EXHIBIT 21

PROCESS VALIDATION REPORT

DIGOXIN TABLETS, 0.125 mg 1,600,000 TABLETS

BATCHES 4318A, 4320A, and 4322A

MPR NO. 14502

Revision No. 00

Prepared by: Young & Williams

Approved by:

Quality Assurance Director

Date: 12/29/94

Manufacturing Operations Director

Date: 12/11/94

Regulatory Affairs Director

Date: 12/28/94

Sur Johant Palet Quality Control Director

Date: 12 2>194

Whole G. Nigalogy

_

Date: 12-27-94

PROCESS VALIDATION SUMMARY

PRODUCT DIGOXIN TABLETS, 0.125 mg BATCH 4318A 4320A 4322A

The following comments apply to the three 1,600,000 tablet validation batches produced in this series.

This report includes data through Compression, which is the finished dosage form.

The process used to produce this batch follows exactly that shown in the normal batch record. Copies of the actual batch records are available in the file.

The data supporting the validation of the analytical methods used may be found in the Analytical Method Validation Report issued for this product.

A copy of the protocol to be followed for this project is included.

Evaluation of the data includes calculation of the Process Capability Index, Cp, when appropriate. Cp is a measure of the ability of a process to produce material that is all within the specification range. It verifies that the entire distribution curve for the data collected falls within the allowable limits. The following equation is used.

$$Cp = \frac{(Upper Limit - Lower Limit)}{6 \times St. Dev.}$$

Any value equal to or greater than 1 is acceptable.

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg MPR NO. 14502 - 00

CONCLUSIONS AND OBSERVATIONS

All samples met the established acceptance criteria.

Based on these three batches, the process is considered validated and is acceptable for use.

The data verifies the initial acceptance criteria for all parameters. At this point no revision to any of these ranges will be made.

The final blends showed adequate uniformity for all batches. The resulting Cp value is 2.9, which is more than acceptable.

Content uniformity results are all within the acceptance criteria, and are essentially comparable to the blend results.

Results for both the final blends and content uniformity center around the label amount.

All Dissolution samples for the three batches met the USP requirements. The values for the three batches are comparable, however there is some variability within the individual batches.

The data for each protocol step follows a summary of that step, in the order in which it appears in the protocol.

Process Validation

DIGOXIN TABLETS, 0.125 mg

Process Validation Summary

Batch Size - 1,600,000 Tablets

Final Blend 85.0 - 115.0 %Th. Assay (%) Compression Compression 0.097 - 0.113 Compression 1.0 - 6.0 %p Compression 2.0 - 3.0 mm Compression NMM: 1.0 % Compression NMM: 1.0 %	h. (Ind.)	Average Std Dev Cp Average Std Dev Cp Average Std Dev Cp Average Std Dev Cp Average	0.105 0.105 0.002 0.002	98.8	98.3	98.5	85.0 - 115.0 %Th. (Ind.)
0.097 1.0 2.0		Std Dev	0.105	1.3	200	COR	('pur) 'ure p'ert - p'es
0.097 - 0.113 1.0 - 6.0 kp 2.0 - 3.0 mm	13 g Å	Std Dev Std Dev Std Dev Nerage Std Dev Nerage Std Dev Std Dev Std Dev Std Dev Std Dev	0.105	1.5		,	
0.097 - 0.113 1.0 - 6.0 %p	75 g	Nverage tid Dev the Dev tid Dev tid Dev tid Dev tid Dev tid Dev	0.105		7 • 0	1.1	
0.097 - 0.113 1.0 - 6.0 kp 2.0 - 3.0 mm	13 g	tid Dev the Dev the Dev the Dev tid Dev tid Dev tid Dev	0.105	_		2.9	
0.097 - 0.113 1.0 - 6.0 kp 2.0 - 3.0 mm	13 g Ap	Std Dev Programme Std Dev Std Dev Nerage Nerage	0.002	0.105	0.105	0.105	
1.0 - 6.0 2.0 - 3.0	Q: II	Verage std Dev pp verage verage std Dev std De	4.5	0.002	0.002	0.002	0.097 - 0.113 9
1.0 - 6.0 2.0 - 3.0 WMT: 1.0	Q II	Werage itd Dev ip werage itd Dev	4.0			1.5	
1.0 - 6.0 2.0 - 3.0 NMT: 1.0	원	itd Dev ip iverage itd Dev	9.0	4.5	4.6	4.5	
2.0 - 3.0 NAT: 1.0	Á	verage		0.4	0.4	0.4	1.0 - 6.0 kp
2.0 - 3.0 NMT: 1.0	Ĭ.	werage				2-2	
2.0 - 3.0 NAT: 1.0	II.	td Dev	2.63	2.62	2.62	2.62	
NMT: 1.0			0.03	0.03	0.03	0.03	2.0 - 3.0 mm
NMT: 1.0		Cp				5.7	
NMT: 1.0		Average	60.0	80.0	80.0	0.08	
Compression	de de	Std Dev	0.03	0.03	0.03	0.03	MMT: 1.0 %
Compression							
	Æ	Average	3.2	3.3	3.3	3.3	
Disintegration (min) N/A		Std Dev	0.4	0.5	0.5	0.5	N/A
Compression		Average	101.3	100.4	101.3	101.0	
Content Uniformity (%) 85.0 - 115.0 %	æ	Std Dev	1.1	1.7	1.7	1.6	85.0 - 115.0 %
RSD NMT: 6.0	6.0 %	СЪ				3.2	
Compression	A.	Average	83.0	85.0	81.4	83.1	
Dissolution (%) NMI: 90% (ind.)	1	Std Dev	2.2	2.1	2.5	2.7	NMT: 90% (ind.)
15 min.							
Compression	¥	Average	97.2	7.66	97.2	98.0	
Dissolution (%) NLT: 80% (avg)		Std Dev	2.3	3.2	H-E	3.1	NLT: 80% (avg)
60 min.							in

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg MPR NO. 14502 - 00

PROTOCOL STEP - RAW MATERIALS

The raw materials used will be tested, as stated in the protocol, in accordance with approved specifications and methods. In addition, bulk density, tamped density and particle size distribution will be included.

ACCEPTANCE CRITERIA

Parameters normally evaluated will be compared to the current specifications. The density and particle size data will be gathered and used to formulate guidelines when sufficient data is accumulated.

RESULTS - See attached data summary sheets.

CONCLUSIONS AND COMMENTS

All data is acceptable.

Any differences noted do not appear to have any effect on finished product quality.

Particle size determinations were run on two different pieces of equipment. One is a "Ro-Tap" type unit and the other a Micron Air Jet Sieve. For samples run on the "Ro-Tap" the coarser mesh screen is listed first.

It should be noted that particle size and density evaluation was not done for the Yellow Lake Blend. Since this material is present in such a small amount any differences in either of these parameters will have no significant effect on the final blend.

The particle size distribution for Digoxin P.O. No. 2629-1 was run on the "Ro-Tap" type shaker. That for P.O. No. 3929 was run on the Micron Air Jet Sieve. The results obtained on the two units differed significantly. Due to the fact the two units employ different technologies no comparision wil be made. It should be noted that no effect on content uniformity or dissolution was observed.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

Raw Material Usage Chart

3081	3089	3050	3059	3088	3051	3000	3044	0111	3115	Item #	
Silicon Dioxide, NF	Stearic Acid, NF	Lactose Anhydrous, NF	Microctystalline Cellulose, N	Starch Pregelatinized, NF	Lactose Hydrous Impalpable, N	Croscarmellose Sodium, NF	D&C Yellow #10 Aluminum Lake 15	Digoxin, USP	Corn Starch, NF	Item Name	

Silicon Dioxide, NF Stearic Acid, NF

			Ą	• 1	죾	• •	15-20%				
		4015									186
3696	3910	4015	4023	4027	4028-1	4026	3844	2629-1 & 3929	4025	P.O. #	Batch # 4320A
3696											_

MICROBIAL LIMITS

Passes Test 4.5 - 7.0

Positive

Passes

Passes Passes

Positive

SPECIFICATIONS

NMT 14.0% NMT 0.5% DENTIFICATION A
DENTIFICATION B

RESIDUE ON IGNITION

OXIDIZING SUBSTANCES

Passes

Passes

Test

Passes

< 0.002%

PARTICAL SIZE PARTICAL SIZE PARTICAL SIZE

SU)

100) / Retained

Retained Retained

325)

0.72 g/mL 3.9%

Passes 0.52 g/ml

AMIDE PHARMACEUTICAL, INC.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

Raw Material Comparison - Corn Starch, NF (3115)

P.O. #	4025
Type	Initial
Manufacturer	National Starch & Chem
Manufacturer Lot #	HD-6628

PARAMETERS

DESCRIPTION

Passes

Passes

PARTICLE SIZE PARTICLE SIZE

(US 325) / Retained

S)

200)

% Retained

95.6%

0.37 g/ml 0.24 g/ml

0.36 g/m

0.23 g/ml

BULK DENSITY TAP DENSITY

RELATED GLYCOSIDES RESIDUE ON IGNITION

NMT 3% 95.0

į

101.0%

98.6%

32

98.6%

OSS ON DRYING

Positive NMT 1.0%

Passes Passes

Passes

Passes Passes

RESULTS

0.6%

0.7%

Passes

IDENTIFICATION B DENTIFICATION A

Positive Positive Passes Test SPECIFICATIONS

DENTIFICATION C

AMIDE PHARMACEUTICAL, INC.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

Raw Material Comparison - Digoxin USP (0111)

スリラニ トリハナニ SOS	Test Type	P.O.#	•
00000	Initial	2629-1	

Manu	Manu	Test	P. 0. #
Manufacturer Lot # 240180	Manufacturer	est Type	##
Lot #			
240 180	Boehringer Ingelheim Boehringer Ingelheim	Initial	2629-1
	Ingelheım		
240254	Boehringer	Initial	3929
	Ingelheım		

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

Raw Material Comparision - D&C Yellow #10 Aluminum Lake 15-20% (3044)

P.O. Manufacturer Lot Manufacturer Test Type # Aa-7934 Initial Colorcon 3844

PARAMETERS	SPECIFICATIONS	RESULTS
DESCRIPTION	Passes Test	Passes
IDENTIFICATION	Positive	Passes
Loss on Drying N/A	N/A	15.4%

PARAMETERS DESCRIPTION

IDENTIFICATION B

DENTIFICATION A

AMIDE PHARMACEUTICAL, INC.

DIGOXIN TABLETS, 0.125 mg

PROCESS VALIDATION

Raw Material Comparison - Croscarmellose Sodium, NF (3000)

_		<u> </u>	<u> </u>		Ь_		<u></u>	<u> </u>	<u>L</u> .	i_	ļ	1				
	1.0% - 10.0%	0.60 to 0.85	NMI 0.5%	NMT 0.001%	NMI 10.0%	5.0 - 7.0	Positive	Positive	Positive	Passes Test	SPECEF I CATIONS		Manufacturer Lot #	Manufacturer	Test Tupe	P.O. #
	3.2%	0.69	0.21%	< 0.001%	2.5%	6.5	Passes	Passes	Passes	Passes	RESULTS		T434N	FMC	Initial	4026

PARTICLE SIZE

(US 200) SU)

Retained Retained

5

0.72 g/mL 0.50 g/ml

325)

AP DENSITY

BULK DENSITY

1I CROBIAL

TEST

ETTLING VOLUME

10.0 mL

30.0 mL

Passes 22 mL SODIUM CHLORIDE & SODIUM

GLYCOLATE

DEGREE OF SUBSTITUTION

ONTENT OF WATER SOLUBLE

HEAUY METALS

OSS ON DRYING

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

Rau Materaial Comparison - Lactose Hydrous Impalpable NF (3051)

034/435	#	Lot	Manufacturer
HMS Chemical			Manufacturer
Initial			Test Type
4028-1			P.O. #

11.3	2 Retained	PARTICAL SIZE (US 325)
83.7%	7. Retained	PARTICAL SIZE (US 200)
0.87 g/mL		TAP DENSITY
0.58 g/mL		BULK DENSITY
Passes	Passes Test	ORGANIC VOLATILE IMPURITIES
Passes	Passes Test	PROTEIN/LIGHT ABSORBING IMPUR.
Passes	Passes Test	ACIDITY/ALKALINITY
< 5 ppm	NMI 5 ppm	HEAUY METALS
0.03%	NMT O. 1%	RESIDUE ON IGNITION
5. 1%	Hydrous: NMT 5.5%	WATER
Passes	Passes Test	MICROBIAL LIMITS
+55.3°	+54.8° to +55.5°	SPECIFIC ROTATION
0.3%	NMT 1.0%	LOSS ON DRYING
Passes	Passes Test	CLARITY AND COLOR OF SOLUTION
Passes	Positive	IDENTIFICATION B
Passes	Positive	IDENTIFICATION A
Passes	Passes Test	DESCRIPTION
RESULTS	SPECIFICATIONS	PARAMETERS

AMIDE PHARMACEUTICAL, INC.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

Rau Material Comparison - Starch Pregelatinized NF (3088)

Manufacturer	Colorcon
Manufacturer Lot #	403107

Test Type #

4027 Initial

	HIANUTACIURER LOT #	40310/
PARAMETERS	SPECIFICATIONS	RESULTS
DESCRIPTION	Passes Test	Passes
IDENTIFICATION	Positive	Passes
PH	4.5 - 7.0	5.9
IRON	NMT 0.002%	<0.002 /
OXIDIZING SUBSTANCES	Passes Test	Passes
SULFUR DIOXIDE	NMT: 0.008%	Passes
MICROBIAL LIMITS	Passes Test	Passes
LOSS ON DRYING	NMT 14.0%	8.8%
RESIDUE ON IGNITION	NMT 0.5%	0.2%
BULK DENSITY		0.66 g/mL
TAP DENSITY		0.84 g/mL
PARTICAL SIZE (US 100)	% Accumulation	2.7%
PARTICAL SIZE (US 200)	% Accumulation	26.6%
DAD # * * * * * * * * * * * * * * * * * *		

PARTICAL SIZE

% Accumulation

26.6% 51.5%

(US 200) (US 325)

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg Rau Material Comparison - Microcrystalline Cellulose, NF (3059)

Manufacturer	Manufacturer	Test Type	P.O. #	
rer Lot #	ırer			
4583	Mendell	Initial	4023	

TERS	SPECIFICATIONS	RESULTS
NOLLC	Passes Test	Passes
ICATION	Positive	Passes
	5.5 to 7.0	6.1
N DRYING	NMT 5.0%	2.5%
ON IGNITION	NMT 0.05%	0.02%
SOLUBLE SUBSTANCES	NMT 0. 16%	0.10%
1ETALS	NMT 0.001%	<0.001%
	Passes Test	Passes
	97.0% - 102.0%	99.7%
NSITY		0.34 g/m
VSITY		0.43 g/m
AL SIZE (US 325)	7. Retained	44.7%
AL SIZE (US 200)	% Retained	20.6%
		-

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

Rau Material Comparison - Lactose Anhydrous, NF (DT) (3050)

acturer Lot #	facturer	Test Tupe	p.0. #	
MRP54536	Quest	Initial	40 15	

TERS	SPECIFICATIONS	RESULTS
PTION	Passes Test	Passes
FICATION A	Positive	Passes
FICATION B	Positive	Passes
TY AND COLOR OF SOLUTION	Passes Test	Passes
ON DRYING		0.2%
IC ROTATION	Between +54.8° and +55.5°	+55.2°
3IAL LIMITS	NMT 100 per gm	Passes
	NMT 1.0%	0.4%
JE ON IGNITION	NMT 0.1%	0.04%
METALS	NMT 5 DDM	< 5 ppm
TY/ALKALINITY	Passes Test	Passes
IN AND LIGHT ABSORBING IMPURITIES	NMT 0.25	Passes
IC UOLATILE IMPURITIES	Passes Test	Passes
DENSITY		0.57 g/m
SITY		0.81 g/m
CAL SIZE (US 100)	% Accumulation	13. 17.
CAL SIZE (US 200)	2 Accumulation	28.6%
TAL SIZE (US 325)	2 Accumulation	40.5%

PROCESS VALIDATION DIGOXIN TABLETS, 0.125 mg

Rau Material Comparison - Stearic Acid,

NF (3089)

P.O.#	3910
Test Type	Initial
Manufacturer	Witco
Manufacturer Lot #	440069

PARAMETERS	SPECIFICATIONS	RESULTS
DESCRIPTION	Passes Test	Passes
CONGEALING TEMPERATURE	NLT 54°	55°
RESIDUE ON IGNITION	NMT 0.1%	0.01
HEAUY METALS	NMT 0.001%	<0.001
MINERAL ACID	Passes Test	Passes
NEUTRAL FAT OR PARAFIN	Passes Test	Passes
IODINE UALUE	NMT 4	0.10
ASSAY A	NLT 40.0%	43.4%
ASSAY B	NLT 90.0%	96.4%
ORGANIC VOLATILE IMPURITIES Passes Test	Passes Test	Passes
BULK DENSITY		0.38 g/ml
TAP DENSITY		0.49 g/ml
PARTICAL SIZE (US 325)	% Retained	54.0%
PARTICAL SIZE (US 200)	🕏 Retained	6 4%

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

Rau Material Comparison - Silicon Dioxide, NF (3081)

P.O. #	3696
Test Type	Initial
Manufacturer	Degussa Corp.
Manufacturer Lot #	4-90

INETERS	SPECIFICATIONS	RESULTS
RIPTION	Passes Test	Passas
TIFICATION	Positive	Passes
	4 1 8	6.7
ON DRYING	NMT 5.0%	4.0%
RIDE	NMT 0.1%	(0.1%
ATE	NMT 0.5%	⟨0.5%
	NMT 3 ppm	(3 ppm
METAL	NMT 0.003%	<0.003%
Y	NLT 99.0%	99.6%
DENSITY		0.10 a/ml
DENSITY		0.13 d/ml
ICAL SIZE (US 325)	¦χ Retained	<u> </u>

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg MPR NO. 14502 - 00

PROTOCOL STEP - TEMPERATURE/HUMIDITY READINGS

Temperature and humidity readings will be taken in the production area. These three batches ran in production between 11/8/94 and 11/18/94.

RESULTS - See attached data summary sheets.

CONCLUSIONS AND COMMENTS

The temperature ranged from 58 - 65° F, and the relative humidity from 43 - 58% It should be noted that this is the first production in the new production rooms and that inadvertantly some readings were not taken. The data collected indicates that acceptable product can be made under these conditions.

