Understanding the SAR Reference Input Model

TIPL 4504
TI Precision Labs – ADCs

Created by Luis Chioye Presented by Cynthia Sosa

Agenda

Reference Performance Specifications:

Initial Accuracy, Drift, Long Term Drift, and Noise

Overview of SAR REF Drive Topologies:

Reference standalone VS Buffered Reference

SAR ADCs with Internal Reference Buffer

SAR REF Input Overview: The Capacitive DAC (CDAC)

Build TINA REF Input Model for a SAR:

Discrete Charge Model

TI Device Specific Model

SAR REF Drive Circuit Design:

Reference Bypass Capacitor

Reference Buffer Stability and Compensation

Important Datasheet Parameters

Example: ADS8881 18-B, 1-MSPS, Fully-Differential Input ADC

Figure 47. Input Sampling Stage Equivalent Circuit

Important Datasheet Parameters

Example: ADS8881 18-B, 1-MSPS, Fully-Differential Input ADC

VREF = 5V Fully-Differential Input ADC

Full-scale Range: ±VREF = ±5V = 10V

ADC Resolution / Least Significant Bit (LSB):

٦

$$LSB = \frac{\pm VREF}{2^{N}} = \frac{2 \cdot VREF}{2^{18}} = 38.14uV$$
$$\frac{1}{2}LSB = 19.07uV$$

Important Datasheet Parameters

Example: ADS8881 18-B, 1-MSPS, Fully-Differential Input ADC

"Average" Reference Input Current: Not a DC Current, combination of large fast current transients!!

ıc	3		5	
II	2.5		5	V
onversion, 1-MHz sample rate, mid-		300		μА
		250	R	nA
	10	22		μF
	6	Average	'Ref	eren
		onversion, 1-MHz sample rate, mid-	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	onversion, 1-MHz sample rate, mid-

at full throughput

Estimate REFIN Capacitive Load:

Conversion Period and Conversion Clock Timing

ADS8881 uses an internal conversion clock (CCLK)

Datasheet Specifies t_{conv} min

SAMPLING DYNAMICS						
t _{conv}	Conversion time	500 710	ns			
tACQ	Acquisition time	290	ns			
	Maximum throughput rate with or without latency	1000	kHz			

Estimate internal Conversion Clock period

$$Fsample = 1000kHz$$

$$tcycle = \frac{1}{1000kHz} = 1us$$

$$t_{conv} = 500ns$$

$$t_{cclk} \simeq \frac{t_{conv}}{N_{BIT}} = \frac{500ns}{18} \simeq 28ns$$

TINA SPICE Equivalent Model

TINA SPICE Equivalent Model

Thanks for your time!

©Copyright 2017 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com