ЛАБОРАТОРНАЯ РАБОТА 5.4.3

ИЗМЕРЕНИЕ АБСОЛЮТНОЙ АКТИВНОСТИ ИЗОТОПА «КОБАЛЬТ 60»

Цель работы: измерить абсолютную активность радиоактивного препарата 60 Со с использованием каскадного перехода γ -квантов при его распаде.

Оборудование: изотоп 60 Со, сцинтилляционный счетчик, два блока фотоэлектронных умножителей (ФЭУ)

ТЕОРИЯ

Абсолютной активностью назовем полное число распадов ядер радиоактивного препарата в единицу времени. Если $N=N_0e^{-\lambda t}$, то N_0 - абсолютная активность. Ее можно представить в виде

$$N_0 = \frac{4\pi n}{\varepsilon \omega}$$

 ε – эффективность счетчика, ω - телесный угол регистрации, n - число частиц в секунду. Если при распаде радиоактивного элемента последовательно испускается несколько частиц, то определение активности упрощается.

Р и с. 1. Схема радиоактивного распада ⁶⁰Со. Цифры слева обозначают спин уровня, знак плюс — положительную четность состояния; цифры справа указывают энергию уровня, цифры при стрелках энергию перехода

Если регистрировать частицы одновременно двумя ФЭУ, то вероятность регистрации совпадений будет равна произведению вероятностей регистрации частиц по отдельности не зависимо от чувствительности приборов. Однако эти события не являются независимыми, поэтому

$$P_{\text{COBII}} = W(\theta)P_1P_2$$

 $W(\theta)$ – корреляционная функция, определяющая анизотропию вылета второй частицы. Итого,

$$W(\theta) = 1.08$$
 для $\theta = 180^\circ$ $N_1 = 2N_0P_1$; $N_2 = 2N_0P_2$ $N_{\text{COBII}} = 2P_1P_2N_0$ $N_0 = 1.08 \frac{N_1N_2}{2N_{\text{COBII}}}$

ХОД РАБОТЫ

Соберем схему:

Истинные скорости счета являются измеренными без фона:

$$N_i = N_{i\pi} - N_{i\Phi}$$

А скорость истинных совпадений – измеренная без случайных:

$$N_{\rm c\pi} = 2\tau N_{1n} N_{2\pi}$$

Где, т – разрешающее время совпадений.

Источник	N_0 , мкКи	$N_{\rm cobn}$	$N_{\rm cn}$	$N_{\rm cл}$	au, HC	N_1	N_2	$N_{1\pi}$	$N_{1\phi}$	$N_{2\pi}$	$N_{2\phi}$
⁶⁰ Co	51.0	87	150	63	100	148647	122613	150453	1806	126304	3691
	23.5	189	316	127	200						
	27.2	163	480	317	500						
Неизвестный	43.8	85	137	52	100	175285	87352	177306	2021	88426	1074
	39.2	95	200	105	200						
	46.6	80	341	261	500						

Все измерения количества частиц – за 60 секунд.

