Semiclassical Monte Carlo

Johan Félisaz

March 4, 2021

Contents

1	Files	1
2	TODO How it works	2
3	Data format	2
4	Steps for MC simulations	2
5	Reproducing figure 4 from the SCMC paper 5.1 Target figures	2 2 2 2 2 4 6 8
1	Files	
	• HamiltonianMod.jl: module to open the hamiltonian file format	
	• scmc.jl: the implementation itself	
	• tests.jl: unit tests	
	• solve-rk8.jl: used to plot the (non)conservation of energy and with time	Μ

2 TODO How it works

- 1. ⊠ Generate a random state vector
- 2.

 Monte Carlo steps for convergence
- 3. ⊠ Compute known values, like energy or magnetization
- 4. ⊠ Determine the step for decorrelation
- 5. ⊠ Write RK8 (Dormand-Prince)
- 6. ⊠ Compute (dynamical) structural factor
- 7. ⊠ Put everything together

3 Data format

• state vector: (3, Ns, Nx, Ny)

4 Steps for MC simulations

- 1. Figure out the thermalization step using energy and magnetization
- 2. Figure out the stride looking at correlation
- 3. Run it?

See the file checkparams.jl for these two steps.

5 Reproducing figure 4 from the SCMC paper

- 5.1 Target figures
- 5.2 TODO Fix the wrong $S\vec{q}(t)$ problem
- 5.2.1 TODO Simple try with a single sample
- 5.2.2 Possible explanations
 - Code is wrong (still possible)
 - Some scaling issue:
 - For the temperature => wrong phase

Figure 1: Figure 4 from the paper

Figure 2: Only the first sample

Figure 3: 74 samples

- For the momentum space => perhaps with other kpoints it's fine
- Convergence issue? Unlikely

5.2.3 WAIT Check energy and magnetization conservation

They are not conserved! This was not occuring before, with the two spins system. Possibilities:

- bug in the code for for multiple unit cells
- the system was not special before (no thermalization), so even if the energy and magnetization moved a bit, it was likely to stay close

Figure 4: 403 samples

5.2.4 TODO Plotting the energy / magnetization non conservation as a function of the time step

```
T = 0.17
L = 20
nt = round(Int, t / dt)
thermal = 20
dts = [0.1, 0.05, 0.01, 0.005, 0.001, 0.0001]
```


It is finally working ! I was making shallow copies of the couplings in the hamiltonian \dots

5.2.5 TODO Improve sampling with the time evolution