

ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO

FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICAS

CUADRICAS

INVESTIGACION FORMATIVA

PRESENTA:

Daniel Alejandro Reinoso Salas César Daniel Reinoso Reinoso

FERNANDO GUALPA VILLASIS

TUTOR:

Dra. Zoraida Sivoli Barrios

Ecuador-Riobamba 2022

FACULTAD DE SALON SALON

Índice general

1.	Intr	oducci	ón	4
2.	Cuá	dricas		5
	2.1.	Definio	ción	5
		2.1.1.	Elipsoide	5
		2.1.2.	Hiperboloide de una hoja	6
		2.1.3.	Hiperboloide de dos hoja	6
		2.1.4.	Cono elíptico centrado	7
		2.1.5.	Paraboloide elíptico	7
		2.1.6.	Paraboloide Hiperbólico	7
		2.1.7.	Ejemplo	8
3.	Fun	ciones	de dos variables	10
		3.0.1.	Definición	10
		3.0.2.	Gráfica de una función de dos variables	11
		3.0.3.	Ejemplo	12
		3.0.4.	Limites y Continuidad	13
	2 1	Contin	wided:	15

INDICE	$E \; GENERAL$	2

Bibliografía	18

Índice de figuras

2.1.	Gráficas utilizando Geogebra para Elipsoide	8
2.2.	Gráficas utilizando Geogebra para Hiperboloide	9
3.1.	El dominio de una función de dos variables consta de pares ordenados (x, y) .	11
3.2.	Función de dos variables	11
3.3.	Representación geométrica	12
3.4.	Con su altura z	13

Capítulo 1

Introducción

Capítulo 2

Cuádricas

2.1. Definición

Nos interesan las superficies de ecuación z=f(x,y) o F(x,y,z)=0, es decir, las superficies formadas por los puntos (x,y,z) que satisfacen la ecuación z=f(x,y) o F(x,y,z)=0.

En particular trabajaremos únicamente con superficies cuádricas cuyas ecuaciones están dadas en forma canónica.

Existen seis tipos básicos de superficies cuádricas: Elipsoide, Hiperboloide de una hoja, Hiperboloide de dos hojas, Cono Elíptico, Paraboloide Elíptico y Paraboloide Hiperbólico. Solís, 2016.

2.1.1. Elipsoide

Ecuación canónica:

$$\frac{(x-i)^2}{a^2} + \frac{(y-j)^2}{b^2} + \frac{(z-k)^2}{c^2} = 1$$

Parametrización:

$$s(u,v): \begin{cases} x = i - a\cos u \sin v \\ y = j - b\sin u \sin v; \quad u \in [0, 2\pi], v \in [0, \pi] \end{cases}$$
$$z = k - c\cos v$$

2.1.2. Hiperboloide de una hoja

Ecuación canónica:

$$\frac{(x-i)^2}{a^2} + \frac{(y-j)^2}{b^2} - \frac{(z-k)^2}{c^2} = 1$$

Parametrización:

$$s(u,v): \begin{cases} x = i - a\cos u \cosh v \\ y = j - b\sin u \cosh v; \quad u \in [0,2\pi], v \in \mathbb{R} \\ z = k - c \sinh v \end{cases}$$

2.1.3. Hiperboloide de dos hoja

Ecuación canónica:

$$-\frac{(x-i)^2}{a^2} - \frac{(y-j)^2}{b^2} + \frac{(z-k)^2}{c^2} = 1$$

Parametrización:

$$s(u,v): \begin{cases} x=i+a \operatorname{senh} u \cos v \\ y=j+b \operatorname{senh} u \operatorname{sen} v; \quad u \in [0,+\infty], v \in [0,2\pi] \\ z=k+c \cosh u \end{cases}$$

2.1.4. Cono elíptico centrado

Ecuación canónica:

$$\frac{(x-i)^2}{a^2} + \frac{(y-j)^2}{b^2} - \frac{(z-k)^2}{c^2} = 0$$

Parametrización:

$$s(u,v): \begin{cases} x = i + \frac{a}{c} \operatorname{senh} u \cos v \\ y = j + \frac{b}{c} \operatorname{senh} u \operatorname{sen} v; \quad u \in \mathbb{R}, v \in [0, 2\pi] \\ z = k + \operatorname{senh} u \end{cases}$$

2.1.5. Paraboloide elíptico

Ecuación canónica:

$$z - k = \frac{(x-i)^2}{a^2} + \frac{(y-j)^2}{b^2}$$

Parametrización:

$$s(u,v): \begin{cases} x = u \\ y = v \\ z = \frac{(u-i)^2}{a^2} + \frac{(v-j)^2}{b^2} + k \end{cases}$$
 $u \in \mathbb{R}, v \in \mathbb{R}$

2.1.6. Paraboloide Hiperbólico

Ecuación canónica:

$$z - k = -\frac{(x-i)^2}{a^2} + \frac{(y-j)^2}{b^2}$$

Parametrización:

$$s(u,v): \begin{cases} x = u \\ y = v \\ z = -\frac{(u-i)^2}{a^2} + \frac{(v-j)^2}{b^2} + k \end{cases}$$
 $u \in \mathbb{R}, v \in \mathbb{R}$

2.1.7. Ejemplo

Considere el elipsoide y el hiperboloide de ecuación:

$$\frac{(x-1)^2}{4} + \frac{(y-3)^2}{1} + \frac{(z-1)^2}{9} = 1$$

у

$$\frac{(x+1)^2}{1} + \frac{y^2}{4} - \frac{(z-1)^2}{9} = 1$$

Encontrar el centro de las figuras.

Figura 2.1: Gráficas utilizando Geogebra para Elipsoide

Figura 2.2: Gráficas utilizando Geogebra para Hiperboloide

	Centrada en x	Centrada en y	Centrada en Z
Elipsoide	1	3	1
Hiperboloide	-1	0	1

Capítulo 3

Funciones de dos variables

En estudios anteriores, hemos revisado funciones de una variable $f: \mathbb{R} \to \mathbb{R}$, en esta sección revisaremos funciones de dos variables es decir, $f: \mathbb{R}^2 \to \mathbb{R}$, las funciones dos variables permiten el estudio de la densidad de la tierra, la presión de un globo, ciertos modelos matemáticos están descritos por funciones de dos variables.

3.0.1. Definición

Recuperado de Strang, s.f.

Definición: Una función de dos variables z = f(x, y) mapea cada par ordenado (x, y) en un subconjunto D del plano real \mathbb{R}^2 a un único número real z. El conjunto D se llama dominio de la función. El rango de f es el conjunto de todos los números reales z que tiene al menos un par ordenado $(x, y) \in D$ tal que f(x, y) = z como se muestra en la siguiente figura.

Nota: Si una función z = f(x, y) viene dada por una fórmula, asumimos que su dominio consta de todos los puntos (x, y) para los cuales la fórmula tiene sentido, a menos que se especifique un dominio diferente.

Figura 3.1: El dominio de una función de dos variables consta de pares ordenados (x,y).

3.0.2. Gráfica de una función de dos variables

La grafica de una función de dos variables es el conjunto de puntos (x,y,z) tales que $z=f(x,y)y \quad x\in D.$ Es decir,

$$Graf(f) = \{(x, y, f(x, y)) \mid (x, y) \in D\}$$

Tal que su representación seria.

Figura 3.2: Función de dos variables.

3.0.3. Ejemplo

Representaciones geométricas de una tabla.

Recuperado de Strang, s.f., Suponga que la función f está representada por la siguiente tabla:

Cuadro 3.1: Tabla de dos Entradas

	y = 0	y = 1	y=2	y = 3
x = 0	0	5	10	15
x = 1	10	15	20	25
x=2	20	25	30	35
x = 3	30	35	40	45

Geométricamente, podemos ver la información contenida en la tabla colocando primero un punto para cada (x,y) en la tabla en el plano xy de nuestro 3 -espacio

Figura 3.3: Representación geométrica

Entonces podemos elevar cada punto a su valor z apropiado (altura) en 3 dimensiones.

Figura 3.4: Con su altura z

3.0.4. Limites y Continuidad

Limite

Definición: Sea D un subconjunto de \mathbb{R}^n y $f:D\to\mathbb{R}$, una función definida en D, y sea a en un punto de acumulación de D. Decimos que el límite de una función f cuando x se acerca a a es $L\in\mathbb{R}$, y lo escribiremos $\lim_{x\to a} f(x) = L$ si para cada $\epsilon>0$ hay un $\delta>0$ tal que $|f(x)-L|<\epsilon$ si $x\in D$ y $0< d(x,a)<\delta$.

Ademas se puede considerar las siguientes propiedades:

1. Ley constante:

$$\lim_{(x,y)\to(a,b)}c=c$$

2. Leyes de identidad:

$$\lim_{(x,y)\to(a,b)}x=a$$

$$\lim_{(x,y)\to(a,b)}y=b$$

3. Ley de la suma:

$$\lim_{(x,y)\to(a,b)} (f(x,y) + g(x,y)) = L + M$$

4. Ley de diferencia:

$$\lim_{(x,y)\to(a,b)} (f(x,y) - g(x,y)) = L - M$$

5. Ley del múltiplo constante:

$$\lim_{(x,y)\to(a,b)} (cf(x,y)) = cL$$

6. Ley del producto:

$$\lim_{(x,y)\to(a,b)}(f(x,y)g(x,y))=LMETRO$$

7. Ley del cociente:

$$\lim_{(x,y)\to(a,b)}\frac{f(x,y)}{g(x,y)}=\frac{L}{M} \text{ para } M\neq 0$$

8. Ley de potencia:

$$\lim_{(x,y)\to(a,b)} (f(x,y))^n = L^n$$

para cualquier entero positivo n.

9. Ley de la raíz:

$$\lim_{(x,y)\to(a,b)} \sqrt[n]{f(x,y)} = \sqrt[n]{L}$$

para todo L si nes impar y positivo, y para $L \geq 0$ si nes par y positivo.

3.1. Continuidad:

Definición: Una función f(x,y) es continua en un punto (a,b) de su dominio si se cumplen las siguientes condiciones: 1. f(a,b) existe.

- 2. $\lim_{(x,y)\to(a,b)} f(x,y)$ existe.
- 3. $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$.

Intuitivamente podemos decir que una función continua de dos variables no tiene saltos. Consideremos el siguiente ejemplo para analizar la continuidad.

Ejemplo:

Consideramos la función:

$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

Queremos comprobar que f no es continua en el punto (0,0). Para conseguirlo veremos que si nos acercamos a (0,0) siguiendo trayectorias diferentes, obtenemos resultados también diferentes. Empezamos por las trayectorias más sencillas: las rectas. Una recta que pase

por (0,0) tiene la ecuación:

$$ax + by = 0$$
,

donde a y b son números fijos. A continuación estudiaremos dos casos diferentes: a) Si b=0, entonces la recta es x=0, es decir, estamos observando la función a lo largo del eje Y. En este caso, tenemos que f(0,y)=0 para todo y, que es una función continua (al ser constante). b) Si $b\neq 0$, tenemos que $y=-\frac{a}{b}x$. Definimos $c=-\frac{a}{b}$ tal que y=cx. El valor que toma la función en este punto es:

$$f(x, cx) = \begin{cases} \frac{c^2 x^3}{x^2 + c^4 x^4} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

$$f(x, cx) = \begin{cases} \frac{c^2 x^3}{x^2 + c^4 x^4} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

Esta función de una variable es continua para todo c fijado, puesto que:

$$\lim_{x \to 0} f(x, cx) = c^2 \lim_{x \to 0} \frac{x}{1 + c^4 x^2} = 0.$$

Hemos visto que si nos acercamos a (0,0) siguiendo trayectorias rectas, f(x,y) es continua. Por otro lado, para comprobar que f no es continua en (0,0), consideramos la trayectoria (parabólica) establecida por $x=y^2$. En este caso, la función de una variable que resulta es:

$$f(y^2, y) = \begin{cases} \frac{y^4}{y^4 + y^4} & \text{si } y \neq 0\\ 0 & \text{si } y = 0 \end{cases}$$

es decir:

$$f(y^{2}, y) = \begin{cases} \frac{1}{2} & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{cases}$$

que corresponde claramente a una función discontinua cuando y=0, lo cual implica, en particular, que la función f(x,y) no puede ser continua en el punto (0,0).

Bibliografía

Solís, Á. (2016). Gráficas de superficies cuádricas y trazas empleando Geo
Gebra. Revista $Digital\ Matemática,\ 16(1),\ 1\text{-}34.$

Strang, G. (s.f.). Calculus volume 3. https://open.umn.edu/opentextbooks/textbooks/ \$371\$