000

# T-SHIRT PRINTING

Optimizing Screen-Printing Operations for Spring 2025 Collection

**Mixed Integer Programming** 





### INTRODUCTION

Manufacturing production floors are dynamic environments, making them ideal for the application of MI Programming.

The manufacturing process often requires to balance priorities and optimize resource allocation, aligning with the strengths of MIP Optimization.

Manufacturing process challenges include:

- Time Constraints.
- Machine Constraints.
- Labor Constraints.

This project explores the application of MIP optimization to a real-world manufacturing problem.





### **DESCRIBING MIP PROBLEM**



### Role in Company?

- As Production Manager, I oversee an industrial screenprint shop.
- Production is timesensitive, cost management is critical for the success of our company.



### What is required?

- A new order comes in from a client, they want to print the Spring 2025 collection.
- The order is 1 million pieces overall.
- The collection has 25 designs, designs range from 3 colors to 18 colors.
- Each design has a specific number of pieces to print.



### **Designs Breakdown**

Provided by customer:

| Design | Amount of Colors in Design | PIECES TO PRINT |
|--------|----------------------------|-----------------|
| D1     | 3                          | 31548           |
| D2     | 4                          | 75475           |
| D3     | 12                         | 10908           |
| D4     | 8                          | 51310           |
| D5     | 12                         | 4533            |
| D6     | 12                         | 103918          |
| D7     | 7                          | 48537           |
| D8     | 12                         | 52959           |
| D9     | 16                         | 710             |
| D10    | 14                         | 70386           |
| D11    | 7                          | 13164           |
| D12    | 12                         | 38048           |
| D13    | 14                         | 2688            |
| D14    | 14                         | 121016          |
| D15    | 11                         | 31889           |
| D16    | 16                         | 9817            |
| D17    | 16                         | 46304           |
| D18    | 17                         | 17830           |
| D19    | 15                         | 26943           |
| D20    | 18                         | 12388           |
| D21    | 13                         | 60256           |
| D22    | 18                         | 50722           |
| D23    | 17                         | 5279            |
| D24    | 18                         | 81181           |
| D25    | 5                          | 32191           |

000



01

### **OBJECTIVE**

Develop an MIP model to allocate designs in machines to **maximize profit.** 

02

## VALUE OF THIS MODEL

Helps the production floor meet deadlines and profit goals while optimizing resource utilization.



# PRODUCTION FLOOR / MACHINE BREAKDOWN



### 9 Production Machines

- Each production machine has a different number of colors it can print.
- Each machines produces at a different speed.
- The fixed cost per machine are the same.

| Machine | Maximum Amount<br>of Colors a<br>Machine can print | Output (pieces/hour) | Fixed Cost per<br>Hour |
|---------|----------------------------------------------------|----------------------|------------------------|
| M1      | 12                                                 | 600                  | \$150                  |
| M2      | 12                                                 | 600                  | \$150                  |
| M3      | 14                                                 | 590                  | \$150                  |
| M4      | 14                                                 | 590                  | \$150                  |
| M5      | 16                                                 | 575                  | \$150                  |
| M6      | 16                                                 | 575                  | \$150                  |
| M7      | 16                                                 | 575                  | \$150                  |
| M8      | 18                                                 | 550                  | \$150                  |
| M9      | 18                                                 | 550                  | \$150                  |



### MIP MODEL OVERVIEW

| Model Purpose      | To allocate designs to machines, considering constraints and costs, and achieve <b>maximum profitability.</b> |
|--------------------|---------------------------------------------------------------------------------------------------------------|
| Decision Variables | Assignment of designs to machines.                                                                            |
| Objective Function | Maximize profit = Revenue – Costs.                                                                            |
|                    | 1. Each design is assigned to only one machine.                                                               |
| Constraints        | 2. Machines can only handle designs within their color capacity.                                              |
|                    | 3. Balance workload across machines (no machine can work more than 25% than another machine).                 |



# MODEL VALUE / SCALING OPTIMIZED MODEL

### PYTHON OPTIMIZATION MODEL OUTPUT

When the optimization for model is run, the design / machine assignment is:

| Machine Pe | rformance Summary:     |              | ·           |
|------------|------------------------|--------------|-------------|
| Machine    | Designs Assigned       | Total Pieces | Profit (\$) |
| M1         | D2, D4                 | 126785       | 12674.50    |
| j M2       | D5, D8, D12, D15       | 127429       | 12727.23    |
| M3         | D13, D14               | 123704       | 11836.90    |
| M4         | D1, D7, D11, D25       | 125440       | 12005.14    |
| j M5       | D6                     | 103918       | 9258.26     |
| M6         | D9, D10, D19           | 98039        | 8723.26     |
| j M7       | D17, D21               | 106560       | 9488.07     |
| M8         | D3, D16, D18, D22, D23 | 94556        | 7279.93     |
| j M9       | D20, D24               | 93569        | 7218.33     |
| +          | <del> </del>           | +            | t+          |





### **FOUR IDEAS**



#### Solutions

MIP ensured fair workload distribution.

Accurate cost calculations informed optimal design assignments.



### Challenges

Balancing workload across machines.

Managing variable costs (setup and ink) efficiently.



### **Next Steps**

Sensitivity analysis to assess profit impact under varying machine costs.

Scenario analysis for different client orders.



#### **Extensions**

Incorporate machine learning to predict optimal allocation strategies for future orders.

Build a user interface for realtime order allocation visualization.



|            | <b>OUTPUTS WINDOW</b>  |              |             |  |
|------------|------------------------|--------------|-------------|--|
|            |                        |              |             |  |
| Machine Pe | rformance Summary:     |              |             |  |
| Machine    | Designs Assigned       | Total Pieces | Profit (\$) |  |
| M1         | D2, D4                 | 126785       | 12674.50    |  |
| M2         | D5, D8, D12, D15       | 127429       | 12727.23    |  |
| M3         | D13, D14               | 123704       | 11836.90    |  |
| M4         | D1, D7, D11, D25       | 125440       | 12005.14    |  |
| M5         | D6                     | 103918       | 9258.26     |  |
| M6         | D9, D10, D19           | 98039        | 8723.26     |  |
|            | D17, D21               | 106560       | 9488.07     |  |
| M8         | D3, D16, D18, D22, D23 | 94556        | 7279.93     |  |
| M9         | D20, D24               | 93569        | 7218.33     |  |