# (19) World Intellectual Property Organization

International Bureau



# Rec'd PCT/PTO 07 SEP 2004

# 

(43) International Publication Date 18 March 2004 (18.03.2004)

PCT

(10) International Publication Number WO 2004/022778 A1

(51) International Patent Classification7: G01N 33/53

C12Q 1/68,

(AU). O'BRIEN, Philippa [GB/AU]; 73 Ocean Street, Woollahra, New South Wales 20258 (AU).

(21) International Application Number:

PCT/AU2003/001166

(74) Agent: F B RICE & CO.; 139 Rathdowne Street, Carlton,

(22) International Filing Date:

5 September 2003 (05.09.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2002951346

5 September 2002 (05.09.2002)

(71) Applicant (for all designated States except US): GARVAN INSTITUTE OF MEDICAL RESEARCH [AU/AU]; C/-St Vincent's Hospital, 384 victoria Street, Darlinghurst, New South Wales 2010 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SUTHERLAND, Robert [NZ/AU]; 20 Northcot Road, Lindfield, New South Wales 2070 (AU). HENSHALL, Susan [AU/AU]; 14 Mosman Street, Mosman, New South Wales 2068

- Victoria 3053 (AU). (81) Designated States (national): AE, AG, AL, AM, AT, AU,
- AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF DIAGNOSIS AND PROGNOSIS OF OVARIAN CANCER

(57) Abstract: The present invention provides novel genes and proteins for diagnosing ovarian cancer and/or a likelihood for survival, or recurrence of disease, wherein the expresson of the genes and proteins is up-regulated or down-regulated or associated with the occurrence or recurrence of a specific scanner sub-type. The ovarian cancer-associated genes and proteins of the invention are specifically exemplified by the genes and proteins set forth in Tables 1 to 3 and the Sequence Listing.

WO 2004/022778 PCT/AU2003/001166

1

#### METHODS OF DIAGNOSIS AND PROGNOSIS OF OVARIAN CANCER

#### Field of the invention

The present invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in ovarian cancer; and to the use of such expression profiles and compositions in the diagnosis, prognosis and therapy of ovarian cancer. More particularly, this invention relates to novel genes that are expressed at elevated or reduced levels in malignant tissues and uses therefor in the diagnosis of cancer or malignant tumors in human subjects. This invention also relates to the use of nucleic acid or antibody probes to specifically detect ovarian cancer cells, such as, for example, in the ovarian surface epithelium, wherein over-expression or reduced expression of nucleic acids hybridizing to the probes is highly associated with the occurrence and/or recurrence of an ovarian tumor, and/or the likelihood of patient survival. The diagnostic and prognostic test of the present invention is particularly useful for the early detection of ovarian cancer or metastases thereof, or other cancers, and for monitoring the progress of disease, such as, for example, during remission or following surgery or chemotherapy. The present invention is also directed to methods of therapy wherein the activity of a protein encoded by a diagnostic/prognostic gene described herein is modulated.

20

5

10

15

#### Background of the invention

#### 1. General

As used herein the term "derived from" shall be taken to indicate that a specified integer are obtained from a particular source albeit not necessarily directly from that source.

25

Unless the context requires otherwise or specifically stated to the contrary, integers, steps, or elements of the invention recited herein as singular integers, steps or elements clearly encompass both singular and plural forms of the recited integers, steps or elements.

30

The embodiments of the invention described herein with respect to any single embodiment shall be taken to apply *mutatis mutandis* to any other embodiment of the invention described herein.

10

20

25

30

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated step or element or integer or group of steps or elements or integers but not the exclusion of any other step or element or integer or group of elements or integers.

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations or any two or more of said steps or features.

The present invention is not to be limited in scope by the specific examples described herein. Functionally equivalent products, compositions and methods are clearly within the scope of the invention, as described herein.

The present invention is performed without undue experimentation using, unless otherwise indicated, conventional techniques of molecular biology, microbiology, virology, recombining DNA technology, peptide synthesis in solution, solid phase peptide synthesis, and immunology. Such procedures are described, for example, in the following texts that are incorporated herein by reference:

- Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, New York, Second Edition (1989), whole of Vols I, II, and III;
- DNA Cloning: A Practical Approach, Vols. I and II (D. N. Glover, ed., 1985), IRL Press, Oxford, whole of text;
- Oligonucleotide Synthesis: A Practical Approach (M. J. Gait, ed., 1984) IRL Press, Oxford, whole of text, and particularly the papers therein by Gait, pp1-22; Atkinson et al., pp35-81; Sproat et al., pp 83-115; and Wu et al., pp 135-151;
- 4. Nucleic Acid Hybridization: A Practical Approach (B. D. Hames & S. J. Higgins, eds., 1985) IRL Press, Oxford, whole of text;
- 5. Perbal, B., A Practical Guide to Molecular Cloning (1984);
- 6. Wünsch, E., ed. (1974) Synthese von Peptiden in Houben-Weyls Metoden der
  Organischen Chemie (Müler, E., ed.), vol. 15, 4th edn., Parts 1 and 2, Thieme,
  Stuttgart.

10

15

20

25

30

7. Handbook of Experimental Immunology, Vols. I-IV (D. M. Weir and C. C. Blackwell, eds., 1986, Blackwell Scientific Publications).

This specification contains nucleotide and amino acid sequence information prepared using Patentin Version 3.1, presented herein after the claims. Each nucleotide sequence is identified in the sequence listing by the numeric indicator <210> followed by the sequence identifier (e.g. <210>1, <210>2, <210>3, etc). The length and type of sequence (DNA, protein (PRT), etc), and source organism for each nucleotide sequence, are indicated by information provided in the numeric indicator fields <211>, <212> and <213>, respectively. Nucleotide sequences referred to in the specification are defined by the term "SEQ ID NO:", followed by the sequence identifier (eg. SEQ ID NO: 1 refers to the sequence in the sequence listing designated as <400>1).

The designation of nucleotide residues referred to herein are those recommended by the IUPAC-IUB Biochemical Nomenclature Commission, wherein A represents Adenine, C represents Cytosine, G represents Guanine, T represents thymine, Y represents a pyrimidine residue, R represents a purine residue, M represents Adenine or Cytosine, K represents Guanine or Thymine, S represents Guanine or Cytosine, W represents Adenine or Thymine, H represents a nucleotide other than Guanine, B represents a nucleotide other than Adenine, V represents a nucleotide other than Thymine, D represents a nucleotide other than Cytosine and N represents any nucleotide residue.

# 2. Description of the related art

Cancer is a multi-factorial disease and major cause of morbidity in humans and other animals, and deaths resulting from cancer in humans are increasing and expected to surpass deaths from heart disease in future. Carcinomas of the lung, prostate, breast, colon, pancreas, and ovary are major contributing factors to total cancer death in humans. For example, prostate cancer is the fourth most prevalent cancer and the second leading cause of cancer death in males. Similarly, cancer of the ovary is the second most common cancer of the female reproductive organs and the fourth most common cause of cancer death among females. With few exceptions, metastatic disease from carcinoma is fatal. Even if patients survive their primary cancers, recurrence or metastases are common.

It is widely recognized that simple and rapid tests for solid cancers or tumors have considerable clinical potential. Not only can such tests be used for the early diagnosis of

WO 2004/022778 PCT/AU2003/001166

4

cancer but they also allow the detection of tumor recurrence following surgery and chemotherapy. A number of cancer-specific blood tests have been developed which depend upon the detection of tumor-specific antigens in the circulation (Catalona, W.J., et al., 1991, "Measurement of prostate-specific antigen in serum as a screening test for prostate cancer", N. Engl. J. Med. 324, 1156-1161; Barrenetxea, G., et al., 1998, "Use of serum tumor markers for the diagnosis and follow-up of breast cancer", Oncology, 55, 447-449; Cairns, P., and Sidreansky, D., 1999, "Molecular methods for the diagnosis of cancer". Biochim. Biophys. Acta. 1423, C 11-C 18).

Ovarian cancer is the fourth most frequent cause of cancer death in females and in the United States, and accounts for approximately 13,000 deaths annually. Furthermore, ovarian cancer remains the number one killer of women with gynaecological malignant hyperplasia and the incidence is rising in industrialized countries. The etiology of the neoplastic transformation remains unknown although there is epidemiological evidence for an association with disordered endocrine function. The incidence of ovarian carcinoma is higher in nulliparous females and in those with early menopause.

Most ovarian cancers are thought to arise from the ovarian surface of epithelium (OSE). Epithelial ovarian cancer is seldom encountered in women less than 35 years of age. Its incidence increases sharply with advancing age and peaks at ages 75 to 80, with the median age being 60 years. The single most important known risk factor is a strong familial history of breast or ovarian cancer. To date, little is known about the structure and function of the OSE cells. It is known that the OSE is highly dynamic tissue that undergoes morphogenic changes, and has proliferative properties sufficient to cover the ovulatory site following ovulation. Morphological and histochemical studies suggest that the OSE has secretory, endocytotic and transport functions which are hormonally-controlled (Blaustein and Lee, *Oncol. 8*, 34-43, 1979; Nicosia and Johnson, *Int. J. Gynecol. Pathol.*, 3, 249-260, 1983; Papadaki and Beilby, *J. Cell Sci. 8*, 445-464, 1971; Anderson *et al.*, *J. Morphol.*, 150, 135-164, 1976).

30

35

10

15

20

25

Ovarian cancers are not readily detectable by diagnostic techniques (Siemens *et al.*, *J. Cell. Physiol.*, 134: 347-356, 1988). In fact, the diagnosis of carcinoma of the ovary is generally only possible when the disease has progressed to a late stage of development. Approximately 75% of women diagnosed with ovarian cancer are already at an advanced stage (III and IV) of the disease at their initial diagnosis. During the past 20 years, neither diagnosis nor five year survival rates have greatly improved for these patients. This is

substantially due to the high percentage of high-stage initial detection of the disease. There is therefore a need to develop new markers that improve early diagnosis and thereby reduce the percentage of high-stage initial diagnoses.

A number of proteinaceous ovarian tumor markers were evaluated several years ago, 5 however these were found to be non-specific, and determined to be of low value as markers for primary ovarian cancer (Kudlacek et al., Gyn. Onc. 35, 323-329, 1989; Rustin et al., J. Clin. Onc., 7, 1667-1671, 1989; Sevelda et al., Am. J. Obstet. Gynecol., 161, 1213-1216, 1989; Omar et al., Tumor Biol., 10, 316-323, 1989). monoclonal antibodies were also shown to react with ovarian tumor associated antigens, 10 however they were not specific for ovarian cancer and merely recognize determinants associated with high molecular weight mucin-like glycoproteins (Kenemans et al., Eur. J. Obstet. Gynecol. Repod. Biol. 29, 207-218, 1989; McDuffy, Ann. Clin. Biochem., 26, 379-387, 1989). More recently, oncogenes associated with ovarian cancers have been identified, including HER-2/neu (c-erbB-2) which is over-expressed in one-third of ovarian 15 cancers (USSN 6,075,122 by Cheever et al, issued June 13, 2000), the fms oncogene, and abnormalities in the p53 gene, which are seen in about half of ovarian cancers.

Whilst previously identified markers for carcinomas of the ovary have facilitated efforts to diagnose and treat these serious diseases, there is a clear need for the identification of additional markers and therapeutic targets. The identification of tumor markers that are amenable to the early-stage detection of localized tumors is critical for more effective management of carcinomas of the ovary.

### 25 Summary of the invention

20

30

35

In work leading up to the present invention, the inventors sought to identify nucleic acid markers that were diagnostic of ovarian cancers generally, or diagnostic of specific ovarian cancers such as, for example, serous ovarian cancer (SOC), mucinous ovarian cancer (MOC), non-invasive (borderline ovarian cancer or low malignant potential ovarian cancer), mixed phenotype ovarian cancer, endometrioid ovarian cancer (EnOC) and clear cell ovarian cancer (CICA), papillary serous ovarian cancer, Brenner cell or undifferentiated adenocarcinoma, by virtue of their modulated expression in cancer tissues derived from a patient cohort compared to their expression in healthy or non-cancerous cells and tissues. Additionally, the inventors sought to determine whether any correlation exists between the expression of any particular gene in a subject having ovarian cancer and the survival, or likelihood for survivial, of the subject during the

10

15

20

25

30

35

medium to long term (i.e. in the period between about 1-2 years from primary diagnosis, or longer). The inventors also sought to to determine whether any correlation exists between the expression of any particular gene in a subject following treatment for ovarian cancer and the recurrence, or likelihood for recurrence, of ovarian cancer in the subject during the medium to long term (i.e. in the period between about 1-2 years from primary diagnosis, or longer).

As exemplified herein, the inventors identified a number of genes whose expression is altered (up-regulated or down-regulated) in individuals with ovarian cancer compared to healthy individuals., eg., subjects who do not have ovarian cancer. The particular genes are identified in Tables 1 and 2. Preferably, the genes are selected from the group of candidate genes set forth in Table 3.

The list of genes and proteins exemplified herein by Table 1 were identified by a statistical analysis as outlined in the examples which gave a P-value, eg., by comparison of expression to the expression of that gene in normal ovaries.

Accordingly, one aspect of the present invention provides a method of detecting an ovarian cancer-associated transcript in a biological sample, the method comprising contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Table 1 or 2 or 3. Preferably the percentage identity to a sequence disclosed in any one of Tables 1-3 is at least about 85% or 90% or 95%, and still more preferably at least about 98% or 99%.

In a preferred embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein a modified level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:

(i) a sequence comprising at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;

20

- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- (iii) a sequence that is at least about 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- 10 (iv) a sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 47, 49, 51, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84; and
- (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).

In a preferred embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein a modified level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:

- 25 (i) a sequence comprising at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- (iii) a sequence that is at least about 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27,

20

25

30

- 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- (iv) a sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 47, 49, 51, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84; and
- (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).
- Even more preferably, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein a modified level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
  - (i) a sequence comprising at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
  - (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
  - (iii) a sequence that is at least about 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 1, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
  - (iv) a sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 6, 8, 10, 12, 14, 16, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 47, 49, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84; and
- 35 (v) a sequence that is complementary to (i) or (ii) or (iii) or (iv).

As used herein, the term "modified level" includes an enhanced, increased or elevated level of an integer being assayed, or alternatively, a reduced or decreased level of an integer being assayed.

- In one embodiment an elevated, enhanced or increased level of expression of the nucleic acid is detected. In accordance with this embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an enhanced level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
- (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 or 2 other than a nucleic acid having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200;
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 or 2 other than a nucleic acid having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200;
  - (iii) a sequence that is at least about 80% identical to (i) or (ii);
- 25 (iv) a sequence that encodes a polypeptide encoded by a nucleic acid set forth in Table 1 or 2 other than a nucleic acid having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200; and
- (v) a sequence that is complementary to any one of the sequences set forth in (i) or (ii) or (iii) or (iv).

In a preferred embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an enhanced level of hybridization of the probe for the subject

being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:

- a sequence comprising at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- (iii) a sequence that is at least about 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
  - (iv) a sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 10, 12, 14, 16, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 47, 49, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84; and
  - (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).

In an alternative preferred embodiment, a reduced level of a diagnostic marker is indicative of ovarian cancer. In accordance with this embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein a reduced level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:

10

- (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, AI745249 and AI694200;
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200;
- (iii) a sequence that is at least about 80% identical to (i) or (ii);
- (iv) a sequence that encodes a polypeptide encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200; and
  - (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).
- In a preferred embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein a reduced level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
  - a sequence comprising at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 3, and 5;
- 25 (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 3, and 5;
  - (iii) a sequence that is at least about 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 1, 3, and 5;
- 30 (iv) a sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, and 6; and
  - (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).
- Preferably, the ovarian cancer that is diagnosed according to the present invention is an epithelial ovarian cancer, such as, for example, serous ovarian cancer, non-invasive

**WO** 2004/022778

ovarian cancer, mixed phenotpye ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer, clear cell ovarian cancer, papillary serous ovarian cancer, Brenner cell or undifferentiated adenocarcinoma. As will be apparent from the preferred embodiments described below, certain of the genes represented in Table 1, Table 2 and Table 3 are expressed at modified levels in subjects having serous or mucinous ovarian cancers. Data presented in Figures 1-4 also exemplify novel diagnostics and prognostics for serous ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer and clear cell ovarian cancer.

As exemplified herein by Table 2, the present inventors have identified those genes having an elevated or reduced average ratio of expression of specific genes between ovarian cancer patients vs non-ovarian cancer patients, wherein a high ratio in Table 2 indicates an enhanced expression in an ovarian cancer patients and wherein a negative ratio indicates that a reduced expression in an ovarian cancer patient.

15

20

5

In an alternative preferred embodiment, the present invention provides a method of diagnosing a serous ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein a modified level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has a serous ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:

- 25 (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 2 or as set forth in Table 1 and having an Accession Number selected from the group consisting of: U62801, D49441, X51630, and AB018305;
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 2 or as set forth in Table 1 and having an Accession Number selected from the group consisting of: U62801, D49441, X51630, And AB018305;
  - (iii) a sequence that is at least about 80% identical to (i) or (ii);
- (iv) a sequence that encodes a polypeptide encoded by a nucleic acid set forth in Table 2 or as set forth in Table 1 and having an Accession Number selected from the group consisting of: U62801, D49441, X51630, And AB018305; and

WO 2004/022778 PCT/AU2003/001166

13

(v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).

In a further alternative preferred embodiment, the present invention provides a method of diagnosing a mucinous ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an elevated level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has a mucinous ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:

- (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_006149, AA315933, U47732, NM\_005588, AW503395, NM\_004063, Al073913, Al928445, NM\_022454, W40460, AA132961 and AF111856;
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_006149, AA315933, U47732, NM\_005588, AW503395, NM\_004063, AI073913, AI928445, NM\_022454, W40460, AA132961 and AF111856;
- (iii) a sequence that is at least about 80% identical to (i) or (ii);

5

10

15

20

25

30

35

- (iv) a sequence that encodes a polypeptide encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_006149, AA315933, U47732, NM\_005588, AW503395, NM\_004063, AI073913, AI928445, NM 022454, W40460, AA132961 and AF111856; and
  - (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).

In a preferred embodiment, the present invention provides a method of diagnosing a mucinous ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an enhanced level of hybridization of the probe for

the subject being tested compared to the hybridization obtained for a control subject not

having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:

- (i) a sequence comprising at least about 20 contiguous nucleotides from SEQ ID NO: 57 or 59 or 61:
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from SEQ ID NO: 57 or 59 or 61;
- (iii) a sequence that is at least about 80% identical to SEQ ID NO: 57 or 59 or 61;
- (iv) a sequence that encodes the amino acid sequence set forth in SEQ ID NO: 58 or 60 or 62; and
  - (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).

Those skilled in the art will be aware that as a carcinoma progresses, metastases occur in organs and tissues outside the site of the primary tumor. For example, in the case of ovarian cancer, metastases commonly appear in a tissue selected from the group consisting of omentum, abdominal fluid, lymph nodes, lung, liver, brain, and bone. Accordingly, the term "ovarian cancer" as used herein shall be taken to include an early or developed tumor of the ovary, such as, for example, any one or more of a number of cancers of epithelial origin, such as serous, mucinous, endometrioid, clear cell, papillary serous, Brenner cell or undifferentiated adenocarcinoma, non-invasive ovarian cancer such as borderline ovarian cancer or low-malignant potential ovarian cancer, or a mixed phenotype ovarian cancer, and optionally, any metastases outside the ovary that occurs in a subject having a primary tumor of the ovary.

25

30

20

5

10

As used herein, the term "diagnosis", and variants thereof, such as, but not limited to "diagnose", "diagnosed" or "diagnosing" shall not be limited to a primary diagnosis of a clinical state, however should be taken to include any primary diagnosis or prognosis of a clinical state. For example, the "diagnostic assay" formats described herein are equally relevant to assessing the remission of a patient, or monitoring disease recurrence, or tumor recurrence, such as following surgery or chemotherapy, or determining the appearance of metastases of a primary tumor. All such uses of the assays described herein are encompassed by the present invention.

Both classical hybridization and amplification formats, and combinations thereof, are encompassed by the invention. In one embodiment, the hybridization comprises

**WO 2004/022778** 

5

PCT/AU2003/001166

15

performing a nucleic acid hybridization reaction between a labeled probe and a second nucleic acid in the biological sample from the subject being tested, and detecting the label. In another embodiment, the hybridization comprising performing a nucleic acid amplification reaction eg., polymerase chain reaction (PCR), wherein the probe consists of a nucleic acid primer and nucleic acid copies of the nucleic acid in the biological sample are amplified. As will be known to the skilled artisan, amplification may proceed classical nucleic acid hybridization detection systems, to enhance specificity of detection, particularly in the case of less abundant mRNA species in the sample.

In a preferred embodiment, the polynucleotide is immobilised on a solid surface.

The present invention clearly encompasses nucleic acid-based methods and proteinbased methods for diagnosing cancer in humans and other mammals.

Accordingly, in a related embodiment, the present invention provides a method of detecting an ovarian cancer-associated polypeptide in a biological sample the method comprising contacting the biological sample with an antibody that binds specifically to an ovarian cancer-associated polypeptide in the biological sample, the polypeptide being encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3.

Preferably the percentage identity to a sequence disclosed in any one of Tables 1-3 is at least about 85% or 90% or 95%, and still more preferably at least about 98% or 99%.

In a preferred embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein a modified level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to a sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34,

WO 2004/022778 PCT/AU2003/001166

36, 38, 40, 42, 44, 47, 49, 51, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84.

In a preferred embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein a modified level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to a sequence selected from the group consisting of SEQ ID NOs: 2, 6, 8, 10, 12, 14, 16, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 47, 49, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84.

In one embodiment an elevated, enhanced or increased level of expression of the antigen-antibody complex is detected. In accordance with this embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein an enhanced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a polypeptide encoded by a nucleic acid set forth in Table 1 or 2 other than a nucleic acid having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200.

In a preferred embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein an enhanced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for

WO 2004/022778 PCT/AU2003/001166

a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to a sequence selected from the group consisting of SEQ ID NOs: 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 47, 49, 51, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84.

5

10

15

20

25

30

In an alternative preferred embodiment, a reduced level of a diagnostic marker is indicative of ovarian cancer. In accordance with this embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein a reduced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a polypeptide encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200.

In a preferred embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein a reduced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to a sequence selected from the group consisting of SEQ ID NOs: 2, 4, and 6.

Preferably, the ovarian cancer that is diagnosed according to the present invention is an epithelial ovarian cancer, such as, for example, serous ovarian cancer or mucinous ovarian cancer.

10

15

25

30

35

In an alternative preferred embodiment, the present invention provides a method of diagnosing a serous ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein a modified level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has a serous ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a polypeptide encoded by a nucleic acid set forth in Table 2 or as set forth in Table 1 and having an Accession Number selected from the group consisting of: U62801, D49441, X51630, And AB018305.

In a further alternative preferred embodiment, the present invention provides a method of diagnosing a mucinous ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein a reduced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has a mucinous ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a polypeptide encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_006149, AA315933, U47732, NM\_005588, AW503395, NM\_004063, Al073913, Al928445, NM\_022454, W40460, AA132961 and AF111856.

In a preferred embodiment, the present invention provides a method of diagnosing a mucinous ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein an enhanced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has a mucinous ovarian cancer, and wherein said antibody binds to a

polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to SEQ ID NO: 58 or 60 or 62.

In a further related embodiment, the present invention provides a method of detecting an ovarian cancer-associated antibody in a biological sample the method comprising contacting the biological sample with a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3, wherein the polypeptide specifically binds to the ovarian cancer-associated antibody.

Preferably, in the above methods, the biological sample is contacted with a plurality of the polynucleotides, polypeptides or antibodies referred to above.

15 In a particularly preferred embodiment, the present invention provides an antibody-based mulptiplex assay for determing the likelihood of survivial of a subject from an ovarian cancer. In one embodiment, the invention provides a method of determining the likelihood of survival of a subject suffering from a serous ovarian cancer, said method comprising contacting a biological sample from said subject being tested with at least two 20 antibodies for a time and under conditions sufficient for antigen-antibody complexes to form and then detecting the complexes wherein an enhanced level of the antigenantibody complexes for the subject being tested compared to the amount of the antigenantibody complexes formed for a control subject not having ovarian cancer indicates that the subject being tested has a poor probability of survival, and wherein one antibody 25 binds to an sFRP polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 72 and wherein one antibody binds to a SOCS3 polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 74.

The present invention is not to be limited by the source or nature of the biological sample. In one embodiment, the biological sample is from a patient undergoing a therapeutic regimen to treat ovarian cancer. In an alternative preferred embodiment, the biological sample is from a patient suspected of having ovarian cancer.

In addition to providing up-regulated and down-regulated genes, the list of genes and proteins exemplified herein by Table 1 were identified by a statistical analysis as outlined in the examples which gave a P-value, eg., by comparison of expression to

clinicopathological parameters for disease recurrence or patient survival. Accordingly, the present invention is particularly useful for prognostic applications, in particular for assessing the medium-to-long term survival of a subject having an ovarian cancer, or alternatively or in addition, for assessing the likelihood of disease recurrence.

5

Accordingly, a further aspect of the present invention provides a method of monitoring the efficacy of a therapeutic treatment of ovarian cancer, the method comprising:

- (i) providing a biological sample from a patient undergoing the therapeutic treatment; and
- (ii) determining the level of a ovarian cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence having at least about 80% identity to a sequence as shown in any one of Tables 1-3, thereby monitoring the efficacy of the therapy.

15

10

Preferably the method further comprises comparing the level of the ovarian cancer-associated transcript to a level of the ovarian cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

- In a related embodiment, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of ovarian cancer, the method comprising:
  - (i) providing a biological sample from a patient undergoing the therapeutic treatment; and

(ii) determining the level of a ovarian cancer-associated antibody in the biological sample by contacting the biological sample with a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at

least 80% identical to a sequence as shown in Tables 1-3, wherein the polypeptide specifically binds to the ovarian cancer-associated antibody,

thereby monitoring the efficacy of the therapy.

30

25

Preferably the method further comprises comparing the level of the ovarian cancer-associated antibody to a level of the ovarian cancer-associated antibody in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

In a further related embodiment, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of ovarian cancer, the method comprising:

- (i) providing a biological sample from a patient undergoing the therapeutic treatment; and
- (ii) determining the level of a ovarian cancer-associated polypeptide in the biological sample by contacting the biological sample with an antibody, wherein the antibody specifically binds to a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3, thereby monitoring the efficacy of the therapy.

10

5

Preferably the method further comprises comparing the level of the ovarian cancer-associated polypeptide to a level of the ovarian cancer-associated polypeptide in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

- It will also be apparent from the following preferred embodiments, that the expression of certain genes listed in Table 1 and Table 3 is statistically correlated with survival and death of patients having ovarian cancer, wherein a low P value indicates an enhanced likelihood that a patient having altered expression of the gene will die from the cancer.
- Accordingly, in one embodiment, the present invention provides a method of determining the likelihood of survival of a subject suffering from an ovarian cancer, said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an elevated level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has a poor probability of survival, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
- (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic
  acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_003014, AA046217, NM\_015902, T83882, AB040888, AA628980, Al623351, AW614420, AA243499, AF251237, Al970797, AF145713, X78565, T97307, BE243845, AW068302, AL133561, BE313555, X07820, Al973016, AF084545, U41518, Z11894, AW138190, BE086548, W47196, AI796870, X02761, AW968613, AW972565, AF045229, AW953853, U52426, F06700, AI798863, H52761, BE546947, AU076643, U20536, AA581602,

AJ245210, X65965, AI806770, BE386490, AW581992, U77534, AL034417, L10343, AW518944, W28729, AI640160, U11862, AW295980, X59135, BE466173, AI354722, M90464, AA829286, AI333771, BE465867, NM\_014992, BE616902, AA430373, R27430, BE387335, AW264102, AW952323, AA088177, BE614567, AL079658, NM\_002776, BE261944, NM\_006379, AI002238, X81789, NM\_002122, AB001914, AA311919, AI381750, AA292998, BE439580, AI677897, N72403, BE003054, AL035588, AI080491, AW770994, H24177, AF146761, NM\_001955, AI680737, AI752666, AA505445, BE246649, and NM\_003955;

- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 10 and having an Accession Number selected from the group consisting of: NM\_003014, AA046217, NM\_015902, T83882, AB040888, AA628980, Al623351, AW614420, AA243499, AF251237, AI970797, AF145713, X78565, T97307, BE243845, AW068302, AL133561, BE313555, X07820, Al973016, AF084545, U41518, Z11894, AW138190, BE086548, W47196, AI796870, X02761, 15 AW968613, AW972565, AF045229, AW953853, U52426, F06700, AI798863, H52761, BE546947, AU076643, U20536, AA581602, AJ245210, X65965, Al806770, BE386490, AW581992, U77534, AL034417, L10343, AW518944, W28729, Al640160, U11862, AW295980, X59135, BE466173, Al354722, M90464, AA829286, Al333771, BE465867, NM\_014992, BE616902, AA430373, 20 R27430, BE387335, AW264102, AW952323, AA088177, BE614567, AL079658, NM\_002776, BE261944, NM\_006379, Al002238, X81789, NM\_002122, AB001914, AA311919, AI381750, AA292998, BE439580, AI677897, N72403, BE003054, AL035588, Al080491, AW770994, H24177, AF146761, NM\_001955, 25 Al680737, Al752666, AA505445, BE246649, and NM 003955;
  - (iii) a sequence that is at least about 80% identical to (i) or (ii);
- (iv) a sequence that encodes a polypeptide encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_003014, AA046217, NM\_015902, T83882, AB040888, AA628980, Al623351, AW614420, AA243499, AF251237, Al970797, AF145713, X78565, T97307, BE243845, AW068302, AL133561, BE313555, X07820, Al973016, AF084545, U41518, Z11894, AW138190, BE086548, W47196, Al796870, X02761, AW968613, AW972565, AF045229, AW953853, U52426, F06700, Al798863, H52761, BE546947, AU076643, U20536, AA581602, AJ245210, X65965, Al806770, BE386490, AW581992, U77534, AL034417, L10343, AW518944, W28729, Al640160, U11862, AW295980, X59135, BE466173, Al354722,

M90464, AA829286, AI333771, BE465867, NM\_014992, BE616902, AA430373, R27430, BE387335, AW264102, AW952323, AA088177, BE614567, AL079658, NM\_002776, BE261944, NM\_006379, AI002238, X81789, NM\_002122, AB001914, AA311919, AI381750, AA292998, BE439580, AI677897, N72403, BE003054, AL035588, AI080491, AW770994, H24177, AF146761, NM\_001955, AI680737, AI752666, AA505445, BE246649, and NM\_003955; and

(v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).

5

30

35

- In a preferred embodiment, the present invention provides a method of determining the likelihood of survival of a subject suffering from an ovarian cancer, said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an elevated level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has a poor probability of survival, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
- (i) a sequence comprising at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
  - (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- 25 (iii) a sequence that is at least about 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
  - (iv) a sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84; and
  - (v) a sequence that is complementary to (i) or (ii) or (iii) or (iv).

In an alternative preferred embodiment, the present invention provides a method of determining the likelihood of survival of a subject suffering from an ovarian cancer, said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein an enhanced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody

10

15

20

25

30

35

complex formed for a control subject not having ovarian cancer indicates that the subject being tested has has a poor probability of survival, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_003014, AA046217, NM\_015902, T83882, AB040888, AA628980, Al623351, AW614420, AA243499, AF251237, AI970797, AF145713, X78565, T97307, BE243845, AW068302, AL133561, BE313555, X07820, Al973016, AF084545, U41518, Z11894, AW138190, BE086548, W47196, Al796870, X02761, AW968613, AW972565. AF045229. AW953853, U52426, F06700, AI798863, H52761, BE546947, AU076643, U20536, AA581602, AJ245210, X65965, AI806770, BE386490, AW581992, U77534, AL034417, L10343, AW518944, W28729, Al640160, U11862, AW295980, X59135, BE466173, Al354722, M90464, AA829286, Al333771, BE465867, NM\_014992, BE616902, AA430373, R27430, BE387335, AW264102, AW952323, AA088177, BE614567, AL079658, NM\_002776, BE261944, NM\_006379, Al002238, X81789, NM\_002122, AB001914, AA311919, Al381750, AA292998, BE439580, Al677897, N72403, BE003054, AL035588, Al080491, AW770994, H24177, AF146761, NM\_001955, Al680737, Al752666, AA505445, BE246649, and NM\_003955.

In an alternative preferred embodiment, the present invention provides a method of determining the likelihood of survival of a subject suffering from an ovarian cancer, said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein an enhanced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has has a poor probability of survival, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to a sequence selected from the group consisting of SEQ ID NOs: 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84.

In a particularly preferred embodiment, the present invention provides a marker for determining the likelihood of a subject surviving from serous cancer. In accordance with this embodiment of the invention, there is provided a method of determining the likelihood of survival of a subject suffering from a serous ovarian cancer, said method

20

25

30

35

comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an elevated level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has a poor probability of survival, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:

- (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 71 or 73;
- 10 (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 71 or 73;
  - (iii) a sequence that is at least about 80% identical to (i) or (ii) and encoding an sFRP protein or a SOCS3 protein;
- 15 (iv) a sequence that encodes a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 72 or 74; and
  - (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).

In an alternative preferred embodiment, the present invention provides a method of determining the likelihood of survival of a subject suffering from a serous ovarian cancer, said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein an enhanced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has a poor probability of survival, and wherein said antibody binds to an sFRP polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 72 or a SOCS3 polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 74 or.

It will also be apparent from the following preferred embodiments, that the expression of certain genes listed in Table 1 and Table 3 is statistically correlated with recurrence of ovarian cancer, wherein a low P value indicates an enhanced likelihood that a patient having altered expression of the gene will experience recurrence of the disease.

In yet another preferred embodiment, the present invention provides a method of determining the likelihood that a subject will suffer from a recurrence of an ovarian cancer, said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an elevated level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has a high probability of recurrence, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:

- a sequence comprising at least about 20 contiguous nucleotides from a nucleic 10 (i) acid set forth in Table 1 and having an Accession Number selected from the group consisting of: M86849, AW963419, BE298665, AK000637, BE077546, T97307, R24601, BE090176, AA393907, W28729, BE313754, AW673081, AA356694, L08239, BE397649, NM\_012317, NM\_000947, AJ250562, AL040183, BE207573, BE564162, BE439580, AW067800, AA569756, AW138190, AF126245, L10343, 15 NM\_002514, Al863735, NM\_005397, W26391, H15474, U51166, AA243499, AW408807, Al738719, AB040888, BE313077, Al677897, C14898, Al821730, AF007393, H65423, N46243, AA095971, U20350, NM\_005756, D19589, AW957446, AW294647, BE159718, AI888490, AA022569, BE147740, AI798863, BE464341, AL080235, Al557212, X75208, AA628980, BE242587, NM\_005512, . 20 AW953853, AU076611, AW968613, AL353944, BE614149, AA292998, H12912, AA188763, AK000596, AI970797, AW519204, Z42387, AF145713, AA972412, AK001564, AW959861, BE313555, W25005, Al193356, AF111106, Al130740, AA985190, BE221880, AF084545, R26584, AW247380, AA364261, U25849, AF262992, AW342140, AL133572, Al497778, Al745379, U51712, AW375974, 25 NM\_000636, AA130986, AA216363, AA628980, AA811657, AF251237. AA897108, AB040888, AF212225, Al089575, Al282028, Al368826, Al718702, AL109791, AW090198, AW296454, AW445034, AK002039, Al827248, AW452948, AW470411, AW885727, AW970859, AW979189, BE165866, BE175582, BE242587, BE271927, BE439580, BE464016, D63216, F34856, 30 M83822, N33937, N49068, N51357, N80486, NM\_000954, NM\_005756, NM\_016652, R26584, R31178, W05391, W25005, W45393, W68815, X65965, X76732 and Z45051,
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions
   to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1
   and having an Accession Number selected from the group consisting of: M86849,

10

15

20

AW963419, BE298665, AK000637, BE077546, T97307, R24601, BE090176, AA393907, W28729, BE313754, AW673081, AA356694, L08239, BE397649, NM 012317, NM 000947, AJ250562, AL040183, BE207573, BE564162, BE439580, AW067800, AA569756, AW138190, AF126245, L10343, NM\_002514, Al863735, NM: 005397, W26391, H15474, U51166, AA243499, AW408807. AI738719, AB040888, BE313077, AI677897, C14898, AI821730, AF007393, H65423, N46243, AA095971, U20350, NM 005756, D19589, AW957446, AW294647, BE159718, Al888490, AA022569, BE147740, Al798863, BE464341, AL080235, Al557212, X75208, AA628980, BE242587, NM 005512, AW953853, AU076611, AW968613, AL353944, BE614149, AA292998, H12912, AA188763, AK000596, AI970797, AW519204, Z42387, AF145713, AA972412, AK001564, AW959861, BE313555, W25005, Al193356, AF111106, Al130740, AA985190, BE221880, AF084545, R26584, AW247380, AA364261, U25849, AF262992, AW342140, AL133572, Al497778, Al745379, U51712, AW375974, AF251237, NM 000636, AA130986, AA216363, AA628980, AA811657, AA897108, AB040888, AF212225, Al089575, Al282028, Al368826, Al718702, Al827248, AK002039, AL109791, AW090198, AW296454, AW445034, AW470411, AW885727, AW970859, AW979189, BE165866, BE175582, BE242587, BE271927, BE439580, BE464016, D63216, F34856, M83822, N33937, N49068, N51357, N80486, NM\_000954, NM\_005756, NM\_016652, R26584, R31178, W05391, W25005, W45393, W68815, X65965, X76732 and Z45051:

- (iii) a sequence that is at least about 80% identical to (i) or (ii);
- (iv) a sequence that encodes a polypeptide encoded by a nucleic acid set forth in 25 Table 1 and having an Accession Number selected from the group consisting of:M86849, AW963419, BE298665, AK000637, BE077546, T97307, R24601, BE090176, AA393907, W28729, BE313754, AW673081, AA356694, L08239, BE397649, NM\_012317, NM\_000947, AJ250562, AL040183, BE207573, BE564162, BE439580, AW067800, AA569756, AW138190, AF126245, L10343, NM 002514, Al863735, NM 005397, W26391, H15474, U51166, AA243499, 30 AW408807, Al738719, AB040888, BE313077, Al677897, C14898, Al821730, AF007393. H65423. N46243. AA095971, U20350, NM\_005756, D19589, AW957446, AW294647, BE159718, AI888490, AA022569, BE147740, AI798863, BE464341, AL080235, Al557212, X75208, AA628980, BE242587, NM\_005512, AW953853, AU076611, AW968613, AL353944, BE614149, AA292998, H12912, 35 AA188763, AK000596, AI970797, AW519204, Z42387, AF145713, AA972412,

10

15

20

25

30

35

AK001564, AW959861, BE313555, W25005, AI193356, AF111106, AI130740, AA985190, BE221880, AF084545, R26584, AW247380, AA364261, U25849, AF262992, AW342140, AL133572, AI497778, AI745379, U51712, AW375974, AF251237, NM\_000636, AA130986, AA216363, AA628980, AA811657, AA897108, AB040888, AF212225, AI089575, AI282028, AI368826, AI718702, AI827248, AK002039, AL109791, AW090198, AW296454, AW445034, AW452948, AW470411, AW885727, AW970859, AW979189, BE165866, BE175582, BE242587, BE271927, BE439580, BE464016, D63216, F34856, M83822, N33937, N49068, N51357, N80486, NM\_000954, NM\_005756, NM\_016652, R26584, R31178, W05391, W25005, W45393, W68815, X65965, X76732 and Z45051; and

(v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).

In an alternative preferred embodiment, the present invention provides a method of determining the likelihood that a subject will suffer from a recurrence of an ovarian cancer, said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein an enhanced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has a high probability of recurrence, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: M86849, AW963419, BE298665, AK000637, BE077546, T97307, R24601, BE090176, AA393907, W28729, BE313754, AW673081, AA356694, L08239, BE397649, NM 012317, NM 000947, AJ250562, AL040183, BE207573, BE564162, BE439580, AW067800, AA569756, AW138190, AF126245, L10343, NM 002514, AI863735, NM 005397, W26391, H15474, U51166, AA243499, AW408807, AI738719, AB040888, BE313077, Al677897, C14898, Al821730, AF007393, H65423, N46243, AA095971, U20350, NM 005756, D19589, AW957446, AW294647, BE159718, AI888490, AA022569, BE147740, AI798863, BE464341, AL080235, AI557212, X75208, AA628980, BE242587, NM 005512, AW953853, AU076611, AW968613, AL353944, BE614149, AA292998, H12912, AA188763, AK000596, Al970797, AW519204, Z42387, AF145713, AA972412, AK001564, AW959861, BE313555, W25005, AI193356,

AF111106, AI130740, AA985190, BE221880, AF084545, R26584, AW247380, AA364261, U25849, AF262992, AW342140, AL133572, AI497778, AI745379, U51712, AW375974, AF251237, NM\_000636, AA130986, AA216363, AA628980, AA811657, AA897108, AB040888, AF212225, AI089575, AI282028, AI368826, AI718702, AI827248, AK002039, AL109791, AW090198, AW296454, AW445034, AW452948, AW470411, AW885727, AW970859, AW979189, BE165866, BE175582, BE242587, BE271927, BE439580, BE464016, D63216, F34856, M83822, N33937, N49068, N51357, N80486, NM\_000954, NM\_005756, NM\_016652, R26584, R31178, W05391, W25005, W45393, W68815, X65965, X76732 and Z45051.

10

15

5

The recurrence of ovarian cancer is a clinical recurrence as determined by the presence of one or more clinical symptoms of an ovarian cancer, such as, for example, a metastases, or alternatively, as determined in a biochemical test, immunological test or serological test such as, for example, a cross-reactivity in a biological sample to a CA125 antibody.

Preferably, the recurrence is capable of being detected at least about 2 years from treatment, more preferably about 2-3 years from treatment, and even more preferably about 4 or 5 or 10 years from treatment.

20

25

30

35

Preferably, in the above diagnostic and/or prognostic methods, the biological sample is contacted with a plurality of the nucleic acids and/or polypeptides and/or antibodies referred to above. In a particularly preferred embodiment, mulpiplex assays are performed to detect enhanced expression at least of sFRP4 and SOC3 at the protein level (eg., using antigen-based or antibody-based assays) or at the mRNA level (eg., by detecting elevated levels of mRNA transcripts).

A further embodiment of the present invention provides a method of diagnosing epithelial ovarian cancer by detecting aberrant methylation of a promoter that regulates expression of a tumor suppressor gene eg., MCC. In particular, the present invention contemplates the detection of hypermethylation of the promoter of a tumor suppressor gene. Without being bound by any theory or mode of action, such hypermethylation leads to gene inactivation, thereby reducing expression fo the tumor suppressor gene and permitting oncogenesis. In one preferred embodiment, the present invention provides a method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising determining aberrant methylation in a promoter sequence that regulates

expression of a tumor suppressor gene in a biological sample from said subject compared to the methylation of the promoter in nucleic acid obtained for a control subject not having ovarian cancer wherein said aberrant methylation indicates that the subject being tested has an ovarian ovarian cancer.

5

10

15

20

25

30

35

In a further aspect, the present invention provides a method for identifying a compound that modulates an ovarian cancer-associated polypeptide, the method comprising:

- (i) contacting the compound with a ovarian cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3; and
- (ii) determining the functional effect of the compound upon the polypeptide.

The functional effect may, for example, be a physical effect or a chemical effect. In one embodiment, the functional effect is determined by measuring ligand binding to the polypeptide. In a particular embodiment, the polypeptide is expressed in a eukaryotic host cell or cell membrane. Preferably the polypeptide is recombinant.

In another aspect, the present invention provides a method of inhibiting proliferation of a ovarian tumour cell, which method comprises contacting said cell with a compound identified using the method *supra* for identifying a compound that modulates an ovarian cancer-associated polypeptide.

In a further aspect, the present invention provides a method of inhibiting proliferation of a ovarian cancer-associated cell to treat ovarian cancer in a patient, the method comprising the step of administering to the patient a therapeutically effective amount of a compound identified using the method *supra* for identifying a compound that modulates an ovarian cancer-associated polypeptide.

In a further aspect, the present invention provides a drug screening assay comprising:

- (i) administering a test compound to a mammal having ovarian cancer or a cell isolated therefrom;
- (ii) comparing the level of gene expression of a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell or mammal, wherein a test compound that

WO 2004/022778 PCT/AU2003/001166

31

modulates the level of expression of the polynucleotide is a candidate for the treatment of ovarian cancer.

Typically, the control is a mammal with ovarian cancer or a cell therefrom that has not been treated with the test compound. Alternatively, the control is a normal cell or mammal.

The present invention also provides a method for treating a mammal having ovarian cancer comprising administering a compound identified the drug screening method supra.

In a further aspect, the present invention provides a pharmaceutical composition for use in treating a mammal having ovarian cancer, the composition comprising a compound identified the screening method *supra* for identifying a compound that modulates an ovarian cancer-associated polypeptide, or alternatively, using the drug screening method *supra*, and a physiologically acceptable carrier or diluent.

In a further aspect, the present invention provides an assay device, preferably for use in the diagnosis or prognosis of ovarian cancer, said device comprising a plurality of polynucleotides immobilized to a solid phase, wherein each of said polnucleotides consists of a gene as listed in any one of Tables 1-3. Preferably, the solid phase is a substantially planar chip.

In a related embodiment, the present invention provides an assay device, preferably for use in the diagnosis or prognosis of ovarian cancer, said device comprising a plurality of different antibodies immobilized to a solid phase, wherein each of said antibodies binds to a polypeptide listed in Tables 1-3. Preferably, the solid phase is a substantially planar chip.

30 Preferably, the assay device *supra* is used in a method of diagnosis or prognosis as described herein.

Alternatively, the assay device is used to identify modulatory compounds of the expression of one or more genes/proteins listed in any one of Tables 1-3.

5

10

15

20

25

In a further aspect, the present invention provides a non-human transgenic animal which is transgenic by virtue of comprising a gene set forth in any one of Tables 1-3 and, in particular, to the use of any such transgenic animal in the performance of a diagnostic or prognostic method of the invention as transgenic "knock-out" animals that have disrupted expression of a gene as set forth in any one of Tables 1-3.

In a further aspect, the present invention provides an isolated polynucleotide selected from the group consisting of:

- (a) polynucleotides comprising a nucleotide sequence as shown in Tables 1-3, or the complement thereof;
- (b) polynucleotides comprising a nucleotide sequence capable of selectively hybridizing to a nucleotide sequence as shown in Tables 1-3;
- (c) polynucleotides comprising a nucleotide sequence capable of selectively hybridizing to the complement of a nucleotide sequence as shown in Tables 1-3; and
- (d) polynucleotides comprising a polynucleotide sequence which is degenerate as a result of the genetic code to the polynucleotides defined in (a), (b) or (c).

Preferred polynucleotides comprise a polynucleotide sequence as shown in Tables 1-3 or a sequence having at least 80% homology thereto.

Preferably, the isolated polynucleotide is used for the diagnosis or prognosis of ovarian cancer, more preferably by a method as described herein. In a particularly preferred embodiment, the present invention provides for the use of a polynucleotide as set forth in any one of Tables 1-3 in the diagnosis or prognosis of ovarian cancer or for the preparation of a medicament for the treatment of ovarian cancer.

The present invention also provides a nucleic acid vector comprising a polynucleotide of the invention. In one embodiment, the polynucleotide is operably linked to a regulatory control sequence capable of directing expression of the polynucleotide in a host cell. In a particularly preferred embodiment, the present invention provides for the use of a vector comprising a polynucleotide as set forth in any one of Tables 1-3 in the diagnosis or prognosis of ovarian cancer or for the preparation of a medicament for the treatment of ovarian cancer.

5

10

15

20

25

30

WO 2004/022778 PCT/AU2003/001166

33

The present invention further provides a host cell comprising a vector as described in the preceding paragraph. In a particularly preferred embodiment, the present invention provides for the use of a host cell comprising an introduced polynucleotide as set forth in any one of Tables 1-3 in the diagnosis or prognosis of ovarian cancer or for the preparation of a medicament for the treatment of ovarian cancer.

In a further aspect, the present invention provides an isolated polypeptide which is encoded by a gene set forth in any one of Tables 1-3. The present invention also provides an isolated polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3. In a particularly preferred embodiment, the present invention provides for the use of an isolated polypeptide as set forth in any one of Tables 1-3 in the diagnosis or prognosis of ovarian cancer or for the preparation of a medicament for the treatment of ovarian cancer.

In a further aspect the present invention provides an antibody that binds specifically a polypeptide listed in Tables 1-3. In a particularly preferred embodiment, the present invention provides for the use of an antibody that binds to an isolated polypeptide as set forth in any one of Tables 1-3 in the diagnosis or prognosis of ovarian cancer or for the preparation of a medicament for the treatment of ovarian cancer.

20

25

15

5

10

#### Brief description of the Drawings

Figure 1 is a photographic representation showing expression of genes as identified by immunohistochemical staining of fixed normal (i.e. non-cancerous or healthy) tissues (panel A) or ovarian cancer tissue (panel B). The inset in panel A shows inclusion cysts. The expression levels of the following genes listed in Table 1 or Table 3 were determined: Claudin-3 (SEQ ID NO: 15); EP-CAM (Accession No. NM\_002354); and SOX17 (SEQ ID NO: 17). Positive controls CA125, MUC-1 and E-Cadherin were also included for comparison.

10

15

20

Figure 2 is a graphical representation showing the correlation between expression of different genes in serous ovarian cancer (SOC), mucinous ovarian cancer (MOC), endometroid ovarian cancer (EnOC) and clear cell ovarian cancer (CICA). Genes indicated on the x-axis in each case are as in the legend to Figure 1.

Figure 3 is a copy of a photographic representation showing immunohistochemical staining of ovary tissue from a normal healthy subject (normal ovary), a subject diagnosed with mucinous ovarian cancer (MOC) and a subject diagnosed with serous ovarian cancer (SOC), following staining with probes that are specific for L1-Cadherin (top row), meprin alpha (middle row) or galectin-4 (lower row). Magnification is indicated as 20-40X.

Figure 4a is a copy of a photographic representation showing immunohistochemical staining of samples from a normal healthy subject (normal) or primary serous ovarian tumor (SOC), following staining with probes that are specific for sFRP4 (top row), or SOCS3 (lower row). Magnification is indicated as 20X.

Figure 4b is a copy of a graphical representation showing a Kaplan-Meier survival curve correlating sFRP4 expression to patient survival over the medium term (i.e., from about 12 months to about 48 months) to long term (more than about 48 months), indicating that high expression of sFRP4 is associated with poor survival in patients (n=127) having SOC (p=0.0056).

## 25 <u>Detailed description of the preferred embodiments</u>

Ovarian cancer-associated sequences:

Ovarian cancer-associated sequences can include both nucleic acid (i.e., "ovarian cancer-associated genes") and protein (i.e., "ovarian cancer-associated proteins").

As used herein, the term "ovarian cancer-associated protein" shall be taken to mean any protein that has an expression pattern correlated to an ovarian cancer, the recurrence of an ovarian cancer or the survival of a subject suffering from ovarian cancer.

Similarly, the term "ovarian cancer-associated gene" shall be taken to mean any nucleic acid encoding an ovarian cancer-associated protein or nucleic acid having an expression profile that is correlated to an ovarian cancer, the recurrence of an ovarian cancer or the survival of a subject suffering from ovarian cancer.

5

10

15

20

25

30

35

As will be appreciated by those in the art and is more fully outlined below, ovarian cancer-associated genes are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; e.g., biochips comprising nucleic acid probes or PCR microtitre plates with selected probes to the ovarian cancer sequences are generated.

For identifying ovarian cancer-associated sequences, the ovarian cancer screen typically includes comparing genes identified in different tissues, e.g., normal and cancerous tissues, or tumour tissue samples from patients who have metastatic disease vs. non metastatic tissue. Other suitable tissue comparisons include comparing ovarian cancer samples with metastatic cancer samples from other cancers, such as lung, breast, gastrointestinal cancers, ovarian, etc. Samples of different stages of ovarian cancer, e.g., survivor tissue, drug resistant states, and tissue undergoing metastasis, are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art for the preparation of mRNA. Suitable biochips are commercially available, e.g. from Affymetrix. Gene expression profiles as described herein are generated and the data analyzed.

In one embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, preferably normal ovarian, but also including, and not limited to lung, heart, brain, liver, breast, kidney, muscle, colon, small intestine, large intestine, spleen, bone and placenta. In a preferred embodiment, those genes identified during the ovarian cancer screen that are expressed in any significant amount in other tissues are removed from the profile, although in some embodiments, this is not necessary. That is, when screening for drugs, it is usually preferable that the target be disease specific, to minimise possible side effects.

In a preferred embodiment, ovarian cancer-associated sequences are those that are upregulated in ovarian cancer; that is, the expression of these genes is modified (upregulated or down-regulated) in ovarian cancer tissue as compared to non-cancerous tissue (see Table 1).

"Up-regulation" as used herein means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred. All Unigene cluster identification numbers and accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ).

"Down-regulation" as used herein often means at least about a 1.5-fold change more preferably a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being most preferred.

15

20

25

30

35

10

Particularly preferred sequences are those referred to in Tables 1 or 3 that have a P value of less than 0.05, more preferably a P value of less than about 0.01.

Similarly, preferred sequences are those referred to in Table 2 as having an absolute ratio of expression between ovarian patients and normal patients of at least about  $\pm 5.0$ , more preferably at least about  $\pm 6.0$ , even more preferrably at least about  $\pm 7.0$  or at least about  $\pm 8.0$  or at least about  $\pm 9.0$  or at least about  $\pm 10.0$ .

Detection of ovarian cancer sequences for diagnostic/prognostic applications

In one aspect, the RNA expression levels of genes are determined for different cellular states in the ovarian cancer phenotype. Expression levels of genes in normal tissue (i.e., not undergoing ovarian cancer) and in ovarian cancer tissue (and in some cases, for varying severities of ovarian cancer that relate to prognosis, as outlined below) are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state. While two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis are performed or confirmed to

37

5

10

15

20

determine whether a tissue sample has the gene expression profile of normal or cancerous tissue. This will provide for molecular diagnosis of related conditions.

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g., normal versus ovarian cancer tissue. Genes are turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression are quantitative, e.g., in that expression is increased or decreased; i.e., gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChipTM expression arrays, Lockhart, Nature Biotechnology 14:1675-1680 (1996), hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, northern analysis and RNase protection. As outlined above, preferably the change in expression (i.e., upregulation or downregulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

Evaluation are at the gene transcript, or the protein level. The amount of gene expression are monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) are monitored, e.g., with antibodies to the ovarian cancer-associated protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to ovarian cancer genes, i.e., those identified as being important in a ovarian cancer phenotype, are evaluated in a ovarian cancer diagnostic test.

In a preferred embodiment, gene expression monitoring is performed on a plurality of genes. Multiple protein expression monitoring are performed as well. Similarly, these assays are performed on an individual basis as well.

In this embodiment, the ovarian cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of ovarian cancer sequences in a particular cell. The assays are further described below in the example. PCR techniques are used to provide greater sensitivity.

In a preferred embodiment nucleic acids encoding the ovarian cancer-associated protein are detected. Although DNA or RNA encoding the ovarian cancer-associated protein are detected, of particular interest are methods wherein an mRNA encoding a ovarian cancer-associated protein is detected. Probes to detect mRNA are nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed in situ. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a ovarian cancerassociated protein is detected by binding the digoxygenin with an anti-digoxygenin secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3indoyl phosphate.

25

30

5

10

15

20

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The ovarian cancer-associated proteins, antibodies, nucleic acids, modified proteins and cells containing ovarian cancer sequences are used in diagnostic assays. This are performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

35 As described and defined herein, ovarian cancer-associated proteins, including intracellular, transmembrane or secreted proteins, find use as markers of ovarian cancer.

Detection of these proteins in putative ovarian cancer tissue allows for detection or diagnosis of ovarian cancer. In one embodiment, antibodies are used to detect ovarian cancer-associated proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but are another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the ovarian cancer-associated protein is detected, e.g., by immunoblotting with antibodies raised against the ovarian cancer-associated protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

10

15

20

25

30

In another preferred method, antibodies to the ovarian cancer-associated protein find use in *in situ* imaging techniques, e.g., in histology (e.g., *Methods in Cell Biology: Antibodies in Cell* Biology, volume 37 (Asai, ed. 1993)). In this method cells are contacted with from one to many antibodies to the ovarian cancer-associated protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label. In another method the primary antibody to the ovarian cancer-associated proteins) contains a detectable label, e.g. an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of ovarian cancer-associated proteins. As will be appreciated by one of ordinary skill in the art, many other histological imaging techniques are also provided by the invention.

in a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) are used in the method. In another preferred embodiment, antibodies find use in diagnosing ovarian cancer from blood, serum, plasma, stool, and other samples. Such samples, therefore, are useful as samples to be probed or tested for the presence of ovarian cancer-associated proteins. Antibodies are used to detect a ovarian cancer-associated protein by previously described immunoassay techniques including ELISA, immunoblotting (western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous ovarian cancer-associated protein.

In a preferred embodiment, in situ hybridization of labeled ovarian cancer nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including ovarian

. 40

cancer tissue and/or normal tissue, are made. In situ hybridization (see, e.g., Ausubel, supra) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or are predictive of outcomes.

5

10

15

20

25

30

35

In a preferred embodiment, the ovarian cancer-associated proteins, antibodies, nucleic acids, modified proteins and cells containing ovarian cancer sequences are used in prognosis assays. As above, gene expression profiles are generated that correlate to ovarian cancer, in terms of long term prognosis. Again, this are done on either a protein or gene level, with the use of genes being preferred. As above, ovarian cancer probes are attached to biochips for the detection and quantification of ovarian cancer sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

Characteristics of ovarian cancer-associated proteins and genes encoding same

Ovarian cancer-associated proteins of the present invention are classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the ovarian cancer-associated protein is an intracellular protein. Intracellular proteins are found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such proteins often results in unregulated or disregulated cellular processes (see, e.g., Molecular Biology of the Cell (Alberts, ed., 3rd ed., 1994). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

An increasingly appreciated concept in characterising proteins is the presence in the proteins of one or more motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in

41

protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets, SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs are identified on the basis of primary sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate. One useful database is Pfam (protein families), which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. Versions are available via the internet from Washington University in St. Louis, the Sanger Center in England, and the Karolinska Institute in Sweden (see, e.g., Bateman et al., 2000, Nuc. Acids Res. 28: 263-266; Sonnhammer et al., 1997, Proteins 28: 405-420; Bateman et al., 1999, Nuc. Acids Res. 27:260-262; and Sonnhammer et al., 1998, Nuc. Acids Res. 26: 320-322.

10

15

20

25

30

35

In another embodiment, the ovarian cancer sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 20 consecutive hydrophobic amino acids

42

that are followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein are predicted (see, e.g. PSORT web site http://psort.nibb.ac.jp/). Important transmembrane protein receptors include, but are not limited to the insulin receptor, insulin-like growth factor receptor, human growth hormone receptor, glucose transporters, transferrin receptor, epidermal growth factor receptor, low density lipoprotein receptor, epidermal growth factor receptor, leptin receptor, interleukin receptors, e.g. IL-1 receptor, IL-2 receptor,

The extracellular domains of transmembrane proteins are diverse; however, conserved 10 motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, 15 which are peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they mediate cell-cell 20 interactions., Cell-associated ligands are tethered to the cell, e.g., via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Ovarian cancer-associated proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins are also useful in imaging modalities. Antibodies are used to label such readily accessible proteins *in situ*. Alternatively, antibodies can also label intracellular proteins, in which case samples are typically permeablized to provide access to intracellular proteins.

It will also be appreciated by those in the art that a transmembrane protein are made soluble by removing transmembrane sequences, e.g., through recombinant methods. Furthermore, transmembrane proteins that have been made soluble are made to be secreted through recombinant means by adding an appropriate signal sequence.

35

In another embodiment, the ovarian cancer-associated proteins are secreted proteins; the secretion of which are either constitutive or regulated. These proteins have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; by virtue of their circulating nature, they serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor) or an endocrine manner (acting on cells at a distance). Thus secreted molecules find use in modulating or altering numerous aspects of physiology. Ovarian cancer-associated proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood, plasma, serum, or stool tests.

## Mammalian subjects

5

10

15

20

25

30

35

The present invention provides nucleic acid and protein sequences that are differentially expressed in ovarian cancer, herein termed "ovarian cancer sequences." As outlined below, ovarian cancer sequences include those that are up-regulated (i.e., expressed at a higher level) in ovarian cancer, as well as those that are down-regulated (i.e., expressed at a lower level). In a preferred embodiment, the ovarian cancer sequences are from humans; however, as will be appreciated by those in the art, ovarian cancer sequences from other organisms are useful in animal models of disease and drug evaluation; thus, other ovarian cancer sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc.) and pets, e.g., (dogs, cats, etc.).

#### Assay control samples

It will be apparent from the preceding discussion that many of the diagnostic methods provided by the present invention involve a degree of quantification to determine, on the one hand, the over-expression or reduced-expression of a diagnostic/prognostic marker in tissue that is suspected of comprising a cancer cell. Such quantification can be readily provided by the inclusion of appropriate control samples in the assays described below, derived from healthy or normal individuals. Alternatively, if internal controls are not included in each assay conducted, the control may be derived from an established data set that has been generated from healthy or normal individuals.

In the present context, the term "healthy individual" shall be taken to mean an individual who is known not to suffer from ovarian cancer, such knowledge being derived from clinical data on the individual, including, but not limited to, a different cancer assay to that described herein. As the present invention is particularly useful for the early detection of ovarian cancer, it is preferred that the healthy individual is asymptomatic with respect to the early symptoms associated with ovarian cancer. Although early detection using well-known procedures is difficult, reduced urinary frequency, rectal pressure, and abdominal bloating and swelling, are associated with the disease in its early stages, and, as a consequence, healthy individuals should not have any of these clinical symptoms. Clearly, subjects suffering from later symptoms associated with ovarian cancer, such as, for example, metastases in the omentum, abdominal fluid, lymph nodes, lung, liver, brain, or bone, and subjects suffering from spinal cord compression, elevated calcium level, chronic pain, or pleural effusion, should also be avoided from the "healthy individual" data set.

15

20

25

30

35

10

The term "normal individual" shall be taken to mean an individual having a normal level of expression of a cancer-associate gene or cancer-associated protein in a particular sample derived from said individual. As will be known to those skilled in the art, data obtained from a sufficiently large sample of the population will normalize, allowing the generation of a data set for determining the average level of a particular parameter. Accordingly, the level of expression of a cancer-associate gene or cancer-associated protein can be determined for any population of individuals, and for any sample derived from said individual, for subsequent comparison to levels determined for a sample being assayed. Where such normalized data sets are relied upon, internal controls are preferably included in each assay conducted to control for variation.

In one embodiment, the present invention provides a method for detecting a cancer cell in a subject, said method comprising:

- (i) determining the level of mRNA encoding a cancer-associated protein expressed in a test sample from said subject; and
- comparing the level of mRNA determined at (i) to the level of mRNA encoding a cancer-associated protein expressed in a comparable sample from a healthy or normal individual,

wherein a level of mRNA at (i) that is modified in the test sample relative to the comparable sample from the normal or healthy individual is indicative of the presence of a cancer cell in said subject.

Alternatively, or in addition, the controll may comprise a cancer-associated sequence that is known to be expressed at a particular level in an ovarian cancer, eg., CA125, MUC-1 or E-Cadherin, amongast others.

5

10

## Biological samples

Preferred biological samples in which the assays of the invention are performed include bodily fluids, ovarian tissue and cells, and those tissues known to comprise cancer cells arising from a metastasis of an ovarian cancer, such as, for example, in carcinomas of the lung, prostate, breast, colon, pancreas, placenta, or omentum, and in cells of brain anaplastic oligodendrogliomas.

Bodily fluids shall be taken to include whole blood, serum, peripheral blood mononuclear cells (PBMC), or buffy coat fraction.

. 15

In the present context, the term "cancer cell" includes any biological specimen or sample comprising a cancer cell irrespective of its degree of isolation or purity, such as, for example, tissues, organs, cell lines, bodily fluids, or histology specimens that comprise a cell in the early stages of transformation or having been transformed.

20

25

30

35

As the present invention is particularly useful for the early detection and prognosis of cancer ofe rthe medium to long term, the definition of "cancer cell" is not to be limited by the stage of a cancer in the subject from which said cancer cell is derived (ie. whether or not the patient is in remission or undergoing disease recurrence or whether or not the cancer is a primary tumor or the consequence of metastases). Nor is the term "cancer cell" to be limited by the stage of the cell cycle of said cancer cell.

Preferably, the sample comprises ovarian tissue, prostate tissue, kidney tissue, uterine tissue, placenta, a cervical specimen, omentum, rectal tissue, brain tissue, bone tissue, lung tissue, lymphatic tissue, urine, semen, blood, abdominal fluid, or serum, or a cell preparation or nucleic acid preparation derived therefrom. More preferably, the sample comprises serum or abdominal fluid, or a tissue selected from the group consisting of: ovary, lymph, lung, liver, brain, placenta, brain, omentum, and prostate. Even more preferably, the sample comprises serum or abdominal fluid, ovary (eg. OSE), or lymph node tissue. The sample can be prepared on a solid matrix for histological analyses, or alternatively, in a suitable solution such as, for example, an extraction buffer or

46

suspension buffer, and the present invention clearly extends to the testing of biological solutions thus prepared.

Polynucleotide probes and amplification primers

Polynucleotide probes are derived from or comprise the nucleic acid sequences whose nucleotide sequences are provided by reference to the public database accession numbers given in Tables 1-3 (referred to herein as the nucleotide sequences shown in Tables 1-3), and sequences homologues thereto as well as variants, derivatives and fragments thereof.

10

15

20

25

30

35

5

Whilst the probes may comprise double-stranded or single-stranded nucleic acid, single-stranded probes are preferred because they do not require melting prior to use in hybridizations. On the other hand, longer probes are also preferred because they can be used at higher hybridization stringency than shorter probes and may produce lower background hybridization than shorter probes.

So far as shorter probes are concerned, single-stranded, chemically-synthesized oligonucleotide probes are particularly preferred by the present invention. To reduce the noise associated with the use of such probes during hybridization, the nucleotide sequence of the probe is carefully selected to maximize the Tm at which hybridizations can be performed, reduce non-specific hybridization, and to reduce self-hybridization. Such considerations may be particularly important for applications involving high throughput screening using microarray technology. In general, this means that the nucleotide sequence of an oligonucleotide probe is selected such that it is unique to the target RNA or protein-encoding sequence, has a low propensity to form secondary structure, low self-complementary, and is not highly A/T-rich.

The only requirement for the probes is that they cross-hybridize to nucleic acid encoding the target diagnostic protein or the complementary nucleotide sequence thereto and are sufficiently unique in sequence to generate high signal:noise ratios under specified hybridization conditions. As will be known to those skilled in the art, long nucleic acid probes are preferred because they tend to generate higher signal:noise ratios than shorter probes and/or the duplexes formed between longer molecules have higher melting temperatures (i.e. Tm values) than duplexes involving short probes. Accordingly, full-length DNA or RNA probes are contemplated by the present invention, as are specific probes comprising the sequence of the 3'-untranslated region or complementary thereto.

WO 2004/022778

PCT/AU2003/001166

47

In a particularly preferred embodiment, the nucleotide sequence of an oligonucleotide probe has no detectable nucleotide sequence identity to a nucleotide sequence in a BLAST search (Altschul *et al.*, *J. Mol. Biol. 215*, 403-410, 1990) or other database search, other than a sequence selected from the group consisting of: (a) a sequence encoding a polypeptide listed in any one of Tables 1-3; (b) the 5'-untranslated region of a sequence encoding a polypeptide listed in any one of Tables 1-3; (c) a 3'-untranslated region of a sequence encoding a polypeptide listed in any one of Tables 1-3; and (d) an exon region of a sequence encoding a polypeptide listed in any one of Tables 1-3.

10

15

20

25

30

35

Additionally, the self-complementarity of a nucleotide sequence can be determined by aligning the sequence with its reverse complement, wherein detectable regions of identity are indicative of potential self-complementarity. As will be known to those skilled in the art, such sequences may not necessarily form secondary structures during hybridization reaction, and, as a consequence, successfully identify a target nucleotide sequence. It is also known to those skilled in the art that, even where a sequence does form secondary structures during hybridization reactions, reaction conditions can be modified to reduce the adverse consequences of such structure formation. Accordingly, a potential for self-complementarity should not necessarily exclude a particular candidate oligonucleotide from selection. In cases where it is difficult to determine nucleotide sequences having no potential self-complementarity, the uniqueness of the sequence should outweigh a consideration of its potential for secondary structure formation.

Recommended pre-requisites for selecting oligonucleotide probes, particularly with respect to probes suitable for microarray technology, are described in detail by Lockhart et al., "Expression monitoring by hybridization to high-density oligonucleotide arrays", Nature Biotech. 14, 1675-1680, 1996.

The nucleic acid probe may comprise a nucleotide sequence that is within the coding strand of a gene listed in any one of Tables 1-3. Such "sense" probes are useful for detecting RNA by amplification procedures, such as, for example, polymerase chain reaction (PCR), and more preferably, quantitative PCR or reverse transcription polymerase chain reaction (RT-PCR). Alternatively, "sense" probes may be expressed to produce polypeptides or immunologically active derivatives thereof that are useful for detecting the expressed protein in samples.

30

35

The nucleotide sequences referred to in Tables 1-3 and homologues thereof, typically encode polypeptides. It will be understood by a skilled person that numerous different polynucleotides can encode the same polypeptide as a result of the degeneracy of the genetic code. In addition, it is to be understood that skilled persons may, using routine techniques, make nucleotide substitutions that do not affect the polypeptide sequence encoded by the polynucleotides of the invention to reflect the codon usage of any particular host organism in which the polypeptides of the invention are to be expressed.

Polynucleotides may comprise DNA or RNA. They are single-stranded or double-stranded. They may also be polynucleotides which include within them synthetic or modified nucleotides. A number of different types of modification to oligonucleotides are known in the art. These include methylphosphonate and phosphorothicate backbones, addition of acridine or polylysine chains at the 3' and/or 5' ends of the molecule. For the purposes of the present invention, it is to be understood that the polynucleotides described herein are modified by any method available in the art. Such modifications are carried out in order to enhance the *in vivo* activity or life span of the diagnostic/prognostic polynucleotides.

The terms "variant" or "derivative" in relation to the nucleotide sequences of the present invention include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the sequence provided that the resultant nucleotide sequence codes for a polypeptide having biological activity, preferably having substantially the same activity as the polypeptide sequences presented in the sequence listings.

With respect to sequence homology, preferably there is at least 75%, more preferably at least 85%, more preferably at least 90% homology to a sequence shown in Tables 1-3 herein over a region of at least 20, preferably at least 25 or 30, for instance at least 40, 60, 100, 500, 1000 or more contiguous nucleotides. More preferably there is at least 95%, more preferably at least 98%, homology. In one embodiment, homologues are naturally occurring sequences, such as orthologues, tissue-specific isoforms and allelic variants.

Homology comparisons are conducted by eye, or more usually, with the aid of readily available sequence comparison programs. These commercially available computer programs can calculate % homology between two or more sequences.

5

10

15

20

25

30

35

Percentage (%) homology are calculated over contiguous sequences, i.e. one sequence is aligned with the other sequence and each nucleotide in one sequence directly compared with the corresponding nucleotide in the other sequence, one base at a time. This is called an "ungapped" alignment. Typically, such ungapped alignments are performed only over a relatively short number of bases (for example less than 50 contiguous nucleotides).

Although this is a very simple and consistent method, it fails to take into consideration that, for example, in an otherwise identical pair of sequences, one insertion or deletion will cause the following nucleotides to be put out of alignment, thus potentially resulting in a large reduction in % homology when a global alignment is performed. Consequently, most sequence comparison methods are designed to produce optimal alignments that take into consideration possible insertions and deletions without penalising unduly the overall homology score. This is achieved by inserting "gaps" in the sequence alignment to try to maximise local homology.

However, these more complex methods assign "gap penalties" to each gap that occurs in the alignment so that, for the same number of identical amino acids, a sequence alignment with as few gaps as possible - reflecting higher relatedness between the two compared sequences - will achieve a higher score than one with many gaps. "Affine gap costs" are typically used that charge a relatively high cost for the existence of a gap and a smaller penalty for each subsequent residue in the gap. This is the most commonly used gap scoring system. High gap penalties will of course produce optimised alignments with fewer gaps. Most alignment programs allow the gap penalties to be modified. However, it is preferred to use the default values when using such software for sequence comparisons.

In determining whether or not two amino acid sequences fall within the stated defined percentage identity limits, those skilled in the art will be aware that it is necessary to conduct a side-by-side comparison of amino acid sequences. In such comparisons or alignments, differences will arise in the positioning of non-identical amino acid residues depending upon the algorithm used to perform the alignment. In the present context, references to percentage identities and similarities between two or more amino acid sequences shall be taken to refer to the number of identical and similar residues respectively, between said sequences as determined using any standard algorithm known to those skilled in the art. In particular, amino acid identities and similarities are calculated using the GAP program of the Computer Genetics Group, Inc., University

WO 2004/022778

Research Park, Madison, Wisconsin, United States of America (Devereaux et al, Nucl. Acids Res. 12, 387-395,1984), which utilizes the algorithm of Needleman and Wunsch J. Mol. Biol. 48, 443-453, 1970, or alternatively, the CLUSTAL W algorithm of Thompson et al., Nucl. Acids Res. 22, 4673-4680, 1994, for multiple alignments, to maximize the number of identical/similar amino acids and to minimize the number and/or length of sequence gaps in the alignment.

A suitable computer program for carrying out such an alignment is the GCG Wisconsin Bestfit package (University of Wisconsin, U.S.A.; Devereux *et al.*, 1984, Nucleic Acids Research 12:387). The default scoring matrix has a match value of 10 for each identical nucleotide and -9 for each mismatch. The default gap creation penalty is -50 and the default gap extension penalty is -3 for each nucleotide.

Examples of other software than can perform sequence comparisons include, but are not limited to, the BLAST package (see Ausubel *et al.*, 1999 *ibid* – Chapter 18), FASTA (Atschul *et al.*, 1990, J. Mol. Biol., 403-410) and the GENEWORKS suite of comparison tools. Both BLAST and FASTA are available for offline and online searching (see Ausubel *et al.*, 1999 *ibid*, pages 7-58 to 7-60). However it is preferred to use the GCG Bestfit program.

20

30

35

5

10

15

Once the software has produced an optimal alignment, it is possible to calculate % homology, preferably % sequence identity. The software typically does this as part of the sequence comparison and generates a numerical result.

A preferred sequence comparison program is the GCG Wisconsin Bestfit program described above.

The present invention also encompasses the use of nucleotide sequences that are capable of hybridizing selectively to the sequences presented herein, or any variant, fragment or derivative thereof, or to the complement of any of the above. Nucleotide sequences are preferably at least 15 nucleotides in length, more preferably at least 20, 30, 40 or 50 nucleotides in length.

The term "hybridization" as used herein shall include "the process by which a strand of nucleic acid joins with a complementary strand through base pairing" as well as the process of amplification as carried out in polymerase chain reaction technologies.

Polynucleotides capable of selectively hybridizing to the nucleotide sequences presented herein, or to their complement, will be generally at least 70%, preferably at least 80 or 90% and more preferably at least 95% or 98% homologous to the corresponding nucleotide sequences referred to in Tables 1-3 over a region of at least 20, preferably at least 25 or 30, for instance at least 40, 60, 100, 500, 1000 or more contiguous nucleotides.

The term "selectively hybridizable" means that the polynucleotide used as a probe is used under conditions where a target polynucleotide is found to hybridize to the probe at a level significantly above background. The background hybridization may occur because of other polynucleotides present, for example, in the cDNA or genomic DNA library being screening. In this event, background implies a level of signal generated by interaction between the probe and a non-specific DNA member of the library which is less than 10 fold, preferably less than 100 fold as intense as the specific interaction observed with the target DNA. The intensity of interaction are measured, for example, by radiolabelling the probe, e.g. with <sup>32</sup>P.

Hybridization conditions are based on the melting temperature (Tm) of the nucleic acid binding complex, as taught in Berger and Kimmel (1987, Guide to Molecular Cloning Techniques, Methods in Enzymology, Vol 152, Academic Press, San Diego CA), and confer a defined "stringency" as explained below.

For the purposes of defining the level of stringency, a high stringency hybridization is achieved using a hybridization buffer and/or a wash solution comprising the following:

- (i) a salt concentration that is equivalent to 0.1xSSC-0.2xSSC buffer or lower salt concentration;
  - (ii) a detergent concentration equivalent to 0.1% (w/v) SDS or higher; and
  - (iii) an incubation temperature of 55°C or higher.

Conditions for specifically hybridizing nucleic acid, and conditions for washing to remove non-specific hybridizing nucleic acid, are well understood by those skilled in the art. For the purposes of further clarification only, reference to the parameters affecting hybridization between nucleic acid molecules is found in Ausubel *et al.* (Current Protocols in Molecular Biology, Wiley Interscience, ISBN 047150338, 1992), which is herein incorporated by reference.

5

10

15

20

25

30

5

15

20

25

30

35

Maximum stringency typically occurs at about Tm-5°C (5°C below the Tm of the probe); high stringency at about 5°C to 10°C below Tm; intermediate stringency at about 10°C to 20°C below Tm; and low stringency at about 20°C to 25°C below Tm. As will be understood by those of skill in the art, a maximum stringency hybridization are used to identify or detect identical polynucleotide sequences while an intermediate (or low) stringency hybridization are used to identify or detect similar or related polynucleotide sequences.

In a preferred aspect, the present invention covers nucleotide sequences that can hybridize to the nucleotide sequence of the present invention under stringent conditions (e.g. 65°C and 0.1xSSC {1xSSC = 0.15 M NaCl, 0.015 M Na<sub>3</sub> Citrate pH 7.0}).

Where the diagnostic/prognostic polynucleotide is double-stranded, both strands of the duplex, either individually or in combination, are encompassed by the present invention. Where the polynucleotide is single-stranded, it is to be understood that the complementary sequence of that polynucleotide is also included within the scope of the present invention.

Polynucleotides which are not 100% homologous to the sequences of the present invention but are useful in perfoming the diagnostic and/or prognostic assays of the invertion by virtue of their ability to selectively hybridize to the target gene transcript, or to encode an immunologically cross-reactive protein to the target protein, are obtained in a number of ways, such as, for example by probing DNA libraries made from a range of individuals, for example individuals from different populations. In particular, given that that changes in the expression of diagnostic/prognostic cancer-associated genes correlate with ovarian cancer, characterisation of variant sequences in individuals suffering from ovarian cancer is used to identify variations in the sequences of ovarian-cancer associated genes (and proteins) that are predictive of and/or causative of ovarian cancer.

Accordingly the present invention provides methods of identifying sequence variants that are associated with ovarian cancer which methods comprise determining all or part of the nucleotide sequence of a gene referred to in Tables 1-3, derived from an individual suffering from ovarian cancer and comparing the sequence to that of the corresponding wild-type gene.

In addition, other viral/bacterial, or cellular homologues particularly cellular homologues found in mammalian cells (e.g. rat, mouse, bovine and primate cells), are obtained and such

53

homologues and fragments thereof in general will be capable of selectively hybridizing to the sequences shown in the sequence listing herein. Such sequences are obtained by probing cDNA libraries made from or genomic DNA libraries from other animal species, and probing such libraries with probes comprising all or part of the sequences referred to in Tables 1-3 under conditions of medium to high stringency. Similar considerations apply to obtaining species homologues and allelic variants of the nucleotide sequences referred to in Tables 1-3.

Variants and strain/species homologues may also be obtained using degenerate PCR which will use primers designed to target sequences within the variants and homologues encoding conserved amino acid sequences within the sequences of the present invention. Conserved sequences are predicted, for example, by aligning the amino acid sequences from several variants/homologues. Sequence alignments are performed using computer software known in the art. For example the GCG Wisconsin PileUp program is widely used.

15

20

25

30

5

10

The primers used in degenerate PCR will contain one or more degenerate positions and will be used at stringency conditions lower than those used for cloning sequences with single sequence primers against known sequences.

Alternatively, such polynucleotides are obtained by site-directed mutagenesis of characterised sequences, such as the sequences referred to in Tables 1-3. This are useful where for example silent codon changes are required to sequences to optimise codon preferences for a particular host cell in which the polynucleotide sequences are being expressed. Other sequence changes are desired in order to introduce restriction enzyme recognition sites, or to alter the property or function of the polypeptides encoded by the polynucleotides.

Polynucleotides comprising a diagnostic/prognostic cancer-associated gene are used to produce a primer by standard derivatization means, e.g. a PCR primer, a primer for an alternative amplification reaction, a probe e.g. labelled with a detectable label by conventional means using radioactive or non-radioactive labels, or the polynucleotides are cloned into vectors. Such primers, probes and other fragments will be at least 15, preferably at least 20, for example at least 25, 30 or 40 nucleotides in length. Preferred fragments are less than 5000, 2000, 1000, 500 or 200 nucleotides in length.

Polynucleotides such as a DNA polynucleotides and probes according to the invention are produced by recombinant or synthetic means, including cloning by standard techniques.

In general, primers will be produced by synthetic means, involving a step wise manufacture of the desired nucleic acid sequence one nucleotide at a time. Techniques for accomplishing this using automated techniques are readily available in the art.

5

10

15

20

25

30

35

Longer polynucleotides will generally be produced using recombinant means, for example using PCR (polymerase chain reaction) cloning techniques. This will involve making a pair of primers (e.g. of about 15 to 30 nucleotides) flanking a region of the sequence which it is desired to clone, bringing the primers into contact with mRNA or cDNA obtained from an animal or human cell, performing a polymerase chain reaction under conditions which bring about amplification of the desired region, isolating the amplified fragment (e.g. by purifying the reaction mixture on an agarose gel) and recovering the amplified DNA. The primers are designed to contain suitable restriction enzyme recognition sites so that the amplified DNA are cloned into a suitable cloning vector

Polynucleotide probes or primers preferably carry a detectable label. Suitable labels include radioisotopes such as <sup>32</sup>P or <sup>35</sup>S, enzyme labels, or other protein labels such as biotin. Such labels are added to polynucleotides or primers and are detected using by techniques known in the art.

Polynucleotide probes or primers labeled or unlabeled are also used by a person skilled in the art in nucleic acid-based tests for detecting or sequencing diagnostic/prognostic cancer-associated gene.

Such tests for detecting generally comprise bringing a biological sample containing DNA or RNA into contact with a probe comprising a polynucleotide probe or primer under at least low stringency hybridization conditions and detecting any duplex formed between the probe/primer and nucleic acid in the sample. Such detection are achieved using techniques such as PCR or by immobilising the probe on a solid support, removing nucleic acid in the sample which is not hybridized to the probe, and then detecting nucleic acid which has hybridized to the probe. Alternatively, the sample nucleic acid are immobilised on a solid support, and the amount of probe bound to such a support are detected. Suitable assay methods of this and other formats are found in for example W089/03891 and W090/13667.

WO 2004/022778

Tests for sequencing nucleotides include bringing a biological sample containing target DNA or RNA into contact with a probe comprising a polynucleotide probe or primer under at least low stringency hybridization conditions and determining the sequence by, for example the Sanger dideoxy chain termination method (see Sambrook et al.).

Such a method generally comprises elongating, in the presence of suitable reagents, the primer by synthesis of a strand complementary to the target DNA or RNA and selectively terminating the elongation reaction at one or more of an A, C, G or T/U residue; allowing strand elongation and termination reaction to occur; separating out according to size the elongated products to determine the sequence of the nucleotides at which selective termination has occurred. Suitable reagents include a DNA polymerase enzyme, the deoxynucleotides dATP, dCTP, dGTP and dTTP, a buffer and ATP. Dideoxynucleotides are used for selective termination.

15

10

5

Tests for detecting or sequencing nucleotides in a biological sample are used as part of the methods of the invention for detecting ovarian cancer-associated transcripts and monitoring the efficacy of treatment of patients suffering from ovarian cancer as described in more detail herein.

20

25

30

35

The probes/primers may conveniently be packaged in the form of a test kit in a suitable container. In such kits the probe are bound to a solid support where the assay format for which the kit is designed requires such binding. The kit may also contain suitable reagents for treating the sample to be probed, hybridizing the probe to nucleic acid in the sample, control reagents, instructions, and the like.

Preferably, a kit of the invention comprises primers/probes suitable for selectively detecting a plurality of sequences, more preferably for selectively detecting a plurality of sequences that are listed in one or more of Tables 1-3 as having a P value of less than 0.05, more preferably a P value of less than 0.01. Similarly, a kit of the invention preferably comprises primers suitable for selectively detecting a plurality of sequences referred to in Table 1 or 2 or 3.

### Nucleic acid-based assay formats

As discussed in detail below, the status of expression of a cancer-associated gene in patient samples may be analyzed by a variety protocols that are well known in the art

including *in situ* hybridization, northern blotting techniques, RT-PCR analysis (such as, for example, performed on laser capture microdissected samples), and microarray technology, such as, for example, using tissue microarrays probed with nucleic acid probes, or nucleic acid microarrays (ie. RNA microarrays or amplified DNA microarrays) microarrays probed with nucleic acid probes. All such assay formats are encompassed by the present invention.

5

10

15

20

25

30

35

For high throughput screening of large numbers of samples, such as, for example, public health screening of subjects, particularly human subjects, having a higher risk of developing cancer, microarray technology is a preferred assay format.

In accordance with such high throughput formats, techniques for producing immobilised arrays of DNA molecules have been described in the art. Generally, most prior art methods describe how to synthesise single-stranded nucleic acid molecule arrays, using for example masking techniques to build up various permutations of sequences at the various discrete positions on the solid substrate. U.S. Patent No. 5,837,832, the contents of which are incorporated herein by reference, describes an improved method for producing DNA arrays immobilised to silicon substrates based on very large scale integration technology. In particular, U.S. Patent No. 5,837,832 describes a strategy called "tiling" to synthesize specific sets of probes at spatially-defined locations on a substrate which are used to produced the immobilised DNA arrays. U.S. Patent No. 5,837,832 also provides references for earlier techniques that may also be used.

Thus DNA are synthesised *in situ* on the surface of the substrate. However, DNA may also be printed directly onto the substrate using for example robotic devices equipped with either pins or piezo electric devices.

The plurality of polynucleotide sequences are typically immobilised onto or in discrete regions of a solid substrate. The substrate are porous to allow immobilisation within the substrate or substantially non-porous, in which case the library sequences are typically immobilised on the surface of the substrate. The solid substrate are made of any material to which polypeptides can bind, either directly or indirectly. Examples of suitable solid substrates include flat glass, silicon wafers, mica, ceramics and organic polymers such as plastics, including polystyrene and polymethacrylate. It may also be possible to use semi-permeable membranes such as nitrocellulose or nylon membranes, which are widely available. The semi-permeable membranes are mounted on a more robust solid

surface such as glass. The surfaces may optionally be coated with a layer of metal, such as gold, platinum or other transition metal. A particular example of a suitable solid substrate is the commercially available BIACore<sup>TM</sup> chip (Pharmacia Biosensors).

5 Preferably, the solid substrate is generally a material having a rigid or semi-rigid surface. In preferred embodiments, at least one surface of the substrate will be substantially flat, although in some embodiments it are desirable to physically separate synthesis regions for different polymers with, for example, raised regions or etched trenches. It is also preferred that the solid substrate is suitable for the high density application of DNA 10 sequences in discrete areas of typically from 50 to 100 µm, giving a density of 10000 to 40000 cm<sup>-2</sup>.

The solid substrate is conveniently divided up into sections. This are achieved by techniques such as photoetching, or by the application of hydrophobic inks, for example teflon-based inks (Cel-line, USA).

15

30

35

Discrete positions, in which each different member of the array is located may have any convenient shape, e.g., circular, rectangular, elliptical, wedge-shaped, etc.

20 Attachment of the polynucleotide sequences to the substrate are by covalent or noncovalent means. The plurality of polynucleotide sequences are attached to the substrate via a layer of molecules to which the sequences bind. For example, the sequences are labelled with biotin and the substrate coated with avidin and/or streptavidin. convenient feature of using biotinylated sequences is that the efficiency of coupling to the 25 solid substrate are determined easily. Since the library sequences may bind only poorly to some solid substrates, it is often necessary to provide a chemical interface between the solid substrate (such as in the case of glass) and the sequences. Examples of suitable chemical interfaces include hexaethylene glycol. Another example is the use of polylysine coated glass, the polylysine then being chemically modified using standard procedures to introduce an affinity ligand. Other methods for attaching molecules to the surfaces of solid substrate by the use of coupling agents are known in the art, see for example WO98/49557.

The complete DNA array is typically read at the same time by charged coupled device (CCD) camera or confocal imaging system. Alternatively, the DNA array are placed for detection in a suitable apparatus that can move in an x-y direction, such as a plate

58

reader. In this way, the change in characteristics for each discrete position are measured automatically by computer controlled movement of the array to place each discrete element in turn in line with the detection means.

The detection means are capable of interrogating each position in the library array optically or electrically. Examples of suitable detection means include CCD cameras or confocal imaging systems.

In a preferred embodiment, the level of expression of the cancer-associated gene in the test sample is determined by hybridizing a probe/primer to RNA in the test sample under at least low stringency hybridization conditions and detecting the hybridization using a detection means.

Similarly, the level of mRNA in the comparable sample from the healthy or normal individual is preferably determined by hybridizing a probe/primer to RNA in said comparable sample under at least low stringency hybridization conditions and detecting the hybridization using a detection means.

For the purposes of defining the level of stringency to be used in these diagnostic assays, a low stringency is defined herein as being a hybridization and/or a wash carried out in 6xSSC buffer, 0.1% (w/v) SDS at 28°C, or equivalent conditions. A moderate stringency is defined herein as being a hybridization and/or washing carried out in 2xSSC buffer, 0.1% (w/v) SDS at a temperature in the range 45°C to 65°C, or equivalent conditions. A high stringency is defined herein as being a hybridization and/or wash carried out in 0.1xSSC buffer, 0.1% (w/v) SDS, or lower salt concentration, and at a temperature of at least 65°C, or equivalent conditions. Reference herein to a particular level of stringency encompasses equivalent conditions using wash/hybridization solutions other than SSC known to those skilled in the art.

Generally, the stringency is increased by reducing the concentration of SSC buffer, and/or increasing the concentration of SDS and/or increasing the temperature of the hybridization and/or wash. Those skilled in the art will be aware that the conditions for hybridization and/or wash may vary depending upon the nature of the hybridization matrix used to support the sample RNA, or the type of hybridization probe used.

15

20

25

59

In general, the sample or the probe is immobilized on a solid matrix or surface (e.g., nitrocellulose). For high throughput screening, the sample or probe will generally comprise an array of nucleic acids on glass or other solid matrix, such as, for example, as described in WO 96/17958. Techniques for producing high density arrays are described, for example, by Fodor *et al.*, Science 767-773, 1991, and in U.S. Pat. No. 5,143,854. Typical protocols for other assay formats can be found, for example in Current Protocols In Molecular Biology, Unit 2 (Northern Blotting), Unit 4 (Southern Blotting), and Unit 18 (PCR Analysis), Frederick M. Ausubul *et al.* (ed)., 1995.

The detection means according to this aspect of the invention may be any nucleic acidbased detection means such as, for example, nucleic acid hybridization or amplification reaction (eg. PCR), a nucleic acid sequence-based amplification (NASBA) system, inverse polymerase chain reaction (iPCR), *in situ* polymerase chain reaction, or reverse transcription polymerase chain reaction (RT-PCR), amongst others.

15

20

The probe can be labelled with a reporter molecule capable of producing an identifiable signal (e.g., a radioisotope such as <sup>32</sup>P or <sup>35</sup>S, or a fluorescent or biotinylated molecule). According to this embodiment, those skilled in the art will be aware that the detection of sald reporter molecule provides for identification of the probe and that, following the hybridization reaction, the detection of the corresponding nucleotide sequences in the sample is facilitated. Additional probes can be used to confirm the assay results obtained using a single probe.

Wherein the detection means is an amplification reaction such as, for example, a polymerase chain reaction or a nucleic acid sequence-based amplification (NASBA) system or a variant thereof, one or more nucleic acid probes molecules of at least about 20 contiguous nucleotides in length is hybridized to mRNA encoding a cancer-associated protein, or alternatively, hybridized to cDNA or cRNA produced from said mRNA, and nucleic acid copies of the template are enzymically-amplified.

30

25

Those skilled in the art will be aware that there must be a sufficiently high percentage of nucleotide sequence identity between the probes and the RNA sequences in the sample template molecule for hybridization to occur. As stated previously, the stringency conditions can be selected to promote hybridization.

In one format, PCR provides for the hybridization of non-complementary probes to different strands of a double-stranded nucleic acid template molecule (ie. a DNA/RNA, RNA/RNA or DNA/DNA template), such that the hybridized probes are positioned to facilitate the 5'-to 3' synthesis of nucleic acid in the intervening region, under the control of a thermostable DNA polymerase enzyme. In accordance with this embodiment, one sense probe and one antisense probe as described herein would be used to amplify DNA from the hybrid RNA/DNA template or cDNA.

In the present context, the cDNA would generally be produced by reverse transcription of mRNA present in the sample being tested (ie. RT-PCR). RT-PCR is particularly useful when it is desirable to determine expression of a cancer-associated gene. It is also known to those skilled in the art to use mRNA/DNA hybrid molecules as a template for such amplification reactions, and, as a consequence, first strand cDNA synthesis is all that is required to be performed prior to the amplification reaction.

15

30

10

5

Variations of the embodiments described herein are described in detail by McPherson *et al.*, PCR: A Practical Approach. (series eds, D. Rickwood and B.D. Hames), IRL Press Limited, Oxford. pp1-253, 1991.

The amplification reaction detection means described *supra* can be further coupled to a classical hybridization reaction detection means to further enhance sensitivity and specificity of the inventive method, such as by hybridizing the amplified DNA with a probe which is different from any of the probes used in the amplification reaction.

Similarly, the hybridization reaction detection means described *supra* can be further coupled to a second hybridization step employing a probe which is different from the probe used in the first hybridization reaction.

The comparison to be performed in accordance with the present invention may be a visual comparison of the signal generated by the probe, or alternatively, a comparison of data integrated from the signal, such as, for example, data that have been corrected or normalized to allow for variation between samples. Such comparisons can be readily performed by those skilled in the art.

# **Polypeptides**

5

25

30

35

Cancer-associated polypeptides are encoded by cancer-associated genes. It will be understood that such polypeptides include those polypeptide and fragments thereof that are homologous to the polypeptides encoded by the nucleotide sequences referred to in Tables 1-3, which are obtained from any source, for example related viral/bacterial proteins, cellular homologues and synthetic peptides, as well as variants or derivatives thereof.

Thus, the present invention encompasses the use of variants, homologues or derivatives of the cancer-associated proteins descirbed in the accompanying Tables. In one embodiment, homologues are naturally occurring sequences, such as orthologues, tissue-specific isoforms and allelic variants.

In the context of the present invention, a homologous sequence is taken to include an amino acid sequence which is at least 60, 70, 80 or 90% identical, preferably at least 95 or 98% identical at the amino acid level over at least 20, 40, 60 or 80 amino acids with a sequence encoded by a nucleotide sequence referred to in any one of Tables 1-3. In particular, homology should typically be considered with respect to those regions of the sequence known to be essential for specific biological functions rather than non-essential neighbouring sequences.

Although amino acid homology can also be considered in terms of similarity (i.e. amino acid residues having similar chemical properties/functions), in the context of the present invention it is preferred to express homology in terms of sequence identity.

Homology comparisons are carried out as described above for nucleotide sequences with the appropriate modifications for amino acid sequences. For example when using the GCG Wisconsin Bestfit package (see below) the default gap penalty for amino acid sequences is -12 for a gap and -4 for each extension.

It should also be noted that where computer algorithms are used to align amino acid sequences, although the final % homology are measured in terms of identity, the alignment process itself is typically not based on an all-or-nothing pair comparison. Instead, a scaled similarity score matrix is generally used that assigns scores to each pairwise comparison based on chemical similarity or evolutionary distance. An example

of such a matrix commonly used is the BLOSUM62 matrix - the default matrix for the BLAST suite of programs. GCG Wisconsin programs generally use either the public default values or a custom symbol comparison table if supplied (see user manual for further details). It is preferred to use the public default values for the GCG package, or in the case of other software, the default matrix, such as BLOSUM62.

62

The terms "variant" or "derivative" in relation to the amino acid sequences of the present invention includes any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) amino acids from or to the sequence providing the resultant amino acid sequence preferably has biological activity, preferably having at least 25 to 50% of the activity as the polypeptides referred to in the sequence listings, more preferably at least substantially the same activity. Particular details of biological activity for each polypeptide are given in Tables 1-3.

Thus, the polypeptides referred to in Tables 1-3 and homologues thereof, are modified for use in the present invention. Typically, modifications are made that maintain the activity of the sequence. Thus, in one embodiment, amino acid substitutions are made, for example from 1, 2 or 3 to 10, 20 or 30 substitutions provided that the modified sequence retains at least about 25 to 50% of, or substantially the same activity. However, in an alternative preferred embodiment, modifications to the amino acid sequences of a cancer-associated protein are made intentionally to reduce the biological activity of the polypeptide. For example truncated polypeptides that remain capable of binding to target molecules but lack functional effector domains are useful as inhibitors of the biological activity of the full length molecule.

25

35

5

10

In general, preferably less than 20%, 10% or 5% of the amino acid residues of a variant or derivative are altered as compared with the corresponding region of the polypeptides referred to in Tables 1-3.

Amino acid substitutions may include the use of non-naturally occurring analogues, for example to increase blood plasma half-life of a therapeutically administered polypeptide (see below for further details on the production of peptide derivatives for use in therapy).

Conservative substitutions are made, for example according to the Table below. Amino acids in the same block in the second column and preferably in the same line in the third column are substituted for each other:

| ALIDUATIO | I Nam malan       |      |
|-----------|-------------------|------|
| ALIPHATIC | Non-polar         | GAP  |
|           |                   | ILV  |
|           | Polar - uncharged | CSTM |
|           |                   | NQ   |
|           | Polar - charged   | DE   |
|           |                   | KR   |
| AROMATIC  |                   | HFWY |

Cancer-associated proteins also include fragments of the above mentioned full length polypeptides and variants thereof, including fragments of the sequences referred to in Tables 1-3 and homologues thereof. Preferred fragments include those which include an epitope. Suitable fragments will be at least about 6 or 8, e.g. at least 10, 12, 15 or 20 amino acids in length. They may also be less than 200, 100 or 50 amino acids in length. Polypeptide fragments may contain one or more (e.g. 2, 3, 5, or 10) substitutions, deletions or insertions, including conserved substitutions. Where substitutions, deletion and/or insertions have been made, for example by means of recombinant technology, preferably less than 20%, 10% or 5% of the amino acid residues depicted in the sequence listings are altered.

Cancer-associated proteins are preferably in a substantially isolated form. It will be understood that the protein are mixed with carriers or diluents which will not interfere with the intended purpose of the protein and still be regarded as substantially isolated. A cancer-associated protein of the invention may also be in a substantially purified form, in which case it will generally comprise the protein in a preparation in which more than 90%, e.g. 95%, 98% or 99% pure as determined by SDS/PAGE or other art-recognized means for assessing protein purity.

### Protein Production

10

15

20

25

For producing full-length polypeptides or immunologically active derivatives thereof by recombinant means, a protein-encoding region comprising at least about 15 contiguous nucleotides of the protein-encoding region of a nucleic acid referred to in any one of Tables 1-3 is placed in operable connection with a promoter or other regulatory sequence capable of regulating expression in a cell-free system or cellular system.

WO 2004/022778

10

15

20

25

30

35

Reference herein to a "promoter" is to be taken in its broadest context and includes the transcriptional regulatory sequences of a classical genomic gene, including the TATA box which is required for accurate transcription initiation, with or without a CCAAT box sequence and additional regulatory elements (i.e., upstream activating sequences, enhancers and silencers) which alter gene expression in response to developmental and/or external stimuli, or in a tissue-specific manner. In the present context, the term "promoter" is also used to describe a recombinant, synthetic or fusion molecule, or derivative which confers, activates or enhances the expression of a nucleic acid molecule to which it is operably connected, and which encodes the polypeptide or peptide fragment. Preferred promoters can contain additional copies of one or more specific regulatory elements to further enhance expression and/or to alter the spatial expression and/or temporal expression of the said nucleic acid molecule.

Placing a nucleic acid molecule under the regulatory control of, i.e., "in operable connection with", a promoter sequence means positioning said molecule such that expression is controlled by the promoter sequence. Promoters are generally positioned 5' (upstream) to the coding sequence that they control. To construct heterologous promoter/structural gene combinations, it is generally preferred to position the promoter at a distance from the gene transcription start site that is approximately the same as the distance between that promoter and the gene it controls in its natural setting, i.e., the gene from which the promoter is derived. Furthermore, the regulatory elements comprising a promoter are usually positioned within 2 kb of the start site of transcription of the gene. As is known in the art, some variation in this distance can be accommodated without loss of promoter function. Similarly, the preferred positioning of a regulatory sequence element with respect to a heterologous gene to be placed under its control is defined by the positioning of the element in its natural setting, i.e., the genes from which it is derived. Again, as is known in the art, some variation in this distance can also occur.

The prerequisite for producing intact polypeptides and peptides in bacteria such as E. coli is the use of a strong promoter with an effective ribosome binding site. Typical promoters suitable for expression in bacterial cells such as E. coli include, but are not limited to, the lacz promoter, temperature-sensitive  $\lambda_L$  or  $\lambda_R$  promoters, T7 promoter or the IPTG-inducible tac promoter. A number of other vector systems for expressing the nucleic acid molecule of the invention in E. coli are well-known in the art and are described, for example, in Ausubel et al (ln: Current Protocols in Molecular Biology. Wiley Interscience, ISBN 047150338, 1987) or Sambrook et al (ln: Molecular cloning. A

WO 2004/022778 PCT/AU2003/001166

laboratory manual, second edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989). Numerous plasmids with suitable promoter sequences for expression in bacteria and efficient ribosome binding sites have been described, such as for example, pKC30 (λ<sub>L</sub>: Shimatake and Rosenberg, *Nature 292*, 128, 1981); pKK173-3 (*tac*: Amann and Brosius, *Gene 40*, 183, 1985), pET-3 (T7: Studier and Moffat, *J. Mol. Biol. 189*, 113, 1986); the pBAD/TOPO or pBAD/Thio-TOPO series of vectors containing an arabinose-inducible promoter (Invitrogen, Carlsbad, CA), the latter of which is designed to also produce fusion proteins with thioredoxin to enhance solubility of the expressed protein; the pFLEX series of expression vectors (Pfizer Inc., CT, USA); or the pQE series of expression vectors (Qiagen, CA), amongst others.

Typical promoters suitable for expression in viruses of eukaryotic cells and eukaryotic cells include the SV40 late promoter, SV40 early promoter and cytomegalovirus (CMV) promoter, CMV IE (cytomegalovirus immediate early) promoter amongst others. Preferred vectors for expression in mammalian cells (eg. 293, COS, CHO, 293T cells) include, but are not limited to, the pcDNA vector suite supplied by Invitrogen, in particular pcDNA 3.1 myc-His-tag comprising the CMV promoter and encoding a C-terminal 6xHis and MYC tag; and the retrovirus vector pSRαtkneo (Muller *et al.*, *Mol. Cell. Biol.*, *11*, 1785, 1991). The vector pcDNA 3.1 myc-His (Invitrogen) is particularly preferred for expressing a secreted form of a protein in 293T cells, wherein the expressed peptide or protein can be purified free of conspecific proteins, using standard affinity techniques that employ a Nickel column to bind the protein via the His tag.

A wide range of additional host/vector systems suitable for expressing polypeptides or immunological derivatives thereof are available publicly, and described, for example, in Sambrook *et al* (*In:* Molecular cloning. A laboratory manual, second edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989).

Means for introducing the isolated nucleic acid molecule or a gene construct comprising same into a cell for expression are well-known to those skilled in the art. The technique used for a given organism depends on the known successful techniques. Means for introducing recombinant DNA into animal cells include microinjection, transfection mediated by DEAE-dextran, transfection mediated by liposomes such as by using lipofectamine (Gibco, MD, USA) and/or cellfectin (Gibco, MD, USA), PEG-mediated DNA uptake, electroporation and microparticle bombardment such as by using DNA-coated tungsten or gold particles (Agracetus Inc., WI, USA) amongst others.

5

10

15

20

25

For producing mutants, nucleotide insertion derivatives of the protein-encoding region are produced by making 5' and 3' terminal fusions, or by making intra-sequence insertions of single or multiple nucleotides or nucleotide analogues. Insertion nucleotide sequence variants are produced by introducing one or more nucleotides or nucleotide analogues into a predetermined site in the nucleotide sequence of said sequence, although random insertion is also possible with suitable screening of the resulting product being performed. Deletion variants are produced by removing one or more nucleotides from the nucleotide sequence. Substitutional nucleotide variants are produced by substituting at least one nucleotide in the sequence with a different nucleotide or a nucleotide analogue in its place, with the immunologically active derivative encoded therefor having an identical amino acid sequence, or only a limited number of amino acid modifications that do not alter its antigenicity compared to the base peptide or its ability to bind antibodies prepared against the base peptide. Such mutant derivatives will preferably have at least 80% identity with the base amino acid sequence from which they are derived.

Preferred immunologically active derivatives of a full-length polypeptide encoded by a gene referred to in any one of Tables 1-3 will comprise at least about 5-10 contiguous amino acids of the full-length amino acid sequence, more preferably at least about 10-20 contiguous amino acids in length, and even more preferably 20-30 contiguous amino acids in length.

For the purposes of producing derivatives using standard peptide synthesis techniques, such as, for example, Fmoc chemistry, a length not exceeding about 30-50 amino acids in length is preferred, as longer peptides are difficult to produce at high efficiency. Longer peptide fragments are readily achieved using recombinant DNA techniques wherein the peptide is expressed in a cell-free or cellular expression system comprising nucleic acid encoding the desired peptide fragment.

30

It will be apparent to the skilled artisan that any sufficiently antigenic region of at least about 5-10 amino acid residues can be used to prepare antibodies that bind generally to the polypeptides listed in Tables 1-3.

An expressed protein or synthetic peptide is preferably produced as a recombinant fusion protein, such as for example, to aid in extraction and purification. To produce a fusion

polypeptide, the open reading frames are covalently linked in the same reading frame, such as, for example, using standard cloning procedures as described by Ausubel *et al.* (Current Protocols in Molecular Biology, Wiley Interscience, ISBN 047150338, 1992), and expressed under control of a promoter. Examples of fusion protein partners include glutathione-S-transferase (GST), FLAG, hexahistidine, GAL4 (DNA binding and/or transcriptional activation domains) and  $\beta$ -galactosidase. It may also be convenient to include a proteolytic cleavage site between the fusion protein partner and the protein sequence of interest to allow removal of fusion protein sequences. Preferably the fusion protein will not hinder the immune function of the target protein.

10

5

In a particularly preferred embodiment, polypeptides are produced substantially free of conspecific proteins. Such purity can be assessed by standard procedures, such as, for example, SDS/polyacrylamide gel electrophoresis, 2-dimensional gene electrophoresis, chromatography, amino acid composition analysis, or amino acid sequence analysis.

15

20

25

30

35

To produce isolated polypeptides or fragments, eg., for antibody production, standard protein purification techniques may be employed. For example, gel filtration, ion exchange chromatography, reverse phase chromatography, or affinity chromatography, or a combination of any one or more said procedures, may be used. High pressure and low pressure procedures can also be employed, such as, for example, FPLC, or HPLC. To isolate the full-length proteins or peptide fragments comprising more than about 50-100 amino acids in length, it is particularly preferred to express the polypeptide in a suitable cellular expression system in combination with a suitable affinity tag, such as a 6xHis tag, and to purify the polypeptide using an affinity step that bonds it via the tag (supra). Optionally, the tag may then be cleaved from the expressed polypeptide.

Alternatively, for short immunologically active derivatives of a full-length polypeptide, preferably those peptide fragments comprising less than about 50 amino acids in length, chemical synthesis techniques are conveniently used. As will be known to those skilled in the art, such techniques may also produce contaminating peptides that are shorter than the desired peptide, in which case the desired peptide is conveniently purified using reverse phase and/or ion exchange chromatography procedures at high pressure (ie. HPLC or FPLC).

WO 2004/022778

PCT/AU2003/001166

68

The invention also provides monoclonal or polyclonal antibodies that bind specifically to polypeptides of the invention or fragments thereof. Thus, the present invention further provides a process for the production of monoclonal or polyclonal antibodies to polypeptides of the invention.

5

10

15

The phrase "binds specifically" to a polypeptide means that the binding of the antibody to the protein or peptide is determinative of the presence of the protein, in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein at least two times the background and more typically more than 10 to 100 times background. Typically, antibodies of the invention bind to a protein of interest with a Kd of at least about 0.1 mM, more usually at least about 1  $\mu$ M, preferably at least about 0.1  $\mu$ M, and most preferably at least, 0.01  $\mu$ M.

Reference herein to antibody or antibodies includes whole polyclonal and monoclonal antibodies, and parts thereof, either alone or conjugated with other moieties. Antibody parts include Fab and F(ab)<sub>2</sub> fragments and single chain antibodies. The antibodies may be made *in vivo* in suitable laboratory animals, or, in the case of engineered antibodies (Single Chain Antibodies or SCABS, etc) using recombinant DNA techniques *in vitro*.

20

25

30

35

In accordance with this aspect of the invention, the antibodies may be produced for the purposes of immunizing the subject, in which case high titer or neutralizing antibodies that bind to a B cell epitope will be especially preferred. Suitable subjects for immunization will, of course, depend upon the immunizing antigen or antigenic B cell epitope. It is contemplated that the present invention will be broadly applicable to the immunization of a wide range of animals, such as, for example, farm animals (e.g. horses, cattle, sheep, pigs, goats, chickens, ducks, turkeys, and the like), laboratory animals (e.g. rats, mice, guinea pigs, rabbits), domestic animals (cats, dogs, birds and the like), feral or wild exotic animals (e.g. possums, cats, pigs, buffalo, wild dogs and the like) and humans.

Alternatively, the antibodies may be for commercial or diagnostic purposes, in which case the subject to whom the diagnostic/prognostic protein or immunogenic fragment or epitope thereof is administered will most likely be a laboratory or farm animal. A wide range of animal species are used for the production of antisera. Typically the animal used for production of antisera is a rabbit, a mouse, rat, hamster, guinea pig, goat,

5

10

15

20

25

30

35

sheep, pig, dog, horse, or chicken. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies. However, as will be known to those skilled in the art, larger amounts of immunogen are required to obtain high antibodies from large animals as opposed to smaller animals such as mice. In such cases, it will be desirable to isolate the antibody from the immunized animal.

Preferably, the antibody is a high titer antibody. By "high titer" means a sufficiently high titer to be suitable for use in diagnostic or therapeutic applications. As will be known in the art, there is some variation in what might be considered "high titer". For most applications a titer of at least about 10<sup>3</sup>-10<sup>4</sup> is preferred. More preferably, the antibody titer will be in the range from about 10<sup>4</sup> to about 10<sup>5</sup>, even more preferably in the range from about 10<sup>6</sup>.

More preferably, in the case of B cell epitopes from pathogens, viruses or bacteria, the antibody is a neutralizing antibody (i.e. it is capable of neutralizing the infectivity of the organism fro which the B cell epitope is derived).

To generate antibodies, the diagnostic/prognostic protein or immunogenic fragment or epitope thereof, optionally formulated with any suitable or desired carrier, adjuvant, BRM, or pharmaceutically acceptable excipient, is conveniently administered in the form of an injectable composition. Injection may be intranasal, intramuscular, sub-cutaneous, intravenous, intradermal, intraperitoneal, or by other known route. For intravenous injection, it is desirable to include one or more fluid and nutrient replenishers. Means for preparing and characterizing antibodies are well known in the art. (See, e.g., ANTIBODIES: A LABORATORY MANUAL, Cold Spring Harbor Laboratory, 1988, incorporated herein by reference).

The efficacy of the diagnostic/prognostic protein or immunogenic fragment or epitope thereof in producing an antibody is established by injecting an animal, for example, a mouse, rat, rabbit, guinea pig, dog, horse, cow, goat or pig, with a formulation comprising the diagnostic/prognostic protein or immunogenic fragment or epitope thereof, and then monitoring the immune response to the B cell epitope, as described in the Examples. Both primary and secondary immune responses are monitored. The antibody titer is determined using any conventional immunoassay, such as, for example, ELISA, or radio immunoassay.

. .70

The production of polyclonal antibodies may be monitored by sampling blood of the immunized animal at various points following immunization. A second, booster injection, may be given, if required to achieve a desired antibody titer. The process of boosting and titering is repeated until a suitable titer is achieved. When a desired level of immunogenicity is obtained, the immunized animal is bled and the serum isolated and stored, and/or the animal is used to generate monoclonal antibodies (Mabs).

For the production of monoclonal antibodies (Mabs) any one of a number of well-known techniques may be used, such as, for example, the procedure exemplified in US Patent No. 4,196,265, incorporated herein by reference.

For example, a suitable animal will be immunized with an effective amount of the diagnostic/prognostic protein or immunogenic fragment or epitope thereof under conditions sufficient to stimulate antibody producing cells. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep, or frog cells is also possible. The use of rats may provide certain advantages, but mice are preferred, with the BALB/c mouse being most preferred as the most routinely used animal and one that generally gives a higher percentage of stable fusions.

Following immunization, somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the MAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibody-producing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible. Often, a panel of animals will have been immunized and the spleen of animal with the highest antibody titer removed. Spleen lymphocytes are obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately  $5 \times 10^7$  to  $2 \times 10^8$  lymphocytes.

30

35

5

10

15

20

25

The B cells from the immunized animal are then fused with cells of an immortal myeloma cell, generally derived from the same species as the animal that was immunized with the diagnostic/prognostic protein or immunogenic fragment or epitope thereof. Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the

desired fused cells, or hybridomas. Any one of a number of myeloma cells may be used and these are known to those of skill in the art (e.g. murine P3-X63/Ag8, X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XX0; or rat R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6). A preferred murine myeloma cell is the NS-1 myeloma cell line (also termed P3-NS-1-Ag4-1), which is readily available from the NIGMS Human Genetic Mutant Cell Repository under Accession No. GM3573. Alternatively, a murine myeloma SP2/0 non-producer cell line that is 8-azaguanine-resistant is used.

To generate hybrids of antibody-producing spleen or lymph node cells and myeloma cells, somatic cells are mixed with myeloma cells in a proportion between about 20:1 to about 1:1, respectively, in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes. Fusion methods using Sendai virus have been described by Kohler and Milstein, *Nature* 256, 495-497, 1975; and Kohler and Milstein, *Eur. J. Immunol.* 6, 511-519, 1976. Methods using polyethylene glycol (PEG), such as 37% (v/v) PEG, are described in detail by Gefter *et al., Somatic Cell Genet.* 3, 231-236, 1977. The use of electrically induced fusion methods is also appropriate.

Hybrids are amplified by culture in a selective medium comprising an agent that blocks the *de novo* synthesis of nucleotides in the tissue culture media. Exemplary and preferred agents are aminopterin, methotrexate and azaserine. Aminopterin and methotrexate block de novo synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis. Where aminopterin or methotrexate is used, the media is supplemented with hypoxanthine and thymidine as a source of nucleotides (HAT medium). Where azaserine is used, the media is supplemented with hypoxanthine.

The preferred selection medium is HAT, because only those hybridomas capable of operating nucleotide salvage pathways are able to survive in HAT medium, whereas myeloma cells are defective in key enzymes of the salvage pathway, (e.g., hypoxanthine phosphoribosyl transferase or HPRT), and they cannot survive. B cells can operate this salvage pathway, but they have a limited life span in culture and generally die within about two weeks. Accordingly, the only cells that can survive in the selective media are those hybrids formed from myeloma and B cells.

72

The amplified hybridomas are subjected to a functional selection for antibody specificity and/or titer, such as, for example, by immunoassay (e.g. radioimmunoassay, enzyme immunoassay, cytotoxicity assay, plaque assay, dot immunobinding assay, and the like).

5 The selected hybridomas are serially diluted and cloned into individual antibodyproducing cell lines, which clones can then be propagated indefinitely to provide MAbs. The cell lines may be exploited for MAb production in two basic ways. A sample of the hybridoma is injected, usually in the peritoneal cavity, into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion. 10 The injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid. The body fluids of the animal, such as serum or ascites fluid, can then be tapped to provide MAbs in high concentration. The individual cell lines could also be cultured in vitro, where the MAbs are naturally secreted into the culture medium from which they are readily obtained in high concentrations. MAbs produced by either means may be further purified, if desired, using filtration, 15 centrifugation and various chromatographic methods such as HPLC or affinity chromatography.

Monoclonal antibodies of the present invention also include anti-idiotypic antibodies produced by methods well-known in the art. Monoclonal antibodies according to the present invention also may be monoclonal heteroconjugates, (i.e., hybrids of two or more antibody molecules). In another embodiment, monoclonal antibodies according to the invention are chimeric monoclonal antibodies. In one approach, the chimeric monoclonal antibody is engineered by cloning recombinant DNA containing the promoter, leader, and variable-region sequences from a mouse anti-PSA producing cell and the constant-region exons from a human antibody gene. The antibody encoded by such a recombinant gene is a mouse-human chimera. Its antibody specificity is determined by the variable region derived from mouse sequences. Its isotype, which is determined by the constant region, is derived from human DNA.

30

35

20

25

In another embodiment, the monoclonal antibody according to the present invention is a "humanized" monoclonal antibody, produced by any one of a number of techniques well-known in the art. That is, mouse complementary determining regions ("CDRs") are transferred from heavy and light V-chains of the mouse Ig into a human V-domain, followed by the replacement of some human residues in the framework regions of their

murine counterparts. "Humanized" monoclonal antibodies in accordance with this invention are especially suitable for use *in vivo* in diagnostic and therapeutic methods.

As stated above, the monoclonal antibodies and fragments thereof according to this invention are multiplied according to *in vitro* and *in vivo* methods well-known in the art. Multiplication *in vitro* is carried out in suitable culture media such as Dulbecco's modified Eagle medium or RPMI 1640 medium, optionally replenished by a mammalian serum such as fetal calf serum or trace elements and growth-sustaining supplements, e.g., feeder cells, such as normal mouse peritoneal exudate cells, spleen cells, bone marrow macrophages or the like. In vitro production provides relatively pure antibody preparations and allows scale-up to give large amounts of the desired antibodies. Techniques for large scale hybridoma cultivation under tissue culture conditions are known in the art and include homogenous suspension culture, (e.g., in an airlift reactor or in a continuous stirrer reactor or immobilized or entrapped cell culture).

15

20

25

10

5

Large amounts of the monoclonal antibody of the present invention also may be obtained by multiplying hybridoma cells *in vivo*. Cell clones are injected into mammals which are histocompatible with the parent cells, (e.g., syngeneic mice, to cause growth of antibody-producing tumors. Optionally, the animals are primed with a hydrocarbon, especially oils such as Pristane (tetramethylpentadecane) prior to injection.

In accordance with the present invention, fragments of the monoclonal antibody of the invention are obtained from monoclonal antibodies produced as described above, by methods which include digestion with enzymes such as pepsin or papain and/or cleavage of disulfide bonds by chemical reduction. Alternatively, monoclonal antibody fragments encompassed by the present invention are synthesized using an automated peptide synthesizer, or they may be produced manually using techniques well known in the art.

The monoclonal conjugates of the present invention are prepared by methods known in the art, e.g., by reacting a monoclonal antibody prepared as described above with, for instance, an enzyme in the presence of a coupling agent such as glutaraldehyde or periodate. Conjugates with fluorescein markers are prepared in the presence of these coupling agents, or by reaction with an isothiocyanate. Conjugates with metal chelates are similarly produced. Other moieties to which antibodies may be conjugated include

radionuclides such as, for example, <sup>3</sup>H, <sup>125</sup>I, .<sup>32</sup>P, .<sup>35</sup>S, <sup>14</sup>C, <sup>51</sup>Cr, <sup>35</sup>Cl, <sup>57</sup>Co, <sup>58</sup>Co, <sup>59</sup>Fe, <sup>75</sup>Se, and <sup>152</sup>Eu.

Radioactively labeled monoclonal antibodies of the present invention are produced according to well-known methods in the art. For instance, monoclonal antibodies are iodinated by contact with sodium or potassium iodide and a chemical oxidizing agent such as sodium hypochlorite, or an enzymatic oxidizing agent, such as lactoperoxidase. Monoclonal antibodies according to the invention may be labeled with technetium<sup>99</sup> by ligand exchange process, for example, by reducing pertechnetate with stannous solution, chelating the reduced technetium onto a Sephadex column and applying the antibody to this column or by direct labeling techniques, (e.g., by incubating pertechnate, a reducing agent such as SNCl<sub>2</sub>, a buffer solution such as sodium-potassium phthalate solution, and the antibody).

Any immunoassay may be used to monitor antibody production by the diagnostic/prognostic protein or immunogenic fragment or epitope thereof. Immunoassays, in their most simple and direct sense, are binding assays. Certain preferred immunoassays are the various types of enzyme linked immunosorbent assays (ELISAs) and radioimmunoassays (RIA) known in the art. Immunohistochemical detection using tissue sections is also particularly useful. However, it will be readily appreciated that detection is not limited to such techniques, and Western blotting, dot blotting, FACS analyses, and the like may also be used.

Most preferably, the assay will be capable of generating quantitative results.

25

30

35

5

10

For example, antibodies are tested in simple competition assays. A known antibody preparation that binds to the B cell epitope and the test antibody are incubated with an antigen composition comprising the B cell epitope, preferably in the context of the native antigen. "Antigen composition" as used herein means any composition that contains some version of the B cell epitope in an accessible form. Antigen-coated wells of an ELISA plate are particularly preferred. In one embodiment, one would pre-mix the known antibodies with varying amounts of the test antibodies (e.g., 1:1, 1:10 and 1:100) for a period of time prior to applying to the antigen composition. If one of the known antibodies is labeled, direct detection of the label bound to the antigen is possible; comparison to an unmixed sample assay will determine competition by the test antibody and, hence, cross-

5

10

15

20

30

35

reactivity. Alternatively, using secondary antibodies specific for either the known or test antibody, one will be able to determine competition.

An antibody that binds to the antigen composition will be able to effectively compete for binding of the known antibody and thus will significantly reduce binding of the latter. The reactivity of the known antibodies in the absence of any test antibody is the control. A significant reduction in reactivity in the presence of a test antibody is indicative of a test antibody that binds to the B cell epitope (i.e., it cross-reacts with the known antibody).

In one exemplary ELISA, the antibodies against the diagnostic/prognostic protein or immunogenic fragment or B cell epitope are immobilized onto a selected surface exhibiting protein affinity, such as a well in a polystyrene microtiter plate. Then, a composition containing a peptide comprising the B cell epitope is added to the wells. After binding and washing to remove non-specifically bound immune complexes, the bound epitope may be detected. Detection is generally achieved by the addition of a second antibody that is known to bind to the B cell epitope and is linked to a detectable label. This type of ELISA is a simple "sandwich ELISA". Detection may also be achieved by the addition of said second antibody, followed by the addition of a third antibody that has binding affinity for the second antibody, with the third antibody being linked to a detectable label.

Antibodies of the invention may be bound to a solid support and/or packaged into kits in a suitable container along with suitable reagents, controls, instructions and the like.

## 25 Immunoassay formats

In one embodiment, a cancer-associated protein or an immunogenic fragment or epitope thereof is detected in a patient sample, wherein the level of the protein or immunogenic fragment or epitope in the sample is indicative of ovarian cancer or disease recurrence or an indicator of poor survival. Preferably, the method comprises contacting a biological sample derived from the subject with an antibody capable of binding to a cancer-associated protein or an immunogenic fragment or epitope thereof, and detecting the formation of an antigen-antibody complex.

In another embodiment, an antibody against a cancer-associated protein or epitope thereof is detected in a patient sample, wherein the level of the antibody in the sample is indicative of ovarian cancer or disease recurrence or an indicator of poor survival.

Preferably, the method comprises contacting a biological sample derived from the subject with a cancer-associated protein or an antigenic fragment eg., a B cell epitope or other immunogenic fragment thereof, and detecting the formation of an antigen-antibody complex.

5

10

15

20

The diagnostic assays of the invention are useful for determining the progression of ovarian cancer or a metastasis thereof in a subject. In accordance with these prognostic applications of the invention, the level of a cancer-associated protein or an immunogenic fragment or epitope thereof in a biological sample is correlated with the disease state eg., as determined by clinical symptoms or biochemical tests (eg., CA125 levels).

Accordingly, a further embodiment of the invention provides a method for detecting a cancer cell in a subject, said method comprising:

- determining the level of a cancer-associate protein in a test sample from said subject; and
- (ii) comparing the level determined at (i) to the level of said cancer-associated protein in a comparable sample from a healthy or normal individual,

wherein a level of said cancer-associate protein at (i) that is modified in the test sample relative to the comparable sample from the normal or healthy individual is indicative of the presence of a cancer cell in said subject.

In one embodiment of the diagnostic/prognostic methods described herein, the biological sample is obtained previously from the subject. In accordance with such an embodiment, the prognostic or diagnostic method is performed ex vivo.

25

In yet another embodiment, the subject diagnostic/prognostic methods further comprise processing the sample from the subject to produce a derivative or extract that comprises the analyte.

Preferred detection systems contemplated herein include any known assay for detecting proteins or antibodies in a biological sample isolated from a human subject, such as, for example, SDS/PAGE, isoelectric focussing, 2-dimensional gel electrophoresis comprising SDS/PAGE and isoelectric focussing, an immunoassay, a detection based system using an antibody or non-antibody ligand of the protein, such as, for example, a small molecule (e.g. a chemical compound, agonist, antagonist, allosteric modulator, competitive inhibitor, or non-competitive inhibitor, of the protein). In accordance with

5

25

30

35

these embodiments, the antibody or small molecule may be used in any standard solid phase or solution phase assay format amenable to the detection of proteins. Optical or fluorescent detection, such as, for example, using mass spectrometry, MALDI-TOF, biosensor technology, evanescent fiber optics, or fluorescence resonance energy transfer, is clearly encompassed by the present invention. Assay systems suitable for use in high throughput screening of mass samples, particularly a high throughput spectroscopy resonance method (e.g. MALDI-TOF, electrospray MS or nano-electrospray MS), are particularly contemplated.

Immunoassay formats are particularly preferred, eg., selected from the group consisting of, an immunoblot, a Western blot, a dot blot, an enzyme linked immunosorbent assay (ELISA), radioimmunoassay (RIA), enzyme immunoassay. Modified immunoassays utilizing fluorescence resonance energy transfer (FRET), isotope-coded affinity tags (ICAT), matrix-assisted laser desorption/ionization time of flight (MALDI-TOF), electrospray ionization (ESI), biosensor technology, evanescent fiber-optics technology or protein chip technology are also useful.

Preferably, the assay is a semi-quantitative assay or quantitative assay.

Standard solid phase ELISA formats are particularly useful in determining the concentration of a protein or antibody from a variety of patient samples.

In one form such as an assay involves immobilising a biological sample comprising antibodies against the cancer-associated protein or epitope, or alternatively an ovarian cancer-associated protein or an immunogenic fragment thereof, onto a solid matrix, such as, for example a polystyrene or polycarbonate microwell or dipstick, a membrane, or a glass support (e.g. a glass slide).

In the case of an antigen-based assay, an antibody that specifically binds an ovarian cancer-associated protein is brought into direct contact with the immobilised biological sample, and forms a direct bond with any of its target protein present in said sample. For an antibody-based assay, an immobilized ovarian cancer-associated protein or an immunogenic fragment or epitope thereof is contacted with the sample. The added antibody or protein in solution is generally labelled with a detectable reporter molecule, such as for example, a fluorescent label (e.g. FITC or Texas Red) or an enzyme (e.g. horseradish peroxidase (HRP)), alkaline phosphatase (AP) or β-galactosidase.

Alternatively, or in addition, a second labelled antibody can be used that binds to the first antibody or to the isolated/recombinant antigen. Following washing to remove any unbound antibody or antigen, as appropriate, the label is detected either directly, in the case of a fluorescent label, or through the addition of a substrate, such as for example hydrogen peroxide, TMB, or toluidine, or 5-bromo-4-chloro-3-indol-beta-D-

78

PCT/AU2003/001166

Such ELISA based systems are particularly suitable for quantification of the amount of a protein or antibody in a sample, such as, for example, by calibrating the detection system against known amounts of a standard.

In another form, an ELISA consists of immobilizing an antibody that specifically binds an ovarian cancer-associated protein on a solid matrix, such as, for example, a membrane, a polystyrene or polycarbonate microwell, a polystyrene or polycarbonate dipstick or a glass support. A patient sample is then brought into physical relation with said antibody, and the antigen in the sample is bound or 'captured'. The bound protein can then be detected using a labelled antibody. For example if the protein is captured from a human sample, an anti-human antibody is used to detect the captured protein. Alternatively, a third labelled antibody can be used that binds the second (detecting) antibody.

20

25

30

35

5

10

15

galaotopyranoside (x-gal).

It will be apparent to the skilled person that the assay formats described herein are amenable to high throughput formats, such as, for example automation of screening processes, or a microarray format as described in Mendoza *et al*, <u>Biotechniques</u> 27(4): 778-788, 1999. Furthermore, variations of the above described assay will be apparent to those skilled in the art, such as, for example, a competitive ELISA.

Alternatively, the presence of antibodies against the cancer-associate protein, or alternatively an oarian cancer-associated protein or an immunogenic fragment thereof, is detected using a radioimmunoassay (RIA). The basic principle of the assay is the use of a radiolabelled antibody or antigen to detect antibody antigen interactions. For example, an antibody that specifically binds to an ovarian cancer-associated protein can be bound to a solid support and a biological sample brought into direct contact with said antibody. To detect the bound antigen, an isolated and/or recombinant form of the antigen is radiolabelled is brought into contact with the same antibody. Following washing the amount of bound radioactivity is detected. As any antigen in the biological sample inhibits binding of the radiolabelled antigen the amount of radioactivity detected is inversely

79

proportional to the amount of antigen in the sample. Such an assay may be quantitated by using a standard curve using increasing known concentrations of the isolated antigen.

As will be apparent to the skilled artisan, such an assay may be modified to use any reporter molecule, such as, for example, an enzyme or a fluorescent molecule, in place of a radioactive label.

5

10

15

25

30

35

Western blotting is also useful for detecting an ovarian cancer-associated protein or an immunogenic fragment thereof. In such an assay protein from a biological sample is separated using sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (SDS-PAGE) using techniques well known in the art and described in, for example, Scopes (*In:* Protein Purification: Principles and Practice, Third Edition, Springer Verlag, 1994). Separated proteins are then transferred to a solid support, such as, for example, a membrane or more specifically PVDF membrane, using methods well known in the art, for example, electrotransfer. This membrane may then be blocked and probed with a labelled antibody or ligand that specifically binds an ovarian cancer-associated protein. Alternatively, a labelled secondary, or even tertiary, antibody or ligand can be used to detect the binding of a specific primary antibody.

High-throughput methods for detecting the presence or absence of antibodies, or alternatively ovarian cancer-associated protein or an immunogenic fragment thereof are particularly preferred.

In one embodiment, MALDI-TOF is used for the rapid identification of a protein. Accordingly, there is no need to detect the proteins of interest using an antibody or ligand that specifically binds to the protein of interest. Rather, proteins from a biological sample are separated using gel electrophoresis using methods well known in the art and those proteins at approximately the correct molecular weight and/or isoelectric point are analysed using MALDI-TOF to determine the presence or absence of a protein of interest.

Alternatively, MALDI or ESI or a combination of approaches is used to determine the concentration of a particular protein in a biological sample, such as, for example sputum. Such proteins are preferably well characterised previously with regard to parameters such as molecular weight and isoelectric point.

5

10

15

30

35

Biosensor devices generally employ an electrode surface in combination with current or impedance measuring elements to be integrated into a device in combination with the assay substrate (such as that described in U.S. Patent No. 5,567,301). An antibody or ligand that specifically binds to a protein of interest is preferably incorporated onto the surface of a biosensor device and a biological sample isolated from a patient (for example sputum that has been solubilised using the methods described herein) contacted to said device. A change in the detected current or impedance by the biosensor device indicates protein binding to said antibody or ligand. Some forms of biosensors known in the art also rely on surface plasmon resonance to detect protein interactions, whereby a change in the surface plasmon resonance surface of reflection is indicative of a protein binding to a ligand or antibody (U.S. Patent No. 5,485,277 and 5,492,840).

Biosensors are of particular use in high throughput analysis due to the ease of adapting such systems to micro- or nano-scales. Furthermore, such systems are conveniently adapted to incorporate several detection reagents, allowing for multiplexing of diagnostic reagents in a single biosensor unit. This permits the simultaneous detection of several epitopes in a small amount of body fluids.

Evanescent biosensors are also preferred as they do not require the pretreatment of a biological sample prior to detection of a protein of interest. An evanescent biosensor generally relies upon light of a predetermined wavelength interacting with a fluorescent molecule, such as for example, a fluorescent antibody attached near the probe's surface, to emit fluorescence at a different wavelength upon binding of the diagnostic protein to the antibody or ligand.

To produce protein chips, the proteins, peptides, polypeptides, antibodies or ligands that are able to bind specific antibodies or proteins of interest are bound to a solid support such as for example glass, polycarbonate, polytetrafluoroethylene, polystyrene, silicon oxide, metal or silicon nitride. This immobilization is either direct (e.g. by covalent linkage, such as, for example, Schiff's base formation, disulfide linkage, or amide or urea bond formation) or indirect. Methods of generating a protein chip are known in the art and are described in for example U.S. Patent Application No. 20020136821, 20020192654, 20020102617 and U.S. Patent No. 6,391,625. In order to bind a protein to a solid support it is often necessary to treat the solid support so as to create chemically reactive groups on the surface, such as, for example, with an aldehyde-containing silane reagent.

Alternatively, an antibody or ligand may be captured on a microfabricated polyacrylamide gel pad and accelerated into the gel using microelectrophoresis as described in, Arenkov et al. Anal. Biochem. 278:123-131, 2000.

A protein chip is preferably generated such that several proteins, ligands or antibodies are arrayed on said chip. This format permits the simultaneous screening for the presence of several proteins in a sample.

Alternatively, a protein chip may comprise only one protein, ligand or antibody, and be used to screen one or more patient samples for the presence of one polypeptide of interest. Such a chip may also be used to simultaneously screen an array of patient samples for a polypeptide of interest.

Preferably, a sample to be analysed using a protein chip is attached to a reporter molecule, such as, for example, a fluorescent molecule, a radioactive molecule, an enzyme, or an antibody that is detectable using methods well known in the art. Accordingly, by contacting a protein chip with a labelled sample and subsequent washing to remove any unbound proteins the presence of a bound protein is detected using methods well known in the art, such as, for example using a DNA microarray reader.

20

25

30

35

10

15

Alternatively, biomolecular interaction analysis-mass spectrometry (BIA-MS) is used to rapidly detect and characterise a protein present in complex biological samples at the low- to sub-fmole level (Nelson et al. Electrophoresis 21: 1155-1163, 2000). One technique useful in the analysis of a protein chip is surface enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) technology to characterise a protein bound to the protein chip. Alternatively, the protein chip is analysed using ESI as described in U.S. Patent Application 20020139751.

As will be apparent to the skilled artisan, protein chips are particularly amenable to multiplexing of detection reagents. Accordingly, several antibodies or ligands each able to specifically bind a different peptide or protein may be bound to different regions of said protein chip. Analysis of a biological sample using said chip then permits the detecting of multiple proteins of interest, or multiple B cell epitopes of the ovarian cancer-associated protein. Multiplexing of diagnostic and prognostic markers is particularly contemplated in the present invention.

In a further embodiment, the samples are analysed using ICAT, essentially as described in US Patent Application No. 20020076739. This system relies upon the labelling of a protein sample from one source (i.e. a healthy individual) with a reagent and the labelling of a protein sample from another source (i.e. a tuberculosis patient) with a second reagent that is chemically identical to the first reagent, but differs in mass due to isotope composition. It is preferable that the first and second reagents also comprise a biotin molecule. Equal concentrations of the two samples are then mixed, and peptides recovered by avidin affinity chromatography. Samples are then analysed using mass spectrometry. Any difference in peak heights between the heavy and light peptide ions directly correlates with a difference in protein abundance in a biological sample. The identity of such proteins may then be determined using a method well known in the art, such as, for example MALDI-TOF, or ESI.

As will be apparent to those skilled in the art a diagnostic or prognostic assay described herein may be a multiplexed assay. As used herein the term "multiplex", shall be understood not only to mean the detection of two or more diagnostic or prognostic markers in a single sample simultaneously, but also to encompass consecutive detection of two or more diagnostic or prognostic markers in a single sample, simultaneous detection of two or more diagnostic or prognostic markers in distinct but matched samples, and consecutive detection of two or more diagnostic or prognostic markers in distinct but matched samples. As used herein the term "matched samples" shall be understood to mean two or more samples derived from the same initial biological sample, or two or more biological samples isolated at the same point in time.

Accordingly, a multiplexed assay may comprise an assay that detects several antibodies and/or epitopes in the same reaction and simultaneously, or alternatively, it may detect other one or more antigens/antibodies in addition to one or more antibodies and/or epitopes. As will be apparent to the skilled artisan, if such an assay is antibody or ligand based, both of these antibodies must function under the same conditions.

30

35

5

10

15

20

25

## Diagnostic assay kits

A further aspect of the present invention provides a kit for detecting *M. tuberculosis* infection in a biological sample. In one embodiment, the kit comprises:

- (i) one or more isolated antibodies that bind to an ovarian cancer-associated protein or an immunogenic fragment or epitope thereof; and
- (ii) means for detecting the formation of an antigen-antibody complex.

In an alternative embodiment, the kit comprises:

- (i) an isolated or recombinant ovarian cancer-associated protein or an immunogenic fragment or epitope thereof; and
- (ii) means for detecting the formation of an antigen-antibody complex.

Optionally, the kit further comprises means for the detection of the binding of an antibody, fragment thereof or a ligand to an ovarian cancer-associated protein. Such means include a reporter molecule such as, for example, an enzyme (such as horseradish peroxidase or alkaline phosphatase), a substrate, a cofactor, an inhibitor, a dye, a radionucleotide, a luminescent group, a fluorescent group, biotin or a colloidal particle, such as colloidal gold or selenium. Preferably such a reporter molecule is directly linked to the antibody or ligand.

In yet another embodiment, a kit may additionally comprise a reference sample. Such a reference sample.

In another embodiment, a reference sample comprises a peptide that is detected by an antibody or a ligand. Preferably, the peptide is of known concentration. Such a peptide is of particular use as a standard. Accordingly various known concentrations of such a peptide may be detected using a prognostic or diagnostic assay described herein.

In yet another embodiment, a kit comprises means for protein isolation (Scopes (In: Protein Purification: Principles and Practice, Third Edition, Springer Verlag, 1994).

25

30

35

20

5

10

## **Bioinformatics**

The ability to identify genes that are over or under expressed in ovarian cancer can additionally provide high-resolution, high-sensitivity datasets which are used in the areas of diagnostics, therapeutics, drug development, pharmacogenetics, protein structure, biosensor development, and other related areas. For example, the expression profiles are used in diagnostic or prognostic evaluation of patients with ovarian cancer. Or as another example, subcellular toxicological information are generated to better direct drug structure and activity correlation (see Anderson, *Pharmaceutical Proteomics: Targets, Mechanism, and Function,* paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical

5

10

15

20

25

30

35

exposures and likely tolerable exposure thresholds (see U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

Thus, in another embodiment, the present invention provides a database that includes at least one set of assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database are in substantially any form in which data are maintained and transmitted, but is preferably an electronic database. The electronic database of the invention are maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases are assembled for any assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample undergoing ovarian cancer, i.e., the identification of ovarian cancer-associated sequences described herein, provide an abundance of information, which are correlated with pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, gene-disease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, prior data processing using high-speed computers is utilized.

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for

5

10

30

35

making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multi-dimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which are viewed as a tree structure or as the merger of two or more such tree structures.

See also Mount et al., Bioinformatics (2001); Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (Durbin et al., eds., 1999); Bioiraformatics: A Practical Guide to the Analysis of Genes and Proteins (Baxevanis & Oeullette eds., 1998)); Rashidi & Buehler, Bioinformatics: Basic Applications in Biological Science and Medicine (1999); Introduction to Computational Molecular Biology (Setubal et al., eds 1997); Bioinformatics: Methods and Protocols (Misener & Krawetz, eds, 2000); Bioinformatics: Sequence, Structure, and Databanks: A Practical Approach (Higgins & Taylor, eds., 2000); Brown, Bioinfor7natics: A Biologist's Guide to Biocomputing and the Internet (2001); Han & Kamber, Data Mining: Concepts and Techniques (2000); and Waterman, Introduction to Computational Biology: Maps, Sequences, and Genomes (1995).

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, e.g., with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for prostate cancer. In another variation, the assay records cross-tabulate one or more of the following parameters for

each target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or characteristic separation coordinate (e.g., electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which are on the transistor). In one embodiment, the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerised comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., BLAST, FASTA, TFASTA, GAP, BESTFIT — see above) and/or the comparison are of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/.98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

5

10

25

30.

35

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or IOBaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modern, ISDN terminal adapter, DSL, cable modern, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

The target data or record and the computer program are transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor are a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC, MIPS 4400, MIPS 10000, VAX, etc.); a program are a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file are an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device are a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by the methods of the invention, which are stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

Transgenic Animals Expressing Ovarian Cancer-associated proteins and "Knock-Out" Animals

The present invention also contemplates transgenic animals which are transgenic by virtue of comprising a polynucleotide of the invention, i.e. animals transformed with a cancer-associated gene of the invention. Suitable animals are generally from the phylum chordata. Chordates includes vertebrate groups such as mammals, birds, reptiles and amphibians. Particular examples of mammals include non-human primates, cats, dogs, ungulates such as cows, goats, pigs, sheep and horses and rodents such as mice, rats, gerbils and hamsters. Transgenic animals within the meaning of the present invention are non-human animals and the production of transgenic humans is specifically excluded.

20

5

10

15

Techniques for producing transgenic animals are well known in the art. A useful general textbook on this subject is Houdebine, Transgenic animals – Generation and Use (Harwood Academic, 1997) – an extensive review of the techniques used to generate transgenic animals from fish to mice and cows.

25

30

35

Advances in technologies for embryo micromanipulation now permit introduction of heterologous DNA into, for example, fertilized mammalian ova. For instance, totipotent or pluripotent stem cells are transformed by microinjection, calcium phosphate mediated precipitation, liposome fusion, retroviral infection or other means, the transformed cells are then introduced into the embryo, and the embryo then develops into a transgenic animal. In a highly preferred method, developing embryos are infected with a retrovirus containing the desired DNA, and transgenic animals produced from the infected embryo. In a most preferred method, however, the appropriate DNAs are coinjected into the pronucleus or cytoplasm of embryos, preferably at the single cell stage, and the embryos allowed to develop into mature transgenic animals. Those techniques as well known. See reviews of standard laboratory procedures for microinjection of heterologous DNAs into

89

mammalian fertilized ova, including Hogan *et al.*, Manipulating the Mouse Embryo, (Cold Spring Harbor Press 1986); Krimpenfort *et al.*, Bio/Technology 9:844 (1991); Palmiter *et al.*, Cell, 41: 343 (1985); Kraemer *et al.*, Genetic manipulation of the Mammalian Embryo, (Cold Spring Harbor Laboratory Press 1985); Hammer *et al.*, Nature, 315: 680 (1985); Wagner *et al.*, U.S. Pat. No. 5,175,385; Krimpenfort *et al.*, U.S. Pat. No. 5,175,384, the respective contents of which are incorporated herein by reference

Another method used to produce a transgenic animal involves microinjecting a nucleic acid into pro-nuclear stage eggs by standard methods. Injected eggs are then cultured before transfer into the oviducts of pseudopregnant recipients.

Transgenic animals may also be produced by nuclear transfer technology as described in Schnieke, A.E. *et al.*, 1997, Science, 278: 2130 and Cibelli, J.B. *et al.*, 1998, Science, 280: 1256. Using this method, fibroblasts from donor animals are stably transfected with a plasmid incorporating the coding sequences for a binding domain or binding partner of interest under the control of regulatory. Stable transfectants are then fused to enucleated oocytes, cultured and transferred into female recipients.

Analysis of animals which may contain transgenic sequences would typically be performed by either PCR or Southern blot analysis following standard methods.

By way of a specific example for the construction of transgenic mammals, such as cows, nucleotide constructs comprising a sequence encoding a binding domain fused to GFP are microinjected using, for example, the technique described in U.S. Pat. No. 4,873,191, into oocytes which are obtained from ovaries freshly removed from the mammal. The oocytes are aspirated from the follicles and allowed to settle before fertilization with thawed frozen sperm capacitated with heparin and prefractionated by Percoll gradient to isolate the motile fraction.

The fertilized oocytes are centrifuged, for example, for eight minutes at 15,000 g to visualize the pronuclei for injection and then cultured from the zygote to morula or blastocyst stage in oviduct tissue-conditioned medium. This medium is prepared by using luminal tissues scraped from oviducts and diluted in culture medium. The zygotes must be placed in the culture medium within two hours following microinjection.

5

10

15

25

Oestrous is then synchronized in the intended recipient mammals, such as cattle, by administering coprostanol. Oestrous is produced within two days and the embryos are transferred to the recipients 5-7 days after estrous. Successful transfer are evaluated in the offspring by Southern blot.

90

PCT/AU2003/001166

5

10

15

20

25

Alternatively, the desired constructs are introduced into embryonic stem cells (ES cells) and the cells cultured to ensure modification by the transgene. The modified cells are then injected into the blastula embryonic stage and the blastulas replaced into pseudopregnant hosts. The resulting offspring are chimeric with respect to the ES and host cells, and nonchimeric strains which exclusively comprise the ES progeny are obtained using conventional cross-breeding. This technique is described, for example, in WO91/10741.

In another embodiment, transgenic animals of the present invention are transgenic "knock-out" animals where a specific gene corresponding to a polynucleotide referred to in Tables 1-3 has been rendered non-functional by homologous recombination. The generation of "knock-out" animals is similar to the production of other transgenic animals except that the polynucleotide constructs are designed to integrate into the endogenous genes and disrupt the function of the endogenous sequences. The generation of "knock-out" animals is known in the art, including the design of suitable constructs that will recombine at the appropriate site in the genome.

In one embodiment, the heterologous sequence which it is desired to recombine into the genome of a target animal comprises a functional sequence but under the control of an inducible promoter so that expression of the gene are regulated by administration of an endogenous molecule. This are advantageous where disruption of the gene is embryonic-lethal.

"Knock-out" animals are used as animal models for the study of gene function.

30

35

## Therapeutic peptides

In accordance with this embodiment, ovarian cancer-associated proteins of the present invention are administered therapeutically to patients for a time and under conditions sufficient to ameliorate the growth of a tumor in the subject or to prevent tumor recurrence.

It is preferred to use peptides that do not consisting solely of naturally-occurring amino acids but which have been modified, for example to reduce immunogenicity, to increase circulatory half-life in the body of the patient, to enhance bioavailability and/or to enhance efficacy and/or specificity.

5

A number of approaches have been used to modify peptides for therapeutic application. One approach is to link the peptides or proteins to a variety of polymers, such as polyethylene glycol (PEG) and polypropylene glycol (PPG) – see for example U.S. Patent Nos. 5,091,176, 5,214,131 and US 5,264,209.

10

30

35

Replacement of naturally-occurring amino acids with a variety of uncoded or modified amino acids such as D-amino acids and N-methyl amino acids may also be used to modify peptides

Another approach is to use bifunctional crosslinkers, such as N-succinimidyl 3-(2 pyridyldithio) propionate, succinimidyl 6-[3-(2 pyridyldithio) propionamido] hexanoate, and sulfosuccinimidyl 6-[3-(2 pyridyldithio) propionamido]hexanoate (see US Patent 5,580,853).

It are desirable to use derivatives of the ovarian cancer-associated proteins of the invention which are conformationally constrained. Conformational constraint refers to the stability and preferred conformation of the three-dimensional shape assumed by a peptide. Conformational constraints include local constraints, involving restricting the conformational mobility of a single residue in a peptide; regional constraints, involving restricting the conformational mobility of a group of residues, which residues may form some secondary structural unit; and global constraints, involving the entire peptide structure.

The active conformation of the peptide are stabilized by a covalent modification, such as cyclization or by incorporation of gamma-lactam or other types of bridges. For example, side chains are cyclized to the backbone so as create a L-gamma-lactam moiety on each side of the interaction site. See, generally, Hruby et al., "Applications of Synthetic Peptides," in Synthetic Peptides: A User's Guide: 259-345 (W. H. Freeman & Co. 1992). Cyclization also are achieved, for example, by formation of cystine bridges, coupling of amino and carboxy terminal groups of respective terminal amino acids, or coupling of the amino group of a Lys residue or a related homolog with a carboxy group of Asp, Glu or a

5

10

15

20

25

30

related homolog. Coupling of the .alpha-amino group of a polypeptide with the epsilon-amino group of a lysine residue, using iodoacetic anhydride, are also undertaken. See Wood and Wetzel, 1992, Int'l J. Peptide Protein Res. 39: 533-39.

Another approach described in US 5,891,418 is to include a metal-ion complexing backbone in the peptide structure. Typically, the preferred metal-peptide backbone is based on the requisite number of particular coordinating groups required by the coordination sphere of a given complexing metal ion. In general, most of the metal ions that may prove useful have a coordination number of four to six. The nature of the coordinating groups in the peptide chain includes nitrogen atoms with amine, amide, imidazole, or guanidino functionalities; sulfur atoms of thiols or disulfides; and oxygen atoms of hydroxy, phenolic, carbonyl, or carboxyl functionalities. In addition, the peptide chain or individual amino acids are chemically altered to include a coordinating group, such as for example oxime, hydrazino, sulfhydryl, phosphate, cyano, pyridino, piperidino, or morpholino. The peptide construct are either linear or cyclic, however a linear construct is typically preferred. One example of a small linear peptide is Gly-Gly-Gly which has four nitrogens (an N<sub>4</sub> complexation system) in the back bone that can complex to a metal ion with a coordination number of four.

A further technique for improving the properties of therapeutic peptides is to use non-peptide peptidomimetics. A wide variety of useful techniques are used to elucidating the precise structure of a peptide. These techniques include amino acid sequencing, x-ray crystallography, mass spectroscopy, nuclear magnetic resonance spectroscopy, computer-assisted molecular modeling, peptide mapping, and combinations thereof. Structural analysis of a peptide generally provides a large body of data which comprise the amino acid sequence of the peptide as well as the three-dimensional positioning of its atomic components. From this information, non-peptide peptidomimetics are designed that have the required chemical functionalities for therapeutic activity but are more stable, for example less susceptible to biological degradation. An example of this approach is provided in US 5,811,512.

Techniques for chemically synthesising therapeutic peptides of the invention are described in the above references and also reviewed by Borgia and Fields, 2000, TibTech 18: 243-251 and described in detail in the references contained therein.

The ovarian cancer proteins, nucleic acids, and antibodies as described herein are used in drug screening assays to identify candidate compounds for use in treating ovarian cancer. The ovarian cancer-associated proteins, antibodies, nucleic acids, modified proteins and cells containing ovarian cancer sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al., 1998, Science 279: 84-88); Heid, 1996, Genome Res 6: 986-94).

In a preferred embodiment, the ovarian cancer-associated proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified ovarian cancer-associated proteins are used in screening assays. That is, the present invention provides methods for screening for compounds/agents which modulate the ovarian cancer phenotype or an identified physiological function of a ovarian cancer-associated protein. As above, this are done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, supra.

Having identified the differentially expressed genes herein, a variety of assays are executed. In a preferred embodiment, assays are run on an individual gene or protein level. That is, having identified a particular gene as up regulated in ovarian cancer, test compounds are screened for the ability to modulate gene expression or for binding to the ovarian cancer-associated protein. "Modulation" thus includes both an increase and a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing ovarian cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in ovarian cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in ovarian cancer tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression are monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself are monitored, e.g., through the use of antibodies to the ovarian cancer-associated protein and standard immunoassays. Proteomics and separation techniques may also allow quantification of expression.

In a preferred embodiment, gene expression or protein monitoring of a number of entities, i.e., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein.

10

15

20

5

In this embodiment, the ovarian cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of ovarian cancer sequences in a particular cell. Alternatively, PCR are used. Thus, a series are used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Expression monitoring are performed to identify compounds that modify the expression of one or more ovarian cancer-associated sequences, e.g., a polynucleotide sequence set out in Tables 1-3. In a preferred embodiment, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate ovarian cancer, modulate ovarian cancer-associated proteins, bind to a ovarian cancer-associated protein, or interfere with the binding of a ovarian cancer-associated protein and an antibody or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the ovarian cancer phenotype or the expression of a ovarian cancer sequence, e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses a ovarian cancer phenotype, e.g. to a normal tissue fingerprint. In another embodiment, a modulator induced a ovarian cancer phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e.,

at zero concentration or below the level of detection.

5

10

20

25

30

Drug candidates encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 100 and less than about 2,500 daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 Daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides.

In one aspect, a modulator will neutralize the effect of a ovarian cancer-associated protein. By "neutralize" is meant that activity of a protein is inhibited or blocked and the consequent effect on the cell.

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to a ovarian cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical

"building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds are synthesized through such combinatorial mixing of chemical building blocks (Gallop et al., 1994, J. Med. Chem. 37(9):1233-1251).

5

10

30

35

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries, peptoids, encoded peptides, random bio-oligomers, nonpeptidal peptidomimetics, analogous organic syntheses of small compound libraries, nucleic acid libraries, peptide nucleic acid libraries, antibody libraries, carbohydrate libraries and small organic molecule libraries.

The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of ovarian cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.

High throughput assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins, U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate entire procedures, including all samlsle and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detectors) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g.,

97

Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, are used. In this way libraries of proteins are made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides are digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process are designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

25

30

10

15

20

In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically blased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

Modulators of ovarian cancer can also be nucleic acids, as defined below. As described above generally for proteins, nucleic acid modulating agents are naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. For example, digests of procaryotic or eucaryotic genomes are used as is outlined above for proteins.

5

10

15

20

25

In certain embodiments, the activity of a ovarian cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide, *i.e.*, a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a ovarian cancer-associated protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the ovarian cancer-associated protein mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or are synthesized *in vitro*. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

30

35

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for ovarian cancer molecules. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, e.g., Stein & Cohen (Cancer Res. 48:2659 (1988 and van der Krol et al. (BioTechniques 6:958 (1988)).

In addition to antisense polynucleotides, ribozymes are used to target and inhibit transcription of ovarian cancer-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto et al., Adv. in Pharmacology 25: 289-317 (1994) for a general review of the properties of different 5 ribozymes).

Methods of preparing ribozymes are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang et al., Proc. Natl. Acad. Sci. USA 90:6340-6344 (1993); Yamada et al., Human Gene Therapy 1:39-45 (1994); Leavitt et al., Proc. Natl. Acad. Sci. USA 92:699- 703 (1995); Leavitt et al., Human Gene Therapy 5:1151-120 (1994); and Yamada et al., Virology 205: 121-126 (1994)).

15

20

25

5

Polynucleotide modulators of ovarian cancer are introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of ovarian cancer are introduced into a cell containing the target nucleic acid sequence, e.g., by formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

As noted above, gene expression monitoring is conveniently used to test candidate modulators (e.g., protein, nucleic acid or small molecule). After the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques. For example, the sample are treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an *in vitro* 

transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

In a preferred embodiment, the target sequence is labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also are an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that are detected. Alternatively, the label are a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also are a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

15

20

35

5

10

As will be appreciated by those in the art, these assays are direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

A variety of hybridization conditions are used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency are controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it are desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein are accomplished in a variety of ways. Components of the reaction are added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which are used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

Screens are performed to identify modulators of the ovarian cancer phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, e.g., for diagnostic applications, having identified differentially expressed genes important in a particular state, screens are performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.

In addition screens are done for genes that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress a ovarian cancer expression pattern leading to a normal expression pattern, or to modulate a single ovarian cancer gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above are performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated ovarian cancer tissue reveals genes that are not expressed in normal tissue or ovarian cancer tissue, but are expressed in agent treated tissue. These agent-specific sequences are identified and used by methods described herein for ovarian cancer genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition,

antibodies are raised against the agent induced proteins and used to target novel therapeutics to the treated ovarian cancer tissue sample.

Thus, in one embodiment, a test compound is administered to a population of ovarian cancer cells, that have an associated ovarian cancer expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (i.e., a peptide) are put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished. Regulatable gene administration systems can also be used.

5

10

15

20

25

30

35

Once the test compound has been administered to the cells, the cells are washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

Thus, e.g., ovarian cancer tissue are screened for agents that modulate, e.g., induce or suppress the ovarian cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on ovarian cancer activity. By defining such a signature for the ovarian cancer phenotype, screens for new drugs that alter the phenotype are devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

In a preferred embodiment, as outlined above, screens are done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself are done. The gene products of differentially expressed genes are sometimes referred to herein as "ovarian cancer-associated proteins" or a "ovarian cancer modulatory protein". The ovarian cancer modulatory protein are a fragment, or alternatively, be the full length protein to the fragment encoded by the nucleic acids referred to in Tables 1-3. Preferably, the ovarian cancer modulatory protein is a fragment. In a preferred embodiment, the ovarian cancer amino acid sequence which is used to determine sequence identity or similarity is encoded by a

103

nucleic acid referred to in Tables 1-3. In another embodiment, the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid referred to in Tables 1-3. In another embodiment, the sequences are sequence variants as further described herein.

5

10

15

20

25

Preferably, the ovarian cancer modulatory protein is a fragment of approximately 14 to 24 amino acids long. More preferably the fragment is a soluble fragment. Preferably, the fragment includes a non-transmembrane region. In a preferred embodiment, the fragment has an N-terminal Cys to aid in solubility. In one embodiment, the C-terminus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, i.e., to cysteine.

In one embodiment the ovarian cancer-associated proteins are conjugated to an immunogenic agent as discussed herein. In one embodiment the ovarian cancer-associated protein is conjugated to BSA.

Measurements of ovarian cancer polypeptide activity, or of ovarian cancer or the ovarian cancer phenotype are performed using a variety of assays. For example, the effects of the test compounds upon the function of the ovarian cancer polypeptides are measured by examining parameters described above. A suitable physiological change that affects activity are used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of ovarian cancer associated with tumours, tumour growth, tumour metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In tire assays of the invention, mammalian ovarian cancer polypeptide is typically used, e.g., mouse, preferably human.

