Data Challenge

Nazih Benoumechiara, Nicolas Meyer et Taïeb Touati

Laboratoire de Probabilités, Statistique et Modélisation Sorbonne Université, Paris

Mardi 29 mai 2018

Journées de Statistique 2018

Introduction

Données

- Consommation électrique sur l'île d'Ouessant du 13 septembre 2015 au 13 septembre 2016 (maille horaire)
- Données météorologiques du 13 septembre 2015 au 13 septembre 2016 (maille tri-horaire)
- Prévisions météorologiques pour la semaine du 14 au 20 septembre 2016 (maille tri-horaire)

Introduction

Données

- Consommation électrique sur l'île d'Ouessant du 13 septembre 2015 au 13 septembre 2016 (maille horaire)
- Données météorologiques du 13 septembre 2015 au 13 septembre 2016 (maille tri-horaire)
- Prévisions météorologiques pour la semaine du 14 au 20 septembre 2016 (maille tri-horaire)

Objectif

- Prédire la consommation électrique sur la semaine du 14 au 20 septembre 2016
- Critère d'évaluation : erreur absolue moyenne en pourcentage (MAPE)

Méthode générale

Mélange de modèles de séries temporelles et de machine learning

Contents

- Analyse des données
- 2 Méthode
- 3 Perspectives

Données météorologiques

Données météorologiques

Données météorologiques

- Pas de neige dans l'échantillon d'entraînement, mais dans la prévision
- Absence de données météo la semaine du 21 au 28 février 2016
- Données horaires (électriques) vs tri-horaires (météorologiques)

	date	у	heure_ete	type	temperature	pression	HR	rosee	visibilite	v_moy	v_raf	v_dir	RR3h	neige	nebul	national_holiday
0	2015-09-13 00:00:00	NaN	True	train	12.5	1008.7	81.0	9.3	40.0	9.260	18.520	140.0	0.0	NaN	8.0	False
1	2015-09-13 01:00:00	526.166667	True	train	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	False
2	2015-09-13 02:00:00	495.000000	True	train	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	False
3	2015-09-13 03:00:00	446.166667	True	train	12.3	1006.4	83.0	9.5	40.0	11.112	16.668	120.0	0.0	NaN	8.0	False
4	2015-09-13 04:00:00	365.833333	True	train	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	False

• Interpolation des valeurs météorologiques manquantes : quadratique, linéaire ou valeur la plus proche

Données de consommation

Influence du jour de la semaine (jour ouvré vs samedi vs dimanche):

Données de consommation

Influence des vacances scolaires:

Données de consommation

Sur toute l'année:

Contents

- 1 Analyse des données
- 2 Méthode
- 3 Perspectives

Apprentissage / Test local et transformation de la consommation

- Train local sur la période 13/09/2015 04/09/2016 (≈ 1 an),
- Test local sur la période 05/09/2016 12/09/2016 (8 jours).
- Transformation Boxcox de la consommation.

ARMA: choix de (p, q)

La prévision est effectuée sur la différence de consommation, puis retransformée.

Via les ACF et PACF:

Par un grid search sur p et q et validés sur 5 train/test locaux différents (soit 3125 modèles testés) et en prenant la combinaison qui minimise le MAPE.

ARMA: choix de (p, q)

La prévision est effectuée sur la différence de consommation, puis retransformée.

Via les ACF et PACF:

Par un grid search sur p et q et validés sur 5 train/test locaux différents (soit 3125 modèles testés) et en prenant la combinaison qui minimise le MAPE.

Choix optimal: p = 24, q = 24

ARMA

Avec ce choix de paramètres :

- erreur MAPE à 8.21%
- mauvaise prédiction pour les 10 et 11 septembre (week-end)

Gradient Boosting Model: Feature Engineering

Température ressentie décrite par^[2]

$$T_{felt} = (A - T) * \sqrt{V},$$

où T est la température, V est la vitesse du vent et A une température t.q. $T_{\it felt}$ est le plus corrélé à la consommation.

- Décalage des valeurs pour
 - o certaines données météo (3, 6, 12 et 24h),
 - la consommation (1, 2, 3 et 4 semaines).
- Target encoding^[3] sur le train local. Moyenne sur :
 - le jour de la semaine, jour de l'année
 - l'heure conditionnellement
 - Jour de la semaine
 - Vacance
 - Jour férié
 - etc...

^[2] Peter Lusis et al. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity".

In: Applied Energy 205 (2017), pp. 654-669.

^[3] Daniele Micci-Barreca. "A preprocessing scheme for high-cardinality categorical attributes in classification and prediction problems". In: ACM SIGKDD Explorations Newsletter 3.1 (2001), pp. 27–32.

Gradient Boosting Model

- Tuning des hyper-paramètres (vitesse d'apprentissage, régularisation, nombres de feuilles, etc...)
- Erreur MAPE : 6.46 %

• La prédiction reste mauvaise le weekend du 10 et 11 septembre.

Mélange entre ARMA et GBM

- Modèle de mélange:

$$\hat{y}_{\text{pred}} = \alpha(t)\hat{y}_{\text{ARMA}} + (1 - \alpha(t))\hat{y}_{\text{GBM}}, \tag{1}$$

avec
$$\alpha(t) = \exp(-t/\lambda), \quad \lambda > 0.$$

- ullet Le paramètre λ est choisi de sorte à minimiser l'erreur \hat{y}_{pred}
- \hookrightarrow On trouve $\lambda_{\text{optimal}} = 0.29$, pour une erreur MAPE de 5.84% sur le test local.

Résultats sur le test local

On obtient la prédiction suivante sur la semaine du 05/09/2016 au 12/09/2016

Prédiction sur le test

La pipeline est la suivante:

- Faire une prévision ARMA
- Prévision par GBM
- ullet Mélanger les prévisions ARMA-GBM avec le $\lambda_{ ext{optimal}}$

Contents

- 1 Analyse des données
- 2 Méthode
- 3 Perspectives

Perspectives

- Améliorer la méthode ARMA par une stabilisation de la variance^[1]
- Tester la robustesse de la méthode sur un échantillon de séries temporelles basées sur des lieux différents
- Adapter la problématique à des cas de consommations individuelles après clustering
- Codes, notebook et slides: https://github.com/NazBen/solution-challenge-jds18

^[1] Kianoosh G Boroojeni et al. "A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon". In: Electric Power Systems Research 142 (2017), pp. 58–73.

Merci de votre attention

Nazih Benoumechiara, Nicolas Meyer, Taïeb Touati (prénom.nom@upmc.fr) Laboratoire de Probabilités, Statistique et Modélisation Sorbonne Université

Registered Teams

