Лабораторная работа «Дифференцирование и интегрирование сигналов»

Цель: изучить приближенное дифференцирование и интегрирование входных сигналов, рассчитать коэффициенты передач

Экспериментальная часть:

Задание 1

Для дифференцирующего четырехполюсника с постоянной времени τ_0 =10мкс и интегрирующего четырехполюсника с постоянной времени τ_0 =5мс снимем зависимость модуля $K(\omega)$ и аргумента $\phi(\omega)$ коэффициента передачи от частоты.

Для интегрирующего:

ω	ν	Uвx	Ивых	U12	φ	Κ(ω)	Κ(ω)(τ)
251,2	40	8,32	4,08	2,68	0,71665	0,490385	0,796178
628	100		2,22	2,02	1,143067	0,266827	0,318471
1256	200		1,26	1,17	1,190545	0,151442	0,159236
1884	300		0,84	0,79	1,224029	0,100962	0,106157
3140	500		0,5	0,49	1,370461	0,060096	0,063694
6280	1000		0,24	0,24	1,570796	0,028846	0,031847

Для дифференцирующего:

ω	ν	Uвx	Ивых	U12	φ	Κ(ω)	Κ(ω)(τ)
628	100	8,2	0,06	0,06	1,570796	0,030488	0,00628
3140	500		0,25	0,25	1,570796	0,030488	0,0314
6280	1000		0,5	0,5	1,570796	0,060976	0,0628
31400	5000		2,32	2,14	1,174285	0,282927	0,314
62800	10000		4,04	3,32	0,964532	0,492683	0,628
125600	20000		5,6	3,44	0,66148	0,682927	1,256
314000	50000		6,64	1,92	0,293346	0,809756	3,14
628000	100000		6,84	1	0,146725	0,834146	6,28

Задание 2

При помощи схема, изображенной на рис.1, получили осциллограмму напряжения,

представленную на рис.2

Cenatic VIII 0.000s Trigid T KAHAU2
Cesas Bx
Vineepcus
Biolicii III

Qenitrent
x 1

Qenitrent
x 1

Qenitrent
x 1

Qenitrent
x 1

рис.1 рис.2

Разложение усечённого синуса в ряд Фурье.

Пусть
$$f(t) = \{ egin{array}{ccc} \sin(\omega t) & 0 < t < rac{\pi}{\omega} \\ 0 & rac{\pi}{\omega} < t < rac{2\pi}{\omega} \ \end{array} \}$$

Так как площади сверху и снизу совпадают, значит интеграл по периоду равен 0, соответственно $a_0=0$. тогда:

$$f(t) = \sum_{n=1}^{-\infty} (a_n \cos(\omega n t) + b_n \sin(\omega n t)).$$

Найдём данное разложение.

1) Найдём ап.

$$a_n = \frac{\omega}{\pi} \int_0^{\frac{\pi}{\omega}} \sin(\omega t) \cos(n\omega t) dt = \frac{\omega}{2\pi} \int_0^{\frac{\pi}{\omega}} \left(\sin((1+n)\omega t) + \sin((1-n)\omega t) \right) dt$$
$$= \frac{1}{\pi} \cdot \frac{1}{1-n^2} [\cos(n\pi) - 1]$$

Данная формула работает и при n=1, и действительно получается 0, как при непосредственном вычислении. Остаются только чётные гармоники, тогда $\alpha_{2k}=\frac{2}{\pi}\cdot\frac{1}{1-4k^2}$

2) Найдём b_n.

$$b_n = \frac{\omega}{\pi} \int_0^{\frac{\pi}{\omega}} \sin(\omega t) \sin(n\omega t) dt = \frac{\omega}{2\pi} \int_0^{\frac{\pi}{\omega}} (\cos((1-n)\omega t) + \cos((1+n)\omega t)) dt$$
$$= -\frac{1}{\pi} \cdot \frac{1}{1-n^2} [\sin((n+1)\pi)]$$

Данная формула работает и при n=1, и действительно получается 0.5, как при непосредственном вычислении. Все гармоники кроме первой зануляются.

3) Искомое разложение усечённого синуса.

$$f(t) = \frac{1}{2}\sin(\omega t) + \sum_{k=1}^{-\infty} \frac{2}{\pi} \cdot \frac{1}{1 - 4k^2} \cdot \cos(2k\omega t)$$

Дифференцирование усеченного синусоида при трех разных частотах:

Дифференцирование

Меандр Треугольник Пила

треугольник и пилу). Дифференцируем и интегрируем их.

Плохое дифференцирование:

Интегрирование

Плохое интегрирование

Оценим постоянную времени

Дифференцирование: (v=1 кГц)

 $\tau_0 = 1 \text{ MKC} (\tau_0 * \omega = 0.006 \ll 1)$

Интегрирование: (ω =1 кГц)

 $\tau_0 = 5 \text{ MC} (\tau_0 * \omega \approx 30 > 1)$

Исследование вопроса о «лёгкости» дифференцирования и интегрирования в зависимости от формы.

