

CLAIMS:

1. An image processing apparatus (1) for the reconstruction of time-dependent representations $I(x,t)$ of an object (2), comprising
 - an approximation module with memory storing the N-dimensional parameter vector $a(x)$ of a predetermined parametric model function $I^*(a(x),t)$ that approximates the function $I(x,t)$;
 - an input module for the reception of a set of projections p_j^i of the object (2) generated at times t_j^i , and
 - an estimation module that is adapted to estimate the parameter vector $a(x)$ with the help of said projections p_j^i .
- 5 10 2. An apparatus according to claim 1, characterized in that it comprises an evaluation module for the determination of a perfusion map from the representation $I^*(a(x),t)$ of a vessel system.
- 15 3. An apparatus according to claim 1, characterized in that the representation $I(x,t)$ and its approximation $I^*(a(x),t)$ describe for each time t a cross-sectional image of the object.
4. An apparatus according to claim 3, characterized in that the estimation of the parameter vector $a(x)$ is based on the update function $\Delta I(x, p^{i(k)}, I^k(x))$ of an iterative 20 algorithm for the reconstruction of a stationary cross-sectional image $I(x)$, wherein $p^{i(k)}$ is a projection used in the k -th iteration step and $I^k(x)$ is the k -th estimate for $I(x)$.

5. An apparatus according to claim 4, characterized in that the parameter vector $a(x)$ is iteratively approximated by a sequence $a^k(x)$, wherein the $(k+1)$ -th iteration comprises the following steps:

- a) computation of estimates $I^*(a^k(x), t_j^i)$ for at least N of the times t_j^i ,
5 wherein $i \in A$ and $j \in B$ for some index sets A, B ;
- b) computation of corresponding updates $\Delta I^{k,i}_j = \Delta I(x, p_j^i)$,
 $I^*(a^k(x), t_j^i))$
with the help of said estimates $I^*(a^k(x), t_j^i)$ and the measured projections p_j^i that correspond to the times t_j^i ;
10
- c) calculation of the new estimate $a^{k+1}(x)$ for the parameter vector $a(x)$ by minimising

$$\chi^2(x) = \sum_{i \in A, j \in B} (I^*(a^{k+1}(x), t_j^i) - I^*(a^k(x), t_j^i) - \Delta I^{k,i}_j(x))^2$$

6. An apparatus according to claim 1, characterized in that the set of
15 measured projections p_j^i can be divided into M subsets, wherein each subset comprises only projections $p_j^i, j = 1, \dots, Q$ taken from the same or approximately the same direction (d^i) at different times t_j^i , and wherein $Q \geq N$.

7. An apparatus according to claim 1, characterized in that the estimation of
20 the parameter vector $a(x)$ is based on the minimization of an objective function evaluating the deviation between the measured projections p_j^i and corresponding projections $P_i I^*(a^k(x), t_j^i)$ calculated from the model function, wherein the objective function preferably is defined as

$$\chi^2 = \sum_{i,j} (p_j^i - P_i I^*(a(x), t_j^i))^2.$$

25 8. An apparatus according to claim 1, characterized in that the estimation of the parameter vector $a(x)$ makes use of an anatomical reference data set.

9. An X-ray examination system, comprising
- a rotational X-ray apparatus (3) for generating X-ray projections p_j^i of an object (2) from different directions;
 - an image processing apparatus (1) coupled to the X-ray apparatus (3) and adapted to estimate based on said projections p_j^i the N-dimensional parameter vector $a(x)$ of a predetermined model function $I^*(a(x),t)$ that approximates the representation $I(x,t)$ of the object (2).

10 10. The system according to claim 9, characterized by an image processing apparatus (1) according to one of claims 1 to 8.

11. The system according to claim 9, characterized in that the rotational X-ray apparatus is a C-arm system (3) or a multi-slice CT system.

15 12. The system according to claim 9, comprising an injection system for injecting a contrast agent into the blood flow of a patient.

13. A method for the reconstruction of time-dependent representations of an 20 object (2), comprising the following steps:

- approximation of the function $I(x,t)$ which describes the representations by a predetermined parametric model function $I^*(a(x),t)$; and
- estimation of the N-dimensional parameter vector $a(x)$ with the help of a set of projections p_j^i of the object (2) generated at times t_j^i .

25 14. The method according to claim 13, characterized in that the projections p_j^i are generated with a C-arm system (3) or a multi-slice CT system.

15. A computer program for enabling carrying out a method according to
claim 14.

16. A record carrier on which a computer program according to claim 15 is
5 stored.

17. An X-ray system suitable for determining a 3D dynamic process in an
object (2), the system comprising
an x-ray source and an x-ray detector placed at opposite positions with respect
10 to an examination space and simultaneously rotatable around said examination space
for generating a plurality of x-ray projections;
a data processing unit for deriving from said plurality of x-ray projections a map
of the time dependent 3D dynamic process in the object (2);
whereby the 3D dynamic process is approximated by a predetermined model
15 with a limited set of parameters;
whereby the data processing unit is arranged to estimate parameters in said
limited set of parameters out of data in the x-ray projections.

18. The X-ray system according to claim 17, whereby the predetermined
20 model approximates the perfusion of contrast medium in tissue.

19. The X-ray system according to claim 17, whereby the x-ray system is a
C-arm x-ray device or a multi-slice CT system.