

AU NO.

TECHNICAL
MEMORANDUM
NCSC TM232-78

JULY 1978

TRADE-OFF ANALYSIS OF PROPULSION SYSTEMS FOR SUBMERSIBLES (TAPSS)

R. S. PETERSON

Production and the second seco

AFTROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

NAVAL COASTAL SYSTEMS CENTER

DANAMA CITY, FLORIDA 32407

copy 51 78 07 14 007

NAVAL COASTAL SYSTEMS CENTER

PANAMA CITY, FLORIDA

32407

CAPT JAMES V. JOLUIFF, USA Commending Officer GERALD G. GOULD Technical Director

ADMINISTRATIVE INFORMATION

Investigation and computer program implementation were accomplished under Task Area Number SF 411 213, Program Element Number 62543N, Work Unit Number 20810, and Task Area Number SF 34 371 491, Program Element Number 62374, Work Unit Number 20298.

Released by Douglas E. Humphreys, Head Hydrodynamics Division July 1978 Under Authority of M. J. Wynn, Head Coastal Technology Department SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
NCSC-TM-232-78	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)	TYPE OF REPORT & PERIOD COVERED
TRADE-OFF ANALYSIS OF PROPULSION SYSTEMS	Technical Memorandem
FOR SUBMERSIBLES (TAPSS).	6. PERFORMING ORG. REPORT NUMBER
R. S. Peterson	F 43 411 F 3 4 87
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Name 1 Company Company Company	Task Area No. SF 411213;
Naval Coastal Systems Center Panama City, Florida 32407	Program Element No. 62543N; Work No. 20810 and
H. CONTROLLING OFFICE NAME AND ADDRESS	July 1978 /
15F43411213, SF34371491)	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME ADDRESS(II different from Controlling Office)	15. SECURITY GLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for Public Release: Distribution Uni	limited
Approved for Public Release: Distribution Unit	O PULLED
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	Dalle
	Dalle
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	D. Caller
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the supplementary notes	m Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES	m Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the abstract entered in Block 20, if di	m Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Trade off analysis Drag	m Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the state of	m Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number) Trade off analysis Drag Submersibles Costs Underwater vehicles Design Propulsion system integration Computerized simulation 20. ABSTRACT (Continue on reverse eide if necessary and identify by block number)	m Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from 18. Supplementary notes 19. Key words (Continue on reverse side if necessary and identify by block number, Trade off analysis Drag Submersibles Costs Underwater vehicles Design Propulsion system integration Computerized simulation 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report documents Trade-off Analysis of 1	Propulsion Systems for Sub-
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the state of the second	Propulsion Systems for Sub- igned to aid in optimizing id. dry, underwater vehicle by
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the state of	Propulsion Systems for Sub- igned to aid in optimizing it, dry, underwater vehicle by s. The program calculates
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identity by block number, Trade off analysis Drag Submersibles Costs Underwater vehicles Design Propulsion system integration Computerized simulation 20. ASTRACT (Continue on reverse side if necessary and identity by block number) This report documents Trade-off Analysis of mersibles (TAPSS), a FORTRAN computer program desithe size, cost, and performance of a preprogrammed performing propulsion-related parameter trade-offs and approximate cost.	Propulsion Systems for Sub- igned to aid in optimizing if, dry, underwater vehicle by is. The program calculates as a function of input speeds
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from the state of	Propulsion Systems for Sub- igned to aid in optimizing if, dry, underwater vehicle by is. The program calculates as a function of input speeds incle configurations and their
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the state of	Propulsion Systems for Sub- igned to aid in optimizing i, dry, underwater vehicle by s. The program calculates as a function of input speeds nicle configurations and their program will assist in the

DD 1 JAN 73 1472 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED UNCLASSIFIED SECURITY GLASSIFICATION OF THIS PAGE (When Date Entered)

10.

Task Area No. SF 34 371 491 Program Element No. 62374 Work Unit No. 20298

19.

Identifiers:

TAPSS (Trade off Analysis of Propulsion System for Submersibles)

NTIS	White Section	4
DDC	Buff Section	3
UNANMOUNG	CEO C	3
JUSTIFICATE		
DISTRIBUTI	ON/AVAILABILITY CODES	
Dist. 3	SP. CIA	L
Λ		

TABLE OF CONTENTS

					Page No
INTRODUCTION					1
PROGRAM DESCRIPTION					2
Input and Output					2
Calculation Scheme					4
Drag Calculation					5
SUMMARY AND RECOMMENDATIONS					8
APPENDIX A - TAPSS INPUT DATA RECORD DESCRI	PTIC	ON.			A-1
APPENDIX B - PROGRAM LISTING					B-1
APPENDIX C - SAMPLE EXECUTION					C-1
APPENDIX D - TAPSS PROGRAM FLOW CHART					D-1

INTRODUCTION

Mines are one of the most severe and fastest growing threats to U.S. security. A program was initiated by the Navy to develop the mission requirements, system characteristics, and technology ncesssary for a remotely controlled or preprogrammed, self-propelled, submerged, mine countermeasures (MCM) vehicle. The exact vehicle mission has not yet been established. Thus, performance and mission parameters such as speed, endurance, vehicle configuration, payload, sensor, and neutralization capability are undefined. To define a reasonable range of mission requirements, the relative effect of many such parameters must be examined through a trade-off analysis. The analysis becomes iterative, because the resulting range of mission requirements are used as input to the trade-off analysis for additional refinement of system parameters.

Because of the large number of factors involved, computerized performance of the trade-off analysis is most effective. A FORTRAN computer program Trade-off Analysis of Propulsion Systems for Submersibles (TAPSS), was developed to examine a wide variety of vehicle propulsion systems. TAPSS supersedes an earlier program written in BASIC, which was documented in an NCSL unpublished document(1). Although the two programs use a similar approach in performing the trade-off analysis, TAPSS has expanded capabilities, including (1) use of FORTRAN, a more universal and powerful language, (2) an accurate drag calculation to account for laminar and transition flow (in addition to turbulent), and surface roughness and protuberances, (3) cruise and dash mission speed input, (4) accurate, nonlinear relationships relating volume to performance and payload type, (5) complete versatility in combining types of engines and fuel systems, (6) a component weight calculation to check and correct for neutral buoyancy, and (7) an accurate hull structure algorithm which accounts for the strength and elastic stability of both the shell and rib stiffeners.

⁽¹⁾ Naval Coastal Systems Laboratory Technical Note TN396, Computer-Aided Trade-off Analysis of Submerged Minehunting Vehicle Systems, by R. S. Peterson, April 1977.

PROGRAM DESCRIPTION

TAPSS calculates vehicle power, size, and dollar cost as a function of mission (total endurance, dash speed, cruise speed, and percent cruise time), engine type, fuel system type, component densities, vehicle geometry, and numerous functions relating to cost, performance, and volume. The calculation scheme is iterative. The program assumes an initial estimate for vehicle size and calculates the corresponding drag coefficients and power required to propel the vehicle at the specified speeds. The program then calculates engine volume and fuel volume needed to meet the endurance requirement. The vehicle is scaled up or down to accommodate the resulting change in volume from the original assumed value. New drag coefficients are calculated, and the process is repeated until the volume change becomes small. When the calculation converges, the resulting power, size, and cost are printed out.

The basic layout for the MCM vehicle is presented in Figure 1. The position and sizes shown for the various subsystems are arbitrary and intended only to illustrate the volume build-up scheme.

INPUT AND OUTPUT

The following input is required for TAPSS:

- 1. A set of 40 volume functions.
- 2. A set of options to identify engine type, physical state and type of fuel, oxidizer state, type of battery, and technology time frame.
- 3. Miscellaneous information, including propeller efficiency, fuel/oxidizer mass ratios for hydrocarbon and hydrogen, instrumentation power requirements and seawater temperature.
- 4. Wing information: a number of equally sized control surfaces and, for each, a thickness to chord, chord to body length, and span to chord ratio.
- 5. Axisymmetric body information: prismatic coefficient, length to diameter ratio, nondimensional wetted area, and hull volume packing efficiency.
- 6. Volume information: a total internal volume estimate to initiate the calculation; fixed payload volumes for navigation, sensor, and mine neutralization instrumentation and equipment; and a control instrumentation sizing factor.

(Text Continued on Page 4)

Note: For vehicle shown, No. of wings = 8.

FIGURE 1. MCM VEHICLE BASIC LAYOUT, NTS

- 7. Roughness and protuberance information: height, drag coefficient, and fraction of total area covered for protuberances; average grain size in mils for roughness.
- 8. Weight calculation information: a set of factors relating component weight to size or performance.
- 9. A set of densities and cost factors associated with subsystem size and performance.
- 10. Hull weight calculation information: depth, material modulus of elasticity and yield strength, and safety factor.
- 11. A series of missions, each including a total endurance, cruise speed, dash speed, and percent of total endurance the vehicle is cruising.

These data are read by TAPSS from a data file called TAPSS/DATA (Appendix A).

The 40 sizing functions (presented in Program Listing, Appendix B) were derived from a search of literature in both the private and government sectors.

The computer program calculates and prints out resulting cruise power, dash power, engine and fuel system volumes, ballast or buoyancy, vehicle diameter and displaced weight, and approximate system unit construction cost. A sample output is shown in Appendix C.

CALCULATION SCHEME

The program listing and sizing algorithm are provided in Appendices B and D. $\,$

In determining vehicle volume, the program first uses the appropriate volume functions to calculate the volume occupied by each subsystem component (based on the component's maximum outer dimensions). Next, the volume is increased using the corresponding packing factor function to give the vehicle volume occupied by each installed component. The installed volumes are then summed and the result increased by dividing by the hull volume efficiency to include the volume required by the hull and other structures.

Once the total displaced volume of the vehicle is determined, vehicle shape information is used to calculate vehicle diameter and surface area. Depth and material properties are used to calculate hull

thickness, weight, and spacing of stiffeners (2). Next, mission speeds are used to establish the drag and horsepower values and, consequently, engine size. Horsepower and endurance are used in determining fuel system size. The resulting engine and fuel volumes are added to the original estimate, yielding a modified vehicle diameter. The drag calculation, and engine and fuel system sizing are repeated, and the iteration is continued until it converges.

There are several important assumptions involved in the sizing calculation. A volume-limited vehicle is initially assumed; that is, the size of the vehicle is determined by individual component volumes, not component weights. When the calculation converges on a final volume, the difference between the vehicle weight in air and the vehicle displaced weight is determined. Neutral buoyancy is achieved by adding the necessary ballast (which is not allowed to affect the volume) or the necessary air volume (which is not allowed to affect the weight). In the latter case, the vehicle sizing calculation must be reentered. The calculation quickly converges upon a vehicle meeting both volume and neutral buoyancy criteria.

DRAG CALCULATION

The drag of an underwater vehicle is a function of many variables, including velocity, temperature (viscosity), surface area, surface condition, protuberances, control surfaces, body fineness, and the type of flow (laminar, transition or turbulent). If the flow is fully turbulent and the body smooth, the drag coefficient may be calculated easily with a high degree of accuracy. At low speeds, however, there is a possibility of laminar or transition flow, particularly on the wings. In addition, roughness and protuberances are always present. Although not easily calculated, the contribution of such effects can be appreciable and should not be ignored in propulsion system-sizing calculations.

Table 1 illustrates the TAPSS drag calculation method. Four Reynolds numbers, corresponding to the dash and cruise speed for the wing and body, are calculated. Drag due to lift is neglected. Each of the four cases is directed into laminar, transition, or turbulent flow drag calculations. If laminar, the theoretical Blasius solution⁽³⁾ for smooth skin friction

⁽²⁾ Faires, V. M., Design of Machine Elements, The MacMillan Co., 1971, p. 523.

⁽³⁾ Hoerner, S. F., Fluid Dynamic Drag, published by the author, 1965, pp. 2-4 and 5-3.

