1.	1. 求 θ , 使复数 $z = \cos 2\theta + (\tan^2 \theta - \tan \theta - 2)$ i 是:				
	(1) 实数;				
	(2) 纯虚数;				
	(3) 零.				
	解答在这里 (1) 由 $\tan^2\theta - \tan\theta - 2 = 0$, 得 $\tan\theta = -1$, $\tan\theta = 2$, 所以 $\theta = k\pi - \frac{\pi}{4}$, $\theta = k\pi + \arctan\theta$	$12(k \in \mathbf{Z}).$			
	解各在这里 (1) 田 $\tan^{2}\theta - \tan\theta - 2 = 0$,得 $\tan\theta = -1$, $\tan\theta = 2$,所以 $\theta = k\pi - \frac{1}{4}$, $\theta = k\pi + \arctan\theta$ (2) 由 $\begin{cases} \cos 2\theta = 0, \\ (\tan\theta - 2)(\tan\theta + 1) \neq 0, \end{cases}$ 得 $\begin{cases} \cos^{2}\theta - \sin^{2}\theta = 0, \\ (\tan\theta - 2)(\tan\theta + 1) \neq 0, \end{cases}$ 即 $\begin{cases} \tan\theta = \pm 1, \\ (\tan\theta - 2)(\tan\theta + 1) \neq 0, \end{cases}$ 付 $\tan\theta = 1$,所以 $\theta = k\pi + \frac{\pi}{4}(k \in \mathbf{Z})$. (3) 由 $\begin{cases} \cos 2\theta = 0, \\ (\tan\theta - 2)(\tan\theta + 1) = 0, \end{cases}$ 得 $\begin{cases} \tan\theta = \pm 1, \\ (\tan\theta - 2)(\tan\theta + 1) = 0, \end{cases}$ 例 $\tan\theta = -1$,所以 $\theta = k\pi - \frac{\pi}{4}(k \in \mathbf{Z})$.	则 ≠ 0,			
	$\tan \theta = 1, $ 所以 $\theta = k\pi + \frac{\pi}{4}(k \in \mathbf{Z}). $ (3) 由 $\begin{cases} \cos 2\theta = 0, \\ (\tan \theta - 2)(\tan \theta + 1) = 0, \end{cases}$ 得 $\begin{cases} \tan \theta = \pm 1, \\ (\tan \theta - 2)(\tan \theta + 1) = 0, \end{cases}$	1) = 0,			
	则 $\tan \theta = -1$,所以 $\theta = k\pi - \frac{\pi}{4}(k \in \mathbf{Z})$.				
	. 已知实数 a, x, y 满足 $a^2 + (2+i)a + 2xy + (x-y)i = 0$, 则点 (x, y) 的轨迹是 ().				
	A. 直线 B. 圆心在原点的圆 C. 圆心不在原点的圆 D. 椭圆				
	解答在这里将题设之式整理得 $a^2+2a+2xy+(a+x-y)$ i = 0. 所以 $\begin{cases} a^2+2a+2xy=0, \\ a+x-y=0. \end{cases}$ 由②,得 代入①,得 $(y-x)^2+2(y-x)+2xy=0$ 即 $x^2+y^2-2x+2y=0, (x-1)^2+(y+1)^2=2.$ 故意				
3.	5. 若 $x,y \in \mathbf{R}$, 则 " $x = 0$ " 是 " $x + y$ i 为纯虚数"的 ().				
	A. 充分不必要条件 B. 必要不充分条件				
	C. 充要条件 D. 既不充分也不必要条件				
4.	. 复数 $a+b\mathrm{i}(a,b\in\mathbf{R})$ 在复平面内的对应点在虚轴上的一个充要条件是 ().				
	A. $a = 0$ B. $b \neq 0$ C. $ab = 0$ D. $\frac{a}{b} = 0$				
5.	. 下列结论中, 正确的是 ().				
	A. 复平面内, 原点是实轴与虚轴的公共点				
	B. 实数的共轭复数一定是实数, 虚数的共轭复数一定是虚数				
	C. 复数集 C 与复平面内所有向量所组成的集合是一一对应的				
	D. 若使得实数 x 对应于纯虚数 x i, 则实数集 R 与纯虚数集是——对应的				

- 6. 复平面内, 若复数 $z=m^2(1+\mathrm{i})-m(4+\mathrm{i})-6\mathrm{i}$ 所对应的点在第二象限, 则实数 m 的取值范围是 (

A. (0,3)B. (-2,0)C. (3,4)D. $(-\infty, -2)$

7. 由方程 $|z|^2 - 8|z| + 15 = 0$ 所确定的复数在复平面内对应点的轨迹是 ().

B. 四条直线 C. **一个**圆 A. 四个点 D. 两个圆

8. 已知集合 $M=\{1,2,(m^2-3m-1)+(m^2-5m+6){\rm i}, m\in {\bf R}\},\ N=\{-1,3\}$ 满足 $M\cap N\neq \varnothing,$ 则 m 等于 ().

	A. 0 或 3	B1 或 3	C1 或 6	D. 3
9.	若复数 $z = 2m^2 - 3m - 2 +$	$(m^2 - 3m + 2)$ i 是纯虚数,则	則实数 m 的值为 ().	
	A. 1 或 2	B. $-\frac{1}{2}$ 或 2	C. $-\frac{1}{2}$	D. 2
10.	复平面内, 正方形的三个顶点	(对应的复数分别是 1 + 2i, 0	,-2 + i, 则第四个顶点所对D	应的复数为 ().
	A. 3 + i	B. 3 – i	C. $1 - 3i$	D. $-1 + 3i$
11.	判断命题的真假: $x_1 + y_1 i =$	$x_2 + y_2$ i 的充要条件是 $x_1 =$	$x_2, \text{ II. } y_1 = y_2.$	
12.	判断命题的真假: 任意两个复	夏数都不能比较大小	·	
13.	判断命题的真假: 若 $x,y \in \mathbf{R}$	x, 且 $x = y$, 则 $(x - y) + (x - y)$	+ y)i 是纯虚数 .	
14.	已知复数 $z = \frac{a^2 + a - 2}{a - 3} + \frac{a^2 + a - 2}{a - 3}$	$-(a^2 - 4a + 3)i(a \in \mathbf{R}).$	塔 $z \in \mathbf{R}$,则 $a =$; 若 z 是纯虚数, 则
	a =			
15.	已知 $z = (2\cos\theta - \sqrt{3}) + i(2\cos\theta - \sqrt{3})$	$2\sin\theta - 1$). 若 $z \in \mathbf{R}$, 则 $\theta =$; 若 z 是纯虚数,	则 $\theta =$
16.	已知复数 $z = (\tan^2 \theta + \tan \theta)$	$(-2) + i(\cos^2\theta - \sin^2\theta)$.	$\theta =$ 时, z 为实数	$;$ 当 $\theta =$ 时,
	z 为纯虚数; 当 $\theta =$	时, $z=0$.		
17.	复平面内,若复数 $z=(m^2-$	$(m-2) + (m^2 - 3m + 2)i$ Mix	对应的点在虚轴上, 则实数 /	n 的值等于
18.	复平面内, 若复数 (m² - 8n	$(m+15) + (m^2 - 5m - 14)i$	所对应的点位于第四象限,	则实数 m 的取值范围
	是			
19.	满足 $ \log_3 x + 4i = 5$ 的实数	x 的值是		
20.	复平面内,已知复数 $z = x - $	$\frac{1}{3}$ i 所对应的点都在单位圆内	J, 则实数 x 的取值范围是	·
21.	不等式 $ 4+\mathrm{i}\log_{\frac{1}{2}}(x-1) \ge$	- 3 + 4i 的解集是		

23. 若复数 $z = \cos \alpha + i(1 - \sin \alpha)$, 则 |z| 的取值范围是______.

24. 若复数 $z_1 = 1 - \mathrm{i} r \sin \alpha$ 与 $z_2 = r \cos \alpha - \sqrt{3} \mathrm{i} (r > 0)$ 相等, 则 $z_1 =$ ______.

22. 若复数 z = (x-1) + (2x-1)i 的模小于 $\sqrt{10}$, 则实数 x 的取值范围是_____.

25. 已知 $z_1 = \sin 2\theta + \mathrm{i} \cos \theta$, $z_2 = \cos \theta - \sqrt{3} \sin \theta (0 \le \theta < \pi)$. 若 $z_1 = z_2$, 则 $\theta = ______$; 若 $z_1 = \overline{z_2}$, 则 $\theta = ______$.

26. 已知 $z + |\overline{z}| = 2 + i$, 求复数 z.

27. 已知 z - 2|z| = -7 + 4i, 求复数 z.

- 28. 已知复数 $z = \frac{x^2 3x + 2}{x + 3} + (x^2 + 2x 3)i$, 求实数 x, 使:
 - (1) z 是实数;
 - (2) z 是虚数;
 - (3) z 是纯虚数.
- 29. 若 $\cos 2\theta + i(1 \tan \theta)$ 是纯虚数, 则 θ 的值取 ().

A.
$$k\pi - \frac{\pi}{4}(k \in \mathbf{Z})$$

B.
$$k\pi + \frac{\pi}{4}(k \in \mathbf{Z})$$

C.
$$k\pi \pm \frac{\pi}{4} (k \in \mathbf{Z})$$

A.
$$k\pi - \frac{\pi}{4}(k \in \mathbf{Z})$$
 B. $k\pi + \frac{\pi}{4}(k \in \mathbf{Z})$ C. $k\pi \pm \frac{\pi}{4}(k \in \mathbf{Z})$ D. $\frac{k\pi}{2} + \frac{\pi}{4}(k \in \mathbf{Z})$

30. 方程 3z + |z| = 1 - 3i 的解是 ().

C.
$$\frac{3}{4} - i$$

D.
$$-i$$
 和 $\frac{3}{4} - i$

31. 若虚数 (x-2)+yi $(x,y\in\mathbf{R})$ 的模为 $\sqrt{3},$ 则 $\frac{y}{x}$ 的最大值是 ().

A.
$$\frac{\sqrt{3}}{2}$$

B.
$$\frac{\sqrt{3}}{3}$$

C.
$$\frac{1}{2}$$

D.
$$\sqrt{3}$$

- 32. 设复数 $z = \log_2(\cos\alpha + \frac{1}{2}) + i\log_2(\sin\alpha + \frac{1}{2})$, 求 α , 使:
 - (1) z 为实数;
 - (2) z 为纯虚数;
 - (3) z 在复平面内的对应点在第二象限;
 - (4) z 的实部与虚部相等.
- 33. 根据条件, 在复平面内画出复数对应点的集合所表示的图形: $1 \le |\text{Re}(z)| \le 2(\text{Re}(z))$ 表示 z 的实部).
- 34. 根据条件, 在复平面内画出复数对应点的集合所表示的图形: $1 \le |z| \le 2$ 且 Im(z) < 0(Im(z) 表示 z 的虚部).
- 35. 已知两个复数集 $M = \{z | z = t + (1 t^2) \text{i}, t \in \mathbf{R}\}$ 及 $N = \{z | z = 2\cos\theta + (\lambda + 3\sin\theta) \text{i}, \lambda \in \mathbf{R}, \theta \in \mathbf{R}\}$ 的交 集为非空集合, 求 λ 的取值范围.
- 36. 已知 $\frac{z}{z-1}$ 是纯虚数, 求复数 z 在复平面内对应点的轨迹的普通方程.

解答在这里设
$$z=x+y$$
i $(x,y\in\mathbf{R})$,则 $\frac{z}{z-1}=\frac{x+y$ i}{(x-1)+yi $}=\frac{(x+y$ i)[(x-1)-yi]}{(x-1)^2+y^2}=\frac{x(x-1)+y^2+[y(x-1)-xy]i}{(x-1)^2+y^2}=\frac{x^2}{(

$$\frac{x(x-1)+y^2-y\mathrm{i}}{(x-1)^2+y^2}.$$
 因为 $\frac{z}{z-1}$ 是纯虚数,所以
$$\begin{cases} x(x-1)+y^2=0, \\ y\neq 0. \end{cases}$$
 即复数 z 在复平面内对应点的轨迹

方程是圆 (除两点), $(x-\frac{1}{2})^2+y^2=\frac{1}{4}(y\neq 0)$.

37. 若 |z+1-i|=1, 求 |z-3+4i| 的最大值和最小值. 解答在这里由条件 |z-(-1+i)|=1, 知复数 Z 的对应 点 A 在以 (-1, 1) 为圆心、1 为半径的圆上运动, 而 |z-3+4i|=|z-(3-4i)|, 它表示点 A 和点 B(3, -4) 的 距离 (如图 1), 显然, $|BE| \le |AB| \le |BD|$, 所以 $|z-3+4\mathrm{i}|$ 的最大值和最小值分别是 $\sqrt{41}+1$ 和 $\sqrt{41}-1$.

38. 已知 $|z_1|=|z_2|=1, z_1+z_2=rac{1}{2}+rac{\sqrt{3}}{2}$ i, 求复数 z_1,z_2 . 解答在这里如图,

因为 $z_1+z_2=\frac{1}{2}+\frac{\sqrt{3}}{2}$ i,所以 z_1+z_2 对应于向量 \overrightarrow{OC} ,其中 $\angle COA=60^\circ$.设 \overrightarrow{OA} 对应于复数 z_1 , \overrightarrow{OB} 对应于复数 z_2 ,则四边形 AOBC 是菱形,且 $\triangle AOC$ 和 $\triangle BOC$ 都是等边三角形,于是 $z_1=1$, $z_2=-\frac{1}{2}+\frac{\sqrt{3}}{3}$ i 或 $z_1=-\frac{1}{2}+\frac{\sqrt{3}}{3}$ i, $z_2=1$.

39. 求值: $(1+i)^{10} - (1-i)^{10}$.

解答在这里原式 = $[(1+i)^2]^5 - [(1-i)^2]^5 = (2i)^5 - (-2i)^5 = 2^5i + 2^5i = 64i$.

40.
$$\frac{(2+2i)^5}{(-1+\sqrt{3}i)^4}.$$

解答在这里原式 = $\frac{(2+2\mathrm{i})(1+\mathrm{i})^4}{\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i}\right)}$ = $\frac{(2+2\mathrm{i})(2\mathrm{i})^2}{-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i}}$ = $\frac{-8(1+\mathrm{i})(-\frac{1}{2}-\frac{\sqrt{3}}{2}\mathrm{i})}{\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}\mathrm{i}\right)(-\frac{1}{2}-\frac{\sqrt{3}}{2}\mathrm{i})}$ = $4(1+\mathrm{i})(1+\sqrt{3}\mathrm{i})$ = $4(1-\sqrt{3})+4(1+\sqrt{3})\mathrm{i}$.

41. 求复数
$$z = \frac{(3-4\mathrm{i})^3}{\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\mathrm{i}\right) \cdot \left(\sqrt{3} + \sqrt{2}\mathrm{i}\right)^4}$$
 的模.

解答在这里
$$|z| = \frac{\left|3-4\mathrm{i}\right|^3}{\left|\frac{\sqrt{3}}{2}-\frac{1}{2}\mathrm{i}\right| \cdot \left|\sqrt{3}+\sqrt{2}\mathrm{i}\right|^4} = \frac{5^3}{\left(\sqrt{5}\right)^4} = 5.$$

- 42. 已知 $|z| \le 1$, $|\omega| \le 1$, 求证: $|z + \omega| \le |1 + \overline{z}\omega|$. 解答在这里因为 $|z + \omega|^2 |1 + \overline{z}\omega|^2 = (z + \omega)(\overline{z} + \overline{\omega}) (1 + \overline{z}\omega)(1 + z\overline{\omega}) = z\overline{z} + \omega\overline{\omega} 1 z\overline{z}\omega\overline{\omega} = |z|^2 + |\omega|^2 1 |z|^2 \cdot |\omega|^2 = (|z|^2 1)(1 |\omega|^2) \le 0$. 所以 $|z + \omega|^2 \le |1 + \overline{z}\omega|^2$, 于是 $|z + \omega| \le |1 + \overline{z}\omega|$.
- 43. 若复数 z 满足 $z + \frac{4}{z} \in \mathbf{R}$, 且 |z 2| = 2, 求 z. 解答在这里因为 $z + \frac{4}{z} \in \mathbf{R}$, 所以 $z + \frac{4}{z} = \overline{z} + \frac{4}{\overline{z}}$, 整理得 $z^2\overline{z} + 4\overline{z} = z\overline{z^2} + 4z$, 即 $z|z|^2 |z|^2 \cdot \overline{z} 4(z \overline{z}) = 0$, 即 $(z \overline{z})(|z|^2 4) = 0$.
 - (1) 若 |z| = 2, 结合已知条件, |z 2| = 2, 得 $z = 1 \pm \sqrt{3}i$.
 - (2) 若 $z \overline{z} = 0$, 结合 |z 2| = 2, 得 z = 0(舍去) 和 z = 4.

综合 (1) 与 (2), 得 $z = 1 \pm \sqrt{3}$ i 或 z = 4.

44. 求函数 $y = \sqrt{4a^2 + x^2} + \sqrt{(x-a)^2 + a^2}(a > 0)$ 的最值.

45. 若 $|z+\frac{1}{z}|=1$,求 |z| 的取值范围. 解答在这里由 $||z|-|\frac{1}{z}||\leq |z+\frac{1}{z}|$,得 $-1\leq |z|-\frac{1}{|z|}\leq 1$,即 $\begin{cases} |z|^2+|z|-1\geq 0, \\ |z|^2-|z|-1\leq 0, \end{cases}$ 所以 $\frac{\sqrt{5}-1}{2}\leq |z|\leq \frac{\sqrt{5}+1}{2}$. 注意在应用不等式 $||z_1|-|z_2||\leq |z_1+z_2|\leq |z_1|+|z_2|$

求函数的最大值、最小值时,需留意取 "="的条件. 当 $\overrightarrow{OZ_1}$ 与 $\overrightarrow{OZ_2}$ 同向时, $|z_1+z_2|=|z_1|+|z_2|$;当 $\overrightarrow{OZ_1}$ 与 $\overrightarrow{OZ_2}$ 异向时, $|z_1+z_2|=||z_1|-|z_2||$.

- 46. 两个共轭虚数的差一定是().
 - A. 非零实数
- B. 零

- C. 纯虚数
- D. 非纯虚数
- 47. 复平面内, 已知复数 2-i 和 3+4i 分別对于点 M,N, 则向量 \overrightarrow{MN} 对应的复数是 ().
 - A. 5 + 3i
- B. -1 5i
- C. 1 + 5i
- D. 1 5i
- 48. 若复数 z = 3 + ai 满足条件 |z 2| < 2, 则实数 a 的取值范围是 ().
 - A. $(-2\sqrt{2}, 2\sqrt{2})$
- B. (-2, 2)
- C. (-1, 1)
- D. $(-\sqrt{3}, \sqrt{3})$
- 49. 若复数 z 满足 |z+3-4i|=2, 则 |z| 的最小值和最大值分别是 ().
 - A. 1和9
- B. 4 和 10
- C. 5 和 11
- D. 3和7
- 50. 若 $|z-25i| \le 15$, $z \in \mathbb{C}$, 则 |z| 最小时的 $z = ______, |z|$ 最大时的 $z = _____.$
- 51. 若复数 z 满足 |z| = 3, 则 $|z 1 + \sqrt{3}i|$ 的最小值是
- 52. 若复数 z 满足 |z-3|=5, 则 |z-(1+4i)| 的最大值是______, 最小值是_____.
- 53. 若 |z-1-2i|=1, 则 |z-3-i| 的取值范围是_____.

54.	复平面内, 已知点 A,B,C 分别对应于复数 $z_1=1+\mathrm{i},z_2=5+\mathrm{i},z_3=3+3\mathrm{i},$ 以 AB,AC 为邻边作一平行四边形 $ABDC,$ 求点 D 对应的复数 z_4 及 AD 的长.				
55.	5. 若 $f(\overline{z+i}) = 2z + \overline{z} + i$, 则 $f(i)$ 等于 ().				
	A. 1	В. –1	C. i	D. —i	
56.	若复数 z 满足 z+1 ²- z-	$+ i ^2 = 1$, 则 z 在复平面内的	对应点所表示的图形是 ().	
	A. 直线	B. 圆	C. 椭圆	D. 双曲线	
57.	若复数 z 满足 z - 1 + z +	1 =2,则 z 在复平面内的双	寸 应点所表示的图形是()).	
	A. 圆	B. 椭圆	C. 双曲线	D. 线段	
58.	若 z ₁ , z ₂ 都是虚数, 则 "z ₁ =	≅2"的一个必要不充分条件。	是 ().		
	$A. z_1 - \overline{z}_2 = 0$	B. $\overline{z}_1 = z_2$	C. $z_1 = z_2$	D. $ z_1 = z_2 $	
59.	复平面内,曲线 $ z-1+i =$	1 关于直线 $y = x$ 的对称曲	线方程为 ().		
	A. $ z - 1 - i = 1$	B. $ \bar{z} - 1 - i = 1$	C. $ z + 1 + i = 1$	D. $ \overline{z} + 1 + i = 1$	
60.	若 $ z = 1$, 则 $ z + i + z - \epsilon $	5 的最小值等于 ().			
	A. 7	B. $\sqrt{37}$	C. 6	D. 5	
61.	若复平面内的点 A,B 分别对	け应于复数 2 + i 和 1 − i, 则纟	线段 AB 的中垂线方程的复数	数形式是	
62.	设 $z \in \mathbb{C}$, 则方程 $ z+2 + z $	z-2 =6 对应的曲线的普通	方程是		
63.	3. 以 (±3,0) 为两焦点, 且长半轴长为 5 的椭圆方程的复数形式是				
64.	z =2,则复数 $ z =2$,则复平面内 $ z =2$,则其正,则则则则则则则则则则则则则则则则则则则则则则则则则则则则则则则则则则				
65.	5. 若 $ z-3 + z+3 =10$, 且 $ z-5\mathrm{i} - z+5\mathrm{i} =8$, 则复数 $z=$				
66.	若 $ z-2 = \sqrt{17}$, $ z-3 = 4$	4, 则复数 z =			
	7. 设 $ z_1 = 3$, $ z_2 = 5$, $ z_1 + z_2 = 6$, 求 $ z_1 - z_2 $.				
68.	3. 若 $ z_1 = 3$, $ z_1 + z_2 = 5$, $ z_1 - z_2 = 7$, 求 $ z_2 $.				
	 9. 已知两个复数集合 A = {z z - 2 ≤ 2}, B = {z z = z₁/2 i + b, z₁ ∈ A, b ∈ R}. (1) 当 b = 0 时, 求集合 B 所对应的区域; (2) 当 A ∩ B = Ø 时, 求 b 的取值范围; (3) 若复数 z₁ = 1 + 2ai, z₂ = a + i(a ∈ R), 集合 A = {z z - z₁ ≤ √2}, B = {z z - z₂ ≤ 2√2} 满足 A ∩ B = Ø, 求 a 的取值范围. 				
70.	已知复数 z_1, z_2 满足 $ z_1 = 1$	$1, z_2 = 1, \mathbf{E}, z_1 + z_2 = \frac{1}{2} + $	$\frac{\sqrt{3}}{2}i, \not \mathbb{R} z_1, z_2.$		

71.	复平面内三点 A,B,C 依次对应于复数 $1+z,1+2z,1+3z,$ 其中 $ z =2,O$ 为原点, 若 $S_{\triangle AOB}+S_{\triangle BOC}=2$ 求复数 $z.$			
72.	若复数 $z = (1+i)^2$, 则 $z \cdot \overline{z}$	的值为().		
	A4i	B. 4i	C. 4	D. 8
73.	计算 $(\frac{\sqrt{2}\mathrm{i}}{1+\mathrm{i}})^{100}$ 的结果是 ().		
	A. i	В. –і	C. 1	D1
74.	当 n 取遍正整数时, $i^n + i^{-n}$	表示不同值的个数是().	
	A. 1	B. 2	C. 3	D. 4
75.	使 $(\frac{1+\mathrm{i}}{1-\mathrm{i}})^n$ 为实数的最小自	然数 n 是 ().		
	A. 2	B. 4	C. 6	D. 8
76.	"z ₁ 和 z ₂ 为共轭复数" 是 "z	$z_1 + z_2 \in \mathbf{R} \perp z_1 \cdot z_2 \in \mathbf{R}$	的().	
	A. 充分不必要条件		B. 必要不充分条件	
	C. 充要条件		D. 既不充分也不必要条件	
77.	若 $(z-1)^2 = z-1 ^2$, 则 z^2	一定是 ().		
	A. 纯虚数	B. 实数	C. 虚数	D. 零
78.	设 $z=1+ki(k\in\mathbf{R})$, 则 z^2	对应点的轨迹是().		
	A. 圆	B. 椭圆	C. 抛物线	D. 双曲线
79.	若 z 是复数, 判断 " $ z ^2 = z^2$	恒成立"的真假:	<u>_</u> .	
80.	若 z 是复数, 判断 " $ z ^2 = z^2$	恒不成立". 的真假:	.	
81.	若 z 是复数, 判断 " $ z ^2 = z $	² 恒成立"的真假:	·	
82.	若 z 是复数, 判断 " $ z \le 1 \Leftrightarrow$	→ -1 ≤ z ≤ 1"的真假:		
83.	若 z 是复数, 判断 " $\sqrt{ z ^2}$ =	z 恒成立" 的真假:		
84.				
	若 z ₁ , z ₂ 都是复数, 判断 "若			
85.	若 z_1 , z_2 都是复数, 判断 "若 z 是复数, 判断 " $z + \overline{z}$ 一"	$ z_1 = z_2 $,则 $ z_1 = \pm z_2$ "	的真假:	
		$ z_1 = z_2 $,则 $z_1 = \pm z_2$ "定是实数"的真假:	的真假:	
86.	若 z 是复数, 判断 " $z + \overline{z}$ 一	$ z_1 = z_2 $,则 $ z_1 = \pm z_2 $ " 定是实数"的真假:	的真假: 	

