This set of notes aims to provide complete proofs of a number of asymptotic results regarding the Bootstrap [3] contained in Bickel and Freedman [1].

1 Bootstrap asymptotics for sample mean

Theorem 1.1 (Bootstrap Central Limit Theorem for I.I.D. sample mean, Theorem 2.1 [1])

Let $(\Omega, \mathcal{A}, \nu)$ be a probability space. Let $X, X_1, X_2, \ldots : \Omega \longrightarrow \mathbb{R}$ be a sequence of independent and identically distributed \mathbb{R} -valued random variables defined on Ω with finite expectation value $\mu_X \in \mathbb{R}$ and variance $\sigma_X^2 < \infty$. For each $n \in \mathbb{N}$ be fixed, define:

$$\overline{X}_n : \Omega \longrightarrow \mathbb{R} : \omega \longmapsto \frac{1}{n} \sum_{i=1}^n X_i(\omega).$$

For $n, m \in \mathbb{N}$, define $\mathcal{S}_m^{(n)}$ to be the set of all functions from $\{1, 2, \dots, m\} \longrightarrow \{1, 2, \dots, n\}$. Thus, each

$$s = (s(1), s(2), \dots, s(m)) \in \mathcal{S}_m^{(n)}$$

can be regarded as a length-m finite (ordered) sequence of positive integers between 1 and n, inclusive. Note that $\mathcal{S}_m^{(n)}$ is a finite set with $|\mathcal{S}_m^{(n)}| = n^m$. Endow $\mathcal{S}_m^{(n)}$ with the probability space structure induced by the uniform probability function:

$$P_{\mathcal{S}_m^{(n)}}(s) := \frac{1}{n^m}, \text{ for each } s \in \mathcal{S}_m^{(n)}.$$

Let $\Omega \times \mathcal{S}_m^{(n)}$ be the product probability space of Ω and $\mathcal{S}_m^{(n)}$. Define:

$$\overline{X}_m^{(n)}: \Omega \times \mathcal{S}_m^{(n)} \longrightarrow \mathbb{R}: (\omega, s) \longmapsto \frac{1}{m} \sum_{i=1}^n X_{s(j)}(\omega).$$

For each $\omega \in \Omega$, define:

$$\Phi_{m,\omega}^{(n)} : \mathcal{S}_m^{(n)} \longrightarrow \mathbb{R} : s \longmapsto \sqrt{m} \left(\overline{X}_m^{(n)}(\omega, s) - \overline{X}_n(\omega) \right)$$

Then,

$$P\Big(\ \Phi_{m,\omega}^{(n)} \stackrel{d}{\longrightarrow} N(0,\sigma_X^2), \text{ as } n,m \to \infty \ \Big) \quad = \quad \nu\Big(\Big\{ \ \omega \in \Omega \ \ \Big| \ \Phi_{m,\omega}^{(n)} \stackrel{d}{\longrightarrow} N(0,\sigma_X^2), \text{ as } n,m \to \infty \ \Big\} \Big) \quad = \quad 1.$$

Remark 1.2

For each fixed $\omega \in \Omega$, $\left\{\Phi_{m,\omega}^{(n)}: \mathcal{S}_m^{(n)} \longrightarrow \mathbb{R}\right\}_{n,m\in\mathbb{N}}$ is a doubly indexed sequence of \mathbb{R} -valued random variables. Note that their respective domains $\mathcal{S}_m^{(n)}$ are pairwise distinct probability spaces. The **Bootstrap Central Limit Theorem** for I.I.D. sample mean asserts that for almost every $\omega \in \Omega$, the doubly indexed sequence $\left\{\Phi_{m,\omega}^{(n)}\right\}$ of \mathbb{R} -valued random variables converges in distribution to $N(0,\sigma_X^2)$ as $n,m \longrightarrow \infty$.