TEMPERATURE/HUMIDITY READINGS

PERIOD COVERING DIGOXIN TABLETS, 0.125 mg

BATCHES 4318A, 4320A, AND 4322A

LOCATION	DATE	TEMP. (Deg. F)	RH (%)	
Near Pr. Rm. #117	11-Nov-94	58	(/• /	43
Near Pr. Rm. #117	18-Nov-94	65		58

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg MPR NO. 14502 - 00

STEP - BLEND UNIFORMITY

Utilizing a sampling thief, sample each of the blenders from the positions shown on the attached data summary. Separately analyze, and report, each one for active ingredient content.

The speed of each blender will be monitored both empty and at each stage of blending.

ACCEPTANCE CRITERIA

Final Blend - 85.0 - 115.0 % Th. (Individual)

RESULTS - See the attached data summary.

CONCLUSIONS AND COMMENTS

The final blends for the three batches met all acceptance criteria and appear to be uniformly blended.

The bulk and tamped density results are comparable for all three batches.

The speed for both blenders was observed to be constant throughout production of the three batches. The same speed was obtained both empty and under load. The supporting documentation is attached.

3 Cu. Ft. (32) - 22 rpm 10 Cu. Ft. (35) - 16 rpm

PROCESS VALIDATION

FINAL BLEND - Assay (% Label)

RSD	St Dev.	Average	Bottom Right	Bottom Left	Middle Right	Middle Center	Middle Left	Right Column - Top Right	Right Column - Top Center	Right Column - Top Left	Left Column - Top Right	Left Column - Top Center	Left Column - Top Left		
1.0	1.0	98.5	99.0	98.0	100.1	100, 1	96.8	98.3	98.3	97.9	98.6	97.9	1.86	· 4318A	Batch #
 5	1.5	8.86	100.7	98.0	100.8	100.4	99.2	98.4	98.0	99.6	97.2	97.8	96.4	4320A	Batch #
1.0	1.0	98.3	99.1	96.7	98.1	100.1	99.4	98.3	97.5	98.0	98.6	98.1	97.6	4322A	Batch #

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

FINAL BLEND - Density/Particle Size - Batch # 4318A

Density (g/ml)

	Top Center	Top Left	Top Right
Bul k	0.61	0.61	0.61
Тар	0.89	0.89	0.90

Partcle Size (% Retained)

Mesh Size	Top Center	Top Left	Top Right
325	54.5	53.3	54.3
200	34.8	34.5	34.8
100	14.6	14.9	15. 1
60	4.4	4.5	4.2
40	Nil	Nil	N1 1

FINAL BLEND - Density/Particle Size - Batch # 4320A

Density (g/ml)

	Top Center	Top Left	Top Right
Bulk .	0.62	0.61	0.61
Тар	0.91	0.90	0.90

Partcle Size (% Retained)

Mesh Size	Top_Center	Top Left	Top Right
325	53.7	53.7	53.6
200	34.3	34.5	34.1
100	14.9	15.2	15. 1
60	4.2	4.5	4.7
40	Nil	Nıl	Nil

FINAL BLEND - Density/Particle Size - Batch # 4322A

Density (g/ml)

	Top Center	Top Left	Top Right
Bulk	0.61	0.61	0.61
Tap	0.90	0.90	0.90

Partcle Size (% Retained)

Mesh Size	Top Center	Top Left	Top Right
325	53.1	53.4	53.0
200	34.1	34.6	34.2
100	15.3	15.3	15. 1
60	4.2	4.1	4.4
40	Nil	Nıl	Nil

PROCESS VALIDATION DATA SHEET

PRODUCT NAME (#): Digoxin Tablets (145)

BATCH 1: 4318 A MPR 1: 14502 REV 1: 00 DATE: 1/18794

BLENDER 1: 32

TIME	BLENDER'S CONTENTS	BLENDER'S THEO. MATERIAL WEIGHT (Kg)	BLENDER'S RPM	DONE BY	BY CHECKED
4:25Pm	EMPTY.	220.10	22	KP	工
4:57Pm	STEP#1 P.M. FO# 0111+344+ 3000	18-80	22	μY	Tl
				 	
5:14 Pm	STEP#2. STEP#1+305	47.36	22	KP	Ħ
j	1			ļ	
 	v				
ļ				<u></u>	
			ļ	 	
				<u> </u>	
<u> </u>				 	
				-	
		·		 	
			<u> </u>	-	
H	1	1	İ	1	1

PD2-046

Pharmaceutical, Inc.

PROCESS VALIDATION DATA SHEET

PRODUCT NAME (#): Digoxin	Tablets 0.125mg	(145)	
BATCH #: 43/8 A	MPR 1: 14502	RBV 1: 60	DATE: 118/94
BLENDER #: 35			

TIME	BLENDER'S CONTENTS	BLENDER'S THEO. MATERIAL WEIGHT (Kg)	Blender i s RPM	ву ройе	by Chrcked
		7 - K - 124		len.	zΡ
4:15Pm	EMPTY.	0.00kg	16	kr	<u> D</u>
6:02Pm	STEP \$. RM FOR PREBLEND + 3088 +3059	111.36 79.36/118994	16	KP	Th
<i>B</i> ,	STEP #2	21,11,31,1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
6:35Am		162.56	16	kr	Il
	57eP # 3		. <u>69</u>		T.R
7:02Pm	STEP # 2+3089+3081	168.00	16	KS	TX -
			,		
			-	ļ	
			. <u> </u>	<u> </u>	
			- 123 at		
			1.00	-	
			2011		
	in the state of th	and the second s	tri von Vistis semme o		

PD2-046

PROCESS VALIDATION DATA SHEET

PRODUCT NAME (1): Digoxin Tablets 0:125mg (145)

BATCH 1: 4320A HPR 1: 14502 REV 1: 00 DATE: 11/10/94

BLEIDER 1: 32

TIME	BLENDER'S CONTENTS	BLENDER'S THEO. HATERIAL WEIGHT (Kg)	BLENDER'S RPH	BA BONE	BA CHECKED
		÷	22	ķί	<u>I</u>
2:35Bm	EMPTY	0-00			
3:02Pm	STEP# R·M·FD# 3115+0111+3044+3000	18-80	22	Kr	되
	S7EP \$ 2.	47.36	22	Kſ	Ιſ
3:32 Pm	STEP#1+3051	4/30			
				<u> </u>	_
				-	
				-	
				_	
			-	_	
	·				
				_	

PROCESS VALIDATION DATA SHEET

PRODUCT NAME (1): Digoxin Tablets 0-125mg (145)

BATCH 1: 4320 A HPR 1: 14502 REV 1: 00 DATE: 11/10/94

BLENDER #: 35

TIME	BLENDER'S CONTENTS	BLENDBR'S THEO. HATERIAL WEIGHT (KG)	BLENDER S RPH	DONE BY	BA CHECKED
:40pm	EMPTY	0.00	16	kr	Il
2.40pm	STEP # R-M-70# PREBLEND + 3088 + 3059	111.36	16	Kr	IP
4226/m	PREBLEND + 3088 + 3059 STEP # 2	117 50		KP	<u></u>
4:47Pm	STEP# + 3050	162.56	16	KI	
5:12 Pm	STEP#2+3089+3081	168.00	16	KP	ZP
					PD2-046

PROCESS VALIDATION DATA SHEET

PRODUCT HAME (1): Digoxin Tables 0.125mg (145)

BATCH 1: 4322A HPR 1: 14502 REV 1: 00 DATE: 11/1/94

BLENDER #: 32

TIME	BLENDER'S CONTENTS	BLENDER'S THEO. HATERIAL WEIGHT (Kg)	BLENDER I A RPH	DONE BY	ва Сивскер
10:05 Am	Етрту.	0.00	22	Piv.	T.
12:17Pm		18.80	22	pv	Id
12:45 fm	STEP # 2 STEP # 1+ 3051	47-36	22	p.v	되
					PD2-046

Pharmaceutical, Inc.

PROCESS VALIDATION DATA SHEET

PRODUCT NAME (11): Digoxin Tablets 0.125mg (145)

BATCH 1: 4322 A MPR 1: 14502 REV 1: 00 PATE: 11/11/94

BLENDER 1: 35

TIME	BLENDER'S CONTENTS	BLENDER'S THEO: HATERIAL WEIGHT (Kg)	BLENDER A RPH	DONE	BY CHECKED
12:30A	Етрту	0.00	16	PV	Zl'
1:30 Puo	STEP # RM IOH PRE BLEND + 3088 + 3059	1//·36	16	Pev	Il
	STEP # 2	117-58		PeV	
I i	STEP# 1 + 3050 STEP # 3	162.56	16	ρ.ν_	Fl
2:49Bm	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	168.00	16	PV	T.l
				· 	
					12

PD2-046

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg MPR NO. 14502 - 00

PROTOCOL STEP - COMPRESSION

Samples were taken from each side of the press each 30 minutes and were evaluated for the following parameters.

Weight (n = 10)Thickness (n = 5)Hardness (n = 5)

These samples will be arranged chronologically and the batch divided into thirds. Front and rear will be analyzed separately as follows.

Friability 10 g - 1 run Dissolution N = 12 (6 front & 6 rear) Disintegration N = 6

Content uniformity is to be run across the entire batch. One tablet from each sample taken is to be run from the front, and one from the rear. A minimum of 30 is required from each side.

During compression a minimum quantity of tablets will be run at speeds higher and lower than normal. The actual speeds will be selected during production. These tablets will be evaluated for weight and hardness.

During compression minimum quantities of tablets will be run at hardness of 0.5 - 2 KP and greater than 6 KP. An attempt will also be made to run some tablets at the highest possible hardness that can be obtained without capping. These tablets will be evaluated for Dissolution and Friability.

ACCEPTANCE CRITERIA

Weight: 0.097 - 0.113 g Hardness: 1.0 - 6.0 KP Thickness: 2.0 - 3.0 mm Friability: NMT 1.0 %

Dissolution: Meets USP Requirement

Disintegration: N/A (for characterization only)

Content Uniformity: 85.0 - 115.0 % TH, (RSD NMT 6.0 %)

Assay: 90.0 - 105.0 % Label

RESULTS - See attached data summary sheets.

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg MPR NO. 14502 - 00

CONCLUSIONS AND COMMENTS

The samples met all acceptance criteria.

The values for weight, hardness, and thickness for the three batches were comparable to each other and showed no unusual shifts or trends. The overall averages for weight ,hardness and thickness are very close to the midpoints of the preset ranges. Therefore, no revisions to these limits are indicated by the validation data. Results are attached in both tabular and graphical form.

Content Uniformity was within limits for all samples tested, with no significant trends being observed. All values were within 93 - 105 % Label. The values obtained were observed to agree favorably with the blend assays. It should be noted that the averages for the blend assays, and the content uniformity results are essentially the label amount.

All Dissolution samples for the three batches met the USP requirements. This statement is true for both USP XXII (60 Min.) and XXIII (15 & 60 Min.). The values for the three batches were comparable.

Friability values were all well within the acceptance criteria, and comparable for the three batches.

Disintegration results were comparable with no unusual shifts or trends. Note that this test was run for characterization only, and therefore no acceptance criteria have been, or will be, established.

Acceptable tablets were produced at the low press speed for all three batches, and at high speed for batches 4318A & 4320A. Unacceptable tablets (weight variability) were produced at high speed for batch 4322A. The normal, high, and low operating speeds for each batch are as follows. Based on the data obtained here, the press may be safely run a slow as 14 rpm. No upper limit can be set at this time.

AMIDE PHARMACEUTICAL, INC. PROCESS VALIDATION

 DIGOXIN	TABLETS,	0.125	mg	MPR NO.	14502	- 00	
 		_					
ВАТСН		NORMAT.		нтсн	T.C	w	

BATCH	NORMAL	HIGH	LOW
4318A	21 rpm	26 rpm	14 rpm
4320A	21 rpm	26 rpm	14 rpm
4322A	21 rpm	26 rpm	14 rpm

The high and low hardness validation produced acceptable tablets at both ends of the range. Tablets with hardness above the upper limit could not be produced. Therefore the guideline will remain at 1.0 -6.0 KP. The values for friability are listed below. Those for dissolution are attached.

FRIABILITY (%)

BATCH	4318A	4320A	4322A
LOW KP FRONT	0.2	0.2	0.04
REAR	0.1	0.2	0.2
HIGH KP FRONT	0.03	0.1	0.04
REAR	0.04	0.04	0.1

The results for the overall composites are attached. These are also all within the acceptance criteria, and are essentially comparable to those obtained for the individual samples.

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg - Batch # 4318A

Compression - Weight (g) - Front

Date	Tine	1	2	3	4	5	6	7	8	9	10	Average		RSD
11/11/94	1:50 PH	0. 105	0. 104	0.105	0. 106	9. 106	0.106	0. 107	0, 105	0.102	0. 104	0, 105	0.001	1.3
11/11/94	2:45 PM	0. 104	0.105	0.105	0.105	0. 104	0.107	0.104	0. 103	0.105	0. 103	0. 105	0.001	1.1
11/11/94	3:20 PM	0.106	0. 106	0.108	0.105	0. 107	0.106	0, 106	0, 105	0.108	0. 107	0. 106	0.001	1.0
11/11/94	4:00 PM	0.105	0. 106	0. 108	0.105	0. 103	0.106	0. 10 <u>4</u>	0. 106	0.104	0, 106	0, 105	0.001	1.3
11/11/94	4:30 PM	0.108	0. 104	0.105	0. 107	0.108	0. 107	0. 105	0.106	0. 105	0.106	0. 106	0.001	1.3
11/12/94	7:25 AM	0. 108	0. 107	0. 107	0.106	0. 107	0.107	0, 108	0.106	0.106	0.107	0. 107	<u>0.001</u>	0.7
11/12/94	7:55 AM	0.106	0.109	0.108	0.106	0.108	0.106	0.110	0.107	0.108	0.108	0. 108	0.001	1.3
11/12/94	8:25 An	0.105	0. 107	0.104	0.106	0, 105	0.112	0.106	0.107	0.105	0.105	0.106	0.002	2.1
11/12/94	8:55 AM	0.109	0. 107	0.104	0.105	0. 105	8. 105	0.103	0.107	0, 107	0. 105	0. 106	0.002	1.7
11/12/94	9:25 AM	0. 105	0.106	0.106	0. 104	0.106	0.106	0.107	0. 105	0.107	0. 106	0. 106	0.001	0.9
11/12/94	9:55 AM	0.106	0, 109	0.106	0.108	0. 104	0, 107	0.106	0. 106	0.104	0.107	0. 106	0.002	1.5
11/12/94	10:25 AM	0, 103	0. 104	0.108	0.107	0. 107	0. 105	0.108	0.105	0. 108	0. 106	0. 106	0.002	1.7
11/12/94	11:50 AM	0.105	0. 108	0.106	0.103	0.106	0. 107	0. 105	0. 103	0. 104	0.106	0, 105	0.002	1.6
11/12/94	12:20 PH	0.098	0.106	0.105	0. 104	0. 105	0.105	0.108	0. 105	0.104	0.107	0. 105	0.003	2.5
11/12/94	12:50 PM	0.105	0. 106	0.105	0. 107	0. 104	0.106	0. 106	0.109	0. 107	0. 105	0.106	0.001	1.3
11/12/94	1:20 PM	0.106	0. 104	0.105	0.104	0.106	0. 103	0.105	0. 104	0.104	0. 105	0.105	0.001	0.9
11/12/94	1:50 PM	0.103	0, 104	0. 103	0.106	0.104	0. 104	0.104	0.107	0. 105	0. 105	0. 105	0.001	1.2
11/12/94	2:20 PM	0, 105	0. 103	0.104	0.105	0.105	0.105	0.105	0.104	0.105	0.106	0.105	0.001	0.8
11/14/94	8:20 AM	0.106	0. 104	0.106	0.104	0.105	0. 105	0.104	0.109	0.105	0.103	0. 105	0.002	1.6
11/14/94	8:45 AM	0.104	0, 105	0.103	0. 106	0. 106	0. 106	0.106	0.107	0. 103	0.104	0, 105	0.001	1.3
11/14/94	9:15 AM	0.106	0.106	0.107	B. 107	0.105	0. 105	0.105	0.106	0. 106	0.106	0, 106	0.001	0.7
11/14/94	9:45 AM	0. 105	0.106	0, 106	0.104	0.106	0. 105	0.104	0.104	0. 105	0.106	0. 105	0.001	0.8
11/14/94	10:15 AM	0.104	0. 105	0.106	0. 104	0.106	0. 104	0.105	0.103	0. 105	0.106	0. 105	0.001	1.0
11/14/94	10:45 AM	0.106	0.106	0.106	0.103	0.105	0. 107	0.103	0. 106	0. 107	0.104	0. 105	0.001	1.4
11/14/94	1:25 PM	0.103	0. 105	0.104	0.105	0.102	0.107	0.107	0.106	0. 104	0, 104	0. 105	0.002	1.6
11/14/94	1:50 PM	0, 106	0. 103	0.105	0. 105	0.103	0.104	0.107	0.104	0.106	0.104	0. 105	0.001	1.3
11/14/94	1	0.105	0. 105	0.106	0. 106	0.105	0. 106	0.104	0.105	0. 106	0.102	0.105	0.001	1.2

