طراحی و تحلیل الگوریتم ها

دکتر امیر لکی زاده استادیار گروه مهندسی کامپیوتر دانشگاه قم

Example 1.

```
/*return Position of largest value in "A" */
int largest(int[] A, int n) {
  int currlarge = 0; // Position of largest
  for (int i=1; i<n; i++)
    if (A[currlarge] < A[i])
      currlarge = i; // Remember pos
  return currlarge; // Return largest pos
}</pre>
```

Example 2.

$$a = b;$$

This assignment takes constant time, so it is $\Theta(1)$.

Example 3.

```
sum = 0;
for (i=1; i<=n; i++)
  sum += n;</pre>
```

Example 4.

```
sum = 0;
for (i=1; i<=n; i++)
  for (j=1; j<=n; j++)
    sum++;
}</pre>
```

i	j		
1	1n	n بار	
٢	1n	n بار	
n	1n	n بار	

Example 5.

j	i			
1	11	1 بار		
2	12	2 بار		
n-1	1n-1	n-1 بار		
n	1n	n بار		

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

```
Example 6.

sum = 0;
for (i=1: i<=n: i</pre>
```

```
for (j=1; j<=n; j++)
  for (i=1; i<=j; i++)
    sum++;
for (k=0; k<n; k++)
  A[k] = k;</pre>
```

```
Example 7.
```

```
sum1 = 0;
for (k=1; k<=n; k*=2)
  for (j=1; j<=n; j++)
    sum1++;</pre>
```

3-2 Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

	A	B	O	0	Ω	ω	Θ
<i>a</i> .	$\lg^k n$	n^{ϵ}					
b .	n^k	c^n					
<i>c</i> .	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$					
<i>e</i> .	$n^{\lg c}$	$c^{\lg n}$					
f.	lg(n!)	$\lg(n^n)$					

3-3 Ordering by asymptotic growth rates

a. Rank the following functions by order of growth; that is, find an arrangement g_1, g_2, \ldots, g_{30} of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{29} = \Omega(g_{30})$. Partition your list into equivalence classes such that f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$.

3-4 Asymptotic notation properties

Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of the following conjectures.

- a. f(n) = O(g(n)) implies g(n) = O(f(n)).
- **b.** $f(n) + g(n) = \Theta(\min(f(n), g(n))).$
- c. f(n) = O(g(n)) implies $\lg(f(n)) = O(\lg(g(n)))$, where $\lg(g(n)) \ge 1$ and $f(n) \ge 1$ for all sufficiently large n.
- **d.** f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$.
- e. $f(n) = O((f(n))^2)$.
- f. f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$.
- **g.** $f(n) = \Theta(f(n/2)).$
- **h.** $f(n) + o(f(n)) = \Theta(f(n)).$