30

35

Assays to identify compounds with modulating activity are performed *in* vitro. For example, a ovarian cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the ovarian cancer polypeptide levels are determined *in vitro* by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the ovarian cancer

polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

Alternatively, a reporter gene system are devised using the ovarian cancer-associated protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or (beta-gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens are done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself are done. The gene products of differentially expressed genes are sometimes referred to herein as "ovarian cancer-associated proteins." The ovarian cancer-associated protein are a fragment, or alternatively, be the full length protein to a fragment shown herein.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants are further screened to better evaluate structure activity relationships.

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the ovarian cancer-associated proteins are used in the assays.

5

10

15

20

25

30

10

15

20

25

30

35

Thus, in a preferred embodiment, the methods comprise combining a ovarian cancer-associated protein and a candidate compound, and determining the binding of the compound to the ovarian cancer-associated protein. Preferred embodiments utilize the human ovarian cancer-associated protein, although other mammalian proteins may also be used, e.g. for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative ovarian cancer-associated proteins are used.

Generally, in a preferred embodiment of the methods herein, the ovarian cancerassociated protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g. a microtiter plate, an array, etc.). The insoluble supports are made of any composition to which the compositions are bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports are solid or porous and of any convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflon™, etc. microtitre plates and arrays are especially convenient because a large number of assays are carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

In a preferred embodiment, the ovarian cancer-associated protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the ovarian cancer-associated protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays are used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility

PCT/AU2003/001166

5

10

15

20

shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the ovarian cancer-associated protein are done in a number of ways. In a preferred embodiment, the compound is labeled, and binding determined directly, e.g., by attaching all or a portion of the ovarian cancer-associated protein to a solid support, adding a labeled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps are utilized as appropriate.

In some embodiments, only one of the components is labeled, e.g., the proteins (or proteinaceous candidate compounds) are labeled. Alternatively, more than one component are labeled with different labels, e.g., <sup>125</sup>I for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor is a binding moiety known to bind to the target molecule (i.e., a ovarian cancer-associated protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there are competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations are performed at a temperature which facilitates optimal activity, typically between 4 and 40°C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

30

35

25

In a preferred embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the ovarian cancer-associated protein and thus is capable of binding to, and potentially modulating, the activity of the ovarian cancer-associated protein. In this embodiment, either component are labeled. Thus, e.g., if the competitor is labeled, the presence of

label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative preferred embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the ovarian cancer-associated protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the ovarian cancer-associated protein.

10

15

20

25

5

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activity of the ovarian cancer-associated proteins. In this embodiment, the methods comprise combining a ovarian cancer-associated protein and a competitor in a first sample. A second sample comprises a test compound, a ovarian cancer-associated protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the ovarian cancer-associated protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the ovarian cancer-associated protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native ovarian cancer-associated protein, but cannot bind to modified ovarian cancer-associated proteins. The structure of the ovarian cancer-associated protein are modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of a ovarian cancer-associated protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls are used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples are counted in a scintillation counter to determine

the amount of bound compound.

A variety of other reagents are included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., are used. The mixture of components are added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of a ovarian cancer-associated protein. The methods comprise adding a test compound, as defined above, to a cell comprising ovarian cancer-associated proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes a ovarian cancer-associated protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

15

20

25

30

10

5

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e. cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate ovarian cancer agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the ovarian cancer-associated protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting ovarian cancer cell division is provided. The method comprises administration of a ovarian cancer inhibitor. In another embodiment, a method of inhibiting ovarian cancer is provided. The method comprises administration of a ovarian cancer inhibitor. In a further embodiment, methods of treating cells or individuals with ovarian cancer are provided. The method comprises administration of a ovarian cancer inhibitor.

In one embodiment, a ovarian cancer inhibitor is an antibody as discussed above. In another embodiment, the ovarian cancer inhibitor is an antisense molecule.

10

15

20

25

30

A variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art, as described below.

5 Soft agar growth or colony formation in suspension

Normal cells require a solid substrate to attach and grow. When the cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumour suppressor genes, regenerate normal phenotype and require a solid substrate to attach and grow. Soft agar growth or colony formation in suspension assays are used to identify modulators of ovarian cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A therapeutic compound would reduce or eliminate the host cells' ability to grow in stirred suspension culture or suspended in semisolid media, such as semi-solid or soft.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney, *Culture of Animal Cells a Manual of Basic Technique* (3rd ed., 1994), herein incorporated by reference. *See also*, the methods section of Garkavtsev *et al.* (1996), supra, herein incorporated by reference.

Contact inhibition and density limitation of growth

Normal cells typically grow in a flat and organized pattern in a petri dish until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. When cells are transformed, however, the cells are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, the transformed cells grow to a higher saturation density than normal cells. This are detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with (<sup>3</sup>H)-thymidine at saturation density are used to measure density limitation of growth. See Freshney (1994), supra. The transformed cells, when transfected with tumour suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with (<sup>3</sup>H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected

10

15

20

30

35

with a ovarian cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions. The percentage of cells labeling with (<sup>3</sup>H)-thymidine is determined autoradiographically. See, Freshney (1994), supra.

## 5 Growth factor or serum dependence

Transformed cells have a lower serum dependence than their normal counterparts (see, e.g., Temin, J. Natl. Cancer Insti. 37:167-175 (1966); Eagle et al., J. Exp. Med. 131:836-879 (1970)); Freshney, supra. This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of transformed host cells are compared with that of control. Tumor specific markers levels Tumor cells release an increased amount of certain factors (hereinafter "tumour specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, Angiogenesis, tumour vascularization, and potential interference with tumour growth. in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985)). Similarly, Tumor angiogenesis factor (TAF) is released at a higher level in tumour cells than their normal counterparts. See, e.g., Folkman, Angiogenesis and Cancer, Sem Cancer Biol. (1992)). Various techniques which measure the release of these factors are described in Freshney (1994), supra. Also, see, Unkless et al., J. Biol. Chem. 249:4295-4305 (1974); Strickland & Beers, J. Biol. Chem. 251:5694-5702 (1976); Whur et al., Br. J. Cancer 42:305 312 (1980); Gullino, Angiogenesis, tumour vascularization, and potential interference with tumour growth. in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985); Freshney Anticancer Res. 5:111-130 (1985).

## 25 Invasiveness into Matrigel

The degree of invasiveness into Matrigel-or some other extracellular matrix constituent are used as an assay to identify compounds that modulate ovarian cancer-associated sequences. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumourigenic cells are typically used as host cells. Expression of a tumour suppressor gene in these host cells would decrease invasiveness of the host cells.

Techniques described in Freshney (1994), supra, are used. Briefly, the level of invasion of host cells are measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and

111

distance moved, or by prelabeling the cells with 125 1 and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra.

## Tumor growth in vivo

15

20

WO 2004/022778

5 Effects of ovarian cancer-associated sequences on cell growth are tested in transgenic or immune-suppressed mice. Knock-out transgenic mice are made, in which the ovarian cancer gene is disrupted or in which a ovarian cancer gene is inserted. Knock- out transgenic mice are made by insertion of a marker gene or other heterologous gene into the endogenous ovarian cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous ovarian cancer gene with a mutated version of the ovarian cancer gene, or by mutating the endogenous ovarian cancer gene, e.g., by exposure to carcinogens.

A DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells partially derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi et al., Science 244:1288 (1989)). Chimeric targeted mice are derived according to Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory (1988) and Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed., IRL Press, Washington, D.C., (1987).

Alternatively, various immune-suppressed or immune-deficient host animals are used. For example, genetically athymic "nude" mouse (see, e.g., Giovanella et al., J. Natl. Cancer Inst. 52:921 (1974)), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley et al., Br. J. Cancer 38:263 (1978); Selby et al., Br. J. Cancer 41:52 (1980)) are used as a host. Transplantable tumour cells (typically about 10<sup>6</sup> cells) injected into isogenic hosts will produce invasive tumours in a high proportions of cases, while normal cells of similar origin will not. In hosts which developed invasive tumours, cells expressing a ovarian cancer-associated sequences are injected subcutaneously. After a suitable length of time, preferably 4 to 8 weeks, tumour growth is measured (e.g. by volume or by its two largest dimensions) and compared to the control. Tumours that have a statistically significant reduction (using, e.g. Student's T test) are said to have inhibited growth.

#### Administration

therapeutic reagents of the invention are administered to patients, therapeutically. Typically, such proteins/polynucleotides and substances may preferably be combined with various components to produce compositions of the invention. Preferably the compositions are combined with a pharmaceutically acceptable carrier or diluent to produce a pharmaceutical composition (which are for human or animal use). Suitable carriers and diluents include isotonic saline solutions, for example phosphate-buffered saline. The composition of the invention are administered by direct injection. The composition are formulated for parenteral, intramuscular, intravenous, subcutaneous, intraocular, oral, vaginal or transdermal administration. Typically, each protein are administered at a dose of from 0.01 to 30 mg/kg body weight, preferably from 0.1 to 10 mg/kg, more preferably from 0.1 to 1 mg/kg body weight.

Polynucleotides/vectors encoding polypeptide components for use in modulating the activity of the ovarian cancer-associated proteins/polynucleotides are administered directly as a naked nucleic acid construct. When the polynucleotides/vectors are administered as a naked nucleic acid, the amount of nucleic acid administered may typically be in the range of from 1 µg to 10 mg, preferably from 100 µg to 1 mg.

20

25

30

35

10

Uptake of naked nucleic acid constructs by mammalian cells is enhanced by several known transfection techniques for example those including the use of transfection agents. Example of these agents include cationic agents (for example calcium phosphate and DEAE-dextran) and lipofectants (for example lipofectam<sup>TM</sup> and transfectam<sup>TM</sup>). Typically, nucleic acid constructs are mixed with the transfection agent to produce a composition.

Preferably the polynucleotide or vector of the invention is combined with a pharmaceutically acceptable carrier or diluent to produce a pharmaceutical composition. Suitable carriers and diluents include isotonic saline solutions, for example phosphate-buffered saline. The composition are formulated for parenteral, intramuscular, intravenous, subcutaneous, oral, intraocular or transdermal administration.

The pharmaceutical compositions are administered in a range of unit dosage forms depending on the method of administration. For example, unit dosage forms suitable for oral administration include, powder, tablets, pills, capsules and lozenges. Orally

113

administered dosage forms will typically be formulated to protect the active ingredient from digestion and may therefore be complexed with appropriate carrier molecules and/or packaged in an appropriately resistant carrier. Suitable carrier molecules and packaging materials/barrier materials are known in the art.

5

10

15

The compositions of the invention are administered for therapeutic or prophylatic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g. ovarian cancer) in an amount sufficient to cure or at least partially ameliorate the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose". An amount of the composition that is capable of preventing or slowing the development of cancer in a patient is referred to as a "prophylactically effective dose".

The routes of administration and dosages described are intended only as a guide since a skilled practitioner will be able to determine readily the optimum route of administration and dosage for any particular patient and condition.

The present invention is further described with reference to the accompanying drawings and the following non-limiting examples.

20

114

#### **EXAMPLE 1**

# Gene expression profiling to identify differentially-expressed genes in ovarian cancer

#### 1. Tissue Bank and Database

Tissue was collected from patients undergoing treatment at the GCC, we have established an Ovarian Cancer Tissue Bank and Clinical Database that currently holds data on over 400 cases treated at the GCC between 1986 and 2002. Tissue (currently 149 fresh/frozen and 292 archival fixed paraffin-embedded samples) was acquired from patients undergoing cytoreductive surgery and does not interfere with the collection of tissue for the normal processing of diagnostic specimens. Patient consent, included in all our studies, was collected prior to surgery. Tissue specimens and their associated pathology reports were coded in order to maintain patient confidentiality. Uncoded data was electronically and/or physically locked with restricted access by appropriate senior investigators only. Clinical (diagnosis, treatment, residual disease) and pathological data (tumour grade, stage) were collected and updated (disease recurrence, patient survival) at regular intervals. This study has ethical approval from the South Eastern Sydney Area Health Service Research Ethics Committee, Australia. Clinical data and tissue collection are ongoing.

#### 2. Genetic profiling of ovarian cancers

In order to identify those genes differentially regulated in epithelial ovarian cancer 51 ovarian cancer tumor samples were manually dissected from biological samples derived from subjects undergoing cytoreductive surgery. These samples comprised 8 endometrioid tumors, 4 mucinous tumors and 31 serous epithelial ovarian tumors, 12 corresponding omental deposits and 8 borderline (low-malignant potential) tumors.

25

30

5

10

15

20

RNA was isolated from the tumor samples in addition to 4 normal ovary samples using Trizol reagent (Life Technologies, Rockville, MD, USA) essentially according to manufacturer's instructions. RNA was then reverse transcribed using an oligo(dT) anchored oligonucleotide that additionally comprised a T7 promoter sequence. Isolated cDNA was then transcribed *in vitro* using the T7 MEGAscript kit (Ambion, Austin, TX, USA) according to manufacturer's instructions. Transcription was performed with biotinylated nucleotides (Bio-11-CTP and Bio-16-UTP) to enable detection of the transcribed cRNA.

Levels of gene expression in the cancer samples was then determined by analysing the transcribed cDNA samples using customized Affymetrix GeneChip® microarrays that

115

comprise 59,618 oligonucleotide probe sets. These probe sets facilitate analysis of 46,000 gene clusters, representing over 90% of the predicted expressed human genome.

Data were normalized, and changes in gene expression detected using a ranked penalized t-statistic with p-values adjusted for multiple testing using the Holm procedure. Analysis was performed using the LIMMA package (available from Bioconductor, Biostatistics Unit of the Dana Farber Cancer Institute at the Harvard Medical School/Harvard School of Public Health).

Gene expression in 186 samples representing 52 different tissues of the body was also determined using the previously described methods to facilitate the identification of changes in gene expression that are specific for ovarian cancer.

Using this method 284 up-regulated transcripts and 186 down-regulated transcripts were identified.

In order to determine the efficacy of such a method of analysis for determining gene expression changes associated with ovarian cancer, those genes identified were compared to results of published expression profile studies. Using this method, 71 genes were identified in the present study that had been previously identified, including, for example, genes known to be over-expressed in ovarian cancer, such as, for example MUC1 and E-cadherin.

The ovarian cancer-associated genes and proteins set forth in Table 1 include sequences that are up-regulated or down-regulated in ovarian cancer subjects, including subjects suffering specifically from serous, encodmetrioid, mucinous or clear cell ovarian cancer, or non-invasive (borderline) ovarian cancers of any phenotype, and subjects that suffered from recurrences of ovarian cancer in the medium term, or died within the medium term.

30

5

15

20

25

Data presented in Table 2 indicate those genes that are expressed at significantly higher levels or significantly reduced levels in patients suffering from serous cancer relative tot he level of expression of the same genes in a normal or healthy subject.

116

## **EXAMPLE 2**

Validation of gene expression profiling results using tissue microarrays

Each of the transcripts identified as being differentially-expressed specifically in ovarian cancer was then further analysed using *in situ* hybridization or immunohistochemical staining of tissue microarrays constructed from a large cohort of primary ovarian tumor tissue. Such analysis confirms upregulation, down-regulation or total loss of expression of the transcripts identified in the microarray analysis of tumor samples.

Furthermore, as each of the samples in the tissue microarray have been clinicopathologically characterized (for example to identify cancer grade and/or disease stage) and the subjects from whom the tumors were isolated continuously monitored (to detect for example, death or relapse of cancer), changes with gene expression were also analysed for correlation with such parameters in order to determine predictive changes in gene expression.

15

20

25

10

5

The relative intensity and percentage of cells staining was determined and evaluated for associations with clinical stage and grade of disease and disease relapse using the Kaplan Meier method and log-rank test, and by univariate and bivariate analyses in a Cox proportional hazards model for gene expression and other clinical and pathologic predictors of outcome to determine the potential independent prognostic value of the markers being assessed.

Immunohistochemical analysis has been performed on several genes identified in gene profiling analysis of ovarian cancer samples. For example, SOX17, Ep-CAM and claudin 3 were shown by gene profiling analysis to be specifically up-regulated in ovarian cancer compared to normal ovaries (Figure 1 and Figure 2). Using immunohistochemical analysis, it was determined that SOX17, Ep-CAM and claudin 3 are upregulated in serous cancer, mucinous cancer, endometroid cancer and clear cell ovarian cancer.

Furthermore, immunohistochemical analysis has been used to analyse the expression of several other genes that are specifically upregulated in mucinous ovarian cancer. In particular the expression of LI-cadherin (cadherin 17), meprin alpha and Galectin 4 as detected using immunohistochemistry is shown in Figure 3. There was a significant increase in protein detected in the mucinous ovarian cancer samples compared to the normal ovary sample and serous ovarian cancer sample.

Immunohistochemical analysis was also performed to analyse the expression of three genes that are known to be upregulated in ovarian cancer (CA125, MUC-1 and E-cadherin) (Figures 1 and 2).

5

10

15

20

25

30

35

## **EXAMPLE 3**

### Identification of prognostic markers of ovarian cancer

Using a classical survival analysis to mine expression profiling data several genes that are associated with poor patient outcome (ie death or cancer relapse) have been identified (Tables 2 and 3). Such genes have clinical utility as prognostic indicators of disease.

Using detailed clinicopathological and postoperative data on all of the 51 patients included in our transcriptional profiling studies, including details of biochemical (eg. rising serum CA-125) and/or clinical recurrence of disease and overall survival, expression profiles were correlates with clinical parameters.

A preliminary survival analysis was performed on the 33 serous cancers within this cohort. The median follow-up time for these patients was 25.5 months from the date of primary laparotomy to the date of last follow-up or the date of death, and 21 of these patients (66%) were deceased from causes related to their malignancy.

Preliminary analysis of the expression profiles of these tumors identified several potential gene clusters that were associated with an increased risk of biochemical and clinical recurrence and overall survival, including the *EDD* gene (SEQ ID NO: 63). Exemplary prognostic markers for detecting ovarian cancer are shown in Tables 1 and 3. Preferred markers are indicated in Table 3.

Using immunohistochemical analysis two genes have been confirmed to be upregulated in serous ovarian cancer. In particular, sFRP4, a negative signalling protein of the Wnt pathway, and SOCS3, a negative signaller of IL-6 induced signalling are specifically upregulated in serous ovarian cancer when compared to normal ovarian tissue (Figure 4A).

Furthermore, using clinical patient data and correlating this information with gene expression levels using a Cox proportional hazards model, it has been shown that high

118

expression of sFRP4 correlates with a poor outcome in patients (n=127) with serous ovarian cancer (p=0.0056) (Figure 4B).

## **EXAMPLE 4**

Validation of gene expression profiling results using quantitative RT-PCR Candidate diagnostic genes are screened by quantitative RT-PCR against ovarian cancer cell lines to both validate the transcript profiling data (ie check their up- or down-regulation). Candidate diagnostic genes are screened using mRNA isolated from a panel of 9 ovarian tumour cell lines, (A2780, SKOV3, OVCAR-3, IGROV-1, CAOV3, OV-90, SW626, TOV-21G and TOV-112D), in addition to several other tumour cell lines including lines derived from breast, prostate and colorectal tumours, and immortalised (non-transformed) human ovarian surface epithelial cells and a primary normal breast epithelial cell line (184).

Total RNA is isolated from the normal and tumour cell lines, reverse transcribed into cDNA and used as template in a quantitative PCR using a LightCycler system (Roche Diagnostics). The relative amount of each gene product is determined by comparison to a standard housekeeping gene (GAPDH).

EXAMPLE 5

5

10

20

25

30

35

Identification of Novel Genes for Diagnosis of Ovarian Cancer

We identified candidate genes with diagnostic potential from our list of aberrantly regulated genes by applying the following selection procedure: genes with a good transcript profile and low p-value (ie highly significantly up- or down-regulated in ovarian cancer, as determined in Example 1); and mapping to areas of the genome that have been shown to be amplified or lost in ovarian cancer. Accordingly, it is likely that these genes are involved in the development and progression of ovarian cancer (ie putative oncogenes and tumour suppressor genes). Additional parameters for analysis included known or putative function in oncogenesis (eg signal transduction, regulation of cellular proliferation, apoptosis etc); and association with other forms of other tumours. Genes identified in this analysis are shown in Table 3.

One method for the diagnosis of cancer comprises detecting modified DNA shed by the developing tumour into the blood stream. This can include the detection of mutations in both oncogenes and tumour suppressor genes involved in the development and progression of ovarian cancer. Furthermore, it has been recently shown that aberrant

119

methylation of tumour suppressor genes, specifically hypermethylation of their gene promoters, frequently accompanies gene silencing in cancers, and indeed in some cases appears to be the predominant mechanism of gene silencing.

Combined with the knowledge of tumour nucleic acids circulating in the blood that reflect the biological characteristics of a tumour, the detection of methylation-specific tumour suppressor gene signatures for any given tumour type has promise as a specific and sensitive molecular test for detecting and monitoring cancer. Aberrant methylation is a frequent epigenetic event in epithelial ovarian cancer and many candidate tumour suppressor genes of epithelial ovarian cancer have been shown to be hypermethylated in epithelial ovarian cancer, such as, for example BRCA1.

In particular, expression of the candidate tumor suppressor gene MCC, has been shown to be down-regulated in epithelial ovarian cancer compared to normal ovarian tissue.

MCC appears to be involved in critical cell growth regulatory processes and maps to a chromosomal region hypothesised as containing a tumor suppressor gene in ovarian cancer. Furthermore, we have identified a CpG island within the predicted promoter sequence of the MCC gene, a critical feature of genes that are subject to gene silencing by hypermethylation and a known characteristic of tumor suppressor genes. Taken together these data strongly implicate MCC as a candidate tumor suppressor gene involved in epithelial ovarian cancer.

|         | P value                                                                                             | <b>.</b>                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                   | 0                                       | 0                                                   | 0                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>o</b>                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | bjects suffering from ovarian cancer<br>Putative Function                                           | Lymphocyte antigen, plasma membrane, tumor antigen. Member of the CA733 family, C archoma-associated antigen expressed on most normal epithelial cells and gastrointestinal cardinomas and functions as a homotypic calclum-independent cell adhesion molecule. The partition is holytected or homotypic and the collection of homotypic and the collection. | amygan is being used as a talyet for immunicuted apy used into the human carcinomas. Home saplens cDNA FL/10920 fis, done OVARC1000384-resourcerer. | contains 3 RNA recognition motifs       | weakly similar to a drosophila transcription factor | Mai2 T-cell differentiation protein; found thru interaction with TPD52 which is overexpressed in breast cancer, 4 TM are involved in vesicle transport | Tumor suppressor. Ca2+-dependent glycoprotein, mediates cell-cell interactions in epithelial cells. Mutations correlated with gastric, breast, colorectal, thyroid and ovarian cancer. Loss of function thought to contribute to progression in cancer by increasing proliferation, invasion, and/or metastasis. The ectodomain of this protein mediates bacterial adhesion to mammalian cells and the protein in consider the contribute of the contribute | Sychastics contains required for internatization.  Early endosome, membrane fraction, non-selective vesicle docking, non-selective vesicle transport, protein complex assembly, synaptic vesicle. Member of a family involved in docking or fusion of synaptic vesicles. Associated with the perhudear vesicular structures of the party and contactines. | Cell shape and cell size control, cell-cell adherens junction, epidermal differentiation, intermediate filament, structural constituent of cytoskeleton. Acts as a site of attachment for intermediate filaments in desmosomes (intercellular junction in vertebrate epitheliala cells). Compound heterozgosity for non-sense and miscone on definer independent of the programment of the compound heterozgosity for non-sense and miscone on definer independent. | ocias indexacts of controlled statements of the statement |
| Table 1 | Genes having modified expression in subjects suffering from ovarian cancer<br>Gene symbol and title | Ep-CAM; TACSTD1, tumor-associated calcium signal transducer 1; epithelial gylcoprotein                                                                                                                                                                                                                                                                       | HSPC195, hypothetical protein HSPC195                                                                                                               | FLJ20171, hypothetical protein FLJ20171 | FLJ13782, Hypothetical protein FLJ13782             | MALZ                                                                                                                                                   | CDH1, cadherin 1, type 1, E-cadherin (epithelial)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VAMP8, vesicle-associated membrane protein 8 (endobrevin)                                                                                                                                                                                                                                                                                                 | DSP, desmoplakin (DPI, DPII)                                                                                                                                                                                                                                                                                                                                                                                                                                        | CD24: CD24 antigen (small cell lung carcinoma<br>cluster 4 antigen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | UniGene Mapping                                                                                     | Hs.692:235                                                                                                                                                                                                                                                                                                                                                   | Hs.15093:210;<br>Hs.290304:1                                                                                                                        | Hs.24743:94                             | Hs.257924:13                                        | Hs.76550:164                                                                                                                                           | Hs.194657:233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hs.172684:89                                                                                                                                                                                                                                                                                                                                              | Hs.349499                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hs.286124:357;<br>Hs.375108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | Accession number                                                                                    | a. upregulated genes<br>NM_002354                                                                                                                                                                                                                                                                                                                            | BC006428                                                                                                                                            | NM_017697                               | AW419198                                            | AW630088                                                                                                                                               | NM_004360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NM_003761                                                                                                                                                                                                                                                                                                                                                 | NM_004415                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NM_013230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| P value               | inhibitor. Member 0<br>Hepatocyte growth<br>Tic for HGF activator<br>solytic activation of                                                                                                                                                                                                     | 0.0001                                      |                  | te niaments; type ii 0.0002<br>Disruption of<br>ssion in vivo could<br>attc disorders                                                                                                                                                                                                                   | epidermal growth 0.0002<br>1, protein amino<br>family of recentor                                                                                                                                  | nannmary tumor<br>Ilating HGL-<br>irmal growth factor<br>for interaction with.                                                                                                                                                                                                                                           | 0.0002                                                   | osphate to uridine 0.0003                                                                                                        | s. An allele of this<br>munity to                                                                                            | is. An allele of this munity to incrotubule 0.0004 mization and pressed in cells of and cell oules, and may ated mouse protein equired for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Putative Function     | Extracellular, membrane fraction, serine protease inhibitor. Member of the Kunitz family of serine protease inhibitors. Hepatocyte growth factor activator inhibitor is a potent inhibitor specific for HGF activator and is thought to be involved in regulation of proteolytic activation of | HGF in injured tissues.<br>Function unknown | Function unknown | Cell su double, Cytoskeletal. May form intermediate tilaments; type in<br>keratin, member of a family of structural proteins. Disruption of<br>mechanisms that normally regulate keratin expression in vivo could<br>be related to inflammatory and neoplastic pancreatic disorders<br>(Casanova 1999). | Transmembrane receptor protein tyrosine kinase, epidermal growth factor receptor, integral plasma membrane protein, protein amino acid phosphorylation. Member of the ERBB gene family of recentor | tyrosine kinases, elevated levels in certain human mammary tumor cell lines. A receptor for heregulin, capable of mediating HGL-stimulated tyrosine phosphorylation of itself. Epidermal growth factor contains both positive and negative determinants for interaction with enth-2/1Erlbl-3 helenclines (Sturders 2002) | Function unknown                                         | Catalyzes the phosphorylation of uridine monophosphate to uridine diphosphate. First step in production of pyrimidine nucleoside | triphosphates required for RNA and DNA synthesis. An allele of this gene may play a role in mediating nonhumoral immunity to | triphosphates required for RNA and DNA synthesis. An allele of this gene may play a role in mediating nonhumoral immunity to Hemophilus influerizae type B. Establishment and/or maintenance of cell polarity, microtubule associated protein, microtubule cytoskeleton organization and plogenesis, structural molecule. Predominantly expressed in cells of epithelial origin. Involved in microtubule dynamics and cell polarization and differentiation. Stabilizes microtubules, and may modulate microtubule functions. Studies of the related mouse protein suggest an essential role in microtubule function required for |
| Gene symbol and title | SPINT1, serine protease inhibitor, Kunitz type 1.<br>Hepatocyte growth factor activator inhibitor.                                                                                                                                                                                             | FLJ90586, hypothetical protein              | KRT8 keralin 8   |                                                                                                                                                                                                                                                                                                         | ERBB3, v-erb-b2 enythroblastic leukemia viral oncogene homolog 3 (avian)                                                                                                                           |                                                                                                                                                                                                                                                                                                                          | ESTs, Weakly similar to CYL1_HUMAN CYLICIN I [H.sapiens] | UMPK, uridine monophosphate kinase                                                                                               |                                                                                                                              | MAP7, microtubule-associated protein 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| UniGene Mapping       | Hs.233950:84,Hs.182<br>265:2,Hs.7771:1                                                                                                                                                                                                                                                         | Hs.17558:16<br>He 24543:36                  | Hs.242463:1      |                                                                                                                                                                                                                                                                                                         | Hs.199067:46                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                        | Hs.294142:167                                            | Hs.75939:33,Hs.1708<br>64:1                                                                                                      |                                                                                                                              | Hs.146388:47,Hs.113<br>919:3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Accession number      | NM_003710                                                                                                                                                                                                                                                                                      | NM_153345<br>NM_015238                      | AI282759         |                                                                                                                                                                                                                                                                                                         | Al393742                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                          |                                                          | NM_012474; W70171                                                                                                                |                                                                                                                              | AA165082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Accession number | UniGene Mapping                          | Gene symbol and title                                                                               | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                         | P value |
|------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| NM_004433        | Hs.166098:170                            | ELF3, E74-like factor 3 (ets domain transcription factor, epithelial-specific)                      | Embryogenesis and morphogenesis, transcription co-activator, transcription factor, transcription from Pol II promoter. ETS domain transcriptional activator, activates expression of epithelial cell                                                                                                                                                                                                                                                      | 0.0004  |
| AW247252         | Hs.75514:181                             | NP, nucleoside phosphorylase                                                                        | specific genes.  DNA modification, nucleobase nucleoside nucleotide and nucleic acid metabolism, purine-nucleoside phosphorylase. Enzyme purine nucleoside phosphorylase together with adenosine deaminase (ADA) serves a key role in purine catabolism, referred to as the salvage pathway. Mutations in either enzyme result in a severe                                                                                                                | 0.0004  |
| NM_015925        | Hs.361379,<br>Hs.95697:59,Hs.9364<br>9:1 | LISCH7, Liver-spedfic bHLH-Zip transcription<br>factor                                              | combined immunodefidency (SCID).<br>LISCH protein                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0004  |
| NM_022454        | Hs.97984:22                              | SOX17, SRY (sex determining region Y)-box 17                                                        | Likely ortholog of mouse SRY-box containing gene 17; allas SOX17                                                                                                                                                                                                                                                                                                                                                                                          | 0.0005  |
| A1124756         | Hs.5337:191                              | IDH2, isocitrate dehydrogenase 2 (NADP+), mitochondrial                                             | Carbohydrate metabolism, mitochondrion                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0006  |
| NM_003084        | Hs.313:273,Hs.29789<br>5:1               | SPP1, secreted phosphoprotein 1 (osteopontin, bone staloprotein I, early T-lymphocyte activation 1) | Osteopontin (bone statoprotein); bone and blood vessel extracellular matrix protein involved in calcification and atheroscierosis, increased expression is associated with breast tumor metastasis (Urquidi 2002). Role in HCC, especially in cancer-stromal interactions (Gotoh 2002). Association between levels of a biomarker, osteopontin, and protein cancer strong in the principal process.                                                       | 0.0006  |
| BE382756         | Hs.169902:319,Hs.27<br>5406:1            | SLC2A1, Solute carrier family 2 (facilitated glucose transporter), member 1                         | Glucose transporter, membrane fraction, SLC241/GLUT1. Glucose transporter, membrane fraction, SLC241/GLUT1. facilitated glucose transporter, Glucose transporter an integral membrane glycoprotein that is involved in transporting glucose into most cells. 12 TMs. Role in transport of glucose across the bloodbrain barrier. Consistent marker of ovarian epithelial malignancy (Kalir 2002). Marker for discriminating hepatocellular carcinoma from | 0.0006  |
| BE512730         | Hs. 65114:718, Hs. 279<br>437:1          | KRT18, keratin 18                                                                                   | other carcinomas (Zimmeman 2002). Cell shape and cell size control, embryogenesis and morphogenesis, intermediate filament, structural constituent of cytoskeleton. Component of intermediate filaments; type I epidemal keratin, strongly similar to murine Endo B. Expressed in single layer epithelial tissues of the body. Mutations linked to cryptogenic cirrhosis.                                                                                 | 0.0006  |

| P value               | 0.0006                                                                                                                                                                                                                                                         | 0.0007                                                  | 0.0009                                                                                                                                                                                                                                                                                                                   | 0.0009                                                                                                                                                                                                                          | 0.0009                                                                                                                                                                                                                                                                                                                                                      | 0.001            | 0.0011           | 0.0011                                                                                                                                                 | 0.0011                                                             | 0.0012                                                                                                   | 0.0012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Putative Function     | Plasma membrane, integral plasma membrane protein. Member of the transmembrane 4 superfamily (TM4SF); may mediate platelet activation and aggregation. Cell surface glycoprotein that is known to complex with integrins and other transmembrane 4 superfamily | Contains four RNA recognition motifs (RRM, RBD, or RNP) | Endopeptidase inhibitor, extracellular space, proteolysis and peptidolysis, spermatogenesis. Epididymis-specific secreted protein; may have a role in sperm maturation; arelong to a family of extracellular proteinase inhibitors. Expressed in pulmonary epithelial cells, and also expressed in some ovarian cancers. | Amiloride-sensitive sodium channal, excretion, integral plasma membrane protein, membrane fraction, sodium transport. Alpha subunit of the amiloride-sensitive epithelial sodium channel; functions in nonvoltage-gated channel | Histogenesis and organogenesis, embryogenesis and morphogenesis, thyroid-stimulating hormone receptor, transcription factor. Member of the paired domain family of nuclear transcription factors; are involved in the ribosome assembly, required for normal thyroid development. PAX genes play critical roles during fetal development and cancer growth. | Function unknown | Function unknown | Antimicrobial humoral response (sensu invertebrata), cell-cell signaling, chemokine chemotaxis. Cytokine A16; lymphocyte and monocyte chemoattractant. | KiAA0175 gene product; serine/threonine protein kinase domain      | amino acid transporter A1 (ATA1), likely ortholog of mouse N-system amino acid transporter protein NAT2. | cell adhesion, cell-cell signalling, G-protein linked receptor, integral plasma membrane protein, G-protein linked receptor protein signalling pathway. Member of the G protein-coupled receptor family; similar to secretin and calcitonin receptors. 7 transmembrane domains, a mucin-like domain and cysteine box in the N-terminal region. Expressed in range of tissues, highest levels in thyroid, selectively within the monolayer of cuboidal epithelial cells of the smaller, more actively secreting follicles of human thyroid. Differentially expressed in melanoma cell lines with different |
| Gene symbol and title | CD9: CD9 antigen (p24)                                                                                                                                                                                                                                         | FLJ20273, RNA-binding protein                           | WFDC2, WAP four-disuffide core domain 2                                                                                                                                                                                                                                                                                  | SCNN1A, sodium channel, nonvoltage-gated 1 alpha                                                                                                                                                                                | PAX8, paired box gene 8                                                                                                                                                                                                                                                                                                                                     | ESTs             | ESTs             | SCYA16, small Inducible cytokine subfamily A (Cys-Cys), member 16.                                                                                     | MELK, likely ortholog of maternal embryonic leucine zipper kinase. | SLC38A1, solute carrier family 38, member 1                                                              | GPR58, G protein-coupled receptor 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UniGene Mapping       | Hs.1244:227,Hs.2305<br>59:1,Hs.242020:1                                                                                                                                                                                                                        | Hs.95549:147,Hs.229<br>556:1                            | Hs.2719:108,Hs.5445<br>1:1                                                                                                                                                                                                                                                                                               | Hs.438580                                                                                                                                                                                                                       | Hs.73149:72,Hs.2130<br>08:1                                                                                                                                                                                                                                                                                                                                 | Hs.120912:12     | Hs.7956:28       | Hs.10458:10                                                                                                                                            | Hs.184339:27                                                       | Hs.18272:81                                                                                              | Hs.6527:201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Accession number      | NM_001769                                                                                                                                                                                                                                                      | AI791905;<br>NM_019027                                  | NM_006103                                                                                                                                                                                                                                                                                                                | U81961                                                                                                                                                                                                                          | X69698; NM_013952                                                                                                                                                                                                                                                                                                                                           | A1027643         | AA173992         | AB018249                                                                                                                                               | NM_014791                                                          | NM_030674                                                                                                | NM_005682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Accession number | UniGene Mapping             | Gene symbol and title                                                                 | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P value |
|------------------|-----------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                  |                             |                                                                                       | metastatic potential (Zendman et al 1999).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| AI669760         | Hs.188881:6,Hs.1993<br>54:1 | ESTs                                                                                  | dbEST Library Tissue Type restricted to prostate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0013  |
| NM_001730        | Hs.84728:127                | KLF5, Kruppel-like factor 5 (Intestinal)                                              | RNA polymerase II transcription factor, transcription from Pol II promoter. Zinc finger transcriptional activator, localizes to the nucleus and binds the epidermal growth factor response element, hinds GC hoves                                                                                                                                                                                                                                                                                                                | 0.0014  |
| Al355761         | Hs.242463:2                 | KRT8, keratin 8                                                                       | Cell structure, Cytoskeletal. May form intermediate filaments; type II keratin, member of a family of structural proteins. Disruption of mechanisms that normally regulate keratin expression in vivo could be related to inflammatory and neoplastic pancreatic disorders (Casanova 1989).                                                                                                                                                                                                                                       | 0.0014  |
| BE019020         | Hs.85838:171                | SLC16A3, solute carrier family 16 (monocarboxylic acid transporters), member 3 (MCT3) | Integral plasma membrane protein, membrane fraction, monocarboxylic acid transport, monocarboxylic acid transporter. Member of monocarboxylate transporter family; may function as a transporter (MCT3).                                                                                                                                                                                                                                                                                                                          | 0.0015  |
| NM_001307        | Hs.278562:101               | CLDN7, claudin 7                                                                      | Integral membrane protein, tight junction. Similar to murine Cldn7;                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0016  |
| NM_002266        | Hs.168557:394               | KPNA2, karyopherin alpha 2 (RAG cohort 1,<br>Importin alpha 1)                        | DNA metabolism, G2 phase of mitotic cell cycle. NLS-bearing substrate-nucleus import, cytoplasm, importin alpha-subunit, nuclear focalization sequence binding, nucleoplasm, regulation of DNA recombination, spindle pole body and microtubule cycle (sensu Saccharomyces). Karyopherin alpha 2 (importin alpha 1); subunit of the NLS (nuclear localization signal) receptor. KPNA2 protein interacts with the NLSs of DNA helicase Q1 and SV40 T antigen and are involved in the nuclear transport of proteins. KPNA2 also may | 0.0016  |
| AW176120         | Hs.9061:77                  | MGC2477, hypothetical protein MGC2477                                                 | function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0016  |
| BE265489         | Hs.3123:49                  | LLGL2, lethal giant larvae (Drosophila) homolog 2                                     | Cytoskeleton, structural molecule. May associate with nonmuscle myosin if heavy chain. cDNA source cancer cell lines. 57% ID to m.musculus 1920382A tumor suppressor gene mgl1                                                                                                                                                                                                                                                                                                                                                    | 0.0016  |
| BE279383         | Hs.26557:77                 | PKP3, plakophilin 3                                                                   | Cell adhesion, intercellular junction. Desmosomal plaque proteins are members of the 'armadillo-repeat' multigene family and have important functions in cytoskeletonoell membrane interactions.                                                                                                                                                                                                                                                                                                                                  | 0.0016  |

| Accession number       | UniGene Mapping                             | Gene symbol and title                                                                                                                                       | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P value |
|------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| J05581; NM_002456      | Hs.89603:128,Hs.296<br>789:1                | MUC1, mucin 1, transmembrane                                                                                                                                | Integral plasma membrane protein. Cell surface much glycoprotein expressed by most glandular and ductal epithelial cells and some hematopoletic cell lineages. Afterations in glycosylation in epithelial cancer cells. Marker for hepatocellular carcinoma. MUC1 metabolic complex conserved in tumor-derived and normal epithelial cells. Expression predictor of surgical outcome in mass-forming intrahepatic cholangiocarcinoma. Tyrosine kinase c-Src constitutes a bridge between cystic fibrosis transmembrane regulator channel | 0.0016  |
| AA531276<br>AW167128   | Hs.59509:9<br>Hs.231934:3                   | ESTs (unnamed protein product) ESTs; weakly similar to A57717 transcription factor EC2                                                                      | railure and MUC1 overexpression in cystic fibrosis.<br>Function unknown<br>Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0017  |
| AW368226               | Hs.67928:25,Hs.2298<br>40:1                 | Ets-related transcription factor, ESX, epithelium-<br>restricted Ets protein ESX-not in Unigene, but found using resourcerer.                               | Embryogenesis and morphogenesis, transcription co-activator, transcription factor, transcription from Poi II promoter.                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0021  |
| AK000733               | Hs.23900:82                                 | RACGAP1, Rac GTPase activating protein 1                                                                                                                    | Strongly similar to murine Racgap1 GTPase-activating protein for rac. The plexin-B1/Rac interaction inhibits PAK activation and partitions Common Strong Minding                                                                                                                                                                                                                                                                                                                                                                         | 0.0024  |
| NM_014736<br>NM_014586 | Hs.81892:95<br>Hs.109437:17                 | KIAA0101 gene product<br>HUNK, hormonally upregulated neu tumor-<br>associated kinase                                                                       | ennatices Serina+D rigatio princing function unknown; no significant hits with Superfamily Developmental processes, protein serine/threonine kinase, signal transduction, protein kinase containing SNF1 (fam of                                                                                                                                                                                                                                                                                                                         | 0.0025  |
| Al885516               | Hs.95612:31,Hs.2516<br>88:1                 | desmocollin type 2a, desmocollin 2, isoform Dsc2b preproprotein; desmosomal glycoprotein II/III; desmocollin-3-not in Unigene, but found using resourcerer. | semeurredning knases) doman; progesterone and estradion<br>regulated. Similar to murine Hunk.<br>Cell adhesion, intercellular junction                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0027  |
| AW194426<br>NM_001982  | Hs.20726:17<br>Hs.199067:83,Hs.167<br>386:1 | ESTs<br>ERBB3, HER3 (c-erb-B3), v-erb-b2 erythroblastic<br>leukemia viral oncogene homolog 3 (avian)                                                        | Function unknown  Epidermal growth factor receptor, integral plasma membrane protein, protein amino acid phosphoryfation. Member of the ERBB gene family of receptor tyrosine klnases, elevated levels in certain human mammany tumor cell lines. A recentor for herectulin, canable of                                                                                                                                                                                                                                                  | 0.0027  |
| NM_007019              | Hs.93002:85                                 | UBE2C, ubiquitin carrier protein E2-C                                                                                                                       | mediating HGL-stimulated tyrosine phosphorylation of itself. Ubiquitin-dependent protein degradation, degradation of cyclin, protein modification, positive control of cell proliferation. Subunit of a complex with ubiquitin ligase activity, complex that exhibits cyclinselective ubiquitin ligase activity.                                                                                                                                                                                                                         | 0.0031  |

|   | Accession number  | UniGene Mapping                          | Gene symbol and title                                                             | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P value |
|---|-------------------|------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|   | BE184455          | Hs.251754:128,Hs.24<br>5742:1            | SLPI, secretory leukocyte protease inhibitor<br>(antileukoprotelnase)             | Plasma protein, proteinase inhibitor. Secreted inhibitor which protects epithelial tissues from serine proteases. Found in various secretions including seminal plasma, cervical mucus, and bronchial secretions, has affinity for trypsin, leukocyte elastase, and cathepsin G. Its inhibitory effect contributes to the immune response by protecting epithelial surfaces from attack by endogenous proteolytic enzymes; the protein is also thought to have broad-spectrum anti- | 0.0034  |
|   | Y00815; NM_002840 | Hs.75216:262,Hs.228<br>792:1,Hs.245083:1 | PTPRF, protein tyrosine phosphatase, receptor<br>type, F                          | biolic activity.  Cell adhesion, integral plasma membrane protein, transmembrane receptor protein, tyrosine phosphatase signaling pathway. Receptor-type protein tyrosine phosphatase F; interacts with the insulin                                                                                                                                                                                                                                                                 | 0.0035  |
| - | AA706017          | Hs.119944:14                             | ESTs                                                                              | receptor; nas ig-like and FIN-III repeats in the extracellular domain<br>Function unknown                                                                                                                                                                                                                                                                                                                                                                                           | 0.0038  |
| - | AA256641          | Hs.236894:24                             | ESTs, Highly similar to S02392 alpha-2-<br>macroglobulin receptor precursor       | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0041  |
|   | AW055308          | Hs.31803:15                              | ESTs, Weakly similar to TRHY_HUMAN<br>TRICHOHYALI [H.sapiens]                     | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0043  |
| • | Al301558          | Hs.290801:35,<br>Hs.356228               | EST                                                                               | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0044  |
| • | <b>T18997</b>     | Hs.180372:119;<br>Hs.394609              | BCL2-like 1, Homo saplens cDNA FLJ20750 fis, clone HEP05174 (hypothetical protein | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0044  |
| • | AI798863          | Hs.87191:8                               | ESTs                                                                              | Finction inknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000    |
| • | J03258            | Hs.2062:146                              | VDR, vitamin D (1,25- dihydroxyvitamin D3)<br>receptor                            | DNA binding, signal transduction, vitamin D3 receptor. Zino-finger DNA-binding transcription factor. Genetic polymorphism determines bone mineral density. Start-vitamin D receptor interactions antagonize 1,25-dihydroxyvitamin D transcriptional activity and                                                                                                                                                                                                                    | 0.0049  |
| • | AA151647          | Hs.68877:141,Hs.228<br>686:1             | CYBA, cytochrome b-245, alpha polypeptide                                         | ennance start-mediated transcription. Cytochrome b, membrane, mitochondrion, superoxide metabolism. Alpha-subunit of cytochrome b245, primary component of the microbicidal oxidase system of phagocytes. CYBA deficiency is associated with chronic granulomatous disease (CGD).                                                                                                                                                                                                   | 0.005   |

| Accession number      | UniGene Mapping               | Gene symbol and title                                            | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P value |
|-----------------------|-------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Al538613              | Hs.135657:8                   | TMPRSS3 Transmembrane protease, serine 3                         | integral membrane protein, proteobysis and peptidolysis. Contains a serine protease domain, a transmembrane domain, a LDL receptorlike domain, and a scavenger receptor cystelne-rich domain. Serlne proteases are known to be involved in a variety of biological processes, whose malfunction often leads to human diseases and disorders. Expressed in fetal cochlea and many other tissues, and is thought to be involved in the development and maintenance of the inner ear or the contents of the pertlymph and endolymph. Missense mutations in autosomal recessive sensorineural deafness, Identified                                                                                                          | 0.0051  |
| NM_018000             | Hs.79741:18                   | FLJ10116, hypothetical protein FLJ10116                          | as a tumor associated gene that is overexpressed in ovarian tumors.  Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0051  |
| NM_144724<br>AJ278016 | Hs.124740:18<br>Hs.55565:35   | hypothetical protein FLJ30532<br>ANKRD3, ankyrin repeat domain 3 | 59% identity to human Zinc finger protein 91 ATP binding, protein amino acid phosphorylation, protein binding, protein serine/threonine kinase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0051  |
| NM_013894             | Hs.75562:147                  | DDR1, discoidin domain receptor family, member<br>1              | Cell adhesion, Integral plasma membrane protein, transmembrane receptor, protein tyrosine kinase. Epithelial-specific receptor protein tyrosine kinase; are involved in cell adhesion; has putative discoldin motifs in extracellular domain. DDR1 (CD167a) is a RTK that is widely expressed in normal and transformed epithelial cells and is activated by various tyros of collaren.                                                                                                                                                                                                                                                                                                                                 | 0.0055  |
| T09997: NM_001312     | Hs.70327:196,Hs.211           | CRIP-2, cysteine-rich protein 2                                  | activated by various typics of companies and protein containing 2 Zn-finger LIM domain protein;208-amino acid protein containing 2 LIM domains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0055  |
| BE302796              | Hs.105097:115                 | TK1, thymidine kinase 1, soluble                                 | Cytoplasm, thymidine kinase. Generates thymidylate for DNA synthesis. TK1 gene expression together with TS, TP and DPD gene expression may play important roles in influencing the malignant behavior of explain contact Fillward R 2002.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.006   |
| NM_001067             | Hs.156346:184,Hs.27<br>0810:2 | TOP2A, topolsomerase (DNA) II alpha (170kD)                      | DNA binding, DNA topolsomerase (ATP-hydrolyzing), nucleus. DNA topolsomerase (ATP-hydrolyzing), nucleus. DNA topolsomerase I apha; may relax DNA torsion upon replication or transcription. Involved in processes such as chromosome condensation, chromatid separation, and the relief of torsional stress that occurs during DNA transcription and replication. Catalyzes the transient breaking and rejoining of two strands of duplex DNA. The gene encoding this enzyme functions as the target for several anticancer agents and a variety of mutations in this gene have been associated with the development of drug resistance. Reduced activity of this enzyme may also play a role in ataxia-telangiectasia. | 900.0   |

| Accession number       | UniGene Mapping                            | Gene symbol and title                                                                            | Putative Function                                                                                                                                                                                                                                                               | P value |
|------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| U46455                 | Hs.252189:148,Hs.24<br>8217:1              | SDC4, syndecan 4 (amphiglycan, ryudocan)                                                         | Integral plasma membrane, proteoglycan syndecan. Syndecans are transmembrane heparan sulfate proteoglycans that appear to act as recenting or consenting the proteographs included in integral, and appears to act as                                                           | 0.0061  |
| M79141<br>A1955040     | Hs.13234:39<br>Hs.301584:5,Hs.2653<br>98:3 | ESTs<br>ESTs, Moderately similar to hypothetical protein<br>FLJ20378 [Homo sapiens]              | Members of the MYC gene family and 4 members of the syndecan gene family are closely situated on 4 different chromosomes. Function unknown                                                                                                                                      | 0.0062  |
| NM_005560              | Hs.11669:81,Hs.2310<br>10:1                | LAMAS, laminin, alpha 5                                                                          | Basement lamina, structural molecule. Widely expressed in adult tissues, with highest levels in lung, heart, and kidney. Fifth member of the alpha subfamily of vertebrate laminin chains. Possible                                                                             | 0.0066  |
| BE563085               | Hs.833:97                                  | ISG15, interferon-stimulated protein, 15 kDa                                                     | basament membrane protein; contains laminin EGF-like domain, two extracellular laminin G domains. Cell-cell signaling, cytoplasm, extracellular space, protein binding. Protein that is induced by interferon.                                                                  | 0.0068  |
| BE278288               | Hs.155048:119                              | LU, Lutheran blood group (Auberger b antigen included)                                           | Blood group antigen, cell adhesion, Integral plasma membrane protein, signal transduction, transmembrane receptor. Lutheran                                                                                                                                                     | 0.0069  |
| NM_020859              | Hs.278628:52                               | ShrmL, Shroom-related protein (KIAA1481<br>protein)                                              | blood group glycoprotein; may play role in cell-cell, cell-matrix adhesion, signal transduction; member of the lg superfamily, has integrin-binding motifs, SH3 domains. Amilonde-sensitive sodium dhannel (weakly similar to Mus musculus PD7 domain activity blooms provided. | 0.0074  |
| Al262789               | Hs.93659:52                                | ERP70, protein disulfide isomerase related protein (calcium-binding protein, intestinal-related) | Endoplasmic reticulum lumen, protein secretion. Strongly similar to rat Rn.4070 (CABP2); may bind calcium.                                                                                                                                                                      | 0.008   |
| NM_006147              | Hs.11801:77                                | IRF6, interferon regulatory factor 6                                                             | Member 6 of the Interferon regulatory factor transcription factor family; has low similarity to IRF4, which is a lymphocytic transcription                                                                                                                                      | 0.0082  |
| R61463                 | Hs.16165:50                                | LAK-4P, expressed in activated T/LAK iymphocytes                                                 | ractor that stimulates B cell proliferation.<br>expressed in activated T/LAK tymphocytes                                                                                                                                                                                        | 0.0082  |
| AI878857;<br>NM_016185 | Hs.109706;285                              | HN1, hematological and neurological expressed 1 protein                                          | Strongly similar to murine Hn1                                                                                                                                                                                                                                                  | 0.0087  |
| AK001783               | Hs.73239:37                                | FLJ10901, hypothetical protein FLJ10901                                                          | B link shows some homology to KIAA1294 but no known function                                                                                                                                                                                                                    | 0.009   |

| Accession number       | UniGene Mapping               | Gene symbol and title                                          | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                   | P value |
|------------------------|-------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| AC004770               | Hs.4756:99                    | FEN1, flap structure-specific endonuclease 1                   | DNA repair enzyme, DNA replication, UV protection, double-strand break repair, double-stranded DNA binding, double-stranded DNA specific exodeoxyribonuclease, endonuclease, fatty acid desaturation, membrane fraction. Removes 5' overhanging flaps in DNA repair and processes the 5' ends of Okazaki fragments in location strand but symbols.                                                                                                  | 0.0093  |
| AI567421               | Hs.273330:137                 | AGRN: agrin                                                    | Agrin is a neuronal aggregating factor that induces the aggregation of acetylcholine receptors and other postsynaptic proteins on muscle fibers and is crucial for the formation of the neuromuscular junction. Acts at the nerve-muscle synapse in the glomerular basal membrane                                                                                                                                                                   | 0.0093  |
| AW161386               | Hs.13561:49                   | MGC4692: hypothetical protein MGC4692                          | ata on Tyriprovyco.<br>Function unknown                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0103  |
| M85430                 | Hs.155191:546                 | VIL2, villin 2 (ezrin)                                         | Cytoskeletal anchoring, microvilius. Regulates cell adhesion and cortical morphogenesis. The cytoplasmic peripheral membrane protein encoded by this gene functions as a protein-tyrosine kinase substrate in microvilii. As a member of the ERM protein family, this protein serves as an intermediate between the plasma membrane and the actin cytoskeleton. It plays a key role in cell surface structure adhesion prication and order protein. | 0.0106  |
| AW250380               | Hs.109059:124,Hs.24<br>756:11 | MRPL12, mitochondrial ribosomal protein L12                    | Protein synthesis, General cellular role, Ribosomal subunit, Mitochondral, RNA-binding protein, Ribosome-associated.                                                                                                                                                                                                                                                                                                                                | 0.0114  |
| AI733848;<br>NM_021220 | Hs.71935:13                   | ZNF339, zinc finger protein 339                                | Zinc finger protein                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0115  |
| AF111856;<br>NM_006424 | Hs.105039:48                  | SLC34A2, solute carrier family 34 (sodlum phosphate), member 2 | SLC34A2: solute carrier family 34 (sodium phosphate), member 2; contains 8 predicted TMs and a cysteine-rich N-terminal region. Type 2 sodium-dependent phosphate transporter, member of the renal type II ro-transporter family.                                                                                                                                                                                                                   | 0.0121  |
| BE386983;<br>NM_138410 | Hs.343214                     | CKLFSF7; chemokine-like factor super family 7                  | chemokine-like factor gene superfamily; transmb 4 superfamily                                                                                                                                                                                                                                                                                                                                                                                       | 0.0131  |
| AA433988               | Hs.98502:8                    | MUC16, mucin 16, CA125                                         | Mucin 16. Alias CA125 ovarian cancer antigen                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0137  |
| AW248314               | Hs.9622:83                    | MRPS18A, mitochondrial ribosomal protein S18A                  | Mitochondrial small ribosomal subunit, protein biosynthesis, structural constituent of ribosomeribosomal mitochondrial protein                                                                                                                                                                                                                                                                                                                      | 0.0149  |

| Accession number       | UniGene Mapping                           | Gene symbol and title                                                 | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P value |
|------------------------|-------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| AA454501               | Hs.43668:65                               | PTP4A3, protein tyrosine phosphatase type IVA,<br>member 3            | Prenylated protein tyrosine phosphatase. PTPs are cell signaling molecules that play regulatory roles in a variety of cellular processes. Strong similarity to murine Ptp4a3 (Mm.4124). Overexpression of this gene in mammalian cells was reported to Inhibit angiotensin-II induced cell calcium mobilization and promote cell growth. PRL3 (PTP4A3) expressed at high levels cancer metastases (Saha et al. 2001), PRL3 gene is important for colorectal cancer metastasis. | 0.016   |
| U33446                 | Hs.75799:116                              | PRSS8, protease, serine, 8 (prostasin)                                | Extracellular space, plasma membrane, serine type peptidase. A trypslnogen, member of the trypsin family of serine proteases. Highly expressed in prostate epithelia, one of several proteolytic enzymes found in seminal fluid. Protease-mediated regulation of sodium absorption is a function of human airway epithelia, and prostasin is a likely candidate for this arrivals.                                                                                             | 0.0166  |
| X98654                 | Hs.93837:43                               | PITPNM, phosphatidylinositol transfer protein,<br>membrane-associated | Brain development, lipid metabolism, membrane fraction, phosphatidylinositol transporter, phototransduction. Catalyzes the transport of phosphatidylinositol between membranes; similar to Drocophila men                                                                                                                                                                                                                                                                      | 0.0167  |
| AI660149               | Hs.44865:39,Hs.3008<br>19:19,Hs.293904:14 | LEF1, Lymphold enhancer-binding factor-1.                             | Very strongly similar to murine Leff; may act as a transcription factor. Expressed in pre-B and T cells. Binds to T-cell receptor-alpha enhancer and confers maximal enhancer activity. A target gene ectopically activated in colon cancer, from selective activation of a promoter for a full-length LEF1 isoform that binds beta-catenin                                                                                                                                    | 0.0172  |
| AF098158;<br>NM_012112 | Hs.9329:152                               | C20orf1, chromosome 20 open reading frame 1                           | ATP binding, GTP binding, cell proliferation, mitosis, nucleus spindle. Proliferation-associated nuclear protein; associates with the spindle note and mitoric squalle nuclear protein.                                                                                                                                                                                                                                                                                        | 0.0183  |
| AB014551               | Hs.337774<br>Hs.337774                    | ARHGEF2, rho/rac guanine nucleotide exchange factor (GEF) 2           | Cell shape and cell size control, cell surface receptor linked signal transduction, guanyi-nucleotide exchange factor, microtubule cytoskeleton. Rho GTPases play a fundamental role in numerous cellular processes that are initiated by extracellular stimuli that work through G protein coupled receptors. The encoded protein may form complex with G proteins and stimulate Rho-dependent signals. Rho/Rac guannine nucleotide exchange factor (GEP) 2; associates       | 0.0206  |
| Al278023               | Hs.89986:24,Hs.2907<br>80:1               | ESTs                                                                  | with micromothes, summates GFF officially on hac and Nito<br>Function unknown                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0208  |

| Accession number       | UniGene Mapping                       | Gene symbol and title                                                    | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P value |
|------------------------|---------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Z95152                 | Hs.178695:25,Hs.791<br>07:1           | MAPK13, mitogen-activated protein kinase 13                              | MAP kinase, antimicrobial humoral response (sensu Invertebrata), cell surface receptor, signal transduction, chemotaxis, stress response. MAP kinases act as an integration point for multiple blochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. Are activated by proinfiammatory cytokines and cellular stress. Transcription factor ATF2, and microtubule dynamics regulator stathmin are substrates of this | 0.0217  |
| AW840171               | Hs.265398:7                           | ESTs, Moderately similar to hypothetical protein FLJ20378 [Homo sapiens] | Kinase.<br>Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0222  |
| D49441                 | Hs.155981:53                          | MSLN, mesothelin                                                         | Cell adhesion, cell surface antigen, membrane. Pre-promegakaryocyte potentiating factor. An antibody that reacts with ovarian cancers and mesotheliomas was used to isolate a cell surface antigon named mesothelin. Although the function of mesothelin is unknown, it may play a role in cellular adhesion and is                                                                                                                                                                                                          | 0.0225  |
| AW797437               | Hs.69771:282,Hs.444:<br>1,Hs.294163:1 | EST, CM1-UM0039-030400-173-a09                                           | present on mesothellum, mesothellomas, and ovarian cancers.<br>Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0229  |
| BE396290               | Hs.5097;261                           | SYNGR2, synaptogydn 2                                                    | Integral plasma membrane protein, member of a family of transmembrane synaptic vesicle proteins, specialized secretory organelles that store neurotransmitters in nerve terminals, and release them by fusing with the presynaptic plasma membrane                                                                                                                                                                                                                                                                           | 0.0229  |
| Al656168;<br>NM_025080 | Hs.7331                               | ASRGL1; asparaginase like 1                                              | during exocytosis.<br>glycoprotein catabolism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02    |
| NM_002145              | Hs.2733;25                            | HOXB2, homeo box B2, Hox2H protein                                       | Circulation, developmental processes, transcription factor. Member of homeodomain family of DNA binding proteins; may regulate gene expression, morphogenesis, and differentiation. Genes of the HOXB (or HOX2) complex are expressed specifically in erythromegakaryocytic cell lines, some are expressed only in                                                                                                                                                                                                           | 0.024   |
| AW959311               | Hs.87019:8;<br>Hs.172012              | Hypothetical protein DKFZp434J037                                        | hematopoietic progenitors.<br>probabie serine/threonine protein kinase; KIAA0537                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0251  |

| Accession number   | UniGene Mapping                                           | Gene symbol and title                                                                                                           | Putative Function                                                                                                                                                                                                                                                                                   | P value |
|--------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| NM_000269          | Hs.118638:166,Hs.27<br>6104:1,Hs.276127:1,H<br>s.276246:1 | NME1, non-metastatic cells 1, protein (NM23A)                                                                                   | Transcription factor and nucleoside diphosphate kinase; has a role in the transcriptional regulation of c-myc expression. Mutations in NME1 have been identified in aggressive neuroblastomas.                                                                                                      | 0.0257  |
| AA379597           | Hs.5198:87,Hs.27719<br>2:1                                | HSPC150, HSPC150 protein similar to ublquitin-<br>conjugating enzyme                                                            | Similar to ubiquitin conjugating enzyme                                                                                                                                                                                                                                                             | 0.0259  |
| BE148235           | Hs.193063:100                                             | Homo saplens cDNA FLJ14201 fis, clone<br>NT2RP3002955                                                                           | high homology to ARP-3 actin-like protein                                                                                                                                                                                                                                                           | 0.0259  |
| Al683243; Al587638 | Hs.97258                                                  | ESTs                                                                                                                            | Mod similarity to S29539 ribosomal protein L13a                                                                                                                                                                                                                                                     | 0.03    |
| AF111713           | Hs.286218:64                                              | JAM1, junctional adhesìon molecule                                                                                              | Cell motility, Inflammatory response, intercellular junction. Role in the regulation of tight junction assembly in epithelia. Ligation of JAM is required for reovin-induced activation of NF-kappa-B and                                                                                           | 0.0261  |
| BE381635           | Hs.75725:450,Hs.274<br>751:1,Hs.277482:1,Hs<br>.277468:1  | TAGLN2, transgelin 2                                                                                                            | applyings, room in supplyings from the protein transgetin, which complex assembly protein. Homolog of the protein transgetin, which is one of the earliest markers of differentiated smooth muscle. Function not yet determined. Are an actin-binding protein.                                      | 0.0275  |
| D14697             | Hs.77393:201,Hs.247<br>769:1                              | FDPS, farnesyl diphosphate synthase (farnesyl pyrophosphate synthetase, dimethylallyltranstransferase, geranyltranstransferase) | Farnesyl pyrophosphate synthetase (farnesyl diphosphate synthase); part of the cholesterol synthesis pathway.                                                                                                                                                                                       | 0.0278  |
| AW194364           | Hs.94814                                                  | MGC2865, Hypothetical protein MGC2885                                                                                           | Function unknown.                                                                                                                                                                                                                                                                                   | 0.0295  |
| <b>T47364</b>      | Hs.278613:145                                             | IFI27, interteron, alpha-inducible protein 27                                                                                   | Integral membrane protein, Isolated from estradiol-treated human breast carcinoma cells, Induced by Interferon-alpha in human cell lines of different origin, expression is independent of the presence of estradial receives the cells                                                             | 0.03    |
| U17760             | Hs.301103:71,Hs.755<br>17:24,Hs.199068:1                  | LAMB3, Laminin, beta 3 (nicein (125kD), kalinin<br>(140kD), BM600 (125kD)) (Accn NM_000228)                                     | estation receptor in the cano.  Epidemad differentiation, laminin-6, structural molecule. Member of a family of basement membrane proteins. LAMB3 serves as the beta chain in lamitin-6, Mutations in LAMB3 have been identified as the cause of various trace of parlemanticis buildes.            | 0.0304  |
| AU076517           | Hs.184276:142                                             | SLC9A3R1, solute carrier family 9<br>(sodium/hydrogen exchanger), isoform 3<br>regulatory factor 1                              | Actin cytoskelebn, protein complex assembly. Regulatory cofactor of the NHE3 (SLC9A3) sodium/hydrogen antiporter; interacts with merlin (NF2) and ERM family members; has two PDZ domains. Structural determinants in interaction of beta 2 adrenergic and platelet-derived growth factor receptors | 0.0312  |

| Accession number       | UniGene Mapping                         | Gene symbol and title                                                                                            | Putative Function                                                                                                                                                                                                                                                                                                                                                               | P value |
|------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| AW880841               | Hs.96908 ,<br>Hs.74427:112              | PIG11 , p53-inducad protein                                                                                      | Negative control of cell proliferation, stress response. May generate or respond to oxidative stress, may have a role in p53-dependent apoptosis Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18:389(6548):300-5.                                                                                                  | 0.0314  |
| H24185                 | Hs.92918:91                             | BM-009, hypothetical protein BM-009                                                                              | Function unknown                                                                                                                                                                                                                                                                                                                                                                | 0.0314  |
| BE614410               | Hs.23044:51                             | MGC16386, hypothetical protein, similar to RIKEN cDNA                                                            | Function unknown.                                                                                                                                                                                                                                                                                                                                                               | 0.0326  |
| H16423                 | Hs.82685:37                             | CD47: CD47 antigen (Rh-related antigen, integrinassociated signal transducer)                                    | Oncogenesis, plasma membrane, plasma glycoprotein, cell-cell matrix adhesion, integral plasma membrane proteoglycan, Integrin receptor signal signalling pathway. Similar to Rh-antigen; may interact with integrins and have a role in intracellular calclum increase during cell adhesion.                                                                                    | 0.0336  |
| AU076611;<br>NM_006636 | Hs. 154672:123                          | MTHFD2, methylene tetrahydrofolate<br>dehydrogenase (NAD+ dependent);<br>methenyltetrahydrofolate cyclohydrolase | Electron fransporter, methenyltetrahydrofolate cyclohydrolase, mitochondrion. encodes a ruclear-encoded mitochondrial bifunctional enzyme with methylenetetrahydrofolate dehydrogenase and methenyltetrahydrofolate cyclohydrolase activities, may provide formyltetrahydrofolate for formylmethionyl tRNA synthesis; Involved in inflation of mitochondrial protein synthesis. | 0.0342  |
| Al859390               | Hs.288940:49                            | TMEM8, five-span transmembrane protein M83; type i transmembrane protein                                         | Integral plasma membrane protein. Type I transmembrane protein;<br>contains five membrane-spanning domains                                                                                                                                                                                                                                                                      | 0.0345  |
| AA159216               | Hs.55505:57                             | FLJ20442, hypothetical protein FLJ20442                                                                          | Contains a dual specificity protein phosphatase catalytic domain; 34% similar to protein-tyrosine phosphatase                                                                                                                                                                                                                                                                   | 0.0354  |
| AF119665;<br>NM_021129 | Hs.184011:156                           | PP, pyrophosphatase (inorganic)                                                                                  | Inorganic diphosphatase, phosphate metabolism. Catalyzes the hydrolysis of pyrophosphate to inorganic phosphate                                                                                                                                                                                                                                                                 | 0.0358  |
| BE513613;<br>NM_005720 | Hs.11538:275                            | ARPC1B, actin related protein 2/3 complex, subunit 1A (41,kD)                                                    | Cell motility, structural constituent of cytoskeleton. Arp2/3 complex, subunit 1A; involved in assembly of the actin cytoskeleton, may have a role in profit sion of lamellinodia.                                                                                                                                                                                              | 0.0367  |
| NM_012153              | Hs.182339                               | EHF: ets homologous factor                                                                                       | DNA binding, tumor suppressor, cell proliferation, developmental processes, transcription activating factor. Member of the ESE subfamily of fits transcription factors.                                                                                                                                                                                                         | 0.0404  |
| AW772298               | Hs.21103:40,Hs.2667<br>84:2,Hs.102950:1 | Homo saplens mRNA; cDNA DKFZp564B076<br>(from clone DKFZp564B076)                                                | Alias coat protein gamma-cop                                                                                                                                                                                                                                                                                                                                                    | 0.0423  |
| H16646                 | Hs.118666:66                            | PP591, hypothetical protein PP591                                                                                | Hypothetical protein PP591 (Novel Human cDNA clones with function of inhibiting cancer cell growth; unpublished)                                                                                                                                                                                                                                                                | 0.043   |

| Accession number     | UniGene Mapping              | Gene symbol and title                                        | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                | P value |
|----------------------|------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| AA279661             | Hs.83753:244,Hs.301<br>236:3 | SNRPB, small nuclear ribonucleoprotein polypeptides B and B1 | Spliceosome, mRNA splicing, small nuclear ribonucleoprotein. Ut and U2 snRNP protein; component of snRNP complexes, required units of the spliceosome                                                                                                                                                                                                                                                                                            | 0.0446  |
| BE001596             | Hs.85266:102                 | iTGB4, integrin, beta 4                                      | Cell adhesion receptor, integrin, invasive growth, oncogenesis. Beta 4 subunit of integrin; involved in cell-cell and cell-matrix interactions; member of a family of cell-surface proteins. Binding of beta 4 to plectin is essential for the proper formation and function of hemidesmosomes.                                                                                                                                                  | 0.0453  |
| BE246444             | Hs.283685:148,Hs.23          | FLJ20398, hypothetical protein FLJ20398                      | 100%/175aa unnamed protein g7020468                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0453  |
| X54942               | Hs.83758.34                  | CKS2, CDC28 protein kinase 2                                 | Cell proliferation, regulation of CDK activity. Similar to S. pombe p13suc1; binds and regulates CDK-cyclin complexes, expressed in different patterns through the cell cycle in HeLa cells, which reflects                                                                                                                                                                                                                                      | 0.0478  |
| AA30559B             | Hs.238205:36                 | PRO2013, hypothetical protein PRO2013                        | Specialized for it is an action provide. Function unknown                                                                                                                                                                                                                                                                                                                                                                                        | 0.0483  |
| AF019228             | Hs.8036:84                   | RAB3D, member RAS oncogene family                            | RAB small monoment GTPase, hemocyte development. GTP-<br>binding protein; are involved in vesicle transport; member of the RAB<br>family of small GTPases. Allas GOV, that is overexpressed in<br>glicoblastoms multiforme tissue as compared to normal brain tissue.<br>GOV is also highly expressed in recurrent glioma, colon tumor                                                                                                           | 0.0485  |
| NM_001949            | Hs.1189:65,Hs.29693<br>9:2   | E2F3, E2F transcription factor 3                             | metastatic to brain, breast tumors, prostate tumors, and several tumor cell lines Protein binding, transcription factor, transcription initiation from Pol II promoter. Involved in cell cycle regulation, binds retinoblastoma protein (Rb), E2P family plays a crucial role in the control of cell cycle and action of tumor suppressor proteins and is also a target of cycle and action of tumor suppressor proteins and is also a target of | 0.049   |
| AF217513             | Hs.279905:73,Hs.283<br>649:4 | ANKT, nucleolar protein ANKT                                 | the transforming proteins of sinear browning wissons. clone HQ0310 PRO0310p1 nucleolar protein ANKT ~ no functional data                                                                                                                                                                                                                                                                                                                         | 0.0504  |
| AW513143<br>AJ245671 | Hs.98367:8<br>Hs.12844:73    | ESTs<br>EGFL0, EGF-like-domaln; multiple 6                   | Expressed in uterus Cell cycle, oncogenesis, integrin ligand, extracellular space. Member of the epidernal growth factor (EGF) repeat superfamily, contains an EGF-like-domain. Expressed early during development, and its                                                                                                                                                                                                                      | 0.0568  |
| AA084248             | Hs.85339:64                  | GPR39, G protein-coupled receptor 39                         | expression has been detected in lung and meningioma tumors. G-protein linked receptor, G-protein coupled receptor protein signaling pattway, integral plasma membrane protein.                                                                                                                                                                                                                                                                   | 0.19    |

| Accession number | UniGene Mapping            | Gene symbol and title                                              | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P value |
|------------------|----------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| U62801           | Hs.79361:65                | KLK6, kallikrein 6 (neurosin, zyme)                                | Serine type peptidase, pathogenesis. Neurosin (protease M, zyme); a serine protease that cleaves amyloid precursor protein (APP). Growing evidence suggests that many kallikreins are implicated in carcinogenesis and some have potential as novel cancer and other disease humanders.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0159  |
| D49441           | Hs. 155981:53              | MSLN, mesothelin                                                   | usease Julianels.  Cell adhesion, cell surface antigen, membrane. Pre-pro- megakaryocyte potentiating factor. An antibody that reacts with  ovarian cancers and mesotheliomas was used to isolate a cell  surface antigen named mesothelin. Although the function of  mesothelin is unknown, it may play a role in cellular adhesion and is  present on mesothelium mesothelium and ovarian cancers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.147   |
| X51630           | Hs.1145:22,Hs.29685<br>1:1 | WT1, Wilms tumor 1                                                 | Nucleus, transcription factor, transcription regulation, 4 Zn finger domains. Functions in kidney and gonad proliferation and differentiation. Mutations in this gene are associated with the development of Volims tumors in the kidney or with abnormalities of the negligible of the propriet of the properties of the propriet of the properties of the propriet of the properties of the properti | 0.2938  |
| AB018305         | Hs.5378:149                | SPON1, spondin 1, (f-spondin) extracellular matrix protein         | by Sommon and the state of the strongly similar to rat F-spondin (Rn. 7546); may have a role in the growth and guidance of axons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3394  |
| AA433988         | Hs.98502:8                 | MUC16, mucin 16, CA125                                             | Mucin 16. Alias CA125 ovarian cancer antigen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.6568  |
| NM_006149        | Hs.5302:132                | LGALS4, lectin, galactoside-binding, soluble, 4<br>(galectin 4)    | Lectin, cytosol, cell adhesion, plasma membrane. Binds to beta galactoside, involved in cell adhesion, cell growth regulation, inflammation, immunomodulation, apoptosis and metastasis; member of a family of lectins. LGALS4 is an S-type lectin that is strongly underexpressed in colorectal cancer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0001  |
| AA315933         | Hs.120879:17               | Homo sapiens, clone MGC:32871<br>IMAGE:4733535, mRNA, complete cds | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0001  |
| U47732           | Hs.84072:110               | TM4SF3, transmembrane 4 superfamily member 3                       | Integral plasma membrane protein, lysosome, pathogenesis, protein amino acid glycosylation, signal transducer, tumor antigen. Cell surface glycoprotein defined by the monoclonal antibody CO-029 is a 27- to 34-kD membrane protein expressed in gastific, colon, rectal, and pancreatic carcinomas but not in most normal tissues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0028  |

| Accession number | UnlGene Mapping | Gene symbol and title                                                                                 | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                               | P value |
|------------------|-----------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| NM_005588        | Hs.179704       | MEP1A, meprin A alpha, PABA peptide hydrolase                                                         | metalloprotease located apically and secreted by epithelial cells in normal colon; degrades broad range of ECM components in vitro; proposed role in tumour progression by facilitating migration, intravasation and metastasis                                                                                                                                                                                                                                 | 0.01    |
| AW503395         | Hs.5541:112     | ATP2A3, ATPase, Ca++ transporting, ubiquitous                                                         | Endoplasmic retrculum, adenosinetriphosphatase, small molecule transport, calcium-transporting ATPase, Integral plasma membrane protein. Sarco/endoplasmic retrculum Ca2+-ATPase; pumps calcium.                                                                                                                                                                                                                                                                | 0.0154  |
| NM_004063        | Hs.89436.50     | CDH17, cadherin 17, Ll cadherin (liver-intestine)                                                     | Cell adhesion, integral plasma membrane protein, membrane fraction, small molecule transport, transporter. Member of the cadherin family of calclum-dependent glycoproteins; facilitates uptake of peptide-based drugs, may mediate cell-cell interactions. Component of the gastrointestinal tract and pancreatic ducts, intestinal proton-dependent peptide transporter in the first step in oral absorption of many medically important peptide-based drugs. | 0.0172  |
| AI073913         | Hs.100686:20    | LOC155465, antentor gradient protein 3                                                                | Oncogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0266  |
| A1928445         | Hs.92254:80     | SYTL2: synaptotagmin-like 2                                                                           | Synaptotagmin-like protein of the C2 domain-containing family of proteins. Although the specific function of the synaptotagmin-like proteins is unknown, a role in regulation of synaptic vesicle trafficking via their C2 domains has been suggested. Region of weak                                                                                                                                                                                           | 0.08    |
| W40460           | Hs.144442:5     | PLA2G10: phospholipase A2, group X                                                                    | similarity to murine Uph Extracellular, secreted phospholipase A2. Group X secretory phospholipase_a2; hydrolyzes the phospholipid sn-2 ester bond; member of the phospholipase family                                                                                                                                                                                                                                                                          | 0.1888  |
| AA132961         | Hs.212533:4     | Homo saplens cDNA: FL/22572 fis, done<br>HSi02313                                                     | . Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1965  |
| AF111856         | Hs.105039:48    | SLC34A2, solute carrier family 34 (sodium phosphate), member 2                                        | SLC34A2: solute carrier family 34 (sodium phosphate), member 2; contains 8 predicted TMs and a cysteine-rich N-terminal region. Type 2 sodium-dependent phosphate transporter, member of the renal type II co-transporter family.                                                                                                                                                                                                                               | 0.5078  |
| AA143654         |                 | zo65a02.r1 Stratagene pancreas (#937208) Homo<br>saplens cDNA clone IMAGE:591722 5', mRNA<br>sequence | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.036   |

| Accession number                                  | UniGene Mapping | Gene symbol and title                                                                                        | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P value |
|---------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| b. prognostic indicators<br>AA046217<br>NM_015902 | Hs. 105370;2    | ESTs<br>EDD:Homo saplens progestin induced protein<br>(DD5), mRNA. VERSION NM_020987.1 GI                    | Function unknown Soluble fraction, cell proliferation, ublquitin—protein ligase, ubiquitin conjugating enzyme, ublquitin-dependent protein degradation. Member of the HECT family of proteins; may function as an E3 ublquitin-protein ligase. This gene is localized to chromosome 8q22, a locus disrupted in a variety of cancers. This gene potentially has a role in regulation of cell proliferation or differentiation.                                             | 0.00    |
| T8382<br>#(NOCAT)                                 | Hs.97927:20     | ESTs<br>NM_001615*:Homo saplens actin, gamma 2,<br>smooth muscle, enteric (ACTG2), mRNA. variant<br>1, mRNA. | Function unknown<br>Structural protein of muscle. Gamma 2 actin; enteric-type, smooth<br>muscle cell actin.                                                                                                                                                                                                                                                                                                                                                               | 0.01    |
| AB040888                                          |                 | Homo sapiens mRNA for KIAA1455 protein, partial cds                                                          | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01    |
| AA628980                                          | Hs.192371:3     | DSCR8<br>down syndrome critical region protein DSCR8                                                         | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01    |
| AI623351                                          | Hs.172148:51    | ESTs                                                                                                         | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01    |
| AW614420                                          | Hs.204354:383   | ARHB<br>ras homolog gene family, member B                                                                    | RHO small monomeric GTPase, RHO protein signal transduction, peripheral plasma membrane protein. Ras-related GTP binding protein of the rho subfamily, member B; may regulate assembly of actin stress fibers and focal adhesions; very strongly similar to murine Arth.                                                                                                                                                                                                  | 0.01    |
| AA243499                                          | Hs.104800:23    | hypothetical protein FLJ10134                                                                                | Highly similar to murine p19.5; are a membrane protein                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01    |
| AF251237                                          | Hs.112208:16    | GAGED2<br>XAGE-1 protein                                                                                     | GAGE genes are expressed in a variety of tumors and in some fetal and reproductive tissues. This gene is strongly expressed in Ewing's sarcoma, alveolar rhabdomyosarcoma and normal testis. The protein encoded by this gene contains a nuclear localization signal and shares a sequence similarity with other GAGE/PAGE proteins. Because of the expression pattern and the sequence similarity, this protein also belongs to a family of CT (cancer-testis) antigens. |         |
| AI970797                                          | Hs.64859:16     | ESTs                                                                                                         | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01    |
| AF145713                                          | Hs.61490:51     | SCHIP1<br>schwannomin-Interacting protein 1                                                                  | Cytoplasm. Associates with the neurofibromatosis type 2 protein schwannomin (NF2); contains a colled-coll domain/Proteome                                                                                                                                                                                                                                                                                                                                                 | 0.01    |

| Accession number     | UniGene Mapping                                 | Gene symbol and title                                                                                      | Putative Function                                                                                                                                                                                                                                                                                                                                                                   | P value |
|----------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| X78565               | . Hs.289114:173,Hs.74<br>637:1                  | TNC<br>hexabrachion (tenascin C, cytotactin)                                                               | Cell adhesion, extracellular matrix, cell adhesion receptor, ligand bluding or carrier. Hexabrachion (tenascin c), an extracellular matrix glycoprotein; has epidermal growth factor-like repeats                                                                                                                                                                                   | 0.01    |
| T97307               |                                                 | gb:ye53h05.s1 Soares fetal liver spleen 1NFLS<br>Homo sapiens cDNA done IMAGE:121497 3',<br>mRNA sequence. | Function unknown                                                                                                                                                                                                                                                                                                                                                                    | 0.01    |
| BE243845             | Hs.75511:418                                    | CTGF<br>connective tissue growth factor                                                                    | Cell motility, plasma membrane, soluble fraction, response to wounding, extracellular matrix, extracellular space, epidermal differentiation, cell growth and maintenance, insulin-like growth factor binding, insulin-like growth factor receptor binding protein. Connective tissue growth factor, blinds IGF, may have a role in requisition ormal and neonjastic cell emowship. | 0.01    |
| AW068302             | Hs.182183:214,Hs.32<br>5474:172,Hs.283080:<br>7 | CALD1<br>caldesmon 1                                                                                       | Cytoskeleton, actin blinding, calmodulin blinding, tropomyosin binding. Protein of unknown function. Actomyosin regulatory protein, non-muscle form                                                                                                                                                                                                                                 | 0.01    |
| AL133561<br>BE313555 | Hs.241428:5<br>Hs.7252:158                      | DKFZP434B081 protein<br>RAI17<br>refinite and Indured 17                                                   | Function unknown<br>Function unknown                                                                                                                                                                                                                                                                                                                                                | 0.01    |
| X07820               | Hs.2258:1                                       | MMP10<br>matrix metalloproteinase 10 .(MMP10; stromelysin<br>2)                                            | Zinc binding, extracellular space, extracellular matrix, metalloendopeptidase, proteolysis and peptidolysis. Stromelysin 2; matrix metalloprotease that degrades connective tissue                                                                                                                                                                                                  | 0.02    |
| Al973016             | Hs.15725:77                                     | IERS<br>Immediate early response 5                                                                         | Function unknown. A related mouse gene may play an important role in mediating the cellular response to mitogenic signals.                                                                                                                                                                                                                                                          | 0.02    |
| AF084545             |                                                 | Homo saplens versican Vint isoform, mRNA, partial cds                                                      | Function unknown                                                                                                                                                                                                                                                                                                                                                                    | 0.02    |
| U41518               | Hs.74602:146,Hs.767<br>:1                       | AQP1<br>aquaporin 1 (channel-forming integral protein,<br>28kD)                                            | Excretion, water transport, water transporter, integral plasma membrane protein. Aquaporin 1 (channel-forming integral protein); member of a family of water-transporters                                                                                                                                                                                                           | 0.02    |
| Z11894               |                                                 | H.sapiens rearranged mRNA for immunoglobulin kappa chain (VNJ)                                             |                                                                                                                                                                                                                                                                                                                                                                                     | 0.02    |
| AW138190             | Hs.180248:8                                     | ZNF124                                                                                                     | DNA binding, C2H2 zino-finger protein 124                                                                                                                                                                                                                                                                                                                                           | 0.02    |
| BE086548             | Hs.42346:83,Hs.6975<br>:42                      | MYOZZ<br>myozenin 2<br>myozenin 2                                                                          | calcineurin-binding protein calsardin-1                                                                                                                                                                                                                                                                                                                                             | 0.02    |

| Accession number UniGene Mapping | UniGene Mapping              | Gene symbol and title                                                                                                                   | Putative Function                                                                                                                                                                                                                                                                                                                                       | P value |
|----------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| W47196                           | Hs.166172:50                 | ARNT<br>aryl hydrocarbon receptor nuclear translocator                                                                                  | Nucleus, transcription factor, transcription co-activator, transcription, DNA-dependent, protein-nucleus import, translocation, aryl hydrocarbon receptor nuclear translocator. Aryl hydrocarbon receptor nuclear translocator, used in receptor furchear translocator, used in receptor furchear translocator, used in receptor furchear translocator. | 0.02    |
| Al796870                         | Hs.54277:76                  | DXS9928E DNA segment on chromosome X (unique) 9928                                                                                      | Nucleus. Has many charged residues and a possible nuclear localization signal                                                                                                                                                                                                                                                                           | 0.02    |
| X02761                           | Hs.287820:73,Hs.321<br>592:1 | expressed sequence<br>FN1<br>fibronectin 1                                                                                              | Cell adhesion, cell motility, cell adhesion, soluble fraction, signal transduction, extracellular matrix, extracellular space. Fibronectin 1; member of family of proteins found in plasma and extracellular matrix.                                                                                                                                    | 0.02    |
| AW968613                         | Hs.79428:166                 | BNIP3<br>BCL2/adenovirus E1B 19kD-interacting protein 3                                                                                 | Anti-apoptosis, apoptosis Inhibitor, Bci2-related protein 3; binds antiapoptotic viral E18 19 kDa protein and cellular Bci2 protein                                                                                                                                                                                                                     | 0.05    |
| AW972565                         | Hs.32399:24                  | ESTs, Weakly similar to S51797 vasodilator-<br>stimulated phosphoprotein [H.saplens]                                                    | Function unknown                                                                                                                                                                                                                                                                                                                                        | 0.02    |
| AF045229                         | Hs.82280:81                  | RGS10<br>regulator of G-protein signalling 10                                                                                           | Regulator of G protein signaling (RGS) family members are regulatory molecules that act as GTPase activating proteins (GAPs) for G alpha subunits of heterotimeric G proteins. RGS proteins are able to deactivate G protein subunits of the Gl alpha, Go alpha and Gq alpha subtypes. They drive G proteins into their inactive GDP-bound forms.       | 0.02    |
| AW953853                         | Hs.292833:19                 | PAEP progestagen-associated endometrial protein (placental protein 14, pregnancy-associated endometrial alpha-2-globulin, alpha uterine | Developmental processes. Placental protein 14 (Glycodelin);<br>member of lipocalin superfamily, highly similar to beta-lactoglobulins                                                                                                                                                                                                                   | 0.02    |
| U52426                           | Hs.74597:75,Hs.1576<br>15:3  | STIM1<br>STIM1<br>stromal interaction molecule 1                                                                                        | Integral plasma membrane protein, positive control of cell proliferation. Very strongly similar to murine Stim1; are a transmembrane stromal cell protein                                                                                                                                                                                               | 0.02    |
| F06700                           | Hs.7879:115                  | IFRD1<br>Interferon-related developmental regulator 1                                                                                   | Myoblast determination. Strongly similar to rat interferon-related developmental regulator 1; may play a role in muscle differentiation                                                                                                                                                                                                                 | 0.02    |
| A1798863<br>NA                   | Hs.87191:8                   | ESTs<br>C4001170:gi 6863176 gb AAF30402.1 AF109924_<br>1 (AF109924) sulfatase 1 precursor [Helix poma                                   | Function unknown                                                                                                                                                                                                                                                                                                                                        | 0.03    |
| H52761                           | Hs.141475:24                 | Homo sapiens cDNA done IMAGE:178663                                                                                                     | Function unknown                                                                                                                                                                                                                                                                                                                                        | 0.03    |

| Accession number | UniGene Mapping                        | Gene symbol and title                                                                                    | Putative Function                                                                                                                                                                                                                                                            | P value |
|------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| BE546947         | Hs. 44276:43                           | HOXC10<br>homeo box C10                                                                                  | Embryogenesis and morphogenesis, positive control of cell proliferation, RNA polymerase II transcription factor. Homeobox C10, member of the homeobox developmental regulator family; binds with HOXA13 and HOXC13 to the Lamin B2 origin; ortholog of Drosophila Andminal R | 0.03    |
| AU076643         | Hs.313:257,Hs.32991<br>0:1             | SPP1. secreted phosphoprotein 1 (osteopontin, bone sialoprotein I, early T-lymphocyte activation 1)      | Ossimirario extracellular matrix, skeletal development. Osteopontin (bone staloprotein); bone and blood vessel extracellular matrix protein involved in calcification and atherosclerosis                                                                                    | 0.03    |
| #(NOCAT)         |                                        | NM_015902*:Homo saplens progestin Induced<br>protein (DD5), mRNA. VERSION NM_020967.1 GI                 |                                                                                                                                                                                                                                                                              | 0.03    |
| U20538           | Hs.3280;20                             | CASP6<br>caspase 6, apoptosis-related cysteine protease                                                  | Induction of apoptosis, cysteine-type peptidase, proteolysis and peptidolysis. Caspase 6; a cysteine (thiol) protease; related to the ICE-subfamily of caspases                                                                                                              | 0.03    |
| AA581602         | Hs.41840:7                             | ESTs                                                                                                     | Function unknown                                                                                                                                                                                                                                                             | 0.03    |
| AJ245210         |                                        | gb:Homo sapiens mRNA for immunoglobulin<br>gamma heavy chain variable region, partial, clone<br>1A-4G21. | Function unknown                                                                                                                                                                                                                                                             | 0.03    |
| X65965           |                                        | H.sapiens SOD-2 gene for manganese superoxide dismutase                                                  |                                                                                                                                                                                                                                                                              | 0.03    |
| AI808770         | Hs.30258:9                             | ESTs                                                                                                     | Function unknown                                                                                                                                                                                                                                                             | 0.03    |
| BE386490         | Hs.279663:51                           | PJR Plrin                                                                                                | Nucleus, transcription co-factor, transcription from Pol II promoter. Putative cofactor of the NFI/CTF1 transcriptional activator                                                                                                                                            | 0.03    |
| AW581992         | Hs.301434:104,Hs.32<br>8017:1          | KIAA1387<br>KIAA1387 protein                                                                             | Function unknown                                                                                                                                                                                                                                                             | 0.03    |
| U77534           |                                        | Human clone 1A11 immunoglobulin variable<br>region (VH5-D-JH4) gene, partial cds                         | Function unknown                                                                                                                                                                                                                                                             | . 0.03  |
| AL034417         | Hs.11169:194,Hs.109<br>58:1,Hs.74137:1 | Gene 33/Mig-6                                                                                            | Function unknown                                                                                                                                                                                                                                                             | 0.03    |
| L10343           | Hs.112341:96,Hs.196<br>8:1             | Homo saplens elafin precursor, gene, complete<br>cds                                                     | Function unknown                                                                                                                                                                                                                                                             | 0.03    |
| AW518944         | Hs.76325:80,Hs.2312<br>99:1            | IGJ<br>immunoglobulin J polypeptide, linker protein for<br>immunoglobulin alpha and mu polypeptides      | Linker protein for immunoglobulin alpha and mu polypeptides                                                                                                                                                                                                                  | 0.03    |

| Accession number       | UniGene Mapping               | Gene symbol and title                                                            | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                      | P value |
|------------------------|-------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| W28729                 | Hs.236510:6                   | Human retina cDNA randomly primed sublibrary<br>Homo sapiens cDNA, mRNA sequence | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.03    |
| AI640160               | Hs.74131:4                    | ARSE arylsulfatase E (chondrodysplasia punctata 1)                               | Aryisulfatase, skeletal development. Aryisulfatase E; likely involved in warfarin embryopathy.                                                                                                                                                                                                                                                                                                                                         | 0.03    |
| U11862                 | Hs.75741:62                   | ABP1<br>amiloride binding protein 1 (amine oxidase<br>(copper-containing))       | Metabolism, peroxisome, amine oxidase, drug binding. Diamine oxidase (D-amino-acid oxidase histaminase, amiloride-binding profeln); deaminates putrescine and histamine                                                                                                                                                                                                                                                                | 0.03    |
| AW295980               | Hs.252741:3                   | ESTs                                                                             | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.03    |
| X59135                 | Hs.158110:4                   | H.sapiens mRNA for immunoglobulin 0-81VL                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03    |
| BE466173               | Hs.379794                     | Homo sapiens mRNA; cDNA DKFZp686N0118<br>(from clone DKFZp686N0118)              | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.03    |
|                        |                               |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| #(NOCAT)               |                               | Target Exon                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03    |
| Al354722               | Hs.127216:24                  | hypothetical protein FLJ13465                                                    | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04    |
| M90464                 | Hs.169825:45,Hs.408<br>:1     | Human collagen type IV afpha 5 chain (COL4A5) gene, 5' end                       | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04    |
| AA829286               | Hs.332053:48,Hs.336<br>462:10 | SAA1<br>serum amyloid A1                                                         | Inflammatory response, high-density lipoprotein. Member of the serum amyloid A protein family, member of high density applicantities.                                                                                                                                                                                                                                                                                                  | 0.04    |
| Al333771               | Hs.82204:8,Hs.22836<br>3:1    | ESTs                                                                             | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.04    |
| BE465867;<br>NM_014992 | Hs.197751:66                  | DAAM1<br>dishevelled associated activator of morphogenesis<br>1                  | The protein encoded by this gene contains FH domains and belongs to a novel FH protein subfamily implicated in cell polarity, thought to function as a scaffolding protein.                                                                                                                                                                                                                                                            | 0.04    |
| BE616902               | Hs.285313:145,Hs.40<br>55:43  | COPEB core promoter element binding protein                                      | A trancriptional activator, capable of activating transcription approximately 4-fold either on homologous or heterologous promoters. The DNA binding and transcriptional activity of this protein, in conjunction with its expression pattern, suggests that this protein may participate in the regulation and/or maintenance of the basal expression of pregnancy-specific glycoprotein gene and possibly other TATA box-less genes. | 40.0    |

| P value               | 0.04                                                                                                                                                              | .004             | 0.04                                             | 0.04             | 0.04             | 0.04             | 0.04             | 0.04                                    | 0.04                                                                                                                                                                                                                                                                    | 0.04                                                           | 0.04                                                                                                                                                                                                         | 0.04                                                                                                                                              | 0.04                                                                                                                                                            | 0.04                                                         | 0.04                                                                                                                                                                                                                           |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------|------------------|------------------|------------------|------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Putative Function     | Function unknown                                                                                                                                                  | Function unknown | Function unknown                                 | Function unknown | Function unknown | Function unknown | Function unknown | Function unknown                        | DNA repair, DNA recombination, cell cycle control, 1-phosphatidylinositol 3-kinase, inositol/phosphatidylinositol kinase. FKBP-rapamycin associated protein; phosphatidylinositol kinase that may mediate rapamycin inhibition of the cell cycle progression throub G1. | Extracellular, serine-type peptidase. Putative serine protease | Energy pathways, secretory vesicle, cytochrome b5 reductase, secretory vesicle membrane, integral plasma membrane protein. Cytochrome b561; serves as a biological marker for adrenergic secretory vesicles. | Drug resistance, Immune response, cell growth and maintenance. Semaphorin E; member of a protein family involved in neuronal growth cone guidance | Nucleus, mRNA splicing, mRNA processing, pre-mRNA splicing factor, May have a role in pre-mRNA splicing; contains arginine/serine-rich domain and an RRM domain |                                                              | Nucleus, spiloeosome, mRNA splicing, mRNA processing, pre-<br>mRNA splicing factor. Spliceosome-associated protein 3a, subunit 3;<br>component of the essential heterotrimeric splicing factor SF3a;<br>contains a zinc finger |
| Gene symbol and title | gb:zw20f11.s1 Soares ovary fumor NbHOT Homo sapiens cDNA done IMAGE:769869 3' similar to gb:M63438 iG KAPPA CHAIN PRECURSOR V-III REGION (HUMAN);, mRNA sequence. | ESTs             | CTHRC1 collagen triple helix repeat containing 1 | ESTs             | Target Exon      | KIAA0591 protein | ESTs             | MGC5469<br>hypothetical protein MGC5469 | FRAP1<br>FK506 binding protein 12-rapamydn associated<br>protein 1                                                                                                                                                                                                      | KLK10<br>kallikrein 10 (KLK10) (PRSSL1) (nes1)                 | CYB561<br>cytochrome b-561                                                                                                                                                                                   | SEMA3C sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3C                                                     | SFRS11<br>splicing factor, arginine/serine-rich 11                                                                                                              | ENSP00000231844*:Ecotropic virus integration 1 site protein. | SF3A3<br>splicing factor 3a, subunit 3, 60kD                                                                                                                                                                                   |
| UniGene Mapping       |                                                                                                                                                                   | Hs.271565:3      | Hs.283713:68                                     | Hs.39168:16      |                  |                  |                  | Hs.19574:123                            | Hs.338207:139,Hs.14<br>6559:1                                                                                                                                                                                                                                           | Hs.69423:46,Hs.2754<br>64:1                                    | Hs.118625:62                                                                                                                                                                                                 | Hs.171921:50                                                                                                                                      | Hs.11482:19                                                                                                                                                     |                                                              | Hs.77897:149                                                                                                                                                                                                                   |
| Accession number      | AA430373                                                                                                                                                          | R27430           | BE387335                                         | AW264102         | NA               | AW952323         | AA088177         | BE614567                                | AL079658                                                                                                                                                                                                                                                                | NM_002776                                                      | BE261944                                                                                                                                                                                                     | NM_006379                                                                                                                                         | A1002238                                                                                                                                                        | #(NOCAT)                                                     | X81789                                                                                                                                                                                                                         |

| Accession number | UniGene Mapping               | Gene symbol and title                                                                                                                                                                                                                                                                    | Putative Function                                                                                                                                                                                                                                                    | P value |
|------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| NM_002122        | Hs.198253:21                  | HIA-DQA1<br>major histocompatibility complex, class II, DQ<br>alpha 1                                                                                                                                                                                                                    | Pathogenesis, class II major histocompatibility complex antigen. Alpha 1 chain of HLA-DQ1 class II molecule (la antigen); complex binds peptides and presents them to CD4+ T lymphocytes[Proteome                                                                    | 0.00    |
| AB001914         |                               | Homo sapiens PACE4 gene, exon 23-25, complete cds                                                                                                                                                                                                                                        | Function unknown                                                                                                                                                                                                                                                     | 0.04    |
| AA311919         | Hs.69851:24                   | NOLA1<br>nucleoiar protein family A, member 1 (H/ACA small<br>nucleoiar RNPs)                                                                                                                                                                                                            | Involved in various aspects of rRNA processing and modification. Localize to the dense fibrillar components of nucleoil and to coiled (Cajal) bodies in the nucleus.                                                                                                 | 0.04    |
| Al381750         | Hs.283437:122,Hs.10<br>065:58 | HTGN29 protein                                                                                                                                                                                                                                                                           | Function unknown                                                                                                                                                                                                                                                     | 0.04    |
| #(NOCAT)         |                               | NM_000636*:Homo sapiens superoxide dismutase 2, mitochondrial (SOD2), mRNA. expression) (RFX2), mRNA.                                                                                                                                                                                    | Mitochondrion, oxidative stress response, manganese superoxide dismutase. Manganese superoxide dismutase; intramitochondrial free radical scavenging enzyme; has strong similarity to murine Sod2.                                                                   | 0.04    |
| AA292998         | Hs.163900:25                  | ESTs                                                                                                                                                                                                                                                                                     | Function unknown                                                                                                                                                                                                                                                     | 0.04    |
| BE439580         | Hs.75498:40                   | SCYA20<br>small inducible cytokine subfamily A (Cys-Cys),<br>member 20                                                                                                                                                                                                                   | Chemokine, chemotaxis, immune response, signal transduction, extracellular space, cell-cell signalling, inflammatory response, antimicrobial humoral response. Cytokine A20 (exodus): chemotactic factor for iymphocytes, but not a chemotactic factor for monocytes | 0.04    |
| AI677897         | Hs.76640:124                  | RGC32<br>RGC32 protein                                                                                                                                                                                                                                                                   | Cytoplasm, cell cycle regulator, regulation of CDK activity. Strongly similar to RGC-32.                                                                                                                                                                             | 0.04    |
| #(NOCAT)         |                               | Target Exon                                                                                                                                                                                                                                                                              | Function unknown                                                                                                                                                                                                                                                     | 0.04    |
| N72403           |                               | Homo saplens cDNA done IMAGE:245132                                                                                                                                                                                                                                                      | Function unknown                                                                                                                                                                                                                                                     | 0.05    |
| BE003054         | Hs.1695:46                    | MMP12 matrix metalloproteinase 12 (macrophage                                                                                                                                                                                                                                            | Zinc binding, cell motility, macrophage elastase, extracellular matrix, proteolysis and peptidolysis. Matrix metalloprotease; degrades elastin                                                                                                                       | 0.05    |
| AL035588         | Hs.153203:26,Hs.233<br>91:1   | Human DNA sequence from clone 696P19 on chromosome 6p12.3-21.2. Contains the gene for TFEB, an NPM1 (Nucleophosmin, Numatrn) pseudogene and the MDFI gene for MyoD family inhibitor (myogenic repressor I-MF). Contains ESTs, STSs, GSSs and two putative CpG Islands, complete sequence | Function unknown                                                                                                                                                                                                                                                     | 0.05    |
| Ai080491         | Hs.93270:3                    | ESTs, Moderately similar to S65657 alpha-1C-adrenergic receptor splice form 2 [H.saplens]                                                                                                                                                                                                | Function unknown                                                                                                                                                                                                                                                     | 0.05    |

| Accession number       | UniGene Mapping               | Gene symbol and title                                                                                                       | Putative Function                                                                                                                                                                                                                            | P value |
|------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| AW770994               | Hs.30340:125                  | hypothetical protein KIAA1165                                                                                               | Function unknown                                                                                                                                                                                                                             | 0.05    |
| H24177                 | Hs.75262:69,Hs.2389<br>12:1   | CTSO<br>cathepsin O                                                                                                         | Cysteine-type endopeptidase, proteolysis and peptidolysis. Cathepsin O; cysteine (thiol) protease                                                                                                                                            | 0.05    |
| AF146781               | Hs.20450:29                   | BCM-like membrane protein precursor                                                                                         | Function unknown                                                                                                                                                                                                                             | 0.05    |
| NM_001955              | Hs.2271:45, Hs.306:1          | EDN1<br>endothelin 1                                                                                                        | Circulation, peptide hormone, soluble fraction, signal transduction, extracellular space, cell-cell signalling, blood pressure regulation, positive control of cell proliferation. Preproendothelin 1; precursor of the hormone endothelin 1 | 0.05    |
| A1680737               | Hs.289068:204,Hs.32<br>6198:1 | TCF4<br>transcription factor 4                                                                                              | Nucleus, RNA polymerase II transcription factor, transcription regulation from Pol II promoter. Transcriptional activator, interacts with (TCF3); contains basic helix-loop-helix domain Proteome                                            | 0.05    |
| AI752666               | Hs.76669:183                  | NNMT<br>nicotinamide N-methyltransferase                                                                                    | Nicotinamide N-methyltransferase; catalyzes the N-methylation of nicotinamide and other pyridines, structurally-related drugs and xenobiotics Proteome                                                                                       | 0.05    |
| AA505445               | Hs.300697:21                  | IGHG3<br>immunoglobulin heavy constant gamma 3 (G3m                                                                         | Constant region of heavy chain of igG3                                                                                                                                                                                                       | 0.05    |
| BE246849;<br>NM_003955 | Hs.345728                     | Sichard<br>Sichard STAT-Inhibitor 3; suppressor of<br>STAT induced STAT-Inhibitor 3; suppressor of<br>cytokine signalling 3 | suppression of IL-6 mediated signalling                                                                                                                                                                                                      | 0.02    |
| M86849                 | Hs.323733:62,Hs.300<br>816:5  | GJB2 gap junction protein, beta 2, 26kD (connexin<br>26)                                                                    | Hearing, connexon, plasma membrane, connexon channel, cell-cell signalling, small molecule transport. Connexin 26; gap junction promises of in various fissues including cochlea.                                                            | 0.00    |
| AW863419               | Hs.155223:20                  | STC2 stannlocalcin 2                                                                                                        | Person of the cell cell signalling, glycopeptide hormone, nutritional response pathway, cell surface receptor linked signal transduction. Stannlocalcin 2, may regulate metal ion homeostasis and inhibits phosphate innake.                 | 0.00    |
| BE298665               | Hs.14846:132                  | Homo sapiens mRNA; cDNA DKFZp564D016<br>(from clone                                                                         | Function unknown                                                                                                                                                                                                                             | 0.00    |
| AK000837               | Hs.46624:11                   | · HSPC043 HSPC043 protein                                                                                                   | Function unknown                                                                                                                                                                                                                             | 0.00    |
| BE077546               | Hs.31447:27                   | ESTs, Moderately similar to A46010 X-linked retinopathy protein [H.sapiens]                                                 | Function unknown                                                                                                                                                                                                                             | 0.00    |
| T97307                 |                               | gb:ye53h05.s1 Soares fetal liver spleen 1NFLS<br>Homo sapiens cDNA done IMAGE:121497 3',                                    | Function unknown                                                                                                                                                                                                                             | 0.00    |

| Accession number | UniGene Mapping                       | Gene symbol and title                                                           | Putative Function                                                                                                                                                      | P value |
|------------------|---------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                  |                                       | mRNA sequence.                                                                  |                                                                                                                                                                        |         |
| R24601           | Hs.108300:46                          | Homo sapiens adenylosuccinate synthetase isozyme (ADSS) mRNA, complete cds      | Function unknown                                                                                                                                                       | 0.00    |
| BE090176         | Hs.179902:95                          | Interim-CDw92 antigen                                                           | choline transporter-like protein                                                                                                                                       | 0.00    |
| AA393907         | Hs.97179:22                           | ESTs                                                                            | Function unknown                                                                                                                                                       | 0.00    |
| W28729           | Hs.236510:6                           | Homo sapiens mRNA; cDNA DKFZp666D074 (from clone DKFZp666D074)                  | Function unknown                                                                                                                                                       | 0.00    |
| BE313754         | Hs.13350:52                           | Homo sapiens mRNA; cDNA DKFZp586D0918                                           | Function unknown                                                                                                                                                       | 0.01    |
| AW673081         | Hs.54828:9                            | ESTs                                                                            | Function unknown                                                                                                                                                       | 0.01    |
| AA356694         | Hs.94011:42,Hs.7744<br>:2,Hs.231043:1 | HCA4 Hepatocellular cardnoma-associated protein HCA4                            | Function unknown                                                                                                                                                       | 0.01    |
| L08239           | Hs.5326:11                            | MG61 Porcupine                                                                  | amino acid system N transporter 2;                                                                                                                                     | 0.01    |
| BE397649         | Hs.94109:40                           | Homo sapiens cDNA FLJ34399 fis, clone<br>HCHON2001359                           | Function unknown                                                                                                                                                       | 0.01    |
| NM_012317        | Hs.45231:36                           | LDOC1 Leucine zipper, down-regulated in cancer 1                                | Nucleus, negative control of cell proliferation. Nuclear protein; contains a leucine zipper-like motif                                                                 | 0.01    |
| NM_000947        | Hs.74519:20                           | PRIM2A primase, polypeptide 2A (58kD)                                           | DNA primase, DNA replication, priming, alpha DNA polymerase; primase complex. Subunit of DNA primase polypeptide 24: part of the DNA polymerase alpha-primase complex. | 0.01    |
| AJ250562         | Hs.82749:133                          | Homo saplens partial TM4SF2 gene for tetraspanin protein, exon 1 and joined CDS | Function unknown                                                                                                                                                       | 0.01    |
| AL040183         | Hs.123484:24,Hs.326<br>906:1          | Homo sapiens mRNA; cDNA DKFZp686E1934<br>(from done DKFZp686E1934)              | Function unknown                                                                                                                                                       | 0.01    |
| BE207573         | Hs.83321:32                           | NMB neuromedin B                                                                | Peptide hormone, soluble fraction, signal transduction, cell-cell signalling. Precursor of neuromedin B, a C-terminally amidated pendide hormone: similar to hombesin  | 0.01    |
| BE564162         | Hs.250820:45                          | FLJ14827 hypothetical protein FLJ14827                                          | Function unknown                                                                                                                                                       | 0.01    |

| Accession number | UniGene Mapping              | Gene symbol and title                                            | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P value |
|------------------|------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| BE439580         | Hs.75498:40                  | SCYA20 Small Inducible cytokine subfamily A (Cys-Cys), member 20 | Chemokine, chemotaxis, immune response, signal bransduction, extracellular space, cell-cell signalling, inflammatory response, antimicrobial humoral response. Cytokine A20 (exodus); chemotactic factor for lymphoxies, but not a chemotactic factor for monocytes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01    |
| AW067800         | Hs.155223:52                 | STC2 stannlocaldin 2                                             | Peptide hormone, cell-cell signalling, glycopeptide hormone, nutritional response pathway, cell surface receptor linked signal transduction. Stanniccalcin 2; may regulate metal ion homeostasis and inhibits observate untake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01    |
| AA569756         | Hs.87803:10                  | Homo sapiens cDNA FLJ30156 fis, clone<br>BRACE2000487            | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01    |
| AW138190         | Hs.180248:8                  | ZNF124 zlnc finger protein 124 (HZF-16)                          | DNA binding. C2H2 zino-finger protein 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01    |
| AF126245         | Hs.14791:48                  | ACAD8 acyl-Coenzyme A dehydrogenase family, member 8             | Lipid metabolism, acyl-CoA dehydrogenase. Member of the acyl-<br>Coenzyme A dehydrogenase family, alpha,beta-dehydrogenates<br>aryl-CoA esters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01    |
| L10343           | Hs.112341:96,Hs.196<br>8:1   | Homo sapiens elafin precursor, gene, complete cds                | elastase-specific inhibitor in bronchial secretions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01    |
| NM_002514        | Hs.235935:38                 | NOV nephroblastoma overexpressed gene                            | insulin-like growth factor receptor binding protein. Insulin-like growth factor binding protein; may play a role in nephrogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01    |
| <br>AI863735     | Hs.186755:3                  | ESTs                                                             | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01    |
| NM_005397        | Hs.16426:160,Hs.248<br>780:1 | PODXL podocalyxin-like                                           | Integral plasma membrane protein. Transmembrane protein similar to rodent podocalyxins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01    |
| W26391           | Hs.301206:100                | KIF3B kinesin family member 38                                   | Plus-end kinesin, microtubule motor, anterograde axon cargo transport, plus-end-directed kinasin ATPase, determination of left-right asymmetry. Similar to murine Kif3b; may have a role in intracellular organelle transport, may act in refer-fight determination in the contraction of minary in the contraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.01    |
| H15474           | Hs.132898:156                | FADS1 fatty acid desaturase 1                                    | eninayoganesis, are a midousobare associated protein. C-5 sterol desaturase, fatty and desaturation, integral membrane protein. Delta-6 desaturase; catalyzes production of polyenoic fatty printein, controlled and con | 0.01    |
| U51188           | Hs.173824:106                | TDG Thymine-DNA giycosylase                                      | actus such as a racinoting actual DNA binding, base-excision DNA repair, nucleoplasm, damaged DNA binding, base-excision repair, G/T-mismatch-specific trymine-DNA glycosylase. Trymine-DNA glycosylase, excises uracil and trymine from mispairs with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01    |
| AA243499         | Hs.104800:23                 | FLJ10134 hypothetical protein FLJ10134                           | guantonie<br>Highly similar to murine p18.5; are a membrane protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01    |
| AW408807         | Hs.34497:46                  | FLJ22116 hypothetical protein FLJ22116                           | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01    |

| Accession number | UniGene Mapping              | Gene symbol and title                                                                                                | Putative Function                                                                                                                                                                                                                                                                                                                                                                | P value |
|------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| AI738719         | Hs.198427:98                 | HK2 Hexokinase 2                                                                                                     | Hexokinase, cell cycle control, glucose catabolism, glucose metabolism, mitochondrial outer membrane. Hexokinase II; converts                                                                                                                                                                                                                                                    | 0.01    |
| AB040888         | Hs.41793:110                 | Homo saplens mRNA for KIAA1455 protein, partial cds                                                                  | aldo- and keto-nexose sugars to the nexose-o-phosphate<br>Function unknown                                                                                                                                                                                                                                                                                                       | 0.01    |
| BE313077         | Hs.93135:40,Hs.2283<br>57:1  | Homo sapiens cDNA FLJ39971 fis, clone<br>SPLENZ028066                                                                | Function unknown                                                                                                                                                                                                                                                                                                                                                                 | 0.01    |
| AI677897         | Hs.76640:124                 | RGC32 RGC32 protein                                                                                                  | Cytoplasm, cell cycle regulator, regulation of CDK activity. Strongly similar to RGC-32                                                                                                                                                                                                                                                                                          | 0.01    |
| C14898           | Hs.192986:5                  | ESTs                                                                                                                 | Function unknown                                                                                                                                                                                                                                                                                                                                                                 | 0.01    |
| AI821730         | Hs.116524:7                  | Homo sapiens cDNA FLJ35800 fis, done<br>TESTI2005933                                                                 | Function unknown                                                                                                                                                                                                                                                                                                                                                                 | 0.01    |
| AF007393         | Hs.177574:111                | PRKRIR protein-kinase, interferon-Inducible double stranded RNA dependent inhibitor, repressor of (P58 repressor)    | Stress response, protein binding, signal transduction, translational regulation, negative control of cell proliferation. Regulates interferoninduced protein kinase PKR (PRKR) activity by binding and inhibiting                                                                                                                                                                | 0.01    |
| H65423           | Hs.17631:42                  | DKFZP434E2135 hypothetical protein<br>DKFZp434E2135                                                                  | ura raka-eguadoi Pooira (raka)<br>Function unknown                                                                                                                                                                                                                                                                                                                               | 0.01    |
| N46243           | Hs.110373:26                 | ESTs, Highly similar to T42626 secreted leucinerich repeat-containing protein SLIT2 - mouse (fragment) IM misserties | Function unknown                                                                                                                                                                                                                                                                                                                                                                 | 0.01    |
| AA095971         | Hs.198793:56,Hs.309<br>674:7 | Homo sapiens cDNA: FLJ22463 fls, clone<br>HRC10126                                                                   | Function unknown                                                                                                                                                                                                                                                                                                                                                                 | 0.01    |
| U20350           | Hs.78913:33                  | CX3CR1 chemokine (C-X3-C) receptor 1                                                                                 | Virulence, chemotaxis, coreceptor, cell adhesion, plasma membrane, chemokine receptor, response to wounding, cellular defense response, integral plasma membrane protein, G-protein linked receptor protein signalling pathway. CX3C chemokine receptor; G protein-coupled receptor, mediates leukocyte migration and adhesion, binds the CX3C chemokine fractalkine and signals | 0.01    |
| NM_005756        | Hs.184942:18                 | GPR64 G protein-coupled receptor 64                                                                                  | undugir a perussis oxin sensitive c-protein<br>Spermatogenesis, G-protein linked receptor, integral plasma<br>membrane protein, G-protein linked receptor protein signalling                                                                                                                                                                                                     | 0.01    |
| D19589           | Hs.13453:87                  | FLJ14753 hypothetical protein FLJ14753                                                                               | patrway. Member of the G protein-coupled receptor family Function unknown                                                                                                                                                                                                                                                                                                        | 0.02    |
| AW957446         | Hs.301711:74                 | ESTs                                                                                                                 | Function unknown                                                                                                                                                                                                                                                                                                                                                                 | 0.02    |

 $\mathcal{B}_{i}$  , the probability of the state o

| Accession number | UniGene Mapping              | Gene symbol and title                                                                                                                   | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                 | P value |
|------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| AW294647         | Hs.233634:40                 | C20orf39 chromosome 20 open reading frame 39                                                                                            | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02    |
| BE159718         | Hs.85335:46                  | Homo sapiens, done IMAGE:4513159, mRNA                                                                                                  | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02    |
| A1888490         | Hs.56902:22                  | EDG3 endothelial differentiation, sphingolipid G-<br>protein-coupled receptor, 3                                                        | Lipid binding, plasma membrane, Inflammatory response, G-protein linked receptor, embryogenesis and morphogenesis, integral plasma membrane protein, positive control of cell proliferation, cytostolic calcium ion concentration elevation, G-protein linked receptor protein signalling pattway. Lysosphingolipid receptor, a G protein-coupled receptor, activates calcium flux and serum response element driven transcorted. | 0.02    |
| AA022569         | Hs.29802:35,Hs.2717<br>85:1  | ESTs                                                                                                                                    | ranschour<br>Function unknown                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02    |
| BE147740         | Hs.104558:21                 | ESTs, Moderately similar to hypothetical protein FLJ20378 [Homo sapiens]                                                                | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02    |
| AI798863         | Hs.87191:8                   | ESTs                                                                                                                                    | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02    |
| BE464341         | Hs.21201:18                  | Interim-DKFZP566B0846: nectin 3                                                                                                         | Low similarity to PVRL1; are a membrane glycoprotein; contains an immunoglobulin (Ig) domain                                                                                                                                                                                                                                                                                                                                      | 0.02    |
| AL080235         | Hs.35861:34,Hs.2890<br>68:1  | RIS1 Ras-induced senescence 1                                                                                                           | Rat brain specific binding protein                                                                                                                                                                                                                                                                                                                                                                                                | 0.02    |
| AI557212         | Hs.17132:102,Hs.330<br>782:1 | ESTs                                                                                                                                    | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02    |
| X75208           | Hs.2913:41                   | ЕРНВЗ ЕрһВЗ                                                                                                                             | Signal transduction, Integral plasma membrane protein, transmembrane receptor protein tyrosine kinase. Eph-related receptor protein kinase R3                                                                                                                                                                                                                                                                                     | 0.02    |
| AA628980         | Hs.192371:3                  | DSCR8 Down syndrome critical region protein DSCR8                                                                                       | Melanoma-testis-associated protein 2                                                                                                                                                                                                                                                                                                                                                                                              | 0.02    |
| BE242587         | Hs.118651:39                 | HHEX hematopoietically expressed homeobox                                                                                               | Nucleus, DNA binding, transcription factor, developmental processes, antimicrobial humoral response. Member of the homeodomain family of DNA binding proteins; may regulate gene excression, muchocenesis, and differentiation                                                                                                                                                                                                    | 0.02    |
| NM_005512        | Hs.151641:65                 | GARP glycoprotein A repetitions predominant                                                                                             | Integral plans membrane protein. Putative transmembrane cell surface protein, has an extracellular domain comprised largely of laurine-rich menats.                                                                                                                                                                                                                                                                               | 0.02    |
| AW953853         | Hs.292833:19                 | PAEP progestagen-associated endometrial protein (placental protein 14, pregnancy-associated endometrial alpha-2-globulin, alpha uterine | Developmental processes. Placental protein 14 (Glycodelin); member of lipocalin superfamily, highly similar to beta-lactoglobulins                                                                                                                                                                                                                                                                                                | 0.02    |

| Accession number | UniGene Mapping               | Gene symbol and title                                                                                          | Putative Function                                                                                                                                                                                                                                                                                                             | P value |
|------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| •                |                               | protein)                                                                                                       |                                                                                                                                                                                                                                                                                                                               |         |
| AU076611         | Hs.154672:122                 | MTHFD2 methylene tetrahydrofolate<br>dehydrogenase (NAD dependent),<br>methenyltetrahydrofolate cyclohydrolase | Mitochondrion, electron transporter, methenyltetrahydrofolate cyclohydrolase, methylenetetrahydrofolate dehydrogenase. NADdependent methylene tetrahydrofolate dehydrogenase-cyclohydrolase; may provide formyltetrahydrofolate for formylmethlonyl RRNA synthesis; involved in initiation of mitochondrial modeln synthesis. | 0.02    |
| AW968613         | Hs.79428:166                  | BNIP3 BCL2/adenovirus E1B 19kD-Interacting protein 3                                                           | Anti-apoptosis, apoptosis inhibitor. Bct2-related protein 3; binds antiapoptotic viral E1B 19 kDa protein and cellular Bct2 protein                                                                                                                                                                                           | 0.02    |
| AL353944         | Hs.50115:14                   | Homo sapiens mRNA; cDNA DKFZp761J1112 (from clone DKFZp761J1112)                                               | Function unknown                                                                                                                                                                                                                                                                                                              | 0.02    |
| BE614149         | Hs.20814:29,Hs.3066<br>26:27  | LOC51072: C21orf19-like protein                                                                                | Function unknown                                                                                                                                                                                                                                                                                                              | 0.02    |
| AA292998         | Hs.163900:25                  | ESTs                                                                                                           | Highly similar to winged helix/forkhead transcription factor                                                                                                                                                                                                                                                                  | 0.02    |
| H12912           | Hs.274691:138                 | AK3 adenylate kinase 3                                                                                         | Nucleobase, nucleoside, nucleotide and nucleic acid metabolism. Adenylate kinase 3; strongly similar to murine Ak4                                                                                                                                                                                                            | 0.02    |
| AA188763         | Hs.36793:4                    | SLC12A8 solute carrier family 12 (potasslum/chloride transporters), member 8                                   | Solute carrier family 12 (potasslum/chloride transporters), member 8                                                                                                                                                                                                                                                          | 0.02    |
| AK000596         | Hs.3618:56                    | HPCAL1 hippocalcin-like 1                                                                                      | Calclum-binding protein with similarity to hippocalin (human HPCA); expressed only in the brain.                                                                                                                                                                                                                              | 0.02    |
| Al970797         | Hs.64859:16                   | ESTs                                                                                                           | Function unknown                                                                                                                                                                                                                                                                                                              | 0.02    |
| AW519204         | Hs.40808:22                   | ESTs                                                                                                           | Function unknown                                                                                                                                                                                                                                                                                                              | 0.02    |
| Z42387           | Hs.83883:114                  | TMEPAl transmembrane, prostate androgen Induced RNA                                                            | Function unknown                                                                                                                                                                                                                                                                                                              | 0.02    |
| AF145713         | Hs.61490:51                   | SCHIP1 schwannomin-interacting protein 1                                                                       | Cytoplasm. Associates with the neurofibromatosis type 2 protein schwannomin (NF2); contains a coiled-coil domain                                                                                                                                                                                                              | 0.02    |
| AA972412         | Hs.13755:41                   | FBXW2 f-box and WD-40 domain protein 2                                                                         | Protein modification, ublquitin—protein ligase, proteolysis and peptidolysis, ublquitin conjugating enzyme. F-box and WD-40 domain protein 2: putative SCF ublquitin ligase subunit involved in protein and an E-box                                                                                                          | 0.02    |
| AK001564         | Hs.104222:139,Hs.29<br>6267:4 | Homo sapiens cDNA FLJ10702 fis, done NT2RP3000759, weakly similar to ADP-RIBOSYLATION FACTOR                   | Member of the ADP-ribosylation factor (ARF) family; putative GTP-binding protein involved in protein trafficking                                                                                                                                                                                                              | 0.02    |

| Accession number | UniGené Mapping | Gene symbol and title                                                                                  | Putative Function                                                                                                                                                                               | P value |  |
|------------------|-----------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| AW959861         | Hs.290943;28    | ESTs                                                                                                   | Function unknown                                                                                                                                                                                | 0.02    |  |
| BE313555         | Hs.7252:158     | RAI17 retinoic acid induced 17                                                                         | Function unknown                                                                                                                                                                                | 0.02    |  |
| W25005           | Hs.24395:199    | zb67e02.r1 Soares_fetal_lung_NbHL19W Homo<br>sapiens cDNA clone IMAGE:308666 5', mRNA                  | Function unknown                                                                                                                                                                                | 0.02    |  |
| A193356          | Hs.160316:3     | sequence<br>ESTs                                                                                       | Function unknown                                                                                                                                                                                | 0.02    |  |
| AF111108         | Hs.3382:223     | PPP4R1 Protein phosphatase 4, regulatory subunit 1                                                     | Protein phosphatase                                                                                                                                                                             | 0.02    |  |
| AJ130740         | Hs.6241:116     | PIK3R1 phosphoinositide-3-kinase, regulatory subunit, polypeptide 1 (p85 alpha)                        | A family of erzymes that phosphorylate the 3'-hydroxyl of phosphatidylinositol (Ptdins).                                                                                                        | 0.02    |  |
| AA985190         | Hs.246875:42    | FLJ20059 hypothetical protein FLJ20059                                                                 | Contains four Kelch motif domains                                                                                                                                                               | 0.02    |  |
| BE221880         | Hs.268555:144   | XRN2 5'-3' exortbonuclease 2                                                                           | Nucleus, nuclease, recombination, RNA catabolism, RNA processing, 5'-3' Exoribonuclease; similar to Schizosaccharomyces pombe Dhafa                                                             | 0.03    |  |
| AF084545         |                 | Homo saplens versican Vint Isoform, mRNA, partial cds                                                  | Function unknown                                                                                                                                                                                | 0.03    |  |
| R26584           | Hs.267993:43    | TAPBP-R: TAP binding protein related                                                                   | Has low similarity to TAPBP (Tapasin); contains two immunoglobulin (Ig) domains/Proteome                                                                                                        | 0.03    |  |
| AW247380         | Hs.12124:116    | ELAC2 elaC homolog 2 (€. ∞II)                                                                          | putative prostate cancer susceptibility protein                                                                                                                                                 | 0.03    |  |
| AA364261         | Hs.131365:7     | ESTs                                                                                                   | Weakly similar to T31613 hypothetical protein Y50E8A.i -<br>Caenorhabditis elegans [C.elegans]                                                                                                  | 0.03    |  |
| U25849           | Hs.75393:141    | ACP1 Human red cell-type low molecular weight acid phosphatase (ACP1) gene, exon 6 and 7, complete cds | Acid phosphatase                                                                                                                                                                                | 0.03    |  |
| AF262992         | Hs.123159:14    | SPAG4 Sperm associated antigen 4                                                                       | Spermatogenesis, structural protein. Sperm associated antigen 4; predicted ortholog of rat SPAG4, which Interacts with rat ODF27, the 27kDa outer dense ther protein of elongaling spermatifis. | 0.03    |  |
| AW342140         | Hs.182545:1     | ESTs, Weakly similar to POL2_MOUSE<br>Retrovirus-related POL polyprotein                               | Function unknown                                                                                                                                                                                | 0.03    |  |
| AL133572         | Hs.199009:58    | PCCX2 protein containing CXXC domain 2                                                                 | DNA-binding protein with PHD finger and CXXC domain, is regulated by proteolysis.                                                                                                               | 0.03    |  |
|                  |                 | •                                                                                                      |                                                                                                                                                                                                 |         |  |

| Accession number | UniGene Mapping              | Gene symbol and title                                                                     | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P value |
|------------------|------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| AI497778         | Hs.20509:4                   | HBXAP Hepatitis B virus x associated protein                                              | Weakly similar to Drosophila CG8677                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03    |
| AI745379         | Hs.42911:31                  | TAF13 TAF13 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 18 kD    | TFIID complex, protein binding, transcription factor, general RNA polymerase if transcription factor. TBP-associated factor K;                                                                                                                                                                                                                                                                                                                                           | 0.03    |
| U51712           | Hs.13775:135                 | LAGY: lung cancer-associated Y protein                                                    | component of IrilD complexes containing IAFIESU (IAFZH) The protein encoded by this gene is a lung cancer associated protein. The function of the protein is not known. Multiple alternatively spliced transcript variants have been described for this gene but some of their full length sequence has not been                                                                                                                                                         | 0.03    |
| AW375974         | Hs.156704:4                  | ESTs                                                                                      | aetermineu.<br>Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03    |
| AF251237         | Hs.112208:16                 | GAGED2 G antigen, family D, 2                                                             | GAGE genes are expressed in a variety of tumors and in some fetal and reproductive tissues. This gene is strongly expressed in Ewing's sarcoma, alvolar thabdomyosarcoma and normal testis. The protein encoded by this gene contains a nuclear localization signal and shares a sequence similarity with other GAGE/PAGE proteins. Because of the expression pattern and the sequence similarity, this protein also belongs to a family of CT (cancer-testis) antigens. | 0.03    |
| . NM_000636      |                              | Homo saplens superoxide dismutase 2, mitochondria (SOD2), mRNA. expression) (RFX2), mRNA. | Mitochondrion, oxidative stress response, manganese superoxide dismutase. Manganese superoxide dismutase; intramitochondrial free radical scavenging enzyme; has strong similarity to murine                                                                                                                                                                                                                                                                             | 0.02    |
| AA130986         | Hs.271627:1                  | ESTs                                                                                      | 5002.<br>Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01    |
| AA216363         | Hs.262958:48,Hs.327<br>737:2 | DKFZP434B044 hypothetical protein<br>DKFZp434B044                                         | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01    |
| AA628980         | Hs.192371:3                  | DSCR8 down syndrome critical region protein<br>DSCR8                                      | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00    |
| AA811657         | Hs.220913:9                  | Homo sapiens cDNA FLJ40827 fis, clone<br>TRACH2011500                                     | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02    |
| AA897108         |                              | gb:am08a06.s1 Soares_NFL_T_GBC_S1 Homo sapiens cDNA clone 3', mRNA sequence               | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01    |
| AB040888         | Hs.41793:110                 | Homo sapiens mRNA for KIAA1455 protein, partial cds                                       | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02    |

| Accession number | UniGene Mapping              | Gene symbol and title                                               | Putative Function                                                                                                                                                                              | P value |
|------------------|------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| AF212225         | Hs.283693:104                | Homo sapiens BM022 mRNA, complete cds                               | Function unknown                                                                                                                                                                               | 0.02    |
| AI089575         | Hs.9071:52                   | ESTs                                                                | Function unknown                                                                                                                                                                               | 0.02    |
| AI282028         | Hs.25205:10                  | ESTs                                                                | Function unknown                                                                                                                                                                               | 0.02    |
| Al368826         | Hs.30654:15                  | FLJ10849: hypothetical protein FLJ10849                             | Moderately similar to members of the septin family                                                                                                                                             | 0.02    |
| AI718702         | Hs.308026:11,Hs.194<br>490:6 | HLA-DRB3 major histocompatibility complex, class<br>ii, DR beta 5   | Signal transduction, integral plasma membrane protein, class II major histocompatibility complex antigen. Beta 3 chain of HLA-DR; subunit of MHC class II molecule, complex binds peptides and | 0.02    |
| AI827248         | Hs.224398:3                  | Homo saplens cDNA FLJ11469 fis, clone<br>HEMBA1001658               | presents them to CD4+ T lymphocytes<br>Function unknown                                                                                                                                        | 0.01    |
| AK002039         | Hs.26243:38                  | MRVI1 murine retrovirus integration site 1 homolog                  | Oncogenesis, tumor suppressor, endoplasmic reticulum membrane. Similar to human MLRP; may act as a tumor suppressor                                                                            | 0.02    |
| AL109791         | Hs.241559:3                  | Homo saplens mRNA full length insert cDNA clone<br>EUROIMAGE 151432 | Function unknown                                                                                                                                                                               | 0.00    |
| AW090198         | Hs.4779:29                   | LOC127829: hypothetical protein BC015408                            | Function unknown                                                                                                                                                                               | 0.01    |
| AW296454         | Hs.24743:92                  | FLJ20171: hypothetical protein FLJ2017                              | Contains three RNA recognition motifs (RRM, RBD, or RNP)                                                                                                                                       | 0.02    |
| AW445034         | Hs.256578:4                  | ESTs                                                                | Function unknown                                                                                                                                                                               | 0.00    |
| AW452948         | Hs.257631:3                  | ESTs                                                                | Function unknown                                                                                                                                                                               | 0.01    |
| AW470411         | Hs.288433:27                 | HNT: neurotrimin                                                    | Cell adhesion, neuronal cell recognition, integral plasma membrane protein. Neurotrimin; may function as a GPI-anchored neural cell                                                            | 0.02    |
| AW885727         | Hs.301570:22                 | FST follistatin                                                     | adhesion molecule; member of the immunoglobulin superfamily Developmental processes. Follistatin; inhibits the release of follicleselimitating homogone IESH)                                  | 0.01    |
| AW970859         | Hs.313503:4                  | ESTs                                                                | Function unknown                                                                                                                                                                               | 0.02    |
| AW979189         | Hs.283367:3                  | ESTs                                                                | Function unknown                                                                                                                                                                               | 0.01    |

| •  | Accession number | UniGene Mapping             | Gene symbol and title                                                | Putative Function                                                                                                                                                                                                                                                    | P value |
|----|------------------|-----------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Ι" | BE165866         | Hs.83623:66                 | Human XIST, coding sequence "a" mRNA (locus DXS399E)                 | XIST mRNA                                                                                                                                                                                                                                                            | 0.01    |
|    | BE175582         |                             | gb:RC5-HT0580-100500-022-C01 HT0580 Homo sapiens cDNA, mRNA sequence | Function unknown                                                                                                                                                                                                                                                     | 0.01    |
| _  | BE242587         | Hs.118651:39                | HHEX hematopoietically expressed homeobox                            | Nucleus, DNA binding, transcription factor, developmental processes, antimicrobial furmoral response. Member of the homeodomain family of DNA binding proteins; may regulate gene expression, morphonenesis, and differentiation                                     | 0.01    |
|    | BE271927         | Hs.87385:31,Hs.3079<br>40:4 | LOC115416: hypothetical protein BC012331                             | Function unknown                                                                                                                                                                                                                                                     | 0.01    |
|    | BE439580         | Hs.75498:40                 | SCYA20 small inducible cytokine subfamily A (Cys-Cys), member 20     | Chemokine, chemotaxis, immune response, signal transduction, extracellular space, cell-cell signalling, inflammatory response, antimicrobial humoral response. Cytokine A20 (exodus); chemotactic factor for lymphocytes, but not a chemotactic factor for monocytes | 0.02    |
|    | BE464016         | Hs.238956:35                | Homo sapiens cDNA FLJ37793 fis, clone<br>BRHIP3000473                | Function unknown                                                                                                                                                                                                                                                     | 0.02    |
|    | D63216           | Hs.153684:137               | FRZB frizzled-related protein                                        | Membrane, extracellular, skeletal development. Frizzled-related protein; similar to frizzled family of receptors                                                                                                                                                     | 0.02    |
| :  | F34856           | Hs.292457:120               | Homo saplens, done MGC:16362<br>IMAGE:3927795, mRNA, complete cds    | Function unknown                                                                                                                                                                                                                                                     | 0.02    |
|    | M83822           | Hs.62354:112                | LRBA LPS-responsive vesicle trafficking, beach and anchor containing | May mediate protein-protein interactions; contains two WD domains (WD-40 repeats) and a belge/BEACH domain Proteome                                                                                                                                                  | 0.02    |
|    | N33937           | Hs.10336:6                  | ESTs                                                                 | Function unknown                                                                                                                                                                                                                                                     | 0.01    |
|    | N49068           | Hs.93966:4                  | ESTs                                                                 | Function unknown                                                                                                                                                                                                                                                     | 0.01    |
|    | N51357           | Hs.260855:62                | NSE1: NSE1                                                           | Function unknown                                                                                                                                                                                                                                                     | 0.02    |
|    | N80486           | Hs.39911:17                 | Homo saplens mRNA for FLJ00089 protein, partial cds                  | Function unknown                                                                                                                                                                                                                                                     | 0.02    |
|    | NM_000954 .      | Hs.8272:265,Hs.3323<br>55:1 | PTGDS prostaglandin D2 synthase (21kD, brain)                        | Membrane, prostaglandin-D synthase. Glutathione-independent prostaglandin D2 synthase; membrane associated, catalyzes synthesis of prostaglandin D; member of the lipocalin family of synthase.                                                                      | 0.02    |
|    | NM_005756        | Hs.184942:18                | GPR64 G protein-coupled receptor 64                                  | ransporters Spermatogenesis, G-protein linked receptor, integral plasma membrane protein, G-protein linked receptor protein signalling pathway. Member of the G protein-coupled receptor family                                                                      | 0.02    |

| Accession number UniGene Mapping | UniGene Mapping | Gene symbol and title                                                                       | Putative Function                                                                                                                                                                                                    | P vaíue |
|----------------------------------|-----------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| NM_016652                        | Hs.268281:61    | CRNKL1 Cm, crooked neck-like 1 (Drosophila)                                                 | Function unknown                                                                                                                                                                                                     | 0.02    |
| R26584                           | Hs.267993:43    | TAPBP-R: TAP binding protein related                                                        | Has low similarity to TAPBP (Tapasin); contains two immunoglobulin (ig) domains                                                                                                                                      | 0.01    |
| R31178                           | Hs.287820:6     | FN1 fibronectin 1                                                                           | Cell adhesion, cell motility, cell adhesion, soluble fraction, signal transduction, extracellular matrix, extracellular space. Fibronectin 1; member of family of proteins found in plasma and extracellular matrix. | 0.02    |
| W05391                           | Hs.83623:8      | Homo saplens cDNA FLJ30298 fis, clone<br>BRACE2003172                                       | Function unknown                                                                                                                                                                                                     | 0.02    |
| W25005                           | Hs.24395:199    | zb67e02.r1 Soares_fetal_lung_NbHL19W Homo sapiens cDNA clone IMAGE:308666 5', mRNA sequence | Function unknown                                                                                                                                                                                                     | 0.01    |
| W45393                           | Hs.55888:15     | ATF7 activating transcription factor 7                                                      | Transcription factor. Leucine zipper DNA-binding protein; recognizes a cAMP response element (CRE), involved in the regulation of adenovirus Ela-responsive and cellular cAMP-inducible promoters                    | 0.02    |
| W68815                           | Hs.301885:20    | Homo sapiens cDNA FLJ33794 fis, clone<br>CTONG1000009                                       | Function unknown                                                                                                                                                                                                     | 0.01    |
| X65965                           |                 | H.saplens SOD-2 gene for manganese superoxide dismutase                                     | Mitochondrion, oxidative stress response, manganese superoxide dismutase. Manganese superoxide dismutase; intramitochondrial free radical scavenging enzyme; has strong similarity to murine Sod2.                   | 0.01    |
| X76732                           | Hs.3164:58      | NUCB2 nucleobindin 2                                                                        | Cytosof, DNA binding, plasma membrane, calcium binding, extracellular space. Nucleobindin 2; may bind DNA and calcium; has DNA-binding and Ef-band domains, and a leucine-zloper                                     | 0.02    |
| Z45051                           | Hs.22920:25     | C20orf103 chromosome 20 open reading frame<br>103                                           | Low similarity to a region of murine Lamp1 Proteome                                                                                                                                                                  | 0.02    |

| Accession number UniGene Mapping | UniGene Mapping                           | Gene symbol and title                                                   | Putative Function                                                                                                                                                                                                                                                                                                  | P value  |
|----------------------------------|-------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| c. downregulated genes           | Ø                                         |                                                                         |                                                                                                                                                                                                                                                                                                                    | c        |
| NM_022117                        | Hs.136164:23                              | SE20-4, cutaneous T-cell lymphoma-associated tumor antigen se20-4se20-4 | Cutaneous T-cell lymphoma-associated tumor antigen se20-4se20-4; differentially expressed nucleolar TGF-beta1 target protein                                                                                                                                                                                       | <b>.</b> |
| NM_005460                        | Hs.200445:4<br>Hs.300445:4                | SNCAIP, synuciein, alpha interacting protein<br>(synphilin)             | County 1, and whom to controlled by Apphilin-1; promotes formation of cytosolic inclusions in neurons (SNCAIP). Syruclein alpha interacting protein contains several protein-protein interaction domains and interacts with alpha synuclein in neurons. Mutations of SNCAIP have been linked to Parkinson disease. | 0        |
| NM_002387                        | Hs.1345:5                                 | MCC, mutated in colorectal cancers                                      | Receptor, signal transduction, tumor suppressor. Similar to the G protein-coupled m3 muscarint acetylcholine receptor. MCC is a candidate for the putative colorectal tumor suppressor gene. The MCC gene product are involved in early stages of colorectal neoplasta in both sporadic and familial tumors.       | 0        |
| A1745249<br>A1694200             | Hs.23660:30<br>Hs.356620,<br>Hs.227913:11 | Homo sapiens, done MGC:9889 IMAGE:3868330<br>ESTs                       | Function unknown<br>Function unknown                                                                                                                                                                                                                                                                               | 0.0009   |

