辐射定标和大气校正

1. 概述

太阳辐射通过大气以某种方式入射到物体表面然后再反射回传感器,由于大气气溶胶、地形和邻近地物等影响,使得原始影像包含**物体表面,大气**,以及**太阳**的信息等信息的综合。如果我们想要了解某一物体表面的光谱属性,我们必须将它的反射信息从大气和太阳的信息中分离出来,这就需要进行大气校正过程。

本课程学习利用 ENVI 大气校正扩展模块(FLAASH 和 QUAC)对多光谱和高光谱数据进行大气校正的过程,还包括大气校正的准备工作——辐射定标。

FLAASH 是基于 MODTRAN5 辐射传输模型,MODTRAN 模型是由进行大气校正算法研究的领先者 Spectral Sciences,Inc 和美国空军实验室(Air Force Research Laboratory)共同研发。Exelis VIS 公司负责集成和 GUI 设计。

注:本课程需要大气校正模块(Atmospheric Correction)扩展模块的使用许可。

此外,还将利用 6S 辐射传输软件包进行 Landsat 数据的大气校正。

2. 辐射定标

遥感图像通常是用无量纲的数字量化值(DN)记录信息的,辐射定标就是 将图像的数字量化值(DN)转化为**辐射亮度值**或者**反射率**或者**表面温度**等物理 量的处理过程。

L=gain*DN+Bias

L 为辐射亮度值,常用的单位为 $\mu W/(cm^2 * sr * nm)$ 。

辐射定标参数一般存放在元数据文件中,ENVI 中的通用辐射定标工具(Radiometric Calibration)能自动从元数据文件中读取参数(如表 2.1 所示),从而完成辐射定标。

注: 这里以 Landsat8 L1G 级的数据为例介绍辐射定标。

(1) 选择 File>Open As>Landsat>GeoTIFF with Metadata, 选择打开*_MTL.txt 文件。ENVI 自动按照波长分为 5 个数据集: 多光谱数据(1-7 波段), 全色波段数据(8 波段), 卷云波段数据(9 波段), 热红外数据(10、11 波段)和质量波段数据(12)。

图 1 数据打开

表 2.1 Radiometric Calibration 工具自动识别的数据类型

	可选定标类型					
传感器	辐射亮度值	大表反射	亮温	打开的元数据文件		
ALOS AVNIR-2 ,				HDR*.txt		
PRISM Level-1B2				HDR*.txt		
DMC DIMAP	•	•		.dim		
EO-1 ALI	•	•		使用 File > Open As > EO-1 > HDF 菜单打 开 *_HDF.L1G 文件,*_MTL.L1G 文件必须在 同一目录中。		
EO-1 Hyperion	•	•		使用 File > Open As > EO1 > HDF 菜单选 择 .L1R 文件.		
GeoEye-1	•	•		.til		
IKONOS	•	•		metadata.txt		
KOMPSAT-3	•			*_aux.xml		
Landsat TM, ETM+,	•	•	•	*_MTL.txt, *WO.txt, *.met		

Landsat-8 OLI/TIRS			
OrbView-3	•	•	.pvl
Pleiades Primary or Ortho (single 或 者 mosaic)	•	•	DIM*.xml
QuickBird	•	•	.til
RapidEye Level-1B	•	•	*_metadata.xml
ResourceSat-2	•		.h5
SPOT DIMAP	•	•	METADATA.DIM
SSOT DIMAP	•		METADATA.DIM
WorldView-1 and 2	•	•	.til

注:以下类型的数据,ENVI打开后自动定标。

Göktürk-2: Radiance

MODIS/ASTER Simulator (MASTER): Radiance

RASAT: Radiance

ASTER Level-1B

MODIS Level-1B through 4 (HDF-EOS)

- (2) 在 Toolbox 中,选择 Radiometric Correction > Radiometric Calibration,对文件对话框中选择多光谱数据。打开 Radiometric Calibration 面板。
- (3) 在 Radiometric Calibration 面板中,设置以下参数: 定标类型(Calibration Type):辐射率数据 Radiance 单击 Apply FLAASH Settings 按钮,自动设置 FLAASH 大气校正工具需要的数据 类型,包括储存顺序(Interleave):BIL 或者 BIP;数据类型(Data Type):Float;
- (4) 设置输出路径和单位名,单击 OK 执行辐射定标。

辐射率数据单位调整系数(Scale Factor): 0.1。

图 2: Radiometric Calibration 面板

(5) 显示辐射定标结果图像,选择 Display>Profiles>Spectral 查看波谱曲线,看到 定标后的数值主要集中在 0-10 范围内,单位是 $\mu W/(cm^2*sr*nm)$ 。

图 3:辐射定标结果的波谱曲线

3. 多光谱数据 FLAASH 大气校正

3.1 FLAASH 输入数据要求

FLAASH (Fast Line of sight Atmospheric Analysis of Spectral Hypercubes) 对 大气校正的输入图像做了一些要求,具体要求如下:

一、图像基本参数

波段范围:卫星图像: 400-2500nm, 航空图像: 860nm-1135nm。

如果要执行水汽反演,光谱分辨率<=15nm,且至少包含以下波段范围中的一个:

1050-1210 nm

770-870 nm

870-1020 nm

像元值类型:经过定标后的辐射亮度(辐射率)数据,单位是: (μ W)/(cm²*nm*sr)。

二、数据储存类型

数据类型: 浮点型(Floating Point)、32 位无符号整型(Long Integer)、16 位无符号和有符号整型(Integer、Unsigned Int)。

文件类型: ENVI 标准栅格格式文件, BIP 或者 BIL 储存结构。

三、辅助信息

中心波长:数据头文件中(或者单独的一个文本文件)包含中心波长(wavelenth)值,如果是高光谱还必须有波段宽度(FWHM),这两个参数都可以通过编辑头文件信息输入(Edit Header)。

波谱滤波函数 (波谱响应函数) 文件: 对于未知多光谱传感器 (UNKNOWN-MSI) 需要提供波谱滤波函数文件。

3.2 详细操作步骤

ENVI 大气校正模块的使用主要又以下 7 个方面组成: 1、输入文件准备, 2、基本参数设置, 3、多光谱数据参数设置, 4、高光谱数据参数设置, 5、高级设置, 6、输出文件, 7、处理结果。下面介绍这 7 个方面内容。

下面以 Landsat5 的多光谱数据为例介绍操作步骤。

文件	说明	
Landsat5_beijing_radiance.dat	经过 Radiometric Calibration 工具定标的 Landsat5 辐射率图像,同	
	时空间子区裁剪了部分区域。	
Landsat5_beijing_radiance.hdr	头文件	
Landsat5_template.txt	本例子 FLAASH 参数设置工程文件	

表 3.1 练习数据信息

3.2.1 输入文件准备

根据前一章节中介绍的 FLAASH 对数据的要求准备待校正文件。由于使用了 Radiometric Calibration 工具辐射定标,数据类型、储存顺序、辐射率数据单位都符合 FLAASH 要求, Landsat5 的 L1G 级数据包括了中心波长信息。

打开数据:辐射定标和大气校正/数据/Landsat 多光谱数据

3.2.2 基本参数设置

在 Toolbox 中打开 FLAASH 工具: /Radiometric Correction/Atmospheric Correction Module/FLAASH Atmospheric Correction。启动 FLAASH Atmospheric Correction Module Input Parameters 面板

3.2.2.1 设置文件输入与输出信息

(1) Input Radiance Image: 选择辐射定标结果数据,在打开的 Radiance Scale Factors 面板中,设置 Single scale factor: 1。

该选项的作用是将输入的辐射亮度的单位及数据类型变换成单位为μW/(cm2*sr*nm)的浮点型辐射亮度。当各个波段的辐射亮度的单位不一致时,选择 Read array of scale factors 选项,这个文本文件要求以一列的方式记录每个波段的转换系数。

注: 辐射率数据的单位已经是: (μ W) / (cm²*nm*sr)

图 4: Radiance Scale Factors 面板

- (2) Output Reflectance File: 设置输出路径和文件名;
- (3) Output Directory for FLAASH Files:设置其他文件输出目录;根文件名设置,设置大气校正其他输出结果的根文件名。

3.2.2.2 传感器与图像信息设置:

- (1) 中心点经纬度 Scene Center Location: 如果图像有地理坐标则自动获取;
- (2)选择传感器类型 Sensor Type: Landsat TM5, 其对应的传感器高度以及 图像数据的分辨率自动读取;如果选择 UNKNOWN,需要提供波谱相应函数。
 - (3) 传感器飞行高度: 选择传感器类型后,这个值通常会自动添加。
- (4) 设置影像区域的平均地面高程 Ground Elevation: 0.05km,可通过已知 DEM 数据获取。
 - (5) 图像像素大小: 图像分辨率大小 影像成像时间(格林威治时间): 在 layer manager 中的数据图层中右键

(6) 选择 View Metadata, 浏览 time 字段获取成像时间, 2009 年 9 月 22 号

02:43:22。

注: 也可以从元文件"*_MTL.txt"中找到, 具体名称: DATE_ACQUIRED 和 SCENE CENTER TIME;

3.2.2.3 大气模型

ENVI 提供 6 种标准 MODTRAN 大气模型: 亚极地冬季(Sub-Arctic Winter)、中纬度冬季(Mid-Latitude Winter)、美国标准大气模型(U.S.Standard)、亚极地夏季热带(Sub-Arctic Summer)、中纬度夏季(Mid-Latitude Summer)和热带(Tropical)。

(1)0 大气模型参数选择 Atmospheric Model: Mid-Latitude Summer (根据成像时间和纬度信息依据下表规则选择);

Latitude (°N)	Jan.	March	May	July	Sept.	Nov.
80	SAW	SAW	SAW	MLW	MLW	SAW
70	SAW	SAW	MLW	MLW	MLW	SAW
60	MLW	MLW	MLW	SAS	SAS	MLW
50	MLW	MLW	SAS	SAS	SAS	SAS
40	SAS	SAS	SAS	MLS	MLS	SAS
30	MLS	MLS	MLS	Т	T	MLS
20	Т	Т	Т	Т	T	Т
10	Т	Т	T	Т	T	Т
0	Т	Т	Т	Т	T	Т
-10	Т	Т	T	Т	T	Т
-20	Т	Т	Т	MLS	MLS	Т
-30	MLS	MLS	MLS	MLS	MLS	MLS
-40	SAS	SAS	SAS	SAS	SAS	SAS
-50	SAS	SAS	SAS	MLW	MLW	SAS
-60	MLW	MLW	MLW	MLW	MLW	MLW
-70	MLW	MLW	MLW	MLW	MLW	MLW
-80	MLW	MLW	MLW	SAW	MLW	MLW

表 3.2 数据经纬度与获取时间对应的大气模型

- (2)水汽反演:进行每个像素的水汽含量反演。多光谱数据由于缺少相应波段和光谱分辨率太低不执行水汽反演。
 - (3) 气溶胶模型 Aerosol Model: Urban;

提供5种气溶胶模型:

无气溶胶(No Aerosol): 不考虑气溶胶影响

乡村(Rural):没有城市和工业影响的地区

城市(Urban)混合 80%乡村和 20%烟尘气溶胶,适合高密度城市或工业地区。

海面(Maritime):海平面或者受海风影响的大陆区域,混合了海雾气溶胶。对流层(Tropospheric):应用于平静、干净条件下的陆地,只包含微小成分的乡村气溶胶。

(4) 气溶胶反演方法 Aerosol Retrieval: 2-band (K-T);

注: 初始能见度 Initial Visibility 只有在气溶胶反演方法为 None 时候,以及 K-T 方法在没有找到黑暗像元(高密度的植被和水体)的情况下。

可以根据天气条件估计能见度:

天气情况	估算能见度
晴朗	40-100
薄雾天气	20-30
大雾天气	《15km

(8) 其他参数按照默认设置即可。

图 5: FLAASH 基本参数设置

3.2.3 多光谱数据参数设置

(1) 单击 Multispectral Settings, 打开多光谱设置面板;

设置方式:文件方式(file)和图形(GUI)方式

(2) K-T 反演选择默认模式: Defaults->Over-Land Retrieval standard (600:2100),自动选择对应的波段;

FLAASH 使用黑暗像元反射率比值反演气溶胶和估算能见度,要求传感器包含 660nm 和 2100nm 附近的波段。黑暗像元通过 2100nm 附近反射率小于等于 0.1 或者 660nm 与 2100nm 的反射率比值大于 0.45 来定义。

KT Uper Channel 上行通道

KT lower Channel 下行通道

上行通道最大反射率值

反射率比: 上行通道和下行通道的反射率比值

云通道: 可选项。

以上通道设置用来寻找黑暗象元和云分类。

波谱响应函数(Filter Function File):传感器类型未知时需要手动输入。

第一波段对应的响应函数(Index to first band):设置响应函数起始索引。

(3) 其他参数选择默认。

图 6: 多光谱设置面板

3.2.4 高级设置

单击 Advanced Settings 打开高级设置面板。这里一般选择默认设置能符合绝大部分数据情况。

- 1)波谱仪定义文件(Spectrograph Definition File):该文件用于重新标定高 光谱数据的中心波长。当选择未知高光谱传感器时,需要提供该文件。
 - 2) Modtran 模型参数设置

