(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 30. Juni 2005 (30.06.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/058936 A2

- (51) Internationale Patentklassifikation:
- **C07K**
- (21) Internationales Aktenzeichen: PCT/EP2004/013663
- (22) Internationales Anmeldedatum:
 - 1. Dezember 2004 (01.12.2004)
- (25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 59 352.7

- 16. Dezember 2003 (16.12.2003) DE
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): MERCK PATENT GMBH [DE/DE]; Frankfurter Strasse 250, 64293 Darmstadt (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): FIEBIG, Helmut [DE/DE]; Baeckerweg 10, 21493 Schwarzenbek (DE). NANDY, Andreas [DE/DE]; Nuesslerkamp 89, 22175 Hamburg (DE). CROMWELL, Oliver [GB/DE]; Am Brook 17, 23701 Suesel-Fassendorf (DE).
- (74) Gemeinsamer Vertreter: MERCK PATENT GMBH: Frankfurter Strasse 250, 64293 Darmstadt (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: DNA SEQUENCE, AND RECOMBINANT PRODUCTION OF THE GRASS POLLEN ALLERGEN LOL P 4
- (54) Bezeichnung: DNA-SEQUENZ UND REKOMBINANTE HERSTELLUNG DES GRASPOLLEN-ALLERGENS LOL P 4
- (57) Abstract: The invention relates to the preparation of a DNA sequence of the main grass pollen allergen Lol p 4. Also disclosed are fragments, novel combinations of partial sequences, and point mutants having a hypoallergenic effect. Said recombinant DNA molecules and the derived polypeptides, fragments, novel combinations of partial sequences, and variants can be utilized for the treatment of pollen allergic diseases. The recombinantly produced proteins can be used for in vitro and in vivo diagnosis of pollen allergies.
- (57) Zusammenfassung: Die vorliegende Erfindung betrifft die Bereitstellung einer DNA-Sequenz des Graspollenhauptallergens Lol p 4. Die Erfindung schliesst auch Fragmente, Neukombinationen von Teilsequenzen und Punktmutanten mit hypoallergener Wirkung ein. Die rekombinanten DNA-Moleküle und die abgeleiteten Polypeptide, Fragmente, Neukombinationen von Teilsequenzen und Varianten können zur Therapie von pollenallergischen Krankheiten genutzt werden. Die rekombinant hergestellten Proteine können zur In-vitro-und In-vivo-Diagnostik von Pollenallergien eingesetzt werden.

DNA-Sequenz und rekombinante Herstellung des Graspollen-Allergens Lol p 4

5

Hintergrund der Erfindung

Die vorliegende Erfindung betrifft die Bereitstellung einer DNA-Sequenz des Graspollenhauptallergens Lol p 4. Die Erfindung schließt auch Fragmente, Neukombinationen von Teilsequenzen und Punktmutanten mit hypoallergener Wirkung ein. Die rekombinanten DNA-Moleküle und die abgeleiteten Polypeptide, Fragmente, Neukombinationen von Teilsequenzen und Varianten können zur Therapie von pollenallergischen Krankheiten genutzt werden. Die rekombinant hergestellten Proteine können zur *In-vitro*und *In-vivo*-Diagnostik von Pollenallergien eingesetzt werden.

Allergien vom Typ 1 haben weltweite Bedeutung. Bis zu 20 % der Bevölkerung in industrialisierten Ländern leiden unter Beschwerden wie allergischer Rhinitis, Konjunktivitis oder Bronchialasthma. Diese Allergien werden durch in der Luft befindliche Allergene (Aeroallergene), die von Quellen unterschiedlicher Herkunft wie Pflanzenpollen, Milben, Katzen oder Hunden freigesetzt werden, hervorgerufen. Bis zu 40 % dieser Typ 1-Allergiker wiederum zeigen spezifische IgE-Reaktivität mit Gräserpollenallergenen (Freidhoff et al., 1986, J. Allergy Clin. Immunol. 78, 1190-2001).

Bei den Typ 1-Allergie auslösenden Substanzen handelt es sich um Proteine, Glykoproteine oder Polypeptide. Diese Allergene reagieren nach Aufnahme über die Schleimhäute mit den bei sensibilisierten Personen an der Oberfläche von Mastzellen gebundenen IgE-Molekülen. Werden zwei IgE-Moleküle durch ein Allergen miteinander vernetzt, führt dies zur Ausschüt-

tung von Mediatoren (z. B. Histamin, Prostaglandine) und Zytokinen durch die Effektorzelle und damit zu den entsprechenden klinischen Symptomen.

- In Abhängigkeit von der relativen Häufigkeit mit der die einzelnen Allergenmoleküle mit den IgE-Antikörpern von Allergikern reagieren, wird zwischen Major- und Minorallergenen unterschieden.
- Für das Weidelgras (*Lolium perenne*) wurde das Lol p 1 als ein Hauptallergen identifiziert (Freidhoff et al., 1986, J. Allergy Clin. 78:1190-1201) und seine Primärstruktur aufgeklärt (Perez et al., 1990, J. Biol. Chem. 265:16210-16215). Ein weiteres Hauptallergen ist das Lol p 2 (Freidhoff et al., 1986, J. Allergy Clin. 78:1190-1201) dessen Primärstruktur 1993 beschrieben wurde (Ansari et al., 1989, J. Biol. Chem.: 264:11181-11185). Ein weiteres Hauptallergen des Weidelgrases ist das Lol p 5 (Mattiesen und Löwenstein 1991, Clin. Exp. Allergy 21: 297-307). Die Primärstruktur von Lol p 5 ist ebenfalls bekannt (Ong et al., 1993, Gene 134:235-240).

 Das Weidelgras enthält weiterhin die Hauptallergene der Gruppen 4 (Fahlbusch et al. 1998, Clin. Exp. Allergy 28: 799-807) und 13 (Petersen et al., 2001, J. Allergy Clin. Imm. 107:856-862).
- Das Lol p 4 ist ein typisches basisches Glykoprotein (Jaggi et al, 1989, Int. Arch. Allergy Appl. Immunol. 89:342-348, Jaggi et al., 1989, J. Allergy Clin. Immunol. 83:845-852) und hinsichtlich der Kreuzreaktivität mit spez. IgE-Antikörpern mit dem gut untersuchten Phl p 4, Cyn d 4 und Dac g 4 zu vergleichen (Haavik et al., 1985, Int. Arch. Allergy Appl. Immunol. 78:260-268; Su et al., 1991, Clin. Exp. Allergy 21:449-455; Leduc-Brodard et al., 1996, J. Allergy Clin. Immunol. 98:1065-1072; 14-17).
- Diese homologen Moleküle der *Poaceae* bilden die Allergengruppe 4, deren Moleküle eine hohe immunologische Kreuzreaktivität untereinander sowohl mit monoklonalen Mausantikörpern als auch mit humanen IgE-

Antikörpern aufweisen (Fahlbusch et al., 1993 Clin. Exp. Allergy 23:51-60; Leduc-Brodard et al., 1996, J. Allergy Clin. Immunol. 98:1065-1072; Su et al., 1996, J. Allergy Clin. Immunol. 97:210; Fahlbusch et al., 1998, Clin. Exp. Allergy 28:799-807; Gavrovic-Jankulovic et al., 2000, Invest. Allergol. Clin. Immunol. 10 (6):361-367; Stumvoll et al. 2002, Biol. Chem. 383:1383-1396; Grote et al., 2002, Biol. Chem. 383:1441-1445; Andersson und Lidholm, 2003, Int. Arch. Allergy Immunol. 130:87-107; Mari, 2003, Clin. Exp.

10

5

Im Gegensatz zu den obengenannten Hauptallergenen Lol p 1, Lol p 2, Lol p 5 von *Lolium perenne* ist die Primärstruktur von Lol p 4 noch nicht aufgeklärt.

15

25

Von dem Gruppe-4 Allergen aus *Dactylus glomerata* sind bisher lediglich Peptide durch enzymatischen Abbau gewonnen und sequenziert worden: DIYNYMEPYVSK (SEQ ID NO 7),

VDPTDYFGNEQ (SEQ ID NO 8),

Allergy, 33 (1):43-51).

ARTAWVDSGAQLGELSY (SEQ ID NO 9)
und GVLFNIQYVNYWFAP (SEQ ID NO 10, Leduc-Brodard et al., 1996, J. Allergy Clin. Immunol. 98: 1065-1072).

Auch vom Gruppe-4 Allergen des subtropischen Bermuda-Grases (*Cynodon dactylon*) sind durch Proteolyse Peptide erhalten und sequenziert worden:

KTVKPLYIITP (SEQ ID NO 11),

 ${\sf KQVERDFLTSLTKDIPQLYLKS} \ ({\sf SEQ\ ID\ NO\ 12}),$

TVKPLYIITPITAAMI (SEQ ID NO 13),
LRKYGTAADNVIDAKVVDAQGRLL (SEQ ID NO 14),
KWQTVAPALPDPNM (SEQ ID NO 15),
VTWIESVPYIPMGDK (SEQ ID NO 16),
GTVRDLLXRTSNIKAFGKY (SEQ ID NO 17),

TSNIKAFGKYKSDYVLEPIPKKS (SEQ ID NO 18),

YRDLDLGVNQVVG (SEQ ID NO 19),
SATPPTHRSGVLFNI (SEQ ID NO 20),
und AAAALPTQVTRDIYAFMTPYVSKNPRQAYVNYRDLD (SEQ ID NO 21,
Liaw et al., 2001, Biochem. Biophys. Research Communication 280: 738743).

