

# Python para a Análise de Dados

## **Bootcamp Desenvolvedor Python**

Matheus de Oliveira Mendonça

## Python para a Análise de Dados

### Bootcamp Desenvolvedor Python

Matheus de Oliveira Mendonça

© Copyright do Instituto de Gestão e Tecnologia da Informação.

Todos os direitos reservados.

## Sumário

| Capítulo 1. | Introdução à análise de dados        | 4  |
|-------------|--------------------------------------|----|
| Capítulo 2. | Pandas e numpy para análise de dados | 6  |
| Numpy p     | para análise de dados                | 6  |
| Pandas      | para análise de dados                | 15 |
| Capítulo 3. | Introdução ao scikit-learn           | 24 |
| Introduç    | ão ao machine learning               | 25 |
| Capítulo 4. | Conclusão                            | 28 |
| Referências |                                      | 29 |

#### Capítulo 1. Introdução à análise de dados

A análise de dados pode ser definida como processo de coleta, tratamento, análise e apresentação de dados, de forma a trazer **novas informações** e **agregar valor** ao processo de **tomada de decisão** de qualquer negócio (ver figura 1).

Esse processo nasce a partir de uma dor do negócio, na qual os conhecimentos empíricos não são suficientes para uma tomada de decisão assertiva e imparcial. Assim, faz-se necessária a utilização de um processo metodológico bem definido para munir o tomador de decisão com informações adicionais relevantes, muitas vezes desconhecidas até então.

Figura 1 - Ciclo de um trabalho de análise de dados.



Existem diversas ferramentas para análise de dados, mas sem dúvida alguma o Python, em conjunto com diversas bibliotecas disponíveis, é uma ferramenta poderosíssima que vem ganhando cada vez mais popularidade entre a comunidade

científica e os desenvolvedores. A Figura 2 mostra o resultado expressivo da pesquisa conduzida pelo <u>StackOverflow</u> que mostra o Python figurando entre as 5 linguagens de programação mais populares, desbancando o Java.

Figura 2 - Popularidade das linguagens de programação em 2019 no StackOverflow.



Este curso dedica-se à introdução - de maneira prática - de algumas das ferramentas fundamentais de análise de dados em Python, a saber:

- 1. NumPy;
- 2. Pandas;
- 3. Scikit-learn.



#### Capítulo 2. Pandas e numpy para análise de dados

#### Numpy para análise de dados

O <u>numpy</u> é uma das principais bibliotecas para computação científica em Python. Ela disponibiliza um objeto de array multidimensional de alta performance e diversas ferramentas para se trabalhar com esses objetos.

Como a maioria das bibliotecas em Python, a instalação do numpy é bem simples e pode ser executada através dos comandos:

Figura 3 - Instalação do numpy.

#### **CONDA**

If you use conda, you can install it with:

conda install numpy

#### PIP

If you use pip, you can install it with:

pip install numpy

Fonte: https://numpy.org/install/.

Para utilizá-la, é necessário, inicialmente, importar o pacote com o comando:

import numpy as np

#### Arrays

Uma array em numpy é uma grade de valores, todos do mesmo tipo, indexada por uma tupla de inteiros não negativos. O número de dimensões de uma array é chamado de *rank* do array; o *shape* de uma array é representada através de uma

tupla de inteiros, que indicam o tamanho da array em cada dimensão. A Figura a seguir ilustra alguns exemplos de arrays.

Figura 4 - Ilustração de arrays multidimensionais.



Fonte: https://fgnt.github.io/python\_crashkurs\_doc/include/numpy.html.

É possível criar arrays em numpy utilizando listas de Python aninhadas, e o acesso dos elementos é feito utilizando colchetes:

```
# cria um array de 2 dimensões: matrix 3x3
a = np.array([[1, 2, 3], [2, 3, 4], [3, 4, 5]])
print("Array criado:\n", a)
print("shape:", a.shape)

Array criado:
  [[1 2 3]
  [2 3 4]
  [3 4 5]]
shape: (3, 3)
```

A biblioteca numpy também oferece várias funções para a criação de arrays:

 np.zeros(tuple): cria uma array com todos os valores iguais a 0. As dimensões da array são definidas pela tupla passada por parâmetro.

