2025 Fall CSC6001 Assignment 2

Problem 1

Description

You are asked to perform a **join operation** between two tables, A and B, in a **distributed database** system.

- Table A is distributed across m machines in the first cluster. The i-th machine stores a_i rows from table A.
- Table B is distributed across n machines in the second cluster. The j-th machine stores b_j rows from table B.

In **one operation**, you may **copy one row** from any machine to any other machine — even across clusters. That is, you can duplicate a row and place it into any chosen machine. After all operations are completed, you must ensure that for every row in A and every row in B, there exists at least one machine that contains both of them. In other words, for every pair (x, y) where $x \in A$ and $y \in B$, there must exist a machine that stores both x and y. Compute the **minimal number of copy operations** required to achieve this goal.

Example.

- Table A is distributed over m=2 machines: a=[3,2] (machine 1 stores 3 rows, machine 2 stores 2 rows).
- Table B is distributed over n = 3 machines: b = [4, 1, 2] (machines store 4, 1, and 2 rows respectively).

Then

$$A_{\text{total}} = 3 + 2 = 5$$
, $B_{\text{total}} = 4 + 1 + 2 = 7$.

Input Format

The first line contains two integers m and n. The second line contains m integers $a_1 \cdots a_m$, split by space. The third line contains n integers $b_1 \cdots b_n$, split by space.

Output Format

Output one integer representing the minimal number of operations required.

Sample Input 1

2 2

3 7

50 2

Sample Output 1

12

Explanation 1

In the first example, it makes sense to move all the rows to the second machine of the second cluster, which is achieved in 2 + 6 + 3 = 11 operations.

Sample Input 2

Sample Output 2

6

Explanation 2

In the second example, you can copy each row from B to both machines of the first cluster, which needs $2 \cdot 3 = 6$ copy operations.

Sample Input 3

```
3 4
337369924 278848730 654933675
866361693 732544605 890800310 350303294
```

Sample Output 3

3220361921

Explanation 3

The optimal plan is to merge all rows of B into its largest machine (with 890,800,310 rows) and copy all rows of A there. That needs 3,220,361,921 operations.

Data Constraints

- For 20% of the test cases, $1 \le m, n \le 10$
- For 40% of the test cases, $1 < m, n < 10^3$
- For 100% of the test cases, $1 \le m, n \le 10^5, 1 \le a_i, b_i \le 10^9$

Problem 2

Description

You are trapped on a chessboard designed by a god, and you must find your way out. The chessboard is an $n \times n$ grid. The god has placed exactly k obstacles on k distinct squares ($k \le 10$). You cannot step on a square that contains an obstacle, but all other squares are accessible. You start at the **top-left corner** (1,1) and aim to reach the **bottom-right corner** (n,n). At each step, you may move **only one square** either **down** or **right**. (You cannot move left, up, or diagonally.) Your task is to determine the **number of distinct paths** from (1,1) to (n,n) that do **not** pass through any obstacle. Since the answer may be large, output it **modulo** 998244353.

Input

- The first line contains two integers n and k $(1 \le n \le 10^9, 0 \le k \le 10)$.
- The next k lines each contain two integers $x_i, y_i \ (1 \le x_i, y_i \le n)$ the coordinates of the obstacles.

It is guaranteed that all obstacles are at **distinct** positions and that (1,1) and (n,n) are **not blocked**.

Output

Print a single integer — the number of valid paths from (1,1) to (n,n) modulo 998244353.

Input Format

- The first line contains two integers n and k, representing the size of the chessboard and the number of obstacles, respectively.
- The next k lines contain two integers x and y, representing the coordinates of each obstacle.

Output Format

Output one integer, representing the number of valid paths modulo 998244353.

Sample Input 1

- 3 1
- 2 2

Sample Output 1

2

Explanation 1

Without obstacles, there are $\binom{4}{2} = 6$ paths from (1,1) to (3,3). Two of these paths go through the obstacle at (2,2), so only 6-4=2 valid paths remain.

Sample Input 2

- 4 2
- 2 2
- 3 3

Sample Output 2

4

Explanation 2

Without obstacles, there are $\binom{6}{3} = 20$ paths from (1,1) to (4,4). After removing all paths that pass through either (2,2) or (3,3), exactly 4 valid paths remain.

Sample Input 3

- 7 3
- 1 4
- 5 3
- 3 6

Sample Output 3

540

Explanation 3

Among all $\binom{12}{6}$ = 924 possible paths from (1,1) to (7,7), some intersect with the obstacles at (1,4), (5,3), or (3,6). After excluding those blocked paths, 540 valid paths remain.

Data Constraints

- For 50% of the test cases, $1 \le n \le 10, 0 \le k \le 2$.
- For 80% of the test cases, $1 \le n \le 10^3, 0 \le k \le 10$.
- For 100% of the test cases, $1 \le n \le 10^7$, $0 \le k \le 10$, and $k \le n \times n$.

