

The Bombay Salesian Society's

Don Bosco Institute of Technology [ENGINEERING COLLEGE]

(Approved by AICTE & Affiliated to University of Mumbai)

DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATION

DEVELOPING A CONTAINER GSM, GPS TRACKING SYSTEM TO ENHANCE SUPPLY CHAIN SECURITY

INDUSTRY COLLABORATION PROJECT: QDNET TECHNOLOGIES PVT. LTD.

Group Members: Group No. 04

Canalar Kuma

Sanskar kumar	20
Russel Dmello	13
Sakshi Kaveri	21
Shreyas Nanaware	34

GPS

<u>Project Guide:</u> Ms. Freda Carvalho <u>QDnet:</u> Mr. Quentin Desouza

OVERVIEW

- 1. Problem Statement
- 2. Block Diagram
- 3. Methodology
- 4. Suggestions
- 5. Algorithm
- 6. Current status of work
- 7. Time line/ Gantt Chart
- 8. References

PROBLEM STATEMENT

Develop and implement a low-power container GSM, GPS tracking system for monitoring and tracking of container locations and preventing theft to enhance supply chain security and ensure safe transportation of goods

OUTCOMES

- Improved tracking difficulty
- To enhance supply chain security
- Reduced theft and loss
- Minimum power requirement
- Publication of paper

APPROACH OF PROJECT

BLOCK DIAGRAM

METHODOLOGY

- 1) Initialize GPS module
- 2) Establish UART communication between GPS and STM32 microcontroller
- 3) Retrieve data in the form of NMEA sentences and convert it into a suitable format
- 4) Initialize GSM module with AT commands
- 5) Establish UART communication between GSM and STM32 microcontroller
- 6) To send the collected data from STM32 to the server via GSM
- 7) Repeat steps 3 to 7 at hourly intervals for continuous tracking and updating

SUGGESTIONS

- Event sensing in our system must operate in an interrupting manner, ensuring that when an event is initiated, data transfer occurs immediately, and do not rely on a fixed time
- To conduct research on how other companies, such as Amazon, implemented their tracking systems to help in provide insights into effective strategies and practices in the industry
- To ensure accurate GPS location tracking for a truck, accounting for the Doppler effect is crucial to differentiate between real and apparent positions of the container

ALGORITHM

- 1) Initialize the STM32 microcontroller, system clock, GPIO and UART peripheral
- 2) Include the UART ring buffer and NMEA files
- 3) Using infinite while loop to check if "GGA" string is received over UART
- 4) If "GGA" is received then copying data upto "*" character into the array and later decoding it
- 5) Using if loop, to check whether there is any threat or intrusion being carried out
- 6)If the lock system connection fails, the code within the if loop sends an alert to the user with the exact coordinates of the incident with the help of GSM module

TESTING

SCHEMATICS

Software: Kicad

TIMELINE/ GANTT CHART

Task	June	July	August	Sept	Oct	Nov	Dec	Jan	Feb	Mar
Literature Survey										
Finalising and working on GSM and GPS modules										
Testing the GSM and GPS modules										
Serial communication through Arduino										
Serial communication through STM32 & Sensing System										
Schematics, Layout and fabrication										
Testing										
Paper Publication & Project Report Writing										

FUTURE PLANS

• Connection establishment through STM32

• Testing and fabricating the PCB

• Power optimization

• Data Transmission

Database management

REFERENCES

- [1] S. Ni, M. Naing, and S. Naing, "GPS and GSM Based Vehicle Tracking System," International Journal of Trend in Scientific Research and Development, vol. 3, pp. 271–275, 2019. DOI: 10.31142/ijtsrd23718.
- [2] K. Maurya, M. Singh, and N. Jain, "Real Time Vehicle Tracking System using GSM and GPS Technology An Anti-theft Tracking System," International Journal of Electronics and Computer Science Engineering, vol. 1, 2012.
- [3] H. D. Pham, M. Drieberg, and C. C. Nguyen, "Development of vehicle tracking system using GPS and GSM modem," 2013 IEEE Conference on Open Systems (ICOS), Kuching, Malaysia, 2013, pp. 89-94, doi: 10.1109/ICOS.2013.6735054...

REFERENCES

- [4] W. El-Medany, A. Al-Omary, R. Al-Hakim, S. Allrhayim, and M. Nusaif, "A Cost Effective Real-Time Tracking System Prototype Using Integrated GPS/GPRS Module," in Proceedings of the 6th International Conference on Wireless and Mobile Communications (ICWMC), 2010, pp. 521-525, 20-25 Sept. 2010.
- [5] P.B. Fleischer, A.Y. Nelson, R.A. Sowah, and A. Bremang, "Design and development of GPS/GSM based vehicle tracking and alert system for commercial inter-city buses," in Proceedings of the 2012 IEEE 4th International Conference on Adaptive Science & Technology (ICAST), 2012, pp. 1-6, 25-27 Oct. 2012.

Thank You