final project

May 13, 2022

$1 \quad Econ \ 143$ - $Advanced \ Econometrics \ Final \ Project$

by Dayne Tran

Introduction and Initial Survey Data

My final project is a fun, Berkeley-related showcase of contingent valuation of students' willingness-to-pay for a campus-wide ski lift. I remember back to three years ago, when reading about Berkeley upon my acceptance, I came across some students' proposal for something called BearLift. Here is the link to the comment under Carol Christ's Reddit Ask-Me-Anything from three years ago: https://www.reddit.com/r/berkeley/comments/9mhs3p/i_am_carol_christ_chancellor_of_uc_berkeley_ask/e7

When we began covering nonparametric analysis in class, I knew that I can put two and two together and apply this nonparametric technique to a very playful topic. So, I first developed a survey through Google Forms and collected 57 responses from fellow Berkeley students (https://forms.gle/jSU8tq5m7x37S58X6). The form has far greater detail about the pros and cons of a potential ski lift. I randomly assigned students to different initial prices (\$100, \$200, \$300, \$400, \$500), then would direct them to the respective following price points (half or double) depending on their answer.

```
[]: import pandas as pd import numpy as np import matplotlib.pyplot as plt
```

```
[]: survey = pd.read_csv("Econ143_Ski_Slope_CV_Responses _Form_Responses.csv") survey.tail()
```

```
[]:
                          Email Address
                                                Timestamp
                    rdison@berkeley.edu
                                           5/12/2022 9:53
     53
                 jholobetz@berkeley.edu 5/12/2022 10:18
     54
            gabrielcharoes@berkeley.edu
     55
                                         5/12/2022 11:16
         michele.strazza.2000@gmail.com
     56
                                          5/12/2022 12:11
     57
                1022charlotte@gmail.com
                                         5/12/2022 13:17
```

Per the nature of this experiment, these 5 symbols have been sorted into a random order. Please pick just the top answer. $\$

```
53 $ 54 ! 55 %
```

```
56
                                                      $
57
                                                      $
   Are you willing to pay $100 in annual student fees for BearLift? \
53
54
                                                     No
55
                                                    NaN
56
                                                    NaN
57
                                                    NaN
   You said no to $100 in annual student fees for Bear Lift. Are you willing to
pay $50 in annual student fees for BearLift? \
                                                    NaN
54
                                                     No
55
                                                    NaN
56
                                                    NaN
57
                                                    NaN
   You said yes to $100 in annual student fees for Bear Lift. Are you willing to
pay $200 in annual student fees for BearLift? \
53
                                                    NaN
54
                                                    NaN
55
                                                    NaN
56
                                                    NaN
57
                                                    NaN
   Are you willing to pay $200 in annual student fees for BearLift? \
53
                                                    NaN
54
                                                    NaN
55
                                                    {\tt NaN}
56
                                                    NaN
57
                                                    NaN
   You said no to $200 in annual student fees for Bear Lift. Are you willing to
pay $100 in annual student fees for BearLift? \
53
                                                    NaN
54
                                                    NaN
55
                                                    NaN
56
                                                    NaN
57
                                                    NaN
   You said yes to $200 in annual student fees for Bear Lift. Are you willing to
pay $400 in annual student fees for BearLift? \
53
                                                    NaN
54
                                                    NaN
55
                                                    NaN
56
                                                    NaN
```

57	NaN
Are you willing to pay \$300 in annual student 53 54 55 56 57	fees for BearLift? \ NaN NaN NaN NaN NaN NaN
You said no to \$300 in annual student fees for pay \$150 in annual student fees for BearLift? \ 53 54 55 56 57	Bear Lift. Are you willing to NaN NaN NaN NaN NaN NaN
You said yes to \$300 in annual student fees for pay \$600 in annual student fees for BearLift? \ 53 54 55 56 57	r Bear Lift. Are you willing to NaN NaN NaN NaN NaN NaN
Are you willing to pay \$400 in annual student 53 54 55 56 57	fees for BearLift? \ No NaN NaN Yes Yes
You said no to \$400 in annual student fees for pay \$200 in annual student fees for BearLift? \ 53 54 55 56 57	Yes NaN NaN NaN NaN
You said yes to \$400 in annual student fees for pay \$800 in annual student fees for BearLift? \ 53 54 55 56 57	r Bear Lift. Are you willing to NaN NaN NaN No Yes

```
Are you willing to pay $500 in annual student fees for BearLift? \

NaN

NaN

No

No

No

No

NaN

You said no to $500 in annual student fees for Bear Lift. Are you willing to
```

You said yes to \$500 in annual student fees for Bear Lift. Are you willing to pay \$1000 in annual student fees for BearLift?

