| Joint Distribution (two discrete random variables) |  |
|----------------------------------------------------|--|
|                                                    |  |

STAT 330 - Iowa State University

### Outline

In this lecture, students will learn about the joint distribution for two discrete random variables. Topics include:

- 1. Joint PMF
- 2. Marginal PMFs
- 3. Covariance
- 4. Correlation
- 5. Independence of two discrete random variables

# Joint PMF

# Joint Probability Mass Function

### **Motivation:**

- Often, real problems deal with more than 1 variable
- Not sufficient to model the variables separately
- Need to consider their joint behavior

#### **Definition**

For two discrete variables X and Y, the *joint probability mass* function (pmf) is defined as:

$$p_{X,Y}(x,y) \equiv \mathbb{P}(\{X=x\} \cap \{Y=y\}) = \mathbb{P}(X=x,Y=y)$$

# Joint PMF Example

### Example 1:

A box contains 5 unmarked processors of different speeds:

| speed (mHz) | 400 | 450 | 500 |
|-------------|-----|-----|-----|
| count       | 2   | 1   | 2   |

X = speed of the first selected processor

Y =speed of the second selected processor

The *(joint)* probability table below gives the probabilities for each processor combination:

|               |     | 2nd processor (Y)<br>400 450 500 |     |     |
|---------------|-----|----------------------------------|-----|-----|
|               | mHz | 400                              | 450 | 500 |
|               | 400 | 0.1                              | 0.1 | 0.2 |
| 1st proc. (X) | 450 | 0.1                              | 0.0 | 0.1 |
| 1st proc. (X) | 500 | 0.2                              | 0.1 | 0.1 |
|               |     |                                  |     |     |

# Joint PMF Example Cont.

1. What is the probability that X = Y?

$$P(X = Y)$$
=  $p_{X,Y}(400, 400) + p_{X,Y}(450, 450) + p_{X,Y}(500, 500)$ 
=  $0.1 + 0 + 0.1$ 
=  $0.2$ 

# Joint PMF Example Cont.

2. What is the probability that X > Y?

|               |            | 2nd processor (Y)<br>400 450 500 |     |     |
|---------------|------------|----------------------------------|-----|-----|
|               | mHz        | 400                              | 450 | 500 |
| 1st proc. (X) | 400        | 0.1                              | 0.1 | 0.2 |
|               | 400<br>450 | 0.1                              | 0.0 | 0.1 |
|               | 500        | 0.2                              | 0.1 | 0.1 |

In other words, what is the probability that  $1^{st}$  processor has higher speed than  $2^{nd}$  processor?

$$\mathbb{P}(X > Y)$$
=  $p_{X,Y}(450, 400) + p_{X,Y}(500, 400) + p_{X,Y}(500, 450)$ 
=  $0.1 + 0.2 + 0.1$ 
=  $0.4$ 

# Marginal PMF

# **Marginal Probability Mass Function**

We obtain the *marginal pmf* from the *margins* of the probability table.

This is obtained by summing up the cells row-wise or column-wise.

### **Definition**

The marginal probability mass functions  $p_X(x)$  and  $p_Y(y)$  can be obtained from the joint pmf  $p_{X,Y}(x,y)$  by

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$
$$p_Y(y) = \sum_{y} p_{X,Y}(x,y)$$

# Marginal PMF Cont.

|               |          | 2nd processor (Y) |     |     |          |
|---------------|----------|-------------------|-----|-----|----------|
|               | mHz      | 400               | 450 | 500 | $p_X(x)$ |
| 1st proc. (X) | 400      | 0.1               | 0.1 | 0.2 | 0.4      |
|               | 450      | 0.1               | 0.0 | 0.1 | 0.2      |
|               | 500      | 0.2               | 0.1 | 0.1 | 0.4      |
|               | $p_Y(y)$ | 0.4               | 0.2 | 0.4 | 1        |

Thus, the marginal pmf are ...

$$\begin{array}{c|ccccc} x & 400 & 450 & 500 \\ \hline p_X(x) & 0.4 & 0.2 & 0.4 \\ \hline y & 400 & 450 & 500 \\ \hline p_Y(y) & 0.4 & 0.2 & 0.4 \\ \hline \end{array}$$

# **Expectation**

### **Expected Value**

### **Definition**

The expected value of a function of several variables is

$$\mathbb{E}[h(X,Y)] \equiv \sum_{x,y} h(x,y) p_{X,Y}(x,y)$$

- The MOST IMPORTANT application of this will be for calculating covariance (next slide).
- To calculate the covariance, we will need  $\mathbb{E}(XY)$ .

Take  $h(X, Y) = X \cdot Y$ , and plug in into expected value formula

$$\mathbb{E}(XY) = \sum_{x,y} xyp_{X,Y}(x,y)$$

# Covariance

### Covariance

For two variables, we can measure how "similar" their values are using *covariance* and *correlation*.

### **Definition**

The *covariance* of 2 random variables X, Y is given by

$$Cov(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))]$$

- This definition is similar to Var(X).
- In fact, Cov(X, X) = Var(X)
- In practice, use SHORT CUT formula to obtain covariance:

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

# Correlation

### Correlation

### **Definition**

The *correlation* between 2 random variables X, Y is given by

$$\rho = Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X) \cdot Var(Y)}}$$

# Properties of Correlation ( $\rho$ ):

- $\rho$  is a measure of linear association between X and Y.
- $-1 \le \rho \le 1$
- $\rho$  near  $\pm 1$  indicates a strong linear relationship  $\rho$  near 0 indicates a lack of linear association.

# **Correlation Example**

### Back to Example 1:

3. What is the correlation between X and Y?

In this example,

$$\mathbb{E}(X) = \mathbb{E}(Y) = 450$$

$$Var(X) = Var(Y) = 2000.$$



# Independence

### Independence

Recall that random variables X, Y are *independent* if all events of the form  $\{X = x\}$  and  $\{Y = y\}$  are independent.

For independence, we need

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$
 for all  $x, y$ 

- check if the above holds for all possible combos of x and y
- If we find one contradiction, then we do not have independence

SHORT CUT: If two random variables are independent, then they have Cov(X, Y) = 0.

Note: The converse is not always true

- All independent random variables have 0 covariance
- Some dependent random variables also have 0 covariance

# **Independence Example**

### Back to Example 1:

- 4. Are X and Y independent?
- Check whether  $p_{X,Y}(x,y) = p_X(x)p_Y(y)$  for x, y pairs.
- $p_{X,Y}(450,450) = 0 \neq (0.2)(0.2) = p_X(450)p_X(450)$
- X and Y are NOT independent.

### Alternatively ...

- $Cov(X, Y) = -500 \neq 0$
- X and Y are **NOT** independent.

More on Expectation and Variance

### More on Variance

### **Definition**

Let X and Y be random variables, and a,b,c be real numbers.

$$Var(aX + bY + c) = a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y)$$

- Recall that for independent random variables, Cov(X, Y) = 0
- Thus if X and Y are independent, this simplifies to

$$Var(aX + bY + c) = a^2 Var(X) + b^2 Var(Y)$$

# More on Expected Value

### **Definition**

Let X and Y be random variables.

$$\mathbb{E}(XY) = \sum_{x,y} xyp_{X,Y}(x,y)$$

• If X and Y are independent, this simplifies to

$$\mathbb{E}(XY) = \sum_{x,y} xyp_X(x)p_Y(y)$$
$$= \sum_x xp_X(x) \sum_y yp_Y(y)$$
$$= \mathbb{E}(X)\mathbb{E}(Y)$$

• If X and Y are independent,  $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ 

### Recap

Students should now be familiar with the idea of a joint distribution for two discrete random variables. They should be able to calculate joint probabilities, construct marginal pmfs, calculate covariance and correlation, and check whether two random variables are independent.