Exercice 1 | 10 points

1. Compléter les séries logiques par le nombre qui pourrait convenir.

2. Donner les 5 premiers termes des suites (u_n) définies sur \mathbb{N} .

a)
$$u_0 = 2$$
 et $u_{n+1} = u_n - 4$

b)
$$u_0 = -1$$
 et $u_{n+1} = -3 \times u_n$

b)
$$u_0 = -1$$
 et $u_{n+1} = -3 \times u_n$ **c)** $u_0 = 3$ et $u_{n+1} = \sqrt{u_n + 1}$

3. Pour chacune de ces suites définies sur \mathbb{N}^* , calculer et simplifier au maximum $u_{n+1} - u_n$. Donner ensuite le signe de l'expression obtenue.

a)
$$u_n = n^2$$

b)
$$u_n = \frac{1}{n} + 1$$

c)
$$u_n = \frac{1}{6n-1}$$

Correction

1. a)
$$-1$$
; 3; -9 ; 27; -81 ; 243 car $(-3) \times (-81) = 243$

b)
$$0;1;1;2;3;5;8;13;21$$
 car $8+13=21$

2. a)
$$u_0 = 2$$
; $u_1 = -2$; $u_2 = -6$; $u_3 = -10$; $u_4 = -14$

b)
$$u_0 = -1$$
; $u_1 = 3$; $u_2 = -9$; $u_3 = 27$; $u_4 = -81$

c)
$$u_0 = 3; u_1 = 2; u_2 = \sqrt{3}; u_3 = \sqrt{\sqrt{3} + 1}; u_4 = \sqrt{\sqrt{\sqrt{3} + 1} + 1}$$

3. a)
$$u_n = n^2$$
 donc $u_{n+1} = (n+1)^2 = n^2 + 2n + 1$ et ainsi :

$$u_{n+1} - u_n = (n^2 + 2n + 1) - n^2 = 2n + 1$$

2n + 1 est strictement positif pour tout $n \in \mathbb{N}$.

b)
$$u_n = \frac{1}{n} + 1$$
 donc $u_{n+1} = \frac{1}{n+1} + 1$ et ainsi :

$$u_{n+1} - u_n = \frac{1}{n+1} + 1 - (\frac{1}{n} + 1) = \frac{1}{n+1} - \frac{1}{n} = \frac{n - (n+1)}{n(n+1)} = \boxed{-\frac{1}{n(n+1)}}$$

 $-\frac{1}{n(n+1)}$ est strictement négatif pour tout $n \in \mathbb{N}^*$.

c)
$$u_n = \frac{1}{6n-1}$$
 donc $u_{n+1} = \frac{1}{6(n+1)-1} = \frac{1}{6n+5}$ et ainsi :

$$u_{n+1} - u_n = \frac{1}{6n+5} - \frac{1}{6n-1} = \frac{(6n-1) - (6n+5)}{(6n-1)(6n+5)} = \boxed{-\frac{6}{(6n-1)(6n+5)}}$$

 $-\frac{6}{(6n-1)(6n+5)}$ est strictement positif pour tout $n \in \mathbb{N}^*$.

Exercice 2 | 10 points

1. Parmi les deux courbes suivantes, laquelle est une parabole ouverte?

2. Donner l'expression générale d'une fonction du second degré.

3. Déterminer l'expression des fonctions du second degré f et g représentées sur les graphiques suivants.

4. Déterminer l'expression de la fonction du second degré f telle que : f(-2) = 11 et f(0) = 7.

5. Résoudre les équations suivantes.

a)
$$x^2 = 4$$

b)
$$x^2 = -9$$

Correction

1. La courbe rouge \mathscr{C}_f est une parabole ouverte tandis que la courbe bleue \mathscr{C}_g est une parabole fermée.

2. Nous avons vu en classe les fonctions du second degré sous la forme suivante : pour tout x réel, $f(x) = ax^2 + b$ (avec $a \ne 0$).

3. f est de la forme $f(x) = ax^2 + b$. Graphiquement, on obtient que b = f(0) = 0 donc $f(x) = ax^2$.

Enfin, graphiquement, on voit que f(2) = 6. C'est-à-dire, $a \times 2^2 = 6$, donc $a = \frac{6}{4} = 1.5$.

$$f(x) = 1.5x^2$$

g est de la forme $g(x) = ax^2 + b$. Graphiquement, on obtient que b = g(0) = 4 donc $f(x) = ax^2 + 4$. Enfin, graphiquement, on voit que f(1) = 2. C'est-à-dire, $a \times 1^2 + 4 = 2$, donc a = 2 - 4 = -2.

$$g(x) = -2x^2 + 4$$

4. Toujours de même, $f(x) = ax^2 + b$ avec b = f(0) = 7. Ainsi, $f(x) = ax^2 + 7$. f(-2) = 11 donc on a : $11 = a \times (-2)^2 + 7$. Ainsi, $11 = 4a + 7 \Leftrightarrow 4 = 4a \Leftrightarrow a = 1$

$$f(x) = x^2 + 7$$