In []:

INGENIERÍA EN BIOTECNOLOGÍA

GBI6 - BIOINFORMÁTICA

Estudiante: Juleth Belsabeth Flores Guerrero

Edad: 21

Domicilio: Napo-Tena Nacionalidad: Ecuatoriana

Correo:juleth.flores@est.ikiam.edu.ec

Fecha: 20/07/2022

In []:

librerias

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.mlab as mlab

import math

import seaborn as sns
import pandas as pd

In []:

data = pd.read_csv("iris.csv")
data

Out[2]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3,5	1,4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa
		***	***	***		***	-
	145	146	6.7	3.0	5.2	2.3	Iris-virginica
	146	147	6.3	2.5	5.0	1.9	Iris-virginica
	147	148	6.5	3.0	5.2	2.0	Iris-virginica
	148	149	6.2	3.4	5.4	2.3	Iris-virginica
	149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

In []:

data.describe(percentiles = None, include=None, exclude=None)

In []:

In []:

```
import scipy.stats as stats
params = [(5.84,0.82,'blue'), (3.05, 0.43, 'red'), (3.75, 1.76, 'orange'), (1.19,0.7,'green)

for mean, variance, color in params:
    x = np.linspace(mean - 3*math.sqrt(variance), mean + 3*math.sqrt(variance), 100)
    sigma = math.sqrt(variance)
    label = '$\mu = %.1f, \ \sigma^2=%.1f$' %(mean, variance)
    y_norm = stats.norm.pdf(x, mean, sigma)
    plt.plot(x, y_norm, label=label, c = color)

plt.xlim(-5,10)
plt.ylim(0,1)
plt.xlabel('X')
plt.ylabel('$\phi_{\beta}(\mu,\sigma^2)(x)$')
plt.title('Distribución Normal')
plt.legend(title = "Parámetros")
plt.show()
```

In []:

In []: