frac{\ln x}{x} + \frac{x}{\ln x}$$
.

611*.
$$y'' + y = f(x)$$
.

612*. Какие условия достаточно наложить на функцию f(x), чтобы все решения уравнения задачи **611** оставались ограниченными при $x \to +\infty$?

В задачах **613—618** построить линейные однородные дифференциальные уравнения с постоянными коэффициентами (возможно более низкого порядка), имеющие данные частные решения.

613.
$$y_1 = x^2 e^x$$
. **614.** $y_1 = e^{2x} \cos x$.

615.
$$y_1 = x \sin x$$
. **616.** $y_1 = x e^x \cos 2x$.

617.
$$y_1 = xe^x$$
, $y_2 = e^{-x}$. **618.** $y_1 = x$, $y_2 = \sin x$.

- **619.** При каких a и b все решения уравнения y'' + ay' + by = 0 ограничены на всей числовой оси $-\infty < x < +\infty$?
- **620.** При каких a и b все решения уравнения y'' + ay' + by = 0 стремятся к нулю при $x \to +\infty$?
- **621.** При каких a и b уравнение y'' + ay' + by = 0 имеет хотя бы одно решение $y(x) \not\equiv 0$, стремящееся к нулю при $x \to +\infty$?
- **622.** При каких a и b каждое решение уравнения y''+ay'+by=0, кроме решения $y(x)\equiv 0$, монотонно возрастает по абсолютной величине, начиная с некоторого x?
- **623.** При каких a и b каждое решение уравнения y'' + ay' + by = 0 обращается в нуль на бесконечном множестве точек x?
- **624*.** При каких a и b все решения уравнения y''+ay'+by=0 удовлетворяют соотношению $y=o(e^{-x})$ при $x\to +\infty$?
- ${f 625^*}$. Для заданного b>0 подобрать такое a, при котором решение уравнения y''+ay'+by=0 с начальными условиями

- $y(0)=1,\ y'(0)=0$ возможно быстрее стремится к нулю при $x\to +\infty$.
- **626.** При каких k и ω уравнение $y'' + k^2 y = \sin \omega t$ имеет хотя бы одно периодическое решение?
- **627.** Найти периодическое решение уравнения $\ddot{x} + a\dot{x} + bx = \sin \omega t$ и нарисовать график зависимости его амплитуды от величины ω .
- **628.** Найти периодическое решение уравнения $\ddot{x}+\dot{x}+4x=\mathrm{e}^{i\omega t}$ и на комплексной плоскости начертить кривую, которую пробегает амплитудный множитель этого решения при изменении ω от 0 до $+\infty$.
- **629*.** Дано уравнение y''+ay'+by=f(x), причем $|f(x)|\leqslant m\ (-\infty < x < \infty)$, а корни характеристического уравнения $\lambda_2 < \lambda_1 < 0$. Найти решение, ограниченное при $-\infty < x < \infty$. Показать, что а) все остальные решения неограниченно приближаются к этому решению при $x \to +\infty$, б) если f(x) периодическая, то это решение тоже периодическое.

У казание. Применить метод вариации постоянных. Нижние пределы полученных интегралов взять бесконечными такого знака, чтобы интегралы сходились.

В задачах **630—632** принять, что при отклонении груза от положения равновесия на расстояние x пружина действует на него с силой kx, направленной к положению равновесия.

- **630.** Найти период свободных колебаний массы m, подвешенной к пружине, если движение происходит без сопротивления.
- **631.** Один конец пружины закреплен неподвижно, а к другому прикреплен груз массы m. При движении груза со скоростью v сила сопротивления равна hv. При t=0 грузу, находившемуся в положении равновесия, сообщена скорость v_0 . Исследовать движение груза в случаях $h^2 < 4km$ и $h^2 > 4km$.
- **632.** Решить предыдущую задачу при дополнительном условии, что к грузу приложена еще периодическая внешняя сила $f = b \sin \omega t$. Показать, что при любых начальных условиях движение груза будет приближаться к периодическому и найти это периодическое движение (вынужденные колебания).

- **633.** На конце упругого стержня укреплена масса m. Другой конец стержня вибрирует так, что его смещение в момент t равно $B\sin\omega t$. Упругая сила, возникающая в стержне, пропорциональна разности смещений его концов. Найти амплитуду A вынужденных колебаний массы m. Может ли быть A>B? (Массой стержня и трением пренебречь.)
- **634.** Частица массы m движется по оси Ox, отталкиваясь от точки x=0 с силой $3mr_0$ и притягиваясь к точке x=1 с силой $4mr_1$, где r_0 и r_1 расстояния до этих точек. Определить движение частицы с начальными условиями

$$x(0) = 2, \quad \dot{x}(0) = 0.$$

- **635.** Электрическая цепь состоит из последовательно включенных источника постоянного тока, дающего напряжение V, сопротивления R, самоиндукции L и выключателя, который включается при t=0. Найти зависимость силы тока от времени (при t>0).
- ${f 636.}$ Решить предыдущую задачу, заменив самоиндукцию L конденсатором емкости C. Конденсатор до замыкания цепи не заряжен.
- **637.** Последовательно включены сопротивление R и конденсатор емкости C, заряд которого при t=0 равен q. Цепь замыкается при t=0. Найти силу тока в цепи при t>0.
- **638.** Последовательно включены самоиндукция L, сопротивление R и конденсатор емкости C, заряд которого при t=0 равен q. Цепь замыкается при t=0. Найти силу тока в цепи и частоту колебаний в том случае, когда разряд носит колебательный характер.
- **639.** Последовательно включены источник тока, напряжение которого меняется по закону $E{=}V\sin\omega t$, сопротивление R и самоиндукция L. Найти силу тока в цепи (установившийся режим).
- **640.** Последовательно включены источник тока, напряжение которого меняется по закону $E=V\sin\omega t$, сопротивление R, самоиндукция L и емкость C. Найти силу тока в цепи (установившийся режим). При какой частоте ω сила тока наибольшая?

§ 12. ЛИНЕЙНЫЕ УРАВНЕНИЯ С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ

- 1. Большинство задач этого параграфа решается с помощью методов общей теории линейных дифференциальных уравнений (см. [1], гл. V, \S 2, \S 3 или [4], гл. 2, \S 3, \S 5) и методов качественного исследования линейных уравнений второго порядка (см. [1], гл. VI, \S 2, п. 1, п. 3). К остальным задачам даны указания или ссылки на литературу.
- 2. Если известно частное решение y_1 линейного однородного уравнения n-го порядка, то порядок уравнения можно понизить, сохраняя линейность уравнения. Для этого в уравнение надо подставить $y=y_1z$ и затем понизить порядок заменой z'=u.

Чтобы найти общее решение линейного однородного уравнения второго порядка $a_0(x)y''+a_1(x)y'+a_2(x)y=0$, у которого известно одно частное решение y_1 , можно понизить порядок уравнения указанным выше способом. Однако удобнее воспользоваться формулой Остроградского — Лиувилля:

$$\left| egin{array}{cc} y_1 & y_2 \ y_1' & y_2' \end{array}
ight| = C \mathrm{e}^{-\int p(x) \, \mathrm{d}x}, \quad p(x) = rac{a_1(x)}{a_0(x)},$$

где y_1 и y_2 — любые два решения данного уравнения.

 Π р и м е р. Π усть известно частное решение $y_1=x$ уравнения

$$(x^{2}+1)y''-2xy'+2y=0. (1)$$

По формуле Остроградского — Лиувилля получим

$$\left| \begin{array}{cc} y_1 & y_2 \\ y_1' & y_2' \end{array} \right| = C \mathrm{e}^{-\int \left(\frac{-2x}{x^2+1}\right) \, \mathrm{d}x}; \quad y_1 y_2' - y_1' y_2 = C(x^2+1).$$

Так как функция y_1 известна, то мы получили линейное уравнение первого порядка относительно y_2 . Проще всего оно решается следующим способом. Разделив обе части уравнения на y_1^2 , получим слева производную от дроби y_2/y_1

$$\left(\frac{y_2}{y_1}\right)' = \frac{y_1y_2' - y_1'y_2}{y_1^2} = \frac{C(x^2+1)}{y_1^2}.$$

Так как $y_1 = x$, то

$$\frac{y_2}{y_1} = \int C \cdot \frac{x^2 + 1}{x^2} dx + C_2 = C \left(x - \frac{1}{x} \right) + C_2;$$
$$y_2 = C(x^2 - 1) + C_2 x.$$

Это — общее решение уравнения (1).

3. Общего метода для отыскания частного решения линейного уравнения второго порядка не существует. В некоторых случаях решение удается найти путем подбора.

Пример. Найти частное решение уравнения

$$(1 - 2x^2)y'' + 2y' + 4y = 0, (2)$$

являющееся алгебраическим многочленом (если такое решение существует).

Сначала найдем степень многочлена. Подставляя $y=x^n+\dots$ в уравнение (2) и выписывая только члены с самой старшей степенью буквы x, получим: $-2x^2\cdot n(n-1)x^{n-2}+\dots+4x^n+\dots=0$. Приравнивая нулю коэффициент при старшей степени x, получим: -2n(n-1)+4=0; $n^2-n-2=0$. Отсюда $n_1=2$; корень $n_2=-1$ не годен (степень многочлена — целое положительное число). Итак, многочлен может быть только второй степени. Ищем его в виде $y=x^2+ax+b$. Подставляя в уравнение (2), получим (4a+4)x+2+2a+4b=0. Следовательно, 4a+4=0, 2+2a+4b=0. Отсюда a=-1, b=0. Итак, многочлен $y=x^2-x$ является частным решением.

4. При решении задач **738—750** воспользоваться следующими утверждениями, вытекающими, например, из § 7 гл. V книги [5].

Пусть $|f(t)|\leqslant rac{c}{t^{1+lpha}}$ при $t_0\leqslant t<\infty;\, c,\, lpha={
m const}>0.$ Тогда

1) уравнение $u^{''}+(1+f(t))u=0$ имеет два таких линейно независимых решения, что при $t\to +\infty$

$$u_1(t) = \cos t + O\left(\frac{1}{t^{\alpha}}\right), \ u_2(t) = \sin t + O\left(\frac{1}{t^{\alpha}}\right);$$

2) уравнение u'' - (1 - f(t))u = 0 имеет два таких линейно независимых решения, что при $t \to +\infty$

$$u_1(t) = e^t \left(1 + O\left(\frac{1}{t^{\alpha}}\right) \right), \ u_2(t) = e^{-t} \left(1 + O\left(\frac{1}{t^{\alpha}}\right) \right).$$

В задачах **641—662** исследовать, являются ли данные функции линейно зависимыми. В каждой задаче функции рассматриваются в той области, в которой они все определены.

641.
$$x + 2$$
, $x - 2$. **642.** $6x + 9$, $8x + 12$.

643.
$$\sin x$$
, $\cos x$. **644.** 1, x , x^2 .

645.
$$4-x$$
, $2x+3$, $6x+8$.

646.
$$x^2 + 2$$
, $3x^2 - 1$, $x + 4$.

647.
$$x^2 - x + 3$$
, $2x^2 + x$, $2x - 4$.

648.
$$e^x$$
, e^{2x} , e^{3x} .

649. x, e^x, xe^x .

650. 1,
$$\sin^2 x$$
, $\cos 2x$.

651. sh x, ch x, $2 + e^x$.

652.
$$\ln(x^2)$$
, $\ln 3x$, 7.

653. $x, 0, e^x$.

654. sh x, ch x,
$$2e^x - 1$$
, $3e^x + 5$.

655.
$$2^x$$
, 3^x , 6^x .

656. $\sin x$, $\cos x$, $\sin 2x$.

657.
$$\sin x$$
, $\sin(x+2)$, $\cos(x-5)$.

658.
$$\sqrt{x}$$
, $\sqrt{x+1}$, $\sqrt{x+2}$.

659. $\operatorname{arctg} x$, $\operatorname{arcctg} x$, 1.

660.
$$x^2$$
, $x|x|$.

661. x, |x|, $2x + \sqrt{4x^2}$.

662.
$$x, x^3, |x^3|$$
.

663. а) Являются ли линейно зависимыми на отрезке $[a,\,b]$ функции, графики которых изображены на рис. 1? б) Тот же вопрос для рис. 2.

a O b x

Рис. 1

Рис. 2

- **664.** Известно, что для функций y_1, \ldots, y_n детерминант Вронского в точке x_0 равен нулю, а в точке x_1 не равен нулю. Можно ли что-нибудь сказать о линейной зависимости (или независимости) этих функций на отрезке $[x_0, x_1]$?
- **665.** Детерминант Вронского для функций y_1, \ldots, y_n равен нулю при всех x. Могут ли быть эти функции линейно зависимыми? Линейно независимыми?

- **666.** Что можно сказать о детерминанте Вронского функций y_1, \ldots, y_n , если только известно, а) что они линейно зависимы? б) что они линейно независимы?
- **667.** Функции $y_1=x,\ y_2=x^5,\ y_3=|x^5|$ удовлетворяют уравнению $x^2y''-5xy'+5y=0$. Являются ли они линейно зависимыми на интервале (-1,1)? Объяснить ответ.
- **668.** Доказать, что два решения уравнения y'' + p(x)y' + q(x)y = 0 (с непрерывными коэффициентами), имеющие максимум при одном и том же значении x, линейно зависимы.
- **669.** Даны 4 решения уравнения y''' + xy = 0, графики которых касаются друг друга в одной точке. Сколько линейно независимых имеется среди этих решений?
- **670.** Пользуясь известным утверждением об интервале существования решения линейного уравнения ([1], гл. V, конец § 1), определить, на каком интервале существует решение данного уравнения с указанными начальными условиями (не решая уравнения): а) (x+1)y''-2y=0, y(0)=0, y'(0)=2; б) $y''+y\operatorname{tg} x=0$, y(5)=1, y'(5)=0.
- **671.** Могут ли графики двух решений уравнения $y^{(n)}+p_1(x)y^{(n-1)}+\ldots+p_n(x)y=0$ (с непрерывными коэффициентами) на плоскости x,y а) пересекаться, б) касаться друг друга?
- **672.** При каких n уравнение задачи **671** может иметь частное решение $y=x^3$?
- **673.** Линейное однородное уравнение какого порядка на интервале (0, 1) может иметь такие четыре частных решения: $y_1 = x^2 2x + 2, y_2 = (x 2)^2, y_3 = x^2 + x 1, y_4 = 1 x?$

В каждой из задач **674—680** составить линейное однородное дифференциальное уравнение (возможно меньшего порядка), имеющее данные частные решения.

674. 1,
$$\cos x$$
.

675.
$$x$$
, e^x .

676.
$$3x$$
, $x-2$, e^x+1 .

677.
$$x^2 - 3x$$
, $2x^2 + 9$, $2x + 3$.

678.
$$e^x$$
, $sh x$, $ch x$.

679.
$$x, x^2, e^x$$
.

680.
$$x, x^3, |x^3|$$
.

В задачах **681—701** найти общие решения данных уравнений, зная их частные решения. В тех задачах, где частное решение не дано, можно искать его путем подбора, например, в виде показательной функции $y_1 = e^{ax}$ или алгебраического многочлена $y_1 = x^n + ax^{n-1} + bx^{n-2} + \dots$

681.
$$(2x+1)y'' + 4xy' - 4y = 0$$
.

682.
$$x^2(x+1)y''-2y=0$$
; $y_1=1+\frac{1}{x}$.

683.
$$xy'' - (2x+1)y' + (x+1)y = 0.$$

684.
$$xy'' + 2y' - xy = 0$$
; $y_1 = \frac{e^x}{x}$.

685.
$$y'' - 2(1 + tg^2 x)y = 0$$
; $y_1 = tg x$.

686.
$$x(x-1)y'' - xy' + y = 0$$
.

687.
$$(e^x + 1)y'' - 2y' - e^x y = 0$$
; $y_1 = e^x - 1$.

688.
$$x^2y'' \ln x - xy' + y = 0$$
.

689.
$$y'' - y' \operatorname{tg} x + 2y = 0$$
; $y_1 = \sin x$.

690.
$$(x^2-1)y''+(x-3)y'-y=0$$
.

691.
$$xy'' - (x+1)y' - 2(x-1)y = 0.$$

692.
$$y'' + 4xy' + (4x^2 + 2)y = 0$$
; $y_1 = e^{ax^2}$.

693.
$$xy'' - (2x+1)y' + 2y = 0$$
.

694.
$$x(2x+1)y'' + 2(x+1)y' - 2y = 0$$
.

695.
$$x(x+4)y'' - (2x+4)y' + 2y = 0.$$

696.
$$x(x^2+6)y''-4(x^2+3)y'+6xy=0.$$

697.
$$(x^2+1)y''-2y=0$$
.

698.
$$2x(x+2)y'' + (2-x)y' + y = 0$$
.

699.
$$xy''' - y'' - xy' + y = 0$$
; $y_1 = x$, $y_2 = e^x$.

700.
$$x^2(2x-1)y''' + (4x-3)xy'' - 2xy' + 2y = 0;$$

 $y_1 = x, y_2 = 1/x.$

701.
$$(x^2 - 2x + 3)y''' - (x^2 + 1)y'' + 2xy' - 2y = 0;$$

 $y_1 = x, y_2 = e^x.$

В задачах 702, 703 найти общее решение линейного неоднородного уравнения, если известно, что частное решение соответствующего однородного уравнения является многочленом.

702.
$$(x+1)xy'' + (x+2)y' - y = x + \frac{1}{x}$$
.

703.
$$(2x+1)y'' + (2x-1)y' - 2y = x^2 + x$$
.

В задачах 704, 705, зная два частных решения линейного неоднородного уравнения второго порядка, найти его общее решение.

704.
$$(x^2 - 1)y'' + 4xy' + 2y = 6x$$
; $y_1 = x$, $y_2 = \frac{x^2 + x + 1}{x + 1}$.

705.
$$(3x^3 + x)y'' + 2y' - 6xy = 4 - 12x^2$$
; $y_1 = 2x$, $y_2 = (x+1)^2$.

В уравнениях **706—710** линейной заменой искомой функции y=a(x)z уничтожить член с первой производной.

706.
$$x^2y'' - 2xy' + (x^2 + 2)y = 0$$
.

707.
$$x^2y'' - 4xy' + (6 - x^2)y = 0$$
.

708.
$$(1+x^2)y'' + 4xy' + 2y = 0$$
.

709.
$$x^2y'' + 2x^2y' + (x^2 - 2)y = 0$$
.

710.
$$xy'' + y' + xy = 0$$
.

В уравнениях **711—715** заменой независимого переменного $t=\varphi(x)$ уничтожить член с первой производной.

711.
$$xy'' - y' - 4x^3y = 0$$
.

712.
$$(1+x^2)y'' + xy' + y = 0$$
.

713.
$$x^2(1-x^2)y'' + 2(x-x^3)y' - 2y = 0.$$

714.
$$y'' - y' + e^{4x}y = 0$$
.

715.
$$2xy'' + y' + xy = 0$$
.

716. Зная три частных решения $y_1 = 1, y_2 = x, y_3 = x^2$ линейного неоднородного уравнения второго порядка, написать его общее решение.

717. Что можно сказать о функции p(x), если известно, что все решения уравнения y''+p(x)y'+q(x)y=0 при $x\to\infty$ стремятся к нулю вместе со своими первыми производными?

Указание. Воспользоваться формулой Лиувилля.

- **718.** Доказать, что в случае q(x) < 0 решения уравнения y'' + p(x)y' + q(x)y = 0 не могут иметь положительных максимумов.
- **719.** Где могут лежать точки перегиба графиков решений уравнения $y^{\prime\prime}+q(x)y=0$?
- **720.** Могут ли графики двух решений уравнения y''+q(x)y=0 (функция q(x) непрерывна) располагаться так, как на рис. 3,a? рис. 3, δ ? рис. 3, ϵ ?

Рис. 3

- **721.** Доказать, что отношение двух любых линейно независимых решений уравнения y'' + p(x)y' + q(x)y = 0 (с непрерывными коэффициентами) не может иметь точек локального максимума.
- **722.** Доказать, что в случае q(x)>0 для любого решения уравнения y''+q(x)y=0 отношение y'(x)/y(x) убывает при возрастании x на интервале, где $y(x)\neq 0$.

- **723.** Доказать, что в случае $q(x)\leqslant 0$ все решения уравнения y''+q(x)y=0 с положительными начальными условиями $y(x_0)>0,$ $y'(x_0)>0$ остаются положительными при всех $x>x_0$.
- **724.** Доказать, что решение уравнения $y''-x^2y=0$ с начальными условиями y(0)=1, y'(0)=0 есть четная функция, всюду положительная.
 - **725*.** Доказать, что в случае $q(x) \leqslant 0$ краевая задача

$$y'' + q(x)y = 0$$
, $y(x_1) = a$, $y(x_2) = b$

при любых a, b и $x_1 \neq x_2$ имеет единственное решение. Доказать, что это решение — монотонная функция, если b = 0.

726. Найти расстояние между двумя соседними нулями любого (не тождественно равного нулю) решения уравнения y''+my=0, где $m=\mathrm{const}>0$. Сколько нулей может содержаться на отрезке $a\leqslant x\leqslant b$?

В задачах **727**—**730**, используя результат предыдущей задачи и теорему сравнения (см. [1], гл. VI, \S 2, п. 3), оценить сверху и снизу расстояние между двумя соседними нулями любого (не тождественно равного нулю) решения следующих уравнений на заданном отрезке.

727.
$$y'' + 2xy = 0$$
, $20 \le x \le 45$.

728.
$$xy'' + y = 0$$
, $25 \le x \le 100$.

729.
$$y'' - 2xy' + (x+1)^2y = 0$$
, $4 \le x \le 19$.

730.
$$y'' - 2e^x y' + e^{2x} y = 0,$$
 $2 \le x \le 6.$

- 731^* . Доказать, что любое решение уравнения y'' + xy = 0 на отрезке $-25 \leqslant x \leqslant 25$ имеет не менее 15 нулей.
- **732.** Пусть x_1, x_2, \ldots расположенные в порядке возрастания последовательные нули решения уравнения y''+q(x)y=0, где q(x)>0; при $x_1\leqslant x<\infty$ функция q(x) непрерывна и возрастает. Доказать, что $x_{n+1}-x_n< x_n-x_{n-1}$ (т. е. расстояние между соседними нулями убывает).
- **733.** В предыдущей задаче обозначим через c конечный или бесконечный предел функции q(x) при $x \to \infty$. Доказать, что $\lim_{n \to \infty} (x_{n+1} x_n) = \pi/\sqrt{c}$.

734*. Пусть y и z — решения уравнений y''+q(x)y=0 и z''+Q(x)z=0 с совпадающими начальными условиями $y(x_0)=z(x_0),\ y'(x_0)=z'(x_0)$ и на интервале (x_0,x_1) имеем $Q(x)>q(x),\ y(x)>0,\ z(x)>0$. Доказать, что на этом интервале отношение z(x)/y(x) убывает.

