DM

٥.			
8)			

단순그래프 G와 음이 아닌 정수 n에 대하여, n보다 작거나 같은 개수의 색으로 그래프 G를 적절하게 색찰하는 (즉, 변으로 연결된 두 꼭지점을 서로 다른 색으로, 모든 꼭지점을 칠하는) 방법의 수를 $P_G(n)$ 이라 하면 $P_G(n)$ 은 n에 대한 다항식이다. 또, m개의 꼭지점을 가진 선형 그래프(linear graph 또는 path graph) I_m 은 다음과 같다.

이 때, $G=L_m$ 의 다항식을 $P_G(n)$ 을 구하고, $P_G(n)$ 을 사용하여 이 그래프를 적절하게 색칠하는 데 필요한 색의 최소 개수를 구하시오.

(Ph) 첫번째 정에 질할 수 있는 색은 n개

k 번째 점은 K-1 번째와 다른 쉭을 칠해야 하으로 n-1 개의 색을 칠할수 있다.

 $\alpha_{G}(n) = n(n-1)^{m-1} \quad o(c+1)$

그래프를 적절하게 색칠하는 데 필요한 색의 최소 개수는

m=1 인 경우는 1이고 m>1 인 경우는 2.

۵١	솔직히	갈	요르겠다

D	A	5
•	,,	J

확률변수 X가 구간 [1,5]에서 균등분포(uniform distribution) 를 이룰 때, X의 확률밀도함수, 평균, 분산을 각각 구하시오.

(pb)
$$f(x) = \begin{cases} 1/4 & 1 \le x \le 5 \\ 0 & 0 \le w \end{cases}$$

$$\mu = \int_{1}^{5} x f(x) dx = \int_{1}^{5} \frac{1}{4} x dx = 3.$$

$$\nabla^{2} = \int_{1}^{5} (\alpha - 3)^{2} f(\alpha) d\alpha = \int_{-2}^{2} \frac{1}{4} \alpha^{2} d\alpha = \frac{4}{3}.$$

	•	٠
ı	u	ı

NT

1부터 1008까지의 자연수 중 1008과 서로소(relatively prime) 인 자연수의 개수를 구하시오.

에라도스테네스의 제

(pb) (1) 1008 = 24.32.7 이으로 Euler phi 함字管 사용하면

(11) A2 = [a∈Z] |≤a≤ 1008, a ≥ 29 4171

A3 = | a ∈ Z | 1 ≤ a ≤ 1008. a € 39 W194

A7= | a E Z | 1 ≤ a ≤ 1008, a 는 기의 배수 1 라자.

그러면 | 박러 | 1008 까지의 자연수 중 | 1008 과 서로 소인 자연수의 개수는

다음과 같다.

1 A 2 1 A 3 1 A 1

= 1008 - 1 A2U A3U An1

 $= |008 - (|A_2| + |A_3| + |A_1|) + (|A_2 \cap A_3| + |A_3 \cap A_1| + |A_2 \cap A_1|)$

- 1A2 NA3 NA91

 $= 100 \$ - \left(\frac{100 \$}{2} + \frac{100 \$}{3} + \frac{100 \$}{7}\right) + \left(\frac{100 \$}{2 \cdot 3} + \frac{100 \$}{3 \cdot 7} + \frac{100 \$}{2 \cdot 1}\right) - \frac{100 \$}{2 \cdot 3 \cdot 1}$

