OH till Föreläsning 3, Numme COPEN mfl, 240123

S Ch 3-3.2,3.4, GNM Kap 4-4.4A / GKN Kap 4.1A,(D),E Interpolation

Interpolation = att läsa mellan raderna

x	y
1900	3822
1910	3982
1920	4281
1930	4302
1940	4042
1950	3922
1960	3921
1970	3940
1980	3960
1990	3980

Allmän polynom-interpolation, S Ch 3.1.0

Välj ett lämpligt gradtal till polynomet och välj ut nödvändigt antal tabellvärden (eller tag alla tabellvärdena och låt gradtalet bestämmas av det). Bestäm sedan polynomets koefficienter genom att låta polynomet gå igenom de utvalda tabellvärdena, $p(x_i) = y_i$.

Linjär interpolation, S Ch 3.1.1, GNM sid (5)2 - GKN sid 134ff

Sökt värde är y(1925). Linjär interpolation (approximation med en rät linje) kräver två givna punkter. 1925 ligger mellan 1920 och 1930, så därför så väljer vi ut just de två ut tabellen:

$$y = kx + m \Rightarrow \begin{cases} y_1 = kx_1 + m \\ y_2 = kx_2 + m \end{cases} \Rightarrow \begin{cases} 4281 = k1920 + m \\ 4302 = k1930 + m \end{cases} \Rightarrow \begin{cases} k = 2.1 \\ m = 249 \end{cases} \Rightarrow \begin{cases} y(1925) = k1925 + m = 2.1 \\ 0 = 2.1 \cdot 1925 + 249 = 2.1 \cdot 1925 + 2.1 \cdot 192$$

Kvadratisk interpolation, S Ch 3.1.1, GNM sid (5)3

Sökt värde är y(1925). Kvadratisk interpolation (approximation med ett andragradspolynom) kräver tre givna punkter eftersom ett andragradspolynom har tre koefficienter. 1925 ligger mellan 1920 och 1930, jag väljer $x_1 = 1920$ och $x_2 = 1930$ och så behövs en till. Jag väljer närliggande $x_3 = 1940$:

$$y_1 = c_1 + c_2 x_1 + c_3 x_1^2 \qquad 4281 = c_1 + c_2 1920 + c_3 1920^2 \qquad c_1 = -5206119$$

$$y = c_1 + c_2 x + c_3 x^2 \Rightarrow y_2 = c_1 + c_2 x_2 + c_3 x_2^2 \Rightarrow 4302 = c_1 + c_2 1930 + c_3 1930^2 \Rightarrow c_2 = 5411.35$$

$$y_3 = c_1 + c_2 x_3 + c_3 x_3^2 \qquad 4042 = c_1 + c_2 1940 + c_3 1940^2 \qquad c_3 = -1.405$$

$$y(1925) = c_1 + c_2 \cdot 1925 + c_3 \cdot 1925^2 = -5206119 + 5411.35 \cdot 1925 + (-1.405) \cdot 1925^2 =$$

$$= -5206119 + 10416848.75 - 5206403.125 = 4326.625$$

$$A = \begin{pmatrix} 1 & 1920 & 1920^2 \\ 1 & 1930 & 1930^2 \\ 1 & 1940 & 1940^2 \end{pmatrix} = \begin{pmatrix} 1 & 1920 & 3686400 \\ 1 & 1930 & 3724900 \\ 1 & 1940 & 3763600 \end{pmatrix} \implies \kappa(A) = 2.9 \cdot 10^{11}$$

1940 ligger lika långt från 1925 som 1910. Hade jag i stället valt $x_1=1920,\ x_2=1930$ och $x_3=1910$ hade jag fått $c_1=-5150535,\ c_2=5353.6$ och $c_3=-1.39$ vilket ger $y(1925)=c_1+c_2\cdot 1925+c_3\cdot 1925^2=-5150535+5353.6\cdot 1925+(-1.39)\cdot 1925^2=-5150535+10305680-5150818.75=4326.25$ Nya koefficienter och ett lite annat svar!

Kvadratisk interpolation med centrering

Med $x_1 = 1920$, $x_2 = 1930$ och $x_3 = 1940$ kan jag centrera kring medelvärdet m = 1930.

$$y = c_1 + c_2 (1920 - 1930) + c_3 (1920 - 1930)^2 \qquad c_1 = 4302$$

$$y = c_1 + c_2 (x - m) + c_3 (x - m)^2 \Rightarrow 4302 = c_1 + c_2 (1930 - 1930) + c_3 (1930 - 1930)^2 \Rightarrow c_2 = -11.95$$

$$4042 = c_1 + c_2 (1940 - 1930) + c_3 (1940 - 1930)^2 \qquad c_3 = -1.405$$

$$y(1925) = c_1 + c_2 \cdot (1925 - 1930) + c_3 \cdot (1925 - 1930)^2 =$$

$$= 4302 + (-11.95) \cdot (1925 - 1930) + (-1.405) \cdot (1925 - 1930)^2 = 4302 + 59.75 - 35.125 = 4326.625$$

$$A = \begin{pmatrix} 1 & 1920 - 1930 & (1920 - 1930)^2 \\ 1 & 1930 - 1930 & (1930 - 1930)^2 \\ 1 & 1940 - 1930 & (1940 - 1930)^2 \end{pmatrix} = \begin{pmatrix} 1 & -10 & 100 \\ 1 & 0 & 0 \\ 1 & 10 & 100 \end{pmatrix} \implies \kappa(A) = 1.4 \cdot 10^2$$

Hade jag valt $x_1 = 1920$, $x_2 = 1930$, $x_3 = 1910$ och m = 1920 hade jag fått $c_1 = 4281$, $c_2 = 16$ och $c_3 = -1.39$ vilket ger $y(1925) = c_1 + c_2 \cdot (1925 - 1920) + c_3 \cdot (1925 - 1920)^2 = 4281 + 16 \cdot (1925 - 1920) + (-1.39) \cdot (1925 - 1920)^2 = 4281 + 80 - 34.75 = 4326.25$

Nya koefficienter (förutom högstagradskoefficienten) men samma svar! (Numreringen av x_i spelar här ingen roll. Vi hade fått exakt samma koefficienter om vi hade tagit tex $x_1 = 1910$, $x_2 = 1920$ och $x_3 = 1930$).

Oavsett vilka punkter jag valt får jag mycket "snällare" siffror vid centrerad än naiv ansats!

Kvadratisk interpolation med Newtons ansats, S Ch 3.1.2, GNM(5)4, GKN 135

Ett alternativ till centrering är Newtons fiffiga ansats. Koefficienterna bestäms som vanligt med $p(x_i) = y_i$. Med $x_1 = 1920$, $x_2 = 1930$ och $x_3 = 1940$ (och $y_1 = 4281$, $y_2 = 4302$ och $y_3 = 4042$) får jag

$$p(x) = c_1 + c_2 (x - x_1) + c_3 (x - x_1) (x - x_2) \Rightarrow p(x) = c_1 + c_2 (x - 1920) + c_3 (x - 1920) (x - 1930) \Rightarrow$$

$$4281 = c_1 + c_2 (1920 - 1920) + c_3 (1920 - 1920) (1920 - 1930) = c_1 \qquad c_1 = 4281$$

$$4302 = c_1 + c_2 (1930 - 1920) + c_3 (1930 - 1920) (1930 - 1930) = c_1 + 10 c_2 \Rightarrow c_2 = 2.1$$

$$4042 = c_1 + c_2 (1940 - 1920) + c_3 (1940 - 1920) (1940 - 1930) = c_1 + 20 c_2 + 200 c_3 \qquad c_3 = -1.405$$

$$y(1925) = c_1 + c_2 \cdot (1925 - 1920) + c_3 \cdot (1925 - 1920) (1925 - 1930) =$$

$$= 4281 + 2.1 \cdot 5 + (-1.405) \cdot 5 \cdot (-5) = 4281 + 10.5 + 35.125 = 4326.625$$

$$* Lättlöst ekvationssystem$$

$$* Lågt konditionstal$$

$$* Återanvändbara koefficienter$$

Hade jag valt $x_1 = 1920$, $x_2 = 1930$, $x_3 = 1910$ och Newtons ansats hade jag fått

$$p(x) = c_1 + c_2 (x - x_1) + c_3 (x - x_1) (x - x_2) \Rightarrow p(x) = c_1 + c_2 (x - 1920) + c_3 (x - 1920) (x - 1930) \Rightarrow$$

$$4281 = c_1 + c_2 (1920 - 1920) + c_3 (1920 - 1920) (1920 - 1930) = c_1 \qquad c_1 = 4281$$

$$4302 = c_1 + c_2 (1930 - 1920) + c_3 (1930 - 1920) (1930 - 1930) = c_1 + 10 c_2 \Rightarrow c_2 = 2.1$$

$$3982 = c_1 + c_2 (1910 - 1920) + c_3 (1910 - 1920) (1910 - 1930) = c_1 - 10 c_2 + 200 c_3 \qquad c_3 = -1.39$$

$$y(1925) = c_1 + c_2 \cdot (1925 - 1920) + c_3 \cdot (1925 - 1920) (1925 - 1930) =$$

$$= 4281 + 2.1 \cdot 5 + (-1.39) \cdot 5 \cdot (-5) = 4281 + 10.5 + 34.75 = 4326.25$$

Eftersom de två första punkterna i ansatsen var desamma blev ekvationerna likadana och koefficienterna därmed oförändrade. Från och med den nya punkten får man nya koefficienter. Dock är högstagradskoefficienten förstås densamma som vid naiva och centrerade ansatsen och vi känner igen svaret. (Numreringen av x_i påverkar koefficienternas värden men inte polynomets!)

Hur bra är resultatet?, S Ch 3.1.2, GNM sid (5)6-7,16-17 - GKN sid 136

 $E_{trunk} = |Skillnaden mellan beräknat polynomvärde och rätta värdet$

- \approx Skillnaden mellan beräknat värde och det man får om man ökar gradtalet med ett.
- \approx första försummade termen i Newtons ansats. (Inte vid na
iv och centrerad ansats!).

Specialfall: vid linjär IP i ekvidistant tabell blir $E_{trunk} \approx \max |\Delta^2 y|/8$

vid kvadratisk IP i ekvidistant tabell blir $E_{trunk} \approx \max |\Delta^3 y|/15$

 $E_{tab} \geq E_y,$ dvs felgränsen i de givna tabellvärdena.

Exempel: vid linjär IP blir $E_{tab}=E_y$, vid kvadratisk IP blir $E_{tab}=5/4\,E_y$

Vårt exempel: Med linjär IP fick vi y(1925) = 4291.5 och med kvadratisk IP fick vi y(1925) = 4326.625. Trunkeringsfelets gräns vid linjär IP skattas då till $E_{trunk} = |4291.5 - 4326.625| = 35.125$ och osäkerheten pga fortplantade fel i indata till $E_{tab} = 1 \cdot E_y = 0.5$. Gränsen för beräkningsfelet är svårskattad men klart mindre om vi använt Newtons eller centrerad ansats än den naiva.

Eftersom trunkeringsfelets gräns är mycket större än tabelleringsfelets lönar det sig att öka gradtalet hos interpolationspolynomet.

Runges fenomen, S Ch 3.2.3, GNM sid (5)9 - GKN sid 139

Polynom av hög grad, speciellt vid ekvidistanta data, kan få kraftiga svängningar i ytterområdena.

Styckvis interpolation, S Ch 3.4, GKN sid 140

x	y	k
x_1	y_1	k_1
x_2	y_2	k_2
x_3	y_3	k_3

Olika polynom mellan varje punktpar. Ett tredjegradspolynom har fyra koefficienter:

$$p_1(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3, \quad x_1 \le x \le x_2 \quad \iff \quad p_1(x_1) = y_1 \quad p_1(x_2) = y_2 \quad p_1'(x_1) = k_1 \quad p_1'(x_2) = k_2$$

$$p_2(x) = b_1 + b_2 x + b_3 x^2 + b_4 x^3, \quad x_2 \le x \le x_3 \qquad \Longleftrightarrow \qquad p_2(x_2) = y_2 \quad p_2(x_3) = y_3 \quad p_2'(x_2) = k_2 \quad p_2'(x_3) = k_3 \quad p_$$

Hermites interpolationsformel, GNM sid (5)10 & (5)20 - GKN sid 141 & 171!

$$h_{i} = x_{i+1} - x_{i}$$

$$c_{i} = (y_{i+1} - y_{i})/(x_{i+1} - x_{i})$$

$$P(x) = y_{i} + c_{i}(x - x_{i}) + (x - x_{i})(x - x_{i+1})((k_{i+1} - c_{i})(x - x_{i}) + (k_{i} - c_{i})(x - x_{i+1}))/h_{i}^{2}$$

x	y	k					
3	4	1	Önskas $y(4.2)$	$r_{i}=3$	$x_{i+1} = 5$		
5	2	-1	(4.0)				(9 4) /(7 9) 1
6	3	2.5	y(4.2)			\Longrightarrow	$c_i = (2-4)/(5-3) = -1$
			blir det	$k_i = 1$	$k_{i+1} = -1$		

SF1546, Numeriska Metoder, COPEN mfl, VT2024, Ninni Carlsund Levin, Föreläsning 3

Skattningen blir y (x = 4.2):

$$P(4.2) = 4 + (-1) \cdot (4.2 - 3) + (4.2 - 3)(4.2 - 5)(((-1) - (-1))(4.2 - 3) + (1 - (-1))(4.2 - 5))/(2^2) = 3.184$$

Vill man skatta y(x = 3.2):

$$P(3.2) = 4 + (-1) \cdot (3.2 - 3) + (3.2 - 3)(3.2 - 5)(((-1) - (-1))(3.2 - 3) + (1 - (-1))(3.2 - 5))/(2^2) = 4.124$$

Vill man skatta y(5.2) måste man beräkna nya värden på h och c eftersom x = 5.2 ligger i nästa intervall.

Styckvis interpolation - splines, S Ch 3.4.1, GNM sid (5)12 - GKN sid 142

x	y
x_1	y_1
x_2	y_2
x_3	y_3
x_4	y_4
x_5	y_5

$$\begin{cases} p_1(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3 \\ p_2(x) = b_1 + b_2 x + b_3 x^2 + b_4 x^3 \\ p_3(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3 \\ p_4(x) = d_1 + d_2 x + d_3 x^2 + d_4 x^3 \end{cases} \Rightarrow \begin{cases} 16 \text{ s\"okta} \\ \text{koefficienter!} \end{cases}$$

Givna värden på funktionen i mätpunkterna och kontinuerlig första- och andraderivata ger villkoren

$$\begin{array}{llll} p_{1}(x_{1}) = y_{1} & p_{3}(x_{3}) = y_{3} \\ p_{1}(x_{2}) = y_{2} & p_{3}(x_{4}) = y_{4} \\ p_{2}(x_{2}) = y_{2} & p_{4}(x_{4}) = y_{4} \\ p_{2}(x_{3}) = y_{3} & p_{4}(x_{5}) = y_{5} \end{array} \begin{array}{ll} p'_{1}(x_{2}) = p'_{2}(x_{2}) & p''_{1}(x_{2}) = p''_{2}(x_{2}) \\ p'_{1}(x_{2}) = p'_{2}(x_{2}) & p''_{1}(x_{2}) = p''_{2}(x_{2}) \\ p'_{2}(x_{3}) = p'_{3}(x_{3}) & p''_{2}(x_{3}) = p''_{3}(x_{3}) \\ p''_{3}(x_{4}) = p'_{4}(x_{4}) & p''_{3}(x_{4}) = p''_{4}(x_{4}) \end{array} \Longrightarrow \begin{array}{ll} 14 \text{ villkor} \\ \text{Fattas 2 st!} \end{array}$$

De två felande villkoren får (måste) vi alltid välja själva. I naturliga (kubisa) splines gör man valet p'' = 0 i ytterkanterna, dvs i exemplet ovan skulle de två extra villkoren bli $p_1''(x_1) = 0$ och $p_4''(x_5) = 0$.

I praktiken

Lös ekvationssystemet nedan för k-värdena och använd sedan dessa k-värden i Hermites interpolationsformel.

$$\begin{pmatrix} 2h_1 & h_1 & 0 & 0 & \cdots & 0 \\ h_2 & 2(h_2 + h_1) & h_1 & 0 & \cdots & 0 \\ 0 & h_3 & 2(h_3 + h_2) & h_2 & & & \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & h_{n-1} & 2(h_{n-1} + h_{n-2}) & h_{n-2} \\ 0 & 0 & \cdots & 0 & h_{n-1} & 2h_{n-1} \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \\ \vdots \\ k_n \end{pmatrix} = 3 \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{pmatrix}$$

$$\text{d\"{a}r } b_i = \begin{cases} \Delta y_1 & \text{om } i = 1 \\ \frac{h_{i-1}}{h_i} \Delta y_i + \frac{h_i}{h_{i-1}} \Delta y_{i-1} & \text{om } i = 2, 3, \dots, n-1 \\ \Delta y_{n-1} & \text{om } i = n \end{cases}$$

Styckvis interpolation - nästan splines?

Om man vill slippa lösa ekvationssystemet ovan kan man skatta derivatorna med följande formler där N är antalet givna punkter. (Detta betyder dock att andraderivatan inte blir kontinuerlig.)

$$k_1 = 2\left(\frac{y_2 - y_1}{x_2 - x_1}\right) - \left(\frac{y_3 - y_1}{x_3 - x_1}\right) \quad k_i = \left(\frac{y_{i+1} - y_{i-1}}{x_{i+1} - x_{i-1}}\right) \\ i = 2, \dots, N-1 \quad k_N = 2\left(\frac{y_N - y_{N-1}}{x_N - x_{N-1}}\right) - \left(\frac{y_N - y_{N-2}}{x_N - x_{N-2}}\right) + \left(\frac{y_N - y_{N-1}}{x_N - x_{N-1}}\right) - \left($$

Lagranges interpolationsformel, S Ch 3.1.1

$$L_k(x) = \frac{(x - x_1) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_1) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)} \qquad k = 1 \cdots n$$

Notera att $L_k(x_j) = \delta_{jk}$ vilket ger att

$$p_{n-1}(x) = \sum_{i=1}^{n} y_i L_i(x)$$

Hermites gamla interpolationsformel, GNM sid (5)10

(Används ibland i EXS och extentor)

$$h_{i} = x_{i+1} - x_{i}$$

$$\Delta y_{i} = y_{i+1} - y_{i}$$

$$g_{i} = h_{i} k_{i} - \Delta y_{i}$$

$$c_{i} = 2\Delta y_{i} - h_{i} (k_{i} + k_{i+1})$$
Så för valfritt
$$t \in [0, 1]$$

$$kan vi beräkna$$

$$x = x_{i} + th_{i}$$

$$y = y_{i} + t\Delta y_{i} + t (1 - t) g_{i} + t^{2} (1 - t) c_{i}$$

h = 5 - 3 = 2

	3 5 6	3	$ \begin{array}{c c} 1 \\ -1 \\ \hline 2.5 \end{array} $	y(4.2) blir det	$\Delta y = 2 - 4 = -2$ $g = 2 \cdot 1 - (-2) = 4$ $c = 2 \cdot (-2) - 2(1 + (-1)) = -4$		
	Vill man skatta $y(x = 4.2)$:				Vill man skatta $y(x = 3.2)$:		
$t = (x - x_i)/h_i = (4.2 - 3)/2 = 0.6$			= (x -	$x_i)/h_i = (4.2 - 3)/2 = 0.6$	$t = (x - x_i)/h_i = (3.2 - 3)/2 = 0.1$		
	$y = 4 + 0.6 \cdot (-2) + 0.6 \cdot (1 - 0.6) \cdot 4 +$			$0.6 \cdot (-2) + 0.6 \cdot (1 - 0.6) \cdot 4 +$	$y = 4 + 0.1 \cdot (-2) + 0.1 \cdot (1 - 0.1) \cdot 4 +$		
$+0.6^2 \cdot (1-0.6) \cdot (-4) = 3.184$			+0	$0.6^2 \cdot (1 - 0.6) \cdot (-4) = 3.184$	$+0.1^2 \cdot (1-0.1) \cdot (-4) = 4.124$		

 $\ddot{\mathrm{O}}\mathrm{nskas}$

Vill man skatta y(5.2) måste man beräkna nya värden på $h,~\Delta y,~g$ och c eftersom x=5.2 ligger i nästa intervall.

Matlab-koden för att beräkna dessa olika polynom blir mycket kort. Man kan antingen skapa matrisen A och sedan lösa med backslash eller använda Matlabs inbyggda polyfit och polyval. Kom ihåg att bara skriva in data-värdena en enda gång! Tag sedan ut utvalda punkter med index! Här är början:

```
% Givna data
X=(1900:10:1990);
Y=[3822; 3982; 4281; 4302; 4042; 3922; 3921; 3940; 3960; 3980];
sokt=1925;
% Linjar IP:
ii=3:4;
x=X(ii); y=Y(ii);
A=[x x.^0]
c=A\setminus y
k=c(1), m=c(2)
linjar=k*sokt+m
% eller med Matlabs inbyggda rutiner:
c=polyfit(x,y,1), linj=polyval(c,sokt)
% Kvadratisk IP:
ii=3:5;
x=X(ii); y=Y(ii);
A=[x.^0 x x.^2]
c=A y
kvadratisk=c(1)+c(2)*sokt+c(3)*sokt^2
% eller med Matlabs inbyggda rutiner:
c=polyfit(x,y,2), kvad=polyval(c,sokt)
```

 $\ \odot$ 2024 Ninni Carlsund Levin