

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 18.56 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 0.82$$

$$C_e = 0.90$$

1.20

2.3 Wind Loads

Design Wind Speed, V =	100 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 15.70 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.1 (Draggura)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.1 (Pressure) 1.7	testing done by Ruscheweyh Consult. Coefficients are
Cf- _{TOP}	=	-2.2 -1 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
Тор	M3	Outer	N7	Outer
Bottom	M7	Inner	N15	Inner
	M11	Outer	N23	Outer
Location	Rear Struts	Location	Rear Reactions	Location
Outer	M2	Outer	N8	Outer
Inner	M6	Inner	N16	Inner
Outer	M10	Outer	N24	Outer
<u>Location</u>	Bracing	<u>g</u>		
Outer	M15	5		
Inner	M16A	4		
Outer				
	Top Bottom Location Outer Inner Outer Location Outer Inner	Top M3 Bottom M7 M11 M11 Location Rear Struts Outer M2 Inner M6 Outer M10 Location Bracing Outer M1: Inner M16/	Top M3 Outer Bottom M7 Inner M11 Outer M11 Outer Location M2 Outer Inner Inner M6 Inner Outer M10 Outer Location Bracing Outer M15 Inner M16A	Top M3 Outer N7 Bottom M7 Inner N15 M11 Outer N23 Location Rear Struts Location Rear Reactions Outer M2 Outer N8 Inner M6 Inner N16 Outer M10 Outer N24 Location Bracing Outer M15 Inner M16A

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
$L_b =$	<u>72</u>	in
$\Phi F_{ty STRONG-AXIS} =$	28.91	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
I _y =	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	0.634	k-ft
$M_z =$	0.135	k-ft
M _{y allowable} =	1.230	k-ft
$M_{z \text{ allowable}} =$	0.871	k-ft
Utilization =	<u>67%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

<u>1.5x0.25</u> 6061-T6
35 ksi
0.90
0.02 in^3
10100 ksi
33.25 in ⁴
0.38 in^2
0.45 lbs/ft
0.004 k-ft
0.057 k
0.046 k-ft
11.813 k
<u>9%</u>

A cross brace kit is required every 21 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	<u>164.14</u>	1699.85	k
Compressive Load =	1442.58	1232.54	k
Lateral Load =	<u>2.91</u>	906.00	k
Moment (Weak Axis) =	0.01	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 25277.4 in-lbs Resisting Force Required = 842.58 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1404.30 lbs to resist overturning. Minimum Width = 22 in in Weight Provided = 1993.75 lbs Sliding Force = 217.72 lbs Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 544.29 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 217.72 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

		Ballas	t Width	
	22 in	23 in	24 in	25 in
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$	1994 lbs	2084 lbs	2175 lbs	2266 lbs

ASD LC	1.0D + 1.0S 1.0D + 1.0W				1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W											
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	524 lbs	524 lbs	524 lbs	524 lbs	469 lbs	469 lbs	469 lbs	469 lbs	701 lbs	701 lbs	701 lbs	701 lbs	-77 lbs	-77 lbs	-77 lbs	-77 lbs
FB	376 lbs	376 lbs	376 lbs	376 lbs	511 lbs	511 lbs	511 lbs	511 lbs	633 lbs	633 lbs	633 lbs	633 lbs	-816 lbs	-816 lbs	-816 lbs	-816 lbs
F _V	53 lbs	53 lbs	53 lbs	53 lbs	392 lbs	392 lbs	392 lbs	392 lbs	330 lbs	330 lbs	330 lbs	330 lbs	-435 lbs	-435 lbs	-435 lbs	-435 lbs
P _{total}	2893 lbs	2984 lbs	3075 lbs	3165 lbs	2973 lbs	3064 lbs	3154 lbs	3245 lbs	3328 lbs	3419 lbs	3510 lbs	3600 lbs	304 lbs	358 lbs	412 lbs	467 lbs
M	369 lbs-ft	369 lbs-ft	369 lbs-ft	369 lbs-ft	532 lbs-ft	532 lbs-ft	532 lbs-ft	532 lbs-ft	648 lbs-ft	648 lbs-ft	648 lbs-ft	648 lbs-ft	675 lbs-ft	675 lbs-ft	675 lbs-ft	675 lbs-ft
е	0.13 ft	0.12 ft	0.12 ft	0.12 ft	0.18 ft	0.17 ft	0.17 ft	0.16 ft	0.19 ft	0.19 ft	0.18 ft	0.18 ft	2.22 ft	1.89 ft	1.64 ft	1.45 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	267.4 psf	265.2 psf	263.2 psf	261.4 psf	254.6 psf	253.0 psf	251.5 psf	250.2 psf	278.2 psf	275.6 psf	273.2 psf	270.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	363.9 psf	357.6 psf	351.7 psf	346.4 psf	394.0 psf	386.4 psf	379.3 psf	372.8 psf	447.9 psf	437.9 psf	428.7 psf	420.3 psf	398.8 psf	202.6 psf	159.2 psf	141.7 psf

Maximum Bearing Pressure = 448 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 218.1 \text{ ft-lbs}$

Resisting Force Required = 237.90 lbs S.F. = 1.67 Weight Required = 396.49 lbs

Minimum Width = 22 in in Weight Provided = 1993.75 lbs

A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0	.362D + 0.875	iΕ
Width		22 in			22 in			22 in	
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F _Y	71 lbs	185 lbs	67 lbs	252 lbs	739 lbs	248 lbs	21 lbs	54 lbs	20 lbs
F _V	1 lbs	1 lbs	0 lbs	7 lbs	7 lbs	1 lbs	0 lbs	0 lbs	0 lbs
P _{total}	2539 lbs	2653 lbs	2535 lbs	2602 lbs	3088 lbs	2598 lbs	742 lbs	776 lbs	741 lbs
М	2 lbs-ft	2 lbs-ft	0 lbs-ft	13 lbs-ft	10 lbs-ft	1 lbs-ft	1 lbs-ft	1 lbs-ft	0 lbs-ft
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft
L/6	0.31 ft	1.83 ft	1.83 ft	1.82 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft
f _{min}	276.2 sqft	288.7 sqft	276.5 sqft	279.2 sqft	333.4 sqft	283.1 sqft	80.8 sqft	84.4 sqft	80.8 sqft
f _{max}	277.8 psf	290.1 psf	276.6 psf	288.4 psf	340.5 psf	283.7 psf	81.2 psf	84.8 psf	80.9 psf

Maximum Bearing Pressure = 340 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	1.110 k	Maximum Axial Load =	1.166 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>19%</u>	Utilization =	<u>20%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.474 k	Maximum Axial Load =	0.057 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
M8 Bolt Shear Capacity = Strut Bearing Capacity =	5.692 k 7.952 k	M10 Bolt Capacity = Strut Bearing Capacity =	8.894 k 7.952 k
		. ,	

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 30.83 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.617 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.024 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_b = 72.00 \text{ in}$$

$$J = 0.255$$

$$187.484$$

$$\left(Bc - \frac{\theta_y}{2}Fcy\right)$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 28.9 \text{ ksi}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Use</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

L14
$$L_{b} = 72.00 \text{ in}$$

$$J = 0.255$$

$$194.691$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

$$\phi F_1 = 28.8$$

3.4.16

$$b/t = 23.9$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$
 $\phi F_L = 43.2 \text{ ksi}$

$$\phi F_L S t = 28.9 \text{ ksi}$$

$$k = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

77.3

0.511 in³

1.230 k-ft

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

0.871 k-ft

 $M_{max}Wk =$

Compression

 $M_{max}St =$

Sx =

S2 =

3.4.9

b/t = 7.4

S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

 $\begin{array}{ll} \phi F_L = \; \phi y F c y \\ \\ \phi F_L = \; & 33.3 \; ksi \end{array}$

b/t = 23.9 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L = 28.5 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.47 \text{ ksi}$$

 $A = 578.06 \text{ mm}^2$ 0.90 in^2 $P_{\text{max}} = 25.51 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

$\begin{array}{ccc} \textbf{3.4.11} & & & \\ \textbf{L}_{b} = & & 33.78 \text{ in} \\ \textbf{ry} = & & 1.374 \\ \textbf{Cb} = & & 1.08 \\ & & & 23.7085 \end{array}$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.4 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

$$\begin{array}{lll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.08 \\ & 24.5845 \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ S1 = & 1.37733 \\ S2 = & 1.2C_c \\ S2 = & 79.2 \\ \phi F_L = & \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt(Cb))] \\ \phi F_1 = & 29.4 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 \text{ ksi}$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Strong Direction

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$Ix = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$y = 37.77 \text{ mm}$$

$$Sx = 0.589 \text{ in}^3$$

$$M_{max} St = 1.441 \text{ k-ft}$$

Compression

3.4.7

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 13.5 \text{ ksi}$$

$$\psi = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

$$X = 29 \text{ mm}$$

$$Sy = 0.457 \text{ in}^3$$

$$M_{max}W k = 0.513 \text{ k-ft}$$

SCHLETTER

3.4.8

 $\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE)})/(5.1b/t) \end{array}$

$\phi F_L = 10.4 \text{ ksi}$

3.4.9

b/t =4.29 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi b/t =24.46 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{\text{max}} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

S2 = 1701.56

$$\varphi F_L = \varphi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}$$

$$\phi F_L = 31.2 \text{ ksi}$$

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

 $lx = 39958.2 \text{ mm}^4$ 0.096 in⁴

15 mm

0.163 in³

Weak Axis:

3.4.14

$$\begin{array}{ll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ S2 = & 1701.56 \\ \phi F_L = & \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}] \\ \phi F_L = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$\begin{array}{cccc} C_0 = & 15 \\ Cc = & 15 \\ \end{array}$$

$$\begin{array}{cccc} S2 = \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \varphi F_L = & 1.3 \varphi y F c y \\ \varphi F_L = & 43.2 \text{ ksi} \\ \end{array}$$

$$\begin{array}{cccc} \varphi F_L W k = & 31.2 \text{ ksi} \\ y = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ X = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ \end{array}$$

$$\begin{array}{ccccc} M_{\text{max}} W k = & 0.423 \text{ k-ft} \end{array}$$

7.75

mDbr

0.65

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

y =

 $M_{max}St = 0.423 \text{ k-ft}$

Sx =

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$
 $r = 0.437 \text{ in}$
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S2 = 32.70$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 1.17 \phi y F C y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$mDbr$$
 $S1 = 36.9$
 $m = 0.65$

$$m = 0.65$$

 $C_0 = 15$

$$Cc = 15$$
 k_1Bbr

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

 $Ix = 39958.2 \text{ mm}^4$

$$0.096 \text{ in}^4$$

y = 15 mm

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$

 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$
$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$
 $c = 15 \text{ mm}$

$$x = 15 \text{ mr}$$

 $Sy = 0.163 \text{ in}^3$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{1.600} \sqrt{\frac{Fcy}{1.600}}$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

 $\phi cc = 0.85841$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$S2 = 32.70$$

 $\phi F_L = \phi y Fcy$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis: 3.4.14

$$L_b = 36.18 \text{ in}$$
 $J = 0.16$
 94.9139

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.2 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

3.4.16.1

 $\phi F_1 = 33.3 \text{ ksi}$

 $\phi F_1 = \phi y F c y$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

Not Used

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.2 \text{ ksi}$$

$$lx = 39958.2 \text{ mm}^4$$

0.096 in⁴

$$y = 15 \text{ mm}$$

 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.410 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 36.18 \text{ in}$$
 $J = 0.16$
 94.9139

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.2$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$k_1Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 in^3$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.5514$$

 $r = 0.437$ in
 $s1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $s2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$
 $\varphi cc = 0.7972$
 $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$
 $\varphi F_L = 11.5927$ ksi

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 11.59 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 5.82 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	•			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-51.748	-51.748	0	0
2	M16	Υ	-51.748	-51.748	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	У	-48.164	-48.164	0	0
2	M16	V	-74.435	-74.435	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	96.328	96.328	0	0
2	M16	V	43.785	43.785	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

пс

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	174.568	2	281.533	2	0	15	0	1	0	1	0	1
2		min	-219.812	3	-398.889	3	122	3	0	3	0	1	0	1
3	N7	max	0	15	400.693	1	041	15	0	15	0	1	0	1
4		min	144	2	-29.51	3	969	1	002	1	0	1	0	1
5	N15	max	0	15	1109.676	1	.538	1	.001	1	0	1	0	1
6		min	-1.531	2	-126.258	3	436	3	0	3	0	1	0	1
7	N16	max	647.232	2	948.107	2	0	10	0	1	0	1	0	1
8		min	-696.924	3	-1307.578	3	-50.103	3	0	3	0	1	0	1
9	N23	max	0	15	400.388	1	2.238	1	.004	1	0	1	0	1
10		min	144	2	-29.041	3	.089	15	0	15	0	1	0	1
11	N24	max	174.821	2	285.013	2	50.496	3	.001	1	0	1	0	1
12		min	-219.999	3	-396.901	3	.009	10	0	3	0	1	0	1
13	Totals:	max	994.801	2	3366.511	1	0	3					·	
14		min	-1136.915	3	-2288.176	3	0	10						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome		z-z Mome	LC
1	M2	1	max	281.464	1	.643	4	.428	1	0	15	0	3	0	1
2			min	-360.344	3	.152	15	062	3	0	1	0	1	0	1
3		2	max	281.58	1	.597	4	.428	1	0	15	0	15	0	15
4			min	-360.257	3	.141	15	062	3	0	1	0	1	0	4
5		3	max	281.696	1	.551	4	.428	1	0	15	0	1	0	15
6			min	-360.17	3	.13	15	062	3	0	1	0	3	0	4
7		4	max	281.813	1	.506	4	.428	1	0	15	0	1	0	15
8			min	-360.082	3	.119	15	062	3	0	1	0	3	0	4
9		5	max	281.929	1	.46	4	.428	1	0	15	0	1	0	15
10			min	-359.995	3	.109	15	062	3	0	1	0	3	0	4
11		6	max	282.046	1	.414	4	.428	1	0	15	0	1	0	15
12			min	-359.908	3	.098	15	062	3	0	1	0	3	0	4
13		7	max	282.162	1	.369	4	.428	1	0	15	0	1	0	15
14			min	-359.82	3	.087	15	062	3	0	1	0	3	0	4
15		8	max	282.278	1	.323	4	.428	1	0	15	0	1	0	15
16			min	-359.733	3	.076	15	062	3	0	1	0	3	0	4
17		9	max	282.395	1	.277	4	.428	1	0	15	0	1	0	15
18			min	-359.646	3	.066	15	062	3	0	1	0	3	0	4
19		10	max	282.511	1	.232	4	.428	1	0	15	0	1	0	15
20			min	-359.559	3	.055	15	062	3	0	1	0	3	0	4
21		11	max	282.628	1	.186	4	.428	1	0	15	0	1	0	15
22			min	-359.471	3	.044	15	062	3	0	1	0	3	0	4
23		12	max	282.744	1	.14	4	.428	1	0	15	0	1	0	15
24			min	-359.384	3	.033	15	062	3	0	1	0	3	0	4
25		13	max	282.86	1	.101	2	.428	1	0	15	0	1	0	15
26			min	-359.297	3	.018	12	062	3	0	1	0	3	0	4
27		14	max	282.977	1	.065	2	.428	1	0	15	0	1	0	15
28			min	-359.209	3	002	3	062	3	0	1	0	3	0	4
29		15	max	283.093	1	.03	2	.428	1	0	15	0	1	0	15
30			min	-359.122	3	029	3	062	3	0	1	0	3	0	4
31		16	max	283.21	1	006	2	.428	1	0	15	0	1	0	15
32			min	-359.035	3	056	3	062	3	0	1	0	3	0	4
33		17	max	283.326	1	02	15	.428	1	0	15	.001	1	0	15
34			min	-358.947	3	088	4	062	3	0	1	0	3	0	4
35		18	max	283.442	1	031	15	.428	1	0	15	.001	1	0	15
36			min	-358.86	3	134	4	062	3	0	1	0	3	0	4
37		19	max	283.559	1	042	15	.428	1	0	15	.001	1	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

