Signed tropical convexity

Georg Loho

joint work with László Végh

London School of Economics

November 25, 2019

Monday Lecture, Graduiertenkolleg "Facets of Complexity", Berlin

Motivation

- ullet Tropical linear programming equivalent to mean payoff games; feasibility in NP \cap co-NP but no polynomial-time algorithm known (Akian, Gaubert, Guterman 2012)
- Intimate connection between classical linear programming and tropical linear programming (Schewe 2009, Allamigeon, Benchimol, Gaubert, Joswig 2015+)
- Many statements for classical polytopes have natural formulation when containing the origin

Motivation

- ullet Tropical linear programming equivalent to mean payoff games; feasibility in NP \cap co-NP but no polynomial-time algorithm known (Akian, Gaubert, Guterman 2012)
- Intimate connection between classical linear programming and tropical linear programming (Schewe 2009, Allamigeon, Benchimol, Gaubert, Joswig 2015+)
- Many statements for classical polytopes have natural formulation when containing the origin

Further connections

- Quest for a strongly polynomial algorithm for linear programming (Smale 1998)
- Modeling scheduling problems through tropical linear programming (Butkovic 2010)
- Bijection between regular subdivisions of products of simplices and tropical point configurations (Develin, Sturmfels 2004)

Overview on Polytopes

- Polytopes as convex hull of finitely many points
- Duality between containment in a convex hull and linear programming
- Farkas' Lemma for convex hull

Tropical inequality systems

Let $(a_{ii}), (b_{ii}) \in (\mathbb{R} \cup \{-\infty\})^{n \times d}$.

Theorem (GKK 1988, MSS 2004, AGG 2012)

Checking if a system of the form

$$\max_{i \in [d]} (a_{ji} + x_i) \le \max_{i \in [d]} (b_{ji} + x_i) \qquad \text{for } j \in [n]$$

has a solution $x \in \mathbb{R}^d$ is in $NP \cap co$ -NP.

(

Tropical inequality systems

Let $(a_{ii}), (b_{ii}) \in (\mathbb{R} \cup \{-\infty\})^{n \times d}$.

Theorem (GKK 1988, MSS 2004, AGG 2012)

Checking if a system of the form

$$\max_{i \in [d]} (a_{ji} + x_i) \le \max_{i \in [d]} (b_{ji} + x_i) \qquad \text{for } j \in [n]$$

has a solution $x \in \mathbb{R}^d$ is in $NP \cap co-NP$.

Theorem (L, Vegh 2019+)

Checking if a system of the form

$$\max_{i \in [d]} (a_{ji} + x_i) \le \max_{i \in [d]} (b_{ji} + x_i) \qquad \text{for } j \in [n]$$

has a solution $x \in \mathbb{R}^d$, where we are allowed to swap a_{ji} with b_{ji} for some $i \in [d]$, is NP-complete.

(

Tropical inequality systems

Let $(a_{ii}), (b_{ii}) \in (\mathbb{R} \cup \{-\infty\})^{n \times d}$.

Theorem (GKK 1988, MSS 2004, AGG 2012)

Checking if a system of the form

$$\max_{i \in [d]} (a_{ji} + x_i) \le \max_{i \in [d]} (b_{ji} + x_i) \qquad \text{ for } j \in [n]$$

has a solution $x \in \mathbb{R}^d$ is in $NP \cap co$ -NP.

Theorem (L, Vegh 2019+)

The feasibility problem for systems of the form $A \odot x = b$, $x \in \mathbb{T}^d_{\pm}$ is NP-complete.

C

Tropical semiring

Definition

Additive neutral $\mathbb{O} = -\infty$

Operations are extended componentwise to \mathbb{T}^d

Tropical semiring

Definition

Tropical numbers $\mathbb{T}_{\geq 0} = \mathbb{R} \cup \{-\infty\}$ Addition $s \oplus t := \max(s,t)$ Multiplication $s \odot t := s + t$ Additive neutral $0 = -\infty$

Operations are extended componentwise to \mathbb{T}^d

Example

$$(5 \oplus -7) \odot 10 \oplus -100 = 15$$

 $(-3) \odot x \oplus 1 = 9$ valid for $x = 12$

But: $(-3) \odot x \oplus 9 = 9$ valid for every $x \le 12$

Example

$$0\odot\begin{pmatrix}0\\0\end{pmatrix}\oplus(-1)\odot\begin{pmatrix}3\\2\end{pmatrix}\oplus(-1)\odot\begin{pmatrix}4\\-1\end{pmatrix}=\begin{pmatrix}3\\1\end{pmatrix}$$

Symmetrized tropical semiring

Definition (ACGNQ 1990)

Signed tropical numbers

Symmetrized tropical semiring

Definition (ACGNQ 1990)

Signed tropical numbers $\mathbb{T}_{\pm} = \mathbb{R} \cup \{0\} \cup \ominus \mathbb{R}$

Symmetrized tropical numbers $\mathbb{S} = \mathbb{R} \cup \{\mathbb{O}\} \cup \ominus \mathbb{R} \cup \bullet \mathbb{R}$

Non-negative $\mathbb{T}_{\geq 0} = \mathbb{R} \cup \{0\} = \{x \in \mathbb{S} : x \geq 0\}$

Non-positive $\mathbb{T}_{\leq 0}^- = \ominus \mathbb{R} \cup \{0\} = \{x \in \mathbb{S} : x \leq 0\}$

 $\mathbb{T}_{\bullet} = \bullet \mathbb{R}$

Symmetrized tropical semiring

Definition (ACGNQ 1990)

Signed tropical numbers
Symmetrized tropical numbers

Non-negative

Non-positive

Balanced

Addition

Multiplication

 $\mathbb{T}_{\pm} = \mathbb{R} \cup \{0\} \cup \ominus \mathbb{R}$

 $\mathbb{S} = \mathbb{R} \cup \{0\} \cup \mathbb{R} \cup \mathbb{R}$

 $\mathbb{T}_{\geq 0} = \mathbb{R} \cup \{0\} = \{x \in \mathbb{S} \colon x \geq 0\}$

 $\mathbb{T}_{\leq 0}^- = \ominus \mathbb{R} \cup \{0\} = \{x \in \mathbb{S} \colon x \leq 0\}$

 $\mathbb{T}_{ullet} = ullet \mathbb{R}$

 $x \oplus y = \begin{cases} \operatorname{argmax}_{x,y}(|x|,|y|) & \text{if } |\chi| = 1 \\ \bullet \operatorname{argmax}_{x,y}(|x|,|y|) & \text{else} \end{cases}.$

 $(\bullet \operatorname{argmax}_{x,y}(|x|,|y|) \text{ else}$ $x \odot y = (\operatorname{tsgn}(x) * \operatorname{tsgn}(y))(|x| + |y|)$

 $y = (\mathsf{tsgn}(x) * \mathsf{tsgn}(y)$

where

- $\bullet \ | \, . \, | \colon \mathbb{S} \to \mathbb{R} \cup \{\mathbb{O}\}$ removes the sign,
- \bullet tsgn(.): $\mathbb{S} \to \{\oplus, \ominus, \bullet, \mathbb{O}\}$ recalls only the sign,
- $\chi = \{ \operatorname{tsgn}(\xi) \mid \xi \in (\operatorname{argmax}(|x|,|y|)) \}.$

Calculating with signed tropical numbers

One can think of computation with complexity classes in the sense

- $x \oplus y$ corresponds to $O(t^x) + O(t^y)$
- $x \odot y$ corresponds to $O(t^x) \cdot O(t^y)$

Example

- $4 \oplus 4 = 4$
- \bullet 4 \oplus \ominus 4 = \bullet 4
- $\bullet \ominus 4 \oplus \bullet 4 = \bullet 4$
- $3 \odot (\ominus 14) = \ominus 17$
- $\bullet 11 \odot 99 = \bullet 88$
- $(\ominus 7 \oplus \ominus 16) \odot (\ominus -19) = -3$

(

Trying to order the symmetrized tropical semiring

Bad news

- No compatible total order for the symmetrized tropical semiring
- No suitable equations

C

Trying to order the symmetrized tropical semiring

Bad news

- No compatible total order for the symmetrized tropical semiring
- No suitable equations

Definition

- Balance relation: $x \bowtie y \Leftrightarrow x \ominus y \in \mathbb{T}_{\bullet}$
- Strict partial order: $x > y \quad \Leftrightarrow x \ominus y \in \mathbb{T}_{>0}$
- Pseudo-order: $x \vDash y \quad \Leftrightarrow \quad x > y \text{ or } x \bowtie y \quad \Leftrightarrow \quad x \ominus y \in \mathbb{T}_{\geq 0} \cup \mathbb{T}_{\bullet}.$

Example

- $1 \bowtie \bullet 6$, $6 \bowtie 3$, but $1 \bowtie 3$
- −42 ⊨ ⊖100
- **● ●**3 ⊨ **●**5

Signed tropical convex hull – I

Definition (Inner hull)

$$\mathsf{tconv}(A) = \left\{ z \in \mathbb{T}^d_{\pm} \mid z \bowtie A \odot x, x \in \mathbb{T}^n_{\geq \mathbb{O}}, \bigoplus_{j \in [n]} x_j = 0 \right\} \subseteq \mathbb{T}^d_{\pm}$$
$$= \bigcup \left\{ \mathcal{U}(A \odot x) \mid x \in \mathbb{T}^n_{\geq \mathbb{O}}, \bigoplus_{j \in [n]} x_j = 0 \right\} \text{ with } \mathcal{U}(a) := [\ominus |a|, |a|].$$

 $tconv(\{(3,3),(\ominus 1,\ominus 0),(\ominus 4,\ominus 2)\})$

$$(-2) \odot \begin{pmatrix} 3 \\ 3 \end{pmatrix} \oplus \begin{pmatrix} \ominus 1 \\ \ominus 0 \end{pmatrix} = \begin{pmatrix} \bullet 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 3 \\ 3 \end{pmatrix} \oplus (-1) \odot \begin{pmatrix} \ominus 4 \\ \ominus 2 \end{pmatrix} = \begin{pmatrix} \bullet 3 \\ 3 \end{pmatrix}$$
$$(-1) \odot \begin{pmatrix} 3 \\ 3 \end{pmatrix} \oplus \begin{pmatrix} \ominus 4 \\ \ominus 2 \end{pmatrix} = \begin{pmatrix} \ominus 4 \\ \bullet 2 \end{pmatrix}$$

 $(-3)\odot\begin{pmatrix}3\\3\end{pmatrix}\oplus\begin{pmatrix}\ominus1\\\ominus0\end{pmatrix}=\begin{pmatrix}\ominus1\\\bullet0\end{pmatrix}$

Signed tropical convex hull – II

Basic properties

- Intersection preserves convexity
- Coordinate projection preserves convexity
- Hull operator
- Tropically convex if and only if line segments are contained

Duality

Let $A = (a_{ij}) \in \mathbb{T}^{d \times n}_{\pm}$ and $b \in \mathbb{T}^d_{\pm}$.

Definition (Non-negative kernel)

$$\ker_{+}(A) = \left\{ x \in \mathbb{T}_{\geq 0}^{n} \setminus \{0\} \mid A \odot x \bowtie 0 \right\}$$

The origin \mathbb{O} is in the convex hull tconv(A) if and only if the non-negative kernel $ker_+(A)$ is not empty.

Duality

Let $A = (a_{ij}) \in \mathbb{T}_+^{d \times n}$ and $b \in \mathbb{T}_+^d$.

Definition (Non-negative kernel)

$$\ker_{+}(A) = \left\{ x \in \mathbb{T}_{\geq 0}^{n} \setminus \{0\} \mid A \odot x \bowtie 0 \right\}$$

The origin \mathbb{O} is in the convex hull tconv(A) if and only if the non-negative kernel $ker_{+}(A)$ is not empty.

Definition (open tropical cone)

$$sep_{+}(A) = \{ y \in \mathbb{T}^{d}_{\pm} \mid y^{\top} \odot A > \mathbb{O} \} .$$

It contains the separators of the columns of A from the origin.

Farkas' lemma

Theorem

For a matrix $A \in \mathbb{T}^{d \times n}_{\pm}$ exactly one of the sets $\ker_+(A)$ and $\sup_+(A)$ is nonempty.

Proof.

- New version of Fourier-Motzkin elimination
- Construction of explicit separator

exp-image of trop. conv. hull

Halfspaces

Let $(a_0, a_1, \ldots, a_d) \in \mathbb{T}^{d+1}_{\pm}$.

Definition (open signed (affine) tropical halfspace)

$$\mathcal{H}^+(a) = \left\{ x \in \mathbb{T}^d_\pm \mid a \odot \begin{pmatrix} 0 \\ x \end{pmatrix} > 0 \right\} .$$

Definition (closed signed (affine) tropical halfspace)

$$\overline{\mathcal{H}}^+(a) = \left\{ x \in \mathbb{T}^d_{\pm} \mid a \odot \begin{pmatrix} 0 \\ x \end{pmatrix} \in \mathbb{T}_{\geq 0} \cup \mathbb{T}_{\bullet} \right\} . \tag{1}$$

Halfspaces

Let $(a_0, a_1, \ldots, a_d) \in \mathbb{T}^{d+1}_{\pm}$.

Definition (open signed (affine) tropical halfspace)

$$\mathcal{H}^+(a) = \left\{ x \in \mathbb{T}^d_{\pm} \mid a \odot \begin{pmatrix} 0 \\ x \end{pmatrix} > 0 \right\} .$$

Definition (closed signed (affine) tropical halfspace)

$$\overline{\mathcal{H}}^+(a) = \left\{ x \in \mathbb{T}_{\pm}^d \mid a \odot \begin{pmatrix} 0 \\ x \end{pmatrix} \in \mathbb{T}_{\geq 0} \cup \mathbb{T}_{\bullet} \right\} . \tag{1}$$

- Open tropical halfspaces are tropically convex.
- Closed tropical halfspaces are not tropically convex.

Observation

The closed signed tropical halfspace $\overline{\mathcal{H}}^+(a)$ is the topological closure of the open signed halfspace $\mathcal{H}^+(a)$.

(

Interlude - Encoding SAT

Theorem (L, Vegh 2019+)

The feasibility problem for systems of the form $A \odot x \dashv b$, $x \in \mathbb{T}^d_{\pm}$ is NP-complete.

Proof.

Encode a formula

$$x_1 \vee \neg x_2 \vee \neg x_3$$

by

$$x_1 \oplus (\ominus x_2) \oplus (\ominus x_3) \models 0$$
.

True corresponds to 0, False corresponds to \ominus 0. Intersection of halfspaces gives \land of clauses.

Representation by Halfspaces - I

Theorem

For a matrix $A \in \mathbb{T}^{d \times n}_{\pm}$, the intersection of the open halfspaces containing their columns agrees with their tropically convex hull, that means

$$\mathsf{tconv}(A) = \bigcap_{A \subseteq \mathcal{H}^+(v)} \mathcal{H}^+(v) \quad \textit{ for all suitable } (v_0, v_1, \dots, v_d) \in \mathbb{T}^{d+1}_\pm \ .$$

Proof.

Careful use of Farkas' Lemma

Representation by Halfspaces - I

Theorem

For a matrix $A \in \mathbb{T}^{d \times n}_{\pm}$, the intersection of the open halfspaces containing their columns agrees with their tropically convex hull, that means

$$\mathsf{tconv}(A) = \bigcap_{A \subseteq \mathcal{H}^+(v)} \mathcal{H}^+(v) \quad \textit{ for all suitable } (v_0, v_1, \dots, v_d) \in \mathbb{T}^{d+1}_\pm \ .$$

Proof.

Careful use of Farkas' Lemma

Separation works for strict inequalities!

Representation by Halfspaces - II

Theorem (Minkowski-Weyl theorem)

For each finite set $V \subset \mathbb{T}^d_\pm$, there are finitely many closed tropical halfspaces H such that $\mathsf{tconv}(V)$ is the intersection of the halfspaces.

For each finite set H of closed halfspaces, whose intersection M is tropically convex, there is a finite set of points $V \in \mathbb{T}^d_\pm$ such that $M = \mathsf{tconv}(V)$.

Representation by Halfspaces - II

Theorem (Minkowski-Weyl theorem)

For each finite set $V \subset \mathbb{T}^d_\pm$, there are finitely many closed tropical halfspaces H such that $\mathsf{tconv}(V)$ is the intersection of the halfspaces.

For each finite set H of closed halfspaces, whose intersection M is tropically convex, there is a finite set of points $V \in \mathbb{T}^d_\pm$ such that $M = \mathsf{tconv}(V)$.

Convexity in each orthant

Theorem

A tropically convex set is the union of the tropically convex sets spanned by its intersection with the boundary of an orthant.

Connection to Puiseux polyhedra

Puiseux series $\mathbb{R}\{\!\!\{t\}\!\!\}$ valuation val (maps an element to its leading exponent)

Example

$$val(\pi t^4 - 100t^{-2.3}) = 4, val(0) = -\infty$$

Sign information: $\operatorname{sgn} \colon \mathbb{R}\{\!\!\{t\}\!\!\} \to \{\ominus, \mathbb{O}, \oplus\}$ Signed valuation: $\operatorname{sval} \colon \mathbb{R}\{\!\!\{t\}\!\!\} \to \mathbb{T}_{\pm}$ maps an element $k \in \mathbb{R}\{\!\!\{t\}\!\!\}$ to $\operatorname{sgn}(k)\operatorname{val}(k)$.

Lemma

One can define polytopes over $\mathbb{R}\{t\}$ like over \mathbb{R} .

Theorem

The signed hull tconv(A) is the union of the signed valuations for all possible lifts

$$tconv A = \bigcup_{sval(\mathbf{A})=A} sval(conv(\mathbf{A}))$$
.

Connection with hyperoperations

Definition (real plus-tropical hyperfield \mathbb{H} (Viro 2010))

ullet additive hyperoperation on \mathbb{T}_\pm given by

$$x \boxplus y = \begin{cases} \operatorname{argmax}_{x,y}(|x|,|y|) & \text{if } \chi \subseteq \{+,\mathbb{O}\} \text{ or } \chi = \{-\} \\ [\ominus |x|,|x|] & \text{else} \end{cases}.$$

• multiplicative group (\mathbb{T}_{\pm},\odot)

Example

- $\bullet \ 2 \boxplus \ominus 3 = \ominus 3$
- $\bullet \ 3 \boxplus \ominus 3 = [\ominus 3, 3]$

Theorem

$$\mathsf{tconv}(A) = A \boxdot \Delta_n := \left\{ A \boxdot x \, \middle| \, igoplus_{j \in [n]} x_j = 0, x \ge 0
ight\} \subset \mathbb{T}^d_\pm \ .$$

Conclusion

Summary

- Extended notion of tropical convexity for signed tropical numbers
- New phenomena (strict vs. non-strict inequalities)
- Duality and elimination work (essentially)
- Representation by generators and halfspaces

Further Work

- Combinatorial study of signed tropical polytopes
- Linear programming without non-negativity constraints
- Feasibility check w.r.t. the origin