חלוקה יעילה של משאבים Efficient Resource Division

אראל סגל-הלוי

חלוקת משאבים הומוגניים

חלוקה הוגנת - קל

אבל לא יעיל...

יעילות כלכלית

:הגדרות

- מצב א נקרא **שיפור פארטו** (Pareto) של מצב ב, אם הוא *טוב יותר* לחלק (improvement) מהמשתתפים, וטוב *לפחות באותה מידה* לכולם.
 - בעברית: "זה נהנה וזה לא חסר".
 - אם לא (Pareto efficient) מצב נקרא **יעיל פארטו** (קיים מצב אחר שהוא שיפור-פארטו שלו.
- יעילות פארטו תנאי הכרחי לבחירה שהיא "נכונה" מנקודת-מבט כלכלית.

חלוקה יעילה פארטו - קל

...אבל לא הוגן...

?האם "חתוך ובחר" יעיל פארטו

הנחות:

- ה"עוגה" מחולקת לאיזורים. הערך של כל שחקן אחיד בכל איזור (*אבל שונה לכל שחקן).*
 - •לדוגמה: ה"איזורים" מייצגים משאבים:

עצים	נפט	פלדה	
81	19	0	עמי:
80	0	20	תמי:

?ותוך ובחר" יעיל פארטו?

:הנחות

ה"עוגה" מחולקת לאיזורים. הערך של כל שחקן אחיד בכל איזור (*אבל שונה לכל שחקן).* לדוגמה: ה"איזורים" מייצגים משאבים:

עמי	תמי			
ים	עצ	נפט	פלדה	
50	, 31	19	0	עמי:
49.5	, 30.5	0	20	תמי:

התוצאה **לא יעילה**: התועלות הן ['](50,50.5) אבל אפשר לשפר ל(60, 59.5).

מיקסום סכום הערכים

הגדרה: חלוקה ממקסמת סכום ערכים:

$$\max_{X} \sum_{j=1}^{n} V_j(X_j)$$

אלגוריתם: תן כל אזור לשחקן עם הערך הכי גבוה:

מעבד	זיכרון	דיסק	
81	19	0	עמי:
80	0	20	תמי:

רואים שהאלגוריתם לא הוגן. האם הוא יעיל?

מיקסום סכום הערכים

משפט: כל חלוקה הממקסמת את סכום הערכים היא יעילה פארטו.

- **הוכחה**: נתונה חלוקה **א** הממקסמת סכום ערכים.
 - •נניח בשלילה שהחלוקה לא יעילה פארטו.
 - אז קיימת חלוקה ב שהיא שיפור-פארטו שלה.
 - בחלוקה **ב**, לכל השחקנים יש ערך לפחות כמו •
- בחלוקה א, ולחלק מהשחקנים יש ערך גבוה יותר.
- לכן בחלוקה ב סכום הערכים גבוה יותר בסתירה
 לכך שחלוקה א ממקסמת את סכום הערכים.

מיקסום סכום השורשים

ניסיון שני: נמצא חלוקה הממקסמת את הסכום של *שורשי* הערכים:

$$\max \sum_{j=1}^{n} \sqrt{V_j(X_j)}$$

דוגמה: שחקן א מקבל x אחוזים מהאזור השמאלי:

1.8	a = 0	0.5		ŀ
1.6			Max	

מעבד	זיכרון	דיסק	
81	19	0	עמי:
80	0	20	תמי:

max

$$\sqrt{81x + 19} + \sqrt{80(1 - x) + 20}$$
$$0 \le x \le 1$$

מיקסום סכום פונקציה עולה

משפט: כל חלוקה הממקסמת סכום של *פונקציה עולה כלשהי* של הערכים, היא יעילה פארטו.

הוכחה: נתונה חלוקה **א** הממקסמת סכום זה. • נניח בשלילה שהחלוקה לא יעילה פארטו.

אז קיימת חלוקה ב שהיא שיפור-פארטו שלה.

בחלוקה **ב**, לכל השחקנים יש ערך לפחות כמו •

בחלוקה **א**, ולחלק מהשחקנים יש ערך גבוה יותר. • כיוון שהפונקציה עולה, בחלוקה **ב** הסכום גבוה יותר

– סתירה לכך שחלוקה **א** ממקסמת את הסכום.

מיקסום סכום פונקציה עולה

הכללה: נמצא חלוקה הממקסמת את הסכום של *פונקציה עולה* של הערכים:

$$\max \sum_{j=1}^{n} f(V_j(X_j))$$

נסמן: x = האחוז שעמי מקבל מהאזור השמאלי:

מעבד	זיכרון	דיסק	
81	19	0	עמי:
80	0	20	תמי:

maximize
$$f(81 x + 19) + f(80(1-x)+20)$$

subject to $0 \le x \le 1$

איזו פונקציה לבחור?

מתברר שאם הפונקציה f היא לוגריתמית: $\mathbf{f}(\mathbf{V}) = \mathbf{log}(\mathbf{V})$ אז החלוקה לא רק יעילה אלא גם ללא קנאה!

יעילות – מיקסום סכום לוגים

משפט: כל חלוקה הממקסמת את סכום לוגי הערכים היא חלוקה ללא קנאה.

Z הוכחה: נסתכל בפרוסת עוגה אינפיניטיסימלית, $f(V_j(X_j))$ היא: $f(V_j(X_j))$ היא: $f'(V_j(X_j)) * V_j(Z)$

לכן, אלגוריתם האופטימיזציה ייתן כל פרוסה Z לכן, אלגוריתם האופטימיזציה ייתן כל פרוסה לשחקן שהמכפלה הזאת עבורו גדולה ביותר: $f'(V_j(X_j)) * V_j(Z) \ge f'(V_i(X_i)) * V_i(Z)$

:j-tנסכם את המשוואה על כל הפרוֹסות שניתנו ל-f'($V_i(X_i)$) * $V_i(X_i) \ge f'(V_i(X_i))$ * $V_i(X_i)$

יעילות – מיקסום סכום לוגים

משפט: כל חלוקה הממקסמת את סכום לוגי הערכים היא חלוקה ללא קנאה.

הוכחה [המשך]:

f(V) לכל חלוקה הממקסמת את הסכום של ($Y_i(X_i)$) * $V_i(X_i)$ * $V_i(X_i)$ * $V_i(X_i)$ * $V_i(X_i)$

כאשר f היא פונקציה לוגריתמית, מקבלים:

$$(1 / V_j(X_j)) * V_j(X_j) \ge (1 / V_i(X_i)) * V_i(X_j)$$

:j,iמעבירים אגף ומקבלים, לכל שני שחקנים $V_i(X_i) \geq V_i(X_i)$

*** וזו בדיוק ההגדרה של חלוקה ללא קנאה!

יעילות – מיקסום סכום קמור

משפט: לכל פונקציה *קעורה* יש נקודת מקסימום אחת ויחידה בכל תחום קמור.

מסקנה: מקסימום **מקומי** של הפונקציה הוא גם מקסימום **גלובלי**.

מסקנה מעשית: קיימים אלגוריתמים מהירים למציאת נקודת מקסימום (*דוגמה: טיפוס על גבעה).* ראו בקורס חקר ביצועים.

קיימים גם מימושים מהירים ונוחים, למשל python cvxpy. ראו בתיקיית code.

יעילות, הגינות וקשירות

ראינו שתמיד אפשר למצוא חלוקה שהיא:

- יעילה וללא-קנאה •
- קשירה וללא-קנאה
 - יעילה וקשירה.

האם תמיד קיימת חלוקה ללא-קנאה, יעילה וקשירה? -- לא! הנה דוגמה:

עמי	2	0	3	0	2	0	0
תמי	0	0	0	0	0	7	0
צומי	0	2	0	2	0	0	3

חלוקה ללא קנאה - טרילמה

פרוסות קשירות	ללא קנאה	יעיל פארטו	
ID	J	לא	אלגוריתם סוּ והמשולשים
לא	J	J	מיקסום סכום לוגים
ID	לא	J	דיקטטורה

הגינות לעומת יעילות במבחנים

נתונים:

- בתקופת המבחנים, בכל יום ובכל כיתה יש שלושה מבחנים. המבחנים מתחילים בשעות 9, 13, 17. לכן הזמן המירבי האפשרי לכל מבחן הוא **4 שעות**.
- סטודנטים הזכאים להארכת-זמן מקבלים **25% יותר** זמן מכל שאר הסטודנטים.

שאלה: כמה זמן צריך לתת למבחן?

- .4 שעות לכולם יעיל פארטו אבל לא הוגן
- .3 שעות לכולם, 3.75 לזכאים הוגן אבל לא יעיל

?האם יש פתרון שהוא הוגן וגם יעיל פארטו