

CSC380: Principles of Data Science

Course wrap-up 1

Xinchen Yu

- Basic definitions: outcome space, events
- Probability P: maps events to [0, 1] values
 - Three axioms
 - Axiom 3: additivity
- Special case of P: each outcomes is equally likely

$$P(E) = \frac{|E|}{|\Omega|} \begin{tabular}{|c|c|c|c|} \hline Number of elements in event set \\ \hline |\Omega| \begin{tabular}{|c|c|c|c|c|} \hline Number of possible outcomes (36) \\ \hline \end{tabular}$$

distributive law, inclusion-exclusion rule; law of total probability

Lemma: (inclusion-exclusion rule) For <u>any</u> two events E_1 and E_2 ,

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Graphical Proof:

• $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

// distributive law

• $P(E \cap C) = P(E|C)P(C) = P(C|E)P(E)$

- Conditional probability
 - Chain rule

$$P(A \cap B \cap C) = P(A|B \cap C)P(B \cap C) = P(A|B \cap C)P(B|C)P(C)$$

Chain rule + law of total probability

$$P(A) = \sum_{i} P(A, B_i) = \sum_{i} P(B_i) P(A|B_i)$$

Bayes rule

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Independence of events:

$$P(A,B) = P(A)P(B)$$

When we have two events A and B...

- Conditional probability: P(A|B), $P(A^c|B)$, P(B|A) etc.
- Joint probability: P(A,B) or $P(A^c,B)$ or ...
- Marginal probability: P(A) or $P(A^c)$

- Discrete random variable X (e.g., sum of two dice)
 - Representation of its distribution: probability mass function (PMF)
 - \circ Tabular representation of joint distribution of 2 RVs (X,Y)
 - PMF of XY, X+Y given independence

 RVs: law of total probability, conditional probability, chain rule, bayes rule, independence, conditional independence

$$p(Y \mid Z) = \sum_{x} p(Y, X = x \mid Z)$$

$$p(X = x, Y = y \mid Z = z) = p(X = x \mid Z = z)p(Y = y \mid Z = z)$$

- Useful discrete distributions
 - Uniform
 - Bernoulli
 - Binominal

- Moments of random variables: expectation, variance, covariance
- Calculate mean (expectation) and variance of RVs
 - Linearity of expectation: E[X + cY] = E[X] + cE[Y] for constant c
 - \circ $\mathsf{E}[X^2]$
 - \circ $\mathsf{E}[XY]$
 - If independent: E[X]E[Y]
 - If not independent: $E[XY] = \sum_{(x,y)} xy \cdot p(x,y)$ $E[X \mid Y = y]$
 - \circ Var[cX]
 - Var[X+Y] when independent

- Expectation and variance of useful distributions
 - Bernoulli
 - Gaussian

Expectation

$$E[X] = \sum_{x} x \cdot p(X = x)$$

Properties

$$E[X + Y] = E[X] + E[Y]$$

 $E[cX] = cE[X]$
 $E[c] = c$
 c is a constant

Conditional expected value

$$E[X|Y=y] = \sum_{x} x \cdot p(X=x|Y=y)$$

Variance

$$Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

Properties

$$Var[cX] = c^2 Var[X]$$

Covariance

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

= $E[XY] - E[X]E[Y]$

$$Cov(X,X) = E[X^2] - E[X]E[X] = Var(X)$$

• Variance of X + Y

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]$$

Theorem: If $X \perp Y$ then $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$.

Comparison: E[X + Y] = E[X] + E[Y] regardless of independence!

Theorem: If $X \perp Y$ then Var[X + Y] = Var[X] + Var[Y]

Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y)

 $\mathbf{Cov}(X,Y) = 0$

Find the Marginal PMFs of X and Y.

$$P_X(0) = \frac{1}{5} + \frac{2}{5} = \frac{3}{5},$$

$$P_X(1) = \frac{2}{5} + 0 = \frac{2}{5},$$

$$P_Y(0) = \frac{1}{5} + \frac{2}{5} = \frac{3}{5},$$

$$P_Y(1) = \frac{2}{5} + 0 = \frac{2}{5}.$$

	Y = 0	Y = 1
X = 0	<u>1</u> 5	$\frac{2}{5}$
X = 1	<u>2</u> 5	0

Find the conditional PMF of X given Y=0 and Y=1

$$P_{X|Y}(0|0) = \frac{P_{XY}(0,0)}{P_{Y}(0)}$$
$$= \frac{\frac{1}{5}}{\frac{3}{5}} = \frac{1}{3}.$$

$$P_{X|Y}(0|1) = 1,$$

 $P_{X|Y}(1|1) = 0.$

D (110)	1				2
$P_{X Y}(1 0) =$	1	_	$\frac{1}{3}$	=	$\frac{1}{3}$

$$X|Y = 0 \sim Bernoulli\left(\frac{2}{3}\right)$$
.

