

NTE2980 Logic Level MOSFET N-Channel, Enhancement Mode High Speed Switch TO251

Features:

- Dynamic dv/dt Rating
- Logic Level Gate Drive
- R_{DS}(on) Specified at V_{GS} = 4V & 5V
- Fast Switching
- TO251 Type Package

Absolute Maximum Ratings:

Drain Current, I _D	
Continuous (V _{GS} = 5V)	
$T_C = +25^{\circ}C$	7.7A
$T_{C} = +100^{\circ}C$	4.9A
Pulsed (Note 1)	
Total Power Dissipation ($T_C = +25^{\circ}C$), P_D	25W
Derate Above 25°C	0.20W/°C
Total Power Dissipation (PC Board Mount, T _C = +25°C, Note 2), P _D	2.5W
Derate Above 25°C	0.02W/°C
Gate-Source Voltage, V _{GS}	±10V
Single Pulsed Avalanche Energy (Note 3), E _{AS}	47mJ
Peak Diode Recovery dv/dt (Note 4), dv/dt	4.5V/ns
Operating Junction Temperature Range, T _J	to +150°C
Storage Temperature Range, T _{stg} –55° :	to +150°C
Maximum Lead Temperature (During Soldering, 1.6mm from case, 10sec), T _L	+260°C
Maximum Thermal Resistance:	
Junction-to-Case, R _{thJC}	. 5.0°C/W
Junction-to-Ambient (PCB Mount, Note 2), R _{thJA}	50°C/W
Junction–to–Ambient, R _{thJA}	. 110°C/W
Note 1. Repetitive Rating: Pulse width limited by maximum junction temperature.	
Note 2. When mounted on a 1" square PCB (FR-4 or G-10 material).	
Note 3. L = 924 μ H, V_{DD} = 25V, R_G = 25 Ω , Starting T_J = +25°C, I_{AS} = 7.7A.	
Note 4. $I_{SD} \le 10A$, di/dt $\le 90A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{J} \le +150^{\circ}C$.	
(61)035, 10 - 11-1	

Electrical Characteristics: $(T_J = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit		
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_D = 250\mu A$	60	_	_	V		
Breakdown Voltage Temperature Coefficient	$\Delta V_{(BR)DSS}/$ ΔT_J	Reference to +25°C, I _D = 1mA	_	0.073	_	V/°C		
Static Drain-Source ON Resistance	R _{DS(on)}	V _{GS} = 5V, I _D = 4.6A, Note 5	_	-	0.20	Ω		
		V _{GS} = 4V, I _D = 3.9A, Note 4	_	-	0.28	Ω		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	1.0	_	2.0	V		
Forward Transconductance	9fs	V _{DS} = 25V, I _D = 4.6A, Note 5	3.4	_	_	mhos		
Drain-to-Source Leakage Current	I _{DSS}	V _{DS} = 60V, V _{GS} = 0	_	_	25	μΑ		
		$V_{DS} = 48V, V_{GS} = 0V, T_{C} = +125^{\circ}C$	_	_	250	μΑ		
Gate-Source Leakage Forward	I _{GSS}	V _{GS} = 10V	_	_	100	nA		
Gate-Source Leakage Reverse	I _{GSS}	V _{GS} = -10V	_	_	-100	nA		
Total Gate Charge	Qg	$V_{GS} = 5V$, $I_D = 10A$, $V_{DS} = 48V$, Note 5	_	_	8.4	nC		
Gate-Source Charge	Q _{gs}		_	_	3.5	nC		
Gate-Drain ("Miller") Charge	Q_{gd}		_	_	6.0	nC		
Turn-On Delay Time	t _{d(on)}	V_{DD} = 30V, I_{D} = 10A, R_{G} = 12 Ω , R_{D} = 2.8 Ω , Note 5	_	9.3	_	ns		
Rise Time	t _r		_	110	-	ns		
Turn-Off Delay Time	t _{d(off)}		_	17	-	ns		
Fall Time	t _f		_	26	_	ns		
Internal Drain Inductance	L _D	Between lead, 6mm (0.25") from package and center of die contact	_	4.5	_	nΗ		
Internal Source Inductance	L _S		_	7.5	_	nΗ		
Input Capacitance	C _{iss}	V _{GS} = 0V, V _{DS} = 25V, f = 1MHz	_	400	_	pF		
Output Capacitance	C _{oss}		_	170	_	pF		
Reverse Transfer Capacitance	C _{rss}		_	42	_	pF		
Source-Drain Diode Ratings and Characteristics								
Continuous Source Current	I _S	(Body Diode)	_	_	7.7	Α		
Pulse Source Current	I _{SM}	(Body Diode) Note 1	_	-	31	Α		
Diode Forward Voltage	V_{SD}	$T_J = +25^{\circ}\text{C}$, $I_S = 7.7\text{A}$, $V_{GS} = 0\text{V}$, Note 5	_	_	1.6	V		
Reverse Recovery Time	t _{rr}	$T_J = +25^{\circ}\text{C}$, $I_F = 10\text{A}$, $di/dt = 100\text{A}/\mu\text{s}$, Note 5	_	65	130	ns		
Reverse Recovery Charge	Q _{rr}		-	0.33	0.65	μС		
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is neglegible (turn-on is dominated by L _S + L _D)						

Note 1. Repetitive Rating: Pulse width limited by maximum junction temperature. Note 5. Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2\%$.

