Physics Advanced Topics Daniel Castillo Castro

Homework 1

Contents

1	Preliminaries			1
	1.1	2 Level System (with pulses)		1
		1.1.1	Hamiltonian under unitary transformation .	1
		1.1.2	Time evolution for the excited state	2
		1.1.3	Can the evolution to reach the ground state?	3
	1.2	,		
	1.3 Final State after Sequences			5
2	Central Spin and Random Fluctuating Field			8
	2.1	Static Magnetic Field		8
		2.1.1	State after Ramsey sequence	9
		2.1.2	State after Echo sequence	10
	2.2	2.2 Static and Random Magnetic Fields		10
		2.2.1	Expectation Value of Random Function	11
		2.2.2	Spectral Densities for Different Noises	11
		2.2.3	Ramsey sequence for noisey system	11
		2.2.4	Echo sequence for noisey system	11

1 Preliminaries

1.1 2 Level System (with pulses)

1.1.1 Hamiltonian under unitary transformation

The matrix H written in the $\{|e\rangle, |g\rangle\}$ basis (naming $c_x = b_x cos(\omega t)$ and $c_y = b_y cos(\omega t)$, = 1)

$$H = \begin{pmatrix} b_x cos(\omega t) \\ b_y cos(\omega t) \\ \gamma B \end{pmatrix} \cdot \vec{\sigma} = \begin{pmatrix} \gamma B & c_x - ic_y \\ c_x + ic_y & -\gamma B \end{pmatrix} \tag{1}$$

Is called Hamiltonian because is present in the Schrodinger equation:

$$\begin{pmatrix} |\dot{e}\rangle \\ |\dot{g}\rangle \end{pmatrix} = \begin{pmatrix} -i\gamma B & -c_y - ic_x \\ c_y - ic_x & i\gamma B \end{pmatrix} \begin{pmatrix} |e\rangle \\ |g\rangle \end{pmatrix} \tag{2}$$

Now, for the change of basis:

$$\begin{pmatrix} |\tilde{e}\rangle \\ |\tilde{g}\rangle \end{pmatrix} = \begin{pmatrix} e^{i\omega t} & 0 \\ 0 & e^{i\omega t} \end{pmatrix} \begin{pmatrix} |e\rangle \\ |g\rangle \end{pmatrix} \tag{3}$$

The time derivative is, by rule of chain:

$$\frac{d}{dt} \begin{pmatrix} |\tilde{e}\rangle \\ |\tilde{g}\rangle \end{pmatrix} = (i\omega) \begin{pmatrix} |\tilde{e}\rangle \\ |\tilde{g}\rangle \end{pmatrix} + e^{i\omega t} \begin{pmatrix} |\dot{e}\rangle \\ |\dot{g}\rangle \end{pmatrix} \tag{4}$$

And using the equation 2

$$\frac{d}{dt} \begin{pmatrix} |\tilde{e}\rangle \\ |\tilde{g}\rangle \end{pmatrix} = (i\omega \mathbb{I} + e^{i\omega t} \begin{pmatrix} -i\gamma B & -c_y - ic_x \\ c_y - ic_x & i\gamma B \end{pmatrix} e^{-i\omega t}) \begin{pmatrix} |\tilde{e}\rangle \\ |\tilde{g}\rangle \end{pmatrix}$$
(5)

By the definition of c_x and c_y it appears a product between $cos(\omega t)$ and $e^{-i\omega}$ that can be approximated if rapidly oscillating terms are neglected:

$$cos(\omega t)e^{-i\omega t} = \frac{(e^{i\omega t} + e^{-i\omega t})e^{-i\omega t}}{2} = \frac{1 + e^{-2i\omega t}}{2} \simeq \frac{1}{2}$$
 (6)

Defining $c_{\pm} = c_x \pm i c_y$, the approximation of 6 makes it:

$$c_{\pm}e^{-i\omega t} = (c_x \pm ic_y)e^{-i\omega t} = (b_x \pm ib_y)cos(\omega t)e^{-i\omega t} \simeq \frac{b_x \pm ib_y}{2}$$
 (7)

