Python para economistas

Dados macroeconômicos

Neste seção iremos abordar o uso de dados macroeconômicos no Python. Primeiramente, iremos mostrar algumas operações comuns a dados de séries temporais. Na segunda parte, colocaremos alguns exemplos de análises macroeconômicas:Curva de Philips, Curva de juros e Convergência de renda.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
plt.rcParams['figure.dpi'] = 150
```

Transformações de séries temporais

Nesta parte mostraremos algumas transformações bastante utilizadas em séries temporais. Para isso, iremos demonstra-las nos dados do índice Ibovespa, obtido pelo pacote **pylpeaData** com o código abaixo.

```
import pyIpeaData as ipea

ibovespa = ipea.get_serie("GM366_IBVSP366")[["VALDATA", "VALVALOR"]]
ibovespa = ibovespa.dropna()
ibovespa = ibovespa.rename({'VALDATA': 'data', 'VALVALOR': 'ibovespa'}, axis=1)
ibovespa['data'] = pd.to_datetime(ibovespa['data'].str[:10], format = '%Y-%m-%d')
ibovespa
```

```
Out[21]:
                      data ibovespa
             0 1994-07-04
                             3580.8
             1 1994-07-05
                           3564.3
             2 1994-07-06
                           3753.5
             3 1994-07-07
                             3904.9
               1994-07-08
                           4051.9
          9213 2021-07-02 127622.0
          9214 2021-07-05 126920.0
          9215 2021-07-06 125095.0
          9216 2021-07-07 127019.0
          9217 2021-07-08 125428.0
```

6679 rows × 2 columns

Como já vimos anteriormente, fazer um gráfico de linha com o seaborn é bastante simples.

```
In [22]: sns.lineplot(data=ibovespa, x="data", y="ibovespa")
```

Out[22]: <AxesSubplot:xlabel='data', ylabel='ibovespa'>

Lag

Uma função com uso recorrente no tratamento de séries temporais é criar uma nova coluna com o lag de de uma das variáveis da base de dados. O lag(1) da variável X_t é igual a X_{t-1} . Para fazer essa operação, utilizamos a função *shift* com número de períodos que queremos fazer o lag.

```
ibovespa["ibovespa_lag1"] = ibovespa["ibovespa"].shift(-1)
ibovespa["ibovespa_lag5"] = ibovespa["ibovespa"].shift(-5)
ibovespa
```

Out[23]:		data	ibovespa	ibovespa_lag1	ibovespa_lag5
	0	1994-07-04	3580.8	3564.3	4010.8
	1	1994-07-05	3564.3	3753.5	3919.7
	2	1994-07-06	3753.5	3904.9	3840.8
	3	1994-07-07	3904.9	4051.9	4016.5
	4	1994-07-08	4051.9	4010.8	4079.9
	•••				
	9213	2021-07-02	127622.0	126920.0	NaN
	9214	2021-07-05	126920.0	125095.0	NaN
	9215	2021-07-06	125095.0	127019.0	NaN

	data	ibovespa	ibovespa_lag1	ibovespa_lag5
9216	2021-07-07	127019.0	125428.0	NaN
9217	2021-07-08	125428.0	NaN	NaN

6679 rows × 4 columns

Diferenciação

Outra função bastante recorrente é tomar as diferenças de uma variável, de forma que ela se torne estacionária. A diferença é basicamente a subtração de X_t por X_{t-n} , sendo n normalmente igual a 1. Se os dados tiverem sazonalidade, pode ser interessante fazer utilizar outros valores de n.

```
ibovespa["ibovespa_diff1"] = ibovespa["ibovespa"].diff(1)
ibovespa["ibovespa_diff5"] = ibovespa["ibovespa"].diff(5)

fig, axs = plt.subplots(nrows=2)

sns.lineplot(data=ibovespa, x="data", y="ibovespa_diff1", ax=axs[0])
sns.lineplot(data=ibovespa, x="data", y="ibovespa_diff5", ax=axs[1])
```

Out[24]: <AxesSubplot:xlabel='data', ylabel='ibovespa_diff5'>

Médias móveis

Médias móveis, como o nome diz, faz o cálculo da média de uma variável em um subconjunto de n-1 observações anteriores e a observação atual. Se utilizarmos um período de 5 dias, a média móvel de X_t será então:

$$Y_t = \frac{X_t + X_{t-1} + X_{t-2} + X_{t-3} + X_{t-4}}{5}$$

Para fazer isso, utilizamos a função rolling, que cria janelas de dados de n dias. Após, utilizamos a função mean, para criar a média nestas janelas.

```
ibovespa["ibovespa_MA21"] = ibovespa["ibovespa"].rolling(window=21).mean()
ibovespa
```

Out[25]:		data	ibovespa	ibovespa_lag1	ibovespa_lag5	ibovespa_diff1	ibovespa_diff5	ibovespa_MA21
	0	1994- 07-04	3580.8	3564.3	4010.8	NaN	NaN	NaN
	1	1994- 07-05	3564.3	3753.5	3919.7	-16.5	NaN	NaN
	2	1994- 07-06	3753.5	3904.9	3840.8	189.2	NaN	NaN
	3	1994- 07-07	3904.9	4051.9	4016.5	151.4	NaN	NaN
	4	1994- 07-08	4051.9	4010.8	4079.9	147.0	NaN	NaN
	•••							••
	9213	2021- 07-02	127622.0	126920.0	NaN	1956.0	366.0	128771.857143
	9214	2021- 07-05	126920.0	125095.0	NaN	-702.0	-509.0	128619.190476
	9215	2021- 07-06	125095.0	127019.0	NaN	-1825.0	-2232.0	128348.666667
	9216	2021- 07-07	127019.0	125428.0	NaN	1924.0	217.0	128216.85714
	9217	2021- 07-08	125428.0	NaN	NaN	-1591.0	-238.0	128003.571429

6679 rows × 7 columns

Text(0, 0, ''),
Text(0, 0, '')]

Deflacionando a série

Muitas vezes é necessário deflacionar uma variável para fazer alguma análise. Para isso, utilizaremos o IPCA para deflacionar o índice Ibovespa. Também podemos extrair a série utilizando o pacote do IPEA. Iremos normalizar o índice para ter base = 1 em Julho de 1994.

```
ipca = ipea.get_serie('PRECOS12_IPCA12')[["VALDATA", "VALVALOR"]]
ipca = ipca.rename({'VALDATA': 'data', 'VALVALOR': 'ipca'}, axis=1)

ipca['data'] = pd.to_datetime(ipca['data'].str[:10], format = '%Y-%m-%d')

ipca_07_1994 = int(ipca[ipca["data"] == "1994-07-01"]["ipca"])
ipca["ipca"] = ipca["ipca"]/ipca_07_1994

ipca
```

```
Out[27]:
                       data
                                      ipca
                1979-12-01
                              8.326011e-12
                 1980-01-01
                              8.876831e-12
                              9.286667e-12
                 1980-02-01
                 1980-03-01
                              9.847432e-12
                 1980-04-01
                              1.036798e-11
            494
                 2021-02-01
                             6.144732e+00
                 2021-03-01
                             6.201880e+00
            496 2021-04-01 6.221104e+00
```

	data	ipca
497	2021-05-01	6.272743e+00
498	2021-06-01	6.305989e+00

499 rows × 2 columns

Um problema nesse caso é de que os dados do IPCA são mensais, já os nossos dados são diários. Por isso, iremos transformar a nossa base de dados para ela ter uma periodicidade mensal. A função *MonthBegin* com n = 1 leva todos os dados para o começo do próprio mês, no dia 1. Assim, teremos vários dados duplicados na coluna de data. Como os dados estão ordenados cronológicamente, podemos selecionar o primeiro dado de cada mês removendo os dados duplicados, utilizando a função *drop_duplicates*.

```
from pandas.tseries.offsets import MonthBegin

ibovespa["data"] = ibovespa["data"] - MonthBegin(1)
   ibovespa = ibovespa.drop_duplicates(subset ="data", keep = "first")
```

Assim, basta juntarmos os dois dataframes pela coluna "data". Em seguida, iremos dividir o valor do Ibovespa pelo IPCA para criar a variável deflacionada.

