TALLER PROGCOMP: TRACK GRAFOS DIAMETRO DE UN ÁRBOL

Gabriel Carmona Tabja

Universidad Técnica Federico Santa María, Università di Pisa

November 3, 2024

Part I

ÁRBOL

ÁRBOL

Definición

Grafo no dirigido conexo y sin ciclos.

ÁRBOL

Definición

Grafo no dirigido conexo y sin ciclos.

Part II

Definición

El largo más grande de un camino que existe en el árbol.

Definición

El largo más grande de un camino que existe en el árbol.

Definición

El largo más grande de un camino que existe en el árbol.

El diametro del árbol es 3.

Definición

El largo más grande de un camino que existe en el árbol.

El diametro del árbol es 3.

- ► Camino: 4 2 1 6
- ► Camino: 4 2 1 3
- ► Camino: 0 2 1 6
- ► Camino: 0 2 1 3
- ► Camino: 5 2 1 6
- ▶ Camino: 5 2 1 3

Para calcular, primero vamos a ejecutar un DFS desde algún nodo, digamos 2.

Para calcular, primero vamos a ejecutar un DFS desde algún nodo, digamos 2. Como es un árbol, mantendremos la distancia de llegar del nodo 2 a cualquier nodo del árbol.

Para calcular, primero vamos a ejecutar un DFS desde algún nodo, digamos 2. Como es un árbol, mantendremos la distancia de llegar del nodo 2 a cualquier nodo del árbol.

Nodo	0	1	2	3	4	5	6
Distancia	_	_	0	_	_	_	_

Nodo	0	1	2	3	4	5	6
Distancia	1	_	0	_	_	_	_

Nodo	0	1	2	3	4	5	6
Distancia	1	_	0	_	_	_	_

Nodo	0	1	2	3	4	5	6
Distancia	1	_	0	_	1	_	_

Nodo	0	1	2	3	4	5	6
Distancia	1	_	0	_	1	_	_

Nodo	0	1	2	3	4	5	6
Distancia	1	_	0	_	1	1	_

Nodo	0	1	2	3	4	5	6
Distancia	1	_	0	_	1	1	_

Nodo	0	1	2	3	4	5	6
Distancia	1	1	0	_	1	1	_

Nodo	0	1	2	3	4	5	6
Distancia	1	1	0	2	1	1	_

Nodo	0	1	2	3	4	5	6
Distancia	1	1	0	2	1	1	_

Nodo	0	1	2	3	4	5	6
Distancia	1	1	0	2	1	1	2

Nodo	0	1	2	3	4	5	6
Distancia	1	1	0	2	1	1	2

Nodo	0	1	2	3	4	5	6
Distancia	1	1	0	2	1	1	2

Nodo	0	1	2	3	4	5	6
Distancia	1	1	0	2	1	1	2

Nodo	0	1	2	3	4	5	6
Distancia	1	1	0	2	1	1	2

Elejimos el nodo que tenga mayor distancia del 2.

Nodo	0	1	2	3	4	5	6
Distancia	1	1	0	2	1	1	2

Elejimos el nodo que tenga mayor distancia del 2. En este caso podemos elegir el 3 o el 6.

Ahora ejecutamos el mismo DFS, pero ahora partiendo del nodo elegido. Para el ejemplo digamos que elegimos 6

Nodo	0	1	2	3	4	5	6
Distancia	_	_	_	_		_	_

Ahora ejecutamos el mismo DFS, pero ahora partiendo del nodo elegido. Para el ejemplo digamos que elegimos 6

Nodo	0	1	2	3	4	5	6
Distancia	3	1	2	2	3	3	0

Ahora ejecutamos el mismo DFS, pero ahora partiendo del nodo elegido. Para el ejemplo digamos que elegimos 6

Nodo	0	1	2	3	4	5	6
Distancia	3	1	2	2	3	3	0

El camino más largo es 3 y va desde 6 hasta 0, 4 o 5.

Ahora ejecutamos el mismo DFS, pero ahora partiendo del nodo elegido. Para el ejemplo digamos que elegimos 6

Nodo	0	1	2	3	4	5	6
Distancia	3	1	2	2	3	3	0

El camino más largo es 3 y va desde 6 hasta 0, 4 o 5.

Complejidad: O(n + a)

CÓDIGO

```
1 // n cantidad de nodos
2 // a cantidad de aristas
3 int n, v;
4 // true es para visitado , false es para no visitado
5 vector < bool > visitado:
6 vector < vector < int > > lista;
7 vector < int > dists;
   void dfs(int u) {
    visitado[u] = true;
10
    for(int i = 0; i < lista[u].size(); i++) {</pre>
11
    int v = lista[u][i];
      if(visitado[v] == false){
         dists[v] = dists[u] + 1;
14
         dfs(v);
15
16
17
18
```

CÓDIGO

```
int main() {
     cin >> n >> v;
2
     lista.resize(n);
3
     visitado.resize(n, false);
     dists.resize(n, 0);
6
     for(int i = 0; i < v; i++) {</pre>
7
       int a, b; cin >> a >> b;
8
       lista[a].push_back(b);
9
       lista[b].push_back(a);
10
11
12
     dfs(0);
13
     int max node = 0:
14
     for(int i = 0; i < n; i++) {</pre>
15
        if(dists[max node] < dists[i]) max node = i;</pre>
16
17
18
     visitado.resize(n, false); dists.resize(n, 0);
19
     dfs(max_node);
20
     int max_dist = 0;
21
     for(int i = 0; i < n; i++) {</pre>
22
       if(max_dist < dists[i]) max_dist = dists[i];</pre>
24
      }
25
     // hacer lo que quieran con esa info
26
27
```

References I