Using 7, 5 can be simplified:

$$\frac{d}{dt} \begin{pmatrix} |\tilde{e}\rangle \\ |\tilde{g}\rangle \end{pmatrix} = \begin{pmatrix} -i(\gamma B - \omega) & -ie^{i\omega t} \frac{b_{-}}{2} \\ -ie^{i\omega t} \frac{b_{+}}{2} & i(\gamma B - \omega) \end{pmatrix} \begin{pmatrix} |\tilde{e}\rangle \\ |\tilde{g}\rangle \end{pmatrix}$$
(8)

And finally, defining $B_x=\frac{e^{i\omega t}b_-}{2}$ and $B_y=\frac{e^{i\omega}b_+}{2}$, the hamiltonian for the $\{|\tilde{e}\rangle\,,|\tilde{g}\rangle\}$ basis is $(\Delta=\gamma B-\omega,\,B_\pm=B_x\pm iB_y)$

$$H = \begin{pmatrix} B_x \\ B_y \\ \Delta \end{pmatrix} \cdot \vec{\sigma} = \begin{pmatrix} \Delta & B_- \\ B_+ & -\Delta \end{pmatrix} \tag{9}$$

1.1.2 Time evolution for the excited state

The matrix of 9 can be splitted into 2 operators ($r^2 = \Delta^2 + B_x^2 + B_y^2$):

$$H = \frac{1}{2} \begin{pmatrix} \Delta + r & B_{-} \\ B_{+} & r - \Delta \end{pmatrix} - \frac{1}{2} \begin{pmatrix} r - \Delta & -B_{-} \\ -B_{+} & \Delta + r \end{pmatrix} \tag{10}$$

The both operators are projectors for orthogonal states:

$$\frac{1}{2} \begin{pmatrix} \Delta + r & B_{-} \\ B_{+} & r - \Delta \end{pmatrix} \Rightarrow v_{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{\Delta + r} \\ \frac{B_{+}}{\sqrt{\Delta + r}} \end{pmatrix}$$

$$\frac{1}{2} \begin{pmatrix} r - \Delta & -B_{-} \\ -B_{+} & \Delta + r \end{pmatrix} \Rightarrow v_{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{-B_{-}}{\sqrt{\Delta + r}} \\ \sqrt{\Delta + r} \end{pmatrix}$$
(11)

Therefore, it was obtained a Spectral Decomposition for H

$$H = v_{+}v_{+}^{\dagger} - v_{-}v_{-}^{\dagger} \tag{12}$$

So, the evolution operator e^{iHt} for the system is ($\hbar = 1$)

$$e^{-it}v_{+}v_{+}^{\dagger} + e^{it}v_{-}v_{-}^{\dagger} = \begin{pmatrix} rcos(t) - i\Delta sin(t) & -iB_{-}sin(t) \\ iB_{+}sin(t) & rcos(t) + i\Delta sin(t) \end{pmatrix}$$
(13)

If the initial condition is:

$$|\phi(0)\rangle = |\tilde{e}\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$$
 (14)

The state after time evolution is:

$$|\phi(t)\rangle = e^{-iHt} |\phi(0)\rangle = \begin{pmatrix} rcos(t) - i\Delta sin(t) \\ iB_{+}sin(t) \end{pmatrix}$$
 (15)

1.1.3 Can the evolution to reach the ground state?

With the definition given in 15, it can be answered this question. If in a given time $|\phi(t)\rangle = |g\rangle$ this implies that $\langle g|\,|\phi(t)\rangle = 1$:

$$B_{+}B_{-}sin^{2}(t) = 1 \Rightarrow sin^{2}(t) = \frac{1}{B_{+}B_{-}}$$
 (16)

Using that $cos^2(t)=1-sin^2(t)$ and 16, it can be write down the another condition: $\langle e||\phi(t)\rangle=0$

$$r^2 cos^2(t) + \Delta^2 sin^2(t) = 0 \Rightarrow r^2(1 - \frac{1}{B_+ B_-}) + \frac{\Delta^2}{B_+ B_-} = 0$$
 (17)

If $r^2 = \Delta^2 + B_+ B_-$, the numerator 17 gives the condition:

$$r^2B_+B_- - r^2 + \Delta^2 = 0 \Rightarrow (r^2 - 1)B_+B_- = 0 \Rightarrow r^2 = 1$$
 (18)