1) Разложим меандр в ряд Фурье.

$$f(t) = \begin{cases} \alpha & -\frac{\pi}{\omega} < t < 0 \\ -\alpha & 0 < t < \frac{\pi}{\omega} \end{cases}$$

Заметим, что данная функция нечётная, поэтому её разложение будет иметь вид: $f(t) = \sum_{n=1}^{-\infty} b_n \sin(\omega n t)$.

Найдём b_n.

$$b_n = \frac{\omega}{\pi} \int_{-\frac{\pi}{\omega}}^{\frac{\pi}{\omega}} f(t) \sin(\omega n t) dt = \frac{\omega}{\pi} \alpha \int_{-\frac{\pi}{\omega}}^{0} \sin(\omega n t) dt - \frac{\omega}{\pi} \alpha \int_{0}^{\frac{\pi}{\omega}} \sin(\omega n t) dt = \frac{2\alpha}{\pi n} (\cos(\pi n) - 1)$$

Таким образом, остаются только гармоники вида b_{2k+1} .

Тогда разложение меандра в ряд Фурье: $f(t) = -\sum_{k=1}^{-\infty} \frac{4a}{(2k-1)\pi} \sin{((2k-1)\omega t)}$.

2) Разложим треугольник в ряд Фурье.

Пусть
$$f(t) = \{ egin{array}{cccc} rac{2 \alpha \omega}{\pi} t + \alpha & -rac{\pi}{\omega} < t < 0 \\ -rac{2 \alpha \omega}{\pi} t + \alpha & 0 < t < rac{\pi}{\omega} \ \end{array} \}$$

Так как данная функция чётная, то $f(t)=rac{a_{\mathrm{D}}}{2}+\sum_{n=1}^{-\infty}a_{n}\mathrm{cos}(\omega nt).$

Очевидно, что для данного f(t), $\alpha_0 = 0$.

Пусть
$$k = \frac{2\alpha\omega}{\pi}$$
.

$$a_{n} = \frac{\omega}{\pi} \int_{-\frac{\pi}{\omega}}^{\frac{\pi}{\omega}} f(t) \cos(\omega nt) dt = \frac{\omega}{\pi} \left[\int_{-\frac{\pi}{\omega}}^{0} (kt + a) \cos(\omega nt) dt + \int_{0}^{\frac{\pi}{\omega}} (-kt + a) \cos(\omega nt) dt \right]$$
$$= \frac{2k}{\omega \pi n^{2}} (1 - \cos(\pi n))$$

То есть остаются только $a_{2n-1}=rac{4k}{\omega\pi(2n-1)^2}=rac{8\pi}{\pi^2(2n-1)^2}$

Тогда
$$f(t) = \frac{8a}{\pi^2} \sum_{n=1}^{-\infty} \frac{1}{(2n-1)^2} \cos((2n-1)\omega t)$$

3) Разложим пилу в ряд Фурье.

Пусть
$$f_1(t) = \{ egin{array}{ll} 0 & -rac{\pi}{\omega} < t < 0 \ rac{\pi}{\omega} t & 0 < t < rac{\pi}{\omega} \ \end{array} \}$$

Тогда
$$f(t) = f_1(t) - \frac{\alpha_0}{2}$$

Тогда
$$a_n = \frac{\omega}{\pi} \int_{-\frac{\omega}{\omega}}^{\frac{\pi}{\omega}} f_1(t) \cos(\omega n t) \, dt = \frac{a\omega^2}{\pi^2} \int_0^{\frac{\pi}{\omega}} t \cdot \cos(\omega n t) \, dt = \frac{a}{\pi^2 n^2} (\cos(\pi n) - 1)$$
, то есть $a_{2k-1} = -\frac{2a}{\pi^2 (2k-1)^2}$

Найдём b_n.

$$b_n = \frac{\alpha \omega^2}{\pi^2} \int_0^{\frac{\pi}{\omega}} t \cdot \sin(\omega n t) dt = -\frac{\alpha}{\pi n} \cos(\pi n)$$

Таким образом, искомое разложение:

$$f(t) = -\frac{2a}{\pi^2} \sum_{k=1}^{-\infty} \frac{1}{(2k-1)^2} \cos((2k-1)\omega t) + \frac{a}{\pi} \sum_{n=1}^{-\infty} \frac{(-1)^{n-1}}{n} \sin(n\omega t)$$

Вывод: проведя лабораторную работу по изучению приближенного дифференцирования и интегрирования входных сигналов, делаем вывод XEP ПОЙМИ КАКОЙ