ORIE 4630: Spring Term 2019 Homework #9 Solutions

Question 1. [25 points]

i)

> option_values

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
[1,]	15.96063	27.292619	44.866499	70.172699	103.201146	142.06491
[2,]	NA	6.981901	13.391222	24.898991	44.217151	72.84655
[3,]	NA	NA	1.885072	4.247735	9.571654	21.56833
[4,]	NA	NA	NA	0.000000	0.000000	0.00000
[5,]	NA	NA	NA	NA	0.000000	0.00000
[6,]	NA	NA	NA	NA	NA	0.00000

The option price at time t = 0 is 15.961.

> q

[1] 0.4460073

ii)

> option_values

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
[1,]	15.31239	28.112726	48.87062	79.098833	117.27376	162.86504
[2,]	NA	7.018817	14.69056	29.390819	54.64240	88.25566
[3,]	NA	NA	2.03021	5.141941	13.02306	32.98368
[4,]	NA	NA	NA	0.000000	0.00000	0.00000
[5,]	NA	NA	NA	NA	0.00000	0.00000
[6,]	NA	NA	NA	NA	NA	0.00000

The option price at time t = 0 is 15.312.

> q

[1] 0.3968126

Yes, the price of the option at time t=0 changes.

Yes, the value of q changes.

iii)

> option_values

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
[1,]	15.96063	27.292619	44.866499	70.172699	103.201146	142.06491
[2,]	NA	6.981901	13.391222	24.898991	44.217151	72.84655
[3,]	NA	NA	1.885072	4.247735	9.571654	21.56833
[4,]	NA	NA	NA	0.000000	0.000000	0.00000
[5,]	NA	NA	NA	NA	0.000000	0.00000
[6,]	NA	NA	NA	NA	NA	0.00000

The option price at time t = 0 is 15.961.

> q [1] 0.4460073

No, the value of the option at time t=0 does not change. No, the value of q does not change.

iv)

> option_values

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
[1,]	17.87437	8.996149	2.75016	0.000000	0.000000	0.00000
[2,]	NA	25.183747	14.10605	4.989136	0.000000	0.00000
[3,]	NA	NA	34.33002	21.573512	9.050921	0.00000
[4,]	NA	NA	NA	44.910611	31.850370	16.41951
[5,]	NA	NA	NA	NA	55.831472	44.56159
[6,]	NA	NA	NA	NA	NA	65.40976

The option price at time t = 0 is 17.874.

> q [1] 0.4460073

No, the value of q does not change.

v)

> option_values

	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
[1,]	18.22171	9.100571	2.75016	0.000000	0.000000	0.00000
[2,]	NA	25.729808	14.29549	4.989136	0.000000	0.00000
[3,]	NA	NA	35.16813	21.917171	9.050921	0.00000
[4,]	NA	NA	NA	46.154382	32.473810	16.41951
[5,]	NA	NA	NA	NA	56.454912	44.56159
[6,]	NA	NA	NA	NA	NA	65.40976

The option price at time t = 0 is 18.222.

> q [1] 0.4460073

Yes, the price of the option at time t = 0 changes.

The price of the option is larger for the American put option than it is for the European put option.

```
2. [25 points]
i)
> q
[1] 0.4757915
> option_values
[1] 15.32169
> BS_formula
[1] 15.17049
> option_values-BS_formula
[1] 0.1511967
The price of the option at time t = 0 is 15.3217.
The value given by the Black-Scholes formula is 15.1705.
The difference between the price and the Black-Scholes value is 0.1512, nearly 15
cents.
The value of the risk-neutral probability is 0.4757915.
> q
[1] 0.4982871
> option_values
[1] 15.16988
> BS_formula
[1] 15.17049
> option_values-BS_formula
[1] -0.000609486
The price of the option at time t = 0 is 15.1699.
The value given by the Black-Scholes formula is 15.1705.
The difference between the price and the Black-Scholes value is -0.00060, less than
one tenth of a cent.
The value of the risk-neutral probability is 0.4982871.
iii)
> q
[1] 0.4982871
> option_values
[1] 17.08362
> BS_formula
[1] 17.08423
```

> option_values-BS_formula

[1] -0.000609486

The price of the option at time t = 0 is 17.0836.

