

RES 101

Technologies des réseaux

- Réseaux câbles
- Réseaux sans fils

Agenda

- Couche physique
- Couche liaison de données
- Ethernet: IEEE 802.3
- WiFi: IEEE 802.11

The Ethernet standard

- L'évolution des standards Ethernet et les premières versions :
 - ⇒1975 : Projet de recherche des laboratoires Xerox Parc. « Ethernet expérimental » à 2.94 Mbps sur câble coaxial.
 - ⇒1980 : Ethernet Version I, proposé par DEC et INTEL à 10 Mbps.
 - ⇒1982 : DEC, INTEL et Xerox (DIX) proposent Ethernet version II
 - ⇒1984 : Standards 802.2+802.3 proposés par l'IEEE (compatible avec DIX v2) : thick Ethernet 10 Base 5 (10Mbps)
 - ⇒1985 : 802.3a (thin Ethernet 10 Base 2)
 - ⇒1990 : 802.3i (10 Base T)
 - ⇒1993 : 10 Base F
 - ⇒1995 : Fast Ethernet 100 Mbps
 - ⇒1997 : Mode Full duplex
 - ⇒1998 : Gigabit Ethernet 1 Gbps
 - ⇒2003 : Gigabit Ethernet 10 Gbps
 - ⇒2015 : 100 Gbps Ethernet

Dessin initial de Robert Metcalfe

Le Role du « Physical Layer »

Application

Presentation

Session

Transport

Network

Link

Physical

Physical Layer:

La **couche physique** est responsable de la transmission de bits à travers un moyen physique (e.g. signaux électriques, radio, optiques, etc).

NIC: Network Interface Card (Carte de ligne)

Les bits sont transportés comme signaux électriques à travers des câbles.

Routeur WiFi

Les bits sont transportés comme ondes électromagnétiques

Images depuis Wikipedia

Codage en ligne

Codage: représentation du signal numérique pour être transmis sur des canaux de communication par des signaux analogiques.

Par exemple: 0 = 0V and 1 = +5V

Non-Return to Zero (NRZ)

Problème : ambiguïté dans les systèmes synchronisation d'horloge

Doit on considerer "0 0 1 1" ou "0 1"?

Codage Manchester

- 1: Transition du niveau haut vers le niveau bas
- 0: Transition du niveau bas vers le niveau haut

Obtenu en utilisant un XOR du codage NRZ avec l'horloge :

Avantages:

- Pas d'ambiguïté
- Les transitions inhérentes à ce codage permettent la synchronisation des horloges (émetteur/récepteur)

Code en bloc

Utilisé avant transport des signaux pour des raisons de fiabilité → introduire redondance pour pouvoir corriger des erreurs de transmission ou pour éviter longues séquences de zeros

Code en bloc 4B5B:

4 bits de données sont transformés en 5 bits avant tranmission

D	ata	ata 4B5B code		ata	4B5B code	Symbol	4B5B code	Description
(Hex)	(Binary)	4B3B Code	(Hex)	(Binary)	4B3B Code	Н	00100	Halt
0	0000	11110	8	1000	10010	1	11111	Idle
1	0001	01001	9	1001	10011	J	11000	Start #1
2	0010	10100	Α	1010	10110	K	10001	Start #2
3	0011	10101	В	1011	10111	L	00110	Start #3
4	0100	01010	С	1100	11010	Q	00000	Quiet (loss of signal)
5	0101	01011	D	1101	11011	R	00111	Reset
6	0110	01110	Е	1110	11100	S	11001	Set
7	0111	01111	F	1111	11101	Т	01101	End (terminate)

- Max trois zeros consecutifs
- Symboles supplémentaires pour signalisation
- Utilisé avec plusieurs codages

Les standards de la couche physique Ethernet

Phisical layer	Débit	Matériel	Codage
10Base-T	10 Mbps	Paires torsadées	Manchester
100Base-TX	100 Mbps	Paires torsadées	4B5B + MLT-3
100Base-FX	100 Mbps	Fibres	4B5B + NRZ-I
1000Base-T	1 Gbps	Paires torsadées	8B1Q4 + 4D-PAM5
10GBase-X	10 Gbps	Fibres	64B/66B + NRZ

Remarque: "Full Duplex" (transmissions et emissions indépendantes)

Trame de la couche physique

Une séquence de bits envoyé par un dispositifs physique s'appelle *trame* (« Frame »).

