ECN 6578A, Économétrie des marchés financiers, Hiver 2020

Cours 12 : Valeur à risque

William McCausland

2020-04-08

Pourquoi la valeur à risque l

- L'objectif de l'investisseur : choisir un portefeuille selon ses préférences.
- L'information pertinente est la loi prédictive conjointe de tous les rendements des actifs.
- Gérer toute cette information est trop difficile :
 - estimation
 - élicitation des préférences
 - optimisation
- Simplification 1 : focaliser sur la moyenne et la variance des rendements : (CAPM)
- Simplification 2 : focaliser sur les grandes pertes et leur probabilité (VaR, ES)
- ▶ Pour un preneur de décisions, les deux sont complémentaires, pas exclusives.

Pourqoui la valeur à risque II

- ► Perte non-linéaire : risque de faire faillite, de devoir vendre des actifs productifs, d'avoir besoin d'un sauvetage financier
- Exemples de risque :
 - Institutions financières, levier de financement
 - Importeurs, exporteurs (risque des devises)
 - ► Firmes qui exploitent des ressources naturels (risque de changements de prix)
 - ▶ Pensions : risque de perte de valeur des actifs

Valeur à Risque (VaR)

- Pour les quantités suivantes
 - 1. Terme (ou horizon) / (en périodes),
 - 2. Probabilité p de grande perte,
 - 3. Fonction de répartition $F_I(\cdot)$ pour le gain de valeur d'un portefeuille en I périodes,
- la valeur à risque (VaR) est (par définition) la solution de l'équation

$$p = F_I(VaR).$$

- ▶ la question de conditionnement
 - ▶ loi inconditionelle, longue terme, non-paramétrique
 - loi condtionnelle, court terme, besoin d'un modèle (régression quantile ou plein modèle)

RiskMetrics

Modèle simple, IGARCH Gaussien :

$$\mu_t=0,\quad \sigma_t^2=\alpha\sigma_{t-1}^2+(1-\alpha)r_{t-1}^2,\quad r_t=a_t=\sigma_t\epsilon_t$$
 où $\epsilon_t\sim \mathrm{N}(0,1).$

- ▶ Un seul paramètre $\alpha \in (0,1)$, approximativement 0.94.
- Utile à court terme, pour les rendements journaliers.
- ▶ Pour i < j,

$$\operatorname{cov}[r_{t+i},r_{t+j}|F_t] = E[\sigma_{t+i}\sigma_{t+j}\epsilon_{t+i}E[\epsilon_{t+j}|F_{t+j-1}]|F_t] = 0.$$

RiskMetrics: variance multipériode

▶ De la diapo précédente : $cov[r_{t+i}, r_{t+j}|F_t] = 0$. Alors

$$Var[a_{t+i}|F_t] = Var[E[a_{t+i}|F_{t+i-1}]|F_t] + E[Var[a_{t+i}|F_{t+i-1}]|F_t]$$

= $E[\sigma_{t+i}^2|F_t]$.

▶ Maintenant la variance conditionnelle (à t) du rendement k-période est

$$\sigma_t^2[k] = \sum_{i=1}^k \text{Var}[a_{t+i}|F_t] = \sum_{i=1}^k E[\sigma_{t+i}^2|F_t].$$

Une récursion pour modèle IGARCH Gaussien de RiskMetrics

▶ Pour tous *t*,

$$\sigma_t^2 = \alpha \sigma_{t-1}^2 + (1 - \alpha)r_{t-i}^2 = \alpha \sigma_{t-1}^2 + (1 - \alpha)\sigma_{t-1}^2 \epsilon_t^2.$$
$$\sigma_t^2 = \sigma_{t-1}^2 + (1 - \alpha)\sigma_{t-1}^2 (\epsilon_{t-1}^2 - 1)$$

En particulier,

$$\sigma_{t+i}^2 = \sigma_{t+i-1}^2 + (1-\alpha)\sigma_{t+i-1}^2(\epsilon_{t+i-1}^2 - 1)$$

▶ La loi des espérences itérées donne $(E[E[\cdot|F_{t+i-2}]|F_t])$

$$E[\sigma_{t+i}^2|F_t] = E[\sigma_{t+i-1}^2|F_t].$$

▶ Par induction, $E[\sigma_{t+i}^2|F_t] = \sigma_{t+1}^2$ pour chaque i, alors

$$\sigma_t^2[k] = k\sigma_{t+1}^2.$$

Calcul de VaR RiskMetrics

- ightharpoonup À t, on détient une quantité Q d'un portefeuille à prix P_t .
- Pour p = 0.05, l = 1, la VaR est de

$$P_t Q \times \Phi^{-1}(0.05) \sigma_{t+1} \approx P_t Q \times 1.65 \sigma_{t+1}$$

Pour p = 0.05, l = k, la VaR est de

$$P_t Q \times \Phi^{-1}(0.05) \sqrt{k} \sigma_{t+1} \approx P_t Q \times 1.65 \sqrt{k} \sigma_{t+1}$$

- ▶ Notez l'approximation $R_t = r_t$.
- ► Exemple 7.1 :
 - $\sigma_t = 0.53\%$ (écart-type empirique du rendement journalier pour le taux d'échange DM/Dollar, juin 1997)
 - $P_tQ = 10^7$ \$
 - $p = 0.05 \ (\Phi^{-1}(0.05) \approx 1.65)$
 - $ightharpoonup VaR(1) = 10^7 \times 1.65 \times 0.0053 = 87450$ \$
 - $VaR(10) = 10^7 \times \sqrt{10} \times 1.65 \times 0.0053 = 276541$

Discussion

- Simple
- L'hypothèse de gaussianité peut être très trompeur pour $p \le 0.01$.

Approche économétrique I

▶ Un modèle ARMA(p,q)-GARCH(u,v) pour r_1, \ldots, r_n :

$$\mu_t = \phi_0 + \sum_{i=1}^{p} \phi_i r_{t-i} + a_t - \sum_{j=1}^{q} \theta_j a_{t-j}$$

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^u \alpha_i a_{t-i}^2 + \sum_{j=1}^v \beta_j \sigma_{t-j}^2.$$

- ► En évaluant la vraisemblance, on obtient les μ_t , σ_t^2 .
- ▶ Chaque μ_t et σ_t^2 est une fonction de tous les r_1, \ldots, r_{t-1}
- ▶ Par la suite, on peut calculer $a_t = r_t \mu_t$, t = 1, ..., n.
- ightharpoonup Sachant $r_1, \ldots, r_n, r_{n+1} \sim (\mu_{n+1}, \sigma_{n+1})$, où

$$\mu_{n+1} = \phi_0 + \sum_{i=1}^{p} \phi_i r_{n+1-i} - \sum_{j=1}^{q} \theta_j a_{n+1-j}$$

$$\sigma_{n+1}^2 = \alpha_0 + \sum_{i=1}^u \alpha_i a_{n+1-i}^2 + \sum_{i=1}^v \beta_i \sigma_{n+1-i}^2.$$

Approche économétrique II

▶ Si $r_{n+1}|r_1,\ldots,r_n \sim N(\mu_{n+1},\sigma_{n+1}^2)$, la VaR pour une période avec p=0.05 est, par unité de valeur

$$VaR = \mu_{n+1} + \Phi(0.05)\sigma_{n+1} = \mu_{n+1} - 1.65\sigma_{n+1}.$$

- Si $r_{n+1}|r_1,\ldots,r_n \sim t(\mu_{n+1},\sigma_{n+1}^2,\nu)$:
 - La variance d'un aléa t de Student standard avec ν degrés de liberté est $\nu/(\nu-2)$.
 - ▶ Soit $t_{\nu}(p)$ la quantile d'un aléa $t(\nu)$.
 - La valeur à risque est, par unité de valeur

VaR =
$$\mu_{n+1} + \frac{t_{\nu}(p)\sigma_{n+1}}{\sqrt{\nu/(\nu-2)}}$$
.

Exemple, calcul du VaR ou $r_{n+1}|r_1, \ldots, r_n$ est un t de Student

- Mettons que $\mu_{n+1} = 0.001$, $\sigma_{n+1} = 0.02$, $\nu = 12$.
- Exemple, calcul du VaR, par unité de valeur, pour p = 0.05

```
p = 0.05
nu = 12
mu.np1 = 0.001
sigma.np1 = 0.02
t.nu.p = qt(p, nu)
VaR = mu.np1 + t.nu.p * sigma.np1 / (sqrt(nu/(nu-2)))
VaR
```

```
## [1] -0.03153997
```

Estimation quantile, approche inconditionnelle

▶ Trier les rendements $r_1, ..., r_n$ pour calculer les statistiques d'ordre :

$$r_{(1)} \leq r_{(2)} \leq \ldots \leq r_{(n)}$$
.

- Supposons que r_t sont iid avec fonction de répartition F et densité f.
- ▶ On veux estimer $x_p = F^{-1}(p)$, la quantile p de la population
- ▶ Pour I = np entier

$$r_{(I)} \sim_{\operatorname{asy}} N\left(x_p, \frac{p(1-p)}{n[f(x_p)]^2}\right)$$

- $ightharpoonup r_{(I)}$ est une estimation de x_p
- ▶ Il faut estimer $f(x_p)$ pour calculer la variance de l'estimateur.

Quand np n'est pas entier

- ▶ Trouver l_1 , l_2 entiers tels que $l_2 = l_1 + 1$, $l_1 < np < l_2$.
- ▶ Alors l_1 est le plancher de np.
- Soit $p_1 = l_1/n$, $p_2 = l_2/n$.
- ▶ Trouver \hat{x}_p entre \hat{x}_{p_1} et \hat{x}_{p_2} :

$$\hat{x}_p = \frac{p_2 - p}{p_2 - p_1} r_{(l_1)} + \frac{p - p_1}{p_2 - p_1} r_{(l_2)}$$

Exemple à longue terme

```
# Séries IBM journalière
r = scan('d-ibmln.txt')
r.sort = sort(r)
n = length(r)
# Calcul de x-chapeau-p
p = 0.05
11 = floor(p*n); p1 = 11/n;
12 = ceiling(p*n); p2 = 12/n;
x.ch.p = ((p2-p) * r.sort[11] + (p-p1) * r.sort[12]) / (p2-p2-p2)
# Calcul de f(x-chapeau-p)
ds = density(r)
x.ch.p.index = which.min((ds$x-x.ch.p)^2)
f.x.ch.p = ds\$y[x.ch.p.index]
sigma = sqrt(p*(1-p)/n)/f.x.ch.p
```

Valeurs

```
p1;p2;11;12
## [1] 0.04989931
## [1] 0.05001119
## [1] 446
## [1] 447
x.ch.p;f.x.ch.p;sigma
## [1] -2.1492
## [1] 0.05977387
## [1] 0.03856694
```

Illustration: histogramme

hist(r, 80)
abline(v=x.ch.p)

Illustration : densité

```
plot(ds$x, ds$y, type='l')
abline(v=x.ch.p)
```


Commentaires

- Avantages :
 - 1. Simple
 - 2. Pas de modèle
- Inconvénients :
 - 1. L'hypothèse de iid peu crédible : il y a plus d'incertitude quand les rendements ne sont pas indépendents.
 - 2. Pas de conditionnement à l'information pertinente.
 - 3. Les quantiles empiriques ne sont pas efficaces pour p petit.
 - 4. Pas de changement de distribution entre la période de l'échantillon et la période de prévision.

Régression quantile I

ightharpoonup Rappel : la moyenne E[r] est la solution du problème

$$\mu = \arg\min_{\beta} E[(r-\beta)^2] = \arg\min_{\beta} E[(r-E[r])^2] + (E[r]-\beta)^2.$$

▶ La quantile $x_p = F^{-1}(p)$ est la solution du problème

$$q_p = \arg\min_{\beta} E[w_p(r-\beta)],$$

▶ La fonction de perte w_p est

$$w_p(z) = egin{cases} pz, & z \geq 0 \ -(1-p)z, & z < 0. \end{cases}$$

La quantile empirique (ou de l'échantillon) est la solution de

$$\hat{q}_p = \arg\min_{\beta} \sum_{i=1}^n w_p(r_i - \beta).$$

La fonction $w_p(z)$

```
z = seq(-1, 1, by=0.1)
p=0.5; plot(z, p*z*(z>=0) - (1-p)*z*(z<0), col='blue', type
p=0.8; lines(z, p*z*(z>=0) - (1-p)*z*(z<0), col='red')
p=0.2; lines(z, p*z*(z>=0) - (1-p)*z*(z<0), col='green')
  0.5
  0.1
  0.0
     -1.0
                  -0.5
                               0.0
                                            0.5
                                                         1.0
```

Régression quantile II

- Supposons que la quantile conditionnelle $q_p|x$ est linéaire en x: $q_p|x=\beta_p^\top x$.
- Alors β_p est la solution de

$$\beta_p = \arg\min_{\beta} E[w_p(r - \beta^{\top}x)].$$

L'analogue dans l'échantillon donne l'estimateur

$$\hat{\beta}_p = \arg\min_{\beta} \sum_{t=1}^n w_p (r_t - \beta^\top x_t).$$

- Notes
 - ▶ Dans le contexte de VaR, x_t comprend des variables dans F_{t-1} .
 - ▶ la fonction de perte w_p est moins sensible aux valeurs aberrantes que la fonction de perte quadratique.