Série D - session 2000 : exercice 2 - corrigé

On donne:

Années	1992	1993	1994	1995	1996	1997	1998	1999
×i	2	2,3	2,6	2,9	3,2	3,5	3,8	4,1
Уi	52	59	60	65	70	72	73	75

1.a. Représentation du nuage de points $M_i(x_i, y_i)$.

b. Coordonnées du point moyen G

$$x_G = \frac{1}{8} \sum_{i=1}^{8} x_i = 3.05$$
 et $y_G = \frac{1}{8} \sum_{i=1}^{8} y_i = 65.75$

2. a. Montrons que est : $r \approx 0.98$.

On a V (x) =
$$\sum_{i=1}^{8} x_i^2 - x_6^2 = 0.47$$
, donc \square (x) = 0.68
V (y) = $\frac{1}{8} \sum_{i=1}^{8} y_i^2 - y_6^2 = 57.94$, donc \square (y) = 7.61

Donc, cov (x, y) =
$$\frac{1}{8} \sum_{i=1}^{8} x_i y_i - x_6 y_6 = 5,10$$

Il s'ensuit que r = $\frac{\text{cov}(x,y)}{\sigma(x)\sigma(y)} \cong 0,98$

a. Interprétation de ce résultat.

On a une très forte coefficient de corrélation car $r \approx 0.98 > 0.87$.

Ainsi, on peut ajuster cette série statistique par la méthode des moindres carrées.

b. Equation de la droite de régression de y en x

(D):
$$y - y_G = a (x - x_G) où a = \frac{cov(x, y)}{V(x)} = \frac{5,10}{0,47} = 10,75$$

Ainsi, (D): $y = 10,85 \times + 32,66$.

3. a. Montrons que x_1 , x_2 , ..., x_8 constituent les 8 premiers termes d'une suite arithmétique (x_n) .

 $x_2 - x_1 = x_3 - x_2 = x_4 - x_3 = x_5 - x_4 = x_6 - x_5 = x_7 - x_6 = x_8 - x_7 = 0,3$. Ainsi, que x_1 , x_2 , ..., x_8 constituent les 8 premiers termes d'une suite arithmétique (x_n) de raison r = 0,3.

b. Estimation du chiffre d'affaires de cette entreprise en 2002.

L'année 2002 correspond à l'indice 8 + (2002 - 1999) = 11. Or, les x_i sont en progression arithmétique de raison 0,3.

Ainsi, x_{11} = 0,9 + 4,1 = 5. Par conséquent, le chiffre d'affaires de cette entreprise en 2002 correspond à y x_{11} = 10,85 x_{11} + 32,66

Donc, que le chiffre d'affaires en 2002 sera 96, 91 millions.