PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-091524

(43) Date of publication of application: 17.04.1991

(51)Int.CI.

C08G 59/40 C08L 63/00 C09D163/00 C09J163/00

(21)Application number: 02-220942

(71)Applicant: CIBA GEIGY AG

(22)Date of filing:

22.08.1990

(72)Inventor: STEINMANN BETTINA

SEIZ WOLFGANG

(30)Priority

Priority number: 89 3052

Priority date: 23.08.1989

Priority country: CH

(54) POLYHYDROXY ESTER CONTAINING CARBOXYL TERMINAL GROUP AND ITS USE (57)Abstract:

PURPOSE: To obtain an adhesive or a coating film excellent in tensile shearing strength, flexibility and adhesiveness by adding an epoxy resin and specific polyhydroxyl ester.

CONSTITUTION: A diepoxide (a) selected from diglycidyl ether, diglycidyl ester and alicyclic epoxy resins and a 2-40C dicarboxylic acid (b) wherein the COOH group of the (b) component is 1.04-1.4 per the epoxide group of the component (a) are reacted in the presence of a basic catalyst to obtain polyhydroxy ester (B) with a mol.wt. Mn of 1,000-4,000, Mw/Mn of 3-8 COOH group content of 0.3-2.5 equivalent/kg, a glass transition temp. of -20-50° C and an m.p. of 10-80° C. The epoxide resin (A) and the component B of which the COOH group present per epoxide of the component A is 0.15-1, pref., 0.3-1 are compounded.

®日本国特許庁(JP)

⑩特許出願公開

⑩ 公 開 特 許 公 報(A) 平3-91524

Int. Cl. 5 C 08 G 59/40 C 08 L 63/00 C 09 D 163/00 C 09 J 163/00 識別記号 NHX NJW PJT JFL

庁内整理番号

8416-4 J 8416-4 J 8416-4 J 8416 - 4]

码公開 平成3年(1991)4月17日

審査請求 未請求 請求項の数 12 (全15頁)

49発明の名称

カルボキシル末端基を含むポリヒドロキシエステル、及びそれらの 使用方法

> 20特 顧 平2-220942

22)出 願 平2(1990)8月22日

優先権主張

1989年8月23日30スイス(CH)303052/89-3

72)発 明 者

ベッチーナ スタイン

スイス国,1724 プラロマン,レス ルシレス(番地表示

マン

なし)

@発 明 者 ウルフガンク サイズ スイス国,4148 フェフインゲン,アレマンネンヴェク

10

題 人 创出

チバ・ガイギー アク

スイス国 バーゼル市 クリベック ストラーセ 141

チエンゲゼルシヤフト

個代 理人

外2名 優美 弁理士 萼

明細霉

1. 発明の名称

カルボキシル未端基を含むポリヒドロキシ エステル、及びそれらの使用方法

2.特許請求の範囲

(1) a) エポキシ樹脂、及び

b) ジェポキサイドのエポキサイド基あたり、ジ カルボン酸のカルボキシル基が1.04ないし1.4 存在するように、選択されたジェポキサイドお よびジカルボン酸の量で塩基性触媒の存在下、 ジェポキサイドとジカルボン酸の反応によって 得られるカルボキシル未端葢を含むポリヒドロ キシエステル

からなる硬化性組成物。

(2) 成分(b) は(b1) ジグリシジルエーテル、(b2) ジ グリシジルエステル、及び(b3)脂環式エポキシ 樹脂から選ばれたジエポキサイドと炭素原子数 2ないし40のジカルボン酸の反応によって製造 される請求項(1)記載の組成物。

(3)(b1)がビスフェノールA、又はネオペンチルグ

リコールのジグリシジルエーテル、(b2)がヘキ サヒドロフタル酸、フタル酸、テレフタル酸、 アジピン酸、またはセバシン酸のジグリシジル エステル、(b3)が3,4-エポキシシクロヘキシル メチル-3',4'- エポキシシクロヘキサンカルボ キシレート、又はピス (3,4-エポキシシクロへ キシルメチル) アジベートであり、そして ジカルボン酸がアジピン酸、セバシン酸、ドデ カン二酸、テトラデカン二酸、スペリン酸、ま たはエイコサン二酸である請求項(2)記載の組成 物.

(4)成分(b) がジエポキサイド(b1)、(b2)及び(b3) の2個以上の混合物の反応によって製造される 請求項(2)記載の組成物。

(5)成分(b) が分子量が、が1000ないし4000、 Mu /Maが3ないし8、カルボキシル基合盤が 0.3 ないし2.5 当量/kg、及び-20 ないし50℃ のガラス転移温度、または10ないし80℃の融点 を持つ請求項(1)ないし個のいずれか一つに記載 の組成物。

- (6) ジェポキサイドのエポキサイド基あたり、ジカルボン酸のカルボキシル基が1.04ないし1.4 存在するように、選択されたジェポキサイドおよびジカルボン酸の量で塩基性触媒の存在下、ジェポキサイドとジカルボン酸の反応によってそれぞれ得られるカルボキシル末端基を含む少なくとも、2個の相違なるボリヒドロキシエステルを含むポリエステル組成物。
- (7)(i) ジグリシジルエーテル(b1)、又は脂環式エポキシ樹脂(b3)とジカルボン酸の反応生成物、及び
 - (ii) ジグリンジルエステル(b2) とジカルボン酸の反応生成物を含む請求項(6)記載の組成物。
- (8)ジェポキサイドのエポキサイド基あたり、ジカルボン酸のカルボキシル基が1.04ないし1.4 存在するように、選択されたジェポキサイドおよびジカルボン酸の量で塩基性触媒の存在下、
 - (b2) ジグリシジルエステル、及び(b3) 脂環式エ ボキシ樹脂から選ばれたジェボキサイドとジカ ルボン酸の反応によって得られるカルボキシル

末端基を含むポリヒドロキシエステル。

- (g)ジェボキサイドのエポキサイド基あたり、ジカルボン酸のカルボキシル基が1.04ないし1.4 存在するように、選択されたジェボキサイドおよびジカルボン酸の量で塩基性触媒の存在下、好ましくは触媒として第三アミンの存在下、溶融物中で反応が行われる、(b2)ジグリシジルエステル、及び(b3)脂環式エポキシ樹脂から選ばれたジェポキサイドとジカルボン酸の反応からなるカルボキシル末端基を含むポリヒドロキシェステルの製造方法。
- 伽接着剤の調製、又は塗装製品、又は成型品製造のための請求項(6)記載の組成物、又は請求項(8)記載の組成物、又は請求項(8)記載のポリヒドロキシエステルの使用方法。
- (II)ポリヒドロキシエステルのヒドロキシル基、又はカルボキシル基と反応することができる官能基を含む化合物のための架橋剤として、請求項(6)記載の組成物、又は請求項(8)記載のポリヒドロキシエステルの使用方法。

