International Islamic University Chittagong Department of Electrical and Electronic Engineering

B. Sc. Engineering in EEE

Semester End Examination, Spring 2023

Course Code: STAT 2303 Time: 2 hours 30 minutes Course Title: Probability & Statistics

Full Marks: 50

(i) The figures in the right-hand margin indicate full marks
(ii) <u>Course Outcomes</u> and <u>Bloom's Levels</u> are mentioned in additional Columns

	Course Outcomes (COs) of the Questions										
CO1	Demonstrate understanding and descriptive statistics (Correlation, regression, probability,										
	probability distribution) by practical application of quantitative reasoning and to the solution of engineering problems with data visualization. Also reflect on inferential statistics										

Will Be able to compute and interpret the results of correlation, regression and probability theory.

	Bloom's Levels	(BL) of the C	uestions			
Letter Symbols	C1	C2	C3	C4	C5	C6
Meaning	Remember	Understand	Apply	Analyze	Evaluate	Create

Part A [Answer the questions from the followings]

1.	a)	Suppose you are	given tl	ne follo	wing i	nforma	tion:					CO2	C3	6
		Capital (in Milli	on Tak	a)	50	58	62	65	70	74				
		Profit (in Thous			12	16	18	22	25	28				
		(i)Find a regressi	on equ	ation	of prof	fit on	capital.	(ii)Esti	mate t	he probal	ble			
		profit when capit	al is 80	o millio	on.(iii)	Find a	correl	ation c	oeffici	ent betwe	een			
	• •	capital and profit	and con	nment.										
	b)	0	ne of B	lood Pr	ressure	(Y) on	Age()	() for d	ata of 8	3 people,		CO ₁	C4,	4
		are shown in the f	ollown	ng table	2;							CO ₂	C5	
		Blood Pressure	138	138	144	140	125	136	142	136				
		(mmHg)	60	34	72	40	25	26						
		Age(Years)				48	35	36	71	25				
		(i)Estimate the reg	ression	line o	f Blood	l Press	ure (Y)	on Ag	e(X) (i	i) Also				
		estimate Blood pre	essure ((Y) for	a 75 ye	ears old	people	e.						
2.	a)	Define probabili	ty. In	a 2-ch	ild fan	nily (a) what	t is the	proba	ability th	at	CO1	C3,	5
		both are boys? (b) Wha	t is the	condi	tional	probal	oility t	hat bot	th are box	VS	CO2	C5	
		given that first ch	illd is	boy?										
	b)	1 1	re 3 c	ompon	nents i	n a sy	stem	each h	aving	reliabili	tv	CO1	C3,	5
		0.80. If at least 2	2 comp	onent	s must	be no	eeded	to run	the sy	stem the	en	CO2	C5	
		calculates the sys	tem re	liabilit	y.					ordin the	711			
					O	r,								
2.	a)	Explain Bayes' the	eorem	Three		-	toogad	XX7	1	.1		~~.	~-	
		space and evaluaa	te the	probab	nilities	of the	follow	ing on	down	the samp	le	CO1	C3,	5
		heads (ii) at lease 2	heads	and (ii	i) 2 hea	de inc	TOHON	ing ca	ses. (1)) at best	2	CO2	C5	
		,		(II	-, - 1100									

