Problems on Maxwell's equations and Electromagnetic Waves

- 1. Determine charge density $\rho(r)$ in a spherically symmetric region for which electric field is $\vec{E}(\vec{r}) = ar^2\hat{r}$. $[\vec{\nabla} \cdot \vec{A} = \frac{1}{r^2} \frac{\partial^2}{\partial r^2} (r^2 A_r)$ given for any vector \vec{A} .]
- 2. Determine current density \vec{J} which produces magnetic filed $\vec{B} = a \sin(by) e^{bx} \hat{k}$, where a and b are constants.
- 3. Determine emf induced in a square loop with sides of length a lying in Y-Z plane in a region in which magnetic field changes over time as $\vec{B}(t) = B_0 e^{-5t/t_0} \hat{i}$. Determine the induced electric field \vec{E} in the region. Check the validity of Stoke's theorm of Curl.
- 4. Find displacement current density \vec{J}_d in a R-C circuit, if the charge in the capacitor is given by $Q(t) = Q_0 e^{-t/(RC)}$.
- 5. Consider an electro-magnetic wave in free space with electric field $\vec{E} = E_0 \cos(3 \times 10^8 t \frac{x}{\sqrt{3}} \frac{y}{\sqrt{3}} \frac{z}{\sqrt{3}} + \pi/2)(\hat{i} \hat{j})$. Determine wave-length and frequency of the wave. What is the direction of propgation of the wave? Find the corresponding magnetic field?
- 6. The magnetic field component of a plane wave in a non-magnetic dielectric medium is given by $\vec{H} = 20\cos(10^8\pi t 5x)\hat{k}$. Determine wave-length and wave-velocity of the wave. Find corresponding electric field \vec{E} in the medium.