Mathematical Modeling

Home Work # 2

Alvina Arshad

$$\ddot{u} + \dot{w} u - \mu \dot{u} + \alpha \dot{u}^{3} = 0$$

$$x_{1} = u$$

$$x_{2} = \dot{u}$$

$$x_{1} = x_{2}$$

$$x_{1} = x_{2}$$

$$x_{1} = x_{2}$$

$$x_{2} + \dot{w}^{2}x_{1} - \mu x_{2} + \alpha x_{2}^{3} = 0$$

$$x_{2} + \dot{w}^{2}x_{1} - \mu x_{2} + \alpha x_{2}^{3} = 0$$

$$x_{2} + \dot{w}^{2}x_{1} - \mu x_{2} + \alpha x_{2}^{3} = 0$$

$$x_{2} + \dot{w}^{2}x_{1} - \mu x_{2} + \alpha x_{2}^{3} = 0$$

Graphs

Let
$$w = 0.4$$
, $\alpha = 0.2$ $\mu = 100$

Time Series Plot

Code:

```
[t,y] = ode45(@na,[0 20],[1; 0]);
plot(t,y(:,1),t,y(:,2))
title('Plot');
xlabel('t');
ylabel('y');
```

Initial conditions 1 and 0

Phase Portrait Plots

Initial conditions 1 and 0

Explanation:

The model is a non-conservative oscillator with non-linear damping. It evolves in time according to the second-order differential equation:

where x is the position coordinate—which is a function of the time t, and μ is a scalar parameter indicating the nonlinearity and the strength of the damping.

Real Life Examples:

- This equation is governed in vocal fold oscillators
- In Seismology it can be used to model two plates in geological fault