VERİ AKTARMA :: REFERANS KAĞIDI

R programnın içinde bulunan **tidyverse** kütüphanesi, gelişmiş veri çerçeveleri olan **tibbles** biçiminde depolanan **düzenli veriler** etrafında oluşturulmuştur.

Bu referans kağıdının önyüzü metin dosyalarının **readr** ile R'ye nasıl aktarılacağını gösterir.

Arka yüzü ise, **tibble** ile nasıl tibble oluşturulacağını ve **tidy**r ile düzenli verilerin nasıl düzenleneceğini gösterir.

DİĞER VERİ TÜRLERİ

Diğer dosya türlerini R'a aktarmak için aşağıdaki paketlerden biri kullanılabilir.

- haven SPSS, Stata, ve SAS dosyaları
- readxl excel dosyaları (.xls ve .xlsx)
- **DBI** veritabanları
- **jsonlite** json
- xml2 -XML
- httr WebAPIs
- rvest HTML (WebScraping)

Veriyi Kaydetme

Bir R nesnesi olan x'i, bir **dosya yoluna** şu şekilde kaydedebilirsiniz:

Virgülle ayrılmıs dosya

write_csv(x, path, na = "NA", append = FALSE, col names = append)

Rasgele bir ayraç içeren dosya

write_delim(x, path, delim =" ", na = "NA", append = FALSE, col names = append)

Excel icin CSV

write_excel_csv(x, path, na ="NA", append = FALSE, col_names =!append)

Dizeden dosyaya

write_file(x, path, append =FALSE)

Dize vektöründen dosyaya, satır başına bir öğe write lines(x,path, na = "NA", append = FALSE)

RDS dosyasına nesne olarak

write_rds(x, path, compress =c("none", "gz",
 "bz2", "xz"),...)

Sekmeyle ayrılmış dosya

write_tsv(x, path, na ='NA", append =FALSE, col names = append)

Tablo Halinde Verileri Okuma - Bu fonksiyonlar ortak argümanları paylaşır:

read_*(file, col_names =TRUE, col_types =NULL, locale =default_locale(), na =c("", "NA"), quoted_na =TRUE, comment ="", trim_ws =TRUE, skip =0, n_max =Inf, guess_max =min(1000, n_max), progress =interactive())

Virgülle Ayrılmış Dosyalar

read_csv("file.csv")
Yapabilirsiniz file.csvrun:
write_file(x = "a,b,c\n1,2,3\n4,5,NA", path = "file.csv")

Noktalı Virgülle Ayrılmıs Dosyalar

read_csv2("file2.csv")
write file(x = "a;b;c\n1;2;3\n4;5;NA", path = "file2.csv")

Herhangi Bir Ayraç İçeren Dosyalar

read_delim("file.txt", delim="|")
write_file(x = "a|b|c\n1|2|3\n4|5|NA", path = "file.txt")

Sabit Genislikli Dosvalar

read_fwf("file.fwf", col_positions =c(1, 3, 5))
write_file(x = "a b c\n1 2 3\n4 5 NA", path = "file.fwf")

Sekmeyle Ayrılmış Dosyalar

read_tsv("file.tsv") Ayrıca read_table().
write file(x = "a\tb\tc\n1\t2\t3\n4\t5\tNA", path = "file.tsv")

FAYDALI ARGÜMANLAR

1 2 3

4 5 NA

...

a,b,c 1,2,3 4,5,NA			4	Ornek Dosya write_file("a,b,c\n1,2,3\n4,5,NA","file.csv f <-"file.csv"					
	A 1 4	B 2 5	C 3 NA	Başlık Yok read_csv(f, col_names = FALSE)					
	X A	В	Z C	Başlık Var read_csv(f, col_names = c("x", "y", "z"))					

1 2 3 4 5 NA

Satırları atlama

read csv(f, skip =1)

Bir alt küme olarak veriyi alma

read_csv(f, n_max =1)

Kayıp Değerler

read_csv(f, na = c("1", "."))

Tablo Halinde Olmayan Verileri Okuma

Bir dosyayı tek bir kod parçası olarak okuma

read_file(file, locale = default_locale())

Her satırı kendi kod parçasına okuma

read_lines(file, skip = 0, n_max = -1L, na = character(),
locale = default_locale(), progress = interactive())

Apache log dosyalarını okuma

read_log(file, col_names = FALSE, col_types = NULL, skip = 0, n_max = -1, progress = interactive())

Bir dosyayı bir satır vektörü olarak okuma read_file_raw(file)

Her satırı bir satır vektörü olarak okuma

read_lines_raw(file, skip = 0, n_max = -1L,
 progress = interactive())

Veri Tipleri

readr

Aşağıdaki mesaj,çıktıda yer alan her sütunun türünü gösterir.

1. Sorunları teşhis etmek için **problems()** fonksiyonu kullanılır.

x <- read csv("file.csv"); problems(x)

- 2. Ayrıştırmak için col_function fonksiyonu kullanılır.
- col_guess() varsayılan
- · col character()
- col_double(), col_euro_double()
- col_datetime(format = "") Ayrıcacol_date(format = ""), col_time(format = "")
- col_factor(levels, ordered = FALSE)
- col_integer()
- col_logical()
- col_number(), col_numeric()
- col_skip()

x <- read_csv("file.csv", col_types = cols(
 A = col_double(),
 B = col_logical(),
 C = col_factor()))</pre>

3. Aksi takdirde, karakter vektörleri gibi okunur ve ardından parse_function fonksiyonuyla incelenebilir.

- parse_guess()
- parse_character()
- parse_datetime() Ayrıca parse_date() ve parse_time()
- parse_double()
- parse_factor()
- parse_integer()
- parse_logical()
- parse number()
- x\$A <- parse_number(x\$A)

Tibbles-gelişmiş bir veri çerçevesi

tibble paketi, tablo halinde verilen depolamak için veni bir S3 sınıfı, tibble sağlar. Tibbles, veri çerçevesi gibidir ancak iyilestirilmiş üç özelliği vardır:

- Alt küme [her zaman yeni bir tibble verir, [[ve \$her zaman bir vektör döndürür.
- Kısmi eşleşme yapılamaz-Alt küme olustururken sütun adlarını kullanmalısınız.
- Görünüm Bir tibble yazdırdığınızda, R size verileri tek parça olacak şekilde görüntüler.

- Varsayılan görünümü seçeneklerle kontrol edin: options(tibble.print max = n, tibble.print min = m, tibble.width = Inf)
- Tüm veri setini View() veya qlimpse() ile görüntüleyin
- Veri cercevesine as.data.frame() ile geri döndürün

İKİ ŞEKİLDE BİR TIBBLE OLUŞTURUN

tidyr ile Veri Düzenleme

Düzenli veriler(tidy data),tablo şeklindeki verileri düzenlemenin bir yoludur.Paketler arasında tutarlı bir veri yapısı sağlar. Eğerbirtablo düzenli ise: Düzenli veri:

sütunundadır

Her **gözlem** veya **durum**, Her **değişken** kendi kendi satırındadır

Değiskenlere vektör olarak erismeyi kolaylaştırır

Vektörize islemler sırasında durumları korur

Verileri Yeniden Şekillendime - bir tablodaki değerlerin düzenini değiştirin

Bir tablonun değerlerini yeni bir düzende yeniden düzenlemek için gather() ve spread() kullanın.

gather(data, key, value, ..., na.rm =FALSE, convert =FALSE, factor key=FALSE)

gather() sütun adlarını bir **anahtar** sütuna tasır, sütun değerlerini tek bir değer sütununda toplar.

ta	able4a								
country	1999	2000		country	year	cases			
Α	0.7K	2K	_	Α	1999	0.7K			
В	37K	80K		В	1999	37K			
С	212K	213K		С	1999	212K			
				Α	2000	2K			
				В	2000	80K			
				С	2000	213K			
Anahtar Değer									

spread(data, key, value, fill =NA, convert =FALSE, drop =TRUE, sep=NULL)

spread() bir **anahtar** sütunun tekil değerlerini sütun adlarına tasır, bir değer sütununun değerlerini yeni sütuna yayar.

spread(table2, type, count)

...)

Hücrelere Bölme

Hücreleri ayrı ayrı, izole değerlere bölmek veya birlestirmek igin bu fonksivon kullanılır.

separate(data, col, into, sep ="[^[:alnum:]] +",remove =TRUE, convert =FALSE, extra ="wam", fill="wam", ...)

Birkac sütun vapmak icin bir sütundaki her bir hücreyi bölebilirsiniz.

separate(table3, rate, sep ="/", into =c("cases","pop"))

separate_rows(data,..., sep ="[^[:alnum:].] +".convert =FALSE)

Birkaç satır yapmak için bir sütundaki her bir hücreyi bölebilirsiniz.

separate_rows(table3, rate, sep="/")

Kayıp Verileri Yönetmek

gather(table4a, `1999`, `2000`,

kev ="vear", value ="cases")

tibble(...) Her ikisi de Sütunlara göre yapın. bu tibble'ı **tibble**(x=1:3,y=c("a", "b", "c")) cıkarır. tribble(...) . A tibble: 3×2 ~y, "a", tribble(~x <int>X <chr>y "b"

as tibble(x, ...) Veri cercevesinden tibble' a dönüstürün.

drop_na(data,...) NA içeren satır ve sütunları çıkarın.

 $drop_na(x, x2)$

fill(data, ..., .direction =c("down", "up")) Satırları NA olmayan bir önceki değer ile doldurun.

C 1

x1 x2 x1 x2 A 1 NA С D 3 D 3

replace na(x, list(x2 = 2))

NA' lan belli bir değere göre değiştirir.

Tablolan Genişletme - değer kombinasyonları ile tabloları hızlı bir şekilde oluşturun

complete(data, ..., fill = list())

Listelenen değiskenlerin değerlerinin eksik kombinasyonlarını verilere ekler ... complete(mtcars, cyl, gear, carb)

expand(data, ...)

Listelenen değişkenlerin değerlerinin tüm olası kombinasyonlarını içeren yeni bir tablo oluşturur... expand(mtcars, cyl, gear, carb)

unite(data, col, ..., sep ="_", remove =TRUE)

Tek bir sütun oluşturmak için farklı hücreleri bir sütundan birleştirebilirsiniz...

unite(table5, century, year, col="year", sep ="")

olmadığını test edin.

enframe(x, name = "name", value = "value")

İsimleştirilmiş vektörleri tibble' a dönüştürün.

is_tibble(x) x değişkeninin tibble olup-