00架橋された製品の製造、特に接着結合物、又は

塗装製品の製造のための請求項(I)記載の組成物の使用方法。

3. 発明の詳細な説明

(産業上の利用)

本発明は、ジェポキサイドとジカルボン酸の反応により得られるカルボキシル末端基を含む一定のポリヒドロキシェステル、これらの化合物の一定の混合物、それらの製造方法、及び特に硬化性エポキシ樹脂組成物の成分としてのその使用方法に関する。

(従来の技術)

幾つかのカルボキシル基を含む化合物、例えば ポリカルボン酸、又はカルボキシル末端基を含むポリエステルのエボキシ樹脂の硬化剤として の使用方法は、公知である。

このような組成物は、例えば粉末ワニスとして 使用され、例えば米国特許第4,175,173 号、第 4,147,737 号または第3,397,254 号に記載され ている。

(課題を解決するための手段、発明の効果)

カルボキシル末端基を含む一定のポリヒドロキシエステルが硬化剤として使用されるのならば、 特に良好な特性を持つエボキシ樹脂組成物が得 られることが見出された。

本発明は、

a) エポキシ樹脂、及び

b)ジェポキサイドのエポキサイド基あたり、ジカルボン酸のカルボキシル基が1.04ないし1.4 存在するように、選択されたジェポキサイドおよびジカルボン酸の量で塩基性触媒の存在下、ジェポキサイドとジカルボン酸の反応によって得られるカルボキシル末端基を持つポリヒドロキシェステル、

を含む硬化性組成物に関する。

本発明の組成物の成分(a) 及び(b) の量は、エポキシ樹脂(a) のエポキサイドあたり存在するポリヒドロキシエステル(b) の6.15ないし1カルボキシル基、特に0.3 ないし1カルボキシル 答から選ばれるのが好ましい。

硬化の間、カルボキシル末端基を含むポリエス

特開平3-91524 (3)

テルのカルボキシル基、及びヒドロキシル基は どちらも、この場合エポキシ樹脂と反応できる。 エポキシ樹脂分野で慣用のいかなる化合物も、 組成物の成分(a) として原則として使用するこ とができる。1分子あたり平均2個以上のエポ キサイド基を持つエポキシ樹脂が好ましい。エ ポキシ樹脂の例を以下に示す。

1)分子内に少なくとも2個のカルボキシル基を 持つ化合物と、エピクロロヒドリン、又はβー メチルーエピクロロヒドリンとの反応によって 得られるポリグリンジルエステル、及び、ポリ -(β-メチルグリンジル) エステル。

反応は、塩基存在下で有利に実施される。

脂肪族ポリカルボン酸は分子内に少なくとも2個のカルボキシル基を持つ化合物として使用できる。

そのようなポリカルボン酸の例は、シェウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、若しくは二量化または三量化されたリノレイン酸である。

4- ジオール、ポリ (オキシテトラメチレン) グリコール、ペンタン-1.5- ジオール、ヘキサン-1.6- ジオール、ヘキサン-2.4.6- トリオール、グリセロール、1.1.1-トリメチロールプロパン、ペンタエリスリトール、又はソルビトールのような非環式アルコールから、及びポリエピクロロヒドリンから誘導される。

しかしながら、それらはまた、1,4-シクロヘキサンジメタノール、ビス(4-ヒドロキシシクロヘキシル)メタン、又は2.2-ビス(4-ヒドロキシシクロヘキシル)プロバンのような脂環式アルコールから誘導されるか、又はN,N-ビス(2-ヒドロキシエチル)-アニリン、又はp,p'・ビス(2-ヒドロキシエチルアミノ)ジフェニルメタンのような芳香族核を持つのである。

エポキサイド化合物はまた、単核フェノール、 例えばレゾルシノール、又はヒドロキノンから 誘導されるか、

又は多核のフェノール、例えばピス(4- ヒドロ キシフェニル) メタン、4.4' - ジヒドロキシビ しかしながら、脂環式ポリカルボン酸、例えば テトラヒドロフタル酸、4-メチルテトラヒドロ フタル酸、ヘキサヒドロフタル酸、又は4-メチ ルヘキサヒドロフタル酸も使用できる。

芳香族ポリカルボン酸、例えばフタル酸、イソ フタル酸、又はテレフタル酸もさらに、使用で きる。

11) 少なくとも2個の遊離アルコール性ヒドロキシル基および/又はフェノール性ヒドロキシル基を有する化合物と、適当に覆換されたエピクロロヒドリンとを、アルカリ条件下、又は酸性媒の存在下引き続くアルカリでの処理にて、反応することにより得られるポリグリシジルエーテル、又はポリ(βーメチルグリシジル)エーテル。

この型のエーテルは、例えば、エチレングリコール、ジエチレングリコール、及び高級ポリ(オキシエチレン)グリコール、プロパン-1,2・ジオール、プロパン-1,3・ジオール、ブタン-1,

フェニル、ピス(4- ヒドロキシフェニル) スルフォン、1,1,2,2-テトラキス・(4-ヒドロキシフェニル) エタン、2,2-ピス(4- ヒドロキシフェニル) プロパン、又は2,2-ピス(3,5- ジブロモ-4- ヒドロキシフェニル) プロパンに基づくか、又はホルムアルデヒド、アセトアルデヒド、クロラール、又はフルフラルデヒドのようなアルデヒドと

フェノールのようなフェノール類、若しくは塩 素原子または炭素原子数1ないし9のアルキル 基によって核に置換されたフェノール、例えば 4-クロロフェノール、2-メチルフェノール、又 は4-第三ブチルフェノールと縮合することに よって、又は上記に記載されたビスフェノール の縮合によって得られるノボラックに基づく。 111)エピクロロヒドリンと少なくとも2個のア ミン水素原子を含むアミンの反応生成物の脱塩 業化反応によって得られるポリ(8、グリシジル) 化合物。

これらのアミンは、例えばアニリン、n・ブチル

アミン、ビス(4- アミノフェニル) メタン、m-キシレンジアミン、又はビス(4- メチルアミノ フェニル) メタンである。

しかしながら、ポリ(N- グリンジル) 化合物はまた、トリグリンジルイソンアヌレート、ンクロアルキレンウレア、例えばエチレンウレア、 又は1.3-プロピレンウレアのN,N'・ジグリンジル誘導体、

及びヒダントインのジグリンジル誘導体、例えば5.5-ジメチルヒダントインを含む。

- (Y) ポリ(S- グリシジル) 化合物、例えばエタン-1.2- ジチオール、又はピス(4- メルカプトメチルフェニル) エーテルのようなジチオールから誘導されたジーS-グリシジル誘導体。
- V)脂環式エポキシ樹脂、例えばピス(2.3- エポキシシクロペンチル)エーテル、2.3-エポキシシクロペンチルグリシジルエーテル、1,2-ピス(2.3- エポキシシクロペンチルオキシ)エタン、3.4-エポキシシクロヘキシルメチル-3',4'- エポキシシクロヘキサンカルボキシレート、

A) 又はビス(4・ヒドロキシフェニル) メタン (ビスフェノールド) のようなビスフェノール のポリグリシジルエーテル、又は

ホルムアルデヒドとフェノールの反応により形成されるノボラックのポリグリンジルエーテルまたは前述に記載されたヘテロ環化合物のグリンジル誘導体、特にトリグリンジルイソンアヌレートである。

本発明の硬化性組成物の成分(b) として使用されるカルボキシル末端基を含むポリヒドロキシエステルは、極性有機溶媒中で可溶である粘稠ないし固体の熱可塑性のポリエステルであり、それはヒドロキシル基、及びカルボキシル基の両方を含み、そして、或る場合にはまだ新規である。

それらは、塩基性触媒の存在下、化学量比 1:1.04ないも1.4 でジエポキサイドとジカルボン酸の反応によって製造できる。反応を、以下のようなジグリンジルエーテルの反応の実施例によって説明する。 又はピス(3.4・エポキシシクロヘキシルメチル)-アジベートのようなピス(3.4・エポキシシクロヘキシルメチル) エステル。

しかしながら、1.2-エポキサイド基が異なるへテロ原子、又は官能基に結合したエポキシ樹脂も使用できる。これらの化合物は、例えば4-アミノフェノールのN,N-0-トリグリシジル誘導体、サリチル酸のグリシジルエーテルーグリンジルエステル、N-グリシジル・N'-(2- グリシジルオキシプロピル)-5.5-ジメチルヒダントイン、又は2-グリシジルオキシ-1.3- ビス(5.5- ジメチル-1- グリシジルヒダントイン-3- イル)プロパンを含む。

2 ないし10当量/kgのエポキサイド含量を持ち、 芳香族、ヘテロ環、脂環式、又は脂肪族化合物 のグリンジルエーテル、グリンジルエステル、 又はN-グリンジル誘導体であるエポキン樹脂が 好ましく使用される。

特に好ましいエポキシ樹脂は、2.2-ピス(4- ヒ ドロキシフェニル) プロパン (ピスフェノール

カルボキシル末端基を含むボリヒドロキシエステルに関して上記に示されているような直鎖構造に加えて、未反応のエボキサイド基と住じた第二ヒドロキシル基のエーテル化によって形成された分技状ポリマーも、合成で得られる。上記したように、ジェボキシドとの反応に於いて、過剰のジカルボン酸はエボキサイド基あたり1.04ないし1.4のカルボキシル器が存在するように選ばれなければならない。

過剰量が定義より少ないならば、時期の早いゲル化、又は不溶性生成物の形成を生じる。一方、過剰量が大変多いならば、通切な高分子生成物を得ることができない。

その合成は適当な溶媒中、又は好ましくは溶融 物中で実施できる。適当な溶媒の例は、テトラ ヒドロフラン、ジオキサン、トルエン及びメチ ルエチルケトンである。

適当な塩基性触媒の例は、NaOHまたはKON のようなアルカリ金属水酸化物、又は有機塩基、特に窒素含有ヘテロ環化合物、または第三アミンがある。

適当な触媒の例は、トリエチルアミン、ベンジスジエチルアミン、ベンジルジメチルアミン、トリ-n- ブチルアミン、トリイソプロパノールアミン、N,N-ジメチルアセトアミド、及びイミダゾールである。

反応は高められた温度、例えば約100 ないし20 0 ての範囲内で、好ましくは溶融物の状態で適当に実施される。反応のため、ジカルボン酸は好ましくは、最初に反応容器に導入され、ジェポキサイド化合物を適当な時間、例えば30分をかけて添加する。

ジエポキサイド及びジカルボン酸にさらに加え

て、例えば相当する三官能基性化合物の5 モル%までの少量を、可溶性ポリマーが該方法によって得られる限り、ポリヒドロキシエステルの合成に使用できる。

反応に使用される塩基性触媒の量は、触媒の性質によって変えることができる。

第三アミンが使用される時、抽出物の全量に基づいて約0.1 ないし1重量%、好ましくは0.2 ないし0.3 重量%の量が適当であると証明された。

反応は一般に、ポリヒドロキシエステルのカル ボキシル含量が一定になるまで続く。

このように製造されたカルボキシル末端基を含むボリヒドロキシエステルは、好ましくは分子量(テトラヒドロフランにおけるゲル浸透クロマトグラフィ)Maは1000ないし4000、特に1500ないし3700であり、Ma/Maは3ないし8、特に3.5ないし6.5であり、カルボキシル基含量0.3ないし2.5、特に0.4ないし1.5当量/kgであり、-20ないし50で、特に-15ないし30

ての範囲のガラス転移温度、又は10ないし80 で、特に20ないし60での融点を持つ。

カルボキシル末端基を含む定義された型のボリヒドロキシエステルを完全に可溶性熱可塑性ボリマーとして合成できたことは驚くべき事である

幾つかの文献ではジェポキサイドとジカルボン酸の反応が記載されているが、一般にそれらの文献はゲル化された、不溶性の生成物が、抽出物の反応が完結する前に、一般にすでに形成されるので、可溶性ポリマーの分離は不可能であると報告している。

一般に、前述された反応において、最大の等モル量のジカルボン酸でジエポキサイドと反応する。

Matejka 氏その他著、Makromol.Chem.,186巻、
2025頁(1985年)およびHartel氏その他著、
Plaste und Kautschuk,31 巻、405 頁(1984年)
は溶融物状態でのピスフェノールAジグリンジ
ルエーテルと脂肪族ジカルボン酸の等モル量の

反応を研究しており、

カルボキシル基の反応が完結する前にゲル化が 始まると、又はゲル化点に到達する前に反応を 中断すること、及び高分子量の可溶性添加生成 物を分離することが不可能であると結論してい

米国特許第3,535,289 号はジグリンジルエステルと等モルのジカルボン酸、エボキサイド末端 基を含むボリエステル、例えば、エボキシ樹脂 用の慣用の硬化剤で架橋できる前もって延長されたエボキシ樹脂の最大等モル量よりも少ない 量の反応を記載している。

この参照文献によれば、等モル量以上のジカルボン酸との反応は、窒まない三次元的に架橋した生成物を導くとしている。ジエポキサイド、特にジグリシジルエーテルと等モル量以下のジカルボン酸との反応も、米国特許第3,256,226号に記載されており、エポキサイド未壊基を含むポリエステルは、オレフィン性不飽和モノカルボン酸に未端ブロックさせることにより引き

特開平3-91524 (6)

熱によって活性化される熱可塑性接着剤でのこ

れらポリヒドロキシエステルの使用は米国特許

驚くことに、上記に定義された過剰量のジカル

ボン酸が使用された場合、反応が溶液中か、又

は溶融物中で実施されるにもかかわらず、ジェ

ポキサイドは問題なしに、カルボキシル支端其

を含む可溶性ポリヒドロキシエステルに変換す

第4,430,479 号に記載されている。

統き、製造される。これは、反応性二重結合と 介してさらに重合する、又はコポリマーを与え られるための適当な不飽和コモノマーと加工す ることができる末端不飽和基を持つポリマーを 与える。

米園特許第3,639,655 号は、一般にヒドロキシル置換されたポリエステルがジカルボン酸とエポキシ樹脂の反応によって製造できるにもかかわらず、生成物がゲル化するために一般にかなりの問題が起こると述べている。

この文献に従って、実質等モル量のジグリシジルおよびジカルボン酸の反応が非プロトン性有機溶媒中で行われた場合、これらの問題は避けることができる。

比較例IXで、無極性キシレンが溶媒として使用 される場合、ゲル化と架橋されたポリマーだけ が得られることを示している。

極性溶媒中で製造された可溶性ポリヒドロキシェステルはポリイソシアネートまたは無水物と加熱することにより架橋できる。

J.Poly.Sci.A-1, 7巻、72117 (1969年)

ることができる。

F.B.Alvey 氏著ではモデル反応の助けをかりて エポキサイド/カルボン酸反応の研究を記載し ている。ポリヒドロキシエステルポリマーもピ スフェノールA ジグリンジルエーテルとアジ ピン酸からこの反応によって製造される。

ほとんどのポリマーが等モル量の抽出物から製造されるにもかかわらず、0.95モルのピスフェノールA ジグリンジルエーテルと1モルのアジピン酸の反応から得られるカルボキンル末端 基を含むポリヒドロキシエステル(ポリマーP

- 5) も記載されている。

この例で、反応は125 でで全7時間かけて2段 階工程で行われ、ゲルが生じるまえに短時間、 中断される。

この温度でアジピン酸(融点155 ℃)はまだ溶 融していないので、不均一反応が起きる。

この不均一反応は、エポキサイド基の単独重合の可能性を増加させるため、不均一な生成物を選く

エポキシ樹脂用硬化剤としてのポリヒドロキシ エステルを使用することは知られていない。

本発明の硬化性組成物のポリヒドロキシエステル成分(b) は(b1)ジグリシジルエーテル、(b2)ジグリシジルエステル、及び(b3)脂環式エポキシ樹脂から選ばれたジエポキサイドと炭素原子数2ないし40のジカルボン酸の反応によって好ましくは、製造される。

適当なジェポキサイド(61)、(b2)及び(b3)は適当なエポキシ樹脂として上記に記載された化合物である。

カルボキシル基を除けば、エボキサイド基と反応することができる他の官能基を含まない、いかなる公知のジカルボン酸も原則として、ジカルボン酸として使用できる。

脂肪族、脂環式、又は芳香族ジカルボン酸も使用できる。

天然に生じる長額の不飽和脂肪酸の二量化に よって得られる酸も適当であり、例えば炭素原 子数36の二量体酸である。

適当なジカルボン酸の例はフタル酸、イソフタル酸、テレフタル酸、シュウ酸、コハク酸、グルタール酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン二酸、エイコサン二酸、ヘキサヒドロフタル酸、及びシクロペンタンジカルボン酸である。相対的に融点の低い酸、例えば約160 で以下が一般に好ましい。

特に好ましいジェポキサイドはビスフェノール A、又はネオペンチルグリコールのジグリシジ ルエーテル、ヘキサヒドロフタル酸、フタル酸、

特開平3-91524(7)

テレフタル酸、アジピン酸、又はセバシン酸の ジグリシジルエステル、3,4-エポキシシクロへ キシルメチル-3',4'- エポキシシクロヘキサン カルボキシレートおよびピス(3,4- エポキシシ クロヘキシルメチル) アジペートである。

特に好ましいジカルボン酸はアジピン酸、セバ シン酸、ドデカン二酸、テトラデカン二酸、ス ベリン酸およびエイコサン二酸である。

ポリヒドロキシエステル(b) はまた2個、又はそれ以上のジポキサイド(bi)、(b2)又は(b3)の混合物の反応によって製造できる。

本発明の硬化性エポキシ樹脂組成物は、架橋された生成物の製造に適当である。このため、組成物はまた、エポキシ樹脂分野で慣用の他の硬化剤、又は硬化促進剤、及び他の慣用の添加剤、さらにポリヒドロキシエステル(b) を含むことができる。

本発明の組成物はさらに、他の個用の添加剤として可塑剤、増量剤、充填剤及び強化剤、例えばコールタール、選青、織物繊維、ガラス繊維、アスベスト繊維、ホウ素繊維、炭素繊維、無機シリケート、雲母、石英粉末、水和された酸化アルミニウム、ベントナイト、ウォラストナイト、カオリン、ケイ酸エーロゾル、又は金属粉末、例えばアルミニウム粉、又は鉄粉

さらに顔料、及び染料、例えばカーボンプラック、酸化物色素、及び酸化チタニウム、

難燃剤、粘性付与剤、流れ調整剤、例えばシリコン、ワックスおよびステアレート、離型剤として使用されているもの、接着促進剤、抗酸化剤、及び光安定剤を含むことができる。

組成物は好ましくは、高められた温度、例えば 約100 と250 Cの間、特に約150 と200 Cの間 で硬化される。

本発明の組成物は、例えば、接着剤、接着フィ ルム、パッチ、マトリックス樹脂、ワニス、又 はシーリング剤、又は硬化生成物の製造にほと

んど一般的に使用できる。

それらはそれぞれの場合に、使用の特定分野に 適当な配合に於いて、充填ないし未充填の状態 で、例えば塗料、被覆組成物、ワニス、圧縮組 成物、浸漬樹脂、注型用樹脂、含浸用樹脂、積 層樹脂、マトリックス樹脂および接着剤として 使用できる。

