এইস এস সি পদার্থবিজ্ঞান

অধ্যায়-৭: ভৌত আলোকবিজ্ঞান

প্ররা >১ দ্বি-চির পরীক্ষায় 0.4 mm ব্যবধানে দুটো চির স্থাপন করে 5000Å তরজাদৈর্ঘ্যের একবণী আলো দ্বারা আলোকিত করা হচ্ছে। এতে চির থেকে 1m দূরে স্থাপিত পর্দায় পর্যায়ক্রমিক উজ্জ্বল ও অন্ধকার ডোরা সৃষ্টি হলো।

ক. চক্তুর উপযোজনী ক্ষমতা কাকে বলে?

খ. স্বাভাবিক দর্শনের ক্ষেত্রে একটি নভো দূরবীক্ষণ যন্তের নলের - দৈর্ঘ্য 22cm দ্বারা কী বুঝায়?

গ, পর্যবেক্ষণে সৃষ্ট ডোরাগুলোর পর পর দুটো উজ্জ্বল ডোরার মধ্যবতী দূরত্ব বের কর।

ঘ. চিরদ্বয়ের একটি বন্ধ করে দিলে পর্দার ভোরার কীর্প পরিবর্তন লক্ষ করা যাবে তা বিশ্লেষণ কর। 8

১নং প্রহাের উত্তর

ক যে কোন দূরত্বের বস্তু দেখার জন্য চোখের লেন্সের ফোকাস দূরত্ব নিয়ন্ত্রণ করার ক্ষমতাকে চক্ষুর উপযোজনী ক্ষমতা বলে।

র নভোদূরবীক্ষণ যত্নের নলের দৈর্ঘ্য বলতে এর অভিলক্ষ্য ও অভিনেত্রের মধ্যবর্তী দূরত্ব বুঝায়। স্বাভাবিক দর্শনের ক্ষেত্রে এই দূরত্ব অভিলক্ষ্য ও অভিনেত্রের ফোকাস দূরত্বের যোগফলের সমান। অর্থাৎ স্বাভাবিক দর্শনের ক্ষেত্রে কোন নভোদূরবীক্ষণ যত্নের নলের দৈর্ঘ্য 22cm দ্বারা বুঝানো হয় যে এর অভিলক্ষ্য ও অভিনেত্রের মধ্যবর্তী দূরত্ব তথা এদের ফোকাস দূরত্বের যোগফল 22cm।

ত এখানে.

চির দুইটির মধ্যবর্তী দূরত্ব, $a=0.4 mm=0.4\times 10^{-3}\ m$ আলোর তরজা দৈর্ঘ্য, $\lambda=5000\ \text{Å}=5000\times 10^{-10}\ m$ চির হতে পর্দার দূরত্ব, $D=1\ m$ পর পর দুইটি উজ্জ্ব ডোরার মধ্যবর্তী দূরত্ব, $\Delta x=?$ আমরা জানি

$$\Delta x = \frac{\lambda D}{a}$$

$$= \frac{5000 \times 10^{-10} \times 1}{0.4 \times 10^{-3}}$$

$$= 1.25 \times 10^{-3} \text{ m (Ans.)}$$

য় চিরদ্বয়ের যেকোন একটি বন্ধ করে দিলে তখন ব্যতিচার ঘটবে না বরং চিরটি একটি একক আলোক উৎসের মত কাজ করবে। এই আলো উৎসের ব্যাস $2r \le \lambda$ । আবার অপবর্তনের জন্য অবমের শর্ত হলো a $\sin\theta = n\lambda$; চিরটিকে অপবর্তন চির হিসেবে ব্যবহার করলে, a = 2r.

∴ 2r sinθ = nλ; প্রথম অবমের জন্য

 \Im , $2r \sin\theta = \lambda$

.: λ≤2r,

কিন্ত ব্যতিচার চিরের জন্য $\lambda \ge 2r$ ।

অতএব এক্ষেত্রে অপবর্তনও সম্ভব নয়। বরং চিরটি একটি বিন্দু উৎসের ন্যায় পর্দার প্রত্যেকটি বিন্দুতে সমান তীব্রতার আলোক শক্তি সরবরাহ করে।

প্রনা > ২ প্রতি মিটারে 6 × 10⁵ সংখ্যক রেখাসম্পন্ন কোনো অপবর্তন প্রেটিং এর মধ্য দিয়ে 450 nm তরজ্ঞাদৈর্ঘ্যের আলো কোনো ফিল্টারের সাহায্যে লম্বভাবে আপতিত করা হল। /রা.বো. ২০১৫/

ক, চার্জের কোয়ান্টায়ন কাকে বলে?

 ব. কোনো পরিবাহীর মধ্য দিয়ে তড়িং প্রবাহ চলার সময় তাপ উৎপল্ল হয় কেন?

- প. 450 nm তরজ্ঞাদৈর্ঘ্যের আলোর প্রথম ক্রমের অপবর্তন কোণ কত?
- উদ্দীপকের আলোকে চতুর্থ ক্রমের অপবর্তন সম্ভব কিনা —
 বিশ্লেষণ কর।

২ নং প্রশ্নের উত্তর

ক কোনো বস্তুর চার্জের যেকোনো মান হওয়া সম্ভব নয়, এটি কেবল 1.6×10^{-19} C এর পূর্ণ গুণিতক হওয়া সম্ভব। এ বিষয়টিকে চার্জের কোয়ান্টায়ন বলে।

তি ভিৎ প্রবাহের ফলে তড়িৎ বর্তনীতে যে তাপের উদ্ভব হয় তার কারণ ইলেকট্রন মতবাদের সাহায্যে ব্যাখ্যা করা যায়। তড়িৎ পরিবাহকে বেশ কিছু সংখ্যক মৃক্ত ইলেকট্রন থাকে। পরিবাহকের দুই বিন্দুর মধ্যে বিভব পার্থক্য সৃষ্টি হলে মৃক্ত ইলেকট্রনগুলো আন্তঃআণবিক স্থানের মধ্য দিয়ে পরিবাহকের নিম্ন বিভববিশিষ্ট বিন্দু থেকে উচ্চ বিভববিশিষ্ট বিন্দুর দিকে চলতে থাকে, ফলে তড়িৎ প্রবাহের সৃষ্টি হয়। এই ইলেকট্রনগুলো চলার সময় পরিবাহকের পরমাণুর সাথে সংঘর্ষে লিপ্ত হয় এবং ইলেকট্রনের গতিশক্তি পরমাণুতে সঞ্চলিত হয় এবং পরমাণুর গতিশক্তি আরো বৃদ্ধি পায়। এই বর্ধিত গতিশক্তি তাপে রূপান্তরিত হয় এবং পরিবাহকের তাপমাত্রা বৃদ্ধি পায়। এজন্য তড়িৎ প্রবাহের ফলে বর্তনীতে তাপের উদ্ভব হয়।

গ দেওয়া আছে,

গ্রেটিং উপাদান, $d = \frac{1}{N} = \frac{1}{6 \times 10^5 \text{ m}^{-1}}$ তরজ্ঞাদৈর্ঘ্য, $\lambda = 450 \text{ nm} = 450 \times 10^{-9} \text{m}$ ক্রমসংখ্যা, n = 1বের করতে হবে, অপবর্তন কোণ, $\theta = ?$ আমরা জানি, $d \sin \theta = n \lambda$

$$\therefore \sin\theta = \frac{n\lambda}{d} = 1 \times 450 \times 10^{-9} \text{m} \times 6 \times 10^{5} \text{ m}^{-1} = 0.27$$

 $\theta = \sin^{-1}(0.27) = 15.66^{\circ} \text{ (Ans.)}$

छ চতুর্থ ক্রমের অপবর্তনের জন্য n = 4, এক্ষেত্র sinθ এর গ্রহণযোগ্য মান পাওয়া গেলে এই সিন্ধান্তে উপনীত হওয়া যাবে যে, চতুর্থ ক্রমের অপবর্তন সম্ভব।

পুনরায়, $d\sin\theta = n\lambda$ $\sin\theta = \frac{n\lambda}{d} = 4 \times 450 \times 10^{-9} \text{m} \times 6 \times 10^{5} \text{ m}^{-1} = 1.08$

কিন্তু sin θ এর সর্বোচ্চ মান 1 হতে পারে। সূতরাং এটি গ্রহণযোগ্য মান নয়। সূতরাং চতুর্থ ক্রমের অপবর্তন সম্ভব নয়।

প্রাচিত

উদ্দীপকে 3800Å তরজ্ঞাদৈর্ঘ্যের আলো ব্যবহার করে ইয়ং এর দ্বি-চিড় পরীক্ষা সম্পন্ন করা হচ্ছে। চিত্রে, $S_1S_2=0.5$ mm, $OP=6.46\times 10^{-3}$ m, D=1m.

- ক, ফার্মাটের নীতি লিখ।
- খ. সাদা আলো প্রিজমের মধ্য দিয়ে যাবার সময় বিচ্ছারিত হয় কেন?
- গ, উদ্দীপকে কেন্দ্রীয় উজ্জ্বল ডোরা হতে পঞ্চম অন্থকার ডোরার দরত কত?
- ঘ. উদ্দীপকের P বিন্দুতে গঠনমূলক ব্যতিচার না ধ্বংসাত্মক ব্যতিচার হবে গাণিতিক বিশ্লেষণের মাধ্যমে মতামত দাও। ৪ ৩নং প্রশ্লের উত্তর

ক আলোর রশ্মি এক বিন্দু থেকে অন্য বিন্দুতে যাবার সময় সম্ভাব্য সকল পথের মধ্যে সেই পথ অণুসরণ করে যে পথে সময় সব থেকে কম লাগে।

আমরা জানি, একটি নির্দিষ্ট বর্ণের আলোর জন কোনো মাধ্যমের প্রতিসরাংক একটি ধ্রুব সংখ্যা। কিন্তু বিভিন্ন বর্ণের আলোর জন্য এই সংখ্যা বিভিন্ন। বিভিন্ন বর্ণের আলোর প্রতিসরাঙ্ক বিভিন্ন হওয়ায় আলো এক মাধ্যম থেকে অন্য মাধ্যমে প্রতিসরণের সময় একই কোণে আপতিত হলেও বিভিন্ন বর্ণের প্রতিসরণ কোণ বিভিন্ন হয়। ফলে বর্ণপুলো পরস্পর থেকে আলাদা হয়ে পড়ে। প্রিজমে আলো প্রতিসরণের ক্ষেত্রে দুই বার ভূমির দিকে বেঁকে যায়। তাই বিভিন্ন আলোক রশ্মির জন্য আপতন কোণ এক হলেও নির্গমন কোণ। ভূভিন্ন হয়। আমরা জানি প্রিজমের বিচ্যুতি, $\delta = (i_1 + i_2) - A | i_2$ ভিন্ন হওয়ার কারণে বিভিন্ন বর্ণের বিচ্যুতি ভিন্ন হয়। এ কারণে সাদা আলো প্রিজমের মধ্য দিয়ে প্রতিসরণের সময় বিচ্ছুরিত হয়।

প্র দেওয়া আছে,

তরজ্ঞাদৈর্ঘ্য, $\lambda = 3800 \text{ Å} = 3800 \times 10^{-10} \text{m}$ S, $S_2 =$ চিড়ম্বয়ের দূরত্ব = $d = 0.5 \text{mm} = 0.5 \times 10^{-3} \text{ m}$ D = চিড় হতে পর্দার দূরত্ব = 1 m, n = 5

পঞ্চম অন্ধকার ডোরার দূরত্ব, x_n = ?

আমরা জানি, n তম অন্ধকার ডোরার দূরত, $x_n = (2n-1)\frac{\lambda D}{d}$ $= (2\times 5-1)\frac{3800\times 10^{-10}\text{m}\times 1\text{m}}{2\times 0.5\times 10^{-3}\text{m}}$ $= 6.84\times 10^{-3}\text{m}$

অতএৰ, ৫ম অৃন্ধকার ভোরার দূরত্ব = 3.42 × 10⁻³ m = 3.42 mm

হ আমরা জানি,

$$S_{2}P - S_{1}P = \frac{xd}{D}$$

$$= \frac{6.46 \times 10^{-3} \text{m} \times 0.5 \times 10^{-3} \text{m}}{1 \text{m}}$$

$$= 3.23 \times 10^{-6} \text{m}$$

এখানে $x = 6.46 \times 10^{-3} \text{m}$ $d = 0.5 \times 10^{-3} \text{m}$ D = 1 m $\lambda = 3800 \times 10^{-10} \text{m}$

ব্যতিচারের শর্ত থেকে জানি,

$$S_2P - S_1P = n\lambda$$

$$\therefore n = \frac{S_2P - S_1P}{\lambda}$$

$$= \frac{3.23 \times 10^{-6}m}{3800 \times 16^{-10}m}$$

$$= \frac{17}{2} = 17 \times \frac{1}{2}$$

n পূর্ণ সংখ্যা হলে গঠন মূলক আর অর্ধেকের বেজোড় গুণিতক হলে ধ্বংসাত্মক ব্যতিচার হবে।

এখানে, $n, \frac{1}{2}$ এর বেজোড় গুণিতক

সুতরাং P বিন্দুতে ধ্বংসাত্মক ব্যতিচার সৃষ্টি হবে।

প্ররা▶৪ আলোর ব্যতিচার পরীক্ষণে শিক্ষার্থীরা প্রথম দুটি সুসংগত উৎস ব্যবহার করলো, যেগুলো থেকে সমদশাবিশিষ্ট 5500Å তরজাদৈর্ঘ্যের আলোক তরজা নির্গত হয়। তারা পর্দায় মিলিত তরজাদ্বয়ের পথ পার্থক্য 11000Å লক্ষ্য করলো। /চ. বো. ২০১৫।

ক, ফার্মাট এর নীতি লিখ।

বিপদ সংক্রেভে সবসময় লাল আলো ব্যবহার করা হয় কেন? ব্যাখ্যা
কর।

গ. উৎস থেকে নির্গত প্রতিটি ফোটনের শক্তি হিসাব কর।

৪ নং প্রশ্নের উত্তর

ক এক বিন্দু হতে অপর এক বিন্দুতে যাওয়ার সময় আলোক রশ্যির যত সংখ্যক বারই প্রতিফলন বা প্রতিসরণ যাই হোক না কেন অনুসৃত পথ সর্বদাই স্থির হবে।

শুশ্যমান আলোর সাতটি বর্ণের মধ্যে লাল আলোর তরজাদৈর্ঘ্য সর্বাপেক্ষা বেশি। আবার তরজোর বিক্ষেপণ তরজাদৈর্ঘ্যের চতুর্থ ঘাতের ব্যস্তানুপাতিক বলে বায়ুমন্ডলের মধ্যে দিয়ে যাবার পথে অন্যান্য বর্ণের আলোর তুলনায় লাল বর্ণের আলোর বিক্ষেপণ কম হবে। এ কারণে লাল আলো বায়ুমন্ডলে অধিক দূর পর্যন্ত বিস্তার লাভ করতে পারে। ফলে কোনো বিপদজ্জনক স্থানে আসার অনেক আগে থেকেই গাড়ির চালক লাল আলো দেখতে পেয়ে বিপদ সম্পর্কে সতর্ক হতে পারে। তাই বিপদ সংকেতে সর্বদা লাল আলো ব্যবহার করা হয়।

গ দেওয়া আছ্,

তরজ্ঞাদৈর্ঘ্য, $\lambda = 5500 {\rm \AA}$ প্লাডেকর প্লুবক, $h = 6.63 \times 10^{-34} {\rm Js}$ আলোর বেগ, $c = 3 \times 10^8 {\rm \ ms}^{-1}$ উৎস থেকে নির্গত প্রতিটি ফোটনের শক্তি, E = ?আমরা জানি, E = hf

$$= \frac{hc}{\lambda} \quad [\because c = f\lambda]$$

$$= \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{5500 \times 10^{-10}}$$

$$= 3.62 \times 10^{-19} J$$

$$= 2.26 \text{ eV (Ans.)}$$

য দেওয়া আছে.

তরজ্ঞাদৈর্ঘ্য, $\lambda = 5500 ext{Å}$ পথপার্থক্য = 11000 ext{Å}

় দশা পার্থক্য নির্ণয় করলেই বোঝা যাবে এটি কি ধরনের ব্যতিচার। আমরা জানি, দশা পার্থক্য = $\frac{2\pi}{\lambda} \times$ পথ পার্থক্য

$$= \frac{2\pi}{5500 \times 10^{-10}} \times 11000 \times 10^{-10}$$
$$= 4\pi$$

অর্থাৎ 4π দশাপার্থক্য এবং শূন্য দশা পার্থক্য একই কথা। যেহেতু দশা পার্থক্য শূন্য অথবা 4π , সূতরাং শিক্ষার্থীরা উত্ত পরীক্ষণে গঠনমূলক ব্যতিচার লক্ষ্য করবে।

প্রারহান অপটিকস ল্যাবে 600nm তরজাদৈর্ঘ্যবিশিষ্ট একবণী আলো 2µm প্রস্থের একটি অপবর্তন চিড়ের উপর লছভাবে আপতিত করল। সে ধারণা করেছিল যে সে নয়টি চরম বিন্দু দেখতে পারবে। [সংশোধিত]

ক, তড়িৎ চুম্বকীয় তরজা কী?

খ. 'একটি চশমার ক্ষমতা—5D' এর অর্থ কী?

া, ১ম ক্রম চরমগুলোর মধ্যবতী কৌণিক দূরত্ব কত?

 ঘ্রায়য়ানের ধারণা কি সঠিক ছিল? গাণিতিক বিশ্লেষণের সায়্যায়্যে ব্যাখ্যা কর।

ক পরস্পরের সাথে এবং তরজা সঞ্চালনের সাথে লম্বভাবে অবস্থিত সমান কম্পান্তক ও সমদশা সম্পন্ন তড়িৎ ক্ষেত্র তরজা ও চৌম্বক ক্ষেত্র তরজা সমন্বয়ে গঠিত শূন্য মাধ্যমে সঞ্চালন যোগ্য অতিদুত গতিসম্পন্ন তরজাকে তড়িং চুম্বকীয় তরজা বলা হয়।

একটি চশমার ক্ষমতা – 5D বলতে বোঝায় চশমার লেন্সটি অবতল এবং এটি প্রধান অক্ষের সমান্তরাল একগুচ্ছ আলোকরশ্মিকে এমনভাবে অপসারী করে যেন মনে হয় এগুলো লেন্স থেকে $\frac{1}{5}$ m দূরের কোন বিন্দু থেকে অপসৃত হচ্ছে বা এর ফোকাস দূরত্ব $\frac{1}{5}$ m।

· দেওয়া আছে,

আলোর তরজ্ঞাদৈর্ঘ্য, $\lambda = 600~\text{nm} = 600 \times 10^{-9}\text{m}$ ক্রমসংখ্যা, n=1

চিরের বেধ, $a = 2\mu m = 2 \times 10^{-6} m$

বের করতে হবে, মধ্যবর্তী কৌণিক দূরত্ব, 20', = ? আমরা জানি,

a
$$\sin \theta'_n = (2n+1)\frac{\lambda}{2}$$
 $\exists 1, \sin \theta'_n = (2n+1)\frac{\lambda}{2a}$
 $\exists 1, \sin \theta'_n = (2n+1) \times \frac{600 \times 10^{-9}}{2 \times 2 \times 10^{-6}}$
 $\exists 1, \sin \theta'_n = 0.45$
 $\exists 1, \theta'_n = \sin^{-1}(0.45)$
 $= 26.74^\circ$
 $\therefore 2 \cdot \theta'_n = 2 \times 26.74 = 53.48^\circ \text{ (Ans.)}$

য় উদ্দীপক হতে পাই,

আলোর তরজ্ঞাদৈর্ঘ্য, $\lambda=600~\text{nm}=600\times10^{-9}\text{m}$ চিরের বেধ, $a=2\mu\text{m}=2\times10^{-6}~\text{m}$ অপবর্তন কোণ সর্বোচ্চ $\theta=90^\circ$ হতে পারে। এক্ষেত্রে (

অপবর্তন কোণ সর্বোচ্চ $\theta = 90^\circ$ হতে পারে। এক্ষেত্রে যে কোনো এক পাশে সর্বোচ্চ ক্রমের চরম বিন্দু সৃষ্ট হলে

a sin 90° =
$$(2n + 1)\frac{\lambda}{2}$$
; n = 0, 1, 2, 3

বা,
$$2n + 1 = \frac{2a}{\lambda}$$

$$\sqrt{3} = \frac{2a}{\lambda} - 1$$

$$41, n = \frac{a}{\lambda} - \frac{1}{2} = \frac{2 \times 10^{-6}}{600 \times 10^{-9}} - \frac{1}{2}$$

বা, $n=2.83\approx 2$ যেহেতু n এর মান ভগ্নাংশ হতে পারে না। রায়হান কেন্দ্রীয় চরম ও উভয় পাশে দুটি করে চরম দেখতে পাবে। অর্থাৎ রায়হান মোট 2+2+1=5 টি চরম বিন্দু দেখতে পাবে। সূতরাং রায়হানের ধারণা সঠিক ছিল না।

প্ররা>৬ নিচের চিত্রে ইয়ং-এর দ্বি-চির পরীক্ষার একটি ব্যবস্থা দেখানো হয়েছে; যেখানে S₁ ও S₂ দুটি সুসংগত উৎস। ব্যবহৃত আলোর তরজাদৈর্ঘ্য 5800 Å।

A. CAT. 2036/

ক, ফার্মাটের নীতিটি লিখ।

ণ, উদ্দীপকে ব্যবহৃত লেন্সের ক্ষমতা নির্ণয় কর।

ঘ. পূর্দার দূরত্ব 20 cm বৃদ্ধি করে একই প্রস্থের ডোরা পাওয়া সম্ভব কি? গাণিতিক বিশ্লেষণসহ মতামত দাও। 8

৬ নং প্রশ্নের উত্তর

ক আলোকরশ্যি এক বিন্দু থেকে অন্য বিন্দুতে যাবার সময় সম্ভাব্য সকল পথের মধ্যে সেই পথ অনুসরণ করে যে পথে সময় সব থেকে কম লাগে।

মরল অণুবীক্ষণ যন্ত্রের বিবর্ধন এর সমীকরণ হলো, $M=1+\frac{D}{f}$, এখানে D হলো স্পন্ট দর্শনের ন্যূনতম দূরত্ব এবং f হলো ফোকাস দূরত্ব। এই সমীকরণ অনুসারে ফোকাস দূরত্ব (f) হ্রাস পেলে, $\frac{D}{f}$ বৃদ্ধি পাবে। $\frac{D}{f}$ বৃদ্ধি পোলে M বৃদ্ধি পাবে। এ কারণে সরল অণুবীক্ষণ যন্ত্রের ফোকাস দূরত্ব হ্রাস পেলে এর বিবর্ধন ক্ষমতা বৃদ্ধি পায়।

ে উদ্দীপক হতে পাই,

লেনের ফোকাস দূরত্ব, f = +20 cm = +0.2 m লেনের ক্ষমতা, P = ?

