

Department of Mathematics

Course: Vector Calculus, Laplace Transform and Numerical Methods	TEST-I	Maximum Marks: 50		
Course Code: MA221TA	Second Semester 2023-2024 Branch: EC, EE, EI, ET	Time: 2 PM to 3:30 PM Date: 13/05/2024		

	Instructions to candidates: Answer all questions.							
Q.No.	Question	M	BT	CO				
1a	Transform the following signal in time into the signal in frequency: $f(t) = e^{-4t} \int_0^t t \sin 3t dt + \sin^2(2t+1)$	7	L1	1				
1b	Evaluate $\int_0^\infty e^{-t} \frac{\sin t}{t} dt$.	3	L2	2				
2a	Express the following function in terms of Heaviside unit step function and hence evaluate its Laplace transform. $f(t) = \begin{cases} \cos t, 0 < t < \pi \\ 1, & \pi < t < 2\pi \\ \sin t, & t > 2\pi \end{cases}$	7	L2	2				
2b	Find $L[(t-1)^2\delta(t-3)]$.	3	L1	2				
3	Find the Laplace transform of half rectified sine wave function $I = \begin{cases} E \sin \omega t, & 0 < x < \frac{\pi}{\omega} \\ 0 & \frac{\pi}{\omega} < x < \frac{2\pi}{\omega}, \end{cases}$ where E and ω are constants, $f\left(t + \frac{2\pi}{\omega}\right) = f(t)$.	10	L3	3				
4a	Using convolution theorem, obtain the inverse Laplace transform of the function: $F(s) = \frac{s}{(s^2+9)^2}$	07	L2	3				
4b	Find the inverse Laplace transform of the function $F(s) = \log\left(1 - \frac{a^2}{s^2}\right)$.	3	L2	2				
5	Using Laplace transform method solve the differential equation: $y'' + 4y' + 3y = e^{-t}$, $y(0) = 1 = y'(0)$.	10	L3	4				

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks ******

Marks Distributions	Particulars	CO1	CO2	CO3	CO4	L1	L2	L3	L4	L5	L6
	Max Marks	7	16	17	10	10	20	20			