38		Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	l LC y	/-y Mome		z-z Mome	. LC
40					-358.773				062	3				3	0	
41		<u>M3</u>	1_	max		2					0	15	.001	_	0	
42				min		3					0			15	0	
43			2											_		
44			_							_						
45			3	_												
46										_						
47			4													
48			-							-						
49			5													
50																
51			6													
Second Color Seco			-										-			
S3														_		
55																
556			8													
Second Color										_						
57			9											_		
Second Color Seco			40							-						
11			10											-		
60			4.4													_
61			11													
62			12										-			
63			12													
64 min -128.216 3 349 4 401 1 0 1 0 15 001 4 66 min -128.268 3 526 4 401 1 0 15 .001 4 67 15 max 117.148 2 165 15 015 15 0 15 0 1 0 15 .001 4 68 min -128.319 3 703 4 401 1 0 1 0 15 0			12							_						
65			13													
66			1.1							_						
67 15 max 117.148 2 165 15 015 15 0 15 0 1 0 15 68 min -128.319 3 703 4 401 1 0 10 0 4 469 16 max 117.079 2 207 15 0 15			14											_		
68			15							-						
69 16 max 117.079 2 207 15 015 15 0 15 <th< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></th<>			13											-		
TO			16													_
71 17 max 117.01 2 248 15 015 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 14 0 4 4 73 18 max 116.942 2 29 15 015 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0			10													
72 min -128.422 3 -1.058 4 401 1 0 1 0 4 73 18 max 116.942 2 29 15 015 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1 0 4 7 7 18 19 max 116.873 2 332 15 015 15 0 15 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			17										-	_		
73 18 max 116.942 2 29 15 015 15 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0			17													
74 min -128.473 3 -1.235 4 401 1 0 1 0 1 0 4 75 19 max 116.873 2 332 15 015 15 0 15 0 1 76 min -128.525 3 -1.412 4 401 1 0			18							_						_
75 19 max 116.873 2 332 15 015 15 0 15 0 1 76 min -128.525 3 -1.412 4 401 1 0 1 0 1 77 M4 1 max 399.528 1 0 1 041 15 0 1 0 3 0 1 78 min -30.383 3 0 1 -1.039 1 0 1 0 2 0 1 79 2 max 399.593 1 0 1 041 15 0 1 0 15 0 1 80 min -30.335 3 0 1 -1.039 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0			10													
76 min -128.525 3 -1.412 4 401 1 0 1 0 1 77 M4 1 max 399.528 1 0 1 041 15 0 1 0 3 0 1 78 min -30.383 3 0 1 -1.039 1 0 1 0 2 0 1 79 2 max 399.593 1 0 1 041 15 0 1 0 15 0 1 80 min -30.335 3 0 1 -1.039 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			19	1												
77 M4 1 max 399.528 1 0 1 041 15 0 1 0 3 0 1 78 min -30.383 3 0 1 -1.039 1 0 1 0 2 0 1 79 2 max 399.593 1 0 1 -0.41 15 0 1 <td></td> <td></td> <td>10</td> <td></td>			10													
78 min -30.383 3 0 1 -1.039 1 0 1 0 2 0 1 79 2 max 399.593 1 0 1 -0.041 15 0 1 0 15 0 1 80 min -30.335 3 0 1 -1.039 1 0 1 </td <td></td> <td>M4</td> <td>1</td> <td></td>		M4	1													
79 2 max 399.593 1 0 1 041 15 0 1 0 15 0 1 80 min -30.335 3 0 1 -1.039 1 0 1 0 1 0 1 81 3 max 399.658 1 0 1 041 15 0 1 0 15 0 1 82 min -30.286 3 0 1 -1.039 1 0			<u> </u>									1				
80 min -30.335 3 0 1 -1.039 1 0 1 0 1 81 3 max 399.658 1 0 1 041 15 0 1 0			2													
81 3 max 399.658 1 0 1 041 15 0 1 0								1								
82 min -30.286 3 0 1 -1.039 1 0 1 0 1 83 4 max 399.722 1 0 1 041 15 0 1 0 1 84 min -30.238 3 0 1 -1.039 1 0 1 0 1 85 5 max 399.787 1 0 1 -041 15 0 1 0 1 86 min -30.189 3 0 1 -1.039 1 0 1 0 1 87 6 max 399.852 1 0 1 041 15 0 1 0 1 88 min -30.141 3 0 1 -1.039 1 0 1 0 1 90 min -30.092 3 0 1 -1.039			3			1		1		15		1	0	15	0	1
83 4 max 399.722 1 0 1 041 15 0 1 0 15 0 1 84 min -30.238 3 0 1 -1.039 1 0 1 0 1 0 1 85 5 max 399.787 1 0 1 041 15 0 1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td>								1				1				1
84 min -30.238 3 0 1 -1.039 1 0 1 0 1 0 1 85 5 max 399.787 1 0 1 041 15 0 1 0 1 86 min -30.189 3 0 1 -1.039 1 0 1 0 1 87 6 max 399.852 1 0 1 041 15 0 1 0 1 88 min -30.141 3 0 1 -1.039 1 0 1 0 1 89 7 max 399.917 1 0 1 041 15 0 1 0 1 90 min -30.092 3 0 1 -1.039 1 0 1 0 1 0 1 91 8 max 399			4				0	1		15	0	1	0	15	0	1
85 5 max 399.787 1 0 1 041 15 0 1 0 15 0 1 86 min -30.189 3 0 1 -1.039 1 0 1 0 1 0 1 87 6 max 399.852 1 0 1 041 15 0 1 0 15 0 1 88 min -30.141 3 0 1 -1.039 1 0						3		1				1				1
86 min -30.189 3 0 1 -1.039 1 0 1 0 1 0 1 87 6 max 399.852 1 0 1 041 15 0 1 0 1 88 min -30.141 3 0 1 -1.039 1 0 1 0 1 89 7 max 399.917 1 0 1 041 15 0 1 0 1 90 min -30.092 3 0 1 -1.039 1 0 1 0 1 91 8 max 399.981 1 0 1 041 15 0 1 0 1 92 min -30.044 3 0 1 -1.039 1 0 1 0 1 93 9 max 400.046 1 <			5					1				1				1
87 6 max 399.852 1 0 1 041 15 0 1 0 15 0 1 88 min -30.141 3 0 1 -1.039 1 0 1 0 1 89 7 max 399.917 1 0 1 041 15 0 1 0 15 0 1 90 min -30.092 3 0 1 -1.039 1 0 1 0 1 0 1 91 8 max 399.981 1 0 1 041 15 0 1 0 1 0 1 92 min -30.044 3 0 1 -1.039 1 0 1 0 1 0 1 93 9 max 400.046 1 0 1 041 15 0 1 0 1						3		1								1
88 min -30.141 3 0 1 -1.039 1 0 1 0 1 0 1 89 7 max 399.917 1 0 1 041 15 0 1 0 1 90 min -30.092 3 0 1 -1.039 1 0 1 0 1 91 8 max 399.981 1 0 1 041 15 0 1 0 15 0 1 92 min -30.044 3 0 1 -1.039 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0			6					1		15		1		15		1
89 7 max 399.917 1 0 1 041 15 0 1 0 15 0 1 90 min -30.092 3 0 1 -1.039 1 0 1 0 1 0 1 91 8 max 399.981 1 0 1 041 15 0 1 0 15 0 1 92 min -30.044 3 0 1 -1.039 1 0 1 0 1 0 1 93 9 max 400.046 1 0 1 041 15 0 1 0 15 0 1						3		1				1				1
90 min -30.092 3 0 1 -1.039 1 0 1 0 1 0 1 91 8 max 399.981 1 0 1 041 15 0 1 0 1 92 min -30.044 3 0 1 -1.039 1 0 1 0 1 93 9 max 400.046 1 0 1 041 15 0 1 0 15 0 1			7				0	1		15	0	1		15	0	1
91 8 max 399.981 1 0 1 041 15 0 1 0 15 0 1 92 min -30.044 3 0 1 -1.039 1 0 1 0 1 0 1 93 9 max 400.046 1 0 1 041 15 0 1 0 15 0 1						3	0	1			0	1	0		0	1
92 min -30.044 3 0 1 -1.039 1 0 1 0 1 0 1 93 9 max 400.046 1 0 1 041 15 0 1 0 15 0 1			8			1	0	1		15	0	1	0	15	0	1
93 9 max 400.046 1 0 1041 15 0 1 0 15 0 1						3		1				1				1
			9				0	1		15	0	1	0	15	0	1
	94			min	-29.995	3	0	1	-1.039	1	0	1	0	1	0	1

