Cierre de mercado Organización Industrial

Licenciatura en Economía

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Proliferación de marcas

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

Introducción

- En el capítulo anterior se supuso que al ingreso al mercado era exógeno
- Sin embargo, las empresas las empresas reaccionan estratégicamente al ingreso de rivales
- Disponen de varios instrumentos: capacidad, precio, variedad....

Terminología

- Suponemos que en el mercado hay una empresa instalada (I) y un potencial entrante (E)
- Decimos que la entrada está:
 - ▶ Bloqueada: si el instalado no está amenazado por la entrada
 - Disuadida: si el instalado modifica su comportamiento de forma de disuadir al entrante de entrar en el mercado
 - ► Acomodada: si el entrante entra al mercado y la instalada modifica su comportamiento de forma de tomarlo en cuenta
- Las relevantes son las dos últimas: involucran acciones de los agentes

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Proliferación de marcas

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Proliferación de marcas

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

Presentación

- Las empresas pueden utilizar la capacidad para disuadir el ingreso de rivales
- ► Al construir sobre capacidad pueden limitar o bloquear el ingreso al mercado
- ► Modelo de Stackelberg modificado

Supuestos

- ▶ 2 empresas: I instalada; E entrante; 2 períodos: t = 1 y t = 2
- ightharpoonup demanda p = a bq
- empresas tienen costos $C_I = cq_I$; $C_E = cq_E + F$ (para simplificar cuentas)
- ▶ en t = 1 la empresa I decide cual será su producción/capacidad q_1
- ▶ en t=2 la empresa E observa q_1 y decide si entra o no (es decir, elige $q_E>0$, o $q_E=0$)
- la el modelo se resuelve por inducción hacia atrás

Solución

▶ CPO:
$$\frac{\partial \pi_E}{\partial q_E} = 0 = a - bq - bq_E - c \Longrightarrow q_E = \frac{a - c - b\overline{q_I}}{2b}$$

Notar que se puede escribir $\pi^E \Longrightarrow$

$$\pi^E = \frac{\left(a - b\overline{q_I} - c\right)^2}{4b} - F$$

- ► En t = 1: $\pi^I = [a b(a_E + a_I) c]a_I \Longrightarrow$ $\pi^{I} = \left[a - b\left(\frac{a - c - bq_{I}}{2b} + q_{I}\right) - c\right]q_{I}$
- $ightharpoonup CPO: \frac{\partial \pi_I}{\partial a_I} = 0 = \frac{a bq_I c}{2} \Longrightarrow q_I^S = \frac{a c}{2b} \Longrightarrow q_E^S = \frac{a c}{4b}$

Resultados

- La empresa *I* tiene una ventaja por mover primero:
 - al comprometerse en una capacidad alta, obliga a la otra a entrar con una capacidad menor
 - $lack \uparrow q_I$ disminuye los ingresos de π^E
- ightharpoonup La posibilidad de disuadir o bloquear la entrada depende de F

Entrada bloqueada

$$\blacktriangleright$$
 Sustituyendo $q_I^S=\frac{a-c}{2b}$ en $\pi^E=\frac{(a-b\overline{q_I}-c)^2}{4b}-F$

$$\Rightarrow \pi^E < 0 \iff F > \frac{(a-c)^2}{16b}$$

► Si los costos fijos son muy altos, la entrada estará bloqueada

Entrada disuadida

- ▶ Supongamos que $F \leq \frac{(a-c)^2}{16b} \Rightarrow$ la empresa I puede usar su capacidad para **disuadir** a la empresa E
- Paso 1: ¿qué q_I disuade?

$$\pi^E = \frac{(a - bq_I - c)^2}{4b} - F = 0 \iff (a - bq_I - c)^2 = 4bF \iff$$

$$q_I^D = \frac{a - c - 2\sqrt{bF}}{b}$$

- ▶ Paso 2: ¿cuando conviene disuadir? $\iff \pi_I^D > \pi_I^S$
- ▶ Balance: empresa $I \uparrow q_I$ en t = 1 y es un monopolio en t = 2 ó empresa I q_I^S en t = 1 y tiene competencia en t = 2

Entrada disuadida (cont.)

- ▶ Si I juega $q_I^S \Rightarrow$ en t=1 se cumple que $q_E=0 \Rightarrow$ $\pi_I^1 = \pi^M = [a - bq_I - c] q_I \text{ con } q_I = q_I^S = \frac{a - c}{2b}$
- ightharpoonup Si I juega $q_I^S \Rightarrow$ en t=2 se cumple que $q_E=0 \Rightarrow$ $\pi_I^2 = \left[a - b\left(\frac{a - c - bq_I}{2b} + q_I\right) - c\right]q_I \text{ con } q_I = q_I^S = \frac{a - c}{2b}$

$$\Rightarrow \ \pi_I^S = \pi_I^1 + \pi_I^2 = \frac{(a-c)^2}{4b} + \frac{(a-c)^2}{8b} = \frac{3(a-c)^2}{8b}$$

- ▶ Si I juega $q_I^D \Rightarrow$ en t=1 se cumple que $q_E=0$ en $t=1,2\Rightarrow$ $\pi_I^1 = \pi_I^2 = \pi^D = [a - bq_I - c] q_I \text{ con } q_I = q_I^D = \frac{a - c - 2\sqrt{bF}}{L}$
- $\Rightarrow \pi_I^D = 2\pi^D = \left| 4\sqrt{F/b} \left(a c \right) 8F \right|$

Entrada disuadida (cont.)