本発明は、接着剤、又は塗装組成物の製造のために、本発明の組成物を使用することにも関する。

硬化性組成物は、接着剤、特に1成分溶融接着 剤、又は1成分感圧溶融接着剤の製造に特に適 当である。

トリグリシジルイソシアヌレートは特に、ここではエポキシ樹脂成分(a) として適当である。 非結晶性ポリヒドロキシエステル(例えばジグ リシジルヘキサヒドロフタレート、及び6ない し10の炭素原子を持つ飽和脂肪族ジカルポン酸 のポリヒドロキシエステル、又はジグリシジル テレフタレートとセバシン酸のポリヒドロキシ エステル)をトリグリンジルイソシアヌレート (fcic)と配合し、盛圧溶融接着剤を得ることが できるこれらの混合物は硬化前に粘着性を有し ており、かくして部品の相互の結合を容易にす る。

これらの組成物の粘着性は室温で、少なくとも 3週間は確保される。

窓圧溶融接着剤は或る場合には、室温で、又は高められた温度で結合のために使用され、そして冷却されてもかなり粘着性を持つので、結合された部品は留め金、または同類の物ですぐに固定する必要がない。

そして最終硬化は、例えば180 でで行われる。 感圧溶融接着剤は硬化後も、かなり可 性があ り、にもかかわらず強い接着力を持つ。

結晶性ポリヒドロキシエステル (例えばビス フェノールA ジグリシジルエーテルとエイコ サン二酸のポリヒドロキシエステル) はTGICと 共に、例えば融点50-70 ℃、高い可挽性にも係 わらず、硬化後の非常に良好な接着強度、及び 接着性、そして加水分解に対して非常に良好な耐性を持つ溶融接着剤を与える。

上記の接着剤は、その高い可視性にもかかわらず、油を施した鋼を含めて、驚くべき良好な接着性によって特徴付けられる。その他に、良好な接着性がかろうじて、可視性接着剤でのみ達成されることである。

本発明の硬化性組成物で製造された塗膜も、特に良好な特性、特に高い可挠性と非常に良好な接着性によって特徴付けられる。

本発明はまた、上記で定義されたカルボキシル 末端基を含む少なくとも2個の異なるポリヒド ロキシエステルを含むポリエステル組成物に関 する。

幾つかの用途に於いて、硬化された生成物の特性はこの方法で、例えばより粘着性を与えるポリヒドロキシエステルと、より強さを与えるポリヒドロキシエステルとの組み合わせによって、

注文通りのものとすることができるので、成分

(b) としてそのような組成物の使用は、一定の

有利性を提供する。

そのようなポリエステル組成物は個々のポリヒドロキシエステルの混合によって、又は1個以上のジエポキサイドと1個、またはそれ以上のジカルボン酸の反応によって、又は1個以上のジカルボン酸と1個、またはそれ以上のジエボキサイドの反応によって製造できる。

(i) ジグリシジルエーテル(b1)、又は脂環式エポキシ樹脂(b3)とジカルボン酸の反応生成物、及び

(ii)ジグリシジルエステル(b2)とジカルボン酸の反応生成物を含むボリエステル組成物が、特に有効であることを証明された。

硬化性組成物の成分(b) としてこのような混合物の使用は、特に引張りせん断強度の高い感圧溶験接着剤をもたらす。

さらに、本発明はジェポキサイドのエポキサイド基あたり、ジカルボン酸のカルポキシル基が 1.04ないし1.4 存在するように、選択されたジェポキサイドおよびジカルボン酸の量で塩基性

触媒の存在下、(b2)ジグリシジルエステル、及び(b3)脂環式エポキシ樹脂から選ばれたジエポキサイドとジカルポン酸の反応によって得られるカルボキシル末端基を含むポリヒドロキシエステル、及び

それらの製造方法に関する。

上記の説明のように、反応は触媒として第三ア ミンの存在下、溶融状態で実施されるのが好ま しい。脂環式エポキシ樹脂の反応に於いて、

1.2 ないし1.3 モルのジカルボン酸をジェポキサイド 1 モルあたり使用するのが好ましい。

硬化性組成物に於ける、ポリヒドロキシェステル(b) のための上記使用方法に加えて、

本発明のカルボキシル末端基を含むボリヒドロ キシエステル、及びカルボキシル末端基を含む 少なくとも2個の異なるボリヒドロキシエステ ルを含む本発明のポリエステル組成物は、接着 剤製造のため、若しくは被覆または成型部品の 製造のための結合剤として使用できる。

それらは、その上、ポリヒドロキシエステルの

ヒドロキシル基、又はカルボキシル基と反応で きる官能基を含む化合物のための架構剤として も使用できる。

以下の実施例は本発明を説明する。

実施例

A. カルボキシル末端基を含むポリヒドロキシ エステルの製造方法

ジカルボン酸を、撹拌器および温度計を備えた スルホン化用フラスコ中、130-160 C (融点に よる)で融解する。

酸が融解した時、触媒を添加する。 (0,25重量%のベンジルジメチルアミン)

エポキシ化合物を少量加える。この添加中、油 浴温度をゆっくり130 でに下げる。

COOH合量が一定になるまで、反応を続ける。

ポリヒドロキシエステルを例えば、アセトン/ ヘキサン溶液、又はテトラヒドロフラン/ヘキ サン溶液から再沈澱することができる。

このように製造された生成物は、粘稠ないし箇 体の無定形または結晶性の物質であり、極性有 機溶媒に可溶で、-20 ないし50℃のTe

(10℃/分でメトラー(Metiler)TA 3000におけ

る示差走査熱量測定法】、又は

10-80 での融点、0.3-2.5 当量/kgのCOOR含量、10~130ng KOH/g の酸価、1000-4000 の分子量(テトラヒドロフランにおけるゲル浸透クロマトグラフィ)Mn 、及び

3-8の元/1.を有する。

以下のジェボキサイド、及びジカルボン酸はカルボキシル末端基を含むポリヒドロキシェステルの製造に使用される。

a) ジェポキサイド

BADGE1: 6.06当量/kgのエポキサイド含量を持 つビスフェノールA ジグリシジルエ

ーテル(結晶)

BADGE2: 2.62当量/kgのエポキサイド含量を持つ固体ビスフェノールA エポキシ樹

脂

HHDGE: 6.96当量/kgのエポキサイド含量を持つヘキサヒドロフタル酸ジグリシジル

エステル

TBGE: 7.19当量/kgのエポキサイド含量を持つテレフタル酸ジグリシジルエステル

ADGE: 7.74当量/kgのエポキサイド含量を持

つアジピン酸ジグリシジルエステル

PEGE: 7.19当量/kgのエポキサイド含量を持

つフタル酸ジグリシジルエステル

NPDGE: 7.32当量/kgのエポキサイド含量を持つネオペンチルグリコールエーテル

EPCB1: 7.21当量/kgのエポキサイド含量を持つ3.4-エポキシシクロヘキシルメチル
-3',4'- エポキシシクロヘキサンカル

ボキシレート

EPCH2: 5.00当量/kgのエポキサイド含量を持つビス(3,4- エポキシシクロヘキシルメチル) アジベート

<u>b) ジカルボン酸</u>

AA: アジピン酸

DDDA: ドデカン二酸

TDDA: テトラドデカン二酸

SEA: セバシン酸

EDA: エイコサン二酸

SUA: スペリン酸

実施例 L (BADGE1/AA):

24.3g(C00Hの0.33当量)のアジビン酸を撹拌器、 及び温度計を構えた200mlのスルホン化用フラ スコ中、165 °C (油浴温度)で融解し、

0.19mlのベンジルジメチルアミンを添加する. 50gのBEDGE1 (エポキサイドの0.3 当量) を30 分かけて少量添加する。この間、油浴の温度を ゆっくり130 でに下げる。

反応時間160 分後、COOH末端蒸含量が0.99当量 /kg、Tg24-38 でとなる。

<u>実施例2 (ARDGE/DDDA):</u>

60.38gのドデカン二酸(COOM の 0.52 当量)を 機律器、及び温度計を構えたスルホン化用フラ スコ中、130 ℃で融解し、

0.33mlのベンジルジメチルアミンを添加する。 72gのヘキサヒドロフタル酸ジグリシジルエス テル (エポキサイドの0.51当量) を添加する。 反応は130℃、2時間後に完了する。

不純な生成物のCOOH基合置は0.44当量/kg、

1g -11-1 Cである .

実施例3 (TDGE/TDDA):

61.6g のテトラデカン二酸(COOH の0.48当量) を撹拌器、及び温度計を構えたスルホン化用フ ラスコ中、140 でで融解する。

0.31町のベンジルジメチルアミンを添加し、

63.25 gのテレフタル酸ジグリンジルエステル (エポキサイドの0.455 当量)をゆっくり添加 する。添加後、油浴の温度を130 ℃に下げる。 180 分後、もはや遊離のエポキサイド基は検出 されず、その後、反応は中断される。

不純な生成物のCOOH未満結合量は0.63当量/kg、 Tg14-22 でである。

<u>実施例4-31:</u>

カルボキシル末端基を含む以下のボリヒドロキ シェステルは上記のとおり製造される。

実権	山亮物質		がりま	₩ II ' '	ポリヒドロキシエステル	7. 17.
159	00	C001100 35 10	11000	ı z	(z	78 または
	¥+ H	Iktylfo ME	(当位/kg)			2. (単観)
4	GGDGE/AA	1.05	1.10	2600	10500	-15~-3
ro	HIDGE/SEA	1.05	0.77	2500	16600	1-~6-
9	HUDGE/DDDA	1.05	0.44	3100	12800	1-~11-
~	UNDGE/TODA	1.05	0.43	3700	12700	(18)
~	NIIDGE/EDA	1.05	0.30	3500	21000	(61)
6	BADGE1/AA	1.09	0.99	1900	14900	24~38
10	BADGEL/SEA	1.10	0.70	1	i	10~18

実備	山宛物双		ボリヒト	 #	ポリヒドロキシエステル	>
Z	1000	四年 011000	HOOD	1 = 5	i z	化紫龙煤
	1441	zétytfe 当疑	(新羅/kg)			2. (財報)
11(114)	BADGE1/DDDA	1.05(1.10)	0.52	2900	20500	10 ~13
12(12A)	BADGE1/EDA	1.05(1.20)	0.63	2700	16800	(28)
13	TDGE/AA	1.05	0.71	2300	29500	14 ~ 22
14	TDGE/SEA	1.05	1.44	1600	2000	2 ~8
15	TOGE/DODA	1.05	1.05	3700	11700	(24)
16	TDGE/TDDA	1.05	0.63	3000	9200	(75)

COOH の当極 COOH N. N. xff9ffg 当位 (当位/kg) 8ADGE1/ 1.08 1.66 1500 5400 59 1.08 1.36 1600 5600 11.62/ 1.36 1600 5600	東路	山発物質	*	1 1 1	ポリヒドロキシエステル	ハチル
##DGE/BADGE1/ DDDA(1.35/ 1.08 1.66 1500 5400 0.56/1.59 難疑的) ##DGB/BADGE1/ 1.07 1.36 1600 5600 AA/DDDA(1.62/ 0.56/0.87/0.44	塞	京 年 の 1000	C00H	× .	l Z	TB嵌花缸
HHDGE/BADGE1/ DDDA(1.35/ 1.08 1.66 1500 5400 0.56/1.59 虹風部) HHDGB/BADGE1/ 1.07 1.36 1600 5600 AA/DDDA(1.62/ 0.56/0.87/0.44		a kt b f f n 当 B	(当世/kg)			2. (草程)
DDDA(1.35/ 1.08 1.66 1500 5400 0.56/1.59 重量的) HHDGB/BADGE1/ 1.07 1.36 1600 5600 4A/DDDA(1.62/ 0.56/0.87/0.44	2	HRDGE/BADGE1/				
0.56/1.59 取以 助) HHDGB/BADGE1/ 1.07 1.36 1600 5600 AA/DODA(1.62/ 0.56/0.87/0.44			1.66	1500	5400	-21~-12
重量的) HHDGB/BADGE1/ 1.07 1.36 1600 5600 AA/DODA(1.62/ 0.56/0.87/0.44		0.56/1.59				(45, 55)
HHDGB/BADGE1/ 1.07 1.36 1600 5600 AA/DDDA(1.62/ 0.56/0.87/0.44		(地西南				
HHDGB/BADGE1/ 1.07 1.36 1600 5600 AA/DDDA(1.62/ 0.56/0.87/0.44 種語)		The state of the s				
AA/DDBA(1.62/ 0.56/0.87/0.44 草量部)	83		1.36	1600	2600	-15~-6
0.56/0.87/0.44		AA/DODA(1.62/				
	***************************************	0.56/0.87/0.44				
		(品)				
		The state of the s				

