Introduction to observational studies

Thomas Leavitt and Ben Hansen June 26, 2024

Review: Randomized Experiments

Randomized experiments

- Treatment: z_i is indicator of treatment for unit i, where $i=1,\ldots,N$
 - The subscript i is a placeholder referring to arbitrary unit
 - ullet E.g., z_5 is the treatment indicator for the 5th unit

$$z_i = \begin{cases} 1 & \text{if unit } i \text{ assigned to treatment} \\ 0 & \text{otherwise} \end{cases}$$

- In randomized controlled trial,
 - each subject assigned to treatment and control via known, chance process
 - E.g., if we flip a fair coin for each unit, probability of treatment assignment is 0.5 for all units; $\Pr{(Z_i=1)=0.5}$ for all i

Randomized experiments

lacksquare Randomization \Longrightarrow

procedure for generating estimates of ATE will be correct, on average

• Randomization is foundation for valid hypothesis tests about causal effects

■ The "reasoned basis" for inference (Fisher, 1935, p. 14)

Observational study:

Empirical investigation in which "it is not feasible to use controlled experimentation in the sense of being able to ... assign subjects at random to different procedures" (Cochran, 1965)

- In observational study, subjects select into treatment and control conditions via unknown, chance process
 - Think of this as "assignment to treatment group on the basis of a covariate" (Rubin, 1977)

- In observational study, subjects select into treatment and control conditions via unknown, chance process
- Propensity score

Probability of selecting into treatment as a function of baseline covariates

- Propensity scores are unknown and cannot be directly measured
- In principle, baseline covariates that determine treatment assignment probabilities can be measured

Model of an observational study (Rosenbaum, 2002)

Independent but not necessarily identically distributed assignments

$$\Pr(\mathbf{Z} = \mathbf{z}) = \prod_{i=1}^{N} \pi_i^{z_i} (1 - \pi_i)^{1 - z_i},$$
 (1)

where $\pi_i \in [0,1]$ is probability of treatment

- Propensity score
- For each unit, π_i is function of covariates, either observed, $m{x}_i$, or unobserved, $m{u}_i$
 - Under no hidden bias, $\pi_i = \lambda(x_i)$, where λ is a function, $\lambda: \mathbb{R}^K \mapsto [0,1]$, whose form is unknown
 - Under common support, $\pi \in (0,1)$ for all $i=1,\ldots,N$

- We want to compare "apples to apples," not "apples to oranges" (Rubin and Waterman, 2006)
 - I.e., make strata of treated and control units homogeneous in propensity scores

- Although propensity scores unknown, if any two units are same on covariates that determine treatment assignment probability
 - ⇒ identical propensity scores

- If we can justify we are comparing treated and control units with same propensity scores
 - ightarrow Then act as if we have mini randomized experiment within each block
- We do not need to know units' true propensity scores
- We need to justify only that propensity scores are the same within blocks
 - E.g., in block A with one treated and one control unit, it does not matter if propensity scores are 0.7 and 0.7; 0.2 and 0.2; or any other values

- More formally, let $s=1,\ldots,S$ tun over S strata
- If $\pi_{s,i}=\pi_{s,j}$ for all $i,j=1,\ldots,n_s$ in stratum s, then

$$\Pr\left(\boldsymbol{Z}_{z}=\boldsymbol{z}_{s}\right)=\frac{1}{\left|\Omega_{s}\right|}\text{ for all }\boldsymbol{z}_{s}\in\Omega_{s},\text{ where }\Omega_{s}=\left\{\boldsymbol{z}_{s}:\sum_{i=1}^{n_{s}}z_{s,i}=n_{1,s}\right\}$$

* As-if randomization holds conditional on observed number of treated units

- E.g., stratum with 3 units, 1 treated and 2 control, all with propensity score of 0.35
- Without conditioning on 1 treated unit, model in (1) yields

$$\Pr\left(\mathbf{Z}_{s} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{\top}\right) = (1 - 0.35)(1 - 0.35)(1 - 0.35) = 0.274625$$

$$\Pr\left(\mathbf{Z}_{s} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\top}\right) = (1 - 0.35)(1 - 0.35)(0.35) = 0.147875$$

$$\Pr\left(\mathbf{Z}_{s} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{\top}\right) = (1 - 0.35)(0.35)(1 - 0.35) = 0.147875$$

$$\Pr\left(\mathbf{Z}_{s} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}\right) = (0.35)(1 - 0.35)(1 - 0.35) = 0.147875$$

$$\Pr\left(\mathbf{Z}_{s} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top}\right) = (1 - 0.35)(0.35)(0.35) = 0.079625$$

$$\Pr\left(\mathbf{Z}_{s} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{\top}\right) = (0.35)(1 - 0.35)(0.35) = 0.079625$$

$$\Pr\left(\mathbf{Z}_{s} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}\right) = (0.35)(0.35)(1 - 0.35) = 0.079625$$

$$\Pr\left(\mathbf{Z}_{s} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^{\top}\right) = (0.35)(0.35)(0.35) = 0.042875$$

