Sequencing Legal DNA NLP for Law and Political Economy

7. Syntactic and Semantic Parsing

Beyond Word Order

- ► The models we have seen so far have counted words and phrases, or embedded sequences
 - ▶ the only language structure used is the ordering of words.

Beyond Word Order

- ▶ The models we have seen so far have counted words and phrases, or embedded sequences
 - the only language structure used is the ordering of words.
- How to identify whether the defendant was negligent?
 - "The negligent defendant"
 - "The defendant was negligent"
 - "The defendant, a driver, was negligent"

Beyond Word Order

- ▶ The models we have seen so far have counted words and phrases, or embedded sequences
 - the only language structure used is the ordering of words.
- How to identify whether the defendant was negligent?
 - "The negligent defendant"
 - "The defendant was negligent"
 - "The defendant, a driver, was negligent"
- Syntactic and semantic parsing will do this.

Outline

Constituency Parsing

Dependency Parsing: Linguistics

Dependency Parsing: Applications

Hoyle et al (2019): Discovery of Gendered Language

Vannoni, Ash, and Morelli (2020): Discretion and Delegation in Texts

Ash, MacLeod, and Naidu (2020): The Language of Contract

Webb (2020): Al and the Labor Market

Semantic Role Labeling

Constituency

- ► The idea of constituency is that groups of words behave as singular functional units in a sentence.
- ► Some example noun phrases:

Harry the Horse	a high-class spot such as Mindy's
the Broadway coppers	the reason he comes into the Hot Box
they	three parties from Brooklyn

these phrases consist of many POS's but function as nouns

Constituency

- ► The idea of constituency is that groups of words behave as singular functional units in a sentence.
- Some example noun phrases:

Harry the Horse	a high-class spot such as Mindy's
the Broadway coppers	the reason he comes into the Hot Box
they	three parties from Brooklyn

- these phrases consist of many POS's but function as nouns
- Constituents can be moved around in a sentence (e.g. these prepositional phrases):
 - ▶ John talked [to the children] [about drugs].
 - John talked [about drugs] [to the children] .

Constituency Trees

- ▶ Phrase structure organizes words into nested constituents:
 - ightharpoonup S = subject, NP = noun phrase, VP = verb phrase

Constituency Trees

- ▶ Phrase structure organizes words into nested constituents:
 - ightharpoonup S = subject, NP = noun phrase, VP = verb phrase
- ▶ The "legal memes" we constructed in Week 2 were a form of constituency parsing.

Penn TreeBank Constituent Tags

Table 1.2. The Penn Treebank syntactic tagset

ADJP	Adjective phrase
ADVP	Adverb phrase
NP	Noun phrase
PP	Prepositional phrase
S	Simple declarative clause
SBAR	Subordinate clause
SBARQ	Direct question introduced by wh-element
SINV	Declarative sentence with subject-aux inversion
SQ	Yes/no questions and subconstituent of SBARQ excluding wh-element
VP	Verb phrase
WHADVP	Wh-adverb phrase
WHNP	Wh-noun phrase
WHPP	Wh-prepositional phrase
X	Constituent of unknown or uncertain category
*	"Understood" subject of infinitive or imperative
0	Zero variant of <i>that</i> in subordinate clauses
T	Trace of wh-Constituent

Phrase extraction in spacy

Noun phrases:

doc = nlp('Science cannot solve the ultimate mystery of nature. And that is because, in the
last analysis, we ourselves are a part of the mystery that we are trying to solve.')
list(doc.noun_chunks)
[Science, the ultimate mystery, nature, the last analysis, we, ourselves, a part, the mystery,
we]

Phrase extraction in spacy

Noun phrases:

doc = nlp('Science cannot solve the ultimate mystery of nature. And that is because, in the
last analysis, we ourselves are a part of the mystery that we are trying to solve.')
list(doc.noun_chunks)
[Science, the ultimate mystery, nature, the last analysis, we, ourselves, a part, the mystery,
we]

► To get, e.g., prepositional phrases, find token with tag "ADP" and get token.subtree

Phrase extraction in spacy

Noun phrases:

doc = nlp('Science cannot solve the ultimate mystery of nature. And that is because, in the
last analysis, we ourselves are a part of the mystery that we are trying to solve.')
list(doc.noun_chunks)
[Science, the ultimate mystery, nature, the last analysis, we, ourselves, a part, the mystery,
we]

- ► To get, e.g., prepositional phrases, find token with tag "ADP" and get token.subtree
- Related to named entity recognition (NER):
 - $\blacktriangleright \ \, \mathsf{New} \ \, \mathsf{York} \to \mathsf{New} \underline{\hspace{0.1cm}} \mathsf{York}, \ \, \mathsf{UBS} \ \, \mathsf{Switzerland} \, \to \, \mathsf{UBS} \underline{\hspace{0.1cm}} \mathsf{Switzerland}$

Outline

Constituency Parsing

Dependency Parsing: Linguistics

Dependency Parsing: Applications

Hoyle et al (2019): Discovery of Gendered Language

Vannoni, Ash, and Morelli (2020): Discretion and Delegation in Texts

Ash, MacLeod, and Naidu (2020): The Language of Contract

Webb (2020): Al and the Labor Market

Semantic Role Labeling

Dependency Grammar

- ► The basic idea:
 - Syntactic structure consists of words, linked by binary symmetric relations called dependencies.
 - ▶ Dependencies identify the grammatical relations between words.

Economic news had little effect on financial markets . adj noun verb adj noun prep adj noun .

- Dependency structures represent grammatical relations between words in a sentence:
 - head-dependent relations (directed arcs)
 - functional categories (arc labels)
 - structural categories (parts-of-speech)

Heads and Dependents

- ► A dependency is a one-way link from a "head" token to a "dependent" token:
 - ▶ Head determines the syntactic/semantic category of the dependency.
 - ► Head is obligatory; Dependent may be optional.

Heads and Dependents

- ► A dependency is a one-way link from a "head" token to a "dependent" token:
 - ▶ Head determines the syntactic/semantic category of the dependency.
 - ▶ Head is obligatory; Dependent may be optional.

Head	Dependent		
Verb	Subject (nsubj)		
Verb	Object (dobj)		
Verb	Adverbial (advmod)		
Noun	Attribute (amod)		

	Nominals	Clauses	Modifier words	Function Words
Core arguments	nsubj obj iobj	csubj ccomp xcomp		
Non-core dependents	obl vocative expl dislocated	advcl	advmod* discourse	<u>aux</u> cop mark
Nominal dependents	nmod appos nummod	acl	amod	det clf case
Coordination	MWE	Loose	Special	Other
conj cc	fixed flat compound	<u>list</u> <u>parataxis</u>	orphan goeswith reparandum	punct root dep

Subjects

- nsubj: nominal subject
 - non-clausal constituent in the subject position of an active verb.

Subjects

- nsubj: nominal subject
 - non-clausal constituent in the subject position of an active verb.

- nsubjpass: passive nominal subject
 - non-clausal constituent in the subject position of a passive verb.

Subjects

- nsubj: nominal subject
 - non-clausal constituent in the subject position of an active verb.

- nsubjpass: passive nominal subject
 - non-clausal constituent in the subject position of a passive verb.

- csubj: clausal subject
 - clause in the subject position of an active verb.

clausal passive subject (csubjpass) is a clause in the subject position of a passive verb.

Objects

- ▶ dobj: direct object
 - noun phrase, the (accusative) object of the verb.
 - ► "She **gave** me a **raise**": dobj(gave, raise)

Objects

- dobj: direct object
 - noun phrase, the (accusative) object of the verb.
 - "She gave me a raise": dobj(gave, raise)
- dative: dative or indirect object
 - noun phrase, the (dative) object of the verb.
 - ► "She **gave me** a raise": dative(gave, me)

Objects

- dobj: direct object
 - noun phrase, the (accusative) object of the verb.
 - "She gave me a raise": dobj(gave, raise)
- dative: dative or indirect object
 - noun phrase, the (dative) object of the verb.
 - "She gave me a raise": dative(gave, me)
- pobj: object of a preposition
 - noun phrase following a preposition
 - "I sat on the chair": pobj(on, chair)

- acomp: adjectival complement
 - adjectival phrase which functions as object of verb.
 - ► "Bill is honest ": acomp(is, honest)

- acomp: adjectival complement
 - adjectival phrase which functions as object of verb.
 - ► "Bill **is honest** ": acomp(is, honest)
- attr: attribute
 - ▶ noun phrase that is a non-VP predicate usually following a copula verb.
 - "Bill is an honest man": attr(is, man)

- acomp: adjectival complement
 - adjectival phrase which functions as object of verb.
 - "Bill is honest": acomp(is, honest)
- attr: attribute
 - ▶ noun phrase that is a non-VP predicate usually following a copula verb.
 - ► "Bill is an honest man": attr(is, man)
- amod: adjectival modifier
 - modifies the meaning of the noun phrase.
 - "Sam eats red meat": amod(meat, red)

- acomp: adjectival complement
 - adjectival phrase which functions as object of verb.
 - "Bill is honest": acomp(is, honest)
- attr: attribute
 - noun phrase that is a non-VP predicate usually following a copula verb.
 - ► "Bill is an honest man": attr(is, man)
- amod: adjectival modifier
 - modifies the meaning of the noun phrase.
 - "Sam eats red meat": amod(meat, red)
- appositional modifier (appos) is a noun phrase giving additional information of the preceding noun phrase.

Verb phrases

- aux: auxiliary
 - links between a verb and helping verb, including modals.
 - "Reagan has died": aux(died, has)
 - "He should leave": aux(leave, should)

Verb phrases

- aux: auxiliary
 - links between a verb and helping verb, including modals.
 - "Reagan has died": aux(died, has)
 - "He should leave": aux(leave, should)
- auxpass: passive auxiliary
 - links between a main verb and helping verb in passive constructions.
 - "Laws have been broken": auxpass(broken, been)

Verb phrases

- aux: auxiliary
 - links between a verb and helping verb, including modals.
 - "Reagan has died": aux(died, has)
 - "He should leave": aux(leave, should)
- auxpass: passive auxiliary
 - links between a main verb and helping verb in passive constructions.
 - "Laws have been broken": auxpass(broken, been)
- prt: phrasal verb particle
 - identifies a phrasal verb: links verb with its particle.
 - "They shut down the station": prt(shut, down)

Etc.

- neg: negation modifier
 - captures negation and the word it modifies.
 - ► "Bill is not a scientist": neg(scientist, not)
 - ► "Bill doesn't drive": neg(drive, n't)

Etc.

- neg: negation modifier
 - captures negation and the word it modifies.
 - "Bill is not a scientist": neg(scientist, not)
 - "Bill doesn't drive": neg(drive, n't)
- poss: possession modifier
 - ▶ holds between noun phrase and its possessive determiner, or genitive's complement
 - ▶ "Bill's clothes": poss(clothes, Bill)

Etc.

- neg: negation modifier
 - captures negation and the word it modifies.
 - "Bill is not a scientist": neg(scientist, not)
 - "Bill doesn't drive": neg(drive, n't)
- poss: possession modifier
 - ▶ holds between noun phrase and its possessive determiner, or genitive's complement
 - "Bill's clothes": poss(clothes, Bill)
- agent (agent) is the complement of a passive verb that is the surface subject of its active form.
- **expletive (expl)** is an existential there in the subject position.
- and more...

Dependency Parsing

- A dependency structure can be defined as a directed graph G , consisting of
 - ▶ a set *V* of nodes (vertices),
 - a set A of arcs (directed edges),
 - ightharpoonup a linear precedence order < on V (word order).
- Standard rules:
 - Syntactic structure is complete and hierarchical.
 - Every word has at most one syntactic head (Single-Head).

spaCy

- > spaCy (spaci.io) provides an off-the-shelf state-of-the-art dependency parser.
 - by default (spacy.load('en')), spaCy will run the tokenizer, tagger, parser, and named entity recognizer.

spaCy

- spaCy (spaci.io) provides an off-the-shelf state-of-the-art dependency parser.
 - by default (spacy.load('en')), spaCy will run the tokenizer, tagger, parser, and named entity recognizer.
- For production, use spaCy processing pipelines (https://spacy.io/usage/processing-pipelines)
 - customizable and parallelizable

Outline

Constituency Parsing

Dependency Parsing: Linguistics

Dependency Parsing: Applications

Hoyle et al (2019): Discovery of Gendered Language

Vannoni, Ash, and Morelli (2020): Discretion and Delegation in Texts

Ash, MacLeod, and Naidu (2020): The Language of Contract

Webb (2020): Al and the Labor Market

Semantic Role Labeling

Outline

Constituency Parsing

Dependency Parsing: Linguistics

Dependency Parsing: Applications

Hoyle et al (2019): Discovery of Gendered Language

Vannoni, Ash, and Morelli (2020): Discretion and Delegation in Texts

Ash, MacLeod, and Naidu (2020): The Language of Contract

Webb (2020): Al and the Labor Market

Semantic Role Labeling

Unsupervised Discovery of Gendered Language

► This paper builds on the "gender bias" NLP papers by adding in syntactic information:

Figure 2: An example sentence with its labeled dependency parse (top) and lemmatized words (bottom).

Unsupervised Discovery of Gendered Language

► This paper builds on the "gender bias" NLP papers by adding in syntactic information:

Figure 2: An example sentence with its labeled dependency parse (top) and lemmatized words (bottom).

