	This homework theoretically defines the production function and identifies conditions of the production that hold true for all inputs of information (I), labor (L), and capital (K). Furthermore, I use the Olley-Pakes algorithm to empirically find the coefficient of firm productivity (A) for a sample of semi-conductor firms. %/javascript (function(on) { const e=\$(" <a>Setup failed "); const ns="js_jupyter_suppress_warnings"; var cssrules=\$("#"+ns); if(!cssrules.length) cssrules = \$(" <style id='"+ns+"' type="text/css">div.output_stderr { } } </style> ").appendTo("head"); e.click(function() {
	<pre>var s='Showing'; cssrules.empty() if(on) { s='Hiding'; cssrules.append("div.output_stderr, div[data-mime-type*='.stderr'] { display:none; }"); } e.text(s+' warnings (click to toggle)'); on=!on; }).click(); \$(element).append(e); })(true); Hiding warnings (click to toggle)</pre>
In [1]:	<pre>import math import numpy as np import statsmodels.api as sm from statsmodels import * from patsy import dmatrices import matplotlib.pyplot as plt import seaborn as sns from scipy.optimize import fsolve from numpy import * %matplotlib inline</pre>
In [46]:	<pre>1 Production function: identification [a] Assume that A is defined equal to a constant. Discuss this assumption; what does it imply about the distribution of productivity across firms when (i) 0 < lambda < 1 and (ii) lambda = 1? time = np.arange(0, 100000, 1) production = np.arange(0, 100000, 1) def markov_process(vals): a = 5</pre>
In [47]: Out[47]:	<pre>u = a for i in vals: u = u + np.random.normal(0,0.7) vals[i] = u markov_process(production)</pre>
	Lambda Equal to One 200 -
In [48]:	<pre>time = np.arange(0, 200, 1) production = np.arange(0, 200, 1) def markov_process(vals): a = 5 u = a for i in vals: u = 0.5*u + np.random.normal(0,2) vals[i] = u</pre>
In [49]: Out[49]:	markov_process(production)
	4 - 2 4 2 4 - 0 - 25 - 50 - 75 - 100 - 125 - 150 - 175 - 200 Time
	Analysis: When lambda is equal to 1, the productivity for any given firm, i, is a random-walk during the time period T. Under this condition, the productivity for a firm is an time series integrable of order 1 (chapter one http://www.math.leidenuniv.nl/~avdvaart/timeseries/dictaat.pdf). The firms will have a massive deviation in their productivities according to this condition, as some firms will have productivity measures that tend towards infinitity. On the other hand, when lambda is less than 1 the productivity for a firm i will be an integrable time series of order 0. These time series follow a finite distribution, and the deviation across firms will also be finite. These time series are said to be mean-reverting. For our purposes, when lambda is less than one, the productivity is contained in a finite interval, which will reduce variation of firm productivity. Intuitively, when lambda equals one, if U_i_t-1 was large, then U_i_t is will also be large, and each subsequent U_i_t will be large. On the other hand, large values of U_i_t-1 will eventually have no effect on the time-varying productivity for a period further in the series
	We have, $\mathbb{E}[\rho(Z_{t-1}^t,\theta) I_t]=\mathbb{E}[\eta(Z_t,\gamma)-\zeta-\lambda\eta(Z_{t-1},\gamma) I_t]$ Given: θ_0 We have, $\eta(Z^t,\gamma)-\zeta-\lambda\eta(Z_{t-1},\gamma)=\ln(Y_t)-\alpha\ln(K_t)-\beta\ln(L_t)-(1-\lambda)\kappa\\ -\lambda(\ln(Y_{t-1})-\alpha\ln(K_{t-1})-\beta\ln(L_{t-1}))$
