CMSC 474, Game Theory

4b. Game-Tree Search

Dana Nau University of Maryland

Finite perfect-information zero-sum games

• Finite:

> finitely many agents, actions, states, histories

Perfect information:

- Every agent knows
 - all of the players' utility functions
 - all of the players' actions and what they do
 - the history and current state
- ➤ No simultaneous actions agents move one-at-a-time

• Constant sum (or zero-sum):

 \triangleright Constant k such that regardless of how the game ends,

$$\bullet \ \sum_{i=1,\ldots,n} u_i = k$$

 \triangleright For every such game, there's an equivalent game in which k=0

Examples

Deterministic:

- outcomes depend only on the players' moves
- tic-tac-toe, qubic, connect-four, mancala, reversi (othello), chess, checkers, go

Stochastic:

- outcomes depend partly on chance (e.g., dice rolls)
- backgammon, monopoly, yahtzee, parcheesi, roulette, craps

• For now, we'll consider just the deterministic games

Outline

- Non-credible threats
- Restatement of the Minimax Theorem
- Game trees
- The minimax algorithm
- α - β pruning
- Resource limits, approximate evaluation
- Most of this isn't in the game-theory book
 - > I'll post some material on Piazza
- For further information, look at one of the following
 - Russell & Norvig's Artificial Intelligence: A Modern Approach
 - Chapter 6 of the 2nd edition
 - Chapter 5 of the 3rd edition

Updated 9/22/16

No Non-Credible Threats

- Recall this example from Chapter 4:
- If the agents can announce their strategies beforehand, agent 1 might want to announce (B,H)
- Non-credible threat:
 - > Agent 1 is trying to keep 2 from choosing F, by threatening to retaliate with H
 - > But if 2 chooses F anyway, then it wouldn't be rational for 1 to do H, because H also hurts 1

> In a zero-sum game, if H hurts 2 then it helps 1

Minimax Theorem (Restated)

- Instead of u_1 and u_2 , write u and -u
 - Call player 1 Max (wants to maximize u), call Max's strategy s
 - Call player 2 Min (wants to minimize u), call Min's strategy t
- **Theorem.** Let G be any finite two-player zero-sum game. Then
 - Max's expected utility in any Nash equilibrium
 - = Max's maxmin value = Max's minmax value
 - \triangleright In other words, for every Nash equilibrium (s^*,t^*) ,
 - $u(s^*,t^*) = \min_s \max_t u(s,t) = \max_s \min_t u(s,t)$
- Corollary. There are pure strategies s^* and t^* that satisfy the theorem.
- Terminology
 - $\triangleright u(s^*,t^*)$ is the called the *minimax value* of G
 - \triangleright s* and t* are sometimes called *optimal strategies* or *perfect play*

Terminology

- **Root** node: where the game starts
- Max (or Min) node:
 - > a node where it's Max's (or Min's) move
 - usually draw Max nodes as squares, Min nodes as circles
- A node's **children**: $\{\sigma(h,a) \mid a \in \chi(h)\}$
 - **Branching factor** $b = \max_h \chi(h)$
- Terminal nodes: where game ends

 $H = \{\text{nonterminal nodes}\}$ $Z = \{\text{terminal nodes}\}$ $\rho(h) = \text{the player to move at } h$ $\chi(h) = \{\text{available actions at } h\}$ $\sigma(h,a) = \text{child of } h \text{ produced by } a$ $\mathbf{u}(h) = \text{utility profile for } h$ $\mathbf{v}[i] = i\text{'th element of } \mathbf{v}$

Minimax Algorithm

- Backward induction (Chapter 4)
 - Simplified for 2-player zero-sum games

```
function Minimax(h)

if h \in Z then return u(h)

else \rho(h) = \text{Max then}

return \max_{a \in \chi(h)} \text{Minimax}(\sigma(h, a))

else return \min_{a \in \chi(h)} \text{Minimax}(\sigma(h, a))
```

```
Z = \{\text{terminal nodes}\}
\rho(h) = \text{the player to move at } h
\chi(h) = \{\text{available actions at } h\}
\sigma(h,a) = \text{child of } h \text{ produced by } a
```

function Minimax-choice(h)

if $h \in Z$ then return errorelse if $\rho(h) = \text{Max}$ then

return $\arg\max_{a \in \chi(h)} \text{Minimax}(\sigma(h,a))$)

else return $\arg\min_{a \in \chi(h)} \text{Minimax}(\sigma(h,a))$)

Poll 4.2: what would Minimax-choice return at nodes b and c?

