CSCI 550: Adv. Data Mining

09- Density Based Clustering

Announcement

• Student lecture proposals are due by Oct 2nd

Look at this sample labeled data set

1. Start with *k* randomly chosen Centroids

2. Assign data points to clusters by the shortest distance to any mean

3. Update centroids

4. Repeat from step 2 until convergence

How K-means cluster this dataset?

How K-means cluster this dataset?

How about these cases?

Look at this example

• How many clusters do you detect?

Look at this example

K-means results

What about this synthetic dataset?

K-means limitation

- It assumes the clusters are spherical shape (convex or ellipsoid-shaped)
- It is sensitive to outliers
- When the clusters are non-convex, two points in two neighborhood clusters might be closer than two points in same cluster.
- Density-based methods are able to mine nonconvex clusters, where distance-based methods may have difficulty.

The DBSCAN Approach

- Density-based Spatial Clustering of Applications with Noise (DBSCAN)
- Define a ball of radius ε around a point $x \in \mathbb{R}^d$, called that ε -neighborhood of x:

$$N_{\epsilon}(\mathbf{x}) = B_d(\mathbf{x}, \epsilon) = \{ \mathbf{y} \mid \delta(\mathbf{x}, \mathbf{y}) \leq \epsilon \}$$

- Here $\delta(x,y)$ represents the distance between points x and y. which is usually assumed to be the Euclidean
- We say that x is a *core point* if there are at least *minpts* points in its ε -neighborhood, i.e., if $|N_{\varepsilon}(x)| \ge minpts$.
- A border point does not meet the minpts threshold, i.e., $|N_{\epsilon}(x)|$ minpts, but it belongs to the ϵ -neighborhood, of some core point z, that is, $x \in N_{\epsilon}(z)$.
- If a point is neither a core nor a border point, then it is called a *noise point* or an outlier.

Core, Border and Noise Points

(a) Neighborhood of a Point

(b) Core, Border, and Noise Points

The DBSCAN Approach

- A point x is directly density *reachable* from another point y if $x \in N_{\epsilon}(y)$ and y is a core point.
- A point x is density *reachable* from y if there exists a chain of points, x_0, x_1, \ldots, x_1 , such that $x = x_0$ and $y = x_1$, and x_i is directly density reachable from x_{i-1} for all $i = 1, \ldots, 1$. In other words, there is set of core points leading from y to x.
- Two points x and y are *density connected* if there exists a core point z, such that both x and y are density reachable from z.
- A *density-based cluster* is defined as a maximal set of density connected points.

The DBSCAN Approach

- DBSCAN computes the ε -neighborhood $N_{\varepsilon}(x_i)$ for each point x_i in the dataset D, and checks if it is a core point. It also sets the cluster id, $id(x_i) = \emptyset$ for all points, indicating that they are not assigned to any cluster.
- Starting from each unassigned core point, the method recursively finds all its density connected points, which are assigned to the same cluster.
- Some border point may be reachable from core points in more than one cluster; they may either be arbitrarily assigned to one of the clusters or to all of them (if overlapping clusters are allowed).
- Those points that do not belong to any cluster are treated as outliers or noise.
- Each DBSCAN cluster is a maximal connected component over the core point graph.
- DBSCAN is sensitive to the choice of ε , in particular if clusters have different densities.

The DBSCAN Algorithm

DBSCAN in action

```
dbscan (D, \epsilon, minpts):
 1 Core \leftarrow \emptyset
 2 foreach x_i \in D do // Find the core points
          Compute N_{\epsilon}(\mathbf{x}_i)
    id(\mathbf{x}_i) \leftarrow \emptyset // cluster id for \mathbf{x}_i
     if N_{\epsilon}(\mathbf{x}_i) \geq minpts then Core \leftarrow Core \cup \{\mathbf{x}_i\}
 6 k \leftarrow 0 // cluster id
 7 foreach x_i \in Core, such that id(x_i) = \emptyset do
          k \leftarrow k + 1
     id(\mathbf{x}_i) \leftarrow k // assign \mathbf{x}_i to cluster id k
       DensityConnected (\mathbf{x}_i, k)
11 C \leftarrow \{C_i\}_{i=1}^k, where C_i \leftarrow \{x \in D \mid id(x) = i\}
12 Noise \leftarrow \{ \mathbf{x} \in \mathbf{D} \mid id(\mathbf{x}) = \emptyset \}
13 Border \leftarrow \mathbf{D} \setminus \{Core \cup Noise\}
14 return C, Core, Border, Noise
    DensityConnected (x, k):
15 foreach y \in N_{\epsilon}(x) do
          id(\mathbf{y}) \leftarrow k // assign \mathbf{y} to cluster id k
16
```

if $y \in Core$ then DensityConnected (y, k)

17

Density-based Clusters

$\epsilon = 15$ and minpts = 10

The Disadvantages of DBSCAN

- Suffers from curse of dimensionality means in high dimensional space the ε-neighborhood is meaningless and all the point are fall close to each other
- Approximate appropriate values for ε and minpt could be a challenging

DBSCAN Clustering

Iris dataset

The Disadvantages of DBSCAN

- Suffers from curse of dimensionality means in high dimensional space the ε-neighborhood is meaningless and all the point are fall close to each other
- Approximate appropriate values for ε and minpt could be a challenging
- Finding clusters with different densities could be difficult

