

NOVEMBER 2002

GCE Advanced Level

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT:9701/6

CHEMISTRY (OPTIONS (A2))

Biochemistry

1. (a) (i)

and
$$\frac{cH_{2}OH}{c-0}$$
 $\frac{cH_{2}OH}{c-0}$
 $\frac{cH_{2}OH}{c-0}$
 $\frac{cH_{2}OH}{c-0}$
 $\frac{cH_{2}OH}{c-0}$

(ii) Chiral / anomeric / optically active centre is created since rotation is possible at C₁ (1) [3]

(2 x 1)

(b) Hydrogen bonding (1)

(c) (i) glucose + ATP => glucose-6-phosphate + ADP (1)

an enzyme / hexokinase / glucokinase is needed (1)

(ii)
$$CH_2 - O - P - O \times$$

$$CON M M C + O$$

(iii) Glucose-6-phosphate is a competitive/reversible inhibitor (1)

It fits into the active site on the enzyme/similar shape to glucose (1) [5]

		_www.studvanide.nk
Page 3	Mark Scheme	- www.studygui de.pk
	A Level Examinations – November 2002	9701 6

Environmental Chemistry

3.	(a)	Increased use of fertilsers		
		Leaching / runoff of soluble compounds such as nitrates	(1)	
		This increases the growth of algae	(1)	
		When these die and decay they use up dissolved oxygen / eutrophication	on (1) [4]	
	(b)	Water from the Baltic is less dense due to lower salinity and higher temperatures (both required)	(1)	
	(c)	Nutrient levels are greatest in the North Sea water in which the algae grow	(1)	
		The 'jump' layer is not as mobile as the surface waters / little or no mixing	ng (1) [2]	
	(d)	The algal decomposition mainly affects the deeper waters reducing the content	oxygen (1)	
		Oxygen loss is less significant at the surface	(1)	
		The smaller the cod populations, the fewer herrings are eaten	(1)	
		Cod are found at greater depths where the oxygen loss is greatest	(1) [max 2]	
	(e)	This shows severely reducing conditions / a large oxygen loss.	(1)	

Page 4 Mark Scheme WVSW StudyGuide.pl

A Level Examinations – November 2002 9701 6

4. (a) Lack of flammability / inertness to combustion

Suitable volatility / easily liquefied

Lack of reactivity towards other chemicals present

Non-toxic

[max 2]

(b)
$$CFCl_3 \Rightarrow CFCl_2 + Cl$$
 (1)

$$Cl \cdot + O_3 => ClO \cdot + O_2$$
 (1)

$$CIO \cdot + O \Rightarrow CI \cdot + O_2 \tag{1}$$

Phase Equilibria

- 5. (a) As the molecules gain energy (1)
 - the forces between them become much weaker (1)
 - The magnitude of the change is proportional to ΔH_{vap} (1) [max 2]
 - (b) (i) H₂O has a high b.p. due to hydrogen bonding (1)
 - Diagram of water showing 2 H-bonds per molecule (1)
 - H₂S to H₂Te have similar intermolecular dipole-dipole forces / van der Waals' (1)
 - (ii) H_2O : $\frac{40.7}{373} = 0.109$ H_2S : $\frac{18.7}{213} = 0.088$
 - $H_2Se : 19.3 = 0.079$ $H_2Te : 23.2 = 0.087$
- Four values (1)
- For similar bonding, b.p. and ΔH_{vap} are proportional (1)
 - Water has a higher ratio due to different / stronger hydrogen bonding(1) [max 5]
- (c) (i) $P = P_A \times X_A$ The vapour pressure exerted by a gas is proportional to its mole fraction (1)
 - (ii) Law holds only for similar intermolecular forces / H₂S and H₂Se both have van der Waals' forces (1)
 - H₂O and H₂S have different forces (1) [3]

6. (a) (i) Partition coefficient =
$$[X]_{solven 1}$$
 [X]_{solvent 2} (1)

(ii)
$$K = \frac{1.0 \times 10^{-2}}{4.0 \times 10^{-3}} = 2.5$$
 (1)

(iii) Let x mol of iodine be dissolved by the solvent

Then
$$(4.0 \times 10^{-4} - x)$$
 mol I_2 remain in 100 cm³ water (1)

And x mol
$$l_2$$
 are present in 50 cm³ of solvent (1)

2.5 = [Concn in solvent] =
$$\frac{20x}{10 (4.0 \times 10^{-4} - x)}$$
 (1)

This gives
$$20x = 25 (4.0 \times 10^{-4} - x)$$

 $45x = 10^{-2}$
 $x = 2.2 \times 10^{-4} \text{ mol}$ (1)

Hence the concn of I_2 in the solvent is 20 x 2.2 x 10^{-4} mol dm $^{-3}$ or 4.4 x 10^{-3} mol dm $^{-3}$ (1) [max 6]

(ii) Solubility of
$$N_2 = 0.79 \times 23.6 = 18.6 \text{ cm}^3 \text{ dm}^{-3}$$
 (1)

Solubility of
$$O_2 = 0.20 \times 48.9 = 9.8 \text{ cm}^3 \text{ dm}^{-3}$$
 (1)

(iii) %
$$N_2$$
 is $18.6 \times 18.6 \times 18.6 = 65.5\%$

And hence
$$\% O_2 = 34.5\%$$
 (1)

Spectroscopy

7. (a)

-1 for every incorrect over 2

- (c) (i) Diphenylmethanone will absorb at lower energy (longer wavelength) (1)
 - (ii) Energy levels are closer together (1)

hence less energy is required for transitions (1) (allow longer chromophore / greater delocalisation / conjugation) [3]

8.	(a)	(i)	A suspension of an organic solid		(1)
			in a hydrocarbon oil / Nujol		(1)
	-	(ii)	Ethanol shows a strong IR absorption due to -OH	**	(1)
	· .		It absorbs water which would attack the NaCl plates	* .	(1) [max 3]

(3 correct 2 marks 2 correct 1 mark)

Jis NC-2-2-0 H H O-CH3

Or ester isomers of the above, NOT –OH / -NH₂ containing isomers(1) [3]

(c) (i) Peak is at
$$M - 15$$
, hence CH_3 has been lost (1)

(ii) T to U is a loss of 30, suggests loss of CH_2O or $-CH_2NH_2$ (1)

(iii) Ratio of M : M+1 gives
$$n = 0.11 \times 100 = 0.11 \times 10$$

If **K** is saturated, it will contain 8 hydrogens $(C_4H_8O_x)$ (1)

This leaves a mass of 32 for the oxygen

Hence \mathbf{K} is $C_4H_8O_2$ (1) [max 4]

Page 9 Mark Scheme A Level Examinations - November 2002

Transition Elements

9.	(a)	Labe	elled diagram is acceptable	
		Impu	ure copper anode, pure copper cathode	(1)
		Cop	per is transferred to the cathode (or equations)	(1)
	÷	CuS	O₄(aq) is the electrolyte	(1)
	•	Silve	er settles as the metal in the anode sludge	(1)
	•	Bec	ause E° is more +ve than Cu²+	(1)
		Ni /	Zn goes into solution as M²+	(1)
		Bec	ause their E° is more negative than Cu²+	(1) [max6]
	(b)	(i)	Brass, with zinc; bronze, with tin etc	(1)
		(ii)	moles of $S_2O_3^{2-} = 0.1 \times 20/1000 = 2 \times 10^{-3} \text{ mol}$	(1)
			moles of I_2 = 1 x 10 ⁻³ moles of Cu^{2+} = 2 x 10 ⁻³	(1)

Mass of copper = $63.5 \times 2 \times 10^{-3} \text{ g}$ = 0.127 g

Hence % copper = 50.8%

(1) [4]

10. (a) [Ar]3d4 [1] (b) Mn(II) colourless OR pale pink Mn(III) red Mn(VI) green Mn(VII) purple 4 correct, 3 marks 3 correct, 2 marks etc [3] (c) (i) From Data Book : $4MnO_4^2 - 4e^2 => 4MnO_4^2$ $E^2 = 0.56V$ (1) $5MnO_4^{2-} + 8H^+ => Mn^{2+} + 4MnO_4^{-} + 4H_2O$ (1) $E^{\circ}_{cell} = +1.74 - 0.56 = +1.18V$ (1) (ii) Oxidation no = +5(1)

 $8H^{+} + 3MnO_{4}^{3-} => 2MnO_{2} + MnO_{4}^{-} + 4H_{2}O$

(1 for correct formulae, 1 for balancing)(2)

[6]