Complexity Analysis

- Let b = branching factor, D = height of tree
- Space complexity
 - = (max path length) \times (space needed to store the path)
 - = O(bD)
- Time complexity = size of the game tree = $O(b^D)$
- Example: chess
 - \triangleright for "reasonable" chess games, b \approx 35, D \approx 100
 - $harpoonup b^h \approx 35^{100} \approx 10^{135} \text{ nodes}$
- ho $\approx 10^{87}$ particles in the universe
 - > 10^{135} nodes is $\approx 10^{48}$ times the number of particles in the universe

Limited-Depth Minimax

- Upper bound *d* on search depth
 - \triangleright Running time $O(b^d)$
 - \triangleright Space O(bd)
- If $d \ge \operatorname{height}(h)$, get u(h)
 - Otherwise, approximation
- static evaluation function e(h)
 - \triangleright returns estimate of u(h)

```
H = \{\text{nonterminal nodes}\}\
Z = \{\text{terminal nodes}\}\
\rho(h) = \text{the player to move at }h
\chi(h) = \{\text{available actions at }h\}
\sigma(h,a) = \text{child of }h \text{ produced by }a
\mathbf{u}(h) = \text{utility profile for }h
\mathbf{v}[i] = i\text{'th element of }\mathbf{v}
```

```
function LD-minimax(h,d)

if h \in Z then return u(h)

else if d=0 then return e(h)

else if \rho(h)=\mathrm{Max} then

return \max_{a\in\chi(h)}\mathrm{LD-minimax}(\sigma(h,a)),d-1)

else return \min_{a\in\chi(h)}\mathrm{LD-minimax}(\sigma(h,a)),d-1)
```

```
function LD-minimax-choice(h,d)

if h \in Z or d=0 then return error

else if \rho(h) = \operatorname{Max} then

return \operatorname{arg} \max_{a \in \chi(h)} \operatorname{LD-minimax}(\sigma(h,a)), d-1)

else return \operatorname{arg} \min_{a \in \chi(h)} \operatorname{LD-minimax}(\sigma(h,a)), d-1)
```

- LD-minimax-choice returns an action
- Call it again at every move
 - > Why?

Evaluation Functions

 \bullet e(h) is often a weighted sum of features

$$ightharpoonup e(h) = c_1 f_1(h) + c_2 f_2(h) + \dots + c_n f_n(h)$$

- E.g., chess
 - $ightharpoonup c_1 imes ext{material} + c_2 imes ext{mobility} + c_3 imes ext{king safety} + c_4 imes ext{center control} + ...$
 - material = $1 \times (your pawns opponent's pawns) + 3 \times (your knights opponent's knights) + ...$

Black to move White slightly better

White to move Black winning

Exact Values for *e* **Don't Matter**

- Behavior is preserved under any **monotonic** transformation of *e*
 - Only the order matters

 Minimax and LD-minimax examine nodes that don't need to be examined


```
function LD-minimax(h,d)
   if h \in \mathbb{Z} then return u(h)
   else if d = 0 then return e(h)
   else if \rho(h) = Max then
       v^* \leftarrow -\infty
       for every a \in \chi(h) do
             v \leftarrow LD\text{-minimax}(\sigma(h,a)), d-1)
             if v^* < v then v^* \leftarrow v
   else
       v^* \leftarrow \infty
       for every a \in \chi(h) do
             v \leftarrow LD\text{-minimax}(\sigma(h,a)), d-1)
             if v^* > v then v^* \leftarrow v
   return v
```

- For Max, b is better than f
 - ➤ If Max is rational then Max will never choose f
 - Don't need to examine any more nodes below f


```
function LD-minimax(h,d)
   if h \in \mathbb{Z} then return u(h)
   else if d = 0 then return e(h)
   else if \rho(h) = \text{Max then}
       v^* \leftarrow -\infty
       for every a \in \chi(h) do
              v \leftarrow LD\text{-minimax}(\sigma(h,a)), d-1)
              if v^* < v then v^* \leftarrow v
   else
       v^* \leftarrow \infty
       for every a \in \chi(h) do
              v \leftarrow LD\text{-minimax}(\sigma(h,a)), d-1)
              if v^* > v then v^* \leftarrow v
   return v
```

• Don't know whether h is better or worse than b

• Still don't know whether h is better or worse than b

- h is worse than b
 - > Don't need to examine any more nodes below h
- v(a) = 3

Alpha Cutoff

- At Min nodes, let α = largest lower bound on ancestors
 - \rightarrow At s, $\alpha = \max(a,b,c)$
- Suppose $d < \alpha$
 - > If the game ever reaches s, Max's payoff will be $< \alpha$
- To get payoff $\geq \alpha$,
 - \triangleright Max will move elsewhere at p, q, or r
 - > The game won't ever reach s
- What if $d = \alpha$?

