Olimpiada Naţională de Matematică 2008 Etapa judeţeană şi a Municipiului Bucureşti 1 martie 2008

CLASA A VIII-A SOLUTII ȘI BAREME ORIENTATIVE

Subiectul 1. Un tetraedru regulat este secționat cu un plan după un romb. Să se arate că rombul este pătrat.

 $\operatorname{Im} AB \perp CD$,......1punct rezultă că laturile consecutive ale rombului sunt perpendiculare. 3puncte În concluzie rombul este pătrat.......1punct

Subiectul 2. Să se afle numerele iraționale x astfel ca numerele $x^2 + 2x$ și $x^3 - 6x$ să fie ambele raționale.

Cum $x^3 - 6x$ și 5 - 3a sunt ambele raționale, rezultă că $(3 - a)\sqrt{a} \in \mathbb{Q}$. 2puncte Dacă $a \neq 3$, atunci $\sqrt{a} \in \mathbb{Q}$ și apoi $x \in \mathbb{Q}$, ceea ce nu convine...2puncte

Subiectul 3. Fie cubul ABCDA'B'C'D', M piciorul perpendicularei din A pe planul (A'CD), N piciorul perpendicularei din B pe diagonala A'C şi P simetricul punctului D față de C. Să se arate că punctele M, N, P sunt coliniare.

Din teorema catetei, $CN = \frac{BC^2}{A'C} = \frac{a^2}{a\sqrt{3}} = \frac{a}{\sqrt{3}} = \frac{A'C}{3}$ 2puncte
Punctele M, N, P aparțin planului $(A'CD)$
Conform reciprocei teoremei lui Menelaos aplicată în triunghiul $A'CD$,
este suficient să arătăm că $\frac{DP}{PC} \cdot \frac{CN}{NA'} \cdot \frac{A'M}{MD} = 1.$ 1punct
Cum $\frac{DP}{PC} = 2, \frac{CN}{NA'} = \frac{1}{2}$ și $\frac{A'M}{MD} = 1$, cerința este demonstrată 2puncte
Subiectul 4. Să se determine numerele reale strict pozitive x, y, z care satisfac simultan condițiile: $x^3y + 3 \le 4z$, $y^3z + 3 \le 4x$ și $z^3x + 3 \le 4y$.
Soluţie. Înmulţind inegalităţile $x^3y \le 4z-3, y^3z \le 4x-3$ şi $z^3x \le 4y-3$, obţinem $x^4y^4z^4 \le (4x-3)(4y-3)(4z-3).$ 2puncte Pe de altă parte, folosind inegalitatea mediilor $x^4+3=(x^4+1)+2 \ge 2x^2+2=2(x^2+1) \ge 4x$, adică $x^4 \ge 4x-3$, 2puncte cu egalitate pentru $x=1$. 1punct Înmulţind inegalităţile $x^4 \ge 4x-3, y^4 \ge 4y-3, z^4 \ge 4z-3$ rezultă $x^4y^4z^4 \ge (4x-3)(4y-3)(4z-3)$. De aici rezultă $x=y=z=1$. 2puncte