Answer the following as indicated and in the given order. SHOW YOUR SOLUTIONS.

- 1. Answer the following questions.
- $(20 \; {\tt Points})$
- (a) If $a \in G$, where G is a group, $1 \le o(a) \le \underline{\hspace{1cm}}$.
- (b) Is $G = \{1, -1, i, -i\}$ a subgroup of \mathbb{C}^* under multiplication? Justify your answer.
- (c) If $a \in G$, where G is a group, $a^{-n} = \underline{\hspace{1cm}}$.
- (d) Find o(23) in $(\mathbb{Z}, +)$.
- (e) How many subgroups does $(\mathbb{Z}_5, +)$ have? Justify your answer.
- (f) If H < G then _____.
- (g) The order of the symmetric group of order n is .
- (h) Find the intersection of all subgroups C(g), g is an element of the group G.
- (i) If Z(G) = G then _____
- (j) Given $(\mathbb{Z}_6, +), 2^{453672} = \underline{\hspace{1cm}}$
- 2. Let

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 6 & 8 & 1 & 2 & 3 & 5 & 7 \end{pmatrix}$$

$$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 1 & 4 & 6 & 5 & 7 & 8 \end{pmatrix}$$

Answer the following questions.

- (12 Points)
- (a) Write α in cycle notation.
- (b) Write β^{-1} in cycle notation.
- (c) Find $\beta \alpha$.
- (d) Write α as a product of transpositions.

- 3. Determine the order of the given elements of the given groups. Show your solution. (10 Points)
 - (a) $G = (\mathbb{Z}_{10}, +), a = 3, 4$
 - (b) $G = (\mathbb{Z}_7, \bullet), a = 2$
 - (c) G is the group in the following number, $a = x^{-1}, yz$
- 4. Given the Cayley table below for a group (G, *), (20 Points)

*	e	r	s	\boldsymbol{x}	y	z
e	e	r	s	x	y	z
r	r	s	e	y	z	\boldsymbol{x}
s	s	e	r	z	\boldsymbol{x}	y
\boldsymbol{x}	\boldsymbol{x}	z	y	e	s	r
y	y	x	z	r	e	s
z	z	y	\boldsymbol{x}	s	r	e

- (a) Is the group cyclic? Justify your answer.
- (b) Find C(a) for all $a \in G$.
- (c) Find Z(G).
- (d) Draw the subgroup lattice of the given group.
- 5. Use the two-step test to show that

$$H = \{12x + 21y \mid x, \ y \in \mathbb{Z} \ \}$$
 is a subgroup of $(\mathbb{Z}, +).$ (8 Points)

6. Show that every cyclic group is abelian. (5 Points)

BONUS. Show that all integers divisible by 2 is a subgroup of $(\mathbb{Z}, +)$. (5 Points)