

PENGUJIAN HIPOTESIS DUA POPULASI

SATS412 / MODUL 9

Pengujian Hipotesis Dua Populasi (Varians)

OUTLINE

01	Pengantar
02	Uji Hipotesis
03	Selang Kepercayaan
04	Studi Kasus

O1. PENGANTAR

- Pengujian hipotesis varians dua populasi bertujuan untuk membandingkan keseragaman suatu populasi dengan populasi lainnya.
- \square Varians adalah simpangan baku kuadrat (s^2)
- Contoh kasus Pada proses produksi, perusahaan ingin mengetahui perbandingan tingkat kevariansan hasil produksi dari beberapa mesin

O1. PENGANTAR

Tahap Pengujian Hipotesis

- 1) Menyatakan hipotesis nol dan hipotesis alternatif (H_0 dan H_1)
- 2) Tentukan tingkat signifikansi (α)
- 3) Tentukan distribusi sampling dan statistik uji yang sesuai
- 4) Tentukan titik kritis yang membagi daerah penolakan dan penerimaan H₀
- 5) Lakukan pengambilan keputusan/kesimpulan.
 - Jika statistik uji berada di daerah penolakan, maka tolak H_0 . Namun bila statistik uji ada di daerah penerimaan H_0 , maka gagal tolak atau terima H_0 . Kemudian lakukan pengambilan kesimpulan sesuai dengan konteks masalah

02. UJI HIPOTESIS

Pengujian Hipotesis Varians 2 Populasi

Hipotesis Uji

$$H_0: \sigma_1^2 = \sigma_2^2$$
 dan $H_1: \sigma_1^2 \neq \sigma_2^2$

- 2. Tingkat signifikansi (α) dan ukuran sampel (n)
- 3. Statistik Uji

$$F = \frac{s_1^2}{s_2^2}$$

$$F_{tabel} = f_{\alpha/2(v1.v2)} atau \ f_{1-\alpha/2(v1.v2)}$$

$$db \ v_1 = n_1 - 1 \ dan \ v_2 = n_2 - 1$$

02. UJI HIPOTESIS

Pengujian Hipotesis Varians 2 Populasi

4. Titik Kritis

Tolak H_0 jika $F_{hitung} > f_{\alpha/2;db}$ dan atau Tolak H_0 jika $F_{hitung} > f_{1-\alpha/2;db}$

Untuk hipotesis *lower tail test :*

$$H_0: \sigma_1^2 \ge \sigma_2^2$$
 Tolak H_0 jika $F_{hitung} \le f_{1-\alpha(v_1,v_2)}$ $H_1: \sigma_1^2 < \sigma_2^2$

Untuk hipotesis *upper tail test :*

$$H_0: \sigma_1^2 \le \sigma_2^2$$
 Tolak H_0 jika $F_{hitung} \ge f_{\alpha(v_1, v_2)}$ $H_1: \sigma_1^2 > \sigma_2^2$

5. Penarikan Kesimpulan

03. SELANG KEPERCAYAAN

Selang Kepercayaan Varians 2 Populasi

$$\frac{s_1^2}{s_2^2} \frac{1}{f_{a/2(v1,v2)}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} f_{a/2(v2,v1)}$$

- 1. Untuk menguji kesevariansan diameter kikir yang dihasilkan dari dua mesin A dan B dilakukan pengambilan beberapa sampel dari masing-masing mesin. Sejumlah 10 buah kikir diambil dari mesin A. Dihasilkan rata-rata 3.5 mm dan simpangan baku 0.05 mm. sedangkan sejumlah 15 buah kikir diambil dari mesin B. Dihasilkan rata-rata 3.5 mm dan simpangan baku 0.07 mm. Ujilah apakah varians diameter kedua mesin adalah sama. Gunakan taraf signifikansi 10%.
- 2. Hitunglah selang kepercayaan 90% bagi perbandingan varians kedua populasi.

1. Jawaban studi kasus varians dua populasi

 σ_1^2 merupakan varians dari mesin A dan σ_2^2 merupakan varians dari mesin B

a. Hipotesis Uji

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

- b. Tingkat signifikansi (α) = 10%
- c. Statistik Uji

$$F = \frac{s_1^2}{s_2^2}$$

$$ightharpoonup$$
 $F_{\text{hitung}} = \frac{0.05^2}{0.07^2} = 0.51$

d. Titik Kritis

Distribusi Sampling Mean

e. Kesimpulan Karena nilai F=0.51 berada di antara $f_{0.95(9,14)}=0.331$ dan $f_{0.05(9,14)}=2.6458$ maka gagal tolak H_0 atau varians diameter kikir di mesin A dan B adalah sama.

2. Jawaban studi kasus varians dua populasi

Selang Kepercayaan

$$\frac{s_1^2}{s_2^2} \frac{1}{f_{a/2(v_1, v_2)}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} f_{a/2(v_2, v_1)}$$

$$\frac{0.05^{2}}{0.07^{2}} \left(\frac{1}{2.6458}\right) < \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} < \frac{0.05^{2}}{0.07^{2}} (3.03)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad 0.193 \le \left(\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\right) \le 1.546$$

Interpretasi:

Dengan tingkat keyakinan 90%, selisih varians kedua populasi adalah antara 0.193 hingga 1.546.

3. Ada dua pabrik penghasil kapur, NICE dan NASDAQ bandingkan apakah variansi panjang kapur dari kedua pabrik sama, berikut data yang didapatkan:

	NICE	NASDAQ
Jumlah	21	25
Rata-rata	3.27	2.53
Standar Deviasi	1.30	1.16

Apakah terdapat perbedaan variansi antara NICE dan NASDAQ pada tingkat signifikansi $\alpha=0.1$?

3. Jawaban studi kasus varians dua populasi

 σ_1^2 merupakan variansi panjang kapur dari pabrik NICE dan σ_2^2 merupakan variansi Panjang kapur dari pabrik NASDAQ

a. Hipotesis Uji

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

- b. Tingkat signifikansi (α) = 10%
- c. Statistik Uji

$$F = \frac{s_1^2}{s_2^2}$$

$$ightharpoonup$$
 $F_{\text{hitung}} = \frac{1.30^2}{1.16^2} = 1.256$

d. Titik Kritis

Distribusi Sampling Mean

e. Kesimpulan Karena nilai F=1.256 berada di antara $f_{0.95(20,24)}=0.48$ dan $f_{0.05(20,24)}=2.03$ maka gagal tolak H_0 atau varians antara NICE dan NASDAQ adalah sama atau tidak terdapat perbedaan.

4. Sejumlah 11 sampel yang diambil dari populasi pertama memiliki varians 5.8 selanjutnya 21 sampel dan populasi kedua memiliki variansi 2.4. lakukanlah pengujian hipotesis dengan tingkat signifikansi $\alpha = 1\%$.

4. Jawaban studi kasus varians dua populasi

 σ_1^2 merupakan variansi panjang kapur dari pabrik NICE dan σ_2^2 merupakan variansi Panjang kapur dari pabrik NASDAQ

a. Hipotesis Uji

$$H_0: \sigma_1^2 \ge \sigma_2^2$$

$$H_1$$
: $\sigma_1^2 < \sigma_2^2$

- b. Tingkat signifikansi (α) = 1%
- c. Statistik Uji

$$F = \frac{s_1^2}{s_2^2}$$
 \longrightarrow $F_{\text{hitung}} = \frac{5.8^2}{2.4^2} = 5.84$

d. Titik Kritis

e. Kesimpulan Karena nilai $F = 5.48 > f_{0.99(10,20)} = 0.227$ maka gagal tolak H_0 . Artinya varians populasi pertama lebih besar dari atau sama dengan varians populasi kedua .

Sekian Pengujian Hipotesis Dua Populasi (Varians)

Terima kasih telah menonton video ini... Selamat belajar, semoga sukses