Pour chaque vecteur directeur de droite, déterminez un autre vecteur directeur ayant des coordonnées entières les plus petites possibles et avec au maximum une coordonnée négative.

$$\overrightarrow{u_1} \begin{pmatrix} 2.5 \\ 1.5 \end{pmatrix} \quad \overrightarrow{u_2} \begin{pmatrix} 1.2 \\ -3.6 \end{pmatrix} \quad \overrightarrow{u_3} \begin{pmatrix} 1 \\ rac{1}{2} \end{pmatrix} \quad \quad \overrightarrow{u_4} \begin{pmatrix} -rac{3}{4} \\ -rac{1}{8} \end{pmatrix}$$

Propriété : Soit d une droite d'équation cartésienne ax + by + c = 0 avec a, b et c des réels. Alors $\overrightarrow{u} \begin{pmatrix} b \\ -a \end{pmatrix}$ est un vecteur directeur de d.

Considérons les équations cartésiennes de droites suivantes:

a.
$$x-7=0$$

b.
$$-2x + 5y + 10 = 0$$

$${\bf c.}\ x+3y-9=0$$

d.
$$-y + 5 = 0$$

e.
$$-3x + 4y = 0$$

f.
$$2x - y + 2 = 0$$

En extrayant de chaque équation un vecteur directeur, déduire la droite associée.

Équation réduite d'une droite

Propriété : Soit d une droite non parallèle à l'axe des ordonnées. Alors d admet une équation appelée équation réduite de la forme

$$y = mx + p$$

où m et p sont deux réels.

lacksquare Déterminez m et p pour chacune des équations suivantes.

a.
$$y = 2x + 5$$

b.
$$y=rac{x}{2}-3$$

c.
$$y = -3x + 1$$

d.
$$y = -x + 4$$

$$\mathsf{e.}\ y=5$$

f.
$$y=9x$$

E4 Pour chaque équation cartésienne de droite, donnez l'équation réduite si possible.

a.
$$5x + 2y - 6 = 0$$

b.
$$-3x + 4y + 12 = 0$$

c.
$$-3x - 3y + 8 = 0$$

d.
$$5x + 7 = 0$$

e.
$$-2y + 3 = 0$$

f.
$$4x - 2y - 6 = 0$$

Définition : Soit une droite d'équation réduite y = mx + p.

- ullet Le réel m est appelé \emph{pente} de la droite.
- ullet Le réel p est appelé $\mathit{ordonn\'ee}$ à l' $\mathit{origine}$.

E5 Déterminez une équation réduite pour chacune des droites suivantes.

- **a.** d_1 est la droite de pente -3 et d'ordonnée à l'origine 4.
- **b.** d_2 est la droite de pente 2 et passant par le point A(3,5).
- **c.** d_3 est la droite passant par le point B(2,1)et d'ordonnée à l'origine $-3.\,$

Propriété : Soit d une droite passant par les points $A(x_A,y_A)$ et $B(x_B,y_B)$ tel que $x_A \neq x_B$. Alors la pente m de d est donnée par

$$m=rac{y_B-y_A}{x_B-x_A}.$$

Déterminez la pente des droites formées par les points A, B, C et D.

Propriété : Soit d une droite de pente m. est un vecteur directeur de $doldsymbol{.}$

- **a.** Tracez la droite d_1 d'ordonnée à l'origine -2et de pente 3.
- **b.** Tracez la droite d_2 d'équation réduite y = -2x + 5.
- **c.** Tracez la droite d_3 de pente $-\frac{1}{3}$ passant par le point A(2,3).

