Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет)

Физтех-школа прикладной математики и информатики Кафедра «Интеллектуальные системы» при Вычислительном центре им. А. А. Дородницына РАН)

Выпускная квалификационная работа бакалавра

Аппроксимация фазовой траектории временного ряда

Автор:

Студент 784 группы Христолюбов Максим Евгеньевич

Научный руководитель: д.ф.-м.н. Стрижов Вадим Викторович

Аннотация

Данная работа посвящена аппроксимации фазовых траекторий временных рядов. Изучается метод аппроксимации, использующий проекции точек фазовой траектории в низкоразмерное пространство, достаточное для восстановления исходной траектории. Предлагается универсальный алгоритм построение проецирующего отображения по произвольной модели временного ряда. Изучаются свойства построенного отображения в зависимости от структуры модели временного ряда. Фазовая траектория рассматривается как многообразие, а построенные отображения выступают в роли атласа. Предлагается способ нахождения оптимальной размерности фазовой траектории временного ряда. Для анализа качества аппроксимации проводятся эксперименты на синтетических данных и данных, полученных про помощи мобильного акселерометра.

Ключевые слова: временной ряд, фазовая траектория, многообразие, атлас, аппроксимация

Оглавление

1	Вве	дение	5		
2	Пос	становка задачи	7		
	2.1	Фазовая траектория ряда	7		
	2.2	Фазовая траектория ряда как гладкое многообразие			
	2.3	Алгоритм аппроксимации	8		
	2.4	Оптимальная размерность скрытого пространства	9		
	2.5	Согласованность атласа	9		
3	Модели аппроксимаций				
	3.1	SSA Гусеница	13		
	3.2	Автоенкодер LSTM			
	3.3	Neural ODE			
	3.4	Модель S4			
		3.4.1 Теоретическое обоснование модели	15		
		3.4.2 Модель аппроксимации	16		
4	Описание практической части				
	4.1	Данные	19		
	4.2	Критерии			
	4.3	Эксперимент			
5	Зак	лючение	23		

Введение

Одним из общих подходов к анализу временных рядов является взгляд на них как на измерение параметров детерминированные динамические системы. Детерминированный означает, что в системе нет случайности, даже если она является динамически хаотичной. Динамический означает, что значения или состояния системы изменяются с течением времени.

Аттрактор — это пространство состояний, к которым система имеет тенденцию притягиваться с течением времени. Аттрактор можно рассматривать как искривленное пространство, иными словами многообразие.

Теневые многообразия (shadow manifolds) — это проекции истинного многообразия системы. Теорема Такенса [1] говорит нам, что если ряд ${\bf s}$ является измерениями динамической системы, тогда теневое многообразие истинного многообразия M определяется предысторией точки $s_i = X(t_i)$ временного ряда. Точки в этом теневом многообразии M_X биективно соответствуют точкам истинного неизвестного многообразия M. В литературе теневое многообразие называют фазовой траекторией ряда.

Рис. 1.1: Фазовая траектория системы M=[X(t),Y(t),Z(t)] и теневая фазовая траектория $M_X=[X(t),X(t-\tau),X(t-2\tau)]$ [2]

Фазовая траектория временного ряда, точки которой являются предысториями каждого момента времени, имеет размерность N по построению. Распространенные способы отображении фазовой траектории в низкоразмерное пространство размерности n - PCA и PLS [3].

PLS проецирует матрицу фазовой траектории исходного временного ряда $\mathbf{X}^{(n)} \in \mathbb{R}^{m \times n}$, где m — количество моментов времени временного ряда, а n — размерность фазового пространства и целевую матрицу \mathbf{Y} в скрытое пространство малой размерностью l (l < n). Метод PLS находит в скрытом пространстве матрицы \mathbf{T} , $\mathbf{U} \in \mathbb{R}^{m \times l}$,

которые лучше всего описывают исходные матрицы ${\bf X}$ и ${\bf Y}$. При этом PLS максимизирует ковариацию между столбцами матриц T и U соответственно. Метод PLS соответствует следующей коммутативной диаграмме:

Рис. 1.2: диаграмма PLS

Кроме того, на большинство моделей временных рядов имеют интерпретацию с точки зрения аппроксимации фазовой траектории: авторегрессионная модель [4], сингулярное спектральное разложение (SSA) [5]. В качестве низкоразмерного пространства в них выступает пространство параметров модели временного ряда.

В данной работе исследуется модель S4, структура которой использует идею низкоразмерной проекции фазового пространства и динамически вычисляет ее без необходимости напрямую обращаться к предыстории каждого момента времени и построении фазового пространства фиксированной размерности n.

Постановка задачи

2.1 Фазовая траектория ряда

Определение 1. Временным рядом называется функция дискретного аргумента $\mathbf{s}(t)$, сопоставляющая отсчетам времени $t_i \in \mathcal{T}$ вектор значений измеряемых переменных $\mathbf{s}(t_i) = s_i \in \mathbb{S} = \mathbb{R}^d$

В работе рассматриваются временные ряды с d=1, в которых измерения проведены в одни и те же моменты времени $t \in \mathcal{T}$, такие, что $\Delta t = t_{i+1} - t_i$ постоянна.

