

Machine Learning – Lecture 6

Linear Discriminants II

05.11.2018

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

RWTHAACHEN UNIVERSITY

Course Outline

Fundamentals

- Bayes Decision Theory
- Probability Density Estimation

Classification Approaches

- Linear Discriminants
- Support Vector Machines
- Ensemble Methods & Boosting
- Randomized Trees, Forests & Ferns

Deep Learning

- Foundations
- Convolutional Neural Networks
- Recurrent Neural Networks

Recap: Linear Discriminant Functions

- Basic idea
 - Directly encode decision boundary
 - Minimize misclassification probability directly.
- Linear discriminant functions

- ightharpoonup w, $w_{
 m o}$ define a hyperplane in \mathbb{R}^D .
- If a data set can be perfectly classified by a linear discriminant, then we call it linearly separable.

Recap: Least-Squares Classification

- Simplest approach
 - Directly try to minimize the sum-of-squares error

$$E(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n; \mathbf{w}) - \mathbf{t}_n)^2$$

$$E_D(\widetilde{\mathbf{W}}) = \frac{1}{2} \text{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^{\mathrm{T}} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\}$$

Setting the derivative to zero yields

$$\widetilde{\mathbf{W}} \, = \, (\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T} = \widetilde{\mathbf{X}}^{\dagger}\mathbf{T} = (\widetilde{\mathbf{X}}^{\mathrm{T}}\widetilde{\mathbf{X}})^{-1}\widetilde{\mathbf{X}}^{\mathrm{T}}\mathbf{T}$$

We then obtain the discriminant function as

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\mathbf{x}} = \mathbf{T}^{\mathrm{T}} \left(\widetilde{\mathbf{X}}^{\dagger}\right)^{\mathrm{T}} \widetilde{\mathbf{x}}$$

⇒ Exact, closed-form solution for the discriminant function parameters.

Recap: Problems with Least Squares

- Least-squares is very sensitive to outliers!
 - The error function penalizes predictions that are "too correct".

Recap: Generalized Linear Models

Generalized linear model

$$y(\mathbf{x}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0)$$

- $> g(\cdot)$ is called an activation function and may be nonlinear.
- The decision surfaces correspond to

$$y(\mathbf{x}) = const. \Leftrightarrow \mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0 = const.$$

- If g is monotonous (which is typically the case), the resulting decision boundaries are still linear functions of x.
- Advantages of the non-linearity
 - Can be used to bound the influence of outliers and "too correct" data points.
 - When using a sigmoid for $g(\cdot)$, we can interpret the $y(\mathbf{x})$ as posterior probabilities.

Linear Separability

- Up to now: restrictive assumption
 - Only consider linear decision boundaries

Classical counterexample: XOR

Generalized Linear Discriminants

Generalization

Fransform vector ${\bf x}$ with M nonlinear basis functions $\phi_i({\bf x})$:

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0}$$

- Purpose of $\phi_i(\mathbf{x})$: basis functions
- Allow non-linear decision boundaries.
- By choosing the right ϕ_j , every continuous function can (in principle) be approximated with arbitrary accuracy.

Notation

$$y_k(\mathbf{x}) = \sum_{j=0}^M w_{kj} \phi_j(\mathbf{x})$$
 with $\phi_0(\mathbf{x}) = 1$

Ć

Linear Basis Function Models

Generalized Linear Discriminant Model

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

- where $\phi_i(\mathbf{x})$ are known as basis functions.
- > Typically, $\phi_0(\mathbf{x}) = 1$, so that w_0 acts as a bias.
- ullet In the simplest case, we use linear basis functions: $\phi_d(\mathbf{x}) = x_d$.

Let's take a look at some other possible basis functions...

Linear Basis Function Models (2)

Polynomial basis functions

$$\phi_j(x) = x^j$$
.

- Properties
 - Global
 - \Rightarrow A small change in x affects all basis functions.

