Reinforcement Learning China Summer School

Sample Efficiency in Online RL

Zhuoran Yang

Princeton \longrightarrow Yale (2022)

August 16, 2021

Motivation: sample complexity challenge in deep RL

Success and challenge of deep RL

DRL = Representation (DL) + Decision Making (RL)

board games

robotic control

image source: Deepmind, OpenAI, Salesforce Research.

computer games

policy making

Success and challenge of deep RL

- AlphaGo: 3×10^7 games of self-play (data), 40 days of training (computation)
- AlphaStar: 2×10^2 years of self-play, 44 days of training
- Rubik's Cube: 10⁴ years of simulation, 10 days of training

Success and challenge of deep RL

- AlphaGo: 3×10^7 games of self-play (data), 40 days of training (computation)
- AlphaStar: 2×10^2 years of self-play, 44 days of training
- Rubik's Cube: 10⁴ years of simulation, 10 days of training

Our goal: provably efficient RL algorithms

- Sample efficiency: how many data points needed?
- Computational efficiency: how much computation needed?
- Function approximation: allow infinite number of observations?

Background: Episodic Markov decision process

Episodic Markov decision process

- For $h \in [H]$, in the h-th step, observe state s_h , takes action a_h
- Receive immediate reward r_h , $\mathbb{E}[r_h|s_h=s,a_h=a]=r_h(s,a)$
- Environment evolves to a new state $s_{h+1} \sim P_h(\cdot|s_h, a_h)$

Episodic Markov decision process

- For $h \in [H]$, in the h-th step, observe state s_h , takes action a_h
- Receive immediate reward r_h , $\mathbb{E}[r_h|s_h=s,a_h=a]=r_h(s,a)$
- Environment evolves to a new state $s_{h+1} \sim P_h(\cdot|s_h, a_h)$
- Policy $\pi_h \colon \mathcal{S} \to \mathcal{A}$: how agent takes action at h-th step
- Goal: find the policy π^* that maximizes $J(\pi) := \mathbb{E}_{\pi}[\sum_{h=1}^{H} r_h]$

Episodic Markov decision process

For simplicity, fix $s_1 = s^*$, $r_h = r$, $P_h = P$ for all h.

Contextual bandit is a special case of MDP

- Contextual bandit (CB): observe context $s \in A$, take action $a \in A$, observe (random) reward r with mean $r^*(s, a)$
- Optimal policy $\pi^*(s) = \arg\max_{a \in \mathcal{A}} r^*(s, a)$

Contextual bandit is a special case of MDP

- Contextual bandit (CB): observe context $s \in A$, take action $a \in A$, observe (random) reward r with mean $r^*(s, a)$
- Optimal policy $\pi^*(s) = \arg \max_{a \in \mathcal{A}} r^*(s, a)$
- CB is a MDP with H=1
- ullet Multi-armed bandit (MAB): H=1, |A| finite, and $|\mathcal{S}|=1$

MDP is significantly **more challenging** than CB due to **temporal dependency** (i.e., state transitions)

Informal definition of RL: Solve the MDP when the environment (r, P) is unknown

(i) generative model: able to query the reward r_h and next state s_{h+1} for any $(s_h, a_h) \in \mathcal{S} \times \mathcal{A}$

- (i) generative model: able to query the reward r_h and next state s_{h+1} for any $(s_h, a_h) \in \mathcal{S} \times \mathcal{A}$
- (ii) offline setting: given a dataset $\mathcal{D} = \{(s_h^t, a_h^t, r_h^t)\}_{h \in [H], t \in [T]}$ (T trajectories), learn π^* without any interactions

- (i) generative model: able to query the reward r_h and next state s_{h+1} for any $(s_h, a_h) \in \mathcal{S} \times \mathcal{A}$
- (ii) offline setting: given a dataset $\mathcal{D} = \{(s_h^t, a_h^t, r_h^t)\}_{h \in [H], t \in [T]}$ (T trajectories), learn π^* without any interactions
- (iii) online setting: without any prior knowledge, learn π^* by interacting with the MDP for T episodes

- (i) generative model: able to query the reward r_h and next state s_{h+1} for any $(s_h, a_h) \in \mathcal{S} \times \mathcal{A}$
- (ii) offline setting: given a dataset $\mathcal{D} = \{(s_h^t, a_h^t, r_h^t)\}_{h \in [H], t \in [T]}$ (T trajectories), learn π^* without any interactions
- (iii) online setting: without any prior knowledge, learn π^* by interacting with the MDP for T episodes
 - (i) learning from model query complexity
 - (ii) learning from data sample complexity
 - (iii) learning by doing sample complexity + exploration

Online RL: Pipeline

- Initialize $\pi^1 = \{\pi^1_h\}_{h \in [H]}$ arbitrarily
- For each $t \in [T]$, execute π^t , get a trajectory $\operatorname{Traj}(\pi^t)$
- Store $\operatorname{Traj}(\pi^t)$ into dataset $\mathcal{D}_t = \{\operatorname{Traj}(\pi^i), i \leq t\}$
- Update the policy via RL algorithm (need our design)

Sample efficiency in online RL: regret

Measure sample efficiency via regret:

$$ext{Regret}(T) = \sum_{t=1}^{T} \underbrace{\left[J(\pi^{\star}) - J(\pi^{t})\right]}_{ ext{suboptimality in } t ext{-th episode}}$$

Sample efficiency in online RL: regret

Measure sample efficiency via regret:

$$\mathtt{Regret}(T) = \sum_{t=1}^{T} \underbrace{\left[J(\pi^{\star}) - J(\pi^{t})\right]}_{\mathtt{suboptimality in } t\text{-th episode}}$$

- Why regret is meaningful?
 - Define a random policy $\widetilde{\pi}^T$ uniformly sampled from $\{\pi^t, t \in [T]\}$. Suppose Regret(T), then $J(\pi^*) J(\widetilde{\pi}^T) = \text{Regret}(T)/T$

Sample efficiency in online RL: regret

Measure sample efficiency via regret:

$$\mathtt{Regret}(T) = \sum_{t=1}^{T} \underbrace{\left[J(\pi^{\star}) - J(\pi^{t})\right]}_{\mathtt{suboptimality in } t\text{-th episode}}$$

- Why regret is meaningful?
 - Define a random policy $\widetilde{\pi}^T$ uniformly sampled from $\{\pi^t, t \in [T]\}$. Suppose Regret(T), then $J(\pi^*) J(\widetilde{\pi}^T) = \text{Regret}(T)/T$
 - If Regret(T) = o(T), when T sufficiency large, $\tilde{\pi}^T$ is arbitrarily close to optimality
- Goal: Regret $(T) = \widetilde{\mathcal{O}}(\sqrt{T} \cdot \text{poly}(H) \cdot \text{poly}(\dim))$

Challenge of Online RL: exploration & uncertainty

exploration vs. exploitation

function estimation

Challenge of Online RL: exploration & uncertainty

How to assess estimation uncertainty based on adaptively acquired data?

How to construct exploration incentives tailored to function approximators?

