

# Arora V 存储器(BSRAM & SSRAM) 用户指南

UG300-1.3,2023-09-08

#### 版权所有 © 2023 广东高云半导体科技股份有限公司

GO₩IN高云、Gowin、晨熙以及高云均为广东高云半导体科技股份有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

#### 免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止反言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

# 版本信息

| 日期         | 版本  | 说明                                                                                            |
|------------|-----|-----------------------------------------------------------------------------------------------|
| 2023/04/20 | 1.0 | 初始版本。                                                                                         |
| 2023/05/25 | 1.1 | <ul><li>单端口和双端口模式下不支持 read-before-write;</li><li>双端口、伪双端口和带 ECC 功能的伪双端口模式功能描述中增加备注。</li></ul> |
| 2023/06/30 | 1.2 | 单端口和双端口模式下 138K 器件不支持 read-before-write。                                                      |
| 2023/09/08 | 1.3 | 更新图 5-1 RAM16S1 模式时序波形图和图 5-5 RAM16SDP1 模式时序波<br>形图。                                          |

i

# 目录

| 目录   | !<br>\$                               | i     |
|------|---------------------------------------|-------|
| 图目   | 录                                     | . iii |
| 表目   | 录                                     | . v   |
| 1 关  | 等于本手册                                 | . 1   |
|      | ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |       |
|      | 1.2 相关文档                              |       |
|      | 1.3 术语、缩略语                            |       |
|      | 1.4 技术支持与反馈                           |       |
|      | 死述                                    |       |
|      | 2.1 BSRAM 特性介绍                        |       |
|      |                                       |       |
|      | SRAM 原语                               |       |
|      | <b>3.1</b> 双端口模式                      |       |
|      | 3.2 单端口模式                             |       |
|      | 3.3 伪双端口模式                            |       |
|      | 3.4 带 ECC 功能的伪双端口模式                   |       |
|      | 3.5 只读模式                              |       |
|      | SRAM 输出复位                             |       |
|      |                                       |       |
|      | SRAM 原语                               |       |
|      | 5.1 RAM16S1                           |       |
|      | 5.2 RAM16S2                           |       |
|      | 5.3 RAM16S4                           |       |
|      | 5.4 RAM16SDP1                         |       |
|      | 5.5 RAM16SDP2                         |       |
|      | 5.6 RAM16SDP4                         |       |
|      | 5.7 ROM16                             |       |
| 6 IF | ?调用                                   | 59    |
|      | 6.1 BSRAM 双端口模式                       | 59    |

|   | 6.2 BSRAM 带 ECC 功能的伪双端口模式       | 62 |
|---|---------------------------------|----|
|   | 6.3 SSRAM 单端口模式                 | 64 |
| 7 | '初始化文件                          | 66 |
|   | 7.1 二进制格式(Bin File)             | 66 |
|   | 7.2 十六进制格式(Hex File)            | 66 |
|   | 7.3 带地址十六进制格式(Address-Hex File) | 67 |

UG300-1.3 ii

# 图目录

| 图 3-1 DPB/DPX9B Normal 写模式时序波形       | 图(Bypass 读模式)         | . 7  |
|--------------------------------------|-----------------------|------|
| 图 3-2 DPB/DPX9B Normal 写模式时序波形       | 图(Pipeline 读模式)       | . 8  |
| 图 3-3 DPB/DPX9B Write-Through 写模式时   | †序波形图(Bypass 读模式)     | . 9  |
| 图 3-4 DPB/DPX9B Write-Through 写模式时   | 付字波形图(Pipeline 读模式)   | . 10 |
| 图 3-5 DPB/DPX9B Read-before-Write 写模 | 式时序波形图(Bypass 读模式)    | . 11 |
| 图 3-6 DPB/DPX9B Read-before-Write 写模 | 支式时序波形图(Pipeline 读模式) | . 12 |
| 图 3-7 DPB/DPX9B 端口示意图                |                       | . 13 |
| 图 3-8 SP/SPX9 端口示意图                  |                       | . 19 |
| 图 3-9 伪双端口 BSRAM Normal 写模式时序        | 序波形图(Bypass 读模式)      | . 23 |
| 图 3-10 伪双端口 BSRAM Normal 写模式时        | 序波形图(Pipeline 读模式)    | . 24 |
| 图 3-11 SDPB/SDPX9B 端口示意图             |                       | . 25 |
| 图 3-12 SDP36KE 端口示意图                 |                       | . 30 |
| 图 3-13 ROM 时序波形图(Bypass 模式)          |                       | . 36 |
| 图 3-14 ROM 时序波形图(Pipeline 模式).       |                       | . 36 |
| 图 3-15 pROM/pROMX9 端口示意图             |                       | . 37 |
| 图 4-1 复位输出结构框图                       |                       | 40   |
| 图 4-2 同步复位时序图(Pipeline 模式)           |                       | . 41 |
| 图 4-3 同步复位时序图(Bypass 输出模式)           |                       | . 41 |
| 图 4-4 异步复位时序图(Pipeline 模式)           |                       | . 41 |
| 图 4-5 异步复位时序图(Bypass 输出模式)           |                       | . 41 |
| 图 5-1 RAM16S1 模式时序波形图                |                       | 43   |
| 图 5-2 RAM16S1 端口示意图                  |                       | 43   |
| 图 5-3 RAM16S2 端口示意图                  |                       | 45   |
| 图 5-4 RAM16S4 端口示意图                  |                       | . 47 |
| 图 5-5 RAM16SDP1 模式时序波形图              |                       | . 50 |
| 图 5-6 RAM16SDP1 端口示意图                |                       | . 50 |
| 图 5-7 RAM16SDP2 端口示意图                |                       | . 52 |
| 图 5-8 RAM16SDP4 端口示意图                |                       | . 54 |
| 图 5-9 ROM16 模式时序波形图                  |                       | . 57 |

UG300-1.3

| 图 5-10 ROM16 端口示意图                    | 57 |
|---------------------------------------|----|
| 图 6-1 DPB 的 IP Customization 窗口结构     | 60 |
| 图 6-2 SDP36KE 的 IP Customization 窗口结构 | 62 |
| 图 6-3 RAM16S 的 IP Customization 窗口结构  | 6/ |

UG300-1.3 iv

# 表目录

| 表 1-1 术语、缩略语                     | . 1  |
|----------------------------------|------|
| 表 2-1 BSRAM 配置模式列表               | . 4  |
| 表 2-2 BSRAM 数据和地址位宽对应关系          | . 4  |
| 表 2-3 双端口模式数据宽度配置列表              | . 5  |
| 表 2-4 伪双端口模式数据宽度配置列表             | . 5  |
| 表 2-5 带 ECC 功能的伪双端口模式数据宽度配置列表    | . 5  |
| 表 3-1 DPB/DPX9B 数据宽度和地址宽度配置关系    | . 12 |
| 表 3-2 DPB/DPX9B 端口介绍             | . 13 |
| 表 3-3 DPB/DPX9B 参数介绍             | . 14 |
| 表 3-4 SP/SPX9 数据宽度和地址宽度配置关系      | . 18 |
| 表 3-5 SP/SPX9 端口介绍               | . 19 |
| 表 3-6 SP/SPX9 参数介绍               | . 20 |
| 表 3-7 SDPB/SDPX9B 数据宽度和地址宽度配置关系  |      |
| 表 3-8 SDPB/SDPX9B 端口介绍           | . 25 |
| 表 3-9 SDPB/SDPX9B 参数介绍           | . 25 |
| 表 3-10 SDP36KE 适用器件              | . 29 |
| 表 3-11 SDP36KE 数据宽度和地址宽度配置关系     | . 30 |
| 表 3-12 SDP36KE 端口介绍              | . 30 |
| 表 3-13 SDP36KE 参数介绍              | . 31 |
| 表 3-14 pROM/pROMX9 数据宽度和地址宽度配置关系 |      |
| 表 3-15 pROM/pROMX9 端口介绍          | . 37 |
| 表 3-16 pROM/pROMX9 参数介绍          |      |
| 表 5-1 SSRAM 模式                   | . 42 |
| 表 5-2 RAM16S1 端口介绍               | . 43 |
| 表 5-3 RAM16S1 参数介绍               | . 44 |
| 表 5-4 RAM16S2 端口介绍               | . 45 |
| 表 5-5 RAM16S2 参数介绍               | . 46 |
| 表 5-6 RAM16S4 端口介绍               | . 48 |
| 表 5-7 RAM16S4 参数介绍               | . 48 |

| 表 5-8 RAM16SDP1 端口介绍  | 50 |
|-----------------------|----|
| 表 5-9 RAM16SDP1 参数介绍  | 51 |
| 表 5-10 RAM16SDP2 端口介绍 |    |
| 表 5-11 RAM16SDP2 参数介绍 |    |
| 表 5-12 RAM16SDP4 端口介绍 | 55 |
| 表 5-13 RAM16SDP4 参数介绍 | 55 |
| 表 5-14 ROM16 端口介绍     | 57 |
| 表 5-15 ROM16 参数介绍     | 57 |

1 关于本手册 1.1 手册内容

# **1** 关于本手册

# 1.1 手册内容

Arora V 存储器(BSRAM & SSRAM)用户手册主要描述高云<sup>®</sup>半导体 Arora V BSRAM 和 SSRAM 的特性、工作模式、原语介绍、IP 调用等旨在 给用户提供应用说明。

# 1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com</u> 可以下载、查看以下相关文档:

- DS981, GW5AT 系列 FPGA 产品数据手册
- DS1103, GW5A 系列 FPGA 产品数据手册
- DS1104, GW5AST 系列 FPGA 产品数据手册
- SUG100, Gowin 云源软件用户指南

# 1.3 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。

#### 表 1-1 术语、缩略语

| 术语、缩略语  | 全称                                              | 含义                           |
|---------|-------------------------------------------------|------------------------------|
| BSRAM   | Block SRAM                                      | 块状静态随机存储器                    |
| CFU     | Configurable Function Unit                      | 可配置功能单元                      |
| DP      | True Dual Port 16K Block SRAM                   | 16K 双端口 BSRAM                |
| ECC     | Error Checking and Correction                   | 错误校验和纠错                      |
| ROM     | Read-Only Memory                                | 只读存储器                        |
| SDP     | Semi Dual Port 16K Block SRAM                   | 16K 伪双端口 BSRAM               |
| SDP36KE | Semi Dual Port 36K Block SRAM with ECC function | 带 ECC 功能的 36K 伪双端<br>口 BSRAM |
| SP      | Single Port 16K Block SRAM                      | 16K 单端口 BSRAM                |
| SSRAM   | Shadow SRAM                                     | 分布式静态随机存储器                   |

UG300-1.3 1(67)

1.4 技术支持与反馈

# 1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.gowinsemi.com

E-mail: <a href="mailto:support@gowinsemi.com">support@gowinsemi.com</a>

Tel: +86 755 8262 0391

UG300-1.3 2(67)

2 概述 2.1 BSRAM 特性介绍

2 概述

高云半导体 Arora V FPGA 产品提供了丰富的存储器资源,包括块状静态随机存储器(BSRAM)和分布式静态随机存储器(SSRAM)。

每个 BSRAM 可配置最高 36 Kbits,数据位宽和地址深度均可配置。每个 BSRAM 具有独立的 A、B 两个端口,具有独立的时钟、地址、数据和控制信号,可以独立的进行读写操作,且两个端口共享一块存储空间。

可配置功能单元(CFU) 是构成高云半导体 Arora V FPGA 产品内核的基本单元,可根据应用场景配置成 SSRAM,包括 16 x 4 位的静态随机存储器(SRAM)或只读存储器(ROM16)。

# 2.1 BSRAM 特性介绍

- 一块 BSRAM 最大容量为 18 Kbits
- 时钟频率达到 380 MHz(在 Read-before-write 模式下 230 MHz)
- 支持单端口模式(SP)
- 支持双端口模式(DP)
- 支持伪双端口模式(SDP)
- 支持带 ECC 功能的伪双端口模式(SDP36KE)
- 支持只读模式(ROM)
- 数据位宽最大支持 72 bits
- 双端口模式和伪双端口模式支持读写时钟独立、数据位宽独立
- 读模式支持寄存器输出或旁路输出
- 写模式支持 Normal 模式、read-before-write 模式和 write-through 模式

# 2.2 BSRAM 配置模式

除 SDP36KE 外每个 BSRAM 可配置成 16 Kbits、18 Kbits 大小, SDP36KE 可支持 36 Kbits。五种模式可配置的地址深度和数据宽度如表 2-1 所示。

UG300-1.3 3(67)

2 概述 2.2 BSRAM 配置模式

表 2-1 BSRAM 配置模式列表

| 存储容量     | 单端口模式    | 双端口模式   | 伪双端口模式   | 带 ECC 功能的<br>伪双端口模式 | 只读模式     |
|----------|----------|---------|----------|---------------------|----------|
|          | 16K x 1  | 16K x 1 | 16K x 1  | -                   | 16K x 1  |
|          | 8K x 2   | 8K x 2  | 8K x 2   | -                   | 8K x 2   |
| 16 Kbits | 4K x 4   | 4K x 4  | 4K x 4   | -                   | 4K x 4   |
| 10 KDIIS | 2K x 8   | 2K x 8  | 2K x 8   | -                   | 2K x 8   |
|          | 1K x 16  | 1K x 16 | 1K x 16  | _                   | 1K x 16  |
|          | 512 x 32 | _       | 512 x 32 | _                   | 512 x 32 |
|          | 2K x 9   | 2K x 9  | 2K x 9   | -                   | 2K x 9   |
| 18 Kbits | 1K x 18  | 1K x 18 | 1K x 18  | _                   | 1K x 18  |
|          | 512 x 36 | _       | 512 x 36 | _                   | 512 x 36 |
| 36 Kbits | _        | _       | _        | 512 x 72            | _        |

除 SDP36KE 外每个 BSRAM 的地址线位宽是 14 位,即 AD[13:0],最大地址深度 16,384。SDP36KE 的地址线位宽是 9 位,AD[8:0],最大深度 512。不同数据位宽使用的地址线不一样,对应关系如表 2-2 所示。

表 2-2 BSRAM 数据和地址位宽对应关系

| 存储容量     | 配置模式     | 数据位宽   | 地址深度   | 地址位宽   |
|----------|----------|--------|--------|--------|
|          | 16K x 1  | [0:0]  | 16,384 | [13:0] |
|          | 8K x 2   | [1:0]  | 8,192  | [13:1] |
| 16 Kbits | 4K x 4   | [3:0]  | 4,096  | [13:2] |
| 10 Kbits | 2K x 8   | [7:0]  | 2,048  | [13:3] |
|          | 1K x 16  | [15:0] | 1,024  | [13:4] |
|          | 512 x 32 | [31:0] | 512    | [13:5] |
|          | 2K x 9   | [8:0]  | 2,048  | [13:3] |
| 18 Kbits | 1K x 18  | [17:0] | 1,024  | [13:4] |
|          | 512 x 36 | [35:0] | 512    | [13:5] |
| 36 Kbits | 512 x 72 | [71:0] | 512    | [8:0]  |

双端口、伪双端口模式和带 ECC 功能的伪双端口模式写时钟和读时钟独立,支持读/写操作数据位宽独立。在双端口模式下,A端口和B端口支持的数据位宽如表 2-3 所示。在伪双端口模式下,A端口和B端口支持的数据位宽如表 2-4 所示。在带 ECC 功能的伪双端口模式下,A端口和B端口支持的数据位宽如表 2-5 所示。

UG300-1.3 4(67)

2 概述 2.2 BSRAM 配置模式

# 表 2-3 双端口模式数据宽度配置列表

| 存储容量     | B端口     | A端口     |        |        |        |         |        |         |  |  |
|----------|---------|---------|--------|--------|--------|---------|--------|---------|--|--|
| 行阳台里     |         | 16K x 1 | 8K x 2 | 4K x 4 | 2K x 8 | 1K x 16 | 2K x 9 | 1K x 18 |  |  |
|          | 16K x 1 | Yes     | Yes    | Yes    | Yes    | Yes     | N/A    | N/A     |  |  |
|          | 8K x 2  | Yes     | Yes    | Yes    | Yes    | Yes     | N/A    | N/A     |  |  |
| 16 Kbits | 4K x 4  | Yes     | Yes    | Yes    | Yes    | Yes     | N/A    | N/A     |  |  |
|          | 2K x 8  | Yes     | Yes    | Yes    | Yes    | Yes     | N/A    | N/A     |  |  |
|          | 1K x 16 | Yes     | Yes    | Yes    | Yes    | Yes     | N/A    | N/A     |  |  |
| 18 Kbits | 2K x 9  | N/A     | N/A    | N/A    | N/A    | N/A     | Yes    | Yes     |  |  |
| 10 Knits | 1K x 18 | N/A     | N/A    | N/A    | N/A    | N/A     | Yes    | Yes     |  |  |

#### 表 2-4 伪双端口模式数据宽度配置列表

|          | B端口      | A 端口       |           |           |           |            |            |           |           |             |            |             |
|----------|----------|------------|-----------|-----------|-----------|------------|------------|-----------|-----------|-------------|------------|-------------|
| 存储容量     |          | 16K<br>x 1 | 8K<br>x 2 | 4K<br>x 4 | 2K<br>x 8 | 1K<br>x 16 | 512<br>x32 | 2K<br>x 9 | 1K<br>x18 | 512<br>x 36 | 1K<br>x 36 | 512<br>x 72 |
|          | 16K x 1  | Yes        | Yes       | Yes       | Yes       | Yes        | Yes        | N/A       | N/A       | N/A         | N/A        | N/A         |
|          | 8K x 2   | Yes        | Yes       | Yes       | Yes       | Yes        | Yes        | N/A       | N/A       | N/A         | N/A        | N/A         |
| 16 Kbits | 4K x 4   | Yes        | Yes       | Yes       | Yes       | Yes        | Yes        | N/A       | N/A       | N/A         | N/A        | N/A         |
| 10 Kbits | 2K x 8   | Yes        | Yes       | Yes       | Yes       | Yes        | Yes        | N/A       | N/A       | N/A         | N/A        | N/A         |
|          | 1K x 16  | Yes        | Yes       | Yes       | Yes       | Yes        | Yes        | N/A       | N/A       | N/A         | N/A        | N/A         |
|          | 512 x 32 | Yes        | Yes       | Yes       | Yes       | Yes        | Yes        | N/A       | N/A       | N/A         | N/A        | N/A         |
| 19 Khite | 2K x 9   | N/A        | N/A       | N/A       | N/A       | N/A        | N/A        | Yes       | Yes       | Yes         | N/A        | N/A         |
| 18 Kbits | 1K x 18  | N/A        | N/A       | N/A       | N/A       | N/A        | N/A        | Yes       | Yes       | Yes         | N/A        | N/A         |

# 表 2-5 带 ECC 功能的伪双端口模式数据宽度配置列表

| 存储容量     | B端口      | A端口      |
|----------|----------|----------|
| 行阳台里     |          | 512 x 72 |
| 36 Kbits | 512 x 72 | Yes      |

UG300-1.3 5(67)

# 3 BSRAM 原语

Block SRAM 是块状静态随机存储器,具有静态存取功能。根据 BSRAM 的特性建立软件模型,可分为单端口模式(SP/SPX9)、双端口模式(DPB/DPX9B)、伪双端口模式(SDPB/SDPX9B)、带 ECC 功能的伪双端口模式(SDP36KE)和只读模式(pROM/pROMX9)。

# 3.1 双端口模式

#### 原语介绍

DPB/DPX9B(True Dual Port 16K Block SRAM/True Dual Port 18K Block SRAM),16K/18K 双端口 BSRAM。

#### 功能描述

DPB/DPX9B 的存储空间分别为 16 Kbits/18 Kbits,其工作模式为双端口模式,端口 A 和端口 B 均可分别独立实现读/写操作<sup>[1]</sup>,可支持 2 种读模式(bypass 模式和 pipeline 模式)和 3 种写模式(normal 模式、write-through 模式和 read-before-write 模式<sup>[2]</sup>)。

#### 注!

- [1] 不建议对同一地址同时进行读写操作。
- [2] 138K 器件不支持 read-before-write 模式。
- 读模式

通过参数 READ\_MODE0、READ\_MODE1 来启用或禁用 A 端、B 端 输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的时钟周期。

#### ● 写模式

包括 normal 模式、write-through 模式和 read-before-write 模式,A端、B端写模式通过参数 WRITE\_MODE0、WRITE\_MODE1 来分别配置使用,不同模式对应的内部时序波形图如图 3-1 到图 3-6 所示。

UG300-1.3 6(67)

3.1 双端口模式 3.1 双端口模式





UG300-1.3 7(67)

3.1 双端口模式 3.1 双端口模式



UG300-1.3 8(67)

DIB

DOB

DIB\_0 X

Х

DIB\_1

Invalid Data

DIB\_2

DIB\_0

DIB\_1

DIB\_2





UG300-1.3 9(67)





UG300-1.3 10(67)

3.1 双端口模式 3.1 双端口模式





UG300-1.3 11(67)



● 复位模式 支持同步复位、异步复位和全局复位。

#### 配置关系

表 3-1 DPB/DPX9B 数据宽度和地址宽度配置关系

| 双端口模式 | BSRAM 容量 | 数据宽度 | 地址宽度 |
|-------|----------|------|------|
|       |          | 1    | 14   |
|       |          | 2    | 13   |
| DPB   | 16 Kbits | 4    | 12   |
|       |          | 8    | 11   |
|       |          | 16   | 10   |
| DPX9B | 18 Kbits | 9    | 11   |
| DEVAD | 10 Knita | 18   | 10   |

UG300-1.3 12(67)

## 端口示意图

#### 图 3-7 DPB/DPX9B 端口示意图



# 端口介绍

#### 表 3-2 DPB/DPX9B 端口介绍

| 端口名                 | I/O    | 描述                                           |
|---------------------|--------|----------------------------------------------|
| DOA[15:0]/DOA[17:0] | Output | A 端数据输出信号                                    |
| DOB[15:0]/DOB[17:0] | Output | B端数据输出信号                                     |
| DIA[15:0]/DIA[17:0] | Input  | A 端数据输入信号                                    |
| DIB[15:0]/DIB[17:0] | Input  | B端数据输入信号                                     |
| ADA[13:0]           | Input  | A 端地址输入信号                                    |
| ADB[13:0]           | Input  | B端地址输入信号                                     |
|                     |        | A 端写使能输入信号                                   |
| WREA                | Input  | ● 1: 写入                                      |
|                     |        | ● 0: 读出                                      |
|                     |        | B端写使能输入信号                                    |
| WREB                | Input  | ● 1: 写入                                      |
|                     |        | ● 0: 读出                                      |
| CEA                 | Input  | A 端时钟使能信号,高电平有效。                             |
| CEB                 | Input  | B端时钟使能信号,高电平有效。                              |
| CLKA                | Input  | A 端时钟输入信号                                    |
| CLKB                | Input  | B端时钟输入信号                                     |
| RESETA              | lanut  | A 端复位输入信号,支持同步复位和异步<br>复位,高电平有效。RESETA 复位寄存  |
| RESEIA              | Input  | 器,而不是复位存储器内的值。                               |
| DECETO              |        | B端复位输入信号,支持同步复位和异步                           |
| RESETB              | Input  | 复位,高电平有效。RESETB 复位寄存器,而不是复位存储器内的值。           |
| OCEA                | Input  | A 端输出时钟使能信号,用于 A 端 pipline 模式,对 bypass 模式无效。 |

UG300-1.3 13(67)

| 端口名          | I/O   | 描述                                           |
|--------------|-------|----------------------------------------------|
| OCEB         | Input | B 端输出时钟使能信号,用于 B 端 pipline 模式,对 bypass 模式无效。 |
| BLKSELA[2:0] | Input | BSRAM A 端口块选择信号, 用于需要多个 BSRAM 存储单元级联实现容量扩展。  |
| BLKSELB[2:0] | Input | BSRAM B 端口块选择信号,用于需要多个 BSRAM 存储单元级联实现容量扩展。   |

