UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CÂMPUS CHAPECÓ CURSO DE CIÊNCIA DA COMPUTAÇÃO

Notas de aula

CCR: GEX101 - Linguagens formais e autômatos			Criado em: 19/10/20	Alterado em:20/10/20	
Turma : 27365	Turno: Vespertino	Ano/Sem : 2020/1			
Encontro síncrono: 19/10/20		Período Assíncrono : de 20/10/20 a 23/10/20			
Carga horária da sem	ana: 5ha		Professor: Braulio Mello		

Conteúdo: Construção e determinização de autômatos finitos (AF)

Material de apoio

Recuperação de estudos:

Correção da atividade orientada 3 da semana 14 a 17/10/20

3- L(G) = $\{x \mid x \in a^n b^m c^k \text{ onde } n+k \text{ seja par e } m,n,k \ge 0\}$

n+k é par e posso gerar 'a,b,c' : S::= ε | aA | bB | cC n+k é **ímpar** e posso gerar 'a,b,c' : A::= aS | bD | cE

n+k é par e posso gerar 'b,c': B::= bB | cC | ϵ n+k é **impar** e posso gerar 'c': C::= cEn+k é **impar** e posso gerar 'b,c': D::= bD | cEn+k é par e posso gerar 'c': E::= cC | ϵ

 $S \rightarrow aA$ \rightarrow abD

 \rightarrow abcE

 \rightarrow abcc

Conteúdo: Construção e determinização de Autômatos Finitos

Capítulo 2, páginas 15 a 20, da apostila disponível no moodle.

Formalmente definimos um AFD como sendo um sistema formal $M = (K, \Sigma, \delta, q_0, F)$, onde:

- K \rightarrow É um conjunto finito não-vazio de ESTADOS; (não terminais da gramática)
- $\Sigma \rightarrow \acute{E}$ um ALFABETO, finito, de entrada;
- $\delta \rightarrow \text{FUNÇÃO DE MAPEAMENTO}$ (ou função de transição), definida em K x $\Sigma \rightarrow K$;
- $q_0 \rightarrow \in K$, é o ESTADO INICIAL; (geralmente se utiliza o S da gramática)
- F \rightarrow \subset K, é o conjunto de ESTADOS FINAIS

Linguagem aceita por M: conjunto de todas as sentenças aceitas por M.

Formalmente, definimos por: $L(M) = \{x \mid \delta(q_0, x) = p \land p \in F\}.$

Tabela de transição.

Autômatos finitos não determinísticos (AFND)

Determinização de AFND.

Exemplo 1:

 $S := aS \mid aA \mid bS$

A := bB

B:=bC

 $C := \varepsilon$

AFND			AFD			
δ	a	b		δ	a	b
→ S	S,A	S		\rightarrow S	[SA]	S
A	-	В		[SA]	[SA]	[SB]
В	-	С		[SB]	[SA]	[SC]
*C	-	-		*[SC]	[SA]	S

Exemplo 2:

 $L(G) = \{x \mid x \in (a,b,c)^* \text{ onde ocorra pelo menos um padrão 'ac'} \}$

espero pelo 'a' S ::= aA |bS |cS

espero pelo 'c' A ::= aA |bS | cB | c

feito 'ac' $B := aB | |bB | |cB | | |\epsilon | |a| |b| |c$

AFND			AFD					
δ	a	b	С		δ	a	b	С

Atividades orientadas

Construção e determinização de autômatos finitos (AF)

Objetivo: Compreensão do processo de construção e determinização de AF's

Construa o AF para cada uma das gramáticas a seguir e determinize-os:

(1) $S := 0S \mid 1S \mid 0A \mid 0C \mid 1B$

 $A ::= 0A \mid 0C \mid 0$ $B ::= 1B \mid 1$ $C ::= 0C \mid 0A \mid 0$

C ..- 0C | 0A | 0

 $(2) S := aA \mid aC \mid bB \mid bC$

 $A ::= aF \mid a$ $B ::= bF \mid b$

 $C ::= aA \mid aC \mid bB \mid bC$

 $F ::= aF \mid bF \mid a \mid b$

(3) S:= aA | bB

 $A := aS \mid aC \mid a$

 $B := bS \mid bD \mid b$

C := aB

D := bA

Data/horário limite para entrega (upload no Moodle):

25/10/20 (domingo) às 23h. Não permitida entrega atrasada.

Atividade Avaliativa

Não há atividade avaliativa prevista para esta semana.