Vandaag:

- Mitochondrien
- Plastiden
- Peroxisomen
- Cytoskelet (Microtubuli)

Endomembraan systeem: review

Glad ER:

- Suiker afbraak
- Synthese van lipiden
- Detoxificatie
- Ca²⁺ opslag (SR)

Ruw ER:

- Eiwit vouwing, modificatie (glycosylering) en transport
- Aanmaak en transport membranen

Golgi apparaat:

- Vervoer van eiwitten (ontvangen en versturen)
 - Opslag en modificatie van eiwitten en lipiden
 - Ook productie macromoleculen (koolhydraten)
 - Golgi heeft polariteit: Cis & Trans kant

<u>Lysosomen:</u>

- Blaasjes met zurig milieu
- Afbraak van macromoleculen (hydrolyse)
- Bevatten hydrolytische enzymen

Wel organellen met membranen, geen onderdeel van het endomembraan systeem

Mitochondriën (cel ademhaling)

Plastiden (o.a. chloroplasten)

Peroxisomen

Membraan eiwitten gemaakt door losse ribosomen (cytosol) én ribosomen in organellen.

Lipiden (membranen) worden zelf gemaakt of opgenomen uit cytosol.

Phylogenetic Tree of Life

Endosymbiose theorie

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

(a) Diagram and TEM of mitochondrion

© 2014 Pearson Education, Inc.

© 2014 Pearson Education, Inc.

<u>Plastiden</u>

Chloroplast (chlorofyl => fotosynthese)

Chromoplast (kleurstoffen => fruit / bloembladeren)

Leucoplast => plastiden zonder kleurstoffen

Amyloplast: opslag zetmeel

Elaioplasts: opslag lipiden

Proteinoplast: opslag eiwitten

• Etioplast: => niet ontwikkelde chloroplast door gebrek aan licht

Peroxisomen

Enkele membraan

m.n. betrokken bij detoxificatie

OH-groep van substraat wordt gekoppeld aan $\rm H_2O_2$ bevat enzymen om peroxide af te breken

Ook betrokken bij vetafbraak

Cytoskelet

Netwerk van draden (vezels) door hele cel heen.

Functie:

- Mechanische ondersteuning (behoud van vorm)
- Ankerplaats voor organellen (maar ook enzymen)
- Zorgt voor beweging (van hele cel, maar ook celonderdelen)
- Regulatie biochemische activiteit (extracellulaire signalen)

(dierlijke cellen)

Cytoskelet; 3 type structuren

1. Microtubuli : Ø 25 nm

2. Microfilamenten: Ø 7 nm

3. Intermediaire filamenten: Ø 8-12 nm

Property	Microtubules (Tubulin Polymers)	Microfilaments (Actin Filaments)	Intermediate Filaments
Structure	Hollow tubes; wall consists of 13 columns of tubulin molecules	Two intertwined strands of actin, each a polymer of actin subunits	Fibrous proteins supercoiled into thicker cables
Diameter	25 nm with 15-nm lumen	7 nm	8–12 nm
Protein subunits	Tubulin, a dimer consisting of α -tubulin and β -tubulin	Actin	One of several different proteins (such as keratins), depending on cell type
Main functions	Maintenance of cell shape (compression-resisting "girders")	Maintenance of cell shape (tension- pearing elements)	Maintenance of cell shape (tension- bearing elements)
	Cell motility (as in cilia or flagella)	Changes in cell shape	Anchorage of nucleus and certain other organelles Formation of nuclear lamina
	Chromosome movements in cell division Organelle movements	Muscle contraction	
		Cytoplasmic streaming Cell motility (as in pseudopodia)	
		Cell division (cleavage furrow formation)	
		• •••••••	

Centrosoom (centriolen)

Groei van microtubuli (organisatie) (bij dierlijke cellen) "Ring" van 9 tripletten microtubuli

Plantencellen:

Wel centrosomen Geen centriolen

Hoeveel protofilamenten bevat een centrosoom in een dierlijke cel?

13x3x9x2 = 702

Beweging via motor eiwitten

- Beweging van hele cellen via vezels
- Beweging ciliën en flagellen
- Transport via blaasjes "monorail"
- Rol in vervorming cel (fagocytosis)
- Circulatie organellen cytoplasma

Flagellen en Ciliën

Scanning electron micrograph of the surface of the mouse trachea - the surface is covered with ciliated cells that move mucus out of the airways.

© 2011 Pearson Education, Inc.

http://www.youtube.com/watch?v=oD8DLMoop4c

- Flagellen: voortbewegen van de cel
- Ciliën: voortbewegen van slijm langs de cel

Ciliën en Flagellen

Ciliën en Flagellen

Eukaryote cellen

Flagellen: koker van 9 paren microtubuli + 2 microtubuli in de kern (Ø 0.25 μm)

Ciliën en Flagellen

Eukaryote cellen

Flagellen => koker van 9 paren microtubuli + 2 microtubuli in de kern (Ø 0.25 μm) omgeven door een uitstulping van de cel membraan (1 of 5 per cel)

Ciliën => zelfde samenstelling, maar korter dan flagellen (meerdere per cel)

Hoe beweegt een flagel

De microtubuli in de koker bewegen langs elkaar heen dmv motor eiwitten (dynein) zodat de flagel buigt.