Schletter, Inc.HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	. LC
95		10	max	400.111	1	0	1	041	15	0	1	0	15	0	1
96			min	-29.947	3	0	1	-1.039	1	0	1	0	1	0	1
97		11	max	400.175	1	0	1	041	15	0	1	0	15	0	1 1
98			min	-29.898	3	0	1	-1.039	1	0	1	0	1	0	1
99		12	max	400.24	1	0	1	041	15	0	1	0	15	0	1
100			min	-29.85	3	0	1	-1.039	1	0	1	001	1	0	1
101		13	max		1	0	1	041	15	0	1	0	15	0	1
102			min	-29.801	3	0	1	-1.039	1	0	1	001	1	0	1
103		14	max	400.37	1	0	1	041	15	0	1	0	15	0	1
104		17		-29.752	3	0	1	-1.039	1	0	1	001	1	0	1
		15	min				•		_	_			_		
105		15	max		1	0	1	041	15	0	1	0	15	0	1
106		1.0	min		3	0	1	-1.039	1_	0	1	<u>001</u>	1	0	1
107		16	max		1_	0	1	041	15	0	1	0	15	0	1
108			min	-29.655	3	0	1	-1.039	1	0	1	001	1	0	1
109		17	max		_1_	0	1	041	15	0	1	0	15	0	1
110			min	-29.607	3	0	1	-1.039	1	0	1	002	1	0	1
111		18	max	400.628	1	0	1	041	15	0	1	0	15	0	1
112			min	-29.558	3	0	1	-1.039	1	0	1	002	1	0	1
113		19	max	400.693	1	0	1	041	15	0	1	0	15	0	1
114		'	min	-29.51	3	0	1	-1.039	1	0	1	002	1	0	1
115	M6	1	max	907.19	1	.642	4	.197	1	0	3	0	3	0	1
116	IVIO			-1165.83	3	.151	15	177	3	0	10	0	1	0	1
		2									_	0	3		
117		2	max		1	.597	4	.197	1	0	3			0	15
118				-1165.743	3	.141	15	177	3	0	10	0	1	0	4
119		3	max		1	.551	4	.197	1	0	3	0	3	0	15
120			min		3	.13	15	177	3	0	10	0	1	0	4
121		4	max		1	.505	4	.197	1	0	3	0	3	0	15
122			min	-1165.569	3	.119	15	177	3	0	10	0	10	0	4
123		5	max	907.656	1	.46	4	.197	1	0	3	0	11	0	15
124			min	-1165.481	3	.108	15	177	3	0	10	0	10	0	4
125		6	max		1	.414	2	.197	1	0	3	0	1	0	15
126			min	-1165.394	3	.098	15	177	3	0	10	0	3	0	4
127		7	max		1	.379	2	.197	1	0	3	0	1	0	15
128		–		-1165.307	3	.083	12	177	3	0	10	0	3	0	4
129		8	max	908.005	1	.343	2	.197	1	0	3	0	1	0	15
130		0	min	-1165.219	3	.065	12	177	3	0	10	0	3	0	4
													_		
131		9	_	908.122	1	.308	2	.197	1	0	3	0	1	0	15
132				-1165.132	3	.047	12	177	3	0	10	0	3	0	4
133		10		908.238	1_	.272	2	.197	1	0	3	00	1	0	15
134			min	-1165.045	3	.03	12	177	3	0	10	0	3	0	4
135		11		908.355	1	.236	2	.197	1	0	3	0	1	0	15
136			min	-1164.957	3	.012	3	177	3	0	10	0	3	0	2
137		12	max	908.471	1	.201	2	.197	1	0	3	0	1	0	12
138			min	-1164.87	3	015	3	177	3	0	10	0	3	0	2
139		13		908.587	1	.165	2	.197	1	0	3	0	1	0	12
140		1.0	min	-1164.783	3	042	3	177	3	0	10	0	3	0	2
141		14		908.704	1	.13	2	.197	1	0	3	0	1	0	12
142		14		-1164.696	3	068	3	177	3	0	10	0	3	0	2
		4.5	min												
143		15	max	908.82	1	.094	2	.197	1	0	3	0	1	0	12
144		4.0		-1164.608	3	095	3	177	3	0	10	0	3	0	2
145		16	max		1	.058	2	.197	1	0	3	0	1	0	12
146			min		3	122	3	177	3	0	10	0	3	0	2
147		17		909.053	1_	.023	2	.197	1	0	3	0	1	0	12
148				-1164.434	3	148	3	177	3	0	10	0	3	0	2
149		18	max	909.169	1	013	2	.197	1	0	3	0	1	0	12
150			min	-1164.346	3	175	3	177	3	0	10	0	3	0	2
151		19		909.286	1	042	15	.197	1	0	3	0	1	0	12
					•		•		<u> </u>						

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
152			min	-1164.259	3	202	3	177	3	0	10	0	3	0	2
153	M7	1	max	473.885	2	1.78	4	.01	3	0	1	0	1	0	2
154			min	-388.375	3	.419	15	01	2	0	3	0	3	0	12
155		2	max	473.816	2	1.602	4	.01	3	0	1	0	1	0	2
156			min	-388.426	3	.377	15	01	2	0	3	0	3	0	3
157		3	max	473.747	2	1.425	4	.01	3	0	1	0	1	0	2
158			min	-388.478	3	.335	15	01	2	0	3	0	3	0	3
159		4	max	473.679	2	1.248	4	.01	3	0	1	0	1	0	2
160			min	-388.529	3	.294	15	01	2	0	3	0	3	0	3
161		5	max	473.61	2	1.071	4	.01	3	0	1	0	1	0	15
162			min	-388.58	3	.252	15	01	2	0	3	0	3	0	3
163		6	max	473.542	2	.894	4	.01	3	0	1	0	1	0	15
164			min	-388.632	3	.21	15	01	2	0	3	0	3	0	4
165		7	max	473.473	2	.716	4	.01	3	0	1	0	1	0	15
166			min	-388.683	3	.169	15	01	2	0	3	0	3	0	4
167		8	max	473.404	2	.539	4	.01	3	0	1	0	1	0	15
168			min	-388.735	3	.127	15	01	2	0	3	0	3	001	4
169		9	max	473.336	2	.362	4	.01	3	0	1	0	1	0	15
170			min	-388.786	3	.085	15	01	2	0	3	0	3	001	4
171		10	max	473.267	2	.222	2	.01	3	0	1	0	1	0	15
172			min	-388.838	3	.019	12	01	2	0	3	0	3	001	4
173		11	max	473.199	2	.084	2	.01	3	0	1	0	1	0	15
174			min	-388.889	3	08	3	01	2	0	3	0	3	001	4
175		12	max	473.13	2	04	15	.01	3	0	1	0	1	0	15
176			min	-388.941	3	183	3	01	2	0	3	0	3	001	4
177		13	max		2	081	15	.01	3	0	1	0	1	0	15
178			min	-388.992	3	347	4	01	2	0	3	0	3	001	4
179		14	max		2	123	15	.01	3	0	1	0	1	0	15
180			min	-389.044	3	524	4	01	2	0	3	0	3	001	4
181		15	max	472.924	2	165	15	.01	3	0	1	0	1	0	15
182			min	-389.095	3	701	4	01	2	0	3	0	3	0	4
183		16	max		2	206	15	.01	3	0	1	0	1	0	15
184			min	-389.146	3	878	4	01	2	0	3	0	3	0	4
185		17	max	472.787	2	248	15	.01	3	0	1	0	1	0	15
186			min	-389.198	3	-1.056	4	01	2	0	3	0	3	0	4
187		18	max	472.718	2	29	15	.01	3	0	1	0	1	0	15
188			min	-389.249	3	-1.233	4	01	2	0	3	0	3	0	4
189		19	max	472.65	2	331	15	.01	3	0	1	0	1	0	1
190			min	-389.301	3	-1.41	4	01	2	0	3	0	3	0	1
191	M8	1	max	1108.511	1	0	1	.656	1	0	1	0	10	0	1
192			min	-127.132	3	0	1	427	3	0	1	0	1	0	1
193		2		1108.576	1	0	1	.656	1	0	1	0	1	0	1
194				-127.083	3	0	1	427	3	0	1	0	3	0	1
195		3		1108.64	1	0	1	.656	1	0	1	0	1	0	1
196				-127.035	3	0	1	427	3	0	1	0	3	0	1
197		4		1108.705	1	0	1	.656	1	0	1	0	1	0	1
198				-126.986	3	0	1	427	3	0	1	0	3	0	1
199		5		1108.77	1	0	1	.656	1	0	1	0	1	0	1
200				-126.938		0	1	427	3	0	1	0	3	0	1
201		6		1108.834	1	0	1	.656	1	0	1	0	1	0	1
202		Ĭ		-126.889	3	0	1	427	3	0	1	0	3	0	1
203		7		1108.899	1	0	1	.656	1	0	1	0	1	0	1
204				-126.841	3	0	1	427	3	0	1	0	3	0	1
205		8		1108.964	1	0	1	.656	1	0	1	0	1	0	1
206				-126.792	3	0	1	427	3	0	1	0	3	0	1
207		9		1109.028	1	0	1	.656	1	0	1	0	1	0	1
208				-126.743	3	0	1	427	3	0	1	0	3	0	1
200			111111	120.770				. (4)				<u> </u>			