Compression - Weight (g) - Rear

								7 1	8	9	10	Average	St Dov	RSD
Date	Tine	1	2	3	4	5	0, 107	0, 103	0, 104	0. 106	0, 103	0. 104	0.002	2.0
11/11/94	1:50 PH	0.106	0. 102	0. 104	0. 104	0.100	0. 102	0. 105	0.107	0. 105	0. 104	0. 105	0.001	1.4
11/11/94	2:45 PM	0.105	0. 107	0.104	0.105	0.106		0. 103	0.105	0. 108	0. 103	0.105	0.002	2.0
11/11/94	3:20 PH	0.107	0. 102	0.104	0. 108	0.106	0. 105		0. 103	0. 107	0. 107	0, 106	0.002	2.1
11/11/94	4:00 PM	0.103	0. 108	0.109	0, 105	0.106	0. 103	0, 104		0. 105	0. 100	0. 105	0.002	2.5
11/11/94	4:30 PM	0.106	0. 101	0.106	0. 108	0, 104	0. 107	0. 106	0. 103	0. 109	0. 107	0. 106	0.002	1.9
11/12/94	7:25 AM	0. 102	0. 105	0.106	0. 109	0.107	0. 107	0. 104	0. 105		0. 101	0, 106	0.003	2.6
11/12/94	7:55 AM	0. 109	0. 104	6. 105	0. 108	0.107	0. 109	0.108	0. 107	0.103		0. 106	0.003	2.1
11/12/94	8:25 AM	0.106	0. 108	0. 103	0. 104	0. 107	0. 107	0. 109	0.103	0.107	0.109	0.106	0.002	2.2
11/12/94	8:55 AM	0.103	0. 104	0.107	0.108	0.109	0. 107	0. 107	0.109	0.103	0.105		0.002	1.8
11/12/94	9:25 AM	0.106	0. 103	0. 102	0. 104	0.104	0. 102	0. 104	0.106	0.100	0.105	0. 104	0.002	1.9
11/12/94	9:55 AM	0.106	0.103	0, 107	0.107	0.108	0. 104	0. 104	0. 107	0. 109	0.104	0, 106		1.4
11/12/94	10:25 AM	0.104	0. 1 <u>05</u>	0.102	0.104	0.106	0. 105	0. 107	0. 104	0. 106	0.104	0.105	0.001	2.5
11/12/94	11:50 AM	0, 107	0. 107	0.107	0. 107	0.100	0. 108	0. 105	0. 102	0. 107	0.106	0.106		2.0
11/12/94	12:20 PM	0. 107	0. 105	0. 108	0. 104	0.107	0, 103	0.102	0. 104	0. 107	0, 107	0.105	0.002	
11/12/94	12:50 PM	0. 106	0. 105	0. 107	0.104	0.108	0.106	0.110	0. 106	0.105	0.105	0.106	0.002	1.6
11/12/94	1:20 PM	0.106	0. 105	0. 106	0.105	0.104	0. 104	0. 107	0.106	0.107	0.110	0.106	0.002	
11/12/94	1:50 PM	0.107	0. 107	0, 107	0.106	0. 107	0.105	0. 105	0.108	0.107	0.105	0. 106	0.001	1.0
11/12/94	2:20 PM	0.106	0.107	0.105	0. 107	0.104	0. 107	0. 106	0.109	0.106	0.107	0.106	0.001	1.3
11/14/94	8:20 AM	0.104	0. 105	0.103	0.108	0. 105	0.106	0. 104	0.108	0.107	0.104	0.105	0.002	1.7
11/14/94	8:45 AM	0.101	0. 107	0.104	0.104	0.106	0. 103	0. 104	0.105	0.107	0, 105	0.105	0.002	1.8
11/14/94	9:15 AM	0, 106	0, 104	0.106	0. 104	0. 102	0.104	0.105	0.107	0.105	0.104	0, 105	0.001	1.4
11/14/94	9:45 AM	0. 107	0. 106	0.104	0.104	0.103	0. 102	0. 106	0.103	0.106	0.106	0. 105	0.002	1.6
11/14/94	10:15 AM	0. 103	0. 105	0. 103	0.107	0.105	0. 106	0.104	0.104	0. 105	0.106	0.105	0.001	1.3
11/14/94	10:45 AM	0. 105	0. 101	0. 105	0.108	0.103	0. 102	0. 102	0.106	0.104	0.106	0. 104	0.002	2.1
11/14/94	1:25 PM	0. 107	0. 103	0.103	0, 106	0.105	0.106	0, 103	0.106	0. 105	0.109	0.105	0.002	1.8
11/14/94	1:50 PH	0. 103	0, 104	0.102	0.104	0.110	0. 105	0. 107	0. 105	0.106	0.104	0.105	0.002	2.2
11/14/94	2:45 PM	0. 104	0, 104	0, 103	0. 106	0.106	0. 106	0. 107	0, 103	0.103	0.107	0.105	0.002	1.6
11/11/91	1 2:40 1/1	U. 107	0, 107	1 0. 103	0. 100	3, 100								

PROCESS VALIDATON

DIGOXIN TABLETS, 0.125 mg - Batch # 4320A

Compression - Weight (g) - Front

Date	Tine	1	2	3	4	5	6	7	8	9		Average		RSD
11/14/94	5:15 PH	0, 104	0.105	0.106	0. 105	0. 105	0.104	0. 103	0. 107	0. 104	0, 105	0.105	0.001	1.1
11/14/94	5:45 PN	0.106	0. 106	0. 104	0.103	0. 105	0. 105	0. 105	0. 102	0. 103	0. 104	0.104	0.001	1.3
11/14/94	6:15 PM	0.107	0. 105	0.104	0, 104	0.104	0. 104	0.108	0. 106	0.106	0. 104	0, 105	0.601	1.4
11/14/94	6:45 PH	0.102	0.106	0. 103	0.106	0, 104	0. 106	0. 107	0. 103	0. 105	0. 105	0.105	0.002	1.6
11/14/94	7:15 PH	0.106	0. 105	0.104	0.104	0, 102	0.106	0. 103	0. 103	0, 105	0. 103	0. 104	0.001	1.3
11/14/94	7:45 PH	0.107	0.104	0, 105	0.104	0, 104	0.106	0, 106	0. 105	0.103	0. 106	0. 105	0.001	1.2
11/14/94	8:15 PM	0.106	0.105	G. 105	0.107	0.107	0. 105	0. 105	0. 107	0.108	0. 109	0. 106	0.001	1.3
11/14/94	8:45 PH	0.104	0.106	0.108	0.107	0.109	0. 106	0.106	0.105	0. 107	0. 105	0. 106	0,001	1.4
11/15/94	8:00 AM	0.108	0. 105	0, 109	0.104	0.106	0. 107	0. 108	0. 107	0. 107	0. 106	0. 107	0.001	1.4
11/15/94	8:30 AM	0.105	0. 106	0. 106	0.104	0.104	0.107	0.107	0, 104	0.106	0. 104	0, 105	0.001	1.2
11/15/94	9:00 AM	0. 107	0.104	0. 106	0. 103	0, 105	0.106	0. 104	0. 105	0.104	0. 107	0. 105	0.001	1.3
11/15/94	9:30 AM	0. 107	0. 107	0. 106	0. 106	0.106	0. 106	0. 107	0. 105	0.105	0. 107	0. 106	0.001	0.7
11/15/94	10:00 AM	0. 184	0.104	0. 101	0. 106	0.106	0. 103	0. 103	0, 103	0. 104	0. 103	0. 104	8.001	1,4
11/15/94	10:30 AM	0.104	0.105	0.106	0, 105	0.104	0.106	0. 104	0. 106	0.105	0, 105	0, 105	0.001	0.8
11/15/94	11:35 AH	0.107	0.106	0. 104	0.107	0.106	0.105	0. 106	0. 105	0. 107	0. 106	0. 106	0.001	0.9
11/15/94	12:05 PH	0. 104	0.105	0. 108	0. 103	0.107	0.106	0, 105	0.106	0.105	0. 106	0. 106	0.001	1.4
11/15/94	12:35 PM	0.107	0.106	0. 105	0.107	0. 107	0. 105	0. 106	0, 104	0.104	0.105	0. 106	0.001	1.1
11/15/94	1:05 PM	0.106	0. 104	0. 107	0.105	0.107	0. 106	0, 105	0, 104	0.105	0. 106	0. 106	0.001	1.0
11/15/94	1:35 PH	0.105	0.106	0.104	0.106	0.104	0.108	0. 107	0. 106	0. 105	0. 105	0. 106	0.001	1.2
11/15/94	4:30 PH	0. 105	0.108	0. 107	0.108	0.106	0. 104	0.105	0.107	0, 107	0. 104	0, 106	0.002	1.4
11/15/94	5:00 PH	0.105	0.105	0. 106	0. 107	0. 108	0. 105	0. 105	0. 107	0. 105	0. 105	0. 106	0.001	1.1
11/15/94	5:30 PM	0. 107	0.105	0. 104	0. 106	0, 104	0. 105	0. 107	0. 104	0, 106	0. 106	0. 105	0.001	1.1
11/15/94	6:10 PM	0.106	0. 104	0.105	0. 105	0.107	0.102	0. 107	0, 106	0. 104	0.108	0. 105	0.002	1.7
11/15/94		0. 103	0, 104	0, 106	0. 104	0.106	0. 105	0. 102	0.106	0. 106	0. 105	0. 105	0.801	1.4
11/15/94	7:10 PM	0. 103	0.105	0. 103	0.106	0.103	0.106	0. 105	0. 105	0. 102	0.106	0, 104	0.002	1.4
11/15/94		0.104	0.105	0. 105	0. 105	0.104	0. 103	0. 107	0. 105	0. 105	0. 107	0. 105	0.001	1.2
11/15/94	8:10 PM	0. 104	0.105	0.104	0. 104	0.106	0. 105	0. 104	0. 106	0. 104	0.104	C. 105	0.001	0.8
11/15/94		0. 106	0.104	0. 105	0.103	0.102	0. 105	0. 104	0. 105	0. 103	0. 103	0. 104	0.001	1.2
11/15/94	9:10 AM	0. 103	0.106	0, 106	0. 104	0.104	0. 105	0. 105	0. 103	0. 104	0.107	0. 105	0.001	1.3

Compression - Weight (g) - Rear

											- 40	A	O. D.	700
Date	Tine	1	2	3	4	5	6		8	9		Average		RSD
11/14/94	5:15 PH	0. 107	0.103	0.102	0. 107	0.103	0.108	0. 105	0.104	0.105	0.101	0. 105	0.002	2.2
11/14/94	5:45 PM	0.104	0, 105	0.102	0. 105	0.105	0. 105	0. 101	0. 103	0.106	0. 105	0. 104	0.002	1.5
11/14/94	6:15 PM	0.106	0.102	0, 100	0. 105	0.101	0. 105	0. 104	0.106	0. 106	0.104	0. 104	0.002	2.1
11/14/94	6:45 PH	0. 104	0.100	0.101	0. 100	0.100	0. 102	0.104	0.102	0. 102	0.100	0.102	0.002	1.6
11/14/94	7:15 PM	0. 104	0. 101	0.100	0. 102	0.101	0.104	0.104	0.100	0.100	0.101	0. 102	0.002	1.7
11/14/94	7:45 PM	0.108	0. 102	0. 107	0. 106	0. 107	0.103	0. 104	0. 104	0.104	0.105	0, 105	0.002	1.9
11/14/94	8:15 PM	0. 108	0.104	0. 107	0. 108	0. 105	0.104	0. 106	0.104	0. 108	0.108	0. 106	0.002	1.7
11/14/94	8:45 PM	0. 108	0. 106	0.107	0. 104	0.108	0.106	0.106	0.105	0. 102	0.106	0. 106	0.002	1.7
11/15/94	8:00 AM	0. 107	0. 105	0. 107	0, 104	0.107	0, 108	0.110	D. 108	0.108	0. 107	0. 107	0.002	1.6
11/15/94	8:30 AM	0. 102	0. 105	0. 102	0. 104	0. 105	0.104	0.106	0.105	0.103	0.102	0. 104	0.001	1.4
11/15/94	9:00 AM	0. 106	0.104	0. 101	0. 106	0.101	0.102	0. 107	0. 107	0. 103	0. 103	0. 104	0.002	2.3
11/15/94	9:30 AM	0. 107	0.105	0.101	0. 107	0.104	0.102	0.106	0. 103	0, 106	0. 104	0. 105	0.002	2.0
11/15/94	10:00 AM	0. 105	0. 103	0.105	0. 104	0. 104	0.105	0. 107	0.103	6. 105	0. 105	0. 105	0.001	1.1
11/15/94	10:30 AM	0. 103	0. 102	0. 106	0. 105	0.103	0.103	0. 106	D. 104	0.106	0. 109	0. 105	0,002	2.0
11/15/94	11:35 AM	0. 107	0.108	0.105	0. 103	0.103	0, 104	0. 103	D. 102	0.103	0.104	0. 104	0.002	1.9
11/15/94		0.108	0.105	0.104	0. 107	0, 103	0.107	0, 107	D. 106	0.106	0. 104	0. 106	0.002	1.5
11/15/94	12:35 PH	0. 107	0. 104	0.106	0. 103	0.107	0.102	0. 106	0.106	0. 105	0. 106	0.105	0.002	1.6
11/15/94	1:05 PH	0. 102	0. 105	0, 103	0. 107	0. 101	0, 107	0.105	0.103	0.107	0.105	0.105	0.002	2.1
11/15/94	1:35 PM	0. 105	0.106	0. 106	0. 105	0. 105	0, 106	0.103	0. 102	0.102	0.106	0.105	0.002	1,6
11/15/94	4:30 PM	0. 106	0.104	0. 106	0. 105	0. 107	0. 107	0.102	0. 107	0. 103	0. 104	0.105	0.002	1.7
11/15/94	5:00 PM	0.109	0.105	0. 107	0. 107	. 0. 106	0. 106	0, 106	0.105	0. 107	0.103	0.106	0.002	1.5
11/15/94	5:30 PM	0. 106	0. 104	0. 104	0. 106	0.104	0.105	0, 107	0. 106	0.106	0. 103	0, 105	0.001	1.2
11/15/94	6:10 PM	0. 104	0, 104	0. 107	0. 104	0. 104	0.103	D. 103	0.103	0.106	0. 102	0. 104	0.001	1.4
11/15/94	6:40 PM	0.104	0. 105	0.103	0. 104	0.102	0.105	0.101	0.103	0. 105	0.106	0. 104	0.002	1.5
11/15/94	7:10 PM	0.104	0. 103	0, 107	0. 100	0. 104	0.102	0.105	0.104	0.105	0. 104	0. 104	0.002	1.8
11/15/94	7:40 PM	0. 106	0. 105	0. 105	0. 106	0. 106	0. 106	0. 104	0.104	0.106	0. 106	0.105	0.001	0.B
11/15/94	8:10 PM	0. 103	0. 103	0. 105	0. 105	0. 105	0. 103	0.103	0. 102	0.106	0.102	0. 104	0.001	1.4
11/15/94		0. 105	0. 102	0.106	0. 106	0.106	0, 104	0.101	0. 102	0.103	0.104	B. 104	0.002	1.8
11/15/94		0.101	0. 105	0.101	0. 106	0, 106	0. 105	0.102	0.105	0. 102	0.103	0.104	0.002	1.9

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg - Batch # 4322A

Compression - Weight (g) - Front

Date	Tine	1	2	3	4	5	6	7	8	9	10	Average S		RSD
11/16/94	12:15 PM	0. 104	0. 107	0.106	0.106	0. 107	0. 105	0. 105	0. 107	0. 106	0. 107		0.001	1.0
11/16/94	12:45 PM	0. 107	0. 105	0. 105	0. 106	0.106	0. 107	0. 107	0. 107	0. 104	0, 105	0.106	0.001	1.0
11/16/94	1:15 PM	0. 105	0. 107	0, 106	0.106	0. 106	0.106	0.105	0.105	0.107	0. 107	0.106	0.001	0.8
11/16/94	1:45 PM	0. 103	0, 105	0.106	0.104	0. 106	0.107	0. 106	0.106	0, 106	0.105	0.105	0.001	1.1
11/16/94	2:30 PH	0.108	0.106	0.103	0.107	0. 105	0.104	0.105	0.106	0. 105	0. 105	0.105	0.001	1.4
11/16/94	3:00 PM	0. 107	0, 104	0. 104	0.103	0. 105	0. 105	0.106	0.105	0.106	0.105	0.105	0.001	1.1
11/16/94	3:35 PM	0.106	0. 107	0. 106	0.104	0. 105	0. 107	0.104	0.104	0. 106	0. 106	0. 106	0.001	1.1
11/16/94	4:05 PM	0, 106	0, 104	0. 107	0, 105	0. 105	0.106	0.105	0.105	0.103	0.106	0.105	0.001	1.1
11/16/94	4:35 PH	0.108	0.104	0. 106	0.106	0. 106	0. 105	0, 105	0.104	0.105	0. 107	0.106	0.001	1.2
11/16/94	5:05 PM	0.105	0.106	0.107	0.105	0. 104	0.106	0.104	0.106	0.104	0.105	0.105	0.001	1.0
11/17/94	8:00 AM	0.106	0.106	0. 106	0. 107	0.107	0. 105	0.106	0.106	0. 107	8. 105	0.106	0.001	0.7
11/17/94	8:30 AM	0. 107	0.108	0.106	0.105	0.107	0.104	0.108	0. 107	0.108	0. 107	0.107	0.001	1.3
11/17/94	9:00 AM	0.103	0.105	0. 104	0. 105	0.105	0.106	0. 107	0.103	0.104	0. 107	0. 105	0.001	1.4
11/17/94	9:30 AM	0.105	0.105	0. 106	0. 106	0. 105	0.106	0.105	0.106	0.105	0, 105	0. 105	0.001	0.5
11/17/94	10:00 AM	0.102	0.106	0. 107	0. 107	0.104	0. 105	0.104	0. 104	D. 104	0. 103	0. 105	0.002	1.6
11/17/94	10:30 AM	0.103	0.105	0. 104	0.104	0.104	0, 106	0. 100	0.103	0.106	0. 105	0.104	0.002	1.7
11/17/94	11:35 AM	0.106	0.104	0. 105	0.106	0. 106	0. 107	0. 103	0.106	0, 104	0. 105	0. 105	0.001	1.2
11/17/94	12:05 PM	8. 104	0. 103	0.103	0, 105	0. 103	0.103	0. 107	0. 106	0.103	0. 106	0. 104	0.002	1.5
11/17/94	12:35 PM	0.105	0, 105	0.105	0.106	0.108	0. 105	0. 105	0. 104	0. 105	0. 107	0. 106	0.001	2.2
11/17/94	1:45 PH	0. 104	0. 103	0.106	0.107	0.106	0. 102	0. 109	0. 106	0. 104	0.102	0. 105	0.002	$\frac{1}{1}$
11/17/94	2:35 PM	0. 105	0, 106	0. 105	0. 105	0.108	0. 105	0. 105	0. 104	0. 104	0.105	0. 105	0.001	_
11/17/94	3:05 PM	0. 105	0.103	0. 106	0, 106	0.106	0. 103	0. 104	0, 107	0, 105	0. 105	0. 105 0. 105	0.001	1.3
11/17/94	3:30 PH	0.105	0.106	0.106	0. 103	0.106	0. 104	0. 104	0. 104	0. 107	0.105	0. 105	0.001	0.9
11/17/94	4:00 PH	0.106	0. 105	0.105	0. 104	0, 105	0. 105	0. 106	0. 104	0.106	0. 103		0.001	10.3
11/17/94	4:30 PH	0.107	0. 104	0. 108	0.107	0.107	0. 106	0. 104	0. 108	0. 103	0. 106	0.106	0.002	1.0
11/17/94	5:05 PM	0. 105	0.105	0. 104	0, 107	0.106	0. 106	0. 105	0. 104	0, 107	0. 106	0. 106 0. 105	0.001	1.2
11/17/94	5:35 PM	0.105	0.103	0. 103	0.106	0.106	0.105	0.106	0. 105	0.105	0. 107	0, 105	0.001	1.1
11/17/94	6:25 PM	0. 104	8. 106	0. 107	0, 107	0. 104	0. 105	0. 105	0. 104	0. 105	0.105		0.001	1.3
11/17/94	6:55 PM	0. 107	0.104	0. 105	8. 107	0.104	0. 103	0.106	0.106	0.104	U. 1U4	0.100	0.001	1.3

Compression - Weight (g) - Rear

Date	Time	1 1	2	3	4	5 1	6	7	8	9	10	Average	St Dev.	RSD
11/16/94	12:15 Ph	0, 107	0. 107	0. 104	0, 107	0.105	0.106	0.108	0.107	0. 104	0.106	0. 106	0.001	1.3
11/16/94	12:45 PM	0. 107	0.108	0. 107	0, 107	0.105	0. 104	0, 106	0.105	0, 103	0.104	0. 106	0.002	1.6
11/16/94	1:15 PM	0. 104	0. 103	0. 104	0, 107	0.107	0.104	0. 104	0.107	0.106	0. 104	0.105	0.002	1.5
11/16/94	1:45 PM	0. 104	0. 107	0, 106	0. 104	0.106	0.107	0.104	0.106	0. 106	0.107	0.106	0.001	1.2
11/16/94	2:30 PK	0. 106	0. 107	0. 108	0. 107	0.103	0.109	0. 106	0.102	0. 105	0.104	0. 106	0.002	2.1
11/16/94	3:00 PM	6, 107	0. 103	0. 110	0. 106	0.107	0. 105	0.109	0. 107	0.108	0.103	0.106	0.002	2,1
11/16/94	3:35 PM	0. 107	D. 105	0. 106	0.108	0.102	0.104	0.102	0.106	0. 103	0.108	0. 105	0.002	2.2
11/16/94	4:05 PM	0.101	0. 106	0. 102	0, 107	0.102	0. 106	0.104	0, 108	0.106	0. 105	0. 105	0.002	2.3
11/16/94	4:35 PM	0. 107	0, 104	0. 102	0.104	0. 103	0.106	0.105	0. 104	0.103	0. 102	0. 104	0.002	1.6
11/16/94	5:05 PH	0. 103	0. 106	0. 105	0.104	0.103	0. 107	0.103	0.106	0.106	0. 105	0.105	0.001	1.4
11/17/94	8:00 AM	0. 106	0.108	0.106	9, 107	0.108	0.105	0. 107	0.110	0.109	0. 107	0. 107	0.001	1.4
11/17/94	8:30 AN	0. 104	0. 107	0, 103	0.108	0.107	0. 109	0.104	0. 106	0.108	0. 105	0.106	0.002	1.9
11/17/94	9:00 AM	.0. 105	D. 107	0, 106	0.102	0.103	0.104	0.104	0.103	0. 105	0. 103	0.104	0.002	1.5
11/17/94	9:30 AM	0. 102	0.103	0.105	0.107	0.106	0. 107	0.107	0.106	0.103	0. 105	0.105	0.002	1.8
11/17/94	10:00 AM	0. 103	0. 107	0.107	0.105	0.107	0. 104	0.106	0.103	0. 104	0. 107	0.105	0.002	1.6
11/17/94	10:30 AM	0.108	0, 102	0. 106	0.107	0. 107	0. 104	0.103	0.103	0, 103	0. 107	0, 105	0.002	2.1
11/17/94	11:35 AM	0. 104	0. 106	0.106	0.101	0.108	0. 102	0.107	0.106	0. 103	0.103	0.105	0.002	2.2
11/17/94	12:05 PM	0. 107	0.106	0. 104	0.104	0. 107	0. 104	0.107	0.107	0.102	0. 103	0. 105	0.002	1.8
11/17/94	12:35 PM	0, 101	0. 107	0.102	0.102	0. 107	0.101	0.105	0.107	0. 102	0. 105	0. 104	0.003	2.5
11/17/94	1:45 PM	0.106	0. 107	0.103	0.106	0. 104	0.102	0. 107	0.106	0.104	0.103	0, 105	0.002	1.7
11/17/94	2:35 PM	0. 103	0.103	0.105	0.106	0, 107	0.108	0. 105	0.105	0.106	0. 107	0. 106	0.002	1.6
11/17/94	3:05 PM	0.106	0. 106	0.102	0.104	0.103	0.104	0. 105	0.107	0.103	0. 106	0. 105	0.002	1.6
11/17/94	3:30 PM	0.102	0.104	0. 105	0.106	0.107	0, 105	0. 107	D. 104	0.106	0. 106	0. 105	0.002	1.5
11/17/94	4:00 PM	0.107	0.103	0.104	0. 104	0. 108	0. 103	0. 107	0.106	0.105	0.104	0. 105	0.002	1.7
11/17/94		0.106	0. 107	0, 103	0.104	0. 104	0. 105	0.104	0.103	0.106	0. 104	0.105	0.001	1.3 2.1
11/17/94	5:05 PH	0. 105	0.104	0. 107	0.108	0.106	0. 104	0.101	0.108	0. 106	0. 107	0. 106	0.002	
11/17/94	5:35 PM	0. 103	0.106	0.103	0.106	0.107	0. 102	0, 102	0.104	0. 105	0. 108	0. 105	0,002	2.0
11/17/94	6:25 PM	0. 101	0.108	0. 106	0.107	0, 103	0. 107	0.108	0.105	0.107	0. 105	0. 106		_
11/17/94	6:55 PM	0. 103	0. 108	0. 101	0.106	0.107	0, 104	0. 106	0.106	0.103	0, 106	0. 105	0.002	2.1

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg - Batch # 4318A

Compression - Hardness (kp) - Front

Date	Time	1	2	3	4	5	Average	St Dev.	RSD
11/11/94	1:50 PH	4,2	3.8	5.0	4.5	4.5	4.4	0.4	10.0
11/11/94	2:45 PM	4.1	4.5	5.0	4.4	4.3	4.5	0.3	7.5
11/11/94	3:20 PM	4.4	4.6	4.6	4.6	4.7	4.6	0.1	2.4
11/11/94	4:00 PM	4.4	4.6	4.7	4.6	4.7	4.6	0.1	2.7
11/11/94	4:30 PM	5.1	4.6	4.5	5.0	5.2	4.9	0.3	6.4
11/12/94	7:25 AM	4.6	4.5	4.2	4.7	4,6	4.5	0.2	4.3
11/12/94	7:55 AM	4.4	5.1	4.7	_4.8	4.5	4.7	0.3	5.8
11/12/94	8:25 AM	4.4	4.5	4.2	5.2	3.9	4.4	0.5	10.9
11/12/94	8:55 AM	4.8	4.7	4.5	4.3	4.6	4.6	0.2	4.2
11/12/94	9:25 AM	4.6	4.3	4.8	4.3	4.5	4.5	0.2	4.7
11/12/94	9:55 AM	4.8	4.5	4.2	4.2	4.3	4.4	0.3	5.8
11/12/94	10:25 AM	4.8	4.9	4.5	4.4	4.4	4.6	0,2	5.1
11/12/94	11:50 AM	4.7	4.8	4.2	4.2	4.5	4.5	0.3	6.2
11/12/94	12:28 PM	5.0	4.4	4.8	4.2	4.7	4.6	0.3	6.9
11/12/94	12:50 PH	4.8	4.5	4.6	4.4	4.2	4.5	0.2	5.0
11/12/94	1:20 PN	4.7	4.6	4.9	4.4	4.1	4.5	0.3	6.7
11/12/94	1:50 PH	4.5	4.5	4.7	4.5	4.7	4.6	0.1	2.4
11/12/94	2:20 PH	4.4	4.6	4.4	5.1	5.0	4.7	0.3	7.1
11/14/94	8:20 AM	4.0	3.9	3.7	4.3	4.1	4.0	0.2	5.6
11/14/94	8:45 AM	4.2	4.3	4.2	4.2	4.0	4.2	0.1	2.6
11/14/94	9:15 AM	4.3	4.2	4.4	4.3	4.6	4.4	0.2	3.5
11/14/94	9:45 AM	4.4	4.0	3.9	4.4	4.4	4.2	0.2	5.9
11/14/94	10:15 AM	4.3	4.3	4.2	4.3	3.9	4.2	0,2	4.1
11/14/94	10:45 AM	4.4	4.7	4.5	4.3	4.6	4.5	0.2	3.5
11/14/94	1:25 PM	3.9	4.4	4.0	4.1	4.3	4.1	8.2	5.0
11/14/94	1:50 PM	4.0	4.9		4.3			0.3	7.7
11/14/94		4.3	4.5	4.7	3.7	4.6	4.4	0.4	9.1

Compression - Hardness (kp) - Rear

	1:50 PM 2:45 PM	4.5	2						
11/11/94			3.6	4.3	4.6	4.2	4.2	0.4	9.2
		4.3	3.7	4.5	4.6	4.6	4.3	0.4	8.7
11/11/94	3:20 PH	4.5	4.9	4, 1	4.7	4.9	4.6	0.3	7.2
	4:00 PH	4.8	3.9	4.4	4.0	5.0	4.4	0.5	10.9
	4:30 PM	4.5	4.0	4.2	4.5	4.6	4.4	0.3	5.8
	7:25 AM	4.7	5.1	4.4	4.7	5.4	4.9	0.4	8.0
	7:55 All	4,4	4.2	4.4	4.6	4.4	4.4	0.1	3.2
	8:25 AM	3.9	5.0	4.3	5.3	3.7	4.4	0.7	15.6
	8:55 AM	4.5	5.3	4.1	5.0	4.7	4.7	0.5	9.8
	9:25 AM	4.4	4.1	4.5	5.3	4.1	4.5	0.5	11.0
11/12/94	9:55 AM	4.6	5.4	4.4	4.6	5.1	4.8	0.4	8.6
	10:25 AM	4.6	5.0	4.7	4.1	3.8	4.4	0.5	10.9
	11:50 AM	5.0	4.1	4.3	4.2	4.7	4.5	0.4	8.5
	12:20 PM	5, 4	5.0	4.3	4.2	4.2	4.6	0.5	11.9
	12:50 PH	4.5	4,4	4,6	5.4	4.6	4.7	0.4	8.5
11/12/94	1:20 PM	5.0	4.5	5,0	4.6	4.4	4.7	0.3	6.0
11/12/94	1:50 PM	4.6	4.4	5.1	5.0	4.9	4.8	0.3	6, 1
11/12/94	2:20 PM	5.2	4.4	4.2	4.4	5.0	4.6	0.4	9.3
11/14/94	8:20 AM	4.8	4.0	4.2	4.0	4.3	4.3	0.3	7.7
11/14/94	8:45 AM	4.0	4.5	4.0	4.0	4.4	4.2	0.2	6.0
11/14/94	9:15 AM	4.3	4,5	4.5	4.6	4.5	4.5	0.1	2.4
11/11/94	9:45 AM	4.8	4.6	4.6	4.6	4.5	4.6	6.1	2.4
11/14/94	10:15 AM	4.2	4.5	4.7	4.9	4.3	4.5	0.3	6.3
11/14/94	10:45 AM	4.1	4.4	4.2	4.2	3.9	4.2	0.2	4.4
11/14/94	1:25 PH	4.4	4.2	3.8	4.2	4.3	4.2	0.2	5.5
11/14/94	1:50 PH	4.5	4.1	4.7	4.9	4.2	4.5	0.3	7.5
11/14/94	2:45 PM	3.7	4.7	3.6	4.4	4.4	4.2	0.5	11.6

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg - Batch # 4320A

Compression - Hardness (kp) - Front

Date	Tine	1 1	2	3	4	5	Average	St Dev.	RSD
11/14/94	5:15 PH	4.4	4.7	4.8	4.4	4.4	4.5	0.2	4.3
11/14/94	5:45 PH	4.6	4.1	4.7	4.3	4.3	4.4	0.2	5.6
11/11/91	6:15 PH	4.6	5.0	4.5	4.9	4.3	4.7	0.3	6.2
11/14/94	6:45 PH	4.2	4.3	4.5	4.2	4.2	4.3	0.1	3.0
11/14/94	7:15 PH	4.3	4.6	4.0	4.2	4.6	4.3	0.3	6.0
11/14/94	7:45 PH	5.2	4.5	4.2	5.0	4.6	4.7	0.4	8.5
11/14/94	8:15 PH	4.7	4.6	5.0	4.2	4.8	4.7	0.3	6.4
11/14/94	8:45 PH	5.3	4.8	4.7	5.7	4.5	5.0	0.5	9.8
11/15/94	8:00 AH	4.5	4.6	4.3	4.3	4.7	4.5	0.2	4.0
11/15/94	8:30 AM	4.6	4.3	4.4	4.8	4.3	4.5	0.2	4.8
11/15/94	9:00 AM	4.7	4.5	4.4	4.3	4.4	4.5	0.2	3.4
11/15/94	9:30 AM	4.5	4.8	4.5	4.5	4,5	4.6	0.1	2.9
11/15/94	10:00 AM	4.6	4.2	4.6	5.0	4.3	4.5	0.3	6.9
11/15/94	10:30 AM	4.2	4.9	4.8	5. 1	4.8	4.8	6.3	7.1
11/15/94	11:35 AM	4,4	4.9	4.2	4.4	4.6	4.5	0.3	5.9
11/15/94	12:05 PM	4,2	4.3	4.2	4.8	4.5	4.4	0.3	5.8
11/15/94	12:35 PM	4.0	4.7	4.2	4.2	3,9	4.2	0.3	7.3
11/15/94	1:05 PH	4.6	4.6	4.5	4.4	4.8	4.6	0.1	3.2
11/15/94	1:35 PM	4,4	4.6	4.7	5.3	4.9	4.8	0.3	7.2
11/15/94	4:30 PM	4.7	4.3	4.3	5.0	4.5	4.6	0.3	6.5
11/15/94	5:00 PM	4.3	4.4	4.8	4.3	4.3	4.4	0.2	4.9
11/15/94	5:30 PM	4.7	4.5	5.2	4.5	4.8	4.7	0.3	6.1
11/15/94	6:10 PM	4.7	4.2	4.4	4.8	4.8	4.6	0.3	5.9
11/15/94	6:40 PH	4.5	4.3	4.4	4.8	4.3	4.5	0.2	4.6
11/15/94	7:10 PH	4.6	4.4	4.7	4,4	4.3	4.5	0.2	3.7
11/15/94		4.8	4.3	4.8	4.3	4.4	4.5	0.3	5.7
11/15/94	8:10 PH	4.7	4.2	4.0	4.5	4.4	4.4	0.3	6.2
11/15/94	8:40 PM	4.7	5.2	4.4	5.0	4.6	4.8	0.3	6.7
11/15/94		4.8	4.6	5. 1	4.1	4.5	4.6	0.4	8.0

Compression - Hardness (kp) - Rear

Date	Tine	1 1	2 1	3	4	5	Average	St Dev.	RSD
11/14/94	5:15 PH	3.9	3.9	3.7	4,4	4.7	4.1	0.4	10. 1
11/14/94	5:45 Ph	4.1	4.2	4.9	4.6	4. 1	4.4	0.4	8.1
11/14/94	6:15 PM	4.3	4.6	3.9	4.7	3.4	4.2	0.5	12.8
11/14/94	6:45 PH	4.1	3.9	3.7	4.0	4.1	4.0	0.2	4.2
11/14/94	7:15 PH	4.7	4.0	3.9	4,6	4.2	4.3	0.4	8.3
11/14/94	7:45 PM	4.8	4.4	4.5	4.7	4.7	4.6	0.2	3.6
11/14/94	8:15 PH	5, 4	5.B	4.3	5.6	4.9	5.2	0.6	11.6
11/14/94	8:45 PH	5.3	5.4	4.3	4.9	4.8	4.9	0.4	8.9
11/15/94	8:00 AH	4.2	3.7	4.4	4.8	4.9	4.4	0.5	11.0
11/15/94	8:30 AM	3.7	3.9	3.8	3.9	4.9	4.0	0.5	12. 1
11/15/94	9:00 AM	4.8	4.2	3.9	4.5	4.8	4.4	0.4	8.8
11/15/94	9:30 AM	4.1	4.6	4.7	4,9	4.0	4.5	0.4	8.8
11/15/94	10:00 AM	4.5	4.2	4.2	4.2	4.1	4.2	0.2	3.6
11/15/94	10:30 AM	4.6	4.7	4.9	5.0	4.5	4.7	0.2	4.4
11/15/94	11:35 AM	3.7	4.1	4.7	4.1	4.6	4.2	0.4	9.7
11/15/94	12:05 PH	4.8	4.4	4.8	4.3	3.9	4.4	0.4	8.5
11/15/94	12:35 PM	4.0	4.5	4.1	4.7	5.0	4.5	0.4	9.3
11/15/94	1:05 PM	4.3	4.5	4.8	4.4	4.7	4.5	0.2	4.6
11/15/94	1:35 PM	4.7	4.7	4.0	4.6	4.7	4.5	0.3	6.7
11/15/94	4:30 PM	4.2	4.1	4.7	4.3	4.2	4.3	0.2	5.5
11/15/94	5:00 PM	4.8	4.7	5.2	4.6	4.9	4.8	0.2	4.8
11/15/94	5:30 PM	5.1	4.3	4.5	4.1	4.7	4.5	0.4	8.5
11/15/94	6:10 PM	4.4	4.9	4.6	4.4	4.4	4.5	8.2	4.8
11/15/94	6:40 PH	4.7	5.1	4.8	4.1	4.2	4.6	0.4	9.2
11/15/94	7:10 PM	3.9	4.8	4.6	3.7	5.0	4.4	0.6	13.0
11/15/94	7:40 PH	4.8	4.4	4.7	4.7	5.2	4.8	0.3	6.1
11/15/94	8:10 PM	4.9	4.4	4.0	4.7	4.5	4.5	0.3	7.5
11/15/94	8:40 PH	5.2	4.1	1.6	4,5	5.2	4.7	0.5	10.1
11/15/94		4.0	4.0	4.5	5.2	4.7	4.5	0.5	11.3

