Dalyko "Kompiuterių architektūra" egzamino klausimai

2008 01 10

Užrašykite vardą, pavardę ir grupę Atsakymus užrašykite prie klausimų Pridėkite juodraščius Nenaudokite kalkuliatorių Darbo trukmė 1 val.

- 1. Užrašyti dešimtainį skaičių -0,03 slankaus kablelio formatu 4 baituose šešioliktaine sistema.
- 2. Kokia bus registro BP reikšmė įvykdžius nurodytą komandą, kai AX = 00FA, DS = 3E21, SS = 34A6, CS = C13B,

ES = 3EE1, BP = B2A2, BX = 7C36, SI = 451A, DI = 2AFC:

8D 6E 14 A2 (komandos mnemonika: lea ...)

- Kokia bus atminties baito su adresu 66323 reikšmė, įvykdžius programinio pertraukimo komanda INT 21h?
 - DS = FE21, SS = 5634, CS = C131, ES = 3EE3, SF = 04FF, BP = 92A2, BX = C5D6, SI = 45FA, DI = 22F1, SP = FFE4.
- 4. Registras SF = 0000. Baitų sudėties komanda prie dešimtainės reikšmės 253 yra pridėta dešimtainė reikšmė -126. Pagal rezultatą užrašyti naują registro SF reikšmę.
- 5. Registras SI = 578B ir DI = ABCD, registras CX = 0075, SF = 0000. Kokia bus registrų DI ir SI reikšmė įvykdžius rep stosw komandą?
- 6. Parašyti mikrokomanda MPL kalba, kuri dešimtainį skaičių 16382 nusiunčia į registrą MBR.

Ats.:

- 1. BC F5 C2 8F
- 2. B2B6
- 3. 04
- 4. 0801
- 5. 0442
- MBR = RIGHT SHIFT(COM(SIGN) + COM(1));

1.

	Charakteristika	Mantisė
3	8 bitai	23 bitai

S - ženklo bitas (1 - minusas, 0 - pliusas)

Charakteristika = $eil\dot{e} + 7Fh$, $(7Fh = 127_{10})$.

0,03 verčiam į 16-tainę, po to į dvejetainę sistemą

$$0.03 * 16 = 0.48$$
 $(0_{16}) = (0000_2)$

$$0.48 * 16 = 7.68$$
 $(7_{16}) = (0111_2)$

$$0.68 * 16 = 10.88 (10_{16}) = (1010_2)$$

$$0.88 * 16 = 14.08 (14_{16}) = (1110_2)$$

$$0.08 * 16 = 1.28$$
 $(1_{16}) = (0001_2)$

$$0.28 * 16 = 4.48$$
 $(4_{16}) = (0100_2)$

$$0,48 * 16 = 7,68$$
 $(7_{16}) = (0111_2)$ (pradeda kartotis ciklas)

$$0.68 * 16 = 10.88 (10_{16}) = (1010_2)$$

.... dauginti tiek, kiek reikia skaičių užpildyti keturis baitus (turi būti 32 bitai: vienas s – ženklo bitas, 8 –charakteristika, 23 – mantisė).

Skaičių galima užrašyti ir tokia forma $z = (-1)^s * 2^{eile} * 0$, mantisė)

Eilė tai skaičius per kiek skaitmenų perneštas kablelis. Šiuo atveju:

Skaičius atrodo taip: 0,00000111...

Kablelį pernešam už pirmo vieneto. Kadangi, skaičius jau po kablelio (0,03), eilė bus su minusu.

000001, $11 * 2^{(-6)}$, eilė = -6

Dabar ieškom charakteristikos pagal formulę

Charakteristika = -6 + 127 = 121

121:16=7 sveiki ir 9 liekanoj, taigi $121=(79_{16})=(01111001_2)$ Mums reikia (01111001_2)

1	0111100	Mantisė
1	1	23 bitai

Mantisė, tai visi likę skaičiai nuo padėto kablelio. Mantisė = 11101011100001010001111.

Čia -0,03 užrašytas slankaus kablelio formate, dabar beliko pakeisti į 16-tainę sistemą

1	0111100	111010111100001010001
	1	111

16-tainėje sistemoje skaičius atrodo taip: BC F5 C2 8F

2. Reikia žinoti, kad komanda lea susideda iš:

1000	mod	reg	r/m	noslinkis
1101	2bit	3bit	3bit	poslinkis

1000 1101 - komandos kodas.

	mod = 00	mod = 01	mod = 10	reg	
	11100 = 00	11100 - 01		r/m, kai r	nod = 11
	Efel	ktyvus adre		W = 0	W = 1
000	BX+SI		poslinkis	AL	AX
001	BX+DI	BX + DI +	poslinkis	CL	CX
010	BP+SI		poslinkis	DL	DX
011	BP+DI	BP + DI +	poslinkis	BL	ВХ
100	SI	SI + po	slinkis	AH	SP
101	DI	DI + po	slinkis	CH	BP
110	Tiesioginis adresas	BP + p	oslinkis	DH	SI
111	BX	BX + po	oslinkis	ВН	DI

(Mitašiūno konspektuose 45 psl.)

mod:

00 - operandas r/m atmintyje, poslinkio nėra;

01 - operandas r/m atmintyje, vieno baito poslinkis;

10 - operandas r/m atmintyje, dviejų baitų poslinkis;

11 - operandas r/m registre.