- (1) 气溶胶厚度系数(Aerosol Scale Height): 用于计算邻域效应范围。 一般值为 1~2km,默认为 1.5km。
- (2) CO2 混合比率 (CO2 Mixing Ratio): 默认为 390ppm, 它是依据 2001 测量值为 370ppm, 增加 20ppm 以得到更好的结果。
 - (3) Use Square Slit Function: No
 - (4) 使用领域纠正(Use Adjacency Correction): Yes 或者 No。
- (5) 使用以前的 MODTRAN 模型计算结果 (Reuse MODTRAN Calculations):

No: 重新计算 MODRTRAN 辐射传输模型。

Yes: 执行上一次 FLAASH 运行获得的 MODRTRAN 辐射传输模型,每次运行 FLAASH 后,都会在根目录和临时文件夹下生成一个 acc_modroot.fla。

- (6) MODTRAN 模型的光谱分辨率(Modtran Resolution): 越低分辨率具有较快速度而相对较低的精度,主要影响区域在 2000 nm 附近。高光谱数据默认为 5 cm⁻¹,多光谱数据默认为 15 cm⁻¹。
- (7) MODTRAN 多散射模型(Modtran Multiscatter Model):校正大气散射对成像的影响,提供三种模型供选择 ISAACS,DISORT 和 Scaled DISORT。默认是 Scaled DISORT 和 streams 为 8。

Isaacs 模型: 计算速度快, 精度一般;

DISORT 模型:对于短波(小于 1000nm)具有较高的精度,但是速度非常比较慢,由于散射对短波(如可见光)影响较大,长波(近红外以上)影响较小,因此当薄雾较大和短波图像时可以选择此方法;

Scaled DISORT: 提供在大气窗口内与 DISORT 类似的精度,速度与 Isaacs 类似,这模型是推荐使用的模型。当选择 DISORT 或者 Scaled DISORT,需要选择 streams: 2、4、8、16,这个值是用来估算散射的方向,可见 streams 值越大速度越慢。

(8) 观测参数

天顶角(Zenith Angle): 是传感器直线视线方向和天顶的夹角,范围是 90~180 度,其中 180 为传感器垂直观测。

方位角(Azimuth Angle): 范围是-180~180 度。

在右边进行 FLAASH 处理控制设置:

(1) 分块处理(Use Tiled Processing):是否分块处理,选择 Yes 能获得较快的处理速度,Tile Size 一般设为 4-200m,根据内存大小设置,这里设置为 100m(计算机物理内存 8G)。

- (2) 空间子集(Spatial Subset):可以设置输出的空间子集,这里选择默认输出全景。
- (3) 重定义缩放比例系数 (Re-define Scale Factors For Radiance Image): 重新选择辐射亮度值单位转换系数,这里不设置。
- (4) 输出反射率缩放系数(Output Reflectance Scale Factor): 为了降低结果储存空间,默认反射率乘于 10000,输出反射率范围变成 0~10000。
- (5) 自动储存工程文件(Automatically Save Template File):选择是否自动保存工程文件。
- (6) 输出诊断文件(Output Diagnostic Files):选择是否输出 FLAASH 中间文件,便于诊断运行过程中的错误。

图 7: 高级设置面板

3.2.5 处理结果浏览

- (1) 设置好参数后,单击 Apply 执行大气校正;
- (2) 完成后会得到反演的能见度和水汽柱含量。
- (3) 显示大气校正结果图像,查看像元值,可以看到像元值扩大 10000 倍后,值在几百到几千不等。如果要得到 0-1 范围内的反射率数据,可以使用 BandMath 除以 10000.0。
 - (4) 选择 Display>Profiles>Spectral 查看典型地物波谱曲线,如植被、水体等。

图 8: FLAASH 大气校正结果中获取的波谱曲线(左-植被,右-水体)

4. 高光谱数据 FLAASH 大气校正

下面以 AVIRIS 高光谱传感器数据为例介绍操作步骤。

4.1 输入文件准备

本例中的 AVIRIS 高光谱数据已经是辐射率数据,包括了中心波长、波段宽度(FWHM),Integer 数据类型,BIP 储存顺序。在 layer manager 中的数据图层中右键选择 View Metadata,可以浏览所有的信息。

