X-ENS PSI - 2012 un corrigé

Préambule.

1. Par définition des limites, la propriété de corecivité s'écrit

$$\forall A \in \mathbb{R}, \ \exists B \in \mathbb{R}/\ \forall x \in \mathbb{R}^n, \ \|x\| \ge B \Rightarrow f(x) \ge A$$

Utilisons cette propriété avec A = |f(0)| + 1. On trouve alors un réel B. En prenant $M = \max(B, 1)$, on obtient un réel M > 0 tel que si $||x|| \le M$ (et a fortiori si ||x|| > M) alors $f(x) \ge |f(0)| + 1$.

2. L'ensemble $B_M = \{x \in \mathbb{R}^n / ||x|| \le M\}$ (boule fermée de centre l'origine de rayon M) est un compact de \mathbb{R}^n (fermé et borné dans cet espace de dimension finie). f étant continue sur ce compact, elle y est bornée et atteint ses bornes (et en particulier son minimum). Il existe donc $x^* \in B_M$ tel que $\forall x \in B_M$, $f(x^*) \le f(x)$.

Soit $x \in \mathbb{R}^n$; si $x \in B_M$ alors $f(x^*) \leq f(x)$; sinon, ||x|| > M et $f(x) \geq |f(0)| + 1 \geq f(0) \geq f(x^*)$ (car $0 \in B_M$). On a donc

$$\forall x \in \mathbb{R}^n, \ f(x^*) \le f(x)$$

3. \mathbb{R}^n étant un ouvert, f (de classe C^1) ne présente (résultat de cours) de valeur localement extremale qu'en des points critiques. On a donc

$$\nabla f(x^*) = 0$$

Partie 1.

4. Par hypothèse sur A et inégalité de Cauchy-Schwarz, on a

$$\forall x \in \mathbb{R}^n, \ g(x) \ge \frac{C}{2} ||x||^2 - ||b||.||x||$$

Comme C > 0, le minorant est de limite infinie quand $||x|| \to +\infty$ et donc g est coercive.

5. Soit $x \in \mathbb{R}^n$. En notant x_1, \dots, x_n les coordonnés de x dans la base canonique et comme cette base est orthonormée, on a

$$g(x) = \frac{1}{2} \sum_{1 \le i, j \le n} a_{i,j} x_i x_j - \sum_{i=1}^n b_i x_i$$

Les théorèmes d'opération nous apprennent que g est de classe C^{∞} sur \mathbb{R}^n . Comme A est symétrique, on peut écrire que

$$g(x) = \frac{1}{2} \sum_{i=1}^{n} a_{i,i} x_i^2 + \sum_{1 \le i < j \le n} a_{i,j} x_i x_j - \sum_{i=1}^{n} b_i x_i$$

Quand on dérive l'expression $x_i x_j$ par rapport à la variable x_k , on obtient 0 si $i, j \neq k$. On a alors

$$\forall k, \ \frac{\partial g}{\partial x_k}(x) = a_{k,k} x_k + \sum_{i=1}^{k-1} a_{i,k} x_i + \sum_{j=k+1}^n a_{k,j} x_j - b_k$$

On utilise encore la symétrie de A pour écrire que

$$\forall k, \ \frac{\partial g}{\partial x_k}(x) = a_{k,k} x_k + \sum_{i=1}^{k-1} a_{i,k} x_i + \sum_{j=k+1}^n a_{j,k} x_j - b_k$$

et on reconnaît dans le membre de droite la k-ième coordonnée de Ax - b. On a donc

$$\nabla g(x) = Ax - b$$

Le préambule donne l'existence d'un minimum global x^* . On doit avoir $\nabla g(x^*) = 0$ et donc $Ax^* = b$. Mais A est inversible car si Ax = 0 alors $C||x||^2 \le (Ax, x) = 0$ et donc (comme C > 0) $||x||^2 \le 0$ et ainsi x = 0 (ce qui donne $\ker(A) = \{0\}$). On doit donc avoir $x^* = A^{-1}b$. On a ainsi l'existence et l'unicité du minimum x^* et

$$x^* = A^{-1}b$$

6. Avec les expressions de ∇g et de x^* , on a

$$u_{k+1} - x^* = u_k - \alpha(Au_k - b) - x^*$$

= $(u_k - x^*) - \alpha(Au_k - Ax^*)$
= $(I_3 - \alpha A)(u_k - x^*)$

7. On suppose que $\alpha \in]0, 2/L[$.

A étant symétrique réelle, il existe une base orthonormée de \mathbb{R}^n formée de vecteurs propres pour A. Notons (e_1, \ldots, e_n) une telle base et $\lambda_1, \ldots, \lambda_n$ les valeurs propres associées. L'hypothèse sur A indique que $\forall i, \ \lambda_i ||e_i||^2 = (Ae_i, e_i) \geq C ||e_i||^2$ et on a donc $\lambda_i \geq C > 0$ pour tout i. Par ailleurs, comme $\alpha < \frac{2}{L}$ et L > 0, on a $\alpha L < 2$ et donc $\forall i, \ \alpha \lambda_i < 2$. Finalement, on a montré que

