First steps in CAP

Sebastian Gutsche, Sebastian Posur

Siegen University

August 19, 2018

Computing the intersection of two subobjects

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
:

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1v_1 + x_2v_2$$

= $y_1w_1 + y_2w_2$

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1 v_1 + x_2 v_2 = y_1 w_1 + y_2 w_2$$

Ideals of $\mathbb Z$

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1 v_1 + x_2 v_2 = y_1 w_1 + y_2 w_2$$

Ideals of ${\mathbb Z}$

$$\langle x \rangle$$
, $\langle y \rangle \leq \mathbb{Z}$:

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1 v_1 + x_2 v_2 = y_1 w_1 + y_2 w_2$$

Ideals of $\mathbb Z$

$$\langle x \rangle$$
, $\langle y \rangle \leq \mathbb{Z}$: Euclidean algorithm:

$$\langle \operatorname{lcm}(x,y) \rangle$$

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1 v_1 + x_2 v_2 = y_1 w_1 + y_2 w_2$$

Ideals of ${\mathbb Z}$

$$\langle x \rangle, \, \langle y \rangle \leq \mathbb{Z}$$
: Euclidean algorithm:

$$\langle \operatorname{lcm}(x,y) \rangle$$

Generic algorithm for both cases?

Computing the intersection of two subobjects

Vector spaces

$$\langle v_1, v_2 \rangle, \langle w_1, w_2 \rangle \leq V$$
: Solution of

$$x_1 v_1 + x_2 v_2 = y_1 w_1 + y_2 w_2$$

Ideals of ${\mathbb Z}$

$$\langle x \rangle$$
, $\langle y \rangle \leq \mathbb{Z}$: Euclidean algorithm:

$$\langle \operatorname{lcm}(x,y) \rangle$$

Generic algorithm for both cases? Category theory!

Let $M_1 \subseteq N$ and $M_2 \subseteq N$ subobjects.

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects.

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

 $M_1 \oplus M_2$

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

• $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

• $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$
- $\kappa := \text{KernelEmbedding}(\varphi)$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$
- $\kappa := \text{KernelEmbedding}(\varphi)$

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\bullet \varphi := \iota_1 \circ \pi_1 \iota_2 \circ \pi_2$
- $\kappa := \text{KernelEmbedding}(\varphi)$

$$\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$$

$$\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2$$

$$\kappa := \text{KernelEmbedding}(\varphi)$$

$$\gamma := \iota_1 \circ \pi_1 \circ \kappa$$

```
\begin{split} \pi_i &:= \operatorname{ProjectionInFactorOfDirectSum}\left(\left(M_1, M_2\right), i\right), i = 1, 2 \\ & \text{pil} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \ \operatorname{M2} \end{array}\right], \ 1 \right); \\ & \text{pi2} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \ \operatorname{M2} \end{array}\right], \ 2 \right); \\ & \varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2 \\ \\ & \kappa := \operatorname{KernelEmbedding}\left(\varphi\right) \end{split}
```

 $\gamma := \iota_1 \circ \pi_1 \circ \kappa$

```
\begin{aligned} \pi_i &:= \operatorname{ProjectionInFactorOfDirectSum}\left(\left(M_1, M_2\right), i\right), i = 1, 2 \\ & \text{pil} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \ \operatorname{M2} \end{array}\right], \ 1 \right); \\ & \text{pi2} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \ \operatorname{M2} \end{array}\right], \ 2 \right); \\ & \varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2 \\ & \operatorname{lambda} := \operatorname{PostCompose}\left(\operatorname{iotal}, \operatorname{pil}\right); \\ & \text{phi} := \operatorname{lambda} - \operatorname{PostCompose}\left(\operatorname{iota2}, \operatorname{pi2}\right); \\ & \kappa := \operatorname{KernelEmbedding}\left(\varphi\right) \end{aligned}
```

```
\pi_{i} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left(M_{1}, M_{2}\right), i\right), i = 1, 2
\operatorname{pil} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \operatorname{M2} \right], 1 \right);
\operatorname{pi2} := \operatorname{ProjectionInFactorOfDirectSum}\left(\left[\begin{array}{c} \operatorname{M1}, \operatorname{M2} \right], 2 \right);
\varphi := \iota_{1} \circ \pi_{1} - \iota_{2} \circ \pi_{2}
\operatorname{lambda} := \operatorname{PostCompose}\left(\operatorname{iota1}, \operatorname{pi1}\right);
\operatorname{phi} := \operatorname{lambda} - \operatorname{PostCompose}\left(\operatorname{iota2}, \operatorname{pi2}\right);
\kappa := \operatorname{KernelEmbedding}\left(\varphi\right)
\operatorname{kappa} := \operatorname{KernelEmbedding}\left(\operatorname{phi}\right);
\gamma := \iota_{1} \circ \pi_{1} \circ \kappa
```

```
\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2
  pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
  pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
\varphi := \iota_1 \circ \pi_1 - \iota_2 \circ \pi_2
  lambda := PostCompose( iotal, pil );
  phi := lambda - PostCompose( iota2, pi2 );
\kappa := \text{KernelEmbedding}(\varphi)
  kappa := KernelEmbedding( phi );
\gamma := \iota_1 \circ \pi_1 \circ \kappa
  gamma := PostCompose( lambda, kappa );
```

```
pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );

lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, pi2 );

kappa := KernelEmbedding( phi );

gamma := PostCompose( lambda, kappa );
```

```
pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
lambda := PostCompose( iotal, pil );
phi := lambda - PostCompose( iota2, pi2 );
kappa := KernelEmbedding( phi );
gamma := PostCompose( lambda, kappa );
```

```
IntersectionOfSubobjects := function( iotal, iota2 )
 pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
 pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
 lambda := PostCompose( iotal, pil );
 phi := lambda - PostCompose( iota2, pi2 );
 kappa := KernelEmbedding( phi );
 gamma := PostCompose( lambda, kappa );
```