Model Name

: Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

000	Member	Sec		Axial[lb]							LC	y-y Mome		I -	
209		10		1109.093	1	0	1	.656	1	0	1	0	1	0	1
210		4.4	min		3	0	1	427	3	0	1	0	3	0	1
211		11		1109.158	1	0	1	.656	1	0	1	0	1	0	1
212		40	min		3	0	1	427	3	0	1	0	3	0	1
213		12		1109.223	1	0	1	.656	3	0	1	0	1	0	1
214		40	min	-126.598	3	0		427		0			3	0	
215		13		1109.287	1	0	1	.656	1	0	1	0	1	0	1
216		4.4			3	0	1	427	3	0	1	0	3	0	1
217		14		1109.352	1	0	1	.656	1	0	1	0	1	0	1
218		4.5		-126.501	3	0	1	427	3	0	1_	0	3	0	1
219		15		1109.417	1	0	1	.656	1	0	1	0	1	0	1
220		40	min		3	0	1	427	3	0	1_	0	3	0	1
221		16		1109.481	1	0	1	.656	1	0	1	0	1	0	1
222					3	0	1	427	3	0	1	0	3	0	1
223		17		1109.546	1	0	1	.656	1	0	1	0	1	0	1
224			min	-126.355	3	0	1	427	3	0	1	0	3	0	1
225		18		1109.611	1	0	1	.656	1	0	1	0	1	0	1
226					3	0	1	427	3	0	1	0	3	0	1
227		19		1109.676	1	0	1	.656	1	0	1	.001	_1_	0	1
228				-126.258	3	0	1	427	3	0	1	0	3	0	1
229	M10	1_	max	284.46	1_	.636	4	004	15	0	1_	0	_1_	0	1
230			min	-333.864	3	.151	15	109	1	0	3	0	3	0	1
231		2	max		_1_	.59	4	004	15	0	1	0	1	0	15
232			min	-333.777	3	.14	15	109	1	0	3	0	3	0	4
233		3	max	284.693	1	.545	4	004	15	0	1	0	_1_	0	15
234			min	-333.689	3	.129	15	109	1	0	3	0	3	0	4
235		4	max		1_	.499	4	004	15	0	_1_	0	_1_	0	15
236			min	-333.602	3	.118	15	109	1	0	3	0	3	0	4
237		5	max	284.925	1	.453	4	004	15	0	1	0	1	0	15
238			min	-333.515	3	.108	15	109	1	0	3	0	3	0	4
239		6	max	285.042	1	.408	4	004	15	0	1	0	_1_	0	15
240			min	-333.427	3	.097	15	109	1	0	3	0	3	0	4
241		7	max	285.158	1	.362	4	004	15	0	1	0	<u>1</u>	0	15
242			min	-333.34	3	.086	15	109	1	0	3	0	3	0	4
243		8	max	285.275	_1_	.316	4	004	15	0	1	0	1	0	15
244			min	-333.253	3	.075	15	109	1	0	3	0	3	0	4
245		9	max	285.391	1	.271	4	004	15	0	1	0	<u>1</u>	0	15
246			min	-333.165	3	.065	15	109	1	0	3	0	3	0	4
247		10	max	285.507	1	.225	4	004	15	0	1	0	1	0	15
248			min	-333.078	3	.054	15	109	1	0	3	0	3	0	4
249		11	max	285.624	1	.179	4	004	15	0	1	0	1	0	15
250			min	-332.991	3	.043	15	109	1	0	3	0	3	0	4
251		12	max		1	.137	2	004	15	0	1	0	15	0	15
252			min	-332.904	3	.032	15	109	1	0	3	0	3	0	4
253		13	max	285.857	1	.101	2	004	15	0	1	0	15	0	15
254			min	-332.816	3	.022	15	109	1	0	3	0	3	0	4
255		14	max	285.973	1	.065	2	004	15	0	1	0	15	0	15
256			min	-332.729	3	.006	1	109	1	0	3	0	3	0	4
257		15	max	286.089	1	.03	2	004	15	0	1	0	15	0	15
258					3	03	1	109	1	0	3	0	3	0	4
259		16	max		1	006	2	004	15	0	1	0	15	0	15
260			min	-332.554	3	065	1	109	1	0	3	0	3	0	4
261		17		286.322	1	021	15	004	15	0	1	0	15	0	15
262			min	-332.467	3	101	1	109	1	0	3	0	3	0	4
263		18			1	032	15	004	15	0	1	0	15	0	15
264			min	-332.38	3	14	4	109	1	0	3	0	3	0	4
265		19			1	043	15	004	15	0	1	0	15	0	15
			mux			.0 70		.007			_				

