Karta projektu zaliczeniowego

Systemy mikroprocesorowe - 2019

Temat projektu: Stacja pogodowa

Imię i nazwisko: Paweł Czopek

Politechnika Poznańska

kierunek: AiR, grupa: A2, nr albumu: 136533

1. Opis projektu

Urządzenie podaje podstawowe informacje o otoczeniu. Mierzona jest temperatura i nasłonecznienie otoczenia oraz podawana jest aktualna data i godzina. Zebrane pomiary są wyświetlane na wyświetlaczu LCD. Dla przejrzystości prezentowania pomiarów na wyświetlaczu zebrane dane wyświetlane są w dwóch cyklach: data i godzina oraz temperatura i nasłonecznienie. Wyświetlane informacje zmieniają się co 5 sekund.

Pomiary z czujników są wykonywane co 1 sekundę, wyświetlacz jest również odświeżany co 1 sekundę.

2. Budowa układu

Konstruowanie stacji pogodowej rozpocząłem od przemyślenia jakie informacje chciałbym wiedzieć o otoczeniu. Kiedy już wiedziałem co chciałbym zbudować zakupiłem i skompletowałem odpowiednie części.

Stacja pogodowa zbudowana jest z czujnika temperatury, fotorezystora i modułu czasu rzeczywistego. Dane mierzone wyświetlane są na wyświetlaczu LCD. Układ z mikroprocesorem przetwarza dane pomiarowe i jest jednocześnie zasilaczem czujników. Układ zasilany jest baterią prądu stałego o wartości 6 V. Wszystkie elementy zamontowane zostały na płytce montażowej.

Zastosowane elementy:

- Arduino Pro Mini ATmega328P 5V / 16MHz
- Płytka uniwersalna 90x150mm -PI03 PCB
- Koszyk na baterie 4xAA (R6) koszyk płaski otwarty BH-341-1A
- Wyświetlacz LCD 2x16 niebieski ze sterownikiem HD44780 QC1602A
- Fotorezystor GL5528 10k-20k LDR 5mm 5528
- Czujnik temperatury DS18B20
- Moduł czasu RTC DS1307 zegar czasu rzeczywistego
- Rezystor 4,7 kohm
- Rezystor 10 kohm
- Potencjometr 1 kohm
- Przełącznik uniwersalny ON ON 13x22x7 mm
- Przewód typu drut 0,5 mm2
- Płyta ze sklejki 90x170x4 mm
- Elementy złączne (śruby, podkładki, nakrętki)

Następnie zająłem się narysowaniem schematu elektrycznego

Schemat elektryczny układu:

Schemat elektryczny został narysowany w programie Eagle. Podstawowe elementy elektryczne i elektroniczne takie jak rezystory, potencjometr, fotorezystor znajdowały się w bibliotekach domyślnych programu. Elementy o zaawansowanej strukturze (arduino pro mini, wyświetlacz LCD) pobrałem z internetu. Niestety oznaczenie jednego z pinów wyświetlacza na schemacie (pin VEE) nie zgadza się z oznaczeniem na zakupionym przeze mnie wyświetlaczu (pin V0). W literaturze znalazłem, że nazwy te są stosowanie zamiennie. Schematy moduł czasu rzeczywistego i termometru narysowałem samodzielnie.

Następnym etapem było rzeczywiste rozmieszczenie elementów na płytce uniwersalnej oraz sposób na trwałe złożenie i połączenie komponentów. W tym celu wykorzystałem program do modelowania 3D inventor.

Model mechaniczny:

Modele 3D elementów elektrycznych i elektronicznych pograłem z internetu. Modele płytki uniwersalnej PBC, płyty głównej montażowej oraz tuleje narysowałem samodzielnie.

Przed Zmontowaniem na stałe urządzenia zbudowałem wersję testową na płytce prototypowej uniwersalnej w celu sprawdzenia poprawności działania projektu.

3. Elementy oprogramowania

Użyte Biblioteki:

- LiquidCrystal.h obsługa wyświetlacza LCD
- OneWire.h obsługa magistrali komunikacyjnej dla termometru
- DallasTemperature.h obsługa termometru
- Wire.h obsługa magistrali komunikacyjnej dla zagara
- RTClib.h obsługa zegara
- charakters.h zdefiniowany znak stopnia dla wyświetlacza LCD

4. Wykorzystane narzędzia projektowe

Do zaprojektowania układu stacji pogodowej zostały użyte programy:

- Eagle firmy AutoCad rysowanie schematu elektrycznego
- Autodesk Inventor Professional w wersji studenckiej model mechaniczny
- Arduino IDE kompilowanie, programowanie układu

Użyty programator:

• Konwerter USB-UART/RS232 - z przewodem 100 cm - PL2303HX

Schemat blokowy programu został narysowany w programie online draw.io

5. Kalibracja czujnika nasłonecznienia.

W układzie pomiarowym nasłonecznienia zastosowany został fotorezystor oraz rezystor 10 kohm.

Pod wpływem zmiany natężenia oświetlenia zmienia się rezystancja fotorezystora w sposób nieliniowy.

Mikrokontroler mierzy napięcie na rezystorze 10 kohm. Mikrokontroler zmierzoną wartość przelicza na natężenie oświetlenia i wyświetla ją na wyświetlaczu LCD.

Dane wejściowe:

- Na podstawie informacji znajdujących się w karcie katalogowej fotorezystora:
 - Wykres rezystancji funkcji natężenia oświetlenia jest funkcją hiperboliczną:


```
f(x) = x^n,
```

dla:

n = 2k, gdzie $k \in R^-$

• Z wykresu możemy odczytać punkty:

```
10 lx -> 10 kohm
100 lx -> 2 kohm
```

- ❖ Wartość odczytywana przez mikrokontroler rośnie wraz ze wzrostem natężenia nasłonecznienia.
- Napięcie zasilające układ pomiarowy jest wartością skończoną.

Zebrane dane podlegają następującym przekształceniom:

- argumenty funkcji hiperbolicznej podlegają przeskalowaniu z oporności na napięcie przeskalowanie liniowe.
- zamianie funkcji hiperbolicznej na logarytmiczną wzrost wartości dziedziny -> wzrost wartości argumentów

Przekształcenie wynika z charakterystyki układu pomiarowego. Wzrost natężenia oświetlenia zwiększa wartość mierzoną przez mikrokontroler.

- zmianie argumentu z dziedziną funkcji logarytmicznej
- Ostatecznie mierzony proces możemy zamodelować funkcją potęgową:

$$f(x) = x^n$$

dla

 $n \in R^+$

Obliczenia.

Obliczenie prądu płynącego przez układ pomiarowy:

Na podstawie prawa Ohmazostał wyprowadzony wzór:

$$I = U/(R1+R2)$$

I - prąd płynący przez układ pomiarowy

U - napięcie zasilania układu (U=5V)

R1 - rezystancja fotorezystora

R2 - rezystancja rezystora 10 kohm

Po podstawieniu do wzoru odpowiednich wartości oraz pod R1 wartości 10kohm odpowiadającemu natężeniu 10 lx

I=5V/(10kohm+10kohm)=0,00025A=0,25mA

Systemy Mikroprocesorowe – kierunek AiR na Wydziale Informatyki - Politechnika Poznańska 2019

Obliczenie napięcia mierzonego przez mikrokontroler na rezystorze R2 = 10 kohm Na podstawie prawa Ohma został wyprowadzony wzór: U = I*R2U - napięcie na rezystorze R2 I - prąd płynący przez układ Po podstawieniu odpowiednich wartości U = 10kohm*25mA = 2,5VPrzekształcenie napięcia mierzonego przez mikrokontroler na napięcie wyrażone w woltach. Dane: Przetwornik ADC w zastosowanym arduino jest 10 bitowy, więc daje nam 2^10=1024 wartość Napięcie zasilające wynosi 0-5 V Na podstawie danych układamy proporcję 5 V -> 1024 x V -> a gdzie: x - zmierzone napięcie w woltach a - zmierzona wartość przez mikrokontroler Po przekształceniu otrzymujemy wzór: x = a*5/1024Dzięki temu, że zależności są liniowe 10 lx odpowiada napięcie równe 2,5 V na rezystorze R2 = 10 kohm. Podstawiając odpowiednie wartości do wzoru przyjętego modelu otrzymujemy poniższe równanie $10 = 2,5^n$ $n \approx 3$

b - natężenie oświetlenia (nasłonecznienie)

b=(a*5/1024)^2,5 [lx]

Po przekształceniu i uproszczeniu wzór wygląda następująco:

a - wartość mierzona przez mikrokontroler

Podczas testów model został rozwinięty do postaci:

$$f(x)=d*x^n$$

Współczynnik d został oszacowany na wartość 10.

Współczynnikowi n przypisano wartość 4.

Ostateczny wzór przyjął następującą postać:

b - natężenie oświetlenia (nasłonecznienie)

a - wartość mierzona przez mikrokontroler

6. Weryfikacja poprawności działania układu

Weryfikacji poprawności działania dokonałem na prototypie zbudowanym na płytce stykowej.

Prototyp stacji pogodowej użyty do testów

Poprawność działania urządzenia sprawdziłem porównując wyświetlane wskazania stacji pogodowej z datą i godziną smartphona oraz temperaturą termometru stołowego. Test nasłonecznienia wykonałem porównując wyświetlaną wartość na wyświetlaczu stacji pogodowej z informacjami znalezionymi w internecie. Wyniki wskazań urządzeń zostały przedstawione na poniższych zdjęciach.

Zestaw do sprawdzenia poprawności działania

Test daty i godziny:

Test temperatury:

Test nasłonecznienia:

Według źródeł w pochmurny dzień jest od 1000 do 5000 lx.

Natężenie oświetlenia [lx]	Przykład
32000-130000	Bezpośrednie światło słoneczne.
10000-25000	Bezchmurny dzień (ale nie bezpośrednie oświetlenie słoneczne).
1000	Pochmurny dzień.
500	Oświetlenie biura zgodne z normą EN 12464.
400	Wschód lub zachód słońca w bezchmurny dzień.
320	Zalecane oświetlenie biura w Australii. Minimalny poziom do wygodnego czytania.

Fragment tabeli z http://www.cctv-news.pl/tabela-poziomow-oswietlenia

Po porównaniu odpowiednich wartości stwierdziłem, że moja stacja pogodowa działa poprawnie.

7. Obsługa układu

- Ad. 1. Przełącznik suwakowy służy do włączenia i wyłączenia urządzenia. Aby włączyć stację pogodową należy ustawić przełącznik w pozycji górnej na wartość ON. Układ wyłącza się przesuwając przełącznik na pozycję dolną wartość OFF.
- Ad. 2. Potencjometr ustawia kontrast wyświetlacza LCD. Kontrast wyświetlacza zmienia się kręcąc odpowiednio w prawo lub w lewo pokrętłem potencjometru.

Po włączeniu stacji pogodowej na wyświetlaczu wyświetla się napis powitalny. Jest on

wyświetlany przez 5 sekund. W tym czasie układ jest kalibrowany.

Na zdjęciu obok wyświetlana jest w pierwszym wierszu data, a w drugim godzina.

Data jest wyświetlana w formacie: dzień/miesiąc/rok

Czas jest przedstawiony jako: godzina:minuta:sekunda

Zdjęcie obok przedstawia w pierwszym wierszu temperaturę. W drugim wierszu wyświetlane jest nasłonecznienie.

Temperatura podawana jest w stopniach celsjusza, a nasłonecznienie w luksach.

8. Literatura

- http://dsp.org.pl/Systemy_mikroprocesorowe/42/
- http://arduinowo.pl/zagadnienia/wyswietlacze/lcd-hd44780/#mns5
- https://forbot.pl/blog/kurs-arduino-ii-termometry-analogowe-lm35-i-cyfrowe-ds18b20-id18414
- https://pl.wikipedia.org/wiki/Natężenie_oświetlenia
- http://www.cctv-news.pl/tabela-poziomow-oswietlenia
- arduino.cc
- Dokumentacja termometru DS18B20
- Dokumentacja fotorezystora GL5528
- Dokumentacja wyświetlacza LCD HD44780
- Dokumentacja modułu czasu RTC DS1307