Remark 1.3 The following results are well known from classical asymptotic theory:

By the Weak Law of Large Numbers, \overline{X}_n converges in probability to μ_X , as $n \longrightarrow \infty$; in other words,

$$\lim_{n \to \infty} P(\mid \overline{X}_n - \mu_X \mid > \varepsilon) = \lim_{n \to \infty} \nu(\{\omega \in \Omega : \mid \overline{X}_n(\omega) - \mu_X \mid > \varepsilon\}) = 0, \text{ for each } \varepsilon > 0.$$

By the Strong Law of Large Numbers, \overline{X}_n converges almost surely to μ_X , as $n \to \infty$; in other words,

$$P\Big(\lim_{n\to\infty}\,\overline{X}_n=\mu_X\,\Big)\ =\ \nu\left(\Big\{\;\omega\in\Omega\;\Big|\lim_{n\to\infty}\,\overline{X}_n(\omega)=\mu_X\;\Big\}\right)\ =\ 1.$$

By the Central Limit Theorem, $\sqrt{n}(\overline{X}_n - \mu_X)$ converges in distribution to $N(0, \sigma_X^2)$.

A stochastic process $\{X_t : \Omega \longrightarrow V\}_{t \in T}$ and its equivalent V^T -valued random variable $X : \Omega \longrightarrow V^T$

Let Ω , T, and V be non-empty sets. Let $\{X_t : \Omega \longrightarrow V\}_{t \in T}$ be a T-index family of maps, each of which maps from Ω into V. Note that this family of maps is set-theoretically equivalent (in the sense that either one completely determines the other) to the following (V^T) -valued map defined on Ω :

$$X: \Omega \longrightarrow V^T: \omega \longmapsto (t \longmapsto X_t(\omega)),$$

where $V^T = \prod_{t \in T} V$ denotes the set of all (arbitrary) V-valued functions defined on T. In this section, we aim to establish the following two results:

• Suppose (Ω, \mathcal{A}) and (V, \mathcal{F}) are measurable space structures on Ω and V, respectively. Then, $X : \Omega \longrightarrow V^T$ is $(\mathcal{A}, \sigma[(V, \mathcal{F})^T])$ -measurable if and only if $X_t : \Omega \longrightarrow V$ is $(\mathcal{A}, \mathcal{F})$ -measurable for each $t \in T$. Here, $\sigma[(V, \mathcal{F})^T]$ denotes the product σ -algebra on V^T , which is by definition the smallest σ -algebra on V^T such that, for each $t \in T$, the projection map (or evaluation map)

$$\pi_t: V^T \longrightarrow V: x \longmapsto x(t)$$

is $(\sigma[(V, \mathcal{F})^T], \mathcal{F})$ -measurable.

• An immediate corollary of the above result is that: Suppose $(\Omega, \mathcal{A}, \mu)$ is a probability space structure on Ω , (V, \mathcal{F}) is a measurable space structure on V, and $\sigma[(V, \mathcal{F})^T]$ is the product σ -algebra on V^T . Then, $X: (\Omega, \mathcal{A}, \mu) \longrightarrow (V^T, \sigma[(V, \mathcal{F})^T])$ is V^T -valued random variable if and only if $\{X_t: (\Omega, \mathcal{A}, \mu) \longrightarrow (V, \mathcal{F})\}_{t \in T}$ is a stochastic process.

Definition A.1 (The product σ -algebra of a Cartesian product of measurable spaces)

Let T be an arbitrary non-empty set. For each $t \in T$, let (V_t, \mathcal{F}_t) be a measurable space (in particular, $V_t \neq \varnothing$). Let $\prod_{t \in T} V_t$ be the Cartesian product of $\{V_t\}_{t \in T}$. In other words,

$$\prod_{t \in T} V_t := \left\{ v : T \longrightarrow \bigsqcup_{t \in T} V_t \middle| v(t) \in V_t, \text{ for each } t \in T \right\}.$$

