Tutorial T10

- **T10.1** Let us consider the LNA in figure, where $R_1=50\Omega$, $C_1=1 \mathrm{nF}$, $L=1 \mathrm{nH}$, $R_2=2 \mathrm{k}\Omega$, $R_3=8 \mathrm{k}\Omega$ and the MOSFET has threshold $V_T=0.5 \mathrm{V}$, $\frac{1}{2} \mu C_{OX}=0.2 \mathrm{mA/V^2}$ and $\frac{\gamma}{\alpha}=\frac{2}{3}$.
 - a) Derive the bias point of the circuit. Considering an operating frequency $f_0=3.3 {\rm GHz}$ and $C_3=30 {\rm pF}$, size R_4 , C_2 and $\left(\frac{w}{L}\right)$ of the transistor to guarantee: (i) input matching, (ii) maximum gain and (iii) noise figure of 2.7dB.

c) Evaluate the "transducer power gain" of the stage in dB.

[Sol. a) (W/L) = 100,
$$C_2$$
 = 2.33pF, R_4 = 1024 Ω ; b) (W/L) = 434, C_2 = 2.4pF, C_3 = 89.6pF; c) G_P = 13dB]

- **T10.2** Let us consider the LNA in figure, where $C=1 {\rm nF}$ and the MOSFETs have threshold $V_T=0.5 {\rm V}$, $\frac{1}{2} \mu C_{OX}=0.1 {\rm mA/V^2}$ and $\frac{\gamma}{\alpha}=2$.
 - a) Neglecting the unknown component (marked by the "?" sign), and assuming the transformer to be ideal, size $\left(\frac{W}{L}\right)_1$ to obtain input matching to 50Ω at $f_0=2.5GHz$.
 - b) Evaluate the noise figure NF referred to a source resistance of 50Ω , at $f_0=2.5 GHz$ and considering all noise sources.
 - c) Assuming the transformer to be non-ideal with coupling coefficient k=1, and $L_{11}=1 \mathrm{nH}$, $L_{22}=9 \mathrm{nH}$ the inductances of the primary and secondary winding, respectively. Choose the unknown component (marked by the "?" sign) which maintains input matching to 50 Ω ?

[Sol. a)
$$g_{m1} = 5mS$$
, $(W/L)_1 = 62.5$; b) NF = 2.35dB; c) $C_2 = 4pF$]

9.3. Let us consider the circuit in figure, where the MOSFETs have threshold $V_T=0.5 {\rm V}, \frac{1}{2} \mu C_{OX}=0.1 {\rm mA/V^2}, \frac{\gamma}{\alpha}=\frac{2}{3}.$

- a) Derive the bias point of the circuit. Evaluate "available power gain" G_A and noise figure NF_{LNA} for the LNA section.
- b) Calculate the power delivered to the load R_L , assuming: (i) input available power $P_s = -90 \, \mathrm{dBm}$, (ii) available power loss of the filters $L = 2 \, \mathrm{dB}$ at 2GHz, and (iii) $50 \, \Omega$ input and output impedance of the filters at 2GHz.
- c) Compute the overall NF_{TOT} at 2GHz.

[Sol. a) g_{m1} = 20mS, g_{m2} = 20mS, G_A = 20dB, NF_{LNA} = 2.72dB; b) Pout = -74dBm; c) NF_{TOT} = 4.74dB]