$$\forall i, -1 < 1 - \alpha \lambda_i < 1$$

En particulier, tous les $(1-\alpha\lambda_i)^2$ sont dans [0,1[et leur maximum (qui existe car on a un nombre fini non nul de quantités) est aussi dans [0,1[:

$$K = \max_{1 \le i \le n} (1 - \alpha \lambda_i)^2 \in [0, 1[$$

Soit $y \in \mathbb{R}^n$; il existe des scalaires y_1, \ldots, y_n tels que $y = \sum_{i=1}^n y_i e_i$. On a (la base étant orthonormée)

$$\|(I_n - \alpha A)y\|^2 = \left\| \sum_{i=1}^n (1 - \alpha \lambda_i) y_i e_i \right\|^2 = \sum_{i=1}^n (1 - \alpha \lambda_i)^2 y_i^2 \le K \|y\|^2$$

La question précédente donne alors

$$\forall k \in \mathbb{N}, \ \|u_{k+1} - x^*\|^2 \le K\|u_k - x^*\|^2$$

et une récurrence imémdiate indique que

$$\forall k \in \mathbb{N}, \ \|u_k - x^*\|^2 \le K^k \|u_0 - x^*\|^2$$

Le majorant est de limite nulle quand $k \to +\infty$ et ainsi

$$\lim_{k \to +\infty} u_k = x^*$$

Partie 2.

8. On a

$$h(x_{k+1}) = (x_k + \varepsilon_k t_k)^2$$

$$= h(x_k) + t_k \varepsilon_k (\varepsilon_k t_k + 2x_k)$$

$$= h(x) + \begin{cases} 0 & \text{si } x_k = 0 \\ t_k (t_k + 2x_k) & \text{si } x_k < 0 \\ t_k (t_k - 2x_k) & \text{si } x_k > 0 \end{cases}$$

Comme $t_k \leq 2x_k$ si $x_k > 0$ et $t_k \leq -2x_k$ si $x_k < 0$, le terme complémentaire est toujours négatif et

$$h(x_{k+1}) \le h(x_k)$$

9. Pour tout k, on a $v_{k+1} - v_k = -\frac{1}{2^{k+1}}$. Quand on somme, les termes se télescopent et on obtient

$$\forall k \in \mathbb{N}^*, \ v_k = v_0 - \sum_{i=0}^{k-1} \frac{1}{2^{i+1}} = 1 + \frac{1}{2^k}$$

formule qui reste valable pour k = 0.

Posons, pour tout k, $\varepsilon_k = -1$ et $t_k = \frac{1}{2^{k+1}}$. Les v_k étant tous strictement positifs, la suite (ε_k) vérifie les bonnes relations. Comme $2|v_k| = 2 + \frac{1}{2^{k-1}} > 2 \ge t_k > 0$, la suite (t_k) vérifie aussi les bonnes relations. (v_k) est ainsi une suite de descente par gradient pour h.

La suite (v_k) est convergente de limite 1 qui n'est pas le minimum global de h (celui-ci est nul).

10. Le même processus de télescopage donne cette fois

$$\forall k \in \mathbb{N}, \ w_k = (-1)^k + \frac{(-1)^k}{2^k}$$

formule que l'on peut d'ailleurs aussi vérifier par récurrence.

Comme $w_{2k} > 0$ et $w_{2k+1} < 0$, on pose $\varepsilon_k = (-1)^{k+1}$ et $t_k = 2 + \frac{3}{2^{k+1}}$. On a alors $w_{k+1} = w_k + \varepsilon_k t_k$ pour tout k, la suite (ε_k) qui vérifie les bonnes relations ainsi que la suite (t_k) (pour tout k, $0 < t_k < 2|w_k| = 2 + \frac{1}{2^{k-1}}$ car 3 < 4). La suite (w_k) est ainsi une suite de descente par gradient pour h.

Comme $w_{2k} \to 1$ et $w_{2k+1} \to -1$, la suite (w_k) ne converge par ailleurs pas.

Partie 3.

11. On suppose $\nabla f(x) \neq 0$; on a alors $d = -\frac{1}{\|\nabla f(x)\|} \nabla f(x)$ qui vérifie $\|d\| = 1$ et $(d, \nabla f(x)) = -\|\nabla f(x)\| < 0$. Ainsi $d \in D_x$ et $D_x \neq \emptyset$.

Soit maintenant $d \in D_x$ (l'existence d'un tel d impliquant que $\nabla f(x) \neq 0$ sinon $(d, \nabla f(x)) = 0$ ce qui contredit $d \in D_x$). Posons $\phi : t \mapsto f(x + td)$; ϕ est de classe C^1 sur \mathbb{R} et ϕ' : $t \mapsto (\nabla f(x + td)|d)$. Comme $d \in D_x$, $\phi'(0) < 0$. Par continuité de ϕ' , il existe r > 0 tel que $\forall t \in [-r, r], \ \phi'(t) < 0$.

Par égalité des accroissements finis, il existe $c \in]0, r[$ tel que $\phi(r) - \phi(0) = r\phi'(c) < 0$. ceci s'écrit f(x+rd) - f(x) < 0 et on a donc $r \in T_{d,x}$. Ainsi, $T_{d,x}$ est non vide.

- 12. On est dans le cas où $n=1, \nabla h(x)=h'(x)=2x$.
 - Si $x_k = 0$ alors $\nabla h(x_k) = 0$ et $t_k = d_k = 0$ (ce qui correspond à $t_k = \varepsilon_k = 0$ dans la partie 2).
 - Si $x_k > 0$ alors $D_{x_k} = \{-1\}$ donc $d_k = -1$ et $T_{d_k, x_k} = \{t > 0 / t(-2x_k + t) < 0\} =]0, 2x_k [=]0, 2|x_k|[$.
 - Si $x_k < 0$ alors $D_{x_k} = \{1\}$ donc $d_k = 1$ et $T_{d_k, x_k} = \{t > 0/t(2x_k + t) < 0\} =]0, -2x_k[=]0, 2|x_k|[$. On retrouve donc exactement la situation de la partie 2.

13. Soit $k \in \mathbb{N}$. Si $\nabla f(x_k) \neq 0$ alors, par définition de T_{d_k,x_k} , on a

$$f(x_{k+1}) = f(x_k + t_k d_k) < f(x_k)$$

Si $\nabla f(x_k) = 0$ on a $f(x_{k+1} = f(x_k))$. On a donc, de façon générale,

$$\forall k \in \mathbb{N}, \ f(x_{k+1}) \le f(x_k)$$

et la suite $(f(x_k))$ est décroissante. Quand f est coercive, le préambule montre que f est minorée et donc $(f(x_k))$ l'est aussi. C'est finalement une suite convergente par théorème de limite monotone.

Si, par l'absurde, la suite (x_k) n'était pas bornée, on pourrait en extraire une suite $(x_{\psi(k)})$ telle que $||x_{\psi(k)}|| \to +\infty$ et on aurait alors $f(x_{\psi(k)}) \to +\infty$ (composition de limites) ce qui nie la convergence de $(f(x_k))$ (qui entraı̂ne la convergence de toute extraite). On a donc (x_k) qui est bornée.

14. Commeçons par le calcul préliminaire proposé. On se donne $k \in \mathbb{N}$ et on pose $r_k = \nabla g(u_k) = Au_k - b$; on a

$$\begin{split} g(u_{k+1}) - g(u_k) &= g(u_k - \alpha r_k) - g(u_k) \\ &= -\frac{\alpha}{2}(Au_k, r_k) - \frac{\alpha}{2}(Ar_k, u_k) + \frac{\alpha^2}{2}(Ar_k, r_k) + \alpha(b, r_k) \quad \text{par développement} \\ &= -\alpha(Au_k, r_k) + \frac{\alpha^2}{2}(Ar_k, r_k) + \alpha(b, r_k) \quad \text{par symétrie de } A \\ &= -\alpha(r_k + b, r_k) + \frac{\alpha^2}{2}(Ar_k, r_k) + \alpha(b, r_k) \quad \text{car } Au_k = b + r_k \\ &= -\alpha \|r_k\|^2 + \frac{\alpha^2}{2}(Ar_k, r_k) \end{split}$$

Si $r_k \neq 0$, on pose $t_k = \alpha ||r_k||$ et $d_k = -\frac{r_k}{||r_k||}$; sinon, on pose $d_k = 0$ et $t_k = 0$. Dans les deux cas, on a $u_{k+1} = u_k + t_k d_k$. De plus, dans le cas où $r_k \neq 0$, on a