53	NaN
54	NaN
55	NaN
56	NaN
57	NaN

Survey DataFrame Cleaning

Although we have collected our survey data with Google Forms, we still have a ways to go before we can derive students' willingness-to-pay for this ski slope. We still have to reformat this data in such a way that we can continue with our contingent valuation.

```
[]: survey_drop_unnecessary_cols = survey.drop(survey.columns[:3], axis=1) # Drop_oemails, time-stamps, and randomizer
survey_fill_nan_and_replace_yes_no = survey_drop_unnecessary_cols.
oreplace("Yes", 1).replace("No", 2).fillna(0) # Replace Yes with 1 and No_oewith 2, fill na w/ 0
survey_cleaned = survey_fill_nan_and_replace_yes_no.iloc[1:].astype(int) #_oemove the 1st row (it errors) and set everything from float to int survey_cleaned.head()
```

You said no to \$100 in annual student fees for Bear Lift. Are you willing to pay \$50 in annual student fees for BearLift? $\$

```
1
                                                    0
2
                                                    0
3
                                                    0
4
   You said yes to $100 in annual student fees for Bear Lift. Are you willing to
pay $200 in annual student fees for BearLift? \
                                                    0
2
                                                    0
3
                                                    0
4
                                                    1
5
   Are you willing to pay $200 in annual student fees for BearLift? \
1
                                                    0
2
3
                                                    1
4
   You said no to $200 in annual student fees for Bear Lift. Are you willing to
pay $100 in annual student fees for BearLift? \
2
                                                    0
3
                                                    0
4
5
   You said yes to $200 in annual student fees for Bear Lift. Are you willing to
pay $400 in annual student fees for BearLift? \
                                                    0
                                                    0
2
3
4
                                                    0
5
   Are you willing to pay $300 in annual student fees for BearLift? \
1
2
                                                    0
3
                                                    0
4
                                                    0
5
   You said no to $300 in annual student fees for Bear Lift. Are you willing to
pay $150 in annual student fees for BearLift? \
```

2	0
3	0
4	0
5	0
	You said yes to \$300 in annual student fees for Bear Lift. Are you willing to 600 in annual student fees for BearLift? $\$
1	2
2	0
3	0
4	0
5	0
I	Are you willing to pay \$400 in annual student fees for BearLift? \
1	0
2	0
3	0
4	0
5	0
pay	You said no to \$400 in annual student fees for Bear Lift. Are you willing to \$200 in annual student fees for BearLift? \
1	0
2	0
3	0
4	0
5	0
	You said yes to $$400$ in annual student fees for Bear Lift. Are you willing to $$800$ in annual student fees for BearLift? \
1	0
2	0
3	0
4	0
5	0
I	Are you willing to pay \$500 in annual student fees for BearLift? \
1	0
2	1
3	0
4	0
5	2
	You said no to \$500 in annual student fees for Bear Lift. Are you willing to
pay	\$250 in annual student fees for BearLift? \
1	0
2	0

```
4
                                                         0
                                                         2
     5
        You said yes to $500 in annual student fees for Bear Lift. Are you willing to
    pay $1000 in annual student fees for BearLift?
                                                         0
     1
    2
                                                         1
     3
                                                         0
     4
                                                         0
     5
                                                         0
[]: def build cv(respondent):
         I I I
         Will take a respondent's answer to the survey and reformat their answer,
         by marking the answers and prices they chose for both parts of the survey
         cv = np.empty(4)
         for price_index_pair in [[100, 0],[200,3],[300,6], [400,9],[500,12]]: #__
      identifies the 5 prices and their corresponding col index in surveys_cleaned.
      ⇔csv
             price = price_index_pair[0] # initial price
             index = price_index_pair[1] # col index for initial price
             if respondent[index] != 0: # signifies this is the initial price the
      ⇔respondent was given
                 cv[0] = respondent[index] # 1st response: 1 (yes) or 2 (no)
                 cv[1] = price
                 if respondent[index] == 2: # if response is no, go to_{\sqcup}
      →price-corresponding "no" col
                     cv[2] = respondent[index + 1] # 2nd response: 1 (yes) or 2 (no)
                     cv[3] = price / 2 # half price
                 else:
                     cv[2] = respondent[index + 2] # if response is yes, go tou
      ⇔price-corresponding "yes" col
                     cv[3] = price * 2 # double price
         return cv.astype(int) # set from float to int
[]: cv_data = survey_cleaned.apply(build_cv, axis=1) # apply build_cv to every row/
      →respondent in the survey
     cv_data = np.array([np.array(xi) for xi in cv_data]) # reformat cv_data as a np.
     cv = pd.DataFrame(cv_data, columns=['Yes1DK','PT1','Yes2DK','PT2']) # turn into_
      \hookrightarrow a DF
     cv.head()
```