東語	出発物質		米リト	- F D 4	ポリヒドロキシエステル	アル
**	78431	C008の当費 1fty/fo 当数	(公司(公司)	١£	I .	78 または (融点) C
13	HRDGE/BADGE1/					
	0.56/1.07/	71.1	12.2	0001	3100	-23~-13 (46)
	0.44 監 量 部)					
20	BADGE2/DDDA	1.10	0.51	3600	19500	38~44
12	BADGE2/SUA	1.10	0.53	5000	17100	47~56
22	ADGE/AA	1.10	1.10	1000	4600	-33~-24
23	ADGE/ODDA	1.05	0.88	2100	7400	(53, 9)
54	PDGE/AA	1.10	1.94	1800	4300	10~21
	to the challenge supplies to the same to be a second to the same of the same o					

実品	出発物質		ボード	- n	ポリヒドロキシエステ	7.
25	93	夏景 (011002)	1000	ı 🖆	12	TB东北陆
	**	1444160 当量	(当量/kg)			0. (脊髓)
25	PDGE/SEA	1.05	0.10	2500	9600	-8~2
97	PDGE/DDDA	1.05	0.55	2900	14400	-11-2
27	PDGE/TODA	1.05	0.70	2700	11700	(22)
28	EPCH1/DDDA	1.20	1.28	2300	18700	4~19
29	EPCU1/AA	1.20	1.59	1500	14600	28~41
30	NPDGE/AA	1.10	1.71	2200	8700	-31~-21
31	EPCH2/AA	1.20	1.52	2400	42600	23~34

B. カルポキシル末端基を含むポリヒドロキシ エステル及びトリグリシジルイソシアヌレート (TGIC)からなる硬化性組成数

硬化前、組成物はかなり粘稠(Ta-10~20℃)、 粘着性、又は固体混合物(Toでまでの融点)で あり、空温で良好な貯蔵安定性を持つ。(残留 エンタルビーの減少が2週間以内に半分より多 くない、多くの組成物はより低い減少を示す) 粘着性組成物は室温で、少なくとも3週間、そ れらの粘着性を保持する。これらの混合物は空 温ないし高められた温度で適用することができ、 冷却後、41及び脱脂された鋼にしっかり付着す る。

硬化後:Tg 0-30℃の非常に可挽性の透明ない し墨ったフィルム、75μmの層のエリクセン コップ状変形>10αm:脱脂された、及び油に浸 した鋼に対して非常に良好な接着性:17MPa ま での引張りせん断強度。これは可挠性製品とし ては非常に高いものである。

B.1. 感圧溶融接着剤の製造、及びその使用方法

実施例32:

実施例 4 に従って製造されたREADGE およびアジピン酸の酸ポリヒドロキシエステル2 g、及び実施例11に従って製造されたBADGE1及びドデカン二酸の酸ポリヒドロキシエステル2.5gを、110でで0.39gのTGICと混合する。冷却により、基った、粘性の高い、粘着性塊を形成する。粘着性は室温で少なくとも、3 週間は持続する。110 でで油に浸された綱に接着。

硬化 (30分、180 ℃) 後の引張りせん断強度 (DIN53283):15MPa

2 週間、室温で水中に貯蔵後: 12.5MPa 硬化後のTg:17-25℃。

実施例33:

実施例でに従って製造されたBRDGE およびTDDA の酸ポリヒドロキシエステル2.5 g、及び実施例11に従って製造されたBADGE1/DDBA の酸ポリヒドロキシエステル1gを、0.17gのTGICと混合する。冷却により、透明な、結性の高い、特権関を形成し、その結着性は窒温で少なくと

も、3週間は持続する。

110 ℃で油に浸された鋼に接着。

硬化 (38分、180 ℃) 後の引張りせん断強度 (DIN53283):6 MPa

2 週間、室温で水中に貯蔵後:1.5MPa 硬化後のTg:1-9℃。

実施例34:

実施例14に従って製造されたテレフタル酸ジグリシジルエステルおよびセパシン酸のポリヒドロキシエステル2.5 gを、110 ℃で0.38gのTGICと混合する。冷却により、透明で、粘性の高い、粘着性塊を形成し、その粘着性は室温で少なくとも、3週間は持続する。

硬化 (30分、180 ℃) 後の引張りせん断強度 (DIN53283):IIMPa

2 週間、室温で水中に貯蔵後: 6.9MPa 硬化後のTg:16-26 で。

実施例35-44:

以下の歴田溶融接着新觀剤を上記のとおり製造 し、180 で、30分間硬化し、試験する。

実施	組成	Tg	引張りせ	ん断力(DIN53283)
64		(°C)	硬化直後	室温で2週間
			(MPa)	水中で貯蔵後
			Additional designation of the second	(MPa)
35	実施例4の			
	生成物2.50g			
	実施例11A の	7-24	15.0(70%K')	12.5(100%A*)
	生成物2.50g			
	TGIC 0.39g			-
36	実施例4の			
	生成物2.50g			
	実施例11A の	17-24	17.0(70%K')	9.2(100%A*)
	生成物1.00g			
İ	TG1C 0.31g			
37	実施例7の			
	生成物2.50g			
	実施例IIA の	1-9	6.0(90%A ²)	1.5(100%A2)
	生成物1.00g			
ł	TGIC 0.17g			

実施	组成	Tg	引張りせ	ん断力(DIN53283)
Ħ	The second secon	(3)	硬化直後 (MPa)	室温で2週間 水中で貯蔵後 (MPa)
38	実施例14の 生成物2.50g tGIC 0.38g	16-26	11.0(90% 4*)	6.9(100%A ²)
39	実施例18の 生成物2.50g fGIC 0.36g	18-26	15.7(50%K')	
40	実施例19の 生成物2.50g TGIC 0.59g	9-21	10.8(40%K')	
41	実施例27の 生成物5.00g TGIC 0.38g	-4- 4	2.5(70%K')	2.3(70%A ²)

- ' 凝集破壞
- 2 接着破壞

8.2.溶融接着剤の製造、及びその使用方法 実施例42:

実施例11に従ってBADGE1/ ドデカン二酸から製造された酸ポリヒドロキシエステル19.1g を110 でで1.16g のTGICと混合すると、均質な透明溶液が形成される。