Beta Cutoff

- At Max nodes, let β = smallest upper bound on ancestors
 - \rightarrow At s, $\beta = \min(a,b,c)$
- Suppose $d > \beta$
 - > If the game ever reaches s, Max's payoff will be $> \beta$
- To make Max's payoff $\leq \beta$
 - \triangleright Min will move elsewhere at p, q, or r
 - The game won't ever reach s
- What if $d = \beta$?


```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = Max then
       v \leftarrow -\infty
       for every a \in \chi(h) do
           v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v // \beta cutoff
           else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                            // \alpha cutoff
           else \beta \leftarrow \min(\beta, v)
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = Max then
       v \leftarrow -\infty
       for every a \in \chi(h) do
           v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v // \beta cutoff
           else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                            // \alpha cutoff
           else \beta \leftarrow \min(\beta, v)
       return v
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = Max then
       v \leftarrow -\infty
       for every a \in \chi(h) do
           v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                              // \alpha cutoff
           else \beta \leftarrow \min(\beta, v)
       return v
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = Max then
       v \leftarrow -\infty
       for every a \in \chi(h) do
           v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                              // \alpha cutoff
           else \beta \leftarrow \min(\beta, v)
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
           v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                             // \alpha cutoff
           else \beta \leftarrow \min(\beta, v)
       return v
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
           v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                             // \alpha cutoff
           else \beta \leftarrow \min(\beta, v)
       return v
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
           v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                             // \alpha cutoff
           else \beta \leftarrow \min(\beta, \nu)
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \ge \beta then return v // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
            v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \le \alpha then return v
                                               // \alpha cutoff
            else \beta \leftarrow \min(\beta, \nu)
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
           v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                             // \alpha cutoff
           else \beta \leftarrow \min(\beta, v)
       return v
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                               // \alpha cutoff
           else \beta \leftarrow \min(\beta, v)
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v
                                              // \beta cutoff
            else \alpha \leftarrow \max(\alpha, v)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                               // \alpha cutoff
           else \beta \leftarrow \min(\beta, \nu)
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v
                                              // \beta cutoff
            else \alpha \leftarrow \max(\alpha, v)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                               // \alpha cutoff
           else \beta \leftarrow \min(\beta, \nu)
       return v
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v
                                               // \beta cutoff
            else \alpha \leftarrow \max(\alpha, v)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                               // \alpha cutoff
           else \beta \leftarrow \min(\beta, \nu)
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v
                                               // \beta cutoff
            else \alpha \leftarrow \max(\alpha, v)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                               // \alpha cutoff
           else \beta \leftarrow \min(\beta, \nu)
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max} then
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \ge \beta then return v
                                               // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
            v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \le \alpha then return v
                                               // \alpha cutoff
            else \beta \leftarrow \min(\beta, \nu)
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max} then
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                               // \alpha cutoff
           else \beta \leftarrow \min(\beta, \nu)
       return v
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max} then
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v
                                               // \beta cutoff
            else \alpha \leftarrow \max(\alpha, v)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                               // \alpha cutoff
           else \beta \leftarrow \min(\beta, v)
       return v
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v
                                                // \beta cutoff
            else \alpha \leftarrow \max(\alpha, v)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                               // \alpha cutoff
           else \beta \leftarrow \min(\beta, v)
       return v
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \ge \beta then return v
                                                 // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
            v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \le \alpha then return v
                                                // \alpha cutoff
            else \beta \leftarrow \min(\beta, v)
       return v
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \ge \beta then return v
                                                 // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
            v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \le \alpha then return v
                                                // \alpha cutoff
            else \beta \leftarrow \min(\beta, v)
```

return v


```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \ge \beta then return v
                                                 // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
            v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \le \alpha then return v
                                                // \alpha cutoff
            else \beta \leftarrow \min(\beta, v)
```

return v


```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \ge \beta then return v
                                                 // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
            v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
            if v \le \alpha then return v
                                                // \alpha cutoff
            else \beta \leftarrow \min(\beta, v)
       return v
```



```
function Alpha-Beta(h, d, \alpha, \beta)
    if h \in \mathbb{Z} then return u(h)
    else if d = 0 then return e(h)
    else if \rho(h) = \text{Max then}
       v \leftarrow -\infty
       for every a \in \chi(h) do
            v \leftarrow \max(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \ge \beta then return v
                                                 // \beta cutoff
            else \alpha \leftarrow \max(\alpha, \nu)
       return v
    else
       v \leftarrow \infty
       for every a \in \chi(h) do
           v \leftarrow \min(v, Alpha-Beta(\sigma(h, a), d-1, \alpha, \beta))
           if v \le \alpha then return v
                                                // \alpha cutoff
           else \beta \leftarrow \min(\beta, v)
       return v
```

