Bhoris Dhanjal

Calculus IV

Lecture Notes for SMAT401

Contents

1	Tuto	rial 1	1
	1.1	Question 1	1
	1.2		1
	1.3	Question 3	1
	1.4	Question 4	2
	1.5	Question 5	2
	1.6	Question 6	2
Tu	torial	1.5	3
	1.7	Question 1	3
Tu	torial	2	4
	1.8	Question 1	4
	1.9	Question 2	4
	1.10	Question 3	5
	1.11	Question 4	5
Tu	torial	3: Incomplete	7
Tu	torial	4	8
	1.12	Question 1	8
	1.13	Question 2	8

Chapter 1

Tutorial 1

Show that the limits as the function approaches (0,0) dont exist

1.1 Question 1

$$\frac{x^2 - y^2}{x^2 + y^2}$$

use x and y axis

1.2 Question 2

$$\frac{x^3y}{x^6+y^2}$$

consider y = 0 then we have limit equal 0. Consider now $y = x^3$ so now limit of $\frac{x^6}{2x^6} = \frac{1}{2}$.

1.3 Question 3

$$\frac{\sin(x^2+y)}{x+y}$$

along the x axis (y=0) we get $\sin(x^2)/x$ and the lim is 0. But for y axis (x=0) we get $\sin(y)/y$ and the lim is 1.

1.4 Question 4

$$\frac{x^3 + y^3}{x - y}$$

take the line y = 0 we get $\frac{x^3 + m^3 x^3}{x - mx} = \frac{(1 + m)x^3}{x(1 - m)}$ is 0 but with $y = x - x^3$ is equal to 2. Try with $y = x - x^2$ we get

$$\lim \frac{x^3 + (x - x^3)^3}{x - (x - x^3)} = \lim \frac{x^3}{x^3} + \frac{((x - x^3)^3)}{x^3}$$
$$= 1 + \lim \frac{(x - x^3)^3}{x^3} = 1 + 1 = 2$$

1.5 Question 5

$$\frac{x^2y^2}{x^2y^2 + (x - y)^2}$$

consider the line x = 0 then the limit is obviously 0. Now consider y = x then the limit of $\frac{x^4}{x^4} = 1$.

1.6 Question 6

$$\frac{2xy^2}{x^3 + y^3}$$

take y=0 and x=y.

Tutorial 1.5

1.7 Question 1

$$\lim_{(x,y)\to(0,0)} xy \sin\left(\frac{1}{x^2 + y^2}\right) = 0$$

Tutorial 2

1.8 Question 1

Using polar coordinates, show that the function $f:\mathbb{R}^2\to\mathbb{R}$ defined as

$$f(x, y) = \frac{x^3 - y^3}{x^2 + y^2}$$

with f(0,0) = 0 is continuous at (0,0).

Proof.

$$f(r,\theta) = r\cos\theta^3 - \sin\theta^3$$

Let $\varepsilon > 0$ so

$$|f(r,\theta) - f(0,0)| = |r||\cos\theta^3 - \sin\theta^3$$

$$\leq |r|(|\cos\theta|^3 + |\sin\theta|^3)$$

$$\leq r(1+1) \qquad = 2r$$

So pick $\delta = \varepsilon/2$

1.9 Question 2

Prove that

$$\lim_{(x,y)\to(0,0)} xy \sin\left(\frac{1}{x^2 + y^2}\right) = 0$$

using without polar form.

Proof. Let $\varepsilon > 0$

$$|f(x, y) - f(0, 0)| = |xy| \left| \sin \left(\frac{1}{x^2 + y^2} \right) \right|$$

TUTORIAL 2 5

$$\leq |x||y|$$

$$\leq \sqrt{x^2 + y^2} \sqrt{x^2 + y^2}$$

$$\leq x^2 + y^2$$

So just take $\delta = \sqrt{\varepsilon}$

1.10 Question 3

Prove that

$$\lim_{(x,y)\to(0,0)} \frac{1}{xy} \sin(x^2y + xy^2) = 0$$

with epsilon delta.

Proof. We will use the fact that for small θ , $|\sin \theta| \le \theta$. Let $\varepsilon < 0$ then,

$$\left| \frac{1}{xy} \sin(x^2 y + xy^2) \right| \le \frac{1}{|x||y|} |x^2 y + xy^2|$$

$$\le |x| + |y|$$

$$\le \sqrt{x^2 + y^2} + \sqrt{x^2 + y^2}$$

$$\le 2\sqrt{x^2 + y^2}$$

So pick $\delta = \varepsilon/2$

1.11 Question 4

Prove that the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined as

$$f(x,y) = \frac{\sqrt{x^2 + y^2 + 1} - 1}{x^2 + y^2}$$

for non zero and f(0,0) = (0,0) is continuous at (0,0).

Proof. Consider limit as f approaches (0,0). Let $\varepsilon > 0$

$$|f(0,0) - L| = \left| \frac{\sqrt{x^2 + y^2 + 1} - 1}{x^2 + y^2} \right|$$

TUTORIAL 2 6

$$= \left| \frac{x^2 y^2}{(x^2 + y^2)(\sqrt{x^2 + y^2 + 1} + 1)} \right|$$

Hint,
$$\sqrt{x} + 1 \ge 1$$
, $\frac{1}{\sqrt{x} + 1} \le 1$

$$= \left| \frac{1}{\sqrt{x^2 + y^2 + 1} + 1} \right|$$

Tutorial 3: Incomplete

Tutorial 4

1.12 Question 1

If $u = x^2 \arctan\left(\frac{y}{x}\right) - y^2 \arctan\left(\frac{x}{y}\right)$, find u_{yx}

Proof. First begin by finding $\partial u/\partial y$

$$\frac{\partial u}{\partial y} = \lim_{h \to 0} \left(\frac{f(x, y+h) - f(x, y)}{h} \right)$$
$$= \frac{x^3}{x^2 + y^2} - y \left(2 \arctan(x/y) - \frac{xy}{x^2 + y^2} \right)$$
$$= x - 2y \arctan(x/y)$$

Now find its partial derivative with erespect to y

$$u_{yx} = \frac{\partial}{\partial x}(x - 2y\arctan(x/y))$$
$$= 1 - \frac{2y^2}{x^2 + y^2}$$
$$= \frac{x^2 - y^2}{x^2 + y^2}$$

1.13 Question 2

If $u = x^y$ prove that $\frac{\partial^3 u}{\partial x^2 \partial y} = \frac{\partial^3 u}{\partial x \partial y \partial x}$

Proof. First consider LHS we will find partial wrt y first

$$\frac{\partial u}{\partial y} = x^y \log(x)$$

Now double derivative w.r.t. x

$$\frac{\partial u}{\partial x} = x^{y-1}(y\log(x) + 1)$$

Again

$$\frac{\partial^3 u}{\partial x^2 \partial y} = x^{y-2}((y-1)y\log x + 2y - 1)$$

Now consider the RHS, partial with x first

$$\frac{\partial u}{\partial x} = yx^{y-1}$$

Then with y

$$\frac{\partial^2 u}{\partial y \partial x} = x^{y-1} (y \log x + 1)$$

Finally with x

$$\frac{\partial^3 u}{\partial x \partial y \partial x} = x^{y-2}((y-1)y\log x + 2y - 1)$$

1.14 Question 3

If
$$v = \frac{c}{\sqrt{t}} \exp\left(\frac{-x^2}{4a^2t}\right)$$