TABLE 1

DRAG CALCULATION

Tra	Transition Schlicting	Body (Cruise and Drag) sition Turbulent Schlicting		Wing (Cruise and Drag) Transition Tu Schlicting	Drag) Turbulent cting
0.4	0.455/(log R) ^{2.30} - A/R	JO – A/R	1.328/VR	0.455/(log R) ^{2.30} - A/R	•
	Curve Fit to Hoerner (p. 5-1)	t to . 5-1)	CFRUF = 0	Curve Fit to Hoerner (p. 5-1)	Fit (p.
CFPR	CFPRT = 0	Hoerner (p. 5-7) 1.32(FPRT)(CD) (h) (R)	CFPRT = 0	Hoerner (p. 5-7) 1.32(FPRT)(CD) 1/3 0.067	(p. (c) (c) (0.0)
Sum for Relativ Contrib	eution	Sum for	CFBAS	Sum for Relative Contribution (RPCW)	Sum for
Curv Hoer (p.	Curve Fit Hoerner (p. 6-16) x RPCB	Hoerner Eqn. 28 (p. 6-17)	Hoerner Eqn. 2 (p. 6-5)	Curve Fit Hoerner (p. 6-2) x RPCW	Hoerner Eqn. 6 (p. 6-6)

is used. If the flow is turbulent or in the transition region, a modification of the empirical Schoenherr relation⁽⁴⁾ is used to calculate smooth skin friction.

The contribution of roughness to the skin friction is established as a function of relative grain size (k/ℓ) where k is a representative sand grain diameter and ℓ is the body length or wing chord. A table relating relative grain size to typical surfaces is provided by Hoerner (3). Hoerner constructed a set of experimental data showing the contribution of roughness to the modified Schoenherr smooth skin friction as a function of Reynolds number and relative grain size (Hoerner, p. 5-1)(3). An analytical expression was derived to reproduce the experimental data for use in TAPSS.

To establish the contribution of protuberances (such as rivets) to smooth skin friction, a technique presented by Hoerner (p. 5-7) was modified. The resulting expression gives the contribution due to protuberances as a function of Reynolds number, specific drag coefficient, relative height of the protuberance, and fraction of total area covered by the protuberances. In each case, the total skin friction is calculated as the sum of its individual components. The combined skin friction value is used in the body/turbulent total drag calculation and in the wing/turbulent and wing/laminar calculation. For the body/transition and wing/transition total drag calculation, two factors are calculated which represent the ratio of total skin friction to the smooth skin friction (RPCB and RPCW, Roughness and Protuberance Contribution for Body and for Wing, respectively).

The total drag coefficient, based on wetted area, must account for shape form drag and thus is a function of the length to diameter ratio. As body flow is not likely to be laminar, this case is neglected. A rough curve fit to data given in Hoerner (p. 6-16)⁽³⁾ was developed to calculate body total drag in transition. Since these data give the total drag coefficient for a smooth surface, it is necessary to multiply the drag by the factor (RPCB) determined in the skin friction calculation. For the body/turbulent case, Hoerner gives an equation relating the total drag to the skin friction (Hoerner, p. 6-17)⁽³⁾. The skin friction used in this expression is the sum of the individual contributions described previously.

⁽³⁾ibid.

⁽⁴⁾ Schlicting, F., Boundary Layer Theory, McGraw-Hill Book Company, 1968, p. 602.

The total drag coefficient for the wing is determined for any of the three types of flow. In cold water, a small wing at low speed would likely encounter laminar flow. In this case, Hoerner supplies an equation for the total drag as a function of skin friction (Hoerner, p. 6-5)⁽³⁾. The skin friction value reflects the contribution of roughness and protuberances. Hoerner provides a similar expression for wing turbulent flow (Hoerner, p. 6-6)⁽³⁾ which is used in a like manner. For the transition case, however, Hoerner presents only experimental data giving the total drag coefficient for smooth wings as a function of thickness to chord (Hoerner, p. 6-2)⁽³⁾. An analytical expression was derived which fits these data. The resulting drag is multiplied by the factor RPCW, determined in the skin friction calculation.

The entire drag calculation is performed for both the cruise and the dash speeds. In each case the total drag coefficients calculated for the wing and body are multiplied by their respective wetted areas, summed, and multiplied by $\frac{1}{2}$ ρV^2 to yield the resulting drag force.

SUMMARY AND RECOMMENDATIONS

TAPSS, a FORTRAN computer program, was developed to calculate the power, size, and approximate cost of small, dry submersibles as a function of speed, endurance, and a group of input parameters and functions. This program enables the user to examine a wide range of vehicle configurations and missions.

The user should be aware of the simplifying assumptions used in the analysis. The three most important assumptions in the sizing algorithm involve the drag calculation accuracy, shape limitations, and volume function accuracy. In the case of the drag algorithm, it is impossible to predict precisely the transition from laminar to turbulent flow, and the drag contribution of protuberances and roughness. In the case of shapes, situations could exist where the specified component would not fit into the vehicle, even though the various volumes sum correctly. For instance, suppose the program determines that, for a given mission and set of input parameters, a 2-foot diameter vehicle requires 3 cubic feet of electric motor. This would pose a problem if the required off-the-shelf motor has a diameter approaching 2 feet. Finally, the accuracy of the results is limited by the accuracy of the volume functions. These functions should be updated with improving technology and additional information.

⁽³⁾ ibid.

The vehicle size predicted by TAPSS is only an estimate. The absolute size should therefore be used only in the preliminary design stage.

TAPSS should be used principally for two functions. First, the program can assist in defining a reasonable set of mission requirements, given cost, and technology limitations. Second, once the mission is narrowed, the program can expeditiously minimize cost and size or maximize performance by manipulating vehicle geometry, payload, and propulsion system parameters. Analysis of the resulting matrix of vehicles will lead to a preliminary, optimum configuration. TAPSS exhibits much greater accuracy in performing the latter function, because the relative effect of changes in subsystem parameters can be more reliably assessed than the absolute size corresponding to one set of subsystem parameters.

APPENDIX A

TAPSS INPUT DATA RECORD DESCRIPTION

CIII.	DECORD				INPUT VARIABLE			
FILE	RECORD	NAME	VALUE	FORMAT	DESCRIPTION	REMARKS		
APSS/	0	TITLE	As Input	18A4	72-character alphanumeric problem			
ATA		TENG	, , , , ,	110	identifier DC motor and fuel cell	Records 1 and 2 specify a set of		
		TEMO	2	110	DC motor and battery	eight program options which identi-		
			3	110	DC motor and battery Internal combustion engine, closed cycle	fy engine type, fuel physical		
		IFUEL	4	110 110	Closed Brayton cycle engine Hydrocarbon	state and type, diluent, combustor type, oxidizer state, battery type,		
		II OLL	2	110	Hydrogen, 3000 psi gaseous	and technology time frame.		
			3 4	110	Hydrogen, liquid Hydrogen, metal matrix			
		IDILU	1	110	Air diluted hydrocarbon	When an entry is not applicable,		
			2	110	Helium diluted hydrocarbon	its value is arbitrary.		
2 - 1		ICOMB	1	110	LISF6 (lithium sulfurhexafluoride)			
			2	110	Carbon block combustor			
		IOXID	1	110 110	Oxygen, 3000 psi gaseous Oxygen, liquid Lithium inorganic battery			
	2	IBATT	1	110	Lithium inorganic battery			
			2	110	Silver zinc battery			
		ITIME	1 2	110 110	1980 technology 1985 technology			
			3	110	1990 technology			
	3 1 - 3 - 7	TEXT	1	110	Standard program output			
			2	110	Extended output for values of inter- mediate answers			
	3	EPROP	As Input	F10	Propeller efficiency			
		RHC	As Input	FIO	Fuel to oxidizer weight ratio for hydrocarbon			
		RHD	As Input	F10	Fuel to oxidizer weight ratio for			
		PINST	As Input	F10	hydrogen Power for instrumentation and overhead;			
		FIRST	AS THOUG	110	in kw			
		TEMPF	As Input As Input	F10 I10	Seawater temperature in °F	This value impacts vehicle drag. The total number of missions ex-		
	4	NEND NSPD	As Input	110	Number of endurance values Number of speed profiles for each	amined will be NEND X NSPD.		
					endurance			
	5	END	As Input	FIO	NEND values for total mission endur- ance; in hours			
	6	CRUZ	As Input	F10	NSPD values for cruise speed for each			
	7	DASH	As Input	F10	mission; in knots NSPD values for dash speed for each			
	1	ĺ			mission; in knots			
	8	PCC	As Input	F10	NSPD values for percent of total endur-			
	9	NWING	As Input	110	ance vehicle is cruising Number of identical control surfaces,	See Figure 1. When chord or span		
				770	including forward and rear	vary, use average value.		
		WTOC WCBL	As Input As Input	F10 F10	Wing thickness to chord ratio Wing chord to body length ratio			
		WSWC	As Input	F10	Wing span to wing chord ratio			
	10	PRCF	As Input	F10	Body prismatic coefficient	PRCF = hull displaced volume/[½ = (BD)?(BL)] where BD = maximum vehicle diameter and BL = vehicle length. (See Figure 1.)		
		BLOD HVEFF	As Input	F10 F10	Body length to diameter ratio Hull volume efficiency	HVEFF = (sum of component install-		
		HVEFF	As Input	110	Hall volume efficiency	ed volumes)/(hull displaced volume		
13.4		BNWET	As Input	F10	Body nondimensional wetted area	BNWET = (wetted area)/(vehicle diameter)		
	11	VINIT	As Input	F10	Initial estimate of total installed	A reasonable estimate will in-		
		VNAV	As Input	F10	Component volume; in cubic feet Volume of navigation equipment; in	crease speed of convergence.		
		VSEN	As Input	F10	cubic feet Volume of sensor equipment; in cubic			
					feet			
		VNUT	As Input	F10	Volume of neutralization equipment, in cubic feet			
		VCD	As Input	F10	Ratio of control equipment volume to vehicle diameter			
	12	HTPRT	As Input	F10	Height of protuberances; in feet			
		CDPRT	As Input	F10	Individual drag coefficient of pro- tuberance	See Hoerner, Fluid Dynamic Drag,		
		FPRT	As Input	F10	Fraction of total wetted area covered	1965, p. 5-7.		
		GSIZM	As Input	F10	by protuberances Average sand grain size; in mils	See Hoerner, Fluid Dynamic Drag,		
						1965, p. 5-3		
	13	DBRE	As Input	F10 F10	Density of Brayton engine system	Enter values for Record 13 in 1b/		
		DEME	As Input As Input	F10	Density of internal combustion engine Density of electric motor	cu it		
DEME As Ir	As Input							
		DFCS	AS Imput	F10		hand to be a second or a second		
		DECS DLIC DCBC	As Input As Input	F10 F10	Density of LISF6 combustor Density of carbon block combustor	Density is based on maximum linear dimensions and not displaced volum		

511.5	DECORD				INPUT VARIABLE	
FILE	RECORD	NAME	VALUE	FORMAT	DESCRIPTION	REMARKS
TAPASS/ DATA	14	DCON	As Input	F10	Density of control instrumentation and equipment	Enter values for Records 14 and 15 in 1b/cu ft
(Cont'd)		DNAV	As Input	F10	Density of navigation instrumentation and equipment	
		DNUT	As Input	F10	Density of instrumentation and equip- ment for neutralizers	Density is based on maximum linear dimensions and not displaced volume
		DSEN	As Input	F10	Density of instrumentation and equip- ment for sensors	
		DHMF	As Input	F10	Density of hydrogen metal matrix storage system	
	15	DHLF	As Input As Input	F10 F10	Density of hydrogen liquid storage Density of gaseous hydrogen storage	
		DHCF	As Input	F10	Density of hydrocarbon storage	
		DOXGS	As Input	F10	Density of oxygen gas storage	
		DOXLS	As Input	F10	Density of oxygen liquid storage	
		DBTSZ DBTLI	As Input As Input	F10	Density of silver zinc battery Density of lithium inorganic battery	
	16	CNAV	As Input	F10	Cost of navigation equipment	All costs, except CHP, are in
		CSEN	As Input	F10	Cost of sensor equipment	thousands of dollars.
		CNUT	As Input	F10	Cost of neutralization equipment	
		CCD	As Input	F10	Cost per foot vehicle diameter for con- trol equipment	
		CBRE	As Input	F10	Cost per shp for Brayton engine	
		CBRF	As Input	F10	Cost per shp for Brayton fuel system	
	17	CICE	As Input As Input	F10	Cost per shp for IC engine Cost per shp-hr of silver zinc	
		CLIB	As Input	F10	battery Cost per shp-hr of lithium battery	
		CFC	As Input	F10	Cost per shp for fuel cell	
		CEM	As Input	F10	Cost per shp for DC motor	
		CHCF	As Input	F10	Cost per cu ft of hydrocarbon fuel storage	
	18	CHDG	As Input	F10	Cost per cu ft of hydrogen gas storage system	
		CHDL	As Input	F10	Cost per cu ft of hydrogen liquid storage system	
		CHDM	As Input	F10	Cost per cu ft of hydrogen metal matrix storage system	
		COXG	As Input	F10	Cost per cu ft of oxygen gas storage system	
		COXL	As Input	F10	Cost per cu ft of oxygen liquid storage system	5
	19	CHP DEPF	As Input As Input	F10 F10	Cost per 16 of hull material Vehicle operating depth, in feet	Enter value in dollars.
	19	EPSI	As Input	F10	Hull material modulus of elasticity, psi	
		SPSI	As Input	F10	Hull material yield strength, psi	
		DPCF	As Input	F10	Hull material density, lb/cu ft	
		SF	As Input	FIO	Hull failure safety factor, ≥ 1.0	SF accounts for depths in excess of operating depth, hull penetrations, and hull aberrations.