- np.ones(tuple): semelhante à função acima, porém cria uma array com todos os valores iguais a 1.
- np.eye(n): cria uma matriz identidade de tamanho n x n. O tipo de n deve ser int.
- np.random.random(tuple): cria uma matriz com valores aleatórios. As dimensões são definidas pela tupla passada por parâmetro.
- np.linspace(start, stop, num): cria um vetor contendo num elementos,
   linearmente espaçados dentro do intervalo [start, stop].

Alguns exemplos de implementação estão listados a seguir:

```
# criação de uma matriz 3x2 de 0's
print("Criação de uma matriz 3x2 de 0's:")
print(np.zeros((3, 2)))
# criação de uma matriz 3x2 de 1's
print("Criação de uma matriz 3x2 de 1's:")
print(np.ones((3, 2)))
# criação de uma matriz identidade 3x3
print("Criação de uma matriz identidade 3x3:")
print(np.eye(3))
# criação de uma matriz 3x3 com números aleatórios
print("Criação de uma matriz 3x3 com números aleatórios:")
print(np.random.random((3, 3)))
Criação de uma matriz 3x2 de 0's:
[[0. 0.]
 [0. \ 0.]
 [0. 0.]]
Criação de uma matriz 3x2 de 1's:
[[1. 1.]]
 [1. 1.]
 [1. 1.]]
Criação de uma matriz identidade 3x3:
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
Criação de uma matriz 3x3 com números aleatórios:
[[0.91566385 0.41521502 0.3004463 ]
 [0.94635743 0.40210197 0.58536861]
 [0.17914514 0.75828708 0.83239962]]
```

#### Indexação de arrays

Assim como listas em Python, arrays em numpy podem ser fatiadas (*slicing*, termo comum em inglês). Dado que arrays podem ser multidimensionais, é necessário especificar uma fatia para cada uma das dimensões da array:

```
# Criação de uma matriz bidimensional de tamanho (3, 4)
#[[1 2 3 4]
# [5 6 7 8]
# [ 9 10 11 12]]
print("A:")
A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
print(A)
# indexação do array A para extracação de um sub-array consistindo
# dasa primeiras 2 linhas de A e das colunas de índice 1 e 2,
# resultando em um novo array B de tamanho (2, 2):
# [[2 3]
# [6 7]]
print("B:")
B = A[:2, 1:3]
print(B)
Α:
[[1 2 3 4]
 [5 6 7 8]
 [ 9 10 11 12]]
В:
[[2 3]
[6 7]]
```

Repare que um slice de uma array é uma visualização do mesmo dado, ou seja, ao alterar um slice, o **dado original também será alterado**:

```
# B[0, 0] aponta para a mesma posição de memória de A[0, 1]
print("A[0,1] antes:")
print(A[0, 1])
B[0, 0] = 77
print("A[0,1] depois:")
print(A[0, 1])
A[0,1] antes:
2
A[0,1] depois:
77
```

Para a criação de um sub-array que **não** compartilha memória com o array original, faz-se necessária a utilização do método *copy()* durante a indexação (*slicing*):

```
# Criação de uma matriz bidimensional de tamanho (3, 4)
# [[ 1 2 3 4]
# [5 6 7 8]
# [ 9 10 11 12]]
A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
# indexação do array A para extracação de um sub-array consistindo
# dasa primeiras 2 linhas de A e das colunas de índice 1 e 2,
# resultando em um novo array B de tamanho (2, 2):
# [[2 3]
# [6 7]]
B = A[:2, 1:3].copy() # slicing com cópia do objeto
# B[0, 0] agora NÃO aponta para a mesma posição de memória de A[0, 1]
print("A[0,1] antes:")
print(A[0, 1])
B[0, 0] = 77
print("A[0,1] depois:")
print(A[0, 1])
A[0,1] antes:
A[0,1] depois:
```

#### Funções aritméticas

Funções aritméticas básicas operam sobre cada elemento em arrays, e estão disponíveis tanto como sobrecarga de operadores quanto como funções no módulo numpy. Elas podem ser implementadas tanto entre arrays quanto entre um array e um escalar (exemplo: int e float). Exemplos:



– Soma:

```
# arrays
x = np.array([[1,2], [3,4]])
y = np.array([[5,6], [7,8]])
# Soma por elemento;
print("Sobrecarga de operador:")
print(x + y)
print("Função do múdulo:")
print(np.add(x, y))
print("Soma entre um array e um escalar:")
print(x + 10)
Sobrecarga de operador:
[[ 6 8]
 [10 12]]
Função do múdulo:
[[ 6 8]
 [10 12]]
Soma entre um array e um escalar:
[[11 12]
 [13 14]]
```

- Subtração:

```
# Diferença por elemento
print (x - y)
print (np.subtract(x, y))

[[-4. -4.]
  [-4. -4.]]
[[-4. -4.]
  [-4. -4.]]
```

Multiplicação:

```
# Produto por elemento
print (x * y)
print (np.multiply(x, y))

[[ 5. 12.]
  [ 21. 32.]]
[[ 5. 12.]
  [ 21. 32.]]
```

Repare que o operador \* representa a multiplicação por elemento, e não a multiplicação de matrizes. Para calcular o produto interno de vetores, multiplicar um

vetor por uma matriz ou multiplicar matrizes, a função utilizada é *dot*, conforme exemplificado a seguir:

```
# matrizes
   x = np.array([[1,2],[3,4]])
   y = np.array([[5,6],[7,8]])
   # vetores
   v = np.array([5, 5])
   w = np.array([2, 3])
   # Produto interno de vetores
   print(v.dot(w))
   print(np.dot(v, w))
   25
   25
# Produto de um vetor e uma matriz
print (x.dot(v))
print (np.dot(x, v))
[15 35]
[15 35]
# Produto de matrizes
print (x.dot(y))
print (np.dot(x, y))
[[19 22]
[43 50]]
[[19 22]
 [43 50]]
```

#### Divisão:

#### Outras operações:

#### Comparações

Comparações booleanas também são possíveis em numpy arrays e são executadas elemento por elemento, retornando um outro numpy array com o resultado da comparação. A seguir, alguns exemplos de comparações que podem ser executadas:

#### Maior/Maior ou igual:

```
# maior
print("Comparação maior:")
print(A > B)
print(A > s)

# maior ou igual
print("Comparação maior ou igual:")
print(A >= B)
print(A >= s)

Comparação maior:
[False True True]
[False False False]
Comparação maior ou igual:
[False True True]
[False True True]
```



#### Menor/Menor ou igual:

```
# comparações booleanas
A = np.array([1, 2, 3])
B = np.array([2, 0, 2])
s = 3
# menor
print("Comparação menor:")
print(A < B)
print(A < s)
# menor ou igual
print("Comparação menor ou igual:")
print(A <= B)</pre>
print(A <= s)</pre>
Comparação menor:
[ True False False]
[ True True False]
Comparação menor ou igual:
[ True False False]
[ True True True]
```

#### – Igualdade:

```
# igual
print("Comparação de igualdade:")
print(A == B)
print(A == s)

Comparação de igualdade:
[False False False]
[False False True]
```

#### Indexação booleana:

```
# indexação booleana: um novo subarray contendo uma
# cópia dos elementos em que a condição de verificação se aplica
cond = A <= 2
D = A[cond]
print("A:", A)
print("condição:", cond)
print("D:", D)

A: [1 2 3]
condição: [ True True False]
D: [1 2]</pre>
```

#### Pandas para análise de dados

<u>Pandas</u> é um pacote em Python desenvolvido para disponibilizar estruturas de dados rápidas e flexíveis para se trabalhar com dados "relacionais" ou "rotulados" (ver Figura 5). Ele é adequado para diversos tipos de dados:

- Dados tabulares com colunas de tipos heterogêneos, como em tabelas
   SQL ou planilhas Excel;
- Dados de séries temporais ordenados ou não ordenados;
- Dados matriciais arbitrários, com linhas e colunas rotuladas;
- Qualquer outro tipo de conjunto de dados estatísticos ou observados.
   Os dados não necessariamente precisam estar rotulados para serem utilizados com a estrutura de dados do Pandas.



Figura 5 - Exemplo de um *DataFrame*.

Fonte: https://www.geeksforgeeks.org/python-Pandas-dataframe/.

