150 分で学ぶ 高校数学の基礎

2022 年 9 月 6 日 米田 優峻 [@E869120]

序自己紹介

米田優峻(よねだ まさたか)

- 2002 年生まれ
- 2021 年東京大学入学

主な実績

- 国際情報オリンピック(IOI)金メダル
- 著書『「アルゴリズム×数学」が基礎からしっか。 り身につく本』2万部突破

序スライドの概要/諸注意

- 本スライドでは、高校数学の基礎的事項について概観します。中学数学の一部を理解していない方も、 第1章で前提知識を説明するのでご安心ください。
- 全部で 10 個の章からなります。1 章当たり 15 分で読む場合、150 分で読破することができます (ただし、章によってページ数は異なります)。

注意:

本スライドでは基礎的事項のみを扱っており、高校数学のすべてを網羅しているわけではありません。そのため、大学受験対策には向かないことに注意してください。逆に、数学にはどんな内容があるのか概観したり、学び直したりする目的では活用できます。

序目次

1章	数学の基礎知識	•	•	•	•	5
2章	場合の数・・・・	•	•	•	•	31
3章	確率と期待値・	•	•	•	•	56
4章	統計的な解析・	•	•	•	•	69
5章	いろいろな関数	•	•	•	•	103
6章	三角比と三角関数	Į.	•	•	•	141
7章	証明のやり方・	•	•	•	•	160

8章	ベクトル・・・	•	•	•	•	187
9章	微分法と積分法	•	•	•	•	205
.0章	その他のトピック		•	•	•	240
	スライドのまとめ		•	•	•	254

CHAPTER 1

数学の基礎知識

本章のゴール

太郎君はタクシーに乗車し、1400 円を支 払いました。

このタクシーの初乗運賃が 500 円であり、 以降 1km ごとに 100 円が加算されると き、彼は何 km 乗車しましたか。

> ※たとえば 12km 乗車したときの運賃は 500+100×12=1700 円となります

1 この章について

第1章では、主に以下の3つの内容を扱います。

- ・ 基本的な数と計算(累乗・ルートなど)
- ・文字式とは
- ・方程式とは

すべて中学数学の範囲であり、高校数学を学ぶための前提知識となるため、 数学に自信のない方はぜひお読みください。

A 基本的な数と計算

B文字式とは

方程式とは

たとえば、以下のような問題を考える

太郎君は、5個のリンゴといくつかのミカンを持っている。

"ミカンの個数"と"リンゴとミカンの合計個数"の関係は?

たとえば、以下のような問題を考える

太郎君は、5個のリンゴといくつかのミカンを持っている。

"ミカンの個数"と"リンゴとミカンの合計個数"の関係は?

ミカンが 2 個なら 5+2=7 個 ミカンが 4 個なら 5+4=9 個

たとえば、以下のような問題を考える

太郎君は、5個のリンゴといくつかのミカンを持っている。

"ミカンの個数"と"リンゴとミカンの合計個数"の関係は?

ミカンが 2 個なら 5+2=7 個 ミカンが 4 個なら 5+4=9 個

ただ、ミカンの個数を 知らなければ関係を表せない…

たとえば、以下のような問題を考える

太郎君は、5個のリンゴといくつかのミカンを持っている。

"ミカンの個数"と"リンゴとミカンの合計個数"の関係は?

ミカンの個数を x 個とおけば

合計個数はx+5個*

x + 5 のように、文字を使った式を 「文字式」という

他の文字式の例: 100 + y、a + b、2a + 3b など

1 文字式のルール

文字式を書くときは、以下のようなルールがある

	具体例		
掛け算記号「×」は省略	「 a かける b 」を表すときは ab ($a imes b$ ではない)		
数と文字の掛け算は、数を先に書く	「a かける 2」を表すときは 2a(a2 ではない)		
"1×文字" の 1 は省略する	「 a かける 1 」を表すときは a ($1a$ ではない)		
"-1×文字" の場合、マイナスだけ残す	「 a かける -1 」を表すときは $-a$ ($-1a$ ではない)		

文字式に慣れるために 例を 3 つ挙げます

1 文字式の例

例 1

ボールが 3 個あり それぞれ A_1, A_2, A_3 グラム 重さの合計は?

V

 $A_1+A_2+A_3$ グラム

例 2

500 円玉が x 枚あり100 円玉が y 枚ある合計金額は?

V

500x + 100y 円

例 3

縦の長さが x横の長さが x+1 の 長方形の面積は?

面積 x(x+1)

c 方程式とは

1 方程式とは

方程式 = まだ分かっていない 値(文字)を含む等式

1 方程式とは

方程式の例

•
$$x + 5 = 7$$

•
$$6 - 2x = 3$$

•
$$x^2 = 9$$

など

ここで、x の値を求めることを 方程式を「解く」という

x がまだ分かっていない値

1 方程式とは

実際に方程式を解いてみよう!

1 パズル:方程式を解く

どこまで解けるかな?(難易度順です)

1 パズル:方程式を解く

答えはこちら!

※問題 4 は「(x-1) と (x-2) のうちどちらか一方がゼロでなければならない」と考えると解きやすい

1

"本章のゴール"を解こう

太郎君はタクシーに乗車し、1400円を支払いました。

このタクシーの初乗運賃が 500 円であり、以降 1km ごとに 100 円が加算されるとき、彼は何 km 乗車しましたか。

1 "本章のゴール"を解こう

まず、タクシーの移動距離を x (km) とすると… かかる値段は $\frac{100x}{m = 200}$ 円

1 "本章のゴール"を解こう

まず、タクシーの移動距離を x (km) とすると… かかる値段は 100x + 500 円

合計値段が 1400 円なので、乗車距離 x は以下の方程式を満たさなければならない:

100x + 500 = 1400

1 "本章のゴール"を解こう

まず、タクシーの移動距離を x (km) とすると… かかる値段は 100x + 500 円

合計値段が 1400 円なので、乗車距離 x は以下の方程式を満たさなければならない:

$$100x + 500 = 1400$$
 合計が 1400 円なら加算運賃は 900 円でなければならない! $x = 9$ $000 \div 100 = 9$

答えは 9km

CHAPTER 2 場合の数

本章のゴール

あるアイスクリーム店では、以下の中か ら選んで買うことができます。

・ 大きさ:小・中・大

・ ソース:バニラ・イチゴ

・ コーン: 有り・無し

アイスクリームを 1 個買う方法は、全 部で何通りありますか。

まずは場合の数の公式を

4 つ理解しよう

公式 1:積の法則

場合の数の公式 (1/4)

事柄 1 の起こり方が n 通り、事柄 2 の起こり方が m 通り

ightarrow 事柄 $1\cdot 2$ の起こり方の組み合わせは全部で nm 通り

2

場合の数の公式 (1/4)

例

朝食をおにぎり・パン・サンドイッチの中から選び 個数を 1~4 個の中から選ぶとき・・・ 3×4=12 通り

場合の数の公式 (1/4)

例朝食をおにぎり・パン・サンドイッチの中から選び個数を 1~4 個の中から選ぶとき・・・3×4=12 通り

例 朝食をおにぎり・パン・サンドイッチの中から選び 個数を 1~4 個の中から選ぶとき・・・ 3×4=12 通り

公式 2:並べ替え

 $n! = 1 \times 2 \times 3 \times \cdots \times n$ とするとき n 個のモノを並べ替える方法の数は n! 通り

A・B・C を並べ替える方法の数は…

A・B・C を並べ替える方法の数は…

A・B・C を並べ替える方法の数は…

公式 3: nPr (選択 + 並べ替え)

n 個のモノから r 個を選び、それらを並べ替える方法の数は $_{n}P_{r}=n\times(n-1)\times\cdots\times(n-r+1)$ 通り

4 人の生徒 A·B·C·D から代表と副代表を 例 選ぶ方法は…

₄P₂=4×3=12 通り

例 4 人の生徒 A・B・C・D から代表と副代表を 選ぶ方法は… ₄P₂=4×3=12 通り

例4 人の生徒 A・B・C・D から代表と副代表を
選ぶ方法は…4P2=4×3=12 通り

公式 4: nCr (選択)

n 個のモノから r 個を選ぶ方法の数は

$$_{n}$$
 $\mathbf{C}_{r} = \mathbf{n} \times (\mathbf{n} - \mathbf{1}) \times \cdots \times (\mathbf{n} - \mathbf{r} + \mathbf{1}) \div \mathbf{r}!$ 通り

並べ替えのある nPr の方が r! 倍だけ大きい!

4 人の生徒 A·B·C·D から 2 人の代表を 選ぶ方法は… ₄C₂=4×3÷2!=6 通り

4 人の生徒 A・B・C・D から 2 人の代表を 例 選ぶ方法は… ₄C₂=4×3÷2!=6 通り

В

D

ちなみに並べ替えを許した場合は 4×3=12 通り (ちょうど 2 倍)

2 "本章のゴール"を解こう

あるアイスクリーム店では、以下の中から選んで買うことができます。 アイスクリームを 1 個買う方法は、全部で何通りありますか。

大きさ	小/中/大
ソース	バニラ/イチゴ
コーン	有り/無し

2 "本章のゴール"を解こう

大きさ	小/中/大	→ 3 通り
ソース	バニラ/イチゴ	→ 2 通り
コーン	有り/無し	→ 2 通り

2 "本章のゴール"を解こう

大きさ	小/中/大	→ 3 通り
ソース	バニラ/イチゴ	➡ 2 通り
コーン	有り/無し	→ 2 通り

積の法則(1個目の公式)より※

CHAPTER 3

確率と期待値

本章のゴール

この章には、「本章のゴール」に 相当する問題はありません。

確率 = ある事柄が起こる確からしさ

例:降水確率 70%

→ 同じ予報が 100 回出たら、約 70 回は雨が降る

例:合格可能性 20%

→ 100 回受けたら 20 回くらいは志望校に合格する

確率の計算方法

N 通りのパターンが同じ可能性で起こり得るとして、このうち M 通りについて事柄 A が起こるとき・・・

事柄 A が起こる確率は N

3 確率の例(1)

サイコロを 1 個投げて、出た目が 3 以下になる確率は?

3 確率の例(1)

サイコロを 1 個投げて、出た目が 3 以下になる確率は?

6 通り中 3 通りなので… 3÷6=1/2

3 確率の例(2)

サイコロを 2 個投げて、出た目の和が 5 以下になる確率は?

確率の例 (2)

サイコロを 2 個投げて、出た目の和が 5 以下になる確率は?

期待値 = 得られる "平均的な値"

たとえば、50% の確率で 1000 円、50% の確率で 2000 円もらえる賭けでは もらえる金額の期待値は 1500 円

期待値は (確率)×(値) の総和 で計算できる

3 期待値の例

以下の賭けで得られる金額の期待値は?

等級	賞金	確率
1等	5,000 円	10%
2等	2,000 円	30%
3等	1,000円	60%

3 期待値の例

以下の賭けで得られる金額の期待値は?

1等 5,000 円 10% 0.1×5000=500 円	***
2等 2,000 円 30% 0.3×2000=600 円	
3等 1,000 円 60% 0.6×1000=600 円	700円

CHAPTER 4

統計的な解析

本章のゴール

ある塾では、10 人が数学のテストを受験 しました。成績は A 君から順に、96, 70, 59, 54, 49, 41, 38, 36, 33, 24 点でし た。A 君の偏差値はいくつですか。

4 統計の目的

世の中は、様々な"データ"であふれている

4 統計の目的

本章では、データを分析するのに便利な"数学的ツール"を

4 つ紹介します

ツール1:ヒストグラム

統計で使うツール (1/4)

ヒストグラムとは:

"区間ごとの個数"を数えてグラフにしたもの

統計で使うツール (1/4)

ヒストグラムとは:

"区間ごとの個数"を数えてグラフにしたもの

統計で使うツール (1/4)

ヒストグラムとは:

"区間ごとの個数"を数えてグラフにしたもの

ヒストグラムを使うメリット: 点数の分布が分かりやすい!

ツール 2: 平均

統計で使うツール (2/4)

平均値 μ は、データの平均的な値

$$\mu = \frac{a_1 + a_2 + a_3 + \dots + a_N}{N}$$

※データの個数を N、データの値を $a_1, a_2, a_3, ..., a_N$ とする

統計で使うツール (2/4)

平均値 μ は、データの平均的な値

$$\mu = \frac{a_1 + a_2 + a_3 + \dots + a_N}{N}$$

※データの個数を N、データの値を $a_1, a_2, a_3, ..., a_N$ とする

例:5人のテストの点数

平均点は

ツール3:標準偏差

統計で使うツール (3/4)

標準偏差 σ は、データの散らばり具合

統計で使うツール (3/4)

標準偏差 σ は、データの散らばり具合

散らばり具合が大きい

散らばり具合が小さい

標準偏差が小さい

統計で使うツール (3/4)

問い

標準偏差 σ はどうやって計算する?

統計で使うツール (3/4)

問い

標準偏差 σ はどうやって計算する?

- 1 各データに対して "平均との差" の 2 乗を計算し、それを合計する
- **2** 1. で求めた値をデータの数 *N* で割る
- 3 √(2. で求めた値) を計算する。これが標準偏差

統計で使うツール (3/4)

問い

標準偏差 σ はどうやって計算する?

- 1 各データに対して "平均との差" の 2 乗を計算し、それを合計する
- **2** 1. で求めた値をデータの数 *N* で割る
- **3** √(2. で求めた値) を計算する。これが標準偏差

例:5 人のテストの点数 (平均 70 点)

標準偏差は 差の 2 乗の合計: 2000 $\frac{30^2 + 10^2 + 0^2 + 10^2 + 30^2}{5} = 20$

ツール4:相関係数

統計で使うツール (4/4)

問い

数学の点数と国語の点数は どれくらい"関係"がある?

	数学	国語
生徒 A	40 点	50 点
生徒 B	60 点	60 点
生徒 C	70 点	30 点
生徒 D	80 点	70 点
生徒 E	100 点	90 点

統計で使うツール (4/4)

問い

数学の点数と国語の点数は どれくらい"関係"がある?

	数学	国語
生徒 A	40 点	50 点
生徒 B	60 点	60 点
生徒 C	70 点	30 点
生徒 D	80 点	70 点
生徒 E	100 点	90 点

統計で使うツール (4/4)

もちろん散布図(グラフ)を描けば大まかな関係はわかるが 関係の度合いを数値化するには…?

"相関係数"を使う!

統計で使うツール (4/4)

相関係数は、データの関係の度合いを表す数値

計算方法

- $oxed{1}$ 数学の平均 μ_X 、国語の平均 μ_Y を計算
- $oldsymbol{2}$ 数学の標準偏差 σ_{X} 、国語の標準偏差 σ_{Y} を計算
- $egin{aligned} egin{aligned} & eta & -\mu_X \end{pmatrix} \times (点数 \mu_Y) & \hat{\sigma} & \hat{\sigma} & \hat{\sigma} \end{pmatrix} & \hat{\sigma} & \hat{\sigma}$
- $oldsymbol{\sigma}_{XY}\div(oldsymbol{\sigma}_X imesoldsymbol{\sigma}_Y)$ が相関係数

統計で使うツール (4/4)

例:"数学の成績"と"国語の成績"の相関係数は?

	数学	国語
生徒 A	40 点	50 点
生徒 B	60 点	60 点
生徒 C	70 点	30 点
生徒 D	80 点	70 点
生徒 E	100 点	90 点

統計で使うツール (4/4)

例:"数学の成績"と"国語の成績"の相関係数は?

	数学	国語
生徒 A	40 点	50 点
生徒 B	60 点	60 点
生徒 C	70 点	30 点
生徒 D	80 点	70 点
生徒 E	100 点	90 点
平均	70 点	60 点
標準偏差	20 点	20 点

統計で使うツール (4/4)

例:"数学の成績"と"国語の成績"の相関係数は?

	数学	国語
生徒 A	40 点	50 点
生徒 B	60 点	60 点
生徒 C	70 点	30 点
生徒 D	80 点	70 点
生徒 E	100 点	90 点
平均	70 点	60 点
標準偏差	20 点	20 点

$$(点数-\mu_X)\times(点数-\mu_Y)$$

$$(-30)\times(-10)=300$$

$$(-10)\times(0)=0$$

$$(0)\times(-30)=0$$

$$\rightarrow$$
 (10)×(10)=100

$$\rightarrow$$
 (30)×(30)=900

平均して
$$\sigma_{XY}=260$$

統計で使うツール (4/4)

例:"数学の成績"と"国語の成績"の相関係数は?

	数学	国語
生徒 A	40 点	50 点
生徒 B	60 点	60 点
生徒 C	70 点	30 点
生徒 D	息 08	70 点
生徒 E	100 点	90 点
平均	70 点	60 点
標準偏差	20 点	20 点

$$(点数-\mu_X)\times(点数-\mu_Y)$$

$$(-30)\times(-10)=300$$

$$(-10)\times(0)=0$$

$$(0) \times (-30) = 0$$

$$(10)\times(10)=100$$

$$\rightarrow$$
 (30)×(30)=900

平均して
$$\sigma_{XY}=260$$

相関係数は 260÷(20×20)=0.65

統計で使うツール (4/4)

問い

相関係数 0.65 は高いのか?

統計で使うツール (4/4)

問い

相関係数 0.65 は高いのか?

相関係数 r は -1 以上 1 以下の値になるが 目安としては… *2

r < 0.4	相関はほぼない
$0.4 \le r < 0.6$	弱い相関がある
$0.6 \le r < 0.8$	相関がある
$0.8 \le r \le 1.0$	強い相関がある

一定の相関が あると 考えて良い!**

統計で使うツール (4/4)

ある塾では、10人が数学のテストを受験しました。成績は以下の通りでした。

A 君の偏差値はいくつですか。**

A君	B君	C君	D君	E君	F君	G君	H君	I君	J君
96点	70点	59点	54点	49点	41点	38点	36点	33点	24点

偏差値の定義: (自分の点数 - 平均) ÷ (標準偏差) × 10 + 50

↑まずは偏差値の定義を知っておこう

偏差値の定義: (自分の点数 - 平均) ÷ (標準偏差) × 10 + 50

まずは平均点を計算すると… (96 + 70 + ··· + 33 + 24) ÷ 10 = 50

	A君	B君	C君	D君	E君	F君	G君	H君	I君	J君
得点	96点	70点	59点	54点	49点	41点	38点	36点	33点	24点
点差										
点差 ²										

偏差値の定義: (自分の点数 - 平均) ÷ (標準偏差) × 10 + 50

- 1 まずは平均点を計算すると… (96 + 70 + ··· + 33 + 24) ÷ 10 = 50
- ② 次に標準偏差を計算すると… $\sqrt{(2116+400+\cdots+676)\div 10}=20$

	A君	B君	C君	D君	E君	F君	G君	H君	I君	J君
得点	96点	70点	59点	54点	49点	41点	38点	36点	33点	24点
点差	+46	+20	+9	+4	-1	-9	-12	-14	-17	-26
点差2	2116	400	81	16	4	81	144	196	289	676

偏差値の定義: (自分の点数 - 平均) ÷ (標準偏差) × 10 + 50

- 1 まずは平均点を計算すると… (96 + 70 + ··· + 33 + 24) ÷ 10 = 50
- ② 次に標準偏差を計算すると… $\sqrt{(2116+400+\cdots+676)\div 10}=20$
- 3 A 君の偏差値は··· (96 − 50) ÷ 20 × 10 + 50 = 73

	A君	B君	C君	D君	E君	F君	G君	H君	I君	珺
得点	96点	70点	59点	54点	49点	41点	38点	36点	33点	24点
点差	+46	+20	+9	+4	-1	-9	-12	-14	-17	-26
点差2	2116	400	81	16	4	81	144	196	289	676

統計のさらなる活用

統計を使うと、他にも様々な問題が解ける

CHAPTER 5 いろいろな関数

本章のゴール

ある週の東京都の新型コロナウイルス感染者数は 10 人でした。一週間で 2 倍になるとき、感染者数が 10 万人を超えるのは何週間後でしょうか。

関数 = "何か"を入力したら "何か"が出てくる機械のようなもの

例:整数 x を入れたら整数 x+10 が出てくる関数の場合…

関数とは

例:整数 x を入れたら整数 x+10 が出てくる関数の場合…

関数とは

例:整数 x を入れたら整数 x+10 が出てくる関数の場合…

関数の書き方

Q. 関数はどうやって数学的に書くか?

関数の書き方

Q. 関数はどうやって数学的に書くか?

基本的には「y = x + 10」のような形で書く

5 関数の書き方

チャレンジ

フィート [ft] 単位の高度を入力し、メートル [m] 単位の高度を出力する関数を考えてください。

ただし、1 フィートは 0.3048 メートルです。 (例: 30000ft = 9144m)

5 関数の書き方

チャレンジ

フィート [ft] 単位の高度を入力し、メートル [m] 単位の高度を出力する関数を考えてください。

ただし、1 フィートは 0.3048 メートルです。 (例: 30000ft = 9144m)

答え

$$y = 0.3048x$$

(または f(x) = 0.3048x)

5 いろいろな関数

関数には様々な種類があります

基本的なものとして、4 つ理解しましょう

5 いろいろな関数

1個目:一次関数

いろいろな関数 (1/4)

$$y = ax + b$$
 の形で表される関数

例:
$$y = x$$
, $y = 3x$, $y = 0.5x + 0.5$, $y = 2x - 1$, •••

5 いろいろな関数 (1/4)

$$y = ax + b$$
 の形で表される関数

例:
$$y = x$$
, $y = 3x$, $y = 0.5x + 0.5$, $y = 2x - 1$, •••

5 いろいろな関数

2個目:二次関数

いろいろな関数 (2/4)

$$y = ax^2 + bx + c$$
 の形で表される関数

例:
$$y = x^2$$
、 $y = 2x^2 + 1$ 、 $y = x^2 - 6x + 9$ 、 · · · ·

いろいろな関数 (2/4)

$$y = ax^2 + bx + c$$
 の形で表される関数 例: $y = x^2$ 、 $y = 2x^2 + 1$ 、 $y = x^2 - 6x + 9$ 、・・・

5 いろいろな関数

3 個目:指数関数

いろいろな関数 (3/4)

指数関数の前に (1)

累乗 a^b は b が負の数でも計算できる

計算方法

b を 1 減らすときには ÷ a する

5 いろいろな関数 (3/4)

指数関数の前に(1)

累乗 a^b は b が負の数でも計算できる

計算方法

b を 1 減らすときには ÷ a する

いろいろな関数 (3/4)

指数関数の前に(2)

累乗 a^b は b が整数でなくても計算できる

計算方法

b が一定だけ増えると、答えも一定だけ 掛けられるように上手くやる※

いろいろな関数 (3/4)

いろいろな関数 (3/4)

指数関数とは、 $y = a^x$ の形で表される関数

例: $y=2^x$ など

いろいろな関数 (3/4)

指数関数とは、 $y = a^x$ の形で表される関数

例: $y = 2^x$ など

5 いろいろな関数

4個目:対数関数

いろいろな関数 (4/4)

対数関数の前に

対数 $\log_a b$ は「a を何乗したら b になるか」

具体例	理由
$\log_2 16 = 4$	$2^4 = 16$
$\log_2 32 = 5$	$2^5 = 32$
$\log_2 64 = 6$	$2^6 = 64$

いろいろな関数 (4/4)

対数関数とは、 $y = \log_a x$ の形で表される関数

例: $y = \log_{10} x$ など

いろいろな関数 (4/4)

対数関数とは、 $y = \log_a x$ の形で表される関数

例: $y = \log_{10} x$ など

補足:指数関数/対数関数の公式

(難しいので読み飛ばしても構いません)

補足:指数関数の公式

公式	具体例
$a^n \times a^m = a^{n+m}$	$2^4 \times 2^3 = 2^7$
$a^n \div a^m = a^{n-m}$	$2^4 \div 2^3 = 2^1$
$(a^n)^m = a^{nm}$	$\left(2^2\right)^3 = 2^6$

4 歩進んで 3 歩進む

5 補足:指数関数の公式

$a^{n} \times a^{m} = a^{n+m}$ $2^{4} \times 2^{3} = 2^{7}$ $a^{n} \div a^{m} = a^{n-m}$ $2^{4} \div 2^{3} = 2^{1}$ $(a^{n})^{m} = a^{nm}$ $(2^{2})^{3} = 2^{6}$ 4 歩進んで 3 歩戻る x^{2} x^{2	公式	具体例	
$(a^{n})^{m} = a^{nm}$ $(2^{2})^{3} = 2^{6}$ 4 歩進んで 3 歩戻る $\times 2 \times 2 \times 2 \times 2$	$a^n \times a^m = a^{n+m}$	$2^4 \times 2^3 = 2^7$	
4 歩進んで 3 歩戻る ×2 ×2 ×2 ×2	$a^n \div a^m = a^{n-m}$	$2^4 \div 2^3 = 2^1$	
3 歩戻る ×2 ×2 ×2 ×2	$(a^n)^m = a^{nm}$	$\left(2^2\right)^3=2^6$	
÷2	$\longrightarrow \longrightarrow \longrightarrow$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$- \left(2^5\right) - \left(2^6\right)$

補足:指数関数の公式

公式	具体例
$a^n \times a^m = a^{n+m}$	$2^4 \times 2^3 = 2^7$
$a^n \div a^m = a^{n-m}$	$2^4 \div 2^3 = 2^1$
$(a^n)^m = a^{nm}$	$\left(2^2\right)^3=2^6$

2 歩進むを 3 回やる

補足:対数関数の公式

公式	具体例
$\log_a N + \log_a M = \log_a NM$	$\log_2 16 + \log_2 8 = \log_2 128$
$\log_a N - \log_a M = \log_a \frac{N}{M}$	$\log_2 16 - \log_2 8 = \log_2 2$
$r \times \log_a N = \log_a(N^r)$	$3 \times \log_2 4 = \log_2 64$

 $\log_2 x$ は「2 を何乗したら x になるか」 であることを思い出そう!

4 歩進んで 3 歩進む

補足:対数関数の公式

公式	具体例	log ₂ x は「2 を何乗したら x になるか」 であることを思い出そう!
$\log_a N + \log_a M = \log_a NM$	$\log_2 16 + \log_2 8 = \log_2 128$	
$\log_a N - \log_a M = \log_a \frac{N}{M}$	$\log_2 16 - \log_2 8 = \log_2 2$	
$r \times \log_a N = \log_a(N^r)$ 4 歩進んで	$3 \times \log_2 4 = \log_2 64$	
3 歩戻る		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

補足:対数関数の公式

公式	具体例
$\log_a N + \log_a M = \log_a NM$	$\log_2 16 + \log_2 8 = \log_2 128$
$\log_a N - \log_a M = \log_a \frac{N}{M}$	$\log_2 16 - \log_2 8 = \log_2 2$
$r \times \log_a N = \log_a(N^r)$	$3 \times \log_2 4 = \log_2 64$

log₂ x は「2 を何乗したら x になるか」 であることを思い出そう!

2 歩進むを3 回やる

"本章のゴール"を解こう (難)

ある週の東京都の新型コロナウイルス感染者数は 10 人でした。

一週間で 2 倍になるとき、感染者数が 10 万人を超えるのは何週間後でしょうか。

ただし、 $\log_{10} 2 = 0.301$ とします * 。

(難しいので飛ばしてもかまいません)

5 "本章のゴール"を解こう (難)

もちろん直接計算しても良いが、とても面倒!

	感染者数
0 週後	10 人
1 週後	20 人
2 週後	40 人
3 週後	80 人
4 週後	160 人

	感染者数
5 週後	320 人
6 週後	640 人
7 週後	1280 人
8 週後	2560 人
9 週後	5120 人

	感染者数
10 週後	10240 人
11 週後	20480 人
12 週後	40960 人
13 週後	81920 人
14 週後	163840 人

5 "本章のゴール"を解こう(難)

そこで、計算方法を少し工夫してみよう

まず、x 週間後の感染者数は最初の 2^x 倍になっているが、「感染者数 10 人」が 10万人になるためには 10000 倍になる必要があるので、

 $2^{x} = 10000$

を満たす x が(大まかな)答えである。

5 "本章のゴール"を解こう(難)

さて、 $2^x = 10000$ を満たす x はどうやって求められるのか?

 $2^x = 10000$ を満たすということは、 $\log_{10}(2^x) = \log_{10} 10000$ すなわち

$$\log_{10}(2^x) = 4$$

を満たすということである。そこで対数関数の公式(p.136)より、 $\log_{10}(2^x)$ の値は $(\log_{10} 2) \times x$ すなわち 0.301x と等しいため、

$$0.301x = 4$$

と式変形できる。したがって答えは 4 ÷ 0.301 = 13.28 ... (つまり 14 週後)

CHAPTER 6 三角比と三角関数

本章のゴール

太郎君は、ある夏の日の夕方に、木の影の 長さを測りました。測定結果は 80 メート ルでした。太陽の仰角が 14° であったと き、木の高さは何メートルですか。

6 三角比とは

代表的な三角比として

sin, cos, tan の 3 種類がある

三角比とは

sinθ は斜辺 1・角度 θ の 直角三角形の高さ

三角比とは

cosθ は斜辺 1・角度 θ の 直角三角形の底辺

6 三角比とは

tanθ は底辺 1・角度 θ の 直角三角形の高さ

三角比は具体的に どういう値になるのか?

三角比の具体例

三角比の具体例

 $\sin 60^{\circ} = 0.9$

角	正弦	余弦	正接	角	正弦	余弦	正接
	(sin)	(cos)	(tan)		(sin)	(cos)	(tan)
0°	0.0000	1.0000	0.0000	45°	0.7071	0.7071	1.0000
1°	0.0175	0.9998	0.0175	46°	0.7193	0.6947	1.0355
2°	0.0349	0.9994	0.0349	47°	0.7314	0.6820	1.0724
3°	0.0523	0.9986	0.0524	48°	0.7431	0.6691	1.1106
4°	0.0698	0.9976	0.0699	49°	0.7547	0.6561	1.1504
5°	0.0872	0.9962	0.0875	50°	0.7660	0.6428	1.1918
6°	0.1045	0.9945	0.1051	51°	0.7771	0.6293	1.2349
7°	0.1219	0.9925	0.1228	52°	0.7880	0.6157	1.2799
8°	0.1392	0.9903	0.1405	53°	0.7986	0.6018	1.3270
9°	0.1564	0.9877	0.1584	54°	0.8090	0.5878	1.3764
10°	0.1736	0.9848	0.1763	55°	0.8192	0.5736	1.4281
11°	0.1908	0.9816	0.1944	56°	0.8290	0.5592	1.4826
12°	0.2079	0.9781	0.2126	57°	0.8387	0.5446	1.5399
13°	0.2250	0.9744	0.2309	58°	0.8480	0.5299	1.6003
14°	0.2419	0.9703	0.2493	59°	0.8572	0.5150	1.6643
15°	0.2588	0.9659	0.2679	60°	0.8660	0.5000	1.7321
16°	0.2756	0.9613	0.2867	61°	0.8746	0.4848	1.8040
17°	0.2924	0.9563	0.3057	62°	0.8829	0.4695	1.8807
18°	0.3090	0.9511	0.3249	63°	0.8910	0.4540	1.9626
19°	0.3256	0.9455	0.3443	64°	0.8988	0.4384	2.0503
20°	0.3420	0.9397	0.3640	65°	0.9063	0.4226	2.1445

21° 0.3584 0.9336 0.3839 66° 0.9135 0.4067 2.2460 22° 0.3746 0.9272 0.4040 67° 0.9205 0.3907 2.3559 23° 0.3907 0.9205 0.4245 68° 0.9272 0.3746 2.4751 24° 0.4067 0.9135 0.4452 69° 0.9336 0.3584 2.6051 25° 0.4226 0.9063 0.4663 70° 0.9397 0.3420 2.7475 26° 0.4384 0.8988 0.4877 71° 0.9455 0.3256 2.9042 27° 0.4540 0.8910 0.5095 72° 0.9511 0.3090 3.0777 28° 0.4695 0.8829 0.5317 73° 0.9563 0.2924 3.2709 29° 0.4848 0.8746 0.5543 74° 0.9613 0.2756 3.4874 30° 0.5000 0.8660 0.5774 75° 0.9659 0.2588 3.7321								
23° 0.3907 0.9205 0.4245 68° 0.9272 0.3746 2.4751 24° 0.4067 0.9135 0.4452 69° 0.9336 0.3584 2.6051 25° 0.4226 0.9063 0.4663 70° 0.9397 0.3420 2.7475 26° 0.4384 0.8988 0.4877 71° 0.9455 0.3256 2.9042 27° 0.4540 0.8910 0.5095 72° 0.9511 0.3090 3.0777 28° 0.4695 0.8829 0.5317 73° 0.9563 0.2924 3.2709 29° 0.4848 0.8746 0.5543 74° 0.9613 0.2756 3.4874 30° 0.5000 0.8660 0.5774 75° 0.9659 0.2588 3.7321 31° 0.5150 0.8572 0.6009 76° 0.9703 0.2419 4.0108 32° 0.5299 0.8480 0.6249 77° 0.9744 0.2250 4.3315	21°	0.3584	0.9336	0.3839	66°	0.9135	0.4067	2.2460
24° 0.4067 0.9135 0.4452 69° 0.9336 0.3584 2.6051 25° 0.4226 0.9063 0.4663 70° 0.9397 0.3420 2.7475 26° 0.4384 0.8988 0.4877 71° 0.9455 0.3256 2.9042 27° 0.4540 0.8910 0.5095 72° 0.9511 0.3090 3.0777 28° 0.4695 0.8829 0.5317 73° 0.9563 0.2924 3.2709 29° 0.4848 0.8746 0.5543 74° 0.9613 0.2756 3.4874 30° 0.5000 0.8660 0.5774 75° 0.9659 0.2588 3.7321 31° 0.5150 0.8572 0.6009 76° 0.9703 0.2419 4.0108 32° 0.5299 0.8480 0.6249 77° 0.9744 0.2250 4.3315 33° 0.5446 0.8387 0.6494 78° 0.9781 0.2079 4.7046	22°	0.3746	0.9272	0.4040	67°	0.9205	0.3907	2.3559
25° 0.4226 0.9063 0.4663 70° 0.9397 0.3420 2.7475 26° 0.4384 0.8988 0.4877 71° 0.9455 0.3256 2.9042 27° 0.4540 0.8910 0.5095 72° 0.9511 0.3090 3.0777 28° 0.4695 0.8829 0.5317 73° 0.9563 0.2924 3.2709 29° 0.4848 0.8746 0.5543 74° 0.9613 0.2756 3.4874 30° 0.5000 0.8660 0.5774 75° 0.9659 0.2588 3.7321 31° 0.5150 0.8572 0.6009 76° 0.9703 0.2419 4.0108 32° 0.5299 0.8480 0.6249 77° 0.9744 0.2250 4.3315 33° 0.5446 0.8387 0.6494 78° 0.9781 0.2079 4.7046 34° 0.5592 0.8290 0.6745 79° 0.9816 0.1908 5.1446	23°	0.3907	0.9205	0.4245	68°	0.9272	0.3746	2.4751
26° 0.4384 0.8988 0.4877 71° 0.9455 0.3256 2.9042 27° 0.4540 0.8910 0.5095 72° 0.9511 0.3090 3.0777 28° 0.4695 0.8829 0.5317 73° 0.9563 0.2924 3.2709 29° 0.4848 0.8746 0.5543 74° 0.9613 0.2756 3.4874 30° 0.5000 0.8660 0.5774 75° 0.9659 0.2588 3.7321 31° 0.5150 0.8572 0.6009 76° 0.9703 0.2419 4.0108 32° 0.5299 0.8480 0.6249 77° 0.9744 0.2250 4.3315 33° 0.5446 0.8387 0.6494 78° 0.9781 0.2079 4.7046 34° 0.5592 0.8290 0.6745 79° 0.9816 0.1908 5.1446 35° 0.5736 0.8192 0.7002 80° 0.9848 0.1736 5.6713	24°	0.4067	0.9135	0.4452	69°	0.9336	0.3584	2.6051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25°	0.4226	0.9063	0.4663	70°	0.9397	0.3420	2.7475
28° 0.4695 0.8829 0.5317 73° 0.9563 0.2924 3.2709 29° 0.4848 0.8746 0.5543 74° 0.9613 0.2756 3.4874 30° 0.5000 0.8660 0.5774 75° 0.9659 0.2588 3.7321 31° 0.5150 0.8572 0.6009 76° 0.9703 0.2419 4.0108 32° 0.5299 0.8480 0.6249 77° 0.9744 0.2250 4.3315 33° 0.5446 0.8387 0.6494 78° 0.9781 0.2079 4.7046 34° 0.5592 0.8290 0.6745 79° 0.9816 0.1908 5.1446 35° 0.5736 0.8192 0.7002 80° 0.9848 0.1736 5.6713 36° 0.5878 0.8090 0.7265 81° 0.9877 0.1564 6.3138 37° 0.6018 0.7986 0.7536 82° 0.9903 0.1392 7.1154	26°	0.4384	0.8988	0.4877	71°	0.9455	0.3256	2.9042
29° 0.4848 0.8746 0.5543 74° 0.9613 0.2756 3.4874 30° 0.5000 0.8660 0.5774 75° 0.9659 0.2588 3.7321 31° 0.5150 0.8572 0.6009 76° 0.9703 0.2419 4.0108 32° 0.5299 0.8480 0.6249 77° 0.9744 0.2250 4.3315 33° 0.5446 0.8387 0.6494 78° 0.9781 0.2079 4.7046 34° 0.5592 0.8290 0.6745 79° 0.9816 0.1908 5.1446 35° 0.5736 0.8192 0.7002 80° 0.9848 0.1736 5.6713 36° 0.5878 0.8090 0.7265 81° 0.9877 0.1564 6.3138 37° 0.6018 0.7986 0.7536 82° 0.9903 0.1392 7.1154 38° 0.6157 0.7880 0.7813 83° 0.9925 0.1219 8.1443	27°	0.4540	0.8910	0.5095	72°	0.9511	0.3090	3.0777
30° 0.5000 0.8660 0.5774 75° 0.9659 0.2588 3.7321 31° 0.5150 0.8572 0.6009 76° 0.9703 0.2419 4.0108 32° 0.5299 0.8480 0.6249 77° 0.9744 0.2250 4.3315 33° 0.5446 0.8387 0.6494 78° 0.9781 0.2079 4.7046 34° 0.5592 0.8290 0.6745 79° 0.9816 0.1908 5.1446 35° 0.5736 0.8192 0.7002 80° 0.9848 0.1736 5.6713 36° 0.5878 0.8090 0.7265 81° 0.9877 0.1564 6.3138 37° 0.6018 0.7986 0.7536 82° 0.9903 0.1392 7.1154 38° 0.6157 0.7880 0.7813 83° 0.9925 0.1219 8.1443 39° 0.6293 0.7771 0.8098 84° 0.9945 0.1045 9.5144	28°	0.4695	0.8829	0.5317	73°	0.9563	0.2924	3.2709
31° 0.5150 0.8572 0.6009 76° 0.9703 0.2419 4.0108 32° 0.5299 0.8480 0.6249 77° 0.9744 0.2250 4.3315 33° 0.5446 0.8387 0.6494 78° 0.9781 0.2079 4.7046 34° 0.5592 0.8290 0.6745 79° 0.9816 0.1908 5.1446 35° 0.5736 0.8192 0.7002 80° 0.9848 0.1736 5.6713 36° 0.5878 0.8090 0.7265 81° 0.9877 0.1564 6.3138 37° 0.6018 0.7986 0.7536 82° 0.9903 0.1392 7.1154 38° 0.6157 0.7880 0.7813 83° 0.9925 0.1219 8.1443 39° 0.6293 0.7771 0.8098 84° 0.9945 0.1045 9.5144 40° 0.6428 0.7660 0.8391 85° 0.9962 0.0872 11.4301	29°	0.4848	0.8746	0.5543	74°	0.9613	0.2756	3.4874
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30°	0.5000	0.8660	0.5774	75°	0.9659	0.2588	3.7321
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31°	0.5150	0.8572	0.6009	76°	0.9703	0.2419	4.0108
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32°	0.5299	0.8480	0.6249	77°	0.9744	0.2250	4.3315
35° 0.5736 0.8192 0.7002 80° 0.9848 0.1736 5.6713 36° 0.5878 0.8090 0.7265 81° 0.9877 0.1564 6.3138 37° 0.6018 0.7986 0.7536 82° 0.9903 0.1392 7.1154 38° 0.6157 0.7880 0.7813 83° 0.9925 0.1219 8.1443 39° 0.6293 0.7771 0.8098 84° 0.9945 0.1045 9.5144 40° 0.6428 0.7660 0.8391 85° 0.9962 0.0872 11.4301 41° 0.6561 0.7547 0.8693 86° 0.9976 0.0698 14.3007 42° 0.6691 0.7431 0.9004 87° 0.9986 0.0523 19.0811 43° 0.6820 0.7314 0.9325 88° 0.9994 0.0349 28.6363 44° 0.6947 0.7193 0.9657 89° 0.9998 0.0175 57.2900	33°	0.5446	0.8387	0.6494	78°	0.9781	0.2079	4.7046
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34°	0.5592	0.8290	0.6745	79°	0.9816	0.1908	5.1446
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35°	0.5736	0.8192	0.7002	80°	0.9848	0.1736	5.6713
38° 0.6157 0.7880 0.7813 83° 0.9925 0.1219 8.1443 39° 0.6293 0.7771 0.8098 84° 0.9945 0.1045 9.5144 40° 0.6428 0.7660 0.8391 85° 0.9962 0.0872 11.4301 41° 0.6561 0.7547 0.8693 86° 0.9976 0.0698 14.3007 42° 0.6691 0.7431 0.9004 87° 0.9986 0.0523 19.0811 43° 0.6820 0.7314 0.9325 88° 0.9994 0.0349 28.6363 44° 0.6947 0.7193 0.9657 89° 0.9998 0.0175 57.2900	36°	0.5878	0.8090	0.7265	81°	0.9877	0.1564	6.3138
39° 0.6293 0.7771 0.8098 84° 0.9945 0.1045 9.5144 40° 0.6428 0.7660 0.8391 85° 0.9962 0.0872 11.4301 41° 0.6561 0.7547 0.8693 86° 0.9976 0.0698 14.3007 42° 0.6691 0.7431 0.9004 87° 0.9986 0.0523 19.0811 43° 0.6820 0.7314 0.9325 88° 0.9994 0.0349 28.6363 44° 0.6947 0.7193 0.9657 89° 0.9998 0.0175 57.2900	37°	0.6018	0.7986	0.7536	82°	0.9903	0.1392	7.1154
40° 0.6428 0.7660 0.8391 85° 0.9962 0.0872 11.4301 41° 0.6561 0.7547 0.8693 86° 0.9976 0.0698 14.3007 42° 0.6691 0.7431 0.9004 87° 0.9986 0.0523 19.0811 43° 0.6820 0.7314 0.9325 88° 0.9994 0.0349 28.6363 44° 0.6947 0.7193 0.9657 89° 0.9998 0.0175 57.2900	38°	0.6157	0.7880	0.7813	83°	0.9925	0.1219	8.1443
41° 0.6561 0.7547 0.8693 86° 0.9976 0.0698 14.3007 42° 0.6691 0.7431 0.9004 87° 0.9986 0.0523 19.0811 43° 0.6820 0.7314 0.9325 88° 0.9994 0.0349 28.6363 44° 0.6947 0.7193 0.9657 89° 0.9998 0.0175 57.2900	39°	0.6293	0.7771	0.8098	84°	0.9945	0.1045	9.5144
42° 0.6691 0.7431 0.9004 87° 0.9986 0.0523 19.0811 43° 0.6820 0.7314 0.9325 88° 0.9994 0.0349 28.6363 44° 0.6947 0.7193 0.9657 89° 0.9998 0.0175 57.2900	40°	0.6428	0.7660	0.8391	85°	0.9962	0.0872	11.4301
43° 0.6820 0.7314 0.9325 88° 0.9994 0.0349 28.6363 44° 0.6947 0.7193 0.9657 89° 0.9998 0.0175 57.2900	41°	0.6561	0.7547	0.8693	86°	0.9976	0.0698	14.3007
44° 0.6947 0.7193 0.9657 89° 0.9998 0.0175 57.2900	42°	0.6691	0.7431	0.9004	87°	0.9986	0.0523	19.0811
	43°	0.6820	0.7314	0.9325	88°	0.9994	0.0349	28.6363
45° 0.7071 0.7071 1.0000 90° 1.0000 0.0000	44°	0.6947	0.7193	0.9657	89°	0.9998	0.0175	57.2900
	45°	0.7071	0.7071	1.0000	90°	1.0000	0.0000	

上の三角関数表を使うと、他の角度 θ の場合でも三角比が計算できる

6 三角比の拡張

三角比は $\theta > 90^\circ$ の場合でも 計算できるのか?