Определение 2. Предысторией длины N для момента времени t_i временного ряда $\mathbf{s} = [s_0 \dots s_m] \in \mathbb{R}^1$ является $\mathbf{x}_i^{(N)} = [s_{i-N+1} \dots s_i] \in \mathbb{X} = \mathbb{R}^N$.

Сопоставление моментам временного ряда их предыстории осуществляется отображением $\eta: \eta(t_i,s) = x_i$, в дальнейшем зависимость от s опускается при записи для простоты.

Доступ к истинной фазовой траектории динамической системы отсутствует, поэтому вместо нее работают с фазовой траекторией ряда. Для ее построения каждой точке s_i временного ряда ставится в соответствие его предыстория $\mathbf{x}_i^{(N)} = \eta(s_i)$. В данном случае $\mathbf{x}_i^{(N)}$ — точки фазовой траектории.

2.2 Фазовая траектория ряда как гладкое многообразие

Грубо говоря, гладкое многообразие — множество с выделенным классом попарно согласованных локальных параметризаций, где согласованность означает, что две параметризации переводятся друг в друга диффеоморфизмом.

Определение 3. [6] Гладким n-мерным многообразием M называется множество, для которого задана система подмножеств X_i и взаимно однозначные отображения на них $\phi_i: W_i \to X_i$ открытых подмножеств W_i аффинного пространства \mathbb{R}^n , причем

- 1. $M = \bigcup X_i$
- 2. Для каждой пары ϕ_i, ϕ_j прообразы пересечения $X_i \cap X_j$ множества $W_{ij} = \phi_i^{-1}(X_i \cap X_j)$ и $W_{ji} = \phi_j^{-1}(X_i \cap X_j)$ являются открытыми подмножествами в \mathbb{R}^n ,
 - 3. $\phi_{ij} = \phi_j^{-1} \phi_i$ есть диффеоморфизм $W_{ij} = \phi_i^{-1} (X_i \cap X_j)$ на $W_{ji} = \phi_j^{-1} (X_i \cap X_j)$.

Определение 4. Взаимнооднозначное отображение: $\phi: W \to X$, где W — область в \mathbb{R}^n , $X \subset M$, называется в общем случае локальной параметризацией, также картой многообразия M или локальной координатной системой. Две карты называются гладко согласованными, если для них выполнено условие 3 определения 3.

Размерность многообразия определяется по размерности евклидова пространства, с которым оно локально сходно, а именно размерностью W_i , которая равна n

Определение 5. Совокупность карт ϕ_i называется атласом, если области X_i покрывают M. Если выполнены три условия определения 3, то говорят, что данный атлас является гладко согласованным и определяет в M структуру гладкого многообразия.

Фазовая траектория является многообразием. Действительно, пусть имеется динамическая система, тогда всевозможные точки фазовой траектории образуют многообразие. Например, в роли динамической системы может выступать ходьба человека, а фазовая траектория строится по показаниям акселерометра на теле. Более подробно почему фазовая траектория — это многообразие показано в следующих разделах.

2.3 Алгоритм аппроксимации

Пусть $\mathbf{x} = [x_i]_{i=0}^m$ — точка фазовой траектории, $f(t, \mathbf{w})$ — модель временного ряда.

Определение 6. Модель временного ряда — это параметризованная скалярная функция $f(t, \mathbf{w})$. Существует значения параметра \mathbf{w}_0 оптимальное в смысле минимизации функции ошибки $L(\mathbf{x}, f(t, \mathbf{w}), \text{ такое что ряд } [f(t_i, \mathbf{w}_0)]_{i=0}^m$ аппроксимирует исходный ряд $[x_i]_{i=0}^m$.

Тогда отображение в скрытое пространство \mathbb{W} — это нахождение оптимального значения параметра \mathbf{w}_0 для модели $f(t,\mathbf{w})$ и функции ошибки $L(\mathbf{x}, f(t,\mathbf{w}))$.

Определение 7. Отображение $\boldsymbol{\xi}: \mathbb{X} \to \mathbb{W}$ объектов выборки $\mathbf{X} \in \mathbb{R}^N$ называется вложением \mathbf{X} в скрытое пространство $\mathbb{W} = \mathbb{R}^n$

Определение 8. Аппроксимацией фазовой траектории называется композиция вложения точки фазовой траектории в скрытое пространство $\boldsymbol{\xi}: \mathbb{X} \to \mathbb{W}$ и восстановления $\phi: \mathbb{W} \to \mathbb{X}$.

Общую структуру аппроксимации иллюстрирует диаграмма:

Схожие обозначения в этом и предыдущем разделе выбраны не случайно. Точки \mathbf{x}_i фазовой траектории, каждая из своей окрестности X_i , лежат на многообразии $M = \cup X_i$. На практике нет доступа ко всему многообразию, а в наличии есть только конечный набор точек $\mathbf{X} = [\mathbf{x}_0, \dots, \mathbf{x}_m]^\intercal$.