- Result
 - If we use polynomial basis functions, the decision boundary will be a polynomial function of x.
 - ⇒ Nonlinear decision boundaries
 - \Rightarrow However, we still solve a linear problem in $\phi(x)$.

Linear Basis Function Models (3)

Gaussian basis functions

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

Properties

- Local
- \Rightarrow A small change in x affects only nearby basis functions.
- > μ_j and s control location and scale (width).

Linear Basis Function Models (4)

Sigmoid basis functions

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

Properties

- Local
- \Rightarrow A small change in x affects only nearby basis functions.
- > μ_j and s control location and scale (slope).

Topics of This Lecture

- Gradient Descent
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Iteratively Reweighted Least Squares
- Softmax Regression
 - Multi-class generalization
 - Gradient descent solution
- Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

 $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$

Gradient Descent

- Learning the weights w:
 - N training data points:
 - $m{k}$ outputs of decision functions: $y_k(\mathbf{x}_n;\mathbf{w})$
 - > Target vector for each data point: $\mathbf{T} = \{\mathbf{t}_1, ..., \mathbf{t}_N\}$
 - Error function (least-squares error) of linear model

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})^2$$

$$= \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)$$

Problem

- The error function can in general no longer be minimized in closed form.
- Idea (Gradient Descent)
 - Iterative minimization
 - > Start with an initial guess for the parameter values $\ w_{kj}^{(0)}$
 - Move towards a (local) minimum by following the gradient.

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

This simple scheme corresponds to a 1st-order Taylor expansion (There are more complex procedures available).

Gradient Descent – Basic Strategies

"Batch learning"

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

Compute the gradient based on all training data:

$$\frac{\partial E(\mathbf{w})}{\partial w_{kj}}$$

Gradient Descent – Basic Strategies

"Sequential updating"

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

Compute the gradient based on a single data point at a time:

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}}$$

Error function

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$E_n(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{K} \left(\sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}_n) - t_{kn} \right)^2$$

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \left(\sum_{\tilde{j}=1}^{M} w_{k\tilde{j}} \phi_{\tilde{j}}(\mathbf{x}_n) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$

$$= (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

24

Delta rule (=LMS rule)

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$
$$= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

where

$$\delta_{kn} = y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}$$

⇒ Simply feed back the input data point, weighted by the classification error.

Cases with differentiable, non-linear activation function

$$y_k(\mathbf{x}) = g(a_k) = g\left(\sum_{j=0}^M w_{ki}\phi_j(\mathbf{x}_n)\right)$$

Gradient descent

$$\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}) \phi_j(\mathbf{x}_n)$$

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

$$\delta_{kn} = \frac{\partial g(a_k)}{\partial w_{kj}} (y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})$$

26

RWTHAACHEN UNIVERSITY iscriminants

Summary: Generalized Linear Discriminants

Properties

- General class of decision functions.
- Nonlinearity $g(\cdot)$ and basis functions ϕ_j allow us to address linearly non-separable problems.
- Shown simple sequential learning approach for parameter estimation using gradient descent.
- Better 2nd order gradient descent approaches are available (e.g. Newton-Raphson), but they are more expensive to compute.

Limitations / Caveats

- Flexibility of model is limited by curse of dimensionality
 - $g(\cdot)$ and ϕ_i often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters.
- Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.

Topics of This Lecture

- Gradient Descent
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Iteratively Reweighted Least Squares
- Softmax Regression
 - Multi-class generalization
 - Gradient descent solution
- Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

Probabilistic Discriminative Models

We have seen that we can write

$$p(C_1|\mathbf{x}) = \sigma(a)$$

$$= \frac{1}{1 + \exp(-a)}$$

logistic sigmoid function

We can obtain the familiar probabilistic model by setting

$$a = \ln \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

Or we can use generalized linear discriminant models

$$a = \mathbf{w}^T \mathbf{x}$$
 or $a = \mathbf{w}^T oldsymbol{\phi}(\mathbf{x})$

