Correction des exercices de renforcement

Exercice 1

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x) = 5x^4 - 3x^3 + 2x - 11$. On note C_f la courbe représentative de la fonction f dans le plan muni d'un repère orthonormé.

1) Déterminer l'équation réduite de la tangente (T) à la courbe C_f au point d'abscisse -2.

L'équation réduite de la tangente est donnée par T : y = f'(a)(x - a) + f(a)

Au point d'abscisse -2, on a : T : y = f'(-2)(x+2) + f(-2)

On calcule alors la dérivée de la fonction f.

f est dérivable comme une somme de fonctions dérivables sur \mathbb{R} .

$$f'(x) = 20x^3 + 9x^2 + 2$$

Pour x = -2,
$$f'(-2) = 20 \times (-2)^3 + 9 \times (-2)^2 + 2$$

$$f'(-2) = -160 + 36 + 2$$

$$f'(-2) = -122$$

Pour x = -2,
$$f(-2) = 5 \times (-2)^4 - 3 \times (-2)^3 + 2 \times (-2) - 11$$

$$f(-2) = 80 + 24 - 4 - 11$$

$$f(-2) = 89$$

L'équation réduite de la tangente à la courbe C_f au point **d'abscisse -2** est donnée par :

T:
$$y = f'(-2)(x+2) + f(-2)$$

T:
$$y = -122(x + 2) + 89$$

$$T: y = -122x - 244 + 89$$

T:
$$y = -122x - 155$$

Exercice 2

On considère la fonction f définie et dérivable sur \mathbb{R} par $f(x) = -2x^4 + 6x^3 + x^2 + 7$.

On note C_f la courbe représentative de la fonction f dans le plan muni d'un repère orthonormé.

1) Déterminer l'équation réduite de la tangente (T) à la courbe C_f au point d'abscisse -1.

L'équation réduite de la tangente est donnée par T: y = f'(a)(x-a) + f(a)

Au point d'abscisse -1, on a : T: y = f'(-1)(x+1) + f(-1)

On calcule alors la dérivée de la fonction f.

f est dérivable comme une somme de fonctions dérivables sur \mathbb{R} .

$$f'(x) = -8x^3 + 18x^2 + 2x$$

Pour x = -1,
$$f'(-1) = -8 \times (-1)^3 + 18 \times (-1)^2 + 2 \times (-1)$$

$$f'(-1) = 8 + 18 - 2$$

$$f'(-1) = 24$$

Pour x = -1,
$$f(-1) = -2 \times (-1)^4 + 6 \times (-1)^3 + (-1)^2 + 7$$

$$f(-1) = -2 - 6 + 1 + 7$$

$$f(-1)=0$$

L'équation réduite de la tangente à la courbe C_f au point **d'abscisse -1** est donnée par :

T:
$$y = f'(-1)(x+1) + f(-1)$$

T:
$$y = 24(x + 1) + 0$$
 T: $y = 24x + 24$

Exercice 3

Déterminer l'expression des dérivées suivantes :

(a)
$$f(x) = 2x^4$$

 $f'(x) = 4 \times 2x^{4-1} = 8x^3$
 $f'(x) = 8x^3$

(b)
$$j(x) = \frac{\sqrt{x}}{3}$$

 $j'(x) = \frac{1}{3} \times \frac{1}{2\sqrt{x}}$
 $j'(x) = \frac{1}{6\sqrt{x}}$

(c)
$$g(x) = \frac{2}{3}x^5$$

 $g'(x) = \frac{2}{3} \times 5x^4$
 $g'(x) = \frac{10}{3}x^4$

(d)
$$n(x) = 3x - 2\sqrt{x}$$

 $n'(x) = 3 - 2 \times \frac{1}{2\sqrt{x}}$
 $n'(x) = 3 - \frac{1}{\sqrt{x}}$
 $n'(x) = \frac{3\sqrt{x} - 1}{\sqrt{x}}$

(e)
$$h(x) = 3x^3 - 5x^2 + 2$$

 $h'(x) = 3 \times 3x^2 - 5 \times 2x$
 $h'(x) = 9x^2 - 10x$

(f)
$$k(x) = -\frac{5}{x}$$

 $k'(x) = -5 \times \frac{-1}{x^2}$
 $k'(x) = \frac{5}{x^2}$

(g)
$$k(x) = \frac{1}{9x}$$

 $k'(x) = \frac{1}{9} \times \frac{-1}{x^2}$
 $k'(x) = -\frac{1}{9x^2}$

(h)
$$p(x) = -7e^x + 2x$$

 $p'(x) = -7e^x + 2$

(i)
$$i(x) = 8\sqrt{x}$$

 $i'(x) = 8 \times \frac{1}{2\sqrt{x}}$
 $i'(x) = \frac{4}{\sqrt{x}}$

(j)
$$I(x) = \frac{1}{2x}$$

 $I'(x) = \frac{1}{2} \times \frac{-1}{x^2}$
 $I'(x) = -\frac{1}{2x^2}$

(k)
$$m(x) = 2x - \frac{1}{x}$$

 $m'(x) = 2 - \frac{-1}{x^2}$
 $m'(x) = 2 + \frac{1}{x^2}$

(I)
$$q(x) = x^2 - 1 + 5e^x$$

 $q'(x) = 2x + 5e^x$