Hierdoor ontstaat een slag beweging

(a) Motion of flagella

beweging

(c)

Microfilamenten

- Kleine strengen van 7 nm doorsnede
- Opbouw: actine subunits G en F vormen strengen: actine filamenten
 - filamenten vormen ook een netwerk

Microfilament Structure and Assembly

Aanwezig in alle eukaryote cellen

Functie van microfilamenten; celvorm

- Weerstaan trekkracht: de cel houdt zijn vorm
- Vooral langs plasmamembraan => actine netwerk: gel

ACTIN IN ACTION

When a cell encounters an obstacle that pushes against its surface, the actin filaments of the cell's cytoskeleton bend slightly from the pressure . Acting like a sensor, these filaments build branches on the convex or outer side of the bend, creating a scaffold to help resist the pressure . Researchers discovered that Arp2/3 proteins that initiate polymerization of a new actin branches were more likely to bind a curved section of the filament than a straight one , explaining how the cell responds to force.

Functie van microfilamenten; celbeweging

Spiercellen:

Interactie actine en myosine (motor eiwit)
Of bij celdeling (insnoering celmembraan)

(a) Myosin motors in muscle cell contraction

Wat betekent "rigor mortis" en kun je uitleggen wat voor biologische proces hier van belang is?

Lijkstijfheid!

Figure 17-45 Essential Cell Biology, 2/e. (© 2004 Garland Science) 4

Functie van microfilamenten; celbeweging

Youtube: kruipende amoebe

Amoebe:

(b) Amoeboid movement

(c) Cytoplasmic streaming in plant cells

Intermediaire filamenten

- Doorsnede 8-12 nm
- Opbouw: polymeren van eiwitten, specifiek voor celtype (bv. keratine) filamenten vormen ook een netwerk (dus verschillende type eiwitten)
- Binnen in een cel zijn dit de meest "stabiele" filamenten (meer permanent)

Functie:

Weerstaan van trekkracht (net als microfilamenten)

Op plaats houden van celorganellen (celkern!)

Nucleaire lamina = intermediaire filamenten

Soort frame-werk voor het hele cytoskelet en celvorm

Meer permanentere structuur

Intermediaire filamenten; structuur

- In elkaar gedraaide keratine dimeren
- 8 dimeren vormen een intermediair filament

Synthese van het cytoskelet

Alle onderdelen van het cytoskelet hebben een polariteit: Plus- en minkant

Pluskant:

- hier vindt sneller (de-)polymerisatie plaats

Minkant:

- (de-)polymerisatie snelheid langzamer.

Dynamische geheel van opbouw en afbraak microtubuli en microfilamenten

Plus>min => groei filament

Plus<min=> krimpen van het filament

Plus=min=> lengte stabiel

En buiten de cel; cellen onder elkaar

Plantaardige cel: Celwand

Functie:

Vorm van de cel (vergelijk met het cytoskelet) Voorkomt te veel water opname

Opbouw: Microfibrillen van cellulose (glucose β-1,4 binding) en andere polysacchariden en eiwitten.

Jonge plant: dunne en flexibele celwand: primaire celwand (rol voor microtubuli)

Oude plant: secondaire celwand (dikker en sterker, bv. Hout)

Tussen 2 cellen: midden lamella (polysaccharide pectine)

Tussen 2 cellen: Kanalen (plasmodesmata)

Dierlijke cel: Extracellulaire matrix (ECM)

- Voornamelijk een netwerk van collageen met andere eiwitten en suikers
- Dit zorgt voor elasticiteit en binding van cellen aan elkaar

© 2011 Pearson Education, Inc.

Integrine: membraan gebonden eiwitten, geassocieerd met microfilamenten (ontvangt "stimuli" van buitenaf, stimuli opgevangen door microfilamenten, veranderingen binnen de cel); integrines zijn receptoren.

En buiten de cel; verbinding tussen cellen

Dierlijke cellen: Desmosomen, Gap junctions en Tight junctions

Tight junction:

Verbindt cellen en vormt een waterdicht netwerk

Opbouw: Specifieke eiwitten

Desmosomen:

- Verbindt cellen aan elkaar (anker)
- Contact met intermediaire filamenten
- Opbouw: Keratine

Gap junctions:

- Kanalen tussen 2 cellen
- Opbouw: Membraan eiwitten die doorlaatbaar zijn voor ionen, suikers, aminozuren (kanalen) (hartspier)

Vraag:

Welke cel verbindingen in dierlijke cellen hebben dezelfde functie als Plasmodesmata in plantaardige cellen?

- A. Gap junctions
- B. Desmosomen
- C. Tight junctions

Antwoord:

- A. Gap junctions
- B. Desmosomen
- C. Tight junctions