刀

(19) RU (11) 2 065 091 (13) C1

(51) MIIK6 F 15 B 9/16

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 95102201/06, 22.02.1995
- (46) Дата публикации: 10.08.1996
- (56) Ссылки: 1. Авторское свидетельство ССССР N 416466, кл. F 15 B 9/16, 1974. 2. Авторское свидетельство СССР N 935874, кл. F 15 B 9/16, 1982. 3. Гуревич Д.Ф. и др. Справочник по арматуре газонефтепроводов, Л.: Недра, 1988, с. 402, рис. 9.10.
- (71) Заявитель: Саяпин Вадим Васильевич
- (72) Изобретатель: Саяпин Вадим Васильевич
- (73) Патентообладатель: Саяпин Вадим Васильевич

(54) МНОГОКАНАЛЬНЫЙ РЕЗЕРВИРОВАННЫЙ ПРИВОД И РАСПРЕДЕЛИТЕЛЬ ДЛЯ ПОДАЧИ РАБОЧЕЙ СРЕДЫ

(57) Реферат:

системах Использование: дистанционного управления. Сущность изобретения: в многоканальном приводе по исполнительный один меньшей мере механизм выполнен в виде поршневого цилиндра с полостями, подключенными к линиям подвода и сброса рабочей среды, а другой канал выполнен с исполнительным двигателем в виде струйного двигателя, при устройство распределительное выполнено в виде двух распределителей, каждый из которых имеет корпус с полостями подвода, отвода к потребителю и сброса рабочей среды и с камерой управления, а также жестко соединенные первый и второй запорные элементы, первый из которых поджат к неподвижному седлу, а второй размещен с возможностью взаимодействия с подвижным седлом. 7 з.п. ф-лы, 3 ил.

Ó

S

ဖ

RU⁽¹¹⁾ 2 065 091 ⁽¹³⁾ C1

(51) int. Cl.6 F 15 B 9/16

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 95102201/06, 22.02.1995

(46) Date of publication: 10.08.1996

(71) Applicant: Sajapin Vadim Vasil'evich

Sajapin Vadim Vasil'evich (72) Inventor:

(73) Proprietor: Sajapin Vadim Vasil'evich

(54) MULTIPASSAGE REDUCTANT DRIVE AND DISTRIBUTION FOR SUPPLY OF WORKING MEDIUM

(57) Abstract: systems. control remote FIELD: SUBSTANCE: at least one actuating mechanism of multipassage drive is made in the form of piston cylinder with chambers connected to working medium supply and discharge lines; other passage is provided with actuating motor made in the form of jet motor; consists of distribution unit distributors; each distributor has housing chambers for supply, delivery to consumers and discharge of working medium and with control chamber, as well as firstly and second shut-off members which are rigidly connected; first shut-off member is pressed to fixed seat and second shut-off member is located for engagement with movable seat.

O

0

40

Изобретение относится к области пневмогидроавтоматики и может быть использовано в системах дистанционного управления, в частности для переключения и следящего движения регулирующей арматуры нефтегазопроводов и других объектов, требующих гарантированного срабатывания даже при наличии отказов отдельных элементов.

Уровень техники в данной области известен тем, что характеризуется многоканальный резервированный привод содержащий задающее устройство и силовые исполнительные имеющие механизмы с поршневыми цилиндрами, линии подвода и сброса рабочей среды, средства контроля срабатывания и подключения резервного канала и распределительное устройство с распределителем, содержащим корпус с полостями подвода, отвода к потребителю и сброса рабочей среды, запорный элемент в виде цилиндрического золотника и элемент управления последним

Техническими недостатками этого привода распределителя являются узость функциональных возможностей, а также низкие надежность и КПД, связанные с большими потерями рабочей среды на высокой и одинаково зопотнике каналов чувствительностью всех неизбежным при загрязнениям, рабочей: среды из использовании нефтегазопровода.

многоканальный Известен также резервированный привод, содержащий задающее устройство и силовые каналы, имеющие кинематически связанные с общим исполнительные валом выходным механизмы, по меньшей мере один из которых выполнен в виде поршневого исполнительного цилиндра с полостями, C помощью подключенными распределительного устройства к линиям подвода и сброса рабочей среды, а также средства контроля срабатывания и подключения резервного канала [2]

ス

တ

S

Кроме того, известен распределитель для полвода рабочей среды, содержащий корпус с полостями подвода, отвода к потребителю и сброса рабочей сред и с камерой управления, а также жестко соединенные первый и второй запорные элементы, первый из которых поджат пружиной к неподвижному нормально закрытому седлу, выполненному в корпусе для периодического соединения полостей подвода и отвода, а второй размещен с взаимодействия возможностью периодического выполненным для разъединения полостей отвода и сброса подвижным седлом, размещенным на торце плавающего полого толкателя, соединенного с поршнем, установленным в камере управления с образованием поршневой: подключенной элементу полости. управления для сброса или подвода рабочей среды под давлением и с возможностью перемещения поршня совместно с толкателем на величину хода, превышающую полный ход второго запорного элемента [3]

Техническими недостатками данных привода и распределителя являются также узость функциональных возможностей, низкие надежность и КПД, обусловленные необходимостью тонкой очистки рабочей

среды, что препятствует использованию вещества перекачиваемого продуктов нефтегазопродуктовода NUN. имеющих высокую топлива, горения температуру и выделяющих при охлаждении недостаточным вещества, смолистые страгивания, одновременно усилием существует потребность гарантированного электроснабжения и частых проверок и контроля работоспособности.

Кроме того, известный распределитель сложен конструктивно и имеет ограниченные возможности из-за увеличенных радиальных размеров, так как первый запорный элемент должен иметь диаметр, охватывающий две концентрично расположенные полости, и второй запорный элемент, выполненный на одном пояске с первым. При этом большой диаметр уплотнительной поверхности первого запорного элемента увеличивает прижатия его к седлу, что уменьшает надежность распределителя и привода в целом в режиме длительной готовности (ожидании) к выполнению переключений с большим временным промежутком между ними.

изобретения Технической задачей является расширение функциональных возможностей, повышение надежности и КПД, что достигается за счет технического результата, состоящего в снижении чувствительности к засорению, расширении номенклатуры используемой рабочей среды, увеличении усилия страгивания, уменьшении потребности в проверках и контроле, а также снижении потребной мощности электроснабжения гарантированного одновременным уменьшением необходимого диаметра первого запорного злемента и усилия его прижатия к неподвижному седлу и радиальных габаритов сокращением более распределителя, что позволит целесообразно разместить его в приводе. Все сокращение направлено на непроизводительных потерь рабочей среды и энергии и повышение схемной надежности функционирования распределительного устройства и привода в целом.

Сущность изобретения заключается в том, что в многоканальном резервированном приводе, содержащем задающее устройство и по меньшей мере два силовых канала, имеющие кинематически связанные с общим вапом исполнительные выходным механизмы, по меньшей мере один из которых выполнен в виде поршневого исполнительного цилиндра с полостями, помощью подключенными распределительного устройства к линиям подвода и сброса рабочей среды, а также средства контроля срабатывания и подключения резервного канала, по меньшей каналов выполнен с один из исполнительным механизмом струйного двигателя, подключенного к указанной линии подвода или к автономному источнику рабочей среды, а упомянутый выполнен с цилиндр исполнительный поршнем симметричным сдвоенным снабжен механизмом страгивания в виде двух установленных ΠO краям встречно короткоходовых цилиндров с полостями, указанному K подключенными распределительному устройству, кроме того, один из упомянутых исполнительных

механизмов снабжен резервным источником рабочей среды в виде твердотопливного газогенератора, по меньшей мере один из силовых каналов выполнен с исполнительным механизмом в виде электродвигателя, распределительное устройство выполнено в двух распределителей, имеющих каждый четыре полости, одна из которых соединена с линией подвода, другая -с линией сброса, а две остальные совместно одной полости подключены K полости исполнительного одной И короткоходового цилиндров, выходной вал соединен с исполнительным цилиндром с помощью дополнительно установленного в последнем и соединенного с поршнем кулисного механизма.

При этом распределитель для подвода рабочей среды, предназначенный для его использования в вышеизложенном приводе, содержащий корпус с полостями подвода, отвода к потребителю и сброса рабочей среды и с камерой управления, а также жестко соединенные первый и второй запорные элементы, первый из которых поджат пружиной к неподвижному нормально закрытому седлу, выполненному в корпусе для периодического соединения полостей подвода и отвода, а второй размещен с взаимодействия C возможностью периодического выполненным для разъединения полостей отвода и сброса подвижным седлом, размещенным на торце плавающего полого толкателя, соединенного с поршнем, установленным в камере управления с образованием поршневой подключенной элементу К управления для сброса или подвода рабочей среды и с возможностью перемещения поршня совместно с толкателем на величину хода, превышающую полный ход второго запорного элемента, выполнен с двумя изолированными в корпусе полостями отвода к потребителю, подвижное седло и второй элемент размещены запорный возможностью перемещения между первой и второй полостями отвода, а второй запорный элемент для соединения с первым запорным элементом снабжен штоком, размещенным в первой полости отвода, при этом толкатель радиальным уплотнителем, снабжен полостью размещенным между второй сброса, кроме того, первая полость отвода выполнена в виде цилиндрической расточки, а второй запорный элемент размещен на пояске: дополнительно выполненном отделяющем эту расточку от второй полости отвода, последняя и полость сброса выполнены в виде цилиндрических расточек, разделенных пояском, выполненным с внутренним диаметром, равным диаметру толкателя, подвижное и неподвижное седла выполнены с соотношением диаметров, равным 1,2-1,4, а поршень выполнен с диаметром, наружным равным 1.6-2внутреннего диаметра неподвижного седла.

70

တ

Ġ

ဖ

На фиг. 1 изображена схема многоканального резервированного привода; на фиг. 2 поперечный разрез струйного двигателя; на фиг.3 схема распределителя для подвода рабочей среды.

Привод содержит, например, три силовых канала, имеющих кинематически связанные с общим валом 1 исполнительные механизмы в виде поршневого исполнительного цилиндра

2, струйного двигателя 3 и электродвигателя 4. К задающему устройству (не изображено) подключены устройство 5 управления электродвигателем 4, элементы управления цилиндром 2 и переключатель 8 потоков струйного двигателя 3, а также средства контроля срабатывания подключения резервных каналов (не Электродвигатель 4 имеет изображено). устройство 9 отключения при аварии и механическую передачу 10 для связи с валом 1, струйный двигатель 3 имеет патрубки 11, 12, сопла 13, 14, 15, 16, ротор 17 и механическую передачу 18 для связи с валом 1.

Цилиндр 2 выполнен с симметричным сдвоенным поршнем, то есть с двумя поршнями 19, 20, соёдиненными штоком 21, и снабжен механизмом страгивания в виде встречно установленных ПO короткоходовых цилиндров 22, 23, имеющих поршни 24, 25, штоки 26, 27 и полости 28, 29. Штоки 26, 27 частично выдвинуты в поршней 19. 30. 31 полости Распределительное устройство выполнено в виде распределителей 32, 33. Вал 1 соединен с цилиндром 2 с помощью дополнительно установленного в последнем и соединенного в поршнем 19 (20) через шток 21 и поводок 34 кулисного механизма с кулисой 35. Линия 36 подвода рабочей среды, например, из газосвязана нефтепровода, ипи распределителями 32, 33 и переключателем 8. Линия 36 может быть связана с автономными источником рабочей среды, баллоном например Ċ газовым изображен). К переключателю 8 подключен резервный источник рабочей среды в виде газогенератора 37 твердотопливного также пороховым (называемого аккумулятором давления), имеющего слаботочный, например радиоуправляемый, элемент включения в виде пиропатрона 38.

Распределитель 32(33) рабочей среды содержит корпус 39 с полостью 40 подвода рабочей среды из линии 36, первой и второй полостями 41, 42 отвода к потребителю, совместно подключенными к полости 30 (31) и полости 28(29), и с полостью 43 сброса рабочей среды. Первый и второй запорные элементы 44, 45 жестко соединены штоком 46, размещенным в полости 41. Запорный элемент 44 поджат пружиной 47 неподвижному нормально закрытому седлу 48, выполненному в корпусе 39, а запорный элемент 45 размещен с возможностью взаимодействия с подвижным седлом 49, размещенным на торце плавающего полого толкателя 50, соединенного с поршнем 51, установленным в камере 52 управления с образованием поршневой полости подключенной к элементу 6 (7) управления с возможностью перемещения поршня 51 с 50 величину толкателем на ход запорного полный превышающую элемента 45. Седло 49 и элемент 45 размещены с возможностью перемещения между полостями 41, 42. Толкатель 50 радиальным уплотнением 54. снабжен размещенным на пояске 55 между полостями 42, 43. Полость 41 выполнена в виде цилиндрической расточки, а элемент 45 размещен на пояске (не обозначен), отделяющем эту расточку от полости 42. Полости 42 43 выполнены в

расточек, разделенных цилиндрических пояском 554 с внутренним диаметром, равным диаметру толкателя 50. Седла 48, 49 выполнены с соотношением внутренних диаметром d₁.d₂ равным 1,2-1,4, а поршень 51 с наружным диаметром d₃, равным 1,6-2 внутреннего диаметра d₁ седла 48. Полости 41, 42 соединены окнами 56, 57 с полостями 30, 28 (31, 29). Окна 58, 59 соединены с рабочей среды линией сброса обозначена). В толкателе 50 имеется полость 60 для связи седла 49 с полостью 43. Вал 1 связан с регулирующим органом (не изображен) газонефтепродуктовода, элементы 6, 7 имеют каждый золотник и электромагнит (не обозначено).