Table 2 Genes having modified expression in serous ovarian cancer relative to normal ovarian tissue

| Accession number | UniGene Mapping | Gene symbol and title                                                                                                | Putative Function                                                                                                                                                                         | Ratio   |
|------------------|-----------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| M25809           | Hs.64173        | ATP6V1B1, ATPase, H+ transporting, lysosomal 56/58kD, V1 subunit B, isoform 1 (Renal tubular acidosis with deafness) | Subunit B1 (beta subunit) of a vacuolar-type H+-ATPase 1; aplcal proton pump that mediates distal nephron acid secretion                                                                  | 1062.30 |
| AW959311         | Hs.172012       | DKFZP434J037: hypothetical protein DKFZp434J037                                                                      | Function unknown                                                                                                                                                                          | 227.83  |
| H16423           | Hs.82685        | Homo saplens mRNA; cDNA DKFZp313F0317 (from done DKFZp313F0317)                                                      | Function unknown                                                                                                                                                                          | 74.54   |
| AI733848         | Hs.71935        | ZNF339, zinc finger protein 339                                                                                      | Zinc finger protein                                                                                                                                                                       | 55.13   |
| AW055308         | Hs.31803        | NAC1, transcriptional repressor NAC1                                                                                 | Function unknown                                                                                                                                                                          | 52.63   |
| AF034102         | Hs.32951        | SLC29A2, solute carrier family 29 (nucleoside transporters), member 2                                                | Nitrobenzylthloinosine-insensitive equilibrative nucleoside transporter 2; may act in the uptake of purine and pyrimidine nucleosides                                                     | 44.34   |
| AI791905         | Hs.95549        | FL/20273: RNA-binding protein                                                                                        | Contains four RNA recognition motifs (RRM, RBD, or RNP)                                                                                                                                   | 43.21   |
| AW296454         | Hs.24743        | FLJ20171: hypothetical protein FLJ20171                                                                              | Contains three RNA recognition motifs (RRM, RBD, or RNP)                                                                                                                                  | 38.91   |
| Z43989           | Hs.82141        | Human clone 23612 mRNA sequence                                                                                      | Function unknown                                                                                                                                                                          | 37.89   |
| AL043980         | Hs.7886         | PELI1, pellino homolog 1 (Drosophila)                                                                                | Pellino protein                                                                                                                                                                           | 35.20   |
| BE514982         | Hs.38991        | S100A2, S100 calcium binding protein A2                                                                              | S100 calclum-binding protein A2; interacts with target proteins to link extracellular stimuli and cellular responses; member of the S100 tissue/cell specific Ca2+-binding protein family | 34.53   |
|                  |                 | Target Exon                                                                                                          | Function unknown                                                                                                                                                                          | 34.02   |
| Al811807         | Hs.108646       | Homo sapiens cDNA FLJ12534 fis, clone<br>NTZRM4000244                                                                | Function unknown                                                                                                                                                                          | 32.34   |
| U90441           | Hs.3622         | P4HA2, procollagen-proilne, 2-oxogiutarate 4-<br>dioxygenase (proline 4-hydroxylase), alpha<br>polypeptide II        | Alpha 2 subunit of prolyl 4-hydroxylase; catalyzes the formation of 4-hydroxyproline in collagers.                                                                                        | 32.24   |
| T98226           | Hs.171952       | OCLN, occludin                                                                                                       | This gene encodes an integral membrane protein which is located at tight junctions. This protein are involved in the formation and maintenance of the tight junction.                     | 31.56   |

|          | Accession number | UniGene Mapping | Gene symbol and title                                                                                                                              | Putative Function                                                                                                                                                                                                                                                                                                                                | Ratio          |
|----------|------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|          | R35343           | Hs.24988        | Human DNA sequence from clone RP1-233G16 on chromosome Xq22.1-23. Contains the 5' part of a novel gene, ESTs, STSs, GSSs and a putative CpG island |                                                                                                                                                                                                                                                                                                                                                  | 31.22          |
|          | BE247295         | Hs.78452        | SLC20A1, solute carrier family 20 (phosphate transporter), member 1                                                                                | Sodium-dependent phosphate symporter, acts as a cell-surface receptor for gibbon ape leukemia virus                                                                                                                                                                                                                                              | 30.16          |
|          | AB037734         | Hs.4993         | PCDH19, protocadherin<br>C5000394*:gl 12737280 ref XP_006882.2  keratin 18<br>[Homo saplens]  6633                                                 | Protocadherin<br>Function unknown                                                                                                                                                                                                                                                                                                                | 29.90<br>29.30 |
| ٠        | AF212223         | Hs.25010        | Homo sapiens BM025 mRNA, complete cds                                                                                                              | Function unknown                                                                                                                                                                                                                                                                                                                                 | 28.85          |
|          | AABUZ656         | HS.21843        | NIF3L1, NIF3 (Ngg1 interacting factor 3, S.pombe homolog)-like 1                                                                                   | Amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 1                                                                                                                                                                                                                                                                        | 27.73          |
|          | X14008           | Hs.234734       | Human lysozyme gene (EC 3.2.1.17)                                                                                                                  | Lysozyme                                                                                                                                                                                                                                                                                                                                         | 27.66          |
|          | AA570256         |                 | LOC116238: hypothetical protein BC014072                                                                                                           | Function unknown                                                                                                                                                                                                                                                                                                                                 | 27.52          |
| × .      | AA137152         | Hs.286049       | PSA, phosphoserine aminotransferase                                                                                                                | The protein encoded by this gene is likely a phosphosenine aminotransferase, based on similarity to proteins in mouse, rabbit, and Drosophila. Alternative splicing of this gene results in two transcript variants encoding different isoforms.                                                                                                 | 25.57          |
|          | BE621807         |                 | TM4SF1, transmembrane 4 superfamily member 1                                                                                                       | L6 antigen; member of the transmembrane 4 superfamily (TM4SF)                                                                                                                                                                                                                                                                                    | 25.40          |
|          | AB041036         | Hs.57771        | KLK11, kallikrein 11                                                                                                                               | Trypsin-like serine protease; has serine protease activity                                                                                                                                                                                                                                                                                       | 25.05          |
|          | F13386           | Hs.7888         | Homo sapiens clone 23736 mRNA sequence                                                                                                             | Function unknown                                                                                                                                                                                                                                                                                                                                 | 22.50          |
| <b>,</b> | AA158177         | Hs.118722       | FUT8, fucosyltransferase 8 (alpha (1,6)<br>fucosyltransferase)                                                                                     | N-linked glycosylation, oligosaccharide biosynthesis, glycoprotein 6-alpha-L-fucosyltransferase. Alpha(1,6)fucosyltransferase (GDP-L-Fuc:N-acetyl-beta-D-glucosaminide:alpha1-6 fucosyltransferase); transfers fucose to N-linked type complex glycopeptides from GDP-Fuc; functions in asparagine-linked glycoprotein oligosaccharide synthesis | 21.90          |
|          | BE267045         | Hs.75064        | TBCC, tubulin-specific chaperone c                                                                                                                 | Tubulin-specific chaperone c; cofactor in the folding pathway of beta-tubulin, mediates the release of beta-tubulin polypeptides committed to the native state.                                                                                                                                                                                  | 21.49          |
|          |                  | •               | NM_005936:Homo sapiens myelold/lymphoid or                                                                                                         | Function unknown                                                                                                                                                                                                                                                                                                                                 | 20.46          |

| Accession number | UniGene Mapping | Gene symbol and title                                                                                                                                                      | Putative Function                                                                                                                                                                                                                                                                                                           | Ratio |
|------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| AA150864         | Hs.790          | MGST1, microsomal glutathione S-transferase 1                                                                                                                              | Microsome, glutathione transferase. Microsomal glutathione S-<br>transferase; catalyzes the conjugation of glutathione to electrophilic<br>compounds; member of a family of detoxication enzymes.                                                                                                                           | 20.35 |
| AW955632         | Hs.66666        | EST367702 MAGE resequences, MAGD Homo saplens cDNA, mRNA sequence                                                                                                          | Function unknown                                                                                                                                                                                                                                                                                                            | 20.26 |
| AW837046         | Hs.6527         | QV1-LT0037-150200-069-e09 LT0037 Homo sapiens cDNA, mRNA sequence                                                                                                          | Function unknown                                                                                                                                                                                                                                                                                                            | 19.60 |
| AA286887         | Hs.24724        | MFHAS1, malignant fibrous histiocytoma amplified sequence 1                                                                                                                | The primary structure of its product includes an ATP/GTP-binding site, three feucine zipper domairs, and a feucine-rich tandem repeat, which are structural or functional elements for interactions among proteins related to the cell cycle, and which suggest that overexpression might be oncorenic with respect to MFH. |       |
| AW401864         | Hs.18720        | PDCD8: programmed cell death 8 (apoptosis-inducing factor)                                                                                                                 | Mitochondrial apoptosis-inducing factor, flavoprotein inducing chromatin condensation and DNA fragmentation                                                                                                                                                                                                                 | 19.01 |
| AA196241         | Hs.73980        | zp98f03.r1 Stratagene musde 937209 Homo sapiens<br>cDNA clone IMAGE:628253 6' stmilar to gb:M19309<br>TROPONIN T, SLOW SKELETAL MUSCLE<br>ISOFORMS (HUMAN);, mRNA sequence | Function unknown                                                                                                                                                                                                                                                                                                            | 18.82 |
| NM_004998        | Hs.82251        | MYO1E, myosin IE                                                                                                                                                           | Highly similar to class I myosin; may bind proline-rich peptides; contains an Src homology 3 (SH3) and myosin head domain (motor domain)                                                                                                                                                                                    | 18.62 |
| AW873704         | Hs.320831       | C20orf72: chromosome 20 open reading frame 72                                                                                                                              | Function unknown                                                                                                                                                                                                                                                                                                            | 18.19 |
| AW361666         | Hs.49500        | KIAA0746; KIAA0746 protein                                                                                                                                                 | Function unknown                                                                                                                                                                                                                                                                                                            | 18.05 |
| BE174595         | Hs.366          | PTS, 6-pyruvoyltetrahydropterin synthase                                                                                                                                   | 6-Pyruvoyitetrahydropterin synthese; synthesizes tetrahydrobiopterin, activity requires seplapterin reductase, Mg2+, and NADPH                                                                                                                                                                                              | 17.28 |
| M31669           | Hs.1735         | Human inhibin beta-B-subunit gene, exon 2, and complete cds                                                                                                                | Function unknown                                                                                                                                                                                                                                                                                                            | 16.24 |
| AK001714         | Hs.85744        | FLJ10852, hypothetical protein similar to ankyrin repeat-containing priotein AKR1                                                                                          | Are involved in protein-protein interactions; has five ankyrin repeats and a DHHC-type zinc finger or NEW1 domain                                                                                                                                                                                                           | 16:09 |
| AU076517         | Hs.184276       | AU076517 Sugano cDNA library Homo sapiens cDNA done ColF3365 similar to 5-end region of Homo sapiens ezrin-radiwn-moesin binding phosphoprotein- 50 mRNA, mRNA sequence    | Function unknown                                                                                                                                                                                                                                                                                                            | 16.05 |

| Ratio                 | 15.93                                                                                                     | 15.91                                                 | 15.35                                     | 14.62                                                                                        | 14.60                        | 14.37                                          | 14.07                                                                                 | 14.05                                                                                                              | 13.75                                                             | 13.48                                                                                                                                                     | 12.92                                                                                                       | 12.86                                                             | 12.79                                                                                                | 12.73                                   | 12.58                                                                                                               | 12.43                                                                                        | 12.25                                          | 12.22                                                                                                                                                                     | 12.21                                                             |
|-----------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Putative Function     | Low similarity to beta-galactosidase a-2,3-slalytransferase SIAT4B; member of the slalytransferase family | Function unknown                                      | Suifide dehydrogenase like                | Fibroblast growth fador receptor 3; receptor tyrosine kinase that binds acidic and basic FGF | Leucine aminopeptidase       | Cytokine A 2; chemotactic factor for monocytes | Ceruloplasmin; ferrous oxidase, binds copper in plasma and maintains iron homeostasis | Mitogen indudble dual specificity protein phosphatase 5;<br>dephosphorylates extracellular signal-regulated Kinase | Function unknown                                                  | Very strongly similar to murine Whit7a; may have a role in limb development and sexual dimorphism; member of the Writ family of cell cinnelling profeins. | egreting processing from the property of the processing mediates cell-cell interactions in epithelial cells | Cell-cycle regulated HNF-3/fork head; a transcriptional regulator | Vascular endothellal growth factor, induces endothellal cell proliferation and vascular permeability | Function unknown                        | CXC chemokine receptor (fusin); G protein-coupled receptor binds CXC cytokines, mediates intracellular calcium flux | Strongly similar to human D6S81E; member of the DEAD/H box ATP-dependent RNA helicase family | Leucine zipper kinase                          | Binds to the HIV-1 TAR RNA regulatory element, may function alone or with HIV-1 Tat to disengage RNA polymerase II during transcriptional elongation; has a leuche zipper | Function unknown                                                  |
| Gene symbol and title | STHM, sialyltransferase                                                                                   | Homo sapiens cDNA FLJ14201 fis, clone<br>NT2RP3002855 | SQRDL: suffide dehydrogenase like (yeast) | FGFR3, fibroblast growth factor receptor 3 (achondroplasta, thanatophoric dwarfsm)           | LAP3, leucine aminopeptidase | CCL2, chemokine (C-C motif) ligand 2           | CP, ceruloplasmin (ferroxidase)                                                       | DUSP5, dual specificity phosphatase 5                                                                              | EST381684 MAGE resequences, MAGK Homo sapiens cDNA, mRNA sequence | WNT7A, wingless-type MMTV Integration site family, member 7A                                                                                              | CDH1, cadherin 1, type 1, E-cadherin (epithelial)                                                           | FOXM1, forkhead box M1                                            | VEGF, vascular endothelial growth factor                                                             | FLJ20160; hypothetical protein FLJ20160 | CXCR4, chemokine (C-X-C motif), receptor 4 (fusin)                                                                  | DDX39, DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 39                                       | MELK, maternal embryonic feucine zipper kinase | TARBP1, TAR (HIV) RNA binding protein 1                                                                                                                                   | EST365645 MAGE resequences, MAGC Homo sapiens cDNA, mRNA sequence |
| UniGene Mapping       | Hs.288215                                                                                                 | Hs.193063                                             | Hs.8185                                   | Hs.1420                                                                                      | Hs.182579                    | Hs.303649                                      | Hs.282804                                                                             | Hs.2128                                                                                                            | Hs.86368                                                          | Hs.72290                                                                                                                                                  | Hs.194657                                                                                                   | Hs.239                                                            | Hs.73793                                                                                             | Hs.23412                                | Hs.89414                                                                                                            | Hs.311609                                                                                    | Hs.184339                                      | Hs.151518                                                                                                                                                                 | Hs.303125                                                         |
| Accession number      | NM_006456                                                                                                 | BE148235                                              | AV653729                                  | AL119671                                                                                     | AA393071                     | AL048753                                       | Al868872                                                                              | NM_004419                                                                                                          | AW969587                                                          | AW161449                                                                                                                                                  | BE409838                                                                                                    | BE540274                                                          | AF022375                                                                                             | AW369278                                | AF147204                                                                                                            | BE242818                                                                                     | NM_014791                                      | U38847                                                                                                                                                                    | AW953575                                                          |

| Accession number | UniGene Mapping | Gene symbol and title                                                                            | Putative Function                                                                                                                                                                | Ratio |
|------------------|-----------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| AIB48095         | Hs.67776        | ESTs, Weakly similar to T22341 hypothetical protein F47B8.5 - Caenorhabditis elegans [C.elegans] | Homo saplens, clone IMAGE:5455669, mRNA, partial cds                                                                                                                             | 12.08 |
| BE274530         | Hs.273333       | FLJ10986, hypothetical protein FLJ10986                                                          | Member of the FGGY carbohydrate kinase family                                                                                                                                    | 11.75 |
| AB020676         | Hs.21543        | KIAA0869 protein                                                                                 | Function unknown                                                                                                                                                                 | 11.73 |
|                  |                 | Target Exon                                                                                      | Function unknown                                                                                                                                                                 | 11.69 |
| H48299           | Hs.26126:33     | CLDN10, claudin 10                                                                               | Cell adhesion, integral plasma membrane protein, tight junction.                                                                                                                 | 11.67 |
| T34530           | Hs.4210         | Homo sapiens cDNA FLJ13069 fis, clone<br>NT2RP3001762                                            | Function unknown                                                                                                                                                                 | 11.50 |
| NM_022454        | Hs.97984        | SOX17, SRY (sex determining region Y)-box 17                                                     | SRY-related HMG-box transcription factor SOX17                                                                                                                                   | 11.42 |
| AA737033         | Hs.7165         | Homo sapiens, clone IMAGE:4428577, mRNA, partial cds                                             | Function unknown                                                                                                                                                                 | 10.79 |
| AA433988         | Hs.98502:8      | MUC16, mucin 16, CA125                                                                           | Mucin 16. Alias CA125 ovarian cancer antigen                                                                                                                                     | 10.52 |
| H91282           | Hs.286232       | Homo sapiens cDNA: FLJ23190 fis, clone LNG12190                                                  | Function unknown                                                                                                                                                                 | 10.50 |
| AW005054         | Hs.47883        | LOC57118: CamKI-like protein kinase                                                              | CamKI-like protein kinase; granulocyte-specific protein kinase that activates ERK/MAP kinase activity; similar to Ca(2+)-calmodulin-dependent hinses I CamKI)                    | 10.49 |
| 66969X           | Hs.73149        | PAX8, paired box gene 8                                                                          | Depotation missory (Volume)  Member of the paired domain family of nuclear transcription factors; are involved in the ribosome assembly, required for normal thyroid development | 10.39 |
| AW382987         | Hs.88474:42     | Homo saplens cDNA, mRNA sequence                                                                 | Function unknown                                                                                                                                                                 | 10.21 |
| AW957446         | Hs.301711       | Homo sapkans, done MGC:23936 IMAGE:3838595,<br>mRNA, complete cds                                | Function unknown                                                                                                                                                                 | 10.12 |
| AA361562         | Hs.178761       | POH1: 26S proteasome-associated pad1 homolog                                                     | Ubiquitin-dependent protein degradation                                                                                                                                          | 10.01 |
| AA834626         |                 | RAD54L, RAD54 (S.cerevisiae)-like                                                                | Has likely roles in mitotic and meiotic DNA recombination and repair; member of SNF2/SWI2 family of DNA-dependent ATPases                                                        | 9.85  |
| AI878927         | Hs.79284        | MEST, mesoderm specific transcript (mouse) homolog                                               | Mesoderm specific protein; member of the alpha/beta hydrolase fold family                                                                                                        | .983  |
| AW074266         | Hs.23071        | LOC85439: stonin 2                                                                               | Stonin 2                                                                                                                                                                         | 9.74  |
| NM_000947        | Hs.74519        | PRIMZA, primase, polypeptide 2A (58kD)                                                           | Subunit of DNA primase polypeptide 2A; part of the DNA polymerase alpha-primase complex                                                                                          | 9.72  |

| Accession number     | UniGene Napping          | Gene symbol and fitte                                                                                                                    | Putative Function                                                                                                                                                                                                                                                                                                                                            | Ratio |
|----------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| NM_006187            | Hs.56009                 | OAS3, 2'-5'-oligoadenylate synthetase 3 (100 kD)                                                                                         | Member of the 2'5'-oligoadenylate synthetase family                                                                                                                                                                                                                                                                                                          | 9.68  |
| AW276858             | Hs.81256                 | S100A4, S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, murine piacental homolog)                             | Calcyclin (melastasts-associated) (\$100 calclum-binding protein A4); interacts with targets to link extracellular stimuli and cellular responses; member of the \$100 family of tissue-specific calclum-binding proteins                                                                                                                                    | 9.68  |
| T18997               | Hs.180372                | LOC139231; hypothetical protein BC016683                                                                                                 | Function unknown                                                                                                                                                                                                                                                                                                                                             | 9.49  |
| AA262294             | Hs.180383                | DUSP6, dual specificity phosphatase 6                                                                                                    | Dual specificity protein phosphatase 6; selectively dephosphorylates and inactivates MAP kinase                                                                                                                                                                                                                                                              | 9.48  |
| AA220238             | Hs.94986                 | RPP38: ribonuclease P (38kD)                                                                                                             | Nucleus, ribonuclease P. Subunit p38 of ribonuclease P ribonucleoprotein; processes 5' ends of precursor tRNAs                                                                                                                                                                                                                                               | 9.41  |
| AW505308             | Hs.75812                 | PCK2, phosphoenolpyruvate carboxykinase 2 (mitochondrial)                                                                                | Phosphoenolpyruvate carboxykinase 2; forms phosphoenolpyruvate by decarboxylation of oxaloacetate at the rate-limiting step of physphononaete.                                                                                                                                                                                                               | 9.38  |
| A1186431             | Hs.296638                | PLAB: prostate differentiation factor                                                                                                    | Processing inhibitory cytokine; member of a subgroup of the TGF-beta superfamily                                                                                                                                                                                                                                                                             | 9.12  |
| Al095718             | Hs.135015                | Homo sapiens cDNA FLJ40908 fis, done<br>UTERU2004698, highly similar to Mus musculus<br>mRNA for thrombospondin type 1 domain            | Function unknown                                                                                                                                                                                                                                                                                                                                             | 9.04  |
| W70171               | Hs.76939                 | UMPK, uridine monophosphate kinase                                                                                                       | The protein encoded by this gene catalyzes the phosphorylation of unidine monophosphale to unidine diphosphate. This is the first step in the production of the pyrmidine nucleoside triphosphates required for RNA and DNA synthesis. In addition, an allele of this gene may play a role in mediating nonhumoral immunity to Hemophilus influenzae type B. | 8.97  |
| AI580935             | Hs.105898                | Homo sapiens cDNA FLJ31553 fis, clone<br>NT2Ri2001178                                                                                    | Function unknown                                                                                                                                                                                                                                                                                                                                             | 8.90  |
| AB040914<br>AU076611 | Hs.278628<br>Hs.164872   | ShrmL: Shroom-related protein MTHFD2, methylene tetrahydrofolate dehydrogenase (NAD+ dependent), methenyltetrahydrofolate cyclohydrolase | Shroom-related protein NAD-dependent metrylene tetrahydrofolate defrydrogenase-cyclohydrolase; may provide formyltetrahydrofolate for formylmethionyl (RNA synthesis; involved in initiation of mitochondrial protein synthesis                                                                                                                              | 8.87  |
| A1089660             | Hs,323401                | LOC84661: dpy-30-like protein                                                                                                            | dpy-30-like protein                                                                                                                                                                                                                                                                                                                                          | 8.71  |
| D13668               | Hs.136348:228,Hs.80988:2 | OSF-2: osteobiast specific factor 2 (fasciclin I-like)                                                                                   | Celi achesion, skeletal development. Putative bone adhesion protein; similar to the insect protein fasciclin!                                                                                                                                                                                                                                                | 8.64  |
| AI798863             | Hs.87191                 | ESTs                                                                                                                                     | Function unknown                                                                                                                                                                                                                                                                                                                                             | 8.52  |

|   | Accession number | UniGene Mapping | Gene symbol and title                                                             | Putative Function                                                                                                                      | Ratio |
|---|------------------|-----------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------|
|   | U78093           | Hs.15154        | SRPX, sushl-repeat-containing protein, X chromosome                               | Putative membrane protein with short consensus repeat (sushi) domains                                                                  | 8.51  |
|   | A1669760         | Hs.188881       | ESTs                                                                              | Function unknown                                                                                                                       | 8.37  |
|   | Al375726         | Hs.279918       | MGC2198: hypothetical protein MGC2198                                             | Function unknown                                                                                                                       | 8.37  |
|   | AW271106         | Hs.133294       | ESTs                                                                              | Function unknown                                                                                                                       | 8.30  |
|   | AK001782         | Hs.15093        | HSPC195: hypothetical protein HSPC195                                             | Function unknown                                                                                                                       | 8.18  |
|   | AF019226         | Hs.8036         | RAB3D,RAB3D, member RAS oncogene family                                           | GTP-binding protein; are involved in vesicle transport, member of the RAB family of small GTPases                                      | 7.94  |
|   | AW968343         | Hs.24255        | LOC150696: prominin-related protein                                               | Prominin-related protein                                                                                                               | 7.90  |
|   | AF111858         | Hs.105039       | SLC34A2, solute carrier family 34 (sodium phosphate), member 2                    | Sodium-dependent phosphate transporter; member of the renal type II co-transporter family                                              | 7.87  |
|   | AA863360         | Hs.26040        | Homo sapiens, done MGC:40051 IMAGE:5243005, mRNA.complete ods                     | Function unknown                                                                                                                       | 7.75  |
|   | NM_005764        | Hs.271473       | DD98: epithelial protein up-regulated in cardnoma, membrane associated protein 17 | Up-regulated in malignant epithelial cells of renal cell carcinomas, and in carcinomas of colon, breast and lung                       | .7.75 |
|   | AW360901         | Hs.183047       | MGC4399: mitochondrial carrier protein                                            | Mitochondrial carrier protein MGC4399                                                                                                  | 7.71  |
|   | AL353944         | Hs.60115        | Homo sapiens mRNA; cDNA DKFZp761J1112 (from clone DKFZp761J1112)                  | Function unknown                                                                                                                       | 7.69  |
|   | H59789           | Hs.42644        | TXNI.2, thioredoxin-like 2                                                        | Member of the thioredoxin family; has region of moderate similarity to glutaredoxin-like proteins                                      | 7.85  |
|   | NM_002984        | Hs.75703        | CCL4, chemokine (C-C motif) ligand 4                                              | Cytokine A4                                                                                                                            | 7.64  |
|   | AA642452         | Hs.130881       | BCL11A, B-cell CLL/lymphoma 11A (zinc finger protein)                             | May bind nucleic acids; contains three C2H2 type zinc finger domains                                                                   | 7.61  |
|   | AA789081         | Hs.4029         | GAS41: giloma-amplified sequence-41                                               | Similar to the transcription factors AF-9 and ENL                                                                                      | 7.46  |
|   | H13032           | Hs.103378       | MGC11034, hypothetical protein MGC11034                                           | Function unknown                                                                                                                       | 7.42  |
|   | BE384836         | Hs.3454         | KIAA1821: KIAA1821 protein                                                        | KIAA1821 protein                                                                                                                       | 7.40  |
|   | AW067800         | Hs.155223       | STC2, stanniocalcin 2                                                             | Stannlocalcin 2; may regulate metal ion homeostasis and inhibits ohoshate uptake                                                       | 7.36  |
| • | T55979           | Hs.115474       | RFC3, replication factor C (activator 1) 3 (38kD)                                 | Subunit of replication factor C (activator 1) 3; activator of DNA polymerases                                                          | 7.35  |
|   | AJ278016         | Hs.55565        | ANKRD3, ankyrtn repeat domain 3                                                   | Ortholog of mouse protien kinase C-associated kinase, putative gene, anklrin like, possible dual-spedificity Ser/Thr/Tyr kinase domain | 7.25  |

| Accession number | UniGene Mapping | Gene symbol and title                                                                                         | Putative Function                                                                                                                                | Ratio |
|------------------|-----------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                  |                 | NM, 025080:Homo saptens hypothetical protein<br>FLJ22316 (FLJ22316), mRNA, VERSION<br>NM_025078.1 Gl:13376631 | Function unknown                                                                                                                                 | 7.22  |
| AA084248         | Hs.85339:64     | GPR39, G protein-coupled receptor 39                                                                          | GPR39, G protein-coupled receptor 39                                                                                                             | 7.15  |
| BE620738         | Hs.173125       | PPIF, peptidytprotyl isomerase F (cydophilin F)                                                               | Cyclophilin F (peptidylprotyl Isomerase F); binds the immunosuppressant drug cyclosporin A                                                       | 7.06  |
| AF072873         | Hs.114218       | FZD6, frtzzled (Drosophila) homolog 6                                                                         | Frtzted-6; may function in tissue polarity, development and carcinogenesis; similar to frizzled receptor family, has seven transmembrane domains | 7.04  |
| AA852773         | Hs.334838       | KIAA1866 protein                                                                                              | KIAA1866 protein                                                                                                                                 | 6.99  |
| R07566           | Hs.73817        | CCL3, chemokine (C-C moth) ligand 3                                                                           | Macrophage inflammatory protein 1 alpha; chemokine                                                                                               | 6.98  |
| NM_005211        | Hs.174142       | CSF1R, colony stimulating factor 1 receptor, formerly McDonough feline sarcoma viral (v-fms) oncogene homolog | Macrophage colony stimulating factor tyrosine kinase receptor; involved in regulation of growth and differentiation of myeloid cells             | 6.79  |
| AI752666         | Hs.76669        | NNMT, nicotinamide N-methyltransferase                                                                        | Nicotinamide N-methyltransferase; catalyzes the N-methylation of nicotinamide and other pyridines, structurally-related drugs and xenoblokes.    | 6.52  |
| AF182294         | Hs.241578       | LOC51691: U8 anRNA-associated Sm-like protein LSm8                                                            | Member of the Sm family; core constituent of snRNP complexes                                                                                     | 6.50  |
| AA457211         | Hs.8858         | BAZ1A, bromodomain adjacent to zinc finger domain, 1A                                                         | May bind DNA and act as a chromatin-mediated transcriptional regulator; contains a bromodomain and a PHD-finger                                  | 6.48  |
| W40262           | Hs.146310       | zc79f0z.s1 Pancreatic islet Homo sapiens cDNA clone<br>IMAGE:328539 3', mRNA sequence                         | Function unknown                                                                                                                                 | 6.47  |
| AB033091         | Hs.74313        | KIAA1265 protein                                                                                              | Function unknown                                                                                                                                 | 6.45  |
| AA292898         | Нв.163900       | ESTs, Highly similar to winged hellxforkhead transcription factor [Homo sapiens] [H.sapiens]                  | Function unknown                                                                                                                                 | 6.36  |
| BE613269         | Hs.21893        | OKFZp761N0624: hypothetical protein<br>OKFZp761N0624                                                          | Function unknown                                                                                                                                 | 6.35  |
| H25836           | Hs.301527       | ESTs, Moderately similar to unknown [Homo saplens] [H.saplens]                                                | Function unknown                                                                                                                                 | 6.27  |
| AL037228         | Hs.82043        | NUDT5, nudix (nudeoside diphosphate linked molety X)-type motif 5                                             | NDP-sugar hydrolase; converts ADP-ribose to AMP or ribose 5-<br>phosphate; contains a Muf7 motif                                                 | 6.25  |
| AV662037         | Hs.124740       | FLJ30532: hypothetical protein FLJ30532                                                                       | Function unknown                                                                                                                                 | 6.21  |

| Accession number | UniGene Mapping | Gene symbol and title                                                                                                              | Putative Function                                                                                                                                                                                                                                      | Ratio |
|------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Ai674383         | Hs.22891        | wc38h08.x1 NCI_CGAP_Pr28 Homo sapiens cDNA<br>clone IMAGE:2320959 3', mRNA sequence                                                | Function unknown                                                                                                                                                                                                                                       | 6.20  |
| AW342140         | Hs.182545       | ESTs, Weakly similar to POL2_MOUSE Retrovinus-related POL polyprotein (Contains: Reverse transcriptase; Endonuclease) [M.musculus] | Function unknown                                                                                                                                                                                                                                       | 6.18  |
| BE560135         | Hs.5232         | HSPC125, HSPC125 protein                                                                                                           | Function unknown                                                                                                                                                                                                                                       | 6.17  |
| BE409857         | Hs.69499        | HSPC132: hypothetical protein HSPC132                                                                                              | Moderately similar to a region of S. cerevislae Ykl053c-ap                                                                                                                                                                                             | 6.18  |
| AW972542         | Hs.289008       | LOC116150: hypothetical protein, MGC:7199                                                                                          | Function unknown                                                                                                                                                                                                                                       | 6.16  |
| Al523765         | Hs.59236        | DKFZP434L0718: hypothetical protein DKFZp434L0718                                                                                  | Function unknown                                                                                                                                                                                                                                       | 6.16  |
| NM_014056        | Hs.7917         | DKFZP564K247: DKFZP564K247 protein                                                                                                 | Function unknown                                                                                                                                                                                                                                       | 6.08  |
| AI857607         | Hs.181301       | CTSS, cathepsin S                                                                                                                  | Cathepsin S; lysosomal cysteine (thlo!) protease that cleaves elastin                                                                                                                                                                                  | 6.04  |
| AW247529         | Hs.6793         | PAFAH1B3, platelet-activating factor acetyltrydrolase, isoform lb, gamma subunit (28kD)                                            | Platelet-activating factor acetylhydrolase gamma; may play a role in<br>brain development                                                                                                                                                              | 5.98  |
| AK000868         | Hs.5570         | Homo sapiens cDNA FLJ10006 fis, clone<br>HEMBA1000168, weakly similar to CYLICIN I                                                 | Function unknown                                                                                                                                                                                                                                       | 6.82  |
| AF053551         | Hs.31584        | MTX2, metaxin 2                                                                                                                    | Very strongly similar to murine metaxin 2 (Mm.12941); are involved in mitochondrial protein Import                                                                                                                                                     | 5.91  |
| Al538613         | Hs.298241       | TMPRSS3, Transmembrane protease, serine 3                                                                                          | The encoded protein contains a serine protease domain, a transmembrane domain, a LDL receptor-like domain, and a scavenger receptor cysteine-rich domain. This gene was identified as a tumor associated gene that is overexpressed in ovarian tumors. | 5.86  |
| U48508           | Hs.89631        | Human skeletal muscle ryanodine receptor gene<br>(RYR1), exons 103, 104, 105, 106, and complete cds                                | Function unknown                                                                                                                                                                                                                                       | 5.88  |
| T69387           | Hs.76364        | AIF1, allograft inflammatory factor 1                                                                                              | Allografi Inflammatory factor 1; cytokine Inducible protein associated with vascular Injury                                                                                                                                                            | 5.86  |
| AC005954         | Hs.25527        | Homo sapiens chromosome 19, cosmid R28784, complete sequence                                                                       | Function unknown                                                                                                                                                                                                                                       | 5.86  |
| AB037805         | Hs.88442        | KIAA1384 protein                                                                                                                   | Function unknown                                                                                                                                                                                                                                       | 5.84  |

| Accession number               | UniGene Mapping                     | Gene symbol and title                                                                                                                                                                                                                                              | Putative Function                                                                                                                                                                                                                                                           | Ratio                |
|--------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| AL031427                       | Hs.40094                            | Human DNA sequence from done 167A19 on chromosome 1p32.1-33. Contains three genes for novel proteins, the DIO1 gene for type I iodothyronine deloctinase (EC 3.8.1.4, TXDI1, ITDI1) and an HNRNP A3 (Heterogenous Nuclear Ribonucleoprotein A3, FBRNP) pseudogene. | Function unknown                                                                                                                                                                                                                                                            | 5.83                 |
| AA340864<br>X89984<br>Al355781 | Hs.278662<br>Hs.211563<br>Hs.242463 | CLDN7, claudin 7 BCL7A, B-cell CLL/lymphoma 7A qt94a11.x1 NCI_CGAP_Co14 Homo seplens cDNA clone IMAGE:1962908 3' similar to gb:X74929 KERATIN, TYPE II CYTOSKELETAL 8 (HUMAN);                                                                                     | Similar to murine Cldn7; are an integral membrane protein<br>Similar to the actin-binding protein caldesmon; serine-rich<br>Function unknown                                                                                                                                | 5.76<br>5.74<br>5.73 |
| 5050000                        | CANADA II                           | mRNA sequence                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                             | Ţ<br>P               |
| AA370409                       | ns. 10802                           | Homo Sapiens CLNA: TLJZ3513 ffs, Gone MEF 11919                                                                                                                                                                                                                    | rungaon unknown                                                                                                                                                                                                                                                             | 6                    |
| AA310162<br>AW015534           | Hs.169248<br>Hs.217493              | HCS: cytochrome c<br>ANXA2, annexin A2                                                                                                                                                                                                                             | Somatic cytochrome c (heart cytochrome c) Annexin II (lipocortin-2); enhances osteoclast formation and bone resorption; member of the annexin protein family                                                                                                                | 5.67<br>5.64         |
| AA326108                       | Hs.53631:82                         | BHLHB3: basic hellx-loop-helix domain containing,<br>class B, 3                                                                                                                                                                                                    | Basic helix-loop-helix (bHLH) transcription factors (e.g., DEC1, also called BHLHB2; 604256) are related to Drosophila hairy/enhancer of split proteins. They are involved in the control of proliferation and development during differentiation, particularly in neurons. | 5.64                 |
| AA120865                       | Hs.23136                            | ESTs, Highly similar to THYA_HUMAN Prothymosin alpha [H.saplens]                                                                                                                                                                                                   | Function unknown                                                                                                                                                                                                                                                            | 5.62                 |
| AK000517                       | Hs.6844                             | NALP2: NALP2 protein                                                                                                                                                                                                                                               | Protein with low similarity to murine Op1                                                                                                                                                                                                                                   | 5.54                 |
| Z36842                         | Hs.57548                            | H.sapiens (xs85) mRNA, 209bp                                                                                                                                                                                                                                       | Function unknown                                                                                                                                                                                                                                                            | 5.53                 |
| AA831552                       | Hs.268016                           | Homo sapiens cDNA: FLJ21243 fis, clone COL01164                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                             | 5.50                 |
| AL137578                       | Hs.27607                            | Homo saplens mRNA; cDNA DKFZp564N2464 (from clone DKFZp564N2464)                                                                                                                                                                                                   | Function unknown                                                                                                                                                                                                                                                            | 5.50                 |
| AA316181                       | Hs.61635                            | STEAP, six transmembrane epithelial antigen of the prostate                                                                                                                                                                                                        | Six transmembrane epithelial antigen of the prostate; prostate-specific cell-surface antigen                                                                                                                                                                                | 5.46                 |

| Accession number | UniGene Mapping | Gene symbol and title                                                       | Putative Function                                                                                                                      | Ratio |
|------------------|-----------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------|
| X03835           | Hs.1857         | ESR1, estrogen receptor 1                                                   | Estrogen receptor, nuclear receptor transcription factor activated by liganet-binding, involved in hormone-mediated inhibition of gene | 5.42  |
| AI557280         | Hs.184270       | PT2.1_15_G11.r fumor2 Homo sapiens cDNA 3', mRNA sequence                   | akhissalar<br>Function unknown                                                                                                         | 5,41  |
| AW248508         | Hs.279727       | Homo sapiens cDNA FL/14035 fis, clone<br>HEMBA1004638                       | Function unknown                                                                                                                       | 5.40  |
| N90866           | Hs.276770       | CDW52, CDW52 antigen (CAMPATH-1 antigen)                                    | CAMPATH-1 antigen; GPI-anchored protein                                                                                                | 5.39  |
| U83115           | Hs.161002       | AIM1, absent in melanoma 1                                                  | Member of the beta gamma-crystallin superfamily of proteins: interactions with the cytoskeleton                                        | 5.35  |
| AB007860         | Hs.12802        | DDEF2, development and differentiation enhancing factor 2                   | GTPase-activating protein; interacts with members of the Arf and Src family                                                            | 5.35  |
| Z46223           | Hs.176663       | H.saplens DNA for immunoglobulin G Fc receptor IIIB                         | Immunoglobulin G Fc receptor                                                                                                           | 5.31  |
| BE264974         | Hs.6566         | TRIP13; thyrold hormone receptor Interactor 13                              | Interacts with ligand binding domain of thyroid hormone receptor and with human papiliomavirus type 16 (HPV16) E1                      | 5.30  |
| AA194422         | Hs.22564        | MYO6, myosin VI                                                             | Motor, hearing, myosin ATPase, structural protein. Class 6 myosin; motor protein; very strongly similar to murine Myo6                 | 5.27  |
| AF134167         | Hs.169487       | MAFB, v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (avian)      | Very strongly similar to murine Krml; may function as a basic domain-<br>leucine zipper transcription factor                           | 5.25  |
| AA232119         | Hs.16085        | SH120: putative G-protein coupled receptor                                  | putative G-protein coupled receptor                                                                                                    | 5.25  |
| W58353           | Hs.285123       | OSBPL10, oxysterol binding protein-like 10                                  | Member of the oxysteroLbinding protein (OSBP) family; may bind oxygenated derivetives of cholesterol                                   | 5.21  |
| AW167128         | Hs.231934       | ESTs, Weakly similar to A57717 transcription factor EC2 - human [H.sapiens] | Function unknown                                                                                                                       | 5.19  |
| U70370           | Hs.84136        | PITX1, paired-like homeodomain transcription factor 1                       | Member of the homeodomain family of DNA binding proteins; may regulate gene expression and control cell differentiation                | 5.18  |
| N55669           | Hs.333823       | MRPL13, mitochondrial ribosomal protein L13                                 | Protein of the large 60S ribosomal subunit                                                                                             | 5.17  |
| BE298446         | Hs.305890       | BCL2L1, BCL2-like 1                                                         | BCL2-related protein; alternative form bcf-xlong inhibits apoptosis and bcf-xshort induces apoptosis                                   | 5.17  |
| AW136551         | Hs.181245       | Homo saplens cDNA FLJ12532 ffs, clone<br>NT2RM4000200                       | Function unknown                                                                                                                       | 5.15  |
| AW250380         | Hs.109059       | HGS, hepatocyte growth factor-regulated tyrosine kinase substrate           | Zino-finger protein; interacts with STAM, undergoes tyrasine phosphorylation in response to IL2, CSF2, or HGF                          | 5.13  |

| Accession number | UniGene Mapping | Gene symbol and title                                                                                             | Putative Function                                                                                                                                                        | Ratio |
|------------------|-----------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| AW002565         | Hs.124660       | Homo saplens cDNA: FLJ21763 fis, clone COLF6967                                                                   | Function unknown                                                                                                                                                         | 5,13  |
| AI637274         | Hs.105435       | GMDS, GDP-mannose 4,6-dehydratase                                                                                 | GDP-mannose-4,6-dehydratase, epimerase converts GDP-mannose to GDP-mannose-4-keto-8-D-deoxymannose, plays a role in the synthesis of fucosylated oligosaccharides        | 5.11  |
| NM_003878        | Hs.78619        | GGH, gamma-glutamyl hydrolase (conjugase,<br>folylpolygammaglutamyl hydrolase)                                    | Gamma-glutamyl hydrolase; has greater exopeptidase activity on methotrexate pentaglutamate than on diglutamate                                                           | 5.11  |
| AF052112         | Hs.12540        | LYPLA1, lysophospholipase I                                                                                       | Lysophospholipid-specific lysophospholipase 1; hydrotyzes lysophosphatidyl choline                                                                                       | 5.09  |
| AV654694         | Hs.82316        | IFI44, interferon-induced protein 44                                                                              | Member of the family of Interferon-alpha/beta inducible proteins; may mediate the antiviral action of Interferon                                                         | 5.09  |
| R24601           |                 | Homo sapiens adenylosuccinate synthetase isozyme (ADSS) mRNA, complete cds                                        | Adenylosuccinate synthetase                                                                                                                                              | 5.07  |
| BE019020         | Hs.85838        | Homo saplens cDNA done IMAGE:2963945 5' similar to TR:O16427 O15427 MONOCARBOXYLATE TRANSPORTER: ;; mRNA sequence | Function unknown                                                                                                                                                         | 5.04  |
| AW163799         | Hs.198365       | BPGM, 2,3-bisphosphoglycerate mutase                                                                              | 2.3-bisphosphoglycerate mutase; has synthase, mutase, and<br>phosphatase activities, controls 2,3-diphosphoglycerate metabolism,<br>which is an effector for haemoglobin | 5.04  |
| AA278921         | Hs.1908         | PRG1, proteoglycan 1, secretory granule                                                                           | Secretory granule proteoglycan 1                                                                                                                                         | 5.02  |
| NM_003726        | Hs.19126        | SCAP1, src family associated phosphoprotein 1                                                                     | Src kinase-associated phosphoprotein; acts as an adaptor protein; contains a pleckstrin homology domain and an SH3 domain                                                | 5.02  |
| AA281167         | Hs.111911       | ESTs, Weakly similar to T06291 extensin homolog<br>T9E8.80 - Arabidopsis thallana [A.thallana]                    | Function unknown                                                                                                                                                         | 5.02  |
|                  |                 | C9000306*gi 12737280 ref XP_006682.2  keratin 18<br>[Homo saplens]  6633                                          | Function unknown                                                                                                                                                         | 5.01  |
| AF098158         | Hs.9329         | C20orf1, chromosome 20 open reading frame 1                                                                       | Proliferation-associated nuclear protein; associates with the spindle pole and mitotic spindle during mitosis                                                            | 5.00  |

|                  | •                       |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|------------------|-------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Accession number | UniGene Mapping         | Gene symbol and title                                                        | Putative Function                                                                                                                                                                                                                                                                                                                                                                                                                               | Kallo |
| AA101043         | Hs,151254:19            | KLK7, kalilkreln 7 (chymotryptic; stratum comeum)                            | Epidermal differentiation. Stratum comeum chymotryptic enzyme; senne protease. Growing evidence suggests that many kallikreins are implicated in cardinogenesis and some have potential as novel cancer and other disease biomarkers. Thought to be involved in the proteolysis of intercellular cohesive structures preceding desquamation, which is the shedding of the outsmost laver of the epidemils.                                      | 4.87  |
| AF017986         | Hs.31386:185            | Homo sapiens secreted apoptosis related protein 1 (SARP1) mRNA, partial cds. | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.12  |
| AW960564         | Hs.3337:137             | TM4SF1: transmembrane 4 superfamily member 1                                 | Pathogenesis, plasma membrane, cell proliferation, N-linked glycosylation, integral membrane protein, integral plasma membrane protein. L6 antigen; member of the transmembrane 4 superfamily (TM4SF). The proteins mediate signal transduction events that play a role in the regulation of cell development, activation, growth and motility. This encoded protein is a cell surface antigen and is highly expressed in different carchiomas. | 3.62  |
| W29092           | Hs.7678:40              | CRABP1 Cellular retinoic acid binding protein 1                              | Cytoplasm, retinoid binding, signal transduction, developmental processes. Cellular retinoic acid-binding protein 1; are involved in delivering retinoic acid to the nucleus, assumed to play an important role in retinoic acid-mediated differentiation and proliferation processes.                                                                                                                                                          | 3.34  |
| . Н83366         | Hs.7587:84              | Homo sapiens cDNA: FLJ21962 fis, clone HEP05584                              | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.29  |
| D49441           | Hs.155981:53            | MSLN, mesothelin                                                             | Cell adhesion, cell surfaces antigen, membrane. Pre-pro-megakaryocyte potentiating factor. An antibody that reacts with ovarian cancers and mesotheliomas was used to isolate a cell surface antigen named mesothelin. Although the function of mesothelin is unknown, it may play a role in cellular adhesion and is present on mesothelium, may blay mesothelioms, and ovarian cancers.                                                       | 3.14  |
| AA214228         | Hs.127751:21,Hs.78006:5 | C20orf180: chromosome 20 open reading frame 180                              | Region of high similarity to tyrosine-phosphorylated protein DOK1                                                                                                                                                                                                                                                                                                                                                                               | 2.99  |
| M31126           | Hs.272620:1             | PSG9: pregnancy specific beta-1-glycoprotein 9                               | Pregnancy, extraodilular, plasma glycoprotein. Member of the pregnancy-specific glycoprotein (PSG) and QEA families.                                                                                                                                                                                                                                                                                                                            | 2.82  |
| <b>U62801</b>    | Hs.79361:65             | KLK6, kalikrein 6 (neurosin, zyme)                                           | Serine type peptidase, pathogenesis. Neurosin (protease M, zymė); a serine protease trat cleaves amyloid precursor protein (APP). Growing evidence suggests that many kallikreins are implicated in carcinogenesis and some have potential as novel cancer and other disease blomarkers.                                                                                                                                                        | 2.77  |
| AK001536         | Hs.285803:6             | Homo sapiens cDNA FLJ12852 ffs, clone<br>NT2RP2003445                        | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.73  |

| Accession number     | UnlGene Mapping                                            | Gene symbol and title                                                   | Putative Function                                                                                                                                                                                                                                                                         | Ratio |
|----------------------|------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| NM_014767            | Hs.74583:140<br>Hs.75733:129,Hs.278399:100,H<br>s.274378:1 | KIAA0275: KIAA0275 gene product<br>AMY2A: amylase, alpha 2A; pancreatic | Function unknown Alpha-amylase, extracellular space, carbohydrate metabolism. Parcreatic alpha-amylase 2A (1.4-alpha-D-glucan glucanotrydrolase); deaves internal a-1,4 bonds between glucose monomers to digest                                                                          | 2.72  |
| AA430348             | Hs.288837:40                                               | Homo saplens cDNA FLJ12927 fis, clone<br>NT2RP2004743                   | starch.<br>Function unknown                                                                                                                                                                                                                                                               | 2.69  |
| X51630               | Hs.1145:22,Hs.296851:1                                     | WT1, Wilms tumor 1                                                      | Nucleus, transcription factor, transcription regulation. 4 Zn finger domains. Functions in kidney and gonad proliteration and differentiation. Mutations in this gene are associated with the development of Wilms tumors in the kidney or with abnormalities of the genitourinary tract. | 2.58  |
| BE393948             | Hs.50915:17                                                | KLK5, kalilkreln 5                                                      | Serine type peptidase, epidermal differentiation, extracellular space. Stratum comeum tryptic errzyme (kallikrain-like protein), may function in epidermal stratum comeum desquamation and turnover. Expression in protate cancer negatively correlated with cancer aggressiveness        | 2.34  |
| NM_002776            | Hs.69423:46                                                | KLK10, kaliikrein 10                                                    | If coses 2002) Putative serine protease. Expressed in normal breast tissue and benign lesions, with loss of expression during tumor progression (Dhar 2001). SINPs associated with prostate, breast, testicular, and ovarian cancers                                                      | 2.24  |
| NM_000954            | Hs.8272:294                                                | PTGDS: prostaglandin D2 synthase (21kD, brain)                          | (prinaraj zouzz). Membrane, prostaglandin-D synthase. Glutathione-independent prostaglandin D2 synthase; membrane associated, catalyzes synthesis of prostaglandin D2, member of the lipocalin family of transporters.                                                                    | 2.15  |
| AB029000             | Hs.70823:109,Hs.297970:48                                  | KIAA1077: sulfatase FP                                                  | Function unknown                                                                                                                                                                                                                                                                          | 2.04  |
| AL044315<br>AA334592 | Hs.173094:70<br>Hs.79914:337                               | KIAA1750; KIAA1750 protein<br>LUM: lumican                              | Function unknown Vision, proteoglycan, extracellular matrix, cartilage condensation, extracellular matrix glycoprotein. Member of the specialized collagens                                                                                                                               | 0.95  |
| S79895               | Hs.83942:248                                               | CTSK: cathepsin K (pycnodysostosis)                                     | and SLRP_family<br>Lysosome, cathepsin K, cysteine-type peptidase, proteolysis and<br>peptidolysis. Cathepsin K (cathepsin O), a cysteine (thiol) protease;<br>involved in bone remodeling and reabsorption                                                                               | 0.91  |
| Al091195             | Hs.65029:120                                               | Homo saplens cDNA clone IMAGE:1566910 3', mRNA sequence                 | Function unknown                                                                                                                                                                                                                                                                          | 0.91  |

| Accession number       | UniGene Mapping          | Gene symbol and title                                                                            | Putative Function                                                                                                                                                                                                                                                           | Ratio  |
|------------------------|--------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| AF026692;<br>NM_003014 | Hs.105700:83,Hs.278611:3 | SFRP4: secreted frizzled-related protein 4                                                       | Member of the SFRP family that contains a cysteine-rich domain homologous to the putative Wht-binding site of Frtzzled proteins. SFRPs act as soluble modulators of Whit signaling. The expression of SFRP4 in venticular myocardium correlates with apoptosis related gene | 0.73   |
| AI683243               | Hs.97258:15              | ESTs, Moderately similar to S29539 ribosomal protein<br>L13a, cytosolic                          | Function unknown                                                                                                                                                                                                                                                            | -2.96  |
| AI287700               | Hs.111128:7              | Homo sapiens, clone IMAGE:4106329, mRNA                                                          | Function unknown                                                                                                                                                                                                                                                            | -5.71  |
| AA291377               | Hs.50831:23              | Homo saplens Ly-6 antigen/uPA receptor-like domain-<br>containing protein mRNA, complete cds     | Function unknown                                                                                                                                                                                                                                                            | -6.78  |
| AI420213               | Hs.149722:3              | cDNA clone IMAGE:2094208 3', mRNA sequence                                                       | Function unknown                                                                                                                                                                                                                                                            | -8.52  |
| AJ245671               | Hs.12844:73              | EGFL6, EGF-lke-domain; multiple 6                                                                | Cell cycle, oncogenesis, integrin ligand, extracellular space. Member of the epidermal growth factor (EGF) repeat superfamily; contains an EGF-like-domain. Expressed early during development, and its expression has been detected in lung and meningioma fumors.         | -9.44  |
| AB018305               | Hs.5378:149              | SPON1, spondin 1, (f-spondin) extracellular matrix protein                                       | Extracellular matrix protein. Very strongly similar to rat F-spondin (Rn.7546); may have a role in the growth and guidance of axons.                                                                                                                                        | -12.55 |
| AW872527               | Hs.59761:19              | ESTS; Weakly similar to DAP1_HUMAN DEATH-ASSOCIATED PROTEIN 1                                    | Function unknown                                                                                                                                                                                                                                                            | -14.17 |
| AF129755               | Hs.117772:9,Hs.88474:1   | Homo sapiens prostaglandin endoperoxide H synthase-1 mRNA, partial 3' untranslated region.       | Function unknown                                                                                                                                                                                                                                                            | -21.34 |
| A1023789               | .Hs.163242;5             | · Homo sapiers cDNA done IMAGE:1655725 3' similar to contains MER20.12 MER20 repetitive element; | Function unknown                                                                                                                                                                                                                                                            | 41.34  |

Table 3

|                                                                                                                                                         |            | Ð                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                         | ۵          | value<br>o                                                                                                                                                                                                                                                                                                                         | <b>o</b> ,                                                                                                                                                                                                                                                                                                    | o ·                                                                                                                                                             |
| ince thereof                                                                                                                                            | Chromosome | <b>Location</b><br>5q23.2                                                                                                                                                                                                                                                                                                          | 5922.2                                                                                                                                                                                                                                                                                                        | unmapped                                                                                                                                                        |
| cancer or a recurre<br>in cancer                                                                                                                        | SEQ ID NO: | SEQ ID NO: 1 (DNA)<br>SEQ ID NO: 2 (PRT)                                                                                                                                                                                                                                                                                           | SEQ ID NO: 3 (DNA)<br>SEQ ID NO: 4 (PRT)                                                                                                                                                                                                                                                                      | SEQ ID NO: 5 (DNA)<br>SEQ ID NO: 6 (PRT)                                                                                                                        |
| Preferred diagnostic and prognostic markers for detecting ovarian cancer or a recurrence thereof or survival of a subject suffering from ovarian cancer |            | Function Cytoplasm, pathogenesis, protein binding. Synphilin-1; promotes formation of cytosolic inclusions in neurons (SNCAIP). Synuclein alpha interacting protein contains several protein-protein interacting domains and interacts with alpha synuclein in neurons. Mutations of SNCAIP have been linked to Parkinson disease. | Receptor, signal transduction, tumor suppressor. Similar to the G protein-coupled m3 muscarinic acetylcholine receptor. MCC is a candidate for the putative colorectal tumor suppressor gene. The MCC gene product are involved in early stages of colorectal neoplasia in both sporadic and familial tumors. | Cutaneous T-cell lymphoma-associated tumor antigen<br>se20-4se20-4; differentially expressed nucleolar TGF-<br>beta1 target protein (DENTT); also known as CDA1 |
| liagnostic and p<br>or st<br><b>nes</b>                                                                                                                 |            | Gene Name<br>SNCAIP,<br>synuclein, alpha<br>interacting protein<br>(synphilin)                                                                                                                                                                                                                                                     | MCC, mutated in colorectal cancers                                                                                                                                                                                                                                                                            | SE20-4,<br>cutaneous T-cell<br>lymphoma-<br>associated tumor<br>antigen se20-<br>4se20-4                                                                        |
| Preferred diagn  A. DOWN-REGULATED GENES                                                                                                                | Unigene    | <b>Mapping</b><br>Hs.24948:32;<br>Hs.300445:4                                                                                                                                                                                                                                                                                      | Hs.1345;5                                                                                                                                                                                                                                                                                                     | Hs.136164:23                                                                                                                                                    |
| A. DOWN-F                                                                                                                                               | Accession  | NW_005460                                                                                                                                                                                                                                                                                                                          | NM_002387                                                                                                                                                                                                                                                                                                     | A1420582;<br>NM_022117                                                                                                                                          |

|                                    |                                                        |                                              | Table 3 continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :                                          | į                      | 1          |
|------------------------------------|--------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|------------|
| Accession<br>Number<br>B. UP-REGUI | Accession Unigene Number Mapping B. UP-REGULATED GENES | Gene Name                                    | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEQ ID NO:                                 | Chromosome<br>Location | P<br>vafue |
| BC006428;<br>NM_016463             | Hs.15093:210,Hs.<br>290304:1                           | HSPC195,<br>hypothetical                     | Homo sapiens cDNA FLJ10920 fis, clone<br>OVARC1000384-resourcerer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SEQ ID NO: 7 (DNA)<br>SEQ ID NO: 8 (PRT)   | 5q31.2                 | 0          |
| NM_017697                          | Hs.24743:94                                            | protein HSPC185<br>FLJ20171,<br>hypothetical | contains 3 RNA recognition motifs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SEQ ID NO: 9 (DNA)<br>SEQ ID NO: 10 (PRT)  | 8q22.1                 | 0          |
| AW630088;<br>NM_001306             | Hs.76550:164                                           | protein FLJ20171                             | Mat2 T-cell differentiation protein; found thru interaction with TPD52 which is overexpressed in breast cancer, 4 TM are involved in vesicle transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SEQ ID NO: 11 (DNA)<br>SEQ ID NO: 12 (PRT) | 8q24.12                | <b>o</b> · |
| NM_015238                          | Hs.21543:36                                            | KIAA0869,<br>KIAA0869 protein;               | Function unknown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEQ ID NO: 13 (DNA)<br>SEQ ID NO: 14 (PRT) | 5q34                   | 0.0002     |
| AA284679                           | Hs.25640:264,Hs.<br>5372:2                             | KIBKA<br>CLDN3, claudin 3                    | Integral plasma membrane protein, pathogenesis, tight junction, transmembrane receptor. Member of the claudin family of integral membrane proteins; receptor for Clostridium perfringens enterotoxin;                                                                                                                                                                                                                                                                                                                                                                                                                         | SEQ ID NO: 16 (DNA)<br>SEQ ID NO: 16 (PRT) | 7q11.23                | 0.0004     |
| NM_022454                          | Hs.97984:22                                            | SOX17, SRY (sex determining region Y)-box 17 | Likely ortholog of mouse SRY-box containing gene 17; alias SOX17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SEQ ID NO: 17 (DNA)<br>SEQ ID NO: 18 (PRT) | 8q11.23                | 0.0005     |
| NM_005682                          | Hs.6527:201                                            | GPR56, G<br>protein-coupled<br>receptor 56   | cell adhesion, cell-cell signalling, G-protein linked receptor, integral plasma membrane protein, G-protein linked receptor protein signalling pathway. Member of the G protein-coupled receptor family; similar to secretin and calcitonin receptors. 7 transmembrane domains, a much-like domain and cysteine box in the N-terminal region. Expressed in range of tissues, highest levels in tryroid, selectively within the monolayer of cuboidal epithelial cells of the smaller, more actively secreting follicles of human thyroid. Differentially expressed in melanoma cell lines with different mefastatic potential | SEQ ID NO: 20 (PRT)                        | 16q13                  | 0.0012     |
| NM_001307                          | Hs.278562:101                                          | CLDN7, claudin 7                             | Integral membrane protein, tight junction. Similar to murine Cldn7;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SEQ ID NO: 21 (DNA)<br>SEQ ID NO: 22 (PRT) | 17p13.1                | d.0016     |

| 0.0025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0055                                                                                                                                                                                                                                                                                                                                                                                  | 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15q31<br>20q13.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6p21.33                                                                                                                                                                                                                                                                                                                                                                                 | 17q21.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SEQ ID NO: 23 (DNA) SEQ ID NO: 24 (PRT) SEQ ID NO: 25 (DNA) SEQ ID NO: 26 (PRT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SEQ ID NO: 27 (DNA)<br>SEQ ID NO: 28 (PRT)                                                                                                                                                                                                                                                                                                                                              | SEQ ID NO: 29 (DNA)<br>SEQ ID NO: 30 (PRT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| function unknown; no significant hits with Superfamily Plasma protein, proteinase inhibitor. Secreted inhibitor which protects epithelial tissues from serine proteases. Found in various secretions including seminal plasma, cervical mucus, and bronchial secretions, has affinity for trypsin, leukocyte elastase, and cathepsin G. its inhibitory effect contributes to the immune response by protecting epithelial surfaces from attack by endogenous proteolytic enzymes; the protein is also thought to have broad-spectrum anti-biotic activity. | Cell adhesion, integral plasma membrane protein, transmembrane receptor, protein tyrosine kinase. Epithelial-specific receptor protein tyrosine kinase; are involved in cell adhesion; has putative discoidin motifs in extracellular domain. DDR1 (CD167a) is a RTK that is widely expressed in normal and transformed epithelial cells and is activated by various types of collagen. | DNA binding, DNA topoisomerase (ATP-hydrolyzing), nucleus, DNA topoisomerase il alpha; may relax DNA torsion upon replication or transcription. Involved in processes such as chromosome condensation, chromatid separation, and the relief of torsional stress that occurs during DNA transcription and replication. Catalyzes the transient breaking and rejoining of two strands of duplex DNA. The gene encoding this enzyme functions as the target for several anticancer agents and a variety of mutations in this gene have been associated with the development of drug resistance. Reduced activity of this enzyme may also play a role in ataxia-telangiactasia. |
| KIAA0101 gene product SLPI, secretory leukocyte protease inhibitor (antifeukoproteina se)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DDR1, discoldin<br>domain receptor<br>family, member 1                                                                                                                                                                                                                                                                                                                                  | TOP2A, topoisomerase (DNA) if alpha (170kD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Hs.251754:128,H<br>s.245742:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hs.75582:147                                                                                                                                                                                                                                                                                                                                                                            | Hs.156346:184,H<br>s.270810:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NM_014736<br>BE184455;<br>NM_003064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NM_013994                                                                                                                                                                                                                                                                                                                                                                               | NM_001067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 0.0131                                                           | 0.0183                                                                                                                                                                                | 0.0006                                                                                                                                                                                                                                                                   | 0.0074                                                                                                  | 0.0004                                                                                                                                                                                                                         | 0.0007                                                  | 0.0009                                                                                                                                                                                                                                                                                                                                                      | 0.0044                     | 0.0051                                     | 0.0051                                       |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------|----------------------------------------------|
| 3p23                                                             |                                                                                                                                                                                       | 12p13.31                                                                                                                                                                                                                                                                 |                                                                                                         | 1932.1                                                                                                                                                                                                                         |                                                         | 2q13                                                                                                                                                                                                                                                                                                                                                        |                            | 2q35                                       | 5013.12                                      |
| SEQ ID NO: 31 (DNA)<br>SEQ ID NO: 32 (PRT)                       | SEQ ID NO: 33 (DNA)<br>SEQ ID NO: 34 (PRT)                                                                                                                                            | SEQ ID NO: 35 (DNA)<br>SEQ ID NO: 36 (PRT)                                                                                                                                                                                                                               | SEQ ID NO: 37 (DNA)<br>SEQ ID NO: 38 (PRT)                                                              | SEQ ID NO: 39 (DNA)<br>SEQ ID NO: 40 (PRT)                                                                                                                                                                                     | SEQ ID NO: 41 (DNA)<br>SEQ ID NO: 42 (PRT)              | SEQ ID NO: 43 (DNA)<br>SEQ ID NO: 44 (PRT)                                                                                                                                                                                                                                                                                                                  | SEQ ID NO: 45 (DNA)        | SEQ ID NO: 46 (DNA)<br>SEQ ID NO: 47 (PRT) | SEO ID NO: 48 (DNA)                          |
| chemokine-like factor gene superfamlly; transmb 4<br>superfamlly | ATP binding, GTP binding, cell proliferation, mitosis, nucleus spindle. Proliferation-associated nuclear protein; associates with the spindle pole and mitotic spindle during mitosis | Plasma membrane, integral plasma membrane protein. Member of the transmembrane 4 superfamily (TM4SF); may mediate platelet activation and aggregation. Cell surface glycoprotein that is known to complex with integrins and other transmembrane 4 superfamily proteins. | Amiloride-sensitive sodium channel (weakly similar to<br>Mus musculus PDZ domain actin binding protein) | Embryagenesis and morphogenesis, transcription co-<br>activator, transcription factor, transcription from Pol II<br>promoter. ETS domain transcriptional activator;<br>activates expression of epithelial cell specific genes. | Contains four RNA recognition motifs (RRM, RBD, or RNP) | Histogenesis and organogenesis, embryogenesis and morphogenesis, thyrold-stimulating hormone receptor, transcription factor. Member of the paired domain family of nuclear transcription factors; are involved in the ribosome assembly, required for normal thyroid development. PAX genes play critical roles during fetal development and cancer growth. | Function unknown           | Function unknown                           | 59% identity to himan Zinc finger protein 91 |
| CKLFSF7;<br>chemokine-like<br>factor super family                | r<br>C20orf1,<br>chromosome 20<br>open reading<br>frame 1                                                                                                                             | CD9: CD9 antigen<br>(p24)                                                                                                                                                                                                                                                | ShrmL, Shroom-<br>related protein<br>(KIAA1481                                                          | ELF3, E74-like<br>factor 3 (ets<br>domain<br>transcription<br>factor, epithelial-<br>snecfin)                                                                                                                                  | FLJ20273, RNA-<br>binding protein                       | PAX8, paired box<br>gene 8                                                                                                                                                                                                                                                                                                                                  | EST                        | FLJ10116,<br>hypothetical                  | hvnothefical                                 |
| Hs.343214                                                        | Hs.9329:152                                                                                                                                                                           | Hs.1244:27,Hs.2<br>30558:1,Hs.2420<br>20:1                                                                                                                                                                                                                               | Hs.278628:52                                                                                            | Hs.166096:170                                                                                                                                                                                                                  | Hs.95549:147,Hs.<br>229556:1                            | Hs.73149:72,Hs.2<br>13008:1                                                                                                                                                                                                                                                                                                                                 | Hs.290801:35,<br>Hs.356228 | Hs.79741:18                                | He 124740-18                                 |
| BE386983;<br>NM_138410                                           | AF098158;<br>NM_012112                                                                                                                                                                | NM_001769                                                                                                                                                                                                                                                                | NM_020859                                                                                               | NM_004433                                                                                                                                                                                                                      | AI791905;<br>NM_019027                                  | X69699;<br>NM_013952                                                                                                                                                                                                                                                                                                                                        | Al301558                   | NM_018000                                  | NM 144724                                    |

| AF111856;<br>NM_006424 | Hs.105039:48             | SLC34A2, solute carrier family 34 (sodlum phosphate), member 2                               | SLC34A2: solute carrier family 34 (sodium phosphate), member 2; contains 8 predicted TMs and a cysteinerich N-terminal region. Type 2 sodium-dependent phosphate transporter, member of the renal type !! cotransporter family.                                                                                                                                                | SEQ ID NO: 50 (DNA)<br>SEQ ID NO: 51 (PRT) | 4p15.2 | 0.0121 |
|------------------------|--------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|--------|
| AW959311               | Hs.87019:8;<br>Hs.172012 | EST<br>DKFZp434J037                                                                          | probable serine/threonine protein kinase; KIAA0537                                                                                                                                                                                                                                                                                                                             | SEQ ID NO: 52 (DNA)                        | 1q32.1 | 0.0251 |
| AF111713               | Hs.286218:64             | JAM1, junctional<br>adhesion<br>molecule                                                     | Cell motility, inflammatory response, intercellular junction. Role in the regulation of tight junction assembly in epithelia. Ligation of JAM is required for reovirus-induced activation of NF-kappa-B and apoptosis. Role in lymphocyte homing.                                                                                                                              | SEQ ID NO: 53 (DNA)<br>SEQ ID NO: 54 (PRT) |        | 0.0261 |
| AU076611;<br>NM_006636 | Hs.154672:123            | MTHFD2, methylene tetrahydrofolate dehydrogenase (NAD+ dependent); methenyltetrahydr ofolate | Electron transporter, methenyltetrahydrofolate cydohydrolase, mitochondrion, encodes a nuclearencoded mitochondrial bifunctional enzyme with methylenetetrahydrofolate dehydrogenase and methenyltetrahydrofolate cyclohydrolase activities, may provide formyltetrahydrofolate for formylmethioryl tRNA synthesis; involved in initiation of mitochondrial protein synthesis. | SEQ ID NO: 56 (DNA)<br>SEQ ID NO: 56 (PRT) | 2p13.1 | 0.0342 |

. 6p12

0.0001

Table 3 continued

0.01

| Chromosome<br>Location                                     |                                                                                                                                                                                                                                                                                                          | 19q13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.77                                                                                                                                                                                                                            |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEQ ID NO:                                                 | SEQ ID NO: 58 (PRT)                                                                                                                                                                                                                                                                                      | SEQ ID NO: 59 (DNA)<br>SEQ ID NO: 60 (PRT)                                                                                                                                                                                                                                                                                                                                                                                                                    | SEQ ID NO: 61 (DNA)<br>SEQ ID NO: 62 (PRT)                                                                                                                                                                                      |
| Gene Name Function JES IN MUCINOUS OVARIAN CANCER ONLY     | Lectin, cytosol, cell adhesion, plasma membrane. Binds to beta galactoside, involved in cell adhesion, cell growth regulation, inflammation, immunomodulation, apoptosis and metastasis; member of a family of lectins. LGALS4 is an S-type lectin that is strongly underexpressed in colorectal cancer. | Cell adhesion, integral plasma membrane protein, membrane fraction, small molecule transport, transporter. Member of the cadherin family of calciumdependent glycoproteins; facilitates uptake of peptidebased drugs, may mediate cell-cell interactions. Component of the gastrointestinal tract and pancreatic ducts, intestinal proton-dependent peptide transporter in the first step in oral absorption of many medically important peptide-based drugs. | metalloprotease located apically and secreted by epithelial cells in normal colon; degrades broad range of ECM components in vitro; proposed role in tumour progression by facilitating migration, infravasation and metastasis |
| Gene Name                                                  | LGALS4, lectin,<br>galactoside-<br>binding, soluble, 4<br>(galectin 4)                                                                                                                                                                                                                                   | CDH17, cadherin<br>17, Ll cadherin<br>(liver-intestine)                                                                                                                                                                                                                                                                                                                                                                                                       | MEP1A, meprln A<br>alpha, PABA<br>peptide hydrolase                                                                                                                                                                             |
| Unigene<br>Mapping<br>LATED GENES                          | Hs.5302:132                                                                                                                                                                                                                                                                                              | Hs.89436:50                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hs.179704                                                                                                                                                                                                                       |
| Accession Unigene<br>Number Mapping<br>C. UP-REGULATED GEN | AAS84890;<br>NM_008149                                                                                                                                                                                                                                                                                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NM_005588                                                                                                                                                                                                                       |

|                        |                                |                                            | Table 3 continued                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |            |       |
|------------------------|--------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|-------|
| Accession              | Unigene                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SEQ ID NO:                                 | Chromosome | ۵     |
| Number                 | Mapping                        | <b>Gene Name</b>                           | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                          | Location   | value |
| D. PROGNOS             | D. PROGNOSTIC MARKERS          | ₽<br>P                                     | R SURVIVAL OR RECURRENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |            | ;     |
| NM_015092              | Hs.278428                      | 005; EDD                                   | Homo sapiens progestin induced protein (DDS), mRNA. EDD; Soluble fraction, cell proliferation, ubiquitin-protein ligase, ubiquitin conjugating enzyme, ubiquitin-pependent protein degradation. Member of the HECT family of proteins; may function as an E3 ubiquitin-protein ligase. This gene is localized to chromosome 8q22, a locus disrupted in a variety of cancers. This gene proteintially has a role in regulation of cell multiferation or differentiation. | SEQ ID NO: 63 (DNA) SEQ ID NO: 64 (PRT)    | .*         | 0.00  |
|                        |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | 8q22.3     |       |
| BE465867;<br>NM_014992 | Hs.197751:66                   | DAAM1                                      | dishevelled associated activator of morphogenesis 1 The protein encoded by this gene contains FH domains and belongs to a novel FH protein subtarnity implicated in cell polarity, thought to function as a scaffolding profein.                                                                                                                                                                                                                                        | SEQ ID NO: 65 (DNA)<br>SEQ ID NO: 66 (PRT) | 14023.1    | 0.04  |
| AA381553;<br>NM_002122 | Hs.198253:21                   | . HLA10A                                   | procompatibility complex, class II, DQ alpha 1<br>Pathogenesis, class II major histocompatibility complex<br>antigen. Alpha 1 chain of HLA-DQ1 class II molecule (la<br>antigen); complex binds peptides and presents them to<br>CD4+ T lymphocytes Proteome                                                                                                                                                                                                            | SEQ ID NO: 67 (DNA)<br>SEQ ID NO: 68 (PRT) |            | 0.00  |
|                        |                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | 6p21.3     |       |
| AF026692;<br>NM_003014 | Hs. 105700:83, Hs.<br>278611:3 | SFRP4: secreted frizzled-related protein 4 | Member of the SFRP family that contains a cysteinerich domain homologous to the putative Wnt-binding site of Frizzled proteins. SFRPs act as soluble modulators of Wnt signaling. The expression of SFRP4 in verificular myocardium correlates with apoptosis related gene expression.                                                                                                                                                                                  | SEQ ID NO: 69 (DNA)<br>SEQ ID NO: 70 (PRT) | 7p14       | 0.73  |
| AW015534;              | Hs.217493                      | ANXA2, annextn                             | Annexin II (lipocortin-2); enhances osteoclast formation                                                                                                                                                                                                                                                                                                                                                                                                                | SEQ ID NO: 71 (DNA)                        | 15921-22   | 0.00  |
| NM_004039              |                                | A2                                         | and bone resorption; member of the annexin protein family                                                                                                                                                                                                                                                                                                                                                                                                               | SEQ ID NO: 72 (PRT)                        | ļ          |       |
| BE24669;               |                                |                                            | STAT induced STAT-inhibitor 3; suppressor of cytokine                                                                                                                                                                                                                                                                                                                                                                                                                   | SEQ ID NO: 73 (DNA)<br>SEQ ID NO: 74 (PRT) | !          | 6     |
| NM_003955<br>A1677897  | Hs.345728                      | SOCS3                                      | signalling 3; suppression of IL-6 mediated signalling                                                                                                                                                                                                                                                                                                                                                                                                                   | SEQ ID NO: 75 (DNA)                        | 17q25.3    | 0.07  |
| NM_014059              | Hs.76640                       | RGC32                                      | RGC32, hypothetical protein, unknown function                                                                                                                                                                                                                                                                                                                                                                                                                           | SEQ ID NO: 76 (PRT)                        | 13q13.3    | 0.04  |

| SAA1 senim Senim amviold A1: high density (innanonmytein: mile in SEQ ID NO: 78 (PRT) | amylold A1 | hypothetical fireman | GJB2, gap SEQ ID NO: 81 (DNA) |         | 26<br>NOV1; | Nephroblastoma SEQ ID NO: 84 (PRT) overexpressed Role in cell adhesion and migration in endothelial cells: | eueß      |
|---------------------------------------------------------------------------------------|------------|----------------------|-------------------------------|---------|-------------|------------------------------------------------------------------------------------------------------------|-----------|
| ,                                                                                     | Hs.332053  | He 404800            | 900000                        |         | Hs.323733   |                                                                                                            | Hs.235935 |
| AA829286                                                                              | NM_000331  | AA243489;            | topolo laik                   | M86849; | NM_004004   |                                                                                                            | NM_002514 |

Table 4

Correlation of expression between normal ovarian surface epithelium (OSE), non-invasive tumors (borderline, BL) and ovarian cancer (CA) as determined by ANOVA

|            | CA125   | MUC-1   | E-       | CLDN3   | Ep-CAM  | SOX17  |
|------------|---------|---------|----------|---------|---------|--------|
|            |         |         | cadherin |         |         |        |
| OSE vs IC  | <0.0001 | <0.0001 | 0.7251   | 0.6132  | 0.1573  | 0.0854 |
| OSE vs. BL | 0.1765  | <0.0001 | 0.0307   | 0.3633  | 0.0005  | 0.2287 |
| OSE vs. CA | 0.5443  | <0.0001 | 0.1687   | 0.0008  | <0.0001 | 0.6900 |
| IC vs. BL  | <0.0001 | <0.0001 | 0.1116   | 0.7849  | 0.0913  | 0.2530 |
| IC vs. CA  | <0.0001 | 0.2707  | 0.4147   | 0.0071  | 0.0002  | 0.0544 |
| BL vs. CA  | 0.0001  | <0.0001 | 0.0615   | <0.0001 | 0.0011  | 0.0152 |

5

## Table 5 Correlation of gene expression with patient outcome (univariate analysis ie., expression alone without the influence of covariates)

Univariate analysis for clinicopathological variables and CLDN3, Ep-CAM, SOX17, CA125, MUC1 and E-cadherin immunoreactivity with survival and relapse in 156 patients with epithelial ovarian cancer

|                                   | Disease Specific Survival Univariate |          | Relapse Free Survival  | · .      |
|-----------------------------------|--------------------------------------|----------|------------------------|----------|
|                                   |                                      |          | Univariate             |          |
| Variable .                        | Hazards ratio (95% CI)               | p-value  | Hazards ratio (95% CI) | p-value  |
| Pathological tumor stage          |                                      |          |                        |          |
| Stage 1 - 3b vs. 3c - 4b          | 5.89 (3.214-10.79)                   | < 0.0001 | 7.37 (3.26-16.63)      | <0.0001  |
| Tumor grade                       |                                      |          | , ,                    |          |
| BL and G1vs. G2 and G3            | 5.508 (2.745-11.052)                 | < 0.0001 | 7.02 (2.76-17.82)      | <0.0001  |
| Age                               |                                      |          |                        |          |
| <50 vs.>=50                       | 0.533 (0.288-0.988)                  | 0.0458   | 0.62 (0.29-1.33)       | 0.2221   |
| Residual Disease                  |                                      |          |                        |          |
| RD<1cmvs. >=1cm                   | 4.192 (2.671-6.580)                  | < 0.0001 | 4.17 (2.30-7.55)       | < 0.0001 |
| CA125 level at diagnosis          | , ,                                  |          | •                      |          |
| CA125 <500vs. >500 U/ml           | 1.843 (1.102-3.080)                  | 0.0197   | 2.292 (1.19-4.40)      | 0.0128   |
| Performance Status                |                                      |          | •                      |          |
| PS<1 vs. >1                       | 0.270 (0.133-0.549)                  | 0.0003   | 0.53 (0.16-1.74)       | 0.2965   |
| CLDN3 expression                  |                                      |          |                        |          |
| Membranous Score 0vs. >0          | 2.794 (1.012-7.718)                  | 0.0474   | 2.521 (0.908-6.998)    | 0.0758   |
| Membranous Score <1 vs. >1        | 1.309 (0.763-2.246)                  | 0.3285   | 1.952 (1.103-3.457)    | 0.0217   |
| Ep-CAM expression                 |                                      |          |                        |          |
| Membranous Score <1vs. >1         | 1.460 (0.809-2.634)                  | 0.2093   | 2.041 (0.997-4.177)    | 0.0509   |
| Membranous Score <2vs. >2         | 1.041 (0.634-1.711)                  | 0.873    | 1.449 (0.845-2.487)    | 0.1779   |
| SOX17 expression                  |                                      |          |                        |          |
| Nuclear membranous Score 0vs. >0  | 0.839 (0.514-1.368)                  | 0.481    | 1.311 (0.728-2.358)    | 0.3667   |
| Nuclear membranous Score <1vs. >1 | 1.407 (0.615-3.218)                  | 0.4183   | 1.037 (0.380-2.829)    | 0.9437   |
| CA125 expression                  |                                      |          |                        |          |
| Membranous apical Score 0vs. >0   | . 2.581 (1.393-4.781)                | 0.0026   | 2.725 (1.218-6.093)    | 0:0146   |
| Membranous apical Score <1vs. >1  | 1.637 (1.045-2.564)                  | 0.0313   | 1.298 (0.731-2.307)    | 0.3737   |
| MUC1 expression                   |                                      |          |                        |          |
| Membranous apical Score 0vs. >0   | 2.479 (0.343-17.898)                 | 0.368    | NA                     |          |
| Membranous apical Score <1vs. >1  | 3.745 (1.176-11.926)                 | 0.0254   | 6.432 (1.562-26.483)   | 0.0099   |
| Membranous apical Score <2vs. >2  | 1.814 (0.898-3.664)                  | 0.0969   | 3.893 (1.552-9.766)    | 0.0038   |
| E-cadherin expression             |                                      |          | •                      |          |
| Membranous Score 0vs. >0          | 0.806 (0.493-1.318)                  | 0.3892   | 0.837 (0.477-1.467)    | 0.5341   |
| Membranous Score <1vs. >1         | 1.331 (0.532-3.333)                  | 0.5411   | 0.847 (0.263-2.731)    | 0.7814   |
| Membranous Score <2vs. >2         | 0.593 (0.082-4.284)                  | 0.6041   | 0.913 (0.125-6.646)    | 0.9284   |
|                                   |                                      |          |                        |          |

## Table 6 Correlation of gene expression with patient outcome (multivariate analysis ie looking at expression incorporating the influence of covariates)

5

Multivariate analysis for univariate significant clinicopathological variables and CLDN3, Ep-CAM, SOX17, CA125, MUC1 and E-cadherin immunoreactivity with survival and relapse in 156 patients with epithelial ovarian cancer

|                                   | Disease Specific Survival |         | Relapse Free Survival  |         |  |
|-----------------------------------|---------------------------|---------|------------------------|---------|--|
|                                   | Multivariate              |         | Univariate             |         |  |
| Variable                          | Hazards ratio (95% CI)    | p-value | Hazards ratio (95% CI) | p-value |  |
| Pathological tumor stage          |                           |         |                        |         |  |
| Stage 1 - 3b vs. 3c - 4b          | 5.66 (2.467-13.012)       | <0.0001 | 5.192 (1.860-14.496)   | 0.0017  |  |
| fumor grade                       |                           |         |                        |         |  |
| BL and G1 vs. G2 and G3           | 4.919 (2.080-11.633)      | 0.0003  | 7.989 (2.385-26.760)   | 0.0008  |  |
| ∖ge                               | • •                       |         |                        |         |  |
| <50 vs.>=50                       | 0.951 (0.482-1.877)       | 0.8853  |                        | •       |  |
| Residual Disease                  |                           |         |                        |         |  |
| RD<1cm vs. >=1cm                  | 2.974 (1.783-4.959)       | <0.0001 | 2.779 (1.433-5.393)    | 0.0025  |  |
| CA125 level at diagnosis          | •                         |         |                        |         |  |
| CA125 <500 vs. >500 U/ml          | 1.148 (0.625-2.109)       | 0.6563  | 1.289 (0.659-2.520)    | 0.4587  |  |
| Performance Status                |                           |         |                        |         |  |
| PS<1 vs. >1                       | 0.286 (0.136-0.601)       | 0.0009  |                        |         |  |
| CLDN3 expression                  |                           |         |                        |         |  |
| Membranous Score 0 vs. >0         | 1,165 (0.325-4.183)       | 0.8145  | •                      |         |  |
| Membranous Score <1 vs. >1        | •                         | •       | 0.953 (0.473-1.919)    | 0.8918  |  |
| A125 expression                   | •                         |         |                        |         |  |
| Membranous apical Score 0 vs. >0  | 0.917 (0.415-2.025)       | 0.8302  | 0.693 (0.271-1.768)    | 0.4427  |  |
| Membranous apical Score <1 vs. >1 | 1.664 (0.976-2.837)       | 0.0612  |                        |         |  |
| /IUC1 expression                  |                           |         |                        |         |  |
| Membranous apical Score 0 vs. >0  |                           |         |                        |         |  |
| Membranous apical Score <1 vs. >1 | 0.678 (0.255-1.804)       | 0.4361  |                        |         |  |
| Membranous apical Score <2 vs. >2 |                           |         |                        |         |  |

WO 2004/022778 PCT/AU2003/001166

181

## WE CLAIM:

5

10

- 1. A method of detecting an ovarian cancer-associated transcript in a biological sample, the method comprising contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Table 1 or 2 or 3.
- 2. A method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein a modified level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
- (i) a sequence comprising at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- 20 (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- 25 (iii) a sequence that is at least about 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- (iv) a sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 47, 49, 51, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84; and
  - (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).

15

20

25

- 3. A method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein a modified level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
- (i) a sequence comprising at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
  - (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
  - (iii) a sequence that is at least about 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 1, 5, 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
  - (iv) a sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 6, 8, 10, 12, 14, 16, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 47, 49, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84; and
  - (v) a sequence that is complementary to (i) or (ii) or (iii) or (iv).
  - 4. The method of claim 2 or 3 wherein the hybridization is enhanced in the sample from the subject being tested compared to the hybridization obtained for a sample from a control subject not having ovarian cancer.
  - 5. The method of claim 2 or 3 wherein the hybridization is reduced in the sample from the subject being tested compared to the hybridization obtained for a sample from a control subject not having ovarian cancer.

25

30

- 6. A method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an enhanced level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
- (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 or 2 other than a nucleic acid having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM 002387, Al745249 and Al694200;
  - (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 or 2 other than a nucleic acid having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200;
  - (iii) a sequence that is at least about 80% identical to (i) or (ii);
- (iv) a sequence that encodes a polypeptide encoded by a nucleic acid set forth in Table 1 or 2 other than a nucleic acid having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200; and
  - (v) a sequence that is complementary to any one of the sequences set forth in (i) or (ii) or (iv).
  - 7. The method of claim 6 wherein the nucleic acid probe comprises a sequence selected from the group consisting of:
  - (i) a sequence comprising at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
  - (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;

25

- (iii) a sequence that is at least about 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 7, 9, 11, 13, 15, 17, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 46, 48, 52, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- 5 (iv) a sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 10, 12, 14, 16, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 47, 49, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84; and
- (v) a sequence that is complementary to any one of the sequences set forth in (i) or (ii) or (iii) or (iv).
  - 8. A method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein a reduced level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
- 20 (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, AI745249 and AI694200;
  - (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200;
  - (iii) a sequence that is at least about 80% identical to (i) or (ii);
  - (iv) a sequence that encodes a polypeptide encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200; and
  - (v) a sequence that is complementary to any one of the sequences set forth in (i) or (ii) or (iii) or (iv).
- 9. The method of claim 8 wherein the nucleic acid probe comprises a sequence selected from the group consisting of:

15

20

25

30

- a sequence comprising at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 3, and 5;
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 1, 3, and 5;
- (iii) a sequence that is at least about 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 1, 3, and 5;
- (iv) a sequence that encodes an amino acid sequence selected from the group consisting of SEQ.ID NOs: 2, 4, and 6; and
- 10 (v) a sequence that is complementary to any one of the sequences set forth in (i) or (ii) or (iii) or (iv).
  - 10. The method according to any one of claims 1 to 9 wherein the ovarian cancer that is diagnosed is an epithelial ovarian cancer.
  - 11. The method according to any one of claims 1 to 9 wherein the ovarian cancer that is diagnosed is selected from the group consisting of serous ovarian cancer, non-invasive ovarian cancer, mixed phenotype ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer, clear cell ovarian cancer, papillary serous ovarian cancer, Brenner cell and undifferentiated adenocarcinoma.
  - 12. The method according to claim 11 wherein the ovarian cancer that is diagnosed is selected from the group consisting of serous ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer and clear cell ovarian cancer.
  - 13. A method of diagnosing a serous ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein a modified level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has a serous ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
  - (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 2 or as set forth in Table 1 and having an Accession

10

25

- Number selected from the group consisting of: U62801, D49441, X51630, And AB018305;
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 2 or as set forth in Table 1 and having an Accession Number selected from the group consisting of: U62801, D49441; X51630, And AB018305;
- (iii) a sequence that is at least about 80% identical to (i) or (ii);
- (iv) a sequence that encodes a polypeptide encoded by a nucleic acid set forth in Table 2 or as set forth in Table 1 and having an Accession Number selected from the group consisting of: U62801, D49441, X51630, And AB018305; and
- (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).
- 14. A method of diagnosing a mucinous ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an elevated level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has a mucinous ovarian cancer, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
  - a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_006149, AA315933, U47732, NM\_005588, AW503395, NM\_004063, AI073913, AI928445, NM\_022454, W40460, AA132961 and AF111856;
  - (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_006149, AA315933, U47732, NM\_005588, AW503395, NM\_004063, AI073913, AI928445, NM\_022454, W40460, AA132961 and AF111856;
  - (iii) a sequence that is at least about 80% identical to (i) or (ii);
- (iv) a sequence that encodes a polypeptide encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of:
   NM\_006149, AA315933, U47732, NM\_005588, AW503395, NM\_004063, Al073913, Al928445, NM\_022454, W40460, AA132961 and AF111856; and

15

25

. 30

- (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).
- 15. The method of claim 14 wherein the nucleic acid probe comprises a sequence selected from the group consisting of:
  - (i) a sequence comprising at least about 20 contiguous nucleotides from SEQ ID NO:57 or 59 or 61;
  - (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from SEQ ID NO: 57 or 59 or 61;
- 10 (iii) a sequence that is at least about 80% identical to SEQ ID NO: 57 or 59 or 61;
  - (iv) a sequence that encodes the amino acid sequence set forth in SEQ ID NO: 58 or 60 or 62; and
  - (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).
  - 16. The method according to any one of claims 1 to 15 comprising performing a PCR reaction.
- 17. The method according to any one of claims 1 to 16 comprising performing a nucleic acid hybridization.
  - 18. A method of detecting an ovarian cancer-associated polypeptide in a biological sample the method comprising contacting the biological sample with an antibody that binds specifically to an ovarian cancer-associated polypeptide in the biological sample, the polypeptide being encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3.
  - 19. A method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein a modified level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to a sequence

selected from the group consisting of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 47, 49, 51, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84.

20. The method of claim 19 wherein the antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to a sequence selected from the group consisting of SEQ ID NOs: 2, 6, 8, 10, 12, 14, 16, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 47, 49, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84.

10

15

20

25

- 21. A method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein an enhanced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a polypeptide encoded by a nucleic acid set forth in Table 1 or 2 other than a nucleic acid having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, Al745249 and Al694200.
- 22. The method of claim 21 wherein the antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to a sequence selected from the group consisting of SEQ ID NOs: 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 47, 49, 51, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84.
- 23. A method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein a reduced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has an ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous

WO 2004/022778 PCT/AU2003/001166

amino acid residues of a polypeptide encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of NM\_022117, NM\_005460, NM\_002387, AI745249 and AI694200.

- The method of claim 23 wherein the antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to a sequence selected from the group consisting of SEQ ID NOs: 2, 4, and 6.
- The method according to any one of claims 19 to 24 wherein the ovarian cancer that is diagnosed is an epithelial ovarian cancer.
  - 26. The method according to any one of claims 19 to 24 wherein the ovarian cancer that is diagnosed is selected from the group consisting of serous ovarian cancer, non-invasive ovarian cancer, mixed phenotype ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer, clear cell ovarian cancer, papillary serous ovarian cancer, Brenner cell and undifferentiated adenocarcinoma.

15

20

25

- 27. The method according to claim 26 wherein the ovarian cancer that is diagnosed is selected from the group consisting of serous ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer and clear cell ovarian cancer.
- 28. A method of diagnosing a serous ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigenantibody complex to form and then detecting the complex wherein a modified level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has a serous ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a polypeptide encoded by a nucleic acid set forth in Table 2 or as set forth in Table 1 and having an Accession Number selected from the group consisting of: U62801, D49441, X51630, And AB018305.
- 35 29. A method of diagnosing a mucinous ovarian cancer in a human or animal subject being tested said method comprising contacting a biological sample from said subject

10

15

20

30

35

being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein a reduced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has a mucinous ovarian cancer, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a polypeptide encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_006149, AA315933, U47732, NM\_005588, AW503395, NM\_004063, AI073913, AI928445, NM\_022454, W40460, AA132961 and AF111856.

- 30. The method according to claim 29 wherein the antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to SEQ ID NO: 58 or 60 or 62.
- 31. A method of detecting an ovarian cancer-associated antibody in a biological sample the method comprising contacting the biological sample with a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3, wherein the polypeptide specifically binds to the ovarian cancer-associated antibody.
- 32. The method according to any one of claims 1 to 31 wherein the biological sample is contacted with a plurality of nucleic acid probes and/or antibodies and/or polypeptides.
- 25 33. The method according to any one of claims 1 to 32 wherein the subject being tested is a patient undergoing a therapeutic regimen to treat ovarian cancer.
  - 34. The method according to any one of claims 1 to 32 wherein the subject being tested is a subject suspected of having ovarian cancer.
  - 35. A method of monitoring the efficacy of a therapeutic treatment of ovarian cancer, the method comprising:
    - (i) providing a biological sample from a patient undergoing the therapeutic treatment; and
  - (ii) determining the level of a ovarian cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide

30

that selectively hybridizes to a sequence having at least about 80% identity to a sequence as shown in any one of Tables 1-3, thereby monitoring the efficacy of the therapy.

- 5 36. The method according to claim 35 further comprising comparing the level of the ovarian cancer-associated transcript to a level of the ovarian cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.
- 37. A method of monitoring the efficacy of a therapeutic treatment of ovarian cancer, the method comprising :
  - (i) providing a biological sample from a patient undergoing the therapeutic treatment; and
  - (ii) determining the level of a ovarian cancer-associated antibody in the biological sample by contacting the biological sample with a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3, wherein the polypeptide specifically binds to the ovarian cancer-associated antibody, thereby monitoring the efficacy of the therapy.
- 38. The method of claim 37 further comprising comparing the level of the ovarian cancer-associated antibody to a level of the ovarian cancer-associated antibody in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.
- 39. A method of monitoring the efficacy of a therapeutic treatment of ovarian cancer, the method comprising :
  - (i) providing a biological sample from a patient undergoing the therapeutic treatment; and
  - (ii) determining the level of a ovarian cancer-associated polypeptide in the biological sample by contacting the biological sample with an antibody, wherein the antibody specifically binds to a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3, thereby monitoring the efficacy of the therapy.

20

25

30

- 40. The method of claim 39 further comprising comparing the level of the ovarian cancer-associated polypeptide to a level of the ovarian cancer-associated polypeptide in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.
- 5 41. The method according to any one of claims 35 to 40 wherein the ovarian cancer that is diagnosed is an epithelial ovarian cancer.
  - 42. The method according to any one of claims 35 to 41 wherein the ovarian cancer that is diagnosed is selected from the group consisting of serous ovarian cancer, non-invasive ovarian cancer, mixed phenotype ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer, clear cell ovarian cancer, papillary serous ovarian cancer, Brenner cell and undifferentiated adenocarcinoma.
- 43. The method according to claim 42 wherein the ovarian cancer that is diagnosed is selected from the group consisting of serous ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer and clear cell ovarian cancer.
  - 44. A method of determining the likelihood of survival of a subject suffering from an ovarian cancer, said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an elevated level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has a poor probability of survival, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
  - (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_003014, AA046217, NM\_015902, T83882, AB040888, AA628980, Al623351, AW614420, AA243499, AF251237, Al970797, AF145713, X78565, T97307, BE243845, AW068302, AL133561, BE313555, X07820, Al973016, AF084545, U41518, Z11894, AW138190, BE086548, W47196, Al796870, X02761, AW968613, AW972565, AF045229, AW953853, U52426, F06700, Al798863, H52761, BE546947, AU076643, U20536, AA581602, AJ245210, X65965, Al806770, BE386490, AW581992, U77534, AL034417, L10343, AW518944, W28729, Al640160, U11862, AW295980, X59135, BE466173, Al354722, M90464, AA829286, Al333771, BE465867, NM\_014992,

. 5

10

15

20

BE616902, AA430373, R27430, BE387335, AW264102, AW952323, AA088177, BE614567, AL079658, NM\_002776, BE261944, NM\_006379, Al002238, X81789, NM\_002122, AB001914, AA311919, Al381750, AA292998, BE439580, Al677897, N72403, BE003054, AL035588, Al080491, AW770994, H24177, AF146761, NM\_001955, Al680737, Al752666, AA505445, BE246649, and NM\_003955;

- a sequence that hybridizes under at least low stringency hybridization conditions (ii) to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM\_003014, AA046217, NM\_015902, T83882, AB040888, AA628980, Al623351, AW614420, AA243499, AF251237, AI970797, AF145713, X78565, T97307, BE243845, AW068302, AL133561, BE313555, X07820, Al973016, AF084545, U41518, Z11894, AW138190, BE086548, W47196, AI796870, X02761, AW968613, AW972565, AF045229, AW953853, U52426, F06700, Al798863, H52761, BE546947, AU076643, U20536, AA581602, AJ245210, X65965, Al806770, BE386490, AW581992, U77534, AL034417, L10343, AW518944, W28729, Al640160, U11862, AW295980, X59135, BE466173, Al354722, M90464, AA829286, AI333771, BE465867, NM\_014992, BE616902, AA430373, R27430, BE387335, AW264102, AW952323, AA088177, BE614567, AL079658, NM 002776, BE261944, NM\_006379, Al002238, X81789, NM\_002122, AB001914, AA311919, Al381750, AA292998, BE439580, Al677897, N72403, BE003054, AL035588, Al080491, AW770994, H24177, AF146761, NM\_001955, Al680737, Al752666, AA505445, BE246649, and NM\_003955;
- (iii) a sequence that is at least about 80% identical to (i) or (ii);
- a sequence that encodes a polypeptide encoded by a nucleic acid set forth in (iv) Table 1 and having an Accession Number selected from the group consisting of: 25 NM\_003014, AA046217, NM\_015902, T83882, AB040888, AA628980, Al623351, AW614420, AA243499, AF251237, AI970797, AF145713, X78565, T97307, BE243845, AW068302, AL133561, BE313555, X07820, Al973016, AF084545, U41518, Z11894, AW138190, BE086548, W47196, AI796870, X02761, AW968613, AW972565, AF045229, AW953853, U52426, F06700, AI798863, 30 H52761, BE546947, AU076643, U20536, AA581602, AJ245210, X65965, Al806770, BE386490, AW581992, U77534, AL034417, L10343, AW518944, W28729, Al640160, U11862, AW295980, X59135, BE466173, Al354722, M90464, AA829286, AI333771, BE465867, NM\_014992, BE616902, AA430373, R27430, BE387335, AW264102, AW952323, AA088177, BE614567, AL079658, 35 NM\_002776, BE261944, NM\_006379, Al002238, X81789, NM\_002122,

10

15

AB001914, AA311919, Al381750, AA292998, BE439580, Al677897, N72403, BE003054, AL035588, Al080491, AW770994, H24177, AF146761, NM\_001955, Al680737, Al752666, AA505445, BE246649, and NM\_003955; and

- (v) a sequence that is complementary to any one of the sequences set forth in (i) or (ii) or (iii) or (iv).
- 45. The method of claim 44 wherein the nucleic acid probe comprises a sequence selected from the group consisting of:
- (i) a sequence comprising at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 63, 65, 67, 69, 71, and 73;
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a sequence selected from the group consisting of SEQ ID NOs: 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- (iii) a sequence that is at least about 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 63, 65, 67, 69, 71, 73, 75, 77, 79, 81 and 83;
- (iv) a sequence that encodes an amino acid sequence selected from the group consisting of SEQ ID NOs: 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84; and
- (v) a sequence that is complementary to (i) or (ii) or (iii) or (iv).
- 20 46. A method of determining the likelihood of survival of a subject suffering from an ovarian cancer, said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigenantibody complex to form and then detecting the complex wherein an enhanced level of the antigen-antibody complex for the subject being tested compared to the amount of the 25 antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has has a poor probability of survival, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: NM 003014, AA046217, NM 015902, T83882, AB040888, AA628980, Al623351, 30 AW614420, AA243499, AF251237, AI970797, AF145713, X78565, T97307, BE243845, AW068302, AL133561, BE313555, X07820, Al973016, AF084545, U41518, Z11894, AW138190, BE086548, W47196, Al796870, X02761, AW968613, AW972565, AF045229, AW953853, U52426, F06700, AI798863, H52761, BE546947, AU076643, 35 U20536, AA581602, AJ245210, X65965, Al806770, BE386490, AW581992, U77534, AL034417, L10343, AW518944, W28729, Al640160, U11862, AW295980, X59135,

WO 2004/022778 PCT/AU2003/001166

195

BE466173, Al354722, M90464, AA829286, Al333771, BE465867, NM\_014992, BE616902, AA430373, R27430, BE387335, AW264102, AW952323, AA088177, BE614567, AL079658, NM\_002776, BE261944, NM\_006379, Al002238, X81789, NM\_002122, AB001914, AA311919, Al381750, AA292998, BE439580, Al677897, N72403, BE003054, AL035588, Al080491, AW770994, H24177, AF146761, NM 001955, Al680737, Al752666, AA505445, BE246649, and NM 003955.

5

10

15

20

25

- 47. The method of claim 46 wherein the antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence having at least about 80% identity to a sequence selected from the group consisting of SEQ ID NOs: 64, 66, 68, 70, 72, 74, 76, 78, 80, 82 and 84.
- 48. A method of determining the likelihood of survival of a subject suffering from a serous ovarian cancer, said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an elevated level of hybridization of the probe for the subject being tested compared to the hybridization obtained for a control subject not having ovarian cancer indicates that the subject being tested has a poor probability of survival, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:
- (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 71 or 73;
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid comprising the nucleotide sequence set forth in SEQ ID NO: 71 or 73;
- (iii) a sequence that is at least about 80% identical to (i) or (ii) and encoding an sFRP protein or a SOCS3 protein;
- (iv) a sequence that encodes a polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 72 or 74; and
- 30 (v) a sequence that is complementary to any one of the sequences set forth in (i) or (ii) or (iv).
  - 49. A method of determining the likelihood of survival of a subject suffering from a serous ovarian cancer, said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein an enhanced

WO 2004/022778

5

10

· 15

25

30

35

level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has a poor probability of survival, and wherein said antibody binds to an sFRP polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 72 or a SOCS3 polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 74.

- 50. A method of determining the likelihood of survival of a subject suffering from a serous ovarian cancer, said method comprising contacting a biological sample from said subject being tested with at least two antibodies for a time and under conditions sufficient for antigen-antibody complexes to form and then detecting the complexes wherein an enhanced level of the antigen-antibody complexes for the subject being tested compared to the amount of the antigen-antibody complexes formed for a control subject not having ovarian cancer indicates that the subject being tested has a poor probability of survival, and wherein one antibody binds to an sFRP polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 72 and wherein one antibody binds to a SOCS3 polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 74.
- 51. The method according to any one of claims 44 to 47 wherein the ovarian cancer is an epithelial ovarian cancer.
  - 52. The method according to any one of claims 44 to 47 wherein the ovarian cancer is selected from the group consisting of serous ovarian cancer, non-invasive ovarian cancer, mixed phenotype ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer, clear cell ovarian cancer, papillary serous ovarian cancer, Brenner cell and undifferentiated adenocarcinoma.
  - 53. The method according to claim 52 wherein the ovarian cancer is selected from the group consisting of serous ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer and clear cell ovarian cancer.
  - 54. A method of determining the likelihood that a subject will suffer from a recurrence of an ovarian cancer, said method comprising contacting a biological sample from said subject being tested with a nucleic acid probe for a time and under conditions sufficient for hybridization to occur and then detecting the hybridization wherein an elevated level of hybridization of the probe for the subject being tested compared to the hybridization

10

15

20

25

obtained for a control subject not having ovarian cancer indicates that the subject being tested has a high probability of recurrence, and wherein said nucleic acid probe comprises a sequence selected from the group consisting of:

- (i) a sequence comprising at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: M86849, AW963419, BE298665, AK000637, BE077546, T97307, R24601, BE090176, AA393907, W28729, BE313754, AW673081, AA356694. L08239, BE397649, NM\_012317, NM\_000947, AJ250562, AL040183, BE207573, BE564162, BE439580, AW067800, AA569756, AW138190, AF126245, L10343, NM\_002514, Al863735, NM 005397, W26391, H15474, U51166, AA243499, AW408807, AI738719, AB040888, BE313077, AI677897, C14898, AI821730, AF007393, H65423, N46243, AA095971, U20350, NM 005756, D19589. AW957446, AW294647, BE159718, Al888490, AA022569, BE147740, Al798863. BE464341, AL080235, Al557212, X75208, AA628980, BE242587, NM\_005512, AW953853, AU076611, AW968613, AL353944, BE614149, AA292998, H12912, AA188763, AK000596, AI970797, AW519204, Z42387, AF145713, AA972412, AK001564, AW959861, BE313555, W25005, AI193356, AF111106, AI130740, AA985190, BE221880, AF084545, R26584, AW247380, AA364261, U25849, AF262992, AW342140, AL133572, Al497778, Al745379, U51712, AW375974, AF251237, NM\_000636, AA130986, AA216363, AA628980, AA811657, AA897108, AB040888, AF212225, Al089575, Al282028, Al368826, Al718702, AI827248, AK002039. AL109791, AW090198, AW296454. AW445034, AW452948, AW470411, AW885727, AW970859, AW979189, BE165866. BE175582, BE242587, BE271927, BE439580, BE464016, D63216, F34856, M83822, N33937, N49068, N51357, N80486, NM\_000954, NM\_005756, NM\_016652, R26584, R31178, W05391, W25005, W45393, W68815, X65965. X76732 and Z45051,
- (ii) a sequence that hybridizes under at least low stringency hybridization conditions to at least about 20 contiguous nucleotides from a nucleic acid set forth in Table 1
  30 and having an Accession Number selected from the group consisting of: M86849, AW963419, BE298665, AK000637, BE077546, T97307, R24601, BE090176, AA393907, W28729, BE313754, AW673081, AA356694, L08239, BE397649, NM\_012317, NM\_000947, AJ250562, AL040183, BE207573, BE564162, BE439580, AW067800, AA569756, AW138190, AF126245, L10343, NM\_002514, Al863735, NM\_005397, W26391, H15474, U51166, AA243499, AW408807, Al738719, AB040888, BE313077, Al677897, C14898, Al821730, AF007393,

10

15

H65423, N46243, AA095971, U20350, NM\_005756, D19589, AW957446, AW294647, BE159718, Al888490, AA022569, BE147740, Al798863, BE464341, AL080235, Al557212, X75208, AA628980, BE242587, NM\_005512, AW953853. AU076611, AW968613, AL353944, BE614149, AA292998, H12912, AA188763. AK000596, AI970797, AW519204, Z42387, AF145713, AA972412, AK001564, AW959861, BE313555, W25005, Al193356, AF111106, Al130740, AA985190, BE221880, AF084545, R26584, AW247380, AA364261, U25849, AF262992, AW342140, AL133572, AI497778, AI745379, U51712, AW375974, AF251237. NM\_000636, AA130986, AA216363, AA628980, AA811657, AA897108, AB040888, AF212225, Al089575, Al282028, Al368826, Al718702, Al827248, AK002039, AL109791, AW090198, AW296454, AW445034, AW452948, AW470411, AW885727, AW970859, AW979189, BE165866, BE175582, BE242587, BE271927, BE439580, BE464016, D63216, F34856, M83822, N33937, N49068, N51357, N80486, NM 000954, NM\_005756, NM\_016652, R26584, R31178, W05391, W25005, W45393, W68815, X65965, X76732 and Z45051;

- (iii) a sequence that is at least about 80% identical to (i) or (ii);
- a sequence that encodes a polypeptide encoded by a nucleic acid set forth in (iv) Table 1 and having an Accession Number selected from the group consisting 20 of:M86849, AW963419, BE298665, AK000637, BE077546, T97307, R24601, BE090176, AA393907, W28729, BE313754, AW673081, AA356694, L08239, BE397649, NM 012317, NM 000947, AJ250562, AL040183, BE207573, BE564162, BE439580, AW067800, AA569756, AW138190, AF126245, L10343, NM 002514, Al863735, NM 005397, W26391, H15474, U51166, AA243499, AW408807, AI738719, AB040888, BE313077, AI677897, C14898, AI821730, 25 AF007393, H65423, N46243, AA095971, U20350, NM\_005756, D19589, AW957446, AW294647, BE159718, AI888490, AA022569, BE147740, AI798863, BE464341, AL080235, Al557212, X75208, AA628980, BE242587, NM\_005512, AW953853, AU076611, AW968613, AL353944, BE614149, AA292998, H12912, AA188763, AK000596, AI970797, AW519204, Z42387, AF145713, AA972412, 30 AK001564, AW959861, BE313555, W25005, Al193356, AF111106, Al130740, AA985190, BE221880, AF084545, R26584, AW247380, AA364261, U25849, AF262992, AW342140, AL133572, Al497778, Al745379, U51712, AW375974, NM\_000636, AA130986, AA216363, AA628980, AA811657, AF251237. AA897108, AB040888, AF212225, Al089575, Al282028, Al368826, Al718702, 35 AK002039, AL109791, AW090198, AW296454, AW445034, Al827248.

10

15

20

25

30

35

AW452948, AW470411, AW885727, AW970859, AW979189, BE165866, BE175582, BE242587, BE271927, BE439580, BE464016, D63216, F34856, M83822, N33937, N49068, N51357, N80486, NM\_000954, NM\_005756, NM\_016652, R26584, R31178, W05391, W25005, W45393, W68815, X65965, X76732 and Z45051; and

- (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).
- 55. The method of claim 54 determining the likelihood that a subject will suffer from a recurrence of an ovarian cancer, said method comprising contacting a biological sample from said subject being tested with an antibody for a time and under conditions sufficient for an antigen-antibody complex to form and then detecting the complex wherein an enhanced level of the antigen-antibody complex for the subject being tested compared to the amount of the antigen-antibody complex formed for a control subject not having ovarian cancer indicates that the subject being tested has a high probability of recurrence, and wherein said antibody binds to a polypeptide comprising an amino acid sequence comprising at least about 10 contiguous amino acid residues of a sequence encoded by a nucleic acid set forth in Table 1 and having an Accession Number selected from the group consisting of: M86849, AW963419, BE298665, AK000637, BE077546, T97307, R24601, BE090176, AA393907, W28729, BE313754, AW673081, AA356694. L08239, BE397649, NM 012317, NM 000947, AJ250562, AL040183, BE207573, BE439580, AW067800, AA569756, AW138190, AF126245, L10343, NM\_002514, Al863735, NM\_005397, W26391, H15474, U51166. AA243499, Al738719, AB040888, BE313077, Al677897, C14898, Al821730, AF007393, H65423, N46243, AA095971, U20350, NM 005756, D19589, AW957446, AW294647, BE159718, Al888490, AA022569, BE147740, Al798863, BE464341, AL080235, Al557212, X75208, AA628980, BE242587, NM\_005512, AW953853, AU076611, AW968613, AL353944, BE614149, AA292998, H12912, AA188763, AK000596, Al970797, AW519204, Z42387, AF145713, AA972412, AK001564, AW959861, BE313555. W25005, Al193356, AF111106, Al130740, AA985190. BE221880, AF084545, R26584, AW247380, AA364261, U25849, AF262992, AW342140, AL133572, Al497778, Al745379, U51712, AW375974, AF251237, NM\_000636, AA130986, AA216363, AA628980, AA811657, AA897108, AB040888, AF212225, Al089575, Al282028, Al368826, Al718702, Al827248, AK002039, AL109791, AW090198, AW296454, AW445034, AW452948, AW470411, AW885727, AW970859, AW979189, BE165866, BE175582, BE242587, BE271927, BE439580,

BE464016, D63216, F34856, M83822, N33937, N49068, N51357, N80486, NM\_000954, NM\_005756, NM\_016652, R26584, R31178, W05391, W25005, W45393, W68815, X65965, X76732 and Z45051.

- 5 56. The method according to claim 54 or 55 wherein the ovarian cancer is an epithelial ovarian cancer.
  - 57. The method according to any one of claims 54 to 56 wherein the ovarian cancer is selected from the group consisting of serous ovarian cancer, non-invasive ovarian cancer, mixed phenotype ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer, clear cell ovarian cancer, papillary serous ovarian cancer, Brenner cell and undifferentiated adenocarcinoma.

10

20

25

30

35

- 58. The method according to claim 57 wherein the ovarian cancer is selected from the group consisting of serous ovarian cancer, mucinous ovarian cancer, endometrioid ovarian cancer and clear cell ovarian cancer.
  - 59. The method according to any one of claims 35 to 58 wherein the biological sample is contacted with a plurality of nucleic acid probes and/or antibodies and/or polypeptides.

60. A method for identifying a compound that modulates an ovarian cancerassociated polypeptide, the method comprising:

- (i) contacting the compound with a ovarian cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3; and
- (ii) determining the functional effect of the compound upon the polypeptide.
- 61. A method for determining a candidate compound for the treatment of ovarian cancer comprising:
- (i) administering a test compound to a mammal having ovarian cancer or a cell isolated therefrom;
  - (ii) comparing the level of gene expression of a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-3 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell or mammal, wherein a test compound that

modulates the level of expression of the polynucleotide is a candidate for the treatment of ovarian cancer.

- 62. An assay device for use in the diagnosis or prognosis of ovarian cancer, said device comprising a plurality of polynucleotides immobilized to a solid phase, wherein each of said polnucleotides consists of a gene as listed in any one of Tables 1-3.
  - 63. The device of claim 62 consisting of a substantially planar chip.
- 10 64. An assay device for use in the diagnosis or prognosis of ovarian cancer, said device comprising a plurality of different antibodies immobilized to a solid phase, wherein each of said antibodies binds to a polypeptide listed in Tables 1-3.
  - 65. The device of claim 64 consisting of a substantially planar chip.

15

30

- 66. Use of a polynucleotide as set forth in any one of Tables 1-3 in the diagnosis or prognosis of ovarian cancer or for the preparation of a medicament for the treatment of ovarian cancer.
- 20 67. Use of a vector comprising a polynucleotide as set forth in any one of Tables 1-3 in the diagnosis or prognosis of ovarian cancer or for the preparation of a medicament for the treatment of ovarian cancer.
- 68. Use of an isolated polypeptide as set forth in any one of Tables 1-3 in the diagnosis or prognosis of ovarian cancer or for the preparation of a medicament for the treatment of ovarian cancer.
  - 69. Use of an antibody that binds to an isolated polypeptide as set forth in any one of Tables 1-3 in the diagnosis or prognosis of ovarian cancer or for the preparation of a medicament for the treatment of ovarian cancer.
  - 70. A method of diagnosing an ovarian cancer in a human or animal subject being tested said method comprising determining aberrant methylation in a promoter sequence that regulates expression of a tumor suppressor gene in a biological sample from said subject compared to the methylation of the promoter in nucleic acid obtained for a control

subject not having ovarian cancer wherein said aberrant methylation indicates that the subject being tested has an ovarian ovarian cancer.

- 71. The method of claim 70 wherein hypermethylation of the promoter sequence is determined.
  - 72. The method of claim 70 or 71 wherein the methylation is determined in the promoter region that regulates expression of an MCC gene comprising a sequence selected from the group consisting of:
- 10 (i) the nucleotide sequence set forth as SEQ ID NO: 3;
  - (ii) a sequence that hybridizes under at least low stringency hybridization conditions to the nucleotide sequence set forth as SEQ ID NO: 3;
  - (iii) a sequence that is at least about 80% identical to (i) or (ii);
  - (iv) a sequence that encodes a polypeptide encoded by a nucleotide sequence set forth as SEQ ID NO: 3; and
    - (v) a sequence that is complementary to any one of the sequences set forth in (i) or(ii) or (iii) or (iv).
- 73. The method according to any one of claims 70 to 72 wherein the ovarian cancer that is diagnosed is an epithelial ovarian cancer.



FIGURE 1



FIGURE 2

WO 2004/022778 PCT/AU2003/001166



FIGURE 3



FIGURE 4a



FIGURE 4b

## SEQUENCE LISTING

| <110>                                                                        | Garv                   | an II            | nstit             | tute              | of N       | 1edio            | cal I            | Résea             | arch              |            |                   |                  |                   |                   |     |
|------------------------------------------------------------------------------|------------------------|------------------|-------------------|-------------------|------------|------------------|------------------|-------------------|-------------------|------------|-------------------|------------------|-------------------|-------------------|-----|
| <120>                                                                        | Meth                   | ods i            | Eor t             | he o              | liagn      | nosis            | s and            | i pro             | ognos             | sis (      | o£ o              | varia            | an ca             | ancer             |     |
| <130>                                                                        | 5017                   | 31/MI            | RO                |                   |            |                  |                  | •                 |                   |            |                   |                  |                   |                   |     |
| <150><br><151>                                                               | AU20<br>2002           |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   |                   |     |
| <160>                                                                        | 84                     |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   |                   |     |
| <170>                                                                        | PatentIn version 3.1   |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   |                   |     |
| <210><br><211><br><212><br><213>                                             | 3432<br>DNA            |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   |                   | ,   |
| <220> <221> CDS <222> (94)(2850) <223>                                       |                        |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   |                   |     |
| <400> 1 gtcagtccct tcgcgctcct gagccgccgg cgcgccgggc gccccgggaa tttataagta 60 |                        |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   | 60                |     |
|                                                                              | ccgta (                |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   |                   | 114 |
|                                                                              |                        | ٠.               | ,                 | , ,               |            |                  |                  |                   |                   |            |                   |                  |                   | r Leu             |     |
|                                                                              | tg gat<br>eu Asp<br>10 |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   |                   | 162 |
|                                                                              | tc aag<br>eu Lys<br>5  |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   |                   | 210 |
|                                                                              | ac aga<br>sp Arg       |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   |                   | 258 |
|                                                                              | tt aca<br>le Thr       |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   |                   | 306 |
| aag t<br>Lys Pl                                                              | tc cgc<br>he Arg       | cca<br>Pro<br>75 | gtg<br>Val        | aag<br>Lys        | cgg<br>Arg | gtt<br>Val       | tcg<br>Ser<br>80 | cca<br>Pro        | ctg<br>Leu        | aaa<br>Lys | cat<br>His        | cag<br>Gln<br>85 | cca<br>Pro        | gag<br>Glu        | 354 |
| act c                                                                        | tg gag<br>eu Glu<br>90 | aac<br>Asn       | aat<br>Asn        | gaa<br>Glu        | agt<br>Ser | gat<br>Asp<br>95 | gac<br>Asp       | caa<br>Gln        | aag<br>Lys        | aac<br>Asn | cag<br>Gln<br>100 | aaa<br>Lys       | gtg<br>Val        | gtt<br>Val        | 402 |
| Glu T                                                                        | ac cag<br>yr Gln<br>05 |                  |                   |                   |            |                  |                  |                   |                   |            |                   |                  |                   |                   | 450 |
| ctt go<br>Leu G<br>120                                                       | gc cct<br>ly Pro       | gga<br>Gly       | gat<br>Asp        | gga<br>Gly<br>125 | gtg<br>Val | ggc<br>Gly       | ggc<br>Gly       | cca<br>Pro        | cca<br>Pro<br>130 | ggt<br>Gly | aag<br>Lys        | agc<br>Ser       | tct<br>Ser        | gag<br>Glu<br>135 | 498 |
| ccc aq<br>Pro Se                                                             | gc aca<br>er Thr       | tcg<br>Ser       | ctg<br>Leu<br>140 | ggt<br>Gly        | gaa<br>Glu | ctg<br>Leu       | gag<br>Glu       | cac<br>His<br>145 | tac<br>Tyr        | gac<br>Asp | ctc<br>Leu        | gac<br>Asp       | atg<br>Met<br>150 | gat<br>Asp        | 546 |

| • | ga<br>Gl          | g at<br>u Il       | t ci<br>e Le      | eu As                 | at gt<br>sp Va<br>55 | g co<br>il Pr      | t ta<br>o Ty          | ıt at<br>r Il         | t aa<br>e Ly<br>16    | s Se              | c ag<br>r Se      | t ca<br>r Gl       | g ca<br>n Gl          | g ct<br>n Le<br>16   | u Āl                 | c tct<br>a Ser        | 594  |
|---|-------------------|--------------------|-------------------|-----------------------|----------------------|--------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|--------------------|-----------------------|----------------------|----------------------|-----------------------|------|
|   | tt<br>Ph          | t ac<br>e Th       | rЬ                | ag gt<br>ys Va<br>70  | g ac                 | t to<br>r Se       | a ga<br>r Gl          | a aa<br>u Ly<br>17    | s Ar                  | a at<br>g Il      | t tt<br>e Le      | g gg<br>u Gl       | c tt<br>y Le<br>18    | u Cy                 | c ac                 | a acc<br>r Thr        | 642  |
| ٠ | at<br>Il          | c aa<br>e As<br>18 | n Gl              | jc ct<br>ly L∈        | t to<br>u Se         | t gg<br>r Gl       | с аа<br>у Lу<br>19    | s Al                  | c tg<br>a Cy          | c tc<br>s Se      | t ac              | a gg<br>r Gl<br>19 | y Se                  | t to<br>r Se         | t ga<br>r Gl         | g ago<br>u Ser        | 690  |
|   | tc:<br>Se:<br>200 | c Se               | a to<br>r Se      | c aa<br>er As         | c at<br>n Me         | g gc<br>t Al<br>20 | a Pr                  | a tt<br>o Ph          | t tgʻ<br>e Cy:        | t gti<br>s Val    | t ct<br>l Le      | u Se               | t cc<br>r Pr          | c gt<br>o Va         | g aa<br>l Ly         | a agc<br>s Ser<br>215 |      |
|   | cct<br>Pro        | ca<br>Hi           | c tt<br>s Le      | g ag<br>u Ar          | a aa<br>g Ly<br>22   | s Al               | a tc<br>a Se          | a gc<br>r Al          | t gto<br>a Vai        | 225               | e Hi              | c ga<br>s As       | c ca<br>p Gl:         | g ca<br>n Hi         | c aas<br>s Ly:<br>23 | g ctg<br>s Leu<br>0   | 786  |
|   | Ser               | Thi                | t ga<br>r Gl      | a ga<br>u G1<br>23    | u Th                 | c ga<br>r Gl       | g ato<br>u Ilo        | c tc.<br>e Se:        | a cct<br>r Pro<br>240 | Pro               | cto<br>Lei        | g gti<br>1 Va.     | t aaa<br>l Lya        | a tg<br>s Cy:<br>24: | s Gl                 | c tct<br>y Ser        | 834  |
|   | gca<br>Ala        | tai<br>Tyi         | ga<br>G1<br>25    | u Pr                  | t gaa<br>o Gl        | a aad<br>u Asi     | c caq<br>n Gl:        | g agi<br>n Se:<br>25! | r Lys                 | gad<br>Asp        | tto<br>Phe        | cta<br>Lei         | a aad<br>a Asi<br>260 | ı Ly                 | g aca                | ttt<br>Phe            | 882  |
| • | agt<br>Ser        | gat<br>Asp<br>265  | Pr                | t ca<br>o Hi          | t ggi<br>s Gl        | t cga<br>y Arg     | a aaa<br>g Lys<br>270 | s Val                 | gag<br>L Glu          | ı aag             | aca<br>Thr        | aca<br>Thi         | : Pro                 | a gad<br>Asp         | c tgo<br>Cys         | cag<br>Gln            | 930  |
|   | ctc<br>Leu<br>280 | Arg                | gc<br>Al          | c tto<br>a Pho        | c cad<br>e His       | cta<br>Leu<br>285  | ı Glr                 | tco<br>Sei            | c tca<br>Ser          | gca<br>Ala        | gca<br>Ala<br>290 | Gli                | tco<br>Ser            | aaa<br>Lys           | a cca<br>Pro         | gaa<br>Glu<br>295     | 978  |
|   | gag<br>Glu        | cag<br>Gln         | gt:<br>Va:        | c agi                 | 300<br>300           | , Leu              | aac<br>Asn            | cgg<br>Arg            | acc<br>Thr            | agc<br>Ser<br>305 | Ser               | caa<br>Gln         | ggc<br>Gly            | e cca                | gaa<br>Glu<br>310    | gaa<br>Glu            | 1026 |
|   | agg<br>Arg        | agt<br>Ser         | gaq<br>Glu        | y tat<br>ı Tyı<br>315 | : Leu                | aaa<br>Lys         | aaa<br>Lys            | gtg<br>Val            | aaa<br>Lys<br>320     | agc<br>Ser        | atc<br>Ile        | ttg<br>Leu         | aac<br>Asn            | att<br>Ile<br>325    | Val                  | aaa<br>Lys            | 1074 |
|   | gaa<br>Glu        | gga<br>Gly         | caç<br>Glr<br>330 | ) ITE                 | tct<br>Ser           | ctc<br>Leu         | ctg<br>Leu            | Pro<br>335            | cac<br>His            | cta<br>Leu        | gct<br>Ala        | gca<br>Ala         | gac<br>Asp<br>340     | Asn                  | cta<br>Leu           | gac<br>Asp            | 1122 |
|   | aaa<br>Lys        | att<br>Ile<br>345  | Cac               | gac<br>Asp            | gaa<br>Glu           | aat<br>Asn         | gga<br>Gly<br>350     | aac<br>Asn            | aat<br>Asn            | cta<br>Leu        | tta<br>Leu        | cat<br>His<br>355  | att<br>Ile            | gcg<br>Ala           | gcg<br>Ala           | tca<br>Ser            | 1170 |
|   | cag<br>Gln<br>360 | gga<br>Gly         | Cac               | gca<br>Ala            | gag<br>Glu           | tgt<br>Cys<br>365  | cta<br>Leu            | cag<br>Gln            | cac<br>His            | ctc<br>Leu        | act<br>Thr<br>370 | tct<br>Ser         | ttg<br>Leu            | atg<br>Met           | gga<br>Gly           | gaa<br>Glu<br>375     | 1218 |
|   | gac<br>Asp        | tgc<br>Cys         | ctc               | aat<br>Asn            | gag<br>Glu<br>380    | cgc<br>Arg         | aac<br>Asn            | act<br>Thr            | gag<br>Glu            | aag<br>Lys<br>385 | ttg<br>Leu        | act<br>Thr         | cca<br>Pro            | gca<br>Ala           | ggc<br>Gly<br>390    | ctg<br>Leu            | 1266 |
| • | gcc<br>Ala        | att<br>Ile         | aag<br>Lys        | aat<br>Asn<br>395     | ggt<br>Gly           | cag<br>Gln         | ttg<br>Leu            | gag<br>Glu            | tgc<br>Cys<br>400     | gta<br>Val        | cgc<br>Arg        | tgg<br>Trp         | atg<br>Met            | gtg<br>Val<br>405    | agc<br>Ser           | gaa<br>Glu            | 1314 |
|   | aca<br>Thr        | gaa<br>Glu         | gcc<br>Ala<br>410 | att<br>Ile            | gca<br>Ala           | gaa<br>Glu         | ctg<br>Leu            | agt<br>Ser<br>415     | tgt<br>Cys            | tct<br>Ser        | aag<br>Lys        | gat<br>Asp         | ttt<br>Phe<br>420     | cca<br>Pro           | agc<br>Ser           | ctt<br>Leu            | 1362 |

|                   |            |            |            |            |                   | tat<br>Tyr<br>430 |            |            |            |                   |            |            |            |            |                   | 1410 |
|-------------------|------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------|
|                   | Gln        |            | _          |            | -                 | cag<br>Gln        |            |            |            | _                 | _          | _          | _          | -          | _                 | 1458 |
|                   |            |            |            |            |                   | cac<br>His        |            |            |            |                   |            |            |            |            |                   | 1506 |
|                   |            |            |            |            |                   | gaa<br>Glu        |            |            |            |                   |            |            |            |            |                   | 1554 |
|                   |            |            |            |            |                   | tcc<br>Ser        |            |            |            |                   |            |            |            |            |                   | 1602 |
|                   |            |            |            |            |                   | gtg<br>Val<br>510 |            |            |            |                   |            |            |            |            |                   | 1650 |
|                   |            |            |            |            |                   | acc<br>Thr        |            |            |            |                   |            |            |            |            |                   | 1698 |
|                   |            | -          | _          |            |                   | caa<br>Gln        |            |            |            |                   |            | _          | _          | -          |                   | 1746 |
|                   |            |            |            |            |                   | cct<br>Pro        |            |            |            |                   |            |            |            |            | cct<br>Pro.       | 1794 |
|                   |            |            |            |            |                   | tgg<br>Trp        |            |            |            |                   |            |            |            |            |                   | 1842 |
|                   |            |            |            |            |                   | gga<br>Gly<br>590 | _          |            |            |                   |            | _          | _          |            |                   | 1890 |
| agc<br>Ser<br>600 | ctg<br>Leu | tca<br>Ser | gcc<br>Ala | tcc<br>Ser | agc<br>Ser<br>605 | cgg<br>Arg        | gct<br>Ala | aga<br>Arg | ccc<br>Pro | aaa<br>Lys<br>610 | gca<br>Ala | aaa<br>Lys | gat<br>Asp | gaa<br>Glu | gat<br>Asp<br>615 | 1938 |
|                   |            |            |            |            | _                 | cag<br>Gln        |            | _          |            | _                 |            |            |            | _          |                   | 1986 |
|                   |            |            |            |            |                   | ctg<br>Leu        |            |            |            |                   |            |            |            |            |                   | 2034 |
|                   |            |            |            |            |                   | aag<br>Lys        |            |            |            |                   |            |            |            |            |                   | 2082 |
|                   |            |            |            |            |                   | ctg<br>Leu<br>670 | _          | -          |            |                   | _          | _          |            |            | -                 | 2130 |
|                   | _          |            |            |            |                   | gag<br>Glu        | -          |            |            |                   |            |            | -          |            | -                 | 2178 |

|                   |                   |                   | cca<br>Pro        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2226 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gac<br>Asp        | agc<br>Ser        | gca<br>Ala        | gaa<br>Glu<br>715 | agc<br>Ser        | ctg<br>Leu        | cac<br>His        | ctg<br>Leu        | atg<br>Met<br>720 | att<br>Ile        | aag<br>Lys        | aaa<br>Lys        | cac<br>His        | acc<br>Thr<br>725 | ttg<br>Leu        | gca<br>Ala        | 2274 |
| tca<br>Ser        | G] À<br>aaa       | gga<br>Gly<br>730 | cgc<br>Arg        | agg<br>Arg        | ttt<br>Phe        | cct<br>Pro        | ttc<br>Phe<br>735 | agc<br>Ser        | atc<br>Ile        | aag<br>Lys        | gcc<br>Ala        | tcc<br>Ser<br>740 | aaa<br>Lys        | tcc<br>Ser        | ctg<br>Leu        | 2322 |
| gat<br>Asp        | ggc<br>Gly<br>745 | cac<br>His        | agc<br>Ser        | cca<br>Pro        | tct<br>Ser        | ccc<br>Pro<br>750 | acc<br>Thr        | tca<br>Ser        | gag<br>Glu        | agc<br>Ser        | agc<br>Ser<br>755 | gaa<br>Glu        | cca<br>Pro        | gac<br>Asp        | tta<br>Leu        | 2370 |
|                   |                   |                   | tat<br>Tyr        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2418 |
|                   |                   |                   | cag<br>Gln        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2466 |
| gcc<br>Ala        | aca<br>Thr        | agt<br>Ser        | ccc<br>Pro<br>795 | aag<br>Lys        | agt<br>Ser        | gcc<br>Ala        | ctc<br>Leu        | aag<br>Lys<br>800 | tct<br>Ser        | cca               | tct<br>Ser        | tcc<br>Ser        | aag<br>Lys<br>805 | cgt<br>Arg        | agg<br>Arg        | 2514 |
| aca<br>Thr        | tct<br>Ser        | cag<br>Gln<br>810 | aac<br>Asn        | tta<br>Leu        | aaa<br>Lys        | ctg<br>Leu        | aga<br>Arg<br>815 | gtt<br>Val        | acc<br>Thr        | ttt<br>Phe        | gag<br>Glu        | gag<br>Glu<br>820 | cct<br>Pro        | gtg<br>Val        | gtg<br>Val        | 2562 |
| cag<br>Gln        | atg<br>Met<br>825 | gag<br>Glu        | cag<br>Gln        | cct<br>Pro        | agc<br>Ser        | ctt<br>Leu<br>830 | gaa<br>Glu        | ctg<br>Leu        | aat<br>Asn        | gga<br>Gly        | gaa<br>Glu<br>835 | aaa<br>Lys        | gac<br>Asp        | aaa<br>Lys        | gat<br>Asp        | 2610 |
| aag<br>Lys<br>840 | ggc<br>Gly        | agg<br>Arg        | act<br>Thr        | ctc<br>Leu        | cag<br>Gln<br>845 | cgg<br>Arg        | acc<br>Thr        | tcc<br>Ser        | aca<br>Thr        | agt<br>Ser<br>850 | aac<br>Asn        | gaa<br>Glu        | tcg<br>Ser        | Gly<br>ggg        | gat<br>Asp<br>855 | 2658 |
| caa<br>Gln        | ctg<br>Leu        | aaa<br>Lys        | agg<br>Arg        | cct<br>Pro<br>860 | ttt<br>Phe        | gga<br>Gly        | gcc<br>Ala        | Phe               | cga<br>Arg<br>865 | tct<br>Ser        | atc<br>Ile        | atg<br>Met        | gag<br>Glu        | aca<br>Thr<br>870 | cța<br>Leu        | 2706 |
| agt<br>Ser        | ggc<br>Gly        | aac<br>Asn        | caa<br>Gln<br>875 | aac<br>Asn        | aat<br>Asn        | aat<br>Asn        | aat<br>Asn        | aac<br>Asn<br>880 | tac<br>Tyr        | cag<br>Gln        | gca<br>Ala        | gcc<br>Ala        | aac<br>Asn<br>885 | cag<br>Gln        | ctg<br>Leu        | 2754 |
| aaa<br>Lys        | Thr               | tct<br>Ser<br>890 | aca<br>Thr        | ttg<br>Leu        | ccc<br>Pro        | Leu               | acc<br>Thr<br>895 | tca<br>Ser        | ctt<br>Leu        | GJĀ<br>āāā        | agg<br>Arg        | aag<br>Lys<br>900 | aca<br>Thr        | gat<br>Asp        | gcc<br>Ala        | 2802 |
| aag<br>Lys        | gga<br>Gly<br>905 | aac<br>Asn        | cct<br>Pro        | gcc<br>Ala        | agc<br>Ser        | tcc<br>Ser<br>910 | gct<br>Ala        | agc<br>Ser        | aaa<br>Lys        | gga<br>Gly        | aag<br>Lys<br>915 | aat<br>Asn        | aag<br>Lys        | gca<br>Ala        | gca<br>Ala        | 2850 |
| taat              | gaca              | tc a              | atag              | aaaa              | a tg              | aaga              | aatc              | cta               | cage              | ata               | aagc              | acat              | tg c              | tgag              | ccaga             | 2910 |
| gtca              | aaag              | aa c              | tctt              | cttg              | t aa              | atca              | cttt              | tta               | aatt              | ttc               | tctc              | actg              | at g              | ccct              | ttgga             | 2970 |
| aatt              | attg              | ga a              | attt              | ctgg              | a ct              | atcc              | tctt              | tgg               | aaag              | aga               | acça              | tgaa              | aa c              | aatg              | cctca             | 3030 |
| ccag              | caga              | ag a              | acag              | aata              | t ca              | ggat              | gcct              | taa               | attt              | ata               | gtag              | taga              | ct g              | taaa              | agatt             | 3090 |
| catt              | ttgg              | gg t              | gata              | tctg              | t at              | atat              | aact              | tgt               | tttt              | tta               | aaag              | atgc              | cg t              | ttaa              | aagca             | 3150 |
| tgati             | tggg              | aa a              | atgt              | acgt              | t tt              | ttaa              | gagt              | aga               | ttga              | ttc               | accc              | tacc              | ca c              | agga              | cattc             | 3210 |

<210> 2

<211> 919

<212> PRT

<213> NM\_005460 SNCAIP, synphilin

<400> 2

Met Glu Ala Pro Glu Tyr Leu Asp Leu Asp Glu Ile Asp Phe Ser Asp 1 5 10 15

Asp Ile Ser Tyr Ser Val Thr Ser Leu Lys Thr Ile Pro Glu Leu Cys 20 25 30

Arg Arg Cys Asp Thr Gln Asn Glu Asp Arg Ser Ala Ser Ser Ser Ser 35 40 45

Trp Asn Cys Gly Ile Ser Thr Leu Ile Thr Asn Thr Gln Lys Pro Thr 50 55 60

Gly Ile Ala Asp Val Tyr Ser Lys Phe Arg Pro Val Lys Arg Val Ser 65 70 75 80

Pro Leu Lys His Gln Pro Glu Thr Leu Glu Asn Asn Glu Ser Asp Asp 85 90 95

Gln Lys Asn Gln Lys Val Val Glu Tyr Gln Lys Gly Glu Ser Asp 100 105 110

Leu Gly Pro Gln Pro Gln Glu Leu Gly Pro Gly Asp Gly Val Gly Gly 115 120 125

Pro Pro Gly Lys Ser Ser Glu Pro Ser Thr Ser Leu Gly Glu Leu Glu 130 135 140

His Tyr Asp Leu Asp Met Asp Glu Ile Leu Asp Val Pro Tyr Ile Lys 145 150 155 160

Ser Ser Gln Gln Leu Ala Ser Phe Thr Lys Val Thr Ser Glu Lys Arg 165 170 175

Ile Leu Gly Leu Cys Thr Thr Ile Asn Gly Leu Ser Gly Lys Ala Cys 180 185 190 Ser Thr Gly Ser Ser Glu Ser Ser Ser Ser Asn Met Ala Pro Phe Cys 195 200 205

Val Leu Ser Pro Val Lys Ser Pro His Leu Arg Lys Ala Ser Ala Val 210 215 220

Ile His Asp Gln His Lys Leu Ser Thr Glu Glu Thr Glu Ile Ser Pro 225 230 235 240

Pro Leu Val Lys Cys Gly Ser Ala Tyr Glu Pro Glu Asn Gln Ser Lys 245 250 255

Asp Phe Leu Asn Lys Thr Phe Ser Asp Pro His Gly Arg Lys Val Glu 260 265 270

Lys Thr Thr Pro Asp Cys Gln Leu Arg Ala Phe His Leu Gln Ser Ser 275 280 285

Ala Ala Glu Ser Lys Pro Glu Glu Gln Val Ser Gly Leu Asn Arg Thr 290 295 300

Ser Ser Gln Gly Pro Glu Glu Arg Ser Glu Tyr Leu Lys Lys Val Lys 305 310 315 320

Ser Ile Leu Asn Ile Val Lys Glu Gly Gln Ile Ser Leu Leu Pro His 325 330 335

Leu Ala Ala Asp Asn Leu Asp Lys Ile His Asp Glu Asn Gly Asn Asn 340 345 350

Leu Leu His Ile Ala Ala Ser Gln Gly His Ala Glu Cys Leu Gln His 355 360 365

Leu Thr Ser Leu Met Gly Glu Asp Cys Leu Asn Glu Arg Asn Thr Glu 370 375 380

Lys Leu Thr Pro Ala Gly Leu Ala Ile Lys Asn Gly Gln Leu Glu Cys 385 390 395 400

Val Arg Trp Met Val Ser Glu Thr Glu Ala Ile Ala Glu Leu Ser Cys
405 410 415

Ser Lys Asp Phe Pro Ser Leu Ile His Tyr Ala Gly Cys Tyr Gly Gln 420 425 430

Glu Lys Ile Leu Leu Trp Leu Leu Gln Phe Met Gln Glu Gln Gly Ile 435 440 445

Ser Leu Asp Glu Val Asp Gln Asp Gly Asn Ser Ala Val His Val Ala 450 455 460

。 (1.24 · 1.25 · 1.15 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45 · 1.45

Market V

Ser Gln His Gly Tyr Leu Gly Cys Ile Gln Thr Leu Val Glu Tyr Gly 465 475 480

in the section of the section of the contract of the contract

Ala Asn Val Thr Met Gln Asn His Ala Gly Glu Lys Pro Ser Gln Ser 485 490 495

Ala Glu Arg Gln Gly His Thr Leu Cys Ser Arg Tyr Leu Val Val
500 505 510

Glu Thr Cys Met Ser Leu Ala Ser Gln Val Val Lys Leu Thr Lys Gln 515 520 525

Leu Lys Glu Gln Thr Val Glu Arg Val Thr Leu Gln Asn Gln Leu Gln 530 540

Gln Phe Leu Glu Ala Gln Lys Ser Glu Gly Lys Ser Leu Pro Ser Ser 545 550 555 560

Pro Ser Ser Pro Ser Ser Pro Ala Ser Arg Lys Ser Gln Trp Lys Ser 565 570 575

Pro Asp Ala Asp Asp Ser Val Ala Lys Ser Lys Pro Gly Val Gln 580 585 590

Glu Gly Ile Gln Val Leu Gly Ser Leu Ser Ala Ser Ser Arg Ala Arg 595 600 605

Pro Lys Ala Lys Asp Glu Asp Ser Asp Lys Ile Leu Arg Gln Leu Leu 610 620

Gly Lys Glu Ile Ser Glu Asn Val Cys Thr Gln Glu Lys Leu Ser Leu 625 630 635 · 640

Glu Phe Gln Asp Ala Gln Ala Ser Ser Arg Asn Ser Lys Lys Ile Pro 645 650 655

Leu Glu Lys Arg Glu Leu Lys Leu Ala Arg Leu Arg Gln Leu Met Gln 660 665 670

Arg Ser Leu Ser Glu Ser Asp Thr Asp Ser Asn Asn Ser Glu Asp Pro 675 680 685

Lys Thr Thr Pro Val Arg Lys Ala Asp Arg Pro Arg Pro Gln Pro Ile 690 695 700

Val Glu Ser Val Glu Ser Met Asp Ser Ala Glu Ser Leu His Leu Met 705 710 715 720

Ile Lys Lys His Thr Leu Ala Ser Gly Gly Arg Arg Phe Pro Phe Ser 725 730 735

Ile Lys Ala Ser Lys Ser Leu Asp Gly His Ser Pro Ser Pro Thr Ser 740 745 750

Glu Ser Ser Glu Pro Asp Leu Glu Ser Gln Tyr Pro Gly Ser Gly Ser 755 760 765

Ile Pro Pro Asn Gln Pro Ser Gly Asp Pro Gln Gln Pro Ser Pro Asp 770 780

Ser Thr Ala Ala Gln Lys Val Ala Thr Ser Pro Lys Ser Ala Leu Lys 785 790 795 800

Ser Pro Ser Ser Lys Arg Arg Thr Ser Gln Asn Leu Lys Leu Arg Val 805 810 815

Thr Phe Glu Glu Pro Val Val Gln Met Glu Gln Pro Ser Leu Glu Leu 820 825 830

Asn Gly Glu Lys Asp Lys Asp Lys Gly Arg Thr Leu Gln Arg Thr Ser 835 840 845

Thr Ser Asn Glu Ser Gly Asp Gln Leu Lys Arg Pro Phe Gly Ala Phe 850 855 860

Arg Ser Ile Met Glu Thr Leu Ser Gly Asn Gln Asn Asn Asn Asn Asn 865 870 870 880

Tyr Gln Ala Ala Asn Gln Leu Lys Thr Ser Thr Leu Pro Leu Thr Ser 885 890 895

Leu Gly Arg Lys Thr Asp Ala Lys Gly Asn Pro Ala Ser Ser Ala Ser 900 905 910

Lys Gly Lys Asn Lys Ala Ala 915

<210> 3

<211> 4181

<212> DNA

<213> NM\_002387 MCC, mutated in colorectal cancers

<220>

<221> CDS

<222> (221)..(2707)

<223>

| -1                | 00>               | 3                  |                    |                      |                    |                      |                    |                    |                    |                      |                    |                    |                    |                     |                     |        |
|-------------------|-------------------|--------------------|--------------------|----------------------|--------------------|----------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------|--------------------|---------------------|---------------------|--------|
|                   |                   |                    | j caa              | atggo                | tcg                | tccg                 | tgaa               | ac g               | gcgag              | rccad                | g go               | etgct              | cttt               | : tta               | agagt               | gc 6(  |
| ct                | gcat              | ccto               | cgt                | ttgc                 | gct                | tcgc                 | aact               | gt c               | ctgg               | gtga                 | a aa               | tggc               | tgto               | : tag               | actaa               | aa 120 |
| tg                | tggc              | agaa               | a ggg              | gacca                | agc                | agtg                 | gata               | ıtt g              | agco               | tgtg                 | ga ag              | tcca               | acto               | tta                 | agctc               | cg 180 |
| ag                | acct              | gggg               | gac                | tgag                 | agc                | ccag                 | cțct               | ga a               | aạġt               | gcat                 |                    |                    |                    |                     | a gtt<br>y Val<br>5 | 235    |
| gc<br>Ala         | c at<br>a Me      | g aa<br>t Ly       | a ta<br>'s Ty      | r Gl<br>10           | y As               | c ga<br>n As         | c to<br>p Se       | c tc<br>r Se       | g gc<br>r Al<br>15 | a Gl                 | g ct<br>u Le       | g ag<br>u Se       | t ga<br>r Gl       | g ct<br>u Le<br>20  | c cat<br>u His      | 283    |
| tc:<br>Se:        | a gc<br>r Al      | a go<br>a Al       | c ct<br>a Le<br>25 | u AL                 | a tc.<br>a Se:     | a ct.<br>r Le        | a aa<br>u Ly       | g gg<br>s Gl<br>30 | a ga<br>y As       | t at<br>p Il         | a gt<br>e Va       | g ga<br>1 Gl       | a ct<br>u Le<br>35 | t aa<br>u As:       | t aaa<br>n Lys      | 331    |
| cgt<br>Arg        | t cta<br>g Le     | c ca<br>u Gl<br>40 | n GI               | a ac<br>n Th         | a gaq<br>r Gli     | g ago                | g ga<br>g Gl<br>45 | a cg               | g ga<br>g As       | c ct<br>p Le         | t ct<br>u Le       | g ga<br>u Gl<br>50 | a aa<br>u Ly:      | g aa<br>s Ly:       | a ttg<br>s Leu      | 379    |
| gco               | aaq<br>Lys<br>55  | g gc<br>s Al       | a ca<br>a Gl       | g tg<br>n Cy         | c gaq<br>s Gli     | g caq<br>u Gl:<br>60 | tc<br>Se:          | c cad              | c cto<br>s Le      | c at<br>u Me         | g ag<br>t Ar<br>65 | a gad<br>g Gli     | g cat<br>u Hi:     | t gaq<br>s Gli      | g gat<br>1 Asp      | 427    |
| gto<br>Val<br>70  | caq<br>Glr        | g ga<br>n Gli      | g cga              | a ac                 | g acc<br>Thr<br>75 | g ctt<br>Lei         | : cg               | c tat              | t gaq              | g gaa<br>1 Gli<br>80 | a cgo              | c ato              | c aca              | a gaq<br>Glu        | ctc<br>Leu<br>85    | 475    |
| Cac<br>His        | ago<br>Ser        | gto<br>Val         | c att              | t gcg<br>a Ala<br>90 | g gag<br>a Glu     | cto<br>Lev           | aad<br>Asr         | c aag<br>n Lys     | g aag<br>Lys<br>95 | g ata                | a gad<br>e Ası     | cgt<br>Arg         | cto<br>J Lei       | g caa<br>Glr<br>100 | ggc<br>Gly          | 523    |
| acc<br>Thr        | acc<br>Thr        | ato<br>Ile         | agg<br>Arg<br>105  | f GII                | gaa<br>Glu         | gat<br>Asp           | gag<br>Glu         | tac<br>Tyr<br>110  | Ser                | gaa<br>Glu           | t cto              | cga<br>Arg         | tca<br>Ser<br>115  | : Glu               | ctc<br>Leu          | 571    |
| agc<br>Ser        | cag<br>Gln        | Ser<br>120         | GLE                | cac<br>His           | gag<br>Glu         | gtc<br>Val           | aac<br>Asn<br>125  | Glu                | gac<br>Asp         | tct<br>Ser           | . cga              | ago<br>Ser<br>130  | Met                | gac<br>Asp          | caa<br>Gln          | 619    |
| gac<br>Asp        | cag<br>Gln<br>135 | Tur                | tct<br>Ser         | gtc<br>Val           | tct<br>Ser         | atc<br>Ile<br>140    | Pro                | gaa<br>Glu         | aac<br>Asn         | cag<br>Gln           | tct<br>Ser<br>145  | Thr                | atg<br>Met         | gtt<br>Val          | act<br>Thr          | 667    |
| gct<br>Ala<br>150 | gac<br>Asp        | atg<br>Met         | gac<br>Asp         | aac<br>Asn           | tgc<br>Cys<br>155  | agt<br>Ser           | gac<br>Asp         | ctg<br>Leu         | aac<br>Asn         | tca<br>Ser<br>160    | Glu                | ctg<br>Leu         | cag<br>Gln         | agg<br>Arg          | gtg<br>Val<br>165   | 715    |
| ctg<br>Leu        | aca<br>Thr        | Gly                | ctg<br>Leu         | gag<br>Glu<br>170    | aat<br>Asn         | gtt<br>Val           | gtc<br>Val         | tgc<br>Cys         | ggc<br>Gly<br>175  | agg<br>Arg           | aag<br>Lys         | aag<br>Lys         | agc<br>Ser         | agc<br>Ser<br>180   | tgc<br>Cys          | 763    |
| agc<br>Ser        | ctc<br>Leu        | tcc<br>Ser         | gtg<br>Val<br>185  | gcc<br>Ala           | gag<br>Glu         | gtg<br>Val           | gac<br>Asp         | agg<br>Arg<br>190  | cac<br>His         | att<br>Ile           | gag<br>Glu         | cag<br>Gln         | ctc<br>Leu<br>195  | acc<br>Thr          | aca<br>Thr          | 811    |
| gcc<br>Ala        | agc<br>Ser        | gag<br>Glu<br>200  | cac<br>His         | tgt<br>Cys           | gac<br>Asp         | ctg<br>Leu           | gct<br>Ala<br>205  | att<br>Ile         | aag<br>Lys         | aca<br>Thr           | gtc<br>Val         | gag<br>Glu<br>210  | gag<br>Glu         | att<br>Ile          | gag<br>Glu          | 859    |
| GTĀ               | gtg<br>Val<br>215 | ctt<br>Leu         | ggc<br>Gly         | cgg<br>Arg           | gac<br>Asp         | ctg<br>Leu<br>220    | tat<br>Tyr         | ccc<br>Pro         | aac<br>Asn         | ctg<br>Leu           | gct<br>Ala<br>225  | gaa<br>Glu         | gag<br>Glu         | agg<br>Arg          | tct<br>Ser          | 907    |

|            |            |            |            |                   |             | gct<br>Ala        |            |            |                   |            |            |            |            |                   |            | 955  |
|------------|------------|------------|------------|-------------------|-------------|-------------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------|
|            |            |            |            |                   |             | aaa<br>Lys        |            |            |                   |            |            |            |            |                   |            | 1003 |
|            | _          |            | _          |                   |             | gaa<br>Glu        |            |            | _                 |            |            |            |            |                   | -          | 1051 |
|            |            |            |            |                   |             | cta<br>Leu        |            |            |                   |            |            |            |            |                   |            | 1099 |
| _          |            |            | _          |                   |             | tcc<br>Ser<br>300 |            |            | -                 | _          |            |            |            | •                 |            | 1147 |
|            |            | _          | _          |                   | -           | agc<br>Ser        | -          | _          |                   | -          |            |            |            | _                 | _          | 1195 |
|            |            |            |            |                   |             | cta<br>Leu        |            |            |                   |            |            |            |            |                   |            | 1243 |
|            | _          |            |            | -                 | _           | ggc<br>Gly        |            | _          |                   | _          | _          |            |            | -                 |            | 1291 |
|            |            |            |            |                   |             | ctg<br>Leu        |            |            |                   |            |            |            |            |                   |            | 1339 |
|            |            |            |            |                   |             | aca<br>Thr<br>380 |            |            |                   |            |            |            |            |                   |            | 1387 |
|            |            |            |            |                   |             | ttt<br>Phe        |            |            |                   |            |            |            |            |                   |            | 1435 |
|            |            |            |            |                   |             | tcc<br>Ser        |            |            |                   |            | _          |            |            |                   |            | 1483 |
|            |            |            |            |                   |             | gct<br>Ala        |            |            |                   |            |            |            |            |                   |            | 1531 |
|            |            |            |            |                   |             | gcg<br>Ala        |            |            |                   |            |            |            |            |                   |            | 1579 |
|            |            |            |            |                   |             | gaa<br>Glu<br>460 |            |            |                   |            |            |            |            |                   |            | 1627 |
|            |            |            |            |                   |             | cag<br>Gln        |            |            |                   |            |            |            |            |                   |            | 1675 |
| cct<br>Pro | gga<br>Gly | gac<br>Asp | cag<br>Gln | tcg<br>Ser<br>490 | G1 Å<br>aaa | gat<br>Asp        | gaa<br>Glu | aac<br>Asn | atc<br>Ile<br>495 | act<br>Thr | cag<br>Gln | atg<br>Met | ctc<br>Leu | aag<br>Lys<br>500 | cga<br>Arg | 1723 |

and the state of the contract of

| gct<br>Ala | cat<br>His | gac<br>Asp | tgc<br>Cys<br>505 | cgg<br>Arg | aag<br>Lys        | aca<br>Thr | gct<br>Ala | gag<br>Glu<br>510 | aac<br>Asn | gct<br>Ala | gcc<br>Ala | aag<br>Lys | gcc<br>Ala<br>515 | ctg<br>Leu | ctc<br>Leu | 1771   |
|------------|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|--------|
|            |            |            |                   |            | agc<br>Ser        |            |            |                   |            |            |            |            |                   |            |            | 1819   |
|            |            | _          |                   |            | gag<br>Glu        | _          |            |                   |            |            | _          |            |                   |            | _          | . 1867 |
|            |            |            |                   |            | agt<br>Ser<br>555 |            |            |                   |            |            |            |            |                   |            |            | 1915   |
|            | _          |            | _                 | _          | gat<br>Asp        |            |            | _                 | _          |            | _          |            | _                 |            |            | 1963   |
|            | _          | -          | _                 |            | atg<br>Met        | _          | -          | _                 | _          | _          |            |            |                   | _          |            | 2011   |
|            |            |            |                   |            | aag<br>Lys        |            |            |                   |            |            |            |            |                   |            |            | 2059   |
|            |            |            |                   |            | atg<br>Met        |            |            |                   |            |            |            |            |                   |            |            | 2107   |
|            | Glu        |            |                   |            | cag<br>Gln<br>635 |            |            |                   |            |            |            |            |                   |            |            | 2155   |
|            |            |            |                   |            | agc<br>Ser        |            |            |                   |            |            |            |            |                   |            |            | 2203   |
|            |            |            |                   |            | ctg<br>Leu        | _          |            |                   |            |            |            | -          | -                 | -          | _          | 2251   |
|            |            |            |                   |            | agc<br>Ser        |            |            |                   |            |            | Ser        |            |                   |            |            | 2299   |
|            |            |            |                   |            | gat<br>Asp        |            |            |                   |            |            |            |            |                   |            |            | 2347   |
|            |            |            | _                 | _          | agc<br>Ser<br>715 |            |            |                   | _          | _          | -          | -          |                   |            |            | 2395   |
|            |            |            |                   |            | aag<br>Lys        |            |            |                   |            |            |            |            |                   |            |            | 2443   |
|            |            |            |                   |            | ctc<br>Leu        |            |            |                   |            |            |            |            |                   |            |            | 2491   |
|            |            |            |                   |            | aat<br>Asn        |            |            |                   |            |            |            |            |                   |            |            | 2539   |

| gct gcc tat gag aaa gca aag aaa aag cat caa aac aaa ctg aag aag<br>Ala Ala Tyr Glu Lys Ala Lys Lys Lys His Gln Asn Lys Leu Lys Lys<br>775 780 785 | 2587  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| tta gag tcg cag atg atg gcc atg gtg gag aga cat gag acc caa gtg<br>Leu Glu Ser Gln Met Met Ala Met Val Glu Arg His Glu Thr Gln Val<br>790 800 805 | 2635  |
| agg atg ctc aag caa aga ata gct ctg cta gag gag gag aac tcc agg<br>Arg Met Leu Lys Gln Arg Ile Ala Leu Leu Glu Glu Glu Asn Ser Arg<br>810 815 820 | 2683  |
| cca cac acc aat gaa act tog ott taatcagcac toacgcaccg gagttotgcc<br>Pro His Thr Asn Glu Thr Ser Leu<br>825                                        | 2737  |
| catgggaagt aaactgcagc aggccactgg ggacagaagg gcccatgtac ttgttgggag                                                                                 | 2797  |
| gaggaggaaa gggaaggctg gcaggtaggt cggcacttgg acaatggagt gccccaactc                                                                                 | 2857  |
| aaccettggg gtgactggcc atggtgacat tgtggactgt atccagaggt gcccgctctt                                                                                 | 2917  |
| ccctcctggg cccacaacag cgtgtaaaca catgttctgt gcctgctcag cagagcctcg                                                                                 | 2977  |
| tttctgcttt cagcactcac tctccccctc ctcttctggt ctggcggctg tgcatcagtg                                                                                 | 3037  |
| ggatcccaga cattigittc igtaagatti tccattgtat cctctititg gtagatgctg                                                                                 | 3097  |
| ggctcatctt ctagaatctc gtttctcctc tttcctcctg cttcatggga aaacagacct                                                                                 | 3157  |
| gtgtgtgcct ccagcattta aaaggactgc tgatttgttt actacagcaa ggctttggtt                                                                                 | 3217  |
| tecaagteec gggteteaac tttaagatag aggeggeeat aagaggtgat etetgggagt                                                                                 | 3277  |
| tataggtcat gggaagagcg tagacaggtg ttacttacag tcccagatac actaaagtta                                                                                 | 3337  |
| caaacagacc accaccagga ctgtgcctga acaattttgt attgagagaa taaaaacttc                                                                                 | 3397  |
| cttcaatctt cattttggag gcagggctgg gaagggagcg ctctcttgat tctgggattt                                                                                 | 3457  |
| ctccctctca gtggagcctt attaatatcc aagacttaga gctgggaatc tttttgatac                                                                                 | 3517  |
| ctgtagtgga actaaaattc tgtcaggggt ttcttcaaga gctgagaaac attattagca                                                                                 | 3577  |
| cttcccgccc cagggcacta cataattgct gttctgctga atcaaatctc ttccacatgg                                                                                 | 3637  |
| gtgcatttgt agctctggac ctgtctctac ctaaggacaa gacactgagg agatactgaa                                                                                 | 3697  |
| cattttgcaa aacttatcac gcctacttaa gagtgctgtg taacccccag ttcaagactt                                                                                 | 375.7 |
| ageteetgtt gteatgaegg ggaeagagtg agggaatggt agttaagget tettititge                                                                                 | 3817  |
| ccccagatac atggtgatgg ttagcatatg gtgcttaaaa ggttaaattt caagcaaaat                                                                                 | 3877  |
| gcttacaggg ctaggcagta ccaaagtaac tgaattattt caggaaggtc ttcaatctta                                                                                 | 3937  |
| aaacaaatto attattottt ttoagtttta ootottotot otoagttota cactgataca                                                                                 | 3997  |
| cttgaaggac catttactgt ttttttctgt agcaccagag aatccatcca aagttcccta                                                                                 | 4057  |
| tgaaaaatgt gttccattgc catagctgac tacaaattaa agttgaggag gtttctgcat                                                                                 | 4117  |
| agagtettta tgtecataag etaegggtag gtetatttte agageatgat acaaatteea                                                                                 | 4177  |
| cagg                                                                                                                                              | 4181  |

<211> 829

.<212> PRT

<213> NM\_002387 MCC, mutated in colorectal cancers

<400> 4

Met Asn Ser Gly Val Ala Met Lys Tyr Gly Asn Asp Ser Ser Ala Glu 1 5 10 15

Leu Ser Glu Leu His Ser Ala Ala Leu Ala Ser Leu Lys Gly Asp Ile 20 25 30

Val Glu Leu Asn Lys Arg Leu Gln Gln Thr Glu Arg Glu Arg Asp Leu 35 40 45

Leu Glu Lys Lys Leu Ala Lys Ala Gln Cys Glu Gln Ser His Leu Met 50 55 60

Arg Glu His Glu Asp Val Gln Glu Arg Thr Thr Leu Arg Tyr Glu Glu 65 70 75 80

Arg Ile Thr Glu Leu His Ser Val Ile Ala Glu Leu Asn Lys Lys Ile 85 90 95

Asp Arg Leu Gln Gly Thr Thr Ile Arg Glu Glu Asp Glu Tyr Ser Glu 100 105 110

Leu Arg Ser Glu Leu Ser Gln Ser Gln His Glu Val Asn Glu Asp Ser 115 120 125

Arg Ser Met Asp Gln Asp Gln Thr Ser Val Ser Ile Pro Glu Asn Gln 130 135 140

Ser Thr Met Val Thr Ala Asp Met Asp Asn Cys Ser Asp Leu Asn Ser 145 150 155 160

Glu Leu Gln Arg Val Leu Thr Gly Leu Glu Asn Val Val Cys Gly Arg 165 170 175

Lys Lys Ser Ser Cys Ser Leu Ser Val Ala Glu Val Asp Arg His Ile 180 185 190

Glu Gln Leu Thr Thr Ala Ser Glu His Cys Asp Leu Ala Ile Lys Thr 195 200 205

Val Glu Glu Ile Glu Gly Val Leu Gly Arg Asp Leu Tyr Pro Asn Leu 210 215 220

4. ...

