Discrete Mathematics

Lab Session 4

October 6, 2020

Agenda

- ► Test discussion
- ► Relations
- Functions
- ► Homework

Relations

Cartesian product

Let $A = \{a_1, a_2, \dots a_k\}$ and $B = \{b_1, b_2, ... b_m\}$. The Cartesian product $A \times B$ is defined by a set of pairs

$$\{(a_1b_1),(a_1,b_2),\ldots(a_1,b_m),\ldots,(a_k,b_m)\}$$

Cartesian product defines a product set, or a set of all ordered arrangements of elements in sets in the Cartesian product.

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$

Cartesian product of an empty set

Proposition

If A is a set, then $A \times \emptyset = \emptyset$ and $\emptyset \times A = \emptyset$.

Proof.

We argue by contradiction using the definition of Cartesian product: Suppose $A \times \emptyset \neq \emptyset$ and consider $(x,y) \in A \times \emptyset$. Then, by definition of Cartesian product, $y \in \emptyset$, a contradiction. Therefore, the set $A \times \emptyset$ must be empty. The proof that $\emptyset \times A = \emptyset$ is similar, and is left as an exercise.

Binary relation

Definition

Let A and B be two sets. A binary relation from A to B is a subset of a Cartesian product $A \times B$.

- ▶ $R \subseteq A \times B$ means R is a set of ordered pairs of the form (a,b) where $a \in A$ and $b \in B$
- ▶ We use the notation aRb to denote $(a, b) \in R$ and aRb to denote $(a, b) \notin R$. If aRb, we say a is related to b by R.

Exercise 1

Let
$$A = \{a, b, c\}$$
 and $B = \{1, 2, 3\}$

- 1. Is $R = \{(a, 1), (b, 2), (c, 2)\}$ a relation from A to B?
- 2. Is $Q = \{(1, a), (2, b)\}$ a relation from A to B?
- 3. Is $P = \{(a, a), (b, c), (b, a)\}$ a relation from A to A?

Representing binary relations graphically

We can graphically represent a binary relation R as follows:

• If a R b then draw an arrow from a to b. $a \rightarrow b$

Example:

- Let $A = \{0, 1, 2\}, B = \{u, v\}$ and $R = \{(0, u), (0, v), (1, u), (1, v), (2, u), (2, v)\}$
- ▶ Note : $R \subseteq A \times B$
- Graph

Representing binary relations by tables

We can represent a binary relation R by a table showing (making) the ordered pairs of R.

Example:

- Let $A = \{0, 1, 2\}, B = \{u, v\}$ and $R = \{(0, u), (0, v), (1, v), (2, u)\}$
- ► Table:

R	u	٧	OR	R	u	٧	
0	Х	Χ		0	1	1	
1		Х		1	0	1	
0 1 2	х			2	1 0 1	0	

Number of binary relations

Theorem

The number of binary relations on a set A, where |A| = n is: 2^{n^2}

Proof.

If |A| = n then the cardinality of the Cartesian product $|A \times A| = n^2$

- ▶ R is a binary relation on A if $R \subseteq A \times A$ (that is, R is a subset of $A \times A$)
- ▶ The number of subsets of a set with k elements : 2^k
- ► The number of subsets of $A \times A$ is : $2^{|A \times A|} = 2^{n^2}$

Relations and functions - question

Relations represent one to many relationships between elements in A and B.

What is the difference between a relation and a function from A to B?

Relations and functions - answer

What is the difference between a relation and a function from A to *B*?

A function defined on sets A,B $A \to B$ assigns to each element in the domain set A exactly one element from B. So it is a special relation.

Exercise 2

State whether each of the following relations represent a function or not.

Inverse of a relation

If R is a relation from A to B, then a relation R^{-1} from B to A can be defined by interchanging the elements of all the ordered pairs of R.

Definition

Let R be a relation from A to B. define the inverse relation R^{-1} from B to A as follows:

$$R^{-1} = \{ (y, x) \in (B \times A) \mid (x, y) \in R \}$$

Definition

This definition can be written operationally as follows: For all $x \in A$ and $y \in B, (y, x) \in R^{-1} \Leftrightarrow (x, y) \in R$

Exercise 3

Let $A = \{2,3,4\}$ and $B = \{2,6,8\}$ and let R be the "divides" relation from A to B: for all $(x,y) \in (A \times B)$

$$xRy \Leftrightarrow x \mid y$$

x divides y

- 1. State explicitly which ordered pairs are in R and R^{-1} , and draw arrow diagrams for R and R^{-1}
- 2. Describe R^{-1} in words.

Relation on the set - 1

Definition

A **relation on the set** A is a relation from A to itself.

