

O'Rourke, Chapter 3

Announcements

- We are live on Piazza: http://piazza.com/jhu/spring2016/600459
- Code-base was updated last Wednesday
 (Fixes a bug where y-values are read in as zero)

Outline

- Convex Hulls
- Algorithms
 - Naïve Implementation(s)
 - Gift Wrapping
 - Quick Hull
 - Graham's Algorithm
 - Lower bound complexity

Convexity

A set *S* is *convex* if for any two points $p, q \in S$ the line segment $\overline{pq} \subset S$.

Convexity

A set *S* is *convex* if it is the intersection of (possibly infinitely many) half-spaces.

Convexity

Given points $\{p_1, ..., p_n\} \subset \mathbb{R}^d$, a point $q \in \mathbb{R}^d$ is a convex combination of the points if q can be expressed as the linear sum:

$$q = \sum_{i=1}^{n} \alpha_i \cdot p_i$$

with $\alpha_i \geq 0$ and $\alpha_1 + \cdots + \alpha_n = 1$.

The *convex hull* of a set of points $S \subset \mathbb{R}^d$, denoted $\mathcal{H}(S)$, is the:

- set of all convex combinations of points in S,
- set of all convex combinations of d + 1 points in S,
- ∘ intersection of all convex sets C w/ S \subset C,
- ∘ intersection of all half-spaces H w/ S ⊂ H,
- smallest convex polygon containing S.

Note:

If $p \in S \subset \mathbb{R}^2$ and p is a vertex of the convex hull then p must be a convex vertex.

Otherwise, we could create a line segment with vertices inside of the hull but which isn't strictly interior.

Claim:

If $P \subset \mathbb{R}^2$ is a polygon whose vertices are all convex, then P is convex.

Proof (by induction):

Otherwise, we could add a diagonal.

⇒ By induction, each half is convex.

Proof (by induction):

Otherwise, we could add a diagonal.

 \Rightarrow If P is not convex there must be a segment between the two parts that exits P.

Choose p_1 and p_2 above/below the diagonal.

Evolve the segment to $\overline{p_1p_2}$.

Since p_1 and p_2 are above/below,

 $\overline{p_1p_2}$ crosses the diagonal and is entirely inside P.

Proof (by induction):

Otherwise, we could add a diagonal.

 \Rightarrow If *P* is not convex there must be a segment between the two parts that exits *P*.

Choose p_1 and p_2 above/below the diagonal.

Evolve the segment to $\overline{p_1p_2}$.

Since p_1 and p_2 are above/below,

 $\overline{p_1p_2}$ crosses the diagonal and is entirely inside P.

The last point at which the evolving segment is not fully inside must be a reflex vertex.

The *extreme points* of a set of points $S \subset \mathbb{R}^2$ are the points which are on the convex hull and have interior angle strictly less than π .

 $\mathcal{H}(S)$

 $p_{n_{\bullet}}$

Goal:

Given a set of points $S = \{p_1, ..., p_n\} \subset \mathbb{R}^d$, compute the convex hull $\mathcal{H}(S)$ efficiently.

- Do we want all points on the hull or just the extreme ones?
- Do the output vertices need to be sorted or is the set of (extreme) vertices sufficient?

 $\mathcal{H}(S)$

 $p_{n_{\bullet}}$

Goal:

Given a set of points $S = \{p_1, ..., p_n\} \subset \mathbb{R}^d$, compute the convex hull $\mathcal{H}(S)$ efficiently.

- Do we want all points on the hull or just the extreme ones?
- Do the output vertices need to be sorted or is the set of (extreme) vertices sufficient?

We will focus on the ordered output of the extreme points on the hull.

Note:

We can find a hull vertex in linear time by finding the vertex that is extremal w.r.t. to some direction.

Outline

- Convex Hulls
- Algorithms
 - Naïve Implementation(s)
 - Gift Wrapping
 - Quick Hull
 - Graham's Algorithm
 - Lower bound complexity

Otherwise the segment

is not on the hull

Naïve Algorithm:

For each directed edge $e \in S \times S$, check if the half-space to the right of e is empty of points (and there are no points on the line outside the segment).

If the rest of the points are on one side, the segment is on the hull

Naïve Algorithm $O(n^3)$:

For each directed edge $e \in S \times S$, check if half-space to the right of e is empty of points (and there are no points on the line outside the segment).

Note:

The output is the set of (unordered) extreme points on the hull.

Naïve Algorithm $O(n^3)$:

For each directed edge $e \in S \times S$, check if half-space to the right of e is empty of points (and there are no points on the line outside the segment).

Note:

The output is the set of (unordered) extreme

If we want the ordered points, we can stitch the edges together in $\leq O(n^2)$ time in a post-processing step.

Naïve Algorithm++:

Grow the hull by starting at a hull vertex and searching for the next edge on the hull by trying all possible edges and testing if they are on the hull.

Naïve Algorithm++ $O(n^2h)^*$:

Grow the hull by starting at a hull vertex and searching for the next edge on the hull by trying all possible edges and testing if they are on the hull.

Note:

By explicitly forcing the output to be sorted, we end up with a faster algorithm.

 $^{^*}h$ is the number of points on the hull.

Naïve Algorithm++ $O(n^2h)^*$:

Grow the hull by starting at a hull vertex and searching for the next edge on the hull by trying all possible edges and testing if they are on the hull.

Note:

By explicitly forcing the output to be sorted, we end up with a faster

algor This implementation is *output sensitive*.

**h* is the number of points on the hull.

Outline

- Convex Hulls
- Algorithms
 - Naïve Implementation(s)
 - Gift Wrapping
 - Quick Hull
 - Graham's Algorithm
 - Lower bound complexity

Note:

The next edge on the hull is the one making the largest angle. (If two points make the same angle, ignore the closer one.)

Gift Wrapping:

Grow by finding the edge making the largest angle.

Note:

The next edge on the hull is the one making the largest angle. (If two points make the same angle, ignore the closer one.)

Gift Wrapping O(nh): Grow by finding the edge making the largest angle.

Note:

The next edge on the hull is the one making the largest angle. (If two points make the same angle, ignore the closer one.)

Gift Wrapping O(nh):

Grow by finding the edge

mak A similar approach makes it possible to find a hull edge in linear time.

Outline

- Convex Hulls
- Algorithms
 - Naïve Implementation(s)
 - Gift Wrapping
 - Quick Hull
 - Graham's Algorithm
 - Lower bound complexity

Observation:

Given a hull edge (a, b), we can find the point c furthest from the edge in linear time.

- 1. The point c is on the hull.
- 2. The triangle Δabc partitions the input into three regions:
 - I. Points inside Δabc .
 - II. Points to the right of $b\dot{c}$.
 - III. Points to the right of \overrightarrow{ca} .

Observation:

Given a hull edge (a, b), we can find the point c furthest from the edge in linear time.

- ⇒ Divide-and-conquer:
 - Discard points inside Δabc
 - Separately compute the half-hulls to the right of \overrightarrow{bc} and the right of \overrightarrow{ca} .
 - Merge the two hulls.

Observation:

We don't require \overrightarrow{ab} to be a hull edge.

As long as it's a hull diagonal merging is easy.

oint

⇒ Divide-and-conquer:

- Discard points inside Δabc
- Separately compute the half-hulls to the right of \overrightarrow{bc} and the right of \overrightarrow{ca} .
- Merge the two hulls.


```
QuickHull(S \subset \mathbb{R}^2)
```

- \circ $(a,b) \leftarrow HorizontalExtrema(S)$
- \circ A \leftarrow RightOf(S, \overrightarrow{ab})
- \circ B \leftarrow RightOf(S, \overrightarrow{ba})
- ∘ $Q_A \leftarrow \text{QuickHalfHull}(A, \overline{ab})$
- $\circ Q_B \leftarrow QuickHalfHull(B, \overrightarrow{ba})$
- \circ return $\{a\} \cup Q_A \cup \{b\} \cup Q_B$


```
QuickHull(S \subset \mathbb{R}^2)
```

- \circ $(a,b) \leftarrow \text{HorizontalExtrema}(S)$
- \circ $A \leftarrow \mathsf{RightOf}(S, \overrightarrow{ab})$
- \circ B \leftarrow RightOf(S, \overrightarrow{ba})
- $\circ Q_A \leftarrow QuickHalfHull(A, \overline{ab})$
- $\circ Q_B \leftarrow QuickHalfHull(B, \overrightarrow{ba})$
- \circ return $\{a\} \cup Q_A \cup \{b\} \cup Q_B$

QuickHull($S \subset \mathbb{R}^2$)

- \circ $(a,b) \leftarrow HorizontalExtrema(S)$
- \circ $A \leftarrow \text{RightOf}(S, \overrightarrow{ab})$
- \circ $B \leftarrow \text{RightOf}(S, \overrightarrow{ba})$
- $\circ Q_A \leftarrow QuickHalfHull(A, \overline{ab})$
- $\circ Q_B \leftarrow QuickHalfHull(B, \overrightarrow{ba})$
- \circ return $\{a\} \cup Q_A \cup \{b\} \cup Q_B$


```
QuickHull(S \subset \mathbb{R}^2)
```

- \circ $(a,b) \leftarrow \text{HorizontalExtrema}(S)$
- \circ $A \leftarrow \mathsf{RightOf}(S, \overrightarrow{ab})$
- ∘ $B \leftarrow \mathsf{RightOf}(S, \overline{ba})$
- $\circ Q_A \leftarrow QuickHalfHull(A, \overline{ab})$
- $\circ Q_B \leftarrow QuickHalfHull(B, \overrightarrow{ba})$
- \circ return $\{a\} \cup Q_A \cup \{b\} \cup Q_B$

QuickHull($S \subset \mathbb{R}^2$)

- \circ $(a,b) \leftarrow HorizontalExtrema(S)$
- \circ A \leftarrow RightOf(S, \overrightarrow{ab})
- \circ B \leftarrow RightOf(S, \overrightarrow{ba})
- $\circ Q_A \leftarrow QuickHalfHull(A, \overline{ab})$
- ∘ $Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{ba})$
- \circ return $\{a\} \cup Q_A \cup \{b\} \cup Q_B$

(Recursion Level 0)

```
QuickHalfHull(S \subset \mathbb{R}^2, \overrightarrow{ab} \in S \times S)
```

- \circ if($S == \emptyset$) return \emptyset
- else

```
 c \leftarrow Furthest(S, \overrightarrow{ab})
```

»
$$A \leftarrow \mathsf{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow RightOf(S, \overline{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

»
$$Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{cb})$$

(Recursion Level 0)

```
QuickHalfHull(S \subset \mathbb{R}^2, \overrightarrow{ab} \in S \times S)

• if(S == \emptyset) return \emptyset
```

• else

```
c \leftarrow Furthest(S, \overline{ab})
```

$$A \leftarrow \mathsf{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow RightOf(S, \overline{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

$$Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{cb})$$

» return Q_A ∪ $\{c\}$ ∪ Q_B

(Recursion Level 0)

QuickHalfHull(
$$S \subset \mathbb{R}^2$$
, $\overrightarrow{ab} \in S \times S$)

- \circ if($S == \emptyset$) return \emptyset
- else

$$c \leftarrow Furthest(S, \overrightarrow{ab})$$

$$A \leftarrow \text{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow RightOf(S, \overline{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

$$Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{cb})$$

» return
$$Q_A$$
 ∪ $\{c\}$ ∪ Q_B

(Recursion Level 0)

```
QuickHalfHull(S \subset \mathbb{R}^2, \overrightarrow{ab} \in S \times S)
```

- \circ if($S == \emptyset$) return \emptyset
- else

$$c \leftarrow Furthest(S, \overrightarrow{ab})$$

$$A \leftarrow \mathsf{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow \mathsf{RightOf}(S, \overrightarrow{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

»
$$Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{cb})$$

$$\Rightarrow$$
 return $Q_A \cup \{c\} \cup Q_B$

(Recursion Level 1)

```
QuickHalfHull(S \subset \mathbb{R}^2, \overrightarrow{ab} \in S \times S)
```

- \circ if($S == \emptyset$) return \emptyset
- else

```
 c \leftarrow Furthest(S, \overrightarrow{ab})
```

$$A \leftarrow \mathsf{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow RightOf(S, \overline{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

$$Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{cb})$$

(Recursion Level 0)

QuickHalfHull(
$$S \subset \mathbb{R}^2$$
, $\overrightarrow{ab} \in S \times S$)

- \circ if($S == \emptyset$) return \emptyset
- else

$$c \leftarrow Furthest(S, \overrightarrow{ab})$$

»
$$A \leftarrow \mathsf{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow RightOf(S, \overline{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

$$Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{cb})$$

» return Q_A ∪ $\{c\}$ ∪ Q_B

(Recursion Level 1)

```
QuickHalfHull(S \subset \mathbb{R}^2, \overrightarrow{ab} \in S \times S)
```

- \circ if($S == \emptyset$) return \emptyset
- else

$$c \leftarrow Furthest(S, \overrightarrow{ab})$$

$$A \leftarrow \mathsf{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow RightOf(S, \overline{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

»
$$Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{cb})$$

(Recursion Level 1)

```
QuickHalfHull(S \subset \mathbb{R}^2, \overrightarrow{ab} \in S \times S)
```

- \circ if($S == \emptyset$) return \emptyset
- else

```
 c \leftarrow Furthest(S, \overrightarrow{ab})
```

$$A \leftarrow \text{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow RightOf(S, \overline{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

»
$$Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{cb})$$

(Recursion Level 1)

```
QuickHalfHull(S \subset \mathbb{R}^2, \overrightarrow{ab} \in S \times S)
```

- \circ if($S == \emptyset$) return \emptyset
- else

```
 c \leftarrow Furthest(S, \overrightarrow{ab})
```

»
$$A \leftarrow \mathsf{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow \mathsf{RightOf}(S, \overrightarrow{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

$$Q_B \leftarrow \text{QuickHalfHull}(B, \overline{cb})$$

(Recursion Level 1)

```
QuickHalfHull(S \subset \mathbb{R}^2, \overrightarrow{ab} \in S \times S)
```

- \circ if($S == \emptyset$) return \emptyset
- else

$$c \leftarrow Furthest(S, \overrightarrow{ab})$$

$$A \leftarrow \mathsf{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow \mathsf{RightOf}(S, \overrightarrow{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

»
$$Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{cb})$$

» return $Q_A \cup \{c\} \cup Q_B$

(Recursion Level 0)

```
QuickHalfHull(S \subset \mathbb{R}^2, \overrightarrow{ab} \in S \times S)
```

- \circ if($S == \emptyset$) return \emptyset
- else

```
 c \leftarrow Furthest(S, \overrightarrow{ab})
```

$$A \leftarrow \text{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow \mathsf{RightOf}(S, \overrightarrow{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

$$Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{cb})$$

(Recursion Level 0)

QuickHalfHull(
$$S \subset \mathbb{R}^2$$
, $\overrightarrow{ab} \in S \times S$)

- \circ if($S == \emptyset$) return \emptyset
- else

$$c \leftarrow Furthest(S, \overrightarrow{ab})$$

$$A \leftarrow \mathsf{RightOf}(S, \overrightarrow{ac})$$

$$B \leftarrow RightOf(S, \overline{cb})$$

»
$$Q_A \leftarrow \text{QuickHalfHull}(A, \overrightarrow{ac})$$

»
$$Q_B \leftarrow \text{QuickHalfHull}(B, \overrightarrow{cb})$$

QuickHull Complexity:

Like QuickSort:

QuickHull Complexity:

Like QuickSort:

QuickHull Complexity:

Like QuickSort:

QuickHull Complexity:

Like QuickSort:

QuickHull Complexity:

Like QuickSort:

QuickHull Complexity:

Like QuickSort:

- In the worst case, the complexity can be $O(n^2)$.
- In practice it is $O(n \log n)$.
- The implementation is output sensitive.

Does it extend to higher dimensions?

Outline

- Convex Hulls
- Algorithms
 - Naïve Implementation(s)
 - Gift Wrapping
 - Quick Hull
 - Graham's Algorithm
 - Lower bound complexity

Graham's Observation:

If $P \subset \mathbb{R}^2$ is a convex polygon and $p \in P$ is a point in the interior of the polygon, then the angle of the line segments between p and the ordered vertices of P is monotonic.

Graham's Observation:

WLOG assume p and v_i lie on a vertical line with p below v_i .

Since the polygon is convex, p is to the left of $\overrightarrow{v_i v_{i+1}}$.

 $\Rightarrow v_{i+1}$ is to the left of the vertical.

Since the polygon is convex, p is to the left of $\overrightarrow{v_{i-1}v_i}$.

 $\Rightarrow v_{i-1}$ is to the right of the vertical.

 \Rightarrow The angles $\angle pv_{i-1}$, $\angle pv_i$, $\angle pv_{i+1}$ increase monotonically.


```
GrahamScan(S \subset \mathbb{R}^2)
```

- \circ $p \leftarrow PointInHull(S)$
- \circ $H \leftarrow SortByAngle(S, p)$
- o while(RemoveReflexVertex(H)){}
- ∘ return *H*

GrahamScan($S \subset \mathbb{R}^2$)

- \circ $p \leftarrow PointInHull(S)$
- \circ $H \leftarrow SortByAngle(S, p)$
- while(RemoveReflexVertex(H)){}
- ∘ return *H*

Note:

At every iteration, the vertices of H are sorted by angle relative to p.

⇒ Hull vertices can never be removed because the angle between the previous and next vertex is always convex.


```
GrahamScan(S \subset \mathbb{R}^2)
```

- \circ $p \leftarrow PointInHull(S)$
- \circ $H \leftarrow SortByAngle(S, p)$
- while(RemoveReflexVertex(H)){}
- ∘ return *H*

Correctness:

- The output polygon has only convex vertices.
 - \Rightarrow It's convex.
 - $\Rightarrow H \subset \mathcal{H}(S)$.
- All hull vertices are in H.
 - $\Rightarrow \mathcal{H}(S) \subset H$.

GrahamScan($S \subset \mathbb{R}^2$)


```
GrahamScan(S \subset \mathbb{R}^2)
```

 $\circ p \leftarrow BottommostRightmost(S)$


```
GrahamScan(S \subset \mathbb{R}^2)
```

- $\circ p \leftarrow BottommostRightmost(S)$
- $\circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S \{p\})$


```
GrahamScan(S \subset \mathbb{R}^2)
```

- $\circ p \leftarrow BottommostRightmost(S)$
- $\circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S \{p\})$
- \circ if(angle(p_i) == angle(p_{i+1})): $\tilde{S} \leftarrow \tilde{S} \{p_i\}$

GrahamScan($S \subset \mathbb{R}^2$)

- $\circ p \leftarrow BottommostRightmost(S)$
- $\circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S \{p\})$
- \circ if(angle(p_i) == angle(p_{i+1})): $\tilde{S} \leftarrow \tilde{S} \{p_i\}$
- $\circ i \leftarrow 2$
- $\circ Q \leftarrow \{p, p_1\}$

Note:

Since p is bottom-(right)-most, vertices are sorted by angle in $(0, \pi]$, and non-extreme points are removed, $\overline{pp_1}$ is on the hull.


```
GrahamScan(S \subset \mathbb{R}^2)
  \circ p \leftarrow BottommostRightmost(S)
  \circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S - \{p\})
  \circ if( angle(p_i) == angle(p_{i+1}) ): \tilde{S} \leftarrow \tilde{S} - \{p_i\}
  \circ i \leftarrow 2
  \circ Q \leftarrow \{p, p_1\}
  \circ while( i < |\tilde{S}| )
                                                                    p_5
     »if( Left( p_i , LastEdge( Q ) )
         - Push(p_i, Q)
         -i \leftarrow i + 1
      » else
         - Pop( Q )
```



```
GrahamScan(S \subset \mathbb{R}^2)
  \circ p \leftarrow BottommostRightmost(S)
  \circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S - \{p\})
  \circ if( angle(p_i) == angle(p_{i+1}) ): \tilde{S} \leftarrow \tilde{S} - \{p_i\}
  \circ i \leftarrow 2
  \circ Q \leftarrow \{p, p_1\}
  \circ while( i < |\tilde{S}| )
                                                                      • p<sub>5</sub>
      »if( Left( p_i , LastEdge( Q ) )
         - Push(p_i, Q)
                                                                                     p_2
          -i \leftarrow i + 1
      » else
                                                                                    p_1
         - Pop( Q )
```



```
GrahamScan(S \subset \mathbb{R}^2)
  \circ p \leftarrow BottommostRightmost(S)
  \circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S - \{p\})
  \circ if( angle(p_i) == angle(p_{i+1}) ): \tilde{S} \leftarrow \tilde{S} - \{p_i\}
  \circ i \leftarrow 2
  \circ Q \leftarrow \{p, p_1\}
  \circ while( i < |\tilde{S}| )
                                                                         p_5
      \mathsf{wif}(\mathsf{Left}(p_i, \mathsf{LastEdge}(Q)))
          - Push( p_i , Q )
                                                                                         p_2
          -i \leftarrow i + 1
      » else
                                                                                       p_1
          - Pop(Q)
```



```
GrahamScan(S \subset \mathbb{R}^2)
  \circ p \leftarrow BottommostRightmost(S)
  \circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S - \{p\})
  \circ if( angle(p_i) == angle(p_{i+1}) ): \tilde{S} \leftarrow \tilde{S} - \{p_i\}
  \circ i \leftarrow 2
  \circ Q \leftarrow \{p, p_1\}
  \circ while( i < |\tilde{S}| )
                                                                       <sub>o</sub> p_5
      »if( Left( p_i , LastEdge( Q ) )
         - Push(p_i, Q)
                                                                                     p_2
          -i \leftarrow i + 1
      » else
                                                                                    p_1
         - Pop( Q )
```



```
GrahamScan(S \subset \mathbb{R}^2)
  \circ p \leftarrow BottommostRightmost(S)
  \circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S - \{p\})
  \circ if( angle(p_i) == angle(p_{i+1}) ): \tilde{S} \leftarrow \tilde{S} - \{p_i\}
  \circ i \leftarrow 2
  \circ Q \leftarrow \{p, p_1\}
                                                                                p_4
  \circ while( i < |\tilde{S}| )
                                                                p_6
                                                                                 p_3
     »if( Left( p_i , LastEdge( Q ) )
         - Push(p_i, Q)
                                                                                    p_2
         -i \leftarrow i + 1
      » else
                                                                                  p_1
         - Pop( Q )
```


 p_4

 p_3

 p_2

 p_1

```
GrahamScan(S \subset \mathbb{R}^2)
  \circ p \leftarrow BottommostRightmost(S)
  \circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S - \{p\})
  \circ if( angle(p_i) == angle(p_{i+1}) ): \tilde{S} \leftarrow \tilde{S} - \{p_i\}
  \circ i \leftarrow 2
  \circ Q \leftarrow \{p, p_1\}
  \circ while( i < |\tilde{S}| )
     *if(Left(p_i, LastEdge(Q)))
         - Push( p_i , Q )
         -i \leftarrow i + 1
      » else
         - Pop(Q)
```



```
GrahamScan(S \subset \mathbb{R}^2)
  \circ p \leftarrow BottommostRightmost(S)
  \circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S - \{p\})
  \circ if( angle(p_i) == angle(p_{i+1}) ): \tilde{S} \leftarrow \tilde{S} - \{p_i\}
  \circ i \leftarrow 2
  \circ Q \leftarrow \{p, p_1\}
                                                                                p_4
  \circ while( i < |\tilde{S}| )
                                                                      p_5
                                                                                 p_3
     »if( Left( p_i , LastEdge( Q ) )
         - Push(p_i, Q)
                                                                                    p_2
         -i \leftarrow i + 1
      » else
                                                                                  p_1
         - Pop( Q )
```



```
GrahamScan(S \subset \mathbb{R}^2)
  \circ p \leftarrow BottommostRightmost(S)
  \circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S - \{p\})
  \circ if( angle(p_i) == angle(p_{i+1}) ): \tilde{S} \leftarrow \tilde{S} - \{p_i\}
  \circ i \leftarrow 2
  \circ Q \leftarrow \{p, p_1\}
                                                                                  p_4
  \circ while( i < |\tilde{S}| )
                                                                       <sub>o</sub> p_5
                                                                                   p_3
      »if( Left( p_i , LastEdge( Q )*)
         - Push(p_i, Q)
                                                                                      p_2
          -i \leftarrow i + 1
      » else
                                                                                    p_1
         - Pop(Q)
```



```
GrahamScan(S \subset \mathbb{R}^2)
  \circ p \leftarrow BottommostRightmost(S)
  \circ \tilde{S} \leftarrow \text{SortByAngleAndLength}(p, S - \{p\})
  \circ if( angle(p_i) == angle(p_{i+1}) ): \tilde{S} \leftarrow \tilde{S} - \{p_i\}
  \circ i \leftarrow 2
  \circ Q \leftarrow \{p, p_1\}
  \circ while( i < |\tilde{S}| )
      \mathsf{wif}(\mathsf{Left}(p_i, \mathsf{LastEdge}(Q)))
          - Push(p_i, Q)
          -i \leftarrow i + 1
      » else
          - Pop( Q )
```



```
GrahamScan(S \subset \mathbb{R}^2)
  \circ p \leftarrow BottommostRightmost(S)
                                                                          O(n)
  \circ S \leftarrow \text{SortByAngleAndLength}(p, S - \{p\}) | O(n \log n)
  \circ if( angle(p_i) == angle(p_{i+1}) ): \tilde{S} \leftarrow \tilde{S} - \{p_i\}
  \circ i \leftarrow 2
  \circ Q \leftarrow \{p, p_1\}
  \circ while( i < |\tilde{S}| )
      \mathsf{wif}(\mathsf{Left}(p_i, \mathsf{LastEdge}(Q)))
         - Push(p_i, Q)
                                                                          O(n)
         -i \leftarrow i + 1
      » else
         - Pop(Q)
```

Outline

- Convex Hulls
- Algorithms
 - Naïve Implementation(s)
 - Gift Wrapping
 - Quick Hull
 - Graham's Algorithm
 - Lower bound complexity

Lower Bound Complexity

Recall:

Sorting n numbers has lower bound complexity $O(n \log n)$.

Approach:

We will show that computing the 2D hull has the same complexity by reducing sorting to the problem of computing the convex hull.

Lower Bound Complexity

y = f(x)

Sorting → Convex Hull Reduction (Shamos):

Given a set of points $\{x_i\} \subset \mathbb{R}$:

- Choose a function f(x) w/ f''(x) > 0
- Lift the points onto the curve
- Compute the convex hull
- Return the points on the lower hull, starting w/ the left-most.

Lower Bound Complexity

<u>Sorting</u> → Convex Hull Reduction (Shamos):

Given a set of points $\{x_i\} \subset \mathbb{R}$.

The reduction assumes that the hull vertices are output in order.

y = f(x)

- Compute the convex hull
- Return the points on the lower hull, starting w/ the left-most.