Ala Glu Glu Arg Ser Arg Trp Glu Lys Glu Leu Ala Gly Leu Arg Glu 230 . 235 Glu Asn Glu Ser Leu Thr Ala Met Leu Cys Ser Lys Glu Glu Glu Leu Asn Arg Thr Lys Ala Thr Met Asn Ala Ile Arg Glu Glu Arg Asp Arg 260 265 270 Leu Arg Arg Val Arg Glu Leu Gln Thr Arg Leu Gln Ser Val Gln . 280 ... Ala Thr Gly Pro Ser Ser Pro Gly Arg Leu Thr Ser Thr Asn Arg Pro Ile Asn Pro Ser Thr Gly Glu Leu Ser Thr Ser Ser Ser Asn Asp 310 315 Ile Pro Ile Ala Lys Ile Ala Glu Arg Val Lys Leu Ser Lys Thr Arg . 330 Ser Glu Ser Ser Ser Asp Arg Pro Val Leu Gly Ser Glu Ile Ser 345 Ser Ile Gly Val Ser Ser Ser Val Ala Glu His Leu Ala His Ser Leu . 360 Gln Asp Cys Ser Asn Ile Gln Glu Ile Phe Gln Thr Leu Tyr Ser His 375 Gly Ser Ala Ile Ser Glu Ser Lys Ile Arg Glu. Phe Glu Val Glu Thr 385 390 395 Glu Arg Leu Asn Ser Arg Ile Glu His Leu Lys Ser Gln Asn Asp Leu . 415 405 Leu Thr Ile Thr Leu Glu Glu Cys Lys Ser Asn Ala Glu Arg Met Ser Met Leu Val Gly Lys Tyr Glu Ser Asn Ala Thr Ala Leu Arg Leu Ala 440 Leu Gln Tyr Ser Glu Gln Cys Ile Glu Ala Tyr Glu Leu Leu Ala Leu Ala Glu Ser Glu Gln Ser Leu Ile Leu Gly Gln Phe Arg Ala Ala

Gly Val Gly Ser Ser Pro Gly Asp Gln Ser Gly Asp Glu Asn Ile Thr

490

- Gln Met Leu Lys Arg Ala His Asp Cys Arg Lys Thr Ala Glu Asn Ala 500 505 510
- Ala Lys Ala Leu Leu Met Lys Leu Asp Gly Ser Cys Gly Gly Ala Phe 515 520 525
- Ala Val Ala Gly Cys Ser Val Gln Pro Trp Glu Ser Leu Ser Ser Asn 530 535 540
- Ser His Thr Ser Thr Thr Ser Ser Thr Ala Ser Ser Cys Asp Thr Glu 545 550 555 560
- Phe Thr Lys Glu Asp Glu Gln Arg Leu Lys Asp Tyr Ile Gln Gln Leu 565 570 575
- Lys Asn Asp Arg Ala Ala Val Lys Leu Thr Met Leu Glu Leu Glu Ser 580 585 590
- Ile His Ile Asp Pro Leu Ser Tyr Asp Val Lys Pro Arg Gly Asp Ser 595 600 605
- Gln Arg Leu Asp Leu Glu Asn Ala Val Leu Met Gln Glu Leu Met Ala 610 615 620
- Met Lys Glu Glu Met Ala Glu Leu Lys Ala Gln Leu Tyr Leu Leu Glu 625 630 635 640
- Lys Glu Lys Lys Ala Leu Glu Leu Lys Leu Ser Thr Arg Glu Ala Gln 645 650 655
- Glu Gln Ala Tyr Leu Val His Ile Glu His Leu Lys Ser Glu Val Glu 660 665 670
- Glu Gln Lys Glu Gln Arg Met Arg Ser Leu Ser Ser Thr Ser Ser Gly 675 680 685
- Ser Lys Asp Lys Pro Gly Lys Glu Cys Ala Asp Ala Ala Ser Pro Ala 690 695 700
- Leu Ser Leu Ala Glu Leu Arg Thr Thr Cys Ser Glu Asn Glu Leu Ala 705 710 715 720
- Ala Glu Phe Thr Asn Ala Ile Arg Arg Glu Lys Lys Leu Lys Ala Arg 725 730 735
- Val Gln Glu Leu Val Ser Ala Leu Glu Arg Leu Thr Lys Ser Ser Glu 740 745 750
- Ile Arg His Gln Gln Ser Ala Glu Phe Val Asn Asp Leu Lys Arg Ala 755 760 765

Asn Ser Asn Leu Val Ala Ala Tyr Glu Lys Ala Lys Lys His Gln 775 780 Asn Lys Leu Lys Lys Leu Glu Ser Gln Met Met Ala Met Val Glu Arg 790 795 His Glu Thr Gln Val Arg Met Leu Lys Gln Arg Ile Ala Leu Leu Glu 810 Glu Glu Asn Ser Arg Pro His Thr Asn Glu Thr Ser Leu 820 825 <210> 5 <211> 2830 <212> DNA <213> NM 022117 SE20-4 <220> <221> CDS <222> (130)..(2208) <223> <400> 5 aatteggeac gaggagaget ggttgegtga gteteeteag etetgettae eggtgegaet 60 agcggcagcg acgcggctaa aagcgaaggg gcgagtgcga gtcccctgag ctgtacgaac 120 geggtegee atg gae ege eea gat gag ggg eet eeg gee aag ace ege ege 171 Met Asp Arg Pro Asp Glu Gly Pro Pro Ala Lys Thr Arg Arg 1 10 ctg agc agc tcc gag tct cca cag cgc gac ccg ccc ccg ccg ccg 219 Leu Ser Ser Ser Glu Ser Pro Gln Arg Asp Pro Pro Pro Pro Pro 20 25 ccg ccg ccc ctc ctc cga ctg ccg ctg cct cca ccc cag cag cgc ccg 267 Pro Pro Pro Leu Leu Arg Leu Pro Leu Pro Pro Pro Gln Gln Arg Pro 40 agg ctc cag gag gaa acg gag gcg gca cag gtg ctg gcc gat atg agg 315 Arg Leu Gln Glu Glu Thr Glu Ala Ala Gln Val Leu Ala Asp Met Arg 55 ggg gtg gga ctg ggc ccc gcg ctg ccc ccg ccg cct ccc tat gtc att 363 Gly Val Gly Leu Gly Pro Ala Leu Pro Pro Pro Pro Pro Tyr Val Ile 70 ctc gag gag ggg ggg atc cgc gca tac ttc acg ctc ggt gct gag tgt 411 Leu Glu Glu Gly Gly Ile Arg Ala Tyr Phe Thr Leu Gly Ala Glu Cys 80 85 ccc ggc tgg gat tct acc atc gag tcg ggg tat ggg gag gcg ccc ccg 459

Pro Gly Trp Asp Ser Thr Ile Glu Ser Gly Tyr Gly Glu Ala Pro Pro

| 95 | • |   |      | 100 |       |                   | 105 |   |   |       | 110 |      |
|----|---|---|------|-----|-------|-------------------|-----|---|---|-------|-----|------|
|    |   |   |      |     |       | act<br>Thr<br>120 | Pro |   |   |       |     | 507  |
|    |   |   |      |     |       | cag<br>Gln        |     |   |   |       |     | 555  |
|    |   |   |      |     |       | gtg<br>Val        |     |   |   |       |     | 603  |
|    |   |   |      |     |       | gcg<br>Ala        |     |   |   |       |     | 651  |
|    |   |   |      |     |       | agg<br>Arg        |     |   |   |       |     | 699  |
|    |   |   |      |     |       | gtg<br>Val<br>200 |     |   |   |       |     | 747  |
| _  |   | _ | <br> | _   | <br>- | ctg<br>Leu        | _   | _ | _ | <br>- |     | 795  |
|    |   |   |      |     |       | aag<br>.Lys       |     |   |   |       |     | 843  |
|    |   |   |      |     |       | cga<br>Arg        |     |   |   |       |     | 891  |
| -  | _ |   |      | _   |       | ggc<br>Gly        |     |   | _ | _     |     | 939  |
|    |   |   |      |     |       | atc<br>Ile<br>280 |     |   |   |       |     | 987  |
|    |   |   |      |     |       | gta<br>Val        |     |   |   |       |     | 1035 |
|    |   |   |      |     |       | ttc<br>Phe        |     |   |   |       |     | 1083 |
|    |   |   |      |     |       | cag<br>Gln        |     |   |   |       |     | 1131 |
|    |   |   |      |     |       | tgg<br>Trp        |     |   |   |       |     | 1179 |
|    |   |   |      |     |       | gcg<br>Ala<br>360 |     |   |   |       |     | 1227 |
|    |   |   |      |     |       | gct<br>Ala        |     |   |   |       |     | 1275 |

|            |                   |            | 370        |                   |            |            |            | 375        | . •               |            |            |            | 380        |                   |            |      |
|------------|-------------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------|
|            | aag<br>Lys        |            |            |                   |            |            |            | Pro        |                   |            |            |            |            |                   |            | 1323 |
|            | ggc<br>Gly<br>400 |            |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | 1371 |
|            | agg<br>Arg        |            |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | 1419 |
|            | gca<br>Ala        |            |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | 1467 |
|            | cat<br>His        |            |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | 1515 |
|            | acc<br>Thr        |            | -          |                   |            |            |            | _          |                   |            |            |            |            | _                 | -          | 1563 |
|            | gag<br>Glu<br>480 |            |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | 1611 |
|            | aac<br>Asn        |            | _          | -                 | _          | -          |            | _          |                   |            | -          |            |            |                   |            | 1659 |
| _          | gat<br>Asp        | -          |            |                   |            |            |            | _          | -                 |            |            | _          |            |                   |            | 1707 |
| -          | aac<br>Asn        | _          |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | 1755 |
|            | ttc<br>Phe        |            |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | 1803 |
|            | gac<br>Asp<br>560 |            |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | 1851 |
|            | ggc<br>Gly        |            |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | 1899 |
| ggt<br>Gly | gac<br>Asp        | aat<br>Asn | gaa<br>Glu | ggc<br>Gly<br>595 | agc<br>Ser | gat<br>Asp | gat<br>Asp | gac<br>Asp | gac<br>Asp<br>600 | aga<br>Arg | gac<br>Asp | att<br>Ile | gag<br>Glu | tac<br>Tyr<br>605 | tat<br>Tyr | 1947 |
|            | aaa<br>Lys        |            |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | 1995 |
|            | ata<br>Ile        |            |            |                   |            |            |            |            |                   |            |            |            |            |                   |            | 2043 |
| gaa<br>Glu | ggc<br>Gly        | atc<br>Ile | cag<br>Gln | caa<br>Gln        | gat<br>Asp | gag<br>Gļu | gac<br>Asp | atc<br>Ile | tat<br>Tyr        | gag<br>Glu | gaa<br>Glu | gga<br>Gly | aac<br>Asn | tat<br>Tyr        | gag<br>Glu | 2091 |

| 6            | 40           |              | 6                         | 545          |           |           |           | 650       |           |           |           |           |      |
|--------------|--------------|--------------|---------------------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|
|              |              |              | a gat g<br>u Asp V<br>660 |              |           |           |           |           |           |           |           |           | 2139 |
|              |              |              | t gtg c<br>p Val I<br>5   |              |           |           |           |           |           |           |           |           | 2187 |
|              |              |              | a acc g<br>s Thr G        | _            | gggt      | ttt (     | ccct      | ttt       | gg gg     | gato      | acct      |           | 2238 |
| tctgt        | atccc        | ccaccca      | cta tcc                   | catttg       | c cc      | tcct      | cctc      | agc       | tagg      | gcc a     | acgc      | ggcccc    | 2298 |
| acatt        | gcact 1      | tctgggg      | ggt gac                   | cgactt       | c gt      | acac      | gggt      | tta       | aagti     | ta        | tttt      | tatggt    | 2358 |
| ttagt        | cattg (      | cagagtt      | ctt att                   | ttgggg       | g ga      | gggaa     | aagg      | ggg       | ctagi     | cc (      | cctt      | cttttg    | 2418 |
| gccct        | ccgcc (      | cccgcag      | gct tct                   | gtgtgc       | t gc      | taaci     | tgta      | ttt       | attgi     | tga '     | tgcci     | ttggtc    | 2478 |
| agggc        | ccctc 1      | tacccac      | tte tee                   | cagtca       | g tt      | gtgg      | cccc      | agc       | ccct      | etc (     | cctg      | tgctgt    | 2538 |
| gtgga        | gtgga (      | caccctg      | acc ccc                   | gaagcg       | g gg      | agggo     | ccgc      | tgt       | ggcct     | tc (      | gtca      | cagccg    | 2598 |
| cgcagt       | tgccc a      | atggagg      | cgc tgc                   | tgccac       | c tt      | cctct     | ccc.      | aag       | ttctt     | tc t      | tccat     | tccctc    | 2658 |
| tcctc        | ttccc        | geegege      | cgc tag                   | cccgcc       | t cg      | gtgto     | ctat      | gca       | aggco     | egc 1     | ttcg      | ccattg    | 2718 |
| cggtai       | ttctt 1      | tgcggta      | ttc ttg                   | tccccg       | t cc      | ccca      | gaag      | gct       | egeet     | ct (      | cccç      | gtggac    | 2778 |
| cctgt        | taatc o      | ccaataa      | aat tct                   | gagcaa       | g tt      | caaaa     | aaa       | aaaa      | aaaa      | aaa a     | aa        |           | 2830 |
| <210>        | 6            |              |                           |              | •         |           |           |           |           |           |           |           |      |
| <211>        |              |              |                           |              | •         |           |           |           |           |           |           |           |      |
| <212>        |              |              |                           |              |           |           |           |           |           |           |           |           |      |
| <213>        |              | 22117 S      | E20-4                     |              |           |           | •         |           |           |           |           |           |      |
| 12.50        | 0.           |              | 20 1                      |              |           |           |           |           |           |           |           | •         |      |
| <400>        | 6            |              |                           |              |           |           |           |           |           |           |           |           |      |
| Met As       | sp Arg       | Pro As<br>5  | p Glu G                   | ly Pro       | Pro       | Ala<br>10 | Lys       | Thr       | Arg       | Arg       | Leu<br>15 | Ser       |      |
| Ser Se       | er Glu       | Ser Pr<br>20 | o Gln A                   | rg Asp       | Pro<br>25 | Pro       | Pro       | Pro       | Pro       | Pro<br>30 | Pro       | Pro       |      |
| Pro Le       | eu Leu<br>35 | Arg Le       | u Pro L                   | eu Pro<br>40 | Pro       | Pro       | Gln       | Gln       | Arg<br>45 | Pro       | Arg       | Leu       |      |
| Gln Gl<br>50 |              | Thr Gl       | u Ala A<br>5              |              | Val       | Leu       | Ala       | Asp<br>60 | Met       | Arg       | Gly       | Val       |      |
| Gly Le<br>65 | eu Gly       | Pro Al       | a Leu P<br>70             | ro Pro       | Pro       | Pro       | Pro<br>75 | Tyr.      | Val       | Ile       | Leu       | Glu<br>80 |      |

Glu Gly Gly Ile Arg Ala Tyr Phe Thr Leu Gly Ala Glu Cys Pro Gly

85 90 95

Trp Asp Ser Thr Ile Glu Ser Gly Tyr Gly Glu Ala Pro Pro Pro Thr 100 105 110

Glu Ser Leu Glu Ala Leu Pro Thr Pro Glu Ala Ser Gly Gly Ser Leu 115 120 125

Glu Ile Asp Phe Gln Val Val Gln Ser Ser Ser Phe Gly Gly Glu Gly 130 135 140

Ala Leu Glu Thr Cys Ser Ala Val Gly Trp Ala Pro Gln Arg Leu Val 145 150 155 160

Asp Pro Lys Ser Lys Glu Glu Ala Ile Ile Ile Val Glu Asp Glu Asp 165 170 175

Glu Asp Glu Arg Glu Ser Met Arg Ser Ser Arg Arg Arg Arg Arg 180 185 190

Arg Arg Arg Lys Gln Arg Lys Val Lys Arg Glu Ser Arg Glu Arg Asn 195 200 205

Ala Glu Arg Met Glu Ser Ile Leu Gln Ala Leu Glu Asp Ile Gln Leu 210 215 220

Asp Leu Glu Ala Val Asn Ile Lys Ala Gly Lys Ala Phe Leu Arg Leu 225 230 235 240

Lys Arg Lys Phe Ile Gln Met Arg Arg Pro Phe Leu Glu Arg Arg Asp 245 250 255

Leu Ile Ile Gln His Ile Pro Gly Phe Trp Val Lys Ala Phe Leu Asn 260 265 270

His Pro Arg Ile Ser Ile Leu Ile Asn Arg Arg Asp Glu Asp Ile Phe 275 280 285

Arg Tyr Leu Thr Asn Leu Gln Val Gln Asp Leu Arg His Ile Ser Met 290 295 300

Gly Tyr Lys Met Lys Leu Tyr Phe Gln Thr Asn Pro Tyr Phe Thr Asn 305 310 315 320

Met Val Ile Val Lys Glu Phe Gln Arg Asn Arg Ser Gly Arg Leu Val 325 330 335

Ser His Ser Thr Pro Ile Arg Trp His Arg Gly Gln Glu Pro Gln Ala 340 345 350

Arg Arg His Gly Asn Gln Asp Ala Ser His Ser Phe Phe Ser Trp Phe

355 360 365

Ser Asn His Ser Leu Pro Glu Ala Asp Arg Ile Ala Glu Ile Ile Lys 370 375 380

Asn Asp Leu Trp Val Asn Pro Leu Arg Tyr Tyr Leu Arg Glu Arg Gly 385 390 395 400

Ser Arg Ile Lys Arg Lys Lys Gln Glu Met Lys Lys Arg Lys Thr Arg 405 410 415

Gly Arg Cys Glu Val Val Ile Met Glu Asp Ala Pro Asp Tyr Tyr Ala 420 425 430

Val Glu Asp Ile Phe Ser Glu Ile Ser Asp Ile Asp Glu Thr Ile His 435 440 445

Asp Ile Lys Ile Ser Asp Phe Met Glu Thr Thr Asp Tyr Phe Glu Thr 450 455 460

Thr Asp Asn Glu Ile Thr Asp Ile Asn Glu Asn Ile Cys Asp Ser Glu 465 470 475 480

Asn Pro Asp His Asn Glu Val Pro Asn Asn Glu Thr Thr Asp Asn Asn 485 490 495

Glu Ser Ala Asp Asp His Glu Thr Thr Asp Asn Asn Glu Ser Ala Asp 500 505 510

Asp Asn Asn Glu Asn Pro Glu Asp Asn Asn Lys Asn Thr Asp Asp Asn 515 520 525

Glu Glu Asn Pro Asn Asn Asn Glu Asn Thr Tyr Gly Asn Asn Phe Phe 530 535 540

Lys Gly Gly Phe Trp Gly Ser His Gly Asn Asn Gln Asp Ser Ser Asp 545 550 550 560

Ser Asp Asn Glu Ala Asp Glu Ala Ser Asp Asp Glu Asp Asn Asp Gly
565 570 575

Asn Glu Gly Asp Asn Glu Gly Ser Asp Asp Gly Asn Glu Gly Asp 580 585 590

Asn Glu Gly Ser Asp Asp Asp Asp Asp Ile Glu Tyr Tyr Glu Lys 595 600 . 605

Val Ile Glu Asp Phe Asp Lys Asp Gln Ala Asp Tyr Glu Asp Val Ile 610 615 620

Glu Ile Ile Ser Asp Glu Ser Val Glu Glu Glu Gly Ile Glu Glu Gly

60

720

780

840

625 630 635 640

Ile Gln Gln Asp Glu Asp Ile Tyr Glu Glu Gly Asn Tyr Glu Glu Glu 645 650 655

Gly Ser Glu Asp Val Trp Glu Glu Gly Glu Asp Ser Asp Asp Ser Asp 660 665 670

Leu Glu Asp Val Leu Gln Val Pro Asn Gly Trp Ala Asn Pro Gly Lys 675 680 685

Arg Gly Lys Thr Gly 690

<210> 7

<211> 2632

<212> DNA

<213> NM\_016463 HSPC195

<220>

<221> CDS

<222> (931)..(1611)

<223>

<400> 7

gagcagacge cegageegag egagaagage ggeagageet tateceetga ageegggeee 120 cgcgtcccag ccctgcccag cccgcgccca gccatgcgcg ccgcctgctg agtccgggcg ecgeacgetg ageceteege ecgegageeg egeteagete gggggtgatt agttgetttt 240 tgttgttttt taatttgggc cgcggggagg gggaggaggg gcaggtgctg caggctcccc 300 cccctccccg cctcgggcca gccgcggcgg cgcgactcgg gctccggacc cgggcactgc 360 tggcggctgg agcggagcgc accgcggcgg tggtgcccag agcggagcgc agctccctgc 420 cccgcccctc cccctcggcc tcgcggcgac ggcggcggtg gcggcttgga cgactcggag 480 agccgagtga agacatttcc acctggacac ctgaccatgt gcctgccctg agcagcgagg 540 cccaccaggc atctctgttg tgggcagcag ggccaggtcc tggtctgtgg accctcggca 600 gttggcaggc tecetetgca gtggggtetg ggceteggce ccaccatgte gagectegge 660

ggtggctccc aggatgccgg cggcagtagc agcagcagca ccaatggcag cggtggcagt

ggcagcagtg gcccaaaggc aggagcagca gacaagagtg cagtggtggc tgccgccgca

ccagcctcag tggcagatga cacaccaccc cccgagcgtc ggaacaagag cggtatcatc

ggcggctgag cctgagcggg gatgtagagg cggcggcagc agaggcggca ctggcggcaa

| agtgageece teaacaagag eetgegeege teeegeeege teteecacta etettettt 900                                                                                  |      |  |  |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|--|--|--|--|--|--|
| ggcagcagtg gtggtagtgg cggtggcagc atg atg ggc gga gag tct gct gac 95  Met Met Gly Gly Glu Ser Ala Asp  1 5                                             |      |  |  |  |  |  |  |  |  |  |  |  |  |
| aag gcc act gcg gct gca gcc gct gcc tcc ctg ttg gcc aat ggg cat<br>Lys Ala Thr Ala Ala Ala Ala Ala Ser Leu Leu Ala Asn Gly His<br>10 15 20            | 1002 |  |  |  |  |  |  |  |  |  |  |  |  |
| gac ctg gcg gcg gcc atg gcg gtg gac aaa agc aac cct acc tca aag<br>Asp Leu Ala Ala Met Ala Val Asp Lys Ser Asn Pro Thr Ser Lys<br>25 30 35 40         | 1050 |  |  |  |  |  |  |  |  |  |  |  |  |
| cac aaa agt ggt gct gtg gcc agc ctg ctg agc aag gca gag cgg gcc<br>His Lys Ser Gly Ala Val Ala Ser Leu Leu Ser Lys Ala Glu Arg Ala<br>45 50 55        | 1098 |  |  |  |  |  |  |  |  |  |  |  |  |
| acg gag ctg gca gcc gag gga cag ctg acg ctg cag cag ttt gcg cag Thr Glu Leu Ala Ala Glu Gly Gln Leu Thr Leu Gln Gln Phe Ala Gln 60 65 70              | 1146 |  |  |  |  |  |  |  |  |  |  |  |  |
| tcc aca gag atg ctg aag cgc gtg gtg cag gag cat ctc ccg ctg atg<br>Ser Thr Glu Met Leu Lys Arg Val Val Gln Glu His Leu Pro Leu Met<br>75 80 85        | 1194 |  |  |  |  |  |  |  |  |  |  |  |  |
| agc gag gcg ggt gct ggc ctg cct gac atg gag gct gtg gca ggt gcc<br>Ser Glu Ala Gly Ala Gly Leu Pro Asp Met Glu Ala Val Ala Gly Ala<br>90 95 100       | 1242 |  |  |  |  |  |  |  |  |  |  |  |  |
| gaa gcc ctc aat ggc cag tcc gac ttc ccc tac ctg ggc gct ttc ccc Glu Ala Leu Asn Gly Gln Ser Asp Phe Pro Tyr Leu Gly Ala Phe Pro 105 110 115 120       | 1290 |  |  |  |  |  |  |  |  |  |  |  |  |
| atc aac cca ggc ctc ttc att atg acc ccg gca ggt gtg ttc ctg gcc Ile Asn Pro Gly Leu Phe Ile Met Thr Pro Ala Gly Val Phe Leu Ala 125 130 135           | 1338 |  |  |  |  |  |  |  |  |  |  |  |  |
| gag agc gcg ctg cac atg gcg ggc ctg gct gag tac ccc atg cag gga<br>Glu Ser Ala Leu His Met Ala Gly Leu Ala Glu Tyr Pro Met Gln Gly<br>140 145 150     | 1386 |  |  |  |  |  |  |  |  |  |  |  |  |
| gag ctg gcc tct gcc atc agc tcc ggc aag aag cgg aaa cgc tgc Glu Leu Ala Ser Ala Ile Ser Ser Gly Lys Lys Lys Arg Lys Arg Cys 155 160 165               | 1434 |  |  |  |  |  |  |  |  |  |  |  |  |
| ggc atg tgc gcg ccc tgc cgg cgc atc aac tgc gag cag tgc agc Gly Met Cys Ala Pro Cys Arg Arg Ile Asn Cys Glu Gln Cys Ser 170 175 180                   | 1482 |  |  |  |  |  |  |  |  |  |  |  |  |
| agt tgt agg aat cga aag act ggc cat cag att tgc aaa ttc aga aaa<br>Ser Cys Arg Asn Arg Lys Thr Gly His Gln Ile Cys Lys Phe Arg Lys<br>185 190 195 200 | 1530 |  |  |  |  |  |  |  |  |  |  |  |  |
| tgt gag gaa ctc aaa aag aag cct tcc gct gct ctg gag aag gtg atg<br>Cys Glu Glu Leu Lys Lys Lys Pro Ser Ala Ala Leu Glu Lys Val Met<br>205 210 215     | 1578 |  |  |  |  |  |  |  |  |  |  |  |  |
| ctt ccg acg gga gcc gcc ttc cgg tgg ttt cag tgacggcggc ggaacccaaa<br>Leu Pro Thr Gly Ala Ala Phe Arg Trp Phe Gln<br>220 225                           | 1631 |  |  |  |  |  |  |  |  |  |  |  |  |
| gctgccctct ccgtgcaatg tcactgctcg tgtggtctcc agcaagggat tcgggcgaag                                                                                     | 1691 |  |  |  |  |  |  |  |  |  |  |  |  |
| acaaacggat gcacccgtct ttagaaccaa aaatattctc tcacagattt cattcctgtt 175                                                                                 |      |  |  |  |  |  |  |  |  |  |  |  |  |
| tttatatata tattttttgt tgtcgtttta acatctccac gtccctagca taaaaagaaa                                                                                     | 1811 |  |  |  |  |  |  |  |  |  |  |  |  |

| aagaaaaaa  | tttaaactgc | tttttcggaa | gaacaacaac | aaaaagagg  | taaagacgaa | 1871 |
|------------|------------|------------|------------|------------|------------|------|
| tctataaagt | accgagactt | cctgggcaaa | gaatggacaa | tcagtttcct | tcctgtgtcg | 1931 |
| atgtcgatgt | tgtctgtgca | ggagatgcag | tttttgtgta | gagaatgtaa | attttctgta | 1991 |
| accttttgaa | atctagttac | taataagcac | tactgtaatt | tagcacagtt | taactccacc | 2051 |
| ctcatttaaa | cttcctttga | ttctttccga | ccatgaaata | gtgcatagtt | tgcctggaga | 2111 |
| atccactcac | gttcataaag | agaatgttga | tggcgccgtg | tagaagccgc | tctgtatcca | 2171 |
| tccacgcgtg | cagagetgee | agcagggagc | tcacagaagg | ggagggagca | ccaggccagc | 2231 |
| tgagctgcac | ccacagtccc | gagactggga | tecceacee  | caacagtgat | tttggaaaaa | 2291 |
| aaaatgaaag | ttctgttcgt | ttatccattg | cgatctgggg | agccccatct | cgatatttcc | 2351 |
| aatcctggct | acttttctta | gagaaaataa | gtccttttt  | tctggccttg | ctaatggcaa | 2411 |
| cagaagaaag | ggcttctttg | cgtggtcccc | tgctggtggg | ggtgggtccc | cagggggccc | 2471 |
| cctgcggcct | gggcccccct | gcccacggcc | agcttcctgc | tgatgaacat | gctgtttgta | 2531 |
| ttgttttagg | aaaccaggct | gttttgtgaa | taaaacgaat | gcatgtttgt | gtcacgaaaa | 2591 |
| aaaaaaaaa  | aaaaaaaaa  | aaaaaaaaa  | aaaaaaaa   | a          |            | 2632 |

<211> 227

<212> PRT

<213> NM\_016463 HSPC195

<400> 8

Met Met Gly Gly Glu Ser Ala Asp Lys Ala Thr Ala Ala Ala Ala Ala 1 10 15

Ala Ser Leu Leu Ala Asn Gly His Asp Leu Ala Ala Ala Met Ala Val 20 25 30

Asp Lys Ser Asn Pro Thr Ser Lys His Lys Ser Gly Ala Val Ala Ser 35 40 45

Leu Leu Ser Lys Ala Glu Arg Ala Thr Glu Leu Ala Ala Glu Gly Gln 50 55 60

Leu Thr Leu Gln Gln Phe Ala Gln Ser Thr Glu Met Leu Lys Arg Val 65 70 75 80

Val Gln Glu His Leu Pro Leu Met Ser Glu Ala Gly Ala Gly Leu Pro  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ 

| Pho        | e Pro        | Tyr<br>115       |                  | Gly        | Ala        | Phe         | Pro<br>120 |                  | Asn        | Pro        | Gly        | Leu<br>125 |                  | Ile        | Met        |     |
|------------|--------------|------------------|------------------|------------|------------|-------------|------------|------------------|------------|------------|------------|------------|------------------|------------|------------|-----|
| Th:        | r Pro<br>130 | Ala              | Gly              | Val        | Phe        | Leu<br>135  |            | Glu              | Ser        | Ala        | Leu<br>140 | His        | Met              | Ala        | Gly        |     |
| Le:        |              | Glu              | Tyr              | Pro        | Met<br>150 |             | Gly        | Glu              | Leu        | Ala<br>155 |            | Ala        | Ile              | Ser        | Ser<br>160 |     |
| Gl         | y Lys        | Lys              | Lys              | Arg<br>165 |            | Arg         | Суз        | Gly              | Met<br>170 | Суз        | Ala        | Pro        | Cys              | Arg<br>175 | Arg        |     |
| Ar         | J Ile        | Asn              | Cys<br>180       | Glu        | Gln        | Cys         | Ser        | Ser<br>185       | _          | Arg        | Asn        | Arg        | Lys<br>190       |            | Gly        |     |
| His        | s Glm        | 11e<br>195       |                  | Lys        | Phe        | Arg         | Lys<br>200 |                  | Glu        | Glu        | Leu        | Lys<br>205 | Lys              | Lys        | Pro        |     |
| Sea        | 210          | Ala              | Leu              | Glu        | Lys        | Val<br>.215 | Met        | Leu              | Pro        | Thr        | Gly<br>220 | Ala        | Ala              | Phe        | Arg        |     |
| Trp<br>225 | Phe          | Gln              |                  |            |            |             |            |                  |            |            |            |            |                  |            |            |     |
| <21        | .0>          | 9                |                  |            | •          |             |            |                  | •          |            |            |            | -                |            |            |     |
| <21        | .1>          | 2140             |                  |            |            |             |            |                  |            | •          |            |            |                  |            |            |     |
| <21        | .2>          | DNA              |                  |            |            |             |            |                  |            |            |            |            |                  |            |            |     |
| <21        | .3>          | NM_0:            | 17697            | 7 FL       | J201       | 71          |            |                  |            |            |            |            |                  |            |            |     |
| <22        | :0>          |                  |                  |            |            |             |            |                  |            |            |            |            |                  |            |            |     |
| <22        | :1>          | CDS              |                  |            |            |             | •          |                  |            |            |            |            |                  |            |            |     |
| <22        | 2>           | (58)             | (11              | 131)       |            |             |            |                  | -          | ,          |            |            |                  |            |            |     |
| <22        | 3>           |                  |                  |            |            |             | ٠          |                  |            |            | ٠          |            |                  |            |            |     |
| <40<br>gaa |              | 9<br>aga a       | aatgt            | tgeo       | c to       | gtto        | acct       | : gat            | atto       | raca       | aact       | ggag       | gt t             | tqcca      | ıca        | 57  |
|            |              | gag<br>Glu       |                  |            |            |             |            |                  |            |            |            |            |                  |            |            | 105 |
| gga<br>Gly | gcc<br>Ala   | tct<br>Ser       | caa<br>Gln<br>20 | gtt<br>Val | gaa<br>Glu | gat<br>Asp  | atg<br>Met | ggg<br>Gly<br>25 | aat<br>Asn | ata<br>Ile | att<br>Ile | tta<br>Leu | gca<br>Ala<br>30 | atg<br>Met | att<br>Ile | 153 |
|            |              | cct<br>Pro<br>35 |                  |            |            |             |            |                  |            |            |            |            |                  |            |            | 201 |

|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | aac<br>Asn        | 249  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| acc<br>Thr<br>65  | gta<br>Val        | gto<br>Val        | agg<br>Arg        | gca<br>Ala        | cga<br>Arg<br>70  | ggt<br>Gly        | tta<br>Leu        | cca<br>Pro        | tgg<br>Trp        | cag<br>Gln<br>75  | tct<br>Ser        | tca<br>Ser        | gat<br>Asp        | caa<br>Gln        | gat<br>Asp<br>80  | 297  |
| att<br>Ile        | gca<br>Ala        | aga<br>Arg        | ttc<br>Phe        | tto<br>Phe<br>85  | aaa<br>Lys        | gga<br>Gly        | ctc               | aat<br>Asn        | att<br>Ile<br>90  | gcc<br>Ala        | aag<br>Lys        | gga<br>Gly        | ggt<br>Gly        | gca<br>Ala<br>95  | gca<br>Ala        | 345  |
|                   |                   |                   |                   | Ala               |                   |                   |                   |                   | Asn               |                   |                   |                   |                   | Val               | agg<br>Arg        | 393  |
| ttt<br>Phe        | gta<br>Val        | agt<br>Ser<br>115 | Glu               | gag<br>Glu        | cac<br>His        | cga<br>Arg        | gac<br>Asp<br>120 | Leu               | gca<br>Ala        | cta<br>Leu        | cag<br>Gln        | agg<br>Arg<br>125 | His               | aaa<br>Lys        | cat<br>His        | 441  |
| cac<br>His        | atg<br>Met<br>130 | Gly               | acc<br>Thr        | cgg<br>Arg        | tat<br>Tyr        | att<br>Ile<br>135 | gag<br>Glu        | gtt<br>Val        | tac<br>Tyr        | aaa<br>Lys        | gca<br>Ala<br>140 | Thr               | ggt<br>Gly        | gaa<br>Glu        | gat<br>Asp        | 489  |
| ttc<br>Phe<br>145 | Leu               | aaa<br>Lys        | att<br>Ile        | gct<br>Ala        | ggt<br>Gly<br>150 | ggt<br>Gly        | act<br>Thr        | tcc<br>Ser        | aat<br>Asn        | gag<br>Glu<br>155 | gta<br>Val        | gcc               | cag<br>Gln        | ttt<br>Phe        | ctc<br>Leu<br>160 | 537  |
| tcc<br>Ser        | aag<br>Lys        | gaa<br>Glu        | aat<br>Asn        | caa<br>Gln<br>165 | gtc<br>Val        | att<br>Ile        | gtt<br>Val        | cgc<br>Arg        | atg<br>Met<br>170 | cgg               | Gly               | ctc<br>Leu        | cct<br>Pro        | ttc<br>Phe<br>175 | acg<br>Thr        | 585  |
|                   |                   |                   |                   |                   | gtg<br>Val        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 633  |
|                   |                   |                   |                   |                   | Gly               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 681  |
| cca<br>Pro        | aca<br>Thr<br>210 | Gly               | gac<br>Asp        | gct<br>Ala        | ttt<br>Phe        | gtc<br>Val<br>215 | ctc<br>Leu        | ttt<br>Phe        | gcc<br>Ala        | tgt<br>Cys        | gag<br>Glu<br>220 | gaa<br>Glu        | tat<br>Tyr        | gca<br>Ala        | cag<br>Gln        | 729  |
| aat<br>Asn<br>225 | gcg<br>Ala        | ttg<br>Leu        | agg<br>Arg        | aag<br>Lys        | cat<br>His<br>230 | aaa<br>Lys        | gac<br>Asp        | ttg<br>Leu        | ttg<br>Leu        | ggt<br>Gly<br>235 | aaa<br>Lys        | aga<br>Arg        | tac<br>Tyr        | att<br>Ile        | gaa<br>Glu<br>240 | 777  |
| ctc<br>Leu        | ttc<br>Phe        | agg<br>Arg        | agc<br>Ser        | aca<br>Thr<br>245 | gca<br>Ala        | gct<br>Ala        | gaa<br>Glu        | gtt<br>Val        | cag<br>Gln<br>250 | cag<br>Gln        | gtg<br>Val        | ctg<br>Leu        | aat<br>Asn        | cga<br>Arg<br>255 | ttc<br>Phe        | 825  |
| tcc<br>Ser        | tcg<br>Ser        | gcc<br>Ala        | cct<br>Pro<br>260 | ctc<br>Leu        | att<br>Ile        | cca<br>Pro        | ctt<br>Leu        | cca<br>Pro<br>265 | acc<br>Thr        | cct<br>Pro        | ccc<br>Pro        | att<br>Ile        | att<br>Ile<br>270 | cca<br>Pro        | gta<br>Val        | 873  |
| cta<br>Leu        | cct<br>Pro        | cag<br>Gln<br>275 | caa<br>Gln        | ttt<br>Phe        | gtg<br>Val        | Pro               | cct<br>Pro<br>280 | aca<br>Thr        | aat<br>Asn        | gtt<br>Val        | aga<br>Arg        | gac<br>Asp<br>285 | tgt<br>Cys        | ata<br>Ile        | cgc<br>Arg        | 921  |
| Leu               | cga<br>Arg<br>290 | ggt<br>Gly        | ctt<br>Leu        | ccc<br>Pro        | tat<br>Tyr        | gca<br>Ala<br>295 | gcc<br>Ala        | aca<br>Thr        | att<br>Ile        | gag<br>Glu        | gac<br>Asp<br>300 | atc<br>Ile        | ctg<br>Leu        | gat<br>Asp        | ttc<br>Phe        | 969  |
| ctg<br>Leu<br>305 | ggg<br>ggg        | gag<br>Glu        | ttc<br>Phe        | gcc<br>Ala        | aca<br>Thr<br>310 | gat<br>Asp        | att<br>Ile        | cgt<br>Arg        | Thr               | cat<br>His<br>315 | GJ Y<br>GGG       | gtt<br>Val        | cac<br>His        | atg<br>Met        | gtt<br>Val<br>320 | 1017 |

| ttg aat cac cag ggc cgc cca tca gga gat gcc ttt atc cag atg aag<br>Leu Asn His Gln Gly Arg Pro Ser Gly Asp Ala Phe Ile Gln Met Lys<br>325 330 335 | 1065 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| tct gcg gac aga gca ttt atg gct gca cag aag tgt cat aaa aaa aaa<br>Ser Ala Asp Arg Ala Phe Met Ala Ala Gln Lys Cys His Lys Lys<br>340 345 350     | 1113 |
| cat gaa gga cag ata tgt tgaagtettt cagtgtteag etgaggagat<br>His Glu Gly Gln Ile Cys<br>355                                                        | 1161 |
| gaactttgtg ttaatggggg gcactttaaa tcgaaatggc ttatccccac cgccatgtaa                                                                                 | 1221 |
| gttaccatgc ctgtctcctc cctcctacac atttccagct cctgctgcag ttattcctac                                                                                 | 1281 |
| agaagetgee atttaccage cetetgtgat tttgaateca egageaetge agecetecae                                                                                 | 1341 |
| agcgtactac ccagcaggca ctcagctctt catgaactac acagcgtact atcccagccc                                                                                 | 1401 |
| cccaggttcg cctaatagtc ttggctactt ccctacagct gctaatctta gcggtgtccc                                                                                 | 1461 |
| tccacagcct ggcacggtgg tcagaatgca gggcctggcc tacaatactg gagttaagga                                                                                 | 1521 |
| aattettaac ttetteeaag gttaeeagtg tttgaaagat gtatggtgat ettgaaacet                                                                                 | 1581 |
| ccagacacaa gaaaacttct agcaaattca ggggaagttt gtctacactc aggctgcagt                                                                                 | 1641 |
| attttcagca aacttgattg gacaaacggg cctgtgcctt atcttttggt ggagtgaaaa                                                                                 | 1701 |
| agtttgagct agtgaagcca aatcgtaact tacagcaagc agcatgcagc atacctggct                                                                                 | 1761 |
| ctttgctgat tgcaaatagg catttaaaat gtgaatttgg aatcagatgt ctccattact                                                                                 | 1821 |
| tccagttaaa gtggcatcat aggtgtttcc taagttttaa gtcttggata aaaactccac                                                                                 | 1881 |
| cagtgtctac catctccacc atgaactctg ttaaggaagc ttcatttttg tatattcccg                                                                                 | 1941 |
| ctcttttctc ttcatttccc tgtcttctgc ataatcatgc cttcttgcta agtaattcaa                                                                                 | 2001 |
| gcataagatc ttggaataat aaaatcacaa tcttaggaga aagaataaaa ttgttatttt                                                                                 | 2061 |
| cccagtetet tggccatgat gatatettat gattaaaaac aaattaaatt ttaaaacacc                                                                                 | 2121 |
| tgaaaaaaaa aaaaaaaa                                                                                                                               | 2140 |
|                                                                                                                                                   |      |

<211> 358

<212> PRT

<213> NM\_017697 FLJ20171

<400> 10

Met Thr Glu Tyr Leu Asn Phe Glu Lys Ser Ser Ser Val Ser Arg Tyr 1 5 10 15 .

Gly Ala Ser Gln Val Glu Asp Met Gly Asn Ile Ile Leu Ala Met Ile 20 25 30

Ser Glu Pro Tyr Asn His Arg Phe Ser Asp Pro Glu Arg Val Asn Tyr 35 40 45

Lys Phe Glu Ser Gly Thr Cys Ser Lys Met Glu Leu Ile Asp Asp Asn 50 55 60

Thr Val Val Arg Ala Arg Gly Leu Pro Trp Gln Ser Ser Asp Gln Asp 65 70 75 80

Ile Ala Arg Phe Phe Lys Gly Leu Asn Ile Ala Lys Gly Gly Ala Ala 85 90 95

Leu Cys Leu Asn Ala Gln Gly Arg Arg Asn Gly Glu Ala Leu Val Arg 100 105 110

Phe Val Ser Glu Glu His Arg Asp Leu Ala Leu Gln Arg His Lys His 115 120 125

His Met Gly Thr Arg Tyr Ile Glu Val Tyr Lys Ala Thr Gly Glu Asp 130 135 140

Phe Leu Lys Ile Ala Gly Gly Thr Ser Asn Glu Val Ala Gln Phe Leu 145 150 155 160

Ser Lys Glu Asn Gln Val Ile Val Arg Met Arg Gly Leu Pro Phe Thr 165 170 175

Ala Thr Ala Glu Glu Val Val Ala Phe Phe Gly Gln His Cys Pro Ile 180 185 190

Thr Gly Gly Lys Glu Gly Ile Leu Phe Val Thr Tyr Pro Asp Gly Arg 195 200 205

Pro Thr Gly Asp Ala Phe Val Leu Phe Ala Cys Glu Glu Tyr Ala Gln 210 215 220

Asn Ala Leu Arg Lys His Lys Asp Leu Leu Gly Lys Arg Tyr Ile Glu 225 230 235 240

Leu Phe Arg Ser Thr Ala Ala Glu Val Gln Gln Val Leu Asn Arg Phe 245 250 255

Ser Ser Ala Pro Leu Ile Pro Leu Pro Thr Pro Pro Ile Ile Pro Val 260 265 270

Leu Pro Gln Gln Phe Val Pro Pro Thr Asn Val Arg Asp Cys Ile Arg 275 280 285

Leu Arg Gly Leu Pro Tyr Ala Ala Thr Ile Glu Asp Ile Leu Asp Phe 290 295 300

| Leu Gl                                                                                                  | / Glu                                                               | Phe                                          | Ala                                    | Thr<br>310                                                                      | Asp                                                        | Ile                                   | Arg                                                        | Thr                                                                | His<br>315                             | Gly                                                        | Val                                                 | His                                          | Met                                    | Val<br>320                                                 |                          |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------|------------------------------------------------------------|--------------------------|
| Leu As                                                                                                  | n His                                                               | Gln                                          | Gly<br>325                             | Arg                                                                             | Pro                                                        | Ser                                   | Gly                                                        | Asp<br>330                                                         | Ala                                    | Phe                                                        | Ile                                                 | Gln                                          | Met<br>335                             | Lys                                                        |                          |
| Ser Al                                                                                                  | a Asp                                                               | Arg<br>340                                   | Ala                                    | Phe                                                                             | Met                                                        | Ala                                   | Ala<br>345                                                 | Gln                                                                | Ъуs                                    | Суз                                                        | His                                                 | Lys<br>350                                   | Lys                                    | ГÀЗ                                                        |                          |
| His Gl                                                                                                  | 355                                                                 | Gln                                          | Ile                                    | Суз                                                                             |                                                            |                                       |                                                            |                                                                    |                                        |                                                            |                                                     |                                              |                                        |                                                            |                          |
| <210>                                                                                                   | 11                                                                  |                                              |                                        |                                                                                 |                                                            |                                       |                                                            |                                                                    |                                        |                                                            |                                                     |                                              |                                        |                                                            |                          |
| <211>                                                                                                   | 2808                                                                |                                              |                                        |                                                                                 |                                                            |                                       |                                                            |                                                                    |                                        |                                                            |                                                     |                                              |                                        |                                                            |                          |
| <212>                                                                                                   | DNA                                                                 |                                              |                                        |                                                                                 |                                                            |                                       |                                                            |                                                                    |                                        | •                                                          |                                                     |                                              |                                        |                                                            |                          |
| <213>                                                                                                   | NM_0                                                                | 5288                                         | 6 MAI                                  | L2                                                                              |                                                            |                                       |                                                            | •                                                                  | -                                      |                                                            | •                                                   |                                              |                                        |                                                            |                          |
| <220>                                                                                                   |                                                                     |                                              |                                        |                                                                                 |                                                            |                                       |                                                            |                                                                    |                                        |                                                            |                                                     |                                              |                                        |                                                            |                          |
| <221>                                                                                                   | CDS                                                                 |                                              |                                        |                                                                                 |                                                            |                                       |                                                            |                                                                    |                                        |                                                            |                                                     |                                              |                                        |                                                            |                          |
| <222>                                                                                                   | (80)                                                                | (6                                           | 07)                                    |                                                                                 |                                                            |                                       |                                                            |                                                                    | •                                      |                                                            |                                                     |                                              |                                        |                                                            |                          |
| <223>                                                                                                   |                                                                     |                                              |                                        |                                                                                 |                                                            |                                       |                                                            |                                                                    |                                        |                                                            |                                                     |                                              |                                        |                                                            |                          |
|                                                                                                         |                                                                     |                                              |                                        |                                                                                 |                                                            |                                       |                                                            |                                                                    |                                        |                                                            |                                                     |                                              |                                        |                                                            |                          |
|                                                                                                         |                                                                     |                                              |                                        |                                                                                 |                                                            |                                       |                                                            |                                                                    |                                        |                                                            |                                                     |                                              |                                        |                                                            |                          |
| <400>                                                                                                   | 11<br>ggcg                                                          | gcag                                         | gageo                                  | ec go                                                                           | ggagg                                                      | gegga                                 | a ggo                                                      | eggga                                                              | iggc                                   | ggco                                                       | igeg                                                | jcg (                                        | egegg                                  | ,<br>Jagacg                                                | 60                       |
| <400><br>ggcggc<br>cagcag                                                                               | ggcg                                                                |                                              |                                        | c ato                                                                           | te                                                         | g gci                                 | gge                                                        | e gga                                                              | a gc                                   | g tca                                                      | gto                                                 | e eeg                                        | gcc                                    |                                                            | 60<br>112                |
| ggcggc                                                                                                  | egge .                                                              | agcg:                                        | gcago                                  | c ato<br>Met<br>1<br>tcc                                                        | g tog<br>Sea                                               | g gcd<br>r Ala                        | c ggo                                                      | c gga<br>y Gly<br>5                                                | a gcg                                  | g tca<br>a Sei<br>gtc                                      | gto<br>Val                                          | c ccq                                        | g ccc<br>Pro<br>10                     | g ccc<br>Pro                                               |                          |
| ggcggc<br>cagcag<br>ccg aa                                                                              | ggcg cggc                                                           | gcc<br>Ala<br>15                             | gtg<br>Val<br>ctg                      | tcc<br>Ser                                                                      | ttc<br>Phe                                                 | ccg<br>Pro                            | ccg<br>Pro<br>20                                           | c gga<br>y Gly<br>5<br>ccc<br>Pro                                  | egg<br>Arg                             | g toa<br>g Ser<br>gtc<br>Val                               | acc<br>Thr                                          | ctg<br>Leu<br>25                             | g ccc<br>10<br>ccc<br>Pro              | gcc<br>Ala                                                 | 112                      |
| ggcggc<br>cagcag<br>ccg aa<br>Pro As                                                                    | eggc<br>eggc<br>ecce<br>Pro<br>egac<br>Asp<br>30                    | gcc<br>Ala<br>15<br>atc<br>Ile               | gtg<br>Val<br>ctg<br>Leu               | tcc<br>Ser<br>cgg<br>Arg                                                        | ttc<br>Phe<br>acc<br>Thr                                   | ccg<br>Pro<br>tac<br>Tyr<br>35        | ccg<br>Pro<br>20<br>tcg<br>Ser                             | c gga<br>y Gly<br>5<br>ccc<br>Pro<br>ggc<br>Gly                    | cgg<br>Arg<br>gcc<br>Ala               | g toa<br>Ser<br>gtc<br>Val<br>ttc<br>Phe                   | acc<br>Thr<br>gtc<br>Val<br>40                      | ctg<br>Leu<br>25<br>tgc<br>Cys               | ccc<br>Pro<br>ctg                      | gcc<br>Ala<br>gag<br>Glu                                   | 112                      |
| cagcag<br>ccg aa<br>Pro As<br>ggc cc<br>Gly Pr                                                          | eggc cggc cggc Asp 30 ttc Phe                                       | gcc<br>Ala<br>15<br>atc<br>Ile<br>ggg<br>Gly | gtg<br>Val<br>ctg<br>Leu<br>ggt<br>Gly | tcc<br>Ser<br>cgg<br>Arg                                                        | ttc<br>Phe<br>acc<br>Thr<br>gtc<br>Val<br>50               | ccg<br>Pro<br>tac<br>Tyr<br>35<br>tgg | ccg<br>Pro<br>20<br>tcg<br>Ser<br>att<br>Ile               | ggc<br>ggc<br>ggc<br>Gly<br>ttg<br>Leu                             | cgg<br>Arg<br>gcc<br>Ala<br>gtt<br>Val | g toa<br>gtc<br>Val<br>ttc<br>Phe<br>gcc<br>Ala<br>55      | acc<br>Thr<br>gtc<br>Val<br>40<br>tcc<br>Ser        | ctg<br>Leu<br>25<br>tgc<br>Cys<br>tcc<br>Ser | ccc<br>Pro<br>ctg<br>Leu<br>aat<br>Asn | gcc<br>Ala<br>gag<br>Glu<br>gtt<br>Val                     | 112<br>160<br>208        |
| cagcagc<br>cagcag<br>ccg aa<br>Pro As<br>ggc cc<br>Gly Pr<br>att ct<br>Ile Le<br>45<br>cct ct<br>Pro Le | eggc<br>eggc<br>ccc<br>n Pro<br>egac<br>o Asp<br>30<br>ttc<br>n Phe | gcc Ala 15 atc Ile ggg Gly cta Leu           | gtg<br>Val<br>ctg<br>Leu<br>ggt<br>Gly | c atg<br>Met<br>1<br>tcc<br>Ser<br>cgg<br>Arg<br>ctt<br>Leu<br>caa<br>Gln<br>65 | ttc<br>Phe<br>acc<br>Thr<br>gtc<br>Val<br>50<br>gga<br>Gly | ccg Pro tac Tyr 35 tgg Trp tggg       | ccg<br>Pro<br>20<br>tcg<br>Ser<br>att<br>Ile<br>gtc<br>Val | c ggg<br>Gly<br>5<br>ccc<br>Pro<br>ggc<br>Gly<br>ttg<br>Leu<br>atg | cgg gcc Ala gtt Val ttt Phe 70 ttc     | gtc<br>Val<br>ttc<br>Phe<br>gcc<br>Ala<br>55<br>gtg<br>Val | acc<br>Thr<br>gtc<br>Val<br>40<br>tcc<br>Ser<br>tcc | ctg Leu 25 tgc Cys tcc Ser gtg Val           | ccc Pro ctg Leu aat Asn aca Thr        | gcc<br>Ala<br>gag<br>Glu<br>gtt<br>Val<br>gcg<br>Ala<br>75 | 112<br>160<br>208<br>256 |

| aca gta tt<br>Thr Val Ph<br>11 | e Val Phe T | at ttt gga<br>Cyr Phe Gly<br>115 | gcc ttt tta<br>Ala Phe Leu | ttg gaa gca gca gcc<br>Leu Glu Ala Ala Ala<br>120 | 448  |
|--------------------------------|-------------|----------------------------------|----------------------------|---------------------------------------------------|------|
|                                |             |                                  |                            | ata acc ggg cag cca<br>Ile Thr Gly Gln Pro<br>135 | 496  |
|                                | r Āsp Asn G |                                  |                            | gca gcc tca att ttt<br>Ala Ala Ser Ile Phe<br>155 | 544  |
|                                |             |                                  |                            | ttg ggt ctg gct tta<br>Leu Gly Leu Ala Leu<br>170 | 592  |
| cga aga tg<br>Arg Arg Tr       |             | aacactcct t                      | agaaactgg ca               | agtcgtatg ttagtttcac                              | 647  |
| ttgtctactt                     | tatatgtctg  | atcaatttgg                       | ataccatttt                 | gtccagatgc aaaaacattc                             | 707  |
| caaaagtaat                     | gtgtttagta  | gagagagact                       | ctaagctcaa                 | gttctggttt atttcatgga                             | 767  |
| tggaatgtta                     | attttattat  | gatattaaag                       | aaatggcctt                 | ttattttaca tctctcccct                             | 827  |
| ttttcccttt                     | cccctttat   | tttectcctt                       | ttctttctga                 | aagtttcctt ttatgtccat                             | 887  |
| aaaatacaaa                     | tatattgttc  | ataaaaaatt                       | agtatccctt                 | ttgtttggtt gctgagtcac                             | 947  |
| ctgaacctta                     | attttaattg  | gtaattacag                       | cccctaaaaa                 | aaacacattt caaataggct                             | 1007 |
| tcccactaaa                     | ctctatattt  | tagtgtaaac                       | caggaattgg                 | cacacttttt ttagaatggg                             | 1067 |
| ccagatggta                     | aatatttatg  | cttcacggtc                       | catacagtct                 | ctgtcacaac tattcagttc                             | 1127 |
| tgctagtata                     | gcgtgaaagc  | agetatacac                       | aatacagaaa                 | tgaatgagtg tggttatgtt                             | 1187 |
| ctaataaaac                     | ttatttataa  | aaacaagggg                       | aggctgggtt                 | tagcctgtgg gccatagttt                             | 1247 |
| gtcaaccact                     | ggtgtaaaac  | cttagttata                       | tatgatctgc                 | attttcttga actgatcatt                             | 1307 |
| gaaaacttat                     | aaacctaaca  | gaaaagccac                       | ataatattta                 | gtgtcattat gcaataatca                             | 1367 |
| cattgccttt                     | gtgttaatag  | tcaaatactt                       | acctttggag                 | aatacttacc tttggaggaa                             | 1427 |
| tgtataaaat                     | ttctcaggca  | gagtcctgga                       | tataggaaaa                 | agtaatttat gaagtaaact                             | 1487 |
| tcagttgctt                     | aatcaaacta  | atgatagtct                       | aacaactgag                 | caagatcctc atctgagagt                             | 1547 |
| gcttaaaatg                     | ggatccccag  | agaccattaa                       | ccaatactgg                 | aactggtatc tagctactga                             | 1607 |
| tgtcttactt                     | tgagtttatt  | tatgcttcag                       | aatacagttg                 | tttgccctgt gcatgaatat                             | 1667 |
| acccatattt                     | gtgtgtggat  | atgtgaagct                       | tttccaaata                 | gageteteag aagaattaag                             | 1727 |
| tttttacttc                     | taattattt   | gcattacttt                       | gagttaaatt                 | tgaatagagt attaaatata                             | 1787 |
| aagttgtaga                     | ttcttatgtg  | tttttgtatt                       | agcccagaca                 | tctgtaatgt ttttgcactg                             | 1847 |
| gtgacagaca                     | aaatctgttt  | taaaatcata                       | tccagcacaa                 | aaactatttc tggctgaata                             | 1907 |
| gcacagaaaa                     | gtattttaac  | ctacctgtag                       | agatectegt                 | catggaaagg tgccaaactg                             | 1967 |
| ttttgaatgg                     | aaggacaagt  | aagagtgagg                       | ccacagttcc                 | caccacacga gggcttttgt                             | 2027 |
| attgttctac                     | tttttcagcc  | ctttactttc                       | tggctgaagc                 | atccccttgg agtgccatgt                             | 2087 |
|                                |             |                                  |                            |                                                   |      |

| ataagttggg | ctattagagt | tcatggaaca | tagaacaacc | atgaatgagt | ggcatgatcc | 214  |
|------------|------------|------------|------------|------------|------------|------|
| gtgcttaatg | atcaagtgtt | acttatctaa | taatcctcta | gaaagaaccc | tgttagatct | 220  |
| tggtttgtga | taaaaatata | aagacagaag | acatgaggaa | aaacaaaagg | tttgaggaaa | 226  |
| tcaggcatat | gactttatac | ttaacatcag | atcttttcta | taatatccta | ctactttggt | 2327 |
| tttcctagct | ccataccaca | cacctaaacc | tgtattatga | attacatatt | acaaagtcat | 2387 |
| aaatgtgcca | tatggatata | cagtacattc | tagttggaat | cgtttactct | gctagaattt | 2447 |
| aggtgtgaga | ttttttgttt | cccaggtata | gcaggcttat | gtttggtggc | attaaattgg | 2507 |
| tttctttaaa | atgctttggt | ggcacttttg | taaacagatt | gcttctagat | tgttacaaac | 2567 |
| caagcctaag | acacatctgt | gaatacttag | atttgtagct | taatcacatt | ctagacttgt | 2627 |
| gagttgaatg | acaaagcagt | tgaacaaaaa | ttatggcatt | taagaattta | acatgtctta | 2687 |
| gctgtaaaaa | tgagaaagtg | ttggttggtt | ttaaaatctg | gtaactccat | gatgaaaaga | 2747 |
| aatttattt  | atacgtgtta | tgtctctaat | aaagtättca | tttgataaaa | aaaaaaaaa  | 2807 |
| a          |            |            |            | •          |            | 2808 |

<211> 176

<212> PRT

<213> NM\_052886 MAL2

<400> 12

Met Ser Ala Gly Gly Ala Ser Val Pro Pro Pro Pro Asn Pro Ala Val 1 5 15

Ser Phe Pro Pro Pro Arg Val Thr Leu Pro Ala Gly Pro Asp Ile Leu 20 25 30

Arg Thr Tyr Ser Gly Ala Phe Val Cys Leu Glu Ile Leu Phe Gly Gly 35 40 45

Leu Val Trp Ile Leu Val Ala Ser Ser Asn Val Pro Leu Pro Leu Leu 50 60

Gln Gly Trp Val Met Phe Val Ser Val Thr Ala Phe Phe Phe Ser Leu 70 75 80

Leu Phe Leu Gly Met Phe Leu Ser Gly Met Val Ala Gln Ile Asp Ala 85 90 95

Asn Trp Asn Phe Leu Asp Phe Ala Tyr His Phe Thr Val Phe Val Phe 100 105 110

Tyr Phe Gly Ala Phe Leu Leu Glu Ala Ala Ala Thr Ser Leu His Asp

32

120 125 115 Leu His Cys Asn Thr Thr Ile Thr Gly Gln Pro Leu Leu Ser Asp Asn 135 140 Gln Tyr Asn Ile Asn Val Ala Ala Ser Ile Phe Ala Phe Met Thr Thr Ala Cys Tyr Gly Cys Ser Leu Gly Leu Ala Leu Arg Arg Trp Arg Pro 165 170 <210> 13 <211> 4171 <212> DNA <213> NM 015238 KIAA0869, KIBRA <220> <221> CDS (67) . . (3405) <222> <223> <400> 13 ctggagccgc tgagcccccg ctgcggccgg gagctgcatg ggggagcgcc ggcagcgctt 60 108 gggaag atg ccc cgg ccg gag ctg ccc ctg ccg gag ggc tgg gag gag Met Pro Arg Pro Glu Leu Pro Leu Pro Glu Gly Trp Glu Glu 5 10 gcg cgc gac ttc gac ggc aag gtc tac tac ata gac cac acg aac cgc 156 Ala Arg Asp Phe Asp Gly Lys Val Tyr Tyr Ile Asp His Thr Asn Arg 20 25 204 acc acc age tgg atc gac eeg egg gae agg tac acc aaa eeg etc acc Thr Thr Ser Trp Ile Asp Pro Arg Asp Arg Tyr Thr Lys Pro Leu Thr 35 40 ttt gct gac tgc att agt gat gag ttg ccg cta gga tgg gaa gag gca 252 Phe Ala Asp Cys Ile Ser Asp Glu Leu Pro Leu Gly Trp Glu Glu Ala 50 tat gac cca cag gtt gga gat tac ttc ata gac cac aac acc aaa acc 300 Tyr Asp Pro Gln Val Gly Asp Tyr Phe Ile Asp His Asn Thr Lys Thr act cag att gag gat cct cga gta caa tgg cgg cgg gag cag gaa cat Thr Gln Ile Glu Asp Pro Arg Val Gln Trp Arg Arg Glu Gln Glu His 85 atg ctg aag gat tac ctg gtg gtg gcc cag gag gct ctg agt gca caa

Met Leu Lys Asp Tyr Leu Val Val Ala Gln Glu Ala Leu Ser Ala Gln

aag gag atc tac cag gtg aag cag cag cgc ctg gag ctt gca cag cag

105

444

| Lys | Glu | Ile | Tyr | Gln<br>115 | Val | Lys               | Gln |   | Arg<br>120 | Leu | Glu | Leu | Ala | Gln<br>125 | Gln |       |
|-----|-----|-----|-----|------------|-----|-------------------|-----|---|------------|-----|-----|-----|-----|------------|-----|-------|
|     |     |     |     |            |     | gcc<br>Ala        |     |   | Glu        |     |     |     |     |            |     | 492   |
|     |     |     |     |            |     | tca<br>Ser        |     |   |            |     |     |     |     |            |     | 540   |
|     |     |     |     |            |     | gcc<br>Ala<br>165 |     |   |            |     |     |     |     |            |     | 588   |
|     |     |     |     |            |     | ctc<br>Leu        |     |   |            |     |     |     |     |            |     | 636   |
|     |     | _   |     | -          | -   | aaa<br>Lys        |     | - |            |     | •   |     | _   | -          | _   | 684   |
|     | _   |     |     | _          | _   | gaa<br>Glu        | _   | _ | _          | -   | _   | -   | -   |            |     | 732   |
|     |     |     |     |            |     | acc<br>Thr        |     |   |            |     |     |     |     |            |     | , 780 |
|     |     |     |     |            |     | ttg<br>Leu<br>245 |     |   |            |     |     |     |     |            |     | 828   |
|     |     |     | -   | _          |     | tcc<br>Ser        | -   | - | _          |     | _   |     | -   | _          | -   | 876   |
|     | _   |     | _   |            | -   | tac<br>Tyr        | -   | - |            | _   |     | _   |     | -          |     | 924   |
|     |     | _   |     |            |     | aac<br>Asn        | _   |   |            | _   | -   | _   |     | _          | _   | 972   |
|     |     |     |     |            |     | gaa<br>Glu        |     |   |            |     |     |     |     |            |     | 1020  |
|     |     |     |     |            |     | ctt<br>Leu<br>325 |     |   |            |     |     |     |     |            |     | 1068  |
|     |     |     |     |            |     | ctg<br>Leu        |     |   |            |     |     |     |     |            |     | 1116  |
|     |     |     |     |            |     | atc<br>Ile        |     |   |            |     |     |     |     |            |     | 1164  |
|     |     |     |     | Glu        |     | gcc<br>Ala        |     |   |            |     |     |     |     |            |     | 1212  |

|   |                   |                   |                    |                       |                       |                      |                       |                    |                       |                   | ٠.                    |                      |                      |                   |                       |                       |      |
|---|-------------------|-------------------|--------------------|-----------------------|-----------------------|----------------------|-----------------------|--------------------|-----------------------|-------------------|-----------------------|----------------------|----------------------|-------------------|-----------------------|-----------------------|------|
|   | Ala               | a gc<br>a Al      | c cg<br>a Ar<br>38 | g As                  | c ac<br>p Th          | c ca<br>r Gl         | g ag<br>n Se:         | c aa<br>r Ly<br>39 | s Ala                 | g ct              | g ac                  | g ga<br>r Gl         | g age<br>u Are<br>39 | g Le              | a aa<br>u Ly          | g tta<br>s Leu        | 1260 |
|   | aad<br>Asi        | n Se<br>40        | г ГА               | g ag<br>s Ar          | g aa<br>g As          | c cae                | g cti<br>n Lei<br>40! | u Va               | g aga                 | a gaa<br>g Gli    | a cte                 | g ga<br>u Glu<br>410 | u Glı                | a gc              | c ac<br>a Th          | c cgg<br>r Arg        | 1308 |
|   | Caq<br>Glr<br>415 | n Va.             | g gc<br>l Al       | a ac<br>a Th          | t cto                 | g ca<br>u Hi:<br>420 | s Se                  | c cad              | g cto<br>n Lei        | g aaa<br>1.Lys    | a agi<br>s.Se:<br>425 | r Lei                | c tca<br>u Seu       | a age             | c ag                  | c atg<br>r Met<br>430 | 1356 |
|   | Glr               | g tco<br>n Sen    | c cte              | g tco<br>u Se:        | c tca<br>c Sea<br>435 | c Gly                | c ago<br>y Sei        | c ago              | c ccc                 | gga<br>Gly<br>440 | / Sei                 | cto<br>Lei           | acç<br>ı Thi         | tco<br>Sei        | 2 age<br>3 Se:<br>44! | c cgg<br>r Arg        | 1404 |
|   | Gl y              | tco<br>Sei        | c cto              | g gtt<br>u Val<br>450 | L Ala                 | tco<br>Sei           | ago<br>Ser            | cto<br>Lev         | g gad<br>1 Asp<br>455 | Ser               | tco<br>Ser            | act<br>Thr           | tca<br>Ser           | gco<br>Ala<br>460 | . Se                  | ttc<br>r Phe          | 1452 |
|   | act<br>Thr        | gac<br>Asp        | Let<br>465         | з Туз                 | tat<br>Tyr            | gac<br>Asp           | ccc<br>Pro            | ttt<br>Phe<br>470  | ≥ Glu                 | cag<br>Gln        | ctg<br>Leu            | gac<br>Asp           | tca<br>Ser<br>475    | Glu               | cto<br>Lev            | g cag<br>ı Gln        | 1500 |
|   | ago<br>Ser        | aag<br>Lys<br>480 | val                | g gaç<br>L Glu        | tto<br>Phe            | ctg<br>Leu           | Leu<br>485            | Leu                | gag<br>Glu            | ggg               | gcc<br>Ala            | acc<br>Thr<br>490    | Gly                  | tto<br>Phe        | cgg<br>Arg            | g ccc                 | 1548 |
|   | tca<br>Ser<br>495 | GTA               | tgo<br>Cys         | ato<br>Ile            | acc<br>Thr            | Thr<br>500           | Ile                   | cac<br>His         | gag<br>Glu            | gat<br>Asp        | gag<br>Glu<br>505     | Val                  | gcc<br>Ala           | aag<br>Lys        | acc<br>Thr            | cag<br>Gln<br>510     | 1596 |
| - | aag<br>Lys        | gca<br>Ala        | gag<br>Glu         | gga<br>Gly            | ggt<br>Gly<br>515     | Gly                  | cgc<br>Arg            | ctg<br>Leu         | cag<br>Gln            | gct<br>Ala<br>520 | ctg<br>Leu            | cgt<br>Arg           | tcc<br>Ser           | ctg<br>Leu        | tct<br>Ser<br>525     | ggc                   | 1644 |
|   | acc<br>Thr        | cca<br>Pro        | aag<br>Lys         | Ser<br>530            | Met                   | acc<br>Thr           | tcc<br>Ser            | cta<br>Leu         | tcc<br>Ser<br>535     | cca               | cgt<br>Arg            | tcc<br>Ser           | tct<br>Ser           | ctc<br>Leu<br>540 | tcc<br>Ser            | tcc<br>Ser            | 1692 |
|   | ccc<br>Pro        | tcc<br>Ser        | cca<br>Pro<br>545  | Pro                   | tgt<br>Cys            | tcc<br>Ser           | cct<br>Pro            | ctc<br>Leu<br>550  | atg<br>Met            | gct<br>Ala        | gac<br>Asp            | ccc<br>Pro           | ctc<br>Leu<br>555    | ctg<br>Leu        | gct<br>Ala            | ggt<br>Gly            | 1740 |
|   | gat<br>Asp        | gcc<br>Ala<br>560 | ttc<br>Phe         | ctc<br>Leu            | aac<br>Asn            | tcc<br>Ser           | ttg<br>Leu<br>565     | gag<br>Glu         | ttt<br>Phe            | gaa<br>Glu        | gac<br>Asp            | ccg<br>Pro<br>570    | gag<br>Glu           | ctg<br>Leu        | agt<br>Ser            | gcc<br>Ala            | 1788 |
|   | act<br>Thr<br>575 | ctt<br>Leu        | tgt<br>Cys         | gaa<br>Glu            | ctg<br>Leu            | agc<br>Ser<br>580    | ctt<br>Leu            | ggt<br>Gly         | aac<br>Asn            | Ser               | gcc<br>Ala<br>585     | cag<br>Gln           | gaa<br>Glu           | aga<br>Arg        | tac<br>Tyr            | cgg<br>Arg<br>590     | 1836 |
|   | ctg<br>Leu        | gag<br>Glu        | gaa<br>Glu         | cca<br>Pro            | gga<br>Gly<br>595     | acg<br>Thr           | gag<br>Glu            | ggc                | aag<br>Lys            | cag<br>Gln<br>600 | ctg<br>Leu            | ggc<br>Gly           | caa<br>Gln           | gct<br>Ala        | gtg<br>Val<br>605     | aat<br>Asn            | 1884 |
|   | acg<br>Thr        | gcc<br>Ala        | cag<br>Gln         | ggg<br>Gly<br>610     | tgt<br>Cys            | ggc<br>Gly           | ctg<br>Leu            | aaa<br>Lys         | gtg<br>Val<br>615     | gcc<br>Ala        | tgt<br>Cys            | gtc<br>Val           | tca<br>Ser           | gcc<br>Ala<br>620 | gcc<br>Ala            | gta<br>Val            | 1932 |
|   | tcg<br>Ser        | Asp               | gag<br>Glu<br>625  | tca<br>Ser            | gtg<br>Val            | gct<br>Ala           | Gly                   | gac<br>Asp<br>630  | agt<br>Ser            | ggt<br>Gly        | gtg<br>Val            | tac<br>Tyr           | gag<br>Glu<br>635    | gct<br>Ala        | tcc<br>Ser            | gtg<br>Val            | 1980 |
|   | cag               | aga               | ctg                | ggt                   | gct                   | tca                  | gaa                   | gct                | gct                   | gca               | tţt                   | gac                  | agt                  | gac               | gaa                   | tcg                   | 2028 |

|                   |            | -          | ~-  |     | <b>C</b> -        | <b>~</b> 3 | 7.7        |            |     | ъ.                |            | <u> </u>   |            | ٠.         | ~                 |      |
|-------------------|------------|------------|-----|-----|-------------------|------------|------------|------------|-----|-------------------|------------|------------|------------|------------|-------------------|------|
| Gin               | Arg<br>640 |            | Gly | Ala | Ser               | 645        | Ala        | Ala        | Ala | Phe               | Asp<br>650 | Ser        | Asp        | Glu        | Ser               |      |
|                   | Ala        |            |     |     | acc<br>Thr<br>660 |            |            |            |     |                   |            |            |            |            |                   | 2076 |
|                   |            |            |     |     | gca<br>Ala        |            |            |            |     |                   |            |            |            |            |                   | 2124 |
|                   |            |            |     |     | caa<br>Gln        |            |            |            |     |                   |            |            |            |            |                   | 2172 |
|                   |            |            |     | _   | agc<br>Ser        |            |            | _          | _   |                   |            |            |            |            | _                 | 2220 |
|                   |            |            |     |     | cta<br>Leu        |            |            |            |     |                   |            |            |            |            |                   | 2268 |
|                   |            |            |     |     | cac<br>His<br>740 |            |            |            |     |                   |            |            |            |            |                   | 2316 |
|                   |            |            |     |     | ctg<br>Leu        |            |            |            |     |                   |            |            |            |            |                   | 2364 |
|                   |            |            |     |     | cgg<br>Arg        |            |            |            |     |                   |            |            |            |            |                   | 2412 |
|                   |            |            |     |     | tac<br>Tyr        |            |            |            |     |                   |            |            |            |            |                   | 2460 |
|                   |            |            |     |     | cct<br>Pro        |            |            |            |     |                   |            |            |            |            |                   | 2508 |
| tct<br>Ser<br>815 | Ala        | ctg<br>Leu | Leu | Glu | cag<br>Gln<br>820 | Thr        | gca<br>Ala | gtg<br>Val | Glu | ctg<br>Leu<br>825 | Glu        | aag<br>Lys | agg<br>Arg | cag<br>Gln | gag<br>Glu<br>830 | 2556 |
|                   |            |            |     |     | cag<br>Gln        |            |            |            |     |                   |            |            |            |            |                   | 2604 |
|                   |            |            |     |     | gca<br>Ala        |            |            |            |     |                   |            |            |            |            |                   | 2652 |
|                   |            |            |     |     | gag<br>Glu        |            |            |            |     |                   |            |            |            |            |                   | 2700 |
|                   |            |            |     |     | gca<br>Ala        |            |            |            |     |                   |            |            |            |            |                   | 2748 |
|                   | -          | -          |     |     | ccc<br>Pro<br>900 |            | -          |            | _   |                   |            |            |            | _          | -                 | 2796 |

| ggc<br>Gly | acc<br>Thr | ccg<br>Pro | tcc<br>Ser         | cag<br>Gln<br>915 | ggg<br>Gly | cca<br>Pro | ttt<br>Phe | ctt<br>Leu | cga<br>Arg<br>920 | Gly  | agc<br>Ser | acc<br>Thr        | atc<br>Ile | atc<br>Ile<br>925 | cgc<br>Arg | 2844   | Ī        |
|------------|------------|------------|--------------------|-------------------|------------|------------|------------|------------|-------------------|------|------------|-------------------|------------|-------------------|------------|--------|----------|
|            |            |            |                    |                   |            |            |            | _          | _                 | _    |            | gtg<br>Val        | _          |                   | _          | 2892   | ?        |
|            |            |            |                    |                   |            |            |            |            |                   |      |            | aag<br>Lys<br>955 |            |                   |            | 2940   | )        |
|            | _          |            |                    | _                 | -          | _          | -          | _          | _                 |      |            | aag<br>Lys        |            |                   |            | 2988   | }        |
| _          | _          | -          | _                  | _                 | _          |            |            | _          |                   |      | _          | acc<br>Thr        | _          | _                 |            | 3036   | 5        |
|            |            |            |                    |                   |            |            |            |            |                   | Tr   |            | e ago<br>s Ser    |            |                   | u Th       |        | Į        |
|            |            |            |                    | Val               |            |            |            |            | ı - Ly            |      |            | ag ct<br>In Le    | u G        |                   | caa<br>Gln | 3129   | •        |
|            |            |            | cac<br>His<br>1025 | Gly               |            |            |            |            | 1 P:              |      |            | gg tt<br>cp Le    | u Ai       |                   | gag<br>Glu | 3174   | ł        |
|            |            |            |                    | Arg               |            |            |            |            | j Me              |      |            | ig aa<br>lu Ly    | 's Aı      |                   | cag<br>Gln | 3219   | <b>,</b> |
|            |            |            |                    | Glu               |            |            |            |            | ı Le              |      |            | ca ga<br>nr As    | p Ly       |                   | atg<br>Met | 3264   | ļ        |
|            |            |            | gct<br>Ala<br>1070 | Ala               |            |            |            |            | A                 |      |            | ga gg<br>gg Gl    | y Gl       |                   | agc<br>Ser | 3309   | ,        |
|            |            |            |                    | Pro               |            |            |            |            | Pl                |      |            | ig aa<br>Lu Ly    | s Me       |                   | gca<br>Ala | 3354   | ŧ        |
|            |            |            |                    | Pro               |            |            |            |            | Pı                |      |            | c to<br>eu Se     | r Al       |                   | gat<br>Asp | 3399   | ,        |
| gac<br>Asp |            | taat       | cgcc               | ag a              | aaag       | tatt       | t cc       | tttg       | ttcc              | act  | gacc       | agg               | ctgt       | gaa               | cat        | 3455   | ,        |
| tgac       | tgtg       | gc t       | aaag               | ttat              | t ta       | tgtg       | gtġt       | tat        | atga              | agg  | tact       | gagt              | ca c       | caagt             | tcctc      | t 3515 | ,        |
| agtg       | ctct       | tg t       | tggt               | ttga              | a ga       | tgaa       | ccga       | ctt        | ttta              | igtt | tggg       | rtcct             | ac t       | gtt               | gttat      | t 3575 |          |
| aaaa       | acag       | aa c       | aaaa               | acaa              | a ac       | acac       | acac       | aca        | caaa              | aac  | agaa       | acaa              | aa a       | aaac              | ccago      | a 3635 |          |
| ttaa       | aata       | at a       | agat               | tgta              | t ag       | tttg       | tata       | ttt        | agga              | igtg | tatt       | tttg              | gg a       | aaga              | aaat       | t 3695 |          |
| taaa       | tgaa       | ct a       | aagc               | agta              | t tg       | agtt       | gctg       | ctc        | ttct              | taa  | aato       | gttt              | ag a       | tttt              | tttt       | g 3755 |          |

| gtttgtacag ctcc  | accttt tagaggtctt | actgcaataa | gaagtaatgc | ctgggggacg | 3815 |
|------------------|-------------------|------------|------------|------------|------|
| gtaatcctaa tagga | acgtcc cgcacttgtc | acagtacagc | taatttttcc | tagttaacat | 3875 |
| attttgtaca atati | taaaaa aatgcacaga | aaccattggg | ggggattcag | aggtgcatcc | 3935 |
| acggatcttc ttgag | gctgtg acgtgtttt  | atgtggctgc | ccaacgtgga | gcgggcagtg | 3995 |
| tgataggctg ggtgg | ggctaa gcagcctagt | ctatgtgggt | gacaggccac | gctggtctca | 4055 |
| gatgcccagt gaage | ccacta acatgagtga | ggggagggct | gtggggaact | ccattcagtt | 4115 |
| ttatctccat caata | aaagtg gcctttcaaa | aagaaaaaaa | aaaaaaaaa  | aaaaaa     | 4171 |

<211> 1113

<212> PRT

<213> NM\_015238 KIAA0869, KIBRA

<400> 14

Met Pro Arg Pro Glu Leu Pro Leu Pro Glu Glu Glu Glu Glu Ala Arg 1 5 10 15

Asp Phe Asp Gly Lys Val Tyr Tyr Tle Asp His Thr Asn Arg Thr Thr 20 25 30

Ser Trp Ile Asp Pro Arg Asp Arg Tyr Thr Lys Pro Leu Thr Phe Ala 35 40 45

Asp Cys Ile Ser Asp Glu Leu Pro Leu Gly Trp Glu Glu Ala Tyr Asp 50 55 60

Pro Gln Val Gly Asp Tyr Phe Ile Asp His Asn Thr Lys Thr Thr Gln 65 70 75 80

Ile Glu Asp Pro Arg Val Gln Trp Arg Arg Glu Gln Glu His Met Leu 85 90 95

Lys Asp Tyr Leu Val Val Ala Gln Glu Ala Leu Ser Ala Gln Lys Glu
100 105 110

Ile Tyr Gln Val Lys Gln Gln Arg Leu Glu Leu Ala Gln Gln Glu Tyr 115 120 125

Gln Gln Leu His Ala Val Trp Glu His Lys Leu Gly Ser Gln Val Ser 130 135 140

Leu Val Ser Gly Ser Ser Ser Ser Eys Tyr Asp Pro Glu Ile Leu 145 150 155 160

| Lys        | Ala        | Glu        | Ile        | Ala        | Thr        | Ala        | Lys        | Ser        | Arg        | Val        | Asn        | Lys        | Leu        | Lys        | Arg        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            |            |            |            | 165        |            |            |            |            | 170        |            |            |            |            | 175        |            |
| Glu        | Met        | Va1        | His<br>180 | Leu        | Gln        | His        | Glu        | Leu<br>185 | Gln        | Phe        | Lys        | Glu        | Arg<br>190 | Gly        | Phe        |
| Gln        | Thr        | Leu<br>195 | Lys        | Lys        | Ile        | Asp        | Lys<br>200 | Lys        | Met        | Ser        |            | Ala<br>205 | Gln        | Gly        | Ser        |
| Tyr        | Lys<br>210 |            | Asp        | Glu        | Ala        | Gln<br>215 | Ala        | Val        | Leu        | Arg        | Glu<br>220 | Thr        | Lys        | Ala        | Ile        |
| Lys<br>225 | Lys        | Ala        | Ile        | Thr        | Cys<br>230 | Gly        | Glu        | Ļys        | Glu        | Lys<br>235 | Gln        | Asp        | Leu        | Ile        | Lys<br>240 |
| Ser        | Leu        | Ala        | Met        | Leu<br>245 | Lys        | Asp        | Gly        | Phe        | Arg<br>250 | Thr        | Asp        | Arg        | -          | Ser<br>255 | His        |
| Ser        | Asp        | Leu        | Trp<br>260 | Ser        | Ser        | Ser        | Ser        | Ser<br>265 | Leu        | Glu        | Ser        | Ser        | Ser<br>270 | Phe        | Pro        |
| Leu        | Pro        | Lys<br>275 | Gln        | Tyr        | Leu        | Asp        | Val<br>280 | Ser        | Ser        | Gln        | Thr        | Asp<br>285 | Ile        | Ser        | Gly        |
| Ser        | Phe<br>290 | Gly        | Ile        | Asn        | Ser        | Asn<br>295 | Asn        | Gln        | Leu        | Ala        | Glu<br>300 | Lys        | Val        | Arg        | Leu        |
| Arg<br>305 | Leu        | Arg        | Tyr        | Glu        | Glu<br>310 | Ala        | Lys        | Arg        | Arg        | Ile<br>315 | Ala        | Asn        | Leu        | Lys        | Ile<br>320 |
| Gln        | Leu        | Ala        | Lys        | Leu<br>325 |            | Ser        | Glu        | Ala        | Trp<br>330 | Pro        | Gly        | Val        | Leu        | Asp<br>335 | Ser        |
| Glu        | Arg        | Asp        | Arg<br>340 | Leu        | Ile        | Leu        | Ile        | Asn<br>345 | Glu        | Lys        | Glu        | Glu        | Leu<br>350 | Leu        | Lys        |
| Glu        | Met        | Arg<br>355 | Phe        | Ile        | Ser        | Pro        | Arg<br>360 | Lys        | Ţrp        | Thr        | Gln        | Gly<br>365 | Glu        | Val        | Glu        |
| Gln        | Leu<br>370 | Glu        | Met        | Ala        | Arg        | Lys<br>375 | Arg        | Leu        | Glu        | Lys        | Asp<br>380 | Leu        | Gln        | Ala        | Ala        |
| Arg<br>385 | Asp        | Thr        | Gln        | Ser        | 390        | Ala        | Leu        | Thr        | Glu        | Arg<br>395 | Leu        | Lys        | Leu        | Asn        | Ser<br>400 |
| Lys        | Arg        | Asn        | Gln        | Leu<br>405 | Val        | Arg        | Glu        | Leu        | Glu<br>410 | Glu        | Ala        | Thr        | Arg        | Gln<br>415 | Val        |
| Ala        | Thr        | Leu        | His<br>420 | Ser        | Gln        | Leu        | Lys        | Ser<br>425 | Leu        | Ser        | Ser        | Ser        | Met<br>430 | Gln        | Ser        |

Leu Ser Ser Gly Ser Ser Pro Gly Ser Leu Thr Ser Ser Arg Gly Ser 435 440 445

Leu Val Ala Ser Ser Leu Asp Ser Ser Thr Ser Ala Ser Phe Thr Asp 450 455 460

Leu Tyr Tyr Asp Pro Phe Glu Gln Leu Asp Ser Glu Leu Gln Ser Lys 465 470 475 480

Val Glu Phe Leu Leu Glu Gly Ala Thr Gly Phe Arg Pro Ser Gly 485 490 495

Cys Ile Thr Thr Ile His Glu Asp Glu Val Ala Lys Thr Gln Lys Ala 500 505 510

Glu Gly Gly Arg Leu Gln Ala Leu Arg Ser Leu Ser Gly Thr Pro 515 520 525

Lys Ser Met Thr Ser Leu Ser Pro Arg Ser Ser Leu Ser Ser Pro Ser 530 535 540

Pro Pro Cys Ser Pro Leu Met Ala Asp Pro Leu Leu Ala Gly Asp Ala 545 550 560

Phe Leu Asn Ser Leu Glu Phe Glu Asp Pro Glu Leu Ser Ala Thr Leu 565 570 575

Cys Glu Leu Ser Leu Gly Asn Ser Ala Gln Glu Arg Tyr Arg Leu Glu 580 585 590

Glu Pro Gly Thr Glu Gly Lys Gln Leu Gly Gln Ala Val Asn Thr Ala 595 600 605

Gln Gly Cys Gly Leu Lys Val Ala Cys Val Ser Ala Ala Val Ser Asp 610 615 620

Glu Ser Val Ala Gly Asp Ser Gly Val Tyr Glu Ala Ser Val Gln Arg 625 630 635 640

Leu Gly Ala Ser Glu Ala Ala Ala Phe Asp Ser Asp Glu Ser Glu Ala 645 650 655

Val Gly Ala Thr Arg Ile Gln Ile Ala Leu Lys Tyr Asp Glu Lys Asn 660 665 670

Lys Gln Phe Ala Ile Leu Ile Ile Gln Leu Ser Asn Leu Ser Ala Leu 675 680 685

Leu Gln Gln Gln Asp Gln Lys Val Asn Ile Arg Val Ala Val Leu Pro 690 695 700

Cys Ser Glu Ser Thr Thr Cys Leu Phe Arg Thr Arg Pro Leu Asp Ala 710 715 Ser Asp Thr Leu Val Phe Asn Glu Val Phe Trp Val Ser Met Ser Tyr .730 725 Pro Ala Leu His Gln Lys Thr Leu Arg Val Asp Val Cys Thr Thr Asp 740 745 Arg Ser His Leu Glu Glu Cys Leu Gly Gly Ala Gln Ile Ser Leu Ala 760 Glu Val Cys Arg Ser Gly Glu Arg Ser Thr Arg Trp Tyr Asn Leu Leu 775 Ser Tyr Lys Tyr Leu Lys Lys Gln Ser Arg Glu Leu Lys Pro Val Gly 790 Val Met Ala Pro Ala Ser Gly Pro Ala Ser Thr Asp Ala Val Ser Ala 805 810 Leu Leu Glu Gln Thr Ala Val Glu Leu Glu Lys Arg Gln Glu Gly Arg 825 820 Ser Ser Thr Gln Thr Leu Glu Asp Ser Trp Arg Tyr Glu Glu Thr Ser 835 840 845 Glu Asn Glu Ala Val Ala Glu Glu Glu Glu Glu Glu Val Glu Glu Glu 855 Glu Gly Glu Glu Asp Val Phe Thr Glu Lys Ala Ser Pro Asp Met Asp 875 870 Gly Tyr Pro Ala Leu Lys Val Asp Lys Glu Thr Asn Thr Glu Thr Pro 885 890 Ala Pro Ser Pro Thr Val Val Arg Pro Lys Asp Arg Arg Val Gly Thr 900 -905 Pro Ser Gln Gly Pro Phe Leu Arg Gly Ser Thr Ile Ile Arg Ser Lys 920 Thr Phe Ser Pro Gly Pro Gln Ser Gln Tyr Val Cys Arg Leu Asn Arg 935 Ser Asp Ser Asp Ser Ser Thr Leu Ser Lys Lys Pro Pro Phe Val Arg 950 955 Asn Ser Leu Glu Arg Arg Ser Val Arg Met Lys Arg Pro Ser Ser Val

Lys Ser Leu Arg Ser Glu Arg Leu Ile Arg Thr Ser Leu Asp Leu Glu 980 985 990

Leu Asp Leu Gln Ala Thr Arg Thr Trp His Ser Gln Leu Thr Gln Glu 995  $\phantom{\bigg|}$  1000  $\phantom{\bigg|}$  1005

Ile Ser Val Leu Lys Glu Leu Lys Glu Gln Leu Glu Gln Ala Lys 1010 1015 1020

Ser His Gly Glu Lys Glu Leu Pro Gln Trp Leu Arg Glu Asp Glu 1025 1030 1035

Arg Phe Arg Leu Leu Arg Met Leu Glu Lys Arg Gln Met Asp 1040 1045 1050

Arg Ala Glu His Lys Gly Glu Leu Gln Thr Asp Lys Met Met Arg 1055 1060 1065

Ala Ala Lys Asp Val His Arg Leu Arg Gly Gln Ser Cys Lys 1070 1075 1080

Glu Pro Pro Glu Val Gln Ser Phe Arg Glu Lys Met Ala Phe Phe 1085  $\phantom{\bigg|}$  1090  $\phantom{\bigg|}$  1095

Thr Arg Pro Arg Met Asn Ile Pro Ala Leu Ser Ala Asp Asp Val 1100 1105 1110

<210> 15

<211> 1294

<212> DNA

<213> NM\_001306 CLDN3, claudin 3

<220>

<221> CDS

<222> (198)..(857)

<223>

<400> 15
caaagccaca ggcaggtgca ggcgcagccg cggcgagagc gtatggagcc gagccgttag
60
cgcggcgccgt cggtgagtca gtccgtccgt ccgtccgtcc gtcgggggcgc cgcagctccc
120
gccaggccca gcggccccgg cccctcgtct ccccgcaccc ggagccaccc ggtggagcgg
180
gcttgccgc ggcagcc atg tcc atg ggc ctg gag atc acg ggc acc gcg
Met Ser Met Gly Leu Glu Ile Thr Gly Thr Ala

|                   | ,          |            |            |            | 1                 |                   |            | į          | 5          |                   |            |            |            | 10         |                   |      |
|-------------------|------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------|
|                   |            |            |            |            |                   | ctg<br>Leu        |            |            |            |                   |            |            |            |            |                   | 278  |
|                   |            |            |            |            |                   | ttc<br>Phe        |            |            |            |                   |            |            |            |            |                   | 326  |
|                   | _          |            |            |            | _                 | tgg<br>Trp<br>50  | _          |            | _          |                   |            | -          | _          |            |                   | 374  |
| cag<br>Gln<br>60  | atg<br>Met | cag<br>Gln | tgc<br>Cys | aag<br>Lys | gtg<br>Val<br>65  | tac<br>Tyr        | gac<br>Asp | tcg<br>Ser | ctg<br>Leu | ctg<br>Leu<br>70  | gca<br>Ala | ctg<br>Leu | cca<br>Pro | cag<br>Gln | gac<br>Asp<br>75  | 422  |
|                   |            |            |            |            |                   | ctc<br>Leu        |            |            |            |                   |            |            |            |            |                   | 470  |
|                   |            |            |            |            |                   | ctg<br>Leu        |            |            |            |                   |            |            |            |            |                   | 518  |
|                   |            |            |            |            |                   | gcc<br>Ala        |            |            |            |                   |            |            |            |            |                   | 566  |
|                   |            |            |            |            |                   | ctc<br>Leu<br>130 |            |            |            |                   |            |            |            |            |                   | 614  |
| aac<br>Asn<br>140 | acc<br>Thr | att<br>Ile | atc<br>Ile | cgg<br>Arg | gac<br>Asp<br>145 | ttc<br>Phe        | tac<br>Tyr | aac<br>Asn | ccc<br>Pro | gtg<br>Val<br>150 | gtg<br>Val | ccc<br>Pro | gag<br>Glu | gcg<br>Ala | cag<br>Gln<br>155 | 662  |
|                   |            |            |            |            |                   | ggc               |            |            |            |                   |            |            |            |            |                   | 710  |
|                   |            |            |            |            |                   | gcg<br>Ala        |            |            |            |                   |            |            |            |            |                   | 758  |
|                   |            |            |            |            |                   | acc<br>Thr        |            |            |            |                   |            |            |            |            |                   | 806  |
|                   |            |            |            |            |                   | ctg<br>Leu<br>210 |            |            |            |                   |            |            |            |            |                   | 854  |
| gtc<br>Val<br>220 | taag       | ggac       | ag a       | .cgca      | .ggga             | g ac              | ccca       | .ccac      | cac        | cacc              | acc        | acca       | acac       | ca         |                   | 907  |
| ccac              | cacc       | ac c       | gcga       | gctg       | g ag              | cgcg              | cacc       | agg        | ccat       | cca               | gcgt       | gcag       | cc t       | tgcc       | tcgga             | 967  |
| ggcc              | agcc       | ca c       | cccc       | agaa       | g cc              | agga              | agcc       | ccc        | gcgc       | tgg               | actg       | gggc       | ag c       | ttcc       | ccagc             | 1027 |
| agcc              | acgg       | ct t       | tgcg       | ggcc       | g gg              | cagt              | cgac       | ttc        | aaaa       | ccc               | aggg       | acca       | ac c       | tgca       | tggac             | 1087 |
| tgtg              | aaac       | ct c       | accc       | ttct       | g ga              | gcac              | gggg       | cct        | gggt       | gac               | cgcc       | aata       | ct t       | gacc       | acccc             | 1147 |
| gtcg              | agcc       | сс а       | tcgg       | gecg       | c tg              | cccc              | catg       | ctc        | gcgc       | tgg               | gcag       | ggac       | cg g       | cago       | cctgg             | 1207 |

| , aag      | iggg (     | act        | tgat       | attt       | tt c       | aata       | aaag       | c ct        | ttcg       | rttt       | gca        | aaaa       | aaa        | aaaa       | aaaaaa     |
|------------|------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|------------|
| aaa        | aaaa       | aaa        | aaaa       | aaaa       | aa a       | aaaa.      | aa         |             |            |            |            |            |            |            |            |
| <21        | .0>        | 16         |            |            |            | •          |            |             | . ,        |            |            | •          |            | •          |            |
| <21        | .1>        | 220        |            |            |            |            |            |             | •          |            |            |            |            |            |            |
| <21        | .2>        | PRT        |            |            |            |            |            |             |            |            |            |            |            |            |            |
| <21        | .3>        | NM_C       | 0130       | 6 CL       | DN3,       | cla        | udin       | 3           |            |            |            | •          |            |            |            |
|            |            |            |            |            |            |            | •          |             | ٠.         |            |            |            |            |            |            |
| <40        | 0>         | 16         |            |            |            |            |            |             |            |            |            |            |            |            |            |
| Met<br>1   | Ser        | Met        | . Gly      | Leu<br>5   | Glu        | Ile        | Thr        | Gly         | Thr<br>10  | Ala        | Leu        | Ala        | Val        | Leu<br>15  | Glý        |
| Trp        | Leu        | Gly        | Thr<br>20  | Ile        | Val        | Cys        | Суз        | Ala<br>25   | Leu        | Pro        | Met        | Trp        | Arg<br>30  | Val        | Ser        |
| Ala        | Phe        | Ile<br>35  | Gly        | Ser        | Asn        | Ile        | Ile<br>40  | Thr         | Ser        | Gln        | Asn        | Ile<br>45  | Trp        | Glu        | Gly        |
| Leu        | Trp<br>50  | Met        | Asn        | Cys        | Val        | Val<br>55  | Gln        | Ser         | Thr        | Gly        | Gln<br>60  | Met        | Gln        | Суз        | Lys        |
| Val<br>65  | Tyr        | Asp        | Ser        | Leu        | Leu<br>70  | Ala        | Leu        | Pro         | Gln        | Asp<br>75  | Leu        | Gln        | Ala        | Ala        | Arg<br>80  |
| Ala        | Leu        | Ile        | Val        | Val<br>85  | Ala        | Ile        | Leu<br>    | Leu         | Ala<br>90  | Ala        | Phe        | Gly        | Leu        | Leu<br>95  | Val        |
| Ala        | Leu        | Val        | Gly<br>100 | Ala        | Gln        | Cys        | Thr        | Asn<br>105  | Суз        | Val        | Gln        | Asp        | Asp<br>110 | Thr        | Ala        |
| Lys        | Ala        | Lys<br>115 | Ile        | Thr        | Ile        | Val        | Ala<br>120 | Gly         | Val        | Leu        | Phe        | Leu<br>125 | Leu        | Ala        | Ala        |
| Leu        | Leu<br>130 | Thr        | Leu        | Val        | Pro        | Val<br>135 | Ser        | Trp         | Ser        | Ala        | Asn<br>140 | Thr        | Ile        | Ile        | Arg        |
| Asp<br>145 | Phe        | Tyr        | Asn        | Pro        | Val<br>150 | Val        | Pro        | Glu         | Ala        | Gln<br>155 | Lys        | Arg        | Glu        | Met        | Gly<br>160 |
| Ala        | Gly        | Leu        | Tyr        | Val<br>165 | Gly        | Trp        | Ala        | Ala         | Ala<br>170 | Ala        | Leu        | Gln        | Leu        | Leu<br>175 | Gly        |
| Gly        | Ala        | Leu        | Leu<br>180 | Cys        | Cys        | Ser        | Cys        | Pro<br>185. |            | Arg        | Glu<br>:   | Lys        | Lys<br>190 | Tyr        | Thr        |
| Ala        | Thr        | Lys<br>195 | Val        | Val        | Tyr        | Ser        | Ala<br>200 | Pro         | Arg        | Ser        | Thr        | Gly<br>205 | Pro        | Gly        | Ala        |

| Ser Leu Gly Thr Gly Tyr Asp Arg Lys Asp Tyr Val<br>210 215 220                                                                                      |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <210> 17                                                                                                                                            |     |
| <211> 1853                                                                                                                                          |     |
| <212> DNA                                                                                                                                           |     |
| <213> NM_022454 SOX17                                                                                                                               |     |
|                                                                                                                                                     |     |
| <220>                                                                                                                                               |     |
| <221> CDS                                                                                                                                           |     |
| <222> (205)(1446)                                                                                                                                   |     |
| <223>                                                                                                                                               |     |
|                                                                                                                                                     |     |
| <400> 17                                                                                                                                            |     |
| gcagtgtcac taggccggct gggggccctg ggtacgctgt agaccagacc                                                                                              | 60  |
| agaacacggg cggcggcttc gggccgggag acccgcgcag ccctcggggc atctcagtgc                                                                                   | 120 |
| ctcactcccc accccctccc ccgggtcggg ggaggcggcg cgtccggcgg agggttgagg                                                                                   | 180 |
| ggagcggggc aggcctggag cgcc atg agc agc ccg gat gcg gga tac gcc<br>Met Ser Ser Pro Asp Ala Gly Tyr Ala<br>1 5                                        | 231 |
| agt gac gac cag agc cag acc cag agc gcg ctg ccc gcg gtg atg gcc<br>Ser Asp Asp Gln Ser Gln Thr Gln Ser Ala Leu Pro Ala Val Met Ala<br>10 15 20 25   | 279 |
| ggg ctg ggc ccc tgc ccc tgg gcc gag tcg ctg agc ccc atc ggg gac<br>Gly Leu Gly Pro Cys Pro Trp Ala Glu Ser Leu Ser Pro Ile Gly Asp<br>30 35 40      | 327 |
| atg aag gtg aag ggc gag gcg ccg gcg aac agc gga gca ccg gcc ggg<br>Met Lys Val Lys Gly Glu Ala Pro Ala Asn Ser Gly Ala Pro Ala Gly<br>45 50 55      | 375 |
| gcc gcg ggc cga gcc aag ggc gag tcc cgt atc cgg cgg ccg atg aac<br>Ala Ala Gly Arg Ala Lys Gly Glu Ser Arg Ile Arg Arg Pro Met Asn<br>60 65 70      | 423 |
| get ttc atg gtg tgg get aag gae gag ege aag egg etg geg eag eag                                                                                     | 471 |
| Ala Phe Met Val Trp Ala Lys Asp Glu Arg Lys Arg Leu Ala Gln Gln<br>75 80 85                                                                         |     |
| aat cca gac ctg cac aac gcc gag ttg agc aag atg ctg ggc aag tcg<br>Asn Pro Asp Leu His Asn Ala Glu Leu Ser Lys Met Leu Gly Lys Ser<br>90 95 100 105 | 519 |
| tgg aag gcg ctg acg ctg gcg gag aag cgg ccc ttc gtg gag gag gca<br>Trp Lys Ala Leu Thr Leu Ala Glu Lys Arg Pro Phe Val Glu Glu Ala<br>110 115 120   | 567 |
| gag cgg ctg cgc gtg cag cac atg cag gac cac ccc aac tac aag tac<br>Glu Arg Leu Arg Val Gln His Met Gln Asp His Pro Asn Tyr Lys Tyr<br>125 130 135   | 615 |

|   |                   |                   |                   | g Arg             |                   |                   |                   |                   | Lys               |                   |                   |                     |                   | Va.               |                     | ggc<br>Gly        | 663    |
|---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|---------------------|-------------------|--------|
|   | Gl <sup>7</sup>   | tto<br>Phe        | e Let             | g cad             | ggc<br>Gly        | ctg<br>/ Leu      | get<br>Ala<br>160 | Glu               | ccg<br>Pro        | cag<br>Gln        | g gcg<br>Ala      | g gcc<br>Ala<br>165 | a Ala             | cto<br>Lev        | ı Gl                | ccc<br>Pro        | 711    |
|   | gag<br>Glu<br>170 | : Gl              | Gly               | cgc<br>Arg        | gtg<br>Val        | gcc<br>Ala        | Met               | gac<br>Asp        | ggc               | ctg<br>Leu        | ggc<br>Gly        | Let                 | caç<br>Glr        | tto<br>Phe        | ccc<br>Pro          | gag<br>Glu<br>185 | 759    |
|   | cag<br>Gln        | GJ7               | tto<br>Phe        | e ccc             | gcc<br>Ala<br>190 | Gly               | ccg<br>Pro        | ccg<br>Pro        | ctg<br>Leu        | ctg<br>Leu<br>195 | Pro               | ccg<br>Pro          | cac<br>His        | ato<br>Met        | ggc<br>: Gly<br>200 | ggc               | 807    |
|   | cac               | tac               | cgc               | gac               | tgc:              | cag               | agt               | ctg               | ggc               | gcg               | cct               | ccg                 | cto               | gac               | ggc                 | tac               | 855    |
|   | His               | Туг               | Arg               | Asp<br>205        |                   | Gln               | Ser               | Leu               | Gly<br>210        |                   | Pro               | Pro                 | Leu               | Asp<br>215        | _                   | Tyr               |        |
|   | ccg<br>Pro        | Leu               | Pro<br>220        | Thr               | Pro               | gac<br>Asp        | acg<br>Thr        | tcc<br>Ser<br>225 | Pro               | ctg<br>Leu        | gac               | ggc                 | gtg<br>Val<br>230 | Asp               | ccc<br>Pro          | gac<br>Asp        | 903    |
|   | ccg<br>Pro        | gct<br>Ala<br>235 | Phe               | ttc<br>Phe        | gcc<br>Ala        | gcc<br>Ala        | ccg<br>Pro<br>240 | Met               | ccc<br>Pro        | Gly               | gac<br>Asp        | tgc<br>Cys<br>245   | Pro               | gcg<br>Ala        | gcc<br>Ala          | ggc<br>Gly        | 951    |
|   | acc<br>Thr<br>250 | Tyr               | agc<br>Ser        | tac<br>Tyr        | gcg<br>Ala        | cag<br>Gln<br>255 | Val               | tcg<br>Ser        | gac<br>Asp        | tac<br>Tyr        | gct<br>Ala<br>260 | Gly                 | ccc<br>Pro        | ccg<br>Pro        | gag<br>Glu          | cct<br>Pro<br>265 | 999    |
|   | ccc<br>Pro        | gcc<br>Ala        | ggt<br>Gly        | ccc               | atg<br>Met<br>270 | cac<br>His        | ccc<br>Pro        | cga<br>Arg        | ctc<br>Leu        | ggc<br>Gly<br>275 | cca<br>Pro        | gag<br>Glu          | ccc<br>Pro        | gcg<br>Ala        | ggt<br>Gly<br>280   | ccc<br>Pro        | 1047   |
| • | tcg<br>Ser        | att<br>Ile        | ccg<br>Pro        | ggc<br>Gly<br>285 | ctc<br>Leu        | ctg<br>Leu        | gcg<br>Ala        | cca<br>Pro        | ccc<br>Pro<br>290 | agc<br>Ser        | gcc<br>Ala        | ctt<br>Leu          | cac<br>His        | gtg<br>Val<br>295 | tac<br>Tyr          | tac<br>Tyr        | 1095   |
|   | ggc<br>Gly        | gcġ<br>Ala        | atg<br>Met<br>300 | Gly               | tcg<br>Ser        | ccc<br>Pro        | GJ À<br>āāā       | gcg<br>Ala<br>305 | ggc               | ggc<br>Gly        | Gly<br>ggg        | cgc<br>Arg          | ggc<br>Gly<br>310 | ttc<br>Phe        | cag<br>Gln          | atg<br>Met        | 1143   |
|   | cag<br>Gln        | ccg<br>Pro<br>315 | caa<br>Gln        | cac<br>His        | cag<br>Gln        | cac<br>His        | cag<br>Gln<br>320 | cac<br>His        | cag<br>Gln        | cac<br>His        | cag<br>Gln        | cac<br>His<br>325   | cac<br>His        | ccc<br>Pro        | ccg<br>Pro          | ggc<br>Gly        | 1191   |
|   | ccc               | gga               | cag               | ccg               | tcg               | ccc               | cct               | ccg               | gag               | gca               | ctg               | ccc                 | tgc               | cgg               | gac                 | ggc               | 1239   |
|   | Pro<br>330        | Gly               | Gln               | Pro               | Ser               | Pro<br>335        | Pro               | Pro               | Glu               | Ala               | Leu<br>340        | Pro                 | Cys               | Arg               | Asp                 | Gly<br>345        | •      |
|   | acg<br>Thr        | gac<br>Asp        | ccc<br>Pro        | agt<br>Ser        | cag<br>Gln<br>350 | ccc<br>Pro        | gcc<br>Ala        | gag<br>Glu        | ctc<br>Leu        | ctc<br>Leu<br>355 | G17<br>ggg        | gag<br>Glu          | gtg<br>Val        | gac<br>Asp        | cgc<br>Arg<br>360   | acg<br>Thr        | 1287   |
|   | gaa<br>Glu        | ttt<br>Phe        | gaa<br>Glu        | cag<br>Gln<br>365 | tat<br>Tyr        | ctg<br>Leu        | cac<br>His        | Phe               | gtg<br>Val<br>370 | tgc<br>Cys        | aag<br>Lys        | cct<br>Pro          | gag<br>Glu        | atg<br>Met<br>375 | ggc<br>Gly          | ctc<br>Leu        | 1335   |
|   | ccc<br>Pro        | tac<br>Tyr        | cag<br>Gln<br>380 | GJ Å<br>āāā       | cat<br>His        | gac<br>Asp        | Ser               | ggt<br>Gly<br>385 | gtg<br>Val        | aat<br>Asn        | ctc<br>Leu        | Pro                 | gac<br>Asp<br>390 | agc<br>Ser        | cac<br>His          | ggg<br>Gly        | . 1383 |
|   | gcc               | att               | tcc               | tcg               | gtg               | gtg               | tcc               | gac               | gcc               | agc               | tcc               | gcg                 | gta               | tat               | tac                 | tgc               | 1431   |

| Ala Ile Ser Ser Val Val Ser Asp Ala Ser Ser Ala Val Tyr Tyr Cys<br>395 400 405                |
|-----------------------------------------------------------------------------------------------|
| aac tat cct gac gtg tgacaggtcc ctgatccgcc ccagcctgca ggccagaagc<br>Asn Tyr Pro Asp Val<br>410 |
| agtgttacac acttcctgga ggagctaagg aaatcctcag actcctgggt ttttgttgtt                             |
| gctgttgttg ttttttaaaa ggtgtgttgg catataattt atggtaattt attttgtctg                             |
| ccacttgaac agtttggggg ggtgaggttt catttaaaat ttgttcagag atttgtttcc                             |
| catagttgga ttgtcaaaac cctatttcca agttcaagtt aactagcttt gaatgtgtcc                             |
| caaaacagct teetecattt eetgaaagtt tattgateaa agaaatgttg teetgggtgt                             |
| gttttttcaa tottotaaaa aataaaatot ggaatootga aaaaaaaaaa                                        |
| aaaaaaa                                                                                       |
| <210> 18                                                                                      |
| <211> 414                                                                                     |
| <212> PRT                                                                                     |
| <213> NM_022454 SOX17                                                                         |
| <400> 18                                                                                      |
| Met Ser Ser Pro Asp Ala Gly Tyr Ala Ser Asp Asp Gln Ser Gln Thr 1 5 10 15                     |
| Gln Ser Ala Leu Pro Ala Val Met Ala Gly Leu Gly Pro Cys Pro Trp 20 25 30                      |
| Ala Glu Ser Leu Ser Pro Ile Gly Asp Met Lys Val Lys Gly Glu Ala 35 40 45                      |
| Pro Ala Asn Ser Gly Ala Pro Ala Gly Ala Ala Gly Arg Ala Lys Gly 50 55 60                      |
| Glu Ser Arg Ile Arg Pro Met Asn Ala Phe Met Val Trp Ala Lys 65 70 75 80                       |
| Asp Glu Arg Lys Arg Leu Ala Gln Gln Asn Pro Asp Leu His Asn Ala<br>85 90 95                   |
| Glu Leu Ser Lys Met Leu Gly Lys Ser Trp Lys Ala Leu Thr Leu Ala<br>100 105 110                |
| Glu Lys Arg Pro Phe Val Glu Glu Ala Glu Arg Leu Arg Val Gln His<br>115 120 125                |

Met Gln Asp His Pro Asn Tyr Lys Tyr Arg Pro Arg Arg Lys Gln 130 135 140

Val Lys Arg Leu Lys Arg Val Glu Gly Gly Phe Leu His Gly Leu Ala 145 155 160

Glu Pro Gln Ala Ala Ala Leu Gly Pro Glu Gly Gly Arg Val Ala Met 165 170 175

Asp Gly Leu Gly Leu Gln Phe Pro Glu Gln Gly Phe Pro Ala Gly Pro 180 185 190

Pro Leu Leu Pro Pro His Met Gly Gly His Tyr Arg Asp Cys Gln Ser 195 200 205

Leu Gly Ala Pro Pro Leu Asp Gly Tyr Pro Leu Pro Thr Pro Asp Thr 210 215 220

Ser Pro Leu Asp Gly Val Asp Pro Asp Pro Ala Phe Phe Ala Ala Pro 225 230 235 240

Met Pro Gly Asp Cys Pro Ala Ala Gly Thr Tyr Ser Tyr Ala Gln Val 245 250 255

Ser Asp Tyr Ala Gly Pro Pro Glu Pro Pro Ala Gly Pro Met His Pro 260 265 270

Arg Leu Gly Pro Glu Pro Ala Gly Pro Ser Ile Pro Gly Leu Leu Ala 275 280 285

Pro Pro Ser Ala Leu His Val Tyr Tyr Gly Ala Met Gly Ser Pro Gly 290 295 300

Ala Gly Gly Gly Arg Gly Phe Gln Met Gln Pro Gln His Gln His Gln 305 310 315 320

His Gln His Gln His His Pro Pro Gly Pro Gly Gln Pro Ser Pro Pro 325 330 335

Pro Glu Ala Leu Pro Cys Arg Asp Gly Thr Asp Pro Ser Gln Pro Ala 340 345 350

Glu Leu Leu Gly Glu Val Asp Arg Thr Glu Phe Glu Gln Tyr Leu His 355 360 365

Phe Val Cys Lys Pro Glu Met Gly Leu Pro Tyr Gln Gly His Asp Ser 370 375 380

Gly Val Asn Leu Pro Asp Ser His Gly Ala Ile Ser Ser Val Val Ser 385 390 395 400

Asp Ala Ser Ser Ala Val Tyr Tyr Cys Asn Tyr Pro Asp Val

| <210>                     | 19                    |                          |                         |                       |                  |            |                   |                   |                   |                   |            |                   |      |
|---------------------------|-----------------------|--------------------------|-------------------------|-----------------------|------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|------|
| <211>                     | 3702                  |                          |                         |                       |                  |            |                   | •                 |                   |                   |            |                   |      |
| <212>                     | DNA                   |                          |                         |                       |                  |            |                   |                   |                   |                   |            |                   | •    |
| <213>                     | им_00                 | 5682 GF                  | PR56                    |                       |                  |            |                   |                   |                   |                   |            |                   |      |
|                           |                       |                          |                         | •                     |                  |            |                   |                   |                   |                   |            |                   |      |
| <220>                     |                       |                          |                         |                       |                  |            |                   |                   |                   |                   |            |                   |      |
| <221>                     | CDS                   |                          |                         |                       |                  |            |                   |                   |                   |                   |            |                   |      |
| <222>                     | (159)                 | (2237                    | )                       |                       |                  |            |                   |                   |                   |                   |            |                   |      |
| <223>                     |                       |                          |                         |                       |                  |            |                   | ٠                 |                   |                   |            |                   |      |
|                           |                       |                          | ē                       |                       |                  |            |                   |                   |                   |                   |            |                   |      |
| <400>                     | 19                    | actotat                  | a                       | aaata                 |                  | +          | ~+~~              |                   |                   |                   |            |                   | 60   |
| acctcca                   |                       | gctctgt                  |                         |                       |                  |            |                   |                   |                   |                   |            |                   | . 60 |
|                           |                       |                          |                         |                       |                  |            |                   |                   |                   |                   |            |                   | 120  |
| caggtg                    | giga ci               | LCCdag                   | ag tga                  | cceg                  | e gg             | agga       |                   | et T              |                   |                   |            | er Leu            | 176  |
| ctg caq<br>Leu Glr        | Thr I                 | ica ctg<br>Thr Leu<br>10 | ttc c                   | g cto<br>eu Lei       | agt<br>Ser<br>15 | ctg<br>Leu | ctc<br>Leu        | ttc<br>Phe        | ctg<br>Leu        | gtc<br>Val<br>20  | caa<br>Gln | ggt<br>Gly        | 224  |
| gcc cad<br>Ala His        | ggc a<br>Gly A<br>25  | agg ggc<br>Arg Gly       | cac ac                  | gg gaa<br>g Glu<br>30 | gac<br>Asp       | ttt<br>Phe | cgc<br>Arg        | ttc<br>Phe        | tgc<br>Cys<br>35  | agc<br>Ser        | cag<br>Gln | cgg<br>Arg        | 272  |
| aac cac<br>Asn Glr<br>40  | g aca c<br>n Thr H    | ac agg<br>His Arg        | agc ag<br>Ser Se<br>45  | er Leu                | cac<br>His       | tac<br>Tyr | aaa<br>Lys        | ccc<br>Pro<br>50  | aca<br>Thr        | cca<br>Pro        | gac<br>Asp | ctg<br>Leu        | 320  |
| cgc atc<br>Arg Ile<br>55  | tcc a<br>Ser I        | itc gag<br>:le Glu       | aac to<br>Asn Se<br>60  | c gaa<br>r Glu        | gag<br>Glu       | gcc<br>Ala | ctc<br>Leu<br>65  | aca<br>Thr        | gtc<br>Val        | cat<br>His        | gcc<br>Ala | cct<br>Pro<br>70  | 368  |
| ttc cct<br>Phe Pro        |                       |                          |                         |                       | Arg              | Ser        |                   |                   |                   |                   |            |                   | 416  |
| ctc tac<br>Leu Tyr        | His P                 | tc tgc<br>he Cys<br>0    | ctc ta<br>Leu Ty        | c tgg<br>r Trp        | aac<br>Asn<br>95 | cga<br>Arg | cat<br>His        | gct<br>Ala        | ej<br>gaa         | aga<br>Arg<br>100 | tta<br>Leu | cat<br>His        | 464  |
| ctt ctc<br>Leu Leu        | tat g<br>Tyr G<br>105 | gc aag<br>ly Lys         | cgt ga<br>Arg As        | c ttc<br>p Phe<br>110 | ttg<br>Leu       | ctg<br>Leu | agt<br>Ser        | gac<br>Asp        | aaa<br>Lys<br>115 | gcc<br>Ala        | tct<br>Ser | agc<br>Ser        | 512  |
| ctc ctc<br>Leu Leu<br>120 | Cys P                 | tc cag<br>he Gln         | cac ca<br>His Gl<br>12  | n Glu                 | gag<br>Glu       | agc<br>Ser | ctg<br>Leu        | gct<br>Ala<br>130 | Gln               | ggc<br>Gly        | ccc<br>Pro | ccg<br>Pro        | 560  |
| ctg tta<br>Leu Leu<br>135 | gcc a                 | ct tct<br>hr Ser         | gtc ac<br>Val Th<br>140 | c tcc<br>r Ser        | tgg<br>Trp       | tgg<br>Trp | agc<br>Ser<br>145 | cct<br>Pro        | cag<br>Gln        | aac<br>Asn        | atc<br>Ile | agc<br>Ser<br>150 | 608  |
| ctg ccc                   | agt go                | cc gcc                   | agc tt                  | c acc                 | ttc              | tee        | ttc               | cac               | agt               | cct               | ccc        | cac               | 656  |

| Leu | Pro | Ser | Ala | Ala<br>155        | Ser | Phe | Thr | Phe | Ser<br>160 | Phe | His | Ser | Pro | Pro<br>165 | His |       |
|-----|-----|-----|-----|-------------------|-----|-----|-----|-----|------------|-----|-----|-----|-----|------------|-----|-------|
|     |     |     |     | aat<br>Asn        |     |     |     |     |            |     |     |     |     |            |     | 704   |
|     | _   | _   |     | agc<br>Ser        | _   |     | _   | -   |            |     | _   | _   | _   |            |     | . 752 |
|     |     |     |     | gcc<br>Ala        |     |     |     |     |            |     |     |     |     |            |     | 800   |
|     |     |     |     | gtg<br>Val        |     |     |     |     |            |     |     |     |     |            |     | 84,8  |
|     |     |     |     | gcc<br>Ala<br>235 |     |     |     |     |            |     |     |     |     |            |     | 896   |
| _   | _   | _   |     | atc<br>Ile        |     |     |     | -   |            |     |     | _   | -   |            |     | 944   |
|     |     |     |     | gtg<br>Val        |     |     |     |     |            |     |     |     |     |            |     | 992   |
|     |     |     |     | gag<br>Glu        |     |     |     |     |            |     |     |     |     |            |     | 1040  |
|     |     |     |     | ttc<br>Phe        |     |     |     |     |            |     |     |     |     |            |     | 1088  |
|     |     |     |     | att<br>Ile<br>315 |     |     |     |     |            | Lys |     |     |     |            |     | 1136  |
| -   |     |     |     | ctc<br>Leu        |     |     | _   |     | _          |     | _   | _   | _   |            |     | 1184  |
|     | _   |     | _   | gtg<br>Val        |     |     | _   | -   | -          |     |     | _   |     |            |     | 1232  |
|     |     |     |     | agt<br>Ser        |     |     |     |     |            |     |     |     |     |            |     | 1280  |
|     |     |     |     | tgc<br>Cys        |     |     |     |     |            |     |     |     |     |            |     | 1328  |
|     |     |     |     | gtg<br>Val<br>395 |     |     |     |     |            |     |     |     |     |            |     | 1376  |
|     |     |     |     | tgt<br>Cys        |     |     |     |     |            |     |     |     |     |            |     | 1424  |
| gcc | gcc | tac | ctc | tgc               | tcc | agg | gtg | ccc | ctg        | ccg | tgc | agg | agg | aaa        | cct | 1472  |

| Ala               | Ala               | Tyr<br>425 | Leu        | Суз               | Ser               | Arg               | Val<br>430 | Pro        | Leu               | Pro               | Суз               | Arg<br>435 | Arg        | Lys               | Pro               | •    |
|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|------|
|                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |            |            | gtc<br>Val        |                   | 1520 |
| ctg<br>Leu<br>455 | ctg<br>Leu        | gac<br>Asp | acg<br>Thr | agc<br>Ser        | ttc<br>Phe<br>460 | ctg<br>Leu        | ctc<br>Leu | agc<br>Ser | gag<br>Glu        | ccg<br>Pro<br>465 | gtg<br>Val        | gcc<br>Ala | ctg<br>Leu | aca<br>Thr        | ggc<br>Gly<br>470 | 1568 |
| tct<br>Ser        | gag<br>Glu        | gct<br>Ala | ggc        | tgc<br>Cys<br>475 | cga<br>Arg        | gcc<br>Ala        | agt<br>Ser | gcc<br>Ala | atc<br>Ile<br>480 | ttc<br>Phe        | ctg<br>Leu        | cac<br>His | ttc<br>Phe | tcc<br>Ser<br>485 | ctg<br>Leu        | 1616 |
|                   |                   | -          |            |                   |                   | _                 |            |            |                   |                   |                   |            |            | tac<br>Tyr        |                   | 1664 |
|                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |            |            | ctc<br>Leu        |                   | 1712 |
|                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |            |            | ctg<br>Leu        |                   | 1760 |
|                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |            |            | gtg<br>Val        |                   | 1808 |
|                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |            |            | cgg<br>Arg<br>565 |                   | 1856 |
|                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |            |            | gtg<br>Val        |                   | 1904 |
| -                 |                   |            | _          | _                 | _                 |                   |            |            | _                 |                   | -                 | _          |            | ctg<br>Leu        |                   | 1952 |
|                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |            |            | ctg<br>Leu        |                   | 2000 |
| ctc<br>Leu<br>615 | agc<br>Ser        | ctg<br>Leu | gtc<br>Val | ctt<br>Leu        | ggc<br>Gly<br>620 | ctg<br>Leu        | ccc<br>Pro | tgg<br>Trp | gcc<br>Ala        | ttg<br>Leu<br>625 | atc<br>Ile        | ttc<br>Phe | ttc<br>Phe | tcc<br>Ser        | ttt<br>Phe<br>630 | 2048 |
|                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |            |            | atc<br>Ile<br>645 |                   | 2096 |
|                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |            |            | atg<br>Met        |                   | 2144 |
|                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |            |            | gac<br>Asp        |                   | 2192 |
| gcc<br>Ala        | agg<br>Arg<br>680 | ctc<br>Leu | ccc<br>Pro | atc<br>Ile        | agc<br>Ser        | tcg<br>Ser<br>685 | ggc<br>Gly | agc<br>Ser | acc<br>Thr        | tcg<br>Ser        | tcc<br>Ser<br>690 | agc<br>Ser | cgc<br>Arg | atc<br>Ile        |                   | 2237 |
| tago              | jecto             | ca g       | ICCCa      | cctg              | ic co             | atgt              | gato       | g aag      | gcaga             | gat               | gcgg              | ccto       | gt d       | gcac              | actgc             | 2297 |

| ctgtggcccc | cgagccaggc | ccagccccag | gccagtcagċ | cgcagacttt | ggaaagccca | 2357 |
|------------|------------|------------|------------|------------|------------|------|
| acgaccatgg | agagatgggc | cgttgccatg | gtggacggac | tcccgggctg | ggcttttgaa | 2417 |
| ttggccttgg | ggactactcg | gctctcactc | agctcccacg | ggactcagaa | gtgcgccgcc | 2477 |
| atgetgeeta | gggtactgtc | cccacatctg | tcccaaccca | gctggaggcc | tggtctctcc | 2537 |
| ttacaaaccc | tgggcccagc | cctcattgct | gggggccagg | ccttggatct | tgagggtctg | 2597 |
| gcacatcctt | aatcctgtgc | ccctgcctgg | gacagaaatg | tggctccagt | tgctctgtct | 2657 |
| ctcgtggtca | ccctgagggc | actctgcatc | ctctgtcatt | ttaacctcag | gtggcaccca | 2717 |
| gggcgaatgg | ggcccagggc | agaccttcag | ggccagagcc | ctggcggagg | agaggccctt | 2777 |
| tgccaggagc | acagcagcag | ctcgcctacc | tetgagecca | ggccccctcc | ctccctcagc | 2837 |
| ccccagtcc  | tccctccatc | ttccctgggg | ttetectect | ctcccagggc | ctccttgctc | 2897 |
| cttcgttcac | agctgggggt | ccccgattcc | aatgctgttt | tttggggagt | ggtttccagg | 2957 |
| agctgcctgg | tgtctgctgt | aaatgtttgt | ctactgcaca | agcctcggcc | tgcccctgag | 3017 |
| ccaggctcgg | taccgatgcg | tgggctgggc | taggtccctc | tgtccatctg | ggcctttgta | 3077 |
| tgagctgcat | tgcccttgct | caccctgacc | aagcacacgc | ctcagagggg | ccctcagcct | 3137 |
| ctcctgaagc | cctcttgtgg | caagaactgt | ggaccatgcc | agtcccgtct | ggtttccatc | 3197 |
| ccaccactcc | aaggactgag | actgacctcc | tctggtgaca | ctggcctaga | gcctgacact | 3257 |
| ctcctaagag | gttctctcca | agcccccaaa | tagctccagg | cgccctcggc | cgcccatcat | 3317 |
| ggttaattct | gtccaacaaa | cacacacggg | tagattgctg | gcctgttgta | ggtggtaggg | 337  |
| acacagatga | ccgacctggt | cactcctcct | gccaacattc | agtctggtat | gtgaggcgtg | 343  |
| cgtgaagcaa | gaactcctgg | agctacaggg | acagggagcc | atcattcctg | cctgggaatc | 349  |
| ctggaagact | tcctgcagga | gtcagcgttc | aatcttgacc | ttgaagatgg | gaaggatgtt | 355  |
| ctttttacgt | accaattctt | ttgtcttttg | atattaaaaa | gaagtacatg | ttcattgtag | 361  |
| agaatttgga | aactgtagaa | gagaatcaag | aagaaaaata | aaaatcagct | gttgtaatcg | 367  |
| cctagcaaaa | aaaaaaaaa  | aaaaa      |            |            |            | 370  |
| <210> 20   |            |            |            |            |            |      |
|            |            |            |            |            |            |      |

<211> 693

<212> PRT

<213> NM\_005682 GPR56

<400> 20

Met Thr Pro Gln Ser Leu Leu Gln Thr Thr Leu Phe Leu Leu Ser Leu 15

Leu Phe Leu Val Gln Gly Ala His Gly Arg Gly His Arg Glu Asp Phe

20 25 Arg Phe Cys Ser Gln Arg Asn Gln Thr His Arg Ser Ser Leu His Tyr Lys Pro Thr Pro Asp Leu Arg Ile Ser Ile Glu Asn Ser Glu Glu Ala Leu Thr Val His Ala Pro Phe Pro Ala Ala His Pro Ala Ser Arg Ser 70 . 75 Phe Pro Asp Pro Arg Gly Leu Tyr His Phe Cys Leu Tyr Trp Asn Arg 85 His Ala Gly Arg Leu His Leu Leu Tyr Gly Lys Arg Asp Phe Leu Leu 105 Ser Asp Lys Ala Ser Ser Leu Leu Cys Phe Gln His Gln Glu Glu Ser 120 Leu Ala Gln Gly Pro Pro Leu Leu Ala Thr Ser Val Thr Ser Trp Trp 135 Ser Pro Gln Asn Ile Ser Leu Pro Ser Ala Ala Ser Phe Thr Phe Ser 145 150 Phe His Ser Pro Pro His Thr Ala Ala His Asn Ala Ser Val Asp Met 170 Cys Glu Leu Lys Arg Asp Leu Gln Leu Leu Ser Gln Phe Leu Lys His. 185 Pro Gln Lys Ala Ser Arg Arg Pro Ser Ala Ala Pro Ala Ser Gln Gln 200 Leu Gln Ser Leu Glu Ser Lys Leu Thr Ser Val Arg Phe Met Gly Asp 210 215 220 Met Val Ser Phe Glu Glu Asp Arg Ile Asn Ala Thr Val Trp Lys Leu 230 Gln Pro Thr Ala Gly Leu Gln Asp Leu His Ile His Ser Arg Gln Glu Glu Glu Gln Ser Glu Ile Met Glu Tyr Ser Val Leu Leu Pro Arg Thr 265

Leu Phe Gln Arg Thr Lys Gly Arg Ser Gly Glu Ala Glu Lys Arg Leu

Leu Leu Val Asp Phe Ser Ser Gln Ala Leu Phe Gln Asp Lys Asn Ser

280

A 100 to 1

295 300 290 Ser His Val Leu Gly Glu Lys Val Leu Gly Ile Val Val Gln Asn Thr 315 310 Lys Val Ala Asn Leu Thr Glu Pro Val Val Leu Thr Phe Gln His Gln 325 330 Leu Gln Pro Lys Asn Val Thr Leu Gln Cys Val Phe Trp Val Glu Asp 340 345 Pro Thr Leu Ser Ser Pro Gly His Trp Ser Ser Ala Gly Cys Glu Thr 360 Val Arg Arg Glu Thr Gln Thr Ser Cys Phe Cys Asn His Leu Thr Tyr 375 Phe Ala Val Leu Met Val Ser Ser Val Glu Val Asp Ala Val His Lys 390 His Tyr Leu Ser Leu Leu Ser Tyr Val Gly Cys Val Val Ser Ala Leu 405 410 Ala Cys Leu Val Thr Ile Ala Ala Tyr Leu Cys Ser Arg Val Pro Leu 425 Pro Cys Arg Arg Lys Pro Arg Asp Tyr Thr Ile Lys Val His Met Asn 440 Leu Leu Leu Ala Val Phe Leu Leu Asp Thr Ser Phe Leu Leu Ser Glu 455 460 Pro Val Ala Leu Thr Gly Ser Glu Ala Gly Cys Arg Ala Ser Ala Ile 470 475 Phe Leu His Phe Ser Leu Leu Thr Cys Leu Ser Trp Met Gly Leu Glu 485 490 Gly Tyr Asn Leu Tyr Arg Leu Val Val Glu Val Phe Gly Thr Tyr Val 505 Pro Gly Tyr Leu Leu Lys Leu Ser Ala Met Gly Trp Gly Phe Pro Ile 520 Phe Leu Val Thr Leu Val Ala Leu Val Asp Val Asp Asn Tyr Gly Pro 535 Ile Ile Leu Ala Val His Arg Thr Pro Glu Gly Val Ile Tyr Pro Ser 550 .. 555

Met Cys Trp Ile Arg Asp Ser Leu Val Ser Tyr Ile Thr Asn Leu Gly
565 570 575

Leu Phe Ser Leu Val Phe Leu Phe Asn Met Ala Met Leu Ala Thr Met 580 590

Val Val Gln Ile Leu Arg Leu Arg Pro His Thr Gln Lys Trp Ser His 595 600 605

Val Leu Thr Leu Leu Gly Leu Ser Leu Val Leu Gly Leu Pro Trp Ala 610 615 620

Leu Ile Phe Phe Ser Phe Ala Ser Gly Thr Phe Gln Leu Val Val Leu 625 630 635 640

Tyr Leu Phe Ser Ile Ile Thr Ser Phe Gln Gly Phe Leu Ile Phe Ile 645 650 655

Trp Tyr Trp Ser Met Arg Leu Gln Ala Arg Gly Gly Pro Ser Pro Leu 660 665 670

Lys Ser Asn Ser Asp Ser Ala Arg Leu Pro Ile Ser Ser Gly Ser Thr 675 680 . 685

Ser Ser Ser Arg Ile 690

<210> 21

<211> 1332

<212> DNA

<213> NM\_001307 claudin 7, CLDN7

<220>

<221> CDS

<222> (427)..(1059)

<223>

<400> 21
ctgctggctc acctccgagc cacctctgct gcgcaccgca gcctcggacc tacagcccag 60
gatactttgg gacttgccgg cgctcagaaa cgcgcccaga cggcccctcc accttttgtt 120
tgcctagggt cgccgagagc gcccggaggg aaccgcctgg ccttcgggga ccaccaattt 180
tgtctggaac caccctcccg gcgtatccta ctccctgtgc cgcgaggcca tcgcttcact 240
ggaggggtcg atttgtgtg agtttggtga caagatttgc attcacctgg cccaaaccct 300
ttttgtctct ttgggtgacc ggaaaactcc acctcaagtt ttctttgtg gggctgcccc 360

| ccaa              | gtgt              | cg t              | tttgt             | ttta              | ic tg             | tagg              | gtct              | ccc               | gee               | ggc               | gccc                | cca               | gtg t             | ttt               | ctgagg            | 420               |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| gcgg              | raa a<br>N        | 1et 1             | gcc a<br>Ala A    | at t<br>Sn S      | cg g<br>Ser G     | gc c<br>ly I      | tg c              | ag t              | tg d<br>Leu I     | Seu (             | gc t<br>Sly E<br>LO | tc t              | tcc a<br>Ser N    | atg (<br>Met .    | gcc<br>Ala        | 468               |
| ctg<br>Leu<br>15  | ctg<br>Leu        | ggc<br>Gly        | tgg<br>Trp        | gtg<br>Val        | ggt<br>Gly<br>20  | ctg<br>Leu        | gtg<br>Val        | gcc<br>Ala        | tgc<br>Cys        | acc<br>Thr<br>25  | gcc<br>Ala          | atc<br>Ile        | ccg<br>Pro        | cag<br>Gln        | tgg<br>Trp<br>30  | 51 <sub>.</sub> 6 |
| cag<br>Gln        | atg<br>Met        | agc<br>Ser        | tcc<br>Ser        | tat<br>Tyr<br>35  | gcg<br>Ala        | ggt<br>Gly        | gac<br>Asp        | aac<br>Asn        | atc<br>Ile<br>40  | atc<br>Ile        | acg<br>Thr          | gcc<br>Ala        | cag<br>Gln        | gcc<br>Ala<br>45  | atg<br>Met        | 564               |
| tac<br>Tyr        | aag<br>Lys        | Gly               | ctg<br>Leu<br>50  | tgg<br>Trp        | atg<br>Met        | gac<br>Asp        | tgc<br>Cys        | gtc<br>Val<br>55  | acg<br>Thr        | cag<br>Gln        | agc<br>Ser          | acg<br>Thr        | ggg<br>Gly<br>60  | atg<br>Met        | atg<br>Met        | 612               |
| agc<br>Ser        | tgc<br>Cys        | aaa<br>Lys<br>65  | atg<br>Met        | tac<br>Tyr        | gac<br>Asp        | tcg<br>Ser        | gtg<br>Val<br>70  | ctc<br>Leu        | gcc<br>Ala        | ctg<br>Leu        | tcc<br>Ser          | gcg<br>Ala<br>75  | gcc<br>Ala        | ttg<br>Leu        | cag<br>Gln        | 660               |
| gcc<br>Ala        | act<br>Thr<br>80  | cga<br>Arg        | gcc<br>Ala        | cta<br>Leu        | atg<br>Met        | gtg<br>Val<br>85  | gtc<br>Val        | tcc<br>Ser        | ctg<br>Leu        | gtg<br>Val        | ctg<br>Leu<br>90    | Gly               | ttc<br>Phe        | ctg<br>Leu        | gcc<br>Ala        | 708               |
| atg<br>Met<br>95  | ttt<br>Phe        | gtg<br>Val        | gcc<br>Ala        | acg<br>Thr        | atg<br>Met<br>100 | G] À<br>dàc       | atg<br>Met        | aag<br>Lys        | tgc<br>Cys        | acg<br>Thr<br>105 | cgc<br>Arg          | tgt<br>Cys        | G1y<br>ggg        | gga<br>Gly        | gac<br>Asp<br>110 | 756               |
| gac<br>Asp        | aaa<br>Lys        | gtg<br>Val        | aag<br>Lys        | aag<br>Lys<br>115 | gcc<br>Ala        | cgt<br>Arg        | ata<br>Ile        | gcc<br>Ala        | atg<br>Met<br>120 | Gly               | gga<br>Gly          | Gly               | ata<br>Ile        | att<br>Ile<br>125 | ttc<br>Phe        | 804               |
| atc<br>Ile        | gtg<br>Val        | gca<br>Ala        | ggt<br>Gly<br>130 | ctt<br>Leu        | gcc<br>Ala        | acc<br>Thr        | ttg<br>Leu        | gta<br>Val<br>135 | Ala               | tgc<br>Cys        | tcc<br>Ser          | tgg<br>Trp        | tat<br>Tyr<br>140 | GT                | cat<br>His        | 852               |
| cag<br>Gln        | att               | gto<br>Val<br>145 | Thr               | gac<br>Asp        | ttt<br>Phe        | tat<br>Tyr        | aac<br>Asn<br>150 | cct<br>Pro        | ttg<br>Leu        | atc<br>Ile        | cct<br>Pro          | acc<br>Thr<br>155 | Asn               | att               | aag<br>Lys        | 900               |
| tat<br>Tyr        | gag<br>Glu<br>160 | Phe               | ggc<br>Gly        | cct<br>Pro        | gcc<br>Ala        | atc<br>Ile<br>165 | ttt<br>Phe        | att<br>Ile        | ggc               | tgg<br>Trp        | gca<br>Ala<br>170   | Gly               | tct<br>Ser        | gcc               | cta<br>Leu        | 948               |
| gtc<br>Val<br>175 | Ile               | ctg<br>Leu        | gga<br>Gly        | ggt<br>Gly        | gca<br>Ala<br>180 | Leu               | ctc<br>Leu        | tcc<br>Ser        | tgt<br>Cys        | Ser<br>185        | Cys                 | Pro               | Gly<br>Gly        | aat<br>Asr        | gag<br>Glu<br>190 | 996               |
| agc<br>Ser        | aag<br>Lys        | gct               | Gly<br>ggg        | tac<br>Tyr<br>195 | Arg               | gca<br>Ala        | ccc<br>Pro        | cgc               | Ser<br>200        | Tyr               | cct<br>Pro          | aaq<br>Lys        | tcc<br>Ser        | aac<br>Asr<br>205 | tct<br>Ser        | 1044              |
| tcc<br>Ser        | aag<br>Lys        | gaç               | tat<br>Tyr<br>210 | Val               | tga               | cctg              | gga               | tctc              | cttg              | ec c              | cago                | ctga              | ıc ag             | gcta              | atggg             | 1099              |
| agt               | gtct              | aga               | tgcc              | tgaa              | ag g              | gcct              | gggg              | c tg              | agct              | cago              | ctg                 | rtggg             | gcag              | ggt               | gccggac           | 1159              |
| aaa               | ggcc              | tcc               | tggt              | cact              | ct g              | tece              | tgca              | c to              | catg              | rtata             | gto                 | ctct              | tgg               | gtt               | gggggtg           | 1219              |
| ggg               | gggt              | gcc               | gttg              | gtgg              | ga g              | agac              | aaaa              | a ga              | ggga              | gagt              | gtg                 | cttt              | ttg               | taca              | agtaata           | 1279              |
| aaa               | aata              | agt               | attg              | ggaa              | aa a              | aaaa              | aaaa              | a aa              | aaaa              | aaaa              | aaa                 | aaaa              | aaa               | aaa               |                   | 1332              |

<210> 22

<211> 211

<212> PRT

<213> NM\_001307 claudin 7, CLDN7

<400> 22

Met Ala Asn Ser Gly Leu Gln Leu Leu Gly Phe Ser Met Ala Leu Leu 1 5 10 15

Gly Trp Val Gly Leu Val Ala Cys Thr Ala Ile Pro Gln Trp Gln Met 20 25 30

Ser Ser Tyr Ala Gly Asp Asn Ile Ile Thr Ala Gln Ala Met Tyr Lys 35 40

Gly Leu Trp Met Asp Cys Val Thr Gln Ser Thr Gly Met Met Ser Cys 50 55 60

Lys Met Tyr Asp Ser Val Leu Ala Leu Ser Ala Ala Leu Gln Ala Thr 65 70 75 80

Arg Ala Leu Met Val Val Ser Leu Val Leu Gly Phe Leu Ala Met Phe 85 90 95

Val Ala Thr Met Gly Met Lys Cys Thr Arg Cys Gly Gly Asp Asp Lys 100 105 110

Val Lys Lys Ala Arg Ile Ala Met Gly Gly Gly Ile Ile Phe Ile Val 115 120 125

Ala Gly Leu Ala Thr Leu Val Ala Cys Ser Trp Tyr Gly His Gln Ile 130 135 140

Val Thr Asp Phe Tyr Asn Pro Leu Ile Pro Thr Asn Ile Lys Tyr Glu 145 150 155 160

Phe Gly Pro Ala Ile Phe Ile Gly Trp Ala Gly Ser Ala Leu Val Ile 165 170 175

Leu Gly Gly Ala Leu Leu Ser Cys Ser Cys Pro Gly Asn Glu Ser Lys 180 185 190

Ala Gly Tyr Arg Ala Pro Arg Ser Tyr Pro Lys Ser Asn Ser Ser Lys 195 200 205

Glu Tyr Val 210

ааааааааа аааааааааа а

888

52

<210> 24

<211> 111

<212> PRT

<213> NM\_014736 KIAA0101 gene product .

<400> 24

Met Val Arg Thr Lys Ala Asp Ser Val Pro Gly Thr Tyr Arg Lys Val

Val Ala Ala Arg Ala Pro Arg Lys Val Leu Gly Ser Ser Thr Ser Ala 20 25 30

Thr Asn Ser Thr Ser Val Ser Ser Arg Lys Ala Glu Asn Lys Tyr Ala 35 40 45

Gly Gly Asn Pro Val Cys Val Arg Pro Thr Pro Lys Trp Gln Lys Gly 50 55 60

Ile Gly Glu Phe Phe Arg Leu Ser Pro Lys Asp Ser Glu Lys Glu Asn 65 70 75 80

Gln Ile Pro Glu Glu Ala Gly Ser Ser Gly Leu Gly Lys Ala Lys Arg 85 90 95

Lys Ala Cys Pro Leu Gln Pro Asp His Thr Asn Asp Glu Lys Glu 100 105 110

<210> 25

<211> 598

<212> DNA

<213> NM\_003064 secretory leukocyte protease inhibitor, SLPI

<220>

<221> CDS

<222> (23)..(418)

<223>

<400> 25
cagagtcact cctgccttca cc atg aag tcc agc ggc ctc ttc ccc ttc ctg
Met Lys Ser Ser Gly Leu Phe Pro Phe Leu
10

| gtg<br>Val       | ctg<br>Leu       | ctt<br>Leu       | gcc<br>Ala        | ctg<br>Leu<br>15 | gga<br>Gly       | act<br>Thr       | ctg<br>Leu        | gca<br>Ala        | cct<br>Pro<br>20  | tgg<br>Trp       | gct<br>Ala       | gtg<br>Val       | GTU               | ggc<br>Gly<br>25  | tct<br>Ser       | 100 |
|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|-------------------|------------------|-----|
| gga<br>Gly       | aag<br>Lys       | tcc<br>Ser       | ttc<br>Phe<br>30  | aaa<br>Lys       | gct<br>Ala       | gga<br>Gly       | gtc<br>Val        | tgt<br>Cys<br>35  | cct<br>Pro        | cct<br>Pro       | aag<br>Lys       | aaa<br>Lys       | tct<br>Ser<br>40  | gcc<br>Ala        | cag<br>Gln       | 148 |
| tgc<br>Cys       | ctt<br>Leu       | aga<br>Arg<br>45 | tac<br>Tyr        | aag<br>Lys       | aaa<br>Lys       | cct<br>Pro       | gag<br>Glu<br>50  | tgc<br>Cys        | cag<br>Gln        | agt<br>Ser       | gac<br>Asp       | tgg<br>Trp<br>55 | cag<br>Gln        | tgt<br>Cys        | cca<br>Pro       | 196 |
| Gly<br>ggg       | aag<br>Lys<br>60 | aag<br>Lys       | aga<br>Arg        | tgt<br>Cys       | tgt<br>Cys       | cct<br>Pro<br>65 | gac<br>Asp        | act<br>Thr        | tgt<br>Cys        | GJ y<br>ggc      | atc<br>Ile<br>70 | aaa<br>Lys       | tgc<br>Cys        | ctg<br>Leu        | gat<br>Asp       | 244 |
| cct<br>Pro<br>75 | gtt<br>Val       | gac<br>Asp       | acc<br>Thr        | cca<br>Pro       | aac<br>Asn<br>80 | cca<br>Pro       | aca<br>Thr        | agg<br>Arg        | agg<br>Arg        | aag<br>Lys<br>85 | cct              | ggg              | aag<br>Lys        | tgc<br>Cys        | cca<br>Pro<br>90 | 292 |
| gtg<br>Val       | act<br>Thr       | tat<br>Tyr       | ggc<br>Gly        | caa<br>Gln<br>95 | tgt<br>Cys       | ttg<br>Leu       | atg<br>Met        | ctt<br>Leu        | aac<br>Asn<br>100 | Pro              | ccc<br>Pro       | aat<br>Asn       | ttc<br>Phe        | tgt<br>Cys<br>105 | gag<br>Glu       | 340 |
| atg<br>Met       | gat<br>Asp       | ggc<br>Gly       | cag<br>Gln<br>110 | Cys              | aag<br>Lys       | cgt<br>Arg       | gac<br>Asp        | ttg<br>Leu<br>115 | Lys               | tgt<br>Cys       | tgc<br>Cys       | atg<br>Met       | ggc<br>Gly<br>120 | Met               | tgt<br>Cys       | 388 |
| GJ A<br>aaa      | aaa<br>Lys       | tcc<br>Ser       | Cys               | gtt<br>Val       | tcc<br>Ser       | cct<br>Pro       | gtg<br>Val<br>130 | Lys               | gct<br>Ala        | tga              | ttcc             | tgc              | cata              | tgga              | gg               | 438 |
| agg              | ctct             |                  |                   | tact             | .ct q            | tata             | gtco              | a gg              | tect              | ttcc             | aco              | ctga             | igac              | ttgg              | ctccac           | 498 |
|                  |                  |                  |                   |                  |                  |                  |                   |                   |                   |                  |                  |                  |                   |                   | gccagt           | 558 |
|                  |                  |                  |                   |                  | ac g             |                  |                   |                   |                   |                  |                  | •                |                   |                   |                  | 598 |
|                  |                  |                  |                   |                  |                  |                  |                   |                   | •                 |                  |                  |                  |                   |                   |                  |     |
| <21              | .0>              | 26               |                   |                  |                  |                  |                   |                   |                   |                  |                  |                  |                   |                   | •                |     |
| <21              | .1>              | 132              |                   |                  | :                |                  |                   |                   |                   | •                | ٠                | •                |                   |                   |                  |     |
| <21              |                  | PRT              |                   |                  |                  |                  |                   |                   |                   |                  |                  |                  |                   |                   |                  |     |
| <21              | .3>              | им_0             | 0306              | 54 se            | ecret            | ory              | leu               | cocyt             | e pi              | rotea            | ase :            | inhil            | oitor             | , SI              | PLI              |     |
| <4(              | 00>              | 26               |                   |                  |                  |                  |                   |                   |                   |                  |                  |                  |                   |                   |                  |     |
| Met<br>· 1       | : Lys            | s Sei            | c Sei             | c Gly<br>5       | , Let            | ı Phe            | e Pro             | ) Phe             | e Let<br>10       | ı Val            | l Le             | ı Let            | ı Ala             | 1 Le:             | ı Gly            |     |
| Thi              | r Let            | ı Ala            | a Pro             | o Trj            | o Ala            | a Val            | L Gla             | a Gly<br>25       | y Se:             | r Gl             | у Гу             | s Se:            | r Phe             | e Ly:             | s Ala            |     |
| Gl               | y Val            | 1 Cy:<br>35      | s Pro             | o Pr             | o Lys            | i Ly:            | s Se:             | r Ala             | a Gl              | n Cy:            | s Le             | u Arg            | g Ty:             | r Ly:             | s Lys            |     |
| Pro              | 50<br>50         | u Cy:            | s Gl              | n Se             | r Ası            | 55               | o Gl              | n Cy              | s Pr              | o Gl             | 60<br>Y Ly       | s Ly             | s Aro             | g Cy              | s Cys            |     |
|                  |                  |                  |                   |                  |                  |                  |                   |                   |                   |                  |                  |                  |                   |                   |                  |     |

546

Pro Asp Thr Cys Gly Ile Lys Cys Leu Asp Pro Val Asp Thr Pro Asn Pro Thr Arg Arg Lys Pro Gly Lys Cys Pro Val Thr Tyr Gly Gln Cys 85 Leu Met Leu Asn Pro Pro Asn Phe Cys Glu Met Asp Gly Gln Cys Lys 105 . 100 Arg Asp Leu Lys Cys Cys Met Gly Met Cys Gly Lys Ser Cys Val Ser . 125 120 115 Pro Val Lys Ala 130 <210> 27 <211> 3970 <212> DNA <213> NM 013994 DDR1 <220> <221> CDS (337)..(3093) <222> <223> <400> 27 ggcttaggaa gtattaactg atctctgccc tagttctcat gtgttaaata tggatagtaa 60 tagtatctac cttatgaagt gactgtgaag ataaaattat ggaftctgtt taagggttta 120 180 ggccagtgtc tggcacaggg gaagcattct aaaaatatag ctgatgctgt taaacaatga ctgttgttgt tgttttactg ttattatccc caaagcggcc cattetgtct gttgctgtca 240 300 gctatgactc agtcccctga ttaacttacg caccacccat tttatcccct gcagagatgc 354 tgcccccacc cccttaggcc cgagggatca ggagct atg gga cca gag gcc ctg Met Gly Pro Glu Ala Leu 402 tca tct tta ctg ctg ctc ttg gtg gca agt gga gat gct gac atg Ser Ser Leu Leu Leu Leu Leu Val Ala Ser Gly Asp Ala Asp Met 450 aag gga cat ttt gat cct gcc aag tgc cgc tat gcc ctg ggc atg cag Lys Gly His Phe Asp Pro Ala Lys Cys Arg Tyr Ala Leu Gly Met Gln

30

45

gac cgg acc atc cca gac agt gac atc tct gct tcc agc tcc tgg tca Asp Arg Thr Ile Pro Asp Ser Asp Ile Ser Ala Ser Ser Ser Trp Ser

gat tee act gee gee ege cac age agg ttg gag age agt gae ggg gat

| Asp<br>55         | Ser               | Thr               | Ala               | Ala               | Arg<br>60         | His               | Ser               | Arg               | Leu               | Glu<br>65         | Ser               | Ser               | Asp               | Gly               | Asp<br>70         |   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---|------|
| Gly               | gcc<br>Ala        | tgg<br>Trp        | tgc<br>Cys        | ccc<br>Pro<br>75  | gca<br>Ala        | ejā<br>āāā        | tcg<br>Ser        | gtg<br>Val        | ttt<br>Phe<br>80  | ccc<br>Pro        | aag<br>Lys        | gag<br>Glu        | gag<br>Glu        | gag<br>Glu<br>85  | tac<br>Tyr        |   | 594  |
| ttg<br>Leu        | cag<br>Gln        | gtg<br>Val        | gat<br>Asp<br>90  | cta<br>Leu        | caa<br>Gln        | cga<br>Arg        | ctg<br>Leu        | cac<br>His<br>95  | ctg<br>Leu        | gtg<br>Val        | gct<br>Ala        | ctg<br>Leu        | gtg<br>Val<br>100 | ggc<br>Gly        | acc<br>Thr        |   | 642  |
| cag<br>Gln        | gga<br>Gly        | cgg<br>Arg<br>105 | cat<br>His        | gcc<br>Ala        | GJA<br>GGA        | ggc<br>Gly        | ctg<br>Leu<br>110 | ggc<br>Gly        | aag<br>Lys        | gag<br>Glu        | ttc<br>Phe        | tcc<br>Ser<br>115 | cgg<br>Arg        | agc<br>Ser        | tac<br>Tyr        |   | 690  |
| cgg<br>Arg        | ctg<br>Leu<br>120 | cgt<br>Arg        | tac<br>Tyr        | tcc<br>Ser        | cgg<br>Arg        | gat<br>Asp<br>125 | ggt<br>Gly        | cgc<br>Arg        | cgc<br>Arg        | tgg<br>Trp        | atg<br>Met<br>130 | ggc<br>Gly        | tgg<br>Trp        | aag<br>Lys        | gac<br>Asp        |   | 738  |
| cgc<br>Arg<br>135 | tgg<br>Trp        | ggt<br>Gly        | cag<br>Gln        | gag<br>Glu        | gtg<br>Val<br>140 | atc<br>Ile        | tca<br>Ser        | ggc<br>Gly        | aat<br>Asn        | gag<br>Glu<br>145 | gac<br>Asp        | cct<br>Pro        | gag<br>Glu        | gga<br>Gly        | gtg<br>Val<br>150 |   | 786  |
| gtg<br>Val        | ctg<br>Leu        | aag<br>Lys        | gac<br>Asp        | ctt<br>Leu<br>155 | Gly<br>ggg        | ccc<br>Pro        | ccç<br>Pro        | atg<br>Met        | gtt<br>Val<br>160 | gcc<br>Ala        | cga<br>Arg        | ctg<br>Leu        | gtt<br>Val        | cgc<br>Arg<br>165 | ttc<br>Phe        |   | 834  |
| tac<br>Tyr        | ccc<br>Pro        | cgg<br>Arg        | gct<br>Ala<br>170 | gac<br>Asp        | cgg<br>Arg        | gtc<br>Val        | atg<br>Met        | agc<br>Ser<br>175 | gtc<br>Val        | tgt<br>Cys        | ctg<br>Leu        | cgg<br>Arg        | gta<br>Val<br>180 | gag<br>Glu        | ctc<br>Leu        |   | 882  |
| tat<br>Tyr        | Gly               | tgc<br>Cys<br>185 | ctc<br>Leu        | tgg<br>Trp        | agg<br>Arg        | gat<br>Asp        | gga<br>Gly<br>190 | ctc<br>Leu        | ctg.<br>Leu       | tct<br>Ser        | tac<br>Tyr        | acc<br>Thr<br>195 | gcc<br>Ala        | cct<br>Pro        | gtg<br>Val        |   | 930  |
| GJ Y<br>GGG       | cag<br>Gln<br>200 | aca<br>Thr        | atg<br>Met        | tat<br>Tyr        | tta<br>Leu        | tct<br>Ser<br>205 | gag<br>Glu        | gcc<br>Ala        | gtg<br>Val        | tac<br>Tyr        | ctc<br>Leu<br>210 | aac<br>Asn        | gac<br>Asp        | tcc<br>Ser        | acc<br>Thr        |   | 978  |
| tat<br>Tyr<br>215 | Asp               | gga<br>Gly        | cat<br>His        | acc<br>Thr        | gtg<br>Val<br>220 | ggc<br>Gly        | gga<br>Gly        | ctg<br>Leu        | cag<br>Gln        | tat<br>Tyr<br>225 | Gly               | ggt<br>Gly        | ctg<br>Leu        | Gly               | cag<br>Gln<br>230 | : | 1026 |
| ctg<br>Leu        | gca<br>Ala        | gat<br>Asp        | ggt<br>Gly        | gtg<br>Val<br>235 | gtg<br>Val        | Gly               | Leu               | gat<br>Asp        | Asp               | Phe               | Arg               | aag<br>Lys        | agt<br>Ser        | cag<br>Gln<br>245 | GLu               | : | 1074 |
| ctg<br>Leu        | cgg<br>Arg        | gtc<br>Val        | tgg<br>Trp<br>250 | cca<br>Pro        | ggc<br>Gly        | tat<br>Tyr        | gac<br>Asp        | tat<br>Tyr<br>255 | Val               | gga<br>Gly        | tgg<br>Trp        | agc<br>Ser        | aac<br>Asn<br>260 | His               | agc<br>Ser        | : | 1122 |
| ttc<br>Phe        | tcc<br>Ser        | agt<br>Ser<br>265 | Gly               | tat<br>Tyr        | gtg<br>Val        | gag<br>Glu        | atg<br>Met<br>270 | Glu               | ttt<br>Phe        | gag<br>Glu        | ttt<br>Phe        | gac<br>Asp<br>275 | Arg               | ctg<br>Leu        | agg<br>Arg        | : | 1170 |
| gcc<br>Ala        | ttc<br>Phe<br>280 | Gln               | gct<br>Ala        | atg<br>Met        | cag<br>Gln        | gtc<br>Val<br>285 | cac<br>His        | tgt<br>Cys        | aac<br>Asn        | aac<br>Asn        | atg<br>Met<br>290 | cac<br>His        | acg<br>Thr        | ctg<br>Leu        | gga<br>Gly        |   | 1218 |
| gcc<br>Ala<br>295 | Arg               | ctg<br>Leu        | cct<br>Pro        | ggc               | 300<br>Gly<br>ggg | gtg<br>Val        | gaa<br>Glu        | tgt<br>Cys        | cgc<br>Arg        | ttc<br>Phe<br>305 | Arg               | cgt<br>Arg        | ggc               | cct<br>Pro        | gcc<br>Ala<br>310 |   | 1266 |
| atg<br>Met        | gcc<br>Ala        | tgg<br>Trp        | gag<br>Glu        | ggg<br>Gly<br>315 | Glu               | CCC<br>Pro        | atg<br>Met        | cgc<br>Arg        | cac<br>His<br>320 | Asn               | cta<br>Leu        | Gly               | ggc               | aac<br>Asn<br>325 | ctg<br>Leu        |   | 1314 |

| ejā<br>aaa        | gac<br>Asp        | ccc<br>Pro        | aga<br>Arg<br>330 | gcc<br>Ala        | cgg<br>Arg        | gct<br>Ala        | gtc<br>Val        | tca<br>Ser<br>335 | gtg<br>Val         | ccc<br>Pro        | ctt<br>Leu        | ggc<br>Gly        | ggc<br>Gly<br>340 | cgt<br>Arg        | gtg<br>Val          | 1362 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|------|
| gct<br>Ala        | cgc<br>Arg        | ttt<br>Phe<br>345 | ctg<br>Leu        | cag<br>Gln        | tgc<br>Cys        | cgc<br>Arg        | ttc<br>Phe<br>350 | ctc<br>Leu        | ttt<br>Phe         | gcg<br>Ala        | Gly<br>ggg        | ccc<br>Pro<br>355 | tgg<br>Trp        | tta<br>Leu        | ctc<br>Leu          | 1410 |
| ttc<br>Phe        | agc<br>Ser<br>360 | gaa<br>Glu        | atc<br>Ile        | tcc<br>Ser        | ttc<br>Phe        | atc<br>Ile<br>365 | tct<br>Ser        | gat<br>Asp        | gtg<br>Val         | gtg<br>Val        | aac<br>Asn<br>370 | aat<br>Asn        | tcc<br>Ser        | tct<br>Ser        | ccg<br>Pro          | 1458 |
| gca<br>Ala<br>375 | ctg<br>Leu        | gga<br>Gly        | Gly               | acc<br>Thr        | ttc<br>Phe<br>380 | ccg<br>Pro        | cca<br>Pro        | gcc<br>Ala        | ccc<br>Pro         | tgg<br>Trp<br>385 | tgg<br>Trp        | ccg<br>Pro        | cct<br>Pro        | ggc<br>Gly        | cca<br>Pro<br>390   | 1506 |
| cct<br>Pro        | ccc<br>Pro        | acc<br>Thr        | aac<br>Asn        | ttc<br>Phe<br>395 | agc<br>Ser        | agc<br>Ser        | ttg<br>Leu        | gag<br>Glu        | ctg<br>Leu<br>400  | gag<br>Glu        | ccc               | aga<br>Arg        | ggc               | cag<br>Gln<br>405 | cag<br>Gln          | 1554 |
| ccc               | gtg<br>Val        | gcc<br>Ala        | aag<br>Lys<br>410 | gcc<br>Ala        | gag<br>Glu        | ggg<br>Gly        | agc<br>Ser        | ccg<br>Pro<br>415 | acc<br>Thr         | gcc<br>Ala        | atc<br>Ile        | ctc               | atc<br>Ile<br>420 | ggc               | tgc<br>Cys          | 1602 |
| ctg<br>Leu        | gtg<br>Val        | gcc<br>Ala<br>425 | atc<br>Ile        | atc<br>Ile        | ctg<br>Leu        | ctc<br>Leu        | ctg<br>Leu<br>430 | ctg<br>Leu        | ctc<br>Leu         | atc<br>Ile        | att<br>Ile        | gcc<br>Ala<br>435 | ctc<br>Leu        | atg<br>Met        | ctc<br>Leu          | 1650 |
| tgg<br>Trp        | cgg<br>Arg<br>440 | ctg<br>Leu        | cac<br>His        | tgg<br>Trp        | cgc               | agg<br>Arg<br>445 | ctc<br>Leu        | ctc<br>Leu        | agc<br>Ser         | aag<br>Lys        | gct<br>Ala<br>450 | gaa<br>Glu        | cgg<br>Arg        | agg<br>Arg        | gtg<br>Val          | 1698 |
| ttg<br>Leu<br>455 | gaa<br>Glu        | gag<br>Glu        | gag<br>Glu        | ctg<br>Leu        | acg<br>Thr<br>460 | gtt<br>Val        | cac<br>His        | ctc<br>Leu        | tct<br>Ser         | gtc<br>Val<br>465 | cct               | GJY               | gac<br>Asp        | act<br>Thr        | atc<br>Ile<br>470   | 1746 |
| ctc<br>Leu        | atc<br>Ile        | aac<br>Asn        | aac<br>Asn        | cgc<br>Arg<br>475 | cca<br>Pro        | ggt<br>Gly        | CCĻ               | aga<br>Arg        | gag<br>:Glu<br>480 | .Pro              | ccc<br>Pro        | ccg<br>Pro        | tac<br>Tyr        | cag<br>Gln<br>485 | GIU                 | 1794 |
| ccc<br>Pro        | cgg               | cct               | cgt<br>Arg<br>490 | Gly               | aat<br>Asn        | ccg<br>Pro        | ccc<br>Pro        | cac<br>His<br>495 | Ser                | gct<br>Ala        | ccc<br>Pro        | tgt<br>Cys        | gtc<br>Val<br>500 | Pro               | aat<br>Asn          | 1842 |
| ggc<br>Gly        | tct<br>Ser        | gcg<br>Ala<br>505 | Leu               | ctg<br>Leu        | ctc<br>Leu        | tcc<br>Ser        | aat<br>Asn<br>510 | Pro               | gcc<br>Ala         | tac<br>Tyr        | cgc<br>Arg        | cto<br>Leu<br>515 | Leu               | ctg<br>Leu        | gcc<br>Ala          | 1890 |
| act               | tac<br>Tyr<br>520 | Ala               | cgt<br>Arg        | ccc<br>Pro        | cct<br>Pro        | cga<br>Arg<br>525 | Gly               | e ccg             | Gly<br>ggc         | Pro               | Pro<br>530        | ) Tux             | Pro               | gcc<br>Ala        | tgg<br>Trp          | 1938 |
| gcc<br>Ala<br>535 | Lys               | ccc<br>Pro        | acc               | aac<br>Asn        | acc<br>Thr<br>540 | Gln               | gcc<br>Ala        | tac<br>Tyr        | agt<br>Ser         | ggg<br>Gly<br>545 | / Asp             | tat<br>Tyr        | atg<br>Met        | gag<br>Glu        | r cct<br>Pro<br>550 | 1986 |
| gaç<br>Ģlu        | aag<br>Lys        | cca<br>Pro        | ggc<br>Gly        | gcc<br>Ala<br>555 | Pro               | Lev               | cto<br>Lev        | r ccc             | cca<br>Pro<br>560  | Pro               | Pro               | caç<br>Glr        | g aac<br>n Asr    | ago<br>Ser<br>565 | gtc<br>Val          | 2034 |
| Pro               | cat<br>His        | tat<br>Tyr        | gcc<br>Ala<br>570 | Glu               | gct<br>Ala        | gac<br>Asp        | att<br>Ile        | gtt<br>Val<br>575 | LThi               | cto<br>Lev        | g cag<br>ı Glr    | g ggo             | gto<br>Val<br>580 | . Thi             | : Gly               | 2082 |

| ggc<br>Gly        | aac<br>Asn        | acc<br>Thr<br>585 | tat<br>Tyr        | gct<br>Ala        | gtg<br>Val        | cct<br>Pro        | gca<br>Ala<br>590 | ctg<br>Leu        | ccc<br>Pro        | cca<br>Pro        | gly<br>ggg        | gca<br>Ala<br>595 | gtç<br>Val        | GJ À<br>āāā       | gat<br>Asp        | 2130 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| Gly               | ccc<br>Pro<br>600 | ccc<br>Pro        | aga<br>Arg        | gtg<br>Val        | gat<br>Asp        | ttc<br>Phe<br>605 | cct<br>Pro        | cga<br>Arg        | tct<br>Ser        | cga<br>Arg        | ctc<br>Leu<br>610 | cgc<br>Arg        | ttc<br>Phe        | aag<br>Lys        | gag<br>Glu        | 2178 |
| aag<br>Lys<br>615 | ctt<br>Leu        | ggc<br>Gly        | gag<br>Glu        | ggc<br>Gly        | cag<br>Gln<br>620 | ttt<br>Phe        | GJ À<br>Gàà       | gag<br>Glu        | gtg<br>Val        | cac<br>His<br>625 | ctg<br>Leu        | tgt<br>Cys        | gag<br>Glu        | gtc<br>Val        | gac<br>Asp<br>630 | 2226 |
| agc<br>Ser        | cct<br>Pro        | caa<br>Gln        | gat<br>Asp        | ctg<br>Leu<br>635 | gtt<br>Val        | agt<br>Ser        | ctt<br>Leu        | gat<br>Asp        | ttc<br>Phe<br>640 | ccc<br>Pro        | ctt<br>Leu        | aat<br>Asn        | gtg<br>Val        | cgt<br>Arg<br>645 | aag<br>Lys        | 2274 |
| gga<br>Gly        | cac<br>His        | cct<br>Pro        | ttg<br>Leu<br>650 | ctg<br>Leu        | gta<br>Val        | gct<br>Ala        | gtc<br>Val        | aag<br>Lys<br>655 | atc<br>Ile        | tta<br>Leu        | cgg<br>Arg        | cca<br>Pro        | gat<br>Asp<br>660 | gcc<br>Ala        | acc<br>Thr        | 2322 |
| aag<br>Lys        | aat<br>Asn        | gcc<br>Ala<br>665 | agc<br>Ser        | ttc<br>Phe        | tcc<br>Ser        | ttg<br>Leu        | ttc<br>Phe<br>670 | tcc<br>Ser        | agg<br>Arg        | aat<br>Asn        | gat<br>Asp        | ttc<br>Phe<br>675 | ctg<br>Leu        | aaa<br>Lys        | gag<br>Glu        | 2370 |
| Val               | aag<br>Lys<br>680 | atc<br>Ile        | atg<br>Met        | tcg<br>Ser        | agg<br>Arg        | ctc<br>Leu<br>685 | aag<br>Lys        | gac<br>Asp        | cca<br>Pro        | aac<br>Asn        | atc<br>Ile<br>690 | Ile               | cgg<br>Arg        | ctg<br>Leu        | ctg<br>Leu        | 2418 |
| ggc<br>Gly<br>695 | gtg<br>Val        | tgt<br>Cys        | gtg<br>Val        | cag<br>Gln        | gac<br>Asp<br>700 | gac<br>Asp        | ccc<br>Pro        | ctc<br>Leu        | tgc<br>Cys        | atg<br>Met<br>705 | att<br>Ile        | act<br>Thr        | gac<br>Asp        | tac<br>Tyr        | atg<br>Met<br>710 | 2466 |
| gag<br>Glu        | aac<br>Asn        | ggc<br>Gly        | gac<br>Asp        | ctc<br>Leu<br>715 | aac<br>Asn        | cag<br>Gln        | ttc<br>Phe        | ctc<br>Leu        | agt<br>Ser<br>720 | gcc<br>Ala        | cac<br>His        | cag<br>Gln        | ctg<br>Leu        | gag<br>Glu<br>725 | gac<br>Asp        | 2514 |
| aag<br>Lys        | gca<br>Ala        | gcc<br>Ala        | gag<br>Glu<br>730 | G] À<br>ààà       | gcc<br>Ala        | cct<br>Pro        | Gly<br>ggg        | gac<br>Asp<br>735 | Gly               | cag<br>Gln        | gct<br>Ala        | gcg<br>Ala        | cag<br>Gln<br>740 | GJ Å<br>aaa       | ccc<br>Pro        | 2562 |
| acc<br>Thr        | atc<br>Ile        | agc<br>Ser<br>745 | tac<br>Tyr        | cca<br>Pro        | atg<br>Met        | ctg<br>Leu        | ctg<br>Leu<br>750 | cat<br>His        | gtg<br>Val        | gca<br>Ala        | gcc<br>Ala        | cag<br>Gln<br>755 | atc<br>Ile        | gcc<br>Ala        | tcc<br>Ser        | 2610 |
| ggc<br>Gly        | atg<br>Met<br>760 | cgc<br>Arg        | tat<br>Tyr        | ctg<br>Leu        | gcc<br>Ala        | aca<br>Thr<br>765 | ctc<br>Leu        | aac<br>Asn        | ttt<br>Phe        | gta<br>Val        | cat<br>His<br>770 | cgg<br>Arg        | gac<br>Asp        | ctg<br>Leu        | gcc<br>Ala        | 2658 |
| acg<br>Thr<br>775 | cgg               | aac<br>Asn        | tgc<br>Cys        | cta<br>Leu        | gtt<br>Val<br>780 | GJ À<br>ààà       | gaa<br>Glu        | aat<br>Asn        | ttc<br>Phe        | acc<br>Thr<br>785 | atc<br>Ile        | aaa<br>Lys        | atc<br>Ile        | gca<br>Ala        | gac<br>Asp<br>790 | 2706 |
| ttt<br>Phe        | ggc<br>Gly        | atg<br>Met        | agc<br>Ser        | cgg<br>Arg<br>795 | aac<br>Asn        | ctc<br>Leu        | tat<br>Tyr        | gct<br>Ala        | 800<br>GJÀ<br>âââ | gac<br>Asp        | tat<br>Tyr        | tac<br>Tyr        | cgt<br>Arg        | gtg<br>Val<br>805 | cag<br>Gln        | 2754 |
| Gly               | cgg<br>Arg        | gca<br>Ala        | gtg<br>Val<br>810 | ctg<br>Leu        | ccc<br>Pro        | atc<br>Ile        | cgc<br>Arg        | tgg<br>Trp<br>815 | atg<br>Met        | gcc<br>Ala        | tgg<br>Trp        | gag<br>Glu        | tgc<br>Cys<br>820 | atc<br>Ile        | ctc<br>Leu        | 2802 |
| atg<br>Met        | ej<br>aaa         | aag<br>Lys<br>825 | ttc<br>Phe        | acg<br>Thr        | act<br>Thr        | gcg<br>Ala        | agt<br>Ser<br>830 | gac<br>Asp        | gtg<br>·Val       | tgg<br>Trp        | gcc<br>Ala        | ttt<br>Phe<br>835 | ggt<br>Gly        | gtg<br>Val        | acc<br>Thr        | 2850 |
| ctg<br>Leu        | tgg<br>Trp        | gag<br>Glu        | gtg<br>Val        | ctg<br>Leu        | atg<br>Met        | ctc<br>Leu        | tgt<br>Cys        | agg<br>Arg        | gcc<br>Ala        | cag<br>Gln        | ccc<br>Pro        | ttt<br>Phe        | Gly<br>ggg        | tca<br>Ser        | gct<br>Ala        | 2898 |

| 840                           |                          |                           | 845            | •                 |                   |                   |                   | 850        | •                 |                   |                   |                   |      |
|-------------------------------|--------------------------|---------------------------|----------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------|
| cac cga c<br>His Arg A<br>855 | ga gca<br>rg Ala         | ggt cat<br>Gly Hi:        | s Arg          | gaa<br>Glu        | cgc<br>Arg        | ggg<br>Gly        | gga<br>Gly<br>865 | gtt<br>Val | ctt<br>Leu        | ccg<br>Pro        | gga<br>Gly        | cca<br>Pro<br>870 | 2946 |
| ggg ccg g<br>Gly Pro A        | gca gtg<br>Mla Val       | tac cto<br>Tyr Let<br>875 | g tcc<br>u Ser | cgg.              | ccg<br>Pro        | cct<br>Pro<br>880 | gcc<br>Ala        | tgc<br>Cys | ccg<br>Pro        | cag<br>Gln        | ggc<br>Gly<br>885 | cta<br>Leu        | 2994 |
| tat gag o<br>Tyr Glu I        | tg atg<br>Leu Met<br>890 | Leu Ar                    | g tgc<br>g Cys | tgg<br>Trp        | agc<br>Ser<br>895 | cgg<br>Arg        | gag<br>Glu        | tct<br>Ser | gag<br>Glu        | cag<br>Gln<br>900 | cga<br>Arg        | cca .<br>Pro      | 3042 |
| ccc ttt t                     | cc cag<br>Ser Gln<br>905 | ctg ca<br>Leu Hi          | t cgg<br>s Arg | ttc<br>Phe<br>910 | ctg<br>Leu        | gca<br>Ala        | gag<br>Glu        | gat<br>Asp | gca<br>Ala<br>915 | ctc<br>Leu        | aac<br>Asn        | acg<br>Thr        | 3090 |
| gtg tgaat<br>Val              | tcacac                   | atccago                   | tgc c          | cctc              | ctc               | a gg              | gagc              | gatc       | cag               | ggga              | agc               |                   | 3143 |
| cagtgacad                     | ct aaaa                  | caagag                    | gacac          | aatq              | g ca              | cctć              | tgcc              | ctt        | cccc              | tcc               | cgac              | agccca            | 3203 |
| tcacctct                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3263 |
| cccttctc                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3323 |
| cccctgt                       |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3383 |
| tecettgg                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3443 |
| cctgggcc                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3503 |
| tccctgtc                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3563 |
| gaggaaaa                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3623 |
| tccatcac                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3683 |
| ttcccact                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3743 |
| tattggga                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3803 |
| gtgtagct                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3863 |
| agacacag                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3923 |
| taggcagg                      |                          |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   | 3970 |
| <210> 2                       | 28                       |                           |                |                   |                   |                   |                   |            |                   |                   |                   |                   |      |
| <211> 9                       | 919 .                    | •                         |                | •                 |                   |                   |                   |            |                   |                   |                   |                   |      |