	Given: $\ln(Y_t) = \kappa + U_{i,t} + \alpha \ln(K_t) + \beta \ln(L_t)$ Then: $\ln(Y_t) - \alpha \ln(K_t) - \beta \ln(L_t) - (1 - \lambda)\kappa - \lambda (\ln(Y_{t-1}) - \alpha \ln(K_{t-1}) - \beta \ln(L_{t-1})) = \kappa + U_{i,t} - (1 - \lambda)\kappa$ $-\lambda(\kappa + U_{i,t-1}) = \lambda(U_{i,t-1}) + \epsilon_t - \lambda(U_{i,t-1}) = \epsilon_t$ So $\mathbb{E}[\rho(Z_{t-1}^t, \theta) I_t] = \mathbb{E}[\epsilon_t I_t] = 0$
	For T = 1, t = 0, 1 $I_1=(\ln(K_0^1),\ln(L_0^0),\ln(Y_0^0),\ln(U_0^0))'$ Let, $V=(1,\ln(K_0),\ln(K_1),\ln(L_0),\ln(Y_0))'$ We have, by the Law of Iterated Expectations: $\mathbb{E}[\rho(Z_0^1,\theta_0)*V]=\mathbb{E}[\mathbb{E}[\rho(Z_0^1,\theta_0)*V I_1]]=\mathbb{E}[\mathbb{E}[\rho(Z_0^1,\theta_0) I_1]V]=\mathbb{E}[\mathbb{E}[\epsilon_t I_1]V]=\mathbb{E}[0*V]=\mathbb{E}[0]=0$
	Let, $\theta=\theta_0$ $\rho(Z_{t-2}^t,\theta)=\eta(Z_t,\gamma)-\lambda\eta(Z_{t-1},\gamma)-[\eta(Z_{t-1},\gamma)-\lambda\eta(Z_{t-2},\gamma)]$ Given: $\ln(Y_t)=A_i+U_{i,t}+\alpha\ln(K_t)+\beta\ln(L_t)$ We have: $A_i+U_{i,t}-\lambda(A_i+U_{i,t-1})-[A_i+U_{i,t-1}-\lambda(A_i+U_{t-2})]=A_i+\lambda(U_{i,t-1})+\epsilon_t-\lambda(A_i)-\lambda(U_{i,t-1})-A_i$ $-\lambda(U_{i,t-2})+\epsilon_{t-1}+\lambda(A_i+\lambda(U_{i,t-2}))=\epsilon_t-\epsilon_{t-1}$
	Then, $\mathbb{E}[\rho(Z_{t-2}^t,\theta) I_{t-1}]=\mathbb{E}[\epsilon_t-\epsilon_{t-1} I_{t-1}]=0$ Assumptions: Here, we allow for the time-invariant component of productibity to vary for each firm. This assumption should allow for a better prediction of theta, as the permanent components of productivity should vary across firms if some firms are more efficient year after year in their production methods than others. It is more plausible, in my opinion, that firms vary in their abilities to produce in more ways than simply their capital and labor inputs, and some of these differences should be consistent over time.
	For T = 2, t = 0, 1, 2 $I_1 = (\ln(K_0^1), \ln(L_0^0), \ln(Y_0^0), \ln(U_0^0))'$ Let, $V = (1, \ln(K_0), \ln(K_1), \ln(L_0), \ln(Y_0))'$ We have, by the Law of Iterated Expectations: $\mathbb{E}[\rho(Z_0^2, \theta_0) * V] = \mathbb{E}[\mathbb{E}[\rho(Z_0^2, \theta_0) * V I_1]] = \mathbb{E}[\mathbb{E}[\rho(Z_0^2, \theta_0) I_1]V] = \mathbb{E}[\mathbb{E}[\epsilon_2 - \epsilon_1 I_1]V] = \mathbb{E}[0 * V] = \mathbb{E}[0] = 0$
	2 Production function: estimation The file semiconductor_firms.out contains several thousand firm-by-year observations for a sample of publicly traded semiconductor firms (NAICS 4-digit code 3344) drawn from the S&P Capital IQ - Compustat database. The following firm attributes, measured from 1998 to 2014 inclusive, are included: gvkey - Compustat firm identification code comm - firm name year - calendar year Y - total real sales by the firm -in millions of 2009 USD- K - capital stock (in millions of 2009 USD) L - employees (in thousands)
In [5]:	M – materials expenditures (in millions of 2009 US dollars) VA - total real valued added by the firm (in millions of 2009 USD w - annual wage rate (in 2009 USD) i – real investment (in millions of 2009 USD) naics_4digits – NAICS four digit sector code for the firm This is the same dataset you used in Problem Set 1. For this assignment, keep only those observations corresponding to 2012 (t = 0), 2013 (t = 1) and 2014 (t = 2). Further only retain "complete cases"; that is firms with information on VA,K,L in all three periods. This will constitute our estimation sample. In what follows you may treated value added as output.
