GA DATA SCIENCE

Lending Club Loan Data

Ann Pattara Nov, 2018

CONTENT

- 1 Problem Statement
- 2 Metrics & Assumptions
- 3 Data Description
- 4 Exploratory Analysis
- 5 Data Preprocessing
- 6 Model Analysis
- 7 Conclusion & Next Steps

PROBLEM STATEMENT

Background

- A major problem that P2P lending platforms face today is the issue of delinquency
- Although P2P is a profitable business, the odds of the occasional delinquency makes this business highly risky and potentially unattractive

Objective

To analyze factors that predict customers delinquency and develop a predictive model to identify customers
with a potential tendency of delinquency using historical data

METRICS & ASSUMPTIONS

Assumptions

- The dataset is accurate
- 2. All the datapoints are available and if not, appropriate measures can be taken to include the missing values
- 3. The dataset is comprehensive and avoid any bias and reflect the population as much as possible

Metrics

- 1. Accuracy greater than 85%
- 2. Precision
- 3. Recall

DATA DESCRIPTION

Lending Club loan dataset contains 890 thousand observations and 75 variables from year 2007-2015

# id	# loan_amnt	A term	# int_rate	# installment	A grade
	amount of money requested by the borrower		The interest rate on the loan		
1077501	5000.0	36 months	10.65	162.87	В
1077430	2500.0	60 months	15.27	59.83	С

A emp_length	A home_ownership	# annual_inc	A verification_status	m issue_d	A loan_status
10+ years	RENT	24000.0	Verified	Dec-2011	Fully Paid
< 1 year	RENT	30000.0	Source Verified	Dec-2011	Charged Off

A loan_status	A pymnt_plan	A purpose	A addr_state	A application_type
Fully Paid	n	credit_card	AZ	INDIVIDUAL
Charged Off	n	car	GA	INDIVIDUAL

EXPLORATORY ANALYSIS

DATA PREPROCESSING

The main objectives of the data preprocessing phase is

Dimensionality reduction and Data cleansing

- Created a subset for only those loans issued after Dec-2009 (222076 observations)
- 2. Converted date fields into numeric years
- 3. Excluded those columns that had more than 90% NA observations
- 4. For others, replaced NA with Zero or other appropriate values
- 5. Encoded categorical values into numeric values
- 6. Identified Target Variable as Loan Status. Changed to Loan Class Good(173404) and Bad(48672) loan) 80:20 ratio

Replace Date Observations with Numbers

Exclude Columns with >60% NA Observations

Replace NA Values
Appropriately

Exclude Low Variance & High Correlation Columns

Use Business Sense for Any Other Exclusions

MODEL ANALYSIS - Decision Tree

- Each model is designed for a distinct loan purpose (eg: Credit Card, Home Improvement etc)
- Created training and test datasets with an initial split of 80-20
- Fit Decision Tree model to cleansed data with 19 variables on training and test sets
- Analyze variable importance, accuracy, precision, recall

Measure	Value
Accuracy	70.3%
Precision	54.2%
Recall	54.5%

Variable Name	Importance
loan_amt	0.07563348
int_rate	0.06811373
grade	0.05345723
emp_length	0.04583799
home_ownership	0.01292297
annual_inc	0.08381747
term	0.01103021
dti	0.01103021
iniq_last_6mths	0.10459646
mnths_since_last_delinq	0.02309473
mths_since_last_record	0.03727288
open_acc	0.01721132
revol_bal	0.05505993
revol_util	0.07645808
total_acc	0.09223143
mths_since_last_major_derog	0.06763209
tot_cur_bal	0.01810915
total_rev_hi_lim	0.08048443
ver_stat	0.06830906

MODEL ANALYSIS - Random Forest

- Each model is designed for a distinct loan purpose (eg: Credit Card, Home Improvement etc)
- Created training and test datasets with an initial split of 80-20
- Fit Random Forest model with number of trees = 500. Number of threads = 2
- Analyzed variable importance, accuracy, precision, recall

Measure	Value
Accuracy	80.5%
Precision	68.3%
Recall	52.6%

Variable Name	Importance
term	0.07331508
dti	0.08486268
home_ownership	0.03303834
open_acc	0.04577928
tot_cur_bal	0.01679431
mnths_since_last_delinq	0.08442444
mths_since_last_record	0.01523126
emp_length	0.09364918
grade	0.02661408
revol_bal	0.03913852
mths_since_last_major_derog	0.01757569
int_rate	0.05563736
ver_stat	0.08284123
loan_amt	0.08479649
revol_util	0.06721789
total_rev_hi_lim	0.02060364
annual_inc	0.07765079
total_acc	0.07082148
iniq_last_6mths	0.01000824

CONCLUSION & NEXT STEPS

- 1. The Decision Tree Model is quick and easy to implement, but delivers an accuracy of only 70% with poor precision and recall values
- 2. The Random Forest Model performs better than Decision Tree but has an accuracy of only 80% and fairly poor precision and recall values
- 3. The main cause of poor model performance is the highly skewed dataset (80-20)

As next steps,

- Use SMOTE, an external library that helps under sample/ over sample the underlying data can help balance the data skewedness and improve performance
- 2. Try other machine learning models like logistic regression, support vector machines, XG Boost etc to improve model performance