<212>. PRT

<213> NM\_013994 DDR1

<400> 28

Met Gly Pro Glu Ala Leu Ser Ser Leu Leu Leu Leu Leu Val Ala 5 10

Ser Gly Asp Ala Asp Met Lys Gly His Phe Asp Pro Ala Lys Cys Arg

20 25 30 Tyr Ala Leu Gly Met Gln Asp Arg Thr Ile Pro Asp Ser Asp Ile Ser 40 Ala Ser Ser Ser Trp Ser Asp Ser Thr Ala Ala Arg His Ser Arg Leu <sub>.</sub> 60 Glu Ser Ser Asp Gly Asp Gly Ala Trp Cys Pro Ala Gly Ser Val Phe Pro Lys Glu Glu Glu Tyr Leu Gln Val Asp Leu Gln Arg Leu His Leu 90 Val Ala Leu Val Gly Thr Gln Gly Arg His Ala Gly Gly Leu Gly Lys 105 110 Glu Phe Ser Arg Ser Tyr Arg Leu Arg Tyr Ser Arg Asp Gly Arg Arg 120 125 Trp Met Gly Trp Lys Asp Arg Trp Gly Gln Glu Val Ile Ser Gly Asn 135 Glu Asp Pro Glu Gly Val Val Leu Lys Asp Leu Gly Pro Pro Met Val 155 150 Ala Arg Leu Val Arg Phe Tyr Pro Arg Ala Asp Arg Val Met Ser Val 170 Cys Leu Arg Val Glu Leu Tyr Gly Cys Leu Trp Arg Asp Gly Leu Leu 180 185 190 Ser Tyr Thr Ala Pro Val Gly Gln Thr Met Tyr Leu Ser Glu Ala Val 200 Tyr Leu Asn Asp Ser Thr Tyr Asp Gly His Thr Val Gly Gly Leu Gln Tyr Gly Gly Leu Gly Gln Leu Ala Asp Gly Val Val Gly Leu Asp Asp Phe Arg Lys Ser Gln Glu Leu Arg Val Trp Pro Gly Tyr Asp Tyr Val 250 Gly Trp Ser Asn His Ser Phe Ser Ser Gly Tyr Val Glu Met Glu Phe

Glu Phe Asp Arg Leu Arg Ala Phe Gln Ala Met Gln Val His Cys Asn

Asn Met His Thr Leu Gly Ala Arg Leu Pro Gly Gly Val Glu Cys Arg

300 295 290 Phe Arg Arg Gly Pro Ala Met Ala Trp Glu Gly Glu Pro Met Arg His 315 310 Asn Leu Gly Gly Asn Leu Gly Asp Pro Arg Ala Arg Ala Val Ser Val 330 . 335 Pro Leu Gly Gly Arg Val Ala Arg Phe Leu Gln Cys Arg Phe Leu Phe Ala Gly Pro Trp Leu Leu Phe Ser Glu Ile Ser Phe Ile Ser Asp Val 365 360 Val Asn Asn Ser Ser Pro Ala Leu Gly Gly Thr Phe Pro Pro Ala Pro Trp Trp Pro Pro Gly Pro Pro Pro Thr Asn Phe Ser Ser Leu Glu Leu 395 390 . Glu Pro Arg Gly Gln Gln Pro Val Ala Lys Ala Glu Gly Ser Pro Thr 410 Ala Ile Leu Ile Gly Cys Leu Val Ala Ile Ile Leu Leu Leu Leu 425 . Ile Ile Ala Leu Met Leu Trp Arg Leu His Trp Arg Arg Leu Leu Ser 440 Lys Ala Glu Arg Arg Val Leu Glu Glu Glu Leu Thr Val His Leu Ser 450 Val Pro Gly Asp Thr Ile Leu Ile Asn Asn Arg Pro Gly Pro Arg Glu 475 Pro Pro Pro Tyr Gln Glu Pro Arg Pro Arg Gly Asn Pro Pro His Ser 490 Ala Pro Cys Val Pro Asn Gly Ser Ala Leu Leu Ser Asn Pro Ala 505 Tyr Arg Leu Leu Leu Ala Thr Tyr Ala Arg Pro Pro Arg Gly Pro Gly 515 Pro Pro Thr Pro Ala Trp Ala Lys Pro Thr Asn Thr Gln Ala Tyr Ser 535 540

Gly Asp Tyr Met Glu Pro Glu Lys Pro Gly Ala Pro Leu Leu Pro Pro

550

545

- Pro Pro Gln Asn Ser Val Pro His Tyr Ala Glu Ala Asp Ile Val Thr 565 570 575
- Leu Gln Gly Val Thr Gly Gly Asn Thr Tyr Ala Val Pro Ala Leu Pro 580 590
- Pro Gly Ala Val Gly Asp Gly Pro Pro Arg Val Asp Phe Pro Arg Ser 595 600 605
- Arg Leu Arg Phe Lys Glu Lys Leu Gly Glu Gly Gln Phe Gly Glu Val 610 620
- His Leu Cys Glu Val Asp Ser Pro Gln Asp Leu Val Ser Leu Asp Phe 625 630 635
- Pro Leu Asn Val Arg Lys Gly His Pro Leu Leu Val Ala Val Lys Ile 645 650 655
- Leu Arg Pro Asp Ala Thr Lys Asn Ala Ser Phe Ser Leu Phe Ser Arg 660 665 670
- Asn Asp Phe Leu Lys Glu Val Lys Ile Met Ser Arg Leu Lys Asp Pro 675 680 685
- Asn Ile Ile Arg Leu Leu Gly Val Cys Val Gln Asp Asp Pro Leu Cys 690 695 700
- Met Ile Thr Asp Tyr Met Glu Asn Gly Asp Leu Asn Gln Phe Leu Ser 705 710 715 720
- Ala His Gln Leu Glu Asp Lys Ala Ala Glu Gly Ala Pro Gly Asp Gly 725 730 735
- Gln Ala Ala Gln Gly Pro Thr Ile Ser Tyr Pro Met Leu His Val 740 745 . 750
- Ala Ala Gln Ile Ala Ser Gly Met Arg Tyr Leu Ala Thr Leu Asn Phe 755 760 765
- Val His Arg Asp Leu Ala Thr Arg Asn Cys Leu Val Gly Glu Asn Phe 770 780
- Thr Ile Lys Ile Ala Asp Phe Gly Met Ser Arg Asn Leu Tyr Ala Gly 785 790 795 800
- Asp Tyr Tyr Arg Val Gln Gly Arg Ala Val Leu Pro Ile Arg Trp Met 805 810 815
- Ala Trp Glu Cys Ile Leu Met Gly Lys Phe Thr Thr Ala Ser Asp Val 820 825

| Trp Ala Phe Gly Val Thr Leu Trp Glu Val Leu Met Leu Cys Arg Ala<br>835 840 845                                                              |    |
|---------------------------------------------------------------------------------------------------------------------------------------------|----|
| Gln Pro Phe Gly Ser Ala His Arg Arg Ala Gly His Arg Glu Arg Gly<br>850 855 860                                                              |    |
| Gly Val Leu Pro Gly Pro Gly Pro Ala Val Tyr Leu Ser Arg Pro Pro 865 870 875 880                                                             |    |
| Ala Cys Pro Gln Gly Leu Tyr Glu Leu Met Leu Arg Cys Trp Ser Arg<br>885 890 895                                                              |    |
| Glu Ser Glu Gln Arg Pro Pro Phe Ser Gln Leu His Arg Phe Leu Ala<br>900 905 910                                                              |    |
| Glu Asp Ala Leu Asn Thr Val<br>915                                                                                                          |    |
| <210> 29                                                                                                                                    |    |
| <211> 5698                                                                                                                                  |    |
| <212> DNA                                                                                                                                   |    |
| <213> NM_001067 TOP2A                                                                                                                       |    |
| <220>                                                                                                                                       |    |
| <221> CDS                                                                                                                                   |    |
| <222> (127)(4719)                                                                                                                           |    |
| <223>                                                                                                                                       |    |
|                                                                                                                                             |    |
| <400> 29 aggttcaagt ggagctctcc taaccgacgc gcgtctgtgg agaagcggct tggtcggggg                                                                  | 60 |
| tggtetegtg gggteetgee tgtttagteg ettteagggt tettgageee etteaegaee 13                                                                        | 20 |
| gtcacc atg gaa gtg tca cca ttg cag cct gta aat gaa aat atg caa  Met Glu Val Ser Pro Leu Gln Pro Val Asn Glu Asn Met Gln  1 5 10             | 68 |
| gtc aac aaa ata aag aaa aat gaa gat gct aag aaa aga ctg tct gtt Val Asn Lys Ile Lys Lys Asn Glu Asp Ala Lys Lys Arg Leu Ser Val 15 20 25 30 | 16 |
| gaa aga atc tat caa aag aaa aca caa ttg gaa cat att ttg ctc cgc 2 Glu Arg Ile Tyr Gln Lys Lys Thr Gln Leu Glu His Ile Leu Leu Arg 35 40 45  | 64 |
| cca gac acc tac att ggt tct gtg gaa tta gtg acc cag caa atg tgg Pro Asp Thr Tyr Ile Gly Ser Val Glu Leu Val Thr Gln Gln Met Trp 50 55 60    | 12 |
|                                                                                                                                             | ~~ |

gtt tac gat gaa gat gtt ggc att aac tat agg gaa gtc act ttt gtt

| Val               | Tyr               | Asp<br>65         | Glu               | Asp               | Val               | Glу               | Ile<br>70         | Asn               | Tyr               | Arg               | Glu               | Val<br>75           | Thr               | Phe               | Val               |    |     |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|----|-----|
| cct<br>Pro        | ggt<br>Gly<br>80  | ttg<br>Leu        | tac<br>Tyr        | aaa<br>Lys        | atc<br>Ile        | ttt<br>Phe<br>85  | gat<br>Asp        | gag<br>Glu        | att<br>Ile        | cta<br>Leu        | gtt<br>Val<br>90  | aat<br>Asn          | gct<br>Ala        | gcg<br>Ala        | gac<br>Asp        | 40 |     |
| aac<br>Asn<br>95  | aaa<br>Lys        | caa<br>Gln        | agg<br>Arg        | gac<br>Asp        | cca<br>Pro<br>100 | aaa<br>Lys        | atg<br>Met        | tct<br>Ser        | tgt<br>Cys        | att<br>Ile<br>105 | aga<br>Arg        | gtc<br>Val          | aca<br>Thr        | att<br>Ile        | gat<br>Asp<br>110 | 45 | 56  |
| ccg<br>Pro        | gaa<br>Glu        | aac<br>Asn        | aat<br>Asn        | tta<br>Leu<br>115 | att<br>Ile        | agt<br>Ser        | ata<br>Ile        | tgg<br>Trp        | aat<br>Asn<br>120 | aat<br>Asn        | gga<br>Gly        | aaa<br>Lys          | ggt<br>Gly        | att<br>Ile<br>125 | cct<br>Pro        | 50 | 04  |
| gtt<br>Val        | gtt<br>Val        | gaa<br>Glu        | cac<br>His<br>130 | aaa<br>Lys        | gtt<br>Val        | gaa<br>Glu        | aag<br>Lys        | atg<br>Met<br>135 | tat<br>Tyr        | gtc<br>Val        | cca<br>Pro        | gct<br>Ala          | ctc<br>Leu<br>140 | ata<br>Ile        | ttt<br>Phe        | 55 | 52  |
| gga<br>Gly        | cag<br>Gln        | ctc<br>Leu<br>145 | cta<br>Leu        | act<br>Thr        | tct<br>Ser        | agt<br>Ser        | aac<br>Asn<br>150 | tat<br>Tyr        | gat<br>Asp        | gat<br>Asp        | gat<br>Asp        | gaa<br>Glu<br>155   | aag<br>Lys        | aaa<br>Lys        | gtg<br>Val        | 60 | 00  |
| aca<br>Thr        | ggt<br>Gly<br>160 | ggt<br>Gly        | cga<br>Arg        | aat<br>Asn        | ggc<br>Gly        | tat<br>Tyr<br>165 | gga<br>Gly        | gcc               | aaa<br>Lys        | ttg<br>Leu        | tgt<br>Cys<br>170 | aac<br>Asn          | ata<br>Ile        | ttc<br>Phe        | agt<br>Ser        | 64 | 48  |
| acc<br>Thr<br>175 | aaa<br>Lys        | ttt<br>Phe        | act<br>Thr        | gtg<br>Val        | gaa<br>Glu<br>180 | aca<br>Thr        | gcc<br>Ala        | agt<br>Ser        | aga<br>Arg        | gaa<br>Glu<br>185 | tac<br>Tyr        | aag<br>Lys          | aaa<br>Lys        | atg<br>Met        | ttc<br>Phe<br>190 | 6  | 96  |
| aaa<br>Lys        | cag<br>Gln        | aca<br>Thr        | tgg<br>Trp        | atg<br>Met<br>195 | gat<br>Asp        | aat<br>Asn        | atg<br>Met        | gga<br>Gly        | aga<br>Arg<br>200 | Ala               | ggt<br>Gly        | gag<br>Glu          | atg<br>Met        | gaa<br>Glu<br>205 | ctc<br>Leu        | 7  | 44  |
| aag<br>Lys        | ccc               | ttc<br>Phe        | aat<br>Asn<br>210 | Gly               | gaa<br>Glu        | gat<br>Asp        | tat<br>Tyr        | aca<br>Thr<br>215 | Cys               | atc<br>Ile        | acc<br>Thr        | ttt<br>Phe          | cag<br>Gln<br>220 | cct<br>Pro        | gat<br>Asp        | 7  | 92  |
| ttg<br>Leu        | tct<br>Ser        | aag<br>Lys<br>225 | Phe               | aaa<br>Lys        | atg<br>Met        | caa<br>Gln        | agc<br>Ser<br>230 | Leu               | gac<br>Asp        | aaa<br>Lys        | gat<br>Asp        | att<br>Ile<br>235   | gtt<br>Val        | gca<br>Ala        | cta<br>Leu        | 8  | 40  |
| atg<br>Met        | gto<br>Val<br>240 | Arg               | aga<br>Arg        | gca<br>Ala        | tat<br>Tyr        | gat<br>Asp<br>245 | Ile               | gct<br>Ala        | gga<br>Gly        | tcc<br>Ser        | Thr<br>250        | Lys                 | gat<br>Asp        | gtc<br>Val        | aaa<br>Lys        | 8  | 88  |
| gto<br>Val<br>255 | . Phe             | ctt<br>Lev        | aat<br>Asn        | gga<br>Gly        | aat<br>Asn<br>260 | Lys               | ctg<br>Leu        | cca<br>Pro        | gta<br>Val        | aaa<br>Lys<br>265 | G13               | ttt<br>Phe          | cgt<br>Arg        | agt<br>Ser        | tat<br>Tyr<br>270 | 9  | 36  |
| gtg<br>Val        | gac<br>Asp        | atg<br>Met        | tat<br>Tyr        | ttg<br>Lev<br>275 | Lys               | gac<br>Asp        | aag<br>Lys        | ttg<br>Lev        | gat<br>Asp<br>280 | Glu               | act<br>Thr        | ggt<br>Gly          | aac<br>Asn        | Ser<br>285        | ttg<br>Leu        | 9  | 84  |
| aaa<br>Lys        | ı gta<br>; Val    | ata<br>L Ile      | cat<br>His        | Gli               | caa<br>Gln        | gta<br>Val        | aac<br>Asr        | cac<br>His<br>295 | Aro               | j tgg<br>j Trp    | gaa<br>Glu        | ı gtg<br>ı Val      | tgt<br>Cys<br>300 | тел               | act<br>Thr        | 10 | 32  |
| ato<br>Met        | g agt             | gaa<br>Glu<br>305 | ь Гр              | ggo<br>Gly        | ttt<br>Phe        | cag<br>Gln        | caa<br>Glr<br>310 | ı Ile             | ago<br>Ser        | ttt<br>Phe        | gto<br>Val        | aac<br>L Asn<br>315 | Ser               | att<br>Ile        | gct<br>Ala        | 10 | 080 |
| aca<br>Thi        | tco<br>Sei<br>320 | : Буя             | g ggt             | ggo<br>Gly        | aga<br>Arg        | cat<br>His<br>325 | Va]               | gat<br>Asp        | tat<br>o Tyr      | gta<br>Val        | gct<br>Ala<br>330 | ı Asp               | cag<br>Glr        | g att             | gtg<br>Val        | 11 | 128 |

|                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   | •                 |            |                   |                   |                   |      |
|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|------|
| act<br>Thr<br>335 | aaa<br>Lys        | ctt<br>Leu | gtt<br>Val        | gat<br>Asp        | gtt<br>Val<br>340 | gtg<br>Val        | aag<br>Lys | aag<br>Lys        | aag<br>Lys        | aac<br>Asn<br>345 | aag<br>Lys        | ggt<br>Gly | ggt<br>Gly        | gtt<br>Val        | gca<br>Ala<br>350 | 1176 |
| gta<br>Val        | aaa<br>Lys        | gca<br>Ala | cat<br>His        | cag<br>Gln<br>355 | gtg<br>Val        | aaa<br>Lys        | aat<br>Asn | His               | atg<br>Met<br>360 | tgg<br>Trp        | att<br>Ile        | ttt<br>Phe | gta<br>Val        | aat<br>Asn<br>365 | gcc<br>Ala        | 1224 |
|                   |                   |            |                   |                   | acc<br>Thr        |                   |            |                   |                   |                   |                   |            |                   |                   |                   | 1272 |
|                   |                   |            |                   |                   | ttt<br>Phe        |                   |            |                   |                   |                   |                   |            |                   |                   |                   | 1320 |
| atc<br>Ile        | aaa<br>Lys<br>400 | gct<br>Ala | gcc<br>Ala        | att<br>Ile        | ggc<br>Gly        | tgt<br>Cys<br>405 | ggt<br>Gly | att<br>Ile        | gta<br>Val        | gaa<br>Glu        | agc<br>Ser<br>410 | ata<br>Ile | cta<br>Leu        | aac<br>Asn        | tgg<br>Trp        | 1368 |
|                   |                   |            |                   |                   | caa<br>Gln<br>420 |                   |            |                   |                   |                   |                   |            |                   |                   |                   | 1416 |
|                   |                   |            |                   |                   | aag<br>Lys        |                   |            |                   |                   |                   |                   |            |                   |                   |                   | 1464 |
| gca<br>Ala        | GJ À<br>GGÀ       | ggc<br>Gly | cga<br>Arg<br>450 | aac<br>Asn        | tcc<br>Ser        | act<br>Thr        | gag<br>Glu | tgt<br>Cys<br>455 | acg<br>Thr        | ctt<br>Leu        | atc<br>Ile        | ctg<br>Leu | act<br>Thr<br>460 | gag<br>Glu        | gga<br>Gly        | 1512 |
|                   |                   |            |                   |                   | ttg<br>Leu        |                   |            |                   |                   |                   |                   |            |                   |                   |                   | 1560 |
|                   |                   |            |                   |                   | ttc<br>Phe        |                   |            |                   |                   |                   |                   |            |                   |                   |                   | 1608 |
|                   |                   |            |                   |                   | cag<br>Gln<br>500 |                   |            |                   |                   |                   |                   |            |                   |                   |                   | 1656 |
|                   |                   |            | Val               |                   | ctt<br>Leu        |                   | Tyr        |                   | Lys               | Asn               |                   |            |                   |                   |                   | 1704 |
| tca<br>Ser        | ttg<br>Leu        | aag<br>Lys | acg<br>Thr<br>530 | ctt<br>Leu        | cgt<br>Arg        | tat<br>Tyr        | Gly        | aag<br>Lys<br>535 | ata<br>Ile        | atg<br>Met        | att<br>Ile        | atg<br>Met | aca<br>Thr<br>540 | gat<br>Asp        | cag<br>Gln        | 1752 |
|                   |                   |            |                   |                   | cac<br>His        |                   |            |                   |                   |                   |                   |            |                   |                   |                   | 1800 |
|                   |                   |            |                   |                   | ctt<br>Leu        |                   |            |                   |                   |                   |                   |            |                   |                   |                   | 1848 |
|                   |                   |            |                   |                   | gta<br>Val<br>580 |                   |            |                   |                   |                   |                   |            |                   |                   |                   | 1896 |
| agc               | ctt               | cct        | gaa               | ttt               | gaa               | gag               | tgg        | aag               | agt               | tct               | act               | cca        | aat               | cat               | aaa               | 1944 |

| Ser               | Leu               | Pro               | Glu               | Phe<br>595        | Glu               | Glu               | Trp               | Lys               | Ser<br>600        | Ser               | Thr               | Pro               | Asn               | ніs<br>605        | Lys               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|                   |                   |                   |                   |                   |                   | tac<br>Tyr        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1992 |
|                   |                   |                   |                   |                   |                   | gca<br>Ala        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2040 |
|                   |                   |                   |                   |                   |                   | gat<br>Asp<br>645 |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2088 |
|                   |                   |                   |                   |                   |                   | cga<br>Arg        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2136 |
|                   |                   |                   |                   |                   |                   | tta<br>Leu        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2184 |
|                   |                   |                   |                   |                   |                   | ctg<br>Leu        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2232 |
| ctt<br>Leu        | atc<br>Ile        | ttg<br>Leu<br>705 | ttc<br>Phe        | tca<br>Ser        | aat<br>Asn        | tct<br>Ser        | gat<br>Asp<br>710 | aac<br>Asn        | gag<br>Glu        | aga<br>Arg        | tct<br>Ser        | atc<br>Ile<br>715 | cct<br>Pro        | tct<br>Ser        | atg<br>Met        | 2280 |
| gtg<br>Val        | gat<br>Asp<br>720 | ggt<br>Gly        | ttg<br>Leu        | aaa<br>Lys        | cca<br>Pro        | ggt<br>Gly<br>725 | cag<br>Gln        | aga<br>Arg        | aag<br>Lys        | gtt<br>Val        | ttg<br>Leu<br>730 | ttt<br>Phe        | act<br>Thr        | tgc<br>Cys        | ttc<br>Phe        | 2328 |
| aaa<br>Lys<br>735 | cgg<br>Arg        | aat<br>Asn        | gac<br>Asp        | aag<br>Lys        | cga<br>Arg<br>740 | gaa<br>Glu        | gta<br>Val        | aag<br>Lys        | gtt<br>Val        | gcc<br>Ala<br>745 | caa<br>Gln        | tta<br>Leu        | gct<br>Ala        | gga<br>Gly        | tca<br>Ser<br>750 | 2376 |
|                   |                   |                   |                   |                   |                   | tat<br>Tyr        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2424 |
| acc<br>Thr        | att<br>Ile        | atc<br>Ile        | aat<br>Asn<br>770 | ttg<br>Leu        | gct<br>Ala        | cag<br>Gln        | aat<br>Asn        | ttt<br>Phe<br>775 | gtg<br>Val        | ggt<br>Gly        | agc<br>Ser        | aat<br>Asn        | aat<br>Asn<br>780 | cta<br>Leu        | aac<br>Asn        | 2472 |
| ctc<br>Leu        | ttg<br>Leu        | cag<br>Gln<br>785 | ccc<br>Pro        | att<br>Ile        | ggt<br>Gly        | cag<br>Gln        | ttt<br>Phe<br>790 | ggt<br>Gly        | acc<br>Thr        | agg<br>Arg        | cta<br>Leu        | cat<br>His<br>795 | ggt<br>Gly        | ggc<br>Gly        | aag<br>Lys        | 2520 |
| gat<br>Asp        | tct<br>Ser<br>800 | gct<br>Ala        | agt<br>Ser        | cca<br>Pro        | cga<br>Arg        | tac<br>Tyr<br>805 | atc<br>Ile        | ttt<br>Phe        | aca<br>Thr        | atg<br>Met        | ctc<br>Leu<br>810 | agc<br>Ser        | tct<br>Ser        | ttg<br>Leu        | gct<br>Ala        | 2568 |
| cga<br>Arg<br>815 | ttg<br>Leu        | tta<br>Leu        | ttt<br>Phe        | cca<br>Pro        | cca<br>Pro<br>820 | aaa<br>Lys        | gat<br>Asp        | gat<br>Asp        | cac<br>His        | acg<br>Thr<br>825 | ttg<br>Leu        | aag<br>Lys        | ttt<br>Phe        | tta<br>Leu        | tat<br>Tyr<br>830 | 2616 |
| gat<br>Asp        | gac<br>Asp        | aac<br>Asn        | cag<br>Gln        | cgt<br>Arg<br>835 | gtt<br>Val        | gag<br>Glu        | cct<br>Pro        | gaa<br>Glu        | tgg<br>Trp<br>840 | tac<br>Tyr        | att<br>Ile        | cct<br>Pro        | att<br>Ile        | att<br>Ile<br>845 | ccc<br>Pro        | 2664 |
| atg<br>Met        | gtg<br>Val        | ctg<br>Leu        | ata<br>Ile<br>850 | aat<br>Asn        | ggt<br>Gly        | gct<br>Ala        | gaa<br>Glu        | gga<br>Gly<br>855 | atc<br>Ile        | ggt<br>Gly        | act<br>Thr        | ggg<br>Gly        | tgg<br>Trp<br>860 | tcc<br>Ser        | tgc<br>Cys        | 2712 |

| Lys               | Ile               | Pro .<br>865      | aac t<br>Asn 1     | Phe               | Asp               | Val               | Arg<br>870        | Glu                | Ile               | Val               | Asn                   | 875               | Ile               | Arg                | Arg .                | 2760 |
|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|--------------------|----------------------|------|
| ttg<br>Leu        | atg<br>Met<br>880 | gat<br>Asp        | gga (<br>Gly (     | gaa<br>Glu        | gaa<br>Glu        | cct<br>Pro<br>885 | ttg<br>Leu        | cca<br>Pro         | atg<br>Met        | ctt<br>Leu        | cca<br>Pro<br>890     | agt<br>Ser        | tac<br>Tyr        | aag<br>Lys         | aac<br>Asn           | 2808 |
| ttc<br>Phe<br>895 | aag<br>Lys        | ggt<br>Gly        | act a              | att<br>Ile        | gaa<br>Glu<br>900 | gaa<br>Glu        | ctg<br>Leu        | gct<br>Ala         | cca<br>Pro        | aat<br>Asn<br>905 | caa<br>Gln            | tat<br>Tyr        | gtg<br>Val        | att<br>Ile         | agt<br>Ser<br>910    | 2856 |
| ggt<br>Gly        | gaa<br>Glu        | gta<br>Val        | gct (<br>Ala 1     | att<br>Ile<br>915 | ctt<br>Leu        | aat<br>Asn        | tct<br>Ser        | aca<br>Thr         | acc<br>Thr<br>920 | Ile               | gaa<br>Glu            | atc<br> <br>  Ile | tca<br>Ser        | gag<br>Glu<br>925  | ctt<br>Leu           | 2904 |
| ccc<br>Pro        | gtc<br>Val        | aga<br>Arg        | aca Thr 930        | tgg<br>Trp        | acc<br>Thr        | cag<br>Gln        | aca<br>Thr        | tac<br>Tyr<br>935  | aaa<br>Lys        | gaa<br>Glu        | caa<br>Gln            | gtt<br>Val        | cta<br>Leu<br>940 | Glu                | ccc<br>Pro           | 2952 |
| atg<br>Met        | ttg<br>Leu        | aat<br>Asn<br>945 | ggc                | acc<br>Thr        | gag<br>Glu        | aag<br>Lys        | aca<br>Thr<br>950 | cct<br>Pro         | cct<br>Pro        | ctc<br>Leu        | ata<br>Ile            | aca<br>Thr<br>955 | Asp               | tat<br>Tyr         | agg<br>Arg           | 3000 |
| gaa<br>Glu        | tac<br>Tyr<br>960 | cat<br>His        | aca<br>Thr         | gat<br>Asp        | acc<br>Thr        | act<br>Thr<br>965 | gtg<br>Val        | aaa<br>Lys         | ttt<br>Phe        | gtt<br>Val        | gtg<br>Val<br>970     | Lys               | atç<br>Met        | act<br>Thr         | gaa<br>Glu           | 3048 |
| gaa<br>Glu<br>975 | aaa<br>Lys        | ctg<br>Leu        | gca<br>Ala         | gag<br>Glu        | gca<br>Ala<br>980 | gag<br>Glu        | aga<br>Arg        | gtt<br>Val         | gga<br>Gly        | cta<br>Leu<br>985 | His                   | aaa<br>Lys        | gto<br>Val        | ttc<br>Phe         | aaa<br>Lys<br>990    | 3096 |
| ctc<br>Leu        | caa<br>Gln        | act<br>Thr        | agt<br>Ser         | ctc<br>Leu<br>995 | aca<br>Thr        | tgc<br>Cys        | aac<br>Asn        | tct<br>Ser         | atg<br>Met<br>100 | Va                | g ct<br>l Le          | t tt<br>u Ph      | t ga<br>e As      | p Hi               | c gta<br>s Val<br>05 | 3144 |
|                   |                   |                   | aag<br>Lys<br>1010 | Lys               | tai               | t gad<br>r Ası    | e ac              | g gt<br>r Va<br>10 | l. L              | tg g<br>eu A      | at a<br>sp I          | tt c              | eu F              | iga<br>Arg<br>.020 | gac<br>Asp           | 3189 |
|                   |                   |                   | ctc<br>Leu<br>1025 | Arg               | a cti<br>g Lei    | t aaa<br>1 Ly:    | a ta<br>s Ty      | t ta<br>r Ty<br>10 | r G               | ga t<br>ly I      | ta a<br>eu A          | iga a<br>irg I    | ys (              | gaa<br>Slu<br>1035 | tgg<br>Trp           | 3234 |
|                   |                   | gga<br>Gly        | atg<br>Met<br>1040 | Let               |                   |                   |                   | a tc<br>u Se<br>10 | r A               |                   |                       | tg a<br>eu A      | sn A              |                    | cag<br>Gln           | 3279 |
| gct<br>Ala        | cgc<br>Arg        | ttt<br>Phe        | atc<br>Ile<br>1055 | Let               | a gaq<br>ı Gli    | g aa<br>u Ly      | a at<br>s Il      | a ga<br>e As<br>10 | рG                | gc a              | aa a<br>ys l          | ita a<br>:le I    | le l              | tt<br>[le<br>[065  | gaa<br>Glu           | 3324 |
| aat<br>Asn        | aag<br>Lys        | cct<br>Pro        | aag<br>Lys<br>1070 | Lys               | a gaa<br>s Gli    | a tt<br>u Le      | a at<br>u Il      | t aa<br>e Ly<br>10 | s V               | tt c              | tg a<br>eu 1          | itt o             | 3ln 2             | agg<br>LO80        | Gly<br>gga           | 3369 |
| tat<br>Tyr        | gat<br>Asp        | tcg<br>Ser        | gat<br>Asp<br>1085 | Pro               | t gte             | g aa<br>l Ly      | g gc<br>s Al      | a Tr               | g a<br>p I<br>90  | aa g<br>ys G      | gaa ç<br>Slu <i>R</i> | jec c             | Sln (             | caa<br>Gln<br>1095 | aag<br>Lys           | 3414 |
| gtt<br>Val        | cca               | gat<br>Asp        | gaa<br>Glu         | gaa<br>Gl         | a ga<br>u Gl      | a aa<br>u As      | t ga<br>n Gl      | u Gl               | u S               | gt g<br>Ser A     | ac a                  | aac g<br>Asn G    | ilu l             | .ys                | gaa<br>Glu           | 3459 |
|                   | PLO               | •                 | 1100               |                   |                   |                   |                   | 11                 | 05                |                   |                       |                   | •                 | L <b>11</b> 0      |                      |      |

| Thr        | Glu        | Lys        | Ser<br>1115        | Asp        | Ser        | Val        | Thr        | Asp<br>1120        | Ser        | Gly         | Pro        | Thr        | Phe<br>1125        | Asn        |      |
|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|-------------|------------|------------|--------------------|------------|------|
|            |            |            | gat<br>Asp<br>1130 |            |            |            |            |                    |            |             |            |            |                    | aaa<br>Lys | 3549 |
|            |            |            | tgc<br>Cys<br>1145 |            |            |            |            |                    |            |             |            |            |                    |            | 3594 |
|            |            |            | aga<br>Arg<br>1160 |            |            |            |            |                    | Leu        |             |            |            |                    | ttg<br>Leu | 3639 |
|            |            |            | att<br>Ile<br>1175 |            |            |            |            |                    | Val        |             |            |            |                    | aaa<br>Lys | 3684 |
| caa<br>Gln | gat<br>Asp | gaa<br>Glu | caa<br>Gln<br>1190 | gtc<br>Val | gga<br>Gly | ctt<br>Leu | cct<br>Pro | 999<br>Gly<br>1195 | aaa<br>Lys | GJ A<br>GGG | Gly<br>ggg | aag<br>Lys | gcc<br>Ala<br>1200 | <b>aag</b> | 3729 |
| G1A<br>aaa | aaa<br>Lys | aaa<br>Lys | aca<br>Thr<br>1205 | caa<br>Gln | atg<br>Met | gct<br>Ala | gaa<br>Glu | gtt<br>Val<br>1210 | ttg<br>Leu | cct<br>Pro  | tct<br>Ser | ccg<br>Pro | cgt<br>Arg<br>1215 | ggt<br>Gly | 3774 |
|            | -          | -          | att<br>Ile<br>1220 |            |            |            |            | ata<br>Ile<br>1225 |            |             |            |            |                    | gca<br>Ala | 3819 |
| -          | -          |            | aat<br>Asn<br>1235 |            | _          |            |            | _                  |            |             |            |            | gaa<br>Glu<br>1245 | gga<br>Gly | 3864 |
|            |            |            | gaa<br>Glu<br>1250 |            |            |            |            |                    |            |             |            |            |                    |            | 3909 |
|            | -          | -          | aaa<br>Lys<br>1265 | _          |            | _          | _          |                    |            |             | _          |            |                    | aaa<br>Lys | 3954 |
|            |            |            | ttg<br>Leu<br>1280 |            |            |            |            |                    |            |             |            |            |                    | aga<br>Arg | 3999 |
| aat<br>Asn | ccc<br>Pro | tgg<br>Trp | tct<br>Ser<br>1295 | gat<br>Asp | tca<br>Ser | gaa<br>Glu | tca<br>Ser | gat<br>Asp<br>1300 | agg<br>Arg | agc<br>Ser  | agt<br>Ser | gac<br>Asp | gaa<br>Glu<br>1305 | agt<br>Ser | 4044 |
|            |            |            | gtc<br>Val<br>1310 |            |            |            |            |                    |            |             |            |            |                    |            | 4089 |
|            |            |            | aaa<br>Lys<br>1325 |            |            |            |            |                    |            |             |            |            |                    | ttc<br>Phe | 4134 |
| tca<br>Ser | gat<br>Asp | ttt<br>Phe | gat<br>Asp<br>1340 | gaa<br>Glu | aaa<br>Lys | act<br>Thr | gat<br>Asp | gat<br>Asp<br>1345 | gaa<br>Glu | gat<br>Asp  | ttt<br>Phe | gtc<br>Val | cca<br>Pro<br>1350 | tca<br>Ser | 4179 |
| gat<br>Asp | gct<br>Ala | agt<br>Ser | cca<br>Pro<br>1355 | cct<br>Pro | aag<br>Lys | acc<br>Thr | aaa<br>Lys | act<br>Thr<br>1360 | tcc<br>Ser | cca<br>Pro  | aaa<br>Lys | ctt<br>Leu | agt<br>Ser<br>1365 | aac<br>Asn | 4224 |

| aaa<br>Lys | gaa<br>Glu | ctg<br>Leu | aaa<br>Lys<br>1370 | cca<br>Pro | cag<br>Gln | aaa<br>Lys | agt<br>Ser | gtc<br>Val<br>1375 | Val        | tca<br>Ser | gac<br>Asp | ctt<br>Leu     | gaa<br>Glu<br>1380 | gct<br>Ala | 4269  |
|------------|------------|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|----------------|--------------------|------------|-------|
| gat<br>Asp | gat<br>Asp | gtt<br>Val | aag<br>Lys<br>1385 | ggc<br>Gly | agt<br>Ser | gta<br>Val | cca<br>Pro | ctg<br>Leu<br>1390 | tct<br>Ser | tca<br>Ser | agc<br>Ser | cct<br>Pro     | cct<br>Pro<br>1395 | gct<br>Ala | 4314  |
| aca<br>Thr | cat<br>His | ttc<br>Phe | cca<br>Pro<br>1400 | Asp        | gaa<br>Glu | act<br>Thr | gaa<br>Glu | att<br>Ile<br>1405 | aca<br>Thr | aac<br>Asn | cca<br>Pro | gtt<br>Val     | cct<br>Pro<br>1410 | aaa<br>Lys | 4359  |
| aag<br>Lys | aat<br>Asn | gtg<br>Val | aca<br>Thr<br>1415 | gtg<br>Val | aag<br>Lys | aag<br>Lys | aca<br>Thr | gca<br>Ala<br>1420 | gca<br>Ala | aaa<br>Lys | agt<br>Ser | cag<br>Gln     | tct<br>Ser<br>1425 | tcc<br>Ser | 4404  |
| acc<br>Thr | tcc<br>Ser | act<br>Thr | acc<br>Thr<br>1430 | ggt<br>Gly | gcc<br>Ala | aaa<br>Lys | aaa<br>Lys | agg<br>Arg<br>1435 | gct<br>Ala | gcc<br>Ala | cca<br>Pro | aaa<br>Lys     | gga<br>Gly<br>1440 | act<br>Thr | 4449  |
| aaa<br>Lys | agg<br>Arg | gat<br>Asp | cca<br>Pro<br>1445 | gct<br>Ala | ttg<br>Leu | aat<br>Asn | tct<br>Ser | ggt<br>Gly<br>1450 | Val        | tct<br>Ser | caa<br>Gln | aag<br>Lys     | cct<br>Pro<br>1455 | gat<br>Asp | 449,4 |
|            |            |            | acc<br>Thr<br>1460 | Lys        | aat<br>Asn | cgc<br>Arg | cgc<br>Arg | aaa<br>Lys<br>1465 | Arg        | aag<br>Lys | cca<br>Pro | tcc<br>Ser     | act<br>Thr<br>1470 | tct<br>Ser | 4539  |
|            |            |            | gac<br>Asp<br>1475 | Ser        | aat<br>Asn | ttt<br>Phe | gag<br>Glu | aaa<br>Lys<br>1480 | Ile        | gtt<br>Val | tcg<br>Ser | aaa<br>Lys     | gca<br>Ala<br>1485 | gtc<br>Val | 4584  |
|            |            |            | aaa<br>Lys<br>1490 | Ser        | aag<br>Lys | G] À       | gag<br>Glu | agt<br>Ser<br>1495 | Asp        | gac<br>Asp | ttc<br>Phe | cat<br>His     | atg<br>Met<br>1500 | Asp        | 4629  |
| ttt<br>Phe | gac<br>Asp | tca<br>Ser | gct<br>Ala<br>1505 | Val        | gct<br>Ala | cct<br>Pro | cgg<br>Arg | gca<br>Ala<br>1510 | Lys        | tct<br>Ser | gta<br>Val | . cgg<br>. Arg | gca<br>Ala<br>1515 | газ        | 4674  |
| aaa<br>Lys | cct<br>Pro | ata<br>Ile | aag<br>Lys<br>1520 | Tyr        | ctg<br>Leu | gaa<br>Glu | gag<br>Glu | tca<br>Ser<br>1525 | Asp        | gaa<br>Glu | gat<br>Asp | gat<br>Asp     | ctg<br>Leu<br>1530 | Pne        | 4719  |
| taa        | aatg       | tga        | ggcga              | ttat       | t tt       | aagt       | aatt       | atct               | tacc       | aa g       | ccca       | agac           | t ggt              | tttaaag    | 4779  |
| tta        | cctg       | aag        | ctctt              | aact       | t co       | tccc       | ctct       | gaat               | ttag       | ıtt t      | gggg       | gaagg          | ıt gtt             | tttagta    | 4839  |
| caa        | igaca      | tca        | aagtg              | aagt       | a aa       | geco       | aagt       | gtto               | ttta       | igc t      | tttt       | ataa           | ıt act             | gtctaaa    | 4899  |
| tag        | gtgac      | cat        | ctcat              | gggc       | a tt       | gtt:       | tct        | ctct               | gctt       | tg t       | ctgt       | gttt           | t gag              | gtctgctt   | 4959  |
| tct        | tttç       | ıtct       | ttaaa              | acct       | g at       | tttt       | aagt       | tctt               | ctga       | ac t       | gtag       | gaaat          | a gct              | atctgat    | 5019  |
| cac        | ttca       | ıgcg       | taaag              | cagt       | g to       | ıttta      | ttaa       | ccat               | ccac       | ta a       | igcta      | aaaa           | et aga             | gcagttt    | 5079  |
| gat        | ttaa       | aag        | tgtca              | ctct       | t co       | etcct      | tttc       | tact               | ttca       | agt a      | agata      | atgag          | ga tag             | gagcataa   | 5139  |
| tta        | atcto      | gttt       | tatct              | tagt       | t ti       | atad       | ataa       | ttta               | accat      | ca ç       | gata       | gaact          | t tat              | ggttcta    | 5199  |
| gta        | acaga      | atac       | tctac              | taca       | c to       | cagco      | ctctt      | : atgt             | gcca       | ag 1       | tttt       | ctti           | a ago              | caatgaga   | 5259  |
| aat        | tgct       | cat        | gttct              | tcat       | c ti       | ctca       | aato       | atca               | agago      | gec a      | aaaga      | aaaa           | ac act             | tttggctg   | 5319  |
| tgt        | ctat       | caac       | ttgad              | cacaç      | gt ca      | ata        | gaato      | g aaga             | aaat       | ta 🤈       | gagta      | agtta          | at gt              | gattattt   | 5379  |

| cagetettga cetgteecet o         | etggetgeet etgagtetg       | a atctcccaaa gagagaaacc      | 5439 |
|---------------------------------|----------------------------|------------------------------|------|
| aatttctaag aggactggat t         | gcagaagac teggggaca        | a catttgatcc aagatcttaa      | 5499 |
| atgttatatt gataaccatg o         | ctcagcaatg agctattag       | a ttcattttgg gaaatctcca      | 5559 |
| taatttcaat ttgtaaactt t         | gttaagacc tgtctacat        | t gttatatgtg tgtgacttga      | 5619 |
| gtaatgttat caacgttttt g         | gtaaatattt actatgttt       | t tctattagct aaattccaac      | 5679 |
| aattttgtac tttaataaa            |                            | •                            | 5698 |
| · <01'0> 20                     |                            |                              |      |
| <210> 30                        |                            |                              |      |
| <211> 1531                      |                            | · .                          |      |
| <212> PRT                       |                            |                              |      |
| <213> NM_001067 TOP2A           |                            |                              |      |
| <400> 20                        |                            |                              |      |
| <400> 30                        | a) - p - m ) - a)          |                              |      |
| Met Glu Val Ser Pro Leu 1 5     | i GIn Pro Val Asn GI<br>10 | ų Asn Met Gin Vai Asn<br>15  |      |
|                                 | ,                          |                              |      |
| Lys Ile Lys Lys Asn Glu<br>20   | Asp Ala Lys Lys Ar<br>25   | g Leu Ser Val Glu Arg<br>30  |      |
| <b>71</b>                       | a                          |                              |      |
| Ile Tyr Gln Lys Lys Thr<br>35   | 40                         | e Leu Leu Arg Pro Asp<br>45  |      |
| The Tie Clarker Wal             | Clu Iou Val Mbm Cl         | - Cla Mat Two Val Tyr        |      |
| Thr Tyr Ile Gly Ser Val<br>50   | 55                         | 60                           |      |
| han Clu han Val Clu Tla         | . A                        | I Mbw Dho Wal Dwo Clu        |      |
| Asp Glu Asp Val Gly Ile         | r Ash Tyr Arg Giu va<br>75 | 1 Thi Phe Val Plo Gly<br>80  |      |
| Y M Y T1 N                      |                            |                              |      |
| Leu Tyr Lys Ile Phe Asp<br>. 85 | 90 gru lie Leu val As      | n Ala Ala Asp Asn Lys<br>95  |      |
| Ola North Day Day Torr Walt     | d O 71 . 3                 | l mba tla bas Due Gla        |      |
| Gln Arg Asp Pro Lys Met<br>100  | Ser Cys 11e Arg Va<br>105  | 1 Thr lie Asp Pro Giu        |      |
| Non-Non-You The Gov The         |                            | - Clar II- Due Wel Wel       |      |
| Asn Asn Leu Ile Ser Ile<br>115  | 120                        | s GIY IIE Pro Vai Vai<br>125 |      |
| Ole rile tue vel ole v          | Mak Man W-1 Por- 22        | - Iou Tle Dh- Clu Cl-        |      |
| Glu His Lys Val Glu Lys         | -                          | _                            |      |
| 130                             | 135                        | 140                          |      |
| Leu Leu Thr Ser Ser Asn         |                            |                              |      |
| 145 150                         | . 15.                      | 5 160                        |      |

Gly Arg Asn Gly Tyr Gly Ala Lys Leu Cys Asn Ile Phe Ser Thr Lys 165 170 175

Phe Thr Val Glu Thr Ala Ser Arg Glu Tyr Lys Lys Met Phe Lys Gln 180 185 . 190

Thr Trp Met Asp Asn Met Gly Arg Ala Gly Glu Met Glu Leu Lys Pro

Phe Asn Gly Glu Asp Tyr Thr Cys Ile Thr Phe Gln Pro Asp Leu Ser 210 215 220

Lys Phe Lys Met Gln Ser Leu Asp Lys Asp Ile Val Ala Leu Met Val 225 230 240

Arg Arg Ala Tyr Asp Ile Ala Gly Ser Thr Lys Asp Val Lys Val Phe 245 250 255

Leu Asn Gly Asn Lys Leu Pro Val Lys Gly Phe Arg Ser Tyr Val Asp 260 265 270

Met Tyr Leu Lys Asp Lys Leu Asp Glu Thr Gly Asn Ser Leu Lys Val 275 280 285

Ile His Glu Gln Val Asn His Arg Trp Glu Val Cys Leu Thr Met Ser 290 295 300

Glu Lys Gly Phe Gln Gln Ile Ser Phe Val Asn Ser Ile Ala Thr Ser 305 310 315 320

Lys Gly Gly Arg His Val Asp Tyr Val Ala Asp Gln Ile Val Thr Lys 325 330 335

Leu Val Asp Val Val Lys Lys Lys Asn Lys Gly Gly Val Ala Val Lys 340 345 350

Ala His Gln Val Lys Asn His Met Trp Ile Phe Val Asn Ala Leu Ile 355 360 365

Glu Asn Pro Thr Phe Asp Ser Gln Thr Lys Glu Asn Met Thr Leu Gln 370 375 380

Pro Lys Ser Phe Gly Ser Thr Cys Gln Leu Ser Glu Lys Phe Ile Lys 385 390 395

Ala Ala Ile Gly Cys Gly Ile Val Glu Ser Ile Leu Asn Trp Val Lys 405 410 415

Phe Lys Ala Gln Val Gln Leu Asn Lys Lys Cys Ser Ala Val Lys His
420 425 430

Asn Arg Ile Lys Gly Ile Pro Lys Leu Asp Asp Ala Asn Asp Ala Gly
435 440 445

Gly Arg Asn Ser Thr Glu Cys Thr Leu Ile Leu Thr Glu Gly Asp Ser 450 455 460

Ala Lys Thr Leu Ala Val Ser Gly Leu Gly Val Val Gly Arg Asp Lys
465 470 475 480

Tyr Gly Val Phe Pro Leu Arg Gly Lys Ile Leu Asn Val Arg Glu Ala 485 490 495

Ser His Lys Gln Ile Met Glu Asn Ala Glu Ile Asn Asn Ile Ile Lys 500 505 510

Ile Val Gly Leu Gln Tyr Lys Lys Asn Tyr Glu Asp Glu Asp Ser Leu 515 520 525

Lys Thr Leu Arg Tyr Gly Lys Ile Met Ile Met Thr Asp Gln Asp Gln 530 540

Asp Gly Ser His Ile Lys Gly Leu Leu Ile Asn Phe Ile His His Asn 545 550 555 560

Trp Pro Ser Leu Leu Arg His Arg Phe Leu Glu Glu Phe Ile Thr Pro 565 570 575

Ile Val Lys Val Ser Lys Asn Lys Gln Glu Met Ala Phe Tyr Ser Leu 580 585 590

Pro Glu Phe Glu Glu Trp Lys Ser Ser Thr Pro Asn His Lys Lys Trp 595 600 605

Lys Val Lys Tyr Tyr Lys Gly Leu Gly Thr Ser Thr Ser Lys Glu Ala 610 615 620

Lys Glu Tyr Phe Ala Asp Met Lys Arg His Arg Ile Gln Phe Lys Tyr 625 630 635 640

Ser Gly Pro Glu Asp Asp Ala Ala Ile Ser Leu Ala Phe Ser Lys Lys
645 650 655

Gln Ile Asp Asp Arg Lys Glu Trp Leu Thr Asn Phe Met Glu Asp Arg 660 665 670

Arg Gln Arg Lys Leu Leu Gly Leu Pro Glu Asp Tyr Leu Tyr Gly Gln 675 680 685

Thr Thr Tyr Leu Thr Tyr Asn Asp Phe Ile Asn Lys Glu Leu Ile 690 695 700

Leu Phe Ser Asn Ser Asp Asn Glu Arg Ser Ile Pro Ser Met Val Asp

705 710 715 720

Gly Leu Lys Pro Gly Gln Arg Lys Val Leu Phe Thr Cys Phe Lys Arg 725 730 735

Asn Asp Lys Arg Glu Val Lys Val Ala Gln Leu Ala Gly Ser Val Ala 740 745 750

Glu Met Ser Ser Tyr His His Gly Glu Met Ser Leu Met Met Thr Ile 755 760 . 765

Ile Asn Leu Ala Gln Asn Phe Val Gly Ser Asn Asn Leu Asn Leu France 770 780

Gln Pro Ile Gly Gln Phe Gly Thr Arg Leu His Gly Gly Lys Asp Ser 785 790 795 800

Ala Ser Pro Arg Tyr Ile Phe Thr Met Leu Ser Ser Leu Ala Arg Leu 805 810 815

Leu Phe Pro Pro Lys Asp Asp His Thr Leu Lys Phe Leu Tyr Asp Asp 820 825 830

Asn Gln Arg Val Glu Pro Glu Trp Tyr Ile Pro Ile Ile Pro Met Val 835 840 845

Leu Ile Asn Gly Ala Glu Gly Ile Gly Thr Gly Trp Ser Cys Lys Ile 850 855 860

Pro Asn Phe Asp Val Arg Glu Ile Val Asn Asn Ile Arg Arg Leu Met 865 870 875 880

Asp Gly Glu Glu Pro Leu Pro Met Leu Pro Ser Tyr Lys Asn Phe Lys 885 890 . 895

Gly Thr Ile Glu Glu Leu Ala Pro Asn Gln Tyr Val Ile Ser Gly Glu 900 905 910

Val Ala Ile Leu Asn Ser Thr Thr Ile Glu Ile Ser Glu Leu Pro Val 915 920 925

Arg Thr Trp Thr Gln Thr Tyr Lys Glu Gln Val Leu Glu Pro Met Leu 930 935 940

Asn Gly Thr Glu Lys Thr Pro Pro Leu Ile Thr Asp Tyr Arg Glu Tyr 945 950 955 960

His Thr Asp Thr Thr Val Lys Phe Val Val Lys Met Thr Glu Glu Lys 965 970 975

Leu Ala Glu Ala Glu Arg Val Gly Leu His Lys Val Phe Lys Leu Gln

980 985 990

Thr Ser Leu Thr Cys Asn Ser Met  $\mbox{Val}$  Leu Phe Asp His  $\mbox{Val}$  Gly Cys  $\mbox{995}$   $\mbox{1000}$ 

Leu Lys Lys Tyr Asp Thr Val Leu Asp Ile Leu Arg Asp Phe Phe 1010 1015 1020

Glu Leu Arg Leu Lys Tyr Tyr Gly Leu Arg Lys Glu Trp Leu Leu 1025 1030 1035

Gly Met Leu Gly Ala Glu Ser Ala Lys Leu Asn Asn Gln Ala Arg 1040 1045 1050

Phe Ile Leu Glu Lys Ile Asp Gly Lys Ile Ile Glu Asn Lys 1055 1060 1065

Pro Lys Lys Glu Leu Ile Lys Val Leu Ile Gln Arg Gly Tyr Asp 1070 1075 1080

Ser Asp Pro Val Lys Ala Trp Lys Glu Ala Gln Gln Lys Val Pro 1085 1090 1095

Asp Glu Glu Glu Asn Glu Glu Ser Asp Asn Glu Lys Glu Thr Glu 1100 1105 1110

Lys Ser Asp Ser Val Thr Asp Ser Gly Pro Thr Phe Asn Tyr Leu 1115 1120 1125

Leu Asp Met Pro Leu Trp Tyr Leu Thr Lys Glu Lys Lys Asp Glu 1130 1140

Leu Cys Arg Leu Arg Asn Glu Lys Glu Gln Glu Leu Asp Thr Leu 1145 1150 1155

Lys Arg Lys Ser Pro Ser Asp Leu Trp Lys Glu Asp Leu Ala Thr 1160 1165 1170

Phe Ile Glu Glu Leu Glu Ala Val Glu Ala Lys Glu Lys Gln Asp 1175 1180 1185

Glu Gln Val Gly Leu Pro Gly Lys Gly Gly Lys Ala Lys Gly Lys 1190 1195 1200

Lys Thr Gln Met Ala Glu Val Leu Pro Ser Pro Arg Gly Gln Arg 1205 1210 1215

Val Ile Pro Arg Ile Thr Ile Glu Met Lys Ala Glu Ala Glu Lys 1220 1225 1230

Lys Asn Lys Lys Lys Ile Lys Asn Glu Asn Thr Glu Gly Ser Pro

| . 12         | 235         |      |                  |     |     | 1240        |     | ٠    |     |     | 1245        |          |                  |     |
|--------------|-------------|------|------------------|-----|-----|-------------|-----|------|-----|-----|-------------|----------|------------------|-----|
| Gln Gl<br>12 | Lu A<br>250 | sp ( | Gly              | Val | G1u | Leu<br>1255 | Glu | Gly  | Leu | Lys | Gln<br>1260 | Arg      | Leu              | Glu |
| Lys Ly       | /s G<br>265 | ln I | Гуs              | Arg | Glu | Pro<br>1270 | Gly | Thr. | Lys | Thr | Lys<br>1275 | Lys<br>· | Gln <sub>.</sub> | Thr |
| Thr Le       | eu A<br>280 | la 1 | Phe <sub>.</sub> | Lys | Pro | Ile<br>1285 | Lys | ·Lys | Gly | Lys | Lys<br>1290 | Arg      | Asn              | Pro |
| Trp Se       | er A<br>295 | sp s | Ser              | Glu | Ser | Asp<br>1300 | Arg | Ser  | Ser | Asp | Glu<br>1305 | Ser      | Asn              | Phe |
| Asp Va       | al P<br>310 | ro l | Pro              | Arg | Glu | Thr<br>1315 | G1u | Pro  | Arg | Arg | Ala<br>1320 | Ala      | Thr              | Lys |
| Thr Ly       | ys P<br>325 | he : | Thr              | Met | Asp | Leu<br>1330 | Asp | Ser  | Asp | Glu | Asp<br>1335 | Phe      | Ser              | Asp |
| Phe As       | sp G<br>340 | lu 1 | Lys              | Thr | Asp | Asp<br>1345 | Glu | Asp  | Phe | Val | Pro<br>1350 | Ser      | Asp              | Ala |
| Ser Pr       | ro P<br>355 | ro l | Lys              | Thr | Lys | Thr<br>1360 | Ser | Pro  | Lys | Leu | Ser<br>1365 | Asn      | Lys              | Glu |
| Leu Ly       | ys P<br>370 | ro ( | Gln              | Lys | Ser | Val<br>1375 | Val | Ser  | Asp | Leu | Glu<br>1380 | Ala      | Asp              | Asp |
| Val Ly       | ys G<br>385 | ly:  | Ser              | Val |     | Leu<br>1390 | Ser | Ser  | Ser | Pro | Pro<br>1395 | Ala      | Thr              | His |
| Phe Pr       | ro A<br>400 | sp ( | Glu              | Thr | Glu | Ile<br>1405 | Thr | Asn  | Pro | Val | Pro<br>1410 | Lys      | Lys              | Asn |
| Val Th       | nr V<br>415 | al 1 | Lys              | Lys | Thr | Ala<br>1420 | Ala | Lys  | Ser | Gln | Ser<br>1425 | Ser      | Thr              | Ser |
| Thr Th       | nr G<br>430 | ly i | Ala              | Lys |     | Arg<br>1435 | Ala | Ala  | Pro | Lys | Gly<br>1440 | Thr      | Lys              | Arg |
| Asp Pr       | co A<br>145 | la 1 | Leu              | Asn | Ser | Gly<br>1450 | Val | Ser  | Gln | Lys | Pro<br>1455 | Asp      | Pro              | Ala |
| Lys Th       | nr I<br>160 | ys 1 | Asn              | Arg | Arg | Lys<br>1465 | Arg | Lys  | Pro | Ser | Thr<br>1470 | Ser      | Asp              | Asp |
| Ser As       | sp S<br>175 | er 1 | Asn              | Phe | Glu | Lys<br>1480 | Ile | Val  | Ser | Lys | Ala<br>1485 | Val      | Thr              | Ser |

| Lys Lys Ser Lys Gly Glu Ser Asp Asp Phe His Met Asp Phe Asp<br>1490 1495 1500                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Ser Ala Val Ala Pro Arg Ala Lys Ser Val Arg Ala Lys Lys Pro                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 1505 1510 1515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Ile Lys Tyr Leu Glu Glu Ser Asp Glu Asp Asp Leu Phe<br>1520 1525 1530                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| <210> 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| <211> 1369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| <212> DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| <213> NM_138410 chemokine-like factor super family 7, CKLFSF7                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| <220>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| <221> CDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| <222> (237)(761)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| <223>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| <400> 31 agtotaactt cogogoatet acgagggoog ggaotgoogo tacetttotg gaaggogoog                                                                                                                                                                                                                                                                                                                                                                                                                    | 60         |
| gccggccagt caccggaggg atcccgccag aggcggctcc gcgtctccag cagcggggca                                                                                                                                                                                                                                                                                                                                                                                                                             | 120        |
| gggacccggg cgccccgccc tegecagcgc ccgcccccgc ccgcccccgg cccgccctct                                                                                                                                                                                                                                                                                                                                                                                                                             | 180        |
| gtatetggce eetgggeage tgeeegggga ggeggeeage gagetgggge egegea atg<br>Met<br>1                                                                                                                                                                                                                                                                                                                                                                                                                 | 239        |
| tcg cac gga gcc ggg ctc gtc cgc acc acg tgc agc agc ggc agc gcg<br>Ser His Gly Ala Gly Leu Val Arg Thr Thr Cys Ser Ser Gly Ser Ala<br>5 10                                                                                                                                                                                                                                                                                                                                                    | 287        |
| ctc gga ccc ggg gcc ggc gcg gcc cag ccc agc gcg agc ccc ttg gag                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Leu Gly Pro Gly Ala Gly Ala Ala Gln Pro Ser Ala Ser Pro Leu Glu 20 25 30                                                                                                                                                                                                                                                                                                                                                                                                                      | 335        |
| Leu Gly Pro Gly Ala Gly Ala Ala Gln Pro Ser Ala Ser Pro Leu Glu                                                                                                                                                                                                                                                                                                                                                                                                                               | 335<br>383 |
| Leu Gly Pro Gly Ala Gly Ala Ala Gln Pro Ser Ala Ser Pro Leu Glu 20 25 30  ggg ctg ctg gac ctc agc tac ccc cgc acc cac gcg gcc ctg ctg aaa Gly Leu Leu Asp Leu Ser Tyr Pro Arg Thr His Ala Ala Leu Leu Lys                                                                                                                                                                                                                                                                                     |            |
| Leu Gly Pro Gly Ala Gly Ala Ala Gln Pro Ser Ala Ser Pro Leu Glu 20 25 30  ggg ctg ctg gac ctc agc tac ccc cgc acc cac gcg gcc ctg ctg aaa Gly Leu Leu Asp Leu Ser Tyr Pro Arg Thr His Ala Ala Leu Leu Lys 35 40 45  gtg gcg caa atg gtc acc ctg ctg att gcc ttc atc tgt gtg cgg agc Val Ala Gln Met Val Thr Leu Leu Ile Ala Phe Ile Cys Val Arg Ser                                                                                                                                           | 383        |
| Leu Gly Pro Gly Ala Gly Ala Ala Gln Pro Ser Ala Ser Pro Leu Glu 20 25 30  ggg ctg ctg gac ctc agc tac ccc cgc acc cac gcg gcc ctg ctg aaa Gly Leu Leu Asp Leu Ser Tyr Pro Arg Thr His Ala Ala Leu Leu Lys 35 40 45  gtg gcg caa atg gtc acc ctg ctg att gcc ttc atc tgt gtg cgg agc Val Ala Gln Met Val Thr Leu Leu Ile Ala Phe Ile Cys Val Arg Ser 50 60 65  tcc ctg tgg acc aac tac agc gcc tac agc tac ttt gaa gtg gtc acc Ser Leu Trp Thr Asn Tyr Ser Ala Tyr Ser Tyr Phe Glu Val Val Thr | 383<br>431 |

| Arg Phe Tyr Arg Val Leu Thr                                           | Cys Ile Ser Trp<br>105                    | Pro Leu Ser Glu Leu<br>110                        | •    |
|-----------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------|------|
| ctg cac tat tta atc ggt acc<br>Leu His Tyr Leu Ile Gly Thr<br>115 120 | Leu Leu Leu Leu                           |                                                   | 623  |
| gca gct tcc aag agt tac aac<br>Ala Ala Ser Lys Ser Tyr Asn<br>130     | cag agc gga ctg<br>Gln Ser Gly Leu<br>140 | gta gcc gga gcg atc<br>Val Ala Gly Ala Ile<br>145 | 671  |
| ttt ggt ttc atg gcc acc ttc<br>Phe Gly Phe Met Ala Thr Phe<br>150     |                                           |                                                   | 719  |
| tat aag atc tcg tgt gta acc<br>Tyr Lys Ile Ser Cys Val Thr<br>165     |                                           |                                                   | 761  |
| tgatgaggcc acaaccccta ggccc                                           | ctcag gagetttgca                          | gagaggagga cgtgtactcc                             | 821  |
| aggcgaggcc tctggacctg tgttc                                           | ctgtg ccaaagtcct                          | gtcaggctgg tgggcaccag                             | 881  |
| gaaaggcctg caccctcttc ctgct                                           | ctccc aggaagccag                          | ctccctgagc tcctgagcca                             | 941  |
| gccggaaact cttcctccag ccttc                                           | cgggg agaacatccc                          | teccattetg ggaaaggaaa                             | 1001 |
| gcagcctcca gggaaatgtt ttctg                                           | ccttc ctgcttctag                          | aaccacctca ggtactgatg                             | 1061 |
| aaccccactt agcacagctg aaggg                                           | gtttg tgaatactcc                          | cgcctaaatc ccttctactt                             | 1121 |
| cactcctcag gggagtgaag tgcct                                           | taaga aacaaagccc                          | tgtcctaatt tatctagctt                             | 1181 |
| gtcagtccgg tcttagagat accct                                           | ctttc ctgaagtgag                          | gcgtgcctgt agaaacacta                             | 1241 |
| tgtggtcagc ctgtccccaa ggaga                                           | tettg tgteteetet                          | ccatctctgc ctttgttacc                             | 1301 |
| agtgtgcatg tgtttgtgtg ttttt                                           | taata aaatattgac                          | tcggccagtt aaaaaaaaaa                             | 1361 |
| aaaaaaaa                                                              |                                           |                                                   | 1369 |
| <210> 32                                                              | ٠.                                        | , .                                               |      |
| <211> 175                                                             |                                           |                                                   |      |
| <212> PRT                                                             |                                           | •                                                 |      |
| <213> NM_138410 chemokine-                                            | like factor super                         | r family 7, CKLFSF7                               |      |
| <400> 32                                                              |                                           |                                                   |      |
| Met Ser His Gly Ala Gly Leu<br>1 5                                    | Val Arg Thr Thr                           | Cys Ser Ser Gly Ser<br>15                         | •    |
| Ala Leu Gly Pro Gly Ala Gly<br>20                                     | Ala Ala Gln Pro<br>25                     | Ser Ala Ser Pro Leu<br>30                         |      |
| Glu Gly Leu Leu Asp Leu Ser<br>35                                     | Tyr Pro Arg Thr                           | His Ala Ala Leu Leu<br>45                         |      |

Lys Val Ala Gln Met Val Thr Leu Leu Ile Ala Phe Ile Cys Val Arg

60

55

50

PCT/AU2003/001166

Ser Ser Leu Trp Thr Asn Tyr Ser Ala Tyr Ser Tyr Phe Glu Val 80

Thr Ile Cys Asp Leu 85

He Met Ile Leu Ala Phe Tyr Leu Val His Leu 90

Phe Arg Phe Tyr Arg Val Leu Thr Cys Ile Ser Trp Pro Leu Ser Glu 100 105 110

Leu Leu His Tyr Leu Ile Gly Thr Leu Leu Leu Leu Ile Ala Ser Ile
115 120 125

Val Ala Ala Ser Lys Ser Tyr Asn Gln Ser Gly Leu Val Ala Gly Ala 130 135 140

Ile Phe Gly Phe Met Ala Thr Phe Leu Cys Met Ala Ser Ile Trp Leu 145 150 155 160

Ser Tyr Lys Ile Ser Cys Val Thr Gln Ser Thr Asp Ala Ala Val 165 170 170

<210> 33

<211> 3470

<212> DNA

<213> NM\_012112 C20orfl, chromosome 20 open reading frame 1

<220>

<221> CDS

<222> (458)..(2698)

<223>

<400> 33 ggctaggtga gccgtgggaa gaaaagaggg agcagctagg gcgcgggtct ccctcctccc 60 120 ggagtttgga acggctgaag ttcaccttcc agcccctagc gccgttcgcg ccgctaggcc 180 tggcttctga ggcggttgcg gtgctcggtc gccgcctagg cggggcaggg tgcgagcagg 240 ggcttcgggc cacgcttctc ttggcgacag gattttgctg tgaagtccgt ccgggaaacg 300 gaggaaaaaa agagttgcgg gaggctgtcg gctaataacg gttcttgata catatttgcc agacttcaag atttcagaaa aggggtgaaa gagaagattg caactttgag tcagacctgt 360 aggeetgata gaetgattaa accacagaag gtgacetget gagaaaagtg gtacaaatac 420 tgggaaaaac ctgctcttct gcgttaagtg ggagaca atg tca caa gtt aaa agc 475 Met Ser Gln Val Lys Ser 1

| tct<br>Ser        | tat<br>Tyr        | tcc<br>Ser        | tat<br>Tyr<br>10  | gat<br>Asp        | gcc<br>Ala        | ccc<br>Pro        | tcg<br>Ser        | gat<br>Asp<br>15  | ttc<br>Phe        | atc<br>Ile        | aat<br>Asn        | ttt<br>Phe        | tca<br>Ser<br>20  | tcc<br>Ser        | ttg<br>Leu          | 523  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|------|
| gat<br>Asp        | gat<br>Asp        | gaa<br>Glu<br>25  | gga<br>Gly        | gat<br>Asp        | act<br>Thr        | caa<br>Gln        | aac<br>Asn<br>30  | ata<br>Ile        | gat<br>Asp        | tca<br>Ser        | tgg<br>Trp        | ttt<br>Phe<br>35  | gag<br>Glu        | gag<br>Glu        | aag<br>Lys          | 571  |
| gcc<br>Ala        | aat<br>Asn<br>40  | ttg<br>Leu        | gag<br>Glu        | aat<br>Asn        | Lys               | tta<br>Leu<br>45  | ctg<br>Leu        | GJ À<br>GGG       | aag<br>Lys        | aat<br>Asn        | gga<br>Gly<br>50  | act<br>Thr        | gga<br>Gly        | GJA<br>āāā        | ctt<br>Leu          | 619  |
| ttt<br>Phe<br>55  | cag<br>Gln        | ggc<br>Gly        | aaa<br>Lys        | act<br>Thr        | cct<br>Pro<br>60  | ttg<br>Leu        | aga<br>Arg        | aag<br>Lys        | gct<br>Ala        | aat<br>Asn<br>65  | ctt<br>Leu        | cag<br>Gln        | caa<br>Gln        | gct<br>Ala        | att<br>Ile<br>70    | 667  |
| gtc<br>Val        | aca<br>Thr        | cct<br>Pro        | ttg<br>Leu        | aaa<br>Lys<br>75  | cca<br>Pro        | gtt<br>Val        | gac<br>Asp        | aac<br>Asn        | act<br>Thr<br>80  | tac<br>Tyr        | tac<br>Tyr        | aaa<br>Lys<br>· . | gag<br>Glu        | gca<br>Ala<br>85  | gaa<br>Glu          | 715  |
| aaa<br>Lys        | gaa<br>Glu        | aat<br>Asn        | ctt<br>Leu<br>90  | gtg<br>Val        | gaa<br>Glu        | caa<br>Gln        | tcc<br>Ser        | att<br>Ile<br>95  | ccg<br>Pro        | tca<br>Ser        | aat<br>Asn        | gct<br>Ala        | tgt<br>Cys<br>100 | tct<br>Ser        | tcc<br>Ser          | 763  |
| ctg<br>Leu        | gaa<br>Glu        | gtt<br>Val<br>105 | gag<br>Glu        | gca<br>Ala        | gcc<br>Ala        | ata<br>Ile        | tca<br>Ser<br>110 | aga<br>Arg        | aaa<br>Lys        | act<br>Thr        | cca<br>Pro        | gcc<br>Ala<br>115 | cag<br>Gln        | cct<br>Pro        | cag<br>Gln          | 811  |
| aga<br>Arg        | aga<br>Arg<br>120 | tct<br>Ser        | ctt<br>Leu        | agg<br>Arg        | ctt<br>Leu        | tct<br>Ser<br>125 | gct<br>Ala        | cag<br>Gln        | aag<br>Lys        | gat<br>Asp        | ttg<br>Leu<br>130 | gaa<br>Glu        | cag<br>Gln        | aaa<br>Lys        | gaa<br>Glu          | 859  |
| aag<br>Lys<br>135 | cat<br>His        | cat<br>His        | gta<br>Val        | aaa<br>Lys        | atg<br>Met<br>140 | aaa<br>Lys        | gcc<br>Ala        | aag<br>Lys        | aga<br>Arg        | tgt<br>Cys<br>145 | gcc<br>Ala        | act<br>Thr        | cct<br>Pro        | gta<br>Val        | atc<br>Ile<br>150   | 907  |
| atc<br>Ile        | gat<br>Asp        | gaa<br>Glu        | att<br>Ile        | cta<br>Leu<br>155 | ccc<br>Pro        | tct<br>Ser        | aag<br>Lys        | aaa<br>Lys        | atg<br>Met<br>160 | aaa<br>Lys        | gtt<br>Val        | tct<br>Ser        | aac<br>Asn        | aac<br>Asn<br>165 | aaa<br>Lys          | 955  |
| aag<br>Lys        | aag<br>Lys        | cca<br>Pro        | gag<br>Glu<br>170 | gaa<br>Glu        | gaa<br>Glu        | ggc<br>Gly        | agt<br>Ser        | gct<br>Ala<br>175 | cat<br>His        | caa<br>Gln        | gat<br>Asp        | act<br>Thr        | gct<br>Ala<br>180 | gaa<br>Glu        | aag<br>L <b>ỷ</b> s | 1003 |
| aat<br>Asn        | gca<br>Ala        | tct<br>Ser<br>185 | tcc<br>Ser        | cca<br>Pro        | gag<br>Glu        | aaa<br>Lys        | gcc<br>Ala<br>190 | aag<br>Lys        | ggt<br>Gly        | aga<br>Arg        | cat               | act<br>Thr<br>195 | gtg<br>Val        | cct<br>Pro        | tgt<br>Cys          | 1051 |
| atg<br>Met        | cca<br>Pro<br>200 | cct<br>Pro        | gca<br>Ala        | aag<br>Lys        | cag<br>Gln        | aag<br>Lys<br>205 | ttt<br>Phe        | cta<br>Leu        | aaa<br>Lys        | agt<br>Ser        | act<br>Thr<br>210 | gag<br>Glu        | gag<br>Glu        | caa<br>Gln        | gag<br>Glu          | 1099 |
| ctg<br>Leu<br>215 | gag<br>Glu        | aag<br>Lys        | agt<br>Ser        | atg<br>Met        | aaa<br>Lys<br>220 | atg<br>Met        | cag<br>Gln        | caa<br>Gln        | gag<br>Glu        | gtg<br>Val<br>225 | gtg<br>Val        | gag<br>Glu        | atg<br>Met        | cgg<br>Arg        | aaa<br>Lys<br>230   | 1147 |
| aag<br>Lys        | aat<br>Asn        | gaa<br>Glu        | gaa<br>Glu        | ttc<br>Phe<br>235 | aag<br>Lys        | aaa<br>Lys        | ctt<br>Leu        | gct<br>Ala        | ctg<br>Leu<br>240 | gct<br>Ala        | gga<br>Gly        | ata<br>Ile        | GJÀ<br>āāā        | caa<br>Gln<br>245 | cct<br>Pro          | 1195 |
| gtg<br>Val        | aag<br>Lys        | aaa<br>Lys        | tca<br>Ser<br>250 | gtg<br>Val        | agc<br>Ser        | cag<br>Gln        | gtc<br>Val        | acc<br>Thr<br>255 | aaa<br>Lys        | tca<br>Ser        | gtt<br>Val        | gac<br>Asp        | ttc<br>Phe<br>260 | cac<br>His        | ttc<br>Phe          | 1243 |
| cgc<br>Arg        | aca<br>Thr        | gat<br>Asp<br>265 | gag<br>Glu        | cga<br>Arg        | atc<br>Ile        | aaa<br>Lys        | caa<br>Gln<br>270 | cat<br>His        | cct<br>Pro        | aag<br>Lys        | aac<br>Asn        | cag<br>Gln<br>275 | gag<br>Glu        | gaa<br>Glu        | tat<br>Tyr          | 1291 |

|                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   | •                 |     |     |
|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-----|-----|
|                   |                   | _                 |            |                   | aca<br>Thr        |                   | Glu               |            |                   | -                 |                   | Pro               |            |                   |                   | 133 | 39  |
|                   |                   |                   |            |                   | gga<br>Gly<br>300 |                   |                   |            |                   |                   | Pro               |                   |            |                   |                   | 138 | 37  |
|                   |                   | _                 |            | -                 | aca<br>Thr        |                   | _                 | -          |                   | _                 |                   |                   |            |                   |                   | 143 | 3.5 |
|                   | _                 | _                 |            |                   | gaa<br>Glu        | _                 |                   |            |                   | -                 |                   |                   |            |                   |                   | 148 | 33  |
|                   |                   |                   |            |                   | aag<br>Lys        |                   |                   | Ile        |                   |                   |                   |                   |            |                   |                   | 153 | 31  |
|                   |                   |                   | -          |                   | tgc<br>Cys        | _                 | _                 |            | -                 |                   |                   | _                 | _          |                   |                   | 157 | 19  |
|                   |                   |                   |            |                   | gct<br>Ala<br>380 |                   |                   |            |                   |                   |                   |                   |            |                   |                   | 162 | 27  |
|                   |                   |                   |            |                   | aaa<br>Lys        |                   |                   |            |                   |                   |                   |                   |            |                   |                   | 167 | 15  |
|                   |                   |                   |            |                   | ctt<br>Leu        |                   |                   |            |                   |                   |                   |                   |            |                   |                   | 172 | :3  |
|                   |                   |                   |            |                   | acc<br>Thr        |                   |                   | Ile        |                   |                   |                   |                   |            |                   |                   | 177 | 1   |
| aaa<br>Lys        | aga<br>Arg<br>440 | atc<br>Ile        | cag<br>Gln | gag<br>Glu        | cga<br>Arg        | gaa<br>Glu<br>445 | tca<br>Ser        | aag<br>Lys | aag<br>.Lys       | aaa<br>Lys        | aca<br>Thr<br>450 | gag<br>Glu        | gat<br>Asp | gaa<br>Glu        | cac<br>His        | 181 | .9  |
| ttt<br>Phe<br>455 | gaa<br>Glu        | ttt<br>Phe        | cat<br>His | tcc<br>Ser        | aga<br>Arg<br>460 | cct<br>Pro        | tgc<br>Cys        | cct<br>Pro | act<br>Thr        | aag<br>Lys<br>465 | att<br>Ile        | ttg<br>Leu        | gaa<br>Glu | gat<br>Asp        | gtt<br>Val<br>470 | 186 | 7   |
| gtg<br>Val        | ggt<br>Gly        | gtt<br>Val        | cct<br>Pro | gaa<br>Glu<br>475 | aag<br>Lys        | aag<br>Lys        | gta<br>Val        | ctt<br>Leu | cca<br>Pro<br>480 | atc<br>Ile        | acc<br>Thr        | gtc<br>Val        | ccc<br>Pro | aag<br>Lys<br>485 | tca<br>Ser        | 191 | 5   |
|                   |                   |                   |            |                   | aag<br>Lys        |                   |                   |            |                   |                   |                   |                   |            |                   |                   | 196 | 3   |
| gag<br>Glu        | gaa<br>Glu        | gag<br>Glu<br>505 | gac<br>Asp | gaa<br>Glu        | ccg<br>Pro        | gta<br>Val        | gtg<br>Val<br>510 | ata<br>Ile | aaa<br>Lys        | gct<br>Ala        | caa<br>Gln        | cct<br>Pro<br>515 | gtg<br>Val | cca<br>Pro        | cat<br>His        | 201 | 1   |
| tat<br>Tyr        | ggg<br>Gly<br>520 | gtg<br>Val        | cct<br>Pro | ttt<br>Phe        | aag<br>Lys        | ccc<br>Pro<br>525 | caa<br>Gln        | atc<br>Ile | cca<br>Pro        | gag<br>Glu        | gca<br>Ala<br>530 | aga<br>Arg        | act<br>Thr | gtg<br>Val        | gaa<br>Glu        | 205 | 9   |
| ata<br>Ile<br>535 | tgc<br>Cys        | cct<br>Pro        | ttc<br>Phe | tcg<br>Ser        | ttt<br>Phe<br>540 | gat<br>Asp        | tct<br>Ser        | cga<br>Arg | gac<br>Asp        | aaa<br>Lys<br>545 | gaa<br>Glu        | cgt<br>Arg        | cag<br>Gln | tta<br>Leu        | cag<br>Gln<br>550 | 210 | 7   |
|                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   |            |                   |                   |     |     |

| •                                   |                           |                           |                           |                           | •                         |                           |                   |      |
|-------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------|------|
| aag gag aag<br>Lys Glu Lys          | aaa ata<br>Lys Ile<br>555 | aaa gaa<br>Lys Glu        | ctg cag<br>Leu Gln        | aaa ggg<br>Lys Gly<br>560 | gag gtg<br>Glu Val        | ccc aag<br>Pro Lys<br>565 | ttc<br>Phe        | 2155 |
| aag gca ctt<br>Lys Ala Leu          | ccc ttg<br>Pro Leu<br>570 | cct cat<br>Pro His        | ttt gac<br>Phe Asp<br>575 | acc att<br>Thr Ile        | aac ctg<br>Asn Leu        | cca gag<br>Pro Glu<br>580 | aag<br>Lys        | 2203 |
| aag gta aag<br>Lys Val Lys<br>585   | Asn Val                   | acc cag<br>Thr Gln        | att gaa<br>Ile Glu<br>590 | cct ttc<br>Pro Phe        | tgc ttg<br>Cys Leu<br>595 | gag act<br>Glu Thr        | gac<br>Asp        | 2251 |
| aga aga ggt<br>Arg Arg Gly<br>600   | gct ctg<br>Ala Leu        | aag gca<br>Lys Ala<br>605 | cag act<br>Gln Thr        | tgg aag<br>Trp Lys        | cac cag<br>His Gln<br>610 | ctg gaa<br>Leu Glu        | gaa<br>Glu        | 2299 |
| gaa ctg aga<br>Glu Leu Arg<br>615   | cag cag<br>Gln Gln        | aaa gaa<br>Lys Glu<br>620 | gca gct<br>Ala Ala        | tgt ttc<br>Cys Phe<br>625 | aag gct<br>Lys Ala        | cgt cca<br>Arg Pro        | aac<br>Asn<br>630 | 2347 |
| acc gtc atc<br>Thr Val Ile          | tct cag<br>Ser Gln<br>635 | Glu Pro                   | ttt gtt<br>Phe Val        | ccc aag<br>Pro Lys<br>640 | aaa gag<br>Lys Glu        | aag aaa<br>Lys Lys<br>645 | Ser               | 2395 |
| gtt gct gag<br>Val Ala Glu          | ggc ctt<br>Gly Leu<br>650 | tct ggt<br>Ser Gly        | tct cta<br>Ser Leu<br>655 | Val Gln                   | gaa cct<br>Glu Pro        | ttt cag<br>Phe Gln<br>660 | ctg<br>Leu        | 2443 |
| gct act gag<br>Ala Thr Glu<br>665   | Lys Arg                   |                           |                           |                           |                           |                           |                   | 2491 |
| gct gag gta<br>Ala Glu Val<br>680   | gaa gcc<br>Glu Ala        | cag aaa<br>Gln Lys<br>685 | gcc cag<br>Ala Gln        | cag ttg<br>Gln Leu        | gag gag<br>Glu Glu<br>690 | gcc aga<br>Ala Arg        | cta<br>Leu        | 2539 |
| cag gag gaa<br>Gln Glu Glu<br>695 . | gag cag<br>Glu Gln        | aaa aaa<br>Lys Lys<br>700 | gag gag<br>Glu Glu        | ctg gcc<br>Leu Ala<br>705 | agg cta<br>Arg Leu        | cgg aga<br>Arg Arg        | gaa<br>Glu<br>710 | 2587 |
| ctg gtg cat<br>Leu Val His          | aag gca<br>Lys Ala<br>715 | Asn Pro                   | ata cgc<br>Ile Arg        | aag tac<br>Lys Tyr<br>720 | cag ggt<br>Gln Gly        | ctg gag<br>Leu Glu<br>725 | Ile               | 2635 |
| aag tca agt<br>Lys Ser Ser          | gac cag<br>Asp Gln<br>730 | cct ctg<br>Pro Leu        | act gtg<br>Thr Val<br>735 | Pro Val                   | tct ccc<br>Ser Pro        | aaa tto<br>Lys Phe<br>740 | tcc<br>Ser        | 2683 |
| act cga ttc<br>Thr Arg Phe<br>745   | His Cys                   |                           | agc tgtg                  | agctgc g                  | gataccgc                  | c cggcaa                  | tggg              | 2738 |
| acctgctctt                          | aacctcaa                  | ac ctagg                  | accgt ct                  | tgctttgt                  | cattggg                   | cat ggag                  | agaacc            | 2798 |
| catttctcca                          | gactttta                  | cc taccc                  | gtgcc tg                  | agaaagca                  | tacttga                   | caa ctgt                  | ggactc            | 2858 |
| cagttttgtt                          | gagaattg                  | tt ttctt                  | acatt ac                  | taaggcta                  | ataatga                   | gat gtaa                  | ctcatg            | 2918 |
| · aatgtctcga                        | ttagactc                  | ca tgtag                  | ttact to                  | ctttaaac                  | catcagc                   | cgg cctt                  | ttatat            | 2978 |
| gggtcttcac                          | tctgacta                  | ga attta                  | gtctc tg                  | tgtcagca                  | cagtgta                   | atc tcta                  | ttgcta            | 3038 |
| ttgcccctta                          | cgactctc                  | ac cctct                  | cccca ct                  | ttttttaa                  | aaatttt                   | aac caga                  | aaataa            | 3098 |
| agatagttaa                          | atcctaag                  | at agaga                  | ttaag to                  | atggttta                  | aatgagg                   | aac aatc                  | agtaaa            | 3158 |
| tcagattctg                          | tcctcttc                  | tc tgcat                  | accgt ga                  | atttatag                  | ttaagga                   | tcc cttt                  | gctgtg            | 3218 |

| agggtagaaa acctcaccaa ctgcaccagt gaggaagaag actgcgtgga ttcatgggga                  |
|------------------------------------------------------------------------------------|
| gcctcacage agecacgcag caggetetgg gtggggetge egttaaggea egttetttee                  |
| ttactggtgc tgataacaac agggaaccgt gcagtgtgca ttttaagacc tggcctggaa                  |
| taaatacgtt ttgtctttcc ctcaaaaaaa aaaaaaaaaa                                        |
| aaaaaaaaa aa                                                                       |
| <210> 34                                                                           |
| <211> 747                                                                          |
| <212> PRT                                                                          |
| <213> NM_012112 C20orf1, chromosome 20 open reading frame 1                        |
| •                                                                                  |
| <400> 34                                                                           |
| Met Ser Gln Val Lys Ser Ser Tyr Ser Tyr Asp Ala Pro Ser Asp Phe 1 5 10 15          |
| Ile Asn Phe Ser Ser Leu Asp Asp Glu Gly Asp Thr Gln Asn Ile Asp 20 25 30           |
| Ser Trp Phe Glu Glu Lys Ala Asn Leu Glu Asn Lys Leu Gly Lys 35 40 45               |
| Asn Gly Thr Gly Gly Leu Phe Gln Gly Lys Thr Pro Leu Arg Lys Ala 50 55 60           |
| Asn Leu Gln Gln Ala Ile Val Thr Pro Leu Lys Pro Val Asp Asn Thr 65 75 . 80         |
| Tyr Tyr Lys Glu Ala Glu Lys Glu Asn Leu Val Glu Gln Ser Ile Pro<br>85 90 95        |
| Ser Asn Ala Cys Ser Ser Leu Glu Val Glu Ala Ala Ile Ser Arg Lys<br>100 105 110     |
| Thr Pro Ala Gln Pro Gln Arg Arg Ser Leu Arg Leu Ser Ala Gln Lys 115 120 125        |
| Asp Leu Glu Gln Lys Glu Lys His His Val Lys Met Lys Ala Lys Arg<br>130 135 140     |
| Cys Ala Thr Pro Val Ile Ile Asp Glu Ile Leu Pro Ser Lys Lys Met<br>145 150 155 160 |

Lys Val Ser Asn Asn Lys Lys Lys Pro Glu Glu Glu Gly Ser Ala His 165 170 175 Gln Asp Thr Ala Glu Lys Asn Ala Ser Ser Pro Glu Lys Ala Lys Gly 180 185 190

Arg His Thr Val Pro Cys Met Pro Pro Ala Lys Gln Lys Phe Leu Lys 195 200 205

Ser Thr Glu Glu Gln Glu Leu Glu Lys Ser Met Lys Met Gln Glu 210 215 220

Val Val Glu Met Arg Lys Lys Asn Glu Glu Phe Lys Lys Leu Ala Leu 225 230 235 240

Ala Gly Ile Gly Gln Pro Val Lys Lys Ser Val Ser Gln Val Thr Lys 245 250 255

Ser Val Asp Phe His Phe Arg Thr Asp Glu Arg Ile Lys Gln His Pro 260 265 270

Lys Asn Gln Glu Glu Tyr Lys Glu Val Asn Phe Thr Ser Glu Leu Arg 275 280 285

Lys His Pro Ser Ser Pro Ala Arg Val Thr Lys Gly Cys Thr Ile Val 290 295 300

Lys Pro Phe Asn Leu Ser Gln Gly Lys Lys Arg Thr Phe Asp Glu Thr 305 310 315 320

Val Ser Thr Tyr Val Pro Leu Ala Gln Gln Val Glu Asp Phe His Lys 325 330 335

Arg Thr Pro Asn Arg Tyr His Leu Arg Ser Lys Lys Asp Asp Ile Asn 340 345 350

Leu Leu Pro Ser Lys Ser Ser Val Thr Lys Ile Cys Arg Asp Pro Gln 355 360 . 365

Thr Pro Val Leu Gln Thr Lys His Arg Ala Arg Ala Val Thr Cys Lys 370 375 380

Ser Thr Ala Glu Leu Glu Ala Glu Glu Leu Glu Lys Leu Gln Gln Tyr 385 390 395 400

Lys Phe Lys Ala Arg Glu Leu Asp Pro Arg Ile Leu Glu Gly Pro 405 410 415

· Ile Leu Pro Lys Lys Pro Pro Val Lys Pro Pro Thr Glu Pro Ile Gly
420 425 430

Phe Asp Leu Glu Ile Glu Lys Arg Ile Gln Glu Arg Glu Ser Lys Lys 435 440 445

Lys Thr Glu Asp Glu His Phe Glu Phe His Ser Arg Pro Cys Pro Thr 450 455 460

Lys Ile Leu Glu Asp Val Val Gly Val Pro Glu Lys Lys Val Leu Pro 465 470 475 480

Ile Thr Val Pro Lys Ser Pro Ala Phe Ala Leu Lys Asn Arg Ile Arg 485 490 495

Met Pro Thr Lys Glu Asp Glu Glu Glu Asp Glu Pro Val Val Ile Lys 500 505 510

Ala Gln Pro Val Pro His Tyr Gly Val Pro Phe Lys Pro Gln Ile Pro 515 520 525

Glu Ala Arg Thr Val Glu Ile Cys Pro Phe Ser Phe Asp Ser Arg Asp 530 535 540

Lys Glu Arg Gln Leu Gln Lys Glu Lys Lys Ile Lys Glu Leu Gln Lys 545 550 555 560

Gly Glu Val Pro Lys Phe Lys Ala Leu Pro Leu Pro His Phe Asp Thr 565 570 575

Ile Asn Leu Pro Glu Lys Lys Val Lys Asn Val Thr Gln Ile Glu Pro 580 585 590

Phe Cys Leu Glu Thr Asp Arg Gly Ala Leu Lys Ala Gln Thr Trp 595 600 605

Lys His Gln Leu Glu Glu Glu Leu Arg Gln Gln Lys Glu Ala Ala Cys 610 615 620

Phe Lys Ala Arg Pro Asn Thr Val Ile Ser Gln Glu Pro Phe Val Pro 625 630 635 640

Lys Lys Glu Lys Lys Ser Val Ala Glu Gly Leu Ser Gly Ser Leu Val 645 650 655

Gln Glu Pro Phe Gln Leu Ala Thr Glu Lys Arg Ala Lys Glu Arg Gln 660 665 670

Glu Leu Glu Lys Arg Met Ala Glu Val Glu Ala Gln Lys Ala Gln Gln 675 680 685

Leu Glu Glu Ala Arg Leu Gln Glu Glu Glu Glu Lys Lys Glu Glu Leu 690 695 700

Ala Arg Leu Arg Arg Glu Leu Val His Lys Ala Asn Pro Ile Arg Lys 705 710 715 720

WO 2004/022778 PCT/AU2003/001166

Tyr Gln Gly Leu Glu Ile Lys Ser Ser Asp Gln Pro Leu Thr Val Pro 725 730 735

Val Ser Pro Lys Phe Ser Thr Arg Phe His Cys  $740 \hspace{1cm} \text{745}$ 

<210> 35

<211> 1246

<212> DNA

<213> NM\_001769 CD9

<220>

<221> CDS

<222> (112)..(795)

<223>

| -10 | 0>   | 35  |      |      |      |       |      |      |      |                   |     |      |       |      |                |     |
|-----|------|-----|------|------|------|-------|------|------|------|-------------------|-----|------|-------|------|----------------|-----|
|     |      |     | cago | cgcc | tg c | atct  | gtat | c ca | gcgc | cagg              | tcc | cgcc | agt   | ccca | gctgcg         | 60  |
| cgc | gccc | ccc | agtc | ccgc | ac c | cgtt: | cggc | c ca | ggct | aagt              | tag | ccct | cac ( |      | g ccg<br>t Pro | 117 |
|     |      |     |      |      |      |       |      |      |      | ctg<br>Leu        |     |      |       |      |                | 165 |
|     |      |     |      |      |      |       |      |      |      | ctt<br>Leu        |     |      |       |      |                | 213 |
|     |      |     |      |      |      |       |      |      |      | ttc<br>Phe<br>45  |     |      |       |      |                | 261 |
|     |      |     |      |      |      |       |      |      |      | tat<br>Tyr        |     |      |       |      |                | 309 |
|     |      |     |      |      |      |       |      |      |      | ggc<br>Gly        |     |      |       |      |                | 357 |
|     |      |     |      |      |      |       |      |      |      | ttc<br>Phe        |     |      |       |      |                | 405 |
|     |      |     |      |      |      |       |      |      |      | tgg<br>Trp        |     |      |       |      |                | 453 |
|     |      |     |      |      |      |       |      |      |      | tac<br>Tyr<br>125 |     |      |       |      |                | 501 |
| aag | ctg  | aaa | acc  | aag  | gat  | gag   | ccc  | cag  | cgg  | gaa               | acg | ctg  | aaa   | gcc  | atc            | 549 |

| Lys Leu Lys Thr Lys Asp Glu Pro Gln Arg Glu Thr Leu Lys Ala Ile<br>135 140 145                                                                        |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| cac tat gcg ttg aac tgc tgt ggt ttg gct ggg ggc gtg gaa cag ttt<br>His Tyr Ala Leu Asn Cys Cys Gly Leu Ala Gly Gly Val Glu Gln Phe<br>150 160         | 597    |
| atc tca gac atc tgc ccc aag aag gac gta ctc gaa acc ttc acc gtg<br>Ile Ser Asp Ile Cys Pro Lys Lys Asp Val Leu Glu Thr Phe Thr Val<br>165 170 175     | 645    |
| aag too tgt cot gat goo ato aaa gag gto tto gac aat aaa tto cac<br>Lys Ser Cys Pro Asp Ala Ile Lys Glu Val Phe Asp Asn Lys Phe His<br>180 185 190     | 693    |
| atc atc ggc gca gtg ggc atc ggc att gcc gtg gtc atg ata ttt ggc<br>Ile Ile Gly Ala Val Gly Ile Gly Ile Ala Val Val Met Ile Phe Gly<br>195 200 205 210 | 741    |
| atg atc ttc agt atg atc ttg tgc tgt gct atc cgc agg aac cgc gag<br>Met Ile Phe Ser Met Ile Leu Cys Cys Ala Ile Arg Arg Asn Arg Glu<br>215 220 225     | 789    |
| atg gtc tagagtcagc ttacatccct gagcaggaaa gtttacccat gaagattggt<br>Met Val                                                                             | 845    |
| gggatttttt gtttgtttgt tttgttttgt ttgttgtttg ttgtttgttt ttttgccad                                                                                      | t 905  |
| aattttagta ttcattctgc attgctagat aaaágctgaa gttactttat gtttgtctt                                                                                      | t 965  |
| taatgottoa ttoaatattg acatttgtag ttgagogggg ggtttggttt gotttggtt                                                                                      | t 1025 |
| atattttttc agttgtttgt ttttgcttgt tatattaagc agaaatcctg caatgaaag                                                                                      | g 1085 |
| tactatattt gctagactct agacaagata ttgtacataa aagaattttt ttgtcttta                                                                                      | a 1145 |
| atagatacaa atgtetatea aetttaatea agttgtaaet tatattgaag acaatttga                                                                                      | t 1205 |
| acataataaa aaattatgac aatgtcaaaa aaaaaaaaaa                                                                                                           | 1246   |
| <210> 36                                                                                                                                              |        |
| <211> 228                                                                                                                                             |        |
| 2010> DDM                                                                                                                                             |        |

<213> NM\_001769 CD9

<400> 36

Met Pro Val Lys Gly Gly Thr Lys Cys Ile Lys Tyr Leu Leu Phe Gly 1 5 10 10 15

Phe Asn Phe Ile Phe Trp Leu Ala Gly Ile Ala Val Leu Ala Ile Gly

Leu Trp Leu Arg Phe Asp Ser Gln Thr Lys Ser Ile Phe Glu Gln Glu 35 40 45

Thr Asn Asn Asn Ser Ser Phe Tyr Thr Gly Val Tyr Ile Leu Ile 50 60

Gly Ala Gly Ala Leu Met Met Leu Val Gly Phe Leu Gly Cys Cys Gly 65 70 75 80

Ala Val Gln Glu Ser Gln Cys Met Leu Gly Leu Phe Phe Gly Phe Leu 85 90 95

Leu Val Ile Phe Ala Ile Glu Ile Ala Ala Ala Ile Trp Gly Tyr Ser 100 105 110

His Lys Asp Glu Val Ile Lys Glu Val Gln Glu Phe Tyr Lys Asp Thr 115 120  $\cdot$  125

Tyr Asn Lys Leu Lys Thr Lys Asp Glu Pro Gln Arg Glu Thr Leu Lys 130 135 140

Ala Ile His Tyr Ala Leu Asn Cys Cys Gly Leu Ala Gly Gly Val Glu 145 150 155 160

Gln Phe Ile Ser Asp Ile Cys Pro Lys Lys Asp Val Leu Glu Thr Phe 165 170 175

Thr Val Lys Ser Cys Pro Asp Ala Ile Lys Glu Val Phe Asp Asn Lys 180 185 190

Phe His Ile Ile Gly Ala Val Gly Ile Gly Ile Ala Val Val Met Ile 195 200 205

Phe Gly Met Ile Phe Ser Met Ile Leu Cys Cys Ala Ile Arg Arg Asn 210 215 . 220

Arg Glu Met Val 225

<210> 37

<211> 7557

<212> DNA

<213> NM\_020859 ShrmL, Shroom-related protein

<220>

<221> CDS

<222> (958)..(6942)

<223>

<400> 37

|                                   |                                  |                              |                          | * .                      |                           |                          |      |
|-----------------------------------|----------------------------------|------------------------------|--------------------------|--------------------------|---------------------------|--------------------------|------|
| ggcagtgctt                        | actgtgcaga                       | aagģttgca                    | a tgcctc                 | actt tgo                 | cttaatc                   | catgttcctc               | 120  |
| taacttcctt                        | actctttctc                       | tcaagagga                    | g gcaagt                 | ggct gtg                 | iacāācċā                  | cagcagtggc               | 180  |
| tgatcatcac                        | tgaaaatacc                       | aaagaaaag                    | a actgag                 | ctgc ctc                 | cttcata                   | ttttttccat               | 240  |
| tgaggattaa                        | tttaccgtgc                       | tttttcatt                    | t tctcta                 | catc ctg                 | caaaagt                   | tttttctct                | 300  |
| cctaagaaac                        | aaactatgaa                       | ctgattgtt                    | g aaaaaa                 | agaa gta                 | aaaagtt                   | ttagcacage               | 360  |
| ttctctgtct                        | cttcgggaca                       | agttagaaa                    | a ttctga                 | agtg ago                 | cgaagca:                  | tagtaagtgc               | 420  |
| tttctttctt                        | tttaagctac                       | ttctgggga                    | g ggagga                 | ggct att                 | gtaatgg                   | taaatttcac               | 480  |
| tccgagagga                        | agaaagggtt                       | gataatcaa                    | t caaaaa                 | tgag gta                 | ttccttt                   | gagtatttgt               | 540  |
| gattttctta                        | ctatattgta                       | agatgcttt                    | t aatttt                 | ctct gta                 | aaatagg                   | cagaaatggt               | 600  |
| tttagtgtgt ·                      | gtatgtgtga                       | aataaaagc                    | t cagaaa                 | agca atc                 | ttcagag                   | cgccactgaa               | 660  |
| ggaagttttg                        | acgaacggag                       | tagagatgt                    | a taccac                 | ttgg ggg                 | cttcagt                   | gagaacccag               | 720  |
| aattcctgga                        | ggaggattta                       | cattcagaa                    | a tgttga                 | agtg aaa                 | attcctt                   | ctggttcagc               | 780  |
| atcttggagt                        | tcagcttgga                       | agaacattti                   | t acgtat                 | ggaa gaa                 | tttgctt                   | ctccaaacct               | 840  |
| ctcttttggc (                      | cattgtgtgt                       | cctgaaggat                   | t gggaca                 | actt gtg                 | ctgtaga                   | agcactgctt               | 900  |
| gcctgagttt                        | gcttcaggca                       | ttttaaatti                   | t aacttg                 | aggg atc                 | atgtgtt                   | tggcatg                  | 957  |
| atg agg acc<br>Met Arg Thr<br>1   | act gaa ga<br>Thr Glu As<br>5    | c ttc cac<br>p Phe His       | aag cct<br>Lys Pro<br>10 | agt gcc<br>Ser Ala       | aca tta<br>Thr Leu        | aac tct<br>Asn Ser<br>15 | 1005 |
| aac acg gcc<br>Asn Thr Ala        | acc aag gg<br>Thr Lys Gl<br>20   | a agg tac<br>y Arg Tyr       | att tat<br>Ile Tyr<br>25 | ctg gag<br>Leu Glu       | gca ttc<br>Ala Phe<br>30  | ctg gag<br>Leu Glu       | 1053 |
| gga gga gct<br>Gly Gly Ala<br>35  | ccc tgg gg<br>Pro Trp Gl         | t ttt act<br>y Phe Thr<br>40 | cta aag<br>Leu Lys       | ggt ggc                  | ctg gag<br>Leu Glu<br>45  | cac gga<br>His Gly       | 1101 |
| gaa cca tta<br>Glu Pro Leu<br>50  | atc atc tc<br>Ile Ile Se         | t aag gtc<br>r Lys Val<br>55 | gaa gaa<br>Glu Glu       | e0<br>Gly Gly<br>Ggg ggc | aaa gca<br>Lys Ala        | gac acc<br>Asp Thr       | 1149 |
| ctg agc tcc<br>Leu Ser Ser<br>65  | aaa ctg ca<br>Lys Leu Gl<br>70   | g gct ggg<br>n Ala Gly       | gat gag<br>Asp Glu       | gtt gtg<br>Val Val<br>75 | cac atc<br>His Ile        | aat gag<br>Asn Glu<br>80 | 1197 |
| gtg act ctg<br>Val Thr Leu        | agc agc tco<br>Ser Ser Se:<br>85 | c aga aag<br>r Arg Lys       | gag gca<br>Glu Ala<br>90 | gtt tcc<br>Val Ser       | ctg gtg<br>Leu Val        | aaa gga<br>Lys Gly<br>95 | 1245 |
| tcc tac aag<br>Ser Tyr Lys        |                                  | g Leu Val                    |                          |                          |                           |                          | 1293 |
| cca ggc cat<br>Pro Gly His        | gca gat act<br>Ala Asp Thi       | ggt gcc<br>Gly Ala<br>120    | tct aac<br>Ser Asn       | ttc gtc<br>Phe Val       | agc cca<br>Ser Pro<br>125 | gaa cac<br>Glu His       | 1341 |
| ctc acc tct<br>Leu Thr Ser<br>130 |                                  |                              |                          |                          |                           |                          | 1389 |
| aaa ctt cgg                       | ctg aag cac                      | agg tot a                    | agt gag                  | cct gcạ                  | ggc cga                   | cct cac                  | 1437 |

WO 2004/022778 PCT/AU2003/001166

|            |            |            |            |                   |            |                   | •          |            |                   |            |            |            |            |                   |            |      |
|------------|------------|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------|
| Lys<br>145 | Leu        | Arg        | Leu        | Lys               | His<br>150 | Arg               | Ser        | Ser        | GIu               | Pro<br>155 | Ala        | Gly        | Arg        | Pro               | His<br>160 |      |
|            |            |            |            |                   | Lys        | tct<br>Ser        |            |            |                   |            |            |            |            |                   |            | 1485 |
|            |            |            |            |                   |            | atg<br>Met        |            |            |                   |            |            |            |            |                   |            | 1533 |
|            |            |            |            |                   |            | agt<br>Ser        |            |            |                   |            |            |            |            |                   |            | 1581 |
|            |            |            |            |                   |            | cag<br>Gln<br>215 |            |            |                   |            |            |            |            |                   |            | 1629 |
|            |            |            |            |                   |            | tac<br>.Tyr       |            |            |                   |            |            |            |            |                   |            | 1677 |
|            |            |            |            |                   |            | cag<br>Gln        |            |            |                   |            |            |            |            |                   |            | 1725 |
|            |            |            |            |                   |            | tcc<br>Ser        |            |            |                   |            |            |            |            |                   |            | 1773 |
|            |            |            |            |                   |            | cgg<br>Arg        |            |            |                   |            |            |            |            |                   |            | 1821 |
|            | _          | -          |            |                   |            | ctc<br>Leu<br>295 | -          |            | _                 |            | _          | _          | -          |                   |            | 1869 |
|            |            |            |            |                   |            | gac<br>Asp        |            |            |                   |            |            |            |            |                   |            | 1917 |
|            |            |            |            |                   |            | ctg<br>Leu        |            |            |                   |            |            |            |            |                   |            | 1965 |
|            |            |            |            |                   |            | tat<br>Tyr        |            |            |                   |            |            |            |            |                   |            | 2013 |
|            |            |            |            |                   |            | tcc<br>Ser        |            |            |                   |            |            |            |            |                   |            | 2061 |
|            |            |            |            |                   |            | ctt<br>Leu<br>375 |            |            |                   |            |            |            |            |                   |            | 2109 |
|            |            |            |            |                   |            | tac<br>Tyr        |            |            |                   |            |            |            |            |                   |            | 2157 |
| agc<br>Ser | tcc<br>Ser | tgg<br>Trp | tct<br>Ser | agc<br>Ser<br>405 | ctt<br>Leu | gat<br>Asp        | cag<br>Gln | aaa<br>Lys | cgg<br>Arg<br>410 | ctc<br>Leu | tgc<br>Cys | cgg<br>Arg | cct<br>Pro | cag<br>Gln<br>415 | gca<br>Ala | 2205 |
| aac        | tct        | tta        | ggc        | tcc               | ctg        | aag               | tct        | cca        | ttc               | ata        | gag        | gag        | cag        | ctg               | cat        | 2253 |

|            | •          |                   |              |                |                   |            |                   |            |            |            |                  |                       |            |              |                       |      |
|------------|------------|-------------------|--------------|----------------|-------------------|------------|-------------------|------------|------------|------------|------------------|-----------------------|------------|--------------|-----------------------|------|
| Asr        | n Se       | r Lei             | u Gly<br>420 | y Se:          | r Lev             | ı Lys      | Sei               | Pro<br>425 |            | e Ile      | e Gl             | u Gli                 | u Gl<br>43 |              | u His                 |      |
| act<br>Thi | gto<br>Val | t Lei<br>43       | ı Glı        | g aaq<br>ı Ly: | g agt<br>s Ser    | cca<br>Pro | gag<br>Glu<br>440 | ı Asr      | ago<br>Sei | Pro        | c cc<br>Pr       | a gto<br>o Val<br>44! | l Ly       | g cc<br>s Pr | c aag<br>o Lys        | 2301 |
| His        | 450        | ı Tyı<br>)        | t Thi        | c Glı          | n Lys             | 455        | Gln               | Pro        | Gl         | / Glr      | 1 Pro            | o Lei<br>0            | ı Le       | u Pr         | g acc<br>o Thr        | 2349 |
| Ser<br>465 | : Ile      | э Туг             | : Ala        | ı Val          | 470               | Ser        | Leu               | ı Glu      | Pro        | 475        | Phe              | e Ala                 | a Gl       | n Va         | g cct<br>l Pro<br>480 | 2397 |
| Gln        | Pro        | Ser               | · Val        | . Sei<br>485   | Ser               | Asn        | Gly               | Met        | Leu<br>490 | Tyr        | Pro              | o Ala                 | ı Lei      | 1 Ala<br>49  | _                     | 2445 |
| GIu        | Ser        | : Gly             | 500          | : Ile          | e Ala             | Pro        | Gln               | Gly<br>505 | Ala        | Cys        | Ası              | Lys                   | 510        | : Ala        | t acc<br>a Thr        | 2493 |
| 11e        | Asp        | 515               | Asn          | Gly            | Asn               | Gln        | Asn<br>520        | Gly        | Ser        | Gly        | Arg              | 9 Pro<br>525          | Gly        | , Phe        | gcc<br>Ala            | 2541 |
| Phe        | Суs<br>530 | Gln               | Pro          | Leu            | Glu               | His<br>535 | Asp               | Leu        | Leu        | Ser        | 9rc<br>540       | Val                   | Glu        | Lys          | g aaa<br>S Lys        | 2589 |
| 545        | Glu        | Ala               | Thr          | Ala            | Lys<br>550        | Tyr        | Val               | Pro        | Ser        | Lys<br>555 | Val              | . His                 | Phe        | Суз          | 560                   | 2637 |
| Val        | Pro        | Glu               | Asn          | Glu<br>565     |                   | Asp        | Ala               | Ser        | Leu<br>570 | ГÀЗ        | Arg              | His                   | Leu        | Thr<br>575   | Pro                   | 2685 |
| Pro        | Gln        | Gly               | Asn<br>580   | Ser            | cca<br>Pro        | His        | Ser               | Asn<br>585 | Glu        | Arg        | <sub>.</sub> Lys | Ser                   | Thr<br>590 | His          | Ser                   | 2733 |
| Asn        | Lys        | Pro<br>595        | Ser          | Ser            | cat<br>His        | Pro        | His<br>600        | Ser        | Leu        | ГÀЗ        | Суз              | Pro<br>605            | Gln        | Ala          | Gln                   | 2781 |
| Ala        | Trp<br>610 | Gln               | Ala          | Gly            | gaa<br>Glu        | Asp<br>615 | Lys               | Arg        | Ser        | Ser        | Arg<br>620       | Leu                   | Ser        | Glu          | Pro                   | 2829 |
| 625        | Glu        | Gly               | Asp          | Phe            | cag<br>Gln<br>630 | Glu        | Asp               | His        | Asn        | A1a<br>635 | Asn              | Leu                   | Trp        | Arg          | Arg<br>640            | 2877 |
| Leu        | Glu        | Arg               | Glu          | Gly<br>645     | cta<br>Leu        | Gly        | Gln               | Ser        | Leu<br>650 | Ser        | Gly              | Asn                   | Phe        | Gly<br>655   | Lys                   | 2925 |
| Thr        | Lys        | Ser               | Ala<br>660   | Phe            | tca<br>Ser        | Ser :      | Leu               | Gln<br>665 | Asn        | Ile        | Pro              | Glu                   | Ser<br>670 | Leu          | Arg                   | 2973 |
| aga<br>Arg | His        | agc<br>Ser<br>675 | agc<br>Ser   | ctg<br>Leu     | gag<br>Glu        | Leu (      | ggc<br>Gly<br>680 | cgg<br>Arg | gga<br>Gly | acc<br>Thr | cag<br>Gln       | gag<br>Glu<br>685     | ggt<br>Gly | tac<br>Tyr   | ccc<br>Pro            | 3021 |
| ggg (      | ggc        | agg               | ccc          | acc            | tgt (             | gca (      | gtc               | aac a      | acc        | aag        | gca              | gaa                   | gac        | cct          | ggg                   | 3069 |

| Gly | Gly<br>690 | Arg | Pro | Thr | Суз               | Ala<br>695 | Val | Asn | Thr | Lys | Ala<br>700 | Glu | Asp | Pro | Gly        |      |
|-----|------------|-----|-----|-----|-------------------|------------|-----|-----|-----|-----|------------|-----|-----|-----|------------|------|
|     |            |     |     |     | gac<br>Asp<br>710 |            |     |     |     |     |            |     |     |     |            | 3117 |
|     |            |     |     |     | G1y<br>ggg        |            |     |     |     |     |            |     |     |     |            | 3165 |
|     |            |     |     |     | gaa<br>Glu        |            | Pro |     |     |     |            |     |     |     |            | 3213 |
|     | _          | _   |     |     | agg<br>Arg        |            |     |     |     |     | -          | _   | _   | _   |            | 3261 |
|     |            |     |     |     | GJ À<br>âàà       |            |     |     |     |     |            |     |     |     |            | 3309 |
|     |            |     |     |     | cga<br>Arg<br>790 |            |     |     |     |     |            |     |     |     |            | 3357 |
|     |            |     |     |     | cat<br>His        |            |     |     |     |     |            |     |     |     |            | 3405 |
|     |            |     |     |     | aat<br>Asn        |            |     |     |     |     |            |     |     |     | cgt<br>Arg | 3453 |
|     |            |     |     |     | gaa<br>Glu        |            |     |     |     |     |            |     |     |     |            | 3501 |
|     |            |     |     |     | ttg<br>Leu        |            |     |     |     |     |            |     |     |     |            | 3549 |
|     |            |     |     |     | gcg<br>Ala<br>870 |            |     |     |     |     |            |     |     |     |            | 3597 |
|     |            |     |     |     | cgt<br>Arg        |            |     |     |     |     |            |     |     |     |            | 3645 |
|     |            |     |     |     | gag<br>Glu        |            |     |     |     |     |            |     |     |     |            | 3693 |
|     |            |     |     |     | ccc<br>Pro        |            |     |     |     |     |            |     |     |     |            | 3741 |
|     |            |     |     |     | gtc<br>Val        |            |     |     |     |     |            |     |     |     |            | 3789 |
|     |            |     |     |     | ccc<br>Pro<br>950 |            |     |     |     |     |            |     |     |     |            | 3837 |
| tcc | tcg        | gcc | cac | gtg | ggg               | ctg        | cgg | agc | ccc | gag | gcg        | tcg | gcc | tcc | gcc        | 3885 |

| -          |                    |            |            | •          |            | •                  |            |            |              |            |                    |            |            |                  |      |
|------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|--------------|------------|--------------------|------------|------------|------------------|------|
| Ser        | Ser                | Ala        | His        | Val<br>965 | Gly        | Leu A              | rg S       |            | ro G<br>70 . |            | la Se              | r Al       | a Se<br>97 | r Ala<br>5       |      |
|            |                    |            |            |            |            |                    | rg H       |            |              |            |                    |            | a Gl       | n Glà            | 3933 |
|            | Leu                |            |            |            |            | Pro P              |            |            |              |            | Arg G              |            |            | cgc cg<br>Arg Ar |      |
| _          | -                  | Thr        |            |            | -          | aag<br>Lys<br>1015 | Lys        | -          |              |            | _                  | Glu        |            |                  | 4026 |
|            | atg<br>Met<br>1025 | Asn        |            |            |            | atc<br>Ile<br>1030 | Val        |            |              |            |                    | Pro        | -          | ccc<br>Pro       | 4071 |
|            | ggc<br>Gly<br>1040 | Pro        |            |            |            | 999<br>Gly<br>1045 | Met        |            |              |            |                    | Ser        |            |                  | 4116 |
|            |                    | Arg        |            |            |            | ttc<br>Phe<br>1060 | Glu        |            |              |            |                    | Ala        |            |                  | 4161 |
| _          | ctc<br>Leu<br>1070 | Ser        |            |            |            | ccc<br>Pro<br>1075 | Glu        |            |              |            |                    | Gln        |            |                  | 4206 |
|            |                    | Ala        |            |            |            | cag<br>Gln<br>1090 | Arg        |            |              |            |                    | Arg        |            |                  | 4251 |
|            | gcc<br>Ala<br>1100 | Ala        |            |            |            | ctc<br>Leu<br>1105 | Gln        |            |              |            |                    | Leu        |            | gag<br>Glu       | 4296 |
| -          | gcc<br>Ala<br>1115 |            |            |            |            | ctc<br>Leu<br>1120 | Gln        |            |              |            |                    |            | ctc<br>Leu | -                | 4341 |
|            | tcc<br>Ser<br>1130 |            |            | _          | _          | gcc<br>Ala<br>1135 | Ser        | -          | -            | _          |                    | -          | cgg        |                  | 4386 |
|            |                    |            |            |            |            | agg<br>Arg<br>1150 | Glu        |            |              |            |                    |            |            |                  | 4431 |
|            |                    |            |            |            |            | gct<br>Ala<br>1165 |            |            |              |            |                    |            |            |                  | 4476 |
|            |                    |            |            |            |            | ggg<br>Gly<br>1180 | Glu        |            |              |            |                    |            |            |                  | 4521 |
|            |                    |            |            |            |            | aca<br>Thr<br>1195 |            |            |              |            |                    |            |            |                  | 4566 |
| acc<br>Thr | ccc<br>Pro<br>1205 | agg<br>Arg | gag<br>Glu | cca<br>Pro | tcc<br>Ser | tcc<br>Ser<br>1210 | tgg<br>Trp | GJA<br>aaa | gcc<br>Ala   | agg<br>Arg | gcc<br>Ala<br>1215 | Gly<br>Ggg | aag<br>Lys | tcc<br>Ser       | 4611 |
| atg        | tcg                | gcc        | gag        | gac        | ctg        | ctg                | gaa        | cgc        | tcg          | gac        | gtc                | ctt        | gcg        | ggc              | 4656 |

| Met        | Ser<br>1220        | Ala        | Glu        | a Asp      | Lev            | Leu<br>1225        | Glu        | Arg        | Sei        | Asr        | Val<br>1230        |            | Ala        | Gly        |      |
|------------|--------------------|------------|------------|------------|----------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------|
| cct<br>Pro | gtc<br>Val<br>1235 | His        | gtg<br>Val | ago<br>Arc | , tcc<br>, Ser | agg<br>Arg<br>1240 | Ser        | tct        | Pro        | gcc<br>Ala | acc<br>Thr<br>1245 | Ala        | gac<br>Asp | aag<br>Lys | 4701 |
| Arg        | cag<br>Gln<br>1250 | Asp        | gtg<br>Val | ctt<br>Leu | ttg<br>Leu     | ggg<br>Gly<br>1255 | Gln        | gac<br>Asp | agt<br>Ser | ggc<br>Gly | ttt<br>Phe<br>1260 | Gly        | ctt<br>Leu | gtg<br>Val | 4746 |
| aag<br>Lys | gat<br>Asp<br>1265 | Pro        | tgt<br>Cys | tat<br>Tyr | ttg<br>Leu     | gct<br>Ala<br>1270 | Gly        | cct<br>Pro | gga<br>Gly | tct<br>Ser | agg<br>Arg<br>1275 | Ser        | ctc<br>Leu | agt<br>Ser | 4791 |
| tgt<br>Cys | tca<br>Ser<br>1280 | Glu        | aga<br>Arg | Gly        | caa<br>Gln     | gaa<br>Glu<br>1285 | Glu        | atg<br>Met | ctg<br>Leu | ctg<br>Leu | ctc<br>Leu<br>1290 | Phe        | cac        | cat<br>His | 4836 |
|            | acc<br>Thr<br>1295 | Pro        | cgt<br>Arg | tgg<br>Trp | ggt            | ggt<br>Gly<br>1300 | Ser        | ggc        | tgc<br>Cys | aaa<br>Lys | gcc<br>Ala<br>1305 | Ile        | ggt<br>Gly | gat<br>Asp | 4881 |
| tcc<br>Ser | tcc<br>Ser<br>1310 | Val        | cct<br>Pro | agt<br>Ser | gaa<br>Glu     | tgt<br>Cys<br>1315 | Pro        | gga<br>Gly | acc<br>Thr | ctg<br>Leu | gac<br>Asp<br>1320 | His        | cag<br>Gln | agg<br>Arg | 4926 |
| caa<br>Gln | gcc<br>Ala<br>1325 | Ser        | agg<br>Arg | aca<br>Thr | ccc<br>Pro     | tgc<br>Cys<br>1330 | ccc<br>Pro | agg<br>Arg | cca<br>Pro | cca<br>Pro | ctg<br>Leu<br>1335 | Ala        | gga<br>Gly | acg<br>Thr | 4971 |
| caa<br>Gln | ggg<br>Gly<br>1340 | Leu        | gtc<br>Val | aca<br>Thr | gac<br>Asp     | acc<br>Thr<br>1345 | agg<br>Arg | gct<br>Ala | gca<br>Ala | ccc<br>Pro | ctg<br>Leu<br>1350 | Thr        |            | att<br>Ile | 5016 |
| ggc<br>Gly | acc<br>Thr<br>1355 | cct<br>Pro | ctg<br>Leu | cct<br>Pro | tca<br>Ser     | gcc<br>Ala<br>1360 | att<br>Ile | ccc<br>Pro | tct<br>Ser | Gly        | tac<br>Tyr<br>1365 | Cys        |            | cag<br>Gln | 5061 |
|            | ggt<br>Gly<br>1370 | cag<br>Gln | aca<br>Thr | ggg<br>Gly | cga<br>Arg     | cag<br>Gln<br>1375 | cct<br>Pro | ctc<br>Leu | ccg<br>Pro | ccc<br>Pro | tac<br>Tyr<br>1380 |            |            | gcc<br>Ala | 5106 |
| Met        | Met<br>1385        | His        | Arg        | Ser        | Asn            | Gly<br>1390        | His        | Thr        | Leu        | Thr        | 1395               | Pro        | Pro        | Gly        | 5151 |
| cca<br>Pro | aga<br>Arg<br>1400 | ggc<br>Gly | tgt<br>Cys | gag<br>Glu | Gly            | gat<br>Asp<br>1405 | ggc<br>Gly | cca<br>Pro | gag<br>Glu | cat<br>His | ggg<br>Gly<br>1410 | gta<br>Val | gaa<br>Glu | gag<br>Glu | 5196 |
| gga<br>Gly | acg<br>Thr<br>1415 | agg<br>Arg | aag<br>Lys | agg<br>Arg | gtc<br>Val     | tcg<br>Ser<br>1420 | ctg<br>Leu | cct<br>Pro | cag<br>Gln | tgg<br>Trp | cca<br>Pro<br>1425 | cct<br>Pro | cct<br>Pro | tct<br>Ser | 5241 |
| cga<br>Arg | gca<br>Ala<br>1430 | aag<br>Lys | tgg<br>Trp | gcc<br>Ala | cac<br>His     | gca<br>Ala<br>1435 | gcc<br>Ala | aga<br>Arg | gag<br>Glu | gac<br>Asp | agc<br>Ser<br>1440 | ctt<br>Leu | cct<br>Pro | gag<br>Glu | 5286 |
| gaa<br>Glu | tcc<br>Ser<br>1445 | tca<br>Ser | gcc<br>Ala | cct<br>Pro | gat<br>Asp     | ttt<br>Phe<br>1450 | gca<br>Ala | aac<br>Asn | ctg<br>Leu | aag<br>Lys | cac<br>His<br>1455 | tat<br>Tyr | caa<br>Gln | aaa<br>Lys | 5331 |
| Gln        | cag<br>Gln<br>1460 | agt<br>Ser | ctt<br>Leu | cca<br>Pro | Ser            | tta<br>Leu<br>1465 | tgc<br>Cys | agc<br>Ser | act<br>Thr | tct<br>Ser | gac<br>Asp<br>1470 | cca<br>Pro | gac<br>Asp | aca<br>Thr | 5376 |
| cct        | ctt                | ggg        | gcc        | ccg        | agc            | act                | сса        | ggg        | agg        | atc        | tcc                | ctc        | cga        | ata        | 5421 |

| Pro        | Leu<br>1475        | Gly        | Ala        | Pro        | Ser         | Thr<br>1480        |            | Gļy                     | Arg        | Ile        | Ser<br>1485        |            | Arg        | Ile        |      |
|------------|--------------------|------------|------------|------------|-------------|--------------------|------------|-------------------------|------------|------------|--------------------|------------|------------|------------|------|
|            | gag<br>Glu<br>1490 |            |            |            |             | gac<br>Asp<br>1495 |            |                         |            |            |                    |            |            |            | 5466 |
|            | gac<br>Asp<br>1505 |            |            |            |             | agg<br>Arg<br>1510 |            |                         |            |            |                    |            |            |            | 5511 |
| _          | ccc<br>Pro<br>1520 |            |            |            |             | ctt<br>Leu<br>1525 | Pro        |                         |            |            |                    |            |            |            | 5556 |
| -          | cag<br>Gln<br>1535 | _          |            | -          |             | tat<br>Tyr<br>1540 | Ser        | _                       | _          | _          |                    |            |            |            | 5601 |
|            | ccc<br>Pro<br>1550 |            |            | -          | _           | gag<br>Glu<br>1555 | Ala        | _                       | _          | _          | -                  | Glu        | _          |            | 5646 |
|            | ggg<br>Gly<br>1565 |            |            |            |             |                    | .Asn       |                         |            |            |                    | Val        |            |            | 5691 |
| -          | agg<br>Arg<br>1580 |            |            |            |             | cct<br>Pro<br>1585 |            |                         |            |            |                    |            |            |            | 5736 |
|            | aca<br>Thr<br>1595 |            |            |            |             |                    | Gln        |                         |            |            |                    |            |            |            | 5781 |
| _          | gag<br>Glu<br>1610 |            |            |            |             | tcc<br>Ser<br>1615 |            |                         |            |            |                    |            |            |            | 5826 |
| -          | ggg<br>Gly<br>1625 | tct<br>Ser | ctt<br>Leu | ggt<br>Gly | GJ Ā<br>āāā | cag<br>Gln<br>1630 | cca<br>Pro | gca <sup>,</sup><br>Ala | ccc<br>Pro | atc<br>Ile | cag<br>Gln<br>1635 | act<br>Thr | caa<br>Gln | agc<br>Ser | 5871 |
|            | agc<br>Ser<br>1640 |            |            |            |             | agt<br>Ser<br>1645 |            |                         |            |            |                    |            |            |            | 5916 |
|            | agt<br>Ser<br>1655 |            |            |            |             | aag<br>Lys<br>1660 |            |                         |            |            |                    |            |            |            | 5961 |
|            | ttg<br>Leu<br>1670 |            |            |            |             |                    |            |                         |            |            |                    |            |            |            | 6006 |
|            | ttg<br>Leu<br>1685 |            |            |            |             |                    |            |                         |            |            |                    |            |            |            | 6051 |
|            | ggt<br>Gly<br>1700 |            |            |            |             |                    |            |                         |            |            |                    |            |            |            | 6096 |
| gta<br>Val | aag<br>Lys<br>1715 | agg<br>Arg | aag<br>Lys | gcc<br>Ala | ata<br>Ile  | cag<br>Gln<br>1720 | aga<br>Arg | act<br>Thr              | gtc<br>Val | agc<br>Ser | tct<br>Ser<br>1725 | tca<br>Ser | gga<br>Gly | tgt<br>Cys | 6141 |
| gaa        | ggc                | aag        | agg        | aat        | gaa         | gac                | aag        | gaa                     | gca        | gtg        | agc                | atg        | ttg        | gtt        | 6186 |

WO 2004/022778

| Gli        | ı Gly<br>1730      | Ly:        | s Ar           | g Ası          | ı Glu      | 1 Asp<br>1735      |            | S Glı          | a Ala      | va:             | l Ser<br>174           |            | Le:            | ı Val          |      |
|------------|--------------------|------------|----------------|----------------|------------|--------------------|------------|----------------|------------|-----------------|------------------------|------------|----------------|----------------|------|
| aac<br>Ası | tgc<br>Cys<br>1745 | Pro        | t gc           | c tac<br>a Tyr | tac<br>Tyr | agt<br>Ser<br>1750 | Va]        | j tot<br>L Sei | gct<br>Ala | CC<br>Pro       | c aag<br>b Lys<br>175  | Ala        | gaç<br>a Glu   | g cta<br>1 Leu | 6231 |
| cto<br>Lei | aac<br>Asn<br>1760 | Ly         | a ato          | c aaa<br>e Lys | gag<br>Glu | atg<br>Met<br>1765 | Pro        | a gca<br>Ala   | ı gaa      | gto<br>Va       | g aat<br>l Asn<br>1770 | Glu        | g gaa<br>n Glu | ı gag<br>ı Glu | 6276 |
| gaa<br>Gli | cag<br>Gln<br>1775 | Ala        | a gat<br>a Asp | gto<br>Val     | aat<br>Asn | gaa<br>Glu<br>1780 | Lys        | aag<br>Lys     | gct<br>Ala | gaq<br>Glu      | teu<br>1785            | Il∈        | gga<br>Gly     | agt<br>Ser     | 6321 |
| cto<br>Lev | acc<br>Thr<br>1790 | His        | aaq<br>Lys     | ctg<br>Lev     | gag<br>Glu | acc<br>Thr<br>1795 | Leu        | cag<br>Gln     | gag<br>Glu | gcg             | g aag<br>Lys<br>1800   | Gly        | g ago<br>Ser   | ctg<br>Leu     | 6366 |
| cto<br>Lev | acg<br>Thr<br>1805 | Asp        | ato<br>Ile     | aag<br>Lys     | ctc<br>Leu | aac<br>Asn<br>1810 | Asn        | gcc<br>Ala     | ctg<br>Leu | Gl <sup>7</sup> | gaa<br>Glu<br>1815     | Glu        | gtg<br>Val     | gag<br>Glu     | 6411 |
| gct<br>Ala | ctg<br>Leu<br>1820 | Ile        | ago<br>Ser     | gag<br>Glu     | ctc<br>Leu | tgc<br>Cys<br>1825 | Lys        | Pro            | aat<br>Asn | gaç             | ttt<br>Phe<br>1830     | Asp        | aag<br>Lys     | tat<br>Tyr     | 6456 |
| agg<br>Arg | atg<br>Met<br>1835 | Phe        | ata<br>Ile     | Gly            | gat<br>Asp | ttg<br>Leu<br>1840 | Asp        | aag<br>Lys     | gtg<br>Val | gtc<br>Val      | aac<br>Asn<br>1845     | Leu        | ctg<br>Leu     | ctc<br>Leu     | 6501 |
| tcc<br>Ser | ctc<br>Leu<br>1850 | Ser        | . GJÀ<br>. aàà | cgt<br>Arg     | cta<br>Leu | gcc<br>Ala<br>1855 | Arg        | gtt<br>Val     | gag<br>Glu | aat<br>Asn      | gtc<br>Val<br>1860     | Leu        | agc<br>Ser     | ggc<br>Gly     | 6546 |
| ctt<br>Leu | ggt<br>Gly<br>1865 | Glu        | gat<br>Asp     | gcc<br>Ala     | agt<br>Ser | aat<br>Asn<br>1870 | Glu        | gaa<br>Glu     | agg<br>Arg | agc<br>Ser      | tct<br>Ser<br>1875     | Leu        | tac<br>Tyr     | gag<br>Glu     | 6591 |
| aaa<br>Lys | agg<br>Arg<br>1880 | Lys        | atc<br>Ile     | ctg<br>Leu     | gct<br>Ala | ggt<br>Gly<br>1885 | cag<br>Gln | cat<br>His     | gag<br>Glu | gat<br>Asp      | gcc<br>Ala<br>1890     | Arg        | gag<br>Glu     | ctg<br>Leu     | 6636 |
| aag<br>Lys | gag<br>Glu<br>1895 | Asn        | ctg<br>Leu     | gat<br>Asp     | cgc<br>Arg | agg<br>Arg<br>1900 | gag<br>Glu | cga<br>Arg     | gta<br>Val | gtg<br>Val      | ctg<br>Leu<br>1905     | ggc        | atc<br>Ile     | ttg<br>Leu     | 6681 |
| gcc<br>Ala | aat<br>Asn<br>1910 | tac<br>Tyr | ctt<br>Leu     | tca<br>Ser     | gag<br>Glu | gag<br>Glu<br>1915 | cag<br>Gln | ctc<br>Leu     | cag<br>Gln | gac<br>Asp      | tac<br>Tyr<br>1920     | cag<br>Gln | cac<br>His     | ttc<br>Phe     | 6726 |
| gtg<br>Val | aaa<br>Lys<br>1925 | atg<br>Met | aag<br>Lys     | tcc<br>Ser     | acg<br>Thr | ctc<br>Leu<br>1930 | ctc<br>Leu | att<br>Ile     | gag<br>Glu | caa<br>Gln      | cgg<br>Arg<br>1935     | aag<br>Lys | ctg<br>Leu     | gat<br>Asp     | 6771 |
| gac<br>Asp | aag<br>Lys<br>1940 | atc<br>Ile | aag<br>Lys     | ctg<br>Leu     | ggc<br>Gly | cag<br>Gln<br>1945 | gag<br>Glu | cag<br>Gln     | gtc<br>Val | aag<br>Lys      | tgt<br>Cys<br>1950     | ctg<br>Leu | ctg<br>Leu     | gag<br>Glu     | 6816 |
| agc<br>Ser | ctg<br>Leu<br>1955 | ccc<br>Pro | tca<br>Ser     | gat<br>Asp     | Phe        | att<br>Ile<br>1960 | ccc<br>Pro | aag.<br>Lys    | gct<br>Ala | GJ À<br>aaa     | gcc<br>Ala<br>1965     | ctg<br>Leu | gct<br>Ala     | ctg<br>Leu     | 6861 |
| ccc<br>Pro | cca<br>Pro<br>1970 | aac<br>Asn | ctc<br>Leu     | acg<br>Thr     | Ser        | gag<br>Glu<br>1975 | ccc<br>Pro | att<br>Ile     | cct<br>Pro | gct<br>Ala      | ggg<br>Gly<br>1980     | ggc<br>Gly | tgt<br>Cys     | act<br>Thr     | 6906 |
| ttc        | agt                | ggt        | att            | ttc            | cca        | aca                | tta        | acc            | tct        | cca             | ctt                    | taac       | ctct           | tc             | 6952 |

| Phe Ser Gly Ile Phe Pro Thr Leu Thr Ser Pro Leu<br>1985 1990 1995                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| taaaataccc aaccaaaaga tcactgtttc tctcaacact atttaatctg aaaaatgttt                                                                                                                                                                                                                                                                               |
| cagtacaaac cactgtttga actatctggg ttattggtgt ttgttcctga tgaaaggaaa                                                                                                                                                                                                                                                                               |
| aaaattotot ocaggaggaa goottittoo tiottgooot tootgattga tottotgaga                                                                                                                                                                                                                                                                               |
| gctcgaatgc tgctggacac gtaccccttt ctattattac tttgtagtag aaagaaagtt                                                                                                                                                                                                                                                                               |
| aatgaaactg agaactgatt ggagggtgtt tgatcattta gtttttaaca ggctgaggca                                                                                                                                                                                                                                                                               |
| acatggatca gtgtgtgtcc ccctcaggaa tgtatccaca gtggccttcc ttgctggtgg                                                                                                                                                                                                                                                                               |
| gcagtgtatc ctgatggcag ggtacaagta ccattaatga agggtctgca acataaagcc                                                                                                                                                                                                                                                                               |
| ttaaaaagac acacactaag aaaactgtaa aaccttgaac attgttattt atatttttta                                                                                                                                                                                                                                                                               |
| aaatggaaaa gatcactatg titgttgtgc taaccactta titgattctg tittgtggtg                                                                                                                                                                                                                                                                               |
| gacatagatg attacgtttg agctttgtat tttgtgaaaa ccttaatgaa atgaattcca                                                                                                                                                                                                                                                                               |
| aagat                                                                                                                                                                                                                                                                                                                                           |
| <210> 38                                                                                                                                                                                                                                                                                                                                        |
| <211> 1995                                                                                                                                                                                                                                                                                                                                      |
| <212> PRT                                                                                                                                                                                                                                                                                                                                       |
| <213> NM_020859 ShrmL, Shroom-related protein                                                                                                                                                                                                                                                                                                   |
| <400> 38                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                 |
| Met Arg Thr Thr Glu Asp Phe His Lys Pro Ser Ala Thr Leu Asn Ser  1 10 15                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                 |
| Asn Thr Ala Thr Lys Gly Arg Tyr Ile Tyr Leu Glu Ala Phe Leu Glu                                                                                                                                                                                                                                                                                 |
| Asn Thr Ala Thr Lys Gly Arg Tyr Ile Tyr Leu Glu Ala Phe Leu Glu 20 25 30  Gly Gly Ala Pro Trp Gly Phe Thr Leu Lys Gly Gly Leu Glu His Gly                                                                                                                                                                                                       |
| Asn Thr Ala Thr Lys Gly Arg Tyr Ile Tyr Leu Glu Ala Phe Leu Glu 20 25 30  Gly Gly Ala Pro Trp Gly Phe Thr Leu Lys Gly Gly Leu Glu His Gly 35 40  Glu Pro Leu Ile Ile Ser Lys Val Glu Glu Gly Gly Lys Ala Asp Thr                                                                                                                                |
| Asn Thr Ala Thr Lys Gly Arg Tyr Ile Tyr Leu Glu Ala Phe Leu Glu 20  Gly Gly Ala Pro Trp Gly Phe Thr Leu Lys Gly Gly Leu Glu His Gly 35  Glu Pro Leu Ile Ile Ser Lys Val Glu Glu Gly Gly Lys Ala Asp Thr 50  Leu Ser Ser Lys Leu Gln Ala Gly Asp Glu Val Val His Ile Asn Glu                                                                     |
| Asn Thr Ala Thr Lys Gly Arg Tyr Ile Tyr Leu Glu Ala Phe Leu Glu 20  Gly Gly Ala Pro Trp Gly Phe Thr Leu Lys Gly Gly Leu Glu His Gly 35  Glu Pro Leu Ile Ile Ser Lys Val Glu Glu Gly Gly Lys Ala Asp Thr 50  Leu Ser Ser Lys Leu Gln Ala Gly Asp Glu Val Val His Ile Asn Glu 75  Val Thr Leu Ser Ser Ser Arg Lys Glu Ala Val Ser Leu Val Lys Gly |

Leu Thr Ser Gly Pro Gln His Arg Lys Ala Ala Trp Ser Gly Gly Val 130 135 140

Lys Leu Arg Leu Lys His Arg Ser Ser Glu Pro Ala Gly Arg Pro His 145 150 155 160

Ser Trp His Thr Thr Lys Ser Gly Glu Lys Gln Pro Asp Ala Ser Met 165 170 175

Met Gln Ile Ser Gln Gly Met Ile Gly Pro Pro Trp His Gln Ser Tyr 180 185 190

His Ser Ser Ser Ser Thr Ser Asp Leu Ser Asn Tyr Asp His Ala Tyr 195 200 205

Leu Arg Arg Ser Pro Asp Gln Cys Ser Ser Gln Gly Ser Met Glu Ser 210 215 220

Leu Glu Pro Ser Gly Ala Tyr Pro Pro Cys His Leu Ser Pro Ala Lys 225 230 235 240

Ser Thr Gly Ser Ile Asp Gln Leu Ser His Phe His Asn Lys Arg Asp 245 250 255

Ser Ala Tyr Ser Ser Phe Ser Thr Ser Ser Ser Ile Leu Glu Tyr Pro 260 265 270

His Pro Gly Ile Ser Ala Arg Glu Arg Ser Gly Ser Met Asp Asn Thr 275 280 285

Ser Ala Arg Gly Gly Leu Leu Glu Gly Met Arg Gln Ala Asp Ile Arg 290 295 300

Tyr Val Lys Thr Val Tyr Asp Thr Arg Arg Gly Val Ser Ala Glu Tyr 305 310 315 320

Glu Val Asn Ser Ser Ala Leu Leu Leu Gln Gly Arg Glu Ala Arg Ala 325 330 335

Ser Ala Asn Gly Gln Gly Tyr Asp Lys Trp Ser Asn Ile Pro Arg Gly 340 345 350

Lys Gly Val Pro Pro Pro Ser Trp Ser Gln Gln Cys Pro Ser Ser Leu 355 360 365

Glu Thr Ala Thr Asp Asn Leu Pro Pro Lys Val Gly Ala Pro Leu Pro 370 375 380

Pro Ala Arg Ser Asp Ser Tyr Ala Ala Phe Arg His Arg Glu Arg Pro 385 390 395 400

Ser Ser Trp Ser Ser Leu Asp Gln Lys Arg Leu Cys Arg Pro Gln Ala 405 410 415

Asn Ser Leu Gly Ser Leu Lys Ser Pro Phe Ile Glu Glu Gln Leu His 420 425 430

Thr Val Leu Glu Lys Ser Pro Glu Asn Ser Pro Pro Val Lys Pro Lys 435 440 445

His Asn Tyr Thr Gln Lys Ala Gln Pro Gly Gln Pro Leu Leu Pro Thr 450 455 460

Ser Ile Tyr Ala Val Pro Ser Leu Glu Pro His Phe Ala Gln Val Pro 465 470 475 480

Gln Pro Ser Val Ser Ser Asn Gly Met Leu Tyr Pro Ala Leu Ala Lys 485 490 495

Glu Ser Gly Tyr Ile Ala Pro Gln Gly Ala Cys Asn Lys Met Ala Thr 500 505 510

Ile Asp Glu Asn Gly Asn Gln Asn Gly Ser Gly Arg Pro Gly Phe Ala 515 520 525

Phe Cys Gln Pro Leu Glu His Asp Leu Leu Ser Pro Val Glu Lys Lys . 530 535 540

Pro Glu Ala Thr Ala Lys Tyr Val Pro Ser Lys Val His Phe Cys Ser 545 550 555 560

Val Pro Glu Asn Glu Glu Asp Ala Ser Leu Lys Arg His Leu Thr Pro 565 570 575

Pro Gln Gly Asn Ser Pro His Ser Asn Glu Arg Lys Ser Thr His Ser 580 585 590

Asn Lys Pro Ser Ser His Pro His Ser Leu Lys Cys Pro Gln Ala Gln 595 600 605

Ala Trp Gln Ala Gly Glu Asp Lys Arg Ser Ser Arg Leu Ser Glu Pro 610 620

Trp Glu Gly Asp Phe Gln Glu Asp His Asn Ala Asn Leu Trp Arg Arg 625 630 635 640

Leu Glu Arg Glu Gly Leu Gly Gln Ser Leu Ser Gly Asn Phe Gly Lys 645 650 655

Thr Lys Ser Ala Phe Ser Ser Leu Gln Asn Ile Pro Glu Ser Leu Arg
660 665 670

Arg His Ser Ser Leu Glu Leu Gly Arg Gly Thr Gln Glu Gly Tyr Pro 675 680 685

Gly Gly Arg Pro Thr Cys Ala Val Asn Thr Lys Ala Glu Asp Pro Gly 690 695 700

Arg Lys Ala Ala Pro Asp Leu Gly Ser His Leu Asp Arg Gln Val Ser 705 710 715 720

Thr Asp Pro Ser Pro Glu Glu Pro Pro Ala Pro Ser His Pro His Thr 740 745 750

Ser Ser Leu Gly Arg Arg Gly Pro Gly Pro Gly Ser Ala Ser Ala Leu 755 760 765

Gln Gly Phe Gln Tyr Gly Lys Pro His Cys Ser Val Leu Glu Lys Val 770 775 780

Ser Lys Phe Glu Gln Arg Glu Gln Gly Ser Gln Arg Pro Ser Val Gly 785 790 795 800

Gly Ser Gly Phe Gly His Asn Tyr Arg Pro His Arg Thr Val Ser Thr 805 810 815

Ser Ser Thr Ser Gly Asn Asp Phe Glu Glu Thr Lys Ala His Ile Arg 820 825 830

Phe Ser Glu Ser Ala Glu Pro Leu Gly Asn Gly Glu Gln His Phe Lys 835 840 845

Asn Gly Glu Leu Lys Leu Glu Glu Ala Ser Arg Gln Pro Cys Gly Gln 850 855 860

Gln Leu Ser Gly Gly Ala Ser Asp Ser Gly Arg Gly Pro Gln Arg Pro 865 870 875 880

Asp Ala Arg Leu Leu Arg Ser Gln Ser Thr Phe Gln Leu Ser Ser Glu 885 890 895

Pro Glu Arg Glu Pro Glu Trp Arg Asp Arg Pro Gly Ser Pro Glu Ser 900 905 910

Pro Leu Leu Asp Ala Pro Phe Ser Arg Ala Tyr Arg Asn Ser Ile Lys 915 920 925

Asp Ala Gln Ser Arg Val Leu Gly Ala Thr Ser Phe Arg Arg Arg Asp .930 935 940 Leu Glu Leu Gly Ala Pro Val Ala Ser Arg Ser Trp Arg Pro Arg Pro 945 950 955

Ser Ser Ala His Val Gly Leu Arg Ser Pro Glu Ala Ser Ala Ser Ala 965 970 975

Ser Pro His Thr Pro Arg Glu Arg His Ser Val Thr Pro Ala Glu Gly 980 985 990

Asp Leu Ala Arg Pro Val Pro Pro Ala Ala Arg Arg Gly Ala Arg Arg 995 1000 1005

Arg Leu Thr Pro Glu Gln Lys Lys Arg Ser Tyr Ser Glu Pro Glu 1010 1015 1020

Lys Met Asn Glu Val Gly Ile Val Glu Glu Ala Glu Pro Ala Pro 1025 1030 1035

Leu Gly Pro Gln Arg Asn Gly Met Arg Phe Pro Glu Ser Ser Val 1040 1045 1050

Ala Asp Arg Arg Leu Phe Glu Arg Asp Gly Lys Ala Cys Ser 1055 1060 : 1065

Thr Leu Ser Leu Ser Gly Pro Glu Leu Lys Gln Phe Gln Gln Ser 1070 1075 1080

Ala Leu Ala Asp Tyr Ile Gln Arg Lys Thr Gly Lys Arg Pro Thr 1085 1090 1095

Ser Ala Ala Gly Cys Ser Leu Gln Glu Pro Gly Pro Leu Arg Glu 1100 1105 1110

Arg Ala Gln Ser Ala Tyr Leu Gln Pro Gly Pro Ala Ala Leu Glu 1115 1120 1125

Gly Ser Gly Leu Ala Ser Ala Ser Ser Leu Ser Ser Leu Arg Glu 1130 1135 1140

Pro Ser Leu Gln Pro Arg Arg Glu Ala Thr Leu Leu Pro Ala Thr 1145 1150 1155

Val Ala Glu Thr Gln Gln Ala Pro Arg Asp Arg Ser Ser Ser Phe 1160 1165 1170

Ala Gly Gly Arg Arg Leu Gly Glu Arg Arg Arg Gly Asp Leu Leu 1175 1180 1185

Ser Gly Ala Asn Gly Gly Thr Arg Gly Thr Gln Arg Gly Asp Glu 1190 1195 1200

|     | Pro<br>1205 | Arg | Glu <sub>.</sub> | Pro      | Ser | Ser<br>1210 | Trp | Gly | Ala | Arg | Ala<br>1215 | Gly | Lys | Ser |
|-----|-------------|-----|------------------|----------|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Met | Ser<br>1220 | Ala | Glu              | Asp<br>· | Leu | Leu<br>1225 | Glu | Arg | Ser | Asp | Val<br>1230 | Leu | Ala | Gly |
| Pro | Vál<br>1235 |     | Val              | Arg      | Ser | Arg<br>1240 | Ser | Ser | Pro | Ala | Thr<br>1245 | Ala | Asp | Lys |
| Arg | Gln<br>1250 |     | Val              | Leu      | Leu | Gly<br>1255 |     | Asp | Ser | Gly | Phe<br>1260 | Gly | Leu | Val |
| Lys | Asp<br>1265 |     | Суѕ              | Tyr      | Leu | Ala<br>1270 |     | Pro | Gly | Ser | Arg<br>1275 | Ser | Leu | Ser |
|     | Ser<br>1280 |     | Arg              | Gly      | GÌn | Glu<br>1285 |     | Met | Leu | Leu | Leu<br>1290 | Phe | His | His |
| Leu | Thr<br>1295 |     | Arg              | Trp      | Gly | Gly<br>1300 | Ser | Gly | Суз | Lys | Ala<br>1305 | Ile | Gly | Asp |
| Ser | Ser<br>1310 |     | Pro              | Ser      | Glu | Cys<br>1315 | Pro | Gly | Thr | Leu | Asp<br>1320 | His | Gln | Arg |
| Gln | Ala<br>1325 |     | Arg              | Thr      | Pro | Cys<br>1330 |     | Arg | Pro | Pro | Leu<br>1335 | Ala | Gly | Thr |
| Gln | Gly<br>1340 |     | Val              | Thr      | Asp | Thr<br>1345 |     | Ala | Ala | Pro | Leu<br>1350 | Thr | Pro | Ile |
| Gly | Thr<br>1355 |     | Leu              | Pro      | Ser | Ala<br>1360 |     | Pro | Ser | Gly | Tyr<br>1365 | Cys | Ser | Gln |
| Asp | Gly<br>1370 |     | Thr              | Gly      | Arg | Gln<br>1375 | Pro | Leu | Pro | Pro | Tyr<br>1380 | Thr | Pro | Ala |
| Met | Met<br>1385 |     | Arg              | Ser      | Asn | Gly<br>1390 |     | Thr | Leu | Thr | Gln<br>1395 | Pro | Pro | Gly |
| Pro | Arg<br>1400 |     | Cys              | Glu      | Gly | Asp<br>1405 |     | Pro | Glu | His | 1410        | Val | Glu | Glu |
| Gly | Thr<br>1415 |     | Lys              | Arg      | Val | Ser<br>1420 |     | Pro | Gln | Trp | Pro<br>1425 | Pro | Pro | Ser |
| Arg | Ala<br>1430 |     | Trp              | Ala      | His | Ala<br>1435 |     | Arg | Glu | Asp | Ser<br>1440 | Leu | Pro | Glu |
| Glu | Ser<br>1445 |     | Ala              | Pro      | Asp | Phe<br>1450 |     | Asn | Leu | Lys | His<br>1455 | Tyr | Gln | Lys |

- Gln Gln Ser Leu Pro Ser Leu Cys Ser Thr Ser Asp Pro Asp Thr 1460 1465 1470
- Pro Leu Gly Ala Pro Ser Thr Pro Gly Arg Ile Ser Leu Arg Ile 1475 1480 1485
- Ser Glu Ser Val Leu Arg Asp Ser Pro Pro Pro His Glu Asp Tyr 1490 1495 1500
- Glu Asp Glu Val Phe Val Arg Asp Pro His Pro Lys Ala Thr Ser 1505 1510 1515
- Ser Pro Thr Phe Glu Pro Leu Pro Pro Pro Pro Pro Pro Pro Pro 1520 1525 1530
- Ser Gln Glu Thr Pro Val Tyr Ser Met Asp Asp Phe Pro Pro Pro 1535 1540 1545
- Pro Pro His Thr Val Cys Glu Ala Gln Leu Asp Ser Glu Asp Pro 1550 1560
- Glu Gly Pro Arg Pro Ser Phe Asn Lys Leu Ser Lys Val Thr Ile 1565 1570 1575
- Ala Arg Glu Arg His Met Pro Gly Ala Ala His Val Val Gly Ser 1580 1585 1590
- Gln Thr Leu Ala Ser Arg Leu Gln Thr Ser Ile Lys Gly Ser Glu . 1595 1600 1605
- Ala Glu Ser Thr Pro Pro Ser Phe Met Ser Val His Ala Gln Leu 1610 1615 1620
- Ala Gly Ser Leu Gly Gly Gln Pro Ala Pro Ile Gln Thr Gln Ser 1625 1630 1635
- Leu Ser His Asp Pro Val Ser Gly Thr Gln Gly Leu Glu Lys Lys 1640 1650
- Val Ser Pro Asp Pro Gln Lys Ser Ser Glu Asp Ile Arg Thr Glu 1655 1660 1665
- Ala Leu Ala Lys Glu Ile Val His Gln Asp Lys Ser Leu Ala Asp 1670 1680
- Ile Leu Asp Pro Asp Ser Arg Leu Lys Thr Thr Met Asp Leu Met 1685 1690 1695
- Glu Gly Leu Phe Pro Arg Asp Val Asn Leu Leu Lys Glu Asn Ser 1700 1705 1710

- Val Lys Arg Lys Ala Ile Gln Arg Thr Val Ser Ser Ser Gly Cys 1715 1720 1725
- Glu Gly Lys Arg Asn Glu Asp Lys Glu Ala Val Ser Met Leu Val 1730 1735 1740
- Asn Cys Pro Ala Tyr Tyr Ser Val Ser Ala Pro Lys Ala Glu Leu 1745 1750 1755
- Leu Asn Lys Ile Lys Glu Met Pro Ala Glu Val Asn Glu Glu Glu 1760 1765 1770
- Glu Gln Ala Asp Val Asn Glu Lys Lys Ala Glu Leu Ile Gly Ser 1775 1780 1785
- Leu Thr His Lys Leu Glu Thr Leu Gln Glu Ala Lys Gly Ser Leu 1790 1795 1800
- Leu Thr Asp Ile Lys Leu Asn Asn Ala Leu Gly Glu Glu Val Glu 1805 1810 1815
- Ala Leu Ile Ser Glu Leu Cys Lys Pro Asn Glu Phe Asp Lys Tyr 1820 1825 1830
- Arg Met Phe Ile Gly Asp Leu Asp Lys Val Val Asn Leu Leu Leu 1835 1840 1845
- Ser Leu Ser Gly Arg Leu Ala Arg Val Glu Asn Val Leu Ser Gly 1850 1860
- Leu Gly Glu Asp Ala Ser Asn Glu Glu Arg Ser Ser Leu Tyr Glu 1865 1870 1875
- Lys Arg Lys Ile Leu Ala Gly Gln His Glu Asp Ala Arg Glu Leu 1880 1885 1890
- Lys Glu Asn Leu Asp Arg Arg Glu Arg Val Val Leu Gly Ile Leu 1895 1900 1905
- Ala Asn Tyr Leu Ser Glu Glu Gln Leu Gln Asp Tyr Gln His Phe 1910 1915 1920
- Val Lys Met Lys Ser Thr Leu Leu Ile Glu Gln Arg Lys Leu Asp 1925 1930 1935
- Asp Lys Ile Lys Leu Gly Gln Glu Gln Val Lys Cys Leu Leu Glu 1940 1945 1950
- Ser Leu  $\,$  Pro Ser Asp Phe Ile  $\,$  Pro Lys Ala Gly Ala  $\,$  Leu Ala Leu  $\,$  1955  $\,$  1960  $\,$  1965

Pro Pro Asn Leu Thr Ser Glu Pro Ile Pro Ala Gly Gly Cys Thr 1970 1975 Phe Ser Gly Ile Phe Pro Thr Leu Thr Ser Pro Leu 1985 1990 <210> 39 <211> 2529 <212> DNA <213> NM\_004433 ELF3, E74-like factor 3 <220> <221> CDS <222> (203) .. (1315) <223> <400> 39 gagagagaga gagagagaga actagtotog aggtogacgo ggcogcgaat togcggcogc gtcgaccgaa gacgcaggct ctatttagag ccgggtaggg gagcgcacgg ccagatacct cagcgctacc tggcggaact ggatttctct cccgcctgcc ggcctgcctg ccacagccgg actocgocae teeggtagee to atg get gea acc tgt gag att age aac att Met Ala Ala Thr Cys Glu Ile Ser Asn Ile 280 ttt agc aac tac ttc agt geg atg tac agc tcg gag gac tcc acc ctg Phe Ser Asn Tyr Phe Ser Ala Met Tyr Ser Ser Glu Asp Ser Thr Leu 20 gee tet gtt eee eet get gee ace ttt ggg gee gat gae ttg gta etg Ala Ser Val Pro Pro Ala Ala Thr Phe Gly Ala Asp Asp Leu Val Leu acc ctg agc aac ccc cag atg tca ttg gag ggt aca gag aag gcc agc Thr Leu Ser Asn Pro Gln Met Ser Leu Glu Gly Thr Glu Lys Ala Ser tgg ttg ggg gaa cag ccc cag ttc tgg tcg aag acg cag gtt ctg gac Trp Leu Gly Glu Gln Pro Gln Phe Trp Ser Lys Thr Gln Val Leu Asp tgg atc agc tac caa gtg gag aag aac aag tac gac gca agc gcc att 472 Trp Ile Ser Tyr Gln Val Glu Lys Asn Lys Tyr Asp Ala Ser Ala Ile 80 gac ttc tca cga tgt gac atg gat ggc gcc acc ctc tgc aat tgt gcc 520 Asp Phe Ser Arg Cys Asp Met Asp Gly Ala Thr Leu Cys Asn Cys Ala 95 ctt gag gag ctg cgt ctg gtc ttt ggg cct ctg.ggg gac caa ctc cat 568 Leu Glu Glu Leu Arg Leu Val Phe Gly Pro Leu Gly Asp Gln Leu His 115 120 110

|      |      |      |      |      | ctc<br>Leu        |      |      |     |      |      |       |       |      |       |       | 616  |
|------|------|------|------|------|-------------------|------|------|-----|------|------|-------|-------|------|-------|-------|------|
|      |      |      |      |      | gag<br>Glu        |      |      |     |      |      |       |       |      |       |       | 664  |
|      |      |      |      |      | gac<br>Asp<br>160 |      |      |     |      |      |       |       |      |       |       | 712  |
|      |      |      |      |      | gcc<br>Ala        |      |      |     |      |      |       |       |      |       |       | 760  |
|      | _    |      |      |      | ggc<br>Gly        | -    |      | -   | Val  |      |       | -     |      | Thr   |       | 808  |
|      |      |      |      |      | cac<br>His        |      |      |     |      |      |       |       |      |       |       | 856  |
|      |      |      |      |      | ggc<br>Gly        |      |      |     |      |      |       |       |      |       |       | 904  |
|      | _    | _    |      | _    | ccc<br>Pro<br>240 | _    |      |     | _    |      |       | -     |      |       |       | 952  |
| _    | _    | _    | _    |      | gag<br>Glu        |      |      | -   | -    |      |       |       | _    | _     | -     | 1000 |
|      |      |      |      |      | ggc<br>Gly        |      |      |     |      |      |       |       |      |       |       | 1048 |
|      |      |      | _    |      | ctc<br>Leu        |      |      |     |      | _    | -     |       |      |       |       | 1096 |
|      | _    |      | -    |      | aag<br>Lys        |      | _    | _   |      |      | -     |       | _    |       |       | 1144 |
|      |      |      |      |      | aag<br>Lys<br>320 |      |      |     |      |      |       |       |      |       |       | 1192 |
|      |      |      |      |      | tac<br>Tyr        |      |      |     |      |      |       |       |      |       |       | 1240 |
|      |      |      |      |      | tac<br>Tyr        |      |      |     |      |      |       |       |      |       |       | 1288 |
|      |      |      |      |      | cag<br>Gln        |      |      |     | tgag | ggtt | .gg a | acta  | tacc | :c    |       | 1335 |
| ggga | ccaa | ac t | cacg | gaco | a ct              | cgag | gcct | gca | aacc | ttc  | ctgg  | ıgagg | ac a | .ggca | ggcca | 1395 |
| gato | gccc | ct c | cact | gggg | a at              | gctc | ccag | ctg | tgct | gtg  | gaga  | gaag  | ct g | atgt  | tttgg | 1455 |

|            |            | •          |            |            |              |      |
|------------|------------|------------|------------|------------|--------------|------|
| tgtattgtca | gccatcgtcc | ttggactcgg | agactatggc | ctcgcctccc | caccctcctc   | 1515 |
| ttggaattac | aagccctggg | gtttgaagct | gactttatag | ctgcaagtgt | atctcctttt   | 1575 |
| atctggtgcc | tcctcaaacc | cagtctcaga | cactaaatgc | agacaacacc | ttcctcctgc   | 1635 |
| agacacttgg | actgagccaa | ggaggcttgg | gaggccctag | ggagcaccgt | gatggagagg   | 1695 |
| acagagcagg | ggctccagca | cttctttctg | gactggcgtt | cacctccctg | ctcagtgctt   | 1755 |
| gggctccacg | ggcaggggtc | agagcactcc | ctaatttatg | tgctatataa | atatgtcaga   | 1815 |
| tgtacataga | gatctatttt | ttctaaaaca | ttcccctccc | cactcctctc | ccacagagtg ' | 1875 |
| ctggactgtt | ccaggccctc | cagtgggctg | atgctgggac | ccttaggatg | gggctcccag   | 1935 |
| ctcctttctc | ctgtgaatgg | aggcagagac | ctccaataaa | gtgccttctg | ggctttttct   | 1995 |
| aacctttgtc | ttagctacct | gtgtactgaa | atttgggcct | ttggatcgaa | tatggtcaag   | 2055 |
| aggttggagg | ggaggaaaat | gaaggtctac | caggatgagg | gtgagggcaa | aggctgacga   | 2115 |
| agaggggagt | tacagatttc | ctgtagcagg | tgtgggctta | cagacacatg | gactgggctg   | 2175 |
| ggaggcgagc | aaaggaagca | gctgagactg | ttggagaacg | ttacaagact | tcatgcaaga   | 2235 |
| aggacatgaa | ctcagaacac | tgaggtcaga | agcatctgct | gtcatgacac | cgctcgagtg   | 2295 |
| accttgacct | tgaccaagtc | ttgtccttgt | ttaggactga | tttttcctat | taggctaggg   | 2355 |
| tttggacctg | atgttctcaa | gatgtctaga | attgcatggc | tggccttgtg | gaatagatgg   | 2415 |
| ttttgcattc | cagccaagtg | tgctgtaaac | tgtatatctg | taatatgaat | cccagctttt   | 2475 |
| gagtctgaca | aaatcagagt | taggatcttg | taaaggaaaa | aaaaaaaaa  | aaaa         | 2529 |

<210> 40

<211> 371

<212> PRT

<213> NM\_004433 ELF3, E74-like factor 3

<400> 40

Met Ala Ala Thr Cys Glu Ile Ser Asn Ile Phe Ser Asn Tyr Phe Ser 1  $$10^{\circ}$$ 

Ala Met Tyr Ser Ser Glu Asp Ser Thr Leu Ala Ser Val Pro Pro Ala 20 25 30

Ala Thr Phe Gly Ala Asp Asp Leu Val Leu Thr Leu Ser Asn Pro Gln 35 40 45

Met Ser Leu Glu Gly Thr Glu Lys Ala Ser Trp Leu Gly Glu Gln Pro 50 60

Gln Phe Trp Ser Lys Thr Gln Val Leu Asp Trp Ile Ser Tyr Gln Val 65 70 75 80

Glu Lys Asn Lys Tyr Asp Ala Ser Ala Ile Asp Phe Ser Arg Cys Asp  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ 

Met Asp Gly Ala Thr Leu Cys Asn Cys Ala Leu Glu Glu Leu Arg Leu 100 105 110

Val Phe Gly Pro Leu Gly Asp Gln Leu His Ala Gln Leu Arg Asp Leu 115 120 125

Thr Ser Ser Ser Ser Asp Glu Leu Ser Trp Ile Ile Glu Leu Leu Glu 130 135 140

Lys Asp Gly Met Ala Phe Gln Glu Ala Leu Asp Pro Gly Pro Phe Asp 145 150 155 160

Gln Gly Ser Pro Phe Ala Gln Glu Leu Leu Asp Asp Gly Gln Gln Ala 165 170 175

Ser Pro Tyr His Pro Gly Ser Cys Gly Ala Gly Ala Pro Ser Pro Gly 180 185 190

Ser Ser Asp Val Ser Thr Ala Gly Thr Gly Ala Ser Arg Ser Ser His 195 200 205

Ser Ser Asp Ser Gly Gly Ser Asp Val Asp Leu Asp Pro Thr Asp Gly 210 215 220

Lys Leu Phe Pro Ser Asp Gly Phe Arg Asp Cys Lys Lys Gly Asp Pro 225 230 235 240

Lys His Gly Lys Arg Lys Arg Gly Arg Pro Arg Lys Leu Ser Lys Glu 245 250 255

Tyr Trp Asp Cys Leu Glu Gly Lys Lys Ser Lys His Ala Pro Arg Gly 260 265 270

Thr His Leu Trp Glu Phe Ile Arg Asp Ile Leu Ile His Pro Glu Leu 275 280 285

Asn Glu Gly Leu Met Lys Trp Glu Asn Arg His Glu Gly Val Phe Lys 290 295 300

Phe Leu Arg Ser Glu Ala Val Ala Gln Leu Trp Gly Gln Lys Lys 305 310 315 320

Asn Ser Asn Met Thr Tyr Glu Lys Leu Ser Arg Ala Met Arg Tyr Tyr 325 330 335

Tyr Lys Arg Glu Ile Leu Glu Arg Val Asp Gly Arg Arg Leu Val Tyr

113

345 350 340 Lys Phe Gly Lys Asn Ser Ser Gly Trp Lys Glu Glu Glu Val Leu Gln 355 360 Ser Arg Asn 370 <210> 41 <211> 4020 <212> DNA <213> NM\_019027 FLJ20273 <220> <221> CDS <222> (240) .. (1811) <223> <400> 41 gtcaattgcc ctttagtccc aggactaacc ggaagcttct gcaacaggag gacattgaaa 60 ataagatgga acccatccac ataaggattt gcctcaaagg gcactgcaaa aattgaacag 120 aggaatccca aggaagctgc ctgaatttgc ctgtatactc tcgttctgcg acttataaag 180 gaccagacaa atcaaattag tggttttggt ttccgccagc tgtggatgcc tttgacatt 239 atg acc gca gag gat tcc acc gca gcc atg agc agt gac tcg gcc gcc 287 Met Thr Ala Glu Asp Ser Thr Ala Ala Met Ser Ser Asp Ser Ala Ala 10 335 ggg tee teg gee aag gtg eee gag gge gtg geg geg eee aac gag Gly Ser Ser Ala Lys Val Pro Glu Gly Val Ala Gly Ala Pro Asn Glu 383 gca gca ctg ctg gcg ctg atg gag cgc acg ggc tac agc atg gtg caa Ala Ala Leu Leu Ala Leu Met Glu Arg Thr Gly Tyr Ser Met Val Gln 431 gag aac ggg cag cgc aag tac ggc ggc cca ccg ccc ggc tgg gag ggc Glu Asn Gly Gln Arg Lys Tyr Gly Gly Pro Pro Pro Gly Trp Glu Gly 50 55 479 ccg cac ccg cag cgt ggc tgc gag gtc ttc gtg ggc aag atc ccg cgc Pro His Pro Gln Arg Gly Cys Glu Val Phe Val Gly Lys Ile Pro Arg 65 75 527 gac gtg tac gag gac gag ctg gtg ccc gtg ttc gag gcc gtg ggc cgc Asp Val Tyr Glu Asp Glu Leu Val Pro Val Phe Glu Ala Val Gly Arg 90 575 acc tac gag ctg cgc ctc atg atg gac ttt gac ggc aag aac cgc ggc Thr Tyr Glu Leu Arg Leu Met Met Asp Phe Asp Gly Lys Asn Arg Gly

105

110

| tac<br>Tyr        | gcc<br>Ala        | tto<br>Phe<br>115 | val               | ato<br>L Met      | tao<br>Ty         | c tgc<br>c Cys    | cac<br>His<br>120      | Lys               | g cac<br>s His    | gaç<br>Glu              | g gco               | c aaq<br>a Lys<br>125 | : Ar              | g gca             | a gtg<br>a Val    | 623  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------|-------------------|-------------------------|---------------------|-----------------------|-------------------|-------------------|-------------------|------|
| cgt<br>Arg        | gag<br>Glu<br>130 | ı Lev             | aad<br>Asr        | c aac<br>n Asr    | tao<br>Tyi        | gag<br>Glu<br>135 | Ile                    | cgc<br>Arç        | Pro               | GI7                     | c cgc<br>Arg<br>140 | j Lei                 | tei<br>Lei        | ggo<br>Gly        | e gtg<br>Y Val    | 671  |
| tgc<br>Cys<br>145 | Cys               | ago<br>Ser        | gto<br>Val        | g gad<br>L Asp    | aac<br>Asr<br>150 | ı Cys             | cgc<br>Arg             | cto<br>Leu        | tto<br>Phe        | : ato<br>: Ile<br>: 155 | : Gl                | ggg<br>Gly            | ato<br>Ile        | e ccc             | aag<br>Lys<br>160 | 719  |
| atg<br>Met        | aag<br>Lys        | aag<br>Lys        | a cgc             | gag<br>Glu<br>165 | Glu               | ato<br>Ile        | ctg<br>Leu             | gaç<br>Glu        | gag<br>Glu<br>170 | Ile                     | gcc<br>Ala          | aag<br>Lys            | gto<br>Val        | acc<br>Thi        | gag<br>Glu        | 767  |
| Gly               | gtg<br>Val        | ctg<br>Leu        | gac<br>Asp<br>180 | Val               | ato<br>Ile        | gtc<br>Val        | tac<br>Tyr             | gcc<br>Ala<br>185 | Ser               | gcg                     | gcc<br>Ala          | gac<br>Asp            | aag<br>Lys<br>190 | Met               | , aag<br>: Lys    | 815  |
| aac<br>Asn        | cgc               | ggc<br>Gly<br>195 | Phe               | gcc<br>Ala        | Phe               | gtg<br>Val        | gag<br>Glu<br>200      | Туг               | gag<br>Glu        | agc<br>Ser              | cac<br>His          | cgc<br>Arg<br>205     | Ala               | gct<br>Ala        | gcc<br>Ala        | 863  |
| atg<br>Met        | gct<br>Ala<br>210 | Arg               | cgc               | aag<br>Lys        | Leu               | atg<br>Met<br>215 | cct<br>Pro             | Gly               | cgc<br>Arg        | atc                     | Gln<br>220          | Leu                   | tgg<br>Trp        | Gly               | cac<br>His        | 911  |
| cag<br>Gln<br>225 | atc<br>Ile        | gcc<br>Ala        | gtg<br>Val        | gac<br>Asp        | tgg<br>Trp<br>230 | Ala               | gag<br>Gl <sub>u</sub> | cct<br>Pro        | gag<br>Glu        | atc<br>Ile<br>235       | Asp                 | gtg<br>Val            | gac<br>Asp        | gag<br>Glu        | gac<br>Asp<br>240 | 959  |
| gtg<br>Val        | atg<br>Met        | gag<br>Glu        | acc<br>Thr        | gtg<br>Val<br>245 | aag<br>Lys        | atc<br>Ile        | ctc                    | tac<br>Tyr        | gtg<br>Val<br>250 | cgc<br>Arg              | aac<br>Asn          | ctc<br>Leu            | atg<br>Met        | atc<br>Ile<br>255 | Glu               | 1007 |
| acc<br>Thr        | acc<br>Thr        | gag<br>Glu        | gac<br>Asp<br>260 | acc<br>Thr        | atc<br>Ile        | aag<br>Lys        | aag<br>Lys             | agc<br>Ser<br>265 | ttc<br>Phe        | ggc<br>Gly              | cag<br>Gln          | ttc<br>Phe            | aac<br>Asn<br>270 | ccc<br>Pro        | ggc<br>Gly        | 1055 |
| tgc<br>Cys        | gtg<br>Val        | gag<br>Glu<br>275 | cgc<br>Arg        | gtc<br>Val        | aag<br>Lys        | aag<br>Lys        | atc<br>Ile<br>280      | cgc<br>Arg        | gac<br>Asp        | tac<br>Tyr              | gcc<br>Ala          | ttc<br>Phe<br>285     | gtg<br>Val        | cac<br>His        | ttc<br>Phe        | 1103 |
| acc<br>Thr        | agc<br>Ser<br>290 | cgc<br>Arg        | gag<br>Glu        | gat<br>Asp        | gcc<br>Ala        | gtg<br>Val<br>295 | cat<br>His             | gcc<br>Ala        | atg<br>Met        | aac<br>Asn              | aac<br>Asn<br>300   | ctc<br>Leu            | aac<br>Asn        | GJA               | act<br>Thr        | 1151 |
| gag<br>Glu<br>305 | ctg<br>Leu        | gag<br>Glu        | ggc<br>Gly        | tcg<br>Ser        | tgc<br>Cys<br>310 | ctg<br>Leu        | gag<br>Glu             | gtc<br>Val        | acg<br>Thr        | ctg<br>Leu<br>315       | gcc<br>Ala          | aag<br>Lys            | ccc<br>Pro        | gtg<br>Val        | gac<br>Asp<br>320 | 1199 |
| aag<br>Lys        | gag<br>Glu        | cag<br>Gln        | tac<br>Tyr        | tcg<br>Ser<br>325 | cgc<br>Arg        | tac<br>Tyr        | cag<br>Gln             | aag<br>Lys        | gca<br>Ala<br>330 | gcċ<br>Ala              | agg<br>Arg          | ggc                   | ggc<br>Gly        | ggc<br>Gly<br>335 | gcg<br>Ala        | 1247 |
| gct<br>Ala        | gag<br>Glu        | gca<br>Ala        | gcg<br>Ala<br>340 | cag<br>Gln        | cag<br>Gln        | ccc<br>Pro        | agc<br>Ser             | tac<br>Tyr<br>345 | gtg<br>Val        | tac<br>Tyr              | tcc<br>Ser          | tgc<br>Cys            | gac<br>Asp<br>350 | ccc<br>Pro        | tac<br>Tyr        | 1295 |
| aca<br>Thr        | ctg<br>Leu        | gcc<br>Ala<br>355 | tac<br>Tyr        | tac<br>Tyr        | ggc<br>Gly        | tac<br>Tyr        | ccc<br>Pro<br>360      | tac<br>Tyr        | aac<br>Asn        | gcg<br>Ala              | ctc<br>Leu          | att<br>Ile<br>365     | elà<br>aaa        | ccc<br>Pro        | aac<br>Asn        | 1343 |
| Arg               | gac<br>Asp<br>370 | tac<br>Tyr        | ttt<br>Phe        | gtg<br>Val        | aaa<br>Lys        | gta<br>Val<br>375 | gcc<br>Ala             | atc<br>Ile        | cct<br>Pro        | gcc<br>Ala              | att<br>Ile<br>380   | 'GJÅ<br>aaa           | gct<br>Ala        | cag<br>Gln        | tat<br>Tyr        | 1391 |
|                   |                   |                   |                   |                   |                   |                   |                        |                   |                   |                         |                     |                       |                   |                   |                   |      |

| tcc atg ttt cca gca gct cca gcc cct aaa atg att gaa gat ggc aaa<br>Ser Met Phe Pro Ala Ala Pro Ala Pro Lys Met Ile Glu Asp Gly Lys<br>385 390 395 400 | 1439 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| atc cac aca gtg gag cac atg atc agc ccc att gct gtg cag cca gac<br>Ile His Thr Val Glu His Met Ile Ser Pro Ile Ala Val Gln Pro Asp<br>405 410 415     | 1487 |
| cca gcc agt gct gcc gcc gca gcc gcg gcc gca gcc gca gcc<br>Pro Ala Ser Ala                                        | 1535 |
| gct gtc att ccc act gtg tcg acg cca cca cct ttc cag ggc cgc cca<br>Ala Val Ile Pro Thr Val Ser Thr Pro Pro Pro Phe Gln Gly Arg Pro<br>435 440 445     | 1583 |
| ata act cca gta tac acg gtg gct cca aac gtt cag aga att cct act<br>Ile Thr Pro Val Tyr Thr Val Ala Pro Asn Val Gln Arg Ile Pro Thr<br>450 460         | 1631 |
| gcc ggg atc tac ggg gcc agt tac gtg cca ttt gct gct cca gct aca<br>Ala Gly Ile Tyr Gly Ala Ser Tyr Val Pro Phe Ala Ala Pro Ala Thr<br>465 470 475 480 | 1679 |
| gcc acg atc gcc aca cta cag aag aac gcg gca gcc gcg gcc gtg<br>Ala Thr Ile Ala Thr Leu Gln Lys Asn Ala Ala Ala Ala Ala Ala Val-<br>485 490 495        | 1727 |
| tat gga gga tac gca ggc tac ata cct cag gcc ttc cct gct gcc Tyr Gly Gly Tyr Ala Gly Tyr Ile Pro Gln Ala Phe Pro Ala Ala Ala 500 505 510               | 1775 |
| att cag gtc ccc atc ccc gac gtc tac cag aca tac tgaggctggt Ile Gln Val Pro Ile Pro Asp Val Tyr Gln Thr Tyr 515 520                                    | 1821 |
| gaccagcacg aagacagacc acacaaacac cactgaagga acgcttgact atttatgaag                                                                                     | 1881 |
| aaggaacatg ttggattcac acatgcaacc tgaaagtgaa gaatgttagc agatttattt                                                                                     | 1941 |
| ctgaattatt ttatatacat gaagttttca ctagttttt aagactattt tcaacttagc                                                                                      | 2001 |
| atgcctacgt tcatacattt ccaaaagact tgcaatggtt cgtgccttca ttccatcttt                                                                                     | 2061 |
| taaaaatttg tatgctgtac tacatttgta tagaggtttt tgttgttgtt tttttaagga                                                                                     | 2121 |
| tatattttca gtatgaaggt tattttctta acttctgcac tccagagatt tctattttgt                                                                                     | 2181 |
| agtacettea ataatatate aactatatat taaaaaagea eaettgagga getagggaae                                                                                     | 2241 |
| tattttgaaa aatatataca atatttaaag atacaaacag tagtgcttaa aaatactaca                                                                                     | 2301 |
| taaagcatta ttttaaaggt tatactggaa agtgcaattt taaaatgagt aaaacctctg                                                                                     | 2361 |
| tatttctgct ggcattaagg gttgatggtg ttaccatgta tcatcatggc ggtactattt                                                                                     | 2421 |
| tttaaaagaa attaaacact ggatctctcc ttaagccaac attgaaaaga cttgccgcac                                                                                     | 2481 |
| ttctgagtcc aaacactgga aagctctcct tgccaccgtt agccggggct cattctccat                                                                                     | 2541 |
| gtgeettage ettaaacatg ecceeactee cacatetete accetgteee etceteecca                                                                                     | 2601 |
| gatteccaat eccacegeaa tgtttggeaa geetaggaet gataagtage tetgatagag                                                                                     | 2661 |
| gagetggtgg ettttataet tetteetggg tttttgttgg ggtttgttgt ttegttgttt                                                                                     | 2721 |
| tttgttttt ttttgtttgg ttggggaagt attgtcttct acgtgtgcta ttttcagtag                                                                                      | 2781 |

| cagagtaago | acaaggtttt | aatcgagttg | cataagacac | ctttgcatag | ctatttaatt | 2841 |
|------------|------------|------------|------------|------------|------------|------|
| gcccaatgta | aaactttaat | gccatttcta | atgcttttat | tcatttttga | agtatgagtt | 2901 |
| tgtagggaca | aagaatgtat | gttatcgtag | acaagacccc | cagagactct | tttcagcaga | 2961 |
| aagttatgct | tctagttgcc | ttaccatgtt | tcttgcaaaa | ctgtccatgg | tcctcaaggg | 3021 |
| tgttggaaac | attatgttta | ttaaatgggc | ctctcttcct | ttgctgtgca | cttgatgggt | 3081 |
| gaactggatt | ggggtgtgca | catccaggag | gaggaggaga | gacctgtaga | agtttaaaga | 3141 |
| tagtttgtaa | atatcttcta | atgcttgttt | ttagtccttt | tatgttggag | aagttcatgg | 3201 |
| tatgtagttt | aatgcaaaat | gaaaccattt | tatttcaatg | ttattaaaaa | ggtttgtttt | 3261 |
| attaggaagt | taatgtattg | ttgcagtgtt | ttgtgcctgt | ttaaaggctt | ttgtttagca | 3321 |
| gagtgaatgt | aaaatacagt | aaaatgttaa | gattgtcatc | tactttttaa | aaaaaaatat | 3381 |
| caacttggaa | ttgtttttta | aaggctcaat | caaggaagtg | aggtgtgcaa | taaggtagca | 3441 |
| agtaaaacgc | agttgcgttt | ttatgtcatg | ttagagatco | atacaatttt | ccactcacgg | 3501 |
| gattittgtt | gatggctgaa | ttcttgtgga | ttcataagag | gatcatgccc | ttagcaagta | 3561 |
| cttttgtttt | gttttaaatt | aagagattcc | caaatgcctt | tttccccctc | atcttgaaat | 3621 |
| gagatgagtt | tttatgtgta | agcaatattt | atttaactat | tctataaaat | tattgagtgc | 3681 |
| ctactgaggc | ctttaagcac | cgctaacatt | cctttccatc | attcttttga | atgacataaa | 3741 |
| ataattgtgc | aatgttcctg | atgatgtacc | ccacagctgc | attcaaactc | aaatctgtgg | 3801 |
| gaatgagtga | ctcgaccaaa | tgtaattcgg | atcagatcct | catcccctga | ctgtgtgaaa | 3861 |
| aagtactct  | ccttctagtg | aaggattgtc | acagagtttc | actggatgaa | actatgaccc | 3921 |
| gtattctta  | ctgtatttta | catgtgcctg | taaattattt | tgccgaaata | agaagaagaa | 3981 |
| gaggaagaaa | gaacagtaga | aaaaaaaat  | aaaaaaaa   |            |            | 4020 |

<210> 42

<211> 524

<212> PRT

<213> NM\_019027 FLJ20273

<400> 42

Met Thr Ala Glu Asp Ser Thr Ala Ala Met Ser Ser Asp Ser Ala Ala 1 5 10 15

Gly Ser Ser Ala Lys Val Pro Glu Gly Val Ala Gly Ala Pro Asn Glu 20 25 30

Ala Ala Leu Leu Ala Leu Met Glu Arg Thr Gly Tyr Ser Met Val Gln 35 40 45

Glu Asn Gly Gln Arg Lys Tyr Gly Gly Pro Pro Pro Gly Trp Glu Gly

50 55 60

Pro His Pro Gln Arg Gly Cys Glu Val Phe Val Gly Lys Ile Pro Arg 65 70 75 80

Asp Val Tyr Glu Asp Glu Leu Val Pro Val Phe Glu Ala Val Gly Arg 85 90 95

Thr Tyr Glu Leu Arg Leu Met Met Asp Phe Asp Gly Lys Asn Arg Gly
100 105 110

Tyr Ala Phe Val Met Tyr Cys His Lys His Glu Ala Lys Arg Ala Val 115 120 125

Arg Glu Leu Asn Asn Tyr Glu Ile Arg Pro Gly Arg Leu Leu Gly Val 130 135 140

Cys Cys Ser Val Asp Asn Cys Arg Leu Phe Ile Gly Gly Ile Pro Lys 145 150 155 160

Met Lys Lys Arg Glu Glu Ile Leu Glu Glu Ile Ala Lys Val Thr Glu 165 : 170 175

Gly Val Leu Asp Val Ile Val Tyr Ala Ser Ala Ala Asp Lys Met Lys 180 185 190

Asn Arg Gly Phe Ala Phe Val Glu Tyr Glu Ser His Arg Ala Ala Ala 195 200 205

Met Ala Arg Arg Lys Leu Met Pro Gly Arg Ile Gln Leu Trp Gly His 210 215 220

Gln Ile Ala Val Asp Trp Ala Glu Pro Glu Ile Asp Val Asp Glu Asp 225 230 235 240

Val Met Glu Thr Val Lys Ile Leu Tyr Val Arg Asn Leu Met Ile Glu 245 250 255

Thr Thr Glu Asp Thr Ile Lys Lys Ser Phe Gly Gln Phe Asn Pro Gly 260 265 270

Cys Val Glu Arg Val Lys Lys Ile Arg Asp Tyr Ala Phe Val His Phe 275 280 285

Thr Ser Arg Glu Asp Ala Val His Ala Met Asn Asn Leu Asn Gly Thr 290 295 300

Glu Leu Glu Gly Ser Cys Leu Glu Val Thr Leu Ala Lys Pro Val Asp 305 310 315 320

Lys Glu Gln Tyr Ser Arg Tyr Gln Lys Ala Ala Arg Gly Gly Ala

325 330 335

Ala Glu Ala Gln Gln Pro Ser Tyr Val Tyr Ser Cys Asp Pro Tyr 340 345 350

Thr Leu Ala Tyr Tyr Gly Tyr Pro Tyr Asn Ala Leu Ile Gly Pro Asn 355 360 365

Arg Asp Tyr Phe Val Lys Val Ala Ile Pro Ala Ile Gly Ala Gln Tyr 370 375 380

Ser Met Phe Pro Ala Ala Pro Ala Pro Lys Met Ile Glu Asp Gly Lys 385 390 395 400

Ile His Thr Val Glu His Met Ile Ser Pro Ile Ala Val Gln Pro Asp 405 410 415

Ala Val Ile Pro Thr Val Ser Thr Pro Pro Pro Phe Gln.Gly Arg Pro 435  $\phantom{-}440\phantom{0}$  445

Ile Thr Pro Val Tyr Thr Val Ala Pro Asn Val Gln Arg Ile Pro Thr 450 455 460

Ala Gly Ile Tyr Gly Ala Ser Tyr Val Pro Phe Ala Ala Pro Ala Thr 465 470 475 480

Tyr Gly Gly Tyr Ala Gly Tyr Ile Pro Gln Ala Phe Pro Ala Ala Ala 500 505 510

Ile Gln Val Pro Ile Pro Asp Val Tyr Gln Thr Tyr 515 520

<210> 43

<211> 1451

<212> DNA

<213> NM\_013952 PAX8

<220>

<221> CDS

<222> (161)..(1354)

<223>

| <40               |                   | 43                |                   |                   |                   |                   |                   |                      |                   |                   | •                 |                   |                   |                   |                   |            |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|
| ttc               | agaa              | ıgga              | ggag              | jagac             | ac c              | gggc              | ccaç              | gg go                | cacco             | tcgc              | ggg               | caac              | cgg               | acco              | aagcag            | 60         |
| tga               | gggc              | ctg               | cago              | cggc              | cg ç              | gccag             | ggca              | ag cg                | gcag              | gege              | ggo               | ccgg              | Jacc              | tacg              | ggagga            | 120        |
| ago               | cccg              | agc               | cctc              | ggcg              | igg d             | tgcg              | agco              | ga ct                | cece              | ggcg              |                   |                   |                   |                   | tcc<br>Ser<br>5   | 175        |
| atc<br>Ile        | aga<br>Arg        | tct<br>Ser        | ggc<br>Gly        | cat<br>His        | gga<br>Gly        | , GJA<br>, aaa    | cto<br>Lev        | g aac<br>1 Asn       | cag<br>Gln<br>15  | ctg<br>Leu        | gga<br>Gly        | ggg<br>Gly        | gco<br>Ala        | ttt<br>Phe<br>20  | gtg<br>Val        | 223        |
| aat<br>Asn        | ggc               | aga<br>Arg        | cct<br>Pro<br>25  | ctg<br>Leu        | Pro               | gaa<br>Glu        | gtg<br>Val        | g gtc<br>. Val<br>30 | cgc<br>Arg        | cag<br>Gln        | Arg               | ato               | gta<br>Val<br>35  | gac<br>Asp        | ctg<br>Leu        | 271        |
| gcc<br>Ala        | cac<br>His        | cag<br>Gln<br>40  | ggt               | gta<br>Val        | agg<br>Arg        | ccc<br>Pro        | tgc<br>Cys<br>45  | gac<br>Asp           | atc<br>Ile        | tct<br>Ser        | cgc               | cag<br>Gln<br>50  | Leu               | cgc<br>Arg        | gtc<br>Val        | 319        |
| agc<br>Ser        | cat<br>His<br>55  | ggc<br>Gly        | tgc<br>Cys        | gtc<br>Val        | agc<br>Ser        | aag<br>Lys<br>60  | ato               | ctt<br>Leu           | ggc<br>Gly        | agg<br>Arg        | tac<br>Tyr<br>65  | tac<br>Tyr        | gag<br>Glu        | act<br>Thr        | ggc<br>Gly        | 367        |
| agc<br>Ser<br>70  | atc<br>Ile        | cgg<br>Arg        | cct<br>Pro        | gga<br>Gly        | gtg<br>Val<br>75  | ata<br>Ile        | Gly               | Gly                  | tcc<br>Ser        | aag<br>Lys<br>80  | ccc<br>Pro        | aag<br>Lys        | gtg<br>Val        | gcc<br>Ala        | acc<br>Thr<br>85  | <b>415</b> |
| ccc<br>Pro        | aag<br>Lys        | gtg<br>Val        | gtg<br>Val        | gag<br>Glu<br>90  | aag<br>Lys        | att<br>Ile        | G1 y<br>ggg       | gac<br>Asp           | tac<br>Tyr<br>95  | aaa<br>Lys        | cgc<br>Arg        | cag<br>Gln        | aac<br>Asn        | cct<br>Pro<br>100 | acc<br>Thr        | 463        |
| atg<br>Met        | ttt<br>Phe        | gcc<br>Ala        | tgg<br>Trp<br>105 | gag<br>Glu        | atc<br>Ile        | cga<br>Arg        | gac<br>Asp        | cgg<br>Arg<br>110    | Leu               | ctg<br>Leu        | gct<br>Ala        | gag<br>Glu        | ggc<br>Gly<br>115 | Val               | tgt<br>Cys        | 511        |
| gac<br>Asp        | aat<br>Asn        | gac<br>Asp<br>120 | act<br>Thr        | gtg<br>Val        | ccc<br>Pro        | agt<br>Ser        | gtc<br>Val<br>125 | agc<br>Ser           | tcc<br>Ser        | att<br>Ile        | aat<br>Asn        | aga<br>Arg<br>130 | atc<br>Ile        | atc<br>Ile        | cgg<br>Arg        | 559        |
| acc<br>Thr        | aaa<br>Lys<br>135 | gtg<br>Val        | cag<br>Gln        | caa<br>Gln        | cca<br>Pro        | ttc<br>Phe<br>140 | aac<br>Asn        | ctc<br>Leu           | cct<br>Pro        | atg<br>Met        | gac<br>Asp<br>145 | agc<br>Ser        | tgc<br>Cys        | gtg<br>Val        | gcc<br>Ala        | 607        |
| acc<br>Thr<br>150 | aag<br>Lys        | tcc<br>Ser        | ctg<br>Leu        | agt<br>Ser        | ccc<br>Pro<br>155 | gga<br>Gly        | cac<br>His        | acg<br>Thr           | ctg<br>Leu        | atc<br>Ile<br>160 | ccc<br>Pro        | agc<br>Ser        | tca<br>Ser        | gct<br>Ala        | gta<br>Val<br>165 | 655        |
| act<br>Thr        | ccc<br>Pro        | ccg<br>Pro        | gag<br>Glu        | tca<br>Ser<br>170 | ccc<br>Pro        | cag<br>Gln        | tcg<br>Ser        | gat<br>Asp           | tcc<br>Ser<br>175 | ctg<br>Leu        | ggc<br>.Gly       | tcc<br>Ser        | acc<br>Thr        | tac<br>Tyr<br>180 | tcc<br>Ser        | 703        |
| atc<br>Ile        | aat<br>Asn        | GJ À<br>âââ       | ctc<br>Leu<br>185 | ctg<br>Leu        | ggc<br>Gly        | atc<br>Ile        | gct<br>Ala        | cag<br>Gln<br>190    | cct<br>Pro        | ggc<br>Gly        | agc<br>Ser        | gac<br>Asp        | aag<br>Lys<br>195 | agg<br>Arg        | aaa<br>Lys        | 751        |
| atg<br>Met        | gat<br>Asp        | gac<br>Asp<br>200 | agt<br>Ser        | gat<br>Asp        | cag<br>Gln        | gat<br>Asp        | agc<br>Ser<br>205 | tgc<br>Cys           | cga<br>Arg        | cta<br>Leu        | agc<br>Ser        | att<br>Ile<br>210 | gac<br>Asp        | tca<br>Ser        | cag<br>Gln        | 799        |
| Ser               |                   |                   |                   |                   |                   | cga<br>Arg<br>220 |                   |                      |                   |                   |                   |                   |                   |                   |                   | 847        |

| cag<br>Gln<br>230     | cac<br>His        | cac<br>His        | ctc<br>Leu        | gag<br>Glu        | ecg<br>Pro<br>235 | Leu               | gag<br>Glu        | tgc<br>Cys        | Pro               | ttt<br>Phe<br>240 | gag<br>Glu        | cgg<br>Arg        | cag<br>Gln        | cac<br>His        | tac<br>Tyr<br>245 | 895  |
|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| cca<br>Pro            | gag<br>Glu        | gcc<br>Ala        | tat<br>Tyr        | gcc<br>Ala<br>250 | tcc<br>Ser        | ccc<br>Pro        | agc<br>Ser        | cac<br>His        | acc<br>Thr<br>255 | aaa<br>Lys        | ggc               | gag<br>Glu        | cag<br>Gln        | ggc<br>Gly<br>260 | ctc<br>Leu        | 943  |
| tac<br>Tyr            | ccg<br>Pro        | ctg<br>Leu        | ccc<br>Pro<br>265 | ttg<br>Leu        | ctc<br>Leu        | aac<br>Asn        | agc<br>Ser        | acc<br>Thr<br>270 | ctg<br>Leu        | gac<br>Asp        | gac<br>Asp        | ggg               | aag<br>Lys<br>275 | gcc<br>Ala        | acc<br>Thr        | 991  |
| ctg<br>Leu            | acc<br>Thr        | cct<br>Pro<br>280 | tcc<br>Ser        | aac<br>Asn        | acg<br>Thr        | cca<br>Pro        | ctg<br>Leu<br>285 | Gly               | cgc<br>Arg        | aac<br>Asn        | ctc<br>Leu        | tcg<br>Ser<br>290 | act<br>Thr        | cac<br>His        | cag<br>Gln        | 1039 |
| acc<br>Thr            | tac<br>Tyr<br>295 | Pro               | gtg<br>Val        | gtg<br>Val        | gca<br>Ala        | gct<br>Ala<br>300 | ccg<br>Pro        | ccc<br>Pro        | ttt<br>Phe        | tgg<br>Trp        | atc<br>Ile<br>305 | tgc<br>Cys        | agc<br>Ser        | aag<br>Lys        | tcg<br>Ser        | 1087 |
| gct<br>Ala<br>310     | ccg<br>Pro        | Gly<br>ggg        | tcc<br>Ser        | cgc<br>Arg        | cct<br>Pro<br>315 | tca<br>Ser        | atg<br>Met        | cct<br>Pro        | ttc<br>Phe        | ccc<br>Pro<br>320 | atg<br>Met        | ctg<br>Leu        | cct<br>Pro        | ccg<br>Pro        | tgt<br>Cys<br>325 | 1135 |
| acg<br>Thr            | ggc<br>Gly        | agt<br>Ser        | tca<br>Ser        | cgg<br>Arg<br>330 | gcc<br>Ala        | agg<br>Arg        | ccc<br>Pro        | tcc<br>Ser        | tct<br>Ser<br>335 | cag<br>Gln        | ggc<br>Gly        | gag<br>Glu        | aga<br>Arg        | tgg<br>Trp<br>340 | tgg<br>Trp        | 1183 |
| ggc<br>Gly            | cca<br>Pro        | cgc<br>Arg        | tgc<br>Cys<br>345 | ccg<br>Pro        | gat<br>Asp        | acc<br>Thr        | cac<br>His        | ccc<br>Pro<br>350 | aca<br>Thr        | tcc<br>Ser        | cca<br>Pro        | cca<br>Pro        | gcg<br>Ala<br>355 | gac<br>Asp        | agg<br>Arg        | 1231 |
| gca<br>Ala            | gct<br>Ala        | atg<br>Met<br>360 | cct<br>Pro        | cct<br>Pro        | ctg<br>Leu        | cca<br>Pro        | tcg<br>Ser<br>365 | cag<br>Gln        | gca<br>Ala        | tgg<br>Trp        | tgg<br>Trp        | cag<br>Gln<br>370 | gaa<br>Glu        | gtg<br>Val        | aat<br>Asn        | 1279 |
| Thr                   | ctg<br>Leu<br>375 | gca<br>Ala        | atg<br>Met        | cct<br>Pro        | atg<br>Met        | gcc<br>Ala<br>380 | aca<br>Thr        | ccc<br>Pro        | cct<br>Pro        | act<br>Thr        | cct<br>Pro<br>385 | cct<br>Pro        | aca<br>Thr        | gcg<br>Ala        | agg<br>Arg        | 1327 |
| cct (<br>Pro (<br>390 | gly<br>ggg        | gct<br>Ala        | tcc<br>Ser        | cca<br>Pro        | act<br>Thr<br>395 | cca<br>Pro        | gct<br>Ala        | tgc<br>Cys        | tgag              | ttcc              | :cc а             | tatt              | atta              | c                 |                   | 1374 |
| agtt                  | ccac              | at c              | aagg              | ccga              | g tg              | cacc              | gccc              | acc               | actg              | cca               | cggc              | cttt              | ga c              | catc              | tgtag             | 1434 |
| ttgc                  | catg              | gg g              | acag              | tg                |                   |                   | •                 |                   |                   |                   |                   |                   |                   |                   |                   | 1451 |
| <210:                 | > 4               | 4                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| <211                  | > 3               | 98                |                   |                   |                   | ٠                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| <212                  | > P               | RT                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| <213>                 | > N               | M_01              | 3952              | PAX               | 8                 |                   | -                 |                   |                   |                   |                   |                   |                   |                   |                   |      |
|                       |                   |                   |                   |                   |                   |                   |                   |                   |                   | •                 |                   |                   |                   |                   |                   |      |

<400> 44

Met Pro His Asn Ser Ile Arg Ser Gly His Gly Gly Leu Asn Gln Leu 1 5 10 10 15

Gly Gly Ala Phe Val Asn Gly Arg Pro Leu Pro Glu Val Val Arg Gln 20 25 30

WO 2004/022778 PCT/AU2003/001166

Arg Ile Val Asp Leu Ala His Gln Gly Val Arg Pro Cys Asp Ile Ser
35 40 45

Arg Gln Leu Arg Val Ser His Gly Cys Val Ser Lys Ile Leu Gly Arg
50 55 60

Tyr Tyr Glu Thr Gly Ser Ile Arg Pro Gly Val Ile Gly Gly Ser Lys 65 70 75 80

Pro Lys Val Ala Thr Pro Lys Val Val Glu Lys Ile Gly Asp Tyr Lys 85 90 95

Arg Gln Asn Pro Thr Met Phe Ala Trp Glu Ile Arg Asp Arg Leu Leu 100 105 110

Ala Glu Gly Val Cys Asp Asn Asp Thr Val Pro Ser Val Ser Ser Ile 115 120 125

Asn Arg Ile Ile Arg Thr Lys Val Gln Gln Pro Phe Asn Leu Pro Met 130 135 140

Asp Ser Cys Val Ala Thr Lys Ser Leu Ser Pro Gly His Thr Leu Ile 145 150 155 160

Pro Ser Ser Ala Val Thr Pro Pro Glu Ser Pro Gln Ser Asp Ser Leu 165 170 175

Gly Ser Thr Tyr Ser Ile Asn Gly Leu Leu Gly Ile Ala Gln Pro Gly 180 185 190

Ser Asp Lys Arg Lys Met Asp Asp Ser Asp Gln Asp Ser Cys Arg Leu 195 200 205

Ser Ile Asp Ser Gln Ser Ser Ser Gly Pro Arg Lys His Leu Arg 210 215 220

Thr Asp Ala Phe Ser Gln His His Leu Glu Pro Leu Glu Cys Pro Phe 225 230 235 240

Glu Arg Gln His Tyr Pro Glu Ala Tyr Ala Ser Pro Ser His Thr Lys 245 250 255

Gly Glu Gln Gly Leu Tyr Pro Leu Pro Leu Leu Asn Ser Thr Leu Asp 260 265 270

Asp Gly Lys Ala Thr Leu Thr Pro Ser Asn Thr Pro Leu Gly Arg Asn 275 280 285

Leu Ser Thr His Gln Thr Tyr Pro Val Val Ala Ala Pro Pro Phe Trp 290 295 300

| Ile Cys S<br>305  | er Lys Ser Ala Pro G<br>310    | ly Ser Arg Pro<br>315 | Ser Met Pro Phe Pro<br>320 |      |
|-------------------|--------------------------------|-----------------------|----------------------------|------|
| Met Leu P         | ro Pro Cys Thr Gly Se<br>325   | er Ser Arg Ala<br>330 | Arg Pro Ser Ser Gln<br>335 |      |
| Gly Glu A         | rg Trp Trp Gly Pro An<br>340   | rg Cys Pro Asp<br>345 | Thr His Pro Thr Ser        |      |
| Pro Pro A         | la Asp Arg Ala Ala Me<br>55 36 | et Pro Pro Leu<br>60  | Pro Ser Gln Ala Trp<br>365 |      |
| Trp Gln Gl<br>370 | lu Val Asn Thr Leu Al<br>375   | la Met Pro Met        | Ala Thr Pro Pro Thr<br>380 |      |
| Pro Pro Th        | or Ala Arg Pro Gly Al<br>390   | a Ser Pro Thr<br>395  |                            |      |
| <210> 45          |                                |                       |                            |      |
| <211> 326         | 5                              |                       |                            |      |
| <212> DNA         | 1                              | •                     |                            |      |
| <213> AI3         | 01558 EST                      |                       |                            |      |
| <400> 45          | gttacattca tttgattc            | ag tecettataa         | accccacacc tcataaacaa      | a 60 |
|                   |                                |                       | ttctagagtc gttctggttt      |      |
|                   |                                |                       | tcacttggca tgtgtgaaag      |      |
| attcaggggg        | tctgcagctg tttagtgt            | tg atgcagttgg         | gtcaaaagag tatcatgtta      | 240  |
| gtcttctgtg        | ggttttaggg agggatta            | tg gagcctccct         | cccaccccac tggctttctt      | 300  |
| gtgtcacagc        | ctttatttct actccg              |                       |                            | 326  |
| <210> 46          |                                |                       |                            |      |
| <211> 153         | 4                              |                       |                            |      |
| <212> DNA         |                                |                       |                            |      |
| <213> NM_(        | 018000 FLJ10116                |                       |                            |      |
|                   | •                              |                       |                            |      |
| <220>             |                                |                       |                            |      |
| <221> CDS         |                                |                       |                            |      |
| <222> (267        | 7)(938)                        |                       |                            |      |
| <223>             |                                |                       |                            |      |

| <400<br>ttt      |                   | 16<br>tog (       | gggaa             | atta              | aa ag            | gaggg             | ggaaa             | a aaa             | agco              | ccga             | agaa              | aaci              | cca d             | egec              | caaac            | 60   |
|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|------|
| aaaa             | acqca             | aag (             | gagag             | gagg              | ad co            | gege              | geet              | t gca             | agcc              | tog              |                   | gogto             | ecc o             | ggco              | gegge            | 120  |
|                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  |                   | •                 |                   |                   | gacgct           | 180  |
|                  |                   |                   |                   |                   |                  |                   |                   |                   | ٠.                |                  |                   |                   |                   |                   | gettee           | 240  |
|                  |                   | •                 |                   |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   | acc              | 293  |
| gge              | geeg              | grg (             | 99999             | SCCLI             | ay c             | .0.00             |                   |                   |                   |                  |                   |                   |                   |                   | g Thr            | 233  |
| gtg<br>Val<br>10 | tgc<br>Cys        | tgc<br>Cys        | tgc<br>Cys        | tgc<br>Cys        | cgg<br>Arg<br>15 | tgc<br>Cys        | gag<br>Glu        | tgc<br>Cys        | ttg<br>Leu        | gag<br>Glu<br>20 | gag<br>Glu        | cgc<br>Arg        | gcc<br>Ala        | ctg<br>Leu        | cct<br>Pro<br>25 | 341  |
|                  |                   |                   | ccc<br>Pro        |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  | 389  |
|                  |                   |                   | gtg<br>Val<br>45  |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  | 437  |
| gat<br>Asp       | gtg<br>Val        | tcc<br>Ser<br>60  | cac<br>His        | aca<br>Thr        | gag<br>Glu       | gca<br>Ala        | gac<br>Asp<br>65  | gac<br>Asp        | gac<br>Asp        | aga<br>Arg       | acc<br>Thr        | ctg<br>Leu<br>70  | tac<br>Tyr        | aat<br>Asn        | ttg<br>Leu       | 485  |
|                  |                   |                   | cgt<br>Arg        |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  | 533  |
|                  |                   |                   | gat<br>Asp        |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  | 581  |
|                  |                   |                   | aag<br>Lys        |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  | 629  |
|                  |                   |                   | ttg<br>Leu<br>125 |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  | 67:7 |
| aac<br>Asn       | aca<br>Thr        | agg<br>Arg<br>140 | aaa<br>Lys        | gct<br>Ala        | cga<br>Arg       | gag<br>Glu        | atg<br>Met<br>145 | ttg<br>Leu        | tta<br>Leu        | aaa<br>Lys       | ctg<br>Leu        | gct<br>Ala<br>150 | gaa<br>Glu        | gaa<br>Glu        | acc<br>Thr       | 725  |
| agt<br>Ser       | att<br>Ile<br>155 | ttc<br>Phe        | cca<br>Pro        | aca<br>Thr        | agt<br>Ser       | tgg<br>Trp<br>160 | gag<br>Glu        | ctc<br>Leu        | tca<br>Ser        | gag<br>Glu       | aga<br>Arg<br>165 | tat<br>Tyr        | ctc<br>Leu        | ttt<br>Phe        | gtt<br>Val       | 773  |
|                  |                   |                   | ctc<br>Leu        |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  | 821  |
| gct<br>Ala       | cgt<br>Arg        | cga<br>Arg        | act<br>Thr        | tac<br>Tyr<br>190 | ccc<br>Pro       | aag<br>Lys        | aag<br>Lys        | cct<br>Pro        | ggg<br>Gly<br>195 | gtt<br>Val       | cca<br>Pro        | tgc<br>Cys        | ctg<br>Leu        | gca<br>Ala<br>200 | gat<br>Asp       | 869  |
| ggc<br>Gly       | cag<br>Gln        | aaa<br>Lys        | gaa<br>Glu<br>205 | ctg<br>Leu        | cac<br>His       | ctg<br>Leu        | tgg<br>Trp        | ggg<br>Gly<br>210 | gac<br>Asp        | ctc<br>Leu       | tca<br>Ser        | tgc<br>Cys        | aga<br>Arg<br>215 | ctt<br>Leu        | gca<br>Ala       | 917  |
| cat              | atg               | cag               | gga               | gta               | ttg              | cac               | tgaa              | agato             | ett t             | gato             | gaco              | ct to             | ttci              | tatta             | 3                | 968  |

His Met Gln Gly Val Leu His 220

| agaagataat | tttcaaaagg | gagcaatgct | gtgaatgcag | cttgcttctc | tctacagatt | 102  |
|------------|------------|------------|------------|------------|------------|------|
| gagaagtcca | gcttcaaaag | ttacttgcca | cttaagcaag | gaacttgtca | agagatcatg | 108  |
| gttcatgtta | ctgaaaagac | tttaaggatt | tgtaaggtta | atccatagat | tgctgagaac | 1148 |
| aatggaaata | tttttatttt | tacagatttt | gcacttctga | attcaggtta | aaaactaact | 1208 |
| tgtatttagt | ctgcttagag | gactgtgact | tgaaaatttt | tatataccaa | tgagcttttt | 1268 |
| ggtagcgtcc | acaatgttta | aaatatttca | taggcgagat | ccgtgttctc | catttattaa | 1328 |
| tgcattgtag | accaatttaa | ctgctgtgtt | tcaggaaaat | tcttcctagt | ttaataagca | 1388 |
| agctaaaagt | tttattttt  | atatttagtg | cttaatcttt | gcctcatgtt | atgtaaaatt | 1448 |
| agcctgcaga | tattttctct | caattctgta | gactctcgca | agataaacat | tcaaacagtg | 1508 |
| aacaaacaa  | taaaataaat | aaacct     |            |            |            | 1534 |

<210> 47

<211> 224

<212> PRT

<213> NM\_018000 FLJ10116

<400> 47

Met Gly Leu Arg Asp Trp Leu Arg Thr Val Cys Cys Cys Cys Arg Cys 1 5 10 15

Glu Cys Leu Glu Glu Arg Ala Leu Pro Glu Lys Glu Pro Leu Val Ser 20 25 30

Asp Asn Asn Pro Tyr Ser Ser Phe Gly Ala Thr Leu Val Arg Asp Asp 35 40 45

Glu Lys Asn Leu Trp Ser Met Pro His Asp Val Ser His Thr Glu Ala 50 55 60

Asp Asp Asp Arg Thr Leu Tyr Asn Leu Ile Val Ile Arg Asn Gln Gln 65 70 75 80

Ala Lys Asp Ser Glu Glu Trp Gln Lys Leu Asn Tyr Asp Ile His Thr 85 90 95

Leu Arg Gln Val Arg Arg Glu Val Arg Asn Arg Trp Lys Cys Ile Leu 100 105 110

Glu Asp Leu Gly Phe Gln Lys Glu Ala Asp Ser Leu Leu Ser Val Thr 115 120 125 WO 2004/022778 PCT/AU2003/001166

125

|                        |              |            |                  |                  |                  | •                |            |                  |                  |                  |                  |            |                  |                  |                  |      |
|------------------------|--------------|------------|------------------|------------------|------------------|------------------|------------|------------------|------------------|------------------|------------------|------------|------------------|------------------|------------------|------|
| Lys 1                  | Leu<br>130   | Ser        | Thr              | Ile              | Ser              | Asp<br>135       |            | Lys              | Asn              | Thr              | Arg<br>140       |            | Ala              | Arg              | Glu              |      |
| Met 1<br>145           | Leu          | Leu        | Lys              | Leu              | Ala<br>150       |                  | Glu        | Thr              | Ser              | Ile<br>155       |                  | Pro        | Thr              | Ser              | Trp<br>160       |      |
| Glu 1                  | Leu          | Ser        | Glu              | Arg<br>165       |                  | Leu              | Phe        | Val              | Val<br>170       |                  | Arg              | Leu        | Ile              | Ala<br>175       |                  |      |
| Asp A                  | Ala          | Ala        | Glu<br>180       | Glu              | Phe              | Phe              | Lys        | Leu<br>185       |                  | Arg              | Arg              | Thr        | Tyr<br>190       |                  | Lys              |      |
| Lys I                  | Pro          | Gly<br>195 | Val              | Pro              | Суз              | Leu              | Ala<br>200 |                  | Gly              | Gln              | Lys              | Glu<br>205 | Leu              | His              | Leu              |      |
| Trp 6                  | Sly<br>210   | Asp        | Leu              | Ser              | Cys              | Arg<br>215       | Leu        | Ala              | His              | Met              | Gln<br>220       | Gly        | Val              | Leu              | His              |      |
| <210>                  | - 4          | 8          |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |      |
| <211>                  | . 2          | 385        |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |      |
| <212>                  | D            | NA         |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |      |
| <213>                  | · N          | M_1        | 4472             | 4 FL             | J305:            | 32               |            |                  | •                |                  |                  |            |                  |                  |                  |      |
| <220>                  |              |            |                  |                  |                  |                  |            |                  | ,                |                  | ÷                |            |                  |                  |                  |      |
| <221>                  | С            | DS         |                  |                  |                  |                  |            |                  |                  |                  |                  |            |                  |                  |                  |      |
| <222>                  | . (          | 71).       | . (14            | 141)             |                  |                  |            |                  | ٠                |                  |                  |            |                  |                  |                  |      |
| <223>                  |              |            |                  |                  |                  |                  |            |                  | •                | •                |                  |            |                  |                  | -                |      |
| <400><br>gatac         | -            |            | caga             | igtco            | et ge            | gcag             | regte      | g ego            | gete             | ttc              | ctgg             | cggc       | etq (            | cqcad            | gatat            | q 60 |
| aaaat                  |              | aa a       | itg t            | ca a             | at ç             |                  | rga a      | iga t            | cc a             | igg a            | at c<br>sn A     | gg g       | rac a            | agg o            | ege              | 109  |
| tac garage Tyr A       | sp (         | gag<br>Glu | gtc<br>Val       | cca<br>Pro       | agc<br>Ser       | gac<br>Asp<br>20 | ctg<br>Leu | ccc<br>Pro       | tat<br>Tyr       | caa<br>Gln       | gat<br>Asp<br>25 | acc<br>Thr | acc<br>Thr       | ata<br>Ile       | aga<br>Arg       | 157  |
| acc ca<br>Thr H:<br>30 | ac d<br>is l | cca<br>Pro | att<br>Ile       | Leu              | cat<br>His<br>35 | gac<br>Asp       | agt<br>Ser | gag<br>Glu       | cgg<br>Arg       | gca<br>Ala<br>40 | gtg<br>Val       | agc<br>Ser | gct<br>Ala       | gat<br>Asp       | ccc<br>Pro<br>45 | 205  |
| ttg co<br>Leu Pi       | ca d<br>ro I | cca<br>Pro | Pro              | cct<br>Pro<br>50 | ctc<br>Leu       | cca<br>Pro       | tta<br>Leu | Gln              | cca<br>Pro<br>55 | cca<br>Pro       | ttc<br>Phe       | ggc<br>Gly | cca<br>Pro       | gac<br>Asp<br>60 | ttc<br>Phe       | 253  |
| tac to<br>Tyr Se       | ca a<br>er S | er.        | gac<br>Asp<br>65 | aca<br>Thr       | gaa<br>Glu       | gaa<br>Glu       | cca<br>Pro | gct<br>Ala<br>70 | ata<br>Ile       | gcg<br>Ala       | cca<br>Pro       | Asp        | ctc<br>Leu<br>75 | aaa<br>Lys       | cca<br>Pro       | 301  |
| gta aç                 | gg c         | gc         | ttt              | gtc              | cct              | gac              | tcc        | tgg .            | aag              | aac              | ttt              | ttc        | aga              | ggg              | aag              | 349  |

| Val               | . Arc             | 80<br>80          | J Ph∈             | e Val             | . Pro             | Asp               | Ser<br>85         | Trp               | Lys               | Asr               | Phe               | Phe<br>90         | Arg               | g Gly             | Lys               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| aaa<br>Lys        | aag<br>Lys<br>95  | gac<br>Asp        | Pro               | gaa<br>Glu        | tgg<br>Trp        | gat<br>Asp<br>100 | Lys               | ccg<br>Pro        | gtg<br>Val        | ser               | gat<br>Asp<br>105 | Ile               | agg<br>Arg        | tac<br>Tyr        | atc<br>Ile        | 397  |
| tec<br>Ser<br>110 | Asp               | gga<br>Gly        | gtg<br>Val        | gag<br>Glu        | tgt<br>Cys<br>115 | Ser               | Pro               | cca<br>Pro        | gcc<br>Ala        | Ser<br>120        | Pro               | gca               | aga<br>Arg        | cca<br>Pro        | aac<br>Asn<br>125 | 445  |
| cac<br>His        | cgt<br>Arg        | tcg<br>Ser        | Pro               | cto<br>Leu<br>130 | Asn               | tcc<br>Ser        | tgc<br>Cys        | aaa<br>Lys        | gat<br>Asp<br>135 | Pro               | tac<br>Tyr        | gga<br>Gly        | ggg               | tca<br>Ser<br>140 |                   | 493  |
|                   |                   |                   |                   | Ser               |                   |                   |                   | gct<br>Ala<br>150 | Asp               |                   |                   |                   |                   | Arg               |                   | 541  |
| ccc<br>Pro        | tat<br>Tyr        | gga<br>Gly<br>160 | Ser               | cta<br>Leu        | gac<br>Asp        | cga<br>Arg        | cac<br>His<br>165 | aca<br>Thr        | caa<br>Gln        | aca<br>Thr        | gtt<br>Val        | cga<br>Arg<br>170 | Thr               | tac<br>Tyr        | agt<br>Ser        | 589  |
|                   |                   | Val               |                   |                   |                   |                   |                   | aga<br>Arg        |                   |                   |                   |                   |                   |                   |                   | 637  |
| gca<br>Ala<br>190 | Gly               | ctg<br>Leu        | ctg<br>Leu        | aga<br>Arg        | ata<br>Ile<br>195 | ctg<br>Leu        | ggt<br>Gly        | gtg<br>Val        | gtg<br>Val        | gag<br>Glu<br>200 | Leu               | ctt<br>Leu        | ttg<br>Leu        | GJ A<br>GGG       | gcc<br>Ala<br>205 | 685  |
| ggt<br>Gly        | gtc<br>Val        | ttt<br>Phe        | gct<br>Ala        | tgt<br>Cys<br>210 | gtc<br>Val        | aca<br>Thr        | gct<br>Ala        | tac<br>Tyr        | att<br>Ile<br>215 | cac<br>His        | aag<br>Lys        | gac<br>Asp        | agt<br>Ser        | gag<br>Glu<br>220 | tgg<br>Trp        | 733  |
| tac<br>Tyr        | aac<br>Asn        | ttg<br>Leu        | ttt<br>Phe<br>225 | Gly               | tat<br>Tyr        | tca<br>Ser        | caa<br>Gln        | ccg<br>Pro<br>230 | tat<br>Tyr        | GJ A<br>GGC       | atg<br>Met        | gga<br>Gly        | ggc<br>Gly<br>235 | gtt<br>Val        | ggt<br>Gly        | 781  |
|                   |                   |                   |                   |                   |                   | Gly               |                   | tat<br>Tyr        |                   |                   |                   |                   |                   |                   |                   | 829  |
| cct<br>Pro        | ttt<br>Phe<br>255 | gta<br>Val        | ctc<br>Leu        | gtg<br>Val        | gtt<br>Val        | gct<br>Ala<br>260 | gga<br>Gly        | tta<br>Leu        | gct<br>Ala        | tgg<br>Trp        | atc<br>Ile<br>265 | ·acc<br>Thr       | acc<br>Thr        | att<br>Ile        | att<br>Ile        | 877  |
| att<br>Ile<br>270 | ctg<br>Leu        | gtt<br>Val        | ctt<br>Leu        | ggc<br>Gly        | atg<br>Met<br>275 | tcc<br>Ser        | atg<br>Met        | tat<br>Tyr        | tac<br>Tyr        | cgg<br>Arg<br>280 | Thr               | att<br>Ile        | ctt<br>Leu        | ctg<br>Leu        | gac<br>Asp<br>285 | 925  |
| tct<br>Ser        | aat<br>Asn        | tgg<br>Trp        | tgg<br>Trp        | ccc<br>Pro<br>290 | cta<br>Leu        | act<br>Thr        | gaa<br>Glu        | ttt<br>Phe        | gga<br>Gly<br>295 | att<br>Ile        | aac<br>Asn        | gtt<br>Val        | gcc<br>Ala        | ttg<br>Leu<br>300 | ttt<br>Phe        | 973  |
| att<br>Ile        | ttg<br>Leu        | tat<br>Tyr        | atg<br>Met<br>305 | gcc<br>Ala        | gca<br>Ala        | gcc<br>Ala        | ata<br>Ile        | gtc<br>Val<br>310 | tat<br>Tyr        | gtg<br>Val        | aat<br>Asn        | gat<br>Asp        | acc<br>Thr<br>315 | aac<br>Asn        | cga<br>Arg        | 1021 |
| ggt<br>Gly        | ggc<br>Gly        | ctc<br>Leu<br>320 | tgc<br>Cys        | tac<br>Tyr        | tat<br>Tyr        | Pro               | tta<br>Leu<br>325 | ttt<br>Phe        | aat<br>Asn        | aca<br>Thr        | cca<br>Pro        | gtg<br>Val<br>330 | aat<br>Asn        | gca<br>Ala        | gtg<br>Val        | 1069 |
| ttc<br>Phe        | tgc<br>Cys<br>335 | cgg<br>Arg        | gta<br>Val        | gaa<br>Glu        | Gly               | gga<br>Gly<br>340 | cag<br>Gln        | ata<br>Ile        | gct<br>Ala        | gca<br>Ala        | atg<br>Met<br>345 | atc<br>Ile        | ttc<br>Phe        | ctg<br>Leu        | ttt<br>Phe        | 1117 |
| gtc               | acc               | atg               | ata               | gtt               | tat               | ctc               | att               | agt               | gcť               | ttg               | gtt               | tgc               | cta               | aag               | tta               | 1165 |

| Val Thr Met Ile Val Tyr Leu Ile Ser Ala Leu Val Cys Leu Lys Leu 350 365                                                                           |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| tgg agg cat gag gca gct cgg aga cat aga gaa tat atg gaa caa cag Trp Arg His Glu Ala Ala Arg Arg His Arg Glu Tyr Met Glu Gln Gln 370 375 380       | 1213   |
| gag ata aat gag cca tca ttg tca tcg aaa agg aaa atg tgt gaa atg<br>Glu Ile Asn Glu Pro Ser Leu Ser Ser Lys Arg Lys Met Cys Glu Met<br>385 390 395 | 1261   |
| gcc acc agt ggt gac aga caa aga gac tca gaa gtt aat ttc aag gaa<br>Ala Thr Ser Gly Asp Arg Gln Arg Asp Ser Glu Val Asn Phe Lys Glu<br>400 405 410 | 1309   |
| ctg aga aca gca aaa atg aaa cct gaa cta ctg agt gga cac atc ccc<br>Leu Arg Thr Ala Lys Met Lys Pro Glu Leu Leu Ser Gly His Ile Pro<br>415 420 425 | 1357   |
| cca cgc cca gct aat ttt ttt gta ttt tta gta gag atg ggg ttt cac<br>Pro Arg Pro Ala Asn Phe Phe Val Phe Leu Val Glu Met Gly Phe His<br>435 440 445 | . 1405 |
| cgt gtt agc cag gat gat ctc gat ctc ctg acc tca tgatccaccc<br>Arg Val Ser Gln Asp Asp Leu Asp Leu Thr Ser<br>450 455                              | 1451   |
| gcctcagcct cccaaagtgt tgggattaca ggcgtgagtc accgcgccca gctggtattg                                                                                 | 1511   |
| cttttctatt ccctttggac atacatgcta cagtcccaca atgtagcatt tccttggaaa                                                                                 | 1571   |
| ctcccttttt ttttttttt gagatggagt ttcgctcttg ttgcccaggc tggagtacag                                                                                  | 1631   |
| tggtatgatc ttggctcact gcagcctctg cctcctgggt tcaagcgatt ctcctgcctc                                                                                 | 1691   |
| tgcctcccaa gtagctggga ttacaggcac ccaccaccat gcccagctaa ttttttgtat                                                                                 | 1751   |
| ttttagtaga gacaggattt cactatgttg gccaggttgg tctcaagctc ctgacctcag                                                                                 | 1811   |
| atgatctacc agccteggee ttetgaagtg etgggattea ggtgtgagee aetgtgeeea                                                                                 | 1871   |
| gcagggatgc ttcatctttc taagaattat cttggctttg gactttattc ataaatgttt                                                                                 | 1931   |
| tatttctgtt agtatgaaca atagactgcc ttaacaaagt ttttttttaa acaaaatcgt                                                                                 | 1991   |
| tottgttgga ttttattcag cagcatctat catgtagata aattcccagg tgtagcatta                                                                                 | 2051   |
| cagettetga etaatatage tgecatteag acaattaatg tteaaagagt tttetaaagt                                                                                 | 2111   |
| gataaaacca aagaaaagca tgtggaaaag cagaagctta gaaagttgtg gtcactgaat                                                                                 | 2171   |
| gcactccctg gtttttattt gtcagtgaaa tctttatgca ttcattgtta atattttaat                                                                                 | 2231   |
| tccatggctt tgtaggctgt gctgtgtctg aaggggtaac acctagggaa acatgaggcc                                                                                 | 2291   |
| ccttatggga cccccaaat ggaacaactt cactttctct tttatgtatt gagccctgtg                                                                                  | 2351   |
| ttaacatttc acttaagaag agcaccagtg cttt                                                                                                             | 2385   |

<210> 49

<211> 457

<212> PRT

<213> NM\_144724 FLJ30532

<400> 49

Val Pro Ser Asp Leu Pro Tyr Gln Asp Thr Thr Ile Arg Thr His Pro 20 25 30

Ile Leu His Asp Ser Glu Arg Ala Val Ser Ala Asp Pro Leu Pro Pro 35 40 45

Pro Pro Leu Pro Leu Gln Pro Pro Phe Gly Pro Asp Phe Tyr Ser Ser 50 55 60

Asp Thr Glu Glu Pro Ala Ile Ala Pro Asp Leu Lys Pro Val Arg Arg 65 70 . 75 80

Phe Val Pro Asp Ser Trp Lys Asn Phe Phe Arg Gly Lys Lys Asp 85 90 95

Pro Glu Trp Asp Lys Pro Val Ser Asp Ile Arg Tyr Ile Ser Asp Gly
100 105 110

Val Glu Cys Ser Pro Pro Ala Ser Pro Ala Arg Pro Asn His Arg Ser 115 120 125

Pro Leu Asn Ser Cys Lys Asp Pro Tyr Gly Gly Ser Glu Gly Thr Phe 130 135 140

Ser Ser Arg Lys Glu Ala Asp Ala Val Phe Pro Arg Asp Pro Tyr Gly 145 150 150 165

Ser Leu Asp Arg His Thr Gln Thr Val Arg Thr Tyr Ser Glu Lys Val 165 170 175

Glu Glu Tyr Asn Leu Arg Tyr Ser Tyr Met Lys Ser Trp Ala Gly Leu 180 185 190

Leu Arg Ile Leu Gly Val Val Glu Leu Leu Gly Ala Gly Val Phe 195 200 205

Ala Cys Val Thr Ala Tyr Ile His Lys Asp Ser Glu Trp Tyr Asn Leu 210 215 220

Phe Gly Tyr Ser Gln Pro Tyr Gly Met Gly Gly Val Gly Gly Leu Gly 225 230 235 240

Ser Met Tyr Gly Gly Tyr Tyr Tyr Thr Gly Pro Lys Thr Pro Phe Val 245 250 255

Leu Val Val Ala Gly Leu Ala Trp Ile Thr Thr Ile Ile Ile Leu Val 260 265 270

Leu Gly Met Ser Met Tyr Tyr Arg Thr Ile Leu Leu Asp Ser Asn Trp 275 280 285

Trp Pro Leu Thr Glu Phe Gly Ile Asn Val Ala Leu Phe Ile Leu Tyr 290 295 300

Met Ala Ala Ala Ile Val Tyr Val Asn Asp Thr Asn Arg Gly Gly Leu 305 310 315 320

Cys Tyr Tyr Pro Leu Phe Asn Thr Pro Val Asn Ala Val Phe Cys Arg 325 330 335

Val Glu Gly Gly Gln Ile Ala Ala Met Ile Phe Leu Phe Val Thr Met 340 345 350

Ile Val Tyr Leu Ile Ser Ala Leu Val Cys Leu Lys Leu Trp Arg His 355 360 365

Glu Ala Ala Arg Arg His Arg Glu Tyr Met Glu Gln Gln Glu Ile Asn 370 375 380

Glu Pro Ser Leu Ser Ser Lys Arg Lys Met Cys Glu Met Ala Thr Ser 385 390 395 400

Gly Asp Arg Gln Arg Asp Ser Glu Val Asn Phe Lys Glu Leu Arg Thr 405 410 415

Ala Lys Met Lys Pro Glu Leu Leu Ser Gly His Ile Pro Pro Arg Pro 420 425 430

Ala Asn Phe Phe Val Phe Leu Val Glu Met Gly Phe His Arg Val Ser 435 440 445

Gln Asp Asp Leu Asp Leu Leu Thr Ser 450 455

<210> 50

<211> 2280

<212> DNA

<213> NM\_006424 SLC34A2

<220>

<221> CDS

130

<222> (64)..(2133)

<223>

| <4(               | 00>               | 50                |                   |                   |                   |                   |                   |                   |                   | •                 |                   |                   |                   |                   |                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| cgg               | geca              | aggt              | ttco              | caggo             | etc (             | gccg              | ccgo              | c to              | cato              | ccaç              | g cad             | ctg               | egga              | ggga              | igeget            | g 60 |
| aco               | Met               | g gct<br>: Ala    | ccc<br>Pro        | tgg<br>Trp        | p cct<br>Pro<br>5 | gaa<br>Glu        | tto<br>Lei        | gga<br>Gly        | gat<br>Asp        | gcc<br>Ala<br>10  | caç<br>Glr        | cco<br>Pro        | aac<br>Asr        | ccc<br>Pro        | gat<br>Asp<br>15  | 108  |
| aag<br>Lys        | tac<br>Tyr        | cto<br>Lev        | gaa<br>Glu        | ggg<br>Gly<br>20  | gco<br>Ala        | gca<br>Ala        | ggt<br>Gly        | cag<br>Gln        | cag<br>Gln<br>25  | Pro               | act<br>Thr        | gco<br>Ala        | cct<br>Pro        | gat<br>Asp<br>30  | aaa<br>Lys        | 156  |
| ago<br>Ser        | aaa<br>Lys        | gag<br>Glu        | acc<br>Thr<br>35  | aac<br>Asn        | aaa<br>Lys        | aca<br>Thr        | gat<br>Asp        | aac<br>Asn<br>40  | act<br>Thr        | gag<br>Glu        | gca<br>Ala        | cct<br>Pro        | gta<br>Val<br>45  | acc<br>Thr        | Lys               | 204  |
| att<br>Ile        | gaa<br>Glu        | ctt<br>Lev<br>50  | ctg<br>Leu        | r ccg             | tcc<br>Ser        | tac<br>Tyr        | Ser<br>55         | acg<br>Thr        | gct<br>Ala        | aça<br>Thr        | . ctg             | ata<br>Ile<br>60  | gat<br>Asp        | gag<br>Glu        | ccc<br>Pro        | 252  |
| act<br>Thr        | gag<br>Glu<br>65  | gtg<br>Val        | gat<br>Asp        | gac<br>Asp        | Pro               | tgg<br>Trp<br>70  | aac<br>Asn        | cta<br>Leu        | ccc<br>Pro        | act<br>Thr        | ctt<br>Leu<br>75  | cag<br>Gln        | gac<br>Asp        | tcg<br>Ser        | GJ Å<br>GGG       | 300  |
| ato<br>Ile<br>80  | aag<br>Lys        | tgg<br>Trp        | tca<br>Ser        | gag<br>Glu        | aga<br>Arg<br>85  | gac<br>Asp        | acc<br>Thr        | aaa<br>Lys        | Gly               | aag<br>Lys<br>.90 | att<br>Ile        | ctc               | tgt<br>Cys        | ttc<br>Phe        | ttc<br>Phe<br>95  | 348  |
| caa<br>Gln        | ggg               | att<br>Ile        | G1 y              | aga<br>Arg<br>100 | ttg<br>Leu        | att<br>Ile        | tta<br>Leu        | ctt<br>Leu        | ctc<br>Leu<br>105 | gga<br>Gly        | ttt<br>Phe        | ctc               | tac<br>Tyr        | ttt<br>Phe<br>110 | ttc<br>Phe        | 396  |
| gtg<br>Val        | tgc<br>Cys        | tcc<br>Ser        | ctg<br>Leu<br>115 | Asp               | att<br>Ile        | ctt<br>Leu        | agt<br>Ser        | agc<br>Ser<br>120 | gcc<br>Ala        | ttc<br>Phe        | cag<br>Gln        | ctg<br>Leu        | gtt<br>Val<br>125 | Gly               | gga<br>Gly        | 444  |
| aaa<br>Lys        | atg<br>Met        | gca<br>Ala<br>130 | gga<br>Gly        | cag<br>Gln        | ttc<br>Phe        | ttc<br>Phe        | agc<br>Ser<br>135 | aac<br>Asn        | agc<br>Ser        | tct<br>Ser        | att<br>Ile        | atg<br>Met<br>140 | tcc<br>Ser        | aac<br>Asn        | cct<br>Pro        | 492  |
| ttg<br>Leu        | ttg<br>Leu<br>145 | ggg<br>Gly        | ctg<br>Leu        | gtg<br>Val        | atc<br>Ile        | ggg<br>Gly<br>150 | gtg<br>Val        | ctg<br>Leu        | gtg<br>Val        | acc<br>Thr        | gtc<br>Val<br>155 | ttg<br>Leu        | gtg<br>Val        | cag<br>Gln        | agc<br>Ser        | 540  |
| tcc<br>Ser<br>160 | agc<br>Ser        | acc<br>Thr        | tca<br>Ser        | acg<br>Thr        | tcc<br>Ser<br>165 | atc<br>Ile        | gtt<br>Val        | gtc<br>Val        | agc<br>Ser        | atg<br>Met<br>170 | gtg<br>Val        | tcc<br>Ser        | tct<br>Ser        | tca<br>Ser        | ttg<br>Leu<br>175 | 588  |
| ctc<br>Leu        | act<br>Thr        | gtt<br>Val        | cgg<br>Arg        | gct<br>Ala<br>180 | gcc<br>Ala        | atc<br>Ile        | ccc<br>Pro        | att<br>Ile        | atc<br>Ile<br>185 | atg<br>Met        | GJA<br>aaa        | gcc<br>Ala        | aac<br>Asn        | att<br>Ile<br>190 | gga<br>Gly        | 636  |
| acg<br>Thr        | tca<br>Ser        | atc<br>Ile        | acc<br>Thr<br>195 | aac<br>Asn        | act<br>Thr        | att<br>Ile        | gtt<br>Val        | gcg<br>Ala<br>200 | ctc<br>Leu        | atg<br>Met        | cag<br>Gln        | gtg<br>Val        | gga<br>Gly<br>205 | gat<br>Asp        | cgg<br>Arg        | 684  |
| agt<br>Ser        | gag<br>Glu        | ttc<br>Phe<br>210 | aga<br>Arg        | aga<br>Arg        | gct<br>Ala        | ttt<br>Phe        | gca<br>Ala<br>215 | gga<br>Gly        | gcc<br>Ala        | act<br>Thr        | gtc<br>Val        | cat<br>His<br>220 | gac<br>Asp        | ttc<br>Phe        | ttc<br>Phe        | 732  |
| aac<br>Asn        | tgg<br>Trp<br>225 | ctg<br>Leu        | tcc<br>Ser        | gtg<br>Val        | ttg<br>Leu        | gtg<br>Val<br>230 | ctc<br>Leu        | ttg<br>Leu        | ccc<br>Pro        | gtg<br>Val        | gag<br>Glu<br>235 | gtg<br>Val        | gcc<br>Ala        | acc<br>Thr        | cat<br>His        | 78,0 |

|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | •                 |                   |                   |                   |                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| tac<br>Tyr<br>240 | ctc<br>Leu        | gag<br>Glu        | atc<br>Ile        | ata<br>Ile        | acc<br>Thr<br>245 | cag<br>Gln        | ctt<br>Leu        | ata<br>Ile        | gtg<br>Val        | gag<br>Glu<br>250 | Ser               | ttc<br>Phe        | cac<br>His        | ttc<br>Phe        | aag<br>Lys<br>255 | 828  |
| aat<br>Asn        | gga<br>Gly        | gaa<br>Glu        | gat<br>Asp        | gcc<br>Ala<br>260 | cca<br>Pro        | gat<br>Asp        | ctt<br>Leu        | ctg<br>Leu        | aaa<br>Lys<br>265 | gtc<br>Val        | atc<br>Ile        | act<br>Thr        | aag<br>Lys        | ccc<br>Pro<br>270 | ttc<br>Phe        | 876  |
| aca<br>Thr        | aag<br>Lys        | ctc<br>Leu        | att<br>Ile<br>275 | gtc<br>Val        | cag<br>Gln        | ctg<br>Leu        | gat<br>Asp        | aaa<br>Lys<br>280 | aaa<br>Lys        | gtt<br>Val        | atc<br>Ile        | agc<br>Ser        | caa<br>Gln<br>285 | att<br>Ile        | gca<br>Ala        | 924  |
| atg<br>Met        | aac<br>Asn        | gat<br>Asp<br>290 | gaa<br>Glu        | aaa<br>Lys        | gcg<br>Ala        | aaa<br>Lys        | aac<br>Asn<br>295 | aag<br>Lys        | agt<br>Ser        | ctt<br>Leu        | gtc<br>Val        | aag<br>Lys<br>300 | att<br>Ile        | tgg<br>Trp        | tgc<br>Cys        | 972  |
| aaa<br>Lys        | act<br>Thr<br>305 | ttt<br>Phe        | acc<br>Thr        | aac<br>Asn        | aag<br>Lys        | acc<br>Thr<br>310 | cag<br>Gln        | att<br>Ile        | aac<br>Asn        | gtc<br>Val        | act<br>Thr<br>315 | gtt<br>Val        | ccc<br>Pro        | tcg<br>Ser        | act<br>Thr        | 1020 |
| gct<br>Ala<br>320 | aac<br>Asn        | tgc<br>Cys        | acc<br>Thr        | tcc<br>Ser        | cct<br>Pro<br>325 | tcc<br>Ser        | ctc<br>Leu        | tgt<br>Cys        | Trp               | acg<br>Thr<br>330 | gat<br>Asp        | ggc<br>Gly        | atc<br>Ile        | caa<br>Gln        | aac<br>Asn<br>335 | 1068 |
| tgg<br>Trp        | acc<br>Thr        | atg<br>Met        | aag<br>Lys        | aat<br>Asn<br>340 | gtg<br>Val        | acc<br>Thr        | tac<br>Tyr        | aag<br>Lys        | gag<br>Glu<br>345 | aac<br>Asn        | atc<br>Ile        | gcc<br>Ala        | aaa<br>Lys        | tgc<br>Cys<br>350 | cag<br>Gln        | 1116 |
| cat<br>His        | atc<br>Ile        | ttt<br>Phe        | gtg<br>Val<br>355 | aat<br>Asn        | ttc<br>Phe        | cac<br>His        | ctc<br>Leu        | ccg<br>Pro<br>360 | gat<br>Asp        | ctt<br>Leu        | gct<br>Ala        | gtg<br>Val        | ggc<br>Gly<br>365 | acc<br>Thr        | atc<br>Ile        | 1164 |
| ttg<br>Leu        | ctc<br>Leu        | ata<br>Ile<br>370 | ctc<br>Leu        | tcc<br>Ser        | ctg<br>Leu        | ctg<br>Leu        | gtc<br>Val<br>375 | ctc<br>Leu        | tgt<br>Cys        | ggt<br>Gly        | tgc<br>Cys        | ctg<br>Leu<br>380 | atc<br>Ile        | atg<br>Met        | att<br>Ile        | 1212 |
| gtc<br>Val        | aag<br>Lys<br>385 | atc<br>Ile        | ctg<br>Leu        | ggc               | tct<br>Ser        | gtg<br>Val<br>390 | ctc<br>Leu        | aag<br>Lys        | Gly               | cag<br>Gln        | gtc<br>Val<br>395 | gcc<br>Ala        | act<br>Thr        | gtc<br>Val        | atc<br>Ile        | 1260 |
| aag<br>Lys<br>400 | aag<br>Lys        | acc<br>Thr        | atc<br>Ile        | aac<br>Asn        | act<br>Thr<br>405 | gat<br>Asp        | ttc<br>Phe        | ccc<br>Pro        | ttt<br>·Phe       | ccc<br>Pro<br>410 | ttt<br>Phe        | gca<br>Ala        | tgg<br>Trp        | ttg<br>Leu        | act<br>Thr<br>415 | 1308 |
| ggc               | tac<br>Tyr        | ctg<br>Leu        | gcc<br>Ala        | atc<br>Ile<br>420 | ctc<br>Leu        | gtc<br>Val        | Gly<br>ggg        | gca<br>Ala        | ggc<br>Gly<br>425 | atg<br>Met        | acc<br>Thr        | ttc<br>Phe        | atc<br>Ile        | gta<br>Val<br>430 | cag<br>Gln        | 1356 |
| agc<br>Ser        | agc<br>Ser        | tct<br>Ser        | gtg<br>Val<br>435 | ttc<br>Phe        | acg<br>Thr        | tcg<br>Ser        | gcc<br>Ala        | ttg<br>Leu<br>440 | acc<br>Thr        | ccc<br>Pro        | ctg<br>Leu        | att<br>Ile        | gga<br>Gly<br>445 | Ile               | ggc<br>Gly        | 1404 |
| gtg<br>Val        | ata<br>Ile        | acc<br>Thr<br>450 | Ile               | gag<br>Glu        | agg<br>Arg        | gct<br>Ala        | tat<br>Tyr<br>455 | Pro               | ctc               | acg<br>Thr        | ctg<br>Leu        | ggc<br>Gly<br>460 | Ser               | aac<br>Asn        | atc<br>Ile        | 1452 |
| Gly               | acc<br>Thr<br>465 | Thr               | acc               | acc<br>Thr        | gcc<br>Ala        | atc<br>Ile<br>470 | Leu               | gcc<br>Ala        | gcc<br>Ala        | tta<br>Leu        | gcc<br>Ala<br>475 | ·Ser              | cct<br>Pro        | ggc               | aat<br>Asn        | 1500 |
| gca<br>Ala<br>480 | Leu               | agg<br>Arg        | agt<br>Ser        | tca<br>Ser        | ctc<br>Leu<br>485 | Gln               | atc<br>Ile        | gcc<br>Ala        | ctg<br>Leu        | tgc<br>Cys<br>490 | His               | ttt<br>Phe        | ttc<br>Phe        | ttc<br>Phe        | aac<br>Asn<br>495 | 1548 |
| atc<br>Ile        | tcc<br>Ser        | ggc               | atc<br>Ile        | ttg<br>Leu<br>500 | Leu               | tgg<br>Trp        | tac<br>Tyr        | ccg<br>Pro        | atc<br>Ile<br>505 | Pro               | ttc<br>Phe        | act<br>Thr        | cgc               | ctg<br>Leu<br>510 | ccc<br>Pro        | 1596 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |

| atc<br>Ile        | cgc<br>Arg        | atg<br>Met        | gcc<br>Ala<br>515 | Lys               | Gly<br>ggg        | ctg<br>Leu        | Gly               | aac<br>Asn<br>520 | atc<br>Ile        | tct<br>Ser        | gcc<br>Ala        | aag<br>Lys        | tat<br>Tyr<br>525 | cgc<br>Arg        | tgg<br>Trp        | 1644 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | atc<br>Ile<br>540 |                   |                   |                   | 1692 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | gtt<br>Val        |                   |                   |                   | 1740 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | Cys               | ctc<br>Leu        |                   |                   |                   | 1788 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | cag<br>Gln        |                   |                   |                   | 1836 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | gat<br>Asp        |                   |                   |                   | 1884 |
| tcc<br>Ser        | aag<br>Lys        | ttc<br>Phe<br>610 | acc<br>Thr        | ggc<br>Gly        | tgc<br>Cys        | ttc<br>Phe        | cag<br>Gln<br>615 | atg<br>Met        | cgc<br>Arg        | tgc<br>Cys        | tgc<br>Cys        | tac<br>Tyr<br>620 | tgc<br>Cys        | tgc<br>Cys        | cgc<br>Arg        | 1932 |
| gtg<br>Val        | tgc<br>Cys<br>625 | tgc<br>Cys        | cgc<br>Arg        | gcg<br>Ala        | tgc<br>Cys        | tgc<br>Cys<br>630 | ttg<br>Leu        | ctg<br>Leu        | tgt<br>Cys        | ggc<br>Gly        | tgc<br>Cys<br>635 | ccc<br>Pro        | aag<br>Lys        | tgc.<br>Cys       | tgc<br>Cys        | 1980 |
| cgc<br>Arg<br>640 | tgc<br>Cys        | agc<br>Ser        | aag<br>Lys        | tgc<br>Cys        | tgc<br>Cys<br>645 | gag<br>Glu        | gac<br>Asp        | ttg<br>Leu        | gag<br>Glu        | gag<br>Glu<br>650 | gcg<br>Ala        | cag<br>Gln        | gag<br>Glu        | GJ A<br>GGG       | cag<br>Gln<br>655 | 2028 |
| gat<br>Asp        | gtc<br>Val        | cct<br>Pro        | gtc<br>Val        | aag<br>Lys<br>660 | gct<br>Ala        | cct<br>Pro        | gag<br>Glu        | acc<br>Thr        | ttt<br>Phe<br>665 | gat<br>Asp        | aac<br>Asn        | ata<br>Ile        | acc<br>Thr        | att<br>Ile<br>670 | agc<br>Ser        | 2076 |
| aga<br>Arg        | gag<br>Glu        | gct<br>Ala        | cag<br>Gln<br>675 | ggt<br>Gly        | gag<br>Glu        | gtc<br>Val        | cct<br>Pro        | gcc<br>Ala<br>680 | tcg<br>Ser        | gac<br>Asp        | tca<br>Ser        | aag<br>Lys        | acc<br>Thr<br>685 | gaa<br>Glu        | tgc<br>Cys        | 2124 |
| acg<br>Thr        | gcc<br>Ala        | ttg<br>Leu<br>690 | tagg              | ggac              | gc c              | ccag              | rattg             | ıt ca             | ıggga             | tggg              | ggg               | atgg              | tcc               |                   |                   | 2173 |
| ttga              | gttt              | tg c              | atgo              | tctc              | c to              | cctc              | ccac              | ttc               | tgca              | ccc               | tttc              | acca              | cc t              | cgag              | gagat             | 2233 |
| ttgc              | tccc              | ca t              | tago              | gaat              | g aa              | attg              | atgo              | agt               | ccta              | aaa               | aaaa              | aaa               |                   |                   |                   | 2280 |
| <210              | > 5               | 1                 |                   |                   |                   |                   |                   |                   |                   | •                 |                   |                   |                   |                   |                   |      |
| <211              | > 6               | 90                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| <212              | > P               | RT                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
| <213              | > N               | м_00              | 6424              | SLC               | 34A2              |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |

<400> 51

Met Ala Pro Trp Pro Glu Leu Gly Asp Ala Gln Pro Asn Pro Asp Lys 1 10 15

Tyr Leu Glu Gly Ala Ala Gly Gln Gln Pro Thr Ala Pro Asp Lys Ser 20 25 30

Lys Glu Thr Asn Lys Thr Asp Asn Thr Glu Ala Pro Val Thr Lys Ile 35 40 45

Glu Leu Leu Pro Ser Tyr Ser Thr Ala Thr Leu Ile Asp Glu Pro Thr 50 55 60

Glu Val Asp Asp Pro Trp Asn Leu Pro Thr Leu Gln Asp Ser Gly Ile 65 70 75 80

Lys Trp Ser Glu Arg Asp Thr Lys Gly Lys Ile Leu Cys Phe Phe Gln 85 90 95

Gly Ile Gly Arg Leu Ile Leu Leu Leu Gly Phe Leu Tyr Phe Phe Val

Cys Ser Leu Asp Ile Leu Ser Ser Ala Phe Gln Leu Val Gly Gly Lys 115 120 125

Met Ala Gly Gln Phe Phe Ser Asn Ser Ser Ile Met Ser Asn Pro Leu 130 135 140

Leu Gly Leu Val Ile Gly Val Leu Val Thr Val Leu Val Gln Ser Ser 145 150 155 160

Ser Thr Ser Thr Ser Ile Val Val Ser Met Val Ser Ser Ser Leu Leu
. 165 170 175

Thr Val Arg Ala Ala Ile Pro Ile Ile Met Gly Ala Asn Ile Gly Thr 180 185 190

Ser Ile Thr Asn Thr Ile Val Ala Leu Met Gln Val Gly Asp Arg Ser 195 200 205

Glu Phe Arg Arg Ala Phe Ala Gly Ala Thr Val His Asp Phe Phe Asn 210 215 220

Trp Leu Ser Val Leu Val Leu Leu Pro Val Glu Val Ala Thr His Tyr 225 230 235 240

Leu Glu Ile Ile Thr Gln Leu Ile Val Glu Ser Phe His Phe Lys Asn

Gly Glu Asp Ala Pro Asp Leu Leu Lys Val Ile Thr Lys Pro Phe Thr 260 265 270

Lys Leu Ile Val Gln Leu Asp Lys Lys Val Ile Ser Gln Ile Ala Met

280 275 285 Asn Asp Glu Lys Ala Lys Asn Lys Ser Leu Val Lys Ile Trp Cys Lys 295 Thr Phe Thr Asn Lys Thr Gln Ile Asn Val Thr Val Pro Ser Thr Ala Asn Cys Thr Ser Pro Ser Leu Cys Trp Thr Asp Gly Ile Gln Asn Trp 330 Thr Met Lys Asn Val Thr Tyr Lys Glu Asn Ile Ala Lys Cys Gln His 345 Ile Phe Val Asn Phe His Leu Pro Asp Leu Ala Val Gly Thr Ile Leu 360 Leu Ile Leu Ser Leu Leu Val Leu Cys Gly Cys Leu Ile Met Ile Val 375 380 Lys Ile Leu Gly Ser Val Leu Lys Gly Gln Val Ala Thr Val Ile Lys 390 395 Lys Thr Ile Asn Thr Asp Phe Pro Phe Pro Phe Ala Trp Leu Thr Gly 405 410 Tyr Leu Ala Ile Leu Val Gly Ala Gly Met Thr Phe Ile Val Gln Ser 425 Ser Ser Val Phe Thr Ser Ala Leu Thr Pro Leu Ile Gly Ile Gly Val 440 . . 445 Ile Thr Ile Glu Arg Ala Tyr Pro Leu Thr Leu Gly Ser Asm Ile Gly 455 Thr Thr Thr Ala Ile Leu Ala Ala Leu Ala Ser Pro Gly Asn Ala 470 Leu Arg Ser Ser Leu Gln Ile Ala Leu Cys His Phe Phe Phe Asn Ile 490 Ser Gly Ile Leu Leu Trp Tyr Pro Ile Pro Phe Thr Arg Leu Pro Ile 505 Arg Met Ala Lys Gly Leu Gly Asn Ile Ser Ala Lys Tyr Arg Trp Phe Ala Val Phe Tyr Leu Ile Ile Phe Phe Phe Leu Ile Pro Leu Thr Val 530

Phe Gly Leu Ser Leu Ala Gly Trp Arg Val Leu Val Gly Val Gly Val

| 545          |            |            |            |            | 550        |               |            |            |            | 555        |            |            |            |            | 560        |     |
|--------------|------------|------------|------------|------------|------------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----|
| Pro          | Val        | Val        | Phe        | Ile<br>565 | Ile        | Ile           | Leu        | Val        | Leu<br>570 | Cys        | Leu        | Arg        | Leu        | Leu<br>575 | Gln        | 4   |
| Ser          | Arg        | Cys        | Pro<br>580 | Arg        | Val        | Leu           | Pro        | Lys<br>585 | Lys        | Leu        | Gln        | Asn        | Trp<br>590 | Asn        | Phe        |     |
| Leu          | Pro        | Leu<br>595 | Trp        | Met        | Arg        | Ser           | Leu<br>600 | Lys        | Pro        | Trp        | Asp        | Ala<br>605 | Val        | Val        | Ser        |     |
| Lys          | Phe<br>610 | Thr        | Gly        | Суз        | Phe        | Gln<br>615    | Met        | Arg        | Суз        | Cys        | Tyr<br>620 | Cys        | Cys        | Arg        | Val        |     |
| Cys<br>625   | Суз        | Arg        | Ala        | Cys        | Cys<br>630 | Leu           | Leu        | Cys        | Gly        | Cys<br>635 | Pro        | Lys        | Суз        | Cys        | Arg<br>640 |     |
| Cys          | Ser        | ьуз        | Сув        | Cys<br>645 | Glu        | Asp           | Leu        | Glu        | Glu<br>650 | Ala        | Gln        | Glu        | Gly        | Gln<br>655 | Asp        |     |
| Val          | Pro        | Val        | Lys<br>660 | Ala        | Pro        | Glu           | Thr        | Phe<br>665 | Asp        | Asn        | Ile        | Thr        | Ile<br>670 | Ser        | Arg        | •   |
| Glu          | Ala        | Gln<br>675 | Gly        | Glu        | Val        | Pro           | Ala<br>680 | Ser        | Asp        | Ser        | Lys        | Thr<br>685 | Glu        | Cys        | Thr        |     |
| Ala          | Leu<br>690 |            |            |            |            |               |            |            |            |            | i          |            |            |            |            |     |
| <210         | )> 5       | 52         |            |            |            |               |            |            |            |            |            |            |            |            |            |     |
| <211         | .> 5       | 529        |            |            |            |               |            |            |            |            |            |            |            |            |            |     |
| <212         | !> [       | NA         |            |            |            |               |            |            |            |            |            |            |            |            |            |     |
| <213         | i> P       | W959       | 311,       | DKF        | 'Zp43      | 4 <b>J</b> 03 | 7, E       | ST .       |            |            | -          |            |            |            |            |     |
| <220         | >          |            |            |            |            |               |            |            |            |            |            |            |            |            |            |     |
| <221         | > n        | isc_       | feat       | ure        |            |               |            |            |            |            |            |            |            |            |            |     |
| <222         | > (        | 393)       | (3         | 93)        |            |               |            |            |            |            |            |            |            |            |            |     |
| <223         | > t        | he r       | esid       | lue a      | t po       | siti          | on 3       | 93 i       | s A,       | TC         | or         | G          |            |            |            |     |
| <400<br>ctgt |            | 2<br>.tc a | atgg       | ttct       | c tt       | ccct          | tttc       | cat        | cctc       | caa        | acct       | ggcc       | tg a       | .gcct      | cctga      | 60  |
| agtt         | gctg       | ct g       | tgaa       | tctg       | a aa       | gact          | tgaa       | aag        | cctc       | cac        | ctgc       | tgtg       | tg g       | actt       | catct      | 120 |
| caag         | gggc       | cc a       | gcct       | cctc       | t gg       | actc          | cacc       | ttg        | gacc       | tca        | gtga       | ctca       | ga a       | cttc       | tgcct      | 180 |
| ctaa         | acta       | ct c       | taaa       | atcc       | а да       | ctat          | aga t      | ata        | ttet       | cta        | aacc       | ttca       | aa a       | ctct       | agaat      | 240 |

| gtccatattt attttatgt tcttggcttt gtgttttagg aaaagtgaat cttgctgt                                                                     | tt 300 |
|------------------------------------------------------------------------------------------------------------------------------------|--------|
| tcaataatgt gaatgctatg ttctgggaaa atccactatg acatctaagt tttgtgta                                                                    | ca 360 |
| gagagatatt titgcaacta titccacctt cinccacaac cccccacact ccactcca                                                                    | ca 420 |
| ctcttgagtc tctttaccta atggtctcta cctaatggac cctcgtggcc aaaaagtc                                                                    | ca 480 |
| ttaaaccaga aaggtgattg gaaaaaaaaa aaaaaaaact cgagggggg                                                                              | 529    |
| <210> 53                                                                                                                           |        |
| <211> 2100                                                                                                                         |        |
| <212> DNA                                                                                                                          |        |
|                                                                                                                                    |        |
| <213> AF111713 JAM1, junctional adhesion molecule 1                                                                                |        |
| <220>                                                                                                                              |        |
| <221> CDS                                                                                                                          |        |
| <222> (287)(1183)                                                                                                                  |        |
| <223>                                                                                                                              |        |
| \2237                                                                                                                              |        |
| <400> 53                                                                                                                           |        |
| <400> 53 cgaggccgag agggcgggcc agggccgcac tecggagact cgcggttgct acgcgcacc                                                          | a 60   |
| tggctggaga cggagtttcg ctcttgatgc ccagcaggct ggagtgcgat ggcgcgatt                                                                   | t 120  |
| cggctcactg caacctcctc ctcccagagg tacttctcag ccctctagct ccaactgag                                                                   | ja 180 |
| acccagccag tcaggaagtc gctacttcgg gaacaccaac caatcagggg gccgtcacc                                                                   | t 240  |
| gctgaaggag tccttcggcg gctgttgtgt cgggagcctg atcgcg atg ggg aca                                                                     | 295    |
| Met Gly Thr<br>1                                                                                                                   |        |
| aag gcg caa gtc gag agg aaa ctg ttg tgc ctc ttc ata ttg gcg atc<br>Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile Leu Ala Ile | 343    |
| 5 10 15                                                                                                                            |        |
| ctg ttg tgc tcc ctg gca ttg ggc agt gtt aca gtg cac tct tct gaa<br>Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His Ser Ser Glu | 391    |
| 20 25 30 35                                                                                                                        |        |
| cct gaa gtc aga att cct gag aat aat cct gtg aag ttg tcc tgt gcc<br>Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu Ser Cys Ala | 439    |
| 40 45 50                                                                                                                           |        |
| tac tcg ggc ttt tct tct ccc cgt gtg gag tgg aag ttt gac caa gga<br>Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe Asp Gln Gly | 487    |
| 55 60 65                                                                                                                           |        |
| gac acc acc aga ctc gtt tgc tat aat aac aag atc aca gct tcc tat                                                                    | 535    |
| Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr Ala Ser Tyr 70 75 80                                                           |        |
| gag gac egg gtg acc ttc ttg cca act ggt atc acc ttc aag tcc gtg                                                                    | 583    |
| Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe Lys Ser Val<br>85 90 95                                                        |        |
| ·                                                                                                                                  |        |

| aca<br>Thr<br>100 | cgg<br>Arg | gaa<br>Glu        | gac<br>Asp        | act<br>Thr        | ggg<br>Gly<br>105 | aca<br>Thr | tac<br>Tyr        | act<br>Thr        | tgt<br>Cys        | atg<br>Met<br>110 | gtc<br>Val        | tct<br>Ser        | gag<br>Glu        | gaa<br>Glu        | ggc<br>Gly<br>115 | 631  |
|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| ggc<br>Gly        | aac<br>Asn | agc<br>Ser        | tat<br>Tyr        | ggg<br>Gly<br>120 | gag<br>Glu        | gtc<br>Val | aag<br>Lys        | gtc<br>Val        | aag<br>Lys<br>125 | ctc<br>Leu        | atc<br>Ile        | gtg<br>Val        | ctt<br>Leu        | gtg<br>Val<br>130 | cct<br>Pro        | 679  |
| cca<br>Pro        | tcc<br>Ser | aag<br>Lys        | cct<br>Pro<br>135 | aca<br>Thr        | gtt<br>Val        | aac<br>Asn | atc<br>Ile        | ccc<br>Pro<br>140 | tcc<br>Ser        | tct<br>Ser        | gcc<br>Ala        | acc<br>Thr        | att<br>Ile<br>145 | GJ À<br>âââ       | aac<br>Asn        | 727  |
| cgg<br>Arg        | gca<br>Ala | gtg<br>Val<br>150 | ctg<br>Leu        | aca<br>Thr        | tgc<br>Cys        | tca<br>Ser | gaa<br>Glu<br>155 | caa<br>Gln        | gat<br>Asp        | ggt<br>Gly        | tcc<br>Ser        | cca<br>Pro<br>160 | ccț<br>Pro        | tct<br>Ser        | gaa<br>Glu        | 775  |
|                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   | acg<br>Thr<br>175 |                   |                   |                   |                   | 823  |
|                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   | aat<br>Asn        |                   |                   |                   |                   | 871  |
|                   | _          | _                 |                   | _                 |                   | _          |                   | -                 |                   | _                 | act<br>Thr        |                   | -                 |                   |                   | 919  |
| -                 |            | -                 |                   |                   |                   |            |                   |                   |                   | _                 | act<br>Thr        |                   |                   |                   |                   | 967  |
|                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   | atc<br>Ile        |                   |                   |                   |                   | 1015 |
|                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   | ttt<br>Phe<br>255 | Gly               |                   |                   |                   | 1063 |
| _                 |            | _                 | _                 |                   |                   |            | _                 | -                 |                   | _                 | aaa<br>Lys        |                   |                   | _                 | _                 | 1111 |
| _                 | _          |                   |                   |                   | -                 | _          |                   |                   |                   | _                 | agt<br>Ser        | _                 | _                 | -                 |                   | 1159 |
|                   | cag<br>Gln |                   |                   |                   |                   |            |                   | tgaç              | jecto             | gt d              | egget             | caco              | eg co             | ctato             | eatct             | 1213 |
| gcat              | ttgc       | ect t             | acto              | aggt              | g ct              | acto       | gact              | ctg               | gccc              | ctg               | atgt              | ctgt              | ag t              | ttca              | acagga            | 1273 |
| tgcc              | ttat       | tt g              | tctt              | ctad              | a co              | ccac       | aggg              | ccc               | ccta              | ctt               | ctto              | ggat              | gt (              | gttt              | taata             | 1333 |
| atgt              | cago       | ta t              | gtgo              | ccca              | it co             | tcct       | tcat              | gcc               | ctcc              | ctc               | cctt              | tcct              | ac o              | cacto             | gctgag            | 1393 |
| tggc              | ctgg       | jaa c             | ttgt              | ttaa              | ıa gt             | gttt       | atto              | ccc               | attt              | ctt               | tgaç              | ggat              | ca ç              | ggaag             | gaatc             | 1453 |
| ctgo              | gtat       | .gc c             | atto              | jactt             | c cc              | ttct       | aagt              | aga               | cago              | aaa               | aatç              | gegg              | gg g              | gtcgc             | aggaa             | 1513 |
| tctg              | cact       | ca a              | ctgo              | ccac              | c to              | gctg       | gcag              | r gga             | tctt              | tga:              | ataç              | gtat              | ct t              | gago              | ttggt             | 1573 |
| tctg              | ggct       | ct t              | tcct              | tgtg              | it ac             | tgac       | gaco              | agg               | Igcca             | gct               | gtto              | taga              | igt g             | ggaa              | ttaga             | 1633 |
| ggct              | agag       | icā ā             | ctga              | aatç              | g tt              | gttt       | ggtg              | atg               | acac              | tgg               | ggto              | ctto              | ca t              | ctct              | ggggc             | 1693 |

|            |            |            | •          |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| ccactctctt | ctgtcttccc | atgggaagtg | ccactgggat | ccctctgccc | tgtcctcctg | 1753 |
| aatacaagct | gactgacatt | gactgtgtct | gtgġaaaatg | ggagctcttg | ttgtggagag | 1813 |
| catagtaaat | tttcagagaa | cttgaagcga | aaaggattta | aaaccgctgc | tctaaagaaa | 1873 |
| agaaaactgg | aggetgggeg | cagtggctca | cgcctgtaat | cccagaggct | gaggcaggcg | 1933 |
| gatcacctga | ggtcgggagt | tcgggatcag | cctgaccaac | atggagaaac | cctgctggaa | 1993 |
| atacagagtt | agccaggcat | ggtggtgcat | gcctgtagtc | ccagctgctc | aggagcctgg | 2053 |
| caacaagagc | aaaactccag | ctcaaaaaaa | aaaaaaaaa  | aaaaaaa    | •          | 2100 |
|            |            |            |            | -          | •          |      |
| <210> 54   |            |            |            |            |            |      |

<211> 299

<212> PRT

<213> AF111713 JAM1, junctional adhesion molecule 1

<400> 54

Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile 1  $\phantom{\bigg|}$  5  $\phantom{\bigg|}$  10  $\phantom{\bigg|}$  15

Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His  $20 \hspace{1cm} 25 \hspace{1cm} 30$ 

Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu 35 40 45

Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe 50 55 60

Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr 65 70 .75 80

Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe 85 90 95

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser

Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val

Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr 130 135 140

Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro

| ·            |             |            |            |            |              |               |            |              |              |            | 00         |              | -                   |              |                |     |
|--------------|-------------|------------|------------|------------|--------------|---------------|------------|--------------|--------------|------------|------------|--------------|---------------------|--------------|----------------|-----|
| Pro          | Ser         | Glu        | Tyr        | Thr<br>165 | Trp          | Phe           | Lys        | Asp          | Gly<br>170   |            | Val        | Met          | Pro                 | Thr<br>175   | Asn            |     |
| Pro          | Lys         | Ser        | Thr        | Arg        | Ala          | Phe           | Ser        | Asn          | Ser          | Ser        | Tyr        | Val          | Leu                 | Asn          | Pro            |     |
|              |             |            | 180        |            |              |               |            | 185          |              |            |            |              | 190                 |              |                |     |
| Thr          | Thr         | Gly<br>195 | Glu        | Leu        | Val          | Phe           | Asp<br>200 | Pro          | Leu          | Ser        | Ala        | .ser<br>205  | Asp                 | Thr          | Gly            |     |
| Glu          | Туг<br>210  | Ser        | Суз        | Glu        | Ala          | Arg<br>215    | Asn        | Gly          | Tyr          | Gly        | Thr<br>220 | Pro          | Met                 | Thr          | Ser            |     |
| Asn<br>225   | Ala         | Val        | Arg        | Met        | Glu<br>230   | Ala           | Val        | Glu          | Arg          | Asn<br>235 | Val        | Gly          | Val                 | Ile          | Val<br>240     |     |
| Ala          | Ala         | Val        | Leu        | Val<br>245 | Thr          | Leu           | Ile        | Leu          | Leu<br>250   | Gly        | Ile        | Leu          | Val                 | Phe<br>255   | Gly            |     |
| Ile          | Trp         | Phe        | Ala<br>260 | Tyr        | Ser          | Arg           | Gly        | His<br>265   |              | Asp        | Arg        | Thr          | Lys<br>270          | Lys          | Gly            |     |
| Thr          | Ser         | Ser<br>275 | Lys        | Lys        | Val          | Ile           | Tyr<br>280 | Ser          | Gln          | Pro        | Ser        | Ala<br>285   | Arg                 | Ser          | Glu            |     |
| Gly          | Glu<br>290  | Phe        | Lys        | Gln        | Thr          | Ser<br>295    | Ser        | Phe          | Leu          | Val        |            |              |                     |              |                |     |
| <210         | )> !        | 55         |            |            |              |               |            | ;            |              | ,          |            |              |                     |              |                |     |
| <211         | .> 2        | 2154       |            |            |              |               |            |              |              |            |            |              |                     |              |                |     |
| <212         | !> I        | ONA        |            |            |              |               |            |              |              |            | •          |              |                     |              |                |     |
| <213         | > 1         | M_00       | 6636       | MTH        | FD2,         | met           | hyle       | ne t         | etra         | hydr       | ofol       | ate          |                     |              |                |     |
|              |             |            |            |            |              |               |            |              |              |            |            |              |                     |              |                |     |
| <220         | <b>&gt;</b> |            |            |            |              |               |            |              |              |            |            |              |                     |              |                |     |
| <221         |             | DS         |            |            |              |               |            | •            |              |            |            |              |                     |              |                |     |
| <222         |             | 77).       | . (11      | 08)        |              |               |            |              |              |            |            |              |                     |              |                |     |
| <223         | >           |            |            |            |              |               |            |              |              |            |            |              |                     |              |                |     |
| <400<br>atat | _           | 5<br>gc g  | tggc       | ccgc       | g cg         | cgcg:         | cttc       | cct          | cccg         | gcg (      | cagt       | cacc         | gg c                | gcgg         | tctat          | 60  |
| ggct         | gcga        | ct t       | ctcta      | a at<br>Me | g tc<br>t Se | t gc<br>r Ala | t tte      | g gc<br>u Al | t gc<br>a Al | c cg       | g ct       | g ct<br>u Le | g ca<br>u Gl:<br>10 | g cc<br>n Pr | c gcg<br>o Ala | 112 |
| cac<br>His   | Ser         |            |            |            |              | Leu A         |            |              |              |            | Leu :      |              |                     |              |                | 160 |

|                   |                   |                   |                   |                   |                   |                   |                   | •                 |                   |                   |                   |                   |                   |                   |                   |     |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----|
| aat<br>Asn        | gaa<br>Glu<br>30  | gct<br>Ala        | gtt<br>Val        | gtc<br>Val        | att<br>Ile        | tct<br>Ser<br>35  | gga<br>Gly        | agg<br>Arg        | aaa<br>Lys        | ctg<br>Leu        | gcc<br>Ala<br>40  | cag<br>Gln        | cag<br>Gln        | atc<br>Ile        | aag<br>Lys        | 208 |
| cag<br>Gln<br>45  | gaa<br>Glu        | gtg<br>Val        | cgg<br>Arg        | cag<br>Gln        | gag<br>Glu<br>50  | gta<br>Val        | gaa<br>Glu        | gag<br>Glu        | tgg<br>Trp        | gtg<br>Val<br>55  | gcc<br>Ala        | tca<br>Ser        | ggc<br>Gly        | aac<br>Asn        | aaa<br>Lys<br>60  | 256 |
| cgg<br>Arg        | cca<br>Pro        | cac<br>His        | ctg<br>Leu        | agt<br>Ser<br>65  | gtg<br>Val        | atc<br>Ile        | ctg<br>Leu        | gtt<br>Val        | ggc<br>Gly<br>70  | gag<br>Glu        | aat<br>Asn        | cct<br>Pro        | gca<br>Ala        | agt<br>Ser<br>75  | cac<br>His        | 304 |
| tcc<br>Ser        | tat<br>Tyr        | gtc<br>Val        | ctc<br>Leu<br>80  | aac<br>Asn        | aaa<br>Lys        | acc<br>Thr        | agg<br>Arg        | gca<br>Ala<br>85  | gct<br>Ala        | gca<br>Ala        | gtt<br>Val        | gtg<br>Val        | gga<br>Gly<br>90  | atc<br>Ile        | aac<br>Asn        | 352 |
| agt<br>Ser        | gag<br>Glu        | aca<br>Thr<br>95  | att<br>Ile        | atg<br>Met        | aaa<br>Lys        | cca<br>Pro        | gct<br>Ala<br>100 | tca<br>Ser        | att<br>Ile        | tca<br>Ser        | gag<br>Glu        | gaa<br>Glu<br>105 | gaa<br>Glu        | ttg<br>Leu        | ttg<br>Leu        | 400 |
| aat<br>Asn        | tta<br>Leu<br>110 | atc<br>Ile        | aat<br>Asn        | aaa<br>Lys        | ctg<br>Leu        | aat<br>Asn<br>115 | aat<br>Asn        | gat<br>Asp        | gat<br>Asp        | aat<br>Asn        | gta<br>Val<br>120 | gat<br>Asp        | ggc               | ctc<br>Leu        | ctt<br>Leu        | 448 |
| gtt<br>Val<br>125 | cag<br>Gln        | ttg<br>Leu        | cct<br>Pro        | ctt<br>Leu        | cca<br>Pro<br>130 | gag<br>Glu        | cat<br>His        | att<br>Ile        | gat<br>Asp        | gag<br>Glu<br>135 | aga<br>Arg        | agg<br>Arg        | atc<br>Ile        | tgc<br>Cys        | aat<br>Asn<br>140 | 496 |
| gct<br>Ala        | gtt<br>Val        | tct<br>Ser        | cca<br>Pro        | gac<br>Asp<br>145 | aag<br>Lys        | gat<br>Asp        | gtt<br>Val        | gat<br>Asp        | ggc<br>Gly<br>150 | ttt<br>Phe        | cat<br>His        | gta<br>Val        | att<br>Ile        | aat<br>Asn<br>155 | gta<br>Val        | 544 |
| gga<br>Gly        | cga<br>Arg        | atg<br>Met        | tgt<br>Cys<br>160 | ttg<br>Leu        | gat<br>Asp        | cag<br>Gln        | tat<br>Tyr        | tcc<br>Ser<br>165 | Met               | tta<br>Leu        | ccg               | gct               | act<br>Thr<br>170 | cca<br>Pro        | tgg<br>Trp        | 592 |
| ggt<br>Gly        | gtg<br>Val        | tgg<br>Trp<br>175 | gaa<br>Glu        | ata<br>Ile        | atc<br>Ile        | aag<br>Lys        | cga<br>Arg<br>180 | act<br>Thr        | ggc<br>Gly        | att<br>Ile        | cca<br>Pro        | acc<br>Thr<br>185 | cta<br>Leu        | GJ À<br>âââ       | aag<br>Lys        | 640 |
| aat<br>Asn        | gtg<br>Val<br>190 | gtt<br>Val        | gtg<br>Val        | gct<br>Ala        | gga<br>Gly        | agg<br>Arg<br>195 | tca<br>Ser        | aaa<br>Lys        | aac<br>Asn        | gtt<br>Val        | gga<br>Gly<br>200 | atg<br>Met        | ccc<br>Pro        | att<br>Ile        | gca<br>Ala        | 688 |
| atg<br>Met<br>205 | tta<br>Leu        | ctg<br>Leu        | cac<br>His        | aca<br>Thr        | gat<br>Asp<br>210 | GJA<br>aaa        | gcg<br>Ala        | cat<br>His        | gaa<br>Glu        | cgt<br>Arg<br>215 | ccc<br>Pro        | gga<br>Gly        | ggt<br>Gly        | gat<br>Asp        | gcc<br>Ala<br>220 | 736 |
| act<br>Thr        | gtt<br>Val        | aca<br>Thr        | ata<br>Ile        | tct<br>Ser<br>225 | cat<br>His        | cga<br>Arg        | tat<br>Tyr        | act<br>Thr        | ccc<br>Pro<br>230 | Lys               | gag<br>Glu        | cag<br>Gln        | ttg<br>Leu        | aag<br>Lys<br>235 | Lys               | 784 |
| cat<br>His        | aca<br>Thr        | att<br>Ile        | ctt<br>Leu<br>240 | gca<br>Ala        | gat<br>Asp        | att<br>Ile        | gta<br>Val        | ata<br>Ile<br>245 | tct<br>Ser        | gct<br>Ala        | gca<br>Ala        | ggt<br>Gly        | att<br>Ile<br>250 | cca<br>Pro        | aat<br>Asn        | 832 |
| ctg<br>Leu        | atc<br>Ile        | aca<br>Thr<br>255 | Ala               | gat<br>Asp        | atg<br>Met        | atc<br>Ile        | aag<br>Lys<br>260 | Glu               | gga<br>Gly        | gca<br>Ala        | gca<br>Ala        | gtc<br>Val<br>265 | att<br>Ile        | gat<br>Asp        | gtg<br>Val        | 880 |
| gga<br>Gly        | ata<br>Ile<br>270 | Asn               | aga<br>Arg        | gtt<br>Val        | cac<br>His        | gat<br>Asp<br>275 | cct<br>Pro        | gta<br>Val        | act<br>Thr        | gcc<br>Ala        | aaa<br>Lys<br>280 | Pro               | aag<br>Lys        | ttg<br>Leu        | gtt<br>Val        | 928 |
| gga<br>Gly<br>285 | gat<br>Asp        | gtg<br>Val        | gat<br>Asp        | ttt<br>Phe        | gaa<br>Glu<br>290 | gga<br>Gly        | gtc<br>Val        | aga<br>Arg        | caa<br>Gln        | aaa<br>Lys<br>295 | Ala               | Gly               | tat<br>Tyr        | atc<br>Ile        | act<br>Thr<br>300 | 976 |

| cca gtt cct gga ggt gtt ggc ccc atg aca gtg gca atg cta atg aag<br>Pro Val Pro Gly Gly Val Gly Pro Met Thr Val Ala Met Leu Met Lys<br>305 310 315 | 1024 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| aat acc att att gct gca aaa aag gtg ctg agg ctt gaa gag cga gaa<br>Asn Thr Ile Ile Ala Ala Lys Lys Val Leu Arg Leu Glu Glu Arg Glu<br>320 325 330 | 1072 |
| gtg ctg aag tct aaa gag ctt ggg gta gcc act aat taactactgt<br>Val Leu Lys Ser Lys Glu Leu Gly Val Ala Thr Asn<br>335 340                          | 1118 |
| gtcttctgtg tcacaaacag cactccaggc cagctcaaga agcaaagcag gccaatagaa                                                                                 | 1178 |
| atgcaatatt tttaatttat tctactgaaa tggtttaaaa tgatgccttg tatttattga                                                                                 | 1238 |
| aagettaaat gggtgggtgt ttetgeacat acetetgeag taceteacea gggageatte                                                                                 | 1298 |
| cagtatcatg cagggtcctg tgatctagcc aggagcagcc attaacctag tgattaatat                                                                                 | 1358 |
| gggagacatt accatatgga ggatggatgc ttcactttgt caagcacctc agttacacat                                                                                 | 1418 |
| tegeetttte taggattgea ttteecaagt getattgeaa taacagttga taeteatttt                                                                                 | 1478 |
| aggtaccaga ccttttgagt tcaactgate aaaccaaagg aaaagtgttg ctagagaaaa                                                                                 | 1538 |
| ttggggaaaa ggtgaaaaag aaaaaatggt agtaattgag cagaaaaaaa ttaatttata                                                                                 | 1598 |
| tatgtattga ttggcaacca gatttatcta agtagaactg aattggctag gaaaaaagaa                                                                                 | 1658 |
| amactgcatg ttaatcattt tectaagetg teettttgag gettagteag tttattggga                                                                                 | 1718 |
| aaatgtttag gattatteet tgetattagt acteatttta tgtatgttae cetteagtaa                                                                                 | 1778 |
| gttctcccca ttttagtttt ctaggactga aaggattctt ttctacatta tacatgtgtg                                                                                 | 1838 |
| ttgtcatatt tggcttttgc tatatacttt aacttcattg ttaaattttt gtattgtata                                                                                 | 1898 |
| gtttctttgg tgtatcttaa aacctatttt tgaaaaacaa acttggcttg ataatcattt                                                                                 | 1958 |
| gggcagettg ggtaagtacg caacttactt ttccaccaaa gaactgtcag cagetgeetg                                                                                 | 2018 |
| cttttctgtg atgtatgtat cctgttgact tttccagaaa ttttttaaga gtttgagtta                                                                                 | 2078 |
| ctattgaatt taatcagact ttctgattaa agggttttct ttctttttta ataaaacaca                                                                                 | 2138 |
| tctgtctggt atggta                                                                                                                                 | 2154 |

<210> 56

<211> 344

<212> PRT

<213> NM\_006636 MTHFD2, methylene tetrahydrofolate

<400> 56

Leu Arg Leu Arg Pro Phe His Leu Ala Ala Val Arg Asn Glu Ala Val 20 25 30

- Val Ile Ser Gly Arg Lys Leu Ala Gln Gln Ile Lys Gln Glu Val Arg 35 40 45
- Gln Glu Val Glu Glu Trp Val Ala Ser Gly Asn Lys Arg Pro His Leu 50 60
- Ser Val Ile Leu Val Gly Glu Asn Pro Ala Ser His Ser Tyr Val Leu 65 70 75 80
- Asn Lys Thr Arg Ala Ala Ala Val Val Gly Ile Asn Ser Glu Thr Ile 85 90 95
- Met Lys Pro Ala Ser Ile Ser Glu Glu Glu Leu Leu Asn Leu Ile Asn 100 105 110
- Lys Leu Asn Asn Asp Asp Asn Val Asp Gly Leu Leu Val Gln Leu Pro 115 120 125
- Leu Pro Glu His Ile Asp Glu Arg Arg Ile Cys Asn Ala Val Ser Pro 130 135 140
- Asp Lys Asp Val Asp Gly Phe His Val Ile Asn Val Gly Arg Met Cys 145 150 155 160
- Leu Asp Gln Tyr Ser Met Leu Pro Ala Thr Pro Trp Gly Val Trp Glu
  165 170 175
- Ile Ile Lys Arg Thr Gly Ile Pro Thr Leu Gly Lys Asn Val Val 180 185 190
- Ala Gly Arg Ser Lys Asn Val Gly Met Pro Ile Ala Met Leu Leu His 195 200 205
- Thr Asp Gly Ala His Glu Arg Pro Gly Gly Asp Ala Thr Val Thr Ile 210 215 220
- Ser His Arg Tyr Thr Pro Lys Glu Gln Leu Lys Lys His Thr Ile Leu 225 230 235 240
- Ala Asp Ile Val Ile Ser Ala Ala Gly Ile Pro Asn Leu Ile Thr Ala 245 250 255
- Asp Met Ile Lys Glu Gly Ala Ala Val Ile Asp Val Gly Ile Asn Arg 260 265 270
- Val His Asp Pro Val Thr Ala Lys Pro Lys Leu Val Gly Asp Val Asp 275 280 285
- Phe Glu Gly Val Arg Gln Lys Ala Gly Tyr Ile Thr Pro Val Pro Gly 290 295 300

Gly Val Gly Pro Met Thr Val Ala Met Leu Met Lys Asn Thr Ile Ile Ala Ala Lys Lys Val Leu Arg Leu Glu Glu Arg Glu Val Leu Lys Ser 330 Lys Glu Leu Gly Val Ala Thr Asn 340 <210> 57 <211> 1117 <212> DNA <213> NM\_006149 galectin 4, LGALS4 <220> <221> CDS <222> (57)..(1025) <223> 59 atctcccact cetgeagete ttetcacagg accageeact agegeageet egageg atg Met 107 gcc tat gtc ccc gca ccg ggc tac cag ccc acc tac aac ccg acg ctg Ala Tyr Val Pro Ala Pro Gly Tyr Gln Pro Thr Tyr Asn Pro Thr Leu 10 155 cct tac tac cag ccc atc ccg ggc ggg ctc aac gtg gga atg tct gtt Pro Tyr Tyr Gln Pro Ile Pro Gly Gly Leu Asn Val Gly Met Ser Val 203 tac atc caa gga gtg gcc agc gag cac atg aag cgg ttc ttc gtg aac Tyr Ile Gln Gly Val Ala Ser Glu His Met Lys Arg Phe Phe Val Asn 40 251 ttt gtg gtt ggg cag gat ccg ggc tca gac gtc gcc ttc cac ttc aat Phe Val Val Gly Gln Asp Pro Gly Ser Asp Val Ala Phe His Phe Asn ccg cgg ttt gac ggc tgg gac aag gtg gtc ttc aac acg ttg cag ggc 299 Pro Arg Phe Asp Gly Trp Asp Lys Val Val Phe Asn Thr Leu Gln Gly 70 347 ggg aag tgg ggc agc gag gag agg aag agg agc atg ccc ttc aaa aag Gly Lys Trp Gly Ser Glu Glu Arg Lys Arg Ser Met Pro Phe Lys Lys 85 90 395 ggt gec gec ttt gag etg gte tte ata gte.etg get gag eac tae aag Gly Ala Ala Phe Glu Leu Val Phe Ile Val Leu Ala Glu His Tyr Lys 105

gtg gtg gta aat gga aat ccc tte tat gag tac ggg cac cgg ctt ccc Val Val Val Asn Gly Asn Pro Phe Tyr Glu Tyr Gly His Arg Leu Pro 443

144

| 115                                                           | 120                                               | 125                   |      |
|---------------------------------------------------------------|---------------------------------------------------|-----------------------|------|
| cta cag atg gtc acc cac<br>Leu Gln Met Val Thr His<br>130     | ctg caa gtg gat ggg<br>Leu Gln Val Asp Gly<br>140 | Asp Leu Gln Leu Gln   | 491  |
| tca atc aac ttc atc gga                                       | ggc cag ccc ctc cgc                               | g eee cag gga eee eeg | 539  |
| Ser Ile Asn Phe Ile Gly                                       | Gly Gln Pro Leu Arg                               | g Pro Gln Gly Pro Pro |      |
| 150                                                           | 155                                               | 160                   |      |
| atg atg cca cct tac cct                                       | ggt ccc gga cat tgc                               | e cat caa cag ctg aac | 587  |
| Met Met Pro Pro Tyr Pro                                       | Gly Pro Gly His Cys                               | s His Gln Gln Leu Asn |      |
| 165                                                           | 170                                               | 175                   |      |
| age ctg ccc acc atg gas                                       | gga ccc cca acc tto                               | e aac eeg eet gtg eea | 635  |
| Ser Leu Pro Thr Met Glu                                       | Gly Pro Pro Thr Phe                               | e Asn Pro Pro Val Pro |      |
| 180                                                           | 185                                               | 190                   |      |
| tat ttc ggg agg ctg caa                                       | gga ggg ctc aca gct                               | c cga aga acc atc atc | 683  |
| Tyr Phe Gly Arg Leu Glr                                       | Gly Gly Leu Thr Ala                               | a Arg Arg Thr Ile Ile |      |
| 195                                                           | 200                                               | 205                   |      |
| atc aag ggc tat gtg cct<br>lle Lys Gly Tyr Val Pro<br>210 215 | Pro Thr Gly Lys Ser                               | r Phe Ala Ile Asn Phe | 731  |
| aag gtg ggc tcc tca ggg                                       | gac ata gct ctg cac                               | c att aat ccc cgc atg | 779  |
| Lys Val Gly Ser Ser Gly                                       | Asp Ile Ala Leu His                               | s Ile Asn Pro Arg Met |      |
| 230                                                           | 235                                               | 240                   |      |
| ggc aac ggt acc gtg gtc                                       | cgg aac agc ctt ctc                               | g aat ggc tcg tgg gga | 827  |
| Gly Asn Gly Thr Val Val                                       | Arg Asn Ser Leu Leu                               | u Asn Gly Ser Trp Gly |      |
| 245                                                           | 250                                               | 255                   |      |
| tcc gag gag aag aag atc                                       | acc cac aac cca ttt                               | t ggt ccc gga cag ttc | 875  |
| Ser Glu Glu Lys Lys Ile                                       | Thr His Asn Pro Phe                               | e Gly Pro Gly Gln Phe |      |
| 260                                                           | 265                                               | .270                  |      |
| ttt gat ctg tcc att cgc                                       | tgt ggc ttg gat cgc                               | c ttc aag gtt tac gcc | 923  |
| Phe Asp Leu Ser Ile Arc                                       | Cys Gly Leu Asp Arc                               | g Phe Lys Val Tyr Ala |      |
| 275                                                           | 280                                               | 285                   |      |
| aat ggc cag cac ctc ttc<br>Asn Gly Gln His Leu Pho<br>290 295 | Asp Phe Ala His Arg                               | g Leu Ser Ala Phe Gln | 971  |
| agg gtg gac aca ttg gaa                                       | atc cag ggt gat gto                               | c acc ttg tcc tat gtc | 1019 |
| Arg Val Asp Thr Leu Glu                                       | The Gln Gly Asp Va                                | l Thr Leu Ser Tyr Val |      |
| 310                                                           | 315                                               | 320                   |      |
| cag atc taatctattc ctgo                                       | ggccat aactcatggg aa                              | aaacagaat tatcccctag  | 1075 |
| gactcctttc taagccccta a                                       | taaaatgtc tgagggtgtc                              | e te                  | 1117 |
| <210> 58                                                      |                                                   |                       |      |
| <211> 323<br><212> PRT                                        |                                                   |                       |      |
| <213> NM_006149 galect                                        | in 4, LGALS4                                      |                       |      |

Met Ala Tyr Val Pro Ala Pro Gly Tyr Gln Pro Thr Tyr Asn Pro Thr 1 5 10 15

Leu Pro Tyr Tyr Gln Pro Ile Pro Gly Gly Leu Asn Val Gly Met Ser 20 25 30

Val Tyr Ile Gln Gly Val Ala Ser Glu His Met Lys Arg Phe Phe Val 35 40 45

Asn Phe Val Val Gly Gln Asp Pro Gly Ser Asp Val Ala Phe His Phe 50 55 60

Asn Pro Arg Phe Asp Gly Trp Asp Lys Val Val Phe Asn Thr Leu Gln 65 70 75 80

Gly Gly Lys Trp Gly Ser Glu Glu Arg Lys Arg Ser Met Pro Phe Lys 85 90 95

Lys Gly Ala Ala Phe Glu Leu Val Phe Ile Val Leu Ala Glu His Tyr 100 105 110

Lys Val Val Val Asn Gly Asn Pro Phe Tyr Glu Tyr Gly His Arg Leu 115 120 125

Pro Leu Gln Met Val Thr His Leu Gln Val Asp Gly Asp Leu Gln Leu 130 135 140

Gln Ser Ile Asn Phe Ile Gly Gly Gln Pro Leu Arg Pro Gln Gly Pro 145 150 155 160

Pro Met Met Pro Pro Tyr Pro Gly Pro Gly His Cys His Gln Gln Leu 165 170 175

Asn Ser Leu Pro Thr Met Glu Gly Pro Pro Thr Phe Asn Pro Pro Val

Pro Tyr Phe Gly Arg Leu Gln Gly Gly Leu Thr Ala Arg Arg Thr Ile 195 200 205

. Ile Ile Lys Gly Tyr Val Pro Pro Thr Gly Lys Ser Phe Ala Ile Asn 210 215 220

Phe Lys Val Gly Ser Ser Gly Asp Ile Ala Leu His Ile Asn Pro Arg 225 230 235 240

Met Gly Asn Gly Thr Val Val Arg Asn Ser Leu Leu Asn Gly Ser Trp 245 250 255

Gly Ser Glu Glu Lys Lys Ile Thr His Asn Pro Phe Gly Pro Gly Gln 260 265 270

456

|            |                  |             |      |      |            |            |            |       | •    |            |            |            |       |      |            | •   |
|------------|------------------|-------------|------|------|------------|------------|------------|-------|------|------------|------------|------------|-------|------|------------|-----|
| Phe        | Phe              | Asp<br>275  | Leu  | Ser  | Ile        | Arg        | Cys<br>280 | Gly   | Leu  | Asp        | Arg        | Phe<br>285 | Lys   | Val  | Tyr        |     |
| Ala        | Asn<br>290       | Gly         | Gln  | His  | Leu        | Phe<br>295 | Asp        | Phe   | Ala  | His        | Arg<br>300 | Leu        | Ser   | Ala  | Phe        |     |
| Gln<br>305 | Arg              | Val         | Asp  | Thr  | Leu<br>310 |            | Ile        | Gln   | Gly  | Asp<br>315 | Val        | Thr        | Leu   | Ser  | Tyr<br>320 |     |
| Val        | Gln              | Ile         |      | •    |            |            |            |       |      |            |            |            |       |      |            |     |
| <21        | 0>               | 59          |      |      |            |            |            |       |      |            |            |            |       |      | •          |     |
| <21        | 1>               | 3697        |      |      |            |            |            | -     |      |            |            |            |       |      |            |     |
| <21        | 2>               | DNA         |      |      |            |            |            |       |      |            |            |            |       |      |            |     |
| <21        | 3> :             | 0_MM        | 0406 | 3 ca | dher       | in 1       | 7, C       | DH17  |      |            |            |            |       |      |            |     |
|            |                  |             |      |      |            |            |            |       |      |            |            |            |       |      |            |     |
| <22        | 0>               |             |      |      |            |            |            |       |      |            | -          |            |       |      |            |     |
| <22        | 1>               | CDS         |      |      |            |            |            |       |      |            |            |            |       |      |            |     |
| <22        | 2>               | (121        | ) (: | 2616 | )          |            |            |       |      |            |            |            |       |      |            |     |
| <22        | 3>               |             |      |      |            |            |            |       |      |            |            |            |       |      |            |     |
|            |                  |             |      |      |            |            |            |       |      |            |            |            |       |      |            |     |
| <40<br>agg | _                | 59<br>att ( | ccca | agga | aorat      | tacto      | ecaqi      | t cai | tage | aaga       | atc        | cqa        | cca ( | ctga | atggaa     | 60  |
|            |                  |             |      |      |            |            |            |       |      |            |            |            |       |      | aaact      | 120 |
| _          | ata              |             |      |      |            |            |            |       | • -  |            | _          |            |       |      |            | 168 |
|            | Ile              |             |      |      |            |            |            |       |      |            |            |            |       |      |            |     |
|            | gca<br>Ala       |             |      |      |            |            |            |       |      |            |            |            |       |      |            | 216 |
|            | atg<br>Met       |             |      |      |            |            |            |       |      |            |            |            |       |      |            | 264 |
|            | cag<br>Gln<br>50 |             |      |      |            |            |            |       |      |            |            |            |       |      |            | 312 |
|            | aca<br>Thr       |             |      |      |            |            |            |       | Arg  |            |            |            |       |      |            | 360 |
|            | aga<br>Arg       |             |      |      |            |            |            |       |      |            |            |            |       |      |            | 408 |

90

gca gcc ctg gac gct aat gga att ata gtg gag ggt cca gtc cct atc Ala Ala Leu Asp Ala Asn Gly Ile Ile Val Glu Gly Pro Val Pro Ile

|                   |                           |                   | 100               | )                 |                   |                   |                    | 105               | 5                 |                   |                   |                   | 110               | )                 |                   |      |
|-------------------|---------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| Thr               | ata<br>Ile                | gaa<br>Glu        | ı Val             | aaq<br>Lys        | g gad             | ato<br>Ile        | aac<br>Asn<br>120  | Asp               | aat<br>Asr        | cga<br>Arg        | Pro               | acq<br>Thi        | Phe               | t cto             | c cag<br>ı Gln    | 504  |
| tca<br>Ser        | аа <u>с</u><br>Буз<br>130 | Туг               | gaa<br>Glu        | ggo<br>Gl         | tca<br>Sei        | gta<br>Val<br>135 | . Arg              | g Cag             | aac<br>Asr        | tct<br>Ser        | cgc<br>Arg        | , Pro             | gga<br>Gly        | a aaq<br>y Lys    | g ccc<br>s Pro    | 552  |
| ttc<br>Phe<br>145 | Leu                       | tat<br>Tyr        | gto<br>Val        | aat<br>Asr        | gco<br>Ala<br>150 | Thr               | gac<br>Asp         | cto<br>Lev        | gat<br>Asp        | gat<br>Asp<br>155 | Pro               | geo<br>Ala        | act<br>Thr        | ccc<br>Pro        | aat<br>Asn<br>160 | 600  |
| ggc               | cag<br>Gln                | ctt<br>Leu        | tat<br>Tyr        | tac<br>Tyr<br>165 | Glr               | att<br>Ile        | gtc<br>Val         | ato<br>Ile        | cag<br>Gln<br>170 | Lev               | cco<br>Pro        | ato<br>Met        | ato<br>: Ile      | aac<br>Asr<br>175 | aat<br>Asn        | 648  |
| gtc<br>Val        | atg<br>Met                | tac<br>Tyr        | Phe<br>180        | Gln               | r ato             | aac<br>Asn        | aac<br>Asn         | aaa<br>Lys<br>185 | Thr               | gga               | gco<br>Ala        | ato<br>Ile        | tct<br>Ser<br>190 | Let               | acc<br>Thr        | 696  |
| cga<br>Arg        | gag<br>Glu                | gga<br>Gly<br>195 | Ser               | cag<br>Gln        | gaa<br>Glu        | ttg<br>Leu        | aat<br>Asn<br>200  | Pro               | gct<br>Ala        | aag<br>Lys        | aat<br>Asn        | Pro<br>205        | Ser               | tat<br>Tyr        | aat<br>Asn        | 744  |
| ctg<br>Leu        | gtg<br>Val<br>210         | Ile               | tca<br>Ser        | gtg<br>Val        | aag<br>Lys        | gac<br>Asp<br>215 | atg<br>Met         | gga<br>Gly        | Gly               | cag<br>Gln        | agt<br>Ser<br>220 | Glu               | aat               | tco<br>Ser        | ttc<br>Phe        | 792  |
| agt<br>Ser<br>225 | gat<br>Asp                | acc<br>Thr        | aca<br>Thr        | tct<br>Ser        | gtg<br>Val<br>230 | Asp               | atc<br>Ile         | ata<br>Ile        | gtg<br>Val        | aca<br>Thr<br>235 | Glu               | aat<br>Asn        | att               | tgg<br>Trp        | aaa<br>Lys<br>240 | 840  |
| gca<br>Ala        | cca<br>Pro                | aaa<br>Lys        | cct<br>Pro        | gtg<br>Val<br>245 | Glu               | atg<br>Met        | gtg<br>Val         | gaa<br>Glu        | aac<br>Asn<br>250 | tca<br>Ser        | act<br>Thr        | gat<br>Asp        | cct<br>Pro        | Cac<br>His<br>255 | Pro               | 888  |
| atc<br>Ile        | aaa<br>Lys                | atc<br>Ile        | act<br>Thr<br>260 | cag<br>Gln        | gtg<br>Val        | cgg               | tgg<br>Trp         | aat<br>Asn<br>265 | gat<br>Asp        | ccc<br>Pro        | ggt<br>Gly        | gca<br>Ala        | caa<br>Gln<br>270 | Tyr               | tcc<br>Ser        | 936  |
| tta<br>Leu        | gtt<br>Val                | gac<br>Asp<br>275 | aaa<br>Lys        | gag<br>Glu        | aag<br>Lys        | ctg<br>Leu        | cca<br>Pro<br>280  | aga<br>Arg        | ttc<br>Phe        | cca<br>Pro        | ttt<br>Phe        | tca<br>Ser<br>285 | att<br>Ile        | gac<br>Asp        | cag<br>Gln        | 984  |
| gaa<br>Glu        | gga<br>Gly<br>290         | gat<br>Asp        | att<br>Ile        | tac<br>Tyr        | gtg<br>Val        | act<br>Thr<br>295 | cag<br>Gln         | ccc<br>Pro        | ttg<br>Leu        | gac<br>Asp        | cga<br>Arg<br>300 | gaa<br>Glu        | gaa<br>Glu        | aag<br>Lys        | gat<br>Asp        | 1032 |
| gca<br>Ala<br>305 | tat<br>Tyr                | gtt<br>Val        | ttt<br>Phe        | tat<br>Tyr        | gca<br>Ala<br>310 | gtt<br>Val        | gca<br>Ala         | aag<br>Lys        | gat<br>Asp        | gag<br>Glu<br>315 | tac<br>Tyr        | gga<br>Gly        | aaa<br>Lys        | cca<br>Pro        | ctt<br>Leu<br>320 | 1080 |
| tca<br>Ser        | tat<br>Tyr                | ccg<br>Pro        | ctg<br>Leu        | gaa<br>Glu<br>325 | att<br>Ile        | cat<br>His        | gta<br>Val         | aaa<br>Lys        | gtt<br>Val<br>330 | aaa<br>Lys        | gat<br>Asp        | att<br>Ile        | aat<br>Asn        | gat<br>Asp<br>335 | aat<br>Asn        | 1128 |
| cca<br>Pro        | cct<br>Pro                | aca<br>Thr        | tgt<br>Cys<br>340 | ccg<br>Pro        | tca<br>Ser        | cca<br>Pro        | gta<br>Val         | acc<br>Thr<br>345 | gta<br>Val        | ttt<br>Phe        | gag<br>Glu        | gtc<br>Val        | cag<br>Gln<br>350 | gag<br>Glu        | aat<br>Asn        | 1176 |
| gaa<br>Glu        | cga<br>Arg                | ctg<br>Leu<br>355 | ggt<br>Gly        | aac<br>Asn        | agt<br>Ser        | atç<br>Ile        | 360<br>GJ Å<br>āāā | acc<br>Thr        | ctt<br>Leu        | act<br>Thr        | gca<br>Ala        | cat<br>His<br>365 | gac<br>Asp        | agg<br>Arg        | gat<br>Asp        | 1224 |
| gaa<br>Glu        | gaa<br>Glu                | aat<br>Asn        | act<br>Thr        | gcc<br>Ala        | aac<br>Asn        | agt<br>Ser        | ttt<br>Phe         | cta<br>Leu        | aac<br>Asn        | tac<br>Tyr        | agg<br>Arg        | att<br>Ile        | gtg<br>Val        | gag<br>Glu        | caa<br>Gln        | 1272 |

|                   | 370               | )                 |                   |                   |                   | 375               |                   | ,                 |                   |                   | 380               | )                 |                   |                   |                     |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|------|
| act<br>Thr<br>385 | Pro               | aaa<br>Lys        | ctt<br>Lev        | Pro               | atg<br>Met<br>390 | Asp               | gga<br>Gly        | cto<br>Lev        | tto<br>Phe        | cta<br>Lev<br>395 | ·Ile              | caa<br>e Glr      | aco<br>Thi        | tat<br>Tyi        | gct<br>Ala<br>400   | 1320 |
| gga<br>Gly        | atg<br>Met        | tta<br>Lev        | cag<br>Gln        | tta<br>Lev<br>405 | Ala               | aaa<br>Lys        | caģ<br>Gln        | tcc<br>Ser        | ttg<br>Leu<br>410 | Lys               | aaq<br>Lys        | g caa<br>s Glr    | gat<br>Asp        | act<br>Thi<br>415 | cct<br>Pro          | 1368 |
|                   |                   |                   |                   | Thr               |                   |                   |                   |                   | Āsp               |                   |                   |                   |                   | Thr               | ctt<br>Leu          | 1416 |
| tgt<br>Cys        | ttt<br>Phe        | gtg<br>Val<br>435 | Gln               | atc<br>Ile        | aac<br>Asn        | gtt<br>Val        | att<br>Ile<br>440 | Asp               | atc<br>Ile        | aat<br>Asn        | gat<br>Asp        | cag<br>Glr<br>445 | Ile               | ccc<br>Pro        | atc<br>Ile          | 1464 |
| ttt<br>Phe        | gaa<br>Glu<br>450 | Lys               | tca<br>Ser        | gat<br>Asp        | tat<br>Tyr        | gga<br>Gly<br>455 | Asn               | Leu               | act<br>Thr        | ctt<br>Leu        | gct<br>Ala<br>460 | Glu               | gac<br>Asp        | aca<br>Thr        | aac<br>Asn          | 1512 |
| att<br>Ile<br>465 | Gly               | tcc<br>Ser        | acc               | atc<br>Ile        | tta<br>Leu<br>470 | Thr               | atc<br>Ile        | cag<br>Gln        | gcc<br>Ala        | act<br>Thr<br>475 | Asp               | gct<br>Ala        | gat<br>Asp        | gag<br>Glu        | r cca<br>Pro<br>480 | 1560 |
| ttt<br>Phe        | act<br>Thr        | GJ Å<br>āāā       | agt<br>Ser        | tct<br>Ser<br>485 | Lys               | att<br>Ile        | ctg<br>Leu        | tat<br>Tyr        | cat<br>His<br>490 | atc<br>Ile        | ata<br>Ile        | aag<br>Lys        | gga<br>Gly        | gac<br>Asp<br>495 | agt<br>Ser          | 1608 |
| gag<br>Glu        | gga<br>Gly        | cgc<br>Arg        | ctg<br>Leu<br>500 | GJ A<br>Gaa       | gtt<br>Val        | gac<br>Asp        | aca<br>Thr        | gat<br>Asp<br>505 | ccc<br>Pro        | cat<br>His        | acc<br>Thr        | aac<br>Asn        | acc<br>Thr<br>510 | G1y               | tat<br>Tyr          | 1656 |
| gtc<br>Val        | ata<br>Ile        | att<br>Ile<br>515 | aaa<br>Lys        | aag<br>Lys        | cct<br>Pro        | ctt<br>Leu        | gat<br>Asp<br>520 | ttt<br>Phe        | gaa<br>Glu        | aca<br>Thr        | gca<br>Ala        | gct<br>Ala<br>525 | gtt<br>Val        | tcc<br>Ser        | aac<br>Asn          | 1704 |
| att<br>Ile        | gtg<br>Val<br>530 | ttc<br>Phe        | aaa<br>Lys        | gca<br>Ala        | gaa<br>Glu        | aat<br>Asn<br>535 | cct<br>Pro        | gag<br>Glu        | cct<br>Pro        | cta<br>Leu        | gtg<br>Val<br>540 | ttt<br>Phe        | ggt<br>Gly        | gtg<br>Val        | aag<br>Lys          | 1752 |
| tac<br>Tyr<br>545 | aat<br>Asn        | gca<br>Ala        | agt<br>Ser        | tct<br>Ser        | ttt<br>Phe<br>550 | gcc<br>Ala        | aag<br>Lys        | ttc<br>Phe        | acg<br>Thr        | ctt<br>Leu<br>555 | att<br>Ile        | gtg<br>Val        | aca<br>Thr        | gat<br>Asp        | gtg<br>Val<br>560   | 1800 |
| aat<br>Asn        | gaa<br>Glu        | gca<br>Ala        | cct<br>Pro        | caa<br>Gln<br>565 | ttt<br>Phe        | tcc<br>Ser        | caa<br>Gln        | cac<br>His        | gta<br>Val<br>570 | ttc<br>Phe        | caa<br>Gln        | gcg<br>Ala        | aaa<br>Lys        | gtc<br>Val<br>575 | agt<br>Ser          | 1848 |
| gag<br>Glu        | gat<br>Asp        | gta<br>Val        | gct<br>Ala<br>580 | ata<br>Ile        | ggc<br>Gly        | act<br>Thr        | aaa<br>Lys        | gtg<br>Val<br>585 | Gly<br>ggc        | aat<br>Asn        | gtg<br>Val        | act<br>Thr        | gcc<br>Ala<br>590 | aag<br>Lys        | gat<br>Asp          | 1896 |
| cca<br>Pro        | gaa<br>Glu        | ggt<br>Gly<br>595 | ctg<br>Leu        | gac<br>Asp        | ata<br>Ile        | agc<br>Ser        | tat<br>Tyr<br>600 | tca<br>Ser        | ctg<br>Leu        | agg.<br>Arg       | gga<br>Gly        | gac<br>Asp<br>605 | aca<br>Thr        | aga<br>Arg        | ggt<br>Gly          | 1944 |
| tgg<br>Trp        | ctt<br>Leu<br>610 | aaa<br>Lys        | att<br>Ile        | gac<br>Asp        | cac<br>His        | gtg<br>Val<br>615 | act<br>Thr        | ggt<br>Gly        | gag<br>Glu        | atc<br>Ile        | ttt<br>Phe<br>620 | agt<br>Ser        | gtg<br>Val        | gct<br>Ala        | cca<br>Pro          | 1992 |
| ttg<br>Leu<br>625 | gac<br>Asp        | aga<br>Arg        | gaa<br>Glu        | gcc<br>Ala        | gga<br>Gly<br>630 | agt<br>Ser        | cca<br>Pro        | tat<br>Tyr        | cgg<br>Arg        | gta<br>Val<br>635 | caa<br>Gln        | gtg<br>Val        | gtg<br>Val        | gcc<br>Ala        | aca<br>Thr<br>640   | 2040 |
| gaa<br>Glu        | gta<br>Val        | GJ Å<br>āāā       | G1 y<br>ggg       | tct<br>Ser        | tcc<br>Ser        | ttg<br>Leu        | agc<br>Ser        | tct<br>Ser        | gtg<br>Val        | tca<br>Ser        | gag<br>Glu        | ttc<br>Phe        | cac<br>His        | ctg<br>Leu        | atc<br>Ile          | 2088 |

|                                           |                              |                                   |                                   | •                                   |      |
|-------------------------------------------|------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|------|
|                                           | 645                          | 650                               | · .                               | <b>655</b> .                        |      |
| ctt atg gat gtg<br>Leu Met Asp Val<br>660 | aat gac aac o<br>Asn Asp Asn | cct ecc agg<br>Pro Pro Arg<br>665 | cta gcc aag<br>Leu Ala Lys        | gac tac acg 2<br>Asp Tyr Thr<br>670 | 136  |
| ggc ttg ttc ttc<br>Gly Leu Phe Phe<br>675 | Cys His Pro                  | ctc agt gca<br>Leu Ser Ala<br>680 | cct gga agt<br>Pro Gly Ser<br>685 | ctc att ttc 2<br>Leu Ile Phe        | 184  |
| gag gct act gat<br>Glu Ala Thr Asp<br>690 |                              |                                   |                                   |                                     | 232  |
| ttt tcc ctc ggc<br>Phe Ser Leu Gly<br>705 |                              |                                   |                                   | -                                   | 280  |
| atc aat ggt act<br>Ile Asn Gly Thr        |                              |                                   | Arg His Thr                       |                                     | 328  |
| gag agg gag tat<br>Glu Arg Glu Tyr<br>740 |                              |                                   |                                   |                                     | 2376 |
| ccc ttg gaa ggc<br>Pro Leu Glu Gly<br>755 | Ile Val Ser                  |                                   |                                   | , , , ,                             | 2424 |
| gaa gga agt tgt<br>Glu Gly Ser Cys<br>770 |                              |                                   |                                   |                                     | 472  |
| gtg ggc atg gca<br>Val Gly Met Ala<br>785 |                              |                                   |                                   |                                     | :520 |
| ata att tta gca<br>Ile Ile Leu Ala        |                              | -                                 | Lys Lys Asp                       | J J                                 | :568 |
| gat aat gtt gaa<br>Asp Asn Val Glu<br>820 |                              |                                   |                                   |                                     | 616  |
| tgaatttgaa aagga                          | aatgtt tgaatt                | tata tagcaa                       | gtgc tatttcaç                     | gca acaaccatct 2                    | 676  |
| catcctatta cttt                           | tcatct aacgtg                | catt ataatt                       | tttt aaacagat                     | at tecetettgt 2                     | 736  |
| cctttaatat ttgc                           | taaata tttctt                | tttt gaggtg                       | gagt cttgctct                     | gt cgcccaggct 2                     | 796  |
| ggagtacagt ggtg                           | tgatec cagetea               | actg caacct                       | cege etectgge                     | gtt cacatgattc 2                    | 856  |
| tectgeetea gette                          | cctaag tagctg                | ggtt tacagg                       | cacc caccacca                     | itg cccagctaat 2                    | 916  |
| ttttgtattt ttaa                           |                              |                                   |                                   |                                     | 976  |
| acgtcaagtg atct                           |                              |                                   |                                   | ,                                   | 036  |
| acttagatat ttcat                          |                              |                                   |                                   |                                     | 096  |
| tcctctctgc aaatq                          |                              | •                                 |                                   |                                     | 156  |
| taaatattot gtaca                          |                              |                                   |                                   | ,                                   | 216  |
| gcctggattc catt                           | atgit tittete                | yatt ccatco                       | tyty teeeette                     | at coetgactee 3                     | 210  |

|              |            |            |            |           |           | •          | •          |            |           |           |            |            |            |            |             |      |     |
|--------------|------------|------------|------------|-----------|-----------|------------|------------|------------|-----------|-----------|------------|------------|------------|------------|-------------|------|-----|
| tttgg        | gtat       | tt c       | cacto      | aatt      | t ca      | aaca       | tttc       |            | .gaga     | aga       | aaaa       | cgto       | Jag 9      | gacto      | i.k<br>agga | a 33 | 336 |
| aaata        | aaat       | .aa a      | taaa       | agaa      | c ag      | goott      | ttcc       | ctt        | agta      | atta      | acaç       | gaaat      | gt i       | ttct       | gtgtc       | a 33 | 396 |
| ttaac        | ccat       | ct t       | taat       | caat      | g to      | gacat      | gtto       | g cto      | ettte     | gct       | gaaa       | ttct       | tc a       | aactt      | ggaa        | a 34 | 156 |
| tgaca        | acag       | ac c       | caca       | ıgaaç     | g to      | jttca      | aaca       | a caa      | accta     | actc      | tgca       | aacc       | ett (      | ggtaa      | agga        | a 35 | 516 |
| ccagt        | cag        | rct g      | gcca       | ıgatt     | t co      | ctcac      | ctaco      | tgo        | cato      | gcat      | acat       | gctg       | gcg (      | catgt      | tttc        | t 35 | 576 |
| tcatt        | cgt        | at c       | gttac      | gtaaa     | g tt      | ttg        | gttat      | tat        | tatat     | tta       | acat       | gtgg       | gaa (      | gaaaa      | acaag       | a 36 | 636 |
| catga        | aaaa       | ga g       | gtggt      | gaca      | a at      | caag       | gaata      | a aac      | cacto     | gtt       | gtag       | gtcag      | gtt 1      | ttgti      | tgtt        | a 36 | 696 |
| a            |            |            |            |           |           |            |            |            |           |           |            |            |            |            |             | . 30 | 597 |
| <210>        | > 6        | 0          |            |           |           |            |            |            |           |           |            |            |            |            |             |      |     |
| <211>        | > 8        | 32         |            |           |           |            |            |            |           |           |            |            |            |            |             |      |     |
| <212>        | > F        | RT         |            |           |           |            |            |            |           |           |            |            |            |            |             |      |     |
| <213>        | > N        | м_ос       | 14063      | 3 cac     | iheri     | in 17      | 7, CI      | )H17       |           |           |            |            |            |            |             |      |     |
|              |            |            |            |           |           |            |            |            |           |           |            |            |            |            |             |      |     |
| <400>        | > 6        | 50         |            |           |           |            | •          |            | ٠٠ -      |           |            |            |            |            |             |      |     |
| Met 1<br>1   | lle        | Leu        | Gln        | Ala<br>5  | His       | Leu        | His        | Ser        | Leu<br>10 | Суз       | Leu        | Leu        | Met        | Leu<br>15  | Tyr         |      |     |
| Leu A        | Ala        | Thr        | Gly<br>20  | Tyr       | Gly       | Gln        | Glu        | Gly<br>25  | Lys       | Phe       | Ser        | Gly        | Pro<br>30  | Leu        | Lys         |      |     |
| Pro N        | Met        | Thr<br>35  | Phe        | Ser       | Ile       | Tyr        | Glu<br>40  | Gly        | Gln       | Glu       | Pro        | Ser<br>45  | Gln        | Ile        | Ile         |      |     |
| Phe (        | 51n<br>50  | Phe        | Lys        | Ala       | Asn       | Pro<br>55  | Pro        | Ala        | Val       | Thr       | Phe<br>60  | Glu        | Leu        | Thr        | Gly         |      |     |
| Glu 1<br>65  | ľhr        | Asp        | Asn        | Ile       | Phe<br>70 | Val        | Ile        | Glu        | Arg       | Glu<br>75 | Gly        | Leu        | Leu        | Tyr        | Tyr<br>80   |      |     |
| Asn A        | Arg        | Ala        | Leu        | Asp<br>85 | Arg       | Glu        | Thr        | Arg        | Ser<br>90 | Thr       | His        | Asn        | Leu        | G1n<br>.95 | Val         |      |     |
| Ala <i>F</i> | Ala        | Leu        | Asp<br>100 | Ala       | Asn       | Gly        | Ile        | Ile<br>105 | Val       | Glu       | Gly        | Pro        | Val<br>110 | Pro        | Ile         |      |     |
| Thr 1        | Ile        | Glu<br>115 |            | Lys       | Asp       | Ile        | Asn<br>120 | Asp        | Asn       | Arg       | Pro        | Thr<br>125 | Phe        | Leu        | Gľn         |      | •   |
| Ser I        | Lys<br>L30 | Tyr        | Glu        | Gly       | Ser       | Val<br>135 | Arg        | Gln        | Asn       | Ser       | Arg<br>140 | Pro        | Gly        | Lys        | Pro         |      |     |
|              |            |            |            |           |           |            |            |            |           |           |            |            |            |            |             |      |     |

Phe Leu Tyr Val Asn Ala Thr Asp Leu Asp Asp Pro Ala Thr Pro Asn 145 150 155 160

- Gly Gln Leu Tyr Tyr Gln Ile Val Ile Gln Leu Pro Met Ile Asn Asn 165 170 175
- Val Met Tyr Phe Gln Ile Asn Asn Lys Thr Gly Ala Ile Ser Leu Thr 180 185 190
- Arg Glu Gly Ser Gln Glu Leu Asn Pro Ala Lys Asn Pro Ser Tyr Asn 195 200 205
- Leu Val Ile Ser Val Lys Asp Met Gly Gly Gln Ser Glu Asn Ser Phe 210 215 220
- Ser Asp Thr Thr Ser Val Asp Ile Ile Val Thr Glu Asn Ile Trp Lys 225 230 235 240
- Ala Pro Lys Pro Val Glu Met Val Glu Asn Ser Thr Asp Pro His Pro 245 250 255
- Ile Lys Ile Thr Gln Val Arg Trp Asn Asp Pro Gly Ala Gln Tyr Ser 260 265 270
- Leu Val Asp Lys Glu Lys Leu Pro Arg Phe Pro Phe Ser Ile Asp Gln 275 280 285
- Glu Gly Asp Ile Tyr Val Thr Gln Pro Leu Asp Arg Glu Glu Lys Asp 290 295 300
- Ala Tyr Val Phe Tyr Ala Val Ala Lys Asp Glu Tyr Gly Lys Pro Leu 305 310 315 320
- Ser Tyr Pro Leu Glu Ile His Val Lys Val Lys Asp Ile Asn Asp Asn 325 330 335
- Pro Pro Thr Cys Pro Ser Pro Val Thr Val Phe Glu Val Gln Glu Asn 340 345 350
- Glu Arg Leu Gly Asn Ser Ile Gly Thr Leu Thr Ala His Asp Arg Asp 355 360 365
- Glu Glu Asn Thr Ala Asn Ser Phe Leu Asn Tyr Arg Ile Val Glu Gln 370 380
- Thr Pro Lys Leu Pro Met Asp Gly Leu Phe Leu Ile Gln Thr Tyr Ala 385 390 395 400
- Gly Met Leu Gln Leu Ala Lys Gln Ser Leu Lys Lys Gln Asp Thr Pro
  405 410 415
- Gln Tyr Asn Leu Thr Ile Glu Val Ser Asp Lys Asp Phe Lys Thr Leu 420 425 430

- Cys Phe Val Gln Ile Asn Val Ile Asp Ile Asn Asp Gln Ile Pro Ile 435 440 445
- Phe Glu Lys Ser Asp Tyr Gly Asn Leu Thr Leu Ala Glu Asp Thr Asn 450 455 460
- Ile Gly Ser Thr Ile Leu Thr Ile Gln Ala Thr Asp Ala Asp Glu Pro 465 470 475 480
- Phe Thr Gly Ser Ser Lys Ile Leu Tyr His Ile Ile Lys Gly Asp Ser 485 490 495
- Glu Gly Arg Leu Gly Val Asp Thr Asp Pro His Thr Asn Thr Gly Tyr 500 505 510
- Val Ile Ile Lys Lys Pro Leu Asp Phe Glu Thr Ala Ala Val Ser Asn 515 520 525
- Ile Val Phe Lys Ala Glu Asn Pro Glu Pro Leu Val Phe Gly Val Lys 530 535 540
- Asn Glu Ala Pro Gln Phe Ser Gln His Val Phe Gln Ala Lys Val Ser 565 570 575
- Glu Asp Val Ala Ile Gly Thr Lys Val Gly Asn Val Thr Ala Lys Asp 580 585 590
- Pro Glu Gly Leu Asp Ile Ser Tyr Ser Leu Arg Gly Asp Thr Arg Gly 595 600 605
- Trp Leu Lys Ile Asp His Val Thr Gly Glu Ile Phe Ser Val Ala Pro 610 615 620
- Leu Asp Arg Glu Ala Gly Ser Pro Tyr Arg Val Gln Val Val Ala Thr 625 630 635 640
- Glu Val Gly Gly Ser Ser Leu Ser Ser Val Ser Glu Phe His Leu Ile 645 650 655
- Leu Met Asp Val Asn Asp Asn Pro Pro Arg Leu Ala Lys Asp Tyr Thr 660 665 670
- Gly Leu Phe Phe Cys His Pro Leu Ser Ala Pro Gly Ser Leu Ile Phe 675 680 685
- Glu Ala Thr Asp Asp Asp Gln His Leu Phe Arg Gly Pro His Phe Thr 690 695 700

| Phe<br>705 | Ser        | Leu        | Gly        | Ser        | Gly<br>710       | Ser        | Leu        | Gln        | Asn        | Asp<br>715 | Trp        | Glu        | Val        | Ser        | Lys<br>720     |     |
|------------|------------|------------|------------|------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|-----|
| Ile        | Asn        | Gly        | Thr        | His<br>725 | Ala              | Arg        | Leu        | Ser        | Thr<br>730 | Arg        | His        | Thr        | Glu        | Phe<br>735 | Glu            |     |
| Glu        | Arg        | Glu        | Tyr<br>740 | Val        | Val              | Leu        | Ile        | Arg<br>745 |            | Asn        | Asp        | Gly        | Gly<br>750 | Arg        | Pro            |     |
| Pro        | Leu        | Glu<br>755 | Gly        | Ile        | Val              | Ser        | Leu<br>760 | Pro        | Val        | Thr        | Phe        | Cys<br>765 | Ser        | Cys        | Val            |     |
| Glu        | Gly<br>770 | Ser        | Суз        | Phe        | Arg              | Pro<br>775 | Ala        | Gly        | His        | Gln        | Thr<br>780 | Gly        | Ile        | Pro        | Thr            |     |
| Val<br>785 | Gly        | Met        | Ala        | Val        | Gly<br>790       | Ile        | Leu        | Leu        | Thr        | Thr<br>795 |            | Leu        | Val        | Ile        | Gly<br>800     |     |
| Ile        | Ile        | Leu        | Ala        | Val<br>805 | Val              | Phe        | Ile        | Arg        | Ile<br>810 | Lys        | Lys        | Ąsp        | Lys        | Gly<br>815 | Lys            |     |
| Asp        | Asn        | Val        | Glu<br>820 | Ser        | Ala              | Gln        | Ala        | Ser<br>825 | Glu        | Val        | Lys        | Pro        | Leu<br>830 | Arg        | Ser            |     |
| <210       | )> (       | 51         |            |            |                  | ٠          |            |            |            |            |            |            |            |            |                |     |
| <211       | .> 2       | 2920       |            |            |                  |            |            |            |            |            |            |            |            |            |                |     |
| <212       | ?> !       | ONA        | •          |            |                  |            |            |            |            | ,          |            |            |            |            |                |     |
| <213       | 3> 1       | M_00       | 5588       | ; me       | prin             | A,         | alph       | a          |            |            |            |            |            |            | •              |     |
|            |            |            |            |            |                  |            |            |            | •          |            |            |            |            |            |                |     |
| <220       |            | יחמ        |            |            |                  |            |            |            |            |            |            |            |            |            |                |     |
| <222       |            | DS (10)    | . (22      | 471        |                  |            |            |            |            |            |            |            |            |            |                |     |
| <223       |            | . 10).     | . (22      | 3/)        |                  |            |            |            |            |            |            |            |            |            |                |     |
|            |            |            |            |            |                  |            |            |            |            |            |            |            |            |            |                |     |
| <400       | > 6        | 51         |            |            |                  |            |            |            |            |            |            |            |            |            |                |     |
| cttg       | cago       |            |            |            |                  |            |            |            |            |            |            | u Ph       |            |            | c ttg<br>r Leu | 51  |
|            |            |            |            | Ile        | gca<br>Ala<br>20 |            |            |            | Ile        |            |            |            |            | Glu        |                | 99  |
|            |            |            |            |            | gat<br>Asp       |            |            |            |            |            |            |            |            |            |                | 147 |

aat tta gct gca ggc ttg gac ctc ttt caa ggg gac atc ctc ttg cag Asn Leu Ala Ala Gly Leu Asp Leu Phe Gln Gly Asp Ile Leu Leu Gln  $\,$ 

|                   |                   |            | 50                |                   |                   |                   |            | 55                | •                 |                   | ·                 |                   | 60                |                   |                   |      |
|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|                   |                   |            |                   |                   |                   |                   |            | Pro               |                   |                   |                   | tgg<br>Trp<br>75  |                   |                   |                   | 243  |
| att<br>Ile        | cct<br>Pro<br>80  | tac<br>Tyr | atc<br>Ile        | ttg<br>Leu        | gct<br>Ala        | gat<br>Asp<br>85  | aat<br>Asn | ttg<br>Leu        | GJ Å<br>aaa       | ctg<br>Leu        | aat<br>Asn<br>90  | gct<br>Ala        | aaa<br>Lys        | gga<br>Gly        | gcc<br>Ala        | 291  |
| att<br>Ile<br>95  | ctg<br>Leu        | tat<br>Tyr | gcc<br>Ala        | ttt<br>Phe        | gag<br>Glu<br>100 | atg<br>Met        | ttc<br>Phe | cgt<br>Arg        | ctc               | aag<br>Lys<br>105 | tcc<br>Ser        | tgt<br>Cys        | gtg<br>Val        | gat<br>Asp        | ttc<br>Phe<br>110 | 339  |
| aag<br>Lys        | ccc<br>Pro        | tat<br>Tyr | gaa<br>Glu        | gga<br>Gly<br>115 | gag<br>Glu        | agc<br>Ser        | tca<br>Ser | tat<br>Tyr        | atc<br>Ile<br>120 | ata<br>Ile        | ttt<br>Phe        | caa<br>Gln        | cag<br>Gln        | ttt<br>Phe<br>125 | gat<br>Asp        | 387  |
| ggg<br>G1y        | tgc<br>Cys        | tgg<br>Trp | tct<br>Ser<br>130 | gag<br>Glu        | gtt<br>Val        | ggt<br>Gly        | gac<br>Asp | caa<br>Gln<br>135 | cat<br>His        | gtg<br>Val        | gga<br>Gly        | cag<br>Gln        | aac<br>Asn<br>140 | att<br>Ile        | tcc<br>Ser        | 435  |
|                   |                   |            |                   |                   |                   | Tyr               |            |                   |                   |                   |                   | cac<br>His<br>155 |                   |                   |                   | 483  |
| cat<br>His        | gct<br>Ala<br>160 | ttg<br>Leu | gga<br>Gly        | ttt<br>Phe        | tac<br>Tyr        | cac<br>His<br>165 | gag<br>Glu | cag<br>Gln        | tca<br>Ser        | agg<br>Arg        | acg<br>Thr<br>170 | gac<br>Asp        | cgg<br>Arg        | gat<br>Asp        | gat<br>Asp        | 531  |
| tat<br>Tyr<br>175 | gtg<br>Val        | aac<br>Asn | atc<br>Ile        | tgg<br>Trp        | tgg<br>Trp<br>180 | gac<br>Asp        | caa<br>Gln | att<br>Ile        | ctt<br>Leu        | tca<br>Ser<br>185 | ggt<br>Gly        | tac<br>Tyr        | cag<br>Gln        | cac<br>His        | aac<br>Asn<br>190 | 579  |
|                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   | aat<br>Asn        |                   |                   |                   | 627  |
|                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   | ttt<br>Phe        |                   |                   |                   | 675  |
|                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   | ttt<br>Phe<br>235 |                   |                   |                   | 723  |
|                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   | gag<br>Glu        |                   |                   |                   | 771  |
| cga<br>Arg<br>255 | atg<br>Met        | tac<br>Tyr | aat<br>Asn        | tgc<br>Cys        | acc<br>Thr<br>260 | aca<br>Thr        | act<br>Thr | cac<br>His        | act<br>Thr        | ctt<br>Leu<br>265 | ttg<br>Leu        | gac<br>Asp        | cac<br>His        | tgt<br>Cys        | act<br>Thr<br>270 | 819  |
|                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   | acc<br>Thr        |                   |                   |                   | 867  |
|                   |                   |            |                   |                   |                   |                   |            |                   |                   |                   |                   | gaa<br>Glu        |                   |                   |                   | 915  |
|                   |                   |            |                   |                   |                   | Thr               |            |                   |                   |                   |                   | atg<br>Met<br>315 |                   |                   |                   | 963  |
| acc<br>Thr        | agc<br>Ser        | tcg<br>Ser | G] À<br>ààà       | tcc<br>Ser        | gcg<br>Ala        | gaa<br>Glu        | gag<br>Glu | gca<br>Ala        | ġcc<br>Ala        | cta<br>Leu        | ctg<br>Leu        | gag<br>Glu        | tct<br>Ser        | cgg<br>Arg        | att<br>Ile        | 1011 |

|                   | 320               |                   |                   |                   |                   | 325               |                   |                   |                   |                   | 330               | )                 |                   |                   |                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|                   | Tyr               |                   |                   |                   |                   | Gln               |                   |                   | ctg<br>Leu        |                   | Phe               |                   |                   |                   | atg<br>Met<br>350 | 1059 |
|                   |                   |                   |                   |                   | Asp               |                   |                   |                   | gtc<br>Val<br>360 | Trp               |                   |                   |                   |                   | Asp               | 1107 |
|                   |                   |                   |                   | Val               |                   |                   |                   |                   | _                 |                   |                   |                   |                   | Gln               | gga<br>Gly        | 1155 |
| gat<br>Asp        | gat<br>Asp        | gac<br>Asp<br>385 | His               | aat<br>Asn        | tgg<br>Trp        | aaa<br>Lys        | att<br>Ile<br>390 | Ala               | cat<br>His        | gtg<br>Val        | gtg<br>Val        | ctc<br>Leu<br>395 | Lys               | gag<br>Glu        | gaa<br>Glu        | 1203 |
| cag<br>Gln        | aag<br>Lys<br>400 | Phe               | cgc<br>Arg        | tac<br>Tyr        | ctt<br>Leu        | ttc<br>Phe<br>405 | Gln               | ggc<br>Gly        | aca<br>Thr        | aaa<br>Lys        | ggc<br>Gly<br>410 | Asp               | cct<br>Pro        | cag<br>Gln        | aac<br>Asn        | 1251 |
|                   | Thr               |                   |                   |                   |                   |                   |                   |                   | atc<br>Ile        |                   | Leu               |                   |                   |                   |                   | 1299 |
| tgc<br>Cys        | ccc<br>Pro        | aca<br>Thr        | ggg<br>ggg        | gtc<br>Val<br>435 | Trp               | aca<br>Thr        | gtc<br>Val        | cgg<br>Arg        | aat<br>Asn<br>440 | ttc<br>Phe        | tcc<br>Ser        | caa<br>Gln        | gtc<br>Val        | ctt<br>Leu<br>445 | gag<br>Glu        | 1347 |
| aac<br>Asn        | acc<br>Thr        | agc<br>Ser        | aaa<br>Lys<br>450 | ggg<br>Gly        | gac<br>Asp        | aag<br>Lys        | ctt<br>Leu        | cag<br>Gln<br>455 | agc<br>Ser        | cct<br>Pro        | cga<br>Arg        | ttc<br>Phe        | tac<br>Tyr<br>460 | aat<br>Asn        | tcg<br>Ser        | 1395 |
| gag<br>Glu        | gga<br>Gly        | tat<br>Tyr<br>465 | ggt<br>Gly        | ttt<br>Phe        | ggg               | gta<br>Val        | act<br>Thr<br>470 | tta<br>Leu        | tac<br>Tyr        | cca<br>Pro        | aat<br>Asn        | agc<br>Ser<br>475 | aga<br>Arg        | gaa<br>Glu        | agc<br>Ser        | 1443 |
| tct<br>Ser        | ggt<br>Gly<br>480 | tac<br>Tyr        | t.tg<br>Leu       | aga<br>Arg        | ctt<br>Leu        | gct<br>Ala<br>485 | ttt<br>Phe        | çat<br>His        | gtg<br>Val        | tgc<br>Cys        | agt<br>Ser<br>490 | G1 y<br>ggg       | gag<br>Glu        | aac<br>Asn        | gat<br>Asp        | 1491 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   | aga<br>Arg        |                   |                   |                   |                   |                   |                   | 1539 |
| *                 | •                 | ~ `               | ~ ~               | -                 | _                 |                   | _                 | _                 | agg<br>Arg<br>520 |                   | _                 |                   |                   |                   |                   | 1587 |
| ttc<br>Phe        | act<br>Thr        | acc<br>Thr        | tcg<br>Ser<br>530 | aag<br>Lys        | tcg<br>Ser        | cac<br>His        | aca<br>Thr        | tct<br>Ser<br>535 | cca<br>Pro        | gcg<br>Ala        | ata<br>Ile        | aat<br>Asn        | gac<br>Asp<br>540 | act<br>Thr        | gtc<br>Val        | 1635 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   | acc<br>Thr        |                   |                   |                   |                   |                   |                   | 1683 |
| tgt<br>Cys        | ttt<br>Phe<br>560 | aga<br>Arg        | agc<br>Ser        | atc<br>Ile        | gac<br>Asp        | ttg<br>Leu<br>565 | ggc<br>Gly        | tgg<br>Trp        | agt<br>Ser        | ggt<br>Gly        | ttc<br>Phe<br>570 | att<br>Ile        | tcc<br>Ser        | cac<br>His        | caa<br>Gln        | 1731 |
| atg<br>Met<br>575 | ctg<br>Leu        | aaa<br>Lys        | agg<br>Arg        | agg<br>Arg        | agt<br>Ser<br>580 | ttc<br>Phe        | ctg<br>Leu        | aaa<br>Lys        | aat<br>.Asn       | gat<br>Asp<br>585 | gac<br>Asp        | ctc<br>Leu        | atc<br>Ile        | ata<br>Ile        | ttt<br>Phe<br>590 | 1779 |
| gtg<br>Val        | gac<br>Asp        | ttt<br>Phe        | gaa<br>Glu        | gat<br>Asp        | atc<br>Ile        | acc<br>Thr        | cac<br>His        | ctc<br>Leu        | agc<br>Ser        | cag<br>Gln        | act<br>Thr        | gaa<br>Glu        | gtt<br>Val        | ccc<br>Pro        | tct<br>Ser        | 1827 |

|                                                       | • •                                       | ·                                         |                                          |
|-------------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|
| . 595                                                 |                                           | 600                                       | 605                                      |
| aaa ggc aaa aga ctg a<br>Lys Gly Lys Arg Leu S<br>610 | agc ccc caa ggc<br>Ser Pro Gln Gly<br>615 | ctc att ctc caa<br>Leu Ile Leu Gln        | ggc cag gag 1875<br>Gly Gln Glu<br>620   |
| cag cag gtc tcc gaa g<br>Gln Gln Val Ser Glu G<br>625 | gaa ggt tcg gga<br>Glu Gly Ser Gly<br>630 | aag gcc atg tta<br>Lys Ala Met Leu<br>635 | gag gaa gcc 1923<br>Glu Glu Ala          |
| cta cct gtc agc ctg a<br>Leu Pro Val Ser Leu S<br>640 | agc cag ggg cag<br>Ser Gln Gly Gln<br>645 | ccc agc cga cag<br>Pro Ser Arg Gln<br>650 | aag cgg tcg 1971<br>Lys Arg Ser          |
| gtg gag aac aca ggc (<br>Val Glu Asn Thr Gly 1<br>655 | ccc ctg gag gac<br>Pro Leu Glu Asp<br>660 | cat aac tgg cca<br>His Asn Trp Pro<br>665 | cag tac ttc 2019<br>Gln Tyr Phe<br>670   |
| aga gac cca tgt gac o<br>Arg Asp Pro Cys Asp 1<br>675 | cca aac cct tgc<br>Pro Asn Pro Cys        | caa aat gac ggc<br>Gln Asn Asp Gly<br>680 | atc tgt gtg · 2067<br>Ile Cys Val<br>685 |
| aac gtg aag ggg atg g<br>Asn Val Lys Gly Met 2<br>690 | gcg agc tgc agg<br>Ala Ser Cys Arg<br>695 | tgc atc tct gga<br>Cys Ile Ser Gly        | cat gct ttc 2115<br>His Ala Phe<br>700   |
| ttc tac acg ggg gag c<br>Phe Tyr Thr Gly Glu 7<br>705 |                                           |                                           |                                          |
| ctg ggc atg gtg atc g<br>Leu Gly Met Val Ile G<br>720 |                                           |                                           |                                          |
| tcc atc atc gcc atc of Ser Ile Ile Ala Ile 1735       |                                           |                                           | edgeet 2257                              |
| gctggcattg gccagaccad                                 | c agcagcacct cc                           | tccatgca ggcctta                          | act ttcccatgtt 2317                      |
| caatgcagtt tggggcagct                                 | t tttttatcag cc                           | ttgctttg gatagga                          | ect ccaaggacta 2377                      |
| agcetecage eccatgtgtg                                 | g accettgtca te                           | tctctgcc ccacata:                         | att atgttacttt 2437                      |
| gctatgtgct cctaatgtat                                 | t ctagtgtgtc ct                           | gtgacaac actcatca                         | aca cttcattgta 2497                      |
| aatcacttgt tttattgact                                 | t gtctttccta ta                           | gactgtaa gctccat                          | gag ggcaggcaca 2557                      |
| tgttgttctc attgaccgtg                                 | g ctggccccag tg                           | cctagatg catggct                          | ggc acattgttgg 2617                      |
| cactcaacaa tggttgaatg                                 | g aataaaacaa ta                           | aatgaatg aataact                          | ag atatagaaac 2677                       |
| tctcatttat attgcagatt                                 | t gaatatatat ga                           | tgaaattc ttatgtt                          | gaa tatgttagaa 2737                      |
| tcaaatactc atttttcatt                                 | t agatacagta gt                           | gtcatcac tctttta                          | nga tottgttaaa 2797                      |
| gatttcaaat aaaggtactt                                 | t ctggcgagcc ag                           | gctgcaca gcatttg                          | ett teetetgaga 2857                      |
| ttctaagaga aggcctttaa                                 | a taaatttaat aa                           | atattgag ttagcaa                          | aaa aaaaaaaaaa 2917                      |
| aaa                                                   |                                           | •                                         | 2920                                     |

<210> 62

<211> 746

<212> PRT

<213> NM\_005588; meprin A, alpha

<400> 62

Met Ala Trp Ile Arg Ser Thr Cys Ile Leu Phe Phe Thr Leu Leu Phe 1 5 10 15

Ala His Ile Ala Ala Val Pro Ile Lys His Leu Pro Glu Glu Asn Val 20 25 30

His Asp Ala Asp Phe Gly Glu Gln Lys Asp Ile Ser Glu Ile Asn Leu 35 40 45

Ala Ala Gly Leu Asp Leu Phe Gln Gly Asp Ile Leu Leu Gln Lys Ser 50 55 60

Arg Asn Gly Leu Arg Asp Pro Asn Thr Arg Trp Thr Phe Pro Ile Pro 65 70 75 80

Tyr Ile Leu Ala Asp Asn Leu Gly Leu Asn Ala Lys Gly Ala Ile Leu 85 90 95

Tyr Ala Phe Glu Met Phe Arg Leu Lys Ser Cys Val Asp Phe Lys Pro 100 105 110

Tyr Glu Gly Glu Ser Ser Tyr Ile Ile Phe Gln Gln Phe Asp Gly Cys 115 120 125

Trp Ser Glu Val Gly Asp Gln His Val Gly Gln Asn Ile Ser Ile Gly 130 135 140

Gln Gly Cys Ala Tyr Lys Ala Ile Ile Glu His Glu Ile Leu His Ala 145 150 155 160

Leu Gly Phe Tyr His Glu Gln Ser Arg Thr Asp Arg Asp Asp Tyr Val 165 170 175

Asn Ile Trp Trp Asp Gln Ile Leu Ser Gly Tyr Gln His Asn Phe Asp 180 185 190

Thr Tyr Asp Asp Ser Leu Ile Thr Asp Leu Asn Thr Pro Tyr Asp Tyr 195 200 205

Glu Ser Leu Met His Tyr Gln Pro Phe Ser Phe Asn Lys Asn Ala Ser 210 215 220

Val Pro Thr Ile Thr Ala Lys Ile Pro Glu Phe Asn Ser Ile Ile Gly 225 230 235 240 Gln Arg Leu Asp Phe Ser Ala Ile Asp Leu Glu Arg Leu Asn Arg Met 245 250 255

Tyr Asn Cys Thr Thr Thr His Thr Leu Leu Asp His Cys Thr Phe Glu 260 265 270

Lys Ala Asn Ile Cys Gly Met Ile Gln Gly Thr Arg Asp Asp Thr Asp 275 280 285

Trp Ala His Gln Asp Ser Ala Gln Ala Gly Glu Val Asp His Thr Leu 290 295 300

Leu Gly Gln Cys Thr Gly Ala Gly Tyr Phe Met Gln Phe Ser Thr Ser 305 310 315 320

Ser Gly Ser Ala Glu Glu Ala Ala Leu Leu Glu Ser Arg Ile Leu Tyr 325 330 335

Pro Lys Arg Lys Gln Gln Cys Leu Gln Phe Phe Tyr Lys Met Thr Gly 340 345 350

Ser Pro Ser Asp Arg Leu Val Val Trp Val Arg Arg Asp Ser Thr 355 360 365

Gly Asn Val Arg Lys Leu Val Lys Val Gln Thr Phe Gln Gly Asp Asp 370 375 380

Asp His Asn Trp Lys Ile Ala His Val Val Leu Lys Glu Glu Gln Lys 385 390 395 400

Phe Arg Tyr Leu Phe Gln Gly Thr Lys Gly Asp Pro Gln Asn Ser Thr 405 410 415

Gly Gly Ile Tyr Leu Asp Asp Ile Thr Leu Thr Glu Thr Pro Cys Pro 420 425 430

Thr Gly Val Trp Thr Val Arg Asn Phe Ser Gln Val Leu Glu Asn Thr 435 440 445

Ser Lys Gly Asp Lys Leu Gln Ser Pro Arg Phe Tyr Asn Ser Glu Gly 450 455

Tyr Gly Phe Gly Val Thr Leu Tyr Pro Asn Ser Arg Glu Ser Ser Gly 465 470 475 480

Tyr Leu Arg Leu Ala Phe His Val Cys Ser Gly Glu Asn Asp Ala Ile 485 490 495

Leu Glu Trp Pro Val Glu Asn Arg Gln Val Ile Ile Thr Ile Leu Asp 500 505 510

Gln Glu Pro Asp Val Arg Asn Arg Met Ser Ser Ser Met Val Phe Thr 515 520 525

Thr Ser Lys Ser His Thr Ser Pro Ala Ile Asn Asp Thr Val Ile Trp 530 535 540

Asp Arg Pro Ser Arg Val Gly Thr Tyr His Thr Asp Cys Asn Cys Phe 545 550 560

Arg Ser Ile Asp Leu Gly Trp Ser Gly Phe Ile Ser His Gln Met Leu 565 570 575

Lys Arg Arg Ser Phe Leu Lys Asn Asp Asp Leu Ile Ile Phe Val Asp 580 585 590

Phe Glu Asp Ile Thr His Leu Ser Gln Thr Glu Val Pro Ser Lys Gly 595 600 605

Lys Arg Leu Ser Pro Gln Gly Leu Ile Leu Gln Gly Gln Gln Gln 610 615 620

Val Ser Glu Glu Gly Ser Gly Lys Ala Met Leu Glu Glu Ala Leu Pro 625 630 635 640

Val Ser Leu Ser Gln Gly Gln Pro Ser Arg Gln Lys Arg Ser Val Glu 645 650 655

Asn Thr Gly Pro Leu Glu Asp His Asn Trp Pro Gln Tyr Phe Arg Asp 660 665 670

Pro Cys Asp Pro Asn Pro Cys Gln Asn Asp Gly Ile Cys Val Asn Val 675 680 . 685

Lys Gly Met Ala Ser Cys Arg Cys Ile Ser Gly His Ala Phe Phe Tyr 690 695 700

Thr Gly Glu Arg Cys Gln Ser Ala Glu Val His Gly Ser Val Leu Gly 705 710 715 720

Met Val Ile Gly Gly Thr Ala Gly Val Ile Phe Leu Thr Phe Ser Ile 725 730 735

Ile Ala Ile Leu Ser Gln Arg Pro Arg Lys
740 745

<210> 63

<211> 8838

<212> DNA

<213> NM\_015902 EDD, hyperplastic discs protein, DD5

<220> <221> CDS <222> (34) .. (8430) <223> <400> 63 egecetegag tggaggaega gaaggaaage ace atg acg tee ate cat tte gtg 54 . Met Thr Ser Ile His Phe Val 1 gtt cac ccg ctg ccg ggc acc gag gac cag ctc aat gac agg tta cga 102 Val His Pro Leu Pro Gly Thr Glu Asp Gln Leu Asn Asp Arg Leu Arg 10 15 gaa gtt tct gag aag ctg aac aaa tat aat tta aac agc cac ccc cct Glu Val Ser Glu Lys Leu Asn Lys Tyr Asn Leu Asn Ser His Pro Pro 30 ttg aat gta ttg gaa cag gct act att aaa cag tgt gtg gtg gga cca 198 Leu Asn Val Leu Glu Gln Ala Thr Ile Lys Gln Cys Val Val Gly Pro 45 . 50 aat cat gct gcc ttt ctt ctt gag gat ggt aga gtt tgc agg att ggt 246 Asn His Ala Ala Phe Leu Leu Glu Asp Gly Arg Val Cys Arg Ile Gly ttt tca gta cag cca gac aga ttg gaa ttg ggt aaa cct gat aat aat Phe Ser Val Gln Pro Asp Arg Leu Glu Leu Gly Lys Pro Asp Asn Asn gat ggg tca aag ttg aac agc aac tcg ggg gca ggg agg acg tca agg Asp Gly Ser Lys Leu Asn Ser Asn Ser Gly Ala Gly Arg Thr Ser Arg cct ggt agg aca agc gac tct cca tgg ttt ctc tca ggt tct gag act Pro Gly Arg Thr Ser Asp Ser Pro Trp Phe Leu Ser Gly Ser Glu Thr 110 cta ggc agg ctg gca ggc aac acc tta gga agc cgc tgg agt tct gga Leu Gly Arg Leu Ala Gly Asn Thr Leu Gly Ser Arg Trp Ser Ser Gly 125 ' 130 gtg ggt gga agt ggt gga gga tcc tct ggt agg tca tca gct gga gct Val Gly Gly Ser Gly Gly Gly Ser Ser Gly Arg Ser Ser Ala Gly Ala 534 cga gat tcc cgc cgg cag act cga gtt att cgg aca gga cgg gat cga Arg Asp Ser Arg Arg Gln Thr Arg Val Ile Arg Thr Gly Arg Asp Arg 155 160 ggg tot ggg ott ttg ggc agt cag coc cag coa gtt att coa gca tot 582 Gly Ser Gly Leu Leu Gly Ser Gln Pro Gln Pro Val Ile Pro Ala Ser gtc att cca gag gag ctg att tca cag gcc caa gtt gtt tta caa ggc 630 Val Ile Pro Glu Glu Leu Ile Ser Gln Ala Gln Val Val Leu Gln Gly 190 195

aaa too aga agt gto att att oga gaa ott oag aga aca aat ott gat Lys Ser Arg Ser Val Ile Ile Arg Glu Leu Gln Arg Thr Asn Leu Asp

210

205

200

|                   | •                 | •          |                   |            |                   |                   |            |                   |            |                   |                   |            |                   | -          |                   |      |
|-------------------|-------------------|------------|-------------------|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|------|
|                   | aac<br>Asn        |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            |                   | 726  |
|                   | gat<br>Asp        |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            |                   | 774  |
|                   | atg<br>Met        |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            |                   | 822  |
|                   | att<br>Ile<br>265 | _          | -                 | _          | -                 | _                 |            |                   | _          | -                 |                   | _          |                   |            |                   | 87.0 |
|                   | cct<br>Pro        |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            |                   | 918  |
|                   | ctc<br>Leu        |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            |                   | 966  |
| _                 | tcc<br>Ser        | -          |                   | _          |                   |                   | -          | _                 | Arg        |                   |                   | _          |                   |            |                   | 1014 |
|                   | gat<br>Asp        |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            |                   | 1062 |
|                   | aag<br>Lys<br>345 |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            |                   | 1110 |
|                   | cag<br>Gln        |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            |                   | 1158 |
| -                 | ctg<br>Leu        |            |                   | -          |                   | _                 | _          | _                 | -          | _                 |                   |            |                   |            |                   | 1206 |
|                   | tgg<br>Trp        |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            |                   | 1254 |
|                   | tta<br>Leu        |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            |                   | 1302 |
| ata<br>Ile        | gtc<br>Val<br>425 | ctc<br>Leu | ctg<br>Leu        | tct<br>Ser | gca<br>Ala        | aat<br>Asn<br>430 | agc<br>Ser | ata<br>Ile        | aga<br>Arg | gca<br>Ala        | act<br>Thr<br>435 | gta<br>Val | gct<br>Ala        | aca<br>Thr | gaa<br>Glu        | 1350 |
| aat<br>Asn<br>440 | aac<br>Asn        | aag<br>Lys | gtt<br>Val        | gct<br>Ala | aca<br>Thr<br>445 | tgg<br>Trp        | gtg<br>Val | gat<br>Asp        | gaa<br>Glu | act<br>Thr<br>450 | tta<br>Leu        | agt<br>Ser | tct<br>Ser        | gtg<br>Val | gct<br>Ala<br>455 | 1398 |
|                   | aaa<br>Lys        |            |                   |            |                   |                   |            |                   |            |                   |                   |            |                   |            |                   | 1446 |
| cgg<br>Arg        | ata<br>Ile        | gtt<br>Val | tct<br>Ser<br>475 | tta<br>Leu | cat<br>His        | tgc<br>Cys        | tgt<br>Cys | gcc<br>Ala<br>480 | ctt<br>Leu | tac<br>Tyr        | acc<br>Thr        | tgc<br>Cys | gct<br>Ala<br>485 | cag<br>Gln | ctg<br>Leu        | 1494 |

|                   |                   |                   | Leu               |                   |                   | tgg<br>Trp        |                   | Val               |                   |                   |                   |                   |                   |                   |                   | 1542 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| aaa<br>Lys        | atg<br>Met<br>505 | Leu               | gag<br>Glu        | aaa<br>Lys        | gct<br>Ala        | aga<br>Arg<br>510 | gca<br>Ala        | aaa<br>Lys        | aat<br>Asn        | aaa<br>Lys        | aag<br>Lys<br>515 | Pro               | aaa<br>Lys        | tcc<br>Ser        | agt<br>Ser        | 1590 |
| gct<br>Ala<br>520 | Gly               | att<br>Ile        | tct<br>Ser        | tca<br>Ser        | atg<br>Met<br>525 | ccg<br>Pro        | aac<br>Asn        | ato               | act<br>Thr        | gtt<br>Val<br>530 | Gly               | acc<br>Thr        | cag<br>Gln        | gta<br>Val        | tgc<br>Cys<br>535 | 1638 |
|                   |                   |                   |                   |                   | Leu               | tat<br>Tyr        |                   |                   |                   | Ala               |                   |                   |                   |                   | Ile               | 1686 |
| agt<br>Ser        | gct<br>Ala        | Gly               | att<br>Ile<br>555 | cct<br>Pro        | aaa<br>Lys        | gtt<br>Val        | ggt<br>Gly        | gtc<br>Val<br>560 | Leu               | atg<br>Met        | gag<br>Glu        | tca<br>Ser        | gtt<br>Val<br>565 | tgg<br>Trp        | aat<br>Asn        | 1734 |
|                   |                   |                   | _                 |                   |                   | ttt<br>Phe        |                   |                   | _                 |                   |                   | -                 | _                 | -                 |                   | 1782 |
|                   |                   |                   |                   |                   |                   | aaa<br>Lys<br>590 |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1830 |
|                   |                   |                   |                   |                   |                   | gaa<br>Glu        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1878 |
| acg<br>Thr        | tgt<br>Cys        | agt<br>Ser        | gat<br>Asp        | gca<br>Ala<br>620 | tcc<br>Ser        | tca<br>Ser        | att<br>Ile        | gcc<br>Ala        | agc<br>Ser<br>625 | agt<br>Ser        | gca<br>Ala        | tca<br>Ser        | atg<br>Met        | cca<br>Pro<br>630 | tac<br>Tyr        | 1926 |
| aaa<br>Lys        | cga<br>Arg        | cga<br>Arg        | cgg<br>Arg<br>635 | tca<br>Ser        | acc<br>Thr        | cct<br>Pro        | gca<br>Ala        | cca<br>Pro<br>640 | aaa<br>Lys        | gaa<br>Glu        | gag<br>Glu        | gaa<br>Glu        | aag<br>Lys<br>645 | gtg<br>Val        | aat<br>Asn        | 1974 |
| gaa<br>Glu        | gag<br>Glu        | cag<br>Gln<br>650 | tgg<br>Trp        | tct<br>Ser        | ctt<br>Leu        | cgg<br>Arg        | gaa<br>Glu<br>655 | gtg<br>Val        | gtt<br>Val        | ttt<br>Phe        | gtg<br>Val        | gaa<br>Glu<br>660 | gat<br>Asp        | gtc<br>Val        | aag<br>Lys        | 2022 |
| aat<br>Asn        | gtt<br>Val<br>665 | cct<br>Pro        | gtt<br>Val        | Gly<br>Gly        | aag<br>Lys        | gtg<br>Val<br>670 | cta<br>Leu        | aaa<br>Lys        | gta<br>Val        | gat<br>Asp        | ggt<br>Gly<br>675 | gcc<br>Ala        | tat<br>Tyr        | gtt<br>Val        | gct<br>Ala        | 2070 |
| gta<br>Val<br>680 | aaa<br>Lys        | ttt<br>Phe        | cca<br>Pro        | gga<br>Gly        | acc<br>Thr<br>685 | tcc<br>Ser        | agt<br>Ser        | aat<br>Asn        | act               | aac<br>Asn<br>690 | tgt<br>Cys        | cag<br>Gln        | aac<br>Asn        | agc<br>Ser        | tct<br>Ser<br>695 | 2118 |
| ggt<br>Gly        | cca<br>Pro        | gat<br>Asp        | gct<br>Ala        | gac<br>Asp<br>700 | cct<br>Pro        | tct<br>Ser        | tct<br>Ser        | ctc<br>Leu        | ctg<br>Leu<br>705 | cag<br>Gln        | gat<br>Asp        | tgt<br>Cys        | agg<br>Arg        | tta<br>Leu<br>710 | ctt<br>Leu        | 2166 |
|                   |                   |                   |                   |                   |                   | gtt<br>Val        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2214 |
|                   |                   |                   |                   |                   |                   | act<br>Thr        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2262 |
|                   |                   |                   |                   |                   |                   | aat<br>Asn<br>750 |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2310 |

| ctg<br>Leu<br>760  | Lys               | act<br>Thr        | gga<br>Gly        | aat<br>Asn        | Trp<br>765        | Val                 | cga<br>Arg        | tac<br>Tyr        | tgt<br>Cys        | atc<br>Ile<br>770    | Phe               | gat<br>Asp        | ctt               | gct<br>Ala        | aca<br>Thr<br>775 | 2358 |
|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gga<br>Gly         | aaa<br>Lys        | gca<br>Ala        | gaa<br>Glu        | cag<br>Gln<br>780 | gaa<br>Glu        | aat<br>Asn          | aat<br>Asn        | ttt<br>Phe        | cct<br>Pro<br>785 | Thr                  | agc<br>Ser        | agc<br>Ser        | att<br>Ile        | gct<br>Ala<br>790 | Phe               | 2406 |
| ctt<br>Leu         | ggt               | cag<br>Gln        | aat<br>Asn<br>795 | Glu               | agg<br>Arg        | aat<br>Asn          | gta<br>Val        | gcc<br>Ala<br>800 | Ile               | ttc<br>Phe           | açt<br>Thr        | gct<br>Ala        | gga<br>Gly<br>805 | Gln               | gaa<br>Glu        | 2454 |
| tct<br>Ser         | Pro               | Ile<br>810        | Ile               | ctt<br>Leu        | cga               | gat<br>Asp          | gga<br>Gly<br>815 | Asn               | ggt               | acc<br>Thr           | atc<br>Ile        | tac<br>Tyr<br>820 | cca<br>Pro        | atg<br>Met        | gcc<br>Ala        | 2502 |
| aaa<br>Lys         | gat<br>Asp<br>825 | Суз               | atg<br>Met        | gga<br>Gly        | gga<br>Gly        | ata<br>Ile<br>830   | agg<br>Arg        | gat<br>Asp        | ccc<br>Pro        | gat<br>Asp           | tgg<br>Trp<br>835 | ctg<br>Leu        | gat<br>Asp        | ctt<br>Leu        | cca<br>Pro        | 2550 |
| Pro<br>840         | att<br>Ile        | agt<br>Ser        | agt<br>Ser        | ctt<br>Leu        | gga<br>Gly<br>845 | atg<br>Met          | ggt<br>Gly        | gtg<br>Val        | cat<br>His        | tct<br>Ser<br>850    | tta<br>Leu        | ata<br>Ile        | aat<br>Asn        | ctt<br>Leu        | cct<br>Pro<br>855 | 2598 |
| gcc<br>Ala         | aat<br>Asn        | tca<br>Ser        | aca<br>Thr        | atc<br>Ile<br>860 | aaa<br>Lys        | aag<br>Lys          | aaa<br>Lys        | gct<br>Ala        | gct<br>Ala<br>865 | gtt<br>Val           | atc<br>Ile        | atc<br>Ile        | atg<br>Met        | gct<br>Ala<br>870 | gta<br>Val        | 2646 |
| gag<br>Glu         | aaa<br>Lys        | caa<br>Gln        | acc<br>Thr<br>875 | tta<br>Leu        | atg<br>Met        | caa<br>Gln          | cac<br>His        | att<br>Ile<br>880 | ctg<br>Leu        | cgc<br>Arg           | tgt<br>Cys        | gac<br>Asp        | tat<br>Tyr<br>885 | gag<br>Glu        | gcc<br>Ala        | 2694 |
| tgt<br>Cys         | cga<br>Arg        | caa<br>Gln<br>890 | tat<br>Tyr        | cta<br>Leu        | atg<br>Met        | aat<br>Asn          | ctt<br>Leu<br>895 | gag<br>Glu        | caa<br>Gln        | gcg<br>Ala           | gtt<br>Val        | gtt<br>Val<br>900 | tta<br>Leu        | gag<br>Glu        | cag<br>Gln        | 2742 |
| aat<br>Asn         | cta<br>Leu<br>905 | cag<br>Gln        | atg<br>Met        | ctg<br>Leu        | cag<br>Gln        | aca<br>Thr<br>910   | ttc<br>Phe        | atc<br>Ile        | agc<br>Ser        | cac<br>His           | aga<br>Arg<br>915 | tgt<br>Cys        | gat<br>Asp        | gga<br>Gly        | aat<br>Asn        | 2790 |
| cga<br>Arg<br>920  | aat<br>Asn        | att<br>Ile        | ttg<br>Leu        | cat<br>His        | gct<br>Ala<br>925 | tgt<br>Cys          | gta<br>Val        | tca<br>Ser        | gtt<br>Val        | tgc<br>Cys<br>930    | ttt<br>Phe        | cca<br>Pro        | acc<br>Thr        | agc<br>Ser        | aat<br>Asn<br>935 | 2838 |
| aaa<br>Lys         | gaa<br>Glu        | act<br>Thr        | aaa<br>Lys        | gaa<br>Glu<br>940 | gaa<br>Glu        | gag<br>Glu          | gaa<br>Glu        | gcg<br>Ala        | gag<br>Glu<br>945 | cgt<br>Arg           | tct<br>Ser        | gaa<br>Glu        | aga<br>Arg        | aat<br>Asn<br>950 | aca<br>Thr        | 2886 |
| Phe                | Ala               | Glu               | Arg<br>955        | Leu               | Ser               | Ala                 | Val               | Glu<br>960        | Ala               | Ile                  | Ala               |                   | Ala<br>965        | Ile               | Ser               | 2934 |
| gtt<br>Val         | gtt<br>Val        | tca<br>Ser<br>970 | agt<br>Ser        | aat<br>Asn        | Gly<br>ggc        | Pro                 | ggt<br>Gly<br>975 | aat<br>Asn        | cgg<br>Arg        | gct<br>Ala           | Gly               | tca<br>Ser<br>980 | tca<br>Ser        | agt<br>Ser        | agc<br>Ser        | 2982 |
| cga<br>Arg         | agt<br>Ser<br>985 | ttg<br>Leu        | aga<br>Arg        | tta<br>Leu        | Arg               | gaa<br>Glu i<br>990 | atg<br>Met        | atg<br>Met        | aga<br>Arg        | Arg                  | tcg<br>Ser<br>995 | ttg<br>Leu .      | aga<br>Arg        | gca<br>Ala        | gct<br>Ala        | 3030 |
| ggt<br>Gly<br>1000 | ttg<br>Leu        | ggt<br>Gly        | aga<br>Arg        | cat<br>His        | gaa<br>Glu<br>100 | gc<br>Al            | t gg<br>a Gl      | a gc<br>y Al      | t tc<br>a Se      | a to<br>r Se:<br>10: | r S               | gt g<br>er A      |                   |                   | _                 | 3075 |
| gat<br>Asp<br>1015 | cca<br>Pro        | gtt<br>Val        | tca<br>Ser        | ccc<br>Pro        | Pro               |                     |                   | t cc              |                   |                      | r T               | gg gt<br>rp Va    |                   | -                 |                   | 3120 |

| • | cct<br>Pro<br>1030 | Pro        | gcg<br>Ala | g ato<br>a Met | g gat<br>: Asp | cct<br>Pro<br>103  | Asp        | ggt<br>Gly | gac<br>Asp | att<br>Ile | gat<br>Asp<br>1040 | Phe        | t ato      | c cto        | g gcc<br>ı Ala |   | 3165 |
|---|--------------------|------------|------------|----------------|----------------|--------------------|------------|------------|------------|------------|--------------------|------------|------------|--------------|----------------|---|------|
|   | ccc<br>Pro<br>1045 | Ala        | gtg<br>Val | r er?          | tct<br>Ser     | ctt<br>Leu<br>1050 | Thr        | aca<br>Thr | gca<br>Ala | gca        | acc<br>Thr<br>1055 | Gly        | act<br>Thi | ggt<br>Gl    | caa<br>/ Gln   |   | 3210 |
|   | gga<br>Gly<br>1060 | Pro        | ago<br>Ser | acc<br>Thr     | tcc<br>Ser     | act<br>Thr<br>1065 | Ile        | cca<br>Pro | ggt<br>Gly | Pro        | tcc<br>Ser<br>1070 | Thi        | gaq<br>Gli | g cca<br>pro | tct<br>Ser     |   | 3255 |
|   | gta<br>Val<br>1075 | Val        | gaa<br>Glu | tco<br>Ser     | aag<br>Lys     | gat<br>Asp<br>1080 | Arg        | aag<br>Lys | gcg<br>Ala | aat<br>Asn | gct<br>Ala<br>1085 | His        | ttt<br>Phe | ata<br>11e   | ttg<br>Leu     |   | 3300 |
|   | aaa<br>Lys<br>1090 | Leu        | tta<br>Leu | tgt<br>Cys     | gac<br>Asp     | agt<br>Ser<br>1095 | Val        | gtt<br>Val | ctc<br>Leu | cag<br>Gln | ccc<br>Pro<br>1100 | Туг        | cta<br>Lev | cga<br>Arg   | gaa<br>Glu     |   | 3345 |
|   | ctt<br>Leu<br>1105 | Leu        | tct<br>Ser | gcc<br>Ala     | aag<br>Lys     | gat<br>Asp<br>1110 | Ala        | aga<br>Arg | Gly        | atg<br>Met | acc<br>Thr<br>1115 | Pro        | ttt<br>Phe | ato<br>Met   | tca<br>Ser     |   | 3390 |
|   | gct<br>Ala<br>1120 | gta<br>Val | agt<br>Ser | Gly            | cga<br>Arg     | gct<br>Ala<br>1125 | Tyr        | cct<br>Pro | gct<br>Ala | gca<br>Ala | att<br>Ile<br>1130 | Thr        | ato<br>Ile | tta<br>Leu   | gaa<br>Glu     |   | 3435 |
|   | act<br>Thr<br>1135 | gct<br>Ala | cag<br>Gln | aaa<br>Lys     | att<br>Ile     | gca<br>Ala<br>1140 | Lys        | gct<br>Ala | gaa<br>Glu | ata<br>Ile | tcc<br>Ser<br>1145 | Ser        | agt<br>Ser | gaa<br>Glu   | aaa<br>Lys     |   | 3480 |
|   | gag<br>Glu<br>1150 | gaa<br>Glu | gat<br>Asp | gta<br>Val     | ttc<br>Phe     | atg<br>Met<br>1155 | Gly        | atg<br>Met | gtt<br>Val | tgc<br>Cys | cca<br>Pro<br>1160 | Ser        | ggt        | acc          | aac<br>Asn     |   | 3525 |
|   | cct<br>Pro<br>1165 | gat<br>Asp | gac<br>Asp | -tct<br>Ser    | cct<br>Pro     | tta<br>Leu<br>1170 | Tyr        | gtt<br>Val | tta<br>Leu | tgt<br>Cys | tgt<br>Cys<br>1175 | Asn        | gac<br>Așp | act<br>Thr   | tgc<br>Cys     |   | 3570 |
|   | agt<br>Ser<br>1180 | ttt<br>Phe | aca<br>Thr | tgg<br>Trp     | act<br>Thr     | gga<br>Gly<br>1185 | Ala        | gag<br>Glu | cac<br>His | att<br>Ile | aac<br>Asn<br>1190 | Gln        | gat<br>Asp | att<br>Ile   | ttt<br>Phe     |   | 3615 |
|   | gag<br>Glu<br>1195 | tgt<br>Cys | cga<br>Arg | act<br>Thr     | tgt<br>Cys     | ggc<br>Gly<br>1200 | Leu        | ctg<br>Leu | gag<br>Glu | tca<br>Ser | ctg<br>Leu<br>1205 | Cys        | tgt<br>Cys | tgt<br>Cys   | acg<br>Thr     | · | 3660 |
|   | gaa<br>Glu<br>1210 | tgt<br>Cys | gca<br>Ala | agg<br>Arg     | gtt<br>Val     | tgt<br>Cys<br>1215 | cat<br>His | aaa<br>Lys | ggt<br>Gly | cat<br>His | gat<br>Asp<br>1220 | tgc<br>Cys | aaa<br>Lys | ctc<br>Leu   | aaa<br>Lys     |   | 3705 |
|   | cgg<br>Arg<br>1225 | aca<br>Thr | tca<br>Ser | cca<br>Pro     | aca<br>Thr     | gcc<br>Ala<br>1230 | tac<br>Tyr | tgt<br>Cys | gat<br>Asp | tgt<br>Cys | tgg<br>Trp<br>1235 | gag<br>Glu | aaa<br>Lys | tgt<br>Cys   | aaa<br>Lys     |   | 3750 |
|   | tgt<br>Cys<br>1240 | aaa<br>Lys | act<br>Thr | ctt<br>Leu     | att<br>Ile     | gct<br>Ala<br>1245 | gga<br>Gly | cag<br>Gln | Lys        | tct<br>Ser | gct<br>Ala<br>1250 | cgt<br>Arg | ctt<br>Leu | -            |                |   | 3795 |
|   |                    |            |            |                |                | act<br>Thr<br>1260 |            |            |            |            |                    |            | ctg<br>Leu |              |                |   | 3840 |
| : |                    |            |            |                |                | ctc<br>Leu<br>1275 |            |            |            |            |                    |            | aca<br>Thr |              |                |   | 3885 |

| agg<br>Arg<br>1285      | Glr            | ace<br>Th: | g gt<br>r Va   | g gad<br>1 Gli | g cat<br>u His<br>129  | Cy:        | t caa      | a tad          | c ag           | g cca<br>g Pro<br>129 | Pr         | t cg<br>o Ar | a at<br>g Il | c agg<br>e Arg | 3930 |
|-------------------------|----------------|------------|----------------|----------------|------------------------|------------|------------|----------------|----------------|-----------------------|------------|--------------|--------------|----------------|------|
| gaa<br>Glu<br>1300      | Asp            | cg<br>Arg  | t aa<br>g As:  | c cga<br>n Ara | a aaa<br>g Lys<br>130  | Thi        | a gco      | a Se           | t cc<br>r Pr   | t gaa<br>o Glu<br>131 | As         | t tc<br>p Se | a ga<br>r As | t atg<br>p Met | 3975 |
| cca<br>Pro<br>1315      | Asp            | cat<br>His | t gat<br>s Asj | t tta<br>p Le: | a gag<br>ı Glu<br>1320 | Pro        | cca<br>Pro | a aga<br>o Arg | a tti<br>g Phe | t gcc<br>e Ala<br>132 | Gl         | g ct         | t gc<br>u Al | a ttg<br>a Leu | 4020 |
| gag<br>Glu<br>1330      | Arg            | gtt<br>Val | cta<br>L Lei   | a cad          | gac<br>Asp<br>133!     | Tr         | aat<br>Asr | gco<br>Ala     | Let            | g aaa<br>u Lys<br>134 | Se         | t ate        | g at         | t atg<br>e Met | 4065 |
| ttt<br>Phe<br>1345      | GLY            | tcg<br>Ser | g cad          | g gag<br>n Glu | aat<br>Asn<br>1350     | Lys        | gac<br>Asp | cct<br>Pro     | ctt<br>Lei     | agt<br>Ser<br>135     | Ala        | age<br>a Se  | c ag<br>c Se | t aga<br>r Arg | 4110 |
| ata<br>Ile<br>1360      | Gly            | cat<br>His | ctt<br>Lei     | ttg<br>Lev     | cca<br>Pro<br>1365     | Glu        | gag<br>Glu | caa<br>Glr     | gta<br>Val     | tac<br>Tyr<br>137     | Let        | aat<br>1 Asr | caq<br>n Gli | g caa<br>n Gln | 4155 |
| agt<br>Ser<br>1375      | Gly            | aca<br>Thr | att<br>: Ile   | cgg<br>Arg     | ctg<br>Leu<br>1380     | Asp        | tgt<br>Cys | ttc<br>Phe     | act<br>Thr     | cat<br>His<br>138     | Cys        | ctt<br>Lei   | ata<br>1116  | a gtt<br>e Val | 4200 |
| aag<br>Lys<br>1390      | tgt<br>Cys     | aca<br>Thr | gca<br>Ala     | gat<br>Asp     | att<br>Ile<br>1395     | Leu        | ctt<br>Leu | tta<br>Leu     | gat<br>Asp     | act<br>Thr<br>1400    | Leu        | cta<br>Lev   | ggt<br>Gly   | aca<br>Thr     | 4245 |
| cta<br>Leu<br>1405      | gtg<br>Val     | aaa<br>Lys | gaa<br>Glu     | ctc<br>Leu     | caa<br>Gln<br>1410     | Asn        | aaa<br>Lys | tat<br>Tyr     | aca<br>Thr     | cct<br>Pro<br>1415    | Gly        | cgt<br>Arg   | aga<br>Arg   | gaa<br>Glu     | 4290 |
| gaa<br>Glu<br>1420      | gct<br>Ala     | att<br>Ile | gct<br>Ala     | gtg<br>Val     | aca<br>Thr<br>1425     | Met        | agg<br>Arg | ttt<br>Phe     | cta<br>Leu     | cgt<br>Arg<br>1430    | Ser        | gtg<br>Val   | gca<br>Ala   | aga<br>Arg     | 4335 |
| gtt<br>Val<br>1435      | ttt<br>Phe     | gtt<br>Val | att<br>Ile     | ctg<br>Leu     | agt<br>Ser<br>1440     | Val        | gaa<br>Glu | atg<br>Met     | gct<br>Ala     | tca<br>Ser<br>1445    | Ser        | aaa<br>Lys   | aag<br>Lys   | aaa<br>Lys     | 4380 |
| aac<br>Asn<br>1450      | aac<br>Asn     | ttt<br>Phe | att<br>Ile     | cca<br>Pro     | cag<br>Gln<br>1455     | Pro        | att<br>Ile | gga<br>Gly     | aaa<br>Lys     | tgc<br>Cys<br>1460    | Lys        |              |              | ttc<br>Phe     | 4425 |
| caa<br>Gln<br>1465      | gca<br>Ala     | ttg<br>Leu | cta<br>Leu     | cct<br>Pro     | tac<br>Tyr<br>1470     | Ala        | gtg<br>Val | gaa<br>Glu     | gaa<br>Glu     | ttg<br>Leu<br>1475    | Cys        | aac<br>Asn   | gta<br>Val   | gca<br>Ala     | 4470 |
| gag<br>Glu<br>1480      | tca<br>Ser     | ctg<br>Leu | att<br>Ile     | gtt<br>Val     | cct<br>Pro<br>1485     | gtc<br>Val | aga<br>Arg | atg<br>Met     | GJ À<br>ààà    | att<br>Ile<br>1490    | gct<br>Ala | cgt<br>Arg   | cca<br>Pro   | act<br>Thr     | 4515 |
| gca d<br>Ala 1<br>1495  | cca<br>Pro     | ttt<br>Phe | acc<br>Thr     | ctg<br>Leu     | gct<br>Ala<br>1500     | agt<br>Ser | act<br>Thr | agc<br>Ser     | ata<br>Ile     | gat<br>Asp<br>1505    | gcc<br>Ala | atg<br>Met   | cag<br>Gln   | ggc<br>Gly     | 4560 |
| agt of<br>Ser (         | gaa (<br>Glu ( | gaa<br>Glu | tta<br>Leu     | ttt<br>Phe     | tca<br>Ser<br>1515     | gtg<br>Val | gaa<br>Glu | cca<br>Pro     | cta<br>Leu     | cca<br>Pro<br>1520    | cca<br>Pro |              |              |                | 4605 |
| tct of<br>Ser A<br>1525 | gat d<br>Asp ( | cag<br>Sln | tct<br>Ser     | Ser            | agc<br>Ser<br>1530     | tcc<br>Ser | agt<br>Ser | cag<br>Gln     | Ser            | cag<br>Gln<br>1535    | tca<br>Ser | tcc<br>Ser   | tac<br>Tyr   | atc<br>Ile     | 4650 |

|                    |            |                |                           |                |                        |            |                         |                |            |                       |                |                |              |                | •         |
|--------------------|------------|----------------|---------------------------|----------------|------------------------|------------|-------------------------|----------------|------------|-----------------------|----------------|----------------|--------------|----------------|-----------|
| atc<br>Ile<br>154  | Ar         | g aa<br>g As   | t cc<br>n Pr              | a ca<br>o Gl   | g cag<br>n Gln<br>154  | Arg        | g cg<br>g Ar            | c ato          | c ag       | c cag<br>r Gln<br>155 | Se             | a ca<br>r Gl   | g cc<br>n Pr | c gtt<br>o Val | 4695<br>L |
| cgg<br>Arg<br>155  | G1         | c ag<br>y Ar   | a ga<br>g As              | t ga<br>p Gl   | a gaa<br>u Glu<br>156  | Glı        | g gat<br>n Asj          | t gat<br>o Asp | at<br>o Il | t gtt<br>e Val<br>156 | Se:            | a gc<br>r Al   | a ga<br>a As | t gto<br>p Val | 4740      |
| gaa<br>Glu<br>157  | GT.        | g gt<br>u Va   | t ga<br>l Gl              | g gt<br>u Va   | g gtg<br>l Val<br>157  | Glu        | g ggt                   | t gtg<br>y Val | g gci      | t gga<br>a Gly<br>158 | Gl             | a ga<br>u Gl   | g ga<br>u As | t cat<br>p His | 4785      |
| cat<br>His<br>158  | As         | t gaa          | a ca<br>u Gl              | g ga<br>n Gli  | a gaa<br>u Glu<br>1590 | His        | Gly                     | g gaa<br>7 Glu | ı gaa      | a aat<br>1 Asn<br>159 | Ala            | t gad<br>a Gli | g gc<br>u Al | a gag<br>a Glu | 4830      |
| gga<br>Gly<br>1600 | GL         | a cai          | t ga<br>s As <sub>l</sub> | t gaq<br>p Gli | g cat<br>1 His<br>160  | Asp        | gaa<br>Glu              | a gad<br>Asp   | 617<br>636 | g agt<br>Ser<br>161   | Ası            | ato<br>Mei     | g gad        | g ctg<br>u Leu | 4875      |
| gac<br>Asp<br>1615 | Let        | g tta<br>1 Lei | a gca<br>a Ala            | a gca<br>a Ala | a gct<br>a Ala<br>1620 | Glu        | aca                     | gaa<br>Glu     | agt<br>Ser | gat<br>Asp<br>162     | Sei            | gaa<br>Glu     | a agi        | t aac<br>r Asn | 4920      |
| cac<br>His<br>1630 | Sei        | aac<br>Asr     | caa<br>Glr                | a gat<br>n Asp | aat<br>Asn<br>1635     | Ala        | agt                     | . ggg          | cgc        | aga<br>Arg<br>1640    | Ser            | gti<br>Val     | gto<br>Val   | e act<br>L Thr | 4965      |
| gca<br>Ala<br>1645 | Ala        | act<br>Thr     | gct<br>Ala                | ggt<br>Gly     | tca<br>Ser<br>1650     | Glu        | gca<br>Ala              | gga<br>Gly     | gca<br>Ala | agc<br>Ser<br>1655    | Ser            | gtt<br>Val     | cct<br>Pro   | gcc<br>Ala     | 5010      |
| ttc<br>Phe<br>1660 | Phe        | tct<br>Ser     | gaa<br>Glu                | gat<br>Asp     | gat<br>Asp<br>1665     | Ser        | caa<br>Gln              | tcg<br>Ser     | aat<br>Asn | gac<br>Asp<br>1670    | Ser            | agt<br>Ser     | gat<br>Asp   | tct<br>Ser     | 5055      |
| gat<br>Asp<br>1675 | Ser        | agt<br>Ser     | agt<br>Ser                | agt<br>Ser     | cag<br>Gln<br>1680     | Ser        | gac<br>Asp              | gac<br>Asp     | ata<br>Ile | gaa<br>Glu<br>1685    | Gln            |                |              | ttt<br>Phe     | 5100      |
| atg<br>Met<br>1690 | Leu        | gat<br>Asp     | gag<br>Glu                | cca<br>Pro     | tta<br>Leu<br>1695     | Glu        | aga<br>Arg              | acc<br>Thr     | aca<br>Thr | aat<br>Asn<br>1700    | Ser            |                |              | gcc<br>Ala     | 5145      |
| aat<br>Asn<br>1705 | GTÄ        | gct<br>Ala     | gcc<br>Ala                | caa<br>Gln     | gct<br>Ala<br>1710     | Pro        | cgt<br>Arg              | tca<br>Ser     | atg<br>Met | cag<br>Gln<br>1715    | $\mathtt{Trp}$ |                |              | cgc<br>Arg     | 5190      |
| aac<br>Asn<br>1720 | acc<br>Thr | cag<br>Gln     | cat<br>His                | cag<br>Gln     | cga<br>Arg<br>1725     | gca<br>Ala | gcc<br>Ala              | agt<br>Ser     | aca<br>Thr | gcc<br>Ala<br>1730    | Pro            | tcc<br>Ser     | agt<br>Ser   | aca<br>Thr     | 5235      |
| tct<br>Ser<br>1735 | aca<br>Thr | cca<br>Pro     | gca<br>Ala                | gca<br>Ala     | agt<br>Ser<br>1740     | tca<br>Ser | gcg <sup>.</sup><br>Ala | ggt<br>Gly     | ttg<br>Leu | att<br>Ile<br>1745    | Tyr            | att<br>Ile     | gat<br>Asp   | cct<br>Pro     | 5280      |
| tca<br>Ser<br>1750 | aac<br>Asn | tta<br>Leu     | cgc<br>Arg                | cgg<br>Arg     | agt<br>Ser<br>1755     | ggt<br>Gly | acc<br>Thr              | atc<br>Ile     | agt<br>Ser | aca<br>Thr<br>1760    | agt<br>Ser     | gct<br>Ala     | gca<br>Ala   | gct<br>Ala     | 5325      |
| gca<br>Ala<br>1765 | gca<br>Ala | gct<br>Ala     | gct<br>Ala                | ttg<br>Leu     | gaa<br>Glu<br>1770     | gct<br>Ala | agc<br>Ser              | aac<br>Asn     | gcc<br>Ala | agc<br>Ser<br>1775    | agt<br>Ser     | tac<br>Tyr     | cta<br>Leu   | aca<br>Thr     | 5370      |
| tct<br>Ser<br>1780 | gca<br>Ala | agc<br>Ser     | agt<br>Ser                | tta<br>Leu     | gcc<br>Ala<br>1785     | agg (      | gct<br>Ala              | tac<br>Tyr     | Ser        | att<br>Ile<br>1790    | gtc<br>Val     | att<br>Ile     | aga<br>Arg   | caa<br>Gln     | 5415      |

| atc<br>Ile<br>1795   | Se         | g ga<br>r As | c tt<br>p Le   | g at<br>u Me   | g ggc<br>t Gly<br>180  | Lev            | att<br>Ile   | cc<br>Pr       | t aa<br>o Ly   | g tat<br>s Tyr<br>180 | As         | t ca<br>n Hi   | c ct<br>s Le | a gta<br>u Val | 5460 |
|----------------------|------------|--------------|----------------|----------------|------------------------|----------------|--------------|----------------|----------------|-----------------------|------------|----------------|--------------|----------------|------|
| tac<br>Tyr<br>1810   | Sei        | t ca<br>r Gl | g at<br>n Il   | t cc<br>e Pr   | a gca<br>o Ala<br>181  | Ala            | gtg<br>Val   | g aa:<br>L Ly: | a tte          | g act<br>u Thr<br>182 | Ty.        | c car<br>r Gl  | a ga<br>n As | t gca<br>p Ala | 5505 |
| gta<br>Val<br>1825   | Asr        | e tta        | a cae<br>u Gl  | g aa<br>n Ası  | c tat<br>n Tyr<br>1830 | Val            | gaa<br>Glu   | gaa<br>Gli     | a aag<br>1 Lys | g ctt<br>s Leu<br>183 | Il         | t cc           | c ac         | t tgg<br>r Trp | 5550 |
| aac<br>Asn<br>1840   | Trp        | g ato<br>Mei | g gte<br>t Vai | c agi          | t att<br>r Ile<br>1849 | Met            | gat<br>Asp   | tci<br>Sei     | act            | gaa<br>Glu<br>185     | Ala        | t caa<br>a Gli | a tta        | a cgt<br>u Arg | 5595 |
| tat<br>Tyr<br>1855   | Gly        | tct<br>Sei   | t gca<br>r Ala | a tta<br>a Lei | a gca<br>1 Ala<br>1860 | Ser            | gct<br>Ala   | ggt            | gat<br>Asp     | cct<br>Pro<br>186     | Gly        | a cat          | cca<br>Pro   | a aat<br>o Asn | 5640 |
| cat<br>His<br>1870   | Pro        | ctt<br>Leu   | cac<br>His     | gct<br>Ala     | tct<br>Ser<br>1875     | Gln            | aat<br>Asn   | tca<br>Ser     | gcg<br>Ala     | jaga<br>Arg<br>1880   | Arc        | ı gaç<br>g Glı | g ago        | g atg<br>g Met | 5685 |
| act<br>Thr<br>1885   | Ala        | cga<br>Arc   | n gaa<br>g Glu | a gaa<br>a Glu | gct<br>Ala<br>1890     | Ser            | tta<br>Leu   | cga<br>Arg     | aca<br>Thr     | ctt<br>Leu<br>1895    | Glu        | r GJ?<br>r gg¢ | aga<br>Arq   | a cga<br>g Arg | 5730 |
| cgt<br>Arg<br>1900   | Ala        | Thr          | ttg<br>Lev     | j ctt<br>Lev   | agc<br>Ser<br>1905     | Ala            | cgt<br>Arg   | caa<br>Gln     | gga<br>Gly     | atg<br>Met<br>1910    | Met        | tct<br>Ser     | gca          | a cga<br>a Arg | 5775 |
| gga<br>Gly<br>1915   | Asp        | ttc<br>Phe   | cta<br>Leu     | aat<br>Asn     | tat<br>Tyr<br>1920     | Ala            | ctg<br>Leu   | tct            | cta<br>Leu     | atg<br>Met<br>1925    | Arg        | tct<br>Ser     | cat          | : aat<br>: Asn | 5820 |
| gat<br>Asp<br>1930   | gag<br>Glu | cat<br>His   | tct<br>Ser     | gat<br>Asp     | gtt<br>Val<br>1935     | Leu            | cca<br>Pro   | gtt<br>Val     | ttg<br>Leu     | gat<br>Asp<br>1940    | Val        | tgc<br>Cys     | tca<br>Ser   | ttg<br>Leu     | 5865 |
| aag<br>Lys<br>1945   | cat<br>His | gtg<br>Val   | gca<br>Ala     | tat<br>Tyr     | gtt<br>Val<br>1950     | ttt<br>Phe     | caa<br>Gln   | gca<br>Ala     | ctt<br>Leu     | ata<br>Ile<br>1955    | Tyr        | tgg<br>Trp     | att<br>Ile   | aag<br>Lys     | 5910 |
| gca<br>Ala<br>1960   | atg<br>Met | aat<br>Asn   | cag<br>Gln     | cag<br>Gln     | aca<br>Thr<br>1965     | aca<br>Thr     | ttg<br>Leu   | gat<br>Asp     | aca<br>Thr     | cct<br>Pro<br>1970    | Gln        | cta<br>Leu     | gaa<br>Glu   | cgc<br>Arg     | 5955 |
| aaa<br>Lys<br>1975   | agg<br>Arg | acg<br>Thr   | cga<br>Arg     | gaa<br>Glu     | ctc<br>Leu<br>1980     | ttg<br>Leu     | gaa<br>Glu   | ctg<br>Leu     | Gly            | att<br>Ile<br>1985    | Asp        | aat<br>Asn     | gaa<br>Glu   | gat<br>Asp     | 6000 |
| tca<br>Ser<br>1990   | gaa<br>Glu | cat<br>His   | gaa<br>Glu     | aat<br>Asn     | gat<br>Asp<br>1995     | gat<br>Asp     | gac<br>Asp   | acc<br>Thr     | aat<br>Asn     | caa<br>Gln<br>2000    | agt<br>Ser | gct<br>Ala     |              | ttg<br>Leu     | 6045 |
| aat<br>Asn<br>2005   | gat<br>Asp | aag<br>Lys   | gat<br>Asp     | gat<br>Asp     | gac<br>Asp<br>2010     | tct<br>Ser     | ctt<br>Leu   | cct<br>Pro     | gca<br>Ala     | gaa<br>Glu<br>2015    |            | ggc<br>Gly     |              |                | 6090 |
| cat<br>His<br>2020   | cca<br>Pro | ttt<br>Phe   | ttc<br>Phe     | cga<br>Arg     | cgt<br>Arg<br>2025     | tca (<br>Ser i | gac<br>Asp   | tcc<br>Ser     | atg<br>Met     | aca<br>Thr<br>2030    |            | ctt<br>Leu.    |              |                | 6135 |
| ata<br>Ile :<br>2035 | ccc<br>Pro | cca<br>Pro   | aat<br>Asn     | Pro            | ttt<br>Phe<br>2040     | gaa q<br>Glu N | gtg<br>/al : | cct<br>Pro     | Leu            | gct<br>Ala<br>2045    | gaa<br>Glu |                |              |                | 6180 |

|     |                    | Ala        |            |            |            | cat<br>His<br>2055   | Leu        |            |            |            |                    | Ala        |            |            |            | 6225 |
|-----|--------------------|------------|------------|------------|------------|----------------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------|
|     |                    | Leu        |            |            |            | cca<br>Pro<br>2070   | Ser        |            |            |            |                    | Ser        |            |            |            | 6270 |
| , • | agt<br>Ser<br>2080 | Ser        |            |            |            | tta<br>Leu<br>2085   | Met        |            |            |            |                    | Asp        |            |            |            | 6315 |
|     | cta<br>Leu<br>2095 | Glu        |            |            |            | aca<br>Thr<br>2100   | Lys        |            |            |            |                    | Āla        |            |            |            | 6360 |
|     | aat<br>Asn<br>2110 | Val        |            |            |            | caa<br>Gln<br>2115   | Asn        |            |            |            |                    | Glu        |            |            |            | 6405 |
|     | cag<br>Gln<br>2125 | Pro        | gtg<br>Val | ctg<br>Leu | cca<br>Pro | gaa<br>Glu<br>2130   | gaa<br>Glu | act<br>Thr | gag<br>Glu | agt<br>Ser | tca<br>Ser<br>2135 | Lys        | cca<br>Pro | Gly        | cca<br>Pro | 6450 |
|     | tct<br>Ser<br>2140 |            |            |            |            | gct<br>Ala<br>2145   |            |            |            |            |                    | Ser        |            |            |            | 6495 |
|     | gaa<br>Glu<br>2155 |            |            |            |            | gaa<br>Glu<br>2160   |            |            |            |            | cct<br>Pro<br>2165 | Leu        |            |            |            | 6540 |
|     | agg<br>Arg<br>2170 |            |            |            |            | ttt<br>Phe<br>2175   |            |            |            |            |                    | Ser        |            | gat<br>Asp | _          | 6585 |
|     | ctg<br>Leu<br>2185 |            |            |            |            | cgc .<br>Arg<br>2190 |            |            |            |            |                    |            |            | agg<br>Arg | -          | 6630 |
|     | ttc<br>Phe<br>2200 | atg<br>Met | gaa<br>Glu | gat<br>Asp | gtt<br>Val | gga<br>Gly<br>2205   | gca<br>Ala | gaa<br>Glu | cct<br>Pro | gga<br>Gly | tca<br>Ser<br>2210 | atc<br>Ile | cta<br>Leu | act<br>Thr | gaa<br>Glu | 6675 |
|     | ttg<br>Leu<br>2215 | ggt<br>Gly | ggt<br>Gly | ttt<br>Phe | gag<br>Glu | gta<br>Val<br>2220   | aaa<br>Lys | gaa<br>Glu | tca<br>Ser | aaa<br>Lys | ttc<br>Phe<br>2225 | cgc<br>Arg | aga<br>Arg | gaa<br>Glu | atg<br>Met | 6720 |
| •   | gaa<br>Glu<br>2230 |            |            |            |            | cag<br>Gln<br>2235   |            |            |            | Asp        |                    |            |            |            |            | 6765 |
| į   |                    |            |            |            |            | ctt<br>Leu<br>2250   |            |            |            |            |                    |            |            |            |            | 6810 |
| i   |                    |            |            |            |            | cga<br>Arg<br>2265   |            |            |            |            |                    |            |            |            |            | 6855 |
| 1   | cac<br>His<br>2275 | aga<br>Arg | gta<br>Val | aaa<br>Lys | gtc<br>Val | aca<br>Thr<br>2280   | ttt<br>Phe | aag<br>Lys | gat<br>Asp | gag<br>Glu | cca<br>Pro<br>2285 | gga<br>Gly | gag<br>Glu | ggc<br>Gly | agt<br>Ser | 6900 |
| (   |                    |            |            |            | Ser        | ttt<br>Phe<br>2295   |            |            |            |            |                    |            |            |            |            | 6945 |

|                    |     |            |            |            |                    |     |            |            | •          |                    |            |            |            |            |      |
|--------------------|-----|------------|------------|------------|--------------------|-----|------------|------------|------------|--------------------|------------|------------|------------|------------|------|
| tca<br>Ser<br>2305 | Asn |            |            |            |                    | Asn |            |            |            | atc<br>Ile<br>2315 | Gln        |            |            |            | 6990 |
| aaa<br>Lys<br>2320 | Gly | acc<br>Thr | cac<br>His | aca<br>Thr | agt<br>Ser<br>2325 | Leu | atg<br>Met | cag<br>Gln | aga<br>Arg | tta<br>Leu<br>2330 | Arg        | aac<br>Asn | cga<br>Arg | gga<br>Gly | 7035 |
| gag<br>Glu<br>2335 | Arg |            |            |            |                    | Glu |            |            |            | gaa<br>Glu<br>2345 | Met        |            |            |            | 7080 |
| agt<br>Ser<br>2350 | Gly |            |            |            |                    | Ser |            |            |            | cgg<br>Arg<br>2360 | Asp        |            |            |            | 7125 |
| aga<br>Arg<br>2365 | Arg |            |            |            |                    | Asp |            |            |            | ttt<br>Phe<br>2375 | Arg        |            |            |            | 7170 |
| gaa<br>Glu<br>2380 | Gly |            |            |            |                    |     |            |            |            | ttg<br>Leu<br>2390 |            |            |            |            | 7215 |
| cag<br>Gln<br>2395 | Ala |            |            |            |                    |     |            |            |            | gta<br>Val<br>2405 |            |            |            |            | 7260 |
| cca<br>Pro<br>2410 | Āla |            |            |            |                    | Ile |            |            |            | ttg<br>Leu<br>2420 |            | -          | tta<br>Leu |            | 7305 |
| cca<br>Pro<br>2425 | Ala | cag<br>Gln | ctg<br>Leu | ctt<br>Leu | ctc<br>Leu<br>2430 | Leu | cta<br>Leu | gca<br>Ala | agt<br>Ser | gag<br>Glu<br>2435 | gat<br>Asp |            | ctg<br>Leu |            | 7350 |
| gca<br>Ala<br>2440 | Arg |            |            |            |                    |     |            |            |            | att<br>Ile<br>2450 |            |            |            |            | 7395 |
| gaa<br>Glu<br>2455 | Asn |            |            |            |                    |     |            |            |            | gga<br>Gly<br>2465 |            |            |            |            | 7440 |
| tca<br>Ser<br>2470 |     |            |            |            |                    |     |            |            |            | cgc<br>Arg<br>2480 |            |            |            |            | 7485 |
| cga<br>Arg<br>2485 |     |            |            |            |                    |     |            |            |            | aca<br>Thr<br>2495 |            |            |            |            | 7530 |
| gac<br>Asp<br>2500 |     |            |            |            |                    |     |            |            |            | aaa<br>Lys<br>2510 |            |            |            |            | 7575 |
| act<br>Thr<br>2515 |     |            |            |            |                    |     |            |            |            | agg<br>Arg<br>2525 |            |            |            |            | 7620 |
| aga<br>Arg<br>2530 |     |            |            |            |                    |     |            |            |            | ctg<br>Leu<br>2540 |            |            |            |            | 7665 |
| ctc<br>Leu<br>2545 |     |            |            |            |                    |     |            |            |            | att<br>Ile<br>2555 |            |            |            |            | 7710 |

|                    |            |              |            |            |                    |                | •          |            |            |                    |            |            |            |            |        |
|--------------------|------------|--------------|------------|------------|--------------------|----------------|------------|------------|------------|--------------------|------------|------------|------------|------------|--------|
| ggt<br>Gly<br>2560 | Arç        | aaa<br>J Lys | gto<br>Val | aat<br>Asr | tgg<br>Trp<br>2565 | His            | gat<br>Asp | ttt<br>Phe | gct        | ttt<br>Phe<br>2570 | Phe        | gat<br>Asp | cct<br>Pro | gta<br>Val | 7755   |
| atg<br>Met<br>2575 | Tyr        |              |            |            | cgg<br>Arg<br>2580 | Gln            |            |            | Lev        |                    | Ser        |            |            |            | 7800   |
| gat<br>Asp<br>2590 | Ala        | gat<br>Asp   | gct<br>Ala | gtt<br>Val | ttc<br>Phe<br>2595 | Ser            | gca<br>Ala | atg<br>Met | gat<br>Asp | ttg<br>Leu<br>2600 | Ala        | ttt<br>Phe | gca<br>Ala | att        | 7845   |
| gac<br>Asp<br>2605 | Leu        | tgt<br>Cys   | aaa<br>Lys | gaa<br>Glu | gaa<br>Glu<br>2610 | Gly            | gga<br>Gly | gga<br>Gly | cag<br>Gln | gtt<br>Val<br>2615 | Glu        | ctc<br>Leu | att<br>Ile | cct<br>Pro | 7890   |
| aat<br>Asn<br>2620 | Gly        | gta<br>Val   | aat<br>Asn | ata<br>Ile | cca<br>Pro<br>2625 | Val            | act<br>Thr | cca<br>Pro | cag<br>Gln | aat<br>Asn<br>2630 | Val        | tat<br>Tyr | gag<br>Glu | tat<br>Tyr | 7935   |
| gtg<br>Val<br>2635 | Arg        | aaa<br>Lys   | tac<br>Tyr | gca<br>Ala | gaa<br>Glu<br>2640 | His            | aga<br>Arg | atg<br>Met | ttg<br>Leu | gta<br>Val<br>2645 | Val        | gca<br>Ala | gaa<br>Glu | cag<br>Gln | 7980   |
| ccc<br>Pro<br>2650 | Leu        | cat<br>His   | gca<br>Ala | atg<br>Met | agg<br>Arg<br>2655 | Lys            | ggt<br>Gly | cta<br>Leu | cta<br>Leu | gat<br>Asp<br>2660 | Val        | ctt<br>Leu | cca<br>Pro | aaa<br>Lys | 8025   |
| aat<br>Asn<br>2665 | Ser        | tta<br>Leu   | gaa<br>Glu | gat<br>Asp | tta<br>Leu<br>2670 | Thr            | gca<br>Ala | gaa<br>Glu | gat<br>Asp | ttt<br>Phe<br>2675 | Arg        | ctt<br>Leu | ttg<br>Leu | gta<br>Val | 8070   |
| aat<br>Asn<br>2680 | Gly        | tgc<br>Cys   | ggt<br>Gly | gaa<br>Glu | gtc<br>Val<br>2685 | aat<br>Asn     | gtg<br>Val | caa<br>Gln | atg<br>Met | ctg<br>Leu<br>2690 | Ile        |            | ttt<br>Phe |            | 8115   |
| tct<br>Ser<br>2695 | ttc<br>Phe | aat<br>Asn   | gat<br>Asp | gaa<br>Glu | tca<br>Ser<br>2700 | gga<br>Gly     | gaa<br>Glu | aat<br>Asn | gct<br>Ala | gag<br>Glu<br>2705 | aag<br>Lys | ctt<br>Leu | ctg<br>Leu | cag<br>Gln | 8160   |
| ttc<br>Phe<br>2710 | aag<br>Lys | cgt<br>Arg   | tgg<br>Trp | ttc<br>Phe | tgg<br>Trp<br>2715 | tca<br>Ser     | ata<br>Ile | gta<br>Val | gag<br>Glu | aag<br>Lys<br>2720 | atg<br>Met | agc<br>Ser | atg<br>Met | aca<br>Thr | 8205   |
| gaa<br>Glu<br>2725 | cga<br>Arg | caa<br>Gln   | gat<br>Asp | ctt<br>Leu | gtt<br>Val<br>2730 | tac<br>Tyr     | ttt<br>Phe | tgg<br>Trp | aca<br>Thr | tca<br>Ser<br>2735 |            |            | tca<br>Ser | _          | 8250   |
| cca<br>Pro<br>2740 | gcc<br>Ala | agt<br>Ser   | gaa<br>Glu | gaa<br>Glu | gga<br>Gly<br>2745 | ttc<br>Phe     | cag<br>Gln | cct<br>Pro | atg<br>Met | ccc<br>Pro<br>2750 | tca<br>Ser | atc<br>Ile | aca<br>Thr | ata<br>Ile | 8295   |
| aga<br>Arg<br>2755 | cca<br>Pro | cca<br>Pro   | gat<br>Asp | gac<br>Asp | caa<br>Gln<br>2760 | cat<br>His     | ctt<br>Leu | cct<br>Pro | act<br>Thr | gca<br>Ala<br>2765 |            |            | tgc<br>Cys |            | 8340   |
| tct<br>Ser<br>2770 | cga<br>Arg | ctt<br>Leu   | tac<br>Tyr | Val        | cca<br>Pro<br>2775 | ctc<br>Leu     | tat<br>Tyr | tcc<br>Ser | Ser        | aaa<br>Lys<br>2780 |            |            | ctc<br>Leu |            | 8385   |
| cag<br>Gln<br>2785 | aaa<br>Lys | ttg<br>Leu : | tta<br>Leu | Leu        | gcc<br>Ala<br>2790 | att :<br>Ile : | aag<br>Lys | acc<br>Thr | Lys        | aat<br>Asn<br>2795 | ttt<br>Phe | ggt<br>Gly | ttt<br>Phe | gtg<br>Val | 8430   |
| tagag              | tata       | a aa         | agtg       | tgta       | ttgc               | tgtg           | ta a       | tatt       | acta       | g caa              | attt       | tgt        | agat       | ttttt      | t 8490 |
| ccatt              | tgtc       | t ata        | aaaa       | gtta       | aagt               | ttato          | gg a       | agtt       | aatg       | c tgt              | cata       | ccc        | ccct       | ggtggi     | t 8550 |

| accttaaaga gataaaatgc agacattcct tgctgagttt atagcttaaa ggcctaagga           |
|-----------------------------------------------------------------------------|
| gcactagcaa catttggcta tattggtttg ctagtcacca acttctgggt ctaaccccag           |
| ccaaagatga cagcagaaca acataattta cactgtgatt tatctttttg ctgaggggaa           |
| aaaaatgtaa atgttctgaa aattcactgc tgcctttgtg gaaactgttt cagcaaaggt           |
| tcttgtatag agggaatagg gaatttcaaa ataaaaaatt aagtatgt                        |
| <210> 64                                                                    |
| <211> 2799                                                                  |
| <212> PRT                                                                   |
| <213> NM_015902 EDD, hyperplastic discs protein, DD5                        |
|                                                                             |
| <400> 64                                                                    |
| Met Thr Ser Ile His Phe Val Val His Pro Leu Pro Gly Thr Glu Asp 1 5 15      |
|                                                                             |
| Gln Leu Asn Asp Arg Leu Arg Glu Val Ser Glu Lys Leu Asn Lys Tyr 20 25 30    |
|                                                                             |
| Asn Leu Asn Ser His Pro Pro Leu Asn Val Leu G1u G1n Ala Thr Ile<br>35 40 45 |
|                                                                             |
| Lys Gln Cys Val Val Gly Pro Asn His Ala Ala Phe Leu Leu Glu Asp 50 55 60    |
| Gly Arg Val Cys Arg Ile Gly Phe Ser Val Gln Pro Asp Arg Leu Glu             |
| 65 70 75 80                                                                 |
| Leu Gly Lys Pro Asp Asn Asn Asp Gly Ser Lys Leu Asn Ser Asn Ser             |
| 85 90 95                                                                    |
| Gly Ala Gly Arg Thr Ser Arg Pro Gly Arg Thr Ser Asp Ser Pro Trp 100 105 110 |

Phe Leu Ser Gly Ser Glu Thr Leu Gly Arg Leu Ala Gly Asn Thr Leu 115 120 . 125

Gly Ser Arg Trp Ser Ser Gly Val Gly Gly Ser Gly Gly Ser Ser 130 140

Gly Arg Ser Ser Ala Gly Ala Arg Asp Ser Arg Arg Gln Thr Arg Val 145 150 155 160

Ile Arg Thr Gly Arg Asp Arg Gly Ser Gly Leu Leu Gly Ser Gln Pro 165 170 175

- Gln Pro Val Ile Pro Ala Ser Val Ile Pro Glu Glu Leu Ile Ser Gln 180 185 190
- Ala Gln Val Val Leu Gln Gly Lys Ser Arg Ser Val Ile Ile Arg Glu 195 200 205
- Leu Gln Arg Thr Asn Leu Asp Val Asn Leu Ala Val Asn Asn Leu Leu 210 215 220
- Ser Arg Asp Asp Glu Asp Gly Asp Asp Gly Asp Asp Thr Ala Ser Glu 225 230 230 235
- Ser Tyr Leu Pro Gly Glu Asp Leu Met Ser Leu Leu Asp Ala Asp Ile 245 250 255
- His Ser Ala His Pro Ser Val Ile Ile Asp Ala Asp Ala Met Phe Ser 260 265 270
- Glu Asp Ile Ser Tyr Phe Gly Tyr Pro Ser Phe Arg Arg Ser Ser Leu 275 280 285
- Ser Arg Leu Gly Ser Ser Arg Val Leu Leu Leu Pro Leu Glu Arg Asp 290 295 300
- Ser Glu Leu Leu Arg Glu Arg Glu Ser Val Leu Arg Leu Arg Glu Arg 305 310 315 320
- Arg Trp Leu Asp Gly Ala Ser Phe Asp Asn Glu Arg Gly Ser Thr Ser 325 330 335
- Lys Glu Gly Glu Pro Asn Leu Asp Lys Lys Asn Thr Pro Val Gln Ser 340 345 350
- Pro Val Ser Leu Gly Glu Asp Leu Gln Trp Trp Pro Asp Lys Asp Gly 355 360 365
- Thr Lys Phe Ile Cys Ile Gly Ala Leu Tyr Ser Glu Leu Leu Ala Val 370 380
- Ser Ser Lys Gly Glu Leu Tyr Gln Trp Lys Trp Ser Glu Ser Glu Pro 385 390 395 400
- Tyr Arg Asn Ala Gln Asn Pro Ser Leu His His Pro Arg Ala Thr Phe 405 410 415
- Leu Gly Leu Thr Asn Glu Lys Ile Val Leu Leu Ser Ala Asn Ser Ile 420 425 430
- Arg Ala Thr Val Ala Thr Glu Asn Asn Lys Val Ala Thr Trp Val Asp
  435 440 445

Glu Thr Leu Ser Ser Val Ala Ser Lys Leu Glu His Thr Ala Gln Thr 450 455 460

Tyr Ser Glu Leu Gln Gly Glu Arg Ile Val Ser Leu His Cys Cys Ala 465 470 475 480

Leu Tyr Thr Cys Ala Gln Leu Glu Asn Ser Leu Tyr Trp Gly Val 485 490 495

Val Pro Phe Ser Gln Arg Lys Lys Met Leu Glu Lys Ala Arg Ala Lys 500 505 510

Asn Lys Lys Pro Lys Ser Ser Ala Gly Ile Ser Ser Met Pro Asn Ile 515 520 525

Thr Val Gly Thr Gln Val Cys Leu Arg Asn Asn Pro Leu Tyr His Ala 530 535 540

Gly Ala Val Ala Phe Ser Ile Ser Ala Gly Ile Pro Lys Val Gly Val 545 550 555 560

Leu Met Glu Ser Val Trp Asn Met Asn Asp Ser Cys Arg Phe Gln Leu 565 570 575

Arg Ser Pro Glu Ser Leu Lys Asn Met Glu Lys Ala Ser Lys Thr Thr 580 585 590

Glu Ala Lys Pro Glu Ser Lys Gln Glu Pro Val Lys Thr Glu Met Gly 595 600 605

Pro Pro Pro Ser Pro Ala Ser Thr Cys Ser Asp Ala Ser Ser Ile Ala 610 615 620

Ser Ser Ala Ser Met Pro Tyr Lys Arg Arg Arg Ser Thr Pro Ala Pro 625 630 635 640

Lys Glu Glu Glu Lys Val Asn Glu Glu Gln Trp Ser Leu Arg Glu Val 645 650 655

Val Phe Val Glu Asp Val Lys Asn Val Pro Val Gly Lys Val Leu Lys 660 665 670

Val Asp Gly Ala Tyr Val Ala Val Lys Phe Pro Gly Thr Ser Ser Asn 675 680 685

Thr Asn Cys Gln Asn Ser Ser Gly Pro Asp Ala Asp Pro Ser Ser Leu 690 695 700

Leu Gln Asp Cys Arg Leu Leu Arg Ile Asp Glu Leu Gln Val Val Lys 705 710 715 720 Thr Gly Gly Thr Pro Lys Val Pro Asp Cys Phe Gln Arg Thr Pro Lys 725 730 735

Lys Leu Cys Ile Pro Glu Lys Thr Glu Ile Leu Ala Val Asn Val Asp 740 745 750

Ser Lys Gly Val His Ala Val Leu Lys Thr Gly Asn Trp Val Arg Tyr 755 760 765

Cys Ile Phe Asp Leu Ala Thr Gly Lys Ala Glu Gln Glu Asn Asn Phe 770 780

Pro Thr Ser Ser Ile Ala Phe Leu Gly Gln Asn Glu Arg Asn Val Ala 785 790 795 800

Ile Phe Thr Ala Gly Gln Glu Ser Pro Ile Ile Leu Arg Asp Gly Asn 805 810 815

Gly Thr Ile Tyr Pro Met Ala Lys Asp Cys Met Gly Gly Ile Arg Asp 820 825 830

Pro Asp Trp Leu Asp Leu Pro Pro Ile Ser Ser Leu Gly Met Gly Val 835 840 845

His Ser Leu Ile Asn Leu Pro Ala Asn Ser Thr Ile Lys Lys Lys Ala 850 855 860

Ala Val Ile Ile Met Ala Val Glu Lys Gln Thr Leu Met Gln His Ile 865 870 875 880

Leu Arg Cys Asp Tyr Glu Ala Cys Arg Gln. Tyr Leu Met Asn Leu Glu 885 890 895

Gln Ala Val Val Leu Glu Gln Asn Leu Gln Met Leu Gln Thr Phe Ile 900 905 910

Ser His Arg Cys Asp Gly Asn Arg Asn Ile Leu His Ala Cys Val Ser 915 920 925

Val Cys Phe Pro Thr Ser Asn Lys Glu Thr Lys Glu Glu Glu Glu Ala 930 935 940

Glu Arg Ser Glu Arg Asn Thr Phe Ala Glu Arg Leu Ser Ala Val Glu 945 950 955 960

Ala Ile Ala Asn Ala Ile Ser Val Val Ser Ser Asn Gly Pro Gly Asn 965 970 975

Arg Ala Gly Ser Ser Ser Ser Arg Ser Leu Arg Leu Arg Glu Met Met 980 985 990

- Arg Arg Ser Leu Arg Ala Ala Gly Leu Gly Arg His Glu Ala Gly Ala 995 1000 1005
- Ser Ser Ser Asp His Gln Asp Pro Val Ser Pro Pro Ile Ala Pro 1010 1015 1020
- Pro Ser Trp Val Pro Asp Pro Pro Ala Met Asp Pro Asp Gly Asp 1025 1030 1035
- Ile Asp Phe Ile Leu Ala Pro Ala Val Gly Ser Leu Thr Thr Ala 1040 1045 1050
- Ala Thr Gly Thr Gly Gln Gly Pro Ser Thr Ser Thr Ile Pro Gly 1055 1060 1065
- Pro Ser Thr Glu Pro Ser Val Val Glu Ser Lys Asp Arg Lys Ala 1070 1075 1080
- Asn Ala His Phe Ile Leu Lys Leu Cys Asp Ser Val Val Leu 1085 1090 1095
- Gln Pro Tyr Leu Arg Glu Leu Leu Ser Ala Lys Asp Ala Arg Gly 1100 1105 1110
- Met Thr Pro Phe Met Ser Ala Val Ser Gly Arg Ala Tyr Pro Ala 1115 1120 , 1125
- Ala Ile Thr Ile Leu Glu Thr Ala Gln Lys Ile Ala Lys Ala Glu 1130 1135 1140
- Ile Ser Ser Ser Glu Lys Glu Glu Asp Val Phe Met Gly Met Val 1145 1155
- Cys Pro. Ser Gly Thr Asn Pro Asp Asp Ser Pro Leu Tyr Val Leu 1160 1165 1170
- Cys Cys Asn Asp Thr Cys Ser Phe Thr Trp Thr Gly Ala Glu His
- Ile Asn Gln Asp Ile Phe Glu Cys Arg Thr Cys Gly Leu Leu Glu 1190 1195 1200
- Ser Leu Cys Cys Cys Thr Glu Cys Ala Arg Val Cys His Lys Gly 1205 1210 1215
- His Asp Cys Lys Leu Lys Arg Thr Ser Pro Thr Ala Tyr Cys Asp 1220 1225 1230
- Cys Trp Glu Lys Cys Lys Cys Lys Thr Leu Ile Ala Gly Gln Lys

1235 1240 1245 Ser Ala Arg Leu Asp Leu Leu Tyr Arg Leu Leu Thr Ala Thr Asn 1250 1255 1260 Leu Val Thr Leu Pro Asn Ser Arg Gly Glu His Leu Leu Phe 1265 . 1270 Leu Val Gln Thr Val Ala Arg Gln Thr Val Glu His Cys Gln Tyr 1280 1285 Arg Pro Pro Arg Ile Arg Glu Asp Arg Asn Arg Lys Thr Ala Ser 1295 . 1300 1305 Pro Glu Asp Ser Asp Met Pro Asp His Asp Leu Glu Pro Pro Arg 1310 1315

Phe Ala Gln Leu Ala Leu Glu Arg Val Leu Gln Asp Trp Asn Ala 1325 1330 1335

Leu Lys Ser Met Ile Met Phe Gly Ser Gln Glu Asn Lys Asp Pro 1340 1350

Leu Ser Ala Ser Ser Arg Ile Gly His Leu Leu Pro Glu Glu Gln 1355 1360 1365

Val Tyr Leu Asn Gln Gln Ser Gly Thr Ile Arg Leu Asp Cys Phe 1370 1380

Thr His Cys Leu Ile Val Lys Cys Thr Ala Asp Ile Leu Leu Leu 1385 1390 1395

Asp Thr Leu Leu Gly Thr Leu Val Lys Glu Leu Gln Asn Lys Tyr 1400 1405 1410

Thr Pro Gly Arg Arg Glu Glu Ala Ile Ala Val Thr Met Arg Phe 1415 1420 1425

Leu Arg Ser Val Ala Arg Val Phe Val Ile Leu Ser Val Glu Met 1430 1440

Ala Ser Ser Lys Lys Lys Asn Asn Phe Ile Pro Gln Pro Ile Gly 1445 1450 1455

Lys Cys Lys Arg Val Phe Gln Ala Leu Leu Pro Tyr Ala Val Glu 1460 1465 1470

Glu Leu Cys Asn Val Ala Glu Ser Leu Ile Val Pro Val Arg Met 1475 1480 1485

- Gly Ile Ala Arg Pro Thr Ala Pro Phe Thr Leu Ala Ser Thr Ser 1490 1495 1500
- Ile Asp Ala Met Gln Gly Ser Glu Glu Leu Phe Ser Val Glu Pro 1505 1510 1515
- Leu Pro Pro Arg Pro Ser Ser Asp Gln Ser Ser Ser Ser Gln
  1520 1525 1530
- Ser Gln Ser Ser Tyr Ile Ile Arg Asn Pro Gln Gln Arg Arg Ile 1535 1540 1545
- Ser Gln Ser Gln Pro Val Arg Gly Arg Asp Glu Glu Gln Asp Asp 1550 1555 1560
- Ile Val Ser Ala Asp Val Glu Glu Val Glu Val Glu Gly Val
  1565 1570 1575
- Ala Gly Glu Glu Asp His His Asp Glu Gln Glu Glu His Gly Glu 1580 1585 1590
- Glu Asn Ala Glu Ala Glu Gly Gln His Asp Glu His Asp Glu Asp 1595 1600 1605
- Gly Ser Asp Met Glu Leu Asp Leu Leu Ala Ala Ala Glu Thr Glu 1610 1615 1620
- Ser Asp Ser Glu Ser Asn His Ser Asn Gln Asp Asn Ala Ser Gly 1625 1630 1635
- Arg Arg Ser Val Val Thr Ala Ala Thr Ala Gly Ser Glu Ala Gly 1640 1645 1650
- Ala Ser Ser Val Pro Ala Phe Phe Ser Glu Asp Asp Ser Gln Ser 1655  $\phantom{\bigg|}$  1660  $\phantom{\bigg|}$  1665
- Asn Asp Ser Ser Asp Ser Asp Ser Ser Ser Ser Gln Ser Asp Asp 1670 1680
- Ile Glu Gln Glu Thr Phe Met Leu Asp Glu Pro Leu Glu Arg Thr 1685 1690 1695
- Thr Asn Ser Ser His Ala Asn Gly Ala Ala Gln Ala Pro Arg Ser 1700 1705 1710
- Met Gln Trp Ala Val Arg Asn Thr Gln His Gln Arg Ala Ala Ser 1715 1720 1725
- Thr Ala Pro Ser Ser Thr Ser Thr Pro Ala Ala Ser Ser Ala Gly 1730 1735 1740

- Leu Ile Tyr Ile Asp Pro Ser Asn Leu Arg Arg Ser Gly Thr Ile 1745 1750 1755
- Ser Thr Ser Ala Ala Ala Ala Ala Ala Ala Leu Glu Ala Ser Asn 1760 1765 1770
- Ala Ser Ser Tyr Leu Thr Ser Ala Ser Ser Leu Ala Arg Ala Tyr 1775 1780 1785
- Ser Ile Val Ile Arg Gln Ile Ser Asp Leu Met Gly Leu Ile Pro 1790 1795 1800
- . Lys Tyr Asn His Leu Val Tyr Ser Gln Ile Pro Ala Ala Val Lys 1805 1810 1815
  - Leu Thr Tyr Gln Asp Ala Val Asn Leu Gln Asn Tyr Val Glu Glu 1820 1830
  - Lys Leu Ile Pro Thr Trp Asn Trp Met Val Ser Ile Met Asp Ser 1835 1840 1845
  - Thr Glu Ala Gln Leu Arg Tyr Gly Ser Ala Leu Ala Ser Ala Gly 1850 1855 1860
- Asp Pro Gly His Pro Asn His Pro Leu His Ala Ser Gln Asn Ser 1865 1870 1875
- Ala Arg Arg Glu Arg Met Thr Ala Arg Glu Glu Ala Ser Leu Arg
  1880 1885 1890
- Thr Leu Glu Gly Arg Arg Arg Ala Thr Leu Leu Ser Ala Arg Gln 1895 1900 1905
- Gly Met Met Ser Ala Arg Gly Asp Phe Leu Asn Tyr Ala Leu Ser 1910 1915 1920
- Leu Met Arg Ser His Asn Asp Glu His Ser Asp Val Leu Pro Val 1925 1930 1935
- Leu Asp Val Cys Ser Leu Lys His Val Ala Tyr Val Phe Gln Ala 1940 1945 1950
- Leu Ile Tyr Trp Ile Lys Ala Met Asn Gln Gln Thr Thr Leu Asp 1955 1960 1965
- Thr Pro Gln Leu Glu Arg Lys Arg Thr Arg Glu Leu Leu Glu Leu 1970 1980
- Gly Ile Asp Asn Glu Asp Ser Glu His Glu Asn Asp Asp Thr 1985 1990 1995

- Asn Gln Ser Ala Thr Leu Asn. Asp Lys Asp Asp Asp Ser Leu Pro 2000 2005 2010
- Ala Glu Thr Gly Gln Asn His Pro Phe Phe Arg Arg Ser Asp Ser 2015 2020 2025
- Met Thr Phe Leu Gly Cys Ile Pro Pro Asn Pro Phe Glu Val Pro 2030 2035 2040
- Leu Ala Glu Ala Ile Pro Leu Ala Asp Gln Pro His Leu Leu Gln 2045 2050 2055
- Pro Asn Ala Arg Lys Glu Asp Leu Phe Gly Arg Pro Ser Gln Gly 2060 2065 2070
- Leu Tyr Ser Ser Ser Ala Ser Ser Gly Lys Cys Leu Met Glu Val 2075 2080 2085
- Thr Val Asp Arg Asn Cys Leu Glu Val Leu Pro Thr Lys Met Ser 2090  $\phantom{\bigg|}$  2095  $\phantom{\bigg|}$  2005  $\phantom{\bigg|}$  2100  $\phantom{\bigg|}$
- Tyr Ala Ala Asn Leu Lys Asn Val Met Asn Met Gln Asn Arg Gln 2105 2110 2115
- Lys Lys Glu Glu Glu Glu Gln Pro Val Leu Pro Glu Glu Thr Glu 2120 2125 2130
- Ser Ser Lys Pro Gly Pro Ser Ala His Asp Leu Ala Ala Gln Leu 2135 2140 2145
- Lys Ser Ser Leu Leu Ala Glu Ile Gly Leu Thr Glu Ser Glu Gly 2150 2155
- Pro Pro Leu Thr Ser Phe Arg Pro Gln Cys Ser Phe Met Gly Met 2165 2170 2175
- Val Ile Ser His Asp Met Leu Leu Gly Arg Trp Arg Leu Ser Leu 2180 2185 2190
- Glu Leu Phe Gly Arg Val Phe Met Glu Asp Val Gly Ala Glu Pro 2195 2200 2205
- Gly Ser Ile Leu Thr Glu Leu Gly Gly Phe Glu Val Lys Glu Ser 2210 2215 2220
- Lys Phe Arg Arg Glu Met Glu Lys Leu Arg Asn Gln Gln Ser Arg 2225 2230 2235
- Asp Leu Ser Leu Glu Val Asp Arg Asp Arg Asp Leu Leu Ile Gln 2240 2250

- Gln Thr Met Arg Gln Leu Asn Asn His Phe Gly Arg Arg Cys Ala 2255 2260 2265
- Thr Thr Pro Met Ala Val His Arg Val Lys Val Thr Phe Lys Asp 2270 2275 2280
- Glu Pro Gly Glu Gly Ser Gly Val Ala Arg Ser Phe Tyr Thr Ala 2285 2290 2295
- Ile Ala Gln Ala Phe Leu Ser Asn Glu Lys Leu Pro Asn Leu Glu 2300 2305 2310
- Cys Ile Gln Asn Ala Asn Lys Gly Thr His Thr Ser Leu Met Gln 2315 2320 2325
- Arg Leu Arg Asn Arg Gly Glu Arg Asp Arg Glu Arg Glu Arg Glu 2330 2340
- Asp Arg Asp Arg Asp Phe Arg Arg Gln Leu Ser Ile Asp Thr Arg 2360 2365 2370
- Pro Phe Arg Pro Ala Ser Glu Gly Asn Pro Ser Asp Asp Pro Glu 2375 2380 2385
- Pro Leu Pro Ala His Arg Gln Ala Leu Gly Glu Arg Leu Tyr Pro 2390 2395 2400
- Arg Val Gln Ala Met Gln Pro Ala Phe Ala Ser Lys Ile Thr Gly 2405 2410 2415
- Met Leu Leu Glu Leu Ser Pro Ala Gln Leu Leu Leu Leu Leu Ala 2420 2425 2430
- Ser Glu Asp Ser Leu Arg Ala Arg Val Asp Glu Ala Met Glu Leu 2435 2440 2445
- Ile Ile Ala His Gly Arg Glu Asn Gly Ala Asp Ser Ile Leu Asp 2450 2455 2460
- Leu Gly Leu Val Asp Ser Ser Glu Lys Val Gln Gln Glu Asn Arg 2465 2470 2475
- Lys Arg His Gly Ser Ser Arg Ser Val Val Asp Met Asp Leu Asp 2480 2485 2490
- Asp Thr Asp Asp Gly Asp Asp Asn Ala Pro Leu Phe Tyr Gln Pro 2495 2500 2505

- Gly Lys Arg Gly Phe Tyr Thr Pro Arg Pro Gly Lys Asn Thr Glu 2510 2515 2520
- Ala Arg Leu Asn Cys Phe Arg Asn Ile Gly Arg Ile Leu Gly Leu 2525 2530 2535
- Cys Leu Leu Gln Asn Glu Leu Cys Pro Ile Thr Leu Asn Arg His 2540 2550
- Val Ile Lys Val Leu Leu Gly Arg Lys Val Asn Trp His Asp Phe 2555 2560 2565
- Ala Phe Phe Asp Pro Val Met Tyr Glu Ser Leu Arg Gln Leu Ile 2570 2580
- Leu Ala Ser Gln Ser Ser Asp Ala Asp Ala Val Phe Ser Ala Met 2585 2590 2595
- Asp Leu Ala Phe Ala Ile Asp Leu Cys Lys Glu Glu Gly Gly Gly 2600 2605 2610
- Gln Val Glu Leu Ile Pro Asn Gly Val Asn Ile Pro Val Thr Pro 2615 2620 2625
- Gln Asn Val Tyr Glu Tyr Val Arg Lys Tyr Ala Glu His Arg Met 2630 2635 2640
- Leu Val Val Ala Glu Gln Pro Leu His Ala Met Arg Lys Gly Leu 2645 2655
- Leu Asp Val Leu Pro Lys Asn Ser Leu Glu Asp Leu Thr Ala Glu 2660 2665 2670
- Asp Phe Arg Leu Leu Val Asn Gly Cys Gly Glu Val Asn Val Gln 2675
- Ala Glu Lys Leu Leu Gln Phe Lys Arg Trp Phe Trp Ser Ile Val 2705 2710 2715
- Glu Lys Met Ser Met Thr Glu Arg Gln Asp Leu Val Tyr Phe Trp 2720 2725 2730
- Thr Ser Ser Pro Ser Leu Pro Ala Ser Glu Glu Gly Phe Gln Pro 2735 2740 2745
- Met Pro Ser Ile Thr Ile Arg Pro Pro Asp Asp Gln His Leu Pro 2750 2755 2760

|                  |                  |                  |                  |                  |                     |                  |                  |                  | •                |                  |                  |                  |                  |                  |                        |       |
|------------------|------------------|------------------|------------------|------------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------------|-------|
| Thi              | 276              |                  | sn Tl            | nr Cy            | ys IJ               |                  | er 1             | Arg 1            | Leu '            | Tyr '            |                  | Pro<br>2775      | Leu              | Tyr              | Ser                    |       |
| Ser              | Lys<br>278       |                  | ln I             | le Le            | eu Ly               |                  | ln 1<br>785      | Lys 1            | Leu :            | Leu I            |                  | Ala<br>2790      | Ile              | Гуз              | Thr                    |       |
| Lys              | Asr<br>279       |                  | ne GJ            | Ly Ph            | ne Va               | 1                |                  | ٠                |                  |                  |                  |                  |                  |                  |                        |       |
| <21              | .0>              | 65               |                  |                  |                     |                  | •                |                  |                  |                  |                  |                  |                  |                  |                        |       |
| <21              | .1>              | 4256             | ;                |                  |                     |                  |                  |                  |                  |                  |                  |                  |                  |                  |                        |       |
| <21              | .2> .            | DNA              |                  |                  |                     | •                |                  |                  |                  |                  |                  |                  |                  |                  |                        |       |
| <21              | 3>               | NM_C             | 1499             | 2 DA             | AM1                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |                        |       |
|                  |                  |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |                  |                  |                        |       |
| <22              | 0>               |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |                  |                  |                        |       |
| <22              |                  | CDS              |                  |                  |                     |                  |                  | -                |                  |                  |                  |                  |                  |                  |                        |       |
| <22              |                  | (126             | ) (              | 3359             | )                   |                  |                  |                  |                  |                  |                  |                  |                  |                  |                        |       |
| <22              | 3>               |                  |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |                  |                  |                        |       |
| - 40             | ٥.               | <b>.</b> -       |                  |                  |                     |                  |                  |                  |                  |                  |                  |                  |                  |                  |                        |       |
|                  | 0><br>gagc       |                  | tgtg             | aagg             | aa a                | ctgt             | ttaa             | ıc cg            | gato             | ccat             | tgt              | cacco            | aga              | gtgc             | agagco                 | : 60  |
| gcc              | tttc             | cag              | catg             | cagg             | gg c                | tgct             | cago             | g tt             | tagt             | caca             | tca              | aagaa            | ata              | gaac             | agaatt                 | : 120 |
| cag              | cc a<br>M<br>1   | tg g<br>et A     | cc c<br>la P     | ca a<br>ro A     | ga aa<br>rg Lj<br>5 | ag a<br>ys A     | ga g<br>rg G     | gt g<br>ly G     | ga c<br>ly A     | rg G             | gt a<br>ly 1     | att t<br>[le S   | ca t<br>er P     | tc a<br>he I     | tc ttt<br>le Phe<br>15 | : 170 |
| tgc<br>Cys       | tgt<br>Cys       | ttc<br>Phe       | cga<br>Arg       | aat<br>Asn<br>20 | aat<br>Asn          | gat<br>Asp       | cac<br>His       | cca<br>Pro       | gaa<br>Glu<br>25 | atc<br>Ile       | acg<br>Thr       | tat<br>Tyr       | cgg<br>Arg       | ctg<br>Leu<br>30 | cga<br>Arg             | 218   |
| aat<br>Asn       | gat<br>Asp       | agc<br>Ser       | aac<br>Asn<br>35 | ttt<br>Phe       | gcg<br>Ala          | ctt<br>Leu       | cag<br>Gln       | acc<br>Thr<br>40 | atg<br>Met       | gaa<br>Glu       | cca<br>Pro       | gca<br>Ala       | ttg<br>Leu<br>45 | ccc<br>Pro       | atg<br>Met             | 266   |
| ccc<br>Pro       | cct<br>Pro       | gtg<br>Val<br>50 | gag<br>Glu       | gag<br>Glu       | ctg<br>Leu          | gat<br>Asp       | gtc<br>Val<br>55 | atg<br>Met       | ttc<br>Phe       | agt<br>Ser       | gaa<br>Glu       | ctg<br>Leu<br>60 | gtg<br>Val       | gat<br>Asp       | gaa<br>Glu             | 314   |
| ctg<br>Leu       | gac<br>Asp<br>65 | ctc<br>Leu       | aca<br>Thr       | gac<br>Asp       | aaa<br>Lys          | cac<br>His<br>70 | aga<br>Arg       | gaa<br>Glu       | gcc<br>Ala       | atg<br>Met       | ttt<br>Phe<br>75 | gca<br>Ala       | ctt<br>Leu       | cca<br>Pro       | gct<br>Ala             | 362   |
| gag<br>Glu<br>80 | aaa<br>Lys       | aaa<br>Lys       | tgg<br>Trp       | caa<br>Gln       | ata<br>Ile<br>85    | tac<br>Tyr       | tgt<br>Cys       | agc<br>Ser       | aag<br>Lys       | aaa<br>Lys<br>90 | aag<br>Lys       | gac<br>Asp       | cag<br>Gln       | gaa<br>Glu       | gaa<br>Glu<br>95       | 410   |
| aac<br>Asn       | aag<br>Lys       | gga<br>Gly       | gct<br>Ala       | aca<br>Thr       | agt<br>Ser          | tgg<br>Trp       | cct<br>Pro       | gaa<br>Glu       | ttc<br>Phe       | tac<br>Tyr       | att<br>Ile       | gat<br>Asp       | cag<br>Gln       | ctc<br>Leu       | aat<br>Asn             | 458   |

tcc atg gct gct aga aaa tct ctg ctg gct tta gag aag gaa gaa gaa Ser Met Ala Ala Arg Lys Ser Leu Leu Ala Leu Glu Lys Glu Glu Glu

|                   |                   | ٠                 | 115               |                   |                   |                   |                   | 120               |                   |                   |                   |                   | 125               |                   |                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
|                   |                   |                   | Ser               |                   |                   | ata<br>Ile        |                   | Ser               |                   |                   |                   |                   | Leu               |                   |                   | 554  |
|                   |                   | Met               |                   |                   |                   | acc<br>Thr<br>150 |                   |                   |                   |                   |                   | Asp               |                   |                   |                   | 602  |
|                   | Ile               |                   |                   |                   |                   | aag<br>Lys        |                   |                   |                   |                   | Glu               |                   |                   |                   |                   | 650  |
| cga<br>Arg        | ata<br>Ile        | cat<br>His        | act<br>Thr        | tct<br>Ser<br>180 | ctc<br>Leu        | att<br>Ile        | Gly               | tgt<br>Cys        | ata<br>Ile<br>185 | Lys               | gcg<br>Ala        | tta<br>Leu        | atg<br>Met        | aac<br>Asn<br>190 | aac<br>Asn        | 698  |
|                   |                   |                   |                   |                   |                   | gtc<br>Val        |                   |                   | His               |                   |                   |                   |                   |                   |                   | 746  |
| att<br>Ile        | gct<br>Ala        | cag<br>Gln<br>210 | agt<br>Ser        | ctg<br>Leu        | agc<br>Ser        | aca<br>Thr        | gag<br>Glu<br>215 | aac<br>Asn        | att<br>Ile        | aaa<br>Lys        | acg<br>Thr        | aag<br>Lys<br>220 | gtg<br>Val        | gcc<br>Ala        | gtg<br>Val        | 794  |
|                   |                   |                   |                   |                   |                   | gtg<br>Val<br>230 |                   |                   |                   |                   |                   |                   |                   |                   |                   | 842  |
| gtt<br>Val<br>240 | ctg<br>Leu        | cag<br>Gln        | gcc<br>Ala        | atg<br>Met        | ctg<br>Leu<br>245 | cac<br>His        | tac<br>Tyr        | cag<br>Gln        | aag<br>Lys        | tat<br>Tyr<br>250 | gcc<br>Ala        | agc<br>Ser        | gaa<br>Glu        | agg<br>Arg        | acc<br>Thr<br>255 | 890  |
| cgc<br>Arg        | ttt<br>Phe        | cag<br>Gln        | aca<br>Thr        | tta<br>Leu<br>260 | att               | aac<br>Asn        | gac<br>Asp        | ttg<br>Leu        | gat<br>Asp<br>265 | aaa<br>Lys        | agc<br>Ser        | act<br>Thr        | ggg<br>Gly        | cgg<br>Arg<br>270 | tat<br>Tyr        | 938  |
| cga<br>Arg        | gat<br>Asp        | gaa<br>Glu        | gtg<br>Val<br>275 | agt<br>Ser        | ctc<br>Leu        | aag<br>Lys        | act               | gcc<br>Ala<br>280 | atc<br>Ile        | atg<br>Met        | tcc<br>Ser        | ttc<br>Phe        | att<br>Ile<br>285 | aat<br>Asn        | gca<br>Ala        | 986  |
| gtg<br>Val        | ctc<br>Leu        | agc<br>Ser<br>290 | caa<br>Gln        | ggt<br>Gly        | gca<br>Ala        | gga<br>Gly        | gtg<br>Val<br>295 | gag<br>Glu        | agt<br>Ser        | ttg<br>Leu        | gac<br>Asp        | ttt<br>Phe<br>300 | aga<br>Arg        | ctt<br>Leu        | cat<br>His        | 1034 |
| ctt<br>Leu        | cgc<br>Arg<br>305 | tat<br>Tyr        | gaa<br>Glu        | ttt<br>Phe        | ctg<br>Leu        | atg<br>Met<br>310 | tta<br>Leu        | gga<br>Gly        | att<br>Ile        | caa<br>Gln        | cct<br>Pro<br>315 | gta<br>Val        | ata<br>Ile        | gat<br>Asp        | aaa<br>Lys        | 1082 |
| tta<br>Leu<br>320 | agg<br>Arg        | gaa<br>Glu        | cac<br>His        | gaa<br>Glu        | aat<br>Asn<br>325 | tca<br>Ser        | aca<br>Thr        | tta<br>Leu        | gat<br>Asp        | agg<br>Arg<br>330 | cat<br>His        | tta<br>Leu        | gac<br>Asp        | ttt<br>Phe        | ttt<br>Phe<br>335 | 1130 |
| gaa<br>Glu        | atg<br>Met        | ctc<br>Leu        | cga<br>Arg        | aat<br>Asn<br>340 | gaa<br>Glu        | gat<br>Asp        | gaa<br>Glu        | cta<br>Leu        | gaa<br>Glu<br>345 | ttt<br>Phe        | gcc<br>Ala        | aaa<br>Lys        | aga<br>Arg        | ttt<br>Phe<br>350 | gaa<br>Glu        | 1178 |
| ctg<br>Leu        | gtt<br>Val        | cac<br>His        | ata<br>Ile<br>355 | gac<br>Asp        | aca<br>Thr        | aaa<br>Lys        | agt<br>Ser        | gca<br>Ala<br>360 | act<br>Thr        | cag<br>Gln        | atg<br>Met        | ttt<br>Phe        | gag<br>Glu<br>365 | ctg<br>Leu        | acc<br>Thr        | 1226 |
|                   |                   |                   |                   |                   |                   | agt<br>Ser        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1274 |
|                   |                   |                   |                   |                   |                   | atg<br>Met        |                   |                   |                   |                   |                   |                   |                   |                   |                   | 1322 |

|                   | 385               |                   |                   |                   |                   | 390               |                   |                   |                   | •                 | 395               | i -               |                   |                   |                   | •    |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| cag<br>Gln<br>400 | Tyr               | tgg<br>Trp        | cta<br>Leu        | cta<br>Leu        | cta<br>Leu<br>405 | ı Asp             | aga<br>Arg        | att<br>Ile        | ata<br>Ile        | cag<br>Gln<br>410 | Gln               | ata<br>Ile        | gtt<br>Val        | ato<br>. Ile      | cag<br>Gln<br>415 | 1370 |
| aat<br>Asn        | gac<br>Asp        | aaa<br>Lys        | gga<br>Gly        | cag<br>Gln<br>420 | Asp               | cct<br>Pro        | gac<br>Asp        | tcc<br>Ser        | aca<br>Thr<br>425 | Pro               | ttg<br>Leu        | gaa<br>Glu        | aac<br>Asn        | ttt<br>Phe<br>430 | aat<br>Asn        | 1418 |
| att               | aag<br>Lys        | aat<br>Asn        | gtc<br>Val<br>435 | Val               | cga<br>Arg        | atg<br>Met        | ttg<br>Leu        | gtt<br>Val<br>440 | Asn               | gaa<br>Glu        | aat<br>Asn        | gaa<br>Glu        | gtt<br>Val<br>445 | Lys               | cag<br>Gln        | 1466 |
| tgg<br>Trp        | aaa<br>Lys        | gaa<br>Glu<br>450 | caa<br>Gln        | gcg<br>Ala        | gaa<br>Glu        | aaa<br>Lys        | atg<br>Met<br>455 | Arg               | aaa<br>Lys        | gag<br>Glu        | cac               | aat<br>Asn<br>460 | Glu               | cta<br>Leu        | caa<br>Gln        | 1514 |
| cag<br>Gln        | aaa<br>Lys<br>465 | ctg<br>Leu        | gaa<br>Glu        | aag<br>Lys        | aaa<br>Lys        | gaa<br>Glu<br>470 | Arg               | gaa<br>Glu        | tgt<br>Cys        | gat<br>Asp        | gct<br>Ala<br>475 | Lys               | act<br>Thr        | caa<br>Gln        | gag<br>Glu        | 1562 |
| aag<br>Lys<br>480 | Glu               | gag<br>Glu        | atg<br>Met        | atg<br>Met        | cag<br>Gln<br>485 | acc<br>Thr        | tta<br>Leu        | aat<br>Asn        | aaa<br>Lys        | atg<br>Met<br>490 | Lys               | gag<br>Glu        | aaa<br>Lys        | ctt<br>Leu        | gaa<br>Glu<br>495 | 1610 |
| aag<br>Lys        | gag<br>Glu        | act               | act<br>Thr        | gag<br>Glu<br>500 | cat<br>His        | aag<br>Lys        | caa<br>Gln        | gtc<br>Val        | aag<br>Lys<br>505 | cag<br>Gln        | cag<br>Gln        | gtg<br>Val        | gcg<br>Ala        | gac<br>Asp<br>510 | Leu               | 1658 |
| aca<br>Thr        | gca<br>Ala        | cag<br>Gln        | ctc<br>Leu<br>515 | His               | gag<br>Glu        | ctc<br>Leu        | agc<br>Ser        | agg<br>Arg<br>520 | agg<br>Arg        | gcc<br>Ala        | gtc<br>Val        | tgt<br>Cys        | gct<br>Ala<br>525 | tca<br>Ser        | atc<br>Ile        | 1706 |
| cca<br>Pro        | ggt<br>Gly        | gga<br>Gly<br>530 | ccc<br>Pro        | tcg<br>Ser        | cct<br>Pro        | gga<br>Gly        | gca<br>Ala<br>535 | cca<br>Pro        | gga<br>Gly        | ggg<br>Gly        | ccc<br>Pro        | ttt<br>Phe<br>540 | cct<br>Pro        | tcc<br>Ser        | tct<br>Ser        | 1754 |
| gtg<br>Val        | cct<br>Pro<br>545 | gga<br>Gly        | tct<br>Ser        | ctc<br>Leu        | ctt<br>Leu        | cct<br>Pro<br>550 | ccc<br>Pro        | cca<br>Pro        | cca<br>Pro        | ccc<br>Pro        | cca<br>Pro<br>555 | cct<br>Pro        | cta<br>Leu        | cca<br>Pro        | ggt<br>Gly        | 1802 |
| 260<br>260<br>399 | atg<br>Met        | ctt<br>Leu        | ccc<br>Pro        | cct<br>Pro        | cca<br>Pro<br>565 | ccg<br>Pro        | cct<br>Pro        | ccc<br>Pro        | ctc<br>Leu        | cct<br>Pro<br>570 | Pro               | ggt<br>Gly        | ggc               | Pro               | cct<br>Pro<br>575 | 1850 |
| cct<br>Pro        | ccc<br>Pro        | cca<br>Pro        | GJÀ<br>aaa        | cct<br>Pro<br>580 | cct<br>Pro        | ccc<br>Pro        | tta<br>Leu        | GJ À<br>aaa       | gca<br>Ala<br>585 | atc<br>Ile        | atg<br>Met        | cca<br>Pro        | cct<br>Pro        | cct<br>Pro<br>590 | ggt<br>Gly        | 1898 |
| gct<br>Ala        | cca<br>Pro        | atg<br>Met        | ggc<br>Gly<br>595 | cta<br>Leu        | gca<br>Ala        | ctg<br>Leu        | aag<br>Lys        | aag<br>Lys<br>600 | aaa<br>Lys        | agc<br>Ser        | att<br>Ile        | cct<br>Pro        | cag<br>Gln<br>605 | ccc<br>Pro        | aca<br>Thr        | 1946 |
| aat<br>Asn        | gcc<br>Ala        | ctg<br>Leu<br>610 | aaa<br>Lys        | tcc<br>Ser        | ttc<br>Phe        | aac<br>Asn        | tgg<br>Trp<br>615 | tct<br>Ser        | aaa<br>Lys        | ctg<br>Leu        | ccc<br>Pro        | gag<br>Glu<br>620 | aac<br>Asn        | aaa<br>Lys        | ctg<br>Leu        | 1994 |
| gaa<br>Glu        | gga<br>Gly<br>625 | aca<br>Thr        | gta<br>Val        | tgg<br>Trp        | acc<br>Thr        | gaa<br>Glu<br>630 | att<br>Ile        | gat<br>Asp        | gat<br>Asp        | aca<br>Thr        | aaa<br>Lys<br>635 | gtc<br>Val        | ttc<br>Phe        | aaa<br>Lys        | att<br>Ile        | 2042 |
| cta<br>Leu<br>640 | gat<br>Asp        | ctt<br>Leu        | gaa<br>Glu        | gac<br>Asp        | ctg<br>Leu<br>645 | gaa<br>Glu        | aga<br>Arg        | acc<br>Thr        | ttc<br>Phe        | tct<br>Ser<br>650 | gcc<br>Ala        | tat<br>Tyr        | caa<br>Gln        | aga<br>Arg        | cag<br>Gln<br>655 | 2090 |
| cag<br>Gln        | gat<br>Asp        | ttc<br>Phe        | ttt<br>Phe        | gtg<br>Val        | aac<br>Asn        | agt<br>Ser        | aac<br>Asn        | tcc<br>Ser        | aag<br>Lys        | cag<br>Gln        | aaa<br>Lys        | gaa<br>Glu        | gca<br>Ala        | gat<br>Asp        | gcc<br>Ala        | 2138 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |

|                   |                   |                   |                   | 660               | •                 |                   |                   | •                 | 665               |                   | · .               |                   |                   | 670               |                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| att<br>Ile        | gat<br>Asp        | gac<br>Asp        | act<br>Thr<br>675 | ctg<br>Leu        | agt<br>Ser        | tcc<br>Ser        | aaa<br>Lys        | ctt<br>Leu<br>680 | aaa<br>Lys        | gtt<br>Val        | aaa<br>Lys        | gag<br>Glu        | ctt<br>Leu<br>685 | tcg<br>Ser        | gtg<br>Val        | 2186 |
| att<br>Ile        | gat<br>Asp        | ggt<br>Gly<br>690 | cgg<br>Arg        | aga<br>Arg        | gct<br>Ala        | cag<br>Gln        | aat<br>Asn<br>695 | tgc<br>Cys        | aac<br>Asn        | atc<br>Ile        | ctt<br>Leu        | cta<br>Leu<br>700 | tcg<br>Ser        | agg<br>Arg        | ttg<br>Leu        | 2234 |
| aaa<br>Lys        | tta<br>Leu<br>705 | tcc<br>Ser        | aat<br>Asn        | gac<br>Asp        | gaa<br>Glu        | atc<br>Ile<br>710 | aaa<br>Lys        | cgg<br>Arg        | gca<br>Ala        | att<br>Ile        | cta<br>Leu<br>715 | aca<br>Thr        | atg<br>Met        | gac<br>Asp        | gaa<br>Glu        | 2282 |
|                   |                   |                   |                   |                   | aag<br>Lys<br>725 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2330 |
|                   |                   |                   |                   |                   | att<br>Ile        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2378 |
| -                 |                   | _                 | _                 | _                 | gct<br>Ala        | -                 |                   |                   |                   |                   |                   | _                 | -                 | _                 | _                 | 2426 |
| aat<br>Asn        |                   |                   |                   |                   | agg<br>Arg        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2474 |
| gca<br>Ala        | gag<br>Glu<br>785 | cgt<br>Arg        | gtg<br>Val        | gca<br>Ala        | gaa<br>Glu        | gtg<br>Val<br>790 | aaa<br>Lys        | cct<br>Pro        | aaa<br>Lys        | gtg<br>Val        | gaa<br>Glu<br>795 | gca<br>Ala        | att<br>Ile        | cgt<br>Arg        | tct<br>Ser        | 2522 |
| 800<br>Gly<br>ggc | tca<br>Ser        | gaa<br>Glu        | gag<br>Glu        | gtg<br>Val        | ttt<br>Phe<br>805 | agg<br>Arg        | agt<br>Ser        | ggt<br>Gly        | gcc<br>Ala        | ctc<br>Leu<br>810 | aag<br>Lys        | cag<br>Gln        | ttg<br>Leu        | ctg<br>Leu        | gag<br>Glu<br>815 | 2570 |
|                   |                   |                   |                   |                   | gga<br>Gly        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2618 |
|                   |                   |                   |                   |                   | ata<br>Ile        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2666 |
|                   | _                 |                   | -                 |                   | aac<br>Asn        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2714 |
|                   |                   |                   |                   |                   | ccc               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2762 |
|                   |                   |                   |                   |                   | gcg<br>Ala<br>885 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2810 |
| ata<br>Ile        | agt<br>Ser        | acc<br>Thr        | ttg<br>Leu        | aga<br>Arg<br>900 | agt<br>Ser        | ggc<br>Gly        | ttg<br>Leu        | aaa<br>Lys        | gca<br>Ala<br>905 | gta<br>Val        | gag<br>Glu        | aca<br>Thr        | gag<br>Glu        | ctg<br>Leu<br>910 | gaa<br>Glu        | 2858 |
|                   |                   |                   |                   |                   | ccc<br>Pro        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2906 |
|                   |                   |                   |                   |                   | aca<br>Thr        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 2954 |

| 9                             | 930                                               | 935                                                  | 940                                             |  |
|-------------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------|--|
| gac ctt d<br>Asp Leu I<br>945 | cta gca gaa gct aaa<br>Leu Ala Glu Ala Lys<br>950 | gac ctg ttt act aaa<br>Asp Leu Phe Thr Lys<br>955    | gca gtg aag cac 3002<br>Ala Val Lys His         |  |
| ttt ggg (<br>Phe Gly (<br>960 | gaa gag gct ggc aaa<br>Glu Glu Ala Gly Lys<br>965 | ata caa cca gat gag<br>Elle Gln Pro Asp Glu<br>970   | ttc ttt ggc att 3050<br>Phe Phe Gly Ile<br>975  |  |
| ttt gat o                     | caa ttt ctt caa gct<br>Gln Phe Leu Gln Ala<br>980 | gtg tca gaa gcc aaa<br>Val Ser Glu Ala Lys<br>985    | caa gaa aac gaa 3098<br>Gln Glu Asn Glu<br>990  |  |
| aat atg a<br>Asn Met A        | aga aag aaa aag gag<br>Arg Lys Lys Lys Glu<br>995 | gaa gaa gaa cgt cga<br>Glu Glu Glu Arg Arg<br>1000   | gct cgc atg gaa 3146<br>Ala Arg Met Glu<br>1005 |  |
| Ala Gln I                     |                                                   | t gaa agg gaa cgt aa<br>g Glu Arg Glu Arg Ly<br>1015 |                                                 |  |
| Ala Lys G                     |                                                   | a agc gga gag ttt ga<br>u Ser Gly Glu Phe As<br>1030 |                                                 |  |
| Ser Ala I                     |                                                   | a gtg ttt gac aaa ga<br>u Val Phe Asp Lys As<br>1045 |                                                 |  |
| Leu Lys A                     | egg aat cgc aaa cg<br>Arg Asn Arg Lys Ar<br>.055  | t att acc aac cag at<br>g Ile Thr Asn Gln Me<br>1060 |                                                 |  |
| Ser Arg G                     | gag aga cca atc ac<br>lu Arg Pro Ile Th<br>.070   | a aaa ctt aat ttc ta<br>r Lys Leu Asn Phe<br>1075    | attttcca 3369                                   |  |
| tgaatactt                     | t tttttagaaa gctca                                | ttagc agccctctaa agtg                                | actaga acgtttcatt 3429                          |  |
| acactgcct                     | t gcaatccaaa cagtg                                | gcaat tttttccttc atct                                | gtgagt gaatgtgtga 3489                          |  |
| acgtgtgta                     | t gtaaatgtat gtgtg                                | tatat attaaaaaat gtat                                | atagat gtctgagtgt 3549                          |  |
| tgtctggag                     | a cctatacgta tggtt                                | aaaaa gatttatgtt aatg                                | tatgtg ctccaaaacc 3609                          |  |
| tttcgtgta                     | t gcattcacat tgagt                                | gtggc tcattttctt tccc                                | egaacg ccatgactgt 3669                          |  |
| tcagaagca                     | c aatactatct cctga                                | aagag ataagagaca ttcc                                | ctagat tcaaaggcaa 3729                          |  |
| aacagaaga                     | a acaaacaaac aaaca                                | aacaa agcttgcaaa atat                                | tttatg gtttccaagc 3789                          |  |
| ttgatatcc                     | t ttaaaattat tttca                                | ttgat ggaactggag ttgt                                | ggaaa aacatagatt 3849                           |  |
| taaaatgat                     | t tttgataget gacat                                | tgtga tgttgatgta tcaca                               | atcagt aataggacca 3909                          |  |
| gctttgaat                     | t totgacattg gtgtg                                | gggat acagtctgta aatg                                | ttatt gagaacatct 3969                           |  |
| tgcacacaa                     | t ttgaattatg tagaa                                | gtca atcaagtttt tgtal                                | attta aaagttggac 4029                           |  |
| atcaatttt                     | t teceetgatt teates                               | aagtt atctctgcca agtgo                               | etcttg ataatttett 4089                          |  |
| cagattttt                     | g gaaaaaaaca ctata                                | aaat gcaatccatg cttt                                 | tttaa agaacaacat 4149                           |  |
| tgccagagta                    | a tgcttgttct aacaat                               | atag atatataaac cttaa                                | aaata ataaaatatc 4209                           |  |
| tcacccaaga                    | a cttaaaggaa gaatto                               | totg aagggataaa gatta                                | 4256                                            |  |

. <210> 66

<211> 1078

<212> PRT

. <213> NM 014992 DAAM1

<400> 66

Met Ala Pro Arg Lys Arg Gly Gly Arg Gly Ile Ser Phe Ile Phe Cys
1 10 15

Cys Phe Arg Asn Asn Asp His Pro Glu Ile Thr Tyr Arg Leu Arg Asn 20 25 30

Asp Ser Asn Phe Ala Leu Gln Thr Met Glu Pro Ala Leu Pro Met Pro 35 40 45

Pro Val Glu Glu Leu Asp Val Met Phe:Ser Glu Leu Val Asp Glu Leu 50 55 60

Asp Leu Thr Asp Lys His Arg Glu Ala Met Phe Ala Leu Pro Ala Glu 65 70 75 80

Lys Lys Trp Gln Ile Tyr Cys Ser Lys Lys Lys Asp Gln Glu Glu Asn 85 90 95

Lys Gly Ala Thr Ser Trp Pro Glu Phe Tyr Ile Asp Gln Leu Asn Ser 100 105 110

Met Ala Ala Arg Lys Ser Leu Leu Ala Leu Glu Lys Glu Glu Glu Glu 115 120 125

Glu Arg Ser Lys Thr Ile Glu Ser Leu Lys Thr Ala Leu Arg Thr Lys 130 135 140

Pro Met Arg Phe Val Thr Arg Phe Ile Asp Leu Asp Gly Leu Ser Cys 155 150 150

Ile Leu Asn Phe Leu Lys Thr Met Asp Tyr Glu Thr Ser Glu Ser Arg 165 170 175

Ile His Thr Ser Leu Ile Gly Cys Ile Lys Ala Leu Met Asn Asn Ser 180 180 190

Gln Gly Arg Ala His Val Leu Ala His Ser Glu Ser Ile Asn Val Ile 195 200 205

Ala Gln Ser Leu Ser Thr Glu Asn Ile Lys Thr Lys Val Ala Val Leu 210 215 220 Glu Ile Leu Gly Ala Val Cys Leu Val Pro Gly Gly His Lys Lys Val 225 230 235 240

Leu Gln Ala Met Leu His Tyr Gln Lys Tyr Ala Ser Glu Arg Thr Arg 245 250 255

Phe Gln Thr Leu Ile Asn Asp Leu Asp Lys Ser Thr Gly Arg Tyr Arg 260 265 270

Asp Glu Val Ser Leu Lys Thr Ala Ile Met Ser Phe Ile Asn Ala Val 275 280 285

Leu Ser Gln Gly Ala Gly Val Glu Ser Leu Asp Phe Arg Leu His Leu 290 295 300

Arg Tyr Glu Phe Leu Met Leu Gly Ile Gln Pro Val Ile Asp Lys Leu 305 310 315 320

Arg Glu His Glu Asn Ser Thr Leu Asp Arg His Leu Asp Phe Phe Glu 325 330 335

Met Leu Arg Asn Glu Asp Glu Leu Glu Phe Ala Lys Arg Phe Glu Leu 340 345 350

Val His Ile Asp Thr Lys Ser Ala Thr Gln Met Phe Glu Leu Thr Arg 355 360 365

Lys Arg Leu Thr His Ser Glu Ala Tyr Pro His Phe Met Ser Ile Leu 370 375 380

His His Cys Leu Gln Met Pro Tyr Lys Arg Ser Gly Asn Thr Val Gln 385 390 395 400

Tyr Trp Leu Leu Asp Arg Ile Ile Gln Gln Ile Val Ile Gln Asn 405 410 415

Asp Lys Gly Gln Asp Pro Asp Ser Thr Pro Leu Glu Asn Phe Asn Ile 420 425 430

Lys Asn Val Val Arg Met Leu Val Asn Glu Asn Glu Val Lys Gln Trp
435 440 445

Lys Glu Gln Ala Glu Lys Met Arg Lys Glu His Asn Glu Leu Gln Gln 450 .455 460

Lys Leu Glu Lys Lys Glu Arg Glu Cys Asp Ala Lys Thr Gln Glu Lys 465 470 475 480

Glu Glu Met Met Gln Thr Leu Asn Lys Met Lys Glu Lys Leu Glu Lys 485 490 495 Glu Thr Thr Glu His Lys Gln Val Lys Gln Gln Val Ala Asp Leu Thr 500 510

Ala Gln Leu His Glu Leu Ser Arg Arg Ala Val Cys Ala Ser Ile Pro 515 520 525

Gly Gly Pro Ser Pro Gly Ala Pro Gly Gly Pro Phe Pro Ser Ser Val 530 535 540

Pro Gly Ser Leu Leu Pro Pro Pro Pro Pro Pro Pro Leu Pro Gly Gly 545 550 555 560

Met Leu Pro Pro Pro Pro Pro Leu Pro Pro Gly Gly Pro Pro Pro 565 570 575

Pro Pro Gly Pro Pro Pro Leu Gly Ala Ile Met Pro Pro Pro Gly Ala 580 590

Pro Met Gly Leu Ala Leu Lys Lys Lys Ser Ile Pro Gln Pro Thr Asn 595 600 605

Ala Leu Lys Ser Phe Asn Trp Ser Lys Leu Pro Glu Asn Lys Leu Glu 610 615 620

Gly Thr Val Trp Thr Glu Ile Asp Asp Thr Lys Val Phe Lys Ile Leu 625 630 635 640

Asp Leu Glu Asp Leu Glu Arg Thr Phe Ser Ala Tyr Gln Arg Gln Gln 645 650 655

Asp Phe Phe Val Asn Ser Asn Ser Lys Gln Lys Glu Ala Asp Ala Ile 660 665 670

Asp Asp Thr Leu Ser Ser Lys Leu Lys Val Lys Glu Leu Ser Val Ile 675 680 685

Asp Gly Arg Arg Ala Gln Asn Cys Asn Ile Leu Leu Ser Arg Leu Lys 690 695 700

Leu Ser Asn Asp Glu Ile Lys Arg Ala Ile Leu Thr Met Asp Glu Gln 705 710 715 720

Glu Asp Leu Pro Lys Asp Met Leu Glu Gln Leu Leu Lys Phe Val Pro 725 730 735

Glu Lys Ser Asp Ile Asp Leu Leu Glu Glu His Lys His Glu Leu Asp
740 745 750

Arg Met Ala Lys Ala Asp Arg Phe Leu Phe Glu Met Ser Arg Ile Asn

755 760 765

His Tyr Gln Gln Arg Leu Gln Ser Leu Tyr Phe Lys Lys Phe Ala 770 775 780

Glu Arg Val Ala Glu Val Lys Pro Lys Val Glu Ala Ile Arg Ser Gly 785 790 795 800

Ser Glu Glu Val Phe Arg Ser Gly Ala Leu Lys Gln Leu Leu Glu Val 805 810 815

Val Leu Ala Phe Gly Asn Tyr Met Asn Lys Gly Gln Arg Gly Asn Ala 820 825 830

Tyr Gly Phe Lys Ile Ser Ser Leu Asn Lys Ile Ala Asp Thr Lys Ser 835 840 845

Ser Ile Asp Lys Asn Ile Thr Leu Leu His Tyr Leu Ile Thr Ile Val 850 855 860

Glu Asn Lys Tyr Pro Ser Val Leu Asn Leu Asn Glu Glu Leu Arg Asp 865 870 875 880

Ile Pro Gln Ala Ala Lys Val Asn Met Thr Glu Leu Asp Lys Glu Ile 885 890 895

Ser Thr Leu Arg Ser Gly Leu Lys Ala Val Glu Thr Glu Leu Glu Tyr 900 905 910

Gln Lys Ser Gln Pro Pro Gln Pro Gly Asp Lys Phe Val Ser Val Val 915 920 925

Ser Gln Phe Ile Thr Val Ala Ser Phe Ser Phe Ser Asp Val Glu Asp 930 935 940

Leu Leu Ala Glu Ala Lys Asp Leu Phe Thr Lys Ala Val Lys His Phe 945 950 955 960

Gly Glu Glu Ala Gly Lys Ile Gln Pro Asp Glu Phe Phe Gly Ile Phe 965 970 975

Asp Gln Phe Leu Gln Ala Val Ser Glu Ala Lys Gln Glu Asn Glu Asn 980 985 990

Met Arg Lys Lys Glu Glu Glu Glu Arg Arg Ala Arg Met Glu Ala 995 1000 1005

Gln Leu Lys Glu Gln Arg Glu Arg Glu Arg Lys Met Arg Lys Ala 1010 1015 1020

Lys Glu Asn Ser Glu Glu Ser Gly Glu Phe Asp Asp Leu Val Ser

|                                                                   | 10                                                         | 25                                                  |                                                                          |                                                                    |                                                                          | 1                                                                        | 030                                          |                                                                   |                                     |                                                                          |                                                                | 1035                                                       |                                                                          |                                            |                                                                          |                   |
|-------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------|-------------------|
| Ala                                                               | a Le<br>10                                                 | u A<br>40                                           | rg S                                                                     | er G                                                               | ly G                                                                     | lu V                                                                     | al<br>045                                    | Phe                                                               | Asp                                 | Lys .                                                                    |                                                                | Leu<br>1050                                                | Ser                                                                      | Lys                                        | Leu                                                                      |                   |
| Lys                                                               | 10.                                                        | g A<br>55                                           | sn A                                                                     | rg L                                                               | ys A                                                                     | rg I.                                                                    | le '                                         | Thr                                                               | Asn                                 | Gln 1                                                                    |                                                                | Thr<br>1065                                                | Asp                                                                      | Ser                                        | Ser                                                                      |                   |
| Arg                                                               | 10°                                                        | u A<br>70                                           | rg P:                                                                    | ro I                                                               | le Ti                                                                    |                                                                          | ys :<br>075                                  | Leu .                                                             | Asn                                 | Phe                                                                      |                                                                |                                                            |                                                                          |                                            |                                                                          |                   |
| <21                                                               | .0>                                                        | 67                                                  | -                                                                        |                                                                    |                                                                          |                                                                          |                                              |                                                                   | . ,                                 |                                                                          |                                                                |                                                            |                                                                          |                                            |                                                                          |                   |
| <21                                                               | 1>                                                         | 109                                                 | 6                                                                        |                                                                    |                                                                          |                                                                          |                                              |                                                                   | ٠                                   |                                                                          |                                                                | •                                                          |                                                                          |                                            |                                                                          |                   |
| <21                                                               | 2>                                                         | DNA                                                 |                                                                          |                                                                    |                                                                          |                                                                          |                                              |                                                                   |                                     |                                                                          |                                                                |                                                            |                                                                          |                                            |                                                                          |                   |
| <21                                                               | 3>                                                         | NM_                                                 | 00212                                                                    | 22 MI                                                              | IC cl                                                                    | .ass                                                                     | II I                                         | DQ a.                                                             | Lpha                                | 1, 1                                                                     | ILA-                                                           | DQA1                                                       |                                                                          |                                            |                                                                          |                   |
|                                                                   |                                                            |                                                     |                                                                          |                                                                    |                                                                          | •                                                                        |                                              |                                                                   |                                     |                                                                          |                                                                |                                                            | •                                                                        |                                            |                                                                          |                   |
| <22                                                               | 0>                                                         |                                                     |                                                                          |                                                                    |                                                                          |                                                                          |                                              |                                                                   |                                     |                                                                          |                                                                |                                                            |                                                                          |                                            |                                                                          |                   |
| <22                                                               | 1>                                                         | CDS                                                 |                                                                          |                                                                    |                                                                          |                                                                          |                                              |                                                                   |                                     |                                                                          |                                                                |                                                            |                                                                          |                                            |                                                                          |                   |
| <22                                                               | 2>                                                         | (1)                                                 | . (76                                                                    | 55)                                                                |                                                                          |                                                                          |                                              |                                                                   |                                     |                                                                          | _                                                              |                                                            |                                                                          |                                            |                                                                          |                   |
| <22                                                               | 3>                                                         |                                                     |                                                                          |                                                                    |                                                                          |                                                                          |                                              |                                                                   |                                     |                                                                          |                                                                |                                                            |                                                                          |                                            |                                                                          |                   |
|                                                                   |                                                            |                                                     |                                                                          |                                                                    |                                                                          |                                                                          |                                              |                                                                   |                                     | •                                                                        |                                                                |                                                            |                                                                          |                                            |                                                                          |                   |
| atg                                                               | 0><br>atc                                                  | cta                                                 | . aac                                                                    | aaa                                                                | gct                                                                      | ctg                                                                      | ctg                                          | ctg                                                               | ggg                                 | gca                                                                      | cto                                                            | gct                                                        | ctg                                                                      | acc                                        | acc                                                                      | 48                |
| 1                                                                 | Ile                                                        | Leu                                                 | Asn                                                                      | Lys<br>5                                                           | Ala                                                                      | Leu                                                                      | Leu                                          | Leu                                                               | Gly<br>10                           | Ala                                                                      | Let                                                            | Ala                                                        | ьeu                                                                      | Thr<br>15                                  | Thr                                                                      |                   |
| gtg                                                               | atg                                                        | ago                                                 | ccc                                                                      | 5<br>tgt                                                           | gga                                                                      | gat                                                                      | Leu                                          | ,<br>gac                                                          | 10<br>att                           | Ala<br>oto                                                               | act                                                            |                                                            | cac                                                                      | 15                                         | acc                                                                      | 96                |
| gtg<br>Val                                                        | atg<br>Met                                                 | agc<br>Ser                                          | ccc<br>Pro<br>20                                                         | tgt<br>Cys                                                         | gga<br>Gly<br>ttg                                                        | ggt<br>Gly                                                               | gaa<br>Glu                                   | gac<br>Asp<br>25                                                  | 10<br>att<br>Ile                    | gtg<br>Val                                                               | gct                                                            | gac                                                        | cac<br>His<br>30                                                         | 15<br>gtt<br>Val                           | gcc<br>Ala                                                               | 96<br>144         |
| gtg<br>Val<br>tct<br>Ser                                          | atg<br>Met<br>tgt<br>Cys                                   | ago<br>Ser<br>ggt<br>Gly<br>35                      | ccc<br>Pro<br>20<br>gta<br>Val                                           | tgt<br>Cys<br>aac<br>Asn                                           | gga<br>Gly<br>ttg<br>Leu                                                 | ggt<br>Gly<br>tac<br>Tyr                                                 | gaa<br>Glu<br>cag<br>Gln<br>40               | gac<br>Asp<br>25<br>ttt<br>Phe                                    | att Ile tac Tyr                     | gtg<br>Val<br>ggt<br>Gly                                                 | gct<br>Ala<br>ccc<br>Pro                                       | gac<br>Asp<br>tct<br>Ser                                   | cac<br>His<br>30<br>ggc<br>Gly                                           | gtt<br>Val<br>cag<br>Gln                   | gcc<br>Ala<br>tac<br>Tyr                                                 |                   |
| gtg<br>Val<br>tct<br>Ser<br>acc<br>Thr                            | atg<br>Met<br>tgt<br>Cys<br>cat<br>His<br>50               | ago<br>Ser<br>ggt<br>Gly<br>35<br>gaa<br>Glu        | ccc<br>Pro<br>20<br>gta<br>Val<br>ttt<br>Phe                             | tgt<br>Cys<br>aac<br>Asn<br>gat<br>Asp                             | gga<br>Gly<br>ttg<br>Leu<br>gga<br>Gly                                   | ggt<br>Gly<br>tac<br>Tyr<br>gat<br>Asp<br>55                             | gaa<br>Glu<br>cag<br>Gln<br>40<br>gag<br>Glu | gac<br>Asp<br>25<br>ttt<br>Phe<br>cag<br>Gln                      | att Ile tac Tyr ttc Phe             | gtg<br>Val<br>ggt<br>Gly<br>tac<br>Tyr                                   | gct<br>Ala<br>ccc<br>Pro<br>gtg<br>Val<br>60                   | gac<br>Asp<br>tct<br>Ser<br>45                             | cac<br>His<br>30<br>ggc<br>Gly<br>ctg<br>Leu                             | gtt Val cag Gln gag Glu                    | gcc<br>Ala<br>tac<br>Tyr<br>agg<br>Arg                                   | 144               |
| gtg<br>Val<br>tct<br>Ser<br>acc<br>Thr                            | atg<br>Met<br>tgt<br>Cys<br>cat<br>His<br>50<br>gag<br>Glu | agc<br>Ser<br>ggt<br>35<br>gaa<br>Glu<br>act<br>Thr | ccc<br>Pro<br>20<br>gta<br>Val<br>ttt<br>Phe<br>gcc<br>Ala               | tgt<br>Cys<br>aac<br>Asn<br>gat<br>Asp<br>tgg<br>Trp               | gga<br>Gly<br>ttg<br>Leu<br>gga<br>Gly<br>cgg<br>Arg<br>70               | ggt<br>Gly<br>tac<br>Tyr<br>gat<br>Asp<br>55<br>tgg<br>Trp               | gaaa Glu cag Gln 40 gag Glu cct Pro          | gac<br>Asp<br>25<br>ttt<br>Phe<br>cag<br>Gln<br>gag<br>Glu        | att Ile tac Tyr ttc Phe ttc Phe     | gtg<br>Val<br>ggt<br>Gly<br>tac<br>Tyr<br>agc<br>Ser<br>75               | gct Ala                                                        | gac<br>Asp<br>tct<br>Ser<br>45<br>gac<br>Asp<br>ttt<br>Phe | cac<br>His<br>30<br>ggc<br>Gly<br>ctg<br>Leu<br>gga<br>Gly               | gtt Val cag Gln gag Glu ggt Gly            | gcc<br>Ala<br>tac<br>Tyr<br>agg<br>Arg<br>ttt<br>Phe<br>80               | 144<br>192        |
| gtg<br>Val<br>tct<br>Ser<br>acc<br>Thr<br>aag<br>Lys<br>65<br>gac | atgt Met tgts Cys cats 50 gag Glu ccg Pro atc              | agc Ser ggt Gly 35 gaa Glu act Thr cag Gln atg      | ccc<br>Pro<br>20<br>gta<br>Val<br>ttt<br>Phe<br>gcc<br>Ala<br>ggt<br>Gly | tgt<br>Cys<br>aac<br>Asn<br>gat<br>Asp<br>tgg<br>Trp<br>gca<br>Ala | gga<br>Gly<br>ttg<br>Leu<br>gga<br>Gly<br>cgg<br>Arg<br>70<br>ctg<br>Leu | ggt<br>Gly<br>tac<br>Tyr<br>gat<br>Asp<br>55<br>tgg<br>Trp<br>aga<br>Arg | gaa Glu cag Gln 40 gag Glu cct Pro           | gac<br>Asp<br>25<br>ttt<br>Phe<br>cag<br>Gln<br>gag<br>Glu<br>atg | att Ile tac Tyr ttc Phe ttc Phe acc | gtg<br>Val<br>ggt<br>Gly<br>tac<br>Tyr<br>agc<br>Ser<br>75<br>gtg<br>Val | gct<br>Ala<br>ccc<br>gtg<br>Val<br>60 aaa<br>Lys<br>gca<br>Ala | gac Asp tct Ser 45 gac Asp ttt Phe aaa Lys                 | cac<br>His<br>30<br>ggc<br>Gly<br>ctg<br>Leu<br>gga<br>Gly<br>cac<br>His | gtt Val cag Gln gag Glu ggt Gly aac Asn 95 | gcc<br>Ala<br>tac<br>Tyr<br>agg<br>Arg<br>ttt<br>Phe<br>80<br>ttg<br>Leu | 144<br>192<br>240 |

| aac<br>Asn        | acc<br>Thr<br>130 | ctc<br>Leu        | att<br>Ile        | tgt<br>Cys        | ctt<br>Leu        | gtg<br>Val<br>135 | gac<br>Asp        | aac<br>Asn        | atc<br>Ile        | ttt<br>Phe        | cct<br>Pro<br>140 | cct<br>Pro        | .gtg<br>Val       | gtc<br>Val        | aac<br>Asn        | 432  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| atc<br>Ile<br>145 | aca<br>Thr        | tgg<br>Trp        | ctg<br>Leu        | agc<br>Ser        | aat<br>Asn<br>150 | ggg<br>Gly        | cag<br>Gln        | tca<br>Ser        | gtc<br>Val        | aca<br>Thr<br>155 | gaa<br>Glu        | ggt<br>Gly        | gtt<br>Val        | tct<br>Ser        | gag<br>Glu<br>160 | 480  |
| acc<br>Thr        | agc<br>Ser        | ttc<br>Phe        | ctc<br>Leu        | tcc<br>Ser<br>165 | aag<br>Lys        | agt<br>Ser        | gat<br>Asp        | cat<br>His        | tcc<br>Ser<br>170 | ttc<br>Phe        | ttc<br>Phe        | aag<br>Lys        | atc<br>Ile        | agt<br>Ser<br>175 | tac<br>Tyr        | 528  |
| Leu               | acc<br>Thr        | ttc<br>Phe        | ctc<br>Leu<br>180 | cct<br>Pro        | tct<br>Ser        | gct<br>Ala        | gat<br>Asp        | gag<br>Glu<br>185 | att<br>Ile        | tat<br>Tyr        | gac<br>Asp        | tgc<br>Cys        | aag<br>Lys<br>190 | gtg<br>Val        | gag<br>Glu        | 576  |
| cac<br>His        | tgg<br>Trp        | ggc<br>Gly<br>195 | ctg<br>Leu        | gac<br>Asp        | cag<br>Gln        | cct<br>Pro        | ctt<br>Leu<br>200 | ctg<br>Leu        | aaa<br>Lys        | cac<br>His        | tgg<br>Trp        | gag<br>Glu<br>205 | cct<br>Pro        | gag<br>Glu        | att<br>Ile        | 624  |
| cca<br>Pro        | gcc<br>Ala<br>210 | cct<br>Pro        | atg<br>Met        | tca<br>Ser        | gag<br>Glu        | ctc<br>Leu<br>215 | aca<br>Thr        | gag<br>Glu        | act<br>Thr        | gtg<br>Val        | gtc<br>Val<br>220 | Cys               | gcc<br>Ala        | ctg<br>Leu        | GJ À<br>aaa       | 672  |
| ttg<br>Leu<br>225 | tct<br>Ser        | gtg<br>Val        | ggc<br>Gly        | ctc<br>Leu        | atg<br>Met<br>230 | Gly               | att<br>Ile        | gtg<br>Val        | gtg<br>Val        | ggc<br>Gly<br>235 | act<br>Thr        | gtc<br>Val        | ttc<br>Phe        | atc<br>Ile        | atc<br>Ile<br>240 | 720  |
| caa<br>Gln        | ggc<br>Gly        | ctg<br>Leu        | Arg               | tca<br>Ser<br>245 | gtt<br>Val        | ggt<br>Gly        | gct<br>Ala        | tcc<br>Ser        | aga<br>Arg<br>250 | cac<br>His        | caa<br>Gln        | GJ A<br>aaa       | cca<br>Pro        | ttg<br>Leu<br>255 |                   | 765  |
| tgaa              | tccc              | at c              | ctgg              | aagg              | g aa              | ggtg              | cato              | gcc               | atct              | aca               | ggag              | caga              | ag a              | .atgg             | acttg             | 825  |
| ctaa              | atga              | cc t              | agca              | ctat              | t ct              | ctgg              | cccg              | att               | tatc              | ata               | tccc              | tttt              | ct c              | ctcc              | aaata             | 885  |
| tttc              | tcct              | ct c              | acct              | tttc              | t ct              | ggga              | ctta              | agc               | tgct              | ata               | tccc              | ctca              | ga g              | ctca              | caaat             | 945  |
| gcct              | ttac              | at t              | cttt              | ccct              | g ac              | ctcc              | tgat              | ttt               | tttt              | ttc               | tttt              | ctca              | aa t              | gtta              | cctac             | 1005 |
| aata              | catg              | cc t              | 3 <b>3</b> 33     | taag              | с са              | cccg              | gcta              | cct               | aatt              | cct               | cagt              | aacc              | tc c              | atct              | aaaat             | 1065 |
| ctcc              | aagga             | aa go             | caat              | aaat              | t cc              | tttt              | atga              | g                 |                   |                   |                   |                   |                   |                   |                   | 1096 |
| ~21 N             |                   | <b>5</b>          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | •                 |      |

<210> 68

<211> 255

<212> PRT

<213> NM\_002122 MHC class II DQ alpha 1, HLA-DQA1

<400> 68

Met Ile Leu Asn Lys Ala Leu Leu Leu Gly Ala Leu Ala Leu Thr Thr 1 10 15

Val Met Ser Pro Cys Gly Gly Glu Asp Ile Val Ala Asp His Val Ala 20 25 30

Ser Cys Gly Val Asn Leu Tyr Gln Phe Tyr Gly Pro Ser Gly Gln Tyr 35 40 45

Thr His Glu Phe Asp Gly Asp Glu Gln Phe Tyr Val Asp Leu Glu Arg 50 55 60

Lys Glu Thr Ala Trp Arg Trp Pro Glu Phe Ser Lys Phe Gly Gly Phe 65 70 75 80

Asp Pro Gln Gly Ala Leu Arg Asn Met Ala Val Ala Lys His Asn Leu 85 90 95

Asn Ile Met Ile Lys Arg Tyr Asn Ser Thr Ala Ala Thr Asn Glu Val 100 105 110

Pro Glu Val Thr Val Phe Ser Lys Ser Pro Val Thr Leu Gly Gln Pro 115 120 125

Asn Thr Leu Ile Cys Leu Val Asp Asn Ile Phe Pro Pro Val Val Asn 130 135 140

Ile Thr Trp Leu Ser Asn Gly Gln Ser Val Thr Glu Gly Val Ser Glu 145 155 160

Thr Ser Phe Leu Ser Lys Ser Asp His Ser Phe Phe Lys Ile Ser Tyr 165 170 175

Leu Thr Phe Leu Pro Ser Ala Asp Glu Ile Tyr Asp Cys Lys Val Glu 180 . 190

His Trp Gly Leu Asp Gln Pro Leu Leu Lys His Trp Glu Pro Glu Ile
195 200 205

Pro Ala Pro Met Ser Glu Leu Thr Glu Thr Val Val Cys Ala Leu Gly 210 225 220

Leu Ser Val Gly Leu Met Gly Ile Val Val Gly Thr Val Phe Ile Ile 225 235 235 240

Gln Gly Leu Arg Ser Val Gly Ala Ser Arg His Gln Gly Pro Leu 245 250 255

<210> 69

<211> 2820

<212> DNA

<213> NM\_003014 SFRP4, secreted frizzled-related protein 4

<220>

<221> CDS

<222> (238)..(1275)

<223>

|                   | .ggg.             | 69<br>ttcg        | cgc               | cccg                | aag (            | gctga             | agag              | ct g              | gege              | tgct              | c gt              | gccc                 | tgtg               | tgc                  | cagacgg           | 60  |
|-------------------|-------------------|-------------------|-------------------|---------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|--------------------|----------------------|-------------------|-----|
| cgg               | gagc              | tccg              | cgg               | ccgg                | acc o            | cgc               | ggcc              | cc go             | ttt               | gctg              | c cg              | actg                 | gagt               | ttg                  | ggggaag           | 120 |
| aaa               | actc              | tcct              | gcg               | cccc                | aga a            | agati             | ttct              | tc ct             | cgg               | cgaa              | g gg              | acag                 | cgaa               | aga                  | tgagggt           | 180 |
| ggo               | cagga             | aaga              | gaag              | ggcg                | ett i            | ctgt              | ctg               | cc gg             | gggto             | egca              | g cg              | cgag                 | aggg               | cag                  | tgcc              | 237 |
| ato<br>Met<br>1   | tto<br>Phe        | c cto             | tce<br>Se         | c ato<br>r Ile<br>5 | c cta            | a gto<br>1 Val    | g gcg             | g cto<br>a Leu    | tgo<br>Cys<br>10  | cto               | g tg<br>ı Tr      | g cto                | g cad<br>u His     | c cto<br>s Lev<br>15 | g gcg<br>n Ala    | 285 |
| cto<br>Lev        | Gly               | gto<br>Val        | Arg<br>20         | g Gl7<br>c ggc      | gcg<br>Ala       | p ccc             | c tgo<br>Cys      | gaç<br>Glu<br>25  | gcq<br>Ala        | g gto<br>val      | g cgo             | c ato                | c cct<br>Pro<br>30 | ate<br>Me            | g tgc<br>t Cys    | 333 |
| cgg<br>Arg        | cac<br>His        | ato<br>Met<br>35  | r ccc             | tgg<br>Trp          | g aac<br>Asr     | ato<br>Ile        | acç<br>Thi        | g egg<br>: Arg    | atç<br>Met        | cco<br>Pro        | aac<br>Ası        | c cac<br>n His<br>45 | c cto<br>s Lev     | g cad<br>1 His       | cac<br>His        | 381 |
| agc<br>Ser        | acg<br>Thr<br>50  | cag<br>Gln        | gag<br>Glu        | aac<br>Asn          | gec<br>Ala       | ato<br>Ile<br>55  | cto<br>Lev        | gcc<br>Ala        | ato<br>Ile        | gag<br>Glu        | caç<br>Glr<br>60  | tao<br>Tyi           | gaç<br>Glu         | gaq<br>Glu           | g ctg<br>1 Leu    | 429 |
| gtg<br>Val<br>65  | gac               | gtg<br>Val        | aac<br>Asn        | tgc<br>Cys          | ago<br>Ser<br>70 | gcc               | gtg<br>Val        | ctg<br>Leu        | cgc               | ttc<br>Phe<br>75  | tto<br>Phe        | tto<br>Phe           | tgt<br>Cys         | gco<br>Ala           | atg<br>Met<br>80  | 477 |
| tac<br>Tyr        | gcg<br>Ala        | ccc<br>Pro        | att<br>Ile        | tgc<br>Cys<br>85    | acc<br>Thr       | ctg<br>Leu        | gag<br>Glu        | ttc<br>Phe        | ctg<br>Leu<br>90  | cac               | gac               | cct                  | ato<br>Ile         | aaç<br>Lys<br>95     | ccg<br>Pro        | 525 |
| tgc<br>Cys        | aag<br>Lys        | tcg<br>Ser        | gtg<br>Val<br>100 | Cys                 | caa<br>Gln       | cgc<br>Arg        | gcg<br>Ala        | cgc<br>Arg<br>105 | gac<br>Asp        | gac<br>Asp        | tgc<br>Cys        | gag<br>Glu           | ccc<br>Pro<br>110  | Leu                  | atg<br>Met        | 573 |
| aag<br>Lys        | atg<br>Met        | tac<br>Tyr<br>115 | aac<br>Asn        | cac<br>His          | agc<br>Ser       | tgg<br>Trp        | ccc<br>Pro<br>120 | gaa<br>Glu        | agc<br>Ser        | ctg<br>Leu        | gcc<br>Ala        | tgc<br>Cys<br>125    | Asp                | gag<br>Glu           | ctg<br>Leu        | 621 |
| cct<br>Pro        | gtc<br>Val<br>130 | tat<br>Tyr        | gac<br>Asp        | cgt<br>Arg          | ggc<br>Gly       | gtg<br>Val<br>135 | tgc<br>Cys        | att<br>Ile        | tcg<br>Ser        | cct<br>Pro        | gaa<br>Glu<br>140 | gcc<br>Ala           | atc<br>Ile         | gtc<br>Val           | acg<br>Thr        | 669 |
| gac<br>Asp<br>145 | Leu               | ccg<br>Pro        | Glu               | gat<br>Asp          | Val              | Lys               | tgg<br>Trp        | ata<br>Ile        | gac<br>Asp        | atc<br>Ile<br>155 | aca<br>Thr        | cca<br>Pro           | gac<br>Asp         | atg<br>Met           | atg<br>Met<br>160 | 717 |
| gta<br>Val        | cag<br>Gln        | gaa<br>Glu        | agg<br>Arg        | cct<br>Pro<br>165   | ctt<br>Leu       | gat<br>Asp        | gtt<br>Val        | gac<br>Asp        | tgt<br>Cys<br>170 | aaa<br>Lys        | cgc<br>Arg        | cta<br>Leu           | agc<br>Ser         | ccc<br>Pro<br>175    | gat<br>Asp        | 765 |
| cgg<br>Arg        | tgc<br>Cys        | aag<br>Lys        | tgt<br>Cys<br>180 | aaa<br>Lys          | aag<br>Lys       | gtg<br>Val        | aag<br>Lys        | cca<br>Pro<br>185 | act<br>Thr        | ttg<br>Leu        | gca<br>Ala        | acg<br>Thr           | tat<br>Tyr<br>190  | ctc<br>Leu           | agc<br>Ser        | 813 |
| aaa<br>Lys        | aac<br>Asn        | tac<br>Tyr<br>195 | agc<br>Ser        | tat<br>Tyr          | gtt<br>Val       | att<br>Ile        | cat<br>His<br>200 | gcc<br>Ala        | aaa<br>Lys        | ata<br>Ile        | aaa<br>Lys        | gct<br>Ala<br>205    | gtg<br>Val         | cag<br>Gln           | agg<br>Arg        | 861 |
| agt               | ggc               | tgc               | aat               | gag                 | gtc              | aca               | acg               | gtg               | gtg               | gat               | gta               | aaa                  | gag                | atc                  | ttc.              | 909 |

| Ser               | Gly<br>210        | Cys               | Asn               | Glu               | Val               | Thr<br>215        | Thr               | Val               | Val               | Asp               | Val<br>220        | Lys               | Glu        | Ile               | Phe               |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|------|
| aag<br>Lys<br>225 | tcc<br>Ser        | tca<br>Ser        | tca<br>Ser        | ccc<br>Pro        | atc<br>Ile<br>230 | cct<br>Pro        | cga<br>Arg        | act<br>Thr        | caa<br>Gln        | gtc<br>Val<br>235 | ccg<br>Pro        | ctc<br>Leu        | att<br>Ile | aca<br>Thr        | aat<br>Asn<br>240 | 957  |
| tct<br>Ser        | tct<br>Ser        | tgc<br>Cys        | cag<br>Gln        | tgt<br>Cys<br>245 | cca<br>Pro        | cac<br>His        | atc<br>Ile        | ctg<br>Leu        | ccc<br>Pro<br>250 | cat<br>His        | caa<br>Gln        | gat<br>Asp        | gtt<br>Val | ctc<br>Leu<br>255 | atc<br>Ile        | 1005 |
|                   |                   |                   |                   | tgg<br>Trp        |                   |                   |                   |                   |                   |                   |                   |                   |            |                   |                   | 1053 |
| gtt<br>Val        | gaa<br>Glu        | aaa<br>Lys<br>275 | tgg<br>Trp        | aga<br>Arg        | gat<br>Asp        | cag<br>Gln        | ctt<br>Leu<br>280 | agt<br>Ser        | aaa<br>Lys        | aga<br>Arg        | tcc<br>Ser        | ata<br>Ile<br>285 | cag<br>Gln | tgg<br>Trp        | gaa<br>Glu        | 1101 |
| gag<br>Glu        | agg<br>Arg<br>290 | ctg<br>Leu        | cag<br>Gln        | gaa<br>Glu        | cag<br>Gln        | cgg<br>Arg<br>295 | aga<br>Arg        | aca<br>Thr        | gtt<br>Val        | cag<br>Gln        | gac<br>Asp<br>300 | aag<br>Lys        | aag<br>Lys | aaa<br>Lys        | aca<br>Thr        | 1149 |
| gcc<br>Ala<br>305 | G1 y<br>ggg       | cgc<br>Arg        | acc<br>Thr        | agt<br>Ser        | cgt<br>Arg<br>310 | agt<br>Ser        | aat<br>Asn        | ccc<br>Pro        | ccc<br>Pro        | aaa<br>Lys<br>315 | cca<br>Pro        | aag<br>Lys        | gga<br>Gly | aag<br>Lys        | cct<br>Pro<br>320 | 1197 |
| cct<br>Pro        | gct<br>Ala        | ccc<br>Prò        | aaa<br>Lys        | cca<br>Pro<br>325 | gcc<br>Ala        | agt<br>Ser        | ccc<br>Pro        | aag<br>Lys        | aag<br>Lys<br>330 | aac<br>Asn        | att<br>Ile        | aaa<br>Lys        | act<br>Thr | agg<br>Arg<br>335 | agt<br>Ser        | 1245 |
| gcc<br>Ala        | cag<br>Gln        | aag<br>Lys        | aga<br>Arg<br>340 | aca<br>Thr        | aac<br>Asn        | ccg<br>Pro        | aaa<br>Lys        | aga<br>Arg<br>345 | gtg<br>Val        | tgaç              | gctaa             | ict a             | igttt      | ccaa              | ıa                | 1295 |
| gcgg              | agac              | tt c              | cgac              | ttcc              | t ta              | cagg              | atga              | ggc               | tggg              | cat               | tgcc              | tggg              | ac a       | gcct              | atgta             | 1355 |
| aggc              | catg              | tg c              | ccct              | tgcc              | c ta              | acaa              | ctca              | ctg               | cagt              | gct               | cttc              | atag              | ac a       | cato              | ttgca             | 1415 |
| gcat              | tttt              | ct t              | aagg              | ctat              | g ct              | tcag              | tttt              | tct               | ttgt              | aag               | ccat              | caca              | ag c       | cata              | gtggt             | 1475 |
| aggt              | ttgc              | cc t              | ttgg              | taca              | g aa              | ggtg              | agtt              | aaa               | gctg              | gtg               | gaaa              | aggc              | tt a       | ttgc              | attgc             | 1535 |
| attc              | agag              | ta a              | cctg              | tgtg              | c-at              | actc              | taga              | aga               | gtag              | gga               | aaat              | aatg              | ct t       | gtta              | caatt             | 1595 |
| cgac              | ctaa              | ta t              | gtgc              | attg              | t aa              | aata              | aatg              | cca               | tatt              | tca               | aaca              | aaac              | ac g       | taat              | tttt              | 1655 |
| taca              | gtat              | gt t              | ttat              | tacc              | t tt              | tgat              | atct              | gtt               | gttg              | caa               | tgtt              | agtg              | at g       | tttt              | aaaat             | 1715 |
| gtga              | tgaa              | aa t              | ataa              | tgtti             | t tt              | aaga              | agga              | aca               | gtag              | tgg               | aatg              | aatg              | tt a       | aaag              | atctt             | 1775 |
| tatg              | tgtt              | ta t              | ggtc              | tgca              | g aa              | ggat              | tttt              | gtg               | atga              | aaġ               | ggga              | tttt              | tt g       | aaaa              | attag             | 1835 |
| agaa              | gtag              | ca t              | atgg              | aaaat             | : ta              | taat              | gtgt              | ttt               | ttta              | cca               | atga              | cttc              | ag t       | ttct              | gtttt             | 1895 |
| tagc              | taga              | aa c              | ttaa              | aaaca             | aa                | aata              | ataa              | taa               | agaa              | aaa               | taaa              | taaa              | aa g       | gaga              | ggcag             | 1955 |
| acaa              | tgtc              | tg g              | attc              | ctgtt             | tt.               | ttgg              | ttac              | ctg               | attt              | cca               | tgat              | catg              | at g       | cttc              | ttgtc             | 2015 |
| aaca              | ccct              | et t              | aagc              | agcad             | ca                | gaaa              | cagt              | gag               | tttg              | tct               | gtac              | catt              | ag g       | agtt              | aggta             | 2075 |
| ctaai             | ttagi             | tt g              | gcta              | atgct             | . ca              | agtai             | ttt               | ata               | ccca              | caa               | gaga              | ggtai             | tg t       | cact              | catct             | 2135 |
| tacti             | tecca             | ag g              | acat              | ccacc             | ct                | gagaa             | ataa              | ttt               | gacaa             | agc               | ttaa              | aaatq             | gg c       | cttca             | atgtg             | 2195 |
| agtgo             | ccaaa             | at ti             | ttgti             | ttttc             | tto               | catt              | caaa              | tati              | tttci             | ttt               | gccta             | aaata             | ac a       | tgtga             | agagg             | 2255 |
| agtta             | aaata             | at a              | aatgi             | tacag             | aga               | aggaa             | agt               | tgag              | gttco             | cac (             | ctct              | gaaat             | tg a       | gaati             | tactt             | 2315 |

| gacagttggg | atactttaat | cagaaaaaaa | gaacttattt | gcagcatttt | atcaacaaat | 2375 |
|------------|------------|------------|------------|------------|------------|------|
| ttcataattg | tggacaattg | gaggcattta | ttttaaaaaa | caattttatt | ggccttttgc | 2435 |
| taacacagta | agcatgtatt | ttataaggca | ttcaataaat | gcacaacgcc | caaaggaaat | 2495 |
| aaaatcctat | ctaatcctac | tctccactac | acagaggtaa | tcactattag | tattttggca | 2555 |
| tattattctc | caggtgtttg | cttatgcact | tataaaatga | tttgaacaaa | taaaactagg | 2615 |
| aacctgtata | catgtgtttc | ataacctgcc | tcctttgctt | ggccctttat | tgagataagt | 2675 |
| tttcctgtca | agaaagcaga | aaccatctca | tttctaacag | ctgtgttata | ttccatagta | 2735 |
| tgcattactc | aacaaactgt | tgtgctattg | gatacttagg | tggtttcttc | actgacaata | 2795 |
| ctgaataaac | atctcaccgg | aattc      | .•         | •          |            | 2820 |
|            |            |            |            |            |            |      |

<210> 70

<211> 346

<212> PRT

<213> NM\_003014 SFRP4, secreted frizzled-related protein 4

<400> 70

Met Phe Leu Ser Ile Leu Val Ala Leu Cys Leu Trp Leu His Leu Ala 1 5 10 15

Leu Gly Val Arg Gly Ala Pro Cys Glu Ala Val Arg Ile Pro Met Cys
20 25 30

Arg His Met Pro Trp Asn Ile Thr Arg Met Pro Asn His Leu His His 35 40 45

Ser Thr Gln Glu Asn Ala Ile Leu Ala Ile Glu Gln Tyr Glu Glu Leu 50 55 60

Val Asp Val Asn Cys Ser Ala Val Leu Arg Phe Phe Phe Cys Ala Met 65 70 75 80

Tyr Ala Pro Ile Cys Thr Leu Glu Phe Leu His Asp Pro Ile Lys Pro 85 90 95

Cys Lys Ser Val Cys Gln Arg Ala Arg Asp Asp Cys Glu Pro Leu Met 100 105 110

Lys Met Tyr Asn His Ser Trp Pro Glu Ser Leu Ala Cys Asp Glu Leu 115 120 125

Pro Val Tyr Asp Arg Gly Val Cys Ile Ser Pro Glu Ala Ile Val Thr 130 135 140

Asp Leu Pro Glu Asp Val Lys Trp Ile Asp Ile Thr Pro Asp Met Met 145 150 155 160

Val Gln Glu Arg Pro Leu Asp Val Asp Cys Lys Arg Leu Ser Pro Asp 165 170 175

Arg Cys Lys Cys Lys Lys Val Lys Pro Thr Leu Ala Thr Tyr Leu Ser 180 185

Lys Asn Tyr Ser Tyr Val Ile His Ala Lys Ile Lys Ala Val Gln Arg

Ser Gly Cys Asn Glu Val Thr Thr Val Val Asp Val Lys Glu Ile Phe 210 215 220

Lys Ser Ser Ser Pro Ile Pro Arg Thr Gln Val Pro Leu Ile Thr Asn 225 230 230 235

Ser Ser Cys Gln Cys Pro His Ile Leu Pro His Gln Asp Val Leu Ile 245 250 255

Met Cys Tyr Glu Trp Arg Ser Arg Met Met Leu Leu Glu Asn Cys Leu 260 265 . 270

Val Glu Lys Trp Arg Asp Gln Leu Ser Lys Arg Ser Ile Gln Trp Glu 275 280 285

Glu Arg Leu Gln Glu Gln Arg Arg Thr Val Gln Asp Lys Lys Thr 290 295 300

Ala Gly Arg Thr Ser Arg Ser Asn Pro Pro Lys Pro Lys Gly Lys Pro 305 310 315 320

Pro Ala Pro Lys Pro Ala Ser Pro Lys Lys Asn Ile Lys Thr Arg Ser 325 330 335

Ala Gln Lys Arg Thr Asn Pro Lys Arg Val 340 345

<210> 71

<211> 1362

<212> DNA

<213> NM\_004039 annexin A2

<220>

<221> CDS

<222> (50)..(1066)

<223>

|                   | _                 |                   |                   |                   |                   |                   |                   |                   |                   | •                 |                      |                   |                   |                   |                   |     |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-----|
| <40<br>cat        |                   | 71<br>ggga        | cgct              | ctca              | agc t             | ctco              | gege              | ca co             | gcc               | caget             | t tc                 | ette              | 1                 |                   | tct ac<br>Ser Tl  | 58  |
| gtt<br>Val        | cac<br>His        | gaa<br>Glu        | ato<br>Ile        | cto<br>Lei        | g tgo<br>ı Cys    | aaç<br>Lys<br>10  | g cto<br>Let      | ago<br>Ser        | tto<br>Lev        | g gaç<br>ı Glı    | g ggt<br>1 Gly<br>15 | gat<br>Asp        | cac<br>His        | tci<br>Sei        | aca<br>Thr        | 106 |
| ccc<br>Pro<br>20  | cca<br>Pro        | agt<br>Ser        | gca<br>Ala        | tat<br>Tyr        | ggg<br>Gly<br>25  | tct<br>Ser        | gto<br>Val        | aaa<br>Lys        | gco<br>Ala        | tat<br>Tyr<br>30  | act<br>Thi           | aac<br>Asr        | ttt<br>Phe        | gat<br>Asp        | gct<br>Ala<br>35  | 154 |
| gag<br>Glu        | cgg<br>Arg        | gat<br>Asp        | gct               | ttg<br>Lev<br>40  | aac<br>Asn        | att               | gaa<br>Glu        | aca<br>Thr        | gcc<br>Ala<br>45  | ato<br>Ile        | aaç<br>Lys           | aco<br>Thi        | aaa<br>Lys        | ggt<br>Gly<br>50  | gtg<br>Val        | 202 |
| gat<br>Asp        | gag<br>Glu        | gtc<br>Val        | acc<br>Thr<br>55  | att<br>Ile        | gtc<br>Val        | aac<br>Asn        | att<br>Ile        | ttg<br>Leu<br>60  | acc<br>Thr        | aac<br>Asn        | cgc<br>Arg           | ago<br>Ser        | aat<br>Asn<br>65  | gca<br>Ala        | cag<br>Gln        | 250 |
| aga<br>Arg        | cag<br>Gln        | gat<br>Asp<br>70  | att<br>Ile        | gcc<br>Ala        | ttc<br>Phe        | gcc<br>Ala        | tac<br>Tyr<br>75  | cag<br>Gln        | aga<br>Arg        | agg<br>Arg        | acc<br>Thr           | aaa<br>Lys<br>80  | aag<br>Lys        | gaa<br>Glu        | ctt<br>Leu        | 298 |
| gca<br>Ala        | tca<br>Ser<br>85  | gca<br>Ala        | ctg<br>Leu        | aag<br>Lys        | tca<br>Ser        | gcc<br>Ala<br>90  | tta<br>Leu        | tct<br>Ser        | ggc<br>G1y        | cac<br>His        | ctg<br>Leu<br>95     | gag<br>Glu        | acg<br>Thr        | gtg<br>Val        | att               | 346 |
| ttg<br>Leu<br>100 | ggc               | cta<br>Leu        | ttg<br>Leu        | aag<br>Lys        | aca<br>Thr<br>105 | cct<br>Pro        | gct<br>Ala        | cag<br>Gln        | tat<br>Tyr        | gac<br>Asp<br>110 | Ala                  | tct<br>Ser        | gag<br>Glu        | cta<br>Leu        | aaa<br>Lys<br>115 | 394 |
| gct<br>Ala        | tcc<br>Ser        | atg<br>Met        | aag<br>Lys        | ggg<br>Gly<br>120 | ctg<br>Leu        | gga<br>Gly        | acc<br>Thr        | gac<br>Asp        | gag<br>Glu<br>125 | gac<br>Asp        | tct<br>Ser           | ctc<br>Leu        | att<br>Ile        | gag<br>Glu<br>130 | atc<br>Ile        | 442 |
| atc<br>Ile        | tgc<br>Cys        | tcc<br>Ser        | aga<br>Arg<br>135 | acc<br>Thr        | aac<br>Asn        | cag<br>Gln        | gag<br>Glu        | ctg<br>Leu<br>140 | cag<br>Gln        | gaa<br>Glu        | att<br>Ile           | aac<br>Asn        | aga<br>Arg<br>145 | gtc<br>Val        | tac<br>Tyr        | 490 |
| aag<br>Lys        | gaa<br>Glu        | atg<br>Met<br>150 | tac<br>Tyr        | aag<br>Lys        | act<br>Thr        | gat<br>Asp        | ctg<br>Leu<br>155 | gag<br>Glu        | aag<br>Lys        | gac<br>Asp        | att<br>Ile           | att<br>Ile<br>160 | tcg<br>Ser        | gac<br>Asp        | aca<br>Thr        | 538 |
| tct<br>Ser        | ggt<br>Gly<br>165 | gac<br>Asp        | ttc<br>Phe        | cgc<br>Arg        | aag<br>Lys        | ctg<br>Leu<br>170 | atg<br>Met        | gtt<br>Val        | gcc<br>Ala        | ctg<br>Leu        | gca<br>Ala<br>175    | aag<br>Lys        | ggt<br>Gly        | aga<br>Arg        | aga<br>Arg        | 586 |
| gca<br>Ala<br>180 | gag<br>Glu        | gat<br>Asp        | ggc<br>Gly        | tct<br>Ser        | gtc<br>Val<br>185 | att<br>Ile        | gat<br>Asp        | tat<br>Tyr        | gaa<br>Glu        | ctg<br>Leu<br>190 | att<br>Ile           | gac<br>Asp        | caa<br>Gln        | gat<br>Asp        | gct<br>Ala<br>195 | 634 |
| cgg<br>Arg        | gat<br>Asp        | ctc<br>Leu        | tat<br>Tyr        | gac<br>Asp<br>200 | gct<br>Ala        | gga<br>Gly        | gtg<br>Val        | aag<br>Lys        | agg<br>Arg<br>205 | aaa<br>Lys        | gga<br>Gly           | act<br>Thr        | gat<br>Asp        | gtt<br>Val<br>210 | ccc<br>Pro        | 682 |
| aag<br>Lys        | tgg<br>Trp        | atc<br>Ile        | agc<br>Ser<br>215 | atc<br>Ile        | atg<br>Met        | acc<br>Thr        | gag<br>Glu        | cgg<br>Arg<br>220 | agc<br>Ser        | gtg<br>Val        | ccc<br>Pro           | cac<br>His        | ctc<br>Leu<br>225 | cag<br>Gln        | aaa<br>Lys        | 730 |
| gta<br>Val        | Phe               | gat<br>Asp<br>230 | agg<br>Arg        | tac<br>Tyr        | aag<br>Lys        | Ser               | tac<br>Tyr<br>235 | agc<br>Ser        | cct<br>Pro        | tat<br>Tyr        | gac<br>Asp           | atg<br>Met<br>240 | ttg<br>Leu        | gaa<br>Glu        | agc<br>Ser        | 778 |

|   | atc<br>Ile        | agg<br>Arg<br>245 | aaa<br>Lys        | gag<br>Glu        | gtt<br>Val        | aaa<br>Lys        | gga<br>Gly<br>250 | gac<br>Asp        | ctg<br>Leu        | gaa<br>Glu        | aat<br>Asn        | gct<br>Ala<br>255 | ttc<br>Phe        | ctg<br>Leu        | aac<br>Asn        | ctg<br>Leu        | 826        |
|---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------|
|   | gtt<br>Val<br>260 | cag<br>Gln        | tgc<br>Cys        | att<br>Ile        | cag<br>Gln        | aac<br>Asn<br>265 | aag<br>Lys        | ccc<br>Pro        | ctg<br>Leu        | tat<br>Tyr        | ttt<br>Phe<br>270 | gct<br>Ala        | gat<br>Asp        | cgg<br>Arg        | ctg<br>Leu        | tat<br>Tyr<br>275 | 874        |
|   | gac<br>Asp        | tcc<br>Ser        | atg<br>Met        | aag<br>Lys        | ggc<br>Gly<br>280 | aag<br>Lys        | Gly<br>ggg        | acg<br>Thr        | cga<br>Arg        | gat<br>Asp<br>285 | aag<br>Lys        | gtc<br>Val        | ctg<br>Leu        | atc<br>Ile        | aga<br>Arg<br>290 | atc<br>Ile        | <b>922</b> |
| , | atg<br>Met        | gtc<br>Val        | tcc<br>Ser        | cgc<br>Arg<br>295 | agt<br>Ser        | gaa<br>Glu        | gtg<br>Val        | gac<br>Asp        | atg<br>Met<br>300 | Leu               | aaa<br>Lys        | att<br>Ile        | agg<br>Arg        | tct<br>Ser<br>305 | gaa<br>Glu        | ttc<br>Phe        | 970        |
|   | aag<br>Lys        | aga<br>Arg        | aag<br>Lys<br>310 | tac<br>Tyr        | ggc<br>Gly        | aag<br>Lys        | tcc<br>Ser        | ctg<br>Leu<br>315 | tac<br>Tyr        | tat<br>Tyr        | tat<br>Tyr        | atc<br>Ile        | cag<br>Gln<br>320 | caa<br>Gln        | gac<br>Asp        | act<br>Thr        | 1018       |
|   | тАз               | ggc<br>Gly<br>325 | gac<br>Asp        | tac<br>Tyr        | cag<br>Gln        | aaa<br>Lys        | gcg<br>Ala<br>330 | ctg<br>Leu        | ctg<br>Leu        | tac<br>Tyr        | Leu               | tgt<br>Cys<br>335 | ggt<br>Gly        | gga<br>Gly        | gat<br>Asp        | gac<br>Asp        | 1066       |
|   | tgaa              | gccc              | ga c              | acgg              | cctg              | a gc              | gtcc              | agaa              | atg               | gtgc              | tca               | ccat              | gctt              | сс а              | gcta              | acagg             | 1126       |
|   | tcta              | gaaa              | ac c              | agct              | tgcg              | a at              | aaca              | gtcc              | ccg               | tggc              | cat               | ccct              | gtga              | gg g              | tgac              | gttag             | 1186       |
|   | catt              | accc              | сс а              | acct              | catt              | t ta              | gttg              | ccta              | agc               | attg              | cct               | ggcc              | ttcc              | tg t              | ctag              | tctct             | 1246       |
|   | cctg              | taag              | сс а              | aaga              | aatg              | a ac              | attc              | caag              | gag               | tṭgg              | aag               | tgaa              | gtct              | at g              | atgt              | gaaac             | 1306       |
|   | actt              | tgcc              | tc c              | tgtg              | tact              | g tg              | tcat              | aaac              | aga               | tgaa              | taa .             | actg              | aatt              | tg t              | actt              | t                 | 1362       |
|   | <210              | > 7               | 2                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |            |
|   | <211              | > 3               | 39                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |            |
|   | <212              | > P               | RT                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |            |

<400> 72

<213> NM\_004039 annexin A2

Met Ser Thr Val His Glu Ile Leu Cys Lys Leu Ser Leu Glu Gly Asp 1 5 15

His Ser Thr Pro Pro Ser Ala Tyr Gly Ser Val Lys Ala Tyr Thr Asn 20 25 30

Phe Asp Ala Glu Arg Asp Ala Leu Asn Ile Glu Thr Ala Ile Lys Thr 35 40 45

Lys Gly Val Asp Glu Val Thr Ile Val Asn Ile Leu Thr Asn Arg Ser 50 55 60

Asn Ala Gln Arg Gln Asp Ile Ala Phe Ala Tyr Gln Arg Arg Thr Lys 65 70 75 80

Lys Glu Leu Ala Ser Ala Leu Lys Ser Ala Leu Ser Gly His Leu Glu  $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$ 

Thr Val Ile Leu Gly Leu Leu Lys Thr Pro Ala Gln Tyr Asp Ala Ser 100 105 110

Glu Leu Lys Ala Ser Met Lys Gly Leu Gly Thr Asp Glu Asp Ser Leu 115 120 125

Ile Glu Ile Ile Cys Ser Arg Thr Asn Gln Glu Leu Gln Glu Ile Asn 130 135 140

Arg Val Tyr Lys Glu Met Tyr Lys Thr Asp Leu Glu Lys Asp Ile Ile 145  $\phantom{\bigg|}150\phantom{\bigg|}155\phantom{\bigg|}$  155

Ser Asp Thr Ser Gly Asp Phe Arg Lys Leu Met Val Ala Leu Ala Lys 165 170 175

Gly Arg Arg Ala Glu Asp Gly Ser Val Ile Asp Tyr Glu Leu Ile Asp 180 185 190

Gln Asp Ala Arg Asp Leu Tyr Asp Ala Gly Val Lys Arg Lys Gly Thr
195 200 205

Asp Val Pro Lys Trp Ile Ser Ile Met Thr Glu Arg Ser Val Pro His 210 215 220

Leu Gln Lys Val Phe Asp Arg Tyr Lys Ser Tyr Ser Pro Tyr Asp Met 225 230 235 240

Leu Glu Ser Ile Arg Lys Glu Val Lys Gly Asp Leu Glu Asn Ala Phe 245 250 255

Leu Asn Leu Val Gln Cys Ile Gln Asn Lys Pro Leu Tyr Phe Ala Asp 260 265 270

Arg Leu Tyr Asp Ser Met Lys Gly Lys Gly Thr Arg Asp Lys Val Leu 275 280 285

Ile Arg Ile Met Val Ser Arg Ser Glu Val Asp Met Leu Lys Ile Arg 290 295 300

Ser Glu Phe Lys Arg Lys Tyr Gly Lys Ser Leu Tyr Tyr Tyr Ile Gln 305 310 315 320

Gln Asp Thr Lys Gly Asp Tyr Gln Lys Ala Leu Leu Tyr Leu Cys Gly 325 330 335

Gly Asp Asp

| <21               | .0>              | 73                |                   |                   |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |       |
|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------|
| <21               | .1>              | 850               |                   |                   |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |       |
| <21               | 2>               | DNA               |                   |                   |                   | -                |                   | ٠                 |                   | •                 |                  | •                 |                   |                   |                   |       |
| <21               | 3>               | NM_(              | 00395             | 55 SC             | ocs3              |                  |                   |                   |                   |                   | •                |                   |                   |                   |                   |       |
|                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |       |
| <22               | 0>               |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  |                   |                   | •                 |                   |       |
| <22               | 1>               | CDS               |                   |                   |                   | ٠                |                   |                   |                   |                   |                  |                   |                   |                   |                   |       |
| <22               | 2>               | (107              | 7) (              | (781)             |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |       |
| <22               | 3>               |                   |                   |                   |                   |                  |                   |                   | •                 |                   |                  |                   |                   |                   |                   |       |
|                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |                  |                   |                   |                   |                   |       |
| <40<br>gcg        |                  | 73<br>.cct        | ctcc              | gcag              | icc c             | cccg             | rggat             | g cg              | gtaç              | ıcggc             | egc              | tgtç              | lcāā              | aggo              | cgcga             | ıa 60 |
| gca               | gctg             | cag               | ccgc              | egec              | ge g              | ıcaga            | itcca             | ıc go             | tggc              | tccg              | tgc              | gcc               |                   | gtc<br>Val        |                   | 115   |
| cac<br>His        | agc<br>Ser<br>5  | aag<br>Lys        | ttt<br>Phe        | ccc<br>Pro        | gco<br>Ala        | gcc<br>Ala<br>10 | ggg               | atg<br>Met        | ago<br>Ser        | cgc<br>Arg        | ccc<br>Pro       | ctġ<br>Leu        | gac<br>Asp        | acc<br>Thr        | agc<br>Ser        | 163   |
| ctg<br>Leu<br>20  | cgc<br>Arg       | cto               | aag<br>Lys        | acc<br>Thr        | tto<br>Phe<br>25  | agc<br>Ser       | tcc<br>Ser        | aag<br>Lys        | ago               | gag<br>Glu        | tac<br>Tyr       | cag<br>Gln        | ctg<br>Lev        | gtg<br>Val        | gtg<br>Val<br>35  | 211   |
| aac<br>Asn        | gca<br>Ala       | gtg<br>Val        | cgc               | aag<br>Lys<br>40  | ctg<br>Leu        | cag<br>Gln       | gag<br>Glu        | agc<br>Ser        | ggc<br>Gly<br>45  | ttc<br>Phe        | tac<br>Tyr       | tgg<br>Trp        | ago<br>Ser        | gca<br>Ala<br>50  | gtg<br>Val        | 259   |
| acc<br>Thr        | Gly              | ggc               | gag<br>Glu<br>55  | gcg<br>Ala        | aac<br>Asn        | ctg<br>Leu       | ctg<br>Leu        | ctc<br>Leu<br>60  | agt<br>Ser        | gcc<br>Ala        | gag<br>Glu       | ccc<br>Pro        | gcc<br>Ala<br>65  | ggc               | acc               | 307   |
| ttt<br>Phe        | ctg<br>Leu       | atc<br>Ile<br>70  | cgc<br>Arg        | gac<br>Asp        | agc<br>Ser        | tcg<br>Ser       | gac<br>Asp<br>75  | cag<br>Gln        | cgc<br>Arg        | cac<br>His        | ttc<br>Phe       | ttc<br>Phe<br>80  | acg<br>Thr        | ctc<br>Leu        | agc<br>Ser        | 355   |
| gtc<br>Val        | aag<br>Lys<br>85 | acc<br>Thr        | cag<br>Gln        | tct<br>Ser        | GJ A<br>āāā       | acc<br>Thr<br>90 | aag<br>Lys        | aac<br>Asn        | ctg<br>Leu        | cgc<br>Arg        | atc<br>Ile<br>95 | cag<br>Gln        | tgt<br>Cys        | gag<br>Glu        | ggg<br>Gly        | 403   |
| ggc<br>Gly<br>100 | agc<br>Ser       | ttc<br>Phe        | tct<br>Ser        | ctg<br>Leu        | cag<br>Gln<br>105 | agc<br>Ser       | gat<br>Asp        | ccc<br>Pro        | cgg<br>Arg        | agc<br>Ser<br>110 | a¢g<br>Thr       | cag<br>Gln        | ccc<br>Pro        | gtg<br>Val        | ccc<br>Pro<br>115 | 451   |
| cgc<br>Arg        | ttc<br>Phe       | gac<br>Asp        | tgc<br>Cys        | gtg<br>Val<br>120 | ctc<br>Leu        | aag<br>Lys       | ctg<br>Leu        | gtg<br>Val        | tac<br>Tyr<br>125 | cac<br>His        | tac<br>Tyr       | atg<br>Met        | ccg<br>Pro        | ccc<br>Pro<br>130 | cct<br>Pro        | 499   |
| gga<br>Gly        | gcc<br>Ala       | ccc<br>Pro        | tcc<br>Ser<br>135 | ttc<br>Phe        | ccc<br>Pro        | tcg<br>Ser       | cca<br>Pro        | cct<br>Pro<br>140 | Thr               | gaa<br>Glu        | ccc<br>Pro       | tcc<br>Ser        | tcc<br>Ser<br>145 | gag<br>Glu        | gtg<br>Val        | 547   |
| ccc<br>Pro        | gag<br>Glu       | cag<br>Gln<br>150 | ccg<br>Pro        | tct<br>Ser        | gcc<br>Ala        | cag<br>Gln       | cca<br>Pro<br>155 | ctc<br>Leu        | cct<br>Pro        | GJ A<br>GGG       | agt<br>Ser       | ccc<br>Pro<br>160 | ccc<br>Pro        | aga<br>Arg        | aga<br>Arg        | 595   |
| gcc               | tat              | tac               | atc               | tac               | tcc               | ggg              | ggc               | gag               | aag               | atc               | ccc              | ctg               | gtg               | ttg               | agc               | 643   |

| Ala Tyr Tyr Ile Tyr Ser Gly Gly Glu Lys Ile Pro Leu Val Leu Ser<br>165 170 175                                                                        |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| cgg ccc ctc tcc tcc aac gtg gcc act ctt cag cat ctc tgt cgg aag<br>Arg Pro Leu Ser Ser Asn Val Ala Thr Leu Gln His Leu Cys Arg Lys<br>180 185 190 195 | 691 |
| acc gtc aac ggc cac ctg gac tcc tat gag aaa gtc acc cag ctg ccg Thr Val Asn Gly His Leu Asp Ser Tyr Glu Lys Val Thr Gln Leu Pro 200 205 210           | 739 |
| ggg ccc att cgg gag ttc ctg gac cag tac gat gcc ccg ctt<br>Gly Pro Ile Arg Glu Phe Leu Asp Gln Tyr Asp Ala Pro Leu<br>215 220 225                     | 781 |
| taaggggtaa agggcgcaaa gggcatgggt cgggagaggg gacgcaggcc cctctcctcc                                                                                     | 841 |
| gtggcacat                                                                                                                                             | 850 |
| <210> 74                                                                                                                                              | •   |
| <211> 225                                                                                                                                             |     |
| <212> PRT                                                                                                                                             |     |
| <213> NM_003955 SOCS3                                                                                                                                 |     |
|                                                                                                                                                       |     |
| <400> 74                                                                                                                                              |     |
| Met Val Thr His Ser Lys Phe Pro Ala Ala Gly Met Ser Arg Pro Leu  1 10 15                                                                              |     |
| Asp Thr Ser Leu Arg Leu Lys Thr Phe Ser Ser Lys Ser Glu Tyr Gln 20 25 30                                                                              |     |
| Leu Val Val Asn Ala Val Arg Lys Leu Gln Glu Ser Gly Phe Tyr Trp<br>35 40 45                                                                           |     |
| Ser Ala Val Thr Gly Gly Glu Ala Asn Leu Leu Leu Ser Ala Glu Pro 50 55 60                                                                              |     |
| Ala Gly Thr Phe Leu Ile Arg Asp Ser Ser Asp Gln Arg His Phe Phe 65 70 75 80                                                                           |     |
| Thr Leu Ser Val Lys Thr Gln Ser Gly Thr Lys Asn Leu Arg Ile Gln 85 90 95                                                                              |     |
| Cys Glu Gly Gly Ser Phe Ser Leu Gln Ser Asp Pro Arg Ser Thr Gln 100 105 110                                                                           |     |
| Pro Val Pro Arg Phe Asp Cys Val Leu Lys Leu Val Tyr His Tyr Met<br>115 120 125                                                                        |     |
| Pro Pro Pro Gly Ala Pro Ser Phe Pro Ser Pro Pro Thr Glu Pro Ser<br>130 135 140                                                                        |     |

PCT/AU2003/001166

203 Ser Glu Val Pro Glu Gln Pro Ser Ala Gln Pro Leu Pro Gly Ser Pro 145 150 Pro Arg Arg Ala Tyr Tyr Ile Tyr Ser Gly Gly Glu Lys Ile Pro Leu 165 Val Leu Ser Arg Pro Leu Ser Ser Asn Val Ala Thr Leu Gln His Leu 185 Cys Arg Lys Thr Val Asn Gly His Leu Asp Ser Tyr Glu Lys Val Thr 200 205 Gln Leu Pro Gly Pro Ile Arg Glu Phe Leu Asp Gln Tyr Asp Ala Pro 215 Leu 225 <210> 75 <211> 369 <212> DNA <213> NM\_000331 SAA1, serum amyloid A1 <220> <221> CDS <222> (1)..(366) <223> <400> 75 atg aag ctt ctc acg ggc ctg gtt ttc tgc tcc ttg gtc ctg ggt gtc 48 Met Lys Leu Leu Thr Gly Leu Val Phe Cys Ser Leu Val Leu Gly Val 10 age age ega age the the teg the ett gge gag get the gat ggg get 96 Ser Ser Arg Ser Phe Phe Ser Phe Leu Gly Glu Ala Phe Asp Gly Ala 25 cgg gac atg tgg aga gcc tac tct gac atg aga gaa gcc aat tac atc 144 Arg Asp Met Trp Arg Ala Tyr Ser Asp Met Arg Glu Ala Asn Tyr Ile ggc tca gac aaa tac ttc cat gct cgg ggg aac tat gat gct gcc aaa 192 Gly Ser Asp Lys Tyr Phe His Ala Arg Gly Asn Tyr Asp Ala Ala Lys 55 agg gga cet ggg ggt gte tgg get gea gaa geg ate age gat gee aga 240 Arg Gly Pro Gly Gly Val Trp Ala Ala Glu Ala Ile Ser Asp Ala Arg 70

gag aat atc cag aga ttc ttt ggc cat ggt gcg gag gac tcg ctg gct

Glu Asn Ile Gln Arg Phe Phe Gly His Gly Ala Glu Asp Ser Leu Ala

85

288

gat cag gct gcc aat gaa tgg ggc agg agt ggc aaa gac ccc aat cac 336 Asp Gln Ala Ala Asn Glu Trp Gly Arg Ser Gly Lys Asp Pro Asn His 100 105 110

ttc cga cct gct ggc ctg cct gag aaa tac tga Phe Arg Pro Ala Gly Leu Pro Glu Lys Tyr 115 120

369

<210> 76 ·

<211> 122

<212> PRT

<213> NM\_000331 SAA1, serum amyloid A1

<400> 76

Ser Ser Arg Ser Phe Phe Ser Phe Leu Gly Glu Ala Phe Asp Gly Ala 20 25 30

Arg Asp Met Trp Arg Ala Tyr Ser Asp Met Arg Glu Ala Asn Tyr Ile 35 40 45

Gly Ser Asp Lys Tyr Phe His Ala Arg Gly Asn Tyr Asp Ala Ala Lys 50 60

Arg Gly Pro Gly Gly Val Trp Ala Ala Glu Ala Ile Ser Asp Ala Arg 65 70 75 80

Glu Asn Ile Gln Arg Phe Phe Gly His Gly Ala Glu Asp Ser Leu Ala 85 90 95

Asp Gln Ala Ala Asn Glu Trp Gly Arg Ser Gly Lys Asp Pro Asn His 100 105 110

Phe Arg Pro Ala Gly Leu Pro Glu Lys Tyr 115 120

<210> 77

<211> 895

<212> DNA

<213> NM\_014059 RGC32

<220>

<221> CDS

<222> (147)..(497)

<223>

| <40<br>gcg       |                  | 77<br>cgt        | cgac              | cggc              | gc g             | gctg             | gago             | g ca             | gcgc              | :cgaa             | ggg               | actg             | gca              | gggc             | tgaagt            | 60  |
|------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|-----|
| gtg              | cggg             | aca              | gcaa              | gccc              | cc g             | aata             | gccc             | c gg             | ctgc              | cacc              | tcg               | cagg             | acc              | caag             | gccacg            | 120 |
| 'cgc             | gccg             | ggc              | ccag              | ctga              | gc c             | gcct             | c at<br>Me<br>1  | g aa<br>t Ly     | g cc<br>s Pr      | g cc<br>o Pr      | c gc<br>o Al<br>5 | g ga<br>a Gl     | g ga<br>u As     | c ct<br>p Le     | g tcg<br>u Ser    | 173 |
| gac<br>Asp<br>10 | gcg<br>Ala       | ctg<br>Leu       | tgc<br>Cys        | gag<br>Glu        | ttt<br>Phe<br>15 | gac<br>Asp       | gcg<br>Ala       | gtg<br>Val       | ctg<br>Leu        | gcc<br>Ala<br>20  | gac<br>Asp        | ttc<br>Phe       | gcg<br>Ala       | tcg<br>Ser       | ccc<br>Pro<br>25  | 221 |
| ttc<br>Phe       | cac<br>His       | gag<br>Glu       | cgc<br>Arg        | cac<br>His<br>30  | ttc<br>Phe       | cac<br>His       | tac<br>Tyr       | gag<br>Glu       | gag<br>Glu<br>35  | cac               | ctg<br>Leu        | gag<br>Glu       | cgc<br>Arg       | atg<br>Met<br>40 | aag<br>Lys        | 269 |
| cgg<br>Arg       | cgc<br>Arg       | agc<br>Ser       | agc<br>Ser<br>45  | gcc<br>Ala        | agt<br>Ser       | gtc<br>Val       | agc<br>Ser       | gac<br>Asp<br>50 | agc<br>Ser        | agc<br>Ser        | ggc<br>Gly        | ttc<br>Phe       | agc<br>Ser<br>55 | gac<br>Asp       | tcg<br>Ser        | 317 |
| gag<br>Glu       | agt<br>Ser       | gca<br>Ala<br>60 | gat<br>Asp        | tca<br>Ser        | ctt<br>Leu       | tat<br>Tyr       | agg<br>Arg<br>65 | aac<br>Asn       | agc<br>Ser        | ttc<br>Phe        | agc<br>Ser        | ttc<br>Phe<br>70 | agt<br>Ser       | gat<br>Asp       | gaa<br>Glu        | 365 |
| aaa<br>Lys       | ctg<br>Leu<br>75 | aat<br>Asn       | tct<br>Ser        | cca<br>Pro        | aca<br>Thr       | gac<br>Asp<br>80 | tct<br>Ser       | acc<br>Thr       | cca<br>Pro        | gct<br>Ala        | ctt<br>Leu<br>85  | ctc<br>Leu       | tct<br>Ser       | gcc<br>Ala       | act<br>Thr        | 413 |
| gtc<br>Val<br>90 | act<br>Thr       | cct<br>Pro       | cag<br>Gln        | aaa<br>Lys        | gct<br>Ala<br>95 | aaa<br>Lys       | tta<br>Leu       | gga<br>Gly       | gac<br>Asp        | aca<br>Thr<br>100 | aaa<br>Lys        | gag<br>Glu       | cta<br>Leu       | gaa<br>Glu       | gcc<br>Ala<br>105 | 461 |
| ttc<br>Phe       | att<br>Ile       | gct<br>Ala       | gat<br>Asp        | ctt<br>Leu<br>110 | gac<br>Asp       | aaa<br>Lys       | act<br>Thr       | tta<br>Leu       | gca<br>Ala<br>115 | agt<br>Ser        | atg<br>Met        | tgaa             | acaa             | aga              |                   | 507 |
| agtt             | ctgg             | gt c             | cttt              | cato              | a ta             | aggg             | agaa             | gct              | tcag              | aaa               | gttc              | cgag             | ga c             | ctgo             | taaaa             | 567 |
| tcag             | ctac             | ta g             | aatc              | tgct              | g cc             | agag             | ggga             | caa              | agac              | gtg               | cact              | caac             | ct t             | ctac             | caggc             | 627 |
| cact             | ctca             | gg c             | tcac              | ctta              | a aa             | tcag             | ccct             | tga              | tece              | att               | tctg              | ggca             | at t             | taga             | cagtg             | 687 |
| aaac             | tgac             | tt t             | gttt              | acct              | g ct             | tgca             | gcat             | att              | agaa              | cag               | acga              | tcca             | tg c             | taat             | attgt             | 747 |
| attt             | tctc             | tt a             | aaac              | atag              | c tt             | tect             | gtaa             | ttt              | aaag              | tgc               | tttt              | atga             | aa a             | tatt             | tgtaa             | 807 |
| ttaa             | ttat             | at a             | tagt <sup>.</sup> | tgga              | a ata            | agca             | gtaa             | gct              | ttcc              | cat               | tata              | atat             | at t             | tttg             | tatac             | 867 |
| aaat             | aaaa             | tt t             | gaact             | tgaa              | c ct             | cgtg             | cc               |                  |                   |                   |                   |                  |                  |                  |                   | 895 |

<210> 78

<211> 117

<212> PRT

<213> NM\_014059 RGC32

<400>. 78

Met Lys Pro Pro Ala Glu Asp Leu Ser Asp Ala Leu Cys Glu Phe Asp 1 5 10 15

Ala Val Leu Ala Asp Phe Ala Ser Pro Phe His Glu Arg His Phe His 20 25 30

Tyr Glu Glu His Leu Glu Arg Met Lys Arg Arg Ser Ser Ala Ser Val 35 40 45

Ser Asp Ser Ser Gly Phe Ser Asp Ser Glu Ser Ala Asp Ser Leu Tyr 50 60

Arg Asn Ser Phe Ser Phe Ser Asp Glu Lys Leu Asn Ser Pro Thr Asp 65 70 75 80

Ser Thr Pro Ala Leu Leu Ser Ala Thr Val Thr Pro Gln Lys Ala Lys 85 90 95

Leu Gly Asp Thr Lys Glu Leu Glu Ala Phe Ile Ala Asp Leu Asp Lys 100 105 110

Thr Leu Ala Ser Met 115

<210> 79

<211> 1564

<212> DNA

<213> NM\_018004 FLJ10134

<220>

<221> CDS

<222> (314)..(1138)

<223>

<400> 79

gaagcacate tggacagetg tgcggcetec ttgcgggccg acgtcagccg agcacgtcce 60
ccacgtcete teettetege cacttattat ttattegttt teecaaagaa gegactaggg 120
acceaagttt aaaaatteet eeeeecaete aatgcgagae gtggecagat eeeatecaae 180
acacggttta atttcatgg ggetetggga teaaaagaac agaaacagca acaacaaaag 240
cceagceget gtetgattt aagetggcaa agtgggaaaa ataaagtgtt gagtaaacag 300
accaagttgg atc atg ggg aat tte aga ggt cat gee etc eet gga acc 349
Met Gly Asn Phe Arg Gly His Ala Leu Pro Gly Thr

| ti<br>Pl          | tc t<br>ne P       | ne i              | ttt<br>Phe<br>15 | att<br>Ile       | at<br>Il          | t g<br>e G         | gt d<br>ly I      | ett<br>Seu     | tgq<br>Trp<br>20  | g tg<br>o Tr      | g t               | gt<br>'ys        | aca<br>Thi        | a aa<br>r Ly      | ıg ad<br>rs Sd    | er             | att<br>Ile       | ct<br>Le          | g aa<br>u Ly      | ag<br>/s | 397  |
|-------------------|--------------------|-------------------|------------------|------------------|-------------------|--------------------|-------------------|----------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|----------------|------------------|-------------------|-------------------|----------|------|
| ta<br>T <u>y</u>  | at a<br>yr I.<br>3 | re (              | gc<br>Cys        | aaa<br>Lys       | l aa<br>Ly:       | g ca<br>s Gi       | ln I              | ag<br>ys<br>5  | cga<br>Arg        | a ac              | c t               | gc<br>gc         | tai<br>Tyi        | ct<br>Le<br>40    | u G               | gt<br>Ly       | tcc<br>Ser       | aa.<br>Ly         | a ao<br>s Tì      | a<br>ır  | 445  |
| tt<br>Le<br>45    | a ti<br>eu Pl      | tc t<br>ne 1      | at<br>Yyr        | cga<br>Arg       | Le                | g ga<br>u G]<br>50 | .u 1              | tt<br>le       | ttg<br>Leu        | ga<br>Gl          | g g<br>u G        | ga<br>ly         | att<br>Ile<br>55  | ac<br>Th          | a at<br>r Il      | ta (           | gtt<br>Val       | gg<br>Gl          | c at<br>y Me      | t        | 493  |
| gc<br>Al          | t ti<br>a Le       | a a<br>u T        | ct<br>hr         | Gly<br>ggc       | ato<br>Met<br>65  | g go<br>E Al       | t g<br>a G        | gg<br>1y       | gag<br>Glu        | ca<br>Gl:         | g t<br>n Pi<br>7  | he               | att<br>Ile        | cc<br>Pr          | t gg<br>o Gl      | y (            | ej<br>Saa        | ecc<br>Pro<br>75  | c ca              | t<br>s   | 541  |
| ct<br>Le          | gat<br>uMe         | g t               | eu               | tat<br>Tyr<br>80 | gac               | ta<br>Ty           | t a<br>r L        | aa<br>ys       | caa<br>Gln        | gg<br>G1:<br>85   | у Н:              | ac<br>is         | tgg<br>Trp        | aat<br>Ası        | t ca<br>n Gl      | n I            | etc<br>Seu<br>90 | cto               | gg<br>Gl          | c<br>y   | 589  |
| tg:<br>Trj        | g ca<br>p Hi       | t c<br>s H<br>9   | 13               | ttc<br>Phe       | acc<br>Thr        | at<br>Me           | g t               | yr .           | ttc<br>Phe<br>100 | tto<br>Phe        | ti<br>Pl          | tt               | eja<br>aaa        | cto<br>Lev        | tt<br>Le<br>10    | u G            | gt<br>1y         | gtg<br>Val        | gc.               | a<br>a   | 637  |
| ga<br>Ası         | t at<br>p Il<br>11 | е п               | ta (             | tgt<br>Cys       | ttc<br>Phe        | ac<br>Th           | E 1.              | ic a<br>le s   | igt<br>Ser        | tca<br>Ser        | ct<br>Le          | t<br>eu          | cct<br>Pro        | gtg<br>Val<br>120 | . Se              | c t            | ta               | acc<br>Thr        | aa<br>Ly:         | 3        | 685  |
| tta<br>Lei<br>125 | a at<br>1 Me<br>5  | g ti<br>t Le      | tg t<br>eu S     | tca<br>Ser       | aat<br>Asn        | gc:<br>Ala<br>130  | a re              | a t<br>eu E    | tt<br>he          | gtg<br>Val        | ga<br>Gl          | u i              | gcc<br>Ala<br>135 | ttt               | ate<br>Ile        | c t<br>e P     | tc<br>he         | tac<br>Tyr        | aad<br>Asr<br>140 | 1        | 733  |
| cac<br>His        | ac<br>Th:          | t ca<br>r Hi      | st o             | ътĀ              | cgg<br>Arg<br>145 | gaa<br>Glu         | a at<br>1 Me      | g c            | tg<br>eu          | gac<br>Asp        | at<br>11<br>15    | e I              | ttt<br>Phe        | gtg<br>Val        | cac<br>His        | C C            | ln               | ctg<br>Leu<br>155 | cto               | Ī<br>I   | 781  |
| gtt<br>Val        | Lei                | g gt<br>1 Va      | T A              | al<br>60         | ttt<br>Phe        | cto                | ac<br>Th          | a g<br>r G     | тА                | ctc<br>Leu<br>165 | gt<br>Va          | t c              | jcc<br>Na         | ttc<br>Phe        | cta               | ı G.           | ag<br>lu<br>70   | ttc<br>Phe        | ctt<br>Leu        |          | 829  |
| gtt<br>Val        | Arg                | aa<br>As<br>17    | 11 M             | at<br>sn         | gta<br>Val        | ctt<br>Leu         | ct<br>Le          | u G            | ag<br>lu:<br>80   | cta<br>Leu        | Lei               | g c              | gg                | tca<br>Ser        | agt<br>Ser<br>185 | Le             | eu :             | att<br>Ile        | ctg<br>Leu        |          | 877  |
| ctt<br>Leu        | cag<br>Gln<br>190  | GI                | ga<br>yS         | gc i             | tgg<br>Irp        | ttc<br>Phe         | tt<br>Pho<br>19   | e G.           | ag a              | att<br>Ile        | G13               | a t<br>y P       | he                | gtc<br>Val<br>200 | ctg<br>Leu        | ta<br>Ty       | it d             | ccc<br>Pro        | ccc<br>Pro        |          | 925  |
| agt<br>Ser<br>205 | gga<br>Gly         | gg<br>G1          | t co             | ct o             | та                | tgg<br>Trp<br>210  | gai<br>Asp        | ct<br>Le       | ga<br>eu M        | atg<br>Met        | gat<br>Asp        | С<br>Н<br>- 2    | is (              | gaa<br>Glu        | aat<br>Asn        | at<br>Il       | t t<br>e I       | eu                | ttt<br>Phe<br>220 |          | 97.3 |
| ctc<br>Leu        | acc<br>Thr         | ata<br>Ile        | a to<br>∋ Cy     | ys E             | tt<br>he<br>25    | tgt<br>Cys         | tgg<br>Trp        | r ca<br>Hi     | t t<br>s I        | 'yr               | gca<br>Ala<br>230 | Va               | ta a              | acc<br>Thr        | att<br>Ile        | gt<br>Va       | 1 1              | tc<br>le<br>35    | gtt<br>Val        |          | 1021 |
| gga<br>Gly        | atg<br>Met         | aat<br>Asr        | ta<br>Ty<br>24   | 'E A             | ct i              | ttc<br>Phe         | att<br>Ile        | ac<br>Th       | r T               | gg<br>rp<br>45    | ttg<br>Leu        | gt<br>Va         | tt a<br>al I      | aaa<br>ys         | tct<br>Ser        | ag<br>Ar<br>25 | g L              | tt a<br>eu 1      | aag<br>Lys        |          | 1069 |
| agg<br>Arg        | ctc<br>Leu         | tgc<br>Cys<br>255 | Se               | c t              | ca d              | gaa<br>Glu         | gtt<br>Val        | gg<br>G1<br>26 | λr                | tt eu :           | ctg<br>Leu        | a <i>a</i><br>Ly | na a<br>/s A      | sn i              | gct<br>Ala<br>265 | gaa<br>Glu     | a c              | ga q<br>rg (      | gaa<br>Slu        |          | 1117 |
| caá<br>Gln        | gaa<br>Glu<br>270  | tca<br>Ser        | ga<br>Gl         | ag<br>uG         | aa g<br>lu G      | ilu                | atg<br>Met<br>275 | tg             | act               | ttga              | at q              | gag              | ctt               | cca               | g tt              | ttt            | ct               | aga               |                   |          | 1168 |

| taaacctttt cttttttaca ttgttcttgg ttttgtttct cgatcttttg tttggagaac              | 1228 |
|--------------------------------------------------------------------------------|------|
| agctggctaa ggatgactct aagtgtactg tttgcatttc caatttggtt aaagtatttg              | 1288 |
| aatttaaata ttttcttttt agctttgaaa atattttggg tgatactttc attttgcaca              | 1348 |
| tcatgcacat catggtattc aggggctaga gtgatttttt tccagattat ctaaagttgg              | 1408 |
| atgcccacac tatgaaagaa atatttgttt tatttgcctt atagatatgc tcaaggttac              | 1468 |
| tgggettget actatttgta acteettgae catggaatta tacttgttta tettgttget              | 1528 |
| gcaatgagaa ataaatgaat gtatgtattt tggtgc                                        | 1564 |
| <210> 80                                                                       |      |
| <211> 275                                                                      |      |
| <212> PRT                                                                      |      |
| <213> NM_018004 FLJ10134                                                       |      |
|                                                                                |      |
| <400> 80                                                                       |      |
| Met Gly Asn Phe Arg Gly His Ala Leu Pro Gly Thr Phe Phe Ile                    | •    |
| 1 5 10 15                                                                      |      |
| Ile Gly Leu Trp Trp Cys Thr Lys Ser Ile Leu Lys Tyr Ile Cys Lys                |      |
| 20 25 30                                                                       |      |
| Lys Gln Lys Arg Thr Cys Tyr Leu Gly Ser Lys Thr Leu Phe Tyr Arg                |      |
| 40 45                                                                          |      |
| Leu Glu Ile Leu Glu Gly Ile Thr Ile Val Gly Met Ala Leu Thr Gly 50 55          |      |
| 55 60                                                                          |      |
| Met Ala Gly Glu Gln Phe Ile Pro Gly Gly Pro His Leu Met Leu Tyr 65 70 75 80    |      |
| 75 80                                                                          |      |
| Asp Tyr Lys Gln Gly His Trp Asn Gln Leu Leu Gly Trp His His Phe 85 90 95       |      |
|                                                                                |      |
| Thr Met Tyr Phe Phe Phe Gly Leu Leu Gly Val Ala Asp Ile Leu Cys 100 105 110    |      |
|                                                                                |      |
| Phe Thr Ile Ser Ser Leu Pro Val Ser Leu Thr Lys Leu Met Leu Ser<br>115 120 125 |      |
|                                                                                |      |
| Asn Ala Leu Phe Val Glu Ala Phe Ile Phe Tyr Asn His Thr His Gly 130 135 140    |      |
| ·                                                                              |      |
| Arg Glu Met Leu Asp Ile Phe Val His Gln Leu Leu Val Leu Val Val                |      |

150 155 160

|   |              |          |            |            |                  |            |              |              |              |                     |                   | •            |              |              |                      |              |                |            |     |
|---|--------------|----------|------------|------------|------------------|------------|--------------|--------------|--------------|---------------------|-------------------|--------------|--------------|--------------|----------------------|--------------|----------------|------------|-----|
|   | Ph           | e        | Let        | ı Ti       | ır G             | Sly        | Leu<br>165   | Val          | . Ala        | Phe                 | Leu               | 1 Glu<br>170 | Phe          | Leu          | Val                  | Arg          | Asn<br>175     | Asn        |     |
|   | Va           | 1        | Lev        | ı Le       | eu G<br>1        | 31u<br>.80 | Leu          | Leu          | Arg          | Ser                 | Ser<br>185        | Leu          | Ile          | Leu          | Leu                  | Gln<br>190   | Gly            | Ser        |     |
|   | Tr           | p        | Phe        | Ph<br>19   | e G<br>5         | ln         | Ile          | Gly          | Phe          | Val<br>200          | Leu               | Tyr          | Pro          | Pro          | Ser<br>205           | Gly          | Gly            | Pro        |     |
|   | Al           | a        | Trp<br>210 | As         | рL               | eu i       | Met          | Asp          | His<br>215   | Glu                 | Asn               | Ile          | Leu          | Phe<br>220   | Leu                  | Thr          | Ile            | Cys        |     |
|   | Ph<br>22     | e :      | Cys        | Tr         | р Н.             | is '       | Tyr          | Ala<br>230   | Val          | Thr                 | Ile               | Val          | 'Ile<br>235  | Val          | Gly                  | Met          | Asn            | Tyr<br>240 |     |
|   | Ala          | a :      | Phe        | 11         | e Ti             | hr !       | Trp<br>245   | Leu          | Val          | Lys                 | Ser               | Arg-<br>250  | Leu          | Lys          | Arg                  | Leu          | Cys<br>255     | Ser        |     |
|   | Sei          | r (      | Glu        | ۷a         | l G1<br>26       | ly 1<br>50 | Leu          | Leu          | Lys          | Asn                 | Ala<br>265        | Glu          | Arg          | Glu          | Gln                  | Glu<br>270   | Ser            | Glu        |     |
|   | Glu          | 1 (      | Slu        | Met<br>275 |                  |            |              |              |              |                     |                   |              |              |              |                      |              |                |            |     |
| • | <21          | .0>      | ٠ ٤        | 31         |                  |            |              |              |              |                     |                   |              |              |              |                      |              |                |            |     |
|   | <21          | 1>       | . 2        | 311        |                  |            |              | -            |              |                     |                   |              |              |              |                      |              |                |            |     |
|   | <21          | 2>       |            | NA         |                  |            |              |              |              |                     |                   |              |              |              |                      |              |                |            |     |
|   | <21          | 3>       | N          | M_0        | 040              | 04         | GJB:         | 2, c         | onne:        | xin :               | 26                |              |              |              |                      |              |                |            |     |
|   | <22          | 0>       |            |            |                  |            |              |              |              |                     |                   |              |              | ,            |                      |              |                |            |     |
|   | <22          | 1>       | С          | DS         |                  |            |              |              |              |                     | ٠                 |              |              |              |                      |              |                |            |     |
|   | <22          | 2>       |            | 199        | )                | (876       | 6)           |              |              |                     |                   |              | •            |              |                      |              |                |            |     |
|   | <223         | 3>       |            |            |                  |            |              |              |              |                     |                   |              |              |              |                      |              |                |            | ,   |
|   | <400<br>gatt |          | 8:<br>aato | -          | ato              | jaca       | aac          | taa          | gttg         | gtt                 | ctgt              | cttc         | ac c         | tgtt:        | ttgg                 | t ga         | ggtt           | gtgt       | 60  |
| ä | aaga         | ıgt      | tgg        | jt c       | rttt             | get        | cag          | gaa          | gaga         | ttt                 | aago              | atgo         | tt g         | ctta         | ccca                 | g ac         | tcag           | agaa       | 120 |
| • | gtct         | cc       | cto        | jt t       | ctg              | rtco       | tag          | cta          | tgtt         | cct                 | gtgt              | tgtg         | tg c         | attc         | gtct                 | t tt         | ccag           | agca       | 180 |
| ē | acc          | gc       | cca        | ıg a       | gta              | gaa        | ga<br>M      | tg g<br>et A | at t<br>sp T | gg g<br>rp G        | gc a<br>ly T<br>5 | hr L         | tg c<br>eu G | ag a<br>ln T | cg a<br>hr I         | tc c<br>le L | eu G           | ly<br>gg   | 231 |
| G | gt<br>ly     | gt<br>Va | ga<br>1A   | sn         | aaa<br>Lys<br>15 | ca<br>Hi   | c to<br>s Se | ec a         | cc achr Se   | gc a<br>er 1:<br>20 | le G              | ga a<br>ly L | ag a<br>ys I | tc to        | gg ci<br>cp Le<br>25 | eu Tl        | ec gi<br>nr Va | c<br>al    | 279 |
| С | tc           | tt       | c a        | tt         | ttt              | cg         | c at         | t at         | g at         | c ct                | c g               | tt g         | tģ go        | ct go        | ca aa                | ıg ga        | ıg gt          | g          | 327 |

| Leu Phe Ile Phe Arg Ile Met Ile Leu Val Val Ala Ala Lys Glu Val<br>30 35 40                                                                           |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| tgg gga gat gag cag gcc gac ttt gtc tgc aac acc ctg cag cca ggc<br>Trp Gly Asp Glu Gln Ala Asp Phe Val Cys Asn Thr Leu Gln Pro Gly<br>45 50 55        | 375  |
| tgc aag aac gtg tgc tac gat cac tac ttc ccc atc tcc cac atc cgg<br>Cys Lys Asn Val Cys Tyr Asp His Tyr Phe Pro Ile Ser His Ile Arg<br>60 65 70 75     | 423  |
| cta tgg gcc ctg cag ctg atc ttc gtg tcc agc cca gcg ctc cta gtg<br>Leu Trp Ala Leu Gln Leu Ile Phe Val Ser Ser Pro Ala Leu Leu Val<br>80 85 90        | 471  |
| gcc atg cac gtg gcc tac cgg aga cat gag aag aag agg aag ttc atc<br>Ala Met His Val Ala Tyr Arg Arg His Glu Lys Lys Arg Lys Phe Ile<br>95 100 105      | 519  |
| aag ggg gag ata aag agt gaa ttt aag gac atc gag gag atc aaa acc<br>Lys Gly Glu Ile Lys Ser Glu Phe Lys Asp Ile Glu Glu Ile Lys Thr<br>110 115 120     | 567  |
| cag aag gtc cgc atc gaa ggc tcc ctg tgg tgg acc tac aca agc agc<br>Gln Lys Val Arg Ile Glu Gly Ser Leu Trp Trp Thr Tyr Thr Ser Ser<br>125 130 135     | 615  |
| atc ttc ttc cgg gtc atc ttc gaa gcc gcc ttc atg tac gtc ttc tat<br>Ile Phe Phe Arg Val Ile Phe Glu Ala Ala Phe Met Tyr Val Phe Tyr<br>140 145 150 155 | 663  |
| gtc atg tac gac ggc ttc tcc atg cag cgg ctg gtg aag tgc aac gcc<br>Val Met Tyr Asp Gly Phe Ser Met Gln Arg Leu Val Lys Cys Asn Ala<br>160 165 170     | 711  |
| tgg cct tgt ccc aac act gtg gac tgc ttt gtg tcc cgg ccc acg gag<br>Trp Pro Cys Pro Asn Thr Val Asp Cys Phe Val Ser Arg Pro Thr Glu<br>175 180 185     | 759  |
| aag act gtc ttc aca gtg ttc atg att gca gtg tct gga att tgc atc<br>Lys Thr Val Phe Thr Val Phe Met Ile Ala Val Ser Gly Ile Cys Ile<br>190 195 200     | 807  |
| ctg ctg aat gtc act gaa ttg tgt tat ttg cta att aga tat tgt tct<br>Leu Leu Asn Val Thr Glu Leu Cys Tyr Leu Leu Ile Arg Tyr Cys Ser<br>205 210 215     | 855  |
| ggg aag tca aaa aag cca gtt taacgcattg cccagttgtt agattaagaa<br>Gly Lys Ser Lys Lys Pro Val<br>220 225                                                | 906  |
| atagacagca tgagagggat gaggcaaccc gtgetcaget gtcaaggete agtegecage                                                                                     | 966  |
| atttcccaac acaaagatte tgacettaaa tgcaaccatt tgaaaccect gtaggeetca                                                                                     | 1026 |
| ggtgaaactc cagatgccac aatgagctct gctcccctaa agcctcaaaa caaaggccta                                                                                     | 1086 |
| attetatgee tgtettaatt ttettteact taagttagtt ceaetgagae eeeaggetgt                                                                                     | 1146 |
| taggggttat tggtgtaagg tactttcata ttttaaacag aggatatcgg catttgtttc                                                                                     | 1206 |
| tttctctgag gacaagagaa aaaagccagg ttccacagag gacacagaga aggtttgggt                                                                                     | 1266 |
| gtcctcctgg ggttcttttt gccaactttc cccacgttaa aggtgaacat tggttctttc                                                                                     | 1326 |
| atttgctttg gaagttttaa tctctaacag tggacaaagt taccagtgcc ttaaactctg                                                                                     | 1386 |
| ttacactttt tggaagtgaa aactttgtag tatgataggt tattttgatg taaagatgtt                                                                                     | 1446 |

| ctggatacca | ttatatgttc | cccctgtttc | agaggctcag | attgtaatat | gtaaatggta   | 1506 |
|------------|------------|------------|------------|------------|--------------|------|
| tgtcattcgc | tactatgatt | taatttgaaa | tatggtcttt | tggttatgaa | tactttgcag   | 1566 |
| cacagctgag | agaggctgtc | tgttgtattc | attgtggtca | tagcacctaa | caacattgta   | 1626 |
| gcctcaatcg | agtgagacag | actagaagtt | cctagttggc | ttatgatagc | aaatggcctc   | 1686 |
| atgtcaaata | ttagatgtaa | ttttgtgtaa | gaaatacaga | ctggatgtac | caccaactac   | 1746 |
| tacctgtaat | gacaggcctg | tccaacacat | ctcccttttc | catgctgtgg | tagccagcat   | 1806 |
| cggaaagaac | gctgatttaa | agaggtgagc | ttgggaattt | tattgacaca | gtaccattta   | 1866 |
| atggggagac | aaaaatgggg | gccaggggag | ggagaagttt | ctgtcgttaa | aaacgagttt   | 1926 |
| ggaaagactg | gactctaaat | tctgttgatt | aaagatgagc | tttgtctacc | ttcaaaagtt   | 1986 |
| tgtttggctt | acccccttca | gcctccaatt | ttttaagtga | aaatataact | aataacatgt   | 2046 |
| gaaaagaata | gaagctaagg | tttagataaa | tattgagcag | atctatagga | agattgaacc . | 2106 |
| tgaatattgc | cattatgctt | gacatggttt | ccaaaaaatg | gtactccaca | tacttcagtg   | 2166 |
| agggtaagta | ttttcctgtt | gtcaagaata | gcattgtaaa | agcattttgt | aataataaag   | 2226 |
| atagcttta  | atgatatgct | tgtaactaaa | ataattttgt | aatgtatcaa | atacatttaa   | 2286 |
| acattaaaa  | tataatctct | ataat      |            |            |              | 2311 |

<210> 82

<211> 226

<212> PRT

<213> NM\_004004 GJB2, connexin 26

<400> 82

Met Asp Trp Gly Thr Leu Gln Thr Ile Leu Gly Gly Val Asn Lys His 1  $\phantom{\Big|}$  10  $\phantom{\Big|}$  15

Ser Thr Ser Ile Gly Lys Ile Trp Leu Thr Val Leu Phe Ile Phe Arg 20 25 30

Ile Met Ile Leu Val Val Ala Ala Lys Glu Val Trp Gly Asp Glu Gln 35 40 45

Ala Asp Phe Val Cys Asn Thr Leu Gln Pro Gly Cys Lys Asn Val Cys 50 55 60

Tyr Asp His Tyr Phe Pro Ile Ser His Ile Arg Leu Trp Ala Leu Gln 65 70 75 80

Leu Ile Phe Val Ser Ser Pro Ala Leu Leu Val Ala Met His Val Ala 85 90 95

| Tyr                                                                           | Arg          | Arg          | His<br>100      | Glu        | Lys        | Lys          | Arg             | Lys<br>105 | Phe            | Ile            | ьўs        | Gly              | Glu<br>110     |                | Гуз        |     |
|-------------------------------------------------------------------------------|--------------|--------------|-----------------|------------|------------|--------------|-----------------|------------|----------------|----------------|------------|------------------|----------------|----------------|------------|-----|
| Ser (                                                                         | Glu          | Phe<br>115   | Lys             | Asp        | Ile        | Glu          | Glu<br>120      | Ile        | Lys            | Thr            | Gln        | Lys<br>125       | Val            | Arg            | Ile        |     |
| Glu (                                                                         | 31y<br>130   | Ser          | Leu             | Trp        | Trp        | Thr<br>135   | Tyr             | Thr        | Ser            | Ser            | Ile<br>140 | Phe              | Phe            | Arg            | Val        |     |
| Ile I<br>145                                                                  | ?he          | Glu          | Ala             | Ala        | Phe<br>150 | Met          | Tyr             | Val        | Phe            | Tyr<br>155     | Val        | Met              | Tyr            | Asp            | Gly<br>160 |     |
| Phe S                                                                         | Ser          | Met          | Gln             | Arg<br>165 | Leu        | Val          | Lys             | Суз        | Asn<br>170     | Ala            | Trp        | Pro              | Cys            | Pro<br>175     | Asn        |     |
| Thr V                                                                         | al.          | Asp          | Cys<br>180      | Phe        | Val        | Ser          | Arg             | Pro<br>185 | Thr            | Glu            | Lys        | Thr              | Val<br>190     | Phe            | Thr        |     |
| Val P                                                                         | he l         | Met<br>195   | Ile             | Ala        | Val        | Ser          | Gly<br>200      | Ile        | Суз            | Ile            | Leu        | Leu<br>205       | Àsn            | Val            | Thr        |     |
| Glu L<br>2                                                                    | eu (<br>10   | Cys :        | Tyr             | Leu        | Leu        | Ile .<br>215 | Arg             | Tyr        | Cys            | Ser            | Gly<br>220 | Lys              | Ser            | Lys            | Lys        |     |
| Pro Va<br>225                                                                 | al           |              |                 |            | •          | •            |                 |            |                |                |            |                  |                |                |            |     |
| <210>                                                                         | 83           | }            |                 |            |            |              |                 |            |                |                |            |                  |                |                |            |     |
| <211>                                                                         | 23           | 89           |                 |            |            |              |                 |            |                |                |            |                  |                |                |            |     |
| <212>                                                                         | DN           | A            |                 |            |            |              |                 |            |                | •              |            |                  |                |                |            |     |
| <213>                                                                         | NM           | _002         | 514             | NOV        | l, ne      | phro         | blas            | toma       | a ove          | erexp          | press      | sed g            | jene           |                |            |     |
| <220>                                                                         |              |              |                 |            |            |              |                 |            |                |                |            |                  |                |                |            |     |
| <221>                                                                         | CD           | s            |                 |            |            |              |                 | •          |                |                | •          |                  |                |                |            |     |
| <222>                                                                         | (7           | 3)           | (114            | 3)         |            |              |                 |            |                |                |            |                  |                |                |            |     |
| <223>                                                                         |              |              |                 |            |            |              |                 | . ,        |                |                |            |                  |                |                |            |     |
| <400> 83 gggaaggcga gcagtgccaa tctacagcga agaaagtctc gtttggtaaa agcgagaggg 66 |              |              |                 |            |            |              |                 |            | 60             |                |            |                  |                |                |            |     |
| gaaagc                                                                        | ctga         | ı gc         | atg<br>Met<br>1 | cag<br>Gln | agt<br>Ser | gtg<br>Val   | cag<br>Gln<br>5 | agc<br>Ser | acg<br>Thr     | agc<br>Ser     | ttt<br>Phe | tgt<br>Cys<br>10 | ctc<br>Leu     | cga<br>Arg     | aag<br>Lys | 111 |
| cag tgo<br>Gln Cys<br>15                                                      | c ct<br>3 Le | t to<br>u Cy | rs Le           | eu Th      | ec to      | ne Le        | g ci            | tt ci      | tc ca<br>eu Hi | at ci<br>is Le | eu Le      | tg gg<br>eu Gl   | ga ca<br>Ly Gi | ag gi<br>In Va | tc<br>al   | 159 |

gct gcg act cag cgc tgc cct ccc cag tgc ccg ggc cgg tgc cct gcg

| Ala<br>30         | a Ala             | Thi               | Gli               | n Ar              | g Cys<br>35         | Pro               | Pro               | Glr               | о Суз              | 9ro               | Gly               | Arg               | J Cys             | s Pro             | Ala<br>45         |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| acg<br>Thr        | r CCC             | p ccg             | g aco             | Cys<br>50         | c gcc<br>s Ala      | ccc<br>Pro        | GI7               | g gto<br>Val      | g cgc<br>Arg<br>55 | gcg<br>Ala        | g gto<br>Val      | Let               | g gad<br>Asp      | 60<br>60          | tgc<br>/ Cys      | 255  |
| tca<br>Ser        | tgo<br>Cys        | tgt<br>Cys        | Cto<br>Let<br>65  | g gto<br>1 Val    | g tgt<br>L Cys      | gco<br>Ala        | cgc<br>Arg        | Glr<br>Glr<br>70  | g cgt<br>n Arg     | Gly               | gag<br>Glu        | g ago             | tgo<br>Cys<br>75  | c tca<br>Ser      | gat<br>Asp        | 303  |
| ctg<br>Leu        | gag<br>Glu        | Pro<br>80         | tgo<br>Cys        | gao<br>Asp        | gag<br>Glu          | ago<br>Ser        | agt<br>Ser<br>85  | ggc<br>Gly        | cto<br>Leu         | tac<br>Tyr        | tgt<br>Cys        | gat<br>Asp<br>90  | cgc<br>Arg        | ago<br>g Ser      | gcg<br>Ala        | 351  |
| gac<br>Asp        | Pro<br>95         | ago<br>Ser        | aac<br>Asr        | cag<br>Glr        | g act               | ggc<br>Gly<br>100 | Ile               | tgc<br>Cys        | acg<br>Thr         | gcg               | gta<br>Val<br>105 | Glu               | gga<br>Gly        | gat<br>Asp        | aac<br>Asn        | 399  |
| tgt<br>Cys<br>110 | Val               | ttc<br>Phe        | gat<br>Asp        | Gly<br>ggg        | y gto<br>Val<br>115 | Ile               | tac<br>Tyr        | cgc               | agt<br>Ser         | gga<br>Gly<br>120 | Glu               | aaa<br>Lys        | ttt<br>Phe        | cag<br>Gln        | cca<br>Pro<br>125 | 447  |
| agc<br>Ser        | tgc<br>Cys        | aaa<br>Lys        | ttc<br>Phe        | Gln<br>130        | Суз                 | acc               | tgc<br>Cys        | aga<br>Arg        | gat<br>Asp<br>135  | GJ À<br>aàà       | cag<br>Gln        | att               | Gly               | tgt<br>Cys<br>140 | gtg<br>Val        | 495  |
| ccc<br>Pro        | ÿrg               | tgt<br>Cys        | cag<br>Gln<br>145 | Leu               | gat<br>Asp          | gtg<br>Val        | cta<br>Leu        | ctg<br>Leu<br>150 | Pro                | gag<br>Glu        | · cct<br>Pro      | aac               | tgc<br>Cys<br>155 | Pro               | gct<br>Ala        | 543  |
| cca<br>Pro        | aga<br>Arg        | aaa<br>Lys<br>160 | Val               | gag<br>Glu        | gtg<br>Val          | cct<br>Pro        | gga<br>Gly<br>165 | gag<br>Glu        | tgc<br>Cys         | tgt<br>Cys        | gaa<br>Glu        | aag<br>Lys<br>170 | Trp               | atc<br>Ile        | tgt<br>Cys        | 591  |
| ggc               | cca<br>Pro<br>175 | gat<br>Asp        | gag<br>Glu        | gag<br>Glu        | gat<br>Asp          | tca<br>Ser<br>180 | ctg<br>Leu        | gga<br>Gly        | ggc<br>Gly         | ctt<br>Leu        | acc<br>Thr<br>185 | ctt<br>Leu        | gca<br>Ala        | gct<br>Ala        | tac<br>Tyr        | 639  |
| agg<br>Arg<br>190 | cca<br>Pro        | gaa<br>Glu        | gcc<br>Ala        | acc<br>Thr        | cta<br>Leu<br>195   | gga<br>Gly        | gta<br>Val        | gaa<br>Glu        | gtc<br>Val         | tct<br>Ser<br>200 | gac<br>Asp        | tca<br>Ser        | agt<br>Ser        | gtc<br>Val        | aac<br>Asn<br>205 | 687  |
| tgc<br>Cys        | att<br>Ile        | gaa<br>Glu        | cag<br>Gln        | acc<br>Thr<br>210 | aca<br>Thr          | gag<br>Glu        | tgg<br>Trp        | aca<br>Thr        | gca<br>Ala<br>215  | tgc<br>Cys        | tcc<br>Ser        | aag<br>Lys        | agc<br>Ser        | tgt<br>Cys<br>220 | ggt<br>Gly        | 735  |
| atg<br>Met        | Gly<br>ggg        | ttc<br>Phe        | tcc<br>Ser<br>225 | acc<br>Thr        | cgg<br>Arg          | gtc<br>Val        | acc<br>Thr        | aat<br>Asn<br>230 | agg<br>Arg         | aac<br>Asn        | cgt<br>Arg        | caa<br>Gln        | tgt<br>Cys<br>235 | gag<br>Glu        | atg<br>Met        | 783  |
| ctg<br>Leu        | aaa<br>Lys        | cag<br>Gln<br>240 | act<br>Thr        | cgg<br>Arg        | ctc<br>Leu          | tgc<br>Cys        | atg<br>Met<br>245 | gtg<br>Val        | cgg<br>Arg         | ccc<br>Pro        | tgt<br>Cys        | gaa<br>Glu<br>250 | caa<br>Gln        | gag<br>Glu        | cca<br>Pro        | 831  |
| gag<br>Glu        | cag<br>Gln<br>255 | cca<br>Pro        | aca<br>Thr        | gat<br>Asp        | aag<br>Lys          | aaa<br>Lys<br>260 | gga<br>Gly        | aaa<br>Lys        | aag<br>Lys         | tgt<br>Cys        | ctc<br>Leu<br>265 | cgc<br>Arg        | acc<br>Thr        | aag<br>Lys        | aag<br>Lys        | 879  |
| tca<br>Ser<br>270 | ctc<br>Leu        | aaa<br>Lys        | gcc<br>Ala        | atc<br>Ile        | cac<br>His<br>275   | ctg<br>Leu        | cag<br>Gln        | ttc<br>Phe        | aag<br>Lys         | aac<br>Asn<br>280 | tgc<br>Cys        | acc<br>Thr        | agc<br>Ser        | ctg<br>Leu        | cac<br>His<br>285 | 927  |
| acc<br>Thr        | tac<br>Tyr        | aag<br>Lys        | ccc<br>Pro        | agg<br>Arg<br>290 | ttc<br>Phe          | tgt<br>Cys        | G1y<br>ggg        | gtc<br>Val        | tgc<br>Cys<br>295  | agt<br>Ser        | gat<br>Asp        | ggc<br>Gly        | cgc<br>Arg        | tgc<br>Cys<br>300 | tgc<br>Cys        | 975  |
| act               | ccc               | cac               | aat               | acc               | aaa                 | acc               | atc               | cag               | gca                | gag               | ttt               | cag               | tgc               | tcc               | cca               | 1023 |

| Thr Pro His Asn Thr Lys Thr Ile Gln Ala Glu Phe Gln Cys Ser Pro 305 310 315                                                                       |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ggg caa ata gtc aag aag cca gtg atg gtc att ggg acc tgc acc tgt<br>Gly Gln Ile Val Lys Lys Pro Val Met Val Ile Gly Thr Cys Thr Cys<br>320 325 330 | 1071 |
| cac acc aac tgt cct aag aac aat gag gcc ttc ctc cag gag ctg gag<br>His Thr Asn Cys Pro Lys Asn Asn Glu Ala Phe Leu Gln Glu Leu Glu<br>335 340 345 | 1119 |
| ctg aag act acc aga ggg aaa atg taacctatca ctcaagaagc acacctacag<br>Leu Lys Thr Thr Arg Gly Lys Met<br>350 355                                    | 1173 |
| agcacctgta gctgctgcgc cacccaccat caaaggaata taagaaaagt aatgaagaat                                                                                 | 1233 |
| cacgatttca teettgaate etatgtattt teetaatgtg ateatatgag gacettteat                                                                                 | 1293 |
| atctgtcttt tatttaacaa aaaatgtaat taactgtaaa cttggaatca aggtaagctc                                                                                 | 1353 |
| aggatatggc ttaggaatga cttactttcc tgtggtttta ttacaaatgc aaatttctat                                                                                 | 1413 |
| aaatttaaga aaacaagtat ataatttact ttgtagactg tttcacattg cactcatcat                                                                                 | 1473 |
| attttgttgt gcactagtgc aattccaaga aaatatcact gtaatgagtc agtgaagtct                                                                                 | 1533 |
| agaatcatac ttaacatttc attgtacaag tattacaacc atatattgag gttcattggg                                                                                 | 1593 |
| aagattetet attggeteee tttttgggta aaccagetet gaactteeaa geteeaaate                                                                                 | 1653 |
| caaggaaaca tgcagctctt caacatgaca tccagagatg actattactt ttctgtttag                                                                                 | 1713 |
| ttttacacta ggaaacgtgt tgtatctaca gtaatgaaat gtttactaag tggactggtg                                                                                 | 1773 |
| tcataaactt tctccattta agacacattg actcctttcc aatagaaaga aactaaacag                                                                                 | 1833 |
| aaaactccca atacaaagat gactggtccc tcatagccct cagacattta tatattggaa                                                                                 | 1893 |
| gctgctgagg cccccaagtt ttttaattaa gcagaaacag catattagca gggattctct                                                                                 | 1953 |
| catctaactg atgagtaaac tgaggcccaa agcacttgct tacatcctct gatagctgtt                                                                                 | 2013 |
| tcaaaigtgc attttgtgga attttgagaa aaatagagca aaatcaacat gactggtggt                                                                                 | 2073 |
| gagagaccac acattttatg agagtttgga attattgtag acatgcccaa aacttatcct                                                                                 | 2133 |
| tgggccataa ttatgaaaac tcatgatcaa gatatatgtg tatacataca tgtatctggt                                                                                 | 2193 |
| ttgtcaggct acaaggtagg ctgcaaaatt aaatctagac attctttaa tgccaccaca                                                                                  | 2253 |
| cgtgttccgc ttctctcttt taaagtattt ataaaaatat aaattgtaca ttttgtaaaa                                                                                 | 2313 |
| tattatgttt gatttctcta cttgtcatat cactaaataa acacgatttt attgctgaaa                                                                                 | 2373 |
| aaaaaaaaa aaaaaa                                                                                                                                  | 2389 |

<210> 84

<211> 357

<212> PRT

<213> NM\_002514 NOV1, nephroblastoma overexpressed gene

<400> 84

Met Gln Ser Val Gln Ser Thr Ser Phe Cys Leu Arg Lys Gln Cys Leu 1 5 10 15

Cys Leu Thr Phe Leu Leu Leu His Leu Leu Gly Gln Val Ala Ala Thr 20 25 30 .

Gln Arg Cys Pro Pro Gln Cys Pro Gly Arg Cys Pro Ala Thr Pro Pro 35 40 45

Thr Cys Ala Pro Gly Val Arg Ala Val Leu Asp Gly Cys Ser Cys Cys 50 55 60

Leu Val Cys Ala Arg Gln Arg Gly Glu Ser Cys Ser Asp Leu Glu Pro 65 70 75 80

Cys Asp Glu Ser Ser Gly Leu Tyr Cys Asp Arg Ser Ala Asp Pro Ser 85 90 95

Asn Gln Thr Gly Ile Cys Thr Ala Val Glu Gly Asp Asn Cys Val Phe 100 105 110

Asp Gly Val Ile Tyr Arg Ser Gly Glu Lys Phe Gln Pro Ser Cys Lys 115 120 125

Phe Gln Cys Thr Cys Arg Asp Gly Gln Ile Gly Cys Val Pro Arg Cys 130 135 140

Gln Leu Asp Val Leu Leu Pro Glu Pro Asn Cys Pro Ala Pro Arg Lys 145 150 155 160

Val Glu Val Pro Gly Glu Cys Cys Glu Lys Trp Ile Cys Gly Pro Asp 165 170 175

Glu Glu Asp Ser Leu Gly Gly Leu Thr Leu Ala Ala Tyr Arg Pro Glu 180 185 190

Ala Thr Leu Gly Val Glu Val Ser Asp Ser Ser Val Asn Cys Ile Glu 195 200 205

Gln Thr Thr Glu Trp Thr Ala Cys Ser Lys Ser Cys Gly Met Gly Phe 210 215 220

Ser Thr Arg Val Thr Asn Arg Asn Arg Gln Cys Glu Met Leu Lys Gln 225 230 235 240

Thr Arg Leu Cys Met Val Arg Pro Cys Glu Gln Glu Pro Glu Gln Pro
245 250 255

Thr Asp Lys Lys Gly Lys Lys Cys Leu Arg Thr Lys Lys Ser Leu Lys 260 265 270

Ala Ile His Leu Gln Phe Lys Asn Cys Thr Ser Leu His Thr Tyr Lys 275 280 285

Pro Arg Phe Cys Gly Val Cys Ser Asp Gly Arg Cys Cys Thr Pro His 290 295 300

As n Thr Lys Thr Ile Gln Ala Glu Phe Gln Cys Ser Pro Gly Gln Ile 305 310 315 320

Val Lys Lys Pro Val Met Val Ile Gly Thr Cys Thr Cys His Thr Asn 325 330 335

Cys Pro Lys Asn Asn Glu Ala Phe Leu Gln Glu Leu Glu Leu Lys Thr 340 345 350

Thr Arg Gly Lys Met 355

International application No.

PCT/AU03/01166

| Α.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             | CLASSIFICATION OF SUBJECT M                                                                                 | ATTE     | R                                                                                                                                                                                                                                                                                                  |                                                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|
| Int. Cl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7;                                                          | C12Q 1/68, G01N 33/53                                                                                       |          |                                                                                                                                                                                                                                                                                                    |                                                         |  |
| Accord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ling to l                                                   | International Patent Classification (IPC)                                                                   | or to be | oth national classification and IPC                                                                                                                                                                                                                                                                |                                                         |  |
| В.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             | FIELDS SEARCHED                                                                                             |          |                                                                                                                                                                                                                                                                                                    |                                                         |  |
| Minimu<br>SEE B                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | mentation searched (classification system foll                                                              | owed b   | y classification symbols)                                                                                                                                                                                                                                                                          |                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |                                                                                                             | to the   | extent that such documents are included in the fields sea                                                                                                                                                                                                                                          | rched                                                   |  |
| SEE B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             | ·                                                                                                           |          | £ dat has a dayle and have and                                                                                                                                                                                                                                                                     |                                                         |  |
| DGEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E, EM                                                       | IBL, GENBANK: SEQ ID NOS 1-7,                                                                               | 9, 11,   | of data base and, where practicable, search terms used) 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35,                                                                                                                                                                                            |                                                         |  |
| 46, 48,<br>diagno                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             | 2, 53, 55, 57, 59, 60- 63, 65, 67, 69, 7                                                                    | 1-75,    | 77, 79, 81, 83 WPIDS: ovarian, cancer, tumor                                                                                                                                                                                                                                                       | ır, detect,                                             |  |
| C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             | DOCUMENTS CONSIDERED TO BE RE                                                                               | LEVA     | NT                                                                                                                                                                                                                                                                                                 |                                                         |  |
| Categ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ory*                                                        | Citation of document, with indication,                                                                      | where    | appropriate, of the relevant passages                                                                                                                                                                                                                                                              | Relevant to claim No.                                   |  |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             | Weitzel JN et al (1994) Gynecologichanges associated with ovarian car<br>See table 3 and pages 249 and 50 w | ncer" :  |                                                                                                                                                                                                                                                                                                    | 1-5, 7, 9-12,<br>16-20, 22, 24-<br>27, 31-43, 62-<br>69 |  |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             | DGENE Abstract Accession No AI SCIENCES, INC.) 3 January 2002 See abstract and claim 1, SEQ ID N            |          |                                                                                                                                                                                                                                                                                                    |                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X Fi                                                        | urther documents are listed in the con                                                                      | tinuat   | tion of Box C X See patent family an                                                                                                                                                                                                                                                               | nex                                                     |  |
| "A" o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | document<br>which is<br>relevance<br>earlier a<br>after the | pplication or patent but published on or international filing date                                          | "T"      | later document published after the international filing and not in conflict with the application but cited to un or theory underlying the invention document of particular relevance; the claimed invention considered novel or cannot be considered to involve a when the document is taken alone | derstand the principle on cannot be in inventive step   |  |
| "L" document which may throw doubts on priority "Y" document of particular relevance; the claimed invention cannot be claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious a person skilled in the art |                                                             |                                                                                                             |          |                                                                                                                                                                                                                                                                                                    | ment is combined                                        |  |
| reason (as specified)  "O" document referring to an oral disclosure, use,  "&" document member of the same patent family exhibition or other means                                                                                                                                                                                                                                                                                                                                          |                                                             |                                                                                                             |          |                                                                                                                                                                                                                                                                                                    |                                                         |  |
| "P" d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | locumer                                                     | nt published prior to the international filing later than the priority date claimed                         | -        | •                                                                                                                                                                                                                                                                                                  | •                                                       |  |
| Date of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | he actua                                                    | al completion of the international search                                                                   |          | Date of mailing of the international search report                                                                                                                                                                                                                                                 | 0.6 NOV 2003                                            |  |
| 23 Octo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             | 003 ng address of the ISA/AU                                                                                |          | Authorized officer                                                                                                                                                                                                                                                                                 |                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | PATENT OFFICE                                                                                               |          | remotized officer                                                                                                                                                                                                                                                                                  |                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | /ODEN ACT 2606, AUSTRALIA<br>pct@ipaustralia.gov.au                                                         |          | TERRY MOORE                                                                                                                                                                                                                                                                                        |                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             | 02) 6285 3929                                                                                               |          | Telephone No : (02) 6283 2632                                                                                                                                                                                                                                                                      |                                                         |  |

PCT/AU03/01166

| C (Continua | tion 1). DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                      |                                                                 |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Category*   | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                                | Relevant to claim No.                                           |
| х           | Hough CD et al (2000) Cancer Research 60, 6281-7 "Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer" See table 3: mal2, claudin 3(relevant to SEQ ID NOs 11, 15)                                                                                                                                                            | 1-5, 7, 10-12<br>16-20, 22, 25<br>27, 31-43, 60                 |
| PX          | WO 02 071928 A2 (MILLENNIUM PHARMACEUTICALS, INC) 19 September 200 See table 1 pg 20 KIAA0869: pg 19 FLJ22252: pg 21 SLP1, pgs 21, 24, 25 PAX8: pg 18 ANXA2 (applicant's SEQ ID NOs 13, 17, 25, 43 and 71/72) & DGENE Accession No ABS76418 (applicant's SEQ ID NO 17)                                                                                                            | 1                                                               |
| PX          | WO 02 102235 A2 (EOS BIOTECHNOLOGY, INC) 27 December 2002<br>See pg 187 KIAA0869: pg 184 claudin 7: pgs 111, 162 and 180 KIAA0101: pg 120<br>KIAA1481, pgs 152, 174, 184, 202 paired box gene 8: pgs 155, 161 methylene<br>tetrahydrofolate dehydrogenase: pg 176 DD5: pg 125 SOCS3: pg 261 serum amyloid<br>A1 (applicant's SEQ ID NOs 13, 21, 23, 37, 43, 55, 63, 73/74 and 75) | 1-5, 7, 10-12<br>16-20, 22, 25<br>27, 31-43, 45<br>47-53, 60-65 |
| PX          | DGENE Abstract Accession No ACA66405 & US 2003/0004102 A1 (ASHKENAZI AJ et al) 2 January 2003 See abstract and claim 2, figure 203 (applicant's SEQ ID NO 19)                                                                                                                                                                                                                     | 1-5, 7, 10-12<br>16-20, 22, 25<br>27, 31-43, 60                 |
| x           | Scheurle D et al "Cancer gene discovery using digital differential display" (2000)(online), (retrieved on 16 October 2003) Retrieved from Internet <url:http: cancergenes.htm="" cmbb="" publications="" www.fau.edu=""> See "up-regulation of known genes: claudin 7, secreted frizzled rel. pro. 4 (applicant's SEQ ID NOs 21 and 69)</url:http:>                               | 1-5, 7, 10-12<br>16-20, 22, 25<br>27, 31-43, 45<br>47-53, 60-69 |
| <b>X</b>    | DGENE Abstract Accession No AAS56533 & WO 01 70796 A2 (CORIXA CORPORATION) 27 September 2001 See abstract and claim 1, page 165 KIAA0101 (applicant's SEQ ID NO 23)                                                                                                                                                                                                               | 1-5, 7, 10-12<br>16-20, 22, 25<br>27, 31-43, 60                 |
| x           | Medline Abstract 11906548 Shigemasa K et al (2001) Int J Gynecol Cancer 11(6), 454-61 "Expression of the protease inhibitor antileukoprotease and the serine protease stratum corneum chymotryptic enzyme (SCCE) is coordinated in ovarian tumours" See abstract, relevant to applicant's SEQ ID NO 25                                                                            |                                                                 |

International application No.
PCT/AU03/01166

|             | PCT/AU03/6                                                                                                                                                                                                                                                                   | 11100                                                                      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| C (Continua | tion 2) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                  |                                                                            |
| Category*   | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                           | Relevant to claim No.                                                      |
|             | Laval S et al (1994) Cell Growth Differ 5(11), 1173-83 "Isolation and characterization of an epithelial-specific receptor tyrosine kinase from an ovarian cancer cell line"                                                                                                  |                                                                            |
| х           | See whole document, relevant to applicant's SEQ ID NO 27                                                                                                                                                                                                                     | 1-5, 7, 9-11,<br>16-20, 22, 25-<br>27, 31-42, 62-<br>69                    |
|             | WO 03 068054 A2 (THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY, DEPARTMENT OF HEALTH SERVICES) 21 August 2003                                                                                                                               |                                                                            |
| PX          | See in particular table 1, pg 22/60 EDDR1: pg 32/60 TOP2A: 29/60 PAX8 and 33/60 SFRP4 (applicant's SEQ ID NOs 27, 29, 43 and 69)                                                                                                                                             | 1-5, 7, 10-12,<br>16-20, 22, 25-<br>27, 31-43, 45,<br>47, 51-53, 62-<br>69 |
|             | Koshiyama M et al (2001) Anticancer Res 21, 2925-32 "Immunohistochemical expression of topoisomerase II alpha (TopII alpha) and multidrug resistance-associated protein (MRP), plus chemosensitivity testing, as chemotherapeutic indices of ovarian endometrial carcinomas" |                                                                            |
| Х           | See whole document, relevant to applicant's SEQ ID NO 29                                                                                                                                                                                                                     | 1-5, 7, 10-12,<br>16-20, 22, 26,<br>27, 31-40, 42,<br>43, 62-69            |
| X           | Gotlieb WH et al (2001) Gynecol Oncol 82(1), 99-104 "Topoisomerase II immunostaining as a prognostic marker for survival in ovarian cancer" See whole document, relevant to applicant's SEQ ID NO 29                                                                         | 1-5, 7, 10-12,<br>16-20, 22, 26,<br>27, 31-40, 42,<br>43, 62-69            |
|             | Costa MJ et al (2000) Int J Gynecol Pathol 19(3), 248-57 "Topoisomerase II alpha: prognostic predictor and cell cycle marker in surface epithelial neoplasms of the ovary and peritoneum"                                                                                    | 43, 02-09                                                                  |
| х           | See whole document, relevant to applicant's SEQ ID NO 29                                                                                                                                                                                                                     | 1-5, 7, 10-12,<br>16-20, 22, 25-<br>27, 31-43, 62-<br>69                   |
| ·           | DGENE Abstract Accession No ABQ54317 & WO 02 00677 A1 (HUMAN GENOME SCIENCES, INC.) 3 January 2002                                                                                                                                                                           |                                                                            |
| X           | See abstract and claim 1, SEQ ID NO 197 (applicant's SEQ ID NO 31 reverse complement)                                                                                                                                                                                        | 1-5, 7, 10-12,<br>16-20, 22, 25-<br>27, 31-43, 60-                         |
|             | DGENE Abstract Accession No ACA03948 & US 2002/0192678 A1 (CHEN H-M) 19 December 2002                                                                                                                                                                                        | -                                                                          |
| PX          | See abstract and example 13, pages 98-99 (applicant's SEQ ID NO 33)                                                                                                                                                                                                          | 1-5, 7, 10-12,<br>16-20, 22, 24-<br>27, 31-43, 62-<br>69                   |

International application No. PCT/AU03/01166

16-20, 22, 25-27, 31-43, 60-

1-5, 7, 10-12, 16-20, 22, 25-27, 31-43, 60-

1-5, 7, 10-12, 15-20, 22, 25-27, 30-43, 60-

1-5, 7, 10-12, 15-20, 22, 25-27, 30-43, 60-

69

DOCUMENTS CONSIDERED TO BE RELEVANT C (Continuation 3) Relevant to Category\* Citation of document, with indication, where appropriate, of the relevant passages claim No. Medline Abstract 11925933 Sakamoto M et al (2001) Hum Cell 14(4), 305-15 "Analysis of gene expression profiles associated with cisplatin resistance in human ovarian cancer cell lines and tissues using cDNA microarray" Х 1-5, 7, 10-12, See whole document, relevant to applicant's SEQ ID NO 35 16-20, 22, 24-27, 31-43, 62-69 DGENE Abstract Accession No ABQ54876 & WO 02 00677 A1 (HUMAN GENOME SCIENCES, INC.) 3 January 2002 Х See abstract and claim 1, SEQ ID NO 756 (applicant's SEQ ID NO 39) 1-5, 7, 10-12, 16-20, 22, 25-27, 31-43, 60-69 DGENE Abstract Accession No ABL83226 & WO 01 92581 A2 (CORIXA CORPORATION) 6 December 2001 Х See abstract and claim 1, SEQ ID NO 6204 (applicant's SEQ ID NO 41) 1-5, 7, 10-12, 16-20, 22, 25-27, 31-43, 60-Genbank Accession No AK075046 3 September 2002 Isogai T et al Homo sapiens cDNA FLJ90565, clone OVARC1001336 X See "features" (applicant's SEQ ID NO 50) 1-5, 7, 16-20, 22, 31-40, 62-67 DGENE Abstract Accession No AAH83197 & WO 01 51513 A2 (CORIXA CORPORATION) 19 July 2001 Х See abstract and claim 5, SEQ ID NO 821 (applicant's SEQ ID NO 52) 1-5, 7, 10-12,

DGENE Abstract Accession No ABL90699 & WO 01 90304 A2 (HUMAN GENOME

See abstract and claim 4, SEQ ID NO 1261 (applicant's SEQ ID NO 53)

GESELLSCHAFT F R GENOMFORSHUNG) 21 October 1999

See abstract, claim 3 and page 226 (applicant's SEQ ID NO 57)

PHARMACEUTICALS) 13 December 2001

DGENE Abstract Accession No AAZ77553 & WO 99 53040 A2 (METAGEN

DGENE Abstract Accession No ABL67667 & WO 01 94629 A2 (AVALON

See abstract and claim 1, SEQ ID NO 6004 (applicant's SEQ ID NOs 59, 60)

SCIENCES) 29 November 2001

Х

X

X

International application No.
PCT/AU03/01166

| C (Continua | tion 4) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                  |                                                                 |
|-------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Category*   | Citation of document, with indication, where appropriate, of the relevant passages                           | Relevant to claim No.                                           |
|             | DGENE Abstract Accession No ABL61830 & WO 01 94629 A2 (AVALON PHARMACEUTICALS) 13 December 2001              |                                                                 |
| Х           | See abstract and claim 1, SEQ ID NO 167 (applicant's SEQ ID NOs 61, 62)                                      | 1-5, 7, 10-12<br>15-20, 22, 24<br>27, 30-43, 62                 |
|             | DGENE Abstract Accession No AAV64871 & WO 98 48010 A1 (GARVAN INSTITUTE OF MEDICAL RESEARCH) 29 October 1998 |                                                                 |
| х           | See Abstract and figure 3B, example and pg 22 line 34 of WO 98 48010 (applicant's SEQ ID NO 63)              | 1-5, 7, 10-1:<br>16-20, 22, 2<br>27, 31-43, 4<br>47, 51-53, 6   |
|             | DGENE Abstract Accession No ABV34360 & WO 01 60860 A2 (MILLENIUM PREDICTIVE MEDICINE, INC) 23 August 2001    |                                                                 |
| <b>x</b> .  | See Abstract, claim 1, pg 19 and pg 7222 (applicant's SEQ ID NO 65)                                          | 1-5, 7, 10-12<br>16-20, 22, 2<br>27, 31-43, 4<br>47, 51-53, 6   |
|             | DGENE Abstract Accession No ABQ54583 & WO 02 00677 A1 (HUMAN GENOMI SCIENCES, INC.) 3 January 2002           |                                                                 |
| х           | See in particular abstract and claim 1, SEQ ID NO 463 (applicant's SEQ ID NO 67)                             | 1-5, 7, 10-12<br>16-20, 22, 2<br>27, 31-43, 4<br>47, 51-53, 6   |
|             | DGENE Abstract Accession No ABL62031 & WO 01 94629 A2 (AVALON PHARMACEUTICALS) 13 December 2001              |                                                                 |
| Х           | See abstract and claim 1, SEQ ID NO 368 (applicant's SEQ ID NOs 73, 74)                                      | 1-5, 7, 10-12<br>16-20, 22, 2<br>27, 31-43, 4<br>47-53, 60-69   |
|             | DGENE Abstract Accession No AAI99253 & WO 01 55313 A2 (HUMAN GENOME SCIENCES, INC) 2 August 2001             | İ                                                               |
| X           | See abstract, example 2 and SEQ ID NO 1017 (applicant's SEQ ID NO 77)                                        | 1.5, 7, 10-12<br>16-20, 22, 2<br>27, 31-43, 4<br>47, 51-53, 66  |
|             | DGENE Abstract Accession No ABL64081 & WO 01 94629 A2 (AVALON PHARMACEUTICALS) 13 December 2001              |                                                                 |
| х           | See abstract and claim 1, SEQ ID NO 2418 (applicant's SEQ ID NO 79)                                          | 1-5, 7, 10-12<br>16-20, 22, 25<br>27, 31-43, 45<br>47-53, 60-69 |

International application No.
PCT/AU03/01166

|                                                        | PC17AU03/0                                                                                      |                                                                  |  |  |  |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|
| C (Continuation 5) DOCUMENTS CONSIDERED TO BE RELEVANT |                                                                                                 |                                                                  |  |  |  |  |  |  |
| Category*                                              | Citation of document, with indication, where appropriate, of the relevant passages              | Relevant to claim No.                                            |  |  |  |  |  |  |
|                                                        | DGENE Abstract Accession No ABL66499 & WO 01 94629 A2 (AVALON PHARMACEUTICALS) 13 December 2001 |                                                                  |  |  |  |  |  |  |
| Х                                                      | See abstract and claim 1, SEQ ID NO 4836 (applicant's SEQ ID NO 81)                             | 1-5, 7, 10-12<br>16-20, 22, 24<br>27, 31-43, 45<br>47, 51-53, 60 |  |  |  |  |  |  |
|                                                        | ·                                                                                               | 69                                                               |  |  |  |  |  |  |
|                                                        | · · · · · · · · · · · · · · · · · · ·                                                           |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |
|                                                        | ·                                                                                               |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |
|                                                        |                                                                                                 |                                                                  |  |  |  |  |  |  |

International application No. PCT/AU03/01166

| Box I      | Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)                                                                                                                                                                                                                                                                                           |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This inter | national search report has not been established in respect of certain claims under Article 17(2)(a) for the following                                                                                                                                                                                                                                                                       |
| 1.         | Claims Nos:                                                                                                                                                                                                                                                                                                                                                                                 |
|            | because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                                                                                                                                                                                                |
|            |                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.         | X Claims Nos: 70-73                                                                                                                                                                                                                                                                                                                                                                         |
|            | because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:                                                                                                                                                                               |
|            | The claims are not limited to the technical features of the invention as disclosed in, and supported by, the specification. The claims relate to methods of assessing the promoter regions of specific genes with respect to hypermethylation and ovarian cancer. However the specification only discloses sequences derived from cDNA clones and does not disclose any promoter sequences. |
| 3.         | Claims Nos :                                                                                                                                                                                                                                                                                                                                                                                |
|            | because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)                                                                                                                                                                                                                                                                      |
| Box II     | Observations where unity of invention is lacking (Continuation of item 3 of first sheet)                                                                                                                                                                                                                                                                                                    |
| This Inter | national Searching Authority found multiple inventions in this international application, as follows:                                                                                                                                                                                                                                                                                       |
| See si     | upplementary sheet                                                                                                                                                                                                                                                                                                                                                                          |
|            | •                                                                                                                                                                                                                                                                                                                                                                                           |
|            | •                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.         | As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims                                                                                                                                                                                                                                                     |
| 2. ·       | As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                                                                                                                                                                                        |
| 3.         | As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:2-5, 7, 9, 15, 19, 20, 22, 24, 30, 45 and 47-50 in full and claims 1, 10-12, 16-18, 25-27, 31-43, 51-53 and 60-69 as they relate to table 3.                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.         | No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                                                                                                                                                                             |
| Remark o   | on Protest The additional search fees were accompanied by the applicant's protest.                                                                                                                                                                                                                                                                                                          |
|            | X No protest accompanied the payment of additional search fees.                                                                                                                                                                                                                                                                                                                             |

International application No.

PCT/AU03/01166

#### Supplemental Box

(To be used when the space in any of Boxes I to VIII is not sufficient)

#### Continuation of Box No: II

The application claims more than one invention. Rule 13.1 of the PCT states the principle that an International Application should relate to only one invention or, if there is more than one invention, that the inclusion of those inventions in one International Application is only permitted if all inventions are so linked as to form a single general inventive concept.

Rule 13.2 of the PCT defines the method for determining whether the requirement of unity of invention is satisfied in respect of a group of inventions claimed in an International application. Unity of invention exists only when there is a technical relationship among the claimed inventions involving one or more of the same or corresponding "special technical features." The expression "special technical features" is defined in Rule 13.2 as meaning those technical features that define a contribution which each of the inventions, considered as a whole, makes over the prior art. The determination is made on the contents of the claims as interpreted in light of the description and drawings (if any).

The claims and the description relate to methods for the diagnosis, prediction and treatment of ovarian cancer, using gene and peptide sequences whose expression is altered in ovarian cancer. In particular the claims define methods relating to the use of over 693 specific gene and/or peptide sequences.

Although all of the claims share the common feature that they all relate to methods or apparatus that involve the use of specific gene or peptide sequences whose expression is altered in ovarian cancer, this feature is known (see the documents listed below). As such this feature cannot be regarded as a special technical feature and cannot confer unity on the inventions relating to the use of specific gene or peptide sequences for the detection or treatment of ovarian cancer.

- D1 US 5 912 142
- D2 US 6 268 165
- D3 WO 01 21653
- D4 Bayani et al (2002) Cancer Research 62, 3466-76

Furthermore, there is nothing in the specification to suggest that the genes can be further divided into groups, where sequences within a group share a common special technical feature. Although the specification discloses that some of the genes can be classified into further, narrower groups, these further divisions also cannot be regarded as special technical features. These divisions correspond to groups of genes that are down-regulated or up-regulated in cancers and genes that are associated with specific types of ovarian cancers, such as epithelial or mucinous ovarian cancer. However these groups are known, as are methods of using genes specifically associated with these narrower groups for the treatment and detection of specific subsets of ovarian cancers. See in particular D4

Although there is a lack of unity the ISA has searched, as a service to the applicant, five sets of ten sequences for five search fees.

These sequences comprise SEQ ID NOS 1-7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 46, 48, 50, 52, 53, 55, 57, 59, 60-63, 65, 67, 69, 71-75, 77, 79, 81, 83.

Information on patent family members

International application No. PCT/AU03/01166

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

|    | Document Cited in Search Report |    |          | Pate | ant Family Member | •  |          |
|----|---------------------------------|----|----------|------|-------------------|----|----------|
| wo | 0200677                         | AU | 29508/01 | AU   | 30958/01          | AU | 36459/01 |
|    |                                 | AU | 36460/01 | AU   | 36461/01          | AU | 36462/01 |
|    |                                 | AU | 36463/01 | AU   | 36464/01          | AU | 36465/01 |
|    |                                 | AU | 36466/01 | ΔU   | 37943/01          | AU | 37944/01 |
| ٠  | ,                               | AU | 37947/01 | UΑ   | 37949/01          | AU | 37950/01 |
|    |                                 | AU | 37951/01 | AU   | 37952/01          | AU | 37953/01 |
|    |                                 | AU | 37954/01 | ΑU   | 37955/01          | AU | 37957/01 |
|    |                                 | AU | 37958/01 | UΑ   | 38585/01          | ΑU | 39726/01 |
|    |                                 | AU | 39727/01 | AU   | 39728/01          | AU | 41402/01 |
|    |                                 | AU | 41403/01 | AU   | 41404/01          | AU | 41405/01 |
|    |                                 | AU | 41406/01 | AU   | 41407/01          | AU | 41408/01 |
|    |                                 | AU | 41409/01 | AU   | 41410/01          | AU | 41411/01 |
|    | •                               | AU | 41412/01 | AU   | 41413/01          | AU | 41414/01 |
|    |                                 | AU | 41415/01 | AU   | 41416/01          | AU | 41417/01 |
|    |                                 | AU | 41418/01 | AU   | 41419/01          | AU | 43134/01 |
|    |                                 | ΑU | 43135/01 | AU   | 43136/01          | AU | 43137/01 |
|    |                                 | ÁU | 45262/01 | AU   | 45354/01          | AU | 47190/01 |
|    |                                 | AU | 47191/01 | AU   | 49052/01          | AU | 49053/01 |
|    |                                 | AU | 49054/01 | ΑU   | 50767/01          | AU | 50768/01 |
|    |                                 | AU | 50769/01 | AU   | 50770/01          | AU | 50771/01 |
|    |                                 | AU | 50772/01 | AU   | 52878/01          | AÜ | 52879/01 |
|    |                                 | AU | 55162/01 | AU.  | 57912/01          | AU | 60969/01 |
|    |                                 | ΑÚ | 62899/01 | AU   | 66787/01          | CA | 2392398  |
|    |                                 | CA | 2392422  | CA   | 2392428           | CA | 2392438  |
|    |                                 | CA | 2392450  | CA   | 2392751           | CA | 2392757  |
|    |                                 | CA | 2393002  | CA   | 2393616           | CA | 2393618  |
|    |                                 | CA | 2393652  | CA   | 2393912           | CA | 2393941  |
|    | •                               | CA | 2393954  | CA   | 2394022           | CA | 2394039  |
|    |                                 | CA | 2394841  | CA   | 2395178           | CA | 2395295  |
|    |                                 | CA | 2395398  | CA   | 2395403           | CA | 2395654  |
|    |                                 | CA | 2395666  | CA   | 2395671           | ÇA | 2395676  |
|    |                                 | CA | 2395693  | CA   | 2395699           | CA | 2395724  |

Information on patent family members

| l c  | A 2395729  | CA | 2395734    | CA   | 2395738    |     |
|------|------------|----|------------|------|------------|-----|
| C.   |            | CA | 2395794    | CA   | 2395811    |     |
| C.   | A 2395815  | CA | 2395816    | CA   | 2395827    |     |
| C    | A 2395838  | CA | 2395849、   | CA   | 2395857    |     |
| C    | A 2395858  | CA | 2395872    | · CA | 2395885    |     |
| C    | A 2395889  | CA | 2396719    | CA   | 2397407    |     |
| C    | A 2397502  | CA | 2397839    | CA   | 2398227    |     |
| C    | A 2398275  | CA | 2398411    | CA   | 2398877    |     |
| · E  | P 1251863  | EP | 1252176    | · EP | 1252185    |     |
| E    | P 1252289  | EP | 1252290    | EP   | 1252297    |     |
| E    | 2 1252302  | EP | 1252303    | EP   | 1252312    |     |
| E    | 2 1252326  | EP | 1252337    | EP   | 1254147    |     |
| E    | P 1254148  | EP | 1254150    | EP · | 1254151    |     |
| E    | P 1254152  | EP | 1254153    | EP   | 1254154    |     |
| El   | P 1254157  | EP | 1254165    | EP   | 1254170    |     |
| E    | 2 1254171  | EP | 1254172    | EP   | 1254173    |     |
| E    | 2 1254217  | EP | 1254218    | EP   | 1254219    |     |
| El   | 2 1254228  | EP | 1254242    | EP   | 1254248    |     |
| EI   | P 1254272  | EP | 1255766    | EP   | 1255767    | .   |
| EI   | 1255768    | EP | 1255776    | EP   | 1255777    |     |
| E    | 1255778    | EP | 1255817    | EP   | 1255864    |     |
| E    | 1255869    | EP | 1259525    | EP   | 1259526    | İ   |
| E    | 1259528    | EP | 1259531    | EP   | 1259540    |     |
| E    | 1259642    | EP | 1261380    | EP . | 1261618    | - 1 |
| EF   | 1261619    | EP | 1261633    | EP   | 1261634    |     |
| EF   | 1261635    | EP | 1261637    | EP   | 1261703    |     |
| EF   | 1261742    | EP | 1261745    | EP   | 1263944    |     |
| · EF | 1265910    | EP | 1268527    | US   | 2002042096 |     |
| , US | 2002042386 | US | 2002061521 | US   | 2002077270 | =   |
| US   | 2002086330 | US | 2002086353 | US   | 2002086811 |     |
| US   | 2002086820 | US | 2002086821 | US   | 2002086822 | 1   |
| . US | 2002086823 | US | 2002090615 | US   | 2002090672 |     |
| US   | 2002090673 | US | 2002090674 | US   | 2002094953 |     |
| US   | 2002102638 | US | 2002119919 | .US  | 2002120103 | İ   |
| US   | 2002132753 | US | 2002132767 | US   | 2002147140 |     |
| US   | 2002151009 | US | 2002151479 | US   | 2002160493 | 1   |
| US   | 2002161208 | US | 2002164685 | US   | 2002165137 |     |
|      |            |    |            |      | •          | •   |

Information on patent family members

| _ |             |      |            |     |            |      |                                       |
|---|-------------|------|------------|-----|------------|------|---------------------------------------|
| ١ |             | US   | 2002168711 | US  | 2002173454 | US   | 2003013649                            |
|   |             | US   | 2003039993 | US  | 2003039994 | US . | 2003044890                            |
|   | •           | US   | 2003044904 | US  | 2003044905 | US   | 2003044907                            |
|   |             | US   | 2003049650 | US  | 2003049652 | US   | 2003049703                            |
|   |             | US   | 2003050231 | US  | 2003054368 | US   | 2003054373                            |
|   |             | US   | 2003054375 | US  | 2003054377 | US   | 2003054379                            |
|   |             | US   | 2003054420 | US  | 2003059875 | US   | 2003059908                            |
|   |             | US . | 2003077602 | US  | 2003077606 | US   | 2003077703                            |
|   |             | US   | 2003077704 | US  | 2003077808 | US   | 2003082681                            |
|   |             | US   | 2003082758 | US  | 2003092102 | US   | 2003092611                            |
|   |             | US   | 2003092615 | US  | 2003096346 | US   | 2003108907                            |
| ۱ |             | US   | 2003125246 | US  | 2003139327 | US   | 2003157508                            |
|   |             | US   | 2003175739 | US  | 2003190707 | wo   | 0154472                               |
| ١ | •           | wo   | 0154473    | wo  | 0154474    | wo   | 0154708                               |
|   | •           | wo   | 0154733    | wo  | 0155162    | wo   | 0155163                               |
|   |             | wo   | 0155164    | WO- | 0155167    | wo   | 0155168                               |
|   |             | wo   | 0155173    | wo  | 0155200    | wo   | 0155201                               |
| İ |             | wo   | 0155202    | WO  | 0155203    | wo   | 0155204                               |
|   |             | wo   | 0155205    | wo  | 0155206    | wo   | 0155207                               |
|   |             | wo   | 0155208    | wo  | 0155300    | WO   | 0155301                               |
|   |             | wo   | 0155302    | wo  | 0155303    | WO   | 0155304                               |
|   |             | wo   | 0155305    | wo  | 0155306    | WO   | 0155307                               |
|   |             | wo   | 0155308    | wo  | 0155309    | wo   | 0155310                               |
| ı |             | wo   | 0155311    | wo  | 0155312    | wo   | 0155313                               |
| ı |             | wo   | 0155314    | wo  | 0155315    | WO   | 0155316                               |
|   |             | wo   | 0155317    | wo  | 0155318    | WO   | 0155319                               |
| 1 |             | wo   | 0155320    | wo  | 0155321    | WO   | 0155322                               |
| ł |             | wo   | 0155323    | WO  | 0155324    | WO   | 0155325                               |
|   | •           | wo   | 0155326    | wo  | 0155327    | WO   | 0155328                               |
|   |             | wo   | 0155329    | wo  | 0155343    | WO   | 0155350                               |
|   | •           | wo   | 0155355    | wo  | 0155364    | wo   | 0155367                               |
|   |             | wo   | 0155368    | wo  | 0155387    | wo   | 0155388                               |
|   | •           | wo   | 0155430    | wo  | 0155440    | WO   | 0155441                               |
|   |             | wo   | 0155447    | wo  | 0155448    | wo   | 0155449                               |
|   |             | wo   | 0157182    | wo  | 0159063    | wo   | 0159064                               |
|   |             | wo   | 0162789    | WO  | 0164703    |      | · · · · · · · · · · · · · · · · · · · |
|   | WO 02071928 | US   | 2003087250 |     |            |      |                                       |
|   |             |      |            |     |            |      |                                       |

Information on patent family members

| wo  | 02102235   | ΑU | 69022/00   | CA   | 2381699    | EP   | 1204764    |
|-----|------------|----|------------|------|------------|------|------------|
|     |            | US | 2002015970 | US   | 2002019330 | US   | 2003124579 |
|     |            | US | 2003152926 | wo   | 0111086    | WO   | 02079492   |
|     | ·          | WO | 02086443   | wo   | 02098358   | WO   | 03003906   |
| _   |            | wo | 03025138   | wo   | 03042661   |      |            |
| US  | 2003004102 | AU | 10703/99   | AU   | 15324/99   | AU   | 22122/99   |
|     |            | CA | 2305385    | CA   | 2309358    | CA   | 2321677    |
|     |            | CA | 2347835    | CA   | 2353775    | EP   | 1025227    |
|     |            | EP | 1032667    | EP   | 1135485    | EP   | 1141284    |
|     |            | EP | 1141289    | EP   | 1159419    | EP   | 1159422    |
| ļ   |            | EP | 1173563    | EP   | 1220905    | EP   | 1263948    |
|     |            | US | 6410708    | US   | 2002072067 | US   | 2002072092 |
|     |            | US | 2002072496 | US   | 2002072497 | US   | 2002103125 |
|     |            | US | 2002119118 | US   | 2002119130 | US   | 2002123463 |
|     |            | US | 2002127576 | · US | 2002127584 | US   | 2002132252 |
|     |            | US | 2002132253 | US   | 2002142961 | US   | 2002156006 |
|     |            | US | 2002160384 | US   | 2002161199 | US   | 2002169284 |
|     |            | US | 2002177164 | US   | 2002177165 | US   | 2002177188 |
|     |            | US | 2002177553 | US   | 2002182638 | US   | 2002182673 |
|     |            | US | 2002183493 | US   | 2002183494 | US   | 2002183505 |
|     |            | US | 2002192209 | US   | 2002192706 | US   | 2002192752 |
|     |            | US | 2002193299 | US   | 2002193300 | US   | 2002197615 |
|     |            | US | 2002197674 | US   | 2002198148 | US   | 2002198149 |
|     |            | US | 2003003531 | US   | 2003003546 | US   | 2003004311 |
| 1 - |            | US | 2003008297 | US   | 2003008352 | US   | 2003008353 |
|     |            | US | 2003009012 | US   | 2003009013 | US   | 2003013855 |
|     |            | US | 2003017476 | US   | 2003017540 | US   | 2003017541 |
|     |            | US | 2003017542 | · US | 2003017543 | US   | 2003017544 |
|     |            | US | 2003017563 | US   | 2003017981 | US   | 2003017982 |
|     |            | US | 2003018168 | US   | 2003022187 | US · | 2003022239 |
|     |            | US | 2003022293 | US   | 2003022294 | US   | 2003022295 |
|     |            | US | 2003022296 | US   | 2003022297 | US   | 2003022298 |
|     |            | US | 2003022300 | US   | 2003022301 | US   | 2003022328 |
|     |            | US | 2003022331 | US   | 2003027162 | US   | 2003027163 |
|     |            | us | 2003027212 | US   | 2003027262 | US   | 2003027263 |
|     |            | US | 2003027264 | US   | 2003027265 | US   | 2003027266 |
|     |            | US | 2003027267 | US   | 2003027269 | US   | 2003027270 |
| •   |            |    |            |      |            |      |            |

Information on patent family members

|     |    |            |    |            | TIC | 200202222  |
|-----|----|------------|----|------------|-----|------------|
|     | US | 2003027271 | US | 2003027272 | US  | 2003027273 |
|     | US | 2003027274 | US | 2003027275 | US  | 2003027276 |
|     | US | 2003027277 | US | 2003027278 | US  | 2003027279 |
|     | US | 2003027280 | US | 2003027281 | US  | 2003027324 |
| ·   | US | 2003027754 | US | 2003027985 | US  | 2003027986 |
|     | US | 2003027992 | US | 2003027993 | US  | 2003032023 |
|     | US | 2003032057 | US | 2003032062 | US  | 2003032063 |
|     | US | 2003032101 | US | 2003032102 | US  | 2003032103 |
|     | US | 2003032104 | US | 2003032105 | US  | 2003032106 |
|     | US | 2003032107 | US | 2003032108 | US  | 2003032109 |
|     | US | 2003032110 | US | 2003032111 | US  | 2003032112 |
|     | US | 2003032113 | US | 2003032114 | US  | 2003032115 |
|     | US | 2003032116 | US | 2003032117 | US  | 2003032118 |
|     | US | 2003032119 | US | 2003032120 | US  | 2003032121 |
|     | US | 2003032122 | US | 2003032123 | US  | 2003032124 |
|     | US | 2003032125 | US | 2003032126 | US  | 2003032127 |
|     | US | 2003032128 | US | 2003032129 | US  | 2003032130 |
|     | US | 2003032131 | US | 2003032132 | US  | 2003032133 |
|     | US | 2003032134 | US | 2003032135 | US  | 2003032136 |
|     | US | 2003032137 | US | 2003032138 | US  | 2003032139 |
|     | US | 2003032140 | US | 2003032155 | US  | 2003032156 |
|     | US | 2003034993 | US | 2003036117 | US  | 2003036118 |
|     | US | 2003036120 | US | 2003036121 | US  | 2003036122 |
|     | US | 2003036123 | US | 2003036124 | US  | 2003036125 |
|     | US | 2003036126 | US | 2003036127 | US  | 2003036128 |
|     | US | 2003036129 | US | 2003036130 | US  | 2003036131 |
|     | US | 2003036132 | US | 2003036133 | US  | 2003036134 |
|     | US | 2003036135 | US | 2003036136 | US  | 2003036137 |
| ·   | US | 2003036138 | US | 2003036139 | US  | 2003036140 |
|     | US | 2003036141 | US | 2003036142 | US  | 2003036143 |
|     | US | 2003036144 | US | 2003036145 | US  | 2003036146 |
|     | US | 2003036147 | US | 2003036148 | US  | 2003036149 |
|     | US | 2003036150 | US | 2003036151 | US  | 2003036152 |
|     | US | 2003036153 | US | 2003036154 | US  | 2003036155 |
|     | US | 2003036156 | US | 2003036157 | US  | 2003036158 |
|     | US | 2003036159 | US | 2003036160 | US  | 2003036161 |
|     | US | 2003036162 | US | 2003036164 | US  | 2003036165 |
| · , |    |            |    |            |     | •          |

Information on patent family members

| US   | 2003036179 | US   | 2003036180 | US   | 2003036634   |   |
|------|------------|------|------------|------|--------------|---|
| . US | 2003038826 | US   | 2003038827 | US   | 2003038828   |   |
| US   | 2003039648 | US   | 2003040013 | US   | 2003040014   |   |
| US   | 2003040054 | US   | 2003040055 | US   | 2003040056   |   |
| US   | 2003040057 | US   | 2003040058 | US   | 2003040059   |   |
| US   | 2003040060 | US   | 2003040061 | US   | 2003040062   |   |
| US   | 2003040063 | US   | 2003040064 | US   | 2003040065   |   |
| US   | 2003040066 | US   | 2003040067 | US   | 2003040068   |   |
| US   | 2003040069 | US   | 2003040070 | US   | 2003040071   | i |
| US   | 2003040072 | US   | 2003040073 | US   | 2003040074   |   |
| US   | 2003040075 | US   | 2003040076 | US   | 2003040077   |   |
| US   | 2003040078 | US   | 2003040473 | US   | 2003043176   |   |
| US   | 2003044806 | US   | 2003044841 | US   | 2003044844   |   |
| US   | 2003044902 | US   | 2003044916 | US   | 2003044917   |   |
| US   | 2003044918 | US   | 2003044919 | US   | 2003044920   |   |
| US   | 2003044921 | US   | 2003044922 | US   | 2003044923   |   |
| US   | 2003044924 | US   | 2003044925 | US   | 2003044926   |   |
| US   | 2003044927 | US   | 2003044928 | US   | 2003044929   |   |
| US   | 2003044930 | US   | 2003044931 | US   | 2003044932   |   |
| US   | 2003044945 | US   | 2003045462 | US   | 2003045463   |   |
| US   | 2003045684 | US   | 2003049633 | US   | 2003049638   |   |
| US   | 2003049681 | ÜS   | 2003049682 | US   | 2003049684   |   |
| US   | 2003049735 | US   | 2003049738 | US   | 2003049741   |   |
| US   | 2003049756 | US   | 2003049816 | US   | 2003049817   |   |
| US   | 2003050239 | US   | 2003050240 | US   | 2003050241   |   |
| US   | 2003050457 | US   | 2003050462 | US   | 2003054359   |   |
| US   | 2003054403 | US   | 2003054404 | · US | 2003054405   |   |
| US   | 2003054406 | US   | 2003054442 | US   | 2003054454   |   |
| US   | 2003054455 | US   | 2003054456 | US   | 2003054458   |   |
| US   | 2003054459 | US   | 2003054460 | US   | 2003054468   |   |
| US   | 2003054516 | US   | 2003054517 | US   | 2003054986   |   |
| US   | 2003054987 | · US | 2003055216 | . US | 2003055222   |   |
| US   | 2003059780 | US   | 2003059782 | US   | 2003059783   |   |
| US   | 2003059831 | US   | 2003059832 | US   | 2003059833   |   |
| US   | 2003059876 | US   | 2003059909 | US   | 2003060406   |   |
| US   | 2003060407 | US   | 2003060600 | US   | 2003060601   |   |
| US   | 2003060602 | US   | 2003064062 | US   | · 2003064375 |   |
|      |            |      |            |      |              |   |

Information on patent family members

| . US | 2003064407 | US   | 2003064440 | US               | 2003064441 |   |
|------|------------|------|------------|------------------|------------|---|
| · US | 2003064925 | US   | 2003065142 | US               | 2003065143 |   |
| US   | 2003068793 | US   | 2003068794 | US               | 2003068795 |   |
| · US | 2003068796 | US   | 2003068797 | US               | 2003068798 |   |
| US   | 2003069178 | US   | 2003069179 | US               | 2003069394 |   |
| US   | 2003069403 | US   | 2003071835 | US               | 2003072745 |   |
| US   | 2003073090 | US   | 2003073129 | US               | 2003073130 |   |
| US   | 2003073131 | US   | 2003073169 | US               | 2003073170 |   |
| US   | 2003073171 | US   | 2003073172 | US               | 2003073173 |   |
| US   | 2003073174 | US   | 2003073177 | US               | 2003073208 |   |
| US   | 2003073210 | US   | 2003073211 | US               | 2003073212 |   |
| US   | 2003073213 | US   | 2003073214 | US               | 2003073215 |   |
| US   | 2003073216 | US   | 2003073624 | ŲS               | 2003073809 |   |
| US.  | 2003073810 | US   | 2003073813 | US ·             | 2003073821 |   |
| US   | 2003077593 | US   | 2003077594 | US               | 2003077659 | Ì |
| US   | 2003077700 | US   | 2003077718 | ' US             | 2003077732 |   |
| US   | 2003077733 | . US | 2003077776 | US               | 2003077777 |   |
| US   | 2003077778 | US   | 2003077779 | US               | 2003077780 |   |
| US   | 2003077781 | US   | 2003077782 | US               | 2003077783 |   |
| US   | 2003077784 | US   | 2003077785 | US               | 2003077786 |   |
| US   | 2003077787 | US   | 2003077788 | US               | 2003077789 |   |
| US   | 2003077790 | US   | 2003077791 | US               | 2003077792 |   |
| US   | 2003078377 | US   | 2003082199 | US               | 2003082546 |   |
| US   | 2003082626 | US   | 2003082627 | US               | 2003082628 |   |
| US   | 2003082689 | US   | 2003082715 | US               | 2003082716 |   |
| US   | 2003082717 | US   | 2003082759 | `US <sub>.</sub> | 2003082760 |   |
| US   | 2003082761 | US   | 2003082762 | US               | 2003082763 |   |
| US   | 2003082764 | US   | 2003082765 | US               | 2003082766 |   |
| . US | 2003082767 | US   | 2003083248 | US               | 2003083461 |   |
| US   | 2003083462 | US   | 2003087304 | US               | 2003087305 |   |
| US   | 2003087344 | US   | 2003087345 | US               | 2003087365 |   |
| US   | 2003087367 | US   | 2003087373 | US               | 2003087374 |   |
| US   | 2003092061 | US   | 2003092104 | US               | 2003092147 |   |
| US   | 2003092883 | US   | 2003096353 | US               | 2003096386 |   |
| US   | 2003096744 | US   | 2003096954 | US               | 2003096955 |   |
| US   | 2003099625 | US   | 2003100061 | US               | 2003100087 |   |
| US   | 2003104536 | US   | 2003104538 | US               | 2003104539 |   |
|      |            |      |            |                  |            |   |

Information on patent family members

| •    |              |      |            | 1 01/1100 |              |
|------|--------------|------|------------|-----------|--------------|
| US   | 2003104540   | US   | 2003104541 | US        | 2003104542   |
| US   | 2003104543   | US   | 2003104998 | US        | 2003109672   |
| US   | 2003113793   | US   | 2003113795 | UŞ        | 2003114652   |
| US   | 2003119001   | US   | 2003119055 | US        | 2003119097   |
| US   | 2003119105   | US   | 2003119106 | US        | 2003120053   |
| US   | 2003124531   | . US | 2003124661 | US        | 2003125535   |
| us   | 2003129650   | US   | 2003129695 | US        | 2003130181   |
| US   | 2003130182   | US   | 2003130483 | US        | 2003130490   |
| US   | 2003130491   | US   | 2003134284 | US        | 2003134785   |
| US   | 2003135034   | US   | 2003138882 | US        | 2003138898   |
| US   | 2003139328   | US   | 2003139329 | US        | 2003148373   |
| US   | 2003148375   | US   | 2003148376 | US        | 2003153000   |
| US   | 2003157635   | US   | 2003166104 | .US       | 2003166105   |
| · US | 2003166106   | US   | 2003166107 | US        | 2003166108   |
| US   | 2003166109   | . US | 2003166110 | US        | 2003166111   |
| US   | 2003166112   | US   | 2003166113 | US        | 2003166114   |
| US   | 2003166115   | US   | 2003166117 | · US      | 2003166118   |
| US   | 2003166119   | US   | 2003166120 | US        | 2003166121   |
| US   | 2003166122   | US   | 2003166123 | US        | 2003166124   |
| US   | 2003166125   | US   | 2003166126 | US        | 2003166127   |
| US   | 2003166128   | US   | 2003166129 | US        | 2003166130   |
| US   | 2003166131   | US   | 2003166133 | US        | 2003166134   |
| US   | 2003166135   | US   | 2003166188 | US        | 2003166848   |
| US   | 2003170718   | US   | 2003170721 | US        | 2003175882   |
| US   | 2003180311   | US   | 2003180792 | US        | 2003180793   |
| US   | 2003180794   | US   | 2003180795 | US        | 2003180796   |
| US   | 2003180836   | US   | 2003180837 | US        | 2003180838   |
| US   | 2003180839   | US . | 2003180840 | US        | 2003180841   |
| US   | 2003180842   | US   | 2003180843 | US        | 2003180844   |
| US   | 2003180845   | US   | 2003180846 | US        | 2003180847   |
| US   | 2003180848   | US   | 2003180849 | US        | 2003180850   |
| · US | 2003180851   | US   | 2003180852 | US        | 2003180853   |
| US   | 2003180854   | US   | 2003180855 | US        | 2003180856   |
| US   | 2003180857   | US   | 2003180858 | US        | 2003180859   |
| US   | - 2003180860 | US   | 2003180861 | US        | 2003180862   |
| US   | 2003180863   | US   | 2003180867 | US        | 2003180904 . |
| US   | 2003180905   | US   | 2003180906 | US        | 2003180907   |

Information on patent family members

| 1                                     | US | 2003180908 | US   | 2003180909 | US   | 2003180910 |
|---------------------------------------|----|------------|------|------------|------|------------|
| . 1                                   | US | 2003180911 | US   | 2003180912 | US   | 2003180913 |
| 1                                     | US | 2003180914 | US   | 2003180915 | US   | 2003180916 |
| 1                                     | US | 2003180917 | US   | 2003180918 | US   | 2003180919 |
| 1                                     | US | 2003180920 | US   | 2003180921 | US   | 2003180922 |
| 1                                     | US | 2003180923 | US   | 2003181636 | US   | 2003181637 |
| . 1                                   | US | 2003181638 | US   | 2003181639 | US   | 2003181640 |
| 1                                     | US | 2003181641 | US   | 2003181642 | US   | 2003181643 |
| 1                                     | US | 2003181644 | US   | 2003181645 | US   | 2003181646 |
| 1                                     | US | 2003181647 | US   | 2003181648 | US   | 2003181649 |
| 1                                     | US | 2003181650 | US   | 2003181651 | US   | 2003181652 |
| 1                                     | US | 2003181653 | US   | 2003181654 | US   | 2003181655 |
|                                       | US | 2003181656 | US   | 2003181657 | US   | 2003181666 |
| · 1                                   | US | 2003181667 | US   | 2003181668 | US   | 2003181669 |
| 1                                     | US | 2003181670 | US   | 2003181671 | US   | 2003181672 |
|                                       | US | 2003181673 | US   | 2003181674 | US   | 2003181675 |
| ı                                     | US | 2003181676 | US   | 2003181677 | US   | 2003181678 |
| · · · · · · · · · · · · · · · · · · · | US | 2003181679 | US   | 2003181680 | US   | 2003181681 |
| 1                                     | US | 2003181682 | US   | 2003181683 | US   | 2003181684 |
| ļ                                     | US | 2003181685 | US   | 2003181696 | US   | 2003181697 |
| Ī                                     | US | 2003181698 | US   | 2003181699 | US   | 2003181700 |
| Ţ                                     | US | 2003181701 | US   | 2003181702 | US   | 2003181703 |
| τ                                     | US | 2003185841 | US   | 2003186318 | US   | 2003186319 |
| ί                                     | US | 2003186365 | . US | 2003186368 | US   | 2003186407 |
| ·                                     | US | 2003186408 | US   | 2003187189 | US   | 2003187190 |
| _ τ                                   | US | 2003187191 | US   | 2003187192 | US   | 2003187193 |
| τ                                     | US | 2003187195 | US   | 2003187196 | US   | 2003187197 |
| τ                                     | US | 2003187228 | US   | 2003187229 | US   | 2003187230 |
| τ                                     | US | 2003187239 | US   | 2003187241 | US   | 2003187242 |
| . τ                                   | JS | 2003190321 | US   | 2003190667 | US   | 2003190668 |
| <u>,</u> τ                            | JS | 2003190669 | US   | 2003190698 | US   | 2003190699 |
| τ                                     | JS | 2003190701 | US   | 2003190703 | US   | 2003190716 |
| τ                                     | JS | 2003190717 | US   | 2003190718 | US · | 2003190719 |
| τ                                     | JS | 2003190720 | US . | 2003190721 | US   | 2003190722 |
| τ                                     | JS | 2003190723 | US   | 2003190724 | US   | 2003190725 |
| τ                                     | JS | 2003190726 | US   | 2003190727 | US   | 2003190728 |
| τ                                     | JS | 2003190729 | US   | 2003190730 | US   | 2003190731 |
|                                       |    |            |      |            |      |            |

Information on patent family members

|    |                      |      |            |    |            |                 | 5/01100    |   |
|----|----------------------|------|------------|----|------------|-----------------|------------|---|
| 1  | •                    | US   | 2003191281 | US | 2003191282 | US              | 2003191283 |   |
|    |                      | · US | 2003191284 | US | 2003191287 | US <sub>.</sub> | 2003191288 |   |
|    |                      | US   | 2003191289 | US | 2003191290 | US              | 2003191299 |   |
|    |                      | . US | 2003194744 | US | 2003194780 | US              | 2003194781 |   |
|    |                      | US   | 2003194791 | US | 2003194792 | US              | 2003194793 |   |
|    |                      | US   | 2003194794 | US | 2003195148 | US              | 2003195333 | 1 |
|    | ,                    | US   | 2003195334 | US | 2003195344 | · US            | 2003195345 |   |
|    |                      | US   | 2003195347 | WO | 0032221    | WO              | 0037638    |   |
|    | •                    | wo   | 0037640    | WO | 0053752    | WO              | 0053753    |   |
|    |                      | WO   | 0053755    | wo | 0053756    | WO              | 0053757    |   |
|    |                      | WO   | 0053758    |    |            |                 |            |   |
| wo | <sup>-</sup> 0170976 | AU   | 49317/01   | US | 2002048759 | US              | 2003059781 |   |
| wo | 03068054             |      |            |    |            |                 |            |   |
| US | 2002192678           |      |            |    |            |                 |            |   |
| wo | 0192581              | AU   | 65296/01   | CA | 2411404    | EP              | 1356092    |   |
|    |                      | US   | 2002132237 |    |            |                 |            |   |
| wo | 0151513              | AU   | 36470/01   |    |            |                 |            |   |
| wo | 0190304              | AU   | 29508/01   | AU | 30958/01   | AU              | 36459/01   |   |
|    |                      | AU   | 36460/01   | AU | 36461/01   | AU              | 36462/01   |   |
|    |                      | AU   | 36463/01   | AU | 36464/01   | AU              | 36465/01   |   |
|    |                      | AU   | 36466/01   | AU | 37943/01   | AU              | 37944/01   |   |
|    |                      | AU   | 37947/01   | AU | 37949/01   | AU              | 37950/01   |   |
|    | •                    | AU   | 37951/01   | AU | 37952/01   | AU              | 37953/01   |   |
|    |                      | AU   | 37954/01   | AU | 37955/01   | AU              | 37957/01   |   |
| ļ  |                      | AU   | 37958/01   | AU | 38585/01   | AU              | 39726/01   |   |
| 1  |                      | AU   | 39727/01   | AU | 39728/01   | AU              | 41402/01   |   |
|    |                      | AU   | 41403/01   | AU | 41404/01   | AU              | 41405/01   |   |
|    |                      | AU   | 41406/01   | AU | 41407/01   | AU              | 41408/01   |   |
|    |                      | AU   | 41409/01   | AU | 41410/01   | AU              | 41411/01   |   |
|    |                      | AU   | 41412/01   | AU | 41413/01   | AU              | 41414/01   |   |
|    |                      | AU   | 41415/01   | AU | 41416/01   | AU              | 41417/01   |   |
|    |                      | AU   | 41418/01   | ΔŬ | 41419/01   | AU              | 43134/01   |   |
|    |                      | AU   | 43135/01   | AU | 43136/01   | AU              | 43137/01   |   |
|    |                      | AU   | 45262/01   | AU | 45354/01   | AU              | 47190/01   |   |
|    |                      | AU   | 47191/01   | AU | 49052/01   | AU              | 49053/01   |   |
|    |                      | AU   | 49054/01   | AU | 50767/01   | AU              | 50768/01   |   |
|    |                      | AU   | 50769/01   | AU | 50770/01   | AU              | 50771/01   |   |
|    |                      |      |            |    |            |                 |            |   |

Information on patent family members

|      |           |    | <del></del> | TCIAGO |          |
|------|-----------|----|-------------|--------|----------|
| AU   | 50772/01  | AU | 52878/01    | AU     | 52879/01 |
| AU   | 55162/01  | AU | 57912/01    | AU     | 60969/01 |
| AU   | 62899/01  | AU | 74888/01    | CA     | 2392398  |
| CA   | 2392422   | CA | 2392428     | CA     | 2392438  |
| CA   | 2392450   | CA | 2392751     | CA     | 2392757  |
| CA   | 2393002   | CA | 2393616     | CA     | 2393618  |
| CA   | 2393652   | CA | 2393912     | CA     | 2393941  |
| CA   | 2393954   | CA | 2394022     | CA     | 2394039  |
| CA   | 2394841   | CA | 2395178     | CA     | 2395295  |
| CA   | 2395398   | CA | 2395403     | CA     | 2395654  |
| CA   | 2395666   | CA | 2395671     | CA `   | 2395676  |
| CA   | 2395693   | CA | 2395699     | CA     | 2395724  |
| CA   | 2395729   | CA | 2395734     | CA     | 2395738  |
| CA   | 2395787   | CA | 2395794     | CA     | 2395811  |
| CA   | 2395815   | CA | 2395816     | CA     | 2395827  |
| CA   | 2395838   | CA | 2395849     | CA     | 2395857  |
| CA   | 2395858   | CA | 2395872     | CA     | 2395885  |
| CA   | 2395889   | CA | 2396719     | CA     | 2397407  |
| CA   | 2397502   | CA | 2397839     | CA     | 2398227  |
| CA   | 2398275   | CA | 2398411     | CA     | 2398877  |
| EP   | 1251863   | EP | 1252176     | EP     | 1252185  |
| EP . | 1252289   | EP | 1252290     | EP -   | 1252297  |
| EP   | 1252302   | EP | 1252303     | EP     | 1252312  |
| EP   | 1252326   | EP | 1252337     | EP     | 1254147  |
| EP   | 1254148   | EP | 1254150     | EP .   | 1254151  |
| EP . | 1254152   | EP | 1254153     | EP     | 1254154  |
| EP   | 1254157   | EP | 1254165     | EP     | 1254170  |
| EP   | 1254171 . | EP | 1254172     | EP     | 1254173  |
| EP   | 1254217   | EP | 1254218     | EP     | 1254219  |
| EP   | 1254228   | EP | 1254242     | EP     | 1254248  |
| EP   | 1254272   | EP | 1255766     | EP     | 1255767  |
| EP   | 1255768   | EP | 1255776     | EP     | 1255777  |
| EP   | 1255778   | EP | 1255817     | EP     | 1255864  |
| EP   | 1255869   | EP | 1259525     | EP     | 1259526  |
| EP   | 1259528   | EP | 1259531     | EP     | 1259540  |
| EP   | 1259642   | EP | 1261380     | EP     | 1261618  |
| EP   | 1261619   | EP | 1261633     | EP     | 1261634  |
|      |           |    |             |        |          |

Information on patent family members

| EP   | 1261635    | EP | 1261637    | EP | 1261703    |
|------|------------|----|------------|----|------------|
| EP   | 1261742    | EP | 1261745    | EP | 1263944    |
| EP   | 1265910    | EP | 1268527    | US | 2002042096 |
| US   | 2002042386 | US | 2002061521 | US | 2002077270 |
| US   | 2002086330 | US | 2002086353 | US | 2002086811 |
| US   | 2002086820 | US | 2002086821 | US | 2002086822 |
| US   | 2002086823 | US | 2002090615 | US | 2002090672 |
| US   | 2002090673 | US | 2002090674 | US | 2002094953 |
| US   | 2002102638 | US | 2002119919 | US | 2002120103 |
| . US | 2002132753 | US | 2002132767 | US | 2002147140 |
| US   | 2002151009 | US | 2002151479 | US | 2002160493 |
| US   | 2002161208 | US | 2002164685 | US | 2002165137 |
| US   | 2002168711 | US | 2002173454 | US | 2003013649 |
| US   | 2003039993 | US | 2003039994 | US | 2003044890 |
| US   | 2003044904 | US | 2003044905 | US | 2003044907 |
| . US | 2003049650 | US | 2003049652 | US | 2003049703 |
| US   | 2003050231 | US | 2003054368 | US | 2003054373 |
| US   | 2003054375 | US | 2003054377 | US | 2003054379 |
| US · | 2003054420 | US | 2003059875 | US | 2003059908 |
| us   | 2003077602 | US | 2003077606 | US | 2003077703 |
| US   | 2003077704 | US | 2003077808 | US | 2003082681 |
| US   | 2003082758 | US | 2003092102 | US | 2003092611 |
| US   | 2003092615 | US | 2003096346 | US | 2003108907 |
| US   | 2003125246 | US | 2003139327 | US | 2003157508 |
| US   | 2003175739 | US | 2003190707 | WO | 0154472    |
| wo   | 0154473    | wo | 0154474    | WO | 0154708    |
| wo   | 0154733    | wo | 0155162    | wo | 0155163    |
| wo   | 0155164    | wo | 0155167    | wo | 0155168    |
| OW.  | 0155173    | wo | 0155200    | wo | 0155201    |
| · wo | 0155202    | wo | 0155203    | wo | 0155204    |
| wo   | 0155205    | wo | 0155206    | wo | 0155207    |
| wo   | 0155208    | wo | 0155300    | WO | 0155301    |
| ' wo | 0155302    | wo | 0155303    | wo | 0155304    |
| wo   | 0155305    | wo | 0155306    | WO | 0155307    |
| wo   | 0155308    | wo | 0155309    | WO | 0155310    |
| wo   | 0155311    | WO | 0155312    | WO | 0155313    |
| wo   | 0155314    | wo | 0155315    | WO | 0155316    |

| ٠, | INTERNATIONAL SEARCH REPORT  Information on patent family members |      |             |     |            | International application No. PCT/AU03/01166 |            |
|----|-------------------------------------------------------------------|------|-------------|-----|------------|----------------------------------------------|------------|
|    |                                                                   | wo   | 0155317     | wo  | 0155318    | wo                                           | 0155319    |
|    |                                                                   | wo   | 0155320     | wo  | 0155321    | WO                                           | 0155322    |
|    |                                                                   | wo   | 0155323     | wo  | 0155324    | WO                                           | 0155325    |
|    |                                                                   | wo   | 0155326     | wo  | 0155327    | WO                                           | 0155328    |
|    |                                                                   | wo   | 0155329     | wo  | 0155343    | wo                                           | 0155350    |
|    |                                                                   | wo   | 0155355     | wo  | 0155364    | wo                                           | 0155367    |
|    |                                                                   | wo   | 0155368     | wo  | 0155387    | wo                                           | 0155388    |
|    |                                                                   | wo   | 0155430     | ,wo | 0155440    | wo                                           | 0155441    |
|    |                                                                   | wo   | 0155447     | wo  | 0155448    | · WO                                         | 0155449    |
|    |                                                                   | wo   | 0157182     | wo  | 0159063    | WO                                           | 0159064    |
|    | •                                                                 | wo   | 0162789     | wo  | 0164703    |                                              |            |
| wo | 9953040                                                           | DE   | 19817557    | EP  | 1073727    | EP                                           | 1291422    |
|    |                                                                   | US   | 2003105315  |     |            | ·                                            |            |
| wo | 0194629                                                           | AU   | 64559/01    | CA  | 2411601    | US                                           | 2002081301 |
|    |                                                                   | US   | 2002102531  | US  | 2002102532 | US                                           | 2002110821 |
|    |                                                                   | US   | 2002115057. | บร  | 2002115085 | US                                           | 2002150877 |
|    |                                                                   | US   | 2002165180  | US  | 2003165839 | •                                            |            |
| wo | 9848010                                                           | AU   | 70139/98    | EP  | 0979277    | . US                                         | 2002192160 |
| wo | 0160860                                                           | AU   | 41541/01    |     |            |                                              |            |
| wo | 0155313                                                           | AU   | 29508/01    | AU  | 30958/01   | AU                                           | 36445/01   |
|    |                                                                   | AU   | 36459/01    | AU  | 36460/01   | AU.                                          | 36461/01   |
|    |                                                                   | AU   | 36462/01    | AU  | 36463/01   | AU                                           | 36464/01   |
|    |                                                                   | AU   | 36465/01    | AU  | 36466/01   | AU                                           | 37943/01   |
|    |                                                                   | AU   | 37944/01    | ΑU  | 37947/01   | ΑÜ                                           | 37949/01   |
|    |                                                                   | AU   | 37950/01    | AU  | 37951/01   | AU                                           | 37952/01   |
|    |                                                                   | ΑŬ   | 37953/01    | AU  | 37954/01   | AU                                           | 37955/01   |
|    |                                                                   | ΑŬ   | 37957/01    | AU  | 37958/01   | AU                                           | 38585/01   |
|    |                                                                   | AU   | 39726/01    | AU  | 39727/01   | AU                                           | 39728/01   |
|    |                                                                   | AU   | 41402/01    | ΑU  | 41403/01   | AU                                           | 41404/01   |
|    |                                                                   | AU   | 41405/01    | AU  | 41406/01   | AU                                           | 41407/01   |
|    |                                                                   | AU   | 41408/01    | AU  | 41409/01   | AU                                           | 41410/01   |
|    |                                                                   | AU   | 41411/01    | AU  | 41412/01   | ΑŬ                                           | 41413/01   |
|    |                                                                   | . AU | 41414/01    | ΑU  | 41415/01   | AU                                           | 41416/01   |
|    |                                                                   | AU   | 41417/01    | ΑU  | 41418/01   | AU                                           | 41419/01   |
|    |                                                                   | AU   | 43134/01    | AU  | 43135/01   | ΑŬ                                           | 43136/01   |
|    |                                                                   |      |             |     |            |                                              |            |

45262/01

47191/01

ΑU

AU

ΑU

AU

45354/01

49052/01

AU

AU

43137/01

47190/01

Information on patent family members

| AU   | 49053/01 | AU   | 49054/01  | AU  | 50767/01 |
|------|----------|------|-----------|-----|----------|
| AU   | 50768/01 | AU.  | 50.769/01 | AU  | 50770/01 |
| AU   | 50771/01 | AU   | 50772/01  | AU  | 52878/01 |
| . AU | 52879/01 | · AU | 52917/01  | AU  | 53323/01 |
| AU   | 55162/01 | ΑU   | 57912/01  | AU  | 60969/01 |
| AU   | 62899/01 | AU   | 66787/01  | AU  | 71714/01 |
| . AU | 74888/01 | CA   | 2392398   | CA  | 2392422  |
| CA   | 2392428  | CA   | 2392438   | CA  | 2392450  |
| . CA | 2392751  | CA   | 2392757   | CA  | 2393002  |
| CA   | 2393616  | CA   | 2393618   | CA  | 2393652  |
| CA   | 2393912  | CA   | 2393941   | CA  | 2393954  |
| CA   | 2394022  | CA   | 2394039   | CA  | 2394841  |
| CA   | 2395178  | CA   | 2395295   | CA  | 2395398  |
| CA   | 2395403  | CA   | 2395654   | CA  | 2395666  |
| CA   | 2395671  | CA   | 2395676   | CA  | 2395693  |
| CA   | 2395699  | CA   | 2395724   | CA  | 2395729  |
| · CA | 2395734  | CA   | 2395738   | CA  | 2395787  |
| CA   | 2395794  | CA   | 2395811   | CA  | 2395815  |
| CA   | 2395816  | CA   | 2395827   | CA. | 2395838  |
| CA   | 2395849  | . CA | 2395857   | CA  | 2395858  |
| CA   | 2395872  | CA   | 2395885   | CA  | 2395889  |
| CA   | 2396719  | CA   | 2397407   | CA  | 2397502  |
| CA   | 2397839  | CA   | 2398227   | CA  | 2398275  |
| CA   | 2398411  | CA   | 2398877   | CA  | 2400638  |
| CA   | 2403508  | CA   | 2406649   | EP  | 1251863  |
| EP   | 1252176  | EP   | 1252185   | EP  | 1252289  |
| EP   | 1252290  | EP   | 1252297   | EP  | 1252302  |
| EP   | 1252303  | EP   | 1252312   | EP  | 1252326  |
| EP   | 1252337  | EP   | 1254147   | EP  | 1254148  |
| . EP | 1254150  | EP   | 1254151   | EP  | 1254152  |
| EP   | 1254153  | EP   | 1254154   | EP  | 1254157  |
| EP   | 1254165  | EP   | 1254170   | EP  | 1254171  |
| EP   | 1254172  | EP   | 1254173   | EP  | 1254217  |
| EP   | 1254218  | EP   | 1254219   | EP  | 1254228  |
| EP   | 1254242  | EP   | 1254248   | EP  | 1254272  |
| EP   | 1255766  | EP   | 1255767   | EP  | 1255768  |
| EP   | 1255776  | EP   | 1255777   | EP  | 1255778  |
|      |          |      |           |     | · ·      |

Information on patent family members

|      | _ <del></del> _ |   |    |            |      |            |
|------|-----------------|---|----|------------|------|------------|
| EP   | 1255817         |   | EP | 1255864    | EP   | 1255869    |
| EP   | 1259525         |   | EP | 1259526    | EP   | 1259528    |
| EP   | 1259531         |   | EP | 1259540    | EP   | 1259642    |
| EP   | 1261380         |   | EP | 1261618    | EP   | 1261619    |
| EP   | 1261633         |   | EP | 1261634    | EP   | 1261635    |
| EP   | 1261637         |   | EP | 1261703    | EP   | 1261742    |
| EP   | 1261745         |   | EP | 1263944    | EP   | 1265910    |
| EP   | 1268527         |   | EP | 1268541    | EP   | 1287015    |
| EP   | 1301524         |   | US | 2002042096 | US   | 2002042386 |
| US   | 2002061521      |   | US | 2002077270 | US   | 2002086330 |
| US   | 2002086353      |   | US | 2002086811 | US   | 2002086820 |
| US   | 2002086821      |   | US | 2002086822 | US   | 2002086823 |
| . US | 2002090615      |   | US | 2002090672 | US   | 2002090673 |
| US   | 2002090674      |   | US | 2002094953 | US   | 2002102638 |
| US   | 2002106780      |   | US | 2002119919 | US   | 2002120103 |
| US   | 2002132753      |   | US | 2002132767 | US   | 2002147140 |
| . US | 2002151009      |   | US | 2002151479 | US   | 2002160493 |
| US   | 2002161208      |   | US | 2002164685 | US   | 2002165137 |
| US   | 2002168711      |   | US | 2002173454 | US   | 2003013649 |
| US   | 2003039993      |   | US | 2003039994 | . US | 2003044890 |
| US   | 2003044904      |   | US | 2003044905 | US   | 2003044907 |
| US   | 2003049650      |   | US | 2003049652 | US   | 2003049703 |
| US   | 2003050231      | • | US | 2003054368 | US.  | 2003054373 |
| US   | 2003054375      |   | US | 2003054377 | US   | 2003054379 |
| US   | 2003054420      |   | US | 2003059875 | US   | 2003059908 |
| US   | 2003077602      |   | US | 2003077606 | US   | 2003077703 |
| US   | 2003077704      | • | US | 2003077808 | US   | 2003082681 |
| US . | 2003082758      |   | US | 2003092102 | US   | 2003092611 |
| US   | 2003092615      |   | US | 2003096346 | US   | 2003108907 |
| US   | 2003125246      | ) | US | 2003139327 | US   | 2003157508 |
| . US | 2003175739      |   | US | 2003190707 | wo   | 0154472    |
| WO   | 0154473         |   | wo | 0154474    | wo   | 0154708    |
| WO   | 0154733         |   | wo | 0155162    | WO   | 0155163    |
| , WO | 0155164         |   | wo | 0155167    | wo   | 0155168    |
| WO   | 0155173         |   | wo | 0155200    | wo   | 0155201    |
| WO   | 0155202         |   | wo | 0155203    | WO   | 0155204    |
| wo   | 0155205         |   | wo | 0155206    | wo   | 0155207    |
|      |                 |   |    |            |      |            |

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

# IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.