

Computação Orientada a Objetos II

Prof. Dr. Rodrigo Duarte Seabra

Universidade Federal de Itajubá Bacharelado em Ciência da Computação/Sistemas de Informação

Diagrama de Sequência Aula 06

Prof. Dr. Rodrigo Duarte Seabra

Universidade Federal de Itajubá Bacharelado em Ciência da Computação/Sistemas de Informação

Diagrama de Sequência

- ✓ Determina a **sequência de eventos** que ocorrem em determinado processo, identificando **quais mensagens devem ser disparadas** entre os elementos envolvidos e **em que ordem**
- ✓ Baseia-se no diagrama de casos de uso
- ✓ Em geral, <u>há um diagrama de sequência para cada caso de uso</u> declarado
- √ Valida e complementa o diagrama de classes

Atores

- ✓ Instâncias dos atores declarados no diagrama de casos de uso
- ✓ Representam entidades externas que interagem com o sistema e que solicitam serviços gerando eventos que iniciam processos

Lifelines

- ✓ Participante individual em uma interação
- ✓ Normalmente, refere-se a uma **instância de uma classe (objeto)** que participa de uma interação

Exemplo de Lifeline

Lifelines

Linha de Vida

- ✓ Representa o **tempo em que um objeto (lifeline) existe** durante um processo
- ✓ Representadas por linhas finas verticais tracejadas partindo do retângulo que representa o objeto
- ✓ A linha de vida é interrompida com um "X" quando o objeto é destruído
- ✓ Se um objeto for criado ao longo de um processo, sua representação não ocorre no topo do diagrama, mas somente a partir do momento em que forem criados

Foco de Controle ou Ativação

- ✓ Indica os períodos em que determinado objeto está participando ativamente do processo
- ✓ Representados dentro da linha de vida de um objeto

Foco de Controle ou Ativação

- ✓ Demonstram a **ocorrência de eventos**, que normalmente forçam a **chamada de um método** em algum dos objetos envolvidos no processo
- ✓ Podem ser disparadas entre:
 - um ator e outro ator
 - um ator e um objeto, onde um ator produz um evento que dispara um método em um objeto
 - um objeto e outro objeto, o que constitui a ocorrência mais comum de mensagens
 - um objeto e um ator, o que normalmente ocorre quando um objeto envia uma mensagem de retorno em resposta à chamada de um método solicitado, contendo seus resultados

- ✓ Representadas por **linhas entre dois componentes, contendo setas** indicando qual componente enviou a mensagem e qual a recebeu
- ✓ Apresentadas na posição horizontal entre as linhas de vida dos componentes e sua ordem sequencial é demonstrada de cima para baixo
- ✓ Os textos contidos nas mensagens identificam qual evento ocorreu e forçou o envio da mensagem e qual método foi chamado

✓ Quando a mensagem cria um novo objeto, a seta atinge o retângulo que representa o objeto, indicando que a mensagem representa um método construtor

Mensagem que instancia um novo objeto

✓ Quando uma mensagem elimina um objeto, ela atinge a linha de vida dele e a interrompe com um X

Mensagem que dispara um método destrutor

Mensagens de Retorno

- ✓ Identifica a **resposta a uma mensagem** para o objeto ou ator que a chamou
- ✓ Pode retornar informações específicas do método chamado ou apenas um valor indicando se o método foi executado com sucesso ou não
- ✓ Representadas por uma linha tracejada contendo uma seta fina que aponta para o objeto que recebe o resultado do método chamado

Autochamadas ou Autodelegações

- ✓ Mensagens que um objeto envia para si mesmo
- ✓ A mensagem parte da linha de vida do objeto e atinge a linha de vida do próprio objeto

Detalhes de Tempo

✓ Quando se quer demonstrar o tempo que uma mensagem leva em consideração antes de ser disparada, deve-se usar restrições de duração, e a mensagem é apresentada na diagonal

Mensagens Perdidas e Mensagens Encontradas

- ✓ Perdida: representa uma mensagem que foi enviada e sua confirmação de recebimento não foi recebida, podendo significar que a mensagem não chegou ao seu destino
- ✓ Encontrada: representa o recebimento de uma mensagem enviada por um elemento desconhecido ou um elemento não representado no diagrama, ou o recebimento de uma mensagem que fora dada como perdida, pois seu tempo de espera por resposta poderia ter sido encerrado
- √ São representadas por um círculo preenchido
 - perdida: o círculo é atingido pela mensagem
 - encontrada: mensagem parte do círculo

Mensagens Perdidas e Mensagens Encontradas

Exemplo de mensagem perdida e encontrada

Portas

- ✓ É possível representar um objeto no diagrama contendo **instâncias das portas declaradas na classe** a que ele pertence
- ✓ Neste caso, o objeto terá mais de uma linha de vida, o que permite a representação de mensagens externas e internas no objeto

Portas

Fragmentos de Interação

- ✓ Noções abstratas de unidades de interação geral
- ✓ Representa uma parte de uma interação
- ✓ Retângulo que envolve toda a interação, além de conter uma aba no canto superior esquerdo, contendo um operador que determina qual tipo de diagrama de interação ele se refere

Fragmentos de Interação

Exemplo de fragmento de interação

Usos de Interação

✓ Uma das principais vantagens do uso de fragmentos de interação caracteriza-se pela possibilidade de se poder referenciá-los por meio do operador **Ref**

Exemplo de ocorrência de interação

Usos de Interação

✓ É possível encontrar usos de interação simplesmente sobrepostos às linhas de vida dos objetos que fazem parte do processo, sem nem ao menos chamá-las por meio de uma mensagem, como se as instruções contidas nos usos de interação fossem adicionadas automaticamente ao diagrama.

Usos de Interação

Exemplo de Uso de Interação – Processo de Realizar Saque

Fragmentos Combinados e Operadores de Interação

- ✓ Permitem uma modelagem semi-independente da parte do diagrama onde deve-se enfocar problemas que envolvam testes se-senão, laços ou processamentos paralelos.
- ✓ Representados por um retângulo que determina a área de abrangência do fragmento no diagrama, além de conterem ainda uma subdivisão em sua extremidade superior esquerda para identificar a descrição do fragmento combinado e seu operador de interação

✓ Operadores:

- Alt (alternativas)
- Opt (opção)
- Par (paralelo)
- Loop (laço)
- Break (quebra)
- Critical region (região crítica)

Operador Alt (Alternativas)

✓ Define que o fragmento combinado representa uma escolha entre dois ou mais comportamentos

Operador Alt (Alternativas)

Operador Opt (Opção)

✓ Determina que o fragmento combinado representa uma escolha de comportamento onde esse será ou não executado

Operador Opt (Opção)

Operador Par (Paralelo)

✓ Determina que o fragmento combinado representa uma execução paralela de dois ou mais comportamentos

Operador Loop (Laço)

✓ Determina que o fragmento combinado representa um laço que poderá ser repetido diversas vezes

Operador Break (Quebra)

✓ Indica uma "quebra" na execução normal do processo (usado no tratamento de exceções)

Operador Critical Region (Região Crítica)

✓ Identifica uma operação atômica que não pode ser interrompida por outro processo até ser totalmente concluída

Exemplo - Abrir Conta Comum

Exemplo - Realizar Depósito

Exemplo - Emitir Extrato

- ✓ Considere os requisitos do sistema a seguir (Sistema de Controle de Hotelaria) e os diagramas de Casos de Uso e Classes modelados:
 - Os quartos podem ser alugados no momento em que o hóspede chega ao hotel (desde que existam vagas) ou serem reservados via internet
 - Caso seja a primeira vez que aluga quartos, os seus dados tenham mudado, o hóspede deve ser cadastrado antes de finalizar o aluguel do quarto
 - Além do aluguel do quarto, o hotel oferece diversos serviços, como restaurante, lavar e/ou passar roupas etc. Obviamente, qualquer desses serviços, se solicitado, será cobrado na fatura final
 - O hóspede pode também consumir os produtos contidos no frigobar, que também são cobrados pelo hotel

- As diárias vencem ao meio-dia. A política do hotel exige que as diárias sejam quitadas semanalmente. Quando o cliente for quitar a fatura, quitará não somente as diárias do(s) quarto(s) que alugou, mas também qualquer serviço que tenha solicitado e os itens consumidos no frigobar
- O hóspede, depois de quitar a fatura, pode permanecer no hotel ou encerrar sua estadia
- Quando for encerrar sua estadia, o hóspede deverá pagar quaisquer serviços e/ou diárias ainda não pagas

- ✓ Processo de Pagamento de Diárias
- ✓ Desenvolva o <u>diagrama de sequência</u> para o processo de pagamento de diárias, de acordo com os seguintes requisitos:
 - O hóspede se dirige ao funcionário e informa os quartos que deseja pagar
 - O funcionário, por meio do sistema, deve então buscar todas as diárias ainda não pagas relativas ao quarto e apresentar ao hóspede
 - Ao realizar o pagamento, as diárias serão quitadas, podendo o hóspede permanecer no hotel ou encerrar sua estadia
 - Caso o hóspede tenha solicitado algum serviço ou consumido algum item de frigobar, deverá pagá-los igualmente
 - ENTREGAR O EXERCÍCIO NA PRÓXIMA AULA (grupos de até 5 alunos)!!!

Exercício Extra – REA-UML (não vale nota)

✓ Acesse a ferramenta REA-UML e identifique o raciocínio lógico envolvido na modelagem dos diagramas de sequência e de comunicação modelados para o sistema descrito como estudo de caso.

✓ O link para acesso à ferramenta é: http://sgvclin.altervista.org/rea-uml/