Jorge Ortega Camazón

Boston, MA | ortega.jor@northeastern.edu | (617) 963-4144 | www.linkedin.com/in/jorge-ortega-camazon

EDUCATION:

Northeastern University, Boston, MA

May 2026

Master of Science in Robotics, Concentration: Electrical and Computer Engineering

GPA: 4.0

Relevant Coursework: Robotics Sensing and Navigation, Control System Engineering, Reinforcement Learning, Robot Mechanics and Control.

Universidad de León, León, Spain

Jul 2024

Bachelor of Science in Industrial Electronic and Automation Engineering

Relevant Coursework: Robotic Prototypes, Automatic Control, Technical Drawing I-II, Power Electronics, Digital Electronics, Home Automation.

*Studied abroad during the academic years 2018-2019 and 2022-2023 in USA and Italy respectively.

TECHNICAL SKILLS:

Software: LTspice, MATLAB, EAGLE, Fusion 360, SolidWorks, AutoCAD, ROS, Gazebo, RViz, MS Office Tools

Hardware: Soldering, PCB design, Arduino, ESP32, Analog circuits, Electronic equipment

Programming Languages: Python, C++, MATLAB **Robotics and Automation:** SLAM, LiDAR, IMU, GPS

Languages: Spanish (Native), English (Fluent), Italian (Conversational)

PROJECTS:

Stable Walking on Biped Robot using RL

Feb - Apr 2025

- Trained a customized biped robot in the MuJoCo Walker2D-v5 environment using a PPO algorithm based on the Stable Baselines3 library, achieving stable and consistent forward locomotion
- Developed tailored Python code enabling parallel training across 4 environments, integrating TensorBoard for real-time performance tracking and facilitating hyperparameter tuning
- Modified reward functions, torque limits and agent's geometry to encourage realistic motion dynamics, enabling energy-efficient walking and high-speed running behavior across tests

Synchronization and Coordination of Mobile Robots

Nov - Dec 2024

- Simulated a multi agent robot system for autonomous exploration within a shared environment based on the open-source TurtleBot 3 robot ROS packages
- Developed a realistic simulation environment using Gazebo, spawning three *TurtleBot 3* robots for testing multi-agent exploration
- Modified autonomous navigation algorithms and configured SLAM launch files for each individual robot to enable simultaneous exploration using ROS Noetic
- Configured Rviz for real-time visualization of each robot's exploration process and dynamically merged maps to generate a complete representation of the environment.

Control System Optimization for a Two-Elevator Building

Nov - Dec 2024

- Developed and simulated an optimized elevator control system in MATLAB to improve time and energy efficiency in a multiple-elevator building
- Designed and implemented three different elevator controllers for later analysis of system performance
- Utilized parallel computing techniques to enable real-time multi-elevator operation and dynamic request allocation, obtaining realistic request handling and decision-making
- Evaluated control system performances by assessing efficiency metrics such as total travel time, floors traversed and workload balance, achieving a 250% improvement in time and optimal workload balance

Low-Cost, Multifunctional Autonomous Robot

Feb - Jul 2024

- Designed and built an autonomous robot for indoor mapping with a focus on cost-efficiency
- Engineered the robot's physical structure using durable, lightweight materials, optimizing weight distribution for stable autonomous operation in diverse environments
- Integrated an RPLiDAR A1M8 for real-time mapping and a GPS NEO-M8N for localization, enabling precise navigation with ESP32 microcontrollers
- Developed custom firmware to process and filter data, manage communication between microcontrollers and sensors, and implement motor control and navigation logic.
- Achieved a functional prototype capable of autonomous navigation and mapping with a cost inferior to \$300, demonstrating a potential affordable alternative to commercial Autonomous Mobile Robots