

GH3000 TCP-IP/UDP-IP DATA PROTOCOLS DRAFT

(ver. 1.08)

(Confidential document)

TELTONIKA

Copyright © 2012 UAB "Teltonika".

All rights reserved. Reproduction, transfer, distribution or storage of part or all of the contents in this document in any form without the prior written permission of Teltonika is prohibited.

TABLE OF CONTENTS

1. COMMUNICATION WITH SERVER	<u>4</u>
2. TCP/IP PACKET STRUCTURE	5
3. DATA ARRAY STRUCTURE	5
4. PACKET AND DATA STRUCTURE	
5. RECORD ARRAY STRUCTURE	
6. GPS ELEMENT STRUCTURE	
7. IO ELEMENT STRUCTURE	
8. SOURCE CODE FOR CRC CALCULATION	
9. PARSING EXAMPLE	9
9.1 Packet Data structure.	
9.2 Record Data parsing	10
10. ADVANCED PARSING EXAMPLE	12
10.1 Data record parsing.	12
11. SENDING DATA OVER UDP/IP	
11.1 UDP channel protocol.	
11.2 Sending AVL data using UDP channel	14
11.3 Example	16

1. Communication with server

All the multibyte fields and values in this protocol use big-endian byte order, if not specified otherwise.

big-endian – of a computer, the most significant byte of a multibyte number is stored at a lower address than the least significant byte, that is, "big end" first

(http://en.wiktionary.org/wiki/big-endian)

little-endian – of a computer, storing most significant byte of a multibyte number is stored at a higher address than the least significant byte, that is, "little end" first

(http://en.wiktionary.org/wiki/little-endian)

First when device connects to server, module sends its IMEI. IMEI is sent in this way:

Length	IMEI
(2 Bytes)	(CHAR data)

First comes short identifying number of Bytes written and then goes IMEI as ASCII text (Bytes).

For example:

IMEI 123456789012345 will be sent as

→ 00 0F 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35

After receiving IMEI, server should determine if it would accept data from this module. If yes, server will reply to module **0x01**, if not – replay **0x00**. Server must send answer – 1 Byte in HEX format.

After module received the positive answer, it starts to send first avl data packet. After server receives packet and parses it, server should report to module number of records received as integer (4 Bytes) in big-endian byte order. By the example below, server must send answer:

\rightarrow 00 00 00 04

If sent data number and reported by server doesn't match – module resends sent data.

TCP/IP Packet structure 2.

Avl packet is used to encapsulate avl data and send it to server.

Preamble	Data Length	Data	CRC

Preamble Four zero Bytes (0x00)

Data length Number of Bytes in data field (Integer)

Data Any avl data array

16 bit CRC value of data (Integer). Polynomial **0xA001** (value is **CRC**

always 4 Bytes **00 00 XX XX**; where **XX XX** is 16 bit CRC)

3. **Data array structure**

(COUECII)	mber of ecords Record		Record	Number of Records
-----------	-----------------------	--	--------	-------------------

Codec ID Codec ID - **0x07** (1 Byte)

Number of

Number of Records in Data array (1 Byte) Records

Information about one position point (coordinates, Altitude, Speed, Record

etc.)

4. Packet and Data structure

Preamble	4B											
Data	4B											
Length		Codec ID	1B	1								
		Number of Re-		1								
		cords	1B						1			
				Priority + Times-	4B	Timestamp (from 2008.01.01 00:00:00)	30 b	(0 ÷ 29)b				
				tamp		Priority	2b	(30 ÷				
						GPS Element	1b	31)b 0b				
						IO Element 1B	1b	1b				
						IO Element 2B	1b	2b				
				Clahal Maala	4.5	IO Element 4B	1b	3b				
				Global Mask	1B	-	1b	4b				
						-	1b	5b				
						-	1b	6b				
						-	1b	7b				
								Latitude,	Longitude	1b	0b	
								Altitude		1b	1b	
								Angle		1b	2b	
						Mask	1B	Speed		1b	3b	
					musk	maon	'	Satellites		1b	4b	
							Cell ID		1b	5b		
							Signal Qu		1b	6b		
			GPS Element	>=2			Operator	Code	1b	7b		
				GPS Element	В	Latitude, Longitude	8B	1				
					Altitude	2B	1					
		Record >=5			Angle Speed	1B	ł					
					Satellites	1B 1B	ł					
Data	>=8				Location area code, Cell	ID	i					
	В					ID	4B	1				
							Signal Quality	1B				
						Operator code	4B					
						Quantity	1B	ł				
						ID Value	1B	1				
					IO Element 1B >=3 B Value	O Element 1B		1B	1			
								ł				
					-	Value	1B 1B	ł				
						Quantity	1B	ł				
						ID	1B	İ				
						Value	2B	1				
				IO Element 2B	>=4 B			1				
							 1B]				
						ld]				
						Value	2B]				
						Quantity	1B	1				
						ID	1B					
				IO Element 4B	>=6	Value	4B					
					В							
						ld	1B	Į				
			>=5		<u> </u>	Value	4B	J				
		Record	B									
		Record	>=5									
		Number of Re-	В	1								
		cords	1B									
CRC	4B			=								

5. Record array structure

Priority and Timestamp	Global Mask	Element		Element
---------------------------	-------------	---------	--	---------

Priority of Record (2 bits):

00 – Track point

Priority 01 – Periodic point

10 – Alarm point

11 – Reserved (not used)

Time in seconds from 2008.01.01 00:00:00 UTC (30 bits)

Show Elements in Record (1 Byte):

0b – GPS Element

Global Mask 1b – IO Element 1B

2b – IO Element 2B 3b – IO Element 4B

Element

Information about one point position (coordinates, Altitude, Speed,

etc.)

6. GPS Element structure

Show Data Parameters in one GPS Element (1 Byte):

0b – Latitude and Longitude

1b – Altitude 2b – Angle 3b – Speed

Mask 3b – Speed 4b – Satellites

5b - Local Area Code and Cell ID

6b – Signal Quality 7b – Operator Code

Latitude (4 Bytes, float) Longitude (4 Bytes, float) Altitude (2 Bytes, signed short)

Angle = value * 360 / 256 (1 Byte)

GPS Element Speed (1 Byte)

Data segments Quantity of Satellites (1 Byte)

Local Area Code (2 Bytes)

Cell ID (2 Bytes)

GSM Signal Quality (1 Byte) - range [0 ... 31]

Operator Code (4 Bytes)

For coordinates parsing, IEEE754 protocol is used: http://www.h-schmidt.net/FloatApplet/IEEE754.html

7

7. IO Element structure

Quantity Quantity of IO Elements Data (1 Byte)

Parameter ID (1 Byte)

Parameter Value (1, 2 or 4 Bytes)

Parameter ID [decimal]	Parameter ID [HEX]	Parameter	Bytes	Description
1	1	Battery	1	Battery Level [%]
2	2	USB	1	USB connected or not
5	5	Live Time	4	Device work time after last reboot
				[sec]
20	14	HDOP	2	HDOP value
21	15	VDOP	2	VDOP value
22	16	PDOP	2	PDOP value
67	43	Battery voltage	2	Battery voltage, [mV]
220	DC	Time to FIX	4	GPS time to first FIX, [sec]
221	DD	Button ID	1	Pressed button, [0-4]
222	DE	Alarm activation	1	Alarm activation cause [none:0,
				button:1, SMS:2, AOC:3, ManDown:
				5, Parking:6, Restore after reset:7]
240	F0	Movement	1	Movement [0/1 – No/Yes]
244	F4	Roaming	1	Roaming [0 – home, 1 - roaming]

Final DOP value is calculated from DOP value taken from GPRS packet and divided by 10.

