Week 13: Singular Value Decomposition (SVD)

1.

Find the singular values of the matrix

$$M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -1 & 1 \\ -\frac{1}{2} & -\frac{1}{2} \end{bmatrix}.$$

- (a) The singular values are $\sqrt{2}$ and 1. (100%)
- (b) The singular values are 2 and 1.
- (c) The singular values don't exist because the matrix is not square.
- (d) The singular values are 4 and 1.

We first compute

$$M^T M = \begin{bmatrix} \frac{3}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{3}{2} \end{bmatrix}.$$

The matrix has characteristic polynomial $(\lambda-2)(\lambda-1)$ and therefore has eigenvalues 1 and 2. The singular values are thus 1 and $\sqrt{2}$.

2.

Find the singular values of the matrix

$$M = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}.$$

- (a) The singular values are 5 and 3. (100%)
- (b) The singular values are $\sqrt{5}$ and $\sqrt{3}$.
- (c) The singular values are 25 and 9.
- (d) The singular values don't exist because the matrix is not square.

We first compute

$$MM^T = \begin{bmatrix} 17 & 8 \\ 8 & 17 \end{bmatrix}.$$

This matrix has characteristic polynomial $(\lambda - 25)(\lambda - 9)$ and therefore has the eigenvalues 25 and 9. The singular values are thus 5 and 3.

3.

MULTI 1.0 point 0.10 penalty Single Shuffle

Consider the matrix

$$A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$$

and the matrices

$$U = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 3\sqrt{5} & 0 \\ 0 & \sqrt{5} \end{bmatrix}, \quad V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Is the decomposition $A = U\Sigma V^T$ a valid singular value decomposition? If not, why not?

- (a) The SVD decomposition is valid. (100%)
- (b) The decomposition is not valid as the singular values are incorrect.
- (c) The decomposition is not valid because U is not orthogonal.
- (d) The decomposition is not valid because V is not orthogonal.

We check that

$$AA^T = \begin{bmatrix} 9 & 12 \\ 12 & 41 \end{bmatrix}$$

has eigenvalues 45 and 5. Hence the singular values are $\sqrt{5}$ and $3\sqrt{5}$. We also check that U and V satisfy $UU^T = U^TU = I$ and $VV^T = V^TV = I$ respectively and hence are orthogonal. Finally, we check that the product $U\Sigma V^T$ is indeed equal to A. Hence $A = U\Sigma V^T$ is a valid singular value decomposition.

4.

Consider the matrix

$$A = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 17/10 & 1/10 & -17/10 & -1/10 \\ 3/5 & 9/5 & -3/5 & -9/5 \end{bmatrix}.$$

A has a singular value decomposition $A = U\Sigma V^*$ with

$$U = \frac{1}{5} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & -4 \\ 0 & 4 & 3 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}, \quad V^* = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 \end{bmatrix}.$$

Let

$$b = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

Find all solutions x to the linear equations Ax = b.

(a)
$$x = \frac{1}{8}(1, 1, 1, 1)^T + \lambda(1, -1, 1, -1)$$
 for any $\lambda \in \mathbb{R}$. (100%)
(b) $x = \frac{1}{8}(1, 1, 1, 1)^T + \lambda(1, -1, -1, -1)$ for any $\lambda \in \mathbb{R}$.

(b)
$$x = \frac{1}{8}(1, 1, 1, 1)^T + \lambda(1, -1, -1, -1)$$
 for any $\lambda \in \mathbb{R}$.

(c)
$$x = \frac{1}{8}(1, 1, 1, 1)^T$$
.

(d) There are no solutions to Ax = b.

Following the lecture notes we compute

$$\hat{x} = V\widetilde{\Sigma}U^*b = \frac{1}{8} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}.$$

Then the general solution is $x = \hat{x} + \lambda v_4$, with v_4 the forth column of V, i.e., the fourth row of V^* .

5.

Consider the matrix

$$A = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 17/10 & 1/10 & -17/10 & -1/10 \\ 3/5 & 9/5 & -3/5 & -9/5 \end{bmatrix}.$$

A has a singular value decomposition $A = U\Sigma V^*$ with

$$U = \frac{1}{5} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & -4 \\ 0 & 4 & 3 \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}, \quad V^* = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 \end{bmatrix}.$$

What are the rank and the nullity of A, i.e., what are the dimensions of the range and kernel of A?

