Axioms for a vector space

In the following, we assume that \vec{u}, \vec{v} , and \vec{w} are any vectors in the vector space V and that c and d are any scalars.

$$1. \ \vec{u} + \vec{v} = \vec{v} + \vec{u}$$

2.
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

3. There exists a vector $\vec{0}$ in V such that

$$\vec{v} + \vec{0} = \vec{v}$$

for every vector \vec{v} .

4. For every vector \vec{u} in the space there is an additive inverse, denoted $-\vec{u}$, such that

$$\vec{u} + -\vec{u} = \vec{0}.$$

$$5. \ c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$$

6.
$$(c+d)\vec{u} = c\vec{u} + d\vec{u}$$

7.
$$c(d\vec{u}) = (cd)\vec{u}$$

8.
$$1\vec{u} = \vec{u}$$