## 参数介绍

## 表 3-3 DPB/DPX9B 参数介绍

| 参数名         | 参数类型    | 取值范围                                   | 默认值                    | 描述                                                                                     |
|-------------|---------|----------------------------------------|------------------------|----------------------------------------------------------------------------------------|
| READ_MODE0  | Integer | 1'b0, 1'b1                             | 1'b0                   | A 端读模式配置  ■ 1'b0: bypass 模式  ■ 1'b1: pipeline 模式                                       |
| READ_MODE1  | Integer | 1'b0, 1'b1                             | 1'b0                   | B 端读模式配置  ■ 1'b0: bypass 模式  ■ 1'b1: pipeline 模式                                       |
| WRITE_MODE0 | Integer | 2'b00, 2'b01,<br>2'b10                 | 2'b00                  | A 端写模式配置<br>2'b00: normal 模式<br>2'b01: write-through 模式<br>2'b10: read-before-write 模式 |
| WRITE_MODE1 | Integer | 2'b00, 2'b01,<br>2'b10                 | 2'b00                  | B 端写模式配置  ■ 2'b00: normal 模式  ■ 2'b01: write-through 模式  ■ 2'b10: read-before-write 模式 |
| BIT_WIDTH_0 | Integer | DPB: 1,2,4,8,16<br>DPX9B: 9,18         | DPB:16<br>DPX9B:1<br>8 | A 端数据宽度配置                                                                              |
| BIT_WIDTH_1 | Integer | DPB: 1, 2, 4, 8,<br>16<br>DPX9B: 9, 18 | DPB:16<br>DPB:18       | B端数据宽度配置                                                                               |
| BLK_SEL_0   | Integer | 3'b000~3'b111                          | 3'b000                 | BSRAM A 端口块选择参数设置,与端口 BLKSELA 相等时该 BSRAM 被选中。使用 IP Core Generator 进行存储扩展时软件自动进行扩展处理。   |
| BLK_SEL_1   | Integer | 3'b000~3'b111                          | 3'b000                 | BSRAM B 端口块选择参数设置,与端口 BLKSELB 相等时该 BSRAM 被选中。使用 IP Core Generator 进行存储扩展时软件自动进行扩展处理。   |
| RESET_MODE  | String  | "SYNC",<br>"ASYNC"                     | "SYNC"                 | <ul><li>复位模式配置</li><li>● SYNC: 同步复位</li><li>● ASYNC: 异步复位</li></ul>                    |

UG300-1.3 14(67)

| 参数名                         | 参数类型    | 取值范围                                                         | 默认值                                  | 描述                        |
|-----------------------------|---------|--------------------------------------------------------------|--------------------------------------|---------------------------|
| INIT_RAM_00~<br>INIT_RAM_3F | Integer | DPB:<br>256'h00~256'<br>h11<br>DPX9B:<br>288'h00~288'<br>h11 | DPB:256'<br>h00<br>DPX9B:2<br>88'h00 | 用于设置 BSRAM 存储单元的初始<br>化数据 |

#### 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。

原语例化以 DPB 为例介绍:

#### Verilog 例化:

```
DPB bram dpb 0 (
    .DOA({doa[15:8],doa[7:0]}),
    .DOB({doa[15:8],dob[7:0]}),
    .CLKA(clka),
    .OCEA(ocea),
    .CEA(cea),
    .RESETA(reseta),
    .WREA(wrea),
    .CLKB(clkb),
    .OCEB(oceb),
    .CEB(ceb),
    .RESETB(resetb),
    .WREB(wreb),
    .BLKSELA({3'b000}),
    .BLKSELB({3'b000}),
    .ADA({ada[10:0],3'b000}),
    .DIA({{8{1'b0}}},dia[7:0]})
    .ADB({adb[10:0],3'b000}),
    .DIB({{8{1'b0}},dib[7:0]})
);
defparam bram_dpb_0.READ_MODE0 = 1'b0;
defparam bram_dpb_0.READ_MODE1 = 1'b0;
defparam bram_dpb_0.WRITE_MODE0 = 2'b00;
```

UG300-1.3 15(67)

```
defparam bram dpb 0.WRITE MODE1 = 2'b00;
  defparam bram dpb 0.BIT WIDTH 0 = 8;
  defparam bram dpb 0.BIT WIDTH 1 = 8;
  defparam bram dpb 0.BLK SEL 0 = 3'b000;
  defparam bram_dpb_0.BLK_SEL_1 = 3'b000;
  defparam bram dpb 0.RESET MODE = "SYNC";
  defparam bram dpb 0.INIT RAM 00 =
000000000B:
  defparam bram_dpb_0.INIT_RAM_3E =
000000000B;
  defparam bram dpb 0.INIT RAM 3F =
000000000B:
Vhdl 例化:
  COMPONENT DPB
       GENERIC (
             BIT WIDTH 0:integer:=16;
             BIT WIDTH 1:integer:=16;
             READ MODE0:bit:='0';
             READ MODE1:bit:='0';
             WRITE MODE0:bit vector:="00";
             WRITE MODE1:bit vector:="00";
             BLK SEL 0:bit vector:="000";
             BLK SEL 1:bit vector:="000";
             RESET MODE:string:="SYNC";
             );
       PORT (
             DOA, DOB: OUT std logic vector (15 downto 0):
=conv std logic vector(0,16);
             CLKA, CLKB, CEA, CEB, OCEA, OCEB, RESETA,
```

UG300-1.3 16(67)

```
RESETB, WREA, WREB: IN std logic;
              ADA, ADB: IN std logic vector (13 downto 0);
              BLKSELA:IN std logic vector(2 downto 0);
              BLKSELB:IN std logic vector(2 downto 0);
              DIA,DIB:IN std logic vector(15 downto 0)
       );
  END COMPONENT;
  uut:DPB
     GENERIC MAP(
              BIT WIDTH 0=>16,
              BIT WIDTH 1=>16,
              READ_MODE0=>'0',
              READ MODE1=>'0',
              WRITE MODE0=>"00",
              WRITE MODE1=>"00",
              BLK_SEL_0=>"000",
              BLK_SEL_1=>"000",
              RESET MODE=>"SYNC",
  )
    PORT MAP(
      DOA=>doa.
      DOB=>dob,
      CLKA=>clka,
      CLKB=>clkb,
      CEA=>ceb,
      CEB=>ceb,
      OCEA=>ocea,
      OCEB=>oceb,
      RESETA=>reseta,
      RESETB=>resetb,
```

UG300-1.3 17(67)

```
WREA=>wrea,
WREB=>wreb,
ADA=>ada,
ADB=>adb,
BLKSELA=>blksela,
BLKSELB=>blkselb,
DIA=>dia,
DIB=>dib
);
```

# 3.2 单端口模式

#### 原语介绍

SP/SPX9 (Single Port 16K BSRAM/Single Port 18K BSRAM),16K/18K 单端口 BSRAM。

#### 功能描述

SP/SPX9 存储空间为 16 Kbits/18 Kbits,其工作模式为单端口模式,由一个时钟控制单端口的读/写操作,可支持 2 种读模式(bypass 模式和 pipeline 模式)和 3 种写模式(normal 模式、write-through 模式和 readbefore-write 模式<sup>[1]</sup>)。

#### 注!

[1] 138K 器件不支持 read-before-write 模式。

#### ● 读模式

通过参数 READ\_MODE 来启用或禁用输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的时钟周期。

#### ● 写模式

包括 normal 模式、write-through 模式和 read-before-write 模式,通过参数 WRITE\_MODE 来配置使用。

单端口 BSRAM 不同读写模式对应的内部时序波形图可参考双端口 BSRAM A 端/B 端时序图 3-1 到图 3-6。

#### ● 复位模式

支持同步复位、异步复位和全局复位。

#### 配置关系

#### 表 3-4 SP/SPX9 数据宽度和地址宽度配置关系

| 单端口模式 | BSRAM 容量 | 数据宽度 | 地址宽度 |  |
|-------|----------|------|------|--|
| SP    | 16 Kbits | 1    | 14   |  |
| JF    | TO NOILS | 2    | 13   |  |

UG300-1.3 18(67)

| 单端口模式 | BSRAM 容量 | 数据宽度 | 地址宽度 |
|-------|----------|------|------|
|       |          | 4    | 12   |
|       |          | 8    | 11   |
|       |          | 16   | 10   |
|       |          | 32   | 9    |
|       |          | 9    | 11   |
| SPX9  | 18 Kbits | 18   | 10   |
|       |          | 36   | 9    |

## 端口示意图

#### 图 3-8 SP/SPX9 端口示意图



## 端口介绍

#### 表 3-5 SP/SPX9 端口介绍

| 端口名               | I/O    | 描述                                                        |
|-------------------|--------|-----------------------------------------------------------|
| DO[31:0]/DO[35:0] | Output | 数据输出信号                                                    |
| DI[31:0]/DI[35:0] | Input  | 数据输入信号                                                    |
| AD[13:0]          | Input  | 地址输入信号                                                    |
|                   |        | 写使能输入信号                                                   |
| WRE               | Input  | ● 1: 写入                                                   |
|                   |        | ● 0: 读出                                                   |
| CE                | Input  | 时钟使能输入信号,高电平有效。                                           |
| CLK               | Input  | 时钟输入信号                                                    |
| RESET             | Input  | 复位输入信号,支持同步复位和异步复位,<br>高电平有效。RESET 复位寄存器,而不是复<br>位存储器内的值。 |
| OCE               | Input  | 输出时钟使能信号,用于 pipline 模式,对 bypass 模式无效。                     |

UG300-1.3 19(67)

| 端口名         | I/O   | 描述                                      |
|-------------|-------|-----------------------------------------|
| BLKSEL[2:0] | Input | BSRAM 块选择信号, 用于需要多个 BSRAM 存储单元级联实现容量扩展。 |

## 参数介绍

# 表 3-6 SP/SPX9 参数介绍

| 参数名                         | 参数类型    | 取值范围                                               | 默认值                                | 描述                                                                                                |
|-----------------------------|---------|----------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------|
| READ_MODE                   | Integer | 1'b0, 1'b1                                         | 1'b0                               | 读模式配置<br>● 1'b0: bypass 模式<br>● 1'b1: pipeline 模式                                                 |
| WRITE_MODE                  | Integer | 2'b00, 2'b01, 2'b10                                | 2'b00                              | 写模式配置      2'b00: normal 模式      2'b01: write-through 模式      2'b10: read-beforewrite 模式          |
| BIT_WIDTH                   | Integer | SP: 1, 2, 4, 8, 16, 32<br>SPX9: 9, 18, 36          | SP:32<br>SPX9:36                   | 数据宽度配置                                                                                            |
| BLK_SEL                     | Integer | 3'b000~3'b111                                      | 3'b000                             | BSRAM 块选择参数设置,与<br>端口 BLKSEL 相等时该<br>BSRAM 被选中。使用 IP<br>Core Generator 进行存储扩<br>展时软件自动进行扩展处<br>理。 |
| RESET_MODE                  | String  | "SYNC", "ASYNC"                                    | "SYNC"                             | 复位模式配置 <ul><li>SYNC: 同步复位</li><li>ASYNC: 异步复位</li></ul>                                           |
| INIT_RAM_00~<br>INIT_RAM_3F | Integer | SP:256'h00~256'h1<br>1<br>SPX9:<br>288'h00~288'h11 | SP:256'<br>h00<br>SPX9:28<br>8'h00 | 用于设置 BSRAM 存储单元<br>的初始化数据                                                                         |

# 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考<u>第6章 IP 调用</u>。

原语例化以 SP 为例介绍:

# Verilog 例化:

UG300-1.3 20(67)

```
.OCE(oce),
     .CE(ce),
     .RESET(reset),
     .WRE(wre),
     .BLKSEL({3'b000}),
     .AD({ad[10:0], 3'b000}),
     .DI({{24{1'b0}}, din[7:0]})
  );
  defparam bram sp 0.READ MODE = 1'b0;
  defparam bram sp 0.WRITE MODE = 2'b00;
  defparam bram sp 0.BIT WIDTH = 8;
  defparam bram sp 0.BLK SEL = 3'b000;
  defparam bram sp_0.RESET_MODE = "SYNC";
  defparam bram sp 0.INIT RAM 00 =
  A00000000000B;
  defparam bram sp 0.INIT RAM 01 =
  A00000000000B:
  defparam bram sp 0.INIT RAM 3F =
  A00000000000B:
 Vhdl 例化:
  COMPONENT SP
        GENERIC(
              BIT WIDTH:integer:=32;
              READ MODE:bit:='0';
              WRITE MODE:bit vector:="01";
              BLK SEL:bit vector:="000";
              RESET MODE:string:="SYNC";
              INIT RAM 00:bit vector:=X"00A00000000000B
INIT RAM 01:bit vector:=X"00A00000000000B
INIT RAM 3F:bit vector:=X"00A00000000000B
);
        PORT(
```

UG300-1.3 21(67)

```
DO:OUT std logic vector(31 downto 0):=conv
std logic vector(0,32);
                   CLK,CE,OCE,RESET,WRE:IN std logic;
                   AD:IN std logic vector(13 downto 0);
                   BLKSEL:IN std logic vector(2 downto 0);
                   DI:IN std logic vector(31 downto 0)
           );
     END COMPONENT;
     uut:SP
         GENERIC MAP(
                     BIT WIDTH=>32,
                     READ MODE=>'0',
                     WRITE MODE=>"01",
                     BLK SEL=>"000",
                     RESET MODE=>"SYNC",
                     INIT RAM 00=>X"00A00000000000B00A00
000000000B00A0000000000B00A0000000000B ",
                     INIT RAM 01=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B",
                     INIT RAM 02=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B",
                     INIT RAM 3F=>X"00A000000000000B00A00
PORT MAP (
            DO=>dout.
            CLK=>clk,
            OCE=>oce,
            CE=>ce.
            RESET=>reset,
            WRE=>wre.
            BLKSEL=>blksel,
            AD=>ad,
            DI=>din
        );
```

UG300-1.3 22(67)

# 3.3 伪双端口模式

#### 原语介绍

SDPB/SDPX9B(Semi Dual Port 16K Block SRAM /Semi Dual Port 18K Block SRAM),16K/18K 伪双端口 BSRAM。

#### 功能描述

SDPB/SDPX9B 存储空间分别为 16 Kbits/18 Kbits, 其工作模式为伪双端口模式,端口 A 进行写操作,端口 B 进行读操作<sup>[1]</sup>,可支持 2 种读模式(bypass 模式和 pipeline 模式)和 1 种写模式(normal 模式)。

#### 注!

[1] 不建议对同一地址同时进行读写操作。

# ● 读模式 通过参数 READ\_MODE 来启用或禁用输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的时钟周期。

#### ● 写模式

SDPB/SDPX9B 端口 A 进行写操作,端口 B 进行读操作,支持 normal 模式。伪双端口 BSRAM 不同读模式对应的内部时序波形图如图 3-9 和图 3-10 所示。

#### 图 3-9 伪双端口 BSRAM Normal 写模式时序波形图 (Bypass 读模式)



UG300-1.3 23(67)

#### 图 3-10 伪双端口 BSRAM Normal 写模式时序波形图(Pipeline 读模式)



● 复位模式

支持同步复位、异步复位和全局复位。

- byte\_enable 功能 byte\_enable 功能由 8 位宽字节使能端口控制。
- 级联功能 支持级联

#### 配置关系

表 3-7 SDPB/SDPX9B 数据宽度和地址宽度配置关系

| 伪双端口模式 | BSRAM 容量          | 数据宽度 | 地址宽度 |
|--------|-------------------|------|------|
|        |                   | 1    | 14   |
|        | 1 2 4 8 16 32 9   | 2    | 13   |
| SDPB   | 16 Khito          | 4    | 12   |
| SDFB   | 10 Kbits          | 8    | 11   |
|        |                   | 16   | 10   |
|        |                   | 32   | 9    |
|        |                   | 9    | 11   |
| SDPX9B | 16 Kbits 18 Kbits | 18   | 10   |
|        |                   | 36   | 9    |

UG300-1.3 24(67)

#### 端口示意图

#### 图 3-11 SDPB/SDPX9B 端口示意图



#### 端口介绍

#### 表 3-8 SDPB/SDPX9B 端口介绍

| 端口名               | I/O    | 描述                                                |  |  |
|-------------------|--------|---------------------------------------------------|--|--|
| DO[31:0]/DO[35:0] | Output | 数据输出信号                                            |  |  |
| DI[31:0]/DI[35:0] | Input  | 数据输入信号                                            |  |  |
| ADA[13:0]         | Input  | A 端地址输入信号                                         |  |  |
| ADB[13:0]         | Input  | B端地址输入信号                                          |  |  |
| CEA               | Input  | A 端时钟使能信号,高电平有效。                                  |  |  |
| CEB               | Input  | B端时钟使能信号,高电平有效。                                   |  |  |
| CLKA              | Input  | A端时钟输入信号                                          |  |  |
| CLKB              | Input  | B端时钟输入信号                                          |  |  |
| RESET             | Input  | 复位输入信号,支持同步复位和异步复位,高电平有效。RESET 复位寄存器,而不是复位存储器内的值。 |  |  |
| OCE               | Input  | 输出时钟使能信号,用于 pipline 模式,对 bypass 模式无效。             |  |  |
| BLKSELA[2:0]      | Input  | BSRAM A 端口块选择信号, 用于需要多个<br>BSRAM 存储单元级联实现容量扩展。    |  |  |
| BLKSELB[2:0]      | Input  | BSRAM B 端口块选择信号, 用于需要多个<br>BSRAM 存储单元级联实现容量扩展。    |  |  |

#### 参数介绍

#### 表 3-9 SDPB/SDPX9B 参数介绍

| 参数名       | 参数类型    | 取值范围      | 默认值  | 描述                                                |
|-----------|---------|-----------|------|---------------------------------------------------|
| READ_MODE | Integer | 1'b0,1'b1 | 1'b0 | 读模式配置<br>● 1'b0: bypass 模式<br>● 1'b1: pipeline 模式 |

UG300-1.3 25(67)

| 参数名                         | 参数类型    | 取值范围                                                   | 默认值                                    | 描述                                                                                |
|-----------------------------|---------|--------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------|
| BIT_WIDTH_0                 | Integer | SDPB:1,2,4,8,16,32<br>SDPX9B:9,18,36                   | SDPB:32<br>SDPX9B:36                   | A 端数据宽度配置                                                                         |
| BIT_WIDTH_1                 | Integer | SDPB:1,2,4,8,16,32<br>SDPX9B:9,18,36                   | SDPB:32<br>SDPX9B:36                   | B端数据宽度配置                                                                          |
| BLK_SEL_0                   | Integer | 3'b000~3'b111                                          | 3'b000                                 | BSRAM A 端口块选择参数设置,与端口BLKSELA 相等时该BSRAM 被选中。使用IP Core Generator 进行存储扩展时软件自动进行扩展处理。 |
| BLK_SEL_1                   | Integer | 3'b000~3'b111                                          | 3'b000                                 | BSRAM B端口块选择参数设置,与端口BLKSELB 相等时该BSRAM 被选中。使用IP Core Generator 进行存储扩展时软件自动进行扩展处理。  |
| RESET_MODE                  | String  | "SYNC","ASYNC"                                         | "SYNC"                                 | 复位模式配置 <ul><li>SYNC: 同步复位</li><li>ASYNC: 异步复位</li></ul>                           |
| INIT_RAM_00~<br>INIT_RAM_3F | Integer | SDPB:256'h00~256'<br>h11<br>SDPX9B:288'h00~2<br>88'h11 | SDPB:256'h0<br>0<br>SDPX9B:288'<br>h00 | 用于设置 BSRAM 存储<br>单元的初始化数据                                                         |

#### 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考  $\hat{\mathbf{n}}$  6 章 IP 调用。

原语例化以 SDPB 为例介绍:

## Verilog 例化:

SDPB bram\_sdpb\_0 (

.DO({dout[31:16],dout[15:0]}),

.CLKA(clka),

.CEA(cea),

.CLKB(clkb),

.CEB(ceb),

.RESET(reset),

.OCE(oce),

.BLKSELA({3'b000}),

UG300-1.3 26(67)

```
.BLKSELB({3'b000}),
      .ADA({ada[9:0], 2'b00, byte en[1:0]}),
      .DI({{16{1'b0}},din[15:0]}),
      .ADB({adb[9:0],4'b0000})
  );
  defparam bram sdpb 0.READ MODE = 1'b1;
  defparam bram sdpb 0.BIT WIDTH 0 = 16;
  defparam bram sdpb 0.BIT WIDTH 1 = 16;
  defparam bram sdpb 0.BLK SEL 0 = 3'b000;
  defparam bram sdpb 0.BLK SEL 1 = 3'b000;
  defparam bram sdpb 0.RESET MODE = "SYNC";
  defparam bram sdpb 0.INIT RAM 00 =
  A00000000000B:
  defparam bram sdpb 0.INIT RAM 3F =
  A00000000000B:
 Vhdl 例化:
   COMPONENT SDPB
         GENERIC(
                 BIT WIDTH 0:integer:=16;
                 BIT WIDTH 1:integer:=16;
                 READ MODE:bit:='0';
                 BLK SEL 0:bit vector:="000";
                 BLK SEL 1:bit vector:="000";
                 RESET MODE:string:="SYNC";
                 INIT RAM 00:bit vector:=X"00A000000000000
INIT RAM 01:bit vector:=X"00A000000000000
INIT RAM 3F:bit vector:=X"00A000000000000
);
         PORT(
                DO:OUT std logic vector(31 downto 0):=conv
std logic vector(0,32);
                CLKA, CLKB, CEA, CEB: IN std logic;
```

UG300-1.3 27(67)

**3 BSRAM** 原语 **3.3** 伪双端口模式

```
OCE, RESET: IN std logic;
                   ADA, ADB: IN std logic vector (13 downto 0);
                   BLKSELA: IN std logic vector(2 downto 0);
                   BLKSELB:IN std logic vector(2 downto 0);
                   DI:IN std logic vector(31 downto 0)
            );
    END COMPONENT;
    uut:SDPB
       GENERIC MAP(
                     BIT WIDTH 0=>16,
                     BIT WIDTH 1=>16,
                     READ_MODE=>'0',
                     BLK SEL 0=>"000",
                     BLK SEL 1=>"000",
                     RESET MODE=>"SYNC",
                     INIT RAM 00=>X"00A00000000000B00A00
INIT RAM 01=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B".
                     INIT RAM 3F=>X"00A00000000000B00A00
000000000B00A0000000000B00A0000000000B"
         PORT MAP(
             DO=>dout,
             CLKA=>clka,
             CEA=>cea,
             CLKB=>clkb,
             CEB=>ceb,
             RESET=>reset,
             OCE=>oce.
             BLKSELA=>blksela,
             BLKSELB=>blkselb,
             ADA=>ada,
             DI=>din,
             ADB=>adb
         );
```

UG300-1.3 28(67)

## 3.4 带 ECC 功能的伪双端口模式

#### 原语介绍

SDP36KE(Semi Dual Port 36K Block SRAM with ECC function),带 ECC 功能的 36K 伪双端口 BSRAM。

#### 适用器件

#### 表 3-10 SDP36KE 适用器件

| 家族     | 系列     | 器件                       |
|--------|--------|--------------------------|
| E KU O | GW5AT  | GW5AT-138, B 版 GW5AT-138 |
| 晨熙®    | GW5AST | B版 GW5AST-138            |

#### 功能描述

SDP36KE 存储空间为 36 Kbits,其工作模式为伪双端口模式,端口 A 进行写操作,端口 B 进行读操作[1],可支持 2 种读模式(bypass 模式和 pipeline 模式)和 1 种写模式(normal 模式)。

#### 注!

[1] 不建议对同一地址同时进行读写操作。

#### ● 读模式

通过参数 READ\_MODE 来启用或禁用输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的时钟周期。

#### ● 写模式

SDP36KE 端口 A 进行写操作,端口 B 进行读操作,支持 normal 模式。

#### ● 复位模式

支持同步复位、异步复位和全局复位。

#### ● 奇偶校验

数据端口是 64+8=72 位宽的组合, 64 位输入/输出数据(DI/DO)+8 位输入/输出数据(DIP/DOP); 其中 8 位宽的 DIP/DOP 为奇偶校验输入/输出。

#### ● ECC 校验

支持 ECC 校验,数据位宽 72。ECC 支持 standard, encoder-only 和 decoder-only 三种模式。

- Standard ECC:编码器和解码器同时启用,可以通过使用编码器和解码器实现 ECC 功能。
- Encoder-only ECC:编码器启用,解码器不启用,读出值不经过解码处理立即输出。
- Decoder-only ECC:编码器不启用,解码器启用。

UG300-1.3 29(67)

级联功能 支持级联

#### 配置关系

#### 表 3-11 SDP36KE 数据宽度和地址宽度配置关系

| 伪双端口模式  | BSRAM 容量 | 数据宽度 | 地址宽度 |
|---------|----------|------|------|
| SDP36KE | 36 Kbits | 72   | 9    |

#### 端口示意图

#### 图 3-12 SDP36KE 端口示意图



#### 端口介绍

#### 表 3-12 SDP36KE 端口介绍

| 端口名       | I/O    | 描述                                                              |
|-----------|--------|-----------------------------------------------------------------|
| DO[63:0]  | Output | 数据输出信号                                                          |
| DI[63:0]  | Input  | 数据输入信号                                                          |
| DIP[7:0]  | Input  | DIP 可以作为奇偶校验输入。非 ECC 模式下,DIP 可作为数据输入;ECC 模式下,不可作为数据输入。          |
| DOP[7:0]  | Output | DOP 可以作为奇偶校验输出。非 ECC 模式下,<br>DOP 可作为数据输出; ECC 模式下,不可作为数<br>据输出。 |
| ECCP[7:0] | Output | Ecc encoder 校验位                                                 |
| ADA[8:0]  | Input  | A 端地址输入信号                                                       |
| ADB[8:0]  | Input  | B端地址输入信号                                                        |
| CEA       | Input  | A 端时钟使能信号,高电平有效。                                                |

UG300-1.3 30(67)

| 端口名          | I/O    | 描述                                             |
|--------------|--------|------------------------------------------------|
| CEB          | Input  | B端时钟使能信号,高电平有效。                                |
| CLKA         | Input  | A 端时钟输入信号                                      |
| CLKB         | Input  | B端时钟输入信号                                       |
| RESET        | Input  | 输出复位信号                                         |
| OCE          | Input  | 输出时钟使能信号,用于 pipline 模式,对 bypass 模式无效。          |
| BLKSELA[2:0] | Input  | BSRAM A 端口块选择信号, 用于需要多个<br>BSRAM 存储单元级联实现容量扩展。 |
| BLKSELB[2:0] | Input  | BSRAM B 端口块选择信号, 用于需要多个<br>BSRAM 存储单元级联实现容量扩展。 |
| DECCI        | Input  | 注入2位 error 信号                                  |
| SECCI        | Input  | 注入 1 位 error 信号                                |
| DECCO        | Output | 检测到 2 bit error                                |
| SECCO        | Output | 检测到 1 bit error                                |

## 参数介绍

#### 表 3-13 SDP36KE 参数介绍

| 参数名          | 参数类型    | 取值范围           | 默认值     | 描述                                                                                |
|--------------|---------|----------------|---------|-----------------------------------------------------------------------------------|
| READ_MODE    | Integer | 1'b0,1'b1      | 1'b0    | 读模式配置<br>● 1'b0: bypass 模式<br>● 1'b1: pipeline 模式                                 |
| BLK_SEL_A    | Integer | 3'b000~3'b111  | 3'b000  | BSRAM A 端口块选择参数设置,与端口BLKSELA 相等时该BSRAM 被选中。使用IP Core Generator 进行存储扩展时软件自动进行扩展处理。 |
| BLK_SEL_B    | Integer | 3'b000~3'b111  | 3'b000  | BSRAM B 端口块选择参数设置,与端口BLKSELB 相等时该BSRAM 被选中。使用IP Core Generator 进行存储扩展时软件自动进行扩展处理。 |
| RESET_MODE   | String  | "SYNC","ASYNC" | "SYNC"  | 复位模式配置 <ul><li>SYNC: 同步复位</li><li>ASYNC: 异步复位</li></ul>                           |
| ECC_WRITE_EN | String  | "TRUE","FALSE" | "FALSE" | ECC Encoder 配置<br>● TRUE: 使能 ECC<br>Encoder                                       |

UG300-1.3 31(67)

| 参数名                           | 参数类型    | 取值范围            | 默认值     | 描述                                                                                         |
|-------------------------------|---------|-----------------|---------|--------------------------------------------------------------------------------------------|
|                               |         |                 |         | ● FALSE:不使能<br>ECC Encoder                                                                 |
| ECC_READ_EN                   | String  | "TRUE","FALSE"  | "FALSE" | ECC decoder 配置  ■ TRUE: 使能 ECC decoder  ■ FALSE: 不使能 ECC decoder                           |
| INIT_RAM_00~<br>INIT_RAM_7F   | Integer | 256'h00~256'h11 | 256'h00 | 用于指定 32kbit memory 的初始值,由 DO 输出                                                            |
| INITP_RAM_00~<br>INITP_RAM_0F | Integer | 256'h00~256'h11 | 256'h00 | 用于指定 4kbit memory 的初始值,由 DOP 输出                                                            |
| INIT_FILE                     | String  | "NONE","*.ini"  | "NONE"  | 指定初始化文件 NONE: 没有初始化文件,memory 值此时由 INIT_RAM_00~ INIT_RAM_7F 和 INITP_RAM_00~ INITP_RAM_0F 指定 |

#### 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。

## Verilog 例化:

SDP36KE bram sdp36ke 0 (

.DI({{28{1'b0}}},din[35:0]}),

.DO({dout[63:36],dout[35:0]}),

.DIP({8{1'b0}}),

.DOP({dout[71:64]}),

.ECCP(eccp),

.ADA(ada),

.ADB(adb),

.CLKA(clka),

.CLKB(clkb),

.CEA(cea),

.CEB(ceb),

.OCE(oce),

.RESET(reset),

UG300-1.3 32(67)

```
.BLKSELA({3'b000}),
     .BLKSELB({3'b000}),
     .DECCI(decci),
     .SECCI(secci),
     .DECCO(decco),
     .SECCO(secco)
  );
  defparam bram sdp36ke 0.ECC WRITE EN = "FALSE";
  defparam bram sdp36ke 0. ECC READ EN = "FALSE";
  defparam bram sdp36ke 0.READ MODE = 1'b0;
  defparam bram sdp36ke 0.BLK SEL A = 3'b000;
  defparam bram sdp36ke 0.BLK SEL B = 3'b000;
  defparam bram sdp36ke 0.RESET MODE = "SYNC";
  defparam bram sdp36ke 0.INIT FILE = "NONE";
  defparam bram sdp36ke 0.INIT RAM 00 =
  A00000000000B:
  defparam bram sdp36ke 0.INIT RAM 7F =
  A00000000000B:
  defparam bram sdp36ke 0.INITP RAM 00 =
  A00000000000B:
  defparam bram sdp36ke 0.INITP RAM 0F =
  A00000000000B:
 Vhdl 例化:
   COMPONENT SDP36KE
         GENERIC(
                ECC WRITE EN:string:="FALSE";
                ECC READ EN:string:="FALSE";
                READ MODE:bit:='0';
                BLK SEL A:bit vector:="000";
                BLK SEL B:bit vector:="000";
                RESET MODE:string:="SYNC";
                INIT FILE:string:="NONE";
                INIT RAM 00:bit vector:=X"00A000000000000
```

UG300-1.3 33(67)

```
INIT RAM 7F:bit vector:=X"00A000000000000
INITP_RAM_00:bit_vector:=X"00A00000000000
INITP_RAM_0F:bit_vector:=X"00A00000000000
);
          PORT(
                  DO:OUT std logic vector(63 downto 0):=conv
std_logic_vector(0,64);
                  DOP:OUT std logic vector(7 downto 0):=conv
std logic vector(0,8);
                  ECCP:OUT std logic vector(7 downto 0):=conv
std logic vector(0,8);
                  DECCO, SECCO: OUT std logic:=conv std logic;
                  DECCI, SECCI: IN std logic;
                  ADA, ADB: IN std logic vector(9 downto 0);
                  CLKA, CLKB, CEA, CEB: IN std logic;
                  OCE, RESET: IN std logic;
                  BLKSELA: IN std logic vector(2 downto 0);
                  BLKSELB:IN std logic vector(2 downto 0);
                  DIP:IN std logic vector(7 downto 0);
                  DI:IN std logic vector(63 downto 0)
            );
    END COMPONENT;
    uut:SDP36KE
       GENERIC MAP(
                    ECC WRITE EN=>"FALSE";
                    ECC READ_EN=>"FALSE";
                    READ MODE=>'0';
                    BLK SEL A=>"000";
                    BLK SEL B=>"000";
                    RESET MODE=>"SYNC";
                    INIT FILE=>"NONE";
                    INIT RAM 00=>X"00A000000000000B00A00
000000000B00A0000000000B00A0000000000B".
                    INIT RAM 7F=>X"00A000000000000B00A00
```

UG300-1.3 34(67)

```
000000000B00A0000000000B00A0000000000B",
                 INITP RAM 00=>X"00A000000000000B00A0
INITP RAM 0F=>X"00A000000000000B00A0
)
       PORT MAP(
          DI=>din,
          DO=>dout.
          DIP=>dip,
          DOP=>dop,
          ECCP=>eccp,
          ADA=>ada,
          ADB=>adb.
          CLKA=>clka,
          CLKB=>clkb,
          CEA=>cea,
          CEB=>ceb.
          OCE=>oce.
          RESET=>reset,
          BLKSELA=>blksela,
          BLKSELB=>blkselb,
          DECCI=>decci.
          SECCI=>secci,
          DECCO=>decco.
```

## 3.5 只读模式

#### 原语介绍

);

pROM/pROMX9(16K/18K Block ROM), 16K/18K 块状只读储存器。

#### 功能描述

pROM/pROMX9 存储空间分别为 16 Kbits/18 Kbits, 其工作模式为只读模式,可支持 2 种读模式(bypass 模式和 pipeline 模式)。

通过参数 READ\_MODE 来启用或禁用输出 pipeline 寄存器,使用输出 pipeline 寄存器时,读操作需要额外的延迟周期。

UG300-1.3 35(67)

SECCO=>secco

ROM 不同读模式对应的内部时序波形图可参考伪双端口 BSRAM 的 B端口时序,如图 3-13 和图 3-14 所示。

#### 图 3-13 ROM 时序波形图 (Bypass 模式)



#### 图 3-14 ROM 时序波形图 (Pipeline 模式)



#### ● 复位模式

支持同步复位、异步复位和全局复位。

#### 配置关系

表 3-14 pROM/pROMX9 数据宽度和地址宽度配置关系

| 只读模式   | BSRAM 容量 | 数据宽度 | 地址宽度 |
|--------|----------|------|------|
|        | 16 Kbits | 1    | 14   |
|        |          | 2    | 13   |
| pROM   |          | 4    | 12   |
| prow   |          | 8    | 11   |
|        |          | 16   | 10   |
|        |          | 32   | 9    |
| pROMX9 | 18 Kbits | 9    | 11   |
|        |          | 18   | 10   |

UG300-1.3 36(67)

| 只读模式 | BSRAM 容量 | 数据宽度 | 地址宽度 |
|------|----------|------|------|
|      |          | 36   | 9    |

