## **AMENDMENTS TO THE CLAIMS**

1.(Currently Amended) A method for forming a gate in a semiconductor device, comprising:

forming a first insulating film and a non-silicide conductive film on a semiconductor substrate;

patterning the first insulating film and the conductive film, to form a <u>non-silicide</u> gate, wherein the top and side surfaces of said <u>non-silicide</u> gate are exposed;

forming a second insulating film on said exposed top and side surfaces of said non-silicide gate and on an entire surface of the substrate, said second insulating film having a portion above the non-silicide gate that is thicker than the non-silicide gate, and a portion on an entire surface of the substrate that is thicker than the non-silicide gate;

planarizing the second insulating film, to again expose the top surface of the <u>non-silicide</u> gate;

depositing a refractory metal layer on an entire surface such that the refractory metal layer is adjacent to the patterned conductive film in contact with the top surface of said non-silicide gate;

forming a silicide layer on an upper surface of the <u>non-silicide</u> gate by heat treatment; and

etching the refractory metal layer and the second insulating film.

2. (Original) A method as claimed in claim 1, wherein the refractory metal

layer is formed of cobalt.

3. (Original) A method as claimed in claim 2, wherein the cobalt is

deposited to a thickness of 300 Å.

4. (Currently Amended) A method as claimed in claim 1, further

comprising forming gate sidewalls by depositing and etching back an insulating

layer after etching the second insulating film to leave an insulating film at sides of

the said non-silicide gate.

5. (Original) A method as claimed in claim 1, wherein the conductive film

is a polysilicon layer.

6. (Original) A method as claimed in claim 5, wherein the polysilicon layer

has a thickness of 2500 Å.

7. (Original) A method as claimed in claim 1, wherein the heat treatment

for forming the silicide layer is conducted at a temperature of 400 ~ 800 °C.

8. (Original) A method as claimed in claim 1, wherein the refractory metal

Page 3 of 10

layer that does not react is wet etched using H<sub>2</sub>SO<sub>4</sub> or HCl-based solution to remove the refractory metal layer.

- 9. (Original) A method as claimed in claim 1, wherein the planarizing includes a chemical mechanical polishing process Å.
- 10. (Currently Amended) A method of fabricating a gate in a semiconductor device, comprising:

forming a non-silicide conductive film on a semiconductor substrate;

patterning the conductive film, to form a <u>non-silicide</u> gate, wherein the top and side surfaces of said <u>non-silicide</u> gate are exposed;

forming an insulating film on said exposed top and side surfaces of said non-silicide gate and on an entire surface of the substrate, said insulating film having a portion above the non-silicide gate that is thicker than the non-silicide gate, and a portion on an entire surface of the substrate that is thicker than the non-silicide gate;

planarizing the second insulating film, to again expose the top surface of the non-silicide gate; and

forming a silicide pattern on the conductive pattern top surface of said non-silicide gate, the silicide pattern having a predetermined width, and being formed after the conductive pattern said non-silicide gate is formed, said step of forming a silicide pattern comprising:



forming a refractory metal on the conductive pattern said non-silicide gate such that the refractory metal is adjacent to the conductive pattern in contact with the top surface of said non-silicide gate; and

heat treating the refractory metal to form the silicide pattern having the predetermined width at an intersection between the refractory metal and the conductive pattern said non-silicide gate.

- 11. (Original) The method of claim 10, wherein the conductive pattern is formed of polysilicon.
- 12. (Original) The method of claim 11, wherein the polysilicon pattern has a thickness of 2500 Å.
- 13. (Original) The method of claim 1, wherein forming the polysilicon pattern comprises:

forming a polysilicon layer on the semiconductor substrate; and etching the polysilicon layer to the predetermined width.

14. (Original) The method of claim 13, further comprising:

forming an insulating layer on and around the polysilicon pattern; and

planarizing the insulating layer to expose a surface of the polysilicon

pattern before forming the refractory metal on the polysilicon layer.



15. (Original) The method of claim 14, wherein the refractory metal is cobalt.

16. (Original) The method of claim 15, wherein the cobalt is deposited to a thickness of 300 Å.

17. (Original) The method of claim 13, further comprising:

forming a gate insulating layer on the semiconductor substrate, the polysilicon layer being formed on the gate insulating layer; and

forming a gate insulating pattern by etching the gate insulating layer to the predetermined width.

18. (Original) The method of claim 17, wherein the polysilicon layer and the gate insulating layer are respectively etched to form the polysilicon pattern and the gate insulating pattern before the silicide pattern is formed.

19. (Original) The method of claim 18, wherein sides of the gate insulating layer, the polysilicon pattern and the silicide pattern are aligned orthogonal to a surface of the semiconductor substrate on which the gate insulating film is formed.

Appln. No.: 09/998,131

Art Unit: 2825

20. (Original) The method of claim 19, further comprising: forming a gate sidewall on at least one side of the gate insulating layer, the polysilicon pattern and the silicide pattern.

21. (Cancelled)