- (a) rank(A) = 4, rank(A) = 3.
- (b) rank(A) = 3, rank(A) = 4.
- (c) rank(A) = 3, rank(A) = 1. (100%)
- (d) rank(A) = 3, nullity(A) = 0.

A has three nonzero singular values, hence the rank is 3. There is one zero column in Σ , hence the nullity is 1.

6.

Consider the matrix

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 1 \\ -1 & 0 \end{bmatrix}.$$

A has a singular value decomposition $A = U\Sigma V^*$ with

$$U = \frac{1}{\sqrt{6}} \begin{bmatrix} -1 & -\sqrt{3} & \sqrt{2} \\ 2 & 0 & \sqrt{2} \\ -1 & \sqrt{3} & \sqrt{2} \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

Let furthermore

$$b = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}.$$

Solve the least square problem for Ax = b using the singular value decomposition of A, i.e., find the vector x that makes ||Ax - b|| minimal.

(a)
$$x_1 = -\frac{4}{3}, x_2 = -\frac{7}{3}$$
.
(b) $x_1 = -4, x_2 = -7$.

(b)
$$x_1 = -4, x_2 = -7.$$

(c)
$$x_1 = -\sqrt{3}, x_2 = 1.$$

(d)
$$x_1 = -1, x_2 = 1.$$
 (100%)

According to class, the least square problem is solved by

$$x = V\widetilde{\Sigma}U^*b.$$

Direct computation yields $x_1 = -1, x_2 = 1$.

7.

Let A be an $m \times n$ matrix with $m \neq n$. Which of the following statements is false?

- (a) The matrix AA^* is an $n \times n$ matrix. (100%)
- (b) The matrix AA^* is Hermitian.
- (c) The matrix AA^* is positive semidefinite.
- (d) The matrix A^*A is Hermitian.

The matrix AA^* is an $m \times m$ matrix, not an $n \times n$ matrix.

8.

Let A be an $m \times n$ matrix with m > n. Which of the following statements is false?

- (a) A might have m non-zero singular values. (100%)
- (b) A might have n non-zero singular values.
- (c) Some of the singular values of A might be zero.
- (d) None of the singular values of A are negative.

A has min(m, n) singular values, all of them are nonnegative, and some of them might be zero. Here, $\min(m,n) = n$, so A can have at most n non-zero singular values.

9.

1.0 point 0.10 penalty Single Shuffle

Let A be an $m \times n$ matrix with rank r and singular value decomposition $A = U \Sigma V^*$ (with singular values in descending order). Let u_1, \ldots, u_m be the columns of U, and v_1, \ldots, v_n the columns of V. Which of the following statements is false?

- (a) span $(v_1, \ldots, v_r) = \text{Ran}(A)$ (100%)
- (b) $\operatorname{span}(u_1, \ldots, u_r) = \operatorname{Ran}(A)$.
- (c) $\operatorname{span}(v_{r+1},\ldots,v_n) = \operatorname{Ker}(A)$.
- (d) $\{v_{r+1}, \ldots, v_n\}$ is an orthonormal basis for Ker(A).

As discussed in the lecture notes, $\operatorname{span}(v_1,\ldots,v_r)=\operatorname{Ran}(A^*)$, not $\operatorname{Ran}(A)$.

10.

An experiment has collected N=10 two-dimensional data points, which were collected in the 2×10 matrix

$$A = \begin{bmatrix} 3 & -2 & -3 & -1 & -4 & 3 & 4 & -3 & 2 & 1 \\ 6 & -8 & -7 & -9 & -5 & 5 & 9 & -6 & 7 & 8. \end{bmatrix}.$$

Note that the averages in both rows are already zero. Use a suitable online calculator (e.g., Wolfram Alpha) to compute the singular value decomposition of A and identify the first principal component. Visualize the data for yourself in a two-dimensional coordinate system to make sure the result makes sense.

- (a) The first principal component is approximately (0.334, 0.943). (100%)
- (b) The first principal component is approximately (-0.943, 0.334).
- (c) The first principal component is approximately (-0.323, 0.843).
- (d) The first principal component is approximately 23.916.

The first principal component is the first column u_1 of the matrix U in the SVD $A = U\Sigma V^*$. A numerical evaluation yields $u_1 \approx (0.334, 0.943)$, which makes sense looking at a plot of the data.

Total of marks: 10