Out[5]:	ts/semiconductor_firms.out", sep='\t', encoding='utf-8') scf.set_index(['gvkey', 'year'], drop=False) #Set gvkey & year as indices scf.head() gvkey year gvkey.1
In [6]: In [7]:	<pre>3 1056 2002 1056 AEROFLEX</pre>
In [8]:	<pre>mutable_df = pd.merge(valid_years, complete_cases, on = ["conm"]) dropped_redundant_cols = mutable_df.drop(["year_y", "K_y", "L_y", "VA_y"], axis=1) final_df = dropped_redundant_cols.rename(columns = {"year_x": "year", "K_x": "K", "L_x": "L", "VA_x" : "VA"}) #final_df.head() # relevant_firms = final_df log_k = np.log(final_df.loc[:,"K"]) log_l = np.log(final_df.loc[:,"L"]) log_va = np.log(final_df.loc[:,"VA"]) final_df["LogK"] = log_k</pre>
	<pre>final_df["LogVA"] = log_l final_df["LogVA"] = log_va final_case = final_df #""" Retain cases where Log of Capital, Labor, and Output are all greater than or equal to 0 """ # filtered_firms = relevant_firms[(relevant_firms.LogK >= 0) & (relevant_firms.LogL >= 0) & (relevant_firms.LogVA >= 0)] [a] Construct a table of summary statistics for the estimation sample. How many firms are in the sample?</pre>
<pre>In [8]: In [9]: Out[9]:</pre>	print("There are {} firms in the sample".format(len(final_df)/3)) There are 108.0 firms in the sample final_df.describe([0.05, 0.25, .5, .75, .95]) year K L VA LogK LogL LogVA count 324.00000 324.00000 324.00000 324.00000 324.00000 324.00000 324.00000 mean 2013.00000 1711.000030 7.471620 1009.205389 5.287482 0.494894 5.055187 std 0.81776 7027.752378 19.345064 3254.850649 2.147350 1.800023 2.005820
	min 2012.00000 2.592858 0.026000 1.368806 0.952761 -3.649659 0.313939 5% 2012.00000 4.261548 0.086200 6.252376 1.449339 -2.451612 1.832961 25% 2012.00000 52.603855 0.524250 38.196905 3.962788 -0.645803 3.642736 50% 2013.00000 199.978529 1.678000 167.912837 5.298198 0.517517 5.123444 75% 2014.00000 1085.324020 5.682500 731.187247 6.989615 1.737081 6.594610 95% 2014.00000 4931.005000 31.002550 4304.193566 8.502903 3.434069 8.367246 max 2014.00000 72944.051984 177.000000 31566.168520 11.197448 5.176150 10.359841 [b] Using the first two periods of data (i.e., t = 0; 1). Related changes in log
In [21]: Out[21]:	value (1.5.) Total Current
In [22]:	3 2012 ADVANCED MICRO DEVICES 2279.734654 10.340 873.793897 7.731814 2.336020 6.772845 4 2013 ADVANCED MICRO DEVICES 2302.573526 10.671 917.149964 7.741783 2.367530 6.821271 df2012 = final_df[final_df.year == 2012] df2013 = final_df[final_df.year == 2013] merged1213 = pd.merge(df2013, df2012, on="conm") merged1213["delta_output"] = merged1213["LogVA_x"] - merged1213["LogVA_y"] merged1213["delta_capital"] = merged1213["LogK_x"] - merged1213["LogK_y"] merged1213["delta_labor"] = merged1213["LogL_x"] - merged1213["LogL_y"] # y, X = dmatrices("delta_output ~ delta_capital + delta_labor", data=merged1213, return_type = "dataframe")
Out[22]:	<pre># mod = sm.OLS(y, X) # res = mod.fit() # res.params mod = sm.OLS(merged1213[["delta_output"]], merged1213[["delta_capital", "delta_labor"]]) res = mod.fit() res.params delta_capital -0.220633 delta_labor</pre>
In [51]:	Assumptions: Our assumption under OLS is that capital and labor inputs satisfy no correlation between the the inputs and the noise/residuals of our regression. However, the noise of this regression will have a U_i_t-1 term, which will surely be correlated with delta inputs as firms make input choices after observing U_i_t [c] Consider the model outlined in part [a] to [c] of question 1 above. Write a computer program that implements Algorithm 1. ### This cell is for testing purposes, please ignore ### x denotes 2013, y denotes 2012
	<pre>merged1213["eta_y"] = merged1213["LogVA_y"] - 0.2*merged1213["LogK_y"] - 0.9*merged1213["LogL_y"] merged1213["eta_x"] = merged1213["LogVA_x"] - 0.2*merged1213["LogK_x"] - 0.9*merged1213["LogL_x"] y, X = dmatrices("eta_x ~ eta_y", data=merged1213, return_type = "dataframe") mod = sm.OLS(y, X) res = mod.fit() cee = res.params[0] gamma = res.params[1] moment_vector = matrix(array([[0, 0, 0, 0, 0]])).transpose()</pre>
	<pre>for ind, row in merged1213.iterrows(): arr = array([[1, row["LogK_y"], row["LogK_x"], row["LogL_y"], row["LogVA_y"]]]) m = matrix(arr).transpose() moment_vector = ((row["eta_x"] - cee - (gamma*row["eta_y"])) * m) + moment_vector #print(moment_vector) sample_moment_vector = moment_vector / len(final_df) / 3 #print(sample_moment_vector) sample_moment = sample_moment_vector.transpose() * sample_moment_vector</pre>
Out[51]: In [10]:	sample_moment.item(0) 5.006674928941445e-06
	<pre>d2013 = df[df.year == 2013] m1213 = pd.merge(d2013, d2012, on="conm") for alpha in alphas: for beta in betas: ###x denotes 2013, y denotes 2012 m1213["eta_y"] = m1213["LogVA_y"] - alpha*m1213["LogK_y"] - beta*m1213["LogL_y"] m1213["eta_x"] = m1213["LogVA_x"] - alpha*m1213["LogK_x"] - beta*m1213["LogL_x"] y, X = dmatrices("eta_x ~ eta_y", data=m1213, return_type = "dataframe") mod = sm.OLS(y, X) res = mod.fit()</pre>
	<pre>cee = res.params[0] gamma = res.params[1] moment_vector = matrix(array([[0, 0, 0, 0, 0]])).transpose() for ind, row in m1213.iterrows(): arr = array([[1, row["LogK_y"], row["LogK_x"], row["LogL_y"], row["LogVA_y"]]]) m = matrix(arr).transpose() moment_vector = ((row["eta_x"] - cee - (gamma*row["eta_y"])) * m) + moment_vector sample_moment_vector = moment_vector / len(final_df) / 3 sample_moment = sample_moment_vector.transpose() * sample_moment_vector #print(sample_moment.item(0))</pre>
In [11]:	<pre>if sample_moment.item(0) < minimum: minimum = sample_moment.item(0) optimal_alpha = alpha optimal_beta = beta optimal_cee = cee optimal_gamma = gamma return optimal_alpha, optimal_beta, optimal_cee, optimal_gamma, minimum alpha, beta, cee, gamma, minimum = olley_pakes(final_df)</pre>
In [12]:	a, beta, cee, gamma)) Our estimation of theta yields alpha: 0.220000000000000000000000000000000000
	Explaination: if our esimated theta is approximately equal to the population values for theta, then the values for theta should satisfy the moment restriction we defined earlier. In reference to our theoretical model, we approximate the 5 x 1 moment vector by using the sample expected value of Z^t_t-1 function times the vector containing 1, LogK_0, LogY_0. If this vector is indeed close to 0 as the moment restriction in our theoretical model implies it will be for the population theta, then our moment vector, transpose, times itself, should yield a value of 0. Because our theoretical model satisfies the moment restriction if theta is equal to the population theta, we can take guesses for the values of theta and choose values for the capital and labor elasticities, zeta, and gamma such that (3) is satisfied. If these values satisfy (3), or are at least close, then our estimate for theta should be approximately equal to the population theta, with some standard errors, as we are computing the sample expected value. Modifying the procedure to consider more values for alpha and beta could provide a more accurate estimation for theta, but this will increase the runtime of the algorithm significantly. A different approach could be to attempt to minimize (3) using a gradient descent algorithm, where irrelvant values for alpha and beta are discarded but I have not studied gradient descent and do not know the potential drawbacks.
