

Abstract Mathematics 101 Bootcamp Lecture 7 (PART A) Introduction to Metric Spaces

Bambordé Baldé

Quantum Formalism (QF) Free Bootcamp Brought to you by Zaiku Group.

<u>QF's CORE MISSION:</u> Make Abstract Mathematics Accessible.

Bootcamp Overview

Metric Spaces

Definition 1.0

Let M be a nonempty set. A metric on M is a map $d: M \times M \longrightarrow \mathbb{R}$ satisfying the following conditions:

- $alg d(x,y) = 0 \text{ iff } x = y \text{ for all } x,y \in M.$
- $d(x,y) = d(y,x) \text{ for all } x,y \in M.$
- - The pair (M, d) is called a 'metric space'. Whenever the metric d is understood from the context, we'll just write M.

Concrete Example(i)

 \bullet For any nonempty set M, we can define the following metric:

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

It's not hard to verify that d is a metric (discrete) on M.

• Homework question: Let (M, d) be any metric space and let $\alpha \in \mathbb{R}^+$ (the set of all positive real numbers). Is $d_{\alpha}(x, y) = \alpha d(x, y)$ a metric on M?

Concrete Example(ii)

• Let us consider $M = \mathbb{R}^n$. Then for any $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $y = (y_1, \dots, y_n) \in \mathbb{R}^n$, we can define the famous Euclidean metric (or distance) as follows:

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

In Machine Learning literature and other applied subjects, the Euclidean metric is often called L2-distance.

Concrete Example(iii)

• Let us consider $M = \mathbb{R}^n$ again. Then for any $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $y = (y_1, \dots, y_n) \in \mathbb{R}^n$, we can define the famous Manhattan distance as follows:

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|.$$

In Machine Learning literature and other applied subjects, the Manhattan distance is also known as the L1-distance.

Homework Exercises(i)

- Let $(M_1, d_1), (M_2, d_2), \ldots, (M_k, d_k)$ be metric spaces. Construct a metric on $M_1 \times M_2 \times \cdots \times M_k$.
- ② Let \mathcal{H} be a finite dimensional complex Hilbert space (think \mathbb{C}^n). Construct a metric on \mathcal{H} using the norm induced by the inner product.

Metric Subspace

Definition 1.1

Let (M, d) be a metric space and $A \subseteq M$ be nonempty. We can construct $d_A : A \times A \longrightarrow \mathbb{R}$ as follows:

• $d_A(a_1, a_2) = d(a_1, a_2)$ for all $a_1, a_2 \in A$.

As you can guess, the pair (A, d_A) is called metric subspace.

Open Balls in Metric Spaces

Definition 1.2

Let (M,d) be a metric space. For each point $p \in M$ and $r \in \mathbb{R}^+$, we can define $B_r(p) = \{x \in M \mid d(p, x) < r\}.$

• $B_r(p)$ is called the open ball centred around the point p with radius r.

Proposition 1.0

Let $B_r(p)$ be an open ball in a metric space (M,d). Then for any $p' \in B_r(p)$ there exists a r' > 0 such that $B_{r'}(p') \subseteq B_r(p)$.

Concrete Example

• If $M = \mathbb{R}^2$ and d is the Euclidean metric, then $B_r(p)$ is just the open disc of radius r centred around p, i.e. the set of all points inside the circle of radius r centred at point p:

Homework Exercises (ii)

- Let (M, d) be a metric space where d is the discrete metric. Given a point $p \in M$ and r >, what is $B_r(p)$?
- ② Let $M = \mathbb{R}^2$ and d be the Euclidean distance. If $p = (0,0) \in \mathbb{R}^2$ and r = 1, what is $B_r(p)$?
- **3** Let $M = \mathbb{R}^2$ and d now be the Manhattan distance. If $p = (0,0) \in \mathbb{R}^2$ and r = 1, what is $B_r(p)$?
- Let $M = \mathbb{R}^2$ and d be the Manhattan distance again. If $p = (1,0) \in \mathbb{R}^2$ and r = 1, what is $B_r(p)$? What if p = (0,1)?

Open Sets in Metric Spaces

Definition 1.3

Let (M,d) be a metric space. A subset $U \subseteq M$ is open in respect to the metric d if for all $p \in U$ there exists an $r \in \mathbb{R}^+$ such that $B_r(p) \subset U$.

• As you have noticed, whether or not a subset U is open really depends on the metric space that we are considering, i.e., being 'open' depends on the metric space structure being considered!

Concrete Example

• Let $M = \mathbb{R}$ and d the Euclidean metric. Then the open intervals (in the **Real Analysis** sense) (a, b), $(-\infty, a)$, (b, ∞) are also open in M.

Natural homework question: Is \mathbb{R} itself open in respect to the above?

Homework Exercises (iii)

- Let M = [a, b] and d the Euclidean metric. Is it true that the intervals [a, b] and [a, b) are open?
- ② Let $M = \mathbb{R}^2$ and d the Euclidean metric. Is \mathbb{R} viewed as subset of \mathbb{R}^2 open?
- **3** Let $M = \mathbb{R}^2$ and d the Manhattan metric. Is \mathbb{R} viewed as subset of \mathbb{R}^2 open?

Properties of Open Sets in Metric Spaces

Proposition 1.1

Given any metric space (M, d), the following properties hold:

- \bullet \emptyset and M are open.
- ② If U_1, U_2, \ldots, U_k are open subsets of M, then their intersection $U_1 \cap U_2 \cap \cdots \cap U_k$ is open.
- **③** If $\{U_i\}_{i\in I}$ is an arbitrary collection of open subsets of M, then the union over the collection $\bigcup_{i\in I} U_i$ is open.

Proof: Homework!

• Anything familiar with the properties above?

Congratulations for making it this far!

