Всеобщая тетрадь

Содержание

Современная оптика лекция 1	2
Современная оптика лекция 2	3
Современная оптика лекция 3	5
Современная оптика лекция 4	6
Тест вставки картинок	8

Современная оптика лекция 1

Геометрическая оптика С волновая оптика С эм-оптика С квантовая оптика.

Уравнения Максвелла:

$$\operatorname{div} \mathbf{D} = 4\pi \rho_{\text{out}}$$

$$\operatorname{div} \mathbf{B} = 0$$

$$\operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\operatorname{rot} \bar{H} = \frac{4\pi}{c} \mathbf{j}_{\text{out}} + \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t}$$

$$\mathbf{j}_{\text{out}} = 0 \qquad \rho_{\text{out}} = 0$$

Покрутим уравнения Максвелла:

$$\operatorname{rot}\operatorname{rot}\boldsymbol{E} = -\frac{1}{c}\frac{\partial}{\partial t}\operatorname{rot}\boldsymbol{B} \quad \Rightarrow \quad \operatorname{grad}\operatorname{div}\boldsymbol{E} = -\Delta\boldsymbol{E} = -\frac{1}{c}\mu\frac{\partial}{\partial t}\operatorname{rot}\boldsymbol{H} = -\frac{\varepsilon\mu}{c^2}\frac{\partial^2\boldsymbol{E}}{\partial t^2}$$

Получаем уравнение электромагнитной волны:

$$\Delta \mathbf{E} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} \tag{1.1}$$

Получаем решение вида

$$E = E_0 \exp(i\omega t - ikr)$$
 \Rightarrow $-k^2 E + \frac{\varepsilon \mu}{c^2} \omega^2 E = 0$ \Rightarrow $\frac{\omega^2}{k^2} = \frac{c^2}{\varepsilon \mu}$

Уравнение Эйконала

Имеем постулаты геометрическо оптики:

- 1. Свет распространяется в виде лучей;
- 2. Среда характеризуется показателем преломления n: $c_{\text{среды}} = c/n$;
- 3. $\int ndl \to \min$.

Def 0.1. Оптическим путём назовём $S = \int_A^B n(\boldsymbol{r}) dl$

Найдём ход лучей в предположении, что n(r):

$$\Delta m{E} - rac{n^2}{c^2} rac{\partial^2 m{E}}{\partial t^2} = 0,$$
 $E(m{r},t) = a(m{r}) \exp(ik_o \underbrace{\Phi(m{r})}_{\mbox{Эйконал}} -i\omega t).$

Взяв E одномерным посчитаем в лоб лапласиан:

$$\Delta E = \Delta a \exp((1 - a(\mathbf{r})k_0^2) \operatorname{grad} \Phi)^2 \exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k_0(\operatorname{grad} a, \operatorname{grad} \Phi) + k_0 a \Delta \Phi) exp((1 + i(2k$$

Сначала вещественную часть:

$$\Delta a \exp() - a(\boldsymbol{r})k_0^2 |\operatorname{grad}\Phi|^2 \exp() + \frac{\omega^2}{c^2}n^2 a \exp() = 0 \quad \Rightarrow \quad \boxed{|\operatorname{grad}\Phi|^2 = \frac{1}{ak_0^2}\Delta a + n^2.}$$

Теперь будем считать верным предположение:

$$|\lambda \frac{\partial^2 a}{\partial x^2}| \ll |\frac{\partial a}{\partial x}|, \qquad |\lambda \frac{\partial a}{\partial x}| \ll a, \qquad \lambda \to 0.$$

Получаем в приближении уравнение Эйконала:

$$|\operatorname{grad}\Phi| = n. \tag{1.2}$$

Выражение $\omega t - k_0 \Phi = \mathrm{const}$ задаёт Волновой фронт.

$$\operatorname{grad} \Phi = ns, \qquad |s| = 1 \qquad \frac{\partial \Phi}{\partial s} = n.$$

$$\omega dt - k_0 d\Phi = 0 \quad \Rightarrow \quad \omega dt = k_0 d\Phi = k_0 \frac{d\Phi}{ds} ds = k_0 n ds.$$

