

Cours

ALGÈBRE I

Licence en éducation, Filière : Mathématiques Niveau : Si

PROF. HICHAM YAMOUL

Département de Mathématiques et informatique

Ecole Normale Supérieure Université Hassan II de Casablanca

2023/2024

Table des matières

I	Élén	Éléments de Logique							
	I.I	Notio	tion de Proposition						
	1.2	Quant	Quantificateurs-Propositions quantifiées						
	1.3	Opérations sur les propositions							
		1.3.1	Négation d'une proposition	3					
		1.3.2	Disjonction des propositions	4					
		1.3.3	Conjonction des proposition	4					
		1.3.4	Implication	4					
		1.3.5	Équivalence de deux propositions	5					
	I.4	Lois lo	ogiques	6					
		I.4.I	Définition et exemples	6					
		1.4.2	Lois de Morgan	7					
		1.4.3	Lois de contraposée	7					
		1.4.4	Raisonnement par l'absurde	7					
		1.4.5	Raisonnement par disjonction des cas	8					
		1.4.6	Raisonnement par récurrence	8					
	1.5	Exerci	ces	8					
2	Ensembles								
	2.I	Génér	énéralités						
	2.2	2.2 Axiomes sur les ensembles							
		2.2.I	A1- Égalité	12					
		2.2.2	A2- Axiome de la paire	12					
		2.2.3	A3- Axiome de réunion et de sélection	12					
		2.2.4	A4- Axiome de l'ensemble des parties	12					
		2.2.5	A5- Axiome de l'ensemble vide	13					
		2.2.6	A6- Axiome de l'infini	13					
		2.2.7	A7- Axiome de fondation	13					
		2.2.8	A8- Axiome du choix	13					
	2.3	Notio	ns fondamentales	13					
	-	2.3.I	Inclusion	13					
		2.3.2	Complémentaire d'une partie d'un ensemble	14					
		2.3.3	Réunion	14					

		2.3.4	Intersection			
		2.3.5	Ensemble des parties d'un ensemble			
		2.3.6	Le produit cartésien			
		2.3.7	La différence			
		2.3.8	La différence symétrique 19			
		2.3.9	Ensembles finis			
	2.4	Partition d'un ensemble-Fonction caractéristique 20				
		2.4.I	Partition d'un ensemble 20			
		2.4.2	Fonction caractéristique 20			
	2.5	Exercic	es			
3	Rela	itions et	Applications 25			
	3.I	Relatio	• •			
		3.I.I	Généralités			
		3.1.2	Relation d'équivalence			
		3.1.3	Relations d'ordre			
	3.2		ations			
	<i>)</i>	3.2.I	Généralités			
		3.2.2	Propiétés des applications			
	3.3	,	on, Surjection, Bijection 40			
	J.J	3.3.I	Injection			
		3.3.2	Surjection			
		3.3.3	Bijection			
		3.3.4	Bijection réciproque			
		3.3.5	Décomposition canonique d'une application			
	3.4		es			
	2.4	3.4.I	Relations-Relations binaires			
		フ・サ・ユ	10 action 10 action 5 mane 5			

Chapitre 1

Éléments de Logique

1.1 Notion de Proposition

Définition 1.1.1 Une "Proposition" est un énoncé mathématique portant un sens et qui est soit Vrai ou Faux.

On note généralement une proposition par P ou p.

Exemple 1.1.1 "La somme de deux entiers successifs est un entier impair" "Si n est un entier alors c'est un carré complet.

Remarque 1.1.1 Un proposition ne peut être à la fois vraie et fausse (ou ni vraie ni fausse)

"La somme des angles de tout triangle dans le plan est 180° "

Si une proposition est P est vraie alors on lui attribue la valeur 1 (ou V)

Si une proposition est fausse on lui attribue la valeur o (ou F)

On représente ceci par une table appelée table de vérité et on écrit

$$\begin{array}{c|c}
P \\
I \\
o
\end{array}$$
ou
$$\begin{array}{c|c}
P \\
V \\
F
\end{array}$$

Définition 1.1.2 Une fonction propositionnelle est un énoncé mathématique qui contient une variable x (ou plusieurs variables) appartenant à un ensemble donné E telle que la valeur de vérité de la proposition varie en fonction de x.

