MTH 100: Worksheet 10

- 1. (a) Find the coordinates of the vectors $v_1 = (2,3,4)$ and $v_2 = (1,-1,2)$ with respect to the ordered basis $\beta = \{(1,1,1),(1,2,3),(1,3,6)\}$ (NB: the vectors have been written as 3-tuples, but should be regarded as column vectors.)
 - (b) If $[v]_{\beta} = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}_{\beta}$, find $[v]_S$ where S is the standard basis for \mathbf{R}^3 .
- 2. Find the matrix relative to the standard basis of the linear operator T on \mathbf{R}^3 given by:

$$T(x_1, x_2, x_3) = (x_1 + x_3, x_1 + 2x_2 + x_3, -x_1 + x_2)$$

- 3. Let $T: \mathbf{R}^3 \to \mathbf{R}^2$ be the linear transformation given by $T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 x_1)$
 - (a) Find the matrix of T with respect to standard basis for \mathbb{R}^3 and \mathbb{R}^2
 - (b) Verify that $\beta = \{(1,0,-1),(1,1,1),(1,0,0)\}$ is a basis for \mathbb{R}^3
 - (c) Now, determine the matrix of T with respect to the ordered bases β and $\beta' = \{(0,1), (1,0)\}$ for \mathbf{R}^3 and \mathbf{R}^2 respectively.
- 4. (a) Find the matrix relative to the standard basis of the linear operator T on ${\bf R^3}$ given by:

$$T(x_1, x_2, x_3) = (x_1 + x_3, x_1 + 2x_2 + x_3, -x_1 + x_2)$$

(b) Find the matrix of the same linear operator T relative to the ordered basis $\beta = \{(1,1,1), (1,2,3), (1,3,6)\}$

[NB: the change of basis matrix $P_{S\to\beta}$ for this basis has been calculated in Question 1.]

- 5. (a) Prove that similarity is an equivalence relation on the set $R^{n \times n}$ of square $n \times n$ matrices $(n \ge 2)$.
 - (b) Prove or disprove: There exist square matrices (at least 2×2) A and B such that B is row-equivalent to A, but B is not similar to A.
 - (c) Prove or disprove: There exist square matrices (atleast 2×2) A and B such that B is similar to A, but B is not row-equivalent to A.

- 6. Let $V = R^{2\times 2} = \text{vector space of } 2\times 2 \text{ matrices with real entries and consider the function } U:V\to V \text{ given by } U(A)=A+A^T, \text{ for all } A\in V, \text{ where } A^T \text{ is the transpose of } A.$
 - (a) Show that U is a linear operator.
 - (b) Determine the matrix of U with regard to any suitable ordered basis β of V.
 - (c) Determine a basis for Ker U and determine a basis for Range U.
 - (d) Determine the dimension of $\operatorname{Sym}_n(R)$, the space of symmetric $n \times n$ matrices with real entries. Briefly explain your answer.
- 7. Show that a linear transformation $T: V \to W$, where V and W are finite dimensional with dim $V = \dim W$, is injective iff it is surjective.
- 8. Let $V = F^{n \times n}$ for a fixed $n \geq 2$, and let $P \in V$ be a fixed but arbitrary invertible matrix. Then the mapping $S_P : V \to V$ given by $S_P(A) = PAP^{-1}$ is known as similarity transformation induced by P. Show that S_P is an isomorphism. Further, show that S_P is a multiplicative transformation, i.e. $S_P(AB) = S_P(A)S_P(B)$ for all $A, B \in V$
- 9. Let $V = \mathbf{R}^2$ and consider the ordered bases $\alpha = \{u_1, u_2\}$ and $\beta = \{v_1, v_2\}$, where the vectors are as given below.(NB: regard all vectors as column vectors in V.)
 - (a) Find the change of basis matrix $P_{\alpha \to \beta}$
 - (b) Hence find $[\mathbf{v}]_{\beta}$ given that $[\mathbf{v}]_{\alpha} = (10, 20)$.
 - (c) Is there some way to check your answer to 2)? Explain your method and use it to check your answer.

$$u_1 = (3,1), u_2 = (11,4), v_1 = (3,2), v_2 = (7,5)$$