Fully Convolutional Network

이지현 이채영

Contents

- What? Semantic Segmentation
- From Image Classification to Semantic Segmentation
- Upsampling via Deconvolution
- Skip Layer (Skip Connection / Skip combinig)
- Fusing the Output
- Results

Semantic Segmentation

- Classify the object class for each Pixel within an image.
- That means there is a label for each pixel

Segmentation map

Semantic Segmentation vs. Instance Segmentation

- Object Detection: detect the object in an image
- Semantic Segmentation: detect for each pixel, the object category it belongs to
- Instance Segmentation: identify for each pixel, the object instance it belongs to

Object Detection

Semantic Segmentation

Instance Segmentation

Image Classification

Image Segmenation

Convolutionalization

Convolutionalization

Convolutionalization

Upsampling via Deconvolution

- Convolutionalization의 문제점 보완
 - Linear Interpolation (선형보간법)
 - Unpooling
 - Transposed convolution (= Deconvolution)

Feature Map / Filter Number Along Layers

Upsampling Via Deconvolution

Linear Interpolation & Bilinear Interpolation

$$A\frac{D2}{D1 + D2} + B\frac{D1}{D1 + D2}$$

$$X = \left(A\frac{H2}{H1 + H2} + B\frac{H1}{H1 + H2}\right)\frac{W2}{W1 + W2} + \left(D\frac{H2}{H1 + H2} + C\frac{H1}{H1 + H2}\right)\frac{W1}{W1 + W2}$$

Upsampling Via Deconvolution

Deconvolution

Upsampling Via Deconvolution

Unpooling

Skip Layer (Skip Connection / Skip combinig)

Skip Layer (Skip Connection / Skip combinig)

• Skip layer의 원리

Fusing the Output

- Segmentation
- : 각 class 별로 upsampling 된 결과를 사용

Results

											pixel	mean	mean	f.w.	geom.
				c		pixel	mean	mean	f.w.		acc.	acc.	IU	IU	acc.
	pixei	mean	mean	I.W.		acc.	acc.	IU	IU	Liu et al. [23]	76.7	-	-	-	-
	acc.	acc.	IU	IU	Gupta et al. [14]	60.3	-	28.6	47.0	Tighe <i>et al</i> . [33]	-	-	-	-	90.8
FCN-32s-fixed	83.0	59.7	45.4	72.0	FCN-32s RGB	60.0	42.2	29.2	43.9	Tighe <i>et al</i> . [34] 1	75.6	41.1	-	-	-
					FCN-32s RGBD	61.5	42.4	30.5	45.5	Tighe <i>et al</i> . [34] 2	78.6	39.2	-	-	-
FCN-32s	89.1	73.3	59.4	81.4	FCN-32s HHA	57.1	35.2	24.2	40.4	Farabet <i>et al</i> . [8] 1	72.3	50.8	-	-	-
FCN-16s	90.0	75.7	62.4	83.0	FCN-32s RGB-HHA					Farabet <i>et al.</i> [8] 2				-	-
FCN-8s	90.3	75.9	62.7	83.2	FCN-16s RGB-HHA					Pinheiro et al. [28]	77.7	29.8	-	-	-
1 CIV-05	70.5	13.7	02.7	03.2	101, 100 100 11111			2.10	.,,,,	FCN-16s	85.2	51.7	39.5	76.1	94.3

Thank you!