FEUP-MIEIC 2018/2019

COMPLEMENTOS de MATEMÁTICA Aula Teórico-Prática – Ficha 6

SUPERFÍCIES

1. Parametrize as seguintes superfícies:

a)
$$2x^2 + 4y^2 + z^2 = 16$$
, $z \ge 0$.

b)
$$x^2 + y^2 = 9$$
, $z \in [-1,3]$.

- c) A região da superfície $x^2 + y^2 + z^2 = 4$ situada acima do plano $z = -\sqrt{2}$.
- **d**) A região do plano z = x 1 que é limitada pela superfície $x^2 + y^2 = 1$.
- 2. Identifique as seguintes superfícies e defina-as através das respectivas equações cartesianas:

a)
$$\vec{r}(u,v) = \cos(u)\cos(v)\vec{i} + 2\sin(u)\cos(v)\vec{j} + 3\sin(v)\vec{k}$$
, $u \in [0,2\pi]$, $v \in [-\pi/2,\pi/2]$.

b)
$$\vec{r}(u,v) = au\cos(v)\vec{i} + bu\sin(v)\vec{j} - u^2\vec{k}$$
, $u \ge 0$, $v \in [0,2\pi]$ $(a,b \in \mathbb{R}^+)$.

c)
$$\vec{r}(u,v) = \frac{a}{2}(u+v)\vec{i} + \frac{b}{2}(u-v)\vec{j} + uv\vec{k}$$
, $(u,v) \in \mathbb{R}^2$ $(a,b \in \mathbb{R}^+)$.

- **3.** Seja a superfície parametrizada por $\vec{r}(u,v) = (u^2 v^2)\vec{i} + (u^2 + v^2)\vec{j} + 2uv\vec{k}$, $(u,v) \in \mathbb{R}^2$. Calcule:
 - a) O seu produto vectorial fundamental.
 - **b**) A equação cartesiana do plano tangente à superfície no ponto R = (0, 2, 2).
- **4.** Considere a superfície parametrizada por $\vec{r}(u,v) = \cos(u)\sin(v)\vec{i} + \sin(u)\cos(v)\vec{j} + u\vec{k}$, $(u,v) \in \mathbb{R}^2$. Calcule:
 - a) O seu produto vectorial fundamental.
 - **b**) A equação cartesiana do plano que passa no ponto Q = (1,2,1) e é paralelo ao plano tangente à superfície no ponto $R = (0,0,\pi)$.

- 5. Considere a superfície, S, definida por $z = x^2 + y^2$, $z \in [0,4]$.
 - a) Esboce a superfície.

- **b**) Determine a sua área.
- **6.** Seja a superfície, S, parametrizada por $\vec{r}(u,v) = u\cos(v)\vec{i} + u\sin(v)\vec{j} + u\vec{k}$, tal que $u \in [0,1]$ e $v \in [0,2\pi]$.
 - a) Esboce a superfície.

- b) Calcule a sua área.
- 7. Confirme o resultado obtido no exercício da alínea b) do exercício 6., considerando uma parametrização da superfície em coordenadas cartesianas.
- 8. Seja a superfície, S, definida por $2-2x^2-2y^2-z=0$, $z \ge 0$.
 - a) Esboce a superfície.

- **b**) Determine a sua área.
- **9.** Seja a superfície, S, definida por $z = 5 (x^2 + y^2)$, $z \ge 4$.
 - a) Esboce a superfície.

- **b**) Obtenha a sua área.
- **10.** Considere a superfície, S, definida por $z^2 = x^2 + y^2$, $z \in [-4, -1]$.
 - a) Esboce a superfície.

- b) Calcule a sua área.
- **11.** Seja a superfície, S, definida por $y = \sqrt{x^2 + z^2}$, tal que $z \ge 0$, $z \ge 0$ e $z + z \le 1$.
 - a) Esboce a superfície.

- **b**) Calcule a sua área.
- 12. Seja a superfície, S, definida por $x^2 + y^2 = (z 4)^2$, tal que $x \ge 0$, $y \ge 0$ e $0 \le z \le 2$.
 - a) Esboce a superfície.

b) Calcule a sua área.

- 13. Determine a área da região, S, do plano x + y + z = a situada no interior da superfície cilíndrica $x^2 + y^2 = b^2$.
- **14.** Seja o plano bcx + acy + abz = abc, em que $a,b,c \in \mathbb{R}^+$. Calcule a área da região, S, do plano situada no primeiro octante.
- **15.** Determine a área das superfícies, *S*, definidas por:

a)
$$3z = x^{3/2} + y^{3/2}$$
, tal que $0 \le x \le 1$ e $0 \le y \le x$.

b)
$$z^2 = 2xy$$
, tal que $x \in [0, a]$, $y \in [0, b]$ e $z \ge 0$.

c)
$$z = a^2 - (x^2 + y^2)$$
, tal que $0 \le z \le \frac{3}{4}a^2$.

d)
$$3z^2 = (x+y)^3$$
, tal que $x \ge 0$, $y \ge 0$ e $x+y \le 2$.

e)
$$z = y^2$$
, tal que $x \in [0,1]$ e $y \in [0,1]$.

f)
$$x^2 + y^2 + z^2 - 4z = 0$$
, tal que $z \ge \sqrt{3(x^2 + y^2)}$.

g)
$$x^2 + y^2 + z^2 - 2az = 0$$
, tal que $z \ge \frac{1}{b}(x^2 + y^2)$ e $a,b \in \mathbb{R}^+$.

Soluções: Consultar o manual "Noções sobre Análise Matemática", Efeitos Gráficos, 2019. ISBN: 978-989-54350-0-5.