Probabilistic Discriminative Models

In the following, we will consider models of the form

$$p(\mathcal{C}_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma(\mathbf{w}^T \boldsymbol{\phi})$$
$$p(\mathcal{C}_2|\boldsymbol{\phi}) = 1 - p(\mathcal{C}_1|\boldsymbol{\phi})$$

- This model is called logistic regression.
- Why should we do this? What advantage does such a model have compared to modeling the probabilities?

$$p(\mathcal{C}_1|\boldsymbol{\phi}) = \frac{p(\boldsymbol{\phi}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\boldsymbol{\phi}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\boldsymbol{\phi}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

Any ideas?

with

Comparison

- Let's look at the number of parameters...
 - imes Assume we have an M-dimensional feature space ϕ .
 - And assume we represent $p(\phi|\mathcal{C}_k)$ and $p(\mathcal{C}_k)$ by Gaussians.
 - How many parameters do we need?
 - For the means: 2M
 - For the covariances: M(M+1)/2
 - Together with the class priors, this gives M(M+5)/2+1 parameters!
 - How many parameters do we need for logistic regression?

$$p(\mathcal{C}_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma(\mathbf{w}^T\boldsymbol{\phi})$$

- Just the values of $\mathbf{w} \Rightarrow M$ parameters.
- \Rightarrow For large M, logistic regression has clear advantages!

Logistic Sigmoid

Properties

> Definition: $\sigma($

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Inverse:

$$a = \ln\left(\frac{\sigma}{1 - \sigma}\right)$$

"logit" function

Symmetry property:

$$\sigma(-a) = 1 - \sigma(a)$$

Derivative:

$$\frac{d\sigma}{da} = \sigma(1 - \sigma)$$

Logistic Regression

- Let's consider a data set $\{\phi_n,t_n\}$ with $n=1,\ldots,N$, where $m{\phi}_n=m{\phi}(\mathbf{x}_n)$ and $t_n\in\{0,1\}$, $\mathbf{t}=(t_1,\ldots,t_N)^T$.
- With $y_n = p(\mathcal{C}_1 | \phi_n)$, we can write the likelihood as

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} \{1 - y_n\}^{1 - t_n}$$

Define the error function as the negative log-likelihood

$$E(\mathbf{w}) = -\ln p(\mathbf{t}|\mathbf{w})$$

$$= -\sum_{1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

This is the so-called cross-entropy error function.

RWTHAACHEN UNIVERSITY

Gradient of the Error Function

 $egin{array}{ll} y_n &= \sigma(\mathbf{w}^T oldsymbol{\phi}_n) \ rac{dy_n}{d\mathbf{w}} &= y_n (1 - y_n) oldsymbol{\phi}_n \end{array}$

Error function

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

Gradient

$$\nabla E(\mathbf{w}) = -\sum_{n=1}^{N} \left\{ t_n \frac{\frac{d}{d\mathbf{w}} y_n}{y_n} + (1 - t_n) \frac{\frac{d}{d\mathbf{w}} (1 - y_n)}{(1 - y_n)} \right\}$$

$$= -\sum_{n=1}^{N} \left\{ t_n \frac{y_n (1 - y_n)}{y_n} \phi_n - (1 - t_n) \frac{y_n (1 - y_n)}{(1 - y_n)} \phi_n \right\}$$

$$= -\sum_{n=1}^{N} \left\{ (t_n - t_n y_n - y_n + t_n y_n) \phi_n \right\}$$

$$= \sum_{n=1}^{N} (y_n - t_n) \phi_n$$

34

Gradient of the Error Function

Gradient for logistic regression

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \boldsymbol{\phi}_n$$

- Does this look familiar to you?
- This is the same result as for the Delta (=LMS) rule

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn})\phi_j(\mathbf{x}_n)$$

- We can use this to derive a sequential estimation algorithm.
 - However, this will be quite slow...

A More Efficient Iterative Method...

