CFRM 551: TRADING SYSEMS

MARKET STRUCTURE

Slides to accompany High-Frequency Trading: A Practical Guide to Algorithmic Strategies and Trading Systems, 2nd edition, by Irene Aldridge

Theory vs. Reality of Trading

Theory

- 3.1 Markets are perfect!
- 3.2 Markets immediately reflect all fundamental information
- 3.3 Markets are uniform
- 3.4 Markets are consolidated

Reality

- 3.1 Markets have "frictions"
- 3.2 Markets incorporate and leak information over time
- 3.3 Markets differ wildly
- 3.4 Markets are highly fragmented

Market imperfections

Financial Theory

- No "market frictions:"
 - No transaction costs
 - Can execute as big or as little position at the market price (unlimited depth)
 - Unlimited borrowing power at the risk free rate
 - No short-sale constraints
 - Market price is invariant to the order size

Trading Practice

- 3.1.1 Various transaction costs
- 3.1.2 Finite market depth
- 3.1.3 Market price subject to market impact

Optimal algo execution helps navigate imperfections; HFT exploits imperfections to deliver return = alpha

Transaction costs

Transparent costs

- Broker commissions
 - Fixed (per order, per month)
 - Variable (per trade size)
 - Leverage costs
- Exchange fees
- Taxes

Latent costs

- Bid-ask spread
- Slippage
- Opportunity Cost

Broker commissions

Fixed Commissions

- Minimum per order
- Minimum per month

Leverage

Financing charges

Variable Commissions

- Amount per trade size (contract or share)
- Amount per trade value
- Amount per monthly volume

Exchange fees

Exchange fees

- Can be positive and negative
- Positive fees:
 - Charged for removing liquidity = sending a market order
- Negative fees (rebates):
 - Provided for adding liquidity (posting limit orders)
- Additional fees charged for:
 - Special types of orders (e.g., MPL order on NYSE is a limit order that is not displayed)
 - Algo routing to a liquidity source

Example: NYSE Arca

NYSE Arca Rates Per 100 Shares

			TAPE A (NYSE-LISTED)						
Tier	Tier Requirement(s)	Rebate for Adding ¹		Fee for Removing		Routing to NYSE ²	Routing to Other Venues		
Tier 1	NYSE Arca Daily Adding as of % of US CADV in excess of 0.70%	\$	(0.30)	\$	0.30	\$0.21/\$0.23	\$	0.30	
Tier 2	NYSE Arca Daily Adding as of % of US CADV in excess of 0.30%	\$	(0.29)	\$	0.30	\$0.21/\$0.23	\$	0.30	
Tier 3	NYSE Arca Daily Adding as of % of US CADV in excess of 0.20%	\$	(0.25)	\$	0.30	\$0.21/\$0.23	\$	0.30	
Step-Up Tier 1	NYSE Arca Daily Adding as % of US CADV in excess of 0.15% over the	\$	(0.295)	\$	0.30	\$0.21/\$0.23	\$	0.30	

Bid-ask spread

Definitions

- = best ask price best bid price
- The cost of instantaneous position reversal
- Premium on immediacy/market orders
 - Traders desiring to fill their orders ASAP pay the bid-ask spread
- Compensation for marketmaking/limit orders
 - Traders patiently willing to wait to execute charge the bid-ask spread
- Reflects uncertainty in the markets

Example, EUR/USD

Average hourly bid-ask spread on EUR/USD spot for the last two weeks of October 2008 on a median Spread on the transaction size of USD 5 mill

weekend of Oct 18. 2008 - Oct

Slippage and Opportunity cost

Slippage

- The difference between the observed pre-order quote and the realized market price
- The price "slips" due to contemporaneous arrival of new orders
- Slippage is typically worst during periods of high trading activity
 - News announcements
 - Market open
 - Market close

Opportunity cost

 Return that could have been realized with the capital invested elsewhere

Finite market depth

Definitions

- Most modern exchanges are organized as "limit order books"
- When a new limit order arrives, it is placed in a limit order bin corresponding to its price
- At each price, there is a finite aggregate liquidity = sum of limit order sizes

Example

- When a large market order arrives and "top of the book" liquidity is exhausted
 - The market order "sweeps" the book

Modeling Limit Order Books

Best bid Best ask/offer

Sample dynamics

LOB = Queuing System!

LOB Queues

Order cancellations are disallowed:

• Order cancellations are allowed (vanilla matching):

• Top-of-the-book cancellations not allowed, but okay elsewhere

Related literature

- Cont, Stoikov and Talreja (OR, 2010)
- Cont and Kukanov (2012)
- Hasbrouck (2012, 2013)
- Easley, Lopez de Prado, and O'Hara (2011, 2012)
- Vanden Eijnden (2010, 2011, 2012)
- Many others

Market impact

Theory

- In the idealized financial world:
 - Everyone interprets all information in the same way
 - Only fundamentals affect prices
 - As a result, a sharp step function in prices immediately following a fundamental news

Market impact

Reality

- Traders have different interpretation of news
- Long-term and short-term opinions often differ
 - Implication: short-term traders do not eat long-term traders' lunch;
 - Short-term traders reduce LT volatility instead
- Markets deviate from theory

The cost of market impact

- In equities, the ITG's Global Trading Cost Review (2010) reported:
 - The average cost of an equities trade in the U.S. in the first quarter of 2010 was 0.476%,
 - 0.089% was spent on commissions
 - the remaining 0.387% were due to market impact (the numbers were comparable to those in the E.U., the U.K., and Japan; emerging markets posted higher costs).

Market impact

Measuring market impact

- Both pre-trade and post-trade market impact matter
- Pre-trade impact can be due to:
 - Anticipation of a market order
 - algos often "slice" a large order into a predictable sequence of small orders
 - limit orders of opposite direction
- Pre-trade impact ~ 25% of post-trade impact
 - NASDAQ: Hautsch and Huang (2011)
 - EUREX: Aldridge (2012)

Information leakage

Trades "Leak" Information

- Market-makers ("specialists") observe market activity
 - Learn information content
 - Adjust quoted prices
- Prices reflect the expectation of security terminal value
 - Net Present Value (NPV) of future cash flows
 - Conditional on all public information, including prior trades
- Price adjustment is gradual
 - Short-run effect
 - Long-run effect
 - Hasbrouck (1991)

Information affecting prices

- News
 - Macroeconomic releases
 - Corporate earnings
 - Political news
 - •
- Trade prices
- Trade sizes
- Best bid/best offer quotes
- Best bid/best offer sizes
- Shape of the order book
- Duration between trades
- Duration between quote "arrival"

Endogenous dynamic between short-term price movements and other market microstructure variables.

Optimal execution algo navigates these issues.

© Copyright Irene Aldridge 2012

Market con/divergence

Convergence

- Most markets can be accessed via FIX
- Most markets worldwide are based on limit order book model
- Many trading venues charge for market orders (taking away liquidity) and pay for limit orders (providing liquidity)

Divergence

- Equities are subject to Reg NMS rules
 - All market equity orders must be executed at the National Best Bid/Offer (NBBO)
 - Exchanges that cannot match NBBO must pass the orders on to other venues
- Futures have margining requirements
- Foreign exchange does not have centralized quotes or exchanges
- Options have so many products, that very few investors can keep track of them all
 - As a result, options markets are highly transparent

Market fragmentation

Exchange Competition

- Falling costs of technology allowed multiple start-ups in the exchange field
- Exchanges attempt to differentiate themselves with cost structures and other variables
- Normal exchanges
 - Charge for removing liquidity (MO)
 - Offer rebates for adding liquidity (LO)
- Inverted exchanges
 - Offer rebates to remove liquidity (MO)
 - Charge for adding liquidity (LO)
 - Boston (BX), BYX
 - Very Low Fees: EDGA

Example

 Source: Pragma Securities, "Inverted-Price Destinations and Smart Order Routing"

FIGURE 1

The X-axis indicates the percentage of the time that a venue has the NBB or NBO. The Y-axis indicates the percentage of trades that execute at this venue. The total share is 78%; the rest corresponds primarily to dark pools.

Market fragmentation

Source: Pragma Securities, "Inverted-Price Destinations and Smart Order Routing"

Inverted Fees: Boston (BX), BYX

Low Fees: EDGA

Percentage of trades executed at each venue, given that a certain set of venues had the inside price.

