桂林航天工业学院学生实验报告 实验二

大型————————————————————————————————————							
课程名称	计算机组成与约	吉构	实	验名称	存储器实验(2 学时)		
开课教学单位及实验室		计算机科学与工程学院		实验日期	2024. 11. 7		
学生姓名	廉振威		学号	2023070030615	专业班级	软件工程6班	
指导教师		张亚红		实验成绩			
实验目的		1) 掌握静态随机存储器 RAM 的工作特性 2) 掌握静态随机存储器 RAM 的读写方法					
实验要求		 做好预习,熟悉本实验所涉及的核心器件 6116 的引脚和连接方式,理解实验原理图 按步骤完成实验,按要求作好记录 完成实验报告 					
一、实验电路 ● 功能器件							
RAM6116	RAM6116 2Kx8 存储器 23 22 21 20 19 18 17 16 15 14 13 12 VCC A8 A9 A10107 106105 104103 102 101 100 RAM6116						

一、实验电路					
● 功能器件					
RAM6116	2Kx8 存储器	23 22 21 20 19 18 17 16 15 14 13 12 VCC A8 A9 A10107 106 105 104 103 102 101 100 RAM6116 A7 A6 A5 A4 A3 A2 A1 A0 -CE-0E-WEGND 0 1 2 3 4 5 6 7 8 9 10 11			
74LS245	8 位三态门	19 18 17 16 15 14 13 12 11 10 VCC -E B7 B6 B5 B4 B3 B2 B1 B0 74LS245 DIR A7 A6 A5 A4 A3 A2 A1 A0 GND 0 1 2 3 4 5 6 7 8 9			
74LS273	8 位锁存器	19 18 17 16 15 14 13 12 11 10 VCC Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 CP 74LS273 -MRD7 D6 D5 D4 D3 D2 D1 D0GND 0 1 2 3 4 5 6 7 8 9			
ANDgate	与门	♣ 与门 ↑			

NANDgate	与非门	与非门
Switch	开关	
Led	指示灯	
SinglePulse	单脉冲发生器	

图 1 存储器实验原理图

6116: 原设计 2K×8 的 RAM 芯片,在虚拟平台中,高 3 位地址线接地,因此实际存储容量 256×8;数据引脚是双向的 D7~D0;控制端口有 3 个, \overline{CE} 为片选信号, \overline{OE} 读使能, \overline{WE} 写使能,均为低电平有效, \overline{WE} 和 \overline{OE} 配合使用,当 \overline{OE} =0 \overline{WE} =0 时,进行写操作,当 \overline{OE} =0 \overline{WE} =1 时,进行读操作,虚拟平台中 \overline{OE} 接地,只需要控制 \overline{WE} 信号即可,实验中,一个开关和一个脉冲信号用与非门相连接,当开关为高电平,且脉冲到来时,D7~D0 的数据写入存储器中

地址寄存器 AR: 6116 在数据读写期间需要保持地址信号,该信号由数据锁存器 74273 提供,因此,需要先将读/写地址打入到 AR 中,再通过总线将数据写入到存储器中。本实验中寄存器的连接和使用方法与实验 1 相同。

图 2 存储器实验电路图

二、实验原理

SRAM 读周期波形图

(a) SRAM 读周期波形图

(b) SRAM 写周期波形图

图 3 SRAM 读写周期时序波形图

三、实验设备

- 1. TEC-5G 计算机组成实验系统 1 台
- 2. 逻辑测试笔一支(在实验台上)
- 3. 双踪示波器一台(公用)
- 4. 万用表一只(公用)

四、实验任务

按地址存储数据,并逐一将存储的数据读出

地址	数据
01H	11H
02H	12H
03H	13H
04H	14H
05H	15H

五、实验步骤及结果

- 1、连接电路,按照原理图将器件放置和连接好
- 2、预置电路,令各器件处理准备工作的状态
 - (1) 74273 清零开关置为高电平
 - (2) 74245 使能开关置为高电平
 - (3) 6116 片选信号 \overline{CE} 开关置为高电平
- 3、打开电源开关

此处粘贴完整电路连接图

- 4、写入数据,以将数据 11H 写入 01H 为例
 - (1) 地址送入总线:将 SW7~SW0 置为 00000001,打开三态门使能开关 $\overline{SW-BUS}$ =0,发出输入信号
 - (2) 锁存地址信号: AR 的锁存数据开关打开 LDAR=1,发出触发脉冲,此时,地址显示灯应当显示地址信号,关闭三态门 $\overline{SW-BUS}$ =1
 - (3) RAM 写入准备: 片选使能开关打开 \overline{CE} =0,写使能开关打开 WE=1
 - (4) 写入数据准备:将 SW7~SW0 置为 00010001,打开三态门使能开关 $\overline{SW-BUS}$ =0,发出输入信号
 - (5) RAM 写入数据:发出 P1 单脉冲信号,数据即写入 RAM

- (6) 相关信号复位: 重复以上 5 个步骤写入所有 5 个数据后,片选信号关闭 \overline{CE} =1,写使能开关关闭WE=0,三态门关闭 $\overline{SW-BUS}$ =0
- 5、读出数据,以将地址 01H 的数据读出为例
 - (1) 地址送入总线:将 SW7~SW0 置为 00000001,打开三态门使能开关 $\overline{SW-BUS}$ =0,发出输入信号
 - (2) 锁存地址信号: AR 的锁存数据开关打开 LDAR=1,发出触发脉冲,此时,地址显示灯应当显示地址信号,关闭三态门 $\overline{SW-BUS}$ =1
 - (3) RAM 读出数据: 片选使能开关打开 \overline{CE} =0,写使能开关关闭 WE=0,此时,数据灯应当显示地址 01H 所存储的数据
 - (4) 停止 RAM 输出: 片选信号关闭 \overline{CE} =1
 - (5) 重复以上 4 个步骤读出所有 5 个数据.

从5对数据中,任选2个用于结果记录,要求:

- 1、标示出你选择作为示例的读写地址、和数据
- 2、读取该数据的灯泡亮起状态

图读写地址为 02H, 数据为 12H; 灯泡亮起状态为 00010010;

六、思考题

- 1. 静态半导体存储器与动态半导体存储器的主要区别是什么?
 - 存储原理与单元结构 存储方式与数据保持 存取速度与功耗 集成度与成本 应用 场景
 - 2. SRAM 速度快但密度低、成本高; DRAM 密度高、成本低,但速度较慢且需要刷新。 选择哪种存储器取决于具体应用的需求,如高速缓存优先使用 SRAM,而大容量主存储器则通常选择 DRAM。
- 2. 由两片 6116 (2K*8) 怎样扩展成 (2K*16) 或 (4K*8) 的存储器? 怎样连线? 扩展成 $2K \times 16$ 位的存储器

方法: 位数扩展

将两片6116的地址线并联在一起,使它们共享相同的地址信号。

将两片 6116 的数据线分别连接到数据总线的不同位上,以实现位数的扩展。具体来说,一片 6116 的 8 根数据线连接到数据总线的低 8 位(D0D7),另一片 6116 的 8 根数据线连接到数据总线的高 8

位 (D8D15)。

连线:

地址线: A0~A10(共11根)并联在一起,连接到系统的地址总线上。

数据线:第一片 6116 的 I/00I/07 分别连接到 D0D7,第二片 6116 的 I/00I/07 分别连接到 D8D15。 控制线:两片 6116 的片选信号 CE、写允许信号 WE 和输出允许信号 OE 可以并联在一起,连接到系统的控制总线上(注意,这些控制信号需要低电平有效)。

- 3. 查阅 6116 芯片的数据手册,在 CE=0, OE=0, WE=1 的条件下,当输入的地址信息变化时,输出的数据是否会相应变化?是否有延迟?
 - 1. 在 CE(片选信号)=0、OE(输出允许信号)=0、WE(写允许信号)=1 的条件下,6116 芯片处于读操作准备状态。此时,若输入的地址信息发生变化,理论上芯片会根据新的地址信息输出相应存储单元的数据
 - 2. 存在延迟。由于 6116 芯片的内部结构和信号传输路径等因素的影响,当地址信息变化后,输出数据并不会立即反映新的地址对应的数据,而是会存在一定的延迟