L1S2 - Analyse 2

TD 1

Exercice 1.

On utilisera le raisonnement par récurrence pour montrer les résultats suivants :

(1) Soit la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_{n+1} = \frac{1}{2} \left(\frac{11}{u_n} + u_n \right) .$$

$$u_0 = 4$$

Montrer que $\forall n \in \mathbb{N}, u_n \geq \sqrt{11}$.

(2) Soit une suite réelle (u_n) telle que $\forall n \in \mathbb{N}$, $u_{n+2} + u_{n+1} - u_n = 0$. Montrer que si (u_n) est une telle suite et si u_0 et u_1 sont des éléments de \mathbb{Z} alors pour tout élément n de \mathbb{N} , u_n est dans \mathbb{Z} .

Exercice 2. On considère une suite de réels $(u_n)_{n\in\mathbb{N}}$ qui a les propriétés suivantes :

- i) $u_0 = 1$, $u_1 = 3$.
- ii) $\forall n \in \mathbb{N} , u_{n+2} = 4u_n + u_{n+1}.$

Montrer que pour tout $n \in \mathbb{N}$, $u_n \leq 3^n$.

Exercice 3. La suite $\left(\frac{n}{n+1}\right)_n$ est-elle monotone? Est-elle bornée?

Exercice 4. La suite $\left(\frac{n\sin n!}{n^2+1}\right)_n$ est-elle bornée?

Exercice 5. 1) Réécrire les phrases suivantes en une phrase mathématique. Ecrire ensuite la négation mathématique de chacune des phrases. (a) La suite $(u_n)_n$ est majorée par 7. (b) La suite $(u_n)_n$ est constante. 2) Est-il vrai qu'une suite croissante est minorée? Majorée?

Exercice 6. 1) Réécrire les phrases suivantes en une phrase mathématique. Ecrire ensuite la négation mathématique de chacune des phrases. (a) La suite $(u_n)_n$ est strictement positive à partir d'un certain rang. (b) $(u_n)_n$ n'est pas strictement croissante.

2) Est-il vrai qu'une suite décroissante est minorée? Majorée?

 $\mathbf{Exercice}$ 7. Déterminer le sens de variation de la suite définie par :

$$u_n = \prod_{k=1}^n (1 - \frac{3}{k^2})$$
 où $n \in \mathbb{N}^*$.

Exercice 8. Déterminer le sens de variation de la suite définie par :

$$v_n = \frac{\ln(n)}{n}$$
 où $n \ge 3$.

Exercice 9. Pour chaque suite, dire si elle est de type connu et préciser ses caractéristiques. Pour tout $n \in \mathbb{N}$:

1)
$$u_n = 2n + 3$$
; 2) $u_{n+2} = 2u_n$; 3) $u_{n+1} = u_n - 4$; 4) $u_n = 2u_{n+1}$; 5) $u_{n+2} + 9u_n = 6u_{n+1}$.

Exercice 10. Pour chaque suite, dire si elle est de type connu et préciser ses caractéristiques. Pour tout $n \in \mathbb{N}$:

1

1)
$$u_{n+1} = (n+1)u_n$$
; 2) $u_{n+1} = -2u_n + 1$; 3) $u_n = 3^{n+2}$; 4) $u_{n+2} = u_{n+1} + n$.

Exercice 11. Exprimer explicitement les suites définies par :

1) $u_2 = 5$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n - 3$; 2) $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 3 - 5u_n$.

 ${\bf Exercice}\,\,{\bf 12.}$ Exprimer explicitement les suites définies par :

1) $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3$; 2) $u_2 = 1$ et pour tout $n \ge 2$, $u_{n+1} = \sqrt{2u_n}$; 3) $u_3 = 6$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 3u_n$.