

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Sprawozdanie

Stopy Odlewnicze

Klasyfikacja, Metalografia i mikroskopowa analiza stopów metali. Przygotowanie wsadu. Znajomość norm.

> Borsuk Piotr, Wojdyła Jakub Technologie Przemysłu 4.0 Grupa nr 1 Rok akademicki 2023/2024

1. Wstęp teoretyczny

Aluminium, będące trzecim pod względem udziału pierwiastkiem w skorupie ziemskiej, zostało odkryte stosunkowo niedawno, dokładnie w roku 1825 przez F. Oersteda. Posiada liczbę atomową równą 13, a masa atomowa wynosi 26,9815. Gęstość aluminium jest stosunkowo niska, wynosząca 2,6989 g/cm³ (w porównaniu do Fe: 7,874 g/cm³ i Cu: 8,92 g/cm³). Charakteryzuje się ono również niewielką zmianą objętości w czasie krzepnięcia, która wynosi 7% (skurcz liniowy między 660°C a 20°C to 1,8%). Przewodność cieplna czystego aluminium wynosi 237 W· m^{-1} * K^{-1} .

Ze względu na swoje właściwości, takie jak niska gęstość i wysoka odporność korozyjna, aluminium stało się powszechnie stosowanym metalem. Korzyścią wynikającą z używania aluminium, oprócz obniżenia kosztów produkcji, jest redukcja masy wyrobu przy jednoczesnym zachowaniu właściwości wytrzymałościowych.

Ze względu na metodę wytwarzania stopu, stopy aluminium można podzielić głównie na dwie grupy. Pierwszą z nich stanowią stopy przeznaczone do obróbki plastycznej, natomiast drugą grupę tworzą stopy odlewnicze. Warto zauważyć, że niektóre ze stopów mogą być stosowane zarówno do obróbki plastycznej, jak i jako stopy odlewnicze. Schematyczny podział stopów aluminium na odlewnicze i przeznaczone do obróbki plastycznej, zależny od zawartości drugiego składnika, został przedstawiony na rysunku 1.

Rys. 2. Fragment typowego wykresu równowagi Al.

Źródło: Dobrzański L. A., Metaloznawstwo opisowe stopów metali nieżelaznych, Wydawnictwo Politechniki Ślaskiej, Gliwice, 2008

Do grupy stopów odlewniczych zalicza się stopy, które wcale lub tylko w niewielkim stopniu mogą być przerabiane plastycznie. Z tych stopów wytwarza się wyroby odlewane, używając metod takich jak odlewanie do piasku kokilowego lub inne techniki odlewania. W zależności od zastosowanych dodatków stopowych wyróżniamy cztery główne grupy stopów odlewniczych aluminium, a mianowicie: Al-Si, Al-Zn, Al-Cu oraz Al-Mg. Mniejsze znaczenie praktyczne mają stopy odlewnicze z dodatkiem innych pierwiastków, takich jak np. Ni. Stopy odlewnicze aluminium charakteryzują się dobrą lejnością i niewielkim skurczem. Te właściwości wynikają z niskiej temperatury topnienia aluminium (660°C).

Stopy aluminium z krzemem, znane jako siluminy, są jednymi z najbardziej popularnych stopów odlewniczych aluminium. Mogą zawierać dodatkowo, pojedynczo lub wspólnie, w różnych kombinacjach, pierwiastki takie jak: Mg (0,2-1,5%), Cu (0,5-5%), Ni (0,5-3%), Mn (0,2-0,5%), oraz niewielkie ilości Fe, Zn, Co, Cr, Mo, W i V, mające na celu poprawę właściwości mechanicznych i fizykochemicznych siluminów. Warto zaznaczyć, że ilości tych dodatków są różnorodne, a ich kombinacje dostosowywane są do konkretnych wymagań. W zależności od technologii odlewania siluminów, ich właściwości ulegają zmianie [7]. Ponadto, zależnie od zawartości krzemu, siluminy dzielą się na podeutektyczne (4-10% Si), okołoeutektyczne (10-13% Si) oraz nadeutektyczne (13-26% Si).