- ► Corpus: dependency parse of 3.5 million books from Goldberg and Orwant (2013).
 - 37 million noun-adjective pairs
 - ▶ 41-million subject-verb pairs
 - ▶ 14 million verb-object pairs

Extracting gendered language

- ▶ Hoyle et al (2019) extract the set of adjectives and verbs attached to nouns that are predictive of the gender of the noun.
 - they use a regularized latent variable model
 - the resulting metric is (almost) proportional to PMI.

Extracting gendered language

- ▶ Hoyle et al (2019) extract the set of adjectives and verbs attached to nouns that are predictive of the gender of the noun.
 - they use a regularized latent variable model
 - the resulting metric is (almost) proportional to PMI.
- Interpreting the dimensions:
 - categorize adjectives/verbs by sentiment (positive, negative, entural)

Extracting gendered language

- ▶ Hoyle et al (2019) extract the set of adjectives and verbs attached to nouns that are predictive of the gender of the noun.
 - they use a regularized latent variable model
 - the resulting metric is (almost) proportional to PMI.
- Interpreting the dimensions:
 - categorize adjectives/verbs by sentiment (positive, negative, entural)
 - categorize adjectives/verbs as related to the body and emotions.

Gendered Adjectives

$ au_{ ext{MASC-POS}}$		$ au_{ ext{MASC-NEG}}$		$ au_{ ext{MASC-NEU}}$		$ au_{\text{FEM-P}}$	os	$ au_{FEM-NEG}$		$ au_{FEM-NEU}$	
Adj.	Value	Adj.	Value	Adj.	Value	Adj.	Value	Adj.	Value	Adj.	Value
faithful	2.3	unjust	2.4	german	1.9	pretty	3.3	horrible	1.8	virgin	2.8
responsible	2.2	dumb	2.3	teutonic	0.8	fair	3.3	destructive	0.8	alleged	2.0
adventurous	1.9	violent	1.8	financial	2.6	beautiful	3.4	notorious	2.6	maiden	2.8
grand	2.6	weak	2.0	feudal	2.2	lovely	3.4	dreary	0.8	russian	1.9
worthy	2.2	evil	1.9	later	1.6	charming	3.1	ugly	3.2	fair	2.6
brave	2.1	stupid	1.6	austrian	1.2	sweet	2.7	weird	3.0	widowed	2.4
good	2.3	petty	2.4	feudatory	1.8	grand	2.6	harried	2.4	grand	2.1
normal	1.9	brutal	2.4	maternal	1.6	stately	3.8	diabetic	1.2	byzantine	2.6
ambitious	1.6	wicked	2.1	bavarian	1.5	attractive	3.3	discontented	0.5	fashionable	2.5
gallant	2.8	rebellious	2.1	negro	1.5	chaste	3.3	infected	2.8	aged	1.8
mighty	2.4	bad	1.9	paternal	1.4	virtuous	2.7	unmarried	2.8	topless	3.9
loyal	2.1	worthless	1.6	frankish	1.8	fertile	3.2	unequal	2.4	withered	2.9
valiant	2.8	hostile	1.9	welsh	1.7	delightful	2.9	widowed	2.4	colonial	2.8
courteous	2.6	careless	1.6	ecclesiastical	1.6	gentle	2.6	unhappy	2.4	diabetic	0.7
powerful	2.3	unsung	2.4	rural	1.4	privileged	1.4	horrid	2.2	burlesque	2.9
rational	2.1	abusive	1.5	persian	1.4	romantic	3.1	pitiful	0.8	blonde	2.9
supreme	1.9	financial	3.6	belted	1.4	enchanted	3.0	frightful	0.5	parisian	2.7
meritorious	1.5	feudal	2.5	swiss	1.3	kindly	3.2	artificial	3.2	clad	2.5
serene	1.4	false	2.3	finnish	1.1	elegant	2.8	sullen	3.1	female	2.3
godlike	2.3	feeble	1.9	national	2.2	dear	2.2	hysterical	2.8	oriental	2.2
noble	2.3	impotent	1.7	priestly	1.8	devoted	2.0	awful	2.6	ancient	1.7
rightful	1.9	dishonest	1.6	merovingian	1.6	beauteous	3.9	haughty	2.6	feminist	2.9
eager	1.9	ungrateful	1.5	capetian	1.4	sprightly	3.2	terrible	2.4	matronly	2.6
financial	3.3	unfaithful	2.6	prussian	1.4	beloved	2.5	damned	2.4	pretty	2.5
chivalrous	2.6	incompetent	1.7	racial	0.9	pleasant	1.8	topless	3.5	asiatic	2.0

Gendered Verbs (as agent)

$ au_{ ext{MASC-}}$	$ au_{ ext{MASC-POS}}$		NEG	$ au_{ ext{MASC}}$	$\tau_{\text{MASC-NEU}}$ $\tau_{\text{FEM-PO}}$			$ au_{\text{FEM-N}}$	$ au_{FEM-NEG}$		NEU
Verb	Value	Verb	Value	Verb	Value	Verb	Value	Verb	Value	Verb	Value
succeed	1.6	fight	1.2	extend	0.7	celebrate	2.4	persecute	2.1	faint	0.7
protect	1.4	fail	1.0	found	0.8	fascinate	0.8	faint	1.0	be	1.1
favor	1.3	fear	1.0	strike	1.3	facilitate	0.7	fly	1.0	go	0.4
flourish	1.3	murder	1.5	own	1.1	marry	1.8	weep	2.3	find	0.1
prosper	1.7	shock	1.6	collect	1.1	smile	1.8	harm	2.2	fly	0.4
support	1.5	blind	1.6	set	0.8	fan	0.8	wear	2.0	fall	0.1
promise	1.5	forbid	1.5	wag	1.0	kiss	1.8	mourn	1.7	wear	0.9
welcome	1.5	kill	1.3	present	0.9	champion	2.2	gasp	1.1	leave	0.7
favour	1.2	protest	1.3	pretend	1.1	adore	2.0	fatigue	0.7	fell	0.1
clear	1.9	cheat	1.3	prostrate	1.1	dance	1.7	scold	1.8	vanish	1.3
reward	1.8	fake	0.8	want	0.9	laugh	1.6	scream	2.1	come	0.7
appeal	1.6	deprive	1.5	create	0.9	have	1.4	confess	1.7	fertilize	0.6
encourage	1.5	threaten	1.3	pay	1.1	play	1.0	get	0.5	flush	0.5
allow	1.5	frustrate	0.9	prompt	1.0	give	0.8	gossip	2.0	spin	1.6
respect	1.5	fright	0.9	brazen	1.0	like	1.8	worry	1.8	dress	1.4
comfort	1.4	temper	1.4	tarry	0.7	giggle	1.4	be	1.3	fill	0.2
treat	1.3	horrify	1.4	front	0.5	extol	0.6	fail	0.4	fee	0.2
brave	1.7	neglect	1.4	flush	0.3	compassionate	1.9	fight	0.4	extend	0.1
rescue	1.5	argue	1.3	reach	0.9	live	1.4	fake	0.3	sniff	1.6
win	1.5	denounce	1.3	escape	0.8	free	0.9	overrun	2.4	celebrate	1.1
warm	1.5	concern	1.2	gi	0.7	felicitate	0.6	hurt	1.8	clap	1.1
praise	1.4	expel	1.7	rush	0.6	mature	2.2	complain	1.7	appear	0.9
fit	1.4	dispute	1.5	duplicate	0.5	exalt	1.7	lament	1.5	gi	0.8
wish	1.4	obscure	1.4	incarnate	0.5	surpass	1.7	fertilize	0.5	have	0.5
grant	1.3	damn	1.4	freeze	0.5	meet	1.1	feign	0.5	front	0.5