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg - Batch # 4322A

Compression - Hardness (kp) - Front

Date	Time	1 1	2 1	3	4	5	Average	St Dev.	RSD
11/16/94	12:15 PH	4.8	4.8	4.5	4.9	4.4	4.7	0.2	4.6
11/16/94	12:45 PH	4.6	4.8	4.3	4.3	4.4	4.5	0.2	4,8
11/16/94	1:15 PH	4.7	4.3	4.8	4.5	4.2	4.5	0.3	5.7
11/16/94	1:45 PN	4.2	4.7	4.4	4.9	4.7	4.6	0.3	6.1
11/16/94	2:30 PH	4.5	5.3	4.7	4.5	5.2	4.8	0.4	7.9
11/16/94	3:00 PH	4.6	4.6	4.3	4.6	5.2	4.7	0.3	7.1
11/16/94	3:35 PH	4.2	4.5	5.2	4.8	4.7	4.7	0.4	7.9
11/16/94	4:05 PM	4.7	4.8	4.4	4.7	5.1	4.7	0.3	5.3
11/16/94	4:35 PH	4.5	4.8	4.5	4.4	4.5	4.5	0.2	3.3
11/16/94	5:05 PN	4.6	4.8	5.0	4.0	4.9	4.7	0.4	8.5
11/17/94	8:00 AH	4.2	4.4	4.3	4.5	4.3	4.3	0.1	2.6
11/17/94	8:30 AM	4.5	4.9	4.3	4.8	4, 4	4.6	0.3	5.7
11/17/94	9:00 AM	4.1	4.4	4.5	4.3	4.4	4.3	0.2	3.5
11/17/94	9:30 AH	4.8	4.6	4.6	4.4	4.9	4.7	0.2	4.2
11/17/94	10:00 AH	4.1	4.4	4.8	4.7	4.6	4.4	0.3	7.0
11/17/94	10:30 AM	4.6	4.6	4.9	4.0	4.3	4.5	0.3	7.6
11/17/94	11:35 AH	4.4	4.6	4.4	4.8	5.3	4.7	0.4	8.0
11/17/94	12:05 PM	4.1	4.0	4.7	4.5	4.1	4.3	0.3	7.1
11/17/94	12:35 PM	4.6	4.2	4.2	4.2	5.0	4.4	0.4	8.1
11/17/94	1:45 PH	4.0	5.3	5.4	5.3	4.3	4.9	0.7	13.5
11/17/94	2:35 PM	4.1	4.3	4.2	4.2	4.6	4.3	0,2	4.5
11/17/94	3:05 PH	4.0	4.3	4.9	4,5	4.1	4.4	0.4	8.2
11/17/94	3:30 PM	4.2	4.2	4.2	4.3	4.0	4.2	0.1	2.6
11/17/94	4:00 PM	4. 1	4.2	4.3	4.4	4.5	4.3	0.2	3.7
11/17/94	4:30 PM	5.0	4.4	5.0	4.7	4.B	4.8	0.2	5.2
11/17/94	5:05 PM	4.4	4.5	4.5	4.2	4.9	4.5	0.3	5.7
11/17/94	5:35 PH	4.9	4.1	4,4	4.4	4.5	4.5	0.3	6.5
11/17/94	6:25 PM	4.0	5.1	4.5	4.9	4.4	4.6	0.4	9.4
11/17/94	6:55 PH	4.8	4.3	4.5	4.8	5.3	4.7	0.4	8.0

Compression - Hardness (kp) - Rear

Date	Tine	1	2	3	4	5	Average	St Dev.	RSD
11/16/94	12:15 PH	4.8	5.0	5.3	4.3	5.5	<u>- 5.0</u>	0.5	9.4
11/16/94	12:45 PH	4.4	4.8	4.7	4.7	4.6	4.6	0.2	3.3
11/16/94	1:15 PH	4.7	5.6	4.7	4.5	4.5	4.8	0.5	9,5
11/16/94	1:45 PH	5.4	4.9	5.0	5.2	5.2	5.1	0.2	3.8
11/16/94	2:30 PM	4.6	5.6	5.3	5. 1	4.4	5.0	0.5	9.9
11/16/94	3:00 PM	5.3	4.9	4.4	5.7	4.7	5.0	0.5	10.2
11/16/94	3:35 PH	4.7	4.9	4.6	5.1	4.5	4.8	0.2	5. 1
11/16/94	4:05 PM	5.2	4.4	5.2	5.0	4.6	4.9	0.4	7.4
11/16/94	4:35 PM	4.3	4.9	4.7	5.2	4.8	4.8	0.3	6.8
11/16/94	5:05 PH	5. 1	4.7	5.5	5.0	5.2	5. 1	0.3	5.7
11/17/94	8:00 AM	4.1	5.4	6.0	5.3	5.5	5.3	0.7	13.3
11/17/94	8:30 AM	4.6	4.3	4.7	5.7	4.9	4.8	0.5	10.9
11/17/94	9:00 AM	4.9	5.3	4.3	4.3	4.1	4.6	0.5	11.0
11/17/94	9:30 AH	5.1	4.9	4.8	4.6	4.9	4.9	0.2	3.7
11/17/94	10:00 AH	4.1	4.4	4.2	4.8	5.4	4.6	0.5	11.6
11/17/94	10:30 AM	4.3	5.2	4.2	4.7	4.8	4.6	0.4	8.7
11/17/94	11:35 AM	5.0	5.0	4.1	5.5	4.6	4.8	0.5	10.8
11/17/94	12:05 PH	5.2	4.4	4.8	4.2	4.3	4.6	0.4	9. 1
11/17/94	12:35 PM	4.7	3.7	4.5	3.8	5.0	4.3	0.6	13. 1
11/17/94	1:45 PH	4.1	4.6	4.2	4.3	4.5	4.3	0.2	4.8
11/17/94	2:35 PM	4.9	4.2	5.0	5.2	4.3	4.7	0.4	9.4
11/17/94	3:05 PM	3.8	5.1	3.8	4.8	4,6	4.4	0.6	13.4
11/17/94	3:30 PM	4.4	4.2	4,3	5.4	4.2	4.5	0.5	11.3
11/17/94	4:00 PH	4.6	4.3	4,4	4.2	4.8	4.5	0.2	5.4
11/17/94	4:30 PM	4.8	4.5	4.7	5.0	4.4	4.7	0.2	5.1
11/17/94	5:05 PM	5. 1	5.1	4.6	5.1	4.9	5.0	0.2	4.4
11/17/94	5:35 PH	4.6	5.0	4.4	4.4	4.6	4.6	0.2	5.3
11/17/94	6:25 PH	4.5	4.4	4.6	4.2	5.0	4.5	0.3	6.5
		4.4	5.5	4.0	4.8	5.5	4.8	0.7	13.8
11/17/94	PEGG 141	<u> </u>	3.3	1.0	,,,,,				

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg - Batch # 4318A

Compression - Thickness (nm) - Front

Date	Tine	1	2	3	4	5	Average	St Dev.	RSD
11/11/94	1:50 PM	2.66	2.66	2.65	2.62	2.65	2.65	0.02	0.6
11/11/94	2:45 PH	2.62	2.62	2.63	2,64	2.60	2.62	0.01	0.6
11/11/94	3:20 PM	2.67	2.65	2.63	2.64	2.65	2.65	0.01	0.6
11/11/94	4:00 PM	2.61	2.63	2.68	2.64	2,59	2,63	0.03	1.3
11/11/94	4:30 PM	2.66	2.64	2.64	2.64	2.63	2.64	0.01	0.4
11/12/94	7:25 AM	2.60	2.68	2.68	2.67	2.66	2.66	0.03	1.3
11/12/94	7:55 AM	2.71	2.70	2.69	2.70	2.65	2.69	0.02	0.9
11/12/94	8:25 AM	2.64	2.64	2.66	2.62	2.66	2.64	0.02	0.6
11/12/94	8:55 AM	2.66	2.68	2.63	2.63	2.61	2.64	0.03	1. 1
11/12/94	9:25 AM	2.63	2.65	2.65	2.65	2.64	2.64	0.01	0.3
11/12/94	9:55 AM	2.68	2.66	2.61	2.63	2.63	2.64	0.03	1, 1
11/12/94	10:25 AM	2.63	2.67	2.61	2.67	2.63	2.64	0.03	1.0
11/12/94	11:50 AM	2.66	2.60	2.67	2.63	2.65	2.64	0.03	1.1
11/12/94	12:20 PM	2.63	2.59	2.59	2.62	2.67	2.62	0.03	1.3
11/12/94	12:50 PM	2.63	2.66	2.62	2.61	2.64	2.63	0.62	0.7
11/12/94	1:20 PH	2.62	2.61	2.61	2.65	2.61	2.62	0.02	0.7
11/12/94	1:50 PM	2.64	2.61	2.62	2.59	2.63	2.62	0.02	0.7
11/12/94	2:20 PH	2.60	2.60	2.63	2.64	2,60	2.61	0.02	0.7
11/14/94	8:20 AM	2.62	2.61	2.67	2.63	2.63	2.63	0.02	0.9
11/14/94	8:45 AM	2.64	2.62	2.63	2.60	2.65	2.63	0.62	0.7
11/14/94	9:15 AM	2.61	2.65	2.65	2,63	2.65	2.64	0.02	0.7
11/14/94	9:45 AM	2.64	2.61	2.59	2.63	2.62	2.62	0.02	0.7
11/14/94	10:15 AM	2.64	2,62	2.63	2.62	2.63	2.63	_0.01	0.3
11/14/94	10:45 AM	2,59	2.66	2.63	2.63	2.63	2.63	0.02	0.9
11/14/94	1:25 PH	2.61	2.66	2.61	2.64	2.61	2.63	0.02	0.9
11/14/94	1:50 PM	2.64	2.62	2.61	2.58	2.59	2.61	0.02	0.9
11/14/94	2:45 PH	2,64	2.65	2,59	2.63	2.63	2.63	0.02	0.9

Compression - Thickness (nm) - Rear

Date	Tine	1	2	3	4	5	Average	St Dev.	RSD
11/11/94	1:50 PH	2.57	2.59	2.63	2.62	2,64	2.61	0.03	1, 1
11/11/94	2:45 PH	2.58	2.63	2.59	2.64	2.63	2.61	0.03	1.0
11/11/94	3:20 PK	2.61	2.60	2.64	2,63	2.64	2,62	0.02	0.7
11/11/94	4:00 PH	2.61	2.65	2.61	2.62	2.58	2.61	0.03	1.0
11/11/94	4:30 PH	2.62	2.65	2.55	2.65	2.62	2,62	0.04	1.6
11/12/94	7:25 AM	2.66	2.64	2.65	2.67	2.68	2.66	0.02	0.6
11/12/94	7:55 AM	2.60	2.65	2,66	2.66	2.63	2.64	0.03	1.0
11/12/94	8:25 AM	2.65	2.64	2.59	2,68	2.60	2.63	0.04	1.4
11/12/94	8:55 AM	2.67	2.66	2.66	2.68	2.65	2.66	0.01	0.4
11/12/94	9:25 AM	2.64	2.58	2.61	2.61	2,59	2.61	0.02	0.9
11/12/94	9:55 AM	2.62	2.66	2.68	2.66	2.62	2.65	0.03	1.0
11/12/94	10:25 AH	2.59	2.60	2,65	2.63	2.64	2.62	0.03	1.0
11/12/94	11:50 AM	2.68	2,63	2.66	2.62	2.66	2.65	0.02	0.9
11/12/94	12:20 PH	2.60	2.63	2.65	2.63	2.65	2.63	0.02	0.8
11/12/94	12:50 PH	2.64	2.61	2.67	2.62	2.61	2.63	0.03	1.0
11/12/94	1:20 PH	2.62	2.63	2.63	2.61	2.68	2,63	0.03	1.0
11/12/94	1:50 PM	2.64	2.62	2.63	2.65	2.65	2.64	0.01	0.5
11/12/94	2:20 PH	2.63	2.60	2.59	2.63	2.64	2.62	0.02	0.8
11/14/94	8:20 AM	2.64	2.63	2.61	2.65	2.66	2.64	0.02	0.7
11/14/94	8:45 AM	2.61	2.64	2,59	2.63	2.62	2.62	0,02	0.7
11/14/94	9:15 AM	2.63	2,63	2.64	2.59	2.65	2.63	0.02	0.9
11/14/94	9:45 AM	2.63	2.66	2.63	2.63	2.64	2.64	0.01	0.5
11/14/94	10:15 AM	2.60	2.61	2.63	2.57	2.60	2.60	0.02	0.8
11/14/94	10:45 AM	2.60	2.57	2.60	2.58	2.57	2.58	0.02	0.6
11/14/94	1:25 PM	2.64	2.61	2.62	2.60	2.65	2.62	0.02	0.8
11/14/94	1:50 PM	2.60	2.69	2.64	2.63	2.61	2,63	D. 04	1.3
11/14/94	2:45 PM	2.66	2.58	2.63	2.62	2.58	2.61	0.03	1.3

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg - Betch # 4320A

Compression - Thickness (mm) - Front

Date	Tine	1	2	3	4	5	Average	St Dev.	RSD
11/14/94	5:15 PH	2,62	2.65	2.66	2,68	2.65	2.65	0.02	0.8
11/14/94	5:45 PM	2.64	2.60	2.64	2.61	2.64	2,63	0.02	0.7
11/14/94	6:15 PH	2.67	2.61	2.61	2.66	2.63	2.64	0.03	1.1
11/14/94	6:45 PM	2.66	2.59	2,62	2,59	2.60	2.61	0.03	1.1
11/14/94	7:15 PM	2.62	2,61	2.58	2,61	2.64	2.61	0.02	0.8
11/14/94	7:45 PH	2,62	2.62	2.64	2.65	2,62	2.63	0.01	0.5
11/14/94	8:15 PM	2.63	2,66	2,64	2.66	2.69	2.66	0.02	0.9
11/14/94	8:45 PH	2.64	2,68	2.69	2,63	2.63	2.65	0.03	1.1
11/15/94	8:00 AM	2.66	2,68	2.67	2.68	2.65	2.67	0.01	0.5
11/15/94	8:30 AM	2.65	2.65	2.61	2.64	2.67	2.64	0.02	0.8
11/15/94	9:00 AM	2.64	2.60	2.61	2,63	2.64	2.62	_ 0.02	0.7
11/15/94	9:30 AM	2.65	2.65	2.63	2.67	2.60	2.64	0.03	1.0
11/15/94	10:00 AM	2.58	2.58	2.59	2.61	2.60	2.59	0.01	0.5
11/15/94	10:30 AM	2.64	2.64	2.62	2.64	2.63	2.63	0.01	_0.3
11/15/94	11:35 AM	2.62	2.62	2.65	2.64	2.68	2.64	0.02	0,9
11/15/94	12:05 PM	2.62	2.62	2.63	2.60	2.60	2.61	0.01	0.5
11/15/94	12:35 PH	2.63	2.62	2.62	2.62	2.66	2.63	0.02	0.7
11/15/94	1:05 PH	2.61	2,61	2.62	2.64	2.64	2.62	0.02	0.6
11/15/94	1:35 PM	2.63	2.64	2.65	2.64	2.61	2.63	0.02	0.6
11/15/94	4:30 PH	2.64	2.67	2.65	2.63	2.64	2.65	0.02	0.6
11/15/94	5:00 PM	2.64	2.66	2.63	2,66	2.64	2.65	0.01	0.5
11/15/94	5:30 PH	2.62	2.62	2.63	2.64	2.62	2.63	0.01	0.3
11/15/94	6:10 PM	2.60	2.63	2,62	2.63	2.66	2.63	0.02	0.8
11/15/94	6:40 PM	2.61	2.60	2.63	2.64	2.63	2.62	0.02	0.6
11/15/94	7:10 PM	2.63	2.60	2.60	2.63	2.59	2.61	0.02	0.7
11/15/94	7:40 PM	2.65	2,63	2.61	2.65	2.65	2.64	0.02	0.7
11/15/94	8:10 PM	2.59	2.62	2.61	2.60	2.59	2,60	0.01	0.5
11/15/94	8:40 PM	2.62	2,63	2.56	2.62	2.60	2.61	0.03	1.1
11/15/94	9:10 AM	2.62	2.64	2.59	2.61	2.63	2.62	0.02	0.7

Compression - Thickness (nm) - Rear

	Oate	Tine	1 1	2	3	4	5	Average	St Dev.	RSD
Ī	11/14/94	5:15 PM	2.61	2.62	2.67	2,58	2.58	2.61	0.04	1.4
Г	11/14/94	5:45 PM	2.64	2.61	2,63	2.63	2.61	2.62	0.01	0.5
ſ	11/14/94	6:15 PM	2.56	2.65	2.61	2.64	2.55	2.60	0.05	1.7
I	11/14/94	6:45 PM	2.54	2.57	2.56	2.59	2.59	2.57	0.02	0.8
I	11/14/94	7:15 PM	2.60	2.59	2.55	2.58	2.60	2.58	0.02	0.8
1	11/14/94	7:45 PH	2.66	2.63	2.65	2.61	2.60	2.63	0.03	1.0
ſ	11/14/94	8:15 PM	2.60	2.66	2.69	2.65	2.67	2.65	0.03	1.3
ſ	11/14/94	8:45 PM	2.67	2.66	2.62	2.64	2.60	2.64	0.03	1.1
	11/15/94	8:00 AM	2.64	2.61	2.62	2.68	2.66	2.64	0.03	1.1
	11/15/94	8:30 AM	2.59	2.63	2,58	2.61	2.57	2.60	0.02	0.9
ſ	11/15/94	9:00 AM	2.56	2.63	2.62	2.63	2.60	2,61	0.03	1. 1
ſ	11/15/94	9:30 AM	2.61	2.63	2,57	2.61	2.63	2.61	0.02	0.9
ſ	11/15/94	10:00 AM	2.63	2.61	2.63	2, 65	2.59	2.62	0.02	0.9
	11/15/94	10:30 AM	2.62	2.67	2.59	2.61	2.60	2.62	0.03	1.2
I	11/15/94	11:35 AM	2.63	2.64	2.59	2.57	2.58	2.60	0.03	. 1.2
Į	11/15/94	12:05 PM	2.66	2,60	2.61	2.66	2.65	2.64	0.03	1.1
	11/15/94	12:35 PM	2.62	2, 59	2.61	2.64	2.58	2.61	0.02	0.9
ſ	11/15/94	1:05 PH	2.63	2.62	2.56	2.59	2.61	2.60	0.03	1.1
I	11/15/94	1:35 PM	2.58	2.62	2.62	2.65	2.65	2.62	0.03	1.1
[11/15/94	4:30 PM	2.59	2.64	2.65	2.61	2.62	2, 62	0.02	0.9
I	11/15/94	5:00 PM	2.63	2.63	2.65	2.62	2.64	2.63	0.01	0.4
Į	11/15/94	5:30 PM	2.57	2.60	2. <u>64</u>	2.60	2.61	2.60	0.03	1.0
I	11/15/94	6:10 PM	2.63	2.61	2.57	2.59	2.59	2.60	0.02	0.9
I	11/15/94	6:40 PH	2,61	2.60	2.62	2.59	2.61	2.61	0.01	0.4
ſ	11/15/94	7:10 PM	2.62	2.55	2.55	2.60	2.57	2.58	0.03	1.2
ſ	11/15/94	7:40 PH	2.65	2.62	2.64	2.62	2.61	2.63	0.02	8.6
ı	11/15/94	8:10 PH	2, 60	2.61	2.58	2.57	2.62	2.60	0.02	0.8
ſ	11/15/94	8:40 PH	2.55	2.59	2.61	2.61	2.60	2.59	0,02	1,0
ı	11/15/94	9:10 AM	2.60	2.56	2,55	2, 58	2.55	2.57	0.02	0.8

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg - Batch # 4322A

Conpression - Thickness (nn) - Front

Date	Time	1	2	3	4	5	Average	St Dev.	RSD
11/16/94	12:15 PH	2.64	2.64	2.69	2.64	2.66	2.65	0.02	0.8
11/16/94	12:45 PH	2.64	2.63	2.66	2.63	2.67	2,65	0.02	0.7
11/16/94	1:15 PH	2.67	2.64	2.62	2.65	2.65	2.65	0.02	0.7
11/16/94	1:45 PH	2.61	2,62	2.63	2.67	2.62	2.63	0.02	0.9
11/16/94	2:30 PH	2.64	2.64	2.62	2,58	2.63	2.62	0.02	0.9
11/16/94	3:00 PM	2.63	2.60	2.62	2.63	2.62	2.62	0.01	0.5
11/16/94	3:35 PM	2.61	2.64	2.64	2,63	2.64	2.63	0.01	0.5
11/16/94	4:05 PM	2.65	2.63	2.67	2.65	2.61	2.64	0.02	0.9
11/16/94	4:35 PN	2.65	2.63	2.64	2.62	2.65	2.64	0.01	0.5
11/16/94	5:05 PH	2.63	2.60	2.62	2.62	2.61	2.62	0.01	0.4
11/17/94	8:00 AM	2.64	2,67	2.66	2.64	2.69	2.66	0.02	0.8
11/17/94	8:30 AM	2.67	2.67	2.63	2.67	2.65	2.66	0.02	0.7
11/17/94	9:00 AM	2.63	2.64	2.62	2.63	2.60	2.62	0.02	0.6
11/17/94	9:30 AM	2,62	2.61	2.63	2.61	2.62	2.62	0.01	0.3
11/17/94	10:00 AM	2.57	2.59	2,63	2.63	2.61	2.61	0.03	1.0
11/17/94	10:30 AM	2.62	2.60	2.62	2.62	2.61	2.61	0.01	0.3
11/17/94	11:35 AM	2,64	2.59	2.64	2,61	2.64	2.62	0.02	0.9
11/17/94	12:05 PM	2.61	2, 59	2.62	2,59	2.58	2.60	0.02	0.6
11/17/94	12:35 PM	2.62	2.61	2, 65	2.61	2.63	2.62	0.02	0.6
11/17/94	1:45 PH	2.63	2.63	2.68	2.64	2.57	2.63	0.04	1.5
11/17/94	2:35 PH	2.66	2.60	2.62	2.62	2.61	2.62	0.02	0.9
11/17/94	3:05 PH	2.65	2,60	2.62	2.59	2.60	2.61	0.02	0.9
11/17/94	3:30 PM	2.60	2.62	2.62	2.62	2.61	2.61	0.01	0.3
11/17/94	4:00 PH	2.61	2.62	2.60	2.60	2.59	2,60	0.01	0.4
11/17/94	4:30 PH	2.64	2.65	2.61	2.59	2.66	2.63	0.03	1.1
11/17/94	5:05 PM	2,60	2.62	2,63	2.61	2.61	2.61	0.01	0.4
11/17/94	5:35 PM	2,62	2.63	2.64	2.59	2.61	2.62	0.02	0.7
11/17/94	6:25 PM	2.63	2.66	2.60	2.66	2.61	2.63	0.03	1.1
11/17/94	6:55 PH	2.64	2.66	2.62	2.62	2.67	2,64	0.02	0.9

Compression - Thickness (nm) - Rear

Date	Tine	1	2	3	4 1	5	Average	St Dev.	RSD
11/16/94	12:15 PH	2,65	2,67	2.63	2.66	2,63	2,65	0.02	0.7
11/16/94	12:45 PM	2.65	2.63	2.63	2.60	2.60	2,62	0.02	0.8
11/16/94	1:15 PH	2.58	2,65	2.66	2.59	2,61	2,62	0.04	1.4
11/16/94	1:45 Ph	2.65	2.60	2.65	2.66	2.64	2.64	0.02	0.9
11/16/94	2:30 Ph	2.61	2.63	2.63	2,58	2,55	2.60	0.03	1.3
11/16/94	3:00 PM	2.63	2.58	2.65	2.61	2,62	2.62	0.03	1.0
11/16/94	3:35 PH	2,65	2.59	2.58	2.60	2.61	2.61	0.03	1.0
11/16/94	4:05 Ph	2,60	2,63	2.58	2.62	2.67	2.62	0.03	1.3
11/16/94	4:35 Pil	2,60	2.56	2,58	2.63	2,61	2.60	0.03	1.0
11/16/94	5:05 PH	2,63	2.60	2.62	2.58	2,65	2.62	0.03	1.0
11/17/94	8:00 AH	2,68	2.67	2,65	2,66	2.62	2.66	0.02	0.9
11/17/94	8:30 AH	2,61	2.64	2,68	2.68	2.67	2,66	0.03	1. 1
11/17/94	9:00 AH	2,62	2.57	2,57	2.63	2.60	2.60	0.03	1. 1
11/17/94	9:30 AH	2,63	2.61	2,62	2.64	2.57	2.61	0.03	1.0
11/17/94	10:00 AH	2,59	2.59	2.64	2,64	2.57	2.61	0.03	1.2
11/17/94	10:30 AM	2.57	2.62	2,61	2.57	2.61	2.60	0.02	0.9
11/17/94	11:35 AM	2.58	2.62	2,62	2.56	2.57	2,59	0.03	1, 1
11/17/94	12:05 PH	2.57	2.56	2.61	2,56	2.63	2.59	0.03	1.2
11/17/94	12:35 PM	2.62	2.54	2.58	2.54	2.62	2.58	0.04	1.6
11/17/94	1:45 PH	2.65	2.60	2,64	2.64	2.61	2.63	0.02	0.8
11/17/94	2:35 PM	2.60	2.65	2.58	2.60	2.65	2.62	0.03	1.2
11/17/94	3:05 PM	2.58	2.62	2.59	2.61	2.56	2.59	0.02	0.9
11/17/94	3:30 PH	2.62	2.64	2,60	2.59	2.56	2.60	0.03	1.2
11/17/94	4:00 PH	2.62	2.58	2.56	2.58	2.64	2.60	0.03	1.3
11/17/94	4:30 PM	2.58	2.64	2.63	2.61	2.63	2.62	0.02	0.9
11/17/94	5:05 PH	2,61	2.57	2.59	2.66	2.62	2.61	0.03	1.3
11/17/94	5:35 PH	2,60	2.57	2.57	2.59	2,55	2.58	0.02	0.8
11/17/94	6:25 PM	2.62	2.60	2.58	2.61	2,59	2,60	0.02	0.6
11/17/94	6:55 Ph	2.68	2,60	2,62	2.64	2.57	2.62	0.04	1,6

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

Compression - Friability (%)

4322A	Rear	0	0.	0.0	0.0	0.0	52.7
4322A	Front	0.1	0.1	0.04	0.08	0.03	43.3
4320A	Rear	0.1	0.1	0.04	0.08	0.03	43.3
4320舟	Front	0.04	0.1	0.1	0.08	0.03	43.3
43 18A	Rear	0.1	0.1	0.03	0.08	0.04	52.7
4318A	Front	0.1			0.10	0.00	0.0
Batch #	Side	1st Third	2nd Third	Final Third	Average	St Dev.	RSD

PROCESS VALIDATION

JIGOXIN TABLETS, 0.125 mg

Compression - Disintergration (min.)

4322A	Rear	က	က	4	3.3	0.6	17.3
4322A	Front	3	3	4	3.3	9.0	17.3
4320A	Rear	3	3	4	3.3	9.0	17.3
4320A	Front	4	က	ო	3.3	9.0	17.3
4318A	Rear	3	e	4	3.3	0.6	17.3
43 18A	Front	3	c	က	3.0	0.0	0.0
Batch #	Side	1st Third	2nd Third	-	1 -	St Dev.	RSD

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

Compression - Content Uniformity (%)

Batch #	4318A	4318A	4320A	4320A	4322A	4322A
Side	Front	Rear	Front	Rear	Front	Rear
1	100.6	99.5	102.8	101.4	101.7	102.9
2	101.1	102.2	96.2	100.5	104.6	97.9
3	103.5	102.9	101.2	101.7	101.0	99.1
4	100.9	101.5	101.4	99.8	102.5	99.3
5	101.9	101.1	100.6	99.0	103.1	99.8
6	101.6	102.4	99.6	99.6	101.6	99.1
7	100.1	98.9	99.3	100.8	102.3	99.9
8	101.4	101.8	99.9	100.9	99.6	100.5
9	101.9	102.6	100.0	102.0	100.1	102.0
10	101.4	102.4	99.3	97.3	104.2	101.4
11	102.3	101.1	98.0	101.2	102.9	100.7
12	99.8	101.6	98.7	99.4	103.4	100.2
13	101.4	98.9	100.8	97.4	102.1	101.5
14	102.2	102.0	101.6	98.6	100.9	99.4
15	101.8	102.0	101.0	100.7	102.6	100.6
16	101.2	103.6	99.1	100.6	101.1	99.3
17	101.5	101.2	98.0	100.3	103.3	102.1
18	99.9	101.4	100.1	100.1	104.8	102.1
19	103.5	102.4	100.2	99.7	103.5	99.3
20	102.4	100.7	93.8	100.6	103.9	101.4
21	100.8	101.0	102.0	100.7	102.7	98.9
22	100.9	100.8	103.1	100.3	103.9	99.8
23	98.7	99.7	102.3	99.8	102.6	99.2
24	100.9	100.9	103.8	100.5	103.2	100.5
25	102.1	100.6	101.2	102.3	102.1	99.6
26	101.7	99.9	101.0	99.9	100.1	101.0
27	100.4	101.0	102.3	101.0	101.3	102.0
28	101.0	101.2	102.9	100.6	100.0	98.9
29	101.1	102.2	99.0	101.2	98.6	100.7
30	103.2	100.1	103.6	101.5	102.0	101.6
Average	101.4	101.3	100.4	100.3	102.2	100.4
St Dev.	1.1	1.2	2.2	1.2	1.5	1.2
RSD	1.0	1.1	2.2	1.2	1.5	1.2

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

Compression - Dissolution (%) - 15 min.

4322A	Final Thi		84	81.	82.	82.	80.	BO	80.	83	84	85.	80	82		
4322A	2nd Third	79.3	81.2	76.0	79.3	82.5	80.7	81.0	83.0	78.4	75.0	77.9	78.9	79.4	2.4	
4322A	1st Third 2nd Third	81.6	81.7	81.7	80.1	82.7	85.4	81.3	83.3	80.2	85.8	85.0	83.5	82.7	5.	2.3
4320A	Final Third	87.5	87.0	82.3	85.5	82.7	84.8	81.4	87.9	84.6	83.4	80.3	84.1	84.3	2.3	2.8
4320A	2nd Third	82.8	84.3	84.7	84.3	84.4	87.3	86.4	87.1	88.0	87.0	96.6	9.98	86.0	1.3	1.5
4320A	1st Third		82.7	82.2	81.5	81.6	84.1	86. 1	84.5	87.2	84.9	87.7	88.0	84.5	2,3	2.8
43 18A	Final Third	77.5	82.3	85.0	80.9	77.7	84.0	83.6	83.3	81,3	85.9	83.7	84.0	82.4	2.7	3.2
	2nd	81.8	81.2	81.3	83.3	81.6	83.4	83.9	78.7	80, 1	84.2	83.6	82.6	82.2	1.5	1.8
43 18A	1st Third	84.7	88.1	84.5	85.5	85.6	82.3	83.3	81.8	84.0	84.7	83.0	84.1	84.3	1,7	2.0
Batch #	Sample		2	3	4	5	9	7	8	_B	10	11	12	Average	St Dev.	RSD

Compression - Dissolution (%) - 60 min.

Г	Ģ	.	-		v	4	٦,	,,-		Τ.	٦,	1.	T	Ţ	7-	Ja
4322A	Final Thir	92	97.4	95.3	103.6	100.4	P. 36	107.5	97	76	2 00	7 66	0 25	ασ		3.2
4322A	2nd Third	94.6	94.5	96. 1	93.3	97.5	92.7	96.2	97.7	97 -	93.5	94.0	91.7	94 9	200	2.1
4322A	1st Third	94.7	96.4	94.5	100.1	101.8	99.1	101.2	96.3	98.0	103.0	100.5	97.6	98.6	2.8	2.8
4320A	Final Third	95.6	100.4	100.3	101.1	101.8	93.5	102.7	104.4	8 66	97.7	97.7	99.1	2.58	3.0	3.1
4320A	2nd Third	94.4	96.3	97.9	99.2	100.7	2.86	2.98	102.6	100.9	100.5	38.5	100.5	88.9	2.3	2.3
4320A	1st Third	104.3	102.0	104.9	106.9	91,5	101.0	99.9	99.5	102.2	98.9	87.9	97.4	100.5	4.1	4.0
43 18A	Final Third	99.1	93.3	97.0	94.8	95.6	95, 1	98.3	94.7	93.4	95.4	96.6	93.6	96.1	2.1	2.2
43 18A	2nd	95.3	96.2	95.0	99.5	97.9	39.5	95.8	96.2	95.3	101.7	101.2	102.2	98.0	2.7	2.8
43 18A	1st Third	93.7	97.2	98.3	99.4	96.7	97.4	36.5	38,5	97.8	95.4	98.0	100.6	97.5	1.8	1.9
Batch #	Sample		2	3	4	ល	9	7	8	6	10	11	12	Average	St Dev.	RSD

PROCESS VALIDATION

IGOXIN TABLETS. 0.125 mg

Compression - Composite Dissolution (%)

4322A	60 min.	97.4	98.9	95.2	95.8	94.8	96.0	98.2	98.4	95.0	95.9	99.2	93.6	96.5	1.8	1.9
4322A	15 min.	78.4	79.9	78.9	77.7	79.0	77.9	84.3	83.9	80.3	82.5	81.4	81.0	80.4	2.2	2.8
4320A	60 min.	99. 1	98.7	98.3	99.1	98.4	95.9	100.5	98.2	98.4	101.8	96.5	99.5	2.86	1.6	1.6
4320A	15 min.	81.0	81.9	82.1	81.7	82.3	81.8	80.8	80.0	79.5	85.6	81.5	84.6		1.7	2.1
4318A	60 min.	100.3	100.0	97.2	96.6	101.3	99.9		95.1	97.9	98.4	100.6	93.6	88.9	1.8	1.9
43 18A	15 min.		83.0	80.6	83.1	85,3	81.7	85.6	81.9		85.0	84.6	78.1		2.3	2.8
Batch #	1 -	1	2	m	4	ß	9	7	ω	6	10		12	Average	St Dev.	RSD

PROCESS VALIDATION

DIGOXIN TABLETS, 0.125 mg

High∠Low kp - Dissolution (%) - 15 min.

Batch #	4318A		4318A	43 18A	4320A	4320A	4320A					
Sample	High kp	High kp	Lou Ka	Lou kp		High kp	Lou kp					
Side	Front	Rear	Front	Rear	L		Front					
1	81.2	82.0	81.3	81.7			83.3					
2	81.4	82.6	80.8	85.9	i		83.5					
8	82.6		82.0	83.7			80.9					
4	82.1		81.7	83.2			81.1					
ಬ	82.8		81.6	82.7		<u>L_</u>	85.4					
6	81.8	83.7	81.9	82.8	83.1	86.7	81.2	83.9	72.6	77.3	82.3	84.1
Average	82.0	82.6	81.6	83.3	l		82.6					
St Dev.	9.0	9.0	0.4	1.4			1.8					
RSD	0.8	0.8	0.5	1.7			2.2					
							į					

High/Low kp - Dissolution (%) - 60 min.

Γ	Ţ_		<u> </u>	1/9	צו	1	α	2	0	1	T
		Rear	1	1		1	1	95.2	1		
4322A	l oc k	Front	91.7	94.0	96.2	94.5	8 1 8	94.4	93.8	1.7	
4322A	High kp	Rear	102.5	83.8	98.0	94.7	98.0	96.8	98.3	2.7	C
4322A	High Ko	Front	97.2	96.4	99.7	95.5	100.4	94.5	97.3	2.3	7 0
			3		1		,	95.7			
		ı		1		•	ı	97.2	ŀ	Ĺ	[
4320A	High kp	Rear	99.0	93.6	8.66	99.3	101.5	99.0	2.66	0.9	o C
4320A	High kp	Front	100.7	103.6	104.5	99.2	99.5	98.9	101.1	2.4	7 4
4318A	Lou kp	Rear	98.6	98.4	98.0	102.2	98.8	100.7	33.5	1.6	1 7
43 18A	Low kp	Front	102.8	88.0	98.6	98.4	99.6	99.1	93.6	1.6	٧,
4318A	High kp	Rear	100.0	101.6	100.9	96.8	95.1	95.4	98.3	2.9	0 0
4318A	High kp	Front	98.5	97.4	97.9	97.7	92.8	99.1	97.7	1,1	1.2
Batch #	Sample	Side	1	2	Ю	4	വ	9	Average	St Dev.	RSD

DIGOXIN TABLETS, 0.125 mg - BATCH 4318A 15 Min. Dissolution - Low kp

DIGOXIN TABLETS, 0.125 mg - BATCH 4318A 60 Min. Dissolution - High kp

DIGOXIN TABLETS, 0.125 mg - BATCH 4318A

DIGOXIN TABLETS, 0.125 mg — BATCH 4320A 15 Min. Dissolution — Low kp

DIGOXIN TABLETS, 0.125 mg - BATCH 4320A 60 Min. Dissolution - Low kp

DIGOXIN TABLETS, 0.125 mg - BATCH 4322A

DIGOXIN TABLETS, 0.125 mg - BATCH 4322A

Amide Pharmaceutical, Inc.

