A Bézier curve is a family of parametric curves that can be used in computer aided design, computer graphics, animation, and other related fields which involve generating smooth curves. A cubic Bézier curve is defined as:

$$\begin{aligned} x &= x_0 (1-t)^3 + 3 x_1 t (1-t)^2 + 3 x_2 t^2 (1-t) + x_3 t^3 \\ y &= y_0 (1-t)^3 + 3 y_1 t (1-t)^2 + 3 y_2 t^2 (1-t) + y_3 t^3 \end{aligned}$$

where $0 \le t \le 1$ and $P_0(x_0,y_0)$, $P_1(x_1,y_1)$, $P_2(x_2,y_2)$, $P_3(x_3,y_3)$ are control points which determine the shape of the curve.

- 1. Graph a Bézier curve in Desmos using sliders for the control points.
- 2. Using the fact that the slope of a parametric curve is given by $\frac{y'(t)}{r'(t)}$, find the slope of the Bézier curve at $P_0(x_0, y_0)$ and $P_3(x_3, y_3)$.
- 3. Show that the tangent lines at $P_0(x_0, y_0)$ and $P_3(x_3, y_3)$ connect P_0P_1 and P_2P_3 , respectively.

A limaçon is a family of polar curves of the form $r = 1 + c \sin \theta$. In planetary motion studies, it has been used to model the trajectory of Mars as seen by Earth by setting |c| > 1!

- 2. Notice that at certain values of *c*, there is an inner loop at the origin. Determine which values of c exhibit this phenomenon.
- 3. Also notice that at other values of c, the limaçon has a dimple at $\theta = \frac{3\pi}{2}$, i.e., it bends into (rather than out from) the origin. Determine which values exhibit this phenomenon.

CONVE