

Modeling with Linear Programming

Based on: www.INFORMS.org & Taha, H. A. 2017. Operations Research: An Introduction. 10th Edition. Boston, MA: Pearson

Andrés D. González

Assistant Professor

School of Industrial and Systems Engineering, The University of Oklahoma

ISE 4623/5023: Deterministic Systems Models / Systems Optimization

The University of Oklahoma, Norman, OK, USA

Feasible Space of the Reddy Mikks Model

Optimum Solution of the Reddy Mikks Model

Solving of the Reddy Mikks Model in Excel (Solver)

Solving of the Reddy Mikks Model in Excel (Solver)

Solving of the Reddy Mikks Model in Python (Gurobi)

```
#Import gurobi and name model
from gurobipy import *
model=Model("Reddy Mikks Company")
#Define decision variables
x1={}
x1=model.addVar(vtype=GRB.CONTINUOUS, lb=0, ub=GRB.INFINITY)
x2={}
x2=model.addVar(vtype=GRB.CONTINUOUS, lb=0, ub=GRB.INFINITY)
#Define objective function
z=5*x1+4*x2
model.setObjective(z)
model.modelSense=GRB.MAXIMIZE
model.update()
#Add constraints
model.addConstr(6*x1+4*x2<=24)
model.addConstr(x1+2*x2<=6)
model.addConstr((-1)*x1+x2<=1)
model.addConstr(x2<=2)</pre>
model.update()
#Solve the model
model.optimize()
#printing outputs
if model.status==GRB.OPTIMAL:
    print ("\n Optimal value (profit in USD thousands):", model.objVal)
    print ("--- Production quantities---")
    print ("x1", x1.x)
    print ("x2", x2.x)
```

```
Gurobi Optimizer version 9.0.3 build v9.0.3rc0 (win64)
Optimize a model with 4 rows, 2 columns and 7 nonzeros
Model fingerprint: 0x5633e080
Coefficient statistics:
 Matrix range
                   [1e+00, 6e+00]
  Objective range [4e+00, 5e+00]
 Bounds range
                   [0e+00, 0e+00]
  RHS range
                  [1e+00, 2e+01]
Presolve removed 1 rows and 0 columns
Presolve time: 0.01s
Presolved: 3 rows, 2 columns, 6 nonzeros
Iteration
            Objective |
                             Primal Inf.
                                           Dual Inf.
                                                           Time
            2.4000000e+01 1.200000e+01
            2.1000000e+01 0.000000e+00
                                          0.000000e+00
Solved in 3 iterations and 0.01 seconds
Optimal objective 2.100000000e+01
Optimal value (profit in USD thousands): 21.0
--- Production quantities---
x1 3.0
x2 1.5
```

THANK YOU QUESTIONS?

Andrés D. González | andres.gonzalez@ou.edu