- 89. 若 z 是复数, 判断 " $z = \overline{z} \Leftrightarrow z \in \mathbf{R}$ 恒成立"的真假:
- 90. 若 z_1 , z_2 都是复数, 判断 "若 $z_1^2 + z_2^2 = 0$, 则 $z_1 = z_2 = 0$ " 的真假:______.
- 91. $(i \frac{1}{i})^6$ 的虚部是_____.
- 92. 计算 $(1+i)^{20} (1-i)^{20} =$ _____.
- 93. 计算 $\frac{(1+i)^5}{1-i} + \frac{(1-i)^5}{1+i} =$ ______.
- 94. 若 z = 1 + i, 则 $\frac{5}{1 + z^2} =$ _____.
- 95. 计算 $\frac{-2\sqrt{3}+i}{1+2\sqrt{3}i}+(\frac{\sqrt{2}}{1+i})^{3996}=$ ______.
- 96. 若 $a \in \mathbb{R}$, 且 $\frac{a+2i}{3+i} \in \mathbb{R}$, 则 $\frac{a+2i}{3+i} =$ ______.
- 97. 已知 $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$,则: $\omega^2 + \frac{1}{\omega^2} = _____; \omega^3 + \frac{1}{\omega^3} = _____; \omega^{14} + \frac{1}{\omega^{14}} = _____; 1 + \omega + \omega^2 + \omega^3 + \cdots + \omega^{10} = _____.$
- 98. 若 $f(x) = 2x^4 11x^3 7x^2 9x + 4$, 则 $f(-\frac{1}{2} + \frac{\sqrt{3}}{2}i) =$ ______.
- 99. 计算: $(i \frac{1}{i})^{10} =$ _____.
- 100. 计算: $\frac{(1+i)^3 (1-i)^3}{(1+i)^2 (1-i)^2} = \underline{\hspace{1cm}}.$
- 101. 计算: $i \cdot i^2 \cdot i^3 \cdot \dots \cdot i^{1997} =$ ______.
- 102. 计算: $i + i^2 + i^3 + \cdots + i^{1997} =$ _____.
- 103. 计算: $(\frac{1+\mathrm{i}}{\sqrt{2}})^{1997} + (\frac{1-\mathrm{i}}{\sqrt{2}})^{1997} = _____.$
- 104. 已知 $i^{3m} = i^n(m, n \in \mathbf{Z})$, 则 i^{m+n} 的值为 ().
 - A. 1

В. і

C. -i

D. -1

- 105. 若 $x + \frac{1}{x} = -1$, 则 $x^{17} + x^{-17}$ 的值等于 ().
 - A. 0

В. –

C. 1

D. 2

- 106. 计算: $1 + 2i + 3i^2 + 4i^3 + \dots + 10i^9$.
- 107. 计算: $i + 2i^2 + 3i^3 + \cdots + 359i^{359}$.
- 108. 求首项为 i, 公比为 $1 + \frac{1}{i}$ 的等比数列的第七项.
- 109. 计算: $(\frac{-1+i}{1+\sqrt{3}i})^3$.
- 110. 计算: $\frac{(\sqrt{3}+i)^5}{-1+\sqrt{3}i}$.

- 111. 复数 $(3+4i)(-\frac{1}{2}+\frac{\sqrt{3}}{2}i)$ 的模为:_____.
- 112. 复数 $\frac{5-12i}{-8+15i}$ 的模为:______.
- 113. 复数 $\frac{(1+i)^3}{(1-i)^2(9+40i)}$ 的模为:_____.
- 114. 若 $t \in \mathbf{R}$, 则复数 $\frac{1-t^2}{1+t^2} + \frac{2t}{1+t^2}$ i 的模为:______.
- 115. 复数 $\frac{(1-i)^{10}(3-4i)^4}{(-\sqrt{3}+i)^8}$ 的模为:_____.
- 116. 复数 $\frac{(\sqrt{6}+i)(1+i)^2}{(-1+\sqrt{6}i)(-\frac{1}{3}+\frac{2\sqrt{2}}{3}i)(\sqrt{3}i)}$ 的模为:_____.
- 117. 已知 z = 1 + i, 且 $\frac{z^2 + az + b}{z^2 z + 1} = 1 i$, 求实数 a, b 的值.
- 118. 已知 a > 0, 且 $a \ne 1$, 若 $(\log_a x + i)z = 1 + i \log_a x$, 问: x 为何值时, z 为:
 - (1) 实数;
 - (2) 虚数;
 - (3) 纯虚数;
 - (4) 模等于 1 的复数.*****

119. 己知
$$z = |\frac{\sqrt{2}i(3+i)^2}{(\sqrt{3}+\sqrt{7}i)^2}| + 2i, 求 |z|.$$

- 120. 已知复数 $z = \frac{(1+i)^3(a-1)^2}{\sqrt{2}(a-3i)^2}$ 满足 $|z| = \frac{2}{3}$, 求实数 a 的值.
- 121. 已知复数 z 满足 |z| = 5, 且 (3 + 4i)z 是纯虚数, 求 z.

122. 已知
$$z = \frac{\sqrt{3}\sin\theta + i\cos\theta}{\sin\theta - i\sqrt{3}\cos\theta}$$
, 求 z 的最大值.

- 123. 已知复数 z 满足 $|z + \frac{1}{z}| = 1$, 求 |z| 的取值范围.
- 124. 已知复数 z 满足 $z + \frac{4}{z} \in \mathbb{R}, |z-2| = 2, 求 z.$
- 125. 已知复数 z 满足 $|z-4|=|z-4\mathrm{i}|,\,z+\frac{14-z}{z-1}\in\mathbf{R},\,$ 求 z.
- 126. 已知 $\left| \frac{z-12}{z-8i} \right| = \frac{5}{3}, \left| \frac{z-4}{z-8} \right| = 1$, 求复数 z.
- 127. 求满足 $z^2 + \frac{9}{z^2} \in \mathbf{R}$ 的复数 z 的对应点轨迹的普通方程.
- 128. 求满足 $\frac{z}{z-1}$ 的复数 z 的对应点轨迹的普通方程.
- 129. 已知 $a \in \mathbb{R}$, 求满足 $z \cdot \overline{z} + az + \overline{z} = 0$ 的复数 z 的对应点轨迹的普通方程.
- 130. 已知非零复数 z_1, z_2 满足 $|z_1 + z_2| = |z_1 z_2|$, 求证: $(\frac{z_1}{z_2})^2$ 一定是负数.

- 131. 已知 P,Q 两点分别对应于复数 z_1 和 $2z_1 + 3 4i$, 若点 P 在曲线 |z| = 2 上移动, 求点 Q 的轨迹.
- 132. 已知复数 z 满足 |z|=2, 求复数 $w=\dfrac{z+1}{z}$ 在复平面内的对应点的轨迹.
- 133. 复平面内两动点 P_1 , P_2 所对应的复数 z_1 , z_2 满足 $z_1=z_2$ i + 3, 又点 P_2 沿着曲线 |z-5|-|z+5|=6 运动, 试求点 P_1 的轨迹方程, 并指出它表示何种曲线.
- 134. 复平面内, 线段 AB 上的点 P 对应的复数为 z, 其中 A, B 点分别对应于复数 $z_A=1$, $z_B=i$, 求 z^2 的对应 点轨迹的普通方程, 并画出图形.
- 135. 已知点 Q(u,v) 在 O(0,0), A(1,0), B(1,1) 为顶点的 $\triangle OAB$ 的边界上移动, 求 $z=(u+2vi)^2+2+3i$ 所对应的点 P 的轨迹, 并画出草图.
- 136. 求证: 复数 z 可以表示为 $\frac{1+t{\rm i}}{1-t{\rm i}}(t\in{\bf R})$ 的充要条件是 |z|=1 且 $z\neq -1$.
- 137. 求证: $\frac{z-1}{z+1}$ 为纯虚数的充要条件是 |z|=1 且 $z \neq \pm 1$.
- 138. 利用 $||z_1| |z_2|| \le |z_1 + z_2| \le |z_2| + |z_2|$, 求函数 $y = \sqrt{x^2 + 4} + \sqrt{x^2 8x + 17}$ 的最小值及相应的 x.
- 139. 利用 $||z_1| |z_2|| \le |z_1 + z_2| \le |z_2| + |z_2|$, 求函数 $y = \sqrt{x^2 + 9} \sqrt{x^2 2x + 5}$ 的最大值及相应的 x.
- 140. 利用 $||z_1| |z_2|| \le |z_1 + z_2| \le |z_2| + |z_2|$,求证: $\sqrt{x^2 + y^2} + \sqrt{(x-2)^2 + y^2} + \sqrt{x^2 + (y-2)^2} + \sqrt{(x-2)^2 + (y-2)^2}$ $\ge 4\sqrt{2}$.
- 141. 利用 $|z|^2=z\cdot\overline{z}$, 解决问题: "若 |z|=1, 求证 $|\frac{a-z}{1-a\overline{z}}|=1$ ".
- 142. 利用 $|z|^2 = z \cdot \overline{z}$, 解决问题: "若 $|1 z_1 z_2| = |z_1 \overline{z}_2|$, 求证: $|z_1|$, $|z_2|$ 中至少有一个为 1".
- 143. 利用 $|z|^2=z\cdot \overline{z}$, 解决问题: "若 $|z_1|\leq 1, |z_2|\leq 1$, 求证: $|\frac{z_1-z_2}{1-\overline{z}_1z_2}|\leq 1$ ".
- 144. 利用 $|z|^2 = z \cdot \overline{z}$, 解决问题: "若复数 z_i 满足 $|z_i| = 1 (i = 1, 2, 3)$, 求 $|\frac{z_1 z_2 + z_2 z_3 + z_3 z_1}{z_1 + z_2 + z_3}|$ 的值".
- 145. 利用 $|z|^2 = z \cdot \overline{z}$, 解决问题: "已知复数 $A = z_1 \overline{z}_2 + z_2 \overline{z}_1$, $B = z_1 \overline{z}_1 + z_2 \overline{z}_2$, 其中 z_1, z_2 是非零复数, 问: A, B 可不可以比较大小? 并证明之".
- 146. 已知 |z|=1, $|z_2|=\sqrt{2}$, 求证: $|\frac{2z_1+(1+3\mathrm{i})z_2^2}{3+4\mathrm{i}}|\leq \frac{12}{5}$.
- 147. 已知 $z = \frac{\sin \alpha + \mathrm{i}\sqrt{2}\cos \alpha}{\sqrt{2}\sin \alpha \mathrm{i}\cos \alpha}$,求证: $\frac{\sqrt{2}}{2} \leq |z| \leq \sqrt{2}$.
- 148. 复平面内三点 A,B,C 分别对应于复数 z_1,z_2,z_3 ,若 $\dfrac{z_2-z_1}{z_3-z_1}=1+\dfrac{4}{3}$ i, 试求 $\triangle ABC$ 的三边之比.
- 149. 已知 |z| = 1, 求 $|z^2 z + 1|$ 的最大值和最小值.
- 150. 已知 |z| = 1, 求 $|z^2 z + 2|$ 的最大值和最小值.
- 151. 已知 |z| = 1, 求 $|z^3 3z 2|$ 的最大值和最小值.

152. 将复数
$$2(\cos\frac{\pi}{5} - i\sin\frac{\pi}{5})$$
 化为三角形式. 解答在这里 $2(\cos\frac{\pi}{5} - i\sin\frac{\pi}{5}) = 2[\cos(-\frac{\pi}{5}) + i\sin(-\frac{\pi}{5})].$

153. 将复数
$$2(-\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$$
 化为三角形式. 解答在这里 $2(-\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}) = 2(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5})$.

154. 将复数
$$-2(\cos\frac{\pi}{5}+\mathrm{i}\sin\frac{\pi}{5})$$
 化为三角形式. 解答在这里 $-2(\cos\frac{\pi}{5}+\mathrm{i}\sin\frac{\pi}{5})=2(\cos\frac{6\pi}{5}+\mathrm{i}\sin\frac{6\pi}{5}).$

155. 将复数
$$2(\sin\frac{\pi}{5} + i\cos\frac{\pi}{5})$$
 化为三角形式. 解答在这里 $2(\sin\frac{\pi}{5} + i\cos\frac{\pi}{5}) = 2(\cos\frac{3\pi}{10} + i\sin\frac{3\pi}{10})$.

156. 将复数
$$z=-\sqrt{3}+\mathrm{i}$$
 化成三角形式. 解答在这里如图,因为 $r=2,\,\cos\theta=-\frac{\sqrt{3}}{2},\,\theta=\frac{5\pi}{6},\,$ 所以 $-\sqrt{3}+\mathrm{i}=2(\cos\frac{5\pi}{6}+\mathrm{i}\sin\frac{5\pi}{6}).$

157. 将复数 z = 5 - 12i 化成三角形式.