Für Lolium perenne wurden für das basische Gruppe-4 Allergen Peptidfragmente mit den folgenden Sequenzen beschrieben: FLEPVLGLIFPAGV (SEQ ID NO 22) und GLIEFPAGV (SEQ ID NO 23, Jaggi et al., 1989, Int. Arch. Allergy Appl. Immunol. 89: 342-348).

Diese beschriebenen Peptidsequenzen für *Lolium perenne* und andere

Gruppe-4 Allergene haben jedoch bisher nicht zur Aufklärung der Primärstruktur des Lol p 4 Allergens geführt.

Als erste Sequenz eines Allergens der Gruppe 4 wurde von den Erfindern der vorliegenden Patentanmeldung die noch unveröffentlichte Sequenz des Phl p 4 aus *Phleum pratense* aufgeklärt und in der internationalen Anmeldung WO 04/000881 beschrieben.

Die der vorliegenden Erfindung zugrunde liegende Aufgabe bestand daher in der Bereitstellung einer DNA-Sequenz des Lol p 4-Gens, kodierend für ein Allergen mit den immunologischen Eigenschaften des Lol p 4, sowie einer entsprechenden rekombinanten DNA, auf deren Grundlage das Allergen als Protein exprimiert und einer pharmakologisch bedeutsamen Verwertung als solches oder in veränderter Form zugänglich gemacht werden kann. Die Sequenz des Phl p 4 war Ausgangspunkt für die vorliegende Erfindung.

30

20

Verzeichnis der erfindungsgemäßen Sequenzen

- DNA-Sequenz aus dem Lol p 4-Gen (SEQ ID NO 1).
- Aus der DNA-Sequenz gemäß SEQ ID NO 1 abgeleitete Protein-Sequenz (SEQ ID NO 2).
- DNA-Sequenz (SEQ ID NO 3), zusammengesetzt aus den Nukleotiden 1-200 des Phl p 4 (gemäß SEQ ID NO 5), 201-1472 des LoI p 4 (gemäß SEQ ID NO 1) sowie 1473-1503 des Phl p 4 (gemäß SEQ ID NO 5).
- Proteinsequenz (SEQ ID NO 4), zusammengesetzt aus den Aminosäuren 1-67 des Phl p 4 (gemäß SEQ ID NO 6), 68-490 des Lol p 4 (gemäß SEQ ID NO 2) sowie 491-500 des Phl p 4 (gemäß SEQ ID NO 6) mit den Eigenschaften, insbesondere immunologischen Eigenschaften des Lol p 4, kodiert von der DNA-Sequenz gemäß SEQ ID NO 3.
- DNA-Sequenz des Phl p 4 (SEQ ID NO 5), gemäß SEQ ID NO 5 aus der WO 04/000881.
- Proteinsequenz des PhI p 4 (SEQ ID NO 6), gemäß SEQ ID NO 6 aus der WO 04/000881.

Beschreibung der Erfindung

25

5

10

15

Mit der vorliegenden Erfindung wird nun erstmals eine DNA-Sequenz des Graspollenhauptallergens Lol p 4 bereit gestellt (SEQ ID NO 1) die für ein Allergen mit den immunologischen Eigenschaften des Lol p 4 kodiert.

- Gegenstand der vorliegenden Erfindung ist daher ein DNA-Molekül kodierend für ein Allergen mit den Eigenschaften des Lol p 4, entsprechend einer Nukleotidsequenz gemäß SEQ ID NO 1.
- Weiterhin ist Gegenstand der Erfindung ein DNA-Molekül kodierend für ein Allergen mit den Eigenschaften des Lol p 4, entsprechend einer Nukleotidsequenz gemäß SEQ ID NO 3, zusammengesetzt aus den Nukleotiden 1-

201 des Phl p 4 (gemäß SEQ ID NO 5), 202-1470 des Lol p 4 (SEQ ID NO 1) sowie 1471-1500 des Phl p 4.

- Die Erfindung betrifft weiterhin zu den erfindungsgemäßen DNASequenzen homologe Sequenzen bzw. entsprechende DNA-Moleküle von
 Gruppe-4-Allergenen aus anderen *Poaceae* wie beispielsweise *Dactylis*glomerata, *Poa pratensis, Cynodon dactylon, Holcus lanatus, Secale cerale, Triticum aestivum* und *Hordeum vulgare*, die aufgrund der bestehenden
 Sequenzhomologie mit den erfindungsgemäßen DNA-Sequenzen unter
 stringenten Bedingungen hybridisieren, bzw. bezüglich Lol p 4 eine immunologische Kreuzraktivität aufweisen.
- Die Erfindung schließt dabei auch Fragmente, Neukombinationen von Teilsequenzen und Punktmutanten mit hypoallergener Wirkung ein.
- Gegenstand der Erfindung sind daher weiterhin entsprechende Teilsequenzen, einer Kombination von Teilsequenzen bzw. Austausch-, Elimierungs- oder Additionsmutanten, welche für ein immunmodulatorisches, T-Zell-reaktives Fragment eines Gruppe-4-Allergens der *Poaceae* kodieren.
- Mit der Kenntnis der DNA-Sequenz der natürlich vorkommenden Allergene ist es nun möglich, diese Allergene als rekombinante Proteine herzustellen, die in der Diagnostik und Therapie von allergischen Erkrankungen Verwendung finden können (Scheiner and Kraft, 1995, Allergy 50: 384-391).
- Ein klassischer Ansatz zur wirksamen therapeutischen Behandlung von Allergien stellt die Spezifische Immuntherapie oder Hyposensibilisierung dar (Fiebig, 1995, Allergo J. 4 (6): 336-339, Bousquet et al., 1998, J. Allergy Clin. Immunol. 102(4): 558-562). Dabei werden dem Patienten natürliche Allergenextrakte in steigenden Dosen subkutan injiziert. Allerdings besteht bei dieser Methode die Gefahr von allergischen Reaktionen oder sogar ei-

WO 2005/058936 PCT/EP2004/013663 - 7 -

nes anaphylaktischen Schocks. Um diese Risiken zu minimieren, werden innovative Präparate in Form von Allergoiden eingesetzt. Dabei handelt es sich um chemisch modifizierte Allergenextrakte, die deutlich reduzierte IgE-Reaktivität, jedoch identische T-Zell-Reaktivität im Vergleich zum nicht behandelten Extrakt aufweisen (Fiebig, 1995, Allergo J. 4 (7): 377-382). Eine noch weitergehende Therapieoptimierung wäre mit rekombinant hergestellten Allergenen möglich. Definierte, ggfs. auf die individuellen Sensibilisierungsmuster der Patienten abgestimmte Cocktails von hochreinen, rekombinant hergestellten Allergenen könnten Extrakte aus natürlichen Allergenquellen ablösen, da diese außer den verschiedenen Allergenen eine größere Zahl von immunogenen, aber nicht allergenen Begleitproteinen enthalten.

Realistische Perspektiven, die zu einer sicheren Hyposensibilisierung mit Expressionsprodukten führen können, bieten gezielt mutierte rekombinante Allergene, bei denen IgE-Epitope spezifisch deletiert werden, ohne die für die Therapie essentiellen T-Zell Epitope zu beeinträchtigen (Schramm et al., 1999, J. Immunol. 162: 2406-2414).

Eine weitere Möglichkeit zur therapeutischen Beeinflussung des gestörten TH-Zell-Gleichgewichtes bei Allergikern ist die immuntherapeutische DNA-Vakzinierung. Dabei handelt es sich um eine Behandlung mit expressionsfähiger DNA, die für die relevanten Allergene kodiert. Erste experimentelle Belege für die allergenspezifische Beeinflussung der Immunantwort konnte an Nagern durch Injektion von Allergen-kodierender DNA erbracht werden (Hsu et al., 1996, Nature Medicine 2 (5): 540-544).

Gegenstand der vorliegenden Erfindung ist daher auch ein vor- oder nachstehend beschriebenes DNA-Molekül bzw. ein entsprechender rekombinanter Expressionsvektor als Arzneimittel.

30

5

10

20

- 8 -

Die entsprechenden rekombinant hergestellten Proteine können zur Therapie sowie zur *in vitro*- und *in vivo*-Diagnostik von Pollenallergien eingesetzt werden.

Zur Herstellung des rekombinanten Allergens wird die klonierte Nukleinsäure in einen Expressionsvektor ligiert und dieses Konstrukt in einem geeigneten Wirtsorganismus exprimiert. Nach biochemischer Reinigung steht dieses rekombinante Allergen zur Detektion von IgE-Antikörpern in etablierten Verfahren zur Verfügung.

10

5

Gegenstand der vorliegenden Erfindung ist daher weiterhin ein rekombinanter Expressionsvektor, enthaltend ein vor- oder nachstehend beschriebenes DNA-Molekül, funktionell verbunden mit einer Expressionskontrollsequenz und ein Wirtsorganismus, transformiert mit besagtem DNA-Molekül oder besagtem Expressionsvektor.

20

15

Ebenfalls erfindungsgegenständlich ist die Verwendung mindestens eines zuvor beschriebenen DNA-Moleküls oder mindestens eines zuvor beschriebenen Expressionsvektors zur Herstellung eines Arzneimittels zur immuntherapeutischen DNA-Vakzinierung von Patienten mit Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae*, insbesondere Lol p 4, beteiligt sind und/oder zur Prävention solcher Allergien.

25

30

35

Wie bereits ausgeführt kann die Erfindung als eine essentielle Komponente in einem rekombinanten allergen- oder nukleinsäurehaltigen Präparat zur spezifischen Immuntherapie angewendet werden. Hierbei bieten sich mehrere Möglichkeiten. Zum einen kann das in der Primärstruktur unveränderte Protein Bestandteil des Präparates sein. Zum anderen kann durch gezielte Deletion von IgE-Epitopen des Gesamtmoleküls oder der Herstellung von einzelnen Fragmenten, die für T-Zell Epitope kodieren, erfindungsgemäß eine hypoallergene (allergoide) Form zur Therapie verwendet werden, um unerwünschte Nebenwirkungen zu vermeiden. Schließlich wird durch die Nukleinsäure an sich, wenn sie mit einem eukaryontischen Expressions-

vektor ligiert wird, ein Präparat geschaffen, das direkt appliziert den allergischen Immunzustand im therapeutischen Sinne verändert.

Desweiteren handelt es sich bei der vorliegenden Erfindung um die von einem oder mehreren der zuvor beschriebenen DNA-Moleküle kodierten Polypeptide, vorzugsweise in ihrer Eigenschaft als Arzneimittel.

Insbesondere handelt es sich bei den Polypeptiden um ein Protein entsprechend einer Aminosäuresequenz gemäß SEQ ID NO 2 bzw. eines Proteins. welches diese Aminosäuresequenz oder einen Teil dieser Sequenz enthält, mit den Eigenschaften, insbesondere immunologischen Eigenschaften des Lol p 4 sowie um ein Protein entsprechend einer Aminosäuresequenz gemäß SEQ ID NO 4 mit den Eigenschaften, insbesondere immunologischen Eigenschaften des Lol p 4.

Die Erfindung betrifft demgemäß auch ein Verfahren zur Herstellung solcher Polypeptide durch Kultivieren eines Wirtsorganismus und Gewinnung des entsprechenden Polypeptides aus der Kultur.

20

25

30

Ebenfalls erfindungsgegenständlich ist die Verwendung mindestens eines zuvor beschriebenen Polypeptides bzw. Proteins zur Herstellung eines Arzneimittels zur Diagnose und/oder Behandlung von Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae*, insbesondere Lol p 4, beteiligt sind sowie zur Prävention solcher Allergien.

Bei der Ermittlung der Protein- und DNA-Sequenz des Lol p 4 wurde wie folgt vorgegangen:

Die erfindungsgemäße Lol p 4-DNA-Sequenz gemäß SEQ ID NO 1 wurde durch PCR mit spezifischen Primern (Tab. 1), die von der PhI p 4 Sequenz, germäß SEQ ID NO 5 wie in der WO 04/000881 beschrieben, abgeleitet wurden, amplifiziert, kloniert und sequenziert. Insgesamt wurden 7 Klone

5

20

25

analysiert. Die Analyse der Klone ergab eine einheitliche Sequenz. Drei Lol p 4-DNA-Sequenzen wurden durch PCR mit den Primern #87 und #83 erhalten. Die mit diesen Primern amplifizierte Lol p 4-DNA-Sequenz kodiert für die korrespondierenden Aminosäuren 68-401, bezogen auf die Nummerierung des reifen Phl p 4 gemäß SEQ ID NO 6. Zwei weitere Klone wurden durch PCR mit den Primern #87 und #189 erhalten. Die mit diesen Primern amplifizierte Lol p 4-DNA-Sequenz kodiert für die korrespondierenden Aminosäuren 68-490 (Nummerierung entsprechend Phl p 4-Sequenz). Zwei 10 Klone wurden durch PCR mit den Primern #87 und #131 erhalten. Die amplifizierte Lol p 4-DNA-Sequenz kodiert ebenfalls für die korrespondierenden Aminosäuren 68-490 (Nummerierung entsprechend Phl p 4-Sequenz). Die Primer #131 und #189 entsprechen den Codons für die letzten 10 Aminosäuren des Phl p 4 Proteins und überspannen das Stoppco-15 don.

Die erfindungsgemäße DNA-Sequenz gemäß SEQ ID NO 3 wurde nach an sich bekannten Methoden erhalten (PCR-Technik mit überlappenden Primern).

Zur Herstellung der rekombinanten erfindungsgemäßen Allergene wurden die DNA-Sequenzen gemäß SEQ ID NO 1 bzw. 3 in Expressionsvektoren (z.B. pProEx, pSE 380) eingebaut. Für die aus der Proteinsequenzierung bekannten N-terminalen Aminosäuren wurden E. coli optimierte Codons verwendet.

- Nach der Transformation in E. coli, der Expression und der Reinigung der 30 rekombinanten erfindungsgemäßen Allergene durch verschiedene Trenntechniken wurde die erhaltenen Proteine einem Refoldingprozess unterworfen.
- Beide Allergene können zur hochspezifischen Diagnostik von Graspollenal-35 lergien eingesetzt werden. Diese Diagnostik kann in vitro durch die Detektion von spezifischen Antikörpern (IgE, IgG1 - 4, IgA) und die Reaktion mit

IgE-beladenen Effektorzellen (z. B. Basophile aus dem Blut) oder *in vivo* durch Hauttest-Reaktionen und Provokation am Reaktionsorgan erfolgen.

Die Reaktion der erfindungsgemäßen Allergene mit T-Lymphozyten von Graspollenallergikern können durch die allergenspezifische Stimulierung der T-Lymphozyten zur Proliferation und Zytokinsynthese sowohl mit T-Zellen in frisch präparierten Blutlymphozyten als auch an etablierten nLol p 4-reaktiven T-Zell-Linien und -Klonen nachgewiesen werden.

10

15

Durch ortsgerichte Mutagenese wurden die für die Cysteine kodierenden Tripletts so verändert, dass sie für andere Aminosäuren, bevorzugt Serin, kodieren. Es wurden sowohl Varianten hergestellt, bei denen einzelne Cysteine ausgetauscht wurden, als auch solche, bei denen verschiedene Kombinationen von 2 Cysteinresten bzw. alle Cysteine verändert wurden. Die exprimierten Proteine dieser Cysteinpunktmutanten weisen eine stark reduzierte bzw. fehlende Reaktivität mit IgE-Antikörpern von Allergikern auf, reagieren jedoch mit den T-Lymphozythen dieser Patienten.

20

Gegenstand der vorliegenden Erfindung ist daher weiterhin ein vor- oder nachstehend beschriebenes DNA-Molekül, bei dem durch ortsgerichtete Mutagenese einer, mehrere oder alle Cystein-Reste des entsprechenden Polypeptids gegen eine andere Aminosäure ausgetauscht wurden.

30

25

Die immunmodulatorische Aktivität von hypoallergenen Fragmenten, die Polypeptiden mit T-Zell-Epitopen entsprechen, sowie die der hypoallergenen Punktmutanten (z.B. Cystein-Austausche) kann durch ihre Reaktion mit T-Zellen von Graspollenallergikern nachgewiesen werden.

35

Solche hypoallergenen Fragmente bzw. Punktmutanten der Cysteine können als Präparate zur Hyposensibilisierung von Allergikern eingesetzt werden, da sie mit gleicher Effektivität mit den T-Zellen reagieren, jedoch auf-

grund der verminderten oder ganz fehlenden IgE-Reaktivität zu geringeren IgE-vermittelten Nebenwirkungen führen.

Werden die für die erfindungsgemäßen hypoallergenen Allergen-Varianten kodierenden Nukleinsäuren oder die unveränderten erfindungsgemäßen DNA-Moleküle mit einem humanen Expressionsvektor ligiert, können diese Konstrukte ebenfalls als Präparate für eine Immuntherapie (DNA-Vakzinierung) angewendet werden.

10

15

Schließlich sind Gegenstand der vorliegenden Erfindung pharmazeutische Zubereitungen, enthaltend mindestens ein zuvor beschriebenes DNA-Molekül oder mindestens einen zuvor beschriebenen Expressionsvektor und gegebenenfalls weitere Wirk- und/oder Hilfsstoffe zur immuntherapeutischen DNA-Vakzinierung von Patienten mit Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae*, insbesondere Lol p 4, beteiligt sind und/oder zur Prävention solcher Allergien.

20

Eine weitere Gruppe von erfindungsgemäßen pharmazeutischen Zubereitungen enthält anstelle der DNA mindestens ein zuvor beschriebenes Polypeptid und eignet sich zur Diagnose und/oder Behandlung besagter Allergien.

25

30

Pharmazeutische Zubereitungen im Sinne der vorliegenden Erfindung enthaltend als Wirkstoffe ein erfindungsgemäßes Polypeptid oder einen Expressionsvektor und/oder deren jeweilige pharmazeutisch verwendbaren Derivate, einschließlich deren Mischungen in allen Verhältnissen. Hierbei können die erfindungsgemäßen Wirkstoffe zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff und gegebenenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen in eine geeignete Dosierungsform gebracht werden.

