Conditional Questions Revisited

Yurie Hara^{1,2} and Katsuhiko Sano²

¹Waseda University

²Hokkaido University

Inquisitiveness Below and Beyond the Sentence Boundary

Conditional Questions and Statements

- a. If it is raining, the party will be cancelled.
 - b. If it is raining, will the party be cancelled?

Isaacs & Rawlins (2008)

Combine

- stack-model of conditionals
- partition semantics of questions

(Kaufmann, 2000) (Groenendijk, 1999)

Goal

- To show that I&R's (2008) implementation does not derive the result that they claim to.
- To amend the system by
 employing inquisitive semantics (Ciardelli et al., 2015) and
 redefining some notions, especially Percolation.

Outline

- Conditional Questions
- Isaacs & Rawlins (2008)
- Proposal: Inquisitive Semantic
- O Do we need INQUISITIVE CONSTRAINT?
- Conclusion

Outline

- Conditional Questions
- Isaacs & Rawlins (2008)
- Proposal: Inquisitive Semantics
- O Do we need Inquisitive Constraint?
- Conclusion

a context C

Context C

An equivalence relation on a fixed set W of possible worlds.

Figure: The initial ignorant and indifferent context

The initial ignorant and indifferent context is the total relation on W

Inquisitive Update of C

Inquisitive Update

$$C \oslash \psi := \{\langle w, v \rangle \in C \mid w(\psi) = v(\psi)\}$$

(a) C

Assertive Update of C

Assertive Update

$$C \oplus \varphi := \{ \langle w, v \rangle \in C \mid w(\varphi) = 1 \text{ and } v(\varphi) = 1 \}$$

(01) (00)

(b) C ⊕ p

I--D-D 6 / 46

Stack-model of conditionals

- (2) a. If it is raining, the party will be cancelled.
 - b. If it is raining, will the party be cancelled?

"Ramsey test" intuition

When we ask 'if ρ , q?', we first hypothetically update our stock of beliefs with ρ and then entertain the truth/faulsity of q in the adjusted beliefs.

Three-step procedure

- A hypothetical context is created by updating the speech context with the antecedent.
- The hypothetical context is updated with the consequent.
- The original context learns the effects of the second step.(Percolation)

Macro-contexts

macro-context τ

- a stack or list of contexts.
- $\tau = \langle C_0, \dots, C_n \rangle$

τ_0	C ₀
:	1
τ_n	Cn

- · Utterances are treated as operations on macro-contexts
- · Macro-Context Change Potential (MCCP)

Antecedent

(3) If it is raining, will the party be cancelled?

Macro-Context Change Potential (MCCP) of the *if*-clause τ + (if φ) := $\langle \tau_0 \oplus \varphi, \tau \rangle$

Consequent Question

(4) If it is raining, will the party be cancelled?

Macro-Context Change Potential (MCCP) of QUEST $\langle C, \tau' \rangle + (\text{QUEST } \psi) := \langle C \otimes \psi, \tau' \rangle.$

Answer

- (5) a. If it is raining, will the party be cancelled?
 - b. Yes(, if it's raining, it'll be cancelled).

Macro-Context Change Potential (MCCP) of ASSERT $\tau + (ASSERT \ \psi) := \langle \tau_i [\tau_0 \vdash \psi] \rangle_{0 \le i \le n}$, where $|\tau| = n$.

C[C' ⊢ ψ] (Percolation):
 learning in a context C that a context C' supports ψ

Percolation (I&R version)

$$C[C' \vdash \psi] := \{ \langle w, v \rangle \in C \mid \exists z \in W. (\langle w, z \rangle \in C' \text{ or } \langle z, v \rangle \in C') \text{ implies } \langle w, v \rangle \in C' \oplus \psi \}$$

Problem 1: Conditional Statement

I&R's problem 1

Updating a macro-context with a conditional statement yields an inquisitive context. (pointed out by Sano & Hara, 2014)

- (6) If it's raining, the party will be cancelled.
- (7) $\tau + (if p) + (ASSERT q) = \langle \tau_i [\tau_0 \oplus p \vdash q] \rangle_{0 \le i \le n}$

What Isaacs & Rawlins (2008, (59); p. 301) claim that (7) derives:

13 / 46

Problem 1: Conditional Statement

What I&R's analysis actually derives:

I&R's problem 1

Updating a macro-context with a conditional statement yields an inquisitive context.