Properties of Alpha-Beta

- Alpha-beta pruning reasons about which computations are relevant
 - > A form of **metareasoning**

Theorem:

- \triangleright If LD-minimax(h, d) returns a value in $[\alpha, \beta]$
 - Alpha-Beta (h, d, α, β) returns the same value
- ► If LD-minimax(h, d) returns a value $\leq \alpha$
 - Alpha-Beta (h, d, α, β) returns a value $\leq \alpha$
- ➤ If LD-minimax(h, d) returns a value $\geq \beta$
 - Alpha-Beta (h, d, α, β) returns a value $\geq \beta$

Corollary:

- Alpha-Beta $(h, d, -\infty, \infty)$ returns the same value as LD-minimax(h, d)
- Alpha-Beta $(h, \infty, -\infty, \infty)$ returns u(h)

Node Ordering

- Deeper search (larger d) usually gives better decisions
 - There are "pathological" games where it doesn't, but those are rare
- How much deeper can Alpha-Beta search?
- Worst case:
 - > children of Max nodes are smallest-value-first
 - children of Min nodes are greatest-value-first
 - \triangleright Alpha-Beta visits all nodes of depth $\leq d$
 - running time $O(b^d)$
- Best case:
 - children of Max nodes are greatest-value-first
 - > children of Min nodes are smallest-value-first
 - \triangleright Alpha-Beta's running time is $O(b^{d/2}) \Rightarrow$ doubles the solvable depth

Node Ordering

- How to get closer to the best case:
 - > Every time you expand a state s, apply e to its children
 - When it's Max's move, sort the children in order of largest *e* first
 - > When it's Min's move, sort the children in order of smallest *e* first
- Suppose we have 100 seconds, explore 10⁴ nodes/second
 - $> 10^6$ nodes per move
 - \triangleright Chess midgame $b \approx 35$
 - LD-minimax: time $b^d = 35^d = 10^6 \implies d \approx 4$
 - Alpha-Beta: time $b^{d/2} \approx 35^{8/2} \rightarrow d \approx 8$

Other Modifications

- Several other ways to improve accuracy or running time:
 - > quiescence search and biasing
 - > transposition tables
 - > thinking on the opponent's time
 - table lookup of "book moves"
 - > iterative deepening
 - forward pruning

Quiescence Search and Biasing

- In a game like checkers or chess, *e* is based greatly on material pieces
 - ➤ Likely to be inaccurate if there are pending captures
- Search deeper to reach a position where there aren't pending captures
 - > e will be more accurate here
- That creates another problem
 - > You're searching some paths to an even depth, others to an odd depth
 - > Paths that end just after your opponent's move will look worse than paths that end just after your move
- To compensate, add or subtract a number called the "biasing factor"

Transposition Tables

- Multiple paths to the same state (state space is a graph rather than a tree)
- Idea:
 - > when you compute s's minimax value, store it in a hash table
 - \triangleright visit s again \Rightarrow retrieve its value rather than computing it again
- The hash table is called a **transposition table**
- Problem: can't store exponentially many states
 - ➤ Only store some the ones that you're most likely to need

Thinking on the Opponent's Time

- Suppose you're at node *a*
 - Very Use Alpha-Beta to estimate u(b) and u(c)
 - > c looks better, so move there

- Consider your estimates of u(f) and u(g)
 - > They suggest your opponent is likely to move to f
 - ➤ While waiting for the opponent to move, start an alpha-beta search below *f*
- If the opponent moves to f, then you've already done a lot of the work of figuring out your next move

Book Moves

- In some games, experts have spent lots of time analyzing **openings**
 - Sequences of moves one might play at the start of the game
 - Best responses to those sequences
- Some of these are cataloged in standard reference works
 - e.g., the *Encyclopaedia of Chess Openings*
- Store these in a lookup table
 - > Respond almost immediately, as long as the opponent sticks to a sequence that's in the book
- A technique humans can use when playing against such a program
 - Deliberately make a move that isn't in the book
 - > This may weaken the human's position, but the computer will (i) start taking longer and (ii) stop playing as well

