实验 5 RLC 交流电路测量实验报告

一、实验目的

- 1、熟悉测量 R 、L、 C 元器件的交流电压、电流。
- 2、熟悉测量 R L C 串联和并联交流电路的电压、电流。

二、实验仪器设备和器材

1. 实验仪器

直流稳压电源型号: IT6302 台式多用表型号: UT805A 信号发生器型号: DG1022U

数字示波器型号: DSO-X 2012A(DPO 2012B)

2. 实验(箱)器材 电路实验箱

元器件: 电阻 (10Ω、470Ω、1k);电容(0.1);电感(10mH)

3. 实验预习的虚拟实验平台

NI Multisim

三、 实验原理

1. 电阻元件 R

线性电阻元件 R 中的电流 i 与其两端的电压 u 关系:

正弦稳态激励信号:

u=Umsinωt

$$i = \frac{U_m}{R} \quad \sin \omega t$$

$$\dot{I} = \frac{\dot{U}}{R}$$

2. 电感元件 L

电感线圈电路中通过的电流 i 与其两端的电压 u 关系:

 $u = Umsin \omega t$

$$_{i=}^{\frac{U_{m}}{X_{L}}}$$
 $_{\sin(\omega t-90^{\circ})}$

$$\chi_L = \omega L$$

$$\Phi L = -90^{\circ}$$

$$\dot{I} = \frac{\dot{U}}{\dot{X_L}}$$
 $\dot{X_L} = j\omega L$

3. 电容元件 C

电容器电路中的电流 i 与其两端的电压 u 关系:

u=Um sinωt

$$i = \frac{U_m}{X_c}$$
 $\sin (\omega t + 90^o)$ XC= $\Phi c=90^o$

$$i = \frac{\dot{U}}{\dot{X_C}}$$
 $\dot{X_C} = \frac{1}{j\omega C}$

4. RLC 并联交流电路

电路中通过的电流 i 与其两端的电压 u 关系:

$$i = \frac{U_{m}}{X_{Z}}$$

$$X_{Z} = \frac{1}{\sqrt{(\frac{1}{R})^{2} + (\omega C - \frac{1}{\omega L})^{2}}}$$

$$\varphi = tg^{-} \frac{\frac{1}{\omega C - \frac{1}{\omega L}}}{R}$$

$$\dot{I} = \frac{\dot{U}}{\dot{X}_{Z}}$$

$$\dot{X}_{Z} = \frac{1}{\frac{1}{R} + j\omega C - j\frac{1}{\omega L}}$$

5. RLC 串联交流电路

电路中通过的电流 i 与其两端的电压 u 关系:

+
$$\varphi$$
)
$$X_Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

$$\varphi = tg^{-}\frac{\omega L - \frac{1}{\omega C}}{R}$$

$$\dot{I} = \frac{\dot{U}}{\dot{X}_{Z}}$$
 $\dot{X}_{Z} = R + j \left(\omega L - \frac{1}{\omega C}\right)$

四、

五、 实验内容和步骤

- 1. 分别观测电阻 R、电感 L、电容 C 正弦交流响应,测量电压与电流波形、幅值、频率、相位差φ。分析:比较直流交流响应的特点;元器件的阻抗与交流频率的关系,不同元器件的阻抗及阻抗角。
- 2. 测量 R L C 并联和串联交流电路的电压与电流波形、幅值、相位差φ。分析:交流线性电路的电压电流及阻抗关系与直流电路相同,只是这些参数应用向量表示,电压(电流)之和是矢量之和。
- 3. (选) 测量计算功率因数 cosφ , 分析: 功率因数的意义及测量方法。
- 1. 测量电阻电感电容交流响应

将信号发生器输出的正弦信号接至电路,作为激励源 u,在正弦稳态信号 u(5V 或 3V 4kHz) 激励下,分别测量 R(470 Ω 或 1k)、L(10mH)、 C(0.1 μ f) 元件端电压与电流波形及参数: 峰峰值 Up-p (urp-p),频率 f(T)和相位差 ϕ 。同时改变信号频率,观测波形及参数的变化(r (10 Ω) 是提供测量回路电流用的取样电阻,电流测量值 i=ur/r)。

分别将开关拨到 R、 L、 C进行测量, 并记录 u, ur 波形。

(可不要开关, 将取样电阻直接改接到被测器件测量)

