SONY

Diagonal 8.2 mm (Type 1 / 2) SWIR Image Sensor with Square Pixel

Tentative

IMX990-AABA-C

SenSWIR

Description

The IMX990-AABA-C is a diagonal 8.2 mm (Type 1 / 2) CMOS active pixel type solid-state image sensor with a square pixel array and 1.31 M effective pixels. This chip features a global shutter with variable charge-integration time. This chip has a wide waveband (0.4 μ m to 1.7 μ m) with high sensitivity, high resolution, low dark current and low power consumption.

(Applications: FA cameras, Scientific Researches)

Features

- ◆ CMOS active pixel type dots
- ♦ Visible + SWIR wideband sensor (0.4 μm to 1.7 μm)
- ◆ Built-in timing adjustment circuit, H/V driver and serial communication circuit
- ◆ Global shutter function
- ♦ Input frequency 37.125 MHz / 74.25 MHz / 54 MHz
- ♦ Number of recommended recording pixels: 1280 (H) x 1024 (V) approx. 1.31 M pixels

Readout mode

All - pixel scan mode

Vertical / Horizontal 1 / 2 Subsampling mode

ROI mode

Vertical / Horizontal - Normal / Inverted readout mode

- ◆ 8-bit / 10-bit / 12-bit A/D converter
- ◆ Readout rate

Maximum frame rate in

All - pixel scan mode: 8bit: 134.73 frame/s, 10 bit: 125.27 frame/s, 12bit: 71.53 frame/s

- ◆ Variable-speed shutter function (resolution 1 H units)
- PGA function

0 dB to 18 dB: Analog Gain (0.1 dB step)

18.1 dB to 42 dB: Analog Gain: 18 dB + Digital Gain: 0.1 dB to 24 dB (0.1 dB step)

◆ I/O interface

SLVS (2 ch / 4 ch switching) output

- ◆ Recommended exit pupil distance: -100 mm to -∞
- ◆ Built-in digital thermometer
- ◆ Built-in thermoelectoric cooler

Sony Semiconductor Solutions Corporation reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony Semiconductor Solutions Corporation cannot assume responsibility for any problems arising out of the use of these circuits.

^{*}The registers on this document may be possibly changed.

SONY

Device Structure

◆ SWIR image sensor

◆ Image size

Diagonal 8.2 mm (Type 1 / 2) Approx. 1.31 M pixels

◆ Total number of pixels

1392 (H) x 1056 (V) Approx. 1.47 M pixels

◆ Number of effective pixels

1296 (H) x 1032 (V) Approx. 1.34 M pixels

◆ Number of active pixels

1296 (H) x 1032 (V) Approx. 1.34 M pixels

◆ Number of recommended recording pixels

1280 (H) x 1024 (V) Approx. 1.31 M pixels

◆ Unit cell size
5 µm (H) × 5 µm (V)

◆ Optical black

Horizontal (H) direction: Front 0 pixels, rear 96 pixels Vertical (V) direction: Front 24 pixels, rear 0 pixels

◆ Substrate material

Silicon

◆ FPA material

InGaAs

Absolute Maximum Ratings

Item	Symbol		Rating			Remarks	
Supply voltage (Analog 3.3 V)	AV _{DD1}	-0.3	to	+4.0	V		
Supply voltage (Analog 2.2 V)	AV _{DD2}	-0.3	to	+4.0	V		
Supply voltage (Interface 1.8 V)	OV _{DD}	-0.3	to	+3.3	V		
Supply voltage (Digital 1.2 V)	DV_DD	-0.3	to	+2.0	V		
Supply voltage (Pixel 2.2V)	TV _{DD}	-0.3	to	+3.0	V	VDDFM	
Supply voltage (Pixel 1.2V)	BV _{DD}	-0.3	То	+2.0	V	VDDDR	
Input voltage	VI	-0.3	to	OV _{DD} +0.3	V	Not exceed 3.3 V	
Output voltage	VO	-0.3	to	OV _{DD} +0.3	V	Not exceed 3.3 V	
Operating temperature	Topr1	0	to	+75	°C	Built-in digital thermometer output value	
operating temperature	Topr2	0	to	+75	°C	Та	
Storage temperature	Tstg	-40	to	+85	°C		
Thermoelectric cooler voltage	Vcooler	-9.6	to	+9.6	Voltage difference between PE1A and PE1B		
Thermoelectric cooler current	Icooler	-1.8	to	+1.8	Α	Current from PE1A to PE1B	

Recommended Operating Conditions

Item	Symbol	Min.	Тур.	Max.	Unit
Supply voltage (Analog 3.3 V)	AV _{DD1}	3.15	3.30	3.45	V
Supply voltage (Analog 2.2 V)	AV _{DD2}	2.10	2.20	2.30	V
Supply voltage (Interface 1.8 V)	OV_DD	1.70	1.80	1.90	V
Supply voltage (Digital 1.2 V)	DV _{DD}	1.10	1.20	1.30	V
Supply voltage (Pixel 2.2V)	TVdd	2.15	2.20	2.25	V
Supply voltage (Pixel 1.2V)	BVdd	1.15	1.20	1.25	V
Performance guarantee temperature	Tspec	_	+15 [*]	_	°C

^{*}Built-in digital thermometer output value

USE RESTRICTION NOTICE

This USE RESTRICTION NOTICE ("Notice") is for customers who are considering or currently using the image sensor products ("Products") set forth in this specifications book. Sony Semiconductor Solutions Corporation ("SSS") may, at any time, modify this Notice which will be available to you in the latest specifications book for the Products. You should abide by the latest version of this Notice. If a SSS subsidiary or distributor has its own use restriction notice on the Products, such a use restriction notice will additionally apply between you and the subsidiary or distributor. You should consult a sales representative of the subsidiary or distributor of SSS on such a use restriction notice when you consider using the Products.

Use Restrictions

- The Products are intended for incorporation into such general electronic equipment as office products, communication products, measurement products, and home electronics products in accordance with the terms and conditions set forth in this specifications book and otherwise notified by SSS from time to time
- You should not use the Products for critical applications which may pose a life- or injury-threatening
 risk or are highly likely to cause significant property damage in the event of failure of the Products. You
 should consult your sales representative beforehand when you consider using the Products for such
 critical applications. In addition, you should not use the Products in weapon or military equipment.
- SSS disclaims and does not assume any liability and damages arising out of misuse, improper use, modification, use of the Products for the above-mentioned critical applications, weapon and military equipment, or any deviation from the requirements set forth in this specifications book.

Design for Safety

 SSS is making continuous efforts to further improve the quality and reliability of the Products; however, failure of a certain percentage of the Products is inevitable. Therefore, you should take sufficient care to ensure the safe design of your products such as component redundancy, anti-conflagration features, and features to prevent mis-operation in order to avoid accidents resulting in injury or death, fire or other social damage as a result of such failure.

Export Control

 If the Products are controlled items under the export control laws or regulations of various countries, approval may be required for the export of the Products under the said laws or regulations.
 You should be responsible for compliance with the said laws or regulations.

No License Implied

• The technical information shown in this specifications book is for your reference purposes only. The availability of this specifications book shall not be construed as giving any indication that SSS and its licensors will license any intellectual property rights in such information by any implication or otherwise. SSS will not assume responsibility for any problems in connection with your use of such information or for any infringement of third-party rights due to the same. It is therefore your sole legal and financial responsibility to resolve any such problems and infringement.

Governing Law

This Notice shall be governed by and construed in accordance with the laws of Japan, without reference
to principles of conflict of laws or choice of laws. All controversies and disputes arising out of or relating
to this Notice shall be submitted to the exclusive jurisdiction of the Tokyo District Court in Japan as the
court of first instance.

Other Applicable Terms and Conditions

The terms and conditions in the SSS additional specifications, which will be made available to you when
you order the Products, shall also be applicable to your use of the Products as well as to this
specifications book. You should review those terms and conditions when you consider purchasing
and/or using the Products.

General-0.0.9

CONTENTS

Description	
eatures	
Device Structure	
Absolute Maximum Ratings	
Recommended Operating Conditions	
JSE RESTRICTION NOTICE	
Chip Center and Optical Center (TBD)	
Pixel Arrangement	
Block Diagram and Pin Configuration	9
Pin Description	11
Electrical Characteristics	
DC Characteristics	
SLVS Output DC Characteristics	14
Power Consumption	
AC Characteristics	16
Master Clock (INCK) Waveform Diagram	16
XVS / XHS Input Characteristics in Slave Mode (XMASTER = High)	
XTRIG Input Characteristics in Slave Mode (XMASTER = High) only	
Serial Communication	
SLVS Output AC Characteristics	
/O Equivalent Circuit Diagram	21
Spectral Sensitivity Characteristics	22
mage Sensor Characteristics	
Zone Definition of Video Signal Shading	
mage Sensor Characteristics Measurement Method	
Measurement Conditions	
Definition of standard imaging conditions	
Measurement Method	
Setting Registers Using Serial Communication	
Description of Setting Registers (4-wire)	
Register Communication Timing (4-wire)	
Register Write and Read (4-wire)	
Description of Setting Registers (I ² C)	29
Register Communication Timing (I ² C)	
I ² C Communication Protocol	
I ² C Serial Communication Read/Write Operation	
Single Read from Random Location	
Single Read from Current Location	
Sequential Read Starting from Random Location	
Sequential Read Starting from Current Location	
Single Write to Random Location	
Sequential Write Starting from Random Location	
Register Map (There is a possible to change the registers on this document.)	
Chip ID = 02 (Write: Chip ID = 02h, Read: Chip ID = 82h, I ² C: 30**h)	
Chip ID = 03 (Write: Chip ID = 03h, Read: Chip ID = 83h, I ² C: 31**h)	
Chip ID = 04 (Write: Chip ID = 04h, Read: Chip ID = 84h, I ² C: 32**h)	
Chip ID = 05 (Write: Chip ID = 05h, Read: Chip ID = 85h, I ² C: 33**h)	
Chip ID = 06 (Write: Chip ID = 06h, Read: Chip ID = 86h, I ² C: 34**h)	
Chip ID = 07 (Write: Chip ID = 07h, Read: Chip ID = 87h, I ² C: 35**h)	
Chip ID = 08 (Write: Chip ID = 08h, Read: Chip ID = 88h, I ² C: 36**h)	
Chip ID = 09 (Write: Chip ID = 09h, Read: Chip ID = 89h, I ² C: 37**h)	
Chip ID = 0A (Write: Chip ID = 0Ah, Read: Chip ID = 8Ah, I ² C: 38**h)	
Chip ID = 0B (Write: Chip ID = 0Bh, Read: Chip ID = 8Bh, I ² C: 39**h)	
Chip ID = 0C (Write: Chip ID = 0Ch, Read: Chip ID = 8Ch, I ² C: 3A**h)	
Chip ID = 10 (Write: Chip ID = 10h, Read: Chip ID = 90h, I ² C: 3E**h)	
Chip ID = 11 (Write: Chip ID = 11h, Read: Chip ID = 91h, I ² C: 3F**h)	
Chip ID = 12 (Write: Chip ID = 12h, Read: Chip ID = 92h, I ² C: 40**h)	
Chip ID = 13 (Write: Chip ID = 13h, Read: Chip ID = 93h, I^2C : 41**h)	. 49

Chip ID = 14 (Write: Chip ID = 14h, Read: Chip ID = 94h, I ² C: 42**h)	
Chip ID = 15 (Write: Chip ID = 15h, Read: Chip ID = 95h, I ² C: 43**h)	
Chip ID = 16 (Write: Chip ID = 16h, Read: Chip ID = 96h, I ² C: 44**h)	
Chip ID = 17 (Write: Chip ID = 17h, Read: Chip ID = 97h, I^2 C: 45^{**} h)	
Chip ID = 18 (Write: Chip ID = 18h, Read: Chip ID = 98h, I^2 C: $46^{**}h$)	
Chip ID = 19 (Write: Chip ID = 19h, Read: Chip ID = 99h, I ² C: 47**h)	49
Readout Drive Modes	
Restriction on Image Data Output	
Image Data Output Format	
All - pixel scan	
Vertical / Horizontal 1/2 Subsampling mode	
ROI mode	
Description of Various Function	
Standby mode	
Slave Mode and Master Mode	
Gain Adjustment Function	
Black Level Adjustment Function	
Horizontal / Vertical Normal Operation and Inverted Operation	
Shutter and Integration Time Settings	
Global Shutter (Normal Mode) Operation	
Global Shutter (Sequential Trigger Mode) Operation	
Global Shutter (Fast Trigger Mode) Operation	
Mode Transitions of Global Shutter Operation	
Pulse Output Function	
Signal Output	
Output Pin Settings	
Output Pin Bit Width Selection	
Output Signal Range	
Register Hold Setting	
Mode Transition	
Digital Thermometer	
Thermometer update timing	
Other Function	
Extension Function	
Power-on and Power-off Sequence	
Power-on sequence	
Power-off Sequence	
Sensor Setting Flow	
Setting Flow in Sensor Slave Mode	
Setting Flow in Sensor Master Mode	
Peripheral Circuit	
Digital Power Pins	
Analog Other Pins	
Digital I/O Pins	
Output pins	
Spot Pixel Specifications	
Sport Pixel Zone Definition	
Notice on White Pixels Specifications	
Notice on Spot Pixels Specification	
Measurement Method for Spot Pixels	
Spot Pixel Pattern Specification (Tentative)	
Marking	
Notes On Handling	
Package Outline	
List of Trademark Logos and Definition Statements	

Chip Center and Optical Center (TBD)

Pixel Arrangement

Pixel Arrangement

Block Diagram and Pin Configuration

(Top View)

Block Diagram

Pin Configuration

Pin Description

NI.	D' M-	1/0	A I / D' - 'I - I	0	December
No.	Pin No.	I/O	Analog / Digital	Symbol	Description
1	A1	0	D	TOUT0	Pulse0 output pin
2	A2	I/O	D	XHS	Horizontal sync signal
3	A3		D	XTRIG	Trigger input 1
	7.0	•	_	711110	Slave address select (37h: High, 36h: Low, 1Ah: both
4	A4	1	D	SLAMODE	,
					polarities)
5	A5	_	_	N.C.	_
6	A6	_	_	N.C.	-
7	A7	Power	Α	VDDHOFG	connect to VBO
8	A8	Power	A	VDDHTRG	2.2 V power supply
	_				1 117
9	A9	Power	Α	VDDHRST	2.2 V power supply
10	A10	Power	Α	VDDHSEL	3.3 V power supply
11	A11	_	_	N.C.	_
12	A12	Power	Α	VDDHCM	3.3 V power supply
13			A		
	A13	Power		VDDLCB	1.2 V power supply
14	A14	Power	Α	VDDHAN	3.3 V power supply
15	A15	0	Α	VBGR	Connect to 0.22 µF to GND
16	A16	_	_	N.C.	_
17	B1		_	DGND	Connect to 1.2V GND
		_	_		
18	B2	_	_	DGND	Connect to 1.2V GND
19	B3	I/O	D	XVS	Vertical sync signal
20	B4	1	D	XCLR	System clear (Normal: High, Clear: Low)
21	B5	J	D	XMASTER	Master / Slave select
22	B6			N.C.	Widoter / Glave select
			_		
23	B7		Α	VRLOFG	Connect to VCP1
24	B8	I	Α	VRLTRG	Connect to VCP1
25	B9	1	Α	VRLRST	Connect to VCP1
26	B10	i	A	VRLSEL	Connect to VCP2
			Λ	N.C.	Connect to VOI 2
27	B11		_		
28	B12	GND	Α	VSSHCM	3.3 V GND
29	B13	GND	Α	VSSLCB	1.2 V GND
30	B14	GND	Α	VSSHAN	3.3 V GND
31	B15	GND	Α	VSSHDAREF	3.3 V GND
	_	OND	Α		3.3 V GIVE
32	B16		_	N.C.	
33	C1	GND	D	VSSLSC	1.2 V GND
34	C2	GND	Α	VSSHPX	3.3 V GND
35	C3	GND	Α	VSSHPX	3.3 V GND
36	C4	GND	A	VSSHPX	3.3 V GND
	_				
37	C5	GND	Α	VSSHPX	3.3 V GND
38	C6	Power	Α	VDDDR	1.2 V pixel power supply
39	C7	GND	Α	VSSHTM	3.3 V GND
					Connect to VRLOFG, VRLRST, VRLTRG
40	C8	0	Α	VCP1	(Connect to 4.7 μ F × 2 to GND)
———		21.15		1/00/100	
41	C9	GND	A	VSSHCP	3.3 V GND
42	C10	GND	Α	VSSHCP	3.3 V GND
43	C11	GND	Α	VSSHPX	3.3 V GND
44	C12	GND	Α	VSSHPX	3.3 V GND
45	C13				
-	_	GND	A	VSSHPX	3.3 V GND
46	C14	GND	Α	VSSHPX	3.3 V GND
47	C15	GND	D	VSSLCN	1.2 V GND
48	C16	GND	D	VSSLSC	1.2 V GND
49	D1	Power	D	VDDLSC	1.2 V power supply
-					
50	D2	Power	Α	VDDHNW	3.3 V power supply
51	D3	Power	Α	VDDHPX	3.3 V power supply
52	D4	Power	Α	VDDFM	2.2 V pixel power supply
53	D5	Power	Α	VDDDR	1.2 V pixel power supply
-	D6		A	VDDDR	1 1 117
54	1	Power			1.2 V pixel power supply
55	D7	Power	Α	VDDHTM	3.3 V power supply
	D0	^		VCDC	Connect to VRLSEL
56	D8	0	Α	VCP2	(Connect to 4.7 µF × 2 to GND)
57	D9	Power	Α	VDDHCP	3.3 V power supply
- 51	פט	i Owel		100 101	
58	D10	0	Α	VBO	Connect to VDDHOFG
					(Connect to 4.7 μF x 2 to GND)
59	D11	Power	Α	VDDHNW	3.3 V power supply

DOPA Power	No.	Pin No.	I/O	Analog / Digital	Symbol	Description
61 D13	-					
62						
63						, , , , , , ,
66 E1 Power D VDDLSC 1.2 V power supply						
66	-					
66 E2 Power A VDDHWW 3.3 V power supply						
67						
68						
69						
To E6						, , , , , , ,
Text F7						
73						
T3	-					
74 E10 Power A VDD.PLA 1.2 V power supply 76 E11 Power A VDDFM 2.2 V pixel power supply 76 E12 Power A VDDRM 2.2 V pixel power supply 77 E13 Power A VDDRM 1.2 V ploved power supply 78 E14 Power A VDDLCN 1.2 V power supply 79 E15 Power D VDDLCN 1.2 V power supply 80 E16 Power D VDDLSC 1.2 V power supply 81 F1 GND D VSSLSC 1.2 V GND 81 F1 GND A VSSHPX 3.3 V GND 83 F3 GND A VSSHPX 3.3 V GND 84 F4 GND A VSSHPX 3.3 V GND 85 F5 GND A VSSHPX 3.3 V GND 87 F7 Power D VDULIF 1.2 V GND						
The color						
Total						
The color						
T8						
Total						
80						
81						
R2						
83 F3 GND A VSSHPX 3.3 V GND 84 F4 GND A VSSHPX 3.3 V GND 85 F5 GND D VSSLSC 1.2 V GND 86 F6 GND D VDDLIF 1.2 V GND 87 F7 Power D VDDLIF 1.2 V GND 88 F8 GND D VSSLIF 1.2 V GND 89 F9 GND D VSSLIF 1.2 V GND 90 F10 GND D VSSLIF 1.2 V GND 91 F11 GND A VSSHPX 3.3 V GND 91 F11 GND A VSSHPX 3.3 V GND 92 F12 GND A VSSHPX 3.3 V GND 93 F13 GND A VSSHPX 3.3 V GND 94 F14 GND D VSSLCN 1.2 V GND 95 F15 GND D </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
84 F4 GND A VSSHPX 3.3 V GND 85 F5 GND A VSSHPX 3.3 V GND 86 F6 GND D VSSLSC 1.2 V GND 87 F7 Power D VDDLIF 1.2 V GND 88 F8 GND D VSSLIF 1.2 V GND 89 F9 GND D VSSLIF 1.2 V GND 90 F10 GND D VSSLIF 1.2 V GND 90 F10 GND A VSSHPX 3.3 V GND 91 F11 GND A VSSHPX 3.3 V GND 92 F12 GND A VSSHPX 3.3 V GND 93 F13 GND A VSSLCN 1.2 V GND 95 F15 GND D VSSLSC 1.2 V GND 96 F16 GND D VSSLSC 1.2 V GND 96 F16 GND D<						
85 F5 GND A VSSHPX 3.3 V GND 86 F6 GND D VSSLSC 1.2 V GND 87 F7 Power D VDDLIF 1.2 V GND 88 F8 GND D VSSLIF 1.2 V GND 89 F9 GND D VSSLIF 1.2 V GND 90 F10 GND D VSSLIF 1.2 V GND 91 F11 GND A VSSHPX 3.3 V GND 91 F11 GND A VSSHPX 3.3 V GND 91 F12 GND A VSSHPX 3.3 V GND 92 F12 GND A VSSHPX 3.3 V GND 93 F13 GND A VSSLPX 3.3 V GND 94 F14 GND D VSSLCN 1.2 V GND 95 F15 GND D VSSLSC 1.2 V GND 96 F16 GND D						
86						
87						
88 F8 GND D VSSLIF 1.2 V GND 90 F10 GND D VSSLIF 1.2 V GND 90 F10 GND D VSSLIF 1.2 V GND 91 F11 GND A VSSHPX 3.3 V GND 92 F12 GND A VSSHPX 3.3 V GND 93 F13 GND A VSSHPX 3.3 V GND 94 F14 GND A VSSHPX 3.3 V GND 95 F15 GND D VSSLCN 1.2 V GND 96 F16 GND D VSSLCN 1.2 V GND 97 G1 I D XCE 4 - wire: Serial communication I/F XCE pin 98 G2 I A PE14A Bullt-in thermoelectric cooler pin (+) 99 G3 GND A VSSHPX 3.3 V GND 100 G4 GND D VSSLIC 1.2 V GND 101						
89						
90 F10 GND						
91						
92						
93 F13 GND A VSSHPX 3.3 V GND 94 F14 GND A VSSHZN 3.3 V GND 95 F15 GND D VSSLSC 1.2 V GND 96 F16 GND D VSSLSC 1.2 V GND 97 G1 I D XCE 4 - wire: Serial communication I/F XCE pin 98 G2 I A PE1A Built-in thermoelectric cooler pin (+) 99 G3 GND D A VSSLP 3.3 V GND 100 G4 GND D VSSLSC 1.2 V GND 101 G5 GND D VSSLIF 1.2 V GND 101 G5 GND D VSSLIF 1.2 V GND 102 G6 O D DOM3 SLVS IF output (Data) 103 G7 O D DOM4 SLVS IF output (Data) 104 G8 O D DOM0 SLVS IF output (Data)						
94 F14 GND A VSSHPX 3.3 V GND 95 F15 GND D VSSLCN 1.2 V GND 96 F16 GND D VSSLSC 1.2 V GND 97 G1 I D XCE 4 - wire: Serial communication I/F XCE pin 98 G2 I A PE1A Built-in thermoelectric cooler pin (+) 99 G3 GND A VSSHPX 3.3 V GND 100 G4 GND D VSSLSC 1.2 V GND 101 G5 GND D VSSLIF 1.2 V GND 101 G5 GND D VSSLIF 1.2 V GND 102 G6 O D DOM3 SLVS IF output (Data) 103 G7 O D DOM4 SLVS IF output (Data) 104 G8 O D DOM0 SLVS IF output (Data) 106 G10 O D DOM0 SLVS IF output (Data) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
95 F15 GND D VSSLCN 1.2 V GND 96 F16 GND D VSSLSC 1.2 V GND 97 G1 I D XCE 4 - wire: Serial communication I/F XCE pin 98 G2 I A PE1A Built-in thermoelectric cooler pin (+) 99 G3 GND A VSSHPX 3.3 V GND 100 G4 GND D VSSLSC 1.2 V GND 101 G5 GND D VSSLIF 1.2 V GND 102 G6 O D DOM3 SLVS IF output (Data) 103 G7 O D DOM2 SLVS IF output (Data) 104 G8 O D DOM4 SLVS IF output (Data) 106 G10 O D DOM0 SLVS IF output (Data) 107 G11 GND D VSSLGE 1.2 V GND 109 G13 GND A VSSLGE 1.2 V GND </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-					
96 F16 GND D VSSLSC 1.2 V GND 97 G1 I D XCE 4 - wire: Serial communication I/F XCE pin 98 G2 I A PE1A Built-in thermoelectric cooler pin (+) 99 G3 GND A VSSHPX 3.3 V GND 100 G4 GND D VSSLSC 1.2 V GND 101 G5 GND D VSSLIF 1.2 V GND 102 G6 O D DOM3 SLVS IF output (Data) 103 G7 O D DOM2 SLVS IF output (Data) 104 G8 O D DOM1 SLVS IF output (Data) 105 G9 O D DOM1 SLVS IF output (Data) 106 G10 O D DOM0 SLVS IF output (Data) 107 G11 GND D VSSLG 1.2 V GND 109 G13 GND A VSSLG 1.2 V GND						
97 G1						
98 G2 I A PE1A Built-in thermoelectric cooler pin (+) 99 G3 GND A VSSHPX 3.3 V GND 100 G4 GND D VSSLSC 1.2 V GND 101 G5 GND D VSSLIF 1.2 V GND 102 G6 O D DOM3 SLVS IF output (Data) 103 G7 O D DOM2 SLVS IF output (Data) 104 G8 O D DCKM Digital output timing clock 105 G9 O D DOM1 SLVS IF output (Data) 106 G10 O D DOM0 SLVS IF output (Data) 107 G11 GND D VSSLIF 1.2 V GND 108 G12 GND D VSSLSC 1.2 V GND 109 G13 GND A VSSLCB 1.2 V GND 110 G14 GND A VSSLCB 1.2 V GND <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td></tr<>						
99 G3 GND	-					
100						1 (/
101 G5 GND D VSSLIF 1.2 V GND 102 G6 O D DOM3 SLVS F output (Data) 103 G7 O D DOM2 SLVS F output (Data) 104 G8 O D DCKM Digital output timing clock 105 G9 O D DOM1 SLVS F output (Data) 104 G8 O D DOM1 SLVS F output (Data) 106 G10 O D DOM0 SLVS F output (Data) 107 G11 GND D VSSLIF 1.2 V GND 108 G12 GND D VSSLSC 1.2 V GND 109 G13 GND A VSSLCB 1.2 V GND 110 G14 GND A VSSHCM 3.3 V GND 111 G15 O D SDO 4-wire: Serial communication /F SDO pin I2C: OPEN 112 G16 I/O D SDO 4-wire: Serial communication /F SDI pin I2C: Serial data line 113 H1 O D TOUT1 Pulse1 output pin 114 H2 I A PE1B Built-in thermoelectric cooler pin (-) 115 H3 Power A VDDSUB 3.3 V power supply 116 H4 Power D VDDMIO 1.8 V power supply 117 H5 GND D VSSLIF 1.2 V GND 1.8 V power supply 117 H5 GND D VSSLIF 1.2 V GND 1.8 V power supply 118 H6 O D DOP3 SLVS F output (Data) 120 H8 O D DOP4 SLVS F output (Data) 122 H10 O D DOP0 SLVS F output (Data) 123 H11 GND D VSSLIF 1.2 V GND 123 H11 GND D VSSLIF 1.2 V GND 120 H31 H11 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 GND D VSSLIF 1.2 V GND 120 H31 H31 G						
102 G6						
103 G7						
104						1 \ /
105 G9						
106						
107 G11 GND D VSSLIF 1.2 V GND 108 G12 GND D VSSLSC 1.2 V GND 109 G13 GND A VSSLCB 1.2 V GND 110 G14 GND A VSSHCM 3.3 V GND 111 G15 O D SDO 4-wire: Serial communication I/F SDO pin I2C: OPEN 112 G16 I/O D SDI / SDA 4-wire: Serial communication I/F SDI pin 12C: Serial data line 113 H1 O D TOUT1 Pulse1 output pin 114 H2 I A PE1B Built-in thermoelectric cooler pin (-) 115 H3 Power A VDDSUB 3.3 V power supply 116 H4 Power D VDDMIO 1.8 V power supply 117 H5 GND D VSSLIF 1.2 V GND 118 H6 O D DOP3 SLVS IF output (Data) 119 H7 O D DOP2 SLVS IF output (Data) 120 H8 O D DOP1 SLVS IF output (Data) 121 H9 O D DOP0 SLVS IF output (Data) 122 H10 O D DOP0 SLVS IF output (Data) 123 H11 GND D VSSLIF 1.2 V GND 12 V GND VSSLIF 1.2 V GND 12 V GND DOP1 SLVS IF output (Data) 13 V GND						
108						
109 G13 GND						
110 G14 GND A VSSHCM 3.3 V GND 111 G15 O D SDO 4-wire: Serial communication I/F SDO pin I2C: OPEN 112 G16 I/O D SDI / SDA 4-wire: Serial communication I/F SDI pin I2C: Serial data line 113 H1 O D TOUT1 Pulse1 output pin 114 H2 I A PE1B Built-in thermoelectric cooler pin (-) 115 H3 Power A VDDSUB 3.3 V power supply 116 H4 Power D VDDMIO 1.8 V power supply 117 H5 GND D VSSLIF 1.2 V GND 118 H6 O D DOP3 SLVS IF output (Data) 120 H8 O D DCKP Digital output timing clock 121 H9 O D DOP1 SLVS IF output (Data) 122 H10 O D DOP0 SLVS IF output (Data) 123 H11<						
111 G15 O D SDO 4-wire: Serial communication I/F SDO pin I2C: OPEN						
112 G16						
112 G16		010				·
114 H2 I A PE1B Built-in thermoelectric cooler pin (-) 115 H3 Power A VDDSUB 3.3 V power supply 116 H4 Power D VDDMIO 1.8 V power supply 117 H5 GND D VSSLIF 1.2 V GND 118 H6 O D DOP3 SLVS IF output (Data) 119 H7 O D DOP2 SLVS IF output (Data) 120 H8 O D DOKP Digital output timing clock 121 H9 O D DOP1 SLVS IF output (Data) 122 H10 O D DOP0 SLVS IF output (Data) 123 H11 GND D VSSLIF 1.2 V GND	112	G16	I/O	D	SDI / SDA	
115 H3 Power A VDDSUB 3.3 V power supply 116 H4 Power D VDDMIO 1.8 V power supply 117 H5 GND D VSSLIF 1.2 V GND 118 H6 O D DOP3 SLVS IF output (Data) 119 H7 O D DOP2 SLVS IF output (Data) 120 H8 O D DCKP Digital output timing clock 121 H9 O D DOP1 SLVS IF output (Data) 122 H10 O D DOP0 SLVS IF output (Data) 123 H11 GND D VSSLIF 1.2 V GND			0	D		
116 H4 Power D VDDMIO 1.8 V power supply 117 H5 GND D VSSLIF 1.2 V GND 118 H6 O D DOP3 SLVS IF output (Data) 119 H7 O D DOP2 SLVS IF output (Data) 120 H8 O D DCKP Digital output timing clock 121 H9 O D DOP1 SLVS IF output (Data) 122 H10 O D DOP0 SLVS IF output (Data) 123 H11 GND D VSSLIF 1.2 V GND			1			
117 H5 GND D VSSLIF 1.2 V GND 118 H6 O D DOP3 SLVS IF output (Data) 119 H7 O D DOP2 SLVS IF output (Data) 120 H8 O D DCKP Digital output timing clock 121 H9 O D DOP1 SLVS IF output (Data) 122 H10 O D DOP0 SLVS IF output (Data) 123 H11 GND D VSSLIF 1.2 V GND				A		
118 H6 O D DOP3 SLVS IF output (Data) 119 H7 O D DOP2 SLVS IF output (Data) 120 H8 O D DCKP Digital output timing clock 121 H9 O D DOP1 SLVS IF output (Data) 122 H10 O D DOP0 SLVS IF output (Data) 123 H11 GND D VSSLIF 1.2 V GND						
119 H7 O D DOP2 SLVS IF output (Data) 120 H8 O D DCKP Digital output timing clock 121 H9 O D DOP1 SLVS IF output (Data) 122 H10 O D DOP0 SLVS IF output (Data) 123 H11 GND D VSSLIF 1.2 V GND			GND			
120 H8 O D DCKP Digital output timing clock 121 H9 O D DOP1 SLVS IF output (Data) 122 H10 O D DOP0 SLVS IF output (Data) 123 H11 GND D VSSLIF 1.2 V GND						
121 H9 O D DOP1 SLVS IF output (Data) 122 H10 O D DOP0 SLVS IF output (Data) 123 H11 GND D VSSLIF 1.2 V GND				D		
122 H10 O D DOP0 SLVS IF output (Data) 123 H11 GND D VSSLIF 1.2 V GND						
123 H11 GND D VSSLIF 1.2 V GND				D		
124 H12 I D INCK Master clock input			GND			
	124	H12	I	D	INCK	Master clock input

SONY

No.	Pin No.	I/O	Analog / Digital	Symbol	Description
125	H13	Power	Α	VDDLCB	1.2 V power supply
126	H14	Power	Α	VDDHCM	3.3 V power supply
127	H15	I	D	SCK / SCL	4 - wire: Serial communication I/F SCK pin I2C: Serial clock line"
128	H16	0	D	TOUT2	Pulse2 output pin

^{*} N.C. pins in the table above should be left open on the board.

Electrical Characteristics

DC Characteristics

Item		Pins	Symbol	Conditions	Min.	Тур.	Max.	Unit
	Analog (3.3 V)	$V_{DD}Hx^{*1}$	AV _{DD1}	_	3.15	3.30	3.45	V
Supply	Analog (2.2 V)	VDDHTRG, VDDHRST	AV_{DD2}	_	2.1	2.2	2.3	V
	Interface	$V_{DD}Mx$	OV_{DD}	_	1.70	1.80	1.90	V
voltage	Digital	$V_{DD}Lx$	DV _{DD}	_	1.10	1.20	1.30	V
	Pixel (2.2 V)	VDDFM	TV _{DD}	_	2.15	2.20	2.25	V
	Pixel (1.2 V)	VDDDR	BV _{DD}	_	1.15	1.20	1.25	V
Digital input voltage		XHS XVS XCLR INCK XMASTER	VIH	XVS / XHS	0.7 × OV _{DD}	_	_	V
		SLAMODE SCK SDI XCE XTRIG	VIL	in Slave mode	_	_	0.3 × OV _{DD}	V
Digital output voltage		XHS XVS SDO	VOH	XVS / XHS	OV _{DD} -0.4	_	_	V
		TOUT0 TOUT1 TOUT2	VOL	in Master mode	_	_	0.4	V

^{*1} Except for VDDHTRG and VDDHRST

SLVS Output DC Characteristics

Single end output

Definition of the characteristics of SLVS (Single end output)

Symbol	Item	Min.	Тур.	Max.	Unit	Remarks
Ro	Sensor output impedance	30	_	65	Ω	_
Vcm	Voltage center	150	_	250	mV	*1
Vid	Differential voltage	140	_	300	mV	*1

^{*1} Rin = 100Ω .

Power Consumption

Item	Pins	Symbol	Тур.	Max.	Unit
Operating current	V _{DD} H *1	IAV _{DD1}	62	150	mA
SLVS 4 ch	VDDHRST VDDHTRG	IAV_{DD2}	1 ^{*2}	2 *2	mA
10 bit 120.27 mamo/s	V _{DD} M	IOV _{DD}	1	2	mA
	V _{DD} L	IDV_{DD}	140	240	mA
	VDDFM	ITV_{DD}	1	2	mA
	VDDDR	IBV _{DD}	1	2	mA
Standby current	V _{DD} H *1	IAV _{DD1} _STB	_	1	mA
	VDDHRST VDDHTRG	IAV _{DD2} STB	_	0.1 *2	mA
	V _{DD} M	IOV _{DD} _STB	_	0.1	mA
	V _{DD} L	IDV _{DD} _STB	_	10	mA
	VDDFM	ITV _{DD} _STB	_	0.1	mA
	VDDDR	IBV _{DD} _STB	_	0.1	mA

^{*1} Except for VDDHTRG and VDDHRST

Operating current:

(Typical value condition) : Supply voltage: 3.30 V / 2.20 V / 1.80 V / 1.20 V / 2.2 V / 1.2 V, Tj = 15 °C (Maximum value condition) : Supply voltage: 3.45 V / 2.30 V / 1.90 V / 1.30 V / 2.25 V / 1.25 V, Tj = 15 °C

Worst state of internal circuit operating current consumption.

Standby current:

(Maximum value condition) : Supply voltage: 3.45 V / 2.30 V / 1.90 V / 1.30 V / 2.25 V / 1.25 V, Ta = $15 \,^{\circ}$ C,

INCK = 0 V, Thermoelectric cooler OFF The device in the light-obstructed state.

^{*2} Summation of VDDHTRG and VDDHRST

AC Characteristics

Master Clock (INCK) Waveform Diagram

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
INCK clock frequency	f _{INCK}	f _{INCK} × 0.96	f _{INCK}	f _{INCK} × 1.02	MHz	f _{INCK} = 37.125 MHz, 74.25 MHz, 54 MHz
INCK Low level pulse width	t _{WLINCK}	4	_	_	ns	
INCK High level pulse width	t _{WHINCK}	4	_	_	ns	
INCK clock duty	_	40.0	50.0	60.0	%	Define with 0.5 × OV _{DD}

^{*}The INCK fluctuation affects the frame rate.

XVS / XHS Input Characteristics in Slave Mode (XMASTER = High)

Item	Symbol	Min.	Тур.	Max.	Unit
XHS Low level pulse width	twlxHs	4/finck	_	_	ns
XHS High level pulse width	twnxns	4/finck	_	_	ns
XVS - XHS fall width	t _{HFDLY}	1/f _{INCK}	_	_	ns
XHS - XVS rise width	tvrdly	1/finck	_	_	ns

Synchronization cannot be performed from XVS and XHS signal in mater mode. Detect the sync code.

XTRIG Input Characteristics in Slave Mode (XMASTER = High) only

Item	Symbol	Min.	Тур.	Max.	Unit
XTRIG fall - XHS fall width	t _{TGHDLYF}	10	_	HMAX-10	INCK
XTRIG rise - XHS fall width	t _{TGHDLYR}	10	_	HMAX-10	INCK

Serial Communication

4-wire

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
SCK clock frequency	f _{SCK}	_	_	13.5	MHz	
XCLR Low level pulse width	twlxclr	4/f _{INCK}	_	_	ns	
INCK effective margin	t _{ENINCK}	1	_	_	μs	
XCE effective margin	t _{ENXCE}	20	_	_	μs	
XCE input setup time	tsuxce	20	_	_	ns	
XCE input hold time	thoxce	20	_	_	ns	
XCE High level pulse width	twhxce	20	_	_	ns	
SDI input setup time	tsuspi	10	_	_	ns	
SDI input hold time	thospi	10	_	_	ns	
SDO output delay time	tolsdo	0	_	25	ns	Output load capacitance: 20 pF

 I^2C

I²C Specification

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Low level input voltage	V _{IL}	-0.3	_	$0.3 \times OV_{DD}$	V	
High level input voltage	V _{IH}	0.7 × OV _{DD}	_	1.9	V	
Low level output voltage	V _{OL}	0	_	$0.2 \times OV_{DD}$	V	OV _{DD} < 2 V, Sink 3 mA
High level output voltage	V _{OH}	0.8 × OV _{DD}	1	_	V	
Output fall time	tof	_	_	250	ns	Load 10 pF - 400 pF, $0.7 \times OV_{DD} - 0.3 \times OV_{DD}$
Input current	li	-10	_	10	μΑ	$0.1 \times OV_{DD} - 0.9 \times OV_{DD}$
Capacitance for SCK (/SCL) , SDI (/SDA)	Ci	_	_	10	pF	

I²C AC Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit
SCL clock frequency	f _{SCL}	0		400	kHz
Hold time (Start Condition)	t _{HDSTA}	0.6		_	μs
Low period of the SCL clock	t _{LOW}	1.3		_	μs
High period of the SCL clock	t _{HIGH}	0.6		_	μs
Set-up time (Repeated Start Condition)	t _{SUSTA}	0.6	ı	_	μs
Data hold time	t _{HDDAT}	0	_	0.9	μs
Data set-up time	t _{SUDAT}	100	ı	_	ns
Rise time of both SDA and SCL signals	t _R	_	_	300	ns
Fall time of both SDA and SCL signals	t _F	_		300	ns
Set-up time (Stop Condition)	t _{SUSTO}	0.6	_	_	μs
Bus free time between a Stop and Start Condition	t _{BUF}	1.3	_	_	μs

SLVS Output AC Characteristics

Symbol	Item	Min.	Тур.	Max.	Unit	Remarks
f _{clk}	Output frequency	_	594	_	Mbps	_
f _{pclk}	Clock frequency	_	297	_	MHz	_
t _{ST}	Setup time	505	_	_	ps	*1
t _{HD}	Hold time	505	_	_	ps	*1
t _R	DOP/DOM rise time	_	_	300	ps	*1, *2
t _F	DOP/DOM fall time	_	_	300	ps	*1, *2
Vidt	Differential voltage	140	_	_	mV	*1

 $^{^{\}star 1}$ Rin = 100Ω

^{*2} Differential 20% - 80%

Define of the characteristics of the SLVS

I/O Equivalent Circuit Diagram

☐ : External pin

Symbol	Equivalent circuit	Symbol	Equivalent circuit
INCK	VSSMx	XVS XHS	Digital VSSMx
XCLR XCE XMASTER XTRIG SLAMODE	Digital input VSSMx	SDI / SDA SCK / SCL	Digital I/O VSSMx
SDO	Digital output VSSMx	VBO VDDHOFG	Analog I/O VSSHx
VCP1 VCP2	Analog I/O VSSHx	VRLOFG VRLTRX VRLTRY VRLSEL VRLTRG	Analog I/O VSSHx
VBGR	Analog VSSHx	DOPX DOMX DCKP DCKM x:0 to 3	Data output VSSLx

Spectral Sensitivity Characteristics

(Tj = 15 °C, Characteristics in the package status)

Image Sensor Characteristics

($AV_{DD1} = 3.3$ V, $AV_{DD2} = 2.2$ V, $TV_{DD} = 2.2$ V, $BV_{DD} = 1.2$ V, $OV_{DD} = 1.8$ V, $DV_{DD} = 1.2$ V, All pixel scan mode, AD: 10 bit, Tj = 15 °C, Gain = 0 dB)

Item	Symbol	Min.	Тур.	Max.	Unit	Measurement method	Remarks
Sensitivity	Ø	291 (102.7)	343 (121)	_	Digit (mV)	1	1/30 s storage
Saturation signal	Vsat2D	1022 (361*1)	_	_	Digit (mV)	2	Zone 0 ~ II'
Video signal sheding	SH01			20	%	0	Zone 0, I
Video signal shading	SH2D	_	_	25	%	3	Zone 0 ~ II'
Dark signal	Vdt	_	_	2.83 (1.0)	Digit (mV)	4	1/30 s storage
Dark signal shading	ΔVdt	_	_	4.53 (1.6)	Digit (mV)	5	1/30 s storage

Note)

- 1. Converted value into mV using 1Digit = 0.08823mV for 12-bit output, 1Digit = 0.3529 mV for 10-bit output, and 1Digit = 0.3529 mV for 8-bit output.
- 2. The video signal shading is the measured value in the wafer status and does not include characteristics of the seal glass.

Zone Definition of Video Signal Shading

^{*1} In case of 8 bit, Vsat2D becomes 1/4 of it at 10 bit.

Image Sensor Characteristics Measurement Method

Measurement Conditions

In the following measurements, the device drive conditions are at the typical values of the bias conditions and clock voltage conditions.

In the following measurements, spot pixels are excluded and, unless otherwise specified, the optical black (OB) level is used as the reference for the signal output, which is taken as the value of the signal output of the measurement system.

Definition of standard imaging conditions

- ◆ Standard imaging condition I:

 A light source with wavelength 1550 nm, full width at half maximum 50 nm, irradiance on the sensor surface 12.0 mW / m², and light uniformity on the sensor surface within ± 2.5% is used at F = 8.0 environment.
- ◆ Standard image condition II:

 A light source with wavelength 1550 nm, full width at half maximum 50 nm, and light uniformity on the sensor surface within ± 2.5% is used. Irradiance on the sensor surface is adjusted in each testing item.

Measurement Method

1. Sensitivity

Set the measurement condition to the standard imaging condition I. After setting the electronic shutter mode with a shutter speed of 1/30 s, measure the signal outputs (S) at the center of the screen.

2. Saturation signal

Set the measurement condition to the standard imaging condition II. After adjusting the luminous intensity to 10 times the intensity with the average value of the signal outputs, 121 mV, measure the minimum values of the signal outputs.

3. Video signal shading

Set the measurement condition to the standard imaging condition I. After setting the electronic shutter mode with a shutter speed of 1/30 s, measure the average value(Vave [mV]), the maximum value (Vmax [mV]) and the minimum value (Vmin [mV]) of the signal outputs, and substitute the values into the following formula.

 $SH = (Vmax - Vmin) / Vave \times 100 [\%]$

4. Dark signal

With the device junction temperature of 15 °C and the device in the light-obstructed state, divide the output difference between 1/3 s integration at 3 frame/s and 1/30 s integration at 30 frame/s by 9, and calculate the signal output converted to 1/30 s integration. Measure the average value of this output (Vdt [mV]).

5. Dark signal shading

With the device junction temperature of 15 °C and the device in the light-obstructed state, measure the maximum value (Vdmax [mV]) and the minimum value (Vdmin [mV]) of the dark signal output converted to 1/30 s integration. The measuring values substitute into the following formula.

 $\Delta Vdt = Vdmax - Vdmin [mV]$

Setting Registers Using Serial Communication

Description of Setting Registers (4-wire)

The serial data input order is LSB-first transfer. The table below shows the various data types and descriptions.

Serial Data Transfer Order

Chip ID	Start address	Data	Data	Data	
(8 bit)	(8 bit)	(8 bit)	(8 bit)	(8 bit)	(8 bit)

Type and Description

Туре	Description
	Chip ID: 02 Write: 02h / Read: 82h
	Chip ID: 03 Write: 03h / Read: 83h
	Chip ID: 04 Write: 04h / Read: 84h
	Chip ID: 05 Write: 05h / Read: 85h
	Chip ID: 06 Write: 06h / Read: 86h
	Chip ID: 07 Write: 07h / Read: 87h
	Chip ID: 08 Write: 08h / Read: 88h
	Chip ID: 09 Write: 09h / Read: 89h
	Chip ID: 0A Write: 0Ah / Read: 8Ah
	Chip ID: 0B Write: 0Bh / Read: 8Bh
Chip ID	Chip ID: 0C Write: 0Ch / Read: 8Ch
	Chip ID: 10 Write: 10h / Read: 90h
	Chip ID: 11 Write: 11h / Read: 91h
	Chip ID: 12 Write: 12h / Read: 92h
	Chip ID: 13 Write: 13h / Read: 93h
	Chip ID: 14 Write: 14h / Read: 94h
	Chip ID: 15 Write: 15h / Read: 95h
	Chip ID: 16 Write: 16h / Read: 96h
	Chip ID: 17 Write: 17h / Read: 97h
	Chip ID: 18 Write: 18h / Read: 98h
	Chip ID: 19 Write: 19h / Read: 99h
	Designate the address according to the Register Map. When using a communication method
Address	that designates continuous addresses, the address is automatically incremented from the
	previously transmitted address.
Data	Input the setting values according to the Register Map.

Register Communication Timing (4-wire)

Perform serial communication in sensor standby mode or within streaming. For the registers marked "V" in the item of Reflection timing, they are reflected by frame reflection timing in the figure below. For the registers noted "Immediately" in the item of Reflection timing, the settings are reflected when the communication is performed.

Register Write and Read (4-wire)

- ◆ Follow the communication procedure below when writing registers.
 - Set XCE Low to enable the chip's communication function. Serial data input is executed using SCK and SDI.
 - (2) Transmit data in sync with SCK 1 bit at a time from the LSB using SDI. Transfer SDI in sync with the falling edge of SCK. (The data is loaded at the rising edge of SCK.)
 - (3) Input the Chip ID (CID = 02h to 0Ch, 10h to 19h) to the first byte. If the Chip ID differs, subsequent data is ignored.
 - (4) Input the start address to the second byte. The address is automatically incremented.
 - (5) Input the data to the third and subsequent bytes. The data in the third byte is written to the register address designated by the second byte, and the register address is automatically incremented thereafter when writing the data for the fourth and subsequent bytes. Normal register data is loaded to the inside of the sensor and established in 8-bit units.
 - (6) The register values starting from the register address designated by the second byte are output from the SDO pin. The register values before the write operation are output. The actual register values are the input data.
 - (7) Set XCE High to end communication.
- ◆ Follow the communication procedure below when reading registers.
 - (1) Set XCE Low to enable the chip's communication function. Serial data input is executed using SCK and SDI.
 - (2) Transmit data in sync with SCK 1 bit at a time from the LSB using SDI. Transfer SDI in sync with the falling edge of SCK. (The data is loaded at the rising edge of SCK.)
 - (3) Input Chip ID (CID = 82h to 8Ch, 90h to 99h) to the first byte. If the Chip ID differs, subsequent data is ignored.
 - (4) Input the start address to the second byte. The address is automatically incremented.
 - (5) Input data to the third and subsequent bytes. Input dummy data in order to read the registers. The dummy data is not written to the registers. To read continuous data, input the necessary number of bytes of dummy data.
 - (6) The register values starting from the register address designated by the second byte are output from the SDO pin. The input data is not written, so the actual register values are output.
 - (7) Set XCE High to end communication.
- Note) When writing data to multiple registers with discontinuous addresses, access to undesired registers can be avoided by repeating the above procedure multiple times.

Serial Communication (Continuous Addresses)

Serial Communication (Discontinuous Addresses)

Description of Setting Registers (I²C)

The serial data input order is MSB-first transfer. The table below shows the various data types and descriptions.

Pin connection of serial communication

The sensor can use two kinds of slave addresses by switching the polarity of SLAMODE Pin for one I²C bus, and can use a common slave address in both polarities of SLAMODE Pin for one I²C bus.

SLAVE Address (SLAMODE = 0)

MSB							LSB
0	1	1	0	1	1	0	R/W

SLAVE Address (SLAMODE = 1)

MSB							LSB
0	1	1	0	1	1	1	R/W

SLAVE Address (SLAMODE = 0 / 1)

MSB							LSB
0	0	1	1	0	1	0	R/W

^{*} R/W is data direction bit

R/W

R / W bit	Data direction			
0	Write (Master → Sensor)			
1	Read (Sensor → Master)			

I²C pin description

Symbol	Description	
SCL (common to SCK)	Serial clock input	
SDA (common to SDI)	Serial data communication	

Register Communication Timing (I²C)

For the registers marked "V" in the item of Reflection timing, they are reflected by frame reflection timing in the figure below. For the registers noted "Immediately" in the item of Reflection timing, the settings are reflected when the communication is performed. Using REGHOLD function is recommended for register setting using I²C communication. For REGHOLD function, see "Register Transmission Setting" in "Description of Functions".

SONY IMX990-AABA-C

I²C Communication Protocol

I²C serial communication supports a 16-bit register address and 8-bit data message type.

Communication protocol

Data is transferred serially, MSB first in 8-bit units. After each data byte is transferred, A (Acknowledge) / \overline{A} (Negative Acknowledge) is transferred. Data (SDA) is transferred at the clock (SCL) cycle. SDA can change only while SCL is Low, so the SDA value must be held while SCL is High. The Start Condition is defined by SDA changing from High to Low while SCL is High. When the Stop Condition is not generated in the previous communication phase and Start Condition for the next communication is generated, that Start Condition is recognized as a Repeated Start Condition.

Start Condition

Stop Condition

Repeated Start Condition

After transfer of each data byte, the Master or the sensor transmits an Acknowledge / Negative Acknowledge and release (does not drive) SDA. When Negative Acknowledge is generated, the Master must immediately generate the Stop Condition and end the communication.

Acknowledge and Negative Acknowledge

I²C Serial Communication Read/Write Operation

This sensor supports the following four read operations and two write operations.

Single Read from Random Location

The sensor has an index function that indicates which address it is focusing on. In reading the data at an optional single address, the Master must set the index value to the address to be read. For this purpose it performs dummy write operation up to the register address. The upper level of the figure below shows the sensor internal index value, and the lower level of the figure shows the SDA I/O data flow. The Master sets the sensor index value to M by designating the sensor slave address with a write request, then designating the address (M). Then, the Master generates the Start Condition. The Start Condition is generated without generating the Stop Condition, so it becomes the Repeated Start Condition. Next, when the Master sends the slave address with a read request, the sensor outputs an Acknowledge immediately followed by the index address data on SDA. After the Master receives the data, it generates a Negative Acknowledge and the Stop Condition to end the communication.

Single Read from Random Location

Single Read from Current Location

After the slave address is transmitted by a write request, that address is designated by the next communication and the index holds that value. In addition, when data read/write is performed, the index is incremented by the subsequent Acknowledge/Negative Acknowledge timing. When the index value is known to indicate the address to be read, sending the slave address with a read request allows the data to be read immediately after Acknowledge. After receiving the data, the Master generates a Negative Acknowledge and the Stop Condition to end the communication, but the index value is incremented, so the data at the next address can be read by sending the slave address with a read request.

Single Read from Current Location

Sequential Read Starting from Random Location

In reading data sequentially, which is starting from an optional address, the Master must set the index value to the start of the addresses to be read. For this purpose, dummy write operation includes the register address setting. The Master sets the sensor index value to M by designating the sensor slave address with a read request, then designating the address (M). Then, the Master generates the Repeated Start Condition. Next, when the Master sends the slave address with a read request, the sensor outputs an Acknowledge followed immediately by the index address data on SDA. When the Master outputs an Acknowledge after it receives the data, the index value inside the sensor is incremented and the data at the next address is output on SDA. This allows the Master to read data sequentially. After reading the necessary data, the Master generates a Negative Acknowledge and the Stop Condition to end the communication.

Sequential Read Starting from Random Location

Sequential Read Starting from Current Location

When the index value is known to indicate the address to be read, sending the slave address with a read request allows the data to be read immediately after the Acknowledge. When the Master outputs an Acknowledge after it receives the data, the index value inside the sensor is incremented and the data at the next address is output on SDA. This allows the Master to read data sequentially. After reading the necessary data, the Master generates a Negative Acknowledge and the Stop Condition to end the communication.

Sequential Read Starting from Current Location

Single Write to Random Location

The Master sets the sensor index value to M by designating the sensor slave address with a write request, and designating the address (M). After that the Master can write the value in the designated register by transmitting the data to be written. After writing the necessary data, the Master generates the Stop Condition to end the communication.

Single Write to Random Location

Sequential Write Starting from Random Location

The Master can write a value to register address M by designating the sensor slave address with a write request, designating the address (M), and then transmitting the data to be written. After the sensor receives the write data, it outputs an Acknowledge and at the same time increments the register address, so the Master can write to the next address simply by continuing to transmit data. After the Master writes the necessary number of bytes, it generates the Stop Condition to end the communication.

Sequential Write Starting from Random Location

Register Map (There is a possible to change the registers on this document.)

This sensor has a total of 5376 bytes of registers, composed of registers with address 00h to FFh that correspond to Chip ID = 02h to 0Ch, 10h to 19h. Use the initial values for empty address. Some registers must be change from the initial values, so the sensor control side should be capable of setting 5376 bytes.

There are three different register reflection timings.

About the Reflection timing column of the Register Map, registers noted as "I" are reflected immediately after writing to register, registers noted as "S" are set during standby mode and reflected after standby canceled, registers noted as "V" are reflected at "Fame reflection register reflection timing" on the figure described in the section of "Setting Registers with Serial Communication".

Do not perform communication to addresses and setting not listed in the Register Map. Doing so may result in operation errors.

Chip ID = 02 (Write: Chip ID = 02h, Read: Chip ID = 82h, I2C: 30**h)

Please refer to the other register map file for the register that has not been described.

Address					Default value after reset		Reflection
		bit	Register Name	Description	Ву	By timing	
4-wire	I ² C				register	address	و
		•	CTANDDV [O]	Standby mode	1	01h	ı
00h		0	STANDBY [0]	0: Normal operation 1: Standby	1		ı
		1		Fixed to 0	0		_
		2		Fixed to 0	0		_
	3000h	3		Fixed to 0	0		_
		4		Fixed to 0	0		_
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		_
				Setting of master mode operation			
		0	XMSTA	0: Master mode operation start	1		1
				1: Master mode operation stop			
		1		Fixed to 0	0		_
0Ch	300Ch	2		Fixed to 0	0	016	_
UCII	300Cn	3		Fixed to 0	0	01h	_
		4		Fixed to 0	0		_
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		_
	3034h	0	REGHOLD	Register hold	0	00h	1
		U		0: Invalid 1: Valid	U		
34h		1		Fixed to 0	0		_
		2		Fixed to 0	0		_
		3		Fixed to 0	0		_
		4		Fixed to 0	0		_
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		_
3Ch 303		0 WINMODE		Drive mode setting of V direction			
	303Ch		0: All-pixel mode. 1: 1/2 Subsampling mode	0		S	
				Others: Setting prohibited			
		1		Fixed to 0	0		_
		2		Fixed to 0	0		_
		3		Fixed to 0	0	00h	_
		4 HMODE	Drive mode setting of H direction	0		S	
		4 NIVI	TIMODE	0: All-pixel 1: 1/2 Subsampling mode			
		5		Fixed to 0	0		_
		6		Fixed to 0	0	_	_
		7		Fixed to 0	0		_

Add	Iress	1.7	D. data No.	D	Defaul after		Reflection
4-wire	I ² C	bit	Register Name	Description	By register	By address	timing
		0		LSB			
		1					
		2					
D4h	30D4h	3				36h	
		4					
		5					
		6 7	-				
		0	-				
		1	-				
		2	-				
		3		When sensor master mode			
D5h	30D5h	4	VMAX [23:0]	vertical span setting.	000436h	04h	V
		5	-	(Number of operation lines count from 1)			
		6	1				
		7					
		0					
		1					
		2					
		3					
D6h	30D6h	4				00h	
		5					
		6	1				
		7		MSB			
		0		LSB			
		1					
		2					
D8h	30D8h	3				35h	
Doll	300011	4				3311	
		5					
		6		When sensor master mode			
		7	HMAX [15:0]	horizontal span setting.	0235h		S
		0	[]	(Number of operation clocks count from 1)	1_30		
		1					
		2					
D9h	30D9h	3	-			02h	
		4	-				
		5	1				
		6 7	1	MSB			
				Set to data rate.			
		0	FREQ [1:0]	0: Normal 1: Data rate 1/2	0h		S
		1		Others: Setting prohibited			
		2		Fixed to 0	0		_
DCh	DCh 30DCh	3		Fixed to 0	0	00h	
		4		Fixed to 0	0		_
		5		Fixed to 0	0		_
		6		Fixed to 0	0		
		7		Fixed to 0	0		_

Add	ress		2	2		t value reset	Reflection
4-wire	I ² C	bit	Register Name	Description	By	By	timing
		0			register	address	
		1					
		2					
E2h	30E2h	3	GTWAIT [7:0]	Refer to the register list in each Readout mode	6h	6h	S
		4					
		5					
		6					
		7					
		0					
		1					
		2					
E3h	30E3h	3	GSDLY [7:0]	Refer to the register list in each Readout mode	4h	4h	S
Lon	302311	4	00021 [7.0]	interest to the register list in each readout mode	711	711	3
		5					
		6					
		7					

Chip ID = 03 (Write: Chip ID = 03h, Read: Chip ID = 83h, I²C: 31**h)

Add	dress		5	5		t value reset	Reflection
4-wire	I ² C	bit	Register Name	Description	By register	By address	timing
		0	FID0_ROIH1ON [0]	The horizontal setting of FID0 ROI area (1, y) (y = 1 to 8) 0: Disable 1: Enable	0		V
		1	FID0_ROIV1ON [1]	The vertical setting of FID0 ROI area (x, 1) (x = 1 to 8) 0: Disable 1: Enable	0		٧
		2	FID0_ROIH2ON [2]	The horizontal setting of FID0 ROI area (2, y) (y = 1 to 8) 0: Disable 1: Enable	0		٧
0.41-	24046	3	FID0_ROIV2ON [3]	The vertical setting of FID0 ROI area (x, 2) (x = 1 to 8) 0: Disable 1: Enable	0	001	V
04h	3104h	4	FID0_ROIH3ON [4]	The horizontal setting of FID0 ROI area (3, y) (y = 1 to 8) 0: Disable 1: Enable	0	00h	V
		5	FID0_ROIV3ON [5]	The vertical setting of FID0 ROI area (x, 3) (x = 1 to 8) 0: Disable 1: Enable	0	-	V
		6	FID0_ROIH4ON [6]	The horizontal setting of FID0 ROI area (4, y) (y = 1 to 8) 0: Disable 1: Enable	0		V
		7	FID0_ROIV4ON [7]	The vertical setting of FID0 ROI area (x, 4) (x = 1 to 8) 0: Disable 1: Enable	0		٧
		0	FID0_ROIH5ON [0]	The horizontal setting of FID0 ROI area (5, y) (y = 1 to 8) 0: Disable 1: Enable	0		٧
		1	FID0_ROIV5ON [1]	The vertical setting of FID0 ROI area (x, 5) (x = 1 to 8) 0: Disable 1: Enable	0		٧
		2	FID0_ROIH6ON [2]	The horizontal setting of FID0 ROI area (6, y) (y = 1 to 8) 0: Disable 1: Enable	0		V
05h	2105h	3	FID0_ROIV6ON [3]	The vertical setting of FID0 ROI area (x, 6) (x = 1 to 8) 0: Disable 1: Enable	0	00h	V
0311		4	FID0_ROIH7ON [4]	The horizontal setting of FID0 ROI area (7, y) (y = 1 to 8) 0: Disable 1: Enable	0	0011	V
		5	FID0_ROIV7ON [5]	The vertical setting of FID0 ROI area (x, 7) (x = 1 to 8) 0: Disable 1: Enable	0		V
		6	FID0_ROIH8ON [6]	The horizontal setting of FID0 ROI area (8, y) (y = 1 to 8) 0: Disable 1: Enable	0		V
		7	FID0_ROIV8ON [7]	The vertical setting of FID0 ROI area (x, 8) (x = 1 to 8) 0: Disable 1: Enable	0		V

Add	ress					lt value reset	Reflection
4-wire	I ² C	bit	Register Name	Description	By register	By address	timing
20h	3120h	[7:0]		Designation of horizontal cropping position		00h	
		[4:0]	FID0_ROIPH1 [12:0]	for FID0 on area (1, y) (y = 1 to 8)	0000h		V
21h	3121h			*Set the value of multiple of 8		00h	
		[7:5]		Fixed to 0h	0h		_
22h	3122h	[7:0]		Designation of vertical cropping position		00h	
001	0.4.001	[3:0]	FID0_ROIPV1 [11:0]	for FID0 on area $(x, 1)$ $(x = 1 \text{ to } 8)$	000h	0.01	V
23h	3123h	[7, 4]		*Set the value of multiple of 8 Fixed to 0h	0h	00h	
24h	3124h	[7:4] [7:0]		Designation of horizontal cropping size	Un	00h	_
2411	312411	[7.0]	FID0_ROIWH1 [12:0]	for FID0 on area $(1, y)$ $(y = 1 \text{ to } 8)$	0000h	0011	V
25h	3125h	[4:0]	TIDO_ROWITI [12.0]	*Set the value of multiple of 4	000011	00h	· •
2011	012011	[7:5]		Fixed to 0h	0h	0011	_
26h	3126h	[7:0]		Designation of vertical cropping size		00h	
		-	FID0_ROIWV1 [11:0]	for FID0 on area $(x, 1)$ $(x = 1 \text{ to } 8)$	000h		V
27h	3127h	[3:0]		*Set the value of multiple of 8		00h	
		[7:4]		Fixed to 0h	0h		_
28h	3128h	[7:0]		Designation of horizontal cropping position		00h	
		[4:01	FID0_ROIPH2 [12:0]	for FID0 on area (2, y) (y = 1 to 8)	0000h		V
29h	3129h	[4:0]		*Set the value of multiple of 8		00h	
		[7:5]		Fixed to 0h	0h		_
2Ah	312Ah	[7:0]	1	Designation of vertical cropping position		00h	
		[3:0]	FID0_ROIPV2 [11:0]	for FID0 on area (x, 2) (x = 1 to 8)	000h		V
2Bh	312Bh			*Set the value of multiple of 8		00h	
		[7:4]		Fixed to 0h	0h		_
2Ch	312Ch	[7:0]		Designation of horizontal cropping size		00h	
o.D.I	04001	[4:0]	FID0_ROIWH2 [12:0]	for FID0 on area (2, y) (y = 1 to 8)	0000h	0.01	V
2Dh	312Dh	[7:5]		*Set the value of multiple of 4	Oh	00h	_
2Eh	312Eh	[7:5] [7:0]		Fixed to 0h Designation of vertical cropping size	0h	00h	_
ZEII	SIZEII	[7.0]	FID0_ROIWV2 [11:0]	for FID0 on area $(x, 2)$ $(x = 1 \text{ to } 8)$	000h	0011	V
2Fh	312Fh	[3:0]	1 100_1(0100 02 [11.0]	*Set the value of multiple of 8	00011	00h	v
2111	012111	[7:4]		Fixed to 0h	0h	0011	_
30h	3130h	[7:0]		Designation of horizontal cropping position	0	00h	
			FID0_ROIPH3 [12:0]	for FID0 on area (3, y) (y = 1 to 8)	0000h		V
31h	3131h	[4:0]		*Set the value of multiple of 8		00h	
		[7:5]		Fixed to 0h	0h		_
32h	3132h	[7:0]		Designation of vertical cropping position		00h	
		[3:0]	FID0_ROIPV3 [11:0]	for FID0 on area $(x, 3)$ $(x = 1 \text{ to } 8)$	000h		V
33h	3133h			*Set the value of multiple of 8		00h	
		[7:4]		Fixed to 0h	0h		_
34h	3134h	[7:0]		Designation of horizontal cropping size		00h	
		[4:0]	FID0_ROIWH3 [12:0]	for FID0 on area $(3, y)$ $(y = 1 \text{ to } 8)$	0000h		V
35h	3135h			*Set the value of multiple of 4	21	00h	-
20h	24265	[7:5]		Fixed to 0h Designation of vertical cropping size	0h	004	_
36h	3136h	[7:0]	FID0 ROIWV3 [11:0]	Designation of vertical cropping size for FID0 on area $(x, 3)$ $(x = 1 \text{ to } 8)$	000h	00h	V
37h	3137h	[3:0]	100_1\OIVV V3 [11.0]	*Set the value of multiple of 8	00011	00h	'
5711	010/11	[7:4]		Fixed to 0h	0h	0011	_
38h	3138h	[7:0]		Designation of horizontal cropping position		00h	
			FID0_ROIPH4 [12:0]	for FID0 on area $(4, y)$ $(y = 1 \text{ to } 8)$	0000h		V
39h	3139h	[4:0]		*Set the value of multiple of 8		00h	
		[7:5]		Fixed to 0h	0h	<u> </u>	_
3Ah	313Ah	[7:0]		Designation of vertical cropping position		00h	
		[3:0]	FID0_ROIPV4 [11:0]	for FID0 on area $(x, 4)$ $(x = 1 to 8)$	000h		V
3Bh	313Bh			*Set the value of multiple of 8		00h	
		[7:4]		Fixed to 0h	0h		_
3Ch	313Ch	[7:0]		Designation of horizontal cropping size		00h	1
		[4:0]	FID0_ROIWH4 [12:0]	for FID0 on area $(4, y)$ $(y = 1 \text{ to } 8)$	0000h		V
3Dh	313Dh			*Set the value of multiple of 4	21	00h	
251	04051	[7:5]		Fixed to 0h	0h	001	-
3Eh	313Eh	[7:0]	EIDO BOIMA/4 544:01	Designation of vertical cropping size	0004	00h	.,
2Eh	24256	[3:0]	FID0_ROIWV4 [11:0]	for FID0 on area (x, 4) (x = 1 to 8) *Set the value of multiple of 8	000h	006	V
3Fh	313Fh			·	Ωh	00h	
		[7:4]		Fixed to 0h	0h		<u> </u>

Add	ress					t value reset	Reflection
4-wire	I ² C	bit	Register Name	Description	By register	By address	timing
40h	3140h	[7:0]		Designation of horizontal cropping position	- 5	00h	
41h	3141h	[4:0]	FID0_ROIPH5 [12:0]	for FID0 on area (5, y) (y = 1 to 8) *Set the value of multiple of 8	0000h	00h	V
	0	[7:5]		Fixed to 0h	0h	00	_
42h	3142h	[7:0]		Designation of vertical cropping position		00h	
		[0.0]	FID0_ROIPV5 [11:0]	for FID0 on area (x, 5) (x = 1 to 8)	000h		V
43h	3143h	[3:0]		*Set the value of multiple of 8		00h	
		[7:4]		Fixed to 0h	0h		_
44h	3144h	[7:0]	51D 0 D 0 11 11 1 1 1 0 0 1	Designation of horizontal cropping size	20001	00h	.,
45h	24.4Eb	[4:0]	FID0_ROIWH5 [12:0]	for FID0 on area (5, y) (y = 1 to 8) *Set the value of multiple of 4	0000h	006	V
45h	3145h	[7:5]		Fixed to 0h	0h	00h	_
46h	3146h	[7:0]		Designation of vertical cropping size	OII	00h	
			FID0_ROIWV5 [11:0]	for FID0 on area $(x, 5)$ $(x = 1 \text{ to } 8)$	000h		V
47h	3147h	[3:0]		*Set the value of multiple of 8		00h	
		[7:4]		Fixed to 0h	0h		_
48h	3148h	[7:0]	-	Designation of horizontal cropping position		00h	
		[4:0]	FID0_ROIPH6 [12:0]	for FID0 on area (6, y) (y = 1 to 8)	0000h		V
49h	3149h			*Set the value of multiple of 8	0.1	00h	
4 A b	2111	[7:5]		Fixed to 0h	0h	00h	_
4Ah	314Ah	[7:0]	FID0_ROIPV6 [11:0]	Designation of vertical cropping position for FID0 on area (x, 6) (x = 1 to 8)	000h	00h	V
4Bh	314Bh	[3:0]	1 100_1(011 \(\psi \) [11.0]	*Set the value of multiple of 8	00011	00h	v
15.1	011511	[7:4]		Fixed to 0h	0h	0011	_
4Ch	314Ch	[7:0]		Designation of horizontal cropping size		00h	
		[4.0]	FID0_ROIWH6 [12:0]	for FID0 on area (6, y) (y = 1 to 8)	0000h		V
4Dh	314Dh	[4:0]		*Set the value of multiple of 4		00h	
		[7:5]		Fixed to 0h	0h		_
4Eh	314Eh	[7:0]		Designation of vertical cropping size		00h	
455	04.455	[3:0]	FID0_ROIWV6 [11:0]	for FID0 on area (x, 6) (x = 1 to 8)	000h	001-	V
4Fh	314Fh	[7:4]		*Set the value of multiple of 8 Fixed to 0h	0h	00h	
50h	3150h	[7:0]		Designation of horizontal cropping position	OH	00h	
0011	010011		FID0_ROIPH7 [12:0]	for FID0 on area $(7, y)$ $(y = 1 \text{ to } 8)$	0000h	0011	V
51h	3151h	[4:0]		*Set the value of multiple of 8		00h	
		[7:5]		Fixed to 0h	0h		_
52h	3152h	[7:0]		Designation of vertical cropping position		00h	
		[3:0]	FID0_ROIPV7 [11:0]	for FID0 on area $(x, 7)$ $(x = 1 \text{ to } 8)$	000h		V
53h	3153h			*Set the value of multiple of 8	01	00h	
5.4h	24546	[7:4]		Fixed to 0h	0h	00h	_
54h	3154h	[7:0]	FID0_ROIWH7 [12:0]	Designation of horizontal cropping size for FID0 on area (7, y) (y = 1 to 8)	0000h	00h	V
55h	3155h	[4:0]	150_ROWIN [12.0]	*Set the value of multiple of 4	000011	00h	
00	0.00	[7:5]		Fixed to 0h	0h	00	_
56h	3156h	[7:0]		Designation of vertical cropping size		00h	
		[3:0]	FID0_ROIWV7 [11:0]	for FID0 on area (x, 7) (x = 1 to 8)	000h		V
57h	3157h			*Set the value of multiple of 8	1	00h	
501	0450	[7:4]		Fixed to 0h	0h	201	_
58h	3158h	[7:0]	FID0 ROIPH8 [12:0]	Designation of horizontal cropping position	00004	00h	V
59h	3159h	[4:0]	וייסי_ועורחס [12:0]	for FID0 on area (8, y) (y = 1 to 8) *Set the value of multiple of 8	0000h	00h	v
0011	010011	[7:5]		Fixed to 0h	0h	0011	_
5Ah	315Ah	[7:0]		Designation of vertical cropping position		00h	
		[3:0]	FID0_ROIPV8 [11:0]	for FID0 on area (x, 8) (x = 1 to 8)	000h		V
5Bh	315Bh	[3.0]		*Set the value of multiple of 8		00h	
		[7:4]		Fixed to 0h	0h		_
5Ch	315Ch	[7:0]	FIDO DONANIO TOTAL	Designation of horizontal cropping size	0005	00h	
ED!	2450-	[4:0]	FID0_ROIWH8 [12:0]	for FID0 on area (8, y) (y = 1 to 8) *Set the value of multiple of 4	0000h	004	V
5Dh	315Dh	[7:5]		Fixed to 0h	0h	00h	_
5Eh	315Fh	[7:0]		Designation of vertical cropping size		00h	
			FID0_ROIWV8 [11:0]	for FID0 on area $(x, 8)$ $(x = 1 \text{ to } 8)$	000h		V
5Fh	315Fh	[3:0]		*Set the value of multiple of 8		00h	
		[7:4]		Fixed to 0h	0h		_

Chip ID = 04 (Write: Chip ID = 04h, Read: Chip ID = 84h, I²C: 32**h)

Add	Iress		Decision No.	D		t value reset	Reflection
4-wire	I ² C	bit	Register Name	Description	By register	By address	timing
		0		Fixed to 1	1		
		1		Fixed to 0	0		
		2		Fixed to 1	1		
		3		Fixed to 0	0		_
00h	3200h	4		Fixed to 0	0	05h	_
		5	ADBIT [6:5]	AD conversion bits setting Oh: 10 bit 1h: 12 bit 2h: 8 bit	0h		S
		6		3h: Setting prohibited			
		7		Fixed to 0	0		_
		0	VREVERSE	Vertical (V) direction readout inversion control	0		V
				0: Normal 1: Inverted Horizontal (H) direction readout			.,
0.45	20046	1	HREVERSE	inversion control 0: Normal 1: Inverted	0	004	V
04h	3204h	2		Fixed to 0	0	00h	_
		3		Fixed to 0	0		
		4		Fixed to 0	0		
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		
		0					
		1	-				
		3	1	Cat appareling to INCV fraguency and drive			
20h	3220h	4	INCKSEL0 [7:0]	Set according to INCK frequency and drive mode.	52h	52h	S
		5		mode.			
		6	1				
		7					
		0					
		1	1				
		2					
21h	3221h	3	INICKSEL 1 [7:0]	Set according to INCK frequency and drive mode.	20h	20h	S
2111	322111	4	INCKSEL1 [7:0]	mode.	2011	2011	3
		5					
		6					
		7					
		0	1				
		1	-				
		2	1	Sot according to INCK fraguancy and drive			
24h	3224h	3 4	INCKSEL2 [7:0]	Set according to INCK frequency and drive mode.	52h	52h	S
		5	1	mode.			
		6	1				
		7	1				
		0					
		1					
		2					
25h	3225h	3	INICKSEL 3 [7:0]	Set according to INCK frequency and drive	20h	20h	S
2011	JZZ3[]	4	INCKSEL3 [7:0]	mode.	2011	2011	3
		5					
		6					
		7					

Add	Iress	bit	Register Name	Description		t value reset	Reflection
4-wire	I ² C	Dit	register Name	Description	Ву	Ву	timing
	_	_			register	address	
		0	-				
		2	-				
		3	1				
26h	3226h	4	FREQ_SYNC [7:0]	Refer to the register list in each Readout mode	93h	93h	S
		5					
		6					
		7					
		0		Fixed to 1	1		_
		1	FASTTRIG	Selection of trigger mode 0: Except for Fast trigger mode 1: Fast trigger mode	0		S
30h	3230h	2				11h	
30n	3230n	3				1111	
		4	-				
		5	LLBLANK	Refer to the register list in each readout mode	04h		S
		6	-				
		7	-				
		1	1				
		2		Fixed to 0	0		_
		3		Fixed to 0	0		_
31h	3231h	4		Fixed to 0	0	00h	_
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		_
				Setting of Interrupt mode in Trigger Mode			
		0	VINT_EN	0: V interrupt is disabled	1		S
				1: V interrupt is enabled			
		2		Fixed to 0	0		_
32h	3232h	3		Fixed to 0 Fixed to 0	0	01h	
		4		Fixed to 0	0		_
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		_
		0		LSB			
		1					
		2	-				
40h	3240h	3				18h	
		4	-				
		5 6	<u> </u>				
		7	-				
		0	1				
		1	†				
		2	1				
4	00111	3	0110 100 03	Storage time adjustment	0000101	061	
41h	3241h	4	SHS [23:0]	Designated in line unit	000018h	00h	V
		5]				
		6					
		7	_				
		0	-				
		1	-				
		2	-				
42h	3242h	3	-			00h	
		4	-				
		5 6	1				
		7	1	MSB			
	1	<u>'</u>	1	Imos			

Chip ID = 05 (Write: Chip ID = 05h, Read: Chip ID = 85h, I2C: 33**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 06 (Write: Chip ID = 06h, Read: Chip ID = 86h, I2C: 34**h)

Add	dress	bit	Pagistar Nama	Description		lt value reset	Reflection
4-wire	I ² C	DIL	Register Name	Description	By register	By address	timing
		0	TRIGEN	Global shutter mode setting 0: Normal mode 1: Trigger mode	0		J*1
		1		Fixed to 0	0		_
		2		Fixed to 0	0		_
00h	3400h	3		Fixed to 0	0	00h	_
		4		Fixed to 0	0		
		5		Fixed to 0	0		
		6		Fixed to 0	0		
		7		Fixed to 0	0		_
		0		Number of output bit setting			
		1	ODBIT [1:0]	0h: 10 bit 1h: 12 bit 2h: 8 bit 3h: Setting prohibited	0h		S
		2		Fixed to 0	0		
30h	3430h	3		Fixed to 0	0	00h	_
		4		Fixed to 0	0		
		5		Fixed to 0	0		
		6		Fixed to 0	0		_
		7		Fixed to 0	0		_
		0	TOUT OF U.S.	TOUT1 pin setting	01		
		1	TOUT1SEL [1:0]	0h: Low fixed 3h: Pulse output	0h		S
		2	TOUTOCEL (0.0)	TOUT2 pin setting	Ol-		
256	0.40Eh	3	TOUT2SEL [3:2]	0h: Low fixed 3h: Pulse output	0h	006	S
35h	3435h	4		Fixed to 0	0	00h	_
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		_
		0					
		1	TRIG_TOUT1_SEL [3:0]	TOUT1 output setting	0h		s
		2		0h: Low fixed 1h: Pulse1 output	OII		3
3Ah	343Ah	3				00h	
JAII	040AII	4				0011	
		5	TRIG_TOUT2_SEL [7:4]	TOUT2 output setting	0h		s
		6	-	0h: Low fixed 2h: Pulse2 output	011		
		7					
		0		Fixed to 0	0		
		1		Fixed to 0	0		
		2		Fixed to 0	0		
3Ch	3Ch 343Ch -	3		Fixed to 0	0	C0h	
5511		4 5	SYNCSEL [5:4]	XHS, XVS pin setting 0h: Normal Output 3h: Hi-Z	0h		s
		6		Fixed to 1	1	1	_
		7		Fixed to 1	1	1	_

^{*1} Refer to "Mode Transitions of Global Shutter Operation"

Add	dress	hit	Pogister Name	Description		t value reset	Reflection
4-wire	I ² C	bit	Register Name	Description	By register	By address	timing
		0 1 2 3	-STBSLVS [3:0]	Channel standby control of SLVS 2h: activate 4 ch 3h: activate 2 ch Others: Setting prohibited	2h		S
44h	3444h	4		Fixed to 0	0	02h	_
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		_
		0					
		1	OPORTSEL [3:0]	SLVS channel selection	3h		S
		2	OI OITTOLL [0.0]	3h: 4 ch 4h: 2 ch Others: Setting prohibited	011		
45h	3445h	3				03h	
4011	044011	4		Fixed to 0	0	0011	_
		5		Fixed to 0	0		
		6		Fixed to 0	0		
		7		Fixed to 0	0		_
		0	PULSE1_EN_NOR [0]	Pulse1 output in normal mode 0: Disable 1: Enable	0		S
		1	PULSE1_EN_TRIG [1]	Pulse1 output in trigger mode 0: Disable 1: Enable	0		S
78h	3478h 2 3 4	2	PULSE1_POL [2]	Pulse1 polarity selection 0: High active 1: Low active	0	00h	S
		3		Fixed to 0	0	- !	_
		4		Fixed to 0	0		_
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		_
		0		LSB			
		1					
		2					
79h	3479h	3				00h	
7 911	347311	4				0011	
		5					
		6	1				
		7					
		0	4				
		1	4				
		2	4	Pulse1 active period start timing setting			
7Ah	347Ah	3	PULSE1_UP [23:0]	Designated in line units from reference point	000000h	00h	S
		4		(For details, see the "Pulse Output Function")			
		5	4				
	-	6	-				
		7	-				
		0	-				
		1	-				
		2	1				
7Bh	347Bh	3	1			00h	
		5	1			UUN	
		6	+				
		7	=	MSB			
	l	'	I .	טטוווו	l	L	L

Add	Iress				Defaul after	t value reset	Reflection
4-wire	I ² C	bit	Register Name	Description	Ву	Ву	timing
4-wire	I-C				register	address	
		0		LSB			
		1					
		2					
7Ch	347Ch	3				00h	
7011	017011	4				0011	
		5					
		6					
		7					
		0					
		1					
		2		Pulse1 active period end timing setting			
7Dh	347Dh	3	PULSE1_DN [23:0]	Designated in line units from readout start	000000h	00h	s
		4		(For details, see the "Pulse Output Function")			
		5					
		6					
		7	-				
		0	-				
		2	-				
			-				
7Eh	347Eh	3 4	-			00h	
		5	-				
		6	-				
		7		MSB			
		'		Pulse2 output in normal mode			
		0	PULSE2_EN_NOR [0]	0: Disable 1: Enable	0		S
				Pulse2 output in trigger mode			
		1	PULSE2_EN_TRIG [1]	0: Disable 1: Enable	0		S
				Pulse2 polarity selection			_
80h	3480h	2	PULSE2_POL [2]	0: High active 1: Low active	0	00h	S
		3		Fixed to 0	0		_
		4		Fixed to 0	0		_
		5		Fixed to 1	0		S
		6		Fixed to 0	0		
		7		Fixed to 0	0		
		0		LSB			
		1					
		2					
81h	3481h	3				00h	
""	U 70 III	4				5011	
		5					
		6					
<u> </u>		7	-				
		0					
		1	-				
		2	-	Pulse2 active period start timing setting			
82h	3482h	3	PULSE2_UP [23:0]	Designated in line units from reference point	000000h	00h	S
		4	1	(For details, see the "Pulse Output Function")			
		5	1				
		6 7	1				
-		0	1				
		1	1				
		2	-				
		3	1				
83h	3483h	4	1			00h	
		5	1				
		6	1				
		7	1	MSB			
L	Î.		1	1 -	l		

Add	Iress				Defaul after	t value reset	Reflection
4	120	bit	Register Name	Description	Ву	Ву	timing
4-wire	I ² C				register	address	-
		0		LSB			
		1					
		2					
84h	3484h	3				00h	
0	0.0	4				00	
		5					
		6					
		7	-				
		0					
		2		Pulse2 active period end timing setting			
85h	3485h	3	PULSE2_DN [23:0]	Designated in line units from reference point	000000h	00h	s
		4		(For details, see the "Pulse Output Function")			
		5					
		6					
		7	-				
		0	-				
		2	-				
		3	-				
86h	3486h	4				00h	
		5					
		6	-				
		7	-	MSB			
		0		INIOD			
		1	1				
		2					
		3	1				
90h	3490h	4	1			00h	
		5		Output of the digital thermometer.			
		6	TMP_OUT[11:0]	Read only.	00h		_
		7	1				
		0	1				
	91h 3491h -	1					
		2					
0415		3				001-	
91n		4		Fixed to 0	0	00h	
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		

Chip ID = 07 (Write: Chip ID = 07h, Read: Chip ID = 87h, I²C: 35**h)

Add	Iress					t value reset	Reflection
4-wire	I ² C	bit	Register Name	Description	Ву	By address	timing
		0	GAINUPDSL	Setting of Gain Reflection Timing at Normal mode. 0: Gain reflect at the frame 1: Gain reflect at the next frame (Same timing as SHS reflecting output.) Set 0 at Triger modes.	register 0	auuress	S
02h	3502h	1		Fixed to 0	0	00h	_
		2		Fixed to 0	0		_
		3		Fixed to 0	0		_
		4		Fixed to 0	0		_
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		_
		0		LSB			
		1					
		2]	Gain setting			
1.15	25445	3		0 dB (000d) to 42 dB (420d)		001-	
14h	3514h	4	GAIN [8:0]	0.1 dB Step	000h	00h	V
		5		(Refer to Address 02h about detail of Reflection			
		6		Timing.)			
		7					
		0		MSB		00h	
		1		Fixed to 0	0		_
		2		Fixed to 0	0		_
15h	3515h	3		Fixed to 0	0		_
1311	331311	4		Fixed to 0	0		_
		5		Fixed to 0	0		_
		6		Fixed to 0	0		_
		7		Fixed to 0	0		_
		0	TMDLATCH	Thermometer output is updated when this register is set from 0h to 1h.	0		I
		1		Fixed to 1	0		_
		2		Fixed to 0	0		_
88h	3588h	3		Fixed to 0	0	30h	_
		4		Fixed to 1	1		_
		5		Fixed to 1	1		
		6		Fixed to 0	0		
		7		Fixed to 0	0		
		0	4	LSB			
		1	_				
		2	_				
C0h	35C0h	3	4			3Ch	
		4	4	Black level offset value setting			
		5	BLKLEVEL [11:0]	Recommended value.	03Ch		V
	7 C	6	1 1	00Fh: 8 bit 03Ch: 10 bit 0F0h: 12 bit			
		7	-				
		0	-				
		1	4				
		2	4	1400			
C1h	35C1h	3		MSB		00h	
		4		Fixed to 0	0		
		5		Fixed to 0	0		
		6		Fixed to 0	0		
		7	1	Fixed to 0	0		_

SONY IMX990-AABA-C

Chip ID = 08 (Write: Chip ID = 08h, Read: Chip ID = 88h, I^2 C: 36**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 09 (Write: Chip ID = 09h, Read: Chip ID = 89h, I^2 C: 37**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 0A (Write: Chip ID = 0Ah, Read: Chip ID = 8Ah, I²C: 38**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 0B (Write: Chip ID = 0Bh, Read: Chip ID = 8Bh, I^2 C: 39**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 0C (Write: Chip ID = 0Ch, Read: Chip ID = 8Ch, I^2 C: 3A**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 10 (Write: Chip ID = 10h, Read: Chip ID = 90h, I^2 C: 3E**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 11 (Write: Chip ID = 11h, Read: Chip ID = 91h, I^2 C: 3F**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 12 (Write: Chip ID = 12h, Read: Chip ID = 92h, I^2 C: $40^{**}h$)

Please refer to the other register map file for the register that has not been described.

Chip ID = 13 (Write: Chip ID = 13h, Read: Chip ID = 93h, I2C: 41**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 14 (Write: Chip ID = 14h, Read: Chip ID = 94h, I^2 C: $42^{**}h$)

Please refer to the other register map file for the register that has not been described.

Chip ID = 15 (Write: Chip ID = 15h, Read: Chip ID = 95h, I2C: 43**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 16 (Write: Chip ID = 16h, Read: Chip ID = 96h, I^2 C: 44**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 17 (Write: Chip ID = 17h, Read: Chip ID = 97h, I^2 C: 45^{**} h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 18 (Write: Chip ID = 18h, Read: Chip ID = 98h, I^2 C: 46**h)

Please refer to the other register map file for the register that has not been described.

Chip ID = 19 (Write: Chip ID = 19h, Read: Chip ID = 99h, I^2 C: 47**h)

Readout Drive Modes

The table below lists the operating modes available with this sensor. (Each value is the Max. frame rate of each number of ch.)

FREQ (CID = 02h, Address = DCh, [1:0]) = 0h

Drive	Frame	Data		A/D	Numl	per of		number Average)*3		Number of INCK in 1H	
mode	rate [frame/s]	rate [Gbps]	SLVS ch ^{*1}	conversion	Н	V	Н	V	INCK: 37.125 MHz	INCK: 74.25 MHz	INCK: 54 MHz
	134.73	2.376	4				2064		258.0	516.0	375.3
-	92.69	1.188	2	8			1500		375.0	750.0	545.5
	125.27	2.376	4		4000	4004	1776		277.5	555.0	403.7
All pixel	74.76	1.188	2	10	1280	1024	1488	1068	465.0	930.0	676.4
	71.53	2.376	4	40	12		2592		486.0	972.0	706.9
	62.97	1.188	2	12		1472		552.0	1104.0	802.9	
	260.68	2.376	4				2064		258.0	516.0	375.3
All pixel	260.68	1.188	2	8	8		1032		258.0	516.0	375.3
(Vertical /	242.36	2.376	4	40	0.40	540	1776	550	277.5	555.0	403.7
Horizontal 1/2	242.36	1.188	2	10	640	512	888	552	277.5	555.0	403.7
subsampling)	138.39	2.376	4	10			2592		486.0	972.0	706.9
y9/	138.39	1.188	2	12	12		1296		486.0	972.0	706.9
	*2	2.376	4	0			2064		258.0	516.0	375.3
	*2	1.188	2	8			1500		375.0	750.0	545.5
ROI	*2	2.376	4	10	*1	*1	1776	*2	277.5	555.0	403.7
KUI	*2	1.188	2	10		·	1488		465.0	930.0	676.4
	*2	2.376	4]		2592		486.0	972.0	707.0
	*2	1.188	2				1472		552.0	1104.0	803.0

FREQ (CID = 02h, Address = DCh, [1:0]) = 1h

Defen	Frame	Data		A /D	Numl			number Average)*3		Number of INCK in 1H	
Drive mode	rate [frame/s]	rate [Gbps]	SLVS ch ^{*1}	A/D conversion	Н	V	Н	V	INCK: 37.125	INCK: 74.25	INCK: 54
	91.71	4.400	4				1516		MHz 379.0	MHz 758.0	MHz 551.3
-		1.188	4	8							
-	47.81	0.594	2				1454		727.0	1454.0	1057.5
All pixel	73.96	1.188	4	10	1280	1024	1504	1068	470.0	940.0	683.6
All pixel	38.41	0.594	2	10	1200	1024	1448	1000	905.0	1810.0	1316.4
	62.29	1.188	4	40			1488		558.0	1116.0	811.7
	32.18	0.594	2	12			1440		1080.0	2160.0	1571.0
	260.67	1.188	4				1032		258.0	516.0	375.3
All pixel	177.45	0.594	2	8		758		379.0	758.0	551.3	
(Vertical /	242.36	1.188	4	40	0.40	540	888	550	277.5	555.0	403.7
Horizontal 1/2	143.09	0.594	2	10	640	512	752	552	470.0	940.0	683.6
subsampling)	138.38	1.188	4	40			1296		486.0	972.0	707.0
Subsampling)	120.52	0.594	2	12			744		558.0	1116.0	811.7
	*2	1.188	4	0		1516		379.0	758.0	551.3	
	*2	0.594	2 8			1454		727.0	1454.0	1057.5	
DOL	*2	1.188	4	40	*1	*1	1504	*2	470.0	940.0	683.6
ROI	*2	0.594	2	10	·		1448	*2	905.0	1810.0	1316.4
	*2	1.188	4		1		1488		558.0	1116.0	811.7
	*2	0.594	2	12			1440		1080.0	2160.0	1571.0

^{*1} Designated cropping area (ROI).

^{*2} See the section of "ROI mode".

^{*3} It is possible that the blank pixel number of 1H changes by 1 pixel.
For the setting value to register HMAX / VMAX, see the section of each drive mode settings.

Restriction on Image Data Output

If the shutter releases on outputting the image data in this product, blank code is inserted in the image data because of shutter stabilization wait time.

The insertion timing of shutter stabilization wait time changes depending on the shutter release timing.

During the shutter stabilization wait time, the sync codes is not output. Refer to the sync codes from the sensor and perform synchronization.

Please refer to the Application Note for the effect of the shutter release on the image qualities during the image data outputs.

Image Drawing of Sutter stabilization wait time inserted

Refer to the register list of each scan mode for GSDLY.

Image Data Output Format

Sync code

The sync code is added immediately before and after "dummy signal + OB signal + effective pixel data" and then output. The sync code is output in order of 1st, 2nd, 3rd and 4th. The fixed value is output for 1st to 3rd. (BLK: Blanking period)

Sync Code Output Timing

List of Sync Code

Sync code		1st code			2nd code			3rd code			4th code	
Syric code	8 bit	10 bit	12 bit	8 bit	10 bit	12 bit	8 bit	10 bit	12 bit	8 bit	10 bit	12 bit
SAV (Valid line)	FFh	3FFh	FFFh	00h	000h	000h	00h	000h	000h	80h	200h	800h
EAV (Valid line)	FFh	3FFh	FFFh	00h	000h	000h	00h	000h	000h	9Dh	274h	9D0h
SAV (Invalid line)	FFh	3FFh	FFFh	00h	000h	000h	00h	000h	000h	ABh	2ACh	AB0h
EAV (Invalid line)	FFh	3FFh	FFFh	00h	000h	000h	00h	000h	000h	B6h	2D8h	B60h

Sync Code Output Timing

The sensor output signal passes through the internal circuits and is output with a latency time (system delay) relative to the horizontal sync signal. This system delay value is undefined for each line, so refer to the sync codes output from the sensor and perform synchronization.

All - pixel scan

Register List of All - pixel scan mode

Address bit Register name Register name SLVS 2 ch T1 sample T1 s							Setting	g value							
Address Dit Register name Address Dit					AD =	8 bit	AD =	10 bit	AD =	12 bit	Remarks				
Address Dit Register name Value 134.73 92.70 125.27 74.76 71.53 62.30 Tensmosty Tensmosty				1-161-1	SLVS 4 ch	SLVS 2 ch	SLVS 4 ch	SLVS 2 ch	SLVS 4 ch	SLVS 2 ch					
Transe Tran	Address	bit	Register name		134.73	92.70	125.27	74.76	71.53	62.97	5050 0				
Chip D = 02h				value	[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]	FREQ = 0h				
					91.72	47.81	73.96	38.41	62.30	32.19	EREO – 1h				
O					[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]	FREQ = III				
14	Chip ID	= 02h		1											
4 Holobe 0	3Ch										· ·				
DSh [7:0] DSh D			HMODE	0			(0			All-pixel				
Deb															
Deb 17:0 PMAX 235h 204h 2EEh 22Bh 3A2h 3CCh 450h FREQ = 0h PREQ = 1h PREQ =			VMAX	436h			42	Ch							
Description		• •			00.41	0551	0001	0.4.01	2001	4501					
DCh 11:0 FREQ Oh Oh 1h 6h Ezh [7:0] GTWAIT 6h 6h Chip ID = 04h Oh 1h 1: 12 bit 2: 8 bit			HMAX	235h											
E2h		• •	FDFO	Ol-	2F6N	5AEN			45Ch	870n	FREQ = 1h				
Triangle Triangle															
Chip ID = 04h Chip ID = 04h Oh 1h 0: 10 bit 1: 12 bit 2: 8 bit 20h [7:0] INCKSEL0 52h INCK = 37.125 MHz / 54 MHz: 50h INCK = 74.25 MHz: 52h 2: 8 bit 21h [7:0] INCKSEL1 20h INCK = 37.125 MHz / 74.25 MHz: 20h INCK = 54 MHz: 16h INCK = 37.125 MHz: 52h INCK = 37.125 MHz: 52h 24h [7:0] INCKSEL2 52h INCK = 37.125 MHz: 74.25 MHz: 20h INCK = 54 MHz: 16h 25h [7:0] INCKSEL3 20h INCK = 37.125 MHz: 74.25 MHz: 20h INCK = 54 MHz: 16h 26h [7:0] FREQ_SYNC 93h FREQ = 0: 93h FRQ = 1: A3h 30h [7:2] 1tBLBANK 04h 04h 30h [1:0] ODBIT 0h 2h 0h 1h 0: 10 bit 1: 12 bit 1															
Oh [6:5] ADBIT Oh 2h Oh 1h 1: 12 bit 1: 12 bit 2: 8 bit				40			4	·n							
O0h [6:5] ADBIT 0h 2h 0h 1h 1: 12 bit 2: 8 bit 20h [7:0] INCKSEL0 52h INCK = 37.125 MHz / 54 MHz: 50h INCK = 37.125 MHz / 74.25 MHz: 20h INCK = 37.125 MHz / 74.25 MHz: 20h INCK = 37.125 MHz / 54 MHz: 16h INCK = 37.125 MHz / 54 MHz: 50h INCK = 37.	Chip ib	= 0411													
2:8 bit 20h [7:0] INCKSEL0 52h INCK = 37.125 MHz / 54 MHz: 50h INCK = 37.125 MHz / 54 MHz: 50h INCK = 37.125 MHz / 34 MHz: 50h INCK = 37.125 MHz / 34 MHz: 50h INCK = 37.125 MHz / 54 MHz: 50h INCK = 37.125 MHz / 14.25 MHz: 20h INCK = 37.125 MHz / 14.25 MHz: 30h INCK	OOh	[6:5]	ADRIT	Oh	2	2h 0h 1h									
INCK = 37.125 MHz / 54 MHz: 50h INCK = 74.25 MHz: 52h INCK = 37.125 MHz / 54 MHz: 20h INCK = 37.125 MHz / 74.25 MHz: 20h INCK = 37.125 MHz / 74.25 MHz: 20h INCK = 37.125 MHz: 74.25 MHz: 20h INCK = 37.125 MHz: 50h INCK = 37.125 MHz	0011	[0.5]	ADDIT	OII	2	ZII VII III									
Tinck						INCK = 37 125 MHz / 54 MHz · 50h									
21h (7:0) INCKSEL1 20h INCK = 54 MHz: 16h INCK = 37.125 MHz / 54 MHz: 50h INCK = 37.125 MHz / 74.25 MHz: 20h INCK = 37.125 MHz / 74.25 MHz: 20h INCK = 54 MHz: 16h INCK = 54 MHz:	20h	[7:0]	INCKSEL0	52h			INCK = 74.2	25 MHz: 52h							
INCK = 54 MHz: 16h	0415	[7.0]	INCKCELA	001-		INC	K = 37.125 MH	z / 74.25 MHz	: 20h						
24h [7:0]	21n	[7:0]	INCKSEL1	20n			INCK = 54	MHz: 16h							
ST ST ST ST ST ST ST ST	24h	[7:0]	INICKSEL 3	52h		IN	CK = 37.125 M	Hz / 54 MHz: 5	50h						
25h [7:0] INCKSEL3 20h INCK = 54 MHz: 16h 26h [7:0] FREQ_SYNC 93h FREQ = 0: 93h 30h [7:2] 31h [1:0] 31h [1:0] Chip ID = 06h 30h [1:0] ODBIT Oh 2h Oh 1h 0: 10 bit 44h [3:0] STBSLVS 1h 2h N/A 2h N/A 2h N/A 4 ch SLVS 45h [3:0] OPORTSEL 1h 3h N/A 3h N/A 3h N/A 3h N/A 4 ch SLVS 45h [3:0] OPORTSEL 1h N/A 4h N/A 4h N/A 4h N/A 4h 2 ch SLVS 50 Chip ID = 07h COh [7:0] RIKI EVEL O3Ch OOFh O3Ch OFOh Recommended 60 Recommended Recommended Recommended Recommended 70 Recommended Recommended Recommended Recommended 70 Recommended Recommended Recommended 70 Recommended Recommended Recommended 70 Recommended Recommended Recommended 70 Recommended Recommended 70 Recommended Recommended Recommended 70 Reco	2411	[7.0]	INCRSELZ	5211			INCK = 74.2	25 MHz: 52h							
26h [7:0] FREQ_SYNC 93h FREQ = 0: 93h FREQ = 1: A3h 30h [7:2] 31h [1:0] Chip ID = 06h 44h [3:0] STBSLVS 1h 2h N/A 2h N/A 3h N/A	25h	[7:0]	INCKSEL 3	20h		INC	K = 37.125 MH	lz / 74.25 MHz	: 20h						
26h [7:0] FREQ_SYNC 93h FREQ = 1: A3h 30h [7:2]	2011	[7.0]	IIVORGEES	2011											
STBSLVS The property of th	26h	[7:0]	FREQ SYNC	93h											
STBSLVS				00			FREQ =	= 1: A3h							
Chip ID = 06h 30h [1:0] ODBIT Oh 2h Oh 1h 1: 12 bit 2: 8 bit 2: 8 bit 44h [3:0] STBSLVS 1h N/A 2h N/A 2h N/A 4 ch SLVS 45h [3:0] OPORTSEL 1h N/A 3h N/A 3h N/A 3h N/A 3h N/A 4 ch SLVS Chip ID = 07h Coh [7:0] BLKLEVEL 03Ch 00Fh 03Ch 0F0h Recommended			LLBLANK	04h			04	4h							
30h [1:0] ODBIT Oh 2h Oh 1h 1: 12 bit 2: 8 bit															
30h [1:0] ODBIT 0h 2h 0h 1h 1:12 bit 2:8 bit 44h [3:0] STBSLVS 1h 2h N/A 2h N/A 2h N/A 4 ch SLVS 45h [3:0] OPORTSEL 1h 3h N/A 3h N/A 3h N/A 3h N/A 4 ch SLVS Chip ID = 07h COh [7:0] BLKLEVEL 03Ch 00Fh 03Ch 0F0h Recommended	Chip ID	= 06h		1		0.4017									
2: 8 bit 2: 8 bit 3: 0	204	[4.0]	ODBIT	Oh	2h 0h 1h										
44h [3:0] STBSLVS 1h	30n	[1:0]	ODBIT	Un	211 011 111										
44h [3:0] STBSLVS 1h N/A 3h N/A 3h N/A 3h 2 ch SLVS 45h [3:0] OPORTSEL 1h 3h N/A 3h N/A 3h N/A 3h N/A 4 ch SLVS Chip ID = 07h C0h [7:0] BLKLEVEL 03Ch 00Fh 03Ch 00Fh Recommended					2h	NI/A	2h	NI/A	2h	NI/A					
45h [3:0] OPORTSEL 1h 3h N/A 3h N/A 3h N/A 4 ch SLVS Chip ID = 07h C0h [7:0] BLKL EVEL 03Ch 00Fh 03Ch 00Fh 03Ch 0F0h	44h	[3:0]	STBSLVS	1h											
45h [3:0] OPORTSEL 1h N/A 4h N/A 4h N/A 4h 2 ch SLVS Chip ID = 07h C0h [7:0] BLKL EVEL 03Ch 00Fh 03Ch 0F0h Recommended															
Chip ID = 07h COh [7:0] BLKL EVEL 03Ch 09Ch 03Ch 09Ch Recommended	45h	[3:0]	OPORTSEL	1h											
C0h [7:0] BLKLEVEL 03Ch 00Fh 03Ch 0F0h Recommended	Chip ID	= 07h								12 311 02 7 0					
l l' 1 BLKLEVEL I 03Ch I 00Eh I 03Ch I 0E0h I											Recommended				
	C1h	[3:0]	BLKLEVEL	03Ch	Ch 00Fh 03Ch 0F0h						value				

Pixel Array Image Drawing in All - pixel scan Mode

SONY

Drive Timing Chart for Serial Output in All - pixel Scan Mode

Vertical / Horizontal 1/2 Subsampling mode

V direction and H direction must be set in this mode. (WINMODE = 1h, HMODE = 1)

Register List of Vertical / Horizontal 1/2 subsampling mode

Please set All - pixel scan mode to the settings other than the following.

						,	y value	1			
				AD =	8 bit	AD =	10 bit	AD =	12 bit	Remarks	
			Initial	SLVS 4 ch	SLVS 2 ch	SLVS 4 ch	SLVS 2 ch	SLVS 4 ch	SLVS 2 ch		
Address	bit	Register name	Value	260.68	260.28	242.36	242.36	138.39	138.39	FREQ = 0h	
				[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]		
				260.68	177.45	242.36	143.10	138.39	120.53	FREQ = 1h	
				[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]	TILLEG - III	
Chip ID	0 = 02h	1									
3Ch	[0]	WINMODE	0				I			Subsampling mode	
	[4]	HMODE	0				1			Subsampling	
D4h	[7:0]										
D5h	[7:0]	VMAX	436h			22	8h				
D6h	[7:0]										
D8h	[7:0]			204h	204h	22Bh	22Bh	3CCh	3CCh	FREQ = 0h	
D9h	[7:0]	HMAX	235h	204h	2F6h	22Bh	3ACh	3CCh	45Ch	FREQ = 1h	
DCh	[1:0]	FREQ	0h	20	2. 0	0h ,		000			
E2h	[7:0]	GTWAIT	6h		6h						
E3h	[7:0]	GSDLY	4h		6n 4h						
Chip ID											
•) = 0 III		1		INI	CK = 37.125 M	Hz / 54 MHz: 5	50h			
20h	[7:0]	INCKSEL0	52h				25 MHz: 52h				
21h	[7:0]	INCKSEL1	20h		INC	K = 37.125 MH	z / 74.25 MHz:	20h			
2111	[7.0]	INCROLLI	2011			INCK = 54	MHz: 16h				
24h	[7:0]	INCKSEL2	52h		IN	CK = 37.125 M	Hz / 54 MHz: 5	50h			
2411	[7.0]	INCROLLE	5211			INCK = 74.2	25 MHz: 52h				
25h	[7:0]	INCKSEL3	20h		INC	K = 37.125 MH	z / 74.25 MHz:	20h			
2011	[7.0]	INCROLLS	2011			INCK = 54	MHz: 16h				
26h	[7:0]	FREQ_SYNC	93h			FREQ :	= 0: 93h				
2011	[7.0]	FREQ_STNC	9311	FREQ = 1: A3h							
30h	[7:2]	LLBLANK	04h	04h							
31h	[1:0]	LLDLAINN	0411			02	+111				
Chip ID	0 = 06h	1									
44h	[2:0]	STBSLVS	1h	2h	N/A	2h	N/A	2h	N/A	4 ch SLVS	
4411	[3:0]	SIBSLVS	III	N/A	3h	N/A	3h	N/A	3h	2 ch SLVS	
45h	[0.0]	ODODTSEL	1h	3h	N/A	3h	N/A	3h	N/A	4 ch SLVS	
45h	[3:0]	OPORTSEL	1h	N/A	4h	N/A	4h	N/A	4h	2 ch SLVS	

Pixel Array Image Drawing in Vertical / Horizontal 1/2 subsampling mode

ROI mode

This Sensor has ROI function that signals are cut out and read out in multi arbitrary positions.

Cropping position can set maximum 64 areas that specified by horizontal 8 points and vertical 8 points, regarding effective pixel start position as origin (0, 0) in all pixel scan mode. Cropping is available from All - pixel scan mode and horizontal period are fixed to the value for this mode.

These cropped areas by horizontal cropping setting (ROI (1, y) to ROI (8, y)) are output with left justified and that extends the horizontal blanking period. In vertical cropping area (ROI (x, 1) to ROI (x, 8)), the number of image data is also output from cropping start line and the frame rate can be adjusted by changing the number of input XVS lines in slave mode or changing register VMAX in master mode.

One invalid frame is generated when the ROI area changing size or cropping address.

ROI image is shown in the figure below.

In case of Vertical / Horizontal 1/2 subsampling mode, this sensor doesn't support ROI mode.

Image Drawing of Designated Areas in ROI Mode

Details of Image Drawing

Register List of ROI mode

Please set All - pixel scan mode to the settings other than the following.

				Setting value									
			1-141-1	AD =	8 bit	AD =	10 bit	AD =	12 bit]			
Address	bit	Register name	Initial	SLVS 4 ch	SLVS 2 ch	SLVS 4 ch	SLVS 2 ch	SLVS 4 ch	SLVS 2 ch	Remarks			
			Value	*1	*2	*3	*4	*5	*6	1			
				[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]				
Chip ID	= 02h												
3Ch	[0]	WINMODE	0			()			All-pixel mode			
3011	[4]	HMODE	0			()	T	1	All-pixel			
D4h	[7:0]												
D5h	[7:0]	VMAX	436h	*1	*2	*3	*4	*5	*6				
D6h	[7:0]												
D8h	[7:0]	HMAX	235h	204h	2EEh	22Bh	3A2h	3CCh	450h	FREQ = 0h			
D9h	[7:0]			2F6h	5AEh	3ABh	712h	45Ch	870h	FREQ = 1h			
DCh	[1:0]	FREQ	0h			0h /							
E2h	[7:0]	GTWAIT	6h			6							
E3h	[7:0]	GSDLY	4h			4	h						
Chip ID	= 03h			I									
	[0]	FID0_ROIH1ON	0	The horizontal 0: Disable 1:	_	0 ROI area (1,	y) (y = 1 to 8)						
	[1]	FID0_ROIV1ON	0	The vertical set 0: Disable 1:	•	ROI area (x, 1)	(x = 1 to 8)						
	[2]	FID0_ROIH2ON	0	The horizontal 0: Disable 1:	setting of FID	0 ROI area (2,	y) (y = 1 to 8)						
	[3]	FID0 ROIV2ON	0	The vertical se	etting of FID0 F	ROI area (x, 2)	(x = 1 to 8)						
04h	[-]			0: Disable 1:									
	[4]	FID0_ROIH3ON	0	The horizontal 0: Disable 1:	•	0 ROI area (3,	y) (y = 1 to 8)						
	[5]	FID0_ROIV3ON	0	The vertical set 0: Disable 1:	•	ROI area (x, 3)	(x = 1 to 8)						
	[6]	FID0_ROIH4ON	0	The horizontal	e horizontal setting of FID0 ROI area (4, y) (y = 1 to 8)								
	[7]	FID0_ROIV4ON	0	The vertical se	Disable 1: Enable e vertical setting of FID0 ROI area (x, 4) (x = 1 to 8)								
	[0]	FID0_ROIH5ON	0	0: Disable 1: The horizontal		0 ROI area (5,	y) (y = 1 to 8)						
				0: Disable 1: The vertical se		ROI area (x, 5)	(x = 1 to 8)						
	[1]	FID0_ROIV5ON	0	0: Disable 1: The horizontal	Enable								
	[2]	FID0_ROIH6ON	0	0: Disable 1:	Enable	ROI area (x, 6)							
05h	[3]	FID0_ROIV6ON	0	0: Disable 1:	Enable		,						
	[4]	FID0_ROIH7ON	0	The horizontal 0: Disable 1:	•	0 ROI area (7,	y) (y = 1 to 8)						
	[5]	FID0_ROIV7ON	0	The vertical se 0: Disable 1:	•	ROI area (x, 7)	(x = 1 to 8)						
	[6]	FID0_ROIH8ON	0	The horizontal 0: Disable 1:	•	0 ROI area (8,	y) (y = 1 to 8)						
	[7]	FID0_ROIV8ON	0		etting of FID0 F	ROI area (x, 8)	(x = 1 to 8)						
20h	[7:0]	FID0 ROIPH1	0000h	Designation of	horizontal cro	pping position	for FID0 on are	ea (1, y) (y = 1	to 8)				
21h 22h	[4:0] [7:0]	_			Set the value of multiple of 8 esignation of vertical cropping position for FID0 on area (x, 1) (x = 1 to 8)								
23h	[3:0]	FID0_ROIPV1	000h	*Set the value	of multiple of 8	3							
24h 25h	[7:0] [4:0]	FID0_ROIWH1	0000h		horizontal cro of multiple of	pping size for F 4	FID0 on area (1, y) (y = 1 to 8	3)				
26h	[7:0]	FID0_ROIWV1	000h	Designation of	vertical cropp	ing size for FID	00 on area (x, 1	1) (x = 1 to 8)					
27h 28h	[3:0] [7:0]	FID0_ROIPH2	0000h	Designation of		pping position	for FID0 on are	ea (2, y) (y = 1	to 8)				
29h 2Ah	[4:0] [7:0]				of multiple of 8 vertical cropp	3 ing position for	FID0 on area	(x, 2) (x = 1 to	8)				
2Bh 2Ch	[3:0] [7:0]	FID0_ROIPV2	000h	*Set the value	of multiple of 8	٠.							
2Dh	[4:0]	FID0_ROIWH2	0000h	_	of multiple of	•	ווט טעו aleg (ז	∠, y) (y = 1 to 8	·)				

Address bit Register name Initial Value Initial Valu	Setting value										
Style="blook of the color: 150% of the color: 150		12 bit	AD =	•	`	8 bit	AD =				
The color of the	Remarks								Register name	bit	Address
Designation of vertical cropping size for FID0 on area (x, 2) (x = 1 to 8)		*6	*5	*4	*3	*2	*1	Value			
Set the value of multiple of 8		[frame/s]									
Set the value of multiple of 8 Set the value of multiple of 8			(x = 1 to 8)	00 on area (x, 2				000h	FID0 ROIWV2		
31h 4:01 FID0_ROIPH3 FID0_ROIPH3 FID0_ROIPH3 FID0_ROIPH3 FID0_ROIPH3 FID0_ROIPH3 FID0_ROIPH3 FID0_ROIPH3 FID0_ROIPH4 FID0_ROIPH4 FID0_ROIPH4 FID0_ROIPH4 FID0_ROIPH4 FID0_ROIPH5 F						•	1				
32h 17:01 FIDD_ROIPV3 33h 17:01 FIDD_ROIPV3 35h 14:01 FIDD_ROINV3 35h 14:01 FIDD_ROINV4 35h 14:01 FIDD_ROINV5 35h 3:01 FIDD_ROINV6 35h 44h 17:01 44h 17:0		to 8)	ea (3, y) (y = 1	for FID0 on are				0000h	FID0_ROIPH3		
Set the value of multiple of 8 Set the value of multiple of 8		<u></u>	(v 2) (v = 1 to	FID0 on area							
34h [7:0] 35h [4:0] 7:0] 36h [7:0] 37h 370 37h 370 37h		5)	(x, 3) (x = 1)0	FIDU UII alea	0.1			000h	FID0_ROIPV3		
Set the value of multiple of 4 Designation of vertical cropping position for FID0 on area (x, 3) (x = 1 to 8))	3, y) (y = 1 to 8	FID0 on area (†				
37h 3:0 FIDO_ROIPH4 3:0 FIDO_ROIPH4 3:0 FIDO_ROIPH5 4:0		,	,,,,	(_	0000h	FID0_ROIWH3		
38h [7:0] 38h			(x = 1 to 8)	00 on area (x, 3	ing size for FID	vertical cropp	Designation of	0006	FIDO DOIMA/2	[7:0]	36h
39h 4-0 FID0_ROIPH4 0000h Set the value of multiple of 8					3	of multiple of	*Set the value	00011	FIDU_KOIWV3	[3:0]	37h
3Ah 17:0 3Bh 13:0 3Bh 3Bh 13:0 3Bh		to 8)	ea (4, y) (y = 1	for FID0 on are			_	0000h	FID0 ROIPH4		
Set the value of multiple of 8											
3Ch (7:0] 3Dh (4:0)		3)	(x, 4) (x = 1 to)	FID0 on area	٠.		, and the second	000h	FID0_ROIPV4		
3Dh (4:0) FIDO_ROIWH4 0000h *Set the value of multiple of 4 Designation of vertical cropping size for FIDO on area (x, 4) (x = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping position for FIDO on area (5, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping position for FIDO on area (5, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of vertical cropping position for FIDO on area (x, 5) (x = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping position for FIDO on area (x, 5) (x = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping size for FIDO on area (5, y) (y = 1 to 8) *Set the value of multiple of 4 Designation of horizontal cropping size for FIDO on area (5, y) (y = 1 to 8) *Set the value of multiple of 4 Designation of horizontal cropping size for FIDO on area (6, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping position for FIDO on area (6, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping position for FIDO on area (6, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping size for FIDO on area (6, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping size for FIDO on area (6, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping size for FIDO on area (7, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping position for FIDO on area (7, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping position for FIDO on area (7, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping position for FIDO on area (7, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping position for FIDO on area (7, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of ho		\	1 v) (v = 1 to 9	EIDO on area (
Set Tr.0 3Fh Tr.0 3Fh 3.0 3.0 FiDo_ROIWV4 40h 7r.0 41h 44.0 42h 7r.0 42h 7r.0 43h 3.0 44h 7r.0 44h 7r.0 44h 7r.0 45h 47.0 47h 3.0 48h 7r.0 49h 44h 49h 41h		,	i, y) (y = 1 10 o	-IDU UII alea (4			_	0000h	FID0_ROIWH4		
Set the value of multiple of 8			(x = 1 to 8)	00 on area (x. 4							
41h [4:0] FIDO_ROIPH5 0000h 42h [7:0] FIDO_ROIPV5 000h 43h [3:0] FIDO_ROIPV5 000h 43h [7:0] FIDO_ROIWH5 000h 45h [4:0] FIDO_ROIWH5 000h 45h [4:0] FIDO_ROIWH5 000h 47h [3:0] FIDO_ROIWH5 000h 48h [7:0] FIDO_ROIPH6 000h 48h [7:0] FIDO_ROIPH7 000h 58h [7:0] FIDO_ROIPH7 000h 5			, (-		_	000h	FID0_ROIWV4		
41h [4:0] 42h [7:0] 43h [3:0] FIDO_ROIPV5 43h [7:0] 45h [7:0] 45h [7:0] 45h [7:0] 47h [3:0] 47h [3:0] 48h [7:0] 48h		to 8)	ea (5, y) (y = 1	for FID0 on are	pping position	horizontal cro	Designation of	00001-	FIDA DOIDLIE	[7:0]	40h
43h [3:0] FIDO_ROIPV5 000h *Set the value of multiple of 8					3	of multiple of	*Set the value	0000h	FID0_ROIPH5	[4:0]	41h
43h [3:0]		B)	(x, 5) (x = 1 to	FID0 on area	ing position for	vertical cropp	Designation of	000h	FIDO ROIPVS		42h
45h [4:0] FIDO_ROIWH5 0000h *Set the value of multiple of 4 46h [7:0] 47h [3:0] FIDO_ROIWV5 000h *Set the value of multiple of 8 48h [7:0] 48h [3	of multiple of	*Set the value	00011	TIDO_ROII VS		
A6h [7:0] A7h [3:0] FIDD_ROIWV5 A9h [4:0] FIDD_ROIPH6 A9h A9h A9h [4:0] FIDD_ROIPH6 A9h A9)	(5, y) (y = 1 to 8)	FID0 on area (_	0000h	FID0_ROIWH5		
47h [3:0] FIDD_ROIWVS 000h *Set the value of multiple of 8 48h [7:0] 49h [4:0] FIDD_ROIPH6 0000h *Set the value of multiple of 8 4Ah [7:0] 4Bh [3:0] FIDD_ROIPV6 1000h *Set the value of multiple of 8 4Ch [7:0] 4Ch [7:0] 4Ch [7:0] 4Ch [7:0] 4Ch [7:0] 5Ch) (41.0)								
48h[7:0] 49h[4:0]FIDO_ROIPH60000hDesignation of horizontal cropping position for FID0 on area (6, y) (y = 1 to 8) *Set the value of multiple of 84Ah[7:0] 4Bh[3:0]FIDO_ROIPV6000hDesignation of vertical cropping position for FID0 on area (x, 6) (x = 1 to 8) 			(X = 1 to 8)	on area (x, t	-		_	000h	FID0_ROIWV5		
49h [4:0] FIDD_ROIPH6		to 8)	a (6 v) (v – 1	for FID0 on are							
4Ah [7:0] 4Bh [3:0] 4Ch [7:0] 4Dh [4:0] 4Eh [7:0] 4FIDO_ROIWH6 4Eh [7:0] 50h [7:0] 51h [4:0] 52h [7:0] 53h [3:0] 55h [4:0] 55		.0 0)	a (0, y) (y = 1	ioi i ibo oii aii			, and the second	0000h	FID0_ROIPH6		
4Sh [3:0] "Set the value of multiple of 8 4Ch [7:0] 4Dh [4:0] FIDO_ROIWH6 4Eh [7:0] 4Fh [3:0] FIDO_ROIWV6 4Fh [3:0] FIDO_ROIWV6 50h [7:0] 51h [4:0] FIDO_ROIPH7 53h [3:0] FIDO_ROIPH7 53h [3:0] FIDO_ROIPH7 5000h 55h [4:0] FIDO_ROIWH7 5000h 55h [4:0] FIDO_ROIWH7 5000h 56h [7:0] 5000h		8)	(x, 6) $(x = 1 to$	FID0 on area							
4Dh [4:0] FIDD_ROIWH6 0000h *Set the value of multiple of 4 4Eh [7:0] FIDD_ROIWV6 000h *Set the value of multiple of 4 4Fh [3:0] FIDD_ROIWV6 000h *Set the value of multiple of 8 50h [7:0] FIDD_ROIPH7 0000h *Set the value of multiple of 8 Designation of horizontal cropping position for FID0 on area (7, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping position for FID0 on area (x, 7) (x = 1 to 8) *Set the value of multiple of 8 Designation of vertical cropping position for FID0 on area (x, 7) (x = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping size for FID0 on area (7, y) (y = 1 to 8) *Set the value of multiple of 8 Designation of horizontal cropping size for FID0 on area (7, y) (y = 1 to 8) *Set the value of multiple of 4 Designation of vertical cropping size for FID0 on area (x, 7) (x = 1 to 8)			, , , ,		3	of multiple of	*Set the value	000h	FID0_ROIPV6	[3:0]	4Bh
4Dh [4:0] "Set the value of multiple of 4 4Eh [7:0] FIDO_ROIWV6 4Fh [3:0] FIDO_ROIWV6 50h [7:0] 51h [4:0] FIDO_ROIPH7 53h [3:0] FIDO_ROIPH7 55h [4:0] FIDO_ROIWH7 56h [7:0] 55h [7:0] FIDO_ROIWH7 5000h 5000)	6, y) (y = 1 to 8	FID0 on area (pping size for F	horizontal cro	Designation of	0000h	EIDO POIMHE	[7:0]	4Ch
4Fh [3:0] FID0_ROIWV6					1	of multiple of	*Set the value	000011	TIDO_ROTWITO	[4:0]	4Dh
4Fh [3:0] Set the value of multiple of 8			(x = 1 to 8)	00 on area (x, 6	•			000h	FID0_ROIWV6		
Sth [4:0] FIDD_ROIPH7 0000h *Set the value of multiple of 8		t- 0\	- /7 \ / .	4 FIDO			1				
52h [7:0] FID0_ROIPV7 000h Designation of vertical cropping position for FID0 on area (x, 7) (x = 1 to 8) 53h [3:0] FID0_ROIPV7 000h *Set the value of multiple of 8 54h [7:0] FID0_ROIWH7 0000h 55h [4:0] FID0_ROIWV7 000h 56h [7:0] FID0_ROIWV7 000h Designation of vertical cropping size for FID0 on area (x, 7) (x = 1 to 8) *Set the value of multiple of 4 Designation of vertical cropping size for FID0 on area (x, 7) (x = 1 to 8)		10 8)	ea (7, y) (y = 1	for FID0 on are			_	0000h	FID0_ROIPH7		
Set the value of multiple of 8 Set the value of multiple of 8		8)	(x 7) (x - 1 to	FID0 on area							
54h [7:0] 55h [4:0] FID0_ROIWH7 0000h Designation of horizontal cropping size for FID0 on area (7, y) (y = 1 to 8) *Set the value of multiple of 4 56h [7:0] FID0_ROIWH7 0000h Designation of vertical cropping size for FID0 on area (x, 7) (x = 1 to 8)		-)	(A, 1) (A = 1 lO	. ibo on alea	٠.		, and the second	000h	FID0_ROIPV7		
55h [4:0] FID0_ROIWV7 0000h *Set the value of multiple of 4 56h [7:0] FID0_ROIWV7 0000h Designation of vertical cropping size for FID0 on area (x, 7) (x = 1 to 8))	', y) (y = 1 to 8	FID0 on area (
FIDO ROIW/7 000h 5		· 			•		, and the second	0000h	FID0_ROIWH7		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			(x = 1 to 8)	00 on area (x, 7	ing size for FID	vertical cropp	Designation of	0006	EIDO POIMAZ	[7:0]	56h
57h [3:0] *Set the value of multiple of 8					3	of multiple of	*Set the value	UUUN	טעו ו_ע_טערו ו	[3:0]	57h
58h [7:0] FIDO_ROIPH8 O000h Designation of horizontal cropping position for FIDO on area (8, y) (y = 1 to 8)		to 8)	ea (8, y) (y = 1	for FID0 on are			, and the second	0000h	FID0 ROIPH8		58h
59h [4:0] *Set the value of multiple of 8											
5Ah [7:0] FID0_ROIPV8 Designation of vertical cropping position for FID0 on area (x, 8) (x = 1 to 8)		3)	(x, 8) (x = 1 to	FID0 on area	0 1			000h	FID0_ROIPV8		
Set the value of multiple of 8 Set the value of multiple of 8		١) v) (v = 1 +c 0	IDO on oros (
SCh [7:0] FIDO_ROIWH8 O000h Designation of horizontal cropping size for FID0 on area (8, y) (y = 1 to 8))	y, y = 1 to 8	ווט טעו area (ז	0			0000h	FID0_ROIWH8		
5Eh [7:0] Designation of vertical cropping size for FID0 on area (x. 8) (x = 1 to 8)			(x = 1 to 8)	00 on area (x 8							
5Fh [3:0] FIDO_ROIWV8 000h *Set the value of multiple of 8			, ,,		•		, and the second	000h	FID0_ROIWV8		

						Setting	yalue					
			1.50.1	AD =	8 bit	AD =	10 bit	AD =	12 bit			
Address	bit	Register name	Initial Value	SLVS 4 ch	SLVS 2 ch	SLVS 4 ch	SLVS 2 ch	SLVS 4 ch	SLVS 2 ch	Remarks		
			value	*1	*2	*3	*4	*5	*6			
				[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]	[frame/s]			
Chip ID	= 04h											
										0: 10 bit		
00h	[6:5]	ADBIT	0h	2	h	0	h	1	h	1: 12 bit		
										2: 8 bit		
20h	[7:0]	INCKSEL0	52h		IN	CK = 37.125 M		50h				
						INCK = 74.2		201				
21h	[7:0]	INCKSEL1	20h		INC	K = 37.125 MH		: 20h				
					INI	INCK = 54		-01-				
24h	[7:0]	INCKSEL2	52h		INCK = 37.125 MHz / 54 MHz: 50h INCK = 74.25 MHz: 52h							
					INCK = 74.25 MHz. 52H							
25h	[7:0]	INCKSEL3	20h		1140	INCK = 54		2011				
							= 0: 93h					
26h	[7:0]	FREQ_SYNC	93h			FREQ =						
30h	[7:2]		0.41									
31h	[1:0]	LLBLANK	04h			04	4h					
Chip ID	= 06h											
										0: 10 bit		
30h	[1:0]	ODBIT	0h	2	h	0	h	1	h	1: 12 bit		
				2								
44h	[3:0]	STBSLVS	1h	2h	N/A	2h	N/A	2h	N/A	4 ch SLVS		
7711	[0.0]	0.50LV0		N/A	3h	N/A	3h	N/A	3h	2 ch SLVS		
45h	[3:0]	OPORTSEL	1h	3h	N/A	3h	N/A	3h	N/A	4 ch SLVS		
	<u> </u>			N/A	4h	N/A 4h N/A 4h				2 ch SLVS		
Chip ID												
C0h	[7:0]	BLKLEVEL	03Ch	h 00Fh 03Ch 0F					0h	Recommended		
C1h	[3:0]			00			-	0.	value			

Restrictions on ROI mode

The register settings should satisfy following conditions:

* Do not designate area like be overlap.

ROIPH1 + ROIWH1 ≤ ROIPH2

ROIPH2 + ROIWH2 ≤ ROIPH3

ROIPH3 + ROIWH3 ≤ ROIPH4

ROIPH8 + ROIWH8 ≤ 1392d

ROIPV1 + ROIWV1 ≤ ROIPV2

ROIPV2 + ROIWV2 ≤ ROIPV3

ROIPV3 + ROIWV3 ≤ ROIPV4

..

ROIPV8 + ROIWV8 ≤ 1032d

* Minimum width of the window is as below.

ROIWH1 + ROIWH2 + ROIWH3 + + ROIWH8 ≥ 8d

ROIWV1 + ROIWV2 + ROIWV3 + ... + ROIWV8 ≥ 8d

Frame rate on ROI mode

Frame rate [frame/s] = 1 / (("Number of lines per frame" or VMAX) x (1 H period))

* Number of lines per frame or VMAX

V_{TR} = ROIWV1 + ROIWV2 + ROIWV3 + ... + ROIWV8 + GTWAIT + GSDLY + 26

Refer to the register list of each scan mode for GTWAIT and GSDLY.

* 1H period: Change according to the data rate settings and the number of SLVS channels. Calculate by number of INCK in 1 H and the period of INCK.

The example of ROI setting is shown below.

ROIWV1 + ROIWV2 + ROIWV3 + ... + ROIWV8 = 600

ROIWV1 + ROIWV2 + ROIWV3 + ... + ROIWV8 = 8 (minimum value)

Frame rate List of each setting

Decision with the	1 H per	iod [µs]		Frame rate	e [frame/s]	
Register settings No.	FREQ	FREQ	Total number of	f ROI: 600 [line]	Total number	of ROI: 8 [line]
in register list	0h	1h	FREQ = 0h	FREQ = 1h	FREQ = 0h	FREQ = 1h
*1	6.95	10.21	226.25	154.01	3270.34	2226.25
*2	10.1	19.58	155.66	80.29	2250.00	1160.59
*3	7.47	12.66	210.35	124.19	3040.54	1795.21
*4	12.53	24.38	125.53	64.50	1814.51	932.32
*5	13.09	15.03	120.10	104.61	1736.11	1512.09
*6	14.87	29.09	105.74	54.04	1528.53	781.25

^{*} Set the horizontal width in multiple of 4 and horizontal position, vertical width / position setting in multiple of 8.

Description of Various Function

Standby mode

This sensor stops its operation and goes into standby mode which reduces the power consumption by writing "1" to the standby control register STANDBY. Standby mode is also established after power-on or other system reset operation.

Register List of Standby setting

	Re	gister detail:	S	Initial		
Register	Chip ID	Address (): I ² C	bit	value	Setting value	Remarks
STANDBY	02h	00h (3000h)	[0]	1h	1h: Standby 0h: Operating	Register communication is executed even in standby mode.

The serial communication registers hold the previous values. However, the address registers transmitted in standby mode are overwritten. The serial communication block operates even in standby mode, so standby mode can be canceled by setting the STANDBY register to "0". Some time is required for sensor internal circuit stabilization after standby mode is canceled. For details on the sequence of setting and cancel of standby mode, see the sensor setting flow after power on.

After standby mode is canceled, a normal image is output from the 9 frames after internal regulator stabilization (29 ms or more).

Sequence from Standby Cancel to Stable Image Output

IMX990-AABA-C

Slave Mode and Master Mode

The sensor can be switched between slave mode and master mode.

The switching is made by the XMASTER pin. Establish the XMASTER pin status before canceling the system reset. (Do not switch this pin status during operation.)

Input a vertical sync signal to XVS and input a horizontal sync signal to XHS when a sensor is in slave mode.

For sync signal interval, input data lines to output for vertical sync signal and 1H period designated in each operating mode for horizontal sync signal. See the section of "Readout Drive mode" for the number of output data line and 1H period.

Set the XMSTA register to "0" in order to start the operation after setting to master mode. In addition, set the count number of sync signal in vertical direction by the VMAX [23:0] register and the clock number in horizontal direction by the HMAX [15:0] register. See the description of operation mode for details of the section of "Readout Drive Modes".

Pin Processing

Pin name	Pin processing	Operation mode	Remarks
VMA CTED min	Low fixed	Master mode	High: OV _{DD}
XMASTER pin	High fixed	Slave mode	Low: GND

Register List of Slave Mode and Master Mode

	Reg	ister details		Initial		
Register	Chip ID	Address (): I ² C	Bit	value	Setting value	Remarks
XMSTA		0Ch (300Ch)	[0]	1h	1h: Master operation ready (Initial value) 0h: Master operation start	The master operation starts by setting 0.
		D4h (30D4h)	[7:0]			Line number per frame
VMAX [23:0]	02h	D5h (30D5h)	[7:0]	000436h	See the item of each drive mode	designated (Master mode and Slave
		D6h (30D6h)	[7:0]			mode common setting.)
HMAX [15:0]		D8h (30D8h)	[7:0]		See the item of	Clock number per line designated
ПійіАЛ [15.0]		D9h (30D9h)	[7:0]	0235h	each drive mode	(Master mode and Slave mode common setting.)

XVS / XHS Output Waveform in Master Mode

Gain Adjustment Function

PGC

The Programmable Gain Control (PGC) of this device consists of the analog block and digital block. The total of analog gain and digital gain can be set up to 42 dB by the GAIN [8:0] register setting. The value which is ten times the gain is set to register.

Example)

When set to 6 dB:

 $6 \times 10 = 60d$, GAIN = 03Ch

Register List of Gain setting

Register	Register details			Initial	Setting value	Domorko
	Chip ID	Address (): I ² C	bit	value	Setting range	Remarks
GAIN [8:0]	07h	14h (3514h)	3514h)	000h	1	Setting value:
	0/11	15h (3515h)				Gain [dB] × 10

Gain reflection timing in the normal mode is changed by the set value of GAINUPDSL as shown below. In the trigger mode, set 0 to the register GAINUPDSL.

Gain Reflection Timing

Black Level Adjustment Function

The black level offset (offset variable range: 000h to FFFh) can be added relative to the data in which the digital gain modulation was performed by the BLKLEVEL [11:0] register. When the BLKLEVEL [11:0] setting is increased by 1 LSB, the black level is increased by 1 LSB.

* Use with values shown below is recommended.

8 bit output: 00Fh (15 d) 10 bit output: 03Ch (60 d) 12 bit output: 0F0h (240 d)

Register List of Black level adjustment

Register	Register details			La Maria		
	Chip ID	Address (): I ² C	bit	Initial value	Setting value	
BLKLEVEL [11:0]	07h	C0h (35C0h)	[7:0]	02 C b	000h to EEEh	
	07h C1h (35C1h)		[3:0]	03Ch	000h to FFFh	

SONY IMX990-AABA-C

Horizontal / Vertical Normal Operation and Inverted Operation

The sensor readout direction (normal / inverted) in vertical direction can be switched by the VREVERSE register setting and sensor readout direction (normal / inverted) in horizontal direction can be switched by the HREVERSE register setting. See the section of "Readout Drive Modes" for the order of readout lines in normal and inverted modes.

Register List of Readout Drive Direction setting

Register	Register details			1 22 1		
	Chip ID	Address (): I ² C	bit	Initial value	Setting value	
VREVERSE	04h	04h	[0]	0h	0h: Normal (Initial value) 1h: Inverted	
HREVERSE	04h (3204h)		[1]	0h	0h: Normal (Initial value) 1h: Inverted	

Normal and Inverted Drive Outline in Vertical Direction (TOP VIEW)

Normal and Inverted Drive Outline in Horizontal Direction (TOP VIEW)

Shutter and Integration Time Settings

This sensor has a global shutter function that integrates to all line collectively by using memory in each pixel. This sensor has a variable electronic shutter function that can control the integration time in line units for adjust the exposure time. This sensor transferred signal to memory in pixel after the exposure (memory transfer), then this sensor performs output in which readout operation is performed sequentially for each line in sync with the XHS signal. This sensor has trigger mode that can be controlled exposure start timing and memory transfer timing by trigger.

Note) For integration time control, an image which reflects the setting is output from the frame after the setting changes.

In this item, the shutter operation and storage time are shown as in the figure below with the time sequence on the horizontal axis and the vertical address on the vertical axis. For simplification, shutter and readout operation are noted in line units.

Image Drawing of Global Shutter (Normal mode) Operation

Image Drawing of Global Shutter (Sequential Trigger mode) Operation

Global Shutter (Normal Mode) Operation

The integration time can be controlled by varying the electronic shutter timing. In the electronic shutter settings, the integration time is controlled by the SHS [23:0] register. For setting value of SHS [23:0], see the table "List of Exposure Setting". When the sensor is operating in slave mode, the number of lines per frame is determined by the XVS interval (number of lines), using the input XHS interval as the line unit. When the sensor is operating in master mode, the number of lines per frame is determined by the VMAX [23:0] register. The number of lines per frame differs according to the operating mode.

Calculation Formula of Exposure Time

Exposure time [s] = (1 H period) × (Number of lines per frame - SHS) + 7.372 [μ s]^{*1}: Exposure time error (toffset)

Register List of Shutter setting

	Reg	ister detail:	S	Initial	Setting value	
Register	Chip ID	Address (): I ² C	bit	value		
		D4h (30D4h)				
VMAX [23:0]	02h	D5h (30D5h)	[7:0]	000436h	Set the number of lines per frame (only in master mode)	
		D6h (30D6h)	[7:0]			
GTWAIT [7:0]		E2h (30E2h)	[7:0]	6h	Refer to the register setting lists of each scan mode .	
	04h	40h (3240h)	[7:0]	000018h		
SHS [23:0]		41h (3241h)	[7:0]		Set the shutter sweep time. (GTWAIT + 9) to (Number of lines per frame - 1)	
		42h (3242h)	[7:0]			

List of Exposure Setting

D	Drive mode Wait time		SHS	Exposure Setting	AD 10bit, FREQ 0, 4 ch output		
Drive mode	wait time [H]	lines per frame [DEC]	Setting value [DEC]	value [H]	Frame rate [frame/s]	Actually exposure [ms]*3	
		1068 (VMAX)	1067	1		0.015	
	6		1066	2		0.022	
All - pixel	(GTWAIT)			•••	125.27	•••	
	(GTWAIT)		16	1052		7.871	
			15	1053		7.878	
		6 552	551	1		0.015	
Vertical / Horizontal 1/2 6 Subsampling (GTWAIT) mode	6		550	2		0.022	
	(VMAX)		•••	242.36	•••		
		16	536		4.014		
mode			15	537		4.021	
		V _{TR} *1	V _{TR} -1	1		0.015	
	6 (GTWAIT)		V _{TR} -2	2	*2	0.022	
ROI			•••				
			16	VTR-16		*3	
			15	VTR-15		, and the second	

 $^{^{\}star 1}$ V_{TR} and the frame rate, refer to the section "ROI mode" in "Readout Drive Mode".

^{*3} Conform to the calculation formula of exposure time. (Number of lines per frame = V_{TR})

Image Drawing of Global Shutter (Normal Mode)

^{*2} INCK frequency is input by typical value, and toffset (7.372 [µs]) is included.

Global Shutter (Sequential Trigger Mode) Operation

The integration time can be controlled by varying the pulse width that is input to XTRIG pin. The pulse width designated in XHS unit [H]. For the transition from normal mode to trigger mode, set 1 to the register TRIGEN. The XVS input signal is ignored during trigger mode operating. In case of inputting trigger continuously, there are period which prohibit the trigger rise input (t_{TGPD}) and fall input (t_{TGPD}) based on the previous trigger rise. When the trigger rise is input before the rise input prohibited period (t_{TGPD}), interrupt operation starts. This function is slave mode only. The number of lines per frame differs according to the operating mode.

Calculation Formula of Exposure Time

Exposure time [s] = (XTRIG low level pulse width $[H]^{*2}$) + 7.372 $[\mu s]^{*1}$

*1: Exposure time error (toffset)

*2: Low level pulse width is counted by XHS pulse.

Register List of shutter setting

	Register details			Initial		
Register	Chip ID	Address (): I ² C	bit	value	Setting value	
XMSTA	02h	0Ch (300Ch)	[0]	1	Setting of master mode operation 0: Master mode operation start 1: Master mode operation stop	
VINT_EN	04h	32h (3232h)	[0]	1	Setting of Interrupt mode in Trigger Mode 0: V interrupt is disabled 1: V interrupt is enabled	
TRIGEN	06h	00h (3400h)	[0]	0	Global shutter mode setting 0: Normal mode 1: Trigger mode	

Parameter List of Global Shutter (Sequential Trigger Mode)

Item	Symbol	Min.	Тур.	Max.	Unit
Integration start delay	t _{TGST}	1	_	2	Н
Integration end delay	t TGED	1 + toffset	_	2 + toffset	Н
Pulse width	trgse	1	_	_	Н
Next trigger fall prohibited period	trges	10 + GTWAIT*1	_	_	Ι
Next trigger rise prohibited period (All - pixel / 1/2 Subsampling)	t _{TGPD}	VMAX		_	Н
Next trigger rise prohibited period (ROI)		V _{TR} *2	_	_	
Data output delay	t _{TGDLY}	_	4 + GTWAIT*1	_	Н

^{*1} Refer to the register setting lists in each scan modes.

^{*2} V TR (See the section "ROI mode" in "Readout Drive Mode")

Single shutter Image Drawing of Global Shutter (Sequential Trigger Mode)

Multi shutter image Drawing of Global Shutter (Sequential Trigger Mode)

Interrupt Operation

In case of VINT_EN = 1h, the image drawing when the interrupt operation is generated is shown below. When the trigger is raised again and the next frame is output during read of the frame for which read was started by a trigger rise (Frame 1 in the figure below), Frame 1 becomes an invalid frame. Trigger timing of interrupt generating corresponds to t_{TGPD} in Parameter List of Global Shutter (Trigger Mode)

In case of VINT_EN = 0h, both of the rising edge and the falling edge of the trigger signal are ignored in t_{TGPD} (Prohibit period).

Image Drawing of Interrupt Operation in Global Shutter (Sequential Trigger Mode)

Global Shutter (Fast Trigger Mode) Operation

Fast trigger mode is the trigger mode that starts exposure at fall of XTRIG immediately. This mode supports Master mode only.

Calculation Formula of Exposure Time

Exposure time [s] = (XTRIG low level pulse width [μ s]) + 7.372 [μ s]*1: Exposure time error (t_{OFFSET})

Register List of shutter setting

	Register details			Initial		
Register	Chip ID	Address (): I ² C	bit	value	Setting value	
XMSTA	02h	0Ch (300Ch)	[0]	1	Setting of master mode operation 0: Master mode operation start 1: Master mode operation stop	
FASTTRIG	04h	30h (3230h)	[1]	0	Selection of trigger mode 0: Except for Fast trigger mode 1: Fast trigger mode	
TRIGEN	Och	00h (3400h)	[0]	0	Global shutter mode setting 0: Normal mode 1: Trigger mode	
SYNCSEL	06h	3Ch (343Ch)	[5:4]	0h	XHS, XVS pin setting 0h: Normal Output 3h: Hi-Z	

Parameter List of Global Shutter (Fast Trigger Mode)

Item	Symbol	Min.	Тур.	Max.	Unit
Integration start delay	tтgsт	_	_	0.13	μs
Integration end delay	t _{TGED}	_	_	0.13 + toffset	μs
Pulse width	ttgse	0.05	_	_	μs
Next trigger rise / fall prohibited period (All - pixel / 1 / 2 Subsampling)	tтgpd	VMAX	_	_	Н
Next trigger rise / fall prohibited period (ROI)		V _{TR} *2	_	_	
Data output delay	ttgdly	_	3 + GTWAIT*1	_	Η

^{*1} Refer to the register setting lists in each scan modes.

 $^{^{\}star 2}$ V $_{\text{TR}}$ (See the section "ROI mode" in "Readout Drive Mode")

Image Drawing of Global Shutter (Fast Trigger Mode) (4-wire)

Mode Transitions of Global Shutter Operation

The sensor can be switched between normal mode and trigger mode in global shutter operation by setting the register TRIGEN. The sensor will transition to normal mode or trigger mode GTWAIT (H) after the register TRIGEN is set. TRIGEN register can be changed in V-blank period or in standby mode.

(The XVS and XTRIG input during transition are prohibited.)

In case of Fast Trigger mode, the mode transition must be done via sensor standby.

Transition from Normal Mode to Sequential Trigger Mode

The sensor will transition from normal mode to trigger mode after setting 1d to register TRIGEN. The XVS input is ignored after transition to trigger mode. Trigger input is prohibited for a GTWAIT (H) period after the register TRIGEN is set.

Image Drawing of Transition from Normal Mode to Sequential Trigger Mode

Transition from Sequential Trigger Mode to Normal Mode

The sensor will transition from trigger mode to normal mode after setting 0d to register TRIGEN. Start XVS input after transition to normal mode. Set TRIGEN after Next trigger rise prohibited period (ttgpd) has passed.

Image Drawing of Transition from Sequential Trigger Mode to Normal Mode

Pulse Output Function

This sensor has a pulse output function that indicates each state of shutter operation. The pulse output from TOUT1 pin and TOUT2 pin. The rise timing and fall timing of pulse are set by Register. For the reference point (The timing when register value set to 0) to be set, see the table "List of Reference point". The pulse is output asynchronously with other signals on the basis of the sensor internal timing shown in the "List of Reference point". This function doesn't support Fast Trigger mode.