0

3

```
[]:
       Yes1DK PT1 Yes2DK
                            PT2
            1 300
                            600
    0
                        2
    1
            1 500
                         1 1000
    2
            1 200
                         2
                            400
    3
            1 100
                         1
                            200
            2 500
                            250
```

```
[]: cv["LB"] = -9
     cv["UB"] = -9
     # LOWER BOUND construction
     # yes-yes responders
     cv.loc[(cv["Yes1DK"]==1) & (cv["Yes2DK"]==1), "LB"] = cv["PT2"]
     # yes-no responders
     cv.loc[(cv["Yes1DK"]==1) & (cv["Yes2DK"]==2), "LB"] = cv["PT1"]
     # no-yes responders
     cv.loc[(cv["Yes1DK"]==2) & (cv["Yes2DK"]==1), "LB"] = cv["PT2"]
     # no-no responders
     cv.loc[(cv["Yes1DK"]==2) & (cv["Yes2DK"]==2), "LB"] = 0
     # UPPER BOUND construction
     # yes-yes responders
     cv.loc[(cv["Yes1DK"]==1) & (cv["Yes2DK"]==1), "UB"] = np.inf
     # yes-no responders
     cv.loc[(cv["Yes1DK"]==1) & (cv["Yes2DK"]==2), "UB"] = cv["PT2"]
     # no-yes responders
     cv.loc[(cv["Yes1DK"]==2) & (cv["Yes2DK"]==1), "UB"] = cv["PT1"]
     # no-no responders
     cv.loc[(cv["Yes1DK"]==2) & (cv["Yes2DK"]==2), "UB"] = cv["PT2"]
```

Below are 10 of the lower and upper bounds for students' willingness-to-pay for the ski slope based on our double-bounded dichtomous choice process

```
[]: cv[["LB","UB"]][0:10]
[]:
          LB
                  UB
         300
               600.0
       1000
     1
                 inf
               400.0
     2
         200
     3
         200
                 inf
           0
               250.0
```

```
5 500 1000.0
6 0 200.0
7 200 inf
8 0 50.0
9 0 150.0
```