 735^* . Пусть выполнены условия задачи 732 и пусть $b_n = \max_{x_n \leqslant x \leqslant x_{n+1}} |y(x)|$. Доказать, что $b_1 > b_2 > b_3 > \dots$

 ${f 736^*}.$ Пусть в задаче ${f 733}$ предел c конечный. Доказать, что $b_n o B>0$ при $n o \infty$ (в обозначениях задачи ${f 735}$).

 737^* . Заменой независимого переменного $t=\varphi(x)$ привести уравнение $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}\pm\frac{y}{(\psi(x))^4}=0$ к виду $\frac{\mathrm{d}^2 y}{\mathrm{d} t^2}+b(t)\frac{\mathrm{d} y}{\mathrm{d} t}\pm y=0$, затем избавиться от первой производной заменой y=a(t)u. (Это преобразование называется преобразованием Лиувилля. Во многих случаях оно позволяет привести уравнение y''+q(x)y=0 к уравнению аналогичного вида, но с «почти постоянным» (слабо меняющимися на интервале (t_0,∞)) коэффициентом при y. Это облегчает исследование асимптотического поведения решения при $x\to\infty$.)

В задачах **738**—**748** исследовать асимптотическое поведение при $x \to +\infty$ решений данных уравнений, пользуясь преобразованием Лиувилля (см. задачу **737**) и утверждениями п. 4 (стр. 77).

738.
$$y'' + x^4y = 0$$
.

739.
$$y'' - x^2y = 0$$
.

740.
$$y'' + x^2y = 0$$
.

741.
$$y'' + e^{2x}y = 0$$
.

742.
$$xy'' - y = 0$$
.

743.
$$y'' - xy = 0$$
.

744.
$$xy'' + 2y' + y = 0$$
.

745.
$$y'' - 2(x-1)y' + x^2y = 0$$
.

746*.
$$y'' + (x^4 + 1)y = 0$$
.

747*.
$$(x^2+1)y''-y=0$$
.

748*.
$$x^2y'' + y \ln^2 x = 0$$
.

В задачах **749—750** получить более точное асимптотическое представление решений данных уравнений, применяя два раза преобразование Лиувилля.

749*.
$$y'' - 4x^2y = 0$$
.

750*.
$$xy'' + y = 0$$
.

§ 13. КРАЕВЫЕ ЗАДАЧИ

1. Для отыскания решения краевой задачи

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = f(x), \quad x_0 \leqslant x \leqslant x_1,$$
 (1)

$$\alpha y'(x_0) + \beta y(x_0) = 0, \quad \gamma y'(x_1) + \delta y(x_1) = 0$$
 (2)

надо подставить общее решение уравнения (1) в краевые условия (2) и из этих условий определить (если это возможно) значения произвольных постоянных, входящих в формулу общего решения. В отличие от задачи с начальными условиями (задачи Коши), краевая задача не всегда имеет решение.

- 2. Функцией Грина краевой задачи (1), (2) называется функция G(x, s), определенная при $x_0 \leqslant x \leqslant x_1, x_0 < s < x_1$, и при каждом фиксированном s из отрезка $[x_0, x_1]$ обладающая свойствами (как функция от x):
 - 1) при $x \neq s$ она удовлетворяет уравнению

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = 0;$$
 (3)

- 2) при $x = x_0$ и $x = x_1$ она удовлетворяет заданным краевым условиям (2);
- 3) при x=s она непрерывна по x, а ее производная по x имеет скачок, равный $1/a_0(s)$, т. е.

$$G(s+0, s) = G(s-0, s), \quad G'_x \Big|_{x=s+0} = G'_x \Big|_{x=s-0} + \frac{1}{a_0(s)}.$$
 (4)

Чтобы найти функцию Грина краевой задачи (1), (2), надо найти два решения $y_1(x)$ и $y_2(x)$ (отличных от $y(x)\equiv 0$) уравнения (3), удовлетворяющие соответственно первому и второму из краевых условий (2). Если $y_1(x)$ не удовлетворяет сразу обоим краевым условиям, то функция Грина существует и ее можно искать в виде

$$G(x, s) = \begin{cases} ay_1(x) & (x_0 \leqslant x \leqslant s), \\ by_2(x) & (s \leqslant x \leqslant x_1). \end{cases}$$
 (5)

Функции a и b зависят от s и определяются из требования, чтобы функция (5) удовлетворяла условиям (4), т. е.

$$by_2(s) = ay_1(s), \quad by_2'(s) = ay_1'(s) + \frac{1}{a_0(s)}.$$

3. Если функция Грина G(x, s) существует, то решение краевой задачи (1), (2) выражается формулой

$$y(x) = \int\limits_{x_0}^{x_1} G(x,\,s) f(s)\,\mathrm{d}s.$$

4. Собственным значением задачи

$$a_0(x)y'' + a_1(x)y' + a_2(x)y = \lambda y,$$
 (6)

$$\alpha y'(x_0) + \beta y(x_0) = 0, \quad \gamma y'(x_1) + \delta y(x_1) = 0$$
 (7)

называется такое число λ , при котором уравнение (6) имеет решение $y(x)\not\equiv 0$, удовлетворяющее краевым условиям (7). Это решение y(x) называется собственной функцией.

Найти решения уравнений **751—762**, удовлетворяющие указанным краевым условиям.

751.
$$y'' - y = 2x$$
; $y(0) = 0$, $y(1) = -1$.

752.
$$y'' + y' = 1$$
; $y'(0) = 0$, $y(1) = 1$.

753.
$$y'' - y' = 0$$
; $y(0) = -1$, $y'(1) - y(1) = 2$.

754.
$$y'' + y = 1$$
; $y(0) = 0$, $y(\frac{\pi}{2}) = 0$.

755.
$$y'' + y = 1$$
; $y(0) = 0$, $y(\pi) = 0$.

756.
$$y'' + y = 2x - \pi$$
; $y(0) = 0$, $y(\pi) = 0$.

757.
$$y'' - y' - 2y = 0$$
; $y'(0) = 2$, $y(+\infty) = 0$.

758. $y'' - y = 1; \quad y(0) = 0, \quad y(x)$ ограничено при $x \to +\infty.$

759.
$$y'' - 2iy = 0$$
; $y(0) = -1$, $y(+\infty) = 0$.

760.
$$x^2y'' - 6y = 0$$
; $y(0)$ ограничено, $y(1) = 2$.

761.
$$x^2y'' - 2xy' + 2y = 0; \quad y(x) = o(x)$$
 при $x \to 0,$ $y(1) = 3.$

762.
$$x^2y'' + 5xy' + 3y = 0; \quad y'(1) = 3, \ \ y(x) = O(x^{-2})$$
 при $x \to +\infty.$

763*. При каких a краевая задача $y'' + ay = 1, \ y(0) = 0, \ y(1) = 0$ не имеет решений?

Для каждой из краевых задач **764—779** построить функцию Грина.

764.
$$y'' = f(x)$$
; $y(0) = 0$, $y(1) = 0$.

765.
$$y'' + y = f(x)$$
; $y'(0) = 0$, $y(\pi) = 0$.

766.
$$y'' + y' = f(x)$$
; $y(0) = 0$, $y'(1) = 0$.

767.
$$y'' - y = f(x)$$
; $y'(0) = 0$, $y'(2) + y(2) = 0$.

768*.
$$y'' + y = f(x)$$
; $y(0) = y(\pi)$, $y'(0) = y'(\pi)$.

769.
$$x^2y'' + 2xy' = f(x)$$
; $y(1) = 0$, $y'(3) = 0$.

770.
$$xy'' - y' = f(x)$$
; $y'(1) = 0$, $y(2) = 0$.

771.
$$x^2y'' - 2y = f(x)$$
; $y(1) = 0$, $y(2) + 2y'(2) = 0$.

772. $y''=f(x); \quad y(0)=0, \ \ y(x)$ ограничено при $x \to +\infty.$

773.
$$y'' + y' = f(x)$$
; $y'(0) = 0$, $y(+\infty) = 0$.

774. $xy'' + y' = f(x); \quad y(1) = 0, \ \ y(x)$ ограничено при $x \to +\infty.$

775.
$$y''+4y'+3y=f(x); \ y(0)=0, \ y(x)=O(\mathrm{e}^{-2x})$$
 при $x\to +\infty.$

776. $x^2y'' + xy' - y = f(x); \quad y(1) = 0, \quad y(x)$ ограничено при $x \to +\infty$.

777. $x^2y'' + 2xy' - 2y = f(x); \quad y(0)$ ограничено, y(1) = 0.

778. y'' - y = f(x), y(x) ограничено при $x \to \pm \infty$.

779. $x^2y''-2y=f(x),\;\;y(x)$ ограничено при $x\to 0$ и при $x\to +\infty$.

780. При каких a существует функция Грина краевой задачи y'' + ay = f(x), y(0) = 0, y(1) = 0?

781*. Оценить сверху и снизу решение задачи $x^2y'' + 2xy' - 2y = f(x)$, y(x) ограничено при $x \to 0$ и $x \to +\infty$, и его первую производную, если известно, что $0 \le f(x) \le m$.

Указание. Записать решение с помощью функции Грина.

В задачах 782—785 найти собственные значения и собственные функции.

782.
$$y'' = \lambda y$$
; $y(0) = 0$, $y(l) = 0$.

783.
$$y'' = \lambda y$$
; $y'(0) = 0$, $y'(l) = 0$.

784.
$$y'' = \lambda y;$$
 $y(0) = 0,$ $y'(l) = 0.$

785.
$$x^2y'' = \lambda y;$$
 $y(1) = 0,$ $y(a) = 0$ $(a > 1).$

§ 14. ЛИНЕЙНЫЕ СИСТЕМЫ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

1. Путем исключения неизвестных систему, вообще говоря, можно свести к уравнению более высокого порядка с одной неизвестной функцией (см. [1], гл. VII, \S 1, п. 2 или [4], гл. 3, \S 2). Этот способ удобен для решения лишь несложных систем.

Пример. Решить систему $\dot{x}=y+1,\ \dot{y}=2\mathrm{e}^t-x$. Исключаем y. Из первого уравнения имеем $y=\dot{x}-1$. Подставляя во второе уравнение, получаем $\ddot{x}=2\mathrm{e}^t-x$. Решив это уравнение второго порядка (методами $\S~11$), найдем $x=C_1\cos t+C_2\sin t+\mathrm{e}^t$. Значит, $y=\dot{x}-1=-C_1\sin t+C_2\cos t+\mathrm{e}^t-1$.

2. Для решения системы (где \dot{x} означает $\frac{\mathrm{d}x}{\mathrm{d}t}$)

$$\begin{cases} \dot{x}_1 = a_{11}x_1 + \dots + a_{1n}x_n, \\ \dots \\ \dot{x}_n = a_{n1}x_1 + \dots + a_{nn}x_n, \end{cases}$$
 (1)

или, в векторной записи, $\dot{x} = Ax$, где x — вектор, A — матрица:

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad A = \begin{pmatrix} a_{11} \dots a_{1n} \\ \dots \\ a_{n1} \dots a_{nn} \end{pmatrix},$$

надо найти корни характеристического уравнения

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$
 (2)

Каждому простому корню λ_i характеристического уравнения соответствует решение $C_i v^i e^{\lambda_i t}$, где C_i — произвольная постоянная. v^i — собственный вектор матрицы A, соответствующий это-MV λ_i .

Если для кратного корня λ имеется столько линейно независимых собственных векторов v^1, \ldots, v^k , какова его кратность, то ему соответствует решение $C_1 v^1 e^{\lambda t} + \ldots + C_k v^k e^{\lambda t}$.

Если для корня λ кратности k имеется только m линейно независимых собственных векторов, и m < k, то решение, соответствующее этому λ , можно искать в виде произведения многочлена степени k-m на $e^{\lambda t}$, т. е. в виде¹

$$\begin{cases}
 x_1 = (a + bt + \dots + dt^{k-m}) e^{\lambda t}, \\
 \dots \dots \dots \dots \\
 x_n = (p + qt + \dots + st^{k-m}) e^{\lambda t}.
\end{cases}$$
(3)

Чтобы найти коэффициенты a, b, \ldots, s , надо подставить решение (3) в систему (1). Приравняв коэффициенты подобных членов в левой и правой частях уравнений, получим систему линейных алгебраических уравнений относительно a, b, \ldots, s . Надо найти общее решение этой системы. Коэффициенты $a,\ b,\ \ldots,\ s$ должны зависеть от k произвольных постоянных, где k — кратность корня λ .

Найдя для каждого λ решения указанного вида и сложив их, получим общее решение системы (1).

Пример. Решить систему

$$\dot{x} = 2x + y + z, \ \dot{y} = -2x - z, \ \dot{z} = 2x + y + 2z.$$
 (4)

Составляем и решаем характеристическое уравнение

$$\begin{vmatrix} 2 - \lambda & 1 & 1 \\ -2 & -\lambda & -1 \\ 2 & 1 & 2 - \lambda \end{vmatrix} = 0, \tag{5}$$

$$\lambda^3 - 4\lambda^2 + 5\lambda - 2 = 0, \quad \lambda_1 = 2, \quad \lambda_2 = \lambda_3 = 1.$$

Для простого корня $\lambda_1=2$ находим собственный вектор (α, β, γ) , решая систему

$$\begin{cases} \beta + \gamma = 0, \\ -2\alpha - 2\beta - \gamma = 0, \\ 2\alpha + \beta = 0 \end{cases}$$
 (6)

 $^{^{1}\}mathrm{B}$ случае $k\leqslant 3$ число k-m нельзя уменьшить, а в случае $k\geqslant 4$ иногда можно, если известна жорданова форма матрицы A.

(коэффициенты этой системы равны элементам детерминанта (5) при $\lambda=2$). Из (6) находим $2\alpha=-\beta=\gamma$. Значит, вектор (1,-2,2) — собственный, и

$$x = e^{2t}, \quad y = -2e^{2t}, \quad z = 2e^{2t}$$
 (7)

— частное решение системы (4).

Для кратного корня $\lambda=1$ сначала определим число линейно независимых собственных векторов. При $\lambda=1$ из (5) получаем матрицу

$$\left(\begin{array}{rrr} 1 & 1 & 1 \\ -2 & -1 & -1 \\ 2 & 1 & 1 \end{array}\right).$$

Ее порядок n=3, ранг r=2. Число линейно независимых собственных векторов равно m=n-r=1. Корень $\lambda=1$ имеет кратность k=2. Так как k>m, то решение надо искать в виде произведения многочлена степени k-m=1 на $\mathrm{e}^{\lambda t}$, т. е. в виде

$$x = (a + bt)e^{t}, \quad y = (c + dt)e^{t}, \quad z = (f + gt)e^{t}.$$
 (8)

Чтобы найти коэффициенты a, b, \ldots , подставляем (8) в систему (4) и приравниваем коэффициенты при подобных членах. Получаем систему

$$b+d+g=0, b=a+c+f,
-2b-d-g=0, d=-2a-c-f,
2b+d+g=0, g=2a+c+f.$$
(9)

Найдем общее решение этой системы. Из двух левых уравнений имеем $b=0,\,g=-d.$ Подставляя это в остальные уравнения, получаем

$$0 = a + c + f, \quad d = -2a - c - f \tag{10}$$

(остальные уравнения будут следствиями написанных). Решаем систему (10), например, относительно a и f:

$$a = -d, \quad f = d - c.$$

Таким образом, все неизвестные выражены через c и d. Положив $c=C_1,\,d=C_2,\,$ имеем $a=-C_2,\,b=0,\,f=C_2-C_1,\,g=-C_2.$ Общее решение системы (9) найдено.

Подставив найденные значения a, b, \ldots в (8) и прибавив частное решение (7), умноженное на C_3 , получим общее решение системы (4):

$$x = -C_2 e^t + C_3 e^{2t}, \quad y = (C_1 + C_2 t) e^t - 2C_3 e^{2t},$$
$$z = (C_2 - C_1 - C_2 t) e^t + 2C_3 e^{2t}.$$

3. Другой способ решения системы (1). Для любой матрицы существует базис, в котором матрица имеет жорданову форму. Каждой клетке порядка $p \geqslant 1$ жордановой формы соответствует серия h_1, h_2, \ldots, h_p векторов базиса, удовлетворяющих уравнениям

$$Ah_{1} = \lambda h_{1}, h_{1} \neq 0,$$

$$Ah_{2} = \lambda h_{2} + h_{1},$$

$$Ah_{3} = \lambda h_{3} + h_{2},$$

$$\dots$$

$$Ah_{p} = \lambda h_{p} + h_{p-1}.$$
(11)

Вектор h_1 называется собственным, а h_2 , h_3 , ..., h_n — присоединенными. Каждой серии $h_1,\ h_2,\ \ldots,\ h_p$ соответствует p линейно независимых решений x^1, x^2, \ldots, x^p системы $\dot{x} = Ax$ (верхний индекс указывает номер решения):

$$x^{1} = e^{\lambda t} h_{1},$$

$$x^{2} = e^{\lambda t} \left(\frac{t}{1!} h_{1} + h_{2} \right),$$

$$x^{3} = e^{\lambda t} \left(\frac{t^{2}}{2!} h_{1} + \frac{t}{1!} h_{2} + h_{3} \right),$$

$$\dots$$

$$x^{p} = e^{\lambda t} \left(\frac{t^{p-1}}{(p-1)!} h_{1} + \frac{t^{p-2}}{(p-2)!} h_{2} + \dots + \frac{t}{1!} h_{p-1} + h_{p} \right).$$
(12)

Общее число всех таких решений равно сумме порядков всех клеток жордановой формы, т. е. порядку матрицы. Они составляют фундаментальную систему решений системы $\dot{x} = Ax$.

Правило для запоминания формул (12). Собственному вектору h_1 , соответствует решение $x^1=e^{\lambda t}h_1$. Если везде отбросить $e^{\lambda t}$, то каждая строка правой части (12) получится интегрированием по t предыдущей строки, причем постоянную интегрирования надо взять равной следующему по порядку вектору серии.

4. В случае, когда имеются комплексные корни λ , изложенные способы дают выражение решения через комплексные функции. Если при этом коэффициенты системы (1) вещественны, то можно выразить решение только через вещественные функции. Для этого надо воспользоваться тем, что вещественная и мнимая части комплексного решения, соответствующего корню $\lambda = \alpha + \beta i \ (\beta \neq 0)$, являются линейно независимыми решениями.

 Π р и м е р. Решить систему $\dot{x}=4x-y,\,\dot{y}=5x+2y.$ Составляем и решаем характеристическое уравнение

$$\begin{vmatrix} 4-\lambda & -1 \\ 5 & 2-\lambda \end{vmatrix} = 0, \quad \lambda^2 - 6\lambda + 13 = 0, \quad \lambda = 3 \pm 2i.$$

Для корня $\lambda = 3 + 2i$ находим собственный вектор (a, b):

$$\begin{cases} (1-2i)a - b = 0, \\ 5a - (1+2i)b = 0. \end{cases}$$

Можно взять $a=1,\,b=1-2i.$ Имеем частное решение $x=\mathrm{e}^{(3+2i)t},$ $y=(1-2i)\mathrm{e}^{(3+2i)t}.$

Так как данная система с вещественными коэффициентами, то решение, соответствующее корню $\lambda=3-2i$, можно не искать, оно будет комплексно сопряженным с найденным решением. Чтобы получить два вещественных решения, надо взять вещественную и мнимую части найденного комплексного решения. Так как $\mathrm{e}^{(3+2i)t}=\mathrm{e}^{3t}(\cos 2t+i\sin 2t),$ то

$$\begin{cases} x_1 = \operatorname{Re} e^{(3+2i)t} = e^{3t} \cos 2t, \\ y_1 = \operatorname{Re} (1-2i)e^{(3+2i)t} = e^{3y} (\cos 2t + 2\sin 2t), \end{cases}$$
$$\begin{cases} x_2 = \operatorname{Im} e^{(3+2i)t} = e^{3t} \sin 2t, \\ y_2 = \operatorname{Im} (1-2i)e^{(3+2i)t} = e^{3t} (\sin 2t - 2\cos 2t). \end{cases}$$

Общее решение выражается через два найденных линейно независимых решения:

$$x = C_1 x_1 + C_2 x_2 = C_1 e^{3t} \cos 2t + C_2 e^{3t} \sin 2t,$$

$$y = C_1 y_1 + C_2 y_2 = C_1 e^{3t} (\cos 2t + 2\sin 2t) + C_2 e^{3t} (\sin 2t - 2\cos 2t).$$

5. Чтобы решить систему

$$\begin{cases} a_{10}x^{(m)} + a_{11}x^{(m-1)} + \dots + a_{1m}x + \\ + b_{10}y^{(n)} + b_{11}y^{(n-1)} + \dots + b_{1n}y = 0, \\ a_{20}x^{(p)} + a_{21}x^{(p-1)} + \dots + a_{2p}x + \\ + b_{20}y^{(q)} + b_{21}y^{(q-1)} + \dots + b_{2q}y = 0, \end{cases}$$

не приведенную к нормальному виду, надо составить характеристическое уравнение

$$\begin{vmatrix} a_{10}\lambda^m + a_{11}\lambda^{m-1} + \dots + a_{1m} & b_{10}\lambda^n + b_{11}\lambda^{n-1} + \dots + b_{1n} \\ a_{20}\lambda^p + a_{21}\lambda^{p-1} + \dots + a_{2p} & b_{20}\lambda^q + b_{21}\lambda^{q-1} + \dots + b_{2q} \end{vmatrix} = 0$$

и найти его корни. После этого решение отыскивается тем же способом, как в п. 2.

Аналогично решаются системы трех и более уравнений.

6. Частное решение линейной неоднородной системы с постоянными коэффициентами

$$\dot{x}_i = a_{i1}x_1 + \ldots + a_{in}x_n + f_i(t), \quad i = 1, \ldots, n$$
 (13)

можно искать методом неопределенных коэффициентов в том случае, когда функции $f_i(t)$ состоят из сумм и произведений функций $b_0 + b_1 t + \ldots + b_m t^m$, $e^{\alpha t}$, $\cos \beta t$, $\sin \beta t$. Это делается по тем же правилам, что для одного линейного уравнения с постоянными коэффициентами, см. п. 2 § 11, со следующим изменением. Если $f_i(t) = P_{m_i}(t)e^{\gamma t}$, где $P_{m_i}(t)$ — многочлен степени m_i , то частное решение системы (13) ищется не в виде $t^s Q_m(t) e^{\gamma t}$, а в виде

$$x_i = Q_{m+s}^i(t) e^{\gamma t}, \quad i = 1, \dots, n,$$
 (14)

где $Q_{m+s}^{i}(t)$ — многочлены степени m+s с неизвестными коэффициентами, $m = \max m_i$, s = 0, если γ — не корень характеристического уравнения (2), а если γ — корень, то s можно взять равным кратности этого корня (или, точнее, s на 1 больше наибольшей из степеней многочленов, на которые vмножается $\mathrm{e}^{\gamma t}$ в обшем решении однородной системы). Неизвестные коэффициенты многочленов определяются путем подстановки выражений (14) в данную систему (13) и сравнения коэффициентов подобных членов.

Аналогично определяются степени многочленов и в случае. когда $f_i(t)$ содержат $e^{\alpha t}\cos\beta t$ и $e^{\alpha t}\sin\beta t$, а число $\gamma=\alpha+\beta i$ является корнем характеристического уравнения.

Пример. Решить систему

$$\begin{cases} \dot{x} = 4x - y + e^{3t}(t + \sin t), \\ \dot{y} = x + 2y + t e^{3t} \cos t. \end{cases}$$
 (15)

Сначала для однородной системы $\dot{x} = 4x - y, \ \dot{y} = x + 2y$ находим корни $\lambda_1 = \lambda_2 = 3$ и как в п. 2 отыскиваем общее решение

$$x_0 = (C_1 t + C_2) e^{3t}, \quad y_0 = (C_1 t + C_2 - C_1) e^{3t}.$$

В системе (15) для функций $t e^{3t}$, $e^{3t} \sin t$, $t e^{3t} \cos t$ числа $\alpha + \beta i$ соответственно равны 3, 3+i, 3+i. Поэтому надо отдельно найти частные решения систем

$$\dot{x} = 4x - y + t e^{3t}, \qquad \dot{y} = x + 2y,$$
 (16)

$$\dot{x} = 4x - y + e^{3t} \sin t, \quad \dot{y} = x + 2y + t e^{3t} \cos t.$$
 (17)

Для системы (16) $\alpha+\beta i=3=\lambda_1=\lambda_2,\, s=2,\, m=1.$ Согласно (14), частное решение можно искать в виде

$$x_1 = (at^3 + bt^2 + ct + d) e^{3t}, \quad y_1 = (ft^3 + gt^2 + ht + j) e^{3t}.$$

Для системы (17) $\alpha + \beta i = 3 + i \neq \lambda_{1,2}, \ s = 0, \ m = 1.$ Частное решение имеет вид

$$x_2 = (kt + l) e^{3t} \sin t + (mt + n) e^{3t} \cos t,$$

 $y_2 = (pt + q) e^{3t} \sin t + (rt + s) e^{3t} \cos t.$

Отыскав значения коэффициентов $a, b, \ldots,$ общее решение системы (15) напишем в виде

$$x = x_0 + x_1 + x_2, \quad y = y_0 + y_1 + y_2.$$

7. Решение неоднородной системы

$$\dot{x}_i = a_{i1}(t)x_1 + \ldots + a_{in}(t)x_n + f_i(t), \quad i = 1, \ldots, n$$

можно найти методом вариации постоянных, если известно общее решение однородной системы с теми же коэффициентами $a_{ik}(t)$. Для этого в формуле общего решения однородной системы надо заменить произвольные постоянные C_i на неизвестные функции $C_i(t)$. Полученные выражения для x_i надо подставить в данную неоднородную систему, и из этой системы найти $C_i(t)$.

8. Показательной функцией e^A матрицы A называется сумма ряда

$$e^A = E + \frac{A}{1!} + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots,$$
 (18)

где E — единичная матрица. Ряд сходится для любой матрицы A. Свойства ${
m e}^A$:

- а) если $A = CMC^{-1}$, то $e^A = C e^M C^{-1}$;
- б) если AB = BA, то $e^{A+B} = e^A \cdot e^B = e^B \cdot e^A$;
- в) матрица $X(t)=\mathrm{e}^{tA}$ удовлетворяет уравнению $\frac{\mathrm{d}X}{\mathrm{d}t}=AX;$ X(0)=E.

Методы отыскания e^A :

1) Путем решения системы дифференциальных уравнений. В силу свойства в) i-й столбец матрицы e^{tA} есть решение системы уравнений (в векторной записи) $\dot{x}=Ax$ с начальными условиями $x_i(0)=1,\,x_k(0)=0$ при $k\neq i\,\,(x_i$ — i-я координата вектора x).

2) Путем приведения матрицы к жордановой форме. Пусть известна такая матрица C, что матрица $C^{-1}AC = M$ имеет жорданову форму, т. е. состоит из клеток K_i . Каждая жорданова клетка имеет вид $K=\lambda E+F$, у матрицы F все элементы нули, кроме 1-го косого ряда над диагональю. Поэтому $F^m = 0$, где m — порядок матрицы F, и e^F легко найти с помощью ряда (18). Так как еще $e^{\lambda E} = e^{\lambda} E$, to

$$\mathbf{e}^K = \mathbf{e}^{\lambda E + F} = \mathbf{e}^{\lambda E} \cdot \mathbf{e}^F = \mathbf{e}^{\lambda} \, E \cdot \mathbf{e}^F = \mathbf{e}^{\lambda} \, \mathbf{e}^F \, .$$

Составив из клеток e^{K_i} матрицу e^M , найдем e^A с помощью свойства а). Доказательства и пример см. в [5], гл. 1, §§ 12-14.

В задачах 786—812 решить данные системы уравнений $(\dot{x}$ означает $\frac{\mathrm{d}x}{\mathrm{d}t}$, и т. д.; для облегчения работы в некоторых задачах указаны корни характеристического уравнения).

$$786. \begin{cases} \dot{x} = 2x + y, \\ \dot{y} = 3x + 4y. \end{cases}$$

$$787. \begin{cases} \dot{x} = x - y, \\ \dot{y} = y - 4x. \end{cases}$$

$$788. \begin{cases} \dot{x} + x - 8y = 0, \\ \dot{y} - x - y = 0. \end{cases}$$

$$789. \begin{cases} \dot{x} = x + y, \\ \dot{y} = 3y - 2x. \end{cases}$$

$$790. \begin{cases} \dot{x} = x - 3y, \\ \dot{y} = 3x + y. \end{cases}$$

$$791. \begin{cases} \dot{x} = x + 5y = 0, \\ \dot{y} - x - y = 0. \end{cases}$$

$$792. \begin{cases} \dot{x} = 2x + y, \\ \dot{y} = 4y - x. \end{cases}$$

$$793. \begin{cases} \dot{x} = 3x - y, \\ \dot{y} = 4x - y. \end{cases}$$

$$794. \begin{cases} \dot{x} = 2y - 3x, \\ \dot{y} = y - 2x. \end{cases}$$

$$795. \begin{cases} \dot{x} = 5x - 3y = 0, \\ \dot{y} + 3x + y = 0. \end{cases}$$

$$796. \begin{cases} \dot{x} = x + z - y, \\ \dot{y} = x + y - z, \\ \dot{z} = 2x - y \end{cases}$$

$$797. \begin{cases} \dot{x} = x - 2y - z, \\ \dot{y} = y - x + z, \\ \dot{z} = x - z \end{cases}$$

$$798. \begin{cases} \dot{x} = 2x - y + z, \\ \dot{y} = x + 2y - z, \end{cases}$$

$$799. \begin{cases} \dot{x} = 3x - y + z, \\ \dot{y} = x + y + z, \\ \dot{z} = 4x - y + 4z \end{cases}$$

$$(\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3).$$

$$(\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 5).$$

В задачах **813—825** решить системы, не приведенные к нормальному виду.

813.
$$\begin{cases} \ddot{x} = 2x - 3y, \\ \ddot{y} = x - 2y. \end{cases}$$
 814.
$$\begin{cases} \ddot{x} = 3x + 4y, \\ \ddot{y} = -x - y. \end{cases}$$

815.
$$\begin{cases} \ddot{x} = 2y, \\ \ddot{y} = -2x. \end{cases}$$
816.
$$\begin{cases} \ddot{x} = 3x - y - z, \\ \ddot{y} = -x + 3y - z, \\ \ddot{z} = -x - y + 3z. \end{cases}$$

817.
$$\begin{cases} 2\dot{x} - 5\dot{y} = 4y - x, \\ 3\dot{x} - 4\dot{y} = 2x - y. \end{cases}$$
 818.
$$\begin{cases} \ddot{x} + \dot{x} + \dot{y} - 2y = 0, \\ \dot{x} - \dot{y} + x = 0. \end{cases}$$

819.
$$\begin{cases} \ddot{x} - 2\ddot{y} + \dot{y} + x - 3y = 0, \\ 4\ddot{y} - 2\ddot{x} - \dot{x} - 2x + 5y = 0. \end{cases}$$

820.
$$\begin{cases} \ddot{x} - x + 2\ddot{y} - 2y = 0, \\ \dot{x} - x + \dot{y} + y = 0. \end{cases}$$

821.
$$\begin{cases} \ddot{x} - 2\dot{y} + 2x = 0, \\ 3\dot{x} + \ddot{y} - 8y = 0. \end{cases}$$
 822.
$$\begin{cases} \ddot{x} + 3\ddot{y} - x = 0, \\ \dot{x} + 3\dot{y} - 2y = 0. \end{cases}$$

823.
$$\begin{cases} \ddot{x} + 5\dot{x} + 2\dot{y} + y = 0, \\ 3\ddot{x} + 5x + \dot{y} + 3y = 0. \end{cases}$$

824.
$$\begin{cases} \ddot{x} + 4\dot{x} - 2x - 2\dot{y} - y = 0, \\ \ddot{x} - 4\dot{x} - \ddot{y} + 2\dot{y} + 2y = 0. \end{cases}$$

825.
$$\begin{cases} 2\ddot{x} + 2\dot{x} + x + 3\ddot{y} + \dot{y} + y = 0, \\ \ddot{x} + 4\dot{x} - x + 3\ddot{y} + 2\dot{y} - y = 0. \end{cases}$$

В задачах 826—845 решить линейные неоднородные системы.

826.
$$\begin{cases} \dot{x} = y + 2e^{t}, \\ \dot{y} = x + t^{2}. \end{cases}$$
827.
$$\begin{cases} \dot{x} = y - 5\cos t, \\ \dot{y} = 2x + y. \end{cases}$$
828.
$$\begin{cases} \dot{x} = 3x + 2y + 4e^{5t}, \\ \dot{y} = x + 2y. \end{cases}$$
829.
$$\begin{cases} \dot{x} = 2x - 4y + 4e^{-2t}, \\ \dot{y} = 2x - 2y. \end{cases}$$
830.
$$\begin{cases} \dot{x} = 4x + y - e^{2t}, \\ \dot{y} = y - 2x. \end{cases}$$
831.
$$\begin{cases} \dot{x} = 2y - x + 1, \\ \dot{y} = 3y - 2x. \end{cases}$$
832.
$$\begin{cases} \dot{x} = 5x - 3y + 2e^{3t}, \\ \dot{y} = x + y + 5e^{-t}. \end{cases}$$
833.
$$\begin{cases} \dot{x} = 2x + y + e^{t}, \\ \dot{y} = -2x + 2t. \end{cases}$$

84 § 14. Линейные системы с постоянными коэффициентами

834.
$$\begin{cases} \dot{x} = x + 2y, \\ \dot{y} = x - 5 \sin t. \end{cases}$$
835.
$$\begin{cases} \dot{x} = 2x - 4y, \\ \dot{y} = x - 3y + 3 e^{t}. \end{cases}$$
836.
$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = y - 2x + 18t. \end{cases}$$
837.
$$\begin{cases} \dot{x} = x + 2y + 16t e^{t}, \\ \dot{y} = 2x - 2y. \end{cases}$$
838.
$$\begin{cases} \dot{x} = 2x + 4y - 8, \\ \dot{y} = 3x + 6y. \end{cases}$$
839.
$$\begin{cases} \dot{x} = 2x - 3y, \\ \dot{y} = x - 2y + 2 \sin t. \end{cases}$$
840.
$$\begin{cases} \dot{x} = x - y + 2 \sin t, \\ \dot{y} = 2x - y. \end{cases}$$
841.
$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = x + 2 e^{t}. \end{cases}$$
842.
$$\begin{cases} \dot{x} = 4x - 3y + \sin t, \\ \dot{y} = 2x - y - 2 \cos t. \end{cases}$$
843.
$$\begin{cases} \dot{x} = 2x + y + 2 e^{t}, \\ \dot{y} = x + 2y - 3 e^{4t}. \end{cases}$$
844.
$$\begin{cases} \dot{x} = x - y + 8t, \\ \dot{y} = 5x - y. \end{cases}$$
845.
$$\begin{cases} \dot{x} = 2x - y, \\ \dot{y} = 2y - x - 5 e^{t} \sin t. \end{cases}$$

В задачах **846—850** данные системы решить методом вариации постоянных.

846.
$$\begin{cases} \dot{x} = y + \operatorname{tg}^2 t - 1, \\ \dot{y} = -x + \operatorname{tg} t. \end{cases}$$
847.
$$\begin{cases} \dot{x} = 2y - x, \\ \dot{y} = 4y - 3x + \frac{\mathrm{e}^{3t}}{\mathrm{e}^{2t} + 1}. \end{cases}$$
848.
$$\begin{cases} \dot{x} = -4x - 2y + \frac{2}{\mathrm{e}^t - 1}, \\ \dot{y} = 6x + 3y - \frac{3}{\mathrm{e}^t - 1}. \end{cases}$$
849.
$$\begin{cases} \dot{x} = x - y + \frac{1}{\cos t}, \\ \dot{y} = 2x - y. \end{cases}$$
850.
$$\begin{cases} \dot{x} = 3x - 2y, \\ \dot{y} = 2x - y + 15 \, \mathrm{e}^t \sqrt{t}. \end{cases}$$

Решить системы **851—866**, записанные в векторной форме: $\dot{x} = Ax$, где x — вектор, A — данная матрица.

851.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$.
852. $\dot{x} = Ax$, $A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$.

853.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 1 & -2 \\ 2 & -3 \end{pmatrix}$.

854.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix}$.

855.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 3 & -1 & -2 \end{pmatrix}$.

856.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 1 & -2 & 2 \\ 1 & 4 & -2 \\ 1 & 5 & -3 \end{pmatrix}$.

857.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} -1 & -2 & 2 \\ -2 & -1 & 2 \\ -3 & -2 & 3 \end{pmatrix}$.

858.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} -3 & 2 & 2 \\ -3 & -1 & 1 \\ -1 & 2 & 0 \end{pmatrix}$.

859.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 3 & -3 & 1 \\ 3 & -2 & 2 \\ -1 & 2 & 0 \end{pmatrix}$.

860.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

861.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 2 & 1 \end{pmatrix}$.

862.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$.

863.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} -2 & 1 & 2 \\ -1 & 0 & 2 \\ -2 & 0 & 3 \end{pmatrix}$.

864.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 2 & 2 & -3 \end{pmatrix}$.

865.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 4 & 2 & -2 \\ 1 & 3 & -1 \\ 3 & 3 & -1 \end{pmatrix}$.

866.
$$\dot{x} = Ax$$
, $A = \begin{pmatrix} 2 & 0 & -1 \\ 1 & -1 & 0 \\ 3 & -1 & -1 \end{pmatrix}$.

В задачах **867**—**873** найти показательную функцию e^A данной матрицы A.

$$867. \ A = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}.$$

$$868. \ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

$$869. \ A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}.$$

$$870. \ A = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix}.$$

$$871. \ A = \begin{pmatrix} -2 & -4 \\ 1 & 2 \end{pmatrix}.$$

$$872. \ A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

$$873. \ A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

В задачах **874** и **875** найти $\det e^A$, не вычисляя матрии e^A .

874.
$$A = \begin{pmatrix} 1 & 0 & 3 \\ -1 & 2 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
. **875.** $A = \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & -1 \\ 2 & 1 & -3 \end{pmatrix}$.

- **876.** Тело массы m движется на плоскости x, y, притягиваясь к точке (0, 0) с силой a^2mr , где r расстояние до этой точки. Найти движение тела при начальных условиях $x(0)=d, y(0)=0, \dot{x}(0)=0, \dot{y}(0)=v$ и траекторию этого движения.
- 877. Один конец пружины закреплен неподвижно в точке 0, а к другому прикреплен груз массы 3m, соединенный другой пружиной с грузом массы 2m. Оба груза двигаются без трения по одной прямой, проходящей через точку 0. Каждая из пружин растягивается на величину x под действием силы a^2mx . Найти возможные периодические движения системы.
- **878.** На концах вала закреплены два шкива, моменты инерции которых I_1 и I_2 . При повороте одного шкива относительно другого на любой угол φ вследствие деформации вала

возникают упругие силы с крутящим моментом $K\varphi$. Найти частоту крутильных колебаний вала при отсутствии внешних сил.

879. К источнику тока с напряжением $E=V\sin\omega t$ последовательно присоединено сопротивление R. Далее цепь разветвляется на две ветви, в одной из которых включена самоиндукция L, а в другой — емкость C (рис. 4). Найти силу тока в цепи (установившийся режим), проходящего через сопротивление R. При какой частоте ω сила тока наибольшая? Наименьшая?

Рис. 4

Указание. О составлении дифференциальных уравнений в задачах об электрических цепях см. п. 5 \S 11.

880*. Какое условие достаточно наложить на собственные значения матрицы A, чтобы система уравнений (в векторной записи) $\dot{x} = Ax + f(t)$ имела периодическое решение при всякой непрерывной вектор-функции f(t) периода ω ?

У казание. Применив метод вариации постоянных в векторной форме, выразить общее решение через фундаментальную матрицу $\mathrm{e}^{tA},$ функцию f(t) и начальные условия. Воспользоваться условием периодичности.

§ 15. УСТОЙЧИВОСТЬ

1. Рассмотрим систему уравнений

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = f_i(t, x_1, \ldots, x_n), \quad i = 1, \ldots, n, \tag{1}$$

или, в векторной записи

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x), \quad x = (x_1, \dots, x_n). \tag{2}$$

Пусть все f_i и $\dfrac{\partial f_i}{\partial x_k}$ непрерывны при $t_0\leqslant t<\infty.$

Решение $x=\varphi(t)$ системы (2) называется устойчивым по Ляпунову, если для любого $\varepsilon>0$ существует такое $\delta>0$, что для

всякого решения x(t) той же системы, начальное значение которого удовлетворяет неравенству

$$|x(t_0) - \varphi(t_0)| < \delta, \tag{3}$$

при всех $t \geqslant t_0$ выполняется неравенство

$$|x(t) - \varphi(t)| < \varepsilon$$
.

Если же для некоторого $\varepsilon>0$ такого δ не существует, то решение $\varphi(t)$ называется неустойчивым.

Решение $\varphi(t)$ называется асимптотически устойчивым, если оно устойчиво по Ляпунову и, кроме того, все решения с достаточно близкими начальными условиями неограниченно приближаются к $\varphi(t)$ при $t \to +\infty$, т.е. если из неравенства (3) следует $x(t) - \varphi(t) \to 0$ $(t \to +\infty)$.

Наличие или отсутствие устойчивости не зависит от выбора $t_{0}.$

Вопрос об устойчивости данного решения $x=\varphi(t)$ системы (2) сводится к вопросу об устойчивости нулевого решения $y(t)\equiv 0$ другой системы, получаемой из (2) заменой искомой функции $x-\varphi(t)=y.$

2. Исследование на устойчивость по первому приближению. Пусть $x_i(t)\equiv 0$ $(i=1,\ldots,n)$ — решение системы (1). Чтобы его исследовать на устойчивость, надо выделить из функций f_i линейную часть вблизи точки $x_1=\ldots=x_n=0$, например, по формуле Тейлора. Полученную систему часто можно исследовать с помощью следующей теоремы.

Теорема Ляпунова. Рассмотрим систему

$$\frac{dx_i}{dt} = a_{i1}x_1 + \ldots + a_{in}x_n + \psi_i(t, x_1, \ldots, x_n), \quad i = 1, \ldots, n, (4)$$

где a_{ik} — постоянные, а ψ_i — бесконечно малые выше первого порядка, точнее, при $|x|<\varepsilon_0$

$$|\psi_i| \leqslant \gamma(x)|x|, \ i = 1, \ldots, n, \ \gamma(x) \to 0 \ npu \ |x| \to 0,$$
 (5)

 $e\partial e |x| = \sqrt{|x_1|^2 + \ldots + |x_n|^2}.$

Тогда если все собственные значения матрицы (a_{ik}) , i, $k = 1, \ldots, n$, имеют отрицательные вещественные части, то нулевое решение системы (4) асимптотически устойчиво; если же хоть одно собственное значение имеет положительную вещественную часть, то нулевое решение неустойчиво.

Пример. Исследовать на устойчивость нулевое решение системы

$$\begin{cases} \dot{x} = \sqrt{4 + 4y} - 2e^{x+y}, \\ \dot{y} = \sin ax + \ln(1 - 4y), \quad a = \text{const.} \end{cases}$$

Выделяя линейную часть функций по формуле Тейлора, получаем

$$\begin{cases} \dot{x} = -2x - y + \psi_1(x, y), \\ \dot{y} = ax - 4y + \psi_2(x, y), \end{cases}$$

где функции ψ_1 и ψ_2 равны $O(x^2+y^2)$ и, значит, удовлетворяют условию (5). Находим собственные значения матрицы коэффициентов

$$\left| \begin{array}{cc} -2 - \lambda & -1 \\ a & -4 - \lambda \end{array} \right| = 0, \ \lambda^2 + 6\lambda + 8 + a = 0, \ \lambda_{1, 2} = -3 \pm \sqrt{1 - a}.$$

При a>1 корни комплексные, $\operatorname{Re}\lambda_{1,\,2}=-3<0$, а при $-8< a\leqslant 1$ корни вещественные отрицательные, значит, в этих случаях нулевое решение асимптотически устойчиво.

При a<-8 один корень положителен, значит, нулевое решение неустойчиво.

При a=-8 имеем $\lambda_1=0,\ \lambda_2=-6$ и вопрос об устойчивости не решается с помощью изложенной теоремы.

3. Исследование на устойчивость с помощью функции Ляпунова. Производной от функции $v(t,\,x_1,\,\dots\,x_n)$ в силу системы (1) называется функция

$$\frac{\mathrm{d}v}{\mathrm{d}t}\bigg|_{(1)} = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x_1} f_1 + \ldots + \frac{\partial v}{\partial x_n} f_n,$$

где f_1, \ldots, f_n — правые части системы (1).

Теорема Ляпунова. Если существует дифференцируемая функция $v(x_1,\ \dots,\ x_n),\ y$ довлетворяющая в области $|x|<\varepsilon_0$ условиям

1)
$$v > 0$$
 npu $x \neq 0$, $v(0) = 0$,

2)
$$\frac{dv}{dt}\Big|_{(1)} \leqslant 0 \ npu \ |x| < \varepsilon_0, \ t > t_0,$$

то нулевое решение системы (1) устойчиво по Ляпунову.

Если вместо условия 2) выполнено более сильное условие

3)
$$\frac{dv}{dt}\Big|_{(1)} \leqslant -w(x) < 0 \text{ npu } 0 < |x| < \varepsilon_0, t > t_0,$$

а функция w(x) непрерывна при $|x| < \varepsilon_0$, то нулевое решение системы (1) асимптотически устойчиво.

Теорема Четаева. Пусть система (1) обладает нулевым решением. Пусть в некоторой области V пространства x_1, \ldots, x_n существует дифференцируемая функция $v(x_1, \ldots, x_n)$, причем

- 1) точка x = 0 принадлежит границе области V,
- 2) v=0 на границе области V при $|x|<\varepsilon_0$,
- 3) в области V при $t>t_0$ имеем v>0, $\left.rac{dv}{dt}\left|_{(1)}
 ight.\geqslant w(x)>0,$ функция w(x) непрерывна.

Тогда нулевое решение системы (1) неустойчиво.

Не существует общего метода построения функции Ляпунова v (когда решение системы (1) неизвестно). В ряде случаев функцию Ляпунова удается построить в виде квадратичной формы $v=\sum_{i,j}b_{ij}x_ix_j$ или в виде суммы квадратичной формы и интегралов от нелинейных функций, входящих в правую часть данной системы.

4. Условия отрицательности всех вещественных частей корней уравнения

$$a_0\lambda^n + a_1\lambda^{n-1} + \dots + a_{n-1}\lambda + a_n = 0, \quad a_0 > 0,$$
 (6)

с вещественными коэффициентами.

- а) Необходимое условие: $\mathit{ece}\ a_i > 0.$ В случае $n \leqslant 2$ это условие является и достаточным.
- б) Условие Рауса— Гурвица: необходимо и достаточно, чтобы были положительными все главные диагональные миноры матрицы Гурвица

$$\begin{pmatrix} a_1 & a_0 & 0 & 0 & 0 & 0 & \dots & 0 \\ a_3 & a_2 & a_1 & a_0 & 0 & 0 & \dots & 0 \\ a_5 & a_4 & a_3 & a_2 & a_1 & a_0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & \dots & a_n \end{pmatrix}.$$

На главной диагонали этой матрицы стоят числа $a_1,\,a_2,\,\ldots,\,a_n.$ В каждой строке индекс каждого числа на 1 меньше индекса предыдущего числа. Числа a_i с индексами i>n или i<0 заменяются нулями.

Главные диагональные миноры матрицы Гурвица:

$$\Delta_1 = a_1, \quad \Delta_2 = \begin{vmatrix} a_1 & a_0 \\ a_3 & a_2 \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a_1 & a_0 & 0 \\ a_3 & a_2 & a_1 \\ a_5 & a_4 & a_3 \end{vmatrix}, \quad \dots$$
 (7)

в) Условия Льенара— Шипара. Необходимо и достаточно, чтобы все $a_i>0$ и чтобы $\Delta_{n-1}>0$, $\Delta_{n-3}>0$, $\Delta_{n-5}>0$, ..., где Δ_i те же, что в (7).

Эти условия равносильны условиям Рауса-Гурвица, но удобнее, так как содержат меньше детерминантов.

Пример. При каких a и b корни уравнения $\lambda^4+2\lambda^3+a\lambda^2++3\lambda+b=0$ имеют отрицательные вещественные части?

Пишем условия Льенара—Шипара:

$$a>0, \quad b>0, \quad \Delta_3=egin{array}{ccc} 2 & 1 & 0 \ 3 & a & 2 \ 0 & b & 3 \ \end{bmatrix}=6a-4b-9>0, \quad \Delta_1=2>0.$$

Отсюда получаем условия b > 0, 6a > 4b + 9.

г) Критерий Михайлова. Необходимо и достаточно, чтобы на комплексной плоскости точка $f(i\omega)$, где $f(\lambda)$ — левая часть (6), при изменении ω от 0 до $+\infty$ не проходила через начало координат и сделала поворот вокруг него на угол $n\pi/2$ в положительном направлении.

Другая (эквивалентная) формулировка критерия Михайлова: $Heoбxoдимо\ u\ достаточно,\ чтобы\ a_na_{n-1}>0\ u\ чтобы\ корни\ многочленов$

$$p(\xi) = a_n - a_{n-2}\xi + a_{n-4}\xi^2 - \dots,$$

$$q(\eta) = a_{n-1} - a_{n-3}\eta + a_{n-5}\eta^2 - \dots$$

были все положительными, различными и чередующимися, начиная с корня ξ_1 , m. e.

$$0 < \xi_1 < \eta_1 < \xi_2 < \eta_2 < \dots$$

(Заметим, что многочлен (6) при $\lambda=i\omega$ равен $p(\omega^2)+i\omega q(\omega^2)$.)

Пример. $f(\lambda)=\lambda^5+2\lambda^4+7\lambda^3+8\lambda^2+10\lambda+6$. Здесь $a_n=6>0$, $a_{n-1}=10>0$, а многочлены $p(\xi)=6-8\xi+2\xi^2$, $q(\eta)=10-7\eta+\eta^2$ имеют корни $\xi_1=1,\,\xi_2=3,\,\eta_1=2,\,\eta_2=5$. Значит, $0<\xi_1<\eta_1<<\xi_2<\eta_2$. По критерию Михайлова все корни многочлена $f(\lambda)$ имеют отрицательные вещественные части.

5. Условия устойчивости нулевого решения линейной системы с периодическими коэффициентами см. в [5], гл. III, \S 16.

Задачи 881—898 решаются с помощью определения устойчивости.

881. Пользуясь определением устойчивости по Ляпунову, выяснить, устойчивы ли решения данных уравнений с указан-

ными начальными условиями

a)
$$3(t-1)\dot{x}=x$$
, $x(2)=0$. 6) $\dot{x}=4x-t^2x$, $x(0)=0$.

B)
$$\dot{x} = t - x$$
, $x(0) = 1$. Γ) $2t\dot{x} = x - x^3$, $x(1) = 0$.

В задачах **882**—**888** начертить на плоскости x, y траектории данных систем вблизи точки (0,0) и по чертежу выяснить, устойчиво ли нулевое решение.

882.
$$\dot{x} = -x, \ \dot{y} = -2y.$$

883.
$$\dot{x} = x, \ \dot{y} = 2y.$$

884.
$$\dot{x} = -x, \ \dot{y} = y.$$

885.
$$\dot{x} = -y, \ \dot{y} = 2x^3.$$

886.
$$\dot{x} = y$$
, $\dot{y} = -\sin x$.

887.
$$\dot{x} = y, \ \dot{y} = x^3(1+y^2).$$

888.
$$\dot{x} = -y \cos x$$
, $\dot{y} = \sin x$.

889. Траектории системы уравнений $\frac{\mathrm{d}x}{\mathrm{d}t}=P(x,y), \ \frac{\mathrm{d}y}{\mathrm{d}t}=Q(x,y),$ где функции $P,\,P_x',\,P_y',\,Q,\,Q_x',\,Q_y'$ непрерывны, изображены на фазовой плоскости (рис. 5). Что можно сказать о поведении решений при $t \to +\infty$? Является ли нулевое решение асимптотически устойчивым? Является ли оно устойчивым по Ляпунову?

В задачах 890—892 выяснить, является ли устойчивым нулевое решение системы, если известно, что общее решение этой системы имеет указанный вид.

890.
$$x = C_1 \cos^2 t - C_2 e^{-t}, \quad y = C_1 t^4 e^{-t} + 2C_2.$$

891.
$$x = \frac{C_1 - C_2 t}{1 + t^2}, \ y = (C_1 t^3 + C_2) e^{-t}.$$

892.
$$x = (C_1 - C_2 t) e^{-t}, \ y = \frac{C_1 \sqrt[3]{t}}{\ln(t^2 + 2)} + C_2.$$

893. Доказать, что для устойчивости по Ляпунову нулевого решения уравнения $\frac{\mathrm{d}x}{\mathrm{d}t}=a(t)x$ (где функция a(t) непрерывна) необходимо и достаточно, чтобы

$$\overline{\lim}_{t \to +\infty} \int_{0}^{t} a(s) \, \mathrm{d}s < +\infty.$$

- **894.** Доказать, что если какое-нибудь одно решение линейной системы дифференциальных уравнений устойчиво по Ляпунову, то устойчивы все решения этой системы.
- **895.** Доказать, что если каждое решение линейной однородной системы остается ограниченным при $t \to +\infty$, то нулевое решение устойчиво по Ляпунову.
- **896.** Доказать, что если каждое решение линейной однородной системы стремится к нулю при $t \to +\infty$, то нулевое решение асимптотически устойчиво.
- **897.** Доказать, что если линейная однородная система имеет хотя бы одно неограниченное при $t \to +\infty$ решение, то нулевое решение неустойчиво.
- **898.** Устойчиво ли нулевое решение системы $\dot{x}_1=a_{11}(t)x_1+a_{12}(t)x_2,\,\dot{x}_2=a_{21}(t)x_1+a_{22}(t)x_2,$ если известно, что $a_{11}(t)+a_{22}(t)\to b>0$ при $t\to+\infty$?

В задачах **899—906** с помощью теоремы Ляпунова об устойчивости по первому приближению исследовать на устойчивость нулевое решение

899.
$$\begin{cases} \dot{x} = 2xy - x + y, \\ \dot{y} = 5x^4 + y^3 + 2x - 3y. \end{cases}$$
900.
$$\begin{cases} \dot{x} = x^2 + y^2 - 2x, \\ \dot{y} = 3x^2 - x + 3y. \end{cases}$$
901.
$$\begin{cases} \dot{x} = e^{x+2y} - \cos 3x, \\ \dot{y} = \sqrt{4 + 8x} - 2e^y. \end{cases}$$
902.
$$\begin{cases} \dot{x} = \ln(4y + e^{-3x}), \\ \dot{y} = 2y - 1 + \sqrt[3]{1 - 6x}. \end{cases}$$
903.
$$\begin{cases} \dot{x} = \ln(3e^y - 2\cos x), \\ \dot{y} = 2e^x - \sqrt[3]{8 + 12y}. \end{cases}$$

$$\begin{aligned} \mathbf{904.} & \left\{ \begin{array}{l} \dot{x} = \mathrm{tg}(y-x), \\ \dot{y} = 2^y - 2\cos\left(\frac{\pi}{3} - x\right). \end{array} \right. \\ \mathbf{905.} & \left\{ \begin{array}{l} \dot{x} = \mathrm{tg}(z-y) - 2x, \\ \dot{y} = \sqrt{9 + 12x} - 3\,\mathrm{e}^y, \\ \dot{z} = -3y. \end{array} \right. \\ \mathbf{906.} & \left\{ \begin{array}{l} \dot{x} = \mathrm{e}^x - \mathrm{e}^{-3z}, \\ \dot{y} = 4z - 3\sin(x+y), \\ \dot{z} = \ln(1 + z - 3x). \end{array} \right. \end{aligned}$$

В задачах 907—912 исследовать, при каких значениях параметров a и b асимптотически устойчиво нулевое решение.

913. Исследовать, устойчиво ли решение $x=-t^2,\,y=t$ системы

$$\dot{x} = y^2 - 2ty - 2y - x$$
, $\dot{y} = 2x + 2t^2 + e^{2t - 2y}$.

 $oldsymbol{914}.$ Исследовать, устойчиво ли решение $x=\cos t,\ y=2\sin t$ системы

$$\begin{cases} \dot{x} = \ln\left(x + 2\sin^2\frac{t}{2}\right) - \frac{y}{2}, \\ \dot{y} = (4 - x^2)\cos t - 2x\sin^2 t - \cos^3 t. \end{cases}$$

В задачах 915—922 для данных систем найти все положения равновесия и исследовать их на устойчивость.

915.
$$\begin{cases} \dot{x} = y - x^2 - x, \\ \dot{y} = 3x - x^2 - y. \end{cases}$$
 916.
$$\begin{cases} \dot{x} = (x - 1)(y - 1), \\ \dot{y} = xy - 2. \end{cases}$$

917.
$$\begin{cases} \dot{x} = y, \\ \dot{y} = \sin(x+y). \end{cases}$$
918.
$$\begin{cases} \dot{x} = \ln(-x+y^2), \\ \dot{y} = x - y - 1. \end{cases}$$
919.
$$\begin{cases} \dot{x} = 3 - \sqrt{4 + x^2 + y}, \\ \dot{y} = \ln(x^2 - 3). \end{cases}$$
920.
$$\begin{cases} \dot{x} = e^y - e^x, \\ \dot{y} = \sqrt{3x + y^2} - 2. \end{cases}$$
921.
$$\begin{cases} \dot{x} = \ln(1 + y + \sin x), \\ \dot{y} = 2 + \sqrt[3]{3} \sin x - 8. \end{cases}$$
922.
$$\begin{cases} \dot{x} = -\sin y, \\ \dot{y} = 2x + \sqrt{1 - 3x - \sin y}. \end{cases}$$

В задачах **923—931** исследовать устойчивость нулевого решения, построив функцию Ляпунова и применив теоремы Ляпунова или Четаева.

923.
$$\begin{cases} \dot{x} = x^3 - y, \\ \dot{y} = x + y^3. \end{cases}$$
924.
$$\begin{cases} \dot{x} = y - x + xy, \\ \dot{y} = x - y - x^2 - y^3. \end{cases}$$
925.
$$\begin{cases} \dot{x} = 2y^3 - x^5, \\ \dot{y} = -x - y^3 + y^5. \end{cases}$$
926.
$$\begin{cases} \dot{x} = xy - x^3 + y^3, \\ \dot{y} = x^2 - y^3. \end{cases}$$
927.
$$\begin{cases} \dot{x} = y - 3x - x^3, \\ \dot{y} = 6x - 2y. \end{cases}$$
928.
$$\begin{cases} \dot{x} = 2y - x - y^3, \\ \dot{y} = x - 2y. \end{cases}$$
929.
$$\begin{cases} \dot{x} = -x - xy, \\ \dot{y} = y^3 - x^3. \end{cases}$$
930.
$$\begin{cases} \dot{x} = x - y - xy^2, \\ \dot{y} = 2x - y - y^3. \end{cases}$$
931*.
$$\begin{cases} \dot{x} = -f_1(x) - f_2(y), \\ \dot{y} = f_3(x) - f_4(y). \end{cases}$$
The sgn $f_i(z) = \operatorname{sgn} z, \ i = 1, 2, 3, 4.$

В задачах **932—948** исследовать устойчивость нулевого решения, пользуясь известными условиями отрицательности вещественных частей всех корней многочлена, например, условиями Рауса—Гурвица или критерием Михайлова.

932.
$$y''' + y'' + y' + 2y = 0$$
.

933.
$$y''' + 2y'' + 2y' + 3y = 0$$
.

934.
$$y^{\text{IV}} + 2y''' + 4y'' + 3y' + 2y = 0$$
.

935.
$$y^{IV} + 2y''' + 3y'' + 7y' + 2y = 0$$
.

936.
$$y^{IV} + 2y''' + 6y'' + 5y' + 6y = 0$$
.

937.
$$y^{\text{IV}} + 8y''' + 14y'' + 36y' + 45y = 0$$
.

938.
$$y^{\text{IV}} + 13y''' + 16y'' + 55y' + 76y = 0.$$

939.
$$y^{\text{IV}} + 3y''' + 26y'' + 74y' + 85y = 0.$$

940.
$$y^{\text{IV}} + 3.1y''' + 5.2y'' + 9.8y' + 5.8y = 0.$$

941.
$$y^{V} + 2y^{IV} + 4y''' + 6y'' + 5y' + 4y = 0$$
.

942.
$$y^{V} + 2y^{IV} + 5y''' + 6y'' + 5y' + 2y = 0$$
.

943.
$$u^{V} + 3u^{IV} + 6u''' + 7v'' + 4v' + 4v = 0$$
.

944.
$$y^{V} + 4y^{IV} + 9y''' + 16y'' + 19y' + 13y = 0$$
.

945.
$$u^{V} + 4u^{IV} + 16u''' + 25u'' + 13u' + 9u = 0$$
.

946.
$$y^{V} + 3y^{IV} + 10y''' + 22y'' + 23y' + 12y = 0$$
.

947.
$$y^{V} + 5y^{IV} + 15y''' + 48y'' + 44y' + 74y = 0$$
.

948.
$$y^{V} + 2y^{IV} + 14y''' + 36y'' + 23y' + 68y = 0$$
.

В задачах 949—958 исследовать, при каких значениях параметров a и b нулевое решение асимптотически устойчиво.

949.
$$y''' + ay'' + by' + 2y = 0$$
.

950.
$$y''' + 3y'' + ay' + by = 0$$
.

951.
$$y^{\text{IV}} + 2y''' + 3y'' + 2y' + ay = 0.$$

952.
$$y^{\text{IV}} + ay''' + y'' + 2y' + y = 0.$$

953.
$$ay^{IV} + y''' + y'' + y' + by = 0.$$

954.
$$y^{\text{IV}} + y''' + ay'' + y' + by = 0$$
.

955.
$$y^{\text{IV}} + ay''' + 4y'' + 2y' + by = 0.$$

956.
$$y^{\text{IV}} + 2y''' + ay'' + by' + y = 0$$
.

957.
$$y^{IV} + ay''' + 4y'' + by' + y = 0$$
.

958.
$$y^{\text{IV}} + 2y''' + 4y'' + ay' + by = 0$$
.

Для исследования устойчивости уравнений с периодическими коэффициентами в задачах **959** и **960** надо найти матрицу монодромии и вычислить мультипликаторы, см. [5], гл. III, § 15, § 16.

- **959.** Исследовать на устойчивость нулевое решение уравнения $\ddot{x}+p(t)x=0,\;p(t)=a^2\;(0< t<\pi),\;p(t)=b^2\;(\pi< t<2\pi),\;p(t+2\pi)\equiv p(t),\;$ при следующих значениях параметров:
 - a) a = 0.5, b = 0; 6) a = 0.5, b = 1;
 - B) a = 0.5, b = 1.5; r) a = 0.75, b = 0;
 - д) a = 1, b = 0; e) a = 1, b = 1.5.
- **960.** Исследовать, при каких a и b устойчиво нулевое решение системы с периодическими коэффициентами

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A(t) \begin{pmatrix} x \\ y \end{pmatrix}, \quad A(t+2) \equiv A(t),$$

$$A(t) = egin{pmatrix} 0 & a \ 0 & 0 \end{pmatrix}$$
 при $0 < t < 1, \quad A(t) = egin{pmatrix} 0 & 0 \ b & 0 \end{pmatrix}$ при $1 < t < 2.$

§ 16. ОСОБЫЕ ТОЧКИ

1. Особой точкой системы

$$\frac{\mathrm{d}x}{\mathrm{d}t} = P(x, y), \quad \frac{\mathrm{d}y}{\mathrm{d}t} = Q(x, y) \tag{1}$$

или уравнения

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{Q(x, y)}{P(x, y)},\tag{2}$$

где функции P и Q непрерывно дифференцируемы, называется такая точка, в которой $P(x,y)=0,\ Q(x,y)=0.$

2. Для исследования особой точки системы

$$\frac{\mathrm{d}x}{\mathrm{d}t} = ax + by, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = cx + dy \tag{3}$$

или уравнения

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{cx + dy}{ax + by} \tag{4}$$

надо найти корни характеристического уравнения

$$\begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = 0. \tag{5}$$

Если же один или оба корня уравнения (5) равны нулю, то $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 0$ и, следовательно, дробь в правой части уравнения (4) сокращается. Уравнение принимает вид $\frac{\mathrm{d}y}{\mathrm{d}x} = k$, и решения на плоскости x,y изображаются параллельными прямыми.

Рис. 6

Чтобы начертить траектории (кривые, изображающие решения на плоскости x, y) в случае узла, седла и вырожденного уз-

ла, надо прежде всего найти те решения, которые изображаются прямыми, проходящими через особую точку. Эти прямые всегда направлены вдоль собственных векторов матрицы $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, составленной из коэффициентов данной системы (3). В случае узла кривые касаются той прямой, которая направлена вдоль собственного вектора, соответствующего меньшему по абсолютной величине значению λ .

В случае особой точки типа фокус надо определить направление закручивания траекторий. Для этого надо, во-первых, исследовать устойчивость этой точки по знаку $\operatorname{Re} \lambda$ и, во-вторых, определить, в каком направлении вокруг особой точки происходит движение по траекториям. Для этого достаточно построить в какой-нибудь точке (x,y) вектор скорости $\left(\frac{\mathrm{d}x}{\mathrm{d}t},\frac{\mathrm{d}y}{\mathrm{d}t}\right)$, определяемый по формулам (3).

Аналогично исследуется направление движения в случае вырожденного узла.

Пример 1. Исследовать особую точку $x=0,\,y=0$ системы

$$\dot{x} = 2x, \quad \dot{y} = x + y. \tag{6}$$

Составляем и решаем характеристическое уравнение

$$\begin{vmatrix} 2-\lambda & 0 \\ 1 & 1-\lambda \end{vmatrix} = 0, \quad (2-\lambda)(1-\lambda) = 0, \quad \lambda_1 = 1, \quad \lambda_2 = 2.$$

Корни вещественные, различные и одного знака. Следовательно, особая точка — узел (того же типа, что на рис. 6,a). Для $\lambda_1=1$ находим собственный вектор (0,1), а для $\lambda_2=2$ — вектор (1,1). На плоскости x,y строим прямые, направленные вдоль этих векторов, а затем кривые, касающиеся в начале координат первой из этих прямых, так как $|\lambda_1|<|\lambda_2|$, см. рис. 7.

Другой способ построения интегральных кривых. Разделив одно из уравнений (6) на другое, получим уравнение вида (4)

Рис. 7

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x+y}{2x} \left(\text{или } \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{2x}{x+y} \right).$$

Прямые, проходящие через особую точку, ищем в виде y=kx (а также x=0). Подставляя в написанные уравнения, находим k=1. Значит, y=x и x=0 — искомые прямые. Остальные интегральные кривые строятся с помощью изоклин (рис. 7).

Пример 2. Исследовать особую точку уравнения

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x - 3y}{x - 2y}.\tag{7}$$

Находим корни характеристического уравнения

$$\begin{vmatrix} 1-\lambda & -2 \\ 4 & -3-\lambda \end{vmatrix} = 0; \quad \lambda^2 + 2\lambda + 5 = 0; \quad \lambda = -1 \pm 2i.$$

Особая точка — фокус. Переходим от уравнения (7) к системе

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x - 2y, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = 4x - 3y. \tag{8}$$

Строим в точке $(1,\,0)$ вектор скорости $\left(\frac{\mathrm{d}x}{\mathrm{d}t},\,\frac{\mathrm{d}y}{\mathrm{d}t}\right)$. В силу (8) он равен $(x-2y,\,4x-3y)$. В точке $x=1,\,y=0$ получаем вектор $(1,\,4)$ (рис. 8,a). Следовательно, возрастанию t соответствует движение по траекториям против часовой стрелки. Так как вещественная часть корней λ равна -1<0, то особая точка асимптотически устойчива, следовательно, при возрастании t решения неограниченно приближаются к особой точке. Итак, при движении против часовой стрелки интегральные кривые приближаются к началу координат (рис. 8,6).

Рис. 8

3. Для исследования особой точки более общей системы (1) или уравнения (2) надо перенести начало координат в исследуемую особую точку и разложить функции P и Q в окрестности этой точки по формуле Тейлора, ограничиваясь членами первого порядка. Тогда система (1) примет вид

$$\frac{\mathrm{d}x_1}{\mathrm{d}t} = ax_1 + by_1 + \varphi(x_1, y_1), \quad \frac{\mathrm{d}y_1}{\mathrm{d}t} = cx_1 + dy_1 + \psi(x_1, y_1), \quad (9)$$