, b)	Three workers A, B and	nd C worked	in a company. T	They produced 60%, 25%	6 CO1	C3,	5
	and 1370 production (I a particula	r items per day	It was absorred that it	000	>	5
	arso produced defecti	ve items an	d they probabilit	V of defective items 1		Co	
	110111 are 470, 270 and	1 70 Tespechy	elv. One item is	selected at random and:	t		
	was found to be defect	ive. Determin	ne the probability th	nat it was produced by A?			
			Part B				
_	[Answ	er the questi	ions from the fol	lowingsl			
3 a)	The following table sh	lows the ext	perience (in year) of an employees in a	001	0.4	_
	company.	1	one (in year) of all employees in a	CO1	C4	5
	Experience X	0	4 6	0 10			
	Probability P[X]	0.10	2k 2k	8 12			
	(i) Determine the value	e of k (ii)E	ind the mark of '1	ity of an employee has			
	experience more than	Venra (iii)T	ind the probabili	ity of an employee has			
	experience between 5 to	years (III)F	ind the probabi	lity of an employee has			
. b)	experience between 5 to	years and	(iv) $E(X)$, $V(X)$, CV			
. 0)	Failure of an electronic	s system occ	urs by two metho	od A & B. If the number	CO1	C2,	5
	or randres follows of	nomiai disti	Thution and the	probability C C 1		C4	
	occurred by memod A	1S U.O (n=0)	6=PIAI) Now de	atormina the must at 111			
	Hist out of hext 13 fall	ires, find the	e probability (i) i	no failure will occur be			
	method A, (ii) at illost 0	2 failures wi	Il occur by metho	d A			
4. a)	Define binomial distribution mean is great	bution and	explain it. Prov	ve that in a binomial	COI	CO	-
	distribution in can is gie	iter than its v	arrance		CO1, CO2	C2,	5
b)	Write down the imp	ortant prope	erties and cond	litions of a binomial	CO2	C4	
	distribution.				CO2	E	5
5. a)	Define the following	terms: null	hypothesis alter	mative hypothesis and	COI	02	-
	statistical hypothesis.		- JP our one, three	mative hypothesis and	CO1	C3	5
b)	Suppose a survey was co	nducted in a	locality to study t	he relationshine het	CO2	~~	
	profession and drug addict	on and the fo	llowing information	n were obtained:	CO1	C3	5
	Professions			ddiction	CO2		
		Addicted	Diug u	Not-addicted			
	Businessmen	15		35			
	Service holders	10		60	į		
	Students	25		50			
	Is there any relationships be	etween profes	sion and drug addic	ction? Test at 5% level of			
	significant [Given 22	- 5 00 (4-1-1-	. 1 1 2	otton. Test at 570 level of			
	significant [Given $\chi^2_{2,5\%}$	= 3.99 (tabula	ted value)]				
5 a)	What are the steps of a t	O:	r,				
- 4)	What are the steps of a t	est procedure	? An Electric con	npany manufacture bulb	CO1	C2	-
	whose lifetime is approxim 15 bulbs has an average lifetime is approximately lifetime is approximately lifetime is approximately lifetime.	fetime of 779	distribution. From	a random sample of size	COI	C3	5
1	hours. Use α =0.05, test th	e hypothesis	that U	e standard deviation 46	CO ₂		
1	nours.	e hypothesis	mat π ₀ . μ-800 no	ours against H _A : μ≠800			
b) I	Define Type-I and Type-II	error In a s	hon study a set o	£ data 11			
	TOTAL THE WINCH CHICK THE THE THE	HIIOH OT GETEC	TIVO produced be-	1	CO1	C3	5
t	and, evening of high sin	ft worked. Th	e following data w	ere collected		0.5	5
	JIIII	Day	Evening		CO2		
	Defectives	45	55	Night 70			
	Non-defectives	905	800	070			
Ţ	Jse 5% level of significant	e, test if the	re have any relation	mahin hat 1'C'			
V	vorked with quality of produ	icts (Defectiv	e or Non-defective	e).			

International Islamic University Chittagong Department of Electrical and Electronic Engineering

Final Examination Autumn-2018

Program: B.Sc. Engg. (EEE)

Course Code: STAT 2303

Course Title: Probability and Statistics

Fuli Marks: 50

Time: 2 hours 30 minutes

Part A

[Answer any two questions from the followings; figures in the right margin indicate full marks.]

1(a). What is the difference between coefficient of determination and coefficient of correlation?
 1(b). In a survey of insect life near a stream, a student collected data about the number of different

insect species (y) that were found at different distances (x) in meters from the stream.

Distance (x)	17	8	39	11	17	33
Insect species (y)	11	19	2	14	9	3

(i) Using your scatter diagram, describe the correlation between the number of different insect species and the distance from the stream. (ii) Evaluate the equation of the regression line y on x for the above data. (iii) Estimate the number of insect species to be found 30 meters from the stream.

2(a). What is Spearman's Rank correlation coefficient? Mention its uses. Point out the properties of 04

2(b). A psychologist wanted to compare two methods X and Y of teaching. He selected a random sample of 12 students. He grouped them into 6 pairs so that the students in a pair have approximately equal scores on an intelligence test. In each pair, one student was taught by method X and the other by method Y and examined after the course. The marks obtained by them

pair	lated below	2	3	4	5	6
X	24	39	19	30	27	17
Y	37	35	16	26	33	27

(i) Compute the correlation coefficient between the two sets of scores.

Find the rank correlation coefficient and compare the two values.

3(a). The scores for eight students in accounting and statistics are as follows: 05

Accounting	23	23	47	17	10	43	6	28
Statistics	30	33	45	23	8	49	12	31

Compute the student's ranks in the two subjects and calculate Spearman rank correlation.

3(b). What is the use of studying regression? Distinguish between correlation and regression.

Interpret the terms (i) r = 0.99; (ii) r = -0.65; (iii) $r^2 = 0.1$; (iv) r = 1.78

05

International Islamic University Chittagong Department of Electrical and Electronic Engineering

B. Sc. Engineering in EEE

Final Exam, Spring 2022

Course Code: STAT-2303 Course Title: Probability & Statistics

(i) The figures in the right-hand margin indicate full marks

Time: 2 hours 30 minutes

(ii) Course Outcomes and Bloom's Levels are mentioned in additional Columns

Full Marks: 50

5

E

	Course Outcomes (COs) of the Questions
CO1	Demonstrate understanding of descriptive statistics by practical application of quantitative reasoning and to the solution of engineering problems with data visualization.
CO ₂	Will Be able to compute and interpret the results of correlation and regression.

