Skein Algebra and Quantum Invarients of Surface Diffeomorphisms

Yu Xiaoming (U2040367D)

Part 1: Basic Concepts, Assumptions and Notations

- **1.** Throughout this poster, we assume S is a compact, orientable surface with punctures and $\varphi: S \to S$ is a psudo-Anosov map.
- **2.** We assume n is a positive odd integer and q is a primitative n^{th} root of unity.
- **3.** $SL_2(\mathbb{C})$ -character variety of S is

 $\mathcal{X}_{SL_2(\mathbb{C})}(S)\coloneqq \mathrm{Hom}\big(\pi_1(S),SL_2(\mathbb{C})\big)//SL_2(\mathbb{C})$ so '//' means the element is considered up to conjugat

Here '//' means the element is considered up to conjugation action by $SL_2(\mathbb{C})$ elements. $\mathcal{X}_{PSL_2(\mathbb{C})}(S)$ is defined similarly.

4. Kauffman bracket skein algebra $\mathcal{K}^q(S)$ is the algebra concerning framed links in $S \times [0,1]$, modulo the relation

$$K_1 = q^{\frac{1}{2}}K_0 + q^{-\frac{1}{2}}K_{\infty}$$

- **5.** Mapping torus $M_{\varphi,r}$ of S is defined as identifying (x,1) with $(\varphi(x),0)$ of $S\times[0,1]$. It is a 3-manifold.
- **6.** φ acts on $\mathcal{K}^q(S)$ by $\varphi_* \colon \mathcal{K}^q(S) \to \mathcal{K}^q(S)$ in the following way: $\varphi_*([K]) = [(\varphi \times \mathrm{Id}_{[0,1]})(K)]$. A φ -invarient character is a character r satisfying $[r] = [r \circ \varphi_*]$
- 7. Ideal triangulation sweep means either a re-indexing of edges or a diagonal flip of a given triangulation.
- 8. Chekhov-Fock algebra is $\mathcal{T}_{\tau}^{q}(S) = \mathbb{C}[X_{1}^{\pm 1}, ..., X_{e}^{\pm 1}]$, e is number of edges, satisfying $X_{i}X_{j} = q^{\sigma_{ij}}X_{i}X_{i}$, (σ_{ij}) is the face matrix.
- 9. A once-punctured torus $S_{1,1}$ is a torus with one point being removed. It admits a triangulation with 3 edges and a complete hyperbolic structure (so it tesselate \mathbb{H}^2), as shown below.

Once-Punctured torus in \mathbb{H}^2

Ideal Triangulation of once-punctured torus

Part 2: Main Conjecture

We assume that $[r] \in \mathcal{X}_{SL_2(\mathbb{C})}(S)$ is φ -invarient and $\Lambda^q_{\varphi,r} \colon V \to V$ is an intertwiner. We choose φ -invarient puncture weights $\theta_v \in \mathbb{C}$ such that $Tr(\alpha_v) = -e^{\theta_v} - e^{-\theta_v}, \forall \alpha_v \in \pi_1(S)$ around v, the puncture weight is $p_v = e^{\frac{\theta_v}{n}} + e^{-\frac{\theta_v}{n}}$. Then the conjecture is $\lim_{n \to \infty} \frac{\ln \left| \operatorname{Tr} \left(\Lambda^q_{\varphi,r} \right) \right|}{n} = \frac{\operatorname{vol}_{\mathrm{hyp}} \left(M_{\varphi,r} \right)}{4\pi}$

The literatures proves the case of once-punctured torus.

Part 3: Representation Theory of $\mathcal{K}^q(S)$

- **1.** Suppose v is a puncture. We define a puncture weight $p_v \in \mathbb{C}$ for each puncture such that $p_v = p_{\varphi(v)}$, then we say they are φ -invarient.
- **2.** Suppose $\rho: \mathcal{K}^q(S) \to \operatorname{End}(V)$ is a representation of $\mathcal{K}^q(S)$. By uniqueness property, we know that $\rho \circ \varphi_*$ and ρ are unnique up to isomorphism. That is, $(\rho \circ \varphi_*)(X) = \Lambda^q_{\varphi,r} \circ \rho(S) \circ \left(\Lambda^q_{\varphi,r}\right)^{-1}, \forall X \in \mathcal{K}^q(S)$. Then $\Lambda^q_{\varphi,r}$ is the intertwiner in Part 2. WLOG, assume $\left|\det \Lambda^q_{\varphi,r}\right| = 1$.

Part 4: Chekhov-Fock Intertwiner $\overline{\varLambda_{\varphi,r}^q}$

Chekhov-Fock intertwiner is defined similarly as that of intertwiner, but this time we consider representation of Chekhov-Fock algebras, instead of skein algebra.

By results in [1], an intertwiner is isomorphic to a Chekhov-Fock intertwiner and thus has the same trace.

Part 5: Chekhov-Fock Intertwiner of $S_{1,1}$

Suppose (a_0, b_0, c_0) , ..., $(a_{k_0}, b_{k_0}, c_{k_0}) = (a_0, b_0, c_0)$ is an edge weight system (shear-band parameters corresponds to triangulations of sequence of flips). Suppose also that $e^{\theta_v} = a_0 b_0 c_0$, then we have

$$Tr(\Lambda_{\varphi,r}^{q}) = \frac{\sum_{i_{1},i_{2},\dots,i_{k_{0}}=1}^{n} \prod_{k=1}^{k_{0}} QDL^{q}(u_{k},v_{k}|2i_{k})q^{B}}{n^{\frac{k_{0}}{2}} \prod_{k=1}^{k_{0}} |D^{q}(u_{k})|^{\frac{1}{n}}}$$

$$B = \left(\sum_{k=1}^{k_0} i_k^2 (\epsilon_k + \epsilon_{k+1} + 2) - 4\epsilon_{k+1} i_k i_{k+1}\right) + \epsilon_1 \hat{l_0} i_1 + \frac{-\epsilon_1 \hat{l_0} - \widehat{m_0} + \widehat{n_0}}{2} i_{k_0}$$

Here ϵ_k indicates whether the k^{th} elementary intertwiner is Left or Right, where $L = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $R = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Specifically, $\epsilon_k = \begin{cases} 1, \varphi_k = L \\ -1, \varphi_\nu = R \end{cases}$

QDL is Discrete Quantum Dilogrithm function, each u_k , v_k are chosen such that we can apply results of Part 4 and that $v_k^n = 1 + u_k^n$, $\forall k$.

Part 6: Hyperbolic volume of $M_{\varphi,r}$ when $\varphi=LR$

In this case, $M_{\varphi,r}$ is diffeomorphic to Figure-8 knot complement, and is therefore isometric to $\mathbb{H}^3/\widehat{\Gamma}_8$, where $\widehat{\Gamma}_8=\frac{\pi i}{2}$

$$\langle \varphi_1, \varphi_3, \tau \rangle$$
, $\varphi_1 = \frac{z+1}{z+\omega^{-1}}$, $\varphi_3 = \frac{z-1}{-z+\omega^{-1}}$, $\tau = z + \omega$, $\omega = e^{\frac{\pi i}{3}}$. Thus

$$v_{\text{hyp}}(M_{\varphi,r}) = 6 \int_0^{\frac{1}{2}} \int_0^{\sqrt{3}x} \int_{\sqrt{1-x^2-y^2}}^{\infty} \frac{dx \, dy \, dz}{z^3} = 6\Lambda \left(\frac{\pi}{3}\right)$$

where $\Lambda(x)$ is Lobachevsky function. The proof of the conjecture requires asymptotic analysis of results in Part 5.

References:

- 1. Asymptotics of Quantum Invariants of Surface Diffeomorphisms 1: Conjecture And Algebraic Computations; Francis Bonahon, Helen Wong, Tian Yang; arxiv: 2112.12852
- 2. Asymptotics of Quantum Invariants of Surface Diffeomorphisms 2: The Figure-Eight Knot Complement; F. Bonahon, H. Wong, T. Yang; arxiv: 2203.05730
- 3. Quantum Hyperbolic Invariants for Diffeomorphisms of Small Surfaces; Liu Xiaobo; arxiv: 0603467
- 4. Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots; Francis Bonahon; American Mathematical Society; 2009.