

MC20 GNSS AGPS

应用指导

GSM/GPRS/GNSS 系列

版本: MC20_GNSS_AGPS_应用指导_V1.1

日期: 2016-08-18

移远公司始终以为客户提供最及时、最全面的服务为宗旨,如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司

上海市徐汇区田州路 99 号 13 幢 501 室 电话: +86 21 51086236

邮箱: info@quectel.com

或联系我司当地办事处,详情请登录:

http://www.quectel.com/support/salesupport.aspx

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/support/techsupport.aspx

或发送邮件至: Support@quectel.com

前言

移远公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范,参数来设计其产品。由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。在未声明前,移远公司有权对该文档规范进行更新。

版权申明

本文档手册版权属于移远公司,任何人未经我公司允许复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2016, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2016.

文档历史

修订记录

版本	日期	作者	变更表述
1.0	2016-08-02	丁必虎	初始版本
1.1	2016-08-18	丁必虎	更新秒定流程简图(图8)

目录

文林	档历史	2
目表	큣	3
表材	格索引	4
图片	片索引	5
1	引言	6
1	一日	b
2	概述	7
3	机制与流程	9
	3.1. EPO [™] 运行机制	
	3.2. EPO [™] 运行流程	9
	3.2.1. EPO [™] 运行流程(一)	
	3.2.1.1. 流程概述	10
	3.2.1.2. AT 流程范例	10
	3.2.1.3. 代码逻辑流程图	12
	3.2.2. EPO [™] 运行流程(二)	13
	3.2.2.1. 流程概述	13
	3.2.2.2. AT 流程范例	13
	3.2.2.3. 代码逻辑流程图	15
	3.2.3. 时间对 EPO™ 功能的影响	16
	3.2.4. EPO 下载机制	17
	3.3. 秒定	18
	3.3.1. 流程概述	19
	3.3.2. AT 流程范例	19
	3.3.3. 代码逻辑流程图	21
4	附录	23
	4.1. 参考文档	23
	4.2. 缩写与术语	

表格索引

表	1:	参考文档	. 23
表	2:	缩写与术语	. 23

图片索引

冬	1:	ALL-IN-ONE 方案下 GSM 与 GNSS 部分通信接线简图	7
图	2:	EPO™ 功能运行过程简图	9
冬	3:	EPO [™] 运行流程图(流程一)	. 12
图	4:	EPO [™] 运行流程图(流程二)	. 15
图	5:	时间同步的方式	. 16
冬	6:	EPO 文件下载流程	. 17
图	7:	秒定机制	. 18
囡	0	孙宁沟租签图	21

1 引言

本文档主要介绍了在 All-in-one 方案下,与 MC20 模块的 GNSS 部分相关的 AGPS 功能: EPOTM 功能 及秒定功能。后续章节详细介绍了两种功能在辅助 GNSS 定位时的工作机制及其推荐使用流程。

2 概述

MC20 模块集成了 GSM 和 GNSS (GPS+北斗) 双系统,在网络交互的同时,实现 GNSS 系统的快速、精准定位;同时模块内置了业界领先的 $EPO^{TM \ 1)}$ 技术,大大减少了模块在冷启动模式下所需的定位时间;借助 Reference-location 信息,还可以实现定位更为迅速的秒定 $^{2)}$ 功能。

相比传统的具有单一 GPS 功能的模块, MC20 的主要优势如下:

- 内嵌的 GNSS 模块,支持 GPS+北斗双系统定位:相同环境下可使用的卫星数量更多,搜星的时间更短,加快定位速度,提高定位精度;
- 内置 MTK EPOTM (Extended Prediction Orbit) 技术:最长可以在模块内保存 6 天 (3 天+3 天) 的 星历数据,帮助提高 GNSS 在冷启动模式下的定位速度;
- 智能的 EPO 下载机制:在检测到本地存储的 EPO 数据过期后,会优先下载 6 小时的 EPO 数据进行辅助定位,加快冷启动模式下的定位速度,并在 EPO 数据过期之前自动下载新的 EPO 数据存储到本地;
- 秒定功能:实现 GNSS 在冷启动模式下的快速定位,使定位时间接近于热启动;

All-in-one 方案下,模块的 GSM 和 GNSS 部分通信接线方式如下所示:

图 1: All-in-one 方案下 GSM 与 GNSS 部分通信接线简图

备注

- 1. ¹¹EPO™,全称是 Extended Prediction Orbit,是 MTK 公司研发的一种用于辅助 GNSS 系统快速定位的技术服务。基于从 MTK 服务器下载的 EPO 数据,可以让处于离线状态下的设备拥有卫星轨迹预算的能力,帮助客户在首次定位时能够以更短的时间实现定位服务。
- 2. 2) 秒定,是基于 EPO 数据、Real-time、Reference-location 来辅助 GNSS 系统实现快速定位的技

术。该技术使模块在冷启动模式下的定位耗时接近于热启动。需要使用 AT+QGEPOAID 命令来触发该功能;详情请参阅*文档 [3]*。

3 机制与流程

3.1. EPO™运行机制

MC20 模块开机后,GNSS 功能默认是关闭的,可以使用 AT+QGNSSC=1 命令来开启该功能。在 GNSS 部分开机后,可以手动触发 EPO^{TM} 功能,也可以在 GNSS 开机前,使能 EPO^{TM} ,实现 EPO^{TM} 功能的自动触发,以辅助 GNSS 实现快速定位。

EPO™ 功能的运行过程简图如下:

图 2: EPO™功能运行过程简图

备注

* 此功能在客户使用秒定功能时会有相应的触发动作。

3.2. EPO[™]运行流程

EPO™功能支持两种不同的工作流程,客户可根据需要选择任意一种。

3.2.1. EPO™运行流程(一)

使用 EPO 数据辅助定位前,应确认时间同步完成并且网络注册成功。

3.2.1.1. 流程概述

- 1) MC20 模块开机后,发送 AT+QGNSSC=1 命令开启 GNSS 功能,开始定位工作;
- 2) 配置 PDP context 和 APN。目前 EPO™的相应操作仅支持在 PDP context 2 下进行;
- 3) 确认网络是否注册成功;
- 4) 确认时间同步完成。模块开机后会利用 NITZ 自动更新本地时间。国外部分运营商不支持此功能,需要手动利用 NTP 进行时间的同步;
- 5) 通过 **AT+QGNSSEPO=1** 命令使能 EPO[™],然后并执行 **AT+QGEPOAID** 命令触发该功能;相关 AT 命令的详情,还请参阅*文档* [3].
- 6) 获取 NMEA 信息。

3.2.1.2. AT 流程范例

AT+QGNSSC=1 // 开启 GNSS 功能 OK AT+QIFGCNT=2 OK AT+QICSGP=1,"CMNET" OK AT+CREG?;+CGREG? // 检查网络状态 +CREG: 0,2 +CGREG: 0,2 OK AT+CREG?;+CGREG? // 检查网络状态 +CREG: 0,1 +CGREG: 0,1 OK AT+QGNSSTS? // 查询时间同步状态 +QGNSSTS: 1 // 时间同步完成 OK AT+QGNSSEPO=1 // 使能 EPO[™]功能 OK AT+QGEPOAID // 触发 EPO™ 功能 OK AT+QGNSSRD? +QGNSSRD: \$GNRMC,032220.291,V,,,,,0.00,0.00,140716,,,N*5D \$GNVTG,0.00,T,,M,0.00,N,0.00,K,N*2C \$GNGGA,032220.291,,,,,0,0,,,M,,M,,*5D


```
$GPGSA,A,1,,,,,,*1E
$BDGSA,A,1,,,,,*0F
$GPGSV,2,1,07,23,,,31,08,,,49,30,,,33,16,,,45*7E
$GPGSV,2,2,07,07,,,44,27,,,49,26,,,43*72
$BDGSV,1,1,03,10,,,47,04,,,40,07,,,48*62
$GNGLL,,,,,032220.291,V,N*6F
OK
AT+QGNSSRD?
+QGNSSRD: $GNRMC,032221.301,V,,,,,0.00,0.00,140716,,,N*54
$GNVTG,0.00,T,,M,0.00,N,0.00,K,N*2C
$GNGGA,032221.301,,,,,0,0,,,M,,M,,*54
$GPGSA,A,1,,,,,*1E
$BDGSA,A,1,....*0F
$GPGSV,2,1,07,23,,,31,08,,,49,30,,,33,16,,,45*7E
$GPGSV,2,2,07,07,,,44,27,,,49,26,,,43*72
$BDGSV,1,1,03,10,,,47,04,,,40,07,,,48*62
$GNGLL,...,032221.301,V,N*66
OK
AT+QGNSSRD?
+QGNSSRD: $GNRMC,032225.306,A,3150.7859,N,11711.9215,E,0.06,204.08,140716,.,A*70
$GNVTG,204.08,T,,M,0.06,N,0.11,K,A*2B
$GNGGA,032225.306,3150.7859,N,11711.9215,E,1,9,1.54,35.0,M,0.0,M,,*40
$GPGSA,A,3,08,30,16,07,27,26,,,,,,1.75,1.54,0.83*00
$BDGSA,A,3,10,04,07,,,,,1.75,1.54,0.83*19
$GPGSV,3,1,09,08,70,004,49,07,55,309,44,42,45,141,,27,38,040,49*7D
$GPGSV,3,2,09,16,28,079,45,30,28,317,31,26,06,096,43,193,,,*7C
$GPGSV,3,3,09,23,,,28*7B
$BDGSV,1,1,03,07,74,113,48,10,74,329,47,04,32,119,40*51
$GNGLL,3150.7859,N,11711.9215,E,032225.306,A,A*4A
OK
```


3.2.1.3. 代码逻辑流程图

图 3: EPO™运行流程图(流程一)

3.2.2. EPO™运行流程(二)

部分应用场景可能对功耗要求的较为严格,可以在网络注册成功,时间同步完成的情况下,再去开启 GNSS 定位。在定位完成后,GNSS 断电,以节约功耗。

3.2.2.1. 流程概述

- 1) 模块开机后,配置 PDP context 和 APN。目前 EPO™的相应操作仅支持在 PDP context 2 下进行;
- 2) 确认网络是否注册成功;
- 3) 确认时间同步完成。模块开机后会利用 NITZ 自动更新本地时间。若某地区的运营商不支持此功能,则需要手动利用 NTP 进行时间的同步;
- 4) 使能 EPO™ 功能;
- 5) 发送 AT+QGNSSC=1 命令开启 GNSS 功能;
- 6) 获取 NMEA 信息;
- 7) 发送 AT+QGNSSC=0 命令关闭 GNSS 功能。

3.2.2.2. AT 流程范例

```
AT+QIFGCNT=2 // 设置 PDP context
AT+QICSGP=1,"CMNET"// 设置 APN
OK
AT+CREG?;+CGREG? // 检查网络状态
+CREG: 0,2
+CGREG: 0,2
OK
AT+CREG?;+CGREG? // 检查网络状态
+CREG: 0,1
+CGREG: 0,1
OK
AT+QGNSSTS?
                // 查询时间同步状态
+QGNSSTS: 1
                 // 时间同步完成
OK
AT+QGNSSEPO=1 // 使能 EPO™ 功能
OK
AT+QGNSSC=1
               // 开启 GNSS 功能
OK
AT+QGNSSRD?
```



```
+QGNSSRD: $GNRMC,032220.291,V,,,,0.00,0.00,140716,,,N*5D
$GNVTG,0.00,T,,M,0.00,N,0.00,K,N*2C
$GNGGA,032220.291,,,,,0,0,,,M,,M,,*5D
$GPGSA,A,1,,,,,,*1E
$BDGSA,A,1,...,*0F
$GPGSV,2,1,07,23,,,31,08,,,49,30,,,33,16,,,45*7E
$GPGSV,2,2,07,07,...44,27,...49,26,...43*72
$BDGSV,1,1,03,10,,,47,04,,,40,07,,,48*62
$GNGLL,,,,,032220.291,V,N*6F
OK
AT+QGNSSRD?
+QGNSSRD: $GNRMC,032221.301,V,,,,,0.00,0.00,140716,,,N*54
$GNVTG,0.00,T,,M,0.00,N,0.00,K,N*2C
$GNGGA,032221.301,,,,0,0,,,M,,M,,*54
$GPGSA,A,1,,,,,*1E
$BDGSA,A,1,,,,,*0F
$GPGSV,2,1,07,23,...31,08,...49,30,...33,16,...45*7E
$GPGSV,2,2,07,07,,,44,27,,,49,26,,,43*72
$BDGSV,1,1,03,10,,,47,04,,,40,07,,,48*62
$GNGLL,,,,032221.301,V,N*66
OK
AT+QGNSSRD?
+QGNSSRD: $GNRMC,032225.306,A,3150.7859,N,11711.9215,E,0.06,204.08,140716,.,A*70
$GNVTG,204.08,T,,M,0.06,N,0.11,K,A*2B
$GNGGA,032225.306,3150.7859,N,11711.9215,E,1,9,1.54,35.0,M,0.0,M,,*40
$GPGSA,A,3,08,30,16,07,27,26,,,,,,1.75,1.54,0.83*00
$BDGSA,A,3,10,04,07,...,1.75,1.54,0.83*19
$GPGSV,3,1,09,08,70,004,49,07,55,309,44,42,45,141,,27,38,040,49*7D
$GPGSV,3,2,09,16,28,079,45,30,28,317,31,26,06,096,43,193,,,*7C
$GPGSV,3,3,09,23,,,28*7B
$BDGSV,1,1,03,07,74,113,48,10,74,329,47,04,32,119,40*51
$GNGLL,3150.7859,N,11711.9215,E,032225.306,A,A*4A
OK
AT+QGNSSC=0
OK
```