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

266		Member	Sec		Axial[lb]		y Shear[lb]	LC		LC	Torque[k-ft]		/-y Mome	LC	z-z Mome	<u>. LC</u>
268	266			min	-332.292	3	186		109	1		3	0		0	_
269	267	M11	1	max	117.771	2	1.782	4	.489		0	1	0	3	0	4
270	268			min	-128.217	3	.419	15	012	3	0	15	001	1	0	15
271	269		2	max	117.702	2	1.605	4	.489	1	0	1 1	0	3	0	4
272	270			min	-128.268	3	.377	15	012	3	0	15	001	1	0	12
273	271		3	max	117.634	2	1.427	4	.489	1	0	1	0	3	0	2
274	272			min	-128.32	3	.336	15	012	3	0	15	001	1	0	3
274	273		4	max	117.565	2	1.25	4	.489	1	0	1	0	3	0	15
275				min		3	.294	15	012	3	0	15	001	1	0	
276			5	max		2		4	.489	1	0	1		3	0	
277 6 max 117,428 2 896 4 489 1 0 1 0 3 0 15				min		3		15		3		15	001		0	
278			6	max		2	.896	4	.489	1	0	1	0	3	0	15
279				min								15	0			
280			7	max		2					0		0	3	0	15
281								15		3		15	0			
282			8										0	3	0	15
283											-	15				
284			9											_		_
285											-					
286			10													
288			10													
288			11													_
289				_												
290			12										-	_		
291			12													
Page			12													
293			13													
294			1.1					+						_		
295			14													
296			15													
297			15													
298			16					_								
17 max 116.673 2 248 15 .489 1 0 1 0 3 0 15			16													
300			47										-			
301			17							-						
302			4.0													
303			18	_							-					
304			40													
305 M12 1 max 399.223 1 0 1 2.396 1 0 1 0 2 0 1 306 min -29.914 3 0 1 .089 15 0 1 0 3 0 1 307 2 max 399.288 1 0 1 2.396 1 0 1 </td <td></td> <td></td> <td>19</td> <td></td>			19													
306		1440														
307 2 max 399.288 1 0 1 2.396 1 0		<u>M12</u>	1 1													
308 min -29.866 3 0 1 .089 15 0 1 0 15 0 1 309 3 max 399.352 1 0 1 2.396 1 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>																-
309 3 max 399.352 1 0 1 2.396 1 0			2													
310 min -29.817 3 0 1 .089 15 0 1 0 15 0 1 311 4 max 399.417 1 0 1 2.396 1 0 1 0 1 0 1 312 min -29.769 3 0 1 .089 15 0 1 0 1 0 1 313 5 max 399.482 1 0 1 2.396 1 0													-			-
311 4 max 399.417 1 0 1 2.396 1 0			3													
312 min -29.769 3 0 1 .089 15 0 1 0 15 0 1 313 5 max 399.482 1 0 1 2.396 1 0 1 0 1 0 1 314 min -29.72 3 0 1 .089 15 0 1 0 1 0 1 315 0 1 0.089 15 0 1 0.001 1 0 1 0 1 0.01 1 0 1 0.01 1 0 1 0.01 1 0 1 0.01 1 0 1 0.01 1 0 1 0.001 1 0 1 0.001 1 0 1 0.001 1 0 1 0.001 1 0 1 0.001 1 0 1 0.001 1 0 1								_								
313 5 max 399.482 1 0 1 2.396 1 0			4													
314 min -29.72 3 0 1 .089 15 0 1 0 15 0 1 315 6 max 399.546 1 0 1 .001 1 0 1 316 min -29.672 3 0 1 .089 15 0 1 0 1 0 1 .001 1 0 1 .001 1 0 1 .001 1 0 1 .001 1 0 1 .001 1 0 1 .001 1 .001 1 .001 1 .001 1 .001 1 .001 1 .001 1 .001 1 .001 1 .001 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
315 6 max 399.546 1 0 1 2.396 1 0 1 .001 1 0 1 316 min -29.672 3 0 1 .089 15 0 1 0 15 0 1 317 7 max 399.611 1 0 1 2.396 1 0 1 .001 1 0 1 318 min -29.623 3 0 1 .089 15 0 1 0 15 0 1 319 8 max 399.676 1 0 1 2.396 1 0 1 .002 1 0 1 320 min -29.575 3 0 1 .089 15 0 1 0 1 0 1 321 9 max 399.741 1 0 1 2.396 1 0 1 .002 1 0 1			5													
316 min -29.672 3 0 1 .089 15 0 1 0 15 0 1 317 7 max 399.611 1 0 1 2.396 1 0 1 .001 1 0 1 318 min -29.623 3 0 1 .089 15 0 1 0 1 0 1 319 8 max 399.676 1 0 1 2.396 1 0 1 .002 1 0 1 320 min -29.575 3 0 1 .089 15 0 1 0 1 .002 1 0 1 321 9 max 399.741 1 0 1 2.396 1 0 1 .002 1 0 1																
317 7 max 399.611 1 0 1 2.396 1 0 1 .001 1 0 1 318 min -29.623 3 0 1 .089 15 0 1 0 15 0 1 319 8 max 399.676 1 0 1 2.396 1 0 1 .002 1 0 1 320 min -29.575 3 0 1 .089 15 0 1 0 15 0 1 321 9 max 399.741 1 0 1 2.396 1 0 1 .002 1 0 1			6													
318 min -29.623 3 0 1 .089 15 0 1 0 1 319 8 max 399.676 1 0 1 2.396 1 0 1 .002 1 0 1 320 min -29.575 3 0 1 .089 15 0 1 0 1 0 1 321 9 max 399.741 1 0 1 2.396 1 0 1 .002 1 0 1																
319 8 max 399.676 1 0 1 2.396 1 0 1 .002 1 0 1 320 min -29.575 3 0 1 .089 15 0 1 0 15 0 1 321 9 max 399.741 1 0 1 2.396 1 0 1 .002 1 0 1			7	max			0				0	1	.001		0	1
320 min -29.575 3 0 1 .089 15 0 1 0 15 0 1 321 9 max 399.741 1 0 1 2.396 1 0 1 .002 1 0 1				min	-29.623	3	0	1		15	0	1		15	0	1
321 9 max 399.741 1 0 1 2.396 1 0 1 .002 1 0 1			8	max		1	0	1			0	1	.002		0	1
	320			min		3		1		15	_	1		15		1
322 min -29.526 3 0 1 .089 15 0 1 0 15 0 1			9	max			0	1				1	.002		0	_
	322			min	-29.526	3	0	1	.089	15	0	1	0	15	0	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC :	z-z Mome	LC
323		10	max	399.805	1	0	_1_	2.396	1	0	1	.002	1	0	1
324			min	-29.478	3	0	1	.089	15	0	1	0	15	0	1
325		11	max	399.87	1	0	1	2.396	1	0	1	.002	1	0	1
326			min	-29.429	3	0	1	.089	15	0	1	0	15	0	1
327		12	max	399.935	1	0	1	2.396	1	0	1	.002	1	0	1
328			min	-29.381	3	0	1	.089	15	0	1	0	15	0	1
329		13	max	399.999	1	0	1	2.396	1	0	1	.003	1	0	1
330			min	-29.332	3	0	1	.089	15	0	1	0	15	0	1
331		14	max	400.064	1	0	1	2.396	1	0	1	.003	1	0	1
332			min	-29.284	3	0	1	.089	15	0	1	0	15	0	1
333		15	max	400.129	1	0	1	2.396	1	0	1	.003	1	0	1
334			min	-29.235	3	0	1	.089	15	0	1	0	15	0	1
335		16	max	400.194	1	0	1	2.396	1	0	1	.003	1	0	1
336			min	-29.186	3	0	1	.089	15	0	1	0	15	0	1
337		17	max	400.258	1	0	1	2.396	1	0	1	.003	1	0	1
338			min	-29.138	3	0	1	.089	15	0	1	0	15	0	1
339		18	max	400.323	1	0	1	2.396	1	0	1	.004	1	0	1
340			min	-29.089	3	0	1	.089	15	0	1	0	15	0	1
341		19	max	400.388	1	0	1	2.396	1	0	1	.004	1	0	1
342			min	-29.041	3	0	1	.089	15	0	1	0	15	0	1
343	M1	1	max	112.534	1	339.316	3	-1.766	15	0	1	.093	1	0	1
344			min	4.116	15	-281.556	1	-47.479	1	0	3	.003	15	0	3
345		2	max	112.652	1	339.126	3	-1.766	15	0	1	.083	1	.061	1
346			min	4.152	15	-281.809	1	-47.479	1	0	3	.003	15	074	3
347		3	max	74.047	1	5.938	9	-1.751	15	0	12	.072	1	.121	1
348			min	-5.344	10	-18.516	2	-47.284	1	0	1	.003	15	146	3
349		4	max	74.165	1	5.727	9	-1.751	15	0	12	.062	1	.122	1
350			min	-5.246	10	-18.77	2	-47.284	1	0	1	.002	15	142	3
351		5	max	74.283	1	5.516	9	-1.751	15	0	12	.051	1	.123	1
352			min	-5.147	10	-19.023	2	-47.284	1	0	1	.002	15	138	3
353		6	max	74.401	1	5.305	9	-1.751	15	0	12	.041	1	.123	1
354			min	-5.049	10	-19.276	2	-47.284	1	0	1	.002	15	134	3
355		7	max	74.519	1	5.094	9	-1.751	15	0	12	.031	1	.125	2
356			min	-4.951	10	-19.529	2	-47.284	1	0	1	.001	15	13	3
357		8	max	74.637	1	4.883	9	-1.751	15	0	12	.021	1	.129	2
358			min	-4.852	10	-19.782	2	-47.284	1	0	1	0	15	126	3
359		9	max	74.755	1	4.672	9	-1.751	15	0	12	.01	1	.134	2
360			min	-4.754	10	-20.035	2	-47.284	1	0	1	0	15	122	3
361		10	max	74.873	1	4.461	9	-1.751	15	0	12	.001	3	.138	2
362			min	-4.656	10	-20.288	2	-47.284	1	0	1	0	15	118	3
363		11		74.991	1	4.25	9	-1.751	15	0	12	0	3	.143	2
364			min	-4.557	10	-20.541	2	-47.284	1	0	1	01	1	114	3
365		12			1	4.04	9	-1.751	15	0	12	0	12	.147	2
366		12	min	-4.459	10	-20.794	2	-47.284	1	0	1	02	1	109	3
367		13	max	75.227	1	3.829	9	-1.751	15	0	12	001	12	.152	2
368		10	min	-4.361	10	-21.047	2	-47.284	1	0	1	031	1	105	3
369		14	max	75.345	1	3.618	9	-1.751	15	0	12	002	15	.156	2
370		17	min	-4.262	10	-21.3	2	-47.284	1	0	1	041	1	101	3
371		15	max	75.463	1	3.407	9	-1.751	15	0	12	002	15	.161	2
