Now, we back to the general case:

$$a \cdot x + b \cdot y = c$$
.

Lemma 1.4.1.

Suppose (x_1, y_1) is a solution of above Diophantine equation. Then the solution set $\{(x, y) \in \mathbb{Z}^2 \mid a \cdot x + b \cdot y = c\}$ can be expressed as

$$(\mathbf{x}_1, \mathbf{y}_1) + \{(\mathbf{x}, \mathbf{y}) \in \mathbb{Z}^2 \mid \mathbf{a} \cdot \mathbf{x} + \mathbf{b} \cdot \mathbf{y} = 0\}.$$

Before we move to the proof, let's consider the corresponding proposition in geometry:
The line defined by the equation

$$a \cdot x + b \cdot y = c$$

can be obtained from the line

$$\mathbf{a} \cdot \mathbf{x} + \mathbf{b} \cdot \mathbf{y} = 0$$

by adding a vector $\langle x_1, y_1 \rangle$ from the origin to a point (x_1, y_1) on the first line.

PROOF OF THE LEMMA

Proof. Suppose (x_2, y_2) is a solution of our Diophantine equation $a \cdot x + b \cdot y = c$, then we have:

$$a \cdot (x_1 - x_2) + b \cdot (y_1 - y_2) = 0.$$

Namely, $(x_1 - x_2, y_1 - y_2)$ is a solution of the corresponding homogeneous Diophantine equation $a \cdot x + b \cdot y = 0$.

$$ax_1 + b y_1 = C$$

$$ax_2 + b y_2 = C$$

Proof. Suppose (x_2, y_2) is a solution of our Diophantine equation $a \cdot x + b \cdot y = c$, then we have:

$$a \cdot (x_1 - x_2) + b \cdot (y_1 - y_2) = 0.$$

Namely, $(x_1 - x_2, y_1 - y_2)$ is a solution of the corresponding homogeneous Diophantine equation $a \cdot x + b \cdot y = 0$.

Conversely, if (x_2, y_2) is a solution of the corresponding homogeneous Diophantine equation $a \cdot x + b \cdot y = 0$, then we have

$$a \cdot (x_1 + x_2) + b \cdot (y_1 + y_2) = c.$$

Namely, $(x_1 + x_2, y_1 + y_2)$ is a solution of our Diophantine equation

$$a \cdot x + b \cdot y = c.$$

$$a \chi_1 + b \quad \chi_1 = C$$

$$a \chi_2 + b \quad \chi_2 = D$$

Theorem 1.4.2.

Given integers a, b, c, the solutions of the Diophantine equation

$$a \cdot x + b \cdot y = c$$

can be obtained through the following steps:

- 1. Using division algorithm to find gcd(a, b) and then determine whether the Diophantine equation has an integer solution by whether c is a multiple of gcd(a, b).
- 2. If this is the case, the Bézout's identity gives a pair of integers (x_0, y_0) such that $ax_0 + by_0 = \gcd(a, b)$. Suppose $c = m \gcd(a, b)$. Then (mx_0, my_0) is a solution of our Diophantine equation.

Theorem 1.4.2.

3. Once we have a solution (x_1, y_1) of our Diophantine equation, the solution set can be expressed as¹

$$(x_1, y_1) + \mathbb{Z}(\frac{\operatorname{lcm}(a,b)}{a}, -\frac{\operatorname{lcm}(a,b)}{b}).$$

Namely, the general solution is

$$\begin{cases} x = x_1 + \frac{\operatorname{lcm}(a,b)}{a}t \\ y = y_1 - \frac{\operatorname{lcm}(a,b)}{b}t \end{cases} (t \in \mathbb{Z}).$$

Proof. The first two are proved in previous lecture, the third is the combination of theorem 1.3.3 and lemma 1.4.1.

¹Recall the conventions on set notations

Let's continue the example

$$133x + 85y = 1.$$

We have seen that gcd(133, 85) = 1 and that

$$133 \cdot (-23) + 85 \cdot (36) = 1.$$

Since gcd(133, 85) = 1, we have $lcm(133, 85) = 133 \cdot 85$. Therefore, the general solution is

$$\begin{cases} x = -23 + 85t \\ y = 36 - 133t \end{cases}$$
 $(t \in \mathbb{Z})$