(BM-408) - Biomedical Imaging

Course Outline:

Theory:

1. Digital Image Fundamental

- 1. Image file formats
- 2. Elements of Visual Perception
- 3. Image Sampling and Quantization
- 4. An Introduction to the Mathematical Tools Used in Digital Image Processing

2. Intensity Transformations and Spatial Filtering

- 1. Basic Intensity Transformation Functions
- 2. Histogram Processing
- 3. Fundamentals of Spatial Filtering
- 4. Smoothing Spatial Filters
- 5. Sharpening Spatial Filters

3. Filtering in the Frequency Domain

- 1. Review of Concept about Fourier in 1D
- 2. Fourier Functions of Two Variable
- 3. The Basics of Filtering in the Frequency Domain
- 4. Image Smoothing Using Frequency Domain Filters
- 5. Image Sharpening Using Frequency Domain Filters

4. Image Restoration and Reconstruction

- 1. Noise Models
- 2. Restoration in the Presence of Noise Only-Spatial Filtering
- 3. Periodic Noise Reduction by Frequency Domain Filtering
- 4. Inverse Filtering, Least Squares Filtering, GM filtering
- 5. Image Reconstruction from Projections

5. Image Segmentation

- 1. Point, Line, and Edge Detection
- 2. Thresholding
- 3. Region-Based Segmentation
- 4. Segmentation Using Morphological Watersheds
- 5. The Use of Motion in Segmentation

6. Image Compression

- 1. Compression Standards
- 2. Some Basic Compression Methods (Huffman Coding, Golomb Coding)

7. X-ray Imaging

- 1. Physics of X-ray
- 2. Imaging with X-ray
- 3. Radiation dose
- 4. Attenuation based X-ray Imaging
- 5. X-ray Detection
- 6. X-ray Image Quality
- 7. Diagnostic Applications of X-ray Imaging
- 8. Demonstration of X-rays Equipment

8. Principles of Computed Tomography

- 1. Introduction to Computed Tomography and Scanners
- 9. Attenuation Tomography
- 10. Time of Flight Tomography
- 11. Reflection Tomography
- 12. Diffraction Tomography
- 13. Formulation of Attenuation Computed Tomography
- 14. Fourier Slice theorem

1. Magnetic Resonance Imaging

- 1. Physical and physiological principle of Magnetic Resonance Imaging
- 2. MR Imaging
- 3. Formulation of MRI reconstruction
- 4. Functional MRI, BOLD MRI,
- 5. Applications of MRI and fMRI

2. Ultrasound Imaging

- 1. Generation and detection of ultrasound waves
- 2. Physical and physiological principles of Ultrasound
- 3. Resolution of Ultrasound imaging
- 4. Ultrasound Imaging Modalities
- 5. Doppler Ultrasound Imaging
- 6. Modes of ultrasound image representation
- 7. Ultrasound Image Artifacts

3. Positron Emission Tomography

- 1. Physical and physiological principles of PET
- 2. PET Signal Acquisition
- 3. PET Image formation
- 4. Significance of PET
- 5. Applications of PET

List of Practicals:

- 1. MATLAB: Introduction to MATLAB and image processing toolbox
- 2. Digital Image Fundamentals: Sampling and quantization, bits per pixel & shades, spatial resolution & image size, Zooming & shrinking images
- 3. Basic Gray Level transformations: Image Negative, Log transform.
- 4. Application Of Gamma Correction to enhance image
- 5. Contrast stretching and thresholding
- 6. Introduction to image Histogram, Histogram sliding
- 7. Histogram equalization
- 8. Enhancement using arithmetic/logic operations
- 9. Smoothing spatial filters (Mean and Median filters)
- 10. Sharpening spatial filters (Laplace and Sobel)
- 11. Un-sharp masking and high-boost filtering Combining Spatial Enhancement methods
- 12. Review of Fourier transform and convolution theorem, 2D-FT, FT and frequency components of an image
- 13. Lowpass and Highpass Filters: Ideal filters, Butterworth filters, Gaussian filters. Filters comparison, Unsharp Masking
- 14. Dilation and erosion
- 15. Detection of discontinuities, Edge linking and boundary detection, Segmentation by thresholding
- 16. Object recognition, classification and image compression

Suggested Teaching Methodology:

- Lecturing
- Written Assignments Report Writing

Suggested Assessment:

Theory (100%)

- Sessional (20%)
- Quiz (12%)
- Assignment (8%)

- Midterm (30%)
- Final Term (50%)

Laboratory (100%)

- Labs
- Open-Ended Labs

Recommended Text and Reference Books:

- 1. Bushberg J.T., The Essential Physics of Medical Imaging 3rd Ed.
- 2. Z. H. Cho, Foundations of Medical Imaging
- 3. Biomedical Imaging (Principles & Application Engg: Series).
- 4. Digital Image Processing for Medical Applications, Geoff Dougherty, Cambridge University Press 978-0-521-86085-7
- 5. Digital Image Processing for Medical Applications by Geoff Dougherty, Cambridge University Press.
- 6. Digital Image Processing by Gonzales, R. C., Prentice Hall, New Jersey.

3