Gendered Verbs (as patient)

$ au_{ ext{MASC-PG}}$	os	$\tau_{\mathrm{MASC-NEG}}$		$ au_{ ext{MASC-NEU}}$		$ au_{ ext{FEM-}}$	POS	$ au_{\mathrm{FEM-NEG}}$		$ au_{ ext{FEM-NEU}}$	
Verb	Value	Verb	Value	Verb	Value	Verb	Value	Verb	Value	Verb	Value
praise	1.7	fight	1.8	set	1.5	marry	2.3	forbid	1.3	have	1.0
thank	1.7	expel	1.8	pay	1.2	assure	3.4	shame	2.5	expose	0.8
succeed	1.7	fear	1.6	escape	0.4	escort	1.2	escort	1.3	escort	1.4
exalt	1.2	defeat	2.4	use	2.1	exclaim	1.0	exploit	0.9	pour	2.1
reward	1.8	fail	1.3	expel	0.9	play	2.7	drag	2.1	marry	1.3
commend	1.7	bribe	1.8	summon	1.7	pour	2.6	suffer	2.2	take	1.1
fit	1.4	kill	1.6	speak	1.3	create	2.0	shock	2.1	assure	1.6
glorify	2.0	deny	1.5	shop	2.6	have	1.8	fright	2.4	fertilize	1.6
honor	1.6	murder	1.7	excommunicate	1.3	fertilize	1.8	steal	2.0	ask	1.0
welcome	1.9	depose	2.3	direct	1.1	eye	0.9	insult	1.8	exclaim	0.6
gentle	1.8	summon	2.0	await	0.9	woo	3.3	fertilize	1.6	strut	2.3
inspire	1.7	order	1.9	equal	0.4	strut	3.1	violate	2.4	burn	1.7
enrich	1.7	denounce	1.7	appoint	1.7	kiss	2.6	tease	2.3	rear	1.5
uphold	1.5	deprive	1.6	animate	1.1	protect	2.1	terrify	2.1	feature	0.9
appease	1.5	mock	1.6	follow	0.7	win	2.0	persecute	2.1	visit	1.3
join	1.4	destroy	1.5	depose	1.8	excel	1.6	cry	1.8	saw	1.3
congratulate	1.3	deceive	1.7	want	1.1	treat	2.3	expose	1.3	exchange	0.8
extol	1.1	bore	1.6	reach	0.9	like	2.2	burn	2.6	shame	1.6
respect	1.7	bully	1.5	found	0.8	entertain	2.0	scare	2.0	fade	1.2
brave	1.7	enrage	1.4	exempt	0.4	espouse	1.4	frighten	1.8	signal	1.2
greet	1.6	shop	2.7	tip	1.8	feature	1.2	distract	2.3	see	1.2
restore	1.5	elect	2.2	elect	1.7	meet	2.2	weep	2.3	present	1.0
clear	1.5	compel	2.1	unmake	1.5	wish	1.9	scream	2.3	leave	0.8
excite	1.2	offend	1.5	fight	1.2	fondle	1.9	drown	2.1	espouse	1.3
flatter	0.9	scold	1.4	prevent	1.1	saw	1.8	rape	2.0	want	1.1

Fer	male	Male					
Positive	Negative	Positive	Negative				
beautiful	battered	just	unsuitable				
lovely	untreated	sound	unreliable				
chaste	barren	righteous	lawless				
gorgeous	shrewish	rational	inseparable				
fertile	sheltered	peaceable	brutish				
beauteous	heartbroken	prodigious	idle				
sexy	unmarried	brave	unarmed				
classy	undernourished	paramount	wounded				
exquisite	underweight	reliable	bigoted				
vivacious	uncomplaining	sinless	unjust				
vibrant	nagging	honorable	brutal				
BODY	FEELIN	IG MISCE	LLANEOUS				
BEHAVIOR SPATIAL TEMPORAL							
SUBSTAN	QUANTI	TY SO	OCIAL				

► Female nouns were correlated with adjectives/verbs related to the body and to emotions.

Outline

Constituency Parsing

Dependency Parsing: Linguistics

Dependency Parsing: Applications

Hoyle et al (2019): Discovery of Gendered Language

Vannoni, Ash, and Morelli (2020): Discretion and Delegation in Texts

Ash, MacLeod, and Naidu (2020): The Language of Contract

Webb (2020): Al and the Labor Market

Semantic Role Labeling

Raw Text Data

T. 2, 3.1 OF OFFENSES, ETC.-OF PRINCIPALS, ETC. T. 2, 3.] OF OFFENSES, ETC.-OF PRENCIPALS, ETC. TITLE 2.-OF OFFENSES AND PLATSHMENTS. TITLE 2.—OF OFFENSES AND PUNISHMENTS. CH. 1.-DEFINITION AND DIVISION OF OFFENSES. \$115, Art. 52 to \$121, Art. 57. See Penal Code. CH. 1.-DEFINITION AND DIVISION OF OFFENSES. CH. 2. PUNISHMENTS IN GENERAL. \$115, Art. 52 to \$121, Art. 57. See Penal Code. \$122, Art. 58 to \$140, Art. 73. See Penal Code. TITLE 3.-OF PRINCIPALS, ACCOMPLICES AND ACCESSORIES. CH. 2.—PUNISHMENTS IN GENERAL CH. 1. - PRENCEPA S. \$141, Art. 74 to \$148, Art. 78. See Penal \$149. Presence and participation. An-\$122, Art. 58 to \$140, Art. 73. See Penal Code. 1 \$150 to \$155. See Panal Code \$149. Presence and participation. (1.) A principal offender under the law of this state is one who, being pres-TITLE 3.-OF PRINCIPALS, ACCOMPLICES AND ent when the offense is actually committed by another, and knowing the unlawful intent of such other, aids by acts or encourages by words the party engaged ACCESSORIES. in the commission of the unlawful act. Would the State, in prosecuting such an aider and abettor as a principal offender, for an offense committed primarily in a CH. 1.—PRINCIPALS. foreign country, and consummated in this, be required to show a similar or anal-§141, Art. 74 to §148, Art. 78. See Penal | §149. Presence and participation. Asogous provision of the law of the foreign country? Fernandez v. S., 25 App. sotated. \$150 to \$155. See Penal Code. All persons are principals who are quilty of acting together in the commission of an offense, and this includes not only those who are present at the com-14.6. Presence and participation.
(1). A principal offender under the law of this state is one who, being present when the offense is actually committed by another, and knowing the unlawful instead of used other, add by also or encourages by words the party engaged and the state of the present of the pres sion of the offense, but those who, though absent, are doing their part L. connection with and in furtherance of the common design. It is further provided by statute (Penal Code, Art. 76) that "all persons who shall engage in procuring aid, arms or means of any kind to assist the commission ogous provision of the law of the foreign country? Fernandez v. S., 25 App of an offense while others are executing the unlawful act, and all persons who endeavor at the time of the commission of the offense to secure the safety or All persons are principals who are guilty of acting together in the commis-sion of an offense, and this includes not only those who are present at the com-sion of the offense, but those who, though absent, are doing their part ... ownne-tion with and in furtherance of the common design.

It is further provided by statute (Penal Code, Art. 76) that "all persons who concealment of the offenders, are principals, and may be convicted and punished It is also a well settled general rule that when several persons conspire or shall engage in procuring aid, arms or means doos, art. 100 task: all persons who shall engage in procuring aid, arms or means of any kind to assist the commission of an offense while others are executing the unlawful act, and all persons who emcleavor at the time of the commission of the offense to secure the safety or combine together to commit any unlawful act, each is criminally responsible for the acts of his associates or confederates, committed in furtherance or in prosconcealment of the offenders, are principals, and may be convicted and punished ecution of the common design for which they combine. It is also a well settled general rule that when several persons const Evidence in this case tends to show that previous to the homicide the accused combine together to commit any unlawful act, each is criminally responsible for the acts of his associates or confederates, committed in furtherance or in prosrepeatedly declared his intention to kill the deceased, and that, on the evening the acts of his associates or confederate, committed in furtherizon or in protein case of his associates or confederate, committed in furtherizon or in protein the boundard has account of the protein of the boundard has account of the protein of the boundard has account of the confederate has been designed by the contract of the confederate has been designed by the confederate h of, but before the killing, he went to the house of deceased and told deceased's family to tell him that he and George Noxon, Aaron Nixon and Bill Evans were coming to his house that night to kill him; that about dark on that night the defendant and the said Nixons and the said Evans met at a certain house where they prepared arms and ammunition, and whence they went in the direction of the house of the deceased; that, just before the killing, George Nixon called the deceased from his house to the fence, and, while they were talking at the said deceased from his house to the fence, and, while they were talking at the said

Full text of U.S. state session laws: all statutes enacted by state legislatures (every year or two years) from 1800 to 2012, retrieved from heinonline.com.

Extracting Legal Provisions

- Pre-processing steps:
 - segment session laws into statutes, segment statutes into sentences
- Extract legal meaning:
 - apply syntactic dependency parser
 - extracts subjects, verbs, objects, etc.

Extracting Legal Provisions

- Pre-processing steps:
 - segment session laws into statutes, segment statutes into sentences

Zoho III Zmarot? ZmiIII

- Extract legal meaning:
 - apply syntactic dependency parser

Lexical Units

extracts subjects, verbs, objects, etc.

Strict modals	shall, must, will						
Permissive modals	'may','can'						
Delegation verbs	'require', 'expect', 'compel', 'oblige', 'obligate', 'have to', 'ought to'						
Constraint verbs	'prohibit', 'forbid', 'ban', 'bar', 'restrict', 'proscribe'						
Permission verbs	'allow', 'permit', 'authorize'						
Extraction Rules							
Delegation	strict modal + active verb + not negation						
Delegation	not permissive modal + delegation verb + not negation						
	modal + not delegation verb + negation						
Constraint	strict modal + constraint verb + not negation						
	permission verb + negation						
	permission verb + not negation						
Permission	permissive modal + not special verb + not negation						
	constraint verb + negation						
	entitlement verb + not negation						
Entitlement	strict modal + passive + not negation						
	delegation verb + negation						

Validation Against Hand Coding

Civil Service Reform \rightarrow More Legislative Detail

Figure 3: Event Study Graph

Table 3: Effect of Unified Government on Executive Delegation to the Governor

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Exec Del	Exec Del	Exec Del	Exec Del	Del Ratio	Del Ratio Gov
Unified Govt	0.0054 (0.003)	0.0046 (0.0027)	0.0045 (0.0025)	0.005 (0.0027)	0.00678 (0.0031)	0.008 (0.004)
Observations	2,270	2,270	2,185	2,223	2,223	2,221
R-squared	0.396	0.464	0.434	0.463	0.529	0.328
State FE	X	X	X	X	X	X
Year FE	X	X	X	X	X	X
State Trends		X		X	\mathbf{X}	X
Lagged DV			X			
Civil Service				X	X	X

Notes: Column 1 shows the results for the OLS regression model with state and biennium fixed effects. Column 2 adds state-specific time trends and Column 3 adds the lagged dependent variable. Column 4 adds the introduction of an independent civil service as control. Column 5 and Column 6 use 'Delegation Ratio' and 'Delegation Ratio Gov' as dependent variable, respectively. In all models standard errors are clustered by state.

Outline

Constituency Parsing

Dependency Parsing: Linguistics

Dependency Parsing: Applications

Hoyle et al (2019): Discovery of Gendered Language

Vannoni, Ash, and Morelli (2020): Discretion and Delegation in Texts

Ash, MacLeod, and Naidu (2020): The Language of Contract

Webb (2020): Al and the Labor Market

Semantic Role Labeling

Unions and Inequality

This Project

- ► Data:
 - ▶ new corpus of 30,000 collective bargaining agreements from Canada from 1986 through 2015

This Project

- ► Data:
 - ▶ new corpus of 30,000 collective bargaining agreements from Canada from 1986 through 2015
- Key ideas:
 - use tools from computational linguistics to measure economically and legally relevant contract features:
 - obligations promises to take actions.
 - entitlements grants of authority and amenities.

This Project

- Data:
 - ▶ new corpus of 30,000 collective bargaining agreements from Canada from 1986 through 2015
- Key ideas:
 - use tools from computational linguistics to measure economically and legally relevant contract features:
 - obligations promises to take actions.
 - entitlements grants of authority and amenities.
 - examine determinants and consequences of these contractual features.

What do contracts do?

Co-reference resolution and Sentence tokenization

- Within each section, we performed coreference resolution using the spaCy plugin neuralcoref.
 - convert "him" to "worker", "it" to "company", etc.
- ▶ Split sections into sentences using spaCy tokenizer.

Syntactic Parse for Contract Statements

- ► We ran each sentence through three syntactic parsers: spaCy, Stanford CoreNLP, and Google parser.
 - produce results for all three parsers, and also average them.

Syntactic Parse for Contract Statements

- ▶ We ran each sentence through three syntactic parsers: spaCy, Stanford CoreNLP, and Google parser.
 - produce results for all three parsers, and also average them.
- ▶ Identify syntactic subjects, and form statements around each subject.
 - that is, compound sentences will contain two or more statements.

Extracting Modal Verb Structures

- ► Subject categories:
 - worker, union, owner, and manager.

Extracting Modal Verb Structures

- Subject categories:
 - worker, union, owner, and manager.
- ▶ In law, deontic modal verb structures create legal requirements (Kratzer 1991).
 - strict (shall, will, must)
 - permissive (may, can)

Extracting Modal Verb Structures

- Subject categories:
 - worker, union, owner, and manager.
- In law, deontic modal verb structures create legal requirements (Kratzer 1991).
 - strict (shall, will, must)
 - permissive (may, can)
- Statements coded as negative ("shall not" rather than "shall") and active ("shall provide") or passive ("shall be provided").

Obligation Verbs (be required, be expected, be compelled, be obliged, be obligated, have to, ought to)

- Obligation Verbs (be required, be expected, be compelled, be obliged, be obligated, have to, ought to)
- ► Prohibition Verbs (be prohibited, be forbidden, be banned, be barred, be restricted, be proscribed)

- Obligation Verbs (be required, be expected, be compelled, be obliged, be obligated, have to, ought to)
- ► Prohibition Verbs (be prohibited, be forbidden, be banned, be barred, be restricted, be proscribed)
- Permission Verbs (be allowed, be permitted, be authorized)

- Obligation Verbs (be required, be expected, be compelled, be obliged, be obligated, have to, ought to)
- Prohibition Verbs (be prohibited, be forbidden, be banned, be barred, be restricted, be proscribed)
- Permission Verbs (be allowed, be permitted, be authorized)
- Entitlement Verbs (have, receive, retain).

Contract Statement Logic

Categorization Logic	Examples
Obligations	
Positive, Strict Modal, Active Verb	shall be, shall provide, shall include, shall notify, shall continue
Positive, Strict Modal, Obligation Verb	shall be required, shall be expected, shall be obliged
Positive, Non-Modal, Obligation Verb	is required, is expected
Prohibitions	
Negative, Any Modal, Active Verb	shall not exceed, shall not use, shall not apply, shall not discriminate
Negative, Permission Verb	shall not be allowed, is not permitted
Positive, Strict Modal, Constraint Verb	shall be prohibited, shal be restricted
Permissions	
Positive, Non-Modal, Permission Verb	is allowed, is permitted, is authorized
Positive, Strict Modal, Permission Verb	shall be allowed, shall be permitted
Positive, Permissive Modal, Active Verb	may be, may request, may use, may require, may apply
Negative, Any Modal, Constraint Verb	shall not be restricted, shall not be prohibited
Entitlements	
Strict Modal, Passive Verb	shallbe paid, shall be given, shall not be discharged
Positive, Strict Modal, Entitlement Verb	shall have, shall receive, shall retain
Negative, Any Modal, Obligation Verb	may not be required

Most Frequent Subject-Modal-Verb Tuples

Subject - Modal - Verb
agreement_shall_be
arbitrator_shall_have
board_shall_have
case_may_be
committee_shall_meet
company_shall_pay
company_will_pay
company_will_provide
decision_shall_be
employee_may_request

Subject - Modal - Verb
employee_shall_be
employee_shall_be_allowed
employee_shall_be_considered
employee_shall_be_entitled
employee_shall_be_given
employee_shall_be_granted
employee_shall_be_laid_off
employee_shall_be_paid
employee_shall_be_required
employee_shall_continue
employee_shall_lose

Subject - Modal - Verb
employee_shall_receive
employee_shall_retain
employee_will_be
employee_will_be_allowed
employee_will_be_given
employee_will_be_granted
employee_will_be_paid
employee_will_be_required
employee_will_have
employer_shall_grant

Categorization of Union Contract Clauses

▶ Represent union contracts as a list of clauses:

- ▶ the "action" segment of a clause includes connected pieces of the parse tree besides the subject (agent) and modal (obligation/entitlement).
 - ► How to encode actions as data?

Categorization of Union Contract Clauses

Represent union contracts as a list of clauses:

- ▶ the "action" segment of a clause includes connected pieces of the parse tree besides the subject (agent) and modal (obligation/entitlement).
 - How to encode actions as data?
- ► LDA Approach:
 - Classify each action clause by topic using Latent Dirichlet Allocation.
 - We got good results with 20 topics.

LDA Topics (1 of 2)

- ▶ 1 -- "Sick Leave" -- period month sick leave six probationary credit three complete employment twelve absent completion accumulate date exceed consecutive professional
- ▶ 2 -- "Parental Leave" -- leave absence pay request date grant prior week parental commencement pregnancy write maternity duty witness advance approve notice
- ▶ 4 -- "Payroll" -- change due result deduction amount status deduct monthly payroll reduction affect cheque technological fee employment orientation statement
- ▶ 5 -- "Bargaining Unit" -- unit bargaining person appointment appoint employ outside activity membership represent agent terminal sole select exercise ontario bargain behalf
- > 7 -- "Overtime" -- hour shift work schedule overtime period call rest meal half minute start end break duty sunday weekend saturday two friday
- 8 -- "Grievances" -- grievance party procedure arbitration writing decision write step matter arbitrator committee complaint submit final dispute request name process
- 9 -- "Job Training" -- requirement operation training require equipment individual meet service responsibility provide program area manner performance" business duty operational
- ▶ 10 -- "Vacation Leave" -- year vacation service pay date employment week continuous effective two annual entitlement percent january salary earn termination period follow

LDA Topics (2 of 2)

- ▶ 14 "Medical Leave/Injuries" medical reasonable illness reason certificate unable duty injury course require due provide information circumstance accident personal condition examination reasonably
- ▶ 15 -- "Discipline/Firing" -- school act safety committee health action discharge labour cause discipline disciplinary file application canada public relations suspension regulation authority accordance
- 16 -- "Seniority" -- seniority lay position list layoff vacancy recall transfer post temporary qualification permanent job hire fill date provide ability copy basis
- ▶ 17 -- "Work-Related Deaths" article accordance law child spouse pursuant family death include immediate parent purpose require city office paragraph funeral
- 18 -- "Insurance/Benefits" -- benefit plan insurance payment cost premium eligible provide receive compensation disability pay coverage pension receipt term amount
- ▶ 19 -- "Scheduling" -- work hour day week schedule two return perform normal regular report normally excess regularly require notice eight teaching available emergency

Workers Have More Entitlements Relative To Obligations

Workers get more authority at work than employers, consistently across work areas.