3.2.2.3. 代码逻辑流程图

图 4: EPO™运行流程图(流程二)

3.2.3. 时间对 EPO™ 功能的影响

时间对 EPOTM 有重要的影响,其作用主要体现在:

- 对本地存储的 EPO 文件的有效性判断;
- 在 EPO 数据被传送至 GNSS 后,从中获取到正确的星历数据。

模块开机后,时间同步的方式有3种:NITZ、NTP和GNSS。

图 5: 时间同步的方式

备注

- 1. **NITZ**:模块在开机找网过程中,会自动从运营商网络中获取到时间(此功能需要当地网络运营商支持),并以此更新本地 RTC。
- 2. NTP: 模块同步网络服务器时间,并更新本地 RTC。此功能需要客户手动执行。
- 3. GNSS: GNSS 定位时从卫星获取时间,并更新本地 RTC。

模块在找网过程中会利用 NITZ 来自动进行时间的同步,并在同步完成后更新模块内部的 RTC 时间。可以使用 AT+QGNSSTS?命令来获取时间同步的状态。部分地区的运营商可能不支持 NITZ 功能;此时则需要客户发送 AT+QNTP=<server>[,<port>] 命令通过 NTP 途径来完成时间同步。在 GNSS 开机后,GNSS 还会从卫星获取到时间数据,如果本地时间没有被更新过,则会利用此时间来更新 RTC 时间。

如果客户的 MCU 具有 RTC 且时间准确,也可以通过 AT+CCLK 命令来设置时间到模块中。

备注

- 1. 时间同步成功后,下一次的同步动作将在约 12 小时之后自动进行;
- 2. 时间为格林尼治标准时间。

3.2.4. EPO 下载机制

EPO(Extended Prediction Orbit)数据来源于 MTK 的 EPO 服务器。在执行 AT+QGNSSEPO=1 命令使能 EPOTM 功能后,模块会默认下载 6 天的 EPO 数据存放在模块的文件系统中,用于后续传送至 GNSS中辅助定位使用。EPO 数据的下载需要网络及数据业务的支持,下载前应确认网络的状态。

图 6: EPO 文件下载流程

执行 AT+QGNSSEPO=1 后,系统会启动一个 20 秒的定时器。超时后,系统先检测本地 EPO 数据是 否有效(是否存在或过期)。如果 EPO 数据不存在或者已经过期,将会启动下载的动作,默认下载 2 份 3 天的 EPO 文件。如果在执行 AT+QGNSSEPO=1 后定时器没有超时就启动 GNSS 功能,并且本地没有 EPO 数据或数据无效,则系统会默认先下载一个 6 小时的 EPO 文件来辅助当前的定位。定时器超时后,若本地 EPO 数据仍然有效,系统会继续进行下载,共将下载 2 份 3 天的 EPO 数据。

备注

- 1. 6 小时的 EPO 数据约 4KB。
- 2. 6 天的 EPO 数据约 96KB。

3.3. 秒定

基于 EPOTM 功能,秒定功能额外增加了 Real-time 及 Reference-location 信息(参考位置的经纬度)。 它能帮助 GNSS 实现快速定位,减少模块在冷启动模式下的定位耗时。在将 EPO 数据传送到 GNSS 后,参考位置信息会紧接着被传送到 GNSS 中。

图 7: 秒定机制

备注

- 1. Real time 的精度要求为+/-3 秒。
- 2. Reference-location 的精度要求为+/-20km。
- 3. Reference-location 可以利用移远通信提供的基站定位功能来获取,也可以使用上一次 GNSS 定位后得到的经纬度信息。
- 4. Reference-location 的设置范围: 北纬-90°~90°, 东经-180°~180°。具体格式可参考文档 [3]。

3.3.1. 流程概述

模块开机后,可以基于 EPOTM 运行流程一或流程二,在使能 EPOTM(**AT+QGNSSEPO=1**)之前,设置 Reference-location 信息。具体可参考 **3.3.2 章节**和 **3.3.3 章节**(基于 EPOTM 运行流程二)。

3.3.2. AT 流程范例

```
AT+QIFGCNT=2
                // 设置 PDP context
OK
AT+QICSGP=1,"CMNET" // 设置 APN
AT+CREG?;+CGREG? // 检查网络状态
+CREG: 0,2
+CGREG: 0,2
OK
AT+CREG?;+CGREG? // 检查网络状态
+CREG: 0.1
+CGREG: 0.1
OK
                    // 查询时间同步状态
AT+QGNSSTS?
+QGNSSTS: 1
                    // 时间同步完成
OK
AT+QGREFLOC=31.844376,117.204536 // 为秒定功能设置 Reference-location 信息
OK
                  // 使能 EPO<sup>TM</sup>功能
AT+QGNSSEPO=1
OK
AT+QGNSSC=1
                 // 开启 GNSS 功能
OK
AT+QGNSSRD?
+QGNSSRD: $GNRMC,032220.291,V,,,,,0.00,0.00,140716,,,N*5D
$GNVTG,0.00,T,,M,0.00,N,0.00,K,N*2C
$GNGGA,032220.291,,,,,0,0,,,M,,M,,*5D
$GPGSA,A,1,,,,,,*1E
$BDGSA,A,1,,,,,*0F
$GPGSV,2,1,07,23,,,31,08,,,49,30,,,33,16,,,45*7E
$GPGSV,2,2,07,07,,,44,27,,,49,26,,,43*72
$BDGSV,1,1,03,10,,,47,04,,,40,07,,,48*62
$GNGLL,,,,,032220.291,V,N*6F
```


OK

AT+QGNSSRD?

+QGNSSRD: \$GNRMC,032221.301,V,,,,,0.00,0.00,140716,,,N*54

\$GNVTG,0.00,T,,M,0.00,N,0.00,K,N*2C

\$GNGGA,032221.301,,,,,0,0,,,M,,M,,*54

\$GPGSA,A,1,,,,,*1E

\$BDGSA,A,1,,,,,*0F

\$GPGSV,2,1,07,23,,,31,08,,,49,30,,,33,16,,,45*7E

\$GPGSV,2,2,07,07,,,44,27,,,49,26,,,43*72

\$BDGSV,1,1,03,10,,,47,04,,,40,07,,,48*62

\$GNGLL,,,,,032221.301,V,N*66

OK

. . .

AT+QGNSSRD?

+QGNSSRD: \$GNRMC,032225.306,A,3150.7859,N,11711.9215,E,0.06,204.08,140716,,,A*70

\$GNVTG,204.08,T,,M,0.06,N,0.11,K,A*2B

\$GNGGA,032225.306,3150.7859,N,11711.9215,E,1,9,1.54,35.0,M,0.0,M,,*40

\$GPGSA,A,3,08,30,16,07,27,26,,,,,,1.75,1.54,0.83*00

\$BDGSA,A,3,10,04,07,,,,,1.75,1.54,0.83*19

\$GPGSV,3,1,09,08,70,004,49,07,55,309,44,42,45,141,,27,38,040,49*7D

\$GPGSV,3,2,09,16,28,079,45,30,28,317,31,26,06,096,43,193,,,*7C

\$GPGSV,3,3,09,23,,,28*7B

\$BDGSV,1,1,03,07,74,113,48,10,74,329,47,04,32,119,40*51

\$GNGLL,3150.7859,N,11711.9215,E,032225.306,A,A*4A

OK

AT+QGNSSC=0

OK

3.3.3. 代码逻辑流程图

图 8: 秒定流程简图

备注

OpenSky 环境下,GNSS 在冷启动模式下定位耗时约为 4.5 秒 (参考值)。

4 附录

4.1. 参考文档

表 1: 参考文档

SN	Document Name	Remark
[1]	NMEA 0183 Version 3.01	Standard for Interfacing Marine Electronic Devices
[2]	Quectel_MC20_硬件设计手册	MC20 硬件设计手册
[3]	Quectel_MC20_GNSS_AT_Commands_Manual	MC20 GNSS AT Commands Manual
[4]	Quectel_MC20_AT_Commands_Manual	MC20 AT Commands Manual

4.2. 缩写与术语

表 2: 缩写与术语

Description
Assisted Global Positioning System
Extended Prediction Orbit
Global Positioning System Fixed Data
Geographic Position – Latitude/Longitude
Global Navigation Satellite System
Global Positioning System

GSA	GNSS DOP and Active Satellites
GSM	Global System for Mobile Communication
GSV	GNSS Satellites in View
NITZ	Network Identity and Time Zone
NMEA	National Marine Electronics Association
NTP	Network Time Protocol
RMC	Recommended Minimum Specific GNSS Data
VTG	Course Over Ground and Ground Speed