Проект МААЗ00-МАА400

Для замены устаревшей топологии была разработана оригинальная топология Zeta_QR_FlayBack.

Прямо-Обратно Ходовая топология с Удвоителем Напряжения Исходная топология - «Прямо ходовой косой мост» в процессе поиска решения сравнивалась с «Резонансным асимметричным полу мостом» и классическим « Активный клампер». Немного проиграв в КПД на 0,5-1,5% «Активному клампу», Zeta_QR_FlayBack обеспечила гораздо более простое решение.

Так как корректор мощности отсутствует то «Резонансный асимметричный полу мост» поигрывает по эффективности использования ключей из за чрезмерного запаса ключей по напряжению.

В Zeta_QR_FlayBack удалось соединить простоту обратноходовых топологий с эффективностью более дорогих прямо-ходовых топологий. Данная топология органично сочетается с одноступенчатым ККМ. Это позволяет применять топологию не только для 15-го ТУ. Но и для построения БП малой и средней мощности широкого применения. Достоинства такого ККМ — простота, низкая стоимость, доступные комплектующие. Разработка SS_PFC_Zeta_QR_FlayBack требует отдельного решения.

Исходная топология **MAA300-MAA400** попадает в стык мощностей, когда Обратно-ходовая топология ПН уже недостаточна (FlyBack), а топология косого моста еще избыточна. Традиционно здесь применяется Однотактный прямо ходовой ПН (один транзистор на входе и два диода в выпрямителе), но его врожденные недостатки требуют большой аккуратности в проектировании, и этот факт склоняет выбор разработчиков к более сложному, но неприхотливому Косому мосту. (Модный сегодня LLC не подходит для 15 ТУ по многим параметрам.)

Косой мост содержит: <u>два</u> транзистора, <u>два</u> диода и <u>трансформатор</u> управления на первичной стороне и <u>два диода</u> в выпрямителе.

Базовая схема Zeta_QR_FlayBack приведена ниже и содержит: <u>Один</u> транзистор на первичной стороне и Один диод на вторичной стороне (как у традиционных FlyBack) при этом качество выходного напряжения (по пульсациям) и размер трансформатора ближе к однотактным - прямо ходовым топологиям ПН.

Достоинства:

1. Более простая схема чем у прототипа. Один диод D2 и один транзистор Q1 в силовом контуре. Контроллер UC3842 в QR режиме или любой QR контроллер.

- 2. Распространенные комплектующие которые имеются на складе.
- 3. Широкий диапазон работы позволяет отказаться от Sic Safco и Элеконд конденсаторов. (при старте на -50 град С. схема выдерживает провалы напряжения на холодном конденсаторе до =100B от =300B номинального или =200B нормального минимума итого запас 2x.). Номинальный диапазон напряжений заявлен как \sim 180-270B AC.
- 4. Мягкое переключение для Q2 и D2 позволяет работать на больших частотах с компактными трансформаторами.
- 5. Перспектива развития и переход на GaN.
- 6. Схема легко может включать в состав БП одноступенчатый корректор мощности SS_PFC. (есть опыт в KAH-Д 120)

Для проверки идеи создан макет со следующими изменениями от базовой схемы:

- 1. Управление от UC3842 в QR режиме работы. Ранее применялась в КАН-Д
- 2. Для UC3842 добавлена схема быстрого старта которая сокращает время запуска БП в 10 раз. <u>Оригинальная разработка</u>.
- 3. Синхронное выпрямление на трех транзисторной схеме управления. Простая и недорогая схема с ограниченной областью применения. Схема идеально стыкуется с данной топологией.
- 4. Применен режим ограничения нижней частоты работы. <u>Оригинальная разработка</u> облегчает настройку и ремонт блоков мастером. При низких напряжениях питания переводит БП в режим непрерывного тока дросселя. Расширяет диапазон работы по входному напряжению и уменьшает размер фильтров на входе и выходе источника питания.
- 5. Введена простая компенсация изменения входного напряжения. Применяется в КАН-Д.
- 6. Добавлена цепь R2, C2 гашения колебаний. Колебания возникают из-за наличия дополнительного резонансного контура с конденсатором C3.
- 7. Добавлена <u>Оригинальная система</u> мягкого запуска и защита при работе в режиме К3. Схема также защищает от перенапряжения на выходе.
- 8. Применен РОВ (реактивный ограничитель выброса) на выходе БП для утилизации выброса на клампере первичной стороны.
- 9. Топология пригодна для технологии АКЕТ (активная компенсация емкости трансформатора) которая подавляет первые гармоники рабочей частоты преобразователя на 10Дб в среднем. Проверено измерением ЭМС на серийных блоках. Недостаток связанный с нестабильностью барьерного Y2 конденсатора по температуре и трудностью выбора нужного номинала конденсатора решен комбинацией NPO и Y2 конденсатора. Оригинальная идея. 10. Добавлена технология пропуска импульсов на XX. Скопирована с других контроллеров.
- 11. Применен резистивный датчик тока на первичной стороне с порогом 400мВ. Меньшие потери при отсутствии дорогого трансформатора тока.
- 12. Оригинальная схема мягкого старта защиты от К3 совмещенная с защитой от перенапряжения. Экономия деталей.

Полная схема макета приведена ниже.

Задачей макета не ставилось оптимизация и достижение предельных характеристик.

- Трансформатор и Дроссель выбран из имеющихся утилизированных деталей.
- Не установлена схема ПАР
- Нет входного выпрямителя и фильтра.

Макет показал нормальную роботу в соответствии с PSpice моделью в программе Multisim. 14,2 .

При 300В DC на входе ИП , 27.2 В /13,34А на выходе (363Вт), частоте преобразования 140 кГц. КПД составил — 93,7%.

Типовые осциллограммы на XX, 8, 4 и 2 Ома приведены ниже.

Красный — Сток Зеленый -Исток Желтый затвор

Данный материал является ознакомительным. Экономический эффект требует расчета специалистами.

Гафаров Р.Х. 16,11,23

Топология импульсных преобразователей напряжения с гальванической развязкой Zeta Flyback и Zeta Quasi-resonant Flyback.

Основа схемы есть понижающая топология с емкостной развязкой типа Zeta.

При высокой эффективности магнитного компонента как у Buck топологии, выход из стоя ключа не приводит к повреждению нагрузки. Достоинство топологии Zeta.

Реализация топологии Zeta.

Соединение топологии Flyback и Zeta дает Zeta Flyback или Zeta Quasi-resonant Flyback

Типовая схема. Zeta Flyback

Похожие топологии Cuk и Sepic нам не подходят. Cuk дает инверсное напряжение. Sepic имеет большой RMS как у типичного Flyback.

Таблица для сравнения с популярными топологиями по ключевым характеристикам.

Топологии Параметр для сравнения	Zeta Quasi- resonant Flyback	<mark>Zeta</mark> <mark>Flyback</mark>	Flyback	Quasi- resonant Flyback	Forward Tow Switch	Forward Single Switch	Active Clamp
Удельная Мощность	Средняя Плюс	Средняя	Низкая	Низкая	Средняя	Средняя Минус	Высокая
Оптимальн ая мощность	Низкая Средняя	Низкая Плюс	Низкая	Низкая	Средняя Высокая	Средняя	Средняя
Входное напряжение оптимально е	Среднее/ Плюс	Низкое /среднее	Низкое /среднее	Среднее/ Плюс	Среднее /высокое/ оч.высокое (до 1000В)	Низкое/ среднее	Низкое /среднее Плюс
Диапазон входных напряжений	Очень широкий	Очень широкий	Очень широкий	Очень широкий	Узкий	Узкий (Широкий без доп. обмотки)	Широкий
Мягкое переключен ие	Хорошее/ отличное	Плохое/ среднее	Плохое/ среднее	Хорошее/ отличное	Плохое/ среднее	Плохое/ среднее	Отличное
Сложность схемы	Низкая	Низкая	Низкая	Низкая	Средняя	Низкая/ средняя	Высокая
Требование к RMS вырямитель ных конденсато ров	последовате льному	Низкие Высокие к последовате льному керамическ ому конденсато ру	Высокие	Высокие	Низкие	Низкие	Низкие
Количество моточных	Транс и дроссель	Транс и дроссель	Транс	Транс	Транс и дроссель	Транс и дроссель	Транс и дроссель

Приведенная выше топология позволяет получить вдвое бОльшую мощность с обратно ходового трансформатора при тех же режимах работы контроллера и уровне намагничивания сердечника.

Качество выходного напряжения соответствует однотактным Forward топологиям. Требование к RMS выходного конденсатора такие же как для Forward топологий.

Конечная топология есть симбиоз Quasi-resonant Fly back, Forward Single Switch и Zeta.

Получилось совмещение достоинств: Один транзистор, простой контроллер, простой алгоритм управления, широкий диапазон входных напряжений (как у Flyback), высокое качество выходного напряжения (как у Forward), широкий диапазон мощностей 3-300Вт (от Flyback до Forward Single), хорошая удельная мощность (как у Forward), один выпрямитель (как у Flyback), простое питание контроллера (как у Flyback), возможен квази — резонансный режим (как у QR Flyback), но нет обмотки размагничивания для рекуперирования тока намагничивания как у Forward.

АЕДону так же понравится. Пригодны для планарных трансов и высоких частот. Один выпрямитель. Можно удвоить мощность с одного трансформатора. Возможна групповая стабилизация.

Сказка, а не схема. И что делать с такой красотой?

Гафаров Руслан Харисович 30,09,23