Résumé 16 - Endomorphismes d'un espace euclidien

 $(E, \langle \cdot | \cdot \rangle)$ désignera par la suite un espace euclidien.

Adjoint d'un endomorphisme

Théorème: Représentation des formes linéaires

Pour toute forme linéaire φ , il existe un unique vecteur $a \in E$ tel que :

$$\forall x \in E, \quad \varphi(x) = \langle a | x \rangle$$

- Définition : Adjoint d'un endomorphisme

Soit $u \in \mathcal{L}(E)$. Il existe un unique endomorphisme v de E vérifiant :

$$\forall x, y \in E, \quad \langle u(x)|y\rangle = \langle x|v(y)\rangle$$

On l'appelle adjoint de u et on le note u^* .

Pour tous $u, v \in \mathcal{L}(E)$, $(u \circ v)^* = v^* \circ u^*$.

De plus, $u \mapsto u^*$ est linéaire et involutive.

Proposition

Soit F un sous-espace vectoriel de E stable par u. Alors, F^{\perp} est stable par u^* .

Proposition: Matrice de l'adjoint dans une b.o.n.

Soient \mathcal{B} une base orthonormale de E. On pose $M = \operatorname{Mat}_{\mathcal{B}}(u)$. Alors, $\operatorname{Mat}_{\mathcal{B}}(u^*) = M^{\top}$.

Isométries vectorielles

→ Matrices orthogonales

- Définition : Matrices orthogonales -

On dit que $M \in \mathcal{M}_n(\mathbb{R})$ est une matrice orthogonale si et seulement si $M^{\top}M = MM^{\top} = I_n$.

Une matrice orthogonale est inversible, d'inverse M^{\top} et de déterminant ± 1 .

On note $O_n(\mathbb{R})$ l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$ (groupe orthogonal) et on note $SO_n(\mathbb{R})$ l'ensemble des matrices orthogonales de déterminant 1 (groupe spécial orthogonal). $O_n(\mathbb{R})$ et $SO_n(\mathbb{R})$ sont des groupes.

Théorème: Caractérisation

Une matrice est orthogonale si et seulement si l'une des deux conditions suivantes est vérifiée :

- ses colonnes forment une famille orthonormale.
- ses lignes forment une famille orthonormale.

Une matrice orthogonale s'interprète comme la matrice de passage d'une base orthonormée à une base orthonormée. Lorsque les bases de départ et d'arrivée ont même orientation, son déterminant vaut +1.

→ Isométries vectorielles

Définition -

Soit u un endomorphisme de E. Les conditions suivantes sont équivalentes :

- (i) u conserve la norme : $\forall x \in E$, ||u(x)|| = ||x||
- (ii) u conserve le produit scalaire :

$$\forall x, y \in E, \langle u(x)|u(y)\rangle = \langle x|y\rangle$$

(iii)
$$u^* \circ u = \mathrm{id}_E$$

On dit alors que u est une isométrie vectorielle de E (ou un endomorphisme orthogonal).

Une isométrie vectorielle est bijective, c'est un automorphisme. La composée d'isométries (positives) reste une isométrie (positive) : O(E) et SO(E) sont des groupes.

Théorème

Soit F un sous-espace vectoriel stable par $u \in O(E)$. Alors, F^{\perp} est stable par u.

Théorème: Caractérisation à l'aide d'une b.o.n.

Un endomorphisme est orthogonal si et seulement si l'une des deux conditions suivantes est vérifiée :

- l'image d'une b.o.n. est une b.o.n.
- sa matrice dans une b.o.n. est orthogonale.

 $u \in SO(E)$ ssi l'image d'une b.o.n.d. est une b.o.n.d.

→ Symétries orthogonales

Soit F un sous-espace vectoriel de E. Alors, $E = F \oplus F^{\perp}$.

- Définition : Symétries orthogonales -

- On appelle symétrie orthogonale par rapport à F la symétrie par rapport à F parallèlement à F[⊥].
- Une réflexion est une symétrie orthogonale par rapport à un hyperplan.

Expression analytique d'une réflexion σ par rapport à l'hyperplan $\mathrm{Vect}(a)^{\perp}$:

$$\forall x \in E, \quad \sigma(x) = x - 2 \frac{\langle x | a \rangle}{\|a\|^2} a$$

Théorème: Caractérisation

Une symétrie vectorielle est orthogonale ssi sa matrice dans une base orthonormale est symétrique.

→ Classification des isométries planes

• Les isométries positives du plan sont les rotations.

$$M \in SO_2(\mathbb{R}) \iff \exists \theta \in \mathbb{R} \text{ tel que } M = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Cas particuliers : $id_E (\theta = 0)$, $-id_E (\theta = \pi)$.

• Les isométries négatives de l'espace sont les réflexions.

$$M \in \mathcal{O}^-_2(\mathbb{R}) \Longleftrightarrow \exists \theta \in \mathbb{R} \text{ tel que } M = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$$

→ Classification des isométries de l'espace

• Les isométries positives de l'espace sont les rotations. Si $u \in SO(\mathbb{R}^3)$, il existe une b.o.n. \mathcal{B} de \mathbb{R}^3 dans laquelle :

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

Cas particuliers : id_E ($\theta=0$), demi-tour ($\theta=\pi$).

Représentation d'une rotation de l'espace

 $Tr(u) = 1 + 2\cos(\theta); \sin(\theta) = [a, b, u(b)] \text{ où } ||a|| = ||b|| = 1, b \in Vect(a)^{\perp}.$

• Les isométries négatives de l'espace sont les composées (commutatives) de rotation et de réflexion.

Si $u \in O^-(\mathbb{R}^3)$, il existe une b.o.n. \mathscr{B} de \mathbb{R}^3 dans laquelle :

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{bmatrix} -1 & 0 & 0\\ 0 & \cos\theta & -\sin\theta\\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

Cas particuliers : réflexion ($\theta = 0$), $-id_E$ ($\theta = \pi$).

→ Réduction des isométries

Théorème: Réduction des isométries

Soit $u \in O(E)$. Alors, il existe une base orthonormale de E telle que la matrice représentative de u est :

$$\operatorname{Mat}(u) = \begin{bmatrix} I_p & & & \\ & -I_q & & \\ & & R(\theta_1) & & \\ & & \ddots & \\ & & & R(\theta_r) \end{bmatrix}$$

où $p, q, r \in \mathbb{N}$ tels que $p + q + 2r = \dim(E)$,

$$R(\theta_i) = \begin{bmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{bmatrix} \text{ et } \theta_i \in \mathbb{R} \setminus \pi \mathbb{Z}$$

Endomorphismes autoadjoints

Définition : Endomorphisme autoadjoint -

On appelle endomorphisme autoadjoint (ou symétrique) tout endomorphisme u vérifiant $u^* = u$, i.e.:

$$\forall x, y \in E, \quad \langle u(x)|y\rangle = \langle x|u(y)\rangle$$

L'ensemble $\mathcal{S}(E)$ des endomorphismes autoadjoints de E est un sous-espace vectoriel de $\mathcal{L}(E)$.

Les projecteurs orthogonaux sont autoadjoints, ce sont même les seuls projecteurs à l'être.

- Proposition -

Soit $u \in \mathcal{S}(E)$. Si un sous-espace vectoriel F de E est stable par u, alors F^{\perp} est stable par u.

Proposition: Caractérisation à l'aide d'une b.o.n.

Un endomorphisme est autoadjoint si et seulement si l'une des deux conditions suivantes est vérifiée :

• pour une/toute b.o.n. (e_1, \ldots, e_n) de E,

$$\forall i, j \in [1, n], \quad \langle u(e_i)|e_i\rangle = \langle e_i|u(e_i)\rangle$$

• sa matrice dans une b.o.n. est symétrique.

Théorème : Théorème spectral

Si $u^* = u$, alors u est diagonalisable dans une base orthonormale. Autrement dit, il existe une base orthonormale formée de vecteurs propres de u.

Théorème: Théorème spectral – version matricielle

Toute matrice $M\in\mathcal{M}_n(\mathbb{R})$ symétrique réelle est diagonalisable au moyen d'une matrice de passage orthogonale :

$$\exists P \in \mathcal{O}_n(\mathbb{R}), \quad P^{-1}MP = P^{\top}MP \text{ diagonale}$$

Les sous-espaces propres d'une matrice symétrique réelle sont orthogonaux, toutes ses valeurs propres sont réelles.

Définition: Endomorphisme autoadjoint positif

Soit $u \in \mathcal{S}(E)$. Les trois assertions sont équivalentes :

- (i) pour tout $x \in E$, $\langle u(x)|x \rangle \ge 0$
- (ii) $\operatorname{Sp}(u) \subset \mathbb{R}_+$
- (iii) il existe $v \in \mathcal{L}(E)$ tel que $u = v^* \circ v$

On dit alors que u est positif.

Définition: Endomorphisme autoadjoint déf. positif

Soit $u \in \mathcal{S}(E)$. Les trois assertions sont équivalentes :

- (i) pour tout $x \neq 0_E$, $\langle u(x)|x \rangle > 0$
- (ii) $\operatorname{Sp}(u) \subset \mathbb{R}^*_{\perp}$
- (iii) il existe $v \in GL(E)$ tel que $u = v^* \circ v$

On dit alors que u est défini positif.

On note $\mathcal{S}^+(E)$ (resp. $\mathcal{S}^{++}(E)$) l'ensemble des endomorphismes autoadjoints (définis) positifs.

© Mickaël PROST Année 2022/2023