人工智能导论: 概率

人工智能的大体分类

第一部分:搜索和规划 (Search and planning)

第二部分:概率推理 (Probabilistic reasoning)

- 医疗诊断
- 语音识别
- 。追踪物体
- 机器人制图
- 基因学
- 通讯纠错代码
- ... 还有很多!

第三部分: 机器学习 (Machine learning)

不确定性(Uncertainty)

例如, 搭乘的航班计划登机时间是 10:30 am

- 让行动 A_t = 距离登机时间提前 t 分钟从家里出发
- · A, 行动将能保证赶上飞机吗?

可能出现问题:

- 。 部分可观察性 (交通状况, 公交或出租车等待时间, 等)
- 。可能有误差的传感器(交通广播的报告,百度地图,等)
- 对交通流的建模和预测非常复杂
- 缺乏对环境/世界动态性的知识(车轮胎损坏?道路临时施工堵塞?安检中可能出现的情况等)

对不确定性的应对

忽视它?不行;为什么?

对逻辑规则的修改

- 。 A₁₄₄₀→_{0.9999} 赶上飞机
- 。 赶上飞机→0.95 ¬ 交通堵塞
- 。因此, A₁₄₄₀→_{0.949} ¬*交通堵塞*
 - 逻辑关系不准确; 难以穷尽各种因素

概率(Probability)

。根据现有的情况和所采取的行动 A₁₂₀, 那么赶上飞机的概率是 0.92

概率(Probability)

概率是对 复杂,不确定情况某种程度上的总结代表

- · 懒惰性(laziness): 太多的意外情况难以罗列,等
- · 无知性(ignorance): 对某些情况缺乏了解和知识,等

主观的(Subjective) or 贝叶斯(Bayesian) 概率:

- 根据自己的知识状态来决定相关命题的概率
- 。例如, P(赶上飞机 | A₁₂₀, 晴天) = 0.92

命题有关概率随新知识观察的变化:

。例如, P(赶上飞机 | A_{120} , 晴天, 桥上不堵车) = 0.96

决策(Decisions)

- ■假设我们有:
 - ■P(赶上飞机 | A₆₀, 所有我所获得的信息...) = 0.51
 - ■P(赶上飞机 | A₁₂₀,所有我所获得的信息...) = 0.97
 - ■P(赶上飞机 | A₁₄₄₀,所有我所获得的信息...) = 0.9999
- ■选择哪一个行动?
- ■还取决于偏好(preferences),例如,不能错过飞机,机场等待时间,机场的食品等.
- (功用/利益 原理) Utility theory ,用来对偏好进行表示和推理
- *(决策原理)Decision theory* = 功用原理 + 概率原理
- (最大化功用期值) Maximize expected utility:
 - $a^* = argmax_a \sum_s P(s \mid a) U(s)$

概率的基本法则

开始于一组可能世界的集合 Ω

· 例如,一个骰子的6个可能结果, {1, 2, 3, 4, 5, 6}

概率模型(probability model) 赋予一个数 $P(\omega)$ 给每一个世界 ω

P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6.

这些数必须满足

- \circ $0 \le P(\omega) \le 1$
- $\circ \sum_{\omega \in \Omega} P(\omega) = 1$

基本法则(继续)

- 一个*事件*(event) 是 Ω 的一个子集
- "投数 < 4" 是集合 {1,2,3}
- 。"投数是奇数", {1,3,5}
- 一个事件的概率是在对应世界概率数值之和
- $\circ P(A) = \sum_{\omega} \in A P(\omega)$
- 。 P(投数<4) = P(1) + P(2) + P(3) = 1/2

随机变量(Random Variables)

- 一个随机变量描述了世界中我们可能不确定的某个方面(正式的讲,是 α 上的一个决定性的函数)
 - 。R=天是否将会下雨?
- 。 Odd = 骰子的投数是否将会是一个奇数?
- *T* = 天气是热还是冷?
- 。 D = 花费多长时间能够到达机场?

随机变量也有值域

- Odd in {true, false} e.g. Odd(1)=true, Odd(6) = false
 - 。通常把事件 Odd=true 写成 odd, Odd=false 写成 ¬odd
- T in {hot, cold}
- D in $[0, \infty)$

概率分布(Probability Distributions)

每个概率由一个值来代表,并且加和为1

• 温度:

■ 天气:

W Psun 0.6rain 0.1fog 0.3

0.0

meteor

P(W)

概率分布

■每个概率模型自动为每个随机变量固定了一 个分布

P(T)	
Т	Р
hot	0.5
cold	0.5

1 ())	
W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

D(W)

简略标识:

$$P(hot) = P(T = hot),$$

$$P(cold) = P(T = cold),$$

$$P(rain) = P(W = rain),$$

. . .

只要值域里的每个值都 唯一即可

- ■一个分布是概率值的一个表
- P(W = rain) = 0.1

特别的布尔记号表示:

$$P(happy) = P(Happy=true)$$

$$P(\neg happy) = P(Happy=false)$$

联合分布(Joint Distributions)

■一组随机变量的*联合分布*: $X_1, X_2, ... X_n$

为每一组赋值(或结果)指定了一个真实的数值:

$$P(X_1=x_1, X_2=x_2, ..., X_n=x_n)$$

 $P(x_1, x_2, ..., x_n)$

■必须遵守:

$$P(x_1, x_2, ..., x_n) \ge 0$$

 $\sum_{x_1, x_2, ..., x_n} P(x_1, x_2, ..., x_n) = 1$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

联合分布中可能的世界

- ■通常情况下
 - ■从随机变量和它们的值域开始
 - ■构建可能的世界,即对变量的所有的赋值组合
- ■例如,两个骰子 Roll₁ and Roll₂
 - ■可能的世界有多少? 6x6 = 36
 - ■它们的概率是多少? 1/36 each (为什么??)

- $\blacksquare n$ 个变量,每个变量的值域大小是d,分布的大小是多少?
- ■除了最小的分布以外,通常情况下的分布很难全部手写罗列出来!

事件的概率

回忆:___个事件的概率是该事件所有世界的概率值之和

所以,给定一个所有变量的联合分布,就可以计算任何事件的概率!

- 概率 hot AND sunny?
- · 概率hot?
- 概率hot OR sunny?

通常我们关心的都是*部分赋值*(partial assignments)的事件,比如 P(T=hot)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

练习:事件概率

P(X=true, Y=true)?

P(X,Y)

P(X=true)?

X	Υ	Р
true	true	0.2
true	false	0.3
false	true	0.4
false	false	0.1

 $P(X \Rightarrow Y)$?

边缘分布(Marginal Distributions)

边缘分布式消除掉某些变量后的子表

边缘化 (加和): 通过求和来合并行

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	Р
hot	0.5
cold	0.5

W	Р
sun	0.6
rain	0.4

练习:边缘分布

P(X,Y)

X	Υ	Р
true	true	0.2
true	false	0.3
false	true	0.4
false	false	0.1

$$P(x) = \sum_{y'} P(x, y')$$

$P(y) = \sum_{i=1}^{n} P(y_i)$	$\sum_{x'} P$	(x',	y)
--------------------------------	---------------	------	----

X	Р
true	
false	

P(X)

Υ	Р
true	
false	

条件概率(Conditional Probabilities)

联合概率和条件概率间的简单关系

。实际上,这也是条件概率的定义:

$$P(a \mid b) = \frac{P(a, b)}{P(b)}$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W=s \mid T=c) = \frac{P(W=s,T=c)}{P(T=c)} = 0.2/0.5 = 0.4$$

$$= P(W=s,T=c) + P(W=r,T=c)$$

$$= 0.2 + 0.3 = 0.5$$

条件概率

从单一事件过渡到离散的分布:

P(*a* / *b*)

P(*A* / *b*)

 $P(A \mid B)$

P(*A* / *b*)

Α	В	P(A B)
а	b	0.3
Га	b	0.7

 $P(A \mid B)$

Α	В	P(A B)
а	Ь	0.3
a	b	0.7
а	¬b	0.4
¬а	¬b	0.6

练习:条件概率

P(X,Y)

P(X=true	Y=true) ?
----------	--------	-----

```
X Y P
true true 0.2
true false 0.3
false true 0.4
false false 0.1
```

条件分布 (Conditional Distributions)

某些变量的概率分布, 当其他变量的值固定的时候,

条件分布

P(W|T)

P(W	T	=	hot)
-----	---	---	------

W	Р
sun	0.8
rain	0.2

$$P(W|T = cold)$$

W	Р
sun	0.4
rain	0.6

联合分布

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

正规化/标准化(Normalization) 技巧

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

 $P(W \mid T=c)$

W	Р
sun	0.4
rain	0.6

正规化技巧

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

 $P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$ $= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$ $= \frac{0.2}{0.2 + 0.3} = 0.4$

选择 那些符

合证据 (evidence)的

联合概率

P(c, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3

正规化 这些

选项 (使它们的和 为1)

P(W)	T	=	c
------	---	---	---

W	Р
sun	0.4
rain	0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

正规化技巧

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W|T=c)$$

W	Р
sun	0.4
rain	0.6

为什么是这样? 选项之和是 P(evidence)! (这里是, P(T=c))

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

与公式相符合

正规化的定义

■(字典解释) 使之回归到一个常态条件下

■步骤:

■第一步: 计算 Z = 所有项之和

■第二步: 把每一项除以 Z

■例 1

V	Р	
sun	0.2	
rain	0.3	

● 例 2

Т	W	Р
hot	sun	20
hot	rain	5
cold	sun	10
cold	rain	15

所有项之和为1

	Η	V	Р
正规化	hot	sun	0.4
	hot	rain	0.1
Z = 50	cold	sun	0.2
	cold	rain	0.3

概率推理(Probabilistic Inference)

■概率推理: 从其他已知概率里计算一个想知 道的概率 (例如,从联合概率中计算条件概率)

- ■通常我们计算的都是条件概率
 - ■P(准时到机场 | 没有交通事故发生) = 0.90
 - ■这些代表了智能体在给定证据(evidence)下的*信念* (beliefs)

- ■概率会随新的证据而变化:
 - ■P(准时到达 | 无交通事故, 早上5点出发) = 0.95
 - ■准时到达 | 无交通事故, 早上5点出发, 下雨) = 0.80
 - ■观察到新的证据时,会引发*信念(beliefs)* 的更新

通过列举(Enumeration)来推理

* 多个查询 变量也可以

通常情况:

 $-E_1 \dots E_k = e_1 \dots e_k$ $X_1, X_2, \dots X_n^ R_1 \dots H_r$ • 证据变量: 。查询*变量: 隐藏变量:

 $P(Q|e_1 \dots e_k)$

我们想要的:

■ 第一步:选择 和证据相一致

第二步: 求和消掉隐 藏变量H,以得到查 询和证据变量的联合

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

第三步: 正规化

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

通过列举来推理

P(W)?

P(W | winter)?

P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

列举推理

- 明显的问题:
 - 最差情况下时间复杂度 O(dn)
 - 空间复杂度 O(dⁿ),需要存储联合分布

乘法规则(The Product Rule)

■ 当已有条件分布,想要计算联合分布时

$$P(a \mid b) P(b) = P(a, b)$$

$$P(a \mid b) = \frac{P(a, b)}{P(b)}$$

乘法规则

$$P(a \mid b) P(b) = P(a, b)$$

举例: P(D | W) P(W) = P(D, W)

 $P(D \mid W)$

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

P(W)

W	Р
sun	0.8
rain	0.2

D	W	Р
wet	sun	
dry	sun	
wet	rain	
dry	rain	

P(D, W)

链式法则(The Chain Rule)

■ 更普遍化的, 任何联合分布可以表达成条件分布的增量乘积的形式:

$$P(x_1, x_2, x_3) = P(x_3 \mid x_1, x_2) P(x_1, x_2) = P(x_3 \mid x_1, x_2) P(x_2 \mid x_1) P(x_1)$$

$$P(x_1, x_2,..., x_n) = \prod_i P(x_i \mid x_1,..., x_{i-1})$$

贝叶斯法则(Bayes Rule)

贝叶斯法则(Bayes' Rule)

■两种方法因式分解一由两个变量组成的联合分布:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

■相除后, 我们得到:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- ■为什么这个有用?
 - ■让我们计算一个条件概率,从它的相反的形式
 - ■通常一个条件概率很难计算,但是相对应的另一个却很简单
 - ■描述了一个"更新"步骤,从先验概率 P(a) 到后验概率

 $P(a \mid b)$

- ■许多人工智能系统的基础
- 最重要的人工智能公式之一!

那是我的法则!

贝叶斯法则

用贝叶斯法则进行推断

举例: 从因果关系概率推断医疗诊断概率:

$$P(BB \mid farthight) = P(farthight) P(farthig$$

例如:

M: meningitis, S: stiff neck

$$P(m) = 0.0001$$

 $P(s \mid m) = 0.8$
 $P(s) = 0.01$
 $P(m \mid s) = \frac{P(s \mid m) P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.01}$

- 注意: meningitis 的后验概率还是非常小: 0.008 (但比先验概率大80倍 为什么?)
- 注意: 如果有了症状还是应该去检查! 为什么?

下一次的内容

- ■独立性(Independence)
- ■条件无关性(Conditional independence)
- ■贝叶斯网络(Bayes nets)