Name: JUI-CHAO LU ID: B09901142

Assignment 2 Report

Q1. Discuss and plot learning curves under ϵ values of (0.1, 0.2, 0.3, 0.4) on MC, SARSA, and Q-Learning

- 1. Below are the learning curve figures of the three methods, we can observe some properties:
 - (a) They all go from low to high.(All three methods.)
 - (b) SARSA and Q_learning performs better since it earns more reward rather than gaining oscillating rewards like Monte Carlo methods.
 - (c) I didn't discover the difference between each ϵ settings, but I guess when $\epsilon=0.3$ it performs better(I have this guess from SARSA learning curve)
 - (d) In this question, I fixed the max_episodes of MC & SARSA to 30000, Q_learning to 5000 Also in my implementation, I altered the epsilon greedy policy of the first n episodes into random policy

Figure 1: Monte Carlo Learning Curve

3. SARSA

Q2. Discuss and plot loss curves under ϵ values of (0.1, 0.2, 0.3, 0.4) on MC, SARSA, and Q-Learning

- 1. Below are the loss curve figures of the three methods, we can observe some properties:
 - (a) They all go from high to low.(All three methods.)
 - (b) SARSA and Q_learning performs worse since it has bigger bias because of the estimations
 - (c) I didn't discover the difference between each ϵ settings, but I guess when $\epsilon = 0.1, 0.4$ it performs better(I have this guess from all three curves)

Q3. Discuss and plot ...

- 1. Below are the figures of different settings of the three methods, we can observe some properties:(In this question, I fixed the max_episodes settings identical with the previous two questions, other hyperparameters are set to default value if not discussed in each section below.)
- 2. discount_factor: In this section, we can find out that as the discount_factor increases, the loss

3. learning_rate: In this section, we can find out that as the discount_factor decreases, the loss converges slower.

