GrumpyIR Dynamic Semantics

April 4, 2021

The GrumpyIR dynamic (small-step operational) semantics is given as a six-place relation between a function environment δ , a variable environment ρ , heap stores μ and μ' , and expressions e and e', written $\delta \mid \rho \vdash e \mid \mu \longrightarrow e' \mid \mu'$, pronounced "under δ and ρ , in memory state μ , e steps to e' resulting in new state μ' ". Formally, the dynamic semantics is taken to be the smallest relation satisfying the following transition rules, where metavariables n and n_i range over numbers, b over booleans or binary operators depending on context, e and e_i over expressions, v and v_i over values, e over locations, e over function pointers, and e over variables:

Variables

$$\frac{\text{E-VAR}}{\delta \mid \rho \vdash x \mid \mu \longrightarrow v \mid \mu}$$

A variable x steps to a value v whenever ρ maps x to v.

Unary and binary operators

$$\begin{array}{l} \text{E-NEG} \\ b \in \{\text{true}, \text{false}\} \\ \hline \delta \mid \rho \vdash (\text{neg } b) \mid \mu \longrightarrow \neg b \mid \mu \end{array} \qquad \begin{array}{l} \text{E-NEG1} \\ \hline \delta \mid \rho \vdash e \mid \mu \longrightarrow e' \mid \mu' \\ \hline \delta \mid \rho \vdash (\text{neg } e) \mid \mu \longrightarrow (\text{neg } e') \mid \mu' \end{array} \\ \\ \hline \text{E-BINOP} \\ n_1 \ b \ n_2 = n \qquad b \in \{+, *, -, /\} \\ \hline \delta \mid \rho \vdash (b \ n_1 \ n_2) \mid \mu \longrightarrow n \mid \mu \end{array} \qquad \begin{array}{l} \text{E-BINOP1} \\ \hline \delta \mid \rho \vdash e_1 \mid \mu \longrightarrow e'_1 \mid \mu' \\ \hline \hline \delta \mid \rho \vdash (b \ e_1 \ e_2) \mid \mu \longrightarrow (b \ e'_1 \ e_2) \mid \mu' \end{array} \\ \\ \hline \begin{array}{l} \text{E-BINOP2} \\ \hline \delta \mid \rho \vdash (b \ n_1 \ e_2) \mid \mu \longrightarrow (b \ n_1 \ e'_2) \mid \mu' \end{array}$$

Let-expressions and sequencing

$$\frac{\text{E-Let}}{\delta \mid \rho \vdash (\text{let } x \, v_1 \, v_2) \mid \mu \longrightarrow v_2 \mid \mu}$$

$$\frac{\text{E-Let}1}{\delta \mid \rho \vdash (\text{let } x \, e_1 \, e_2) \mid \mu \longrightarrow e'_1 \mid \mu'}$$

$$\frac{\delta \mid \rho \vdash (\text{let } x \, e_1 \, e_2) \mid \mu \longrightarrow (\text{let } x \, e'_1 \, e_2) \mid \mu'}{\delta \mid \rho \vdash (\text{let } x \, v_1 \, e_2) \mid \mu \longrightarrow (\text{let } x \, v_1 \, e'_2) \mid \mu'}$$

$$\frac{\text{E-Let}2}{\delta \mid \rho \vdash (\text{let } x \, v_1 \, e_2) \mid \mu \longrightarrow (\text{let } x \, v_1 \, e'_2) \mid \mu'}$$

$$\frac{\delta \mid \rho \vdash (\text{let } x \, v_1 \, e_2) \mid \mu \longrightarrow e_1' \mid \mu'}{\delta \mid \rho \vdash (\text{seq } e_1 \, e_2) \mid \mu \longrightarrow (\text{seq } e'_1 \, e_2) \mid \mu'}$$

