COSC 4820

Algebra and constraints

Kim Buckner

University of Wyoming

Jan. 25, 2023

Finish Chapter 2

Constraints

- Restrict data stored in the database
- Referential integrity constraint
- A value in one context must also appear in another
- example: Model number in pc must also appear as a model number in product.

Constraints (2)

- Key constraints
- Uniqueness of keys
- Then base constraints on those keys
- example: If two tuples of the **product** table have the same model value then they must be the same tuple.

Constraints (3)

- Use the algebra to express the constraints
- Add
 - $R = \emptyset$ means that expression R is empty
 - $R \subseteq S$ means that every tuple in R must also be in S
- example: $SELECT(model_R = model_S = AND maker_R \neq maker_S)\{R,S\} = \emptyset$

Constraints (4)

- Domain constraints
- Limit the set of valid values for an attribute
- example: SELECT(color \neq 'true' AND color \neq 'false') $\{$ laptop $\} = \emptyset$

Chapter 3

Functional Dependencies

- Usually just FD.
- $A_1 A_2 \cdots A_n \longrightarrow B_1 B_2 \cdots B_n$
- If two tuples of a relation agree on values in some set of attributes then they must also agree on the values in another set of attributes.

- The → reads "functionally determine"
- Sets need not have an size greater than one
 (1).
- Adjacency is not required, the A's and B's can appear in any order in the relation.
- The FD must apply to all possible instances.

Keys

- \bullet $\{A_1, A_2, \cdots, A_n\}$ is a key if
 - "These attributes functionally determine all other attributes of a relation."
 - In another way "No two distinct tuples can agree on $\{A_1, A_2, \cdots, A_n\}$ (the key)."
 - (What does this mean?)

- and if
 - "No proper subset of the key functionally determines all other attributes."
 - In another way "The key must be minimal".
 - (What does this really mean?).

More on keys

- "Key" vs "Primary Key".
- Database engines make a differentiation.
- Helps in optimizing storage.
- BUT no difference in FD theory.

Superkey

- Set of attributes which contain a key.
- Remember what a key is.
- Superkey is not necessarily minimal.
- If key is say "model" from the pc table.
- Superkey might be "model,speed".

FD Rules

- What FD's mean
- If R(A,B,C) satisfies $A \to B$ and $B \to C$ then $A \to C$
- Two sets of FD are equivalent means
 - relation instances satisfying one are exactly the same as those satisfying the other

- A set of FD's follows from another if
 - every relation satisfying the second
 - also satisfies the first
- ullet If S and T are equivalent then
 - ullet T follows from S and
 - S follows from T

Splitting/Combining Rule

- The single FD $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$
- can be replaced with the set

$$A_1 A_2 \cdots A_n \to B_i, i = 1, 2 \cdots m$$

• This is the *splitting rule*

- The set $A_1A_2\cdots A_n \to B_i, i=1,2\cdots m$
- can be replaced with the single FD $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$
- This is the *combining rule*

- No splitting rule for the left-hand side
- For example
 - From the outcomes table
 - \bullet ship, battle \rightarrow result
 - \bullet ship $\not\rightarrow$ result
 - battle → result

Trivial FD

- A constraint is said to be trivial if it holds for every instance of the relation regardless what other constraints are assumed
- If the constraint is a FD then
 - The FD's $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$ where
 - $\{B_1, B_2, \cdots, B_m\} \subset \{A_1, A_2, \cdots, A_n\}$
 - are trivial.

- If some (but not all) of the attributes on right are on the left
- It is not trivial but can be simplified
- $A_1A_2\cdots A_n \to B_1B_2\cdots B_m$ is equivalent to $A_1A_2\cdots A_n \to C_1C_2\cdots C_k$ where the C's are all those B's not also A's
- This is the *trivial-dependency rule*