- $\qquad \qquad \pi_I^D \geq \pi_I^S \iff \left[4\sqrt{F/b} \left(a c \right) 8F \right] \geq \frac{3(a-c)^2}{8b}$
- ▶ Si hacen (muchas) cuentas, tienen dos raíces, una de las cuales es $F>\frac{(a-c)^2}{32b}$
- ▶ Podemos construir un intervalo para *F*:

$$\frac{(a-c)^2}{64b} \le F \le \frac{(a-c)^2}{16b}$$

- ▶ Si $F \in \left[\frac{(a-c)^2}{64b}, \frac{(a-c)^2}{16b}\right] \Longrightarrow$ la entrada estará disuadida
- ▶ Es decir, a la empresa I le conviene jugar $q_I^D = \frac{a-c-2\sqrt{bF}}{b} > q_I^S = \frac{a-c}{2b}$

Resultados estratégicos

- 1. Si F es alto $\left(F > \frac{(a-c)^2}{16b}\right) \Longrightarrow$ la entrada estará **bloqueada**
- 2. Si F es intermedio $\left(F \in \left[\frac{(a-c)^2}{64b}, \frac{(a-c)^2}{16b}\right]\right) \Longrightarrow$ la entrada estará **disuadida**
- 3. Si F es bajo $\left(F<\frac{(a-c)^2}{64b}\right)\Longrightarrow$ la entrada estará acomodada

Discusión

- La clave del resultado es que la estrategia sea creíble
- Estos modelos suponen que la variable es la capacidad
- ► La cantidad se puede reducir fácilmente, pero reducir la capacidad es costoso
- Mover primero tiene ventaja (Cournot)
- ► Si la competencia es en precios, ¿conviene mover primero?

Ventaja de mover primero: inercia

- Otra ventaja de mover primero es la inercia de los consumidores
- ▶ Inercia: los consumidores tienden a elegir la misma opción que eligieron antes (Grubb, 2015)
- ▶ La inercia de los consumidores, expresada en preferencia por ciertas marcas, tiene efectos muy importantes
- Bronnenberg, Dube y Gentzkow (2012) muestran que entrar primero a un mercado tiene fuerte impacto sobre los consumidores
- ➤ Sostienen que estas preferencias —inercia— genera fuertes barreras a la entrada

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Proliferación de marcas

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

Idea

- ► En algunos mercados existen múltiples marcas
- ► En el mercado de cereales en EE.UU. el número de marcas aumento de 25 a 80, todas ofrecidas por las mismas empresas
- ▶ ¿Porqué aumentó el número de marcas pero no de empresas en el mercado?
- La estrategia de aumentar las marcas puede disuadir competidores

Supuestos

- Basada en Belleflamme y Peltz, sección 16.3
- Establecido: produce un producto base y puede producir una modificación de su producto (un sustituto imperfecto)
- Los beneficios de monopolio de tener uno o dos productos son $\pi^m(1)$ y $\pi^m(2)$ y se cumple que $\pi^m(1) > \pi^m(2)$
- Juego en tres etapas:
 - 1. En t=1 la empresa 1 decide si ofrece uno o dos productos en el mercado
 - 2. En t=2 un competidor puede entrar al mercado (pagando un costo F) y ofrecer un producto sustituto perfecto del producto modificado del monopolista
 - 3. En la etapa 3 las empresas fijan precios, los consumidores compran y las empresas ganan los beneficios

Equilibrio

- El juego se resuelve por inducción hacia atrás:
 - ► Si la empresa entra en el momento 2 ⇒las empresas ganan beneficios $\pi_i^d(k)$, donde i indica la empresa y k el número de productos ofrecidos por la empresa establecida
 - Los beneficios del entrante son $\pi_E^d(1) F$ si compite contra un producto y 0-F si compite contra dos productos
 - ⇒ si hay dos productos la entrada al mercado no es beneficiosa
- ► El establecido puede disuadir la entrada ofreciendo dos productos, siempre que $\pi^m(2) > \pi_I^d(1)$

