

FIG. 1 PRIOR ART

FIG. 2
(PRIOR ART)

FIG. 2A
(PRIOR ART)

FIG. 3
(PRIOR ART)

FIG. 4A

FIG.4B

FIG. 5

FIG. 6B

FIG. 7A

FIG. 8

FIG. 9A

FIG. 9B

FIG. 10

FIG.10A

FIG. 12

FIG. 12B

FIG. 12A

FIG. 13

FIG. 13A(1)

FIG. 13A (2)

FIG. 13A(3)

FIG. 13A(7)

FIG. 13A(8)

4 000 200 300 400 500 = 4 000 100

FIG. 13A

FIG. 13A(5)

FIG. 13A4

FIG. 13A(6)

FIG. 14A

FIG. 14B

FIG. 14C

FIG. 14D

FIG. 14F

FIG. 14G

FIG.14H

FIG.15

FIG. 16

FIG.16A

FIG. 16B1

FIG. 16B2

82

FIG. 16C

FIG.16D

FIG.16E

FIG.17

FIG.17A

FIG.17B

FIG.17C

FIG. 18

W L G H C D F E = 20 22 25 28 30 32 35 38 40 42

FIG. 18A

FIG. 19

FIG. 19B

FIG.19A

FIG. 19C

FIG. 19 E

FIG. 19F1

FIG. 19F2

FIG. 19F5

FIG. 19F4

FIG. 19F3

FIG. 196

FIG.21

FIG.21A

FIG.21A

FIG.22

MEASURED V_{cp}, FLUORESCENCE, AND BROAD-BAND LASING VS TIME

MEASURED V_{cp} AND 193nm BROAD-BAND LASING VS TIME

MEASURED V_{cp} AND 193nm BROAD-BAND LASING

MEASURED V_{cp} AND 193nm BROAD-BAND LASING

FIG. 23 F

Fig. 11. Schematic diagram of the Current Overshoot Maximizer (COM).

FIG. 23 G

Fig. 12a. Step 1 in COM operation: pulse-charging of C_p .

FIG. 23 H

Fig. 12b. Step 2 in COM operation: COM switches on nearly simultaneous with beginning of avalanche discharge.

FIG. 23 I

Fig. 12c. Step 3 in COM operation: current flow builds in the discharge and L_{com} .

FIG. 23 J

Fig. 12d. Step 4 in COM operation: the voltage on C_p passes through zero and the current flow through the discharge begins to subside, but the L_p inductance and the L_{com} inductance force continued current flow from C_p .

FIG. 23K

Fig. 12e. Step 5 in COM operation: The current through L_p and the discharge finally reverses and this current flows into C_p and L_{com} .

FIG. 23L

Fig. 12f. Step 6 in COM operation: The reverse current flow through the discharge is driven by both the L_{com} current and the negative voltage on C_p and thus is increased over that obtained by V_{cp} overshoot only.

FIG 23 M

Fig. 13. A more accurate schematic representation of the laser chamber showing the distributed circuit components.

FIG. 23 N

Fig. 14. The COM inductor and its relation to the distributed circuit components of the laser chamber.

CALCULATED DISCHARGE IMPEDANCE AND
MEASURED DISCHARGE CURRENT

Measured Energy Variation vs. Repetition Rate

Measured 248nm 95% Spectral Integral vs. Operating Voltage

