Lycée Chateaubriand MPSI 3 • 2024 – 2025

William GREGORY

Colle 30 • INDICATIONS Espaces préhilbertiens réels

Exercice 30.1

Soit $n \in \mathbb{N}$.

On se place dans $M_n(\mathbb{R})$ muni de sa structure euclidienne canonique, et on considère

$$G := \text{Vect} \{ I_n \}$$
.

- **1.** Déterminer G^{\perp} .
- **2.** Soit $A \in M_n(\mathbb{R})$. Déterminer le projeté orthogonal de A sur G^{\perp} , noté $p_{G^{\perp}}(A)$.

— indication -

2. Déterminer le projeté sur G puis relier la projection sur G à la projection sur G^{\perp} .

---- résultat -

1.
$$G^{\perp} = Ker(Tr)$$
.

2.
$$p_{G^{\perp}}(A) = A - \frac{\text{Tr}(A)}{n} I_n$$
.

Exercice 30.2

Soit $n \in \mathbb{N}^*$.

Soit $A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \in \mathsf{M}_n(\mathbb{R})$ telle que

$$A^2 = A^{\top} = A$$

Montrer que

$$\sum_{1 \le i, j \le n} |a_{i,j}| \leqslant n \sqrt{\operatorname{rg}(A)}.$$

indication -

1

- Puisque A est la matrice d'un projecteur, Tr(A) = rg(A).
- lack Utiliser ensuite l'inégalité de Cauchy-Schwarz dans $M_n(\mathbb{R})$ muni du produit scalaire canonique, avec la matrice dont tous les coefficients sont égaux à 1 et la matrice $(|a_{i,j}|)_{1 \le i,j \le n}$.

Exercice 30.3

 $\overline{\mathsf{Soit}\ n\in\mathbb{N}^*}.\ \mathsf{Soit}\ A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in\mathsf{M}_n(\mathbb{R}).\ \mathsf{Calculer}$

$$\lambda_A := \inf \left\{ \sum_{1\leqslant i,j\leqslant n} (a_{i,j} - m_{i,j})^2 \; ; \; (m_{i,j})_{1\leqslant i,j\leqslant n} \in \mathsf{S}_n(\mathbb{R})
ight\}.$$

indication

Le projeté orthogonal de A sur $S_n(\mathbb{R})$ est $\frac{A+A^\top}{2}$.

– résultat -

$$\lambda_A = \frac{1}{4} \sum_{1 \leq i,j \leq n} (a_{i,j} - a_{j,i})^2.$$

Exercice 30.4

Calculer

$$m = \inf_{(a,b) \in \mathbb{R}^2} \int_0^1 \left(t^2 - (at+b) \right)^2 dt.$$

indication

Travailler dans $\mathbb{R}_2[X]$ muni de

$$\langle\cdot\,|\,\cdot\rangle:(P,Q)\longmapsto\int_0^1P(t)Q(t)\,\mathrm{d}t$$

pour comprendre que

$$m = \inf_{(a,b) \in \mathbb{R}^2} ||X^2 - (aX + b)||^2 = (d(X^2, \mathbb{R}_1[X]))^2.$$

Déterminer a, b de sorte que

$$\mathsf{X}^2 - (\mathsf{a}\mathsf{X} + \mathsf{b}) \in \mathbb{R}_1[\mathsf{X}]^\perp.$$

résultat

$$m = \left\| X^2 - X + \frac{1}{6} \right\|^2 = \frac{1}{180}.$$

Exercice 30.5

Soit $n \in \mathbb{N}^*$. Soit $A \in M_n(\mathbb{R})$. Montrer que

$$\left[\forall X \in \mathsf{M}_{n,1}(\mathbb{R}), \ X^{\top}AX = 0\right] \quad \Longleftrightarrow \quad \textit{A} \ \mathsf{est} \ \mathsf{antisym\acute{e}trique}.$$

indication

♦ Montrer que

$$[\forall X, Y \in M_{n,1}(\mathbb{R}), X^{\top}AY = 0] \iff A = 0_n.$$

- ♦ Pour le sens (⇐), transposer.
- ♦ Pour le sens \implies , calculer $(X + Y)^{\top} A(X + Y)$ et utiliser ce qui précède.

Exercice 30.6

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace euclidien. Soient H_1 et H_2 deux hyperplans distincts dont on note e_1 et e₂ les vecteurs unitaires orthogonaux.

On note s_1 (resp. s_2) la symétrie orthogonale par rapport à H_1 (resp. H_2).

- **1.** Exprimer, pour $x \in E$, $s_1(x)$ et $s_2(x)$ en fonction de x, $\langle x \mid e_1 \rangle$ et $\langle x \mid e_2 \rangle$.
- **2.** Soit $x \in E$. Montrer que

$$(s_1 \circ s_2)(x) = x \iff x \in H_1 \cap H_2.$$

- **3.** Montrer que la somme $H_1^{\perp} + H_2^{\perp}$ est directe.
- **4.** Montrer que

$$\forall x \in H_1^{\perp} + H_2^{\perp}, \quad (s_1 \circ s_2)(x) \in H_1^{\perp} + H_2^{\perp}.$$

- indication

- **1.** Utiliser que $p_H + p_{H^{\perp}} = Id$ et s = 2p Id.
- **2.** Obtenir $(s_1 \circ s_2)(x) = x 2\langle s_2(x) | e_1 \rangle 2\langle x | e_2 \rangle e_2$ et utiliser la liberté de (e_1, e_2) .
- **3.** Montrer que $H_1^{\perp} \cap H_2^{\perp} = \{0_E\}$.
- **4.** Écrire $x = \lambda_1 e_1 + \lambda_2 e_2$ et utiliser l'expression de $(s_1 \circ s_2)(x)$ précédente.

résultat

1.
$$s_1(x) = x - 2 \langle x | e_1 \rangle e_1$$
 et $s_2(x) = x - 2 \langle x | e_2 \rangle e_2$.

Exercice 30.7

Soit $(E, \langle \cdot | \cdot \rangle)$ un espace préhilbertien réel. Soit p un projecteur de E. Montrer que les propriétés suivantes sont équivalentes :

- (i) p est un projecteur orthogonal;
- (ii) $\forall x, y \in E$, $\langle p(x) | y \rangle = \langle x | p(y) \rangle$;
- (iii) $\forall x \in E$, $\langle x | p(x) \rangle \geqslant 0$; (iv) $\forall x \in E$, $||p(x)|| \leq ||x||$.

indication

3

On note $F := \operatorname{Im}(p)$.

♦ (ii) \implies (i) : montrer que $y \in Im(p)$ est orthogonal à $x \in Ker(p)$.

 \blacklozenge (i) \Longrightarrow (iii) : x = x - p(x) + p(x).

lackloain (iii) \Longrightarrow (i) : développer $\langle p(x+ty) \, | \, x+ty \rangle$ où $x \in \operatorname{Ker}(p)$ et $y \in \operatorname{Im}(p)$.

♦ (i) ⇒ (iv) : utiliser le théorème de Pythagore.

♦ (iv) ⇒ (i) : utiliser l'inégalité

$$||p(y+tx)||^2 \le ||y+tx||^2$$

avec $x \in \text{Ker}(p)$ et $y \in \text{Im}(p)$ pour montrer que $\langle x | y \rangle = 0$.

Exercice 30.8 Suites de carré sommable.

On considère

$$\ell^2 \coloneqq \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \ \middle| \ \sum_n |u_n|^2 \ \mathsf{converge}
ight\}.$$

On définit sur $\ell^2 imes \ell^2$ l'application suivante :

$$\langle\cdot\,|\,\cdot\rangle:\left((u_n)_{n\in\mathbb{N}},(v_n)_{n\in\mathbb{N}}\right)\longmapsto\sum_{n=0}^{+\infty}u_nv_n.$$

1. Montrer que $\left(\ell^2,\left\langle\cdot\,|\,\cdot\right\rangle\right)$ est un espace préhilbertien réel.

2. On considère

$$F := \{(u_n)_{n \in \mathbb{N}} \mid \exists p \in \mathbb{N} : \forall n \geqslant p, u_n = 0\}.$$

(a) Montrer que F est un sous-espace vectoriel de ℓ^2 , différent de ℓ^2 .

(b) Montrer que $F \neq (F^{\perp})^{\perp}$.

—— indication -

1. Il faut montrer que ℓ^2 est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$, puis montrer que $\langle \cdot | \cdot \rangle$ définit bien un produit scalaire.

L'inégalité suivante sera utile :

$$\forall x, y \in \mathbb{R}, \quad |xy| \leqslant \frac{x^2 + y^2}{2}.$$

2. (b) Calculer le produit scalaire entre une suite de F^{\perp} et $(0, \dots, 0, 1, 0, \dots, 0, \dots) \in F$ pour décrire F^{\perp} et en déduire $(F^{\perp})^{\perp}$.