三角比の拡張

三角比は以下のように定義することもできる:

次の 2 つの図形の交点の座標が $(\cos \theta, \sin \theta)$ である。

- ・ x 軸の正の部分を時計回りに θ だけ回転させた線
- ・ 半径 1 の円

$\theta > 90^\circ$ でも計算できる

 \times tan θ は sin θ を cos θ で割った値

三角比の拡張:例

 $\cos 45^{\circ} = 0.7$ $\sin 45^{\circ} = 0.7$

 $\cos 180^{\circ} = -1$ $\sin 180^{\circ} = 0$

 $\cos 270^{\circ} = 0$ $\sin 270^{\circ} = -1$

それでは"三角比"の次に "三角関数"はどういうものか?

三角関数とは

 $y = \sin x, y = \cos x, y = \tan x$ などを 三角関数という

関数のグラフは右図のとおり 波のようになっている

補足: ラジアンについて

なお、三角関数では、角度 x をラジアンという単位で表すことがある(半径 1 の円の弧の長さで角度を表す)

角度 $heta^\circ$ をラジアンに変換するには heta を $\pi/180$ 倍すれば良い

発展:加法定理

三角関数では、以下のような加法定理が成り立つ

sin 30° と sin 45° の値がわかっていて、 sin 75° を求めるような場面で役立つ

※難易度が高いので読み飛ばしてかまいません

$$\sin(\alpha + \beta) = \sin \alpha \times \cos \beta + \cos \alpha \times \sin \beta$$
 $\cos(\alpha + \beta) = \cos \alpha \times \cos \beta - \sin \alpha \times \sin \beta$
特に、 $\sin 2\theta = 2\sin \theta \times \cos \theta$
 $\cos 2\theta = 2\cos^2 \theta - 1$

"本章のゴール"を解こう

ある夏の日の夕方に木の影を測ったところ、長さが 80 メートルでした。 太陽の仰角が 14° であったとき、木の高さは何メートルですか。

"本章のゴール"を解こう

まず、木の高さは 80×tan14° メートルである

※ 6 章前半の「三角比」を思い出してみましょう

6 "本章のゴール"を解こう

そこで、80×tan14°の値はいくつか?

三角関数表より tan14°≒ 0.25 なので、答えは 80 × 0.25 = 20 メートル

角	正弦 (sin)	氽弦 (cos)	正接 (tan)	角	正弦 (sin)	余弦 (cos)	正接 (tan)
0°	0.0000	1.0000	0.0000	45°	0.7071	0.7071	1.0000
1°	0.0175	0.9998	0.0175	46°	0.7193	0.6947	1.0355
2°	0.0349	0.9994	0.0349	47°	0.7314	0.6820	1.0724
3°	0.0523	0.9986	0.0524	48°	0.7431	0.6691	1.1106
4°	0.0698	0.9976	0.0699	49°	0.7547	0.6561	1.1504
5°	0.0872	0.9962	0.0875	50°	0.7660	0.6428	1.1918
6°	0.1045	0.9945	0.1051	51°	0.7771	0.6293	1.2349
7°	0.1219	0.9925	0.1228	52°	0.7880	0.6157	1.2799
8°	0.1392	0.9903	0.1405	53°	0.7986	0.6018	1.3270
9°	0.1564	0.9877	0.1584	54°	0.8090	0.5878	1.3764
10°	0.1736	0.9848	0.1763	55°	0.8192	0.5736	1.4281
11°	0.1908	0.9816	0.1944	56°	0.8290	0.5592	1.4826
12°	0.2079	0.9781	0.2126	57°	0.8387	0.5446	1.5399
13°	0.2250	0.9744	0.2309	58°	0.8480	0.5299	1.6003
14°	0.2419	0.9703	0.2493	59°	0.8572	0.5150	1.6643

CHAPTER 7 証明のやり方

本章のゴール

A~E の 5 人の生徒がおり、それらのうち 2 人が嘘つきです。あなたは以下のような証言を得ました。

- 生徒 A「生徒 B は嘘つきである」
- 生徒 B「生徒 C は正直者である」
- ・ 生徒 C「生徒 D は正直者である」

正直者は必ず正しいことを言い、嘘つきは必ず間違ったことを言いいます。このとき、生徒 A は正直者でしょうか。

数学では "証明" というキーワードをよく聞くが どういうことか?

7 証明とは

証明 = ある事柄が成り立つことを明らかにすること つまり、「なぜ?」を解決すること

7 証明の例

例

n を偶数とするとき、 $n \times n \times n$ が 8 の倍数になることを証明してください。

証明の例

例

n を偶数とするとき、 $n \times n \times n$ が 8 の倍数になることを証明してください。

n = 2 だと 2×2×2=8 (8 の倍数) n = 6 だと 6×6×6=216 (8 の倍数) ヨシ、証明できた! 他の *n* では 8 の倍数でないかも しれないよ。

この問題では、どんな場合でも成り立つことを 証明しなければならない

ではどうやって証明するか?

証明の例

例

n を偶数とするとき、 $n \times n \times n$ が 8 の倍数になることを証明してください。

証明

 $m \times 2 = n$ とするとき(ここで m は整数)、

$$n \times n \times n = (m \times 2) \times (m \times 2) \times (m \times 2)$$

= $(m \times m \times m) \times (2 \times 2 \times 2)$
= $(m \times m \times m) \times 8$

 $m \times m \times m$ は整数なので、 $n \times n \times n$ は 8 の倍数。

確かにどんな ケースでも成り立つ!

7 代表的な証明方法

証明のテクニックは様々ですが、本章では

代表的な 2 つを紹介します

7 代表的な証明方法

方法 1: 背理法

背理法

"証明すべき事柄"が間違っていることを仮定すると 矛盾が起こることを導く。

背理法

"証明すべき事柄"が間違っていることを仮定すると 矛盾が起こることを導く。

例として、三角形の内角のうち 少なくとも 1 つが 60° 以上

であることを証明しよう!

背理法

"証明すべき事柄"が間違っていることを仮定すると 矛盾が起こることを導く。

例として、三角形の内角のうち 少なくとも 1 つが 60° 以上 であることを証明しよう!

背理法

"証明すべき事柄"が間違っていることを仮定すると 矛盾が起こることを導く。

例として、三角形の内角のうち 少なくとも 1 つが 60° 以上 であることを証明しよう!

背理法

"証明すべき事柄"が間違っていることを仮定すると 矛盾が起こることを導く。

例として、三角形の内角のうち 少なくとも 1 つが 60° 以上 であることを証明しよう!

63°

7 代表的な証明方法

方法 2:数学的帰納法

数学的 帰納法 「どんな正の整数 n でも成り立つこと*」を証明するために、以下の 2 つを示す:

- **1.** n=1 で成り立つこと
- 2. もし n = k で成り立つならば、n = k + 1 でも成り立つこと

数学的 帰納法

「どんな正の整数 n でも成り立つこと*」を証明するために、以下の 2 つを示す:

- **1.** *n* = 1 で成り立つこと
- 2. もし n = k で成り立つならば、n = k + 1 でも成り立つこと

なぜこの方法で すべての *n* で 証明できるか?

数学的 帰納法

「どんな正の整数 n でも成り立つこと*」を証明するために、以下の 2 つを示す:

- **1.** *n* = 1 で成り立つこと
- 2. もし n = k で成り立つならば、n = k + 1 でも成り立つこと

なぜこの方法で すべての *n* で 証明できるか?

- $oldsymbol{2}$ 2. を k=1 で適用して、n=2 の場合を証明する
- $oldsymbol{3}$ 2. を k=2 で適用して、n=3 の場合を証明する
- $oldsymbol{4}$ 2. を k=3 で適用して、n=4 の場合を証明する
- **5** 以降も、ドミノ倒し的に 2. を適用していけば良い

具体例として、以下の事柄を証明しよう

どのような正の整数nでも、 6^n の一の位は6

数学的 帰納法

「どんな正の整数 n でも成り立つこと*」を証明するために、以下の 2 つを示す:

- **1.** n=1 で成り立つこと
- 2. もし n = k で成り立つならば、n = k + 1 でも成り立つこと

証明すべき事柄

どのような *n* でも 6ⁿ の一の位は 6

 $oldsymbol{n} = 1$ のとき、 $6^1 = 6$ なので明らかに成り立つ

6 ¹	6	1

数学的 帰納法

「どんな正の整数 n でも成り立つこと*」を証明するために、以下の 2 つを示す:

- n = 1 で成り立つこと
- 2. もし n = k で成り立つならば、n = k + 1 でも成り立つこと

証明すべき事柄

どのような *n* でも 6ⁿ の一の位は 6

- $oldsymbol{n} = 1$ のとき、 $6^1 = 6$ なので明らかに成り立つ
- 2 6^k の一の位が 6 であったと仮定する。「一の位が 6 である整数」に 6 を掛けても、一の位は 6 のまま * なので、 6^{k+1} の一の位も 6 である

6 ¹	6	1
	:	
6 ^k	???6) ×6
6^{k+1}	???6	2

代表的な証明方法 (2/2)

数学的 帰納法

「どんな正の整数 n でも成り立つことst」を証明するために、以下の 2 つを示す:

- 1. n = 1 で成り立つこと
- 2. もし n = k で成り立つならば、n = k + 1 でも成り立つこと

証明すべき事柄

どのような n でも 6ⁿ の一の位は 6

これで証明できた!

2 6^k の一の位が 6 であったと仮定する。「一の位が 6 である整数」に 6 を掛けても、一の位は 6 のまま * なので、 6^{k+1} の一の位も 6 である

7 "本章のゴール"を解こう

A~E の 5 人の生徒がおり、それらのうち 2 人が嘘つきです。あなたは以下 のような証言を得ました。

- 生徒 A「生徒 B は嘘つきである」
- 生徒 B「生徒 C は正直者である」
- 生徒 C「生徒 D は正直者である」

正直者は必ず正しいことを言い、嘘つきは必ず間違ったことを言うとき、生徒 A が嘘つきであることを証明してください。

7 "本章のゴール"を解こう

背理法を使って考える。 生徒 A が正直者であると仮定する。

証言

- 生徒 A「生徒 B は嘘つき」
- 生徒 B「生徒 C は正直者」
- 生徒 C「生徒 D は正直者」

"本章のゴール"を解こう

1 背理法を使って考える。
 生徒 A が正直者であると仮定する。

2 生徒 B は嘘つきである。

証言

- 生徒 A「生徒 B は嘘つき」
- ・ 生徒 B「生徒 C は正直者 |
- ・ 生徒 C「生徒 D は正直者

7

"本章のゴール"を解こう

- 1 背理法を使って考える。生徒 A が正直者であると仮定する。
- 2 生徒 B は嘘つきである。
- 3 生徒 C は嘘つきである。

証言

- ・ 生徒 A「生徒 B は嘘つき
- 生徒 B「生徒 C は正直者」
- ・ 牛徒 C「牛徒 D は正直者

7

"本章のゴール"を解こう

- 1 背理法を使って考える。
 生徒 A が正直者であると仮定する。
- 2 生徒 B は嘘つきである。
- 3 生徒 C は嘘つきである。

4 生徒 D は嘘つきである。

証言

- 生徒 A「生徒 B は嘘つき」
- ・ 生徒 B「生徒 C は正直者」
- ・ 生徒 C「生徒 D は正直者」

この時点で嘘つきが 3 人になってしまった! ("嘘つきが 2 人" に矛盾)

よって、生徒 A は正直者ではない!

CHAPTER 8 ベクトル

本章のゴール

この章には、「本章のゴール」に 相当する問題はありません。

8 ベクトルとは

ベクトルは大きさと向きを持つ量である※

- x 座標の差が a
- y 座標の差が b

であるようなベクトルは、(a,b) と表現することができる(このような表現方法を成分表示という)

※図の矢印のようなものを想像するとイメージしやすい。

ベクトルは抽象的で分かりづらいので 具体例をいくつか説明します

8 身近なベクトルの例 (1)

家から学校までは 東方向に 500m、北方向に 300m

8 身近なベクトルの例 (1)

家から学校までは 東方向に 500m、北方向に 300m

位置関係はベクトル (500, 300) で表せる!

8 身近なベクトルの例 (2)

花子さんの座席は太郎君の

1個右、5個前

8 身近なベクトルの例 (2)

花子さんの座席は太郎君の

1個右、5個前

位置関係はベクトル (1,5) で表せる!

8 身近なベクトルの例

ベクトルという概念は

理解できましたか?

ベクトルに関する注意点 (1/2)

普通の文字式は a, b などを使って書くが

ベクトルは \vec{a} , \vec{b} のように「上に矢印を載せた形式」で書くことが多い

たとえば $\vec{a} = (3,2)$ のような書き方をする

ベクトルに関する注意点 (2/2)

先程の例のように、ベクトルは"相対的な位置関係"を表すときにも使えるが

大きさと向きが一致していれば同じベクトルであることに注意!

補足:ベクトルの大きさ

ベクトルの大きさは矢印の長さであり

成分表示が
$$(a_x,a_y)$$
であるとき、大きさは $\sqrt{(a_x)^2+\left(a_y\right)^2}$

ベクトルは実数と同じように 足し算・引き算などの演算ができる

ベクトル同士の足し算は x 成分・y 成分をそのまま足す

例: (3,3)+(6,1)=(9,4)

200/259

ベクトル同士の引き算も x 成分・y 成分をそのまま引く

例:(3,3)-(6,1)=(-3,2)

ベクトル \vec{a} は実数 k と掛け算することができる 掛け算は x 成分・y 成分それぞれを k 倍にする

ベクトル $\vec{a}=(a_x,a_y)$ と $\vec{b}=(b_x,b_y)$ の内積 $\vec{a}\cdot\vec{b}$ は $a_xb_x+a_yb_y$ [つまり成分ごとに掛け算した値の合計]

内積 $\vec{a} \cdot \vec{b}$ は
(3×6)+(3×1)=21

ベクトルはどういう場面で 応用できるのか?

8 ベクトルの応用

ベクトルは図形問題や物理など、様々な場面で活用できる!

CHAPTER 9 微分法と積分法

本章のゴール

以下の容器の体積は何 cm³ ですか?

まず、"微分"とはどういうことか?

9 微分とは

微分は、関数のある点での傾きを求める操作

9 微分とは

微分は、関数のある点での傾きを求める操作

「位置の情報が与えられたとき、ある時刻での速度を求める」と思うとイメージしやすい

具体的な関数を微分してみよう!

微分の例

たとえば関数 $y = x^2$ のグラフにおける x = 1 の傾きは…?

微分の例

たとえば関数 $y = x^2$ のグラフにおける x = 1 の傾きは…?

- \rightarrow グラフを拡大すると、x が 0.1 増えるごとに y が 0.2 増加することがわかる
- →傾きは (y の増加分)÷(x の増加分)=2

微分に関する記号・用語

関数 y = f(x) について、x = a 付近の傾きを「x = a での微分係数」といい、f'(a) と書く

たとえば $f(x) = x^2$ の場合、f'(1) = 2

%前ページで求めたように、x = 1 付近の傾きは 2 であったため。

これまではグラフを拡大して微分係数を求めたが…

f(x) が多項式である場合は

もっと簡単に微分係数がわかる!

9 微分の方法

手順1

すべての項の係数に 次数 (x^2 ならば 2 の部分) を掛ける

手順2

すべての項の次数を 1 だけ減らす

手順3

f'(a) の値は、手順 2 で得られた式に x=a を代入すると求められる

9 微分の方法

手順1

すべての項の係数に 次数 $(x^2$ ならば 2 の部分)を掛ける $3x^{2} - 4x + 2$ $\downarrow \times 2 \qquad \downarrow \times 1 \qquad \downarrow \times 0$

手順2

すべての項の次数を 1 だけ減らす

$$6x^2$$
 - $4x$ + 0

手順3

f'(a) の値は、手順 2 で得られた式に x = a を代入すると求められる

$$f(x) = 3x^2 - 4x + 2$$
 で $f'(1)$ を求めたい場合

9 微分の方法

手順1

すべての項の係数に 次数 $(x^2$ ならば 2 の部分) を掛ける

手順2

すべての項の次数を 1 だけ減らす

手順3

f'(a) の値は、手順 2 で得られた式に x = a を代入すると求められる

$$f(x) = 3x^2 - 4x + 2$$
 で $f'(1)$ を求めたい場合

すべての項の係数に 次数 $(x^2$ ならば 2 の部分) を掛ける

すべての項の次数を 1 だけ減らす

手順3

f'(a) の値は、手順 2 で得られた式に x = a を代入すると求められる

9 微分の方法

念のため、もう一つ 例を試してみよう

手順1

すべての項の係数に 次数 $(x^2$ ならば 2 の部分)を掛ける

手順2

すべての項の次数を 1 だけ減らす

 $\begin{bmatrix} x^3 \\ \downarrow \times 3 \end{bmatrix} - \begin{bmatrix} 4x^2 \\ \downarrow \times 2 \end{bmatrix} + \begin{bmatrix} 3x \\ \downarrow \times 1 \end{bmatrix} + \begin{bmatrix} 2 \\ \downarrow \times 0 \end{bmatrix}$ $\begin{bmatrix} 3x^3 \\ - \begin{bmatrix} 8x^2 \\ \end{pmatrix} + \begin{bmatrix} 3x \\ \end{pmatrix} + \begin{bmatrix} 0 \\ \end{bmatrix}$

手順3

f'(a) の値は、手順 2 で得られた式に x = a を代入すると求められる

手順1

すべての項の係数に 次数 $(x^2$ ならば 2 の部分) を掛ける

手順2

すべての項の次数を 1 だけ減らす

手順3

f'(a) の値は、手順 2 で得られた式に x = a を代入すると求められる

$$f(x) = x^3 - 4x^2 + 3x + 2$$
 で $f'(3)$ を求めたい場合

すべての項の係数に

次数 $(x^2$ ならば 2 の部分) を掛ける

すべての項の次数を 1 だけ減らす

手順3

f'(a) の値は、手順 2 で得られた式に x = a を代入すると求められる

$$f(x) = x^3 - 4x^2 + 3x + 2$$
 で $f'(3)$ を求めたい場合

次に、"積分"とはどういうことか?

積分とは

関数の"ある区間"から得られる領域の面積を求める操作を積分という

積分とは

関数の "ある区間" から得られる領域の面積を求める操作を積分という

「速度の情報が与えられたとき、ある時間帯に何メートル進んだかを求める」と思うとイメージしやすい

積分に関する記号・用語

積分(定積分※)を扱う際は、以下のような数式が使われることがある:

$$\int_{a}^{b} f(x) \ dx$$

これは関数「y = f(x)、直線 x = a, x = b で囲まれた部分の(符号付き)面積」を意味する。

具体的な関数を積分してみよう!

積分の例

$$\int_{1}^{5} (x-2) dx$$
 の値を計算してください。

求めるべき面積は y = x - 2, x = 1, x = 5 で囲まれた部分 \rightarrow 右図で色が付けられた部分

積分の例

$$\int_{1}^{5} (x-2) dx$$
 の値を計算してください。

求めるべき面積は y = x - 2, x = 1, x = 5 で囲まれた部分 \rightarrow 右図で色が付けられた部分

青色部分の面積は 3×3÷2=4.5

赤色部分の面積は 1×1÷2=0.5

積分の例

$$\int_{1}^{5} (x-2) dx$$
 の値を計算してください。

求めるべき面積は y = x - 2, x = 1, x = 5 で囲まれた部分 →右図で色が付けられた部分

青色部分の面積は 3×3÷2=4.5 合計 5.0 が答えだと **赤色部分の面積は 1×1÷2=0.5** 思うかもしれないが…

求めるのは符号付き面積なので 4.5-0.5=4.0

ここまでは直接面積を計算したが…

f(x) が多項式である場合は

もっと簡単に積分計算ができる!

手順1

すべての項の次数 $(x^2$ ならば 2 の部分) を 1 だけ増やす

手順2

すべての項の係数を、次数で割る ここまでで得られた関数を F(x) とする

手順3

手順1

すべての項の次数(x^2 ならば 2 の部分)を 1 だけ増やす

手順2

すべての項の係数を、次数で割る ここまでで得られた関数を F(x) とする $-3x^{2} + 10x + 2$ $\downarrow \qquad \downarrow \qquad \downarrow$ $-3x^{3} + 10x^{2} + 2x$

手順3

手順1

すべての項の次数 $(x^2$ ならば 2 の部分) を 1 だけ増やす

手順2

すべての項の係数を、次数で割る ここまでで得られた関数を F(x) とする

手順3

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$
 である

$$-3x^{2} + 10x + 2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$-3x^{3} + 10x^{2} + 2x$$

$$\downarrow \div 3 \qquad \qquad \downarrow \div 2 \qquad \qquad \downarrow \div 1$$

$$-x^{3} + 5x^{2} + 2x$$

手順1

すべての項の次数 $(x^2$ ならば 2 の部分) を 1 だけ増やす

手順2

すべての項の係数を、次数で割る ここまでで得られた関数を F(x) とする

手順3

$$-3x^{2} + 10x + 2$$

$$\downarrow \qquad \qquad \downarrow$$

$$-3x^{3} + 10x^{2} + 2x$$

$$\downarrow \div 3 \qquad \qquad \downarrow \div 2 \qquad \qquad \downarrow \div 1$$

$$-x^{3} + 5x^{2} + 2x$$

実は積分は微分の

逆の操作になっている!

微分と積分の関係

"本章のゴール"を解こう(難)

以下の容器の体積は何 cm³ ですか。

"本章のゴール"を解こう(難)

まず、上から x (cm) で切ったときの断面積は x^2 (cm²)

※断面が「一辺がx (cm) の正方形」になるため

"本章のゴール"を解こう(難)

したがって、求める体積は以下の式で表される:

$$\int_0^6 x^2 \ dx$$

 $f(x) = x^2$ に対して積分した F(x) は $x^3/3$ となるため 求める答えは以下の通り:

$$F(6) - F(0) = \frac{6^3}{3} - \frac{0^3}{3} = \frac{72}{4}$$

CHAPTER 10 その他のトピック

本章のゴール

この章には、「本章のゴール」に 相当する問題はありません。

10 数列

トピック A:数列

10 数列 (1/3)

- ・ 数列:一定の規則で並べられた数の列
- ・ 数列としては以下の 2 つが有名
 - 等差数列:前の値に、一定の値 d を足したもの(例:1,4,7,10,13,…)
 - ・ 等比数列:前の値に、一定の値 r を掛けたもの(例:25,50,100,200,400,…)

一般的には、数列は以下のようにして表す:

- n 番目の項を a_n と表す
- 特に、最初の項は a₁

たとえば、[5, 10, 20, 40, 80, 160, …] という数列の場合…

• $a_1 = 5$, $a_2 = 10$, $a_3 = 20$, $a_6 = 160$ など

数列の値を「前の値」から定める規則を漸化式という

たとえば等差数列 1, 4, 7, 10, … の場合、前の値に 3 を足すので、漸化式は以下の通り

•
$$a_1 = 1$$

•
$$a_n = a_{n-1} + 3 \ (n \ge 2)$$

a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8	
1	4	7	10	13	16	19	22	
	/		1	1	1	1	1	1
+	-3 +	3 +	3 +	3 +	3 +	-3 +	-3 +	-3

n ≥ 2 の場合は 数列の n 番目の値が

(n-1 番目の値) + 3 である という意味!

10 集合

トピック B:集合

10 集合 (1/3)

- ・数学では、モノの集まりを集合という。たとえば「将棋部のメンバー」は集合である
- ・集合を構成するモノを要素という。たとえば、将棋部のメンバーを表す集合を A とするとき、A の要素は F 君・G 君・H 君の S つ

10 集合 (2/3)

集合は通常、要素を中カッコに入れる形で書く

• 例:1以上 10以下の素数の集合 S は $S = \{2,3,5,7\}$

・例:1以上 10以下の奇数の集合 T は $T = \{1, 3, 5, 7, 9\}$

10 集合(3/3)

集合の重要な記号を以下にまとめておく:

表記	名前	意味	下図に対応した例
$S \cap T$	積集合	S,T 両方に含まれる部分の集合	$S\cap T=\{3,5,7\}$
$S \cup T$	和集合	S,T の少なくとも一方に含まれる部分の集合	$S \cup T = \{1, 2, 3, 5, 7, 9\}$

トピック C:整数の性質

「ユークリッドの互除法」と「2進法」

10 整数の性質 (1/4)

整数 a と整数 b の最大公約数を求める方法として、ユークリッドの互除法がある

ユークリッドの互除法

- ・大きい方の整数を「大きい方を小さい方で割った余り」に書き換え続ける。
- ・ どちらか一方の数が 0 になれば操作終了。もう一方の数が答え。

10 整数の性質 (2/4)

まず、10 進法は 0~9 で表され、「9」から足そうとすると繰り上がる

一方、2 進法は 0~1 で表され、「1」から足そうとすると繰り上がる

例:「1001」から1を足すと「1010」

・ 例:「1011」から 1 を足すと「1100」

10 進法	0	1	2	3	4	5	6	7
2 進法	0	1	10	11	100	101	110	111
10 進法	8	9	10	11	12	13	14	15
2 進法	1000	1001	1010	1011	1100	1101	1110	1111

10 整数の性質 (3/4)

2 進法を 10 進法に変換するには?

- ・ 2 進法は、下から順に「 $1\rightarrow 2\rightarrow 4\rightarrow 8$ の $0\rightarrow \cdots$ 」と位を付けることができる
- ・ このとき、「数字×位」の総和が 2 進法を 10 進法に変換した値

10 整数の性質 (4/4)

10 進法を 2 進法に変換するには?

- 数が0になるまで、2で割る操作を繰り返す
- ・ 余りを逆から読んだ整数が「2 進法に変換した値」

13÷2 = 6余り16÷2 = 3余り03÷2 = 1余り11÷2 = 0余り1

13 を 2 進法に変換すると 1101 になる!

CHAPTER FINAL スライドのまとめ

終

スライドのまとめ

本スライドでは、数学に関する様々なトピックを扱いました

終

スライドのまとめ

これらの内容を使うと、いろいろな問題を解くことができます

終さらなる学びへ

しかし、本スライドでは基礎的な内容しか説明していません さらに学びたい方は、教科書などを読んで学習しましょう!

終参考文献

- 1. 米田優峻、『問題解決のための「アルゴリズム×数学」が基礎からしっかり身につく本』、技術評論社
- 2. 『数学 I 改訂版』、数研出版
- 3. 『数学A 改訂版』、数研出版
- 4. 『数学Ⅱ 改訂版』、数研出版
- 5. 『数学 B 改訂版』、数研出版
- 6. 高校数学の美しい物語 https://manabitimes.jp/math
- 7. 統計WEB~統計学の時間~ https://bellcurve.jp/statistics/course/
- 8. Knowledge Makers https://knowledge-makers.com/correlation-analysis/
- 9. いらすとやの画像を利用

スライドをお読みいただき ありがとうございました