APPENDIX

A. Parameters of added lines

TABLE III
PARAMETERS OF ADDED LINES.

Lines		Reactance (p.u.)	Charging sus- ceptance (p.u.)	Rating (MVA)
IEEE 9-bus	4-6 4-8 6-8 5-7 5-9 7-9	0.3 0.2 0.25 0.15 0.1 0.25	0.6 0.4 0.5 0.3 0.2	300 350 250 200 250 200
IEEE 39-bus	2-39 4 -6 14-18 19-21 23-27 24-17	0.0059 0.0112 0.0082 0.0094 0.0094 0.0082	0.068 0.1476 0.1319 0.171 0.171 0.1319	600 900 600 900 900 600

B. Diagram of the SciGRID network for Germany

Fig. 18. Diagram of the SciGRID network for Germany. Blue lines are with length larger than $50\ km$.

C. Dynamic parameters of loads, generators and inverters

TABLE IV DYNAMIC PARAMETERS OF LOADS, GENERATORS AND INVERTERS.

Type m_i	d_i	$K_{\mathrm{P},i}$	$K_{\mathrm{I},i}$	τ_i (s)	X_d' (p.u.)
$\mathcal{V}_{\mathrm{S}} = m_{0,i}$	$d_{0,i}$			_	0.3
$\mathcal{V}_{\mathrm{FM}} \ 0.2 m_{0,i}$	$0.2d_{0,i}$	_	_	_	0.1
V_{FL} $0.2m_{0,i}$	$0.2d_{0,i}$	2.22	61.69	4.502×10^{-3}	0.1
$\mathcal{V}_{ ext{L}}$ —	1×10^{-3}	_	_	_	_

^{*} $m_{0,i}=\frac{10\overline{p}_{\mathrm{gen},i}}{\omega_{syn}},\ d_{0,i}=\frac{\overline{p}_{\mathrm{gen},i}}{2\pi}.\ \overline{p}_{\mathrm{gen},i}$ denotes the maximal active power output of generator/inverter i, and ω_{syn} denotes the synchronous angular speed, taking $2\pi50\ \mathrm{rad/s}$. τ_i corresponds to cut-off frequency of filters being $2\pi35.35\ \mathrm{rad/s}$ which makes dynamic response fast and well-damped for a 50 Hz system [15]. K_{P} and K_{I} are taken from [16]. X'_d is the direct-axis transient reactance of synchronous generators or the equivalent reactance of inverters. The base MVA for X'_d equals to the maximum real power output of the corresponding generator/inverter. ϵ =1×10⁻⁵.