Warmup example: LinUCB for linear CB

- Setting of linear CB:
 - Observation structure: observe (perhaps adversarial) $s^t \in \mathcal{S}$, take action $a^t \in \mathcal{A}$, receive bounded reward $r^t \in [0,1]$
 - $\mathbb{E}[r^t|s^t=s,a^t=a]=r^\star(s,a)$ for all $(s,a)\in\mathcal{S} imes\mathcal{A}$

- Setting of linear CB:
 - Observation structure: observe (perhaps adversarial) $s^t \in \mathcal{S}$, take action $a^t \in \mathcal{A}$, receive bounded reward $r^t \in [0,1]$
 - $\mathbb{E}[r^t|s^t=s,a^t=a]=r^\star(s,a)$ for all $(s,a)\in\mathcal{S} imes\mathcal{A}$
 - Linear reward function: $r^*(s, a) = \phi(s, a)^T \theta^*$
 - $\phi \colon \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$: known feature mapping

- Setting of linear CB:
 - Observation structure: observe (perhaps adversarial) $s^t \in \mathcal{S}$, take action $a^t \in \mathcal{A}$, receive bounded reward $r^t \in [0,1]$
 - $\mathbb{E}[r^t|s^t=s,a^t=a]=r^\star(s,a)$ for all $(s,a)\in\mathcal{S} imes\mathcal{A}$
 - Linear reward function: $r^*(s, a) = \phi(s, a)^\top \theta^*$
 - $\phi \colon \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$: known feature mapping
- Normalization condition: $\|\theta^\star\|_2 \leq \sqrt{d}$, $\sup_{s,a} \|\phi(s,a)\|_2 \leq 1$
 - Why? Include MAB as a special case: $|\mathcal{S}|=1,\ d=|A|,\ \phi(s,a)=\mathbf{e}_a,\ \theta^\star=(\mu_1,\mu_2,\cdots,\mu_A) \text{ with } \mu_a\in[0,1] \text{ for all } a\in\mathcal{A}$

- Setting of linear CB:
 - Observation structure: observe (perhaps adversarial) $s^t \in \mathcal{S}$, take action $a^t \in \mathcal{A}$, receive bounded reward $r^t \in [0,1]$
 - $\mathbb{E}[r^t|s^t=s,a^t=a]=r^\star(s,a)$ for all $(s,a)\in\mathcal{S} imes\mathcal{A}$
 - Linear reward function: $r^*(s, a) = \phi(s, a)^T \theta^*$
 - $\phi \colon \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$: known feature mapping
- Normalization condition: $\|\theta^{\star}\|_{2} \leq \sqrt{d}$, $\sup_{s,a} \|\phi(s,a)\|_{2} \leq 1$
 - Why? Include MAB as a special case: $|\mathcal{S}|=1,\ d=|A|,\ \phi(s,a)=\mathbf{e}_a,\ \theta^\star=(\mu_1,\mu_2,\cdots,\mu_A)$ with $\mu_a\in[0,1]$ for all $a\in\mathcal{A}$
- Regret(T) = $\sum_{t=1}^{T} (\max_{a \in \mathcal{A}} \langle \phi(s^t, a) \phi(s^t, a^t), \theta^{\star} \rangle)$

• For each $t \in [T]$, in the t-th round, determine a^t in the following two steps

- For each $t \in [T]$, in the t-th round, determine a^t in the following two steps
 - Uncertainty quantification: based on the current dataset \mathcal{D}_{t-1} , construct a high-probability confidence set Θ^t that contains θ^*

$$\mathbb{P}(\forall t \in [T], \theta^* \in \Theta^t) \ge 1 - \delta \tag{1}$$

16

- For each $t \in [T]$, in the t-th round, determine a^t in the following two steps
 - Uncertainty quantification: based on the current dataset \mathcal{D}_{t-1} , construct a high-probability confidence set Θ^t that contains θ^*

$$\mathbb{P}(\forall t \in [T], \theta^* \in \Theta^t) \ge 1 - \delta \tag{1}$$

• Optimistic planing: choose a^t to maximize the most optimistic model within Θ^t

$$a^{t} = \arg\max_{a \in \mathcal{A}} \left\{ \max_{\theta \in \Theta^{t}} \langle \phi(s^{t}, a^{t}), \theta \rangle \right\}$$
 (2)

16

- For each $t \in [T]$, in the t-th round, determine a^t in the following two steps
 - Uncertainty quantification: based on the current dataset \mathcal{D}_{t-1} , construct a high-probability confidence set Θ^t that contains θ^*

$$\mathbb{P}(\forall t \in [T], \theta^* \in \Theta^t) \ge 1 - \delta \tag{1}$$

ullet Optimistic planing: choose a^t to maximize the most optimistic model within Θ^t

$$a^{t} = \arg\max_{a \in \mathcal{A}} \left\{ \max_{\theta \in \Theta^{t}} \langle \phi(s^{t}, a^{t}), \theta \rangle \right\}$$
 (2)

16

Define two functions

$$r^{+,t}(s,a) = \max_{\theta \in \Theta^t} \langle \phi(s,a), \theta \rangle$$
$$r^{-,t}(s,a) = \min_{\theta \in \Theta^t} \langle \phi(s,a), \theta \rangle$$

Define two functions

$$r^{+,t}(s,a) = \max_{\theta \in \Theta^t} \langle \phi(s,a), \theta \rangle$$
$$r^{-,t}(s,a) = \min_{\theta \in \Theta^t} \langle \phi(s,a), \theta \rangle$$

• By (1), $\theta^{\star} \in \Theta^t$

$$r^{+,t}(s,a) \geq r^{\star}(s,a) \geq r^{-,t}(s,a), \ orall (s,a) \in \mathcal{S} imes \mathcal{A}$$

Define two functions

$$r^{+,t}(s,a) = \max_{\theta \in \Theta^t} \langle \phi(s,a), \theta \rangle$$
$$r^{-,t}(s,a) = \min_{\theta \in \Theta^t} \langle \phi(s,a), \theta \rangle$$

• By (1), $\theta^{\star} \in \Theta^t$

$$r^{+,t}(s,a) \geq r^{\star}(s,a) \geq r^{-,t}(s,a), \ orall (s,a) \in \mathcal{S} imes \mathcal{A}$$

• $|r^{+,t}(s,a) - r^{-,t}(s,a)|$ reflects the uncertainty about a at context s

Define two functions

$$r^{+,t}(s,a) = \max_{\theta \in \Theta^t} \langle \phi(s,a), \theta \rangle$$
$$r^{-,t}(s,a) = \min_{\theta \in \Theta^t} \langle \phi(s,a), \theta \rangle$$

• By (1), $\theta^{\star} \in \Theta^t$

$$r^{+,t}(s,a) \geq r^{\star}(s,a) \geq r^{-,t}(s,a), \ orall (s,a) \in \mathcal{S} imes \mathcal{A}$$

- $|r^{+,t}(s,a) r^{-,t}(s,a)|$ reflects the uncertainty about a at context s
- By (2), $a^t = \arg\max_a r^{+,t}(s^t, a)$ choose the action with either large uncertainty (explore) or large reward (exploit)

ullet In the t-th round, our dataset is $\mathcal{D}_{t-1} = \{(s^i, a^i, r^i)\}_{i \leq t-1}$

- ullet In the t-th round, our dataset is $\mathcal{D}_{t-1} = \{(s^i, a^i, r^i)\}_{i \leq t-1}$
- ullet First construct an estimator of $heta^\star$ via ridge regression

$$\widehat{\theta}^t = \min_{\theta \in \mathbb{R}^d} \left\{ L^t(\theta) \colon = \sum_{i=1}^{t-1} [r^i - \langle \phi(s^i, a^i), \theta \rangle]^2 + \|\theta\|_2^2 \right\}$$

- ullet In the t-th round, our dataset is $\mathcal{D}_{t-1} = \{(s^i, a^i, r^i)\}_{i \leq t-1}$
- ullet First construct an estimator of $heta^\star$ via ridge regression

$$\widehat{\theta}^t = \min_{\theta \in \mathbb{R}^d} \left\{ L^t(\theta) \colon = \sum_{i=1}^{t-1} [r^i - \langle \phi(s^i, a^i), \theta \rangle]^2 + \|\theta\|_2^2 \right\}$$