解答在这里如图,因为 r=13, $\cos\theta=\frac{5}{13}$, $\theta=2\pi-\arccos\frac{5}{13}$, 所以 $5-12\mathrm{i}=13[\cos(-\arccos\frac{5}{13})+\mathrm{i}\sin(-\arccos\frac{5}{13})]$.

158. 若复数 $z=\frac{1}{2}+\mathrm{i}\sin\alpha(\alpha\in\mathbf{R}),$ 且 $|z|\leq1,$ 求 $\arg z$ 和 α 的取值范围.

解答在这里因为 $|z| \le 1$,所以 $\frac{1}{4} + \sin^2 \alpha \le 1$,所以 $-\frac{\sqrt{3}}{2} \le \sin \alpha \le \frac{\sqrt{3}}{2}$ 如图,z 的对应点 P 应在线段 AB 上运动,当点 P 在 MA 上时, $\arg z \in [0,\frac{\pi}{3}]$,当点 P 在 BM 上时, $\arg z \in [\frac{5\pi}{3},2\pi)$.

所以 $\arg z \in [0, \frac{\pi}{3}] \cup [\frac{5\pi}{3}, 2\pi)$. 所以 $a \in [k\pi - \frac{\pi}{3}, k\pi + \frac{\pi}{3}](k \in \mathbf{Z})$.

159. 已知 $z + \frac{1}{z} = \cos x (x \in \mathbf{R})$, 且 $|z| \le 1$, 求 $\arg z$ 的取值范围.

解答在这里先设 |z|<1, 则如图所示, 此时 $z+\frac{1}{z}$ 所对应的向量不在 x 轴上,

所以 $z+\frac{1}{z} \neq \cos x$,故 |z|<1 不可能,于是 |z|=1. 令 $z=\cos \theta+\mathrm{i}\sin \theta (0\leq \theta<2\pi)$,则由 $z+\frac{1}{z}=z+\overline{z}=2\cos \theta=\cos x$,得 $\cos \theta=\frac{1}{2}\cos x\in[-\frac{1}{2},\frac{1}{2}]$. 所以 $\theta\in[\frac{\pi}{3},\frac{2\pi}{3}]\cup[\frac{4\pi}{3},\frac{5\pi}{3}]$,即 $\arg z\in[\frac{\pi}{3},\frac{2\pi}{3}]\cup[\frac{4\pi}{3},\frac{5\pi}{3}]$.

- 160. 已知非零复数 z 满足 |z-i|=1, 且 $\arg z=\theta$, 求:
 - (1) θ 的取值范围;
 - (2) 复数 z 的模;
 - (3) 复数 $z^2 zi$ 的辐角.

解答在这里 (1) 因为 $|z-\mathrm{i}|=1$,所以 z 的对应点 P 在以 (0,1) 为圆心,半径为 1 的圆上 (如下图左), θ 的取值范围是 $0<\theta<\pi$.

(2) 如下图中, 在 Rt $\triangle AOP$ 中, 因为 $|OP|=2\sin\theta$, 故 $|z|=2\sin\theta$.

 $(3) \ \ \text{由} \ |z-\mathrm{i}| = 1, \ \ \text{故可令} \ z-\mathrm{i} = \cos\varphi + \mathrm{i}\sin\varphi(\varphi \in \mathbf{R}), \ \ \text{于是} \ z^2 - z\mathrm{i} = z(z-\mathrm{i}) = 2\sin\theta(\cos\theta + \mathrm{i}\sin\theta) \cdot (\cos\varphi + \mathrm{i}\sin\varphi) = 2\sin\theta[\cos(\theta+\varphi) + \mathrm{i}2\sin(\theta+\varphi)]. \ \ \mathbf{Z} \ \cos\varphi + \mathrm{i}\sin\varphi = z-\mathrm{i} = 2\sin\theta(\cos\theta + \mathrm{i}\sin\theta) - \mathrm{i} = 2\sin\theta\cos\theta + \mathrm{i}(2\sin^2\theta - 1) = \sin2\theta - \mathrm{i}\cos2\theta = \cos(2\theta - \frac{\pi}{2}) + \mathrm{i}\sin(2\theta - \frac{\pi}{2}), \ \ \text{所以} \ \varphi = 2k\pi + 2\theta - \frac{\pi}{2}(k \in \mathbf{Z}), \\ \theta + \varphi = 2k\pi + 3\theta - \frac{\pi}{2}(k \in \mathbf{Z}). \ \ \mathbb{P} \ \arg(z^2 - z\mathrm{i}) = 2k\pi + 3\theta - \frac{\pi}{2}(k \in \mathbf{Z}).$

第 (3) 题有另一种解法: 如上图右, $z-\mathrm{i}$ 和向量 \overrightarrow{MP} 对应, 而 $\angle OMP = 2\theta$, 则 $z-\mathrm{i}$ 的一个辐角为 $2\theta-\frac{\pi}{2}$, 由 $z^2-z\mathrm{i} = z(z-\mathrm{i})$ 知, $z^2-z\mathrm{i}$ 的辐角等于 z 的辐角和 $z-\mathrm{i}$ 的辅角之和, 即 $2k\pi+3\theta-\frac{\pi}{2}(k\in\mathbf{Z})$.

161. 已知等边 $\triangle ABC$ 的两个顶点坐标是 A(2,1), B(3,2), 求顶点 C 的对应坐标.

解答在这里记 A,B,C 的对应复数为 $z_A=2+\mathrm{i},z_B=3+2\mathrm{i},z_C$. 由 $z_C=z_A+(z_B-z_A)[\cos 60^\circ\pm i\sin 60^\circ]$,得 $z_C=(2+\mathrm{i})+(1+\mathrm{i})(\frac{1}{2}\pm\frac{\sqrt{3}}{2}\mathrm{i})=\frac{5\mp\sqrt{3}}{2}+\frac{3\pm\sqrt{3}}{2}\mathrm{i}$,即点 C 坐标是 $(\frac{5-\sqrt{3}}{2}+\frac{3+\sqrt{3}}{2})$ 或 $(\frac{5+\sqrt{3}}{2}+\frac{3-\sqrt{3}}{2})$.

162. 复平面内, 两点 A,B 分別对应于复数 $\alpha,\beta,$ 且 $\beta+(1+\mathrm{i})\alpha=0,$ $|\alpha-2+\mathrm{i}|=1,$ 求 $\triangle AOB$ 面积的最大值和最小值.

解答在这里因为 $|\alpha-(2-\mathrm{i})|=1$,所以 A 是以 C(2,-1) 为圆心,1 为半径的圆上的动点.而 $\beta=(-1-\mathrm{i})\alpha=\sqrt{2}(\cos\frac{5\pi}{4}+\mathrm{i}\sin\frac{5\pi}{4})\alpha$,故线段 OB 的长是 OA 长的 $\sqrt{2}$ 倍,且由 OA 绕原点按逆时针方向旋转 $\frac{5\pi}{4}$ 而得 (如图).

故 $S_{\triangle AOB} = \frac{1}{2}|OA|\cdot|OB|\cdot\sin\frac{3\pi}{4} = \frac{1}{2}\sqrt{2}\cdot|OA|^2\cdot\frac{\sqrt{2}}{2} = \frac{1}{2}|OA|^2$. 连接 OC 并延长,与圆交于点 A_1,A_2 ,则 $|OA_1| = \sqrt{5} - 1$, $|OA_2| = \sqrt{5} + 1$,因此 $\triangle AOB$ 面积的最大值和最小值分别为 $\frac{1}{2}(\sqrt{5} + 1)^2$ 和 $\frac{1}{2}(\sqrt{5} - 1)^2$,即 $3 + \sqrt{5}$ 和 $3 - \sqrt{5}$.

163. 已知定点 A(-2,0) 和圆 $x^2+y^2=1$ 的动点 B, 点 A,B,C 接逆时针方向排列, 且 |AB|:|BC|:|CA|=3:4:5(如图), 求点 C 的轨迹方程. 解答在这里设点 C,B 分别对应复数 z,z_0 , 则 $z=z_0+(-2-z_0)(-\frac{4}{3}\mathrm{i})=z_0+\frac{4}{3}\mathrm{i}z_0+\frac{8}{3}\mathrm{i}$, 于是 $(1+\frac{4}{3}\mathrm{i})z_0=z-\frac{8}{3}\mathrm{i}$, 两边取模得 $|1+\frac{4}{3}\mathrm{i}|\cdot|z_0|=|z-\frac{8}{3}\mathrm{i}|$. 又因为 $|z_0|=1$, 所以 $|z-\frac{8}{3}\mathrm{i}|=\frac{5}{3}$, 即点 C 的轨迹是以 $(0,\frac{8}{3})$ 为圆心, $\frac{5}{3}$ 为半径的圆.

164. 求值: $\arctan \frac{1}{3} + \arcsin \frac{1}{\sqrt{26}} + \arccos \frac{7}{\sqrt{50}} + \arccos 8$. 解答在这里因为 $\arcsin \frac{1}{\sqrt{26}} = \arccos \frac{1}{5}$, $\arccos \frac{1}{\sqrt{50}} = \arccos \frac{1}{7}$, $\arccos 8 = \arccos \frac{1}{8}$, $\diamondsuit z_1 = 3 + i = r_1(\cos \alpha + i)$ $i \sin \alpha$), $z_2 = 5 + i = r_2(\cos \beta + i \sin \beta)$, $z_3 = 7 + i = r_3(\cos \gamma + i \sin \gamma)$, $z_4 = 8 + i = r_4(\cos \delta + i \sin \delta)$, 其中 $0<\alpha,\,\beta,\,\gamma,\,\delta<\frac{\pi}{4},\,\text{MiV},\,z_1\cdot z_2\cdot z_3\cdot z_4=(3+\mathrm{i})(5+\mathrm{i})(7+\mathrm{i})(8+\mathrm{i})=650(1+\mathrm{i})=650\sqrt{2}(\cos\frac{\pi}{4}+\mathrm{i}\sin\frac{\pi}{4}).$ 又因为 $z_1 \cdot z_2 \cdot z_3 \cdot z_4 = r_1 r_2 r_3 r_4 [\cos(\alpha + \beta + \gamma + \delta) + i \sin(\alpha + \beta + \gamma + \delta)]$,而 $0 < \alpha + \beta + \gamma + \delta < \pi$,所以 $\alpha + \beta + \gamma + \delta = \frac{\pi}{4}$, 即所求之值为 $\frac{\pi}{4}$

165. $\overrightarrow{k} A = \cos \frac{\pi}{11} + \cos \frac{3\pi}{11} + \cos \frac{5\pi}{11} + \cos \frac{7\pi}{11} + \cos \frac{9\pi}{11}, B = \sin \frac{\pi}{11} + \sin \frac{3\pi}{11} + \sin \frac{5\pi}{11} + \sin \frac{7\pi}{11} + \sin \frac{9\pi}{11},$ $A = \frac{1}{2}, B = \frac{1}{2}\cot\frac{\pi}{22}$. 解答在这里设 $z = \cos\frac{\pi}{11} + i\sin\frac{\pi}{11}$, 则

$$A + Bi = z + z^{3} + z^{5} + z^{7} + z^{9} = \frac{z(1 - z^{10})}{1 - z^{2}} = \frac{z - z^{11}}{1 - z^{2}} = \frac{z - (\cos \pi + i \sin \pi)}{1 - z^{2}} = \frac{z + 1}{1 - z^{2}} = \frac{1}{1 - z^{2}} = \frac{1 - z^{2}}{1 - z^{2}$$

所以 $A = \frac{1}{2}$, $B = \frac{1}{2} \cot \frac{\pi}{22}$.

166. 复数 $z = -\sin 100^{\circ} + i\cos 100^{\circ}$ 的轴角主值是 ().

A. 80°

B. 100°

C. 190°

D. 260°

167. 复数 $z = -2(\sin 220^{\circ} - i\cos 220^{\circ})$ 在复平面内的对应点所在的象限是 ().