Now armed with the pairs of lower and upper bounds, we can build our matrix of dummy variables that indicate what prices respondents are willing to pay.

```
[]: cv["D1"] = ((cv["LB"] <= 0))
                                   & (cv["UB"]>=50)
                                                          )*1
     cv["D2"] = ((cv["LB"] <= 50) & (cv["UB"] >= 100)
                                                          )*1
     cv["D3"] = ((cv["LB"] <= 100) & (cv["UB"] >= 150)
                                                         )*1
     cv["D4"] = ((cv["LB"] <= 150) & (cv["UB"] >= 200)
                                                         )*1
     cv["D5"] = ((cv["LB"] \le 200) & (cv["UB"] > 250)
                                                         )*1
     cv["D6"] = ((cv["LB"] <= 250) & (cv["UB"] >= 300)
                                                         )*1
     cv["D7"] = ((cv["LB"] <= 300) & (cv["UB"] >= 400)
                                                         )*1
     cv["D8"] = ((cv["LB"] <= 400) & (cv["UB"] >= 500)
                                                         )*1
     cv["D9"] = ((cv["LB"] <= 500) & (cv["UB"] >= 600)
                                                      )*1
     cv["D10"] = ((cv["LB"] <= 600) & (cv["UB"] >= 800) )*1
     cv["D11"] = ((cv["LB"]<=800) & (cv["UB"]>=1000) )*1
     cv["D12"] = ((cv["LB"] <= 1000) & (cv["UB"] >= np.inf))*1
     cv[["D1","D2","D3","D4","D5","D6","D7","D8","D9","D10","D11","D12"]][0:10]
```

```
[]:
          D1
               D2
                     D3
                          D4
                                D5
                                     D6
                                          D7
                                                D8
                                                     D9
                                                          D10
                                                                 D11
                                                                        D12
      0
           0
                 0
                      0
                            0
                                 0
                                      0
                                            1
                                                 1
                                                      1
                                                                    0
           0
                 0
                      0
                            0
                                 0
                                      0
                                           0
                                                 0
                                                      0
                                                             0
                                                                    0
                                                                          1
      1
      2
           0
                 0
                      0
                           0
                                 1
                                      1
                                           1
                                                 0
                                                      0
                                                             0
                                                                    0
                                                                          0
      3
           0
                 0
                      0
                           0
                                 1
                                      1
                                           1
                                                 1
                                                      1
                                                             1
                                                                    1
                                                                          1
      4
           1
                 1
                      1
                            1
                                 1
                                      0
                                           0
                                                 0
                                                      0
                                                             0
                                                                    0
                                                                          0
      5
           0
                 0
                      0
                           0
                                 0
                                      0
                                           0
                                                 0
                                                      1
                                                                    1
                                                                          0
                                                             1
      6
           1
                 1
                      1
                            1
                                 0
                                      0
                                           0
                                                 0
                                                      0
                                                             0
                                                                    0
                                                                          0
      7
           0
                 0
                      0
                            0
                                 1
                                      1
                                           1
                                                 1
                                                      1
                                                             1
                                                                    1
                                                                          1
      8
           1
                 0
                      0
                            0
                                 0
                                      0
                                           0
                                                 0
                                                      0
                                                             0
                                                                    0
                                                                          0
      9
           1
                 1
                                 0
```

The entire objective of this process is to find some measure of central tendency regarding students' willingness-to-pay for the ski lift. We can achieve this by working our way towards a satisfactory cumulative distribution function and finding the interval at the 50th percentile.

```
[]: def E_Step(F, D):
    """
    F: (F(b1),F(b2),...,F(bL)) willingness-to-pay CDF values, numpy (L-1,)
    □ array
    D: N x L matrix of indicators for WTP
    """
    L = len(F) + 1  # number of disjoint intervals
```

```
F_star = list(F)
                             # add O and 1 to list of CDF values
   F_star.insert(0,0)
   F_star.append(1)
   F_dif = []
                              # compute probability assigned to each of the l=1,.
\hookrightarrow.,L WTP intervals
                               # given current value of F
   for l in range(L):
       F_dif.append(F_star[l+1] - F_star[l])
   delta_0 = D * F_dif
                                  # N x L matrix with numerator values for
\rightarrow delta_il, i = 1, ..., N, l = 1, ..., L
   delta_1 = D @ F_dif
                                  # N - vector with denominator values for
\rightarrow delta_il, i = 1, ..., N
   delta = delta_0.T / delta_1 # L x N matrix with posterior probability that_
\hookrightarrow each of the i = 1, ..., N,
                                   # units is in the l = 1, ..., L bins given the
\hookrightarrow data and current value of F
   return delta.T
```

The next block of code uses Turnbull's method to compute "self-consistent" estimates of $F = (F(b_1), F(b_2), \dots, F(b_{L-1}))'$.

```
Iteration = 1, 2-norm of change in F = 0.719990
Iteration = 2, 2-norm of change in F = 0.052285
Iteration = 3, 2-norm of change in F = 0.019912
Iteration = 4, 2-norm of change in F = 0.012506
Iteration = 5, 2-norm of change in F = 0.009025
Iteration = 6, 2-norm of change in F = 0.007418
Iteration = 7, 2-norm of change in F = 0.006689
Iteration = 8, 2-norm of change in F = 0.006321
Iteration = 9, 2-norm of change in F = 0.006074
Iteration = 10, 2-norm of change in F = 0.005855
Iteration = 11, 2-norm of change in F = 0.005635
Iteration = 12, 2-norm of change in F = 0.005406
Iteration = 13, 2-norm of change in F = 0.005172
Iteration = 14, 2-norm of change in F = 0.004936
Iteration = 15, 2-norm of change in F = 0.004702
Iteration = 16, 2-norm of change in F = 0.004472
Iteration = 17, 2-norm of change in F = 0.004249
Iteration = 18, 2-norm of change in F = 0.004035
Iteration = 19, 2-norm of change in F = 0.003829
Iteration = 20, 2-norm of change in F = 0.003633
Iteration = 21, 2-norm of change in F = 0.003447
Iteration = 22, 2-norm of change in F = 0.003270
Iteration = 23, 2-norm of change in F = 0.003103
Iteration = 24, 2-norm of change in F = 0.002946
```

```
Iteration = 25, 2-norm of change in F = 0.002797
Iteration = 26, 2-norm of change in F = 0.002657
Iteration = 27, 2-norm of change in F = 0.002525
Iteration = 28, 2-norm of change in F = 0.002401
Iteration = 29, 2-norm of change in F = 0.002285
Iteration = 30, 2-norm of change in F = 0.002175
Iteration = 31, 2-norm of change in F = 0.002072
Iteration = 32, 2-norm of change in F = 0.001975
Iteration = 33, 2-norm of change in F = 0.001884
Iteration = 34, 2-norm of change in F = 0.001798
Iteration = 35, 2-norm of change in F = 0.001717
Iteration = 36, 2-norm of change in F = 0.001640
Iteration = 37, 2-norm of change in F = 0.001569
Iteration = 38, 2-norm of change in F = 0.001501
Iteration = 39, 2-norm of change in F = 0.001437
Iteration = 40, 2-norm of change in F = 0.001376
Iteration = 41, 2-norm of change in F = 0.001319
Iteration = 42, 2-norm of change in F = 0.001265
Iteration = 43, 2-norm of change in F = 0.001213
Iteration = 44, 2-norm of change in F = 0.001165
Iteration = 45, 2-norm of change in F = 0.001119
Iteration = 46, 2-norm of change in F = 0.001075
Iteration = 47, 2-norm of change in F = 0.001034
Iteration = 48, 2-norm of change in F = 0.000995
Iteration = 49, 2-norm of change in F = 0.000957
Iteration = 50, 2-norm of change in F = 0.000922
Iteration = 51, 2-norm of change in F = 0.000888
Iteration = 52, 2-norm of change in F = 0.000856
Iteration = 53, 2-norm of change in F = 0.000825
Iteration = 54, 2-norm of change in F = 0.000796
Iteration = 55, 2-norm of change in F = 0.000768
Iteration = 56, 2-norm of change in F = 0.000741
Iteration = 57, 2-norm of change in F = 0.000716
Iteration = 58, 2-norm of change in F = 0.000692
Iteration = 59, 2-norm of change in F = 0.000669
Iteration = 60, 2-norm of change in F = 0.000646
Iteration = 61, 2-norm of change in F = 0.000625
Iteration = 62, 2-norm of change in F = 0.000605
Iteration = 63, 2-norm of change in F = 0.000585
Iteration = 64, 2-norm of change in F = 0.000567
Iteration = 65, 2-norm of change in F = 0.000549
Iteration = 66, 2-norm of change in F = 0.000532
Iteration = 67, 2-norm of change in F = 0.000515
Iteration = 68, 2-norm of change in F = 0.000500
Iteration = 69, 2-norm of change in F = 0.000485
Iteration = 70, 2-norm of change in F = 0.000470
Iteration = 71, 2-norm of change in F = 0.000456
Iteration = 72, 2-norm of change in F = 0.000443
```

```
Iteration = 73, 2-norm of change in F = 0.000430
Iteration = 74, 2-norm of change in F = 0.000417
Iteration = 75, 2-norm of change in F = 0.000405
Iteration = 76, 2-norm of change in F = 0.000394
Iteration = 77, 2-norm of change in F = 0.000383
Iteration = 78, 2-norm of change in F = 0.000372
Iteration = 79, 2-norm of change in F = 0.000362
Iteration = 80, 2-norm of change in F = 0.000352
Iteration = 81, 2-norm of change in F = 0.000343
Iteration = 82, 2-norm of change in F = 0.000333
Iteration = 83, 2-norm of change in F = 0.000325
Iteration = 84, 2-norm of change in F = 0.000316
Iteration = 85, 2-norm of change in F = 0.000308
Iteration = 86, 2-norm of change in F = 0.000300
Iteration = 87, 2-norm of change in F = 0.000292
Iteration = 88, 2-norm of change in F = 0.000285
Iteration = 89, 2-norm of change in F = 0.000278
Iteration = 90, 2-norm of change in F = 0.000271
Iteration = 91, 2-norm of change in F = 0.000264
Iteration = 92, 2-norm of change in F = 0.000257
Iteration = 93, 2-norm of change in F = 0.000251
Iteration = 94, 2-norm of change in F = 0.000245
Iteration = 95, 2-norm of change in F = 0.000239
Iteration = 96, 2-norm of change in F = 0.000234
Iteration = 97, 2-norm of change in F = 0.000228
Iteration = 98, 2-norm of change in F = 0.000223
Iteration = 99, 2-norm of change in F = 0.000218
Iteration = 100, 2-norm of change in F = 0.000213
Iteration = 101, 2-norm of change in F = 0.000208
Iteration = 102, 2-norm of change in F = 0.000203
Iteration = 103, 2-norm of change in F = 0.000198
Iteration = 104, 2-norm of change in F = 0.000194
Iteration = 105, 2-norm of change in F = 0.000190
Iteration = 106, 2-norm of change in F = 0.000186
Iteration = 107, 2-norm of change in F = 0.000181
Iteration = 108, 2-norm of change in F = 0.000178
Iteration = 109, 2-norm of change in F = 0.000174
Iteration = 110, 2-norm of change in F = 0.000170
Iteration = 111, 2-norm of change in F = 0.000166
Iteration = 112, 2-norm of change in F = 0.000163
Iteration = 113, 2-norm of change in F = 0.000160
Iteration = 114, 2-norm of change in F = 0.000156
Iteration = 115, 2-norm of change in F = 0.000153
Iteration = 116, 2-norm of change in F = 0.000150
Iteration = 117, 2-norm of change in F = 0.000147
Iteration = 118, 2-norm of change in F = 0.000144
Iteration = 119, 2-norm of change in F = 0.000141
Iteration = 120, 2-norm of change in F = 0.000138
```

```
Iteration = 121, 2-norm of change in F = 0.000136
Iteration = 122, 2-norm of change in F = 0.000133
Iteration = 123, 2-norm of change in F = 0.000130
Iteration = 124, 2-norm of change in F = 0.000128
Iteration = 125, 2-norm of change in F = 0.000125
Iteration = 126, 2-norm of change in F = 0.000123
Iteration = 127, 2-norm of change in F = 0.000121
Iteration = 128, 2-norm of change in F = 0.000119
Iteration = 129, 2-norm of change in F = 0.000116
Iteration = 130, 2-norm of change in F = 0.000114
Iteration = 131, 2-norm of change in F = 0.000112
Iteration = 132, 2-norm of change in F = 0.000110
Iteration = 133, 2-norm of change in F = 0.000108
Iteration = 134, 2-norm of change in F = 0.000106
Iteration = 135, 2-norm of change in F = 0.000104
Iteration = 136, 2-norm of change in F = 0.000102
Iteration = 137, 2-norm of change in F = 0.000101
```

The code below outputs the CDF we are after: the 50th percentile for willingness-to-pay is somewhere between \$100 and \$150.

```
[]:
                                          Survivorship of WTP
         Willingness-To-Pay
                              F(y), CDF
                           0
                               0.000000
                                                      1.000000
     1
                          50
                               0.196802
                                                      0.803198
     2
                         100
                               0.275522
                                                      0.724478
     3
                         150
                               0.535366
                                                      0.464634
     4
                         200
                               0.550813
                                                      0.449187
     5
                         250
                                                      0.240992
                               0.759008
                         300
     6
                               0.759649
                                                      0.240351
     7
                               0.760972
                         400
                                                      0.239028
     8
                         500
                               0.839917
                                                      0.160083
     9
                         600
                               0.879562
                                                      0.120438
                         800
     10
                               0.919781
                                                      0.080219
     11
                        1000
                               0.920871
                                                      0.079129
```

Below we plot the willingness-to-pay survivor function for the BearLift proposal.

2 Conclusion

We went out and gathered real data about an interesting topic that could have a real impact on the everyday lives of Berkeley students. We then conducted a nonparametric analysis of the data and found some measure of centeredness, by optimizing the posterior probabilities and cumulative distribution. We found that the 50th percentile of willingness-to-pay for BearLift lies in the (\$100, \$150) interval, and we can chart the survivorship function of the willingness-to-pay as we change the proposed price of the annual fee.