আমরা জানি,

$$P = \frac{1}{f} = \frac{1}{+0.2} = +5 D \text{ (Ans.)}$$

য উদ্দীপক হতে পাই,

তরজা দৈর্ঘ্য, $\lambda = 5800 \text{Å} = 5800 \times 10^{-10} \text{ m}$ চিড়ম্বয়ের মধ্যবর্তী দূরত্ব, $d = 2\text{mm} = 2 \times 10^{-3} \text{ m}$ পর্দার দূরত্ব, D = 1mডোরা প্রস্থ, x = ?

আমরা জানি,

$$x = \frac{\lambda D}{2d} = \frac{5800 \times 10^{-10} \times 1}{2 \times 2 \times 10^{-3}} = 1.45 \times 10^{-4} \text{ m}$$

পদার দূরত্ব 20 cm বৃশ্বি করে একই প্রস্থের ডোরা পাওয়া সম্ভব। সেক্ষেত্রে ব্যবহৃত আলোর তরজা দৈর্ঘ্য পরিবর্তন করতে হবে। পরিবর্তিত পর্দার দূরত্ব, D' = 1m + 20 cm = 1.2 m . ধরি, পরিবর্তিত তরজা দৈর্ঘ্য = ম' আমরা জানি,

$$x = \frac{\lambda' D'}{2d}$$

$$\forall 1, \ \lambda' = \frac{2dx}{D'}$$

$$= \frac{2 \times 2 \times 10^{-3} \times 2.9 \times 10^{-4}}{1.2}$$

$$= 9.67 \times 10^{-7} \text{ m} = 9666.67 \text{ Å}$$

পর্দার দূরত্ব 20 cm বৃদ্ধি করে একই প্রক্ষের ডোরা পেতে হলে 9666.67 Å তরজা দৈর্ঘ্যের আলো ব্যবহার করতে হবে।

প্রা > ৭ ইয়ং-এর দ্বিচির পরীক্ষায় 5000 × 10⁻¹⁰m তরজাদৈর্ঘ্যের আলোকরশ্মির ব্যবহার করা হলো। যদি তরজাদ্বয়ের মাঝে পথ পার্থক্য 1250 × 10⁻¹⁰m হয়, ভাহলে চিরদ্বয় হতে 1m এবং 1.5m দূরত্বে দুটি অন্ধকার পট্টি পাওয়া যায়।

ক. তরজামুখের সংজ্ঞা দাও।

খ. আলোর ব্যতিচারের শর্তগুলো লিখো। ২

 উদ্দীপক ব্যবহার করে প্রান্ত বিন্দুছয়ের মধ্যকার দশা পার্থক্য নির্ণয় করো।

ছ পরাক্ত উদ্দীপকের পর্দায় গঠিত অন্ধকার পটিছয়ের প্রশন্ততা
কত হতে পারে— এ সম্পর্কিত গাণিতিক বিশ্লেষণের মাধ্যমে
মতামত দাও।

কোনো তরজোর যে রেখা বা তল বরাবর সবগুলো কণা সমদশাসম্পন্ন তাকে ঐ তরজোর তরজা মুখ বলে।

শ্ব ব্যতিচার পাওয়ার শর্তগুলো নিমন্ত্রণ:

- i. আলোর উৎস দু'টি সুসজাত হতে হবে।
- ii. যে দুটি তরজ্ঞার ব্যতিচার ঘটবে তাদের বিস্তার সমান বা প্রায় সমান হতে হবে।
- iii. উৎসগুলো খুব কাছাকাছি অবস্থিত হতে হবে।
- iv. উৎসগুলো খুব সৃক্ষ হতে হবে।

🚳 প্রান্তবিন্দুছয়ের মধ্যে দশা পার্থক্য, Δφ হলে,

$$\Delta \phi = \frac{2\pi}{\lambda} \Delta x$$

$$= \frac{2\pi}{5000 \times 10^{-10}} \times 1250 \times 10^{-10}$$

$$= \frac{\pi}{2} \text{ (Ans.)}$$
 $\Delta \phi = \frac{2\pi}{\lambda} \Delta x$

$$\Delta x = 1250 \times 10^{-10} \text{m}$$
আলোর তরজাদৈর্ঘ্য,
$$\lambda = 5000 \times 10^{-10} \text{m}$$

টিরদ্বয় হতে 1m দূরত্বে গঠিত অন্ধকার পট্টির প্রশস্ততা x₁ ও 1.5m দূরে গঠিত অন্ধকার পট্টির প্রশস্ততা x₂ হলে,

$$\frac{x_1}{x_2} = \frac{\frac{\lambda D_1}{2a}}{\frac{\lambda D_2}{2a}}$$

$$\boxed{41, \frac{x_1}{x_2} = \frac{D_1}{D_2}}$$

$$\boxed{41, \frac{x_1}{x_2} = \frac{1}{1.5}}$$

$$\boxed{41, \frac{x_1}{x_2} = \frac{2}{3}}$$

$$\therefore 3x_1 = 2x_2$$

$$\boxed{349}, x_1 < x_2$$

অতএব, চিরদ্বয় হতে 1m ও 1.5 দূরে গঠিত অন্ধকার পটিদ্বয়ের মধ্যে 1.5m দূরের অন্ধকার পটির প্রশস্ততা বেশি হবে।

প্রশ্ন ⊳৮ ব্যবহৃত আলোর তরজাদৈর্ঘ্য 5000Å এবং BD = 10000Å

/भावमा क्यारकरें करमक।

- ক. সমবর্তন কাকে বলে?
- সুসঞ্চাত আলোক উৎস বলতে কী বুঝ
 – ব্যাখ্যা করে।
- গ. দুটি পরপর উজ্জ্বল ও অন্ধকার ডোরার মধ্যবতী দূরত্ব বের করো।
- উপরোক্ত পথ পার্থক্যের জন্য কোনো ডোরা তৈরি হবে কিনা—
 গাণিতিক বিশ্লেষণ সহ ব্যাখ্যা করে।

৮ নং প্রশ্নের উত্তর

- ক যে প্রক্রিয়ায় বিভিন্ন তলে কম্পমান আলোক তরজাকে একটি নির্দিষ্ট তল বরাবর কম্পনক্ষম করা যায় তাকে আলোকের সমবর্তন বলে।
- যে উৎস হতে আলোক তরজাসমূহ সর্বদা সমদশায় নিঃসৃত হয়, তাকে সুসংগত আলোক উৎস বলে।

প্রকৃতিতে কোনো আলোক-উৎসই সুসংগত নয়। কারণ, যে কোনো বাতি হতে আলোক তরজাসমূহ বিভিন্ন দশায় নিঃসৃত হয় এবং প্রত্যেকটি তরজোর দশা সময়ের সাথে দুত পরিবর্তিত হতে থাকে।

পরপর দুটি উজ্জ্ব ও অন্ধকার ডোরার দূরত্ব,

$$\Delta x = \frac{\lambda D}{2a}$$

$$= \frac{5 \times 10^{-7} \times 1}{2 \times 0.4 \times 10^{-3}}$$

$$= 0.625 \text{ mm (Ans.)}$$

দেওয়া আছে, ব্যবহৃত আলোর তরজাদৈর্ঘ্য, $\lambda = 5000 \text{Å} = 5 \times 10^{-7} \text{m}$ চির ও পর্দার দূরত্ব, D = 1 mচিরছয়ের দূরত্ব, a = 0.4 mm $= 0.4 \times 10^{-3} \text{m}$

আমরা জানি, চিরদ্বয় হতে পর্দার উপর আপতিত কোনো আলোক রশ্মিদ্বয়ের পথপার্থক্য $= n\lambda$ হয় তবে সেই বিন্দুতে গাঠনিক ব্যতিচার হবে এবং পথপার্থক্য $= \left(n + \frac{1}{2}\right)\lambda$ হয় তবে ঐ বিন্দুতে ধ্বংসাম্মক ব্যতিচার হবে। উদ্দীপক হতে দেখতে পাই, পর্দার উপর P বিন্দুতে পথপার্থক্য = BD

= 10000 Å

 $= 2 \times 5000 \text{Å}$

= 2λ [আলোর তরজাদৈর্ঘ্য = λ = 5000Å] যেহেতু পথপার্থক্য তরজাদৈর্ঘ্যের পূর্ণ সংখ্যার গুণিতক, তাই P বিন্দুতে উজ্জ্বল ডোরা তৈরি হবে।

প্রার ▶৯ দুটি সুসংগত উৎস থেকে 5 × 10⁻⁷m তরজা দৈর্ঘ্যের একবর্ণী আলো আপতিত হয়ে 1m দূরে রাখা পর্দার উপর ব্যতিচার বাহু তৈরি করে। দুটি উজ্জ্বল ডোরার মধ্যবতী ব্যবধান 5 × 10⁻⁴m.

क, वर्गामी की?

খ, পয়েন্টিং ভেক্টর ব্যাখ্যা করো।

সুসংগত উৎস দৃটির মধ্যবতী দূরত্ব নির্ণয় করো।

ঘ. S₁ ও S₂ উৎস থেকে তরজা দুটি পর্দার উপর P বিন্দুতে হয়।
P বিন্দুতে ধ্বংসাত্মক নাকি গঠনমূলক ব্যতিচার হতে যখন CP
= 2.43 × 10⁻³m. গাণিতিকভাবে বিশ্লেষণ করো।
8

|क्रिया क्राएसरे करमण|

৯ নং প্রয়ের উত্তর

ক কোনো মাধ্যমে প্রতিসরণের ফলে যৌগিক আলোর বিচ্ছুরণের জন্য মূল রঙের যে পট্টি পাওয়া যায় তাকে বর্ণালী বলে।

তড়িৎ চৌম্বকীয় তরজোর একটি প্রধান বৈশিষ্ট্য হলো এই যে, ইে তরজা একস্থান থেকে অন্যম্থানে শক্তি বহন করতে পারে। কোনো তড়িৎ চৌম্বক তরজোর গতিপথে লম্বভাবে স্থাপিত কোনো একক ক্ষেত্রফলের মধ্য দিয়ে যে পরিমাণ শক্তি অতিক্রম করে তাকে পয়েন্টিং ভেক্টর বলে। একে \overrightarrow{S} দ্বারা চিহ্নিত করা হয়। তড়িৎক্ষেত্র \overrightarrow{E} , চৌম্বক ক্ষেত্র \overrightarrow{B} এর পয়েন্টিং ভেক্টর-এর মধ্যে গাণিতিক সম্পর্ক হলো : $\overrightarrow{S} = \frac{1}{\mu_0} \overrightarrow{E} \times \overrightarrow{B}$ অর্থাৎ $\overrightarrow{S} = \overrightarrow{E} \times \overrightarrow{H}$ এবং একক হলো ওয়াট/মিটার থাহেতু S একটি ভেক্টর রাশি এর দিক হবে যেদিকে শক্তি স্থানান্তরিত হয় সেদিক।

দেওয়া আছে, উৎসদ্বয় হতে পর্দার দূরত্ব, D=1m ব্যবহৃত আলোর তরজাদৈর্ঘ্য, $\lambda=6\times 10^{-7}m$ দুটি উজ্জ্বল ডোরার মধ্যবতী ব্যবধান, $\Delta z=5\times 10^{-4}m$ বের করতে হবে, উৎসদ্বয়ের মধ্যকার দূরত্ব, d=? আমরা জানি, $\Delta z=\frac{\lambda D}{a}$ $\therefore a=\frac{\lambda D}{\Delta z}=\frac{6\times 10^{-7}m\times 1m}{5\times 10^{-4}m}=0.0012m$ = 1.2 mm (Ans.)

ত্ব ৩(ঘ) নং সৃজনশীল প্রশ্নোত্তরের অনুর্প। উত্তর: ৫ম উজ্জ্বল ডোরার মধ্যে অবস্থিত।

প্রনা>১০ একগুচ্ছ সমান্তরাল আলোক রশ্যি অপবর্তন গ্রেটিংয়ের ওপর আপতিত হচ্ছে। গ্রেটিংয়ে প্রতি মিটারে দাগ সংখ্যা 4.24×10⁵। গ্রেটিংয়ের অপবর্তনের ফলে 30° কোণে দ্বিতীয় ক্রমের বর্ণালি রেখা পাওয়া গেল। অন্য একগুচ্ছ সমান্তরাল রশ্যির জন্যে 40° কোণে দ্বিতীয় ক্রমের বর্ণালি রেখা পাওয়া যায়।

/কেনী গার্লম ক্যাডেট কলেজা

क. আলোর সমবর্তন কী?

খ. হাইগেনসের নীতি ব্যাখ্যা করো।

ণ. ১ম ক্ষেত্রে বর্ণালির তরজাদৈর্ঘ্য বের করো।

য় ক্ষেত্রে পরপর দুটো চরম ও পরপর দুটো অবমের কৌণিক
ব্যবধান সমান কিনা গাণিতিকভাবে যাচাই করো।

 ৪

১০ নং প্রশ্নের উত্তর

যে প্রক্রিয়ায় বিভিন্ন তলে কম্পমান আলোক তরজ্ঞাকে একটি নির্দিষ্ট তল বরাবর কম্পনক্ষম করা যায় তাকে আলোকের সমবর্তন বলে।

যাইগেনসের নীতি: কোনো তরজামুখের প্রতিটি বিন্দু এক একটি অণুতরজাের বা গৌণ তরজাের উৎস হিসেবে গণ্য হয়। ঐ অণুতরজাগুলাে মূল তরজাের সমান বেগ নিয়ে সামনের দিকে অগ্রসর হয়। যে কোনাে মুহূর্তে এই অণুতরজাগুলােকে স্পর্শ করে যে সাধারণ স্পর্শক তল পাওয়া যায় তা-ই ঐ সময়ে নতুন তরজামুখের অবস্থান নির্দেশ করে।

ব্যাখ্যা: ধরা যাক, S আলোক উৎস থেকে চারদিকে আলোক তরজা ছড়িয়ে পড়ছে। কোনো এক সময় AB হচ্ছে তরজামুখের অবস্থান। এখন সময়ের সাথে সাথে তরজামুখ সামনের দিকে অগ্রসর হয়। t সময় পরে তরজামুখের অবস্থান কোথায় হবে তা হাইগেনসের নীতির সাহায্যে নির্ণিয় করা যায়।

হাইগেনসের নীতি অনুযায়ী তরজ্ঞামুখে অবস্থিত প্রত্যেকটি কণাকে গৌণ উৎস বলে ধরা যায় এবং ঐ কণাগুলো থেকে অণুতরজ্ঞা বা গৌণতরজ্ঞাসমূহ নির্গত হয়ে চারদিকে একই বেপে ছড়িয়ে পড়ে। সুতরাং । সেকেন্ড পরে তরজ্ঞামুখের অবস্থান বের করার জন্য AB তরজ্ঞামুখের ওপর P₁, P₂, P₃ ইত্যাদি কণা নেওয়া হয়। এখন আলোর বেগ c হলে প্রত্যেক কণাকে কেন্দ্র করে ct ব্যাসার্ধের ছোট ছোট গোলক কল্পনা করা হয়। ঐ গোলকগুলোই হবে P₃, P₂ প্রভৃতি গৌণ উৎস থেকে সৃষ্ট গৌণ তরজ্ঞার অবস্থান। তখন ঐ ছোট গোলকগুলোকে স্পর্শ করে যে গোলীয় তল A₁B₁ পাওয়া যায় তাই হচ্ছে । সেকেন্ড পরে অগ্রসরমান তরজ্ঞামুখের অবস্থান।

প্রথানে, প্রতি মিটারে দাগ সংখ্যা, $N=4.24\times 10^5$ অপবর্তন কোণ, $\theta_n=30^\circ$ n=2তরজ্ঞাদৈর্ঘ্য, $\lambda=?$

আমরা জানি, $\frac{1}{N}\sin\theta_n = n\lambda$ বা, $\lambda = \frac{\sin \theta_n}{n} \times \frac{1}{N}$ $\overline{41}$, $\lambda = \frac{\sin(30)}{2} \times \frac{1}{4.24 \times 10^3}$ $\lambda = 5.9 \times 10^{-7} \text{ m (Ans.)}$ য় ক্ষেত্ৰে, অপবৰ্তন কোণ, $\theta = 40^\circ$ দাগ সংখ্যা, $d = \frac{1}{N} = \frac{1}{4.24 \times 10^5} = 2.36 \times 10^{-6}$ তরজাদৈর্ঘ্য ম হলে. আমরা জানি, $d \sin \theta = n\lambda$ $\overline{1}, \lambda = \frac{d\sin\theta}{n} = \frac{2.36 \times 10^{-6} \times \sin(40^{\circ})}{2}$ $\lambda = 7.59 \times 10^{-7} \text{ m}$ আবার, চরমের ক্ষেত্রে জানি, $d \sin \theta = n\lambda$ $\sin \theta_1 = \frac{\lambda}{d} = \frac{7.59 \times 10^{-7}}{2.36 \times 10^{-6}}$ $\theta_1 = 18.76^{\circ}$ n = 2 হলে, $\sin \theta_2 = \frac{2\lambda}{d}$ $\theta_2 = 40.03$

∴ পরস্পর দুটো চরমের কৌণিক ব্যবধান, (θ₂ – θ₁) = (40.03 – 18.76) = 21.27°

অবমের ক্ষেত্রে আমরা জানি,

$$d \sin\theta = (2n+1)\frac{\lambda}{2}$$

n = 1 হলে,

$$\sin\theta_1 = \frac{3\lambda}{2d} = \frac{3 \times 7.59 \times 10^{-7}}{2 \times 2.36 \times 10^{-6}}$$

 $\theta_1 = 28.84^{\circ}$

n = 2 হলে,

$$\sin \theta_2 = \frac{5\lambda}{2d}$$

 $\theta_2 = 53.51^{\circ}$

∴ অবমের ক্ষেত্রে কৌণিক ব্যবধান (θ₂ − θ₁) = 24.67° সূতরাং বলা যায় যে, দুটি ক্ষেত্রে কৌণিক ব্যবধান সমান নয়।

প্রা >>> রাসেল ইয়ং এর দ্বি-চির পরীক্ষায় 5.5×10¹⁴ Hz-এর আলো ব্যবহার করে চির হতে 1.55m দূরে অবস্থিত পর্দার উপর ব্যতিচার ঝালর তৈরি করল। পরপর দুইটি উজ্জ্বল ডোরার মধ্যে দূরত্ব 0.75mm। অন্যদিকে, আরিফের পরীক্ষায় দুটি চিরের মধ্যে পার্থক্য 2.0 mm। পর পর দুইটি উজ্জ্বল ডোরার দূরত্ব 0.295 mm।

(रक्षेत्रमात्रकार्ते कारसर्वे करमञ्जू, ठाउँणाप/

ক. ফার্মাটের নীতি কী?

খ. লেখচিত্রের সাহায্যে ন্যুনতম বিচ্যুতি ব্যাখ্যা করো।

গ. রাসেলের পরীক্ষায় চির-ছয়ের মধ্যে দূরত্ব কত?

ঘ. রাসেল এবং আরিফের মধ্যে কে বেশি তরজ্ঞাদৈর্ঘ্যের আলো ব্যবহার করেছিল? গাণিতিকভাবে তোমার যুক্তি ব্যাখ্যা দাও। ৪

১১ নং প্রয়ের উত্তর

ক আলোক রশ্মি এক বিন্দু হতে অপর এক বিন্দুতে যাওয়ার সময় সম্ভাব্য সকল পথের মধ্যে সেই পথ অনুসরণ করে যে পথে সব থেকে কম সময় লাগে। থা প্রিজমে আপতন কোণ খুব অশ্বমানের হলে অত্যাধিক মানের বিচ্যুতি পাওয়া যায়। কিন্তু আপতন কোণের মান ক্রমশ বাড়াতে থাকলে প্রাপ্ত বিচ্যুতি কোণের মান কমতে থাকে। একসময় বিচ্যুতি কোণ সর্বনিম্ন মানে উপনীত হয়। এরপর আপতন কোণ বাড়াতে থাকলে বিচ্যুতি কোণের মান বাড়তে থাকে।

সুতরাং, প্রিজমে বিচ্যুতি কোণ বনাম আপতন কোণ লেখ নিম্নরূপ:

টিরের দূরত্ব = a হলে, $\Delta x = \frac{\lambda D}{a} = \frac{cD}{fa}[c = আলোর বেগ]$ $\Rightarrow 0.75 \times 10^{-3} = \frac{3 \times 10^8 \times 1.55}{5.5 \times 10^{14} \times a}$:. a = 1.127 mm. (Ans.)

দেওয়া আছে. আলোর কম্পাভক, $f = 5.5 \times 10^{14} Hz$ পর্দার দূরত্ব, D = 1.55 m পরপর উজ্জ্বল ডোরার পার্থক্য, $\Delta x = 0.75 \text{ mm}.$

দেওয়া আছে,

রাসেলের পরীক্ষায়,

🛈 রাসেলের পরীক্ষায় আলোর তরজাদৈর্ঘ্য, $\lambda_R = \frac{c}{f}$, [c = আলোর বেগ] $=\frac{3\times10^8}{5.5\times10^{14}}$ = 5455 Å

কম্পাডক, $f_R = 5.5 \times 10^{14} \text{Hz}$ আরিফের পরীক্ষায়, চির পার্থক্য, a = 2 mm $= 2 \times 10^{-3} \text{ m}$ পরপর দৃটি উজ্জ্বল ডোরার আরিফের পরীক্ষায় আলোর তরজাদৈর্ঘ্য দূরত্ব, $= \lambda_A$ হলে,

 $\Rightarrow \lambda_A = \frac{\Delta xa}{D}$ $=\frac{0.295\times10^{-3}\times2\times10^{-3}}{1.55}$

= 3806 Å

 $\Delta x = 0.295 \text{ mm}$ $= 0.295 \times 10^{-3} \text{ m}$ পর্দার দূরত্ব, D = 1.55 m

 $\lambda_R > \lambda_A$ অতএব, উদ্দীপকের পরীক্ষাদ্বয়ে রাসেল অপেক্ষাকৃত বেশি তরজা দৈর্ঘ্যের আলো ব্যবহার করেছিল।

প্ররা ১১১ একটি ইয়ং এর দ্বিচিড় পরীক্ষায় চিড় দৃটির মধ্যবতী দূরত্ব 0.4mm। চিড়ের সমান্তরালে 1m দূরত্বে স্থাপিত পর্দায় ভোরা সৃষ্টি করা হলে দেখা যায় কেন্দ্রীয় উজ্জ্বল ডোরা থেকে 12 তম উজ্জ্বল ডোরার [बर्जिमाम क्राएडिं क्रमज] দূরত্ব 93mm।

ক, মাইক্রন কি?

খ. রান্নার কাজে কেনো মাইক্রোওয়েভ ব্যবহার করা হয়? সংক্ষেপে ব্যাখ্যা করে।

গ. একবণীয় আলোর তরজ্ঞাদৈর্ঘ্য বের কর?

ঘ় যদি সম্পূর্ণ পরীক্ষাটি পানির নিচে করা হত তখন ডোরার প্রস্থ কমে যাবে বা বেড়ে যাবে– গাণিতিক পর্যবেক্ষণের মাধ্যমে তোমার মতামত দাও।

১২ নং প্রশ্নের উত্তর

🚮 মাইক্রন হলো দৈর্ঘ্য পরিমাপের একক, প্রকাশ করা হয় 🛚 দিয়ে। $1 \, \mu m = 10^{-6} m \, t$

🚮 তড়িংচম্বক বর্ণালীতে সাধারণত যার তরজাদৈর্ঘ্য বেশি সেটি কম তর্জ্ঞাদৈর্ঘ্যের বর্ণালী অপেক্ষা কম উষ্ণ হয়। স্বাভাবিকভাবেই অবলোহিত রশ্যি বা সাধারণ আলো মাইক্রোওয়েভের চেয়ে উষ্ণতর। তথাপি আমরা খাবার রান্নায় মাইক্রোওয়েড ব্যবহার করি। কারণ, সাধারণ খাবার খুব দ্রত সাধারণ আলো বা অবলোহিত রশ্মি শোষণ করে ফেলে। ফলে

খাবারের নিচের স্তর গরম হলেও উপরের স্তর ঠাণ্ডা থেকে যায়। মাইক্রোওয়েভ কম শোষিত হওয়ার কারণে খাবারের উপরের স্তর পর্যন্ত পৌছতে পারে। ফলে খাবার গরম/রান্না করা সহজতর হয়।

গ এখানে

ভোরার ক্রম, n = 12 চির দুটির মধ্যবর্তী দূরত্ব, $d = 0.4 \text{ mm} = 4 \times 10^{-4} \text{ m}$ চির হতে পর্দার দূরত্ব, D = 1m

কেন্দ্রীয় উজ্জ্বল পট্টি হতে 12 তম উজ্জ্বল পট্টির দূরত্ব, x₁₂ = 93 mm

একবণীয় আলোর তরজা দৈর্ঘ্য, λ = ? আমরা জানি,

$$x_n = \frac{n\lambda D}{d}$$

$$\exists I, \quad \lambda = \frac{d x_n}{nD}$$

$$\therefore \quad \lambda = \frac{4 \times 10^{-4} \times 0.093}{12 \times 1} = 3.1 \times 10^{-6} \text{ m (Ans.)}$$

🛐 উদ্দীপকের বর্ণিত পরীক্ষণটি পানিতে সম্পন্ন করলে ডোরার প্রস্থ পরিবর্তন হবে কারণ পানিতে প্রতিসরণাক্ত পরিবর্তন হওয়াতে আলোর বেণ এবং তরজাদৈর্ঘ্য পরিবর্তন হয়।

এখন পরিক্ষণটিতে ব্যবহৃত আলোর তরজাদৈর্ঘ্য, $\lambda = 3.1 \times 10^{-6} \mathrm{m}$

$$\therefore$$
 ডোরার প্রস্থা, $\Delta x = \frac{D\lambda}{2a}$

আবার, পানির প্রতিসরনাংক µw = $\frac{4}{3}$

∴ পানিতে উক্ত আলোর তরজা দৈর্ঘ্য λ_w হলে,

$$\mu_{w} = \frac{c}{c_{w}} = \frac{\lambda}{\lambda_{w}}$$

$$\exists 1, \ \lambda_{w} = \frac{\lambda}{\mu_{w}}$$

$$= \frac{3}{4} \lambda$$

$$∴$$
 পানির সৃষ্ট ডোরার প্রম্থ, $\Delta x_w = \frac{D\lambda_w}{2a}$

$$= \frac{3}{4} \left(\frac{D\lambda}{2a}\right)$$

$$= \frac{3}{4} \Delta x$$
বা, $\frac{\Delta x_w}{\Delta x} = \frac{3}{4}$
বা, $\frac{\Delta x - \Delta x_w}{\Delta x} = \frac{4-3}{4} \times 100\%$

অতএব, পরীক্ষণটি পানিতে করলে ডোরার প্রস্থ 25% হ্রাস পাবে।

প্রবা ১১০ ইয়ং এর দ্বি চির পরীক্ষা করার জন্য একটি আলোক উৎস ৰ্যবহার করা হলো যার বায়ু মাধ্যমে তরজা দৈর্ঘ্য 5600Å ফলে 1.2m দূরে অবস্থিত পর্দার উপর ব্যতিচারপট্টি দেখা গেল। চির দুটির মধ্যবর্তী দূরত্ব 0.1mm পরীক্ষণটি অন্য একটি মাধ্যমে করা হলো।

/वानाडेक डेखवा घरडन करमन, छाका/

ক. গ্ৰেটিং ধ্ৰক কি?

থ, বিপদ সংকেতে সব সময় লাল ব্যবহার করা হয় কেন?

গ্রায়ু মাধ্যমে সৃষ্ট ব্যতিচার ডোরার ব্যবধান কত?

ঘ্ উদ্দীপকের পরীক্ষাটি 1.33 প্রতিসরণাডেকর কোনো মাধ্যমে রেখে করলে ব্যতিচার ডোরার ব্যবধানের কী কোনো পরিবর্তন হবে? গাণিতিকভাবে ব্যাখ্যা করো।

১৩ নং প্রয়ের উত্তর

একটি অপবর্তন গ্রেটিং এর প্রতিটি চিরের প্রস্থা এবং প্রতিটি দাগের প্রস্থের যোগফলকে গ্রেটিং ধুবক বলে।

বিদপ সংকেতে লাল আলো ব্যবহার করার প্রধান কারণ এর কম বিচ্যুতি।

এখন দৃশ্যমান যে কোন বর্ণের আলোর মধ্যে লাল বর্ণের আলোর তরজ্ঞাদৈর্ঘ্য সবচেয়ে বেশি, অর্থাৎ যে কোন মাধ্যমে লাল আলোর জন্য মাধ্যমের প্রতিসরনাংক কম হয়। সূতরাং প্রতিসরণের ফলে লাল বর্ণের আলোর বিচ্যুতি সবচেয়ে কম, অর্থাৎ বায়ু মাধ্যমে আলোর যাওয়ার পথে প্রতিসরিত হলেও সবচেয়ে কম বাঁকবে। এজন্য বিপদ সংকেতের আলো অনেক দুর হতে দেখা যাবে।

এসব কারণে বিপদ সংকেতে লাল আলো ব্যবহার করা হয়।

🚮 ১ (গ) নং সূজনশীল প্রশ্নোত্তরের অনুরূপ। উত্তর: 3.36 mm।

আ এখানে, ইয়ং এর দ্বিচির পরীক্ষায়, চিরন্ধয়ের মধ্যবর্তী দূরত্ব, $a = 0.1 \,\mathrm{mm}$ = $0.1 \times 10^{-3} \,\mathrm{m}$

ব্যবহৃত আলোর তরজাদৈর্ঘ্য, λ = 5600Å = 5600 × 10⁻¹⁰m

চিড় হতে পর্দার দূরত্ব, D = 1.2 m এখন, বায়ুতে চিড়ের প্রস্থ Δx, হলে,

$$\Delta x_a = \frac{\lambda D}{2a}$$

$$= \frac{5600 \times 10^{-10} \times 1.2 \text{m}}{2 \times 0.1 \times 10^{-3} \text{m}}$$

$$= 3.36 \times 10^{-3} \text{ m}$$

উদ্দীপকে বর্ণিত সমস্ত ব্যবস্থাটিকে যদি 1.33 প্রতিসরণাভকবিশিষ্ট মাধ্যমে নেওয়া হয় তবে আলোর তরজাদৈর্ঘ্য প্রাস পাবে কারণ, তরলটির প্রতিসরণাঙ্ক বায়ু অপেক্ষা বেশি তাই তরলটিতে বায়ু অপেক্ষা আলোর বেগ কম এবং তরলে ব্যবহৃত আলোর কম্পাঙ্ক অপরিবর্তিত থাকবে । $\Delta x = \frac{\lambda D}{2a}$ সূত্রানুসারে D এবং a অপরিবর্তিত থাকলে, $\Delta x \propto \lambda$ অর্থাৎ, তরলটিতে λ এর মান অপেক্ষাকৃত কম বলে সেখানে ডোরার প্রস্থ বায়ুতে থাকাকালীন সময়ের তুলনায় কম হবে । ধরি, তরলটিতে ডোরার প্রস্থ Δx_1

বায়ু এবং তরলটিতে ব্যবহৃত আলোর তরজাদৈর্ঘ্য
$$\lambda_a$$
 এবং λ_i হলে,
$$\frac{\Delta x_a}{\Delta x_i} = \frac{\lambda_a}{\lambda_i} = \frac{C_a/f}{C_i/f} \ [f = ধুবমান কম্পাডক]$$

$$= \frac{C_a}{C_i} = \mu_i$$

$$= বায়ুর সাপেন্দে তরলটির প্রতিসরাজক
$$= 1.33$$$$

$$\Delta x_t = \frac{\Delta x_u}{1.33} = \frac{3.36 \times 10^{-3} \text{m}}{1.33} = 2.53 \times 10^{-3} \text{m}$$

সুতরাং, উদ্দীপকে বর্ণিত সমস্ত ব্যবস্থাটিকে যদি 1.33 প্রতিসরণাডেকর তরলে নেওয়া হয় তবে ডোরার প্রস্থ প্রাস পাবে এবং এই ব্রাসকৃত মান হলো $2.53 \times 10^{-3} \mathrm{m}$.

প্রর ▶ ১৪ ইয়ং এর ছিচিড় পরীক্ষায় দুইটা চিড়ের দূরত্ব 0.035cm এবং পরপর দুইটা উজ্জ্বল ভোরার দূরত্ব 3.95 × 10⁻⁴ m, পর্দার দূরত্ব D = 0.3m।

(ভিজারননিসা দূন স্কুল এক কমেল, ঢাকা)

ক. অপবর্তন কাকে বলে?

थ. गठनमृजक वाजिठारत्रत्र गर्ज की की?

গ. উদ্দীপকে আলোর তরজা দৈর্ঘ্য কত?

ঘ. যদি ৪৪০০ তরজা দৈর্ঘ্যের আলো ফেলা হয় এবং পরপর দুইটা উজ্জল ভারার দুরত্ব একই রাখতে হলে কী ব্যবস্থা নিতে হবে?

১৪ নং প্রশ্নের উত্তর

🚰 তীক্ষ ধার ঘেঁষে যাবার সময় বা সরু ছিদ্র দিয়ে যাবার সময় আলো কিছুটা বেঁকে যাওয়ার ধর্মকে অপবর্তন বলে।

বা দুটি তরজা যখন একই দশায় মিলিত হয় তখন লব্বি তরজোর বিস্তার তথা প্রাবল্য সর্বাধিক হয় ফলে উজ্জ্বল ডোরার সৃষ্টি হয় ও গঠনমূলক ব্যতিচার ঘটে।

পর্দার উপর যে সকল বিন্দুতে আপতিত তরজাদ্বয়ের পথ পার্থক্য $\frac{\lambda}{2}$ এর জোড় গুণিতক সে সকল বিন্দুতে গঠনমূলক ব্যতিচার সৃষ্টি হয়।

51

ভোৱার ব্যবধান,
$$\Delta x = \frac{D\lambda}{a}$$

বা, $\lambda = \frac{a\Delta x}{D}$
= $\frac{0.00035 \times 3.95 \times 10^{-4}}{0.3}$
= 4.6×10^{-7} m
= 4608Å (Ans.)

এখানে,
চিরদ্বয়ের মধ্যবতী দূরত্ব,
a = 0.035 cm = 0.00035 m
ডোরার ব্যবধান,
Δx = 3.95 × 10⁻⁴ m
পর্দার দূরত্ব, D = 0.3 m
আলোর তরজাদৈর্ঘ্য, λ = ?

আ আমরা জানি, পরপর দুটি উজ্জ্ব ডোরার মধ্যবর্তী দূরত্ব, $\Delta x = \frac{\lambda D}{a}$ দেওয়া আছে,

আদি পর্দার দূরত্ব, D=0.3~m আদি দুটি চিড়ের দূরত্ব, $a=0.035\times 10^{-2}~\text{m}$ আদি দুটি উজ্জ্বল ডোরার দূরত্ব $\Delta x=3.95\times 10^{-4}~\text{m}$ নতুন আলোর তরজাদৈর্ঘ্য, $\lambda=8800\text{\AA}$ $=8.8\times 10^{-7}\text{m}$

যদি উজ্জ্ব ডোরার দূরত্ব একই রাখতে হয় তবে,

$$\Delta x = 3.95 \times 10^{-4} = \frac{8.8 \times 10^{-7} \times D}{a}$$

$$\frac{D}{a} = 448.9$$

অর্থাৎ, চিরের দূরত্ব এবং পর্দার দূরত্ব এমনভাবে বাছাই করতে হবে যেন পর্দা ও চিরের দূরত্বের অনুপাত 448.9 হয়।

প্রশ্ন >১৫ ইয়ং এর দ্বিচিড় পরীক্ষায় দুটি চিড়ের মধ্যবর্তী দূরত্ব 0.3mm এবং চিড় হতে পদার্থ দূরত্ব 0.1m। পরীক্ষাটি যদি বায়ুতে সম্পন্ন করা হয় তাহলে, কেন্দ্রীয় উজ্জ্বল ডোরা হতে ৮ম উজ্জ্বল ডোরা 6.5mm দূরে পাওয়া যায়। পানির প্রতিসরাংক 1.33।

[जिका द्वित्रिराजनिमान मराजन करनाय, जिका]

ক, আলোর সমবর্তন কী?

খ. তড়িৎ চৌম্বকীয় তরজোর বৈশিষ্ট্য লিখ।

......

গ. উল্লেখিত পরীক্ষাটি ব্যবহৃত আলোর তরজা দৈর্ঘ্য বায়ুতে কত হবে নির্ণয় করো।

ঘ. উল্লেখিত পরীক্ষাটি পানিতে সম্পন্ন করলে উজ্জ্বল ডোরার প্রস্থ পরিবর্তন হবে কিং গাণিতিকভাবে বিশ্লেষণ করো। 8

১৫ নং প্রশ্নের উত্তর

ক যে প্রক্রিয়ায় বিভিন্ন তলে কম্পমান আলোক তরজাকে একটি নির্দিষ্ট তল বরাবর কম্পনক্ষম করা যায় তাকে আলোকের সমবর্তন বলে।

খ

- তড়িৎ চুম্বকীয় তরজা তড়িৎক্ষেত্র
 ট ও চৌম্বকক্ষেত্র
 ট এর
 পর্যায়বৃত্ত পরিবর্তনের ফলে উৎপল্ল হয়।
- তরজা সন্দালনের অভিমুখ ট ও ট উভয়ের উপর লয়। তাই
 তভিচ্ছয়কীয় তরজা আড় তরজা।
- iii. তড়িচ্চুম্বকীয় তরজোর সঞ্চালনের জন্য কোনো মাধ্যমের প্রয়োজন হয় না।

- 😚 উদ্দীপকে ব্যবহৃত আলোর তরজ্ঞাদৈর্ঘ্য, λ হলে,

$$x_n = n\lambda \frac{D}{a}$$

and $\lambda = \frac{x_n a}{nD}$

$$= \frac{6.5 \times 10^{-3} \times 3 \times 10^{-4}}{8 \times 0.1}$$

$$= 2.4375 \times 10^{-6} \text{m (Ans.)}$$

এখানে. উজ্জ্বলতার ক্রম, n = 8 চিরের মধ্যবতীদূরত, a = 0.3 mm = 3 × 10⁻⁴ m চির হতে পর্দার দূরত, D = 0.1 m কেন্দ্রীয় উজ্জ্বল ডোরা হতে ৮ম উজ্জ্বল ডোরার দূরত, x_n = 6.5 mm = 6.5 × 10⁻³ m

বা আলোক তরজা এক মাধ্যম হতে অন্য মাধ্যমে প্রবেশ করলে কম্পাংক একই থাকে কিন্তু তরজাদৈর্ঘ্য ও বেগ পরিবর্তিত হয়। পানিতে ব্যবহৃত আলোর তরজা দৈর্ঘ্য ম, হলে,

$$\begin{split} & \frac{\mu_w}{\mu_a} = \frac{C_a}{C_w} = \frac{f\lambda_u}{f\lambda_w} = \frac{\lambda_u}{\lambda_w} \\ & \therefore \ \lambda_w = \lambda_a \times \frac{\mu_a}{\mu_w} = \lambda \times \frac{1}{1.33} = \frac{3\lambda_u}{4} \end{split}$$

এখন, বায়ুতে সৃষ্ট ডোরার প্রস্থ x, ও পানিতে x, হলে,

$$\frac{x_{w}}{x_{a}} = \frac{\frac{\lambda_{w}D}{2a}}{\frac{\lambda_{a}D}{2a}} = \frac{\lambda_{w}}{\lambda_{a}}$$

$$= \frac{\frac{3\lambda_{a}}{4}}{\lambda_{a}}$$

$$= \frac{\frac{3}{4}}{\lambda_{a}}$$

বা, Xx < 1

 $\therefore x_w < x_a$

অর্থাৎ, পানিতে সৃষ্ট ভোরার প্রস্থ বায়ুর চাইতে কম। অতএব, ভোরা প্রস্থ পরিবর্তিত হবে।

প্ররা>১৯ 550 nm তরজা দৈর্ঘ্যের একবর্ণী আলোক রশ্মি নিচের চিত্রানুসারে একক চিরের উপর আপতিত হয় এবং পর্দার উপর Intensity Pattern তৈরি করে।

/शने क्रम करमज, एका/

ক, ভৌত আলোকবিজ্ঞান কাকে বলে?

- কম না বেশি অধায়ু সম্পন্ন তেজস্ক্রিয় মৌল চিকিৎসা বিজ্ঞানে সহায়ক ব্যাখ্যা করো।
- গ, ম্লিট-এর প্রস্থ (D) কত?
- ঘ. কেন্দ্রীয় চরমের বিস্তৃতি কোণ নির্ণয় সম্ভব কি? গাণিতিকভাবে ব্যাখ্যা করো।

১৬ নং প্রস্নের উত্তর

ক্র আলোক বিজ্ঞানের যে শাখায় আলোর অপবর্তন, সমাবর্তন এবং ব্যতিচার সম্পর্কে আলোচনা করা হয় তাকে ভৌত আলোকবিজ্ঞান বলে।

চিকিৎসা বিজ্ঞানে, বিশেষত রেডিও থেরাপিতে উচ্চ তেজস্ক্রিয় রশ্মি ব্যবহৃত হয়। আমরা জানি তেজস্ক্রিয়তার তীব্রতা তেজস্ক্রিয় ক্ষয় ধুবকের উপর নির্ভর করে। তেজস্ক্রিয় ক্ষয় ধুবক বেশি হলে তার তীব্রতা বেশি হয়। আবার যে তেজস্ক্রিয় মৌলের অর্ধায়ু অল্প তার ক্ষয়ধুবক বেশি হয়। এজনাই চিকিৎসা বিজ্ঞানে কম অর্ধায়ু সম্পন্ন তেজস্ক্রিয় মৌল ব্যবহৃত হয়।

গ অপবর্তনের ক্ষেত্রে অবমের শর্ত, এখানে, চিত্র হতে, D sinθ_n = nλ

$$D = \frac{2 \times 550 \times 10^{-9}}{\sin 45^{9}}$$
$$= 1.56 \times 10^{-6} \text{m (Ans.)}$$

এখানে, চিত্ৰ হতে, দ্বিতীয় অৰমের জন্য অপবর্তন কোণ, θ_n = 45° দ্বিতীয় অবম, n = 2 চিত্ৰ প্রস্থ, D = ? তরজাদৈর্ঘ্য, λ = 550nm = 550 × 10⁻⁹m

ঘ

এখানে, কেন্দ্রীয় চরমের বিস্তৃতি কোণ হবে 20x প্রথম অবমের জন্য,

$$D \sin \theta_x = n\lambda$$

এখানে, D = চির প্রস্থ

a = 1 (প্রথম অবম)

তরজ্ঞাদৈর্ঘ্য $\lambda = 550 \text{ nm}$

$$= 550 \times 10^{-9} \text{m}$$

$$\therefore \sin \theta_x = \frac{1 \times 550 \times 10^{-9}}{1.56 \times 10^{-6}}$$

$$\theta_{*} = 20.64^{\circ}$$

$$= 2 \times 20.64^{\circ}$$

 $=41.28^{\circ}$

প্রা > ১৭ বাংলাদেশে প্রথম শিশুদের চ্যানেল 'দুরন্ত' গুরুত্বপূর্ণ অবদান রেখে চলেছে। নবম শ্রেণির শিক্ষার্থী শাফা ঐ চ্যানেলে পুতৃল নাচ দেখার সময় আকাশে বিদ্যুৎ চমকানোর কারণে ছবি অস্পন্ট হয়ে যায় ও শব্দ সৃষ্টি হয়। সে অভিভাবকদের প্রশ্ন করে জানতে পারে তরজাের ব্যতিচারের কারণে সমস্যা হয়েছে। কিন্তু সেদিন সে না বুঝলেও পরবর্তীতে সম্মান ২য় বর্ষে ব্যতিচারের নিম্নাক্ত পরীক্ষা করে পর্দায় ডোরা প্রস্থা পরিমাপ করে।

ব্যবহৃত গেন্সের ক্ষেত্রে, r₁ = 15cm এবং r₂ = 30cm এবং ব্যবহৃত আলোর তরজাদৈর্ঘ্য = 7000Å
/মাইদর্শ্যেন কলেজ

- ক্ আলোর সমবর্তন কাকে বলে?
- খ. হাইগেনের নীতি ব্যাখ্যা করো।
- গ, ডোরা প্রস্থ নির্ণয় করো।
- ঘু বায়ুতে লেঙ্গটির প্রতিসরণাক্ত নির্ণয় সম্ভব কী? গাণিতিকভাবে
 - বিশ্লেষণ করো।

.

হাইগেনের নীতি: কোনো তরজামুখের প্রতিটি বিন্দু এক একটি অণুতরজ্ঞার বা গৌণ তরজ্ঞার উৎস হিসেবে গণ্য হয়। ঐ অণুতরজ্ঞাগুলো মূল তরজ্ঞার সমান বেগ নিয়ে সামনের দিকে অগ্রসর হয়। যে কোনো মুহূর্তে এই অণুতরজ্ঞাগুলোকে স্পর্শ করে যে সাধারণ স্পর্শক তল পাওয়া যায় তা-ই ঐ সময়ে নতুন তরজামুখের অবস্থান নির্দেশ করে।

ব্যাখ্যা: ধরা যাক, S আলোক উৎস থেকে চারদিকে আলোক তরজা ছড়িয়ে পড়ছে। কোনো এক সময় AB হচ্ছে তরজামুখের অবস্থান। এখন সময়ের সাথে সাথে তরজামুখ সামনের দিকে অগ্রসর হয়। চ সময় পরে তরজামুখের অবস্থান কোথায় হবে তা হাইগেনের নীতির সাহায্যে নির্ণয় করা যায়।

হাইগেনের নীতি অনুযায়ী তরজামুখে অবস্থিত প্রত্যেকটি কণাকে গৌণ উৎস বলে ধরা যায় এবং ঐ কণাপুলা থেকে অণুতরজা বা গৌণতরজাসমূহ নির্গত হয়ে চারদিকে একই বেগে ছড়িয়ে পড়ে। সূতরাং সেকেন্ড পরে তরজামুখের অবস্থান বের করার জন্য AB তরজামুখের ওপর P_1 , P_2 , P_3 ইত্যাদি কণা নেওয়া হয়। এখন আলোর বেগ ৫ হলে প্রত্যেক কণাকে কেন্দ্র করে ct ব্যাসার্ধের ছোট ছোট গৌলক করানা করা হয়। ঐ গোলকগুলোই হবে P_1 , P_2 প্রভৃতি গৌণ উৎস থেকে সৃষ্ট গৌণ তরজাের অবস্থান। তখন ঐ ছোট গোলকগুলােকে স্পর্ণ করে যে গোলীয় তল A_1B_1 পাওয়া যায় তাই হচ্ছে । সেকেন্ড পরে অগ্রসরমান তরজামুখের অবস্থান।

গ্ৰ

ডোরা প্রহণ্ড.

$$\Delta x = \frac{\lambda D}{2a}$$

$$= \frac{7000 \times 10^{-10} \times 1}{2 \times 2 \times 10^{-3}}$$

$$= 1.75 \times 10^{-4} \text{ m (Ans.)}$$

এখানে,
চির ব্যবধান, a = 2mm $= 2 \times 10^{-3} m$ পর্দার দূরত্ব, D = 1mআলোর তরজা দৈর্ঘ্য, $\lambda = 7000 \text{ Å}$ $= 7000 \times 10^{-10} m$

এখানে.

¥

লেন্স প্রস্তুতকারকের সমীকরণ হতে, $\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$ বা, $\frac{1}{20} = (\mu - 1) \left(\frac{1}{15} - \frac{1}{30} \right)$

 $\overline{41}, \frac{1}{20} = (\mu - 1). \frac{1}{10}$

বা, $\frac{1}{2} = \mu - 1$

 $\therefore \mu = 1.5 \text{ (Ans.)}$

১ম পৃষ্ঠের ব্যাসার্থ, r₁ = 15cm ২য় " r₂ = - 30cm ফোকাস দূরত্ব, f = 20cm প্রতিসরণাংক, μ = ?

অতএব, বায়ুতে লেগটির প্রতিসরাজ্ঞ্ব নির্ণয় করা সম্ভব।

名名>>〉

ইয়ং এর দ্বি-চির পরীক্ষায় ব্যবহৃত আলোর তরজ্ঞাদৈর্ঘ্য 3800Å।
/আদমজী ক্যাউনমেন্ট অলেজ, ঢাকা

ক, আলোর সমবর্তন কী?

খ, অপবর্তন এক প্রকার ব্যতিচার— ব্যাখ্যা করো।

গ. O এবং P বিন্দুর মধ্যবতী দূরত্ব কত?

ঘ. সম্পূর্ণ পরীক্ষাটি 1.30 প্রতিসরণাডেকর কোন মাধ্যমে করা হলে ডোরা প্রফেথর কী পরিবর্তন হবে?

गাণিতিকভাবে
বিশ্লেষণ করো।

8

১৮ নং প্রশ্নের উত্তর

ক যে প্রক্রিয়ায় বিভিন্ন তলে কম্পমান আলোক তরজাকে একটি নির্দিষ্ট তল বরাবর কম্পনক্ষম করা যায় তাকে আলোকের সমবর্তন বলে।

সকল তাড়িতটৌয়ক তরজাসহ বেশকিছু যান্ত্রিক তরজা (যেমন শব্দ)
এমনভাবে শক্তি সঞ্চালিত করে যেন, তরজা সঞ্চারণকারী প্রতিটি কণাই
নিজ নিজ উপতরজা সৃষ্টি করে। এ উপতরজাগুলো মূল তরজোর মতো
প্রবল না হলেও এরাও সুযোগমতো ব্যতিচার প্যাটার্ন সৃষ্টি করে।
অপবর্তনের কারণেই তীক্ষ ধারের কাছে এসে তরজাগুলো বেঁকে যায়।

অপবর্তন এক প্রকার ব্যতিচার। তবে সাধারণ ব্যতিচারের মতো এক্ষেত্রে উজ্জ্বল ভোরাগুলোর প্রস্থ সমান হয় না।

া P বিন্দুর ক্ষেত্রে আলোক তরজান্বয়ের পথ পার্থক্য = $11\lambda - 5\lambda = 6\lambda$

সূতরাং P হলো 6-তম উজ্জল ডোরার অবস্থান দেওয়া আছে, চিরদ্ধরে মধ্যকার দূরত্ব, $a=1~\mathrm{mm}=10^{-3}~\mathrm{m}$ চিরদ্বয় হতে পর্দার দূরত্ব, $\Delta=1~\mathrm{m}$

এবং ব্যবহৃত আলোর তরজাদৈর্ঘ্য, $\lambda=3800~\textrm{Å}=3.8\times10^{-7}~\textrm{m}$

ে ডোরা ব্যবধান, $\Delta z = \frac{\lambda D}{a} = \frac{3.8 \times 10^{-7} \text{ m} \times 1 \text{m}}{10^{-3} \text{ m}}$ = $3.8 \times 10^{-4} \text{ m}$

 \therefore OP = $6\Delta z = 6 \times 3.8 \times 10^{-4} \text{ m} = 22.8 \times 10^{-4} \text{ m}$ (Ans.)

উদ্দীপকে বর্ণিত অবস্থায় ডোরাপ্রস্থ, $\Delta x = \frac{\Delta z}{2} = \frac{3.8 \times 10^{-4} \text{ m}}{2}$ $= 1.9 \times 10^{-4} \text{ m}$

আমরা জানি, $\Delta x=\frac{\lambda D}{2a}=\frac{CD}{f(2a)}$ [শূন্য মাধ্যমে, $c=3\times 10^8~\text{ms}^{-1}$]

 μ প্রতিসরাজ্কের মাধ্যমে পরীক্ষাটি করা হলে আলোর বেগ হবে, $\mathbf{c}' = \frac{\mathbf{c}}{\mu}$

লেকেরে, $\Delta x' = \frac{c'D}{f(2a)} = \frac{cD}{\mu f(2a)}$

 $\therefore \frac{\Delta x'}{\Delta x} = \frac{CD}{\mu f(2a)} \times \frac{f(2a)}{CD} = \frac{1}{\mu}$

 $\Delta x' = \frac{\Delta x}{\mu} = \frac{1.9 \times 10^{-4} \text{ m}}{1.3} = 1.46 \times 10^{-4} \text{ m}$

সূতরাং, সম্পূর্ণ পরীক্ষাটি 1.30 প্রতিসরণাংকের কোনো মাধ্যমে করা হলে ভোরা প্রস্থ পূর্বের তুলনায় 1.30 গুণ কমে যাবে।

প্রশা >>> হাসান ইয়ং এর ছি-চির পরীক্ষায় 0.03 mm দূরত্বে অবস্থিত দুটি চিরের ব্যবধান নিয়ে পর্যবেক্ষণ করছে। চির হতে পর্দা 1m দূরত্বে থাকায় তৃতীয় চরম কেন্দ্রীয় চরম হতে 4mm দূরত্ব পাওয়া গেল।

/भाषितिभन भएकम स्कूम क्षक स्थानक, जाका /

ক. প্রিজম কাকে বলে?

খ, বিপদ সংকেতে লাল আলো ব্যবহার করা হয় কেন?

গ. উদ্দীপকে ব্যবহৃত আলোর তরজা দৈর্ঘ্য নির্ণয় করো।

ঘ, উদ্দীপকের চির হতে পর্দার দূরত্ব অর্ধেক হলে ডোরার ব্যবধান বর্তমান ডোরার প্রস্থের সমান হবে কি-না গাণিতিকভাবে ব্যাখ্যা করো।

১৯ নং প্রয়ের উত্তর

তরজ্ঞাদৈর্ঘ্য 3800Å।

ক্রি একটি স্বচ্ছ বস্তুকে যদি ছয়টি আয়তক্ষেত্রিক তল দ্বারা এমনভাবে

ক্রিলমজী ক্যান্টনমেন্ট কলেজ, ঢাকা

সীমাবন্দ্র করা হয় যে, যে কোনো দুই জোড়া বিপরীত তল সমান্তরাল,

কিন্তু অপর যেকোনো দুটি তল সমান্তরাল না হয়ে পরস্পর আনত অবস্থায় থাকে তাহলে তাকে প্রিজম বলে।

আলোর বিক্ষেপন ধর্মের কারণে বাতাসে উপস্থিত অণু, পরমাণু ও ধূলিকণা দ্বারা আলো চতুর্দিকে বিক্ষিপ্ত হওয়ার যোগ্যতা লাভ করে। এই বিক্ষেপনের মাত্রা নির্ভর করে আলোর কম্পাডেকর ওপর। লাল বর্ণের আলোর কম্পাডক সবচেয়ে কম বিধায় লাল বর্ণ কম বিক্ষিপ্ত হয় এবং দূর থেকে অধিকতর দৃশ্যমান হয়। এই কারণে বিপদ সংকেতে লাল রং ব্যবহার করা হয়।

্যা এখানে,

চির হতে পর্দার দূরত্ব, D = 1m চিরছয়ের মধ্যবর্তী দূরত্ব, a = 0.03mm = 0.03 × 10⁻³m কেন্দ্রীয় চরম হতে তৃতীয় চরমের দূরত্ব, x_n = 4mm = 4 × 10⁻³m ব্যবহৃত আলোর তরজাদৈর্ঘ্য, λ = ?

আমরা জানি, $x_n = n \frac{\lambda D}{a}$ বা, $\lambda = \frac{ax_n}{nD}$

বা,
$$\lambda = \frac{0.03 \times 10^{-3} \times 4 \times 10^{-3}}{3 \times 1}$$
 [তৃতীয় চরমের ক্ষেত্রে n = 3]
∴ $\lambda = 4 \times 10^{-8}$ m (Ans.)

ব এখানে, প্রথমক্ষেত্রে,

চির হতে পর্নার দূরত্ব, $D_1 = 1m$ চিরছায়ের মধ্যবর্তী দূরত্ব, $a = 0.03 \times 10^{-3} m$ আলোর তরজাদৈর্ঘ্য, $\lambda = 4 \times 10^{-8} m$ ডোরা প্রকথ = $\Delta x m$ (ধরি)

আমরা জানি.

$$\Delta x = \frac{\lambda D_1}{2a}$$
 $\boxed{4 \times 10^{-8} \times 1}$
 $\boxed{2 \times 0.03 \times 10^{-3}}$

∴ $\Delta x = 6.67 \times 10^{-4} \text{m}$

আবার, দ্বিতীয়ক্ষেত্রে,

চির হতে পর্দার দূরত্ব $D_2 = \frac{1}{2} m = 0.5 m$

ভোরা ব্যবধান = Δz m (ধরি)

আমরা জানি, $\Delta z = \frac{\lambda D_2}{a}$

বা,
$$\Delta z = \frac{4 \times 10^{-8} \times 0.5}{0.03 \times 10^{-3}}$$

 $\Delta z = 6.67 \times 10^{-4} \text{m}$

যা, পূর্বের ডোরা প্রস্থের সমান।

সূতরাং, চির হতে পর্দার দূরত্ব অর্থেক করলে ডোরা ব্যবধান বর্তমানের ডোরা প্রস্থের সমান হবে।

থা ১২০ ইয়ং এর দ্বি-চিড় পরীক্ষায় চিড় দৃটির মধ্যবর্তী দূরত্ব 0.4 mm এবং চিড়ের তল থেকে পর্দার দূরত্ব 1m, কেন্দ্রীয় উজ্জ্বল ডোরা থেকে 12 তম উজ্জ্বল ডোরার দূরত্ব 9.3 mm. /সরকারি দরণালা কলেজ মুলিণাল/

ক, ফার্মাটের নীতি বিবৃত করো।

খ. সরু প্রিজমের ক্ষেত্রে বিচ্যুতি কোণ আপতন কোণের উপর নির্ভর করে না– ব্যাখ্যা করো।

গ. উদ্দীপকে ব্যবহৃত একবণী আলোর তরজা দৈর্ঘ্য নির্ণয় করো। ৩

উদ্দীপকে বর্ণিত সমস্ত ব্যবস্থাটিকে যদি পানির মধ্যে নেয়া হয়
 তবে ডোরার প্রস্থের পরিবর্তন গাণিতিকভাবে বিশ্লেষণ করো। ৪

২০ নং প্রশ্নের উত্তর

আলোক রশ্যি এক বিন্দু হতে অপর এক বিন্দুতে যাওয়ার সময় সম্ভাব্য সকল পথের মধ্যে সেই পথ অনুসরণ করে যে পথে সময় সব থেকে কম লাগে। সরু প্রিজমের ক্ষেত্রে আপ্তন কোণ (i_1) ক্ষুদ্র হলে নির্গমন কোণও (i_2) ক্ষুদ্র হয়। $\mu = \frac{\sin i}{\sin r}$ সূত্রানুসারে এতে r_1 এবং r_2 ও ক্ষুদ্র মানের হয়। তাহলে $\frac{\sin i_1}{r_1} = \frac{i_1}{r_2} = \frac{i_2}{r_3} = 0$

ভাহলে
$$\frac{\sin i_1}{\sin r_1} = \frac{i_1}{r_1} = \mu$$
 এবং $\frac{\sin i_2}{\sin r_2} = \frac{i_2}{r_2} = \mu$

∴ i1 = μr1 এবং i2 = μr2

Α ও μ ধ্রুবমানের হওয়ায় এটা স্পষ্ট যে, সরু প্রিজমের ক্ষেত্রে (আপতন কোণ ক্ষুদ্র মানের হলে) বিচ্যুতি কোণ ধ্রুবমানের হয় এবং তা আপতন কোণের ওপর নির্ভর করে না।

গ দেওয়া আছে,

চিরছয়ের মধ্যবর্তী দূরত্ব, 2d = 0.4mm = 0.4×10^{-3} m ডোরার ক্রম সংখ্যা, n = 12চির হতে পর্দার দূরত্ব, D = 1m

কেন্দ্রীয় ডোরা থেকে 12তম উজ্জ্বল ও ডোরার দূরত্ব,

 $x_n = 9.3 \times 10^{-3} \text{m}$

বের করতে হবে, আলোর তরজা দৈর্ঘ্য, λ = ? আমরা জানি.

$$x_n = \frac{n\lambda D}{2d}$$

◄ $\lambda = \frac{x_n 2d}{nD}$

◄ $\lambda = \frac{9.3 \times 10^{-3} \times 0.4 \times 10^{-3}}{12 \times 1}$

◄ $\lambda = 3.1 \times 10^{-7} \text{ m}$
 $\lambda = 3100 \text{Å (Ans.)}$

দেওয়া আছে, পানির প্রতিসরাজ্ক "µ" = 1.33 চিরছয়ের মধ্যবতী দূরত্ব, 2d = 0.4 mm চির হতে পর্দার দূরত্ব, D = 1m

"গ" হতে পাই, বায়ু মাধ্যমে আলোর তরজ্ঞাদৈর্ঘ্য, $\lambda_{\rm a}=3.1\times 10^{-7}~{
m m}$ পানিতে তরজা দৈর্ঘ্য $\lambda_{\rm a}$ হলে,

$$a\mu_w = \frac{\lambda_u}{\lambda_w}$$

$$\exists 1, \ \lambda_w = \frac{\lambda_u}{a\mu_w}$$

$$\exists 1, \ a\mu_w = \frac{3.1 \times 10^{-7}}{1.33}$$

$$\therefore \ \lambda_w = 2.33 \times 10^{-7} \text{ m}$$

আবার, পানিতে ডোরার প্রস্থ $b' = \frac{D\lambda_w}{2 \times 2d} = \frac{1 \times 2.33 \times 10^{-7}}{2 \times 0.4 \times 10^{-3}}$ = 2.9×10^{-4} m

অন্যদিকে, বায়ুতে ডোরার প্রস্থ, $b = \frac{D\lambda a}{2 \times 2d} = \frac{1 \times 3.1 \times 10^{-7}}{2 \times 0.4 \times 10^{-3}}$ = $3.875 \times 10^{-4} m$.

অতএব, ডোরার প্রস্থের পরিবর্তন,

$$\Delta b = b - b'$$

 $= 3.874 \times 10^{-4} - 2.9 \times 10^{-4} = 9.74 \times 10^{-5}$ m ਆਨ ਰਹਿੰਨ ਸਮੂਤ ਹਾਰਿਕ ਰਾਤਸ਼ਖ਼ਾਹਿਨ ਹਰਿ ਅਜਿਹ ਸਾ

সূতরাং, উদ্দিপকে বর্ণিত সমস্ত যান্ত্রিক ব্যবস্থাটিকে যদি পানির মধ্যে নেওয়া হয়, তবে ডোরার প্রস্থের পরিবর্তন হবে এবং 9.74 × 10⁻⁵m হ্রাস পাবে।

প্ররা >>> ইয়ংয়ের দ্বি-চির পরীক্ষায় চির দুটির মধ্যবতী দূরত্ব 2mm।

চিড় হতে পর্দার দূরত্ব 1m। চিড় দুটিকে একবণী আলো দ্বারা

আলোকিত করলে পর্দায় ব্যতিচার সৃষ্টি হয়। উক্ত ব্যতিচারের পরপর

একটি উজ্জ্বল ও অন্ধকার ডোরার কেন্দ্রের মধ্যবতী দূরত্ব 0.3mm।

[निर्वेड एकम करमान, महामनिश्य]

- ক. চৌম্বক ফ্লাব্ৰ কী?
- খ. যে মাধ্যমের প্রতিসরণাংক যত বেশি সেই মাধ্যমের আলোকীয় ঘনত্ব তত বেশি কেন?
- গ. উদ্দীপকে ব্যবহৃত একবর্ণী আলোর তরজাদৈর্ঘ্য কত?
- ঘ. উদ্দীপকের পরীক্ষণে কেন্দ্রীয় উজ্জ্বল ডোরা হতে 12 তম উজ্জ্বল ভোরার দূরত্ব ভোরার প্রস্থের 12 গুণ হবে কিনা– তা গাণিতিকভাবে বের করো।

🐼 কোনো তলের ক্ষেত্রফল এবং ঐ তলের লম্ব বরাবর চৌম্বক ক্ষেত্রের উপাংশের গুণফলকে ঐ তলের সাথে সংশ্লিষ্ট চৌম্বক ফ্লাক্স বলে। একে φ দ্বারা প্রকাশ করা হয় যেখানে, φ = Ā · B ।

🛂 কোনো মাধ্যমের আলোকীয় ঘনত বেশি মানে সেই মাধ্যমে আলোর বেগ তুলনামূলক কম হবে। মাধ্যমে আলোর বেণের সাথে আলোকীয় ঘনত্বের সম্পর্ক ব্যস্তানুপাতিক।

আবার আমরা জানি, $\mu_b = \frac{c}{c_b}$ বা, $\mu_b \propto \frac{1}{c_b}$ অর্থাৎ কোনো মাধ্যমের প্রতিসরণাংক ঐ মাধ্যমে আলোর বেগের বাস্তানুপাতিক। সূতরাং মাধ্যমের প্রতিসরণাঙ্ক বেশি হলে আলোর বেগ কমে অর্থাৎ মাধ্যমের আলোকীয় ঘনত বাড়ে।

ত্ত এখানে, চিড়ছয়ের মধ্যবতী দূরত্ব $a=2mm=2\times 10^{-3}~m$ পর্দার দূরত্ব, D = 1m

প্রম্প, $\Delta x = 0.30 \text{mm} = 0.3 \times 10^{-3} \text{m}$

$$\therefore$$
 তরজাদৈর্ঘ্য, $\lambda = \frac{\Delta x \times a \times 2}{D}$

$$= \frac{0.3 \times 10^{-3} \times 2 \times 10^{-3} \times 2}{1}$$

$$= 1.2 \times 10^{-6} \, \text{m (Ans.)}$$

্য জানা আছে, কেন্দ্রীয় ডোরা থেকে এখানে, n তম উজ্জ্বল ডোরার মধ্যবর্তী দূরত্ব,

$$x_n = \frac{nD\lambda}{a}$$

all, $x_n = (2n)(\frac{D\lambda}{2})$

 $(2n) \left(\frac{D\lambda}{2a} \right)$

 $\overline{\mathbf{A}}$, $\mathbf{x}_n = 2n \Delta \mathbf{x}$

ৰা, $\frac{x_n}{\Delta x} = 2n$

বা, $\frac{x_{12}}{\Delta x} = 2 \times 12$

অতএব, কেন্দ্রীয় উজ্জ্বল ভোরা হতে 12 তম উজ্জ্বল ডোরার দূরত্ব ভোরা প্রস্পের 12 গুণ নয় বরং 24 গুণ।

চিরশ্বয়ের মধ্যবর্তী দূরত্ন,

পদার দূরত্ব, D = 1m,

a = 2mm

ডোরার প্র≂র্থ, ∆x = 0.3mm

= 0.002 rn

= 0.0003 m

প্রমা ২১ পদার্থবিজ্ঞান বিভাগের পরীক্ষাগারে শিক্ষার্থীরা আলোর ব্যতিচার ধর্ম পর্যবেক্ষণ করছিল। এ সময় তারা দুটি সুসংগত উৎস ব্যবহার করে 5500Å তরজা দৈর্ঘ্যের দুটি তরজা নিঃসৃত করল যাদের পথ পাৰ্থক্য ছিল 11000Å। /पाकुम कामित्र त्याचा भिष्टि करमज /

- ক. পরাবৈদ্যতিক ধ্রুবক কী?
- খ. ধারকে কীভাবে শক্তি সঞ্চিত হয়? ব্যাখ্যা করো।
- গ. উদ্দীপকের আলোকে ফোটনের শক্তি নির্ণয় করো।
- ঘ. উদ্দীপকে উল্লিখিত পথ-পার্থক্য নিয়ে তরজান্বয়ের উপরিপাতন ঘটলে কী ধরনের ব্যতিচার সংঘটিত হবে? গাণিতিকভাবে বিশ্লেষণ করো।

২২ নং প্রশ্নের উত্তর

🚳 य काता पूर्ण वाधात्मद्र भर्षा निर्मिष्ठे पृत्रस्व गृनाञ्चात्म क्रियांनीन বল এবং ঐ দুই আধানের মধ্যে একই দূরত্বে অন্য কোন মাধ্যমে ক্রিয়াশীল বলের অনুপাতকে ঐ মাধ্যমের পরা বৈদ্যুতিক ধ্রুবক বলে।

🛐 ধারকে শক্তি সম্প্রয় করতে হলে ধারকে কিছু চার্জ জমা করতে হবে। এ চার্জ ধারকে একবারে দেয়া সম্ভব নয়। একটু একটু করে চার্জ জমা করতে হয়। কারণ এটি কিছু চার্জ লাভ করার পর পরবর্তী চার্জ প্রদানে বাধা দেয়। তাই কোনো ধারককে চার্জিত করতে কিছু কাজ করতে হয় বা কিছু শক্তি ব্যয় হয়। এ ব্যয়িত শক্তি ধারকে তড়িৎ শক্তি হিসেবে জমা

👊 ৪(গ) নং সৃজনশীল প্রশ্নোত্তর দ্রফীব্য।

🔟 ৪(ঘ) নং সৃজনশীল প্রশ্নোত্তর দ্রফব্য।

প্রনা ১২০ নওশিন পদার্থবিজ্ঞান গবেষণাগারে দুটি সুসংগত উৎস ব্যবহার করে ব্যতিচারের পরীক্ষা করছিল। সে দেখল তরজা দুটি একই দশায় নিঃসৃত হলো। প্রত্যেকটি তরজোর তরজাদৈর্ঘ্য 6000Å ছিল।

/बडापी म्कूम कर करणज, ग्रावाभाषी/

ক. হাইগেনের নীতিটি লিখো।

খ. একক রেখাচিত্র দ্বারা সৃষ্ট ফ্রনহফার অপবর্তন ঝালরের চরম ও অবম বিন্দুর শর্ত কী ব্যাখ্যা করো।

গ. যে কোনো একটি তরজা কাঁচে প্রবেশের ফলে তরজাদৈর্ঘ্য এবং তরজাস্থিত ফোটনের শক্তি কত হবে?

ঘ. বায়ু মাধামে তরজাছয়ের মধ্যকার পথ-পার্থক্য 15000Å হলে এদের শেষ বিন্দু দুটির মধ্যে দশা পার্থক্য কত হবে? এই দশা পার্থক্য নিয়ে উপরিপাতন ঘটলে কী ধরনের ব্যতিচার হবে-গাণিতিক যুক্তি সহকারে মতামত ব্যক্ত করো।

২৩ নং প্রশ্নের উত্তর

🚮 একটি তরজামুখের উপরিস্থিত সব বিন্দুকে এক একটি বিন্দু উৎস হিসেবে গণ্য হবে, যা থেকে গৌণ তরজা উৎপন্ন হয়ে মূল তরজোর দুতিতে সামনের দিকে অগ্রসর হয়। পরবর্তী যেকোনো মুহুর্তে এ গৌণ তরজামুখগুলোর সাধারণ স্পর্শক তল হবে ঐ সময় উক্ত তরজামুখের নতুন অবস্থান।

একক রেখাচিত্রে ফ্রনহফার ব্যতিচার ঝালরে কেন্দ্রীয় পট্টি সর্বদা উজ্জ্বল। কিন্তু ফ্রেনেল ব্যতিচার ঝালরের কেন্দ্রীয় পট্টি উজ্জ্বল কিংবা অন্ধকার হতে পারে। যা নির্ভর করে একক রেখাচিত্রে অর্ধপর্যায়কাল অঞ্চলের সংখ্যার উপর।

একক রেখাচিত্র দ্বারা সৃষ্ট ফ্রনহফার অপবর্তন ঝালরের চরমের শর্ড:

a sinθ = (2n + 1)^Λ/₂, n = 1, 2, 3, ... ইত্যাদি

এবং অবমের শর্ত: a sinθ = nλ; n = 1, 2, 3, ... ইত্যাদি

তরজা কাঁচে প্রবেশের পর তরজাদৈর্ঘ্য λ হলে,

$$_{a}\mu_{g} = \frac{C_{o}}{C_{g}}$$

বা, $_{a}\mu_{g} = \frac{f\lambda_{o}}{f\lambda_{g}}$

আলোর তরজাদৈর্ঘ্য, $\lambda_0 = 6000 \text{\AA}$ কাচের প্রতিসরাজ্ক, "µg = 1.5

বা, $\mu_g = \frac{\lambda_0}{\lambda_g}$

 $41, \lambda_g = \frac{\Lambda_0}{a\mu_g}$

= 4000Å. (Ans.)

আলোক তরজা এক মাধ্যম হতে অন্য মাধ্যমে প্রবেশ করলেও কম্পাভক অপরিবর্তিত থাকে। ফলে শক্তি অপরিবর্তিত থাকে।

তরজ্যের ফোটনের শক্তি বায়ু মাধ্যমে E_o ও কাঁচে E_g হলে,

$$E_g = E_o = \frac{hc_o}{\lambda_o}$$
 এখানে,
= $\frac{6.63 \times 10^{-34} \times 3 \times 10^8}{6000 \times 10^{-10}}$ মধ্যমে তরজাদৈঘাঁ,
= 3.315×10^{-19} J
= 2.07 eV (Ans.)

পথপার্থক্য, Δx = 15000Å বা 15000 × 10⁻¹⁰ m ও দশা পার্থক্য,
 Δφ হলে,

$$\Delta \phi = \frac{2\pi}{\lambda} \times \Delta x$$
 তরজাদৈর্ঘ্য, $\lambda = 6000 \text{Å}$ তরজাদৈর্ঘ্য, $\lambda = 6000 \times 10^{-10} \text{ m}$ = 5π rad. যা π rad পরিমাণ

দশা-পার্থক্যের সমতুল্য ।
$$\Delta x = \frac{\lambda}{2\pi} \times \Delta \phi$$
 এই দশাপার্থক্য নিয়ে উপরিপাতন ঘটলে পথপার্থক্য, $\Delta x = \frac{\lambda}{2\pi} \times \Delta \phi$ $= \frac{\lambda}{2\pi} \times 5\pi$ $= 5\frac{\lambda}{2}$

অর্থাৎ, পথপার্থক্য $\frac{\lambda}{2}$ এর বিজোড় গুণিতক। যেহেতু পথপার্থক্য $\frac{\lambda}{2}$ এর বিজোড় গুণিতক হলে ধ্বংসাত্মক ব্যতিচার হয়। এক্ষেত্রেও ধ্বংসাত্মক ব্যতিচার ঘটবে।

প্ররা ▶ ২৪ দুটি সুসজাত আলোক উৎস নিয়ে ব্যতিচার পরীক্ষায় দেখা গেল যে, 6000Å তরজা দুটি একই দশায় মিলিত হচ্ছে। বায়ু মাধ্যমে তরজাদ্বয়ের মধ্যে পথ পার্থক্য 9000Å হলে ধ্বংসাত্মক ব্যতিচার সৃষ্টি হয়।

/কুমিয়া সরকারি মহিলা কলেজ/

ক, প্ৰেটিং ধুবক কী?

- খ. দুটি ভোরার মধ্যবতী দূরত্ব কোন বিষয়ের উপর নির্ভর করে? ২
- গ্র একটি তরজা কাঁচে প্রবেশ করলে তরজা দৈর্ঘ্য কত হবে?
- ঘ. উদ্দীপকের ব্যতিচার সৃষ্টির যথার্থতা গাণিতিকভাবে ব্যাখ্যা করো।

২৪ নং প্রশ্নের উত্তর

ত্র একটি অপবর্তন গ্রেটিং এর প্রতিটি চিরের প্রস্থ এবং প্রতিটি দাগের প্রস্থের যোগফলকে গ্রেটিং ধ্রুবক বা গ্রেটিং উপাদান বলে।

ইয়ংয়ের দ্বি-চিড় পরীক্ষায় দুটি ডোরার মধ্যবতী দূরত্ব নিয়্লোক্ত বিষয়য়ৢলোর ওপর নির্ভর করে।

- i. ব্যবহৃত আলোর তরজা দৈর্ঘ্য
- ii. দ্বি-চির থেকে পর্দার দূরত্ব।
- iii. চির দু'টির মধ্যবতী দূরত্ব।

97

কাঁচে আলোর বেগ,
$$c'=\frac{c}{n}$$
 এখানে, বায়ুতে তরজা দৈর্ঘ্য, $\lambda=6000 \text{\AA}$ কাঁচের প্রতিসরণাংক, $n=1.5$ \therefore $\lambda'=\frac{\lambda}{n}$ $=\frac{6000}{1.5} \text{\AA}$ $=4000 \text{\AA}$ (Ans.)

ত্ম আমরা জানি, দুটি সুসংগত তরজোর তরজাদৈর্ঘ্যের পার্থক্য যদি $\left(n+\frac{1}{2}\right)\lambda$ হয় তবে তাদের মধ্যে ধ্বংসাত্মক ব্যতিচার হয়।

উদ্দীপক অনুযায়ী, তরজা দৈর্ঘ্য = 6000Å এবং তরজাছয়ের মধ্যে বায়ু মাধ্যমে পথপার্থক্য = 9000Å

=
$$\left(1 + \frac{1}{2}\right) \times 6000 \text{Å}$$

[এখানে, n = 1 ধরি]

অর্থাৎ, পথপার্থক্য = 9000Å এর জন্য প্রথম ক্রমের ধ্বংসাম্বাক ব্যতিচার সংঘটিত হয়।

ফলে, উদ্দীপকের ব্যতিচার সৃষ্টির ঘটনাটি যথার্থ।

গ. পরীক্ষায় ব্যবহৃত আলোর তরজা দৈর্ঘ্য বের করো।

 ঘ. উদ্দীপকের ব্যবস্থাটি পানির মধ্যে থাকলে পট্টি বা ঝালরের কী পরিবর্তন হবে? বিশ্লেষণ করো।

২৫ নং প্রশ্নের উত্তর

ক্র প্রজমের মধ্য দিয়ে আলো প্রতিসরণের সময় আপতন কোণের একটি নির্দিষ্ট মানের জন্য বিচ্যুতি কোণ সর্বনিম্ন হয়, যা অপেক্ষা কম মানের বিচ্যুতি পাওয়া কখনোই সম্ভব নয়। বিচ্যুতি কোণের এ সর্বনিম্ন মানকে ন্যুন্তম বিচ্যুতি বলে।

👿 জটিল ও সম্মল অনুবীক্ষণ যন্ত্রের পার্থক্য নিচে দেওয়া হলো।

সরল অণুবীক্ষণ যন্ত্র	জটিল অণুবীক্ষণ যন্ত্ৰ
 সরল অণুবীক্ষণ যয়ে একটি মাত্র উত্তল লেক ব্যবহৃত হয়। 	 জটিল অণুবীকণ যত্ত্বে দুটি উত্তল লেগ ব্যবহৃত হয়।
২. সরল অণুবীক্ষণ যত্ত্বে কোন অভিলক্ষ্য ও অভিনেত্র থাকে না।	২. জটিল অণুবীক্ষণ যন্ত্রে অভিলক্ষ্য ও অভিনেত্র থাকে।
৩. ছোট লক্ষবস্থু দেখার জন্য ব্যবহৃত হয়।	৩. অত্যন্ত ক্ষুদ্র লক্ষবস্থুর ক্ষেত্রে ব্যবহৃত হয়।
8. বিবর্ধন, M = 1 + <u>D</u>	8. বিবর্ধন, $M = -\frac{v}{u} \left(1 + \frac{D}{f_e} \right)$

ৰ এখানে,

 $= 0.4 \times 10^{-3} \text{ m}$

চিড় হতে পর্দার দূরত্ব, D = 1m

উজ্জ্বল পট্টির ক্রম, n = 7

পট্টির মধ্যবতী দূরত্ব, $\Delta x = 6.4 \; \mathrm{mm}$

 $= 6.4 \times 10^{-3} \text{ m}$

আলোর তরজা দৈর্ঘ্য, $\lambda = ?$

আমরা জানি, $\Delta x = \frac{n\lambda D}{a}$

$$\frac{\text{adx}}{\text{nD}}$$

$$= \frac{0.4 \times 10^{-3} \times 6.4 \times 10^{-3}}{7 \times 1}$$

$$= 3657 \times 10^{-10} \text{ m}$$

$$= 3657 \text{ Å (Ans.)}$$

এখানে, বায়ুতে তরজা দৈর্ঘ্য, $\lambda_s = 3657 \text{ Å (গ হতে)}$ বায়ুর সাপেক্ষে পানির প্রতিসরাজ্ঞ্ক, $\mu_w = \frac{4}{3}$

পানিতে তরজা দৈর্ঘ্য ১,, হলে, ∴ বায়ুতে ঝালরের প্রস্থা, ∆x, হলে $\Delta x_a = \frac{\lambda_n D}{2a}$ এবং পানিতে ঝালরের প্রস্থ Ax, হলে,

∴ সমগ্র ব্যবস্থাটি পানিতে নিয়ে গেলে ঝালরের প্রস্থ পূর্বের ¾ বা $\frac{3}{4} \times 100\% = 75\%$ হয়ে যাবে।

প্ররা ১২৩ একটি সমতল নিঃসরণ গ্রেটিং এর চিড় ও দাপের ভেদ যথাক্রমে 0.00004mm এবং 0.00002 mm। একটি পরীক্ষায় গ্রেটিংটিতে 7×10^{-7} তরজা দৈর্ঘ্যের আলো ফেলা হলো।

[भतकाति रेभग्रम शर७म खानी करनज, वतिनान]

ক. অপটিক্যাল টেলিস্কোপ কাকে বলে?

সাদা আলো প্রিজমে বিচ্ছরিত হয় কেন?

ণ. দ্বিতীয় ক্রমের উজ্জ্বলতার অপবর্তন কোণ বের কর?

ঘ, এই পরীক্ষায় সর্বোচ্চ কতক্রমের উজ্জ্বল রেখা পাওয়া সম্ভব? গাণিতিক বিশ্লেষণে মতামত দাও।

২৬ নং প্রশ্নের উত্তর

ক যে যন্ত্রের সাহায্যে দূরের বস্তুকে আলোর প্রতিফলন বা প্রতিসরণ ক্রিয়াকে কাজে লাগিয়ে স্পন্টভাবে পর্যবেক্ষণ করা যায় তাকে অপটিক্যাল টেলিম্কোপ বলে।

🚰 আমরা জানি, একটি নির্দিষ্ট বর্ণের আলোর জন্য কোনো মাধ্যমের প্রতিসরাংক একটি ধুব সংখ্যা। কিন্তু বিভিন্ন বর্ণের আলোর জন্য এই সংখ্যা বিভিন্ন । বিভিন্ন বর্ণের আলোর প্রতিসরাজ্ঞ বিভিন্ন হওয়ায় আলো এক মাধ্যম থেকে অন্য মাধ্যমে প্রতিসরণের সময় একই কোণে আপতিত হলেও বিভিন্ন বর্ণের প্রতিসরণ কৌণ বিভিন্ন হয়। ফলে বর্ণগুলো পরস্পর থেকে আলাদা হয়ে পড়ে। প্রিজমে আলো প্রতিসরণের ক্ষেত্রে দুই বার ভূমির দিকে বেঁকে যায়। তাই বিভিন্ন আলোক রশ্যির জন্য আপতন কোণ এক হলেও নির্গমন কোণ 🗽 ভিন্ন হয়। আমরা জানি প্রিজমের বিচ্নাতি, $\delta = (i_1 + i_2) - A$ । i_2 ভিন্ন হওয়ার কারণে বিভিন্ন বর্ণের বিচ্যুতি ভিন্ন হয়। এ কারণে সাদা আলো প্রিজমের মধ্যদিয়ে প্রতিসরণের সময় বিচ্ছুরিত হয়।

প্র দ্বিতীয় ক্রমের উজ্জ্বলতার অপবর্তন এখানে, কোণ 0 হলে.

 $(a + b) \sin \theta = n\lambda$

 $\forall 1, \sin\theta = \frac{n\lambda}{a+b}$

 $2 \times 7 \times 10^{-7}$ = $4 \times 10^{-8} + 2 \times 10^{-8}$

চিড়ের বেধ, a = 0.00004 mm দাণের বেধ, b = 0.00002 mm তরক্তাদৈর্ঘ্য, $\lambda = 7 \times 10^{-7} \text{m}$ উজ্জ্বলতার ক্রম, n = 2

= 23.33, যা সম্ভব নয়, কারণ, -1 ≤ sinθ ≤ 1 তাই উত্তক্ষেত্রে দ্বিতীয় ক্রমের উজ্জ্বলতা পাওয়া যাবে না।

য উদ্দীপকের প্রদত্ত তথ্য হতে দেখা যায়

= 0.00004 mm + 0.00002mm $= 6 \times 10^{-8} \text{m}$

যা আপতিত আলোক রশ্মির তরজাদৈর্ঘ্য $7 imes 10^{-7}$ অপেক্ষা কম। কিন্ত অপবর্তন গ্রেটিং যে অপবর্তনের জন্য চিড় ও দার্গের বেধ আপতিত আলোকরশ্মির তরজ্ঞাদৈর্ঘ্য অপেক্ষা বড় অথবা সেই ক্রমের হতে হয়। তাই এক্ষেত্রে অপবর্তন হবে না।

প্রমা ২৭ ইয়ং এর দ্বি-চির পরীক্ষায় 0.03mm দূরতে অবস্থিত দুটি চিরের ব্যবস্থা নিয়ে একজন ছাত্র পর্যবেক্ষণ করছে। চির হতে পর্দা 1m দূরত্বে থাকলে কেন্দ্রীয় চরম হতে তৃতীয় চরমের দূরত্ব পাওয়া পেল 4mm l [बामकार्डि भतकाति करमज, बामकार्डि]

क. (भानाताग्रम की?

খ. সাদা আলো কাচ প্রিজমে প্রবেশ করলে বর্ণালী সৃষ্টি হয় কেন? ২

প. উদ্দীপকে ব্যবহৃত আলোর তরজা দৈর্ঘ্য নির্ণয় করো।

ঘ় চির হতে পর্দার দূরত্ব অর্ধেক করলে ডোরার ব্যবধান বর্তমান ডোরা প্রস্থের সমান হবে কিনা গাণিতিকভাবে ব্যাখ্যা করো। 8 ২৭ নং প্রশ্নের উত্তর

🚳 কোন তরজোর কম্পনের উপর যদি এমন শর্ত আরোপ করা হয় যে কম্পন কেবল একটি নিৰ্দিষ্ট দিকে বা তলেই সীমাবন্ধ থাকে তবে তাকে পোলারায়ন বলে।

🚰 আলোক রশ্মি যখন এক স্বচ্ছ মাধ্যম হতে অপর স্বচ্ছ মাধ্যমে প্রবেশ করে তখন মাধ্যমন্বয়ের বিভেদতলে আলোকরশাি বেঁকে যায়। এই বাঁকার পরিমাণ মাধ্যমন্বয়ের প্রকৃতি ও আলোর রঙের উপর নির্ভর করে। সূর্যের সাদা আলো সাতটি রঙের সমন্বয়ে সৃষ্টি। তাই সূর্যের সাদা আলো যথন কোনো প্রিজমের মধ্যে প্রবেশ করে তখন প্রতিসরণের ফলে রশ্যির গতিপথ বেঁকে যায়। শূন্য মাধ্যমে সকল বর্ণের আলোর বেগ সমান হলেও অন্য যেকোন মাধ্যমে এক এক বর্ণের আলোর বেগ এক এক রকম হয়। এ কারণে একই মাধ্যমের প্রতিসরণাডক ভিন্ন ভিন্ন রঙের আলোর জন্য ভিন্ন ভিন্ন হয়। প্রতিসরণাক্তের ভিন্নতার কারণে ভিন্ন ভিন্ন রঙের আলোর বাঁকার পরিমাণও ভিন্ন ভিন্ন হয়। ফলে প্রিজমের মধ্যে সাদা আলো সাতটি বর্ণে বিপ্লিক্ট হয় এবং এই বিপ্লিক্ট অবস্থাতেই প্রিজম হতে নির্গত হয়। ফলে আমরা বর্ণালী দেখতে পাই। সূতরাং বলা যায়, বিভিন্ন বর্ণের আলোর জন্য মাধ্যমের প্রতিসরণাডেকর ভিন্নতার জন্য বর্ণালী সৃষ্টি হয়।

গ্র এখানে,

চির হতে পর্দার দূরত্ব, D = 1m চিরদ্বয়ের মধ্যবর্তী দূরত্ব, $a = 0.03 \text{mm} = 0.03 \times 10^{-3} \text{m}$ কেন্দ্রীয় চরম হতে তৃতীয় চরমের দূরত্ব, x_n = 4mm = 4 × 10⁻³m ব্যবহৃত আলোর তরজ্ঞাদৈর্ঘ্য, $\lambda = ?$

আমরা জানি, $x_n = n \frac{\lambda D}{a}$ বা, $\lambda = \frac{0.03 \times 10^{-3} \times 4 \times 10^{-3}}{3 \times 1}$ [তৃতীয় চরমের ক্ষেত্রে n = 3] $\lambda = 4 \times 10^{-8} \text{m} \text{ (Ans.)}$

হু এখানে,

প্রথমক্ষেত্রে. চির হতে পর্দার দূরত্ব, D₁ = 1m চিরদ্বরের মধ্যবর্তী দূরত্ব, $a = 0.03 \times 10^{-3}$ m আলোর তরজাদৈর্ঘ্য, $\lambda = 4 \times 10^{-8}$ m ডোরা প্রস্থ, = x m (ধরি)

আমরা জানি.

x =
$$\frac{x = \frac{x = 0.01}{2a}}{\frac{4 \times 10^{-8} \times 1}{2 \times 0.03 \times 10^{-3}}}$$

∴ x = 6.67 × 10⁻⁴ m

আবার, দ্বিতীয়ক্ষেত্রে,

চির হতে পর্দার দূরত্ব, $D_2 = \frac{1}{2} m = 0.5 m$

ডোরা ব্যবধান = $\Delta x m$ (ধরি)

আমরা জানি, $\Delta x = \frac{\lambda D_2}{a}$

$$\overline{41}, \ \Delta x = \frac{4 \times 10^{-8} \times 0.5}{0.03 \times 10^{-3}}$$

 $\Delta x = 6.67 \times 10^{-4} \text{m}$

যা, পূর্বের ডোরা প্রস্থের সমান।

সূতরাং, চির হতে পর্দার দূরত্ব অর্ধেক করলে ডোরা ব্যবধান বর্তমানের ডোরা প্রস্থের সমান হবে।

প্রনা ▶ ২৮ সামিয়া এবং লামিয়া ল্যাবরেটিতে অপবর্তন গ্রেটিং নিয়ে পরীক্ষণ কাজ করছিল। সামিয়ার গ্রেটিংটিতে দাপের সংখ্যা 6000cm⁻¹ আর লামিয়ারটিতে 1.25 × 10⁵cm⁻¹। সামিয়া তার গ্রেটিংকে আলোকিত করার জন্য ব্যবহার করলো 5896 Å তরজা দৈর্ঘ্যের আলো এবং লামিয়ার ব্যবহৃত আলোর তরজাদৈয়ে হলো 20(X)Å। তারা তাদের পরীক্ষণে প্রথম, দ্বিতীয় ও তৃতীয় চরম দেখতে পেল এবং তাদের স্যারকে দেখালো। স্যার লামিয়াকে তার পরীক্ষণে এমন পরিবর্তন আনতে বললেন, যাতে সামিয়া ও লামিয়া একই অপবর্তন কোণে দ্বিতীয় চরম পেয়ে থাকে।

ক, সমবর্তন কী?

- খ. সমবর্তিত আলোর সম্মুখে একটি টুরমালিন কেলাস ঘোরালে নির্গত আলোর তীব্রতা পরিবর্তন হয় কেন?
- গ, সমিয়ার পরীক্ষণে প্রথম চরমের জন্য অপবর্তন কোণ নির্ণয় করো।
- ঘ. লামিয়া কর্তৃক তার পরীক্ষণে আনা পরিবর্তন উদঘাটন করো। ৪
 ২৮ নং প্রশ্নের উত্তর

যে প্রক্রিয়ায় বিভিন্ন তলে কম্পমান আলোক তরজ্ঞাকে একটি নির্দিষ্ট তল বরাবর কম্পনক্ষম করা যায় তাকে আলোকের সমবর্তন বলে।

টুরমালিন কেলাস হল এক ধরনের সমবর্তন বিশ্লেষক। আমরা জানি কোন সমাবর্তকের মধ্য দিয়ে সমবর্তিত আলো অতিক্রম করলে নির্গত আলোর তীব্রতা I ≈ cos²θ অনুযায়ী পরিবর্তিত হয়, যেখানে θ = সমবর্তিত আলোর তল ও সমাবর্তক এর সমবর্তন অক্ষ এর মধ্যবর্তী কোণ। যেহেতু টুরমালিন কেলাসটি ঘুরালে টুরমালিনের সমবর্তন অক্ষ এবং আলোর তলের মধ্যবর্তী কোণ পরিবর্তিত হতে থাকে। তাই আলোর তীব্রতা পরিবর্তিত হতে থাকে।

$$\frac{1}{N}\sin\theta = n\lambda$$

$$\Rightarrow \sin\theta = 6 \times 10^5 \times 5896 \times 10^{-10}$$

$$\therefore \theta = 20.72^{\circ} \text{ (Ans.)}$$

দেওয়া আছে, সামিয়ার ক্ষেত্রে, গ্রেটিং সংখ্যা, N = 600 cm⁻¹ = 6×10⁵m⁻¹ তরজ্ঞাদৈর্ঘ্য λ = 5896Å = 5896 × 10⁻¹⁰m ক্রম, n = 1

1

করে।

আমরা জানি, দ্বিতীয় চরমের জন্য

1/N sin θ = 2λ

∴ sin θ = 2Nλ

∴ একই অপবর্তন কোণের জন্য

Nλ = ধ্বক
ধরি, লামিয়া ও সামিয়া একই
কোণে দ্বিতীয় অপবর্তন দেখতে
পাবে যদি লামিয়া তার প্রেটিং
অথবা ব্যবহৃত আলো পরিবর্তন

দেওয়া আছে,
লামিয়ার গ্রেটিং সংখ্যা, $N_I = 1.25 \times 10^7 \mathrm{m}^{-1}$ তরজা দৈর্ঘ্য, $\lambda_I = 2000 \mathrm{\AA}$ $= 2 \times 10^{-7} \mathrm{m}$ সামিয়ার গ্রেটিং সংখ্যা, $N_s = 6 \times 10^5 \mathrm{m}^{-1}$ তরজা দৈর্ঘ্য, $\lambda_s = 5896 \times 10^{-10} \mathrm{m}$

ধরি, লামিয়ার নতুন গ্রেটিং-এ দাগের সংখ্যা = N', \therefore N_s $\lambda_s = N'$, λ_t

$$\therefore N'_{I} = \frac{N_{cl}\lambda_{s}}{\lambda_{l}} = \frac{6 \times 10^{5} \times 5896 \times 10^{-10}}{2 \times 10^{-7}} = 17,688 \text{ cm}^{-1}$$

আবার, লামিয়া যদি ভিন্ন তরজা দৈর্ঘ্যের আলো ব্যবহার করতে চায়,

$$\lambda'_t = \frac{N_5 \lambda_5}{N_t} = \frac{6 \times 10^5 \times 5896 \times 10^{-10}}{1.25 \times 10^7} = 283 \text{ Å}$$

লামিয়া 17,688cm⁻¹ দাগসংখ্যার গ্রেটিং অথবা 283Å তরজা দৈর্ঘ্যের আলো ব্যবহার করে কাঞ্চিত পরিবর্তন আনতে পারে।

প্রন ১২৯ চিত্রটি লক্ষ করো এবং নিচের প্রশ্নগুলোর উত্তর দাও।

$$S = 0.5 \frac{S_1}{mm}$$
 $S_2 = 0.5 \frac{P_1}{Mm}$
 $S_2 = 0.5 \frac{P_1}{mm}$
 $S_2 = 0.5 \frac{P_1}{Mm}$
 $S_3 = 0.5 \frac{P_1}{Mm}$
 $S_4 = 0.5 \frac{P_1}{Mm}$
 $S_5 = 0.5 \frac{P_1}{Mm}$
 $S_7 = 0.5 \frac{P_1}{Mm}$

উদ্দীপকে 3800 Å তরজ্ঞাদৈর্ঘ্যের আলো ব্যবহার করে ইয়ং এর দ্বি-চির পরীক্ষা সম্পন্ন করা হচ্ছে। চিত্রে $S_1 S_2 = 0.5 \text{ mm}$, $OP = 6.46 \times 10^{-3} \text{ m}$, D = 1 m.

ক, ফার্মাটের নীতি লিখ।

- খ. সাদা আলো প্রিজমের মধ্য দিয়ে যাবার সময় বিচ্ছুরিত হয় কেন? ২
- উদ্দীপকে কেন্দ্রীয় উজ্জ্বল ডোরা হতে পঞ্চম অন্ধকার ডোরার দরত্ব কত?
- উদ্দীপকের P বিন্দুতে গঠনমূলক ব্যতিচার না ধ্বংসাত্মক ব্যতিচার হবে গাণিতিক বিশ্লেষণের মাধ্যমে মতামত দাও?

২৯ নং প্রশ্নের উত্তর

৩ নং সৃজনশীল প্রশ্লোকর দ্রফীব্য।

প্রম ▶৩০ একটি সমতল নিঃসরণ গ্রেটিং বেগুণী বর্ণের আলোর জন্য ২য় ক্রমে 30° কোণ উৎপন্ন করে। বেগুণী বর্ণের তরজা দৈর্ঘ্য λ, = 4000Å, লাল বর্ণের তরজা দৈর্ঘ্য λ_R = 8000Å। *সিলেট সরকারি বংলক, সিংলটা*

ক. সুপার নোভা কী?

খ. অর্ধপরিবাহীর পরিবাহিতা তাপমাত্রার সাথে কিভাবে এবং কেন পরিবর্তিত হয় ব্যাখ্যা করো।

গ্রপ্রতিটি চিরের বেধ 1µm হলে স্বচ্ছ রেখার বেধ কত হবে? ৩

য়, বেগুণী বর্ণের পরিবর্তে লাল বর্ণ ব্যবহারের ফলে অপবর্তন ঝালরের প্রসম্ভতা বৃদ্ধি পাবে কি? বিশ্লেষণসহ মতামত দাও। ৪

৩০ নং প্রশ্নের উত্তর

ক্র সূর্যের ভরের তুলনায় অনেক ভারী নক্ষত্রগুলো জ্বালানী শেষ হলে এর ভিতর সংকোচন অত্যন্ত তীব্র হয় এবং মূল অংশের ঘনত্ব এত বেড়ে যায় যে, প্রচণ্ড বিস্ফোরণের মধ্য দিয়ে এরা মৃত্যুবরণ করে। এই প্রচণ্ড বিস্ফোরণকে সুপার নোভা বলে।

আৰ্থ পরিবাহীতে যোজন ব্যান্ত পূর্ণ এবং পরিবহন ব্যান্তে কোনো
ইলেক্ট্রন থাকে না, কিন্তু যোজন ব্যান্ত ও পরিবহন ব্যান্তের মধ্যে শব্তি
ব্যবধান খুব কম থাকে। সাধারণ তাপমাত্রায় যোজন ব্যান্তের কিছু
ইলেকট্রন যোজনী বন্ধন ভেজো পরিবহন ব্যান্তে চলে যায় ফলে এরা
সামান্য পরিবাহী হয়। তাপমাত্রা বৃদ্ধির সাথে সাথে একটি নির্দিষ্ট
তাপমাত্রা পর্যন্ত পরিবহন ব্যান্তে ইলেকট্রন সংখ্যা বৃদ্ধি পায় তাই তাপমাত্রা
বৃদ্ধিতে অর্ধ পরিবাহীর পরিবাহিতা বৃদ্ধি পায় এবং রোধ হ্রাস পায়।

ৰা ষচ্ছ রেখার বেধ, b হলে $(a + b) \sin \theta_2 = n\lambda$ বা, $a + b = \frac{n\lambda}{\sin \theta_2}$ $\therefore b = \frac{n\lambda}{\sin \theta_2} - a$ $= \frac{2 \times 4000 \times 10^{-10}}{\sin 30^\circ} - 1 \times 10$

এখানে, উজ্জ্বলতার ক্রম, n=2উৎপন্ন কোণ, $\theta_2=30^\circ$ আপতিত আলোর তরজাদৈর্ঘ্য,

 λ = 4000A চিরের বেধ, a = 1 μ m = 1 \times 10 $^{-6}$ m

= 6×10^{-7} m = $0.6 \mu m$ (Ans.)

থা বেগুনী বর্ণের ক্ষেত্রে প্রথম ক্রমের চরমের জন্য কেন্দ্রীয় চরম হতে কৌণিক দূরত্ব 0, হলে,

$$d\sin\theta_1 = \lambda_v$$

বা, $\theta_1 = \sin^{-1}\left(\frac{\lambda_v}{d}\right)$
 $= \sin^{-1}\left(\frac{4000 \times 10^{-10}}{1.6 \times 10^{-6}}\right)$
 $= 14.47^\circ$
এখানে,
বেগুনী বর্ণের তরজ্ঞা দৈর্ঘ্য,
 $\lambda_v = 4000 \text{Å} = 4000 \times 10^{-10}$
গ্রেটিং ধ্রুবক,
 $d = a + b = (1 + 0.6) \mu m$

ফলে প্রথম ক্রমের জন্য কৌণিক দূরত্ব = 20,

আবার, লাল বর্ণের ক্ষেত্রে প্রথম ক্রমের চরমের জন্য কেন্দ্রীয় চরম হতে কৌণিক দূরত্ব, 0,' হলে,

$$\begin{aligned} d\sin\theta_1' &= \lambda_R \\ \hline \forall I, \ \theta_1' &= \sin^{-1} \left(\frac{\lambda_R}{d} \right) \\ &= \sin^{-1} \left(\frac{8000 \times 10^{-10}}{1.6 \times 10^{-6}} \right) \\ &= 30^{\circ} \end{aligned}$$

∴ প্রথম ক্রমের জন্য কৌণিক দূরত্ব = 20₁¹ $= 2 \times 30^{\circ}$

...কৌণিক দূরত্ব বৃদ্ধি পেল = 60° − 28.96° $= 31.06^{\circ}$

ফলে বগুনী বর্ণের পরিবর্তে লাল বর্ণের আলোক তরজা ব্যবহার করলে ঝালরের প্রশস্তত্ব বৃদ্ধি পাবে।

প্রনা 👀 ইয়ং এর দ্বি-চিড় পরীক্ষায় পরপর দুটি উজ্জ্বল ডোরার মধ্যবর্তী দূরত্ব 6.25 × 10⁻⁵m । চিড় দুটি হতে পর্দার দূরত্ব 0.8m আলোর তরজ্ঞাদৈর্ঘ্য 6.25 ×10⁻⁷m এবং কোনো একটি সমতল নিঃসরণ গ্রেটিং এর প্রতি সেন্টিমিটারে দাণ সংখ্যা 6000।

[अडकाति भशीम नुमनुम करमजः, भारता]

 $= 1.6 \times 10^{-6} \text{m}$

ক, সুসজাত উৎস কী?

থ, উৎস হতে পর্দার দূরত্ব বেশি হলে ব্যতিচার অবলোকন করা যায় না কেন?

গ. চিড়দ্বয়ের মধ্যবতী দূরত্ব কত?

ঘ় যদি উদ্ভ আলোক রশ্মিকে গ্রেটিংয়ের উপর আপতিত করা হয় তাহলে সর্বোচ্চ কত ক্রম পর্যন্ত দেখা যাবে—গাণিতিক বিশ্লেষণ কর।

৩১ নং প্রশ্নের উত্তর

📆 দৃটি উৎস হতে সমদশা সম্পন্ন বা কোনো নির্দিষ্ট দশা পার্থক্যের একই তরজাদৈর্ঘ্যের দৃটি আলোক তরজা নিঃসৃত হলে তাদেরকে সুসংগত উৎস বলে।

🌉 আমরা জানি, ব্যতিচারের ফলে পর্দায় যে ঝালর তৈরি হয় তার প্রস্থ $\Delta x = \frac{\Delta D}{a}$, যেখানে, D = পর্দা ও উৎসের দূরত্ব। এখন, সমীকরণ হতেদেখা যায়, দূরত্ব বেশি হতে ঝালরের প্রস্থান্ত বেশি হয়। কিন্তু প্রতিটি ঝালরের মোট আলোকশক্তির কোনো পরিবর্তন হয় না। তাই ঝালরের প্রস্থ বেড়ে গেলে তীব্রতা হ্রাস পায় এবং ঝালর অস্পন্ট হয়ে যায়। তাই পর্দার দূরত্ব খুব বেশি হলে কোনো ব্যতিচার ঝালর অবলোকন করা যায় ना ।

$$\Delta x = \frac{\lambda D}{a}$$

$$\therefore a = \frac{\lambda D}{\Delta x}$$

$$= \frac{6.25 \times 10^{-7} \times 0.8}{6.25 \times 10^{-5}}$$

$$= 0.008 \text{m}$$

$$= 8 \text{ mm (Ans.)}$$

দেওয়া আছে, তরকা দৈর্ঘ্য, $\lambda = 6.25 \times 10^{-7} \mathrm{m}$ দৃটি উজ্জ্বল ডোরার দূরত, $\Delta x = 6.25 \times 10^{-5} \text{m}$ পর্দার দূরত্ব, D = 0.8m

$$a \sin\theta = n\lambda$$

$$\forall i, n = \frac{a \sin\theta}{\lambda}$$

.: n সর্বোচ্চ হবে যখন sinθ সর্বোচ্চ sinθ সর্বোচ্চ হয় যখন, θ = 90° যখন, θ = 90° হবে তখন আর ব্যতিচারের কোনো ভোরা পর্যবেক্ষণ করা যাবে না।

$$\therefore \frac{1}{6 \times 10^3} \times \sin 90^\circ = n \times 6.25 \times 10^{-7}$$

 \therefore n = 266.67

∴ 266 ক্রম পর্যন্ত ব্যতিচার দেখা যাবে।

দেওয়া আছে, তরজা দৈর্ঘ্য $\lambda = 6.25 \times 10^{-7} \text{m}$ গ্ৰেটিং ধুবক, d =

改立▼のか

উদ্দীপকের দৃটি চির হতে 6000Å তরজাদৈর্ঘ্যের দৃটি তরজা নির্গত হয়ে P বিন্দুতে মিলিত হয় এবং তরজাম্বয়ের পথ পার্থক্য 9500Å চির হতে পর্দার দূরত্ব 1.5m। চিরছয়ের মধ্যবর্তী দূরত্ব 0.3 mm.

/वाश्मारमण त्नोवाश्नि करमळ, ४क्रेग्राथ /

ক, হাইগেনসের নীতি কী?

খ, দুটি একই তড়িৎ ক্ষমতার বান্ধ ব্যতিচার সৃষ্টি করতে পারবে কি? ব্যাখ্যা দাও।

গ. কেন্দ্রীয় উজ্জ্বল ডোরা হতে ২য় উজ্জ্বল বিন্দুর দূরত্ব কত?

ঘ. p বিন্দৃটি উজ্জ্বল হবে নাকি অন্ধকার হবে তা উদ্দীপকের আলোকে যাচাই করো।

৩২ নং প্রশ্নের উত্তর

💀 একটি তরজামুখের উপরিস্থিত সব বিন্দুকে এক একটি বিন্দু উৎস হিসেবে গণ্য হবে, যা থেকে গৌণ তরজা উৎপন্ন হয়ে মূল তরজোর দূতিতে সামনের দিকে অগ্রসর হয়। পরবর্তী যেকোনো মূহর্তে এ গৌণ তরজামুখগুলোর সাধারণ স্পর্শক তল হবে ঐ সময় উক্ত তরজামুখের নতুন অবস্থান।

ব্যতিচার সৃষ্টির জন্য শর্ত হল আলোক উৎসদ্বয়কে সুসংজ্ঞাত হতে হবে অর্থাৎ উৎসদ্বয় হতে সমদশায় বা নির্দিষ্ট দশা পার্থক্যের একই তরজ্ঞাদৈর্ঘ্যের দুইটি আলোক তরজ্ঞা নিঃসৃত হতে হবে। সাধারণভাবে দুইটি আলাদা আলোক উৎসকে সুসজাত উৎস হিসেবে বিবেচনা করা যায় না, কেননা যেকোনো একটি উৎসের পরমাণু কর্তৃক নিঃসূত আলোক তরজা অন্য উৎসের উপর কোনোভাবেই নির্ভর করে না। তাই দুই ভিন্ন উৎস হতে নির্গত দুইটি আলাদা আলোক তরজা একটি নির্দিষ্ট দশা পার্থক্য বজায় রাখতে পারে না। ফলে তারা সুসজাত উৎস হিসেবে কাজ করবে না এবং ব্যতিচার সৃষ্টি হবে না। সূতরাং বলা যায়, দুইটি একই রকম বাতি সুসজাত উৎস নয় বিধায় তারা ব্যতিচার ঝালর সৃষ্টি করতে পারে না।

দেওয়া আছে, চিরম্বয়ের দূরত, a = 0.3 mm পর্দার দূরত্ব, D = 1.5 m তরজা দৈর্ঘ্য, $\lambda = 6000 \times 10^{-10} \mathrm{m}$

$$sinθ = \frac{nλ}{a}$$

$$= \frac{2 \times 6000 \times 10^{-10}}{0.3 \times 10^{-3}}$$
⇒ tanθ = 4 × 10⁻³m [∴ θ → 0°]
⇒ $\frac{AB}{D}$ = 4 × 10⁻³
∴ AB = 1.5 × 4 × 10⁻³
= 6 × 10⁻³
= 6 mm (Ans.)

য় উদ্দীপক হতে পাই, S₁ ও S₂ চিরদ্বয় হতে নির্গত আলোক রশ্মিদ্বয়ের পথ পার্থক্য 9500Å

আমরা জানি, দুটি তরজ্যের মধ্যবর্তী ব্যতিচার গঠনমূলক হবে নাকি ধ্বংসাত্মক হবে তা নির্ভর করে তাদের মধ্যবর্তী পথ পার্থক্যের উপর। গঠনমূলক ব্যতিচার হয় যদি পথপার্থক্য n λ হয়।

এবং ধ্বংসাত্মক ব্যতিচার হয় যদি $(2n+1) \frac{\Lambda}{2}$ হয়।

যেহেতু, ব্যবহৃত আলোর তরজ্ঞাদৈর্ঘ্য, λ = 6000Å সূতরাং আমরা দেখতে পাই, পথ পার্থক্য = 9500Å অর্থ-তরজ্ঞা দৈর্ঘ্যের জোড় বা বিজোড় কোনো গুণিতকই হয় না। সূতরাং P বিন্দুটি সম্পূর্ণ উজ্জ্বল বা অন্ধকার কোনোটিই হবে না।

তবে 9500Å, 9000Å খুব কাছাকাছি, যা 🚣 এর বিজ্ঞাড় গুণিতক। সূতরাং P বিন্দৃতে অন্ধকার হবে বেশি, উজ্জ্বলতা হবে অত্যন্ত কম।

প্রস্রা > তত নিচের উদ্দীপকটি লক্ষ্য করো এবং প্রশ্নগুলোর উত্তর দাও।

(अम.त्रि. धकारकमी (भरकन म्कून उ करनज), त्रिरमधै)

- ক, তরজা মুখ কাকে বলে?
- খ, ব্যাতিচার কী? ব্যাখ্যা করো।
- গ. উদ্দীপকে দ্বিতীয় (b) মাধ্যমে আলোর বেগ c_b এর গাণিতিক হিসাব করো।
- ঘ হাইড্রোজেনের রীতির সাহায্যে উদ্দীপকের আলোকরশ্মি আলোর প্রতিসরণের সূত্র প্রতিপাদন করা যায় কি? যুক্তি দাও। ৩৩ নং প্রশ্নের উত্তর

🗃 কোনো তরজ্ঞার উপর অবস্থিত সমদশাসম্পন্ন কণাগুলোর শক্তিপথকে তরজামুখ বলে।

🚰 সুসজাত উৎস থেকে নিঃসৃত দুটি আলোক তরজোর উপরিপাতনের ফলে কোনো বিন্দুর আলোক তীব্রতা বৃদ্ধি পায় আবার কোনো বিন্দুর তীব্রতা হ্রাস পায়। এর ফলে কোনো তলে পর্যায়ক্রমে আলোকোজ্জ্বল ও অন্ধকার অবস্থার সৃষ্টি হয়। কোনো স্থানে বিন্দু থেকে বিন্দুতে আলোর তীব্রতার এই পর্যায়ক্রমিক তারতম্যকে আলোর ব্যতিচার বলে। ব্যাখ্যা: ধরা যাক, একই বিস্তার ও তরজাদৈর্ঘ্য তথা কম্পান্কবিশিন্ট দুটি আলোক তরজা একই রেখা বরাবর কোনো স্থানে অগ্রসর হচ্ছে। কোনো বিন্দুতে তরজাদ্বয় একই দশায় পৌছালে (অর্থাং ঐ বিন্দুতে উভয় তরজোর তরজা চূড়া বা তরজা খাঁজ আপতিত হলে) ঐ বিন্দুতে লব্দি বিস্তার তরজান্বয়ের বিস্তারের সমষ্টির সমান হবে। অপর পক্ষে, কোনো বিন্দুতে তরজাশ্বয় যদি বিপরীত দশায় মিলিত হয় (অর্থাৎ ঐ বিন্দুতে একটি তরজোর তরজা চূড়া অপর তরজোর তরজা খাঁজের সাথে মিলিত হয়) তবে ঐ বিন্দুর লব্ধি বিস্তার শূন্য হবে। যেহেতু আলোর

তীব্রতা বিস্তারের বর্গের সমানুপাতিক সেহেতু প্রথমোক্ত বিন্দুতে তীব্রতার মান বেড়ে যাবে এবং শেষোক্ত বিন্দুতে এই মান শূন্য হবে। এর ফলে ঐ স্থানের কোনো তলে পরপর আলোকোজ্বল ও অন্ধকার অবস্থার সৃষ্টি হয় অর্থাৎ ব্যতিচার হয়।

এখন,

$$_{n}\mu_{b} = \frac{c_{a}}{c_{b}}$$

বা, $\frac{\mu_{b}}{\mu_{a}} = \frac{c_{a}}{c_{b}}$
বা, $c_{b} = \frac{c_{a} \times \mu_{a}}{\mu_{b}}$
 $= 2.28 \times 10^{8} \times \frac{1.3}{1.5}$
 $= 1.976 \times 10^{8} \text{ ms}^{-1} \text{ (Ans.)}$

এখানে, a মাধ্যমের আলোর বেগ, $c_a = 2.28 \times 10^8 \text{ ms}^{-1}$ a মাধ্যমের প্রতিসরণাডক, $\mu_a = 1.3$ b মাধ্যমের প্রতিসরণাভক, $\mu_b = 1.5$

যা ধরা যাক, XY, a ও b দুটি স্বচ্ছ মাধ্যমের বিভেদতল। ধরা যাক, AB একটি সমতল তরজামুখ a মাধ্যমে EA অভিমুখে c_i বেগে চলছে। তরজামুখটি যখন XY বিভেদতলের A বিন্দুতে তির্যকভাবে পৌছে তখন সেখানকার ইপ্রার কণাগুলো আন্দোলিত হয়। হাইগেন্সের নীতি অনুযায়ী সেগুলো গৌণ উৎস হিসেবে কাজ করে এবং তা থেকে উৎপন্ন গৌণ তরজ্ঞ b মাধ্যমে প্রবেশ করে পরিবর্তিত বেগে চারদিকে ছড়িয়ে পড়ে।

এখন t সময়ে আলোক তরজা B থেকে একই মাধ্যমে C-তে পৌছে। সূতরাং BC = c_it। এই একই সময়ে A থেকে আলোক রশাি b মাধ্যমে D-তে পৌছলে AD = c2t रहा। এখানে c2

হলো b মাধ্যমে আলোর বেগ। এখন A কে কেন্দ্র করে c2t সমান ব্যাসার্ধের বৃত্তচাপ অব্দেন করে C থেকে CD স্পর্শক টানলে তা প্রতিসরিত তরজ্ঞামুখ নির্দেশ করে যা AG বরাবর অগ্রসর হয়। সুতরাং CD তরজামুখের উপর লম্ব AG প্রতিসরিত রশ্মি এবং EA আপতিত রশ্মি নির্দেশ করে।

এখন আপতিত তরজামুখ AB ও প্রতিসরিত তরজামুখ CD প্রতিসরণ তল XY-এর সাথে যথাক্রমে ∠BAC এবং ∠ACD উৎপন্ন করে। এখন, EA, AB তলের উপর এবং NA, AC তলের উপর লম। সূতরাং, $\angle EAN + \angle NAB = \angle BAC + \angle NAB = এক সমকোণ।$ ∴ ∠EAN = ∠BAC = i (আপতন কোণ) আবার, ∠DAN' + ∠DAC = ∠ACD + ∠DAC = এক সমকোণ ∴ ∠DAN' = ∠ACD = r (প্রতিসরণ কোণ)।

: AN' ও AD বর্থাক্রমে AC ও DC-এর উপর লম্ব।

 $\frac{\sin i}{\sin r} = \frac{\sin BAC}{\sin DAN'} = \frac{\sin BAC}{\sin ACD} = \frac{BC}{AC} + \frac{AD}{AC}$

 $\frac{BC}{AD} = \frac{c_1 t}{c_2 t} = \frac{c_1}{c_2}$

a মাধ্যমে আলোর বেগ b মাধ্যমে আলোর বেগ = ধ্রুব সংখ্যা

 $\frac{\sin i}{\sin r} = \frac{c_a}{c_b} = {}_{a}\mu_b$

এটি প্রতিসরণ সংক্রান্ত স্লেপের সূত্র বা প্রতিসরণের দ্বিতীয় সূত্র। আবার, যেহেতু আপতিত রশ্মি, অভিলম্ব ও প্রতিসৃত রশ্মি কাগজের তলে অর্থাৎ একই সমতলে অবস্থান করে, সুতরাং প্রতিসরণের প্রথম সূত্রটিও প্রতিষ্ঠিত হয়।

ব্যা > 98 ইয়ং এর ন্বিচির পরীক্ষায় মীনা 6.66 × 10¹⁴Hz এর আলো ব্যবহার করলো। তার পরীক্ষণে পাশাপাশি দুটি ডোরার কেন্দ্রের মধ্যবর্তী দূরত্ব 0.75mm এবং পর্দার দূরত্ব 1.55m. আবার রাজ্ 6 × 10⁻⁴ cm প্রস্থের এবং 6800Å তরজা দৈর্ঘ্যের আলো ব্যবহার করলো। [वि व वक्ष भाषीन करमज, गरभात]

ক, অপবর্তন কী?

খ. কোন লেন্সের ক্ষমতা +2D বলতে কী বুঝ?

গ. মীনার পরীক্ষায় চিরের মধ্যবতী দূরত্ব নির্ণয় করো।

ঘ, রাজুর পরীক্ষায় প্রথম ক্রমের অন্ধকার দূটি ডোরার কৌণিক ব্যবধান নির্ণয় করো।

৩৪ নং প্রয়ের উত্তর

🚰 তীক্ষ্ম ধার ঘেঁষে যাবার সময় বা সরু ছিদ্র দিয়ে যাবার সময় আলো কিছুটা বেঁকে যাওয়ার ধর্মকে অপবর্তন বলে।

ৰ এখানে, P = +2 D

$$f = +\frac{1}{2}m = +0.5 \text{ m}$$

তাহলে লেন্সের ক্ষমতা +2 D বলতে বোঝায় লেন্সটি উত্তল এবং এর ফোকাস দূরত্ব 0.5 m। অর্থাৎ লেকটি একগুচ্ছ সমান্তরাল রশ্মিকে প্রতিসরণের পর লেন্স থেকে 0.5 m দূরে মিলিত করে।

ৰ দেওয়া আছে,

ব্যবহৃত আলোর কম্পাডক, f = 6.66 × 1014 Hz পরপর দুটি ডোরার কেন্দ্রের মধ্যবতী দূরত্ব, $\Delta z = 2 imes$ ডোরার প্রস্থ $= 0.75 \times 10^{-3} \text{ m}$

পর্দার দূরত্ব, D = 1.55 m জানা আছে, শুন্যস্থান বা বায়ুতে আলোর বেগ, c = 3 × 108 ms⁻¹ বের করতে হবে, চিরদ্বয়ের মধ্যবর্তী দূরত্ব, a = ?

আমরা জানি, $\Delta z = \frac{\lambda D}{a} = \frac{cD}{fa}$

$$\therefore a = \frac{cD}{f\Delta z} = \frac{3 \times 10^8 \text{ ms}^{-1} \times 1.55 \text{ m}}{6.66 \times 10^{14} \text{ Hz} \times 0.75 \times 10^{-3} \text{ m}}$$
$$= 0.00093 \text{ m} = 0.93 \text{ mm (Ans.)}$$

ই রাজুর কেত্রে,

চিরছয়ের মধ্যকার দূরত, $a = 6 \times 10^{-4}$ cm $= 6 \times 10^{-6}$ m ব্যবস্থুত আলোর তরজ্ঞাদৈর্ঘ্য, $\lambda = 6800 \text{ Å} = 6800 \times 10^{-10} \text{ m}$ চিরদ্বয় হতে পর্দার দূরত্ব, D = 1.55 m

:. ডোরার প্রস্থা, $\Delta x = \frac{\lambda D}{2a} = \frac{6800 \times 10^{-10} \text{ m} \times 1.55 \text{ m}}{2 \times 6 \times 10^{-6} \text{ m}}$ = 0.08783 m

∴ কেন্দ্রীয় উজ্জ্বল ডোরা হতে প্রথম অন্থকার ডোরার কৌণিক দূরত্ব = $\tan^{-1} \frac{\Delta x}{D} = \tan^{-1} \frac{0.08783}{1.55} = 3.243^{\circ}$

 রাজুর পরীক্ষার প্রথম ক্রমের অন্থকার দৃটি ভোরার কৌণিক ব্যবধান $= 2 \times 3.243^{\circ} = 6.486^{\circ}$

প্রর ▶৩৫ 0.4mm ব্যবধান বিশিষ্ট দুটি চির হতে 1.5m দূরে অবস্থিত পর্দার উপর ব্যতিচার সজ্জা সৃষ্টি করা হল। সজ্জায় কেন্দ্রীয় উজ্জ্বল ডোরা থেকে 6.75mm দূরে চতুর্থ উজ্জ্বল ডোরাটি পাওয়া গেল।

(कार्यनस्थर्वे करमण, यरपात्)

ক. সুসজাত উৎস কাকে বলে?

- খ, সুসংগত আলো ছাড়া স্থায়ী ব্যতিচার সম্ভব নয়– ব্যাখ্যা
- ণ, ব্যতিচার সৃষ্টিকারী আলোর তরজ্ঞাদৈর্ঘ্য নির্ণয় করো।
- ঘ, পর্দাটি যদি চির হতে 1m দুরে অবস্থান করে তবে ডেরার প্রস্থ পূর্বের তুলনায় কেমন হবে গাণিতিকভাবে বিশ্লেষণ করো।

৩৫ নং প্রশ্নের উত্তর

কু দুটি উৎস হতে সমদশা সম্পন্ন বা কোনো নির্দিষ্ট দশা পার্থক্যের একই তরজ্ঞাদৈর্ঘ্যের দৃটি আলোক তরজা নিঃসৃত হলে তাদেরকে সুসংগত উৎস বলে।

যা নিম্নোক্ত শর্তাবলী পূরণ সাপেক্ষে দুটি উৎসকে সুসংগত বলা হয়।

- নিঃসৃত আলোক তরজাগুলোর একই তরজাদৈর্ঘ্য থাকতে হবে।
- আলোক তরজায়য় একই দশায় বা নির্দিষ্ট দশা-পার্থকো নিঃসৃত হতে হবে। এ দশা-পার্থক্য সব সময়ের জন্য বজায় থাকতে হবে। আবার ব্যতিচারের শর্তাবলী হলো,
- দৃটি আলোক উৎসের প্রয়োজন। উৎসন্বয় ক্ষুদ্র, পরস্পরের সন্নিকটে এবং সুসংগত হতে হবে।
- যে তরজাছয় ব্যতিচার ঘটাবে তাদের তরজাদৈর্ঘ্য সমান হতে হবে এবং বিস্তার সমান বা প্রায় সমান হতে হবে।

উপরোক্ত আলোচনার পরিপ্রেক্ষিতে ইহা স্পন্টত যে, সুসংগত আলো ছাড়া স্থায়ী ব্যতিচার সম্ভব নয়।

দেওয়া আছে.

চিরছয়ের দূরত, $a = 0.4 \text{ mm} = 0.4 \times 10^{-3} \text{ m}$ চিরদ্বয় হতে পর্দার দূরত্ব, D = 1.5 m কেন্দ্রীয় উজ্জ্বল ডোরা হতে চতুর্থ উজ্জ্বল ডোরার দূরত্ব = 6.75 mm

∴ জোরা ব্যবধান, $\Delta z = \frac{6.75 \text{ mm}}{4} = 1.6875 \times 10^{-3} \text{ m}$

বের করতে হবে, ব্যতিচার সৃষ্টিকারী আলোর তরজাদৈর্ঘ্য, $\lambda = ?$

আমরা জানি, $\Delta z = \frac{\lambda D}{a}$

$$\lambda = \frac{(\Delta z)a}{D} = \frac{1.6875 \times 10^{-3} \text{ m} \times 0.4 \times 10^{-3} \text{ m}}{1.5 \text{ m}}$$

$$= 4.5 \times 10^{-7} \text{ m} = 4500 \text{Å (Ans.)}$$

য়া আমরা জানি, ডোরার প্রস্থ হলে,

$$\Delta x = \frac{\lambda D}{2a}$$

এখানে λ , a ধ্ব থাকলে $\Delta x \propto D$

$$\therefore \frac{\Delta x_2}{\Delta x_1} = \frac{D}{D}$$

$$\overline{41}$$
, $\Delta x_2 = \Delta x_1 \frac{D_2}{D_1} = \Delta x_1 \times \frac{1m}{1.50} = \frac{2}{3} \Delta x_1$

সূতরাং, পর্দাটি যদি চির হতে 1m দূরে অবস্থান করে তবে ডোরার প্রস্থ পূর্বের তুলনায় দুই তৃতীয়াংশ হবে।

প্রর ▶৩৬ ফ্রনহফার শ্রেণির অপবর্তনে সমান্তরাল আলোকরশ্যি ব্যবহার করা হয়। তোমার কাছে 10cm এবং 20cm বক্রতার ব্যাসার্ধের একটি উভোত্তল লেন্স এবং 560nm তরজা দৈর্ঘ্যের একবর্ণী আলোক উৎস ও প্রতি সেন্টিমিটারে 4000 দাগ যুক্ত একটি অপবর্তন গ্রেটিং আছে। লেনটির সাহায্যে তুমি সমান্তরাল রশ্যি উৎপন্ন করে অপবর্তন পরীকা করলে। [কাঁচের ক্ষেত্রে μ = 1.50] |भारत वाशुरकांच भत्रकाति करमक्|

ক. হাইগেনের নীতিটি বিবৃত করো।

বিশ্বদেখে কীভাবে একটি লেন্স শনান্ত করা যায়?

গ্. উদ্দীপকে গ্রেটিং এ ৩য় ক্রমের জন্য অপবর্তন কোণ কত হবে? ৩

ঘ, উৎসটিকে লেন্স থেকে কত দুরে কিভাবে রেখে তুমি পরীক্ষাটি করবে— ব্যাখ্যা করো।

৩৬ নং প্রশ্নের উত্তর

🚳 একটি তরজামুখের উপরিস্থিত সব বিন্দুকে এক একটি বিন্দু উৎস হিসেবে গণ্য হবে, যা থেকে গৌণ তরজা উৎপন্ন হয়ে মূল তরজোর দুতিতে সামনের দিকে অগ্রসর হয়। পরবর্তী যেকোনো মূহর্তে এ গৌণ তরজামুখগুলোর সাধারণ স্পর্শক তল হবে ঐ সময় উত্ত তরজামুখের নতুন অবস্থান।

একটি বস্তু নিয়ে এর খুব নিকটে পরীক্ষণীয় লেসটি ধরলে যদি প্রতিবিছ অবান্তব, সিধা এবং আকারে বস্তুর চেয়ে বড় হয় তবে লেসটি উত্তল হবে। আর যদি প্রতিবিদ্ধ আকারে ছোট হয়, লেসটি অবতল হবে।

ণ এখানে,

একক দৈর্ঘ্যে দাশ সংখ্যা, $N=4000~cm^{-1}=400000m^{-1}$ ব্যবস্থৃত আলোর তরজা দৈর্ঘ্য, $\lambda=560~nm=560\times10^{-9}m$ তৃতীয় ক্রমের জন্য অপবর্তন কোণ, $\theta=?$ তৃতীয় ক্রমের জন্য অপবর্তন কোণ, n=3 চরমের জন্য,

$$d\sin\theta = n\lambda$$

বা, $\frac{1}{N}\sin\theta = n\lambda$ [: $d = \frac{1}{N}$]
বা, $\sin\theta = Nn\lambda$
বা, $\sin\theta = 400000 \times 3 \times 560 \times 10^{-9} m$

আবার, অবমের জন্য,

 $\theta = 42.22^{\circ}$

$$d\sin\theta = (2n+1)\frac{\lambda}{2}$$

$$\boxed{1, \frac{1}{N}\sin\theta = (2n+1)\frac{\lambda}{2}}$$

$$\boxed{1, \sin\theta = 400000 \times (2\times3+1)\times\frac{560\times10^{-9}}{2}}$$

$$\therefore \theta = 51.63^{\circ}$$

় তৃতীয় ক্রমের চরমের জন্য অপবর্তন কোণ 42.22° ও তৃতীয় ক্রমের অবমের জন্য অপবর্তন কোণ 51.63°।

ফনহফার শ্রেণীর অপবর্তনে সমান্তরাল আলোকরশ্যি প্রয়োজন।
আমরা জানি, উত্তল লেন্সের প্রধান ফোকাস হতে নির্গত আলোক রশ্মিগুচ্ছ লেন্সে আপতিত হলে প্রতিসরণের পর প্রধান অক্ষের সমান্তরাল রশ্মিগুচ্ছে পরিপত হয়। এক্ষেত্রে, উৎসটিকে লেন্সের প্রধান ফোকাসে রাখতে হবে। এখানে, $\mu = 1.50$

$$r_1 = 10 \text{ cm}$$

 $r_2 = -20 \text{ cm}$

ধরি, লেসের ফোকাস দূরত্ব ।

আমরা জানি,
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$$

বা, $\frac{1}{f} = (1.50 - 1) \left(\frac{1}{10} + \frac{1}{20} \right)$

∴ f = 13.33 cm

সূতরাং, লেন্স থেকে 13.34 cm দূরত্বে একবণী আলোর উৎসটিকে রেখে নির্গত সমান্তরাল রশ্মিগুচ্ছের সাথে লম্বভাবে গ্রেটিং স্থাপন করে পরীক্ষাটি সম্পন্ন করতে হবে।

25 ¥ ▶ 29

চিত্রের উৎসদ্বয় হতে 5000Å তরজাদৈর্ঘ্যের আলো XY পর্দায় আলো অন্থকার ডোরা সৃষ্টি করে। /সরকারি বি এম অলজ, বরিশাল

ক, তরজা মুখ কী?

সুসংগত উৎসের শর্তাবলী লিখ।

গ, ভোরার প্রস্থ নির্ণয় করো।

ঘ. উৎস থেকে পর্দার দূরত্ব অপরিবর্তিত রেখে উদ্দীপকের চিত্রে কিছু সংযোজন বিয়োজন করে অপবর্তন সংগঠন সম্ভব কি? বিশ্লেষণ করো।

৩৭ নং প্রস্নের উত্তর

ক্র কোনো তরজোর যে রেখা বা তল বরাবর সবগুলো কণা সমদশাসম্পন্ন তাকে ঐ তরজোর তরজা মুখ বলে।

নু সুসংগত উৎসের বৈশিষ্ট্য:

- আলোক তরজায়য় একই দশায় বা নির্দিষ্ট দশা পার্থক্যে নিঃসৃত
 হয়। এ দশা পার্থক্য সব সময়ের জন্য বজায় থাকে।
- উৎস দৃটি খুব কাছাকাছি এবং ছোট হয়।

তা এখন, $x = \frac{\lambda D}{2a}$ = $\frac{5000 \times 10^{-10} \times 1.5}{2 \times 0.15}$ = 2.5×10^{-6} m (Ans.)

এখানে, পদার দূরত্ব, D = 1.5m চিরপ্রস্থা, a = 15cm = 0.15m তরজা দৈর্ঘ্য, $\lambda = 5000 \text{Å}$ = $5000 \times 10^{-10} \text{ m}$ ডোরার প্রস্থা, x = ?

কানো প্রতিবন্ধকের ধার ঘেঁষে বা সরু চিরের মধ্য দিয়ে যাওয়ার সময় জ্যামিতিক ছায়া অঞ্চলের মধ্যে আলোর বেঁকে যাওয়ার ঘটনাকে আলোর অপবর্তন বলা হয় ৷

তীক্ষধার প্রতিবন্ধক, কোনো ছিদ্র বা চিরের আকার যদি আলোর তরজাদৈর্ঘ্যের সাথে তুলনীয় বা প্রায় সমান হয় তাহলে অপবর্তনের ঘটনা লক্ষণীয় হয়। সকল প্রকার তরজা অপবর্তন প্রদর্শন করে।

পরীকা: ধরা যাক, S একটি আলোক উৎস এবং তার সামনে একটি অস্বচ্ছ প্রতিবন্ধক AB। প্রতিবন্ধকের পেছনে PQ একটি পর্দা। আলো সরলরেখায় গমন করে বলে পর্দার উপর AB প্রতিবন্ধকের একটি ছায়া MN গঠিত হবে।

কারণ, প্রতিবন্ধকের কারণে উৎস থেকে কোনো আলো MN অঞ্চল এসে পৌছাতে পারে না। MN অংশ সম্পূর্ণ অন্ধকারাচ্ছর থাকবে। M

বিন্দুর উপরে এবং N বিন্দুর নিচে পর্দার সমস্ত অংশ সমভাবে আলোকিত হবে কারণ ঐ অঞ্চলে উৎস থেকে আলো পৌছাতে কোনো বাধা পায় না। কিন্তু খুব সূক্ষভাবে লক্ষ করলে দেখা যায় যে, M বিন্দু এবং N বিন্দু থেকে হঠাৎ অন্ধকার শুরু হয় না। অর্থাৎ ছায়ার দুই

প্রান্ত খুব তীক্ষ (Sharp) নয়। M বিন্দুর নিচে এবং N বিন্দুর উপরেও কিছু অংশে অল্প আলোর অনুপ্রবেশ ঘটে। অর্থাৎ আলোর অপবর্তন হয়।

ব্যাখ্যা: ধরা যাক, S উৎস থেকে কোনো এক সময় গোলীয় তরজামুখ
AB প্রতিবন্ধকে উপস্থিত হলো। এখন হাইগেনসের নীতি অনুযায়ী
অগ্রসরমান প্রতিটি তরজামুখের উপর অবস্থিত কণাগুলো গৌণ
তরজাসমূহের উৎসর্পে ক্রিয়া করে। হাইগেনসের নীতি অনুসরণ করে
অণুতরজা অঞ্চল করলে দেখা যায় A ও B এর নিকটবর্তী অঞ্চল থেকে
কিছু কিছু গৌণরতজ্ঞা MN ছায়া অঞ্চলে অনুপ্রবেশ করে M বিন্দুর নিচে
এবং N বিন্দুর উপরে কিছু অংশকে আলোকিত করে।

অর্থাৎ, উদ্দীপকের চিত্রে একটি চির বন্ধ করে দিয়ে অপর চিরের সামনে অস্কচ্ছ সরু, তীক্ষ প্রতিবন্ধক রাখলেই অপবর্তন গঠিত হবে।

প্রদা > ৩৮ ইয়ং এর দ্বি-চির পরীক্ষার চির দুটির মধ্যবর্তী দূরত্ব 0.3mm এবং চিরের তল হতে পর্দার দূরত্ব 0.9m। কেন্দীয় ডোরা হতে 10 তম উজ্জ্বল ডোরার দূরত্ব 8.5mm। (নেরকোনা সরকারি মহিলা করকার)

ক. জাংশন ডায়েড কী?

খ, পরম শূন্য তাপমাত্রায় অর্ধপরিবাহী পদার্থ অন্তরকের ন্যায় আচরণ করে -ব্যাখ্যা করো।

- প. উদ্দীপকে ব্যবহৃত আলোর তরজাদৈর্ঘ্য নির্ণয় করো।
- ঘ. বর্ণিত ব্যবস্থাটিকে যদি পানির মধ্যে নেয়া হয় তবে ভারার প্রস্থের কোন পরিবর্তন হবে কিনা-গাণিতিকভাবে বিশ্লেষণ করো।

ক একটি p টাইপ এবং একটি n-টাইপ অর্ধ পরিবাহীকে বিশেষ ব্যবস্থাধীনে সংযুক্ত করলে সংযোগ পৃষ্ঠকে p-n জাংশন বলে।

পরমশূন্য তাপমাত্রায় (OK) অর্ধপরিবাহীতে ইলেকট্রনগুলো
পরমাণুতে দৃঢ়ভাবে আবন্ধ থাকে। এ তাপমাত্রায় সমযোজী
অণুবন্ধনগুলো খুবই সরল হয় এবং সবগুলো যোজন ইলেকট্রনই
সমযোজী অণুবন্ধন তৈরিতে বয়য়, থাকে। ফলে কোনো মুক্ত ইলেকট্রন
থাকে না এবং অর্ধ-পরিবাহীতে কেলাস এ অবস্থায় যোজন বয়াভ পূর্ণ
থাকে এবং যোজন বয়াভ ও পরিবহন বয়াভের মাঝে শক্তির বয়বধান
বিরাট হয় ফলে কোনো যোজন ইলেকট্রন পরিবহন বয়াভে এসে মুক্ত
ইলেকট্রনে পরিণত হতে পারে না। ফলে মুক্ত ইলেকট্রন না থাকার
কারণে পরমশূন্য তাপমাত্রায় অর্ধপরিবাহী পদার্থ অন্তরকের নয়ম আচরণ
করে।

গ মনে করি, চির দুটির মধ্যবতী দূরত্ব $a = 0.3 \text{ mm} = 0.3 \times 10^{-3} \text{m}$ চির হতে পর্দার দূরত্ব, D = 0.9 mকেন্দ্রীয় উজ্জ্বল ডোরা হতে 10 তম উজ্জ্বল ডোরার দূরত্ব,

$$x_{10} = 8.5 \text{mm}$$

= $8.5 \times 10^{-3} \text{m}$

ব্যবহৃত একবণী আলোর তরজা দৈর্ঘ্য, λ = ? আমরা জানি,

$$x_n = \frac{n \lambda D}{a}$$

$$41, \quad \lambda = \frac{ax_0}{nD} = \frac{0.3 \times 10^{-3} \times 8.5 \times 10^{-3}}{10 \times 0.9}$$

∴
$$\lambda = 2.83 \times 10^{-7} \text{ m (Ans.)}$$

বু আমরা জানি,

ইয়ং এর দ্বি-চির পরীক্ষায় পরপর দুটি উজ্জ্বল ভোরার দূরত্ব অর্থাৎ ঝালরের দৈর্ঘ্যের সাথে তরজা দৈর্ঘ্যের সম্পর্ক—

$$\lambda = \frac{a}{D}(x_2 - x_1)$$

ৰা,
$$x_2 - x_1 = \frac{\lambda D}{a}$$
....(i)

আবার, দেওয়া আছে,

পানির প্রতিসরণাঞ্জ, $_{n}\mu_{w}=\frac{4}{3}$

$$\overline{4}$$
, $\frac{4}{3} = \mu_w$

বা,
$$\frac{4}{3} = \frac{শ্ন্য মাধ্যমে আলোর বেগ পানিতে আলোর বেগ$$

বা, পানিতে আলোর বেগ =
$$\frac{3}{4}$$
 × শূন্য মাধ্যমে আলোর বেগ (ii) = $\frac{3}{4}$ × 3 × 10^8 ms⁻¹ = 2.25 × 10^8 ms⁻¹

(ii) নং সমীকরণ থেকে দেখা যায় যে, পানিতে আলোর বেগ, শূন্য মাধ্যমে আলোর বেগের চেয়ে কম হবে। এক্ষেত্রে পানিতে আলোর কম্পান্তক অপরিবর্তিত থাকবে কারণ কম্পান্তক নির্ভর করে আলোক উৎসের উপর। সূতরাং পানিতে আলোর তরজা দৈর্ঘ্য কমে আসবে। আবার (i) নং সমীকরণ থেকে দেখা যায় যে, তরজা দৈর্ঘ্য কমে গোলে পট্টি বা ঝালরের দৈর্ঘ্য কমে যাবে। সূতরাং যদি সমগ্র যান্ত্রিক ব্যবস্থাটিকে পানির মধ্যে নেওয়া হয়, তবে পট্টি বা ঝালরের প্রস্থা কমে আসবে।

পদার্থবিজ্ঞান

সম্ভম অধ্যায় : ভৌত আলোকবিজ্ঞান		অপেন্ধা কম কিছু হলুদ অপেন্ধো বেশি? (জ্ঞান)
	-	কেপুনীকমলা
২১৭. কোন তরজ্ঞার সঞ্চালনের জন্য কোনে	रा	ল লাল ভ সবুজ
মাধ্যমের প্রযোজন হয় না? (আন)		২২৮. আলোর তরজা তত্ত্বের প্রবক্তা কে? সরকারি আশেক
 শুব্দ তরক্ষা পানি তরক্ষা 		মাহমুদ কলেল, লামালপুরা (জান)
বিদ্যাৎ তরজা	1/2000	 বিজ্ঞানী নিউটন বিজ্ঞানী হাইপেন
তাড়িত চৌম্বক তরজা	0	ক) ম্যাক্সওয়েল
২১৮. তড়িৎটোম্বক তরজো তড়িৎকেত্র	B	২২৯. আলোর কণা তত্ত্বের প্রবর্তক কে? (পুলনা পাবলিক
টৌমকক্ষেত্রে মধ্যবতী কোণ — বগুড়া কান্টনমে	Ŧ	কলেজ, খুলনা (জ্ঞান)
পাবলিক স্কুন ও কলেজ, বগুড়া (জ্ঞান)		 নিউটন প্রাপ্তক
® 0°	•	ভি হাইগেন ভি ম্যাক্সওয়েল ভি
® 90° ® 180°	0	২৩০, আলোর কোয়ান্টাম তত্ত্ব আবিস্ফার করে?
২১৯. তাড়িতটোম্বক তরজা তড়িং ক্ষেত্রের কী ধরনে	Я	[ডিকারুননিসা নূন স্কুল এক কলেঞ্চ, ঢাকা] (স্কান) ③ আইনস্টাইন ﴿﴿﴿) নিউটন
त्रभवाग्र (आन)		
 সমান্তরাল সমবায় কৌশিক সমবায় 	2.0	
জ লম্ব সম্বায় জ বৃতীয় সমবায়	0	২৩১. পথ পার্থক্য দশা পার্থক্যের কত গুণ? (জান)
২২০. আলোর তাড়িকুমকীয় তত্ত্বের সাহায়্যে কোর্ন	Ū	 ② π/λ ③ π/λ ③ λ/π ③ λ/2π ③ δ/2π
वाना क्या वाय (कान)	12	
সমবর্তন		২৩২, তরজা মুখে কণাগুলোর দশা পার্থক্য কত? (ঞান)
 আলোক তড়িৎ নিঃসরণ 		
 অপবর্তন	0	⑨ 45° ◎ 0° ◎
২২১, X-ray এর তরজাদৈর্ঘ্য কত? বিজ্ঞাক উর্বরা মঙে	ल	২৩৩. একটি তরজোর দুইটি বিন্দুর দশা পার্থক্য 💯
करनाव, पाका)		হলে বিন্দুদ্বয়ের মধ্যে পথ পার্থক্য কত? (প্রয়োগ)
⊕ 10 ⁻⁸ cm		2 14 Jacan 40-0 14 (144) 4-01 (2020)
⊕ 10 ⁻¹⁰ cm ⊕ 10 ⁻¹⁰ m	0	® ½
২২২, বেগুনী আলোর তরজাদৈর্ঘ্য কত? (ঞান)		⊕ λ ⊕ 2λ ②
③ 3×10 ⁻⁷ m ④ 4×10 ⁻⁷ m	10	The same of the sa
⑤ 5×10 ⁻⁷ m	0	২৩৪. গ্রেটিং ধ্বক— কিলিকাপুর আবদুল মতিন বসরু ডিঞি কলেজ, কুমিল্লা (জ্ঞান)
২২৩. ৷ আংশ্রম = কত মিটার? জ্ঞান)		
● 10 ⁻¹⁰ m ● 10 ⁻¹² m		
⑨ 10 ¹² m ⑨ 10 ⁻¹³ m	0	
২২৪. নিমের কোন তরজাটির পোলারায়ন সম্ভব নয়	17	২৩৫. দ্বৈত প্রতিসারক কেলাস কোনটি? (জ্ঞান)
(6617)		পানিকাচ
আলোক তরজাপানি তরজা	22	📵 কোয়াটার্জ 🏻 🔞 হীরক . 🗳
 প্রতার তরজা প্রতার তরজা 	•	২৩৬, তাড়িত চৌম্বক তরজো তড়িখকের তরজা ও
২২৫. কোনটি হতে গামা রশ্মি নিঃসৃত হয়? (ঋন)	7/	চৌম্বকক্ষেত্র তরজোর কম্পান্তক সমান —
③ C-12 ④ N-14	10000	(অনুধাৰন)
Cobalt - 60	0	i. তরজোর কম্পান্তক সমান
২২৬. কোনো বেতার তরজোর $E_0 = 10^{-4} Vm^{-1}$ হ	व न	ii. উভয়ের দশা একই
চৌম্বক্ষেত্র B _o এর মান কড? (প্রয়োগ)		iii. পরস্পরের সুমান্তরালে বিদ্যমান থাকে
③ 3 × 10 ¹² Tesla ③ 3 × 10 ⁴ Tesla		নিচের কোনটি সঠিক?
	.	iii 🕑 i 🐨 ii 🐨
২২৭ কোন বর্ণের আলোর কম্পাডক আসমান	नी	ைய்சய் இருப்பட்ட இ