Problem 1: Conditional Statement

(8) $C[C \oplus p \vdash q] = \{ \langle w, v \rangle \in C \mid \langle w, v \rangle \in C \oplus \neg p \text{ or } \langle w, v \rangle \in (C \oplus p) \oplus q \}.$

 $\langle w_{11}, w_{01} \rangle$, $\langle w_{01}, w_{11} \rangle$, $\langle w_{11}, w_{00} \rangle$ and $\langle w_{00}, w_{11} \rangle$ should be removed.

Problem 2: Conditional Question

I&R's problem 2

Percolating a question yields a tripartite partition.

Macro-Context Change Potential (MCCP) of QUEST $\langle C, \tau' \rangle + (\text{QUEST } \psi) := \langle C \otimes \psi, \tau' \rangle$.

Macro-Context Change Potential (MCCP) of ASSERT

 $\tau + \big(\text{ASSERT } \psi \big) := \langle \tau_i [\tau_0 \vdash \psi] \rangle_{0 \leqslant i < n}, \text{ where } |\tau| = n.$

Inquisitive Constraint

An inquisitive update cannot percolate down the stack.

Motivation If it percolated, it would yield a non-partition, i.e., not a legitimate question.

Problem 2: Percolating a Question

(9) If it's raining, will the party be cancelled?

If a question percolated,

- (10) $C[C' \vdash_{\mathbb{Q}} \psi] := \{ \langle w, v \rangle \in C \mid \exists z \in W. (\langle w, z \rangle \in C' \text{ or } \langle z, v \rangle \in C') \text{ implies } \langle w, v \rangle \in C' \oslash \psi \}$
- (11) $\tau + (\text{if } \rho) + (\text{QUEST}' q) = \langle \tau_i [\tau_0 \oplus \rho \vdash_Q q] \rangle_{0 \leqslant i \leqslant n}$, provided $|\tau| = n$. What I&R claim that (11) derives:

Problem 2: Percolating a Question

What I&R actually derives:

I&R's problem 2

Percolating a question yields a tripartite partition.

• I&R's implementation fails to motivate INQUISITIVE CONSTRAINT

Problem 2: Percolating a Question

(12) $C[C \oplus p \vdash_{\mathbb{Q}} q] = \{ \langle w, v \rangle \in C \mid \langle w, v \rangle \in C \oplus \neg p \text{ or } \langle w, v \rangle \in (C \oplus p) \oslash q \}.$

The pairs that connect w_{11} to w_{01} and w_{00} , and w_{10} to w_{01} and w_{00} should be removed.

Summary

I&R's problem 1

Updating a macro-context with a conditional statement yields an inquisitive context.

I&R's problem 2

Percolating a question yields a tripartite partition.

The main source of the problems:

- A How Percolation is defined
 - pair semantics
- (13) $C[C \oplus p \vdash q] = \{ \langle w, v \rangle \in C \mid \langle w, v \rangle \in C \oplus \neg p \text{ or } \langle w, v \rangle \in (C \oplus p) \oplus q \}.$

Outline

- Conditional Questions
- Isaacs & Rawlins (2008)
- Proposal: Inquisitive Semantics
- O Do we need INQUISITIVE CONSTRAINT?
- Conclusion

Inquisitive Semantics

Information state s

 $s\subseteq W$ is a set of possible worlds

Issue 1

A non-empty, downward closed set of information states.

- ullet An inquisitive model M for a set P of atomic sentences: $M=\langle W,V
 angle$
 - ► W is a set of possible worlds,
 - V: P → φ(W) is a valuation map that specifies for each atomic sentence in P, which worlds make the sentence true.

Proposal

The problems will disappear if we

• employ inquisitive semantics for the syntax of propositional logic and • redefine the notion of percolation

Inquisitive Semantics

The satisfaction relation $s \models \varphi$ is defined inductively:

```
\begin{array}{cccc} s \vDash \rho & \iff & s \subseteq V(\rho), \\ s \vDash \varphi \lor \psi & \iff & s \vDash \varphi \text{ or } s \vDash \psi, \\ s \vDash \varphi \to \psi & \iff & \text{for all non-empty } t \subseteq s \text{: } t \nvDash \varphi. \\ \end{array}
```

Inquisitive Semantics

The proposition expressed by a sentence φ

 $[\varphi]_M := \{ s \subseteq W \mid s \models \varphi \}$

[φ]_M is an issue.

