String Processing Algorithms 2015 - Week 2 Exercises

Rodion Efremov

October 30, 2015

Exercise 1

Outline algorithms that find the most frequent symbol in a give string.

- (a) for ordered alphabet, and
- (b) for integer alphabet.

The algorithms should be as fast as possible. What are their (worst case) time complexities? Consider also the case where $\sigma \gg n$.

Solution

```
Algorithm 1: MostFrequentSymbol(S)
```

```
1 let f be an empty map f: \Sigma \to \mathbb{N}
\mu = nil
3 L_{\mu} = 0
4 for i = 1 to |S| do
       if S[i] is not mapped in f then
           f(S[i]) = 1
6
           if L_{\mu} = 0 then
7
               L_{\mu} = 1
8
9
               \mu = S[i]
       else
10
           f(S[i]) = f(S[i]) + 1
11
           if L_{\mu} < f(S[i]) then
12
               L_{\mu} = f(S[i])
13
               \mu = S[i]
15 return \mu
```

Exercise 2

Let $\mathcal{R} = \{ manne, manu, minna, salla, saul, sauli, vihtori \}$.

- (a) Give the compact trie of \mathcal{R} .
- (b) Give the balanced compact ternary trie of \mathcal{R} .

Solution

(a)

(b)

See the drawing.

Exercise 3

Exercise 4

Prove

- (a) Lemma 1.14: For $i \in [2..n]$, $LCP_{\mathcal{R}}[i] = lcp(S_i, \{S_1, \dots, S_{i-1}\})$.
- (b) Lemma 1.15: $\Sigma LCP(\mathcal{R}) \leq \Sigma lcp(\mathcal{R}) \leq 2 \cdot \Sigma LCP(\mathcal{R})$.

Solution

(a)

We need an auxiliary lemma first:

Lemma 1 (Distance lemma). If $S_1 < S_2 < S_3$, $lcp(S_1, S_3) \le lcp(S_2, S_3)$.

Proof. The proof is by contradiction: Let $l_{13} = lcp(S_1, S_3)$ and $l_{23} = lcp(S_2, S_3)$. Assume the opposite that $l_{13} > l_{23}$. Now

$$\begin{split} S_1 &= a_1 a_2 \dots a_{l_{23}} \dots a_{l_{13}} b_1 b_2 \dots, \\ S_2 &= a_1 a_2 \dots a_{l_{23}} c_1 c_2 \dots, \\ S_3 &= a_1 a_2 \dots a_{l_{23}} \dots a_{l_{13}} d_1 d_2 \dots. \end{split}$$

Since $c_1 > a_{l_{23}+1}$, we must have also $S_2 > S_3$, which is a contradiction.

Example:

 S_1 : aaaab S_2 : aaaba S_3 : aaabc

Now assume that $i \in [2...n]$. We have that

$$lcp(S_i, \{S_1, \dots, S_{i-1}\}) = \max\{lcp(S_i, S_{i-1}), lcp(S_i, \{S_1, \dots, S_{i-2}\})\}.$$

Because by distance lemma for any $j = 1, 2, ..., i - 2, lcp(S_j, S_i)$ cannot exceed $lcp(S_i, S_{i-1})$, we must have that

$$lcp(S_i, \{S_1, \dots, S_{i-1}\}) = lcp(S_i, S_{i-1}) = LCP_{\mathcal{R}}[i],$$

as expected.