Progetto di Data Mining 21/02/2020 Luca Ragazzi

Text Mining su articoli della BBC

Lo scopo del progetto si articola in 2 task:

- Classificare gli articoli della BBC rispetto al topic di appartenenza (sport, tecnologia, politica, business e intrattenimento) mediante l'utilizzo del software Weka;
- Per ogni topic, capire qual'è l'argomento più discusso (con rilevazione dei termini più correlati ad ogni topic);

Data set utilizzato

Sono presenti dati su 2225 articoli della BBC relativi a 5 topic diversi, tra cui sport, tecnologia, politica, business e intrattenimento.

Il data set è composto da 2 colonne, una per il topic dell'articolo (*category*) e una per il testo (*text*).

1

Classificazione degli articoli della BBC con Weka

Caricamento dei dati

Il primo step è il caricamento dei dati in Weka:

- Aprire l'*Explorer* di Weka;
- Aprire il file *bbc-text.arff*;
- Impostare category come attributo classe;

Preprocessing dei dati

Bisogna effettuare il preprocessing dei dati:

• Applicare il filtro *ReplaceMissingValues* (unsupervised, attribute) per gestire attributi con un numero elevato di valori mancanti (sostituiti con la media o la moda dell'attributo corrispondente);

Estrazione delle feature

Per estrarre le feature dal testo, siccome si sta lavorando con un attributo testuale, occorre strutturare l'attributo destrutturato (*text*):

• Applicare il filtro *StringTo Word Vector* (unsupervised, attribute) per poter effettuare diverse operazioni, come l'estrazione delle singole parole dai testi (tokenization), la rimozione/ trasformazione delle parole per ridurne il numero (stemming), la selezione delle parole più rilevanti (con TF-IDF) e aggiunta di nuovi attributi in sostituzione di quelli originali. Impostare le seguenti opzioni:

- attributeNamePrexis = "w_";

- doNotOperateOnPerClassBasis = True;
- lowerCaseTokens = True;
- *stopwordsHandler* = Rainbow;
- words To Keep = 100;

In questo modo viene rimosso l'attributo destrutturato (string) e sono creati 100 attributi "w_parola" che valgono 1 nelle istanze dove parola era presente, 0 altrimenti.

Generazione del modello di classificazione

L'ultimo step è la generazione del modello di classificazione. Per classificare nuovi documenti le stesse trasformazioni con *StringToWordVector* si applicano ad ogni documento da classificare per renderli compatibili con il modello, ma non insieme alla creazione del training set. A tale scopo si utilizza il *FilteredClassifier* (meta-algoritmo):

- Con *StringToWordVector* in *FilteredClassifier* prima il training set è usato per estrarre le feature e trasformato e solo successivamente il test set è trasformato con le stesse feature;
 - Impostare Percentage split a 66% e classe category;
- In FilteredClassifier utilizzare sia l'algoritmo J48 (trees) che l'algoritmo DMNBtext (bayes);

Impostando do Not Operate On Per Class Basis a False verrano estratte almeno words To Keep per ciascuna classe.

Obiettivo della classificazione è trovare, per ogni algoritmo, il valore minimo di words ToKeep per continuare ad avere sia la Precision che la Recall di ogni classe oltre il 90%, utilizzando sia l'estrazione di feature per ciascuna classe (doNotOperateOnPerClassBasis = False) che l'altra tecnica. Inoltre, testare il modello sia con l'utilizzo dello Stemming che senza nel preprocessing dei dati.

Risultati ottenuti per l'algoritmo DMNBtext

Selezionando le feature senza considerare le classi (doNotOperateOnPerClassBasis = True) il numero minore di wordsToKeep che permette di mantenere una Precision e una Recall superiori al 90%, per ogni classe, è 352 e l'accuratezza della classificazione è 94,5767%.

Nell'altra casistica (doNotOperateOnPerClassBasis = False) il numero minimo di wordsToKeep è 34 e l'accuratezza della classificazione è 93,7831%.

Risultati ottenuti con J48

Selezionando le feature senza considerare le classi, il numero di wordsToKeep è 338 e l'accuratezza è 84,3915%, decisamente inferiore rispetto l'algoritmo precedente.

Questo risultato ha portato a non considerare l'estrazione di feature per classe, ma a testare un ulteriore algoritmo di classificazione, RandomForest.

Risultati ottenuti con RandomForest

Per continuare ad avere una Precision e Recall oltre il 90% il numero minimo di words ToKeep è 325 con accuratezza del 94,1799%. Inoltre, è stato effettuato lo Stemming con Iterated Lovins Stemmer, notando che dava risultati migliori.

L'ultimo test, con do Not Operate On Per Class Basis a False, ha ottenuto un'accuratezza del 93,1217% con words To Keep a 56, sempre con l'utilizzo di Iterated Lovins Stemmer nel preprocessing.

Visualizzazione degli attributi rilevanti per la classificazione

Dalla scheda Select attributes si esegue la selezione di un sottoinsieme di attributi più informativi (quelli che più di altri aiutano a comprendere il topic di un articolo). La selezione prevede due operazioni, una per il metodo di valutazione e una per il metodo di ricerca. In questa analisi è stato utilizzato CfsSubsetEval come metodo di valutazione e BestFirst come metodo di ricerca. Nel Preproccesing dei dati è stato selezionato daNotOperateOnPerClassBasis a True e

words To Keep a 100 (per poter visualizzare in un'unica schermata tutti gli attributi selezionati).

Estrazione della conoscenza sugli articoli della BBC con R

Con il software R si vuole individuare quale è l'argomento più discusso all'interno degli articoli delle diverse categorie.

A tale proposito è stata applicata la Latent Semantic Analysis con lo scopo di portare sullo stesso spazio multi-dimensionale sia i termini che i documenti per cercare correlazioni semantiche tra essi. Sono stati utilizzati test statistici (con test chi-quadro) per verificare la correlazione tra i termini e i topic dei documenti.

Applicando il fold-in di nuove query (sempre più specifiche) nello spazio LSA è stato possibile capire quali fossero gli argomenti più discussi all'interno dei diversi topic.

Nel seguito sono riportati risultati ottenuti per le categorie di "sport" e di "politica".

Categoria SPORT

I termini risultati più rilevanti sono "team cup coach ireland". Il topic più ricorrente per gli articoli sportivi è correlato a questi termini, ovvero si parla delle interviste fatte a diversi allenatori (coach) relative ai match della loro squadra (team) in diverse competizione di coppa (cup) contro l'Irlanda (ireland) o nel futuro scontro contro essa.

Categoria POLITICA

Il topic più ricorrente per gli articoli sulla politica è correlato ai termini "labour party blair tory tories", ovvero negli articoli si parla degli scontri tra il partito laburista britannico (labour party) con il politico Tony Blair (blair) e il partito conservatore Tory (tory) con i suoi sostenitori (tories).