

Kapitel 10: Big Data COMPUTING

Big Data

"If all digital data were stored on punch cards, how big would Google's data warehouse be?"

Quelle: https://what-if.xkcd.com/63/

https://www.youtube.com/watch?v=I64CQp6z0Pk&t=275s (Randall Munroe @ TED)

Big Data – was ist das überhaupt?

Charakteristische Eigenschaften:

- Die Größe des Datensatzes
- Die Komplexität des Datensatzes
- Die Technologien, die Verwendet werden, um den Datensatz zu verarbeiten

"Big data is a term describing the storage and analysis of large and or complex data sets using a series of techniques including, but not limited to: NoSQL, MapReduce and machine learning"

Quelle: . S. Ward und A. Barker. Undefined by data: a survey of big data definitions. arXiv preprint arXiv:1309.5821, 2013.

Big Data

Verarbeitung großer Datenmengen durch:

- verteilte und hochgradig parallelisierte Verarbeitung
- verteilte und effizient organisierte Datenablagen

Wie verwalte und erschließe ich große Datenmengen?

Große Datenmengen können effizient nur von parallelen Algorithmen verarbeitet werden.

Ein Algorithmus ist genau dann parallelisierbar, wenn er in einzelne Teile zerlegt werden kann, die keine Seiteneffekte zueinander haben.

• Funktioniert gut: Quicksort. Aufwand: $O(n \log n) \square n \times O(\log n)$

• Funktioniert nicht: Berechnung der Fibonacci-Folge ($F_{k+2} = F_k + F_{k+1}$). Berechnung ist nicht parallelisierbar.

Ein paralleler Algorithmus (*lob*) ist aufgeteilt in sequenzielle Berechnungsschritte (*Tasks*), die parallel zueinander abgearbeitet werden können. Der Entwurf von parallelen Algorithmen folgt oft dem Teile-und-Herrsche Prinzip.

Parallele Programmierung basiert oft auf funktionaler Programmierung

- Ein funktionales Programm besteht (ausschließlich) aus Funktionen.
- Eine Funktion ist die Abbildung von Eingabedaten auf Ausgabedaten: $f(E) \square A$ Eine Funktion ändert die Eingabedaten dabei nicht.
- Funktionen sind idempotent:
 - Sie erzeugen neben den Ausgabedaten keine weiteren Seiteneffekte.
 - ☐ Funktionen sind somit ideal parallelisierbar und zur Beschreibung von Tasks geeignet.
- Sie erzeugen für die gleichen Eingabedaten auch stets die gleichen Ausgabedaten.
 - ☐ Funktionen können im Fehlerfall stets neu ausgeführt werden. Parallele Verarbeitung ist aus technischen Gründen oft fehleranfällig. Damit kann eine Fehlertoleranz sichergestellt werden.

Beispiele:

- f(x) = 2x, also $1 \rightarrow 2$, $2 \to 4, 3 \to 6, ...$
- Kombinationen: g(x,y) = f(x) + f(y)
- h(x) = 1 if x is even, 0 if x is odd

Parallele Programmierung kann sowohl im Kleinen als auch im Großen betrieben werden

Keine Parallelität

Parallelität im Kleinen

Vorteile im Vergleich:

- Höherer Durchsatz
- Bessere Auslastung der Hardware
- Vertikale Skalierung möglich

Parallelität im Großen

Vorteile im Vergleich:

- Höherer Durchsatz
- Horizontale Skalierung möglich (Scale Out).
- Keine hardwarebedingte Limitierung des Datenvolumens (□ Big Data ready).

Big Data erfordert Parallelität im Großen. Dabei muss man die vier Paradigmen der Parallelität im Großen beachten:

1. Die Logik folgt den Daten.

Folgt aus potenziell großer Datenmenge und Verarbeitungs-geschwindigkeit

Folgt aus Datenmenge im Vergleich zur Programmgröße **2.**Falls Datentransfer notwendig, dann so schnell wie möglich: In-Memory vor lokaler Festplatte vor Remote-Transfer.

Das Grundprinzip von paralleler Verarbeitung. 3. Parallelisierung über *Tasks* (seiteneffektfreie Funktionen) und *Jobs* (Ausführungsvorschrift für Tasks) sowie entsprechend partitionierter Daten (*Shards*).

Folgt aus Praxisanforderung:
Viele Knoten
bedeutet
viele Ausfallmöglichkeiten

4.Design for Failure: Ausführungsfehler als Standardfall ansehen und verzeihend und kompensierend sein.

Notwendige Architekturkonzepte

- 1. Verteilung der Daten
- 2. Verteilung und Überwachung von Tasks
- 3. Aufteilung der Ressourcen
- **4.** Entwurfsmuster zur Implementierung von Jobs

Eine Standardarchitektur für Parallelität im Großen

Eine **Job-Steuerung**, die einzelne Jobs zur Ausführung bringt.

Sie übergibt die Tasks eines Jobs entsprechend der Ausführungsvorschrift der Task-Steuerung und verhandelt dabei die notwendigen Ressourcen, überwacht deren Ausführung und kompensiert Fehlersituationen z.B. durch Wiederaufsetzen einzelner Tasks. Es existiert i.d.R. eine Job-Steuerung pro Entwurfsmuster.

Ein Verteilter Datenspeicher

(Dateisystem, Datenbank, Hauptspeicher) mit Datenredundanz u.A. für Ausfallsicherheit, einem Sicherheitskonzept (Rechte&Rollen, Verschlüsselung), integrierter Kompression, einem Metadatenkatalog und hoher Scan-Geschwindigkeit.

Ein Verteilter Daten- und Nachrichtenaustausch.

Grundlage: Zuverlässige und effizientes Kommunikationsprotokoll (i.d.R. binär und komprimiert).

Task-Container (i.d.R. Prozesse) mit exklusiver, temporärer

Ressourcen-Zuordnung (*Slot*) zur isolierten Ausführung von Tasks auf einem Knoten.

Task als nicht weiter parallelisierbarer Ausführungsschritt.

Job als logische Klammer um Tasks inkl. deren Ausführungsvorschrift.

Diese leitet sich aus dem verwendeten Entwurfsmuster ab, wie z.B. MapReduce, DAG, MPI, Pipes & Filters.

Eine **Task-Steuerung**, die einzelne Tasks zur Ausführung bringt.

Sie nimmt Anfragen zur Task-Ausführung entgegen, plant sie gemäß einer festgelegten Strategie (z.B. Fairness, Kosteneffizienz, gleichmäßige Auslastung, SLAs, ...) zur Ausführung ein und führt sie schließlich aus und überwacht den Ressourcenverbrauch.

Welche Lösungen gibt es dafür im Cloud Computing?

- Big Data Engines (low level)
 - MapReduce
 - RDD (Resilient Distributed Dataset)
- Big Data Datenbanken (high level)
 - NoSQL Datenbanken
 - NewSQL Datenbanken (NoSQL + SQL)
- Verteilte Dateisysteme
- In-Memory Data Grids / Elastic Memory

Welche Lösungen gibt es dafür im Cloud Computing?

- Big Data Engines (low level)
 - MapReduce
 - RDD (Resilient Distributed Dataset)
- Big Data Datenbanken (high level)
 - NoSQL Datenbanken
 - NewSQL Datenbanken (NoSQL + SQL)
- Verteilte Dateisysteme
- In-Memory Data Grids / Elastic Memory

MapReduce

https://www.youtube.com/watch?v=cvhKoniK5Uo

Die map und reduce Funktion.

• Die map Funktion: Transformation einer Menge von Datensätzen in eine Zwischendarstellung. Erzeugt aus einem Schlüssel und einem Wert eine Liste an Schlüssel-Wert-Paaren.

```
Signatur: map(k, v) \square list(\langle k', v' \rangle)
```

• Die **reduce** Funktion: Reduktion der Zwischendarstellung auf das Endergebnis. Verarbeitet <u>alle Werte mit gleichem Schlüssel</u> zu einer Liste an Schlüssel-Wert-Paaren.

```
Signatur: reduce(k', list(v')) □ list(<k'', v''>)
```

Dabei soll gelten: |list(<k', v''>)| << |list(<k', v'>)|

MapReduce Phasen

Programme werden in (mehrere) Map-Reduce-Zyklen aufgeteilt. Das Framework übernimmt die Parallelisierung.

Die Map-Phase

Parallele Verarbeitung verschiedener Teilbereiche der Eingabedaten.

• Eingabedaten liegen in Form von Schlüssel/Wert-Paaren vor.

Abbildung auf variable Anzahl von neuen Schlüssel/Wert-Paaren.
 Dabei sind alle Abbildungsvarianten zulässig:

Beispiel: WordCount


```
Key Value

Key Value
```

```
Pseudocode
    Map-Phase:
map(String key, String value):
    //key: document name
    //value: document contents
    for each word in value:
        EmitIntermediate(word, "1");
```

Die Shuffle-Phase

- Verarbeitung der Ergebnisse aus der Map-Phase.
- Ausgaben aus der Map-Phase werden entsprechend ihrem Schlüssel sortiert und gruppiert.
- Im Standard-Fall ist die Shuffle-Phase nicht parallelisiert.
- Sie kann jedoch mittels einer Vor-Sortierung in der Map-Phase über eine Partitionierungsfunktion (z.B. Hash) auf den Schlüssel parallelisiert werden.

Die Reduce-Phase

Мар

Shuffle

Reduce

Key Value

- Parallele Verarbeitung von Ergebnis-Gruppen aus der Map-Phase.
 Es wird pro Reduce-Vorgang genau eine dieser Gruppen verarbeitet.
- Eingabedaten liegen in Form von Schlüssel-Wertlisten vor.
- Abbildung auf variable Anzahl an Schlüssel/Wert-Paaren.
 Dabei sind alle Abbildungsvarianten zulässig:


```
Pseudocode
reduce(String Key, Iterator values):
   //key: a word
   //values: a list of counts
   for each value in values:
     result += ParseInt(value);
   Emit(AsString(Key +", "+result));
```

Übersicht über alle Phasen

http://blog.iteam.nl/2009/08/04/introduction-to-hadoop

Anwendungsbeispiele für MapReduce (1/2)

Verteilte Häufigkeitsanalyse

Wie häufig kommen welche Wörter in einem Text vor?

- map (Textfragment) \square <Wort, 1>: Erkennt einzelne Wörter im Textfragment.
- reduce (<Wort, list(1)>) \square <Wort, Anzahl>: Zählt die Anzahl zusammen.

Verteiler regulärer Ausdruck

In welchen Zeilen eines Textes kommt ein Suchmuster vor?

- map (Textfragment) □ <Zeile, 1>: Findet das Suchmuster im Textfragment.
- reduce(<Zeile, list(1)>) 🗆 <Zeile, Anzahl>: Zählt pro Zeile die Anzahl zusammen.

Graph mit Seitenverweisen extrahieren

Welche Seiten verweisen aufeinander? Dies ist z.B. Grundlage für den PageRank-Algorithmus.

- map (Webseite) 🗆 <Ziel, Quelle>: Findet für die Quelle einzelne Verweise auf Ziel-Seiten.
- **reduce** (<Ziel, list(Quelle)>) \square <Ziel, set(Quelle)>: Erzeugt eine Hyperkante und eliminiert doppelte Quellen pro Ziel.

