Logestic regression

Logistic Regression – Conceptual Overview

All values in this example are assumed for understanding.

1. Input Dataset

- x_1, x_2 : Input features
- y: Target class (binary: 0 or 1)

2. Linear Model + Sigmoid Conversion

We apply a linear equation on the input features:

$$z = w_1 \cdot x_1 + w_2 \cdot x_2 + b$$

Then, apply the sigmoid function:

$$\hat{y} = rac{1}{1+e^{-z}}$$

This gives predicted probabilities for each data point.

Example (assumed values):

X ₁	X ₂	z (linear output)	Sigmoid Output (ŷ)	Predicted y
3	2	_	0.3	0
1	4	_	0.7	1
6	8	_	0.5	1 (≥0.5)
4	7	_	0.4	0 (<0.5)

3. Thresholding

To convert the probability into a class label:

- If $(\hat{y} \geq 0.5) \rightarrow \text{predict } \mathbf{1}$
- If $(\hat{y} < 0.5) \rightarrow \text{predict } \mathbf{0}$

4. Sigmoid Curve (S-shaped Graph)

- **X-axis**: Linear value z (can depend on x₁, x₂, etc.)
- **Y-axis**: Output of sigmoid (ŷ)
- The curve passes through (0, 0.5)
- Approaches 1 as $z \to +\infty$, and 0 as $z \to -\infty$
- You marked 0.3, 0.5, 0.6, 0.7 → correct interpretation
- At **z = 0**, sigmoid output = 0.5 (decision boundary)

On your graph:

5. Final Concept Flow

Below is the end-to-end flow of how logistic regression works conceptually:

1. Input Features

Data consists of multiple features (e.g., x_1 , x_2) and a binary label y.

2. Linear Combination

For each data point, compute a weighted sum:

$$z = w_1 x_1 + w_2 x_2 + b$$

3. Apply Sigmoid Activation

Convert the linear output z into a probability score:

$$\hat{y} = rac{1}{1+e^{-z}}$$

4. Classification via Threshold

- If $(\hat{y} \geq 0.5)$: Predict class **1**
- If $(\hat{y} < 0.5)$: Predict class **0**

5. Model Training (Behind the Scenes)

- During training, the model adjusts weights w_1 , w_2 , b to minimize a **log-loss** function.
- This is typically done using **gradient descent** optimization.

6. Decision Boundary

The sigmoid function centers around (z = 0). So, the decision boundary is where the linear equation equals zero (i.e., where $(\hat{y}=0.5)$.

Logistic Regression is a simple yet powerful method for binary classification:

- It models probability using the sigmoid function.
- Converts inputs via a linear equation.
- Applies a threshold to make final predictions.
- Trained using log-loss to optimize performance.

In []:

Visual Element	Description	
Blue Dots	Class 0 points (y = 0)	
Green Dots	Class 1 points (y = 1)	
Blue Line	Linear regression prediction	
Red Curve	Logistic regression sigmoid curve	
Dashed Line	Threshold at $\hat{y} = 0.5$ (decision line)	

comparing

Element	Description
nd Outlier	Plotted at (10, 1) with orange star marker
Dotted Blue Line	Shows how far the outlier is from the blue line
Dotted Red Line	Shows difference from sigmoid output (bounded)
• Cyan Dashed Line	Ideal linear regression (ignores outlier)
Blue Line	Skewed linear regression due to outlier
Red Curve	Logistic regression handles it well (sigmoid)

Aspect	Logistic Regression 🔽	Linear Regression 🗙
Prediction Range	Always between 0 and 1	Can go below 0 or above 1
Effect of Outlier $(x = 10)$	Minimal, curve still bounded	Pulls line upward significantly
Decision Threshold	Clear at $\hat{y}=0.5$	Arbitrary, can be distorted
Interpretation	Probabilistic	Continuous value (not class)

Confusion Matrix

Classification Metric Formulas

Precision

$$\text{Precision} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FP}}$$

Recall

$$Recall = \frac{TP}{TP + FN}$$

• F1 Score

$$ext{F1 Score} = 2 imes rac{ ext{Precision} imes ext{Recall}}{ ext{Precision} + ext{Recall}}$$

Accuracy (optional)

$$\text{Accuracy} = \frac{\textit{TP+TN}}{\textit{TP+TN+FP+FN}}$$

Where:

- (TP): True Positives
- (FP): False Positives
- (FN): False Negatives
- (TN): True Negatives

Understanding Precision, Recall, and F1-Score

With a Simple Example: Predicting Women from a Crowd

1. Dataset (20 People)

You built a model to predict who is a *woman* in a group. Out of 20 people:

- 10 are actual women
- 10 are actual men

Here's the predicted outcome:

Person ID	Actual Gender	Predicted Gender	Туре
1	Woman	Woman	✓ True Positive (TP)
2	Woman	Woman	▼ TP
3	Woman	Woman	▼ TP
4	Woman	Woman	▼ TP
5	Woman	Woman	✓ TP
6	Woman	Woman	▼ TP
7	Woman	Man	X False Negative (FN)
8	Woman	Man	X FN
9	Woman	Man	X FN
10	Woman	Man	X FN
11	Man	Woman	X False Positive (FP)
12	Man	Woman	X FP
13	Man	Woman	X FP
14	Man	Woman	X FP
15	Man	Woman	X FP
16	Man	Woman	X FP

Person ID	Actual Gender	Predicted Gender	Туре
17	Man	Man	✓ True Negative (TN)
18	Man	Man	✓ TN
19	Man	Man	✓ TN
20	Man	Man	✓ TN

2. Confusion Matrix

	Actual: Woman	Actual: Man
Predicted: Woman	6 (TP)	6 (X FP)
Predicted: Man	4 (X FN)	4 (TN)

3. Metric Calculations

Basic Counts:

- True Positives (TP) = 6
- False Negatives (FN) = 4
- False Positives (FP) = 6
- True Negatives (TN) = 4

Recall

"Out of all actual women, how many did we correctly predict?"

$$Recall = \frac{TP}{TP + FN} = \frac{6}{6+4} = \frac{6}{10} = 0.60 = 60\%$$

Precision

"Out of all predicted women, how many were actually women?"

$$Precision = \frac{TP}{TP + FP} = \frac{6}{6+6} = \frac{6}{12} = 0.50 = 50\%$$

F1 Score

"Balance between precision and recall"

$$F1 = 2 imes rac{Precision imes Recall}{Precision + Recall} = 2 imes rac{0.5 imes 0.6}{0.5 + 0.6} = rac{0.6}{1.1} pprox 0.545 = 54.5\%$$

4. Final Conclusion

- **Recall** = 60% → The model correctly found 6 out of 10 actual women.
- X Precision = 50% → Only half of the people predicted as women were correct.
- 4 F1 Score = 54.5% \rightarrow Shows average performance, since both FP and FN are high.

5. When to Use What?

Metric	What it Tells You	Use When
Recall	How many actual women were caught	Missing positives is worse
Precision	How many predicted women were actually women	False alarms are more harmful
F1 Score	Did the model balance both well?	You care about both recall and precision

Key Takeaway:

A good model should have high recall if missing women is risky, high precision if wrongly tagging men as women is risky, and high F1 Score if both errors are equally bad.

Metric	Weak	Acceptable	Strong	Excellent
Precision	< 0.60	0.60-0.75	0.75-0.90	> 0.90
Recall	< 0.60	0.60-0.75	0.75-0.90	> 0.90
F1 Score	< 0.60	0.60-0.75	0.75-0.90	> 0.90

What is K-Means?

K-Means is an unsupervised learning algorithm used to group similar data points into k clusters based on distance.

🔢 Step-by-Step Process (With Diagram)

Step 1: Initialization

- Choose the number of clusters k (e.g., 3)
- Randomly place k cluster centers (centroids)

Step 2: Assignment Step

• Assign each data point to the nearest centroid using Euclidean distance:

Distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Step 3: Update Step

• Recalculate the **centroid** of each cluster (mean of all points assigned to it)

New centroid =
$$\frac{1}{n} \sum_{i=1}^{n} x_i$$

Step 4: Repeat Until Convergence

- Repeat assignment and update steps until:
 - Centroids don't move much
 - Or cluster assignments don't change

📊 Summary Table

Step	Description		
1	Choose k clusters		
2	Place k random centroids		
3	Assign each point to nearest		
4	Recalculate centroids		
5	Repeat until stable		

Limitations

- You must choose k beforehand
- Sensitive to outliers
- Different runs may give different results

Diagram Overview

Step:1 find k value

how to calculate distance two data points

how to calculate distance between all the points

Step 4: lets consider k=2 and choosen random datapoints

Iteration 1

Simple Centroid Formula

$$\mu_i = \left(rac{x_1 + x_2 + \cdots + x_n}{n}, \; rac{y_1 + y_2 + \cdots + y_n}{n}
ight)$$

Example

Points in Cluster 1:

Then:

$$\mu_1 = \left(\frac{2+1+3}{3}, \ \frac{3+2+4}{3}\right) = (2.0, \ 3.0)$$

✓ This is the new centroid for Cluster 1.

• Iteration 2

Iteration 3

K-Means Centroid Formula

$$\mu_i = \left(\frac{x_1 + x_2 + \dots + x_n}{n}, \frac{y_1 + y_2 + \dots + y_n}{n}\right)$$

Iteration Breakdown

Iteration 1

- C1 (init): (2.1, 1.9)
- C2 (init): (8.1, 8.3)

After Assignment

- Cluster 1: 6 points → New C1 = (2.03, 2.03)
- Cluster 2: 6 points → New C2 = (7.93, 7.88)

Iteration 2

- Reassign points → same clusters
- Centroids unchanged → ✓ Converged

Final Centroids

- C1 = (2.03, 2.03)
- C2 = (7.93, 7.88)

elbow point

In []: