(51) Internationale Patentklassifikation 6:

C07D 237/52, 239/34, 491/04, 239/60, 239/70, A61K 31/505

(11) Internationale Veröffentlichungsnummer:

WO 98/09953

A2 (43) Internationales

Veröffentlichungsdatum:

12. März 1998 (12.03.98)

(21) Internationales Aktenzeichen:

PCT/EP97/04688

(22) Internationales Anmeldedatum: 2. September 1997 (02.09.97)

(30) Prioritätsdaten:

196 36 046.3

5. September 1996 (05.09.96) `"DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): AMBERG, Wilhelm [DE/DE]; Schälzigweg 79, D-68723 Schwetzingen (DE). JANSEN, Rolf [DE/DE]; C 2.20, D-68159 Mannheim (DE). KLING, Andreas [DE/DE]; Riegeler Weg 14, D-68239 Mannheim (DE). KLINGE, Dagmar [DE/DE]; Brückenkopfstrasse 15, D-69120 Heidelberg (DE). RIECH-ERS, Hartmut [DE/DE]; Müller-Thurgau-Weg 5, D-67435 Neustadt (DE). HERGENRÖDER, Stefan [DE/DE]; Hans-Böckler-Strasse 108, D-55128 Mainz (DE). RASCHACK, Manfred [DE/DE]; Donnerbergstrasse 7, D-67256 Weisenheim (DE). UNGER, Liliane [DE/DE]; Wollstrasse 129, D-67056 Ludwigshafen (DE).

(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: AL, AU, BG, BR, CA, CN, CZ, GE, HU, IL, JP, KR, LT, LV, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: AZINYLOXY, AND PHENOXY-DIARYL-CARBOXYLIC ACID DERIVATIVES, THEIR PREPARATION AND USE AS MIXED ETA/ETB ENDOTHELIN RECEPTOR ANTAGONISTS

(54) Bezeichnung: AZINYLOXY- UND PHENOXY-DIARYL-CARBONSÄURE DERIVATE, DEREN HERSTELLUNG UND DEREN VERWENDUNG ALS GEMISCHTE ETA/ETR ENDOTHELIN-REZEPTORANTAGONISTEN

(57) Abstract

Carboxylic acid derivatives have the formula (I), in which R¹ stands for tetrazole or a group (a); R² stands for hydrogen, hydroxy, NH₂, NH(C₁-c₄-alkyl), N(C₁-C₄-alkyl)₂, halogen, C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkinyl, C₁-C₄alkyl halide, C₁-C₄-alkoxy, C₁-C₄-alkoxy halide or C₁-C₄alkylthio, or CR2 is linked with CR10, as indicated below, into a 5- or 6-membered ring; X stands for nitrogen or methine; Y stands for nitrogen or methine; Z stands for

$$R^{6} - Q - W - C - CH - O - X - Z$$
 $R^{5} - R^{1}$
 $R^{5} - R^{1}$
 R^{3}

nitrogen or CR¹⁰, wherein R¹⁰ is hydrogen or C₁-C₄-alkyl or CR¹⁰ forms together with CR² or CR³ an optionally substituted 5- or 6membered alkylene or alkenylene ring, and wherein one or more methylene groups can be substituted by hydrogen, sulphur, -NH or -N(C₁-C₄-alkyl); R³ stands for hydrogen, hydroxy, NH₂, NH(C₁-C₄-alkyl), N(C₁-C₄-alkyl)₂, halogen, C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkyl)₂, halogen, C₁-C₄-alkyl, C₂-C₄-alkyl, C₂-C₄-alkyl)₂, halogen, C₁-C₄-alkyl, C₂-C₄-alkyl, C₂-C₄-alkyl, C₁-C₄-alkyl, C₂-C₄-alkyl, C₂-C alkinyl, C1-C4-hydroxyalkyl, C1-C4-alkyl halide, C1-C4-alkoxy, C1-C4-alkoxy halide, C1-C4-alkylthio; or CR3 is linked to CR10 as indicated above into a 5- or 6-membered ring, R4 and R5 (which may be identical or different) stand for optionally substituted phenyl or naphthyl, or for phenyl or naphthyl which are linked to each other at the ortho-position by a direct bond, a methylene, ethylene or ethenylene group, an oxygen or sulphur atom or an SO2, NH or N-alkyl group; optionally substituted C3-C8-cycloalkyl; R6 stands for optionally substituted C3-C8cycloalkyl; optionally substituted phenyl or naphthyl, a 5- or 6-membered, optionally substituted heteroaromatic compound containing one to three nitrogen atoms and/or one sulphur or oxygen atom; W stands for sulphur or oxygen; Q is a spacer with a length that corresponds to a C2-C4 chain. Also disclosed are the physiologically tolerable salts of these compounds, as well as their pure enantiomer and diastereoisomer forms, their preparation and use as mixed ETA/ETB-receptor antagonists.

(57) Zusammenfassung

Die Erfindung betrifft Carbonsäurederivate der Formel (I), wobei R¹ Tetrazol oder eine Gruppe (a), R² Wasserstoff, Hydroxy, NFI₂, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Halogen, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkoxy, C₁-C₄-Alkyl)₂, Halogen, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Alkyl)₂, Halogen, C₁-C₄-Alkyl, C₂-C₄-Alkyl, C₂-C₄-Alkyl)₂, Halogen, C₁-C₄-Alkyl, C₂-C₄-Alkyl, C₂-C₄-Alkyl, C₂-C₄-Alkyl, C₁-C₄-Alkyl, C₂-C₄-Alkyl, C₂-C₄-A Halogenalkoxy oder C₁-C₄-Alkylthio, oder CR² ist mit CR¹⁰ wie unten angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft; X Stickstoff oder Methin; Y Stickstoff oder Methin; Z Stickstoff oder CR¹⁰, worin R¹⁰ Wasserstoff oder C₁₋₄-Alkyl bedeutet oder CR¹⁰ zusammen mit CR² oder CR³ einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring bildet, der gegebenenfalls substituiert sein kann, und worin jeweils eine oder mehrere Methylengruppen durch Sauerstoff, Schwefel, -NH oder -N(C₁-C₄-Alkyl), ersetzt sein können; R³ Wasserstoff, Hydroxy, NH2, NH(C1-C4-Alkyl), N(C1-C4-Alkyl)2, Halogen, C1-C4-Alkyl, C2-C4-Alkenyl, C2-C4-Alkinyl, C1-C4-Hydroxyalkyl, C1-C4-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio; oder CR³ ist mit CR¹⁰ wie oben angegeben zu einen 5- oder 6-gliedrigen Ring verknüpft; R⁴ und R⁵ (die gleich oder verschieden sein können), phenyl oder Naphthyl, Phenyl oder Naphthyl, gegebenenfalls substituiert, oder Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoffoder Schwefelatom oder eine SO2-, NH-, oder N-Alkyl-Gruppe miteinander verbunden sind; C3-C8-Cycloalkyl gegebenenfalls substituient; R⁶ gegebenenfalls substituiertes C₃-C₈-Cycloalkyl; Phenyl oder Naphthyl, gegebenenfalls substituiert; ein fünf, oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, und welcher gegebenenfalls substituiert sein kann; W ist Schwefel oder Sauerstoff; Q ein Spacer, der in seiner Länge einer C2-C4-Kette entspricht, bedeuten, sowie die physiologisch verträglichen Salze, und die enantiomerenreinen sowie diastereoisomerenreinen Formen; ihre Herstellung und Verwendung als gemischte ETA/ETB-Rezeptorantagonisten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	E S	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenica	FI .	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Prankreich	LU	Luxemburg	8N	Scnegal
ΑŪ	Australien	GA	Gabun	LY	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadachikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	1E	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	is	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	lT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Uabekistan
CG	Kongo	KB	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgislstan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volkarepublik	NZ	Neusceland	2W	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DB	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dinemark	LK	Sri Lanka	SB	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

AZINYLOXY- UND PHENOXY-DIARYL-CARBONSÄURE DERIVATE, DEREN HERSTELLUNG UND DEREN VERWENDUNG ALS GEMISCHTE ET /ETB ENDOTHELIN-REZEPTORANTAGONISTEN

5 Beschreibung

Die vorliegende Erfindung betrifft neue Carbonsäurederivate, deren Herstellung und Verwendung.

- 10 Endothelin ist ein aus 21 Aminosäuren aufgebautes Peptid, das von vaskulärem Endothel synthetisiert und freigesetzt wird. Endothelin existiert in drei Isoformen, ET-1, ET-2 und ET-3. Im Folgenden bezeichnet "Endothelin" oder "ET" eine oder alle Isoformen von Endothelin. Endothelin ist ein potenter Vasokon-
- 15 striktor und hat einen starken Effekt auf den Gefäßtonus. Es ist bekannt, daß diese Vasokonstriktion von der Bindung von Endothelin an seinen Rezeptor verursacht wird (Nature, 332, 411-415, 1988; FEBS Letters, 231, 440-444, 1988 und Biochem. Biophys. Res. Commun., 154, 868-875, 1988).

20

- Erhöhte oder abnormale Freisetzung von Endothelin verursacht eine anhaltende Gefäßkontraktion in peripheren, renalen und zerebralen Blutgefäßen, die zu Krankheiten führen kann. Wie in der Literatur berichtet, ist Endothelin in einer Reihe von Krankheiten invol-
- 25 viert. Dazu zählen: Hypertonie, akuter Myokardinfarkt, pulmonäre Hypertonie, Raynaud-Syndrom, zerebrale Vasospasmen, Schlaganfall, benigne Prostatahypertrophie, Atherosklerose und Asthma (J. Vascular Med. Biology 2, 207 (1990), J. Am. Med. Association 264, 2868 (1990), Nature 344, 114 (1990), N. Engl. J. Med. 322,
- 30 205 (1989), N. Engl. J. Med. <u>328</u>, 1732 (1993), Nephron <u>66</u>, 373 (1994), Stroke <u>25</u>, 904 (1994), Nature <u>365</u>, 759 (1993), J. Mol. Cell. Cardiol. <u>27</u>, A234 (1995); Cancer Research <u>56</u>, 663 (1996)).

Mindestens zwei Endothelinrezeptorsubtypen, ET_A- und ET_B-Rezeptor, 35 werden zur Zeit in der Literatur beschrieben (Nature 348, 730 (1990), Nature 348, 732 (1990)). Demnach sollten Substanzen, die die Bindung von Endothelin an die beiden Rezeptoren inhibieren, physiologische Effekte von Endothelin antagonisieren und daher wertvolle Pharmaka darstellen.

40

In WO 96/11914 wurden Carbonsäurederivate beschrieben, die jedoch mit hoher Affinität an den ET_A -Rezeptor, und mit einer wesentlich geringeren Affinität an den ET_B -Rezeptor binden (sog. ET_A -spezifische Antagonisten).

Als ET_A -spezifische Antagonisten bezeichnen wir hier solche Antagonisten, deren Affinität zum ET_A -Rezeptor mindestens zwanzigfach höher ist als ihre Affinität zum ET_B -Rezeptor.

5 Es bestand die Aufgabe, Endothelinrezeptorantagonisten bereitzustellen, die mit ungefähr gleicher Affinität an den ET_{A} - und den ET_{B} -Rezeptor binden (sog. gemischte Antagonisten).

Ungefähr gleiche Affinität zu den Rezeptoren besteht, wenn der 10 Quotient der Affinitäten $\mathrm{ET}_A\colon\mathrm{ET}_B$ größer 0,1 und kleiner 20, bevorzugt kleiner 10, ist.

Gegenstand der Erfindung sind Carbonsäurederivate der Formel I

R6—Q—W—C—CH—O—
$$X$$
— Z

$$R^{5}$$

$$R^{1}$$

20 wobei R¹ steht für Tetrazol oder für eine Gruppe

25

45

in der R folgende Bedeutung hat:

- a) ein Rest OR7, worin R7 bedeutet:
- Wasserstoff, das Kation eines Alkalimetalls, das Kation eines Erdalkalimetalls, ein physiologisch verträgliches organisches Ammoniumion wie C_1 - C_4 -Alkylammonium oder das Ammoniumion;
- C₃-C₈-Cycloalkyl, C₁-C₈-Alkyl, CH₂-Phenyl, das durch einen oder mehrere der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Hydroxy, C₁-C₄-Alkoxy, Mercapto, C₁-C₄-Alkylthio, Amino, Carboxy, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂;
- Eine C₃-C₆-Alkenyl oder eine C₃-C₆-Alkinylgruppe, wobei diese Gruppen ihrerseits ein bis fünf Halogenatome tragen können;

 R^7 kann weiterhin ein Phenylrest sein, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann: Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, Hydroxy, C_1 - C_4 -Alkoxy, Mercapto, C_1 - C_4 -Alkylthio, Amino,

- 5 NH $(C_1 C_4 A1ky1)$, N $(C_1 C_4 A1ky1)_2$;
- ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat wie Pyrrolyl, Pyrazolyl, Imidazolyl und Triazolyl, welcher ein bis zwei Halogenatome, oder eins bis zwei
 C₁-C₄-Alkyl oder eins bis zwei C₁-C₄-Alkoxygruppen tragen kann.
 - c) eine Gruppe

15 $-C - (CH_2)_p - S - R^8$

in der k die Werte 0, 1 und 2, p die Werte 1, 2, 3 und 4 annehmen und R^8 für

C₁-C₄-Alkyl, C₃-C₈-Cycloalkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder Phenyl steht, das durch einen oder mehrere, z.B. ein bis drei der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Mercapto, Amino, Carboxy, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂.

d) ein Rest

30

35

40

45

25

worin R9 bedeutet:

 $C_1 \cdot C_4 \cdot Alkyl$, $C_3 \cdot C_6 \cdot Alkenyl$, $C_3 \cdot C_6 \cdot Alkinyl$, $C_3 \cdot C_8 \cdot Cycloalkyl$, $C_1 \cdot C_4 \cdot Halogenalkyl$, wobei diese Reste einen $C_1 \cdot C_4 \cdot Alkoxy \cdot$, $C_1 \cdot C_4 \cdot Alkylthio \cdot und/oder$ einen Phenylrest wie unter c) genannt tragen können;

Phenyl, gegebenenfalls substituiert, insbesondere wie vorstehend genannt, 4

e) ferner kann R1 bedeuten

10

 $-N \begin{pmatrix} R^{13} \\ -N \\ R^{16} \end{pmatrix}$

wobei R^{13} und R^{14} gleich oder verschieden sein können und folgende Bedeutung haben:

Wasserstoff, C₁₋C₈₋Alkyl, C₃₋C₈₋Cycloalkyl, C₃₋C₈₋Alkenyl,

C₃₋C₈₋Alkinyl, Benzyl, Phenyl, das ein bis fünf Halogenatome
und/oder ein bis drei der folgenden Reste tragen kann: Nitro,

Cyano, C₁₋C₄₋Alkyl, C₁₋C₄₋Halogenalkyl, Hydroxy, C₁₋C₄₋Alkoxy,

Mercapto, C₁₋C₄₋Alkylthio, Amino,

NH(C₁₋C₄₋Alkyl), N(C₁₋C₄₋Alkyl)₂,

- oder R¹³ und R¹⁴ bilden gemeinsam eine zu einem Ring geschlossene C₄-C₇-Alkylenkette, die durch

 C₁-C₄-Alkyl substituiert und in der eine Alkylengruppe durch Sauerstoff, Schwefel oder Stickstoff ersetzt sein kann wie -(CH₂)₄-, -(CH₂)₅-, -(CH₂)₆-, -(CH₂)₂-O-(CH₂)₂-, -(CH₂)₇-,

 -CH₂-S-(CH₂)₂-, -CH₂-NH-(CH₂)₂-, -(CH₂)₂-N-(CH₂)₂-;
- Wasserstoff, Hydroxy, NH₂, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Halogen, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Hydroxyalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio, oder CR² ist mit CR¹⁰ wie unten angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft.
 - X Stickstoff oder Methin.

35
Y Stickstoff oder Methin.

- Stickstoff oder CR¹⁰, worin R¹⁰ Wasserstoff oder C₁-C₄-Alkyl bedeutet oder CR¹⁰ zusammen mit CR² oder CR³ einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring bildet, der durch eine oder zwei C₁-C₄-Alkylgruppen substituiert sein kann und worin jeweils eine oder mehrere Methylengruppen durch Sauerstoff, Schwefel, -NH oder N(C₁-C₄-Alkyl)₂ ersetzt sein können.
- 45 Mindestens eines der Ringglieder X, Y oder Z ist Stickstoff.

- Wasserstoff, Hydroxy, NH₂, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Halogen, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Hydroxyalkyl, C₁-C₄-Alkylthio, oder CR³ ist mit CR¹⁰ wie oben angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft.
 - R⁴ und R⁵ (die gleich oder verschieden sein können):
- Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Mercapto, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₁-C₄-Hydroxyalkyl, C₂-C₄-Alkinyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Phenoxy, Carboxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, Amino, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂ oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio; oder
- Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO₂-, NH- oder N-Alkyl-Gruppe miteinander verbunden sind;
- 25 $C_3 C_8 Cycloalkyl$.
 - C_3 - C_8 -Cycloalkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkyl,
- C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkylcarbonyl, C₃-C₈-Alkylcarbonylalkyl, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
- Halogen, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Alkylthio;

Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, R¹⁵,

Nitro, Mercapto, Carboxy, Cyano, Hydroxy, Amino, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₃-C₆-Alkenyloxy, C₁-C₄-Halogen-alkyl, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxy-carbonyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Dioxomethylen, Dioxoethylen oder Phenyl, das ein-oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen,

Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy,

C1-C4-Halogenalkoxy oder C1-C4-Alkylthio;

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauer- stoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl reste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

- 15 R^{15} C_{1} - C_{4} -Alkyl, C_{1} - C_{4} -Alkylthio, C_{1} - C_{4} -Alkoxy, die einen der folgenden Reste tragen: Hydroxy, Carboxy, Amino, NH(C_{1} - C_{4} -Alkyl), $N(C_{1}$ - C_{4} -Alkyl), Carboxamid oder CON(C_{1} - C_{4} -Alkyl);
- W Schwefel oder Sauerstoff. 20

Q Ein Spacer, der in seiner Länge einer C₂·C₄ Kette entspricht. Die Funktion von Q ist, in den Verbindungen der Formel I einen definierten Abstand zwischen den Gruppen R⁶ und W herzustellen. Der Abstand soll der Länge einer C₂·C₄·Alkylkette entsprechen. Dies kann mit einer Vielzahl von chemischen Resten erreicht werden, beispielsweise mit C₂·C₄·Alkyl,

Resten erreicht werden, beispielsweise mit C₂-C₄-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, -S-CH₂-CH₂-, -O-CH₂-CH₂-, -N-CO-CH₂-O-, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto,

C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, Carboxy, Nitro, Cyano, C₁-C₄-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxy-carbonyl, C_{3.8}-Alkylcarbonylalkyl,

NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂, Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Alkylthio.

Oder der Spacer Q ist Teil eines 5-7 gliedrigen Ringes, hetero- oder carbocyclisch, an den R⁶ annelliert ist

Hierbei und im weiteren gelten folgende Definitionen:

Ein Alkalimetall ist z.B. Lithium, Natrium, Kalium; 45

Ein Erdalkalimetall ist z.B. Calcium, Magnesium, Barium;

C₃-C₈-Cycloalkyl ist z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl;

7

C₁-C₄-Halogenalkyl kann linear oder verzweigt sein wie z.B. Fluor-5 methyl, Difluormethyl, Trifluormethyl, Chlordifluormethyl, Dichlorfluormethyl, Trichlormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl oder Pentafluorethyl;

10

C₁-C₄-Halogenalkoxy kann linear oder verzweigt sein wie z.B. Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, 1-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy, 2-Fluorethoxy oder 15 Pentafluorethoxy;

C₁-C₄-Alkyl kann linear oder verzweigt sein wie z.B. Methyl, Ethyl, 1-Propyl, 2-Propyl, 2-Methyl-2-propyl, 2-Methyl-1-propyl, 1-Butyl oder 2-Butyl;

20

C₂-C₄-Alkenyl kann linear oder verzweigt sein wie z.B. Ethenyl, 1-Propen-3-yl, 1-Propen-2-yl, 1-Propen-1-yl, 2-Methyl-1-propenyl, 1-Butenyl oder 2-Butenyl;

25 C₂-C₄-Alkinyl kann linear oder verzweigt sein wie z.B. Ethinyl, 1-Propin-1-yl, 1-Propin-3-yl, 1-Butin-4-yl oder 2-Butin-4-yl;

 C_1 - C_4 -Alkoxy kann linear oder verzweigt sein wie z.B. Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy,

30 2-Methylpropoxy oder 1,1-Dimethylethoxy;

C₃·C₆·Alkenyloxy kann linear oder verzweigt sein wie z.B. Allyloxy, 2-Buten-1-yloxy oder 3-Buten-2-yloxy;

35 $C_1 \cdot C_4$ -Hydroxyalkyl kann linear oder verzweigt sein wie z.B. Hydroxymethyl, 1-Hydroxyether-2-yl,

C₃-C₆-Alkinyloxy kann linear oder verzweigt sein wie z.B. 2-Propin-1-yloxy, 2-Butin-1-yloxy oder 3-Butin-2-yloxy;

40

C₁-C₄-Alkylthio kann linear oder verzweigt sein wie z.B. Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio oder 1,1-Dimethylethylthio; thio;

 C_1-C_4 -Alkylcarbonyl kann linear oder verzweigt sein wie z.B. Acetyl, Ethylcarbonyl oder 2, Propylcarbonyl;

8

- C₁-C₄-Alkoxycarbonyl kann linear oder verzweigt sein wie z.B.
 5 Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, i-Propoxycarbonyl oder n-Butoxycarbonyl;
 - C₃-C₈-Alkylcarbonylalkyl kann linear oder verzweigt sein, z.B. 2-Oxo-prop-1-yl, 3-Oxo-but-1-yl oder 3-Oxo-but-2-yl
- 10 C_1 - C_8 -Alkyl kann linear oder verzweigt sein wie z.B. C_1 - C_4 -Alkyl, Pentyl, Hexyl, Heptyl oder Octyl;

Halogen ist z.B. Fluor, Chlor, Brom, Jod.

Ein weiterer Gegenstand der Erfindung sind solche Verbindungen, aus denen sich die Verbindungen der Formel I freisetzen lassen (sog. Prodrugs).

- 20 Bevorzugt sind solche Prodrugs, bei denen die Freisetzung unter solchen Bedingungen abläuft, wie sie in bestimmten Körperkompartimenten, z.B. im Magen, Darm, Blutkreislauf, Leber, vorherrschen.
- 25 Die Verbindungen und auch die Zwischenprodukte zu ihrer Herstellung, wie z.B. II, III und IV, können ein oder mehrere asymmetrisch substituierte Kohlenstoffatome besitzen. Solche Verbindungen können als reine Enantiomere bzw. reine Diastereomere oder als deren Mischung vorliegen. Bevorzugt ist die Verwendung einer enantiomerenreinen Verbindung als Wirkstoff.

Gegenstand der Erfindung ist weiter die Verwendung der oben genannten Carbonsäurederivate zur Herstellung von Arzneimitteln, insbesondere zur Herstellung von Hemmstoffen für $\mathrm{ET_A}$ und $\mathrm{ET_B}$

- 35 Rezeptoren. Die erfindungsgemäßen Verbindungen eignen sich besonders als gemischte Antagonisten, wie sie eingangs definiert wurden.
- Die Herstellung der Verbindungen mit der allgemeinen Formel IV, 40 in denen W Schwefel oder Sauerstoff ist, kann - auch in enantiomerenreiner Form - wie in WO 96/11914 beschrieben, erfolgen.

9

Verbindungen der allgemeinen Formel III sind entweder bekannt 10 oder können z.B. durch Reduktion der entsprechenden Carbonsäuren bzw deren Ester, oder durch andere allgemein bekannte Methoden synthetisiert werden.

Carbonsäurederivate der allgemeinen Formel VI können hergestellt 15 werden, indem eine Verbindung der Formel VIa mit einem Alkohol oder Thiol der Formel VII unter Säurekatalyse zur Reaktion gebracht wird.

20
$$R^{18} - O - \frac{H}{C} - R^{1} + R^{19} - W - H$$
 $R^{17} OH$

VIA VII

$$R^{16}$$

$$R^{19} - W - C - R^{1}$$

$$R^{17} OH$$

35

Die angegebenen Reste haben folgende Bedeutung:

- hat die unter der allgemeinen Formel I angegebene Bedeutung R^1
- 40 R16 und R17, die gleich oder verschieden sein können, Wasserstoff oder Alkyl, Alkenyl, Alkinyl, Phenyl, Naphthyl, Cycloalkyl jeweils gegebenenfalls substituiert,
- Wasserstoff oder Alkyl, Alkenyl, Alkinyl, Phenyl, Naphthyl, Cycloalkyl jeweils gegebenenfalls substituiert, 45

R¹⁹ Wasserstoff oder Alkyl, Alkenyl, Alkinyl, Phenyl, Naphthyl, Cycloalkyl jeweils gegebenenfalls substituiert,

bevorzugt haben die Reste folgende Bedeutung:

5

- R¹ COOR⁷
- R¹⁶ und R¹⁷, die gleich oder verschieden sein können, Alkyl, Phenyl, Naphthyl, Cycloalkyl jeweils gegebenenfalls substituiert,
 - R18 Alkyl, Phenyl, Cycloalkyl jeweils gegebenenfalls substituiert,
- 15 R¹⁹ Alkyl, Alkenyl, Alkinyl, Phenyl, Cycloalkyl, jeweils gegebenenfalls substituiert,

besonders bevorzugt sind folgende Reste

20 R1 COOCH3

R16 R4

R¹⁷ R⁵

25

- R^{18} Alkyl gegebenenfalls substituiert, insbesondere Methyl
- R^{19} R^6-Q .
- 30 Die Carbonsäurederivate der allgemeinen Formel IV können nach diesem Verfahren hergestellt werden, indem eine Verbindung der Formel IVa mit einem Alkohol oder Thiol der Formel III unter Säurekatalyse zur Reaktion gebracht wird

35

WO 98/09953

15

45

Hierzu werden die Verbindungen IVa und III in Substanz oder in einem für diese Reaktion inerten Lösungsmittel gemischt und kata20 lytische Mengen einer Säure wie z.B. p-Toluolsulfonsäure zugegeben. Beispiele für inerte Lösungsmittel sind Methylenchlorid, Benzol oder Toluol. Geeignet sind auch solche inerte Lösungsmittel, die mit dem Alkohol R¹⁸OH ein Azeotrop bilden. Im Falle von Methanol (R¹⁸=CH₃) sind dies zum Beispiel Chloroform oder
25 Essigsäuremethylester.

Das Reaktionsgemisch wird anschließend zwischen Raumtemperatur und Siedetemperatur des Lösungsmittels gerührt. Der entstehende Alkohol R¹⁸OH wird durch Abdestillieren oder Anlegen eines Vakuums on entfernt. Diese Methode eignet sich auch zur Herstellung von enantiomerenreinem IV sofern von enantiomerenreinem IVa ausgegangen wird.

Verbindungen der Formel IVa sind bekannt und beispielsweise in 35 WO 96/11914 beschrieben.

Die erfindungsgemäßen Verbindungen, in denen die Substituenten die unter der allgemeinen Formel I angegebenen Bedeutung haben, können beispielsweise derart hergestellt werden, daß man die 40 Carbonsäurederivate der allgemeinen Formel IV, in denen die Substituenten die angegebene Bedeutung haben, mit Verbindungen der allgemeinen Formel V zur Reaktion bringt.

V

WO 98/09953

In Formel V bedeutet R¹¹ Halogen oder R¹²-SO₂-, wobei R¹²
C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder Phenyl sein kann. Ferner ist
mindestens eines der Ringglieder X oder Y oder Z Stickstoff. Die Reaktion findet bevorzugt in einem inerten Lösungs- oder Verdünnungsmittel unter Zusatz einer geeigneten Base, d.h. einer Base, die eine Deprotonierung des Zwischenproduktes IV bewirkt, in einem Temperaturbereich von Raumtemperatur bis zum Siedepunkt
des Lösungsmittels statt.

PCT/EP97/04688

Verbindungen des Typs I mit R¹ = COOH lassen sich weiterhin direkt erhalten, wenn man das Zwischenprodukt IV, in dem R¹ COOH bedeutet, mit zwei Equivalenten einer geeigneten Base deprotoniert und mit Verbindungen der allgemeinen Formel V zur Reaktion bringt. Auch hier findet die Reaktion in einem inerten Lösungsmittel und in einem Temperaturbereich von Raumtemperatur bis zum Siedepunkt des Lösungsmittels statt.

25 Beispiele für solche Lösungsmittel beziehungsweise Verdünnungsmittel sind aliphatische, alicyclische und aromatische Kohlenwasserstoffe, die jeweils gegebenenfalls chloriert sein können, wie zum Beispiel Hexan, Cyclohexan, Petrolether, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Chloroform, Kohlenstofftetrachlorid, Ethylchlorid und Trichlorethylen, Ether, wie zum Beispiel Diisopropylether, Dibutylether, Methyl-tert. Butylether, Propylenoxid, Dioxan und Tetrahydrofuran, Nitrile, wie zum Beispiel Acetonitril und Propionitril, Säureamide, wie zum Beispiel Dimethylformamid, Dimethylacetamid und N-Methylpyrrolidon,
35 Sulfoxide und Sulfone, wie zum Beispiel Dimethylsulfoxid und Sulfolan.

Verbindungen der Formel V sind bekannt, teilweise käuflich oder können nach allgemein bekannter Weise hergestellt werden.

Als Base kann ein Alkali- oder Erdalkalimetallhydrid wie Natriumhydrid, Kaliumhydrid oder Calciumhydrid, ein Carbonat wie Alkalimetallcarbonat, z.B. Natrium- oder Kaliumcarbonat, ein Alkalioder Erdalkalimetallhydroxid wie Natrium- oder Kaliumhydroxid, eine metallorganische Verbindung wie Butyllithium oder ein Alkaliamid wie Lithiumdiisopropylamid oder Lithiumamid dienen.

Verbindungen der Formel I können auch dadurch hergestellt werden, daß man von den entsprechenden Carbonsäuren, d. h. Verbindungen der Formel I, in denen R¹ COOH bedeutet, ausgeht und diese zunächst auf übliche Weise in eine aktivierte Form wie ein Säurebalogenid, ein Anhydrid oder Imidazolid überführt und dieses dann mit einer entsprechenden Hydroxylverbindung HOR¹ umsetzt. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und erfordert oft die Zugabe einer Base, wobei die oben genannten in Betracht kommen. Diese beiden Schritte lassen sich beispielstweise auch dadurch vereinfachen, daß man die Carbonsäure in Gegenwart eines wasserabspaltenden Mittels wie eines Carbodiimids auf die Hydroxylverbindung einwirken läßt.

Außerdem können Verbindungen der Formel I auch dadurch herge15 stellt werden, daß man von den Salzen der entsprechenden Carbonsäuren ausgeht, d. h. von Verbindungen der Formel I, in denen R¹
für eine Gruppe COR und R für OM stehen, wobei M ein Alkalimetallkation oder das Equivalent eines Erdalkalimetallkations
sein kann. Diese Salze lassen sich mit vielen Verbindungen der
20 Formel R-A zur Reaktion bringen, wobei A eine übliche nucleofuge
Abgangsgruppe bedeutet, beispielsweise Halogen wie Chlor, Brom,
Iod oder gegebenenfalls durch Halogen, Alkyl oder Halogenalkyl
substituiertes Aryl- oder Alkylsulfonyl wie z.B. Toluolsulfonyl
und Methylsulfonyl oder eine andere äquivalente Abgangsgruppe.
25 Verbindungen der Formel R-A mit einem reaktionsfähigen Substi-

25 Verbindungen der Formel R-A mit einem reaktionsfähigen Substituenten A sind bekannt oder mit dem allgemeinen Fachwissen leicht zu erhalten. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und wird vorteilhaft unter Zugabe einer Base, wobei die oben genannten in Betracht kommen, vorgenommen.

In einigen Fällen ist zur Herstellung der erfindungsgemäßen Verbindungen I die Anwendung allgemein bekannter Schutzgruppentechniken erforderlich. Soll beispielsweise R⁶ = 4-Hydroxyphenyl bedeuten, so kann die Hydroxygruppe zunächst als Benzylether geschützt sein, der dann auf einer geeigneten Stufe in der Reaktionssequenz gespalten wird.

Verbindungen der Formel I in denen R^1 Tetrazol bedeutet, können wie in WO 96/11914 beschrieben, hergestellt werden.

Im Hinblick auf die biologische Wirkung sind Carbonsäurederivate der allgemeinen Formel I - sowohl als reine Enantiomere bzw. reine Diastereomere oder als deren Mischung - bevorzugt, in denen die Substituenten folgende Bedeutung haben:

 R^2 Wasserstoff, Hydroxy, Halogen, $N(C_1-C_4-Alkyl)_2$, $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkyl$ thio, $C_1-C_4-Halogenalkyl$,

 $C_1 \cdot C_4 \cdot \text{Halogenalkoxy}$, oder CR^2 ist mit CR^{10} wie unten angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;

X Stickstoff oder Methin;

5

- Y Stickstoff oder Methin;
- Stickstoff oder CR¹⁰, worin R¹⁰ Wasserstoff oder C₁₋₄-Alkyl bedeutet oder CR¹⁰ zusammen mit CR² oder CR³ einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring bildet, der durch eine oder zwei Methylgruppen substituiert sein kann und worin jeweils eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt sein kann wie -CH₂-CH₂-O-, -CH₂-CH₂-O-, -CH₂-CH₂-O-, -CH=CH-O-, -CH=CH-CH₂O-, -CH(CH₃)-CH(CH₃)-O-, -CH=C (CH₃)-O-, oder -C (CH₃)=C (CH₃)-S;

Mindestens eines der Ringglieder X, Y oder Z ist Stickstoff.

- Wasserstoff, Hydroxy, Halogen, $N(C_1-C_4-Alkyl)_2$, $C_1-C_4-Alkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Alkylthio$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Halogenalkoxy$, oder CR^3 ist mit CR^{10} wie oben angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
 - R4 und R5 (die gleich oder verschieden sein können):

25

Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, Carboxy, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Phenoxy,

C₁-C₄-Alkylthio, NH(C₁-C₄-Alkyl) oder N(C₁-C₄-Alkyl)₂ oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio; oder

35

Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO_2 -, NH- oder N-Alkyl-Gruppe miteinander verbunden sind

- C3-C8-Cycloalkyl;
- R6 C₃-C₈-Cycloalkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylcarbonyl,

 $C_1-C_4-Alkoxy-carbonyl$, $NH(C_1-C_4-Alkyl)$, $N(C_1-C_4-Alkyl)_2$ oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, $C_1-C_4-Alkyl$, $C_1-C_4-Halogenalkyl$, $C_1-C_4-Alkoxy$, $C_1-C_4-Halogenalkoxy$ oder $C_1-C_4-Alkyl$ thio;

Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, R¹⁵, Nitro, Mercapto, Carboxy, Cyano, Hydroxy, Amino, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₃-C₆-Alkenyloxy, C₁-C₄-Halogen-alkyl, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxy-carbonyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Dioxomethylen, Dioxoethylen oder Phenyl, das ein-oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio;

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

Methyl, Ethyl, Methoxy oder Ethoxy, die einen der folgenden Reste tragen: Hydroxy, Carboxy, Amino, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl), Carboxamid oder CON(C_1 - C_4 -Alkyl);

W Schwefel oder Sauerstoff;

5

Q C₂-C₄-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, -S-CH₂-CH₂-, -O-CH₂-CH₂-, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl-thio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkoxycarbonyl, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂ oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio

oder Q bildet zusammen mit R6 folgende Ringsysteme: Indan-2-yl, Indan-3-yl, 1,2,3,4-Tetrahydronaphth-2-yl, 1,2,3,4-Tetrahydronaphth-3-yl, wobei die Phenylringe jeweils substituiert sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, 5 C2-C4-Alkinyl, C3-C6-Alkenyloxy, C3-C6-Alkinyloxy, C1-C4-Alkylthio, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylcarbonyl, C_1 - C_4 -Alkoxycarbonyl, Amino, $NH(C_1-C_4-Alkyl)$, $N(C_1-C_4-Alkyl)_2$ oder Phenyl.

- 10 Besonders bevorzugt sind Verbindungen der Formel I sowohl als reine Enantiomere bzw. reine Diastereomere oder als deren Mischung - in denen die Substituenten folgende Bedeutung haben:
- Trifluormethyl, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, \mathbb{R}^2 oder CR2 ist mit CR10 wie unten angegeben zu einem 5- oder 15 6-gliedrigen Ring verknüpft;
 - Stickstoff oder Methin; X
- Stickstoff oder Methin; 20 Y
- Stickstoff oder CR^{10} , worin R^{10} Wasserstoff oder C_{1-4} -Alkyl Z bedeuten oder CR10 zusammen mit CR2 oder CR3 einen 5- oder 6-gliedrigen Alkylen- oder Alkenylenring bildet, der durch eine oder zwei Methylgruppen substituiert sein kann und worin 25 jeweils eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt sein kann wie -CH2-CH2-O-, -CH2-CH2-CH2-O-, -CH=CH-O-, -CH=CH-CH₂O-, -CH(CH₃)-CH(CH₃)-O-, -CH=C(CH₃)-O-, $-C(CH_3) = C(CH_3) - O-$, oder $-C(CH_3) = C(CH_3) - S;$

Mindestens eines der Ringglieder X, Y oder Z ist Stickstoff

- Trifluormethyl, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, \mathbb{R}^3 oder CR3 ist mit CR10 wie oben angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft; 35
 - und R⁵ (die gleich oder verschieden sein können): R^4
- Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, 40 Cyano, Hydroxy, Mercapto, Amino, C1-C4-Alkyl, C1-C4-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio, $NH(C_1-C_4-Alkyl)$ oder $N(C_1-C_4-Alkyl)_2$ oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis

45

30

dreifach durch Halogen, Nitro, Cyano, C1-C4-Alkyl,

 $C_1 \cdot C_4 \cdot Halogenalkyl$, $C_1 \cdot C_4 \cdot Alkoxy$, $C_1 \cdot C_4 \cdot Halogenalkoxy$ oder $C_1 \cdot C_4 \cdot Alkylthio$; oder

Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen. Ethylen oder Ethenylengruppe, ein Sauerstoff oder Schwefelatom oder eine SO₂. NH- oder N-Alkyl-Gruppe miteinander verbunden sind

C5-C7-Cycloalkyl;

10

- R^6 C_5 - C_7 -Cycloalkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: C_1 - C_4 -Alkoxy,
- C₁-C₄-Alkyl, C₁-C₄-Alkylthio, Halogen, Hydroxy, Carboxy,

 Cyano, Trifluormethyl, Acetyl, oder Phenyl, das ein- oder

 mehrfach substituiert sein kann, z.B. ein- bis dreifach durch

 Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy,

 C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio;
- Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, R¹⁵, Nitro, Mercapto, Carboxy, Cyano, Hydroxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, Acetyl, C₁-C₄-Alkoxycarbonyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio, NH(C₁-C₄-Alkyl),
- N(C₁-C₄-Alkyl)₂, Dioxomethylen, Dioxoethylen oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio;

30

- ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1 - C_4 -Alkyl,
- C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Trifluormethoxy, C₁-C₄-Alkylthio, Phenyl oder Phenoxy, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkyl.
- 40 thio;
 - R¹⁵ Methoxy oder Ethoxy, die einen der folgenden Reste tragen: Hydroxy, Carboxy, Amino, NH(C_1 - C_4 -Alkyl), N(C_1 - C_4 -Alkyl)₂, Carboxamid oder CON(C_1 - C_4 -Alkyl)₂;

45

W Schwefel oder Sauerstoff;

C₁-C₄-Alkylthio

5

Q C₂-C₄-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, , -S-CH₂-CH₂-, -O-CH₂-CH₂-, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Hydroxy, Mercapto, Carboxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, oder Phenyl, das ein- oder mehrfach substituiert sein kann, z.B. ein- bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder

PCT/EP97/04688

oder Q bildet zusammen mit R⁶ folgende Ringsysteme: Indan-2-yl, Indan-3-yl, 1,2,3,4-Tetrahydronaphth-2-yl,
1,2,3,4-Tetrahydronaphth-3-yl, wobei die Phenylringe jeweils
substituiert sein können durch: Halogen, Hydroxy, Mercapto,
Carboxy, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Alkyl, C₂-C₄-Alkenyl,

C₂-C₄-Alkinyl, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkoxycarbonyl, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂ oder Phenyl.

Die Verbindungen der vorliegenden Erfindung bieten ein neues

20 therapeutisches Potential für die Behandlung von Hypertonie, pulmonalem Hochdruck, Myokardinfarkt, chronischer Herzinsuffizienz,
Angina Pectoris, akutem/chronischem Nierenversagen, Niereninsuffizienz, zerebralen Vasospasmen, zerebraler Ischämie, Subarachnoidalblutungen, Migräne, Asthma, Atherosklerose, endo25 toxischem Schock, Endotoxin-induziertem Organversagen, intravaskulärer Koagulation, Restenose nach Angioplastie, benigne Prostata-Hyperplasie, ischämisches und durch Intoxikation verursachtes Nierenversagen bzw. Hypertonie, Metastasierung und Wachstum mesenchymaler Tumoren, Kontrastmittel-induziertes Nieren30 versagen, Pankreatitis, gastrointestinale Ulcera.

Die erfindungsgemäßen Verbindungen zeigen überraschenderweise z.T. auch antaganistische Wirkung gegenüber dem Neurokinin-rezeptor.

Insbesondere trifft dies für Verbindungen der Formel I zu, bei denen \mathbb{R}^1 die Bedeutung

besitzt.

45 Ein weiterer Gegenstand der Erfindung sind Kombinationspräparate aus Endothelinrezeptorantagonisten der Formel I und Inhibitoren des Renin-Angiotensin Systems. Inhibitoren des Renin-Angiotensin-

Systems sind Reninhemmer, Angiotensin-II-Antagonisten und vor allem Angiotensin-Converting-Enzyme (ACE)-Hemmer.

Ein weiterer Gegenstand der Erfindung sind Kombinationspräparate 5 aus β -Blockern und den o.g. Endothelinrezeptorantagonisten sowie aus gemischten ACE-Neutrale Endopeptidase (NEP)-Hemmern und den o.g. Endothelinrezeptorantagonisten.

Die Kombinationspräparate können in einer einzelnen galenischen 10 Form oder auch in räumlich getrennten Formen dargereicht werden. Die Verarbreichung kann gleichzeitig oder zeitlich abgestuft vorgenommen werden.

Die Dosierung bei der Kombination kann bis zu der Höchstmenge der 15 jeweiligen Einzeldosis erfolgen. Jedoch ist es auch möglich geringere Dosen als bei der jeweiligen Einzeltherapie einzusetzen.

Diese Kombinationspräparate eigenen sich vor allem zur Behandlung und Verhütung von Hypertension und deren Folgeerkrankungen sowie 20 zur Behandlung von Herzinsuffizienz.

Die gute Wirkung der Verbindungen läßt sich in folgenden Versuchen zeigen:

25 Rezeptorbindungsstudien

Für Bindungsstudien wurden klonierte humane ET_A - oder ET_B -Rezeptor-exprimierende CHO-Zellen eingesetzt.

30 Membranpräparation

Die ET_A- oder ET_B-Rezeptor-exprimierenden CHO-Zellen wurden in DMEM NUT MIX F₁₂-Medium (Gibco, Nr. 21331-020) mit 10 % fötalem Kälberserum (PAA Laboratories GmbH, Linz, Nr. A15-022), 1 mM 35 Glutamin (Gibco Nr. 25030-024), 100 E/ml Penicillin und 100 µg/ml Streptomycin (Gibco, Sigma Nr P-0781) vermehrt. Nach 48 Stunden wurden die Zellen mit PBS gewaschen und mit 0,05 % trypsinhaltiger PBS 5 Minuten bei 37°C inkubiert. Danach wurde mit Medium neutralisiert und die Zellen durch Zentrifugation bei 300 x g 40 gesammelt.

Für die Membranpräparation wurden die Zellen auf eine Konzentration von 10⁸ Zellen/ml Puffer (50 mM Tris·HCL Puffer, pH 7.4) eingestellt und danach durch Ultraschall desintegriert (Branson Sonifier 250, 40-70 Sekunden/constant/output 20).

Bindungstests

40

Für den ET_A- und ET_B-Rezeptorbindungstest wurden die Membranen in Inkubationspuffer (50 mM Tris·HCl, pH 7,4 mit 5 mM MnCl₂, 40 μg/ml 5 Bacitracin und 0,2 % BSA) in einer Konzentration von 50 μg Protein pro Testansatz suspendiert und bei 25°C mit 25 pM ¹²⁵J-ET₁ (ET_A-Rezeptortest) oder 25 pM ¹²⁵J-ET₃ (ET_B-Rezeptortest) in Anwesenheit und Abwesenheit von Testsubstanz inkubiert. Die unspezifische Bindung wurde mit 10·7 M ET₁ bestimmt. Nach 30 min wurde der freie und der gebundene Radioligand durch Filtration über GF/B Glasfaserfilter (Whatman, England) an einem Skatron-Zellsammler (Skatron, Lier, Norwegen) getrennt und die Filter mit eiskaltem Tris-HCl-Puffer, pH 7,4 mit 0,2 % BSA gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem Packard 15 2200 CA Flüssigkeitsszintillationszähler quantifiziert.

Testung der ET-Antagonisten in vivo:

Männliche 250 - 300 g schwere SD-Ratten wurden mit Amobarbital 20 narkotisiert, künstlich beatmet, vagotomisiert und despinalisiert. Die Arteria carotis und Vena jugularis wurden kathetesiert.

In Kontrolltieren führt die intravenöse Gabe von 1 µg/kg ET1 zu 25 einem deutlichen Blutdruckanstieg, der über einen längeren Zeitraum anhält.

Den Testtieren wurde 30 min vor der ET1 Gabe die Testverbindungen i.v. injiziert (1 ml/kg). Zur Bestimmung der ET-antagonistischen 30 Eigenschaften wurden die Blutdruckänderungen in den Testtieren mit denen in den Kontrolltieren verglichen.

p.o. - Testung der gemischten ETA- und ETB-Antagonisten:

35 Männliche 250-350g schwere normotone Ratten (Sprague Dawley, Janvier) werden mit den Testsubstanzen oral vorbehandelt. 80 Minuten später werden die Tiere mit Urethan narkotisiert und die A. carotis (für Blutdruckmessung) sowie die V. jugularis (Applikation von big Endothelin/Endothelin 1) katheterisiert.

Nach einer Stabilisierungsphase wird big Endothelin (20 μ g/kg, Appl. Vol. 0.5 ml/kg) bzw. ET1 (0.3 μ g/kg, Appl. Vol. 0.5 ml/kg) intravenös gegeben. Blutdruck und Herzfrequenz werden kontinuierlich über 30 Minuten registriert. Die deutlichen und langan-

45 haltenden Blutdruckänderungen werden als Fläche unter der Kurve (AUC) berechnet. Zur Bestimmung der antagonistischen Wirkung der Testsubstanzen wird die AUC der Substanzbehandelten Tiere mit der

AUC der Kontrolltiere verglichen.

Die erfindungsgemäßen Verbindungen können in üblicher Weise oral oder parenteral (subkutan, intravenös, intramuskulär, intraperit5 oneal) verabfolgt werden. Die Applikation kann auch mit Dämpfen oder Sprays durch den Nasen-Rachenraum erfolgen.

Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die

- 10 tägliche Wirkstoffdosis zwischen etwa 0,5 und 50 mg/kg Körpergewicht bei oraler Gabe und zwischen etwa 0,1 und 10 mg/kg Körpergewicht bei parenteraler Gabe.
- Die neuen Verbindungen können in den gebräuchlichen galenischen
 15 Applikationsformen fest oder flüssig angewendet werden, z.B. als
 Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees,
 Suppositorien, Lösungen, Salben, Cremes oder Sprays. Diese werden
 in üblicher Weise hergestellt. Die Wirkstoffe können dabei mit
 den üblichen galenischen Hilfsmitteln wie Tablettenbindern,
- 20 Füllstoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließreguliermitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al.: Pharmazeutische Technologie, Thieme-Verlag, Stuttgart,
- 25 1991). Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Menge von 0,1 bis 90 Gew.-%.

Synthesebeispiele

30 Beispiel 1:

2-Hydroxy-3-(2-(3,4-dimethoxyphenyl)ethoxy)-3,3-diphenylpropionsäuremethylester

35 7 g (27,5 mmol) 3,3-Diphenyl-2,3-epoxypropionsäuremethylester und 5,5 g (30,2 mmol) 2-(3,4-Dimethoxyphenyl)ethanol wurden in 20 ml Dichlormethan gelöst und bei Raumtemperatur 5 Tropfen Bortrifluorid-Etherat zugegeben. Die Lösung wurde zwei Stunden gerührt. Anschließend wurde das Lösungsmittel abdestilliert und der 40 Rückstand (10,7 g, 89 %) direkt weiter umgesetzt.

PCT/EP97/04688 WO 98/09953 22

Beispiel 2:

2-Hydroxy-3-(2-(3,4-dimethoxyphenyl)ethoxy)-3,3-diphenylpropionsäure

5

12 g (27,5 mmol) 2-Hydroxy-3-(2-(3,4-dimethoxyphenyl)ethoxy) - 3, 3 - diphenylpropionsäuremethylester wurden in 110 ml Dioxan gelöst und mit 55 ml 1 N NaOH-Lösung versetzt. Das Gemisch wurde zwei Stunden bei 80°C gerührt. Zu dem Ansatz wurde Wasser 10 gegeben und die wässrige Phase mit Ether zweimal extrahiert. Die wässrige Phase wurde mit 1 N wässsriger HCl angesäuert, mit Ether extrahiert, die organische Phase über Magnesiumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wurde in Ether/n-Hexan umkristallisiert und es konnten 10,2 g (87 %) farb-

15 lose Kristalle isoliert werden.

Smp.: 133-135°C

Beispiel 3:

20

2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(3,4-dimethoxyphenyl)ethoxy)-3,3-diphenylpropionsäure (I-482)

1 g (2,3 mmol) 2-Hydroxy-3-(2-(3,4-dimethoxyphenyl)ethoxy)-25 3,3-diphenylpropionsäure wurden in 10 ml DMF vorgelegt und 340 mg NaH (50 % Suspension) zugegeben. Nach 15 Minuten Rühren wurde das Gemisch mit 526 mg 4-Methoxy-6-methyl-2-methylsulfonylpyrimidin versetzt und drei Stunden bei Raumtemperatur gerührt. Der Ansatz wurde mit Wasser versetzt und das Reaktionsgemisch mit Ether

30 extrahiert. Die wässrige Phase wurde mit 1 N wässriger HCl angesäuert, mit Ether extrahiert und über Magnesiumsulfat getrocknet. Das Lösungsmittel wurde abdestilliert, der Rückstand mittels MPLC gereinigt und nach Umkristallisation in Ether/n-Hexan wurden 655 mg (52 %) farbloses Pulver isoliert.

35

1H-NMR (200 MHz): 7.2 ppm (10 H, m), 6.8 (3 H, m), 6.2 (1 H, s), 6.18 (1 H, s), 3.9 (9 H, m), 3.8 (1 H, m), 3.7 (1 H, m), 2.85 (2 H, tr), 2.2 (3 H, s).

40 ESI-MS: $M^+ = 544$

Beispiel 4:

3,3-Di(4-ethylphenyl)-2,3-epoxypropionsäuremethylester

45

Zu einer Suspension von 9.1 g (168 mmol) Natriummethanolat in 80 ml THF wurden bei -10°C eine Lösung aus 15 ml (168 mmol) Chlor-

23

essigsäuremethylester und 20 g (84 mmol) 4,4'-Diethylbenzophenon in 20 ml THF zugetropft. Das Gemisch wurde auf Raumtemperatur erwärmt und 2 Stunden gerührt. Der Ansatz wurde auf Wasser gegeben und mit Ether extrahiert. Die organische Phase wurde mit Natriumbydrogencarbonat-Lösung und Citronensäure-Lösung gewaschen, über Magnesiumsulfat getrocknetund das Lösungsmittel abdestilliert. Es konnten 15.4 g eines Rohöls isoliert werden, welches direkt weiter eingesetzt wurde.

10 Beispiel 5:

- 2-Hydroxy-3-(2-(3,4-dimethoxyphenyl)ethoxy)-3,3-di(4-ethyl-phenyl)propionsäuremethylester
- 15 6 g (19,3 mmol) 3,3-Di(4-ethylphenyl)·2,3-epoxypropionsäuremethylester (roh) und 3,52 g (19,3 mmol) 2-(3,4-Dimethoxyphenyl)ethanol wurden in 20 ml Dichlormethan gelöst und bei Raumtemperatur 5 Tropfen Bortrifluorid·Etherat zugegeben. Die Lösung
 wurde 1,5 Stunden gerührt. Anschließend wurde das Lösungsmittel
 20 abdestilliert und der Rückstand, ein schwach gelbes Öl (8,66 g,
 91 %), direkt weiter umgesetzt.

Beispiel 6:

- 25 2-Hydroxy-3-(2-(3,4-dimethoxyphenyl)ethoxy)-3,3-di(4-ethyl-phenyl)propionsäure
- 9,2 g (19,3 mmol) 2-Hydroxy-3-(2-(3,4-dimethoxyphenyl)-ethoxy)-3,3-di(4-ethylphenyl)propionsäuremethylester wurden in 30 26 ml Dioxan gelöst und mit 13 ml 3 N NaOH-Lösung versetzt. Das Gemisch wurde drei Stunden bei 60°C gerührt. Zu dem Ansatz wurde Wasser gegeben und die wässrige Phase mit Ether zweimal extrahiert. Die wässrige Phase wurde mit 1 N wässsriger HCl angesäuert, mit Ether extrahiert, die organische Phase über 35 Magnesiumsulfat getrocknet und das Lösungsmittel abdestilliert.
- Es wurden 6,5 g (71 %) eines eines gelblichen Öls isoliert, das direkt weiter umgesetzt wurde.

Beispiel 7:

- 2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(3,4-dimethoxy-phenyl)ethoxy)-3,3-di(4-ethylphenyl)propionsäure (I-116)
- 1,8 g (3,8 mmol) 2-Hydroxy-3-(2-(3,4-dimethoxyphenyl)45 ethoxy)-3,3-di(4-ethylphenyl)propionsäure wurden in 20 ml DMF
 vorgelegt und 554 mg NaH (50 % Suspension) zugegeben. Nach
 15 Minuten Rühren wurde das Gemisch mit 855 mg (4.2 mmol)

4-Methoxy-6-methyl-2-methylsulfonylpyrimidin versetzt und drei Stunden bei Raumtemperatur gerührt. Der Ansatz wurde mit Wasser versetzt und das Reaktionsgemisch mit Ether extrahiert. Die wässrige Phase wurde mit 1 N wässriger HCl angesäuert, mit Ether extrahiert und über Magnesiumsulfat getrocknet. Das Lösungsmittel wurde abdestilliert und nach Umkristallisation in Ether/n-Hexan wurden 540 mg (23 %) farbloses Pulver isoliert.

1H-NMR (200 MHz): 7.0-7.4 ppm (10 H, m), 6.8 (2 H, d), 6.2 (1 H,
10 s), 6.15 (1 H, s), 3.9 (3 H, s), 3.8 (3 H, s), 3.7 (1 H, m), 3.5
(1 H, m), 2.9 (2 H, tr), 2.6 (4 H, m), 2.3 (3 H, s), 1.2 (6 H,
m).

ESI-MS: $M^{+} = 600$

15

Beispiel 8:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(3-phenylprop-(2E)-en-oxy)-3,3-diphenylpropionsäure (I-27)

20

Zu einer Suspension von 432 mg (9 mmol, 50%) NaH in 20 ml DMF wurden 1.12 g (3 mmol) 2-Hydroxy-3-(3-phenylprop-(2E)-en-oxy)-3,3-diphenylpropionsäure zugegeben und 10 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 614 mg (3.3 mmol)

- 25 4,6-Dimethyl-1-methyl-sulfonylpyrimidin wurde 16 Stunden gerührt, anschließend mit 200 ml Wasser verdünnt, mit 1 N Salzsäure angesäuert und mit Ether extrahiert. Die Etherphase wurde mit 1 N Natronlauge extrahiert, die wässrige Phase wurde erneut angesäuert und das Produkt mit Ether extrahiert. Die organische
- 30 Phase wurde über Magnesiumsulfat getrocknet, filtriert und das Lösungsmittel abdestilliert. Der Rückstand wurde aus Ether/Hexan umkristallisiert und es wurden 927 mg (65 %) Produkt kristallin isoliert.
- 35 Smp.: 128-133°C

1H-NMR (200 MHz): 7.3 ppm (15 H, m), 6.74 (1 H, s), 6.7 (1 H, d), 6.3 (1 H,s), 6.2 (1 H, dtr, 4.3 (1 H, dd), 4.1 (1 H, dd), 2.3 (6 H, s).

40

ESI-MS: $M^{+} = 480$

Beispiel 9:

- 4,6-Dimethyl-1-methylthio-pyrimidin
- 5 15 g (107 mmol) 4,6-Dimethyl-1-mercaptopyrimidin und 5,14 g NaOH wurden in 175 ml Wasser gelöst. Zu dieser Mischung wurden innerhalb von 10 Minuten bei Raumtemperatur 12 ml (128 mmol) Dimethyl-sulfat zugetropft. Nach einer Stunde wurde die wässrige Phase dreimal mit Ether extrahiert, über Magnesiumsulfat getrocknet und 10 das Lösungsmittel abdestilliert. Es konnten 15,9 g (97 %) Rohprodukt isoliert werden.

 $^{1}\text{H-NMR}$ (270 MHz): 6.7 ppm (1 H, s), 2.5 (3 H,s), 2.3 (6 H,s).

- 15 Beispiel 10:
 - 4,6-Dimethyl-1-methylsulfonyl-pyrimidin
- 15,9 g (103 mmol) 4,6-Dimethyl-1-methylthio-pyrimidin wurden in 20 120 ml Dichlormethan und 110 ml Wasser vorgelegt. Bei 0°C wurde Chlorgas bis zur Sättigung (Gelbfärbung) eingeleitet. Nach vollständigem Umsatz wurde überschüssiges Chlor mit Stickstoff ausgetrieben, die wässrige Phase mit Dichlormethan extrahiert und die gesammelten organischen Phasen über Magnesiumsulfat getrocktet. Die Lösung wurde eingeengt und durch Zugabe von Ether das Produkt (14 g, 73 %) auskristallisiert.

Smp.: 79-80°C

- 30 ¹H-NMR (270 MHz): 7.2 ppm (1 H, s), 3.4 (3 H, s), 2.6 (6 H, s).
 Beispiel 11:
- (S)-2-Hydroxy-3-methoxy-3,3-diphenylpropionsäuremethylester

In 300 ml DMF wurden 54.4 g (200 mmol) (S)-2-Hydroxy-3-methoxy-3,3-diphenylpropionsäure mit 10.8 g (200mmol) Natriummethylat vorgelegt. Zu dieser Suspension wurden in 15 Minuten 21 ml (210 mmol) Dimethylsulfat zugetropft, wobei die Temperatur auf 50°C an-

- 40 steigt und die Suspension dünnflüssiger wird. Das Gemisch wurde über Nacht nachgerührt und dann auf 1.5 1 Wasser und Eis gegeben. Die wässrige Phase wurde zweimal mit 500 ml Ether extrahiert und die Etherphase wiederum mit zweimal 200 ml Wasser gewaschen. Die organische Phase wurde über Magnesiumsulfat getrocknet, das
- 45 Trockenmittel abfiltriert und das Lösungsmittel abdestilliert. Es

wurden 55,8 g eines Öls isoliert, welches direkt weiterverarbeitet wurde.

Beispiel 12:

5

(S) -2-Hydroxy-3-(2-(3,4-dimethoxyphenyl) ethoxy)-3,3-diphenyl-propionsäuremethylester

Variante A:

10

In einem Kolben wurden 27,9 g (S)-2-Hydroxy-3-methoxy-3,3-diphenylpropionsäuremethylesters (100 mmol) mit 1 g p-Toluolsulfonsäure und 18,2 g 2-(3,4-Dimethoxyphenyl)ethanol (100 mmol) gemischt und auf 60°C erhitzt. An den Kolben wird ein Vakuum angelegt, um entstehendes Methanol abzudestillieren, und weitere 5 Stunden bei 60°C gerührt. Zur Aufarbeitung wird das Gemisch abgekühlt, mit 300 ml Ether verdünnt und die organische Phase erst

mit Natriumhydrogencarbonatlösung und dann mehrfach mit Wasser gewaschen. Anschließend wird mit Magnesiumsulfat getrocknet, das 20 Trockenmittel abfiltriert und das Lösungsmittel abdestilliert. Es

wurde ein Rückstand von 43 g Öl isoliert, der direkt in der weiteren Synthese eigesetzt werden konnte.

Variante B:

25

In einem Kolben wurden 27,9 g (S)-2-Hydroxy-3-methoxy-3,3-diphenylpropionsäuremethylester (100 mmol), l g p-Toluolsulfonsäure und 18,2 g (100 mmol) 2-(3,4-Dimethoxyphenyl)ethanol in 75 ml Dichlormethan gelöst. Die Lösung wurde erhitzt und das

- 30 Dichlormethan abdestilliert unter gleichzeitigem Zutropfen von Dichlormethan, um entstehendes Methanol abzudestillieren, und weitere 5 Stunden bei 60°C gerührt. Zur Aufarbeitung wird das Gemisch abgekühlt, mit 300 ml Ether verdünnt und die organische Phase erst mit Natriumhydrogencarbonatlösung und dann mehrfach
- 35 mit Wasser gewaschen. Anschließend wird mit Magnesiumsulfat getrocknet, das Trockenmittel abfiltriert und das Lösungsmittel abdestilliert. Es wurde ein Rückstand von 43 g Öl isoliert, der direkt in der weiteren Synthese eigesetzt werden konnte.

40 Beispiel 13:

- (S) -2-Hydroxy-3-(2-(3,4-dimethoxyphenyl) ethoxy)-3,3-diphenylpropionsäure
- 45 Zu einer Lösung aus 74 g (170 mmol) (S)-2-Hydroxy-3-(2-(3,4-dimethoxyphenyl)ethoxy)-3,3-diphenylpropionsäuremethylester in 510 ml Dioxan wurden 255 ml 1 N Natronlauge gegeben und die

Suspension bei 50°C zwei Stunden gerührt. Das Gemisch wurde mit 2,5 1 Wasser verdünnt und mit Zitronensäure neutralisiert. Die wässrige Phase wurde zweimal mit 500 ml Ether extrahiert. Anschließend wurde die organische Phase mit Wasser gewaschen, über Magnesiumsulfat getrocknet und nach dem Abfiltrieren der Ether abdestilliert. Der Rückstand wurde durch Kristallisation aus Ether/n-Hexan gereinigt und es wurden 70 g Kristalle isoliert.

¹H-NMR (200 MHz): 7.3 ppm (10 H, m), 6.8 (1 H, dbr), 6.7 (1 H, 10 dbr), 6.6 (1 H, sbr), 5.0 (1 H, s), 3.9 (3 H, s), 3.85 (3 H, s), 3.6 (1 H, dt), 3.4 (1 H, OH), 3.2 (1 H, dt), 2.8 (2 H, t).

 $[\alpha]^{20} = 8.3$ (1; Ethanol)

15 Beispiel 14:

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,4-dimethoxy-phenyl)ethoxy)-3,3-diphenylpropionsäure (I-445) und

20 (S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,4-dimethoxy-phenyl)ethoxy)-3,3-diphenylpropionsäure (I-445 (S)-Enantiomeres)

Zu einer Vorlage aus 9 g (390 mmol) Lithiumamid in 35 ml DMF wurden 55 g (130 mmol) 2-Hydroxy-3-(2-(3,4-dimethoxyphenyl)eth-

- 25 oxy)-3,3-diphenylpropionsäure, gelöst in 150 ml DMF, über 15 Minuten zugegeben. Hierzu wurden langsam 25 g (137 mmol) 2-Methylsulfon-4,6-dimethylpyrimidin, gelöst in 75 ml DMF, zugetropft und 18 Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung wurde das Gemisch auf 2 l Eiswasser und Zitronensäure zur Neutrali-
- 30 sation gegeben. Die ausgefallenen Kristalle wurden abgesaugt und mit Wasser gewaschen. Die feuchten Kristalle wurden in Dichlormethan gelöst, die Lösung über Magnesiumsulfat getrocknet, filtriert und das Lösungsmittel abdestilliert. Der ölige Rückstand wurde in Ether aufgenommen, mit 130 ml 1 N Natronlauge
- 35 extrahiert und die wässrige Phase mit 130 ml 1 N Salzsäure neutralisiert, wobei Kristalle ausfielen. Nach der Trocknung wurden 64 g Produkt isoliert.

¹H-NMR (200 MHz): 7.3 ppm (10 H, m), 6.7 (4 H, m), 6.3 (1 H, s), 40 3.9 (3 H, s), 3.85 (3 H, s), 3.7 (1 H, dt), 3.6 (1 H, dt), 2.8 (2 H, t), 2.3 (6 H, s).

Smp.: $125-130^{\circ}$ C Zers. ESI-MS: $M^{+} = 528$

```
Analog wurde aus (S)-2-Hydroxy-3-(2-(3,4-dimethoxy-
   phenyl)ethoxy)-3,3-diphenylpropionsäure und 2-Methylsul-
   fon-4,6-dimethylpyrimidin in Gegenwart von Lithiumamid
   (S)-2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,4-dimethoxy-
 5 phenyl)ethoxy)-3,3-diphenylpropionsäure hergestellt.
   [\alpha]^{20} = 111 (1; Ethanol)
   Beispiel 15:
10
   Die folgenden Verbindungen wurden analog zu Beispiel 8 her-
   gestellt
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(4-methoxy-
15 phenyl)ethoxy)-3,3-di(4-ethylphenyl)propionsäure (I-147)
   Smp.: 150-155°C
   ESI-MS: M^{+} = 570
20 2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yloxy)-3-
   (2-(4-chlorophenyl)ethoxy)-3,3-diphenylpropionsäure (I-651)
   Smp.: 150-152°C
   ESI-MS: M^{+} = 546
25
   2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(4-chlorophenyl)ethoxy)-
   3,3-diphenylpropionsäure (I-713)
   Smp.: 108°C Zers.
30 ESI-MS: M^+ = 502
   2-(4,6-Dimethoxy-pyrimidin-2-yloxy)-3-(2-(4-chlorophenyl)ethoxy)-
   3,3-diphenylpropionsäure
35 Smp.: 165-167°C
   ESI-MS: M^{+} = 534
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(4-chloro-phenyl)-
   ethoxy)-3,3-diphenylpropionsaure (I-746)
40
   Smp.: 93-98°C
   ESI-MS: M^{+} = 518
```

```
2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(4-methoxyphenyl)ethoxy)-
   3,3-di(4-ethylphenyl)propionsäure (I-148)
   Smp.: 130-133°C
 5 \text{ ESI-MS: } M^+ = 554
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(4-methylphenyl)-
   ethoxy) - 3, 3 - di (4 - chlorophenyl) propionsäure (I - 710)
10 Smp.: 90-100°C
   ESI-MS: M^+ = 566
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(3,3-diphenylpropoxy)-
   3,3-di(4-chlorophenyl)propionsäure
15
   <sup>1</sup>H-NMR(200 MHz): 7.3 ppm (18 H, m), 6.25 (1 H, s), 6.0 (1 H, s),
   4.0 (1 H, tr), 3.8 (3 H, s), 3.4 (2 H, m), 2.2 (5 H, m).
   ESI-MS: M^{+} = 642
20
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(3,4-dimethoxy-
   phenyl)ethoxy)-3,3-di(4-chlorophenyl)propionsäure (I-699)
   Smp.: 100-110°C
25 ESI-MS: M^+ = 612
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(2-methoxy-phenyl)-
   ethoxy) - 3, 3 - di (4 - chlorophenyl) propionsäure (I - 487)
30 Smp.: 85-90°C
   ESI-MS: M^{+} = 582
   2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yloxy)-3-
   (2-(3-methoxyphenyl)ethoxy)-3,3-di(4-chlorophenyl)propionsäure
35 (I-486)
   Smp.: 190-195°C
   ESI-MS: M^{+} = 610
40 2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yloxy)-3-
   (2-phenylethylthio) -3,3-di(4-chlorophenyl)propionsäure
   Smp.: 173-175°C
45 <sup>1</sup>H-NMR (200): 7.0-7.4 ppm (13 H, m), 6.0 (1 H, s), 4.7 (2 H, tr),
   3.8 (3 H, s), 3.1 (2 H, tr), 2.5 (4 H, m)
```

PCT/EP97/04688 WO 98/09953

```
2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yloxy)-3-
   (2-(3,4-dimethoxyphenyl)ethoxy)-3,3-di(4-chlorophenyl)propion-
   säure (I-635)
5 Smp.: 100-110°C
   ESI-MS: M^{+} = 640
   2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yloxy)-3-
   (2-(3,5-dimethoxyphenyl)ethoxy)-3,3-di(4-chlorophenyl)propion-
10 säure (I-593)
   Smp.: 90-100°C
   ESI-MS: M^+ = 640
15 2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yloxy)-3-
   (2-(2-methoxyphenyl)ethoxy)-3,3-di(4-chlorophenyl)propionsäure
   (I-164)
   Smp.: 135-145°C
20 ESI-MS: M^+ = 610
   2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yloxy)-3-(3,3-di-
   phenylpropoxy) -3,3-di(4-chlorophenyl)propionsäure
25 Smp.: 125-127°C
   ESI-MS: M^+ = 670
   2-(4-Methoxy-6,7-dihydro-5H-cyclopentapyrimidin-2-yloxy)-3-
   (3,3-diphenylpropoxy)-3,3-di(4-chlorophenyl)propionsäure
30
   Smp.: 135-140°C
   ESI-MS: M^+ = 668
   2-(4-Methoxy-6,7-dihydro-5H-cyclopentapyrimidin-2-yloxy)-3-
35 (2-phenylethylthio)-3,3-di(4-chlorophenyl)propionsäure
   Smp.: 135-140°C
   1H-NMR (200): 7.0-7.5 ppm (13 H, m), 5.9 (1 H, s), 3.9 (3 H, s),
40 2.6-2.8 (8 H, m), 2.1 (2 H, m).
   2-(4-Methoxy-6,7-dihydro-5H-cyclopentapyrimidin-2-yloxy)-3-
   (2-(2-methoxyphenyl)ethoxy)-3,3-di(4-chlorophenyl)propionsäure
45 Smp.: 105-115°C
   ESI-MS: M^+ = 608
```

```
2-(4-Methoxy-6,7-dihydro-5H-cyclopentapyrimidin-2-yloxy)-3-
   (2-(3-methoxyphenyl)ethoxy)-3,3-di(4-chlorophenyl)propionsäure
   Smp.: 110-120°C
 5 \text{ ESI-MS: } M^+ = 608
   2-(4-Methoxy-6,7-dihydro-5H-cyclopentapyrimidin-2-yloxy)-3-
   (2-(4-dimethylaminophenyl)ethoxy)-3,3-di(4-chlorophenyl)propion-
   säure
10
   Smp.: 135-140°C
   ESI-MS: M^+ = 621
   2-(4-Methoxy-6,7-dihydro-5H-cyclopentapyrimidin-2-yl-
15 oxy) -3-(2-(3,4-dimethoxyphenyl)ethoxy) -3,3-di(4-chlorophenyl)-
   propionsäure
   Smp.: 125-130°C
   ESI-MS: M^{+} = 638
20
   2-(4-Methoxy-6,7-dihydro-5H-cyclopentapyrimidin-2-yl-
   oxy) -3-(2-(3,5-dimethoxyphenyl)ethoxy) -3,3-di(4-chlorophenyl)-
   propionsäure
25 Smp.: 125-130°C
   ESI-MS: M^{+} = 638
   2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yloxy)-3-
   (2-(4-methylphenyl)ethoxy)-3,3-diphenylpropionsäure (I-370)
30
   Smp.: 128-130°C
   ESI-MS: M^{+} = 526
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-phenylethoxy)-
35 3,3-diphenylpropionsäure (I-719)
   Smp.: 155°C Zers.
   ESI-MS: M^+ = 484
40 2-(4,6-Dimethoxy-pyrimidin-2-yloxy)-3-(2-phenylethoxy)-3,3-di-
   phenylpropionsäure
   Smp.: 203°C Zers.
   ESI-MS: M^{+} = 500
45
```

```
2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-phenylethoxy)-3,3-di-
   phenylpropionsäure (I-720)
   Smp.: 130-133°C
 5 ESI-MS: M^{+} = 468
   2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yloxy)-3-
   (2-phenylethoxy)-3,3-diphenylpropionsäure (I-657)
10 Smp.: 138-142°C
   ESI-MS: M^+ = 512
   2-(4,6-Dimethoxy-pyrimidin-2-yloxy)-3-(2-(4-methylphenyl)-
   ethoxy) - 3, 3 - diphenylpropionsaure
15
   Smp.: 155-158°C
   ESI-MS: M^{+} = 514
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(4-methylphenyl)-
20 ethoxy) -3,3-diphenylpropionsäure (I-465)
   Smp.: 145-147°C
   ESI-MS: M^{+} = 498
25 2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(3-(4-methoxyphenyl)-
   propoxy) -3,3-diphenylpropionsäure (I-554)
   Smp.: 160-165°C
   ESI-MS: M^+ = 528
30
   2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(3-(4-methoxyphenyl)prop-
   oxy) -3,3-diphenylpropionsaure (I-555)
   Smp.: 165-170°C
35 ESI-MS: M^+ = 512
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(3-(3,4,5-trimethoxy-
   phenyl)propoxy)-3,3-diphenylpropionsäure (I-335)
40 <sup>1</sup>H-NMR (200): 7.2-7.4 ppm (10 H, m), 6.3 (2 H, s), 6.2 (2 H, s),
    3.8 (3 H, s), 3.75 (10 H, s), 3.4 (2 H, m), 2.6 (2 H, m), 2.25
    (3 H, s), 1.9 (2 H, m).
   ESI-MS: M^+ = 588
45
```

33 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(3-(3,4,5-trimethoxyphenyl)propoxy) - 3, 3 - diphenylpropionsäure (I-336) 1H-NMR (200): 7.2-7.5 ppm (10 H, m), 6.6 (1 H, s), 6.3 (3 H, s), 5 3.8 (9 H, s), 3.4 (2 H, m), 2.6 (2 H, m), 2.3 (6 H, s), 1.9 (2 H, m). ESI-MS: $M^+ = 572$ 10 2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(3-(2-chlorophenyl)propoxy) - 3, 3 - diphenylpropionsäure (I-383) 1H-NMR (200): 7.1-7.5 ppm (14 H, m), 6.24 (1 H, s), 6.23 (1 H, s), 3.8 (3 H, s), 3.4 (2 H, m), 2.75 (2 H, m), 2.25 (3 H, s), 1.9 15 (2 H, m). ESI-MS: $M^+ = 532$ 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(3-(2-chlorophenyl)-20 propoxy) - 3, 3 - diphenylpropionsäure (I-384) Smp.: 172-178°C ESI-MS: $M^{+} = 516$ 25 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(3-(4-chlorophenyl)propoxy) -3,3-diphenylpropionsäure (I-251) ¹H-NMR (200): 7.0-7.4 ppm (14 H, m), 6.6 (1 H, s), 6.3 (1 H, s), 3.5 (2 H, m), 2.7 (2 H, m), 2.3 (6 H, s), 1.9 (2 H, m). 30 ESI-MS: $M^+ = 516$ 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(3-(3,4-dimethoxyphenyl)propoxy) -3,3-diphenylpropionsäure (I-490)) 35 ¹H-NMR (200): 7.1-7.5 ppm (10 H, m), 6.74 (1 H, s), 6.7 (3 H, s), 6.3 (1 H, s), 3.8 (6 H, s), 3.5 (2 H, m), 2.7 (2 H, m), 2.3 (6 H, s), 1.9 (2 H, m). ESI-MS: $M^+ = 542$ 40 2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(4-propoxyphenyl)-

Smp.: 115-119°C 45 ESI-MS: $M^+ = 542$

ethoxy) -3,3-diphenylpropionsäure (I-69)

```
2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(4-butoxyphenyl)-
   ethoxy) - 3, 3 - diphenylpropionsäure (I-71)
   Smp.: 118-122°C
 5 \text{ ESI-MS: } M^+ = 556
   2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(4-butoxyphenyl)-
   ethoxy)-3,3-diphenylpropionsäure (I-70)
10 Smp.: 122-125°C
   ESI-MS: M^{+} = 540
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(3-phenylprop-(2E)-
   enoxy) -3,3-diphenylpropionsäure (I-44)
15
   Smp.: 171-174°C
   ESI-MS: M^{+} = 496
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(3-(2-methylphenyl)-
20 propoxy)-3,3-diphenylpropionsäure (I-107)
   Zersetzung: 144-146°C
   ESI-MS: M^{+} = 512
25 2-(4,6-Dimethyl-pyrimidin-2-yloxy) - 3-(3-(2-methylphenyl)-
   propoxy) -3,3-diphenylpropionsaure (I-90)
   Zersetzung: 173-176°C
   ESI-MS: M^{+} = 496
30
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(3-(4-methylphenyl)-
   propoxy) -3,3-diphenylpropionsäure (I-363)
   Zersetzung: 158-161°C
35 ESI-MS: M^+ = 512
   2-(4,6-Dimethyl-pyrimidin-2-yloxy) - 3-(3-(4-methylphenyl) -
   propoxy) -3,3-diphenylpropionsäure (I-346)
40 Zersetzung: 163-167°C
   ESI-MS: M^{+} = 496
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(4-methylthio-
   phenyl)ethoxy)-3,3-diphenylpropionsäure (I-246)
45
   Zersetzung: 136-138°C
```

```
ESI-MS: M^+ = 530
   2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(4-methylthiophenyl)-
   ethoxy)-3,3-diphenylpropionsäure (I-217)
 5
   Zersetzung: 166-169°C
   ESI-MS: M^{+} = 514
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(4-ethoxy-3-meth-
10 oxyphenyl)ethoxy)-3,3-diphenylpropionsäure (I-145)
   Zersetzung: 141-145°C
   ESI-MS: M^{+} = 558
15 2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(4-ethoxyphenyl)
   ethoxy) - 3, 3 - diphenylpropionsäure (I-510)
   Zersetzung: 131-135°C
   ESI-MS: M^+ = 528
20
   2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(4-i-propylphenyl)
   ethoxy)-3,3-diphenylpropionsäure (I-705)
   <sup>1</sup>H-NMR (200 MHz, DMSO): 7.0-7.35 ppm (14 H, m), 6.35 (1 H, s), 6.1
25 (1 H, s), 4.0 (1 H, m), 3.9 (3 H, s), 3.8 (3 H, s), 3.7 (1 H, m),
   2.9 (3 H, m), 2.2 (3 H, s), 1.1 (6 H, d).
   ESI-MS: M^{+} = 526
30 2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(3,4-methylendioxy-
   phenyl)ethoxy)-3,3-diphenylpropionsäure (I-568)
   Zersetzung: 146-148°C
   ESI-MS: M^{+} = 528
35
   2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yloxy)-3-
   (2-(3,4-methylendioxyphenyl)ethoxy)-3,3-diphenylpropionsäure
   (I-501)
40 Zersetzung: 145-149°C
   ESI-MS: M^+ = 556
```

2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yl-oxy)-3-(2-(4-ethoxy-3-methoxyphenyl)ethoxy)-3,3-diphenyl-propionsäure (I-735)

- 5 1H-NMR (270 MHz, DMSO): 7.1-7.4 ppm (10 H, m), 6.85 (2 H, m), 6.7 (1 H, d), 6.1 (1 H, s), 4.6 (2 H, tr), 4.0 (3 H, m), 3.85 (3 H, s), 3.75 (3 H, s), 3.65 (1 H, m), 3.05 (2 H, tr), 2.8 (2 H, m), 1.25 (3 H, m).
- 10 ESI-MS: $M^+ = 586$
 - 2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yl-oxy)-3-(2-(4-ethoxyphenyl)ethoxy)-3,3-diphenylpropionsäure (I-407)
- 15
 1_{H-NMR} (270 MHz, DMSO): 7.1-7.4 ppm (12 H, m), 6.8 (2 H, d), 6.1
 (1 H, s), 4.65 (2 H, tr), 3.95 (3 H, m), 3.8 (3 H, s), 3.65 (1 H, m), 3.05 (2 H, tr), 2.8 (2 H, m), 1.25 (3 H, m).
- 20 ESI-MS: $M^+ = 556$
 - 2-(4,6-Dimethyl-pyrimidin-2-yloxy)- 3-(2-(4-ethoxy-3-methoxy-phenyl)ethoxy)-3,3-diphenylpropionsäure (I-146)
- 25 Zersetzung: 129-134°C ESI-MS: M+ = 542
 - 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(3,4-methylendioxyphenyl)-ethoxy)-3,3-diphenylpropionsäure (I-569)
- ¹H-NMR (270 MHz, DMSO): 7.1-7.4 ppm (10 H, m), 6.9 (1 H, s), 6.8 (2 H, m), 6.7 (1 H, d), 6.2 (1 H, s), 6.0 (2 H, s), 3.95 (3 H, m), 3.65 (1 H, m), 2.8 (2 H, m), 2.3 (6 H, s).
- 35 ESI-MS: $M^+ = 512$
 - 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(4-ethoxyphenyl)ethoxy)-3,3-diphenylpropionsäure (I-473)
- **40** Zersetzung: 145-148°C ESI-MS: M+ = 512

2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yloxy)-3-(2-(4-i-propylphenyl)ethoxy)-3,3-diphenylpropionsäure (I-604)

¹H-NMR (270 MHz, DMSO): 7.1-7.4 ppm (14 H, m), 6.1 (1 H, s), 4.6 5 (2 H, tr), 3.9 (1 H, m), 3.8 (3 H, s), 3.6 (1 H, m), 3.0 (2 H, tr), 2.8 (3 H, m), 1.1 (6 H, d).

ESI-MS: $M^{+} = 554$

10 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(4-i-propylphenyl)-ethoxy)-3,3-diphenylpropionsäure (I-672)

Zersetzung: $156-160^{\circ}$ C ESI-MS: M⁺ = 510

15

2-(4-Methoxy-5,6-dihydrofuro-(2,3d)-pyrimidin-2-yl-oxy)-3-(2-(4-methoxyphenyl)ethoxy)-3,3-di(4-methylphenyl)-propionsäure (I-517)

20 ¹H-NMR (200 MHz, DMSO): 7.0-7.3 ppm (10 H, m), 6.8 (2 H, d), 6.0 (1 H, s), 4.6 (2 H, tr), 3.85 (3 H, s), 3.8 (1 H, m), 3.7 (3 H, s), 3.6 (1 H, m), 3.0 (2 H, tr), 2.8 (2 H, tr), 1.1 (6 H, d).

ESI-MS: $M^{+} = 570$

25

2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(2-(4-methoxyphenyl)-ethoxy)-3,3-diphenylpropionsäure (I-622)

¹H-NMR (270 MHz, DMSO): 7.1-7.4 ppm (12 H, m), 6.8 (2 H, d), 6.4 30 (1 H, s), 6.1 (1 H, s), 4.0 (1 H, m), 3.7 (3 H, s), 3.7 (1 H, m), 2.8 (2 H, tr), 2.3 (3 H, s).

ESI-MS: $M^+ = 514$

35 2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(2-(4-methoxyphenyl)-ethoxy)-3,3-diphenylpropionsäure (I-585)

¹H-NMR (200 MHz, DMSO): 7.1-7.4 ppm (12 H, m), 6.8 (3 H, m), 6.1 (1 H, s), 4.0 (1 H, m), 3.7 (3 H, s), 3.6 (1 H, m), 2.8 (2 H, 40 tr), 2.3 (6 H, s).

 $ESI-MS: M^{+} = 498$

2-(4-Methoxy-6-methyl-pyrimidin-2-yloxy)-3-(3-phenylpropoxy)-45 3,3-diphenylpropionsäure (I-499)

Zersetzung: 153-155°C

ESI-MS: $M^+ = 498$

2-(4,6-Dimethyl-pyrimidin-2-yloxy)-3-(3-phenylpropoxy)-3,3-diphenylpropionsäure (I-500)

5

Zersetzung: 148-151°C

 $ESI \cdot MS: M^+ = 482$

Analog oder wie im allgemeinen Teil beschrieben lassen sich die 10 in Tabelle 1 aufgeführten Verbindungen herstellen.

15

20

25

30

35

40

Y	×××××××××××××××××××××××××××××××××××××××
	CH — 0—
R-	₩
	R6-0-

Tabelle I

H

Nr.	R¹	R4, R5	ð	R6	R ²	R³	2	×	۲	W
	СООН	Phenyl	-CH2-CH2-	Phenyl	OMe	Me	СН	Z	Z	S
1-2	СООМе	Phenyl	-CH2-CH2-	Phenyl	CF3	Me	СН	Z	Z	0
1-3	н000	4-Br-Phenyl	-CH ₂ -CH ₂ -	Phenyl	OMe	ОМе	СН	Z	z	0
7	НООЭ	Phenyl	- CH ₂ -C(CH ₃) ₂ -	Phenyl	ОМе	Me	СН	Z	Z	0
F-5	Н000	4-CI-Phenyl	-CH2-CH2- CH2-	3,4-Di-OMe-Phenyl	Me	Me	СН	Z	Z	0
9 - 1	Н000	4-CI-Phenyl	-CH2-CH2-CH2-	3,4-Di-OMe-Phenyl	Me	Me	Z	Z	N	0
<i>L</i> -1	Н000	Phenyl	- CH ₂ -CH ₂ -	3,4-Di-CI-Phenyl	Me	Me	СН	Z	Z	0
<u>*</u>	СООН	Phenyl	-CH ₂ -CH ₂ -	Phenyl	Me	Me	Z	Z	CH	0
6-1	НООЭ	Phenyl	-CH ₂ -CH ₂ -	Phenyl	Ethyl	Me	Z	Z	Z	0
F-10	СООН	Phenyl	- СН=СН- СН ₂ -	Phenyl	Ethyl	Me	СН	Z	Z	0
1-11	НООЭ	Phenyl	- СН=СН- СН ₂ -	Phenyl	OMe	CH ₂ -CH	CH ₂ -CH ₂ -C	Z	Z	0
1-12	нооэ	Phenyl	- СН=СН- СН ₂ -	Phenyl	OMe	O-CH2-CH2-C	-CH ₂ -C	Z	Z	0
1-13	СООН	Phenyl	-CH ₂ -CH ₂ -	Phenyl	OMe	CH ₂ - CH	CH2- CH2-CH2-C	Z	Z	S
1-14	COOE	Phenyl	-CH2-CH2-	Phenyl	ОМе	O- CH ₂	CH2-CH2-C	Z	Z	0
1-15	COOH	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-SMc-Phenyl	Me	Me	нЭ	Z	Z	0

NI	101	1p4 p5	C	R6	R ²	R3	2	X	Y	≯
	1000	A G. Dhonel	כתי כחי	4_CMa_Phonyl	X	Me	2	z	Z	C
1 <u>-1</u> 0	COOH	4-c-ruciiyi	-7112-7112-				110	2	7	1
111	СООМе	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	OMe	Me	H)	z	z	
1-18	COOE	Phenyl	-CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	СН	Z	Z	S
61-1	Tetrazol	Phenyl	-CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	0-CH ₂	CH2-CH2-C	Z	Z	0
1-20	СООН	Phenyl	- C(CH ₃) ₂ -CH ₂ -	4-OMe-Phenyl	OMe	0-CH ₂	0-CH2-CH2-C	Z	Z	0
1-21	СООН	Phenyl	- CH ₂ - C(CH ₃) ₂ -	4-OMe-Phenyl	ОМе	0-CH ₂	CH2-CH2-C	Z	Z	0
1-22	H000	4-Ci-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OMe-Phenyl	ОМе	0-CH ₂	CH2-CH2-C	Z	Z	0
1-23	Н000	4-Ci-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	Me	СН	Z	Z	0
1-24	Н000	4-Br-Phenyl	-CH ₂ -CH ₂ -	4-OMe-Phenyl	OMe	ОМе	СН	Z	z	0
1–25	Н000	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	Me	Z	Z	Z	0
1–26	Н000	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	Z	z	СН	0
1-27	Н000	Phenyl	- CH=CH- CH ₂ -	Phenyl	Me	Me	СН	Z	Z	0
1-28	Н000	Phenyl	- CH=CH- CH ₂ -	Phenyl	Me	Me	Z	Z	Z	0
1–29	Н000	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Ethyl	Me	Z	Z	z	0
1-30	НООЭ	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	CH ₂ -CF	CH2-CH2-C	Z	Z	S
1-31	НООЭ	4-Et-Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	ОМе	0- CH ₂	CH2-CH2-C	z	Z	0
1-32	Н000	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-SMc-Phenyl	OMe	Me	СН	z	Z	0
I-33	COOE	Phenyl	-CH ₂ -CH ₂ -	4 OMe Phenyl	ОМе	0- CH ₂	CH ₂ -CH ₂ -C	Z	z	0
1-34	СООН	Phenyl	-CH2-CH2-	3,4-Di-OMe-Phenyl	ОМе	0-CH ₂	CH ₂ -CH ₂ -C	Z	Z	S
1.35	COOMe	Phenyl	- C(CH ₃) ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	OMe	Me	Z	z	H	S
1–36	H000	Phenyl	-C(CH ₃) ₂ -CH ₂ -	3,4-Di-OMc-Phenyl	Ethyl	Me	СН	Z	Z	0
1-37	COOH	4-Br-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	CF_3	Me	СН	Z	Z	0
1-38	Н000	4-Cl-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OMe-Phenyl	Me	Me	Z	z	z	0
1-39	СООН	4-CI-Phenyl	- CH2-CH2- CH2-	4-OMc-Phenyl	Ethyl	Me	СН	z	Z	0
140	H000	Phenyl	- CH2-CH2-	3,4-Di-Me-Phenyl	OMe	Me	СН	z	Z	0

	•
л	1
-	. I.

 - -		N N	z E z	z B z z	z E z z z	z B z z z	z B z z z z	z B z z z z z	z B z z z z z z	z B z z z z z z z z	z B z z z z z z z z	z B z z z z z z z z z z	z B z z z z z z z z z z z	z B z z z z z z z z z z z z	z B z z z z z z z z z z z z z z z	z B z z z z z z z z z z z z z z z z z z	z B z z z z z z z z z z z z z z z z z z	z B z z z z z z z z z z z z z z z z z z	z B z z z z z z z z z z z z z z z z z z	z	z	z E Z	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	z E Z
N		z	Ŧ			CH CH CH CH CH2-CH2-C	CH CH CH CH2-CH2-C	CH CH CH2-CH2-C	СН СН СН -СН2-СН2-С N СН СН	CH CH CH2-CH2-C CH CH CH CH	CH CH CH2-CH2-C CH CH CH CH	CH CH CH CH CH CH CH CH CH	CH CH CH2-CH2-C CH CH CH CH CH CH	CH C	CH C	CH C	CH C	CH C	CH C	CH C	CH CH CH CH CH CH CH CH CH CH	CH C	CH C	CH C
	Me		Me	Me	Me Me	Me Me CH ₂ -	Me CH ₂ -	Me CH ₂ -	Me CH ₂ -	Me CH ₂ CH ₂ O- C	Me CH ₂ Me CH ₂ CF ₃	Me CH ₂ - Me CH ₂ - Me CF ₃ Me Me	Me CH ₂ -C Me CH ₂ -C Me We	Me CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH	Me CH ₂ CH ₂ CH ₂ We	Me We	Me We	Me CH ₂ - Me CH ₂ -	Me CH ₂ - Me CH ₂ -	Me CH ₂ - Me CH ₂ -	Me CH ₂ - Me CH ₂ -	Me CH ₂ - Me CH ₂ -	Me CH ₂ - Me CH ₂ - Me CH ₂ - Me M	Me
Me		CF ₃ Me	r	OMe Me	OMe	OMe OMe	OMe OMe Me	OMe Ethyl Me Ethyl	OMe OMe OMe OMe OMe	OMe CF3 OMe OMe OMe	OMe OMe OMe OMe OMe OMe OMe OMe	OMe OMe OMe OMe OMe OMe OMe OMe	OMe OMe OMe OMe OMe OMe OMe OMe	OMe	OMe	OMe OMe OMe OMe OMe OMe Me Me Me Me Me Me	OMe OMe OMe OMe OMe OMe OMe Me Me Me Ethyl Me Me Me Me	OMe OMe OMe OMe OMe OMe Me Me Me Me OMe O	OMe	OMe	OMe	OMe	OMe	OMe
3,4-Di-OMe-Phenyl		lenyi	enyl		3,4-Di-OMe-Phenyl	3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl	3,4—Di—OMe—Phenyl 3,4—Di—OMe—Phenyl 3—OMe—Phenyl	3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3-OMe-Phenyl 3-OMe-Phenyl	3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3-OMe-Phenyl 3,4-Di-OMe-Phenyl	3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3-OMe-Phenyl 3,4-Di-OMe-Phenyl 3,4,5-Tri-OMe-Phenyl	3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3-OMe-Phenyl 3,4-Di-OMe-Phenyl 3,4-5-Tri-OMe-Phenyl 3,4,5-Tri-OMe-Phenyl	3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3-OMe-Phenyl 3,4-Di-OMe-Phenyl 3,4,5-Tri-OMe-Phenyl 3-Me-4-Et-Phenyl 3-Me-4-Et-Phenyl	1-Di-OMe-Phenyl OMe-Phenyl OMe-Phenyl OMe-Phenyl 4,5-Tri-OMe-Phenyl Me-4-Et-Phenyl Me-4-Et-Phenyl Br-Phenyl	3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3-OMe-Phenyl 3,4-Di-OMe-Phenyl 3,4,5-Tri-OMe-Phenyl 3-Me-4-Et-Phenyl 4-Br-Phenyl 4-Br-Phenyl	3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3-OMe-Phenyl 3,4-Di-OMe-Phenyl 3,4,5-Tri-OMe-Phenyl 3-Me-4-Et-Phenyl 4-Br-Phenyl 4-OMe-Phenyl 4-OMe-Phenyl	1-Di-OMe-Phenyl OMe-Phenyl OMe-Phenyl OMe-Phenyl 4.5-Tri-OMe-Phenyl Me-4-Et-Phenyl Me-4-Et-Phenyl Br-Phenyl OMe-Phenyl OMe-Phenyl	1-Di-OMe-Phenyl OMe-Phenyl OMe-Phenyl OMe-Phenyl 4,5-Tri-OMe-Phenyl Me-4-Et-Phenyl Me-4-Et-Phenyl Br-Phenyl OMe-Phenyl OMe-Phenyl OMe-Phenyl	1-Di-OMe-Phenyl OMe-Phenyl OMe-Phenyl OMe-Phenyl 4,5-Tri-OMe-Phenyl Me-4-Et-Phenyl Me-4-Et-Phenyl Br-Phenyl OMe-Phenyl OMe-Phenyl OMe-Phenyl OMe-Phenyl Ag-Phenyl OMe-Phenyl	1-Di-OMe-Phenyl OMe-Phenyl OMe-Phenyl OMe-Phenyl 4,5-Tri-OMe-Phenyl Me-4-Et-Phenyl Me-4-Et-Phenyl Br-Phenyl OMe-Phenyl OMe-Phenyl Ar-Phenyl Ar-Phenyl Ar-Phenyl Ar-Phenyl Ar-Phenyl Ar-Phenyl Ar-Phenyl	1-Di-OMe-Phenyl OMe-Phenyl OMe-Phenyl OMe-Phenyl 4,5-Tri-OMe-Phenyl Me-4-Et-Phenyl Me-4-Et-Phenyl Br-Phenyl OMe-Phenyl OMe-Phenyl -Br-Phenyl -Br-Phenyl -Br-Phenyl -Br-Phenyl -Br-Phenyl -Br-Phenyl -Br-Phenyl -Br-Phenyl -Br-Phenyl -Me-Phenyl -Me-Phenyl	1-Di-OMe-Phenyl OMe-Phenyl OMe-Phenyl OMe-Phenyl A.5-Tri-OMe-Phenyl Me-4-Et-Phenyl Me-4-Et-Phenyl Br-Phenyl OMe-Phenyl OMe-Phenyl -Br-Phenyl -Br-Phenyl -Me-Phenyl -Me-Phenyl -Me-Phenyl -Me-Phenyl -Me-Phenyl -Me-Phenyl	3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3,0Me-Phenyl 3,4,5-Tri-OMe-Phenyl 3,4,5-Tri-OMe-Phenyl 3,4,5-Tri-OMe-Phenyl 4-Br-Phenyl 4-Br-Phenyl 4-OMe-Phenyl 4-Br-Phenyl 4-Br-Phenyl 4-Br-Phenyl 4-Me-Phenyl 3-Me-Phenyl 3-Me-Phenyl 3-Me-Phenyl 4-Me-Phenyl 3-Me-Phenyl 3-Me-Phenyl	3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3,4,5-Tri-OMe-Phenyl 3,4,5-Tri-OMe-Phenyl 4-Br-Phenyl 4-OMe-Phenyl 4-OMe-Phenyl 4-Br-Phenyl 4-Br-Phenyl 4-Br-Phenyl 4-Br-Phenyl 4-Br-Phenyl 3-Me-Phenyl 3-Me-Phenyl 3-Me-Phenyl 3-Me-Phenyl 3-Me-Phenyl 3-Me-Phenyl 3-Me-Phenyl	3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3,4-Di-OMe-Phenyl 3,4,5-Tri-OMe-Phenyl 3,4,5-Tri-OMe-Phenyl 4-Br-Phenyl 4-Br-Phenyl 4-OMe-Phenyl 4-Br-Phenyl 4-Br-Phenyl 4-Me-Phenyl 3-Me-Phenyl 3-Me-Phenyl 4-Me-Phenyl 3-Me-Phenyl
3,4-Di-OMe Phenyl	Phenyl		Phenyl	3.4-Di-OMe		3,4-Di-OMe	3,4-Di-OMe 3-OMe-Phe	3.4-Di-OMe 3-OMe-Phe	3,4-Di-OMe 3-OMe-Phe 3,4-Di-OMe	3,4-Di-OMe 3-OMe-Phe 3,4-Di-OMe 3,4,5-Tri-Ol	3.4-Di-OMe 3-OMe-Phe 3.4-Di-OMe 3,4.5-Tri-Ol 3-Me-4-Et-	3.4-Di-OMe 3-OMe-Pher 3.4-Di-OMe 3.4.5-Tri-Ol 3-Me-4-Et- 3-Me-4-Et-	3,4-Di-OMe 3,0Me-Pher 3,4-Di-OMe 3,4,5-Tri-ON 3-Me-4-Et-1 4-Br-Phenyl	3.4-Di-OMe 3-OMe-Pher 3.4-Di-OMe 3.4.5-Tri-Ol 3-Me-4-Et- 3-Me-4-Et- 4-Br-Phenyl 4-OMe-Pher	3,4-Di-OMe 3-OMe-Pher 3,4-Di-OMe 3,4-5-Tri-Ol 3-Me-4-El- 4-Br-Phenyl 4-OMe-Pher 4-OMe-Pher	3,4-Di-OMe 3,0Me-Pher 3,4-Di-OMe 3,4-5-Tri-ON 3,4,5-Tri-ON 3-Me-4-Et-1 4-Br-Phenyl 4-OMe-Pher 4-OMe-Pher	3.4-Di-OMe 3.4-Di-OMe 3.4-Di-OMe 3.4.5-Tri-ON 3.4.5-Tri-ON 4-Br-Phenyl 4-Br-Pher 4-OMe-Pher 4-Br-Phenyl 4-Br-Phenyl 3-Br-Phenyl	3,4-Di-OMe-Phen 3-OMe-Phen 3,4-Di-OMe- 3,4-Di-OMe- 3,4-S-Tri-OM 3,4-S-Tri-OM 4-Br-Phen 4-OMe-Phen 4-OMe-Phen 4-Br-Phenyl 3-Br-Phenyl 3-Br-Phenyl	3,4-Di-OMe-Phen 3-OMe-Phen 3,4-Di-OMe-Phen 3,4,5-Tri-OM 3,4,5-Tri-OM 3-Me-4-Et-P 4-Br-Phenyl 4-OMe-Phenyl 4-Br-Phenyl 2-Me-Phenyl 2-Me-Phenyl	3.4-Di-OMe-Phen 3.4-Di-OMe-Phen 3.4-Di-OMe-Phen 3.4.5-Tri-OM 3-Me-4-Et-P 4-Br-Pheny 4-OMe-Phen 4-OMe-Pheny 3-Br-Phenyl 2-Me-Phenyl 4-Me-Phenyl 4-Me-Phenyl	3,4-Di-OMe-Phen 3-OMe-Phen 3,4-Di-OMe-Phen 3,4,5-Tri-OM 3-Me-4-Et-Pl 4-Br-Pheny 4-OMe-Pheny 4-Br-Phenyl 2-Me-Phenyl 2-Me-Phenyl 4-Me-Phenyl 3-Me-Phenyl 3-Me-Phenyl	3,4-Di-OMe 3-OMe-Phe 3-OMe-Phe 3,4-Di-OMe 3,4,5-Tri-Ol 3-Me-4-Et- 4-Br-Pheny 4-Me-Pheny 3-Br-Pheny 2-Me-Pheny 4-Me-Pheny 3-Me-Pheny 3-Me-Pheny 3-Me-Pheny	3.4—Di—OMe—Pher 3.4—Di—OMe 3.4—Di—OMe 3.4—Di—OMe 3.4—Et— 3.4—Et— 4—Br—Pheny 4—Br—Pheny 3—Br—Pheny 4—Me—Pheny 3—Me—Pheny 3—Pheny 3—Me—Pheny 3—Me—Pheny 3—Pheny 3—Ph	3.4-Di-OMe 3.4-Di-OMe 3.4-Di-OMe 3.4-Di-OMe 3.4-S-Tri-Ol 3-Me-4-El- 4-Br-Pheny 4-Br-Pheny 3-Me-Pheny 4-Me-Pheny 4-Me-Pheny 3-Me-Pheny 3-Me-Pheny 3-Me-Pheny 3-Me-Pheny 3-Me-Pheny
- CH ₂ -CH ₂ - - CH=CH- CH ₂ -	:H=CH- CH ₂ -		- CH=CH- CH ₂ -	- СН ₂ -СН ₂ -		- CH2-CH2-	- CH ₂ -CH ₂ - - CH ₂ -CH ₂ -	- CH ₂ -CH ₂ - - CH ₂ -CH ₂ - - CH ₂ -CH ₂ -	- CH ₂ -CH ₂ - - CH ₂ -CH ₂ - - CH ₂ -CH ₂ - - CH ₂ -CH ₂ -	- CH ₂ -CH ₂ - - CH ₂ -CH ₂ - - CH ₂ -CH ₂ - - CH ₂ -CH ₂ -	CH ₂ -CH ₂ - C(CH ₃) ₂ -CH ₂ - CH ₂ -CH ₂ -	- CH2-CH2- - CH2-CH2- - CH2-CH2- - CH2-CH2- - CH2-CH2- - CH2-CH2-	CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2-	CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2-	CH2-CH2- CH2	CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2-	CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2-	CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2- CH2-CH2-	CH2-CH2-	CH2-CH2-	CH2-CH2-	CH2-CH2-	CH2-CH2-	- CH2-CH2 CH2-CH2-
							4-Et-Phenyl - CH ₂			henyl henyl kenyl	henyl henyl kenyl	henyl henyl enyl	henyl henyl enyl	henyl henyl lenyl henyl	henyl henyl tenyl henyl henyl	henyl henyl lenyl henyl henyl	henyl henyl henyl henyl henyl	henyl henyl henyl henyl henyl	henyl henyl henyl henyl henyl	henyl henyl henyl henyl	henyl henyl henyl henyl henyl	henyl henyl henyl henyl henyl henyl	henyl henyl henyl henyl henyl henyl henyl	henyl henyl henyl henyl henyl henyl henyl henyl henyl
COOH Phenyl COOH Phenyl COOH Phenyl				COOH Phenyl	COOB2l Phenyl	COOH 4-Et-Ph		COOH 4-EI-Ph																
		1-44 CC		1–45 C(1-46 C(1-47 [C																		