Second-order Newton-Raphson gradient descent scheme

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \mathbf{H}^{-1} \nabla E(\mathbf{w})$$

where $\mathbf{H} = \nabla \nabla E(\mathbf{w})$ is the Hessian matrix, i.e. the matrix of second derivatives.

- Properties
 - Local quadratic approximation to the log-likelihood.
 - Faster convergence.

Newton-Raphson for Least-Squares Estimation

 Let's first apply Newton-Raphson to the least-squares error function:

$$E(\mathbf{w}) \ = \ rac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^{T} \boldsymbol{\phi}_{n} - t_{n} \right)^{2}$$
 $abla E(\mathbf{w}) \ = \ \sum_{n=1}^{N} \left(\mathbf{w}^{T} \boldsymbol{\phi}_{n} - t_{n} \right) \boldsymbol{\phi}_{n} = \mathbf{\Phi}^{T} \mathbf{\Phi} \mathbf{w} - \mathbf{\Phi}^{T} \mathbf{t}$ $\mathbf{H} = \nabla \nabla E(\mathbf{w}) \ = \ \sum_{n=1}^{N} \boldsymbol{\phi}_{n} \boldsymbol{\phi}_{n}^{T} = \mathbf{\Phi}^{T} \mathbf{\Phi}$ where $\mathbf{\Phi} = \begin{bmatrix} \boldsymbol{\phi}_{1}^{T} \\ \vdots \\ \boldsymbol{\phi}_{N}^{T} \end{bmatrix}$

Resulting update scheme:

$$\begin{split} \mathbf{w}^{(\tau+1)} &= \mathbf{w}^{(\tau)} - (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} (\mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w}^{(\tau)} - \mathbf{\Phi}^T \mathbf{t}) \\ &= (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t} & \text{Closed-form solution!} \end{split}$$

Newton-Raphson for Logistic Regression

 Now, let's try Newton-Raphson on the cross-entropy error function:

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

$$\frac{dy_n}{d\mathbf{w}} = y_n (1 - y_n) \phi_n$$

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \phi_n = \mathbf{\Phi}^T(\mathbf{y} - \mathbf{t})$$

$$\mathbf{H} = \nabla \nabla E(\mathbf{w}) = \sum_{n=1}^{N} y_n (1 - y_n) \boldsymbol{\phi}_n \boldsymbol{\phi}_n^T = \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi}$$

where ${f R}$ is an $N\!\! imes\!N$ diagonal matrix with $R_{nn}=y_n(1-y_n)$.

 \Rightarrow The Hessian is no longer constant, but depends on ${\bf w}$ through the weighting matrix ${\bf R}$.

Iteratively Reweighted Least Squares

Update equations

$$egin{aligned} \mathbf{w}^{(au+1)} &= \mathbf{w}^{(au)} - (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t}) \ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \left\{ \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi} \mathbf{w}^{(au)} - \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t})
ight\} \ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{R} \mathbf{z} \end{aligned}$$
 with $\mathbf{z} = \mathbf{\Phi} \mathbf{w}^{(au)} - \mathbf{R}^{-1} (\mathbf{y} - \mathbf{t})$

- Again very similar form (normal equations)
 - ightarrow But now with non-constant weighing matrix ${f R}$ (depends on ${f w}$).
 - Need to apply normal equations iteratively.
 - ⇒ Iteratively Reweighted Least-Squares (IRLS)

Summary: Logistic Regression

Properties

- > Directly represent posterior distribution $p(\phi|\mathcal{C}_k)$
- Requires fewer parameters than modeling the likelihood + prior.
- Very often used in statistics.
- It can be shown that the cross-entropy error function is concave
 - Optimization leads to unique minimum
 - But no closed-form solution exists
 - Iterative optimization (IRLS)
- Both online and batch optimizations exist

Caveat

Logistic regression tends to systematically overestimate odds ratios when the sample size is less than ~500.