Принцип Ферма

Пуст Φ — задано однозначно: grad $\Phi = ns$. Возьмём интеграл по замкнутому контуру:

$$\oint n(s, dl) = 0$$
 \longrightarrow $\int_{ACB} n(s, dl) = \int_{ADB} n(s, dl).$

Ho $s \cdot dl = sdl = dl$ на ACB. Тогда и получим выражение, доказывающее принцип Ферма:

$$\int_{ACB} ndl = \int_{ADB} n\mathbf{s} \cdot d\mathbf{l} \leqslant \int_{ADB} ndl.$$

Приведём пару примеров: (Колдунов гнём зеркало)

Траектория луча

Было соотношение, что: $ms = \operatorname{grad} \Phi$. Для траектории: s = dr/dl. Тогда для градиента (который d/dl):

$$n\frac{d\boldsymbol{r}}{dl}=\operatorname{grad}\Phi \qquad \quad \frac{d}{dl}\left(n\frac{d\boldsymbol{r}}{dl}\right)=\frac{d}{dl}\operatorname{grad}\Phi=\operatorname{grad}\frac{d\Phi}{dl}=\operatorname{grad}n \quad \ \Rightarrow \quad \ \frac{d}{dl}\left(n\frac{d\boldsymbol{r}}{dl}\right)=\operatorname{grad}n.$$

Получили уравнение луча. Давайте теперь возьмём однородную среду:

$$n = \text{const}$$
 \Rightarrow $\frac{d^2 \mathbf{r}}{dl^2} = 0$ \Rightarrow $\mathbf{r} = \mathbf{a}l + \mathbf{b}$.

Теперь возьмём:

$$\frac{d}{dl}(n\mathbf{s}) = \operatorname{grad} n \quad \rightsquigarrow \quad \mathbf{s} \frac{dn}{dl} + n \frac{d\mathbf{s}}{dl} = \nabla n \quad \rightsquigarrow \quad \frac{\mathbf{N}}{R} = \frac{1}{n} \left(\nabla n - \mathbf{s} \frac{dn}{dl} \right)$$

Домножим последнее выражение скалярно на N:

$$0 < \frac{N^2}{R} = \frac{(N, \nabla n)}{n} \quad \Rightarrow \quad (N, \nabla n) > 0 \quad \Rightarrow \quad$$
Луч поворачивает!

((Пример про слоистую среду))

Уравнение луча в параксиальном приближении

((картинка))

$$n(y)\cos\theta(y) = n(ydy)\cos\theta(y+dy) = \left(n(y) + \frac{dn}{dy}\Delta y\right)\cos\left(\theta(y) + \frac{d\theta}{dy}\Delta y\right) = \left(n(y) + \frac{dn}{dy}\Delta y\right)\left(\cos\theta - \sin\theta(y)\frac{d\theta}{dy}\Delta y\right).$$

То есть получаем, что

$$\frac{dn}{dy}\cos\theta(y) = n(y)\sin\theta(y)\frac{d\theta}{dy} \quad \Rightarrow \quad \frac{1}{n}\frac{dn}{dy} = \tan\theta\frac{d\theta}{dy} = \frac{d\theta}{dx} = \frac{d^2y}{dx^2}.$$

Пример параболической зависимости $n^2 = n_0^2(1 - \alpha^2 y^2)$ SELFOC.

$$\alpha y \ll 1$$
 $y''_{xx} = \frac{1}{n_0(1 - \alpha^2 y^2)^{1/2}} \frac{dn}{dy} = \frac{-n_0 \alpha^2 y}{n_0(1 - \alpha^2 y^2)} = -\alpha^2 y.$ \Rightarrow $y''_{xx} + \alpha^2 y = 0.$

Такое вещество используют при создании стекловолокна, суть в том, что при заходе в канал под разными углами скорость примерно одна и та же распространения.