COMPRESSION DEPARTMENT

PROCESS VALIDATION

PRODUCT	NAME:_	Digoxim	Tablects	0.125 Mg	(145-)
		U		v	

BATCH #: 4318 A

TABLET PRESS ID #: 66

	Limit	Time
High KP	expore 6 129	11.45 Am
Low KP	0.5 - 2.0 103	12.16 Pm
Maximum KP	Not Possible	
Regular Speed	21 2077	

	RPM	Time /
High Speed	26	12.48 pm.
Low Speed	14	1.12 600

					·	
Done By:	KP	Date:	11/	14)	94	
					,	

PD301.1

Prod Target Target Tablet Amide Pharmaceutical, Inc. 37.11 Comments: 1 Kin. 1 Kin. ¥. Time Composite Weight Min. 7.1. Time Id: Weight Weight Range obtained. Press 145 Weight* 166 550 640 Largues 1788 Hd: (10 Tablets) (1 Tablet) (10 Tablets) Weight Prod Name: Digoxin Tablets 0.125 mg -6× ٠<u>.</u> 2.7 7,56 5 5 Front O H Front Exit Thickness 106 1.04 2.57 15.CC of. 10 11-14-54 9 臣xit ٦, Each Tablet Tablets 12.5% 2.5 Ţ Hardness Tester Id: 152 4 Chute Chute 'n 6 1.019 1.050 105.0 Hardness KP 2 - 82 <u>2</u>'& above DEC. ر م 196 g D 3,5 ら 1.082 76.4 ٠, د COMPRESSION DATA SHEET 1 Process Validation Init 1.5 مزيم 200 127 High KD: ې ټ Ý ¥. Time Time Min. ¥. ¥ 17. Hardness Limits Thickness Gauge achieved Thickness Limits Weight* 5 30 1.044 A bove Batch 250 103 رور Weight 5 201 Maximum 12.55 12.52/2.53 Rear Rear 9 Id: Thicknes O H ر دور 5 12.60 4318A Exit Exit Each Tablet(mg) 646 3 106 RP3-21 2.0 Ŋ Chute Chute homelu essi 106 -69 4 i 6.0 KP D 11/3/94 Hardness KP ა. 0 501 į, ς, γ, 3.5 Scale Page _ 100 106 ζ, 25.50 \$ HQ. 705 11/14194 3 Ĉ Init Kr 不 235 106 901

Comments:	### Front Exit Chute Weight of Each Tablet(mg) 1 ###. 106 102 105 104 106 105 105 5 ####. 106 108 103 107 107 108 105 107 107 108 105 107 108 108 107 108	Time Weight* Thickness Hardness Init 1 1 1 1 1 1 1 1 1	Target Weight (1 Tablet) : 105.0 mg Target Weight (10 Tablets) : 1.050 g Weight Range (10 Tablets) : 1.019 - 1.082 g	Amido Pharmaceutical, Inc. COMPRESSION Prod Id: 145 Prod Name: Digoxin Tablets 0.125 mg Tablet Press Id: 66 Hardness Tester Id: 45/
	Rear Exit Chute Time Weight of Each Tablet(mg) 1 Min. 107 107 107 105 105 105 107 105 105 5 Min. 105 105 107 105 107 105 105	Rear Exit Chute Time Weight* (g) Thicknes mm Hardness KP Init KP 1 Min. 1-063 2.67 2.64 2.64 4.65 4.4 4.6 5.0 1.8 5-0 1.8 1.8 5 Min. 1-069 2.67 2.66 2.63 4.4 4.6 5.2 1.8 1.4 4.5 5.2 1.8	Thickness Limits : 2.0 - 3.0 mm Hardness Limits : 1.0 - 6.0 KP	Validation Page of ON DATA SHEET Batch #: 4818A Date: ////4/94 Thickness Gauge Id: 646 Scale Id: 35

4

Amide Pharmaceutical, Inc.

COMPRESSION DEPARTMENT

PROCESS VALIDATION

PRODUCT NAME: Digoxin Tables	15 O. 125 ong (145)
------------------------------	---------------------

BATCH #: 4320 A

TABLET PRESS ID #: 66

	Limit	Time
High KP	eibore 6 KP	2.50 Pm
Low KP	0.5 - 2.0 pp	3-20 Pm
Maximum KP	Nut Possible	
Regular Speed	21 KPM	

	RPM	Time
High Speed	26	3,50 Pm
Low Speed	14	4.20 Pm
		<u> </u>

Done By:	JC P	Date:	11/15-194	

PD301.1

Comments:	1 Hin. 106 119 105 104 106 105 105 105 105 106 105 106	Front Exit Chute Time Weight of Each Tablet(mg)	* Composite Weight of 10 Tablets	3-49 PM 1.068 2.51 2.63 2.55 6.0 6.05.4 169 5-53 PH 1.009 2.58 2.60 2.56 5.6 5.5 101	Time Weight Thickness Hardness Init	Front Exit Chute		Target Weight (1 Tablet) : 105.0 mg Target Weight (10 Tablets) : 1.050 g Weight Range (10 Tablets) : 1.019 - 1.082 g	Tablet Press Id: 66 Hardness Tester Id:	COMPRE Prod Id: 145 Prod Name: Digoxin Tablets 0.125	Amide Pharmaceutical, Inc.
	5 Min.	Time		5 1 xin.	Time		High	н н	12 N	COMPRESSION DATA SHEET 0.125 mg	Process Validation
	107 109 1	Rea e Weight		1.065	e Weight (g)		High KI? A	Thickness Limit	Thickness Gaug	Batch	on
	104 104 107 1	ar Exit (2.60 2.61 2.56		Rear Exit C	Abrice Gok	its : 2.0	ige Id: <u>646</u>	#: 4320 A	
	105 104 108	Chute Tablet (mg)		0 0 X Z D D X	Hardness	Chute	GOKD ROM A	1 1	·	ı	Page _
	107 107			k j	Init		7)	3.0 mm	Scale Id: ~35	Date: 11/15/94	of i

Comments:	Time Weight of Each Tablet(mg) 1 Min. 105 105 105 100 100 100 100 100 100 100	* Composite Weight of 10 Tablets Front Exit Chute	Front Exit Chute Time Weight* Thickness Hardness Init 5 rg 20 20 1 1 mm KP KP 5 rg 20 20 1 1 mm 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Target Weight (1 Tablet) : 105.0 mg Target Weight (10 Tablets) : 1.050 g Weight Range (10 Tablets) : 1.019 - 1.082 g	COMPRESSION Prod Id: 145 Prod Name: Digoxin Tablets 0.125 mg Tablet Press Id: 66 Hardness Tester Id: 25	Amide Pharmaceutical, Inc. Process V
	Time Weight of Each Tablet(mg) 1 Min. 105 105 106 105 104 105 104 105 106 106 5 Min. 106 107 107 104 107 104 168 105 105 106	Rear Exit Chute	Rear Exit Chute	Thickness Limits : 2.0 - 3.0 mm Hardness Limits : 1.0 - 6.0 KP - ×52 (/4/44) And KP 0.5 - 2.0 kf	N DATA SHEET Batch #: 4820A Date: 11/15/94 Thickness Gauge Id: 646 Scale Id: 235	Validation Page of

Comments:	Front Exit Chute Time Weight of Each Tablet (mg) 1 Min. 166 844 845 107 104 645 105 25 25 105 5 Min. 166 87 157 645 156 166 166 166 167 167 167	Time Weight Thickness Hardness Init Think (g) Thickness Hardness Init Think (g) Thickness Hardness KP S-G-9-19-19-19-19-19-19-19-19-19-19-19-19-1	Amide Pharmaceutical, Inc. COMPRESSION
	Time Weight of Bach Tablet(mg) 1 Min. 100 cas out 100 oas 104 104 105 105 cas 105 5 Min. 094 cas 104 047 094 104 106 105 cas 105	Rear Exit Chute	Thickness Limits : 1.0 - 6.0 KP Walidation Page / of / Page / of / A 3 20A

Comments:	Time Weight of Each Tablet(mg) 1 Min. 164 164 166 169 166 167 167 168 169 1	0 Tabl	M 1.054 2.65 2.66 2.63 5.0 4.4 4.3	Time Weight* Thickness Hardness Init	Target Weight (1 Tablet) : 105.0 mg Target Weight (10 Tablets) : 1.050 g Weight Range (10 Tablets) : 1.019 - 1.082 g	Hardness Tester Id:	Amide Pharmaceutical, Inc. COMPRESSION Prod Id: 145 Prod Name: Digoxin Tablets 0.125 mg
	Time Weight of Each Tablet(mg) 1 Min. 100 101 101 100 100 100 100 100 100 10	+	1.647 2.66 2.60 2.60 U.W W.S U.S 5.41. 1.062 2.67 2.68 2.65 5.6 U.W W.S U.S	Ti i mo	Thickness Limits : 2.0 - 3.0 mm Hardness Limits : 1.0 - 6.0 KP Kow Speed lu ppm	25 Thickness Gauge Id: £46	ESSION DATA SHEET Batch #: 4820A Date: ////5/94

Amide Pharmaceutical, Inc.

COMPRESSION DEPARTMENT

PROCESS VALIDATION

PRODUCT	NAME:	Digoxin	Tablats	0. 125 mg	(145)	

BATCH #: 4322 A

TABLET PRESS ID 1: 66

	Limit	Time
High KP	above 6 KP	5.46 Pm
Low KP	0.5 - 2.0 /cl	5.58 PM
Maximum KP	Not Possible	
Regular Speed	21 RPM	

	RPM	Time
High Speed	26	6.10 pm
Low Speed	14	6.23 Pm

Done By:	1E-P	Date:	11/171	94	

PD301.1

	Comments:
1 Min. 106 167 103 108 105 104 104 109 105 103 5 Min. 107 166 103 103 104 103 104 108 108 107	1 min. 104 104 107 108 104 107 105 105 108 106 5 min. 166 166 105 106 104 109 100 108 104 108
Each	f Each
Rear Exit Chute	* Composite Weight of 10 Tablets Front Exit Chute
1 Min. 1.046 2.54 2.57 2.57 5.8 5.4 5.6 19.0 5 Min. 1.051 2.51 2.62 2.56 5.1 5.3 6.1 10.0	5.45 m 1.064 2.66 2.57 2.60 5.8 4,9 5.5 16.7 5.49 m 1.066 2.56 2.55 2.58 4.9 5.5 5.2 16.3
Time Weight Thicknes Hardness Init	Time Weight* Thickness Hardness Init (g) mm KP
Rear Exit Chute	Front Exit Chute
Thickness Limits : 2.0 - 3.0 mm Hardness Limits : 1.0 - 6.0 KP 1250 11/11/64 High KP Above 6.0 KP RPM-21	Target Weight (1 Tablet) : 105.0 mg Target Weight (10 Tablets) : 1.050 g Weight Range (10 Tablets) : 1.019 - 1.082 g
Thickness Gauge Id: 646 scale Id: 235	Tablet Press Id: 66 Hardness Tester Id: 251
Batch #: 4322A Date: 1/1/8/94	Prod Id: 145 Prod Name: Digoxin Tablets 0.125 mg
Validation Page of	Amide Pharmaceutical, Inc. Process Vai

COMPRESSION DATA SHEET Compression DATA SH
--

Comments:	# Composite Weight of 10 Tablets Front Exit Chute Time Weight of Each Tablet(mg) 1 Min. 95 93 95 100 98 98 100 99 100 99 5 Min. 105 106 96 101 99 94 99 97 100	Time Weight Thickness Hardness Init weight Thickness Eardness Init We wish (9)		Amide Pharmaceutical, Inc. COMPRESS Prod Id: 145 Prod Name: Digoxin Tablets 0.125 m Tablet Press Id: 66 Hardness Tester Id: 21
	Rear Exit Chute Time Weight of Each Tablet(mg) 1 Min. 0 0 2 9 4 105 9 8 10 0 9 9 9 5 5 Min. 10 2 9 9 9 9 9 9 9 9 9 8 10 0 10 0 10 0 9 9 9 8 1 Min. 10 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Rear Exit Chute Time Weight* Thicknes Hardness Init 1 Min. 0.979 2.61 2.52 2.52 3.4 3.2 3.6 &> 5 Min. (.00) 2.51 2.57 2.50 2.8 3.8 3.1 c.7	: 2.0 - 3. : 1.0 - 6.	Process Validation COMPRESSION DATA SHEET O.125 mg Batch #: 4322A Date: 1/18/44 r Id: 25/ Thickness Gauge Id: 646 Scale Id: 235

	Comments:
10 00	105 107 106 104 163 1
Rear Exit Chute Time Weight of Each Tablet(mg)	Front Exit Chute Time Weight of Each Tablet(mg)
·	* Composite Weight of 10 Tablets
2.63 2.61 2.60 5.0 4	6-25 min. 1.058 2.66 2.65 2.64 4.7 4.5 4.1 K.D. 5 min. 1.058 2.66 2.65 2.64 4.7 4.5 4.1 K.D.
Time Weight Thicknes Hardness Init	t* Thickness Har
RPI	
Thickness Limits : 2.0 - 3.0 mm Hardness Limits : 1.0 - 6.0 KP	Target Weight (1 Tablet) : 105.0 mg Target Weight (10 Tablets) : 1.050 g Weight Range (10 Tablets) : 1.019 - 1.082 g
Thickness Gauge Id: 246 Scale Id: 235	Tablet Press Id: 66 Hardness Tester Id: 25
DATA SHEET Batch #: 4322A Date: 11/18/94	COMPRESSION Prod Id: 145 Prod Name: Digoxin Tablets 0.125 mg
idation Page i of 1	Amide Pharmaceutical, Inc. Process Validation

Amide Pharmaceutical, Inc.

Page 1 of 2

LABORATORY TEST REPORT

FINISHED DRUG PRODUCT

PRODUCT: Digoxin Tablets 0.125 mg	·
SPECIFICATION: USP	CONTROL #: 4318A
CHEMIST: S. J/PK VOLUME #:318 07/321.04 PAGE #: 27 SAMPLE STAGE: Over all Composite Did: 111	7/211 DATE: 11/17/194
SAMPLE STAGE: Overall Companio Did: 11	16194.

		·
TEST	· RESULT	1.1MlT
DESCRIPTION: Color:	Vellow	Yellow
Profile:	Round Risectal Table	
Other: Debossed	of the triblet	"A 145" on bisected side of the tablet
THICKNESS: (Guideline)	2.6 mm	2.0 mm to 3.0 mm
WEIGHT VARIATION:	105.3 mg	± 10% Theo. wt (105 mg) 94.5 mg - 115.5 mg
FRIABILITY:	0.02%	NMT 1.0 %
IDENTIFICATION: (A)	The retention time of the major beak inthe chromologiam of Age- prefranction Corresponds to chandland perhandry	the major peak in the chromatogram of Assay prepration corresponds
ASSAY: Digoxin, 0.125 mg	100.01/,	90.0% to 105.0%
UNIFORMITY OF DOSAGE UNITS: (Content Uniformity)	1) 102.38 6) 101.6 \$ 2) 104.6 \$ 7) 100.4 \$ 3) 103.9 \$ 8) 101.6 \$ 4) 100.5 \$ 9) 100.7 \$ 5) 99.9 \$ 10)101.7 \$ AV: 101.7 / RSU: 1.5 /,	RSD: HMT 6.08
COMPLIES	PREPARED BY: Philout,	CLE DATE: 11 1 14
() DOES NOT COMPLY	APPROVED BY: Suzjully.	- Paloporte: 11/1/an

oc13-145c

harmaceutical, Inc.

Page 2 of 2

LABORATORY TEST REPORT FINISHED DRUG PRODUCT

PRODUCT: Digoxin Tablets, 0.125 mg	
SPECIFICATION: USP	CONTROL #: 43/81
CHEMIST: \$.3/1k. VOLUME #: 3 5.00/301-0 PAGE #:	27/211 DATE: 11/17/94
SAMPLE STAGE: Overell Composite Diol: 11/6/9	, , , , , , , , , , , , , , , , , , ,
·	/

TEST	RESULT	LIMIT		
DISSOLUTION: Media: 500mL 0.1N HCl	15 minutes:	(Note - The specified tolerances are for %		
Appar: I, rpm: 120	1) 858 \$ 7) 956 \$	dissolved, and are not to be interpreted as Q		
Temp: 37°C ± 0.5°C	2) 33 0 8 8) 319 8 3) 31 6 8 9) 325 8	values.) NLT 80% of the LC of Digoxin dissolved		
Time: 60 minutes	4) 33 \$ 10) 85 0 \$	in 60 minutes for the average of 12 tablets tested and no individual		
	5) 853 \$ 11) 346 \$	tablet has less than 75% of the LC of Digoxin dissolved in 60 minutes.		
· .	6) 31.7 \$ 12) 781 \$	If the amount of Digoxin dissolved in 60 minutes		
	Average: \$3.1	is more than 95% for any individual Tablet, the		
	60 minutes:	amount dissolved in 15 minutes is not more than 90% for each individual		
	1) 1003 8 7) 994 8	Tablet. (LC: Labeled amount)		
	2) 1000 \$ 8) 05.1 \$ 3) 07.2 \$ 9) 07.4 \$	·		
	4) (16 to 8 10) 98: 4 \$	AFFROVED		
	5) 101·3 \$ 11) 100·6 \$			
	6) <u>19.9</u> \$ 12) <u>19.6</u> \$	DY S.D. DAIB IN 13 MM		
	Average: 18.7 %			
(/ COMPLIES	PREPARED BY: Milesty (de DATE: HITTY		
() DOES NOT COMPLY	APPROVED BY: Suzyala	Publ DATE: 11/191		

QC13-145d

Amide Pharmaceutical, Inc.

Page 1 of 2

LABORATORY TEST REPORT

FINISHED DRUG PRODUCT

PRODUCT: Digoxin Tablets 0.125 mg	
SPECIFICATION: USP	CONTROL #: 1.326 A
CHEMIST: NP PAGE #: 306-02/321-04 PAGE #:	45/213 DATE: 11/17/14
SAMPLE STAGE: our all composite dated	•_

TEST	, RESULT	LIMIT
DESCRIPTION: Color:	1 ella	Yellow
Profile:	Rand buceled Robbets	Round Bisected Tablets
Other: Debossed	"A 145" on biscoled side	"A 145" on bisected side of the tablet
THICKNESS: (Guideline)	2.6 mm	2.0 mm to 3.0 mm
WEIGHT VARIATION:	lou, 9 mg.	± 10% Theo. wt (105 mg) 94.5 mg - 115.5 mg
FRIABILITY:	0.02%	NMT 1.0 %
IDENTIFICATION: (A)	The releation time of the major peak in the absention to the content of the content of the conduction	The retention time of the major peak in the chromatogram of Assay prepration corresponds to standard prepration.
ASSAY: Digoxin, 0.125 mg	100.61	90.0% to 105.0%
UNIFORMITY OF DOSAGE UNITS:	1) 979 % 6) 100 }	85.0% to 115.0%
(Content Uniformity)	2) 106 · 2 * 7) 97 · 8 * 3) 99 · 7 * 8) 99 · 9 * 4) 100 · 2 * 9) 100 · 3 * 5) 101 · 2 * 10) 10 · 3 * AV: 100 · 5 RSD: 0 · 9 · 1	RSD: NMT 6.0%
(Y COMPLIES	PREPARED BY: Milesh P	EXP. DATE: 11119
() DOES NOT COMPLY	APPROVED BY: SUZJUKIO	- PaloyDATE: 11/1947

QC13-145c

aide Pharmaceutical, Inc.

