EDF Schedulability Bound

- An EDF schedule S has a job misses its deadline at t if and only if $\sum u_i > 1$
 - Don't need to worry about tasks with ready times after T_i and deadlines after T_i , since in EDF they won't compete for CPU time.

EDF Proof

▶ How much execution time is needed, total for T_i ?

$$\frac{t-\varphi_i}{P_i}e_i$$

▶ For the rest of the tasks? T_i

$$\sum e_j \left| \frac{t - \varphi_j}{P_i} \right|$$

EDF Proof

If the deadline is missed at t,

$$\left| \frac{t - \varphi_i}{P_i} e_i + \sum_j e_j \left| \frac{t - \varphi_j}{P_j} \right| > t - \varphi_i$$

lacktriangle Take away ϕ for convenience, and the floor function

$$\frac{t - \varphi_i}{P_i} e_i + \sum_j e_j \left| \frac{t - \varphi_j}{P_j} \right|$$

$$\leq \frac{te_i}{P_i} + \sum_i e_j \frac{t}{P_i} \leq t \sum_{i=1}^n \frac{e_i}{P_i} = t \sum_i u_i \implies \sum_i u_i > 1$$

Rate Monotonic Analysis Principle

- Rate Monotonic Analysis (RMA) principle states that a task with the highest request rate (job release frequency) should take the highest priority.
- A system with a task set T is schedulable if all the tasks in T can be scheduled without breaking any deadlines.

Rate Monotonic: Schedulability

- Can Rate Monotonic guarantee a schedule if the total utilization is ≤ 1?
- See the following example
 - Let $\tau_1 = 1.51 / 3$, $\tau_2 = 2 / 5$, total utilization is 0.903
 - ightharpoonup au_1 has a higher priority than au_2

RMA: a non-schedulable task set

The Optimality of Rate Monotonic

- ▶ RM is optimal among all fixed priority schedules
 - ▶ Algorithm G produces feasible S with $P_1 < P_2$ but $Pr_2 > Pr_1$
 - RM will produce a feasible S'

Figure 4.4 Tasks scheduled by an algorithm different than RM.

RM Optimality Idea

- RM is optimal in systems with fixed priorities
 - Suppose we have a schedule where: $P_1 < P_2$, but τ_2 is scheduled first, the opposite of RM
 - ▶ This implies that $C_1 + C_2 \le P_1$.
 - ▶ But because P_1 is less that P_2 , $C_1 + C_2 \le P_2$
 - If you can finish in a shorter period, you can finish in the longer
 - Need to show RM can schedule both τ_1 and τ_2
 - ▶ Before P_2 , RM need to schedule τ_2 and many τ_1

RM Optimality Proof

$$F = \left\lfloor \frac{T_2}{T_1} \right\rfloor$$

Since we assumed that $C_1 \leq T_2 - FT_1$, we have

$$(F+1)C_1+C_2 \leq FT_1+C_1 \leq T_2,$$
 case (a)
$$\tau_1$$

$$\tau_2$$

$$\tau_2$$

$$\tau_1$$

$$\tau_2$$

$$\tau_2$$

$$\tau_1$$

$$\tau_2$$

$$\tau_2$$

$$\tau_2$$

$$FC_1 + C_2 \leq FT_1$$
.

Rate Monotonic: Schedulability

Calculate the total execution time (e) before a deadline

- How much time is needed by
 - 1) Itself
 - 2) All higher priority jobs

$$e_2 + e_1 \left| \frac{T_2}{T_1} \right|$$

EDF doesn't have "higher priority" so the total time needed is only

$$e_2 + e_1 \left\lfloor \frac{T_2}{T_1} \right\rfloor$$

System Schedulability for RM

- Let a system be 1.2/3, 3.6/7.
- The total time needed by t=7 is 3(1.2) + 3.6 = 7.2, so we think it can't meet its deadline, but:

▶ But J_{21} completes on-time

RM Schedulability Condition

- ▶ Q: If $\sum u_i \le ?$, then RM can find a feasible schedule.
 - ► 1/4,2/5 requires $\sum c_i = 4$, so RM can schedule and meet the deadline of 5.
 - ▶ 2/4, 2/5 requires $\sum c_i = 6$ by time 5 which is after the deadline

Critical Instant

Theorem 16.2 (Existence of Critical Instant). Given a set \mathbb{T} of independent, preemptable periodic tasks where every job completes before the next job of the same task is released, a critical instant of any task T_i occurs when one of its job J_{ix} is released at the same time with a job in every higher-priority task in \mathbb{T} .

Corollary: Every low priority task, if its first job can meet the deadline, then all its other jobs will as well.

RM Theorem

[Liu and Layland 1973]

If n is the number of tasks, RM can find a feasible schedule if

$$\sum u_i \le n \left(2^{\frac{1}{n}} - 1 \right)$$

- \rightarrow n=2, the value is 0.828427...
- As *n* approaches infinity, $\lim_{n\to\infty} n\left(2^{\frac{1}{n}}-1\right) = \ln 2$
- If the periods are always multiples, then we can always meet the deadline as long as the bound ≤ I
 - Jobs with longer periods can utilize time not used by smaller period jobs

Rate-Monotonic Analysis: example

k	1	2	3	4	• • •	∞
$k(2^{1/k}-1)$	1.00	0.83	0.78	0.76	• • •	$log_e(2) = 0.69$

$$\mathbb{T}_4 = \begin{cases} T_1 = (12, 3), \\ T_2 = (15, 2), \\ T_3 = (30, 10). \end{cases}$$

- Assume we have two tasks, where $T_1 < T_2$.
- The total time we need to execute the tasks is

$$c_2 + \left\lceil \frac{T_2}{T_1} \right\rceil c_1 \le T_2$$

Two possible cases:

$$c_1 \ge T_2 - T_1 \left| \frac{T_2}{T_1} \right|$$

• Case I:
$$c_1 \le T_2 - T_1 \left[\frac{T_2}{T_1} \right]$$

This implies
$$c_2 = T_2 - c_1 \left[\frac{T_2}{T_1} \right]$$

Calculating utilization as $c_2/T_2 + c_1/T_1$ and substitution yields...

$$\frac{1}{T_2} \left(T_2 - c_1 \left[\frac{T_2}{T_1} \right] \right) + \frac{c_1}{T_1} = 1 + c_1 \left(\frac{1}{T_1} - \frac{1}{T_2} \left[\frac{T_2}{T_1} \right] \right)$$

Note that $\frac{1}{T_1} - \frac{1}{T_2} \left[\frac{T_2}{T_1} \right]$ is negative, so

utilization decreases as c_1 increases

• Case 2:
$$c_1 \ge T_2 - T_1 \left[\frac{T_2}{T_1} \right]$$

Now, utilization is

$$\left[\frac{T_2}{T_1} \right] \left(\frac{T_1}{T_2} - \frac{c_1}{T_2} \right) + \frac{c_1}{T_1} = \frac{T_1}{T_2} \left[\frac{T_2}{T_1} \right] + c_1 \left(\frac{1}{T_1} - \frac{1}{T_2} \left[\frac{T_2}{T_1} \right] \right)$$

 \triangleright Utilization increases as c_1 increases

Conclusion: Boundary condition occurs at

$$c_1 = T_2 - T_1 \left\lfloor \frac{T_2}{T_1} \right\rfloor$$

I.e.
$$C_1 = T_2 - FT_1$$

In this situation, depicted in Figure 4.7, the largest possible value of C_2 is

$$C_2 = (T_1 - C_1)F,$$

and the corresponding upper bound U_{ub} is

$$U_{ub} = \frac{C_1}{T_1} + \frac{C_2}{T_2} = \frac{C_1}{T_1} + \frac{(T_1 - C_1)F}{T_2} =$$

$$= \frac{T_1}{T_2}F + \frac{C_1}{T_1} - \frac{C_1}{T_2}F =$$

$$= \frac{T_1}{T_2}F + \frac{C_1}{T_2} \left[\frac{T_2}{T_1} - F \right]. \tag{4.4}$$

Since the quantity in square brackets is positive, U_{ub} is monotonically increasing in C_1 and, being $C_1 \ge T_2 - FT_1$, the minimum of U_{ub} occurs for

$$C_1 = T_2 - FT_1.$$

$$U = \frac{T_1}{T_2}F + \frac{C_1}{T_2}\left(\frac{T_2}{T_1} - F\right) =$$

$$= \frac{T_1}{T_2}F + \frac{(T_2 - T_1F)}{T_2}\left(\frac{T_2}{T_1} - F\right) =$$

$$= \frac{T_1}{T_2}\left[F + \left(\frac{T_2}{T_1} - F\right)\left(\frac{T_2}{T_1} - F\right)\right]. \tag{4.5}$$

To simplify the notation, let $G = T_2/T_1 - F$. Thus,

$$U = \frac{T_1}{T_2}(F+G^2) = \frac{(F+G^2)}{T_2/T_1} =$$

$$= \frac{(F+G^2)}{(T_2/T_1-F)+F} = \frac{F+G^2}{F+G} =$$

$$= \frac{(F+G)-(G-G^2)}{F+G} = 1 - \frac{G(1-G)}{F+G}. \tag{4.6}$$

Since $0 \le G < 1$, the term G(1 - G) is nonnegative. Hence, U is monotonically increasing with F. As a consequence, the minimum of U occurs for the minimum value of F; namely, F = 1. Thus,

$$U = \frac{1+G^2}{1+G}. (4.7)$$

Value of U as a function of G

G	U
0	
0.1	0.918182
0.2	0.866667
0.3	0.838462
0.4	0.828571
0.5	0.833333
0.6	0.85
0.7	0.876471
0.8	0.911111
0.9	0.952632
1	1

$$G = T_2 / T_1 - F$$

0.405	0.828487544
0.41	0.828439716
0.415	0.828427562
0.42	0.828450704
0.425	0.828508772
0.43	0.828601399
0.435	0.828728223
0.44	0.828888889
0.445	0.829083045

Rate Monotonic Schedulability

- Question: Can we just check the lowest priority for the first period?
 - ▶ 3/7,6/11,and 1/77,the total execution for the lowest priority:
 - ► |+3*|| + 6*7 = 76
 - ▶ But 3/7,6/11, can't be scheduled.
- The answer is "we need to check the schedulability of every task".

Testing if a system is schedulable

Distinguish between a sufficient and a necessary condition. Which is more restrictive?

	sufficient	necessary
EDF	≤1	≤1
RM	0.69	$n(2^{1/n} - 1)$?

$$n(2^{\frac{1}{n}}-1)$$
 is pessimistic