 With conditioning on 1 treated unit, model in (1) and def. of conditional probability yield

$$\Pr\left(\mathbf{Z}_{s} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{\top}\right) = 0.147875 / [(0.147875)(3)] = 1/3$$

$$\Pr\left(\mathbf{Z}_{s} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{\top}\right) = 0.147875 / [(0.147875)(3)] = 1/3$$

$$\Pr\left(\mathbf{Z}_{s} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\top}\right) = 0.147875 / [(0.147875)(3)] = 1/3$$

- We now have uniform distribution on Ω_s

I.e., completely randomized experiment within stratum \boldsymbol{s}

Two concerns

- In practice, even under no hidden bias, exact stratification on covariates determining assignment probabilities is difficult or impossible
 - Exact stratification on covariates sufficient, but not necessary, for homogeneous assignment probabilities within strata
 - Common instead to stratify on **estimated** propensity score
- ullet Propensity scores may differ within strata due to unobserved covariates, u

We will address both concerns in days on matching and sensitivity analysis

Estimation and testing

Estimation and testing

- Create strata of similar units (in their unobservable propensity scores)
- Then estimate ATE or test hypotheses about effects within blocks
 - Act as-if we have a mini randomized experiment within blocks

Overall estimate or test then averages over results in all mini-experiments

Example: Estimation and testing

- Rosenbaum (2017, p. 66-70)
 - Treatment vs. control comparison
 - Outcome: mortality
 - Two covariates
 - age (young or old)
 - sex (male or female)
 - Probability of treatment for young men and young women = 0.2
 - ullet Probability of treatment for old men and old women =0.8

Example: Estimation and testing

Table 5.1. A small simulated example, with randomized treatment assignment inside each of four strata, and with no treatment effect

Stratum 1: Older men							
Group	Dead	Alive	Total	Morality rate (%)			
Treated	31,868	47,960	79,828	39.9			
Control	8,132	12,040	20,172	40.3			
		Stratum 2: Olde	r women				
Group	Dead	Alive	Total	Morality rate (%)			
Treated	23,983	55,796	79,779	30.1			
Control	6,017	14,204	20,221	29.8			
		Stratum 3: Your	iger men				
Group	Dead	Alive	Total	Morality rate (%)			
Treated	3,993	16,028	20,021	19.9			
Control	16,007	63,972	79,979	20.0			
		Stratum 3: Young	er women				
Group	Dead	Alive	Total	Morality rate (%)			
Treated	2,021	17,777	19,798	10.2			
Control	7,979	72,223	80,202	9.9			

Figure 1: (Rosenbaum, 2017, p. 67)

Example: Estimation and testing

Table 5.2. The four strata from Table 5.1 collapsed, leading to the false impression of a treatment effect

Merged table							
Group	Dead	Alive	Total	Morality rate (%)			
Treated	61,865	137,561	199,426	31.0			
Control	38,135	162,439	200,574	19.0			

Figure 2: (Rosenbaum, 2017, p. 69)

- Older people more likely to be treated (prob = 0.8)
- Older people also have greater baseline mortality rate
- treated group composed mainly of older people and control group composed mainly of younger people
- \implies appears to be an effect when there is none

References

- Cochran, W. G. (1965). The planning of observational studies of human populations. Journal of the Royal Statistical Society. Series A (General) 128(2), 234–266.
- Fisher, R. A. (1935). The Design of Experiments. Edinburgh, SCT: Oliver and Boyd.
- Rosenbaum, P. R. (2002). Observational Studies (2nd ed.). New York, NY: Springer.
- Rosenbaum, P. R. (2017). Observation and Experiment: An Introduction to Causal Inference. Cambridge, MA: Harvard University Press.
- Rubin, D. B. (1977). Assignment to treatment group on the basis of a covariate. Journal of Educational Statistics 2(1), 1–26.
- Rubin, D. B. and R. P. Waterman (2006). Estimating the causal effects of marketing interventions using propensity score methodology. Statistical Science 21(2), 206–222.