#### 端口示意图

#### 图 3-15 pROM/pROMX9 端口示意图



#### 端口介绍

#### 表 3-15 pROM/pROMX9 端口介绍

| See To bright Arrest 200 Miles |        |                                                           |  |
|--------------------------------|--------|-----------------------------------------------------------|--|
| 端口名                            | I/O    | 描述                                                        |  |
| DO[31:0]/DO[35:0]              | Output | 数据输出信号                                                    |  |
| AD[13:0]                       | Input  | 地址输入信号                                                    |  |
| CE                             | Input  | 时钟使能输入信号,高电平有效。                                           |  |
| CLK                            | Input  | 时钟输入信号                                                    |  |
| RESET                          | Input  | 复位输入信号,支持同步复位和异步复位,<br>高电平有效。RESET 复位寄存器,而不是复<br>位存储器内的值。 |  |
| OCE                            | Input  | 输出时钟使能信号,用于 pipeline 模式,对 bypass 模式无效。                    |  |

## 参数介绍

## 表 3-16 pROM/pROMX9 参数介绍

| 参数名       | 参数类型    | 取值范围                                 | 默认值                  | 描述                                                |
|-----------|---------|--------------------------------------|----------------------|---------------------------------------------------|
| READ_MODE | Integer | 1'b0,1'b1                            | 1'b0                 | 读模式配置<br>● 1'b0: bypass 模式<br>● 1'b1: pipeline 模式 |
| BIT_WIDTH | Integer | pROM:1,2,4,8,16,32<br>pROMX9:9,18,36 | pROM:32<br>pROMX9:36 | 数据宽度配置                                            |

UG300-1.3 37(67)

| 参数名                         | 参数类型    | 取值范围                                                   | 默认值                                    | 描述                                                          |
|-----------------------------|---------|--------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|
| RESET_MODE                  | String  | "SYNC","ASYNC"                                         | "SYNC"                                 | 复位模式配置 <ul><li>● SYNC: 同步复位</li><li>● ASYNC: 异步复位</li></ul> |
| INIT_RAM_00~<br>INIT_RAM_3F | Integer | pROM:256'h00~256'<br>h11<br>pROMX9:288'h00~28<br>8'h11 | pROM:256'h<br>00<br>pROMX9:28<br>8'h00 | 用于设置 BSRAM 存储<br>单元的初始化数据                                   |

#### 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。

```
原语例化以 pROM 为例介绍:
  Verilog 例化:
  pROM bram prom 0 (
     .DO({dout[31:8],dout[7:0]}),
     .CLK(clk),
     .OCE(oce),
     .CE(ce),
     .RESET(reset),
     .AD({ad[10:0],3'b000})
  );
  defparam bram prom 0.READ MODE = 1'b0;
 defparam bram_prom_0.BIT_WIDTH = 8;
  defparam bram prom 0.RESET MODE = "SYNC";
  defparam bram prom 0.INIT RAM 00 =
  256'h9C23645D0F78986FFC3E36E141541B95C19F2F7164085E63
  1A819860D8FF0000;
  defparam bram_prom_0.INIT_RAM_01 =
  000FFFFFBDCF;
Vhdl 例化:
  COMPONENT pROM
       GENERIC(
               BIT WIDTH:integer:=1;
               READ_MODE:bit:='0';
```

RESET MODE:string:="SYNC";

UG300-1.3 38(67)

```
INIT RAM 00:bit vector:=X"9C23645D0F78986FF
C3E36E141541B95C19F2F7164085E631A819860D8FF0000";
               INIT_RAM_01:bit_vector:=X"000000000000000000
);
       PORT(
               DO:OUT std logic vector(31 downto 0):=conv std
_logic_vector(0,32);
               CLK,CE,OCE,RESET:IN std logic;
              AD:IN std logic vector(13 downto 0)
       );
  END COMPONENT;
  uut:pROM
     GENERIC MAP(
                BIT WIDTH=>1,
                READ MODE=>'0',
                RESET MODE=>"SYNC",
                INIT RAM 00=>X"9C23645D0F78986FFC3E36
E141541B95C19F2F7164085E631A819860D8FF0000",
                PORT MAP(
           DO=>do.
          AD=>ad,
           CLK=>clk.
           CE=>ce,
           OCE=>oce,
           RESET=>reset
      );
```

UG300-1.3 39(67)

## 4 BSRAM 输出复位

RESET 信号作用于输出模块,输出复位数据 0,结构框图如图 4-1 所示。

#### 图 4-1 复位输出结构框图



RESET 信号高电平有效时输出端口输出 0。

RESET 支持同步复位和异步复位,当用户直接调用库原语时,通过参数 RESET\_MODE 设置。当用户使用 IP Core Generator 时,可通过窗口选择复位模式,详细资料请参考第 6 章 IP 调用。

RESET 信号复位锁存器和输出寄存器,因此当设置 RESET 信号有效时,不管用户使用的是寄存器输出模式还是旁路输出模式,端口都输出 0。

图 4-2、图 4-3、图 4-4 和图 4-5 为不同模式下复位时序图,其中, DO RAM 表示存储阵列中的数据, DO 表示输出端口的数据。

寄存器输出模式如下所示:

- 同步复位有效时, DO 在 CLK 上升沿复位为 0;
- 异步复位有效时, DO 随之复位为 0, 不需要等到 CLK 上升沿;
- 复位无效,且 OCE 信号有效时,DO 输出 DO RAM;
- 复位无效,且 OCE 信号无效时,DO 保持上一次输出的数据 旁路输出模式如下所示:
- 同步复位有效时, DO 在 CLK 上升沿复位为 0;

UG300-1.3 40(67)

- 异步复位有效时, DO 随之复位为 0, 不需要等到 CLK 上升沿;
- 复位无效时,不管 OCE 信号是否有效, DO 输出 DO RAM。

#### 图 4-2 同步复位时序图(Pipeline 模式)



#### 图 4-3 同步复位时序图 (Bypass 输出模式)



#### 图 4-4 异步复位时序图(Pipeline 模式)



#### 图 4-5 异步复位时序图(Bypass 输出模式)



UG300-1.3 41(67)

5 SSRAM 原语 5.1 RAM16S1

# 5 SSRAM 原语

Shadow SRAM 是分布式静态随机存储器,可配置成单端口模式,伪双端口模式和只读模式,如表 5-1 所示。

#### 表 5-1 SSRAM 模式

| 原语        | 描述                           |
|-----------|------------------------------|
| RAM16S1   | 地址深度 16,数据宽度为 1 的单端口 SSRAM。  |
| RAM16S2   | 地址深度 16,数据宽度为 2 的单端口 SSRAM。  |
| RAM16S4   | 地址深度 16,数据宽度为 4 的单端口 SSRAM。  |
| RAM16SDP1 | 地址深度 16,数据宽度为 1 的伪双端口 SSRAM。 |
| RAM16SDP2 | 地址深度 16,数据宽度为 2 的伪双端口 SSRAM。 |
| RAM16SDP4 | 地址深度 16,数据宽度为 4 的伪双端口 SSRAM。 |
| ROM16     | 地址深度 16,数据宽度为 1 的 ROM。       |

## 5.1 RAM16S1

#### 原语介绍

RAM16S1(16-Deep by 1-Wide Single-port SSRAM)是地址深度为 16,数据位宽为 1 的单端口 SSRAM。

#### 功能描述

RAM16S1 是数据位宽为 1 的单端口 SSRAM,读写地址相同,WRE为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应地址。读操作由地址确定输出 RAM 对应位置的数据。即 SSRAM 由 CFU的 LUT 配置实现,同步写入,异步读取。但如果应用需要,可使用与每个LUT 关联的寄存器来实现同步读取功能。其 normal 模式时序波形图如图 5-1 所示。

UG300-1.3 42(67)

5 SSRAM 原语 5.1 RAM16S1

#### 图 5-1 RAM16S1 模式时序波形图



#### 端口示意图

#### 图 5-2 RAM16S1 端口示意图



## 端口介绍

表 5-2 RAM16S1 端口介绍

| 端口      | I/O    | 描述      |
|---------|--------|---------|
| DI      | Input  | 数据输入信号  |
| CLK     | Input  | 时钟输入信号  |
| WRE     | Input  | 写使能输入信号 |
| AD[3:0] | Input  | 地址输入信号  |
| DO      | Output | 数据输出信号  |

UG300-1.3 43(67)

5 SSRAM 原语 5.1 RAM16S1

#### 参数介绍

#### 表 5-3 RAM16S1 参数介绍

| 参数     | 范围                | 默认       | 描述          |
|--------|-------------------|----------|-------------|
| INIT_0 | 16'h0000~16'hffff | 16'h0000 | RAM16S1 初始值 |

#### 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第6章 IP 调用。

```
Verilog 例化:
  RAM16S1 instName(
      .DI(DI),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT)
  );
  defparam instName.INIT 0=16'h1100;
Vhdl 例化:
  COMPONENT RAM16S1
         GENERIC (INIT:bit vector:=X"0000");
         PORT(
               DO:OUT std_logic;
               DI:IN std_logic;
               CLK: IN std logic;
               WRE: IN std logic;
               AD:IN std_logic_vector(3 downto 0)
         );
  END COMPONENT;
  uut:RAM16S1
        GENERIC MAP(INIT=>X"0000")
        PORT MAP (
            DO=>DOUT,
            DI=>DI,
            CLK=>CLK,
            WRE=>WRE.
```

UG300-1.3 44(67)

5 SSRAM 原语 5.2 RAM16S2

AD=>AD

);

## 5.2 RAM16S2

#### 原语介绍

RAM16S2(16-Deep by 2-Wide Single-port SSRAM)是地址深度为 16,数据位宽为 2 的单端口 SSRAM。

#### 功能描述

RAM16S2 是数据位宽为 2 的单端口 SSRAM,读写地址相同,WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应地址。读操作由地址确定输出 RAM 对应位置的数据。即 SSRAM 由 CFU 的 LUT 配置实现,同步写入,异步读取。但如果应用需要,可使用与每个 LUT 关联的寄存器来实现同步读取功能。其时序波形图如图 5-1 所示。

#### 端口示意图

#### 图 5-3 RAM16S2 端口示意图



#### 端口介绍

#### 表 5-4 RAM16S2 端口介绍

| 端口      | I/O    | 描述      |
|---------|--------|---------|
| DI[1:0] | Input  | 数据输入信号  |
| CLK     | Input  | 时钟输入信号  |
| WRE     | Input  | 写使能输入信号 |
| AD[3:0] | Input  | 地址输入信号  |
| DO[1:0] | Output | 数据输出信号  |

UG300-1.3 45(67)

5 SSRAM 原语 5.2 RAM16S2

#### 参数介绍

#### 表 5-5 RAM16S2 参数介绍

| 参数             | 范围                | 默认       | 描述          |
|----------------|-------------------|----------|-------------|
| INIT_0~ INIT_1 | 16'h0000~16'hffff | 16'h0000 | RAM16S2 初始值 |

#### 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第6章 IP 调用。

```
Verilog 例化:
  RAM16S2 instName(
      .DI(DI[1:0]),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT[1:0])
  );
  defparam instName.INIT 0=16'h0790;
  defparam instName.INIT 1=16'h0f00;
Vhdl 例化:
  COMPONENT RAM16S2
         GENERIC (INIT_0:bit_vector:=X"0000";
                    INIT 1:bit vector:=X"0000"
         );
         PORT(
                DO:OUT std logic vector(1 downto 0);
                DI:IN std logic vector(1 downto 0);
                CLK:IN std_logic;
                WRE:IN std_logic;
               AD:IN std logic vector(3 downto 0)
         );
  END COMPONENT;
  uut:RAM16S2
        GENERIC MAP(INIT_0=>X"0000",
                        INIT 1=>X"0000"
        )
```

UG300-1.3 46(67)

5 SSRAM 原语 5.3 RAM16S4

```
PORT MAP (
DO=>DOUT,
DI=>DI,
CLK=>CLK,
WRE=>WRE,
AD=>AD
```

## 5.3 RAM16S4

#### 原语介绍

RAM16S4(16-Deep by 4-Wide Single-port SSRAM)是地址深度为 16,数据位宽为 4 的单端口 SSRAM。

#### 功能描述

RAM16S4 是数据位宽为 4 的单端口 SSRAM,读写地址相同,WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应地址。读操作由地址确定输出 RAM 对应位置的数据。即 SSRAM 由 CFU 的 LUT 配置实现,同步写入,异步读取。但如果应用需要,可使用与每个LUT 关联的寄存器来实现同步读取功能。其时序波形图如图 5-1 所示。

