openKeyboard Chatpad360

This version forked from https://github.com/Neo-Desktop/OpenChatpad360

Note: on my unit baudrate appears to be 5340 bps (not 4800 as expected)

development blog

Open Keyboard Project

Serial connections

Chatpad J1	colour	function	
1	гed	3v3	
2	brown	Rx	
3	black	Tx	
4	oange	Gnd	
5	yellow	J2 tip	
6	blue	J2 ring	
7	white	J2 com	

Note: j2 com is not connected to Gnd

Configuration key presses

Holding [people] button (that at this point should be called [user settings]) and pres

- 1) [user settings]+[right] increase backlight luminosity
- 2) [user settings]+[left] decrease backlight luminosity
- 3) [user settings]+[s] put keyboard into serial mode
- 4) [user settings]+[a] put keyboard into scan/advanced mode (still no ps2 mode...not o
- 5) [user settings]+[0-9] set backlight duration (0 = no light, 1 = on 2sec...9 = alway
- 6) other settings yet coded but not interfaced

minipro commands

Minipro Manual

Minipro Gitlab

programing connections

<u> </u>					
Chatpad JP1			TL866 ICSP		
1	V+	гed	2	Vcc	
2	MCLR	дгеу	1	Vpp/MCLR	
3	ICSPCLK	grey	5	PGC	
4	ICSPDAT	grey	4	PGD	
5	PGM		n/c	(6-N/C)	
6	GND	black	3	GND	

check programmer

david@I7MINT:~/Github/sdcc-examples/test\$ minipro -p "PIC16F883@DIP28" -I -D

Found TL866II+ 04.2.132 (0x284)

Device code: 19351299

Serial code: XV8HRFZBRYN6UM0A7RK0

Activating ICSP...

Chip ID: 0x0101, Rev.0x2000 OK

david@I7MINT:~/Github/sdcc-examples/test\$

read contents

• minipro -p "PIC16F883@DIP28" -I -r junk.hex

write test program

• minipro -I -d PIC16F883@SOIC28 -w blink_led.hex

program device

- minipro -p "PIC16F883@DIP28" -I -c code -e -w openKeyboard.hex
- minipro -p "PIC16F883@DIP28" -I -m openKeyboard.hex
- minipro -p "PIC16F883@DIP28" -I -e -c data -w openKeyboard.eeprom.bin
- minipro -p "PIC16F883@DIP28" -I -e -c config -w openKeyboard.fuses.conf

eeprom contents

0000: FF 04 00 02 80 02

Config fuses

word1 = 0x20C4
word2 = 0x3fff
user_id0 = 0x3fff
user_id1 = 0x3fff
user_id2 = 0x3fff
user_id3 = 0x3fff

Pic16f883 datasheet

The pinout for the 28pin SSOP gives the SSI interface on:

pin 14 - SCLK/SCL
pin 15 - SDI/SDA

pin 16 - SD0

And the UART on:

pin 17 - TX/CK

pin 18 - RX/DT

Tracing the tracks from the J1 header should easily tell you which one they are using

The device supports ISP (in-circuit programming via JP1 header?) on:

pin 24 - PGM

pin 27 - ICSPCLK

pin 28 - ICSPDAT

pin 1 - _MLCR/VPP

Controlling leds from pic's PORTC...bit 0 is for general backlight, subsequent (in an order i did not wrote down and don't remember) are to independently control shift, green, people and red backlights.And, of course, i could half-power each of them in PWM fashion...