Page 2_ of 2_

LABORATORY TEST REPORT FINISHED DRUG PRODUCT

PRODUCT: <u>Digoxin Tablets</u> ,	0.125 mg		
SPECIFICATION: USP		control. #	4320A
or Bell Lond Low-	#. Car al	PAGE #: 177	DATE: 11/17/94
CHEMIST: K.K. VOLUME	#: <u>323101</u>	PAGIS # ·	
SAMPLE STAGE: ONC ALL	composition		

	4 RESULT	LIMIT
ISSOLUTION: Media: 500mL 0.1N HCl Appar: I, rpm: 120 Temp: 37°C ± 0.5°C Time: 60 minutes	15 minutes: 1) 81.0 \$ 7) 80.8 \$ 2) 81.7 \$ 8) 80.0 \$ 3) 82.1 \$ 9) 77.5 \$ 4) 81.7 \$ 10) 85.6 \$ 5) 82.3 \$ 11) 81.5 \$ 6) 81.8 \$ 12) 84.6 \$ Average: 81.7 \$ 60 minutes: 1) 97.1 \$ 7) 100.5 \$ 2) 98.7 \$ 8) 98.2 \$ 3) 78.3 \$ 9) 98.4 \$ 4) 97.1 \$ 10) 101.8 \$ 5) 93.4 \$ 11) 96.5 \$ 6) 75.9 \$ 12) 79.5 \$ Average: 98.7 \$	(Note - The specified tolerances are for % dissolved, and are not to be interpreted as Q values.) NLT 80% of the LC of Digoxin dissolved in 60 minutes for the average of 12 tablets tested and no individual tablet has less than 75% of the LC of Digoxin dissolved in 60 minutes. If the amount of Digoxin dissolved in 60 minutes is more than 95% for any individual Tablet, the amount dissolved in 15 minutes is not more than 90% for each individual Tablet. (LC: Labeled amount)
(') COMPLIES	PREPARED BY: Milc. Ch.	Rele DATE: HITTY

QC13-145d

Amide Pharmaceutical, Inc.

Page 1 of 2

LABORATORY TEST REPORT FINISHED DRUG PRODUCT

PRODUCT: Digoxin Tablets 0.125 mg	
SPECIFICATION: USP	CONTROL #: 4312 A
CHEMIST: NP/P-K VOLUME #: 321-04 PAGE #:	1220 DATE: 11/21/14
SAMPLE STAGE: Overall composite of Batch 1	
	,

TEST	RESULT '	LIMIT
DESCRIPTION: Color:	Yellar	Yellow
Profile:	Reend biscaled tostets	Round Bisected Tablets
Other: Debossed	"A 145" on biscoled side	"A 145" on bisected side of the tablet
THICKNESS: (Guideline)	2.6	2.0 mm to 3.0 mm
WEIGHT VARIATION:	los-4 mg	± 10% Theo. wt (105 mg) 94.5 mg - 115.5 mg
'RIÁBILITY:	011	NMT 1.0 %
IDENTIFICATION: (A)	The releation time at the mayor peak in the Charmatogram of Assay PER Corresponds to Standard Proportation.	The retention time of the major peak in the chromatogram of Assay prepration corresponds to standard prepration.
ASSAY: Digoxin, 0.125 mg	100.8-1-	90.0% to 105.0%
UNIFORMITY OF DOSAGE UNITS: (Content Uniformity)	1) $100 \cdot 1 & 6$) $98 \cdot 5 & 8$ 2) $99 \cdot 4 & 7$) $97 \cdot 8 & 8$ 3) $98 \cdot 9 & 8$) $93 \cdot 9 & 8$ 4) $97 \cdot 6 & 9$) $98 \cdot 4 & 8$ 5) $100 \cdot 5 & 10$) $97 \cdot 8 & 8$ AV: $99 \cdot 1$ RSD: $0 \cdot 97 \cdot 1$	APPROVED BY S.D. DAIE MARKET
(V) COMPLIES	PREPARED BY: MILCRI	Exte DATE: 11 1194
() boes not comply	APPROVED BY: Suzjulion	1- Pula-DATE: 11/1/GM

nc13-145c

Je Pharmaceutical, Inc.

Page 2 of 2

LABORATORY TEST REFORT FINISHED DRUG PRODUCT

PRODUCT: <u>Digoxin Tablets, 0.125 mg</u>	
SPECIFICATION: USP	CONTROL #: 4322 A
CHEMIST: K·K· VOLUME #: 325.01	PAGE #: 204 DATE: 11/21/94
SAMPLE STAGE: over all composite	, botch.

	Correspondite of Market	
TEST	RESULT	LIMIT
DISSOLUTION: Media: 500mL 0.1N HC1 Appar: I, rpm: 120 Temp: 37°C ± 0.5°C Time: 60 minutes APPROVED BY SA DATE 11,21	15 minutes: 1) 78.4	(Note - The specified tolerances are for % dissolved, and are not to be interpreted as Q values.) NLT 80% of the LC of Digoxin dissolved in 60 minutes for the average of 12 tablets tested and no individual tablet has less than 75% of the LC of Digoxin dissolved in 60 minutes. If the amount of Digoxin dissolved in 60 minutes is more than 95% for any individual Tablet, the amount dissolved in 15 minutes is not more than 90% for each individual Tablet. (LC: Labeled amount)
(V) COMPLIES	PREPARED BY: Milesty (ede DATE: HITTY
() DOES NOT COMPLY	APPROVED BY: SWEYakla	- Publ DATE: HILAL

QC13-145d

PROTOCOL No. 001

AMIDE PHARMACEUTICAL, INC.

PROCESS VALIDATION PROTOCOL

DIGOXIN TABLETS 0.125 mg MPR NO. 14502 REV. 00

1,600,000 TABLETS BATCH SIZE: PREPARED BY: Regulatory Affairs Director DATE: APPROVED BY: Manufacturing Operations Director DATE: Quality Assurance Director DATE: Quality Control Director DATE: Vice President Operations 11-2-94. DATE:

1.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.125 mg MPR NO. 14502 REV.00

PURPOSE:

This document provides the procedure to be followed to validate the manufacturing process for Digoxin Tablets 0.125 mg. It applies to the next three consecutive batches to be produced.

SCOPE:

This protocol is designed to be prospective in nature.

The guidelines presented here include all steps of the manufacturing process which may have an impact on product quality. They are as follows:

Raw Materials Blending Compression

Details of the process will be found in the completed copies of the Manufacturing Batch Records which are available in the file. A summary of the process is found on the attached flow chart. The major equipment used will be documented and monitored as described in the appropriate section below.

Temperature and humidity will be monitored in the production area on a daily basis.

2% excess of Digoxin is added in the finished product to compensate for production losses.

The data gathered during the course of this study will be evaluated and any adjustments to the predetermined specifications or guidelines will be made as warranted based on the results of the three validation batches.

PROCEDURE:

RAW MATERIALS

All raw materials used in a validation batch will be certified to meet all current Amide specifications for that item. These will specifically include particle size profile, bulk density, and tamped density.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.125 mg MPR NO. 14502 REV.00

Certification may be accomplished through direct testing by Amide, or an approved contract laboratory, or through a manufacturers Certificate of Analysis.

Digoxin, USP will be tested by Amide, or an approved contract laboratory for the complete monograph. This will include bulk density, tamped density, and particle size testing.

The excipients will be tested by Amide, or an approved contract laboratory, for those parameters required for expired stock retesting. In addition, particle size, bulk and tamped density will be run on all ingredients. The other results may be taken from the manufacturers COA.

In addition to the actual results, the name of the manufacturer, and the manufacturers lot number should be included in the report.

If more than one lot of a raw material is used in the production of the three batches the data should be evaluated to determine if any differences are detectable.

The acceptance criteria will be the specification limits for those tests listed in the Specification document.

BLENDING UNIFORMITY

The preblend will be produced in the 3 cu.ft. Twin Shell Blender, (#32). The speed will be monitored and documented both empty and during blending.

The blend in this step will be subjected to further processing, no sampling will be taken at this point.

The final blend will be produced in the 10 Cu Ft. Twin Shell Blender, (#35). The speed will be monitored and documented both empty and during blending.

The sampling plan for the final blend is designed to evaluate overall blend uniformity, and those points in the blender where uniformity is most difficult to achieve. Samples are to be taken from the points shown below using only the 36 inch (small chamber) single port thief. The sample drawn should be about 315 mg which is three times the single dosage unit, and should be submitted to the laboratory in "Butter Paper."

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.125 mg MPR NO. 14502 REV.00

SAMPLING POINTS

- 1. Left Column Top left
 2. Left Column Top Center
 3. Left Column Top Right
 4. Right Column Top left
 5. Right Column Top Center
 10. Bottom Left
 11. Bottom Right
- 6. Right Column Top Right

The samples are to be analyzed individually, without being ground, for Digoxin. No composite samples are to be prepared. The sample weight used for analysis should approximate 105 mg, which is the amount of this blend which would be present in one unit of the tablet.

Acceptance criteria is 85.0 - 115.0 % Th for the individual data points. This product has a 2% overage to compensate for the production losses.

Coop Y

Three sample of about 150 g will be taken with the help of a stainless steel their large chamber from the top center middle senter and bottom center of the blender. This sample will be tested for physical characterization which includes; bulk and tap density and particle size analysis. This data is for characterization only and these parameters will not be used to monitor routine production. Therefore, acceptance criteria will not be established.

Δ

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.125 mg MPR NO. 14502 REV.00

COMPRESSION

Compression will be accomplished using the stokes 45 station tablet press. The speed will be determined and documented during the validation study.

During compression samples will be collected every 30 minutes hour by QA. These samples will be evaluated for individual tablet weight, thickness, and hardness. This will be 10 tablets for weight, and five each for thickness and hardness. Front and rear samples will be tested separately and will not be composited for any test in this section unless specifically stated.

The 30 minute samples should be arranged chronologically and the batch divided into thirds. Each third should be evaluated as described below for all tests except content uniformity. The samples for each test should be prepared by selecting, as close as possible, an equal number of tablets from each 30 minute sample. If selecting one tablet per hour results in a greater number of tablets than the test requires the distribution should be as even as possible.

TEST	N
Friability	10 q - 1 Run
Disintegration	6
Dissolution	12 (6 front & 6 rear)

Content Uniformity testing is to be run across the entire batch. One tablet per 30 minute sample is to be run with a minimum of 30 tablets being required. The tablets selected for testing should be weighed prior to testing and their identity maintained. If compression runs for less than 15 hours, the additional tablets should be selected as evenly distributed as possible throughout the batch.

A portion of the blend will be run at hardness of 0.5 - 2.0 KP and above 6.0 KP. This will determine the effect of hardness on friability and dissolution.

Minimum quantities sufficient to equilibrate the press will be run at both lower and higher speeds. The actual ranges will be determined during production. Samples will be evaluated for hardness and weight.

Data analysis will consist of Average and Standard Deviation, with comparison both within and across the three batches. The data collected within each batch will also be evaluated for any possible trends.

PROCESS VALIDATION PROTOCOL - DIGOXIN TABLETS 0.125 mg MPR NO. 14502 REV.00

An overall composite sample will be prepared from all the 30 minute samples. This data will provide the basis for product release and will also be the initial data for stability.

Acceptance criteria will be as follows:

Target Weight (1 tablet): Target Weight (10 tablets): Weight Range (1 tablet): 105.0 mg 1.050 g 0.097 - 0.113 qThickness: 2.0 - 3.0 mmHardness: 1.0 - 6.0 KP Friability NMT 1% Identification Meets requirements. Content Uniformity 85.0% - 115.0% (RSD NMT 6.0%) Dissolution Meets USP Requirement. Assay 90.0 - 105.0%

BATCH FLOW CHART FOR DIGOXIN TABLETS 0.125 mg BATCH SIZE: 1,600,000 TABLETS MPR # 14502, REV # 00

PROCESS VALIDATION REPORT ADDENDUM NO. 01

DIGOXIN TABLETS, 0.125 mg AMIDE PHARMACEUTICAL, INC. BATCHES 4318A, 4320A, and 4322A BATCH SIZE: 1,600,000 TABLETSS

MPR NO. 14502 Revision No. 00 Prepared by: Date Prepared: _ Approved by: Date: 2-16-95 Regulatory Affairs Director Date: 2/16/95

Date: 4/16/95

PROCESS VALIDATION SUMMARY ADDENDUM NO. 01

PRODUCT_	DIGOXIN	TABLETS,	0.125	mg	ВАТСН	4318A
						4320A
·						4322A
				· · · · · · · · · · · · · · · · · · ·	•	·

This addendum is being issued to clarify the allowable press speed limits. As stated in the report, unacceptable weight variability was observed during the high speed validation run. Acceptable reuslts were obtained between 14 and 21 rpm. It should be noted that 21 is the normal speed for this product.

At this time the allowable range will be $14-21\ \text{rpm}$. Additional work will be done during future production to better define the upper limit.

PROCESS VALIDATION REPORT ADDENDUM NO. 02

DIGOXIN TABLETS, 0.125 mg AMIDE PHARMACEUTICAL, INC. BATCHES 5068A, 5069A, and 5070A BATCH SIZE: 1,600,000 TABLETSS

00.0

MPR NO. 14502 Revision	ı Nc
Prepared by: MRW low	
Date Prepared: 3/28/95	
Approved by:	
Approved by: Ash G Now Service VP Operations	
VP Operations	-
Date: 3-29-55	
(larry	
Manufacturing Operations Director	
Date: 3-29-95	
Muni Beld	
Regulatory Affairs Director	
Date: 32995	
Quality control Director	
Date: 3/29/95	
Class ear	
Quality Assurance Director	
Date: 3/29/95	

PRODUCT DIGOXIN TABLETS, 0.125 mg

BATCH 5068A 5069A 5070A

This addendum is being issued to document the additional work done to more accurately define the upper press speed limit, as described in Addendum 01 to the validation report.

The three batches listed above were run for a short period at 28 rpm with the weight set as close as possible to theoretical. The data is attached and is all within acceptable limits.

Therefore, the allowable range for press speed will be $14-28\ \text{rpm}$. Note that the normal speed for this product is 21 rpm.

Amide Pharmaceutleal, Inc.

PROCEED VALIDATION

ren 1: 5068 A	TABLET PRESS	1111 11 6)
		! ,
	1.1 m 1 t;	Time
High RP		
tou kp	N/A - AN 3-7-95	
HaxImim KP		
tegillar Speed		
	RPH	Time
High Speed	28	1.37 Par- 255 Pm
IIIgh Speed		1.37 Poor 255 Poor
	28 N/A A~ 3-7-75	1.37 Par- 2-55 Por

PD 301.1

### Thickness Gauge Id: 642 Scale Id: 22c Thickness Limits	Target Weight (1 Tablet) : 105.0 mg Target Weight (10 Tablets) : 1.050 g Weight Range (10 Tablets) : 1.019 - 1.082 g Front Exit Chute Time Weight Thickness Hardness Init (9) Thickness Hardness Init -36 pm 1.0 68 2.66 2.68 2.64 3.8 4.7 1.4 1.0 -40 pm 1.0 68 2.65 1.7 1.2 1.2 1.2 1.2 -40 pm 1.0 68 2.65 1.7 1.2 1.2 1.2 1.2 -40 pm 1.0 68 2.65 1.7 1.2 1.0 -40 pm 1.0 68 1.0 1.0 1.0 1.0 -40 pm 1.0 68 1.0 1.0 1.0 1.0 -40 pm 1.0 68 1.0 1.0 1.0 -40 pm 1.0 1.0 1.0 1.0 -40 pm 1.0 -40 p
Batch #: 5068A Date: 3/7/95	Prod Id: 145 Prod Name: Digoxin Tablets 0.125
Process Validation COMPRESSION DATA SHEET	Amide Pharmaceutical, Inc. Process COMPRESS:

Amide Pharmaceutlest, Inc.

COMERREELOH DEFARTHERT PROCESS VÄLLDATION

RODUCT HAME: Digo	oxin Tablets 0.12	Sing (145)
YEON 1: 5069A	TABLET PRES	15 10 1: <u>66</u>
	1,1mlt	Time
High kp		
tion KP	N/A - AN 37-90	
HaxIntim KP		
hegilar speed		
	ten	Time
Iligh Speed	2. %	12. 12 Pm - 12 30 Pm
Low Speed	N/A AN 3-1 30	
		THE STATE OF THE S
Done By:	(<.) hate:	317195
·		

rotol. I

Comments:	#in. 165 166 165 166 165	Time Weight* Thickness Hardness Init 12-11 PM 1.6 2.56 2.68 2.67 4.4 3.6 4.3 14 5 14 15 16 16 16 16 16 16 16	Target Weight (1 Tablet) : 105.0 mg Target Weight (10 Tablets) : 1.050 g Weight Range (10 Tablets) : 1.019 - 1.082 g	Prod Id: 145 Prod Name: Digoxin Tablets 0.125 mg Tablet Press Id: 6 Hardness Tester Id: 251
	Rear Exit Chute Time Weight of Each Tablet(mg) Min. 166 108 106 104 103 106 107 107 106 106 Min. 10> 104 105 106 106 108 106 104 107 103	Time Weight* Thicknes Hardness Init (g) mm KP 1 Min. 1.063 Lif Log 1/2/2 1/2 1/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	Thickness Limits : 2.0 - 3.0 mm Hardness Limits : 1.0 - 6.0 Kp H. G. Cheed DPN 28	ON DATA SHEET Batch #: 5069A Date: 3/>195 Thickness Gauge Id: 64k Scale Id: 235

Amide Pharmacettlical, Inc.

COMPRESSION DEFAUTHENT PROCESS VALIDATION

tables o.	125 mg: (145)
TABLET PRES	s 10 1: <u>66</u>
Limit	Time
()	
MA	
D 3/7/95	
RPH	Tlme
28	11.58 Aom
HA 4) 30/95	
	tablet pres

bate:

3/10/95

rn301.1

K. D

	Comments:
E Each 2 05	f Each
Roar Evit Chito	* Composite Weight of 10 Tablets Front Exit Chute
	kness mm 7 02.64
Thickness Limits : 2.0 - 3.0 mm Hardness Limits : 1.0 - 6.0 KP JAIGH Speech 28 RPM Rear Exit Chute	Target Weight (1 Tablet) : 105.0 mg Target Weight (10 Tablets) : 1.050 g Weight Range (10 Tablets) : 1.019 - 1.082 g
Batch \ddagger : $5070A$ Date: $3//0/95$ Thickness Gauge Id: 646 Scale Id: 235	Prod Id: 145 Prod Name: Digoxin Tablets 0.125 mg Tablet Press Id: 66 Hardness Tester Id: 25
Lidation DATA SHEET	Amide Pharmaceutical, Inc. COMPRESSION