```
ibovespa = ibovespa.merge(ipca, on = "data", how = "inner")
ibovespa["ibovespa_deflac"] = ibovespa["ibovespa"]/ibovespa["ipca"]
ibovespa
```

ibovespa_MA21	ibovespa_diff5	ibovespa_diff1	ibovespa_lag5	ibovespa_lag1	ibovespa	data	Out[29]:
NaN	NaN	NaN	4010.8	3564.3	3580.8	o 1994-07-01	
4011.723810	233.5	158.7	4558.2	4392.1	4310.7	1 1994- 08-01	
4998.280952	153.1	-69.5	5510.9	4804.0	5367.4	2 1994- 09-01	
5311.709524	70.1	-148.9	4925.9	5166.8	5335.1	3 1994-10-01	
4810.719048	-155.7	-192.8	4992.5	4666.6	4508.0	4 1994- 11-01	
119904.619048	1770.0	869.0	119429.0	119725.0	118234.0	2021- 02-01	31
116772.180476	-3687.0	1205.0	111331.0	111184.0	111540.0	2021- 03-01	32
114573.857143	2737.0	2265.0	118812.0	117499.0	117518.0	2021- 04-01	32
119247.523810	-1386.0	315.0	121909.0	117712.0	119209.0	2021- 05-01	32
123217.190476	5612.0	1334.0	130076.0	130126.0	129601.0	2021- 06-01	32

```
In [32]:
           sns.lineplot(data=ibovespa, x="data", y="ibovespa_deflac")
           sns.lineplot(data=ibovespa, x="data", y="ibovespa")
Out[32]: <AxesSubplot:xlabel='data', ylabel='ibovespa_deflac'>
              120000
              100000
           bovespa_deflac
               80000
               60000
               40000
               20000
                    0
                           1996
                                     2000
                                               2004
                                                        2008
                                                                  2012
                                                                           2016
                                                                                     2020
                                                        data
```

Curva de Philips

A curva de Phillips é um conceito econômico que afirma que a inflação e o desemprego têm uma relação inversa. A lógica é de que com o crescimento econômico vem a inflação, que por sua vez deve levar a uma menor taxa de desemprego. Utilizaremos novamente os dados do IPCA. Além deles, utilizaremos a taxa de desocupação da PNAD, também obtida junto ao IpeaData.

```
In [35]:
           import pyIpeaData as ipea
           ipca = ipea.get serie('PRECOS12 IPCAG12')
           desemprego = ipea.get_serie("PAN12_TDESOC12")
In [36]:
           ipca = ipca[["VALDATA", "VALVALOR"]].rename(columns={"VALDATA": "data",
                                                                     "VALVALOR": "ipca"})
           ipca
Out[36]:
                                  data
                                           ipca
               1980-01-01T00:00:00-02:00
                                       6.615649
               1980-02-01T00:00:00-02:00
                                       4.616919
             2 1980-03-01T00:00:00-03:00 6.038389
```

	data	ipca
3	1980-04-01T00:00:00-03:00	5.286114
4	1980-05-01T00:00:00-03:00	5.702721
•••		
493	2021-02-01T00:00:00-03:00	0.860000
494	2021-03-01T00:00:00-03:00	0.930000
495	2021-04-01T00:00:00-03:00	0.310000
496	2021-05-01T00:00:00-03:00	0.830000
497	2021-06-01T00:00:00-03:00	0.530000

498 rows × 2 columns

Out[37]:		data	desemprego
	0	2012-03-01T00:00:00-03:00	7.9
	1	2012-04-01T00:00:00-03:00	7.7
	2	2012-05-01T00:00:00-03:00	7.6
	3	2012-06-01T00:00:00-03:00	7.5
	4	2012-07-01T00:00:00-03:00	7.4
	•••		
	105	2020-12-01T00:00:00-03:00	13.9
	106	2021-01-01T00:00:00-03:00	14.2
	107	2021-02-01T00:00:00-03:00	14.4
	108	2021-03-01T00:00:00-03:00	14.7
	109	2021-04-01T00:00:00-03:00	14.7

110 rows × 2 columns

Juntamos os dois dados pela coluna de "data".

```
philips = desemprego.merge(ipca, on='data', how='left')
philips
```

```
        Out[38]:
        data
        desemprego
        ipca

        0
        2012-03-01T00:00:00-03:00
        7.9
        0.21

        1
        2012-04-01T00:00:00-03:00
        7.7
        0.64

        2
        2012-05-01T00:00:00-03:00
        7.6
        0.36

        3
        2012-06-01T00:00:00-03:00
        7.5
        0.08
```

	data	desemprego	ipca
4	2012-07-01T00:00:00-03:00	7.4	0.43
•••			
105	2020-12-01T00:00:00-03:00	13.9	1.35
106	2021-01-01T00:00:00-03:00	14.2	0.25
107	2021-02-01T00:00:00-03:00	14.4	0.86
108	2021-03-01T00:00:00-03:00	14.7	0.93
109	2021-04-01T00:00:00-03:00	14.7	0.31

110 rows × 3 columns

Assim podemos mostrar a relação com um gráfico *regplot*, que coloca uma linha de regressão no gráfico de dispersão.

```
In [48]: sns.regplot(x="desemprego", y="ipca", data=philips)
```

Out[48]: <AxesSubplot:xlabel='desemprego_lag1', ylabel='ipca'>

Curva de Juros

Agora iremos mostrar como plotar o gráfico da curva de juros, ou curva a termo. Para isso, utilizaremos o pacote *investpy*, que extrai dados financeiros do Investing.com. Com ele, podemos obter preços de ações, commodities, moedas e títulos. No caso dos título, podemos obter dados de vários países para vários prazos de maturação.

Primeiramente iremos utilizar a função *get_bonds*, que retorna quais títulos temos disponíveis para o país em questão. Com essa informação, iremos obter os dados históricos deles do

período de primeiro de Janeiro de 2021 até primeiro de Julho do mesmo ano, e colocar em uma lista. Depois, transformamos os dados em um dataframe para criar o gráfico da curva.

O gráfico é criado normalmente com o *lineplot* do Seaborn. Entretanto, é preciso construir a escala de cor para termos um gradiente de cores, com a função *ScalarMappable*.

<ipython-input-170-f64ab9d78d7f>:13: UserWarning: FixedFormatter should only be used
together with FixedLocator
 cbar.ax.set_yticklabels(pd.to_datetime(cbar.get_ticks()).strftime(date_format='%d
%b %Y'))

Convergência de renda

Para dados macroeconômicos internacionais, o Banco Mundial e o FMI são boas opções de fontes de dados. Para mostrar um exemplo, iremos extrair dados de PIB per capita e comparar o crescimento de países ricos e pobres nos últimos 20 anos. Espera-se que a relação encontrada seja negativa. Ou seja, quanto maior a renda per capita inicial, menor o crescimento. Essa hipótese é chamada de convergência de renda.

Para extrair dados do banco mundial, utilizamos a biblioteca *wbgapi*. Assim, incluímos o código da variável "NY.GDP.PCAP.CD" na função *data.DataFrame* do pacote.

	economy	time	NY.GDP.PCAP.CD
0	ABW	YR2001	20670.367005
1	AFE	YR2001	591.088444
2	AFE	YR2019	1481.425292
3	AFG	YR2019	507.103392
4	AFW	YR2001	516.927934
•••			
	1 2 3	0 ABW1 AFE2 AFE3 AFG	 ABW YR2001 AFE YR2001 AFE YR2019 AFG YR2019 AFW YR2001

	economy	time	NY.GDP.PCAP.CD
487	ZAF	YR2019	6001.401121
488	ZMB	YR2001	382.941035
489	ZMB	YR2019	1305.002214
490	ZWE	YR2001	568.386291
491	ZWE	YR2019	1156.154864

492 rows × 3 columns

Como precisamos construir o crescimento do PIB per capita, é necessário que aja o dado tanto em 2001, quanto em 2019. Portanto, iremos agrupar por país e filtrar aqueles que não tiverem duas observações.

```
pib.set_index("economy", inplace=True)
pib = pib[pib.groupby(level=0).size() > 1]
```

<ipython-input-180-c929c97e26e6>:2: UserWarning: Boolean Series key will be reindexe
d to match DataFrame index.
pib = pib[pib.groupby(level=0).size() > 1]

Criamos a taxa de crescimento para cada grupo (país) com a função *pct_change*. Iremos tirar os NAN, que são as observações de 2001.

Out[187...

crescimento

economy	
AFE	1.506267
AFW	2.428600
AGO	4.327987
ALB	3.178839
AND	0.780427
•••	
WSM	1.777202
ХКХ	1.983096
ZAF	1.250687
ZMB	2.407841
ZWE	1.034101

236 rows × 1 columns

Voltando a base do PIB per capita, selecionamos apenas as observações de 2001. Em seguida, juntamos as duas bases pelo nome dos países ("economy") e aplicamos log no PIB per capita de

Com isso, mostramos a relação com o regplot, novamente.

```
In [179...
sns.regplot(data=converg, x="log_PIB2001", y="crescimento")
plt.xscale('log')
```

