1.BasicExps 基础功能性实验

本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快速上手熟悉一些简单的功能性实验,本讲中包含有 RflySim 平台中主流软件的一些使用技巧实验等。

序号	实验名称	简介	文件地址	版本
1	飞控固件烧录	本实验介绍了 RflySim 平台针对所生成的飞控固件,	e10_Firmware-	免费版
		介绍了两种不同固件烧录方式。	<u>Upload\Readme.pdf</u>	
2	飞控板载应用开发	创建并运行你的第一个板载应用程序,它涵盖了	e12_PX4-App\Readme.pdf	免费版
		PX4 应用程序开发所需的所有基本概念和 API。		
3	四旋翼无人机配置	熟悉实飞流程。	e13_UAV-Config\Readme.pdf	免费版
4	CopterSim 获取 Log 数据	在进行仿真时,获取载具运动数据以便后续处理。	e14_Log-Get\Readme.pdf	免费版
5	RflySim3D 三维场景加载	了解切换、控制 RflySim3D 显示场景的方式了解使用	e15_Scene-Load\Readme.pdf	免费版
		UE4 进行场景开发,将场景导入 RflySim3D 的步骤。		
6	Pixhawk 硬件编译命令识别	基本实验针对不同的飞控硬件,介绍一种通过	e16_Identify-Hardware-	免费版
		QGroundControl 来识别不同飞控硬件的编译命令。	Command\Readme.pdf	
7	HIL 航线绘制	在 QGroundControl 中利用航线规划功能, 绘制航线	e17_RoutePlanning\Readme.pdf	免费版
		实现规定航线下的飞行。		
8	CopterSim 模型设计	根熟悉 CopterSim 主界面"模型配置区"的使用方法。	e1_CopterSim-	免费版
		如:已知海拔 0m, 整机质量 1.5KG, 机架轴距	<u>Usage\Readme.pdf</u>	
		450mm,使用 CopterSim 适配出飞行大于 15 分钟		
		的三旋翼、三轴六旋翼、四旋翼、六旋翼、四轴八旋		
		翼、八旋翼的飞行器,并查看不同类型多旋翼的悬停		

		时间和油门百分比。		
9	CopterSim 导入 DLL	根据提供的 Simulink 的固定翼模型,导出为 DLL 文件,再通过 CopterSim 加载 DLL 文件,最后进行仿真。。	e2_DLL-Load\Readme.pdf	免费版
10	RflySim3D 快捷键与指令	在熟悉 RflySim3D 软件的快捷指令。	e3_RflySim3D-Shortcut- Instruct\Readme.pdf	免费版
11	Python38Env 读取飞行日志	使用 Python 3.8 环境读取飞控.ulg 日志文件。	e4_Log-Reads- Python38Env\Readme.pdf	免费版
12	手动软件在环仿真配置	熟悉软件在环仿真流程。	e5_Manual-SIL\Readme.pdf	免费版
13	BAT 脚本启动组件	熟悉 BAT 配置。	e6_BAT-Startup\Readme.pdf	免费版
14	MATLAB 代码自动生成飞控 固件	基于 RflySim 平台的 MATLAB 自动代码生成模块, 在 Simulink 搭建完成的控制模型,可直接一键生成 飞控固件。。	e7_Code- Generation\Readme.pdf	免费版
15	Simulink 集群控制接口	RflySim平台中开发了基于 S-函数的 Simulink 模块,模块中定义了多种不同数据量的通信结构体,在进行无人机仿真时,可通过该模块进行数据交流和通信,通过了解无人机控制模型各个模块的作用,搭建出四旋翼无人机盘旋控制模型的各个模块进行连接。从而实现无人机在空中盘旋的状态,输出为无人机的实时状态量的变化情况。	e8_SwarmAPI\Readme.pdf	免费版
16	固件编译	基于 Win10WSL 子系统完成对 PX4 固件的编译。	e9_Build-Firmware\Readme.pdf	免费版

