Teil 1: Differential rechung im \mathbb{R}^n

an8: lokale Umkehrbarkeit

Stichworte: Kontraktion, Banachscher Fixpunktsatz, Lokale Umkehrbarkeit

Literatur: [Forster, Ende von Kap. 8]

8.1. Einleitung: Mit dem Banachschen Fixpunktsatz zeigen wir den Satz über die lokale Umkehrbarkeit als Verallgemeinerung des Satzes von der Ableitung von Umkehrfkt.

8.2. Motivation: Sei $a \in U \subset \mathbb{R}^n$, $f \in l^1(U, \mathbb{R}^n)$,

d.h. $f_i \in l^1(U, \mathbb{R})$ für alle $j \in \{1, ..., n\}$.

Haben: $f': U \to Hom(\mathbb{R}^n, \mathbb{R}^n) = \mathbb{R}^{n \times n}$ ist stetig. (d.h. jedes f'_i bzgl. Norm $||\cdot||_{\infty}$ und dazu äquivalente Normen).

Als <u>Kriterium für Invertierbarkeit</u> ist bekannt.

 $A \in Hom(\mathbb{R}^n, \mathbb{R}^n)$ invertierbar $\Leftrightarrow \det A \neq 0$.

Jetzt: $\underline{A} = f'(a)$ invertierbar \Rightarrow f nahe a invertierbar, d.h. $\exists U \in \mathcal{U}_a : f_{rU}$ invertierbar.

8.3. Def.: Sei $f: \mathbb{R}^n \to \mathbb{R}^n$, $a \in \mathbb{R}^n$.

Dann: a heißt <u>Fixpunkt von f</u>, falls f(a)=a ist.

8.4. Bsp.: \bullet Sei $f: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto x + c$ für $c \in \mathbb{R}^n$ fest.

Für c=o sind alle x fix, für c≠o ist kein x fix.

• Ist f eine Drehung um o las Drehzentrum, so ist o Fixpunkt und alle x fix, wenn der Drehwinkel Vielfaches von 2π ist.

8.5. Def.: Sei $f: \mathbb{R}^n \to \mathbb{R}^n$. Dannn heißt f Kontrahierend (oder Kontraktion) mit Kontraktions- $\underline{\text{faktor p}} \in [0, 1[, \text{ falls } \forall a, b \in \mathbb{R}^n : ||f(a) - f(b)|| \le p||a - b||.$

(Wobei $||\cdot|| = ||\cdot||_i nfty$ sei) Beachte p<1!

Bem.:Jede Kontraktion ist stetig (Klar per Def.).

8.6. Banachscher Fixpunktsatz: Vor.: $f: U \to U$ Kontrahierend mit Kontraktionsfaktor p, wo $U \subseteq \mathbb{R}^n$ abgeschlossen und beschränkt sei. (Vgl. später Teil 2 dieser Vorlesung.)

Beh.: (a) \exists ! Fixpunkt a von f.

(b) Setze $x_0 \in \mathbb{R}^n$ beliebig, und $x_k + 1 := f(x_k)$ für alle $k \ge 0$.

Dann: $||x_k - a|| \le \frac{p^k}{1-p} ||x_1 - x_0||$, d.h. $\lim_{k \to \infty} x_k = a$.

Bew.: (a) Eindeutigkeit: Ann.: u,v seien Fixpunkte, $u \neq v$

Dann: $0 \neq ||u - v|| = ||f(u) - f(v)|| \leq p||u - v|| < ||u - v||,$ Also folgt u=v.

Existenz: 1. Ableitung: $||x_{k+1} - x_k|| = ||f(x_k) - f(x_{k-1})|| \le p||x_k - x_{k-1}|| \le \cdots \le p^k||x_1 - x_0||$. 2. Ableitung: $||x_{k+l} - x_k|| \le (p^{k+l-1} + p^{k+l-2} + \cdots + p^k)||x_1 - x_0||$ (mit $l \ge 1$)

 $=p^{k}(p^{l-1}+\cdots+1)||x_{1}-x_{0}|| \leq \frac{p^{k}}{1-p}||x_{1}-x_{0}||.$

Es folgt: (x_k) ist eine Cauchyfolge, also ex. $\lim_{k\to\infty} x_k = a \in U$ (Vgl. $\ddot{\mathbf{U}}$ Bl. 2, A1.2.: Kgz. in $\mathbb{R}^n \checkmark$ Dann: Kgz. in U, da U beschr. (in $||\cdot||_{\infty}$) und abgeschlossen.)

Dieser GW ist Fixpunkt, denn $f(a) \stackrel{\text{$k \to \infty} \text{f stetig}}{\longleftarrow} f(x_k) = x_{k+1} \stackrel{\text{$k \to \infty}}{\longrightarrow} a$,

und aufgrund der Eindeutigkeit des GWes folgt f(a)=a.

