

Dependency parsing

Benoît Sagot Inria (ALMAnaCH)

MVA — Speech and Language Processing — Class #6 — 24th February, 2020

Credit and disclaimer: some of the following slides are taken from, illustrated or inspired by presentations and article figures by Nivre, Dyer, Ballesteros, Kutuzov, Mooney, Rasooli and Tetreault

Introduction

- Syntactic parsing of natural language
 - Building the structure of natural language sentences
- Dependency-based syntactic representations
 - Long tradition in descriptive and theoretical linguistics
 - Have become popular in computational linguistics

Strategies for dependency parsing

- Graph-based parsing
- Transition-based parsing
- Other strategies

Graph-based parsing

- MSTParser (McDonald et al. 2005)
 - http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
- Simplified version of the underlying idea:
 - Create all possible dependencies
 - Weigh them
 - Extract the optimal dependency tree
 - I.e. the tree that covers all words and minimises the overall weight of all retained dependencies

Arc-standard Transition-Based Parsing

Starting point

The basic idea:

- Define a transition system for dependency parsing
- Learn a model for scoring possible transitions
- Parse by searching for the optimal transition sequence

Advantages:

- Highly efficient parsing with low complexity
- Rich history-based feature models for disambiguation
- Cf. Nivre (et al.)
 - http://www.maltparser.org

Formalising dependency trees

- A dependency tree is a labelled directed tree T with
 - a set V of nodes, labelled with wordforms (including the special "wordform" **ROOT**)
 - a set A of arcs, labelled with dependency types
 - a linear precedence order < on V

Notation:

- Arc (w_i, I, w_j) connects head w_i to dependent w_j with label I
- Node w_0 (labeled **ROOT**) is the unique root of the tree

Parser configurations

- A parser configuration is a triple c = (S, Q, A), where
 - $S = a \operatorname{stack} [..., w_i]_S$ of partially processed nodes,
 - Q = a queue $[w_i, ...]_Q$ of remaining input nodes,
 - A = a set of labelled arcs (w_i, I, w_j) .

Initialisation:

```
([w_0]_S, [w_1, ..., w_n]_Q, \{\})
(recall that w_0 = ROOT)
```

• Termination: $([w_0]_S, []_Q, A)$

Transitions for the "arc-standard algorithm"

Left-Arc(/) $([..., w_i, w_i]_S, Q, A)$ _[0 ≠ iL $([..., w_i]_S, Q, A \cup \{(w_i, I, w_i)\})$ • Right-Arc(/) $([..., w_i, w_i]_S, Q, A)$ $([..., w_i]_s, Q, A \cup \{(w_i, I, w_i)\})$ Shift $([...]_S, [w_i, ...]_O, A)$ $([...,w_i]_S,[...]_O,A)$

[ROOT]_S [Economic, news, had, little, effect, on, financial, markets, .]_Q

[ROOT, Economic]_S [news, had, little, effect, on, financial, markets, .]_Q

action: Shift

[ROOT, Economic, news]_S [had, little, effect, on, financial, markets, .]_Q

action: Shift

[ROOT, Economic, news] $_{S}$ [had, little, effect, on, financial, markets, .] $_{Q}$

action: Left-Arc(ATT)

[ROOT, news, had]_S [little, effect, on, financial, markets, .]_Q

action: Shift

[ROOT, news, had]_S [little, effect, on, financial, markets, .]_Q

action: Left-Arc(SBJ)

[ROOT, had, little]_S [effect, on, financial, markets, .]_Q

action: Shift

[ROOT, had, little, effect]_S [on, financial, markets, .]_Q

action: Shift

[ROOT, had, little, effect]_S [on, financial, markets, .]_Q

action: Left-Arc(ATT)

[ROOT, had, effect, on]_S [financial, markets, .]_Q

[ROOT, had, effect, on, financial]_S [markets, .]_Q

[ROOT, had, effect, on, financial, markets]_S [.]_Q

[ROOT, had, effect, on, financial, markets] $_{S}$ [.] $_{Q}$

action: Left-Arc(ATT)

[ROOT, had, effect, on, markets] $_{S}$ [.] $_{Q}$

action: Right-Arc(PC)

[ROOT, had, effect, on]_S [.]_Q

action: Right-Arc(ATT)

[ROOT, had, effect] $_{S}$ [.] $_{Q}$

action: Right-Arc(OBJ)

[ROOT, had, .]s []Q

[ROOT, had, .]s []Q

action: Right-Arc(PU)

[ROOT, had]s []Q

action: Right-Arc(PRED)

Properties of the algorithm

- Every transition sequence outputs a projective dependency tree (soundness).
- Every projective dependency tree is output by some transition sequence (completeness).
- There are exactly 2n transitions in a sentence with n words.