In [13]: Out[13]:	[e] Compute the esimated A + U_i. Plot a histogram of A + U_i. Compare your analysis with the productivity analysis you undertook in Problem Set 1. Compute the average, standard deviation and 5th, 25th, 50th, 75th and 95th percentiles of the sample distribution of A + U_i df13 = final_df[final_df.year == 2013] df13["Firm_Productivity"] = df13["LogVA"] - alpha*df13["LogK"] - beta*df13["LogL"] histogram_2013 = df13["Firm_Productivity"].hist() histogram_2013.set_title("Firm_Productivity") histogram_2013.set_xlabel("Productivity Factor") histogram_2013.set_ylabel("Density") Text(0, 0.5, 'Density')
	Firm Productivity 35 30 25 15 10 5
In [14]: Out[14]:	df13.drop(["year", "K", "L", "VA", "LogK", "LogL", "LogVA"], axis=1).describe([0.05, 0.25, .5, .75, .95]) Firm_Productivity count
	std 0.523972 min 1.649056 5% 2.771000 25% 3.127065 50% 3.365889 75% 3.756030 95% 4.247088 max 5.111669
	Comparison to problem set 1: In our analysis of firm productivity in problem set one, we found that semiconductor firms had a distribution of productivies that was centered at a higher productivity, with a larger maximum value of productivity. Our estimation of alpha and beta may have been insufficient to provide accurate estimations of TFPR. After calculating the elasticies for each firm, we simply took the median elasticity for our first model, but this approach will surely not satisfy the moment restriction in our current theoretical model. Unde our current model, we find a distribution of productivities that has a significantly smaller center and maximum. [f] To construct standard errors for your estimate of the population theta you will use the the bootstrap procedure described in Algorithm 2. Set B = 1000 (or more!). Report your estimation results (with bootstrap standard errors) in an easy-to-read table.