Structure de la Trame

Taille de la trame

- Selon la technologie, peut etre fixe ou non

Le role du « Link layer »

Link Layer:

Responsable de la création d'une liaison logique entre nœuds connectés directement (e.g. Point-to-Point Protocol).

Trame de la couche Link

Structure de la Trame

Trame Ethernet

- Preamble:
 - 56 bit sequence de synchronization
- SFD Start Frame Delimiter:
 - Indique le début du contenu de la trame
- Ethernet Header
 - (Detaillé dans la suite)
- Ethernet Payload
 - Contenu de la trame (typiquement un paquet de la couche Réseau)
- FCS Frame Check Sequence
 - 4 Octets (32 bits) CRC

Entête Ethernet

Destination MAC	Source MAC	Ethertype	Ethernet Payload	FCS
Address	Address			

- Adresse MAC pour identifier les bouts de communication (interfaces réseaux)
- L'entête contient les adresses source et destination
 - Adresse Ethernet = 6 octets (48 bits)
- EtherType
 - 2 Octets (16 bits)
 - Represente le "type" de contenu
 - Par exemple :
 - $\sim 0x0800 = Payload is IPv4$
 - 0x0806 = = Payload is ARP (Address Resolution Protocol)
 - ox86DD = Payload is IPv6

Numération hexadecimal

- Très populaire dans le domaine informatique
 - Système positionnel en base 16
 - Conversion facile Hex to Binary et vice versa
 - Indiqué par la présence d'un "0x", i.e. 0x34
 - Chaque nibble (4-bits) est un caractère Hex
 - 4 bits -> 16 combinaisons

	1()0s	10'	s	1's	-	16 ′ s	1's
52:	0		5	2			3 4	
172:	1		7	2			A C	

Decimal (Base 10)	Binary (Base 2)	Hexadecimal (Base 16)
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

L'adresse MAC (ou addresse Ethernet)

- L'adresse MAC est universel :
 - Garantie que pour chaque interface connecté à un réseau Ethernet il y aura une adresse unique
- Les premières 24 bits sont assigné au constructeur par le IEEE
 - IEEE = Institute of Electrical and Electronics Engineers
 - IEEE est l'entité qui standardise Ethernet
- OUI = Organizationally Unique Identifier
- Les dernières 24 bits sont choisi par le constructeur du NIC
 - 16 million de possibilités
- Le format d'écriture d'une adresse MAC est une séquence de numéros Hex separé par un double point :
 - Exemple: 98:01:A7:90:51:25

Structure de l'adresse MAC

Communication modes

• Unicast: one to one

• Multicast: one to a selected group

• Broadcast one to All

Ethernet special addresses

 Pour les communications de type <u>Broadcast</u> (all nodes connected on the same link) on utilise l'adresse speciale constitué par des "1" :

FF:FF:FF:FF:FF

En général :

- Si b0 est 0 l'adresse est Unicast
 - ▶ i.e. unique localement pour communication one-to-one

- Si b0 est 1 l'adresse est Multicast
 - ► L'adresse appartient à un groupe (dans le même lien) standardisé par le IEEE
 - ► E.g.: 01:80:C2:00:00:00 est le Spanning Tree Protocol group
 - Il est possible de configurer si un NIC fait partie d'un groupe ou pas

Ethernet dans le passé

Tout le monde est connecté à un même câble : besoin de partager le médium

- Trames Ethernet transportées par signaux électriques à tous les noeuds connectés
 - Chaque carte Ethernet (*NIC*) peut extraire l'adresse MAC Destination, et donc choisir s'il accepte la trame ou pas

Accès partagé : Rappels (1/3)

- Liaison point à point:
 - Règle : Ecouter avant parler : si le canal est libre, on peut transmettre

Simple, mais avec possibilité de *collision*

- Collision peuvent arriver si plusieurs transmissions arrivent au même instant

Accès partagé : Rappels (2/3)

- Médium partagé
 - C'est le support de la communication (e.g. câble; fréquence radio pour WIFI; ...)
 - Propage les données à tout les stations connectées
 - Par le moyen de la transmission de signaux électromagnétiques ou optiques

Collision:

- Deux (ou plusieurs) dispositifs utilise le canal simultanément, et par conséquence le signal est altéré
- Possibilité de détecter si le média est utilisé ou pas
 - ► Pour les médias câblés, il est possible de transmettre et recevoir en même temps
 - Détection de collisions possible (voir: CSMA/CD)
 - Pour les médias sans fils, ceci n'est pas possible
 - Les collisions ne peut pas être détectées
 - On doit essayer de les éviter!

- Sous-coûche MAC :
 - Définie les fonctions/méthodes et protocoles pour l'accès au média (voir partie *invariants fonctionnels*)

Accès partagé : Rappels (3/3)

- Transmission asynchrone:
 - L'envoie des trames peut commencer à tout moments
 - Pas besoin d'une horloge synchronisée
- Transmission synchrone:
 - Le tems est divisé en "slots"
 - Nécessaire un horloge pour synchronisation
 - La transmission est possible au début du time slot
 - Dans chaque slot on peut y avoir :
 - O dispositifs émetteurs : slot non utilisé
 - 1 dispositif émetteur: slot utilisé
 - 2 (ou plusieurs) dispositifs émetteurs: slot utilisé et présence de collisions
- Ecoute du Medium :
 - Chaque émetteur peut écouter le médium avant de commencer la transmission
 - Exemple: protocoles de la famille CSMA

Modern Ethernet

- Aujourd'hui, Ethernet est totalement full duplex
- Les réseaux sont connectés avec des Commutateurs Ethernet (Ethernet switches)
- Simplex:
 - Communication seulement dans un sens
 - E.g. remote control pour ouvrir un garage

Half-duplex:

- Communication possible dans les deux sens, un à la fois
- E.g. CSMA-CD sur un câble Ethernet
- Plusieurs dispositifs peuvent se connecter au même câble

• Full-duplex:

- Transmission & Réception en même temps (pas de collisions)
 - Soit en utilisant deux "lignes" indépendantes pour les deux sens (100 Mb Ethernet)
 - Soit en utilisant la même ligne avec codage différentiel (10Gb Ethernet)
- Communication de type Point-to-point seulement (pas de collisions)

Interconnection des réseaux locaux: Hub

Répéteur (ou hub)

- Il assure des fonctions de couche 1 (PHY), il n a donc pas d'adresse MAC
- Un répéteur peut recevoir et décoder les données venant d'un segment.
- Il retransmet les données sur tous les segments auxquels il est attaché :
 les segments restent dans le même domaine de collision.
- L'amplitude est restaurée et les éventuelles distorsions du signal sont supprimées.
- Si une collision est détectée, il propage la collision en envoyant un signal de bourrage (jam : 101010...).
- Un répéteur peut permettre: (i) le passage à un type de support différent (ii) extension de couverture

Interconnection des réseaux locaux: Switches

Commutateur Ethernet (ou *Switch*) :

- Dispositif de la couche 2 Data link
- Il est composé de d'un certain nombre de « ports » Ethernet, reliées entre eux (par un bus interne à haut débit, commutateurs non bloquants).
- Chaque carte dispose d'une mémoire tampon (buffer).
- Les stations directement reliées à un port dialoguent en point-à-point full-duplex avec le commutateur.
- Le commutateur est typiquement store-and-forward
- Séparation des domaines de collision (au dessus de MAC)
- Transparent : aucune configuration à effectuer pour les « hosts »

Switching Filtering & Forwarding

- Les Switches peuvent apprendre depuis quel port le trafic a été reçu*
 - Utilisation d'une « table de commutation»
 - quand la trame est reçue, le switch garde l'adresse de l'éxpediteur
 - Ceci est aussi stoqué dans la filtering table
- Mécanisme de fonctionnement pour l'expédition d'une trame
 - Envoyer la trame vers le port où l'adresse destination est connecté (si connu)
 - Envoyer la trame vers tous les ports (except input port) autrement
 - Ceci s'appelle envoie en Broadcast

*Port = network interface

Segmentation avec les switches

- Les commutateurs peuvent envoyer le trafic en "parallèle"
 - Vrai dans le cas de *ports* distincts
 - Dans l'exemple de la figure "vert" et "bleu" sont envoyé à la vitesse du lien

IP PARIS

Vers quel port envoyer un paquet ?

Nécessite de connaître la position des différentes adresses MACs (table de commutation)

Comment construire la table de commutation ???

Auto-configuration (en analysant les adresses sources des paquets reçus)

IP PARIS

Qu'arrive-t-il si le commutateur ne connait pas les adresses destinations ?