A. 第一象限

B. 第二象限

C. 第三角限

D. 第四象限

168. 若 $\frac{3\pi}{2} < \theta < 2\pi$, 则 $-\sin\theta + i\cos\theta$ 的辐角主值等于 (

C. $\theta - \pi$

D. $\theta - \frac{\pi}{2}$

169. 复数 $z=1+\sin\theta+\mathrm{i}\cos\theta(0<\theta<\frac{\pi}{2})$ 的辐角主值是 (

A. θ

C. $\frac{\pi}{2} - \theta$

D. $\frac{\pi}{4} - \frac{\theta}{2}$

170.	若复数 $z = a + bi(a, b \in \mathbf{R})$	所对应的点在第四象限,则;	$\arg z$ 等于 ().	
	A. $\arcsin \frac{b}{\sqrt{a^2 + b^2}}$	B. $\arcsin \frac{a}{\sqrt{a^2 + b^2}}$	C. $\operatorname{arccot} \frac{b}{a}$	D. $2\pi + \arctan \frac{b}{a}$
171.	若复数 z 满足 $ z + 3i \le 2$, J	则 arg z 的最大值为 ().		
	A. $\arcsin \frac{2}{3}$	B. $\arccos \frac{2}{3}$	C. $\pi - \arcsin \frac{2}{3}$	D. $2\pi - \arccos \frac{2}{3}$
172.	复数 $z = 1 + \cos \theta + i \sin \theta (\pi$	$r < \theta < 2\pi$) 的模是 ().		
	A. 1	B. $1 + \cos \theta$	C. $2\cos\frac{\theta}{2}$	D. $-2\cos\frac{\theta}{2}$
173.	若复数 z 的辐角主值是 $\frac{5\pi}{6}$,	实部是 $-2\sqrt{3}$, 则 z 的代数	形式是 ().	
	A. $-2\sqrt{3} - 2i$	B. $-2\sqrt{3} + 2i$	$C2\sqrt{3} + 2\sqrt{3}i$	D. $-2\sqrt{3} - 2\sqrt{3}i$
174.	若 $\arg z = \alpha(0 < \alpha < \frac{\pi}{2})$,则	$\arg \overline{z}$ 等于 ().		
	A. $-\alpha$	B. $\pi - \alpha$	C. $\pi + \alpha$	D. $2\pi - \alpha$
175.	满足 $ z-2+2{\rm i} =\sqrt{2}$ 的复	数 z 的辐角主值的最小值是	· ().	
	A. 105°	B. 265°	C. 285°	D. 315°
176.	复数 $z = -1 - 2i$ 的辐角主值	直是 ().		
	A. arctan 2	I	3. $\pi + \arctan 2$	
	$C \arctan 2$	I	D. $(2k+1)\pi + \arctan 2(k \in \mathbf{Z})$)
1 77		7		
177.	若复数 z 满足 $z = (a+i)^2$,	且 $\arg z = \frac{1}{4}\pi$, 则实数 a 的	值为 ().	
177.	若复数 z 满足 z = (a + i) ² , A. 1	且 $\arg z = \frac{1}{4}\pi$,则实数 a 的 α B. -1	值为 (). C. −1 ± √2	D. $-1 - \sqrt{2}$
		B1		D. $-1 - \sqrt{2}$
178.	A. 1	B1 角形式为		D. $-1 - \sqrt{2}$
178. 179.	A. 1 复数 $2(\cos\frac{\pi}{5} - i\sin\frac{\pi}{5})$ 的三	B1 角形式为 角形式为		D. $-1 - \sqrt{2}$
178. 179. 180.	A. 1	B1 角形式为 角形式为 三角形式为		D. $-1 - \sqrt{2}$
178. 179. 180. 181.	A. 1	B1 角形式为 角形式为 三角形式为 三角形式为	C. $-1 \pm \sqrt{2}$	D. $-1 - \sqrt{2}$
178. 179. 180. 181.	A. 1 复数 $2(\cos\frac{\pi}{5} - i\sin\frac{\pi}{5})$ 的三 复数 $2(\sin\frac{\pi}{5} + i\cos\frac{\pi}{5})$ 的三 复数 $2(-\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$ 的 复数 $-2(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$ 的 复数 $-2(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5})$ 的	B1 角形式为 角形式为 三角形式为 三角形式为 + i sin θ 的三角形式为	C. $-1 \pm \sqrt{2}$	D. $-1 - \sqrt{2}$
178. 179. 180. 181.	A. 1	B1 角形式为 角形式为 三角形式为 三角形式为 + i sin θ 的三角形式为	C. $-1 \pm \sqrt{2}$	D. $-1 - \sqrt{2}$ D. $3\sqrt{2}$
178. 179. 180. 181. 182.	A. 1	B1 角形式为 角形式为 三角形式为 三角形式为 三角形式为 +i sin θ 的三角形式为 π/6, 则 z 的最小值为(B. 2	C. $-1 \pm \sqrt{2}$	
178. 179. 180. 181. 182. 183.	A. 1	B1 角形式为	C. $-1 \pm \sqrt{2}$ C. $2\sqrt{3}$ D. C. $[0, \frac{\pi}{6}] \cup [\frac{11\pi}{6}, 2\pi)$	D. $3\sqrt{2}$
178. 179. 180. 181. 182. 183.	A. 1	B1 角形式为	C. $-1 \pm \sqrt{2}$ C. $2\sqrt{3}$ D. C. $[0, \frac{\pi}{6}] \cup [\frac{11\pi}{6}, 2\pi)$	D. $3\sqrt{2}$

186. 若 7 + 3i 的辐角主值为 θ , 则 6 - 14i 的辐角主值为 (

A.
$$\frac{\pi}{2} + \theta$$

B.
$$\frac{\pi}{2} - \theta$$

C.
$$\frac{3\pi}{2} - \theta$$

D.
$$\frac{3\pi}{2} + \theta$$

- 187. 复数 cot 20° i 的模是______, 辐角的主值是___
- 188. 若 $a, b \in \{-2, -1, 1, 2\}$, 且 $a \neq b$, 则 $\arg(a + bi)$ 的最大值是_
- 189. 若复数 $z = a + bi(a, b \in \mathbf{R})$ 的对应点在第四象限, 则 $\arg z =$
- 190. 若 $z_1 = 1 + \cos \theta + i \sin \theta$, $z_2 = 1 \cos \theta + i \sin \theta$ ($\pi < \theta < 2\pi$), 则 z_1, z_2 的辐角主值之和等于_
- 191. 若 $\pi < \theta < \frac{3\pi}{2}$, 则 $\arg(|\cos \theta| + i|\sin \theta|) =$ ______
- 192. 若 $|z| \le 1$, 则 $\arg(z-2)$ 的最大值为______, 最小值为______.
- 193. 已知 $|z+1|=\sqrt{10}$, $\arg(z-3\overline{z})=rac{5\pi}{4}$, 求复数 z.
- 194. 已知复数 z 满足 $|\frac{1}{z}-1|=\frac{1}{2}$, $\arg\frac{z-1}{z}=\frac{\pi}{2}$, 求 z 的值.
- 195. 已知复数 z 满足 $|\frac{z-i}{2z}|=2$, $\arg \frac{1+iz}{z}=\frac{\pi}{2}$, 求 z.
- 196. 已知 $\omega = z + a i$, 其中 $a \in \mathbf{R}$, $z = \frac{(1+4 i)(1+i)+2+4 i}{3+4 i}$. 且 $|\omega| \le \sqrt{2}$, 求 ω 的辐角主值 θ 的取值范围.
- 197. 已知 $f(z) = |1 + z| \overline{z}$, $f(-\overline{z}i) = 10 + 3i$, 求 $\frac{z+3}{z-2}$ 的模及辐角主值.
- 198. 已知复数 $1 \cos \theta + i \sin \theta (-\pi < \theta < \pi)$.
 - (1) 求 |z| 及 $\arg z$;
 - (2) 要使 $1 \le |z| \le \sqrt{2}$, 求 θ 的取值范围.
- 199. 求复数 $z=rac{1+\mathrm{i}}{1+\cos\theta+\mathrm{i}\sin\theta}$ 的模和辐角, 其中 $\theta\in[0,2\pi),\,\theta\neq\pi.$
- 200. 已知复数 $z = \sqrt{|\cos t|} + i\sqrt{|\sin t|}$. 求:
 - (1) |z| 的取值范围;
 - (2) t 的范围, 使 $0 \le \arg z \le \frac{\pi}{4}$
- 201. 在复平面内,作出满足 $\begin{cases} |z| \leq 1, \\ \arg z \in [\frac{\pi}{c}, \frac{2\pi}{2}] \end{cases}$ 的复数 z 的对应点所构成的图形.
- 202. 在复平面内,作出满足 $\arg(z+2)=\frac{\pi}{4}$ 的复数 z 的对应点所构成的图形.
- 203. 在复平面内,作出满足 $\begin{cases} 0 \leq \arg(z-1) \leq \frac{\pi}{4}, \\ \operatorname{Re}(z) \leq 2 \end{cases}$ 的复数 z 的对应点所构成的图形. $\begin{cases} |z| = 1, \\ \frac{\pi}{4} < \arg(z+\mathrm{i}) < \frac{\pi}{2} \end{cases}$ 的复数 z 的对应点所构成的图形.

- 205. 已知 $A = \{z | |z-1| \le 1, \ z \in \mathbf{C}\}, \ B = \{z | \arg z \ge \frac{\pi}{6}, \ z \in \mathbf{C}\}$ 在复平面内, 求 $A \cap B$ 所表示的图形的面积.
- 206. 已知复数 z 满足 $|z (1 + \sqrt{3}\mathrm{i})| \le 2$, $\arg z \le \frac{\pi}{3}$, 求 z 所对应区域的面积.
- 207. 若复数 $z_1 = \cos \frac{2\pi}{3} + \mathrm{i} \sin \frac{2\pi}{3}, z_2 = \cos \frac{11\pi}{6} + \mathrm{i} \sin \frac{11\pi}{6},$ 则 $\frac{2z_1^2}{z_2}$ 的辐角主值是 (
 - A. $\frac{\pi}{6}$

- B. $\frac{5\pi}{6}$ C. $\frac{3\pi}{2}$

- 208. 复平面内有 A,B,C,D,E 五点分别在单位圆内部和外部 (如图), 其中有一点对应的复数是点 A 对应复数的 倒数,则此点是(

- A. 点 B
- B. 点 C

- C. 貞 D
- D. 点 E
- 209. 把复数 $a+b\mathrm{i}(a,b\in\mathbf{R})$ 在复平间内的对应向量绕原点 O 顺时针方向旋转 90° 后, 所得向量对应的复数为
 - A. a bi
- B. -a + bi
- C. b ai
- D. -b + ai
- 210. 复平面内, 向量 \overrightarrow{OA} , \overrightarrow{OB} 分别对应于非零复数 z_1, z_2 , 若 $\overrightarrow{OA} \perp \overrightarrow{OB}$, 则 $\frac{z_2}{z_1}$ 一定是 ().
 - A. 非负数
- B. 纯虚数
- C. 正实数
- D. 非纯虚数

- 211. 复数 $z = (\sin 25^{\circ} + i \cos 25^{\circ})^{3}$ 的三角形式为 ().
 - A. $\sin 75^{\circ} + i \cos 75^{\circ}$

- B. $\cos 15^{\circ} + i \sin 15^{\circ}$ C. $\cos 75^{\circ} + i \sin 75^{\circ}$ D. $\cos 195^{\circ} + i \sin 195^{\circ}$
- 212. $(1 \sqrt{3}i)^2$ 的辐角主值为 ().
 - A. $\frac{10\pi}{2}$
- B. $\frac{7\pi}{2}$

C. $\frac{4}{3}\pi$

- 213. 若 α, β, γ 是一个三角形的三个内角,则 $(\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta)(\cos \gamma + i \sin \gamma) =$ ______
- 214. $(\cos 1^{\circ} + i \sin 1^{\circ})(\cos 2^{\circ} + i \sin 2^{\circ})(\cos 3^{\circ} + i \sin 3^{\circ}) \cdots (\cos 359^{\circ} + i \sin 359^{\circ}) = \underline{\hspace{2cm}}$
- 215. 若 $\frac{\sin A + \mathrm{i}\cos A}{(\sin B + \mathrm{i}\cos B)(\sin C + \mathrm{i}\cos C)}$ 是纯虚数, 则 $\triangle ABC$ 是_____ 三角形.
- 216. 计算: $\frac{[2(\cos 45^{\circ} + i \sin 45^{\circ})]^{4}}{(\sin 80^{\circ} + i \cos 80^{\circ})} = \underline{\hspace{1cm}}.$
- 217. 计算: $\frac{(\sqrt{3}+i)^5}{-1+\sqrt{3}i} =$ ______.