- $||d_k|| = 1$ et $(d_k|r_k) = -||r_k|| < 0$;
- $g(u_k + d_k t_k) g(u_k) = g(u_{k+1}) g(u_k) = -\alpha ||r_k||^2 + \frac{\alpha^2}{2} (Ar_k, r_k)$. Comme en fin de partie 1, on a $(Ar_k, r_k) \le L ||r_k||^2$ où L est le maximum des modules des valeurs propres de A et ainsi

$$g(u_k + d_k t_k) - g(u_k) \le -\alpha \left(1 - \frac{\alpha L}{2}\right) ||r_k||^2$$

Si $\alpha \in]0,2/L[$, cette quantité est < 0. Comme $t_k > 0$, on a finalement $t_k \in T_{d_k,x_k}$. Si $\alpha \in]0,2/L[$, la suite $(u_k)_{k\in\mathbb{N}}$ est une suite de descente par gradient pour la fonction g.

Partie 4.

15. On a, en sommant les inégalités (2)

$$\forall k \in \mathbb{N}^*, \ f(x_k) - f(x_0) \le m_1 \sum_{i=0}^{k-1} t_i(d_i, \nabla f(x_i))$$

Comme f est coercive, la question 13. indique que la suite $(f(x_k))$ est bornée (puisque convergente). Ce qui précède montre que les sommes partielles de la série de terme général $t_k(d_k, \nabla f(x_k))$ est minorée. Comme ce terme général est négatif (par choix de d_k et comme $t_k \geq 0$), cette suite des sommes partielles décroît. Elle est finalement convergente. La convergence d'une série entrainant la convergence vers 0 du terme général, on a donc

$$\lim_{k \to +\infty} t_k(d_k, \nabla f(x_k)) = 0$$

- 16. Soit $k \in \mathbb{N}$; distinguous deux cas
 - Si $C_1 \leq C_2 |(d_k, \nabla f(x_k))|$ alors $t_k \geq C_1$ et donc $|t_k(d_k, \nabla f(x_k))| \geq C_1 |(d_k, \nabla f(x_k))|$.
 - Sinon, $t_k \ge C_2|(d_k, \nabla f(x_k))|$ et donc $|t_k(d_k, \nabla f(x_k))| \ge C_2|(d_k, \nabla f(x_k))|^2$.

Dans le cas général, on a donc

$$|(d_k, \nabla f(x_k))| \le \frac{b_k}{C_1} + \frac{\sqrt{b_k}}{\sqrt{C_2}}$$
 où $b_k = |t_k(d_k, \nabla f(x_k))|$

Comme on a vu que $b_k \to 0$, on en déduit que

$$\lim_{k \to +\infty} (d_k, \nabla f(x_k)) = 0$$

17. B étant symétrique réelle est diagonalisable en base orthonormée. Notons (e_1, \ldots, e_n) une base diagonalisation et λ_i la valeur propre associée à e_i . Soit $x \in \mathbb{R}^n$ et x_1, \ldots, x_n ses coordonnées dans la base des e_i . Comme en question 7, on a

$$(Bx, x) = \sum_{i=1}^{n} \lambda_i x_i^2 \ge \mu \|x\|^2 \text{ et } \|Bx\| = \left(\sum_{i=1}^{n} \lambda_i^2 x_i^2\right)^{1/2} \le \lambda \|x\|$$

où $\mu > 0$ et $\lambda > 0$ sont respectivement la plus petite et la plus grande des valeurs propres de B. On a ainsi

$$\forall x \in \mathbb{R}^n \setminus \{0\}, \ \frac{\mu}{\lambda} ||x|| \le \frac{(Bx, x)}{\|Bx\|}$$

En particulier, avec $x = \nabla f(x_k)$ (quand $\nabla f(x_k) \neq 0$), on obtient $\frac{\mu}{\lambda} ||\nabla f(x_k)|| \leq |(d_k |\nabla f(x_k))|$. L'inégalité reste vraie quand le gradient est nul. Comme le majorant est de limite nulle, on en déduit que

$$\lim_{k \to +\infty} \nabla f(x_k) = 0$$

18. f étant coercive, elle admet au moins un minimum global. Supposons, par l'absurde, qu'il existe deux minina globaux $x_1^* < x_2^*$. Par convexité, le graphe de la courbe sur $]x_1^*, x_2^*[$ est strictement sous la corde reliant $(x_1^*, f(x_1^*))$ et $(x_2^*, f(x_2^*))$. Mais comme $f(x_1^*) = f(x_2^*)$ cela signifie que f prend des valeurs strictement plus petite qu'au point où elle est minimale ce qui est une contradiction. Il y a donc un unique minimum global.

19.