That $\prod_{t \in T} V_t \neq \emptyset$ follows from the Axiom of Choice. For each $t \in T$, let

$$\pi_t : \prod_{\tau \in T} V_{\tau} \longrightarrow V_t : v \longmapsto v(t)$$

be the projection map from $\prod_{\tau \in T} V_{\tau}$ onto V_t . The **product** σ -algebra on $\prod_{t \in T} V_t$ is the following:

$$\sigma \left(\left\{ \left. \pi_t^{-1}(F) \, \subset \, \prod_{\tau \in T} V_\tau \, \right| \, F \in \mathcal{F}_t \, , \, t \in T \, \right\} \right) \, \subset \, \operatorname{PowerSet} \left(\prod_{t \in T} V_t \, \right).$$

Clearly, it is the smallest σ -algebra on $\prod_{t \in T} V_t$ with respect to which each projection map $\pi_t : \prod_{t \in T} V_t \longrightarrow (V_t, \mathcal{F}_t)$ is measurable. We denote the product σ -algebra on $\prod_{t \in T} V_t$ by

$$\sigma\bigg(\prod_{t\in T}(V_t,\mathcal{F}_t)\bigg)$$

Theorem A.2

Suppose Ω , T, and V are non-empty sets. Let $\{X_t : \Omega \longrightarrow V\}_{t \in T}$ be a T-index family of maps, each of which maps from Ω into V. Then,

Study Notes July 1, 2015 Kenneth Chu

1. The family $\{X_t : \Omega \longrightarrow V\}_{t \in T}$ of maps is set-theoretically equivalent (in the sense that either completely determines the other) to the following (V^T) -valued map defined on Ω :

$$X: \Omega \longrightarrow V^T: \omega \longmapsto (t \longmapsto X_t(\omega)),$$

where $V^T = \prod_{t \in T} V$ denotes the set of all (arbitrary) V-valued functions defined on T.

2. Suppose (Ω, \mathcal{A}) and (V, \mathcal{F}) are measurable space structures on Ω and V respectively, and $\sigma[(V, \mathcal{F})^T]$ denotes the corresponding product σ -algebra on V^T . Then, $X : \Omega \longrightarrow V^T$ is $(\mathcal{A}, \sigma[(V, \mathcal{F})^T])$ -measurable if and only if $X_t : \Omega \longrightarrow V$ is $(\mathcal{A}, \mathcal{F})$ -measurable for each $t \in T$.

PROOF The proof of the first statement is routine and we omit it. We now prove the second statement. Suppose $X:\Omega\longrightarrow V^T$ is $(\mathcal{A},\sigma[(V,\mathcal{F})^T])$ -measurable. Note that $X_t=\pi_t\circ X$, where $\pi_t:\prod_{t\in T}V\longrightarrow V$ is the projection from $V^T=\prod_{\tau\in T}V$ onto the t-th factor. By construction of the product σ -algebra $\sigma[(V,\mathcal{F})^T]$ on V^T , $\pi_t:V^T\longrightarrow V$ is $(\sigma[(V,\mathcal{F})^T],\mathcal{F})$ -measurable for each $t\in T$. This implies, for each $t\in T$, $X_t=\pi_t\circ X$ is $(\mathcal{A},\mathcal{F})$ -measurable, being a composition of two measurable maps. Conversely, suppose X_t is $(\mathcal{A},\mathcal{F})$ -measurable for each $t\in T$. Recall that the product σ -algebra on V^T is generated by sets of the form:

$$\pi_t^{-1}(F)$$
, for some $t \in T$ and $F \in \mathcal{F}$.

It follows that, for each $t \in T$ and each $F \in \mathcal{F}$, we have

$$X^{-1}\big(\pi_t^{-1}(F)\big) \ = \ (X^{-1}\circ\pi_t^{-1})(F) \ = \ (\pi_t\circ X)^{-1}(F) \ = \ X_t^{-1}(F) \ \subset \ \Omega$$

is \mathcal{A} -measurable, since $X_t:(\Omega,\mathcal{A})\longrightarrow (V,\mathcal{F})$ is $(\mathcal{A},\mathcal{F})$ -measurable by hypothesis. This proves that $X:\Omega\longrightarrow U$ is $(\mathcal{A},\sigma[(V,\mathcal{F})^T])$ -measurable.

Definition A.3 (Stochastic processes)

Suppose $(\Omega, \mathcal{A}, \mu)$ is a probability space, (V, \mathcal{F}) is a measurable space, and T is an arbitrary non-empty set. A **stochastic process indexed by** T **defined on** $(\Omega, \mathcal{A}, \mu)$ **with state space** (V, \mathcal{F}) is a family

$$\{X_t: (\Omega, \mathcal{A}, \mu) \longrightarrow (V, \mathcal{F})\}_{t \in T}$$

indexed by T of V-valued (A, \mathcal{F}) -measurable maps from Ω into V.

Corollary A.4

Suppose Ω , T, V are non-empty sets, $(\Omega, \mathcal{A}, \mu)$ is a probability space structure on Ω , (V, \mathcal{F}) is a measurable space structure on V, and $\sigma[(V, \mathcal{F})^T]$ denotes the corresponding product σ -algebra on $V^T = \prod_{t \in T} V$. Let $\{X_t : \Omega \longrightarrow V\}_{t \in T}$ be a T-index family of maps, each of which maps from Ω into V, and let

$$X: \Omega \longrightarrow V^T: \omega \longmapsto (t \longmapsto X_t(\omega))$$

be its set-theoretically equivalent (V^T) -valued map defined on Ω . Then,

$$\{ X_t : (\Omega, \mathcal{A}, \mu) \longrightarrow (V, \mathcal{F}) \}_{t \in T}$$

is a stochastic process if and only if

$$X: (\Omega, \mathcal{A}, \mu) \longrightarrow (V^T, \sigma[(V, \mathcal{F})^T])$$

is a (V^T) -valued random variable.

B Uniqueness of the "full distribution" of a stochastic process $\{X_t : \Omega \longrightarrow V\}_{t \in T}$ given its finite-dimensional distributions

In this section, we state the precise sense in which the finite-dimensional distributions of a stochastic process completely determine the "full distribution" of the stochastic process.

First, let Ω , T, and V be non-empty sets. Let $\{X_t : \Omega \longrightarrow V\}_{t \in T}$ be a T-index family of maps, each of which maps from Ω into V. Note that this family of maps is set-theoretically equivalent (in the sense that either completely determines the other) to the following (V^T) -valued map defined on Ω :

$$X:\Omega\longrightarrow V^T:\omega\longmapsto (t\longmapsto X_t(\omega))$$

where $V^T = \prod_{t \in T} V$ denotes the set of all (arbitrary) V-valued functions defined on T.

Next, suppose $(\Omega, \mathcal{A}, \mu)$ is a probability space structure on Ω , and (V, \mathcal{F}) is a measurable space structure on V. It will be shown that $X : \Omega \longrightarrow V^T$ is $(\mathcal{A}, \sigma[(V, \mathcal{F})^T])$ -measurable if and only if $X_t : \Omega \longrightarrow V$ is $(\mathcal{A}, \mathcal{F})$ -measurable for each $t \in T$. Here, $\sigma[(V, \mathcal{F})^T]$ denotes the product σ -algebra on V^T , which is by definition the smallest σ -algebra on V^T such that, for each $t \in T$, the projection map (or evaluation map)

$$\pi_t: V^T \longrightarrow V: x \longmapsto x(t)$$

is $(\sigma[(V, \mathcal{F})^T], \mathcal{F})$ -measurable.

The result we aim to state precisely and prove is the following: The finite-dimensional distributions of a stochastic process $\{X_t: (\Omega, \mathcal{A}, \mu) \longrightarrow (V, \mathcal{F})\}_{t \in T}$ completely determines the distribution of its associated (V^T) -valued random variable $X: (\Omega, \mathcal{A}, \mu) \longrightarrow (V^T, \sigma[(V, \mathcal{F})^T])$.