= $|1008| (1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{7}) = 288.$

II)	L/7 The	↑ T:V→W 가 n차원 벸러용간 V에서 벡터용간 W로의 선명변환이면
선형사상 $T\colon \mathbf{R}^3 { ightarrow} \mathbf{R}^3$ 는 행렬 $A=egin{pmatrix} 1&0&1\\0&1&2\\-1&1&1 \end{pmatrix}$ 에 의한 곱 즉, $x{\in}\mathbf{R}^3$ 에 대하여 $Tx=Ax$ 이다. T 의 핵(kernel)의 (dimension)과 T 의 상(image)의 차원을 각각 구하시오	차원	rank (T) + nullify (T) = n 이 생활한
(βb) ker(T) = { αε ℝ³ T(α) = 0 { = { αε ℝ³ Αα = 0 }		
\[\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ -1 & 1 & 1 \\ \end{bmatrix} \cdot \chi & \chi & \chi \\ 0 & 1 & 2 \\ 0 & 1 & 2 \\ \end{bmatrix} \chi & \chi & \chi \\ 0 & 0 & \chi \\ \end{bmatrix} \chi & \chi \\ \end{bmatrix} \chi \\ \end{bmatrix} \q		
$\ker(T) = \{(-t, -2t, t) t \in \mathbb{R} \} \qquad \chi_1 + \chi_3 = 0 \qquad 0$	put K3 = t	
$\chi_2 + 2\chi_3 = 0$ $\chi_2 + 2\chi_3 = 0$	1/2 = -2t	
또한 차원정리에 의하여 dim(im(T))= 3- dim(kerT)= 2 o	이 성립한다.	

(2)	Analysis	Thm) ratio test
무한급수 $\displaystyle\sum_{n=1}^{\infty}rac{n!}{(n+1)^n}$ 의 수렴, 발산을 판정	하시오.	finn 을 이 이번 실수별이라 하자.
n-1 (10 · 10)		$r = \lim_{n \to \infty} \left \frac{x_{n+1}}{x_n} \right $ of clinks
(pb) put $x_n = \frac{n!}{(n+1)^n}$		エ X₀ 이 r< 1일 때 철대수렴하고
$\left \lim_{n \to \infty} \left \frac{\chi_{n+1}}{\chi_n} \right = \left \lim_{n \to \infty} \left \frac{(n+1)!}{(n+2)!!} \frac{(n+1)!}{n!} \right \right $		Y> 일때 PÑV
$= \widetilde{l}_{n+\infty} \left(\frac{n+l}{n+2}\right)^{n+l}$		
$= \left \lim_{n \to \infty} \left \frac{1}{\left(\frac{n+2}{n+1} \right)^n n!} \right = \int_{n}^{\infty} \frac{1}{n!} dt$	$\lim_{t \to \infty} \left \frac{1}{(1+\frac{1}{n+1})^{n+1}} \right = \frac{1}{e} < 1$	
olog I 2n : Conv		

Analysis

실수 집합 R에서 정의된 함수 $f\colon R \to R$ 을 다음과 같이

$$f(x) = \begin{cases} x^2 + 1 & (x가 유리수) \\ 1 & (x가 무리수) \end{cases}$$

x=0에서 f가 미분가능(differentiable)한지 판정하시오.

$$| \text{pb} \rangle \qquad | \lim_{\chi \to 0} \frac{f(\chi) - f(0)}{\chi - 0} = \lim_{\chi \to 0} \frac{f(\chi) - I}{\chi} = 0 \quad \text{gg your.}$$

주어진 E>O 에 대하여 $\delta = E$ 라 하자.

$$0 < |x-o| < \delta \Rightarrow \left| \frac{f(x)-1}{x} - o \right| \sim (x)$$

$$(\mathfrak{f}) \quad \chi: \,\, \mathfrak{A} \, \tilde{c} \, f \, = \, \left| \begin{array}{c} (\chi^2 + |) - I \\ \chi \end{array} \right| \, = \, \left| \chi \right| \, \langle \,\, f \, = \, \xi \,$$

$$(ij) \quad \chi \colon \operatorname{Perf} \ \Rightarrow \quad (if) = \left| \begin{array}{c} -1 - i \\ \hline \lambda \end{array} \right| = \ 0 < \ \xi$$