Example: **67** HEX = 103 / 10 = 10.3

8. Source code for CRC calculation

```
public static int getCrc16(byte[] buffer) {
  return getCrc16(buffer, 0, buffer.length, 0xA001, 0);
public synchronized static int getCrc16(byte[] buffer, int offset, int bufLen, int polynom, int preset) {
  preset &= 0xFFFF;
  polynom &= 0xFFFF;
  int crc = preset;
  for (int i = 0; i < bufLen; i++) {
     int data = buffer[i + offset] & 0xFF;
     crc ^= data;
     for (int j = 0; j < 8; j++) {
        if ((crc \& 0x0001)!= 0) {
          crc = (crc >> 1) ^ polynom;
        } else {
          crc = crc >> 1;
     }
  }
  return crc & 0xFFFF;
}
```


9. Parsing example

Module connects to server and sends IMEI:

000F313233343536373839303132333435

Server accepts the module:

01

Module sends data packet:

070441bf9db00fff425adb-

d741ca6e1e009e1205070001030b160000601a02015e02000314006615000a160067010500 000ce441bf9d920fff425adb-

b141ca6fc900a2b218070001030b160000601a02015e02000314006615000a160067010500 000cc641bf9d740fff425ad-

bee41ca739200b6c91e070001030b1f0000601a02015f02000314006615000a16006601050 0000ca841bf9cfc0fff425ad-

ba041ca70c100b93813070001030b1f0000601a02015f02000314002315000a16002501050 0000c3004

Server reports about successful data transfer (sends number of received records in HEX bigendian):

00 00 00 04

Device from the memory deletes sent coordinates and if all data were sent – device closes connection with the server. If there are more data in the memory, device starts to send next packet. If connection were not closed – device won't send IMEI number and will send data packet started from preamble.

9.1 Packet Data structure

Codec ID: 07

Number of Records: 04

Record No.1

41 bf 9d b0 0f ff 42 5a db d7 41 ca 6e 1e 00 9e 12 05 07 00 01 03 0b 16 00 00 60 1a 02 01 5e 02 00 03 14 00 66 15 00 0a 16 00 67 01 05 00 00 0c e4

Record No.2

41 bf 9d 92 0f ff 42 5a db b1 41 ca 6f c9 00 a2 b2 18 07 00 01 03 0b 16 00 00 60 1a 02 01 5e 02 00 03 14 00 66 15 00 0a 16 00 67 01 05 00 00 0c c6

Record No.3

41 bf 9d 74 0f ff 42 5a db ee 41 ca 73 92 00 b6 c9 1e 07 00 01 03 0b 1f 00 00 60 1a 02 01 5f 02 00 03 14 00 66 15 00 0a 16 00 66 01 05 00 00 0c a8

Record No.4

41 bf 9c fc 0f ff 42 5a db a0 41 ca 70 c1 00 b9 38 13 07 00 01 03 0b 1f 00 00 60 1a 02 01 5f 02 00 03 14 00 23 15 00 0a 16 00 25 01 05 00 00 0c 30 Number of Records: 04

00 00 0c e4

Value: 3300 sec

9.2 Record Data parsing

Priority + Timestamp 41 bf 9d b0 [HEX] = 01000001101111111001110110110000 [BIN], there 41 bf 9d b0 **01** – Priority (Periodical point) 00 0001 1011 1111 1001 1101 1011 0000 - Timestamp **1101111111001110110110000 = 29334960 sec** from 2007.01.01 00:00 29334960 sec = 2007.12.06 12:36:00 UTC 0f Global Mask (**0F** – all Elements (GPS, IO 1B, IO 2B, IO 4B)) ff GPS Element Mask (**FF** – all GPS Element Data Segments) 42 5a db d7 Latitude **N54.714687** (coordinates parsing by IEEE754 protocol) 41 ca 6e 1e Longitude **E25.303768** (coordinates parsing by IEEE754 protocol) 00 9e Altitude 158 m Angle **25 deg** (**12** HEX = 18 * 360 / 256 = 25.31 deg) 12 05 Speed 5 km/h 07 Quantity of Satellites 7 00 01 03 0b Cell ID information - LAC:0001 CI:030B 16 Signal Quality 22 (range 0-31) 00 00 60 1a Operator Code 24602 (Bite GSM, Lithuania) 02 1B IO Elements quantity: 2 01 IO Element ID: 1 - Battery Level Value: 94% 5e 02 IO Element ID: 2 - USB connection 00 Value: 0 - USB not connected 03 2B IO Elements quantity: 3 14 IO Element ID: 20 - HDOP value 00 66 Value: **10.2** (**66** HEX = 102 / 10 = 10.2) 15 IO Element ID: 21 - VDOP value 00 0a Value: 1 (0A HEX = 10 / 10 = 1) IO Element ID: 22 - PDOP value 16 Value: 10.3 (67 HEX = 103 / 10 = 10.3) 00 67 01 4B IO Elements quantity: 1 05 IO Element ID: 5 - Life Time value

