xioms of prol	pability A= 1K						
Probability	law: Assign a	number P(A)	to an event	A satisfying	the following	ng axioms.	
1. 0 \$ P(A)							
i. VSF(M)							
2. P(S) = 1							
3. If A an	d B are mutually	g exclusive, the	n PCA or B) =	P(A) + PCB)			
Lif AO	B=Ø, the P(AUB) = P(A) + P(B)					
				k ko			
La More g	enerally, if A., A	2, ··· Ak are d	isjoint, then P	(je Aj) = je Pu	Ąj)		
cample: Three c	oins tosses						
• S= {ннн,	ннт, нтт, ,тт	r}					
. Those and	comes are mutua	les analesasses					
·Suppose al	outcomes are eq	ually likely, i.e,	Р({ннн})=Р({н	HT\) = =P(\fT	тł) = ġ		
·By axioms	2 and 3, we hav	2:					
P(S):	Р({ннн})+ ··· + Р	({TTT}) = 8 · = 1					
• Consider th	ne event A "at lec	ist 2 tails in a	row by axion	n 3, we have:			
Pcsh	τ, ττΗ, τττ }) = 8						
et us partition	the sample spac	e into two mu	tually exclusive	events, A and	d A ^C		
Corollary 1	: Since S= AUA ^c	and AAA°= ø. l	ou Oxiom 2 on	d 3 we must b	nove. P(s) = D(A ^c	n+P(A)=1 ⇒ P(A	ິນລາ- PcA)
Corollary 2:	By axiom 1, we h	ave that PCB) 70	. Thus, from con	rollary 1, we	have that:		
	P(A)=1-P(AC) =1	> 0 € P(A) € 1					
Corollary 3:	The empty set ho	s probability zer	o. Pcø) =1-Pc	S) = 0			
					volucius	ANB ^c ANB	A°OB
Corollary 4:	Union of 2 even	IS FUNDO TRUT C	are not necessal	ny muruany e	ACIUSIVE.	A ALIB	B
	Decompose AUB	, A and B as un	nions of disjoi	nt events.By	axiom 3, we ha		
	PCAUB) = PCANB	-) + P(B(AC) + P(I	ANB)				
	P(A) = P(ANB ^c)	+ PCAOB)					

			ΡιΔΙΙΑ	=P(A)	+ Pcri	- Pran	Rì								
Con	olla							taje mu si	have .	that P	CAUB	≤ P(A) +	P(B)		
		3			307 (1)		3-7	ineg.			(1100)				
								,							