Interrogative sentence

 $?\varphi := \varphi \lor \neg \varphi$,

Adding updates

· Declarative and interrogative updates are uniformly defined as intersection

Update

$$C \star \varphi := C \cap [\varphi]_M$$
.

Adding updates

Context C

An issue, a downward closed set of information states.

Figure: The initial ignorant context

The initial ignorant context is a trivial issue $\wp(W)$.

Stack-model conditionals

- (14) a. If it's raining, the party will be cancelled.
 - b. If it's raining, will the party be cancelled?

macro-context

- $\tau = \langle C_0, \dots, C_n \rangle$

Conditional Statement

(15) If it's raining, the party will be cancelled.

MCCP of an if-clause

$$\tau + (if \varphi) := \langle \tau_0 \star \varphi, \tau \rangle$$

Consequent Assertion

- (17) If it's raining, the party will be cancelled.
- (18) $C[C \star p \vdash q] = \{s \in C \mid \text{ for all } t \subseteq s, t \in C \star p \text{ implies } t \in C \star p \star q \}$

- All and only sets that contain w₁₀ are removed.
- {w₁₁, w₀₁}, {w₁₁, w₀₀}, {w₁₁, w₀₁, w₀₀} are NOT removed.

$$(18) = C \star (p \rightarrow q)$$

InqBnB 31 / 46

Redefining Percolation

(16) If it's raining, the party will be cancelled.

MCCP of default UPDATE $\tau + (\text{UPDATE } \psi) := \langle \tau_i | \tau_0 \vdash \psi | \rangle_{0 \le i \le n}$

Percolation (IngSem version)

$$C[C' \vdash \psi] := \{s \in C \mid \text{ for all } t \subseteq s, t \in C' \text{ implies } t \in C' \star \psi \}$$

· a natural extension of Kaufmann's Percolation (Conclude).

Compare:

Percolation (I&R version)

 $\begin{array}{l} C[C' \vdash \psi] := \\ \{\langle w, v \rangle \in C \mid \exists z \in W. (\langle w, z \rangle \in C' \text{ or } \langle z, v \rangle \in C') \text{ implies } \langle w, v \rangle \in C' \oplus \psi \} \end{array}$

IIIquiiu 30 / 40

Consequent Assertion

- (19) If it's raining, the party will be cancelled.
- (20) $\tau + (\text{if } p) + (\text{update } q) = \langle \tau_i [\tau_0 \star p \vdash q] \rangle_{0 \leqslant i \leqslant n}$

I&R's problem 1 solved

Updating a macro-context with a conditional statement correctly yields a ${\color{blue} {\rm non-inquisitive}}$ context.

Conditional Question

(21) If it's raining, will the party be cancelled?

I&R's proposal

- · A root-level question only affects the topmost context
- The effect of the update does not percolate down the stack.

$$\langle C, \tau' \rangle$$
 + (QUEST $?\psi$):= $\langle C \star ?\psi, \tau' \rangle$.

Percolating a question?

What would happen if the effect of QUEST percolated?

(24)
$$C[\mathcal{C} \star p \vdash ?q] = \{s \in \mathcal{C} \mid \text{ for all } t \subseteq s, \ t \in \mathcal{C} \star p \text{ implies } t \in \mathcal{C} \star p \star ?q \ \}$$

All and only sets that contain $\{w_{11}, w_{10}\}$ as their subsets are removed.

$$(24) = C \star (p \rightarrow ?q)$$

Consequent Question

(22) If it's raining, will the party be cancelled?

(23)
$$\tau + (if p) + (QUEST ?q) = \langle \tau_0 \star p \star ?q, \tau_1 \rangle$$

Percolating a question?

(25)
$$\tau + (if p) + (UPDATE ?q) = \langle \tau_i [\tau_0 \star p \vdash ?q] \rangle_{0 \leq i \leq n}$$

I&R's problem 2 solved

Percolating a question correctly yields a non-partition (overlapping issues).

 \bullet We can motivate <code>INQUISITIVE</code> <code>CONSTRAINT</code>

Outline

- Conditional Questions
- Isaacs & Rawlins (2008)
- Proposal: Inquisitive Semantics
- O Do we need INQUISITIVE CONSTRAINT?
- Conclusion

Motivation 1: the Ramsey test and Modal Subordination

"Ramsey test" intuition

When we ask 'if p, q?', we first hypothetically update our stock of beliefs with p and then entertain the truth/faulsity of q in the adjusted beliefs.

Modal Subordination:

(26) If a thief comes in, would he steal a silver? Would you be upset?

Figure: $[p \rightarrow ?q]_M$

IngSem does not rule out overlapping issues as illegitimate.

Questions

- Do we need INQUISITIVE CONSTRAINT?
- Do we need to disallow overlapping issues?
- Do we need QUEST? Can we just have UPDATE for both statements and questions?

Motivation 2: Unconditional Questions

Hara (in revision)

Unconditional statement:

(27) Whether or not the party is at Emma's place, it will be fun.

Rawlins (2013)

An unconditional construction 'whether or not $p,\ q'$ semantically encodes a conjunction of 'if $p,\ q'$ AND 'if not $p,\ q'$.

```
\left[\begin{array}{c} \text{[ If the party is at Emma's place, it will be fun.]} \\ \text{AND} \\ \text{[ If the party is not at Emma's place, it will be fun.]} \end{array}\right.
```

Motivation 2: Unconditional Questions

(28) *Whether or not the party is at Emma's place, will it be fun?

 $\left\{ \begin{array}{l} \text{[If the party is at Emma's place, will it be fun?]} \\ \text{AND} \\ \text{[If the party is not at Emma's place, will it be fun?]} \end{array} \right.$

(a)
$$[p \rightarrow ?q]_M$$
 (b) $[\neg p \rightarrow ?q]_M$

(c)

Redefined Percolation

Percolation (I&R version)

$$C[C' \vdash \psi] :=$$

 $\{\langle w,v\rangle\in C\ |\ \exists z\in W.(\langle w,z\rangle\in C'\ \text{or}\ \langle z,v\rangle\in C')\ \text{implies}\ \langle w,v\rangle\in C'\oplus\psi\}$

Percolation (IngSem version)

$$C[C' \vdash \psi] := \{s \in C \mid \text{ for all } t \subseteq s, t \in C' \text{ implies } t \in C' \star \psi \}$$

Outline

- Conditional Questions
- Isaacs & Rawlins (2008)
- Proposal: Inquisitive Semantics
- Do we need INQUISITIVE CONSTRAINT
- Conclusion

I&R's problems solved

I&R's problem 1 solved

Updating a macro-context with a conditional statement correctly yields a ${\color{blue} {\rm non-inquisitive}}$ context.

I&R's problem 2 solved

Percolating a question correctly yields a non-partition (overlapping issues).

- INQUISITIVE CONSTRAINT can be motivated.
- But InqSem doesn't disallow overlapping issues.
- Maybe there is a linguistic constraint that disallows overlapping issues?

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 17H07172 (PI: Yurie Hara).

References I

Ciardelli, Ivano, Jeroen Groenendijk & Floris Roelofsen. 2015. On the semantics and logic of declaratives and interrogatives. Synthese 192(6).

Groenendijk, Jeroen. 1999. The logic of interrogation. In Tanya Matthews & Devon Strolovitch (eds.), Proceedings of SALT IX, 109–126. Ithaca, NY: Cornell University.

Hara, Yurie. in revision. Questions are immediate issues.

Isaacs, James & Kyle Rawlins. 2008. Conditional questions. *Journal of Semantics* 25. 269–319.

Kaufmann, Stefan. 2000. Dynamic context management. In S. Kaufmann M. Faller & M. Pauly (eds.), Formalizing the Dynamics of Information, Stanford, CA: CSLI.

Rawlins, Kyle. 2013. (un)conditionals. Natural Language Semantics 40. 111-178.

Sano, Katsuhiko & Yurie Hara. 2014. Conditional independence and biscuit conditional questions in dynamic semantics. In *Proceedings of SALT 24*, 84–101. Ithaca, NY: Cornell University.