4/19

```
IntersectionOfSubobjects := function( iotal, iota2 )
 M1 := Source(iota1);
 M2 := Source(iota2);
 pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
 pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
 lambda := PostCompose( iotal, pil );
 phi := lambda - PostCompose( iota2, pi2 );
 kappa := KernelEmbedding( phi );
 gamma := PostCompose( lambda, kappa );
```

```
IntersectionOfSubobjects := function( iotal, iota2 )
 M1 := Source(iota1);
 M2 := Source(iota2);
 pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
 pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
  lambda := PostCompose( iotal, pil );
  phi := lambda - PostCompose( iota2, pi2 );
  kappa := KernelEmbedding( phi );
  gamma := PostCompose( lambda, kappa );
  return gamma;
end:
```

```
IntersectionOfSubobjects := function( iotal, iota2 )
  local M1, M2, pi1, pi2, lambda, phi, kappa, gamma;
 M1 := Source(iota1);
 M2 := Source(iota2);
 pil := ProjectionInFactorOfDirectSum( [ M1, M2 ], 1 );
 pi2 := ProjectionInFactorOfDirectSum( [ M1, M2 ], 2 );
  lambda := PostCompose( iotal, pil );
  phi := lambda - PostCompose( iota2, pi2 );
  kappa := KernelEmbedding( phi );
  gamma := PostCompose( lambda, kappa );
  return gamma;
end:
```

What is CAP?

What is CAP?

CAP means Categories, Algorithms, Programming

CAP means **Categories**, **Algorithms**, **Programming** and is a software project implemented in GAP.

CAP means **Categories**, **Algorithms**, **Programming** and is a software project implemented in GAP.

 CAP derives powerful algorithms and data structures from basic categorical constructions.

CAP means **Categories**, **Algorithms**, **Programming** and is a software project implemented in GAP.

- CAP derives powerful algorithms and data structures from basic categorical constructions.
- CAP serves as a categorical programming language in which you can realize your code in a categorically structured way.

CAP means **Categories**, **Algorithms**, **Programming** and is a software project implemented in GAP.

- CAP derives powerful algorithms and data structures from basic categorical constructions.
- CAP serves as a categorical programming language in which you can realize your code in a categorically structured way.

We call this concept categorical programming.

Tasks for today

- Implementation of a category
- Write a function for homology
- 3 Homework

Tasks for today

- Implementation of a category
- Write a function for homology
- 3 Homework

We implement a category by providing

We implement a category by providing

• data structures for objects and morphisms,

We implement a category by providing

- data structures for objects and morphisms,
- algorithms for basic categorical operations.

We implement a category by providing

- data structures for objects and morphisms,
- algorithms for basic categorical operations.

Example implementation: the category of groups

- Q-vector spaces (classical model)
 - Obj := finite dimensional Q-vector spaces

Q-vector spaces (classical model)

- Obj := finite dimensional Q-vector spaces
- Hom $(V, W) := \mathbb{Q}$ -linear maps $V \to W$

Q-vector spaces (classical model)

- Obj := finite dimensional Q-vector spaces
- Hom(V, W) := \mathbb{Q} -linear maps $V \to W$

Q-vector spaces (classical model)

- Obj := finite dimensional Q-vector spaces
- Hom $(V, W) := \mathbb{Q}$ -linear maps $V \to W$

Q-vector spaces (classical model)

- Obj := finite dimensional Q-vector spaces
- Hom $(V, W) := \mathbb{Q}$ -linear maps $V \to W$

Matrices (computerfriendly model)

• Obj := \mathbb{N}_0

Q-vector spaces (classical model)

- Obj := finite dimensional Q-vector spaces
- Hom(V, W) := \mathbb{Q} -linear maps $V \to W$

- Obj := \mathbb{N}_0
- Hom $(m, n) := \mathbb{Q}^{m \times n}$

Q-vector spaces (classical model)

- Obj := finite dimensional Q-vector spaces
- Hom(V, W) := \mathbb{Q} -linear maps $V \to W$

- Obj := \mathbb{N}_0
- Hom $(m, n) := \mathbb{Q}^{m \times n}$

Q-vector spaces (classical model)

- Obj := finite dimensional Q-vector spaces
- Hom(V, W) := \mathbb{Q} -linear maps $V \to W$

- Obj := \mathbb{N}_0
- Hom $(m, n) := \mathbb{Q}^{m \times n}$

$$1 \xrightarrow{\left(\begin{array}{cc} 1 & 2 \end{array}\right)} 2 \xrightarrow{\left(\begin{array}{cc} 3 \\ 4 \end{array}\right)} 1$$

$$1 \xrightarrow{\qquad \qquad \qquad } 2 \xrightarrow{\qquad \qquad \qquad } 1 \xrightarrow{\qquad \qquad } 1$$

Computing in the computerfriendly model

Download the task file

https://homalg-project.github.io/capdays-2018/materials/session01/HandsOnExercise.gi

Let $\varphi \in \text{Hom}(A, B)$.

Let $\varphi \in \text{Hom}(A, B)$.

$$A \stackrel{\varphi}{\longrightarrow} B$$

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

$$A \stackrel{\varphi}{\longrightarrow} B$$

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

 \dots one needs an object $\ker \varphi$,

 $\ker \varphi$

А
$$\stackrel{arphi}{-\!\!\!-\!\!\!-\!\!\!-}$$
 В

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object $\ker \varphi$, its embedding $\kappa = \text{KernelEmbedding}(\varphi)$,

$$\ker \varphi \xrightarrow{\kappa} A \xrightarrow{\varphi} B$$

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

... one needs an object $\ker \varphi$, its embedding $\kappa = \text{KernelEmbedding}(\varphi)$, and for every test morphism τ

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

```
... one needs an object \ker \varphi, its embedding \kappa = \text{KernelEmbedding}(\varphi), and for every test morphism \tau a unique morphism \lambda = \text{KernelLift}(\varphi, \tau)
```


Implementation of the kernel

Let $\varphi \in \text{Hom}(A, B)$. To fully describe the kernel of $\varphi \dots$

```
... one needs an object \ker \varphi, its embedding \kappa = \text{KernelEmbedding}(\varphi), and for every test morphism \tau a unique morphism \lambda = \text{KernelLift}(\varphi, \tau), such that
```


Download the task file

https://homalg-project.github.io/capdays-2018/materials/session01/HandsOnExercise.gi

Useful commands for homalg matrices

- HomalgZeroMatrix $(m, n, \mathbb{Q}) = 0^{m \times n}$
- Arithmetics: *, +, -
- SyzygiesOfColumns(A) = column kernel of A
- A * LeftDivide(A, B) = B
- NrColumns(A) = number of columns of A

Computing the intersection

Let $M_1 \hookrightarrow N$ and $M_2 \hookrightarrow N$ subobjects. Compute their intersection $\gamma : M_1 \cap M_2 \hookrightarrow N$.

- $\pi_i := \text{ProjectionInFactorOfDirectSum}((M_1, M_2), i), i = 1, 2$
- $\kappa := \text{KernelEmbedding}(\varphi)$

Tasks for today

- Implementation of a category
- Write a function for homology
- 3 Homework

Download the task file

https://homalg-project.github.io/capdays-2018/materials/session01/HandsOnExercise.gi

Useful CAP commands

- ImageEmbedding(A $\stackrel{\alpha}{\longrightarrow}$ B) = $\stackrel{A}{\searrow} \stackrel{B}{\Longrightarrow}$ im(α)
- KernelLift(A $\xrightarrow{\alpha}$ B, T $\xrightarrow{\tau}$ A) = $\ker(\alpha) \xrightarrow{\tau}$ A
- CokernelObject(A $\xrightarrow{\alpha}$ B) = B \rightarrow coker(α)

Homology: solution

Homology: solution


```
HomologyObject := function( alpha, beta )
  local iota, gamma;

iota := ImageEmbedding( alpha );
  gamma := KernelLift( beta, iota );
  return CokernelObject( gamma );
end;
```

Tasks for today

- Implementation of a category
- Write a function for homology
- 3 Homework

Snake lemma

Write a function for the connecting homomorphism.

Snake lemma

Write a function for the connecting homomorphism.

Snake lemma

Write a function for the connecting homomorphism.

What input is relevant for the construction?