Arrays

$$\begin{array}{c} \text{E-ALLOC} \\ l \text{ is a freshly allocated store location} & 0 \leq n \quad \forall i, v_i = v \\ \hline \delta \mid \rho \vdash (\text{alloc } n \, v) \mid \mu \longrightarrow l \mid [l \mapsto (v_1, v_2, \dots, v_n)] \mu \\ \hline \\ \text{E-ALLOC1} \\ \hline \delta \mid \rho \vdash e_{size} \mid \mu \longrightarrow e'_{size} \mid \mu' \\ \hline \delta \mid \rho \vdash (\text{alloc } e_{size} \, e_{init}) \mid \mu \longrightarrow (\text{alloc } e'_{size} \, e_{init}) \mid \mu' \\ \hline \\ \text{E-ALLOC2} \\ \hline \delta \mid \rho \vdash (\text{alloc } n \, e_{init}) \mid \mu \longrightarrow (\text{alloc } n \, e'_{init}) \mid \mu' \\ \hline \\ \text{E-SET} \\ \hline \\ 0 \leq i \quad \forall j \neq i, v_j = \mu(l)_j \\ \hline \delta \mid \rho \vdash (\text{set } l \, i \, v) \mid \mu \longrightarrow \text{tt} \mid [l \mapsto (v_1, \dots, v_{i-1}, v, v_{i+1}, \dots, v_n)] \mu \\ \hline \\ \text{E-SET1} \\ \hline \\ \delta \mid \rho \vdash (\text{set } e_{arr} \mid \mu \longrightarrow e'_{arr} \mid \mu' \\ \hline \\ \hline \delta \mid \rho \vdash (\text{set } e_{arr} \, e_{ix} \, e) \mid \mu \longrightarrow (\text{set } e'_{arr} \, e_{ix} \, e) \mid \mu' \\ \hline \\ \text{E-SET2} \\ \hline \\ \delta \mid \rho \vdash (\text{set } l \, e_{ix} \mid \mu \longrightarrow e'_{ix} \mid \mu' \\ \hline \\ \hline \delta \mid \rho \vdash (\text{set } l \, e_{ix} \, e) \mid \mu \longrightarrow (\text{set } l \, e'_{ix} \, e) \mid \mu' \\ \hline \\ \text{E-SET3} \\ \hline \\ \delta \mid \rho \vdash (\text{set } l \, i \, e) \mid \mu \longrightarrow (\text{set } l \, i \, e') \mid \mu' \\ \hline \\ \hline \\ \text{E-GET1} \\ \hline \\ \delta \mid \rho \vdash (\text{get } e_{arr} \mid \mu \longrightarrow e'_{arr} \mid \mu' \\ \hline \\ \hline \\ \delta \mid \rho \vdash (\text{get } e_{arr} \, e_{ix}) \mid \mu \longrightarrow (\text{get } e'_{arr} \, e_{ix}) \mid \mu' \\ \hline \\ \hline \\ \text{E-GET2} \\ \hline \\ \delta \mid \rho \vdash (\text{get } l \, e_{ix}) \mid \mu \longrightarrow (\text{get } l'_{e'_{ir}}) \mid \mu' \\ \hline \\ \hline \\ \hline \\ \text{E-GET2} \\ \hline \\ \delta \mid \rho \vdash (\text{get } l \, e_{ix}) \mid \mu \longrightarrow (\text{get } l'_{e'_{ir}}) \mid \mu' \\ \hline \\ \hline \end{array}$$

Conditionals and function calls

$$\frac{\delta(p) = ((x_1, x_2, ..., x_n), e)}{\delta \mid \rho \vdash (\text{call } p \ v_1 \ v_2 \ ... \ v_n) \mid \mu \longrightarrow v \mid \mu'}$$

E-CALL1
$$\frac{\delta \mid \rho \vdash e \mid \mu \longrightarrow e' \mid \mu'}{\delta \mid \rho \vdash (\text{call } e \ e_1 \ e_2 \ \dots e_n) \mid \mu \longrightarrow (\text{call } e' \ e_1 \ e_2 \ \dots e_n) \mid \mu'}$$

$$\frac{\delta \mid \rho \vdash e_i \mid \mu \longrightarrow e_i' \mid \mu'}{\delta \mid \rho \vdash (\text{call } p \ v_1 \dots e_i \dots e_n) \mid \mu \longrightarrow (\text{call } p \ e_1 \dots e_i' \dots e_n) \mid \mu'}$$

where ρ_0 is the empty variable environment and \longrightarrow^* is the reflexive transitive closure of \longrightarrow .