Каждая точка \mathbf{w}_i скрытого пространства восстанавливает точку фазовой траектории $\hat{\mathbf{x}}_i = [f(t_j, \mathbf{w}_i)]_{j=0}^N$. Тогда из соображений непрерывности данная функция восстановления обобщается на ее окрестность и строится $\phi_i : W_i \to X_i$ так, что $\forall \mathbf{w} \in W_i : \phi_i(\mathbf{w}) = \hat{\mathbf{x}}_i$.

Таким образом из алгоритма аппроксимации естественным образом возникает система отображений $\phi_i: W_i \to X_i$ и обратных отображений $\phi_i^{-1} = \xi_i: X_i \to W_i$

2.4 Оптимальная размерность скрытого пространства

Размерность N фазового пространство, содержащего предысторию точек временного ряда, велика по построению. При проекции размерность пространства понижается с помощью отображения точек фазовой траектории $\mathbf{x} \in \mathbb{R}^N$ в $\mathbf{w} \in \mathbb{R}^n$. Возникает вопрос о том какая должна быть оптимальная размерность скрытого пространства и в каком смысле понимается оптимальность.

Поскольку скрытое пространство — это пространство параметров моделей, аппроксимирующих точки фазовой траектории, то проблема выбора оптимальной размерности совпадает с проблемой выбора оптимальной сложности модели аппроксимации временного ряда. Избыточная сложность модели приведет к переобучению и тому, что в скрытом пространстве существует подпространство, все точки которого аппроксимируют единственную точку фазовой траектории, что означает, что требование взаимнооднозначности ϕ не выполнено. Недостаточная сложность модели приведет к потере информации, что означает, что различные точки фазовой траектории проецируются в одну точку скрытого пространства и не могу быть корректно восстановлены, что опять противоречит взаимнооднозначности. Поэтому, если модель аппроксимации корректна, то существует оптимальная размерность пространства n, при которой выполняются требование взаимнооднозначности отображения ϕ .

Утверждается, что оптимальная размерность скрытого пространства — это размерность многообразия, представляющего фазовую траекторию. Таким образом, если удалось построить гладко согласованный атлас, то размерность W_i является оптимальным размером скрытого пространства.

2.5 Согласованность атласа

Цель данной работы в составлении из различных моделей атласа и проверки является ли атлас гладко согласованным. Для этого требуется, чтобы ϕ было взаимнооднозначным, а $\xi \circ \phi$ диффеоморфным.

Очевидно, что ϕ_i не является взаимнооднозначным, так как одному восстановленному $\hat{\mathbf{x}}_i$ соответствуют все \mathbf{w} из окрестности W_i . Однако, это не является проблемой, поскольку на практике различие между очень близкими друг к другу точками фазовой траектории обусловлено случайным шумом, по факту они представляют одну и ту же точку фазовой траектории не зашумленной динамической системы. Поэтому требование однозначности для не зашумленной динамической системы выполнено, если размерность скрытого пространства совпадает с размерностью многообразия фазовой траектории.

Для того, чтобы проверить $\xi \circ \phi$ на диффеоморфность следует изучить дифференцируемость ξ и $\phi = [f(t_j, \mathbf{w})]_{j=o}^N$. Практически все существующие модели временных рядов $f(t, \mathbf{w})$ дифференцируемы по своим параметрам $\frac{\partial f(\cdot, \mathbf{w})}{\partial w} = \frac{\partial \phi(\mathbf{w})}{\partial w}$.

Чтобы ξ было дифференцируемо требуется, чтобы параметры \mathbf{w} модели, полученные как проекция точек \mathbf{x} фазового пространства \mathbb{X} , были дифференцируемы относительно исходных точек $\frac{\partial \mathbf{w}}{\partial \mathbf{x}} = \frac{\partial \boldsymbol{\xi}(\mathbf{x})}{\partial \mathbf{x}}$.

Для произвольной модели временного ряда $f(t, \mathbf{w})$ временного ряда вложение $\boldsymbol{\xi}$ строится, используя минимизацию функции ошибки. Эта техника используется в авторегрессионных моделях AR, ARIMA [7] [8], в фурье моделях и при аппроксимации сплайнами [9], SSA Гусеница.

$$\mathbf{w} = \boldsymbol{\xi}(\mathbf{x}) = \operatorname*{arg\,min}_{\mathbf{w}} L(\mathbf{x}, f(\mathbf{w}))$$

Для того, чтобы модель аппроксимации была корректной она должна быть гладко дифференцируемой, отсюда возникает вопрос о дифференцируемости $\boldsymbol{\xi}$.

Теорема 1. Пусть дана функция

$$\xi(\mathbf{x}) = \underset{\mathbf{w}}{\operatorname{arg\,min}} L(\mathbf{x}, f(\mathbf{w}))$$

Eсли $L(\mathbf{x}, f(\mathbf{w})) - выпуклая функция, а <math>f(\mathbf{w}) - л$ инейная функция, тогда $\boldsymbol{\xi}(\mathbf{x}) -$ гладко дифференцируемая функция.