Relayage (forward) sur TOUS les ports

Comment gérer la mobilité ?

- Mise à jour de la table (auto-apprentissage à partir des adresses Sources)
- Durée maximum des entrées dans la table de commutation (destruction après durée max)

Architecture typique: Commutation Ethernet

The Broadcast Storm Problem and the Spanning Tree Protocol

Interconnecting several links

Possibilité de créer des boucles

- Les trames en broadcast peuvent boucler entre plusieurs commutateurs
- Le réseau peut devenir surchargé, et donc inutilisable
- L'utilisation des « switching tables » peut devenir problématique

Example: broadcast in simple scenarios

- Broadcast Principle
 - Envoyer vers tous les ports

Example: a more complex scenario

- Broadcast Principle
 - Envoyer vers tous les ports
 - Problème : Ethernet n'a pas un moyen de détecter si une trame a déjà traversé un nœud ou pas
 - En couche L2 il n'y a pas la notion de "graphe"

Avoiding loops: spanning tree

- On considère un graphe non orienté (*undirected graph*)
 - Connexe : un seul tenant → tout sommet est joignable a partir de tout
 - Non orienté : les arêtes entre les sommets n'ont pas une direction fixé
- ...On appelle **spanning tree** du graphe un sous-graphe connexe sans boucles

Spanning Tree Protocol - STP (IEEE 802.1d)

- Characteristiques:
 - Permet d'obtenir des parcours « loop-free » dans un réseau avec liens redondants
 - On peut choisir un parcours unique entre chaque couple de noeuds
 - Toutes alternatives sont bloqués (de manière a ne pas introduire des boucles)
 - Dans le cas d'échec, il peut automatiquement utiliser un des parcours précédemment bloquées

Principe de fonctionnement :

- Choisir un switch "root"
- Chaque switch calcule le plus cour chemin vers le root
- Construire un spanning tree qui couvre la topologie entière
- Protocol:
 - Comme un protocole classique, basé sur l'échange de messages standardisés
 - BPDU Bridge* Protocol Data Unit

The STP algorithm

L'algorithme STP convergera vers une topologie loop-free en trois étapes

Convergence STP

- 1. Elect one Root Bridge
- 2. Elect Root Ports
- 3. Elect Designated Ports

- Pour le choix des root bridge, root ports et designated ports, le STP utilise quatre critères:
 - Four-Step decision Sequence
 - 1. Lowest BID (Bridge Identifier)*
 - 2. Lowest Path Cost to Root Bridge
 - 3. Lowest Sender BID
 - 4. Lowest Port ID (Identifier)*

Three Steps of Initial STP Convergence

STP Convergence

Step 1 Elect one Root Bridge

Step 2 Elect Root Ports

Step 3 Elect Designated Ports

Bridge Identifier (BID)

41

- Bridge ID (BID) | utilisé pour identifier chaque commutateur.
 - BID est utilisé aussi pour choisir le root bridge
 - Ceci sera la racine pour le spanning tree
- Le BID a deux parties:
 - 2-octets: Bridge Priority
 - ► Les switch Cisco ont **32,768** ou 0x8000 par défaut
 - ► Peut être modifié par l'opérateur du réseau

- 6-octets: MAC address

STP Root Selection

- Le Bridge Priority dans le BID est typiquement représenté en format décimal
- L'adresse MAC dans le BID est représenté en format hexadécimale
- Le plus petit BID est le root switch
 - Si tous les dispositifs connectés ont la meme Bridge priority, le switch avec le MAC plus petit devient automatiquement le root switch
 - ► Équivalent à effectuer un choix aléatoire, car le MAC est fixé par le constructeur

STP: Select one root bridge

- Four-Step decision Sequence
 - Lowest BID (Bridge Identifier)
 - 2. Lowest Path Cost to Root Bridge
 - Lowest Sender BID
 - 4. Lowest Port ID (Identifier)

- Quand le réseau est demarré, les switch propagent un enseble de BPDUs
- Depuis, les switch appliqueront la séquence en quatre étapes pour choisir le root
- Quand l'algorithme convergera, un seul root switch sera elu
- Le switch avec BID plus petit gagne
 - Note: « haute priorité » est équivalent à « BID plus petit ». Faites gaffe !
- Ce mécanisme est connu comme "Root War" (la guerre pour la racine).

STP: Select one root bridge

Les trois commutateurs ont la meme priorité de 32,768 Le switch Cat-A est celui avec le MAC plus petit, donc il gagne la Root War!

Remarques sur le Root Switch

- Dans un vrai réseau, il n'est pas souhaitable de laisser le choix du root switch à un comportement aléatoire du aux adresses MAC.
- En effet, un root switch mal placé peut donner lieu à utilisation non-optimale du réseau, notamment pour la présence de chemins plus long.
- Par conséquence, il est recommandé de choisir un root switch en utilisant les valeurs de priorité

Three Steps of Initial STP Convergence

STP Convergence

Step 1 Elect one Root Bridge

Step 2 Elect Root Ports

Step 3 Elect Designated Ports

Coût pour chaque lien

Link Speed	Cost(Revised IEEE Spec)	Cost (Previous IEEE Spec)
10 Gbps	2	1
1 Gbps	4	1
100 Mbps	19	10
10 Mbps	100	100

- Chaque lien a un coût, qui dépend du débit de transmission
- L'IEEE utilise une **echelle non-linéaire** ave les valeurs suivantes:
 - 4 Mbps 250 (cost)
 - 10 Mbps 100 (cost)
 - 16 Mbps 62 (cost)
 - 45 Mbps 39 (cost)
 - 100 Mbps 19 (cost)
 - 155 Mbps 14 (cost)
 - 622 Mbps 6 (cost)
 - 1 Gbps 4 (cost)
 - 10 Gbps 2 (cost)

STP: Elect Root Ports

- Un Root Port est le port le plus proche au root switch.
- Chaque switch non-Root doit choisir un root port.
- Proche = Moin cher →cost plus petit (on rencontrera ce concept très souvent)
 - Pour faire ça, un switch doit tracer de manière additive tous les coûts des liens qui emmènent aux root switch.

STP: Elect root ports

Step 1

Le switch Cat-A envoie des BPDUs avec Root Path Cost=0

Cela représente qu'il est le root!

Step 2

 Le switch Cat-B reçoit les BPDUs et il ajoute la valeur 0 au Root 1/1 path cost du Port 1/1

• Root Path Cost = 0 + Port 1/1 cost (19) = 19

STP: Elect root ports

Step 3

 Le switch Cat-B utilisera la valeur 19 pour envoyer un BPDU avec Root Path Cost 19 vers le port 1/2

Step 4

 Le switch Cat-C obtient le BPDU depuis Cat-B & mets à jour le Root Path Cost à 38 (19+19)

Meme chose avec Cat-C et Cat-B.

STP: Elect root ports

Step 5

- Cat-B doit choisir entre joindre le Root Bridge avec un coût de 19 via Port 1/1, ou un coût de 38 via Port 1/2
- Port 1/1 devient le Root Port pour Cat-B, le port le plus proche au Root switch
- Cat-C fera un calcul similaire.

Four-Step decision Sequence

- 1. Lowest BID (Bridge Identifier)
- 2. Lowest Path Cost to Root Bridge
- 3. Lowest Sender BID
- 4. Lowest Port ID (Identifier)

Three Steps of Initial STP Convergence

STP Convergence

Step 1 Elect one Root Bridge

Step 2 Elect Root Ports

Step 3 Elect Designated Ports

- Cette étape est la plus importante pour la prévention des boucles dans le réseau
- Un Designated Port est <u>le port d'un lien qui a le meilleur</u> <u>chemin vers le Root switch</u>
- Le designated port est utilisé pour envoyer et recevoir le trafic depuis/vers le root switch.
- Chaque lien (entre deux nœuds) dans un réseau a un seul designated port
 - Choisi, comme dans les cas précédents, en minimisant le Root Path Cost vers le Root Bridge
- Le switch qui contient le <u>Designated Port</u> s'appelle <u>Designated switch</u> (pour le lien considéré).

• Segment 1:

- Root Path Cost Cat-A:1/1 = 0
- Root Path Cost Cat-B:1/1 = 19

• Segment 2:

- Root Path Cost Cat-A:1/2 = 0
- Root Path Cost Cat-C:1/1 = 19

• Segment 3:

- Root Path Cost Cat-B:1/2 = 19
- Root Path Cost Cat-C:1/2 = 19
- It's a tie!

Segment 1

 Comme Cat-A:1/1 a le meilleur Root Path Cost, il sera choisi comme Designate Port pour le Segment 1

Segment 2

 Comme Cat-A:1/2 a le meilleur Root Path Cost, il sera choisi comme Designated Port pour le Segment 2

Segment 3

Cat-B and Cat-C ont un Root Path Cost de 19, il faudra un bris d'égalité!

- À l'occurrence de situation d'égalité le protocole STP utilise toujours l'algorithme en quatre étapes déjà rencontré
 - Four-Step decision Sequence
 - 1. Lowest BID (Bridge Identifier)
 - 2. Lowest Path Cost to Root Bridge
 - 3. Lowest Sender BID
 - 4. Lowest Port ID (Identifier)

- Four-Step decision Sequence
 - 1. Lowest BID (Bridge Identifier)
 - 2. Lowest Path Cost to Root Bridge
 - Lowest Sender BID
 - 4. Lowest Port ID (Identifier)

Segment 3

- 1. Tous noeuds sont d'accord que Cat-A est Root Bridge
 - tie: go to step 2
- 2. Root Path Cost pour Cat-B et CAT-C est 19
 - tie: go to step 3
- Le BID est plus petit sur Cat-B que sur Cat-C → Cat-B:
 Port 1/2 sera le Designated Port pour le Segment 3

Note: Cat-C:1/2 sera non-Designated Port pour le Segment 3 | non-designated = bloqué

The network after convergence of STP

STP drawback

À cause de le perte de connexion du segment 3, les couples <Alice,Bob> et <Cate, Dave> doivent partager la bande passante des segments 1 & 2, et pourtant le Segment 3 reste inutilisé!

• MATERIAL FOR ETHERNET AND SPANNING TREE

• BONAVENTURE - Ch. 3.19.2 "Ethernet"

• DORDAL - Ch. 2.5 "Spanning Tree"

• Questions?

Wireless networks: 802.11

Application des réseaux sans fil

- Mobilité
 - Dans la zone de couverture
 - Handover (changement de point d'accès)
- Installation
 - Rapide et simple pour l'utilisateur
 - Même en environnement particulier (câblage impossible)
- Nouveaux équipements
 - Téléphones
 - Tablettes
 - Imprimantes
 - Internet of Things (IoT)

- ..

Taxonomie des réseaux sans fil

WPAN

Wireless Personal Area Network (≤ 10m)

Ex: Bluetooth, Zigbee...

WLAN

Wireless Local Area Network (100m – 1km)

Ex: Wi-Fi

WMAN

Wireless Metropolitan Area Network (1km – 50km)

Ex: WiMax

WWAN

Wireless Wide Area Network (>50 km)

63

Ex: Réseaux cellulaires 2G 3G 4G

Acces à un média sans fil

- Accès multiple
 - Chaque utilisateur dispose d'une portion du canal
 - Division du canal
 - ► En fréquence (FDMA, OFDMA)
 - (Orthogonal) Frequency Division Multiple Access
 - En temps (TDMA)
 - Time Division Multiple Access
 - ► En code (CDMA)
 - Code Division Multiple Access
- Accès aléatoire
 - Les utilisateurs utilisent le même canal à tour de rôle de manière aléatoire quand ils ont un paquet à transmettre
 - Tirage d'un instant d'utilisation
 - ► Aloha
 - Ecoute avant (et non pendant) l'utilisation du canal
 - CSMA/CA
 - CSMA/Collision Avoidance

Architecture

• BSS

- Basic Service Set
- Il existe un point d'accès (AP)
- Toutes les communications passent par l'AP

- La bande passante est partagée entre toutes les stations

Architecture

• IBSS

- Independent Basic Service Set
- Réseau Ad-Hoc

• ESS

DS - Extended Service Set

- Chaîne de BSS reliés par un système de distribution (DS)

Protocol stack

2. Liaison MAC (802.11)1. Physique FHSS IR DSSS OFDM

FHSS: Frequency Hopping Spread Spectrum

IR: InfraRed

DSSS: Direct Sequence Spread Spectrum

OFDM: Orthogonal Frequency Division Multiplexing

MAC: Medium Access Control

Une seule couche MAC

Norme 802.11

Plusieurs couches PHY

- Normes 802.11a, b, g, n, ac
- FHSS et IR uniquement dans la norme d'origine (1997)

MAC Layer: DCF (Distributed Coordination Function)

Nécessité

- Un terminal ne peut écouter et émettre en même temps
 - Détection de collisions impossible
 - On ne peut pas utiliser CSMA/CD

DCF

- Technique de contrôle d'accès de la norme 802.11
- CSMA/CA (obligatoire)
 - Carrier Sense Multiple Access with Collision Avoidance
- RTS-CTS (optionnel)
 - Request To Send
 - Clear To Send

Alternatives

- PCF (Point Coordination Function)
 - La gestion du partage du canal est centralisé au point d'accès
 - ► Très peu implémenté
- HCF (Hybrid Coordination Function)
 - Période dédiée où le canal est réservé pour le trafic avec QoS (Quality of Service)

CSMA/CA | Delay

- Carrier Sense Multiple Access with Collision Avoidance
- Principe
 - On écoute avant d'émettre
 - Quand le medium est libre, on attend un délai fixe avant d'émettre
 - ► DIFS (DCF Inter-Frame Space) : délai minimal avant toute transmission

CSMA/CA | Backoff et Contention Window (CW)

Principe

- Quand le medium se libère après avoir été occupé, on attend un délai aléatoire avant d'émettre (après le délai fixe)
 - Le backoff est tirée aléatoirement dans une fenêtre de contention (CW)
 - ► La taille initiale de la fenêtre de contention est de 16 (2 en CSMA/CD)
 - La valeur du backoff est reportée au prochain essai en cas de perte de la contention
- On attend un délai aléatoire entre deux trames successives
 - ► Backoff permettant de laisser l'accès au medium aux autres stations

CSMA/CA | Ack and retransmissions

Principe

- Toutes les trames (sauf broadcast) sont acquittées
 - ► SIFS (Short Inter-Frame Space) : délai entre une trame et son acquittement
 - ► En l'absence d'acquittement :
 - Retransmission de la trame
 - La taille de la fenêtre de contention double (jusqu'à 1024)
 - Suppression de la trame après un nombre de retransmissions maximum

Hidden terminal

Problèmes

- Si deux stations peuvent ne pas entendre leurs signaux
 - Séparées par un mur
 - ▶ De part et d'autre du point d'accès
- Collision possible au niveau du point d'accès
- L'écoute et l'attente ne suffisent pas pour éviter les collisions
- Si les trames sont longues
 - Collisions à répétition
 - ► Coûteuses à re-émettre

RTS and CTS

Mécanisme

- L'émission de données est précédée par un échange de trames courtes
- RTS (Request To Send)
 - L'émetteur envoie au récepteur une demande d'autorisation d'envoi
 - Contient le temps estimé de la transmission
- CTS (Clear To Send)
 - ► Le récepteur autorise l'émetteur à envoyer
 - Contient le temps estimé de la transmission
 - Canal en diffusion : toutes les stations du réseau voient le message CTS
- NAV (Network allocation Vector)
 - ► Les stations voisines attendent pendant le temps estimé de l'envoi de la trame
 - « Virtual carrier sensing » (vs « Physical carrier sensing »)

Pairing with a Wi-Fi network

SSID

- Service Set Identifier
- « Nom du réseau »
- Le point d'accès et les stations doivent avoir le même SSID pour s'associer
- Diffusé en clair périodiquement (balise / beacon)
 - Possibilité de désactiver l'émission périodique
- Diffusé en clair dans la trame d'association

Étapes

- Écoute (« scanning »)
 - Connaître le canal du point d'accès
 - Synchronisation fréquentielle puis temporelle
- Association
 - ► Requête d'association
 - Réponse par une trame « probe » contenant le SSID
- Allocation d'une adresse IP
- Authentification optionnelle

Wireless security

- WiFi Protected Access
- Principe
 - Clé unique pour toutes les stations en mode personnel
 - Authentification par utilisateur en mode entreprise
 - Chiffrement par flot TKIP (Temporal Key Integrity Protocol) dans WPA
 - Utilisation de RC4 (Rivest Cipher 4) avec une clé périodiquement modifiée et un vecteur d'initialisation haché
 - Chiffrement par bloc CCMP/AES dans WPA2
 - CCMP: Counter Mode Cipher Block Chaining Message Authentication Code Protocol
 - AES: Advanced Encryption Standard
 - Intégrité vérifiée par MIC (Message Integrity Code)

Questions?

- MATERIAL FOR THE Wireless
- BONAVENTURE Ch. 3.19.3 "802.11 wireless networks"
- **DORDAL** Ch. 4.2 "WiFi" excluding 4.2.8