35

Als Hilfsstoffe sind immunstimulierende DNA oder Oligonukleotide mit CpG-Motiven besonders geeignet.

Diese Zubereitungen können als Therapeutika oder Diagnostika in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die parenterale Applikation eignen und die Wirkung des erfindungsgemäßen Wirkstoffs nicht negativ beeinflussen. Zur parenteralen Anwendung dienen insbesondere Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate. Der erfindungsgemäße Wirkstoff kann auch lyophilisiert und die erhaltenen Lyophilisate z.B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen und/oder mehrere weitere Wirkstoffe enthalten.

Weiterhin können durch entsprechende Formulierung des erfindungsgemäßen Wirkstoffs Depotpräparate - zum Beispiel durch Adsorption an Aluminiumhydroxid - erhalten werden.

Die Erfindung dient somit auch zur Verbesserung der *in vitro* Diagnostik im Rahmen einer Allergen-Komponenten auflösenden Identifizierung des patientenspezifischen Sensibilisierungsspektrums. Die Erfindung dient ebenfalls zur Herstellung von deutlich verbesserten Präparaten zur spezifischen Immuntherapie von Gräserpollenallergien.

Tabelle 1 Verwendete Primer

5

10

15

20

25

30

Primer num- mer	SEQ ID NO	Sequenz
#83	24	GGCTCCCGGGGCGAACCAGTAG
#87	25	ACCAACGCCTCCCACATCCAGTC
#131	26	GATAAGCTTGAATTCTGATTAGTACTTTTTGATCAGC GGCGGGATGCTC
#189	27	GATAAGCTTCTCGAGTGATTAGTACTTTTTGATCAGC

1 (2/2C/2/2/ATCCTC	\neg
GGCGGGATGCTC	- 1
	- 1

5

10

15

20 -

25

30

5

20

Patentansprüche

- Ein DNA-Molekül kodierend für ein Allergen mit den Eigenschaften des Lol p 4, entsprechend einer Nukleotidsequenz, ausgewählt aus einer der Sequenzen gemäß SEQ ID NO 1 und 3.
- Ein DNA-Molekül, das mit einem DNA-Molekül gemäß Anspruch 1 unter stringenten Bedingungen hybridisiert und von DNA-Sequenzen von Poaceae-Spezies abstammt.
- Ein DNA-Molekül, kodierend für ein Polypeptid, welches mit dem Majorallergen Lol p 4 aus Lolium perenne immunologisch kreuzreagiert, und von DNA-Sequenzen von Poaceae-Spezies abstammt.
 - 4. Ein DNA-Molekül, entsprechend einer Teilsequenz oder einer Kombination von Teilsequenzen nach einem oder mehreren der Ansprüche 1 bis 3, welches für ein immunmodulatorisches, T-Zell-reaktives Fragment eines Gruppe-4-Poaceae-Allergens kodiert.
- Ein DNA-Molekül, entsprechend einer Nukleotidsequenz gemäß einem oder mehreren der Ansprüche 1 bis 4, kodierend für ein immunmodulatorisches T-Zell reaktives Fragment, dadurch gekennzeichnet, daß besagte Nukleotidsequenz durch gezielte Mutation einzelner Codons, Eliminierung oder Addition gezielt verändert wurde.
- 6. Ein DNA-Molekül gemäß Anspruch 5, dadurch gekennzeichnet, daß die besagte Mutation zum Austausch eines, mehrerer oder aller Cysteine des entsprechenden Polypeptids gegen eine andere Aminosäure führt.
- 7. Ein rekombinanter DNA-Expressionsvektor oder ein Klonierungssystem, enthaltend ein DNA-Molekül gemäß einem oder mehreren der Ansprü-

- 16 -

che 1 bis 6, funktionell verbunden mit einer Expressionskontrollsequenz.

- 8. Ein Wirtsorganismus, transformiert mit einem DNA-Molekül gemäß einem oder mehreren der Ansprüche 1 bis 6 oder einem Expressionsvektor gemäß Ansprüch 7.
- Ein Verfahren zur Herstellung eines Polypeptids, kodiert durch eine
 DNA-Sequenz gemäß einem oder mehreren der Ansprüche 1 bis 6, durch Kultivieren eines Wirtsorganismus gemäß Anspruch 8 und Gewinnung des entsprechenden Polypeptids aus der Kultur.
- 10. Ein Polypeptid, welches von einer DNA-Sequenz gemäß einem oder mehreren der Ansprüche 1 bis 6 kodiert wird.
 - 11. Ein Polypeptid gemäß Anspruch 10 als Arzneimittel.

25

30

- 12. Eine pharmazeutische Zubereitung, enthaltend mindestens ein Polypeptid gemäß Anspruch 11 und gegebenenfalls weitere Wirk- und/oder Hilfsstoffe zur Diagnose und/oder Behandlung von Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae* beteiligt sind.
 - 13. Verwendung mindestens eines Polypeptids gemäß Anspruch 11 zur Herstellung eines Arzneimittels zur Diagnose und/oder Behandlung von Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae* beteiligt sind und/oder zur Prävention solcher Allergien.
 - 14. Ein DNA-Molekül gemäß einem oder mehreren der Ansprüche 1 bis 6 als Arzneimittel.

- 15. Ein rekombinanter Expressionsvektor gemäß Anspruch 7 als Arzneimittel.
- 16. Eine pharmazeutische Zubereitung, enthaltend mindestens ein DNAMolekül gemäß Anspruch 14 oder mindestens einen Expressionsvektor
 gemäß Anspruch 15 und gegebenenfalls weitere Wirk- und/oder Hilfsstoffe zur immuntherapeutischen DNA-Vakzinierung von Patienten mit
 Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae* beteiligt sind und/oder zur Prävention solcher Allergien.
 - 17. Verwendung mindestens eines DNA-Moleküls gemäß Anspruch 14 oder mindestens eines Expressionsvektors gemäß Anspruch 15 zur Herstellung eines Arzneimittels zur immuntherapeutischen DNA-Vakzinierung von Patienten mit Allergien, an deren Auslösung Gruppe-4-Allergene der *Poaceae* beteiligt sind und/oder zur Prävention solcher Allergien.

20

15

25

Sequenz-Protokoll

<110> Merck Patent GmbH <120> DNA-Sequenz und rekombinante Herstellung des Graspollen-Allergens Lol p 4 <130> P 03/240 <140> DE 10359352.7 <141> 2003-12-16 <160> 27 <170> PatentIn version 3.1 <210> 1 <211> 1272 <212> DNA <213> Lol p 4 <220> <221> CDS <222> (2)..(1270) <223> <400> 1 t gee gtg gtg tge gge ege egt tae gae gte ege ate ege gta ege age 49 Ala Val Val Cys Gly Arg Arg Tyr Asp Val Arg Ile Arg Val Arg Ser ggc ggg cac gac tac gag ggc ctc tcg tac cgc tcc ctg cag ccc gag 97 Gly Gly His Asp Tyr Glu Gly Leu Ser Tyr Arg Ser Leu Gln Pro Glu aac ttc gca gtc gtc gac ctc aac cag atg cgg gcg gtg ttg gtg gac 145

Asn	Phe	Ala 35	Val	Val	Asp	Leu	Asn 40	Gln	Met	Arg	Ala	Val 45	Leu	Val	Asp		
ggt Gly	aag Lys 50	gcc Ala	cgc Arg	acg Thr	gcg Ala	tgg Trp 55	gtc Val	gac Asp	tcc Ser	Gly	gcg Ala 60	cag Gln	ctc Leu	ggc Gly	gag Glu		193
ctc Leu 65	tac Tyr	tac Tyr	gcc Ala	atc Ile	tcc Ser 70	aag Lys	tat Tyr	agc Ser	cgc Arg	acg Thr 75	ctg Leu	gcc Ala	ttc Phe	ccg Pro	gca Ala 80		241
ggc Gly	gtt Val	tgc Cys	ccg Pro	acc Thr 85	atc Ile	ggc Gly	gtg Val	ggc Gly	ggc Gly 90	aac Asn	ctc Leu	gcg Ala	ggc Gly	ggc Gly 95	ggc Gly		289
ttc Phe	ggt Gly	atg Met	ctg Leu 100	ctg Leu	cgc Arg	aag Lys	tac Tyr	ggc Gly 105	atc Ile	gcc Ala	gca Ala	gag Glu	aac Asn 110	gtc Val	atc Ile		337
gac Asp	gtg Val	aag Lys 115	ctc Leu	gtc Val	gac Asp	gcc Ala	aac Asn 120	ggc Gly	aag Lys	ctg Leu	cac His	gac Asp 125	aag Lys	aag Lys	tcc Ser		385
atg Met	ggc Gly 130	gac Asp	gac Asp	cat His	ttc Phe	tgg Trp 135	gcc Ala	gtg Val	agg Arg	ggt Gly	ggc Gly 140	ggc	ggc Gly	gag Glu	agc Ser	,	433
ttc Phe 145	ggc Gly	atc Ile	gtg Val	gtc Val	tcg Ser 150	tgg Trp	cag Gln	gtg Val	aag Lys	ctc Leu 155	ctg Leu	ccg Pro	gtg Val	cct Pro	ccc Pro 160		481
acg Thr	gtg Val	acc Thr	atc Ile	ttc Phe 165	aag Lys	atc Ile	ccc Pro	aag Lys	tca Ser 170	gtc Val	agc Ser	gag Glu	ggc Gly	gcc Ala 175	gtg Val		529
gac Asp	atc Ile	atc Ile	aac Asn 180	aag Lys	tgg Trp	caa Gln	ctg Leu	gtc Val 185	gcg Ala	cct Pro	caa Gln	ctt Leu	ccc Pro 190	gcc Ala	gac Asp		577
ctc Leu	atg Met	atc Ile 195	cgc Arg	atc Ile	att Ile	gcg Ala	atg Met 200	Gly	ccc Pro	aag Lys	gcc Ala	acg Thr 205	ttc Phe	gag Glu	gcc Ala		625
atg Met	tac Tyr 210	ctc Leu	ggc	acc Thr	tgc Cys	aaa Lys 215	acc Thr	ctg Leu	acg Thr	ccg Pro	atg Met 220	atg Met	cag Gln	agc Ser	aag Lys		673
ttc Phe 225	Pro	gag Glu	ctt Leu	ggc Gly	atg Met 230	aac Asn	gcc Ala	tcg Ser	cac His	tgc Cys 235	aac Asn	gag Glu	atg Met	tca Ser	tgg Trp 240		721
atc Ile	gag Glu	tcc Ser	atc Ile	ccc Pro 245	ttc Phe	gtc Val	cac His	ctc Leu	ggc Gly 250	His	agg Arg	gat Asp	tcc Ser	ctg Leu 255	gag Glu		769
ggc Gly	gac Asp	ctc Leu	ctc Leu 260	aac Asn	cgg Arg	aac Asn	aac Asn	acc Thr 265	Phe	aag Lys	ccc Pro	ttt Phe	gcg Ala 270	gag Glu	tac Tyr		817
aaa Lys	tcg Ser	gac Asp 275	Tyr	gtc Val	tac Tyr	gag Glu	cca Pro 280	Phe	ccc Pro	aag Lys	agc Ser	gtg Val 285	Trp	gag Glu	cag Gln		865

atc Ile	ttc Phe 290	ggc Gly	acc Thr	tgg Trp	ctc Leu	gtg Val 295	aag Lys	cct Pro	ggt Gly	gcg Ala	300 Gly ggg	att Ile	atg Met	atc Ile	ttt Phe	91	.3
gac Asp 305	ccc Pro	tac Tyr	ggt Gly	gcc Ala	acc Thr 310	atc Ile	agc Ser	gct Ala	acc Thr	cca Pro 315	gáa Glu	gcg Ala	gcg Ala	acg Thr	ccg Pro 320	96	51
ttc Phe	cct Pro	cac His	cgc Arg	aag Lys 325	gga Gly	gtc Val	ctc Leu	ttc Phe	aac Asn 330	atc Ile	cag Gln	tac Tyr	gtc Val	aac Asn 335	tac Tyr	100)9
tgg Trp	ttc Phe	gct Ala	ccg Pro 340	gga Gly	gcc Ala	ggc Gly	gcc Ala	gcg Ala 345	ccc Pro	ttg Leu	tca Ser	tgg Trp	agc Ser 350	aag Lys	gaa Glu	105	57
atc Ile	tac Tyr	aac Asn 355	tac Tyr	atg Met	gag Glu	ccg Pro	tac Tyr 360	gtg Val	agc Ser	aag Lys	aac Asn	ccc Pro 365	agg Arg	cag Gln	gcc Ala	110)5
tac Tyr	gcc Ala 370	aac Asn	tac Tyr	agg Arg	gac Asp	atc Ile 375	gac Asp	ctc Leu	ggg Gly	agg Arg	aac Asn 380	gag Glu	gtg Val	gtg Val	aat Asn	115	53
ggc Gly 385	gtc Val	tcc Ser	acc Thr	tac Tyr	agc Ser 390	agt Ser	ggt Gly	aag Lys	gtc Val	tgg Trp 395	gga Gly	cag Gln	aaa Lys	tat Tyr	ttc Phe 400	120)1
aag Lys	ggt Gly	aac Asn	ttc Phe	gag Glu 405	agg Arg	ctc Leu	gcc Ala	att Ile	acc Thr 410	aag Lys	ggc Gly	aag Lys	gtg Val	gat Asp 415	cct Pro	124	49
			ttc Phe 420				ca									12	72

<210> 2

<211> 423

<212> PRT

<213> Lol p 4

<400> 2

Ala Val Val Cys Gly Arg Arg Tyr Asp Val Arg Ile Arg Val Arg Ser 1 5 10 15

Gly Gly His Asp Tyr Glu Gly Leu Ser Tyr Arg Ser Leu Gln Pro Glu 20 25 30

Asn Phe Ala Val Val Asp Leu Asn Gln Met Arg Ala Val Leu Val Asp 35 40 45

Gly Lys Ala Arg Thr Ala Trp Val Asp Ser Gly Ala Gln Leu Gly Glu 50 60

Leu Tyr Tyr Ala Ile Ser Lys Tyr Ser Arg Thr Leu Ala Phe Pro Ala 65 70 75 80

Gly Val Cys Pro Thr Ile Gly Val Gly Gly Asn Leu Ala Gly Gly Gly 95 95

Phe Gly Met Leu Leu Arg Lys Tyr Gly Ile Ala Ala Glu Asn Val Ile 100 105 110

Asp Val Lys Leu Val Asp Ala Asn Gly Lys Leu His Asp Lys Lys Ser 115 120 125

Met Gly Asp Asp His Phe Trp Ala Val Arg Gly Gly Gly Glu Ser 130 135 140

Phe Gly Ile Val Val Ser Trp Gln Val Lys Leu Leu Pro Val Pro Pro 145 150 155 160

Thr Val Thr Ile Phe Lys Ile Pro Lys Ser Val Ser Glu Gly Ala Val 165 170 175

Asp Ile Ile Asn Lys Trp Gln Leu Val Ala Pro Gln Leu Pro Ala Asp 180 185 190

Leu Met Ile Arg Ile Ile Ala Met Gly Pro Lys Ala Thr Phe Glu Ala 195 200 205

Met Tyr Leu Gly Thr Cys Lys Thr Leu Thr Pro Met Met Gln Ser Lys 210 215 220

Phe Pro Glu Leu Gly Met Asn Ala Ser His Cys Asn Glu Met Ser Trp 225 230 235 240

Ile Glu Ser Ile Pro Phe Val His Leu Gly His Arg Asp Ser Leu Glu 245 250 255

Gly Asp Leu Leu Asn Arg Asn Asn Thr Phe Lys Pro Phe Ala Glu Tyr 260 265 270

Lys Ser Asp Tyr Val Tyr Glu Pro Phe Pro Lys Ser Val Trp Glu Gln 275 280 285

Ile Phe Gly Thr Trp Leu Val Lys Pro Gly Ala Gly Ile Met Ile Phe 290 295 300

48

96

Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro Glu Ala Ala Thr Pro 305 310 315

Phe Pro His Arg Lys Gly Val Leu Phe Asn Ile Gln Tyr Val Asn Tyr 325 330 335

Trp Phe Ala Pro Gly Ala Gly Ala Ala Pro Leu Ser Trp Ser Lys Glu 340 345 350

Ile Tyr Asn Tyr Met Glu Pro Tyr Val Ser Lys Asn Pro Arg Gln Ala 355 360 365

Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg Asn Glu Val Val Asn 370 380

Gly Val Ser Thr Tyr Ser Ser Gly Lys Val Trp Gly Gln Lys Tyr Phe 385 390 395 400

Lys Gly Asn Phe Glu Arg Leu Ala Ile Thr Lys Gly Lys Val Asp Pro 405 415

Thr Asp Tyr Phe Arg Asn Glu 420

<210> 3

<211> 1503

<212> DNA

<213> Lol p 4

<220>

<221> CDS

<222> (1)..(1503)