372		10	min	-4.164	10	-21.553	2	-47.284	1	0	1	051	1	096	3
373		16	max	86.479	2	69.2	2	-1.766	15	0	1	002	15	.165	2
374		10	min	-19.712	3	-121.3	3	-47.633	1	0	12	062	1	091	3
375		17	max	86.597	2	68.947	2	-1.766	15	0	1	002	15	.15	2
376		17	min	-19.624	3	-121.49	3	-47.633	1	0	12	072	1	065	3
377		18	max	-19.024 -4.142	 15	347.116	2	-1.807	15	0	3	072	15	065 .076	2
378		10		-112.613	1	-149.252	3	-48.749	1	0	2	083	1	033	3
379		10	max		15	346.862	2	-1.807	15	0	3	003	15	033 0	2
313		l 19	шах	-4 .10/	เบ	340.002		-1.007	10	U	⊥ ວ	003	่⊓เว	U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC y	y-y Mome	LC	z-z Mome	. LC
380			min	-112.495	1	-149.442	3	-48.749	1	0	2	093	1	0	3
381	M5	1	max	252.742	1	1116.966	3	0	10	0	1	.005	3	0	3
382			min	6.514	12	-926.705	1	-45.11	3	0	3	0	10	0	1
383		2	max	252.86	1	1116.776	3	0	10	0	1	.001	1	.201	1
384			min	6.573	12	-926.958	1	-45.11	3	0	3	004	3	242	3
385		3	max	175.71	3	6.405	9	5.124	3	0	3	0	1	.398	1
386			min	-25.405	10	-70.219	2	675	1	0	1	014	3	479	3
387		4	max	175.798	3	6.194	9	5.124	3	0	3	0	1	.404	1
388			min	-25.307	10	-70.472	2	675	1	0	1	013	3	465	3
389		5	max	175.887	3	5.983	9	5.124	3	0	3	0	1	.41	1
390			min	-25.208	10	-70.725	2	675	1	0	1	012	3	451	3
391		6	max	175.975	3	5.772	9	5.124	3	0	3	0	1	.416	1
392			min	-25.11	10	-70.979	2	675	1	0	1	01	3	437	3
393		7	max	176.064	3	5.561	9	5.124	3	0	3	0	1	.422	1
394			min	-25.012	10	-71.232	2	675	1	0	1	009	3	423	3
395		8	max	176.152	3	5.35	9	5.124	3	0	3	0	1	.432	2
396			min	-24.913	10	-71.485	2	675	1	0	1	008	3	409	3
397		9	max	176.241	3	5.139	9	5.124	3	0	3	0	11	.448	2
398			min	-24.815	10	-71.738	2	675	1	0	1	007	3	394	3
399		10	max	176.329	3	4.929	9	5.124	3	0	3	0	10	.463	2
400			min	-24.717	10	-71.991	2	675	1	0	1	006	3	38	3
401		11	max	176.418	3	4.718	9	5.124	3	0	3	0	10	.479	2
402			min	-24.618	10	-72.244	2	675	1	0	1	005	3	366	3
403		12	max	176.506	3	4.507	9	5.124	3	0	3	0	10	.495	2
404			min	-24.52	10	-72.497	2	675	1	0	1	004	3	352	3
405		13	max	176.595	3	4.296	9	5.124	3	0	3	0	10	.51	2
406			min	-24.422	10	-72.75	2	675	1	0	1	003	3	337	3
407		14	max	176.683	3	4.085	9	5.124	3	0	3	0	10	.526	2
408			min	-24.323	10	-73.003	2	675	1	0	1	002	3	323	3
409		15	max	176.772	3	3.874	9	5.124	3	0	3	0	10	.542	2
410			min	-24.225	10	-73.256	2	675	1	0	1	0	1	308	3
411		16	max		2	298.931	2	5.093	3	0	1	0	3	.555	2
412			min	-65.354	3	-371.269	3	679	1	0	10	0	1	291	3
413		17	max	293.432	2	298.678	2	5.093	3	0	1	.001	3	.49	2
414			min	-65.265	3	-371.459	3	679	1	0	10	001	1	211	3
415		18	max	-7.801	12	1138.542	2	4.669	3	0	3	.002	3	.246	2
416			min	-252.907	1	-487.355	3	126	1	0	1	001	1	105	3
417		19	max	-7.742	12	1138.289	2	4.669	3	0	3	.003	3	0	3
418			min	-252.789	1	-487.545	3	126	1	0	1	001	1	0	2
419	M9	1	max	112.091	1	339.282	3	49.277	3	0	3	003	15	0	1
420					15	-281.554		2.086	15	0	1	092	1	0	3
421		2		112.209	1	339.092	3	49.277	3	0	3	001	12	.061	1
422			min	4.133	15	-281.807	1	2.086	15	0	1	081	1	074	3
423		3	max	74.088	1	5.913	9	46.048	1	0	1	.008	3	.121	1
424			min	-4.902	10	-18.528	2	538	3	0	15	07	1	146	3
425		4	max	74.206	1	5.703	9	46.048	1	0	1	.008	3	.122	1
426			min	-4.803	10	-18.781	2	538	3	0	15	06	1	142	3
427		5	max	74.324	1	5.492	9	46.048	1	0	1	.008	3	.123	1
428			min	-4.705	10	-19.034	2	538	3	0	15	05	1	138	3
429		6	max	74.442	1	5.281	9	46.048	1	0	1	.008	3	.123	1
430			min	-4.607	10	-19.287	2	538	3	0	15	04	1	134	3
431		7	max	74.56	1	5.07	9	46.048	1	0	1	.008	3	.125	2
432			min	-4.508	10	-19.54	2	538	3	0	15	03	1	13	3
433		8	max	74.678	1	4.859	9	46.048	1	0	1	.008	3	.129	2
434			min	-4.41	10	-19.793	2	538	3	0	15	02	1	126	3
435		9	max	74.796	1	4.648	9	46.048	1	0	1	.008	3	.134	2
436			min	-4.312	10	-20.046	2	538	3	0	15	01	1	122	3
700			1111111	7.012	10	20.070		.000	J	<u> </u>	IU	.01		. 122	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
437		10	max	74.914	1	4.437	9	46.048	1	0	1	.007	3	.138	2
438			min	-4.213	10	-20.299	2	538	3	0	15	0	2	118	3
439		11	max	75.032	1	4.226	9	46.048	1	0	1	.01	1	.142	2
440			min	-4.115	10	-20.552	2	538	3	0	15	0	15	114	3
441		12	max	75.15	1	4.015	9	46.048	1	0	1	.02	1	.147	2
442			min	-4.017	10	-20.806	2	538	3	0	15	0	15	109	3
443		13	max	75.268	1	3.804	9	46.048	1	0	1	.03	1	.151	2
444			min	-3.918	10	-21.059	2	538	3	0	15	.001	15	105	3
445		14	max	75.386	1	3.594	9	46.048	1	0	1	.04	1	.156	2
446		17	min	-3.82	10	-21.312	2	538	3	0	15	.001	15	101	3
447		15	max	75.504	1	3.383	9	46.048	1	0	1	.05	1 1	.161	2
448		13	min	-3.722	10	-21.565	2	538	3	0	15	.002	15	096	3
449		16			_				1		15	.061	1	.165	2
		16	max	86.697	2	68.926	2	46.492		0	1				
450		47	min	-20.009	3	-121.722	3	542	3	0		.002	15	091	3
451		17	max	86.815	2	68.673	2	46.492	1	0	15	.071	1_	.15	2
452		1.0	min	-19.92	3	-121.912	3	542	3	0	1	.003	15	065	3
453		18	max	-4.13	15	347.116	2	48.892	1	0	2	.081	_1_	.076	2
454			min	-112.201	1	-149.248	3	127	3	0	3	.003	15	033	3
455		19	max	-4.094	15	346.863	2	48.892	1	0	2	.092	_1_	0	2
456			min	-112.083	1	-149.438	3	127	3	0	3	.003	15	0	3
457	M13	1	max	49.274	3	281.202	1	-4.097	15	0	1	.092	_1_	0	1
458			min	2.087	15	-339.289	3	-112.081	1	0	3	.003	15	0	3
459		2	max	49.274	3	198.641	1	-3.134	15	0	1	.026	1	.193	3
460			min	2.087	15	-239.545	3	-85.561	1	0	3	.001	15	16	1
461		3	max	49.274	3	116.08	1	-2.171	15	0	1	.004	3	.319	3
462			min	2.087	15	-139.801	3	-59.04	1	0	3	022	1	265	1
463		4	max	49.274	3	33.52	1	-1.208	15	0	1	.002	3	.379	3
464			min	2.087	15	-40.057	3	-32.52	1	0	3	053	1	315	1
465		5	max	49.274	3	59.687	3	.133	10	0	1	0	3	.373	3
466			min	2.087	15	-49.041	1	-5.999	1	0	3	065	1	31	1
467		6	max	49.274	3	159.431	3	20.521	1	0	1	0	12	.3	3
468		Ŭ	min	2.087	15	-131.602	1	663	3	0	3	061	1	249	1
469		7	max	49.274	3	259.175	3	47.042	1	0	1	0	12	.16	3
470		<u> </u>	min	2.087	15	-214.163	1	.564	12	0	3	038	1	134	1
471		8	max	49.274	3	358.919	3	73.562	1	0	1	.003	2	.036	1
472		0	min	2.087	15	-296.724	1	1.498	12	0	3	0	3	046	3
473		9		49.274	3	458.663	3	100.083	1		1	.06	<u> </u>	.262	1
		9	max					2.433	12	0	3	.001	12		3
474		40	min	2.087	15	-379.284	1			0				318	
475		10	max	49.274	3	558.407	3	126.603	1	0	1	.136	1	.542	1
476		44	min	2.087	15	-461.845	1	3.367	12	0	3	.003	12	657	3
477		11	max		45	379.284	1	-2.208	12	0	3	.059	1_	.262	1
478		1.0	min	1.766	15	-458.663		-99.639	1	0	1	003	3	318	3
479		12	max	47.604	1	296.724	1	-1.274	12	0	3	.003	2	.036	1
480			min	1.766	15	-358.919		-73.119	1	0	1	005	3	046	3
481		13	max	47.604	1	214.163	1	339	12	0	3	001	<u>15</u>	.16	3
482			min	1.766	15	-259.175	3	-46.599	1	0	1	039	_1_	134	1
483		14	max	47.604	1_	131.602	1	1.019	3	0	3	002	15	.3	3
484			min	1.766	15	-159.431	3	-20.078	1	0	1	061	1_	249	1
485		15	max	47.604	1	49.041	1	6.442	1	0	3	002	15	.373	3
486			min	1.766	15	-59.687	3	133	10	0	1	065	1	31	1
487		16	max	47.604	1	40.057	3	32.963	1	0	3	002	12	.379	3
488			min	1.766	15	-33.52	1	1.227	15	0	1	052	1	315	1
489		17	max	47.604	1	139.801	3	59.483	1	0	3	0	3	.319	3
490			min	1.766	15	-116.081	1	2.19	15	0	1	021	1	265	1
491		18		47.604	1	239.545	3	86.004	1	0	3	.027	1	.193	3
492			min	1.766	15	-198.641	1	3.153	15	0	1	.001	10		1
493		19			1	339.289	3	112.524	1	0	3	.093	1	0	1
			max	17.00-		300.200		112.027							

