

Matemática A

10.º ANO DE ESCOLARIDADE

Duração: 90 minutos | **Data:** MAIO 2023

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

- 1. Considere o polinómio $P(x) = -x^3 + 3x^2 + 13x 15$.
 - **1.1.** Determine:
 - a) o resto da divisão de P(x) por x+5.
 - **b)** o quociente e o resto da divisão de P(x) por $x^2 + 2x 5$, usando o algoritmo da divisão inteira.
 - **1.2.** Fatorize P(x), sabendo que admite a raiz 1.
 - **1.3.** Resolva a condição $P(x) \le 0$.
- **2.** O resto da divisão de $A(x) = -27x^4 + 3\sqrt{3}x^3 2$ por $B(x) = \sqrt{3}x + 1$ é:
 - **(A)** $-29 + 3\sqrt{3}$
- **(B)** $-29-3\sqrt{3}$

(C) -6

- **(D)** -4
- 3. Sendo g uma função quadrática par, podemos afirmar que:
 - (A) g não tem zeros.
 - **(B)** g tem contradomínio $[0,+\infty[$.
 - (C) A reta de equação y = 0 é um eixo de simetria do gráfico de g.
 - **(D)** A reta de equação x = 0 é um eixo de simetria do gráfico de g.
- **4.** Considere, num referencial o.n. Oxyz, os pontos $A\left(-3, \sqrt{5}, -\sqrt{7}\right)$ e $B\left(0, -\sqrt{5}, -\sqrt{28}\right)$.
 - **4.1.** Escreva uma equação do plano α que passa em A e é:
 - a) perpendicular ao eixo Ox;
 - **b)** paralelo ao plano xOz.
 - **4.2.** Mostre que as coordenadas do vetor \overrightarrow{AB} são $(3,-2\sqrt{5},-\sqrt{7})$ e calcule o seu comprimento.
 - **4.3.** Indique as coordenadas do vetor \vec{w} , colinear com \vec{AB} que tenha o sentido contrário a \vec{AB} e o dobro do seu comprimento.

- 5. Considere num referencial o.n. xOy, a reta r de equação $(x,y)=(1,-8)+k\left(\frac{1}{2},-\frac{7}{2}\right), k \in \mathbb{R}$
 - **5.1.** Averigue se o ponto de coordenadas $\left(\frac{3}{4}, -1\right)$ pertence à reta r.
 - **5.2.** O declive da reta r é:
 - **(A)** -8
- **(B)** -7
- (C) '
- **(D)** 8
- **5.3.** Escreva a equação reduzida da reta r.
- 6. Observe a figura onde se encontra representado, em referencial xOy, parte do gráfico de uma função f de domínio $\mathbb R$.

Sabe-se que:

• para x < -3 o gráfico de f é a semirreta que passa nos pontos de coordenadas (-4, 1) e (-6, -2);

para x > -3, o gráfico de f é parte da parábola que passa nos pontos de coordenadas (-2,0),
 (0,-2) e (2,0).

6.1. Mostre que a função f pode ser definida por:

$$f(x) = \begin{cases} \frac{3}{2}x + 7 & \text{se } x < -3 \\ -4 & \text{se } x = -3 \\ \frac{1}{2}x^2 - 2 & \text{se } x > -3 \end{cases}$$

- **6.2.** Represente graficamente a função h tal que h(x) = |f(x)|.
- **6.3.** Determine os zeros da função g definida por g(x) = f(-x).
- **6.4.** Indique o(s) intervalo(s) onde f(x) < 0 e a função f é decrescente.

7. Considere a função real de variável real f, definida por f(x) = |-x+3|-4.

Indique os valores de x que satisfazem a condição:

7.1.
$$f(x) = -5$$

7.2.
$$f(-x-1)=5$$

FIM

Cotações:

Item																			
	Cotação (em pontos)																		
1.1.a)	1.1.b)	1.2.	1.3.	2.	3.	4.1.a)	4.1.b)	4.2.	4.3.	5.1.	5.2.	5.3.	6.1.	6.2.	6.3.	6.4.	7.1.	7.2.	Total
10	10	10	15	10	10	10	10	10	10	10	10	10	15	10	10	10	10	10	200

Proposta de resolução

1.

1.1. a) Utilizando o Teorema do resto, $P(-5) = -(-5)^3 + 3 \times (-5)^2 + 13 \times (-5) - 15 = 120$. O resto da divisão de P(x) por x + 5 é 120.

$$Q(x) = -x + 3 e R(x) = 2x$$

1.2.

$$P(x) = (x-1)(-x^2 + 2x + 15)$$

$$-x^{2} + 2x + 15 = 0 \Leftrightarrow x = \frac{-2 \pm \sqrt{2^{2} - 4 \times (-1) \times 15}}{-2} \Leftrightarrow$$

$$\Leftrightarrow x = \frac{-2 \pm \sqrt{4 + 60}}{-2} \Leftrightarrow x = \frac{-2 \pm 8}{-2} \Leftrightarrow x = -3 \lor x = 5$$

$$-x^2 + 2x + 15 = -(x-5)(x+3)$$

$$P(x) = -(x-5)(x+3)(x-1)$$

1.3.
$$P(x) \le 0 \Leftrightarrow -(x-5)(x+3)(x-1) \le 0 \Leftrightarrow$$

 $\Leftrightarrow (x-5)(x+3)(x-1) \ge 0 \Leftrightarrow$
 $\Leftrightarrow x \in [-3,1] \cup [5,+\infty[$

Cálculo auxiliar:

x	$-\infty$	-3		1		5	+∞
x-5	_	_	_	ı	_	0	+
<i>x</i> + 3	_	0	+	+	+	+	+
x-1	_	_	_	0	+	+	+
Produto	_	0	+	0	_	0	+

2.
$$A(x) = -27x^4 + 3\sqrt{3}x^3 - 2$$

$$B(x) = 0 \Leftrightarrow \sqrt{3}x + 1 = 0 \Leftrightarrow x = -\frac{1}{\sqrt{3}}$$

$$A\left(-\frac{1}{\sqrt{3}}\right) = -27 \times \left(-\frac{1}{\sqrt{3}}\right)^4 + 3\sqrt{3} \times \left(-\frac{1}{\sqrt{3}}\right)^3 - 2 =$$

$$= -27 \times \left(-\frac{1}{3}\right)^2 - 3\sqrt{3} \times \frac{1}{\sqrt{3}} \times \left(\frac{1}{\sqrt{3}}\right)^2 - 2 =$$

$$= -27 \times \frac{1}{9} - 3 \times 1 \times \frac{1}{3} - 2 = -3 - 1 - 2 = -6$$

Resposta: (C)

3. Se g é uma função par então o eixo Oy é eixo de simetria do gráfico de g.

Resposta: (D)

- 4.1.
- a) Se o plano α é perpendicular ao eixo Ox então pode ser definido por uma equação do tipo x = k.

Como $A(-3, \sqrt{5}, -\sqrt{7}) \in \alpha$, uma equação do plano $\alpha \notin x = -3$.

b) Se o plano α é paralelo ao plano xOz então pode ser definido por uma equação do tipo y = k.

Como $A(-3, \sqrt{5}, -\sqrt{7}) \in \alpha$, uma equação do plano $\alpha \notin y = \sqrt{5}$.

$$4.2. \quad \overrightarrow{AB} = B - A$$

$$\overrightarrow{AB} = (0, -\sqrt{5}, -2\sqrt{7}) - (-3, \sqrt{5}, -\sqrt{7}) = |\sqrt{28} = \sqrt{4 \times 7} = 2\sqrt{7}$$
$$= (3, -2\sqrt{5}, -\sqrt{7})$$

$$\|\overrightarrow{AB}\| = \sqrt{(-3)^2 + (-2\sqrt{5})^2 + (-\sqrt{7})^2} =$$

= $\sqrt{9 + 20 + 7} = \sqrt{36} = 6$

4.3.
$$\vec{w} = -2\vec{AB} = -2(3, -2\sqrt{5}, -\sqrt{7}) = (-6, 4\sqrt{5}, 2\sqrt{7})$$

 $\vec{w} = (-6, 4\sqrt{5}, 2\sqrt{7})$

5. 5.1.
$$\left(\frac{3}{4}, -1\right) = (1, -8) + k \left(\frac{1}{2}, -\frac{7}{2}\right) \Leftrightarrow \begin{cases} \frac{3}{4} = 1 + \frac{k}{2} \\ -1 = -8 - \frac{7}{2}k \end{cases} \Leftrightarrow \begin{cases} 3 = 4 + 2k \\ -2 = -16 - 7k \end{cases} \Leftrightarrow \begin{cases} 2k = -1 \\ 7k = -14 \end{cases} \Leftrightarrow \begin{cases} k = -\frac{1}{2} \\ k = -2 \end{cases}$$

Como o sistema é impossível, o ponto não pertence à reta.

5.2.
$$\vec{r} = \left(\frac{1}{2}, -\frac{7}{2}\right)$$
 é um vetor diretor da reta r .

Logo, $m = \frac{-\frac{7}{2}}{\frac{1}{2}} = -\frac{7 \times 2}{2 \times 1} = -7$ é o declive da reta r

Resposta: (B)

5.3. A reta r passa no ponto de coordenadas
$$(1,-8)$$
 e tem declive $m=-7$:

$$r: y + 8 = -7(x-1) \iff y = -7x - 1$$

6.1. Para
$$x < -3$$
 (semirreta):

6.

$$A(-4, 1), B(-6, -2)$$
 $\overrightarrow{AB} = (-2, -3); m = \frac{3}{2}$
 $y - 1 = \frac{3}{2}(x + 4) \Leftrightarrow y = \frac{3}{2}x + 7$

Para
$$x = -3$$
, $f(-3) = -4$.

Para x > -3 (parábola):

Como o gráfico de f passa nos pontos de coordenadas (-2,0), (0,-2) e (2,0) vem:

$$f(x) = a(x-2)(x+2)$$
 e $f(0) = -2$

$$f(0) = -2 \Leftrightarrow a(0-2)(0+2) = -2 \Leftrightarrow$$

$$\Leftrightarrow$$
 $-4a = -2 \Leftrightarrow a = \frac{1}{2}$

$$f(x) = \frac{1}{2}(x-2)(x+2) \Leftrightarrow$$

$$\Leftrightarrow f(x) = \frac{1}{2}(x^2 - 4) \Leftrightarrow f(x) = \frac{1}{2}x^2 - 2$$

$$f(x) = \begin{cases} \frac{3}{2}x + 7 & \text{se } x < -3 \\ -4 & \text{se } x = -3 \\ \frac{1}{2}x^2 - 2 & \text{se } x > -3 \end{cases}$$

6.2. A partir do gráfico de f construiu-se o gráfico de h com h(x) = |f(x)|:

6.3. $f(x) = 0 \Leftrightarrow \left(\frac{3}{2}x + 7 = 0 \land x < -3\right) \lor \left(\frac{1}{2}x^2 - 2 = 0 \land x > -3\right) \Leftrightarrow$ $\Leftrightarrow \left(3x = -14 \land x < -3\right) \lor \left(x = -2 \lor x = 2\right)$ $\Leftrightarrow x = -\frac{14}{3} \lor x = -2 \lor x = 2$

Zeros de $f: -\frac{14}{3}$; -2; 2

Se g(x) = f(-x), o gráfico de g é a imagem do gráfico de f pela reflexão de eixo Oy.

Logo, os zeros de g são os simétricos dos zeros de f: -2, 2 e $\frac{14}{3}$

6.4. f(x) < 0 e a função f é decrescente em]-2, 0].

7.

- 7.1. $f(x) = -5 \Leftrightarrow |-x+3| 4 = -5 \Leftrightarrow |-x+3| = -1$ (equação impossível) $S = \emptyset$
- 7.2. $f(-x-1) = 5 \Leftrightarrow \left| -(-x-1) + 3 \right| 4 = 5 \Leftrightarrow$ $\Leftrightarrow \left| x + 4 \right| = 9 \Leftrightarrow$ $\Leftrightarrow x + 4 = 9 \lor x + 4 = -9 \Leftrightarrow$ $\Leftrightarrow x = 5 \lor x = -13$ $S = \{-13, 5\}$