Definition B.1 (Stochastic processes)

Suppose $(\Omega, \mathcal{A}, \mu)$ is a probability space, (V, \mathcal{F}) is a measurable space, and T is an arbitrary non-empty set. A **stochastic process indexed by** T **defined on** $(\Omega, \mathcal{A}, \mu)$ **with state space** (V, \mathcal{F}) is a family

$$\{X_t: (\Omega, \mathcal{A}, \mu) \longrightarrow (V, \mathcal{F})\}_{t \in T}$$

indexed by T of V-valued (A, \mathcal{F}) -measurable maps from Ω into V.

Definition B.2 (The product σ -algebra of a Cartesian product of measurable spaces)

Let T be an arbitrary non-empty set. For each $t \in T$, let (V_t, \mathcal{F}_t) be a measurable space (in particular, $V_t \neq \varnothing$). Let $\prod_{t \in T} V_t$ be the Cartesian product of $\{V_t\}_{t \in T}$. In other words,

$$\prod_{t \in T} V_t \ := \ \left\{ \ v : T \longrightarrow \bigsqcup_{t \in T} V_t \ \middle| \ v(t) \in V_t, \text{ for each } t \in T \ \right\}.$$

That $\prod_{t \in T} V_t \neq \emptyset$ follows from the Axiom of Choice. For each $t \in T$, let

$$\pi_t : \prod_{\tau \in T} V_{\tau} \longrightarrow V_t : v \longmapsto v(t)$$

be the projection map from $\prod_{\tau \in T} V_{\tau}$ onto V_t . The **product** σ -algebra on $\prod_{t \in T} V_t$ is the following:

$$\sigma\left(\left\{\begin{array}{c} \pi_t^{-1}(F) \subset \prod_{\tau \in T} V_\tau \mid F \in \mathcal{F}_t, t \in T \end{array}\right\}\right) \subset \operatorname{PowerSet}\left(\prod_{t \in T} V_t\right).$$

Clearly, it is the smallest σ -algebra on $\prod_{t \in T} V_t$ with respect to which each projection map $\pi_t : \prod_{t \in T} V_t \longrightarrow (V_t, \mathcal{F}_t)$ is measurable. We denote the product σ -algebra on $\prod_{t \in T} V_t$ by

$$\sigma\bigg(\prod_{t\in T}(V_t,\mathcal{F}_t)\bigg)$$

Study Notes July 1, 2015 Kenneth Chu

Proposition B.3

Suppose Ω , T, and V are non-empty sets. Let $\{X_t : \Omega \longrightarrow V\}_{t \in T}$ be a T-index family of maps, each of which maps from Ω into V. Then,

1. The family $\{X_t : \Omega \longrightarrow V\}_{t \in T}$ of maps is set-theoretically equivalent (in the sense that either completely determines the other) to the following (V^T) -valued map defined on Ω :

$$X: \Omega \longrightarrow V^T: \omega \longmapsto (t \longmapsto X_t(\omega)),$$

where $V^T = \prod_{t \in T} V$ denotes the set of all (arbitrary) V-valued functions defined on T.

2. Suppose $(\Omega, \mathcal{A}, \mu)$ is a probability space structure on Ω , (V, \mathcal{F}) is a measurable space structure on V, and $\sigma[(V, \mathcal{F})^T]$ denotes the corresponding product σ -algebra on V^T . Then, $X : \Omega \longrightarrow V^T$ is $(\mathcal{A}, \sigma[(V, \mathcal{F})^T])$ -measurable if and only if $X_t : \Omega \longrightarrow V$ is $(\mathcal{A}, \mathcal{F})$ -measurable for each $t \in T$.

PROOF The proof of the first statement is routine and we omit it. We now prove the second statement. Suppose $X:\Omega\longrightarrow V^T$ is $(\mathcal{A},\sigma[(V,\mathcal{F})^T])$ -measurable. Note that $X_t=\pi_t\circ X$, where $\pi_t:\prod_{t\in T}V\longrightarrow V$ is the projection from $V^T=\prod_{\tau\in T}V$ onto the t-th factor. By construction of the product σ -algebra $\sigma[(V,\mathcal{F})^T]$ on V^T , $\pi_t:V^T\longrightarrow V$ is $(\sigma[(V,\mathcal{F})^T],\mathcal{F})$ -measurable for each $t\in T$. This implies, for each $t\in T$, $X_t=\pi_t\circ X$ is $(\mathcal{A},\mathcal{F})$ -measurable, being a composition of two measurable maps. Conversely, suppose X_t is $(\mathcal{A},\mathcal{F})$ -measurable for each $t\in T$. Recall that the product σ -algebra on V^T is generated by sets of the form:

$$\pi_t^{-1}(F)$$
, for some $t \in T$ and $F \in \mathcal{F}$.

It follows that, for each $t \in T$ and each $F \in \mathcal{F}$, we have

$$X^{-1}(\pi_t^{-1}(F)) = (X^{-1} \circ \pi_t^{-1})(F) = (\pi_t \circ X)^{-1}(F) = X_t^{-1}(F) \subset \Omega$$

is \mathcal{A} -measurable, since $X_t:(\Omega,\mathcal{A})\longrightarrow (V,\mathcal{F})$ is $(\mathcal{A},\mathcal{F})$ -measurable by hypothesis. This proves that $X:\Omega\longrightarrow U$ is $(\mathcal{A},\sigma[(V,\mathcal{F})^T])$ -measurable.

Corollary B.4

Suppose Ω , T, V are non-empty sets, $(\Omega, \mathcal{A}, \mu)$ is a probability space structure on Ω , (V, \mathcal{F}) is a measurable space structure on V, and $\sigma[(V, \mathcal{F})^T]$ denotes the corresponding product σ -algebra on $V^T = \prod_{t \in T} V$. Let $\{X_t : \Omega \longrightarrow V\}_{t \in T}$ be a T-index family of maps, each of which maps from Ω into V, and let

$$X: \Omega \longrightarrow V^T: \omega \longmapsto (t \longmapsto X_t(\omega))$$

be its set-theoretically equivalent (V^T) -valued map defined on Ω . Then,

$$\{X_t: (\Omega, \mathcal{A}, \mu) \longrightarrow (V, \mathcal{F})\}_{t \in T}$$

is a stochastic process if and only if

$$X: (\Omega, \mathcal{A}, \mu) \longrightarrow (V^T, \sigma[(V, \mathcal{F})^T])$$

is a (V^T) -valued random variable.

Definition B.5 (Finite-dimensional distributions of a stochastic processes)

Let $\{X_t : (\Omega, \mathcal{A}, \mu) \longrightarrow (V, \mathcal{F})\}_{t \in T}$ be a stochastic process. Let $n \in \mathbb{N}$ and $t_1, t_2, \ldots, t_n \in T$ be distinct elements of T. The probability distribution induced on the product measurable space $(V^n, \mathcal{F}^{\otimes n})$ by $(X_{t_1}, X_{t_2}, \ldots, X_{t_n}) : \Omega \longrightarrow V^n$ is called a **finite-dimensional distribution** of the stochastic process.

C Existence of a stochastic process given its finite-dimensional distributions: Komolgorov's Existence Theorem

Definition C.1 (Stochastic processes)

Suppose $(\Omega, \mathcal{A}, \mu)$ is a probability space, (V, \mathcal{F}) is a measurable space, and T is an arbitrary non-empty set. A **stochastic process** indexed by T defined on Ω with codomain V is a family $\{X_t : \Omega \longrightarrow V\}_{t \in T}$ indexed by T of V-valued random variables defined on Ω .

Definition C.2 (Finite-dimensional distributions of a stochastic processes)

Let $\{X_t : \Omega \longrightarrow (V, \mathcal{F})\}_{t \in T}$ be a stochastic process. Let $n \in \mathbb{N}$ and $t_1, t_2, \ldots, t_n \in T$ be distinct elements of T. The probability distribution induced on the product measurable space $(V^n, \mathcal{F}^{\otimes n})$ by $(X_{t_1}, X_{t_2}, \ldots, X_{t_n}) : \Omega \longrightarrow V^n$ is called a **finite-dimensional distribution** of the stochastic process.

Definition C.3 (Komolgorov systems of finite-dimensional distributions & Komolgorov consistency)

Let T be an arbitrary non-empty set, and $\mathcal{D}(T)$ the set of all finite ordered sequences of elements of T whose elements are pairwise distinct; in other words,

$$\mathcal{D}(T) := \left\{ (t_1, t_2, \dots, t_n) \in \bigcup_{k=1}^{\infty} T^k \mid n \in \mathbb{N}, \ t_i \neq t_j, \text{ whenever } i \neq j \right\}.$$

For each $n \in \mathbb{N}$, let $\mathcal{M}_1(R^n, \mathcal{B}(\mathbb{R}^n))$ be the set of all probability measures defined on the product measurable space $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$. A **Komolgorov system of finite-dimensional distributions** is a $\mathcal{D}(T)$ -indexed family \mathcal{P} of probability measures of the following form:

$$\mathcal{P} = \left\{ P_{(t_1, \dots, t_n)} \in \mathcal{M}_1(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)) \mid (t_1, \dots, t_n) \in \mathcal{D}(T) \right\}.$$

Furthermore, \mathcal{P} is said to be **Komolgorov consistent** if it satisfies both of the following conditions:

• permutation invariance: For any $n \in \mathbb{N}$, any $(t_1, \ldots, t_n) \in \mathcal{D}(T)$, any $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R})$, and any permutation $\pi : \{1, \ldots, n\} \longrightarrow \{1, \ldots, n\}$, the following equality holds:

$$P_{(t_1,...,t_n)}(B_1 \times \cdots \times B_n) = P_{(t_{\pi(1)},...,t_{\pi(n)})}(B_{\pi(1)} \times \cdots \times B_{\pi(n)}).$$

• projection invariance: For any $n \in \mathbb{N}$, any $(t_1, \ldots, t_{n+1}) \in \mathcal{D}(T)$, and any $B_1, \ldots, B_n \in \mathcal{B}(\mathbb{R})$, the following equality holds:

$$P_{(t_1,\ldots,t_n,t_{n+1})}(B_1\times\cdots\times B_n\times\mathbb{R}) = P_{(t_1,\ldots,t_n)}(B_1\times\cdots\times B_n).$$

Remark C.4

It is obvious that the collection of finite-dimensional distributions of any \mathbb{R} -valued stochastic process is a Komolgorov consistent Komolgorov system of finite-dimensional distributions.

Definition C.5

Let $\{X_t : \Omega \longrightarrow \mathbb{R}\}_{t \in T}$ be an \mathbb{R} -valued stochastic process, and

$$\mathcal{P} = \left\{ P_{(t_1,\dots,t_n)} \in \mathcal{M}_1(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)) \mid (t_1,\dots,t_n) \in \mathcal{D}(T) \right\}$$

be a Komolgorov system of finite-dimensional distributions. We say that the stochastic process $\{X_t\}$ admits \mathcal{P} as its collection of finite-dimensional distributions if, for each $n \in \mathbb{N}$ and any $(t_1, t_2, \ldots, t_n) \in \mathcal{D}(T)$, the probability distribution induced on $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ by the map

$$(X_{t_1},\ldots,X_{t_n}):\Omega\longrightarrow\mathbb{R}^n$$

equals $P_{(t_1,\ldots,t_n)} \in \mathcal{P}$.

Study Notes July 1, 2015 Kenneth Chu

Theorem C.6 (Komolgorov's Existence Theorem, Theorem 36.2, [2])

Let

$$\mathcal{P} = \left\{ P_{(t_1,\dots,t_n)} \in \mathcal{M}_1(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)) \mid (t_1,\dots,t_n) \in \mathcal{D}(T) \right\}.$$

be a Komolgorov system of finite-dimensional distributions. Then, there exists a stochastic process

$$\{X_t: (\Omega, \mathcal{A}, \mu) \longrightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))\}_{t \in T}$$

which admits \mathcal{P} as its collection of finite-dimensional distributions if and only if \mathcal{P} is Komolgorov consistent.

