

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51)	International Patent Classification: C12Q 1/68	А3	/	ational Publication Number: ational Publication Date:	WO 00/15779 23 March 2000 (23.03.2000)
(21)	International Application Number:	PCT	/US99/21291	Published	•
(22)	International Filing Date: 15 September	1999	(15.09.1999)		
(30)	Priority Data: 60/100,327 15 September 1998 (15.	09.19	98) US		
(60)	Parent Application or Grant YALE UNIVERSITY [/]; (). LIZARDI, Pa (). PABST, Patrea, L.; ().	ul, M	. [/];		

(54) Title: MOLECULAR CLONING USING ROLLING CIRCLE AMPLIFICATION

(54) Titre: CLONAGE MOLECULAIRE A AMPLIFICATION SELON LE MODELE DU CERCLE ROULANT

(57) Abstract

Disclosed are reagents and a method for efficient in vitro molecular cloning of nucleic acid molecules of interest. Because the method is entirely in vitro, it can be automated and scaled-up in ways that are not possible in cell-based molecular cloning. The method involves insertion of a nucleic acid molecule of interest in a linear vector to form a circular vector where one strand is continuous and the other strand is discontinuous. The continuous strand of the circular vector is then amplified by rolling circle replication, amplifying the inserted nucleic acid molecule in the process. The amplification is rapid and efficient since it involves a single, isothermic reaction that replicates the vector sequences exponentially. The amplification process is amenable to automation where multiple reactions are carried out simultaneously in a small area. The amplified nucleic acid can be used for any purpose and in any manner that nucleic acid cloned or amplified by known methods can be used. This includes sequencing, probing, restriction analysis, subcloning, transcription, hybridization or denaturation analysis, further amplified, and storage for future use or analysis.

(57) Abrégé

L'invention concerne des réactifs et un procédé permettant d'assurer un clonage moléculaire in vitro de molécules d'acides nucléiques déterminées. Etant entièrement in vitro, le procédé peut être automatisé et étendu selon des modalités qu'il est impossible de mettre en oeuvre avec le clonage moléculaire à base cellulaire. Le procédé consiste à insérer la molécule d'acide nucléique concernée dans un vecteur linéaire, de manière à former un vecteur circulaire dans lequel un brin est continu et l'autre brin est discontinu. Le brin continu est ensuite amplifie selon le modèle du cercle roulant, ce qui permet d'amplifier par la même occasion la molécule d'acide nucléique. L'amplification est rapide et efficace car elle fait intervenir une réaction isothermique unique qui assure la réplication exponentielle des séquences du vecteur. Le procédé peut être automatisé lorsque plusieurs réactions sont conduites simultanément dans une zone de taille réduite. L'acide nucléique amplifié peut être utilisé à toute fin et de façon quelconque dans l'éventail d'utilisation connu de l'acide nucléique cloné ou amplifié, y compris le séquençage, la détermination de sondes, l'analyse de restriction, le sous-clonage, la transcription, l'analyse d'hybridation ou de dénaturation, le complément d'amplification et le stockage pour utilisation ou analyse ultérieure.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:		(11) International Publication Number:	WO 00/15779	
C12Q 1/68	A3	(43) International Publication Date:	23 March 2000 (23.03.00)	
(21) International Application Number: PC1	T/US99/212	91 (81) Designated States: AE, AL, AM, BR, BY, CA, CH, CN, CU, C2	I, AT, AU, AZ, BA, BB, BG, CZ, DE, DK, EE, ES, FI, GB,	
(22) International Filing Date: 15 September 19	99 (15.09.9	9) GD, GE, GH, GM, HR, HU, I		

(71) Applicant: YALE UNIVERSITY [US/US]; 451 College Street,

New Haven, CT 06511 (US).

15 September 1998 (15.09.98) US

- (72) Inventor: LIZARDI, Paul, M.; 350 Mountain Road, Hamden, C1 06514 (US).
- (74) Agents: PABST, Patrea, L. et al.; Arnall Golden & Gregory, LLP, 2800 One Atlantic Center, 1201 West Peachtree Street, Atlanta, GA 30309-3450 (US).
- 81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CII, CY, DE, DK, ES, FI, FR, GB, GR, E, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published With international search report.

(88) Date of publication of the international search report: 10 August 2000 (10.08.00)

(54) Title: MOLECULAR CLONING USING ROLLING CIRCLE AMPLIFICATION

(57) Abstruct

(30) Priority Data: 60/100,327

Disclosed are reagents and a method for efficient in vitro molecular cloning of nucleic acid molecules of interest. Because the method is entirely in vitro, it can be automated and scaled—up in ways that are not possible in cell—based molecular cloning. The method involves insertion of a nucleic acid molecule of interest in a linear vector to form a circular vector where one strand is continuous and the other strand is discontinuous. The continuous strand of the circular vector is then amplified by rolling circle replication, amplifying the inserted nucleic acid molecule in the process. The amplification is rapid and efficient since it involves a single, isothermic reaction that replicates the vector sequences exponentially. The amplification process is amenable to automation where multiple reactions are carried out simultaneously in a small area. The amplified nucleic acid can be used for any purpose and in any manner that nucleic acid cloned or amplified by known methods can be used. This includes sequencing, probing, restriction analysis, subcloning, transcription, hybridization or denaturation analysis, further amplified, and storage for future use or analysis.

FOR THE PURPOSES OF INFORMATION ONLY

 $Codes \ used \ to \ identify \ States \ party \ to \ the \ PCT \ on \ the \ front \ pages \ of \ pamphlets \ publishing \ international \ applications \ under \ the \ PCT.$

ΛL	Albania	F.S	Spein	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland .
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Gham	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
III.	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	MI.	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	treband	MN	Mongolia	UA	Ukraine
BR	Brazil	1L	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	18	Iccland	MW	Malawi	US	United States of Americ
CA	Canada	ſŤ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NB	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimhabwe
a	Côte d'Ivoire	KP	Democratic People's	NZ	New Zenland		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DB	Germany	u	I.lectuenssein	SED	Sudan		
DK	Denmark	LK.	Sri Lanka	SE	Sweden		
EE	Esconia	LR	Liberia	SG	Singapore		