Homework #7

Section 4.1

6. Show that if a, b, c, and d are integers, where $a \neq 0$, such that $a \mid c$ and $b \mid d$, then $ab \mid cd$.

- 10. What are the quotient and remainder when
 - a) 44 is divided by 8?

 - a) 44 is divided by 8?
 b) 777 is divided by 21?
 c) -123 is divided by 19?
 d) -1 is divided by 23?
 e) -2002 is divided by 87?
 f) 0 is divided by 17?
 g) 1,234,567 is divided by 1001?
 h) -100 is divided by 101?

- **14.** Suppose that a and b are integers, $a\equiv 11\pmod{19}$, and $b\equiv 3\pmod{19}$. Find the integer c with $0\le c\le 18$ such that

 - a) $c \equiv 13a \pmod{19}$. b) $c \equiv 8b \pmod{19}$. c) $c \equiv a b \pmod{19}$. d) $c \equiv 7a + 3b \pmod{19}$. e) $c \equiv 2a^2 + 3b^2 \pmod{19}$. f) $c \equiv a^3 + 4b^3 \pmod{19}$.

- **28.** Decide whether each of these integers is congruent to 3 modulo 7.
- a) 37c) -17
- **b**) 66 **d**) −67

Section 4.2

2. Convert the decimal expansion of each of these integers to a binary expansion.

a) 321 **b)** 1023 **c)** 100632

- 6. Convert the binary expansion of each of these integers to an octal expansion.
 a) (1111 0111)₂
 b) (1010 1010 1010)₂
 c) (111 0111 0111 0111)₂
 d) (101 0101 0101 0101)₂

- 7. Convert the hexadecimal expansion of each of these integers to a binary expansion.
- a) (80E)₁₆
 c) (ABBA)₁₆
- **b**) (135AB)₁₆ **d**) (DEFACED)₁₆

26. Use Algorithm 5 to find 11⁶⁴⁴ **mod** 645.

Section 4.3

4. Find the prime factorization of each of these integers.

b) 81e) 289

a) 39d) 143

c) 101f) 899

- 24. What are the greatest common divisors of these pairs of integers?
 a) 2² · 3³ · 5⁵ , 2⁵ · 3³ · 5²
 b) 2 · 3 · 5 · 7 · 11 · 13 , 2¹¹ · 3⁹ · 11 · 17¹⁴

- **c)** $17, 17^{17}$ **d)** $2^2 \cdot 7, 5^3 \cdot 13$ **e)** 0, 5 **f)** $2 \cdot 3 \cdot 5 \cdot 7, 2 \cdot 3 \cdot 5 \cdot 7$

26. What is the least common multiple of each pair in Exercise 24?