Доказательство.

Согласно необходимому условию минимума функции L:

$$\partial_{\mathbf{w}} L(\mathbf{x}, f(\mathbf{w}))|_{\mathbf{w} = \boldsymbol{\xi}(\mathbf{x})} = 0$$

 \mathcal{A} ифференцируя равенство по \mathbf{x} , получим:

$$\partial_{\mathbf{x}}\partial_{\mathbf{w}}L(\mathbf{x}, f(\mathbf{w}))|_{\mathbf{w}=\boldsymbol{\xi}(\mathbf{x})} + \boldsymbol{\xi}'(\mathbf{x}) \cdot \partial_{\mathbf{w}}^{2}L(\mathbf{x}, f(\mathbf{w}))|_{\mathbf{w}=\boldsymbol{\xi}(\mathbf{x})} = 0$$

Отсюда находится явная формула для $\frac{\partial \mathbf{w}}{\partial \mathbf{x}} = \boldsymbol{\xi}'(\mathbf{x})$, но для этого требуется, чтобы второй множитель не был равен 0.

$$\partial_{\mathbf{w}} L(\mathbf{x}, f(\mathbf{w})) = f'(\mathbf{w}) \cdot \partial_f L(\mathbf{x}, f(\mathbf{w}))$$

$$\partial_{\mathbf{x}}\partial_{\mathbf{w}}L(\mathbf{x}, f(\mathbf{w}))|_{\mathbf{w}=\boldsymbol{\xi}(\mathbf{x})} = f'(\mathbf{w}) \cdot \partial_{\mathbf{x}}\partial_{f}L(\mathbf{x}, f(\mathbf{w}))|_{\mathbf{w}=\boldsymbol{\xi}(\mathbf{x})}$$

$$\partial_{\mathbf{w}}^2 L(\mathbf{x}, f(\mathbf{w}))|_{\mathbf{w} = \boldsymbol{\xi}(\mathbf{x})} = f''(\mathbf{w}) \cdot \partial_f L(\mathbf{x}, f(\mathbf{w})) + (f'(\mathbf{w}))^2 \cdot \partial_f^2 L(\mathbf{x}, f(\mathbf{w}))|_{\mathbf{w} = \boldsymbol{\xi}(\mathbf{x})}$$

Произведение $(f')^2 \cdot \partial_f^2 L(\mathbf{x}, f) > 0$, так как L — выпуклая функция. Если модель f линейная, то $f''(\mathbf{w}) = 0$ и множитель $\partial_{\mathbf{w}}^2 L(\mathbf{x}, f(\mathbf{w}))|_{\mathbf{w} = \boldsymbol{\xi}(\mathbf{x})} \neq 0$. Кроме того $\boldsymbol{\xi}'(\mathbf{x})$ непрерывна.

Следовательно, при заданных условиях отображение ξ гладко дифференцируемо.

Таким образом, в модели ARIMA $\boldsymbol{\xi}$ является гладко дифференцируемой в соответствии с доказанной теоремой, так как L — квадратичная функция ошибки, а f линейно зависит от своих параметров.

В модели SSA Гусеница $\boldsymbol{\xi}$ вычисляется с помощью матричных операций и сингулярного разложения, что означает дифференцируемость $\boldsymbol{\xi}$.

Доказанная теорема является строгим доказательством дифференцируемости ξ . Все требуемые в теореме условия нужны, чтобы знаменатель в выражении для $\xi'(x)$ не был равен 0 ни в каких точках. Однако на практике, если знаменатель будет обращаться в 0 на множестве точке нулевой меры, то проблем не будет. Множество корней уравнения $\partial_{\mathbf{w}}^2 L(\mathbf{x}, f(\mathbf{w}))|_{\mathbf{w}=\xi(\mathbf{x})} = 0$ является множеством меры 0, поэтому на практике построенное данным образом отображение не отличимо от гладкого отображения. Поэтому, согласованность атласа определяется исключительно непрерывностью $\xi \circ \phi$, из чего следует взаимнооднозначность ϕ .

Модели аппроксимаций

3.1 SSA Гусеница

Задача алгоритма SSA состоит в представлении сегмента временного ряда в виде суммы интерпретируемых компонент. Точке фазовой траектории \mathbf{x}_i^N ставится в соответствие его траекторная матрица Ганкеля $\mathbf{X}_i^N \in R^{N/2 \times N/2+1}$:

$$\mathbf{X}_{i}^{(N)} = \begin{pmatrix} x_{i-N+1}^{(N)} & x_{i-N+2}^{(N)} & \dots & x_{i-\frac{N}{2}+1}^{(N)} \\ x_{i-N+2}^{(N)} & x_{i-N+3}^{(N)} & \dots & x_{i-\frac{N}{2}+2}^{(N)} \\ \vdots & \vdots & \ddots & \vdots \\ x_{i-\frac{N}{2}}^{(N)} & x_{i-\frac{N}{2}+1}^{(N)} & \vdots & x_{i}^{(N)} \end{pmatrix}.$$

где N — выбирается равным 2 характерным периодам ряда. Сингулярное разложение матрица $\mathbf{X}_i^{(N)}$:

$$\mathbf{X}_{i}^{(N)} = \mathbf{U}(\mathbf{h})\mathbf{V} = \sum_{j=1}^{N/2} h_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{\mathsf{T}}, \tag{3.1}$$

где $h_1 \dots h_T$ — сингулярные числа матрицы $\mathbf{X}_i^{(N)}$, наибольшие из которых будут компонентами проекции в низкоразмерное пространство $\mathbf{w} = \xi(\mathbf{x}) = \mathbf{h}$.

Чтобы восстановить исходную точку фазовой траектории матрицы $\mathbf{U}(\mathbf{h})\mathbf{V}$ усредняются по антидиагоналям, каждая из полученных усредненных матриц является Ганкелевой матрицей для сегмента временного ряда $\hat{\mathbf{x}}_k$. Восстановленная точка фазовой траектории находится как сумма этих сегментов:

$$\hat{\mathbf{x}} = \sum_{k=1}^K \hat{\mathbf{x}}_k$$

Собственные числа матрицы гладко зависят от самой матрицы [10], значит, сингулярные числа ${\bf h}$ гладко зависят от матрицы ${\bf X}$, и от ${\bf x}$, т. е. ξ — гладкое отображение в данном случае. Функция восстановления временного ряда ϕ является композицией суммирования и частного, поэтому тоже является гладкой.

3.2 Автоенкодер LSTM

LSTM (long short-term memory, дословно (долгая краткосрочная память) — тип рекуррентной нейронной сети, способный обучаться долгосрочным зависимостям. LSTM

были представлены в [11], впоследствии усовершенствованы и популяризированы другими исследователями, хорошо справляются со многими задачами и до сих пор широко применяются.

Все рекуррентные нейронные сети имеют форму цепочки повторяющихся модулей нейронной сети.

Рис. 3.1: Структура слоя LSTM

$$\begin{aligned} \mathbf{f}_t &= \sigma_g(\mathbf{W}_f \mathbf{x}_t + \mathbf{U}_f \mathbf{h}_{t-1} + \mathbf{b}_f) \\ \mathbf{i}_t &= \sigma_g(\mathbf{W}_i \mathbf{x}_t + \mathbf{U}_i \mathbf{h}_{t-1} + \mathbf{b}_i) \\ \mathbf{o}_t &= \sigma_g(\mathbf{W}_o \mathbf{x}_t + \mathbf{U}_o \mathbf{h}_{t-1} + \mathbf{b}_o) \\ \mathbf{c}_t &= \mathbf{f}_t \circ \mathbf{c}_{t-1} + \mathbf{i}_t \circ \sigma_c(\mathbf{W}_c \mathbf{x}_t + \mathbf{U}_c \mathbf{h}_{t-1} + \mathbf{b}_c) \\ \mathbf{h}_t &= \mathbf{o}_t \circ \sigma_h(\mathbf{c}_t) \end{aligned}$$

3.3 Neural ODE

В нейронном ОДУ предполагается, что временной ряд — это измерения непрерывной функции, которая удовлетворяет ОДУ:

$$\frac{dy}{dt} = g(y; w)$$

То есть, цель состоит не в том, чтобы изучить взаимосвязь между y и t, а в том, чтобы понять лежащую в основе динамику изменений. Если динамика не меняется слишком сильно, это обладает очень мощными возможностями обобщения. Прямой проход через нейронное ОДУ эквивалентен решению дифференциального уравнения с начальными условиями, в котором правая часть задается нейронной сетью g(y;w). Это означает, что один прямой проход дает нам всю траекторию, в отличие, например, от RNNs, где каждый прямой проход через модель дает одно предсказание во времени. Решение ОДУ имеет вид:

$$y(t) = y(t_0) + \int_{t_0}^{t} g(y(t); w) dt$$

Нейросеть g(y;w) внутри ОДУ обучается стандартными градиентными методами, основанными на обратном распространении ошибки.

3.4 Модель S4

3.4.1 Теоретическое обоснование модели

Данная модель основывается на проекции фазовой траектории ряда в низкоразмерное пространство. Информация о состоянии системы в данный момент содержится в предыстории, поэтому требуется, чтобы модель восстанавливала предысторию. Предлагается ввести на предыстории меру $\mu^{(\xi)}(t)$. Например, если $\mu^{(\xi)}(t) = \frac{1}{\xi} \mathbb{I}_{[t-\xi,t]}(t)$, тогда параметры модели в каждый момент времени t будет хранить информацию только о предыстории $[t-\xi,t]$. Данную меру называют translated Legendre measures (LegT). В статье [12] используется равномерный вес для всей истории, тогда мера $\mu^{(\xi)}(t) = \frac{1}{\xi} \mathbb{I}_{[0,\xi]}(t)$ (LegS).

