لايه انتقال (٢)

پروتکل های انتقال داده

رئوس مطالب

- *خدمات انتقال اتصال گرا
 - معرفی پروتکل TCP
 - فرآیند کنترل جریان
 - مديريت اتصال
 - ♦ كنترل ازدحام

TCP: Overview RFCs: 793,1122,1323, 2018, 2581

- جریان داده دو طرفه کامل
 - مسیر دو طرفه داده
 - اتصال گرا
- نیاز به تبادل داده های کنترلی برای مباحثه و دست تکانی (Handshaking) پیش از تبادل و انتقال داده
 - * كنترل جريان
- فرستنده در صورت آمادگی گیرنده ارسال می کند

- پروتکل نقطه به نقطه
- یک فرستنده به یک گیرنده
- جریان بایت دارای ترتیب، قابل اطمینان
 - * پروتکل خط لوله ای
- اندازه پنجره با معیار های کنترل ازدحام
 و کنترل جریان تعیین می شود

ساختار قطعه TCP

URG: urgent data (generally not used)

ACK: ACK # valid

PSH: push data now (generally not used)

RST, SYN, FIN: connection estab (setup, teardown commands)

Internet checksum (as in UDP)

source port # dest port #
sequence number
acknowledgement number
head not UAPRSF receive window
checksum Urg data pointer
options (variable length)

32 bits

application data (variable length) counting
by bytes
of data
(not segments!)

bytes
rcvr willing
to accept

شماره ترتیب قطعه و پاسخ

- * شماره ترتیب
- شماره جریان بایت
- مماره اولین بایت ارسالی فرستنده
 - * پاسخ
- شماره ترتیب بایت بعدی مورد انتظار توسط گیرنده
- ارسال پاسخ های تجمیع شده

outgoing segment from sender

شماره ترتیب: مثال

simple telnet scenario

زمان رفت-برگشت (RTT) تایمر انقضاء

- ❖ تایمر انقضاء باید بزرگتر از RTT باشد
- ❖ زمان رفت-برگشت نمونه (SampleRTT)
- مدت زمان بین ارسال قطعه نمونه و دریافت پاسخ آن
 - * در هر زمان فقط یک نمونه
 - * نمونه قطعات ارسال مجدد محاسبه نمی شود
- * میانگین نمونه بعنوان مقدار تخمینی استفاده می شود

 $EstimatedRTT = (1 - \alpha).EstimatedRTT + \alpha.SampleRTT$

 $EstimatedRTT = 0.875 \times EstimatedRTT + 0.125 \times SampleRTT$

ملاحظات RTT و تايمر انقضاء

- * میانگین متحرک با وزن نمایی (EWMA)
 - کاهش اثر نمونه های قبلی بصورت نمایی
 - * مقدار ضریب ترکیب وزنی: 0.125

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

انحراف RTT و بازه انقضاء تايمر

- * بازه انقضاء: عبارت از زمان تخمینی RTT و حاشیه اطمینان
 - حاشیه اطمینان با افزایش انحراف RTT افزایش می یابد

 $DevRTT = (1 - \beta).DevRTT + \beta.|SampleRTT - EstimatedRTT|$

(typically, $\beta = 0.25$)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT "safety margin"

طراحی TCP

- * طراحی اولیه: ساده ترین مدل
 - * فرض ها
 - بدون پاسخ تکراری
 - بدون کنترل جریان
 - بدن كنترل ازدحام

- بهره گیری از سرویس rdt روی کانال غیر
 قابل اطمینان IP
 - استفاده از قطعات خط لوله ای
 - * استفاده از پاسخ تجمیع شده
 - * دارای تایمر ارسال مجدد تکی
 - * رخدادهای ارسال مجدد
 - انقضاء تايمر
 - پاسخ های تکراری

رخدادهای TCP

- درخواست ارسال (داده از لایه کاربرد)
 - ساخت قطعه با شماره ترتیب
 - مقدار شماره ترتیب: شماره اولین بایت
 جریان داده در قطعه
 - آغاز تایمر (اگر قبلا در حال کار نبود)
 - (در غیر اینصورت روی قدیمی ترین قطعه بدون پاسخ)
 - محاسبه بازه انقضاء

- ارسال مجدد قطعه ای که باعث انقضاء تایمر شده
 - شروع مجدد تايمر
 - * دریافت پاسخ
 - اگر شماره پاسخ قبلا دریافت نشده
 - به روز رسانی وضعیت پنجره
 - شروع تایمر در صورت وجود قطعات
 بدون پاسخ در پنجره (بافر)