(Reverse Page A-4 Blank)

APPENDIX B

PROGRAM LISTING

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

TAPSS/HAR6
RECORD =10 HCRDS. BLOCK =30 WOHDS.
CFEATED: 03/22/78 LISTED: 1755 05/10/78
THE FILE CONTAINS 787 RECORDS.

1	55	0	X E	Q	R	ES	i	T	L	15	ST		LI	S	TI	00	L																														0	00	00	00	OC
	11	.E				AF																																												01	
	11	3.		4 :	T	AF	5	5/	n	A'	TA	,	UP	. 1	T	E C	I	5 K	,	SA	٧	F	: 1	0	, t	31	0 (CK	1	V G		,	R	E C	U	K	D:	11)								0	00	CO	02	5 C
				01	M	E	15	10	N		SH	P	0 (2	0	. 2	0),	5	HF	C	(:	90	,	20))	, [N	DO	?	0	,	0	AS	H	(20)	C	RL	Z	(5	0)	,						03	
				P(C	(2	0),	T	1	IL	E	(1	8)																																0	00	c o	04	40
	:																																																	0	
(06	
(T	4	55	•	-1	+	A C	E	-(F	F																						5	۲	U	R	SI	18	ME	R	SI	RL	E S	5					07	
(F		5	P	E	T E	R	SC	N	•	•	1	MA	R	C+	4	6,		19	7	8																	06	
(05	
(PF	16	G h	A	M	•	IL	L	(0	M	-1	1	E	5	H	A F	T	H	U	R	F	PI		F	н,		U I	Δ	M E	T	FH	٠,		C	DM	P	N	FN	T	٧	OL	UM	1 E.	5.				10	
(U				00	0	CO	11	(
(A	5	FA	1	ES	,	CF		5	4 4	L	L		CF	. 4		SU	P	ME	H	5 1	P	LI	5	,	AS	5	A	F	UN	C	T	10	٨	1	DF	F	R	rP	U	LS	10	N						12	
(١,					00	10	CO	13	10
(MF												14	
(DF	N	5 1	T	16	5	,	1	5	C	CI	Y P	0	N :	٨	T	C	0	ST		FA	(1 (OH	S		A	NU)	A	S	FH	۲I	Ł	S	0	F	M	15	S	10	N				00	10	CO	15	0
(PF	20	FI	L	ES	,	((R	U I	S	F	,	D	A S	5+	,	P	E	RC	Ł	1		C	RI,	1	SE		4	N	D	T	0	TA	L	-	EN	DI	R	AA	C	E)	•				00	0	CO	16	0
(:																																														00	0	co	17	0
(:																																														00	0	CC	18	30
				cl	M	M(1	R	W	D,	R	W	С,	R	P	,	R	BC	,	CO	W	D,	•	D	W C	,	Cr	B	Γ,		CF	C	, (CF	W	D.	, C	F	C	. C	F	60	, C	f 6	C,	,	00	00	00	15	(
																																		UF	,	CI	FF	R	,	CF	,									30	
						۲,																								,	H	F	,														00	0	c o	21	C
			8	FF	R	T,	h	T F	R	۲,	. C	D	PF	T	, (C	,	۱T	C	С,	W	AF	A	,	WW	F	۲,	J																			00	0	CO	5.5	56
(:																																																	23	
(:																																														00	0	CO	24	4 C
(:	VE	11	UN	E	F	U	N C	T	10	IN	5																																			00	0	CO	25	0
(:			AL	L	1	1	lu	M	E	5	I	N	C	L	F	T		1	N T	F	= 1	T	1	OF		FL	E	١,		LE			S	۲	P	0=		H	Ρ,	D	AS	н.				00	0	CO	26	
(:																																																	27	
(CL	0	SE	L	C	4	CL	. E		6 F	A	Y 1	10	N	E		G I	N	F	A	N	D	n	R	V	E	T	H A	I	N	•	•		19	8	1								00	0	c o	28	36
				VE	R	1 (1	, ,	1)	= (0 .	1	3 •	5	++	- C	(1 ,	J) +	1		,																											25	
(CL	. 0	SE	L	C	Y	CL	E		H.F	A	4	10	N	E	N	G I	N	F	Δ	N	D	D	R]	١V	F	T	k I	I	N	•	•		19	8	,	1	9	90					00	0	CO	30	C
				VE	R	2	1	, .	1)	= ,	. 0	8	* 5	H	PI	. (I	. J)	+ 1		5												4																31	
(:			CL	. 0	SE	·	C	4	CL	E		IN	T	F	1	A	L	C	0 M	B	119	T	I	01	•	E	1 G	IN	F	1	11	D	D	H	I	V E	1	R	A I	N						-			32	
						(1																																												33	
(:					EL																	R	,	4	N	O	D	R]	V	ŧ	T	R	A I	N															34	
						(1																																												35	
(:			HY	D	R	16	EN		L	0	U	10		AP	C	1	CO	N	TA	I	NA	F	N.	T																						•			36	200
				٧H	L	(1	F)		6	. 0	+	0 .	3	* 1		F																																	37	
(RC													1)	A	NF	,	6	D٨	IT	A I	N	ME	N	T																-			36	
						(39	
(-	HY	D	RC	6	E N		M E	T	A	L	M	A 1	R	I	(5	TO	R	A (F	;	5 Y	5	TE	M																			00	0	00	40	C

	VHM(NTF)=3.0+.15+hTF	00000416
C	HYDROCARRON AND CONTAINMENT	00000426
	VHC(WTF)=3.0+.023*NTF	00000430
C	CARBON DIOXIDE SCHUBBER	00000446
	VSCRB(NTF)=1.0+0.1+NTF	00000450
C	BATTERY, LITHIUM INORGANIC	00000460
	VBTLI(SHPHR)=0.055*SHPHR	00000470
C	BATTERY, SILVER ZINC	00000486
	VBTSZ(SHPHR)=0.22*SHPHR	00000490
C	FUEL CELL SYSTEM, 1980	00000500
•	VFC1(1,J)=.33*5HPD(1,J)	00000510
C	FUEL CFLL SYSTEM, 1985	00000520
	VFC2(1,J)=.17*SHPD(1,J)	00000530
C	FUEL CELL SYSTEM, 1990	00000540
•	VFC3(1,J)=,QR+SHPU(1,J)	00000550
C	OXYGEN FUNCTIONS SEE SUBROUTINE OXIDZR	-
ç	dataen Functionssee Submitted axida	00000560
Č	BACKING LACEUR CHACKICAG	00000576
	PACKING FACTUR FUNCTIONS	00000550
C	PF=(VLL RASED ON MAX DIMENSIONS)/(VOL CONSUMED IN VEHICLE)	00000590
C	INDEPENDENT VARIABLES SIGNIFY THE VOL OF THE RESPECTIVE COMPONENT	
C		00000610
C	BRAYTUN ENGINE	00000
	PFBR(VPRE)=0.9+(1.0=EXP(=.3*(VBRE+3.5)))	00000630
C	INTERNAL COMPUSITION ENGINE	00000640
	PFIC(VICE)=0.9*(1.0=EXP(=.3*(VICF+3.5)))	00000650
C	DC ELECTRIC MOTOR	00000660
	PFEM(VFME)=0.9+(1.0-EXP(3+(VEMF+3.5)))	00000676
C	LISF6 COMBUSTOR	00000680
	PFLI(VLIC)=0.9	00000690
C	CARBON BLOCK COMPUSTOR	COCCOTOC
	PfCB(VCBC)=0.9	00010710
C	HYDROGEN LIQUIC	00000720
	PfHL(VHLF)=,9	00000730
C	HYDROGEN GAS	0000740
	PFHG(VHGF)=.9	00000750
C	HYDROGEN METAL MATRIX	00000760
	PFHM(NHMF)=0.9	00000770
C	HYDRCLARBON	00000780
	PFHC(VHCF)=.9	00000790
C	RATTERY	00000800
•	PFBT(VPTS)=.9	00000810
C	FUEL CELL	00000820
٠	PFFC(VFSC)=0.9	00000830
C	DAYGEN PACKING FACTOR FUNCTIONS: SEE SUBROUTINE OXIDIR	00000840
Č	UNIGER PROPERTY FACILITY FOR THE SECOND CONTINE UNIDER	00000850
c	FUEL CONSUMPTION FUNCTIONS	00000860
č	RCD=RATIO OF CRUISE TO DASH SHP	00000870
	MED-MAILE OF CAUTSE TO DASH SHE	00000011

```
CCOCCBEC
      WEIGHT (PER HA. TO EACH OF LASH HE CONSUMPTION
                                                                            00000890
      WHICH(1.J)=.25.5+FF(1...)
                                                                            (000,0900
      FHACTION (IC ENG. HZ. CHUISE) OF DASH CONSUMPTION
      WEIGHT (PER HA, IC ENG! OF PASH HE CONSUMPTION
                                                                            onocn930
      WEICHC(1.J)=0.77*SERO(1 J)
FRACTION (10 ENG. 10. CRUISE) OF DASH CUNSURPTION
                                                                            00000940
      FICHC(RCD)=1.C+RCD
                                                                            (0000960
      WEIGHT OF 12 FCH 1980 FUEL CFLI
                                                                            10010976
      WHECH (SHPHE) C.11*SHEHE
WEIGHT OF HE FOR 1985 FUEL FELL
                                                                            00000960
                                                                            00000946
      WEFC2(SHPER)=(.13*SHPHR
WEIGHT OF H2 OF 1990 FUEL (FLI
                                                                            CCCC 10UC
                                                                            (0011016
      WHFC3(SHPHR)=C.17*SHPHR
                                                                            00001020
      VULUME (PER -+, PRAYTUR) UF PASH LISE (CASUMF, ION
                                                                            00001030
      V+L1(1,J)=. 00+SHPE(1.J)
                                                                            00011040
      VILUME (PER FR. BRATTON) IF DASH CARBON HEUCE CUNSCIPTI
                                                                            00001050
      V+CR(1,J)=.0(*SHFL(1,J)
                                                                            (0011061
      FRACTICA (LISE CEMBUSTOR, CEUISE) OF DASE CONSUMPTIO
                                                                            (00(1076
      FLICRED=1.0*HCD
FRACTION (CE COMPUSTOR, CHUTSE) OF DASH CONSUMPTION
                                                                            (00L108L
C
                                                                            (00(1090
      FCH(RLT)=1.0+HCD
                                                                            00001100
                                                                            (00(111(
   TIME CALLILATION
                                                                            00011120
                                                                            00061130
      MUY=TIME (5)
                                                                            00011140
      XTIME=TIME(1 216000.0
                                                                            00001150
      NERS=XTIME
                                                                            000(1160
      THES=ATIME-NE S
                                                                            0001171
      "IN=THES+6C.C
                                                                            000(1166
                                                                            00001190
C FCHMAT STATEMENTS
                                                                            00001200
                                                                            00011210
??
      FURMAT(8F14... FURMAT("NO HYDROCARBON FOR FUEL CELL")
                                                                            (0001220
                                                                            r0001230
      FURMAT (5x.12,10F8.1,F7.1,F9.1,F4.1,F8. )
26
                                                                            00001240
      FURMAT(10F8.1)
                                                                            00001250
      FURMAT (10F1C.1)
                                                                            0000:3.0
      FORMATCHIA, 2X, AUF MENN FNUM OF SET LEM PL PER CT , COCC12/C
29
     SOCH SE HP
     00(11290
                                                                            conc1300
                                                                            (00 1310
      SIAH FT SK //)
FURMAT(" DRAGG,DRAGD,SEPC,SEFU,RCU,SEFEE,SEPERFE")
                                                                            (0((132(
3 6
                                                                            (C . 1 : 33(
      FCHMAT (" VENCI, VFLELI, VCXTFT . VNF w, WA E W, CLST . LPW] , VIACH")
                                                                           CCC11346
```

```
FURMAT(110,3F1C.3)
                                                                                                 00001350
        FURMAT(" VINCE, VNCE, VHULL, ED, BL, WCHD, NSPN, WTHK")
FURMAT(//, 1X, 17HENC, PCC, CHUZ, UASH)
                                                                                                 (.00(136(
45
                                                                                                 00001370
        FURMAT (5110)
FURMAT (10F10.3)
                                                                                                 00001380
        FURMAT (1884)
FURMAT(" WNEW, VBUCY, WENG, WFUFL, WOXID, WCCN, WNAV, WSEN, WNUT")
                                                                                                 00001400
       FURMAT(/,34x,"***TAPSS/MAK6 ***(",A6,")***",I2,1H1,I2,"***")
FURMAT(////,41x,21HSPEEDS AND ENDURANCES)
98
391
                                                                                                 00001420
     FCRMAI(/,18X,36HMISSION FND, HRS CRUISE, KNOTS,
$31H DASH, KNOTS PERCENT CHUISE,/)
FURMAI(8X,114,3F14,1,114)
392
                                                                                                 000(1441
                                                                                                 00001450
303
                                                                                                00001460
394
        FURMAT (141.///. 24x. 40HTRAUE-OFF ANALYSTS OF PRUPULSION SYSTEMS,
                                                                                                 00061476
      $17H FUR SUBMERSIBLES)
                                                                                                 000(1481
401
       FURMAT(/,22X,1844)
                                                                                                 00001490
402
        FORMAT (1H1,////, 1CX, 29HPROPULSION SYSTEM INFURMATION,/)
                                                                                                 00001500
       FURMAT(/,15x,14HFLECTHIC MOTOR)
FURMAT(15x,28HELECTRIC MOTOR AND FUEL CEIL)
FURMAT(15x,22HCLCSED CYCLE IC ENGINE)
FURMAT(15x,27HCLCSED CYCLE FRAYION ENGINE)
403
                                                                                                 00061510
404
                                                                                                 00001520
405
                                                                                                 00061530
406
                                                                                                 COOC 1540
407
       FURMAT (15%, 18HHYCHCCARRUN FUELED)
                                                                                                 00001550
       FURMAT(15x,30+HYDECGEN GAS FIELED -- 3,000 FS1)
408
                                                                                                00001560
       FLRMAT(15%,22H+YPREGEN LIQUID FUFLED)
FLRMAT(15%,28H+YPREGEN METAL MATRIX FUFLFU)
409
                                                                                                00001570
410
                                                                                                00001580
       FLRMAT(15X,11+AIR CILUTED)
411
                                                                                                 COOL 1591
        FURMAT(15X, 14HHELILM DILUTED)
                                                                                                 00001600
413
       FLRMAT (15% , 14 + GASECUS CXYGF )
                                                                                                 00001610
414
        FURMAT(15x,13HLIGUID UXYGEN)
                                                                                                 00001620
       FURMAT(15x,15HLITHTUM PATTERY)
FURMAT(15x,19HSILVER ZINC HATTERY)
415
                                                                                                 00061630
416
                                                                                                 00061646
       FORMAT(15x,15+LISF4 COMBUSTOR)
                                                                                                 00001650
417
       FURMAT(15x,22+CARECN HLOCK COMPUSTOR)
FURMAT(15x,16+TIME FRAME--1980)
418
                                                                                                 00001666
419
                                                                                                00001676
       FURMAT (15x, 14+TIME FRAME -- 1985)
420
                                                                                                00001686
        FURMAT(15X,16+TIME FRAME == 1990)
                                                                                                C00(1690
        FURMAT(/,10x,22HWING AND HULL GERMETRY)
                                                                                                00001700
       FUHMAT(15X,4HNO.=,12,3X,4HT/C=,FA.2,3X,5HC/EL=,F4.2,3X,4HS/C=,
                                                                                                CCOC 1710
423
       664.2) COCC1726 FLRMAT(15x,11HPR15M CUEF=,F6.4,3x,4HL/D=,F5.2,3x,12HHV FACK EFF=, COCC1736
      $F4.2.3X.12HND WET AREA=,F6.3)
                                                                                                (0061746
                                                                                                 (00( 1750
       FORMAT (/, 10x, 18HVCLUME INFORMATION)
425
      FURMAT(15X,6HVINTT=,F5.1,3X,RHVNAV=,F5.1,3X,5HVSEN=,F5.1,3X,
$5HVNUT=,F5.1,3X,12HVCL CON/DIA=,F4.1)
                                                                                                00001760
476
                                                                                                00001770
      FURMAT(/,10x,21HRCLGHNESS INFURMATION)
FURMAT(15x,26HFT, CD, AND FFACT FOR PROT,3F6.3,5x,
$17HGRAIN SIZE, MILS=,F5.2)
                                                                                                 CCCLITEL
427
                                                                                                00001790
428
                                                                                                00001800
      FURMAT(/, 10x, 21HCENSTTY OF COMPONENTS)
                                                                                                 00011810
```

THIS PAGE IS BEST QUALITY PRACTICABLE

```
FURMAT(15X, 45HDBRE, DICF, DEMF, UFCS, DLIC, DCGC, DCON, DNAV, DNUT,
                                                                                      00001826
      $48HDSEN, NHMF, LHLF, CHGF, DHCF, CUXGS, DOXLS, NBTSZ, DBTL1)
FURMAT(15x, 18f5, C)
                                                                                      00001840
431
432
       FURMAT ( / , 10 X , 25 HM ISCELL ANERUS INFORMATION )
                                                                                      00001850
     FURMAT(15X,1CHPRCH EFF= ,Fa.2,3X,9HINST HTS=,F4.1,3X,
$11HSN TEMP F= ,F3.C,3X,19HF/P RATIO- HC, H2: ,F4.3,1X,F4.3)
433
                                                                                      00001860
                                                                                      C00C187L
       FURMAT ( /. 10x . 18HCLST UF CUMPONENTS)
434
                                                                                      00001880
435
       FURMAT (15X, 45+CNAV, CSEN, CNUT, CCT, CBRE, CPHF, CICE, CSZP, CLIB,
                                                                                      OCC 1 AGL
     $44H CFC, CEM, CFCF, CHDG, CHUL, CHDM, COXG, CLXL, CHP)
                                                                                      00001900
436
      FURMAT(15X,18F5.1)
                                                                                      00001910
       FERMAT(1H )
437
                                                                                      00061926
       FLRMAT(/,1CX,24HVEFICLE HUL! INFORMATION)
439
       FORMAT(15x,10+DEPT+, FT=,F6.0,3x,21+YDUNGS ELAS MOD, PSI=,
                                                                                      00001940
     $F10.0,3x,23HMATL YIELD STHESS, PSI=,F7.0)
                                                                                      COOL 1950
440
      FLRMAT(15X,18+MATL DENSITY, PGF=,F5.0,3X,14+SAFETY FACTOR=,F4.1) 000C196C
       FERMAT(" HULT, RIBSP, WHULL, SNII, NRIB")
FERMAT(" CENG, CFUEL, COXID, CCON, CHULL")
401
                                                                                      00061976
402
                                                                                      00001980
       FLRMAT (" AN UFFRATE OF THE HIRYANCY IS REGUINEU")
443
                                                                                      00061996
C
                                                                                      00005000
   INFUT DATA FROM TAPSS/DATA
                                                                                      00002010
                                                                                      00005050
       READ(4.56)(TITLE(1), T=1,18)
                                                                                      00002030
       READ(4,48) TENG, IFLEL, IDILU, TOUMB, TOXID
                                                                                      00002046
       READ(4,48) IBATT, ITIME, IEXT
                                                                                      00002050
       READ(4,49)EPRLP, RFC, RHD, PINST, TEMPF
                                                                                      00002060
       READ(4,48)NEND,NSFT
                                                                                      00062076
       READ(4,49)(ENU(1), T=1, NEND)
                                                                                      18053000
       READ(4,49)(CFU7(1),1=1,NSPD)
                                                                                      00002090
       READ(4,49)(DASH(I), I=1,NSPF)
                                                                                      00002100
       READ(4,49)(PCC(1),1=1,ASPU)
                                                                                      00005110
       READ(4,41) NWING, WTCC, WCBL, WSWC
                                                                                      00002120
       READ(4,49)PRCF,BLCC,HVEFF, HNWLT
                                                                                      00002130
       READ (4,49) VINIT, VNAV, VSEN, VNIIT, VCD
                                                                                      00002140
       READ(4,49)HTPHT,CEPRT,FPRT,GSIZM
READ(4,49)DBRE,DICF,DFPE,DFCS,DLIC,DCBC
                                                                                      00012160
       READ(4,49)DCCN, DNAV, DNUT, DSFN, DHMF, DHLF
                                                                                      00062176
       READ(4,49)CHGF,DHGF,DCXGS,DCXLS,DBTS7,DETLT
READ(4,49)CNAV,CSEN,CNUT,CCC,CBHF,CBFF
                                                                                      COOCS180
       READ(4,49)CICE,CSZP,CLIB,CFC,CFM,CHCF
                                                                                      00005500
       READ(4,49)CHDG,CHDL,CHDM,CUXG,CUXL,CHP
                                                                                      00005510
       READ(4,49)DEPF, EPSI, SPSI, UPCF, SF
                                                                                      00015551
                                                                                      00002230
  DUTPUT INPUT INFLAMATION
                                                                                      00002240
                                                                                      00002250
       WHITE(3,394)
                                                                                      00005590
C THE TIME AND TITLE
WHITE (3,98) MDY, NHRS, MIN
                                                                                      00002276
                                                                                      00002286
```

```
100(5586
C THE VELOCITY AND ENDURANCE WHITE(3,391)
                                                                                               00002300
                                                                                               00002310
        WHITE (3, 392)
                                                                                               00002320
       MSHN=0
D0 601 I=1,NFND
                                                                                               (00(2336
                                                                                               00062346
        DO 602 J=1.NSPD
                                                                                               00002350
        MSHN=FSHN+1
                                                                                               00003360
        WRITE(3,393) MSHN, END(1), CRUZ(J), DASH(J), PCC(J)
                                                                                               00002376
602
        CENTINUE
                                                                                               00002386
        CLNTINUE
                                                                                               00002396
601
    THE INPUT OPTIONS AND CONSTANTS
                                                                                               00002400
        WRITE(3,402)
                                                                                               00002410
        GD TO (552,553,554,555), 1ENG
WRITE (3,404)
                                                                                               00002420
552
                                                                                               00002430
        IDILU=0
                                                                                               00002440
        GU TO 556
                                                                                               00002450
       HAITE (3,403)
IF (IBATT .EG. 1) HRITE(3,415)
IF (IBATT .EG. 2) HRITE(3,416)
GU TC 557
553
                                                                                               00002460
                                                                                               00017481
554
        WHITE(3,405)
                                                                                               00002500
        GD TO 556
                                                                                               (0062510
555
        WHITE(3,406)
                                                                                               00002520
        IF (ILCMA .EG. 1) WRITE(3,417)
IF (ILCMA .EG. 2) WRITE(3,418)
                                                                                               00002530
                                                                                               00012541
                                                                                               000(2550
        IF (IFUEL .EG. 1) WRITE(3,407)
                                                                                               00002560
556
        IF (IFUEL .EG. 2) WRITE(3,40A)
IF (IFUEL .EG. 3) WRITE(3,400)
                                                                                               00002570
                                                                                               000125HL
        IF (IFUEL .EQ. 4) MRITF(3,410)
IF (ILILU .EQ. 1) MRITF(3,411)
IF (ILILU .EQ. 2) MRITF(3,412)
                                                                                               (000;596
                                                                                               00005600
                                                                                               00002610
        IF (ILXID .EQ. 1) WRITE(3,413)
IF (ILXID .EQ. 2) WRITE(3,414)
                                                                                               00002636
        IF (ITIME .FQ. 1) WRITE (3,419)
IF (ITIME .EQ. 2) WRITE (3,420)
IF (ITIME .EQ. 3) WRITE (3,421)
                                                                                               CO0(2640
                                                                                               (0002650
                                                                                               00002660
        WKITE(3,422)
                                                                                               (0062670
        WHITE (3,423) NWING, WTCC, MCFI, WSWC
                                                                                               00012661
        WHITE(3,424) FRCF, FLCD, HVEFF, UNWFT
                                                                                               (0002696
                                                                                               (0002700
        WHITE(3,426) VINIT, VNAV, VSFN, VNUT, VCP
                                                                                               (0002710
        WEITE(3,427)
                                                                                               (0012721
                                                                                               (00(2731
        WHITE(3,428) FTPRI, COPRI, FFFT, GST/M
                                                                                               (0012741
        WEITE(3,429)
                                                                                               (0012751
        WEITE ( 2 , 4 3 ( )
```

```
WRITE(3,431) LARE, DICE, DEME, DECS, DLIC, DCAC, DCUN, DNAV, DNUT,
                                                                                00002760
     $DSEN, LHMF, DHLF, DHGF, DHCF, DCXG5, DCXLS, DPTSZ, DBTLI
                                                                                00002770
      WEITE (3,432)
                                                                                00002761
                                                                                00002796
      WHITE(3,433)EPRUP, PINST, TEMPF, RHC, RHD
      WHITE(3,434)
WHITE(3,435)
                                                                                00002800
                                                                                00002810
       WHITE(3,436)CNAV, CSEN, CNUT, CCU, CRRE, CBRF, CICF, CSZH, CLIB,
                                                                                00002820
     SCFC, CEM, CHCF, CHOG, CHDL, CHUM, CUXG, COXL, CHP
                                                                                00002830
      WHITE(3,438)
                                                                                00002840
       WHITE(3,439) CEPF, EPSI, SPSI
                                                                                00012851
      WRITE(3,440)DFCF,SF
                                                                                (0002860
C
                                                                                (0062876
                                                                                00002886
                                                                                C00C289C
  PRELIMINARY CALCULATIONS
C
                                                                                00002966
                                                                                00002910
      VISC=2.6F-9*(TEMPH-100.)**2.+7.5F-6
                                                                                00005936
      PFSI=64.2/144.0+DEFF
                                                                                00002946
      WHITE(3,29)
      WRITE(3,30)
                                                                                (0012950
                                                                               00002960
  ITERATE ENDURANCE
                                                                                00002960
                                                                                00012941
C
                                                                                00003000
      DC 210 I=1.NEND
C
                                                                                00003010
                                                                                00003026
   ITERATE SPEED COMPINATION
                                                                                00003036
C
      DC 205 J=1,NSFD
                                                                                COOC 3046
C
                                                                                00003050
                                                                                00003060
      VNEW=VINIT
      MSHN=ASHN+1
                                                                                0000 3070
      VINCR=0.0
                                                                                00003060
      VEUDY=0.0
                                                                                00003090
                                                                                00003100
                                                                                00003110
  UPLATE PECPULSION AND PAYLOAD VOLUME
                                                                                00003120
                                                                                00003130
   CALCULATE BODY GEOMETRY
                                                                                00003146
550
      VWOHS=VWOH
                                                                                00003150
      VWOH=VNEW+VBUCY

IF(VINCR .LT. C.C) VWOH=VWOH+(VNEW+VRUCY=VWOH5)/2.C

VHULL=VWOH/HVEFF
                                                                                00063160
                                                                                00003170
                                                                                COOL 3186
      BD=(4.*VHULL/PRCF/PLOD/3.14159)**.333
                                                                                00003190
                                                                               00003200
      BL=BD+PLOD
                                                                               00063210
C CALCULATE HULL THICKNESS AND WEIGHT, FAIRFS, P. 525
                                                                                00003226
```

```
C
       SATISFIES POTH STHENGTH AND INSTABILITY CHITERIA, BY INCLUDING
                                                                                     0000 3230
       A NUMBER OF FIRS, EACH WITH A SECTIONAL MOMENT OF INFRTIA, SMITEXPRESSED IN INCHES**4
                                                                                    0000 3240
       HULT=SF*PPSI*ED/2.0/SPSI
RIBSP=BD*(2.60*EPSI*(HULT/FF)**2.5/PPST/SF+0.45*(HULT/BD)**0.5)
                                                                                     00003200
       SMII=0.035+BD++3.C+R185P+SF+PPSI/EPS1+12.0++4.0
                                                                                     (00(326)
       NHIB=61 /RIPSP
                                                                                     00003260
                                                                                     00003300
       WHULL=PWET+HULT+DFCF
C CALCULATE WING (CONTACT SURFACE) GEOMETRY
                                                                                     00063316
       WCHD= CAL + AL
                                                                                     (00(3326
       WSPN=KSWC+WCHD
                                                                                     0006 3336
       WTHK=HTOC+WCHD
                                                                                     00013341
       WARA= HSPN+WCHU
                                                                                     (0063356
       WHET=2. +WARA
                                                                                     (00( 33ec
C
                                                                                     00063376
       IF (1EXT .EQ. 1) GC TO 551
                                                                                     COOC 3366
                                                                                     00063346
       WRITE(3,45)
                                                                                     COOL 3400
       WRITE(3,28)ENU(1),PCC(J),CRUZ(J),DASH(J)
       WRITE (3,44)
WHITE (3,22) VINCR, VWDH, VHULL AD, BL, MCHO, MSHN, WTHK
                                                                                     r0003410
                                                                                     (0003420
       WRITE(3,441)
                                                                                     00063436
       WRITE(3,22) HULT, RIPSP, WHULL, SMII, NRIP
                                                                                     (0063446
                                                                                     COCL 3450
       **EXTEND**
551
                                                                                     (0013461
      CONTINUE
                                                                                     COCL 347L
                                                                                     00003461
   CALCULATE DRAG CLEFFICIENTS FOR WING AND RUDY, FUR BOTH
C
                                                                                     00063446
                                                                                     00003500
       CRUISE AND DASH SPEEDS
       CALL LRAG
                                                                                     00003526
                                                                                     00003530
   PROPULSION SYSTEM SIZING CALCULATION
                                                                                     00063546
                                                                                     000C355C
C
   DRAG AND POWER REGUIREMENTS
                                                                                     00063500
       DRAGC=1.9905/2.*(CRUZ(J)*1.6A8)**2.*(CDMC*WME1*NWING+CDEC*BME1)
DRAGD=1.9905/2.*(LASH(J)*1.6A8)**2.*(CDMC*WMF1*NWING+CDEC*BME1)
                                                                                     00003570
                                                                                     (0003590
       INSTRUMENTATION PLWER CALCULATION
C
       IF(IENG .EQ. 1 .CH. IENG .EQ. 2) GO TU 271
IF(IENG .EQ. 3 .CH. IENG .EQ. 4) GO TO 272
                                                                                     00003600
                                                                                     0000 3616
                                                                                     00003626
271
       SHPOH=0.0
                                                                                     00003630
       SEPHRLH=0.0
       GU TO 273
       SHPOH=2.0+(PINST+1.341)
                                                                                     0006 365r
272
       SHPHRUH=SHPOH*ENC(I)
                                                                                     00003660
       SHPC(1,J)=DRAGC+CHLZ(J)+1.688/550.0/EPRUP+SHPUH
                                                                                     00013676
       SHPD(1,J)=DRAGD+PASH(J)+1.688/550.0/FPRUP+SHPUH
RCD=SHPC(1,J)/SHPD(1,J)
                                                                                     00003666
                                                                                     00003646
```

