Kapitola VIII. (Bonus) LR syntaktická analýza

LR syntaktický analyzátor

- Necht' G = (N, T, P, S) je BKG, kde $N = \{A_1, A_2, \dots, A_n\}, T = \{a_1, a_2, \dots, a_m\}$
- LR-syntaktický analyzátor je rozšířený zásobníkový automat M se stavy $Q = \{q_0, q_1, ..., q_k\}$, kde q_0 je počáteční stav.
- Činnost *M* je založena na LR tabulce, která má následující dvě části:
 - 1) Akční část (tabulka akcí)
 - 2) Přechodová část (tabulka přechodů)

Akční část & přechodová část

Akční část:

$$\alpha[q_i, a_i] = 1, 2, 3 \text{ nebo } 4$$

- 1) sq: s = shift, $q \in Q$
- 2) rp: $\mathbf{r} = r$ edukce, $p \in P$
- 3) **:** úspěch
- 4) prázdné políčko: chyba

Přechodová část:

$$\beta[q_i, A_j] = 1 \text{ nebo } 2$$

- 1) $q: q \in Q$
- 2) prázdné políčko

LR syntaktický analyzátor: Algoritmus

- Vstup: LR tabulka pro $G = (N, T, P, S); x \in T^*$
- Výstup: Pravý rozbor x, pokud $x \in L(G)$, jinak chyba
- Metoda:
- Vlož $\langle \$, q_0 \rangle$ na zásobník; *stav* := q_0 ;
- repeat
 - nechť $a = aktuální znak na vstupu case <math>\alpha[stav, a]$ of:
 - sq: push($\langle a, q \rangle$) & přečti další symbol a ze vstupu & stav := q;
 - rp: zaměň $\langle ?, q \rangle \langle X_1, ? \rangle \langle X_2, ? \rangle ... \langle X_n, ? \rangle$ za $\langle A, stav \rangle$ na vrcholu zásobníku & zapiš p na výstup, kde p: $A \rightarrow X_1 X_2 ... X_n \in P$ and $stav := \beta[q, A]$;
 - 🙂: úspěch
 - prázdné políčko: chyba until úspěch or chyba

LR syntaktický analyzátor: Příklad 1/2

```
G_{expr1} = (N, T, P, E), \text{ kde } N = \{E, F, T\}, T = \{i, +, *, (,)\},
P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F,
4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i\}
```

LR-tabulka pro G_{expr1} :

α	i	+	*)	\$		β	E	T	F
0 1 2 3 4 5 6 7 8 9 10 11	s5 s5 s5	s6 r2 r4 r6 s6 r1 r3 r5	s7 r4 r6 s7 r3 r5	s4 s4 s4	r2 r4 r6 s11 r1 r3 r5	© r2 r4 r6 r1 r3 r5	Akční část pro G_{expr1} Přechodová část pro G_{expr1}	0 1 2 3 4 5 6 7 8 9 10 11	1 8	2 9	3 3 10

LR syntaktický analyzátor: Příklad 2/2

Pravidla: $1: E \rightarrow E+T, 2: E \rightarrow T, 3: T \rightarrow T*F, 4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i$

Vstupní řetězec: i * i \$

Zásobník	St.	Vstup	Akce	Pravidlo
$\langle \$, 0 \rangle$	0	<i>i*i</i> \$	$\alpha[0, i] = s5$	
$\langle \$, 0 \rangle \langle i, 5 \rangle$	5	*i\$	$\alpha[5, *] = r6$	$6: F \rightarrow i$
			$\beta[0, F] = 3$	
$\langle \$, 0 \rangle \langle F, 3 \rangle$	3	*i\$	$\alpha[3, *] = r4$	$4: T \rightarrow F$
			$\beta[0, T] = 2$	
$\langle \$, 0 \rangle \langle T, 2 \rangle$	2	*i\$	$\alpha[2, *] = \$7$	
$\langle \$, 0 \rangle \langle T, 2 \rangle \langle *, 7 \rangle$	7	<i>i</i> \$	$\alpha[7, i] = s5$	
$\langle \$, 0 \rangle \langle T, 2 \rangle \langle *, 7 \rangle \langle i, 5 \rangle$	5	\$	$\alpha[5,\$]=\mathbf{r}6$	
			$\beta[7, F] = 10$	
$\langle \$, 0 \rangle \langle T, 2 \rangle \langle *, 7 \rangle \langle F, 10 \rangle$	10	\$		$3: T \rightarrow T*F$
			$\beta[0, T] = 2$	
$\langle \$, 0 \rangle \langle T, 2 \rangle$	2	\$	$\alpha[2,\$]=r2$	
		l .	$\beta[0, E] = 1$	Úspěch
$\langle \$, 0 \rangle \langle E, 1 \rangle$	1	\$	$\alpha[1, \$] = \bigcirc$	Pravý rozbor: 646

Konstrukce LR tabulky: Úvod

• Jeden algoritmus pro syntaktickou analýzu, ale spousta algoritmů pro konstrukci LR-tabulky.