O Pandas utiliza dois tipos principais de estruturas de dados: **Series** (unidimensional) e **DataFrame** (bidimensional), que são abstrações de vetores e

matrizes, respectivamente, assim como no numpy, porém com características mais versáteis e mais próximas dos dados do mundo real. Essas duas estruturas são capazes de representar a maioria dos casos de uso em finanças, em estatística, em ciências sociais e em várias áreas da engenharia. A próxima Figura ilustra esse conceito:

Figura 6 - Exemplo de um DataFrame.

Fonte: http://www.datasciencemadesimple.com/create-series-in-python-Pandas/.

Algumas das tarefas que o Pandas faz com eficiência são:

- Tratamento de dados faltantes (representados por NaN);
- Tamanhos mutáveis: colunas podem ser inseridas e excluídas de DataFrames com facilidade;
- Grupo de funcionalidades poderoso e flexível para operações de splitapply-combine, para agregar e transformar conjuntos de dados;
- Ferramentas de IO robustas para leitura de dados de arquivos como CSV, Excel, bancos de dados, além da possibilidade de se utilizar o formato HDF5:
- Entre outros.

Para leitura dos dados, existem diversas funções, a depender do formato do dado de entrada. Algumas da mais usadas estão listados abaixo:

- read\_csv: leitura de arquivos CSV;
- read\_json: leitura de arquivos JSON;
- read\_html: leitura de arquivos HTML;
- read\_clipboard: leitura de dados da área de transferência (CTRL + C, por exemplo);
- read\_hdf: leitura de arquivos HDF5;
- read\_sql: leitura de arquivos SQL;
- read\_excel: leitura de arquivos Excel.

Uma das principais características do Pandas é a possibilidade de lidar com diferentes formatos de uma maneira muito simples e similar ao que já está implementado no numpy (slicing, indexação, comparações, etc). Entre os tipos de dados suportados e como eles se relacionam com os formatos nativos do Python, têm-se:

Tabela 1 - Tipos de dados suportados no Pandas.

| Pandas dtype  | Python type  | Uso                                                   |
|---------------|--------------|-------------------------------------------------------|
| object        | str ou mixed | Texto ou valores mistos numéricos e não-<br>numéricos |
| int64         | int          | Números inteiros                                      |
| float64       | float        | Números ponto flutuantes                              |
| bool          | bool         | Valores True/False                                    |
| datetime64    | NA           | Valores em formato de data e hora                     |
| timedelta[ns] | NA           | Diferença de dois datetimes                           |
| category      | NA           | Lista finita de texto                                 |

A instalação do Pandas é análoga à instalação do numpy e, para sua utilização, basta a importação da biblioteca no ambiente de desenvolvimento, conforme descrito a seguir:

```
# importando as bibliotecas
import numpy as np
import pandas as pd
```

Para carregar uma base de dados em memória, basta utilizar um dos métodos de leitura disponíveis conforme o formato do arquivo que contém os dados a serem analisados. Segue um exemplo de leitura de um arquivo com extensão .csv:

```
# leitura dos dados
df = pd.read_csv("https://pycourse.s3.amazonaws.com/temperature.csv")
# visualizando as primeiras 3 linhas
df.head(3)
```

| classification | temperatura | date                |   |
|----------------|-------------|---------------------|---|
| quente         | 29.1        | 0 2020-01-01        | 0 |
| muito quente   | 31.2        | <b>1</b> 2020-02-01 | 1 |
| quente         | 28.5        | 2 2020-03-01        | 2 |

Esse DataFrame possui 3 colunas dos seguintes tipos:

| # tipos de dados<br>df.dtypes                          |                             |
|--------------------------------------------------------|-----------------------------|
| date<br>temperatura<br>classification<br>dtype: object | object<br>float64<br>object |

Note que a coluna **date** claramente é uma representação de datas, mas como não explicitamos na leitura do arquivo quais os tipos de cada coluna, o Pandas inferiu que essa coluna é do tipo object. Para que possamos usufruir das funcionalidades de comparações de datetimes, precisamos forçar a conversão da coluna **date** para o tipo datetime:

```
# transformando o tipo da coluna date para datetime
df['date'] = pd.to datetime(df['date'])
```

Também é conveniente definir qual coluna do *DataFrame* será utilizada como "referência" para as demais. No Pandas, essa "referência" é denominada **index** e é especialmente útil quando temos uma coluna de datetime, pois ela serve para determinar os labels do eixo de todos os outros objetos do *DataFrame*:

Algumas das manipulações mais comuns são listadas a seguir:

Estatísticas básicas:

# estatísticas básicas de dados númericos
df.describe()

|       | temperatura |
|-------|-------------|
| count | 6.000000    |
| mean  | 26.800000   |
| std   | 4.075782    |
| min   | 20.000000   |
| 25%   | 25.000000   |
| 50%   | 28.250000   |
| 75%   | 28.950000   |
| max   | 31.200000   |



Indexação por índice (método iloc):

```
# indexação por índice
# selecionado todas as linhas e a coluna 1
# coluna 1: temperatura
df.iloc[:, 1]
     29.1
0
1
     31.2
2
     28.5
3
     28.0
4
     24.0
5
     20.0
Name: temperatura, dtype: float64
```

Indexação por nome (método loc):

```
# indexação por nome
# selecionado todas as linhas e a coluna 1
df.loc[:, 'temperatura']
0
     29.1
     31.2
1
2
     28.5
3
     28.0
4
     24.0
5
     20.0
Name: temperatura, dtype: float64
```

Ordenação por coluna:

```
# ordenando por uma coluna
df.sort_values(by='temperatura')
```

|            | temperatura | classification |
|------------|-------------|----------------|
| date       |             |                |
| 2020-06-01 | 20.0        | frio           |
| 2020-05-01 | 24.0        | confortavel    |
| 2020-04-01 | 28.0        | quente         |
| 2020-03-01 | 28.5        | quente         |
| 2020-01-01 | 29.1        | quente         |
| 2020-02-01 | 31.2        | muito quente   |



#### Ordenação por índice:

# ordenando pelo indice
df.sort\_index(ascending=False)

|            | temperatura | classification |
|------------|-------------|----------------|
| date       |             |                |
| 2020-06-01 | 20.0        | frio           |
| 2020-05-01 | 24.0        | confortavel    |
| 2020-04-01 | 28.0        | quente         |
| 2020-03-01 | 28.5        | quente         |
| 2020-02-01 | 31.2        | muito quente   |
| 2020-01-01 | 29.1        | quente         |

#### Indexação booleana:

```
# indexação booleana
# seleção de exemplos acima de 25 graus
df[df['temperatura'] >= 25]
```

## temperatura classification

|              |      | date       |
|--------------|------|------------|
| quente       | 29.1 | 2020-01-01 |
| muito quente | 31.2 | 2020-02-01 |
| quente       | 28.5 | 2020-03-01 |
| quente       | 28.0 | 2020-04-01 |

# indexação booleana considerando datetime
# seleção de entradas até Março de 2020
df[df.index <= '2020-03-01']</pre>

#### temperatura classification

| date       |      |              |
|------------|------|--------------|
| 2020-01-01 | 29.1 | quente       |
| 2020-02-01 | 31.2 | muito quente |
| 2020-03-01 | 28.5 | quente       |

Visualização: além de ser escrito em cima do numpy, o Pandas também herda os métodos de visualização do matplotlib, uma biblioteca de visualização de dados muito versátil e utilizada. Alguns *plots* podem ser feitos com apenas uma linha de código no Pandas:









#### Capítulo 3. Introdução ao scikit-learn

O <u>scikit-learn</u> é um dos mais utilizados *frameworks* de aprendizado de máquinas em Python. Ele possui interfaces para a execução de diversas atividades inerentes às atividades de um cientista de dados:

- Classificação: identificação de qual categoria um novo exemplo pertence.
- Regressão: predição de um valor contínuo associado a um determinado exemplo.
- Agrupamento: agrupamento automático de exemplos em conjuntos.
- Redução de dimensionalidade: redução do número de variáveis presentes em um dataset.
- Seleção de modelos: comparação, validação e calibração de parâmetros de modelos.
- Pré-processamento: extração/seleção de atributos, normalização e tratamento de dados faltantes.

Para exemplificação, resolveremos um problema simples de machine learning baseado no dataset que estamos utilizando até o momento:

| temperatura | classification |
|-------------|----------------|
| temperatura | Classification |

| frio         | 20.0 |
|--------------|------|
| confortavel  | 24.0 |
| quente       | 28.0 |
| quente       | 28.5 |
| muito quente | 31.2 |
| quente       | 29.1 |

Baseado nesse conjunto de seis exemplos de pares (temperatura, classification), iremos treinar um modelo para nos dizer qual será a classificação de uma temperatura que não está presente nessa tabela. Exemplo: para a temperatura de 9°C, qual classificação o modelo irá retornar? Esperamos que seja frio ...

