

Mini-lecture 4

DAC 2023

Today's Agenda

- Bivariate Regression
- Goodness of Fit

Confidence Intervals

3 T-statistics and P-values

- **Regression** is a statistical method to assess:
 - The relationship between two variables and its strentgth
- **When** is regression a good model (a model with explanatory power)?
 - When we can assume a linear relationship between our variables

- **Regression** is a statistical method to assess:
 - The relationship between two variables and its strentgth
- **When** is regression a good model (a model with explanatory power)?
 - When we can assume a linear relationship between our variables

- What does linear mean here?
 - This means that a change in one variable corresponds to a proportional change in the other variable

The formula: $Y_i = \beta_0 + \beta_1 X_i + u_i$

- The formula: $Y_i = \beta_0 + \beta_1 X_i + u_i$
- What is it saying to us?
 - Plain english interpretation

- The formula: $Y_i = \beta_0 + \beta_1 X_i + u_i$
- What is it saying to us?
 - Plain english interpretation

If the relationship between the two variables is **linear...**

- The formula: $Y_i = \beta_0 + \beta_1 X_i + u_i$
- What is it saying to us?
 - Plain english interpretation

If the relationship between the two variables is **linear...**

Regression can fit a line...

- The formula: $Y_i = \beta_0 + \beta_1 X_i + u_i$
- What is it saying to us?
 - Plain english interpretation

If the relationship between the two variables is **linear...**

Regression can fit a line...

By numerically, we should understand it gives us an **intercept** (where does the line intercept the Y-axis) and a **slope** (by how much Y is increased by a one-unit increase on the X (independent variable)

That **numerically** explains the relationship between our two variables

$$Y = Bo + B1*X1 + ui$$

How does it uncover the numeric relationship?

If the relationship between the two variables is **linear...**

That **numerically** explains the relationship between our two variables

$$Y = Bo + B1*X1 + ui$$

Step 2!

How does it uncover the numeric relationship?

If the relationship between the two variables is **linear...**

That **numerically** explains the relationship between our two variables

$$Y = Bo + B1*X1 + ui$$

Step 2!

- This is when the model will discover what is the numeric relationship
 - The "line of best fit" is precisely a method to plug numbers into the linear model
 - OLS!
 - It turns out that minimizing the squared sum of the residuals (=OLS) is a very good guess of what Y (dependent variable) would be given our X (independent variable)

Example!

If we were trying to understand by **how much** increasing the years of education
of a citizen impacts his/her income

Example!

If we were trying to understand by **how much** increasing the years of education
of a citizen impacts its income

Example!

If we were trying to understand by **how much** increasing the years of education
of a citizen impacts its income

That **numerically** explains the relationship between our two variables

Income = 10,000 + 15,000 * *Years of Education* + *ui*

Years of Education

R-squared measures the proportion of the total variation in the dependent variable (TSS) that is explained by our independent variable (ESS)

$$R^2=1-rac{RSS}{TSS}$$

 R^2 = coefficient of determination

RSS = sum of squares of residuals

TSS = total sum of squares

(RSS): measures the unexplained variability in the dependent variable

(TSS): measures the total variability in the dependent variable

- **R-squared** measures the proportion of the total variation in the dependent variable (TSS) that is explained by our independent variable (ESS)
- It can also be understood as a way of assessing the size of the total mistakes made by our model when fitting the line.

- **R-squared** measures the proportion of the total variation in the dependent variable (TSS) that is explained by our independent variable (ESS)
- It can also be understood as a way of assessing the size of the total mistakes made by our model when fitting the line.

- **R-squared** measures the proportion of the total variation in the dependent variable (TSS) that is explained by our independent variable (ESS)
- It can also be understood as a way of assessing how big are the bulk of mistakes made by my model when fitting the line?

- We know Statistics is mostly about **estimation** (inference)
 - **Stats** provides us tools to make estimations (very educated guess?)

- We know Statistics is mostly about **estimation** (inference)
 - **Stats** provides us tools to make estimations (very educated guess?)
 - **Confidence Intervals**: are just one additional tool (a statistical concept) used to estimate a range of values within which a population parameter

- We know Statistics is mostly about **estimation** (inference)
 - **Stats** provides us tools to make estimations (very educated guess?)
 - Confidence Intervals: are just one additional tool (a statistical concept) used to estimate a range of values within which a population parameter

Without calculating Confidence Intervals

Point estimate

24.5

"Giving the mean of my sample, my guess is that the average age of this class (population) is 24.5 years old"

- We know Statistics is mostly about **estimation** (inference)
 - **Stats** provides us tools to make estimations (very educated guess?)
 - **Confidence Intervals**: are just one additional tool (a statistical concept) used to estimate a range of values within which a population parameter

Without calculating Confidence Intervals

Point estimate

24.5

"Giving the mean of my sample, my guess is that the average age of this class (population) is 24.5 years old"

Calculating Confidence Intervals

"Giving the mean of my sample, I'm 99% confident that the average age of this class (population) is between 23.5 and 25.5 years old"

The questions then is: how to calculate the CI?

Formula

$$CI = \bar{x} \pm z \frac{s}{\sqrt{n}}$$

CI = confidence interval

 \bar{x} = sample mean

z = confidence level value

But we use the t-test (and not the z)! Why?

s = sample standard deviation

n = sample size

When the standard deviation (s) is estimated, then normalizing yields a t-distribution (similar shape to the bell curve)

- **t-stats:** a statistical measure we will need when constructing our confidence intervals (or hypothesis testing) when estimating our population parameters.
 - When running **regressions** our t-stats or t-value is calculated by:
 - \circ t = B / SE
 - B = our estimate
 - SE = the standard error of the coefficient
- **p-value:** is a statistical measure used in hypothesis testing to determine the strength of evidence against a null hypothesis. If the null hypothesis were true, then how likely (probability) would it be for me to obtain a value like this coefficient I've estimated?

p-value: is a statistical measure used in hypothesis testing to determine the strength of evidence against a null hypothesis. If the null hypothesis were true, then how likely (probability) would it be for me to obtain an estimation like the one I got?

p-value: is a statistical measure used in hypothesis testing to determine the strength of evidence against a null hypothesis. If the null hypothesis were true, then how likely (probability) would it be for me to obtain an estimation like the one I got?

Thus, if our sample show this:

Coefficient estimate (slope) = 7,500

p-value: is a statistical measure used in hypothesis testing to determine the strength of evidence against a null hypothesis. If the null hypothesis were true, then how likely (probability) would it be for me to obtain an estimation like the one I got?

Thus, if our sample show this:

Coefficient estimate (slope) = 7,500

... but the null hypothesis says this

Coefficient estimate (slope) = 0.00

- Then how can we be sure that our coefficient estimate is wrong?
 - P-value!
 - It will tell us the probability of getting a t-statistic for the value we estimated or even more extreme than that.

- Then how can we be sure that our coefficient estimate is wrong?
 - P-value!
 - It will tell us the probability of getting a t-statistic for the value we estimated or even more extreme than that.
- Interpreting the p-value
 - When our p-value is lower than our rule of thumb (=0.05) or .0.01, we say that the probability is so low that we reject the null hypothesis (which is normally formulated in terms of the estimation being actually equal to zero.

Thank you!

Mini-lecture 4

DAC 2023