(b): Obige Abschätzung (*) für $l \to \infty$.

Für $f: \mathbb{R} \to \mathbb{R}$ diff'bar und $\forall x: f'(x) \neq 0$

setze $g(x) := x - \frac{f(x)}{f'(x)}$, $g: \mathbb{R} \to \mathbb{R}$. ein Fixpunkt a von g ist dann genau eine Nst. von f wegen $g(a) = a \Leftrightarrow a = a - \frac{f(a)}{f'(a)} \Leftrightarrow f(a) = 0.$

Die Fixpunkte von g bzw. Nst. von f erhält man nach 8.6. (b) mit der Rekursion $x_0 \in \mathbb{R}, x_{k+1} := g(x_k) = x_k - 1$ falls g Kontrahierend ist. Ist a eine Nst. von f in einen IV I, $f \in l^2(I)$, so ist laut <u>Taylorformel</u> (1. Ord-<u>nung</u>): $0 = f(a) = f(x) + f'(x)(a-x) + \frac{f''(\xi)}{2}(a-x)^2, \xi$ zw. a und x

numg):
$$0 = f(a) = f(x) + f'(x)(a - x) + \frac{f'(x)}{2}(a - x)^2$$
, ξ zw. a und ξ $\Leftrightarrow \underbrace{x - \frac{f(x)}{f'(x)}}_{g(x)} - a = \frac{f''(\xi)}{2f'(x)}(x - a)^2$, mit $M_2 = \sup_{x \in I} |f''(x)|, m_1 = \inf_{x \in I} |f'(x)|$

folgt $|g(x)-a| \leq \frac{M_2}{2m_1}|x-a|^2$ für alle $x \in I,$

was unter bestimmten Voraussetzungen zum Nachweis der Kontraktionseigenschaft von g führt.

8.8. Satz über die lokale Umkehrbarkeit: (Verallg. von Satz An12.2, Ableitung von Umkehrfktn.) Vor.: $f \in \overline{l^1(D, \mathbb{R}^n, a \in D \subset \mathbb{R}^n)}$, $A := f'(a) \in \mathbb{R}^{n \times m}$ sei invertierbar, b:=f(a).

Beh.: (1) $\exists U \subset \mathbb{R}^n \exists V \subset \mathbb{R}^n : a \in U \xrightarrow{f} V \ni b$ bijektiv,

- (2) f_{ru}^{-1} ist stetig diff'bar (in V),
- (3) $f'(x) \in \mathbb{R}^{nxm}$ ist invertierbar für alle $x \in U$,

(4) $\forall y \in V : (f_{ru}^{-1})'(y) = (f'(f_{ru}^{-1}(y)))^{-1}$. $\forall y \in V : (f_{ru}^{-1})'(y) = (f'(f_{ru}^{-1}(y)))^{-1}$ in An 12.2 $\forall y \in V : (f_{ru}^{-1})'(y) = (f'(f_{ru}^{-1}(y)))^{-1}$ in An 12.2 $\forall y \in V : (f_{ru}^{-1})'(y) = (f'(f_{ru}^{-1}(y)))^{-1}$ in An 12.2 $\forall y \in V : (f_{ru}^{-1})'(y) = (f'(f_{ru}^{-1}(y)))^{-1}$ in An 12.2

matrix $I_n = \begin{pmatrix} 1 & \cdots & 0 \\ 0 & 1 & 0 \\ 0 & \cdots & 1 \end{pmatrix} \in \mathbb{R}^{nxm}$, durch Betrachtung von $x \mapsto A^{-1} \circ (f(x+a) - b)$ mit der Ableitung $A^{-1} \circ (f(x+a) - b)'(a) = A^{-1} \circ f'(o) = A^{-1} \circ A = T_n$.

- Ann.: (1) und (2) gelte. Für $x \in U$ gilt dann: $f_{ru}^{-1}f(x) = x$, was laut Kettenregel diffbar ist mit der Ableitung: $(f_{ru}^{-1})'(f(x))$ $\underline{f'(x)} = I_n$, denn f_{ru}^{-1} ist diff'bar laut (2). Also ist f'(x) invertierbar (also (3)), nämlich mit $(f'(x))^{-1} = \overline{(f_{ru}^{-1})'(f(x))}$. Setze nun $y = \overline{f_{ru}(x)} = f(x)$, also $x = f_{ru}^{-1}(y)$, es folgt $(f'(f_{ru}^{-1}(y)))^{-1} = (f_{ru}^{-1})'(y)$, das ist Formel (4).
- Noch z.z.: (1) und (2). Dazu betr. die Norm $||\cdot||_{\infty}$. Nach Vor. ist f' stetig (d.h. die f'_i stetig), sowie $f'(0) = I_n$. Daher $\exists s > 0 \forall x \in U_0^{2s} : \max_i ||f_i'(x)^T - pr_i(I_n)||_{\infty} \leq \frac{1}{n} =: M$, dabei sei $\times \overline{U_0^{2s}} \subseteq D$. (Def. $\overline{U_0^{2s}} := \{ x \in \mathbb{R}^n; ||x||_{\infty} \le 2s \}.$)

Setze $V:=U_0^s$, wähle $y \in V$ fest und setze als Hilfsfunktion h(x):=x-f(x)+y für $x \in D$.

Dann ist $h'(x) = I_n - f'(x)$, sowie $\max_i ||pr_i(I_n) - f'_i(x)^T|| \infty \le \frac{1}{2n} = M$,

es folgt mit Flogerung 6.6 des MWS,

dass $||h(x_1) - h(x_2)||_{\infty} \le nM \cdot ||x_1 - x_2||_{\infty} = \frac{1}{2}||x_1 - x_2||$ für alle $x_1 \cdot x_2 \in \overline{U_0^{2s}}$,

d.h. h ist Kontrahierend. Nun ist $\overline{U_0^{2s}}$ beschränkt und abgeschlossen, daher wende den Banachschen <u>Fixpunktsatz 8.6.</u> für h an. Dies zeigt:

 $\exists ! x \in U_0^{2s} \text{ mit } h(x) = x \Leftrightarrow x - f(x) + y = x \Leftrightarrow f(x) = y = h(0).$

Problem: Liegt x auf dem Rand von $\overline{U_0^{2s}}$? Nein: $h(\overline{x})$ Haben die Abschätzung $||h(\overline{h})||_{\infty} = ||\underbrace{(\overline{x} - f(\overline{x}) + y)}_{h(\overline{x})} - \underbrace{h(0)}_{=y} + \underbrace{h(0)}_{=y}||_{\infty}$

$$\leq \frac{1}{2}\underbrace{||\overline{x} - 0||_{\infty}}_{\leq 2s} + \underbrace{||y||_{\infty}}_{\leq 2s} < 2s \text{ für alle } \overline{x} \in \overline{U_0^{2s}},$$

$$\text{mit h(x)} = x \text{ folgt } ||x||_{\infty} \leq \frac{1}{2}||x||_{\infty} + ||y||_{\infty} \text{ bzw. } ||x||_{\infty} \leq 2||y||_{\infty} < 2s (*), \text{ d.h. } x \in \overline{U_0^{2s}}.$$

Setze $U := f^{-1}(U_0^s) \cap U_0^{2s} \subset \mathbb{R}^n, \Psi := f_{ru}, U \xrightarrow{\Psi} V$ ist also injektiv und surjektiv, also bijektiv \to (1) gilt. Setze $l := \Psi^{-1} = f_{ru}^{-1}$.

Ans (*) folgt: 1 ist stetig in o, $||l(y) - l(o)||_{\infty} \le 2||y - o||_{\infty}$

• Beh.: l ist in o diff'bar und
$$l'(o) = I_n$$
, d.h. (2) gilt. Bew.: $y = f(x) = \underbrace{o}_{f(o)} + x + \epsilon$ ist in o stetig,

$$\epsilon(x) \xrightarrow{x \to o} o \text{ da } f'(o) = I_n.
\Rightarrow l(y) = x = y - \epsilon(l(y)) \cdot \frac{||l(y)||_{\infty} \cdot ||y||_{\infty}}{||y||_{\infty}}.$$

Ans $y \to o$ folgt $l(y) \to o$, da l stetig in o, ebenso gilt $\epsilon(l(y)) \xrightarrow{y \to o} o$. Also: $\epsilon(l(y)) \cdot \frac{||l(y)||_{\infty}}{||y||_{\infty}} \xrightarrow{y \to o} 0$. Daher ist l in o diff'bar und $l'(o) = I_n . \checkmark$

- Ferner ist $l' = (f_{ru}^{-1})'$ stetig als Komposition stetiger Abbildungen nach (4). (bemerke, dass im obigen Beweis von (4) nicht die Stetigkeit von l' benutzt wird.)
- **8.9.** Zusatz: Es gilt auch: $f:_{ru} \in l^k(U,\mathbb{R}^n) \Rightarrow l = (f_{ru})^{-1} \in l^k(U,\mathbb{R}^n)$.
- **8.10.** Bem.: Eine Abb. $f:U\to V$ mit $U,V\subset\mathbb{R}^n$ heißt Diffeomorphismus, falls f b_{ij} und f,f^{-1} stetig db.