Выбранная мера порождает на пространстве функций скалярное произведение $\langle f,g\rangle_{\mu}=\int f(t)g(t)d\mu(t)$ и индуцирует гильбертовое пространство с нормой $||f||_{L^2}(\mu)=\langle f,f\rangle_{\mu}^{\frac{1}{2}}$.

Тогда предыстория проецируется на n-размерное подпространство, при этом вложением фазовой траектории является разложение предыстории в ортогональном базисе.

Для скрытого состояния выполнено:

$$\chi = \underset{\chi}{\operatorname{arg\,min}} ||\hat{x}_{\chi} - x||_{L_2(\mu)} = \underset{\chi}{\operatorname{arg\,min}} \int (\hat{x}_{\chi}(t) - x(t))^2 d\mu^{(\xi)}(t)$$

Для конкретного момента времени ξ , x(t) находится с помощью скалярного произведения, но ее невозможно вычислять итеративно. Но функция коэффициента $\chi(t)$ является решение ОДУ $\frac{d}{dt}\chi(t) = \mathbf{A}(t)\chi(t) + \mathbf{B}(t)x(t)$, где $\mathbf{A}(t) \in \mathbb{R}^{h \times h}$, $\mathbf{B}(t) \in \mathbb{R}^{h \times 1}$ Таким образом, данное ОДУ сводится к рекуррентному соотношению и вычислять динамически.

В статье [12] в качестве базиса $\chi(t)$, линейной оболочкой которого приближается предыстория, являются многочлены Лежандра $P_n(t)$. Известно, что они ортогональны относительно скалярного произведения, индуцированного мерой $\mathbf{1}_{[-1,1]}$:

$$\frac{2n+1}{2}\int_{-1}^{1} P_n(t)P_m(t)dt = \delta_{nm}$$

Ортогональный базис $g^{(\tau)}(t)$ относительно $\mu^{(\tau)}(t)=\frac{1}{\tau}\mathbb{I}_{[0,\tau]}$ получается с помощью замены переменных и нормировки:

$$g_n = (2n+1)^{\frac{1}{2}} P_n(\frac{2t}{\pi} - 1)$$

При этом многочлены Лежандра удовлетворяют следующим соотношениям, используемых при вычислении коэффициентов базиса через скалярное произведение:

$$(2n+1)P_n(t) = P'_{n+1}(t) - P'_{n-1}(t), \quad P'_{n+1}(t) = (n+1)P_n(t) + tP'_n(t)$$

Алгоритм нахождения матрицы НІРРО (матрицы А):

- 1) Продифференцировать равенство $\chi_n(\xi) = \langle x, g^{(\xi)} \rangle_{\mu^{(\xi)}}$ по переменной ξ с помощью формулы Лейбница.
 - 2) Привести полученное соотношение к виду $\frac{d}{d\xi} \chi(\xi) = \mathbf{A} \chi(\xi) + \mathbf{B} x(\xi)$
 - 3) Дискретизировать ОДУ и получить рекуррентное соотношение.

3.4.2 Модель аппроксимации

Модель S4, используемая в [12], задается системой уравнений, в которой $x(t_0), y(t_0) \in \mathbb{R}, \chi(t_0) \in \mathbb{R}^h$:

$$\chi'(t) = \mathbf{A}\chi(t) + \mathbf{B}x(t)$$

$$y(t) = \mathbf{C}\chi(t) + \mathbf{D}x(t),$$

Матрица А иницилизируется следующим образом:

$$A_{nk} = -\begin{cases} (2n+1)^{\frac{1}{2}}(2k+1)^{\frac{1}{2}} & \text{при } n > k\\ n+1 & \text{при } n = k\\ 0 & \text{при } n < k, \end{cases}$$

Матрица представляется в виде $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^* - \mathbf{P} \mathbf{Q}^*$, где $\mathbf{V} \in \mathbb{C}^{h \times h}$, $\mathbf{\Lambda}$ диагональная и $\mathbb{P}, \mathbb{Q} \in \mathbb{R}^{h \times 1}$

Обучаемые параметры модели - диагонаяльная матрица Λ и векторы $\mathbf{P}, \mathbf{Q}, \mathbf{B}, \mathbf{C}$. Дискретное представление получается из непрерывного с помощью дискретизация непрерывного времени по правилу $x_k = x(k\Delta t)$.

$$\chi_k = \bar{\mathbf{A}}\chi_{k-1} + \bar{\mathbf{B}}x_k, \quad y_k = \bar{\mathbf{C}}\chi_k + \bar{\mathbf{D}}x_k$$

$$\mathbf{\bar{A}} = (\mathbf{I} - \frac{\Delta t}{2}\mathbf{A})^{-1}(\mathbf{I} + \frac{\Delta t}{2}\mathbf{A}), \ \mathbf{\bar{B}} = (\mathbf{I} - \frac{\Delta t}{2}\mathbf{A})^{-1}\Delta\mathbf{B}, \ \mathbf{\bar{C}} = \mathbf{C}, \ \mathbf{\bar{D}} = \mathbf{D}$$

Реккурентное представление модели является RNN: χ_k — это скрытое состояние матрицы перехода $\bar{\mathbf{A}}$.

Пусть $\chi_{-1} = 0$, тогда из реккурентного соотношения:

$$\chi_0 = \bar{\mathbf{B}} x_0, y_0 = \bar{\mathbf{C}} \bar{\mathbf{B}} x_0,$$

$$\chi_1 = \bar{\mathbf{A}}\bar{\mathbf{B}}x_0 + \bar{\mathbf{B}}x_1, \ y_k = \bar{\mathbf{C}}\bar{\mathbf{A}}\bar{\mathbf{B}}x_0 + \bar{\mathbf{C}}\bar{\mathbf{B}}x_1$$

$$y_k = \bar{\mathbf{C}}\bar{\mathbf{A}}^k\bar{\mathbf{B}}x_0 + \bar{\mathbf{C}}\bar{\mathbf{A}}^{k-1}\bar{\mathbf{B}}x_1 + \ldots + \bar{\mathbf{C}}\bar{\mathbf{B}}x_k$$

$$y_k = \bar{\mathbf{K}} * x$$

Таким образом, $y_k = \bar{\mathbf{K}} * x$ — это сверточное представление модели, которое эффективно вычисляется, если известно $\bar{\mathbf{K}}$. Существует алгоритм быстрого нахождения $\bar{\mathbf{K}}$ в случае данного специфического устройства матрицы $\bar{\mathbf{A}}$.

Рис. 3.2: диаграмма алгоритма НІРРО

Теорема 2. Непрерывое и дискретное уравнение скрытого состояния системы для *HIPPO-LegS*:

$$\frac{d}{dt}\chi(t) = -\frac{1}{t}\mathbf{A}\chi(t) + \frac{1}{t}\mathbf{B}x(t), \quad \chi_{k+1} = \left(1 - \frac{\mathbf{A}}{k}\right)\chi_k + \frac{1}{k}\mathbf{B}x_k$$

$$A_{nk} = -\begin{cases} (2n+1)^{\frac{1}{2}}(2k+1)^{\frac{1}{2}} & npu \ n > k\\ n+1 & npu \ n = k\\ 0 & npu \ n < k \end{cases}$$

Оператор HIPPO обладает благоприятными теоретическими свойствами: он инвариантен по отношению к частоте дискретизации временного ряда (коэффициенты аппроксимации $\chi(t)$ не меняются при изменении масштаба), быстр в вычислениях, имеет ограниченные градиенты и ошибку аппроксимации.

Описание практической части

Выбирается размерность скрытого пространства произвольным образом, заведомо превосходящая оптимальную размерность. После каждая точка \mathbf{x}_i фазовой траектории в выборке отображается в скрытое пространство, после чего декодируется обратно в $\hat{\mathbf{x}}_i$.

4.1 Данные

Синтетический данные сгенерированы по формуле

$$x_i(t) = \sin t + a_i \sin \frac{t}{2} + N(0, \frac{1}{5}) \sin \frac{t}{9} + N(0, \frac{1}{10})$$

Здесь первое слагаемое отвечает за главную составляющую динамической системы (ходьба), второе за исследуемый признак каждой точки фазовой траектории (вес рюкзака), третье слагаемое отвечает за неучтенные факторы, влияющие на динамическую систему, а четвертое — случайный шум. Рассматриваются разные формулы для $a_i: a_i = \frac{i+10}{100}, a_i = \frac{1}{3} + \frac{1}{100-i}$

Реальные данные — это измерения акселерометра, встроенных в мобильное устройство, хранящегося в переднем кармане брюк участника. Временные ряды содержат значения ускорения человека для оси Z акселерометра. Частота дискретизации составляет 50 Гц. Данные собраны с одного и того же человека, идущего по прямой с рюкзаком различного веса.

Во всех датасетах объекты отсортированы по исследуемому признаку $(a_i$ и вес рюкзака).

4.2 Критерии

В работе рассматриваются модели аппроксимации фазовой траектории системы и сравниваются по следующим критериям:

1) **Точность** аппроксимации. В качестве метрики используется отклонение, а именно **L2 норма разности** исходного и восстановленного временного ряда:

$$\sum_{i=1}^{m} (\hat{x}_i - x_i)^2$$

2) **Оптимальность** (сложность модели), в качестве метрики - **число параметров**. Поскольку для используемых на практике функций для аппроксимации временных свойства липшицевости и гладкости эквивалентны, то вместо проверки на гладкость атласа исследуется его липшицевость.

3) **Липшицевость**. Исследуется устойчивость в то смысле, что если исходный ряд претерпевает небольшие изменения (в смысле L2 нормы), то восстановленный ряд не должен претерпевать больших изменений (в смысле L2 нормы). Этот критерий можно так же воспринимать как **устойчивость**.