*	C		2	0	0	0	0	0	S	0	0	0	0	0	С	0	0	0	0	0	0	0	0	0	С	C
<u>></u>	Z		z.	Z	Z	Z	Z	HO	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
×	2	<u> </u>	z	z	Z	Z	z	z	z	Z	Z	Z	Z	z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
7	T J	C I	СН	СН	СН	НЭ	СН	СН	НЭ	СН	CH2-CH2-C	CH2-CH2-CH2-C	CH2-CH2-C	СН	Z	СН	CH ₂ -CH ₂ -C	СН	СН	CH2-CH2-C	СН	СН	СН	СН	CH2-CH2-C	LH
R3	77	Me	Me	Me	Me	Me	Me	Me	Me	Me	CH ₂ - (CH ₂ -	O-C	Me	Me	Me	O-C	Me	Me	O-C	Me	Me	Me	Me	CH ₂ -	MA
P.2		OMe	Me	Me	OMe	Me	OMe	Me	Ethyl	Ethyl	OMe	OMc	OMe	CF_3	Me	Ethyl	OMe	OMe	Ethyl	OMe	OMe	Me	Me	Ethyl	OMe	176
90	K	4-SMc-Phenyl	4-SMe-Phenyl	4-n-Propoxy-Phenyl	4-n-Propoxy-Phenyl	4-n-Butoxy-Phenyl	4-n-Butoxy-Phenyl	4_SMe_Phenvl	4-SMe-Phenyl	2-Me-Phenyl	2-Me-Phenyl	2-Me-4-SMe-Phenyl	4-SMe-Phenyl	4-OEt-3-OMe-Phenyl	4-Mc-Phenyl	4-Mc-Phenyl	4-(Di-Me-Amino)-Phenyl	4-OMe-Phenyl	3.4-Di-OMe-Phenyl	3,4-Di-OMe-Phenyl	4-OEt-3-OMe-Phenyl	4-OEt-3-OMe-Phenyl	3-OMe-4-CI-Phenyl	3-OMe 4-CI-Phenyl	3-OMe 4-CI-Phenyl	
<	∂	- CH2-CH2-	-0-CH2-CH2-	-CHCH-	CH2CH3.	-CH2-CH3-	CH2-CH2-	- Cur-Cur-			- CH ₂ -CH ₂ - CH ₂ -	-CH2-CH3-	- C(CH ₁),-CH ₂ -	-CHCH-	- CH=CH- CH3-	- CH=CH- CH ₂ -	- CH ₂ -CH ₂ -	-CH ₂ -CH ₃ -	- CH2-CH3-	.CH ₂ -CH ₂ -	-CH2-CH2-	-0-CH2-CH2-		CH1-CH1-	- CH ₂ -CH ₂ -	
	R4, R5	3-OMc-Phenyl	Phenyl	Phenyl	Dieny	riicityi	Pliciny	ritary	rnenyi	Phenyl	Phenyl	Phenyl	Phenyl	Phenyl	Dhonyl	Dhonel	Phenyl	4 Cl. Phenyl	A Et Dhenvi	4-Ei-Phenyl	2 OMe Phonyi	Dhanyl	Phony	Phony	3-Mc-Phenyl	
	R¹	СООН	C.OOH	HOOJ	1000	COOR	HOO2	COOH	COOH	HOO3	2000	1000 1000	H005	COOM	1000	1000	1000 1000		1000	HO0.5	1000	1000		COOL	COOH	
	Z	<u>\$</u>	1971	87		69-1	0/-1	1/-1	1-72	5/-1	1 75	C/-1	1-70	7/-1	170	1/3	3 -		79-1	70	10				88	20-1

Nr	R	R4, R5	9	R6	R ²	R ³	2	×	Y	A
<u>[6-1</u>	C00H	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	2-Me-Phenyl	Me	Me	Z	z	z	0
1–92	Н000	Phenyl	-CH2-CH2-	4-OEt-3-OMe-Phenyl	ОМе	0-CH ₂	-CH ₂ -C	Z	z	S
[6] 3	COOMe	Phenyl	-CH ₂ -CH ₂ -	4—iPr—Phenyl	CF ₃	Me	СН	z	z	0
1–94	СООН	2-Mc-Phenyl	- CH2-CH2-	4-F-Phenyl	ОМс	Me	СН	z	z	0
1–95	СООН	Phenyl	- CH=CH- CH ₂ -	4-Me-Phenyl	OMe	Me	СН	z	z	0
96-1	СООН	Phenyl	- CH=CH- CH ₂ -	4-Me-Phenyl	Me	Me	СН	Z	z	0
1-97	Н000	2-Me-Phenyl	-CH ₂ -CH ₂ -	4—iPr—Phenyl	Me	Me	СН	z		0
86-1	СООН	Phenyl	-O-CH ₂ -CH ₂ -	Phenyl	Me	Me	Z	z	z	C
66-1	000	4-Et-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	СН	Z	z	0
1-100	Н000	4-Et-Phenyi	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	Z	z	z	0
F101	НООЭ	Phenyl	-CH ₂ -CH ₂ -	4-(Di-Me-Amino)-Phenyl	Mc	Me	z	Z	z	C
1-102	СООН	Phenyl	-CH ₂ -CH ₂ -	4-(Di-Mc-Amino)-Phenyl	Ethyl	Me	СН	z	z	0
F-103	СООН	2-Me-Phenyl	- CH ₂ -CH ₂ -	4-CI-Phenyl	Ethyl	Me	СН	z	z	0
1-104	СООН	4-F-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	CH ₂ -CH	CH2-CH2-C	z	z	0
1–105	СООН	Pheny!	- C(CH ₃) ₂ -CH ₂ -	3—CI-Phenyl	OMe	0- CH ₂	-CH2-C	Z	z	0
1-106	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	2-Me-Phenyl	CF3	Me	СН	Z	z	0
1-107	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	2-Me-Phenyl	ОМе	Me	СН	z	z	C
1-108	H000	Phenyl	- CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	Me	Me	Z	z	E	0
1-109	СООМе	Phonyl	- CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	ОМе	Me	СН	N	z	0
F110	Н00Э	Phenyl	-СН2-СН2-	3,4 Methylendioxyphenyl	Me	Me	СН	N	N	S
E	СООН	Phenyl	-CH=CH-CH ₂ -	4—i Pr-Phenyl	ОМе	0- CH ₂	-CH2-C	Z	z	0
[-112	СООН	Phenyl	- СН=СН- СН ₂ -	4-Me-Phenyl	CF3	Me	СН	Z	z	0
1–113	СООН	Phenyl	-CH ₂ -CH ₂ -	3,4-Di-Mc-Phenyl	Me	Me	СН	Z	z	C
1-114	COOH	Phenyl	-0- CH ₂ -CH ₂ -	3,4-Di-Mc-Phenyl	Ethyl	Me	СН	N	Z	C
1–115	СООН	4-Et-Phenyl	-CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	0-CH ₂	CH2-CH2-C	Z	Z	0

Z.	RI	R4, R5	ð	R6	\mathbb{R}^2	R³	2	×	Y	≥
1-116	СООН	4-Et-Phenyl	- СН ₂ -СН ₂ -	3,4-Di-OMe-Phenyl	ОМе	Me	СН	Z	z	०
1-117	COO- i-Propyl	Phenyl	- СН ₂ -СН ₂ -	3,4-Methylendioxyphenyl	ОМе	CH ₂ -CH	CH2-CH2-C	Z	Z	0
1-118	COOH	Phenyl	- CH ₂ -CH ₂ -	3,4-Di-Mc-Phenyl	ОМс	0-CH ₂	-CH ₂ -C	z	Z	0
F-119	СООН	Phenyl	- CH ₂ -CH ₂ -	4-(Di-Me-Amino)-Phenyl	ОМе	Me	СН	Z	Z	0
1-120	COOH	Phenyl	- CH ₂ -CH ₂ -	4-(Di-Me-Amino)-Phenyl	Me	Me	СН	Z	Z	0
1-121	СООН	4-F-Phenyl	-CH ₂ -CH ₂ -	4-Me-Phenyl	CF3	Me	СН	Z	Z	0
1-122	COOH	Phenyi	- CH2-CH2- CH2-	3-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
I-123	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	ОМе	0-CH ₂	CH2-CH2-C	z	z	0
1-124	COOH	Phenyi	-S-CH ₂ -CH ₂ -	4-Me-Phenyl	OMe	Me	CH	Z	z	0
1–125	Н000	Phenyl	- CH(OH)-CH ₂ -	4-Me-Phenyl	Me	Me	СН	z	z	0
1-126	Н00Э	Phenyi	- CH ₂ -CH ₂ -	3-OMe-4-Me-Phenyl	Me	Me	СН	Z	z	0
1-127	СООН	Phenyl	-CH=CH-CH ₂ -	4-iPr-Phenyl	Ethyl	Me	СН	z	Z	0
F128	Н000	Phenyl	- CH=CH-CH ₂ -	4-iPr-Phenyl	ОМе	Me	СН	z	z	0
1-129	НООЭ	Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	Ethyl	Me	Z	Z	СН	0
1-130	Н000	Phenyl	- CH ₂ -CH ₂ -	3-OMe-4-Me-Phenyl	ОМе	CH ₂ -CF	CH ₂ -CH ₂ -C	Z	z	0
I-131	Н000	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	Z	Z	Z	0
1-132	Н000	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Ethyl	Me	СН	z	Z	0
1-133	СООН	Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	ОМе	0- CH ₂		z	z	S
1-134	COOButyl	Phenyl	- CH2-CH2-	4-Et-Phenyl	CF_3	Me	СН	Z	Z	0
F-135	H000	4-I-Phenyl	- CH ₂ -CH ₂ -	4-Et-Phenyl	ОМе	Me	СН	z	z	0
I -136	СООН	Phenyl	- СН(ОН)-СН ₂ -	4-Et-Phenyl	Me	Me	СН	z	Z	0
1-137	СООН	Phenyl	- CH ₂ -CH ₂ -	2-OMe-Phenyl	OMe	CH ₂ -CF	CH2-CH2-C	Z	Z	0
1-138	COOH	Phenyl	- CH2-CH2-	3-OMc-Phenyl	Mc	Me	СН	z	Z	0
1-139	СООН	Phenyl	- CH2-CH2- CH2-	3-OMe-Phenyl	Me	Me	Z	Z	Z	0

Nr.	R	R4, R5	0	R6	R ²	R ³	7	×	\ \	A
1-140	СООН	Phenyl	- CH ₂ -CH ₂ -	2-OMe-Phenyl	ОМе	0-CH ₂	2-CH2-C	Z	z	0
I-141	СООН	Phenyl	- CH ₂ -CH ₂ -	3-OMe-4-Et-Phenyl	Me	Me	Z	z	z	0
I-142	COOH	Phenyl	-CH2-CH2-	4-Et-Phenyl	Ethyl	Me	Z	Z	z	0
1–143	СООН	Phenyl	- СН=СН- СН ₂ -	4-CI-Phenyl	Ethyl	Me	СН	Z	z	0
1-144	СООН	Phenyl	- CH=CH- CH ₂ -	4-CI-Phenyl	ОМе	CH ₂ -CF	CH ₂ -CH ₂ -C	Z	Z	0
1-145	СООН	Phenyl	- CH ₂ -CH ₂ -	4-OEt-3-OMe-Phenyl	ОМе	Me	СН	Z	z	0
F146	Н000	Phenyl	- CH ₂ -CH ₂ -	4-OEt-3-OMe-Phenyl	Me	Me	СН	Z	z	0
I-147	Н000	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	OMe	Me	СН	Z	z	C
1-148	Н00Э	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	СН	Z	z	0
1-149	НООЭ	Phenyl	- CH ₂ -CH ₂ -	3-OMe-4-Et-Phenyl	ОМе	0-СН	0-сн=сн-с	N	z	0
F-150	СООН	Phenyl	- CH ₂ -CH ₂ -	3-OMe-4-Et-Phenyl	ОМе	0-CH ₂	CH2-CH2-C	Z	z	c
1-151	НООО	4-Me-Phenyl	-CH2-CH2-	Cyclohexyl	CF3	Me	СН	z	z	C
1-152	СООН	Phenyl	- CH ₂ -CH ₂ -	Cyclohexyl	ОМе	Ethyl	СН	Z	z	0
H153	СООМе	Phenyl	-CH ₂ -CH ₂ -	Cyclohexyl	ОМе	Me	СН	N	z	0
1-154	СООН	Phenyl	-CH2-CH2-CH2-	3-OMe-Phenyl	CF3	Me	СН	2	z	0
I-155	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	ОМе	Me	СН	Z	z	0
1-156	Н000	Phenyl	- CH ₂ -CH ₂ -	Cyclohexyl	Me	Me	СН	N	СН	0
1-157	Н000	Phenyl	- CH ₂ -CH ₂ -	Cyclohexyl	Me	Me	Z	N	СН	0
1-158	Н00Э	4-Cl-Phenyl	· CH ₂ -CH ₂ -	Cyclohexyl	Ethyl	Me	СН	Z	Z	0
1-159	Н000	Phenyl	- СН=СН- СН ₂ -	4-CI-Phenyl	Me	Me	СН	Z	z	0
1-160	Н000	Phenyl	- CH=CH- CH ₂ -	4-CI-Phenyl	Me	Me	Z	Z	z	0
1-161	Н000	Phenyl	- CH ₂ -CH ₂ -	2-OMe-Phenyl	Me	Me	Z	N	z	0
I -162	Н00Э	Phenyl	-CH ₂ -CH ₂ -	2-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1–163	СООН	4-Cl-Phenyl	-CH2-CH2-	2-OMc-Phenyl	Ethyl	Me	СН	N	Z	0
T.164	COOH	4-CI-Phenyl	-CH2-CH2-	2-OMe-Phenyl	ОМе	0-СН	CH2-CH2-C	Z	Z	0

ž	l B i	R4 R5	0	R6	R ²	R3	2	×	>	→
1-165	COOH	4-Et-Phenyl	-CH ₂ -CH ₂ -	Cyclohexyl	ОМе	CH ₂ -CH	CH ₂ -CH ₂ -C	Z	z	0
1-166	H000	Phenyl	-CH ₂ -CH ₂ -	Cyclohexyl	OMe	0-CH ₂	O-CH2-CH2-C	Z	Z	S
1-167	COOH	Phenyl	-CH ₂ -CH ₂ -	4-SMc-Phenyl	ОМе	0-CH ₂	CH2-CH2-C	Z	z	0
F168	Н00Э	Phenyl	-CH ₂ -CH ₂ -	4-OEt-3-OMe-Phenyl	CF3	Me	СН	Z	z	0
691-1	Н00Э	Phenyl	- CH ₂ -CH ₂ -	3-Me 4-Cl-Phenyl	CF_3	Me	СН	Z	Z	0
1-170	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OEt-Phenyl	Ethyl	Me	СН	Z	Z	0
1-171	НООЭ	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OEt-Phenyl	ОМе	CH ₂ -CF	CH2-CH2-C	z	Z	0
1-172	C00H	Phenyl	- CH ₂ -CH ₂ -	4-CI-Phenyl	OMe	Me	СН	Z	z	S
1-173	HO00	3-Me-Phenyl	- CH ₂ -CH ₂ -	4-CI-Phenyl	Me	Me	СН	z	z	
1-174	H000	Phenyl	-0- CH ₂ -CH ₂ -	4-CI-Phenyl	Ethyl	Me	Z	z	Z	0
1-175	Н00Э	Phenyl	-CH=CH-CH ₂ -	4-Cl-Phenyl	CF_3	Me	СН	Z	z	
1-176	Н000	Phenyl	- CH=CH- CH ₂ -	4-CI-Phenyl	ОМе	Me	СН	Z	Z	0
I-177	H002	Phenyl	-CH ₂ -CH ₂ -	2-Me-4-CI-Phenyl	SMe	Me	СН	z	z	
1-178	Н000	Phenyl	-CH ₂ -CH ₂ -	Cyclohexyl	ОМе	CH ₂ - CF	CH ₂ -CH ₂ -C	Z	Z	
1-179	C00H	4-CF ₂ -Phenyl	-CH2-CH2-	3-OMc-Phenyl	Me	Me	СН	z	Z	0
1-180	C00H	4-CF ₂ -Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	Me	Me	Z	z	Z	0
181	COOH	Phenyl	-CH ₂ -CH ₂ -	Cyclohexyl	ОМе	0-СН	CH2-CH2-C	Z	Z	0
1-182	C0082	Phenyl	-CH2-CH2-	4-CI-Phenyl	OMe	CH ₂ -CI	CH2-CH2-CH2-C	Z	z	C
F-183	СООН	Phenyl	- CH ₂ -CH ₂ -	2-Mc 4-Cl-Phenyl	ОМе	0-CH	CH2-CH2-C	z	z	0
<u>1</u>	C00H	Phenyl	- CH(OH)-CH ₂ -	Naphth-2-yl	CF_3	Me	СН	z	z	0
1-185	НООЭ	Phenyl	- CH ₂ -CH ₂ -	2-OMe-Phenyl	OMe	Me	СН	z	z	0
1–186	COOH	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OEt-Phenyl	Me	Me	СН	z	Z	0
1-187	H000	Phenyl	- CH ₂ -CH ₂ -	4-OEt-Phenyl	Me	Me	z	z	z	0
1-188	СООН	Phenyl	- CH ₂ -CH ₂ -	2-OMc-Phenyl	Me	Me	СН	Z	Z	0

WO 98/09953

Z.	R	R4, R5	0	Ré	R ²	R³	2	×	>	3
1–189	соон	2-Me-Phenyl	-CH ₂ -CH ₂ -	Naphth-2-yl	ОМс	Me	СН	Z	Z	0
1-190	НООЭ	Phenyl	- СН ₂ -СН ₂ -	Naphth-2-yl	Me	Me	СН	Z	Z	S
1617	СООН	Phenyl	- CH=CH- CH ₂ -	4-Cl-Phenyl	OMe	сн ₂ -0	-CH ₂ -C	Z	N	0
1-192	СООН	Phenyl	- СН=СН- СН2-	4-i PrPhenyl	Me	Me	КЭ	Z	N	0
F-193	НООЭ	Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1-194	нооэ	Phenyl	-CH ₂ -CH ₂ -	4-SMe-Phenyl	ОМе	CH ² - CH	CH2-CH2-C	Z	Z	0
1-195	НООЭ	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	0- CH ₂	CH2-CH2-C	Z	Z	0
1-196	КООН	4-CF ₃ -Phenyl	- СН ₂ -СН ₂ -	3-OMe-Phenyl	OMe	Me	СН	Z	Z	0
1-197	СООН	Phenyl	- CH ₂ -CH ₂ -	Naphth-2-yl	Me	Me	Z	Z	СН	0
F-198	Н000	Phenyl	-CH ₂ -CH ₂ -	1-Me-Naphth-2-yl	Ethyl	Me	СН	Z	Z	0
1-199	Н000	Phenyl	- CH ₂ -CH ₂ -	1-Me-Naphth-2-yl	ОМе	CH ₂ -CH	CH2-CH2-CH2-C	Z	Z	0
1–200	COOMe	Phenyl	- CH ₂ -CH ₂ -	Naphth-2-yl	ОМе	0-CH ₂	CH2-CH2-C	Z	Z	0
1-201	COOE	Phenyl	-CH ₂ -CH ₂ -	4-OEt-Phenyl	CF3	Me	СН	Z	Z	0
1-202	НООЭ	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OEt-Phenyl	CF ₃	Me	СН	Z	Z	0
1-203	СООН	Phenyl	- CH ₂ -CH ₂ -	4-OEt-Phenyl	ОМе	Me	СН	Z	Z	0
1-204	СООН	Phenyl	- CH ₂ -CH ₂ -	Cyclohexyl	Me	Me	Z	Z	Z	0
1–205	СООН	Phenyl	- CH ₂ -CH ₂ -	Cyclohexyl	Ethyl	Me	СН	Z	Z	0
1-206	Tetrazol	Phenyl	- CH ₂ -CH ₂ -	4-OEt-Phenyl	OMe	Me	СН	Z	Z	0
1-207	нооэ	Phenyl	- СН=СН- СН ₂ -	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1–208	нооэ	Phenyl	- СН=СН- СН ₂ -	3,4-Di-OMe-Phenyl	OMe	0-CH ₂	-CH2-C	Z	z	0
1–209	СООН	Phenyl	- CH ₂ -CH ₂ -	4-OH-Phenyl	Me	Me	СН	Z	Z	0
1-210	СООН	Phenyl	-CH ₂ -CH ₂ -	4-OH-Phenyl	Ethyl	Me	Z	Z	СН	0
1-211	СООН	4-CF ₃ -Phenyl	- CH2-CH2-	3,4-Di-OMe-Phenyl	Me	Mc	Z	Z	Z	C
1-212	НООЭ	4-CF3-Phenyl	-CH ₂ -CH ₂ -	3,4-Di-OMc-Phenyl	Ethyl	Me	СН	Z	Z	C

2	181	R4 R5	0	R6	R ²	R3	Z	×	>	<u> </u>
13	H000	Phenyl	CH2-CH2-	3-OMe-Phenyl	OMe	0-CH ₂	-CH ₂ -C	z	z	0
1-214	СООН	Phenyl	- CH ₂ -CH ₂ -	2-OMe-Phenyl	CF_3	Me	СН	Z	Z	0
1-215	COOH	Phenyl	-CH ₂ -CH ₂ -	4-OEt-Phenyl	Ethyl	Me	СН	Z	Z	S
1-216	COOH	Phenyl	- C(CH ₃) ₂ -CH ₂ -	4-OEt-Phenyl	OMe	нэ <i>-</i> гнэ	CH2-CH2-C	z	Z	0
1-217	H000	Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	Me	Me	СН	z	Z	0
1–218	C00H	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-CI-Phenyl	ОМе	CH ₂ -CH	CH2-CH2-C	Z	Z	0
1-219	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4 Cl-Phenyi	OMe	0-CH ₂	CH2-CH2-C	Z	z	c
1–220	Н000	Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	Me	Me	z	z	Z	0
1-221	СООН	Phenyl	- O-CH ₂ -СH ₂ -	4-OEt-Phenyl	ОМе	0-CH ₂	-CH ₂ -C	z	z	0
1-222	Н000	4-Br-Phenyl	-CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	CF3	Me	Z	z	H	0
1–223	H000	Phenyl	- CH=CH- CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	СН	z	Z	0
1-224	Н000	Phenyl	- СН=СН- СН ₂ -	3,4-Di-OMe-Phenyl	Me	Me	Z	z	Z	C
1-225	Н000	4-1-Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	ОМе	Me	СН	Z	z	0
1–226	1000	Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	Me	Me	СН	Z	HJ	0
1-227	СООН	4-CF ₃ -Phenyl	-CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	Me	CH	Z	Z	0
1–228	НООЭ	4-CF ₃ -Phenyl	-CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	СН	z	z	0
1-229	Н000	Phenyl	-CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	Ethyl	Me	Z	z	Z	0
1-230	H000	Phenyl	-CH2-CH2-	Cyclohexyl	ОМе	Me	СН	Z	z	\circ
1-231	H005	Phenyl	- CH ₂ -CH ₂ -	Cyclohexyl	Mc	Me	СН	z	Z	0
1-232	Н000	Phenyl	- CH(OH)-CH ₂ -	3,5-Di-OMe-Phenyl	Ethyl	Me	СН	2	Z	0
1-233	H000	Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-4-CI-Phenyl	OMe	CH ₂ - CF	CH ₂ -CH ₂ -C	Z	z	0
1-234	Н000	Phenyl	-CH2-CH2-CH2-	4-CI-Phenyl	Me	Me	z	z	Z	0
1-235	C00H	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-CI-Phenyl	Ethyl	Me	СН	z	Z	0
1–236	COOMe	Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	OMe	0-CH ₂	CH ₂ -CH ₂ -C	z	Z	0

Nr.	RI	R4, R5	Q	R6	R ²	R ³	7	×	Y	
1-237	СООН	Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	Ethyl	Mc	СН	z	z	c
H-238	СООН	Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	ОМе	CH ₂ -CH	CH ₂ -CH ₂ -C	z	z	0
1-239	Н00)	Phenyl	- СН=СН- СН ₂ -	3,4-Di-OMe-Phenyl	CF_3	Me	СН	z	z	0
1-240	СООН	Phenyl	- СН=СН- СН ₂ -	3,4-Di-OMc-Phenyl	ОМе	Me	СН	z	z	c
1-241	СООН	Phenyl	- CH ₂ -CH ₂ -	2-Me-3-OMe-Phenyl	CF3	Me	СН	z	z	0
1–242	СООН	Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	ОМе	Me	Z	z	Z	0
1-243	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Ethyl	Me	СН	z	z	0
I-244	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyi	ОМе	0-CH ₂	CH2-CH2-C	z	z	0
1-245	СООН	Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	ОМе	OMe	СН	z	z	c
1-246	СООН	Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	ОМе	Me	СН	z	z	0
1-247	C00H	Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	Me	Me	СН	z	H	0
I-248	Н000	Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	Me	Me	Z	z	H	0
1-249	C00H	Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	Ethyl	Me	СН	z	z	S
1–250	H000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-CI-Phenyl	ОМе	Me	СН	z	Z	0
1-251	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-CI-Phenyl	Me	Me	СН	z	Z	0
1–252	СООН	4-F-Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	ОМе	CH ₂ - CH	CH2-CH2-C	z	Z	0
1-253	COOH	Phenyi	- CH ₂ -CH(CH ₃)-	3-OMe-Phenyi	OMe	0-CH ₂	CH2-CH2-C	z	z	0
1-254	СООН	Phenyl	- CH ₂ -CH ₂ -	Cyclohexyl	CF_3	Me	СН	z	z	0
1–255	COOH	Phenyl	- CH=CH- CH ₂ -	4-OMc-Phenyl	ОМе	CH ₂ -CH	CH2-CH2-C	z	Z	0
1-256	COOH	Phenyl	- СН=СН- СН ₂ -	4-OMe-Phenyl	ОМе	0-CH ₂	CH2-CH2-C	z	z	c
1-257	Н00Э	Phenyl	- CH ₂ -CH ₂ -	Cyclohexyl	ОМе	ОМе	СН	z	z	0
1-258	Tetrazol	Phenyl	- CH ₂ -CH ₂ -	2-OMe-Phenyl	CF_3	Me	СН	z	z	c
1–259	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Mc	СН	z	z	C
1-260	СООН	4-CF ₃ -Phenyl	-CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	Z	z	z	C

Nie	101	R4 R5	C	Ro	R ²	R ³	7	×	>	 ≽
1-261	COOH	Phenyl	CH(2-OMe-Phenyl)-CH ₂ -	2-OMe-Phenyl	ОМе	Me	СН	Z	z	0
1-262	H000	Phenyl	-CH2-CH2-	2-OMe-4-Br-Phenyl	Me	Me	СН	Z	Z	0
1–263	СООН	Phenyl	-CH2-CH2-	3-OMe-Phenyl	Me	Me	СН	Z	Z	0
1-264	HOOO	Phenyl	-CH2-CH2-	3-OMc-Plienyl	Me	Me	Z	z	z	0
H-265	Н00Э	Phenyl	- CH ₂ -CH ₂ -	2-OMe-Phenyl	Me	Me	Z	z	CH	0
1-266	H000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Et-Phenyl	ОМе	0- CH ₂	-CH ₂ -C	Z	z	0
1-267	Н00Э	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-CI-Phenyl	CF3	Me	СН	Z	z	0
1-268	H000	Phenyl	- CH ₂ -CH ₂ -	2-OMe-Phenyl	Ethyl	Me	СН	z	Z	S
1-269	H000	Phenyl	- CH ₂ -CH ₂ -	3,4,5-Tri-OMe-Phenyl	OMe	0- CH ₂	-CH ₂ -C	Z	z	0
1-270	Н000	Phenyl	-CH ₂ -CH ₂ -	4-SMe-Phenyl	CF3	Me	CH	Z	Z	0
1-271	H000	Phenyl	- CH=CH- CH ₂ -	4-OMe-Phenyl	Me	Me	Z	z	z	0
1-272	H000	Phenyl	-CH=CH-CH ₂ -	4-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1-273	C00H	4-Br-Phenyl	-CH ₂ -CH ₂ -	2-OMe-Phenyl	ОМе	CH ₂ -CF	CH2-CH2-C	z	z	0
1-274	C00H	Phenyl	- CH(OH)-СН ₂ -	2-OMe-Phenyl	ОМе	0-CH ₂	0- CH ₂ -CH ₂ -C	z	z	0
1-275	СООН	4-Et-Phenyl	- СН ₂ -СН ₂ -	4-Me-Phenyl	ОМе	0-CH ₂	CH ₂ -CH ₂ -C	Z	z	0
1-276	Н000	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	Me	СН	Z	z	0
1-277	H000	4-CI-Phenyl	- CH(4-OMe-Phenyl)-CH ₂ -	4-OMe-Phenyl	OMe	Me	СН	Z	Z	0
1-278	Н000	4-CI-Phenyl	- CH ₂ -CH ₂ -	3-Me-4-OMe-Phenyl	Me	Me	СН	z	z	C
1-279	Н000	4-CI-Phenyl	-CH2-CH2-	3,4 Methylendioxyphenyl	Me	Me	СН	z	Z	0
1-280	Н000	4-CI-Phenyl	- CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	Me	Me	Z	z	z	0
1-281	Н000	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Ethyl	Me	Z	z	z	c
1-282	COOH	Phenyl	· CH2-CH2- CH2-	4-Et-Phenyl	Ethyl	Me	СН	Z	z	0
1-283	COOH	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Et-Phenyl	OMe	CH ₂ - CF	CH ₂ -CH ₂ -C	Z	z	0
1-284	COOH	Phenyl	- CH2-CH2-	4-Et-Phenyl	OMe	CH ₂ - CF	CH2-CH2-C	Z	2	C
								!		

Nr.	RI	R4, R5	δ	R6	R ²	R3	Z	×	\	 ≥
1–285	СООН	Phenyl	- СН ₂ -СН ₂ -	4-Et-Phenyl	ОМе	0-CH ₂	-CH ₂ -C	z	Z	0
1–286	СООН	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Ethyl	Me	СН	Z	z	S
I-287	СООН	Phenyl	- СН=СН- СН³-	4-OMc-Phenyl	ОМе	Me	СН	Z	z	0
I-288	СООН	Phenyl	- СН - СН- СН ₂ -	4-OMe-Phenyl	Me	Me	СН	Z	z	0
1-289	СООН	3,4-Di-Cl-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	0-CH ₂	-CH ₂ -C	Z	z	0
I-290	COOE	4-Cl-Phenyl	- СН(ОН)-СН ⁵ -	3,4-Di-OMe-Phenyl	OMe	Me	СН	z	z	0
1-291	НООЭ	4-Et-Phenyl	- СН ₂ -СН ₂ -	4-Me-Phenyl	Me	Me	Z	z	z	0
1-292	Н000	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	Ethyi	Me	СН	z	Z	0
1-293	НООО	Phenyl	-CH ₂ -CH ₂ -	3-OMe-Phenyl	CF3	Me	СН	Z	Z	C
1-294	СООН	Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	ОМе	Me	СН	Z	z	0
1-295	СООН	4-CI-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	СН	z	НЭ	င
F-296	СООН	4-CI-Phenyl	- C(CH ₃) ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	Z	Z	z	0
L-297	СООН	Phenyl	- CH ₂ -CH ₂ -	3,4,5-Tri-OMo-Phenyl	Ethyl	Me	СН	z	z	0
1-298	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Et-Phenyl	Me	Me	СН	z	z	C
1-299	ЮОЭ	Phenyl	-CH2-CH2- CH2-	4-Et-Phenyl	Me	Me	z	Z	z	0
F-300	Н000	Phenyl	-CH ₂ -CH ₂ -	3,4,5-Tri-OMe-Phenyl	OMe	CH ₂ -CF	CH2-CH2-C	Z	z	0
1-301	Н000	4-CI-Phenyl	- CH2-CH2-	3,4-Di-OMe-Phenyl	Ethyl	Me	Z	Z	Z	0
1-302	СООН	3,4-Di-Cl-Phenyl	-CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	OMe	0-CH ₂	CH2-CH2-C	Z	Z	0
F-303	COOH	Phenyl	- CH ₂ -CH ₂ -	3,4,5-Tri-OMe-Phenyl	OMe	CH ₂ -CF	CH ₂ -CH ₂ -C	Z	z	0
I-304	СООН	Phenyl	-CH=CH-CH ₂ -	4-OMe-Phenyl	CF ₃	Me	СН	Z	Z	0
1-305	Н000	4-CI-Phenyl	- CH ₂ -CH ₂ -	3-Me-4-Et-Phenyl	OMe	Me	СН	Z	Z	0
1-306	СООН	4-CI-Phenyl	- CH ₂ -CH ₂ -	3-Me-4-Et-Phenyl	SMe	Me	СН	Z	Z	0
1-307	СООН	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	OMe	Me	СН	Z	Z	0
1-308	Н00.	4-EI-Phenyl	-CH ₂ -CH ₂ -	4-Mc-Phenyl	Me	Mc	СН	Z	Z	0
1-309	Н000	4-CI-Phenyl	-CH ₂ -CH ₂ -	4-iPr-Phenyl	ОМе	0-CH ₂	CH ₂ -CH ₂ -C	Z	Z	0

Z	Ri	R4, R5	9	R6	R ²	R³	2	X	Y	*
1-310	COOH	4-CI-Phenyl	- CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	OMe	Me	СН	Z	Z	0
1-311	H000	4-CI-Phenyl	-CH ₂ -CH ₂ -	4-Br-Phenyl	Me	Me	Z	Z	Z	0
1-312	СООН	Phenyl	-CH2-CH2-	4-Et-Phenyl	Me	Me	Z	Z	Z	C
1-313	СООН	Phenyl	-CH ₂ -CH ₂ -	4-Et-Phenyl	Ethyl	Me	СН	Z	z	0
1-314	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Et-Phenyl	CF3	Me	СН	Z	Z	0
1-315	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Et-Phenyl	ОМе	Me	СН	Z	Z	0
F-316	Н00Э	4-CI-Phenyl	-CH2-CH2-	4-Br-Phenyl	Ethyl	Me	Z	Z	Z	0
1-317	Н000	4-Cl-Phenyi	- CH(4-Br-Phenyl)-CH ₂ -	4-Br-Phenyl	OMe	0- CH ₂	-CH ₂ -C	Z	Z	0
1-318	Н000	4-Cl-Phenyl	-CH(OH)-СН ₂ -	4-SMe-Phenyl	ОМе	Me	СН	Z	Z	0
1-319	СООН	Phenyl	-CH2-CH2-CH2-	3,4,5-Tri-OMe-Phenyl	Me	Me	Z	Z	Z	0
1–320	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4,5-Tri-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1-321	НО00	Phenyl	-CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	ОМе	CH ₂ -CH	CH2-CH2-C	Z	z	0
1–322	НООЭ	Phenyl	-CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyi	ОМе	0-CH ₂	CH ₂ -CH ₂ -C	Z	z	0
1-323	НООЭ	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	Ethyl	Me	СН	Z	Z	0
I-324	СООН	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	ОМе	0-CH ₂	-CH ₂ -C	Z	z	0
1-325	Н000	4-Cl-Phenyl	- C(CH ₃) ₂ -CH ₂ -	4-SMe-Phenyl	Me	Me	СН	Z	СН	0
1–326	Н000	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	Me	Me	z	Z	Z	S
H327	Н000	Phenyl	-CH2-CH2-	3,4,5-Tri-OMe-Phenyl	Me	Me	СН	Z	Z	0
1-328	СООН	Phenyl	- CH2-CH2-	3,4,5-Tri-OMe-Phenyl	Me	Me	Z	Z	z	0
1–329	НООЭ	4-CI-Phenyl	- O-CH ₂ -CH ₂ -	4-SMe-Phenyl	Ethyl	Me	СН	Z	z	0
1-330	СООН	Phenyl	- CH2-CH2- CH2-	4-Me-Phenyl	Ethyl	Me	СН	z	z	0
1-331	СООН	Phenyl	- CH2-CH2- CH2-	4-Me-Phenyl	ОМе	0-CH ₂	CH2-CH2-C	Z	z	C
1–332	СООН	4-CI-Phenyl	-CH2-CH2-	4-SMc-Phenyl	OMe	0-Сн	сн=сн-с	Z	Z	0
1-333	СООН	4-CIPhenyl	-СН(ОН)-СН ² -	4-OEI-3-OMc-Phenyl	ОМс	Mc	СН	Z	z	c
1–334	СООН	4-Cl-Phenyl	- CH(4-SMe-Phenyl)-CH2-	4-SMe-Phenyl	Me	Me	СН	Z	Z	0

Z	R	R4, R5	Q	R6	R ²	R³	2	Х	Y	⋧
1–335	СООН	Phenyl	- CH ₂ -CH ₂ -	3,4,5-Tri-OMe-Phenyl	OMe	Me	СН	Z	z	0
I-336	СООН	Phenyl	- СН ₂ -СН ₂ -	3,4,5-Tri-OMe-Phenyl	Me	Me	СН	Z	Z	0
1-337	СООН	4-CI-Phenyl	- СН ₂ -СН ₂ -	4-iPr-Phenyl	Me	Me	Z	Z	z	0
1–338	н000	4-CI-Phenyl	- СН ₂ -СН ₂ -	4-iPr-Phenyl	Ethyl	Me	СН	z	Z	0
1–339	н000	4-Me-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	СН	Z		0
1-340	СООН	4-Me-Phenyl	-CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	Z	Z	N	0
1-341	СООН	3,4-Di-Cl-Phenyl	-CH ₂ -CH ₂ -	4 OEt-3 OMe-Phenyi	Me	Me	Z	Z	N	0
1-342	СООН	Phenyl	- СН2-СН2-	4-Et-Phenyl	OMe	Me	СН	Z	Z	0
1–343	СООН	Phenyl	-CH ₂ -CH ₂ -	4-Et-Phenyl	Me	Me	СН	Z	Z	0
I-344	1000	4-Cl-Phenyl	-CH2-CH2-	4-OEt-3-OMe-Phenyl	Ethyl	Me	СН	Z	Z	S
1-345	СООН	4-CI-Phenyl	- CH(4-Me-Phenyl)-CH2-	4-Me-Phenyl	ОМе	Me	СН	Z	Z	0
1-346	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Me-Phenyl	Me	Me	СН	Z	Z	0
1–347	Н000	Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	Me	Me	Z	Z	Z	0
1-348	COOMe	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	Me	Me	СН	Z	СН	0
1-349	СООН	Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	Me	Me	Z	Z	Z	0
1–350	СООН	Phenyl	- СН ₂ -СН ₂ -	3,5-Di-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1-351	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	2-CI-Phenyl	ОМе	CH ₂ -CH	CH2-CH2-C	Z	Z	0
1-352	Н000	Phenyl	- CH ₂ -CH ₂ -	3,4,5-Tri-OMe-Phenyl	CF_3	Me	СН	Z	Z	0
1-353	н000	4-CI-Phenyl	- СН(ОН)-СН ₂ -	4-Me-Phenyl	Me	Me	Z	Z	Z	0
1–354	СООН	4-Cl-Phenyl	- CH2-CH2-	3,4 Di Me Phenyl	Ethyl	Me	СН	Z	Z	0
1-355	Н002	4-Me-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	0-CH ₂	-CH ₂ -C	Z	Z	0
H-356	КООЭ	4-Me-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	OMe	Me	СН	Z	Z	0
1-357	СООН	Phenyl	- CH ₂ -CH ₂ -	3,4,5-Tri-OMe-Phenyl	OMe	OMe	СН	Z	Z	0
1–358	СООН	Phenyi	-CH2-CH2-	3,4,5-Tri-OMe-Phenyl	ОМе	Me	СН	Z	Z	0
1-359	СООН	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	OMe	0-CH ₂	-CH2-C	Z	z	S

ž	RI	R4, R5	0	R6	R ²	R ³	2	×	Y	*
1-360	НООЭ	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-Et-Phenyl	ОМе	Me	СН	Z	Z	S
1-361	COOH	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-Et-Phenyl	Me	Me	СН	Z	СН	0
1–362	H000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Me-Phenyi	CF ₃	Me	СН	Z	z	0
1-363	COOH	Phenyl	- CH2-CH2- CH2-	4-Me-Phenyl	ОМе	Me	СН	Z	z	0
1-364	СООН	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-Et-Phenyl	Ethyl	Me	Z	Z	Z	0
1-365	H000	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-iPr-Phenyl	ОМе	Me	СН	z	z	0
1–366	COOH	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-iPr-Phenyl	Me	Me	СН	Z	Z	0
1-367	H000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	2-Cl-Phenyl	Me	Me	Z	z	Z	0
1-368	H000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	2-CI-Phenyl	Ethyl	Me	СН	Z	Z	0
1-369	H000	4-CI-Phenyl	-CH ₂ -CH ₂ -	4-Et-Phenyl	SMe	Me	СН	Z	Z	0
1-370	НООЭ	Phenyl	-CH ₂ -CH ₂ -	4-Me-Phenyl	OMe	0- CH ₂ -	2-CH2-C	Z	Z	0
1-371	H000	4-Me-Phenyl	-CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	Z	Z	Z	0
1-372	C00H	4-Me-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyi	Ethyl	Me	СН	Z	z	0
1-373	СООН	Phenyl	-CH ₂ -CH ₂ -	4-Et-Phenyl	CF3	Mc	СН	Z	Z	0
1-374	СООН	4-CI-Phenyl	- C(CH ₃) ₂ -CH ₂ -	4-Et-Phenyl	ОМе	0- CH ₂		Z	Z	0
F-375	НООЭ	4-CI-Phenyl	-CH ₂ -CH ₂ -	4-CI-Phenyi	ОМе	Me	СН	Z	Z	S
1-376	Н000	4-CI-Phenyl	-CH2-CH2-	1-Me-Naphth-2-yl	ОМе	Me	СН	Z	Z	c
1-377	НООЭ	Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	ОМе	Me	СН	Z	z	0
1-378	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4 Methylendioxyphenyl	Ednyl	Me	СН	Z	z	0
1-379	Н00Э	Phenyl	-CH2-CH2-CH2-	3,4-Methylendioxyphenyl	ОМе	0- CH ₂		Z	Z	0
I-380	Н000	Phenyl	-CH2-CH2-	3,5-Di-OMe-Phenyl	Me	Me	СН	Z	Z	0
1–381	COOH	4-Cl-Phenyl	- CH(4-OEt-Phenyl)-CH2-	4-OEt-Phenyl	OMe	Me	СН	z	z	0
1–382	COOH	4-Cl-Phenyl	-СН(ОН)-СН ₂ -	4-OEt-Phenyl	Me	Me	СН	Z	z	0
1–383	НООО	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	2-CI-Phenyl	OMc	Mc	СН	z	z	c
1-384	СООН	Phenyl	- CH2-CH2- CH2-	2—CI-Phenyl	Me	Me	СН	Z	Z	

Nr.	\mathbb{R}^1	R4, R5	ð	R6	R ²	R ³	2	×	→	≱
1–385	СООН	Phenyl	-CH2-CH2-	3,4-Di-OMe-Phenyl	OMe	0-CH ₂	-CH ₂ -C	z	z	0
1–386	СООН	Phenyl	-CH2-CH2-	3,4,5-Tri-OMe-Phenyl	CF3	Me	СН	z	z	0
1-387	COOH	4-Mc-Phenyl	-СH ₂ -СH ₂ -	4-OMc-Phenyl	OMc	Me	СН	z	z	C
F-388	COOH	4-Me-Phenyl	- CH ₂ -CH ₂ -	4—OMe—Phenyl	Me	Me	CH	z	z	0
1–389	Н000	4-Cl-Phenyl	- CH2-CH2-	4-OEt-Phenyl	Ethyl	Me	Z	z	H	0
1–390	СООН	3,4-Di-Cl-Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	ОМе	Me	СН	z	z	0
1-391	СООН	4-Cl-Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-4-CI-Phenyl	Me	Me	СН	z	z	0
1–392	СООН	4-Cl-Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	Me	Me	Z	z	픙	0
1–393	СООН	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-OEt-3-OMe-Phenyl	Ethyl	Me	СН	z	z	0
F394	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4—Methylendioxyphenyl	Me	Me	СН	Z	z	0
1-395	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Methylendioxyphenyl	Me	Me	Z	z	z	0
H-396	Н000	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-OEt-3-OMe-Phenyl	OMe	0-CH ₂	CH2-CH2-C	z	z	0
1-397	Н000	4-CI-Phenyl	- C(CH ₃) ₂ -CH ₂ -	3-OMe-Phenyl	CF ₃	Me	СН	z	z	0
F-398	Н00Э	Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	Ethyl	Me	СН	z	z	0
1–399	СООН	4-Mc-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4 Mc Phenyl	Ethyl	Me	СН	z	z	C
I-400	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	2-CI-Phenyl	CF3	Me	СН	z	z	0
1-401	Н000	Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	OMe	CH ₂ - CH	CH2-CH2-C	z	z	0
I-402	СООН	4-Cl-Phenyl	- C(CH ₃) ₂ -CH ₂ -	3-OMe-Phenyl	Me	Me	СН	z	z	0
<u>1–403</u>	НООЭ	4-CF ₃ -Phenyl	-CH ₂ -CH ₂ -	4-Me-Phenyl	Ethyl	Me	СН	Z	z	0
1-404	НООЭ	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyi	ОМе	0-CH ₂	-CH ₂ -C	z	Z.	0
1-405	Н000	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	OMe	Me	СН	z	z	S
T406	СООН	4-Et-Phenyl	- CH ₂ -CH ₂ -	3-Me-4-OMe-Phenyl	Me	Me	СН	Z	z	0
1-407	СООН	Phenyl	- CH ₂ -CH ₂ -	4-OEt-Phenyl	OMe	0-CH ₂	CH ₂ -CH ₂ -C	z	z	0
1-408	СООН	Phenyl	- СН ₂ -СН ₂ -	3,5-Di-OMe-Phenyl	CF3	Mc	СН	z	z	0
1-409	Н000	4-Et-Phenyl	- CH ₂ -CH ₂ -	3-Me-4-OMe-Phenyl	Me	Me	Z	Z.	СН	0

17.	1 0	D4 D5		R6	R2	R ³	2	×	λ	*
NI.	ריסטם	Dhenyl	. CHCH CH	3.4—Methylendioxyphenyl	CF_3	Me	СН	z	Z	0
	1000	Dhonyl	CH1-CH1-	3.4 Methylendioxyphenyl	OMe	Me	СН	z	z	0
	2000	4_Ft_Phenyl	-CH ₂ -CH ₂ -	4-OMe-Phenyl	Ethyl	Me	СН	СН	Z	0
7 7 7	HOOL	Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
7 7 7	COOH	Phenyl	-CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	CH ₂ -CH	CH ₂ -CH ₂ -C	z	z	0
717	HO02	4-Me-Phenvi	-CH2-CH2-CH2-	4-Me-Phenyl	Me	Me	СН	z	Z	0
1 2	COOH	4-Me-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Me-Phenyl	Me	Me	Z	Z	Z	0
1417	F007	4 Et Phenyl	-CH2-CH2-	3,4 Di-OMe-Phenyl	SMe	Me	СН	2	Z	0
1418	COOMe	4-Et-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	СН	Z	z	0
1419	COOH	4-CF ₂ -Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	Me	Me	СН	z	z	0
1-420	COOH	4-CF ₃ -Phenyl	-CH2-CH2-	4-Me-Phenyl	Me	Me	Z	z	Z	0
162	HOOL	4-Et-Phenyl	-CH2-CH2-	3,4-Di-OMe-Phenyl	Me	Me	Z	Z	z	S
1422	COOH	4-El-Phenyl	-CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	핑	Z	0
1.422	COCH	4-Cl-Phenyl	- CH ₂ -	4-OEt-3-OMe-Phenyl	Me	Me	СН	Z	Z	0
1 424	HOO2	4-CI-Phenyl	-СН,-СН,-	4-OEt-3-OMe-Phenyl	Me	Me	Z	z	Z	0
1425	COOH	4-Ei-Phenvl	-CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	0-С Н	СН=СН-С	Z	Z	0
1426	COOH	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	Ethyl	Me	СН	z	Z	0
1427	H000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	OMe	0-CH ₂	CH ₂ -CH ₂ -C	z	z	0
1-428	HO03	Phenyl	- CH ₂ -CH ₂ -	4-Mc-Phenyl	Me	Me	СН	z	z	
1-479	HOOS	Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	Me	Me	Z	z	z	0
1430	COOH	4-Et-Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	ОМе	CF ₃	СН	Z	Z	0
7	COOH	4-Me-Phenyl	- CH2-CH2-	4-SMe-Phenyl	OMc	Me	СН	z	z	0
1-432	Н000	4-Mc-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	OMe	0-CH ₂) L	Z	z	0
1433	C00H	4-Et-Phenyl	- CH(3-OMc-Phenyl)-CH2-	3-OMe-Phenyl	Me	Me	СН	Z	z	c
1-434	H000	4-CI-Phenyl	- CH2-CH2-	Naphth-2-yl	Me	Me	СН	Z	Z	0

