Linguagens Formais e Autômatos

Aula 29 - NP completude

Prof. Dr. Daniel Lucrédio Departamento de Computação / UFSCar Última revisão: ago/2015

Referências bibliográficas

- Introdução à teoria dos autômatos, linguagens e computação / John E.
 Hopcroft, Rajeev Motwani, Jeffrey D. Ullman; tradução da 2.ed. original de Vandenberg D. de Souza. Rio de Janeiro: Elsevier, 2002 (Tradução de: Introduction to automata theory, languages, and computation ISBN 85-352-1072-5)
 - Capítulo 10 Seção 10.2 a 10.4
- Introdução à teoria da computação / Michael Sipser; tradução técnica
 Ruy José Guerra Barretto de Queiroz; revisão técnica Newton José Vieira. -São Paulo: Thomson Learning, 2007 (Título original: Introduction to the
 theory of computation. "Tradução da segunda edição norte-americana" ISBN 978-85-221-0499-4)
 - Capítulo 7 Seções 7.4 e 7.5

NP-completude

- Enquanto não se tem a prova de que P≠NP
- Foi observado um fenômeno interessante
 - Certos problemas em NP tem sua complexidade relacionada àquela da classe inteira
 - São problemas cuja complexidade representa a "essência" de NP-P
 - Todos problemas em NP compartilham dessa "essência"
 - Esses problemas são chamados de NP-completos

NP-completude

- A meta da observação desse fenômeno é o seguinte teorema:
 - Se algum problema NP-completo está em P, então P=NP
 - Ou seja, originalmente, era um caminho para se tentar provar que P=NP
- Mas existem também consequências práticas:
 - Se um problema é NP-completo, isso é uma forte evidência de que não existe solução polinomial!
 - Não é uma prova, devido à questão em aberto P vs NP
 - Mas para todos os efeitos práticos, assume-se que não vale a pena tentar encontrar um algoritmo de tempo polinomial
 - O melhor a fazer é buscar soluções alternativas

NP-completude na prática

- Segundo a wikipedia, existem mais de 3000 problemas reconhecidamente NP-completos
- Existe uma GRANDE chance de você se deparar com alguns deles durante sua vida profissional
- Portanto, o estudo da NP-completude n\u00e3o tem impacto somente na teoria
- Saber reconhecer um problema NP-completo, ou identificar um novo problema NP-completo é importante

NP-completude na prática

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

SAT = Problema da satisfazibilidade booleana

- Operações booleanas
 - Obs: VERDADEIRO = 1, FALSO = 0, E = &, OU = |,
 NÃO = !

0 & 0 = 0	0 0 = 0	!0 = 1
0 & 1 = 0	0 1 = 1	!1 = 0
1 & 0 = 0	1 0 = 1	
1 & 1 = 1	1 1 = 1	

- Fórmula booleana
 - Expressão envolvendo variáveis e operações booleanas. Exemplo:

$$\Phi = (!x \& y) | (x \& !z)$$

- Uma fórmula booleana é satisfazível se alguma atribuição de 0s e 1s às variáveis faz a fórmula ter valor 1
 - \circ Ex: $\Phi = (!x \& y) | (x \& !z)$
 - É satisfazível para x=0, y=1 e z=0

SAT={(Φ) | Φ é uma fórmula booleana satisfazível}

- SAT é NP-completo
- A prova virá a seguir
- Mas antes, veremos o conceito de
 - Redutibilidade em tempo polinomial

Redutibilidade em tempo polinomial

- Já vimos o conceito de redução
 - Se existe uma redução de A para B, então B é no mínimo tão difícil quanto A
- Mas anteriormente (no estudo da indecidibilidade), estávamos apenas interessados se um problema é decidível ou não
 - Agora, estamos interessados se um problema tem solução eficiente (polinomial) ou não
 - Portanto, o conceito de redução deve ser revisto

Redução em tempo polinomial

- Redução = algoritmo que converte instâncias de um problema A em instâncias de um problema B
- Exs:
 - Conversão de uma instância do PCPM para uma instância do PCP
 - Conversão de uma instância do Lu para uma instância do PCPM
- Uma redução em tempo polinomial é um algoritmo
 DE TEMPO POLINOMIAL que converte instâncias de um problema A em instâncias de um problema B
 - Ou, de forma equivalente, uma MT que executa em tempo polinomial e faz tal conversão

Redução em tempo polinomial

- Para provar complexidade de um problema, não basta usar qualquer redução
 - Pois uma redução em tempo exponencial de A para B não garante que B é tão difícil quanto A
 - Exemplo: A está em P, e queremos provar que
 B também está em P
 - Se A se reduz a B exponencialmente, significa que mesmo que eu encontrar uma solução polinomial para B, a mesma não implica em uma solução polinomial para A, já que a conversão é exponencial

Redução em tempo polinomial

- Portanto, agora além de serem válidas, as reduções devem executar em tempo polinomial
- Posso usar isso de duas formas:
 - A está em P, e quero provar que B está em P
 - Reduzo A para B em tempo polinomial
 - A está em NP, e quero provar que B está em NP
 - Reduzo A para B em tempo polinomial
 - A é NP-completo, e quero provar que B é NP-completo
 - Reduzo A para B em tempo polinomial

Definição formal de NP-completude

Uma linguagem B é NP-completa se satisfaz duas condições:

- 1. B está em NP, e
- 2. Toda A em NP é redutível em tempo polinomial a B

- Faremos agora a prova de que SAT é NP-completo
 - Usaremos a definição anterior
- SAT é a primeiro problema que provaremos ser NP-completo
 - Depois usaremos apenas reduções a partir de SAT para provar que outros problemas são também NP-completos
- Na sua vida profissional, é assim que você irá provar que um problema X é NP-completo
 - Comece a partir de um problema NP-completo conhecido (como SAT, CLIQUE, entre outros)
 - E encontre uma redução em tempo polinomial de um problema conhecido para X

- Prova de que SAT é NP-completo
- 1: provar que SAT é NP
 - Basta encontrar um verificador
 - Certificado c é a atribuição correta de valores às variáveis, tal que o resultado é 1
 - Algoritmo verificador calcula o resultado das operações. Se for 1, aceita. Caso contrário, rejeita. Esse algoritmo é certamente polinomial.
 - Similarmente, bastaria projetar uma NTM de tempo polinomial

- Prova de que SAT é NP-completo
- 2: provar que qualquer linguagem em NP é redutível em tempo polinomial a SAT
 - Seja A uma linguagem qualquer em NP
 - Com certeza existe uma NTM N que decide A em tempo n^k para alguma constante k (não entendeu? Volte e reveja os conceitos dessa aula)
 - Sendo não-determinística, N pode levar a vários ramos de execução para uma entrada w
 - Alguns ramos são de aceitação
 - Determinar se N aceita w se resume a encontrar um ramo de aceitação

 Um ramo de execução pode ser visto como uma tabela – chamada tableau

- Um tableau é de aceitação se qualquer linha dele for uma configuração de aceitação
- Determinar se N aceita w é equivalente ao problema de se determinar se existe um tableau de aceitação para N sobre w
- Vamos reduzir o problema A para SAT
- Ou seja, decidir o SAT gerado implica que A também é decidido
 - Ou seja, decidir o SAT gerado implica que encontramos um tableau de aceitação para N sobre w

- O objetivo é montar uma fórmula booleana, certo?
- Então montaremos uma fórmula booleana que, se satisfeita, representa exatamente um tableau de aceitação
- $\Phi = \Phi_{\text{início}} \& \Phi_{\text{movimento}} \& \Phi_{\text{aceita}}$
- Onde:
 - Φ_{início} é uma fórmula booleana que diz quando N inicia corretamente
 - Φ_{movimento} é uma fórmula booleana que diz quando N faz movimentos corretos de uma CI para outra
 - Φ_{aceita} é uma fórmula booleana que diz quando N termina corretamente

- Antes, vamos definir as variáveis que serão geradas
 - Afinal, as fórmulas contém variáveis
- Uma variável consiste em X_{ii"a"}
 - Ela "pergunta" se, na linha i, coluna j, o símbolo é "a".
 - X_{ii"a"} = 1, se, na linha i, coluna j, existe o símbolo "a"
 - X_{ij} = 0, se, na linha i, coluna j, não existe o símbolo
 "a"

 $X_{11"q0"}^{11"} = 0$ $X_{12"q0"} = 1$ $X_{12"q2"} = 0$ $X_{14"b"} = 1$

Exemplo, para uma MT que opera sobre o alfabeto {a,b}, com um tableau mostrado abaixo:
 X_{11"#"} = 1

#	q0	а	b	b	В	В	#
#							#
#							#

- Φ_{início}
 - Essa fórmula booleana, se satisfeita, diz se N inicia corretamente, ou seja:
 - [q0]w1w2w3...wnBB...BB
 - (primeira configuração instantânea de N)
 - Ou, na notação de tableau:
 - # q0 w1 w2 ... wn B B ... B #
- Portanto montamos Φ_{início} da seguinte forma:

$$\Phi_{\text{início}} = x_{11"#"} & x_{12"qo"} & x_{13"w1"} & x_{14"w2"} & \dots & x_{1n"wn"} & x_{1n+1"B"} & \dots & x_{1n}^{k} & \dots & x_{1$$

Uma solução para Φ_{início} corresponde ao início correto de N

- Φ_{aceita}
 - A fórmula booleana que "pergunta" se N aceita é simplesmente uma varredura por todas as células em busca de um estado de aceitação

$$\Phi_{\text{aceita}} = \big|_{1 \le i,j \le n} k X_{ij"qf"}$$

- Ou seja, é um OU (|) entre variáveis que representam uma busca, para todo i, j da tabela, por todo estado de aceitação qf
- A solução para Φ_{aceita}, ou seja, valores para as variáveis de tal forma que a fórmula resulte em 1, implica que o tableau correspondente possui um estado de aceitação (um símbolo "qf") em alguma célula

- Essa última fórmula garante que cada linha da tabela corresponde a uma configuração que representa um movimento correto a partir da linha anterior
 - Conforme a função de transição de N
 - Ex: suponha que uma das regras de transição seja:

$$\circ$$
 $\delta(q3,a) = (q2,b,E)$

#							
#	а	b	q3	а	b	В	#
#	а	q2	b	b	b	В	#
#	а	b	b	b	q1	В	#
#							

i é uma configuração válida, pois o movimento de i-1 para i está previsto em δ

i+1

i+1 é uma configuração inválida, pois não existe movimento possível que leva de i para i+1

- A redução sendo construída faz essa checagem em janelas de 2 x 3 células
 - Uma janela 2 x 3 é legal se essa janela não viola as ações especificadas pela função de transição de N

#					#
#	X _{ij-1}	X_{ij}	X _{ij+1}		#
#	 X _{i+1j-1}	X _{i+1j}	X _{i+1j+1}	•••	#
#					#

Exemplo. Suponha que N aceita entradas sobre o alfabeto {a,b,c}, e tenha estados {q1,q2}, e δ seja:

 \circ $\delta(q1,b) = \{(q2,c,E),(q2,a,D)\}$

а	q1	В
q2	а	C

а	а	q1
а	а	b

а	b	а
а	b	q2

а	q1	В
а	а	q2

#	Ь	а
#	b	а

N é não-determinística,

lembra?

Exemplos de janelas ilegais:

а	Ь	а
а	а	а

а	q1	а
q1	а	а

b	q1	b
q2	b	q2

- Se a linha superior for a configuração inicial e
- Toda janela na tabela for legal
 - Cada linha da tabela é uma configuração que representa um movimento correto de N
- Voltando à definição de Φ_{movimento}

A fórmula para (a janela (i,j) é legal) é dada a seguir:

$$a_{1,a2,...,a6}$$
 ($X_{ij-1"a1"}$ & $X_{ij"a2"}$ & $X_{ij+1"a3"}$ & $X_{i+1j-1"a4"}$ & $X_{i+1j"a5"}$ & $X_{i+1j+1"a6"}$)

 Onde as variáveis representam uma janela 3x2, e a1,a2,...,a6 são valores que a tornam legal

#				_	#
#	X _{ij-1}	X _{ij}	X _{ij+1}		#
#	 X _{i+1j-1}	X _{i+1j}	X _{i+1j+1}	•••	#
#					#

a1	a2	а3
a4	а5	а6

- Resumindo, dada uma Máquina de Turing
 não-determinística que executa em tempo polinomial
 N = (Q,Σ,Γ,δ,q0,B,F) e uma entrada w
 - Mostramos uma redução de N para uma instância do SAT $\Phi = \Phi_{\text{início}} \& \Phi_{\text{movimento}} \& \Phi_{\text{aceita}}$
 - De tal forma que se encontrarmos uma solução para:
 - Φ_{início} → significa que encontramos uma configuração inicial para N sobre w
 - Φ_{movimento} → significa que encontramos movimentos válidos de N sobre w
 - \circ $\Phi_{\text{aceita}} \rightarrow \text{significa que descobrimos que N aceita w}$

- Ou seja, com essa redução, encontrar uma solução para Φ implica em encontrar uma execução que leva à aceitação de w por N
 - Importante: para qualquer N e qualquer w!
- Importante 2: N representa qualquer linguagem (problema) NP
 - Ou seja, acabamos de reduzir todo problema NP para SAT, que é (parte da) segunda condição para
 - NP-completude:

Uma linguagem B é NP-completa se satisfaz duas condições:

- 1. B está em NP, e
- Toda A em NP é redutível em tempo polinomial a B

- Ainda falta uma análise para completarmos a prova de que SAT é NP-completo
- O algoritmo de redução que acabamos de apresentar precisa executar EM TEMPO POLINOMIAL
- Passemos à análise
 - Considerando que o tableau tem tamanho n^k x n^k
- Porque?
 - Resposta: porque o tableau representa um ramo de execução de uma NTM de tempo polinomial
 - o n^k é um polinômio
 - Nunca vão ser necessários mais do que n^k passos para uma execução
 - Nem mais do que n^k células da fita de N

- Intuitivamente, basta observar que a fórmula obtida tem uma natureza altamente repetitiva
 - $\circ \quad \Phi_{\text{início}} \to \text{um fragmento para cada célula da primeira linha}$
 - Tamanho = $O(n^k)$
 - Φ_{movimento} → cada fragmento possui um tamanho fixo para cada célula do tableau
 - Tamanho = $O(n^{2k})$
 - Φ_{aceita} → cada fragmento possui um tamanho fixo para cada célula do tableau
 - Tamanho = $O(n^{2k})$
- Como consequência, o tamanho total de Φ é O(n^{2k})
 - Que é um polinômio

Teorema de Cook-Levin

- A demonstração anterior mostrou que SAT é NP-completo
 - É chamada de teorema de Cook-Levin
- SAT é a "semente" para a prova de NP-completude de vários outros problemas
 - Ou seja, não é encessário fazer uma prova tão longa
 - Basta escolher um problema NP-completo "conhecido" e encontrar uma redução em tempo polinomial

Outros problemas NP-Completos

- 3SAT: uma versão "modificada", onde as fórmulas booleanas estão na forma normal conjuntiva de três literais:
 - (x1 | x2 | !x3) & (x3 | !x5 | x4) & (x4 | x5 | x6)
- COB-VERT: uma cobertura de vértices de um grafo direcionado é um subconjunto dos nós onde toda aresta de G toca um dos nós.
 - COB-VERT = {(G,k) | G é um grafo não-direcionado que tem uma cobertura de vértices de k nós}
- CAMHAM
- CICLOHAM
- TSP
- CLIQUE
- SOMA-SUBC

Problemas NP-completos

Problemas NP-completos

Nem toda redução é complicada

Problema da mochila Tenho \$\$ e Kg limitados... Quais itens escolher? Problema do cardápio. Você só tem 10 R\$. Qual o máximo de comida você consegue pedir?

Redução é trivial

Cardápio					
Batata frita	R\$ 5,50				
Mandioca frita	R\$ 6,00				
Iscas de peixe	R\$ 9,50				
Mesa de frios	R\$ 7,00				
Queijos diversos	R\$ 12,00				
Torradas e patês	R\$ 4,20				
Amendoins	R\$ 1,50				

Problemas NP-difíceis

- São problemas tão difíceis como qualquer problema NP
- Problemas NP-difíceis são aqueles para os quais:
 - É possível obter uma redução em tempo polinomial a partir de um problema NP-completo (condição 2 da NP-completude)
 - Mas não é possível provar que existe uma solução não-determinística polinomial, ou que existe um verificador (condição 1 da NP-completude)
- Ou seja, em teoria, um problema NP-difícil pode ser ainda mais difícil que todos os problemas NP-completos
 - Na prática, problemas NP-difíceis são igualmente intratáveis, e portanto concluir que um problema é NP-difícil resulta na impossibilidade de resolvê-lo

Complexidade de espaço

- Classes PSPACE e NPSPACE
 - Linguagens decididas por DTMs e NTMS, respectivamente
 - Utilizando quantidade de espaço (fita) polinomial
- Outra classificação de problemas
 - Diferente de P e NP, pois espaço é reutilizável
 - Por exemplo, SAT pode ser resolvido em espaço linear
- Existe o mesmo conceito de problemas
 PSPACE-completos e PSPACE-difíceis

Como resolver problemas intratáveis?

- RP Polinomial aleatório
 - Máquinas de Turing baseadas em aleatoriedade
 - Para alcançar tempos de execução médios polinomiais (ainda que existam casos exponenciais, mas esses são pouco frequentes)
 - Algoritmo Monte Carlo
 - Garante algumas respostas, mas pode encerrar sem chegar a uma conclusão
- ZPP Polinomial probabilística de erro zero
 - MT aleatória que sempre dá a resposta certa, mas pode levar um tempo exponencial
 - Algoritmo Las Vegas
 - Quicksort

Como resolver problemas intratáveis?

- Aproximações
- Heurísticas
- Estatísticas
- Soluções localizadas

Fim

Aula 29 - NP completude