所有文件列表

序号	实验名称	简介	文件地址	版本
1	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能	Readme.pdf	免费版
		实验,用户可快速上手熟悉一些简单的功能性实		
		验,本讲中包含有 RflySim 平台中主流软件的一些		
		使用技巧实验等。		
2	飞控固件烧录	本实验介绍了 RflySim 平台针对所生成的飞控固件,	e10_Firmware-	免费版
		介绍了两种不同固件烧录方式。	<u>Upload\Readme.pdf</u>	
3	飞控板载应用开发	创建并运行你的第一个板载应用程序,它涵盖了	e12_PX4-App\Readme.pdf	免费版
		PX4 应用程序开发所需的所有基本概念和 API。		
4	四旋翼无人机配置	熟悉实飞流程。	e13_UAV-Config\Readme.pdf	免费版
5	CopterSim 获取 Log 数据	在进行仿真时,获取载具运动数据以便后续处理。	e14_Log-Get\Readme.pdf	免费版
6	RflySim3D 三维场景加载	了解切换、控制 RflySim3D 显示场景的方式了解使	e15_Scene-Load\Readme.pdf	免费版
		用 UE4 进行场景开发,将场景导入 RflySim3D 的步		
		骤。		
7	Pixhawk 硬件编译命令识别	基本实验针对不同的飞控硬件,介绍一种通过	e16_Identify-Hardware-	免费版
		QGroundControl 来识别不同飞控硬件的编译命令。	Command\Readme.pdf	
8	HIL 航线绘制	在 QGroundControl 中利用航线规划功能,绘制航	e17_RoutePlanning\Readme.pdf	免费版
		线实现规定航线下的飞行。		
9	CopterSim 模型设计	根熟悉 CopterSim 主界面"模型配置区"的使用方	e1_CopterSim-	免费版
		法。如:已知海拔 0m,整机质量 1.5KG,机架轴距	<u>Usage\Readme.pdf</u>	
		450mm,使用 CopterSim 适配出飞行大于 15 分钟		
		的三旋翼、三轴六旋翼、四旋翼、六旋翼、四轴八		

		旋翼、八旋翼的飞行器,并查看不同类型多旋翼的 悬停时间和油门百分比。		
10	CopterSim 导入 DLL	根据提供的 Simulink 的固定翼模型, 导出为 DLL 文件, 再通过 CopterSim 加载 DLL 文件, 最后进行仿真。。	e2_DLL-Load\Readme.pdf	免费版
11	RflySim3D 快捷键与指令	在熟悉 RflySim3D 软件的快捷指令。	e3_RflySim3D-Shortcut- Instruct\Readme.pdf	免费版
12	Python38Env 读取飞行日志	使用 Python 3.8 环境读取飞控.ulg 日志文件。	e4_Log-Reads- Python38Env\Readme.pdf	免费版
13	手动软件在环仿真配置	熟悉软件在环仿真流程。	e5_Manual-SIL\Readme.pdf	免费版
14	BAT 脚本启动组件	熟悉 BAT 配置。	e6_BAT-Startup\Readme.pdf	免费版
15	MATLAB 代码自动生成飞控 固件	基于 RflySim 平台的 MATLAB 自动代码生成模块,在 Simulink 搭建完成的控制模型,可直接一键生成飞控固件。。	e7_Code- Generation\Readme.pdf	免费版
16	Simulink 集群控制接口	RflySim平台中开发了基于S-函数的Simulink模块,模块中定义了多种不同数据量的通信结构体,在进行无人机仿真时,可通过该模块进行数据交流和通信,通过了解无人机控制模型各个模块的作用,搭建出四旋翼无人机盘旋控制模型的各个模块进行连接。从而实现无人机在空中盘旋的状态,输出为无人机的实时状态量的变化情况。	e8_SwarmAPI\Readme.pdf	免费版
17	固件编译	基于 Win10WSL 子系统完成对 PX4 固件的编译。	e9_Build-Firmware\Readme.pdf	免费版

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。