Nr.	R	R4, R5	ð	Ré	R ²	R³	2	×	>	*
I-435	КООН	4-CF ₃ -Phenyl	- CH2-CH2-	4-SMe-Phenyl	OMe	0-CH ₂	-CH ₂ -C	Z	z	0
I-436	СООН	4-CF ₃ -Phenyl	-CH2-CH2-	4-Me-Phenyl	ОМе	Me	СН	Z	Z	0
1-437	Н00Э	4-CI-Phenyl	- CH ₂ -CH ₂ -	Naplith-2-yl	Mc	Me	Z	Z	z	C
1–438	Н00Э	4-Et-Phenyl	- СН(ОН)-СН ₂ -	3-OMe-Phenyl	Me	Me	Z	Z	Z	0
1-439	СООН	Phenyl	- CH ₂ -CH ₂ -	4-OEt-Phenyl	Ethyl	Me	СН	Z	Z	0
1-440	НООЭ	Phenyl	- CH ₂ -CH ₂ -	4-OEt-Phenyl	ОМе	CH ² -CH	CH2-CH2-C	Z	z	0
1-441	Н00Э	4 Et-Phenyl	-CH ₂ -CH ₂ -	3-OMe-Phenyl	Me	Me	СН	Z	CH	C
1-442	СООН	Phenyi	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	Me	Me	СН	N	Z	0
1-443	НООЭ	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	Me	Me	Z	Z	Z	0
F-444	СООН	4-Et-Phenyl	- C(CH ₃) ₂ -CH ₂ -	3-OMe-Phenyl	ОМе	O- CH ₂	-CH2-C	Z	Z	0
1-445	СООН	Phenyl	- СН ₂ -СН ₂ -	3,4-Di-OMe-Phenyl	Me	Me	СН	N	N	0
1-446	СООН	Phenyi	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	Z	Z	z	0
1-447	Н000	4-Mc-Phenyl	- CH2-CH2- CH2-	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1-448	СООН	4-Me-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	OMe	O- CH ₂	-CH2-C	Z	Z	0
1-449	СООН	4-Et-Phenyl	-CH2-CH2-	4-SMc-Phenyl	ОМе	Me	СН	N	Z	S
1-450	СООН	4-CI-Phenyl	-CH ₂ -CH ₂ -	2-OMe-Phenyl	Me	Me	СН	Z	Z	0
1-451	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	Me	Me	Z	Z	Z	0
I-452	Н00.	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	Ethyl	Me	СН	Z	2	0
1-453	СООН	4-Cl-Phenyl	- CH ₂ -CH ₂ -	2-OMe-Phenyl	Me	Me	Z	Z	N	0
1–454	COOBA	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-SMc-Phenyl	Me	Me	СН	N	Z	0
1-455	Н000	4-Et-Phenyl	- CH2-CH2-	4-SMe-Phenyl	Ethyl	Me	СН	СН	N	0
1-456	СООН	4-Et-Phenyl	-CH2-CH2-	4-Mc-Phenyl	ОМе	Me	Z	Z	Z	C
1-457	СООН	4-CI-Plicnyl	- CH2-CH2-	4-SMc-Phenyl	ОМс	0-СН ₂	-CH ₂ -C	Z	Z	0
1-458	СООН	Pheny!	-CH ₂ -CH ₂ -CH ₂ -	4-SMc-Phenyl	CF3	Me	СН	Z	Z	0
1–459	НООЭ	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	ОМе	Me	СН	Z	Z	0

Z.	RI	R4, R5	Ò	R6	R ²	R ³	Z	X	Y	≱
1460	H000	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-OE1-3-OMe-Phenyl	OMc	Ме	СН	Z	Z	0
1461	Н000	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	Z	СН	Z	0
1-462	H000	Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	CF ₃	Me	СН	Z	Z	0
1-463	COOH	4-Me-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	Me	СН	z	Z	0
148	Н00Э	4-Me-Phenyl	-CH2-CH2-CH2-	3,4—Di-OMe-Phenyl	Me	Me	СН	Z		0
1-465	COOH	Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	ОМе	Me	СН	Z		0
1-466	СООН	4-CF ₃ -Phenyl	- C(CH ₃) ₂ -CH ₂ -	4-OMe-Phenyl	Ethyl	Me	СН	z	z	c
1-467	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4_SMe_Phenyl	ОМе	Me	СН	z	Z	0
1-468	Н000	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	Me	Me	СН	Z	Z	0
1-469	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	СН	Z	0
1470	C00H	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-CI-Phenyl	ОМе	0- CH ₂	CH ₂ -CH ₂ -C	Z	Z	0
147	Н00Э	4-Cl-Phenyl	- CH ₂ -CH ₂ -	Naphth-2-yl	ОМе	Me	СН	Z	z	0
1-472	СООН	4-CF ₃ -Phenyl	-CH2-CH2-	3,4-Di-OMe-Phenyl	OMe	0- CH ₂	-CH ₂ -C	Z	Z	S
1473	C00H	Phenyl	-CH ₂ -CH ₂ -	4-OEt-Phenyl	Me	Me	СН	Z	z	0
1.474	C00H	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	z	Z	0
1475	H000	Phenyl	-CH2-CH2-CH2-	3,4-Di-OMe-Phenyl	OMe	0-CH ₂	CH2-CH2-C	Z	z	0
1476	НООЭ	Phenyl	- CH ₂ -CH ₂ -	4-OEt-Phenyl	Me	Me	Z	Z	z	0
1-477	C00H	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	3-OMc-Phenyl	Ethyl	Me	Z	Z	Z	0
1-478	НООЭ	4-CF ₃ -Phenyl	-CH ₂ -CH ₂ -	2-Me-3-OMe-Phenyl	ОМе	0-CH ₂		z	z	0
1479	H000	4-Me-Phenyl	-CH2-CH2- CH2-	4-OMe-Phenyl	Ethyl	Me	СН	Z	z	0
1-480	СООН	4-Me-Phenyl	- CH2-CH2- CH2-	4-OMe-Phenyl	ОМе	0-CH ₂	-CH ₂ -C	z	z	0
[-48]	СООН	Phenyl	-CH2-CH2-	3,4-Di-OMe-Phenyl	OMe	ОМе	СН	Z	Z	0
1-482	COOH	Phenyl	-СH ₂ -СH ₂ -	3,4-Di-OMe-Phenyl	ОМе	Me	СН	Z	Z	0
1483	Н000	4-CF ₃ -Phenyl	-CH2-CH2-	3-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0

ž	R	R4, R5	8	R6	R ²	R³	2	X	Y	≥
1-484	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	ОМе	O-CH ₂	-CH ₂ -C	Z	Z	0
1-485	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	3-Me-4-SMe-Phenyl	ОМе	Me	СН	Z	Z	0
1-486	СООН	4-CI-Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	ОМе	0- CH ₂	-CH ₂ -C	Z	Z	0
1-487	СООН	4-CI-Phenyl	-CH ₂ -CH ₂ -	2-OMe-Phenyl	OMe	Me	СН	Z	Z	0
1-488	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	Cyclohexyl	ОМе	Me	СН	2	Z	0
1-489	Н000	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	Me	Me	СН	Z	Z	S
1-490	С.00Н	Phenyl	- СН ₂ -СН ₂ - СН ₂ -	3,4-Di-OMe-Phenyl	Me	Me	СН	Z	Z	0
1-491	НООЭ	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	N	Z	Z	0
1-492	СООН	4-Mc-Phenyl	- СН ₂ -СН ₂ -	Cyclohexyl	ОМе	Me	СН	Z	Z	0
1493	Н000	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	Me	Me	N	Z	Z	0
1-494	СООН	4-CI-Phenyl	- СН ₂ -СН ₂ -	4-SMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1-495	НООЭ	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	ОМе	0-CH ₂	CH ₂ -CH ₂ -C	Z	Z	0
1-496	НООЭ	4-Me-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	Me	СН	Z	Z	0
1-497	НООЭ	4-Me-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyi	Me	Me	СН	Z	Z	S
1-498	нооэ	Phenyl	-CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	ОМе	CH ₂ - CF	CH2-CH2-C	Z	Z	0
1-499	нооэ	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	Phenyl	ОМе	Me	СН	Z	Z	0
1–500	НООЭ	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	Phenyl	Me	Me	СН	Z	Z	0
1-501	СООН	Phenyl	- CH ₂ -CH ₂ -	3,4—Methylendioxyphenyl	ОМе	0-CH ₂	CH2-CH2-C	Z	Z	0
1-502	СООН	4-Mc-Phenyl	-CH2-CH2-	3,4-Di-OMe-Phenyl	Me	Me	Z.	СН	Z	0
1–503	СООН	4-Mc-Phenyl	- CH2-CH2-	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	Z	Z	S
1-504	СООН	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-CI-Phenyl	Me	Me	Z	Z	Z	0
1-505	СООН	4-CI-Phenyl	- CH2-CH2-	4-CI-Phenyl	Ethyl	Me	СН	Z	Z	0
905-1	нооэ	Phenyl	- CH2-CH2- CH2-	3.4-Di-OMo-Phenyl	CF_3	Me	СН	Z	Z	0
1-507	СООН	Phenyl	- CH2-CH2- CH2-	3,4-Di-OMc-Phenyl	ОМс	Me	СН	Z	Z	0
1–508	СООН	4-Me-Phenyl	-CH2-CH2-	Cyclopentyl	OMe	Me	СН	Z	z	0

į	1Q R6		R ²	R ³	Z	X	W Y
-CH2-CH2-		4-OEt-Phenyl	CF ₃	Me	НЭ	N	O N
- CH ₂ -CH ₂ -		4-OEt-Phenyl	OMe	Me	СН	z	0 N
- CH ₂ -CH ₂ - CH ₂ -		4-Me-Phenyl	Me	Me	N	Z	0
- CH ₂ -CH ₂ -		4-Me-Phenyl	Ethyl	Me	СН	z	0 Z
· CH ₂ -CH ₂ -	4-8	4-SMe-Phenyl	OMe	Me	СН	Z	S
- CH ₂ -CH ₂ -	4-8	4-SMe-Phenyl	Ethyl	Me	Z		0 Z
- CH ₂ -CH ₂ -	4-N	4-Me-Phenyl	OMe	0-CH ₂	CH ₂ -CH ₂ -C	z	0 z
- CH ₂ -CH ₂ -	H ₂ - Phenyl	myl	CF3	Me	СН	z	0 Z
-CH2-CH2-	4-C	4 OMe-Phenyl	ОМе	0-CH ₂	CH ₂ -CH ₂ -C	z	0 Z
- CH ₂ -CH ₂ -	3,4	3,4-Di-OMe-Phenyl	CF3	Me	СН	z	0 Z
-CH ₂ -CH ₂ -	4-S	4-SMe-Phenyl	Ethyl	Me	СН	СН	0 Z
-CH2-CH2-	3.5	3-OMc-Phenyl	Me	Me	Z	z	0 Z
-CH2-CH2-	4	3-OMe-Phenyl	Ethyl	Me	СН	z	0 Z
- CH ₂ -CH ₂ - CH ₂ -		4-OMe-Phenyl	ОМе	CH ₂ - CF	CH2-CH2-C		0 Z
- CH ₂ -CH ₂ -		4-OMe-Phenyl	ОМе	0-CH ₂	0-CH ₂ -CH ₂ -C		O Z
-CH ₂ -CH ₂ -		4-Me-Phenyl	ОМе	0- CH ₂	CH ₂ -CH ₂ -C		0 Z
- CH ₂ -CH ₂ - CH ₂ -		Phenyl	CF3	Me	СН		
- CH ₂ -CH ₂ - CH ₂ -		Phenyl	OMe	Me	СН		
- CH ₂ -CH ₂ -		4-SMe-Phenyl	Ethyl	Me	СН		0 z
- CH ₂₋ CH ₂ - CH ₂ -		4-SMe-Phenyl	ОМе	0-CH ₂			0 Z
-CH2-CH2-	4-5	4-SMe-Phenyl	OMe	Me	СН		0 Z
- CH ₂ -CH ₂ -	4-5	4-SMe-Phenyl	Me	Me	СН		
- CH2-CH2-		4-Mc-Phenyl	Me	Me	Z	z	0 Z
-CH2-CH2		4-Me-Phenyl	Ethyl	Me	СН	Z	C

	1	3 7 7		7.7	5	2.3				
Nr.	K.	R*, R2	9	Ro	K ²	R³	7	X	Y	★
1–533	НООЭ	Phenyl	- CH ₂ -CH ₂ -	4-F-Phenyl	Me	Me	НЭ	Z	Z	0
1-534	Н000	Phenyl	- CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	Me	Me	Z	z	z	0
I-535	СООН	Phenyl	- CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	Ethyl	Me	СН	Z	Z	0
1–536	СООН	Phenyl	- CH ₂ -CH ₂ -	Phenyl	Me	Me	Z	Z	СН	0
L-537	СООН	4-Br-Phenyl	- CH ₂ -CH ₂ -	Phenyl	Ethyl	Me	СН	Z	N	0
1-538	Н000	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	Z	Z	Z	0
1-539	C00H	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Ethyl	Me	СН	z	z	0
1-540	Н000	4-CI-Phenyl	- СН ₂ -СН ₂ -	4-CI-Phenyl	OMe	Me	СН	Z	Z	0
1-541	H000	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-Cl-Phenyl	Me	Me	СН	N	N	0
1–542	Н000	4-F-Phenyl	- CH ₂ -CH ₂ -	Phenyl	ОМе	0-СН ₂ -	CH2-CH2-C	Z	N	0
1–543	С00Н	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	ОМе	0- СН ₂ -	CH ₂ -CH ₂ -C	Z	Z	0
F-544	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ -	4-SMc-Phenyl	OMe	Me	СН	Z	z	0
1-545	СООН	Phenyl	- CH ₂ -CH ₂ -	Naphth-2-yl	ОМе	CH ² -CH	CH ₂ -CH ₂ -C	N	z	0
1–546	НООЭ	Phenyl	- CH ₂ -CH ₂ -	Naphth-2-yl	OMe	O-CH ₂ -	CH2-CH2-C	Z	z	0
1-547	СООН	4-Me-Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	OMe	Me	СН	Z	z	0
1-548	СООН	4-Me-Phenyl	-CH2-CH2-	4-Me-Phenyl	Me	Me	СН	Z	Z	0
1-546	СООМе	Phenyl	- CH(Phenyl)-CH ₂ - CH ₂ -	Phenyl	CF_3	Me	СН	Z	Z	0
1-550	СООН	4-F-Phenyl	- CH(Phenyl)-CH ₂ - CH ₂ -	Phenyl	ОМе	Me	СН	Z	Z	0
1-551	СООН	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1-552	СООН	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	CH ₂ -CH	CH ₂ -CH ₂ -C	z	Z	0
L-553	СООН	Phenyl	- CH(Phenyl)-CH ₂ - CH ₂ -	Phenyl	Me	Me	СН	СН	Z	0
1-554	СООН	Phenyl	-CH2-CH2-CH2-	4-OMe-Phenyl	ОМе	Me	СН	Z	Z	0
1-555	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4 OMe Phenyl	Me	Me	СН	Z	z	0
1-556	СООН	4-CI-Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	ОМс	Me	СН	Z	z	0
1-557	Н000	4-CI-Phenyl	-CH ₂ -CH ₂ -	3-OMe-Phenyl	Me	Me	СН	Z	Z	0

	10	Ind ns	C	90	R2	R3	2	×	٨	≥
Z	Υ.	K', K'	צ	2				2	1	
1-558	НООЭ	Phenyl	- CH(Phenyl)-CH ₂ - CH ₂ -	Phenyl	OMe	Me	Z,	z	7	5
1-559	H000	4-CF ₃ -Phenyl	-CH2-CH2-CH2-	3,4-Di-OMe-Phenyl	ОМе	0-CH ₂	CH ₂ -CH ₂ -C	Z	z	0
1-560	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1-561	СООН	Phenyl	- CH(Phenyl)-CH ₂ - CH ₂ -	Phenyl	Ethyl	Me	Z	Z	z	
1-562	COOMe	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OMe-Phenyl	CF3	Me	СН	Z	Z	0
1-563	COOH	4-Me-Phenyl	-CH ₂ -CH ₂ -	4-SMe-Phenyl	Ethyl	Me	СН	Z	z	
1-562	H000	4-Me-Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	ОМе	0-CH ₂	CH2-CH2-C	Z	z	0
1–565	Н000	4-Cl-Phenyl	-CH ₂ -CH ₂ -	3,4,5-Tri-OMe-Phenyl	Ethyl	Me	СН	Z	z	c
995-1	СООН	4-Cl-Phenyl	- CH ₂ -CH ₂ -	3,4,5-Tri-OMe-Phenyl	OMe	0-CH ₂	CH2-CH2-C	Z	z	c
1-567	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OMe-Phenyl	ОМе	Me	СН	z	z	S
1-568	C00H	Phenyl	- CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	ОМе	Me	СН	z	z	
1-569	H003	Phenyl	- CH ₂ -CH ₂ -	3,4 Methylendioxyphenyl	Me	Me	СН	z	Z	0
1-570	Н00Э	Phenyl	- CH(Phenyl)-CH ₂ - CH ₂ -	Phenyl	ОМе	0-CH ₂		Z	z	0
1-571	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OMe-Phenyl	CF3	Me	СН	z	z	Ö
1-572	COOH	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OMe-Phenyl	Me	Me	СН	Z	H	0
F-573	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OMe-Phenyl	Ethyl	Me	Z	Z	z	0
1-574	Н000	4-Cl-Phenyl	-CH ₂ -CH ₂ -	4-Et-Phenyl	Ethyl	Me	СН	Z	z	
1-575	НООЭ	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMc-Phenyl	ОМе	Me	СН	z	z	
1-576	СООН	4-CF ₃ -Phonyl	- CH2-CH2-	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	z	z	0
1-577	H003	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-Et-Phenyl	ОМе	0-CH;	CH2-CH2-C	z	z	0
1-578	C00H	Phenyi	- CH ₂ -CH ₂ - CH ₂ -	3-Cl-4-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1-579	Н000	4-Me-Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	Me	Me	СН	Z	z	0
1-580	COOH	4-Me-Phenyl	-CH2-CH2-	4-SMc-Phenyl	Me	Me	Z	Z	Z	
1-581	H00.7	Phenyl	-CH2-CH2-	Naphth-2-yl	Me	Me	Z	z	Z	
1-582	H000	Phenyl	- CH ₂ -CH ₂ -	Naphth-2-yl	Ethyl	Me	СН	Z	Z	

Nr	RI	R4, R5	9	R6	R ²	R ³	2	×	Y	
1–583	СООН	4-F-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OMe-Phenyl	ОМе	CH ₂ -CH	CH ₂ -CH ₂ -C	N	Z	0
1-584	Н000	4-F-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OMe-Phenyl	ОМе	0-CH ₂ .	CH2-CH2-C	Z	Z	0
1-585	СООН	Phenyl	-CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	СН	N	Z	0
1-586	СООН	Phenyl	- CH(Phenyl)-CH ₂ - CH ₂ -	Phenyl	Me	Me	Z	Z	Z	0
L-587	Н000	Phenyl	- CH(Phenyl)-CH ₂ - CH ₂ -	Phenyl	Ethyl	Me	СН	Z	z	0
1-588	СООН	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	Z	z	z	0
I-589	СООН	4-F-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMe-Phenyl	CF3	Me	СН	Z	z	0
1-590	СООН	4-CI-Phenyl	- CH2-CH2-	3,5-Di-OMe-Phenyl	Ethyl	Me	СН	Z	Z,	0
1-591	СООН	4-El-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Me-Phenyl	ОМе	O- CH ₂	CH2-CH2-C	Z	Z	0
I-592	СООН	4-CF ₃ -Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4 OMe Phenyl	OMe	0- CH ₂	CH2-CH2-C	Z	Z	0
1593	СООН	4-CI-Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	ОМе	0- CH ₂	CH2-CH2-C	Z	Z	0
1-594	Н000	Phenyi	- CH(OH)-CH(OH)- CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	Me	СН	Z	Z	0
1-595	Н00Э	4-Me-Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	OMe	0-CH ₂	-CH ₂ -C	Z	Z	0
H-596	СООН	4-Me-Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	ОМе	Me	СН	Z	Z	0
1-597	СООН	Phenyi	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	СН	Z	Z	S
1-598	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	Z	НЭ	Z	0
665-1	СООН	4-Ci-Phenyl	- CH ₂ -CH ₂ -	3,4,5-Tri-OMe-Phenyl	Me	Me	СН	Z	Z	0
009-1	НООЭ	4-Cl-Phenyl	-CH ₂ -CH ₂ -	3,4,5-Tri-OMe-Phenyl	Me	Me	Z	N	Z	0
1-601	C00Et	Phenyl	-CH2-CH2- CH2-	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1-602	Н000	Phenyl	- CH(Phenyl)-CH ₂ - CH ₂ -	Phenyl	OMe	Me	СН	N	Z	0
1-603	н000	Phenyl	- CH(Phenyl)-CH ₂ - CH ₂ -	Phenyl	Me	Me	СН	Z	Z	0
1-604	СООН	Phenyl	-CH2-CH2-	4-iPr-Phenyl	OMe	0. CH ₂	-CH ₂ -C	Z	Z	0
I -6 05	КООЭ	Phenyl	- CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	CF3	Me	СН	Z	Z	0
909-1	СООН	Phenyl	- CH2-CH2- CH2-	3,4-Di-OMc-Phenyl	OMe	0- CH ₂	CH ₂ -CH ₂ -C	Z	Z	S

Ž	RI	R4, R5	0	R6	R ²	R³	2	×	Y	*
109-1	КООН	4-Et-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	ОМе	0-CH ₂	CH ₂ -CH ₂ -C	z	z	0
十	COOH	4-Et-Phenyl	-CH ₂ -CH ₂ -CH ₂ -	4-Me-Phenyl	OMe	Me	НЭ	Z	Z	0
1	COOH	4-Br-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMc-Phenyl	OMe	Me	СН	Z	Z	0
0191	C00H	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-Et-Phenyl	Me	Me	СН	z	z	0
119-1	H000	4-Me-Phenyl	-CH2-CH2-	3-OMe-Phenyl	Me	Me	Z	Z	z	0
1	C00H	4-Me-Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	Ethyl	Me	СН	z	z	0
	H000	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-Et-Phenyl	Me	Me	Z	Z	Z	0
1	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	Ethyl	Me	Z	СН	z	0
1-615	H000	Phenyl	- CH ₂ -CH ₂ -	Naphth-2-yl	ОМе	Me	СН	Z	z	0
919-1	НООО	Phenyl	- CH ₂ -CH ₂ -	Naphth-2-yl	Me	Me	СН	Z	z	0
	COOH	Phenyl	-СН(ОН)-СН(ОН)-СН2-	4-SMe-Phenyl	ОМе	O- CH ₂	CH2-CH2-C	Z	z	0
819-1	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	Phenyl	ОМе	0- CH ₂	CH ₂ -CH ₂ -C	Z	z	0
619-1	Н000	Phenyl	- CH(Phenyl)-CH ₂ - CH ₂ -	Phenyl	CF3	Me	СН	Z	Z	0
1-620	H000	Phenyl	-CH ₂ -CH ₂ -CH ₂ -	4-Me-Phenyl	Me	Me	Z	z	CH	0
1-621	COOH	Phenyl	-CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	ОМе	СН	z	z	c
1-622	С00Н	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	Me	СН	Z	z	0
1-623	Н000	4-Et-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	Me	Me	СН	z	z	0
1-624	НООЭ	4-Et-Phenyl	- CH2-CH2- CH2-	4-SMe-Phenyl	Ethyl	Me	СН	Z	z	0
1-625	Н000	Phenyl	- CH2-CH2- CH2-	4-Mc-Phenyl	CF ₃	Me	CH	Z	z	S
1-626	C00H	4-Cl-Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	Me	Me	СН	Z	z	0
1-627	Н000	4-Me-Phenyl	- CH ₂ -CH ₂ -	3-OMe-Phenyl	ОМе	Me	СН	Z	Z	0
1-628	C00H	4-Me-Phenyl	- CH2-CH2-	3-OMe-Phenyl	Me	Me	СН	Z	Z	0
1-629	H002	4-Cl-Phenyl	-CH2-CH2-	3,5-Di-OMe-Phenyl	Me	Me	Z	Z	Z	0
1-630	С00Н	Phenyl	-CH2-CH2-CH2-	4-Me-Phenyl	ОМе	Me	z	Z	z	J
1-631	H000	Phenyl	- СН(ОН)-СН(ОН)- СН ² -	4-Me-Phenyl	Me	Me	СН	Z	Z	0