((забыли про мнимую часть!!!!))

Современная оптика лекция 2

Матричная оптика

Луч можно характеризовать его координатой y и углом к оптической оси x. То есть $\{y_1, \theta_1\} < - > \leftrightarrow \{y_1, n_1, \theta_1\}$, и $n\theta = v$. Таким образом:

$$\begin{pmatrix} y_2 \\ \theta_2 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} y_1 & n_1 \theta_1 \end{pmatrix}.$$

Матрица перемещения

В ходе перемещения:

$$\begin{cases} \theta_2 = \theta_1 \\ y_2 = y_1 + l\theta_1 \end{cases} \Rightarrow T = \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix}$$

Или же второй вариант, который встречается в литературе:

$$\begin{cases} \theta_2 = \theta_1 n \\ y_2 = y_1 + (l/n)\theta_1 n \end{cases} \Rightarrow T = \begin{pmatrix} 1 & l/n \\ 0 & 1 \end{pmatrix}$$
 (2.3)

Матрица преломления на сферической поверхности

Пусть луч падает из среды с показателем преломления n_1 в n_2 . Запишем условие падения:

$$n_1\beta_1 = n_2\beta_2$$
, $\beta_1 = \theta_1 + \alpha$, $\beta_2 = \theta_2 + \alpha$, $n_1(\theta_1 + \alpha) = n_2(\theta_2 + \alpha)$, $\alpha = y_1/R$.

$$v_2 = v_1 + \frac{n_1 - n_2}{R} y_1 \qquad \Rightarrow \qquad P = \begin{pmatrix} 1 & 0 \\ -\frac{n_2 - n_1}{R} & 1 \end{pmatrix}$$
 (2.4)

Или ещё в литературе она может встретиться как:

$$v_2 = \frac{n_1}{n_2}\theta_1 + \frac{n_1 - n_2}{n_2 R}y_1$$
 \Rightarrow $P = \begin{pmatrix} 1 & 0 \\ -\frac{n_2 - n_1}{n_2 R} & \frac{n_1}{n_2} \end{pmatrix}$

Общий подход

Пусть у нас есть какая-то система, части которой мы знаем как преобразуют луч по отдельности, то есть все матрицы преобразований знаем. Получаем матричное выражение с перемножением матриц:

$$M_3 M_2 M_1 \boldsymbol{a} = \boldsymbol{b} \quad \Rightarrow \quad \boldsymbol{a} = M_1^{-1} M_2^{-1} M_3^{-1} \boldsymbol{b} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

По факту теперь имеем и какую-то матрицу в которой очень хочется понять значение её коэффициентов.

- 1. D=0. Означает, что луч у нас идёт в фокальной плоскости.
- 2. B=0. Тогда наша изображение: $y_2=Ay_1$. Так называемые сопряженные плоскости. И A называется коэффициентом поперечного увеличения.
- 3. C=0. Тогда наша изображение: $y_2=B\theta_1$. D в этом случае называется коэффициентом. Тако случай называется телескопическим.

Перейдём у примерам.

Пример 0

Для тонкой линзы с двумя радиусами кривизны – внешним и внутренним:

$$\begin{pmatrix} 1 & 0 \\ \frac{n-1}{nR_2} & n \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1-n}{nR_1} & \frac{1}{n} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{n-1}{nR_2} + \frac{1-n}{nR_1} & 1 \end{pmatrix}$$

В левом нижнем углу у нас стоит *оптическая сила системы*: $(n-1)(1/R_1-1/R_2)$.

Пример 1

$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{F} & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - \frac{b}{F} & b + a\left(1 - \frac{b}{F}\right) \\ -\frac{1}{F} & 1 - \frac{a}{F} \end{pmatrix}$$

Таким образом получаем формулу линзы занулив левый верхний элемент:

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{F}. (2.5)$$

Задача 2 (см) файл

Только размер предмета не как в задаче — а 2 мм.