<223>

aaa gaa atc ccg ccg cgt ctg ttg tac gcg aaa tcg tcg ccg gcg tat Lys Glu Ile Pro Pro Arg Leu Leu Tyr Ala Lys Ser Ser Pro Ala Tyr 20 25 30

ccc Pro	tca Ser	gtc Val 35	ctg Leu	Gly aaa	cag Gln	acc Thr	atc Ile 40	cgg Arg	aac Asn	tcg Ser	agg Arg	tgg Trp 45	tcg Ser	tcg Ser	ccg Pro		144
gac Asp	aac Asn 50	gtg Val	aag Lys	ccg Pro	ctc Leu	tac Tyr 55	atc Ile	atc Ile	acc Thr	ccc Pro	acc Thr 60	aac Asn	gtc Val	tcc Ser	cac His		192
atc Ile 65	cag Gln	tct Ser	gcc Ala	gtg Val	gtg Val 70	tgc Cys	ggc Gly	cgc Arg	cgt Arg	tac Tyr 75	gac Asp	gtc Val	cgc Arg	atc Ile	cgc Arg 80		240
gta Val	cgc Arg	agc Ser	ggc Gly	ggg Gly 85	cac His	gac Asp	tac Tyr	gag Glu	ggc Gly 90	ctc Leu	tcg Ser	tac Tyr	cgc Arg	tcc Ser 95	ctg Leu	•	288
cag Gln	ccc Pro	gag Glu	aac Asn 100	ttc Phe	gca Ala	gtc Val	gtc Val	gac Asp 105	ctc Leu	aac Asn	cag Gln	atg Met	cgg Arg 110	gcg Ala	gtg Val		336
ttg Leu	gtg Val	gac Asp 115	ggt Gly	aag Lys	gcc Ala	cgc Arg	acg Thr 120	gcg Ala	tgg Trp	gtc Val	gac Asp	tcc Ser 125	ggc Gly	gcg Ala	cag Gln		384
ctc Leu	ggc Gly 130	gag Glu	ctc Leu	tac Tyr	tac Tyr	gcc Ala 135	atc Ile	tcc Ser	aag Lys	tat Tyr	agc Ser 140	cgc Arg	acg Thr	ctg Leu	gcc Ala		432
ttc Phe 145	ccg Pro	gca Ala	ggc Gly	gtt Val	tgc Cys 150	ccg Pro	acc Thr	atc	ggc Gly	gtg Val 155	ggc Gly	ggc Gly	aac Asn	ctc Leu	gcg Ala 160		480
ggc	ggc Gly	ggc	ttc Phe	ggt Gly 165	atg Met	ctg Leu	ctg Leu	cgc Arg	aag Lys 170	tac Tyr	ggc Gly	atc Ile	gcc Ala	gca Ala 175	gag Glu		528
aac Asn	gtc Val	atc Ile	gac Asp 180	gtg Val	aag Lys	ctc Leu	gtc Val	gac Asp 185	gcc Ala	aac Asn	ggc Gly	aag Lys	ctg Leu 190	cac His	gac Asp		576
aag Lys	aag Lys	tcc Ser 195	Met	ggc Gly	gac Asp	gac Asp	cat His 200	ttc Phe	tgg Trp	gcc Ala	gtg Val	agg Arg 205	ggt Gly	ggc	ggc		624
ggc Gly	gag Glu 210	Ser	ttc Phe	ggc	atc Ile	gtg Val 215	gtc Val	tcg Ser	tgg Trp	cag Gln	gtg Val 220	aag Lys	ctc Leu	ctg Leu	ccg Pro		672
gtg Val 225	Pro	ccc Pro	acg Thr	gtg Val	acc Thr 230	atc Ile	ttc Phe	aag Lys	atc Ile	ccc Pro 235	aag Lys	tca Ser	gtc Val	agc Ser	gag Glu 240		720
gga	gcc Ala	gtg Val	gac Asp	atc Ile 245	Ile	aac Asn	aag Lys	tgg Trp	caa Gln 250	Leu	gtc Val	gcg Ala	cct Pro	caa Gln 255	ьeu		768
ccc Pro	gcc Ala	gac Asp	ctc Leu 260	. Met	atc	cgc Arg	ato	att Ile 265	Ala	atg Met	Gly	ccc Pro	aag Lys 270	Ala	acg Thr		816
ttc	gag	gec	atg	tac	: ctc	ggc	acc	: tgc	aaa	acc	: ctg	acg	ccg	atg	atg		864

Phe	Glu	Ala 275	Met	Tyr	Leu	Gly	Thr 280	Cys	Lys	Thr	Leu	Thr 285	Pro	Met	Met	
cag Gln	agc Ser 290	aag Lys	ttc Phe	ccc Pro	gag Glu	ctt Leu 295	ggc Gly	atg Met	aac Asn	gcc Ala	tcg Ser 300	cac His	tgc Cys	aac Asn	gag Glu	912
atg Met 305	tca Ser	tgg Trp	atc Ile	gag Glu	tcc Ser 310	atc Ile	ccc Pro	ttc Phe	gtc Val	cac His 315	ctc Leu	ggc Gly	cat His	agg Arg	gat Asp 320	960
tcc Ser	ctg Leu	gag Glu	ggc Gly	gac Asp 325	ctc Leu	ctc Leu	aac Asn	cgg Arg	aac Asn 330	aac Asn	acc Thr	ttc Phe	aag Lys	ccc Pro 335	ttt Phe	1008
gcg Ala	gag Glu	tac Tyr	aaa Lys 340	tcg Ser	gac Asp	tac Tyr	gtc Val	tac Tyr 345	gag Glu	cca Pro	ttc Phe	ccc Pro	aag Lys 350	agc Ser	gtg Val	1056
tgg Trp	gag Glu	cag Gln 355	atc Ile	ttc Phe	ggc Gly	acc Thr	tgg Trp 360	ctc Leu	gtg Val	aag Lys	cct Pro	ggt Gly 365	gcg Ala	Gly	att Ile	1104
atg Met	atc Ile 370	ttt Phe	gac Asp	ccc Pro	tac Tyr	ggt Gly 375	gcc Ala	acc Thr	atc Ile	agc Ser	gct Ala 380	acc Thr	cca Pro	gaa Glu	gcg Ala	1152
gcg Ala 385	acg Thr	ccg Pro	ttc Phe	cct Pro	cac His 390	cgc Arg	aag Lys	gga Gly	gtc Val	ctc Leu 395	ttc Phe	aac Asn	atc Ile	cag Gln	tac Tyr 400	1200
gtc Val	aac Asn	tac Tyr	tgg Trp	ttc Phe 405	gct Ala	ccg Pro	gga Gly	gcc Ala	ggc Gly 410	gcc Ala	gcg Ala	ccc Pro	ttg Leu	tca Ser 415	tgg Trp	1248
agc Ser	aag Lys	gaa Glu	atc Ile 420	tac Tyr	aac Asn	tac Tyr	atg Met	gag Glu 425	ccg Pro	tac Tyr	gtg Val	agc Ser	aag Lys 430	aac Asn	ccc Pro	1296
agg Arg	cag Gln	gcc Ala 435	tac Tyr	gcc Ala	aac Asn	tac Tyr	agg Arg 440	gac Asp	atc Ile	gac Asp	ctc Leu	ggg Gly 445	agg Arg	aac Asn	gag Glu	1344
Val	gtg Val 450	aat Asn	ggc	gtc Val	tcc Ser	acc Thr 455	tac Tyr	agc Ser	agt Ser	ggt Gly	aag Lys 460	gtc Val	tgg Trp	gga Gly	cag Gln	1392
ạaa Lys 465	tat Tyr	ttc Phe	aag Lys	ggt Gly	aac Asn 470	ttc Phe	gag Glu	agg Arg	ctc Leu	gcc Ala 475	att Ile	acc Thr	aag Lys	ggc Gly	aag Lys 480	1440
gtg Val	gat Asp	cct Pro	acg Thr	gat Asp 485	tac Tyr	ttc. Phe	agg Arg	aac Asn	gag Glu 490	cag Gln	agc Ser	atc Ile	ccg Pro	ccg Pro 495	ctc Leu	1488
	aaa Lys		tac Tyr 500											-		1503

<210> 4

<211> 500

<212> PRT

<213> Lol p 4

<400> 4

Tyr Phe Pro Pro Pro Ala Ala Lys Glu Asp Phe Leu Gly Cys Leu Val 1 5 10 15

Lys Glu Ile Pro Pro Arg Leu Leu Tyr Ala Lys Ser Ser Pro Ala Tyr 20 25 30

Pro Ser Val Leu Gly Gln Thr Ile Arg Asn Ser Arg Trp Ser Ser Pro 35 40 45

Asp Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr Asn Val Ser His 50 60 .

Ile Gln Ser Ala Val Val Cys Gly Arg Arg Tyr Asp Val Arg Ile Arg 65 70 75 80

Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser Tyr Arg Ser Leu 85 90 95

Gln Pro Glu Asn Phe Ala Val Val Asp Leu Asn Gln Met Arg Ala Val 100 105 110

Leu Val Asp Gly Lys Ala Arg Thr Ala Trp Val Asp Ser Gly Ala Gln 115 120 125

Leu Gly Glu Leu Tyr Tyr Ala Ile Ser Lys Tyr Ser Arg Thr Leu Ala 130 135 140

Phe Pro Ala Gly Val Cys Pro Thr Ile Gly Val Gly Gly Asn Leu Ala 145 150 155 160

Gly Gly Gly Phe Gly Met Leu Leu Arg Lys Tyr Gly Ile Ala Ala Glu 165 170 175

Asn Val Ile Asp Val Lys Leu Val Asp Ala Asn Gly Lys Leu His Asp 180 185 . 190

Lys Lys Ser Met Gly Asp Asp His Phe Trp Ala Val Arg Gly Gly Gly 195 200 205

- 9 -

Gly Glu Ser Phe Gly Ile Val Val Ser Trp Gln Val Lys Leu Pro Val Pro Pro Thr Val Thr Ile Phe Lys Ile Pro Lys Ser Val Ser Glu 230 _____ 235 Gly Ala Val Asp Ile Ile Asn Lys Trp Gln Leu Val Ala Pro Gln Leu Pro Ala Asp Leu Met Ile Arg Ile Ile Ala Met Gly Pro Lys Ala Thr 265 260 · Phe Glu Ala Met Tyr Leu Gly Thr Cys Lys Thr Leu Thr Pro Met Met Gln Ser Lys Phe Pro Glu Leu Gly Met Asn Ala Ser His Cys Asn Glu Met Ser Trp Ile Glu Ser Ile Pro Phe Val His Leu Gly His Arg Asp 310 Ser Leu Glu Gly Asp Leu Leu Asn Arg Asn Asn Thr Phe Lys Pro Phe Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Glu Pro Phe Pro Lys Ser Val 345 Trp Glu Gln Ile Phe Gly Thr Trp Leu Val Lys Pro Gly Ala Gly Ile Met Ile Phe Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro Glu Ala 375 Ala Thr Pro Phe Pro His Arg Lys Gly Val Leu Phe Asn Ile Gln Tyr 395 400 390 Val Asn Tyr Trp Phe Ala Pro Gly Ala Gly Ala Ala Pro Leu Ser Trp Ser Lys Glu Ile Tyr Asn Tyr Met Glu Pro Tyr Val Ser Lys Asn Pro Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg Asn Glu 435 Val Val Asn Gly Val Ser Thr Tyr Ser Ser Gly Lys Val Trp Gly Gln

