Lecture 01: Basics of Probability

Mathematical Statistics I, MATH 60061/70061

Tuesday August 31, 2021

Introduction

A phenomena (or experiment, in a general sense) is called *random* if the exact outcome is uncertain. The mathematical study of randomness is called the **theory of probability**.

To study statistical inference, we must have a good knowledge in probability theory.

Sample space

An essential piece of a **probability space** is the **sample space**.

The sample space ${\cal S}$ is the set of all possible outcomes of the experiment.

 An event A is a collection of outcomes. We can define an event by explicitly giving its outcomes,

$$A = \{s_1, s_2, \dots, s_n\}$$

or with a description

$$A = \{x : x \text{ has property } \mathcal{P}\}$$

A is a subset of the sample space S.

Sets and subsets

- A set is a collection of objects.
- A subset is defined as a 'set within a set'; set A is a subset of set B if and only if every element of A is also an element of B.
- The **empty set**, \emptyset , is the set that contains no elements.

Set operations

- The **union** of two sets A and B, $A \cup B$, is the set of all objects that are in A or B (or both).
- The **intersection** of two sets A and B, $A \cap B$, is the set of all objects that are in A and B.
- The complement of a set A, A^c, is the set of all objects in S
 that are not in A.
- Disjoint sets are sets that do not overlap.

Set identities

For any three events A, B, and C, defined on a sample space S, we have the following:

- **2** Associativity. $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$.
- $\textbf{3 Distributive laws.} \ A\cap (B\cup C)=(A\cap B)\cup (A\cap C), \\ A\cup (B\cap C)=(A\cup B)\cap (A\cup C)$
- $\textbf{ 4 DeMorgan's Laws. } (A \cup B)^c = A^c \cap B^c \text{, } (A \cap B)^c = A^c \cup B^c$

Verify these identities for yourself.

Sigma algebras

A collection of subsets of S is called a **sigma algebra** (or **Borel field**) \mathcal{B} , if it satisfies the following properties:

- $\emptyset \in \mathcal{B}$ (the empty set is an element of \mathcal{B}).
- **2** If $A \in \mathcal{B}$, then $A^c \in \mathcal{B}$.

Whenever S is finite (or countable), then we take \mathcal{B} to be all subsets of S.

Axioms of Probability

Given a sample space S and an associated sigma algebra \mathcal{B} , a **probability function** is a function P with domain \mathcal{B} that satisfies

- $P(A) \ge 0 \text{ for all } A \in \mathcal{B}.$
- **2** P(S) = 1.
- ③ If $A_1,A_2,\ldots\in\mathcal{B}$ are pairwise disjoint, then $P(\cup_{i=1}^\infty A_i)=\sum_{i=1}^\infty P(A_i).$

The probability space consists of a sample space, an associated sigma algebra, and a probability function.

Consequences of the Axioms

If P is a probability function and A is any set in \mathcal{B} , then

- $P(\emptyset) = 0$, where \emptyset is the empty set.
- $P(A) \le 1$.
- $P(A^c) = 1 P(A)$.

Consequences of the Axioms

If P is a probability function and A is any set in \mathcal{B} , then

- $P(\emptyset) = 0$, where \emptyset is the empty set.
- $P(A) \le 1$.
- $P(A^c) = 1 P(A)$.

The sets A and A^c form a partition of the sample space, $S=A\cup A^c$. Therefore

$$P(A \cup A^c) = P(S) = 1$$

by the Axiom 2. Also, A and A^c are disjoint, so by the Axiom 3,

$$P(A \cup A^c) = P(A) + P(A^c).$$

So,
$$P(A^c) = 1 - P(A)$$
.

Consequences of the Axioms

If P is a probability function and A and B are any sets in \mathcal{B} , then

- $P(B \cap A^c) = P(B) P(A \cap B)$.
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- If $A \subset B$, then $P(A) \leq P(B)$.
- $P(A \cap B) \ge P(A) + P(B) 1$. (Bonferroni's Inequality)

If P is a probability function, then

- $P(A) = \sum_{i=1}^{\infty} P(A \cap C_i)$ for any partition C_1, C_2, \dots
- $P(\bigcup_{i=1}^{\infty}A_i) \leq \sum_{i=1}^{\infty}P(A_i)$ for any sets A_1,A_2,\ldots (Boole's Inequality)

Counting

Calculating the probability of an event A involves counting the number of elements in A and the number of elements in S.

Fundamental methods for counting

- Multiplication rule
 - Sampling with replacement
 - Sampling without replacement
 - Permutation
- Adjustment for overcounting
 - Binomial coefficient

Multiplication rule

Consider a compound experiment consisting of two sub-experiments, Experiment A and Experiment B:

- Experiment A has a possible outcomes.
- Experiment B has b possible outcomes for each of those outcomes in Experiment A.

The compound experiment has ab possible outcomes.

The same rule applies to cases with >2 sub-experiments.

Ordered sampling

Possibilities of choosing k objects out of n, one at a time, where order matters (e.g., $2 \mid 3$ and $3 \mid 2$ represent different outcomes)

• **Sampling with replacement** (i.e., choosing a certain object does not preclude it from being chosen again):

• **Sampling without replacement** (i.e., choosing a certain object precludes it from being chosen again):

Ordered sampling

Possibilities of choosing k objects out of n, one at a time, where order matters (e.g., $2 \mid 3$ and $3 \mid 2$ represent different outcomes)

- **Sampling with replacement** (i.e., choosing a certain object does not preclude it from being chosen again):
 - $-\ k$ sub-experiments; each has n possible outcomes

$$\underbrace{n \cdot n \cdots n}_{k \text{ times}}$$

• Sampling without replacement (i.e., choosing a certain object precludes it from being chosen again):

Ordered sampling

Possibilities of choosing k objects out of n, one at a time, where order matters (e.g., $2 \mid 3$ and $3 \mid 2$ represent different outcomes)

- Sampling with replacement (i.e., choosing a certain object does not preclude it from being chosen again):
 - $-\ k$ sub-experiments; each has n possible outcomes

$$\underbrace{n \cdot n \cdots n}_{k \text{ times}}$$

- **Sampling without replacement** (i.e., choosing a certain object precludes it from being chosen again):
 - -k sub-experiments; the # of possible outcomes decreases by 1 each time (0 possibilities for k>n)

$$n(n-1)\cdots(n-k+1)$$
, for $1 \le k \le n$

Permutations and factorials

A **permutation** of elements $1,2,\ldots,n$ is an arrangement of them in some order. For example, 3,5,1,2,4 is a permutation of 1,2,3,4,5

Permutations can be viewed as a special case of ordered sampling without replacement, where k=n. There are

$$n(n-1)\cdots 1=n!$$

permutations of $1, 2, \ldots, n$.

This can be used for adjusting unordered sampling.

Binomial coefficient

A **binomial coefficient** $\binom{n}{k}$ counts the number of subsets of a certain size, e.g., to choose a group of size k from a set of n people.

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n!}{(n-k)!k!}$$

- Set and subsets are *unordered*, e.g., $\{2,3\} = \{3,2\}$.
- There are $n(n-1)\cdots(n-k+1)$ ways to make *ordered* choice of k elements without replacement.
- Each subset is overcounted by a factor of k!.

Sampling table

Choosing k times from a set of n objects

	Order matters	Order doesn't matter
With replacement Without replacement	$n^k \frac{n!}{(n-k)!}$	$\binom{n+k-1}{k} \\ \binom{n}{k}$

The top-right case is much harder to solve than the others.

Sampling with replacement, order doesn't matter

Consider an equivalent problem to count the number of ways to put k identical balls into n boxes, e.g., putting 7 balls into 4 boxes

Same as repeating the procedure for k times: "sample one box (out of n), and add a ball to it"

- Sampling boxes with replacement: we can put as many balls in any box as we want
- Order doesn't matter: balls are identical

Sampling with replacement, order doesn't matter

Consider an equivalent problem to count the number of ways to put k identical balls into n boxes, e.g., putting 7 balls into 4 boxes

Encoding balls as ullet and walls of boxes as |, any sequence of k ullet's and n-1 |'s in between a starting | and an ending | is a valid sample. The number of possible such sequence is

$$\binom{n+k-1}{k}$$

Definition of conditional probability

If A and B are events with P(B) > 0, then the **conditional probability** of A given B, denoted by $P(A \mid B)$, is defined as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

- A is the event whose *uncertainty* we want to update.
- *B* is the *evidence* we observe (or want to treat as given).

Definition of conditional probability

If A and B are events with P(B) > 0, then the **conditional probability** of A given B, denoted by $P(A \mid B)$, is defined as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

- P(A) is the **prior** probability of A.
- $P(A \mid B)$ is the **posterior** probability of A.

Probability of the intersection of multiple events

For any two events A and B with positive probabilities,

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A).$$

This is immediate from the definition of conditional probability.

Probability of the intersection of multiple events

For any two events A and B with positive probabilities,

$$P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A).$$

This is immediate from the definition of conditional probability.

For any events A_1, \ldots, A_n with $P(A_1, \ldots, A_{n-1}) > 0$,

$$P(A_1, A_2, \dots, A_n) = P(A_1, \dots, A_{n-1}) P(A_n \mid A_1, \dots, A_{n-1})$$

= $P(A_1) P(A_2 \mid A_1) \cdots P(A_n \mid A_1, \dots, A_{n-1}),$

where the commas denote intersections.

- There are in fact n! expressions for the RHS.
- Often the RHS will be easier to compute with some orderings.

Bayes' rule

Bayes' rule is extremely useful, which relates $P(A \mid B)$ to $P(B \mid A)$:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- Often the $P(B \mid A)$ is easier to find than $P(A \mid B)$.
- Finding P(B) can be non-trivial.

The law of total probability (LOTP)

Let A_1, \ldots, A_n be a partition of the sample space S (i.e., the A_i are disjoint events and their union is S), with $P(A_i) > 0$ for all i,

$$P(B) = \sum_{i=1}^{n} P(B \mid A_i) P(A_i)$$

Independence of two events

 $\underline{\mathsf{Definition}}$: Events A and B are **independent** if

$$P(A\cap B)=P(A)P(B).$$

Independence of two events

<u>Definition</u>: Events A and B are **independent** if

$$P(A \cap B) = P(A)P(B).$$

Since $P(A \mid B) = P(A \cap B)/P(B)$, if P(A) > 0 and P(B) > 0, then this is equivalent to

$$P(A \mid B) = P(A)$$
, and $P(B \mid A) = P(B)$.

A and B are independent if learning that B occurred gives us no information about the probability of A occurring (and vice versa).

If A and B are independent, then A and B^c are independent, A^c and B are independent, and A^c and B^c are independent.

If A and B are independent, then A and B^c are independent, A^c and B are independent, and A^c and B^c are independent.

Assuming $P(A) \neq 0$ (since if P(A) = 0, A is independent of every event), if A and B are independent, then $P(B \mid A) = P(B)$, and

$$P(B^c \mid A) = 1 - P(B \mid A) = 1 - P(B) = P(B^c).$$

So \underline{A} and B^c are independent.

If A and B are independent, then A and B^c are independent, A^c and B are independent, and A^c and B^c are independent.

Assuming $P(A) \neq 0$ (since if P(A) = 0, A is independent of every event), if A and B are independent, then $P(B \mid A) = P(B)$, and

$$P(B^c \mid A) = 1 - P(B \mid A) = 1 - P(B) = P(B^c).$$

So A and B^c are independent.

Swapping A and B, we have that $\underline{A^c}$ and B are independent.

If A and B are independent, then A and B^c are independent, A^c and B are independent, and A^c and B^c are independent.

Assuming $P(A) \neq 0$ (since if P(A) = 0, A is independent of every event), if A and B are independent, then $P(B \mid A) = P(B)$, and

$$P(B^c \mid A) = 1 - P(B \mid A) = 1 - P(B) = P(B^c).$$

So A and B^c are independent.

Swapping A and B, we have that $\underline{A^c}$ and B are independent.

Using the fact that A,B independent implies A,B^c independent, with A^c,B independent, we have that A^c and B^c are independent.

Independence of three events

Events A, B, and C are said to be independent if \emph{all} of the following equations hold:

$$P(A \cap B) = P(A)P(B),$$

$$P(A \cap C) = P(A)P(C),$$

$$P(B \cap C) = P(B)P(C),$$

$$P(A \cap B \cap C) = P(A)P(B)P(C).$$

If the first three conditions hold, we say that A, B, and C are pairwise independent.

Independence of many events

For n events A_1, A_2, \ldots, A_n to be independent, we require

- any pair to satisfy $P(A_i \cap A_j) = P(A_i)P(A_j)$ (for $i \neq j$),
- any triplet to satisfy $P(A_i \cap A_j \cap A_k) = P(A_i)P(A_j)P(A_k)$ (for i,j,k distinct),
- similarly for all quadruplets, all quintuplets, ...