	ShPHR=FND(1)+(SHPC(1,J)+PCC(J)/100.+ShPU(1,J)*(1.=PCC(J)/100.))	00003700
	\$+SHPHCH	(00(371(
C	**EXTEND**	00003726
	IF CIEXT .FQ. 1) CC TU 389	00063736
	white(3,35)	00003740
	WEITE (3.28) LEAGC, DEAGD, SHPC(I, J), SHED(I, J), KCD, SHPHR, SHPUH,	00063750
	SHPHRLH	00003760
C	**EXTEND**	(00(3776
389	GU TC (110,110,120,130), IENG	00003760
C	RRAYTON ENGINE VILLUME CALCULATION	00003790
130	GL TC (131,132,132), ITIME	00003800
131	VERE=VER1(I,J)	00013811
	GL TC 133	(00(3850
132	VPHE=NER3(1,J)	00003830
133	WENG=LFHF * VBFE	(0003840
	CENG=CRRF+SHPU(I,U)	00003850
	VENGI=VARE/PFER(VERE)	1.0003860
	GU TC 140	00003870
C	IC ENGINE VOLUME CALCULATION	COOC 3880
120	VICE=VIC(I,J)	(00(389(
	WENG=LICF*VICE	00013911
	CENG=LICF+SHPL(I,U)	000(3910
	VENGI=V1CE/PFIC(VICE)	00003920
	GL TC 140	COUC 393C
C	ELECTRIC MOTOR VELUME CALCULATION	(0003940
110	VEME=VEM(I,J)	(0003951
	WENG=LFMF+VEME	(00(396(
	CENG=CFM+SHPC(I,J)	00003970
	VENGT=VFME/PFEM(VEME)	COCC 38FC
	THEL SYSTEM CALCULATION	(00(394(
140		0000400
C	BRAYTON FLEL SYSTEM	(0004010
144	VLX101=0.0	00004020
	MCXID=C.O	(0004030
	C(xIC=C.O	00014041
	G(TO (145,146), 100MB	0000 4050
	TIHLUM CCHRUSTCH	(00(406)
145		0004070
	*FLI(R(C)*PCC(J)/10C*)	0004090
	WFUEL=CLIC+VLIC	CCCC410C
	CFUEL=CBRF+SHFD(I+J)	
	VFUEL1=VLIC/PFLICVLIC)	00064110
	GC 1C 200	(00(412(
	CARREN BLECK COMPUSTER	00004130
146		00004140
	*FCH(RLD)*PCC(J)/10C.)	(00(4150
	WFUEL=CCRC+VCEC	(,000,416)

```
CFUEL=CHRF +SHFD(1.J)
                                                                                      COOC4170
                                                                                      COCC4161
       VFUEL1=VCHC/PFCH(VCBC)
       GC TC 200
                                                                                      00064196
C IC FUEL AND OXIDIZER VOLUME CALCULATION
                                                                                      00064266
143
       GC TC (251,252), ICIIU
DILFAC=1.0
                                                                                      COC 4210
251
                                                                                      00014221
       GU TO 215
DILFAC=0.8
                                                                                      (0064236
252
                                                                                      00064246
215
      GL TO (151,152,153,154), IFIFL
                                                                                      (00(4250
   IC--HYDRUGEN METAL MATRIX AND CXIDITER (LTG UR GAS)
4 WTF=WHTCH(I,J)+ENL(I)+((1.-PCC(J)/100.)+
                                                                                      00014261
154
                                                                                      00014271
      *FICH(KCD)*PCC(J)/100.)
                                                                                      10014261
       WIF=WIF+DILFAC
                                                                                      10064296
       VHMF=VHM(WTF)
                                                                                      00004300
       WFUEL=DHMF+VHFF
                                                                                      COOL 4310
       CFUEL=CHNM+VHFF
                                                                                      (0004320
       VFUEL1=VHMF/PF+M(V+MF)
CALL UXINZR (H+C,H+D,HTF,VFXTUI,T+UEL,TCXID,DUXLS,DUXGS,HUXID,
                                                                                      00064330
                                                                                      00064346
      $CUXID, COXL, COXG)
                                                                                      COCC 4350
GU TO 200
C IC--HYDRUGEN LIQUID AND UXIDIZER (LIG OR GAS)
                                                                                      0004366
                                                                                      00004370
      WTF=WFTCH(I,J)*END(I)*((1.=PCC(J)/100.)*
*FICH(KCD)*PCC(J)/100.)
153
                                                                                      00014361
                                                                                      00004396
       WIF=WIF+DILFAC
                                                                                      COC 4400
       VHLF=VHL(MTF)
                                                                                      (0064416
       WFUEL=DHLF +VHLF
                                                                                      000(4426
       CFUEL=CHOL+VHLF
                                                                                      0000 4430
                                                                                      00004440
       VFUEL1=VHLF/PF+L(V+LF)
       CALL EXIDER CHEC, HED, WIF, VOXIUI, IFUEL, TUXID, DUXLS, DUXGS, MUXIU,
                                                                                      00004450
      SCCXID, COXL, CCXG)
                                                                                      10000461
       GC TC 200
                                                                                      (0064476
  IC--HYDRIGEN GAS AND CXTUIZER (110 PH GAS)

WHT=HHICH(I,J)+END(I)+((1.-PCC(J)/100.)+
                                                                                      (00(446)
                                                                                      COLAASL
      *FICH(hcb)*PCC(J)/100.)
WTF=WTF*DILFAC
                                                                                      (00(450)
                                                                                      (0004510
       VHGF=VHG(WTF)
                                                                                      CC064526
       WFUEL=CHOG *VHGF
                                                                                      00004530
                                                                                      00004546
       VFUEL1=VHGF/PF+G(V+GF)
CALL CXTDZR(h+C,h+D,wTF,vCxTUI,TFUEL,TCXID,DUXLS,COXGS,WUXID,
                                                                                      00004560
      SCIXID, COXL, CCXC)
                                                                                      00064576
                                                                                      00064581
   IC--HYDRICAREON AND EXITIZER (ITH UP GAS)
                                                                                      (00(459(
      WTF=WHICHC(I,J)+END(I)+((1.-PCC(J)/100.)+
                                                                                      10064661
                                                                                      00064610
      *FICHC(PCD)*PCC(J)/100.)
                                                                                      00004620
       WIF = WIF + DILFAC
                                                                                      CCCC 4630
       VHCF=VHC(MTF)
```

