Lojik Tasarım

Ders 13

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

Registers (Yazıcılar – Kaydediciler)

- İki yada daha fazla bitten oluşan bilgi yüklenebilen, RESET işareti verilene kadar veya yeni bir bilgi yüklenene kadar üzerindeki bilgiyi koruyabilen fonksiyonel yapılara register denir.
- Sayıcılar, durumları daha önceden belirlenen durumlara göre değişen registerlardır.
- n bitlik bir register n adet flip-floptan oluşur

4 bitlik register

Paralel Yüklemeli Registerlar

- Sayısal bir sistemde sürekli bir saat palsi vardır
- Saat palsini VE'lemek yayılım gecikesinden dolayı senkronizasyonu bozar
- Tampon kapılar yükü azaltmak için kullanılmıştır

Örnek

7-1

nek Durum tablosu Şekil 7-5(a)'da verilen ardışıl devreyi tasarlayın.

Tabloda, A_1 ile A_2 flip-flopları, x girişi ve y de çıkışı göstermektedir Sonraki durum ve çıkış bilgisi doğrudan tablo yardımıyla elde edilebilir:

$$A_1(t+1) = \sum (4, 6)$$

$$A_2(t+1) = \sum (1, 2, 5, 6)$$

$$y(A_1, A_2, x) = \sum (3, 7)$$

Şimdiki durum		Sonraki Giriş durum		Çıkış	
A_1	A_2	X	A_1	A_2	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	0	1
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	0	0	1

(a) Durum tablosu

ŞEKİL 7-5 Ardışıl devre uygulama örneği

Minterimlerdeki değişkenler A_1 ve A_2 'nin şimdiki durumlarıyla x girişidir. Sonraki durum ve çıkışa ilişkin fonksiyonlar diyagramlar kullanılarak aşağıdaki gibi basitleştirilebilir:

$$A_1(t+1) = A_1 x'$$

$$A_2(t+1) = A_2 \oplus x$$

$$y = A_2 x$$

Shift Register (Ötelemeli – Kaydırmalı Yazıcılar)

- Register içerisindeki bilgini sağa sola kaydırılması amacıyla kullanılır.
- Aşağıda sağa ötelemeli bir shift register devresi görülmektedir.

Seri veri transferi

ŞEKİL 7-8A'dan *B* yazıcısına seri transfer

TABLO 7-1 Seri Transfer Örneği

Zamanlama Darbesi		Öte1	emel	i Yazı	cı A	Öte	lemel	i Yazı	cı B	B'nin Seri Çıkışı
		Oter	CIIICI	1 1 421	C171	- 010.	ICIIICI	1 1 021		y may
Başlangıç değeri		1、	0	. 1	. 12	0 🔪	0,	1	. 0	0
T_1 sonrası	À	1	4 1 3	0 3	1 –	1	\boldsymbol{z}^0	π^0 :	1	1
T ₂ sonrası		1	1	1	0	1	1	0	0	0
T ₃ sonrası		0	1	1	1	0	1	1	0	0
T ₄ sonrası		1	0	1	1	1	0	1	1	1

Seri Toplama

Soru: Bir seri toplayıcıyı JK tipi FF kullanarak tasarlayınız

_			_		
C	tata	Iabl	o for	Carial	Adder
. J	lule	luvi	י וטו	senui	Auuei

Present State	Inp	uts	Next State	Output	Flip-Flo	p Inputs
Q	X	y	Q	S	JQ	K _Q
0	0	0	0	0	0	X
0	0	1	0	1	0	X
0	1	0	0	1	0	X
0	1	1	1	0	1	X
1	0	0	0	1	X	1
1	0	1	1	0	X	0
1	1	0	1	0	X	0
1	1	1	1	1	X	0

$$J_Q = xy$$

$$K_Q = x'y' = (x + y)'$$

$$S = x \oplus y \oplus Q$$

$$J_Q = xy$$

$$K_Q = x'y' = (x + y)'$$

$$S = x \oplus y \oplus Q$$

FIGURE 6.6
Second form of serial adder

Çok Fonksiyonlu (Universal) Shift Register

Hafıza Ünitesinin Blok Diyagramı

Block dlagram of a memory unit

FIGURE 7.3
Contents of a 1024 × 16 memory

Memory a	address	
Binary	Decimal	Memory content
0000000000	0	1011010101011101
0000000001	1	1010101110001001
0000000010	2	0000110101000110
	÷	÷
1111111101	1021	1001110100010100
1111111110	1022	0000110100011110
1111111111	1023	1101111000100101

Memory address

1 Bitlik Hafıza Hücresi

4x4 RAM Diyagramı