Determinants of Relative Worker Control

- ▶ Personal Income Tax (Non-Wage Compensation) ↑
- ▶ Unemployment Rate (Bargaining Power) ↓
- ▶ New Democratic Party In Power (Bargaining Power) ↑
- lacktriangle Number of Employers (Labor Market Competition) \uparrow
 - ▶ All specifications use within-province, within-industry X year variation, and control for rigidity (log number of clauses).

Wages, Control, and Strikes

- Union contracts often have cost-of-living adjustments (COLA), designed to keep wages on track with inflation.
 - Often (particularly in 70s and 80s) actual inflation was either below or above the COLA amount.
 - ▶ Means that real wage specified in previous contract is either too high or too low.

Wages, Control, and Strikes

- Union contracts often have cost-of-living adjustments (COLA), designed to keep wages on track with inflation.
 - ▶ Often (particularly in 70s and 80s) actual inflation was either below or above the COLA amount.
 - Means that real wage specified in previous contract is either too high or too low.
- ► If too low, stakes from improving next contract high, and union more likely to call (costly) strike.
 - If contract gives extensive control rights to workers, negative real wage shock smaller share of value of contract.
 - Hence shorter/fewer strikes with higher worker control.

Effect of COLA-Inflation Wage Shock on Strike Intensity

ightharpoonup Wage Adjustment — Realized Inflation = Unanticipated Wage Shock.

Outline

Constituency Parsing

Dependency Parsing: Linguistics

Dependency Parsing: Applications

Hoyle et al (2019): Discovery of Gendered Language

Vannoni, Ash, and Morelli (2020): Discretion and Delegation in Texts

Ash, MacLeod, and Naidu (2020): The Language of Contract

Webb (2020): Al and the Labor Market

Semantic Role Labeling

Webb 2020: Data

- ▶ Webb (2020) uses syntactic parsing to match the tasks in occupational descriptions to the tasks in patent texts.
- Data Pipeline:

Job descriptions from O*NET, patents from Google Patents Public Data

Extracting verb-noun pairs: Patents

apply spacy dependency to extract verbs and associated direct objects.

Table A1: Extracting capabilities from patent titles.

Text	Extracted pairs
Adaptive system and method for predicting response times in a service environment	(predict, time)
Method of and apparatus for determining optimum delivery route for articles	(determine, route)
Methods and apparatus for reinforcement learning	
Device for forecasting total power demand	(forecast, demand)
Method and device for classifying images on basis of convolutional neural network	(classify, image)
A method for diagnosing food allergy	(diagnose, allergy)
Neural network language model training method and device and voice recognition method	
Automatic butterfly species identification system and method, and portable terminal having automatic butterfly species identification function using the same	(have, function), (use, same)

▶ use WordNet to dimension-reduce nouns into higher-level categories.

Extracting verb-noun pairs: Occupational tasks

Table 1: Tasks and exposure scores for precision agriculture technicians.

Task	Weight in occupation	Extracted pairs	AI exposure score x100
Use geospatial technology to develop soil sampling grids or	0.050	(develop, grid)	0.050
identify sampling sites for testing characteristics such as nitrogen, phosphorus, or potassium content, ph, or		(identify, site)	0.234
micronutrients.		(test, characteristic)	0.084
Document and maintain records of precision agriculture information.	0.049	(maintain, record)	0.000
Analyze geospatial data to determine agricultural	0.048	(analyze, datum)	0.469
implications of factors such as soil quality, terrain, field productivity, fertilizers, or weather conditions.		(determine, implication)	0.837
Apply precision agriculture information to specifically reduce	0.048	(apply, information)	0.000
the negative environmental impacts of farming practices.		(reduce, impact)	0.151
Install, calibrate, or maintain sensors, mechanical controls, GPS-based vehicle guidance systems, or computer settings.	0.045	(maintain, sensor)	0.000
Identify areas in need of pesticide treatment by analyzing	0.038	(identify, area)	0.234
geospatial data to determine insect movement and damage patterns.		(analyze, datum)	0.469
•		(determine, movement)	0.502

Table 2: Top extracted verbs and characteristic nouns for robots.

Verb	Example nouns	Verb	Example nouns
clean	surface, wafer, window, glass, floor, tool, casting, instrument	walk	robot, structure, base, stairs, circuit, trolley, platform, maze
control	robot, arm, motion, position, manipulator, motor, path, force	carry	substrate, wafer, tray, vehicle, workpiece, tool, object, pallet
weld	wire, part, tong, electrode, sensor, component, nozzle	detect	position, state, collision, obstacle, force, angle, leak, load, landmine
move	robot, body, object, arm, tool, part, substrate, workpiece	drive	unit, wheel, motor, belt, rotor, vehicle, automobile, actuator

Table 2: Top extracted verbs and characteristic nouns for robots.

Verb	Example nouns	Verb	Example nouns
clean	surface, wafer, window, glass, floor, tool, casting, instrument	walk	robot, structure, base, stairs, circuit, trolley, platform, maze
control	robot, arm, motion, position, manipulator, motor, path, force	carry	substrate, wafer, tray, vehicle, workpiece, tool, object, pallet
weld	wire, part, tong, electrode, sensor, component, nozzle	detect	position, state, collision, obstacle, force, angle, leak, load, landmine
move	robot, body, object, arm, tool, part, substrate, workpiece	drive	unit, wheel, motor, belt, rotor, vehicle, automobile, actuator

Table 3: Occupations with highest and lowest exposure to robots.

Most exposed occupations	Least exposed occupations
Forklift driver Operating engineers of cranes, derricks, etc. Elevator installers and repairers Janitors Locomotive operators: engineers and firemen	Payroll and timekeeping clerks Art/entertainment performers Clergy Correspondence and order clerks Eligibility clerks for government programs

Table 4: Change in wages vs. exposure to robots, 1980-2010.

	(1)	(2)	(3)	(4)	(5)
Exposure	-0.29*** (0.02)	-0.28*** (0.02)	-0.26*** (0.02)	-0.16*** (0.03)	-0.22*** (0.03)
Offshorability			0.84* (0.44)	0.82* (0.44)	-2.29*** (0.50)
Medium education				7.84*** (1.75)	9.52*** (1.67)
High education				10.22*** (1.89)	27.73*** (2.01)
Wage					-0.07*** (0.01)
Wage squared					0.00** (0.00)
Adjusted R ² Industry FEs	0.042	0.094	0.095	0.101	0.163
Observations	6,708	6,708	6,708	6,708	6,708

Notes: Each observation is an occupation-industry cell. Dependent variable is 100x change in log wage between 1980 and 2010 winsorized at the top and bottom 1%. Education variables are terciles of average years of education for occupation-industry cells in 1980. Wages are cells' mean weedly wage for full-time, full-year workers in 1980. Offshorability is an occupation-level measure from Autor and Dorn (2013), Sample is restricted to industries within the manufacturing sector. Standard errors are clustered by industry. * p=0.00. * p=0.015. * p=0.011.

Table 5: Change in employment vs. exposure to robots, 1980-2010.

	(1)	(2)	(3)	(4)	(5)
Exposure	-0.37*** (0.03)	-0.36*** (0.03)	-0.35*** (0.03)	-0.18*** (0.03)	-0.16*** (0.03)
Offshorability			0.78 (0.54)	0.93* (0.55)	2.02*** (0.55)
Medium education				-0.26 (1.54)	-1.20 (1.54)
High education				21.39*** (2.43)	14.42*** (2.40)
Wage					0.04*** (0.00)
Wage squared					-0.00*** (0.00)
Adjusted R ² Industry FEs Observations	0.018 14,065	0.129 √ 14,065	0.129 √ 14,065	0.141 √ 14,065	0.147 √ 14,065

Notes: Each observation and capation-instruct of the product variable is 100. DUSt change of a cell's share of overall product of the product

Table 6: Top extracted verbs and characteristic nouns for software.

Verb	Example nouns	Verb	Example nouns				
record	data, position, log, location, reservation, transaction	detect	defect, error, malware, fault, condition, movement				
store	program, data, information, image, instruction, value	generate	data, image, file, report, map, key, password, animation, diagram				
control	access, display, unit, image, device, power, motor	measure	rate, performance, time, distance, thickness				
reproduce	data, picture, media, file, sequence, speech, item, document, selection	receive	signal, data, information, message, order, request, instruction, command				

Table 7: Occupations with highest and lowest exposure to software.

Most exposed occupations	Least exposed occupations
Broadcast equipment operators Water and sewage treatment plant operators Parking lot attendants Packers and packagers by hand Locomotive operators: engineers and firemen	Barbers Podiatrists Subject instructors, college Art/entertainment performers Mail carriers for postal service

Table 9: Change in employment vs. exposure to software, 1980-2010.

Table 8: Change in wages vs. exposure to software, 1980-2010.											
	(1)	(2)	(3)	(4)	(5)		(1)	(2)	(3)	(4)	(5)
Exposure	-0.13*** (0.01)	-0.11*** (0.01)	-0.09*** (0.01)	-0.05*** (0.01)	-0.04*** (0.01)	Exposure	-0.30*** (0.02)	-0.22*** (0.02)	-0.21*** (0.02)	-0.14*** (0.02)	-0.14*** (0.02)
Offshorability	(0.02)	(4.4-7)	2.02*** (0.30)	1.42*** (0.29)	-0.87*** (0.28)	Offshorability			2.98*** (0.51)	2.07*** (0.52)	2.66*** (0.53)
Medium education			(0.00)	8.36*** (0.99)	11.80*** (0.93)	Medium education				7.28*** (1.33)	6.19*** (1.35)
High education				12.77*** (1.07)	32.75*** (1.24)	High education				27.47*** (1.83)	22.26*** (1.91)
Wage				(====)	-0.07*** (0.00)	Wage					0.03*** (0.00)
Wage squared					0.00***	Wage squared					-0.00*** (0.00)
Adjusted R ² Industry FEs	0.008	0.064	0.067	0.079	0.168	Adjusted R ² Industry FEs	0.009	0.193	0.194 ✓	0.207	0.210 ✓
Observations	18,975	18,975	18,975	18,975	18,975	Observations	36,070	36,070	36,070	36,070	36,070

Dorn (2013). Standard errors are clustered by industry. *p<0.10, **p<0.05, *** p<0.01.

 Notes: Each observation is an occupation-industry cell. Dependent variable is 100x DHS change of a cell's share of overall Notes: Each observation is an occupation-industry cell. Dependent variable is 100x change in log wage between 1980 and employment between 1980 and 2010, winsorized at the top and bottom 1%. Education variables are terciles of average 2010 winsorized at the top and bottom 1%. Observations are weighted by cell's labor supply, averaged between 1980 and years of education for occupation-industry cells in 1980. Wages are cells' mean weekly wage for full-time, full-year 2010. Education variables are terciles of average years of education for occupation-industry cells in 1980. Wages are cells' workers in 1980. Offshorability is an occupation-level measure from Autor and Dorn (2013). Observations are weighted mean weekly wage for full-time, full-year workers in 1980. Offshorability is an occupation-level measure from Autor and by cell's labor supply, averaged between 1980 and 2010. Standard errors are clustered by industry. *p<0.10, **p<0.05, ***

Table 10: Top extracted verbs and characteristic nouns for AI.

Verb	Example nouns	Verb	Example nouns		
recognize	pattern, image, speech, face, voice, automobile, emotion, gesture, disease	determine	state, similarity, relevance, importance, characteristic, strategy, risk		
predict	quality, performance, fault, behavior, traffic, prognosis	control	process, emission, traffic, engine, robot, turbine, plant		
detect	signal, abnormality, defect, object, fraud, event, spammer, human, cancer	generate	image, rating, lexicon, warning, description, recommendation		
identify	object, type, damage, illegality, classification, relationship, importance	classify	data, object, image, pattern, signal, text, electrogram, speech, motion		

Table 11: Occupations with highest and lowest exposure to artificial intelligence.

Most exposed occupations	Least exposed occupations
Clinical laboratory technicians	Animal caretakers, except farm
Chemical engineers	Food preparation workers
Optometrists	Mail carriers for postal service
Power plant operators	Subject instructors, college
Dispatchers	Art/entertainment performers

Notes: Table displays census occupation title for the five occupations with the highest exposure scores and with the lowest exposure scores above employment threshold of 150.

Outline

Constituency Parsing

Dependency Parsing: Linguistics

Dependency Parsing: Applications

Hoyle et al (2019): Discovery of Gendered Language

Vannoni, Ash, and Morelli (2020): Discretion and Delegation in Texts

Ash, MacLeod, and Naidu (2020): The Language of Contract

Webb (2020): Al and the Labor Market

Semantic Role Labeling

. . .

• ...