Name:	
MATH 308	"Controlling complexity is the essence of
Fall 2021	computer programming."
HW 10. Due 12/15	– Brian Kernighan

Problem 1. (10pt) Prove that if g(x) is O(f(x)), then f(x) is $\Omega(g(x))$.

Problem 2. (10pt) Prove that if f(x) is O(g(x)) and $c \in \mathbb{R} \setminus \{0\}$, then cf(x) is O(g(x)).

Problem 3. (10pt) Finding appropriate constants, show that $f(x) = 3x^4 + x^3 - 2x^2 + 6$ is $O(x^4)$.

Problem 4. (10pt) Let $n \in \mathbb{Z}_{\geq 0}$. Find the number of operations (additions, subtractions, multiplications, and divisions) the following algorithm requires. What is the time complexity of the algorithm?

```
for i = 1 to n
for j = 1 to i
print(2n - i^2 j);
```

Problem 5. (10pt) Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, where $a_i \in \mathbb{R}$, be a polynomial.

- (a) Compute the number of operations (additions, subtractions, multiplications, and divisions) required to compute $f(x_0)$ for some $x_0 \in \mathbb{R}$ the 'traditional way.'
- (b) Horner's Method says to write f(x) as...

$$a_0 + x \left(a_1 + x \left(a_2 + x \left(a_3 + \dots + x \left(a_{n-1} + a_n x \right) \right) \right) \right)$$

Writing f(x) as above, compute the number of operations required to compute $f(x_0)$.