Case Study:

The impact of tumor location on survival outcomes for patients diagnosed with pancreatic cancer and treated with surgery in Louisiana between 2004 and 2016

James Henegan Survival Analysis Final Project

Fall Semester, 2019

Introduction - Research Question

The purpose of this study is to investigate the relationship between tumor location and survival probability for patients diagnosed with pancreatic cancer and treated with surgery.

We restricted our attention to patients from Louisiana who had been diagnosed with the disease between the years of 2004 and 2016, inclusive.

The impact of tumor location on survival outcomes for patients diagnosed with pancreatic cancer and treated with surgery has been investigated in the past. For example, Artinyan et. al found that patients who had cancer in the body or tail of the pancreas had outcomes that were worse than those who had cancer in the head of the pancreas.

Data Collection

The event of interest was all-cause mortality.

The variable TNM 7/CS v0204 Schema attained values of PancreasHead, PancreasBodyTail, and PancreasBother

The variable Summary stage 2000 (1998+) attained values of Local, Regional, and Distant.

The variable Grade attained values of 1, 2, 3, and 4.

The variable CS Tumor Size/Exit Eval(2004-2015) was not used.

Sample Characteristics

	Tumor Location:	Tumor Location:
	Head of Pancreas	Body/Tail of Pancreas
	(N = 712)	(N = 276)
Age at Diagnosis (years)	64.89 ± 10.77	63.05 ± 12.22
Year of Diagnosis	2010.84 ± 3.55	2011.60 ± 3.38
Sex		
Female	354 (50%)	151 (55%)
Male	358 (50%)	125 (45%)
Race		
Black	146 (21%)	60 (22%)
White	566 (79%)	216 (78%)
<u>Grade</u>		
I	109 (15%)	105 (38%)
II	329 (46%)	90 (33%)
III	256 (36%)	73 (26%)
IV	18 (3%)	8 (3%)
Stage		
\overline{Local}	92 (13%)	95 (34%)
Regional	573 (80%)	130 (47%)
Distant	47 (7%)	51 (18%)

Overall Survival Data

Table, Overall Survival Data.

Results, by Tumor Location

Test	<i>p</i> -value
Log-rank	< 0.0001
Wilcoxon	0.0022

	Tumor Location: Head	Tumor Location: Body/Tail
	(N = 712)	(N = 276)
Dead	529 (74.30%)	147 (53.26%)
Median Survival Time (months)	17 (16,19)	26 (20,38)
Median Follow-Up Time (months)	53 (44,65)	46 (40, 52)

Variable	Unadj.	Unadj. HR	Schoenfeld
	HR	95% CI	<i>p</i> -value
Tumor Location Head Body/Tail	1.58	(1.32, 1.90)	0.07

Table. Results from the unadjusted Cox model for Tumor Location.

Cox Model by Tumor Location, with Time Dependent Variables

The log-log plot of the previous model caused us to consider the model $h(t, \mathbf{X}) = h_0(t)e^{x_1Z_1 + x_2Z_2}$ where

$$Z_1(t) = egin{cases} 1, & ext{Tumor in the head of the pancreas and } t \leq 5 \ 0, & ext{otherwise} \end{cases}$$

$$Z_2(t) = egin{cases} 1, & ext{Tumor in the head of the pancreas and } t > 5 \ 0, & ext{otherwise} \end{cases}$$

The estimates obtained by this model are described below.

Variable Name	Hazard Ratio	95% CI for HR
Z_1	0.77	(0.52, 1.13)
Z_2	1.89	(1.53, 2.33)

Other Unadjusted Cox Models

Variable	Log-rank p-value
Stage	< 0.0001
Age	0.0001
Sex	0.0447
Year of Diagnosis	< 0.0001

Variable	Unadj. HR	Unadj. HR 95% CI	Schoenfeld p-value
Cancer Stage Distant Regional Localized	3.45 3.27 —	(2.47, 4.81) (2.53, 4.22)	0.0012 0.9877
Age at Diagnosis ≥ 75 < 75	1.43	(1.19, 1.70)	0.2675
Sex Male Female	1.16 —	(1.00, 1.35)	0.9059
Year of Diagnosis ≥ 2011 < 2011	0.66 —	(0.57, 0.77)	0.9809

Table. Results from the unadjusted Cox models for Cancer Stage, Age at Diagnosis, Sex, and Year of Diagnosis.

Unadjusted Cox Model, by Tumor Grade

Variable	Unadj. HR	Unadj. HR 95% CI	Schoenfeld p-value
Tumor Grade			
1	_		
ll II	2.75	(2.14, 3.52)	0.47
III	4.25	(3.30, 5.47)	0.18
IV	2.76	(1.65, 4.61)	0.18

Table. Results from the unadjusted Cox model for Tumor Grade.

Stratified Cox Model

Cox Model, Stratified by Cancer Stage and Tumor Grade

			Schoenfeld
Variable	HR	HR 95% CI	<i>p</i> -value
Tumor Location			0.1977
Head	1.11	(0.91, 1.35)	
Body/Tail	_		
$\frac{1}{10} \times (Age at Diagnosis, years)$	1.15	(1.07, 1.24)	0.1843
Year of Diagnosis			0.7893
≥ 2011	0.75	(0.64, 0.88)	
< 2011	_		
			0.3465 (Global)

Table. Results from the stratified Cox Model. Figure. Cox-Snell Residual Plot.

 ${\it Figure. \ Looking \ for \ Influential \ Points \ with \ DFBETA \ residual \ plots.}$

Variable Importance

Continuing the topic of multivariate analysis . . .

Here are the results obtained from a stepwise variable selection process, in an attempt to build a Cox model using all of the recorded variables.

Step	Entered	<i>p</i> -value
1	Grade	< 0.0001
2	Stage	< 0.0001
3	Age at Diagnosis	0.0003
4	Year of Diagnosis	0.0011

Similarly, here are the Variable Importance results from a Random Forest Model.

Conclusions

Our results indicate that the impact of tumor location disappears when variables such as cancer grade and tumor stage are considered.

When no other variables were considered, we found that the survival outcomes for patients with cancer in the head of the pancreas were worse than the survival outcomes patients who had cancer in the body or tail of the pancreas. In this sense, our results ran opposite to the ones obtained by Artinyan et. al. However, their study was based on data collected between 1998 and 2004, while our study was based on data collected between 2004 and 2016. This suggests that survival outcomes may be influenced by year of diagnosis. This claim appears to be supported by some of our results. This aligns with the idea that the quality of clinical treatment (e.g., surgical procedures and medicine) may be improving over time.