Equilibrio

- El juego se resuelve por inducción hacia atrás:
 - ► Si la empresa entra en el momento 2 ⇒las empresas ganan beneficios $\pi_i^d(k)$, donde i indica la empresa y k el número de productos ofrecidos por la empresa establecida
 - Los beneficios del entrante son $\pi_E^d(1) F$ si compite contra un producto y 0-F si compite contra dos productos
 - ⇒ si hay dos productos la entrada al mercado no es beneficiosa
- El establecido puede disuadir la entrada ofreciendo dos productos, siempre que $\pi^m(2) > \pi_I^d(1)$

Conclusión

El instalado puede utilizar la proliferación de marcas para disuadir

Costos de abandonar el mercado

- ► El anterior resultado se cumple siempre que el costo de abandonar el mercado sea lo suficientemente alto
- Supongamos que en un período 2,5 (intermedio entre el 2 y el 3), las empresas tienen la opción de sacar el producto del mercado a un costo x
- Si ambas decidieron producir sus productos y tienen la posibilidad de revisar sus decisiones, la matriz de pagos es la siguiente:

Costos de abandonar el mercado (cont.)

- Costo de entrada está hundido ⇒ existe una estrategia dominante para el entrante: Quedarse
- La mejor respuesta del instalado a *Quedarse* depende de: si $\pi_I^d(1) x < \pi_I^d(2)$, esto es si $x < \pi_I^d(1) \pi_I^d(2)$ se queda
- Si los costos de abandonar el mercado son lo suficientemente chicos ⇒ el instalado sale del mercado

Conclusión

Si la proliferación de marcas no representa un compromiso estratégico, por tanto es reversible a bajo costo, la estrategia de copar el mercado no es creíble para el entrante

Costos de abandonar el mercado (cont.)

- Costo de entrada está hundido ⇒ existe una estrategia dominante para el entrante: Quedarse
- La mejor respuesta del instalado a *Quedarse* depende de: si $\pi_I^d(1) x < \pi_I^d(2)$, esto es si $x < \pi_I^d(1) \pi_I^d(2)$ se queda
- ➤ Si los costos de abandonar el mercado son lo suficientemente chicos ⇒ el instalado sale del mercado

Conclusión

Si la proliferación de marcas no representa un compromiso estratégico, por tanto es reversible a bajo costo, la estrategia de copar el mercado no es creíble para el entrante

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Proliferación de marcas

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

Introducción

- Monsanto tenía la patente de *Nutrasweet*, un endulzante
- Poco antes de que caiga la patente, hizo acuerdos de largo plazo con Coca y Pepsi
- ¿Porqué querría hacer estos acuerdos, y porqué las empresas querrían firmarlos?
- Estos acuerdos se conocen como exclusión abierta (naked exclusion)
- ► Es interesante notar que se dan en un contexto de relaciones verticales (*Nutrasweet* es un insumo)

Exclusión

- ▶ Basado en Motta (2014, páginas 369-371)
- ightharpoonup Empresa I monopólica, empresa E posible entrante
- La empresa(s) venden sus productos aguas abajo a dos posibles compradores B_1 y B_2
- lacktriangle Se cumple que $c_I>c_E$ (el entrante es eficiente), pero tiene que pagar costo f
- ightharpoonup Demanda q = a p
- Las empresas compiten en precio y sus bienes son homogéneos

Exclusión (cont.)

- ▶ *I* negocia en forma **secuencial** con compradores
- ▶ Ofrece contrato donde paga t_1 a la empresa B_1 y t_2 a la empresa B_2 , con $t_1 > t_2$
- ► Juego:
 - en t=1 ofrece un contrato a la empresa B_1 , que lo acepta o rechaza
 - en t=2 ofrece un contrato a la empresa B_2 , que lo acepta o rechaza
 - $lackbox{ en }t=3$ la empresa E observa si hay contratos y decide si entra o no
- ▶ Importante: La entrada es beneficiosa si la empresa E sirve a ambas empresas, es decir:

$$\left(\underbrace{c_I}_p - \underbrace{c_E}_{CMg}\right)\underbrace{(a-c_I)}_q > f_{\text{IFCIEA}} \text{ (cincias sconduicas post and institution of the conditions)}_{\text{QLOOP}} \text{ (and a seconduicas problem)}_{\text{QLOOP}}$$

Exclusión (cont.)

Las empresas aguas abajo son "consumidores" \Rightarrow obtienen un EC: EC^M , si les vende la I, EC^E si entra la E

Exclusión (cont.)

- ¿Bajo qué condiciones querrá I ofrecer compensación?
- ¿Cuándo querrá aceptar alguna de las empresas?
- ▶ Supongamos que B_1 aceptó $\Rightarrow B_2$ también aceptará
- ▶ Supongamos que B_2 no aceptó $\Rightarrow B_2$ aceptará \iff $EC^E EC^M > t_2$
- ▶ ¡Querrá I of recer este t_2 ? $\iff t_2 < \pi^M$
- \Rightarrow Existe un EN donde ambos aceptan t_i y, bajo la amenaza recíproca de aceptar, I puede hacer $t_1 \to 0$

Conclusión

- I puede ofrecer contratos de largo plazo para disuadir la entrada
- Ello depende de hacer jugar a las empresas aguas abajo unas contra otras
- \blacktriangleright Al no poder coordinar \Rightarrow terminan aceptando el pago de I
- $lackbox{\Large E}$ no entra aún cuando es eficiente desde el punto de vista social

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Proliferación de marcas

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

Presentación

- Canasta o ventas atadas: consiste en vender dos o más productos en un único paquete
- Puede ser utilizada para disuadir el ingreso
- ► Ej. Microsoft ofrecía Internet Explorer nativo bajo Windows
- Netscape tenía que instalarse y era más pesado –producto de la mejor integración de Windows con Internet Explorer–
- Netscape salió del mercado aduciendo que Windows hacía una venta atada

Introducción

- ▶ Basada en Belleflamme y Peltz, sección 16.3
- \blacktriangleright Sea una empresa instalada que es un monopolista en el mercado A pero enfrenta un potencial entrante en el mercado B
- ➤ Si el monopolista arma un paquete con los productos A y B, puede reducir la demanda en el mercado B de la empresa rival y hacer la entrada no beneficiosa o inducir la salida del mercado

Supuestos

- lacktriangle La empresa I tiene un monopolio protegido en el mercado A
- En el producto B existe un mercado de producto homogéneo donde tanto la empresa I como la E pueden participar
- Los consumidores tienen valoraciones α_a (mercado A) y α_b (mercado B) distribuidas en forma uniforme en el intervalo [0,1]
- La disposición a pagar está distribuida en forma uniforme en el cuadrado unitario
- ▶ El bien B puede ser producido por cualquier empresa a costo 0, pero existe un costo fijo de F>0

Equilibrio: status quo

- lackbox La empresa I atiende el mercado A y la empresa E el mercado B
- Monopolios en sus mercados: el precio es la media de la distribución uniforme

$$\Rightarrow p_I = p_E = 1/2$$
; y $\pi_I = 1/4$, $\pi_E = 1/4 - F$

Equilibrio: I entra en B

- $lackbox{I}$ está pensando en entrar al mercado en el que opera la empresa E
- lackbox t=1a: la empresa I decide si entra al mercado B y, si lo hace, si vende los productos A y B por separados o como una canasta
- ▶ La empresa B puede salir del mercado en el momento t=1b antes de competir en precios
- En el período 2 las empresas compiten en precios

Conclusión

Vender los productos por separado no es beneficioso para la empresa I. Si entra en el mercado B y la empresa E se queda $\Rightarrow I$ paga F sin obtener ganancias

Equilibrio: canasta

- lacktriangle Ahora I vende A y B en forma conjunta al precio p_{ab}
- ▶ **Demanda B:** consumidores compran sólo el producto B \iff
 - 1. B es preferible a comprar canasta \Longrightarrow $\alpha_b p_E \ge \alpha_a + \alpha_b p_{ab} \iff \alpha_a \le p_{ab} p_E$
 - 2. B es preferible a no consumir $\alpha_b p_E \ge 0 \iff \alpha_b \ge p_E$
- ▶ Demanda de empresa E es la que B cumple las 2 condiciones a la vez: $(1-p_E)(p_{ab}-p_E)$ (ver siguiente figura área D_E)
- $\pi_E = p_E (1 p_E) (p_{ab} p_E) F; \text{ CPO:}$ $\frac{\partial \pi_E}{\partial p_E} = 0 = (1 p_E) (p_{ab} p_E) p_E (p_{ab} p_E) p_E (1 p_E)$ \Longrightarrow

$$p_E^R = \frac{1 + p_{ab}}{3} - \frac{1}{3}\sqrt{1 - p_{ab} + p_{ab}^2}$$

Equilibrio: canasta (II)

- Situación 2: Los que compran la canasta son aquellos que cumplen a la vez:
 - 1. Prefieren la canasta al producto B por separado:

$$\alpha_a + \alpha_b - p_{ab} \ge \alpha_b - p_E \iff \alpha_a \ge p_{ab} - p_E$$

- 2. Prefieren la canasta a no consumir: $\alpha_a + \alpha_b p_{ab} \ge 0$
- ▶ Demanda de la empresa I (canasta): $(1 p_{ab} + p_E) p_E^2/2$ (ver siguiente figura, área D_I).
- ► CPO $p_E^2/2 p_E + 2p_{ab} 1 = 0 \Longrightarrow$

$$p_{ab}^{R} = \frac{q + p_E + p_E^2 / 2}{2}$$

Demandas con canasta

Equilibrio con canasta

- ▶ Equilibrio: $p^*_{ab}\approx 0,61$ y $p^*_E\approx 0,24$; beneficios $\pi^*_I\approx 0,369-F$ y $\pi^*_E=0,067-F$
- ▶ Si se compara con el status quo (la empresa I vendía sólo en el mercado A y la empresa E en el B) \Rightarrow los beneficios cambian en $\Delta\pi_I \approx 0,119 F$ y $\Delta\pi_E \approx -0,183$
- ▶ Si $F < 0,119 \Rightarrow I$ entra con una canasta en el mercado B
- ▶ Si 0.067 < F < 0.119 ⇒ en el único ENPSJ la empresa I entra con una canasta en t=1a, y la empresa E sale en t=1b y la empresa I fija el precio de monopolio p_{ab}^m
- ▶ Si F < 0.067 la empresa I mantiene la canasta pero no induce la salida de la empresa E y los precios de equilibrio son p_{ab}^* y p_E^*

Conclusiones

Conclusión

Una empresa que tiene poder de mercado en un mercado puede utilizar una canasta para extender su poder de mercado en un segundo mercado e inducir la salida del mismo

Variación

Si el monopolio en el mercado A de la empresa I corre riesgo si una empresa entra en el mercado $B\Rightarrow$ entonces puede inducir la salida en aquel mercado con el objetivo de proteger el monopolio en el primer mercado

Conclusiones

Conclusión

Una empresa que tiene poder de mercado en un mercado puede utilizar una canasta para extender su poder de mercado en un segundo mercado e inducir la salida del mismo

Variación

Si el monopolio en el mercado A de la empresa I corre riesgo si una empresa entra en el mercado $B\Rightarrow$ entonces puede inducir la salida en aquel mercado con el objetivo de proteger el monopolio en el primer mercado

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Proliferación de marcas

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

- \blacktriangleright Antes las estrategias implicaban actuar sobre costos de la empresa instalada I
- Se puede acomodar o disuadir la entrada actuando sobre los costos del rival
- Notar que los beneficios de una empresa son crecientes en los costos de las rivales (ver Cournot, en Bertrand trivial)
- Los instalados pueden tomar decisiones que incrementen sus costos y también los de los rivales
- Ej: presionar por un salario mínimo elevado en los consejos de salarios

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Proliferación de marcas

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

Introducción

- Predación: cuando una empresa –dominante– fija precios debajo del costo con el objetivo de eliminar la competencia
- Sacrificando beneficios en el corto plazo para obtener beneficios en el largo plazo
- Componentes:
 - 1. pérdida de corto plazo
 - 2. poder de mercado
 - 3. barreras a la entrada para recuperar los beneficios en el largo plazo (cuando los rivales salen del mercado)
- ► Fue utilizada por Standard Oil para fundir a sus rivales y comprarlos a menor precio
- ▶ ¿Lo utiliza Amazon en la actualidad?

Atención

- ▶ Bajar los precios puede ser una respuesta competitiva (sales -discriminación-, fin de temporada -inventario-, etc.)
- ► El objetivo es discriminar las conductas exclusorias de las pro competitivas
- ► Una prohibición implica elevar los precios ⇒ ello es contra intuitivo en términos de defensa de la competencia

Introducción (cont.)

- Existen dos tipos de modelos que involucran información asimétrica entre el depredador y la presa:
 - los modelos de señales (también otro de reputación)
 - los modelos de "bolsillos grandes"
- ► Es interesante demostrar que una empresa no puede racionalmente disuadir el ingreso de otras bajando el precio
- No es un ENPS.I

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Proliferación de marcas

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

Presentación

- ▶ Empresa instalada (I) enfrenta el ingreso potencial de empresas (E_t) en T ciudades diferentes, con T finito
- ▶ En cada $t \in T$, el juego entre I y E es de la siguiente forma:
 - Primero, la empresa t decide si entra (e) o no al mercado (\overline{e})
 - ▶ Si entra, la empresa I decide si toma acciones agresivas (G) o acomoda la entrada (A)
- ightharpoonup Gráficamente, la situación en el momento t es la siguiente

Figura

Solución

- ightharpoonup Empezamos en T final \Longrightarrow el EN es $\{e, na\}$
- ▶ Como en T no puede impedir el ingreso \Longrightarrow en T-1 tampoco tampoco en t=1
- "Paradoja" de Selten: El instalado no puede disuadir el ingreso de nuevas empresas
- La predación se observa, pero es complejo de demostrar

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Proliferación de marcas

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

Presentación

- La paradoja se rompe cuando se incorpora información asimétrica
- ► En particular, ¿qué pasa si el entrante no conoce la eficiencia del instalado?
- Dos períodos y dos empresas (I, E)
- ▶ *I* puede ser de dos tipos, pero *E* no los observa:
 - lacktriangle Eficiente: costo bajo $(c_l=0)$, con probabilidad $Pr(c_l=0)=x$
 - ▶ Ineficiente: costo alto $(c_h = c < 1/2)$, con probabilidad $Pr(c_h = c) = 1 x$

Señales: supuestos

- Dos momentos de tiempo:
 - en el primer período el instalado es monopolista
 - ightharpoonup en el segundo, si E entra, compiten a la Cournot
- ▶ demanda p = 1 Q; costos del entrante CT(q) = cq + F; $\delta = 1$
- ightharpoonup Si E conociera tipo de $I \Longrightarrow$
 - ightharpoonup nunca entraría si es de costo bajo $\left(\pi_{2l}^d F < 0\right)$ y
 - ▶ siempre si es de costo alto $\left(\pi_{2h}^d F > 0\right)$, o $\frac{(1-c)^2}{2} > F > \frac{(1-2c)^2}{2}$

t=1

- $lackbox{Sea}$ superíndice m por monopolio; subíndices h y l por costo alto o bajo
- Sin entrante \Rightarrow beneficio del monopolista de costo **alto** es $\pi_{Ih}^m = (1 q_{Ih}^m c) q_{Ih}^m$.
 - $\begin{array}{l} \blacktriangleright \ \, \mathsf{CPO} \colon \frac{\partial \pi^m_{Ih}}{\partial q^m_{Ih}} = 0 = 1 c 2q^m_{Ih} \iff q^m_{Ih} = \frac{1 c}{2} \\ \Longrightarrow & \pi^m_{Ih} = \frac{(1 c)^2}{4} \end{array}$
- ▶ Sin entrante ⇒ beneficio del monopolista de costo **bajo** es $\pi^m_{Il}=(1-q^m_{Il})\,q^m_{Il}$
 - ► CPO: $\frac{\partial \pi_{Il}^m}{\partial q_{Il}^m} = 0 = 1 2q_{Il}^m \iff q_{Il}^m = \frac{1}{2} \implies \pi_{Il}^m = \frac{1}{4}$

$$t=2$$

- \blacktriangleright Costo alto: $\pi^d_{Ih} = (1-c-q)\,q^d_{Ih};$ y $\pi^d_{Eh} = (1-c-q)\,q^d_{Eh}$
 - $\begin{array}{c} \blacktriangleright \ \, \mathsf{CPO} \ \frac{\partial \pi^d_{ih}}{\partial q^d_{ih}} = 0 = 1 c 2q^d_{ih} q^d_{jh} \Longleftrightarrow \ q^d_{ih} = \frac{1 c q^d_{jh}}{2} \ \, \mathsf{para} \\ i,j = I,E, \ i \neq j \end{array}$
- Sustituyendo: $q_{Ih}^d=q_{Eh}^d=\frac{1-c}{3} \Longrightarrow \pi_{1h}^d=\pi_{2h}^d=\frac{(1-c)^2}{9}$
- ▶ **Costo bajo**: repitiendo el procedimiento, se llega a que: $q_{II}^d = \frac{1+c}{2}$ y $q_{FI}^d = \frac{1-2c}{2}$
- $q_{II} \frac{1}{3}$ y $q_{EI} \frac{1}{3}$
- lacksquare Beneficios: $\pi^d_{Il}=rac{(1+c)^2}{9}$ para la I de costo bajo y $\pi^d_{El}=rac{(1-2c)^2}{9}$

Resumen

Resumen de los pagos.

		Momento 1	Momento 2
Costo alto	Emp. 1	$\pi_{Ih}^m = \frac{(1-c)^2}{4}$	
	Emp. 2	-	$\pi_{Eh}^d = \frac{(1-c)^2}{9}$
Costo bajo	Emp. 1	$\pi^m_{Il} = \frac{1}{4}$	$\pi_{Il}^d = \frac{(1+c)^2}{9}$
	Emp. 2	-	$\pi_{El}^d = \frac{(1 - 2c)^2}{9}$

EBN

Definiciones

Un EQUILIBRIO BAYESIANO DE NASH es un perfil de estrategias y un conjunto de creencias de forma que las estrategias son secuencialmente racionales dado el sistema de creencias; y el sistema de creencias es consistente con el perfil de estrategias

- ▶ Buscaremos el EBN en las estrategias −cantidades− (s_1, s_2) y las creencias p del entrante
- Dos tipos de equilibrio: pooling (agrupamiento) o separating (separador)
- La predación se da cuando la empresa I ineficiente se hace pasar por la eficiente, y E no entra

Equilibrio agrupador

Hecho

El siguiente es un **equilibrio agrupador**:

- $q_{II}^* = q_{Ib}^* = q_{II}^m$
- $ightharpoonup s_2^* = Entrar$, si $q_I^m < q_{Il}$; Noentrar, si $q_I^m \ge q_{Il}$
- ightharpoonup x' = 0, si $q_I^m < q_{II}$; x' = x, si $q_I^m \ge q_{II}$, donde x son las creencias (probabilidades) de que I sea eficiente

Explicación

- En este equilibrio, la empresa instalada de costo alto imita a la de costo bajo
- ▶ El entrante no obtiene información sobre el tipo en el momento $1 \Rightarrow$ se guía por sus creencias ex ante
- $\Rightarrow \text{ el equilibrio de pooling puede existir sólo si el pago esperado}$ $\text{ del entrante es negativo: } x \left(\pi_{2l}^d F \right) + (1-x) \left(\pi_{2h}^d F \right) < 0$ \Longrightarrow

$$x > \frac{(1-c)^2 - F}{2-3c}$$

ightharpoonup Si E entrara, la empresa de costo alto jugaría su cantidad de monopolio y obtendría un beneficio mayor en el primer período

Solución

- $ightharpoonup x > rac{(1-c)^2 F}{2-3c}$, implica que la probabilidad de encontrar una empresa de costo bajo es alta
- La empresa I eficiente no hace nada: juega la cantidad de monopolio en los dos períodos y no hay ingreso
- La empresa I ineficiente imita a la de costo bajo si se cumple la RCI:

$$\pi_{Ih}^m + \pi_{Ih}^d \le \pi_{Ih}^m \left(q_{Il}^m \right) + \pi_{Ih}^m$$

• o si $\frac{(1-c)^2}{9} \le \frac{(1-1/2-c)}{2}$, que se cumple si $c < \frac{(3\sqrt{5}-5)}{4} \simeq 0.42$

Solución

- $ightharpoonup x > rac{(1-c)^2 F}{2-3c}$, implica que la probabilidad de encontrar una empresa de costo bajo es alta
- ightharpoonup La empresa I eficiente no hace nada: juega la cantidad de monopolio en los dos períodos y no hay ingreso
- La empresa I ineficiente imita a la de costo bajo si se cumple la RCI:

$$\mathbf{T}_{Ih}^{\mathbf{m}} + \mathbf{T}_{Ih}^{d} \leq \mathbf{T}_{Ih}^{m} \left(q_{Il}^{m} \right) + \mathbf{T}_{Ih}^{\mathbf{m}}$$

• o si $\frac{(1-c)^2}{9} \le \frac{(1-1/2-c)}{2}$, que se cumple si $c < \frac{(3\sqrt{5}-5)}{4} \simeq 0.42$

Resultados

Por tanto

una empresa ineficiente puede hacerse pasar por una eficiente y disuadir el ingreso de otra empresa al mercado

- Ello ocurre en el equilibrio agrupador cuando:
 - la empresa de costo alto no es muy ineficiente $c < \frac{\left(3\sqrt{5} - 5\right)}{4} \simeq 0,42 \text{ y}$
 - la probabilidad de que la empresa sea de costo alto es lo suficientemente alta $x < \frac{(1-c)^2 - F}{2-2c}$
- Nota: se disuade el ingreso pero con un precio por encima del costo: c < 0.42, mientras que p = 1/2

Índice

Disuación a la entrada

Capacidad como inversión estratégica

Proliferación de marcas

Otras estrategias

Contratos

Canasta "Bundling"

Aumentar los costos de los rivales

Precios predatorios

Paradoja de la cadena de tiendas

Señales

Empresa con bolsillos grandes

Idea

- ➤ Si una de las empresas requiere acceso a crédito, la otra puede utilizar la predación para impedir el financiamiento
- Se basa en las imperfecciones de los mercados financieros: la predación afecta los riesgos de repago de los créditos
- Los bancos no saben si el mal resultado es por predación o porque el gerente utilizó el dinero para otros fines ⇒ hay un problema de riesgo moral
- ► Los bancos necesitan cubrirse ⇒ puede existir restricción de crédito

Presentación

- ▶ Modelo basado en Pepall, Richards y Norman (2011): Contemporary Industrial Organization (sección 9.3.2; páginas 211-217)
- ▶ Sea una empresa instalada *I* y un potencial entrante *E*:
- ▶ 2 períodos de tiempo; empresas tienen que pagar F en cada período, sin embargo:
 - ► I acumuló recursos en el pasado
 - lacktriangle E no tiene recursos \Rightarrow tiene que solicitar crédito para competir
- ⇒ Aparece un nuevo jugador: el prestamista

Elementos

- ▶ $I\Rightarrow \pi^D-F>0$, si hay dos empresas; π^M-F , si es la única empresa; con $\pi^M>\pi^D$
- $E \Rightarrow \pi_L^E \text{, con } P\left(\pi_L^E\right) = \theta \text{; y } \pi_H^E \text{, con } P\left(\pi_H^E\right) = 1 \theta \text{, y se cumple que } \pi_L^E < F < \pi_H^E \text{ y } \pi^E = \theta \pi_L^E + (1 \theta) \pi_H^E > F$
- lacktriangledown π_i^E , con $i=\{L,H\}$, lo observa sólo E, no el prestamista
- Prestamista presta F en t = 1 y recibe un pago de E:
 - \blacktriangleright si $\pi^E_i=\pi^E_L\Rightarrow$ recibe π^E_L y no presta F en t=2 , dado que recibe π^E_L seguro
 - condicional al pago, decide si presta F en t=2 (con $P(prestar) = \beta$)

Prestamista

- \blacktriangleright Como el prestamista no observa π^E_i , sabe que va a cobrar $\pi^E_L < F$ en t=2
- lacktriangle Como la empresa no necesita más dinero, no tiene sentido repagar todo F
- ▶ En t = 1 pide un pago R_H^E tal que maximice

$$V = \theta \pi_L^E - F + (1 - \theta) \left[R_H^E + \beta \left(\pi_L^E - F \right) \right]$$

donde $\theta\pi_L^E-F$ es lo que recibe —esperado— si la empresa obtiene π_L^E en t=1 (en cuyo caso no presta en t=2); y $(1-\theta)\left[R_H^E+\beta\left(\pi_L^E-F\right)\right]$ es lo que recibe —esperado— si cobra R_H^E en t=1 y presta en t=2

lacktriangle Prestamista elige eta y R_H^E

Empresa E: compatibilidad de incentivos

- ¿Qué haría la empresa E?
- ▶ Si sale π_I^E en t=1 está frita
- lacktriangle Si sale π_H^E en t=1 pero dice $\pi_L^E\Longrightarrow$ gana $\left(\pi_H^E-\pi_L^E
 ight)$ y nada en t=2 porque no obtiene financiamiento
- \blacktriangleright Si sale π_H^E en t=1 y lo reporta, paga R_H^E al prestamista y en t=2 gana $\overline{\pi}^E=\theta\pi^E_I+(1-\theta)\pi^E_H$ menos el pago al banco π^E_I
- La empresa revelará que gana π_H^E en $t=1 \iff$

$$\pi_H^E - R_H^E + \beta \left(\overline{\pi}^E - \pi_L^E \right) \geq \pi_H^E - \pi_L^E$$

$$\Longrightarrow R_{H}^{E}=\pi_{L}^{E}+\beta\left(\overline{\pi}^{E}-\pi_{L}^{E}\right)$$

Empresa E: participación

- ¿Querrá jugar el juego E?, es decir ¿querrá aceptar el contrato del prestamista?
- ► Se tiene que cumplir que

$$(1-\theta)\left[\pi_{H}^{E}-R_{H}^{E}+\beta\left(\overline{\pi}^{E}-\pi_{L}^{E}\right)\right]\geq0$$

dado que con probabilidad heta gana 0

Esta restricción se cumple si se cumple la RCI

Solución del prestamista

 \blacktriangleright Sustituyendo $R_H^E=\pi_L^E+\beta\left(\overline{\pi}^E-\pi_L^E\right)$ en V obtenemos

$$V = \pi_L^E - F + (1 - \theta) \beta \left(\overline{\pi}^E - \pi_L^E \right)$$

- La variable de control es β para el prestamista
- lacktriangle Como todas las demás variables están dadas $\Longrightarrow eta = 1$
- \Rightarrow sustituyendo en R_H^E , se tiene que $R_H^E = \overline{\pi}^E$
- ▶ Verifiquen que se cumple la restricción de participación !

Predación

- \triangleright Ahora entra en juego la empresa I
- La probabilidad de que sea monopolio en t=2 es $\theta + (1 - \theta)(1 - \beta) = (1 - \beta) + \theta\beta$
- \triangleright Supongamos que pagando C, la empresa I aumenta $P\left(\pi^E = \pi_L^E\right) = \theta + \delta$
- La nueva probabilidad de que sea monopolio es $\theta + \delta + (1 - \theta - \delta)(1 - \beta) = (1 - \beta) + (\theta + \delta)\beta$
- lacktriangle Si la empresa E sale del mercado, I gana $\left(\pi^M \pi^D\right) \Rightarrow$ a Ile conviene predar ←⇒

$$\delta\beta\left(\pi^{M}-\pi^{D}\right)-C>0$$

Predación (cont.)

- Para hacer menos rentable la predación $\downarrow \beta$
- Retomando el retorno del prestamista $V = \pi_L^E - F + (1 - \theta) \beta \left(\overline{\pi}^E - \pi_L^E \right) \ge 0$
- \triangleright Existe un umbral de β tal que el prestamista no presta

$$\widehat{\beta} < \frac{\pi_L^E - F}{(1 - \theta) \left(\overline{\pi}^E - \pi_L^E \right)}$$

▶ Si la empresa I hace caer β lo suficiente \Rightarrow la empresa E no obtiene financiamiento

Conclusiones

- ▶ La empresa I puede usar el problema de riesgo moral de E con el prestamista a su favor
- ightharpoonup Al actuar sobre la probabilidad de que el proyecto sea exitoso, obliga al prestamista a disminuir la probabilidad de otorgar el préstamo para recuperar los incentivos de la empresa E

Conclusión

la empresa instalada puede utilizar el mercado financiero –y los problemas asociados de riesgo moral– a su favor para impedir a los rivales acceder a financiamiento

