

### **SLU17 - Ethics and Fairness**

December 3rd, 2023

## 1. Introduction

#### **Motivation**

• Doing nothing is doing something

"Let the data set you free" - this is doing nothing

#### **Overview**

Objective: create awareness for ethical and fairness topics in data science

#### We will cover:

- Machine learning social loop
  - Components of a learning system and how it interacts with the world
- Personal data and sensitive information
- Types of bias in data collection and annotation

# 2. Topic Explanation

Learning loop Privacy Fairness

#### Meet the data science social loop



#### Not a neutral starting point



## Riddled with technical challenges



#### What the model truly "sees"



#### Plus manually imputed knowledge



## Hopefully it will generalize, though



#### In a controlled environment



#### First-order impacts go here



#### Higher-orders impact go here



#### Can we have some examples?



Learning loop Privacy Fairness



#### Personal data?

- Any specific information relating to an identifiable person
  - Name
  - Location
  - Physical, physiological, mental information
  - Genetic and biometric data
  - Economic or cultural characteristic

#### Sensitive data?

- Ethnicity
- Gender
- Political opinions
- Religious beliefs
- Higher level of scrutiny to general personal data

#### **Data Collection Checklist**

- Informed consent
- Purpose limitation
- Limited to relevant data
- Data accuracy and updated (if not, you probably should discard it)

#### **Data Storage Checklist**

- Secure and protect the data against unintended use
  - Internally
  - Externally (including intentional breach and unintentional exposure)
- Empowers users and subjects of interest
  - Access
  - Rectify
  - Erase their personal data (aka right to be forgotten)

#### **Processing & Modeling Checklist**

- Personal information should not be used, unless needed
- Honest representation
- Auditability and reproducibility should be ensured
- Data retention plan (periodically discard unnecessary data)
- Evaluate the model (user and social effects, concept drift, unintended use)
- Be ready to roll-back if you need to

# Most of these issues are solved with engineering

- Document everything
- Create sane APIs
- Have good DevOps
- Engineer your systems so that releases and rollbacks are business decisions rather than technical ones
  - i.e. release when you need to release an update, not because it is
    Tuesday and that's when the release cycle is

Learning loop Privacy Fairness

#### **Detection of bias**

- When evaluating a model we should do more than calculating a loss metric
- Fairness implies fair predictions for different subgroups
  - Audit the training data for data collection and annotation bias
  - Evaluate metrics for subgroups separately (being fairness aware)

#### Higher-orders impact go here



#### Be proactive, or else

#### Prediction Fails Differently for Black Defendants

|                                           | WHITE | AFRICAN AMERICAN |
|-------------------------------------------|-------|------------------|
| Labeled Higher Risk, But Didn't Re-Offend | 23.5% | 44.9%            |
| Labeled Lower Risk, Yet Did Re-Offend     | 47.7% | 28.0%            |

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes. (Source: ProPublica analysis of data from Broward County, Fla.)



# 3. Recap

#### Recap

- Understand the social impact of data science work
- Protect the privacy and security of your users and/or subjects of interest
- Pro-actively audit your data
- Evaluate your predictions for different sub-groups



# 4. Q&A