Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-222. Вариант 19

1. Пусть
$$z = \frac{3}{2} - \frac{3\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{\frac{1}{2} - \frac{\sqrt{3}i}{2}}$ имеет аргумент $\frac{\pi}{12}$.

2. Решить систему уравнений:

$$\begin{cases} x(4+4i) + y(12-8i) = -108 - 4i \\ x(1-14i) + y(14-5i) = -228 - 268i \end{cases}$$

- 3. Найти корни многочлена $-2x^6 10x^5 + 20x^4 + 140x^3 + 72x^2 960x 1600$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -2 2i$, $x_2 = 3 i$, $x_3 = -5$.
- 4. Даны 3 комплексных числа: -28-30i, -18+16i, 7+2i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -2i, z_2 = 1 \sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+1-3i| < 1\\ |arg(z-2+2i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-3, 6, 4), b = (0, 3, 4), c = (3, -2, 2). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(7,-5,-3) и плоскость P:14x+4y+20z+288=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-11, -1, -6), $M_1(-2, 12, -2)$, $M_2(-35, 1, -2)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 2x - 10y + 3z - 54 = 0 \\ 17x - 8y - 11z - 289 = 0 \end{cases} \qquad L_2: \begin{cases} -15x - 2y + 14z + 2785 = 0 \\ -17x - 12y - 4z + 1387 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.