注:示波器可测量交流信号波形及其峰峰值频率和相位差;万用表可测量正弦信号有效值,精度高。

a.电阻 R

- 电流与端电压相位相同
- 与阻值成反比
- 与频率无关

b.电感 L

- 电流落后端电压 90°
- 与电感值成反比
- 与频率成反比

电容C

- 电流超前端电压 90°
- 与电容值成正比
- 与频率成正比

- 2. RLC 并联电路测量
- a. 将元件 R 、 L 并联相接,测量电压和电流的波形及参数: $ur_{_{p,p,}}$ 相位差 ϕ 。

- 分别测量元件 R 和 L 的电流。
- b. 将元件 R 、C 并联相接,测量电压和电流的波形及参数: $ur_{_{p-p}}$ 相位差 ϕ 。

- 分别测量元件 R 和 C 的电流。
- c. (选)将元件 R 、 L 、 C 并联相接,测量电压和电流的波形参数: ur_{p-p} 相位差 ϕ 。根据电压、电流的相位差可判断电路是感性还是容性负载。

3. RLC 串联电路测量

a. 将元件 R 、 C 串联相接, 测量电压和电流的波形及及参数: $i=u_{R}/_{R}$ 相位差 ϕ 。记录 4kHz 的参数。

分别测量元件 R 和 C 的电压, $u_c=u$ (CH1)- u_c (CH2)

- b. 自行设计电路进行 R 、L 串联电路测量
- c. (选)自行设计电路:将元件 R 、L 、 C 串联相接,改变输入信号的频率(1kHz-10kHz) (u 幅度不变),观察电压 $u_{\scriptscriptstyle R}$ 、 $u_{\scriptscriptstyle L}$ 、电流 $i(u_{\scriptscriptstyle R}/R)$ 的波形及参数的变化。

测量电压和电流的波形参数: u 、 i、相位差φ;

根据电压、电流的相位差判断电路是感性还是容性负载,

测量计算电路的阻抗和阻抗角 (即相位差 φ),

测量计算电路的功率因数 (cos φ 值)。

■ 交流信号幅值可用通用仪表测量,提高精度:

六、 实验数据

RLC 实验数据波形记录

激励信号频率改变时,观测测量参数的变化,记录 4kHz 时数据(本表记录元器件及并联测量值,串联测量值自行列表记录)

	u		i(ur) 波形	U 不变改变 f		u I(ur/r 4kHz 4kHz) mA	φ °	4kHz	阻抗 4kHz
				I 的 变 化	Φ的变化	测量 值	计算 值	测量值	计算 值	测量 值	测量值
R		0. 9us 正弦	同相	几乎 不变	几乎 不变	2.66	5.66	5. 692	0	0	467. 32
L		0. 9us 正弦	落后 69.5°	频变 大电变小 反变	频变大相变大反变	2.74	10. 92	10. 526	-90	-69. 5	260. 31
С		0. 9us 正弦	超前 81.6°	频率 变 大,相位 变	频变 少 小 相 变	2.95	7.41	7. 95	90	81.6	371. 07
				大, 反之 变大	小, 反之 变小						
RL	R	0. 9us 正弦	同相	频率 变	频率 变	2.49	5. 298	5. 456	0	0	456. 38
	L		落后 63°	田ゾ台	小相变小反变		9.92	9. 445	-90	-63	263. 63
	RL		落后 44°	变小				11.296	-90-0	-44	220. 43
RC	R	0. 9us 正弦	同相	变 大, 电流 变	变 大, 相位 变 小。	2.65	5.638	5. 481	0	0	483. 49
	С		超前 83°				6.658	6. 922	90	83	382. 84
	RC		超前 49°	反之				9. 044	0-90	49	293. 01

七、 实验结论

- 1. 电阻电流与电压同相,电感电流落后其电压 900,电容电流超前其电压 900,并联交流电路总电流等于各支路电流之和,串联交流电路总电压等于各元件电压之和。
- 2. 测量 R 、 L 、 C 各个元件的电压电流(阻抗角)时,为什么要串联一个小电阻? 对电阻有何要求。

原因是电流不容易测量, 采取串联小电阻的方法先测出电阻上的电压, 再计算出电流值。要

求是电阻要较小。

3. 怎样判断 RLC 并联 (串联) 电路为感性或容性电路,跟哪些参数有关? 先设电容的电容值为 C, 电感的电感值为 L, 在并联的情况下,由于电容和电感并联,电路的复阻抗 Z 表达式为 $1/Z=j\omega C+1/j\omega L$, $Z=j\star(\omega L/(1-\omega^2 LC))$, 因此当 $\omega L/(1-\omega^2 LC)$ 大于 0 时,该电路为感性;当 $\omega L/(1-\omega^2 LC)$ 小于 0 时,该电路为容性。