O modelo matemático irá **aprender**, a partir dessa pequena base de dados, a **inferir** (generalizar) a classificação de uma temperatura nunca vista antes pelo modelo. Daí o nome aprendizado de máquinas.

#### Introdução ao machine learning

No scikit-learn, é comum adotar a nomenclatura  $\mathbf{x}$  para variáveis preditoras e  $\mathbf{y}$  para a variável alvo. No nosso exemplo,  $\mathbf{x}$  é a temperatura e  $\mathbf{y}$  é a classificação. Sendo assim, o seguinte trecho de código executa esse *slicing*:

```
# extração de x e y
x, y = df[['temperatura']].values, df[['classification']].values
print("x:\n", x)
print("y:\n", y)
х:
 [[29.1]
 [31.2]
 [28.5]
 [28.]
 [24.]
 [20.]]
у:
 [['quente']
 ['muito quente']
 ['quente']
 ['quente']
 ['confortavel']
 ['frio']]
```

Observe que a variável resposta é uma *string*, mas modelos matemáticos necessitam de valores numéricos para funcionarem. Sendo assim, umas das funcionalidades presentes no scikit-learn é a codificação de variáveis categóricas em variáveis numéricas, que pode ser feita pelo seguinte trecho:

```
# pré-processamento
from sklearn.preprocessing import LabelEncoder

# conversão de y para valores numéricos
le = LabelEncoder()
y = le.fit_transform(y.ravel())
print("y:\n", y)

y:
[3 2 3 3 0 1]
```

Após o pré-processamento, partiremos para o treinamento do modelo. (Existem outras etapas em um fluxo normal de machine learning. Aqui, para fins de exemplificação, não as realizaremos):

```
# modelo
from sklearn.linear_model import LogisticRegression

# classificador
clf = LogisticRegression()
clf.fit(x, y)
```

Com o modelo treinado, podemos inferir a classificação de novas temperaturas. Para isso, iremos gerar uma sequência de 100 valores de temperatura entre 0 e 45 para avaliarmos o resultado da generalização do modelo:

```
# gerando 100 valores de temperatura
# linearmente espaçados entre 0 e 45
predição em novos valores de temperatura
x_test = np.linspace(start=0., stop=45., num=100).reshape(-1, 1)
# predição desses valores
y_pred = clf.predict(x_test)
```

De posse da predição, podemos realizar a conversão inversa dos valores numéricos de **y** para os seus valores originais (frio, confortável, quente, muito quente):

```
# conversão de y_pred para os valores originais
y pred = le.inverse transform(y pred)
```

Salvando os resultados em um DataFrame:



De posse dos resultados, vamos visualizar as classificações inferidas pelo modelo através de um plot de caixa (*boxplot*, em inglês), que nos mostra a distribuição dos valores de cada uma das classes para o novo conjunto de valores de temperatura gerados. Observe que o comportamento está como o esperado e que o modelo conseguiu aprender corretamente partindo de uma base de dados bem pequena.





#### Capítulo 4. Conclusão

Esse módulo dedicou-se à introdução de conceitos fundamentais da análise de dados e apresentou 2 das bibliotecas mais utilizadas no cotidiano de um profissional de dados: Pandas e numpy. Além disso, foi apresentada de forma simplificada a ideia de geral de um problema de aprendizado de máquinas, através da resolução de um problema de classificação com a biblioteca scikit-learn.

#### Referências

JAMES, G.; WITTEN, D.; HASTIE, T.; TIBISHIRANI, R. *An introduction to statistical learning*. New York: Springer, 2013.

NumPy. Disponível em: <a href="https://numpy.org/">https://numpy.org/</a>>. Acesso em: 13 nov. 2020.

Pandas. Disponível em: <a href="https://Pandas.pydata.org/">https://Pandas.pydata.org/</a>>. Acesso em: 13 nov. 2020.

Scikit-learn. Disponível em: <a href="https://scikit-learn.org/stable/">https://scikit-learn.org/stable/</a>>. Acesso em: 13 nov. 2020.