Предлагается следующим образом оценивать устойчивость:

- а) Получить аппроксимацию $\hat{\mathbf{x}}(t)$ точки $\mathbf{x}(t)$.
- b) Поскольку объекты выборки отсортированы по исследуемому признаку и близки друг к другу, то достаточно вычислить метрики

$$StabError(\mathbf{x}_{i}, \mathbf{x}_{i+1}) = \frac{||\mathbf{w}_{i} - \mathbf{w}_{i+1}||}{||\mathbf{x}_{i} - \mathbf{x}_{i+1}||}$$

$$MeanStabError(\mathbf{x}) = \frac{1}{len(\mathbf{X}) - 1} \sum_{i} StabError(\mathbf{x}_{i})$$

$$MaxStabError(\mathbf{x}) = \max_{i} (StabError(\mathbf{x}_{i}))$$

Если липшицевость, а как следствие дифференцируемость отсутствует, значит размерность скрытого пространства избыточна. Будем понижать размерность, пока аппроксимация не будет липшицевой.

4.3 Эксперимент

Пример того, как SSA аппроксимирует ряд

Рис. 4.1: Аппроксимация синтетического ряда

Значения параметров в низкоразмерном пространстве, цветом показано значение исследуемого признака:

Рис. 4.2: Параметры SSA для разных рядов

Сравнение различных моделей аппроксимации:

Модель	Отклонение	Число параметров	MeanStabError	MaxStabError
SSA	1.77	2	2.12	3.67
LSTM				
S4				

Заключение

В работе показано, что фазовая траектория временного ряда является многообразием и как все модели аппроксимации косвенно используют этот факт. Проверена гипотеза о том, что по дифференцируемости отображения в скрытое пространство возможно определить оптимальный размер скрытого пространства. Проведено экспериментальное сравнение моделей аппроксимации по описанным критериям.

Литература

- [1] Takens, F. Detecting strange attractors in turbulence / F. Takens // Dynamical Systems and Turbulence, Lecture Notes in Mathematics. 1981.
- [2] Tsonis A.A. Deyle E.R., Ye H. Sugihara G. Convergent Cross Mapping: Theory and an Example / Ye H. Sugihara G. Tsonis A.A., Deyle E.R. // Advances in Nonlinear Geosciences. 2018.
- [3] В.В., Исаченко Р.В. Стрижов. Снижение размерности пространства в задачах декодирования сигналов / Исаченко Р.В. Стрижов В.В. 2021.
- [4] Lukashin, Y.P. Adaptive methods of short-term forecasting of time series / Y.P. Lukashin // Finance and statisticss. 2003.
- [5] *Hassani*, *H.* Singular spectrum analysis: methodology and comparison. Journal of Data Science / H. Hassani. 2007.
- [6] Чернавский, А.В. / А.В. Чернавский // Часть первая. Многообразия. 2010.
- [7] Agrawal, Ratnadip Adhikari R. K. An Introductory Study on Time Series Modeling and Forecasting / Ratnadip Adhikari R. K. Agrawal. 2013.
- [8] *Н. В. Артамонов Е. А. Ивин, А. Н. Курбацкий Д. Фантациини* / А. Н. Курбацкий Д. Фантациини Н. В. Артамонов, Е. А. Ивин // ВВЕДЕНИЕ В АНАЛИЗ ВРЕМЕННЫХ РЯДОВ. 2021.
- [9] \mathcal{A} . А. Аникеев Γ . О. Пенкин, В. В. Стрижов. Классификация физической актив ности человека с помощью локальных аппроксимирующих моделей / В. В. Стрижов \mathcal{A} . А. Аникеев, Γ . О. Пенкин // Информ. и её применение. 2019.
- [10] Andreas Kriegl Peter W. Michor, Armin Rainer. Denjoy-Carleman differentiable perturbation of polynomials and unbounded operators / Armin Rainer Andreas Kriegl, Peter W. Michor. 2009.
- [11] Sepp Hochreiter Jurgen Schmidhuberl, Peter W. Michor Armin Rainer. LONG SHORTTERM MEMORY, Neural Computation / Peter W. Michor Armin Rainer Sepp Hochreiter, Jurgen Schmidhuberl. 1997.
- [12] Albert Gu Karan Goel, Christopher R'e. EFFICIENTLY MODELING LONG SEQUENCES WITH STRUCTURED STATE SPACES / Christopher R'e Albert Gu, Karan Goel. 2021.
- [13] Albert Gu Karan Goel, Christopher R'e. EFFICIENTLY MODELING LONG SEQUENCES WITH STRUCTURED STATE SPACES / Christopher R'e Albert Gu, Karan Goel // Вычислительные методы в физике плазмы / Ed. by Б. Олдера, С. Фернбаха, М. Ротенберга. М.: Мир, 2021.

[14] Roman Isachenko Ilya Zharikov, Artem Bochkarev Vadim Strijo. Feature Generation for Physical Activity Classification / Artem Bochkarev Vadim Strijo Roman Isachenko, Ilya Zharikov. — 2018.