### Module 4: Hive and Pig

# Hive

#### 1. What's Hive?

- It's data warehousing architecture.
- Uses MapReduce & HDFS.
- Provides HQL.

### 2. Hive Functionality

- Querying/ analyzing.
- Manage unstructured data as structured.
- Leverage SQL skills.

### 3. Hadoop with Hive VS. RDBMS

#### Notes:

- I. Built for different purposes and have their own pros and cons.
- II. Hive is not an alternative for RDBMS.
- III. Can co-exist in one system.

#### Comparison:

|                             | Hadoop with Hive                                                                                     | RDBMS                                                                                                 |
|-----------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Supported data types / size | Petabytes of unstructured, semi-structured, and structured data                                      | Terabytes of data and only structured data                                                            |
| Application latency         | Supports high latency queries                                                                        | Supports both high and low latency queries                                                            |
| Software type               | Open source, flexible, fast and still evolving                                                       | Most are proprietary and defined constraints                                                          |
| Supported architecture      | Distributed                                                                                          | Client server                                                                                         |
| Hardware requirements       | Can run on commodity hardware                                                                        | High-end server required for data intensive applications                                              |
| Cost                        | Cost efficient                                                                                       | High cost to scale                                                                                    |
| Data handling<br>features   | Some traditional data handling features are not available in Hive. ACID principles are not available | Provides traditional features such as transaction management and ACID principles for data reliability |
| Schema policy               | Schema on read policy                                                                                | Schema on write policy                                                                                |

### 4. Hive Components

- Interfaces to Hadoop Framework: Web UI, CLI, JDBC, ODBC.
- Driver maintains a session handle and session statistics for query processing.

### I. Compiler

- Parses the Hive query.
- Converts queries into a MapReduce task.
- Generates an execution plan.

#### II. Optimizer

- Handles optimization tasks:
  - ✓ Column Pruning.
  - ✓ Partition Pruning.
  - ✓ Repartitioning of Data.

#### III. Executor

- Executes the tasks.
- Interacts with the underlying Hadoop instance.

#### Metastore

- Stores the system catalog, containing metadata about: Tables, Columns, Partitions...etc.
- Stored in an RDBMS.

#### Thrift Server

- It's an optional server.
- Exposes a client API to execute HQL statements.
- Provides cross-language services.

### 5. Hive Interaction via CLI

- Most common way to interact with Hive.
- Provides the ability to issue DDL and metadata exploration commands.
- CLI is used to communicate with the Hadoop framework.

### 6. Hive Architecture: data Organization

| Object                                       | Description                                                                                                             | Benefits                                                                                                                            |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Database                                     | Catalog of namespaces that separate tables and other data units to avoid name conflicts  HIVE> CREATE DATABASE Employee | Organizes production tables into logical groups     Load database into HDFS     Schema can evolve over time                         |
| ID         Date           2         03/05/14 | • Logical concept consisting of files in HDFS  Hive> CREATE TABLE sample(id int, name string);                          |                                                                                                                                     |
| Partitions                                   | A directory                                                                                                             | Easier to query portions of the data     Reduces data read and filtered in map stages     Reduces mappers, I/O operations, and time |
| Buckets                                      | A file in a table directory     Separates table data into more manageable parts                                         | <ul> <li>Avoids having to create thousands of tiny partitions</li> <li>Provides for more efficient types of queries</li> </ul>      |

### 7. Data Organization: Two Table Types

Internal/ Managed & External

|         | Internal / Managed                                                                        | External                                          |
|---------|-------------------------------------------------------------------------------------------|---------------------------------------------------|
| Storage | ☐ HDFS                                                                                    | ☐ Stored outside of Hive                          |
| Control | <ul><li>Hive controls life cycle.</li><li>Associated data is deleted with table</li></ul> | Data does not get deleted when a table is deleted |

### 8. Data Organization: View

- Allow queries to be saved and treated like a table.
- Reduce query complexity.

### 9. Data Organization: Indexes

- Indexes act as a reference to the records in a table.
- two types of indexes:
  - 1. Compaction
  - 2. Bitmap

### 10. Data Organization: Hive Metastore

\_\_\_\_\_\_

# Pig

### 11. Pig Overview

- Scripting language for analyzing large datasets.
- Appeals those familiar with scripting languages and SQL.

### 12. Pig Architecture: Overview



### 13. Pig Latin: Features

- Multi-query approach.
- Operators: join, sort, filer, etc.
- Nested data types: tuple, bags, and maps.
- Automatic Optimization.
- User Defined Functions (UDF).
- Structured and unstructured data.