Nr.	R	R4, R5	9	R6	R ²	R ³	Z	×	*	≥
1–632	НООЭ	4-CI-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Et-Phenyl	Ethyl	Me	СН	z	Z	0
1-633	Н00Э	4-Cl-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Et-Phenyl	OMe	0- CH ₂ -	-CH ₂ -C	Z	z	0
1–634	СООН	4-F-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Mc-Phenyl	Me	Me	Z	Z	Z	0
1–635	нооэ	4-Cl-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	0- СН ₂ -	-CH ₂ -C	Z	Z	0
I-636	НООЭ	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	Phenyl	Me	Me	Z	2	Z	0
1–637	СООН	Phenyl	- CH ₂ -CH ₂ -	Phenyl	Ethyl	Me	СН	Z	Z	0
1-638	Н00Э	4-CI-Phenyl	- CH ₂ -CH ₂ -	3,4,5-Tri-OMe-Phenyl	OMe	Me	СН	Z	Z	0
1-639	H000	4-F-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Me-Phenyl	Ethyl	Me	СН	Z	Z	0
1-640	СООН	Phenyl	-CH2-CH2-	4—iPr—Phenyl	Ethyl	Me	СН	Z	Z	0
1-641	н000	4-Et-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	Ethyl	Me	СН	Z	N	0
L642	СООН	4-Et-Phenyl	- CH2-CH2- CH2-	3-OMe-Phenyl	OMe	O- CH ₂	CH2-CH2-C	Z	z	0
1-643	нооэ	Pheny!	- CH ₂ -CH ₂ -	4-iPr-Phenyl	ОМе	CH ² -CF	CH2- CH2-CH2-C	Z	z	0
1-644	СООН	4-F-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Me-Phenyl	ОМе	0- CH ₂	CH ₂ -CH ₂ -C	Z	z	0
1-645	СООН	4-Me-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	N	Z	0
I-646	нооэ	4-Me-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	0- CH ₂ -		N	z	0
1-647	СООН	4-F-Phenyl	- CH2-CH2- CH2-	4-Et-Phenyl	CF ₃	Me	СН	Z	z	0
1-648	СООН	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	ОМе	0-CH ₂	CH ₂ -CH ₂ -C	N	Z	0
F-649	СООН	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-Et-Phenyl	OMe	Me	СН	Z	Z	0
1-650	СООМе	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Et-Phenyl	ОМе	Me	СН	Z	Z	0
1-651	Н000	Phenyl	- CH ₂ -CH ₂ -	4-Cl-Phenyl	ОМе	0- CH ₂	-CH ₂ -C	Z	Z	0
I-652	СООН	4-Cl-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Me-Phenyl	Ethyl	Me	СН	Z	Z	0
1-653	COOH	4-Cl-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Ei-Phenyl	OMe	Me	СН	Z	Z	0
1-654	СООН	Phenyl	- CH2-CH2-	Naphth-2-yl	CF_3	Me	СН	Z	Z	0
1-655	СООН	Phenyl	- CH2-CH2- CH2-	3,4-Di-C'I-Phenyl	Mc	Me	Z	Z	Z	C
1-656	СООН	4-F-Phenyl	- CH2-CH2- CH2-	4-CI-Phenyl	Ethyl	Me	CH	Z	Z	0

N.	RI	R4, R5	0	R6	R ²	R³	2	X	Y	W
1-657	Н000		- CH ₂ -CH ₂ -	Phenyl	OMe	0-CH ₂	-CH ₂ -C	Z	z	0
1–658	Н000	Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	CF3	Me	СН	Z	Z	0
1-659	H000	4-Ei-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMe-Phenyl	OMe	0-CH ₂	CH ₂ -CH ₂ -C	Z	z	0
099-1	НООЭ	4-Et-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	ОМе	Me	СН	N	Z	0
1-661	НООЭ	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-CI-Phenyl	ОМе	CH ₂ -CF	CH2-CH2-C	Z	z	S
1-662	НООЭ	4-CI-Phenyl	-CH ₂ -CH ₂ -	4-OEt-Phenyl	ОМе	0-CH ₂	CH2-CH2-C	Z	Z	0
1-663	COOH	4-CI-Phenyl	-CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	ОМе	Me	СН	Z	Z	0
7	C00H	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	Ethyl	Me	Z	СН	z	0
1-665	Н000	Phenyl	· CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	ОМе	Me	Z	Z	Z	0
999-1	Н000	4-CI-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Mc-Phenyl	ОМе	Me	СН	Z	Z	0
1-667	COOH	4-Ci-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-Me-Phenyl	Me	Me	Z	Z	Z	0
F-668	Н000	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	2,3-Di-OMe-Phenyl	OMe	0-CH ₂	CH2-CH2-C	z	Z	0
699-1	Н000	4-Cl-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMc-Phenyl	Me	Me	Z	Z	Z	0
0/9-1	H000	4-CI-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1-671	COOH	3,4-Di-Cl-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OMe-Phenyl	OMc	Me	СН	Z	z	0
1-672	C00H	Phenyl	- CH ₂ -CH ₂ -	4-iPr-Phenyl	Me	Me	СН	Z	z	0
1-673	COOH	4-Et-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	СН	Z	Z	0
1-674	НООЭ	4-Et-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMe-Phenyl	Ethyl	Me	СН	Z	z	0
1-675	НООЭ	Phenyl	-CH2-CH2-	4—iPr–Phenyl	Mc	Me	Z	Z	z	0
9/9-1	Н002	3,4-Di-Cl-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	СН	Z	z	0
1-677	НООЭ	3,4-Di-Cl-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Ethyl	Me	СН	z	z	0
1-678	НООЭ	4-CI-Phenyl	-CH2-CH2-	4-Me-Phenyl	Me	Me	Z	Z	Z	0
1-679	СООН	4-CI-Phenyl	-CH ₂ -CH ₂ -	4-Mc-Phenyl	Ethyl	Me	СН	z	Z	0
<u>1</u> -680	НООЭ	4-CI-Phenyl	- CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	Mc	Mc	СН	Z	z	0
1881	000	4-Cl-Phenyi	- CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	OMe	0-CH	CH ₂ -CH ₂ -C	Z	Z	0

Nr.	RI	R4, R5	Ò	R6	R ²	R ³	2	×	>	M
I - 682	НООЭ	3,4-Di-CI-Phenyl	- CH2-CH2- CH2-	4-OMc-Phenyl	ОМс	0-CH ₂	CH2-CH2-C	z	z	0
1-683	СООН	Phenyl	-CH2-CH2-	4-Cl-Phenyl	Ethyl	Me	СН	Z	z	0
1–684	СООН	Phenyl	-CH ₂ -CH ₂ -	4-CI-Phenyl	ОМе	CH ₂ -CH	CH ₂ -CH ₂ -C	Z	Z	0
1-685	. НООЭ	Phenyl	- СН(ОН)-СН(ОН)- СН3-	2-CI-Phenyl	ОМс	Me	СН	Z	Z	0
989-1	Н000	Phenyl	- CH ₂ -CH ₂ -	2-CI-Phenyl	Me	Me	СН	СН	Z	0
1-687	СООН	4-Et-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	ОМе	0- CH ₂	2-CH2-C	Z	z	0
889-1	Н00Э	4-Et-Phenyl	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	Me	СН	Z	z	0
1-689	Н00Э	Phenyl	-CH2-CH2-	Phenyl	Me	Me	N	Z	Z	0
069 - 1	Н000	Phenyl	- CH ₂ -CH ₂ -	Phenyl	Ethyl	Me	СН	Z	Z	0
[–6 9]	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	2-CI-Phenyl	Me	Me	N	Z	Z	S
769–1	НООЭ	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-OEt-Phenyl	Me	Me	Z	Z	z	0
1-693	Н000	4-CI-Phenyl	-CH ₂ -CH ₂ -	4-OEt-Phenyl	Ethyl	Me	СН	Z	z	0
1-694	Н00Э	4-Cl-Phenyl	- СН ₂ -СН ₂ -	4-iPr-Phenyl	Ethyl	Me	СН	N	Z	0
1-695	СООН	4-CI-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Methylendioxyphenyl	OMe	Me	СН	Z	z	0
969-1	СООН	Phenyl	- CH ₂ -CH ₂ - CH ₂ -	2-CI-Phenyl	Ethyl	Me	СН	Z	Z	S
1-697	СООМе	Phenyl	-CH ₂ -CH ₂ -CH ₂ -	2-Cl-Phenyl	ОМе	CH ₂ -CF	CH2-CH2-C	Z	Z	0
1-698	СООН	Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-4-Cl-Phenyl	OMe	Me	СН	Z	N	0
669-1	соон	4-CI-Phenyi	- CH ₂ -CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	Me	СН	Z	Z	0
1-700	СООН	4-CI-Phenyl	-CH2-CH2-	3,4-Di-OMe-Phenyl	Me	Me	СН	Z	Z	0
1-701	СООН	4-CI-Phenyl	- CH ₂ -CH ₂ -	3-OMc-Phenyl	ОМе	0-CH ₂	2-CH2-C	Z	z	0
1–702	СООН	4-Et-Phenyl	-CH2-CH2- CH2-	4-OMe-Phenyl	Ethyl	Me	СН	Z	z	0
1–703	СООН	Phenyl	-CH2-CH2- CH2-	3,5-Di-OMe-4-Cl-Phenyl	Me	Me	СН	Z	Z	C
1-704	СООН	Phenyl	-CH ₂ -CH ₂ -	4-iPr-Phenyl	CF_3	Mc	СН	Z	Z	0
1-705	СООН	Phenyi	-CH ₂ -CH ₂ -	4—i Pr—Phenyl	ОМс	Me	СН	z	Z	C
1-706	Н000	Phenyl	-CH=CH-CH2-	4-OMe-Phenyl	ОМе	Me	СН	Z	Z	S

WO 98/09953

7	101	R4 R5	0	Ré	R ²	R ³	Z	×	Υ	A
1-707	COOMe	Phenyl	- CH=CH- CH ₂ -	4-OMe-Phenyl	Me	Me	СН	Z	Z	0
1-708	COOH	4-Cl-Phenyl	-CH2-CH2-CH2-	4-OEt, 3-OMe-Phenyl	ОМе	0-CH ₂ .	-CH ₂ -C	Z	Z	0
1-709	COOH	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-iPr-Phenyl	Me	Me	Z	Z	Z	0
1-710	C00H	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-Me-Phenyl	ОМе	Me	СН	Z	Z	0
1-711	COOH	4-Cl-Phenyl	-CH2-CH2-	4-Mc-Phenyl	Me	Me	СН	Z	z	0
1-712	H000	Phenyl	- CH=CH- CH ₂ -	4-OMe-Phenyl	Me	Me	Z	СН	z	0
1-713	H000	Phenyl	- CH ₂ -CH ₂ -	4-Cl-Phenyl	Me	Me	СН	Z	Z	0
1-714	H000	Phenyl	- CH ₂ -CH ₂ -	4-CI-Phenyl	Me	Me	Z	Z	z	0
1-715	H000	4-Ci-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	Mc	Me	Z	Z	z	0
1-716	Н000	4-CI-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	Ethyl	Me	СН	2	z	0
1-717	Н000	Phenyl	- CH=CH- CH ₂ -	3-Cl-4-OMe-Phenyl	Ethyl	Me	СН	Z	z	0
1-718	H000	Phenyl	- CH=CH- CH ₂ -	3-Cl-4-OMe-Phenyl	OMe	0-СН	CH2-CH2-C	Z	Z	0
1-719	НООЭ	Phenyl	- CH ₂ -CH ₂ -	Phenyl	ОМе	Me	СН	Z	z	0
1-720	Н000	Phenyl	- CH ₂ -CH ₂ -	Phenyi	Me	Me	СН	Z	z	0
1-721	Н000	4-F-Phenyl	- CH=CH- CH ₂ -	3,4-Di-OMo-Phenyl	ОМе	Me	СН	Z	z	0
1-722	Н000	4-CI-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	ОМе	0-СН	CH2-CH2-C	Z	Z	0
1–723	Н000	4-Cl-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-OEt, 3-OMe-Phenyl	OMe	Me	СН	Z	Z	0
1-724	C00H	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-OEt-Phenyl	OMe	Me	СН	Z	z	0
1-725	C00H	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-OEt-Phenyl	Me	Me	СН	z	z	0
1–726	COOMe	Phenyl	- CH=CH- CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	СН	z	z	0
1-727	H000	Phenyl	- CH=CH- CH ₂ -	3,4-Di-OMe-Phenyl	Me	Me	Z	ਲ	z	0
1-728	Н000	Phenyl	- CH=CH- CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	0-CH ₂ -	2-CH2-C	Z	z	S
1-729	H000	4-CI-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	OMe	Me	СН	Z	Z	0
1-730	C00H	4-CI-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	3-OMe-Phenyl	Me	Me	СН	Z	Z	c
1-731	H000	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0

Z.	R	R4, R5	Q	R6	R ²	R ³	7	×	X	*
1–732	НООЭ	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	OMe	0-CH ₂	CH ₂ -CH ₂ -C	z	z	0
1–733	С00Н	Phenyl	- СН=СН- СН ₂ -	Cyclohexyl	ОМе	Me	СН	Z	z	0
1–734	СООН	Phenyl	-CH2-CH2-	4-OEt-3-OMe-Phenyl	ОМе	CH ² -CH	CH ₂ -CH ₂ -C	z	z	C
1–735	СООН	Phenyi	-CH ₂ -CH ₂ -	4-OEt-3-OMe-Phenyl	ОМе	0-CH ₂	CH ₂ -CH ₂ -C	z	z	0
1-736	СООН	4-Cl-Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	Me	Me	Z	z	z	0
1-737	С00Н	4-CI-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	Ethyl	Me	СН	Z	z	0
1–738	СООН	Phenyl	- CH=CH- CH ₂ -	Cyclohexyl	Me	Me	СН	z	z	0
1-739	СООН	Phenyl	- СН=СН- СН ₂ -	4-Me-Phenyl	Me	Me	Z	Z	z	S
1-740	СООН	4-Cl-Phenyl	- СН ₂ -СН ₂ -	3,4 Methylendioxyphenyl	Ethyl	Me	СН	N	Z	C
1-741	СООН	4-Cl-Phenyl	- CH ₂ -CH ₂ -	3,4-Methylendioxyphenyl	ОМе	0-CH ₂	-CH ₂ -C	Z	z	C
1-742	СООН	Phenyl	- C(Phenyl)=CH- CH ₂ -	Phenyl	ОМе	Mc	СН	2	z	0
I-743	Н000	4-Ci-Phenyl	- CH ₂ -CH ₂ -	3,5-Di-OMe-Phenyl	ОМе	Me	СН	z	z	0
1-744	СООН	4-CI-Phenyl	-CH ₂ -CH ₂ - CH ₂ -	3,5-Di-OMe-Phenyl	Me	Me	СН	Z	z	0
1–745	СООН	Phenyl	- CH ₂ -CH ₂ -	4-CI-Phenyl	CF3	Me	СН	Z	z	0
1-746	СООН	Phenyl	- CH ₂ -CH ₂ -	4-CI-Phenyl	ОМс	Me	СН	z	z	0
1-747	СООН	4-F-Phenyl	- CH=CH- CH ₂ -	Phenyl	Me	Me	СН	z	z	0
1-748	СООН	4-F-Phenyl	- CH=CH- CH ₂ -	Phenyl	Me	Me	Z	Z	z	0
1–749	СООН	Phenyl	-CH ₂ -CH ₂ -	4-OEt-3-OMe-Phenyl	Me	Me	Z	Z	z	0
1–750	НООЭ	4-CI-Phenyl	- CH ₂ -CH ₂ -	4-SMe-Phenyl	ОМе	Me	СН	Z	z	0
1-751	Н000	4-Cl-Phenyl	- CH ₂ -CH ₂ - CH ₂ -	4-SMe-Phenyl	Me	Me	СН	Z	z	0
1-752	СООН	Phenyl	-CH ₂ -CH ₂ -	4-OEt-3-OMe-Phenyl	Ethyl	Me	СН	Z	Z	0
1–753	СООН	Phenyl	- C(Mienyl)=CH- CH ₂ -	Phenyl	Ethyl	Me	СН	Z	Z	C
1-754	СООН	4-CI-Phenyl	-CH2-CH2-	Naphth-2-yl	Ethyl	Me	СН	Z	N	0
H-755	СООН	4-Cl-Phenyl	-CH2-CH2-	Naphth-2-yi	ОМе	0-CH ₂	0-CH2-CH2-C	Z	Z	0
1-756	С00Н	Phenyl	- CH=CH- CH ₂ -	Phenyl	OMe	$0-CH_2$	CH2-CH2-C	Z	z	S

R4, R5		0	Ro	R ²	R³	Z	×		}
4-Cl-Phenyl	I _V	- CH ₂ -CH ₂ - CH ₂ -	4-OEt-Phenyl	Me	Me	СН	Z		0
4-Cl-Phenyl	ly!	- CH ₂ -CH ₂ - CH ₂ -	4-OEt-Phenyl	Ethyl	Me	СН	Z		0
Phenyl		- CH ₂ -CH ₂ - CH ₂ -	4-OEt-Phenyl	CF3	Me	СН	Z	Z	0
Phenyl		· CH ₂ -CH ₂ - CH ₂ -	4-OEt-Phenyl	OMe	Me	СН	Z		0
4-Cl-Phenyl	lyn	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	СН	Z		0
4-Cl-Phenyl	nyl	- CH ₂ -CH ₂ -	4-OMe-Phenyl	Me	Me	Z	2		0
4-Cl-Phenyl	lyi	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMc-Phenyl	Ethyl		СН	Z		0
4-Cl-Phenyl	nyl	- CH ₂ -CH ₂ - CH ₂ -	3,4-Di-OMe-Phenyl	ОМе	0-CH ₂ -CH ₂ -	2-CH2-C	Z		0
Phenyl		- CH ₂ -CH ₂ -	4-OEt-Phenyl	Me	Me	СН	Z	Z	0

Beispiel 16

Gemäß dem oben beschriebenen Bindungstest wurden für die nachfol-5 gend aufgeführten Verbindungen Rezeptorbindungsdaten gemessen.

Die Ergebnisse sind in Tabelle 2 dargestellt.

Tabelle 2

10

Rezeptorbindungsdaten (K_i-Werte)

	Verbindung	ET _A [nM/1]	ET _B [nM/1]
15			
	I-116	35	35
	I-140	575	460
	I-146	4	29
	I-321	340	290
20	1-355	132	82
	I-370	11	54
	I-445	3,5	7,2
	I-445 (S)-Enantio-	1,3	4,1
	meres		
25	I-445 (R)-Enantio-	65	140
	meres		
	I-482	2	14
	I-499	31	135
	I-585	6	23
30	I-593	300	160
	I-622	3	23
	I-635	210	126
	I-672	60	185
	1-699	230	130
35	I-713	20	96

Patentansprüche

Carbonsäurederivate der Formel I

5

$$R^{6} - Q - W - C - CH - O - X - Z$$
 $R^{5} - R^{1}$
 R^{2}
 $X - Z$
 R^{3}

10

wobei R1 Tetrazol oder eine Gruppe

15

in der R folgende Bedeutung hat:

ein Rest OR7, worin R7 bedeutet: a)

20

Wasserstoff, das Kation eines Alkalimetalls, das Kation eines Erdalkalimetalls oder ein physiologisch verträgliches organisches Ammoniumion;

C3-C8-Cycloalkyl, C1-C8-Alkyl, 25

CH2 · Phenyl gegebenenfalls substituiert,

C₃-C₆-Alkenyl- oder eine C₃-C₆-Alkinylgruppe gegebenfalls substituiert oder 30

Phenyl gegebenfalls substituiert.

- ein über ein Stickstoffatom verknüpfter 5-gliedriger Heterob) 35 aromat.
 - eine Gruppe c)

$$\frac{(O)_{k}}{--O-(CH_{2})_{p}--S-R^{8}}$$

40

in der k die Werte 0, 1 und 2, p die Werte 1, 2, 3 und 4 annehmen kann und R8 für

WO 98/09953

 $C_1-C_4-Alkyl$, $C_3-C_8-Cycloalkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$ oder gegebenenfalls substituiertes Phenyl steht.

73

d) ein Rest

5

10

worin R9 bedeutet:

 $C_1-C_4-Alkyl$, $C_3-C_6-Alkenyl$, $C_3-C_6-Alkinyl$, $C_3-C_8-Cycloalkyl$, wobei diese Reste einen $C_1-C_4-Alkoxy-$, $C_1-C_4-Alkylthio-$ und/oder einen Phenylrest tragen können;

Phenyl, gegebenenfalls substituiert.

e) ein Rest

20

15

$$-N_{R^{14}}$$

wobei R¹³ und R¹⁴ gleich oder verschieden sein können und folgende Bedeutung haben:

Wasserstoff, C_{1} - C_{8} -Alkyl, C_{3} - C_{8} -Cycloalkyl, C_{3} - C_{8} -Alkenyl, C_{3} - C_{8} -Alkinyl, Benzyl, Phenyl, gegebenenfalls substituiert,

oder R^{13} und R^{14} bilden gemeinsam eine zu einem Ring geschlossene, gegebenenfalls substituierte C_4 - C_7 -Alkylenkette, die ein Heteroatom enthalten kann.

35

30

- Wasserstoff, Hydroxy, NH₂, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Halogen, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio, oder CR² ist mit CR¹⁰ wie unten angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
- X Stickstoff oder Methin;
- Y Stickstoff oder Methin;

45

40

Z Stickstoff oder CR^{10} , worin R^{10} Wasserstoff oder C_{1-4} -Alkyl bedeutet oder CR^{10} zusammen mit CR^2 oder CR^3 einen 5- oder

6-gliedrigen Alkylen- oder Alkenylenring bildet, der gegebenenfalls substituiert sein kann, und worin jeweils eine oder mehrere Methylengruppen durch Sauerstoff, Schwefel, -NH oder -N(C₁.C₄.Alkyl), ersetzt sein können;

5

- Wasserstoff, Hydroxy, NH₂, NH(C₁-C₄-Alkyl), N(C₁-C₄-Alkyl)₂, Halogen, C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₁-C₄-Hydroxyalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio; oder CR³ ist mit CR¹⁰ wie oben angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;
- R4 und R5 (die gleich oder verschieden sein können):

Phenyl oder Naphthyl, gegebenenfalls substituiert, oder

15

10

Phenyl oder Naphthyl, die orthoständig über eine direkte Bindung, eine Methylen-, Ethylen- oder Ethenylengruppe, ein Sauerstoff- oder Schwefelatom oder eine SO_2 -, NH- oder N-Alkyl-Gruppe miteinander verbunden sind

20

- C3-C8-Cycloalkyl gegebenenfalls substituiert;
- R6 gegebenenfalls substituiertes C3-C6-Cycloalkyl;
- Phenyl oder Naphthyl, gegebenenfalls substituiert; ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, und welcher gegebenenfalls substituiert sein kann;
- 30 W Schwefel oder Sauerstoff;
 - Q ein Spacer, der in seiner Länge einer C2-C4-Kette entspricht,

bedeuten, sowie die physiologisch verträglichen Salze, und die 35 enantiomerenreinen sowie diastereoisomerenreinen Formen.

- Arzneimittelzubereitungen zur peroralen, parenteralen und intraperenteralen Anwendung, enthaltend neben den üblichen Arzneimittelhilfsstoffen, mindestens ein Carbonsäurederivat I gemäß Anspruch 1.
 - Verwendung der Carbonsäurederivate gemäß Anspruch 1 zur Behandlung von Krankheiten.
- 45 4. Verwendung der Verbindungen I gemäß Anspruch 3 als Endothelin-Rezeptorantagonisten.

- 5. Verwendung der Carbonsäurederivate I gemäß Anspruch 1 zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten, bei denen erhöhte Endothelinspiegel auftreten.
- Verwendung der Carbonsäurederivate I gemäß Anspruch 1 zur Behandlung von chronischer Herzinsuffizienz, Restenose, Bluthochdruck, pulmonalem Hochdruck, akutem/chronischen Nierenversagen, zerebraler Ischämie, Asthma, benigne Prostatahyperplasie und Prostatakrebs.

7. Verwendung der Carbonsäurederivate I gemäß Anspruch 1 in Kombination mit Inhibitoren des Renin-Angiotensin Systems gemischten ACE/Neutrale Endopeptidase (NEP)-Hemmern; B-Blokkern.

8. Verwendung von Verbindungen der Formel IV

15

45

$$R^{6} - Q - W - \frac{|H|}{|C|} + OH$$
 IV

worin die Reste R^1 , R^4 , R^5 , R^6 , Q und W die in Anspruch 1 angegebene Bedeutung haben, als Ausgangsmaterial zur Synthese von gemischten ER_A/ET_B -Rezeptorantagonisten.

9. Ein strukturelles Fragment der Formel

worin die Reste R^1 , R^4 , R^5 , R^6 , Q und W die in Anspruch 1 angegebene Bedeutung haben, als strukturelles Element in einem gemischten ET_A/ET_B -Rezeptorantagonisten.

10. Verfahren zur Herstellung von Carbonsäurederivaten der allgemeinen Formel IV

40
$$\begin{array}{c|c}
R^4 \\
R^6 - Q - W - \begin{matrix} H \\
C \\
R^5 \end{matrix} - OH \qquad IV$$

5

indem man Verbindungen der Formel IVa

mit einem Alkohol oder Thiol der Formel III

$$R^6 - Q - W - H$$
 III

worin die Reste R', R⁴, R⁵, R⁶, Q, W die in Anspruch 1 angegebene Bedeutung besitzen und R¹⁸ für offenkettiges oder cyclisches Alkyl oder Phenyl, das gegebenenfalls substituiert sein kann, steht,

unter Säurekatalyse umsetzt.

20

25

30

35

12 6,670,367 B/ Dec 30/03

7.

US Patent, it are noted
Reference cite listed