Hessian of the Ridge loss:

$$\Lambda^t = \nabla^2 L^t(\theta) = I + \sum_{i=1}^{t-1} \phi(s^i, a^i) \phi(s^i, a^i)^\top$$

- ullet In the t-th round, our dataset is $\mathcal{D}_{t-1} = \{(s^i, a^i, r^i)\}_{i \leq t-1}$
- First construct an estimator of θ^{\star} via ridge regression

$$\widehat{\theta}^t = \min_{\theta \in \mathbb{R}^d} \left\{ L^t(\theta) \colon = \sum_{i=1}^{t-1} [r^i - \langle \phi(s^i, a^i), \theta \rangle]^2 + \|\theta\|_2^2 \right\}$$

• Hessian of the Ridge loss:

$$\Lambda^t = \nabla^2 L^t(\theta) = I + \sum_{i=1}^{t-1} \phi(s^i, a^i) \phi(s^i, a^i)^\top$$

• Closed-form solution: $\widehat{\theta}^t = (\Lambda^t)^{-1} \sum_{i=1}^{t-1} r_i \cdot \phi(s^i, a^i)$

- ullet In the t-th round, our dataset is $\mathcal{D}_{t-1} = \{(s^i, a^i, r^i)\}_{i \leq t-1}$
- ullet First construct an estimator of $heta^\star$ via ridge regression

$$\widehat{\theta}^t = \min_{\theta \in \mathbb{R}^d} \left\{ L^t(\theta) \colon = \sum_{i=1}^{t-1} [r^i - \langle \phi(s^i, a^i), \theta \rangle]^2 + \|\theta\|_2^2 \right\}$$

Hessian of the Ridge loss:

$$\Lambda^t =
abla^2 L^t(\theta) = I + \sum_{i=1}^{t-1} \phi(s^i, a^i) \phi(s^i, a^i)^{ op}$$

- Closed-form solution: $\widehat{\theta}^t = (\Lambda^t)^{-1} \sum_{i=1}^{t-1} r_i \cdot \phi(s^i, a^i)$
- Define Θ^t as the *confidence ellipsoid*:

$$\Theta^t = \{ \theta \in \mathbb{R}^d \colon \|\theta - \widehat{\theta}^t\|_{\Lambda^t} \le \beta \},\,$$

here define $\beta = C \cdot \sqrt{d \cdot \log(1 + T/\delta)}$, $||x||_M = \sqrt{x^\top Mx}$

 $\bullet \ \ \mathsf{Confidence} \ \ \mathsf{ellipsoid} \colon \ \Theta^t = \big\{\theta \in \mathbb{R}^d \colon \|\theta - \widehat{\theta}^t\|_{\mathsf{\Lambda}^t} \leq \beta \big\}$

- Confidence ellipsoid: $\Theta^t = \{\theta \in \mathbb{R}^d : \|\theta \widehat{\theta}^t\|_{\Lambda^t} \leq \beta\}$
- $r^{+,t}$ admits a closed-form:

$$r^{+,t}(s,a) = \max_{\theta \in \Theta^t} \langle \phi(s,a), \theta \rangle = \langle \phi(s,a), \widehat{\theta}^t \rangle + \underbrace{\beta \cdot \|\phi(s,a)\|_{(\Lambda^t)^{-1}}}_{\text{bonus}}$$

- Confidence ellipsoid: $\Theta^t = \{\theta \in \mathbb{R}^d : \|\theta \widehat{\theta}^t\|_{\Lambda^t} \leq \beta\}$
- $r^{+,t}$ admits a closed-form:

$$r^{+,t}(s,a) = \max_{\theta \in \Theta^t} \langle \phi(s,a), \theta \rangle = \langle \phi(s,a), \widehat{\theta}^t \rangle + \underbrace{\beta \cdot \|\phi(s,a)\|_{(\Lambda^t)^{-1}}}_{\text{bonus}}$$

- LinUCB algorithm (Dani et all. (2008), Abbasi-Yadkori et al. (2011), ...)
 - For t = 1, ..., T, in the beginning of t-th round
 - Observe context s_t

- Confidence ellipsoid: $\Theta^t = \{\theta \in \mathbb{R}^d : \|\theta \widehat{\theta}^t\|_{\Lambda^t} \leq \beta\}$
- $r^{+,t}$ admits a closed-form:

$$r^{+,t}(s,a) = \max_{\theta \in \Theta^t} \langle \phi(s,a), \theta \rangle = \langle \phi(s,a), \widehat{\theta}^t \rangle + \underbrace{\beta \cdot \|\phi(s,a)\|_{(\Lambda^t)^{-1}}}_{\text{bonus}}$$

- LinUCB algorithm (Dani et all. (2008), Abbasi-Yadkori et al. (2011), ...)
 - For t = 1, ..., T, in the beginning of t-th round
 - Observe context s_t
 - ullet Compute $\widehat{ heta}^t$ via ridge regression and compute Hessian Λ^t
 - Choose $a^t = \arg \max_{a \in A} r^{+,t}(s^t, a)$ and observe r^t

19

Theorem. With probability $1 - \delta$, LinUCB satisfies

$$\operatorname{Regret}(T) \leq \beta \cdot \sqrt{dT} \cdot \sqrt{\log T} = \widetilde{\mathcal{O}}(d\sqrt{T})$$

Theorem. With probability $1 - \delta$, LinUCB satisfies

$$\operatorname{Regret}(T) \leq \beta \cdot \sqrt{dT} \cdot \sqrt{\log T} = \widetilde{\mathcal{O}}(d\sqrt{T})$$

 Independent of the size of context and action spaces, only depends on the dimension (linear in d)

Theorem. With probability $1 - \delta$, LinUCB satisfies

$$\operatorname{Regret}(T) \leq \beta \cdot \sqrt{dT} \cdot \sqrt{\log T} = \widetilde{\mathcal{O}}(d\sqrt{T})$$

- Independent of the size of context and action spaces, only depends on the dimension (linear in d)
- Depend on T through \sqrt{T} (sample efficient)

Theorem. With probability $1 - \delta$, LinUCB satisfies

$$\operatorname{Regret}(T) \leq \beta \cdot \sqrt{dT} \cdot \sqrt{\log T} = \widetilde{\mathcal{O}}(d\sqrt{T})$$

- Independent of the size of context and action spaces, only depends on the dimension (linear in d)
- Depend on T through \sqrt{T} (sample efficient)
- Computational cost poly(d, A, T) and memory requirement is poly(d, T) (Why?)