Какие матрицы запишем: сначала распространяемся, потом преломляемся, и наконец снова распространяемся.

$$\begin{pmatrix} 1 & x/n \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -0.2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 15 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 - \frac{x}{7.8} & 15 - \frac{x}{0.78} \\ -0.2 & -2 \end{pmatrix}$$

Снова B=0 и решаем уравнение: $15-\frac{x}{0.78}=0$, откуда x=11.7 см. Коэффициент увеличение $A=1-\frac{11.7}{0.78}=-0.5$.

Задача 4 (см) файл

Снова думаем — преломляемся-распространение-преломляемся-распространяемся.

$$\left(\begin{array}{cc} 1 & F \\ 0 & 1 \end{array} \right) \cdot \left(\begin{array}{cc} 1 & 0 \\ \frac{-(1-n)}{-R} & 1 \end{array} \right) \cdot \left(\begin{array}{cc} 1 & \frac{2R}{n} \\ 0 & 1 \end{array} \right) \cdot \left(\begin{array}{cc} 1 & 0 \\ -\frac{n-1}{R} & 1 \end{array} \right) = \left(\begin{array}{cc} -\frac{2F(n-1)+(n-2)R}{nR} & \frac{-nF+2F+2R}{n} \\ \frac{2-2n}{nR} & \frac{2}{n}-1 \end{array} \right)$$

И так A=0 значит -2F(n-1)=R(n-2), откуда $F=R\frac{2-n}{2(n-1)}.$

Задача 11 (см) файл

На самом деле это задача из Овчинкина 1.32.

$$\begin{pmatrix} 1 & 0 \\ -\frac{1}{F_1} & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -\frac{1}{F_2} & 1 \end{pmatrix} = \begin{pmatrix} 1 - \frac{l}{F_2} & l \\ -\frac{1 - \frac{l}{F_1}}{F_2} - \frac{1}{F_1} & 1 - \frac{l}{F_1} \end{pmatrix} = \begin{pmatrix} 1 - lP_2 & l \\ -P_1 - (1 - lP_1)P_2 & 1 - lP_1 \end{pmatrix}.$$

Про увеличения:

$$\frac{d}{dn}((n-1)(G_1+G_2)-(n-1)^2lG_1G_2)=0 \qquad \Rightarrow \qquad (G_1+G_2)-2(n-1)lG_1G_2=0 \qquad \Rightarrow \qquad l=\frac{1}{2(n-1)}\left(\frac{1}{G_1}+\frac{1}{G_2}\right)$$

Или же

$$l = \frac{1}{2} \left(\frac{1}{(n-1)G_1} + \frac{1}{(n-1)G_2} \right) = \frac{F_1 + F_2}{2}.$$

Современная оптика лекция 3

Обобщение на случай отражения

В прошлый раз у нас было матрица T(2.3) и матрица P(2.4).

Возьмём теперь зеркало, посмотрим на отражение для выгнутого зеркала (слева) и напишем матрицу отражения.

$$n_1=n, n_2=-n \qquad \leadsto \qquad R=\begin{pmatrix} 1 & 0 \\ -\frac{-n-n}{R} & 1 \end{pmatrix}=\begin{pmatrix} \frac{1}{2n} & 0 \\ \frac{2n}{R} & 1 \end{pmatrix}$$

для вогнутого же (справа) заодно выпишем сразу все матрицы, которые у нас есть

$$R = \begin{pmatrix} 1 & 0 \\ -\frac{2n}{R} & 1 \end{pmatrix} \qquad P = \begin{pmatrix} 1 & 0 \\ -\frac{n_2 - n_1}{R} & 1 \end{pmatrix} \qquad T = \begin{pmatrix} 1 & l/n \\ 0 & 1 \end{pmatrix}$$

Пример 1

Допустим шёл луч и упал на плоскопараллельную пластину и пошёл внутри неё змейкой.

$$\begin{pmatrix} 1 & h/n \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & hN/n \\ 0 & 1 \end{pmatrix}$$