Iterative Deepening

- How deeply should you search a game tree?
 - ▶ When you call Alpha-Beta $(h, d, -\infty, \infty)$, what to use for d?
- small $d \Rightarrow$ don't make as good a decision
- large d => run out of time without knowing what move to make
- Solution: iterative deepening

```
for d = 1 by 1 until you run out of time m \leftarrow the move returned by Alpha-Beta(h, d, -\infty, \infty)
```

- Why this works:
 - ightharpoonup Time complexity is $O(b^1 + b^2 + ... + b^d) = O(b^d)$
 - For large b, each iteration takes much more time than the total of all the previous iterations

Forward Pruning

• Tapered search:

- Instead of looking at all of a node's children, just look at the *n* best ones
 - the n highest e(h) values
- > Decrease the value of *n* as you go deeper in the tree

> Drawback: may exclude an important move at a low level of the tree

• Marginal forward pruning:

- Ignore every child h such that e(h) is smaller than the current best values from the nodes you've already visited
- > Not reliable, should be avoided

Forward Pruning

- Until the mid-1970s most computer-chess researchers tried to get programs to search "like people think"
 - ➤ Use extensive chess knowledge at each node to select a few "plausible" moves; prune the others
 - Serious tactical shortcomings
- Brute-force search programs did better, dominated computer chess for about 20 years
- Early 1990s: development of some forward-pruning techniques that worked well
 - Null-move pruning
- Today most chess programs use some kind of forward-pruning
 - > null-move pruning is one of the most popular

Game-Tree Search in Practice

- **Othello**: since 1980, the best computer programs have easily defeated the best humans
- **Checkers**: In 1994, Chinook ended 40-year-reign of human world champion Marion Tinsley
 - > Tinsley withdrew for health reasons, died a few months later
- In 2007, Checkers was solved
 - With perfect play, it's a draw
 - \triangleright This took 10^{14} calculations over 18 years
 - > Search space size 5×10^{20}
- Chess: In 1997, Deep Blue defeated Gary Kasparov in a six-game match
 - ➤ Used special hardware, could search 200 million positions per second
 - > Modern programs don't use special hardware
 - Barred from world-championship matches (except against other computers)

Game-Tree Search in Practice

- **Go**: before 2006, good amateurs could easily beat the best go programs, even when given a handicap
- Two big jumps in performance
 - > 2006: Monte Carlo rollouts
 - brought go programs up to a master level, better than strong amateurs
 - > 2015: Monte Carlo rollouts combined with deep learning
 - AlphaGo: first go program to beat professional human players

Rules of Go (Abbreviated)

- Go-board: 19 × 19 locations (intersections on a grid)
- Back and White take turns
- Black has the first move
- Each move consists of placing a stone at an unoccupied location
 - You just put them on the board; you don't move them around
- Adjacent stones of the same color are called a **string**.
 - **Liberties** are the empty locations next to the string
 - > A string is removed if its number of liberties is 0
- Score: territories (number of occupied or surrounded locations)

Why Go is Difficult for Computers

- A game tree's size grows exponentially with both its depth and its branching factor
- The game tree for go:
 - \triangleright branching factor ≈ 200
 - > game length ≈ 250 to 300 moves
 - \triangleright number of nodes in the game tree $\approx 10^{525}$ to 10^{620}
 - vs. 10^{135} for chess

b = 2

Much too big for a normal game tree search

$$b = 3$$

h = 4

Why Go is Difficult for Computers

- Writing an evaluation function for chess
 - Mainly piece count, plus some positional considerations
 - isolated/doubled pawns, rooks on open files (columns), pawns in the center of the board, etc.
 - ➤ As the game progresses, pieces get removed => evaluation gets easier
- For Go, much more complicated
 - whether or not a group is alive
 - which stones can be connected to one another
 - the extent to which a position has influence or can be attacked
 - ➤ As the game progresses, pieces get added => evaluation gets more complicated

Monte Carlo Roll-Outs

- Basic idea:
 - Figure Generate a list of potential moves $A = \{a_1, ..., a_n\}$
 - \triangleright For each move a_i in A:
 - Starting at $\sigma(h,a_i)$, generate a set of random games G_i in which the two players make all their moves at random
 - > Choose the move in A that produces the best results
- Whether this works depends on **how** you generate the random games

Multi-Arm Bandit

- Statistical model of sequential experiments
 - Name comes from a traditional slot machine (one-armed bandit)
- Multiple actions
 - ➤ Each action provides a reward from a probability distribution associated with that specific action

- > Objective: maximize the expected utility of a sequence of actions
- Exploitation vs exploration dilemma:
 - > *Exploitation*: choosing an action that you already know about, because you think it's likely to give you a high reward
 - **Exploration**: choosing an action that you don't know much about, in hopes that maybe it will produce a better reward than the actions you already know about

UCB (Upper Confidence Bound) Algorithm

• Let

- $ightharpoonup r_i$ = average reward you've gotten from arm i
- $\rightarrow t_i$ = number of times you've tried arm i;
- $\rightarrow t = \text{total number of tries} = \sum_i t_i$

loop

- > if there are one or more arms that have not been played
- > then play one of them
- ▶ else play the arm *i* that has the highest value of $r_i + 2\sqrt{(\log t)/t_i}$

UCT (UCB for Trees)

- Adaptation of UCB for game-tree search
- First time it was used in go: Mogo, 2006
 - Won the go tournament at the 2007 Computer Olympiad, and several other computer go tournaments
- Now used in most computer go programs

Next page: basic idea (omitting several improvements)

global Seen ← Ø UCT (Basic Idea)

```
function UCT(h)

if h \notin Seen then

add h to Seen

r_h \leftarrow 0; t_h \leftarrow 0

h' \leftarrow UCB-choose(\{\sigma(h,a) \mid a \in \chi(h)\})

\mathbf{v} \leftarrow UCT(h')

r_h \leftarrow (r_h t_h + \mathbf{v}[\rho(h)]) / (t_h + 1)

t_h \leftarrow t_h + 1

return \mathbf{v}
```

```
Seen = {all nodes seen so far}
t_h = \text{no. of times we've tried } h
r_h = \text{avg. reward for } \rho(h) \text{ at } h
\rho(h) = \text{player to move at } h
\chi(h) = \{\text{available actions at } h\}
\sigma(h, a) = \text{child of } h \text{ produced by } a
```

function UCB-choose(*H*)

if $H \setminus Seen \neq \emptyset$ then return a randomly chosen member of $H \setminus Seen$ else

$$t \leftarrow \sum_{h \in H} t_h$$

return the $h \in H$ with the highest value of $r_h + 2\sqrt{(\log t)/t_h}$

global $Seen \leftarrow \emptyset$

UCT (Basic Idea)

```
function UCT(h)
     if h \notin Seen then
            add h to Seen
            r_h \leftarrow 0; \ t_h \leftarrow 0
     h' \leftarrow \mathsf{UCB\text{-}choose}(\{\sigma(h,a) \mid a \in \chi(h)\})
     \mathbf{v} \leftarrow \mathsf{UCT}(h')
     r_h \leftarrow (r_h t_h + \mathbf{v}[\rho(h)]) / (t_h + 1)
     t_h \leftarrow t_h + 1
     return v
```

As the number of iterations $\rightarrow \infty$, each $r_h \to u(h)$

function UCB-choose(H)

if $H \setminus Seen \neq \emptyset$ then return a randomly chosen member of $H \setminus Seen$ else

$$t \leftarrow \sum_{h \in H} t_h$$

return the $h \in H$ with the highest value of $r_h + 2\sqrt{(\log t)/t_h}$

```
global Seen \leftarrow \emptyset
```

UCT (Basic Idea)

```
function UCT(h)

if h \notin Seen then

add h to Seen

r_h \leftarrow 0; t_h \leftarrow 0

h' \leftarrow UCB-choose(\{\sigma(h,a) \mid a \in \chi(h)\})

\mathbf{v} \leftarrow UCT(h')

r_h \leftarrow (r_h t_h + \mathbf{v}[\rho(h)]) / (t_h + 1)

t_h \leftarrow t_h + 1

return \mathbf{v}
```

- As the number of iterations $\to \infty$, each $r_h \to u(h)$
- Question: how can this be true?
 - \triangleright u(h) should mean each player chooses their max payoff
 - \triangleright But r_h is average payoff

function UCB-choose(*H*)

if $H \setminus Seen \neq \emptyset$ then return a randomly chosen member of $H \setminus Seen$ else

$$t \leftarrow \sum_{h \in H} t_h$$

return the $h \in H$ with the highest value of $r_h + 2\sqrt{(\log t)/t_h}$

```
global Seen \leftarrow \emptyset
```

UCT (Basic Idea)

```
function UCT(h)

if h \notin Seen then

add h to Seen

r_h \leftarrow 0; t_h \leftarrow 0

h' \leftarrow UCB-choose(\{\sigma(h,a) \mid a \in \chi(h)\})

\mathbf{v} \leftarrow UCT(h')

r_h \leftarrow (r_h t_h + \mathbf{v}[\rho(h)]) / (t_h + 1)

t_h \leftarrow t_h + 1

return \mathbf{v}
```

- As the number of iterations $\to \infty$, each $r_h \to u(h)$
- Question: how can this be true?
 - \triangleright u(h) should mean each player chooses their max payoff
 - \triangleright But r_h is average payoff
- Answer: as iterations $\to \infty$, $\sqrt{(\log t)/t_h} \to 0$
 - UCB-choose converges to choosing *highest* avg. payoff

function UCB-choose(H)

if $H \setminus Seen \neq \emptyset$ then return a randomly chosen member of $H \setminus Seen$ else

$$t \leftarrow \sum_{h \in H} t_h$$

return the $h \in H$ with the highest value of $r_h + 2\sqrt{(\log t)/t_h}$

AlphaGo: Game Playing

- 2015: first go program to beat a professional go player
- 2016: first program to beat one of the world's top go players
- Uses a combination of Monte-Carlo with artificial neural networks

Artificial Neural Networks

- Collection of "units" that act a little like biological neurons
- Each unit:

Artificial Neural Networks

- Generally organized into layers
- Can train them to compute a wide variety of functions
 - > Give them lots of examples: (*input*, *output*) pairs
- Formulas for adjusting the bias weights to try to do well on all the pairs

Artificial Neural Networks

- *Convolutional* neural network: a particular way to organize the layers
- *Deep* neural network: many layers
- *Deep learning*: learning using a deep neural network

AlphaGo: Training

- Policy network
 - > Give it examples of moves experts would make in various situations
 - (*input, output*) pair: (position, expert move)
 - Resulting neural network:
 - input: position \rightarrow output: probability distribution over moves
 - Do some optimization to make it work better
 - I'll skip the details
- Value network
 - Use the policy network to play games against itself
 - Use the results to train another deep neural network
 - (*input, output*) pair: (position, who won)
 - Resulting neural network:
 - input: position → output: expected utility

AlphaGo: Training

- Generate Monte Carlo rollouts
 - Somewhat like UCT but in addition to r_h and t_h it involves
 - probability of *h* returned by the neural network
 - value of *h* returned by the value network
- I don't know the details

Multiplayer Games

 \mathbf{Max}^n algorithm: backward induction for n players, with cutoff depth d and evaluation function e

Node evaluation is a payoff profile v $\mathbf{v}[i]$ is player i's payoff

- Approximate SPE payoff profile
 - \triangleright Exact if $d \ge$ height of h

function Maxn (h,d)(2,4,4)if $h \in \mathbb{Z}$ then return $\mathbf{u}(h)$ if d = 0 then return $\mathbf{e}(h)$ $V = \{ \mathsf{Maxn}(\sigma(h,a), d-1) \mid a \in \chi(h) \}$ return arg $\max_{\mathbf{v} \in V} \mathbf{v}[\rho(h)]$

function Maxn-choice (h, d)if $h \in \mathbb{Z}$ or d = 0 then return error return arg $\max_{a \in \chi(h)} (\mathsf{Maxn}(\sigma(h,a), d-1))[\rho(h)]$

move right (3,5,2) **(2**,4,4) **(4**,5,1) (6,3,1)(5,**2**,2) (3,**5**,2) (4,5,1) (1,4,5)

> $H = \{\text{nonterminal nodes}\}\$ $Z = \{\text{terminal nodes}\}\$ $\rho(h)$ = the player to move at h $\chi(h) = \{ \text{available actions at } h \}$ $\sigma(h,a)$ = child of h produced by a $\mathbf{u}(h)$ = utility profile for h $\mathbf{v}[i] = i$ 'th element of \mathbf{v}

Multiplayer Games

- The **Paranoid** algorithm
 - Cutoff depth d and evaluation function e
 - > At *i*'s move take max, at elsewhere take min
- Approximate maxmin value for *i*
 - \triangleright exact value if $d \ge$ height of h

function Paranoid(i, h, d)

if $h \in \mathbb{Z}$ then return $u_i(h)$

if d = 0 then return $e_i(h)$

if $\rho(h) = i$ then return $\max_{a \in \gamma(h)} \text{Paranoid}(i, \sigma(h, a), d-1)$

else return $\min_{a \in \chi(h)} \mathsf{Paranoid}(i, \sigma(h, a), d-1)$

function Paranoid-choice (i,h,d)

if $\rho(h) = i$ then return arg $\max_{a \in \chi(h)} \text{Paranoid}(i, \sigma(h, a), d-1)$

else return error

Discussion

- Neither Maxⁿ nor Paranoid has been entirely successful
- Partly due to dynamic relationships among players
 - Human players may hold grudges
 - > Informal alliances form and dissolve over time
 - players who are behind may "gang up" on a player who's ahead
- Maxⁿ and Paranoid don't model these relationships
 - ➤ But they can greatly influence the players' strategies
- For better play in a multi-player game, need ways
 - Decide when/whether to cooperate with others
 - Deduce each player's attitude toward the other players

Games with Chance Nodes

- Example: Backgammon
- Two agents who take turns
- At each turn, the set of available moves depends on the results of rolling the dice
 - Each die specifies how far to move one of your pieces
 - (except if you roll doubles)
 - You can't move to a location where your opponent has 2 or more pieces
 - You can move to a location where your opponent has 1 piece
 - Knock that piece off the board, it must start over

Backgammon Game Tree

ExpectiMinimax

```
function ExpectiMinimax(h,d)
  if h \in Z then return u(h)
  else if d = 0 then return e(h)
  else if \rho(h) = \text{Max} then return \max_{a \in \gamma(h)} \text{ExpectiMinimax}(\sigma(h, a), d-1)
  else if \rho(h) = Min then return \min_{a \in \gamma(h)} \mathsf{ExpectiMinimax}(\sigma(h,a), d-1)
```

- If $d \ge \text{height}(h)$, returns Max's SPE expected payoff
 - Otherwise returns an approximation
- Can be modified to return an action
- Can also be modified to do α - β pruning
 - > But it's more complicated and less effective than in deterministic games

 $Z = \{\text{terminal nodes}\}\$

In Practice

- Dice rolls increase branching factor
 - > 21 possible rolls with 2 dice
 - \triangleright Given the dice roll, ≈ 20 legal moves on average
 - > For some dice roles, can be much higher
 - At depth 4, number of nodes is = $20 \times (21 \times 20)^3 \approx 1.2 \times 10^9$
 - ➤ As depth increases, probability of reaching a given node shrinks
 - ⇒ value of lookahead is diminished
- α - β pruning is much less effective
- TDGammon (1992) used depth-2 search + very good evaluation function
 - > Created its evaluation function automatically using a machine-learning technique called *Temporal Difference* learning
 - hence the TD in TDGammon
 - $\triangleright \approx$ world-champion level

Generalize

- Finite perfect-information games with
 - Multiple players
 - > Chance nodes
 - Nonzero-sum payoffs

function Expectimax(h,d)

if $h \in \mathbb{Z}$ then return $\mathbf{u}(h)$

else if d = 0 then return e(h)

if h is a chance node then return $\sum_{a \in \chi(h)} \Pr[a \mid h]$ Expectimax $(\sigma(h, a), d-1)$

 $Z = \{\text{terminal nodes}\}\$

 $\rho(h)$ = the player to move at h

$$V = \{ \text{Expectimax}(\sigma(h, a), d-1) \mid a \in \chi(h) \}$$

return arg $\max_{\mathbf{v} \in V} \mathbf{v}[\rho(h)]$

Expectimax

```
function Expectimax(h,d) if h \in Z then return \mathbf{u}(h) else if d=0 then return \mathbf{e}(h) if h is a chance node then return \sum_{a \in \chi(h)} \Pr[a \mid h] Expectimax(\sigma(h,a), d-1) V = \{\text{Expectimax}(\sigma(h,a), d-1) \mid a \in \chi(h)\} return \max_{\mathbf{v} \in V} \mathbf{v}[\rho(h)]
```

 $Z = \{\text{terminal nodes}\}\$

 $\rho(h)$ = the player to move at h

 $\chi(h) = \{\text{available actions at } h\}$

```
function Expectimax-choice(h,d)

if h \in Z then return error

return \arg\max_{a \in \gamma(h)} (\operatorname{Expectimax}(\sigma(h,a),d-1))[\rho(h)]
```

- If $d \ge \text{height}(h)$ then
 - > Expectimax returns the SPE payoff profile
 - \triangleright Expectimax-choice returns the SPE action for player $\rho(h)$

Summary

- Finite two-player zero-sum perfect-information games
 - maxmin = minmax = Nash
 - > only need to look at pure strategies
 - game-tree search
 - Minimax, LD-minimax, Alpha-Beta
 - limited search depth, static evaluation function
 - Monte Carlo roll-outs, UCT
- Multiplayer games
 - Maxⁿ algorithm (depth-limited backward induction)
 - Paranoid algorithm (approximate maxmin)
- Games with chance nodes
 - Expectiminimax (2-player zero-sum)
 - Expectimax (*n*-player nonzero-sum)