Regret Analysis of LinUCB (1/3)

Step 1. Conditioning on the event $\mathcal{E} = \{ \forall t \in [T], \theta^* \in \Theta^t \}$, $r^{-,t}(s,a) \leq r^*(s,a) \leq r^{+,t}(s,a), \forall (x,a) \in \mathcal{S} \times \mathcal{A}$

Regret Analysis of LinUCB (1/3)

Step 1. Conditioning on the event
$$\mathcal{E} = \{ \forall t \in [T], \theta^* \in \Theta^t \}$$
, $r^{-,t}(s,a) \leq r^*(s,a) \leq r^{+,t}(s,a), \forall (x,a) \in \mathcal{S} \times \mathcal{A}$

Step 2. Regret decomposition:

$$\max_{a} r^{*}(s^{t}, a) - r^{*}(s^{t}, a^{t})$$

$$= \left(\max_{a} r^{*}(s^{t}, a) - r^{+,t}(s^{t}, a^{t})\right) + \left(r^{+,t}(s^{t}, a^{t}) - r^{*}(s^{t}, a^{t})\right)$$

$$\leq r^{+,t}(s^{t}, a^{t}) - r^{-,t}(s^{t}, a^{t}) \leq 2\beta \cdot \|\phi(s^{t}, a^{t})\|_{(\Lambda^{t})^{-1}}$$

Regret Analysis of LinUCB (1/3)

Step 1. Conditioning on the event
$$\mathcal{E} = \{ \forall t \in [T], \theta^* \in \Theta^t \}$$
, $r^{-,t}(s,a) \leq r^*(s,a) \leq r^{+,t}(s,a), \forall (x,a) \in \mathcal{S} \times \mathcal{A}$

Step 2. Regret decomposition:

$$\max_{a} r^{*}(s^{t}, a) - r^{*}(s^{t}, a^{t})$$

$$= (\max_{a} r^{*}(s^{t}, a) - r^{+,t}(s^{t}, a^{t})) + (r^{+,t}(s^{t}, a^{t}) - r^{*}(s^{t}, a^{t}))$$

$$\leq r^{+,t}(s^{t}, a^{t}) - r^{-,t}(s^{t}, a^{t}) \leq 2\beta \cdot ||\phi(s^{t}, a^{t})||_{(\Lambda^{t})^{-1}}$$

Thus we have shown

$$\max_{a} r^{\star}(s^{t}, a) - r^{\star}(s^{t}, a^{t}) \leq \beta \cdot \min\{1, \|\phi(s^{t}, a^{t})\|_{(\Lambda^{t})^{-1}}\}$$

Regret Analysis of LinUCB (2/3)

Step 3. Telescope the bonus: Cauchy-Schwarz + elliptical potential lemma

$$\begin{split} \operatorname{Regret}(T) & \leq 2\beta \cdot \sum_{t=1}^{T} \cdot \min\{1, \|\phi(s^t, a^t)\|_{(\Lambda^t)^{-1}}\} \\ & \leq 2\beta \sqrt{T} \cdot \left[\sum_{t=1}^{T} \min\{1, \|\phi(s^t, a^t)\|_{(\Lambda^t)^{-1}}^2\} \right]^{1/2} \\ & \leq 2\beta \sqrt{T} \cdot \sqrt{2 \mathrm{logdet}(\Lambda_T)} \lesssim \beta \cdot \sqrt{T} \cdot \sqrt{d \cdot \log T} \end{split}$$

Elliptical potential lemma

Lemma

$$\sum_{i=1}^{t-1} \min\{1, \|\phi(s^i, a^i)\|_{(\Lambda^t)^{-1}}^2\} \leq 2 \operatorname{logdet}(\Lambda_T) \leq d \cdot \log T$$

Elliptical potential lemma

Lemma

$$\sum_{i=1}^{t-1} \min\{1, \|\phi(s^i, a^i)\|_{(\mathsf{\Lambda}^t)^{-1}}^2\} \leq 2\mathrm{logdet}(\mathsf{\Lambda}_{\mathcal{T}}) \leq d \cdot \log \mathcal{T}$$

Bayesian perspective:

- Prior distribution $\theta^* \sim N(0, I)$
- Likelihood $r_i = r^*(s^i, a^i) + \varepsilon$, $\varepsilon \in N(0, 1)$
- Given dataset \mathcal{D}_{t-1} , the posterior distribution is $N(\widehat{\theta}^t, \Lambda^t)$

Elliptical potential lemma

Lemma

$$\sum_{i=1}^{t-1} \min\{1, \|\phi(s^i, a^i)\|_{(\Lambda^t)^{-1}}^2\} \leq 2 \operatorname{logdet}(\Lambda_T) \leq d \cdot \log T$$

Bayesian perspective:

- Prior distribution $\theta^{\star} \sim N(0, I)$
- Likelihood $r_i = r^*(s^i, a^i) + \varepsilon$, $\varepsilon \in N(0, 1)$
- Given dataset \mathcal{D}_{t-1} , the posterior distribution is $N(\widehat{\theta}^t, \Lambda^t)$
- $\|\phi(s,a)\|_{(\Lambda^t)^{-1}}^2 = I(\theta^*,(s,a)|\mathcal{D}_{t-1}) = H(\theta^*|\mathcal{D}_{t-1}) H(\theta^*|\mathcal{D}_{t-1} \cup \{(s,a)\})$ conditional mutual information gain
- Elliptical potential lemma ↔ chain rule of mutual information

Regret Analysis of LinUCB (3/3)

Step 4. Show optimism: $\theta^* \in \Theta^t = \{\theta \in \mathbb{R}^d : \|\theta - \widehat{\theta}^t\|_{\Lambda^t} \leq \beta\}$

$$\theta^{t} - \theta^{\star} = (\Lambda^{t})^{-1} \left[\sum_{i=1}^{t-1} \underbrace{(r^{\star}(s^{i}, a^{i}) + \varepsilon_{i})}_{r_{i}} \cdot \phi(s^{i}, a^{i}) - (\Lambda^{t}) \cdot \theta^{\star} \right]$$

$$= (\Lambda^{t})^{-1} \theta^{\star} + (\Lambda^{t})^{-1} \sum_{i=1}^{t-1} \underbrace{\varepsilon_{i}}_{\text{martingale difference}} \cdot \phi(s^{i}, a^{i})$$

Regret Analysis of LinUCB (3/3)

Step 4. Show optimism: $\theta^* \in \Theta^t = \{\theta \in \mathbb{R}^d : \|\theta - \widehat{\theta}^t\|_{\Lambda^t} \leq \beta\}$

$$\theta^{t} - \theta^{\star} = (\Lambda^{t})^{-1} \left[\sum_{i=1}^{t-1} \underbrace{(r^{\star}(s^{i}, a^{i}) + \varepsilon_{i})}_{r_{i}} \cdot \phi(s^{i}, a^{i}) - (\Lambda^{t}) \cdot \theta^{\star} \right]$$

$$= (\Lambda^{t})^{-1} \theta^{\star} + (\Lambda^{t})^{-1} \sum_{i=1}^{t-1} \underbrace{\varepsilon_{i}}_{\text{martingale difference}} \cdot \phi(s^{i}, a^{i})$$

- $\|\theta^t \theta^*\|_{\Lambda^t} \approx \|\sum_{i=1}^{t-1} \varepsilon_i \cdot \phi(s^i, a^i)\|_{(\Lambda^t)^{-1}} \leq \beta$
- Concentration of self-normalized process (e.g., Abbasi-Yadkori et al, 2011)

Summary of LinUCB

- Algorithm is based on the optimism principle
- $\bullet \ \ upper \ confidence \ bound = ridge \ estimator + bonus \\$

Summary of LinUCB

- Algorithm is based on the optimism principle
- upper confidence bound = ridge estimator + bonus
- $\widetilde{\mathcal{O}}(d\sqrt{T})$ regret via
 - a. utilize optimism to bound instant regret by width of confidence region (bonus)
 - b. sum up the instant regret terms by elliptical potential lemma
 - c. confidence region constructed via uncertainty quantification for ridge regression

Summary of LinUCB

- Algorithm is based on the optimism principle
- upper confidence bound = ridge estimator + bonus
- $\widetilde{\mathcal{O}}(d\sqrt{T})$ regret via
 - a. utilize optimism to bound instant regret by width of confidence region (bonus)
 - b. sum up the instant regret terms by elliptical potential lemma
 - c. confidence region constructed via uncertainty quantification for ridge regression
- Extensions: generalized linear model, RKHS, overparameterized network, abstract function class with bounded eluder dimension, ...