#### 端口示意图

#### 图 5-4 RAM16S4 端口示意图



UG300-1.3 47(67)

5 SSRAM 原语 5.3 RAM16S4

#### 端口介绍

#### 表 5-6 RAM16S4 端口介绍

| 端口      | I/O          | 描述      |
|---------|--------------|---------|
| DI[3:0] | Input 数据输入信号 |         |
| CLK     | Input        | 时钟输入信号  |
| WRE     | Input        | 写使能输入信号 |
| AD[3:0] | Input        | 地址输入信号  |
| DO[3:0] | Output       | 数据输出信号  |

#### 参数介绍

#### 表 5-7 RAM16S4 参数介绍

| 参数             | 范围                | 默认       | 描述          |
|----------------|-------------------|----------|-------------|
| INIT_0~ INIT_3 | 16'h0000~16'hffff | 16'h0000 | RAM16S4 初始值 |

#### 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第6章 IP 调用。

#### Verilog 例化:

```
RAM16S4 instName(
      .DI(DI[3:0]),
      .WRE(WRE),
      .CLK(CLK),
      .AD(AD[3:0]),
      .DO(DOUT[3:0])
  );
  defparam instName.INIT_0=16'h0450;
  defparam instName.INIT 1=16'h1ac3;
  defparam instName.INIT 2=16'h1240;
  defparam instName.INIT 3=16'h045c;
Vhdl 例化:
  COMPONENT RAM16S4
         GENERIC (INIT_0:bit_vector:=X"0000";
                    INIT_1:bit_vector:=X"0000";
                    INIT 2:bit vector:=X"0000";
```

UG300-1.3 48(67)

5 SSRAM 原语 5.4 RAM16SDP1

```
INIT 3:bit vector:=X"0000"
      );
       PORT(
             DO:OUT std logic vector(3 downto 0);
             DI:IN std logic vector(3 downto 0);
             CLK:IN std logic;
             WRE: IN std logic;
             AD:IN std logic vector(3 downto 0)
      );
END COMPONENT;
uut:RAM16S4
      GENERIC MAP(INIT_0=>X"0000",
                     INIT 1=>X"0000",
                     INIT 2=>X"0000",
                     INIT 3=>X"0000"
     )
      PORT MAP (
          DO=>DOUT,
          DI=>DI.
          CLK=>CLK,
          WRE=>WRE,
          AD=>AD
     );
```

## **5.4 RAM16SDP1**

#### 原语介绍

RAM16SDP1(16-Deep by 1-Wide Semi Dual-port SSRAM)是地址 深度为 16,数据位宽为 1 的伪双端口 SSRAM。

#### 功能描述

RAM16SDP1 是数据位宽为 1 的伪双端口 SSRAM,具有两个地址,写地址 WAD 和读地址 RAD,这两个地址端口是异步的。WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应写地址。读操作则由读地址确定输出 RAM 对应位置的数据。其 normal 模式时序波形图如图 5-5 所示。

UG300-1.3 49(67)

5 SSRAM 原语 5.4 RAM16SDP1

#### 图 5-5 RAM16SDP1 模式时序波形图



#### 端口示意图

#### 图 5-6 RAM16SDP1 端口示意图



#### 端口介绍

表 5-8 RAM16SDP1 端口介绍

| 端口       | I/O          | 描述      |
|----------|--------------|---------|
| DI       | Input        | 数据输入信号  |
| CLK      | Input 时钟输入信号 |         |
| WRE      | Input        | 写使能输入信号 |
| WAD[3:0] | Input        | 写地址信号   |
| RAD[3:0] | Input        | 读地址信号   |
| DO       | Output       | 数据输出信号  |

UG300-1.3 50(67)

5 SSRAM 原语 5.4 RAM16SDP1

#### 参数介绍

#### 表 5-9 RAM16SDP1 参数介绍

| 参数     | 范围                | 默认       | 描述            |
|--------|-------------------|----------|---------------|
| INIT_0 | 16'h0000~16'hffff | 16'h0000 | RAM16SDP1 初始值 |

#### 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。

```
Verilog 例化:
  RAM16SDP1 instName(
      .DI(DI),
      .WRE(WRE),
      .CLK(CLK),
      .WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT)
  );
  defparam instName.INIT 0=16'h0100;
Vhdl 例化:
  COMPONENT RAM16SDP1
         GENERIC (INIT_0:bit_vector:=X"0000");
         PORT(
               DO:OUT std logic;
               DI:IN std logic;
               CLK: IN std logic;
               WRE: IN std logic;
               WAD:IN std logic vector(3 downto 0);
               RAD:IN std logic vector(3 downto 0)
        );
  END COMPONENT:
  uut:RAM16SDP1
        GENERIC MAP(INIT_0=>X"0000")
        PORT MAP (
            DO=>DOUT,
            DI=>DI,
```

UG300-1.3 51(67)

5 SSRAM 原语 5.5 RAM16SDP2

```
CLK=>CLK,
WRE=>WRE,
WAD=>WAD,
RAD=>RAD
```

## **5.5 RAM16SDP2**

#### 原语介绍

RAM16SDP2(16-Deep by 2-Wide Semi Dual-port SSRAM)是地址 深度为 16,数据位宽为 2 的伪双端口 SSRAM。

#### 功能描述

RAM16SDP2 是数据位宽为 2 的伪双端口 SSRAM,具有两个地址,写地址 WAD 和读地址 RAD,这两个地址端口是异步的。WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应写地址。读操作则由读地址确定输出 RAM 对应位置的数据。其时序波形图如图 5-5 所示。

#### 端口示意图

#### 图 5-7 RAM16SDP2 端口示意图



#### 端口介绍

#### 表 5-10 RAM16SDP2 端口介绍

| ********* |       |         |  |
|-----------|-------|---------|--|
| 端口        | 1/0   | 描述      |  |
| DI[1:0]   | Input | 数据输入信号  |  |
| CLK       | Input | 时钟输入信号  |  |
| WRE       | Input | 写使能输入信号 |  |
| WAD[3:0]  | Input | 写地址信号   |  |
| RAD[3:0]  | Input | 读地址信号   |  |

UG300-1.3 52(67)

5 SSRAM 原语 5.5 RAM16SDP2

| 端口      | I/O    | 描述     |
|---------|--------|--------|
| DO[1:0] | Output | 数据输出信号 |

#### 参数介绍

#### 表 5-11 RAM16SDP2 参数介绍

| 参数             | 范围                | 默认       | 描述            |
|----------------|-------------------|----------|---------------|
| INIT_0~ INIT_1 | 16'h0000~16'hffff | 16'h0000 | RAM16SDP2 初始值 |

#### 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考<u>第6章 IP 调用</u>。

#### Verilog 例化:

```
RAM16SDP2 instName(
      .DI(DI[1:0]),
      .WRE(WRE),
      .CLK(CLK),
      .WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT[1:0])
  );
  defparam instName.INIT_0=16'h5600;
  defparam instName.INIT 1=16'h0af0;
Vhdl 例化:
  COMPONENT RAM16SDP2
         GENERIC (INIT_0:bit_vector:=X"0000";
                   INIT_1:bit_vector:=X"0000"
         );
         PORT(
                DO:OUT std logic vector(1 downto 0);
                DI:IN std_logic_vector(1 downto 0);
                CLK:IN std logic;
                WRE:IN std_logic;
                WAD:IN std logic vector(3 downto 0);
                RAD:IN std logic vector(3 downto 0)
```

UG300-1.3 53(67)

5 SSRAM 原语 5.6 RAM16SDP4

#### **5.6 RAM16SDP4**

#### 原语介绍

RAM16SDP4(16-Deep by 4-Wide Semi Dual-port SSRAM)是地址 深度为 16,数据位宽为 4 的伪双端口 SSRAM。

#### 功能描述

RAM16SDP4 是数据位宽为 4 的伪双端口 SSRAM,具有两个地址,写地址 WAD 和读地址 RAD,这两个地址端口是异步的。WRE 为高电平时进行写操作,此时会在 CLK 的上升沿将数据加载到存储器对应写地址。读操作则由读地址确定输出 RAM 对应位置的数据。其时序波形图如图 5-5 所示。

#### 端口示意图

#### 图 5-8 RAM16SDP4 端口示意图



UG300-1.3 54(67)

5 SSRAM 原语 5.6 RAM16SDP4

#### 端口介绍

#### 表 5-12 RAM16SDP4 端口介绍

| 端口       | I/O    | 描述      |
|----------|--------|---------|
| DI[3:0]  | Input  | 数据输入信号  |
| CLK      | Input  | 时钟输入信号  |
| WRE      | Input  | 写使能输入信号 |
| WAD[3:0] | Input  | 写地址信号   |
| RAD[3:0] | Input  | 读地址信号   |
| DO[3:0]  | Output | 数据输出信号  |

#### 参数介绍

#### 表 5-13 RAM16SDP4 参数介绍

| 参数             | 范围                | 默认       | 描述            |  |
|----------------|-------------------|----------|---------------|--|
| INIT_0~ INIT_3 | 16'h0000~16'hffff | 16'h0000 | RAM16SDP4 初始值 |  |

#### 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。

#### Verilog 例化:

```
RAM16SDP4 instName(
      .DI(DI[3:0]),
      .WRE(WRE),
      .CLK(CLK),
      .WAD(WAD[3:0]),
      .RAD(RAD[3:0]),
      .DO(DOUT[3:0])
  );
  defparam instName.INIT_0=16'h0340;
  defparam instName.INIT 1=16'h9065;
  defparam instName.INIT_2=16'hac12;
  defparam instName.INIT_3=16'h034c;
Vhdl 例化:
  COMPONENT RAM16SDP2
         GENERIC (INIT_0:bit_vector:=X"0000";
                    INIT 1:bit vector:=X"0000";
                    INIT 2:bit vector:=X"0000";
```

UG300-1.3 55(67)

5 SSRAM 原语 5.7 ROM16

```
INIT_3:bit_vector:=X"0000";
      );
       PORT(
             DO:OUT std logic vector(3 downto 0);
             DI:IN std logic vector(3 downto 0);
             CLK: IN std logic;
             WRE: IN std logic;
             WAD:IN std_logic_vector(3 downto 0);
             RAD:IN std logic vector(3 downto 0)
      );
END COMPONENT;
uut:RAM16SDP2
      GENERIC MAP(INIT_0=>X"0000",
                     INIT 1=>X"0000",
                     INIT_2=>X"0000",
                     INIT 3=>X"0000"
     )
      PORT MAP (
          DO=>DOUT.
          DI=>DI,
          CLK=>CLK,
          WRE=>WRE,
         WAD=>WAD,
          RAD=>RAD
     );
```

## 5.7 ROM16

#### 原语介绍

ROM16 是地址深度为 16,数据位宽为 1 的只读存储器,存储器的内容通过 INIT 进行初始化。

#### 功能描述

ROM16 是数据位宽为 1 的只读存储器,由地址确定输出存储在 ROM 对应位置的数据。其时序波形图如图 5-9 所示。

UG300-1.3 56(67)

5 SSRAM 原语 5.7 ROM16

#### 图 5-9 ROM16 模式时序波形图



#### 端口示意图

#### 图 5-10 ROM16 端口示意图



#### 端口介绍

#### 表 5-14 ROM16 端口介绍

| 端口      | I/O    | 描述     |  |
|---------|--------|--------|--|
| AD[3:0] | Input  | 地址输入信号 |  |
| DO      | Output | 数据输出信号 |  |

#### 参数介绍

#### 表 5-15 ROM16 参数介绍

| 参数     | 范围                | 默认       | 描述        |
|--------|-------------------|----------|-----------|
| INIT_0 | 16'h0000~16'hffff | 16'h0000 | ROM16 初始值 |

#### 原语例化

可以直接实例化原语,也可以通过 IP Core Generator 工具产生,具体可参考第 6 章 IP 调用。

#### Verilog 例化:

#### Vhdl 例化:

UG300-1.3 57(67)

