

Anti-Sleep Alarm for Drivers

An IoT-based system to detect driver drowsiness and provide timely alerts to prevent accidents.

Contents:

- Aim
- Introduction
- Requirements
- Methodology
- Result
- Conclusion
- Future Scope

Anti-Sleep Alarm for drivers

<u>Aim</u>: The goal of this project is to create an IOT-based alarm system that helps drivers stay awake and alert by detecting drowsiness and providing timely warnings.

Introduction: Drowsy driving is a major cause of accidents. Traditional methods to keep drivers awake aren't always effective. This project uses modern IOT technology to monitor the driver's alertness and provide alerts to prevent accidents.

Requirements:

Hardware Components:

Relay

Controls buzzer and alert system.

Piezo Buzzer

Emits loud sound to wake driver.

Arduino Nano

Brain of the system, processes data.

More Hardware

9V Battery

Powers the entire system.

Gear Motor

Vibrates steering wheel to alert driver.

Eye Blink Sensor

Monitors eye movements for drowsiness.

More Hardware

Wheel

Rotating part of the vehicle.

SPST Switch

Turns the system on and off manually.

Connecting Wires

Connect all components.

Software

Arduino IDE

Programming environment for the system.

2) Op

OpenCV

Library for image processing.

Data Processing

Analyze sensor data for drowsiness.

//Program code for Anti sleep alarm Detector for drivers

```
const int blinkPin = 2;
const int motorPin = 8;
const int buzzerPin = 9;
long time;
void setup() {
 pinMode(motorPin, OUTPUT);
 pinMode(buzzerPin, OUTPUT);
 pinMode(blinkPin, INPUT);
 digitalWrite(motorPin, HIGH);
void loop() {
if(!digitalRead(blinkPin)){
 time=millis();
  while(!digitalRead(blinkPin)){
  digitalWrite(buzzerPin, LOW);
  digitalWrite(motorPin, LOW);
  delay(1000);
else {
 if(TimeDelay()>=3)digitalWrite(buzzerPin, HIGH);
 if(TimeDelay()>=4)digitalWrite(motorPin, HIGH);
int TimeDelay(){
long t=millis()-time;
t=t/1000; return t;
```


Methodology

Sensor Setup

Connect eye blink sensor to microcontroller.

Alert System

Trigger buzzer when drowsiness detected.

Data Collection

Collect real-time data on eye closure.

Circuit Diagram:

Implementation

1 Hardware Assembly

Connect all components to microcontroller.

Software Development

Write code to detect drowsiness.

Real-World Testing

Install and test in vehicle conditions.

Results

Drowsiness Detection

Accurately detect when driver is drowsy.

Alert System

Trigger buzzer and stop vehicle wheels.

Conclusion

Accident Prevention

Reduce risk of accidents due to drowsy driving.

IoT-based Solution

Leverages sensors and microcontroller for realtime monitoring.

Future Scope

1

Use advanced ML for better drowsiness detection.

7

Vehicle Integration

Improved Algorithms

Connect to vehicle controls to slow down car.

Market Deployment

Work with automakers to make it a standard safety feature.

3

Thank You!

Submitted by:

Nikhil Ramteke Roshan Kumar Paikra

Deepak Kumar Lakra Mandeya Ram Kashyap

Guided by:

Prof. Himanshu Mokashe