From Linear CB to Linear RL

• Our goal is to find $\pi^* = \arg\max_{\pi} J(\pi) = \mathbb{E}[\sum_{h=1}^H r_h]$

- Our goal is to find $\pi^* = \arg\max_{\pi} J(\pi) = \mathbb{E}[\sum_{h=1}^H r_h]$
- π^* is characterized by $Q^* = \{Q_h^*\}_{h \in [H+1]} \colon \mathcal{S} \times \mathcal{A} \to [0, H]$

- Our goal is to find $\pi^* = \arg\max_{\pi} J(\pi) = \mathbb{E}[\sum_{h=1}^{H} r_h]$
- π^* is characterized by $Q^* = \{Q_h^*\}_{h \in [H+1]} \colon \mathcal{S} \times \mathcal{A} \to [0, H]$
 - $\pi_h^{\star}(s) = \operatorname{arg\,max}_a Q_h^{\star}(s, a), \ \forall s \in \mathcal{S}; \ V_h^{\star}(s) = \operatorname{max}_a Q_h^{\star}(s, a)$

- Our goal is to find $\pi^* = \arg\max_{\pi} J(\pi) = \mathbb{E}[\sum_{h=1}^{H} r_h]$
- π^* is characterized by $Q^* = \{Q_h^*\}_{h \in [H+1]} \colon \mathcal{S} \times \mathcal{A} \to [0, H]$
 - $\pi_h^{\star}(s) = \operatorname{arg\,max}_a Q_h^{\star}(s, a), \ \forall s \in \mathcal{S}; \ V_h^{\star}(s) = \operatorname{max}_a Q_h^{\star}(s, a)$
 - $Q_h^*(s, a)$: optimal return starting from $s_h = s$ and $a_h = a$
 - Q* is characterized by Bellman equation

• MDP terminates after H steps — $Q_{H+1}^{\star} = \mathbf{0}$, $Q_{H}^{\star} = r$

- MDP terminates after H steps $Q_{H+1}^{\star} = \mathbf{0}$, $Q_{H}^{\star} = r$
- Bellman equation

Bellman operator:
$$\mathcal{BQ}_{h+1}^{\star}$$

$$Q_h^{\star}(s,a) = r(s,a) + \mathbb{E}_{s_{h+1} \sim P}[V_{h+1}^{\star}(s_{h+1})|s_h = s, a_h = a]$$

$$V_h^{\star}(s) = \max_{a} Q_h^{\star}(s,a)$$

- MDP terminates after H steps $Q_{H+1}^{\star} = \mathbf{0}$, $Q_{H}^{\star} = r$
- Bellman equation

Bellman operator:
$$\mathcal{B}Q_{h+1}^{\star}$$

$$Q_h^{\star}(s,a) = \overbrace{r(s,a) + \mathbb{E}_{s_{h+1} \sim P} \left[V_{h+1}^{\star}(s_{h+1}) | s_h = s, a_h = a \right]}^{\text{Bellman operator: } \mathcal{B}Q_{h+1}^{\star}$$

$$V_h^{\star}(s) = \max_{a} Q_h^{\star}(s,a)$$

- RL with linear function approximation: use $\mathcal{F}_{\text{lin}} = \{\phi(s, a)^{\top}\theta \colon \mathcal{S} \times \mathcal{A} \to \mathbb{R}\}$ to approximate $\{Q_h^{\star}\}_{h \in [H]}$
 - $\phi \colon \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$: known feature mapping
 - Can allow known and step-varying features: $\{\phi_h\}_{h\in[H]}$

RL is more challenging than bandit

• Regret $(T) = \sum_{t=1}^{T} [J(\pi^*) - J(\pi^t)]$

RL is more challenging than bandit

- Regret $(T) = \sum_{t=1}^{T} [J(\pi^*) J(\pi^t)]$
- $J(\pi^*) = \max_a Q_1^*(s^*, a)$, fixed initial state for simplicity
- \bullet Can generalize to adversarial s_1

RL is more challenging than bandit

- Regret $(T) = \sum_{t=1}^{T} [J(\pi^*) J(\pi^t)]$
- $J(\pi^*) = \max_a Q_1^*(s^*, a)$, fixed initial state for simplicity
- \bullet Can generalize to adversarial s_1
- Online RL \neq a contextual bandit with TH rounds

RL requires **deep exploration** for achieving o(T) regret.

• Contextual bandit algorithm directly goes to the bad state at the initial state — $\Omega(T)$ regret

- Contextual bandit algorithm directly goes to the bad state at the initial state $\Omega(T)$ regret
- Random sampling requires $|A|^H$ samples (inefficient)

- Contextual bandit algorithm directly goes to the bad state at the initial state $\Omega(T)$ regret
- Random sampling requires $|A|^H$ samples (inefficient)
- Goal: Regret $(T) = poly(H) \cdot \sqrt{T}$ (need deep exploration)

- Contextual bandit algorithm directly goes to the bad state at the initial state $\Omega(T)$ regret
- Random sampling requires $|A|^H$ samples (inefficient)
- Goal: Regret $(T) = poly(H) \cdot \sqrt{T}$ (need deep exploration)
- ullet $\mathcal{O}(SAH)$ query complexity if have a generative model

What assumption should we impose?

- ullet In CB, π^{\star} is greedy with respect to r^{\star} , we assume r^{\star} is linear
- In RL, π^* is greedy with respect to Q^*
- Linear realizability: $Q_h^{\star} \in \mathcal{F}_{lin}$, $\forall h \in [H]$

What assumption should we impose?

- In CB, π^* is greedy with respect to r^* , we assume r^* is linear
- In RL, π^* is greedy with respect to Q^*
- Linear realizability: $Q_h^{\star} \in \mathcal{F}_{\text{lin}}$, $\forall h \in [H]$

Theorem [Wang-Wang-Kakade-21] There exists a class of linearly realizable MDPs such that any online RL algorithm requires $\min\{\Omega(2^d), \Omega(2^H)\}$ samples to obtain a near optimal policy.

What assumption should we impose?

- In CB, π^* is greedy with respect to r^* , we assume r^* is linear
- In RL, π^* is greedy with respect to Q^*
- Linear realizability: $Q_h^{\star} \in \mathcal{F}_{\text{lin}}$, $\forall h \in [H]$

Theorem [Wang-Wang-Kakade-21] There exists a class of linearly realizable MDPs such that any online RL algorithm requires $\min\{\Omega(2^d),\Omega(2^H)\}$ samples to obtain a near optimal policy.

- Fundamentally different from supervised learning and bandits
- To achieve efficiency in online RL, we need stronger assumptions

Assumption: Image(\mathcal{B}) $\subseteq \mathcal{F}_{lin}$

• We assume the image set of the Bellman operator lies in \mathcal{F}_{lin} :

For any
$$Q \colon \mathcal{S} \times \mathcal{A} \to [0, H]$$
, there exists $\theta^Q \in \mathbb{R}^d$ s.t.
$$(\mathcal{B}Q)(s, a) = r(s, a) + \mathbb{E}[\max_{a'} Q(s', a')] = \langle \phi(s, a), \theta^Q \rangle$$

Assumption: Image(\mathcal{B}) $\subseteq \mathcal{F}_{\text{lin}}$

 \bullet We assume the image set of the Bellman operator lies in $\mathcal{F}_{\mathrm{lin}}:$

For any
$$Q: \mathcal{S} \times \mathcal{A} \to [0, H]$$
, there exists $\theta^Q \in \mathbb{R}^d$ s.t.
$$(\mathcal{B}Q)(s, a) = r(s, a) + \mathbb{E}[\max_{a'} Q(s', a')] = \langle \phi(s, a), \theta^Q \rangle$$

• Normalization condition: $\|\theta^Q\|_2 \le 2H\sqrt{d}$, $\sup_{s,a} \|\phi(s,a)\|_2 \le 1$

Assumption: Image(\mathcal{B}) $\subseteq \mathcal{F}_{\text{lin}}$

 \bullet We assume the image set of the Bellman operator lies in $\mathcal{F}_{\mathrm{lin}}:$

For any
$$Q \colon \mathcal{S} \times \mathcal{A} \to [0, H]$$
, there exists $\theta^Q \in \mathbb{R}^d$ s.t.
$$(\mathcal{B}Q)(s, a) = r(s, a) + \mathbb{E}[\max_{a'} Q(s', a')] = \langle \phi(s, a), \theta^Q \rangle$$

- Normalization condition: $\|\theta^Q\|_2 \le 2H\sqrt{d}$, $\sup_{s,a} \|\phi(s,a)\|_2 \le 1$
- Is there such an MDP? Yes, Linear MDP

$$r(s,a) = \langle \phi(s,a), \omega \rangle$$
 $P(s'|s,a) = \langle \phi(s,a), \mu(s') \rangle$
Normalization: $\|\omega\|_2 \leq \sqrt{d}$, $\sum_{s'} \|\mu(s')\|_2 \leq \sqrt{d}$

• Linear MDP contains tabular MDP as a special case: $\phi(s, a) = \mathbf{e}_{(s, a)}, \ d = |\mathcal{S}| \cdot |\mathcal{A}|$

Algorithm for linear RL: LSVI-UCB

• In the beginning *t*-th episode, dataset $\mathcal{D}_{t-1} = \{(s_h^i, a_h^i, r_h^i), h \in [H]\}_{i < t}$

- In the beginning *t*-th episode, dataset $\mathcal{D}_{t-1} = \{(s_h^i, a_h^i, r_h^i), h \in [H]\}_{i < t}$
- For h = H, ..., 1, backwardly solve ridge regression:

$$\begin{aligned} y_h^i &= r_h^i + \max_{a} Q_{h+1}^{+,t}(s_{h+1}, a) \\ \widehat{\theta}_h^t &= \arg\min_{\theta} \sum_{i=1}^{t-1} [y_h^i - \langle \phi(s_h^i, a_h^i), \theta \rangle]^2 + \|\theta\|_2^2 \end{aligned}$$

- In the beginning *t*-th episode, dataset $\mathcal{D}_{t-1} = \{(s_h^i, a_h^i, r_h^i), h \in [H]\}_{i < t}$
- For h = H, ..., 1, backwardly solve ridge regression:

$$\begin{aligned} y_h^i &= r_h^i + \max_{a} Q_{h+1}^{+,t}(s_{h+1}, a) \\ \widehat{\theta}_h^t &= \arg\min_{\theta} \sum_{i=1}^{t-1} [y_h^i - \langle \phi(s_h^i, a_h^i), \theta \rangle]^2 + \|\theta\|_2^2 \end{aligned}$$

• Hessian of ridge loss: $\Lambda_h^t = I + \sum_{i=1}^{t-1} \phi(s_h^i, a_h^i) \phi(s_h^i, a_h^i)^{\top}$

- In the beginning *t*-th episode, dataset $\mathcal{D}_{t-1} = \{(s_h^i, a_h^i, r_h^i), h \in [H]\}_{i < t}$
- For h = H, ..., 1, backwardly solve ridge regression:

$$\begin{aligned} y_h^i &= r_h^i + \max_{a} Q_{h+1}^{+,t}(s_{h+1}, a) \\ \widehat{\theta}_h^t &= \arg\min_{\theta} \sum_{i=1}^{t-1} [y_h^i - \langle \phi(s_h^i, a_h^i), \theta \rangle]^2 + \|\theta\|_2^2 \end{aligned}$$

- Hessian of ridge loss: $\Lambda_h^t = I + \sum_{i=1}^{t-1} \phi(s_h^i, a_h^i) \phi(s_h^i, a_h^i)^{\top}$
- Construct bonus $\Gamma_h^t(s,a) = \beta \cdot \|\phi(s,a)\|_{(\Lambda_h^t)^{-1}}$

- In the beginning *t*-th episode, dataset $\mathcal{D}_{t-1} = \{(s_h^i, a_h^i, r_h^i), h \in [H]\}_{i < t}$
- For h = H, ..., 1, backwardly solve ridge regression:

$$\begin{aligned} y_h^i &= r_h^i + \max_{a} \frac{Q_{h+1}^{+,t}(s_{h+1}, a)}{Q_h^{t}} \\ \widehat{\theta}_h^t &= \arg\min_{\theta} \sum_{i=1}^{t-1} [y_h^i - \langle \phi(s_h^i, a_h^i), \theta \rangle]^2 + \|\theta\|_2^2 \end{aligned}$$

- Hessian of ridge loss: $\Lambda_h^t = I + \sum_{i=1}^{t-1} \phi(s_h^i, a_h^i) \phi(s_h^i, a_h^i)^{\top}$
- Construct bonus $\Gamma_h^t(s,a) = \beta \cdot \|\phi(s,a)\|_{(\Lambda_h^t)^{-1}}$
- UCB Q-function

$$Q_h^{+,t} = \operatorname{Trunc}_{[0,H]} \{ \langle \phi(s,a), \widehat{\theta}_h^t \rangle + \Gamma_h^t(s,a) \}$$

• Execute $\pi_h^t(\cdot) = \arg\max_a Q_h^{+,t}(\cdot,a)$

• For h = H, ..., 1, backwardly solve least-squares regression:

$$y_h^i = r_h^i + \max_a Q_{h+1}^{+,t}(s_{h+1}, a)$$

$$\widehat{Q}_h^t = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{t-1} [y_h^i - f(s_h^i, a_h^i)]^2 + \operatorname{penalty}(f)$$

• For $h = H, \dots, 1$, backwardly solve least-squares regression:

$$y_h^i = r_h^i + \max_{a} \frac{Q_{h+1}^{+,t}(s_{h+1}, a)}{Q_h^t}$$

$$\widehat{Q}_h^t = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{t-1} [y_h^i - f(s_h^i, a_h^i)]^2 + \text{penalty}(f)$$

• Uncertainty quantification: for \widehat{Q}_h^t : find Γ_h^t such that

$$\mathbb{P}\big(\forall (t,h,s,a), |\widehat{Q}_h^t(s,a) - (\mathcal{B}Q_{h+1}^{+,t})(s,a)| \leq \Gamma_h^t(s,a)\big) \geq 1 - \delta$$

• For $h = H, \dots, 1$, backwardly solve least-squares regression:

$$y_h^i = r_h^i + \max_a \frac{Q_{h+1}^{+,t}(s_{h+1}, a)}{Q_h^t}$$

 $\widehat{Q}_h^t = \underset{f \in \mathcal{F}}{\arg \min} \sum_{i=1}^{t-1} [y_h^i - f(s_h^i, a_h^i)]^2 + \text{penalty}(f)$

• Uncertainty quantification: for \widehat{Q}_h^t : find Γ_h^t such that

$$\mathbb{P}\big(\forall (t,h,s,a), |\widehat{Q}_h^t(s,a) - (\mathcal{B}Q_{h+1}^{+,t})(s,a)| \leq \Gamma_h^t(s,a)\big) \geq 1 - \delta$$

