Math 4B: Differential Equations

Lecture 10: Second Order ODEs

- General Second Order ODEs,
- Linear Differential Equations,
- A Special Case & More!

© 2021 Peter M. Garfield

Please do not distribute outside of this course.

Second Order ODEs

Today we move to study **second order differential equations**; that is, equations of the form

$$\frac{d^2y}{dt^2} = f\left(t, y, \frac{dy}{dt}\right) \qquad \text{or} \qquad y'' = f(t, y, y').$$

These are generally very complicated so we will focus on *linear* second order ODES, usually written

$$y'' + p(t)y' + q(t)y = g(t)$$

or

$$P(t)y'' + Q(t)y' + R(t)y = G(t).$$

We'll begin our focus on homogenous ODEs; that is, ones where g(t) or G(t) is zero:

$$y'' + p(t)y' + q(t)y = 0$$
 or $P(t)y'' + Q(t)y' + R(t)y = 0$.

This Chapter

In Chapter 3 we'll study homogeneous equations with constant coefficients. That is, we'll study IVPs like this one:

Homogeneous Second Order with Constant Coefficients

$$\begin{cases} ay'' + by' + cy = 0 \\ y(t_0) = y_0 \\ y'(t_0) = y'_0 \end{cases}$$

Notice that the initial conditions are at a single t value and specify both y and y' at this value.

Remember the Mass on a Spring

A mass on a spring:

F = ma or rather $ma = \sum (forces)$. Forces:

- Hooke's law says that the spring force is F = -kx (where k > 0)
- Friction is proportional to velocity, then $F_{\text{friction}} = -\gamma v \ (\gamma > 0)$
- External (non-constant?) forcing?

Thus

$$ma = F = F_{\text{spring}} + F_{\text{friction}} + F_{\text{external}} \implies mx'' = -kx - \gamma x' + g(t)$$

or

$$mx'' + \gamma x' + kx = q(t).$$

A solution

So let's take a basic example:

$$x'' + 4x = 0$$
 or $x'' = -4x$

Model:

- mass on a spring
- no friction
- no outside forces

Question: What kind of function would give a solution to this?

Model's natural solution: oscillating function like sine or cosine

Check: Both $x = \sin(2t)$ and $x = \cos(2t)$ work. More on this later!

Damped Oscillations Today: Added Friction

We'll consider the differential equation

$$mx'' + \gamma x' + kx = 0$$

or

$$ay'' + by' + cy = 0.$$

Guess:
$$y = e^{rt}$$
. Then $y' = re^{rt}$ and $y'' = r^2 e^{rt}$, so $ar^2 e^{rt} + bre^{rt} + ce^{rt} = 0$ or $(ar^2 + br + c)e^{rt} = 0$.

How to solve SOLHDEWCC

The function $y=e^{rt}$ is a solution to the ODE ay''+by'+cy=0 if and only if $ar^2+br+c=0$.

The Approach

To find solutions to

$$ay'' + by' + cy = 0,$$

we find the zeroes of the *characteristic polynomial* $ar^2 + br + c$.

Find two roots,
$$r_1$$
 and r_2 :
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Three cases:

- $r_1 \neq r_2$, both real
- $r_1 = r_2$ (both must be real)
- r_1, r_2 complex (non-real)

Today: Two real, different roots $(r_1 \neq r_2 \text{ real})$

General Solutions

General Case

Suppose $ar^2 + br + c$ has two distinct real roots r_1 and r_2 . Then the $general\ solution$ to

$$ay'' + by' + cy = 0$$

is
$$y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$
.

Typical IVP looks like

$$\begin{cases} ay'' + by' + cy = 0 \\ y(t_0) = y_0 \\ y'(t_0) = y'_0 \end{cases}$$

Every solution can be written as $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ for some choice of the constants c_1 and c_2 .

Example #1

Example 1

Solve the IVP

$$\begin{cases} x'' + 5x' + 6x = 0\\ x(0) = 3\\ x'(0) = 1 \end{cases}$$

The roots of $r^2 + 5r + 6 = (r+3)(r+2)$ are $r_1 = -3$ and $r_2 = -2$.

So the general solution is $x(t) = c_1 e^{-3t} + c_2 e^{-2t}$.

The initial conditions are (since $x'(t) = -3c_1e^{-3t} - 2c_2e^{-2t}$)

$$x(0) = c_1 + c_2 = 3$$

 $x'(0) = -3c_1 - 2c_2 = 1$ \implies $c_1 = -7, c_2 = 10$

Thus $x(t) = -7e^{-3t} + 10e^{-2t}$.

Example #1 Graph

This is an *overdamped* system.

Example #1 Tweaked

Example 1

Solve the IVP

$$\begin{cases} x'' + 5x' + 6x = 0\\ x(0) = 5\\ x'(0) = -25 \end{cases}$$

The general solution is still $x(t) = c_1 e^{-3t} + c_2 e^{-2t}$.

The initial conditions are (since $x'(t) = -3c_1e^{-3t} - 2c_2e^{-2t}$)

$$x(0) = c_1 + c_2 = 5$$

 $x'(0) = -3c_1 - 2c_2 = -25$ \implies $c_1 = 15, c_2 = -10$

Thus $x(t) = 15e^{-3t} - 10e^{-2t}$.

Example #1 Tweaked Graph

This is still an *overdamped* system.

Example #2

Example 2

Solve the IVP

$$\begin{cases} x'' + 5x' + 4x = 0\\ x(0) = 8\\ x'(0) = -5 \end{cases}$$

The roots of $r^2 + 5r + 4 = (r+4)(r+1)$ are $r_1 = -4$ and $r_2 = -1$.

So the general solution is $x(t) = c_1 e^{-4t} + c_2 e^{-t}$.

The initial conditions are (since $x'(t) = -4c_1e^{-3t} - c_2e^{-t}$)

$$x(0) = c_1 + c_2 = 8$$

 $x'(0) = -4c_1 - c_2 = -5$ \implies $c_1 = -1, c_2 = 9$

Thus $x(t) = -e^{-4t} + 9e^{-t}$.

Example #2 Graph

This is another *overdamped* system.

Analogy with Math 4A

In Linear Algebra, to solve the *homogeneous linear system* $A\mathbf{x} = \mathbf{0}$, we did the following:

- **1.** Row reduce A to rref(A)
- **2.** Each column of $\operatorname{rref}(A)$ without a pivot (a "free variable" column) gives a vector \mathbf{x}_i that solves $A\mathbf{x} = \mathbf{0}$.
- **3.** The *general solution* of $A\mathbf{x} = \mathbf{0}$ is Span $(\mathbf{x}_1, \dots, \mathbf{x}_k)$.

In **Differential Equations**, we do the same thing to solve the *homogeneous second order ODE with constant coefficients:*

- 1. From ax'' + bx' + cx = 0, form the quadratic equation $ar^2 + br + c = 0$.
- **2.** Each root r_i of the quadratic equation $ar^2 + br + c = 0$ gives a solution $e^{r_i t}$.
- **3.** The *general solution* of ax'' + bx' + cx = 0 is Span (e^{r_1t}, e^{r_2t}) . That is, any solution to our ODE is a linear combination of those solutions from Step **2.**