Example

- ▶ Let $A = \{1, 2, 3, 4\}$ and $R_{div} = \{(a, b) \mid a \text{ divides b}\}$
- \blacktriangleright What does R_{div} consist of?
- $R_{\text{div}} = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

Relation on the set - 2

Example

- ▶ Let $A = \{1, 2, 3, 4\}$
- ▶ Define $aR_{\neq}b$ if and only if $a \neq b$

$$R_{\neq} = \{(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1), (4,2), (4,3)\}$$

Reflexive relations

Definition

A relation R on a set A is called **reflexive** if $(a, a) \in R$ for every element $a \in A$.

A relation R is reflexive if and only if MR has 1 in every position on its main diagonal.

Exercise 4

- Assume relation $R_{div} = \{(a, b)|a \text{ divides } b\}$ on $A = \{1, 2, 3, 4\}$
- ▶ Is R_{div} reflexive?

Solution

```
\begin{array}{l} R_{div} = \{(ab), \text{ if a} \mid b\} \text{ on } A = \{1,2,3,4\} \\ R_{div} = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\} \\ & 1 \quad 1 \quad 1 \quad 1 \\ MR_{\text{div}} \quad 0 \quad 1 \quad 0 \quad 1 \\ & \quad 0 \quad 0 \quad 1 \quad 0 \\ & \quad 0 \quad 0 \quad 1 \\ R_{div} \text{ is reflexive as } (1,1),(2,2),(3,3), \text{ and } (4,4) \in R_{div} \end{array}
```

Exercise 5

▶ Relation R_{fun} on $A = \{1, 2, 3, 4\}$ is defined as

$$\textit{R}_{\textit{fun}} = \{(1,2), (2,2), (3,3)\}$$

ightharpoonup Is R_{fun} reflexive?

Irreflexive relations

Definition

A relation R on a set A is called **irreflexive** if $(a, a) \notin R$ for every $a \in A$

A relation R is irreflexive if and only if MR has 0 in every position on its main diagonal.

Exercise 6

- Assume relation R_{\neq} , on $A = \{1, 2, 3, 4\}$, such that $aR_{\neq}b$ if and only if $a \neq b$
- ▶ Is R_{\neq} irreflexive?
- $ightharpoonup R_{\neq} = \dots$

Solution

 R_{\pm} is irreflexive.

```
▶ R_{\neq} on A = \{1, 2, 3, 4\}, such that aR_{\neq}b if and only if a \neq b

▶ R_{\neq} = \{(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)\}

0 1 1 1

MR_{\neq} 1 0 1 1

1 1 0 1

1 1 1 0
```

24 / 53

Exercise 7

Let $A = \{3,4,5\}$ and $B = \{4,5,6\}$ and let S be the "divides" relation. That is: $\forall (x,y) \in A \times B, xSy \Leftrightarrow x \mid y$ State explicitly which ordered pairs are in S^{-1}

Properties of relations

- ▶ A relation *R* is **symmetric** if $\forall x, y, xRy \Leftrightarrow yRx$
- ▶ A relation R is **reflexive** if $\forall x, xRx$
- ▶ A relation *R* is **transitive** if $\forall x, y, z, (xRy \land yRz) \rightarrow xRz$
- ► An **equivalence relation** is a relation which is symmetric, reflexive and transitive

Functions

Function definition

Let A and B be non-empty sets. A **function** from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

If f is a function from A to B, we write $f: A \rightarrow B$

Function Definitions

Definition

A function f from a set A to a set B assigns each element of A to exactly one element of B

- ▶ If f maps element $a \in A$ to element $b \in B$, we write f(a) = b
- ▶ A is called domain of f, and B is called co-domain (range) of f
- ▶ If f(a) = b, b is called **image** of a; a is a **preimage** of b
- ▶ **Image of** *f* is the set of all images of elements in *A*

Is it a function?

Is it a function?

Injective functions

Definition

A function f is said to be **one-to-one, or injective**, if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. A function is said to be an injection if it is one-to-one.

Alternative: A function is one-to-one if and only if $f(x) \neq f(y)$ whenever $x \neq y$. This is the contrapositive of the definition.

Not injective function

Injective function

Determine whether the following functions are one-to-one (injective).

- 1. $f: R \to R$, defined by y = f(x), where x 3y = 7
- 2. $s: R \to R$, defined by $s(t) = 16t^2$
- 3. $M: P(N) \to N$, defined by: M(S) is the minimum value of S, for $S \subseteq N$.

Surjective functions

Definition

A function from A to B is called **onto**, **or surjective**, if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b

Alternative: all co-domain elements are covered

Determine whether the following functions are onto (surjective).

- 1. $f: R \to R$ defined by y = f(x), where x 3y = 7
- 2. $s: R \to R$ defined by $s(t) = 16t^2$
- 3. $M: P(N) \to N$ defined by $M(S) = \min(S)$, the minimum value of S, for $S \subseteq N$.

Bijective functions

Definition

A function f is called a **bijection** if it is both one-to-one (injection) and onto (surjection).

37 / 53

► a) Is this function onto?

▶ b) Consider the function $f(x) = x^2$ from the set of integers to the set of integers. Is f surjective?

- ► Let $A = \{1, 2, 3\}$ and $B = \{a, b, c\}$ Define f as
 - 1. $1 \rightarrow c$
 - $2. 2 \rightarrow a$
 - 3. $3 \rightarrow b$
- ▶ Is f a bijection?

Define $g:W\to W$ (whole numbers), where $g(n)=\left\lfloor\frac{n}{2}\right\rfloor$ (floor function)

- $ightharpoonup 0 \to |0/2| = |0| = 0$
- ightharpoonup 1 o |1/2| = |1/2| = 0
- ightharpoonup 2 o |2/2| = |1| = 1
- ightharpoonup 3 o |3/2| = |3/2| = 1

Is g a bijection?

Inverse Function

Let f be a one-to-one correspondence from the set A to the set B. The **inverse function** of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b

Example

Let $g: R \to R$, where g(x) = 2x - 1 What is the inverse function g^{-1} ? Approach to determine the inverse:

$$y = 2x - 1 = y + 1 = 2x$$

=> $(y + 1)/2 = x$

Define $g^{-1}(y) = x = (y+1)/2$ Test the correctness of inverse:

$$g(3) = ...$$

Composition of the functions

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The **composition of the** functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by

$$(f\circ g)(a)=f(g(a))$$

$$(f \circ g)(x) = f(g(x))$$

Composition - Example

```
g: A \rightarrow A, f: A \rightarrow B

1 \rightarrow 3 1 \rightarrow b

2 \rightarrow 1 2 \rightarrow a

3 \rightarrow 2 3 \rightarrow d

f \circ g: A \rightarrow B:
```

Example

Let f and g be two functions from Z to Z, where

$$f(x) = 2x \text{ and } g(x) = x^{2}$$

$$f \circ g : Z \to Z$$

$$(f \circ g)(x) = f(g(x))$$

$$= f(x^{2})$$

$$= 2(x^{2})$$

$$g \circ f : Z \to Z$$

$$(g \circ f)(x) = ?$$

Answer

$$(f \circ g)(x) = f(g(x))$$

$$= f(x^2)$$

$$= 2(x^2)$$

$$g \circ f : Z \to 2(x^2)$$

$$(g \circ f)(x) = g(f(x))$$

$$= g(2x)$$

$$= (2x)^2$$

$$= 4x^2$$

NB: Note that the order of the function composition matters

Given functions:

$$\begin{array}{l} f(x)=x^*e\\ g(x)=e^x\\ h(x)=x/(2+\ln(3/e))\\ \text{Write } \left(h\circ g^{-1}\circ f\right)(x). \text{ Find domain, codomain, image. Calculate}\\ \text{for } x=3 \end{array}$$

Extra Task

Points are in general position if there are no 3 collinear among them. Straight lines are in general position if non 3 intersect in a single point. Assuming that Euclidian plain is R^2 , a point is a pair of numbers; a line is triple of numbers.

- Question 1: Guess what could it mean that plains are in general position?
- Question 2: Define (in set-theoretic terms) relation "points in general position on Euclidian plain". What is arity of this relation, what is the domain of the relation?
- Question 3: Define (in set-theoretic terms) relation "lines in general position on Euclidian plain". What is arity of this relation, what is the domain of the relation?

Hint for questions 2: Consider $\{X \in P(R^2) \mid \text{ for all } (a,b),(c,d),(e,f) \in X: L_{(c,d)(e,f)}(a,b) \neq 0\}$ where is equation of a straight line that goes through points (c,d) and (e,f)

Study other properties and complete this table:

Relation	Transitivity	Reflexivity	Symmetry
x < y			
$x \le y$			
A divides B			
A fixes a car of B			

Complete this table:

function	surjective	Injective	bijective	Pre-image	Image
$x^2:R\to R$					
$log(x): R \to R$					
$1/x:R\to R$					
$1/(x^2+1):R\to R$					

Why is f not a function from R to R if

- 1. fx = 1/x?
- $2. \ f(x) = \sqrt{x}?$
- 3. $f(x) = \pm \sqrt{x^2 + 1}$? Determine whether the function: $f: Z \times Z \to Z$ is onto if
- 4. f(m, n) = m + n
- 5. $f(m, n) = m^2 + n^2$
- 6. f(m, n) = m
- 7. f(m, n) = |n|
- 8. f(m, n) = m n

Determine whether each of these function is a bijection from ${\cal R}$ to ${\cal R}$

- 1. f(x) = 2x + 1
- 2. $f(x) = x^2 + 1$
- 3. $f(x) = x^3$
- 4. $f(x) = (x^2 + 1)/(x^2 + 2)$

Homework - Readings

Read textbook Kenneth H. Rosen "Discrete Mathematics and Its Applications, 7th Edition" – paragraphs 2.3, 9.1, 9.5