Harold Carr

Refactoring Recursion

introduction

- Recursion is a pattern
- There are different patterns of recursion
- "factoring" recursion: benefits
 - code/idea reuse
 - use "proven loops" less bugs
 - use catalogue of theorems to optimise/prove properties

overview

- explicit recursive functions
- factor recursion out of functions with fold
- use recursive library functions (on lists)
 - folds: apply function to every element
 - unfolds : create structure from seed
 - unfolds followed by folds
 - (un)fold with early exit
 - . . .
- how to generalize to any recursive data
 - Foldable, Traversable, Fix

refactoring recursion out of functions

cata		ana
	hylo	
para (cata++)		apo (ana++)

futu

both corecursion / codata

recursion / data

zygo/mutu (para++)

histo

explicit recursion

note the pattern

```
sumE [] = 0
sumE (x:xs) = x + sumE xs
andE [] = True
andE (x:xs) = x && andE xs
```

same recursive structure, except

- 0 or True : base case (i.e., empty list)
- + or &&: operator in inductive case

factor recursion out of functions with 'fold'

```
sumF = foldr (+) 0
andF = foldr (&&) True
    sumF
                          andF
                           &&
                       True &&
                         False &&
```

```
lengthE []
lengthE (_:xs) = 1 + lengthE xs
                  = foldr (\ n \rightarrow 1 + n) 0
lengthF
sumF
                    andF
                                       lengthF
                    &&
                 True
                       &&
                   False
                          &&
```

True

True

'foldr' operation

```
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
foldr f z (x:xs) = f x (foldr f z xs)
 sumF
                           andF
                            &&
                       True &&
                         False &&
                              True True
```

cata	catamorphism	folds
ana	anamorphisms	unfolds
hylo	hylomorphism	ana then cata
para	paramorphism	cata with access to cursor
apo	apomorphism	ana with early exit
histo	histomorphism	cata with access to prev values
futu	futumorphism	ana with access to future values
zygo	zygomorphism	cata with helper function
mutu	mutumorphism	cata with helper function

catamorphisms

cata meaning downwards: aka fold

iteration

```
filterL :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]
filterL p =
  cataL (\x acc \rightarrow if p x then x : acc
                                else acc)
filterL' :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]
filterL' p = cataL alg [] where
  alg x | p x = (x :)
          | otherwise = id
c2 = U.tt "c2" [ filterL odd [1,2,3]
```

[1,3]

, filterL' odd [1,2,3]

anamorphism

ana meaning upwards: aka unfold

- corecursive dual of catamorphisms
- corecursion produces (infinite?) codata
- recursion consumes (finite) data
- produces structures from a seed

```
replicate :: Int -> a -> [a]
replicate n0 x = anaL' coalg n0 where
  coalg 0 = Nothing
  coalg n = Just (x, n-1)
```

rep = U.t "rep" (replicate 4 '*') "****"

```
linesBy :: (t -> Bool) -> [t] -> [[t]]
linesBy p = anaL' c where
   c [] = Nothing
   c xs = Just $ second (drop 1) $ break p xs
```

(linesBy (==',') "foo,bar,baz")

["foo"."bar"."baz"]

1b = U.t "1b"

```
break (==',') "foo,bar,baz"
=> ("foo",",bar,baz")
```

```
second (drop 1) ("foo",",bar,baz")
=> ("foo","bar,baz")
```

example: merging lists

given 2 sorted, produce 1 sorted list

```
mergeLists :: Ord a => [a] -> [a] -> [a]
mergeLists = curry $ anaL' c where
 c ( [], [])
               = Nothing
 c ( [], y:ys) = Just (y, ([], ys))
 c (x:xs, []) = Just (x, (xs, []))
 c (x:xs, y:ys) | x \le y = Just (x, (xs, y:ys))
               | x \rangle y = Just (y, (x:xs, ys))
ml = U.t "ml"
    (mergeLists [1,4] [2,3,5])
    [1,2,3,4,5]
```

example: coinductive streams

```
-- generates infinite stream
iterateS :: (a -> a) -> a -> [a]
iterateS f = anaL c where
  c x = (x, f x)
sFrom1 :: [Integer]
sFrom1 = iterateS (+1) 1
tsf = U.t "tsf"
      (take 6 sFrom1)
      [1.2.3.4.5.6]
```

hylomorphism

composition of catamorphism and anamorphism

- corecursive codata production
- followed by recursive data consumption

```
hyloL :: (a -> c -> c) -- cata f
-> c -- cata zero
-> (b -> Maybe (a, b)) -- ana g
-> b -- ana seed
-> c -- result
hyloL f c g = cataL f c . anaL' g
```

```
fact :: Integer -> Integer
fact n0 = hyloL' a 1 c n0 where
  c 0 = Nothing
  c n = Just (n, n - 1)
  a = (*)
```

hf = U.t "hf" (fact 5) 120

fusion/deforestation

```
hyloL f c g b = cataL f c . anaL' g b hyloL' f a g b0 = h b0 where
```

```
h b = case g b of

Nothing -> a
```

```
Just (a', b') -> f a' (h b')
```

paramorphism

para meaning beside (or "parallel with") extension of catamorphism

- given each element, and
- current cursor in iteration (e.g., current tail)

[[2,3,4],[3,4],[4],[]]

(slide 3 [1..5])

[[1,2,3],[2,3,4],[3,4,5]]

apomorphism

apo meaning apart

- dual of paramorphism
- extension of anamorphism
- enables short-circuiting traversal

```
apoL :: ([b] -> Maybe (a, Either [b] [a]))
          -> [b]
          -> [a]
apoL f bs = case f bs of
   Nothing -> []
   Just (a, Left bs') -> a : apoL f bs'
   Just (a, Right as) -> a : as
```

short-circuits to final result when x<=y

```
insertElemL :: Ord a => a -> [a] -> [a]
```

insertElemL a as = apoL c (a:as) where = Nothing ГхÌ = Just (x, Left

 $c (x:y:xs) \mid x \le y = Just (x, Right (y:xs))$

(insertElemL 3 [1,2,5])

iel = U.t "iel"

[1,2,3,5]

| x> y = Just (y, Left (x:xs))

zygomorphism

- generalisation of paramorphism
- fold that depends on result of another fold
 - on each iteration of fold
 - f sees its answer from previous iteration
 - g sees both answers from previous iteration
 - fused into one traversal

(pmL [1,2,3,4,5]) [-1,2,-3,4,-5]

(pmL' [1,2,3,4,5,6,7])

[1.2.-3.4.5.-6.7]

histomorphism

- gives access to previously computed values
- moves bottom-up annotating stack with results

```
data History a b
  = End b | Step a b (History a b)
    deriving (Eq, Read, Show)
history :: (a -> History a b -> b)
        -> b -> [a] -> History a b
history f b = cataL (\a h -> Step a (f a h)h)
                    (End b)
valH (End b) = b
valH (Step _ b _) = b
histoL :: (a -> History a b -> b)
```

-> b -> [a] -> b histoL f b = valH . history f b

(End ""))))

```
prevH (Step _ _ h) = h
prevH z = z
```

```
fibHL :: Integer -> History Integer Integer
fibHL n = history f 1 [3..n] where
  f _ h = valH h + valH (prevH h)
tfibHL = U.t "tfibHL"
  (fibHL 8)
  (Step 3 21
    (Step 4 13
      (Step 5 8
        (Step 6 5
          (Step 7 3
            (Step 8 2
```

(End 1)))))))

futumorphism

- corecursive dual of histomorphism
 - histo: access to previously-computed values
 - futu : access to future values

```
futuL :: (a -> Maybe (b, ([b], Maybe a)))
      -> a
      -> [b]
futuL f a =
  case f a of
                       -> []
    Nothing
    Just (b, (bs, ma)) -> b : (bs ++ futuBs)
      where futuBs = case ma of
              Nothing -> []
              Just a' -> futuL f a'
```

```
exchL = futuL coa where
  coa xs = Just ( head (tail xs)
                , ([head xs]
                   , Just (tail (tail xs))
exs1 = U.t "exs1"
       (take 10 $ exchL sFrom1)
```

```
exs2 = U.t "exs2"
(take 9 $ exchL sFrom1)
[2,1,4,3,6,5,8,7,10]
```

[2.1.4.3.6.5.8.7.10.9]

refactoring recursion out of data

```
data Tree1 a
  = Leaf a
  | Bin (Tree1 a) (Tree1 a)
  deriving (Foldable)
ext1 = Bin (Bin (Leaf "1") (Leaf "2"))
           (Bin (Leaf "3") (Leaf "4"))
et1 = U.t "et1"
      (foldr (++) "" ext1)
      "1234"
```

```
data LTreeF a r
 = LeafFa
  | BinF r r
 deriving (Functor)
type Tree a = Fix (LTreeF a)
leaf a = Fix (LeafF a)
bin l r = Fix (BinF l r)
ext = bin (bin (leaf "1") (leaf "2"))
          (bin (leaf "3") (leaf "4"))
```

```
cata :: Functor f => (f a -> a) -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

sumT = cata alg where
  alg (LeafF a) = a
  alg (BinF l r) = l ++ r
```

et = U.t "et"

"1234"

(sumT ext)

references

Tim Williams' recursion schemes presentation - http://www.timphilipwilliams.com/slides.html - https://www.youtube.com/watch?v=Zw9KeP3OzpU

Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire https://maartenfokkinga.github.io/utwente/mmf91m.pdf

These slides -

https://github.com/haroldcarr/presentations/blob/master/2017-05-27-lambdaconf-recursion-schemes.pdf - https://github.com/haroldcarr/presentations/blob/master/2017-05-27-lambdaconf-recursion-schemes.pdf