Devoir surveillé n°09

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Exercice 1 ★★ CCP MP 2020

On note $GL_n(\mathbb{R})$ l'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$.

On pourra utiliser librement dans cet exercice le fait que l'application déterminant est continue sur $\mathcal{M}_n(\mathbb{R})$.

- **1.** L'ensemble $GL_n(\mathbb{R})$ est-il fermé dans $\mathcal{M}_n(\mathbb{R})$?
- **2.** Démontrer que l'ensemble $\mathrm{GL}_n(\mathbb{R})$ est ouvert dans $\mathcal{M}_n(\mathbb{R})$.
- **3.** Soit M un élément de $\mathcal{M}_n(\mathbb{R})$. Justifier que

$$\exists \rho > 0, \ \forall \lambda \in]0, \rho[, \ M - \lambda I_n \in GL_n(\mathbb{R})$$

En déduire que l'ensemble $\mathrm{GL}_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.

4. Application. Si A et B sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, montrer que AB et BA ont le même polynôme caractéristique.

A l'aide des matrices $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, prouver que le résultat n'est pas vrai pour les polynômes minimaux.

5. Démontrer que $GL_n(\mathbb{R})$ n'est pas connexe par arcs.

Exercice 2 E3A Maths B MP 2012

Etant donné un entier naturel non nul n, $\mathcal{M}_n(\mathbb{C})$ désigne la \mathbb{C} -algèbre des matrices (n, n) à coefficients dans \mathbb{C} . On désigne par I_n la matrice identité de $\mathcal{M}_n(\mathbb{C})$.

Etant donnée une matrice M dans $\mathcal{M}_n(\mathbb{C})$, on note $\chi_M(\lambda) = \det(\lambda I_n - M)$ son polynôme caractéristique. Si A, B, C, D sont quatre matrices dans $\mathcal{M}_n(\mathbb{C})$, on note $M_{A,B,C,D}$ la matrice de $\mathcal{M}_{2n}(\mathbb{C})$ définie par blocs par :

$$M_{A,B,C,D} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

- **1.** Soient A, B, C, D, E cinq matrices dans $\mathcal{M}_n(\mathbb{C})$.
 - **a.** Exprimer la matrice produit $M_{A,B,C,D}M_{I_n,E,0_n,I_n}$.
 - **b.** On suppose la matrice A inversible. Justifier l'égalité :

$$\det(M_{A,B,C,D}) = \det(A) \det(D - CA^{-1}B)$$

- 2. On suppose que les matrices A et C commutent.
 - **a.** On suppose que la matrice A est inversible. Démontrer que $det(M_{A,B,C,D}) = det(AD CB)$.
 - **b.** On ne suppose plus la matrice A inversible.
 - i. Démontrer qu'il existe des matrices U et V dans $\mathcal{M}_n(\mathbb{C})$ telles que le polynôme caractéristique de la matrice $M_{A,B,C,D}$ vérifie $\chi_{M_{A,B,C,D}}(\lambda) = \det(\lambda^2 I_n + \lambda U + V)$. Expliciter U et V en fonction des matrices A, B, C et D.
 - ii. En déduire que $det(M_{A,B,C,D}) = det(AD CB)$.
- 3. Dans cette question, on suppose que $A = D = I_n$ et que C et B sont deux matrices à coefficients réels transposées l'une de l'autre. On désigne la matrice M_{I_n,B,B^T,I_n} par S.
 - a. Justifier que B^TB est une matrice symétrique positive.
 - **b.** Exprimer le polynôme χ_S en fonction du polynôme χ_{B^TB} .
 - **c.** En déduire que la matrice S est symétrique définie positive si et seulement si les valeurs propres de la matrice B^TB sont toutes strictement inférieures à 1.
- **4.** On considère la suite de matrices $(A_n)_{n\in\mathbb{N}}$ définies par récurrence par :

$$A_1 = \begin{pmatrix} 2 & i \\ i & -2 \end{pmatrix} \qquad \text{et} \qquad \forall n > 1, \ A_n = \begin{pmatrix} 2A_{n-1} & iA_{n-1} \\ iA_{n-1} & -2A_{n-1} \end{pmatrix}$$

- **a.** Soit n > 1. Déterminer une relation de récurrence entre $\det(A_n)$ et $\det(A_{n-1})$.
- **b.** Soit $n \ge 1$. Exprimer $\det(A_n)$ en fonction de n.
- c. Soit n > 1. Exprimer le polynôme caractéristique χ_{A_n} de la matrice A_n en fonction de $\chi_{A_{n-1}}$ et $\chi_{(-A_{n-1})}$.
- **d.** Soit $n \ge 1$. Déterminer les valeurs propres de la matrice A_n .

