

Министерство образования Российской Федерации МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

Факультет: Информатика и системы управления Кафедра: Информационная безопасность (ИУ8)

Теория принятия решений в условиях информационных конфликтов

Лабораторная работа №3

"Решение ЗЛП методом ветвей и границ"

Вариант 13

Преподаватель: Коннова Н. С.

Студент: Андреев Г.А.

Группа: ИУ8-71

Цель работы — Изучить постановку задачи целочисленного линейного программирования; получить решение задачи ЦЛП методом ветвей и границ.

Постановка задачи

Требуется найти решение следующей задачи линейного программирования (ЛП):

Методом ветвей и границ найти среди всех п-мерных векторов $x = (x_1, x_2, ..., x_n)$ $\dot{\boldsymbol{c}}$, удовлетворяющих системе:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m \end{cases},$$

Такой, для которого достигается минимум ЦФ: $min F = c_1 x_1 + c_2 x_2 + ... + a_{1n} x_n \le b_1$

Условие

решения

Решение

Метод ветвей и границ:

++		x_1	x_2	+ x_3
x_5	5 7	1 0	4 0.5	3

Ищем оптимальное решение:

Индекс разрешающего элемента: (2, 3)

	+ S0 +	x_1	x_2	++ x_6 +
x_4 x_5 x_3 F	0.666667 5 2.33333 16.3333	1 1 0 -3	1 00000	-0.333333 0

Индекс разрешающего элемента: (0, 1)

_			_	 L		
		S0	x_4	x_2	x_6	-
	x_1 x_5 x_3 F	0.666667 4.33333 2.33333 18.3333	- 1 0	0.833333 3.16667 0.166667 0.666667	-0.3333333 0.3333333 0.3333333 1.333333	

$$x1 = 0.66666666666665$$

x2 = 0

$$x3 = 2.333333333333333333$$

Ветвимся	влево	по пере	еменной >	<_0 <= 0
	S0	x_1	x_2	x_3
x_4 x_5 x_6 x_7 F	3 5 7 0 0	1 1 0 1 -3	1 4 0.5 0 -3	1 0 3 0 -7

Ищем оптимальное решение:

Индекс разрешающего элемента: (2, 3)

	+ S0 +	x_1	x_2	 x_6
x_4 x_5 x_3 x_7 F	0.666667 5 2.33333 0 16.3333	1 1 0 1 -3	0.833333 4 0.166667 0 -1.83333	-0.333333 0

Индекс разрешающего элемента: (3, 1)

	-	+	L	+
	S0	x_7	x_2	x_6
x_4 x_5 x_3 x_1 F	0.666667 5 2.33333 0 16.3333	-1 -1 0 1	0.833333 4 0.166667 0 -1.83333	-0.3333333 0
	ı	ı	I	1

Индекс разрешающего элемента: (0, 2) +----+ S0 | x 7 | -1.2 0.8 | -0.4 1.8 | 3.8 | -4.8 | x 5 | 1.6 2.2 | 0.2 | -0.2 | 0.4 x 3 | 1 0 0 F | 17.8 | 0.8 | 2.2 |

x1 = 0.0

x2 = 0.799999999999999

x3 = 2.2

F = 17.799999999999997

Ветвимся влево по переменной $x_1 <= 0$

+	S0	x_1	+ x_2	+ x_3
x_4 x_5 x_6 x_7 x_8 F	3 5 7 0 0	1 1 0 1 0 -3	1 4 0.5 0 1 -3	1 0 3 0 0 -7

Ищем оптимальное решение:

Индекс разрешающего элемента: (2, 3)

	S0	x_1	x_2	x_6
x_4 x_5 x_3 x_7 x_8	0.666667 5 2.33333 0 0 16.3333	1 1 0 1 0	0.833333 4 0.166667 0 1 -1.83333	-0.333333 0

Индекс разрешающего элемента: (3,	1	,	1)
-----------------------------------	---	---	---	---

	S0	x_7	x_2	x_6
x_4 x_5 x_3 x_1 x_8 F	0.666667 5 2.33333 0 0 16.3333	-1 -1 0 1 0	0.833333 4 0.166667 0 1 -1.83333	-0.3333333 0

Индекс разрешающего элемента: (4, 2)