14) An o	alysīs
유리수 집합 ①가 실수 집합 R에서 조밀(dense)함을 증명 하시오, 즉, x와 y가 실수이고 x <y이면, td="" x<r<y를="" 만족<=""><td></td></y이면,>	
시키는 유리수 r이 존재함을 보이시오. (P) (1) y > 0 인 경우	
Archimedes 원리에 의하다	
$S = \int me N \left(y \le \frac{m}{n} \right)^{2} + \delta^{2} dx$	
Archimedes 원리에 의하다	
즉, S는 공장함이 아닌 자연수의 부분집합이므로 자연수의 정현성에 의	8}A
m= min S가 존재한다.	
$C a m\rangle$ $\alpha < \frac{m-1}{n} < y$	
m은 S의 최소원소이으로 m + 4 S 이다. 즉, m + < y	
또한 $\chi < y - \frac{1}{n} \le \frac{m}{n} - \frac{1}{n} = \frac{m-1}{n}$	
이 Q 로 $\chi < \frac{m-l}{n} < y$ 이 성원한다.	
(前) ႘드 0 인 경우	
y+k>0 인 차면수 k가 존재한다.	
그러면 (i)에 의하여 X+k < q < y+k 인 유리수 통가 존재한	; q .
유리수 영 -k에 대하여	
ov.	
(pl 2) y-2>0 이으3. Archimedes 원리에 의하터 뉴< y-2를	せきかと
자연수 n이 존재한다.	
ηα< m ≤ (+nα 인 참수 m ο) 은재한다.	
22년 NY < M ≤ 1+MX < NY 이으로	
$\alpha < \frac{m}{n} < y$ of $\beta \theta$.	

(5)	
복소평면 $\mathbb C$ 안의 영역(domain) D 에서 정의된 함수 $f\colon D o\mathbb C$ 가 해석적(analytic)이고, 모든 z 은 D 에 대해 $Imf(z)=2Ref(z)$ 가 성립한다. $f(z)$ 는 D 에서 상수임을 보이시오.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\exists Ux = -4Ux \exists Ux = 0. \exists Uy = 0$	
$\therefore f(z) = u_x + 2u_x \lambda = 0 \text{ole3.} f(z) \in 9999.$	

개집합(open set) $D\subseteq \mathbb{R}^3$ 에 대하여 미분가능한 함수 $z=f(x,y)\colon D\to\mathbb{R}$ 의 그래프로 이루어지는 곡면 G의 법선과 z축과의 사이각을 θ 라 할 때 다음을 보이시오,

$$\iint_{G} \cos^{2} \frac{\theta}{2} \, dS = \frac{1}{2} S(G) + \frac{1}{2} A(D)$$

(단, S(G)는 곡면의 겉넓이, A(D)는 영역 D의 넓이로 둘 다 유한이고, $dS = \sec \theta dA$ 이다.)

$$(Pb) \iint_{G} \cos^{2} \frac{\theta}{2} ds = \iint_{D} \cos^{2} \frac{\theta}{2} \sec \theta dA = \iint_{D} \frac{1 + \cos \theta}{2} \cdot \sec \theta dA$$