5 SSRAM 原语 5.7 ROM16

```
COMPONENT ROM16

GENERIC (INIT:bit_vector:=X"0000");

PORT(

DO:OUT std_logic;

AD:IN std_logic_vector(3 downto 0)
);

END COMPONENT;

uut:ROM16

GENERIC MAP(INIT=>X"0000")

PORT MAP (

DO=>DOUT,

AD=>AD
);
```

UG300-1.3 58(67)

6 IP 调用 6.1 BSRAM 双端口模式

**6** IP 调用

高云半导体云源®软件的 IP Core Generator 支持 IP 核的界面调用,用户在界面中设置数据宽度、地址深度、写模式和读模式,云源软件生成对应的 IP 模块,用户在使用中调用模块即可。此外,还有两种方式实现BSRAM、SSRAM 的功能。一是用户可以通过调用云源®软件库文件,设置端口和参数生成需要的 IP 模块。二是代码综合时选择综合工具自动综合成BSRAM、SSRAM 模式。

IP Core Generator 中,BSRAM 模块可实现单端口模式、伪双端口模式、带 ECC 功能的伪双端口模式、双端口模式以及只读模式,SSRAM 模块可实现单端口模式、伪双端口模式和只读模式。下面 BSRAM 以双端口模式、带 ECC 功能的伪双端口模式,SSRAM 以单端口模式为例来介绍 IP 调用,其他模式参考 BSRAM 双端口模式和 SSRAM 单端口模式。

## 6.1 BSRAM 双端口模式

BSRAM 双端口工作模式 (DP),可通过 DPB、DPX9B 原语实现。在 IP Core Generator 界面中,单击"DPB",界面右侧会显示 DPB 的相关信息概要。

#### IP 配置

在 IP Core Generator 界面中,双击"DPB",弹出 DPB 的 IP Customization 窗口。该窗口包括"File"配置框、"Options"配置框和端口显示框图,如图 6-1 所示。

UG300-1.3 59(67)

6.1 BSRAM 双端口模式



#### 图 6-1 DPB 的 IP Customization 窗口结构

#### 1. File 配置框

File 配置框用于配置产生的 IP 设计文件的相关信息。

- Device: 显示已配置的 Device 信息;
- Part Number:显示已配置的 Part Number 信息;
- Language: 配置产生的 IP 设计文件的硬件描述语言。选择右侧下 拉列表框,选择目标语言,支持 Verilog 和 VHDL;
- Module Name:配置产生的 IP 设计文件的 module name。在右侧文本框可重新编辑模块名称。Module Name 不能与原语名称相同,若相同,则报出 Error 提示;
- File Name: 配置产生的 IP 设计文件的文件名。在右侧文本框可重 新编辑文件名称;
- Create In: 配置产生的 IP 设计文件的目标路径。可在右侧文本框中重新编辑目标路径,也可通过文本框右侧选择按钮选择目标路径。

#### 2. Options 配置框

Options 配置框用于用户自定义配置 IP, 双端口模式分为 A、B 两个端

UG300-1.3 60(67)

6 IP 调用 6.1 BSRAM 双端口模式

- 口,Options 配置框如图 6-1 所示。
- Data Width & Address Depth: 配置地址深度(Address Depth)和数据宽度(Data Width)。当配置的地址深度和数据宽度无法通过单个模块实现时,IP Core 会实例化多个模块组合实现;
- Resource Usage: 计算并显示当前容量配置上占用的 Block Ram、 DFF、LUT、MUX 的资源情况;
- Read/Write Mode: 配置读写模式。DPB 支持以下模式:
  - 两种读模式: Bypass 和 Pipeline;
  - 三种写模式: Normal、Write-Through、Read-before-Write。
- Reset Mode: 配置复位模式,支持同步模式 "Synchronous" 和异步模式 "Asynchronous";
- Initialization: 配置初始值。初始值以二进制、十六进制或带地址十六进制的格式写在初始化文件中。"Memory Initialization File"选取的初始化文件可通过手写或者 IDE 菜单栏 "File > New > Memory Initialization File"产生,具体产生方式请参考文档 <u>SUG100,Gowin 云源软件用户指南</u>,初始化文件的格式请参考<u>第7章</u> 初始化文件。

#### 注!

- Options 配置框中可独立配置 DPB 的 Port A 和 Port B 的地址深度、数据宽度和 读写模式。
- DPB 的 Port A 和 Port B 是对同一块 memory 进行读写,因此 Port A 和 Port B 的 Address Depth\*Data Width 的结果必须相同。
- Options 配置中的初始化文件(Memory initialization File)中的数据宽度应与 Dimension Match 选择的 Port 数据宽度一致。
- 如 Port A 和 Port B 的 Address Depth\*Data Width 的结果不同,则会弹出 Error 提示信息。
- 如数据宽度不一致,则产生的 DPB 实例 Init 值默认初始化为 0,并且在 Output 窗口中,会弹出如下提示信息: Error (MG2105): Initial values' width is unequal to user's width。

#### 3. 端口显示框图

- 端口显示框图显示当前 IP Core 的配置结果示例框图,输入输出端口的位宽根据 Options 配置实时更新,如图 6-1 所示;
- Options 配置中的 Port A 和 Port B 的地址深度 Address Depth 配置 影响地址的位宽,数据位宽 Data Width 配置影响输入数据和输出数据的位宽。

#### IP 生成文件

IP 窗口配置完成后,产生以配置文件"File Name"命名的三个文件,以默认配置为例进行介绍:

● IP 设计文件 "gowin\_dpb.v" 为完整的 verilog 模块,根据用户的 IP 配

UG300-1.3 61(67)

置,产生实例化的 DPB;

- IP 设计使用模板文件 "gowin\_dpb\_tmp.v",为用户提供 IP 设计使用模板文件:
- IP 配置文件: "gowin\_dpb.ipc",用户可加载该文件对 IP 进行配置。

注!

如配置中选择的语言是 VHDL,则产生的前两个文件名后缀为.vhd。

## 6.2 BSRAM 带 ECC 功能的伪双端口模式

BSRAM 带 ECC 功能的伪双端口工作模式(SDP36KE),可通过 SDP36KE 原语实现。在 IP Core Generator 界面中,单击"SDP36KE",界面右侧会显示 SDP36KE 的相关信息概要。

#### IP 配置

在 IP Core Generator 界面中,双击"SDP36KE",弹出 SDP36KE 的 IP Customization 窗口。该窗口包括"File"配置框、"Options"配置框和 端口显示框图,如图 6-2 所示。

#### 图 6-2 SDP36KE 的 IP Customization 窗口结构



UG300-1.3 62(67)

- 2. Options 配置框。Options 配置框用于用户自定义配置 IP, 双端口模式 分为 A、B 两个端口,Options 配置框如图 6-1 所示。
  - Data Width & Address Depth: 配置地址深度(Address Depth)和数据宽度(Data Width)。当配置的地址深度和数据宽度无法通过单个模块实现时,IP Core 会实例化多个模块组合实现;
  - ECC Mode: 可支持 ECC Mode 如下:
    - Standard: 同时支持 Encode 和 Decode:
    - Encode-Only: 只支持 Encode;
    - Decode-Only: 只支持 Decode;
  - Error Injection: 配置注入错误位数。SDP36KE 支持以下注入错误位数:
    - Single Bit Error Injection: 注入 1 位错误;
    - Double Bit Error Injection: 注入 2 位错误;
    - Single and Double Bit Error Injection: 同时注入 1 位和 2 位错误。
  - Reset Mode: 配置复位模式,支持同步模式 "Synchronous" 和异步模式 "Asynchronous"。
- 3. 端口显示框图
  - 端口显示框图显示当前 IP Core 的配置结果示例框图,输入输出端口的位宽根据 Options 配置实时更新,如图 6-2 所示;
  - Options 配置中的 Port A 和 Port B 的地址深度 Address Depth 配置 影响地址的位宽,数据位宽 Data Width 配置影响输入数据和输出数据的位宽。

#### IP 生成文件

IP 窗口配置完成后,产生以配置文件"File Name"命名的三个文件,以默认配置为例进行介绍:

- IP 设计文件 "gowin\_sdp36ke.v" 为完整的 verilog 模块,根据用户的 IP 配置,产生实例化的 SDP36KE;
- IP 设计使用模板文件 "gowin\_sdp36ke\_tmp.v",为用户提供 IP 设计使用模板文件;
- IP 配置文件: "gowin\_sdp36ke.ipc",用户可加载该文件对 IP 进行配置。

#### 注!

如配置中选择的语言是 VHDL,则产生的前两个文件名后缀为.vhd。

UG300-1.3 63(67)

6 IP 调用 6.3 SSRAM 单端口模式

## 6.3 SSRAM 单端口模式

RAM16S 为 SSRAM 单端口工作模式,可以通过 RAM16S1、RAM16S2、RAM16S4 原语实现。在 IP Core Generator 界面中,单击 "RAM16S",界面右侧会显示 RAM16S 的相关信息概要。

#### IP 配置

在 IP Core Generator 界面中,双击 "RAM16S",弹出 RAM16S的 "IP Customization"窗口。该窗口包括"File"配置框、"Options"配置框和端口显示框图,如图 6-3 所示。

#### 图 6-3 RAM16S 的 IP Customization 窗口结构



- 1. File 配置框。File 配置框用于配置产生的 IP 设计文件的相关信息。 RAM16S 的 File 配置框的使用和 BSRAM 双端口模式类似,具体请参 考 6.1 BSRAM 双端口模式的 File 配置框。
- 2. Options 配置框。Options 配置框用于用户自定义配置 IP。Options 配置框如图 6-3 所示。RAM16S 的 Options 配置框的使用和 BSRAM 双端口模式类似,具体请参考 6.1 BSRAM 双端口模式的 Options 配置框。
- 3. 端口显示框图
  - 端口显示框图显示当前 IP Core 的配置结果示例框图,输入输出端口的位宽根据 Options 配置实时更新,如图 6-3 所示;
  - Options 配置中的地址深度 "Address Depth"配置影响地址数据的 位宽,数据位宽 "Data Width"配置影响输入数据和输出数据的位

UG300-1.3 64(67)

6.3 SSRAM 单端口模式

宽。

#### IP 生成文件

IP 窗口配置完成后,产生以配置文件"File Name"命名的三个文件,以默认配置为例进行介绍:

- IP 设计文件 "gowin\_ram16s.v" 为完整的 verilog 模块,根据用户的 IP 配置,产生实例化的 RAM16S;
- IP 设计使用模板文件 "gowin\_ram16s\_tmp.v",为用户提供 IP 设计使用模板文件;
- IP 配置文件: "gowin\_ram16s.ipc",用户可加载该文件对 IP 进行配置。

#### 注!

如配置中选择的语言是 VHDL,则产生的前两个文件名后缀为.vhd。

UG300-1.3 65(67)

7 初始化文件 7.1 二进制格式 (Bin File )

# 7 初始化文件

在 BSRAM、SSRAM 模式中,可以将存储器的每一位初始化为 0 或 1。初始值以二进制、十六进制或带地址十六进制的格式写在初始化文件中。

## 7.1 二进制格式 (Bin File)

Bin 文件是由二进制数 0 和 1 组成的文本文件, 行数代表存储器的地址深度, 列数代表存储器的数据宽度。

#File format=Bin

#Address\_depth=16

#Data width=32

0000110000010000000100100010000

100000001001000010000001000000

01000001000000100000010000000

00100000100001001100000011000000

## 7.2 十六进制格式(Hex File)

Hex 文件与 Bin 文件格式类似,由十六进制数 0~F 组成,行数代表存储器的地址深度,每一行数据的二进制位数,代表存储器的数据宽度。

#File format=Hex

#Address depth=8

#Data width=16

3A40

A28E

0B52

1C49

D602

0801

UG300-1.3 66(67)

03E6

4C18

## 7.3 带地址十六进制格式(Address-Hex File)

Address-Hex 文件是在文件中对有数据记录的地址和数据都进行记录,地址和数据都是由十六进制数  $0 \sim F$  组成,每行中冒号前面是地址,冒号后面是数据,文件中只对写入数据的地址和数据进行记录,没有记录的地址默认数据为 0。

#File format=AddrHex

#Address depth=256

#Data\_width=16

9:FFFF

23:00E0

2a:001F

30:1E00

UG300-1.3 67(67)

