MA 519: Homework 13

Max Jeter, Carlos Salinas December 1, 2016

Problem 13.1 (Handout 17, # 16)

Suppose $X \sim \text{Exp}(1)$, $Y \sim U[0,1]$, and X, Y are independent.

- (a) Find the density of X + Y.
- (b) Find the density of XY.

SOLUTION. For part (a): Since X and Y are independent, the distribution of X + Y is given by the convolution

$$f_{X+Y}(x) = \int_{-\infty}^{\infty} f_X(x-y) f_Y(y) \, dy,$$

where

$$f_X(x) = \begin{cases} e^{-x} & \text{for } x \ge 0, \\ 0 & \text{otherwise,} \end{cases} \qquad f_Y(x) = \begin{cases} 1 & \text{for } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Therefore, a straight forward calculation gives us

$$f_{X+Y}(x) = \int_{-\infty}^{\infty} \chi_{[0,\infty)}(x-y) e^{-(x-y)} \chi_{[0,1]}(y) \, dy$$
$$= e^{-x} \int_{-\infty}^{\infty} e^{y} \chi_{[0,\infty)}(x-y) \chi_{[0,1]}(y) \, dy$$
$$= \begin{cases} 0 & \text{for } x < 0, \\ 1 - e^{-x} & \text{for } 0 \le x \le 1, \\ (e-1)e^{-x} & \text{for } x > 1. \end{cases}$$

Now let us run a sanity check by demonstrating that $\int_{-\infty}^{\infty} f_{X+Y}(x) dx = 1$,

$$\int_{-\infty}^{\infty} f_{X+Y}(x) dx = \int_{0}^{1} [1 - e^{-x}] dx + (e - 1) \int_{1}^{\infty} e^{-x} dx$$
$$= [1 + e^{-1} - 1 - 0] + (e - 1) [0 - (-e^{-1})]$$
$$= e^{-1} + 1 - e^{-1}$$
$$= 1.$$

For part (b): Since X and Y are independent, we have

$$F_{XY}(z) = \iint_{\{(x,y): xy \le z\}} f_X(x) f_Y(y) \, dx \, dy.$$

Let us find the CDF of XY. By a direct computation

$$F_{XY}(z) = \iint_{\{(x,y): xy \le z\}} f_X(x) f_Y(y) \, dx \, dy$$
$$= \iint_{\{(x,y): xy \le z\}} e^{-x} \chi_{[0,\infty)}(x) \chi_{[0,1]}(y) \, dx \, dy$$

PROBLEM 13.2 (HANDOUT 17, # 18)

Two points A, B are chosen at random from the unit circle. Find the probability that the circle centered at A with radius AB is fully contained within the original unit circle.

SOLUTION. The probability that a circle centered at A with radius AB is contained in the original circle is zero. What the professor means is "two points A, B are chosen at random from inside the unit circle". We can think of choosing A as choosing a random variable 0 < R < 1 representing the distance of A from the origin and we ask what is the probability that the point B lands inside the circle of radius 1 - R centered at A.

First, let us find the distribution for the radius R. We can find the CDF of R as the ratio of the area of the circle centered at the origin with radius x and the unit circle; i.e.,

$$P(R \le x) = \frac{\pi x^2}{\pi \cdot 1^2} = x^2$$
 for $0 < x < 1$.

Thus the PDF of R is

$$f_R(x) = 2x$$
 for $0 < x < 1$.

Now, the probability that B lands in the set

Problem 13.3 (Handout 17, # 19)

Let X,Y be i.i.d. U[0,1] random variables. Find the correlation between $\max\{X,Y\}$ and $\min\{X,Y\}$.

SOLUTION.