Topics of This Lecture

- Gradient Descent
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Iteratively Reweighted Least Squares
- Softmax Regression
 - Multi-class generalization
 - Gradient descent solution
- Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

Softmax Regression

- Multi-class generalization of logistic regression
 - ightharpoonup In logistic regression, we assumed binary labels $t_n \in \{0,1\}$.
 - \triangleright Softmax generalizes this to K values in 1-of-K notation.

$$\mathbf{y}(\mathbf{x}; \mathbf{w}) = \begin{bmatrix} P(y = 1 | \mathbf{x}; \mathbf{w}) \\ P(y = 2 | \mathbf{x}; \mathbf{w}) \\ \vdots \\ P(y = K | \mathbf{x}; \mathbf{w}) \end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\mathbf{w}_{j}^{\top} \mathbf{x})} \begin{bmatrix} \exp(\mathbf{w}_{1}^{\top} \mathbf{x}) \\ \exp(\mathbf{w}_{2}^{\top} \mathbf{x}) \\ \vdots \\ \exp(\mathbf{w}_{K}^{\top} \mathbf{x}) \end{bmatrix}$$

This uses the softmax function

$$\frac{\exp(a_k)}{\sum_{j} \exp(a_j)}$$

Note: the resulting distribution is normalized.

Softmax Regression Cost Function

- Logistic regression
 - Alternative way of writing the cost function

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

$$= -\sum_{n=1}^{N} \sum_{k=0}^{1} \{\mathbb{I}(t_n = k) \ln P(y_n = k | \mathbf{x}_n; \mathbf{w})\}$$

- Softmax regression
 - Generalization to K classes using indicator functions.

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} \left\{ \mathbb{I}(t_n = k) \ln \frac{\exp(\mathbf{w}_k^{\top} \mathbf{x})}{\sum_{j=1}^{K} \exp(\mathbf{w}_j^{\top} \mathbf{x})} \right\}$$

Optimization

- Again, no closed-form solution is available
 - Resort again to Gradient Descent
 - Gradient

$$\nabla_{\mathbf{w}_k} E(\mathbf{w}) = -\sum_{n=1}^N \left[\mathbb{I}\left(t_n = k\right) \ln P\left(y_n = k | \mathbf{x}_n; \mathbf{w}\right) \right]$$

- Note
 - $\nabla_{\mathbf{w}^k} E(\mathbf{w})$ is itself a vector of partial derivatives for the different components of \mathbf{w}_k .
 - We can now plug this into a standard optimization package.

Topics of This Lecture

- Gradient Descent
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Iteratively Reweighted Least Squares
- Softmax Regression
 - Multi-class generalization
 - Gradient descent solution
- Note on Error Functions
 - Ideal error function
 - Quadratic error
 - Cross-entropy error

Note on Error Functions

- Ideal misclassification error function (black)
 - This is what we want to approximate (error = #misclassifications)
 - Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - ⇒ We cannot minimize it by gradient descent.

47

Note on Error Functions

- Squared error used in Least-Squares Classification
 - Very popular, leads to closed-form solutions.
 - However, sensitive to outliers due to squared penalty.
 - Penalizes "too correct" data points
 - ⇒ Generally does not lead to good classifiers.

48

RWTHAACHEN UNIVERSITY

Comparing Error Functions (Loss Functions)

- Cross-Entropy Error
 - Minimizer of this error is given by posterior class probabilities.
 - Concave error function, unique minimum exists.
 - Robust to outliers, error increases only roughly linearly
 - But no closed-form solution, requires iterative estimation.

RWTHAACHEN UNIVERSITY

Overview: Error Functions

Ideal Misclassification Error

- This is what we would like to optimize.
- But cannot compute gradients here.

Quadratic Error

- Easy to optimize, closed-form solutions exist.
- But not robust to outliers.

Cross-Entropy Error

- Minimizer of this error is given by posterior class probabilities.
- Concave error function, unique minimum exists.
- But no closed-form solution, requires iterative estimation.
- ⇒ Looking at the error function this way gives us an analysis tool to compare the properties of classification approaches.

References and Further Reading

 More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop's book (in particular Chapter 4.1 - 4.3).

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

