Package 'LSTS'

October 12, 2022

October 12, 2022
Type Package
Title Locally Stationary Time Series
Version 2.1
Description A set of functions that allow stationary analysis and locally stationary time series analysis.
URL https://pacha.dev/LSTS/
BugReports https://github.com/pachadotdev/LSTS/issues/
Imports stats, Rdpack, ggplot2, scales, patchwork
RdMacros Rdpack
Depends R (>= 3.6.0)
License Apache License (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Suggests testthat (>= 2.1.0)
NeedsCompilation no
Author Ricardo Olea [aut, cph], Wilfredo Palma [aut, cph], Pilar Rubio [aut], Mauricio Vargas [aut, cre] (https://orcid.org/0000-0003-1017-7574)
Maintainer Mauricio Vargas <mavargas11@uc.cl></mavargas11@uc.cl>
Repository CRAN
Date/Publication 2021-07-29 16:00:02 UTC
R topics documented:
block.smooth.periodogram 2 Box.Ljung.Test 3 hessian 4 LS.kalman 5

20

LS.summary																•
LS.whittle																
LS.whittle.loglik																
LS.whittle.loglik.sd .																
LS.whittle.loglik.theta																
malleco																
periodogram																
smooth.periodogram																
spectral.density																
ts.diag																

block.smooth.periodogram

Smooth Periodogram by Blocks

Description

Plots the contour plot of the smoothing periodogram of a time series, by blocks or windows.

Usage

Index

```
block.smooth.periodogram(
   y,
   x = NULL,
   N = NULL,
   S = NULL,
   p = 0.25,
   spar.freq = 0,
   spar.time = 0
)
```

Arguments

У	(type: numeric) data vector
X	(type: numeric) optional vector, if x = NULL then the function uses $(1,\ldots,n)$ where n is the length of y.
N	(type: numeric) value corresponding to the length of the window to compute periodogram. If N=NULL then the function will use $N={\rm trunc}(n^{0.8})$, see Dahlhaus and Giraitis (1998) where n is the length of the y vector.
S	(type: numeric) value corresponding to the lag with which will be taking the blocks or windows to calculate the periodogram.
p	(type: numeric) value used if it is desired that S is proportional to N. By default p=0.25, if S and N are not entered.
spar.freq	(type: numeric) smoothing parameter, typically (but not necessarily) in $(0,1]$.
spar.time	(type: numeric) smoothing parameter, typically (but not necessarily) in $(0, 1]$.

Box.Ljung.Test 3

Details

The number of windows of the function is $m = \operatorname{trunc}((n-N)/S+1)$, where trunc truncates de entered value and n is the length of the vector y. All windows are of the same length N, if this value isn't entered by user then is computed as $N = \operatorname{trunc}(n^{0.8})$ (Dahlhaus). LSTS_spb computes the periodogram in each of the M windows and then smoothes it two times with smooth.spline function; the first time using spar.freq parameter and the second time with spar.time. These windows overlap between them.

Value

A ggplot object.

References

For more information on theoretical foundations and estimation methods see Dahlhaus R, others (1997). "Fitting time series models to nonstationary processes." *The annals of Statistics*, **25**(1), 1–37. Dahlhaus R, Giraitis L (1998). "On the optimal segment length for parameter estimates for locally stationary time series." *Journal of Time Series Analysis*, **19**(6), 629–655.

See Also

```
arima.sim
```

Examples

block.smooth.periodogram(malleco)

Box.Ljung.Test

Ljung-Box Test Plot

Description

Plots the p-values Ljung-Box test.

Usage

```
Box.Ljung.Test(z, lag = NULL, main = NULL)
```

Arguments

z (type: numeric) data vector

lag (type: numeric) the number of periods for the autocorrelation

main (type: character) a title for the returned plot

4 hessian

Details

The Ljung-Box test is used to check if exists autocorrelation in a time series. The statistic is

$$q = n(n+2) \cdot \sum_{j=1}^{h} \hat{\rho}(j)^2 / (n-j)$$

with n the number of observations and $\hat{\rho}(j)$ the autocorrelation coefficient in the sample when the lag is j. LSTS_1btp computes q and returns the p-values graph with lag j.

Value

A ggplot object.

References

For more information on theoretical foundations and estimation methods see Brockwell PJ, Davis RA, Calder MV (2002). *Introduction to time series and forecasting*, volume 2. Springer. Ljung GM, Box GE (1978). "On a measure of lack of fit in time series models." *Biometrika*, **65**(2), 297–303.

See Also

periodogram

Examples

```
Box.Ljung.Test(malleco, lag = 5)
```

hessian

Hessian Matrix

Description

Numerical approximation of the Hessian of a function.

Usage

```
hessian(f, x0, ...)
```

Arguments

f (type: numeric) name of function that defines log likelihood (or negative of it).

x0 (type: numeric) scalar or vector of parameters that give the point at which you

want the hessian estimated (usually will be the mle).

. . . Additional arguments to be passed to the function.

LS.kalman 5

Details

Computes the numerical approximation of the Hessian of f, evaluated at x0. Usually needs to pass additional parameters (e.g. data). N.B. this uses no numerical sophistication.

Value

An $n \times n$ matrix of 2nd derivatives, where n is the length of x0.

See Also

```
arima.sim
```

Examples

```
# Variance of the maximum likelihood estimator for mu parameter in
# gaussian data
loglik <- function(series, x, sd = 1) {
    -sum(log(dnorm(series, mean = x, sd = sd)))
}
sqrt(c(var(malleco) / length(malleco), diag(solve(hessian(
    f = loglik, x = mean(malleco), series = malleco,
    sd = sd(malleco)
)))))</pre>
```

LS.kalman

Kalman filter for locally stationary processes

Description

This function run the state-space equations for expansion infinite of moving average in processes LS-ARMA or LS-ARFIMA.

Usage

```
LS.kalman(
    series,
    start,
    order = c(p = 0, q = 0),
    ar.order = NULL,
    ma.order = NULL,
    sd.order = NULL,
    d.order = NULL,
    include.d = FALSE,
    m = NULL
)
```

6 LS.kalman

Arguments

(type: numeric) univariate time series. series (type: numeric) numeric vector, initial values for parameters to run the model. start (type: numeric) vector corresponding to ARMA model entered. order ar.order (type: numeric) AR polimonial order. (type: numeric) MA polimonial order. ma.order sd.order (type: numeric) polinomial order noise scale factor. d.order (type: numeric) d polinomial order, where d is the ARFIMA parameter. include.d (type: numeric) logical argument for ARFIMA models. If include.d=FALSE then the model is an ARMA process. (type: numeric) truncation order of the MA infinity process. By default m =m

Details

The model fit is done using the Whittle likelihood, while the generation of innovations is through Kalman Filter. Details about ar.order, ma.order, sd.order and d.order can be viewed in LS.whittle.

 $0.25n^{0.8}$ where n the length of series.

Value

A list with:

residuals standard residuals.

fitted_values model fitted values.

delta variance prediction error.

References

For more information on theoretical foundations and estimation methods see Brockwell PJ, Davis RA, Calder MV (2002). *Introduction to time series and forecasting*, volume 2. Springer. Palma W (2007). *Long-memory time series: theory and methods*, volume 662. John Wiley & Sons. Palma W, Olea R, Ferreira G (2013). "Estimation and forecasting of locally stationary processes." *Journal of Forecasting*, **32**(1), 86–96.

Examples

```
fit_kalman <- LS.kalman(malleco, start(malleco))</pre>
```

LS.summary 7

LS.summary

Summary for Locally Stationary Time Series

Description

Produces a summary of the results to Whittle estimator to Locally Stationary Time Series (LS. whittle function).

Usage

```
LS.summary(object)
```

Arguments

object

(type: list) the output of LS. whittle function

Details

Calls the output from LS.whittle and computes the standard error and p-values to provide a detailed summary.

Value

A list with the following components:

summary a resume table with estimate, std. error, z-value and p-value of the model.

aic AIC of the model.

npar number of parameters in the model.

See Also

```
LS.whittle
```

Examples

```
fit_whittle <- LS.whittle(
  series = malleco, start = c(1, 1, 1, 1),
  order = c(p = 1, q = 0), ar.order = 1, sd.order = 1, N = 180, n.ahead = 10
)
LS.summary(fit_whittle)</pre>
```

LS.whittle

LS.whittle

Whittle estimator to Locally Stationary Time Series

Description

This function computes Whittle estimator to LS-ARMA and LS-ARFIMA models.

Usage

```
LS.whittle(
  series,
  start,
  order = c(p = 0, q = 0),
  ar.order = NULL,
  ma.order = NULL,
  sd.order = NULL,
  d.order = NULL,
  include.d = FALSE,
  N = NULL
  S = NULL,
  include.taper = TRUE,
  control = list(),
  lower = -Inf,
  upper = Inf,
  m = NULL,
  n.ahead = 0
)
```

Arguments

series	(type: numeric) univariate time series.
start	(type: numeric) numeric vector, initial values for parameters to run the model.
order	(type: numeric) vector corresponding to ARMA model entered.
ar.order	(type: numeric) AR polimonial order.
ma.order	(type: numeric) MA polimonial order.
sd.order	(type: numeric) polinomial order noise scale factor.
d.order	(type: numeric) d polinomial order, where d is the ARFIMA parameter.
include.d	(type: numeric) logical argument for ARFIMA models. If include $.d=FALSE$ then the model is an ARMA process.
N	(type: numeric) value corresponding to the length of the window to compute periodogram. If N=NULL then the function will use $N={\rm trunc}(n^{0.8})$, see Dahlhaus (1998) where n is the length of the y vector.
S	(type: numeric) value corresponding to the lag with which will go taking the blocks or windows.

LS.whittle

include.taper (type: logical) logical argument that by default is TRUE. See periodogram.

control (type: list) A list of control parameters. More details in nlminb.

lower (type: numeric) lower bound, replicated to be as long as start. If unspecified,

all parameters are assumed to be lower unconstrained.

upper (type: numeric) upper bound, replicated to be as long as start. If unspecified,

all parameters are assumed to be upper unconstrained.

m (type: numeric) truncation order of the MA infinity process, by default m =

 $0.25n^{0.8}$. Parameter used in LSTS_kalman.

n.ahead (type: numeric) The number of steps ahead for which prediction is required. By

default is zero.

Details

This function estimates the parameters in models: LS-ARMA

$$\Phi(t/T, B) Y_{t,T} = \Theta(t/T, B) \sigma(t/T) \varepsilon_t$$

and LS-ARFIMA

$$\Phi(t/T, B) Y_{t,T} = \Theta(t/T, B) (1 - B)^{-d(t/T)} \sigma(t/T) \varepsilon_t,$$

with infinite moving average expansion

$$Y_{t,T} = \sigma(t/T) \sum_{j=0}^{\infty} \psi(t/T) \, \varepsilon_t,$$

for $t=1,\ldots,T$, where for $u=t/T\in[0,1]$, $\Phi(u,B)=1+\phi_1(u)B+\cdots+\phi_p(u)B^p$ is an autoregressive polynomial, $\Theta(u,B)=1+\theta_1(u)B+\cdots+\theta_q(u)B^q$ is a moving average polynomial, d(u) is a long-memory parameter, $\sigma(u)$ is a noise scale factor and $\{\varepsilon_t\}$ is a Gaussian white noise sequence with zero mean and unit variance. This class of models extends the well-known ARMA and ARFIMA process, which is obtained when the components $\Phi(u,B)$, $\Theta(u,B)$, d(u) and $\sigma(u)$ do not depend on u. The evolution of these models can be specified in terms of a general class of functions. For example, let $\{g_j(u)\}, j=1,2,\ldots$, be a basis for a space of smoothly varying functions and let $d_{\theta}(u)$ be the time-varying long-memory parameter in model LS-ARFIMA. Then we could write $d_{\theta}(u)$ in terms of the basis $\{g_j(u)=u^j\}$ as follows $d_{\theta}(u)=\sum_{j=0}^k \alpha_j\,g_j(u)$ for unknown values of k and $\theta=(\alpha_0,\alpha_1,\ldots,\alpha_k)'$. In this situation, estimating θ involves determining k and estimating the coefficients $\alpha_0,\alpha_1,\ldots,\alpha_k$. LS. whittle optimizes LS. whittle.loglik as objective function using nlminb function, for both LS-ARMA (include.d=FALSE) and LS-ARFIMA (include.d=TRUE) models. Also computes Kalman filter with LS. kalman and this values are given in var.coef in the output.

Value

A list with the following components:

coef The best set of parameters found.

var.coef covariance matrix approximated for maximum likelihood estimator $\hat{\theta}$ of $\theta := (\theta_1, \dots, \theta_k)'$. This matrix is approximated by H^{-1}/n , where H is the Hessian

matrix $[\partial^2 \ell(\theta)/\partial \theta_i \partial \theta_j]_{i,j=1}^k$.

LS.whittle

log-likelihood of coef, calculated with LS. whittle. loglik aic Akaike'S 'An Information Criterion', for one fitted model LS-ARMA or LS-ARFIMA. The formula is -2L + 2k/n, where L represents the log-likelihood, k represents the number of parameters in the fitted model and n is equal to the length of the series. original time serie. series residuals standard residuals. model fitted values. fitted.values predictions of the model. pred the estimated standard errors. se A list representing the fitted model. model

See Also

nlminb, LS.kalman

Examples

```
# Analysis by blocks of phi and sigma parameters
N <- 200
S <- 100
M <- trunc((length(malleco) - N) / S + 1)
table <- c()
for (j in 1:M) {
  x \leftarrow malleco[(1 + S * (j - 1)):(N + S * (j - 1))]
  table <- rbind(table, nlminb(</pre>
    start = c(0.65, 0.15), N = N,
    objective = LS.whittle.loglik,
    series = x, order = c(p = 1, q = 0)
  )$par)
}
u \leftarrow (N / 2 + S * (1:M - 1)) / length(malleco)
table <- as.data.frame(cbind(u, table))</pre>
colnames(table) <- c("u", "phi", "sigma")</pre>
# Start parameters
phi <- smooth.spline(table$phi, spar = 1, tol = 0.01)$y</pre>
fit.1 <- nls(phi \sim a0 + a1 * u, start = list(a0 = 0.65, a1 = 0.00))
sigma <- smooth.spline(table$sigma, spar = 1)$y</pre>
fit.2 <- nls(sigma \sim b0 + b1 * u, start = list(b0 = 0.65, b1 = 0.00))
fit_whittle <- LS.whittle(</pre>
  series = malleco, start = c(coef(fit.1), coef(fit.2)), order = c(p = 1, q = 0),
  ar.order = 1, sd.order = 1, N = 180, n.ahead = 10
```

LS.whittle.loglik

LS.whittle.loglik

Locally Stationary Whittle log-likelihood Function

Description

This function computes Whittle estimator for LS-ARMA and LS-ARFIMA models, in data with mean zero. If mean is not zero, then it is subtracted to data.

Usage

```
LS.whittle.loglik(
    x,
    series,
    order = c(p = 0, q = 0),
    ar.order = NULL,
    ma.order = NULL,
    sd.order = NULL,
    d.order = NULL,
    include.d = FALSE,
    N = NULL,
    S = NULL,
    include.taper = TRUE
)
```

Arguments

x	(type: numeric) parameter vector.
series	(type: numeric) univariate time series.
order	(type: numeric) vector corresponding to ARMA model entered.
ar.order	(type: numeric) AR polimonial order.
ma.order	(type: numeric) MA polimonial order.
sd.order	(type: numeric) polinomial order noise scale factor.
d.order	(type: numeric) d polinomial order, where d is the ARFIMA parameter.
include.d	(type: numeric) logical argument for ARFIMA models. If include.d=FALSE then the model is an ARMA process.
N	(type: numeric) value corresponding to the length of the window to compute periodogram. If N=NULL then the function will use $N={\rm trunc}(n^{0.8})$, see Dahlhaus (1998) where n is the length of the y vector.
S	(type: numeric) value corresponding to the lag with which will go taking the blocks or windows.
include.taper	(type: logical) logical argument that by default is TRUE. See periodogram.

12 LS.whittle.loglik.sd

Details

The estimation of the time-varying parameters can be carried out by means of the Whittle log-likelihood function proposed by Dahlhaus (1997),

$$L_n(\theta) = \frac{1}{4\pi} \frac{1}{M} \int_{-\pi}^{\pi} \left\{ log f_{\theta}(u_j, \lambda) + \frac{I_N(u_j, \lambda)}{f_{\theta}(u_j, \lambda)} \right\} d\lambda$$

where M is the number of blocks, N the length of the series per block, n = S(M-1) + N, S is the shift from block to block, $u_j = t_j/n$, $t_j = S(j-1) + N/2$, $j = 1, \ldots, M$ and λ the Fourier frequencies in the block $(2\pi k/N, k = 1, \ldots, N)$.

References

For more information on theoretical foundations and estimation methods see Brockwell PJ, Davis RA, Calder MV (2002). *Introduction to time series and forecasting*, volume 2. Springer. Palma W, Olea R, others (2010). "An efficient estimator for locally stationary Gaussian long-memory processes." *The Annals of Statistics*, **38**(5), 2958–2997.

See Also

nlminb, LS.kalman

LS.whittle.loglik.sd Locally Stationary Whittle Log-likelihood sigma

Description

This function calculates log-likelihood with known θ , through LS.whittle.loglik function.

Usage

```
LS.whittle.loglik.sd(
    x,
    series,
    order = c(p = 0, q = 0),
    ar.order = NULL,
    ma.order = NULL,
    sd.order = NULL,
    d.order = NULL,
    include.d = FALSE,
    N = NULL,
    include.taper = TRUE,
    theta.par = numeric()
)
```

LS.whittle.loglik.theta

Arguments

х	(type: numeric) parameter vector.
series	(type: numeric) univariate time series.
order	(type: numeric) vector corresponding to ARMA model entered.
ar.order	(type: numeric) AR polimonial order.
ma.order	(type: numeric) MA polimonial order.
sd.order	(type: numeric) polinomial order noise scale factor.
d.order	(type: numeric) d polinomial order, where d is the ARFIMA parameter.
include.d	(type: numeric) logical argument for ARFIMA models. If include.d=FALSE then the model is an ARMA process.
N	(type: numeric) value corresponding to the length of the window to compute periodogram. If N=NULL then the function will use $N={\rm trunc}(n^{0.8})$, see Dahlhaus (1998) where n is the length of the y vector.
S	(type: numeric) value corresponding to the lag with which will go taking the blocks or windows.
include.taper	(type: logical) logical argument that by default is TRUE. See periodogram.
theta.par	(type: numeric) vector with the known parameters of the model.

Details

This function computes LS.whittle.loglik with x as x = c(theta.par, x).

```
LS.whittle.loglik.theta
```

Locally Stationary Whittle Log-likelihood theta

Description

Calculate the log-likelihood with σ known, through LS.whittle.loglik function.

Usage

```
LS.whittle.loglik.theta(
    x,
    series,
    order = c(p = 0, q = 0),
    ar.order = NULL,
    ma.order = NULL,
    sd.order = NULL,
    d.order = NULL,
    include.d = FALSE,
    N = NULL,
    include.taper = TRUE,
    sd.par = 1
)
```

14 malleco

Arguments

x	(type: numeric) parameter vector.
series	(type: numeric) univariate time series.
order	(type: numeric) vector corresponding to ARMA model entered.
ar.order	(type: numeric) AR polimonial order.
ma.order	(type: numeric) MA polimonial order.
sd.order	(type: numeric) polinomial order noise scale factor.
d.order	(type: numeric) d polinomial order, where d is the ARFIMA parameter.
include.d	(type: numeric) logical argument for ARFIMA models. If include . d=FALSE then the model is an ARMA process.
N	(type: numeric) value corresponding to the length of the window to compute periodogram. If N=NULL then the function will use $N={\rm trunc}(n^{0.8})$, see Dahlhaus (1998) where n is the length of the y vector.
S	(type: numeric) value corresponding to the lag with which will go taking the blocks or windows.
include.taper	(type: logical) logical argument that by default is TRUE. See periodogram.
sd.par	(type: numeric) value corresponding to known variance.