455 . 460

Lys Tyr Phe Lys Gly Asn Phe Glu Arg Leu Ala Ile Thr Lys Gly Lys 470 465 Val Asp Pro Thr Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro Pro Leu 490 485 Ile Lys Lys Tyr <210> 5 <211> 1503 <212> DNA <213> Phl p 4 <220> <221> CDS <222> (1)..(1503) <223> tac ttc ccg ccg ccg gct gct aaa gaa gac ttc ctg ggt tgc ctg gtt 48 Tyr Phe Pro Pro Pro Ala Ala Lys Glu Asp Phe Leu Gly Cys Leu Val aaa gaa atc ccg ccg cgt ctg ttg tac gcg aaa tcg tcg ccg gcg tat 96 Lys Glu Ile Pro Pro Arg Leu Leu Tyr Ala Lys Ser Ser Pro Ala Tyr ccc tca qtc ctg ggg cag acc atc cgg aac tcg agg tgg tcg tcg ccg 144 Pro Ser Val Leu Gly Gln Thr Ile Arg Asn Ser Arg Trp Ser Ser Pro 35 gac aac gtg aag ccg ctc tac atc atc ccc ccc acc aac gtc tcc cac 192 Asp Asn. Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr Asn Val Ser His 50 atc cag tcc gcc gtg gtg tgc ggc cgc cgc cac agc gtc cgc atc cgc 240 Ile Gln Ser Ala Val Val Cys Gly Arg Arg His Ser Val Arg Ile Arg 65 gtg cgc agc ggc ggg cac gac tac gag ggc ctc tcg tac cgg tct ttg 288 Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser Tyr Arg Ser Leu cag ccc gag acg ttc gcc gtc gtc gac ctc aac aag atg cgg gcg gtg 336 Gln Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys Met Arg Ala Val

tgg Trp	gtg Val	gac Asp 115	ggc Gly	aag Lys	gcc Ala	cgc Arg	acg Thr 120	gcg Ala	tgg Trp	gtg Val	gac Asp	tcc Ser 125	ggc Gly	gcg Ala	cag Gln	:	384
ctc Leu	ggc Gly 130	gag Glu	ctc Leu	tac Tyr	tac Tyr	gcc Ala 135	atc Ile	tat Tyr	aag Lys	gcg Ala	agc Ser 140	ccc Pro	acg Thr	ctg Leu	gcg Ala	•	432
ttc Phe 145	ccg Pro	gcc Ala	ggc Gly	gtg Val	tgc Cys 150	ccg Pro	acg Thr	atc Ile	gga Gly	gtg Val 155	ggc Gly	ggc	aac Asn	ttc Phe	gcg Ala 160		480
ggc Gly	ggc Gly	ggc Gly	ttc Phe	ggc Gly 165	atg Met	ctg Leu	ctg Leu	cgc Arg	aag Lys 170	tac Tyr	ggc Gly	atc Ile	gcc Ala	gcg Ala 175	gag Glu		528
aac Asn	gtc Val	atc Ile	gac Asp 180	gtg Val	aag Lys	ctc Leu	gtc Val	gac Asp 185	gcc Ala	aac Asn	ggc Gly	aag Lys	ctg Leu 190	cac His	gac Asp		576
aag Lys	aag Lys	tcc Ser 195	atg Met	ggc Gly	gac Asp	gac Asp	cat His 200	ttc Phe	tgg Trp	gcc Ala	gtc Val	agg Arg 205	ggc Gly	Gly	Gly ggg		624
ggc Gly	gag Glu 210	agc Ser	ttc Phe	ggc Gly	atc Ile	gtg Val 215	gtc Val	gcg Ala	tgg Trp	cag Gln	gtg Val 220	aag Lys	ctc Leu	ctg Leu	ccg Pro		672
gtg [.] Val 225	ccg Pro	ccc Pro	acc Thr	gtg Val	aca Thr 230	ata Ile	ttc Phe	aag Lys	atc Ile	tcc Ser 235	aag Lys	aca Thr	gtg Val	agc Ser	gag Glu 240		720
ggc Gly	gcc Ala	gtg Val	gac Asp	atc Ile 245	atc Ile	aac Asn	aag Lys	tgg Trp	caa Gln 250	gtg Val	gtc Val	gcg Ala	ccg Pro	cag Gln 255	ctt Leu		768
ccc Pro	gcc Ala	gac Asp	ctc Leu 260	atg Met	atc Ile	cgc Arg	atc Ile	atc Ile 265	gcg Ala	cag Gln	Gly	ccc Pro	aag Lys 270	gcc Ala	acg Thr		816
ttc Phe	gag Glu	gcc Ala 275	atg Met	tac Tyr	ctc Leu	ggc Gly	acc Thr 280	tgc Cys	aaa Lys	acc Thr	ctg Leu	acg Thr 285	ccg Pro	ttg Leu	atg Met		864
agc Ser	agc Ser 290	aag Lys	ttc Phe	ccg Pro	gag Glu	ctc Leu 295	ggc	atg Met	aac Asn	ccc Pro	tcc Ser 300	cac His	tgc Cys	aac Asn	gag Glu		912
atg Met 305	tca Ser	tgg Trp	atc Ile	cag Gln	tcc Ser 310	atc Ile	ccc Pro	ttc Phe	gtc Val	cac His 315	·ctc Leu	ggc	cac His	agg Arg	gac Asp 320		960
gcc Ala	ctc Leu	gag Glu	gac Asp	gac Asp 325	ctc Leu	ctc Leu	aac Asn	cgg Arg	aac Asn 330	aac Asn	tcc Ser	ttc Phe	aag Lys	ccc Pro 335	ttc Phe	1	800
gcc Ala	gaa Glu	tac Tyr	aag Lys 340	tcc Ser	gac Asp	tac Tyr	gtc Val	tac Tyr 345	Gln	ccc Pro	ttc Phe	ccc Pro	aag Lys 350	acc Thr	gtc Val	1	1056
tgg	gag	cag	atc	ctc	aac	acc	tgg	ctc	gtc	aag	. ccc	ggc	gcc	ggg	atc	1	L104

- 12 -

Trp	Glu	Gln 355	Ile	Leu	Asn	Thr	Trp 360	Leu	Val	Lys	Pro	Gly 365	Ala	Gly	Ile	
atg Met	atc Ile 370	ttc Phe	gac Asp	ccc Pro	tac Tyr	ggc Gly 375	gcc Ala	acc Thr	atc Ile	agc Ser	gcc Ala 380	acc Thr	ccg Pro	gag Glu	tcc Ser	1152
gcc Ala 385	acg Thr	ccc Pro	ttc Phe	cct Pro	cac His 390	cgc Arg	aag Lys	ggc Gly	gtc Val	ctc Leu 395	ttc Phe	aac Asn	atc Ile	cag Gln	tac Tyr 400	1200
gtc Val	aac Asn	tac Tyr	tgg Trp	ttc Phe 405	gcc Ala	ccg Pro	gga Gly	gcc Ala	gcc Ala 410	gcc Ala	gcg Ala	ccc Pro	ct¢ Leu	tcg Ser 415	tgg Trp	1248
agc Ser	aag Lys	gac Asp	atc Ile 420	tac Tyr	aac Asn	tac Tyr	atg Met	gag Glu 425	ccc Pro	tac Tyr	gtġ Val	agc Ser	aag Lys 430	aac Asn	ccc Pro	1296
agg Arg	cag Gln	gcg Ala 435	tac Tyr	gca Ala	aac Asn	tac Tyr	agg Arg 440	gac Asp	atc Ile	gac Asp	ctc Leu	ggc Gly 445	agg Arg	aac Asn	gag Glu	1344
gtg Val	gtc Val 450	aac Asn	gac Asp	gtc Val	tcc Ser	acc Thr 455	tac Tyr	gcc Ala	agc Ser	ggc Gly	aag Lys 460	gtc Val	tgg Trp	ggc Gly	cag Gln	1392
aaa Lys 465	tac Tyr	ttc Phe	aag Lys	ggc Gly	aac Asn 470	ttc Phe	gag Glu	agg Arg	ctc Leu	gcc Ala 475	att Ile	acc Thr	aag Lys	ggc Gly	aag Lys 480	1440
gtc Val	gat Asp	cct Pro	acc Thr	gac Asp 485	tac Tyr	ttc Phe	agg Arg	aac Asn	gag Glu 490	cag Gln	agc Ser	atc Ile	ccg Pro	ccg Pro 495	ctc Leu	1488
		aag Lys	tac Tyr 500	tga												1503
<21	0>	6														
<21	1>	500														
<21	2>	PRT														
<21	3>	Phl :	p 4													
<40	0>	6														
Tyr 1	Phe	Pro	Pro	Pro 5	Ala	Ala	Lys	Glu	Asp 10	Phe	Leu	Gly	Cys	Leu 15	Val	
Lys	Glu	Ile	Pro 20	Pro	Arg	Leu	Leu	Tyr 25	Ala	Lys	Ser	Ser	Pro 30	Ala	Tyr	