	Bloom's Lev	els of the Que	estions			
Letter Symbols	R	U	App	An	E	C
Meaning	Remember	Understand	Apply	Analyze	Evaluate	Create

Part A

[Answer the questions from the followings]

1. a) Define correlation. Show the high positive, moderate positive, high negative and CO2 E 5 zero correlation graphically. The following data relate to advertising expenditure (in lakhs taka) and sales (in million taka) of an engineering farm;

Advertising expenditure (in Lakhs Taka)	10	15	20	22	24	25
Sales (in Million Taka)	15	20	25	24	30	30

Compute the correlation coefficient between advertising expenditures and sales. Comment on your results.

What are the basic differences between correlation and regression? A survey firm CO2 studying the relation between Kilowatt-hours (thousands) used the number of rooms of a flat in a residential area. A random sample of 8 flats have the following data;

Number of Rooms In a Flat	5	7	4	6	5	4	5	4
Kilowatt-hours (Thousand)	7	8	6	10	7	6	7	4

- (i)Determine the regression line on Kilowatt-hours on the number of Rooms.
- (ii) Determine the expected number of Kilowatt-hours for a 8-rooms flat.
- 2. a) Define probability, mutually exclusive events and independent events. If you toss a **CO1 E** 5 fair coin 3 times, write the all possible sample points in this experiment.
- 2. b) Define Venn-diagram. In a company of 400 employees 220 are engineers, 240 are CO1 E graduate, 180 Engineers are graduate. Show this information in a venn-diagram and identify the undergraduate Engineer marked with shaded area.

Or,

- 2. a) State Bayes theorem. Compare between: (i) sample space and events; and (ii) CO1 E 5 mutually exclusive events and not mutually exclusive events.
- 2. b) A computer center has 100 computers which are collected from three companies A, CO1 E 5

B, and C. The selected computers from these companies are 50, 30 and 20 respectively. The probabilities of trouble which is faced in these computers daily are 0.15, 0.20, and 0.25 respectively. One day during work a computer is found defective. What is the probability that it was collected from company C?

Part B

[Answer the questions from the followings]

3. a) Define probability, mutually exclusive events and independent events. Find the CO1 An 4 mean and variance from the following table;

Experience of the employees in a Textile Company (in Year) : X 5 8 10 12 15

Probability :P(X=x) 0.20 0.35 0.25 0.15 0.05

3. b) Define mathematical expectation and variance. A random variable X has the CO2 E following probability function

Values of X : 1 2 3 4 5 6 7 P(x) : k 2k 3k 4k 7k 2k k

- (i.) Find the value of k (ii). Evaluate (a) $P[X \le 6]$ (b) $P[2 \le X \le 6]$ (c) P[X > 7]
- (iii.) Calculate mean, standard deviation and coefficient of variation of X.
- 4. a) Define binomial distribution. A certain manufacturing process yield electrical fuses CO1 U,An 4 of which, in the long run 20% are defective which follows binomial distribution. Find the probability that in a sample of 9 fuses selected at random there will be (i) no defective (ii) at least on defective (iii) No more than one defective.
- 4. b) Define Poisson Distribution with some examples. The number of Website visitors CO2 E per hour follows Poisson distribution with parameter m=4. Find the probability that

 (i) No people visit the Website in a particular hour (ii) Exactly one visitor visit the Website.
- 5. a) What do you mean by statistical hypothesis? Distinguish between one tailed test and two tailed test.
- 5. b) Over the last five years the average score in the final exam of a course was 73 CO1 E points. This semester a class with 28 students used a new textbook and the mean score in the final was 78.1 points with a standard deviation of 7.1. Did the class using the new text book do better at 1% level of significance?

CO1

Ap

5. a) What are the steps of test procedure? An automobile company usually produces three-cylinder model car whose mean petrol consumption is 15 km/liter. But company launches a new four-cylinder car whose mean petrol consumption is claimed to be lower than that of existing auto engine. It is found that the mean consumptions of 20 sampled cars are 20 km/liters with an standard deviation 1.5 km/liter. Test for the hypothesis at 5% level of significant whether the new models petrol consumptions is equal to the existing model. (The tabulated t-value with 19

df is 2.093)

5. b) The following data represent the blood sugar of a group of patients before (B) and CO1 E,C 6 after (A) a specific treatment:

Blood Sugar (B)	14.2	14.6	15.6	12.0	13.8	15.5	18.0
Blood After (A)	10.0	09.5	11.0	10.2	08.6	10.2	15.6

- Now formulate the null hypothesis to test the treatment is successful or effective.
- (ii) Write the test statistic to verify the effectiveness of the treatment.
- (iii) Test the null hypothesis mentioned in (i) and comment.