+			-	
į į	S0	x_7	x_8	x_6
x_4 x_5 x_3 x_1 x_2	0.666667 5 2.333333 0 0 16.3333	-1 -1 0 1 0	-0.833333 -4 -0.166667 0 1	-0.3333333 0 0.3333333 0 0 2.333333

x1 = 0.0

x2 = 0.0

x3 = 2.333333333333333333

Ветвимся влево по переменной $x_2 <= 2$

++- 	50	x_1	x_2	x_3
x_4 x_5 x_6 x_7 x_8 x 9	3 5 7 0 0 2	1 1 0 1 0 0	1 4 0.5 0 1	1 0 3 0 0
	0	-3	-3	-7

Ищем оптимальное решение:

Индекс	разрешающего	элемента:	(5,	3))
--------	--------------	-----------	-----	----	---

+	S0	x_1	x_2	 x_9
x_4 x_5 x_6 x_7 x_8 x_3 F	1 5 1 0 0 2 14	1 1 0 1 0 0	1 4 0.5 0 1 0	-1 0 -3 0 0 1 7

Индекс разрешающего элемента: (3, 1)

	S0	x_7	x_2	x_9
x_4 x_5 x_6 x_1 x_8 x_3 F	1 5 1 0 0 2 14	-1 -1 0 1 0 0 3	1 4 0.5 0 1 0	-1 0 -3 0 0 1 7

0 |

3 |

3

1

7

$$\times 1 = 0.0$$

$$x2 = 0.0$$

$$x3 = 2.0$$

$$F = 14.0$$

Найдено целочисленное решение:

14 |

Ветвимся вправо по переменной $x_2 => 3$

++-	+ _	+ _		
	S0	x_1	x_2	x_3
x_4	3	1	1	1
x_5	5	1	4	0
x_6	7	0	0.5	3
x_7	0	1	0	0
x_8	0	0	1	0 j
x_9	-3	0	0	-1
F	0	-3	-3 j	-7 j
	ı			

Индекс разрешающего элемента: (3, 2) В ветви $x_1 >= 1$ нет решения Ветвимся вправо по переменной $x_0 => 1$

	S0	x_1	x_2	x_3
x_4 x_5 x_6 x_7	7 -1	1 0 -1	•	3 0

Индекс разрешающего элемента: (3, 1)

+	 S0	x_7	x_2	x_3 x_3
: — _	4 7 1	1 0 -1	1 4 0.5 0 -3	0

Ищем оптимальное решение:

Индекс	разрешающего	элемента:	(0,	3)
	p 5: 5 p 5 = 5:: 5 = 5	• • • • • • • • • • • • • • • • • • • •	\ - /	-,

	S0	x_7	x_2	x_4
x_3 x_5 x_6 x_1 F	2 4 1 1	1 -3 -1	4 -2.5 0	0

$$x1 = 1.0$$

$$x2 = 0$$

$$x3 = 2.0$$

$$F = 17.0$$

Найдено целочисленное решение:

Все целочисленные решения

$$F(0.0, 0.0, 2.0) = 14.0$$

$$F(1.0, 0, 2.0) = 17.0$$

Рисунок с деревом см на картинке.

Полный перебор:

```
F(0, 0, 0) = 0
F(0, 0, 1) = 7
F(0, 0, 2) = 14
F(0, 1, 0) = 3
F(0, 1, 1) = 10
F(0, 1, 2) = 17
F(1, 0, 0) = 3
F(1, 0, 1) = 10
F(1, 0, 2) = 17
F(1, 1, 0) = 6
F(1, 1, 1) = 13
F(2, 0, 0) = 6
F(2, 0, 1) = 13
F(3, 0, 0) = 9
Оптимальное решение полным перебором:
F = 17, x = (1, 0, 2)
```

Сравнение результатов от округления с найденным решением

Результат решения ЗЛП симплекс методом:

$$X1 = 0.667$$

 $X2 = 0$
 $X3 = 2.333$
 $F = -18.333$

Результат решения ЗЛП методом ветвей и границ:

$$X = (1, 0, 2)$$

F = 17.0

Листинг

main.py (https://github.com/andreev-g/iu8-decision-theory/blob/master/lab 3/main.py)

```
import math
import numpy as np
import pandas as pd
from src.brute import BruteForce
from src.utility import print separator
from src.simplex.simplex import SimplexMethod
class MinTowarding:
class MaxTowarding:
class TreeNode:
  def init (self, f, value: SimplexMethod):
    self.left = None
    self.right = None
    self.f = f
    self.value = value
class BranchesAndBoundsMethod:
  def init (self, f, value):
    self.integer solutions = []
    self.root = TreeNode(f, value)
  @staticmethod
  def find float idx(arr):
    if arr[0] == 'Нет решения':
      return False, 0, 0
    for idx, el in enumerate(arr[1:]):
       if not int(el) == float(el):
         return True, idx, math.floor(el)
    return False, 0, 0
  def branching(self, node):
    find, idx, el = self.find float idx(node.value.answer[:4])
    if find:
       # Ветвление влево если найдено дробное решение
       new row = np.zeros(node.value.c.size)
       new row[idx] = 1
       a = np.vstack((node.value.A, new row))
       b = np.append(node.value.b, el)
```

```
simplex = SimplexMethod(a, b, node.value.c, mode=MaxTowarding())
      try:
        print(f'Ветвимся влево по переменной x_{idx} <= {el}')
        simplex.get result()
      except AssertionError:
        node.left = TreeNode('Heт\n решения', simplex)
        print(f'B ветви x \{idx\} <= \{el\} нет решения')
      node.left = TreeNode(simplex.answer[0], simplex)
      self.branching(node.left)
      # Ветвление вправо если найдено дробное решение
      new row right = np.zeros(node.value.c.size)
      new row right[idx] = -1
      a right = np.vstack((node.value.A, new row right))
      b_right = np.append(node.value.b, -(el + 1))
      simplex = SimplexMethod(a_right, b_right, node.value.c, mode=MaxTowarding())
      try:
        print(f'Ветвимся вправо по переменной x {idx} => {el+1}')
        simplex.get result()
        node.right = TreeNode('Нет решения', simplex)
        print(f'B ветви x_{idx}) >= {el+1} нет решения')
      node.right = TreeNode(simplex.answer[0], simplex)
      self.branching(node.right)
   if not find:
      if node.value.answer[0] == 'Нет\n решения':
      print('Найдено целочисленное решение:')
      self.integer solutions.append(node)
 def start(self):
   self.branching(self.root)
   print separator()
    print('Все целочисленные решения')
    for solution in self.integer_solutions:
      print(f"F({solution.value.answer[1]}, {solution.value.answer[2]},
[solution.value.answer[3]}) = {solution.value.answer[0]}")
   self.print()
 def print(self):
   lines, * = self. make string representation(self.root)
   for line in lines:
      print(line)
 def _make_string_representation(self, node):
    if node.right is None and node.left is None:
      line = 1\%s % node.f
```

```
width = len(line)
     height = 1
     middle = width // 2
     return [line], width, height, middle
  # есть только левое поддерево
  if node.right is None:
     lines, n, p, x = self. make string representation(node.left)
     s = '\%s' \% node.f
     u = len(s)
     first line = (x + 1) * ' ' + (n - x - 1) * ' ' + s
     second line = x * ' ' + ' / ' + (n - x - 1 + u) * ' '
     shifted_lines = [line + u * ' | for line in lines]
     return [first line, second line] + shifted lines, n + u, p + 2, n + u // 2
  # есть только правое поддерево
  if node.left is None:
     lines, n, p, x = self. make string representation(node.right)
     s = '\%s' \% node.f
     u = len(s)
     first_line = s + x * '_{-}' + (n - x) * ' '
     second line = (u + x) * ' ' + ' ' ' + (n - x - 1) * ' '
     shifted lines = [u * ' ' + line for line in lines]
     return [first line, second line] + shifted lines, n + u, p + 2, u // 2
  left, n, p, x = self._make_string_representation(node.left)
  right, m, q, y = self._make_string_representation(node.right)
  s = '\%s' \% node.f
  u = len(s)
  first_line = (x + 1) * ' ' + (n - x - 1) * ' ' + s + y * ' ' + (m - y) * ' '
  second_line = x * ' ' + ' / ' + (n - x - 1 + u + y) * ' ' + ' / ' + (m - y - 1) * ' '
  if p < q:
     left += [n * ' '] * (q - p)
  elif q < p:
     right += [m * ' '] * (p - q)
  zipped lines = zip(left, right)
  lines = [first_line, second_line] + [a + u * ' ' + b for a, b in zipped_lines]
  return lines, n + m + u, max(p, q) + 2, n + u // 2
print('Метод ветвей и границ:')
print_separator()
c = [3, 3, 7]
A = [[1, 1, 1],
   [1, 4, 0],
   [0, 0.5, 3]
b = [3, 5, 7]
simplex = SimplexMethod(A, b, c, MaxTowarding())
solution = simplex.get result()
```

```
tree = BranchesAndBoundsMethod(solution[0], simplex)
tree.start()

print_separator()
print('Полный перебор:')
print_separator()
bf = BruteForce(A, b, c, solution[0])
brute_solution, value = bf.brute_optimal()
print("Оптимальное решение полным перебором:")
print(f'F = {brute_solution}, x = {value}')
```