Self-Consistent Correlations of Randomly Coupled Rotators in the Asynchronous State

Alexander van Meegen^{1,2}, Benjamin Lindner^{3,4}

¹Research Centre Jülich, INM-6 and IAS-6 and INM-10
 ²RWTH Aachen University, Faculty I, Physics Department
 ³Humboldt University Berlin, Physics Department
 ⁴Bernstein Center for Computational Neuroscience Berlin

July 14, 2019

Introduction

Spiking activity of cortical neurons in behaving animals is highly *irregular and asynchronous* (e.g. Harris & Thiele 2011):

Quasi stochastic activity (network noise) arises most likely from nonlinear chaotic interactions in the network.

Aim: analytically tractable toy model of asynchronous state

Model

State:

$$x_m(t) = e^{i\Theta_m(t)}$$

Dynamics:

$$\dot{\Theta}_m = \omega_m + \sum_{n \neq m} K_{mn} f(\Theta_n)$$

- i.i.d. natural frequencies ω_m
- i.i.d. coupling coefficients K_{mn} with $\langle K_{mn} \rangle_K = \bar{K}/N$, $\langle \Delta K_{mn}^2 \rangle_K = K^2/N$
- 2π -periodic interaction function $f(\Theta_n)$

Approach

Self-consistent theory of network fluctuations and single unit correlation function:

- ullet recurrent input ightarrow effective network noise
- input and output fluctuations intricately related → self-consistent description
- statistics of interest contained in temporal autocorrelations → power spectra

- pioneered in the seminal work of Sompolinsky, Crisanti, Sommers (1988)
- considerable recent interest (Kadmon & Sompolinsky 2015; Schuecker, Goedeke, Helias 2018; Mastrogiuseppe & Ostojic 2018; Muscinelli, Gerstner, Schwalger 2019)

Approach

Self-consistent theory of network fluctuations and single unit correlation function:

- ullet recurrent input o effective network noise
- input and output fluctuations intricately related → self-consistent description
- statistics of interest contained in temporal autocorrelations → power spectra

- pioneered in the seminal work of Sompolinsky, Crisanti, Sommers (1988)
- considerable recent interest (Kadmon & Sompolinsky 2015; Schuecker, Goedeke, Helias 2018; Mastrogiuseppe & Ostojic 2018; Muscinelli, Gerstner, Schwalger 2019)

Theory

Stochastic mean-field approximation

Dynamics:

$$\dot{\Theta}_m = \omega_m + \sum_{n \neq m} K_{mn} f(\Theta_n)$$

Recurrent input approximated by i.i.d. Gaussian noise processes $\xi_m(t)$:

$$\dot{\Theta}_{m} = \omega_{m} + \xi_{m}(t)$$
 $\mu_{\xi}(t) = \bar{K} \left\langle f(\Theta(t)) \right\rangle_{\xi,\omega}$ $C_{\varepsilon}(t,t') = K^{2} \left\langle f(\Theta(t)) f(\Theta(t')) \right\rangle_{\varepsilon,\omega}$

Self-consistent statistics

Stationarity, rotation-invariance:

$$\ddot{\mathsf{\Lambda}} = \mathsf{K}^2 \sum_{\ell=-\infty}^{\infty} |\mathsf{A}_\ell|^2 \, \phi(\ell au) e^{-\ell^2 \mathsf{\Lambda}}$$

All statistics of interest follow:

 $C_{x_m}(\tau) = e^{i\omega_m \tau - \Lambda(\tau)}$

$$C_{\xi}(au) = K^2 \sum_{\ell=-\infty}^{\infty} |A_{\ell}|^2 \phi(\ell au) e^{-\ell^2 \Lambda(au)}$$

Validation (1)

Network noise spectrum $S_{\xi}(\omega)$ and single unit spectrum $S_{x}(\omega)$:

Distributed natural frequencies:

$$\omega_m \sim \mathcal{N}(1,1/2)$$
 $ar{K}=0, \quad K=1/2$ $f(\Theta)=\cos(2\Theta)+\sin(3\Theta)$

Validation (2)

Network noise spectrum $S_{\xi}(\omega)$ and single unit spectrum $S_{x}(\omega)$:

Unique natural frequency:

$$\omega_m=1$$

$$ar{K}=0,\quad K=1/2$$

$$f(\Theta)=\cos(2\Theta)+\sin(3\Theta)$$

Extension to Spiking Networks

Mimicking spikes arising from threshold crossings in integrate-and-fire neurons:

$$\dot{\Theta}_{m} = \omega_{m} + \sum_{n \neq m} K_{mn} \dot{\Theta}_{n} \sum_{k=-\infty}^{\infty} \delta(\Theta_{n} - 2\pi k)$$

Self-consistency equation for network statistics in stationary, rotation-invariant state:

$$\ddot{\Lambda} = \frac{K^2}{4\pi^2} \{ (\ddot{\Lambda} + \sigma_\omega^2 + \omega_0^2) \Psi(\Lambda, \tau) + \omega_0 (\sigma_\omega^2 \tau + \dot{\Lambda}) \Psi'(\Lambda, \tau) + \frac{1}{4} (\sigma_\omega^2 \tau + \dot{\Lambda})^2 \Psi''(\Lambda, \tau) \}$$
with
$$\Psi(\Lambda, \tau) = \vartheta_3 [\frac{1}{2} \omega_0 \tau, e^{-\frac{1}{2} \sigma_\omega^2 \tau^2 - \lambda^2 - \Lambda}]$$

Mean-Driven Network of Spiking Neurons

Sparse heterogeneous network of excitatory and inhibitory exponential integrate-and-fire (EIF) neurons:

- Dale's law
- cell-to-cell variability
- mean-driven regime

Summary

PHYSICAL REVIEW LETTERS 121, 258302 (2018)

Self-Consistent Correlations of Randomly Coupled Rotators in the Asynchronous State

Alexander van Meegen * and Benjamin Lindner Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, Haus 2, 10115 Berlin, Germany and Physics Department of Humbold University Berlin, Newtonstraße 15, 12489 Berlin, Germany

Contacts: a.van.meegen@fz-juelich.de, benjamin.lindner@physik.hu-berlin.de

Poster: P212 (Monday)