Wpływ krzemu na stopy aluminium jest znaczący, wpływając korzystnie na ich właściwości. Dodatek krzemu poprawia własności wytrzymałościowe stopu, jednocześnie powodując obniżenie przewodności elektrycznej i zmniejszenie odporności na korozję. W przypadku siluminów okołoeutektycznych i nadeutektycznych, zwiększona zawartość krzemu przekłada się na stosunkowo niski współczynnik rozszerzalności cieplnej oraz znaczną odporność na ścieranie. To wynika głównie z mniejszej rozszerzalności cieplnej krzemu w porównaniu do aluminium, co skutkuje spadkiem rozszerzalności cieplnej całego stopu. Duża zawartość krzemu w siluminach przyczynia się również do poprawy właściwości odlewniczych, takich jak lepsza lejność, mniejszy skurcz podczas krzepnięcia oraz mniejsza skłonność do pękania na gorąco, szczególnie w porównaniu do innych stopów aluminium. W ten sposób dodatek krzemu korzystnie wpływa zarówno na właściwości mechaniczne, jak i procesy produkcyjne stopów aluminium.

Zadanie 1.

Badano i analizowano mikrostruktury. Badanie przeprowadzono przy pomocy mikroskopu (Leica MEF4M) sprzęgniętego z komputerem

Zdjęcie 1. Mikroskop Leica MEF4M

Próbki zostały poddane obserwacji pod mikroskopem, gdzie następnie dostosowano odpowiednie powiększenie i oświetlenie. Wykorzystanie sprzężenia z komputerem umożliwiło precyzyjne śledzenie obrazu oraz dokładne pomiaru cech strukturalnych. Pod mikroskopem były widoczne granice ziaren, które mogły różnić się wielkością w zależności od historii termicznej i procesu obróbki próbki. Dzięki zaawansowanemu sprzężeniu z komputerem możliwe było dokładne monitorowanie tych granic, co pozwoliło na lepsze zrozumienie struktury próbki oraz zbieranie danych pomiarowych na wysokim poziomie dokładności.

Zadanie 2.

Obliczono składniki wsadu w celu uzyskania pożądanego nadmiaru i składu chemicznego oraz sprawdzenia wpływu modykacji na nie.

Stop AlCu

- 4,5% Cu
- 0,2% Ti
- 0,5% Mn
- 0,5% Ag

Rys.1 AlCu powiększenie 10x przez szkło polaryzacyjne.

Próbka została poddana elektrolitycznemu wytrawianiu w roztworze kwasu HBF4. Na obrazie obserwowane są duże ziarna. Jej właściwości obejmują wytrzymałość na rozciąganie na poziomie około 400 megapaskali. Materiał ten nadaje się do zastosowań w bardzo niskich temperaturach, zachowując elastyczność i unikając stania się kruchym. Ponadto, może być używany nawet w warunkach temperatury sięgającej 200°C.

Żeliwo szare GJL250

- 3,1% C
- 1,8% Si
- 0,6% Mn
- 0,05% P
- 0,06% S

Rys. 2 GJL250 przed trawieniem x500

Rys. 3. GJL250 po trawieniu x100

Żeliwo to jest materiałem o strukturze płytkowej, charakteryzującym się kruchym zachowaniem. Występuje w nim grafit płatkowy typu A. Dobór wzorców został dokonany z uwzględnieniem proporcji 4/5, gdzie kluczowym kryterium było wybranie najdłuższych płatków grafitu, ponieważ wszystkie inne nie zostały przecięte wzdłuż struktury. Powierzchnię próbki poddano zgładowi przy użyciu Nitelu, który jest 5% roztworem kwasu azotowego. Udział ferrytu wynosi około 5%, a na granicach ziaren obecny jest perlit. Wartość wytrzymałości na rozciąganie wynosi 250 MPa, jednak po przeprowadzonej modyfikacji materiału osiągnięto nawet 450 MPa.

Perlit ziarnisty

Rys. 4. Powiekszenie x100

Rys. 5. Powiększenie x20

Zauważano po obróbce cieplnej występowanie cementytu w postaci kulkowej.

Zadanie 2.1

Podane informacje:

- Wegiel 3,0%
- Krzem 1,8%
- Mangan 0,65%
- Uzysk Węgla 90%
- Uzysk Krzemu 90%
- Uzysk Manganu 85%
- Masa całkowita 2500kg

Obliczono nadmiar wsadu dla otrzymania żeliwa o podanym składzie chemicznym.