Задача 13

Описываем жизнь нашего луча умножением матриц:

$$\begin{pmatrix} 1 & 0 \\ -\frac{n-1}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{2R}{n} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{2n}{R} & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{2R}{n} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{n-1}{R} & 1 \end{pmatrix} = \begin{pmatrix} \frac{n-4}{n} & -\frac{4R}{n} \\ \frac{2(n-2)}{nR} & \frac{n-4}{n} \end{pmatrix}$$

Периодические оптические системы

Пусть у нас оптическая ячейка уже после перемножения всех матриц характеризуется в итоге матрицей 2x2, с элементами A, B, C, D. У периодической системы такая ячейка встречается m раз:

$$\begin{pmatrix} y_m \\ v_m \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}^m \begin{pmatrix} y_0 \\ v_0 \end{pmatrix} \qquad \leadsto \qquad \begin{pmatrix} y_{m+1} \\ v_{m+1} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}^m \begin{pmatrix} y_m \\ v_m \end{pmatrix}$$

Получаем уравнения:

$$\begin{cases} y_{m+1} = Ay_m + Bv_m \\ v_{m+1} = Cy_m + Dv_m \end{cases} \Rightarrow \begin{cases} v_m = \frac{y_{m+1} - Ay_m}{B} \Rightarrow v_{m+1} = \frac{y_{m+2} - Ay_{m+1}}{B} \\ y_{m+2} - Ay_{m+1} = BCy_m + D(y_{m+1} - Ay_m) \end{cases}$$

Получили уравнение на уз

$$y_{m+2} - (A+D)y_{m+1} + (AD-BC)y_m = 0 \implies y_m = y_0 h^m \implies h^2 - (A+D)h + 1 = 0$$

Заменяя A+D=2b, получаем три случая на детерминант: $h_{1,2}=b\pm\sqrt{b^2-1}$.

1.
$$|b| < 1$$
: Тогда $h_{1,2} = e^{i\varphi} \Rightarrow y_m = \alpha_1 e^{im\varphi} + \alpha_2 e^{-im\varphi} = y_{\text{max}} \sin(m\varphi + \varphi_0)$.

Заметим, что y_m периодичен, только если $\varphi/2\pi$ – рациональное число.

Пример 2

Дана система линз: $\uparrow -d - \uparrow -d - \uparrow$. Матрицы прохождения луча:

$$\begin{pmatrix} 1 & 0 \\ -1/F & 1 \end{pmatrix} \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & d \\ -1/F & 1 - d/F \end{pmatrix}$$

Получаем, что устойчиво когда:

$$b = \frac{2 - d/F}{2} \quad \leadsto \quad |b| < 1 \quad \leadsto \quad 0 < \frac{b}{F} < 4.$$

Посмотрим случаи:

- 1. d=F: тогда b=1/2, и тогда $b=\cos\varphi\Rightarrow\varphi=\frac{\pi}{3}$;
- 2. d = 2F: тогда b = 0;
- 3. d = 0: тогда d = 4F.

Оптический резонатор

Пусть у нас есть два зеркала: (-L-). Матрица:

$$\begin{pmatrix} 1 & 0 \\ 2/R_2 & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2/R_1 & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \implies b = (A+D)/2 = 2\underbrace{\begin{pmatrix} 1 + \frac{L}{R_1} \end{pmatrix}}_{q_1}\underbrace{\begin{pmatrix} 1 + \frac{L}{R_2} \end{pmatrix}}_{q_2} -1.$$

Можно рассмотреть различные типы резонаторов:

- 1. Плоский;
- 2. Симметричный конфокальный;
- 3. Симметричный концентрический.

Современная оптика лекция 4

Оптика пучков

Что у нас есть. У нас есть волновое уравнение!

$$\nabla^2 E - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 E}{\partial t^2} = 0.$$

Получаем уравнение Гельмгольца:

$$\nabla^2 f e^{-i\omega t} - \frac{\varepsilon \mu}{c^2} (-1) \omega^2 f e^{-i\omega t} = 0 \qquad \Rightarrow \qquad \nabla^2 f + \varepsilon \frac{\omega^2}{c^2} f = 0.$$

Таким образом:

$$\nabla^2 f + \varepsilon k_0^2 f = 0 \tag{4.6}$$

Если рассматривать полну идущую от точечного источника, то вблизи мы будет ее считать $c\phi$ ерической чуть дальше — napaболической, и совсем далеко — nлоской.

Выберем ось z на которой поместим точечный источник. Теперь $f = \frac{A}{r} \exp(ikr)$.

На расстоянии ρ от оси точка на волновом фронте лежит на $r^2=\rho^2+z^2$. Приблизительно в предположении $z\gg \rho$: $r\approx z+\frac{\rho^2}{2z}$. То есть в порядке малости выпишем:

$$(1) r \simeq z, \qquad (2) r \simeq \frac{2\pi}{\lambda} (z + \frac{\rho^2}{2z} + \ldots) = \frac{2\pi}{\lambda} z + \frac{2\pi}{\lambda} \frac{\rho^2}{2z}$$

Второй вот порядок и называют параболическим: $f = \frac{A}{z} \exp(ikz + ik\frac{\rho^2}{2z})$.

Параксиальное приближение

Имеем ситуацию: $f(r) = A(r) \exp(ikz)$. Будем требовать:

$$\begin{split} \frac{\partial A}{\partial z} \lambda \ll A \quad \Rightarrow \quad \frac{\partial A}{\partial z} \ll \frac{A}{\lambda} \quad \Rightarrow \quad \frac{\partial A}{\partial z} \ll A \cdot k. \\ \frac{\partial^2 A}{\partial z^2} \lambda \ll \frac{\partial A}{\partial z} \quad \Rightarrow \quad \frac{\partial^2 A}{\partial z^2} \ll \frac{\partial A}{\partial z} \cdot k. \end{split}$$

И так волновое уравнение, с заменой $k^2 = \varepsilon \omega^2/c^2$:

$$\nabla^2 f + k^2 f = 0, \qquad \frac{\partial f}{\partial z} = \frac{\partial A}{\partial z} e^{ikz} + A \cdot ike^{ikz}, \qquad \frac{\partial^2 f}{\partial z^2} = \frac{\partial^2 A}{\partial z^2} e^{ikz} + 2A_z'ike^{ikz} - Ak^2 e^{ikz}.$$

Теперь всё это в волновое уравнение

$$\frac{\partial^2 A}{\partial z^2} + 2 \frac{\partial A}{\partial z} ik - Ak^2 + \nabla^2 A + Ak^2 = 0 \qquad \Rightarrow \qquad \frac{\partial^2 A}{\partial z^2} + 2 \frac{\partial A}{\partial z} ik + \nabla^2 A = 0.$$

И с нашем приближение получаем параксиальное уравнение Гельмгольца (может мы где-то знак потеряли).

$$\nabla^2 A + 2ik \frac{\partial A}{\partial z} = 0. {4.7}$$

Надо проверить, подставится будет ли решением уравнения сверху выражение:

$$f(r) = \frac{A}{z} \exp\left(-ikz - ik\frac{\rho^2}{2z}\right) \quad \Rightarrow \quad f(r) = A(r)e^{-ikz}, \quad A(r) = \frac{A}{z} \exp\left(-ik\frac{\rho^2}{2z}\right).$$

Решение таким образом при таким f

$$f(r) = \frac{A}{z + iz_0} \exp\left(-ikz - ik\frac{\rho^2}{2(z + iz_0)}\right)$$
 $z \longrightarrow q(z) = z + iz_0.$

Тут введен q-параметр и Pэлеевская dлина — z_0 .

