

planetmath.org

Math for the people, by the people.

proof of Silverman-Toeplitz theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfSilvermanToeplitzTheorem}$

Date of creation 2013-03-22 14:51:35 Last modified on 2013-03-22 14:51:35

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 27

Author rspuzio (6075)

Entry type Proof

Classification msc 40B05

First, we shall show that the series $\sum_{n=0}^{\infty} a_{mn} z_n$ converges. Since the sequence $\{z_n\}$ converges, it must be bounded in absolute value — there must exist a constant K>0 such that $|z_n|\leq K$ for all n. Hence, $|a_{mn}z_n|\leq K|a_{mn}|$. Summing this gives

$$\sum_{n=0}^{\infty} |a_{mn}z_n| \le K \sum_{n=0}^{\infty} |a_{mn}| \le KB.$$

Hence, the series $\sum_{n=0}^{\infty} a_{mn} z_n$ is absolutely convergent which, in turn, implies that it converges.

Let z denote the limit of the sequence $\{z_n\}$ as $n \to \infty$. Then $|z| \le K$. We need to show that, for every $\epsilon > 0$, there exists an integer M such that

$$\left| \sum_{n=0}^{\infty} a_{mn} z_n - z \right| < \epsilon$$

whenever m > M.

Since the sequence $\{z_n\}$ converges, there must exist an integer n_1 such that $|z_n - z| < \frac{\epsilon}{4B}$ whenever $n > n_1$.

By condition 3, there must exist constants $m_0, m_1, \ldots, m_{n_1}$ such that

$$|a_{mn}| < \frac{\epsilon}{4(n_1+1)(K+1)}$$
 for $0 \le n \le n_1$ and $m > m_n$. (1)

Choose $m' = \max\{m_0, m_1, ..., m_{n_1}\}$. Then

$$\left| \sum_{n=0}^{n_1} a_{mn} z_n \right| \le \sum_{n=0}^{n_1} |a_{mn} z_n| < \sum_{n=0}^{n_1} \frac{|z_n| \epsilon}{4(n_1+1)(K+1)} < \frac{\epsilon}{4}$$
 (2)

when m > m'.

By condition 2, there exists a constant m'' such that

$$\left| \sum_{n=0}^{\infty} a_{mn} - 1 \right| < \frac{\epsilon}{6(|z|+1)}$$

whenever m > m''. By (1),

$$\left| \sum_{n=0}^{n_1} a_{mn} \right| < \frac{\epsilon}{4(K+1)} \le \frac{\epsilon}{4(|z|+1)}$$

when m > m'. Hence, if m > m' and m > m'', we have

$$\left| \sum_{n=n_1+1}^{\infty} a_{mn} - 1 \right| < \frac{\epsilon}{2(|z|+1)}. \tag{3}$$

and

$$\left| \sum_{n=n_1+1}^{\infty} a_{mn}(z_n - z) \right| \le \sum_{n=n_1+1}^{\infty} |a_{mn}| |z_n - z| < \frac{\epsilon}{4B} \sum_{n=0}^{\infty} |a_{mn}| \le \frac{\epsilon}{4}.$$
 (4)

By the triangle inequality and (2), (3), (4) it follows that

$$\left| \sum_{n=0}^{\infty} a_{mn} z_n - z \right| \le \left| \sum_{n=0}^{n_1} a_{mn} z_n \right| + \left| \sum_{n=n_1+1}^{\infty} a_{mn} (z_n - z) \right| + |z| \left| \sum_{n=n_1+1}^{\infty} a_{mn} - 1 \right|$$
$$< \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{2} = \epsilon.$$