© Laurent Garcin MP Dumont d'Urville

Problème 1 – D'après E3A 2003 MP Maths A

Dans tout le problème, on considère la fonction f de la variable réelle x définie par :

$$f(x) = \sum_{n=1}^{+\infty} \frac{n^{n-1}}{n!} x^n$$

On rappelle la formule de Stirling:

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

Partie I

- 1 Montrer que le rayon de convergence de la série entière définissant f est $\frac{1}{e}$.
- 2 Montrer que la série de terme général $\frac{n^{n-1}e^{-n}}{n!}$ converge.
- 3 En déduire la convergence normale de la série définissant f sur $\left[-\frac{1}{e}, \frac{1}{e}\right]$.
- 4 Quel est le domaine de continuité de f?

Partie II

- **5** Montrer que tout entier naturel n non nul vérifie l'inégalité : $\left(1 + \frac{1}{n}\right)^n \le e$.
- Quelle est la classe de f sur l'intervalle $\left] -\frac{1}{e}, \frac{1}{e} \right[$? Exprimer f' sous forme de série entière sur cet intervalle.
- 7 Montrer que f est croissante sur $\left[-\frac{1}{e}, \frac{1}{e}\right]$
- 8 Déterminer une valeur approchée de $f\left(-\frac{1}{e}\right)$ à 10^{-2} près.

Partie III

Soit m un entier naturel non nul. On considère la fonction φ définie sur \mathbb{R} par : $\varphi(x) = (1 - e^x)^m$.

Après avoir justifié que φ est une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} , montrer que pour tout entier i compris entre 0 et m, il existe un polynôme P_i tel que :

$$\forall x \in \mathbb{R}, \varphi^{(i)}(x) = P_i(e^x)(1 - e^x)^{m-i}$$

10 En développant $\varphi(x)$, montrer que :

$$\forall m \in \mathbb{N} \text{ tel que } m \ge 2, \sum_{n=1}^{m} (-1)^n \binom{m}{n} n^{m-1} = 0$$

On considère la fonction définie sur \mathbb{R} par : $g(y) = ye^{-y}$.

- 11 Etudier et représenter la fonction g.
- 12 Montrer l'existence d'un unique réel $\alpha \in]-1,0[$ tel que $\alpha e^{-\alpha}=-\frac{1}{e}.$ Montrer de plus :

$$\forall y \in [\alpha, 1], \ g(y) \in \left[-\frac{1}{e}, \frac{1}{e} \right]$$

13 Montrer que :

$$\forall y \in [\alpha, 1], \ f(ye^{-y}) = \sum_{n=1}^{+\infty} \left(\sum_{m=n}^{+\infty} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m \right)$$

Soit $y \in [\alpha, -\alpha]$. On considère la suite double $(z_{n,m})_{(n,m)\in(\mathbb{N}^*)^2}$ définie par

$$z_{n,m} = \begin{cases} (-1)^{m-n} \frac{n^{m-1}}{n!(m-n)!} y^m & \text{si } 1 \le n \le m \\ 0 & \text{sinon} \end{cases}$$

Montrer que cette suite double est sommable.

15 En déduire que :
$$\forall y \in [\alpha, -\alpha], \ f(ye^{-y}) = y$$
.

On admettra dans ce qui suit que cette propriété est valable sur l'intervalle $[\alpha, 1]$.

16 Représenter graphiquement la fonction
$$f$$
 sur l'intervalle $\left[-\frac{1}{e}, \frac{1}{e}\right]$.

17 Que peut-on dire de la dérivabilité de f en $-\frac{1}{e}$ et $\frac{1}{e}$? Justifier précisément votre réponse.