Cutoff		$\mathrm{CPU}\ \mathrm{time}(\mathrm{sec})$																			
length		Human chr 1				Human chr 2				Human chr 3				Human chr 4				Hum an chr 5			
(nt)	Kmer- SSR	ST RESS with	P E R	STRESS with	Kmer- SSR	STRESS with	P E R	STRESS with	Kmer- SSR	STRESS with	P E R	STRESS with	Kmer -SSR	STRESS with	P E R	ST RESS with	Kmer- SSR	STRESS with	P E R	STRESS with	
	oon	p=0	F	p=1	oon.	p=0	F	p=1	oon	p=0	F	p=1	-55R	p=0	F	p=1	oon.	p=0	F	p=1	
20	326	12	79	12.9	341	12	71	14.5	256	10.0	50	11.9	266	12.1	47	12.9	260	10.7	46	12.7	
50	326	12.2	81	13.2	341	12.2	74	1 3.2	255	10.1	60	12.0	267	11.9	58	12.9	260	10.2	55	13.2	
80	327	11.5	85	12.5	340	11.5	82	1 3.5	256	11.0	67	11.7	266	11.5	69	12.5	261	11.0	62	12.1	
110	326	12	99	12.8	341	12	94	13.0	256	10.0	77	12.1	265	12.1	74	1 3.1	260	10.0	70	11.8	
140	326	12	107	12.8	341	12	105	1 3.1	257	9.5	86	11.9	266	12.2	82	1 3.1	260	10.0	78	11.6	
170	326	12.3	118	13.3	342	12.3	116	13.3	256	10.3	95	12.1	266	12.0	107	13.7	260	10.3	87	12.0	
200	328	12.5	130	13.5	341	12.5	127	14.1	256	10.5	105	11.7	268	12.3	115	14.1	262	10.5	95	12.1	
230	326	13	142	13.6	341	13	139	13.9	258	9.0	114	12.1	267	13.4	119	14.4	260	10.0	104	12.0	
260	327	12	162	12.4	340	12	151	12.9	256	10.0	123	11.9	266	12.9	128	13.9	260	11.2	113	13.0	
290	326	13	165	13.8	340	13	162	13.9	256	10.1	132	12.2	267	13.5	138	14.8	263	9.0	121	10.4	
320	326	12	177	12.5	341	12	176	13.9	256	10.0	143	11.7	266	12.3	145	12.9	261	10.0	132	11.3	
350	328	11	196	12.2	341	12	185	13.2	257	9.0	152	11.1	265	11.9	152	12.9	260	9.0	139	10.1	

Supplementary Table 6: Performance evaluation on cutoff length