

Technische Informatik: Abgabe 9

Michael Mardaus

Andrey Tyukin

9. Januar 2014

Exercise 9.1 (Adding)

a) 20+15	dec	bin	$K_2(bin)$
	20	010100	010100
	15	001111	001111
	(35)	100011	011101 = -29

d) -13+7
$$\begin{vmatrix} dec & bin & K_2(bin) \\ -19 & 010011 & 101101 \\ -22 & 010110 & 101010 \end{vmatrix}$$

 $(-41) & (1)010111 & 101001 = 25$

Exercise 9.3 + 9.4 (Number representations)

a) To perform the actual calculation, we transform everything into the binary representation:

$$(8.125)_{10} = (1000.001)_2$$

$$(B3.09)_{16} = (10110011.00001001)_2$$

$$(27.65)_8 = (10111.110101)_2$$

Then we just calculate, step by step (everything binary if not stated otherwise):

```
1000.001 - 111.011 = 0.11 0.11 + 10110011.00001001 = 10110011.11001001 10110011.11001001 - 10111.110101 = 10011011.11110101 = (155.95703125)_{10}
```

From the last binary representation we see that the representation in required floating point format is $+(0.9BF5)_{16} \cdot 16^2$. Unfortunately, not all the bits required to represent the number fit into mantissa:

The resulting error is $(0.00110101)_2 = 3/16 + 1/64 + 1/256 = (0.2070325)_{10}$.

b) (omitted)