

#### CSCI-GA.3033-004

# Graphics Processing Units (GPUs): Architecture and Programming CUDA Advanced Techniques 3

Mohamed Zahran (aka Z)
mzahran@cs.nyu.edu
http://www.mzahran.com



#### In This Lecture ...

- More about performance
- Parallel Patterns
- Error Handling

#### More About Performance

Hardware configuration can be safely ignored when designing a software for correctness but must be considered in the code structure when designing for peak performance.





#### Some Insights About Performance

Occupancy



#### It is a common belief that ...

- More threads is better
  - because it needs more threads hide latency

Computational memory

But is it always true?

#### Multiplication of two large matrices, single precision (SGEMM):

|                   | <b>CUBLAS 1.1</b> | <b>CUBLAS 2.0</b> |                          |
|-------------------|-------------------|-------------------|--------------------------|
| Threads per block | 512               | 64                | 8x smaller thread blocks |
| Occupancy (G80)   | 67%               | 33%               | 2x lower occupancy       |
| Performance (G80) | 128 Gflop/s       | 204 Gflop/s       | 1.6x higher performance  |

#### Batch of 1024-point complex-to-complex FFTs, single precision:

|                   | CUFFT 2.2  | CUFFT 2.3  |                          |
|-------------------|------------|------------|--------------------------|
| Threads per block | 256        | 64         | 4x smaller thread blocks |
| Occupancy (G80)   | 33%        | 17%        | 2x lower occupancy       |
| Performance (G80) | 45 Gflop/s | 93 Gflop/s | 2x higher performance    |

#### Latency Vs Throughput

- · Latency (how much time) is time
  - instruction takes 4 cycles per warp
  - memory takes 400 cycles
- Throughput (how many operations per cycle or second) is rate
  - Arithmetic: 1.3 Tflop/s = 480 ops/cycle (op=multiply-add)
  - Memory: 177 GB/s  $\approx$  32 ops/cycle (op=32-bit load)

#### Hide Latency is ...

- Doing other operations while waiting
- This will make the kernel runs faster
- But not at the peak performance
- What can we do?

#### Little's Law



Needed parallelism = Latency x Throughput

#### Examples from GPU

| GPU model | _   | Throughput (cores/SM) | Parallelism<br>(operations/SM) |
|-----------|-----|-----------------------|--------------------------------|
| G80-GT200 | ≈24 | 8                     | ≈192                           |
| GF100     | ≈18 | 32                    | ≈576                           |
| GF104     | ≈18 | 48                    | ≈864                           |

Average latency of a computational operation

Less operations means idle cycle

#### So ...

- Higher performance does not mean more threads but higher utilization
- Utilization is related to parallelism
- We can increase utilization by
  - increasing throughput
    - Instruction level parallelism
    - Thread level parallelism
  - decreasing latency

Occupancy is not utilization, but one of the contributing factors.

```
Occupancy Calculator API
_global__ void MyKernel(int *d, int *a, int *b) {
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    d[idx] = a[idx] * b[idx]; 
int main() {
    int numBlocks:
   int blockSize = 32:
  int device:
  cudaDeviceProp prop;
   int activeWarps;
   int maxWarps;
   cudaGetDevice(&device);
   cudaGetDeviceProperties(&prop, device);
   cudaOccupancyMaxActiveBlocksPerMultiprocessor(
           &numBlocks,
           MyKernel,
           blockSize,
           0);
   activeWarps = numBlocks * blockSize / prop.warpSize;
   maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;
```

#### cudaOccupancyMaxActiveBlocksPerMultiprocessor

- From CUDA 6.5
- Produces an occupancy prediction based on:
  - the block size
  - shared memory usage of a kernel
- Reports occupancy in terms of the number of concurrent thread blocks per multiprocessor
- · Don't forget: it is just a prediction!
- Arguments:
  - 1. pointer to an integer (where #blocks will be reported)
  - 2. kernel
  - 3. block size
  - 4. dynamic shared memory per block in bytes

#### How about memory?

maximizing overall memory throughput for the application

minimize data transfers
with low bandwidth

host ←→ device

Global mem access

#### This means ... Typically

- 1. Load data from device memory to shared memory.
- 2. Synchronize with all the other threads of the block so that each thread can safely read shared memory locations that were populated by different threads.
- 3. Process the data in shared memory.
- 4. Synchronize again if necessary to make sure that shared memory has been updated with the results.
- 5. Write the results back to device memory.

### But accessing global memory is a necessary evil ... So:

• Can we apply the same technique (i.e. Little's law) to memory?

Needed parallelism = Latency x Throughput

|            | Latency          | Throughput      | Parallelism |
|------------|------------------|-----------------|-------------|
| Arithmetic | ≈18 cycles       | 32 ops/SM/cycle | 576 ops/SM  |
| Memory     | < 800 cycles (?) | < 177 GB/s      | < 100 KB    |

This means that to hide memory latency you need to keep 100KB in flight.

But less if the kernel is compute bound!

#### How Can You Get 100KB From Threads?

- Use more threads
- Use more instructions per thread
- Use more data per thread

## Now for some commonly used parallel patters

- Convolution
- Reduction tree
- · Prefix some

#### Pattern: Convolution

- An Array operation
- Output data element = weighted sum of a collection of neighboring input elements.
- The weights are defined by an input mask array.
- Usually used as filters to transform signals (or pixels or ...) into more desirable form.





Convolution can also be 2D.

| N |   |   |   |   |   |   |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 4 | 5 | 6 | 7 | 8 | 5 | 6 |
| 5 | 6 | 7 | 8 | 5 | 6 | 7 |
| 6 | 7 | 8 | 9 | 0 | 1 | 2 |
| 7 | 8 | 9 | 0 | 1 | 2 | 3 |





| 1 | 4  | 9  | 8  | 5  |
|---|----|----|----|----|
| 4 | 9  | 16 | 15 | 12 |
| 9 | 16 | 25 | 24 | 21 |
| 8 | 15 | 24 | 21 | 16 |
| 5 | 12 | 21 | 16 | 5  |

- Thread organized as 1D grid.
- Pvalue allows intermediate values to be accumulated in registers to save DRAM bw.
- We assume ghost values are 0.
- There will be control flow divergence (due to ghost elements).
- Ratio of floating point arithmetic calculation to global memory access is ~ 1.0 → What can we do??

#### Regarding Mask M

- Size of M is typically small.
- The contents of M do not change during execution.

All threads need to access M and in the



#### Constant Memory

- Constant memory variables are visible to all thread blocks.
- Constant memory variables cannot be changed during kernel execution.
- The size of constant memory can vary from device to device.

#### Mask M and Constant Memory

#### In host:

- #define MASK\_WIDTH 10
   \_\_constant\_\_ float M[MASK\_WIDTH]
- Allocate and initialize a mask h\_M
- cudaMemcpyToSymbol(M, h\_M, MASK\_WIDTH \* sizeof(float), offset, kind);

#### Kernel functions

 access constant memory variables as global variables → no need to pass pointers of these variables to the kernel as parameter.

# Question: Isn't the constant memory also in DRAM? Why is it assumed faster than global memory?

#### Answer:

- CUDA runtime knows that constant memory variables are not modified.
- It directs the hardware to aggressively cache them during kernel execution.

#### Pattern: Reduction Tree

#### What is it?

- A commonly used strategy for processing large input data sets
  - There is no required order of processing elements in a data set
  - Partition the data set into smaller chunks
  - Have each thread to process a chunk
  - Use a reduction tree to summarize the results from each chunk into the final answer
- Google and Hadoop MapReduce frameworks are examples of this pattern

#### What is it?

- Summarize a set of input values into one value using a "reduction operation"
  - -Max
  - Min
  - Sum
  - Product
- Often with user defined reduction operation function as long as the operation
  - Is associative and commutative
  - Has a well-defined identity value (e.g., 0 for sum)

### An efficient sequential reduction algorithm performs N operations in O(N)

- Initialize the result as an identity value for the reduction operation
  - Smallest possible value for max reduction
  - Largest possible value for min reduction
  - 0 for sum reduction
  - 1 for product reduction
- Scan through the input and perform the reduction operation between the result value and the current input value

### A parallel reduction tree algorithm performs N-1 Operations in log(N) steps



#### Straightforward Implementation

- The original vector is in device global memory
- The shared memory is used to hold a partial sum vector
- Each step brings the partial sum vector closer to the sum
- The final sum will be in element 0
- Reduces global memory traffic due to partial sum values

A lot of branch divergence.





A Better Version

# Be Careful!

- Although the number of "operations" is N, each "operation involves much more complex address calculation and intermediate result manipulation.
- If the parallel code is executed on a single-thread hardware, it would be significantly slower than the code based on the original sequential algorithm.

# Pattern: Prefix Sum (Scan)

# Scan / Parallel Prefix Sum 3 | 1 | 7 | 0 | 4 | 1 | 6 | 3 | 0 | 3 | 4 | 11 | 11 | 15 | 16 | 22

- Given an array A = [a0, a1, ..., an-1]
   and a binary associative operator @ with identity I
  - scan(A) = [I, a0, (a0@a1), ..., (a0@a1@...@an-2)]
- This is the exclusive scan

### Inclusive Scan



- Given an array A = [a0, a1, ..., an-1] and a binary associative operator @ with identity I
  - scan(A) = [a0, (a0@a1), ..., (a0@a1@...@an-1)]

# Why?

- Scan is used as a building block for many parallel algorithms
  - Radix sort
  - Quicksort
  - String comparison
  - Lexical analysis
  - Run-length encoding
  - Histograms
  - Etc.

# A Inclusive Scan Application Example

- Assume that we have a 100-inch sausage to feed 10
- We know how much each person wants in inches
  - -[35272843081]
- How do we cut the sausage quickly?
- How much will be left
- Method 1: cut the sections sequentially: 3 inches first, 5 inches second, 2 inches third, etc.
- Method 2: calculate Prefix scan
  - [3, 8, 10, 17, 45, 49, 52, 52, 60, 61] (39 inches left)

# Other Examples

- Assigning camp slots
- Assigning farmer market space
- Allocating memory to parallel threads
- Allocating memory buffer for communication channels

•

# Sequential algorithm



```
void scan( float* output, float* input, int length)
{
   output[0] = 0;
   for(int j = 1; j < length; ++j)
   {
      output[j] = input[j-1] + output[j-1];
   }
}</pre>
```

- Nadditions
- Use a guide:
  - Want parallel to be work efficient
  - Does similar amount of work

# A Parallel Inclusive Scan Algorithm



 Read input from device memory to shared memory

Each thread reads one value from the input array in device memory into shared memory array.

# A Parallel Scan Algorithm



- 1. (previous slide)
- 2. Iterate log(n)
  times: Threads stride
  to n: Add pairs of
  elements stride
  elements apart.
  Double stride at each
  iteration. (note must
  double buffer shared
  mem arrays)

Iteration #1 Stride = 1

- Active threads: *stride* to *n*-1 (*n-stride* threads)
- Thread j adds elements j and j-stride from T0 and writes result into shared memory buffer T1 (ping-pong)

# A Parallel Scan Algorithm



- Read input from device memory to shared memory.
- 2. Iterate log(n)
  times: Threads stride
  to n: Add pairs of
  elements stride
  elements apart.
  Double stride at each
  iteration. (note must
  double buffer shared
  mem arrays)

# A Parallel Scan Algorithm



Iteration #3 Stride = 4

- Read input from device memory to shared memory. Set first element to zero and shift others right by one.
- 2. Iterate log(n)
  times: Threads stride
  to n: Add pairs of
  elements stride
  elements apart.
  Double stride at each
  iteration. (note must
  double buffer shared
  memory arrays)
- 3. Write output from shared memory to device memory

# Work Efficiency Considerations

- The first-attempt Scan executes log(n) iterations
- This scan algorithm is not very work efficient
  - Sequential scan algorithm does n adds
  - A factor of log(n) hurts: 20x for 10^6 elements!
- A parallel algorithm can be slow when execution resources are saturated due to low work efficiency

# Improving Efficiency

A common parallel algorithm pattern:

### Balanced Trees

- Build a balanced binary tree on the input data and sweep it to and from the root
- Tree is not an actual data structure, but a concept to determine what each thread does at each step

### For scan:

- Traverse down from leaves to root building partial sums at internal nodes in the tree
  - Root holds sum of all leaves
- Traverse back up the tree building the scan from the partial sums

# Parallel Scan - Reduction Step



Inclusive Post Scan Step



Inclusive Post Scan Step





# Work Analysis

- The parallel Scan executes 2\* log(n) parallel iterations
  - log(n) in reduction and log(n) in post scan
  - The iterations do n/2, n/4,...1, 1, ...., n/4. n/2 adds
  - Total adds:  $2*(n-1) \rightarrow O(n)$  work
  - The total number of adds is no more than twice of that done in the efficient sequential algorithm
    - The benefit of parallelism can easily overcome the 2X work when there is sufficient hardware

# Error Handling in CUDA

```
__global__ void foo(int *ptr)
{
    *ptr = 7;
}

int main(void)
{
    foo<<<1,1>>>(0);
    return 0;
}
```

What will happen when you compile and execute this piece of code?

# Error Handling

- In a CUDA program, if we suspect an error has occurred during a kernel launch, then we must explicitly check for it after the kernel has executed.
- CUDA runtime will respond to questions
   ... But won't talk without asked!

### cudaError\_t cudaGetLastError(void);

- Called by the host
- returns a value encoding the kind of the last error it has encountered
- check for the error only after we're sure a kernel has finished executing > don't forget kernel calls are async!
  - What will you do?

```
#include <stdio.h>
                                        $ nvcc crash.cu -o crash
#include <stdlib.h>
                                        $./crash
                                        CUDA error: unspecified launch failure
  _global___ void foo(int *ptr)
 *ptr = 7;
int main(void)
 foo<<<1,1>>>(0);
 // make the host block until the device is finished with foo
 cudaThreadSynchronize();
 // check for error
 cudaError_t error = cudaGetLastError();
 if(error != cudaSuccess)
  // print the CUDA error message and exit
  printf("CUDA error: %s\n", cudaGetErrorString(error));
  exit(-1);
 return 0;
```

### Same Technique with Synchronous Calls

```
cudaError_t error = cudaMalloc((void**)&ptr,
                            1000000000);
 if(error!= cudaSuccess)
  // print the CUDA error message and exit
  printf("CUDA error: %s\n",
   cudaGetErrorString(error));
  exit(-1);
```

The output will be:

**CUDA** error: out of memory

# Rules of Thumb

- Do not use cudaThreadSynchronize() a lot in your code because it has a large performance penalty.
- You can enable it during debugging and disable it otherwise.

```
#ifdef DEBUG
    cudaThreadSynchronize();
    cudaError_t error = cudaGetLastError();
    if(error != cudaSuccess)
    {
        printf("CUDA error at %s:%i: %s\n", filename, line_number, cudaGetErrorString(error));
        exit(-1);
    }
#endif

If debugging, compile with:
    $ nvcc -DDEBUG mycode.cu
    $ nvcc -DDEBUG mycode.cu
```

### Conclusions

- Performance is related to how you keep the GPU and its memory busy → does not necessarily mean higher occupancy.
- We looked at some of the common parallel patterns used in many GPU kernels. These are tools that you can use in your own kernels.