Análise experimental de modelos matemáticos propostos para o problema da Árvore geradora multiobjetivo baseada no operador *OWA*

Islame Felipe da Costa Fernandes 05 de Setembro de 2017

1 Introdução

A Árvore Geradora Mínima, naturalmente mono-objetivo, é um dos problemas clássicos da Teoria dos Grafos e possui inúmeras aplicações em problemas do mundo real. Sua versão multiobjetivo (MoST) considera vários critérios de otimização simultaneamente, adequando-se às necessidades do mundo real que, por vezes, são, de fato, multicritério (MONTEIRO, 2011).

A literatura do problema MoST se divide em duas grandes abordagens: a primeira adota a dominância clássica de Pareto e a segunda explora algoritmos cuja preferência possa ser fornecida pelo tomador de decisão. Uma destas preferências utiliza o operador $Ordered\ Weighted\ Average\ (OWA)$, que será estudado por este trabalho. Neste caso, o problema passa a ser chamado de OWA-ST.

O objetivo deste trabalho é implementar, experimentar e analisar os resultados para dois modelos matemáticos fundamentais para o problema da OWA-ST: o de Galand e Spanjaard (2012) e o de Fernández et al. (2017). Serão relatados experimentos para 39 grafos completos, de 5 a 35 vértices, das classes correlated e anti-correlated para 3 e 4 objetivos.

Fernández et al. (2017) também compararam o modelo proposto pelo autores com aquele proposto por Galand e Spanjaard (2012). Porém, os autores conduziram experimentos em grafos gerados aleatoriamente. O presente trabalho justifica-se, pois, diante da proposta de conduzir novos experimentos em classes de instâncias correlated e anti-correlated conforme proposto por Knowles (2002).

Este texto é organizado como segue: a Seção 2 apresenta a definição formal do problema da MoST e OWA-ST e o estado da arte; a Seção 3 detalha os modelos estudados; a Seção 4 apresenta os resultados dos experimentos; por fim, a Seção 5 contém as considerações finais e propostas de trabalhos complementares.

2 O problema

Esta seção apresenta a definição formal da MoST e OWA-ST. A definição utilizada é de Fernández et al. (2017) e utiliza notação matricial. As notações utilizadas por esta seção serão invocadas constantemente ao logo de todo o texto.

Seja G(V, E) um grafo conexo e não direcionado, com |V| = n vértices e |E| = m arestas. Seja $P = \{1, 2, ..., p\}$ um conjunto com p objetivos. Um vetor de custos $c_e = (c_e^1, ..., c_e^p)^T \in \Re^p$ é associado a cada aresta $e \in E$. Pode-se definir uma matriz $C \in \mathbb{R}^{p \times m}$, tal que:

$$C = \begin{pmatrix} c_{e_1}^1 & c_{e_2}^1 & \dots & c_{e_m}^1 \\ c_{e_1}^2 & c_{e_2}^2 & \dots & c_{e_m}^2 \\ \dots & \dots & \dots & \dots \\ c_{e_1}^p & c_{e_2}^p & \dots & c_{e_m}^p \end{pmatrix}$$

Seja $X \subseteq \{0,1\}^m$ o conjunto de todas as árvores geradoras de G. Assim, uma árvore $\tau \in X$ é representa como um vetor, de dimensão m, onde cada coordenada representa se a aresta correspondente figura (valor 1) ou não (valor 0) em τ . Seja $Z \subseteq \Re^p$ o espaço objetivo e seja $f: X \to Z$ a função que mapeia cada árvore $\tau \in X$ em seu vetor de custos, definida por $f(\tau) = C\tau$. Denota-se por $f_i(\tau) = C_i\tau$ o valor da i-ésima componente, $i \in P$, do vetor $f(\tau)$. Pela definição clássica de dominância de Pareto, diz-se que uma árvore $\tau^* \in X$ é eficiente se, e somente se, $\not \exists \tau' \in X$ que a domine. O problema da MoST visa, portanto, encontrar o conjunto de árvores eficientes $X^* \subseteq X$, dito conjunto Pareto ótimo, com $f(X^*) \subseteq Z$, chamada Fronteira de Pareto.

Aggarwal, Aneja e Nair (1982) efetuam uma redução polinomial do problema da mochila 0-1 à árvore geradora biobjetivo (p=2), mostrando assim que tal problema é NP-difícil. Além disso, ele é também intratável (HAMACHER; RUHE, 1994), ou seja, algoritmos exatos que se dispõem a encontrar o conjunto Pareto ótimo requerem um tempo muito alto de processamento para instâncias de tamanhos consideráveis.

Além da versão clássica com dominância de Pareto, a MoST também pode ser estudada a partir de outros critérios de preferências apontados pelo tomador de decisão. Uma rápida revisão bibliográfica dos vários algoritmos baseados em preferência para a MoST será apresentada na subseção 2.1.

O critério de preferência estudado por este trabalho é o Ordered Weighted Average (OWA) e o problema é chamado de OWA-ST. Segundo Fernández et al. (2017), o operador OWA é geral o suficiente para ser aplacado a qualquer problema multiobjetivo. No caso particular, para entender a OWA-ST, considere $\forall \tau \in X, f_{\sigma}(\tau) \in Z$ o vetor que permuta os custos componentes do vetor $f(\tau)$ tal que $f_{\sigma_1}(\tau) \geq ... \geq f_{\sigma_p}(\tau)$. Seja ainda $\omega \in \Re^p$ um vetor de pesos não negativos tais que $\sum_{i \in P} \omega_i = 1$. O problema OWA-ST visa encontrar $\tau \in X$ que minimiza o operador $OWA_{\omega}(\tau) = \omega^T f_{\sigma}(\tau)$.

O problema da OWA-ST é NP-difícil (GALAND; SPANJAARD, 2012). A prova consiste numa redução do problema da Árvore Geradora Max-Linear (ML-ST)

ao OWA-ST. Sabe-se que tal problema é NP-difícil (HAMACHER; RUHE, 1994) e é definido como:

$$min\{h(\tau) : \tau \in X\} \text{ onde: } h(\tau) = max\{f_i(\tau), ..., f_p(\tau)\}$$

$$\tag{1}$$

Galand e Spanjaard (2012) e Fernández et al. (2017) afirmam que uma instância do problema da ML-ST pode ser reduzida a uma instância da OWA-ST, onde $\omega_1 = 1$ e $\omega_2 = \ldots = \omega_p = 0$.

2.1 Estado da arte

O estado da arte da MoST é rico em trabalhos que exploram suas principais características e que apresentam algoritmos exatos ou heurísticos. Uma extensa revisão bibliográfica é apresentada por Fernandes (2016), onde o autor apresenta uma análise experimental dos algoritmos exatos. Outras revisões bibliográficas do problema foram apresentadas por Ruzika e Hamacher (2009) e Climaco e Pascoal (2011), sem, todavia, contemplar a análise experimental dos algoritmos. Os trabalhos que propõem algoritmos exatos baseados em dominância de Pareto são: Corley (1985), Pugliese, Guerriero e Santos (2015), Ramos et al. (1998), Steiner e Radzik (2003) e Sourd e Spanjaard (2008). Dentre estes, destaca-se o algoritmo híbrido (e exato) de Sourd e Spanjaard (2008), pois possui o melhor desempenho computacional (FERNANDES, 2016). Os demais algoritmos exatos são baseados em preferência e foram propostos por Perny e Spanjaard (2005), Alonso et al. (2009), Galand, Perny e Spanjaard (2010), Galand e Spanjaard (2012) e Fernández et al. (2017). Os trabalhos baseados em heurísticas são: busca local de Hamacher e Ruhe (1994) e Davis-Moradkhan (2010); algoritmos evolucionários de Zhou e Gen (1999), Knowles e Corne (2000a, 2000b, 2001), Rocha, Goldbarg e Goldbarg (2006, 2007), Chen et al. (2007), Davis-Moradkhan, Browne e Grindrod (2009), Monteiro, Goldbarg e Goldbarg (2009, 2010) e Monteiro (2011); e o algoritmo GRASP de Arroyo, Vieira e Vianna (2008).

Especificamente, o presente trabalho está concentrado na MoST baseada em preferência, mais precisamente, em abordagens baseadas no operador OWA. Os algoritmos exatos baseados em dominância de Pareto e os algoritmos heurísticos não serão explorados aqui. O leitor interessado em tais abordagens é convidado a consultar o trabalho de Fernandes (2016).

Perny e Spanjaard (2005) prepuseram dois algoritmos baseados em preferência, generalizações, respectivamente, dos algoritmos clássicos de Kruskal (1956) e Prim (1957). Os autores concebem algoritmos suficientemente gerais, onde qualquer relação de preferência pode ser utilizada, desde que a mesma satisfaça ao Axioma da Independência e seja quase transitiva.

Alonso et al. (2009) também propuseram dois algoritmos baseados em preferência que são generalizações, respectivamente, de Kruskal (1956) e Prim (1957). Da mesma forma, tais algoritmos podem trabalhar com qualquer relação de preferência, porém, desta vez, a mesma deve ser transitiva negativa e aditiva forte.

Galand, Perny e Spanjaard (2010), diferentemente dos dois trabalhos supracitados, trabalharam especificamente com a Integral de *Choquet* como relação

de preferência. Os autores apresentaram dois algoritmos, um de enumeração (chamado ranking) e outro Branch-and-bound que se propõem a encontrar a solução Choquet-ótima.

A família de operadores *OWA* foi introduzida por Yager (1988) e intensamente utilizada em trabalhos que estudam problemas envolvendo tomada de decisão, sobretudo aqueles onde vários critérios devem ser considerados. Os trabalhos de Ogryczak e Śliwiński (2003), Fernández, Pozo e Puerto (2014) e Chassein e Goerigk (2015) trazem diversas formulações matemáticas alternativas para modelar tal operador no contexto de otimização multiobjetivo. Tais autores também apresentam a análise computacional dos modelos propostos.

Galand e Spanjaard (2012) conceberam um modelo de programação matemática, aplicado ao problema OWA-ST, que pode ser utilizado para uma quantidade arbitrária de objetivos. O autores provaram que o problema é NP-Difícil e procederam experimentos computacionais, incluindo várias subclasses do problema.

Fernández, Pozo e Puerto (2014) exploraram o operador OWA, apresentando e estudando uma variedade de modelos alternativos de programação linear. Tais modelos são suficientemente gerais e podem ser aplicados a qualquer problema de otimização multicritério. A fim de proceder análise experimental, os autores aplicaram seus modelos ao problema do caminho mais curto e do emparelhamento perfeito de custo mínimo. Fernández et al. (2017) utilizaram um dos modelos gerais propostos por Fernández, Pozo e Puerto (2014) e aplicaram ao OWA-ST. Além disso, Fernández et al. (2017) estudaram reformulações do modelo para a OWA-ST e compararam seu desempenho quando combinado com diversos modelos alternativos para a árvore geradora, dentre eles o modelo de fluxo de Magnanti e Wong (1984), adotado na presente pesquisa.

As pesquisas envolvendo operadores *OWA* não se restringem especificamente à Otimização combinatória. Por exemplo, os trabalhos de Wang, Zhang e Qian (2011) e Ramentol et al. (2015) utilizaram versões *fuzzy* do operador *OWA* para resolver problemas de classificadores de padrões; De e Diaz (2011) também utilizaram a variante *fuzzy* no estudo de soluções para *engine* de pesquisa em rede.

3 Modelos

Esta seção detalha dois modelos para a *OWA-ST* (subseções 3.1 e 3.2) e um modelo para representar a árvore geradora de um grafo (subseção 3.3).

3.1 Modelo de Galand e Spanjaard (2012)

O modelo de Galand e Spanjaard (2012) segue abaixo. Seja r_{ij} a variável que denota o valor do *i-ésimo* objetivo ocupando a posição j. Seja ainda a seguinte variável:

 $z_{ij} = \begin{cases} 1 & \text{se a } i\text{-}\acute{e}sima \text{ função objetivo ocupa posição } j \\ 0 & \text{caso contrário} \end{cases}$

$$Min \sum_{j \in P} \omega_j \left(\sum_{i \in P} r_{ij} \right) \tag{2}$$

Sujeito a:

$$\sum_{i \in P} z_{ij} = 1 \quad \forall j \in P \tag{3}$$

$$\sum_{j \in P} z_{ij} = 1 \quad \forall i \in P \tag{4}$$

$$\sum_{i \in P} r_{ij} \ge \sum_{i \in P} r_{ij+1} \quad j \in P : j$$

$$r_{ij} \le M z_{ij} \quad i, j \in P \tag{6}$$

$$\sum_{j \in P} r_{ij} = C_i \tau \quad i \in P \tag{7}$$

$$au \in X$$
 (8)

$$r_{ij} \ge 0 \quad i, j \in P \tag{9}$$

$$z \in \{0, 1\}^{p \times p} \tag{10}$$

A equação (2) minimiza a função objetivo do problema, a qual consiste na média ponderada dos valores objetivos ordenados (OWA-ST). As restrições (3) garantem que, para qualquer posição da sequência ordenada de valores objetivos, tal posição possuirá apenas um valor objetivo. Analogamente, as restrições (4) garantem que seja qual for o valor objetivo, tal valor estará em apenas uma posição. Assim, as restrições (3) e (4) asseguram uma permutação de cada valor objetivo da árvore. As restrições (5) asseguram que tal permutação será em ordem não crescente. A restrição (6) garante que qualquer r_{ij} será zero caso z_{ij} seja zero, e será menor ou igual a um valor M (para algum M suficientemente grande) caso z_{ij} seja seja 1. A restrição (7) garante que, para qualquer árvore $\tau \in X$, o valor do seu i-ésimo custo será igual a r_{ij} , para algum j. A restrição (8) determina que τ seja uma árvore. Note que, devido (7), faz-se necessário um conjunto de restrições suplementares para assegurar que τ seja de fato uma árvore. A subseção 3.3 detalhará tais restrições.

3.2 Modelo de Fernández et al. (2017)

O modelo de Fernández et al. (2017) segue abaixo. A variável z_{ij} possui exatamente a mesma semântica daquela definida no trabalho de Galand e Spanjaard (2012). Seja θ_j , $\forall j \in P$, a variável que representa o valor objetivo da posição j da sequência ordenada.

$$z_{ij} = \begin{cases} 1 & \text{se a } i\text{-}\acute{e}sima \text{ função objetivo ocupa posição } j \\ 0 & \text{caso contrário} \end{cases}$$

$$Min \sum_{j \in P} \omega_j \theta_j \tag{11}$$

Sujeito a:

$$\sum_{i \in P} z_{ij} = 1 \quad \forall j \in P \tag{12}$$

$$\sum_{i \in P} z_{ij} = 1 \quad \forall i \in P \tag{13}$$

$$C_i \tau \le \theta_j + M \left(1 - \sum_{k \ge j} z_{ik} \right) \quad i, j \in P$$
 (14)

$$\theta_i \ge \theta_{i+1} \quad j \in P : j$$

$$\tau \in X \tag{16}$$

$$\theta_j \ge 0 \quad j \in P \tag{17}$$

$$z \in \{0, 1\}^{p \times p} \tag{18}$$

O objetivo do modelo, representado pela fórmula 11, é minimizar a soma ponderada dos valores objetivo ordenados. As restrições (12) e (13) são idênticas àquelas análogas descritas na subseção 3.1. As restrições (14) relacionam o valor do *i-ésimo* custo da árvore τ e o valor de θ_j posicionado na sequência. As restrições (15) asseguram que tal sequência esteja em ordem não crescente. A restrição (16) assegura que τ seja uma árvore.

Fernández et al. (2017) provam que toda solução ótima do modelo apresentado é também solução ótima do modelo de Galand e Spanjaard (2012) e vice-versa.

Sejam Ω^{GS} e Ω^{FER} os domínios dos modelos de Galand e Spanjaard (2012) e Fernández et al. (2017), respectivamente, definido por suas restrições. Fernández et al. (2017) provam que $\Omega^{GS}\subset\Omega^{FER}$.

Por fim, Fernández et al. (2017) propuseram alguns modelos alternativos para o problema da OWA-ST, baseados no modelo original supradetalhado. Por exemplo, os autores sugerem remover as restrições (13) e (15), aumentando

o espaço de busca, mas, possivelmente, melhorando o desempenho do *Branch-and-bound* diante da redução da quantidade de restrições. O presente trabalho, entretanto, optou por implementar e experimentar, inicialmente, o modelo original a fim de verificar as fundamentais diferenças de comportamento entre os dois modelos em suas concepções inciais.

3.3 Modelo para a Árvore Geradora

Este trabalho utilizou o modelo matemático para árvore geradora concebido por Magnanti e Wong (1984), que é baseado em fluxo em redes. Segundo os autores, o modelo possui vários casos especiais. Um destes é o caso em que o fluxo obtido atinge todos os n vértices do grafo, passando por n-1 arestas, configurando uma árvore geradora. Sejam, pois as seguintes variáveis e o seguinte modelo:

$$y_{ij} = \begin{cases} 1 & \text{se a aresta } (i,j) \in E \text{ \'e utilizada para transporte do fluxo} \\ 0 & \text{caso contr\'ario} \end{cases}$$

 x_{ij} : é a quantidade de fluxo transportado do nó i ao nó j pela aresta $(i,j) \in E$.

$$Min \sum_{\{(i,j)\in E\}} c_{ij} y_{ij}$$

$$\sum_{\{j:(1,j)\in E\}} x_{1j} = n-1 \tag{19}$$

$$\sum_{\{i:(i,j)\in E\}} x_{ij} - \sum_{\{k:(j,k)\in E\}} x_{jk} = 1 \quad \forall j = 2, 3, ..., n$$
(20)

$$x_{ij} \ge 0 \quad \forall (i,j) \in E$$
 (21)

$$(n-1)y_{ij} \ge x_{ij} \quad \forall (i,j) \in E \tag{22}$$

$$y_{ij} \le x_{ij} \quad \forall (i,j) \in E \tag{23}$$

$$y_{ij} \in \{0,1\} \quad \forall (i,j) \in E \tag{24}$$

Note que o modelo de Magnanti e Wong (1984), conforme escrito acima, destina-se a encontrar a árvore geradora mínima de um grafo (vide função objetivo). Todavia, suas restrições são capazes de modelar a árvore geradora multiobjetivo. De fato, para o contexto dos modelos de Galand e Spanjaard (2012) e Fernández et al. (2017), as restrições são mais importantes. A restrição (19) considera o vértice 1 como sendo a fonte de um fluxo de valor n-1. Assim, as arestas que possuem uma das extremidades no vértice 1 poderão transferir o fluxo em apenas um sentido (saindo do vértice 1). A restrição (20) garante que a cada nó j=2,3...,n pelo qual o fluxo passa, um resíduo de uma unidade é retido em j. Deste modo, o fluxo diminui em uma unidade cada vez que passa em um vértice. As restrições (22) e (23) ajudam a garantir que $x_{ij}=0$ ou

 $x_{ji} = 0$, se, e somente se, $y_{ij} = 0$, além de garantir que jamais circulará, em qualquer aresta, um fluxo superior a n - 1. Finalmente, quando o fluxo passa por todos os vértice, ele atinge valor zero, tendo passado por exatamente n - 1 arestas. Tem-se, pois, uma árvore geradora.

4 Experimentos computacionais

Apresenta-se, nesta seção, os resultados dos experimentos computacionais os modelos de Galand e Spanjaard (2012) e Fernández et al. (2017). Todos os experimentos foram realizados numa máquina Intel Xeon~W3520, 2.67 GHz, Sistema Operacional Ubuntu 14.04 LTS, 64 bits, 8GB de memória RAM. Os algoritmos foram implementados em linguagem C++ e compilados com compilador GNU~g++ versão 4.8.4. Os modelos foram implementados com o solver~Gurobi~versão~6.5.

4.1 Instâncias utilizadas

Os experimentos foram efetuados com instâncias com 3 e 4 objetivos, 39 instâncias de cada, para grafos completos, tendo de 5 a 35 vértices. Para cada quantidade n de vértices, foram geradas três instâncias, denotadas, respectivamente, por $n.1,\ n.2$ e n.3. Todas as instâncias foram geradas com o gerador de Knowles (2002) considerando a correção proposta por Chen et al. (2007) (que impede de gerar arestas com peso negativo). Knowles (2002) classificou suas instâncias em três subgrupos: correlated, anti-correlated e concave. As duas primeiras dizem respeito à correlação β dos pesos das arestas (positivo e negativo, respectivamente). Os valores escolhidos para β foram 0.2, 0.5 e 0.85 para instâncias correlated $n.1,\ n.2$ e n.3, respectivamente. Para instâncias anti-correlated, o parâmetro β assume valores $-0.2,\ -0.5$ e -0.85 respectivamente os grupos $n.1,\ n.2$ e n.3. Até a data do experimentos aqui relatados, os o gerador de Knowles (2002) não contempla instâncias concave com mais de dois objetivos. Tal classe de instâncias foi, por isso, desconsiderada.

As instâncias precisam ser acrescidas de um vetor $\omega \in \Re^p$ de pesos, conforme descrito na seção 2. Existem variados critérios (ou técnicas) para geração de ω , como o k-centrum (TAMIR, 2001), k-trimmed (GALAND; SPANJAARD, 2012) e o critério de Hurwicz (HURWICZ, 1951). O primeiro critério foi adotado. Ele consiste em determinar um $k \in P$ e gerar os pesos tais que $\omega_1 = ... = \omega_k = 1/k$ e $\omega_{k+1} = ... = \omega_p = 0$. Para as instâncias com 3 objetivos, é determinado randomicamente um $k \in \{2,3\}$; analogamente, para 4 objetivos, k é determinado randomicamente em $\{2,3,4\}$.

4.2 Metodologia de comparação

Cada instância é executada uma vez com o modelo de Galand e Spanjaard (2012) e uma vez com o modelo de Fernández et al. (2017), com limite máximo de 10800 segundos de execução (três horas). Ou seja a execução que atingir tal limite de

tempo é finalizada. Foram observados o tempo de processamento, em segundos, de cada execução. Além disso, como muitas instâncias podem exigir mais de três horas, foram recuperados o gap relativo (em porcentagem) entre o valor melhor objetivo (operador OWA) encontrado e o valor da solução relaxada obtida no início do processamento do solver. Deste modo, seja z_R o valor objetivo da solução relaxada no nó raiz e z^* o melhor valor OWA encontrado no final do processamento, então o gap relativo será $100(z^*-z_R)/z_R$ (FERNÁNDEZ et al., 2017). A observação deste valor é importante, pois possibilita analisar quais dos dois modelos chegou mais próximo do ótimo ao fim de três horas. O valor z^* do melhor objetivo OWA encontrado por cada modelo também figurará nas tabelas dos experimentos. Outra observação importante é a quantidade de nós explorados na execução da árvore branch-and-bound criada pelo solver. Este valor é importante porque possibilita compreender qual dos modelos é mais dispendioso na fase branch-and-bound.

4.3 Instâncias com 3 objetivos

A Tabela 1 mostra os resultados dos experimentos para instâncias com 3 objetivos. Os dados são agrupados em classes (correlated e anti-correlated) e, em cada classe, confronta-se os resultados do modelo de Galand e Spanjaard (2012) (GS) e Fernández et al. (2017) (FER). Os resultados da referida tabela (exceto os da coluna $N \acute{o}s$) estão ajustados em precisão de três casas decimais. Na coluna $N \acute{o}s$, devido à grande quantidade de dígitos, os dados foram apresentados em notação científica, com precisão de uma casa decimal.

Para 3 objetivos, GS executou 19 instâncias correlated e 10 anti-correlated antes de atingir o limite de 3 horas. Isso representa, respectivamente, 48,72% e 25,64% do total de instâncias testadas. FER, por sua vez, achou, em tempo hábil, o ótimo de 17 instâncias correlated e 10 anti-correlated. Isso representa, respectivamente, 43,60% e 25,64% do total de instâncias. Ainda no que se refere ao tempo computacional, conforme se nota na Tabela 1, do total de instâncias correlated, o GS foi melhor que FER em 16 (41%) e foi pior em apenas 3 (7,7%), a saber 10.1, 12.1 e 12.3. Nas demais instâncias correlated, GS e FER atingiram 3 horas de processamento. Do total de instâncias anti-correlated, GS foi melhor que FER em 7 (17,94%) e pior em apenas 3 (7,7%), a saber 7.2, 10.2 e 12.1. Nas demais instâncias anti-correlated, GS e FER atingiram 3 horas de processamento. Portanto, percebeu-se que, para a maioria das instâncias em que se encontrou o ótimo antes de atingir o limite de tempo de execução, o GS apresentou melhor desempenho que o FER.

Para as demais instâncias, isto é, para aquelas em que ambos os modelos atingem três horas de processamento, outros parâmetros precisam ser analisados. Um desses parâmetros é o gap, ou seja, a porcentagem de afastamento entre a melhor solução corrente e a solução relaxada no nó raiz do Branch-and-bound. Observa-se que alguns valores de gap estão entre 0% e 0,01%, mesmo o solver tendo encontrado o ótimo em tempo hábil. Tal fenômeno deve-se a uma pequena perda de precisão de ponto flutuante do próprio solver nos valores da função objetivo. Assim, por conveniência, o presente trabalho considera que

tais valores de gap são, de fato, 0%.

Do total de instâncias correlated com 3 objetivos, em 20 (51,30%) ambos os modelos atingiram 3 horas de processamento. Destas instâncias, o gap do GS, quando comparado ao do FER, foi menor em 12 (60%) e foi maior em 8 (40%). Ainda do total de instâncias correlated, houve 2 (5,13%) em que o GS encontrou o ótimo em menos de 3 horas, mas o FER atingiu tal limite. Neste caso particular, é diretamente aceitável que o GS apresente menor gap. Do total de instâncias anti-correlated, em 29 (74,36%) ambos os modelos atingiram o tempo limite. Destas, o gap do GS foi menor em 18 (62,04%) e maior em 11 (37,93%). Para instâncias anti-correlated, não houve casos em que apenas um modelo atingisse o tempo limite e o outro encontrasse o ótimo. Portanto, na maioria dos casos, em ambas as classes, o gap do GS foi menor, sugerindo que tal modelo teria grande chances de encontrar o ótimo em menor tempo (quando comparado ao FER), caso o limite fosse maior que 3 horas.

Do total de instâncias correlated, quando se analisa a quantidade de nós da árvore de Branch-and-bound, nota-se que o GS, quando comparado com o FER, utilizou menor quantidade de nós em 33 instâncias (84,61%) e maior em 6 (15.39%). Em média, considerando todas as instâncias correlated, a quantidade de nós explorados por FER foi 84% superior a de GS. Caso considere-se apenas as 17 instâncias correlated onde ambos os modelos encontraram o ótimo, a quantidade de nós do GS foi inferior à do FER em 14 (82,35%) e superior em 3 (17,65%). De 20 instâncias correlated onde ambos os modelos atingiram o tempo limite, a quantidade de nós do GS foi menor em 17 (85%) e maior em 3 (15%).

Do total de instâncias anti-correlated, o GS, face ao FER, utilizou menor quantidade de nós em 22 (56,41%) e maior em 17 (43,58%). Em média, a quantidade de nós explorados por FER, para as instâncias anti-correlated com 3 objetivos, foi maior que a de GS em 14,29%. De 10 instâncias anti-correlated onde ambos os modelos encontraram o ótimo, GS utilizou menos nós que FER em 7 (70%) e mais nós em 3 (30%). Considerando apenas as 29 instâncias anti-correlated onde ambos os modelos atingiram o tempo limite, estes últimos valores são 15 (51,72%) e 14 (48,28%), respectivamente.

Portanto, constatou-se que, para instâncias com 3 objetivos, o GS apresentou melhor desempenho que o FER em muitos aspectos, como tempo para encontrar o ótimo, distância da solução inicial e quantidade de nós do Branch-and-bound. Tal diferença de desempenho é ainda maior quando se observa somente as instâncias correlated. De fato, instâncias anti-correlated mostram-se mais difíceis, conforme também foi observado por Fernandes (2016) em seus experimentos com a MoST. Além disso, observando cada grupo de instâncias de mesmo tamanho, percebeu-se que, no geral, instâncias correlated do grupo n.3 são mais fáceis, o que é razoável porque elas possuem maior coeficiente de correlação. De maneira análoga, as instâncias anti-correlated do grupo n.1 são mais fáceis, pois possuem maior coeficiente de anticorrelação.

Tabela 1: Resultados para instâncias com 3 objetivos

				Corre	elated				Anti-correlated								
Instânci	a		GS		FER								FER				
	Nós	Gap (%)	z^*	Tempo (s)	Nós	Gap (%)	z^*	Tempo (s)	Nós	Gap (%)	z^*	Tempo (s)	Nós	Gap (%)	z^*	Tempo (s)	
5.1	$3,\!\!4\mathrm{E}{+}01$	0,000	$124,\!500$	0,020	1,1E+02	0,000	$124,\!500$	0,030	$4{,}3E{+}01$	0,000	148,333	0,020	$8,\!6E+02$	0,000	148,333	0,110	
5.2	$6{,}1E{+}01$	0,000	$217,\!333$	0,020	1,1E+03	0,000	$217,\!333$	$0,\!110$	1,5E+02	0,000	176,500	0,030	$4,\!6E+02$	0,000	176,500	0,060	
5.3	$6,\!0\mathrm{E}{+00}$	0,000	$113,\!500$	0,010	8,9E+01	0,000	$113,\!500$	0,030	$6{,}7\mathrm{E}{+}01$	0,000	174,333	0,020	1,2E+03	0,000	174,333	$0,\!120$	
7.1	$3,\!5\mathrm{E}{+02}$	0,007	$168,\!500$	0,080	1,2E+03	,	$168,\!500$	0,500	1,1E+03	0,000	258,000	0,240	2,5E+03	0,000	258,000	1,380	
7.2	$1{,}3E{+}02$	0,000	144,000	0,040	1,3E+03	0,000	144,000	0,310	7,6E+03	0,000	280,500	2,170	$6,\!4E+03$	0,000	280,500	1,850	
7.3	$1{,}3E{+}02$	0,000	87,000	0,070	2,3E+03	0,000	87,000	$0,\!380$	5,6E+03	0,000	261,333	1,220	1,6E+04	0,000	261,333	$5,\!400$	
10.1	$1,\!0\mathrm{E}{+}04$	0,000	233,000	5,980	7,2E+03	,	233,000	5,430	9,4E+04	0,009	315,666	62,780	$4{,}3E{+}05$	0,000	315,666	$127,\!520$	
10.2	$3{,}1E{+}03$	0,000	212,333	1,790	9,1E+03	,	212,333	6,030	1,7E+06	0,010	380,000	1493,190	1,0E+06	0,000	380,000	1072,360	
10.3	4,9E+02	0,000	115,500	0,200	6,1E+02	,	115,500	$0,\!270$	7,9E+05	0,010	354,000	638,140	$2,\!6\mathrm{E}{+06}$	0,000	354,000	$730,\!580$	
12.1	$6{,}1E{+}04$	0,00	287,500	$75,\!280$	3,5E+04	0,000	287,500	$40,\!540$	2,6E+06	0,010	357,500	$4625,\!100$	1,4E+06	0,000	357,500	2181,470	
	<u></u> 1,1E+04	0,008	239,000	8,700	1,7E+04	,	239,000	$16,\!530$	$7,\!8E+06$	10,877	420,666	10800,000	, .	$16,\!403$	420,666	10800,000	
12.3	2,0E+03	0,000	151,000	1,150	9,0E+02	,	151,000	0,530	$4{,}3E{+}06$	29,399	521,000	10800,000	, .	$26,\!680$	521,000	10800,000	
15.1	$1,\!6\mathrm{E}{+}06$	0,00	350,333	,	$1{,}1E+07$	7,517	350,333	,	$3{,}1E+06$	$16,\!825$	440,000	10800,000	,	16,250	440,000	10800,000	
15.2	$^{4,7\mathrm{E}+06}_{-}$	6,020	353,500	10800,000	, .	,	353,500	,	, .	$26,\!250$	554,999	10800,000	, .	29,826	554,333	10800,000	
15.3	$5{,}9E{+}03$	0,000	186,333	$5,\!160$	1,6E+04	,	186,333	25,910	3,0E+06	37,931	660,000	10800,000		$35,\!584$	659,000	10800,000	
17.1	$4,\!6\mathrm{E}{+}06$	0,010	,	,	, .	9,474	348,333	,	2,0E+06	14,885	432,000	10800,000	, .	12,847	432,000	10800,000	
17.2	$3,\!2E+06$	7,439	,	,	,	,	344,000	,	-)	$27,\!282$	$618,\!333$	10800,000	, .	31,483	618,333	10800,000	
17.3	$_{-}^{4,5\mathrm{E}+03}$	0,005	215,333	5,040	$^{1,4E+04}_{-}$	0,000	215,333	$32,\!460$	$^{2,3E+06}_{-}$	39,877	751,000	10800,000	, .	37,750	751,000	10800,000	
20.1	1,8E+06	13,039	422,333	10800,000	, .	,	422,333	,	,	18,920	524,000	10800,000	,	20,038	524,000	10800,000	
20.2	$^{1,7\mathrm{E}+06}_{-}$	10,803	,	,	,		372,500	,	, .	30,652	722,666	10800,000	, .	33,164	722,666	10800,000	
20.3	$^{2,0\mathrm{E}+05}$	0,010	201,000	,	$^{1,9E+06}_{-}$,	201,000	,	$^{1,5}{\rm E} + 06$	44,010	891,000	10800,000	, .	42,273	893,000	10800,000	
22.1	1,4E+06	15,100	446,666	10800,000	,	,	,	10800,000	,	23,316	602,000	10800,000	,	23,505	602,000	10800,000	
22.2	1,6E+06	17,483	404,000	10800,000	,	,	,	10800,000	, .	32,826	797,333	10800,000	, .	34,783	797,333	10800,000	
22.3	2,2E+04	0,010	193,333	,	6.1E+04	0,000	193,333	,	1,3E+06	44,204	980,500	10800,000	, .	42,595	982,500	10800,000	
25.1	1,4E+06	16,529	459,000	10800,000	2,9E+06	22,948	459,000	10800,000	8,0E+05	25,747	652,500	10800,000	8,1E+05	24,865	647,500	10800,000	
														Continu	ıa na pró	xima página	

Tabela 1 – continuação da página anterior

				Corre	elated				Anti-correlated								
Instância	ı	(GS			FER					GS			FER			
	Nós	Gap (%)	z^*	Tempo (s)	Nós	Gap (%)	z^*	Tempo (s)	Nós	<i>Gap</i> (%)	z^*	Tempo (s)	Nós	Gap (%)	z^*	Tempo (s)	
25.2	1,1E+06	17,935	437,000	10800,000	1,3E+06	16,705	437,000	10800,000	1,2E+06	34,948	909,332	10800,000	2,5E+06	37,060	909,332	10800,000	
25.3	$3,\!5\mathrm{E}{+}05$	0,010	203,666	1150,920	$1{,}4\mathrm{E}{+}06$	0,000	$203,\!666$	4550,900	$1{,}1\mathrm{E}{+}06$	$45,\!833$	1122,000	10800,000	5,9E+05	43,329	$1120,\!500$	10800,000	
27.1	$8,\!2E\!+\!05$	16,337	477,000	10800,000	$9,\!2E+05$	20,685	477,000	10800,000	$6{,}9\mathrm{E}{+}05$	26,972	744,000	10800,000	$6,\!6E\!+\!05$	$27,\!487$	744,000	10800,000	
27.2	$7{,}7E{+}05$	27,730	585,000	10800,000	$7{,}7\mathrm{E}{+}05$	26,667	585,000	10800,000	$9,\!4E+\!05$	34,849	$980,\!666$	10800,000	$1,\!4\mathrm{E}{+06}$	36,604	981,666	10800,000	
27.3	$2{,}7E{+}06$	$7,\!182$	204,000	10800,000	2,2E+06	9,477	204,000	10800,000	$5{,}8\mathrm{E}{+}05$	44,738	1214,000	10800,000	$7{,}1E{+}05$	44,815	$1215,\!000$	10800,000	
30.1	$6,\!2\mathrm{E}{+}05$	$18,\!564$	560,999	10800,000	1,9E+06	24,064	560,999	10800,000	$5{,}3E{+}05$	29,500	$778,\!500$	10800,000	6,5E+05	28,507	770,000	10800,000	
30.2	$6,\!0\mathrm{E}{+}05$	30,400	528,000	10800,000	$7{,}1\mathrm{E}{+}05$	21,780	528,000	10800,000	$6,\!6E\!+\!05$	36,333	1093,000	10800,000	$5,\!5E\!+\!05$	$36,\!588$	1096,000	10800,000	
30.3	$2{,}3E{+}06$	4,530	236,666	10800,000	$5{,}3\mathrm{E}{+}06$	12,254	$236,\!666$	10800,000	$6{,}8\mathrm{E}{+}05$	37,110	1100,670	10800,000	1,3E+06	40,672	1100,670	10800,000	
33.1	$4{,}3E{+}05$	17,968	525,000	10800,000	4,5E+05	17,176	524,000	10800,000	$4{,}3E{+}05$	28,134	882,332	10800,000	8,7E+05	30,299	882,332	10800,000	
33.2	$5,\!8\mathrm{E}{+}05$	18,830	464,000	10800,000	6,0E+05	$22,\!486$	464,000	10800,000	4,0E+05	37,782	1187,000	10800,000	4,6E+05	37,867	1191,000	10800,000	
33.3	$4,\!5E\!+\!05$	$20,\!440$	$295,\!500$	10800,000	1,5E+06	20,981	$295,\!500$	10800,000	4,9E+05	$38,\!455$	1203,670	10800,000	1,3E+06	42,193	1204,000	10800,000	
35.1	$\frac{1}{2}$ 3,1E+05	$23,\!265$	566,500	10800,000	3,6E+05	19,418	566,500	10800,000	$4{,}3E{+}05$	$25,\!534$	866,999	10800,000	7,9E+05	30,296	866,999	10800,000	
35.2	4,2E+05	18,916	506,333	10800,000	5,8E+05	22,317	506,333	10800,000	4,2E+05	37,889	1256,000	10800,000	3,3E+05	37,785	1250,500	10800,000	
35.3	$5,\!2E+05$	17,062	340,500	10800,000	$5{,}8\mathrm{E}{+}05$	16,300	340,500	10800,000	$4{,}1E{+}05$	37,619	1255,330	10800,000	$7{,}7\mathrm{E}{+}05$	41,220	1256,670	10800,000	

4.4 Instâncias com 4 objetivos

A Tabela 2 apresenta os resultados do experimentos com instâncias com 4 objetivos. Seu formato e suas legendas são padrões idênticos àqueles utilizados na Tabela 1. A precisão e a notação dos dados também são idênticas.

Das 39 instâncias executadas, GS encontrou o ótimo, em tempo hábil, para 18 (46, 15%) correlated e para 9 (23,08%) anti-correlated. FER, por sua vez, executou, em menos de 3 horas, 15 (38, 46%) instâncias correlated e 9 (23,08%) anti-correlated. Além disso, GS, considerando apenas instâncias correlated, apresentou menor tempo que FER em 16 (41,03%) e maior tempo em apenas 3 (7,70%), a saber 10.2, 12.2 e 15.2. Nas demais instâncias correlated, GS e FER atingiram 3 horas de processamento. Do total de instâncias anti-correlated, ainda do ponto de vista do tempo computacional, GS foi melhor em 7 (17,95%) e pior em apenas 2 (5,12%), a saber 7.2 e 10.2. Nas demais instâncias anti-correlated, ambos os modelos atingiram o tempo limite. Como também aconteceu com as instâncias de 3 objetivos, sob a ótica do tempo computacional, aqui se verificou, pois, o melhor desempenho do GS face ao FER.

Quando ambos os modelos atingem o limite de 3 horas, procede-se a análise sob a ótica do gap. Novamente, observou-se que alguns valores de gap estão entre 0% e 0,01%, mesmo quando o solver encontrou o ótimo antes de 3 horas. Entende-se este fenômeno como uma perda de precisão de ponto flutuante do próprio solver nos valores da função objetivo. Assim, tais valores de gap são considerados como 0%.

Ambos os modelos atingiram o limite de tempo em 21 instâncias correlated, o que representa 53,85% do total. Deste valor, o gap do GS, face ao do FER, foi menor em 9 instâncias (42,86%) e maior em 12 (57,14%). Nota-se que, neste cenário específico, o GS, ao fim de 3 horas, esteve mais distante do ótimo para 57,14% das instâncias correlated. De modo análogo, ambos os modelos atingiram o limite de tempo em 30 instâncias anti-correlated, o que representa 76,92% do total. Deste valor, o gap do GS foi menor em 15 instâncias (50%), assim como foi maior também em 15 (50%). Tais informações sugerem que, em se tratando do número de instâncias anti-correlated em que cada modelo ficou mais próximo do ótimo, nenhum modelo dominou significativamente o outro. No geral, pode-se inferir que a discrepância dos modelos diminuiu em relação ao mesmo cenário traçado para as instâncias com 3 objetivos (subseção 4.3). Lá, GS parecia estar mais próximo do ótimo, ao fim de três horas, para maioria das instâncias (de ambas das classes). Aqui, essa evidência diminui.

Quando compara-se a quantidade de nós do Branch-and-bound explorados pelo GS e pelo FER, conclui-se que a quantidade do primeiro modelo foi inferior a do segundo em 27 (69, 23%) instâncias do total da classe correlated e maior em 12 (30,77%). A média da quantidade de nós explorados por FER foi 106% maior que a de GS nas instâncias correlated. Considerando apenas as 15 instâncias desta classe onde ambos os modelos encontram o ótimo, a quantidade de nós do GS foi inferior a do FER em 11 (73, 33%) e superior em 4 (26, 67%). Das 21 instâncias correlated onde ambos os algoritmos atingem o tempo limite, a quantidade de GS foi menor em 13 (61,90%) e maior em 8 (38,10%).

Do total de instâncias anti-correlated, a quantidade de nós do GS, face ao FER, foi menor em 20 instâncias (51,28%) e maior em 19 (48,72%). Em média, a quantidade de nós explorados pelo FER nesta classe foi maior que a do GS em 21,42%. Das 9 instâncias anti-correlated em que ambos os modelos encontram o ótimo, o GS explorou menos nós que o FER em 4 (44,44%) instâncias e mais nós 5 (55,56%). Das 30 instâncias da referida classe em que ambos os modelos atingem o tempo limite, em 16 (53,33%) a quantidade de nós exploradas pelo GS foi menor e em 14 (46,67%) foi maior.

Portanto, para instâncias com 4 objetivos, o GS ainda se manteve na liderança, face ao FER, nos aspectos analisados: tempo para atingir o ótimo, distância da solução ótima e quantidade de nós do Branch-and-bound. Entretanto, conforme se observou nos parágrafos acima, a discrepância entre os modelos diminuiu em relação aos experimentos com 3 objetivos. Isso sugere que, conforme aumenta-se a quantidade de objetivos, a liderança do GS pode diminuir. Nota-se, pois, a necessidade de expandir esta análise experimental para instâncias com mais objetivos, a fim de se constatar (ou refutar) tal hipótese. Ainda de maneira geral, infere-se que as instâncias da classe anti-correlated demandaram mais esforço computacional. Além disso, as instâncias correlated do grupo n.3 foram consideravelmente mais fáceis, visto que possuem maior coeficiente de correlação. O mesmo pode-se dizer das instâncias anti-correlated do grupo n.1, já que possuem maior coeficiente de anticorrelação.

Tabela 2: Resultados para instâncias com 4 objetivos

				Corre	elated						Anti-co	orrelated							
Instância	a	GS FER									GS FER								
	Nós	Gap (%)	z^*	Tempo (s)	Nós	Gap (%)	z^*	Tempo (s)	Nós	Gap (%)	z^*	Tempo (s)	Nós	Gap (%)	z^*	Tempo (s)			
5.1	7,1E+01	0,000	117,000	0,020	1,3E+03	0,000	117,000	0,170	6,7E+01	0,000	156,500	0,020	2,4E+03	0,000	156,500	0,250			
5.2	$1,\!8\mathrm{E}{+02}$	0,000	155,000	0,040	3,7E+02	0,000	155,000	0,050	$4{,}3E{+}02$	0,000	$195,\!500$	0,060	4,2E+02	0,000	195,500	0,070			
5.3	$1,\!2E+02$	0,000	132,000	0,030	$9{,}1E{+}02$	0,000	132,000	0,120	1,6E+02	0,000	181,000	0,040	1,1E+03	0,000	181,000	0,140			
7.1	$9,\!0\mathrm{E}{+}02$	0,000	$202,\!500$	0,200	$3,\!5E+03$	0,000	$202,\!500$	2,270	$7,\!4E+02$	0,000	$207,\!500$	$0,\!170$	7,1E+03	0,000	$207,\!500$	2,550			
7.2	$8,\!2E+02$	0,000	207,000	0,200	1,3E+03	0,000	207,000	0,620	1,8E+04	0,002	$273,\!500$	7,760	8,8E+03	0,000	$273,\!500$	2,660			
7.3	$2,\!\!4\mathrm{E}{+}01$	0,000	88,333	0,060	1,1E+03	0,000	88,333	0,650	8,9E+03	0,000	$242,\!333$	3,450	$8,\!4E+03$	0,000	$242,\!333$	3,780			
10.1	$9,\!4E+03$	0,000	$250,\!500$	5,890	4,7E+04	0,000	$250,\!500$	23,050	1,5E+05	0,010	316,750	122,280	1,3E+06	0,000	316,750	749,220			
10.2	$2,\!2E+04$	0,000	248,000	19,150	$8,\!6E\!+\!03$	0,000	248,000	6,310	4,5E+06	0,010	393,500	7 214,880	1,5E+06	0,000	393,500	2 576,620			
10.3	$9,\!4\mathrm{E}{+}02$	0,000	105,000	0,280	7,5E+02	0,000	105,000	2,550	3,3E+06	0,010	357,333	3 829,090	2,7E+06	0,000	357,333	4554,430			
12.1	$2,\!$	0,010	$323,\!250$	$277,\!490$	$2,\!3\mathrm{E}{+06}$	0,000	$323,\!250$	$1\ 126,070$	$7,\!8\mathrm{E}{+06}$	7,916	$412,\!250$	10800,000	$6{,}8\mathrm{E}{+}06$	16,980	$412,\!250$	10800,000			
12.2	<u>-</u> 2,6E+05	0,009	303,500	476,700	8,3E+04	0,000	303,500	132,680	$3,\!6\mathrm{E}\!+\!06$	21,871	459,000	10800,000	$3,\!5E\!+\!06$	17,506	457,000	10800,000			
12.3	$^{\circ}2,9E+03$	0,000	210,666	2,410	2,5E+03	0,000	210,666	3,650	4,5E+06	19,179	422,000	10800,000	3,7E+06	16,983	422,000	10800,000			
15.1	$2,\!$	0,010	350,750	5590,320	7,0E+06	9,765	350,750	10800,000	$3,\!$	20,016	515,750	10800,000	$6{,}5\mathrm{E}{+}06$	$28,\!260$	515,750	10800,000			
15.2	$1{,}1\mathrm{E}{+}06$	0,010	300,000	3714,220	1,7E+06	0,000	300,000	$3\ 254,920$	$2,\!2E+06$	33,212	586,000	10800,000	2,3E+06	29,991	583,500	10800,000			
15.3	$3,\!0\mathrm{E}\!+\!04$	0,007	$175,\!666$	37,700	4,2E+04	0,000	$175,\!666$	46,690	$2,\!6\mathrm{E}{+}06$	30,420	554,333	10800,000	$7{,}1\mathrm{E}{+}06$	31,269	554,333	10800,000			
17.1	$3{,}4\mathrm{E}{+}06$	$10,\!460$	389,500	10800,000	2,0E+06	16,688	389,500	10800,000	$2,\!6\mathrm{E}{+}06$	19,294	521,750	10800,000	$3,\!8E\!+\!06$	$25,\!443$	521,750	10800,000			
17.2	$1{,}7E{+}06$	16,021	$398,\!500$	10800,000	$2{,}1E{+}06$	$13,\!551$	$398,\!500$	10800,000	1,7E+06	$35,\!489$	$664,\!500$	10800,000	$1{,}7\mathrm{E}{+}06$	$32,\!226$	$662,\!500$	10800,000			
17.3	$3,\!8\mathrm{E}{+06}$	0,010	259,000	$6\ 224,950$	$1{,}3E{+}07$	3,732	259,000	10800,000	$2,\!2E+06$	31,080	623,999	10800,000	$5{,}3\mathrm{E}{+}06$	$31,\!658$	623,333	10800,000			
20.1	$1,\!2\mathrm{E}{+06}$	$18,\!545$	473,000	10800,000	$1{,}1E{+}06$	16,385	473,000	10800,000	1,3E+06	$26,\!278$	632,000	10800,000	1,2E+06	25,020	$627,\!500$	10800,000			
20.2	$2,\!2E+06$	5,987	$376,\!333$	10800,000	$5,\!8\mathrm{E}{+}06$	8,769	$376,\!333$	10800,000	$1,\!6\mathrm{E}{+}06$	37,922	794,666	10800,000	$3{,}3\mathrm{E}{+}06$	38,113	794,999	10800,000			
20.3	$1,\!0\mathrm{E}{+}06$	0,010	214,750	1953,910	$8{,}1\mathrm{E}{+}06$	7,218	214,750	10800,000	$1,\!8\mathrm{E}{+06}$	$25,\!511$	612,000	10800,000	$9,\!0E\!+\!05$	26,830	$611,\!250$	10800,000			
22.1	$1,\!0\mathrm{E}{+}06$	$22,\!500$	$498,\!500$	$10800,\!000$	$1{,}1\mathrm{E}{+}06$	19,659	$498,\!500$	$10800,\!000$	$1{,}3E{+}06$	$26,\!877$	$677,\!500$	10800,000	$9,\!3E\!+\!05$	26,214	$669,\!500$	10800,000			
22.2	$1{,}1\mathrm{E}{+}06$	17,901	437,000	$10800,\!000$	$3{,}3E{+}06$	20,976	437,000	$10800,\!200$	$1{,}1E{+}06$	$38,\!516$	842,332	10800,000	$1{,}7\mathrm{E}{+}06$	$38,\!295$	$844,\!332$	10800,000			
22.3	$5{,}9\mathrm{E}{+}05$	0,010	$185,\!500$	$927,\!660$	8,9E+06	0,000	$185,\!500$	$7\ 372,040$	$1{,}5\mathrm{E}{+}06$	$30,\!560$	650,000	10800,000	$1{,}1\mathrm{E}{+}06$	36,963	650,000	10800,000			
25.1	$7{,}0E{+}05$	$21,\!599$	533,000	10800,000	$5,\!3E\!+\!05$	$22,\!254$	$532,\!500$	10800,000	$1{,}1E{+}06$	29,265	782,000	10800,000	$7{,}5\mathrm{E}{+}05$	28,866	776,000	10800,000			

Continua na próxima página

Tabela 2 – continuação da página anterior

				Corre	elated				Anti-correlated								
Instância	ı			FER					GS			FER					
	Nós	Gap (%)	z^*	Tempo (s)	Nós	Gap (%)	z^*	Tempo (s)	Nós	Gap (%)	z^*	Tempo (s)	Nós	Gap (%)	z^*	Tempo (s)	
25.2	$6,\!6\mathrm{E}{+}05$	24,594	498,333	10800,000	9,8E+05	18,788	500,333	10800,000	8,4E+05	38,914	963,999	10800,000	$6,\!6E\!+\!05$	37,716	965,999	10800,000	
25.3	$3,\!8\mathrm{E}{+06}$	3,518	180,500	10800,000	$3,\!$	7,064	$180,\!500$	10800,000	$1{,}1\mathrm{E}{+}06$	30,331	744,750	10800,000	$2{,}1\mathrm{E}{+}06$	$34,\!869$	$743,\!500$	10800,000	
27.1	$5{,}7E{+}05$	28,093	596,000	10800,000	$5{,}7\mathrm{E}{+}05$	24,833	598,000	10800,000	$6{,}2\mathrm{E}{+}05$	29,322	792,000	10800,000	$7{,}5\mathrm{E}{+}05$	28,225	783,000	10800,000	
27.2	$5,\!5E\!+\!05$	28,899	544,333	10800,000	1,9E+06	26,148	544,333	10800,000	$5{,}8\mathrm{E}{+}05$	40,093	$1\ 041,670$	10800,000	1,1E+06	39,936	$1\ 046,670$	10800,000	
27.3	$2,\!6\mathrm{E}{+}06$	$6,\!374$	239,750	10800,000	1,8E+06	11,366	239,750	10800,000	$7{,}8\mathrm{E}{+}05$	$31,\!581$	798,750	10800,000	2,0E+06	36,995	798,750	10800,000	
30.1	$4{,}4E{+}05$	$26,\!278$	$701,\!500$	10800,000	$6{,}1\mathrm{E}{+}05$	23,618	$696,\!500$	10800,000	$5{,}0\mathrm{E}{+}05$	31,920	935,000	10800,000	$6{,}8\mathrm{E}{+}05$	$30,\!541$	$925,\!000$	10800,000	
30.2	$4{,}1E{+}05$	31,930	575,999	10800,000	$6,\!6E\!+\!05$	23,148	575,999	10800,000	$5{,}3E{+}05$	39,926	1 118,670	10800,000	$4{,}7\mathrm{E}{+}05$	38,234	1129,000	10800,000	
30.3	$1,\!0\mathrm{E}{+}06$	13,862	244,000	10800,000	$7,\!4E+05$	$15,\!471$	244,000	10800,000	$6{,}1\mathrm{E}{+}05$	33,976	918,000	10800,000	3,9E+05	35,646	$915,\!250$	10800,000	
33,1	$3,\!6\mathrm{E}{+}05$	29,050	748,000	10800,000	4,2E+05	26,210	744,000	10800,000	4,9E+05	31,710	977,000	10800,000	$4,\!2E+\!05$	32,101	$973,\!500$	10800,000	
33.2	$3{,}4\mathrm{E}{+}05$	30,145	561,999	10800,000	$8{,}1E{+}05$	25,564	561,999	10800,000	$4{,}1E{+}05$	$42,\!207$	$1\ 262,\!670$	10800,000	1,3E+06	$42,\!602$	$1\ 270,670$	10800,000	
33.3	$1,\!0\mathrm{E}{+}06$	$13,\!558$	301,000	10800,000	1,4E+06	23,173	301,000	10800,000	$4{,}5\mathrm{E}{+}05$	34,861	988,000	10800,000	$5,\!6E\!+\!05$	39,008	$988,\!250$	10800,000	
35.1	$\pm 3.4E + 05$	27,479	732,500	10800,000	3,6E+05	25,738	728,500	10800,000	$3,\!4\mathrm{E}{+}05$	$33,\!427$	1022,000	10800,000	3,9E+05	32,709	1015,000	10800,000	
35.2	3,9E+05	29,343	605,333	10800,000	$6,\!2E\!+\!05$	27,863	605,333	10800,000	3,9E+05	36,005	$1\ 202,750$	10800,000	7,0E+05	38,500	$1\ 206,\!500$	10800,000	
35.3	8,3E+05	13,662	274,000	10800,000	$6,\!3E\!+\!05$	17,701	274,000	10800,000	$5,\!8E\!+\!05$	48,151	1 604,500	10800,000	$1,\!3E+05$	46,391	1607,000	10800,000	

5 Considerações finais

Este trabalho estudou, implementou e analisou experimentalmente os modelos sugeridos por Galand e Spanjaard (2012) e Fernández et al. (2017), contribuindo para a compreensão dos mesmos. Procedeu-se experimentos com 39 instâncias de 3 e 4 objetivos, das classes correlated e anti-correlated. Constatou-se que o modelo de Galand e Spanjaard (2012) apresentou, no geral, desempenho superior ao de Fernández et al. (2017), embora este último seja mais recente. Tal diferença de desempenho, contudo, diminui para 4 objetivos, sugerindo que, possivelmente, o modelo proposto por Fernández et al. (2017) possa se tornar mais competitivo com mais objetivos. Para validar esta hipótese, este trabalho necessita de uma série de complementos, como: realizar experimentos com mais objetivos (sugere-se 5, 8 e 10); testar instâncias com mais vértices (sugere-se até 50); e adotar outros critérios para gerar os pesos ω_i , $i \in P$, além do kcentrum, conforme descrito na subseção 4.1. Outro complemento importante é implementar algum dos modelos alternativos de Fernández et al. (2017), o qual reduz o número de restrições, a fim que se possa comparar com os modelos experimentados por este trabalho.

Referências

- AGGARWAL, V.; ANEJA, Y.; NAIR, K. Minimal spanning tree subject to a side constraint. *Computers Operations Research*, v. 9, p. 287–296, 1982.
- ALONSO, S. et al. Optimality conditions in preference-based spanning tree problems. European Journal of Operational Research, v. 198, p. 232–240, 2009.
- ARROYO, J. E. C.; VIEIRA, P. S.; VIANNA, D. A grasp algorithm for the multi-criteria minimum spanning tree problem. *Annals of Operations Research*, v. 159, p. 125–133, 2008.
- CHASSEIN, A.; GOERIGK, M. Alternative formulations for the ordered weighted averaging objective. *Information Processing Letters*, Elsevier, v. 115, n. 6, p. 604–608, 2015.
- CHEN, G. et al. The multi-criteria minimum spanning tree problem based genetic algorithm. *Information Sciences*, v. 117, n. 22, p. 5050–5063, 2007.
- CLIMACO, J. C.; PASCOAL, M. M. B. Multicriterio path and tree problems: discussion on exact algorithms and applications. *International Transactions in Operational Research*, p. 1–36, 2011.
- CORLEY, H. Efficient spanning trees. Journal of Optimization Theory and Applications, v. 45, 1985.
- DAVIS-MORADKHAN, M. Multi-criterion optimization in minimum spanning trees. *Studia Informatica Universali*, v. 8, p. 185–208, 2010.
- DAVIS-MORADKHAN, M.; BROWNE, W. N.; GRINDROD, P. Extending evolutionary algorithms to discover tri-criterion and non-supported solutions for the minimum spanning tree problem. In: *GECCO '09 Genetic and Evolutionary Computational Conference, 2009, Montréal. Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO '09)*. [S.l.]: ACM, New York, 2009. p. 1829–1830.
- DE, A.; DIAZ, E. D. A fuzzy ordered weighted average (owa) approach to result merging for metasearch using the analytical network process. In: IEEE. *Emerging Applications of Information Technology (EAIT), 2011 Second International Conference on.* [S.l.], 2011. p. 17–20.
- FERNANDES, I. Graduação em Ciência da Computação, Graduação em Ciência da Computação, Análise Experimental dos Algoritmos Exatos Aplicados ao Problema da Árvore Geradora Multiobjetivo. Natal, RN, Brasil: [s.n.], 2016.
- FERNÁNDEZ, E.; POZO, M. A.; PUERTO, J. Ordered weighted average combinatorial optimization: Formulations and their properties. *Discrete Applied Mathematics*, Elsevier, v. 169, p. 97–118, 2014.

- FERNÁNDEZ, E. et al. Ordered weighted average optimization in multiobjective spanning tree problem. *European Journal of Operational Research*, Elsevier, v. 260, n. 3, p. 886–903, 2017.
- GALAND, L.; PERNY, P.; SPANJAARD, O. Choquet-based optimisation in multiobjective shortest path and spanning tree problem. *European Journal of Operational Research*, v. 204, p. 303–315, 2010.
- GALAND, L.; SPANJAARD, O. Exact algorithms for owa-optimization in multiobjective spanning tree problems. *Computers & Operations Research*, Elsevier, v. 39, n. 7, p. 1540–1554, 2012.
- HAMACHER, H.; RUHE, G. On spanning tree problems with multiple objectives. *Annals of Operations Research*, v. 52, p. 209–230, 1994.
- HURWICZ, L. Optimality criteria for decision making under ignorance. *Cowles Commission Discussion Paper*, v. 370, p. 370, 1951.
- KNOWLES, J. Local-search and hybrid evolutionary algorithms for Pareto optimization. Tese (Doutorado) Department of Computer Science, University of Reading, Reading, UK, 2002.
- KNOWLES, J.; CORNE, D. Approximating the nondominated front using the pareto archived evolution strategy. *European Journal of Operational Research*, v. 8, n. 2, p. 149–172, 2000.
- KNOWLES, J.; CORNE, D. M-paes: A memetic algorithm for multiobjective optimization. In: *Proceedings of the 2000 Congress on Evolutionary Computation*. [S.l.: s.n.], 2000. v. 1, p. 325–332.
- KNOWLES, J.; CORNE, D. Comparison of encodings and algorithms for multiobjective spanning tree problems. In: *Proceedings of the 2001 Congress on Evolutionary Computation*. [S.l.]: CEC01, 2001. p. 544–551.
- KRUSKAL, J. On the shortest spanning subtree of a graph and the traveling salesman problem. In: *Proceedings of the American Mathematical Society*. [S.l.: s.n.], 1956. v. 7, n. 1, p. 48–50.
- MAGNANTI, T. L.; WONG, R. T. Network design and transportation planning: Models and algorithms. *Transportation Science*, v. 18, p. 1–55, 1984.
- MONTEIRO, S. M. D. Mestrado em Sistemas e Computação, Algoritmos transgenéticos aplicados ao problema da árvore geradora biobjetivo. Natal, RN, Brasil: [s.n.], fev. 2011.
- MONTEIRO, S. M. D.; GOLDBARG, E. F. G.; GOLDBARG, M. C. A plasmid based transgenetic algorithm for the biobjective minimum spanning tree problem. In: *EVOCOP09 European Conference on Evolutionary Computation in Combinatorial Optimization*, 2009, Tübingen. Lecture Notes in Computer Science. [S.l.]: Heidelberg: Springer, 2009. v. 5482, p. 49–60.

- MONTEIRO, S. M. D.; GOLDBARG, E. F. G.; GOLDBARG, M. C. A new transgenetic approach for the biobjective spanning tree problem. In: *IEEE CEC 2010 Congress on Evolutionary Computation*, 2010, Barcelona. Proceedings of IEEE CEC 2010 Congress on Evolutionary Computation. [S.l.]: Piscataway, IEEE, 2010. v. 1, p. 519–526.
- OGRYCZAK, W.; ŚLIWIŃSKI, T. On solving linear programs with the ordered weighted averaging objective. *European Journal of Operational Research*, Elsevier, v. 148, n. 1, p. 80–91, 2003.
- PERNY, P.; SPANJAARD, O. A preference-based approach to spanning trees and shortest paths problems. *European Journal of Operational Research*, v. 162, p. 584–601, 2005.
- PRIM, R. C. Shortest connection networks and some generalizations. *Bell System Technical Journal*, v. 36, p. 1389–1401, 1957.
- PUGLIESE, L. D. P.; GUERRIERO, F.; SANTOS, J. F. Dynamic programming for spanning tree problems: application to the multi-objective case. *Optimization Letters*, v. 9, p. 437–450, 2015.
- RAMENTOL, E. et al. Ifrowann: imbalanced fuzzy-rough ordered weighted average nearest neighbor classification. *IEEE Transactions on Fuzzy Systems*, IEEE, v. 23, n. 5, p. 1622–1637, 2015.
- RAMOS, R. M. et al. The problem of the optimal biobjective spanning tree. European Journal of Operational Research, v. 111, p. 617–628, 1998.
- ROCHA, D. A. M.; GOLDBARG, E. F. G.; GOLDBARG, M. C. A memetic algorithm for the biobjective minimum spanning tree problem. In: 6th European Conference on Evolutionary Computation in Combinatorial Optimization, 2006. Budapeste, Lecture Notes in Computer Science. [S.l.]: Heidelberg, Springer Berlin, 2006. v. 3906, p. 222–233.
- ROCHA, D. A. M.; GOLDBARG, E. F. G.; GOLDBARG, M. C. A new evolutionary algorithm for the bi-objective minimum spanning tree. In: SDA'07 Seventh International Conference on Intelligent Systems Design and Applications, 2007, Rio de Janeiro. Proceedings of ISDA'07. [S.l.]: EEE Computer Society, 2007. v. 1, p. 735–740.
- RUZIKA, S.; HAMACHER, H. W. A survey on multiple objective minimum spanning tree problems. In: Lerner, J., Wagner, D., Zweig, K. (eds) Algorithmics of Large and Complex Networks. Springer-Verlag, Berlin. [S.l.: s.n.], 2009. p. 104–116.
- SOURD, F.; SPANJAARD, O. A multiobjective branch-and-bound: application to the biobjective spanning tree problem. *INFORMS Journal on Computing*, v. 20, p. 472–484, 2008.

- STEINER, S.; RADZIK, T. Solving the biobjective minimum spanning tree problem using a k-best algorithm. [S.1.], 2003.
- TAMIR, A. The k-centrum multi-facility location problem. *Discrete Applied Mathematics*, Elsevier, v. 109, n. 3, p. 293–307, 2001.
- WANG, H.; ZHANG, Y.; QIAN, G. Multiple binary classifiers fusion using induced intuitionistic fuzzy ordered weighted average operator. In: IEEE. *Information and Automation (ICIA), 2011 IEEE International Conference on.* [S.l.], 2011. p. 230–235.
- YAGER, R. R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. *IEEE Transactions on systems, Man, and Cybernetics*, IEEE, v. 18, n. 1, p. 183–190, 1988.
- ZHOU, G.; GEN, M. A multiobjective branch-and-bound: application to the biobjective spanning tree problem. *European Journal of Operational Research*, v. 114, p. 141–152, 1999.