	Y = 0	Y = 1
X = 0	<u>1</u>	<u>2</u> 5
X = 1	<u>2</u> 5	0

Let Z=E[X|Y], find the PMF of Z.

$$Z = E[X|Y] = \begin{cases} E[X|Y=0] & \text{if } Y=0 \\ \\ E[X|Y=1] & \text{if } Y=1 \end{cases}$$

$$E[X|Y = 0] = \frac{2}{3}, \qquad E[X|Y = 1] = 0,$$

$$Z = E[X|Y] = \begin{cases} \frac{2}{3} & \text{with probability } \frac{3}{5} \\ 0 & \text{with probability } \frac{2}{5} \end{cases}$$

	Y = 0	Y = 1
X = 0	<u>1</u> 5	<u>2</u> 5
X = 1	<u>2</u> 5	0

$$P_{Z}(z) = \begin{cases} \frac{3}{5} & \text{if } z = \frac{2}{3} \\ \\ \frac{2}{5} & \text{if } z = 0 \\ \\ 0 & \text{otherwise} \end{cases}$$

Let Z=E[X|Y], find E[Z].

$$P_{Z}(z) = \begin{cases} \frac{3}{5} & \text{if } z = \frac{2}{3} \\ \\ \frac{2}{5} & \text{if } z = 0 \\ \\ 0 & \text{otherwise} \end{cases}$$

$$E[Z] = \frac{2}{3} \cdot \frac{3}{5} + 0 \cdot \frac{2}{5} = \frac{2}{5}.$$

	Y = 0	Y = 1
X = 0	$\frac{1}{5}$	<u>2</u> 5
X = 1	$\frac{2}{5}$	0

Let Z=E[X|Y], find var(Z).

$$Var(Z) = E[Z^2] - (EZ)^2$$

= $E[Z^2] - \frac{4}{25}$,

$$E[Z^2] = \frac{4}{9} \cdot \frac{3}{5} + 0 \cdot \frac{2}{5} = \frac{4}{15}.$$

$$Var(Z) = \frac{4}{15} - \frac{4}{25}$$
$$= \frac{8}{75}.$$

	Y = 0	Y = 1
X = 0	<u>1</u>	<u>2</u> 5
X = 1	<u>2</u> 5	0

$$P_{Z}(z) = \begin{cases} \frac{3}{5} & \text{if } z = \frac{2}{3} \\ \\ \frac{2}{5} & \text{if } z = 0 \\ \\ 0 & \text{otherwise} \end{cases}$$

- Statistics: make statements about data generation process based on data seen; reverse engineering
- Point estimation
 - Given iid samples $X_1, ..., X_n \sim \mathcal{D}_{\theta}$, estimate θ by constructing statistics $\hat{\theta}_n$
 - Basic estimators: sample mean, sample variance
 - Performance measures: unbiasedness, consistency, MSE (efficiency)
 - Bias-variance decomposition:
 - $MSE(\hat{\theta}) = bias(\hat{\theta})^2 + var(\hat{\theta})$
- Useful probability tools:
 - Law of Large Numbers
 - Central Limit Theorem

Sample mean, sample variance

- Sample variance
 - biased version
 - unbiased version
 - how to determine an estimator is biased or unbiased?
- MSE, Bias, Variance
 - how to calculate expectation and variance if there are more than 1 random variable -- use what we learned in probability lecture 5 & 6

Calculate bias and variance

$$\begin{aligned} \mathrm{MSE}(\hat{\theta}_n) &= \mathbf{E}[(\hat{\theta}_n - \theta)^2] \\ &= \left(\mathbf{E}[\hat{\theta}] - \theta\right)^2 + \mathbf{E}[(\hat{\theta} - \mathbf{E}[\hat{\theta}])^2] \\ &= \mathrm{bias}^2(\hat{\theta}) + \mathrm{Var}(\hat{\theta}) \end{aligned}$$

Important properties of Gaussian

• Closed under additivity:

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$
 $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

Closed under affine transformation (a and b constant):

$$aX + b \sim \mathcal{N}(a\mu_x + b, a^2\sigma_x^2)$$

Midterm solutions

- 9. Given a distribution D with unknown mean μ and variance σ^2 , and a set of n iid samples X_1, \ldots, X_n drawn from it. Define $\tilde{\mu}_n = \frac{1}{n-1} \sum_{i=1}^n X_i$ as an estimator of μ .
- (a) (4 points) Is $\tilde{\mu}_n$ an unbiased estimator of μ ? Justify your answer.
- (b) (6 points) Let n=4. What is the bias, variance, and Mean Square Error (MSE) of $\tilde{\mu}_4$, respectively? Note: For variance, you can compute $Var[\tilde{\mu}_4]$, in other words, $Var[\frac{X_1+X_2+X_3+X_4}{3}]$. (You can have μ, σ^2 or numbers in the results).

$$\tilde{\mu}_n = \frac{1}{n-1} \sum_{i=1}^n X_i \qquad E[\tilde{\mu}_n] = E\left[\frac{1}{n-1} \sum_{i=1}^n X_i\right]$$
 Lecture statistics 3, page 7
$$= \frac{1}{n-1} E\left[\sum_{i=1}^n X_i\right]$$

$$= \frac{1}{n-1} \sum_{i=1}^n E[X_i]$$

$$= \frac{1}{n-1} \sum_{i=1}^n E[X_i]$$

$$= \frac{1}{n-1} \sum_{i=1}^n \mu = \frac{n\mu}{n-1}$$

Midterm solutions

9. Given a distribution D with unknown mean μ and variance σ^2 , and a set of n iid samples X_1, \ldots, X_n drawn from it. Define $\tilde{\mu}_n = \frac{1}{n-1} \sum_{i=1}^n X_i$ as an estimator of μ .

(a) (4 points) Is $\tilde{\mu}_n$ an unbiased estimator of μ ? Justify your answer.

(b) (6 points) Let n=4. What is the bias, variance, and Mean Square Error (MSE) of $\tilde{\mu}_4$, respectively? Note: For variance, you can compute $Var[\tilde{\mu}_4]$, in other words, $Var[\frac{X_1+X_2+X_3+X_4}{3}]$. (You can have μ, σ^2 or numbers in the results).

$$\begin{split} \tilde{\mu}_4 &= \frac{1}{3}(X_1 + X_2 + X_3 + X_4) & \mathbf{Var}[\tilde{\mu}_4] = \mathbf{Var} \left[\frac{1}{3}(X_1 + X_2 + X_3 + X_4) \right] \\ \mathbf{Bias}(\tilde{\mu}_4) &= E[\tilde{\mu}_4] - \mu & = \frac{1}{9}\mathbf{Var}[X_1 + X_2 + X_3 + X_4] \\ &= \frac{4\mu}{3} - \mu & = \frac{1}{9}(\mathbf{Var}[X_1] + \mathbf{Var}[X_2] + \mathbf{Var}[X_3] + \mathbf{Var}[X_4]) \\ &= \frac{\mu}{3} & = \frac{1}{9}(4\sigma^2) \end{split}$$

$$\mathbf{MSE}(\tilde{\mu}_4) = \mathbf{Var}[\tilde{\mu}_4] + \mathbf{Bias}(\tilde{\mu}_4)^2 = \frac{4\sigma^2 + \mu^2}{9}$$

Lecture statistics 3, page 8 and 18

Simple Random Sample (SRS)

Each member of the population has the *same chance* of being selected (i.e., uniform over the population)

Example : American Community Survey (ACS)

Each year the US Census Bureau use simple random sampling to select individuals in the US. They follow those individuals for 1 year to draw conclusions about the US population as a whole.

Systematic Sample

Select members of population at a regular interval, determined in advance

Example You own a grocery store and want to study customer satisfaction. You ask *every 20th* customer at checkout about their level of satisfaction.

Note We cannot itemize the whole population in this example, so SRS is not possible.

Stratified Sample

Divide population into homogeneous subpopulations (strata). Probability sample the strata.

Example We wish to solicit opinions of UA CS freshman by asking 100 of them, but they are about 14% women. SRS could easily fail to capture adequate number of women. We divide into men / women and perform SRS within each group.

Cluster Sample

Divide population into subgroups (clusters). Randomly select entire clusters.

Example We wish to study the average reading level of *all* 7th graders in the city (population). Create a list of all schools (clusters) then randomly select a subset of schools and test every student.