10. Advanced parsing example

GH3000 data packets sends in HEX coding

Then module connects to server and sends IMEI

000f 33 35 32 38 34 38 30 32 30 30 37 39 33 31 31 - IMEI 352848020079311

Then goes server acceptance:

01 - Server accepts the module

After acceptance module sends data packet:

000000000000045070244ddfae007df425ae4d341cab3fb009c9f0004170000601a02015d02010114005f44d4 fb1507df425ae4cc41cab3d20091ae0104160000601a02015d020101140062020000b63f

10.1 Data record parsing

00 00 00 00 - Preamble

00 00 00 45 – Data length: **69** [DEC]

07 - Codec ID

02 - Number of Records: 2 [DEC]

44 d4 fa e0 – *Priority & Timestamp* – **100010011010101111101011100000** [BIN] = 31 bit Priority & Timestamp must be 32 bit lenght, so one bit is missing. To recover it we need to add a $\bf 0$. **01** 000 1001 1010 1001 1111 0101 1100 000

01 – Priority (Periodical point)

1001 1010 1001 1111 0101 1100 000 – *Timestamp:* **81066720 sec** [DEC] (from 2008.01.01)

07 - Global Mask - **111** [BIN]

Global Mask has 8 elements (bits) (4 present, 4 not). So to know which element is present in Global Mask we add missing bits as zeros and it will look like: **00000111**.

According to Global Mask table it has GPS Element, IO Element 1B and IO Element 2B.

Global Mask	1	GPS Element	1b	0b
		IO Element 1B	1b	1b
	18	IO Element 2B	1b	2b
		IO Element 4B	1b	3b
			1b	4b
			1b	5b
			1b	6b
			1b	7b
	_			
		Global mask table		

NOTE: Global mask and GPS Element Mask taken from Packet and Data structure table

df - GPS Element Mask - 1101 1111 [BIN]

GPS Element Mask has 8 elements (bits).

According to GPS Element Mask table it has Latitude, Longitude, Altitude, Angle, Speed, Satellites, Signal Quality and Operator Code.

Mask		Latitude, Longitude	1b	0b
	0.0	Altitude	1b	1b
		Angle	1b	2b
	10	Speed	1b	3b
	18	Satellites	1b	4b
		Cell ID	1b	5b
		Signal Quality	1b	6b
		Operator Code	1b	7b

42 5a e4 d3 – *Latitude* (Coordinate parsing by IEEE754 protocol)

41 ca b3 fb – *Longtitude* (Coordinate parsing by IEEE754 protocol)

00 9c – *Altitude:* **156 m** [DEC]

9f – Angle: **223 deg** (**9f** [HEX] = 159 * 360 / 256 = 223,59 deg)

00 - Speed: 0 km/h [DEC]

04 - Satellites: **4** [DEC]

17 – Signal Quality: 23 [DEC]

00 00 60 1a – Operator Code: **24602** [DEC]

02 - IO Element 1B quantity: 2 [DEC]

01 - IO Element ID: 1 [DEC] - Battery Level

5d - *Value:* **93%** [DEC]

02 - IO Element ID: 2 [DEC]- USB Connection

01 - Value: 1 [DEC] - USB Connected

01 - IO Element 2B quantity: 1 [DEC]

14 - IO Element ID: 20 [DEC] - HDOP value

00 5f – *Value:* **9,5** (**5f** [HEX] = 95 / 10 = 9,5)

Left code (44d4fb1507df425ae4cc41cab3d20091ae0104160000601a02015d020101140062) is a second data record in sent data packet.