Optimism:

$$Q_h^{+,t} = \operatorname{Trunc}_{[0,H]} \{ \widehat{Q}_h^t + \Gamma_h^t(s,a) \}$$

• For h = H, ..., 1, backwardly solve least-squares regression:

$$\begin{aligned} y_h^i &= r_h^i + \max_{a} \frac{Q_{h+1}^{+,t}(s_{h+1}, a)}{Q_h^t} \\ \widehat{Q}_h^t &= \arg\min_{f \in \mathcal{F}} \sum_{i=1}^{t-1} [y_h^i - f(s_h^i, a_h^i)]^2 + \text{penalty}(f) \end{aligned}$$

• Uncertainty quantification: for \widehat{Q}_h^t : find Γ_h^t such that

$$\mathbb{P}\big(\forall (t,h,s,a), |\widehat{Q}_h^t(s,a) - (\mathcal{B}Q_{h+1}^{+,t})(s,a)| \leq \Gamma_h^t(s,a)\big) \geq 1 - \delta$$

Optimism:

$$Q_h^{+,t} = \operatorname{Trunc}_{[0,H]} \{ \widehat{Q}_h^t + \Gamma_h^t(s,a) \}$$

• Computation & memory cost independent of |S| (even for RKHS, overparameterized NN)

$$|\hat{Q}_{h}^{t}(s, a) - (\mathbb{B}Q_{h+1}^{+})(s, a)| \leq \frac{\Gamma_{h}^{t}(s, a)}{\Gamma_{h}^{t}(s, a)}, \forall t, h, s, a$$

$$Q_{h}^{+}(s, a) = \underbrace{\hat{Q}_{h}^{t}(s, a) + \frac{\Gamma_{h}^{t}(s, a)}{\text{bonus}}}_{\text{bonus}}$$

- Optimism gives: $\mathcal{B}Q_{h+1}^+ \in [Q_h^+ 2\Gamma_h^t, Q_h^+]$
- Monotonicity of Bellman operator: $Q_h^+ \geq Q_h^\star$ (UCB)

Sample efficiency of LSVI-UCB

$$Regret(T) = \widetilde{\mathcal{O}}(\beta \cdot H \cdot \sqrt{dT}) = \widetilde{\mathcal{O}}(H^2 \cdot \sqrt{d^3T})$$

Theorem [Jin-Yang-Wang-Jordan-20] Choosing $\beta = \widetilde{\mathcal{O}}(dH)$, with probability at least 1-1/T,

$$\operatorname{Regret}(T) = \widetilde{\mathcal{O}}(\beta \cdot H \cdot \sqrt{dT}) = \widetilde{\mathcal{O}}(H^2 \cdot \sqrt{d^3T})$$

• Directly imply a $|\mathcal{S}|^{1.5}|\mathcal{A}|^{1.5}H^2\sqrt{T}$ regret for tabular RL

$$\operatorname{Regret}(T) = \widetilde{\mathcal{O}}(\beta \cdot H \cdot \sqrt{dT}) = \widetilde{\mathcal{O}}(H^2 \cdot \sqrt{d^3T})$$

- Directly imply a $|\mathcal{S}|^{1.5}|\mathcal{A}|^{1.5}H^2\sqrt{T}$ regret for tabular RL
- First algorithm with both sample and computational efficiency in the context of RL with function approximation

$$\operatorname{Regret}(T) = \widetilde{\mathcal{O}}(\beta \cdot H \cdot \sqrt{dT}) = \widetilde{\mathcal{O}}(H^2 \cdot \sqrt{d^3T})$$

- Directly imply a $|\mathcal{S}|^{1.5}|\mathcal{A}|^{1.5}H^2\sqrt{T}$ regret for tabular RL
- First algorithm with both sample and computational efficiency in the context of RL with function approximation
- ullet Only assumption: Image set of ${\cal B}$ is in ${\cal F}_{
 m lin}$

$$\operatorname{Regret}(T) = \widetilde{\mathcal{O}}(\beta \cdot H \cdot \sqrt{dT}) = \widetilde{\mathcal{O}}(H^2 \cdot \sqrt{d^3T})$$

- Directly imply a $|\mathcal{S}|^{1.5}|\mathcal{A}|^{1.5}H^2\sqrt{T}$ regret for tabular RL
- First algorithm with both sample and computational efficiency in the context of RL with function approximation
- \bullet Only assumption: Image set of ${\cal B}$ is in ${\cal F}_{\rm lin}$
- Optimal regret $dH^2\sqrt{T}$ is achieved by [Zanette et al. 2020] with a relaxed model assumption. But the computation is intractable.

Let \mathcal{Q}_{ucb} be the function class containing the Q-functions constructed by LSVI-UCB

• $Q_{ucb} = \left\{ \operatorname{Trunc}_{[0,H]} \{ \phi(\cdot, \cdot)^{\top} \theta + \beta \cdot \| \phi(\cdot, \cdot) \|_{\Lambda^{-1}} \right\}$ for linear case

Let \mathcal{Q}_{ucb} be the function class containing the Q-functions constructed by LSVI-UCB

• $Q_{ucb} = \left\{ \operatorname{Trunc}_{[0,H]} \{ \phi(\cdot,\cdot)^{\top} \theta + \beta \cdot \| \phi(\cdot,\cdot) \|_{\Lambda^{-1}} \right\}$ for linear case

Theorem [Jin-Yang-Wang-Jordan-20] Choosing $\beta = \widetilde{\mathcal{O}}(H \cdot \sqrt{\log N_{\infty}(\mathcal{Q}_{ucb}, T^{-2})})$, with probability at least 1 - 1/T, Regret $(T) = \widetilde{\mathcal{O}}(\beta H \cdot \sqrt{d_{\text{eff}} \cdot T}) = \widetilde{\mathcal{O}}(H^2 \cdot \sqrt{d_{\text{eff}} \cdot T \cdot \log N_{\infty}})$

Let \mathcal{Q}_{ucb} be the function class containing the Q-functions constructed by LSVI-UCB

• $Q_{ucb} = \left\{ \operatorname{Trunc}_{[0,H]} \{ \phi(\cdot,\cdot)^{\top} \theta + \beta \cdot \| \phi(\cdot,\cdot) \|_{\Lambda^{-1}} \right\}$ for linear case

 $\begin{array}{l} \textbf{Theorem} \ \ [\text{Jin-Yang-Wang-Wang-Jordan-20}] \ \ \text{Choosing} \ \beta = \\ \widetilde{\mathcal{O}}(H \cdot \sqrt{\log N_{\infty}(\mathcal{Q}_{ucb}, T^{-2})}), \ \text{with probability at least} \ 1 - \\ 1/T, \ \ \ \text{Regret}(T) = \widetilde{\mathcal{O}}(\beta H \cdot \sqrt{d_{\text{eff}} \cdot T}) = \widetilde{\mathcal{O}}(H^2 \cdot \sqrt{d_{\text{eff}} \cdot T \cdot \log N_{\infty}}) \\ \end{array}$

- $\log N_{\infty}(Q_{ucb}, T^{-2}) \times d \log T$ for linear case
- Include kernel and overparameterized neural network

Let \mathcal{Q}_{ucb} be the function class containing the Q-functions constructed by LSVI-UCB

• $Q_{ucb} = \left\{ \operatorname{Trunc}_{[0,H]} \{ \phi(\cdot, \cdot)^{\top} \theta + \beta \cdot \| \phi(\cdot, \cdot) \|_{\Lambda^{-1}} \right\}$ for linear case

