Zadanie 1. Dokumentacja: Implementacja algorytmu gradientu prostego

Artem Kukushkin, 317140

1. Opis implementowanych algorytmów

W ramach tego projektu zaimplementowano algorytm gradientu prostego do minimalizacji funkcji celu. Algorytm ten iteracyjnie aktualizuje wartości wektora zmiennych decyzyjnych w kierunku przeciwnym do gradientu funkcji celu, zgodnie ze wzorem:

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

Gdzie:

- ullet x_t wektor zmiennych decyzyjnych w iteracji t,
- α współczynnik uczenia (krok algorytmu),
- $\nabla f(x_t)$ gradient funkcji celu w punkcie x_t .

Algorytm został zaprojektowany tak, aby można było zastosować go do różnych funkcji celu. W implementacji wykorzystano bibliotekę **autograd** do obliczania gradientów.

Warunki stopu

Aby uniknąć nieskończonej liczby iteracji, algorytm kończy działanie, gdy spełniony zostanie jeden z warunków:

- Norma gradientu jest mniejsza od zadanej tolerancji ε\epsilon,
- Osiągnięta została maksymalna liczba iteracji.

2. Opis planowanych eksperymentów numerycznych

Aby zbadać skuteczność algorytmu gradientu prostego, przeprowadzono eksperymenty dla trzech różnych funkcji celu:

a. Funkcja kwadratowa:

$$f(x) = x_1^2 + x_2^2$$

Jest to funkcja wypukła o minimum globalnym w punkcie (0,0)(0,0).

b. Funkcja Rosenbrocka:

$$f(x) = \sum_{i=1}^{n-1} [100(x_{i+1} - x_i^2)^2 + (1-x_i)^2]$$

Znajduje szeroką dolinę prowadzącą do minimum globalnego w punkcie (1,1)(1,1), co czyni ją trudnym problemem optymalizacyjnym.

c. Funkcja Ackleya:

$$f(x) = -20 \exp \left(-0.2 \sqrt{rac{1}{n} \sum_{i=1}^n x_i^2}
ight) - \exp \left(rac{1}{n} \sum_{i=1}^n \cos(2\pi x_i)
ight) + 20 + e$$

Funkcja ta posiada wiele minimów lokalnych, a jej globalne minimum znajduje się w punkcie (0,0)(0,0).

Dla każdej z funkcji przetestowano różne wartości początkowe x0:

$$[-1.2, 1.0], [-2, 2], [-5, 5], [2, 2], [0, 0], [-10, 10], [100, -100]$$

Eksperymenty miały na celu zbadanie wpływu wyboru początkowego punktu na zbieżność algorytmu oraz jego skuteczność w minimalizacji funkcji.

3. Opis uzyskanych wyników

$$X0 = [-1.2, 1.0]$$

Wyniki dla różnych wartości x0:

х0	Funkcja kwadratowa	Funkcja Rosenbrocka	Funkcja Ackleya
[-1.2,1.0]	[-3.84·10^7, 3.20·10^-7]	[0.992, 0.984]	[-0.968, 0.968],
	0.868s	2.698s	0.102s
[-2, 2]	[-3.53·10^-7, 3.53·10^-7]	[0.989, 0.978]	[-1.974, 1.974],
	0.894s	2.722s	0.091s

[-5, 5]	[-3.53·10^-7, 3.53·10^-7]	[-2.693, 7.284]	[-4.986, 4.986],
	1.061s	2.666s	0.090s
[2, 2]	[3.53·10^-7, 3.53·10^-7]	[1.032, 1.066],	[1.974, 1.974],
	0.878s	2.737s	0.099s
[0, 0]	[0, 0], 0.002s	[0.994, 0.989], 2.890s	[nan, nan], 3.681s
[-10, 10]	[-3.53·10^-7, 3.53·10^-7]	[-4, 15.956],	[-9.995, 9.995],
	1.005s	2.657s	0.085s
[100, -100]	[1.838, -1.838], 1.084s	[0.106, -0.010] 2.612s	[100, -100], 0.000s

Analiza wyników

- **Funkcja kwadratowa** algorytm dobrze radził sobie z minimalizacją niezależnie od wartości x0.
- **Funkcja Rosenbrocka** gradient prosty miał trudności z dojściem do optymalnego rozwiązania dla dużych wartości x0, co wynika z jej specyfiki.
- Funkcja Ackleya wartości x0 = [0, 0] i x0 = [100, -100] pokazały problemy numeryczne i brak zbieżności.

4. Wnioski z przeprowadzonych badań

- 1. Zbieżność algorytmu zależy od wyboru funkcji celu i punktu startowego.
- 2. Gradient prosty może nie radzić sobie dobrze z funkcjami o wielu minimach lokalnych (Ackley).
- 3. Dla funkcji Rosenbrocka algorytm często kończy w lokalnym minimum zamiast w optymalnym punkcie (1, 1).
- 4. Dobre wartości początkowe przyspieszają zbieżność, ale nie eliminują problemu utknięcia w minimum lokalnym.