# Predicting the Critical Temperature of Superconductors

Yonaton Heit

#### Objective

- Creating a predictive model for the critical temperature of superconductors.
- Data Source:
  - UCI Machine Learning Repository database of superconductors and extracted properties (http://archive.ics.uci.edu/ml/datasets/Superconductivty+Data)

# What is a Superconductor?

- Superconductor are materials with zero resistance
- With zero resistance, an electronic current can be maintained
  - without external voltage
  - indefinitely



Source:https://www.fluke.com/en-us/learn/best-practices/ measurement-basics/electricity/what-is-ohms-law

# Applications for Superconductors

- Superconducting magnet in Magnetic Resonance Imaging (MRI)
- Superconducting coils in the Large Hadron Collider
- Superconductors could replace components in electronic powered systems [1]



[1] W. V. Hassenzahl, et. al. *Proceedings of the IEEE*, **92** (10),1655-1674, 2004

Source: https://phys.org/news/2013-10 -world-powerful-mri-online.html

# Critical Temperature

- Superconductivity can only be maintain below a certain temperature.
- This is called the critical temperature.
- Superconductors have to refrigerated in order to maintain superconductivity in, for example,
  - Liquid Helium (4 K)
  - Liquid Nitrogen (77 K)



Source: http://www.superconductors.org/tc\_graph.gif

# Superconductor Theory

- There is no universal theory for superconductivity.[1]
  - In 1957, the Bardeen, Cooper, Schrieffer (BCS) theory was proposed.[2]
    - Electrons are bound as Cooper Pairs.
    - Works well for low temperature superconductors (type I)
    - Does not account for higher temperatures superconductors which were later discovered (type II)
  - Other theories include
    - Resonating-valence-bond theory[3]
    - Spin fluctuation theory [4]



Cooper pair moving through lattice

Source:https://physics.stackexchange.com/

questions/126742/do-all-theelectrons-form-cooper-pairs-at-

absolute-zero

- [1] A. Mann, *Nature*, **475**, (21), 280-282, 2011
- [2] J. Bardeen, et al. *Phys. Rev.* **106 (**5), 162–164, 1957
- [3] P.W. Anderson, Science, **235** (4793), 1196–1198, 1987
- [4] P. Monthoux, et al. Phys. Rev. Lett., 67 (24), 3448-3451, 1991

# Critical Temperatures



Source: https://en.wikipedia.org/wiki/Superconductivity

#### Data

- Data driven method to critical temperature.
- Data set contains:
  - 21,263 superconductors
  - 81 features
    - 8 properties derived from the elemental components
    - 10 statistical measurements determined from the 8 properties
    - $8 \times 10 = 80$
    - The final feature is the number of elements.

#### **Features**

| Variable                | Units                                           | Description                                     |
|-------------------------|-------------------------------------------------|-------------------------------------------------|
| Atomic Mass             | atomic mass units (AMU)                         | total proton and neutron rest masses            |
| First Ionization Energy | kilo-Joules per mole (kJ/mol)                   | energy required to remove a valence<br>electron |
| Atomic Radius           | picometer (pm)                                  | calculated atomic radius                        |
| Density                 | kilograms per meters cubed (kg/m <sup>3</sup> ) | density at standard temperature and             |
|                         |                                                 | pressure                                        |
| Electron Affinity       | kilo-Joules per mole (kJ/mol)                   | energy required to add an electron to           |
|                         |                                                 | a neutral atom                                  |
| Fusion Heat             | kilo-Joules per mole (kJ/mol)                   | energy to change from solid to liquid           |
|                         |                                                 | without temperature change                      |
| Thermal Conductivity    | watts per meter-Kelvin $(W/(m \times K))$       | thermal conductivity coefficient $\kappa$       |
| Valence                 | no units                                        | typical number of chemical bonds                |
|                         |                                                 | formed by the element                           |

| Feature & Description       | Formula                                          |
|-----------------------------|--------------------------------------------------|
| Mean                        | $=\mu = (t_1 + t_2)/2$                           |
| Weighted mean               | $= \nu = (p_1 t_1) + (p_2 t_2)$                  |
| Geometric mean              | $=(t_1t_2)^{1/2}$                                |
| Weighted geometric mean     | $=(t_1)^{p_1}(t_2)^{p_2}$                        |
| Entropy                     | $= -w_1 \ln(w_1) - w_2 \ln(w_2)$                 |
| Weighted entropy            | $= -A\ln(A) - B\ln(B)$                           |
| Range                       | $=t_1-t_2 \ (t_1>t_2)$                           |
| Weighted range              | $= p_1 t_1 - p_2 t_2$                            |
| Standard deviation          | $= [(1/2)((t_1 - \mu)^2 + (t_2 - \mu)^2)]^{1/2}$ |
| Weighted standard deviation | $= [p_1(t_1 - \nu)^2 + p_2(t_2 - \nu)^2)]^{1/2}$ |

K. Hamidieh, Computational Materials Science, 154, 346-354, 2018

# Element analysis



#### Element analysis

- There are 77 elements in the data set.
- 60 elements appear in less than 5% of superconductors.
- Oxygen and copper are the most common element
- 59% of superconductors have oxygen or copper.
- It would be interesting to see how well a model does using only elements.

| Superconductors with Element |         |        |  |  |
|------------------------------|---------|--------|--|--|
|                              | Percent | Number |  |  |
| Oxygen                       | 56.27%  | 11964  |  |  |
| Copper                       | 50.97%  | 10838  |  |  |
| Barium                       | 31.75%  | 6751   |  |  |
| Strontium                    | 22.82%  | 4852   |  |  |
| Calcium                      | 19.34%  | 4112   |  |  |
| Yttrium                      | 19.16%  | 4075   |  |  |
| Lanthanum                    | 16.29%  | 3463   |  |  |
| Bismuth                      | 11.24%  | 2389   |  |  |
| Iron                         | 11.00%  | 2339   |  |  |
| Arsenic                      | 7.06%   | 1502   |  |  |









# Critical temperature distribution

- The distributions suggest that there are two populations of superconductors in the data set.
  - Possibly type I and type II superconductors.
- Type I are typically has a lower temperature than type II.
- After clustering, there were too many type II superconductors in the lower temperature cluster
  - Populations in bimodal distribution not based on type



# K-means Clustering

- Superconductors were clustered into two distinct clusters.
  - Cluster 1: 8792 superconductors
  - Cluster 2: 12471 superconductors
- Is there is any predictive value to clustering?

Distribution of Critical Temperatures



# K-means Clustering



# K-means Clustering



# **Data Separating**

- 7000 data points obtained from each cluster for training data set
  - Same number of data points per cluster to avoid an unbalanced model
- Two strategies were used for each machine learning method.
  - Clusters were modeled together
  - Clusters were modeled separately
  - Allows us to see the effects of clustering
- Two methods were used for modeling:
  - Linear Regression
  - Gradient Boosting

Distribution of Critical Temperatures

Cluster 1



# **Linear Regression**

- Performed using scikit-learn python libraries
- Features are standardized by
  - Centering by the mean.
  - Then dividing by the standard deviation



# Modeling Cluster with Linear Regressions

- Modeling cluster separately reduced RMSE and R<sup>2</sup>
  - Modeled clusters Together: RMSE: 19.5 K

 $R^2$ : 0.70

Modeled clusters separately: RMSE: 17.4 K

 $R^2$ : 0.76



# Modeling Cluster with Linear Regressions Cluster 1 error is significantly decreased by modeling clusters

- Cluster 1 error is significantly decreased by modeling clusters separately
  - RMSE: 9.6 K to 6.0 K
  - $-R^2$ : -0.21 to 0.53
- Cluster 2 error decrease was less significant:

- RMSE: 21.8 K to 19.7 K<sub>Regressed Together</sub>

- R<sup>2</sup>: 0.58 to 0.65



# **Gradient Boosting**

- Performed using XGBoost python library
- 4-fold cross validation was performed using scikit-learn python library
- XGBoost's scikit-learn API was slow so custom API were created.
  - This API was 5 times faster than the scikit-learn API build-in to XGBoost.
- Features were standardized
  - centered at the mean
  - Divided by standard deviation.
- Tuned hyperparameters.

# **Tuning Hyperparameters**

Tuned hyperparameters with a random search of 200 possible combinations.

| Parameters       | Both Clusters | Cluster 1 | Cluster 2 | Values searched      |
|------------------|---------------|-----------|-----------|----------------------|
| n_estimators     | 230           | 130       | 139       | 1,2,3,,699           |
| min_child_weight | 18            | 3         | 13        | 1,2,3,,20            |
| max_depth        | 17            | 18        | 12        | 1,2,3,,20            |
| learning_rate    | 0.40          | 0.28      | 0.34      | 0.01,0.02,0.03,,1.00 |
| subsample        | 1.00          | 0.75      | 1.00      | 0.50,0.75,1.00       |
| solcample_bytrue | 1.00          | 0.75      | 1.00      | 0.50,0.75,1.00       |

#### **Gradient Boosting Results**

- Gradient boosting performed significantly better than linear regressions
- Modeling clusters separately had no effect on accuracy



**Important Features** 

| Both Cluster                                  |                  | Cluster 1                                        |               | Cluster 2                                     |                  |
|-----------------------------------------------|------------------|--------------------------------------------------|---------------|-----------------------------------------------|------------------|
| Feature                                       | Fraction<br>Gain | Feature                                          | Fraction Gain | Feature                                       | Fraction<br>Gain |
| Range thermal conductivity                    | 0.594            | Weighted mean atomic mass                        | 0.253         | Weighted mean thermal conductivity            | 0.460            |
| Weighted geometric mean thermal conductivity  | 0.131            | Range first ionization energy                    | 0.114         | Weighted mean valence                         | 0.072            |
| Standard deviation atomic mass                | 0.020            | Weighted mean valence                            | 0.054         | Standard deviation atomic mass                | 0.062            |
| Weighted mean valence                         | 0.018            | Weight geometric mean electron affinity          | 0.035         | Weighted geometric mean valence               | 0.055            |
| Weighted geometric mean valence               | 0.017            | Mean first ionization energy                     | 0.033         | Weighted standard deviation electron affinity | 0.036            |
| Weighted standard deviation electron affinity | 0.014            | Weighted standard deviation thermal conductivity | 0.026         | Range atomic radius                           | 0.014            |
| Weighted range atomic mass                    | 0.013            | Mean density                                     | 0.024         | Weighted entropy thermal conductivity         | 0.013            |

#### Conclusion

- We successfully created models that predict the critical temperature of superconductors using features derived from the properties of the elements in the superconductors.
- Best model: RMSE: 11.33 K and R<sup>2</sup>: 0.90
- Gradient boosting was more accurate than linear regression.
- Modeling the clustering separately improved accuracy for linear regression but not gradient boosting.
  - Separating by clustering may add flexibility to the linear regression model while gradient boosting (being non-linear) was sufficiently flexible.

# **Special Thanks**

- Yogendra (Yogi) Pandey and Dipanjan (DJ) Sarkar, my mentors at Springboard, for all his help.
- Liam Doherty, for creating the template for these slides.
   https://github.com/dohliam/libreoffice-impress-templates

#### Presentation available at

https://github.com/fullmetalchem15t/superconductors

# Scatter Plots of the Weighted Mean



# Scatter Plots of the Weighted Mean

