Университет ИТМО Физико-техническй мегафакультет Физический факультет

Группа М3213	К работе допущен
Студент Алексеева Виктория,	Работа выполнена
Балакирева Виктория	
Преподаватель Громова Наира	Отчет принят
Рустемовна	

Рабочий протокол и отчет по лабораторной работе №1.02

Цели работы:

- 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- 2. Определение величины ускорения свободного падения

Задачи:

- 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона.
- 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
- 3. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
- 4. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.

Формулы:

Название	Формула	Nº
Коэффициент а в $Y = aZ$	$a = \frac{\sum\limits_{i=1}^{N} ZiYi}{\sum\limits_{i=1}^{N} Z^{2i}}$	1
Среднеквадратическое отклонение (СКО) σ а	$\sigma a = \sqrt{\frac{\sum\limits_{i=1}^{N} (Yi - aZi)^2}{(N-1)\sum\limits_{i=1}^{N} Zi^2}}$	2
Абс. погрешность а	$\Delta a = 2\sigma a$	3
Относительная погрешность ускорения	$\varepsilon a = \Delta a/a \cdot 100\%.$	4
Значение угла наклона рельса к горизонту	$\sin \alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x}.$	5
Коэффициенты	$B \equiv g = \frac{\sum_{i=1}^{N} a_i \sin \alpha_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i\right)^2};$	6
Коэффициенты	$A = \frac{1}{N} \left(\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin \alpha_i \right)$	7
СКО для ускорения свободного падения	$\sigma_g = \sqrt{\frac{\sum_{i=1}^N d_i^2}{D(N-2)}},$	8
	$d_i = a_i - (A + B \sin \alpha_i),$ $D = \sum_{i=1}^N \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^N \sin \alpha_i\right)^2.$	

Установка:

1. Рельс с сантиметровой шкалой на лицевой стороне 2. Тележка 3. Воздушный насос 4. Источник питания насоса ВС 4-12 5. Опоры рельса 6. Опорная плоскость (поверхность стола) 7. Фиксирующий электромагнит 8. Оптические ворота 9. Цифровой измерительный прибор ПКЦ-3 10. Пульт дистанционного управления прибором ПКЦ-3 11. Линейка — угольник

Измерительные приборы:

№	Наименование	Используемый диапазон	Погрешность прибора
1	Секундомер	0,00-15,00 c	0,005 c
2	Линейка на рельсе	0 - 1,3м	5 мм
3	Линейка на угольнике	0 - 250мм	0,5 мм
4	ПКЦ-3 в режиме секундомера	100c	0,1 c

Ход работы:

Задание 1. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.

Таблица 1.

Х, М	X', M	h0, м	h0',м
0,22	1,0	0,188	0,188

Таблица 2. Результаты прямых измерений.

N	Измеренные величины				Рассчитанные величины	
	х1, м	х2, м	t1, c	t2, c	х2-х1, м	$\frac{t2^2-t1^2}{2}$, c^2
1	0,15	0,4	2	3,6	0,25	4,48
2	0,15	0,5	1,9	4,1	0,35	6,6
3	0,15	0,7	2	4,9	0,55	10,005
4	0,15	0,9	2	5,6	0,75	13,68
5	0,15	1,1	2	6,2	0,95	17,22

$$Y = x2 - x1$$
 и $Z = \frac{t2^2 - t1^2}{2}$.

Найдем ускорение тележки методом наименьших квадратов (МНК). Так как теоретическая зависимость Y = aZ проходит через начало координат, то коэффициент a и его среднеквадратическое отклонение (СКО) σa можно найти по следующим формулам:

$$a = \frac{\sum_{i=1}^{N} ZiYi}{\sum_{i=1}^{N} Zi^{2}} = 0,0549 \text{ m/c}^{2}$$

$$\sigma a = \sqrt{\frac{\sum_{i=1}^{N} (Yi - aZi)^{2}}{(N-1)\sum_{i=1}^{N} Zi^{2}}} = 0,00027192$$

Задание 2. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.

Таблица 3. Результаты прямых измерений.

Νпл	h, м	h',м	N	t1, c	t2, c
			1	1,3	4,4
			2	1,3	4,3
			3	1,3	4,2
			4	1,3	4,3
1	0,198	0,189	5	1,3	4,2
			1	1,1	3,6
			2	0,9	3
			3	0,9	3
			4	0,9	3,1
2	0,206	0,189	5	0,9	3
			1	0,8	2,7
			2	0,8	2,5
			3	0,8	2,5
			4	0,7	2,5
3	0,215	0,189	5	0,8	2,5
			1	0,7	2,3
			2	0,7	2,2
			3	0,7	2,1
			4	0,7	2,1
4	0,225	0,191	5	0,6	2,1
			1	0,6	2
			2	0,6	2
			3	0,6	2
			4	0,6	2
5	0,235	0,191	5	0,6	2

Nпл - количество пластин

h - высота на координате x = 0,22 м

h' - высота на координате x' = 1,00 м

Для каждой серии измерений из Табл. 3 вычислим значение синуса угла наклона рельса к горизонту по формуле:

$$\sin \alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x}.$$

Таблица 4. Результаты расчетов.

Nпл	sin a	$\langle t1\rangle \pm \Delta t1$, c	$\langle t2\rangle \pm \Delta t2$, c	$\langle a \rangle \pm \Delta a$, M c 2
1	0,01154	0.9 ± 0.36247	$3,00 \pm 1,22761$	$0,11426 \pm 0,0010530$
2	0,02179	0.86 ± 0.18152	$2,80 \pm 1,14285$	$0,21168 \pm 0,008491$
3	0,03333	$0,86 \pm 0,33591$	$2,76 \pm 1,11408$	0,32516 ±0,009265
4	0,04359	$0,84 \pm 0,34722$	$2,80 \pm 1,17288$	$0,45204 \pm 0,041789$
5	0,05641	$0,84 \pm 0,35818$	$2,76 \pm 1,11408$	$0,52198 \pm 0,060868$

Nпл - количество пластин

$$\langle t1,2\rangle = 1/N \sum t1i,2i$$

Для каждой серии измерений вычислим средние значения времени t1 и t2 и их погрешности:

$$\langle t1,2\rangle = 1/N\sum t1i,2i$$
 - средние значения t1,2 a = 0,95, ta,N = 2,78 - коэффициент Стьюдента $\Delta t1,2=ta,N*\sigma a$ - погрешности t1,t2

Вычислим значение ускорения и его погрешность для каждой серии измерений по формулам:

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2}$$

$$\Delta a = \left\langle a \right\rangle \sqrt{\frac{(\Delta x_{\text{H}2})^2 + (\Delta x_{\text{H}1})^2}{(x_2 - x_1)^2} + 4\frac{(\left\langle t_1 \right\rangle \Delta t_1)^2 + (\left\langle t_2 \right\rangle \Delta t_2)^2}{\left(\left\langle t_2 \right\rangle^2 - \left\langle t_1 \right\rangle^2\right)^2}}$$

где Δx и1 и Δx и2 — приборные погрешности измерения координат x1 и x2; Δt 1 и Δt 2 — абсолютные погрешности значений времен t1 и t2.

Теоретическая зависимость a от $\sin \alpha$ имеет линейный характер: $a = A + B \sin \alpha$, где $A = -\mu g$, B = g, т.е. коэффициент B равен ускорению свободного падения.

Найдем коэффициенты линейной зависимости по следующим формулам:

$$B \equiv g = \frac{\sum_{i=1}^{N} ai * sinai - \frac{1}{N} \sum_{i=1}^{N} ai \sum_{i=1}^{N} sinai}{\sum_{i=1}^{N} sinai^{2} - \frac{1}{N} (\sum_{i=1}^{N} sinai)^{2}} = 9,43613$$

$$A = \frac{1}{N} \left(\sum_{i=1}^{N} ai - B \sum_{i=1}^{N} sinai \right) = 0,0104989$$

Рассчитаем СКО для ускорение свободного падения по формуле:

$$\sigma_g = \sqrt{rac{\sum\limits_{i=1}^N d_i^2}{D(N-2)}},$$
 , где:
$$d_i = a_i - (A+B\sin\alpha_i)\,,$$
 $D = \sum\limits_{i=1}^N \sin{lpha_i}^2 - rac{1}{N} \left(\sum\limits_{i=1}^N \sinlpha_i
ight)^2$

 $\sigma g = 0,61031$

Погрешности:

1. Погрешности Y = x2-x1 и Z =
$$\frac{t2^2-t1^2}{2}$$
:

Абсолютная погрешность:

$$\Delta Y = \sqrt{(\Delta x 2)^2 + (\Delta x 1)^2} = 0.045592$$

$$\Delta Z = \sqrt{(\frac{\partial Z}{\partial t 1} * \Delta t 1)^2 + (\frac{\partial Z}{\partial t 2} * \Delta t 2)^2} = 19.3005522$$

2. Погрешности а:

Абсолютная погрешность:

$$\Delta a = 2\sigma a = 2*0,00027192 = 0,00054384$$

Относительная погрешность:

$$\varepsilon a = \Delta a/a * 100\% = 0.9903385409\% = 0.99\%$$

3. Погрешности д:

Абсолютная погрешность:

$$\Delta g = 2\sigma g = 2*0,61031=1,22062$$

Относительная погрешность:

 $\varepsilon g = \Delta g/g * 100\% = 12,94\%$

Абсолютное отклонение экспериментального значения дэксп от дтабл:

| gэксп - gтабл| = 9,82 - 9,43613 = 0,38387 м/с^2

Графики:

График 1. Зависимость Y(Z) = aZ.

График 2. Зависимость а=а

Окончательные результаты:

Доверительный интервал для значения ускорения при одной пластине: $a = (0,0549 \pm 0,00054384)$ м/c^2, $\varepsilon a = 0,99\%$, a = 0,9 Доверительный интервал значения ускорения свободного падения: $g = (9,43613 \pm 1,22062)$ м/c^2, $\varepsilon g = 12,94\%$, a = 0,9

Вывод:

- 1. Характер полученного графика скорости тележки указывает на линейную зависимость скорости от времени, что соответствует модели равноускоренного движения. Это подтверждает наличие постоянного ускорения. Значение ускорения а=0,0549 м/с^2 с доверительным интервалом 0,00054384 м/с имеет очень малую относительную погрешностьєа=0,99%. Данный показатель свидетельствует о высокой точности измерений и незначительных колебаниях ускорения, что также указывает на постоянный характер ускорения в ходе движения тележки.
- 2. Абсолютное отклонение экспериментального значения ускорения свободного падения дэксп от табличного значения дтабл оказалось меньше абсолютной погрешности Δ д. Это свидетельствует о том, что результаты измерений являются достоверными и соответствуют ожидаемым теоретическим значениям.