PS0

Oulbacha Reda, Montréal, QC

February 2018

Question 1

(a)
$$\nabla f(x) = Ax + b$$

(b)
$$\nabla f(x) = g'(h(x))\nabla_x h(x)$$

(c)
$$\nabla^2 f(x) = \nabla (\nabla f(x))^T = [\nabla A_1^T x ... \nabla A_n^T x] = A^T = A$$

where A_i is the ith row vector of matrix A

(d)

$$\nabla f(x) = g'(a^T x)a$$
$$\nabla^2 f(x) = [\nabla g'(a^T x)a_1 ... \nabla g'(a^T x)a_n] = g''(a^T x)aa^T$$

Question 2

(a) Clearly $A=zz^T$ is symmetric. Now let $\mathbf{x}{\in}\mathbf{R}^n$

$$x^{T}Ax = (x^{T}z)(z^{T}x) = (x \cdot z)^{2} \ge 0$$

(b) From the previous result it follows that:

$$ker(A) = span(z)^{\perp}$$

where the . $^{\perp}$ means "the orthogonal space of". Hence, using the rank-nullity theorem, rank(A) = n - (n-1) = 1.

(c) Let $x \in \mathbb{R}^n$ and y = Bx

$$x^T B A B^T x = (Bx)^T A (Bx) = y^T A y > 0$$

Question 3

(a)
$$A=T\Lambda T^{-1}\Leftrightarrow AT=T\Lambda$$

$$AT=[At^{(0)}...At^{(n-1)}]=T\Lambda=[\lambda_0t^{(0)}...\lambda_nt^{(n-1)}]$$

- (b) Same answer as (a), replace U^T with U^{-1} since we suppose U is orthogonal
- (c) Let $A \in R^{nxn}$ be a PSD matrix. By the spectral theorem, $\exists U, \Lambda$ such that $A = U\Lambda U^T$. Let $x \in R^n$ be the i'th column vector of U. We set $y = U^T x$.

By this definition, we have $(y)_i = 1$ and $(y)_j = 0$ for $j \neq i$. Hence:

$$x^T A x = x^T U \Lambda U^T x = (U^T x)^T \Lambda (U^T x) = y^T \Lambda y = \lambda_i \ge 0$$