Worksheet 8 Review

March 27, 2020

Question 1

a. $\forall n \in \mathbb{N}, (0 \le 1) \land (n \le 2^n) \Rightarrow (n+1) \le 2^{n+1}$

Note:

• Induction: $\forall n \in \mathbb{N}, P(0) \wedge P(n) \Rightarrow P(n+1)$

Question 2

a. We will prove this statement by induction on n.

Base Case:

Let n = 0.

Then,

$$0 \le 2^0 \tag{1}$$

$$0 \le 1 \tag{2}$$

Since the above inequality is true, the base case holds.

Inductive Case:

Let $n \in \mathbb{N}$. Assume P(n).

Then,

$$n \le 2^n \tag{3}$$

$$n+1 \le 2^n+1 \tag{4}$$

$$n+1 \le 2^n + 2^n \tag{5}$$

$$n+1 \le 2^{n} + 2^{n}$$

$$n+1 \le 2^{n+1}$$
(5)
$$(6)$$

by the fact $2^k + 2^k = 2^{k+1}$.

Then, it follows from proof by induction that the statement $n \leq 2^n$ is true for all n.

Question 3