$$= \iint_{D} \frac{1}{2} \sec \theta + \frac{1}{2} dA$$

$$= \frac{1}{2} \iint_{D} \sec \theta dA + \frac{1}{2} \iint_{D} 1 dA$$

$$= \frac{1}{2} S(\theta) + \frac{1}{2} A(\theta)$$

2 0 300011 2 Jp	
$ = \frac{1}{2} S(G) + \frac{A(O)}{4} A(O) $	

(3)	19
호의 길이 s 로 나타낸 매개변수 곡선 $lpha:[a,b] ightarrow\mathbb{R}^3$ 가	
$lpha''(s) eq 0$ 이고 $lpha(s) + rac{1}{\kappa(s)} N(s)$ 가 고정된 점이면, $lpha$ 는 원의	
일부임을 보이시오. (단, $\kappa(s)$ 는 $lpha(s)$ 의 곡률(curvature)이고, $N(s)$ 는 주법선벡터	
(principal normal vector)이다.)	
(fb) $\chi^*(s) \neq 0 \Rightarrow N(s) \neq 0$.	
$\alpha(s) + \frac{1}{\kappa(s)} M(s) = \rho + \frac{1}{2} \Re.$	
$0.'(5) + \left(\frac{h'(5) \cdot h(5) - h(5) h'(5)}{(h(5))^2}\right)$	
$= O''(S) - \frac{k'(S)}{k(S)^n}M(S) + \frac{M'(S)}{k(S)} = O$	
$\frac{1}{4} \frac{1}{1} \frac{1}$	
보니 없어지만 (ISS BLS) = 0 (5) 인구 ?? 보통.	
$ = \frac{k'(s) N(s)}{k(s)^2} + \frac{\tau(s)}{\kappa(s)} \beta(s) = 0 $	
= K'(s) = K 상수 Q T(s) = O 이22, Q는 평면드형.	
$\therefore \alpha(s) + \frac{1}{k} N(s) = \beta \Rightarrow \ \alpha(s) - \beta\ = \frac{1}{k} \ N(s)\ = \frac{1}{k}.$	
지는 중성 ρ. 반지종 ¦인 원의 일부 •	
न पट द्वार हता है द द्वा है।	

이해X

2005 Previous Test Solv

다음조건을 만축시키는 실위상공간 R의 부분집합 W. X. Y. Z의 에를(증명없이) 하나씩 구하시오. (1) Y. Z는 연결집합(connected set)이다. (2) Y C W C Z, Y C X C Z. (3) W는 연결집합이다. (4) X는 연결집합이 아니다. 여기에서 기호 $A \subset B \vdash A \cap B$ 의 진부분집합암을 나타낸다.	
(Pb) 실위성공간에서 면전경합인 필요용분조건은 구간인 것이다.	
X= (2,6)0 (1) Y= (3,4) Z= (0.8) W= (1.5)	
3천 연휴위보와 ~~ (I) Y, Z 는 연결정량 (connected Set) 이다.	
Y= (3.4) 2= (0.8) 구간이으로 변활 ok	
(2) YCWCZ, YCXCZ	
$(3,4) \subset (1.5) \subset (0.8) \qquad (3.4) \subset (2.6) \cup 191 \subset (0.8) \qquad 0.16$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6 6 6 6 6 6 6 6 6	
(3) W는 연결성량이다. W= (1.5) ok	
(4) X는 연결정합이 quck. X= (2.6) U f15 o K Net interval	

19)	Thm) F, K, L と F ⊆ K ⊆ L 을 만족하는 케이다. (」) ポセ
F 스 K 체 K는 체 F의 대수적 확대체(algebraic extension field)	[K:F] 와 [L:K] 는 유한이면 L은 F의 유한확대체이고, F
로서 [K:F]=(10)(즉, [K:F]=dim _F K=10)이다. (계환하게) 에센 앱	[L:F] = [L:h][h:F] old.
F 위의 기약다항식(irreducible polynomial) $f(x)$ 의 차수 $(degree)$ 가 3 일 때, $f(x)$ 의 어떤 근도 K 에 포함 되지 않음을	Thm) 남는 두의 확대체. uek가 두위에서 대수적 원소이언
보이시오.	F가 계수. 4를 해고 각는
Α 1111	[F(u) : F] = deg (ir (u.F)) 기억대원시
(pb) f(u)= 0 ए ue tr म स्यास्तर अस्तरम	
그러면 Κ는 F와 Δ을 포함하는 체이고. F(α)는 F와 Δ을 포함하는	
가장 작은 웨이으로 ROX C K 가 설립적다.	
/0 = K : F = K : F(0) F(0) : F 0 2,	
F(x): F = deg f(x) = 3 이으크, 3 10 축 3이 10의 약수가 되어 모든.	
대학서 f(%)의 이번 근도 k에 포함되지 않음을 할 수 있다.	

_	
1	P

위상공간 X와 전사할수 $g:X \rightarrow Y$ 에 의한 집합 Y의 좋위상 (quotient topology)은 $g^{-1}(O)$ 가 X에서 개집합(open set)이 되는 Y의 부분집합 O로 이루어지는 Y위의 위상이다. 실위상 공간 $X=\mathbb{R}$ 과 정수집합 $Y=\mathbb{Z}$ 에 대하여 전사합수 $f:X \rightarrow Y$, f(x)=[x]에 의한 Y의 위상을 구하시오. (단, [x]는 x를 넘지 않는 최대의 정수이다)

(Pb) Claim) 정의의 Y-open set G에 대해 NeG 가 n-le G

 $n \in G$ of q and $n \in [n,n+1) = f^{+}(n) \subset f^{+}(g^{+})$ of $f^{+}(g) \in G$ of $f^{+}(G) \in G$ for set $f^{-}(G) \in G$ of $f^{-}(G) \in G$ for g of g of

 $\exists \underline{a}, b \in R \ s \cdot k \quad n \in (a,b) \subset f^{1}(g) \qquad \xrightarrow{n \atop (a,b-1)} b$

 $\Rightarrow n-1 = f(\frac{a+n}{2}) \in G \text{ of } G$

위의 4월에 의하여 숙기 / 위로 유계 아니면 $G=\mathbb{Z}$ - 위로 유계이면 $G=fm,m-1,m-2,\cdots$ (

m = max G

임을 알수 있다.

2005 Previous Test Solv

<u>ગ</u>)	AA	Thm) 사성 f: R→ S과 환분동형사상이리 하자.
환 준동형사상(ring homomorphism) $f\colon Z{\to}Z/3Z{\oplus}Z/5Z{\oplus}Z/7Z$ 는 다음과 같이 정의된다. $f(x){=}(x+3Z,x+5Z,x+7Z)$ f 의 핵(kernel)을 구하시오.		kerf= fa6R f(a) = Os { 이고 Kerf를 f의 해(kernel)라 한다.
(PB) ker $f = f \times e \mathbb{Z} f(x) = (3\mathbb{Z}, 5\mathbb{Z}, 7\mathbb{Z}) $		
(x+3Z, x+5Z, x+7Z) = (3Z, 5Z, 7Z)		
이므로 kerf= 105 Z 이다.		

927 충국인 나머지 정리 쓰는 idea. 근데 무는 방법 삣칼링. □		AA
환 준동형사상(ring hom		
	⊕Z/5Z⊕Z/7Z	
는 다음과 같이 정의된다		
	(x, x+5Z, x+7Z)	_
$f(x) = (2+3\mathbb{Z}, 3+5\mathbb{Z}, 4)$ 모두 구하시오.	1+7Z)를 만족시키는 정수 :	r늘
모두 구야시오.		
χ∈ Z',		
(pb) $\chi \equiv 2 \pmod{3}$		
· +		
$\chi \equiv 3 \pmod{5}$		
$\chi \equiv 4 \pmod{7}$		
$\Rightarrow X = \hat{\chi}_{1} \cdot 2 \cdot 35 + \hat{\chi}_{2}$	$\frac{1}{2} \cdot 3 \cdot 21 + \chi_{3}^{-1} \cdot 4 \cdot 15$ [mod	3.5.7)
= 140 + 63 + 60 =	263 (mod 105)	
$2\chi_1 \equiv 1 \pmod{35}$		
$2x_1-1 \ge 0$ (mod	35)	
x1 = 18 (mod		u ei 41 24
		보안할 점.
$35 \chi_1 \equiv 1 \pmod{3}$	2 X2 = (mod 5)	5χ3 ≡ (mod 7
	$\chi_2 \equiv 1 \pmod{5}$	
$\chi_1 = \chi_2 \pmod{5}$	L1= (M043)	13 = (MIDU 1)