### 14. Pig Latin Data Types

### Data Atom

### Description

- ✓ Stores a simple atomic data value.
- √ Values are stored as a strings but can be used as either strings or numbers.
- Ex: AWS

### Tuple

### Description

- ✓ A data record consisting of a sequence of "fields".
- ✓ Each filed is a piece of data of any type such as an atom, tuple or data bag.
- ✓ In Pig, tuple in a bag can be compared to the rows in a table in a relational database.
- ✓ A Tuple can also contain an ordered set of values.
- **Ex:** (1, 2, 3)

### Data Bag

### Description

- ✓ A set of tuples.
- ✓ Duplicate tuples are allowed.
- ✓ Think of a data bag as a "table", except that Pig does not require that the tuple field types match, or even that the tuples have the same number of fields.
- ✓ Bags are an unordered collection of tuples.
- **Ex:**  $\{(1, 2), (3, 4)\}$

### Data Map

#### Description

- ✓ A set of key/ value pairs. Accessing a map with a specify key will return the value associated with that key.
- Ex: [frog#kermit]

## 15. Pig Relations vs RDBMS Relations

### Tuples

#### **Pig Relation**

Big of tuples. It may have dedicated tuples.

#### **RDBMS Relation**

Set of tuples where every tuple is unique.

### Columns

#### **Pig Relation**

May have different number of columns.

#### **RDBMS Relation**

Has a fixed number of columns.

### Column data types

#### **Pig Relation**

Columns in the same position may have different data types.

#### **RDBMS Relation**

Columns in the same position have the same data type.

#### Procedural vs Declarative

### **Pig Relation**

Pig Latin is procedural.

#### **RDBMS Relation**

SQL is declarative.

### Ability to add code

#### **Pig Relation**

Pig Latin allows developers to insert their own code almost anywhere in the data pipeline.

#### **RDBMS Relation**

With traditional RDBMS systems, additional ETL tools are currently used to do customization of data.

### Split support

### **Pig Relation**

Supports splits in the pipeline and data can be stores at any point in the pipeline.

#### **RDBMS Relation**

Splits are not supported and intermediate storage is not available.

### Extract, Transform, Load

### **Pig Relation**

Pig uses ETL natively.

#### **RDBMS Relation**

Separate ETL tools are needed.

### Evaluation

# Pig Relation

Pig use lazy evaluation.

#### **RDBMS Relation**

Instant invocation of commands happens in RDBMS.

### Control statements

### **Pig Relation**

There are no control statements such as if and else.

#### **RDBMS Relation**

Control statements are available.

## 16. Pig Latins: Schemas

- Schemas assigns names and types to fields.
- Types provide better parse-time error checking.



| Includes Field Name | Includes Data Type | Example                                             |
|---------------------|--------------------|-----------------------------------------------------|
| ✓                   | ☑                  | foobar = LOAD 'book.txt' AS (b1:int, b2:chararray); |
| ✓                   | ×                  | foobar = LOAD 'book.txt' AS (b1, b2);               |
| No Schema / Sch     | ema Unknown        | foobar = LOAD 'book.txt'                            |

### 17. Pig Latin: Input Data Flow



### 18. Pig Latin Architecture: Output Data Flow



### 19. Pig Latin Architecture: Running Pig Programs

#### Types of Execution

|             | Local Mode                                                                | MapReduce Mode                                                                                        |
|-------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Description | Pig only runs on one machine. Files are run on localhost and file system. | <ul> <li>Pig translates queries into MapReduce jobs and runs<br/>them on a Hadoop cluster.</li> </ul> |
| Example     | pig -x local                                                              | pig -x mapreduce                                                                                      |

#### Types of Invocation

|             | Interactive Mode / Grunt Shell                             | Batch Mode / Script Shell                                                                   |
|-------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Description | Manual commands using Grunt     Useful for troubleshooting | Group of Pig Latin statements in a Pig script to be run     Used in production environments |

### 20. Pig Latin: User Defined Functions (UDF)

- Pig functions defined by user.
- Allow users to create custom processing.

### 21. Pig Join

### Types of Joins

- 1. Self join.
- 2. Inner join.
- Outer join: left/ right/ full.

### 22. Special Joins: Fragment Replicate Joins

- Improves performance.
- Requires one or more relations fit in memory.
- Large relation followed by one or more small relations.

#### Reference:

https://ithelp.ithome.com.tw/articles/10190597

https://zh.wikipedia.org/wiki/Apache\_Hadoop

http://pcse.pw/9AR8F

https://pse.is/AQWTD