Deterministic parsing

• If we have an **oracle** that correctly predicts the next transition o(c), parsing is deterministic:

```
PARSE(w_1, ..., w_n)

1 c \leftarrow ([w_0]_S, [w_1, ..., w_n]_Q, \{\})

2 while Q_c \neq [] or |S_c| > 1

3 t \leftarrow o(c)

4 c \leftarrow t(c)

5 return T = (\{w_0, w_1, ..., w_n\}, A_c)
```

Oracles as classifiers

• An oracle can be approximated by a (linear) classifier: $o(c) = \operatorname{argmax}_t \mathbf{w} \cdot \mathbf{f}(c, t)$

- History-based feature representation **f**(*c*, *t*):
 - Features over input tokens relative to S and Q
 - Features over the (partial) dependency tree defined by A
 - Features over the (partial) transition sequence
- Weight vector w learned from treebank data:
 - Reconstruct oracle transition sequence for each sentence
 - Construct training data set $D = \{(c, t) \mid o(c) = t\}$
 - Maximise accuracy of local predictions o(c) = t

Deterministic classifier-based parsing

Advantages:

- **Highly efficient parsing** linear time complexity with constant time oracles and transitions
- Rich history-based feature representations no rigid constraints from inference algorithm

Drawback:

 Sensitive to search errors and error propagation due to deterministic parsing and local learning

Empirical results: the CoNLL 2006 shared task

- CoNLL 2006 shared task (Buchholz and Marsi 2006):
 - MaltParser (Nivre et al. 2006) transition-based, deterministic, local learning
 - MSTParser (McDonald et al. 2006) graph-based, exact, global learning
 - Same average parsing accuracy over 13 languages
- Comparative error analysis (McDonald and Nivre2007):
 - MaltParser more accurate on short dependencies and disambiguation of core grammatical functions
 - MSTParser more accurate on long dependencies and dependencies near the root of the tree
- Hypothesised explanation for MaltParser results:
 - Rich features counteracted by error propagation

Precision by dependency length

Beam search and structured prediction

Beam search

• Maintain the k best hypotheses (Johansson and Nugues 2006):

```
PARSE(w_1, ..., w_n)

1 BEAM \leftarrow \{([w_0]_S, [w_1, ..., w_n]_Q, \{\})\}

2 while \exists c \in \text{BEAM} [Q_c \neq [] \text{ or } |S_c| > 1]

3 foreach c \in \text{BEAM}

4 foreach t

5 ADD(t(c), \text{NEWBEAM})

6 BEAM \leftarrow \text{TOP}(k, \text{NEWBEAM})

7 return T = (\{w_0, w_1, ..., w_n\}, A_{\text{TOP}(1, \text{BEAM})})
```

Note:

- Score $(c_0, ..., c_m) = \sum_{i=1}^{m} \mathbf{\hat{w}} \cdot \mathbf{f}(c_{j-1}, t_j)$
- Simple combination of locally normalised classifier scores
- Marginal gains in accuracy

Structured prediction

- Parsing as structured prediction (Zhang and Clark 2008):
 - Minimise loss over entire transition sequence
 - Use beam search to find highest-scoring sequence
- Factored feature representations:

$$f(c_0, ..., c_m) = \sum_{i=1}^m f(c_{i-1}, t_i)$$

- Online learning from oracle transition sequences:
 - Structured perceptron (Collins 2002)
 - Early updates (Collins and Roark 2004)

Beam size and training iterations

Yue Zhang and Stephen Clark. 2008. A Tale of Two Parsers: Investigating and Combining Graph-Based and Transition-Based Dependency Parsing. In *Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing*, 562–571.

The best of two worlds?