Exemple 1.1.2 $Q(x): "x \in \mathbb{R}, \ x^2 \le 1"$ est vraie pour $-1 \le x \le 1$ est et elle est fausse sinon.

P(a,b): " $(a,b) \in \mathbb{R}^2$ " et " $a^2 + b^2 = 4$ " est une fonction propositionnelle, P(0,1) est fausse et P(-2,0) est vraie.

Définition 1.1.3 Si une proposition est vraie mais on ne peut la prouver, on l'appelle "axiome".

Exemple: Axiome du choix.

1.2 Quantificateurs-Propositions quantifiées

Définition 1.2.1 Soit P(x) une fonction propositionnelle de la variable x, d'un ensemble non vide E. À partir de l'énoncé : $(x \in E) : P(x)$ on définit les deux propositions suivantes :

- $(\exists x \in E) : P(x)$ qui est vraie si, et seulement si il existe au moins un élément x de E vérifiant P(x). (On "dit il existe au moins"), le symbole \exists s'appelle quantificateur existentiel.
- $(\forall x \in E)$: P(x) qui est vraie si, et seulement si tout élément x de E vérifiant P(x). (On "quelque soit x de E")ou encore "pour tout x de E", le symbole \exists s'appelle quantificateur universel.

Exemple 1.2.1 *I.* $(P_1): (\forall x \in \mathbb{R}) \, 2x + 1 = 0$ *est fausse.*

2. $(P_2): (\exists x \in \mathbb{Z}) 2x + 1 = 0$ est fausse.

3. $(P_3): (\forall a \in \mathbb{R}_+^*), a + \frac{1}{a} \geq 2 \text{ est vraie.}$

Vérifier si les propositions suivantes sont vraies ou fausses

 $Q_1: (x \in \mathbb{R}) \hat{x^2} + x + 1 = 0; \quad Q_2: (\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}) x \le y$

 $Q_3: (\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) \ x \leq y.$

Remarque 1.2.1 • Si une proposition quantifiée contient plusieurs quantificateurs contient plusieurs quantificateurs de même nature, le sens ne changera pas si on change l'ordre de ces quantificateurs.

• Si les natures des quantificateurs sont différentes, alors le sens de la proposition change.

1.3 Opérations sur les propositions

1.3.1 Négation d'une proposition

Définition 1.3.1 La négation d'une proposition P est une proposition qu'on note $\neg P$ (ou \bar{P}) et qui est vraie si P est fausse, et est fausse si P est vraie.

On représente ceci par la table de vérité suivante :

P	$\neg P$
V	F
F	V

i) Négation d'une proposition quantifiée

On considère la proposition $P: "(\forall x \in E) \, p(x)",$ la négation de P est $\neg P: "(\exists x \in E) \, \neg p(x)"$

On considère la proposition $Q: "(\exists x \in E) \, p(x)",$ la négation de Q est $\neg Q: "(\forall x \in E) \, \neg p(x)"$

On considère la proposition $R: "(\forall x \in E)(\exists y \in F) \ p(x,y)"$, la négation de R est $\neg R: "(\exists x \in E)(\forall y \in F) \ \neg p(x,y)"$.

ii) Preuve par contre-exemple

Pour prouver la proposition " $(\forall x \in E)$, p(x)" est fausse, on montre que " $(\exists x \in E)$, $\neg p(x)$ " est vraie.

Exemple 1.3.1
$$Q: "\forall (m,n) \in \mathbb{N}^{*2}; \ \frac{1}{n} + \frac{1}{n+1} + ... + \frac{1}{n+m} \in \mathbb{N}" \ \textit{est fausse}.$$
 $\forall x \in]0,1[, \ \frac{2x}{x^2(1-x^2)} < 1 \ \text{est fausse}.$

1.3.2 Disjonction des propositions

Définition 1.3.2 La disjonction de deux propositions p et q est une proposition qu'on la note "p ou q" ou " $p \lor q$ " et qui fausse seulement dans le cas où p et q sont fausses.

Proposition 1.3.1 i) $(p \lor q)$ et $(q \lor p)$ ont le même sens. (La disjonction est commutative). ii) $[(p \lor q) \lor r]$ et $[p \lor (q \lor r)]$ ont le même sens. La disjonction est associative.

1.3.3 Conjonction des proposition

Définition 1.3.3 La conjonction des proposition p et q est la proposition qu'on la note p et q ou encore $p \land q$ et qui est vraie seulement dans le cas où p et q sont vraies.

Proposition 1.3.2 i) $(p \land q)$ et $(q \land p)$ ont le même sens. (La conjonction est commutative). ii) $[(p \land q) \land r]$ et $[p \land (q \land r)]$ ont le même sens. La conjonction est associative.

1.3.4 Implication

Définition 1.3.4 À partir des deux propositions p et q, on obtient la proposition " $\neg P \lor Q$ " qui est fausse seulement si P est vraie et Q est fausse.

La proposition " $\neg P \lor Q$ " s'appelle implication des propositions P et Q et on écrit $P \Rightarrow Q$, on dit P implique Q.

Remarque 1.3.1 i) Les propositions $(p \Rightarrow q)$ et $(q \Rightarrow p)$ n'ont pas le même sens. ii) $q \Rightarrow p$ s'appelle l'implication réciproque de $p \Rightarrow q$

Condition nécessaire-condition suffisante

Dans l'implication $p \Rightarrow q$, on dit que :

- p est une condition suffisante (pour q).
- q est une condition nécessaire (pour p).

Exemple 1.3.2 Soient m et n deux entiers.

L'implication "x + y est impair $\Rightarrow x$ est impair ou y est impair" est vraie.

Donc une condition nécessaire pour que x+y soit impair est que "x est impair ou y est impair"

Soient p et q deux propositions :

Si $p \Rightarrow q$ est vraie, on dit que :

Pour que p soit vraie, *il faut que* que q soit vraie.

Pour que q soit vraie, il suffit que p soit vraie.

Exercice 1.3.1 Soient a et b deux nombres réels donnés, montrer que |a| < 1 et $|b| < 1 \Rightarrow |a+b| < |1+ab|$.

Proposition 1.3.3 Les propositions suivantes sont vraies :

$$[(\forall x \in E) : A(x) \Rightarrow B(x)] \Rightarrow [(\forall x \in E) : A(x) \Rightarrow (\forall x \in E) : B(x)]$$
$$[(\exists x \in E)(\forall y \in F) : A(x,y)] \Rightarrow [(\forall y \in F)(\exists x \in E) : A(x,y)]$$

Remarque 1.3.2 $p \Rightarrow (q \Rightarrow r)$ et $(p \Rightarrow q) \Rightarrow r$ n'ont pas toujours le même sens.

Remarque 1.3.3 $[(\forall x \in E) : A(x) \Rightarrow (\forall x \in E) : B(x)] \Rightarrow [(\forall x \in E) : A(x) \Rightarrow B(x)]$ peut être fausse.

$$(\forall y \in F)(\exists x \in E) : A(x,y) \Rightarrow (\exists x \in E)(\forall y \in F) : A(x,y)$$
 peut être fausse.

Exemple 1.3.3 $(\forall x \in \mathbb{R})(\exists n \in \mathbb{N}) : x < n \text{ est vraie, mais } (\exists n \in \mathbb{N})(\forall x \in \mathbb{R}) : x < n \text{ est fausse.}$

1.3.5 Équivalence de deux propositions

Définition 1.3.5 À partir de deux propositions p et q on obtient " $p \Rightarrow q$ " \land " $q \Rightarrow p$ " et est vraie si, et seulement si p et q ont la même valeur de vérité.

" $p \Rightarrow q$ " \land " $q \Rightarrow p$ " s'appelle équivalence de p et q et on écrit $p \Leftrightarrow q$.

Table de vérité de l'équivalence $p \Leftrightarrow q;$

	p	q	$p \Leftrightarrow q$
	V	V	V
η;	V	F	F
	F	V	F
	F	F	V

Exemple 1.3.4 i) 2 impair $\Leftrightarrow (\exists \alpha \in \mathbb{Z}); 2\alpha - 1 = 0$ est vraie. ii) $\sqrt{2} \notin \mathbb{Q} \Leftrightarrow (\exists x \in \mathbb{R}); x^2 + 1 = 0$ est fausse.

Exercice 1.3.2 i) $x, y \in \mathbb{R}$, montrer que

$$\sqrt{x-1} + 2\sqrt{y-4} = \frac{x+y}{2} \Leftrightarrow x = 2 \text{ et } y = 8.$$

ii)
$$a, b \in \mathbb{R}$$
, montrer que $|a+b| < |1+ab| \Leftrightarrow (a^2-1)(b^2-1) > 0$

Proposition 1.3.4 i) $(p \Leftrightarrow q) \Leftrightarrow (q \Leftrightarrow p)$ commutativité,

ii)
$$[p \Leftrightarrow (q \Leftrightarrow r)] \Leftrightarrow [(p \Leftrightarrow q) \Leftrightarrow r]$$
 associativité,

$$iii) (p \Leftrightarrow q) \land (q \Leftrightarrow r) \Rightarrow (p \Leftrightarrow r)$$

Proposition 1.3.5 Soient p(x) et q(x) deux propositions, $x \in E$. Les propositions suivantes sont vraies;

$$i) [(\forall x \in E) : p(x) \land q(x)] \Leftrightarrow [(\forall x \in E) : p(x) \land (\forall x \in E) : q(x)]$$
$$ii) [(\exists x \in E) : p(x) \lor q(x)] \Leftrightarrow [(\exists x \in E) : p(x) \lor (\exists x \in E) : q(x)]$$

Exercice 1.3.3 Considérons la proposition

$$P: "(\forall y \in \mathbb{R})(\exists x \in \mathbb{R}): x^2 + xy + y^2 = 0"$$

- i) Donner $\neg P$.
- ii) Montrer que P est fausse.

Proposition 1.3.6 Distributivité

$$i) p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$$
$$ii) p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \wedge r)$$

Preuve: En exercice.

Exercice 1.3.4 Montrer que:

$$i) (p \Leftrightarrow q) \Leftrightarrow (\neg p \Leftrightarrow \neg q)$$

$$ii) (p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$$

On a l'équivalence suivante :

$$[(\exists! x \in E); p(x)] \Leftrightarrow [(\exists x \in E); p(x)] \land [(\forall y \in E); p(y)] \Rightarrow x = y.$$

1.4 Lois logiques

1.4.1 Définition et exemples

Définition 1.4.1 Soit P une proposition composée de plusieurs propositions $Q_1, Q_2, ..., Q_n$ liées entre elles par des connecteurs (et, ou).

On dit que P est une loi logique si P est vraie quelque soit la valeur de vérité des propositions $Q_1, ..., Q_n$.

Exemple 1.4.1 (À vérifier à l'aide de table de vérité)

I.
$$(p \land q) \Leftrightarrow (q \land p)$$
 6. $(p \land q) \Rightarrow p$

2.
$$(p \lor q) \Leftrightarrow (q \lor p)$$
 7. $[p \Rightarrow (q \lor r)] \Leftrightarrow [(p \land \neg q) \Rightarrow r]$

3.
$$(p \land (q \land r)) \Leftrightarrow ((p \land q) \land r)$$
 8. $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$

4.
$$(p \lor (q \lor r)) \Leftrightarrow ((p \lor q)) \lor r$$

$$s. (p \Leftrightarrow q) \Leftrightarrow [(p \Rightarrow q) \land (q \Rightarrow p)]$$

Exercice 1.4.1 Montrer que les propositions suivantes sont des lois logiques :

$$i) A \Rightarrow (B \Rightarrow A),$$

$$ii) A \Rightarrow (\neg A \Rightarrow B)$$

1.4.2 Lois de Morgan

Proposition 1.4.1 Soient p et q deux propositions.

Les propositions suivantes sont des lois logiques appelées Lois de Morgan

$$i) \neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

$$ii) \neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

Exemple 1.4.2 $[\neg(p \Rightarrow q)] \Leftrightarrow p \land \neg q$

1.4.3 Lois de contraposée

Proposition 1.4.2 *Soient* p *et* q *deux propositions,*

la proposition $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$ *est une loi logique appelée loi de contraposée.*

Preuve: Table de vérité!

Exemple 1.4.3 $(\forall x \in \mathbb{R}); x^2 \neq 3 \Rightarrow \frac{2}{\sqrt{1+x^2}} \neq 1$

Exercice 1.4.2 Montrer que $2^n - 1$ premier $\Rightarrow n$ est premier.

1.4.4 Raisonnement par l'absurde

Proposition 1.4.3 Soient p et q deux propositions. La proposition suivante est une loi logique;

$$[(\neg p \Rightarrow q) \land (\neg p \Rightarrow \neg q)] \Rightarrow p$$

Preuve : Posons $R: (\neg p \Rightarrow q) \land (\neg p \Rightarrow \neg q)$

Supposons que R est vraie.

$$R \Leftrightarrow (\neg(\neg p) \lor q) \land (\neg(\neg p) \lor \neg q)$$

$$\Leftrightarrow (p \lor q) \land (p \lor \neg q)$$

$$\Leftrightarrow (p \land p) \lor (p \land \neg q) \lor (q \land p) \lor (q \land \neg p)$$

d'où $(p \land q) \lor (p \land \neg q) \lor p$ est vraie, c'est-à-dire $p \lor (p \land (q \lor \neg q))$ est vraie, donc p est vraie.

1.5. EXERCICES H.Yamoul

Exemple 1.4.4 $\sqrt{2} \notin \mathbb{Q}$.

Exercice 1.4.3 Soient a et b deux réels tels que $\forall \varepsilon \in \mathbb{R}_+^*$; $|a - b| < \varepsilon$. Montrer que a = b.

1.4.5 Raisonnement par disjonction des cas

Définition 1.4.2 Soient p, q et r des propositions.

$$[(p \Rightarrow r) \land (q \Rightarrow r)] \Rightarrow [(p \lor q) \Rightarrow r]$$

est une loi logique.

Exemple 1.4.5 Soit k un entier relatif. Montrer que $k(k^2 - 1) \equiv 0[3]$.

Exercice 1.4.4 Montrer que
$$(\forall (x,y) \in \mathbb{R}^2)(\forall \alpha > 0)(|x| < \alpha \text{ et } |y| < \alpha \Rightarrow |\frac{x+y}{2}| + |\frac{x-y}{2}| < \alpha)$$

1.4.6 Raisonnement par récurrence

Proposition 1.4.4 Soit P(n) une fonction propositionnelle d'une variable $n (n \in \mathbb{N})$. Si

i) Il existe un élément n_0 de \mathbb{N} tel que $P(n_0)$,

ii) Pour tout $n \ge n_0$, $P(n) \Rightarrow P(n+1)$ est vraie,

Alors $(\forall n \geq n_0)$: P(n) est vraie.

Preuve : Posons $A = \{n \in \mathbb{N} \mid n \geqslant n_0 \text{ et } P(n) \text{ vraie}\}$

On a $A \neq \emptyset$ et $A \subset \mathbb{N}$.

Montrons que $A = \{n_0, n_0 + 1, n_0 + 2, ...\}$

Par l'absurde, supposons qu'il existe $n \ge n_0$ tel que P(n) est fausse. Posons $N = \inf\{n \in \mathbb{N} \mid P(n) \text{ est fausse}\}, N \ge n_0$.

On a P(N-1) est vraie et $P(N-1) \Rightarrow P(N)$ donc P(N) est vraie, ce qui est absurde!

1.5 Exercices

Exercice 1.5.1 Donner la négation des propositions suivantes :

- $(\forall n \in \mathbb{N})(\exists m \in \mathbb{N}) : n < m$
- $(\forall \alpha > 0)(\exists x \in]0,1[)(\exists y \in]0,1[): x^2 + y^2 < \alpha$

Exercice 1.5.2 Soient a et b deux nombres réels. On considère les deux propositions suivantes :

$$P: "a^3 + b^3 < 1 < a + b"$$
 et $Q: "0 < a < 1$ et $0 < b < 1"$

Montrer que $P \Rightarrow Q$.

1.5. EXERCICES H.Yamoul

Exercice 1.5.3 Montrer que les propositions suivantes sont des lois logiques :

- $\bullet (A \Leftrightarrow B) \Leftrightarrow \neg [(A \land \neg B) \lor (\neg A \land B)]$
- \bullet $(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$
- $\bullet [A \Rightarrow (B \vee \neg C)] \Leftrightarrow [B \vee (A \Rightarrow \neg C)]$

Exercice 1.5.4 Donner la négation de la proposition

$$(\exists! x \in E); P(x)$$

Exercice 1.5.5 I. Résoudre dans \mathbb{R}^2 les deux systèmes suivants :

$$\begin{cases} 4x^2 - y^2 = 0 \\ (x-2)(y-6) = 0 \end{cases} \qquad \begin{cases} |2x - y + 3| = 6 \\ |x| + y - 1 = 2 \end{cases} \qquad \begin{cases} x(x^2 + y^2 - 1) = 0 \\ y(x+y+1) = 0 \end{cases}$$

2. Résoudre dans \mathbb{R} l'inéquation : $\sqrt{x^2 - 5x + 6} > x + 4$

Exercice 1.5.6 Soient x et y deux nombres réels, on considère les deux proposition :

"
$$p:(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=1$$
" et $q:$ " $x+y=0$ " Montrer que $p\Leftrightarrow q$

Exercice 1.5.7 Soit n un entier naturel.

1. Determiner les restes de la division euclidienne de n^2 par 5,

en déduire que
$$(\forall n \in \mathbb{N}); \quad \sqrt{5n+7} \notin \mathbb{N}.$$

2. Montrer que $(\forall n \in \mathbb{N}^*); \quad \sqrt{\frac{n}{1+n}} \notin \mathbb{Q}.$

Exercice 1.5.8 Montrer qu'il n'existe aucune fonction f définie de \mathbb{N} dans \mathbb{N} vérifiant : $\forall (m,n) \in \mathbb{N}^2$; $f(m)^{f(n)} = n^m$.

Exercice 1.5.9 Soient $a_1, a_2, ... a_n$ des nombres réels de l'intervalle [0, 1] tels que $a_1 \le a_2 \le ... \le a_n$.

Montrer qu'il existe $i \in \{2,...,n\}$ tel que $a_i - a_{i-1} \le \frac{1}{n-1}$.

Exercice 1.5.10 Soit f la fonction numérique de la variable réelle x définie par

$$f(x) = \sqrt{x^2 + 1} + 2x$$

1. Déterminer la valeur de vérité de chacune de s propositions suivantes :

$$p: "(\forall y \in \mathbb{R})(\exists x \in \mathbb{R}): y = f(x)"$$

$$q: "(\forall y \in \mathbb{R})(\exists! x \in \mathbb{R}): y = f(x)"$$

2. Résoudre dans \mathbb{R} l'inéquation : f(x) > 1.

1.5. EXERCICES H.Yamoul

Exercice 1.5.11 Montrer qu'il n'existe aucune fonction f définie de $\mathbb R$ dans $\mathbb R$ vérifiant :

i.
$$(\forall x \in \mathbb{R})$$
 $f(x^2) - (f(x))^2 \ge \frac{1}{4}$.

2.
$$(\forall (x, x') \in \mathbb{R}^2)$$
 $f(x) = f(x') \Rightarrow x = x'$.

Exercice 1.5.12 Montrer que tout entier $n \geq 2$ est divisible par un nombre premier.

Exercice 1.5.13 Montrer par récurrence que pour tout n de \mathbb{N}^* :

1.
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

2.
$$1^3 + 2^3 + \dots + n^3 = (\frac{n(n+1)}{2})^2$$