18. 计算: $(1 - \cos 60^{\circ} + i \sin 60^{\circ})^4 =$				
219. 计算: $(\cos 15^{\circ} - i \sin 15^{\circ})^{3} + (\cos 15^{\circ} - i \sin 15^{\circ})^{-3} =$				
220. 若 $z = (\sqrt{3} - i)^5$, 则 $\arg z$	20. 若 $z = (\sqrt{3} - i)^5$,则 $\arg z = $			
221. 若复数 $z = 7(\sin 140^\circ - i \cos 140^\circ)$	os 140°),则 $\arg(-\frac{1}{z^2}) =$			
222. 若 $\arg z = \theta$, 则 $\arg z^2 =$				
223. 若 $\arg z = \theta$, $\frac{4}{3}\pi \le \theta < 2\pi$,则 $\arg z^3 =$			
224. 复平面内, 将 1 + √3i 所对 正值为	应的向量绕原点按逆时针方向	可旋转 $ heta$ 角, 所得向量对应的 2	复数是 $-2i$,则 $ heta$ 的最小	
$225.$ 复平面内, 向量 \overrightarrow{AB} 对应的 向量 \overrightarrow{AC} , 则点 C 对应的复		数为 -1 ,将 \overrightarrow{AB} 绕点 A 顺时	付計方向旋转 90° 后得到	
226. 若复数 $z_1 = \tan \theta - i$, $z_2 =$ 过的最小正角等于	=	的对应向量顺时针旋转到 z	2 所对应的向量, 则所转	
227. 若复数 $z_1 \cdot z_2$ 满足 $ z_1 = $	$ z_2 = 1, z_2 - z_1 = -1, \mathbf{M} $ arg	$s \frac{z_1}{z_2} =$		
228. 若 $\arg(zi) = \theta, \theta \in (\frac{\pi}{2}, \pi),$	则 $\operatorname{arg} \overline{z} =$	-		
229. 若 $\arg z_1 = \alpha$, $\arg z_2 = \beta$,	且 $\alpha < \beta$,则 $\arg \frac{z_1}{z_2}$ 等于 ().		
A. $\beta - \alpha$	B. $\alpha - \beta$	C. $2\pi + \alpha - \beta$	D. $\pi + \beta - \alpha$	
230. 若 $ z = 1$, $\arg z = \theta (\theta \neq 0)$), 则 $rac{z+\overline{z}}{1+z^2}$ 的辐角主值为 ().		
A. $\frac{\theta}{2}$	B. θ	C. $\pi - \theta$	D. $2\pi - \theta$	
231. 若 $z_1 = 1 + \cos 2\theta + i \sin 2\theta$	θ , $z_2 = 1 - \cos 2\theta + \mathrm{i} \sin \theta$, 则	下列各式中必为定值的是().	
A. $z_1 \cdot z_2$	B. $\frac{z_1}{z_2}$	C. $ z_1 + z_2 $	D. $ z_1 ^2 + z_2 ^2$	
232. 若复数 -2 + i 和 3 - i 的\$	畐角主值分别为 $lpha$ 和 eta , 则 $lpha$	$+\beta$ 等于().		
A. $\frac{3\pi}{4}$	$B. \frac{5\pi}{4}$	C. $\frac{7\pi}{4}$	D. $\frac{11\pi}{4}$	
233. 复平面内, 已知点 P ₁ , P ₂ 分	} 别对应于复数 3 – 2i, 7 + 4i	, 线段 <i>P</i> ₁ <i>P</i> ₂ 绕点 <i>P</i> ₁ 按逆时	针方向旋转 $\frac{5}{6}\pi$ 到 P_1P_3	
的位置,则点 P3 对应的复				
		$C2\sqrt{3} + 3\sqrt{3}i$		
234. 复平面内, 点 P_1 的对应复数 且点 P_2 的对应复数是 z_2 =		$\overrightarrow{OP_1}(O$ 为原点) 旋转一个锐	角 $ heta$ 后得到新向量 $\overrightarrow{OP_2}$,	

A. $\theta = 60^{\circ}$, 且按逆时针旋转 C. $\theta = 30^{\circ}$, 且按逆时针旋转

B. $\theta = 60^{\circ}$, 且按顺时针旋转

D. $\theta = 30^{\circ}$, 且按顺时针旋转

235. 已知 $z_A=a+b\mathrm{i}(a,b\in\mathbf{R},\;\mathbf{L}\;ab\neq0),$ 复平面内,把 z_A 对应的向量 \overrightarrow{OA} 绕原点分别按逆、顺时针方向旋转 $\frac{2\pi}{3}$,得向量 $\overrightarrow{OB},\;\overrightarrow{OC},\;$ 则 $\overrightarrow{OA},\;\overrightarrow{OB},\;\overrightarrow{OC}$ 所对应的复数之和等于 ().

A. -a - bi

B. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$

C. a - bi

D. 0

236. 若 $\arg z \in [\frac{\pi}{4}, \frac{3\pi}{4}]$, 则 $\arg(-\frac{1}{z\mathrm{i}})$ 的取值范围是 ().

A. $\left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$

B. $\left[\frac{5\pi}{4}, \frac{7\pi}{4}\right]$

C. $\left[\frac{\pi}{4}, \frac{7\pi}{4}\right]$

D. $[0, \frac{\pi}{4}] \cup [\frac{7\pi}{4}, 2\pi)$

237. 若数列 $\{a_n\}$ 的通项公式为 $a_n = (\cos \theta + i \sin \theta)^n (\theta \neq 2k\pi, k \in \mathbf{Z}), 则 <math>\{a_n\}$ ().

A. 成等差数列, 但不成等比数列

B. 成等比数列, 但不成等差数列

C. 成等差数列又成等比数列

D. 既不成等差数列也不成等比数列

238. 若 $(-\sqrt{3}+\mathrm{i})^n \in \mathbf{R}^+$, 则最小的自然数 n 的值是 ().

A. 6

B. 8

C. 10

D. 12

239. 已知非纯虚数 z 满足 $\arg z = \arg[(z+1)i]$, 则 z 在复平面内的对应点所表示的图形为 ().

В.

C.

240. 复平面内, 已知 $\triangle ABC$ 的三个顶点分别对应于复数 $z, \overline{z}, \frac{1}{z},$ 且 |z|=3, 点 A 的位置如图所示

- (1) 试在图上画出点 B,C 的大概位置;
- (2) 求 △ABC 面积的最大值.
- 241. 已知 $|z_1|=3$, $|z_2|=5$, $|z_1-z_2|=7$, 求 $\frac{z_1}{z_2}$.
- 242. 已知复数 z 满足 |z|=5, 且 (3+4i)z 为纯虚数, 求 z.
- 243. 若 |z| = 1, 求 $|z^2 z + 1|$ 的最大值和最小值.
- 244. 已知 $z_1, z_2 \in \mathbb{C}$, 且 $|z_1| = |z_2| = 1$, $z_1 + z_2 = \frac{4}{5} + \frac{3}{5}i$, 求 $\tan(\arg z_1 + \arg z_2)$.
- 245. 已知复数 z_1 和 z_2 满足 $|z_1| = |z_2| = 1$, 且 $z_1 z_2 = \frac{1}{2} \frac{1}{3}$ i, 设 θ 是 $z_1 \cdot z_2$ 的辐角, 求 $\sin \theta$ 的值.
- 246. 已知复数 z_1, z_2, z_3 的辐角主值依次成公差为 $\frac{2\pi}{3}$ 的等差数列,且 $|z_1| = |z_2| = |z_3| = 1$,求证: $z_1 + z_2 + z_3 = 0$.

- 247. 若复数 z_1, z_2, z_3 满足 $z_1 + z_2 + z_3 = 0$, 且 $|z_1| = |z_2| = |z_3| = 1$, 求证: 复平面内以 z_1, z_2, z_3 所对应的点为顶点的三角形是内接于单位圆的正三角形.
- 248. 已知非零实数 x,y,z 满足了 x+y+z=0,复数 α,β,γ 满足 $|\alpha|=|\beta|=|\gamma|\neq 0$,且 $x\alpha+y\beta+z\gamma=0$,求证: $\alpha=\beta=\gamma$.
- 249. 计算: arg(i+2) + arg(i+3).
- 250. 若 $arg(-2 i) = \alpha$, $arg(-3 i) = \beta$, 求 $\alpha + \beta$.
- 251. 复平面内, 两点 A, B 分别对应于非零复数 $\alpha, \beta,$ 若 $\alpha = \beta(\cos\theta + i\sin\theta)(0 < \theta < \pi)$, 判断 $\triangle OAB$ 的形状 (O 为原点).
- 252. 复平面内, 两点 A, B 分别对应于非零复数 $\alpha, \beta,$ 若 $\alpha = \pm \beta i,$ 判断 $\triangle OAB$ 的形状 (O 为原点).
- 253. 复平面内, 两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=\pm\sqrt{3}\mathrm{i}$, 判断 $\triangle OAB$ 的形状 (O 为原点).
- 254. 复平面内, 两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=\frac{1+\sqrt{3}\mathrm{i}}{2},$ 判断 $\triangle OAB$ 的形状 (O 为原点).
- 255. 复平面内, 两点 A,B 分别对应于非零复数 $\alpha,\beta,$ 若 $\frac{\alpha}{\beta}=1+\mathrm{i}$, 判断 $\triangle OAB$ 的形状 (O 为原点).
- 256. 已知复数 z_1, z_2 满足 $4z_1^2 2z_1z_2 + z_2^2 = 0$, 且 $|z_2| = 4$, $z_1, z_2, 0$ 所对应的点分别为 A, B, O, 求 $\triangle AOB$ 的面积.
- 257. 复平面内, 点 A, B 分别对应于复数 $\omega-z$ 和 $\omega+z$, 其中 $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2}$ i, 若 $\triangle AOB$ 是以原点 O 为直角顶点的等腰直角三角形. 求:
 - (1) **复数** z;
 - (2) △*AOB* 的面积.
- 258. 已知等边三角形的两个顶点 A, B 对应的复数分别为 $z_A = 2 + i$, $z_B = 3 + 2i$, 求第三个顶点 C 所对应的复数.
- 259. 复平面内, 等边三角形的一个顶点在原点, 中心 P 所对应的复数是 1+i, 求其他两个顶点所对应的复数.
- 260. 复平而内, 矩形 OMNP 的相邻两边之比是 $|OM|:|OP|=1:\sqrt{3},$ 且点 O,M 的对应复数分别是 0,-1+2i, 求点 N 对应的复数.
- 261. 已知等腰 $Rt\triangle ABC$ 的斜边 AB 的两个端点的坐标分别为 A(-1,2), B(2,3), 求顶点 C 的坐标.
- 262. 若等边 $\triangle ABC$ 的一个顶点为 A(0,5), 中心 M 的坐标是 M(2,3), 求其他两个顶点 B,C 的坐标.
- 263. 已知复数 $z_1=1+(2-\sqrt{3})$ i, $z_3=(2+\sqrt{3})+$ i, 又复数 $z_1,\,z_2,\,z_3,\,z_4$ 在复平面内的对应点依逆时针方向排列足一个正方形的四个顶点.
 - (1) 求 z_2, z_4 ;
 - (2) 求证: $z_2, z_4, 0$ 的对应点是一个等边三角形的三个顶点.

- 264. 复平面内, 已知 $\triangle AOB$ 的顶点 A,B 所对应的复数 α,β 满足 $\beta+(1-\mathrm{i})\alpha=0$, 且 $\triangle AOB(O$ 为原点) 面积 的最大值和最小值分别是 8 和 2, 求 $|\alpha|$ 与 $|\beta|$ 的取值范围.
- 265. 已知复数 z_1, z_2, z_3 满足 $\frac{z_2-z_1}{z_3-z_1}=1+\sqrt{3}$ i, 试判断复平面内的 z_1, z_2, z_3 的对应点为顶点的三角形的形状,并求其各内角的值.
- 266. 复平面内, 已知 A, B, C 三点对应的复数 z_1, z_2, z_3 满足 $\frac{z_2-z_1}{z_3-z_1}=1+\frac{3}{4}$ i, 试求这个三角形三边长之比.
- 267. 一个三角形的底边 BC 的两端所表水的复数是 $z_B = a$, $z_C = -a$, 顶点 A 的位置不定, 以两边 AB, AC 为腰, 分别以 B, C 为直角的顶点, 在 $\triangle ABC$ 外作等腰直角三角形 ABD, ACE, 求证: DE 的中点 M 为定点.
- 268. 已知 B 是半圆 $x^2+y^2=1(y\geq 0)$ 上的动点, A(2,0) 是 x 轴上的一个定点, 以 A 为直角顶点作等腰直角 $\triangle ABC$ (字母按顺时针排列), 求 |OC| 的最大值及其相应的点 B 的坐标 (O 为坐标原点).
- 269. 复平面内, 已知 Rt $\triangle ABC$ 的三个顶点 A,B,C 分别对应于复数 z,z^2,z^3 , 且 |z|=2, $\angle BAC=90^\circ,$ 求复数 z.
- 270. 已知复数 z_1 满足 $\arg z_1 = \frac{5\pi}{12}$, $|z_1 z_0| = \sqrt{2}$, $z_0 (1+i)z_1 = 0$.
 - (1) 求 z_1 和 z_0 ;
 - (2) 求证: 在满足 $|z_1 z_0| = \sqrt{2}$ 条件的所有复数 z 中, z_1 的辐角主值最小.
- 271. 已知复数 $z = [\cos(\pi + \alpha) + i\sin(\pi + \alpha)] \cdot [\sin(\frac{3}{2}\pi + \beta) + i\cos(\frac{3}{2}\pi + \beta)], \ 0 < \beta < \alpha < \frac{\pi}{2}, \ \text{且} \sin(\alpha + \beta) = 4\cos\alpha\sin\beta,$ 求 $\arg z$ 的最大值.
- 272. 已知 |z-1-i|=2, 求复数 z^2 虚部的取值范围
- 273. 已知复数 z = x + yi 满足 $|z + \frac{1}{z}| = 1(x, y \in \mathbf{R})$. 求证:
 - (1) $(x^2 + y^2)^2 + x^2 3y^2 + 1 = 0$;
 - (2) $k\pi + \frac{\pi}{3} \le \arg z \le k\pi + \frac{2\pi}{3} (k \in \mathbf{Z});$
 - (3) $\frac{\sqrt{5}-1}{2} \le |z| \le \frac{\sqrt{5}+1}{2}$.
- 274. 对 $n \in \mathbb{N}$, 求证: $(\frac{1+\mathrm{i}}{\sqrt{2}})^n + (\frac{1-\mathrm{i}}{\sqrt{2}})^n = 2\cos\frac{n\pi}{4}$.
- 275. 对 $n \in \mathbb{N}$, 求证: $(1 + \cos \alpha + i \sin \alpha)^n = 2^n \cos^n(\frac{\alpha}{2})(\cos \frac{n\alpha}{2} + i \sin \frac{n\alpha}{2})$.
- 276. 对 $n \in \mathbb{N}$ 求证: $(\frac{1+i\tan\alpha}{1-i\tan\alpha})^n = \frac{1+i\tan n\alpha}{1-i\tan n\alpha}$
- 277. 对 $n \in \mathbb{N}, k \in \mathbb{N},$ 对证: $(\frac{1-\cos\theta+\mathrm{i}\sin\theta}{1-\cos\theta-\mathrm{i}\sin\theta})^n = \cos n(\pi+\theta)-\mathrm{i}\sin n(\pi+\theta)(\theta\neq 2k\pi).$
- 278. 若 $(1+\sqrt{3}i)^n$ 是一个实数, 求自然数 n 的值.
- 279. 已知复数 $z = \frac{\left(1+\mathrm{i}\right)^3}{\sqrt{2}(a+\mathrm{i})^2}(a>0)$ 满足 $|z| = \frac{1}{2}$. 求:
 - (1) a 的值:
 - (2) 使 z^n 为实数的最小自然数 n.