D Gaussian Processes

Definition D.1 (Gaussian processes)

An \mathbb{R} -valued stochastic process $\{X_t : \Omega \longrightarrow \mathbb{R}\}_{t \in T}$ is said to be **Gaussian** if each of its finite-dimensional distribution is a (univariate or multivariate) Gaussian distribution.

Definition D.2 (Mean and covariance functions of R-valued stochastic processes)

Let $\{X_t : \Omega \longrightarrow \mathbb{R}\}_{t \in T}$ be an \mathbb{R} -valued stochastic process.

• If, for each $t \in T$, we have $E(X_t) \in \mathbb{R}$, then the function

$$a_X: T \longrightarrow \mathbb{R}: t \longmapsto E(X_t)$$

is called the **mean** function of the \mathbb{R} -valued stochastic process $\{X_t\}$.

• In addition, if, for each $t_1, t_2 \in T$, we have $0 \leq \text{Cov}(X_{t_1}, X_{t_2}) < \infty$, then the function

$$\Sigma_X : T \times T \longrightarrow \mathbb{R} : (t_1, t_2) \longmapsto \operatorname{Cov}(X_{t_1}, X_{t_2})$$

is called the **covariance** function of the \mathbb{R} -valued stochastic process $\{X_t\}$.

Theorem D.3

Let T be an arbitrary non-empty set, $a: T \longrightarrow \mathbb{R}$ an arbitrary \mathbb{R} -valued function defined on T, and $\Sigma: T \times T \longrightarrow [0, \infty)$ a non-negative \mathbb{R} -valued function defined on $T \times T$. Then, there exists a Gaussian process whose mean and covariance functions are a and Σ , respectively.

Theorem D.4

The mean and covariance functions of a Gaussian process together completely determine its collection of finite-dimensional distributions.

Definition D.5 (Brownian motion, a.k.a. Wiener process)

A Brownian motion, or Wiener process, is a stochastic process $\{W_t : (\Omega, \mathcal{A}, \mu) \longrightarrow \mathbb{R}\}_{t \geq 0}$ indexed by the non-negative real line satisfying the following conditions:

• At t = 0, the process takes value 0 with probability 1; more precisely:

$$P(W_0 = 0) = \mu(\{ \omega \in \Omega \mid W_0(\omega) = 0 \}) = 1.$$

• The process $\{W_t\}$ has independent increments; more precisely: for any $0 \le t_1 \le t_2 \le \cdots \le t_n < \infty$,

$$W_{t_n} - W_{t_{n-1}}, \quad W_{t_{n-1}} - W_{t_{n-2}}, \quad \dots , \quad W_{t_2} - W_{t_1} : \Omega \longrightarrow \mathbb{R}$$

are independent random variables.

• For $0 \le t_1 < t_2 < \infty$, the increment $W_{t_2} - W_{t_1}$ follows a Gaussian distribution with mean 0 and variance $t_2 - t_1$.

Some Asymptotic Theory for the Bootstrap

Study Notes July 1, 2015 Kenneth Chu

Definition D.6 (Brownian bridge)

- A Brownian bridge is a Gaussian process $\{W_t^{\circ}: (\Omega, \mathcal{A}, \mu) \longrightarrow \mathbb{R}\}_{t \in [0,1]}$ indexed by the closed unit interval in \mathbb{R} satisfying the following conditions:
 - For each $t \in [0,1]$, we have $E(W_t^{\circ}) = 0$.
 - For any $t_1, t_2 \in [0, 1]$, we have $Cov(W_{t_1}^0, W_{t_2}^\circ) = \min\{t_1, t_2\} t_1t_2$.

References

- [1] BICKEL, P. J., AND FREEDMAN, D. A. Some asymptotic theory for the bootsrap. *The Annals of Statistics* 9, 6 (1981), 1196–1217.
- [2] BILLINGSLEY, P. Probability and Measure, third ed. John Wiley & Sons, 1995.
- [3] EFRON, B. Bootsrap methods: another look at the jackknife. The Annals of Statistics 7, 1 (1979), 1–26.