Introduction to Machine Learning

Statistics (less focus on algorithm, more model design & hypothesis testing)

Machine Learning (less focus on hypothesis testing, more on algorithms)

machine learning

1. supervised learning:

Data:
$$\{x_j,y_j\}_{j=1}^n$$

Model:
$$y_j = f^*(x_j) + \epsilon_j$$
 where y_j is label, ϵ_j is noise.

Objective: approximate
$$f^*$$

2. unsupervised learning:

Data:
$$\{x_j\}_{j=1}^n$$

Model:
$$y_i = f^*(x_i) + \epsilon_i$$
 where y_i is label,

3. reinforcement learning:

Supervised Learning

1. Regression 回归

$$f^* \colon D \subset R^d \to R$$
 f^* 连续取值

2. Classification 分类

$$f^*:D o G(finite\ set), G=\{-1,1\}$$

3. Framework

(1). Hypothesis Space \mathcal{H}_m

e.g.
$$\mathcal{H}_m = \{w_0 + w^ op x, w_0 \in R, w \in R^d\}$$

e.g.
$$\mathcal{H}_m=\{\sum_{j=1}^m \alpha_j\phi_j(x)\}$$
 where $\{\phi_j(x)\}_{j=1}^m$ is fixed set of function. For example, we can set $\phi_j(x)=\cos(k_jx)$

e.g.
$$\mathcal{H}_m=\{\sum_{j=1}^m a_j\sigma(b_j^{\top}x+c_j)\}$$
 For example, we can set $\sigma(x)=\max\{0,x\}$ (ReLU, an activation function for Neural Network)

In examples, m represents (scale of) degree of freedom(You can search **VC dimension** if you want know more about it)

(2). **Objective Function** (Loss Function): loss function here is an example of square loss

$$\hat{R}_n(heta) = rac{1}{n} \sum_{j=1}^n (\hat{y}_j - f(x_j, heta))^2 + \lambda || heta||$$

Where θ is parameter(参数), $||\theta||$ is norm(范数), $\lambda ||\theta||$ is regularization term(惩罚项,用于控制模型复杂度).

(3). Optimization Method 优化算法

- 梯度法(e.g. Gradient Decent(最简单的梯度下降,只用一阶导数)
- 随机梯度法(e.g. SGD(随机梯度下降,只用一阶导数), Adam(自适应梯度下降,只用一阶导数)...)
- BFGS等 (一种二阶优化算法, 用二阶导数)。。。

Examples for Supervised Learning

1. Linear Model

$$egin{aligned} \mathcal{H}_m &= \{w_0 + w^ op x, w_0 \in R, w \in R^d\} \ & ext{write } w_0 + w^ op x ext{ as } w^ op x \ &\hat{R}_n(heta) = rac{1}{n} \sum_{j=1}^n (w^ op x_j - y_j)^2 \ & abla_ heta \hat{R}_n(heta) = \sum (w^ op x_j - y_j) x_j = 0 \ & ext{} X = (x_1, \dots, x_n) \ &\hat{w} = (XX^ op)^{-1} Xy \end{aligned}$$

Regularization(Ridge Regression)

$$egin{aligned} \hat{R}_n(heta) &= rac{1}{n} \sum_{j=1}^n (w^ op x_j - y_j)^2 + \lambda ||w||^2 \ \hat{w} &= (XX^ op + \lambda I)^{-1} Xy \ \lim_{\lambda o 0} (XX^ op + \lambda I)^{-1} &= (XX^ op)^{-1} (Generalized\ inverse\ matrix) \end{aligned}$$

Use another regularization term

$$\hat{R}_n(heta) = rac{1}{n} \sum_{j=1}^n (w^ op x_j - y_j)^2 + \lambda N(w) \ ; \ (N(w)$$
的作用是求最稀疏的解 $)$ $N(w) = number\ of\ non-zero\ component\ of\ w$

Using $||w||_1$, Model become **Lasso Regression**

$$\hat{R}_n(heta) = rac{1}{n} \sum_{i=1}^n (w^ op x_j - y_j)^2 + \lambda ||w||_1$$

Dimension Reduction of Feature Space with LASSO

Linear Regression Cost function

Figure source:

 $\underline{https://towardsdatascience.com/ridge-and-lasso-regression-a-complete-guide-with-python-scikit-learn-e20e\\ \underline{34bcbf0b}$

2. Kernel Method(核方法)

kernel function $k(x,y), x,y \in R^d$

e.g.

$$ullet k(x,y) = e^{-rac{\|x-y\|^2}{2}}, k(x,y) = \phi(\|x-y\|^2) = \phi(r)$$

Definition:

(1) k is symmetric

$$k(x,y) = k(y,x)$$

(2)
$$orall \{x_j\}_{j=1}^n$$

$$K=(k(x_i,x_j))_{n imes n}\geq 0$$

Define Kernel Space:

$$\mathcal{H}_m = \{\sum_{j=1}^n lpha_j k(x_j,x)\} \ (m=n)$$

Feature-based method (feature,特征) $\{\phi_j(x)\}_{j=1}^m$ 是一组特征

$$\mathcal{H}_m = \{\sum_{i=1}^m lpha_j \phi_j(x)\}$$

3. Neural Network(神经网络, NN)

$$\mathcal{H}_m = \{\sum_{i=1}^m a_j \sigma(b_j^ op x)\}$$

Figure source:

https://www.datasciencecentral.com/profiles/blogs/the-artificial-neural-networks-handbook-part-1?xg_source=activity

Why NN better? (No complete theory in mathematics)

Compared with generalized linear model(GLM)

$$\mathcal{H}_m = \{\sum_{i=1}^m lpha_j \phi_j(x)\}$$

We have a "Theorem", For GLM

$$f:R^d o R,\ d>>1 \ \inf_{f_m\in\mathcal{H}_m}\|f_m-f\|\geq cm^{-rac{1}{d}}$$

For NN

$$f:R^d o R,\;d>>1 \ \inf_{f_m\in\mathcal{H}_m}\|f_m-f\|\leq cm^{-rac{1}{2}}$$

So let error=0.1. For NN

$$m\sim 10^2$$

For GLM

$$m \sim 10^d$$
 (维数灾难)

4. Optimization Algorithm (优化算法)

Gradient Descent:

$$\min_{ heta} F(heta) \ heta_{k+1} = heta_k - \eta_k
abla F(heta_k)$$

For example

$$abla F(heta) = rac{1}{2} \sum_{j=1}^n
abla (f(heta, x_j) - y_j)^2 = \sum (f(heta, x_j) - y_j)
abla_{ heta} f$$

Back Propagation(反向传播, BP): Just use Chain Rule(链式法则)

In practice, we use Stochastic Gradient Descent (SGD) Methods(随机梯度方法) because of the large scale of data.

5. Classification(分类)

$$y = \{-1, 1\}$$

$$y=H(f(x))$$
 $H(z)=\left\{egin{array}{l} 1,z>0\ 0,z\leq 0 \end{array}
ight.$

For continuity, we can let $H(z)=rac{1}{1+e^{-z}}$ (sigmoid)

Logistic Regression

set
$$f = w^ op x$$
 and $y = rac{1}{1 + e^{-w^ op x}}$

Above are binary classifications. For **multi-class classification** (K classes), we use softmax

$$q_{j}(x) = rac{e^{f_{j}(x)}}{\sum_{k=1}^{K}e^{f_{k}(x)}} \ \sum_{j=1}^{K}q_{j}(x) = 1$$

Where $q_j(x)$ can be regard as the probability of $x \in class_j$