Details

This function computes LS.whittle.loglik with x as x = c(x, sd.par).

malleco	Average Araucaria Araucana Tree Ring Width

Description

A ts object containing average annual ring width measured in milimiters for different Araucaria Araucana trees in the Malleco Region (Chile). The years of observation in this data cover the period 1242-1975.

Format

A time series object with 734 elements

Author(s)

National Oceanic and Atmospheric Administration (NOAA)

periodogram 15

Description

This function computes the periodogram from a stationary time serie. Returns the periodogram, its graph and the Fourier frequency.

Usage

```
periodogram(y, plot = TRUE, include.taper = FALSE)
```

Arguments

y (type: numeric) data vector

plot (type: logical) logical argument which allows to plot the periodogram. Defaults

to TRUE.

include.taper (type: logical) logical argument which by default is FALSE. If include.taper=TRUE

then y is multiplied by $0.5(1 - \cos(2\pi(n-1)/n))$ (cosine bell).

Details

The tapered periodogram it is given by

$$I(\lambda) = \frac{|D_n(\lambda)|^2}{2\pi H_{2,n}(0)}$$

with $D(\lambda) = \sum_{s=0}^{n-1} h\left(\frac{s}{N}\right) y_{s+1} e^{-i\lambda s}$, $H_{k,n} = \sum_{s=0}^{n-1} h\left(\frac{s}{N}\right)^k e^{-i\lambda s}$ and λ are Fourier frequencies defined as $2\pi k/n$, with $k=1,\ldots,n$. The data taper used is the cosine bell function, $h(x) = \frac{1}{2}[1-\cos(2\pi x)]$. If the series has missing data, these are replaced by the average of the data and n it is corrected by \$n-N\$, where N is the amount of missing values of serie. The plot of the periodogram is periodogram values vs. λ .

Value

A list with with the periodogram and the lambda values.

References

For more information on theoretical foundations and estimation methods see Brockwell PJ, Davis RA, Calder MV (2002). *Introduction to time series and forecasting*, volume 2. Springer. Dahlhaus R, others (1997). "Fitting time series models to nonstationary processes." *The annals of Statistics*, **25**(1), 1–37.

See Also

fft, Mod, smooth.spline.

16 smooth.periodogram

Examples

```
# AR(1) simulated
set.seed(1776)
ts.sim <- arima.sim(n = 1000, model = list(order = c(1, 0, 0), ar = 0.7))
per <- periodogram(ts.sim)
per$plot</pre>
```

smooth.periodogram

Smoothing periodogram

Description

This function returns the smoothing periodogram of a stationary time serie, its plot and its Fourier frequency.

Usage

```
smooth.periodogram(y, plot = TRUE, spar = 0)
```

Arguments

y (type: numeric) data vector.

plot (type: logical) logical argument which allows to plot the periodogram. Defaults

to TRUE.

spar (type: numeric) smoothing parameter, typically (but not necessarily) in (0,1].

Details

smooth.periodogram computes the periodogram from y vector and then smooth it with *smoothing spline* method, which basically approximates a curve using a cubic spline (see more details in smooth.spline). λ is the Fourier frequency obtained through periodogram. It must have caution with the minimum length of y, because smooth.spline requires the entered vector has at least length 4 and the length of y does not equal to the length of the data of the periodogram that smooth.spline receives. If it presents problems with tol (**tol**erance), see smooth.spline.

