Math 143 Homework 2

Aniruddh V.

September 2023

1 Problem 1

a. Solution Let $I,J\subset k[x_1,\ldots,x_n]$ be ideals, and $I+J\coloneqq\{f+g:f\in I,g\in J\}$. Let $P_1,P_2\in I+J$. Then, there are $f_1,f_2\in I$ and $g_1,g_2\in J$ such that $P_1=f_1+g_1$ and $P_2=f_2+g_2$. But this implies $P_1+P_2\in I+J$, because $P_1+P_2=(f_1+f_2)+(g_1+g_2)$, with $f_1+f_2\in I$ and $g_1+g_2\in J$ since I and J are assumed to be ideals. Next, if $r\in k[x_1,\ldots,x_n]$ and $P=f+g\in I+J$, then $rP\in I+J$, since rP=r(f+g)=rf+rg, with $rf\in I$ and $rj\in J$, since I and J are assumed to be ideals. We have shown that if $P_1,P_2\in I+J$, then $P_1+P_2\in I+J$ and if $r\in k[x_1,\ldots,x_n]$, then $rP\in I+J$ for all $P\in I+J$. Thus I+J is an ideal. \square

b. Solution Suppose a point $P \in V(I) \cap V(J)$. Then for all $f \in I$ and $g \in J$, f(P) = g(P) = 0, so f(P) + g(P) = 0 as well. Thus (f+g)(P) = 0, so $V(I) \cap V(J) \subseteq V(I+J)$. Alternatively, suppose $P \in V(I+J)$. Then the polynomials $f+g \in I+J$ vanish at P. One way for this to happen is if both f and g both vanish at P, that is $P \in V(I)$ and $P \in V(I)$. But then $P \in V(I) \cap V(J)$, so $V(I+J) \subseteq V(I) \cap V(J)$. But now we have $V(I) \cap V(J) \subseteq V(I+J)$ and $V(I+J) \subseteq V(I) \cap V(J)$, so $V(I) \cap V(J) = V(I+J) \square$

2 Problem 2

a. Solution The set $V(y-x^2)\subset \mathbb{A}^2$ is irreducible if and only if the ideal $\langle y-x^2\rangle\subset \mathbb{C}^2$ is prime. An ideal $R\subset I$ is prime if and only if the quotient R/I is an integral domain. To this end, consider the ring homomorphism $\phi: k[x,y]\to k[x]$ which sends $f(x,y)\mapsto f(x,x^2)$ Clearly, ϕ is surjective. We claim $\ker\phi=\langle y-x^2\rangle$. Clearly $y-x^2\in\ker\phi$, so $\langle y-x^2\rangle\subset\ker\phi$. If $f\in\ker\phi$, then $f(x,x^2)=0$, so $y-x^2$ divides f and $\langle y-x^2\rangle\supset\ker\phi$. Thus $\langle y-x^2\rangle=\ker\phi$. Then, since ϕ is surjective, by the first isomorphism theorem, $k[x,y]/\langle y-x^2\rangle\cong k[x]$. k[x] is an integral domain, since if f(x)g(x)=0, then either f(x)=0 or g(x)=0, since k is a field. Thus $k[x,y]/\langle y-x^2\rangle$ is an integral domain, so $\langle y-x^2\rangle$ is prime, and thus $V(y-x^2)$ is irreducible.

b. Solution Starting with $V(y^4-x^2,y^4-x^2y^2+xy^2-x^3)$, factoring each polynomial gives $V\left((y^2-x)(y^2+x),(y^2+x)(y-x)(y+x)\right)$. The y^2+x is common in both terms, and taking the points where $y^2-x,\ y-x$, and y+x vanish gives the set with two points $\{(1,1),(1,-1)\}$. Then the decomposition becomes $V(y^4-x^2,y^4-x^2y^2+xy^2-x^3)=V(y^2+x)\cup V((1,1))\cup V((1,-1))$, where $V(y^2+x)$ is irreducible by part **a**.

3 Problem 3

a. Solution Let $I \subset R$ be an ideal, with $a^n, b^m \in I$. Then, by the binomial formula:

$$(a+b)^{n+m} = \sum_{k=1}^{n+m} \binom{n+m}{k} a^{n+m-k} b^k$$

Expanding this gives

$$(a+b)^{n+m} = a^{n+m} + (n+m)a^{n+m-1}b + \cdots + \binom{n+m}{m}a^nb^m + \cdots + (n+m)ab^{n+m-1} + b^{n+m}$$

Factoring gives

$$(a+b)^{n+m} = a^n \underbrace{(a^m + \dots + b^m)}_{r_1 \in R} + b^m \underbrace{\left(\binom{n+m}{m+1}a^{n-1}b + \dots + b^n\right)}_{r_2 \in R}$$

Since I is an ideal, $r_1a^n \in I$ and $r_2b^m \in I$, and thus $r_1a^n + r_2b^m = (a+b)^{n+m} \in I$ as well.

- **b.** Solution Let $a, b \in \sqrt{I}$. Then, there are n, m such that $a^n \in I$ and $b^m \in I$. By part \mathbf{a} , $(a+b)^{n+m} \in I$ as well, and since there is t such that $(a+b)^t \in I$, $a+b \in \sqrt{I}$. Next, if $r \in R$ and $a \in \sqrt{I}$, there is some n such that $(ra)^n = r^n a^n \in I$ since I is an ideal, so $ra \in \sqrt{I}$. Thus \sqrt{I} is an ideal.
- **c.** Solution Suppose $f^r \in \sqrt{I}$. Then there exists s such that $(f^r)^s \in I$. But $(f^r)^s = f^{rs}$, and since there is n = rs such that $f^n \in I$, $f \in \sqrt{I}$. So $f^r \in \sqrt{I} \implies f \in \sqrt{I}$ and thus \sqrt{I} is radical.
- **d.** Solution Let $I \subset R$ be a prime ideal. Then if $ab \in I$, either $a \in I$ or $b \in I$. Now suppose $a^n \in I$. Since $a^n = a \cdot a \cdots a \cdot a$, I being a prime ideal implies $a \in I$. Thus I is radical as well.

4 Problem 4

- **a. Solution** Let X, Y be algebraic sets, and let $p \in I(X \cup Y)$. Then p vanishes on all of X and Y, so certainly p vanishes on X and Y individually. This means $p \in I(X)$ and $p \in I(Y)$, so $p \in I(X) \cap I(Y)$ and $I(x \cup Y) \subseteq I(X) \cap I(Y)$. Now let $p \in I(X) \cap I(Y)$. Then p vanishes on X and Y, so p vanishes on $X \cup Y$ as well, and $p \in I(X \cup Y)$. Thus $I(X \cup Y) = I(X) \cap I(Y)$
- **b.** Solution This does not hold in general. Take X = V(y), $Y = V(y + x^2)$. Then $I(X) + I(Y) = \langle y \rangle + \langle y + x^2 \rangle = \langle y, x^2 \rangle$. But the intersection $X \cap Y$ contains only the origin, and thus $I(X \cap Y) = \langle y, x \rangle$. So in general $I(X \cap Y) \neq I(X) + I(Y)$

5 Problem 5

Solution Let R be a ring such that every ascending chain of ideals $I_0 \subsetneq I_1 \subsetneq I_2 \subsetneq \cdots$ is finite. For the sake of contradiction, suppose I is an ideal of R that is infinitely generated. Then there is an infinite set G that generates I, that is $I = \langle G \rangle$. Suppose the elements in G are g_1, g_2, \ldots . Then the ascending chain of ideals $\langle g_1 \rangle \subsetneq \langle g_1, g_2 \rangle \subsetneq \langle g_1, g_2, g_3 \rangle \subsetneq \cdots$ is an infinite ascending chain of ideals, contradicting the initial assumption that every ascending chain of ideals is finite. Thus, if R is a ring in which every ascending chain of ideals is finite, then every ideal must be finitely generated, and hence R is Noetherian.