The value given by the Black-Scholes formula is 17.0842.

The difference between the price and the Black-Scholes value is -0.000609486, less than one tenth of a cent.

The value of the risk-neutral probability is 0.4982871.

iv)

```
> q
[1] 0.4982871
> option_values
[1] 17.4267
> BS_formula
[1] 17.08423
> option_values-BS_formula
[1] 0.3424724
```

The price of the option at time t = 0 is 17.4267.

The value given by the Black-Scholes formula is 17.0842.

The difference between the price and the Black-Scholes value is 0.3425, nearly 35 cents.

The value of the risk-neutral probability is 0.4982871.

 $\mathbf{v})$

```
> q
[1] 0.4994583
> option_values
[1] 17.42702
> BS_formula
[1] 17.08423
> option_values-BS_formula
[1] 0.3427923
```

The price of the option at time t = 0 is 17.4270.

The value given by the Black-Scholes formula is 17.0842.

The difference between the price and the Black-Scholes value is 0.3428, nearly 35 cents.

The value of the risk-neutral probability is 0.4994583.

The difference between the option price derived by using n = 50000 and the price derived by using n = 5000 is 17.4270 - 17.4267 = 0.0003, or three one-hundredths of a cent. It would appear that using n = 5000 suffices to price the option; using n = 50000 is unwarranted.

```
3. [20 points]
i)
> c=rbind(c("mean", "standard deviation"), round(c(a,b),7)); c
      [,1]
[1,] "mean"
                   "standard deviation"
[2,] "5.7057688" "12.3025779"
> a+c(-1,1)*qnorm(0.975)*b/sqrt(n_sim)
[1] 4.943261 6.468276
The estimate of the price is 5.7058.
The 95\% confidence interval for the price is (4.9433, 6.4683)
Since we likely want the confidence interval to have width less than a few cents to
properly price the option, clearly a larger sample size is required.
ii)
> c=rbind(c("mean","standard deviation"),round(c(a,b),7)); c
      [,1]
[1,] "mean"
                   "standard deviation"
[2.] "6.1104239" "12.1769317"
> a+c(-1,1)*qnorm(0.975)*b/sqrt(n_sim)
[1] 5.355704 6.865144
The estimate of the price is 6.1104.
The 95% confidence interval for the price is (5.3557, 6.8651)
Since we likely want the confidence interval to have width less than a few cents to
properly price the option, clearly a larger sample size is required.
iii)
> c=rbind(c("mean","standard deviation"),round(c(a,b),7)); c
      [,1]
                   [,2]
[1,] "mean"
                   "standard deviation"
[2,] "6.3721436" "12.9914631"
> a+c(-1,1)*qnorm(0.975)*b/sqrt(n_sim)
[1] 6.336134 6.408153
The estimate of the price is 6.3721.
The 95\% confidence interval for the price is (6.3361, 6.4082)
Since we likely want the confidence interval to have width less than a few cents to
properly price the option, a larger sample size might still be required.
\frac{2(1.960)(12.99)}{\sqrt{n}} \leq 0.01 yields n \geq 25930000; this n is extremely large!
```

4. [10 points]

The output is

```
> spot_rates
[1] 0.004520342 0.005139350 0.005834109 0.006194149
> annual_spot_rates
[1] 0.01808137 0.02055740 0.02333644 0.02477659
```

- i) The 2-year spot rate expressed as an annual rate is 2.478%.
- ii) The 1-year spot rate expressed as a quarterly rate is 0.5834%.

5. [10 points]

The output is

```
> C=1.1; P=100; T=1; m=4
> spot_rates=c(0.008, 0.009, 0.011, 0.012)
> present_value_coupon_bond(C,P,T,m,spot_rates)
[1] 99.62558
```

The price of the bond is 99.6256.

6. [10 points]

The output is

```
> yield=yield_to_maturity$root
> yield
[1] 0.008446984
> m*yield
[1] 0.03378794
```

The yield to maturity expressed as a quarterly rate is 0.8447%. The yield to maturity expressed as an annual rate is 3.379%.