ЛОШ ФМЛ информатика, день 3

24.08.2022

Содержание

1	Мощности компьютеров	2
2	Временная асимптотика алгоритмов	2
3	Битовые операции	2
4	Задача на кратность	2
5	Представление множеств	2
6	Подпоследовательность и подотрезок массива	2
7	Задача о количестве объектов	2
8	Задачи о количестве объектов с заданными храктеристиками	3
9	Модульная арифметика	3
10	Быстрое возведение в степень по модулю	3
11	Малая теорема Ферма (МТФ)	3
12	Деление по простому модулю	3
13	Комбинаторные объекты по модулю	4
14	Основная теорема арифметики (ОТА)	4
15	Решето Эратосфена	4
16	Алгоритм Евклида	4
17	Задача про НОД	4
18	(hard) Задача про НОД	4
19	Задача о поиске подотрезка с максимальной суммой	4
20	std::set и std::map	4

1 Мощности компьютеров

2 Временная асимптотика алгоритмов

3 Битовые операции

- 1. побитовый **OR**
- 2. побитовый AND
- 3. побитовый ХОР
- 4. побитовый **NOT**
- 5. сдвиг влево и сдвиг вправо

4 Задача на кратность

Как проверить делится ли число a на 2^n не используя % (остаток от деления)?

Ответ: $(a \mid (1 \ll n)) == (1 \ll n)$

5 Представление множеств

Все числа в памяти представлены в двоичной системе исчесления.

Идея: пусть элементы множества это позиции (в 0-нумерации) единичных битов. Тогда каждое число задает свое кникальное множество

Пример: $1242 = 10011011010_2$ задает множество $A = \{1, 3, 4, 6, 7, 10\}$ (позиции едичных битов)

6 Подпоследовательность и подотрезок массива

Подотрезок массива это массив который может получен путем удаление элементов из **начала** и или **конца** исходного массива.

Подпоследовательность массива это массив который может получен путем удаление элементов из **любого** места исходного массива.

7 Задача о количестве объектов

Пусть дан массив A длиной n, нужно найти нужно найти количество его подпоследовательностей и количество подотрезков.

Ответ: 2^n и $\frac{n(n+1)}{2}$

8 Задачи о количестве объектов с заданными храктеристиками

Пусть дан массив A, $A_i \leq 10^9$ длиной $n \leq 10^3$, нужно найти нужно найти количество его количество подотрезков с четной суммой.

Решите предыдущую задачу при $n \le 10^5$.

Пусть дан массив $A, A_i \leq 10^9$ длиной $n \leq 20$, нужно найти нужно найти количество его количество подпоследовательностей с четной суммой.

(hard) Решите предыдущую задачу при $n \leq 10^5$ и найдите остакток от деления ответа на 10^9+7 или же решите задачу по модулю 10^9+7 .

Примечание: $10^9 + 7$ простое число.

9 Модульная арифметика

```
(a + b)\%MOD = (a\%MOD + b\%MOD)\%MOD

(a * b)\%MOD = (a\%MOD * (b\%MOD))\%MOD

(a - b)\%MOD = (a\%MOD - b\%MOD)\%MOD
```

10 Быстрое возведение в степень по модулю

```
a^n = \left(a^{\frac{n}{2}}\right)^2 если n четное. a^n = aa^{(n-1)} если n нечетное. a^n = 1 если n = 0. все опепрации кончно же по модулю int pw(int a, int b, int MOD){ if(!b) return 1; if(b % 2) return (1ll * a * pw(a , b - 1 , MOD)) % MOD; int x = pw(a , b / 2, MOD); return (1ll * x * x) % MOD; }
```

11 Малая теорема Ферма (МТФ)

```
Если p — простое число и а — целое число, не делящееся на p, то a^{p-1}-1 делится на p. более формально: a^{p-1}-1\equiv 0\mod p. Добавим 1 к левой и правой части: a^{p-1}\equiv 1\mod p
```

12 Деление по простому модулю

 $b/a \equiv b*a^{-1} \mod MOD$ теперь нам нужно найти a^{-1} , то есть такое число которое при умножении на a дает 1 вернемся к МТФ: $a^{p-1} \equiv 1 \mod p$ и представим $a^{p-1} = aa^{p-2}$ тогда: $aa^{p-2} \equiv 1 \mod p$ следовательно $a^{p-2} \equiv a^{-1} \mod p$ и получаем равентсво :

13 Комбинаторные объекты по модулю

14 Основная теорема арифметики (ОТА)

Любое натуральное число больше единицы может быть разложено в виде простых множителей и это разложение единственно (если не учитывать порядок множителей).

15 Решето Эратосфена

Оценка временной сложности:

$$\mathcal{O}(\sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor) = \mathcal{O}(n \sum_{i=1}^{n} \frac{1}{i}) = \mathcal{O}(n \int_{1}^{n} \frac{1}{x} dx) = \mathcal{O}(n \ln n) = \mathcal{O}(n \log n)$$

16 Алгоритм Евклида

```
int gcd(int a, int b) {
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
```

17 Задача про НОД

Пусть дан массив A , $A_i \leq 10^9$ длиной $n \leq 10^5$ найти НОД (наибольший общий делитель) всех его элементов.

Оцините временную сложность вашего алгоритма.

Ответ: $\mathcal{O}(n + \log(\max A_i))$ а не $\mathcal{O}(n \log(\max A_i))!!!$

18 (hard) Задача про НОД

Пусть дан массив A, $A_i \leq 10^5$ длиной $n \leq 10^5$ найти максимальнай НОД по всем возможным парам элементов, пары из одинаковых индексов не считать.

Подсказка №1: ограниечение на A_i меньше чем обычно.

Подсказка №2: подумайте об $\mathcal{O}(C \log C + n)$ или $\mathcal{O}(C + n\sqrt{C})$ или об $\mathcal{O}(C + n\sqrt[3]{C})$, где $C = \max A_i$.

19 Задача о поиске подотрезка с максимальной суммой

20 std::set и std::map

21 (HARD) Для тех кому скучно №1.

Даны три натуральных числа a , b и p такие что $a,b \leq p$ и p - **простое**. Разрешается делать над a дествия трех видов:

- 1. заменить a на $(a+1) \mod p$
- 2. заменить a на $(a-1) \mod p$
- 3. заменить a на $a^{p-2} \mod p$

Нужно за максимум 300 операций превратить a в b. Требется найти последовательность действий. Если ответов несколько выбирете любой.

Для каких ограничений на p вы умеете решать данную задачу с ограничением по времени 3 секунды и по памяти 2048 мБ?

Подсказка №1: вы же написали динамическое программирование? Подсказка №2: забудьте о ДП, подумайте о днях рождения и о BFS.