Analyse Mathématique - SEG - S1

Séquence 02 : Entraînements et exemples

Pr. Hamza El Mahjour

Faculté
Polydisciplinaire
Larache
Université Abdelmalek Essaâdi

Objectifs

- Calculer des limites simples
- 2 Étudier des asymptotes de fonctions
- 3 Appliquer les propriétés de limites
- 4 Calculer les dérivées classiques de certaines fonctions
- 5 Utiliser les propriétés de dérivées pour effectuer des calculs complexes de dérivées
- 6 Appliquer les théorèmes déjà introduits

Commençons simples

$$\lim_{x \to 3} x + 1 = ?$$

$$\lim_{x\to 1} x^2 - 1 = ?$$

$$\lim_{x \to -2} \frac{x^3 - 2}{\sqrt{x + 4}} = ?$$

$$\lim_{x\to 0} Ln(x^2+5) = ?$$

Réponses (1)

$$\lim_{x \to 3} x + 1 = 3 + 1 = 4$$

$$\lim_{x \to 1} x^2 - 1 = 1 - 1 = 0$$

$$\lim_{x \to -2} \frac{x^3 - 2}{\sqrt{x + 4}} = \frac{(-2)^3 - 2}{\sqrt{-2 + 4}} = \frac{-8 - 2}{\sqrt{2}} = \frac{-10}{\sqrt{2}}$$

$$\lim_{x\to 0} Ln(x^2+5) = Ln(0^2+5) = Ln(5)$$

Continuons ...

$$\lim_{x\to 3^+} x - 3 = ?$$

$$\lim_{x \to -1} x^2 + 1 = ?$$

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x+1}} = ?$$

$$\lim_{x\to -\infty} Ln(x^2+5) = ?$$

Compliquons un petit peu

Exercice 1

Déterminer dans chacun des cas la limite demandée.

1.
$$\lim_{x \to -3^+} \frac{1}{-2x-6}$$

2.
$$\lim_{x \to 0^+} \left(\left(1 + \frac{1}{\sqrt{x}}\right)(x-3) \right)$$

3.
$$\lim_{x \to 3^+} \frac{1-4x}{x-3}$$

Réponses (2)

1.
$$\lim_{x \rightarrow -3^+} (-2x-6) = 0^-$$
 donc $\lim_{x \rightarrow -3^+} \frac{1}{-2x-6} = -\infty$

$$2.\lim_{x\to 0^+}\frac{1}{\sqrt{x}}=+\infty\ \mathrm{donc}\ \lim_{x\to 0^+}\left(1+\frac{1}{\sqrt{x}}\right)=+\infty.$$
 De plus
$$\lim_{x\to 0^+}(x-3)=-3.$$

Par conséquent
$$\lim_{x o 0^+} \left(\left(1 + rac{1}{\sqrt{x}}
ight) (x-3)
ight) = -\infty$$

3.
$$\lim_{x\to 3^+}(1-4x)=-11$$
 et $\lim_{x\to 3^+}(x-3)=0^+$ donc $\lim_{x\to 3^+}\frac{1-4x}{x-3}=-\infty$

Limites à l'infini

Question 1:

$$\operatorname{En} + \infty, f: x \mapsto \frac{-3\,x^2 + \,x - 6}{x^2 + 1}$$

Question 2:

En
$$-\infty$$
, $f: x \mapsto \frac{4x^3 - x^2 + 1}{5x^2 - x + 2}$

Réponse longue ...

On factorise $-3 x^2$ au numérateur et x^2 au dénominateur de la fraction

$$f(x) = \frac{-3x^2 + x - 6}{x^2 + 1}$$
$$f(x) = \frac{-3x^2 \left(1 - \frac{1}{3x} + \frac{2}{x^2}\right)}{x^2 \left(1 + \frac{1}{x^2}\right)}$$

$$f(x) = -3 \frac{1 - \frac{1}{3x} + \frac{2}{x^2}}{1 + \frac{1}{x^2}}.$$

$$\begin{split} & \text{Comme} \lim_{x \to +\infty} \left(1 - \frac{1}{3\,x} + \frac{2}{x^2}\right) = 1 \\ & \text{et} \lim_{x \to +\infty} \left(1 + \frac{1}{x^2}\right) = 1, \\ & \text{on en déduit que } \lim_{x \to +\infty} f(x) = -3. \end{split}$$

Réponse courte ...

$$\lim_{x \to -\infty} \frac{-3x^2 + x - 6}{x^2 + 1} = \lim_{x \to -\infty} \frac{-3x^2}{x^2} = \lim_{x \to -\infty} -3 = -3$$

$f(a) \cdot f(b) < 0$? **Ça alors!**

Theorem

Si f est continue sur [a,b] est f(a)f(b) < 0 alors il existe $x_0 \in]a,b[$ tel que $f(x_0) = 0$.

Exemple

 $f(x)=x^3-3x+1$. On a f(-1)=3 et f(1)=-1 donc $f(1)\cdot f(-1)=-3<0$. Et puisque f est polynomiale donc continue sur [-1,1], alors il existe $x_0\in]-1,1[$ tel que $f(x_0)=0$.

Asymptotes horizontales ou verticales?

Prenons $f(x) = \frac{1}{x+1} + 3$ Étudions les limites de la fonction aux points critiques!!

Dérivées

Rappelons d'abord des exemples simples

Tableau des dérivées

f	f*
constante	0
x	1
x^2	2x
x^3	$3x^2$
x^n	$n \times x^{n-1}$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
sin(x)	cos(x)
cos(x)	-sin(x)

Appliquons ce qu'on sait

On veut calculer les dérivées de

- $x^2 \sin(x)$
- $=\frac{\sin(x)}{\cos(x)}$
- $\sqrt{x}Ln(x)$
- $\frac{e^x}{x+1}$
- $e^{\cos(x)}$
- \blacksquare $sin(Ln(x^2+1))$

