EECS 662 Spring 2019 Midterm Examination

Sample Solutions

1. Inference rules (12 points).

The following inference rules characterize strings of a's and b's.

Give derivation trees for the following.

(a) (6 points) baab needs 0

(b) (6 points) abbba needs -1.

2.	Syntax	(12)	points)).
∠.	Symuax	(12	Pomos	,

Eliminate as many parentheses as possible from the following λ -calculus expressions, without changing their meaning.

(a) (3 points) $(\lambda f.(\lambda x.((f x) x)))$

$$\lambda f.\lambda x.f x x$$

(b) (3 points) $\lambda f.(\lambda x.(\lambda y.((f(x)) \times (fy))))$

$$\lambda f.\lambda x.\lambda y.f \ x \times f \ y$$

(c) (3 points) $\lambda f.(\lambda g.(\lambda x.(f(gx))))$

$$\lambda f.\lambda g.f(gx)$$

(d) (3 points) $\lambda f.(\lambda x.(f(f(x))))$

$$\lambda f.\lambda x.f(fx)$$

3. Evaluation (12 points).

Consider a simple language of arithmetic expressions:

$$t ::= z \mid t + t \mid t \times t \mid \text{if0 } t \text{ then } t \text{ else } t$$

Evaluation rules for the first three constructs are:

$$\frac{1}{z \Downarrow z} \qquad \frac{t_1 \Downarrow z_1 \quad t_2 \Downarrow z_2}{t_1 + t_2 \Downarrow z_1 + z_2} \qquad \frac{t_1 \Downarrow z_1 \quad t_2 \Downarrow z_2}{t_1 \times t_2 \Downarrow z_1 \times z_2}$$

The construct if 0 t_1 then t_2 else t_3 should evaluate to the result of t_2 if t_1 evaluates to 0, and t_3 otherwise. Give evaluation rules for this construct.

$$\frac{t_1 \Downarrow 0 \quad t_2 \Downarrow v}{\mathsf{if0} \ t_1 \ \mathsf{then} \ t_2 \ \mathsf{else} \ t_3 \Downarrow v} \qquad \frac{t_1 \Downarrow z \qquad \Downarrow v}{\mathsf{if0} \ t_1 \ \mathsf{then} \ t_2 \ \mathsf{else} \ t_3 \Downarrow v} \ (z \neq 0)$$

4. Substitution (I) (12 points).

Consider a λ -calculus with arithmetic operations:

$$\begin{split} t ::= z \mid t + t \mid t \times t \\ \mid x \mid \lambda x.t \mid t \end{split}$$

We define substitution for this language as follows:

$$z[v/x] = z \qquad (t_1 \ t_2)[v/x] = t_1[v/x] \ t_2[v/x] \qquad (t_1 \odot t_2)[v/x] = t_1[v/x] \odot t_2[v/x], \ \odot \in \{+, \times\}$$

$$y[v/x] = \begin{cases} v & \text{if } x = y \\ y & \text{otherwise} \end{cases} \qquad (\lambda y.t)[v/x] = \begin{cases} \lambda y.t & \text{if } x = y \\ \lambda y.t[v/x] & \text{otherwise} \end{cases}$$

Give the result of each of the following substitutions:

subst:相同不变 不同变

(a) (4 points) $(\lambda a.a + b)[5/b]$

$$\lambda a.a + 5$$

(b) (4 points) $(\lambda a.\lambda b.a + b)[5/b]$

$$\lambda a.\lambda b.a + b$$

(c) (4 points) $((\lambda a.a + b) a)[5/a]$

$$(\lambda a.a + b) 5$$

5. Substitution (II) (12 points).

Suppose we extend the previous language with introduction and pattern-matching forms for pairs

$$t ::= \cdots \mid (t, t) \mid \text{let } (x, x) = t \text{ in } t$$

with evaluation rules as follow.

$$\frac{t_1 \Downarrow v_1 \quad t_2 \Downarrow v_2}{(t_1,t_2) \Downarrow (v_1,v_2)} \quad \frac{t_1 \Downarrow (v_1,v_2) \quad (t_2[v_1/x_1])[v_2/x_2] \Downarrow v_3}{\operatorname{let} \left(x_1,x_2\right) = t_1 \text{ in } t_2 \Downarrow v_3}$$

Give the corresponding cases of the substitution function for (t_1, t_2) and let $(x_1, x_2) = t_1$ in t_2 .

$$(t_1,t_2)[v/x] = (t_1[v/x],t_2[v/x])$$

$$(\text{let } (x_1,x_2) = t_1 \text{ in } t_2)[v/x] = \begin{cases} \text{let } (x_1,x_2) = t_1[v/x] \text{ in } t_2 & \text{if } x \in \{x_1,x_2\} \\ \text{let } (x_1,x_2) = t_1[v/x] \text{ in } t_2[v/x] & \text{otherwise} \end{cases}$$

6. Evaluation strategies (12 points).

We can start giving evaluation rules for our language:

$$\frac{1}{z \Downarrow z} \quad \frac{t_1 \Downarrow z_1 \quad t_2 \Downarrow z_2}{t_1 \odot t_2 \Downarrow z_1 \odot z_2} \left(\odot \in \{+, \times\} \right) \quad \frac{1}{\lambda x.t \Downarrow \lambda x.t}$$

In *call-by-value* evaluation, the argument to a function is evaluated before it is called. In *call-by-name* evaluation, in contrast, the argument to a function is not evaluated before evaluating the function. The difference is illustrated in the evaluation rules below; call-by-value is on the left, and call-by-name is on the right.

$$\frac{t_1 \Downarrow_{\mathsf{cbv}} \lambda x.t \quad t_2 \Downarrow_{\mathsf{cbv}} w \quad t[w/x] \Downarrow_{\mathsf{cbv}} v}{t_1 \ t_2 \Downarrow_{\mathsf{cbv}} v} \quad \frac{t_1 \Downarrow_{\mathsf{cbn}} \lambda x.t \quad t[t_2/x] \Downarrow v}{t_1 \ t_2 \Downarrow_{\mathsf{cbv}} v}$$

The other rules are identical in call-by-name and call-by-value.

We say that a *step* is one application of the function reduction rule. For example, in either call-by-name or call-by-value, the term $(\lambda a.a+1)$ 4 evaluates to 5 in one step, whereas the term $(\lambda a.\lambda b.a)$ 3 2 evaluates to 3 in 2 steps. For each of the following terms, give the numbers of steps required to reach the final value under call-by-value and call-by-name interpretations. If a term would never reach a final value, write ∞ .

Expression	Steps in cbn	Steps in cbv
$(\lambda f.\lambda a.f(fx))(\lambda b.b)3$	4	4
$(\lambda a.\lambda b.b) ((\lambda f.f f) (\lambda f.f f)) 3$	2	∞
$(\lambda a.a + a) ((\lambda b.b) 3)$	3	2

一个lambda 一个step call by value 如果出现相同的lambda,将会是无限循环

7. Fixed points (12 points).

The fixed point construct captures recursive definition of values:

$$t ::= \cdots \mid \mathsf{fix}\ t$$

with the evaluation rule

$$\overline{\operatorname{fix} t \Downarrow \lambda x. t \left(\operatorname{fix} t\right) x}$$

Rewrite the following recursive definitions to used the fixed point construct instead.

(a) (6 points) $\mathit{fib} = \lambda n.\mathsf{if}\ n \leq 1 \mathsf{\ then}\ n \mathsf{\ else}\ \mathit{fib}\ (n-1) + \mathit{fib}\ (n-2)$

$$fix (\lambda fib.\lambda n.if \ n \le 1 \text{ then } n \text{ else } fib (n-1) + fib (n-2))$$

(b) (6 points) $odd = \lambda n$.if n = 0 then False else if n = 1 then True else $\neg (odd (n - 1))$

 $\operatorname{fix}\left(\lambda \operatorname{odd}.\lambda n.\operatorname{if}\ n=1\ \operatorname{then}\ \operatorname{False}\ \operatorname{else}\ \operatorname{if}\ n=1\ \operatorname{then}\ \operatorname{True}\ \operatorname{else}\ \neg(\operatorname{odd}\left(n-1\right))\right)$