280. 已知数列 $\{a_n\}$ 的通项 $a_n = \frac{1}{(1+\sqrt{3}\mathrm{i})^n}$, 当 n 取 $1,2,3,\cdots$ 时, 依次得到的实数记为 b_1,b_2,b_3,\cdots , 求数列 $\{b_n\}$ 的所有项之和

281. 已知复数
$$z = \cos 20^{\circ} + i \sin 20^{\circ}$$
, 求 $|z - z^2 + z^3 - z^4 + z^5 - z^6 + z^7 - z^8 + z^9 - z^{10}|$.

282.
$$\c y = \cos 40^\circ + i \sin 40^\circ, \c x | z + z^2 + \dots + z^{100} |.$$

283. 已知
$$z = \cos \frac{2\pi}{5} + \mathrm{i} \sin \frac{2\pi}{5}$$
,求 $(1+z^8)(1+z^4)(1+z^2)(1+z)$.

284. 已知
$$z = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$$
,求 $|z + 2z^2 + 3z^3 + \dots + 12z^{12}|$.

285. 已知
$$z_n = (\frac{1+\mathrm{i}}{2})^n (n \in \mathbf{N})$$
. 记 $a_n = |z_{n+1}| - |z_n| (n \in \mathbf{N})$,求数列 $\{a_n\}$ 所有项之和.

286. 已知
$$z_n = (\frac{1+\mathrm{i}}{2})^n (n \in \mathbf{N})$$
. 记 $b_n = |z_{n+2} - z_n| (n \in \mathbf{N})$, 求数列 $\{b_n\}$ 所有项之和.

287. 设复数
$$z=\cos\theta+\mathrm{i}\sin\theta(0<\theta<\pi),\,\omega=\frac{1-\left(\overline{z}\right)^4}{1+z^4},$$
且 $|\omega|=\frac{\sqrt{3}}{3},\,\arg\omega<\frac{\pi}{2},$ 求 $\theta.$

288. 已知复数
$$z = \cos \theta + i \sin \theta (0 < \theta < 2\pi), \, \omega = \frac{1 - z^3}{1 - z}.$$
 求:

- (1) 满足 $|\omega| = 1$ 的复数 z;
- (2) ω 的辐角 (用 θ 表示).

289. 解方程
$$3z+i=2iz+1$$
. 解答在这里由已知, 得 $(3-2i)z=1-i$, 所以 $z=\frac{1-i}{3-2i}=\frac{(1-i)(3+2i)}{13}=\frac{5}{13}-\frac{1}{13}i$.

- 290. 设 x 是模不为 1 的虚数, 记 $y=x+\frac{1}{x}$, 求满足 $y^2+ay+1=0$ 的实数 a 的取值范围. 解答在这里由题意 可设 $x=r(\cos\theta+\mathrm{i}\sin\theta)(r>0,\ r\neq1,\ \theta\neq k\pi),\$ 则 $y=x+\frac{1}{x}=r(\cos\theta+\mathrm{i}\sin\theta)+\frac{1}{r}(\cos\theta-\mathrm{i}\sin\theta)=(r+\frac{1}{r})\cos\theta+\mathrm{i}(r-\frac{1}{r})\sin\theta.$ 因为 $\theta\neq k\pi,\ r>0,\$ 且 $r\neq1,\$ 所以 $(r-\frac{1}{r})\sin\theta\neq0.$ 故 y 是虚数,即方程 $y^2 + ay + 1 = 0$ 有虚数根, 所以 $\triangle = a^2 - a < 0$, 故实数 a 的取值范围是 -2 < a < 2.
- 291. 已知关于 x 的实系数方程 $z^2-2pz+q=0 (p\neq 0)$ 的两虚根 $z_1,\,z_2$ 在复平面内的对应点为 $F_1,\,F_2,\,$ 求以 $F_1,\,$ F2 为两焦点, 且经过原点的椭圆的普通方程.

解答在这里设
$$z_1=a+b\mathrm{i}(a,b\in\mathbf{R}),\ \mathbb{M}$$
 $z_2=a-b\mathrm{i}.$ 由韦达定理,得
$$\begin{cases} z_1+z_2=2a=2p,\\ z_1z_2=a^2+b^2=q. \end{cases}$$
 于是 $a=p,$ $[OF_1|=|OF_2|=\sqrt{a^2+b^2}=\sqrt{q}(\mathrm{yn}\mathbf{R}).$ 显然,椭圆的半短轴长 $=|OM|=|a|=|p|,$ 半焦距 $=|b|,$ 半长轴 $=\sqrt{a^2+b^2}=\sqrt{q},$ 而椭圆的中心为 $(a,0),$ 即 $(p,0),$ 所以椭圆的普通方程为 $\frac{(x-p)^2}{p^2}+\frac{y^2}{q}=1.$

- 292. 若非零复数 z_1, z_2 在复平面内的对应点分别为 A, B, 且满足 $|z_2| = 2, z_1^2 2z_1z_2 + 4z_2^2 = 0.$
 - (1) 试判断 $\triangle AOB(O$ 为原点) 的形状;
 - (2) 求 $\triangle AOB$ 的面积. 解答在这里 (1) 由 $z_1^2 2z_1z_2 + 4z_2^2 = 0$, 得 $z_1 = \frac{2z_2 \pm 2\sqrt{3}\mathrm{i}z_2}{2}$, 即 $z_1 = (1 \pm \sqrt{3}\mathrm{i})z_2$, 即 $z_1 = 2(\cos\frac{\pi}{3} \pm i\sin\frac{\pi}{3})z_2$. 由此得 $\triangle AOB$ 是直角三舟形,且 $\angle AOB = 60^\circ$.
 - $(2)S_{\triangle AOB} = \frac{1}{2}|AO| \cdot |BO| \sin \frac{\pi}{3} = \frac{\sqrt{3}}{4} \cdot 2 \cdot |BO|^2 = 2\sqrt{3}.$
- 293. **解方程** $x^2 (3-2i)x + 5 5i = 0$.

解答在这里因为 $\triangle = (3-2\mathrm{i})^2 - 4(5-5\mathrm{i}) = -15 + 8\mathrm{i} = (1+4\mathrm{i})^2$,所以 $x = \frac{3-2\mathrm{i} \pm (1+4\mathrm{i})}{2}$.故 $x_1 = 2+\mathrm{i}$, $x_2 = 1-3\mathrm{i}$.

294. 解方程 $x^3 + 8 = 0$.

解答在这里原方程即为 $(x+2)(x^2-2x+4)=0$. 由 x+2=0, 得 x=-2. 由 $x^2-2x+4=0$, 得 $x=1\pm\sqrt{3}$ i. 所以原方程的解为 $x_1=-2, x_2=1+\sqrt{3}$ i, $x_3=1-\sqrt{3}$ i.

295. 解方程 $(1+z)^n - (1-z)^n = 0$.

解答在这里由已知,得 $(1+z)^n = (1-z)^n$,显然 $(1-z)^n \neq 0$,故有 $(\frac{1+z}{1-z})^n = 1$. 所以 $\frac{1+z}{1-z} = \cos\frac{2k\pi}{n} + \frac{2k\pi}{n}$

$$i \sin \frac{2k\pi}{n} (k = 0, 1, 2, \dots n - 1).$$
由合分比定理得
$$z = \frac{\cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} - 1}{\cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} + 1} = \frac{\sin \frac{k\pi}{n} (-\sin \frac{k\pi}{n} + i \cos \frac{k\pi}{n})}{\cos \frac{k\pi}{n} (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})} = \frac{\sin \frac{k\pi}{n} (-\sin \frac{k\pi}{n} + i \sin \frac{k\pi}{n})}{\cos \frac{k\pi}{n} (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})} = \frac{\sin \frac{k\pi}{n} (-\sin \frac{k\pi}{n} + i \sin \frac{k\pi}{n})}{\cos \frac{k\pi}{n} (\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n})} = \frac{\sin \frac{k\pi}{n} (-\sin \frac{k\pi}{n} + i \sin \frac{k\pi}{n})}{\cos \frac{k\pi}{n} (-\sin \frac{k\pi}{n} + i \sin \frac{k\pi}{n})} = \frac{\sin \frac{k\pi}{n} (-\sin \frac{k\pi}{n} + i \sin \frac{k\pi}{n})}{\cos \frac{k\pi}{n} (-\sin \frac{k\pi}{n} + i \sin \frac{k\pi}{n})} = \frac{\sin \frac{k\pi}{n} (-\sin \frac{k\pi}{n} + i \sin \frac{k\pi}{n} + i \sin \frac{k\pi}{n})}{\cos \frac{k\pi}{n} (-\sin \frac{k\pi}{n} + i \sin \frac{k\pi}{n} + i \sin \frac{k\pi}{n} + i \sin \frac{k\pi}{n})}$$

$$\tan \frac{k\pi}{n} \cdot \frac{\left(\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n}\right)i}{\left(\cos \frac{k\pi}{n} + i \sin \frac{k\pi}{n}\right)} = -i \tan \frac{k\pi}{n} (n = 0, 1, 2, \dots, n - 1).$$

296. 解方程 $(\bar{z})^2 = z$.

解答在这里令 z=x+yi $(x,y\in\mathbf{R})$, 则有 (x-yi $)^2=x+y$ i, 即 x^2-y^2-2xy i=x+yi, 于是 $\begin{cases} x^2-y^2=x, \\ -2xy=y. \end{cases}$

若 y = 0, 则 $x^2 = x$, 得 x = 0 或 x = 1, 所以 $z_1 = 0$, $z_2 = 1$. 若 $y \neq 0$, 则 $x = -\frac{1}{2}$, $y = \pm \frac{\sqrt{3}}{2}$, 所以 $z_3 = -\frac{1}{2} + \frac{\sqrt{3}}{2}$ i, $z_4 = -\frac{1}{2} - \frac{\sqrt{3}}{2}$ i. 所以方程的解为 $0, 1, -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$ i.

297. 解方程 $z^2 - 4|z| + 3 = 0$.

解答在这里由已知, $z^2 = -3 + 4|z|$, 故 z^2 必是实数, 因此, z 是实数或纯虚数.

- (1) z 是实数时, 原方程即为 $|z|^2 4|z| + 3 = 0$, 所以 (|z| 1)(|z| 3) = 0, 于是得 $z = \pm 1$ 或 $z = \pm 3$.
- (2) z 是纯虚数时,可令 $z=ti(t\in\mathbf{R},\ t\neq0)$,则原方程即为 $(ti)^2-4|ti|+3=0$,即 $-t^2-4|t|+3=0$,即 $|t|^2+4|t|-3=0$,所以 $|t|=-2+\sqrt{7}$,故 $z=\pm(-2+\sqrt{7})i$.方程的解为 $\pm1,\pm3,\pm(2-\sqrt{7})i$.
- 298. 若 $z \in \mathbb{C}$, 则方程 $|z|^2 |z| = 0$ 解的个数是 ().

A. 2

B. 3

C. 5

D. 无穷多

299. 方程 $z^2 = \overline{z}$ 的解的个数是 ().

A. 2

B. 3

C. 4

D. 5

300.). 二次方程 $x^2 - 2xi - 5 = 0$ 的根的情况是 ().				
	A. 有两个不等的实根]	B. 有一个实根和一个虚根		
	C. 有一对共轭的虚根	1	D. 有两个不共轭的虚根		
301.	满足 $z + \overline{z} = 2 + i$ 的复数 z	を等于 ().			
	A. $-\frac{3}{4} + i$	B. $\frac{3}{4} - i$	C. $-\frac{3}{4} - i$	D. $\frac{3}{4} + i$	
302.	若关于 x 的方程 $x^2 + x + p$	$=0$ 的两个虚根 α , β 满足	$ \alpha - \beta = 3$, 则实数 p 的值为	().	
	A2	B. $-\frac{1}{2}$	C. $\frac{5}{2}$	D. 1	
303.	若 $a > 1$, α , β 是关于 x 的方	f 程 $x^2 + 2x + a = 0$ 的两根	a , 则 $ \alpha + \beta $ 的值为 ().		
	A. 2	B. $2\sqrt{a}$	C. $2\sqrt{a-1}$	D. $2\sqrt{1-a}$	
304.	若关于 x 的实系数二次方程	$x^2 + ax + b = 0$ 的一个根是	是 2 + i, 则 a =, b	=	
305.	若实系数的一元二次方程的-	一个根是 $rac{1}{3} - rac{4\sqrt{5}}{3}$ i, 则这个	方程为		
306.	1 的 5 次方根的五个复数的转	福角主值之和是 ().			
	A. 2π	B. 4π	C. 6π	D. 8π	
307.	若 ω 是 $x^5 - 1 = 0$ 的一个虚	就根,则 $\omega(1+\omega)(1+\omega^2)$ 的	值是 ().		
	A. 1	В. –1	C. i	D. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$	
308.	复平面内,两点 M,N 所对的 角形; 若 $2\alpha^2-2\alpha\beta+\beta^2=0$			OMN 是 三	
309.	在复数范围内解方程 z · z̄ -	$3i\overline{z} = 1 + 3i.$			
310.	在复数范围内解方程 z^2-5	z +6=0.			
311.	在复数范围内解方程 $2z + z $	= 2 + 6i.			
312.	在复数范围内解方程 $z z +c$	az + i = 0.			
313.	在复数范围内解方程 $a \geq 0$.				
314.	已知 $a \in \mathbf{R}$, 在复数范围内解	字方程 $ z ^2 - 2zi + 2a(1+i)$	=0.		
315.	已知关于 x 的方程 $x^2 + (k + 1)$	+2i)x + 2 + ki = 0有一个多	\mathbf{r} 根 $,$ 求实数 k 的值.		
316.	已知关于 x 的方程 $x^2 - ix - ix$	- m + 4ni = 0 有实根, 求点	(m,n) 应满足的方程.		
317.	已知关于 x 的方程 $x^2 - zx$ -	+ 4 + 3i = 0 有实根, 求复数	(z 的模的最小值和此时的 z	值.	
318.	8. 已知方程 $x^2 + ix + 6 = 2i + 5x$ 有一个实数解, 试在复数范围内解此方程.				

- 319. 已知关于 x 的方程 $x^2+2px+1=0$ 的两根 α , β 在复平面内的对应点和原点恰是一个等边三角形的三个顶点, 求实数 p 的值.
- 320. 已知 $p,q \in \mathbb{R}$, 方程 $x^2 + px + q = 0$ 有两虚根 α, β , 方程 $x^2 px + q = 0$ 有两虚根 $\alpha^2, \beta^2,$ 求 α, β, p, q 的值.
- 321. 已知 a, b 是实数, 关于 x 的方程 $x^2 + (2a bi)x + a bi = 0$ 的两个非零复数根的辐角分別为 $\frac{2\pi}{3}$ 及 π , 求 a, b 的信.
- 322. 求 5 + 12i 的平方根.
- 323. 解方程: $z^2 i = 0$.
- 324. 解方程: $z^2 2zi 5 = 0$.
- 325. 复平面内, 已知非零复数 z_1 , z_2 对应于点 A 和 B, 复数 $z_1 a$ 与 $z_1 + a$ 所对应的两个向量相互垂直且模不相等, 又 $z_1^2 4z_1z_2 + 6z_2^2 = 0$.
 - (1) 求 z_1 与 z_2 的模;
 - (2) O 为复平面上的坐标原点, 求 $\triangle AOB$ 的面积.
- 326. 非零复数 α , β 分别对应于点 A, B(O 是原点), 已知 $4\alpha^2 2\alpha\beta + \beta^2 = 0$.
 - (1) 求证: △AOB 是直角三角形;
 - (2) 若 $|\alpha| = 1$, 求 $\triangle AOB$ 的面积;
 - (3) 若 $|\alpha| = t > 0$, 求 $|\beta|^2 \alpha \overline{\beta} \overline{\alpha} \beta$ 的值.
- 327. 设 α , β 是实系数一元二次方程 $ax^2+bx+c=0$ 的两根, α 为虚数, 而 $\frac{\alpha^2}{\beta}$ 为实数, 求复数 $\frac{\alpha}{\beta}$ 的值.
- 328. 已知: $x + \frac{1}{x} = 2\cos\varphi$. 求证:
 - (1) $x = \cos \varphi \pm i \sin \varphi$;
 - (2) $x^n + \frac{1}{x^n} = 2\cos n\varphi(n \in \mathbf{N}).$
- 329. 要使关于 x 的方程 $(1-i)x^2 + 2mix (1+i) = 0$ 有实根, 求实数 m 的值.
- 330. 若关于 x 的实系数方程 $2x^2 + 3ax + a^2 a = 0$ 至少布一个模为 1 的根, 求实数 a 的值.
- 331. 若关于 x 的方程 $x^2 + (2+i)x + 4mn + (2m-n)i = 0(m, n \in \mathbf{R})$ 有实根, 求点 (m,n) 的轨迹方程.
- 332. 已知 α , β 是方程 $x^2 2x + 2 = 0$ 的两根, p, q 是关于 x 的方程 $x^2 + 2mx 1 = 0 (m \in \mathbf{R})$ 的两根, 且 α , β , p, q 在复平面内的对应点共圆, 求 m 的值.
- 333. 已知关于 x 的方程 $3x^2 6(m-1)x + m^2 + 1 = 0$ 的两根 x_1, x_2 满足 $|x_1| + |x_2| = 2$, 求实数 m 的值.
- 334. 实系数方程 $x^4 4x^3 + 9x^2 ax + b = 0$ 的一个根是 1 + i, 求 a, b 的值, 并解此方程.
- 335. 已知关于 x 的实系数方程 $x^4 + ax^3 + bx^2 + cx + d = 0$ 有一个纯虚根, 求证: $a^2d + c^2 abc = 0$.

- 336. 已知模为 2, 辐角为 $\frac{\pi}{6}$ 的复数是方程 $x^5+a=0$ 的一个根, 求 a.
- 337. 已知复数 $z=\frac{1}{2}+\frac{\sqrt{3}}{2}$ i 满足 $z^n=\overline{z}$, 求整数 n 的一般形式.
- 338. 利用复数乘法、除法的几何意义, 求证: $\arctan 1 + \arctan 2 + \arctan 3 = \pi$.
- 339. 利用复数乘法、除法的几何意义, 求证: $\arcsin\frac{\sqrt{10}}{10} + \arccos\frac{7\sqrt{2}}{10} + \arctan\frac{7}{31} + \operatorname{arccot}10 = \frac{\pi}{4}$.
- 340. 利用复数乘法、除法的几何意义, 求证: $\arctan(3+2\sqrt{2}) \arctan\frac{\sqrt{2}}{2} = \frac{\pi}{4}$.
- 341. 利用复数乘法、除法的几何意义, 求证: $\arctan \frac{1}{7} + 2\arcsin \frac{1}{\sqrt{10}} = \frac{\pi}{4}$.
- 342. 复平面内, 已知动点 A,B 所对应的复数 z_1,z_2 的一个辐角为定值 θ 和 $-\theta(0<\theta<\frac{\pi}{2})$, 且 $\triangle AOB$ 的面积为定值 S(O 为坐标原点), 求 $\triangle AOB$ 的重心 M 所对应复数 z 的模的最小值.
- 343. 复数 z_1 , z_2 , z_3 的辐角主值分别为 α , β , γ , 模分别为 1, k 和 2-k, 且 $z_1+z_2+z_3=0$, 求 k, 使 $\cos(\beta-\alpha)$ 分别取到最大值和最小值, 并求出大值和最小值.
- 344. 已知复数 $z = \cos \theta + i \sin \theta$.
 - (1) 当实数 k 和 θ 分别为何值时, $z^3 + k\overline{z}^3$ 是纯虚数?
 - (2) 求 $|z^3 + k\overline{z}^3|$ 的最大值与最小值.
- 345. 已知复数 z_1, z_2, z_3 满足 $|z_1| = |z_2| = |z_3| = 1$, 求证: $|z_1z_2 + z_2z_3 + z_3z_1| = |z_1 + z_2 + z_3|$.
- 346. 已知复数 α , β , γ 满足 $|\alpha| = |\beta| = |\gamma| \neq 0$, 求证: $\frac{(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)}{\alpha\beta\gamma}$ 是实数.
- 347. 设 A, B, C 分别是复数 z_1 , z_2 , $z_3(z_1, z_2, z_3)$ 互不相等) 在复平面内所对应的点, 求证: $\triangle ABC$ 为等边三角形的充要条件是 $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$.
- 348. 利用复数知识证明: $\cos 3\alpha = 4\cos^3 \alpha 3\cos \alpha$, $\sin 3\alpha = 3\sin \alpha 4\sin^3 \alpha$.
- 349. \Re i \mathbb{E} : $\cos \frac{\pi}{2n+1} + \cos \frac{3\pi}{2n+1} + \cos \frac{5\pi}{2n+1} + \dots + \cos \frac{2n-1}{2n+1} \pi = \frac{1}{2} (n \in \mathbb{N}).$
- 350. 已知 $\cos \alpha + \cos \beta + \cos \gamma = 0$, $\sin \alpha + \sin \beta + \sin \gamma = 0$. 求证:
 - $(1) \cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma), \sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma);$
 - (2) $\cos 3k\alpha = \cos 3k\beta = \cos 3k\gamma = \cos k(\alpha + \beta + \gamma)$, $\sin 3k\alpha = \sin 3k\beta = \sin 3k\gamma = \sin k(\alpha + \beta + \gamma)(k \in \mathbf{N})$.
- 351. 若 |z| = 1, 求复数 $u = 3z^2 + \frac{1}{z^2}$ 在复平面内的对应点的轨迹.
- 352. 求复数 $z=\frac{1}{1-b{\rm i}}(b\in{\bf R}$ 且 $b\ne 0)$ 在复平面内对应点的轨迹方程
- 353. 复平面内, 若复数 z 对应的点在连接复数 2+i 和 2-i 对应点的线段上移动, 求 z^2 对应点的轨迹方程.
- 354. 若 |z| = 1, 求复数 $z + \frac{1}{z}$ 在复平面内的对应点轨迹的普通方程.
- 355. 若 $|z| = r(r > 0, r \neq 1)$, 求复数 $z + \frac{1}{z}$ 在复平面内的对应点轨迹的普通方程.

- 356. 若 $|z| \neq 0$, 且 $\arg z = \theta$, 求复数 $z + \frac{1}{z}$ 在复平面内的对应点轨迹的普通方程.
- 357. 在等腰 $Rt\triangle ABC$ 中,已知 $\angle C=90^\circ$,|AC|=a. 若点 A 在 x 轴上移动,点 B 在抛物线上移动,且点 A, B, C 按逆时针方向排列,求顶点 C 的轨迹方程.
- 358. 设 P 是抛物线 $y=x^2$ 上任意一点,以线段 OP 为边,按逆时针方向作正方形 OPQR(如图),利用复数知识 求点 R 的轨迹方程.

- 359. 一动点从原点出发, 开始沿x 轴的正半轴运动, 每运动一个长度单位, 就向左转 θ 角, 求此动点运动n个长度单位时与原点的距离.
- 360. 复平面内, 复数 α 的对应点在连接 1+i 和 1-i 的对应两点的线段上运动, 复数 β 的对应点在以原点为圆心, 半径为 1 的圆周上运动, 试求:
 - (1) 复数 $\alpha + \beta$ 的对应点运动范围的面积;
 - (2) 复数 $\alpha\beta$ 的对应点运动范围的面积.
- 361. 已知半径为 1 的定圆 O 的内接正 n 边形的顶点为 $P_k(k=1,2,\cdots n), P$ 为该圆周上任意一点, 求证: $|PP_1|^2 + |PP_2|^2 + \cdots + |PP_n|^2$ 为一定值.