Многоканальный резервированный привод и распределитель для подвода рабочей среды работают следующим образом.

оборудования составе газонефтепродуктоводов многоканальные у регулирующих размещены приводы органов, которыми чаще всего являются пробки шаровых кранов или поворотных Примеси содержащиеся в заслонок. транспортируемой рабочей среде, забивают зазоры между пробкой (заслонкой) и внутренними поверхностями корпусных деталей, что приводит к запипанию этих регулирующих органов в крайних положениях. Поэтому для их страгивания и перемещения требуются значительные усилия.

При поступлении на задающее устройство команды на поворот регулирующего органа B TOM случае, продуктовода, присутствует питание от силовой электросети, включение сигнал на электродвигателя 4, который через передачу 10 приводит в движение вал 1. Если средства контроля подтверждают срабатывание регулирующего органа, отработка команды на этом заканчивается. Однако в силовой периодические электросети неизбежны отключения электропитания по различным причинам.

刀

N

0

တ

C

0

9

В этом случае, а также в тех случаях, когда средства контроля не подтверждают срабатывания регулирующего органа от электродвигателя, может быть использован резервный канал с цилиндром 2 или со струйным двигателем 3. Для задействования струйного двигателя 3 задающее устройство формирует входной сигнал на переключатель 8, который открывает доступ рабочей среды под давлением в патрубок 11 или 12. Струя вытекает из ротора 17 через сопла 13, 16 или 14, 15 и создает пару реактивных сил, вращающих ротор 17. При начале вращения ротора 17 передача 18 соединяет его с валом осуществляет поворот который регулирующего органа, после переключатель 8 прекращает доступ рабочей среды в патрубок 11 (12) и ротор 17 останавливается.

В тех случаях, когда усилие страгивания является наибольшим, например после большого перерыва в работе регулирующего органа и при отрицательных (до -50 ° С) температурах окружающей среды, целесообразно использовать цилиндр 2.

При подаче входного сигнала, например на элемент 6 управления его электромагнит переключает золотник в положение, при котором в полость 53 поступает рабочая среда под давлением. Поршень 51 и

подвижное седло 49 перемещается к запорному элементу 45, обеспечивая отделение полостей 41, 42, 28, 30 от полости 43 сброса рабочей среды (полости 29, 31 в это время соединены через распределитель 33 со сбросом рабочей среды). При этом исключен переток рабочей среды из линии 36 в полость 43 сброса, связанную, как правило с атмосферой. При дальнейшем повышении давления в полости 53 поршень 51, передавая усилие пружины 47 и давления на запорный элемент 44, перемещает результате влево, в последний открывается проход рабочей среды под давлением из линии 36 в полости 28, 30. Давление, действуя на поршни 19, 24, создает суммарное усилие страгивания, которое передается через шток 21 и кулисный механизм 34-35 на вал 1. Поршень 24 участвует в перемещении на начальном участке, обеспечивая усилие, необходимое для страгивания регулирующего органа. При подходе поршней 19, 20 к крайнему правому положению последний перемещает поршень 25 в исходное положение. При этом средства контроля подтверждают срабатывание регулирующего переключает органа И элемент 6 управления в первоначальное положение. Давление в полости 53 падает и под действием пружины 47 запорный элемент 44 перекрывает седпо 48, отделяя полости 28, 30, 41, 42 от линии 36 подвода рабочей среды под давлением. Поршень 51 и седло 49 перемещается вправо под действием остаточного давления в полости 41 и седпо 49 открывается, соединяя полости 28, 30, 41, 42 со сбросом рабочей среды.

Во всех описанных случаях для поворота регупирующего органа необходимо электропитание от силовой электросети или наличие давления в линии 36 подвода. Однако, возможно отсутствие как электропитания, так и давления. В этом случае единственно возможным источником энергии для поворота регулирующего органа является газогенератор 37:

При подаче входного сигнала на пиропатрон 38 последний инициирует горение топлива в газогенераторе 37, а переключатель 8 открывает доступ горячему газу в патрубок 11 или 12. Газ вытекает из ротора 17 через сопла 13, 16 или 14, 15 и создает пару реактивных сил, вращающих ротор 17 и через передачу 18 вал 1.

Можно отметить, что слаботочный источник электропитания для элементов 6, 7, переключателя 8 и пиропатрона 38 должен быть предварительно заряжен, например, в период функционирования силовой электросети.

Реализация данного привода возможна в различных вариантах, как допускающих одновременное воздействие нескольких исполнительных механизмов на вал 1, так и не допускающих этого и работающих лишь при поочередном воздействии одного из них на вал 1. Газогенератор может быть использован как резервный источник рабочей среды для цилиндра 1, но последний в этом случае требует очистки от продуктов сгорания, попадающих на поверхности трения поршней 24, 25, 19, 20 и воздействующих на уплотнения. Эти трудности отсутствуют в струйном двигателе, в котором рабочая среда не взаимодействует с поверхностями контакта

-5-

движущихся частей.

В результате использования данного исполнения привода решается техническая задача расширения функциональных возможностей, повышения надежности и КПД.

Формула изобретения:

- Многоканальный резервированный привод, содержащий задающее устройство и по меньшей мере два силовых канала, имеющих кинематически связанные с общим исполнительные валом выходным механизмы, по меньшей мере один из которых выполнен в виде поршневого исполнительного цилиндра с полостями, помощью подключенными C распределительного устройства к линиям подвода и сброса рабочей среды, а также средства контроля срабатывания и резервного подключения отличающийся тем, что по меньшей мере один из каналов выполнен с исполнительным механизмом в виде струйного двигателя, подключенного к указанной линии подвода или к автономному источнику рабочей среды, а упомянутый исполнительный цилиндр выполнен с симметричным сдвоенным поршнем и снабжен механизмом страгивания в виде двух встречно установленных по краям короткоходовых цилиндров с полостями, указанному подключенными распределительному устройству.
- 2. Привод по п.1, отличающийся тем, что по меньшей мере один из упомянутых исполнительных механизмов снабжен резервным источником рабочей среды в виде твердотопливного газогенератора.
- 3. Привод по пп. 1 и 2, отличающийся тем, что по меньшей мере один из силовых каналов выполнен с исполнительным механизмом в виде электродвигателя.
- 4. Привод по п.1, отличающийся тем, что распределительное устройство выполнено в виде двух распределителей, имеющих каждый четыре полости, одна из которых соединена с линией подвода, а другая с линией сброса, а две остальные совместно подключены к одной полости исполнительного и одной полости короткоходового цилиндров.
- 5. Привод по п.1, отличающийся тем, что выходной вал соединен с исполнительным цилиндром с помощью дополнительно установленного в последнем и соединенного с поршнем кулисного механизма.

- 6. Распределитель для подвода рабочей среды, содержащий корпус с полостями подвода, отвода к потребителю и сброса рабочей среды и с камерой управления, а также жестко соединенные первый и второй запорные элементы, первый из которых неподвижному пружиной K поджат нормальнозакрытому седлу, выполненному в корпусе для периодического соединения полостей подвода и отвода, а второй размещен с возможностью взаимодействия с периодического для выполненным разъединения полостей отвода и сброса подвижным седлом, размещенным на торце плавающего полого толкателя, соединенного с поршнем, установленным в камере управления с образованием поршневой элементу полости. подключенной K управления для сброса или подвода рабочей среды, и с возможностью перемещения поршня совместно с толкателем на величину хода, превышающую полный ход второго запорного элемента, отличающийся тем, что он выполнен с двумя изолированными в корпусе полостями отвода к потребителю, подвижное седпо и второй запорный элемент размещены с возможностью перемещения между первой и второй полостями отвода, а второй запорный элемент для соединения с первым запорным элементов штоком, размещенным в первой полости отвода, при этом толкатель снабжен радиальным уплотнением, размещенным между второй полостью подвода и полостью сброса.
 - 7. Распределитель по п.6, отличающийся тем, что первая полость отвода выполнена в виде цилиндрической расточки, а второй запорный элемент размещен на дополнительно выполненном пояске, отделяющем эту расточку от второй полости отвода.

S

- 8. Распределитель по пп. 6 и 7, отличающийся тем, что вторая полость отвода и полость сброса выполнены в виде цилиндрических расточек, разделенных пояском, выполненным с внутренним диаметром, равным диаметру толкателя.
- 9 Распределитель по пп. 6 8, отличающийся тем, что подвижное и неподвижное седла выполнены с соотношением внутренних диаметров, равным 1,2 1,4, а поршень выполнен с наружным диаметром, равным 1,6 2,0 внутренним диаметрам неподвижного седла.

50

55

60

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.