EEGSIBA DIS9B

email: moseswar@berkeley.edy OH: W 10AM-12PM (HWP)

Lagistical details

- Don't forget MT2 next week DReview sessions on Friday, Saturday

Learning Objectives

- (Harto dentity floating nodes (where does charge conservation exply?)

 (2) Charge sharing algorithm (finding voltages and Charges in aswitch-capacitor circuit)

- Playlist (suggest & Ita jurebox
- O Troyboi ili (suggested by Lucy)
- 2 H.E.R. Best Part fit. Daniel Caesar
- 3) MONSUNEoutta my mind

$\begin{array}{ccc} \text{EECS 16A} & \text{Designing Information Devices and Systems I} \\ \text{Fall 2020} & \text{Discussion 9B} \end{array}$

1. Capacitors and Charge Conservation

(a) Consider the circuit below with $C_1 = C_2 = 1 \,\mu\text{F}$ and an open switch. Suppose that C_1 is initially charged to $+1 \,\text{V}$ and that C_2 is charged to $+2 \,\text{V}$. How much charge is on C_1 and C_2 ?

(b) Now the switch is closed (i.e. the capacitors are connected together.) What are the voltages across and the charges on C_1 and C_2 ?

Vigorian Refere

Since charge cannot feare the top node, then the total charge must stay the same $C_1 = C_1$ Charge conservation $C_1 = C_1$ $C_2 = C_1$ $C_3 = C_1$ $C_4 = C_1$ $C_4 = C_1$ $C_4 = C_1$ $C_4 = C_4$ $C_$

$$3\mu c = QH + Q_H^{\dagger} = 2Q_H^{\dagger} \Rightarrow Q_H^{\dagger} = \frac{3\mu c}{2} = 1.5\mu c$$

· node from which charge
cannot escape or enter
connected to opens or only
corporates

· Charge conservation applies

2. Charge Sharing

Consider the circuit shown below. In phase ϕ_1 , the switches labeled ϕ_1 are on while the switches labeled ϕ_2 are off. In phase ϕ_2 , the switches labeled ϕ_2 are on while the switches labeled ϕ_1 are off.

(a) Draw the polarity of the voltage (using + and - signs) across the two capacitors C_1 and C_2 . (It doesn't matter which terminal you label + or -; just remember to keep these consistent through phase 1 and 2!)

UCB EECS 16A, Fall 2020, Discussion 9B, All Rights Reserved. This may not be publicly shared without explicit permission. $\frac{2C_1C_2}{C_1+C_2}V_{in} = U_i\left(c_1+c_2\right) \Rightarrow U_i = \frac{2C_1C_2}{C_1+C_2}V_{in} = V_{ovt}$

(d) How will the charges be distributed in phase ϕ_2 if we assume $C_1 \gg C_2$?

Volt =
$$\frac{2 C_1 C_2}{(C_1 + C_2)^2} V_{in}$$

$$C_1 = \frac{1}{V_1} V_{in} V_{in}$$

$$C_2 = \frac{1}{V_1} V_{in} V_{in}$$

$$C_3 = \frac{1}{V_1} V_{in} V_{in}$$

$$C_4 = \frac{1}{V_1} V_{in} V_{in}$$

$$C_1 = \frac{1}{V_1}$$

Intuition for C1>>> C2 => The charge mostly opes on the larger capacitor! (C1)

Phase
$$\phi_1$$

Capacitor! (C₁)

Vin ϕ_1

Capacitor! (C₁)

Vin ϕ_2

Capacitor! (C₁)

Vin ϕ_1

Capacitor! (C₁)

Vin ϕ_2

Capacitor! (C₁)

Vin ϕ_1

Capacitor! (C₁)

Fig. 6 - Caping

Capacitor! (C₁)

Fig. 6 - Caping

Capacitor! (C₁)

Vin ϕ_1

Capacitor! (C₁)

Fig. 6 - Caping

Capacitor! (C₁)

Fig. 6 - Caping

Capacitor! (C₁)

Vin ϕ_1

Capacitor! (C₁)

Fig. 6 - Caping

Capacitor! (C₁)

Vin ϕ_1

Capacitor! (C₁)

Fig. 6 - Caping

Capacitor (C₁)

Fig. 7 - Capacitor (C₁)

Fig. 7 - Caping

Capacitor (C₁)

Fig. 7 - Ca

UCB EECS 16A, Fall 2020, Discussion 9B, All Rights Reserved. This may not be publicly shared without explicit permission.

lim Con=Cz

(V= G1) C1 (odes like a short to C2.