Základní algoritmy pro konstrukci LR tabulky:

- 1) Simple LR (SLR): nejslabší, ale jednoduchý a vytvoří málo stavů
- 2) Canonical LR: více silný, ale vytvoří poměrně hodně stavů
- 3) Lookahead LR (LALR): nejlepší, protože nejsilnější a vytvoří stejný počet stavů jako SLR

Rozšířená gramatika s "hloupým" pravidlem

Myšlenka: Gramatika se speciálním "startovacím pravidlem"

Definice: Necht'
$$G = (N, T, P, S)$$
 je BKG, $S' \notin N$. $Rozšířená gramatika$ pro G je gramatika $G' = (N \cup \{S'\}, T, P \cup \{S' \rightarrow S\}, S')$.

Proč hloupé pravidlo? Až je použito pravidlo $S' \rightarrow S$ a vstupní token je ukončovač řetězce, potom je syntaktická analýza **úspěšně dokončena**.

Příklad:

$$K = (N, T, P, S)$$
, where $N = \{S, A\}$, $T = \{i, o, (,)\}$, $P = \{1: S \rightarrow SoA, 2: S \rightarrow A, 3: A \rightarrow i, 4: A \rightarrow (S)\}$

Rozšířená gramatika pro K:

$$H = (N, T, P, S'), \text{ kde } N = \{S', S, A\}, T = \{i, o, (,)\}, P = \{0: S' \to S, 1: S \to SoA, 2: S \to A, 3: A \to i, 4: A \to (S)\}$$

Konstrukce LR tabulky: Položky

Myšlenka: Položka je pravidlo s tečkou • na pravé straně pravidla.

Definice: Necht' G = (N, T, P, S) je BKG, $A \rightarrow x \in P, x = yz$. Potom $A \rightarrow y \cdot z$ je položka.

Příklad: Uvažujme $S \rightarrow SoA$

Všechny položky pro pravidlo $S \rightarrow SoA$ jsou:

 $S \rightarrow \bullet SoA, S \rightarrow S \bullet oA, S \rightarrow So \bullet A, S \rightarrow SoA \bullet$

Význam: $A \rightarrow y \bullet z$ říká, že pokud y se vyskytuje na zásobníku a prefix zbytku vstupního řetězce se dá postupně zredukovat na z, potom yz = x může být zredukováno na A užitím pravidla $A \rightarrow x$.

Uzávěr položek: Algoritmus

Pozn.: Uzávěr položky *I*, *Closure*(*I*) je množina položek definována pomocí následujícího algoritmu:

- Vstup: G = (N, T, P, S); položka I
- Výstup: Closure(I)
- Metoda:
- $Closure(I) := \{I\};$
- Používej následující pravidlo, dokud bude možné měnit množinu *Closure(I)*:
 - if $A \to y \bullet Bz \in Closure(I)$ and $B \to x \in P$ then přidej položku $B \to \bullet x$ do Closure(I)

Uzávěr položek: Příklad 1/2

```
H = (N, T, P, S'), \text{ kde } N = \{S', S, A\}, T = \{i, o, (, )\}, P = \{0: S' \to S, 1: S \to SoA, 2: S \to A, 3: A \to i, 4: A \to (S)\}
```

Určeme: Closure(I) for $I = S' \rightarrow \bullet S$

$$Closure(I) := \{S' \rightarrow \bullet S\}$$

- 1) $S' \rightarrow \bullet S \in Closure(I) \& S \rightarrow SoA \in P$: **přidej** $S \rightarrow \bullet SoA$ **do** Closure(I) $Closure(I) = \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA\}$
- 2) $S' \rightarrow \bullet S \in Closure(I) \& S \rightarrow A \in P$: přidej $S \rightarrow \bullet A$ do Closure(I) $Closure(I) = \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A\}$

Uzávěr položek: Příklad 2/2

$$H = (N, T, P, S'), \text{ kde } N = \{S', S, A\}, T = \{i, o, (,)\}, P = \{0: S' \to S, 1: S \to SoA, 2: S \to A, 3: A \to i, 4: A \to (S)\}$$

