In [2]:

```
import numpy as np
import pandas as pd
```

1. Create any Series and print the output

In [5]:

```
a=pd.Series([1,2,3,4,5])
a

Out[5]:
0   1
1   2
2   3
3   4
4   5
dtype: int64
```

2. Create any dataframe of 10x5 with few nan values and print the output

```
In [13]:
```

```
x=pd.DataFrame(
{
    "A":[1,2,3,4,5,6,7,8,9,10],
    "B":[6,7,8,9,0,np.nan,np.nan,1,2,3],
    "C":[1,4,6,8,4,2,np.nan,np.nan,np.nan,2],
    "D":[3,5,6,np.nan,4,1,7,8,np.nan,np.nan],
    "E":[5,np.nan,3,4,5,np.nan,np.nan,np.nan,2,1]
}
}
x
```

Out[13]:

	Α	В	С	D	E
0	1	6.0	1.0	3.0	5.0
1	2	7.0	4.0	5.0	NaN
2	3	8.0	6.0	6.0	3.0
3	4	9.0	8.0	NaN	4.0
4	5	0.0	4.0	4.0	5.0
5	6	NaN	2.0	1.0	NaN
6	7	NaN	NaN	7.0	NaN
7	8	1.0	NaN	8.0	NaN
8	9	2.0	NaN	NaN	2.0
9	10	3.0	2.0	NaN	1.0

3. Display top 7 and last 6 rows and print the output

```
In [16]:
```

```
x.head(7)
```

Out[16]:

	Α	В	С	D	E
0	1	6.0	1.0	3.0	5.0
1	2	7.0	4.0	5.0	NaN
2	3	8.0	6.0	6.0	3.0
3	4	9.0	8.0	NaN	4.0
4	5	0.0	4.0	4.0	5.0
5	6	NaN	2.0	1.0	NaN
6	7	NaN	NaN	7.0	NaN

4. Fill with a constant value and print the output

```
In [22]:
```

```
d=pd.DataFrame(np.random.randn(3,4))
d
```

Out[22]:

	0	1	2	3
0	-2.027046	0.835038	0.222293	-0.347093
1	-0.392422	-1.174279	0.524512	0.378444
2	1.950716	1.198610	-0.351603	-0.124885

5. Drop the column with missing values and print the output

In [20]:

```
x.dropna(axis=1,how='any')
```

Out[20]:

	Α		
0	1		

- 1 2
- **2** 3
- 3 4
- **4** 5
- **5** 6
- **6** 7
- **7** 8
- 8 99 10
- 6. Drop the row with missing values and print the output

```
In [19]:

x.dropna()

Out[19]:

A B C D E

O 1 6.0 1.0 3.0 5.0

2 3 8.0 6.0 6.0 3.0

4 5 0.0 4.0 4.0 5.0
```

7. To check the presence of missing values in your dataframe

```
In [26]:
x.isna()
Out[26]:
      Α
                             Ε
0 False False False False
1 False False False
2 False False False
3 False False False
                    True False
  False False False False
  False
         True False False
  False
        True
               True False
7 False False
               True False
                          True
  False False
               True
                    True False
  False False
              False
                     True False
```

8. Use operators and check the condition and print the output

```
In [31]:

x[x["B"]>7]

Out[31]:

A B C D E

2 3 8.0 6.0 6.0 3.0

3 4 9.0 8.0 NaN 4.0
```

9. Display your output using loc and iloc, row and column heading

```
In [32]:
```

x.loc[2:5]

Out[32]:

10. Display the statistical summary of data

In [34]:

x.describe()

Out[34]:

	Α	В	С	D	E
count	10.00000	8.000000	7.000000	7.000000	6.000000
mean	5.50000	4.500000	3.857143	4.857143	3.333333
std	3.02765	3.422614	2.478479	2.410295	1.632993
min	1.00000	0.000000	1.000000	1.000000	1.000000
25%	3.25000	1.750000	2.000000	3.500000	2.250000
50%	5.50000	4.500000	4.000000	5.000000	3.500000
75%	7.75000	7.250000	5.000000	6.500000	4.750000
max	10.00000	9.000000	8.000000	8.000000	5.000000

```
In [ ]:
```