Theorem [Jin-Yang-Wang-Jordan-20] Choosing $\beta = \widetilde{\mathcal{O}}(H \cdot \sqrt{\log N_{\infty}(\mathcal{Q}_{ucb}, T^{-2})})$, with probability at least 1 - 1/T, Regret $(T) = \widetilde{\mathcal{O}}(\beta H \cdot \sqrt{d_{\mathrm{eff}} \cdot T}) = \widetilde{\mathcal{O}}(H^2 \cdot \sqrt{d_{\mathrm{eff}} \cdot T \cdot \log N_{\infty}})$

- $\log N_{\infty}(Q_{ucb}, T^{-2}) \approx d \log T$ for linear case
- Include kernel and overparameterized neural network
- ullet $d_{
 m eff}$ is the effective dimension of RKHS or NTK
- ullet For an abstract function class \mathcal{F} , d_{eff} can be set as the Bellman-Eluder dimension [Jin-Liu-Miryoosef-21]

Regret analysis

Regret analysis: sensitivity analysis + elliptical potential

A general sensitivity analysis

$$J(\pi^{\star}) - J(\pi^{t})$$

$$= \underbrace{\sum_{h \in [H]} \mathbb{E}_{\pi^{\star}} \left[Q_{h}^{+,t} \left(s_{h}, \pi_{h}^{\star}(s_{h}) \right) - Q_{h}^{+,t} \left(s_{h}, \pi_{h}^{t}(s_{h}) \right) \right]}_{\text{(i) policy optimization error}}$$

$$+ \underbrace{\sum_{h \in [H]} \mathbb{E}_{\pi^{t}} \left[\left(Q_{h}^{+,t} - \mathcal{B} Q_{h+1}^{+,t} \right) \right]}_{\text{(ii) Bellman error on } \pi^{t}}$$

$$+ \underbrace{\sum_{h \in [H]} \mathbb{E}_{\pi^{\star}} \left[- \left(Q_{h}^{+,t} - \mathcal{B} Q_{h+1}^{+,t} \right) \right]}_{\text{(iii) Bellman error on } \pi^{\star}}$$

- Term (i) ≤ 0 as π^t is greedy with respect to $Q_h^{+,t}$
- Optimism: $Q_{h+1}^{+,t} 2\Gamma_h^t \le \mathcal{B}Q_{h+1}^{+,t} \le Q_h^{+,t}$, Term (iii) ≤ 0

Regret analysis: sensitivity analysis + elliptical potential

Therefore, we have

$$\begin{split} \operatorname{Regret}(T) &= \sum_{t=1}^{T} J(\pi^{\star}) - J(\pi^{t}) \leq 2 \sum_{h \in [H]} \mathbb{E}_{\pi^{t}} \left[\Gamma_{h}^{t}(s_{h}, a_{h}) \right] \\ &= 2 \sum_{h \in [H]} \left[\Gamma_{h}^{t}(s_{h}^{t}, a_{h}^{t}) \right] + \operatorname{martingale} - \operatorname{diff} \\ &= 2\beta \sum_{h \in [H]} \sum_{t \in [T]} \left[\| \phi(s_{h}^{t}, a_{h}^{t}) \|_{(\Lambda_{h}^{t})^{-1}} \right] + H \cdot \sqrt{T} \\ &= \widetilde{\mathcal{O}}(\beta H \sqrt{dT}) \end{split}$$

• Second line holds because $\{(s_h^t, a_h^t), h \in [H]\} \sim \pi^t$

Regret analysis: sensitivity analysis + elliptical potential

Therefore, we have

$$\begin{split} \operatorname{Regret}(T) &= \sum_{t=1}^{T} J(\pi^{\star}) - J(\pi^{t}) \leq 2 \sum_{h \in [H]} \mathbb{E}_{\pi^{t}} \left[\Gamma_{h}^{t}(s_{h}, a_{h}) \right] \\ &= 2 \sum_{h \in [H]} \left[\Gamma_{h}^{t}(s_{h}^{t}, a_{h}^{t}) \right] + \operatorname{martingale} - \operatorname{diff} \\ &= 2\beta \sum_{h \in [H]} \sum_{t \in [T]} \left[\| \phi(s_{h}^{t}, a_{h}^{t}) \|_{(\Lambda_{h}^{t})^{-1}} \right] + H \cdot \sqrt{T} \\ &= \widetilde{\mathcal{O}}(\beta H \sqrt{dT}) \end{split}$$

- Second line holds because $\{(s_h^t, a_h^t), h \in [H]\} \sim \pi^t$
- It remains to conduct uncertainty quantification:

$$\mathbb{P}\big(\forall (t,h,s,a), |\widehat{Q}_h^t(s,a) - (\mathcal{B}Q_{h+1}^{+,t})(s,a)| \leq \Gamma_h^t(s,a)\big) \geq 1 - \delta$$

uniform concentration over Q_{ucb} (new for RL)+ self-normalized concentration (same as in CB)

• Exploration in RL is more challenging in that we need to handle deep exploration

- Exploration in RL is more challenging in that we need to handle deep exploration
- LSVI-UCB explores by doing uncertainty quantification for LSVI estimator
 - LSVI propagates the uncertainty in larger h steps backward to h=1
 - ullet By construction, Q_1^+ contains the uncertainty about all $h\geq 1$

- Exploration in RL is more challenging in that we need to handle deep exploration
- LSVI-UCB explores by doing uncertainty quantification for LSVI estimator
 - ullet LSVI propagates the uncertainty in larger h steps backward to h=1
 - ullet By construction, Q_1^+ contains the uncertainty about all $h\geq 1$
- LSVI-UCB achieves sample-efficiency and computational tractability in online RL with function approximation

- Exploration in RL is more challenging in that we need to handle deep exploration
- LSVI-UCB explores by doing uncertainty quantification for LSVI estimator
 - LSVI propagates the uncertainty in larger h steps backward to h=1
 - ullet By construction, Q_1^+ contains the uncertainty about all $h\geq 1$
- LSVI-UCB achieves sample-efficiency and computational tractability in online RL with function approximation
- Similar principle can be extended to:
 - proximal policy optimization (use soft-greedy instead of greedy)
 - zero-sum Markov game (two-player extension)
 - constrained MDP (primal dual optimization)

43

References (a very incomplete list)

- linear bandit
 - [Dani et al, 2008] Stochastic Linear Optimization under Bandit Feedback
 - [Abbasi-Yadkori et al, 2011] Improved algorithms for linear stochastic bandits
- optimism in tabular RL
 - [Auer & Ortner, 2007] Logarithmic Online Regret Bounds for Undiscounted Reinforcement Learning
 - [Jaksch et al, 2010] Near-optimal Regret Bounds for Reinforcement Learning
 - [Azar et al, 2017] Minimax Regret Bounds for Reinforcement Learning

References (a very incomplete list)

- RL with function approximation (incomplete list)
 - [Dann et al, 2018] On Oracle-Efficient PAC RL with Rich Observations
 - [Wang & Yang, 2019] Sample-Optimal Parametric Q-Learning Using Linearly Additive Features
 - [Jin et al, 2020] Provably Efficient Reinforcement Learning with Linear Function Approximation (this talk)
 - [Zanette et al, 2020] Learning near optimal policies with low inherent bellman error
 - [Du et al, 2020] Is a Good Representation Sufficient for Sample Efficient Reinforcement Learning?
 - [Xie et al, 2020] Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium
 - [Yang et al, 2020] On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces (this talk)
 - [Jin et al, 2021] Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms