Simulation

Jasmine Ju

June 4th 2016

Outline

- Simulation Results (Thesis Paper Setup)
- Why PostLasso is Better than Lasso? Exploration of 1st Stage Estimation
- Simulation Results (JASA Paper Setup)

Simulation Setup (Thesis paper)

Data generation

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta}_0 + \boldsymbol{\epsilon}$$
 $\mathbf{X} = \mathbf{Z}^T \boldsymbol{\Pi} + \boldsymbol{\omega}$

$$(\epsilon_i, \omega_i) \sim N \left(0, \begin{bmatrix} 1 & \sigma_{\epsilon\omega} \\ \sigma_{\epsilon\omega} & \sigma_{\omega}^2 \end{bmatrix}\right)$$

- $\mathbf{z}_i = [z_{i1}, ..., z_{iq}]^T \sim N(0, \Sigma_z), \operatorname{Corr}(z_{ih}, z_{ij}) = 0.5^{|i-h|}$
- ▶ Set $\beta = 1$, the strength of the instruments F = 10, 40, 160

$$\sigma_{\omega}^2 = \frac{n\Pi^T \Sigma_z \Pi}{F \Pi^T \Pi}$$

▶ Consider $Corr(\epsilon, \omega) = 0.3$ and $Corr(\epsilon, \omega) = 0.6$

Simulation Setup n > p (Thesis paper)

- ► Example 1: $\Pi = (3, 1.5, 0, 0, 2, 0, 0, 0), n = 20, p = 8$
- ► Example 2: $\Pi_i = 0.85, i = 1, ..., 8, n = 20, p = 8$
- Example 4: $\Pi = (\text{rep}(1,5), \text{rep}(0,95)), n = 500, p = 100$
- ▶ For each example, we tried $Corr(\epsilon, \omega) = 0.3/Corr(\epsilon, \omega) = 0.6$ and presented the results separately (as in the thesis paper).

Data Generation for Example 3?

Code in the Thesis:

```
dat.function <- function(n.p.cor.beta.pi1.fstar){
      # create the column of the matrix Z
      x1 <- replicate(5,rnorm(n)) + rnorm(n,sd=sqrt(0.01))</pre>
      x2 <- replicate(5.rnorm(n)) + rnorm(n.sd=sqrt(0.01))</pre>
      x3 <- replicate(5,rnorm(n)) + rnorm(n,sd=sgrt(0.01))
      x4 <- replicate(25, rnorm(n))
      Z \leftarrow cbind(x1.x2.x3.x4)
      # generete e n and v n
      cov.matrix <- cov(Z)
      sigmav \leftarrow n*(t(pi1)%*%cov.matrix%*%pi1)/(fstar*t(pi1)%*%pi1)
      cov_ve <- cor*sqrt(sigmav)
      covmatr.error <- matrix(c(1,cov_ve,cov_ve,sigmav),ncol=2)</pre>
      mat <- rmvnorm(n.sigma=covmatr.error)</pre>
      v \leftarrow mat[,2]
      e <- mat[.1]
      # generate endogenous variable
      X <- Z%*%pi1 + v
      # Response variable v
      Y \leftarrow beta * X + e
      #Output
      out<-list(dat=data.frame(Y=Y.X=X.Z=Z))
      out
}
```

• W part for $Z_1, ..., Z_5$ are different?

Results: $Cor(\epsilon, v) = 0.3, n > p$, RMSE of $\hat{\beta}$

	OLS	2SLS	PostLasso	Lasso	F
Example 1	0.053	0.051	0.051	0.298	10
Example 2	0.065	0.061	0.061	0.700	10
Example 3	0.006	0.006	0.006	0.079	10
Example 4	0.026	0.020	0.014	1.922	10
Example 1	0.050	0.051	0.051	0.121	40
Example 2	0.066	0.065	0.065	0.203	40
Example 3	0.006	0.006	0.006	0.037	40
Example 4	0.041	0.022	0.013	0.716	40
Example 1	0.050	0.050	0.050	0.070	160
Example 2	0.065	0.065	0.065	0.087	160
Example 3	0.006	0.006	0.006	0.025	160
Example 4	0.045	0.018	0.013	0.266	160

- $ightharpoonup \lambda$ is chosen such that the five-folds cross validation error is within one standard error from the minimum
- PostLasso has the best performance

Results: $Cor(\epsilon, v) = 0.3, n > p$, Number of Selected Vars

	F=10	F=40	F=160	Actual s
Example 1	4.05	4.24	4.21	3
Example 2	4.72	7.13	7.95	8
Example 3	15.57	16.95	15.71	15
Example 4	1.69	4.83	5.14	5

► For strong instruments, Lasso selects more variables (close to the actual number of instruments)

Results: $Cor(\epsilon, v) = 0.6, n < p$, RMSE of $\hat{\beta}$

	OLS	2SLS	PostLasso	Lasso	F
Example 1	0.065	0.052	0.052	0.304	10
Example 2	0.090	0.067	0.067	0.728	10
Example 3	0.007	0.006	0.006	0.080	10
Example 4	0.052	0.038	0.015	1.936	10
Example 1	0.053	0.051	0.050	0.122	40
Example 2	0.077	0.067	0.067	0.213	40
Example 3	0.006	0.006	0.006	0.037	40
Example 4	0.082	0.039	0.014	0.717	40
Example 1	0.050	0.050	0.050	0.069	160
Example 2	0.068	0.065	0.065	0.090	160
Example 3	0.006	0.006	0.006	0.026	160
Example 4	0.088	0.028	0.013	0.267	160

Results: $Cor(\epsilon, v) = 0.6, n > p$, Number of Selected Vars

	F=10	F=40	F=160	Actual s
Example 1	4.05	4.22	4.24	3
Example 2	4.72	7.14	7.95	8
Example 3	15.59	16.92	15.70	15
Example 4	1.69	4.83	5.15	5

► For strong instruments, Lasso selects more variables (close to the actual number of instruments)

Explore 1st Stage (Example 1, 100 iterations)

- ▶ Lasso underestimate positive X, overestimate negative X
- lacktriangle Overestimate eta in the second stage ($\hat{eta}>1$)
- Similar discovery for other examples

Explore 1st Stage (Example 2, 100 iterations)

Explore 1st Stage (Example 3, 50 iterations)

Explore 1st Stage (Example 4, 100 iterations)

Explore 1st Stage (Summary)

 Lasso is useful for selecting variables, but the predicted value in the 1st Stage is biased (RMSE of the 1st Stage prediction)

	2SLS	PostLasso	Lasso	F
Example 1	1.20	1.36	1.70	10
Example 2	1.61	1.83	2.25	10
Example 3	1.52	2.71	3.46	10
Example 4	9.42	10.66	10.89	10
Example 1	0.60	0.67	0.81	40
Example 2	0.81	0.84	1.02	40
Example 3	0.78	1.37	1.74	40
Example 4	4.72	5.25	5.44	40
Example 1	0.30	0.34	0.41	160
Example 2	0.40	0.40	0.46	160
Example 3	0.39	0.73	1.04	160
Example 4	2.36	2.62	2.72	160

- **Explain** the overestimation of β in the second stage
- ► The performance of high dimension scenarios? (n < p)

Simulation Setup n < p (Thesis paper)

- Example 5: $\Pi = (\text{rep}(2, 25), \text{rep}(0, 20), \text{rep}(2, 25), \text{rep}(0, 10)),$ n = 40, p = 80, s = 50
- Example 6: $\Pi = (\text{rep}(2, 15), \text{rep}(0, 30), \text{rep}(2, 5), \text{rep}(0, 30)),$ n = 40, p = 80, s = 20
- Example 7: $\Pi_i = 0.85, o = 1, ..., 80, n = 40, p = 80$
- Example 8: $\Pi = (\text{rep}(1, 100), \text{rep}(0, 900)), n = 50, p = 1000, s = 100$
- ▶ For each example, we tried $Corr(\epsilon, \omega) = 0.3/Corr(\epsilon, \omega) = 0.6$ and presented the results separately (as in the thesis paper).

Results: $Cor(\epsilon, v) = 0.6, n < p$, RMSE of $\hat{\beta}$

	OLS	PostLasso	Lasso	F
Example 5	0.008	0.007	0.279	10
Example 6	0.015	0.013	0.272	10
Example 7	0.017	0.016	0.699	10
Example 8	0.011	0.014	0.781	10
Example 5	0.007	0.007	0.253	40
Example 6	0.013	0.012	0.150	40
Example 7	0.014	0.014	0.595	40
Example 8	0.009	0.014	0.789	40
Example 5	0.007	0.007	0.260	160
Example 6	0.013	0.012	0.121	160
Example 7	0.013	0.013	0.517	160
Example 8	0.008	0.013	0.789	160
		·		

Results: $Cor(\epsilon, v) = 0.6, n < p$, Number of Selected Vars

	F=10	F=40	F=160	Actual s
Example 5	24.32	24.74	25.26	50
Example 6	20.38	22.75	23.22	20
Example 7	21.55	22.88	23.25	80
Example 8	23.56	22.99	22.76	100

Simulation Setup (JASA paper)

Setup:

$$\mathbf{y} = \mathbf{X} oldsymbol{eta}_0 + oldsymbol{\eta}$$
 $\mathbf{X} = \mathbf{Z} \mathbf{\Gamma}_0 + \mathbf{E}$

- $\beta_0 = 1$; Γ_0 is a $1 \times p$ vector
- $\blacktriangleright (\epsilon_i, \eta_i) \sim N(\mathbf{0}, \Sigma)$
- For Σ, set $\sigma_{i,j} = (0.2)^{|i-j|}$, for i, j = 1, 2
- Assume that each variable is centered

Simulation Setup (JASA paper, p < n)

The nonzero entries in the columns of Γ_0 are sampled from the uniform distribution $U([-b,-a] \cup [a,b])$

 $\mathbf{Z} \sim Bernoulli(p_0)$, where $p_0 = 0.5$ for Model 1-3, $p_0 \sim U([0, 0.5])$ for Model 4

When p < n,

- ► Model 1: (n, p, s) = (200, 100, 5), (a, b) = (0.75, 1)
- ► Model 2: (n, p, s) = (400, 200, 5), (a, b) = (0.75, 1)
- ► Model 3: (n, p, s) = (400, 200, 5), (a, b) = (0.5, 0.75)
- ► Model 4 (realistic): (n, p, s) = (400, 200, 50)Five of (a, b) = (0.5, 1) and forty-five of (a, b) = (0.05, 0.1)

Simulation Results (JASA paper, p < n)

	OLS	2SLS	PostLasso	Lasso
Example 1	0.112	0.088	0.072	1.466
Example 2	0.102	0.074	0.052	1.139
Example 3	0.139	0.112	0.078	1.868
Example 4	0.114	0.088	0.062	1.345

Table: RMSE for $\hat{\beta}$

	Lasso	Actual s
Example 1	17.44	5
Example 2	33.09	5
Example 3	18.28	5
Example 4	27.20	50

Table: Number of Selected Variables

Simulation Setup (JASA paper, p > n)

When p > n,

- ► Model 5: (n, p, s) = (300, 600, 5), (a, b) = (0.75, 1)
- ► Model 6: (n, p, s) = (500, 1000, 5), (a, b) = (0.75, 1)
- ► Model 7: (n, p, s) = (500, 1000, 5), (a, b) = (0.5, 0.75)
- ► Model 8 (realistic): (n, p, s) = (500, 1000, 50)Five of (a, b) = (0.5, 1) and forty-five of (a, b) = (0.05, 0.1)

Simulation Results (JASA paper, p > n)

	OLS	PostLasso	Lasso
Example 5	0.104	0.061	1.603
Example 6	0.105	0.052	1.296
Example 7	0.144	0.091	2.017
Example 8	0.123	0.074	1.756

Table: RMSE for $\hat{\beta}$

	Lasso	Actual s
Example 1	26.31	5
Example 2	41.86	5
Example 3	21.15	5
Example 4	29.16	50

Table: Number of Selected Variables