1. Формулы Ньютона-Котеса — это формулы с равноотстоящими узлами $x_0 = a, ..., x_k = a + k \cdot h, ..., x_n = b$ и шагом $h = \frac{b-a}{n}$. (осуществляется деление отрезка [a,b] на n равных частей) Обозначим $Y_k = f(x_k), k = \overline{0,n}$. Используя для квадратурной формулы $\int_a^b f(x) dx \approx \sum_{k=0}^n A_k Y_k$ многочлен Лагранжа с равноотстоящими узлами, получаем из квадратурных коэффициентов $A_k = \int_a^b \frac{w_n(x)}{(x-x_k)w_n'(x_k)} dx$ величины:

$$A_k = h \cdot \frac{(-1)^{n-k}}{k! \cdot (n-k)!} \cdot \int_0^n \frac{t^{[n+1]}}{t-k} dt, \ k = \overline{0,n}, \ t = \frac{x-x_0}{h}.$$
 С учетом $h = \frac{b-a}{n}$ имеем $A_k = (b-a) \frac{(-1)^{n-k}}{n \cdot k! \cdot (n-k)!} \cdot \int_0^n \frac{t^{[n+1]}}{t-k} dt,$ или $A_k = (b-a)H_k$, где $H_k = \frac{(-1)^{n-k}}{n \cdot k! \cdot (n-k)!} \cdot \int_0^n \frac{t^{[n+1]}}{t-k} dt, \ k = \overline{0,n}$

Здесь $t^{[n+1]} = t(t-1)\dots(t-n)$. Поскольку H_k безразмерны, то их можно подсчитать для любого h.

Постоянные H_k называются κo э $\phi \phi$ ициентами Kотеса. Их очевидные свойства: $\sum_{k=0}^n H_k = 1, H_k = H_{n-k}$

С учетом связимежду A_k и H_k получаем квадратурную формулу, называемую **формулой Ньютона-Котеса**:

$$\int_{a}^{b} f(x)dx \approx (b-a) \cdot \sum_{k=0}^{n} H_{k}Y_{k}$$
 (1)

Остаточный член этой формулы для n раз непрерывно дифференцируемой функции вычисляется по равенству

$$\rho_n(f) = \frac{1}{(n+1)!} \int_a^b f^{(n+1)}(\xi) w_n(x) dx \text{ и имеет вид: } \rho_n(f) = h^{n+2} \int_a^b \frac{f^{(n+1)}(\alpha) \cdot t^{[n+1]}}{(n+1)!} dt \text{ , } \alpha = \alpha(t) \in [0,n].$$

Очевидно, для $|f^{(n+1)}(x)| \leq M_{n+1}$ получаем оценку: $\rho_n(f) = M_{n+1} \cdot h^{n+2} \int_a^b \frac{t^{(n+1)}}{(n+1)!} dt$.

2.1 <u>Формула прямоугольника</u>. Пусть n=0, тогда функция f(x) приближается на [a,b] многочленом $L_0(x)=f(x_0)$, где точка $x_0=\frac{a+b}{2}$. Используя формулу (1), имеем $\int_a^b f(x)dx=(b-a)\cdot f(x_0)+\rho_0(f)$ (2)

Поскольку $|(b-a)\cdot f(x_0)|$ есть площадь прямоугольника, то полученную формулу называют формулой прямоугольника. Для дважды непрерывно дифференцируемой f(x) её погрешность имеет вид:

 $ho_0(f) = rac{1}{2} \int_a^b (x-a)^2 \cdot f''(\xi) dx$, $\xi = \xi(x) \in [a,b]$. Используя обобщенную теорему о среднем для определенного интеграла, получаем $ho_0(f) = rac{1}{2} \cdot f''(\alpha) \cdot rac{(b-a)^3}{3}$, $\alpha \in [a,b]$. Отсюда видно, что эта формула для применения мало годна из-за ее большой погрешности остатка на больших отрезках [a,b]. Поэтому на практике используют обобщенную формулу [без вывода]: $\int_a^b f(x) dx = h \cdot \sum_{k=0}^{n-1} f(x_k^*) + rac{(b-a)^3}{6 \cdot n^2} \cdot f''(\xi)$, $\xi \in [a,b]$ (или $\int_a^b f(x) dx \approx h \cdot \sum_{k=0}^{n-1} f(x_k^*)$) 3десь $x_k^* = x_{k-1} + rac{h}{2}$, $k = \overline{0,n}$, а погрешность порядка (h^2)

2.2 <u>Формула трапеции</u>. Пусть n=1, тогда функция f(x) на [a,b] заменяется многочленом $L_1(x)$, построенным для значений f(a), f(b). Тем самым имеет формулу Ньютона-Котеса в простейшем виде. Её коэффициенты $H_0 = H_1 = \frac{1}{2}$. Тогда интеграл $\int_a^b f(x) dx = \frac{b-a}{2} \cdot (f(a) + f(b)) + \rho_1(f)$ (3)

Эта квадратурная формула называется формулой трапеций. Её погрешность для f''(x) непрерывной будет

 $ho_1(f) = -rac{(b-a)^3}{12} \cdot f''(\eta), \ \eta \in [a,b]$ На практике используют обобщенную формулу трапеции [без вывода]:

$$\int_{a}^{b} f(x)dx = \frac{h}{2} \cdot \left((f(x_0) + f(x_n)) + 2 \cdot \sum_{k=1}^{n} f(x_k) \right) - \frac{h^3}{12} \cdot \sum_{k=1}^{n} f''(\eta_k), \text{ rge } \quad \eta_k \in [x_{k-1}, x_k]$$
(3')

2.3 <u>Формула Симпсона</u>. Пусть n=2, тогда функция f(x) на [a,b] заменяется параболой $L_2(x)$. По формуле Ньютона-Котеса имеем: $\int_a^b f(x) dx = \frac{(b-a)^3}{2} \cdot (f(a) + 4 \cdot f\left(\frac{a+b}{2}\right) + f(b)) + \rho_2(f)$ (4),

если производная $f^{(4)}(x)$ непрерывна, погрешность: $\rho_2(f) = -\frac{(b-a)^5}{90} \cdot f^{(4)}(\eta)$, $\eta \in [a,b]$.

Обобщенная формула Симпсона: $\int_a^b f(x)dx = \frac{b-a}{6\cdot n} \cdot (y_0 + y_{2\cdot n} + 4\cdot \sigma_1 + 2\cdot \sigma_2) - \frac{n\cdot h^5 \cdot f^{(4)}(\eta)}{90}$ (4') где $\eta \in [a,b]$, $\sigma_1 = \sum_{k=1}^n Y_{2\cdot k-1}$, $\sigma_2 = \sum_{k=1}^n Y_{2\cdot k}$, $Y_k = f(x_k)$,

Источник: Учебно-методическое пособие ННГУ http://www.unn.ru/books/met_files/alkint.pdf c. 8-12