- Like graph-based dependency parsing (MSTParser):
 - Global learning minimise loss over entire sentence
 - Non-greedy search accuracy increases with beam size
- Like deterministic transition-based parsing (MaltParser):
 - Highly efficient complexity still linear for fixed beam size
 - Rich features no constraints from parsing algorithm
- Example ZPar parser (Zhang and Clark 2011)
 - "Most heavily developed for English and Chinese"

Precision by dependency length, again

Even richer feature models

	ZPar	Malt
Baseline	92.18	89.37
+distance	+0.07	-0.14
+valency	+0.24	0.00
+unigrams	+0.40	-0.29
+third-order	+0.18	0.00
+label set	+0.07	+0.06
Extended	93.14	89.00

Yue Zhang and Joakim Nivre. 2011. Transition-Based Dependency Parsing with Rich Non-Local Features. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, 188–193.

Online reordering for non-projectivity

Projectivity

- A dependency arc is projective if the head (transitively) dominates all intervening words
- Most dependency grammar theories do not assume projectivity (but many parsers do)

Non-projectivity in natural languages

Language	Trees	Arcs
Arabic (Hajič et al. 2004)	11,2 %	0,4 %
Basque (Aduriz et al. 2003)	26,2 %	2,9 %
Czech (Hajič et al. 2001)	23,2 %	1,9 %
Danish (Kromann 2003)	15,6 %	1,0 %
Greek (Prokopidis et al. 2005)	20,3 %	1,1 %
Russian (Boguslavsky et al. 2000)	10,6 %	0,9 %
Slovene (Džeroski et al. 2006)	22,2 %	1,9 %
Turkish (Oflazer et al. 2003)	11,6 %	1,5 %

Projectivity and word order

- Projectivity is a property of a dependency tree only in relation to a particular word order
 - Words can always be reordered to make the tree projective
 - Given a dependency tree T = (V, A, <), let the projective order $<_p$ be the order defined by an in-order traversal of T with respect to < (Veselá et al. 2004)

Parsing with online reordering

- Add transition for reordering words (Nivre 2009):
 - Swap

- Transition-based parsing with two interleaved processes:
 - Sort words into projective order <p
 - Build dependency tree T by connecting adjacent subtrees
 - T is always projective with respect to <p</p>
 - T may be non-projective with respect to <

[ROOT]_S [A, hearing, is, scheduled, on, the, issue, today, .]_Q

ROOT A hearing is scheduled on the issue today .

[ROOT, A] $_S$ [hearing, is, scheduled, on, the, issue, today, .] $_Q$

action: Shift

ROOT A hearing is scheduled on the issue today .

[ROOT, A, hearing]_S [is, scheduled, on, the, issue, today, .]_Q

action: Shift

ROOT A hearing is scheduled on the issue today .

[ROOT, A, hearing]_S [is, scheduled, on, the, issue, today, .]_Q

action: Left-Arc(ATT)

[ROOT, hearing, is]s [scheduled, on, the, issue, today, .]Q

[ROOT, hearing, is, scheduled]_S [on, the, issue, today, .]_Q

[ROOT, hearing, is, scheduled, on]_S [the, issue, today, .]_Q

[ROOT, hearing, is, scheduled, on, the]_S [issue, today, .]_Q

[ROOT, hearing, is, scheduled, on, the, issue]_S [today, .]_Q

[ROOT, hearing, is, scheduled, on, the, issue]_S [today, .]_Q

action: Left-Arc(ATT)

[ROOT, hearing, is, scheduled, on, issue] $_S$ [today, .] $_Q$

action: Right-Arc(PC)

[ROOT, hearing, is, on]_S [scheduled, today, .]_Q

action: Swap

[ROOT, hearing, on]_S [is, scheduled, today, .]_Q

action: Swap

[ROOT, hearing, on] $_{S}$ [is, scheduled, today, .] $_{Q}$

action: Right-Arc(ATT)

[ROOT, hearing, is]_S [scheduled, today, .]_Q

[ROOT, hearing, is]_S [scheduled, today, .]_Q

action: Left-Arc(SBJ)

[ROOT, is, scheduled]_S [today, .]_Q

[ROOT, is, scheduled, today] $_{S}$ [.] $_{Q}$

action: Right-Arc(TMP)

[ROOT, is, scheduled] $_{S}$ [.] $_{Q}$

action: Right-Arc(VC)

[ROOT, is, .]_S []_Q

[ROOT, is, .]s[]Q

action: Right-Arc(PU)