Мы знаем, что $\frac{1}{q(z)} = \frac{1}{z+iz_0} = \frac{z-iz_0}{z^2+z_0^2}$. Подставляем:

$$f(r) = A\left(\frac{z}{z^2 + z_0^2} - i\frac{z_0}{z^2 + z_0^2}\right) \exp\left(-ikz - ik\frac{\rho^2}{2}\frac{z - iz_0}{z^2 + z_0^2}\right).$$

$$f(r) = A\left(\frac{z}{z^2 + z_0^2} - i\frac{z_0}{z^2 + z_0^2}\right) \exp\left(-\frac{k\rho^2}{2}\frac{z_0}{z^2 + z_0^2}\right) \exp\left(-ikz - ik\frac{\rho^2 z_0}{z^2 + z_0^2}\right).$$

Выпишем:

$$-\frac{2\pi}{2}\frac{\rho^2z_0}{\lambda(z^2+z_0^2)}=i\frac{\rho^2}{\frac{\lambda}{z_0\pi}(z^2+z_0^2)}\qquad \text{обозначим: }W^2(z)=\frac{\lambda z_0}{\pi}(1+\frac{z^2}{z_0^2}),\qquad R(z)=z(1+\frac{z^2}{z_0^2}).$$

Тогда получаем:

$$f(r) = A\left(\frac{1}{R(z)} - i\frac{\lambda}{\pi W^2(z)}\right) \exp\left(-\frac{\rho^2}{W^2(z)}\right) \exp\left(-ikz - ik\frac{\rho^2}{2R(z)}\right).$$

$$f(r) = \frac{A}{iz} \frac{W_0}{W(z)} \exp\left(-\frac{\rho^2}{W^2(z)}\right) \exp\left(-ikz - ik\frac{\rho^2}{2R(z)} + i\xi(z)\right),$$

где $W_0=W(0),$ а $\xi(z)=\arctan\frac{z}{z_0}.$ Обычно в первом члене ещё обозначают $A_0=A/iz_0.$

Интенсивность

$$I = \langle |S| \rangle_t = \langle \frac{c}{4\pi} \sqrt{\varepsilon} E^2 \rangle = \frac{cn}{4\pi} \langle E^2 \rangle = \frac{cn}{8\pi} E_0^2.$$

И для всех будет прекрасней, для всех будет полезней не таскать коэффициент:

$$I \propto E_0^2 \quad I \propto E^2 \quad I = E^2 \left[\frac{\mathrm{B}^2}{\mathrm{M}^2} \right],$$

сокращать на размерный коэффициент очень круто, поэтому запомним, что размерность $[I] = \frac{\mathcal{I}_{\infty}}{\text{c cm}}$. Таким образом со всеми предположениями:

$$I = A_0^2 \frac{W_0^2}{W^2(z)} \exp\left(-\frac{2\rho^2}{W^2(z)}\right).$$

 Θ то называется Γ аусовой интенсивностью. Читатель может построить её самостоятельно.

Мощность

$$P = \int_0^\infty I(\rho) 2\pi \rho d\rho = \frac{1}{2} I_0(\pi W_0^2).$$

И в построенном читателями графике в предыдущем пункте если посмотреть на ширину полосы под распределением, то можно заметить, что $\rho_0 = W(z)$, в связи с чем W(z) называют радиусом пучка.

Посмотрим, что у нас с нашим радиусом творится:

$$W(z) = \sqrt{\frac{\lambda z_0}{\pi} \left(1 + \frac{z^2}{z_0^2}\right)},$$

если пытливый читатель построить и этот график, то он (график) пересечет z=0 в $W(0)=W_0=\sqrt{\frac{\lambda z_0}{\pi}}$.

Асимптотически он будет стремиться к прямой с коэффициентом наклона: $\theta \approx \sqrt{\frac{\lambda}{\pi z_0}} = \frac{W_0}{z_0}$. Для примера если взять лазер $\lambda_0 = 633$ нм, с $2W_0 = 2$ см, то *глубина резкости* будет: $2z_0 = 1$ км. Если же $2W_0 = 2$ мкм, то уже всё будет потоньше: $2z_0 = 1$ нм.

Тест вставки картинок