Pédagogie collège (classe de 6e) La ville embourbée

Vincent Nicolas

Charvy Gaspard

Objectifs:

Le but principal de l'activité est de faire découvrir aux élèves le principe d'un algorithme glouton, en particulier ici l'algorithme de Kruskal, ainsi que l'algorithme de Prim.

temps	phase	script	objectif	materiel
5′	présentation (nous + activité)	on se présente puis « La ville de Bruz a subit une inondation et ses routes sont détruites. Il faut construire des routes reliant tous les batiments entre eux en utilisant le moins de béton possible! »	Mettre les élèves en situation	-
5′	reformulation + exemple	On trouve une couverture non optimale au tableau, puis présentation du matériel	Faire comprendre l'objectif de l'acti- vité aux élèves	ville facile proje- tée au tableau (la première que les élèves vont uti- liser pour l'acti- vité) + de quoi écrire au tableau
3′	distribution du materiel	On leur précise de commencer par la première carte	1	feuille recto ver- so, avec les 2 pre- mières villes (as- sez faciles)
10-15′	Activité	Passage dans les groupes, aide si besoin, recompter et regar- der si c'est optimal	Que chaque groupe trouve une manière de résoudre le pro- blème	villes, jetons de Nim (environ 60 par groupe), deuxième feuille avec les plus grandes cartes
10′	remise en commun, explication de Kruskal et Prim	Comment s'y sont ils pris ? Comment résoudre le problème ? Explication des deux algorithmes sur la première ville	Présenter les deux algorithmes	projeter la pre- mière ville au ta- bleau, + de quoi écrire
10-15′	reprise de l'acti- vité	On fait tester aux groupes les deux algorithmes sur toutes les cartes	que les élèves se familiarisent avec les algorithmes,	même matériel que la première phase d'activité

				et puissent les comparer	
5-10′	l	de en	Leur demander ce qu'ils en ont pensé, quel algorithme ils pré- fèrent, + trace écrite		faire au tableau en même temps

Extensions

- 1. Donner aux groupes qui avancent plus vite les cartes plus grandes
- 2. Le but de cette intervention est aussi de faire comprendre aux élèves ce qu'est un algorithme. Une extension sera de mettre les élèves par binômes : l'un sera le seul à voir la ville et exécutera dessus les instructions données par l'autre. L'objectif de cette extension est de montrer aux élèves que l'ordinateur ne fait que suivre les instructions données par l'humain, sans réfléchir et de leur faire comprendre la notion d'algorithme : une même série d'instructions doit pouvoir résoudre le problème quelque soit la ville.
- 3. Trouver un algorithme de plus court chemin (A* ou Dijkstra)

Etayages

- 1. On veut un poids global le plus bas possible, il peut être judicieux de sélectionner les routes les moins coûteuses en béton.
- 2. Indication sur le fait que l'arbre final doit être sans-cycle, et pourquoi.
- 3. Ne pas essayer de résoudre le problème du premier coup d'oeil, raisonner route par route. (En effet, un ordinateur ne peut effectuer que des opérations élémentaires, et ne peut pas avoir d'intuition).

Matériel

- 10 feuilles A4 avec des villes assez petites (1 ville par côté)
- 10 feuilles A3 avec des villes plus grandes (1 ville par côté)
- environ 60 jetons par groupe (à adapter selon la solution optimale des villes utilisées)

A preparer avant (ou au début de) la préparation :

- Préparer la ville à projeter
- avoir des sachets d'environ 60 jetons (à ajuster) pour chaque groupe