

Portfolio Optimization Lab

Project Overview

Portfolio Selection.

- The Russell 1000 Index is a stock market index that tracks the highest-ranking 1,000 stocks in the Russell 3000 Index, which represent about 90% of the total market capitalisation of that index
- I will introduce you some performance metrics you should apply
- I will discuss some technical problem dealing with real data
- I will present the assignments
- We will work together till the end of the lesson. At the end of the lesson I'll show you my implementation.

Suggestions: Use numpy, vectorialize whenever you can. Use for-cycle only if it is strictly necessary

The Data-set

	A	AA	AAL	AAN	AAP	AAPL	ABBV	ABC	ABMD	ABT	•••	YUMC	z	ZAYO	Z
index															
2019- 11-06	0.003172	-0.031021	-0.007081	-0.049157	0.009235	0.000428	0.002928	-0.016624	-0.013560	0.009428	•••	-0.002343	0.008061	0.001751	0.020
2019- 11-07	0.001582	0.029692	-0.002264	-0.037938	-0.002478	0.011475	-0.000853	-0.007465	0.020843	0.003243		0.020428	-0.005666	-0.000583	-0.0090
2019- 11-08	0.009571	-0.001331	-0.004217	-0.030116	-0.011168	0.002733	0.038278	0.023392	0.002234	0.004188	•••	0.007554	0.115921	-0.001168	0.0144
2019- 11-11	0.002736	-0.013855	-0.005542	-0.014708	0.008447	0.007888	0.005267	-0.023868	0.002092	0.000239	•••	-0.005030	0.028356	-0.000877	-0.0047
2019- 11-12	0.002599	-0.001802	-0.035605	0.016595	-0.078080	-0.000916	0.009065	0.017691	0.015599	0.006901	***	-0.018973	-0.020927	0.001169	0.0084
	***		***	***	***	***		***	***			***	***		
2020- 03-25	0.029414	-0.025071	0.100391	0.132570	0.045156	-0.005524	0.006204	-0.058006	0.022165	0.015096	***	0.035718	0.080084	NaN	0.0360
2020- 03-26	0.066168	-0.035898	0.017392	-0.002950	0.072035	0.051285	0.083582	0.110576	0.015403	0.069078		0.013183	0.022066	NaN	0.043
2020- 03-27	-0.038863	-0.043323	-0.109199	-0.001690	-0.015775	-0.042284	-0.015837	-0.028687	-0.026699	-0.016626		-0.056858	-0.072186	NaN	-0.0600
2020- 03-30	0.027059	-0.076106	-0.136384	-0.047628	0.009370	0.028138	0.034754	0.074440	0.025492	0.062138		-0.005891	-0.023468	NaN	0.034!
2020- 03-31	-0.014554	0.014718	-0.004910	0.010148	-0.033509	-0.002043	0.012547	0.004530	-0.026043	-0.005434	***	0.007535	-0.028464	NaN	0.0280

The data are daily adjusted close-to-close **log-returns**.

Some data could miss for different reasons. Of course the methods I show you cannot handle missing data. Even if you should not use future information in-sample, I can accept to select the set of stocks that are without NaN both in-sample and out-of-sample

Inspecting Redundant Stocks

Typically, the first eigenvector is the largest, then they drop down

$$\Sigma^{-1} = \frac{1}{\lambda_1} v_1 v_1' + \frac{1}{\lambda_2} v_2 v_2' + \frac{1}{\lambda_3} v_3 v_3' + \dots + \frac{1}{\lambda_n} v_n v_n'$$

Let us assume that $\lambda_n << \lambda_{n-1}$, then the composition of the eigenvector \boldsymbol{v}_n will dominates the composition of the portfolio.

If some correlations are equal to +/- 1 (or close), the smallest eigenvalues converge to zero.

Null eigenvalues could come also for $T \leq N$

Cross-Validation in Finance

We must use historical observations (in-sample), to predict to predict the next future (out-of-sample).

In-sample: Find the weight of the portfolio

out-of-sample: Use the weight obtained in-sample to measure the performances

Risk Measure

- Expected Risk: $\sigma_P^{in} = \sqrt{252 \ w \Sigma^{in} w'}$ where Σ^{in} is the in-sample covariance matrix.
- Realized Risk: $\sigma_P^{out} = \sqrt{252 \ w \Sigma^{out} w'}$ where Σ^{out} is the out-of-sample covariance.

Note that the covariance could be defined as

$$rac{1}{N-1}\sum_{i=1}^{N}\left(X_{ij}-ar{X}_{j}
ight)\left(X_{ik}-ar{X}_{k}
ight)$$
 np.cov(X)

$$rac{1}{N}\sum_{i=1}^{N}\left(X_{ij}-\mathrm{E}(X_{j})
ight)(X_{ik}-\mathrm{E}(X_{k})).$$
 np.cov(X, bias=True) [USE THIS]

Sharpe-Ratio

•
$$SR_P^{in} = \frac{\langle r_P^{in} \rangle}{\sigma_P^{in}} \sqrt{252}$$

•
$$SR_P^{out} = \frac{\langle r_P^{out} \rangle}{\sigma_P^{out}} \sqrt{252}$$

• To be correct the SR must be computed on the log-returns rather than on vanilla-returns. However, on short time-horizon they are approximately equivalents. Alternatively, you can computed the time-series of the daily log-returns of your portfolio, then σ_P^{\blacksquare} will be the standard-deviation

Portfolio Metrics

The effective portfolio diversification is defined as

$$N_{eff} = \frac{1}{\sum_{i=1}^{N} w_i^2}$$

which represent the effective number of stocks with a significant amount of money invested.

Gross Leverage

$$G = \sum_{i=1}^{1} |w_i|$$

When no short selling is allowed G=1. Portfolios with G>1 have an additional intrinsic risk due to high level of short-selling

Pantaleo, E., Tumminello, M., Lillo, F., & Mantegna, R. N. (2011). When do improved covariance matrix estimators enhance portfolio optimization? An empirical comparative study of nine estimators. Quantitative Finance, 11(7), 1067-1080.

Assignments¹

- 1. Use the first 2000 days to obtain an efficient frontier that include the minVar and the maxSR portfolio.
 - 1a. Check and remove possibly redundant stocks.
 - 1b. Compare the out-of-sample (next 252 days) efficient frontier with the in-sample one
- 2. Study for different in-sample window size the minVar portfolio performances (in-sample vs out-of-sample)
 - 2a. Plot out-of-sample Risk, Gross-leverage, and lowest eigenvalue of the covariance matrix for different value of the in-sample windows [N+1, .., 2000] days

3. If you have time, implement the long-only constrains $(w_i > 0)$