APA Modulo 1 Lezione 12

Elena Zucca

1 aprile 2020

Problemi NP-completi

- i problemi NP-completi sono i "più difficili" tra i problemi in NP
- ossia: se per qualcuno di questi problemi si trovasse un algoritmo polinomiale, se ne troverebbe uno per tutti quelli in NP, e quindi si dimostrerebbe che $P=\mathsf{NP}$
- infatti ognuno dei problemi in NP è riducibile a un problema NP-completo, nel senso formalizzato nel seguito

Riducibilità polinomiale

Definizione

Dati due problemi concreti \mathcal{P}_1 e \mathcal{P}_2 , diciamo che \mathcal{P}_1 è riducibile polinomialmente a \mathcal{P}_2 , e scriviamo $\mathcal{P}_1 \leq_P \mathcal{P}_2$, se esiste una funzione $f: \{0,1\}^* \to \{0,1\}^*$

detta funzione di riduzione, calcolabile in tempo polinomiale, tale che per ogni $x \in \{0,1\}^*$, $x \in \mathcal{P}_1$ se e solo se $f(x) \in \mathcal{P}_2$.

Elena Zucca APA-Zucca-3 1 aprile 2020 3 / 14

Riducibilità polinomiale

- nel caso di due problemi astratti $\mathcal{P}_1 \colon I_1 \to \{T, F\}$ e $\mathcal{P}_2 \colon I_2 \to \{T, F\}$
- la funzione di riduzione sarà:

$$f: I_1 \rightarrow I_2$$

- NB: un predicato P: I → {T, F} può essere visto equivalentemente come insieme (dei valori su cui vale T) {x | P(x) = T}
- quindi $x \in \mathcal{P}$ equivale a $\mathcal{P}(x) = T$

Esempio

- il problema della soddisfacibilità è polinomialmente riducibile a quello delle formule quantificate
- infatti data ϕ con variabili x_1, \ldots, x_n la formula di cui vogliamo verificare la soddisfacibilità
- la funzione f la trasforma in $\exists x_1 \dots \exists x_n . \phi$
- è una funzione calcolabile in tempo polinomiale, e ϕ soddisfacibile se e solo se $\exists x_1....\exists x_n.\phi$ vera

Lemma

Dati due problemi \mathcal{P}_1 e \mathcal{P}_2 tali che $\mathcal{P}_1 \leq_{\mathsf{P}} \mathcal{P}_2$ se $\mathcal{P}_2 \in P$ allora anche $\mathcal{P}_1 \in P$

Dimostrazione.

Dato un algoritmo polinomiale A_2 che risolve \mathcal{P}_2 , un algoritmo polinomiale A_1 che risolve \mathcal{P}_1 può essere ottenuto eseguendo, a partire da x, prima l'algoritmo polinomiale che calcola f(x), poi $A_2(f(x))$. L'algoritmo A_1 risulta polinomiale. L'algoritmo A_1 risolve \mathcal{P}_1 in quanto

$$A_1(x) = A_2(f(x)) = \mathcal{P}_2(f(x)) = \mathcal{P}_1(x).$$

Graficamente

- A_1 è polinomiale in quanto composizione in sequenza di due algoritmi polinomiali
- NB: A_2 è polinomiale rispetto a |y|
- MA |y| è polinomiale rispetto a |x|

Elena Zucca APA-Zucca-3 1 aprile 2020 7 / 14

Graficamente

- A_1 è corretto perché
- se $x \in \mathcal{P}_1$ allora $y \in \mathcal{P}_2$
- se $x \not\in \mathcal{P}_1$ allora $y \not\in \mathcal{P}_2$

Problemi NP-completi

Definizione

Un problema \mathcal{P} si dice

- NP-arduo o NP-difficile (in inglese NP-hard) se per ogni problema $\mathcal{Q} \in \mathsf{NP}$ si ha $\mathcal{Q} <_\mathsf{P} \mathcal{P}$
- NP-completo se appartiene alla classe NP ed è NP-arduo.
- Indichiamo con NP-C la classe dei problemi NP-completi.

Nota: Le nozioni di hard e completo si possono dare relativamente a una qualunque classe di problemi.

$$P \stackrel{?}{=} NP$$

Teorema

- Se un qualunque problema NP-completo appartiene alla classe P, allora si ha P = NP.
- Equivalentemente: se è P ≠ NP, quindi esiste almeno un problema in NP non risolvibile in tempo polinomiale, allora nessun problema NP-completo è risolvibile in tempo polinomiale.

Dimostrazione.

Ovvio in base al precedente lemma.

10 / 14

Come risolvere $P \stackrel{?}{=} NP$

- per risolvere il problema aperto due possibilità:
- per un qualunque problema in NP-C, trovare un algoritmo polinomiale \Rightarrow P = NP
- per un qualunque problema in NP-C, provare che non esiste un algoritmo polinomiale \Rightarrow P \neq NP

Graficamente

Elena Zucca APA-

1 aprile 2020

Come provare che un problema è NP-completo?

- per dimostrare che è in NP basta mostrare un algoritmo polinomiale che lo verifica (facile)
- come possiamo invece dimostrare che un problema in NP è NP-hard?
- punto di partenza: dimostrare che almeno un problema, sia $\hat{\mathcal{P}}$, è NP-completo, ossia $\mathcal{Q} \leq_{\mathsf{P}} \hat{\mathcal{P}}$ per ogni $\mathcal{Q} \in \mathsf{NP}$
- poi, possiamo provare che un altro, sia \mathcal{P} , lo è, mostrando $\hat{\mathcal{P}} \leq_{\mathsf{P}} \mathcal{P}$
- infatti per la transitività della relazione di riducibilità:
- $Q \leq_P \hat{\mathcal{P}}$ e $\hat{\mathcal{P}} \leq_P \mathcal{P}$ implica $Q \leq_P \mathcal{P}$ per ogni $Q \in \mathsf{NP}$
- nota metodologica: provare che un problema è NP-completo è utile opportuno cercare algoritmo approssimato o ridursi a sottoproblema per cui si possa trovare un algoritmo polinomiale

Teorema di Cook

- ullet bisogna quindi trovare un "primo" problema $\hat{\mathcal{P}}$ di cui dimostrare la NP-completezza
- difficile: bisogna provare $\mathcal{Q} \leq_{\mathsf{P}} \hat{\mathcal{P}}$ per ogni $\mathcal{Q} \in \mathsf{NP}$
- storicamente, il primo problema di cui è stata provata la NP-completezza (da Stephen Cook nel 1971) è il problema della soddisfacibilità.

Teorema di Cook

SAT è NP-completo.

• idea prova: algoritmo che, dato un problema $\mathcal{Q} \in \mathsf{NP}$ e un input x per \mathcal{Q} , costruisce una formula in CNF che descrive un algoritmo non deterministico per \mathcal{Q} , ossia la formula è soddisfacibile se e solo se l'algoritmo restituisce \mathcal{T} .