Pro Ser Val Leu Gly Gln Thr Ile Arg Asn Ser Arg Trp Ser Ser Pro
35 40 45

- 13 -

Asp Asn Val Lys Pro Leu Tyr Ile Ile Thr Pro Thr Asn Val Ser His 55 50 Ile Gln Ser Ala Val Val Cys Gly Arg Arg His Ser Val Arg Ile Arg Val Arg Ser Gly Gly His Asp Tyr Glu Gly Leu Ser Tyr Arg Ser Leu Gln Pro Glu Thr Phe Ala Val Val Asp Leu Asn Lys Met Arg Ala Val Trp Val Asp Gly Lys Ala Arg Thr Ala Trp Val Asp Ser Gly Ala Gln Leu Gly Glu Leu Tyr Tyr Ala Ile Tyr Lys Ala Ser Pro Thr Leu Ala Phe Pro Ala Gly Val Cys Pro Thr Ile Gly Val Gly Asn Phe Ala Gly Gly Gly Phe Gly Met Leu Leu Arg Lys Tyr Gly Ile Ala Ala Glu Asn Val Ile Asp Val Lys Leu Val Asp Ala Asn Gly Lys Leu His Asp Lys Lys Ser Met Gly Asp Asp His Phe Trp Ala Val Arg Gly Gly Gly Glu Ser Phe Gly Ile Val Val Ala Trp Gln Val Lys Leu Leu Pro 215

Gly Ala Val Asp Ile Ile Asn Lys Trp Gln Val Val Ala Pro Gln Leu 245 250 255

Val Pro Pro Thr Val Thr Ile Phe Lys Ile Ser Lys Thr Val Ser Glu

225

Pro Ala Asp Leu Met Ile Arg Ile Ile Ala Gln Gly Pro Lys Ala Thr 260 265 270

Phe Glu Ala Met Tyr Leu Gly Thr Cys Lys Thr Leu Thr Pro Leu Met 275 280 285

- 14 -

Ser Ser Lys Phe Pro Glu Leu Gly Met Asn Pro Ser His Cys Asn Glu 290 295 300

Met Ser Trp Ile Gln Ser Ile Pro Phe Val His Leu Gly His Arg Asp 305 310 315 320

Ala Leu Glu Asp Asp Leu Leu Asn Arg Asn Asn Ser Phe Lys Pro Phe 325 330 335

Ala Glu Tyr Lys Ser Asp Tyr Val Tyr Gln Pro Phe Pro Lys Thr Val 340 345 350

Trp Glu Gln Ile Leu Asn Thr Trp Leu Val Lys Pro Gly Ala Gly Ile 355 360 365

Met Ile Phe Asp Pro Tyr Gly Ala Thr Ile Ser Ala Thr Pro Glu Ser 370 375 380

Ala Thr Pro Phe Pro His Arg Lys Gly Val Leu Phe Asn Ile Gln Tyr 385 390 395 400

Val Asn Tyr Trp Phe Ala Pro Gly Ala Ala Ala Ala Pro Leu Ser Trp 405 410 415

Ser Lys Asp Ile Tyr Asn Tyr Met Glu Pro Tyr Val Ser Lys Asn Pro 420 425 430

Arg Gln Ala Tyr Ala Asn Tyr Arg Asp Ile Asp Leu Gly Arg Asn Glu 435 440 445

Val Val Asn Asp Val Ser Thr Tyr Ala Ser Gly Lys Val Trp Gly Gln 450 455 460

Lys Tyr Phe Lys Gly Asn Phe Glu Arg Leu Ala Ile Thr Lys Gly Lys 465 470 475 480

Val Asp Pro Thr Asp Tyr Phe Arg Asn Glu Gln Ser Ile Pro Pro Leu 485 490 495

Ile Lys Lys Tyr 500

<210> 7

<211> 12

<212> PRT

```
<213> Dactylus glomerata
<400> 7
Asp Ile Tyr Asn Tyr Met Glu Pro Tyr Val Ser Lys
<210> 8
<211> 11
<212> PRT
<213> Dactylus glomerata
<400> 8
Val Asp Pro Thr Asp Tyr Phe Gly Asn Glu Gln
<210> 9
<211> 17
<212> PRT
<213> Dactylus glomerata
<400> 9
Ala Arg Thr Ala Trp Val Asp Ser Gly Ala Gln Leu Gly Glu Leu Ser
Tyr
<210> 10.
<211> 15
<212> PRT
<213> Dactylus glomerata
<400> 10
Gly Val Leu Phe Asn Ile Gln Tyr Val Asn Tyr Trp Phe Ala Pro
```

```
<210> 11
```

<211> 11

<212> PRT

<213> Cynodon dactylon

<400> 11

Lys Thr Val Lys Pro Leu Tyr Ile Ile Thr Pro 1 5 10

<210> 12

<211> 22

<212> PRT

<213> Cynodon dactylon

<400> 12

Lys Gln Val Glu Arg Asp Phe Leu Thr Ser Leu Thr Lys Asp Ile Pro 1 5 10 15

Gln Leu Tyr Leu Lys Ser 20

<210> 13

<211> 16

<212> PRT

<213> Cynodon dactylon

<400> 13

Thr Val Lys Pro Leu Tyr Ile Ile Thr Pro Ile Thr Ala Ala Met Ile 1 5 10 15

<210> 14

<211> 24

<212> PRT

<213> Cynodon dactylon

```
<400> 14
```

Leu Arg Lys Tyr Gly Thr Ala Ala Asp Asn Val Ile Asp Ala Lys Val 1 5 10 15

Val Asp Ala Gln Gly Arg Leu Leu 20

<210> 15

<211> 14

<212> PRT

<213> Cynodon dactylon

<400> 15

Lys Trp Gln Thr Val Ala Pro Ala Leu Pro Asp Pro Asn Met 1 5 10

<210> 16

<211> 15

<212> PRT

<213> Cynodon dactylon

<400> 16

Val Thr Trp Ile Glu Ser Val Pro Tyr Ile Pro Met Gly Asp Lys 1 5 10 15

<210> 17

<211> 19

<212> PRT

<213> Cynodon dactylon

<220>

<221> MISC_FEATURE

<222> (8)..(8)

<223> undetermined amino acid

<400> 17

Gly Thr Val Arg Asp Leu Leu Xaa Arg Thr Ser Asn Ile Lys Ala Phe 1 5 10 15

Gly Lys Tyr

<210> 18

<211> 23

<212> PRT

<213> Cynodon dactylon

<400> 18

Thr Ser Asn Ile Lys Ala Phe Gly Lys Tyr Lys Ser Asp Tyr Val Leu

1 10 15

Glu Pro Ile Pro Lys Lys Ser 20

<210> 19

<211> 13

<212> PRT

<213> Cynodon dactylon

<400> 19

Tyr Arg Asp Leu Asp Leu Gly Val Asn Gln Val Val Gly 1 5 . . . 10

<210> 20

<211> 15

<212> PRT

<213> Cynodon dactylon

<400> 20

Ser Ala Thr Pro Pro Thr His Arg Ser Gly Val Leu Phe Asn Ile 1 5 10 15 <210> 21

<211> 36

<212> PRT

<213> Cynodon dactylon

<400> 21

Ala Ala Ala Leu Pro Thr Gln Val Thr Arg Asp Ile Tyr Ala Phe 1 5 10 15

Met Thr Pro Tyr Val Ser Lys Asn Pro Arg Gln Ala Tyr Val Asn Tyr 20 25 30

Arg Asp Leu Asp 35

<210> 22

<211> 14

<212> PRT

<213> Lolium perenne

<400> 22

Phe Leu Glu Pro Val Leu Gly Leu Ile Phe Pro Ala Gly Val 1 5 10

<210> 23

<211> 9

<212> PRT

<213> Lolium perenne

<400> 23

Gly Leu Ile Glu Phe Pro Ala Gly Val 1

<210> 24

<211> 22

<212> DNA

<213>	Lolium perenne				
<400> ggctccc	24 eggg gegaaccagt	ag			22
<210>	25				
<211>	23				
<212>	DNA			•	
<213>	Lolium perenne				
	0.5				
<400> accaaco	25 yect eccacateca	gtc			23
<210>	26				
<211>	49				
<212>	DNA				
<213>	Lolium perenne				
<400> gataago	26 cttg aattctgatt	agtacttttt	gatcagcggc	gggatgctc	49
<210>	27				
<211>	49				
<212>	DNA ·				
<213>	Lolium perenne				
<400> gataage	27 cttc tcgagtgatt	agtactttt	gatcagcggc	gggatgctc	49