4.2 基本参数设置

打开 Jasper Ridge 98 av. dat 数据。

- (1) 在图层管理器中,图层 JasperRidge98av.dat 右键选择 view Metadata,可以浏览所有信息。
- (2)在主界面中,在工具栏中的 go to 文本框中输入像素坐标:366,179(此像元为硬质水泥地,吸收特征主要受大气的影响),单击回车键。
 - (3) 在主界面中,选择 Profiles-Spectral,绘制像素(366,179)的波谱剖面。

图 9 校正前波谱曲线

可以看到 760nm(主要为氧气吸收)、940nm、1135nm 处,水汽具有吸收特征,1400nm 和 1900nm 附近基本没有反射能量,二氧化碳在 2000nm 处有两个吸收特征。

AVIRIS 数据大气校正

- (1) 在 Toolbox 中打开 FLAASH 工具: /Radiometric Correction/Atmospheric Correction Module/FLAASH Atmospheric Correction。 启动 FLAASH Atmospheric Correction Module Input Parameters 面板。
- (2) Input Radiance Image: 选择 JasperRidge98av.dat 文件, 在打开的 Radiance Scale Factors 面板中, 选择默认 Read array of scale factors (1 per band) from ASCII file。
- (3) 在对话框中选择 AVIRIS_1998_scale.txt 文件,在 Input ASCII File 对话框中, Scale Column 设置 1。
- 注: AVIRIS 辐射率原始的定标结果是浮动型,为了减少储存空间,NASA/JPL 使用一组比例系数将浮点型数据变成整型数据。在使用的时候需要将整型变回浮点型,单位变成 μ W/(cm2 * sr * nm)。这一步就是完成这个,文本文件中第一列就是缩放系数。

图 10: Radiance Scale Factors 和输入文本文件面板

- (4) Output Reflectance File: 设置输出路径和文件名;
- (5) Output Directory for FLAASH Files: 设置其他文件输出目录;
- (5) 传感器基本参数设置:

中心点经纬度 Scene Center Location: 37°24′15.13″; -122°13′29.99″; 选择传感器类型 Sensor Type: Hyperspectral > AVIRIS;

传感器飞行高度 Sensor Altitude (km): 21.820

设置影像区域的平均地面高程 Ground Elevation: 0.137km

图像地面分辨率 Pixel Size (m): 20

影像成像时间(格林威治时间)Flight Date: Apr 3, 1998, Flight Time (GMT): 19:20:00

- 注: 大部分图像成像信息存放在*.info 文件中。
- (6) 大气模型参数选择 Atmospheric Model: Mid-Latitude Summer (根据成像时间和纬度信息依据下表规则选择);
 - (7) 水汽反演 Water Retrieval: yes
 - (8) 水汽吸收波长 Water Absorption Feature: 1135
 - (9) 气溶胶模型 Aerosol Model: Urban;
 - (10) 气溶胶反演方法 Aerosol Retrieval: 2-band (K-T);
- 注:初始能见度 Initial Visibility 只有在气溶胶反演方法为 None 时候,以及 K-T 方法在没有找到黑暗像元的情况下。
- (11)光谱打磨(Spectral Polishing),针对高光谱数据提供光谱打磨处理,用相邻的 N 个波段的均值进行平滑处理,对波谱曲线进行微调,是波谱曲线更加接近真实地物的波谱曲线。

执行光谱打磨还需在 Width 中输入相邻波段数量。

(11) 其他参数按照默认设置即可。

图 11: FLAASH 基本参数设置

4.3 高光谱数据参数设置

- (1) 单击 Hyperspectral Settings, 打开高光谱设置面板;
- (2) 其他参数选择默认。

图 12: 高光谱设置面板

4.4 高级设置

单击 Advanced Settings 打开高级设置面板。这里一般选择默认设置能符合绝大部分数据情况,在右边面板中设置:

(1) 分块处理(Use Tiled Processing):是否分块处理,选择 Yes 能获得较快的处理速度,Tile Size 一般设为 4-200m,根据内存大小设置,这里设置为 100m(计算机物理内存 8G)。

(2) 其他默认设置。

图 13: 高级设置面板

4.5 处理结果浏览

- (1) 设置好参数后,单击 Apply 执行大气校正;
- (2) 完成后会得到反演的能见度和水汽柱含量。

图 14: FLAASH 结果

- (3) 显示大气校正结果图像,像元值同样扩大了10000倍。
- (4) 选择 Display>Profiles>Spectral 查看地物波谱曲线。
- 注:得到的波谱曲线有几个地方断开了,这是由于 FLAASH 会根据反射信号的强度判断部分波段属于"Bad band".
- (5) 在工具栏中的 Go to 文本框中输入 366,179, 回车。得到这个像素点的波谱曲线, 如下图所示。

(6) 跟校正前结果比,已经校正了 760 nm 940nm 和 1135nm 处水汽吸收特征的影响;在 1400 nm 和 1900 nm 处有两个低谷,这个主要由于水汽吸收造成反射率很低。这种情况可以利用"edit header"工具将这几个波段标识为"Bad band"。

图 15: FLAASH 大气校正结果中获取(326,290)点的波谱曲线 (7) 高光谱 FLAASH 大气校正结果还会产生两个文件: 水汽含量反演图像 (water.dat) 和云层掩膜图像 (cloudmask.dat)。

5. 快速大气校正(QUAC)

快速大气校正工具(Quick Atmospheric Correction 简称 QUAC)自动从图像上收集不同物质的波谱信息,获取经验值完成高光谱和多光谱的快速大气校正(如下图)。它得到结果的精度近似 FLAASH 或者其他基于辐射传输模型的+/-15%。它支持的多光谱和高光谱波谱范围是(0.4~2.5 μm)。

图 16: 快速大气校正流程图

QUAC 的输入数据可以是辐射亮度值、表观反射率、无单位的 raw 数据。可以是任何数据储存顺序 (BIL/BIP/BSQ)和储存类型,多光谱和高光谱传感器数据的每个波段必须有中心波长信息。

QUAC 的操作非常简单,如下:

(1) 在 Tool box 中,启动/Radiometric Correction/Atmospheric Correction Module/QUick Atmospheric Correction (QUAC), 在文件输入对话框中选择校正的图像文件;

注:如果待校正图像是不规则的,包括较多的背景(如0值),则需要在选择图像文件对话框中,选择/生成一个掩膜文件。

图 17: 文件选择对话框

- (2) 打开 QUick Atmospheric Correction Parameters 面板,在 Sensor Type 中选择相应的传感器类型,一般会根据图像信息自动选择。
- (3) 选择文件名和路径输出。
- 注: QUAC 大气校正的结果同样是扩大了 10000 倍的反射率数据。

图 18: QUick Atmospheric Correction Parameters 面板

6.6S 大气校正

6.1 6S 软件包编译

从 http://6s.ltdri.org/pages/downloads.html 下载 6SV2.1 代码。由于网站上的代码与某些编译器有兼容性问题,这里建议使用课堂提供的代码文件 6SSource2.zip。

代码是 Fortran 语言编写, 并且 makefile 是基于 Linux 系统的, 因此需要首先 安 装 MingW , 打 开 http://mingw-w64.org/doku.php/download , 下 载 MingW-W64-builds (选择 x86-64 版本下载) 并安装, 其中包含了 Fortran 编译器。课堂提供了安装程序 mingw-w64-install.exe。

因为之后需要对 makefile 文件进行编译,这里需要下载 make 工具网址: http://gnuwin32.sourceforge.net/packages.html,下载 make-3.81.exe 并安装。课堂提供了安装程序 make-3.81.exe。

将 mingw 和 make 工具的目录加入系统环境变量 Path,即 C:\Program Files\mingw-w64\x86_64-8.1.0-posix-seh-rt_v6-rev0\mingw64\bin 和 C:\Program Files (x86)\GnuWin32\bin 添加到系统环境变量 Path。

打开 windows 系统的命令提示符(开始 – 输入 cmd),输入命令: cd C:\work\6S\source\6sV-2.1 (即切换目录到你的 6S 代码目录) make

即可编译成可执行文件(默认可执行文件名为 sixsV2.1)。

若不想编译 6S 源代码,可直接安装 MingW 后,将 mingw 工具的目录

(C:\Program Files\mingw-w64\x86_64-8.1.0-posix-seh-rt_v6-rev0\mingw64\bin)加入系统环境变量 Path,随后即可运行课堂提供的 6S 可执行文件 6sV-2.1。

6.2 6S 的输入文件

使用课堂提供的示例(TMband1.INP),结合网站http://6s.ltdri.org/pages/run6SV.html,理解输入文件中的各个参数。

6.3 运行 6S 大气校正程序

sixsV2.1 < TMband1.INP > output.txt

输出文件为 output.txt

随后利用 output.txt 中的三个系数,结合 ENVI 的 band math 工具或编写程序校正 TM 图像。