So, for the ground state can be reached, it must needed

$$r^2 = \Delta^2 + B_+ B_- = (\gamma B - \omega) + \frac{b_x^2 + b_y^2}{4} = 1$$
 (19)

1.2 Time Evolution in Two Level System

For the next Hamiltonian ($|n|^2 = n_x^2 + n_y^2 + n_z^2 = 1$):

$$H = \gamma B \hat{n} \cdot \vec{\sigma} = \begin{pmatrix} \gamma B n_z & \gamma B (n_x - i n_y) \\ \gamma B (n_x + i n_y) & -\gamma B n_z \end{pmatrix}$$
 (20)

The procedure done in 10 can be done two, finding H as a sum of 2 proyectors, and by the way, it spectral decomposition:

$$H = \frac{\gamma B}{2} \begin{bmatrix} 1 + n_z & n_x - in_y \\ n_x + in_y & 1 - n_z \end{bmatrix} - \begin{pmatrix} 1 - n_z & -n_x + in_y \\ -n_x - in_y & 1 + n_z \end{pmatrix}$$
(21)

Using it, it can be found the evolution operator, that has the same form of the found in 13 $(n_{\pm} = n_x \pm i n_y)$:

$$e^{-iH\tau} = \begin{pmatrix} \cos(\frac{\gamma B\tau}{2}) - in_z \sin(\frac{\gamma B\tau}{2}) & -in_- \sin(\frac{\gamma B\tau}{2}) \\ in_+ \sin(\frac{\gamma B\tau}{2}) & \cos(\frac{\gamma B\tau}{2}) + in_z \sin(\frac{\gamma B\tau}{2}) \end{pmatrix}$$
(22)

Defining $\theta = \gamma b \tau$, the evolution operator can be understood as a rotating operator:

$$e^{-iH\tau} = \begin{pmatrix} \cos(\frac{\theta}{2}) - in_z \sin(\frac{\theta}{2}) & -in_- \sin(\frac{\theta}{2}) \\ in_+ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) + in_z \sin(\frac{\theta}{2}) \end{pmatrix}$$
(23)

The operator of 23 will be analised the next special cases:

· If $\hat{n} = \hat{x}$, $n_x = 1$, $n_y = n_z = 0$, 23 becomes

$$e^{-iH\tau} = \begin{pmatrix} \cos(\frac{\theta}{2}) & -i\sin(\frac{\theta}{2}) \\ i\sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix}$$
 (24)

· If $\hat{n} = \hat{y}$, $n_y = 1, n_z = n_x = 0$, 23 becomes

$$e^{-iH\tau} = \begin{pmatrix} \cos(\frac{\theta}{2}) & -\sin(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) & \cos(\frac{\theta}{2}) \end{pmatrix}$$
 (25)

· If $\hat{n} = \hat{z}$, $n_z = 1$, $n_x = n_y = 0$, 23 becomes

$$e^{-iH\tau} = \begin{pmatrix} \cos(\frac{\theta}{2}) - i\sin(\frac{\theta}{2}) & 0\\ 0 & \cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2}) \end{pmatrix}$$
(26)

$$\begin{array}{lll} |\phi(0)\rangle = |e\rangle & \hat{n} = \hat{x} & \hat{n} = \hat{y} & \hat{n} = \hat{z} \\ \theta = \frac{\pi}{2} & |\phi(t)\rangle = \frac{|e\rangle + i|g\rangle}{\sqrt{2}} & |\phi(t)\rangle = \frac{|e\rangle + |g\rangle}{\sqrt{2}} & |\phi(t)\rangle = \frac{1-i}{\sqrt{2}}|e\rangle \\ \theta = \pi & |\phi(t)\rangle = i|g\rangle & |\phi(t)\rangle = |g\rangle & |\phi(t)\rangle = -i|e\rangle \\ \\ |\phi(0)\rangle = |g\rangle & \hat{n} = \hat{x} & \hat{n} = \hat{y} & \hat{n} = \hat{z} \\ \theta = \frac{\pi}{2} & |\phi(t)\rangle = \frac{|g\rangle - i|e\rangle}{\sqrt{2}} & |\phi(t)\rangle = \frac{|g\rangle - |e\rangle}{\sqrt{2}} & |\phi(t)\rangle = \frac{1+i}{\sqrt{2}}|g\rangle \\ \theta = \pi & |\phi(t)\rangle = -i|e\rangle & |\phi(t)\rangle = -|e\rangle & |\phi(t)\rangle = i|g\rangle \end{array}$$

And replacing for $\theta=\frac{\pi}{2}$ and $\theta=\pi$, it will be obtained the next tables for $|\phi_0\rangle=|e\rangle$ and $|\phi_0\rangle=|g\rangle$:

1.3 Final State after Sequences

For an initial state ($|\alpha|^2 + |\beta|^2 = 1$):

$$|\varphi_0\rangle = \alpha |e\rangle + \beta |g\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
 (27)

It can be done a Ramsey Sequence ($\varphi = \frac{\gamma B \tau}{2}$)

It can be done a kind of Echo Sequence ($\varphi = \frac{\gamma B \tau}{2}$)

$$(\frac{\pi}{2}_{x}) : \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \rightarrow \begin{pmatrix} \frac{\alpha+i\beta}{\sqrt{2}} \\ \frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix}$$

$$(\tau) : \begin{pmatrix} \frac{\alpha+i\beta}{\sqrt{2}} \\ \frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{(\cos\varphi-in_{z}\sin\varphi)(\alpha+i\beta)-in_{-}\sin\varphi(\beta-i\alpha)}{\sqrt{2}} \\ \frac{(in_{+}\sin\varphi(\alpha+i\beta)+(\cos\varphi+in_{z}\sin\varphi)(\beta-i\alpha)}{\sqrt{2}} \end{pmatrix}$$

$$(\pi_{x}) : \begin{pmatrix} \frac{(\cos\varphi-i\sin\varphi)(\alpha+i\beta)}{\sqrt{2}} \\ \frac{(\cos\varphi+i\sin\varphi)(\beta-i\alpha)}{\sqrt{2}} \end{pmatrix} \rightarrow \begin{pmatrix} -ie^{i\varphi}(\frac{\beta-i\alpha}{\sqrt{2}}) \\ ie^{-i\varphi}(\frac{\alpha+i\beta}{\sqrt{2}}) \\ -e^{-i\varphi}(\frac{\alpha+i\beta}{\sqrt{2}}) \end{pmatrix} \rightarrow \begin{pmatrix} -e^{-i\varphi}e^{i\varphi}\frac{\alpha+i\beta}{\sqrt{2}} \\ -e^{i\varphi}e^{-i\varphi}\frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix}$$

$$(\tau) : \begin{pmatrix} -\frac{\alpha+i\beta}{\sqrt{2}} \\ -\frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{-(\alpha+i\beta+i(\beta-i\alpha))}{2} \\ -\frac{(\beta-i\alpha-i(\alpha+i\beta))}{2} \end{pmatrix}$$

It can be done another kind of Echo Sequence ($\varphi = \frac{\gamma B \tau}{2}$)

$$(\frac{\pi}{2}_{x}) : \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \rightarrow \begin{pmatrix} \frac{\alpha+i\beta}{\sqrt{2}} \\ \frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix}$$

$$(\tau) : \begin{pmatrix} \frac{\alpha+i\beta}{\sqrt{2}} \\ \frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{(\cos\varphi-in_{z}\sin\varphi)(\alpha+i\beta)-in_{-}\sin\varphi(\beta-i\alpha)}{\sqrt{2}} \\ \frac{in_{+}\sin\varphi(\alpha+i\beta)+(\cos\varphi+in_{z}\sin\varphi)(\beta-i\alpha)}{\sqrt{2}} \end{pmatrix}$$

$$(\pi_{x}) : \begin{pmatrix} \frac{(\cos\varphi-i\sin\varphi)(\alpha+i\beta)}{\sqrt{2}} \\ \frac{(\cos\varphi+i\sin\varphi)(\beta-i\alpha)}{\sqrt{2}} \end{pmatrix} \rightarrow \begin{pmatrix} -ie^{i\varphi}(\frac{\beta-i\alpha}{\sqrt{2}}) \\ ie^{-i\varphi}(\frac{\alpha+i\beta}{\sqrt{2}}) \\ -e^{-i\varphi}(\frac{\alpha+i\beta}{\sqrt{2}}) \end{pmatrix} \rightarrow \begin{pmatrix} -e^{-i\varphi}e^{i\varphi}\frac{\alpha+i\beta}{\sqrt{2}} \\ -e^{i\varphi}e^{-i\varphi}\frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix}$$

$$(\tau) : \begin{pmatrix} -\frac{\alpha+i\beta}{\sqrt{2}} \\ -\frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{-(\alpha+i\beta+\beta-i\alpha)}{2} \\ -(\beta-i\alpha-\alpha-i\beta) \\ -(\beta-i\alpha-\alpha-i\beta) \end{pmatrix}$$

In the processes 28, 29 and 30, the operators were applicated and in the next step, is simplified the result state. Therefore, The

final and normalised vectors after the processes are:

$$|\phi\rangle_{Ramsey} = \frac{1}{\sqrt{2}} \begin{pmatrix} \alpha + i\beta \\ \beta - i\alpha \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \frac{i}{\sqrt{2}} \begin{pmatrix} \beta \\ -\alpha \end{pmatrix}$$

$$|\phi\rangle_{Echo1} = \begin{pmatrix} \frac{-\alpha - i\beta}{\sqrt{2}} \\ \frac{-\beta + i\alpha}{\sqrt{2}} \end{pmatrix} = \frac{-1}{\sqrt{2}} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \frac{-i}{\sqrt{2}} \begin{pmatrix} \beta \\ -\alpha \end{pmatrix}$$

$$|\phi\rangle_{Echo2} = \begin{pmatrix} \frac{(\alpha + i\beta)(i-1)}{2} \\ \frac{(\beta - i\alpha)(i-1)}{2} \end{pmatrix} = \frac{i-1}{2} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \frac{-1-i}{2} \begin{pmatrix} \beta \\ -\alpha \end{pmatrix}$$
(31)

For the 3 vectors, the probability to obtain again the initial state of 27 can be obtained by the splitting made in 31 for each one of them. The probabilities will be:

$$P_{0,Ramsey} = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}$$

$$P_{0,Echo1} = \left(\frac{-1}{\sqrt{2}}\right)^2 = \frac{1}{2}$$

$$P_{0,Echo2} = \left|\frac{i-1}{2}\right|^2 = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}$$
(32)

2 Central Spin and Random Fluctuating Field

In the suggested problem (spin $\frac{1}{2}$ under a magnetic field B_0 , is valid a Hamiltonian similar to the defined in 20. If the rotating frame is along the \hat{z} axis, $n_z = 1$ and $n_x = n_y = 0$:

$$H = \gamma B \hat{\sigma}_z = \begin{pmatrix} \gamma B & 0 \\ 0 & -\gamma B \end{pmatrix} \tag{33}$$

The evolution operator derived by 33 is

$$e^{-iH\tau} = \begin{pmatrix} \cos(\frac{\gamma B\tau}{2}) - i\sin(\frac{\gamma B\tau}{2}) & 0\\ 0 & \cos(\frac{\gamma B\tau}{2}) + i\sin(\frac{\gamma B\tau}{2}) \end{pmatrix}$$
 (34)

2.1 Static Magnetic Field

The both analysis are made an initial state given by 27 and the tables developed in a previous section:

2.1.1 State after Ramsey sequence

As it has done in 28, it is made a Ramsey Sequence, now with the Hamiltonian of 34:

$$(\frac{\pi}{2}_{x}) : \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \rightarrow \begin{pmatrix} \frac{\alpha+i\beta}{\sqrt{2}} \\ \frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix}$$

$$(\tau) : \begin{pmatrix} \frac{\alpha+i\beta}{\sqrt{2}} \\ \frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{(\cos\varphi-i\sin\varphi)(\alpha+i\beta)}{\sqrt{2}} \\ \frac{(\cos\varphi+i\sin\varphi)(\beta-i\alpha)}{\sqrt{2}} \end{pmatrix}$$

$$(\frac{\pi}{2}_{x}) : \begin{pmatrix} \frac{e^{-i\varphi}(\alpha+i\beta)}{\sqrt{2}} \\ \frac{e^{i\varphi}(\beta-i\alpha)}{\sqrt{2}} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{e^{-i\varphi}(\alpha+i\beta)+ie^{i\varphi}(\beta-i\alpha)}{2} \\ \frac{e^{i\varphi}(\beta-i\alpha)-ie^{-i\varphi}(\alpha+i\beta)}{2} \end{pmatrix}$$

$$(35)$$

Such that the final state is:

$$|\phi(\tau)\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \alpha + i\beta \\ \beta - i\alpha \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \frac{i}{\sqrt{2}} \begin{pmatrix} \beta \\ -\alpha \end{pmatrix}$$
 (36)

And the probability to be in the initial state is:

$$P_0 = (\frac{1}{\sqrt{2}})^2 = \frac{1}{2} \tag{37}$$

2.1.2 State after Echo sequence

As it has done in 29, it is made a Echo Sequence, now with the Hamiltonian of 34:

$$(\frac{\pi}{2}_{x}) : \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \rightarrow \begin{pmatrix} \frac{\alpha+i\beta}{\sqrt{2}} \\ \frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix}$$

$$(\tau) : \begin{pmatrix} \frac{\alpha+i\beta}{\sqrt{2}} \\ \frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{(\cos\varphi-i\sin\varphi)(\alpha+i\beta)}{\sqrt{2}} \\ \frac{(\cos\varphi+i\sin\varphi)(\beta-i\alpha)}{\sqrt{2}} \end{pmatrix}$$

$$(\pi_{x}) : \begin{pmatrix} \frac{e^{-i\varphi}(\alpha+i\beta)}{\sqrt{2}} \\ \frac{e^{i\varphi}(\beta-i\alpha)}{\sqrt{2}} \end{pmatrix} \rightarrow \begin{pmatrix} -ie^{i\varphi}(\frac{\beta-i\alpha}{\sqrt{2}}) \\ ie^{-i\varphi}(\frac{\alpha+i\beta}{\sqrt{2}}) \\ -e^{-i\varphi}(\frac{\beta-i\alpha}{\sqrt{2}}) \end{pmatrix} \rightarrow \begin{pmatrix} -e^{-i\varphi}e^{i\varphi}\frac{\alpha+i\beta}{\sqrt{2}} \\ -e^{i\varphi}e^{-i\varphi}\frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix}$$

$$(\frac{\pi}{2}_{x}) : \begin{pmatrix} -\frac{\alpha+i\beta}{\sqrt{2}} \\ -\frac{\beta-i\alpha}{\sqrt{2}} \end{pmatrix} \rightarrow \begin{pmatrix} \frac{-(\alpha+i\beta+i(\beta-i\alpha))}{2} \\ -(\beta-i\alpha-i(\alpha+i\beta)) \\ \frac{2}{2} \end{pmatrix}$$

Such that the final state is:

$$|\phi(\tau)\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} -\alpha - i\beta \\ -\beta + i\alpha \end{pmatrix} = \frac{-1}{\sqrt{2}} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \frac{-i}{\sqrt{2}} \begin{pmatrix} \beta \\ -\alpha \end{pmatrix}$$
 (39)

And the probability to be in the initial state is the same that the obtained in 37, that is $P_0 = \frac{1}{2}$.

2.2 Static and Random Magnetic Fields

If it is added a random element in the Magnetic Field, it will be observed more effects. Making a Taylor expansion for the exponential function:

$$e^{i\phi} \simeq 1 + i\phi - \phi^2 + \dots \tag{40}$$

It can be obtained by this the expectation value, if as usual $<\phi>=0$

$$< e^{i\phi} > = 1 - <\phi>^2$$
 (41)

- 2.2.1 Expectation Value of Random Function
- 2.2.2 Spectral Densities for Different Noises
- 2.2.3 Ramsey sequence for noisey system
- 2.2.4 Echo sequence for noisey system