Anwendungsbeispiele für MapReduce (2/2)

Weitere Beispiele:

- Dijkstra-Algorithmus (kürzester Pfad in einem Graphen):
 http://famousphil.com/blog/2011/06/a-hadoop-mapreduce-solution-to-dijkstra%E2%80%99s-algorithm/
- Machine Learning Algorithmen: http://mahout.apache.org
- PageRank-Algorithmus: http://www.cs.toronto.edu/~jasper/PageRankForMapReduceSmall.pdf
- Allgemeine Graph-Algorithmen:
 http://www.adjoint-functors.net/su/web/354/references/graph-processing-w-mapreduce.pdf
- Allgemeine Suche in Daten: http://pig.apache.org

Apache Spark

Resilient Distributed Dataset

https://www.youtube.com/watch?v=tDVPcqGpEnM

Die Resilient Distributed Dataset (RDD) Datenstruktur ist die Abstraktion des Spark Cores.

Eine RDD ist in der Außensicht ein klassischer Collection-Typ mit Transformations- und Aktionsmethoden.

Die Anatomie eines RDDs

Daten mit Spark verarbeiten: Mehr als Map und Reduce

val numAs = logData.filter(line => line.contains("a")).count()

Filter

Wie funktioniert das?

```
/* SimpleApp.scala */
                                                                                   Worker Node
import org.apache.spark.SparkContext
                                                                                   Executor
                                                                                          Cache
import org.apache.spark.SparkConf
                                                                                          Task
                                                 Driver Program
object SimpleApp {
                                                  SparkContext
                                                                  Cluster Manager
                                                                                     ker Node
  def main(args: Ar; [String]) {
    val logFile = "UR SPARK HOME/README.π
                                                                                   Executor
                                                                                          Cache
    val conf = new parkConf().setAppName("
                                                                                          Task
                                                                                     Task
    val sc = new SparkContext(conf)
    val logData = sc.textFile(logFile, 2).c
    val numAs = logData.filter(line => line.contains("a")).
    val numBs = logData.filter(line \ \line.contains("b")).
                                                                   akka
    println("Lines with a: %s, Lines with %s" formac(nur
```

Apache Ignite

"Distributed Database For High-Performance Applications With In-Memory Speed"

Apache Ignite

- Open-Source-Framework f
 ür In-Memory-Computing
- 2014 von GridGain vorgestellt, im selben Jahr ins Apache-Programm aufgenommen
- Hauptfeatures:
 - Distributed SQL
 - Distributed Key-Value Store
 - Collocated Processing
 - ACID Transactions
 - Machine Learning (Bingo!)

Ignite Data Grid

- In-Memory Key Value Store
- Implementiert die JCache-Spezifikation [get(), put(), containsKey()]
- Native Persistenz (=> Filesystem) vorhanden
- Eigene Storage-Provider möglich (z.B. SQL, MongoDB, ...)

Ignite Data Grid Beispiel

```
Ignite ignite = Ignition.ignite();
final IgniteCache<Integer, String> cache = ignite.cache("cacheName");
for (int i = 0; i < 10; i++) {
    cache.put(i, Integer.toString(i));
for (int i = 0; i < 10; i++) {
    Integer value = cache.get(i);
    System.out.println(value);
```

Ignite Compute

- Verteilte Verarbeitung von Daten
- Code wird zu den Daten gebracht (Performance!)

- Ähnliche Projekte:
 - Hadoop MapReduce
 - Apache Spark

- 1. Initial Request
- 2. Co-located processing with data
- 3. Reduce multiple results in one

Ignite Compute Beispiel

```
final Ignite ignite = Ignition.ignite();
// Limit broadcast to remote nodes only.
IgniteCompute compute = ignite.compute(ignite.cluster().forServers());
// Print out hello message on remote nodes in the cluster group.
compute.broadcast(() ->
    System.out.println("Hello Node: " + ignite.cluster().localNode().id())
```