Šiuo atveju, 8D 6E 14 A2 16_{16} = (1000 1101 01.101.110 0001 0100 1010 0010₂) 1000 1101 = komanda lea

01 = mod

101 = reg

110 = r/m

Lentelėje ieškom reikšmių ir matom, kas keičiasi vykdant šią komandą.

Šiuo atveju: BP + poslinkis

Uždavinyje duota, jog BP = B2A2. Poslinkis = 14 A2 (čia užrašas dviejuose žodžiuose, imame jaunesniji baitą 14).

Komandoje poslinkio jaunesnysis baitas užrašomas (Mitašiūno konspektas 43 psl.):

Adreso j.	Adreso	
b.	v.b.	

Įstatę į formulę gauname ieškomą reikšmę (taip pat randamas EA).

BP = B2A2 + 0014 = B2B6

3. Įvykdžius programinį pertraukimą INT 21h adresas bus formuojamas <SS:SP>. Kitaip sakant, AA := SS*10h + SP. Kadangi vykdant pertraukimą SS reikšmė nepasikeis, galime apskaičiuoti reikalaujamą SP.

SP := AA - SS*10h = 66323 - 56430 = FFE3. Dabartinis mūsų SP = FFE4, reiškia INT 21 kažkas buvo patalpinta į steką.

Iš tiesų, INT komandos metu vykdomi veiksmai: SP := SP - 2; PUSH SF; SP := SP - 2; PUSH CS; SP := SP - 2; PUSH IP. Po šių komandų steko segmentas atrodo taip:

FFDE	IP v.b.	Nepateik
		ta
FFDF	IP j.b.	Nepateik
		ta
FFE0	CS j. b.	31
FFE1	CS v. b.	C1
FFE2	SF j. b.	FF
FFE3	SF v.b.	04
FFE4	Nepateik	Nepateik
	ta	ta

Akivaizdžiai matome, jog FFE3 baite saugoma reikšmė 04.

4. **Reikia žinoti kaip atrodo SF registras ir jo požymio bitus (flagus).** Mitašiūno konspektas 59 psl.:

XXXX OF DF IF TF SF ZF X AF X PF X CF

<u>CF</u> – požymis žymi operacijas su skaičiais be ženklo (0 – rezultatas korektiškas, 1 – įvyko pernešimas arba perpildymas).

 \underline{OF} – požymis žymi operacijas su skaičiais su ženklu (0 – rezultatas korektiškas, 1 – įvyko pernešimas arba perpildymas).

<u>PF</u> - lyginumo požymis (1 - kai rezultato vienetukų skaičius lyginis, 0 - kai nelyginis).

AF – požymis žymi bito pernešimą iš jaunesniojo baito į vyresnijį. (1 – pernešimas įvyko, 0 – pernešimas neįvyko).

<u>ZF</u> - nulio požymis (1 - kai rezultatas nulis, 0 - kitu atveju).

 $\underline{\mathit{SF}}$ – ženklo požymis (1 – kai rezultato ženklo bitas 1, 0 – kai rezultato ženklo bitas 0).

TF – "spąstų" požymis (šiame uždavinyje mums jo neprireiks).

IF – pertraukimo leidimo požymis (šiame uždavinyje mums jo neprireiks).

DF – krypties požymis (šiame uždavinyje mums jo neprireiks).

Nustatyti, ar CF = 1, ar OF=1 ir kitiems požymiams aiškiausia sudaryti tokią lentelę:

Skaičius	Su ženklu	Viename baite	Be ženklo
	-3	1111 1101	253

	-126	1000 0010	130
Rezultata	-129	0111 1111	383
S	123	0111 1111	303

Skaičiaus su ženklu diapazonas -128 - 127, jei sudėjus skaičius jį viršytų, būtų OF = 1.

Šiuo atveju, -129 < -128, taigi OF = 1.

Skaičiaus be ženklo diapazonas 0 - 255, jei jis viršijamas, tai CF = 1.

Šiuo atveju, 383 > 255m taigi CF = 1.

Ar skaičius su ženklu viename baite yra neigiamas galima nustatyti taip:

Jei pirmasis baito skaitmuo 1, skaičius neigiamas, jei 0 – teigiamas. Šiuo atveju, $0111\ 1111_2$ yra skaičius teigiamas.

PF = 0, nes vienetukų skaičius nelyginis.

ZF = 0, nes rezultatas nera nulis.

SF = 0, nes vyriausiasis bitas 0.

AF = 0, nes neįvyko pernešimas iš jaunesniojo baito į vyresnįjį.

Registrą SF galima užrašyti

0 DF IF TF 1 0 0 0 1

Norint sužinoti, kokia SF registro reikšmė, reikia naujos reikšmės nekeistus bitus užpildyti senosios reikšmės bitais. Kadangi senoji reikšmė buvo 0000, tai galutinė SF reikšmė 0801.

- 5. Komanda stos paveiks tik DI registrą. Kadangi SF registro DF bitas lygus 0, tai DI reikšmė bus didinama.
 - CX = 0075, tad komanda bus pakartota 75 kartus. Komandoje stosw raidė w parodo, jog bus operuojama žodžiais. DI bus padidintas CX * 2 = 0075 * 02 = EA (DI = ABCD + EA = ACB7). SI + DI = 578B + ACB7 = 0442.
- 6. COM(SIGN) = 32767, COM(1) = -2. 32767 2 = 32765. Komanda RIGHT_SHIFT dalija skaičių iš dviejų (div 2). Pilna komanda: MBR = RIGHT_SHIFT(COM(SIGN) + COM(1));