D3.js Introduction

Paulo Dias

Visualization – Depends in application

- Exploratory (discover pattern, multiple views) or Explanatory (View of the data presenting discovered highlights)
- Type of data (Maps, Charts, Data,...)
- Developer or non-developer?
- Scientific or information Visualization (2D,3D, structure or not?)
- Interactive or Static?
- Web or local?
- Easy to use or Flexible?
- Protection of data?
- •

Visualization Tools

There are a lot, of different types and with different purposes

(see e.g. http://selection.datavisualization.ch/)

Visualization – what to choose

- http://selection.datavisualization.ch
- Filters available
 - Maps
 - Charts
 - Data
 - Color

- Developer
- Non-developer

Visualization tools

Productivity

ChartIO, Excel, Google charts Tableau, Power BI

predefined charts

NV3D, Dimple.js, RAW

Charting libraries, specific data type

D3.js

Javascript, HTML, SVG, CSS

WebGL, Canvas, SVG

Efficient, flexible, low level

Excel

Python

C/C++

Assembly

5

Visualization – what to choose

 If you are in a large company: Tableau or Spotfire may be adequate (very powerful and expensive business intelligence S/W)

If you want to produce an interactive visualization
 Web application to visual explore data: D3.js

 If you just want to make a few simple charts for your web page: google charts, excel

Tableau Public

A desktop application to build and post interactive graphs, dashboards, maps and tables to the web.

D3.js

An small, flexible and efficient library to create and manipulate interactive documents based on data

Google Chart Tools

A collection of simple to use, customizable and free to use interactive charts and data tools.

d3 - Data Driven Documents

Data-Driven Documents

D3: Data Driven Documents

d3 - Introduction

- 1996: first browser with JavaScript
- 2005: J. Heer et al.'s <u>prefuse</u> toolkit
- 2007: J. Heer's Flare toolkit
- 2009: J. Heer + M. Bostock <u>Protovis</u>
- 2011: <u>D3</u>

D3 – Data Driven Documents

 Visualization requires visual encoding: mapping data to visual elements.

 The HTML Document Object Model has a rich set of features and standards for visual display

 A tool not to replace the web and modern browser's toolbox, but exposes it an easy way to use.

 d3 allows transformation of the HTML DOM from text document to Visualization

D3 - Web Standards

• "Learning D3" is largely learning web standards.

 The **Document** refers to the W3C Document Object Model

 Unlike Processing or Protovis, D3's vocabulary of graphical marks comes directly from web standards: HTML, SVG, and CSS.

D3 - Library

 D3 allows you to bind arbitrary data to a Document Object Model (DOM), and then apply data-driven transformations to the document.

• D3 isn't a monolithic framework; it's a suite of small modules (31) for data analysis and visualization.

D3 - Library


```
export {version} from "./dist/package.js";
     export * from "d3-array";
     export * from "d3-axis";
     export * from "d3-brush";
     export * from "d3-chord";
     export * from "d3-collection";
     export * from "d3-color";
     export * from "d3-contour";
     export * from "d3-dispatch";
     export * from "d3-drag";
     export * from "d3-dsv";
12
     export * from "d3-ease";
     export * from "d3-fetch";
     export * from "d3-force";
14
     export * from "d3-format";
     export * from "d3-geo";
     export * from "d3-hierarchy";
     export * from "d3-interpolate";
     export * from "d3-path";
    export * from "d3-polygon";
     export * from "d3-quadtree";
     export * from "d3-random";
     export * from "d3-scale";
     export * from "d3-scale-chromatic";
     export * from "d3-selection";
     export * from "d3-shape";
27
     export * from "d3-time";
     export * from "d3-time-format";
     export * from "d3-timer";
     export * from "d3-transition";
     export * from "d3-voronoi";
    export * from "d3-zoom";
```


D3.JS - Data Driven Documents

d3 – templates and gallery

https://github.com/d3/d3/wiki/Gallery

Visual Index

D3 - Introduction

- JavaScript library for creating data visualizations
- Data-Driven Documents
 - User provides the data
 - D3 does the driving
 - I.e., it connects the data to web-based documents
- Mike Bostock
- d3js.org

d3 - Introduction

No support for older browsers

- No handling of bitmap map tiles
 - Vector graphics instead
- No hiding of original data
 - Client-side execution
 - Data must be sent to the client
 - Do not use D3 if your data cannot be shared!

d3 – Generating page elements


```
<!DOCTYPE html>
<html lang="en">
                                                Content Delivery Network (CDN)
  <head>
                                                src="http://d3js.org/d3.v7.min.js"
                                                Locally:
     <meta charset="utf-8">
                                                src="../d3.min.js"
     <title>D3 Page Template</title>
     <script type="text/javascript" src="http://d3js.org/d3.v7.min.js"></script>
  </head>
  <body>
     <script type="text/javascript">
        <! D3 Code here >
     </script>
  </body>
</html>
```

d3- Circle drawing


```
var dataset = [5, 10, 15, 20, 25];
var w = 500;
var h = 50;
var svg = d3.select("body")
            .append("svg")
            .attr("width", w)
            .attr("height", h);
var circles = svg.selectAll("circle")
            .data(dataset)
            .enter()
            .append("circle");
circles.attr("cx", "10")
           .attr("cy", "10")
           .attr("r", "10");
```

d3- Circle drawing

. .

```
var circles = svg.selectAll("circle")
                     .data(dataset)
                     .enter()
                    .append("circle");
circles.attr("cx", function(d, i) {
                    return (i * 50) + 25;
                    })
                    .attr("cy", h/2)
                     .attr("r", function(d) {
                               return d;
                     });
```

d3 - Resources

- https://bost.ocks.org/mike/d3/workshop/#0
- https://blockbuilder.org/
- https://observablehq.com/
- https://github.com/wbkd/awesome-d3
- https://github.com/d3/d3/wiki/Gallery
- https://d3-discovery.net/
- https://observablehq.com/@d3/