1.3 # 3,6,7,9,12,14,15,21,22,23,25

3.) Display $\vec{u}, \vec{v}, -\vec{v}, -a\vec{v}, \vec{u}+\vec{v}, \vec{u}-\vec{v}$ and $\vec{u}-a\vec{v}$ on an xy-graph $\vec{u}=\begin{bmatrix} -1\\ 2 \end{bmatrix}, \vec{v}=\begin{bmatrix} -3\\ -1 \end{bmatrix}$

Notice the vector $\vec{u} - \vec{v}$ gives the vertex of a parallelogram whose other vertices are given by \vec{o} , \vec{u} and $-\vec{v}$

- 6.) Write a system of equations that is equivalent to the vector equation $X_1[-3] + X_2[-3] + X_3[-1] = [0]$ $\begin{cases} 3x_1 + 7x_2 2x_3 = 0 \\ -2x_1 + 3x_2 + x_3 = 0 \end{cases}$
- 7.) Use the figure to write each vector $\vec{a}_1\vec{b}_1\vec{c}_1\vec{d}$ as a linear combination of \vec{u} and \vec{v} . Is every vector in \vec{R}^2 a linear combination of \vec{u} and \vec{v} ? (figure on eq. 32 Lay) $\vec{a} = \vec{u} 2\vec{v}$, $\vec{b} = 2\vec{u} 2\vec{v}$, $\vec{c} = 2\vec{u} 3.5\vec{v}$, $\vec{d} = 3\vec{u} 4\vec{v}$? Yes, every vector can be written as a linear combination of \vec{u} and \vec{v} ?
- 9) Write a vector equation equivalent to the system

$$4x_1 + 5x_3 = 0$$
 $4x_1 + 6x_2 - x_3 = 0$
 $-x_1 + 3x_2 - 8x_3 = 0$

$$X_{1}\begin{bmatrix} 0\\ 4\\ -1 \end{bmatrix} + X_{2}\begin{bmatrix} 1\\ 6\\ 3 \end{bmatrix} + X_{3}\begin{bmatrix} 5\\ -1\\ -8 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

121) Determine if
$$\vec{b} = \begin{bmatrix} -11 \\ -5 \end{bmatrix}$$
 is a linear combination of $\vec{a}_1 = \begin{bmatrix} 11 \\ 11 \end{bmatrix}$, $\vec{a}_2 = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, $\vec{a}_3 = \begin{bmatrix} -6 \\ 7 \\ 5 \end{bmatrix}$.

If yes then
$$X, \begin{bmatrix} 0 \end{bmatrix} + X_2 \begin{bmatrix} -6 \end{bmatrix} = \begin{bmatrix} 0 \\ -5 \end{bmatrix}$$
 for some X_1, X_2, X_3 .

The question is equivalent to solving the system corresponding to the augmented matrix

[1-2-6|11] This has a solution, so yes to is
[037-5] a linear combination of
$$\overline{\alpha}_1\overline{\alpha}_2,\overline{\alpha}_3$$
.

14.) Determine if
$$\vec{b} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 is a linear combination of the vectors formed by the colomns of the matrix $A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 1 & -6 \\ 0 & 2 & 8 \end{bmatrix}$.

$$\begin{bmatrix} 1 & 0 & 5 & 2 \\ -2 & 1 & -6 & -1 \\ 0 & 2 & 8 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 2 & 8 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 5 & 2 \\ 2R_1 + R_2 & 0 & 1 & 4 & 3 \\ 0 & 2 & 8 & 6 \end{bmatrix} = 2R_2 + R_3 \begin{bmatrix} 0 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Yes, this has a solution (in fact many) So & is a linear combination of the vectors in A.

15.)
$$\vec{a}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
, $\vec{a}_2 = \begin{bmatrix} -5 \\ -8 \\ 3 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 3 \\ 5 \\ h \end{bmatrix}$. For what value(s) of h is \vec{b} in the plane spanned by \vec{a}_1 and \vec{a}_2 ?

Equivalent to asking for which values of h is to a linear combination of a, and az, or also equivalently, for which values of h does the associated system have a solution / is consistent.

have a solution / is consistent.

$$\begin{bmatrix}
1 & -5 & | & 3 \\
3 & -8 & | & -5 & | & -3R_1 + R_2 \\
-1 & 2 & | & h \end{bmatrix} R_1 + R_3 = 0$$
is consistent.

$$\begin{bmatrix}
1 & -5 & | & 3 \\
-1 & 2 & | & h \end{bmatrix} R_1 + R_3 = 0$$

$$\begin{bmatrix}
1 & -5 & | & 3 \\
-1 & 2 & | & h \end{bmatrix} R_1 + R_3 = 0$$
This is consistent.

$$\begin{bmatrix}
1 & -5 & | & 3 \\
0 & 1 & | & 2 \\
0 & -3 & | & 3 + h \end{bmatrix} R_2 + R_3 = 0$$
ie $h = 3$!

21.) Show that [k] is in Span [[], []]] for all h, k.

Therefore [k] can be written as a linear combination of [2] and [2] which is the definition of being in Span \$[3],[3]}

1.3 continued

221) (onstruct a 3×3 matrix A, with nonzero entries, and a vector I in The set spanned by the columns

1 0 4 -1 This augmented matrix
0 1 3 0 corresponds to an
inconsistent system.

We apply some row operations to make a more interesting matrix

ei) False

$$\begin{bmatrix} 1 & 0 & 4 & | & -1 \\ 0 & 1 & 3 & | & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{2R_{2}+R_{1}} \begin{bmatrix} 1 & 2 & 10 & | & -1 \\ 3 & 1 & 15 & | & -3 \\ 0 & -1 & -3 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 10 \\ 3 & 1 & 15 \\ 0 & -1 & -3 \end{bmatrix} \qquad \overline{b} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}$$

23.) True/False

- a) Another notation for the vector [3] is [-43].
- bi) The points in the plane corresponding to [3] and [3] like on a line through the origin.
 - c) An example of a linear combination of vectors V, and Vo is the vector st.
 - di) The solution set of the linear system whose augmented matrix is [ā, āz āz b] is the same as the solution set of the equation x, a, + x2 a2 + x3 a3 = 6.
 - e) The set Span &t, v is always visualized as a plane through the origin.
 - a) False b) False c) True d) True is the same

25.)
$$A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}$$
, $\overline{b} = \begin{bmatrix} 4 \\ -4 \end{bmatrix}$. Denote the columns of A by $\overline{a}_1, \overline{a}_2, \overline{a}_3$ and let $W = \operatorname{Span} \{ \overline{a}_1, \overline{a}_2, \overline{a}_3 \}$

- a) Is 6 in {\alpha_1, \alpha_2, \alpha_3}? How many vectors are in {\alpha_1, \alpha_2, \alpha_3}?

 No, three (just \alpha_1, \alpha_2, \alpha_3 themselves)
- 6) Is b in W? How many vectors are in W?

 [10-4|4]

 [03-2|1]
 [-263|-4] 2R1+R3 [06-5|4] -2R2+R3 [00-1|2]

 Ves, infinitely many.
- ci) Show that \bar{a}_1 is in W. $\bar{a}_1 = 1\bar{a}_1 + 0\bar{a}_2 + 0\bar{a}_3$ which is a linear combination of \bar{a}_1 , \bar{a}_2 , \bar{a}_3 Therefore \bar{a}_1 is in Span $\{\bar{a}_1, \bar{a}_2, \bar{a}_3\}$.