TALLER PROGCOMP: TRACK EDD DISJOINT SET UNION

Gabriel Carmona Tabja

Universidad Técnica Federico Santa María, Università di Pisa

June 10, 2024

Part I

DSU

Definición

DSU o Union Find es una estructura que teniendo un varios elementos cada uno en un conjunto por separado, vamos a poder:

Definición

DSU o Union Find es una estructura que teniendo un varios elementos cada uno en un conjunto por separado, vamos a poder:

▶ unionSet: combinar dos conjuntos

Definición

DSU o Union Find es una estructura que teniendo un varios elementos cada uno en un conjunto por separado, vamos a poder:

- unionSet: combinar dos conjuntos
- ▶ findSet: saber en que conjunto esta un elemento

Definición

DSU o Union Find es una estructura que teniendo un varios elementos cada uno en un conjunto por separado, vamos a poder:

- unionSet: combinar dos conjuntos
- ▶ findSet: saber en que conjunto esta un elemento
- ► SameSet: decir si dos elementos están en el mismo conjunto

Definición

DSU o Union Find es una estructura que teniendo un varios elementos cada uno en un conjunto por separado, vamos a poder:

- unionSet: combinar dos conjuntos
- ▶ findSet: saber en que conjunto esta un elemento
- ► SameSet: decir si dos elementos están en el mismo conjunto

Todas las operaciones con complejidada cercana a O(1)

Después de la operación unionSet(1, 2):

Después de la operación unionSet(1, 2):

Después de la operación unionSet(3, 4):

Después de la operación unionSet(3, 4):

Después de la operación unionSet(3, 4):

Si preguntamos por findSet(2), ¿Qué responderá?

Después de la operación unionSet(3, 4):

Si preguntamos por findSet(2), ¿Qué responderá? 1

Después de la operación unionSet(3, 4):

Si preguntamos por findSet(2), ¿Qué responderá? 1 Si preguntamos por sameSet(2, 3), ¿Qué responderá?

Después de la operación unionSet(3, 4):

Si preguntamos por findSet(2), ¿Qué responderá? 1 Si preguntamos por sameSet(2, 3), ¿Qué responderá? false Si preguntamos por sameSet(2, 1), ¿Qué responderá?

Después de la operación unionSet(3, 4):

Si preguntamos por findSet(2), ¿Qué responderá? 1 Si preguntamos por sameSet(2, 3), ¿Qué responderá? false Si preguntamos por sameSet(2, 1), ¿Qué responderá? true

Después de la operación unionSet(2, 4):

Después de la operación unionSet(2, 4):

Si lo implementaramos así, ¿cual sería la complejidad de findSet?

Después de la operación unionSet(2, 4):

Si lo implementaramos así, ¿cual sería la complejidad de findSet? O(n)

PATH COMPRESSION

Definición

Técnica para acortar los caminos del árbol.

PATH COMPRESSION

Definición

Técnica para acortar los caminos del árbol.

Complejidad amortizada: $O(\alpha(n))$ lo cual es casi igual a O(1).

► Saber cuántas componentes hay en un grafo

- ► Saber cuántas componentes hay en un grafo
- ► Calcular el mínimo spanning tree

- ► Saber cuántas componentes hay en un grafo
- Calcular el mínimo spanning tree
- ▶ Se puede además almacenar información adicional en cada conjunto

- Saber cuántas componentes hay en un grafo
- Calcular el mínimo spanning tree
- Se puede además almacenar información adicional en cada conjunto
- Compressión de saltos en segmentos

- Saber cuántas componentes hay en un grafo
- Calcular el mínimo spanning tree
- Se puede además almacenar información adicional en cada conjunto
- Compressión de saltos en segmentos

Una implementación la podrán encontrar aquí DSU.

REFERENCES I