Value

A list with with the smooth periodogram and the lambda values

See Also

```
smooth.spline,periodogram
```

spectral.density 17

Examples

```
# AR(1) simulated
require(ggplot2)
set.seed(1776)
ts.sim <- arima.sim(n = 1000, model = list(order = c(1, 0, 0), ar = 0.7))
per <- periodogram(ts.sim)
aux <- smooth.periodogram(ts.sim, plot = FALSE, spar = .7)
sm_p <- data.frame(x = aux$lambda, y = aux$smooth.periodogram)
sp_d <- data.frame(
    x = aux$lambda,
    y = spectral.density(ar = 0.7, lambda = aux$lambda)
)
g <- per$plot
g +
    geom_line(data = sm_p, aes(x, y), color = "#ff7f0e") +
    geom_line(data = sp_d, aes(x, y), color = "#d31244")</pre>
```

spectral.density

Spectral Density

Description

Returns theoretical spectral density evaluated in ARMA and ARFIMA processes.

Usage

```
spectral.density(ar = numeric(), ma = numeric(), d = 0, sd = 1, lambda = NULL)
```

Arguments

ar	(type: numeric) AR vector. If the time serie doesn't have AR term then omit it. For more details see the examples.
ma	(type: numeric) MA vector. If the time serie doesn't have MA term then omit it. For more details see the examples.
d	(type: numeric) Long-memory parameter. If d is zero, then the process is $ARMA(p,q)$.
sd	(type: numeric) Noise scale factor, by default is 1.
lambda	(type: numeric) λ parameter on which the spectral density is calculated/computed. If lambda=NULL then it is considered a sequence between 0 and π .

Details

The spectral density of an ARFIMA(p,d,q) processes is

$$f(\lambda) = \frac{\sigma^2}{2\pi} \cdot \left(2\sin(\lambda/2)\right)^{-2d} \cdot \frac{\left|\theta\left(\exp\left(-i\lambda\right)\right)\right|^2}{\left|\phi\left(\exp\left(-i\lambda\right)\right)\right|^2}$$

18 ts.diag

With $-\pi \le \lambda \le \pi$ and -1 < d < 1/2. |x| is the Mod of x. LSTS_sd returns the values corresponding to $f(\lambda)$. When d is zero, the spectral density corresponds to an ARMA(p,q).

Value

An unnamed vector of numeric class.

References

For more information on theoretical foundations and estimation methods see Brockwell PJ, Davis RA, Calder MV (2002). *Introduction to time series and forecasting*, volume 2. Springer. Palma W (2007). *Long-memory time series: theory and methods*, volume 662. John Wiley & Sons.

Examples

```
# Spectral Density AR(1)
require(ggplot2)
f <- spectral.density(ar = 0.5, lambda = malleco)
ggplot(data.frame(x = malleco, y = f)) +
  geom_line(aes(x = as.numeric(x), y = as.numeric(y))) +
  labs(x = "Frequency", y = "Spectral Density") +
  theme_minimal()</pre>
```

ts.diag

Diagnostic Plots for Time Series fits

Description

Plot time-series diagnostics.

Usage

```
ts.diag(x, lag = 10, band = qnorm(0.975)/sqrt(length(x)))
```

Arguments

x (type: numeric) residuals of the fitted time series model.

lag (type: numeric) maximum lag at which to calculate the acf and Ljung-Box test.

By default set to 10.

band (type: numeric) absolute value for bandwidth in the the ACF plot. By default

set to 'qnorm(0.975)/sqrt(n)' which approximates to 0.07 for malleco data (n =

734)

Details

This function plot the residuals, the autocorrelation function of the residuals (ACF) and the p-values of the Ljung-Box Test for all lags up to lag.

ts.diag

Value

A ggplot object.

See Also

Box.Ljung.Test

Examples

ts.diag(malleco)

Index

```
* data
    malleco, 14
\operatorname{arima.sim}, 3, 5
\verb|block.smooth.periodogram|, 2
Box.Ljung.Test, 3, 19
fft, 15
hessian, 4
LS.kalman, 5, 9, 10, 12
LS.summary, 7
LS.whittle, 6, 7, 8, 10
LS.whittle.loglik, 9, 11, 13, 14
LS.whittle.loglik.sd, 12
LS.whittle.loglik.theta, 13
malleco, 14
Mod, 15, 18
nlminb, 9, 10, 12
periodogram, 4, 9, 11, 13, 14, 15, 16
smooth.periodogram, 16
smooth.spline, 3, 15, 16
spectral.density, 17
trunc, 3
ts.diag, 18
```