مثال: ارسال مجدد

ارسال مجدد سريع

- * بزرگ بودن مقدار تایمر انقضاء باعث تاخیر طولانی قبل از ارسال بسته گم شده می شود
- تاخیر غیر قابل تحمل در لایه کاربردی
 - نیاز به فضای بافر زیاد برای نگهداری قطعات خارج از ترتیب
 - * راه کار
- تشخیص قطعات گم شده توسط پاسخ
 تکراری
- در صورت گم شدن قطعه تعداد پاسخ
 های تکراری بیشتر

- * استاندارد
- * در صورت دریافت بیش از ۳ پاسخ
 تکراری در فرستنده ← ارسال مجدد
 قطعه با کوچکترین شماره ترتیب
 - ♦ فرض: قدیمی ترین ارسال از یک
 قطعه گم شده ← عدم انتظار برای
 انقضاء تایمر

ساخت پاسخ TCP

عمليات گيرنده

ورود قطعه ای با شماره ترتیب مورد انتظار
 (تمامی داده های قبلی پاسخ داده شده اند)

رخدادهای گیرنده

- ورود قطعه ای با شماره ترتیب مورد انتظار (پاسخ یک قطعه قبلی ارسال نشده)
 - ورود قطعه خارج از نوبت با شماره ترتیب
 بزرگتر از مورد انتظار (تشخیص فاصله)
- ورود قطعه میانی (برای پوشش کل یا بخشی از فاصله موجود در پنجره گیرنده)

- * توقف پاسخ، انتظار بمدت 500 ms برای قطعه بعدی. ارسال پاسخ در صورت عدم دریافت قطعه
 - ارسال بلافاصله پاسخ تجمیع شده، برای پاسخ هر دو قطعه
 - ارسال بلافاصله پاسخ تکراری، با شماره بایت بعدی مورد انتظار
- در صورتیکه شروع قطعه از ابتدای فاصله باشد،
 ارسال بلافاصله پاسخ

كنترل جريان

مديريت اتصال

- ❖ سرویس اتصال گرا: نیاز به برقراری اتصال پیش از انتقال داده (Handshake)
 - توافق بر پذیرش اتصال
 - توافق بر پارامترهای اتصال
 - نیاز به دست تکانی سه مرحله ای
 - تغييرات تاخير
 - ارسال مجدد
 - اعلام شماره ترتیب توسط سرور

دست تکانی سه مرحله ای

دست تکانی سه مرحله ای: FSM

قطع اتصال

FSM: وضعیت مشتری

FSM: وضعیت سرویس دهنده

كنترل ازدحام

- * منشاء عمده تلفات بسته
- سرریز شدن بافر در مسیریاب ها به <u>دلیل ازدحام</u>
 - * راه کار تلفات بسته
 - ارسال مجدد
- * سوال: آیا فرآیند کنترل جریان قادر به حل مشکل ازدحام است؟
 - * لازمه كنترل ازدحام
 - فرآیندی برای کنترل ارسال فرستنده

سناریوی 1: دو فرستنده، یک مسیریاب

سناریوی ۲: بافر محدود، ارسال مجدد

* فرض ها

- فضای بافر مسیریاب محدود
- ارسال مجدد بسته های منقضی شده
 - نرخ لایه کاربرد: ورودی = خروجی
 - نرخ $\forall x$ انتقال: ورودي $\geq \dot{x}$ نرخ \dot{x}

سناریوی ۲: دانش فرستنده

- اطلاع فرستنده از فضای بافر موجود در مسیریاب
- ارسال تنها در صورت خالی بودنبافر مسیریاب
- هزینه ازدحام: کاهش بار به دلیل ارسال مجدد

سناریوی ۲: ارسال تکراری

راه کارهای کنترل ازدحام

* سیاست:

- افزایش نرخ ارسال با تحویل سالم بسته ها: افزایش cwnd (افزایش MSS با هر RTT)
 - کاهش نسبتا سریع نرخ با رخداد خطا: نصف cwnd

 $LastByteSent - LastByteAcked \le min\{rwnd, cwnd\}$

AIMD saw tooth behavior: probing for bandwidth

- * نرخ ارسال
- * انتظار به مدت RTT برای ACK پس از کل پنجره (cwnd)

$$rate \approx \frac{cwnd}{RTT}$$

شروع آهسته

- * شروع ارسال در ابتدا با حداقل نرخ
 - RTT در مدت MSS •
- افزایش دو برابری (نمایی) در هر بار
- روش ۱: کاهش سریع پنجره به ۱ در صورت انقضای تایمر (شروع مجدد آهسته)
- روش ۲: کاهش پنجره به نصف آخرین مقدار
- اجتناب از ازدحام (روش ۱): افزایش ۱واحدی بجای نمایی
 - ❖ روش ۲: افزایش MSS/cwnd ❖