冷却により、Tgが5-17℃の固体、非結着性の塊を 形成する。

油に浸された鋼に接着:製剤は110 ℃で融解し、油に浸された鋼のシートに適用され、その系は接着され、180 ℃、30分間で硬化される。

硬化後の引張りせん断強度 (DIN53283):14.7mPa 2 週間、室温で水中に貯蔵後の引張りせん断強 度: 8 MPa

硬化された製剤の18: 17-27 ℃

実施例43:

実施例 7 に従って製造されたHHDGE/テトラデカン 二酸のポリヒドロキシエステル 5 g、及び実施例 12に従って製造されたBADGE1/ エイコサン二酸の 酸ポリヒドロキシエステル 5 gを110 でで0.68g のTGICと混合する。

冷却により、融点54℃の固体、非粘着性の塊を形成する。

油に浸された鋼に接着:製剤は110 ℃で融解し、油に浸された鋼のシートに適用され、その系は接着され、180 ℃、30分間で硬化される。

硬化後の引張りせん断強度 (DIN53283):10.2MPa 2 週間、室温で水中に貯蔵後の引張りせん断強 度:6.6 MPa

硬化された製剤のTg: -10-17℃

結晶部分の融点:41℃

実施例44-53:

以下の溶融接着製剤は上記のとおり製造され、硬化の前後で試験される。(180 ℃で30分)

実施	組成	融点数	u Tg	硬化後の	引張りせん断	強度(BIN53283)
例		(℃)		外観	(MPa)	
		硬化			硬化直後	2週間水中で
		前	/ 後			貯蔵後
44	実施例8の					
	生成物5.00g	融点	融点	可挠性	6.8(50%A')	6.80(50%A')
	0.16g ØTGIC	60	40-50	基った		
45	実施例11の			and the same of th		
	生成物19.10g	Tg	Tg	可挠性	14.7(80%A')	8.0(100%A')
	1.16g OTGIC	5-17	17-27	軽った		
46	実施例12A の					
	生成物13.2g	融点	融点	可挠性	15.3(50%A1)	16.2(100%A')
	1.16g ØTGIC	56	20.48	透明		
47	実施例8の					
	生成物5.00g	Tg	疑固点	可挠性	9.7(80%A')	8.5(100%A1)
	実施例12A の				-	
	生成物5.00g	-8-3	38	透明		
	0.53g ØTGIC			•		
	<u> </u>	L	L		L	L

実施例	組成	融点±な (℃) 硬化		硬化後の 外観	引張りせん断発 (MPa) 硬化直後	意度(BIN53283) 2週間水中で 貯蔵後
48	実施例7の 生成物5.00g 実施例12Aの	融点	融点41	可抚性	10.2(100%A')	6.6(100%A ¹)
	生成物5.00g 0.68g のTGIC	54	7g -12-17	少し曇った		
49	実施例4の 生成物5.00g	凝点	融点46	可挠性	8.7(50%A')	5.8(100%4')
	実施例124 の 生成物5.00g 0.93g のTGIC	54	Tg5-15	曇った		
50	実施例5の 生成物5.00g	Tg	融点		5.0(50XK²)	
Andrew Control of the	実施例12A の 生成物5.00g 0.89g のTGIC	-11-0	47	and the state of t		

実施例	組成	雜点額 (℃)	_	硬化後の 外観	引張りせん断 (MPa)	強度(DIN53283)
•		硬化			硬化直後	2週間水中で
		前	/ 後			貯蔵後
51	実施例24の					
	生成物5.00g		Tg		15.0 (50%K²)	6.5(80%A')
	0.51g Offic		23-29			
52	実施例28の					
	生成物5.00g		Tg		15.9(50%K2)	13.7(80%A')
	0.71g Offic		17-32			
53	実施例29の					
	生成物5.00g		Tg		13.0(801K²)	12.5(100%A')
	0.86gØTGIC		57-59			·

- '接着破壕
- 2 凝集破壞

8.3. 塗膜の製造方法

実施例54:

実施例43で得た組成物を110 ℃で溶解し、AIシートに三角形の補助器で適用し、75μmの厚さのフィルムを形成する。フィルムは180 ℃、30分間で硬化される。硬化されたフィルムのエリクセンコップ状変形(DIN53156)は10mm以上である。

実施例55:

実施例32で得た組成物を、実施例54で記載された A1シートに75μmの厚さのフィルムとして適用し、 180 で、30分間硬化する。

硬化されたフィルムのエリクセンコップ状変形 (DIN53156) は10mm以上である。

<u>実施例55-60:</u>

塗膜は上記と類似の方法で、以下の組成物から製 造され、エリクセンコップ状変形は測定される。

実施例	組成物が製造 された実施例 番号	エリクセンコップ状変形 (DIN53156)
56	35	> 10mm
57	36	> 10mm
58	46	> 10mm
59	48	> 10==
60	50	> 10mm

C.カルボキシル末端基を含むポリヒドロキシエステル、及びピスフェノールA、クレゾール、ノボラック、又はジアミノジフェニルメタンのグリシジル誘導体の硬化性組成物

実施例61:

実施例20の生成物 5 g を約110 ℃で0.46g のBADG EI と混合する。

冷却により、Tg が38-44 での固体、非粘着性の 塊を形成する。

油に浸された鋼に接着:組成物は110 ℃で融解し、

特開平3-91524 (15)

油に浸された鋼のシートに適用され、その系は接 着され、180 ℃、30分間で硬化される。

硬化後の引張りせん断強度:18.2MPa

2 週間、室温で水中に貯蔵後の引張りせん断強 度:15.2MPa

硬化された製剤のTg: 50-56 ℃

実施例62:

実施例24の生成物 5 g を100 ℃で1.04g のエボキシクレゾールノボラック (4.6 エボキシ当量/kg) と混合する。

冷却により、Tg 11-21 ℃の間体、非粘着性の塊を形成する。

実施例61に記載されたように油に浸された鋼に接着。

硬化後の引張りせん断強度:9.8MPa

2 週間、室温で水中に貯蔵後の引張りせん断強 度:5.7 MPa

硬化された製剤のTg: 15-27℃

実施例63:

実施例4の生成物2.5 g、及び実施例20の生成物

2.5 gを100 ℃で0.48g のテトラグリンジルアミ ノジフェニルメタン0.48g と混合する。

実施例61に記載されたように袖に浸された鋼に接着。

硬化後の引張りせん断強度:14.98Pa

2 週間、室温で水中に貯蔵後の引張りせん断強 度:13.3 MPa

硬化された製剤のTg: 24-33℃

出願人 チバーガイギー

アクチエンゲゼルシャフト

代理人 (弁理士) 萼 優美

(ほか2夕)