

DM-Spring-2020-Q3-Grade

13 Questions

- 1. Logistic Regression Model is used to describe
- 9/9 A Relationship between one categorical dependent variable and one or more (any) explanatory variables
- 0/9 B Relationship between one numeric dependent variable and one or more (any) explanatory variables
- 0/9 C Relationship between one categorical dependent variable and one explanatory variable
- 0/9 E I do not know
 - 2. Why Linear Regression cannot be used to predict the binary response variable?
- 5/9 A Some of the estimates might be outside the [0,1] interval
- 0/9 B Coefficients of linear regression models do not exist
- 1/9 C There will be the multicollinearity
- 3/9 D All of the variants
- 0/9 E I do not know
 - **3.** The most common approach to estimate coefficients of logistic regression is
- 8/9 A The Maximum Likelihood
- 1/9 B Ordinary Least Squares
- 0/9 C Generalized Method of Moments
- 0/9 D I do not know
 - **4.** The model of Logistic Regression is
- 0/9 A $\ln(\text{lambda}) = e^{(xb)}/(1 + e^{(xb)})$
- 1/9 **B** $\ln(y)=e^{(xb)}/(1+e^{(xb)})$
- 0/9 D I do not know

0/9	Α	lm()
7/9	В	glm()
0/9	C	flm()
2/9	D	logit()
0/9	E	I do not know
6.	Wł	nich one of these is the correct interpretation of the coefficient of Logistic Regression?
1/9	A	For a 1-unit increase in X, we expect a b1 unit increase in Y.
1/9	В	For a 1-unit increase in X, we expect b1 percentage increase in Y.
0/9	C	For a 1-percentage increase in X, we expect b1 percentage increase in Y.
7/9	D	Increasing X by one unit changes the log odds by b1
0/9	E	I do not know
7.	Lo	gistic Regression cannot be used to model the response variable which
0/9	A	has two categories
2/9	В	has more than two categories
1/9	C	is ordinal
6/9	D	is numeric

5. We can estimate Logistic Regression in R using the function

8. Accuracy =				
9/9	A	(TP+TN)/Total		

0/9 B TP/(TP+FN)

0/9 E I do not know

0/9 **c** TN/(TN+FP)

0/9 **D** I do not know

		Predicted	
		Negative (0)	Positive (1)
	Negative (0)	TN	FP
Actual	Positive (1)	FN	TP

9.	Sensitivity	=
----	-------------	---

0/9 A (TP+TN)/Total

9/9 B TP/(TP+FN)

0/9 **c** TN/(TN+FP)

0/9 D I do not know

		Predicted	
		Negative (0)	Positive (1)
	Negative (0)	TN	FP
Actual	Positive (1)	FN	TP