THIS PAGE IS BEST QUALITY PRACTICATION FROM COPY FURNISHED TO DDC NCSC TM-232-78

	Mt NET = U + Ct + A + Ct	00064646
	CFUEL=CHCF+VHCF	(0004651
	VFUELI=VHCF/PF+C(V+CF)+VSCRP(NTF)	(0064660
	CALL LXIDZR(RHC,RHC,WTF, VUXIDI, IFUEL, IDXIC, COXLS, DOXGS, WOXID,	00004670
	SCTXIU.CCXT.CUYC)	00004680
	GL TO 200	00004690
	BATTERY VOLUME, WEIGHT, AND COST (FOR ELECTRIC MUTOR)	00004700
142		00004710
	M(XID=C.O	00004720
	CLXID=C.O	(00(473(
	SEPHRESHPERFENC(I)*PINST*1.301	00004740
	GU TO (258,259), IPATT	000(4750
258	그는 그의 학교는 나는 기록을 가득하다고 하는 것이다.	(000 4760
	WFUEL=DHTLI+VETLI(SHPHR)	(0004770
	CFUEL=CLIB+SFFFH GL TO 257	00004760
		(00(479)
259	VbTS=VPTS7(SHFHH) WFUFL=PPTS7*VETS7(SHPHR)	0004800
	CFUFL=CS78+SHFHR	0004821
257	VFUEL1=VRTS/PFHT(VFTS)	00004836
- 21	GC TO 200	00004840
C F	TUEL CELL VOLUME, WEIGHT, AND COST (FOR ELECTRIC MOTOR)	00004850
141	SHPD(I,J)=SHFU(I,J)+(PINST+1,341)	00004860
	SHPHR=SHPHR+FNC(I)*(PINST*1.341)	00004870
	GL TC (191,192,193), ITIME	00004880
191	VFCS=VFC1(I,J)	(0064896
• • •	VENGI=VFCS/PFFC(VFCS)+VENGI	00004900
	WENG=WFNG+CFCS+VFCS	00004910
	CENG=(FNG+CFC*SHPL(I,J)	(00(4920
	WTF=WFFC1(SHPFR)	COOC 493L
	GU TC 194	00004940
192	VFCS=VFC2(1,J)	(0004950
	VENGI=VFCS/PFFC(VFCS)+VENGT	00004960
	WENG=NFNG+DFCS+VFCS	00004971
	CENG=CENG+CFC+SHFC(I,J)	00014966
	WTF=WFFC2(SHPFF)	(00(499)
	GL TC 194	0000500
103	VFCS=VFC3(1,J)	00005616
	VENGI=VFCS/PFFC(VFCS)+VENGI	00005020
	WENG=NFNG+DFCS+VFCS	00005030
	CENG=CENG+CFC+SHPC(I,J)	00005040
	WTF=WHFC3(SHPFR)	(0005050
	FUEL CELL FUEL VCLUME, WEIGHT, AND COST	00005066
194	GL TC (195,196,197,198), IFIFL	00005070
195	WHITE (3,25)	00000000
	STOP	(0005040
196	VFGF=VFG(WTF)	00005100

```
WFUEL=PHGF +VHGF
                                                                               (00(5110
                                                                               00005120
      CFUEL=CHOG + V+GF
      VFUEL 1= VHGF/PF+G(V+GF)
                                                                               00005140
      CALL LXIDZE (HEC, HED, HTF, VOXTUI, TFUEL, TLXID, DUXLS, DUXGS, HUXID,
     SCLXIO, CCXL, CCXG)
                                                                               00015160
      GL TC 200
VFLF=VFL(HTF)
197
                                                                               00005180
      WFUEL=PHLF *VHLF
                                                                               00005190
      CHUEL =CHOL +VELF
                                                                               00005200
      VFUFL1=VHLF/PF+L(V+LF)
      CALL LXIDZR(RHC,RHC,WTF,VUXTP1,IFUEL,IPXTD,UDXLS,DCXGS,WCXID,
                                                                               (00(5210
                                                                               (0005220
     $CUXID.CUXL.CCXG)
                                                                               00005236
      GL TO 200
      VHMF=VHM(HTF)
                                                                               00005240
198
      WFUEL=PHMF .VHFF
                                                                               (0005250
      CFUEL=CHOM+VHMF
                                                                               00015261
      VFUEL 1 = VHMF / PF + M(V+MF)
                                                                               (0005270
      CALL LXINZR (H+C, H+D, KTF, V(XTUI, TFUEL, T(XID, DUXLS, DUXGS, NUXID,
                                                                               (0015261
     SCUXID.CUXL.CCXG)
                                                                               (0015291
                                                                               (0015311
                                                                               (00(5310
C SUM VOLUMES, WEIGHTS, AND COSTS
C INCLUDING PROP, CCN, SEN, NEUT, AND NAV
                                                                               (00(5320
                                                                               00005330
                                                                               00005341
200
      VPROPI=VFNGI+VFUELI+VOXICI
                                                                               C00(5350
      VCON=EC*VCD
                                                                               00005360
      VNEW=VCCN+VNAV+VSEN+VNUT+VPHOPT
                                                                               (0005370
      WCON=LCGN+VCCK
                                                                               (0005366
      CCON=CCD+BD
                                                                               0005390
      CHULL=CHP+WHULL/1000.0
      WKAV=LKAV*VNAV
                                                                               (0005400
                                                                               (0005410
       WSEN=LSEN+VSEN
                                                                               00005420
      WAUT=LAUT+VAUT
                                                                               00005436
      WNEW=NFNG+WFUEL+WLXID+WCON+FMAV+WSEN+WNUT+WFULL
      CLST=CENG+CFUEL+CCXIC+CCON+CNAV+CSEN+CNLT+CHULL
                                                                               00005441
                                                                               (0005450
      DFWT=VHULL +64.2
                                                                               (0015460
  CALCULATE VOLUME INCHEASE REGUIPED
                                                                               00005470
                                                                               (0015461
   IF LARGE, RECALCULATE
   IF SMALL, CHECK AND ACJUST FUR NEUTRAL PUNYANCY
                                                                               00005500
C
   IF NEGATIVE (FREN PREVIOUS CALCILATION), CHECK FOR NEUTRAL RUDYANCY (VMCH=AVG OF LAST THO CALCULATIONS)
                                                                               00005510
                                                                               (0015521
                                                                               (0005530
                                                                               00005540
      IF CVINCH .LT. C.C) GO TO BET
                                                                               00005550
      VINCR=(VNEW+VEUDY)-VWOH
                                                                               (0005561
C
      **EXTEND**
                                                                               (001571
       IF ( IEXT .EG. 1) GL TO 201
```

```
WHITE(3,442)
                                                                                    00015586
       White(3,22)CFNG,CFLEL,CUXID,CCON,CHULL WHITE(3,38)
                                                                                    00005596
                                                                                     00005600
       WHITE(3,22) VENGT, VFUEL I, VCXTUI, VNEW, WNEW, CLST, DPWT, VINCR
                                                                                     0005610
       **EXTEND**
                                                                                     0005620
   1 IF (ABS(VINCR) .GT. (VHULL/100.0)) GO TU 550 CHECK FCK NEUTRAL BULYANCY
                                                                                     (0065636
201
                                                                                     (0005640
8=1
       VHOLD=VBULY
                                                                                     (0005650
                                                                                     00015660
       VINCREC.O
       VBUOY=NFW/64.2=VNFW/HVEFF
IF(VBLCY .LT. 0.0) GC TO 51
IF ((VPUOY=VHLLU) .LT. (VHLLL/100.0)) GL TO 51
                                                                                     00005676
                                                                                     00005660
                                                                                     (0005690
                                                                                     00065700
C
       **EXTENU**
                                                                                    00065716
       IF ( IEXT .EG. 1) GL TO 57
       WEITE (3,443)
                                                                                    00005720
       WHITF(3,59)
                                                                                    (0065736
                                                                                     (·000574L
       WHITE(3,27) WHEW, VEUNY, WENG, WHUEL, WOXIN, HCON, WHAV, HSEN, HHUT
C
       **EXTEND**
                                                                                     00015751
                                                                                     00005760
57
       GC TC 550
C ADJUST FOR NEUTRAL HICYANCY
                                                                                    00005770
                                                                                    (0005760
51
       IF (VBLCY) 91,92,93
                                                                                    (0005790
91
       PLEAD=-(VHUOY+64,2)
                                                                                     C0065866
       VAIR=0.0
      GL TO 94
PLEAD=0.0
                                                                                    (0005810
                                                                                     00005820
92
                                                                                    00015830
       VAIR=0.0
                                                                                     00005840
       GU TC 94
       PLEAD=C.O
                                                                                    (0005850
93
                                                                                    00005860
       VAIR=VPUOY
C
                                                                                     (0005670
   OUTPUT RESULTS
                                                                                    (0015881
                                                                                    00005890
       WHITE (3.26) ASHA, END(I), CHI7(J), DASH(J), FCC(J), SHPC(I,J),
                                                                                    00005900
94
     $SHPD(1,J), VENGI, VILELI, VOXICT, PLFAD, VATH, CPHT, BD, COST
                                                                                    (0005910
                                                                                     (0005920
                                                                                     00005930
C NEW SPEEL
                                                                                    (0015940
205 CENTINUE
C NEW ENDUMANCE
                                                                                    (0005966
       WHITE(3,437)
                                                                                    COCC 5976
       CUNTINLE
210
       STOP
                                                                                     00015961
                                                                                    00005990
       END
C
                                                                                    00006000
                                                                                    (0016010
       SUBROLTINE OXIDZE (RHC, RHU, ETF, VOXIDI, IFIEL, IUXIU, DUXIS,
                                                                                     15093003
                                                                                    00004036
     SDEXGS, WOXID, CLXIC, COXL, COXG)
C
                                                                                    00004046
```

```
SUBRUUTINE CALCULATES INSTALLED VOLUME OF LIG OR GAS OXIDIZER FOR EACH TYPE OF FUEL
C
                                                                                        00016050
                                                                                        00004060
                                                                                        000(607(
       DXYGEN GAS (3,000 PSI) AND CONTAINMENT
                                                                                        COOCEDEL
       VUXG(MCX)=3.0+0.067+WOX
OXYGEN LIQUID AND CONTAINMENT
                                                                                        COOCHOSE
C
                                                                                        COOCEIUC
       VUXL(MCX)=3.0+0.0179+WCX
                                                                                        00006116
       DXYGEN GAS
                                                                                        00016120
       PFOXG(VOXGS)=0.95
                                                                                        000(413(
       DAYGEN LIGUID
                                                                                        00066146
       PFOXL(VOXLS)=0.95
                                                                                        00006150
                                                                                        (0006160
       GU TO (161,162,162,162), IFUFL
       WUX=WIF/RHC
161
                                                                                        00006170
       GO TO 170
WUX=WIF/RHD
                                                                                        0006181
162
                                                                                        00006190
       GD TO (171,172), 10X10
VCxGs=VCxG(WCX)
170
                                                                                        00004200
                                                                                        (00(6210
       WEXID=DOXGS+VEXGS
                                                                                        (0064556
       CDXID=CCXG*VCXGS
                                                                                        00006230
       VUXID1 = VOXGS/FFOXG(VOXGS)
                                                                                        00004240
       RETURN
                                                                                        00006250
172
       VCXLS=VOXL(WCX)
                                                                                        00066260
       WOXID=DOXLS+VOXLS
       CLXID=COXL+VCXLS
                                                                                        COUCESEC
       VUXID1=VOXLS/PFOXL(VOXLS)
                                                                                        00006290
       RETURN
                                                                                        0006366
       END
                                                                                        00006310
C
                                                                                        (0066320
C
                                                                                        (0066336
       SUBROUTINE DRAG
                                                                                        00064346
                                                                                        00066350
   DRAG CALCULATION ALL FINAL COEFFICIENTS CALCULATED HRT/ HETTED AREA
                                                                                        00006360
                                                                                        00006380
       COMMON RWD, RWC, RRC, RRC, COMP, COMP, CORP, CORC, CFWD, CFWC, CFPD, CFHC,
                                                                                        00006390
      SRPCHD, RPCHC, RFCBD, RPCHC, R, RL, MC, A, CFPAS, CFRUF, CFPRT, CF,
                                                                                        0006400
      SIEXT, IREY, DASH, CRLZ, WCHD, VISC, BL, GSIZM, HUF,
                                                                                        00006410
      SFFRT, HTPRT, CDFRT, BD, WTCC, WARA, WWFT, J
                                                                                        00006420
       FURMAT(12X,4F10.4,F10.2,4F10.5)
FURMAT(" REYNO NO. FOR BOUY IS LAMINAR")
FURMAT(1X,45HWD/WC/BD/BC==RFYNO RUF
881
                                                                                        00066436
                                                                                        C00C644C
882
                                                       CFRUF
CFFRT CF)
883
                                            O RUF
                                                                          HC.
                                                                                        COOL 6451
                               CFBAS
      $50H
                                                                                        00006460
       FURMAT (4F11.5)
8 . 4
                                                                                        00066476
       FURMAT(" CFND, CFNC, CFBD, CFBC")
FURMAT(" CDND, CDNC, CDBD, CDBC")
8 # 5
                                                                                        0006460
8#6
                                                                                        0006496
       FURMAT(" ERRCH -- K/L GT 5.E-4")
                                                                                        00006500
887
       DIMENSION CRUZ(20) DASH(20)
                                                                                        00006510
```

```
(0064526
   CALCULATE WING AND BLEY HEYNU
                                                                                                   0004530
        RMD=DASH(J)+1.688+WCHD/VISC
                                                                                                   10016550
        RMC=CHUZ(J)+1.688+KCHU/VISC
RED=CASH(J)+1.688+FL/VISC
        REC=CHIZ(J)+1.688+FL/VISC
                                                                                                   (0014561
   CALCULATE HODY AND WING OF FUR FACH SPEED
                                                                                                   COCCEGUE
                                                                                                   (0016611
C
                                                                                                   (000 6020
        IF (IEXT .FG. 1) GC TO 358
                                                                                                   (0016631
        WHITE (3.883)
                                                                                                   (00( 4646
        **EXTEND**
                                                                                                   (0016651
        DL 38L IREY=1,4
GL 7C (351,352,353,354), INFY
358
                                                                                                   19941000
                                                                                                   10016671
        RERWC
351
                                                                                                   (0006661
        RL=WC+F
                                                                                                   0001 6691
        GL TC 370
                                                                                                   00016741
        REHWC
                                                                                                   C00(4710
352
        RL = WC+F
                                                                                                   (0014721
        GL TC 370
                                                                                                   (0006730
353
        RL=PL
                                                                                                   0006750
        GL TC 3/0
                                                                                                   00006760
3 4
        R=RRC
                                                                                                   (0006770
        RL = AL
                                                                                                   00066786
C
                                                                                                   (0016791
   BASE SKIN FRICTILA
C
                                                                                                   00014800
                                                                                                   10006810
        RLF=GSTZM/1.214/FL
370
                                                                                                   0001 4821
        IF (RUF . LT. 1.CL-0) RUF=1.0F-0
IF (RUF .GT. 1.CL-0) WHITE (3.087)
IF (RUF .GT. 1.OL-4) HUF=1.0F-4
                                                                                                   00006836
                                                                                                   0006846
                                                                                                   00066850
        CFRUFF=1.667F=4*(AL UG1C(RUF)+0.0)**2.0+(.0017
                                                                                                   00006860
        RC=1.CF6-RUF+8.OF5
                                                                                                   (0016871
 IF(R .IT. BC) GU TC 371
IF(R .IT. 1.017) GT TU 372
GU TC 373
LAFINARI BEYNU .LT. BC -- HUFFPER, P. 2-4, 2-6
71 CFBAS=1.328/R**.5
                                                                                                   .0014881
                                                                                                   (0006890
                                                                                                   COOLEGUE
                                                                                                   00064916
371
                                                                                                   00006920
                                                                                                   (00(6930
        CFHUF=C.0
        CFPRT=r.n
                                                                                                   CCCC 6946
GL TC 390

C TRANSITIEN: RC .LT. REYNO .LT. 1E7 == H(FHNER, F. 5=1, SCH, F. 21.2 (OOC696C 372 A=3594.0+ALOG1C(FC)=1H415.C (CFBAS=.455/(ALCG1C(R))++2.5P=A/R

CFBAS=.455/(ALCG1C(R))++2.5P=A/R
```

```
CFPRT=C.O
                                                                                  (00(4941
       IF(CFRUEM .GT. (.455/(ALOG1C(R)++2.58))) CFRUE=CFRUEM=CFHAS
IF(CFRUEM .LF. CFHAS) CFRUE=C.O
                                                                                  C0067066
                                                                                  c0007016
GO TO 390
C TURBULENT (ABOVE 1.017): INCLUDE PROTUB -- HOERNER, P. 5-1, 5-7
                                                                                  (0017021
                                                                                  (000 7030
373 CFBAS=.455/(ALCG1C(R))++2.5P
                                                                                  00017041
       IF (CFHIFM .GT. CFEAS) CFRUF=CFRUFM-CFBAS
                                                                                  (0017050
       IF (CFALFM .LF. CFEAS) CFRUF=0.0
CFPRT=1.32*FPAT*CDPRT*(HTPHT/NL)**.333*A**.067
                                                                                  (0017060
                                                                                  00007070
390 CF = CF bAS+CFRUF+CFFFT
                                                                                  10017016
       **EXTEND**
                                                                                  00017096
       IF (IEX1 .EQ. 1) GC TO 400
WRITE(3, A81)R, HUF, CFRUFM, HC, A, CFRAS, CFRUF, CFPHI, CF
                                                                                  00007160
                                                                                  00017111
C
       **EXTENU**
                                                                                  000(7120
400
     GL TO (361,362,363,364), IRFY
                                                                                  00017130
                                                                                  00017146
      CH WD=LFRAS
361
                                                                                  00007156
   SAVE CONTRIBUTION OF R & P FOR WING TRANSTILLN DASH OF CALCULATION RECOMMENCE/CEBAS
                                                                                 (0007166
                                                                                  (0017111
       GU TO 380
                                                                                  COCC7160
                                                                                  (0067196
      CFWC=LFBAS
                                                                                  (0017201
362
   SAVE CONTRIBUTION OF R & P FUH WING TRANSTTICN CHUISE OF CALCULATION (0017210)
RHCWC=CF/CFBAS
       GG TO 380
                                                                                  (0017236
C
                                                                                  (0017241
      CFHDELE
343
                                                                                  COOL 7250
C SAVE CONTRIBUTION OF R & P FOR PURY TRANSTITUM DASH OF CALCULATION
                                                                                 00007240
       RFCRD=CF/CFBAS
                                                                                  C00(727(
                                                                                  (0017281
       GL TC 380
                                                                                  (0067296
C SAVE CONTEINUTION OF R & P FUF PURY TRANSITION CHUISE OF CALCULATION (000C731C
      RFCRC=CF/CFBAS
     CENTINUE
300
                                                                                  00067346
                                                                                  0000 7350
  CALCULATE BODY TETAL TRAG COEFFICIENTS, GIVEN CFED AND CFEC,
                                                                                  00067366
   HOERNER, 6-16, 6-17
C
                                                                                  00007376
                                                                                  00067386
C CRUISE BLOY. TRANS + TURB
                                                                                  C0007394
       IF (RbC=1.E7) 366,366,365
CUBC=CFBC*(1.+1.5*(BD/FL)**1.5+7.*(BD/PL)**3.)
                                                                                  0000 7400
       GL TO 36A
IF (RRC .LT. 1.F6) WRITE(3,882)
                                                                                  (0017420
                                                                                  (0067436
       CLBC=(.001*(ALCG1C(RRC)=6.)+.UC2)*RPCHC
                                                                                  00007440
C DASH BODY, THANS & TLFR
                                                                                  00017450
```