In [35]:	To conserve time and avoid runtime errors as a result of overloading the memory capacity I set B = 100 observations = [[0, 0, 0, 0]]*100 for i in np.arange(100): sample1213 = merged1213.sample(n=len(merged1213), replace = True) def modified_olley_pakes(df): alphas = np.arange(0.05, 0.96, 0.01) betas = np.arange(0.05, 0.96, 0.01) minimum = float("inf") optimal_alpha = 10
	<pre>optimal_aipha = 10 optimal_beta = 10 optimal_cee = 10 optimal_gamma = 10 for alpha in alphas: for beta in betas: ###x denotes 2013, y denotes 2012 df["eta_y"] = df["LogVA_y"] - alpha*df["LogK_y"] - beta*df["LogL_y"] df["eta_x"] = df["LogVA_x"] - alpha*df["LogK_x"] - beta*df["LogL_x"] y, X = dmatrices("eta_x ~ eta_y", data=df, return_type = "dataframe") mod = sm.OLS(y, X)</pre>
	<pre>res = mod.fit() cee = res.params[0] gamma = res.params[1] moment_vector = matrix(array([[0, 0, 0, 0, 0]])).transpose() for ind, row in df.iterrows(): arr = array([[1, row["LogK_y"], row["LogK_x"], row["LogL_y"], row["LogVA_y"]]]) m = matrix(arr).transpose() moment_vector = ((row["eta_x"] - cee - (gamma*row["eta_y"])) * m) + moment_vector</pre>
	<pre>sample_moment_vector = moment_vector / len(final_df) / 3 sample_moment = sample_moment_vector.transpose() * sample_moment_vector #print(sample_moment.item(0)) if sample_moment.item(0) < minimum: minimum = sample_moment.item(0) optimal_alpha = alpha optimal_beta = beta optimal_cee = cee optimal_gamma = gamma return optimal_alpha, optimal_beta, optimal_cee, optimal_gamma, minimum</pre>
	<pre>print(i, sep="",end="") alpha, beta, cee, gamma, minimum = modified_olley_pakes(sample1213) observations[i] = [alpha, beta, cee, gamma] 0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899</pre>
In [36]: In [37]:	<pre>boot_beta = [] boot_zeta = [] boot_gamma = [] for i in np.arange(100): boot_alph = boot_alph + [observations[i][0]] boot_beta += [observations[i][1]] boot_zeta += [observations[i][2]] boot_gamma += [observations[i][3]]</pre> bootstraped_theta = pd.DataFrame({"alpha": boot_alph, "beta": boot_beta, "zeta": boot_zeta, "gamma":
	The statistics for each element of theta are shown below. Let the "std" row denote the standard errors for each component of theta bootstraped_theta.describe() alpha beta zeta gamma count 100.000000 100.00000 100.000000 100.000000 mean 0.243200 0.70670 0.416580 0.857261
	std 0.148955 0.28577 0.298434 0.094786 min 0.050000 0.05000 -0.243161 0.624785 25% 0.157500 0.68000 0.265443 0.801234 50% 0.235000 0.81000 0.427173 0.843750 75% 0.310000 0.91250 0.579918 0.906175 max 0.950000 0.95000 1.121676 1.069773 Bootstrap results are displayed below bootstraped_theta.head()
In [39]:	
	alpha beta zeta gamma 0 0.36 0.66 0.208990 0.906632 1 0.05 0.15 -0.059536 1.002357 2 0.14 0.92 1.060980 0.715716 3 0.28 0.75 0.417036 0.861335 4 0.16 0.18 -0.082707 1.012056
<pre>In [39]: Out[39]: In [9]: Out[9]:</pre>	0 0.36 0.66 0.208990 0.906632 1 0.05 0.15 -0.059536 1.002357 2 0.14 0.92 1.060980 0.715716 3 0.28 0.75 0.417036 0.861335 4 0.16 0.18 -0.082707 1.012056 [g] Try to construct an estimation and inference procedure along the lines of the one outlined above, but this time appropriate for the model outlined in parts [d] and [e] of part 1 of the problem set. Carefully implement and describe your procedure. Repeat parts [e] and [f] above with your new procedure's coefficient and productivity estimates. d2 = final_df[final_df.year == 2012] d3 = final_df[final_df.year == 2013] d4 = final_df[final_df.year == 2014] firstmerge = pd.merge(d3, d2, on="conm") merged = pd.merge(d4, firstmerge, on='conm") merged = pd.merge(d4, firstmerge, on='conm") merged.head()