- 3) $S \rightarrow \bullet A \in Closure(I) \& A \rightarrow i \in P$: přidej $A \rightarrow \bullet i$ do Closure(I) $Closure(I) = \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i\}$
- 4) $S \rightarrow \bullet A \in Closure(I) \& A \rightarrow (S) \in P$: **přidej** $A \rightarrow \bullet (S)$ **do** Closure(I)

Celkově:

 $Closure(I) = \{S' \to \bullet S, S \to \bullet SoA, S \to \bullet A, A \to \bullet i, A \to \bullet (S)\}$

Množina $\Theta_U(I)$ pro G

Myšlenka: Pro symbol U a množinu položek I, $\Theta_U(I)$ značí sjednocení všech uzávěrů tvaru $Closure(A \rightarrow yU \bullet z)$, kde $A \rightarrow y \bullet Uz \in I$.

Definice: Necht' G = (N, T, P, S) je BKG, I je množina položek a $U \in T \cup N$. Potom $\Theta_U(I) = \{j: j \in Closure(A \rightarrow yU \circ z), A \rightarrow y \circ Uz \in I\}$

Příklad:

```
H = (N, T, P, S'), \text{ kde } N = \{S', S, A\}, T = \{i, o, (,)\},\
P = \{0: S' \rightarrow S, 1: S \rightarrow SoA, 2: S \rightarrow A, 3: A \rightarrow i, 4: A \rightarrow (S)\},\
I = \{S \rightarrow So \bullet A, S \rightarrow \bullet A, A \rightarrow \bullet (S)\}
```

Určeme: $\Theta_{A}(\mathbf{P})$

 $Closure(S \rightarrow SoA \bullet) \smile Closure(S \rightarrow A \bullet) = \{S \rightarrow SoA \bullet, S \rightarrow A \bullet\}$

Určeme: $\Theta(\mathcal{D})$

 $Closure(A \rightarrow (\bullet S)) = \{A \rightarrow (\bullet S), S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}$

Množina Θ_G pro gramatiku G

Pozn.: Množina Θ_G pro gramatiku G je množina množin položek definovaných následujícím algoritmem:

- Vstup: Rozšířená G = (N, T, P, S')
- Výstup: Θ_G pro gramatiku G
- Metoda:
- $\Theta_G := \{Closure(S' \rightarrow \bullet S)\};$
- for each $I \in \Theta_G$ and $U \in N \cup T$ if $\Theta_U(I) \neq \emptyset$ then přidej $\Theta_U(I)$ do Θ_G

Množina Θ_G : Příklad

```
H = (N, T, P, S'), \text{ kde } N = \{S', S, A\}, T = \{i, o, (, )\}, P = \{0: S' \to S, 1: S \to SoA, 2: S \to A, 3: A \to i, 4: A \to (S)\}
```


Pojmenování členů množiny Θ_G

Pojmenujte prvky Θ_G jako I_0 až I_n , kde n+1 je počet prvků (množin) v Θ_G . Množinu obsahující $S' \to \bullet S$ označme I_0 .

Konstrukce LR tabulky: SLR Algoritmus

- Vstup: Rozšířená gramatika $G = (N, T, P, S'); \Theta_G;$ Follow(A) pro všechna $A \in N$
- Výstup: LR tabulka pro G (α = akční č., β = přechodová č.)
- Metoda:
- StatesOfTable := Θ_G ; StartState := Closure($S' \rightarrow \bullet S$);
- for each $x \in \Theta_G$ do
- for each $I \in x$ do
 - case I of
 - $I = A \rightarrow y \bullet Xz$, kde $X \in N$: $\beta[x, X] := \Theta_X(x)$
 - $I = A \rightarrow y \bullet Xz$, kde $X \in T$: $\alpha[x, X] := s\Theta_X(x)$
 - $I = S' \rightarrow S \bullet : \alpha[x, \$] := \bigcirc$
 - $I = A \rightarrow y$ $(A \neq S')$: for each $a \in Follow(A)$ do $\alpha[x, a] := rp$, kde p je návěští pravidla $A \rightarrow y$

Konstrukce LR tabulky: Příklad 1/5

```
\begin{split} \Theta_{H} &= \{I_{0} : \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{1} : \{S' \rightarrow S \bullet, S \rightarrow S \bullet oA\}, I_{2} : \{S \rightarrow A \bullet\}, I_{3} : \{A \rightarrow i \bullet\}, \\ I_{4} : \{A \rightarrow (\bullet S), S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{5} : \{A \rightarrow (S \bullet), S \rightarrow S \bullet oA\}, I_{6} : \{S \rightarrow So \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{7} : \{S \rightarrow SoA \bullet\}, I_{8} : \{A \rightarrow (S) \bullet\}\} \end{split}
```

