Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	К работе допущен
Студент	Работа выполнена
Преподаватель	Отчет принят

Рабочий протокол и отчет по лабораторной работе №2.05

Определение удельной теплоты кристаллизации и изменения энтропии при охлаждении олова

- 1. Цель работы.
- 1. Определение изменения энтропии при фазовом переходе первого рода на примере кристаллизации олова из расплава при его охлаждении.
 - 2. Определение теплоты кристаллизации олова на основе закона сохранения энергии.
- 2. Задачи, решаемые при выполнении работы.
- 1. Провести прямые измерения показаний милливольтметра, фиксирующего термо-ЭДС.
 - 2. Построить график зависимости температуры от времени.
 - 3. Вычислить удельную теплоту кристаллизации и изменение энтропии.
- 3. Объект исследования.

Ампула с оловом.

- 4. Метод экспериментального исследования.
- 1. Необходимо определить температуру кристаллизации олова $T_{\rm kp}$, время кристаллизации $\Delta t_{\rm kp}$ и скорость изменения во времени натурального логарифма разности температур олова и окружающей среды на участке охлаждения твёрдого олова.
- 2. Для этого необходимо построить график зависимости Е термопары от времени охлаждения.
- 3. На этом графике необходимо выделить три участка: I охлаждение жидкого олова; II кристаллизация; III охлаждение твердого олова.
- 4. Температуру кристаллизации $T_{\rm kp}$ определим через ординату $E_{\rm kp}$ середины участка кристаллизации, $\varDelta t_{\rm kp}$ как время, соответствующее II участку.
- 5. Для определения $T_{\rm кp}$ нужно воспользоваться переводной таблицей для хромелькопелевой термопары. По таблице определяется T' разность между температурой олова и температурой окружающей среды T_0 .
- 6. Для определения коэффициента K необходимо составить для участка III охлаждения олова таблицу значений натурального логарифма T' в зависимости от времени охлаждения t, построить график этой зависимости и определить тангенс угла его наклона к оси t. Для того, чтобы максимально точно определить коэффициент K нужно выбрать небольшой участок графика около трех минут после окончания кристаллизации.
- 7. Подставив значения коэффициента K, времени кристаллизации $\Delta t_{\rm kp}$ и температуры кристаллизации $T_{\rm kp}$, можно определить удельную теплоту кристаллизации олова и изменение энтропии в процессе кристаллизации, их погрешности.

5. Рабочие формулы и исходные данные.

Температура кристаллизации олова:

$$T_{\rm \kappa p} = T' + T_0$$

Погрешность вычисления температуры кристаллизации олова:

$$\Delta T_{\rm Kp} = \frac{1}{2} (T'(E_{\rm a}) - T'(E_{\rm 6}))$$

Удельная теплота кристаллизации олова:

$$\lambda = (c_0 + c_A \cdot \frac{M_A}{M_0}) \cdot \Delta t_{\rm kp} \cdot K(T_{\rm kp} - T_0)$$

Изменение энтропии в процессе кристаллизации олова:

$$S_2 - S_1 = -\frac{\lambda M_0}{T_{KD}}$$

Погрешность вычисления удельной теплоты кристаллизации олова:

$$\frac{\Delta \lambda}{\lambda} = \sqrt{\left(\frac{\Delta t_{\rm Kp}}{t_{\rm Kp}}\right)^2 + \left(\frac{\Delta K}{K}\right)^2 + \left(\frac{\Delta T_{\rm Kp}}{T_{\rm Kp} - T_0}\right)^2}$$

Погрешность вычисления изменения энтропии в процессе кристаллизации олова:

$$\frac{\Delta(S_2 - S_1)}{(S_2 - S_1)} = \sqrt{\left(\frac{\Delta\lambda}{\lambda}\right)^2 + \left(\frac{\Delta M_0}{M_0}\right)^2 + \left(\frac{\Delta T_{\rm KP}}{T_{\rm KP}}\right)^2}$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Вольтметр (в режиме 200мВ)	Цифровой	0 – 30 мВ	0,05 мВ	
2	Секундомер	Цифровой	0 – 900 c	0,5 c	

7. Схема установки.

1 – ампула с оловом, 2 – электрическая печь, 3 – винт, 4 – термопара, 5 – гнёзда на штанге стенда, 6 – входные гнёзда милливольтметра, 7 – тумблер "нагрев", 8 – тумблер "сеть".

8. Результаты прямых измерений и их обработки. Таблица 1.

t, c	Е, мВ						
0	20	210	15,1	420	12,7	630	7,9
15	19	225	15,1	435	12,2	645	7,6
30	18,2	240	15,1	450	11,8	660	7,4
45	17,5	255	15,1	465	11,4	675	7,2
60	16,8	270	15	480	11	690	7
75	16,2	285	15	495	10,6	705	6,8
90	15,6	300	14,9	510	10,2	720	6,6
105	15	315	14,9	525	9,9	735	6,3
120	14,9	330	14,8	540	9,6	750	6,2
135	15,1	345	14,6	555	9,3	765	6
150	15,1	360	14,5	570	9	780	5,8
165	15,1	375	14,2	585	8,7	795	5,7
180	15,1	390	13,7	600	8,4	810	5,5
195	15,1	405	13,2	615	8,1	825	5,4

Таблица 2.

t, c	T, ∘C						
0	290	210	230	420	200	630	137
15	277	225	230	435	193	645	133
30	267	240	230	450	188	660	130
45	259	255	230	465	183	675	127
60	250	270	228	480	178	690	124
75	243	285	228	495	173	705	122
90	236	300	227	510	168	720	119
105	228	315	227	525	164	735	115
120	227	330	226	540	160	750	113
135	230	345	223	555	156	765	111
150	230	360	222	570	151	780	108
165	230	375	219	585	148	795	106
180	230	390	212	600	144	810	104
195	230	405	206	615	139	825	102

Таблица 3 (зависимость ln(T - T0 or t)).

5 III(1 1 0 0 1 t/):						
t, c	T, K	Т - ТО, К	Ln(T - T0)			
645	406	110	4,70048			
660	403	107	4,672829			
675	400	104	4,644391			
690	397	101	4,615121			
705	395	99	4,59512			
720	392	96	4,564348			
735	388	92	4,521789			
750	386	90	4,49981			
765	384	88	4,477337			
780	381	85	4,442651			
795	379	83	4,418841			
810	377	81	4,394449			
825	375	79	4,369448			

9. Расчет результатов косвенных измерений.

Температура кристаллизации олова:

$$T_{\rm KD} = 230 \, \circ {\rm C}$$

Температура кристаллизации олова.
$$T_{\mathrm{Kp}} = 230 \, \circ \mathrm{C}$$
 Удельная теплота кристаллизации олова:
$$\lambda = \left(0.23 + 0.46 \cdot \frac{0.04}{0.07027}\right) \cdot 210 \cdot (-0.0019) \cdot (230 - 23) = -40.62 \, \frac{\mathrm{Дж}}{\mathrm{Kr}}$$

Изменение энтропии в процессе кристаллизации олова:
$$S_2-S_1=\frac{45,14\cdot 0,07027}{230}=0,\!006\,\frac{\mbox{Дж}}{\mbox{K}}$$

10. Расчет погрешностей измерений.

Погрешность прямых измерений – инструментальная погрешность.

Погрешность косвенных измерений:

$$\frac{\Delta \lambda}{\lambda} = -0.013$$

$$\frac{\Delta (S_2 - S_1)}{(S_2 - S_1)} = 0.013$$

11. Графики.

12. Окончательные результаты.

Удельная теплота кристаллизации олова:

$$\lambda = (-40,62 \pm 0,013) \frac{\text{Дж}}{\text{кг}}$$

Изменение энтропии в процессе кристаллизации олова:

$$S_2 - S_1 = (0.006 \pm 0.013) \frac{\text{Дж}}{\text{K}}$$

13. Выводы и анализ результатов работы.

Полученные в результате прямых измерений данные позволяют утверждать, что температура кристаллизации олова равна 230 градусам по Цельсию, что совпадает с табличным значением с точностью до погрешности.

Вычисленное значение удельной теплоты кристаллизации олова существенно отличается от табличного, вероятно, из-за потерь тепла на нагрев окружающей среды.

Изменение энтропии в процессе кристаллизации положительное, меньшее 0,5. Это подтверждает, что опыт проводился в закрытой системе и что масса олова была небольшой.