Out[39]:	0 0.36 0.66 0.208990 0.906632 1 0.05 0.15 -0.059536 1.002357 2 0.14 0.92 1.060980 0.715716 3 0.28 0.75 0.417036 0.861335 4 0.16 0.18 -0.082707 1.012056 [g] Try to construct an estimation and inference procedure along the lines of the one outlined above, but this time appropriate for the model outlined in parts [d] and [e] of part 1 of the problem set. Carefully implement and describe your procedure. Repeat parts [e] and [f] above with your new procedure's coefficient and productivity estimates. d2 = final_df[final_df.year == 2012] d3 = final_df[final_df.year == 2013] d4 = final_df[final_df.year == 2014] firstmerge = pd.merge(d4, firstmerge, on='conm') merged = pd.merge(d4, firstmerge, on='conm') merged = pd.merge(d4, firstmerge, on='conm') merged = pd.merge(d4, firstmerge, on='conm') serged = pd.merge(d4, firstmerge,
Out[39]:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Out[39]:	0 0.36 0.66 0.208900 0.906632 1 0.05 0.15 -0.098936 1.002357 2 0.14 0.92 1.000900 0.715716 3 0.28 0.75 0.417036 0.881315 4 0.16 0.18 -0.092707 1.012096 [G] Try to construct an estimation and inference procedure along the lines of the one outlined above, but this time appropriate for the model outlined in parts [d] and [e] of part 1 of the problem set. Carefully implement and describe your procedure. Repeat parts [e] and [f] above with your new procedure's coefficient and productivity estimates. $dz = final_df[final_df.year == 2012] \\ d3 = final_df[final_df.year == 2013] \\ d4 = final_df[final_df.year == 2014] \\ Firstmerge = pd.merge(4d, firstmerge, on="conm") \\ merged = pd.merged = p$
In [9]: Out[9]:	0 0.30 0.60 0.26990 0.006632 1 0.05 0.15 0.05955 1.002337 2 0.14 0.92 1.069990 0.715716 3 0.28 0.75 0.417038 0.361335 4 0.16 0.38 -0.082707 1.012056 [g] Try to construct an estimation and inference procedure along the lines of the one outlined above, but this time appropriate for the model outlined in parts [d] and [e] of part 1 of the problem set. Carefully implement and describe your procedure. Repeat parts [e] and [f] above with your new procedure's coefficient and productivity estimates. $d2 = final_df[final_df.year == 2012] \\ d3 = final_df[final_df.year == 2013] \\ d4 = final_df[final_df.year == 2013] \\ d5 = final_df[final_df.year == 2013] \\ d6 = final_df[final_df.year == 2013] \\ d7 = final_df[final_df.year == 2013] \\ d8 = final_df[final_df.year == 0.0000] \\ energed = pd. merge(d3, d2, on="conm") \\ merged = pd. merge(d4, firstmerge, on="conm") \\ merged = head() \\ year $
In [9]: Out[9]:	0.55 0.66 0.209500 closed
In [9]: Out[9]:	0.08
In [9]: In [12]: In [14]:	0.05 CED -0.00000 1989000 1989000 1
In [9]: Out [9]: In [12]: In [15]:	Section Sect
In [9]: Out [39]: In [12]: In [14]: In [16]:	But Delice Committee C
In [13]: In [14]: In [16]: Out [16]:	0
In [9]: Out [39]: In [12]: In [14]: In [16]:	On the Colonian Control Heavier

in [10]:	<pre>#### Bootstrap observations_two = [[0, 0, 0]]*50 for i in np.arange(50): sample14 = merged.sample(n=len(merged), replace = True) def final_olley_pakes(df): alphas = np.arange(0.05, 0.96, 0.01)</pre>
	<pre>alphas = np.arange(0.05, 0.96, 0.01) betas = np.arange(0.05, 0.96, 0.01) minimum = float("inf") optimal_alpha = 10 optimal_beta = 10 optimal_gamma = 10 for alpha in alphas: for beta in betas: ### x denotes 2013, y denotes 2012 df["eta_y"] = df["LogVA_y"] - alpha*df["LogK_y"] - beta*df["LogL_y"] df["eta_x"] = df["LogVA_x"] - alpha*df["LogK_x"] - beta*df["LogL_x"] df["eta"] = df["LogVA"] - alpha*df["LogK"] - beta*df["LogL_y"]</pre>
	<pre>df["eta"] = df["LogVA"] - alpha*df["LogK"] - beta*df["LogL"] df["delta_eta_x"] = df["eta"] - df["eta_x"] df["delta_eta_y"] = df["eta_x"] - df["eta_y"] #y, X = dmatrices("eta ~ eta_x + eta_y", data=df, return_type = "dataframe") #mod = sm.OLS(y, X) mod = sm.OLS(df[["delta_eta_x"]], df[["delta_eta_y"]]) res = mod.fit() gamma = res.params[0]</pre>
	<pre>moment_vector = matrix(array([[0, 0, 0, 0, 0]])).transpose() for ind, row in df.iterrows():</pre>
	<pre>if sample_moment.item(0) < minimum:</pre>
n [11]:	0.0003084865047897285 0.0015131205375413593 4.064936026735289e-05 7.63697094934115e-05 0.0006646432 624017 0.00027767003579984886 0.00017868227092406538 0.0002322721117178823 0.001206955667652194 0.0 7438594324126551 9.98664997402104e-05 0.0007939393960991834 0.00011313106648735491 0.00023875022033 2902 0.0006331219916087879 0.0004134214115838068 0.0001657270016627225 0.0019040709136944286 0.0001 98518639096162 0.0002942725645335712 0.00032500408737076497 0.0002585337595251297 0.000284720268799 67 6.293687818772815e-05 0.0006110978776469175 7.049689047773659e-05 7.80075358619324e-05 0.0001507 8542596501 8.431847283630941e-05 0.0002031486102925567 0.00010801921675152539 0.0005954442689160408 0.0013415736942208802 0.0002944894486434328 0.0005642920195821104 7.314038799259426e-05 0.000186535 70507656 0.00010922356507317104 0.0010250487870217058 0.0011997348525836812 0.0003400879569640087 0 0034553516138629783 0.0008684639294791542 0.001458535472312506 0.0006184418464476566 0.000452259254 93084 0.0003178313062475942 0.0023546506262300078 0.003678953504400617 0.00023254656429584698 ### Printed the minimums above to check how my values looked and keep track of progress
n [11]: n [12]: n [13]:	<pre>### Printed the minimums above to check how my values looked and keep track of progress boot_alph_t = [] boot_beta_t = [] boot_gamma_t = [] for i in np.arange(50): boot_alph_t = boot_alph_t + [observations_two[i][0]] boot_beta_t += [observations_two[i][1]] boot_gamma_t += [observations_two[i][2]] bootstraped_theta_t = pd.DataFrame({"alpha": boot_alph_t, "beta": boot_beta_t, "gamma": boot_gamma_} })</pre>
n [14]: ut[14]:	bootstraped_theta_t.describe() alpha beta gamma
n [15]: ut[15]:	50% 0.950000 0.850000 0.038581 75% 0.950000 0.950000 0.136858 max 0.950000 0.950000 0.453310 bootstraped_theta_t.head() alpha beta gamma 0 0.71 0.95 0.210361
	1 0.95 0.05 0.023332 2 0.53 0.05 0.040179 3 0.43 0.05 -0.064402 4 0.95 0.20 0.000758 [h] What have you learned about the distribution of productivity across large U.S. semiconductor firms? What else are you interested in learning? What data/methods might help you do so? In our first model, I found that the distribution of productivity across semiconductor firms appeared to be a normal distribution with some
In []:	almost half of firm productivities in 2014 to be negative. I am uncertain if my second model is correct, as I am not convinced that this many firms would have productivity factors that reflect lower output after considering their capital and labor expendatures. I am more convinced of the first model, which describes a plausible situation where firms varied in productivity but did not demonstrate productivities that reflected overall negative revenue during the period. However, if done correctly, I think the second model best captur firm productivity, as the time-invariant component of productivity should vary from firm to firm in my opinion. The second model reflects this condition, and demonstrates a wider distribution in firm productivies which I find both plausible and interesting. I am interested in the evolution of productivity and understanding the Markov Process. I will have to read on the theory of these processes, but after reading hope to apply these statistical methods elsewhere as I think they may be useful in applications of time series theory