Register List of Pulse Output Function

	Register details		Initial		
Register	Chip ID	Address (): I ² C	bit	value	Setting value
TOUT1SEL [1:0]		35h	[1:0]	0h	TOUT1 pin setting Oh: Low fixed 3h: Pulse output
TOUT2SEL [1:0]		(3435h)	[3:2]	0h	TOUT2 pin setting Oh: Low fixed 3h: Pulse output
TRIG_TOUT1_SEL [3:0]		3Ah	[3:0]	0h	TOUT1 pin output selection Oh: Low fixed 1h: Pulse1 output
TRIG_TOUT2_SEL [3:0]		(343Ah)	[7:4]	0h	TOUT2 pin output selection Oh: Low fixed 2h: Pulse2 output
PULSE1_EN_NOR			[0]	0	Pulse1 enable in normal mode 0: disable 1: enable
PULSE1_EN_TRIG		78h (3478h)	[1]	0	Pulse1 enable in trigger mode 0: disable 1: enable
PULSE1_POL			[2]	0	Pulse1 polarity selection 0: High active 1: Low active
		79h (3479h)	[7:0]		
PULSE1_UP [23:0]	06h	7Ah (347Ah)	[7:0]	000000h	Pulse1 active period start timing setting Designated in line units from reference point
		7Bh (347Bh)	[7:0]		
		7Ch (347Ch)	[7:0]		
PULSE1_DN [23:0]		7Dh (347Dh)	[7:0]	000000h	Pulse1 active period end timing setting Designated in line units from reference point
		7Eh (347Eh)	[7:0]		
PULSE2_EN_NOR			[0]	0	Pulse2 enable in normal mode 0: disable 1: enable
PULSE2_EN_TRIG		80h	[1]	0	Pulse2 enable in trigger mode 0: disable 1: enable
PULSE2_POL		(3480h)	[2]	0	Pulse2 polarity selection 0: High active 1: Low active
			[5]	0	Fixed to 1
		81h (3481h)	[7:0]		
PULSE2_UP [23:0]		82h (3482h)	[7:0]	000000h	Pulse2 active period start timing setting Designated in line units from reference point
		83h (3483h)	[7:0]		
		84h (3484h)	[7:0]		
PULSE2_DN [23:0]		85h (3485h)	[7:0]	000000h	Pulse2 active period end timing setting Designated in line units from reference point
		86h (3486h)	[7:0]		

List of Reference Point

	Normal mode	Trigger mode
Reference point of Pulse1	XVS fall edge in N frame	Fall edge of input trigger
Reference point of Pulse2	XVS fall edge in N +1 frame	Rise edge of input trigger

Image Drawing of Pulse Output Function in Global Shutter (Normal Mode)

In normal mode, TOUT1 and TOUT2 are output alternately each time inputting XVS.

Image Drawing of Pulse Output Function in Global Shutter (Sequential Trigger Mode)

Signal Output

Output Pin Settings

This sensor supports SLVS (2 ch / 4 ch switching) output. In addition, the data rate per channel is adjustable. The table below shows the output format settings.

Register List of Output Settings

	Register details			Initial	
Register	Chip ID	Address (): I ² C	bit	value	Setting value
FREQ [1:0]	02h	DCh (30DCh)	[1:0]	0h	Frame rate adjust
FREQ_SYNC [7:0]	04h	26h (3226h)	[7:0]	93h	Refer to the register list in each Readout mode
STBSLVS [3:0]	0.01	44h (3444h)	[3:0]	1h	The un-using SLVS channel go into standby
OPORTSEL [3:0]	06h	45h (3445h)	[3:0]	1h	SLVS Output channel selection (Refer the list of output pins below)

Output Pins

	SLVS output				
Output pins	2 ch	4 ch			
DOP0 / DOM0	Hi-Z	Ch 3			
DOP1 / DOM1	Ch 1	Ch 1			
DOP2 / DOM2	Ch 2	Ch 2			
DOP3 / DOM3	Hi-Z	Ch 4			
DCKP / DCKM	DCK	DCK			

SLVS 2 ch / 4 ch output format is shown in the figure below.

When setting 2 ch, after four data of SAV is output in the order of CH1 to CH2 pixel data is repeatedly output in the same order and then four data of EAV is output in the same order to CH1 to CH2 respectively.

When setting 4 ch, after four data of SAV is output in the order of CH1 to CH4 pixel data is repeatedly output in the same order and then four data of EAV is output in the same order to CH1 to CH4 respectively.

Data is sent MSB first. For details, see drive timing in each mode in the section of "Readout Drive Mode".

Output Format of SLVS 2 ch / 4 ch

Output Pin Bit Width Selection

The output pin width can be selected from 8-bit, 10-bit or 12-bit output using register ADBIT, ODBIT. Sync code is output according to bit width setting of these registers.

Register List of Bit Width Selection

	Reg	gister details		Initial			
Register	Chip ID	Address (): I ² C	bit	value	Setting value	Remarks	
ADBIT	04h	00h (3200h)	[6:5]	0h	0h: 10 bit 1h: 12 bit 2h: 8 bit	Set same value to both	
ODBIT	06h	30h (3430h)	[1:0]	0h	0h: 10 bit 1h: 12 bit 2h: 8 bit	ADBIT and ODBIT	

Example of Data format in SLVS 8-bit output

Example of Data format in SLVS 10-bit output

Example of Data format in SLVS 12-bit output

Output Signal Range

The sensor output has either a 8-bit or 10-bit or 12-bit gradation, but SLVS output is not performed over the full range, and the maximum output value is the "FFh - 1" (8-bit output), the "3FFh - 1" (10-bit output) and the "FFFh - 1" (12-bit output). The minimum value is 001h. The output range for each output gradation is shown in the table below. The maximum level and the minimum level are output only in the sync code. See the item of "Sync Codes" in the section of "Operating Modes" for the sync codes.

Output Gradation and Output Range

	Output value					
Output gradation	Min.	Max.				
8 bit	01h	FEh				
10 bit	001h	3FEh				
12 bit	001h	FFEh				

Register Hold Setting

For the registers marked "V" in the item of Reflection timing, register setting can be transmitted with divided to several frames and it can be reflected globally at a certain frame by the register REGHOLD. By setting REGHOLD = 1, the registers that are set thereafter aren't reflected at "frame reflection register reflection timing". The registers that are set during REGHOLD = 1 are reflected globally by setting REGHOLD = 0 by the "frame reflection register reflection timing" before the frame which you want to reflect the registers.

Refer to "Register Communication Timing (4-wire)" and "Register Communication Timing (I²C)" for "frame reflection register reflection timing".

Register List of Register Hold

	Regis	ster details		Initial		
Register	Chip ID	Address (): I ² C	ddress bit valu		Setting value	
REGHOLD	02h	34h (3034h)	[0]	0h	0h: Invalid 1h: Valid (Register hold)	

Register Hold Setting

IMX990-AABA-C

Mode Transition

The Mode transition between operations is shown below. These examples shown in case that setting is completed within one communication timing.

List of Mode Transition

Т	ransitio	on	State
ROI	Via the Standby state		
All - pixel	is unnecessary		
 Transition between modes other than th Change the input frequency of INCK*1 Change the register setting noted "S" in 		re flection timing column of the Register Map	Via the standby state is necessary

When changing input INCK frequency, care should be taken not to be input pulses whose width are shorter than the High / Low level width in front and behind of the INCK pulse at the frequency change. If the pulses above generate at the frequency change, change INCK frequency during system reset in the state of XCLR = Low, and then perform system clear in the state of XCLR = High following the item of "Power on sequence" in the section of "Power on / off sequence". Execute initial setting again because the register settings become default state after system clear.

SONY IMX990-AABA-C

Digital Thermometer

This sensor has a digital thermometer which indicates the junction temperature (Tj) of the sensor. The temperature can be known by reading TMP_OUT register. The way to calculate the temperature is as below.

```
Temperature [°C] = (-256d * TMP\_OUT[11]) + TMP\_OUT[10:3] + (0.5 * TMP\_OUT[2]) + (0.25 * TMP\_OUT[1]) + (0.125 * TMP\_OUT[0])
```

Example)

If $TMP_OUT[11] = 1h$, $TMP_OUT[10:3] = F9h$, $TMP_OUT[2] = 0h$, $TMP_OUT[1] = 1h$, and $TMP_OUT[0] = 1h$, Temperature [°C] = (-256d * 1) + 249d + (0.5 * 0) + (0.25 * 1) + (0.125 * 1) = -6.625 [°C].

If TMP_OUT[11] = 0h, TMP_OUT[10:3] = 0Fh, TMP_OUT[2] = 0h, TMP_OUT[1] = 0h, and TMP_OUT[0] = 0h, Temperature [°C] = (-256d * 0) + 15d + (0.5 * 0) + (0.25 * 0) + (0.125 * 0) = 15.000 [°C].

The resolution of the digital thermometer is about 0.3 $^{\circ}$ C.

Register List

	Register details			Initial		
Register	Chip ID	Address (): I ² C	bit	value	value	
TMDLATCH	07h	88h (3588h)	0	0	Thermometer output is updated when this register is set from 0h to 1h.	
TMP_OUT[11:0]	06h	90h 91h	[7:0] [3:0]	0	Output of the digital thermometer	

Thermometer update timing

TMP_OUT[11:0] is updated in 4 µs after TMDLATCH register is changed from "0" to "1". TMP_OUT[11:0] is invalid value in standby mode. In case of updating the thermometer output after standby cancel, change TMDLATCH register from "0" to "1" after 100 µs or more from standby cancel.

Digital thermometer update timing

IMX990-AABA-C

Other Function

This sensor has the function as below. About detail, refer to each application note.

- Multi Frame Set Output mode (2 / 4 frame)
- Multi Frame ROI mode
- Driving Low Power Consumption at longtime exposure
- Gradation Compression
- Pattern Generator (Refer to Support Package)

Extension Function

Use these functions after enough checks and evaluation.

Black Level Auto Adjust Off

Power-on and Power-off Sequence

Power-on sequence

Follow the sequence below to turn on the power supplies.

- Turn On the power supplies so that the power supplies rise in order of 1.2 V digital power supply (DV_{DD}) →1.8 V IO power supply (OV_{DD}) → 3.3 V analog power supply (AV_{DD1}) → 2.2 V analog power supply (AV_{DD2}) → 2.2 V pixel power supply (TV_{DD}) → 1.2 V pixel power supply (BV_{DD}). In addition, all power supplies should finish rising within 200 ms.
 - Each digital input terminal (INCK, XCE, SCK, SDI, XCLR, XMASTER, XTRIG, SLAMODE, XVS, and XHS) set 0V or Hi Z.
- 2. The register values are undefined immediately after power-on, so the system must be cleared. Hold XCLR at Low level for 500 ns or more after all the power supplies have finished rising. (The register values after a system clear are the default values.)
 - In addition, hold XCE to High level during this period. Rise XCE after 1.8 V power supply (OVDD), so hold XCE at High level until INCK is input.
- 3. Start the input of INCK after turning the level of XCLR into the high.
- 4. Make the sensor setting by register communication after stabilizing the master clock (INCK).

Power-on Sequence

Power-off Sequence

Turn Off the power supplies so that the power supplies fall in order of 1.2 V pixel power supply (BVDD) \rightarrow 2.2 V pixel power supply (TVDD) \rightarrow 2.2 V analog power supply (AVDD2) \rightarrow 3.3 V analog power supply (AVDD1) \rightarrow 1.8 V IO power supply (OVDD) \rightarrow 1.2 V digital power supply (DVDD). In addition, all power supplies should finish falling within 200 ms.

Set each digital input pin (INCK, XCE, SCK, SDI, XCLR, XMASTER, XTRIG, SLAMODE, XVS, and XHS) to 0 V or high impedance before the 1.8 V power supply (OVDD) falls.

Power-off Sequence

Sensor Setting Flow

Setting Flow in Sensor Slave Mode

The figure below shows operating flow in sensor slave mode.

For details of "Power on" to "System clear", see the item of "Power on sequence" in this section. For details of "Standby cancel" to "Wait for image stabilization", see the item of "Standby mode". "Standby setting (power save mode) can be made by setting the STANDBY register to "1" during "Operation".

Sensor Setting Flow (Sensor Slave Mode)

Setting Flow in Sensor Master Mode

The figure below shows operating flow in sensor master mode.

For details of "Power on" to "System clear", see the item of "Power on sequence" in this section. For details of "Standby cancel" to "Wait for image stabilization", see the item of "Standby mode". In master mode, "Master mode start" by setting the master mode start register XMSTA to "0" after "Wait for internal regulator stabilization". "Standby setting (power save mode) can be made by setting the STANDBY register to "1" during "Operation". This time, set "master mode stop" by setting XMSTA to "1".

Sensor Setting Flow (Sensor Master Mode)

Peripheral Circuit

Analog and Pixel Power Pins

SONY IMX990-AABA-C

Digital Power Pins

J13 (VDDLCB) are analog power pins, but these pins can be connected to the digital power pins as shown above circuit. These pins can be separated from the digital power pins.

SONY IMX990-AABA-C

Analog Other Pins

IMX990-AABA-C

Digital I/O Pins

I²C communication

1.8V

10k Ω 1.8V

SDO G19

OPEN

1k Ω SLAMODE A4

IMX990-AABA-C

Output pins

Application circuits shown are typical examples illustrating the operation of the devices. Sony Semiconductor Solutions Corporation cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party and other right due to same.

Electricthermal cooler pins

Spot Pixel Specifications

(Tj = 15 °C)

Type of distortion		Maximum	distorted pixels in	Measurement		
	Level	0 to II'	Effective OB	Ineffective OB	method	Remarks
Black and white pixels at high light	30 % ≤ D	A No evaluation		criteria applied	1	
White pixels in the dark	23 mV ≤ D	E	3	No evaluation criteria applied	2	1/30 s storage
Black pixels at signal saturated	D ≤ 289 mV	С	No evaluation	criteria applied	3	

The summation of A, B and C is 6687 or less.

Note) 1. Zone is specified based on all - pixel drive mode

- 2. D...Spot pixel level
- 3. See the Spot Pixel Pattern Specifications for the specifications in which pixel and black pixel are close.

Sport Pixel Zone Definition

Notice on White Pixels Specifications

After delivery inspection of CMOS image sensors, particle radiation etc. such as cosmic rays may distort pixels of SWIR image sensors, and then distorted pixels may cause white point effects in dark signals in picture images. (Such white point effects shall be hereinafter referred to as "White Pixels".)

Unfortunately, it is not possible with current scientific technology for SWIR image sensors to prevent such White Pixels. It is recommended that when you use SWIR image sensors, you should consider taking measures against such White Pixels, such as adoption of automatic compensation systems for White Pixels in dark signals and establishment of quality assurance standards. Neither Sony Semiconductor Solutions Corporation nor its distributors will assume any liability for White Pixels. Please resolve any problem or trouble arising from or in connection with White Pixels at your costs and expenses.

IMX990-AABA-C

Notice on Spot Pixels Specification

There are some pixels whose output value changes every readout frame under the same condition. It is recommended that you consider taking measures, such as adoption of compensation systems and establishment of quality assurance standards.

Measurement Method for Spot Pixels

The device driver should be set to meet bias and clock voltage conditions. Configure the drive circuit according to the example and measure.

1. Black or white pixels at high light

Set the measurement condition to the standard imaging condition II. After adjusting the luminous intensity so that the average value V of the signal outputs is 121 mV, measure the local dip point (black pixel at high light, V_B) and peak point (white pixel at high light, V_K) in the signal output V, and substitute the value into the following formula.

Spot pixel level D = ((VB or VK) / Average value of V) x 100 [%]

Signal output waveform

2. White pixels in the dark

Set the device to a dark setting and measure the local peak point of the signal output waveform, using the average value of the dark signal output as a reference.

3. Black pixels at signal saturated

Set the measurement condition to the standard imaging condition II. Set the device to operate in saturation and measure the local dip point, using the OB output as a reference.

Signal output waveform

Spot Pixel Pattern Specification (Tentative)

The following pattern of White Pixel, Black Pixel and Bright Pixel is rejected.

lacktriangle 4 or more White Pixels, Black Pixels, Bright Pixels in a 4 $\, imes\,$ 4 pixel area

Example)

Note) "• " shows the position of white pixel, black pixel and bright pixel.

White pixel, black pixel and bright pixel are specified separately according the pattern.

(Example: If a black pixel and a white pixel is in the above pattern respectively, they are not judged to be rejected.)

Marking

Y part contains 2 alphanumeric characters (No Au coat) Z part contains 4 alphanumeric characters

Notes On Handling

1. Static charge prevention

Image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.

- (1) Either handle bare handed or use non-chargeable gloves, clothes or material. Also use conductive shoes.
- (2) Use a wrist strap when handling directly.
- (3) Install grounded conductive mats on the floor and working table to prevent the generation of static electricity.
- (4) Ionized air is recommended for discharge when handling image sensors.
- (5) For the shipment of mounted boards, use boxes treated for the prevention of static charges.

2. Protection from dust and dirt

Image sensors are packed and delivered with care taken to protect the element glass surfaces from harmful dust and dirt. Clean glass surfaces with the following operations as required before use.

- (1) Perform all lens assembly and other work in a clean environment (class 1000 or less).
- (2) Do not touch the glass surface with hand and make any object contact with it. If dust or other is stuck to a glass surface, blow it off with an air blower. (For dust stuck through static electricity, ionized air is recommended.)
- (3) Clean with a cotton swab with ethyl alcohol if grease stained. Be careful not to scratch the glass.
- (4) Keep in a dedicated case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
- (5) When a protective tape is applied before shipping, remove the tape applied for electrostatic protection just before use. Do not reuse the tape.

3. Installing (attaching)

- (1) If a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive.
- (2) The adhesive may cause the marking on the rear surface to disappear.
- (3) If metal, etc., clash or rub against the package surface, the package may chip or fragment and generate dust.
- (4) Acrylate anaerobic adhesives are generally used to attach this product. In addition, cyanoacrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives to hold the product in place until the adhesive completely hardens. (Reference)
- (5) Note that the sensor may be damaged when using ultraviolet ray and infrared laser for mounting it.

4. Soldering

4.1 Hand solder mounting conditions

- (1) Use a 30 W soldering iron with a ground wire and solder each pin in 3 seconds or less. For repairs and remount, cool sufficiently.
- (2) Make sure the iron tip temperature of the solder does not exceed 350 °C.
- (3) To dismount an image sensor, do not use solder suction equipment. When using a desoldering tool, use a zero-cross ON/OFF type for the temperature control system and ground the controller.
- (4) Carry out evaluation for the solder joint reliability in your company.
- (5) Note that condensation on glass or discoloration on resin interfaces may occur if the actual temperature and time exceed the conditions mentioned above or changes rapidly.

4.2 Flow solder mounting conditions

It is recommended to pay attention to the following matter when flow solder mounting. The optimum changes with the solder kind, so set it to usage.

- (1) Flow solder work conditions
 - (a) Assume the solder mounting conditions follow.

Temperature: 245 to 260°C

Time: 10 s or less

Perform the soldering at the place away from the bottom of the package more than 1.0 mm.

- (b) Make sure the temperature of the upper surface of the seal glass resin adhesive portion of the package does not exceed 150 °C.
- (c) Perform the flow soldering only one time.
- (d) Finish flow soldering within 72 h after unsealing the degassed packing. Store the products under the condition of temperature of 30°C or less and humidity of 60 % RH or less after unsealing the package.
- (e) Perform re-baking only one time under the condition at 125 °C for 24 h.
- (2) Others
 - (a) Carry out evaluation for the solder joint reliability in your company.
 - (b) After flow, the paste residue of protective tape sometimes occurs around the seal glass. (The paste residue of protective tape should be ignored except remarkable one.)
 - (c) Note that condensation on glass or discoloration on resin interfaces may occur if the actual temperature and time exceed the flow solder mounting conditions mentioned above.

5. Others

- (1) Do not expose to strong light (sun rays) for long periods.
- (2) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or use in such conditions.
- (3) This product is precision optical parts, so care should be taken not to applyexcessive mechanical shocks or force.
- (4) Note that imaging characteristics of the sensor may be affected when approaching strong electromagnetic wave or magnetic field during operation.

Material_No.26-0.0.1

Built-in thermoelectoric cooler

Please refer to the support package for cooling the image sensor using the built-in thermoelectric cooler.

Thermoelectric cooler resistance

Symbol	Item	Min.	Тур.	Max.	Unit	Remarks
Rcooler	Resistance between PE1A - PE1B	3	4	5	Ω	Thermoelectric cooler temperature 25°C*1

¹ Ta=25°C, AC resintance measurement, sensor power off.

Example of thermoelectric cooler performance

(Typ. Ta = 45°C, Heatsink thermal resistance = 1°C/W)

Package Outline

(Unit: mm)

List of Trademark Logos and Definition Statements

*SenSWIR is a trademark of Sony Corporation. SenSWIR is a wide-band and high-sensitivity SWIR image sensor technology implemented by the combination of compound semiconductor InGaAs photodiodes and Si readout circuits through Cu-Cu bonding.