[ROOT, is] $_S$ [] $_Q$

action: Right-Arc(PRED)

Empirical results

- Deterministic transition-based parsing (Nivre 2009):
 - Parsing in linear expected time (quadratic worst-case time)
 - Best results on Czech CoNLL 2006 data sets
- Beam search and structured prediction:
 - Evaluation on CoNLL 2009 data sets (dev sets)

	Czech		German	
	l	UAS	l	
Projective	80.8	86.3	86.2	88.5
Online reordering	83.9	89.1	88.7	90.9

Arc-eager Transition-Based Parsing

Limitations of the arc-standard algorithm

- The arc-standard system considered so far
 - builds a dependency tree strictly bottom-up
 - a dependency arc can only be added between two nodes if the dependent node has already found all its dependents.
 - As a consequence, it is often necessary to postpone the attachment of right dependents.
- This is a problem, as parsing decisions are easier to take when the governor and the governee of a dependency are immediately accessible

[ROOT]_S [La, température, a, un, très, gros, effet, sur, la, concentration]_Q

[ROOT, La]_S [température, a, un, très, gros, effet, sur, la, concentration]_Q

action: Shift

[ROOT, La, température] $_{S}$ [a, un, très, gros, effet, sur, la, concentration] $_{Q}$

action: Shift

[ROOT, La, température] $_{S}$ [a, un, très, gros, effet, sur, la, concentration] $_{Q}$

action: Left-Arc()

[ROOT, température, a] $_{S}$ [un, très, gros, effet, sur, la, concentration] $_{Q}$

action: Shift

[ROOT, température, a]_S [un, très, gros, effet, sur, la, concentration]_Q

action: Left-Arc()

[ROOT, a, un]_S [très, gros, effet, sur, la, concentration]_Q

action: Shift

[ROOT, a, un, très]_S [gros, effet, sur, la, concentration]_Q

action: Shift

[ROOT, a, un, très, gros]_S [effet, sur, la, concentration]_Q

action: Shift

[ROOT, a, un, très, gros]_S [effet, sur, la, concentration]_Q

[ROOT, a, un, gros, effet]_S [sur, la, concentration]_Q

action: Shift

[ROOT, a, un, gros, effet]_S [sur, la, concentration]_Q

action: Left-Arc()

[ROOT, a, un, effet] $_{S}$ [sur, la, concentration] $_{Q}$

action: Left-Arc()

[ROOT, a, effet, sur]_S [la, concentration]_Q

[ROOT, a, effet, sur, la]_S [concentration]_Q

[ROOT, a, effet, sur, la, concentration]_S []_Q

[ROOT, a, effet, sur, la, concentration]_S []_Q

action: Left-Arc()

[ROOT, a, effet, sur, concentration] $_{S}$ [] $_{Q}$

[ROOT, a, effet, $sur]_S[]_Q$

[ROOT, a, effet] $_{S}$ [] $_{Q}$

[ROOT, $a]_S[]_Q$

The arc-eager system

- We will modify the basic set of actions in order to always add an arc at the earliest possible opportunity:
 - we will now build parts of the tree top-down instead of bottom-up
- Shift remains the same
- Left-Arc is rewritten and subjected to a stricter condition (allowed only if the dependent is not the root and has no incoming arcs)

$$([..., w_i]_S, [w_j, ...]_Q, A)$$

$$[i \neq 0 \land \nexists(k, l') \mid (k, l', i) \in A]$$

$$([...]_S, [w_j, ...]_Q, A \cup \{(w_j, l, w_i)\})$$

The arc-eager system

• Right-Arc is changed: it does not discard w_i anymore:

$$([..., w_i]_S, [w_j, ...]_Q, A)$$

 $([..., w_i, w_j]_S, [...]_Q, A \cup \{(w_i, I, w_j)\})$

- We postpone the reduction of w_i to another, new action:
- **Reduction**, only possible if the top of the stack already has a head

[ROOT]_S [La, température, a, un, très, gros, effet, sur, la, concentration]_Q

[ROOT, La]_S [température, a, un, très, gros, effet, sur, la, concentration]_Q

action: Shift

[ROOT, La]_S [température, a, un, très, gros, effet, sur, la, concentration]_Q

action: Left-Arc()

[ROOT, température]_S [a, un, très, gros, effet, sur, la, concentration]_Q

action: Shift

[ROOT, température]_S [a, un, très, gros, effet, sur, la, concentration]_Q

action: Left-Arc()

[ROOT, a]_S [un, très, gros, effet, sur, la, concentration]_Q

[ROOT, a, un]_S [très, gros, effet, sur, la, concentration]_Q

[ROOT, a, un, très] $_{S}$ [gros, effet, sur, la, concentration] $_{Q}$

[ROOT, a, un, très] $_S$ [gros, effet, sur, la, concentration] $_Q$

action: Left-Arc()

[ROOT, a, un, gros]_S [effet, sur, la, concentration]_Q

[ROOT, a, un, gros]_S [effet, sur, la, concentration]_Q

action: Left-Arc()

[ROOT, a, un]_S [effet, sur, la, concentration]_Q

action: Left-Arc()

[ROOT, a, effet]_S [sur, la, concentration]_Q

[ROOT, a, effet, sur]_S [la, concentration]_Q

action: Right-Arc()

[ROOT, a, effet, sur, la]_S [concentration]_Q

action: Shift()

[ROOT, a, effet, sur, a]_S [concentration]_Q

action: Left-Arc()

[ROOT, a, effet, sur, concentration]_S []_Q

action: Right-Arc()

[ROOT, a, effet, sur, concentration]_S []_Q

[ROOT, a, effet, sur]_S []_Q

[ROOT, a, effet]_S []_Q

[ROOT, a] $_S$ [] $_Q$

Drawbacks of the arc-eager algorithm

- The arc-eager system has a weaker soundness result than the arcstandard system
- It does not guarantee the output to be a dependency tree, only a sequence of (unconnected) trees.
- In the best case, this is a sequence of length 1, meaning that the tree is in fact a tree.
- In the worst case, this is a sequence of length n, meaning that each word is its own tree.
- The arc-eager parsers normally have a last step that attaches everything that remains in the stack to the root

Transition-based parsing with a neural classifier

The problem with manual features

- Feature combinations yield literally millions of features for parsing
- It's very difficult to weight them all correctly or to chose the right feature templates
- Despite being many, they are still always incomplete
- Lexical features are extremely sparse:
 - the feature 'word surface form' can take any of **tens or hundreds** of thousands categorical values...
 - ...each absolutely unique and not related to each other
- In the end, feature extraction sometimes takes more time than parsing itself

Example of a neural arc-standard algorithm

- Chen and Manning (2014)
 - The first neural parsing architecture that really works
- Replace the action selection module by a neural network

Example of a neural arc-standard algorithm

- Chen and Manning (2014)
 - The first neural parsing architecture that really works
- Replace the action selection module by a neural network
- Cube activation function
 - It directly extracts feature combinations of up to three features

$$h = (W_1^w x^w + W_1^t x^t + W_1^l x^l + b_1)^3$$

Example of a neural arc-standard algorithm

- Chen and Manning (2014)
 - The first neural parsing architecture that really works
- Replace the action selection module by a neural network
- Cube activation function
- POS tags and arc labels are discrete sets
 - Normally represented as one-hot vectors
 - Just like words, there should be similarities
 - NN (singular noun) should be similar to NNP (plural noun)
 - Dense embedding layer for POS tags and arc labels capture relationships
- Better results in accuracy and parsing speed compared with previous parsers with statistical classifiers

Example of a neural arc-standard algorithm: Experimental Results

Parser	Dev		Test		Speed
	UAS	LAS	UAS	LAS	(sent/s)
standard	89.9	88.7	89.7	88.3	51
eager	90.3	89.2	89.9	88.6	63
Malt:sp	90.0	88.8	89.9	88.5	560
Malt:eager	90.1	88.9	90.1	88.7	535
MSTParser	92.1	90.8	92.0	90.5	12
Our parser	92.2	91.0	92.0	90.7	1013

Table 4: Accuracy and parsing speed on PTB + CoNLL dependencies.

Parser	Dev		Test		Speed
	UAS	LAS	UAS	LAS	(sent/s)
standard	90.2	87.8	89.4	87.3	26
eager	89.8	87.4	89.6	87.4	34
Malt:sp	89.8	87.2	89.3	86.9	469
Malt:eager	89.6	86.9	89.4	86.8	448
MSTParser	91.4	88.1	90.7	87.6	10
Our parser	92.0	89.7	91.8	89.6	654

Table 5: Accuracy and parsing speed on PTB + Stanford dependencies.

Parser	Dev		Test		Speed
	UAS	LAS	UAS	LAS	(sent/s)
standard	82.4	80.9	82.7	81.2	72
eager	81.1	79.7	80.3	78.7	80
Malt:sp	82.4	80.5	82.4	80.6	420
Malt:eager	81.2	79.3	80.2	78.4	393
MSTParser	84.0	82.1	83.0	81.2	6
Our parser	84.0	82.4	83.9	82.4	936

Table 6: Accuracy and parsing speed on CTB.

Example of a neural arc-standard algorithm: Model comparison

Figure 4: Effects of different parser components. Left: comparison of different activation functions. Middle: comparison of pre-trained word vectors and random initialization. Right: effects of POS and label embeddings.

Deep learning for parsing

SyntaxNet

- In 2016, Google released SyntaxNet, a neural parser implemented in TensorFlow, and state-of-the-art models:
 - https://github.com/tensorflow/models/tree/master/research/syntaxnet
- Implements the system described in (Andor et al. 2016):
 - 'globally normalized transition-based dependency parser'
 - Changes compared to (Chen and Manning 2014):
 - Beam search
 - Global optimisation using Conditional Random Fields (CRF)
 - all valid sequences of transition operators are scored.
 - 2 hidden layers of 1024 dimensions each.
- Combines the flexibility of transition-based algorithms and the modelling power of neural networks (even without recurrence)
- Parsey McParseface model: 92.79 LAS on English PTB
 - LAS 80.38 on UD v1.3 English Treebank

ParseySaurus

- Google then moved to using LSTMs in their DRAGNN framework
 - 'Dynamic Recurrent Acyclic Graphical Neural Networks';
 - Described in (Alberti et al. 2017)
 - LSTM transition-based neural model
 - character-based input layer
- ParseySaurus model: 84.45 LAS on UD v1.3 English Treebank

The CoNLL 2017 shared task

- The task was to parse raw texts in different languages into dependency trees
- Unlike the previous CoNLL 2007 shared task, the input is raw text:
 - no tokenisation
 - no sentence segmentation
 - no lemmas
 - no PoS tags
- Consistent Universal Dependencies (UD) annotation used for all languages
- Training and test data came from the UD 2.0 collection:
 - 64 treebanks in 45 languages.
- 4 'surprise' languages with no training data: Buryat, Kurmanji Kurdish, North Saami and Upper Sorbian
- A major milestone in advancing data-driven dependency parsing
 - 33 participants
 - DRAGNN was one of the 2 baselines

The Dozat et al. (2017) parser

- The system described in (Dozat et al. 2017) is the winner of the shared task
 - average LAS 76.30, average UAS 81.30
- **Graph-based**: for each word, the parser looks for the most likely head, and then decides how to label the resulting dependency

The Dozat et al. (2017) parser

- The input to the model is a sequence of tokens and their part of speech tags
 - Word embeddings + character-based embeddings
- It is put through a 3-layer bidirectional LSTM network
- The output state of the final LSTM layer is then fed through four separate ReLU layers, producing four specialised vector representations for each word
 - 1. one for the word as a dependent seeking its head
 - 2. one for the word as a head seeking all its dependents
 - 3. another for the word as a dependent deciding on its label
 - 4. and a fourth for the word as head deciding on the labels of its dependents
- These vectors are then sequentially fed to two biaffine classifiers:
 - the first computes a score for each pair of tokens, with the highest score for a given token indicating that token's most probable head
 - the second computes a score for each label for a given token/head pair, with the highest score representing the most probable label for the arc from the head to the dependent

Beyond the Dozat et al. (2017) parser

- In the CoNLL 2017 shared task, Dozat and colleagues used word2vec (non-contextual) word embeddings
- They can be replaced with contextual embeddings (ELMo, BERT)
- But the contextual information provided by BERT makes the LSTM layers redundant
- The output of BERT can replace the architecture up to the LSTM layers (included)
 - This is the parsing architecture proposed by (Kondratyuk & Straka 2019)
 - It is the architecture we used to evaluate the parsing performance of our French BERT model CamemBERT (Martin et al. 2019, 2020)
 - We improve the state of the art of parsing for French

