Simplification logique par l'algorithme de Quine-MacCluskey

D'après le cours de B. Miramond Polytech Nice Sophia Antipolis

Exemple de fonction booléenne

a	Ъ	C	22
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Ecriture de la fonction booléenne :

table de vérité = forme normale disjonctive

દા	Ъ	C	22
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Forme somme de produits : S = abc + abc + abc + abc

$$s = abc + abc + abc + abc$$

 $s = \overline{abc} + abc + abc + abc$

 $s = \overline{abc} + \overline{abc} + \overline{abc} + \overline{abc}$

 $s = \overline{abc} + abc + abc + abc$

Implantation d'une fonction booléenne

- Ecrire l'équation de la fonction à partir de sa table de vérité
- Réaliser l'inversion de toutes les variables d'entrées pour disposer de leur complément
- Construire une porte ET pour chacun des termes égal à 1 dans la colonne de sortie
- 4. Etablir le câblage des portes ET avec les entrées
- Réunir l'ensemble des portes ET vers une porte OU dont la sortie est le résultat de la fonction

Implantation d'une fonction booléenne

Objectif : réduire la taille de l'expression booléenne

Taille de l'expression = nombre d'opérateurs et/ou utilisés

Méthode 1 : tables de Karnaugh

https://fr.wikipedia.org/wiki/Table de Karnaugh

Méthode 2 : algorithme de Quine-Mac Cluskey

https://en.wikipedia.org/wiki/Quine%E2%80%93McCluskey_algorithm

Simplification d'expressions logiques

- Il n'est pas toujours évident de savoir si on a atteint une expression logique minimale
- La méthode de Karnaugh le permet mais pour un nombre réduit de variables (au plus 4 ou 5)
- L'algorithme de Quine-Mac Cluskey :
 - fonctionne quelque soit le nombre de variables
 - est programmé.Par exemple :

https://www.mathematik.unimarburg.de/~thormae/lectures/ti1/code/qmc/

Vocabulaire

 Mintermes, termes ou impliquant : ce sont les produits logiques d'une expression F

$$- F = \overline{X} \overline{Y} Z + \overline{X} Y Z + X \overline{Y} Z + X Y Z + \overline{X} Y \overline{Z}$$

 Un terme que l'on ne peut simplifier en supprimant une de ses variables et qui implique la fonction logique considérée est dit impliquant premier

$$-F = Z + \overline{X}Y$$

Principe de la méthode de QMC

- Démarrer par l'expansion en mintermes de la fonction F à minimiser
- Trouver la liste des impliquants premiers
- Sélectionner un ensemble minimal d'impliquants premiers

Algorithme

- 1. Lister tous les mintermes de f dans une table
 - Les grouper par le nombre de 1 dans chaque minterme
- 2. Comparer les termes d'un groupe avec le groupe adjacent pour essayer de les combiner
 - Créer une nouvelle table avec les combinaisons trouvées exemple : 0100 + 0101 = 010-
 - Rayer chaque minterme utilisé pour la combinaison et passer à la table suivante
- Répéter la procédure dans la nouvelle colonne jusqu'à ce qu'il n'y ai plus de simplification possible
- Les impliquants premiers correspondent aux mintermes non rayés
- 5. Sélectionner les *impliquants premiers essentiels*
- Choisir les impliquants restant formant un ensemble minimal

Représentation d'une fonction logique. Identification des termes actifs

```
yΖ
       ---+---+
      +---+---|
\sum (2,4,5,6,7,9,13,14,15)
```

Somme de termes

Impliquants – étape 1

```
2 | 0 0 1 0
 4 | 0 1 0 0
 5 | 0 1 0 1
 6 | 0 1 1 0
 9 | 1 0 0 1
13 | 1 1 0 1
14 | 1 1 1 0
15 | 1 1 1 1
```

Trouver les impliquants premiers Etape 2

```
(2,6) \mid 0 - 1 0
                                 (4,5) \mid 0 \mid 0 -
                                 (4,6) \mid 0 \mid 1 - 0
 4 1 0 1 0 0 √
                                 (5,7) \mid 0 \mid 1 - 1
 6 | 0 1 1 0 √
                               (5,13) \mid -1 \mid 0 \mid 1
 9 1 1 0 0 1 √
                                 (6,7) \mid 0 \mid 1 \mid -
                               (6,14) \mid -110
                               (9,13) \mid 1 - 0 \mid 1
                               (7,15) \mid -1111
                              (13,15) \mid 1 \mid 1 \mid -1
15 | 1 1 1 1 <del>\</del>\
                              (14,15) \mid 1 \mid 1 \mid 1
```

Trouver les impliquants premiers Etape 3

```
(4,5,6,7) \mid 0 \mid 1 -
                                   (4,6,5,7) \mid 0 \mid 1
    (4,6) \mid 0 \mid 1 - 0
                                   (5,7,13,15) \mid -1 - 1
                                   (5,13,7,15) \mid -1 - 1
    (5,7) \mid 0 \mid 1 \mid 1 \mid \sqrt{\phantom{0}}
                                   (6,7,14,15) \mid -11 -
  (5,13) \mid -1 \mid 0 \mid 1 \mid \sqrt{\phantom{0}}
                                   (6,14,7,15) \mid -11 -
    (6,7) \mid 0 \mid 1 \mid - \sqrt{}
  (6,14) \mid -110 \quad \sqrt{\phantom{0}}
  (9,13) \mid 1 - 0 \mid 1
  (7,15) \mid -1111 
(13,15) | 1 1 - 1
 (14,15) \mid 1 \mid 1 \mid 1 \mid -
```

Trouver les impliquants premiersEtape 3

```
(4,5,6,7) | 0 1 - - (4,6,5,7) | 0 1 - - (5,7,13,15) | - 1 - 1 (5,13,7,15) | - 1 - 1 (6,7,14,15) | - 1 1 - (6,14,7,15) | - 1 1 -
```

Etape 4: les impliquants premiers (2,6) (9,13) (4,5,6,7) (5,7,1,15) (6,7,14,15)

$$\bar{a}c\bar{d} + a\bar{c}d + \bar{a}b + bd + bc$$

Sélectionner les impliquants premiers *essentiels*Etape 5

$$\bar{a}c\bar{d} + a\bar{c}d + \bar{a}b + bd + bc$$

Mintermes	2	4	5	6	7	9	13	14	15
→ 2,6	#			Χ					
→ 9,13						#	X		
→ 4,5,6,7		#	X	Χ	Χ				
5,7,13,15			X		Χ		X		Χ
→ 6,7,14,15				Χ	Χ			#	Χ

premiers *essentiels*Etape 6:

couverture ou pas de tous les mintermes de l'expression initiale ?

M	intermes	2	4	5	6	7	9	13	14	15
->	2,6	#			X					
->	9,13						#	X		
->	4,5,6,7		#	X	X	X				
	5,7,13,15			X		X		X		X
-> 6	5,7,14,15				X	X			#	X
(Couvert :	0	0	0	0	0	0	0	0	0

Tous les mintermes sont couverts par les impliquants premiers essentiels, donc (unique ici) expression minimale :

$$\overline{a}c\overline{d} + a\overline{c}d + \overline{a}b + bc$$

Et pour voir comment ça marche

https://www.mathematik.unimarburg.de/~thormae/lectures/ti1/code/qmc/