After the last record (in the end of Packet Data) goes Number of Records and CRC:

020000B68E

02 - Number of Records: 2 [DEC]

0000B68E - CRC

NOTE: IO Element 1B, IO Element 2B and IO Element 4B IDs shown in GH3000 Data IDs Table

11. Sending data over UDP/IP

11.1 UDP channel protocol

UDP channel is a transport layer protocol above UDP/IP to add reliability to plain UDP/IP using acknowledgement packets. The packet structure is as follows:

UDP datagram							
UDP channel packet x N	Packet length	2 bytes	Packet length (excluding this field) in big endian byte order				
	Packet Id	2 bytes	Packet id unique for this channel				
	Packet Type	1 byte	Type of this packet				
	Packet payload	m bytes	Data payload				

Packet Type		
0	Data packet requiring acknowledgement	
1	Data packet NOT requiring acknowledgement	
2	Acknowledgement packet	

Acknowledgement packet should have the same *packet id* as acknowledged data packet and empty data payload. Acknowledgement should be sent in binary format.

Acknowledgement packet				
Packet length	2 bytes	0x0003		
Packet id	2 bytes	same as in acknowledged packet		
Packet type	1 byte	0x02		

11.2 Sending AVL data using UDP channel

AvI data are sent encapsulated in UDP channel packets (Data payload field).

Avl data encapsulated in UDP channel packet				
Avl packet id (1 byte)	Module IMEI	Avl data array		

Avl packet id (1 byte) – id identifying this avl packet

Module IMEI – IMEI of a sending module encoded the same as with TCP

Avl data array – array of encoded avl data

Server response to avl data packet				
Avl packet id (1 byte)	Number of accepted avl elements (1 byte)			

Avl packet id (1 byte) – id of received avl data packet

Number of avl data elements accepted (1 byte) – number of avl data array entries from the beginning of array, which were accepted by the server.

Scenario:

Module sends UDP channel packet with encapsulated avl data packet (*Packet* type=1 or 0). If packet type is 0, server should respond with valid UDP channel acknowledgement packet. Since server should respond to the avl data packet, UDP channel acknowledgement is not necessary in this scenario, so *Packet type=1* is recommended.

Server sends UDP channel packet with encapsulated response (*Packet type=1* – this packet should not require acknowledgement)

Module validates *Avl packet id* and *Number of accepted avl elements*. If server response with valid *Avl packet id* is not received within configured time-out, module can retry sending.

Example:

Module sends the data:

UDP channel header	Avl packet header	Avl data array
Len – 60, Id – 0x0000, Packet type – 01 (without ACK)	Avl packet id – 0x01, Imei – 352848020079311	Codecld – 07, NumberOfData – 2. (Encoded using continuous bit stream)
003C000001	01000F333532383438303230303739333131	0702(data ele- ments)02

Server should respond with acknowledgment:

UDP channel header	Avl packet acknowledgement
	Avl packet id – 0x01, NumberOfAcceptedData – 2
0005000201	0102

11.3 Example

Received Data:

003c00000102000f333532383438303230303739333131070444d54602011b425ae4ce4 1cab2de008c010444d5463e011b425ae4d741cab3be00970004444d54602011b425ae4e941cab2bb0081000344d545d3011b425ae4ef41cab2ca007f000304

00050002010204

```
003c00001 - UDP channel header
           00 3c – Len: 60
           00 00 - ID
              01 - Packet Type
   02000f333532383438303230303739333131 - Avl packet header
           02 – Avl packet ID
           000f 333532383438303230303739333131 – IMEI 352848020079311
           07 - Codec ID
           04 - Number of records
   44 d5 46 02 - Timestamp + Priority
            01 – Global Mask (01 – Only GPS Elements)
            1b - GPS Element Mask (1b - Latitude, Longitude, Altitude, Speed and
Satellites)
   42 5a e4 ce - Latitude
   41 ca b2 de - Longitude
         00 8c - Altitude
            01 - Speed
            04 - Satellites
```

At the end of the received data **04** means received number of records.

After received data goes server response:

```
00050002010204

0005000201 – UDP channel header

00 05 – Len: 5

00 02 – ID

01 – Packet type

0204 - Avl packet acknowledgement
```

04 – Number of accepted data

02 - Avl packet ID