Vrčeme: LR tabulku pro K

Konstrukce LR tabulky: Příklad 2/5

```
\begin{split} &\Theta_{H} = \{I_{0}: \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ &I_{1}: \{S' \rightarrow S\bullet, S \rightarrow S\bullet oA\}, I_{2}: \{S \rightarrow A\bullet\}, I_{3}: \{A \rightarrow i\bullet\}, \\ &I_{4}: \{A \rightarrow (\bullet S), S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ &I_{5}: \{A \rightarrow (S\bullet), S \rightarrow S\bullet oA\}, I_{6}: \{S \rightarrow So\bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ &I_{7}: \{S \rightarrow SoA\bullet\}, I_{8}: \{A \rightarrow (S)\bullet\}\} \end{split}
```

Určeme: LR tabulku pro K

Konstrukce LR tabulky: Příklad 3/5

$$\Theta_{H} = \{I_{0}: \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, I_{1}: \{S' \rightarrow S \bullet, S \rightarrow S \bullet oA\}, I_{2}: \{S \rightarrow A \bullet\}, I_{3}: \{A \rightarrow i \bullet\}, I_{4}: \{A \rightarrow (\bullet S), S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, I_{5}: \{A \rightarrow (S \bullet), S \rightarrow S \bullet oA\}, I_{6}: \{S \rightarrow So \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, I_{7}: \{S \rightarrow SoA \bullet\}, I_{8}: \{A \rightarrow (S) \bullet\}\}$$

Určeme: LR tabulku pro K

Konstrukce LR tabulky: Příklad 4/5

$$\begin{split} \Theta_{H} &= \{I_{0}: \{S' \rightarrow \bullet S, S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{1}: \{S' \rightarrow S\bullet, S \rightarrow S\bulletoA\}, I_{2}: \{S \rightarrow A\bullet\}, I_{3}: \{A \rightarrow i\bullet\}, \\ I_{4}: \{A \rightarrow (\bullet S), S \rightarrow \bullet SoA, S \rightarrow \bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{5}: \{A \rightarrow (S\bullet), S \rightarrow S\bulletoA\}, I_{6}: \{S \rightarrow So\bullet A, A \rightarrow \bullet i, A \rightarrow \bullet (S)\}, \\ I_{7}: \{S \rightarrow SoA\bullet\}, I_{8}: \{A \rightarrow (S)\bullet\}\} \end{split}$$

Určeme: LR tabulku pro *K*

			β				
	i	0			\$	S	\boldsymbol{A}
I_0	SI_3		SI_4			I_1	I_2
I_1		$\mathbf{S}I_6$					
I_2		r2		r2	r2		
I_3		r3		r3	r3		

Zbytek tabulky sestrojte analogicky.

$$A \rightarrow i \in I_3. Fellow(A) = \{o, \},$$
\$\}: \alpha[I_3, o] = \alpha[I_3, \begin{align*} \lefta I_3, \lefts \right] = \alpha[I_3, \begin{align*} \lefts I_3 \\ \alpha[I_3, \begin[I_3, \begin{align*} \lefts I_3 \\ \alpha[I_3, \begin{align*} \lefts I

Konstrukce LR tabulky: Příklad 5/5

Výsledná LR tabulka pro *K*

			β				
	i	0	()	\$	S	\boldsymbol{A}
I_0	SI_3		SI_4			I_1	I_2
I_1		sI ₆ r2					
I_2		r2		r2	r2		
$egin{array}{c} I_2 \ I_3 \ I_4 \end{array}$		r3		r3	r3		
I_4	SI_3		SI_4			I_5	I_2
I_5		\mathbf{SI}_{6}		SI_8			_
	SI_3		SI_4				I_7
$egin{array}{c} I_6 \ I_7 \end{array}$		r1		r1	r1		
I_8		r4		r4	r4		

Přejmenování stavů

Přejmenovat stavy:

Old	New
I_0	0
I_1	1
I_2	2
I_3	3
I_4	4
I_5	5
I_6	6
I_7	7
I_8	8

LR tabulka pro Ks přejmenovanými stavy:

α	i	0			\$
0	s 3		s4		
1		s6			
2		r2		r2	r2
3		r3		r3	r3
4	s3		s4		
5		s6		s8	
6	s 3		s4		
7		r1		r1	r1
8		r4		r4	r4

β	S	\overline{A}
0	1	2
1		
2		
2 3 4 5		
4	5	2
5		
6		7
6 7 8		
8		