Olympiades Nationales de Mathématiques 2021

1er tour

Niveau 7C

28 février 2021 Durée 3 h

L'épreuve est notée sur 100 points. Elle est composée de 4 exercices indépendants. Toute réponse doit être justifiée et les solutions partielles seront examinées. Calculatrice non autorisée

Exercice 1: (25 points)

On considère les matrices

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 2 & -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 4 & 5 & 1 \\ 3 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix}, C = \begin{pmatrix} 2 & 2 & 0 \\ 1 & -4 & 1 \\ 2 & 4 & 2 \end{pmatrix}, D = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ -1 & -2 & -3 \end{pmatrix}$$

- 1) Calculer AB, AC et AD.
- 2) Trouver toutes les matrices carrées M d'ordre 3 telles que AM=0 (où 0 désigne la matrice nulle).

Exercice 2: (25 points)

- 1) Résoudre l'équation $Z^2 104Z + 4913 = 0$ (E).
- 2) Soit z_1 et z_2 deux complexes tels que $z_1z_2 = 17$ et soit $x = z_1 + z_2$.

Montrer que $x^3 = 51x + 104$ si et seulement si z_1^3 et z_2^3 sont les solutions de l'équation (E).

3) On appelle entier de Gauss tout nombre complexe dont la partie réelle et la partie imaginaire sont des entiers relatifs. C'est-à-dire : z = a + ib avec $a, b \in \mathbb{Z}$.

Montrer que les solutions de (E) sont des cubes d'entie0rs de Gauss.

4) En déduire que l'équation $x^3 = 51x + 104$ a une solution entière que l'on déterminera.

Exercice 3: (25 points)

Soit ABC un triangle dont tous les angles sont aigus et on note D, E et F les pieds de ses hauteurs issues respectivement de A, B et C

Les cercles inscrits dans les triangles BDF et CDE sont notés Γ_B et Γ_C . Soit I et J leurs centres respectifs.

La droite (DF) est tangente à $\Gamma_{\rm B}$ au point M.

La droite (DE) est tangente à $\Gamma_{\rm C}$ au point N.

La droite (MN) recoupe les cercles Γ_B et Γ_C en P et Q respectivement (P \neq M et Q \neq N).

- 1) Faire une figure.
- 2) Montrer que $(\overrightarrow{DM}, \overrightarrow{DI}) = (\overrightarrow{DJ}, \overrightarrow{DN}) [\pi]$.
- 3) Montrer que PM = QN.

Exercice 4: (25 points)

Soit n un entier naturel strictement positif. x et y deux réels positifs tels que $x^n + y^n = 1$.

- 1) Montrer que pour tout réel $t \in]0,1[:\frac{1+t^2}{1+t^4} < \frac{1}{t}]$
- 2) Montrer que $\left(\sum_{k=1}^{n} \frac{1+x^{2k}}{1+x^{4k}}\right) \left(\sum_{k=1}^{n} \frac{1+y^{2k}}{1+y^{4k}}\right) < \frac{1}{(1-x)(1-y)}$.

Fin.