Problem 3

You are given an array $a_0, a_1, \ldots, a_{n-1}$ consisting of n integers. You may choose **exactly one continuous subarray** and reverse it, or choose not to reverse any subarray. Formally, you may choose indices l and r ($0 \le l \le r < n$) and reverse the segment $a_l, a_{l+1}, \ldots, a_r$ into $a_r, a_{r-1}, \ldots, a_l$.

Your goal is to make the sum of elements at **even positions** (i.e., indices 0, 2, 4, ...) as large as possible after performing at most one reversal. You need to calculate this **maximum possible sum**.

Example for illustration. Suppose the array is [1, 3, 2, 4, 1]. If you reverse the subarray [1, 3, 2, 4], the array becomes [4, 2, 3, 1, 1], and the sum on even positions is 4+3+1=8. This is the maximum possible value.

Input Format

- The first line contains one integer n $(1 \le n \le 2 \times 10^5)$.
- The second line contains n integers $a_0, a_1, \ldots, a_{n-1}$, separated by spaces.

Output Format

Output one integer — the maximum possible sum of elements on even positions after at most one reversal operation.

Sample Input 1

5 1 3 2 4 1

Sample Output 1

8

Explanation 1

Reversing the subarray $\{a_0, a_1, a_2, a_3\}$ gives the array [4, 2, 3, 1, 1], where the even-index elements are 4, 3, 1, summing to 8. It can be verified that 8 is the maximum possible value.

Sample Input 2

4 2 9 1 5

Sample Output 2

10

Explanation 2

Initially, the even-index elements are 2 and 1, giving a sum of 3. If we reverse the subarray $\{a_1, a_2, a_3\}$, the array becomes [2, 5, 1, 9], and the even-index elements are 2 and 1 = 3. But if we reverse $\{a_0, \dots, a_3\}$ (the whole array), we get [5, 1, 9, 2], whose even-index elements are 5 + 9 = 14. Thus, the maximum possible sum is 14.

Sample Input 3

6 5 4 3 2 1 6

Sample Output 3

14

Explanation 3

Initially, the even-index elements are 5, 3, 1, giving a sum of 9. Reversing the subarray $\{a_1, \dots, a_5\}$ yields [5, 6, 1, 2, 3, 4], and now the even-index elements are 5, 1, 3, summing to 9. However, reversing $\{a_2, \dots, a_5\}$ gives [5, 4, 6, 1, 2, 3], with even-index elements 5, 6, 2 = 13. The optimal choice is to reverse $\{a_0, \dots, a_5\}$, producing [6, 1, 2, 3, 4, 5], whose even-index elements are 6 + 2 + 4 = 12. After checking all possible reversals, the best achievable sum is 14.

Data Constraints

- For 20% of the test cases, $1 \le n \le 500$
- For 40% of the test cases, $1 \le n \le 5 \times 10^3$
- For 100% of the test cases, $1 \le n \le 2 \times 10^5, 1 \le a_i \le 10^9$

Problem 4

Description

You manage a cargo port where multiple ships come to load goods. The i-th ship requires n_i days to complete loading within a certain period, from the x_i -th day to the y_i -th day. The loading days do not need to be continuous. Given a loading plan for L ships, you are required to find the minimum number of days the port needs to be open to accommodate all loading operations.

Input Format

- 1. The first line contains one integer L.
- 2. The remaining L lines represent loading arrangements for all the ships. In each line, x_i , y_i , n_i are included from left to right, splited by space.

Output Format

An integer representing to the minimum number of days the port needs to be open.

Sample Input 1

Sample Output 1

2

Explanation 1

In this example, the optimal arrangement is to load the first ship on day 4, the second ship on day 7, and the third ship on days 4 and 7. Therefore, the port only needs to be open for 2 days.

Sample Input 2

1 8 8 1

Sample Output 2

1

Explanation 2

In this example, there is only one ship that needs to be loaded on day 8, and it requires 1 loading day. Thus, the port only needs to be open for 1 day — specifically, day 8.

Sample Input 3

4

1 3 2

2 5 2

4 6 1

6 7 1

Sample Output 3

3

Explanation 3

In this example, an optimal schedule is to open the port on days 2, 4, and 6.

- The first ship loads on days 2 and 4 (within its period 1–3).
- \bullet The second ship loads on days 2 and 4 (within 2–5).
- The third ship loads on day 6 (within 4–6).
- The fourth ship loads on day 6 (within 6–7).

Thus, all ships can complete their loading with the port open for only 3 days.

Constraints

```
\bullet \ 1 \le n_i \le y_i - x_i + 1
```

- Case 1: $1 \le L \le 10, 1 \le x_i \le y_i \le 10$
- Case 2-4: $10 \le L \le 100, 10 \le x_i \le y_i \le 100$
- Case 5-7: $100 \le L \le 1000, 100 \le x_i \le y_i \le 1000$
- Case 8-10: $1000 \le L \le 10000$, $1000 \le x_i \le y_i \le 10000$