

Fully Automated and Accurate Annotation of Eukaryotic Genomes with BRAKER2

Katharina J. Hoff^{1,2*}, Tomáš Brůna^{3*}, Alexandre Lomsadze^{3*}, Mario Stanke^{1,2} and Mark Borodovsky³

Abstract

While the number of sequenced genomes is ever growing, a vast majority of already available eukaryotic genomes may not be utilized to its full potential since it is lacking a high quality annotation of protein coding genes. Automation of the process of eukaryotic genome annotation is a challenging task due to diversity of input data situations.

BRAKER2 [1] is an automated pipeline for annotation of protein coding genes in eukaryotic genomes. Common external data scenarios supported by BRAKER2 include the availability of i/ alignments of RNA-Seq short reads to the target genome, ii/ alignments of proteins of possibly distantly related species to the target genome or even iii/ absence of the evidence data. In all cases, BRAKER2 runs a self-training GeneMark-ET/-EP/-ES [2,3,4] depending on the external data situation, trains AUGUSTUS [5] on the genome annotation produced by GeneMark-ET/-EP/-ES and predicts genes (including alternative isoforms) with AUGUSTUS. Available extrinsic evidence is used by both tools. To use cross-species proteins, BRAKER2 automatically calls a novel ProtHint pipeline introduced in GeneMark-EP for generating protein evidence for gene prediction with GeneMark-EP and AUGUSTUS. ProtHint enables users to map proteomes of a large number of species to the target genome. Recent improvements in genome annotation accuracy with protein evidence reached in GeneMark-EP lead to an increase in genome annotation accuracy by BRAKER2.

The BRAKER2 project locations are https://github.com/Gaius-Augustus/BRAKER and https://github.com/gatech-genemark/BRAKER2.

Using RNA-Seq and Proteins in Current BRAKER2

Difference in Transcript Prediction Accuracy F1

Species with long introns, such as *Danio rerio* or *Solanum lycopersicum*, typically benefit from combining RNA-Seq and protein evidence in the current version of BRAKER-ETP. Improvements for other species are to be expected, soon.

Anchored Single Exon Genes Protein evidence allows filtering single exon genes predicted by GeneMark-EP+ for those that are anchored by a start- and stop-codon from evidence prior training AUGUSTUS. **AUGUSTUS** ab initio gene prediction accuracy F1 in BRAKER-EP based on different versions of selection of single-exon genes for training Genus excluded Order excluded 55 Random selection of single exon genes Selection of single exon genes anchored by start and stop codon from protein alignment

Training Gene Selection for AUGUSTUS

Number of Genes Influence of number of training genes for **AUGUSTUS in BRAKER-EP** ab initio Gene-Sp ---Max training genes with hints Max training genes BRAKER2 by default uses a maximum of 8000

genes for training AUGUSTUS.

References

-2

GeneMark-EX

] Hoff KJ et al. (2019) "Whole-Genome Annotation with BRAKER" In Gene Prediction, pp. 65-95. Humana, New York, NY. [2] Lomsadze A et al (2014) "Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm." Nucleic

GeneMark-EX

- Acids Research 42(15):e119-e119. [3] Bruna T et al. (2020) "GeneMark-EP and-EP+: automatic eukaryotic gene prediction supported by spliced aligned proteins." bioRxiv
- https://doi.org/10.1101/2019.12.31.891218. [4] Ter-Hovhannisyan V et al. (2008) "Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training."
- Genome Research, 18(12):1979-90. [5] Stanke M et al. (2008) "Using native and syntenically mapped cDNA alignments to improve de novo gene finding." Bioinformatics 24(5):637-644.
- [6] Stanke M et al. (2019) "VARUS: sampling complementary RNA reads from the sequence read archive" BMC Bioinformatics 20:558.
 [7] Daehwan K et al. (2015) "HISAT: a fast spliced aligner with low memory requirements." Nature methods 12(4): 357.
 [8] Kriventseva EV et al. (2018) "OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Research: doi.org/10.1093/nar/gky1053s.

Funding

This research is supported by US National Institutes of Health grant GM128145.