Apache Ignite Compute - Map

```
List<String> words = Arrays.stream(arg.split(SEPARATOR_CHAR)).collect(Collectors.toList());
List<ComputeJob> jobs = new ArrayList<>(words.size());
for (String word : words) {
    ComputeJobAdapter adapter = new ComputeJobAdapter() {
       @Override
        public Object execute() throws IgniteException {
            Map<String, Integer> splitMap = new HashMap<>();
         splitMap.put(word, 1);
            return splitMap;
   };
    jobs.add(adapter);
return jobs;
```

Apache Ignite Compute - Reduce

```
Map<String, Integer> resultData = new TreeMap<>();

for (ComputeJobResult result : results) {
    Map<String, Integer> jobData = result.getData();
    for (Map.Entry<String, Integer> entry : jobData.entrySet()) {
        resultData.merge(entry.getKey(), entry.getValue(), (v1, v2) -> v1 + v2);
    }
}

return resultData;
```

Apache Ignite Streaming

- Manchmal ist der Satensatz so groß, dass er nicht im Ignite-Cluster Platz hat.
- Die Lösung: Streaming und Verarbeitung on the Fly!
 - "With Apache Ignite you can load and stream large finite or never-ending volumes of data in a scalable and fault-tolerant way into the cluster."
- Beispiele:
 - · Data Loading
 - · Real-Time Data Streaming

Quelle: https://ignite.apache.org/features/streaming.html

Apache Ignite Streaming - Beispiel

```
CacheConfiguration<String, String> configuration = new CacheConfiguration<>(CACHENAME);
configuration.setExpiryPolicyFactory(
    FactoryBuilder.factoryOf(new CreatedExpiryPolicy(new Duration(TimeUnit.SECONDS, 5)))
);
IgniteCache<String, String> streamCache = ignite.getOrCreateCache(config);
try (IgniteDataStreamer<String, String> streamer = ignite.dataStreamer(streamCache.getName())) {
   while(true) {
       String randomWord = RandomStringUtils.randomAlphanumeric(12);
        // Stream words into Ignite.
        streamer.addData(randomWord, randomWord);
```

Big Data Datenbanken

Welche Lösungen gibt es dafür im Cloud Computing?

- Big Data Engines (low level)
 - MapReduce
 - RDD (Resilient Distributed Dataset)
- Big Data Datenbanken (high level)
 - NoSQL Datenbanken
 - NewSQL Datenbanken (NoSQL + SQL)
- Verteilte Dateisysteme
- In-Memory Data Grids / Elastic Memory

Die Anatomie von Big Data Datenbanken

Sharding and Partitioning: Verteilung und Stückelung von großen Datenmengen

(Re-) Sharding- und Partitioning-Funktion: f(Daten) □ Shard f(Daten) □ Partition.

- + Replikationasstrategie.
- + Konsistenzstrategie.

Wie werden große Datenmengen technisch so gespeichert, dass eine schnelle Scan-Geschwindigkeit erreicht wird?

Spalten-orientierte Datenspeicherung

The fastest I/O is the one that never takes place: Es werden nur diejenigen Spalten gelesen, die benötigt werden (gerade bei breiten Tabellen wichtig)

Kompression (funktioniert bei Spalten besser als bei Zeilen):

- Datentyp-spezifisch (z.B. Dictionaries)
- Allgemein (z.B. Snappy)
- + ggF. Spalten-Index

Verteilte und parallelisierte Ausführung von Abfragen

Ein verteilter Ausführungsplan: Ein azyklischer Funktionsgraph

Logik folgt den Daten

Verteilte Datenbanken

- Apache Cassandra (Wide column store, Tables & Rows)
- Google Bigtable (Wide column store, no relational model)
- Couchbase (document oriented)
- CrateDB (document oriented)
- Amazon DynamoDB (Key-Value)
- Apache HBase (OSS-Implementierung von Bigtable)
- MongoDB (document oriented)
- LinkedIn Voldemort (Key-Value)
- Google Spanner (almost relational, Tables & Rows)
- CockroachDB (OSS-Implementierung von Spanner)