Tabela 1. Skład chemiczny

Materiał	Węgiel (C)	Krzem (Si)	Mangan	Fosfor (P)	Siarka (S)
wsadowy	%	%	(Mn) %	%	%
Surówka	4,5	1,5	0,7	0,1	0,05
specjalna					
(A)					
Złom	0,45	0,5	0,2	0,01	0,01
stalowy (B)					
Fe-Si (C)	0,1	90	0	0	0
Fe-Mn (D)	2	2,5	75	0	0

Równanie bilansu tworzymy za pomocą wzoru:

$$\sum C * m = \frac{C_k * m_k}{\nu} \tag{2.1}$$

Do obliczeń wykorzystano metodę Cramera:

C:
$$(0,045*m_A + 0,0045*m_B + 0,001*m_C + 0,02*m_D)*0.9 = 2500*0,032$$
Si: $(0,015*m_A + 0,005*m_B + 0.9*m_C + 0,025*m_D)*0.9 = 2500*0,017$
Mn: $(0,007*m_A + 0,002*m_B + 0,75*m_D)*0.85 = 2500*0,0065$
 $m_A + m_B + m_C + m_D = 2500$

$$\begin{cases} (0,045*m_A + 0,0045*m_B + 0,001*m_C + 0,02*m_D)*0.9 = 2500*0,032\\ (0,015*m_A + 0,0045*m_B + 0,9*m_C + 0,025*m_D)*0.9 = 2500*0,032\\ (0,007*m_A + 0,002*m_B + 0,75*m_D)*0.85 = 2500*0,0065\\ m_A + m_B + m_C + m_D = 2500 \end{cases}$$

$$\begin{cases} 0,0405*m_A + 0,0045*m_B + 0,009*m_C + 0,018*m_D + 0,9 = 2500*0,0065\\ m_A + m_B + m_C + m_D = 2500 \end{cases}$$

$$\begin{cases} 0,0405*m_A + 0,0045*m_B + 0,0099*m_C + 0,018*m_D + 80\\ 0,0135*m_A + 0,0045*m_B + 0,81*m_C + 0,0225*m_D + 42,5\\ 0.00595*m_A + 0,0017*m_B + 0,6375*m_D = 16,25\\ m_A + m_B + m_C + m_D = 2500 \end{cases}$$

$$W = \begin{vmatrix} 0,0405 & 0,00405 & 0,0009 & 0,018\\ 0,0135 & 0,0045 & 0,81 & 0,0225\\ 0,000595 & 0,0017 & 0 & 0,6375\\ 1 & 1 & 1 & 1 \end{vmatrix} = 0,01863831981$$

$$W1 = \begin{vmatrix} 0,0405 & 0,00405 & 0,0009 & 0,018\\ 42,5 & 0,0045 & 0,81 & 0,0225\\ 0,00595 & 16,25 & 0 & 0,6375\\ 1 & 2500 & 1 & 1 \end{vmatrix} = 0,044636125625$$

$$0,00595 & 16,25 & 0 & 0,6375\\ 1 & 2500 & 1 & 1 \end{vmatrix} = 0,44636125625$$

$$0,00595 & 0,0017 & 0 & 0,6375\\ 1 & 1 & 2500 & 1 \end{vmatrix} = 0,321503315625$$

$$W4 = \begin{vmatrix} 0,0405 & 0,00405 & 0,0009 & 0,018\\ 0,0135 & 0,0045 & 0,81 & 0,0225\\ 0,00595 & 0,0017 & 16,25 & 0,0325\\ 0,00595 & 0,0017 & 16,25 & 0,6375\\ 1 & 1 & 2500 & 1 \end{vmatrix} = 0,321503315625$$

$$m_A = \frac{35,71402843125}{0,01863831981} \approx 1916,161 [kg]$$

$$m_B = \frac{10,44636125625}{0,01863831981} \approx 1916,161 [kg]$$

$$m_B = \frac{0,321503315625}{0,01863831981} \approx 560,477 [kg]$$

$$m_D = \frac{0,11390653125}{0,01863831981} \approx 6,111 [kg]$$

Zadanie 2.2

Obliczono jak zmieni się skład chemiczny po dodaniu modyfikatora.

Dane:

- Modyfikatory: 75% Si, 1,2% Cu,
- 1,2% Al Masa całkowita = 2500 kg
- Dodano 0,4%, czyli 0,004 * 2500 = 10 [kg]

Bilans Si

$$1.7 * 2500 + 10 * 75 = (2500 + 10) * Si$$

 $4250 + 750 = 2510 * Si$
 $Si = 1.992\%$
Zmiana z 1.7% na 1.992%

Bilans C

$$3.2 * 2500 = 2510 * C$$
 $C = 3.19\%$
Zmiana z 3.2% na 3.19%

Bilans Mn

$$0.65 * 2500 = 2510 * Mn$$

$$Mn = 0.647\%$$
Zmiana z 0.65% na 0.647%

Literatura

- [1] Poradnik Odlewnika, Tom 1, 2013, STOP
- [2] http://www.kmimp.agh.edu.pl/pliki/zeliwa.pdf