ACIT 1630

RELATIONAL DATABASE & SQL

ED SWEENEY

IS IDENTITY

Person:

Column Name	Data Type	Allow Nulls	Is Identity	Key
person_id	int	No	Yes	Primary
first_name	nvarchar(50)	No		
last_name	nvarchar(50)	No		

Colu	umn Properties	
	A L	
	Has Non-SQL Server Subscriber	No
¥	Identity Specification	Yes
	(Is Identity)	Yes
	Identity Increment	1
	Identity Seed	1
	Indexable	Yes

LESSON OBJECTIVES

- Primary and Foreign Keys
- More Relationships (Many-to-Many)
- Constraints

DERIVED VALUES

- Price + Tax = SubTotal
- Sum(Item SubTotals) = Total
- Today BirthDate = Age

DERIVED VALUES

• Store or Calculate?

MANY-TO-MANY RELATIONSHIPS

MANY-TO-MANY RELATIONSHIPS

MANY-TO-MANY RELATIONSHIPS

RELATIONAL MODELS AND IMPLEMENTATIONS

 Some relationships can't be implemented (at least not directly)

THE MARRIAGE PROBLEM

- People are married to people.
- Self-referencial relationship
 (Entity relates to same Entity)
- Unary Relationship

SCENARIO 1

person_id	first_name	married_id
1	Firuzeh	3
2	Wen	
3	Kianoush	1
4	Barbara	
5	Yang	2

https://images-na.ssl-images-amazon.com/images/I/61NWvT8vUoL._SX466_.jp

SCENARIO 2

person_id	first_name
1	Firuzeh
2	Wen
3	Kianoush
4	Barbara
5	Yang

person_id	married_id
1	3
2	5
5	2 ?

https://images-na.ssl-images-amazon.com/images/I/61NWvT8vUoL._SX466_.jp

SCENARIO 3

person_id	first_name
1	Firuzeh
2	Wen
3	Kianoush
4	Barbara
5	Yang

marriage_id	date
1	Mar 3, 1970
2	Jul 19, 1995

marriage_id	person_id
1	3
1	1
2	2

https://images-na.ssl-images-amazon.com/images/I/61NWvT8vUoL._SX466_.jp

THE MARRIAGE PROBLEM

Each scenario has potential issues in implementation.

• I guess you could say:

"You can't rely on a database to save your marriage!

CLASS EXERCISE

Soccer Teams

PROJECT #1

Design a database using an ERD.[Art Gallery]

LAB

- D2L: learn.bcit.ca
- M:M in Draw.io
- Explore MySQL Data Constraints
- Many-to-Many

Submit required screenshots

Complete by Thursday 11:30PM