NCSC TM-232-78

```
00017461
      IF (RBL-1.E7) 450,450,449
348
449
       CUBD=CFBD+(1.+1.5+(BD/RL)++1.5+7.+(BD/RL)++3.)
                                                                                       COOC 747(
                                                                                       00017461
       GU TO 451
       IF (RAL .LT. 1.F6) WRITE (3.FA2)
                                                                                       COOL 7496
450
       CUBD=(.001*(ALCG1C(RPD)-6.)+.U02)*RPCBD
                                                                                       00007500
                                                                                      00067510
C CALCULATE WING TUTAL TRAG COEFFICIENTS
                                                                                      (0017526
                                                                                      00007536
  CALCULATE WING TUTAL CRUISE UHAG, GIVEN CFAC
                                                                                      00017541
451 IF (RMC .LT. 1.E5) GC TO 382
IF (RMC .LT. 1.E6) GC TO 381
                                                                                      (00C755C
                                                                                      00007560
   TURBULENT -- HUFRNER, 6-6
                                                                                      00007576
       CUNC=hAKA/WWFT+2. *CFWC+(1.+2. *WTDC+60. *MTUC**4.)
                                                                                      00007580
                                                                                      (0007596
       GL TC 383
C TRANSITION -- CURVE FIT TO HOERNER, 6-2
C INCLUDE HUF AND FROT FROM CFMC CALCULATION
                                                                                      CO017600
                                                                                      C0007616
     CDMC=MARA/WWF1+1C.**((.16+2.*7*WTUC)*(ALCG1U(MWC)=4.)**2.+
*ALOG1C(.0034+.0227*WTUC))*PPC**C
                                                                                      0007620
C LAMINAR--- FORRNER, 6-5
                                                                                      00017646
3R2 CUMC=MAHA/MWFT+(2.*CFMC+(1.0+MTUC)+MTUC++2.0)
C CALCULATE WING TOTAL PASH DRAG, GIVEN CEMB
                                                                                      (0007660
                                                                                      (0017671
3P3 IF (RMC .LT. 1.E5) GC TO 3P5
IF (RMC .LT. 1.E6) GC TO 3P6
                                                                                      (0067686
                                                                                      00007696
       CUMD=WARA/WWFT+2.C+CFWD+(1.0+2.0+WTDC+60.C+WTUC++4.0)
                                                                                      00007700
     GU TC 387
CUMD=MARA/WWFT+1C.**((.16+2.47+WTUC)*(ALCG1U(KWG)=6.)**2.+
                                                                                      00017711
                                                                                      00007720
      *ALOG1((.0034+.0227*WTUC))*FFCWC
                                                                                      COOL 7730
       GL TO 387
                                                                                      00067746
                                                                                      00017750
       CUMD=KARA/WWEI+(2.C+CFWD+(1.C+WTCC)+WTCC++2.0)
385
                                                                                      00017760
       CLATINUE
3 P 7
       **EXTEND**
IF (IEXT .FQ. 1) GF TO 388
                                                                                      00017771
                                                                                      00017766
                                                                                      00067796
       WHITE(3,885)
WHITE(3,884)CHWD,CFWC,CFBD,CFBC
                                                                                      (0017801
                                                                                      00007810
       WHITE(3,886)
       WHITE(3, A84)CLWD, CCWC, CDBD, CCBC
                                                                                      00007820
       **EXTEND**
                                                                                      00017836
3PA
       CUNTINIE
                                                                                      00067846
                                                                                      (0007850
       RETURN
                                                                                      (0017861
       END
```

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DOG

APPENDIX C
SAMPLE EXECUTION

NCSC TM-232-78

TRADE=OFF AMALYSIS OF PROPULSION SYSTEMS FOR SUBMERSIBLES ***TAPSS/MAR6 ***(041278)***15:59***

TO ENGINE . LIQUID FUELED 3 APR 78

SPEEDS AND ENDURANCES

MISSION	END. HKS	CRUISE, KNOTS	DASH, KNOTS	PERCENT CRUISE
1	6.0	2.0	4.0	0
2	6.0	3.0	6.0	0
2	6.0	4.0	8.0	0
4	6.0	5.0	10.0	0
5	6.5	6.0	12.0	0
6	6.0	7.0	14.0	0
6 7	8.5	2.0	4.0	0
8	8.0	3.0	6.0	0
9	R.0	4.0	8 • 0	0
10	8.0	5.0	10.0	0
11	8.0	6.0	12.0	0
12	8.5	7.0	14.0	0
13	10.0	5.0	4.0	0
14	10.5	3.0	6.0	0
15	10.0	0.0	8.0	0
16	10.5	5.0	10.0	0
17	10.0	6.0	12.0	0
18	10.5	7.0	14.0	0
19	12.5	2.0	4.0	0
20	12.9	3.0	6.0	0
21	12.0	٥٠٥	8.0	0
22	12.0	5.0	10.0	0
23	12.0	6.0	12.0	0
24	12.0	7.0	14.0	0
25	14.0	2.0	4.0	0
26	14.0	3.0	6.0	0
27	14.0	4.0	8.0	0
28	14.0	5.0	10.0	0
29	14.0	6.0	12.0	0
30	14.5	7.0	14.0	0

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC PROPULSION SYSTEM INFORMATION

CLOSED CYCLE IC ENGINE HYDROGEN LIQUID FUELED AIR DILUTED LIQUID TXYGEN TIME FRAME = 1985

VOLUME INFORMATION
VINITE 30.0 VNAVE 3.0 VSENE 13.0 VNUTE 0.0 VOL CON/DIAE 0.5

ROUGHNESS INFORMATION
HT, CD, AND FRACT FOR PROT 0.003 0.500 0.005 GRAIN SIZE, MILS= 0.10

DENSITY DF COMPONENTS
DRRE,DICF,DEME,DFCS,DLIC,DCBC,DCDN,DNAV,DNUT,DSEN,DHMF,DHLF,DHGF,DHCF,DDXGS,DOXLS,C
53. 64. 100. 80. 70. 70. 50. 40. 60. 40. 94. 23. 47. 60. 50. 60. 11

MISCELLANEDUS INFORMATION PROP EFF= 0.80 INST MIS= 2.5 SW TEMP F= 50. F/D RATIO= HC. H2: .280 .125

COST OF COMPONENTS CNAV.CSEN, CNUT, CCD.CSRE, CRRF, CICE, CSZB, CLIB, CFC, CEM, CHCF, CHOG, CHDL, CHDM, COXG, CUX 150.0300.0 75.0 6.0 0.5 0.5 0.5 0.7 0.3 27.0 0.2 1.0 2.0 3.0 3.0 2.0

VEHICLE HULL INFORMATION

DEPTH, FT= 1000. YBJNGS ELAS MOD, PSI= 30000000. MAIL YIELD STRESS, PSI= 80000.

MATL DENSITY, PCF= 490. SAFETY FACTOR= 1.5

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

<£						e.	50		Ly	,,		٠٠,				۰۰,	(*)	a			٠,	٠,	۳,	9		۳,	(*)	۰۰,	4	u ı
BUDY CU F1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
RALLAST LBS	807.3	819.4	850.6	896.5	973.9	1093.2	8.36.2	873.0	912.9	980.8	1092.2	1266.3	905.3	927.2	978.8	1066.4	1218.3	1459.2	954.5	981.8	1046.0	1159.4	1349.7	1671.5	1003.8	1036.9	1114.5	1253.7	1491.6	1904.5
G =	204	0 0	5.5	2.5	5.0	1:1	5.5	9.0	6.0	9.9	1.1	4.6	5.8	6.0	9.0	.5	۲.1	1.7	6.3	9.0	1.3	6.5	6.5	9.5	8.0	2.	0.9	4.5	6.0	6.5
×3																		-					-	-					-	-
FUEL VOL	10.1	10.4	11.1	12.2	14.0	16.8	11.3	11.7	12.0	14.2	16.8	50.9	12.4	12.9	14.2	16.3	19.6	55.5	13.6	14.2	15.8	18.4	23.0	30.5	14.8	15.5	17.4	20.7	26.3	36.1
101	5.5	5.6	2.2	8.8	3.0	3.3	3.5	2.5	2.7	8.5	3.1	3.4	5.6	9.5	2.7	8.2	3.1	3.5	5.6	5.6	2.7	6.2	3.1	3.5	2.6	5.6	2.7	5.0	3.1	3.6
500																														
A T S S C S C S C S C S C S C S C S C S C	6.0	7.5	0.0	11.1	10.7	2002	0.0	7.5	0.0	11.3	15.2	21.4	6.6	7.5	0.6	11.6	15.7	55.6	6.9	7.5		11.8	16,3	23.8	7.0	4.7	9.5	12.0	15.8	25.2
A V	2.5	0.0	6.6	1.2	7.0	3.6	6.7	5.8	, 4 0	7.2	7.5	8.5	5.7	9, 9	7.0	7.2	7.8	8.7	5.7	6.8	7.0	7.2	6.2	æ.	5.7	e. 6	0.7	7.3	6.1	0.6
75 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DSH SPD KNOTS	0.0	0 * 9	0.8	10.0	12.0	14.0	0.0	0.9	8.0	0.0+	12.0	14.0	0.4	6.0	8.0	10.0	12.0	14.0	0.9	0.9	8.0	10.0	12.0	10.0	0.4	0.9	8.0	10.0	15.0	14.0
CR SPD	0.6	3.0	C . 4	5.0	6.9	7.0	2.0	3.0	4.0	5.0	6.0	7.0	2.0	3.7	4.0	5.0	0.4	۲.,	2.0	3.0	0.4	5.0	6.9	7.0	2.0	3.0	0.4	5.0	6.9	7.0
E S S S S S S S S S S S S S S S S S S S	0.4	0.9	6.0	6.0	0.9	0.4	0	6.0	8.0	0.	6.9	0.9	10.01	10.0	10.0	10.01	10.0	16.0	12.0	12.0	12.0	12.0	12.0	12.0	14.0	14.0	14.0	14.0	14.0	14.0
Z * I O S Z	gret.	C	(1)	4	in	0	~	œ	0	10	11	12	13	14	15	10	11	18	19	50	21	25	23	54	25	26	22	82	50	30

THIS PAGE IS BEST QUALITY PRACTICABLE

NCSC TM-232-78

TAPSS/DICL
HECURD =10 HORDS. ELUCK =30 WOHPS.
CFEATED: 03/22/78 LISTEL: 1756 U5/10/78
THE FILE CONTAINS 20 HECORDS.

IC ENGINE .	LIQUIL	FLELET 3	APR /A			(0000000
3	3	1	2	2		(0000010
5	2	1				100(105(
0.80	0.26	0.125	2.5	50.0		0000030
5	6					(00(0046
6.0	8.0	10.0	12.0	14.0		(00(005)
2.0	3.0	4.0	5.0	6.0	7.0	(00000060
4.0	6.0	8.0	10.0	12.0	14.0	1,000,000
0.0	0.0	0.0	0.0	0.0	0.0	((0)(0))
8	0.2	0.1	1.0			(0010041
.6835	5.27	0.9	13.174			(00(01((
30.0	3.0	13.0	0.0	0.5		(00(0110
0.003	0.5	0.005	0.1			15101000
53.0	64.0	100.0	80.0	70.0	70.0	100(13)
50.0	40.0	60.0	40.0	94.0	23.0	(00(0141
47.0	60.0	50.0	60.0	110.0	112.0	00000150
150.0	300.0	75.0	6.0	0.5	0.5	coccosec
0.5	0.7	0.3	27.0	0.2	1.0	(00(017)
2.0	3.0	3.0	2.0	3.0	20.0	00000160
1000.0300	0.00000	0.0003	490.0	1.5		(00(014(

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

(Reverse Page C-6 Blank)

APPENDIX D

TAPSS PROGRAM FLOW CHART

ecsc 74-232-78

EPITAL DESCRIBITION LIST

427	Commander, Meval Sea Systems Command	
	(STA 032)	(Copy 1)
	(SEA 034) (SEA 035)	(Copy 2) (Copy 3)
	(PAS 395)	(Copy A)
1	(Library) Chief of Revel Material	(Copy 5)
236	(NAVMAT DET23 - Nr. Vittuers, Nr. Remagn) Commander, David Taylor Naval Ship RéD Genter	(Coptes 6-7)
	(Mibrary)	(Copy 8)
	(Code 1564 - Mr. Feldman) (Gode 1546 - Mr. Folb)	(Copy 9) (Copy 10)
266	Commending Officer, Rayal Underwater Systems Center (Library)	
1	Otr. Soodrich)	(Copy 11) (Copy 12)
265	(Mr. Redolink) Commander, Neval Oceans Systems Center	(Copy 13)
	(Code 5332)	(Copy 14)
	(Cods 6502) (Library)	(Copy 15) (Copy 16)
484	Director, Mayel Research Laboratory (Library)	(Copy 17)
210	Commander, Naval Surface Weapons Center, White Oak	
463	(Library) Commander, Mavel Surface Weapons Center, Dehlgren	(Copy 18)
154	(Library) Superintendent, Naval Academy, Annapolis	(Copy 19)
4.5	(Library)	(Copy 20)
222	Superintendent, Mayal Postgraduste School, Monterey (Library)	(Copy 21)
54	Chief of Navel Research (DNR 211 - Mr. Siegel)	(Copy 22)
	Stevens Institute of Technology, Davidson Laboratory,	(Copy 22)
	Hoboken, NJ 07030 (Library)	(Copy 23)
11	(Mr. Al Strumpf) Applied Research Laboratory, Penn State University	(Copy 24)
**	(Library)	(Copy 25)
19	(Mr. W. R. Hell) Applied Research Laboratory, University of Texas	(Copy 26)
664	(Library)	(Copy 27)
	Applied Physics Laboratory, Johns Hopkins University (Library)	(Copy 28)
	(W. Venezia) Virginia Polytechnic Institute, Blacksburg, VA 24060	(Copy 29)
	(Library) Massachusetts Institute of Technology, Cambridge, MA 02139	(Copy 30)
	(Library)	(Copy 31)
	(Mr. Abkowits) Library of Congress, Washington, DC	(Copy 32)
	(Science & Technology Library)	(Copy 33)
340 302	Director, Woods Hole Oceanographic Institute Director, Scripps Institute of Oceanography	(Copy 34) (Copy 35)
621	Commanding Officer, Naval Oceans Research and Development Activity, Bay St. Louis	(Copy 36)
	Society of Naval Architects and Marine Engineers (SNAME)	
77	74 Trinity Pl., New York, WY 10006 Director of Defense Research & Engineering, Washington	(Copy 37) (Copy 38)
6 75	Director, Advanced Research Projects Agency, Washington Director, Defense Documentation Center	(Copy 39) (Copies 40-51)