Deep Learning

Learning from Examples

Asmaa Elbadrawy PhD, Lecturer IFT Program, ASU

Deep Learning borrows ideas from how the human brain works. It simulates a network of connected neurons that process information in a sophisticated way. It is referred to as Artificial Neural Networks (ANN).

The simplest form of an ANN is called a perceptron. It consists of a single neuron.

The Perceptron Network

Perceptron

$$Y = sign(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4)$$

where
$$sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Source: Introduction to Data Mining, 2nd Edition

Various types of activation functions (f)

$$Y = f(\sum_{i} w_{i} X_{i})$$

The perceptron creates a boundary classifier. It is a classifier that separates the points belonging to different classes.

Image Source: https://jtsulliv.github.io/perceptron/

Linear vs Non-Linear Separable Data

 Since f(w,x) is a linear combination of input variables, decision boundary is linear

Image Source: https://jtsulliv.github.io/perceptron/

 For nonlinearly separable problems, a linear perceptron network fails because no single hyperplane can separate the data perfectly.

Nonlinearly Separable Data

$y = x_1 \oplus x_2$

X ₁	X ₂	у
0	0	-1
1	0	1
0	1	1
1	1	-1

XOR Data

Multi-layer Neural Network

 Multi-layer neural network can solve any type of classification task involving nonlinear decision surfaces XOR Data

The Multi-Layer Network

Multilayer Neural Network

- Hidden layers
 - intermediary layers between input & output layers
- More general activation functions (sigmoid, tanh, etc.)

A Multi-layer NN contains multiple nodes that combine the input in different ways to produce the output.

The output is a sophisticated function in the input.

$$y = f(x)$$

It can generate arbitrarily-shaped boundaries.

Deep Learning occurs when the network has many hidden layers.

It is used for learning from examples.