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC			z-z Mome	LC
494			min	1.766	15	-281.202	1	4.116	15	0	1	.003	15	0	3
495	M16	1	max	.129	3	347.028	2	-4.094	15	0	3	.092	1_	0	2
496			min	-48.759	1	-149.458	3	-112.094	1	0	2	.003	15	0	3
497		2	max	.129	3	245.15	2	-3.131	15	0	3	.026	1	.085	3
498			min	-48.759	1	-105.76	3	-85.574	1	0	2	0	15	197	2
499		3	max	.129	3	143.273	2	-2.168	15	0	3	0	12	.141	3
500			min	-48.759	1	-62.062	3	-59.053	1	0	2	022	1	327	2
501		4	max	.129	3	41.395	2	-1.205	15	0	3	002	15	.168	3
502			min	-48.759	1	-18.363	3	-32.533	1	0	2	053	1	388	2
503		5	max	.129	3	25.335	3	.126	10	0	3	002	15	.165	3
504			min	-48.759	1	-60.483	2	-6.012	1	0	2	066	1	382	2
505		6	max	.129	3	69.033	3	20.508	1_	0	3	002	15	.134	3
506			min	-48.759	1	-162.36	2	103	3	0	2	061	1	308	2
507		7	max	.129	3	112.731	3	47.029	1	0	3	001	15	.073	3
508			min	-48.759	1	-264.238	2	.914	12	0	2	038	1	166	2
509		8	max	.129	3	156.429	3	73.549	1	0	3	.003	2	.045	2
510			min	-48.759	1	-366.115	2	1.848	12	0	2	003	3	016	3
511		9	max	.129	3	200.127	3	100.07	1	0	3	.06	1	.323	2
512			min	-48.759	1	-467.993	2	2.783	12	0	2	001	3	135	3
513		10	max	-1.807	15	-11.557	15	126.59	1	0	15	.135	1	.669	2
514			min	-48.759	1	-569.871	2	-5.999	3	0	2	.004	12	283	3
515		11	max	-1.807	15	467.993	2	-3.091	12	0	2	.059	1	.323	2
516			min	-48.626	1	-200.127	3	-99.658	1	0	3	.001	12	135	3
517		12	max	-1.807	15	366.115	2	-2.156	12	0	2	.003	2	.045	2
518			min	-48.626	1	-156.429	3	-73.137	1	0	3	0	3	016	3
519		13	max	-1.807	15	264.238	2	-1.222	12	0	2	001	15	.073	3
520			min	-48.626	1	-112.731	3	-46.617	1	0	3	038	1	166	2
521		14	max	-1.807	15	162.36	2	288	12	0	2	002	12	.134	3
522			min	-48.626	1	-69.033	3	-20.096	1	0	3	061	1	308	2
523		15	max	-1.807	15	60.482	2	6.424	1	0	2	002	12	.165	3
524			min	-48.626	1	-25.335	3	126	10	0	3	065	1	382	2
525		16	max	-1.807	15	18.363	3	32.945	1	0	2	001	12	.168	3
526			min	-48.626	1	-41.395	2	1.217	15	0	3	052	1	388	2
527		17	max	-1.807	15	62.062	3	59.465	1	0	2	0	3	.141	3
528			min	-48.626	1	-143.273	2	2.18	15	0	3	021	1	327	2
529		18	max	-1.807	15	105.76	3	85.985	1	0	2	.027	1	.085	3
530			min	-48.626	1	-245.15	2	3.144	15	0	3	.001	15	197	2
531		19	max	-1.807	15	149.458	3	112.506	1	0	2	.093	1	0	2
532			min	-48.626	1	-347.028	2	4.107	15	0	3	.003	15	0	3
533	M15	1	max	.228	1	2.102	4	.059	3	0	1	0	1	0	1
534			min		3	0	2	056	1	0	3	0	3	0	1
535		2	max	.141	1	1.868	4	.059	3	0	1	0	1	0	2
536			min	-56.07	3	0	2	056	1	0	3	0	3	0	4
537		3	max		1	1.635	4	.059	3	0	1	0	1	0	2
538			min	-56.135	3	0	2	056	1	0	3	0	3	001	4
539		4	max		2	1.401	4	.059	3	0	1	0	1	0	2
540			min	-56.201	3	0	2	056	1	0	3	0	3	002	4
541		5	max		2	1.168	4	.059	3	0	1	0	1	0	2
542			min	-56.266	3	0	2	056	1	0	3	0	3	002	4
543		6	max		2	.934	4	.059	3	0	1	0	1	0	2
544			min	-56.331	3	0	2	056	1	0	3	0	3	003	4
545		7	max		2	.701	4	.059	3	0	1	0	3	0	2
546			min	-56.396	3	0	2	056	1	0	3	0	1	003	4
547		8	max		2	.467	4	.059	3	0	1	0	3	0	2
548		0	min	-56.461	3	0	2	056	1	0	3	0	1	003	4
549		9	max		2	.234	4	.059	3	0	1	0	3	0	2
550		9	min	-56.527	3	0	2	056	1	0	3	0	1	003	4
550			1111111	-00.021	J	U		000		U	J	U		005	-

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
551		10	max	0	2	0	1	.059	3	0	1	0	3	0	2
552			min	-56.592	3	0	1	056	1	0	3	0	1	004	4
553		11	max	0	2	0	2	.059	3	0	<u>1</u>	0	3	0	2
554			min	-56.657	3	234	4	056	1	0	3	0	1	003	4
555		12	max	0	2	0	2	.059	3	0	_1_	0	3	0	2
556			min	-56.722	3	467	4	056	1	0	3	0	1	003	4
557		13	max	0	2	0	2	.059	3	0	_1_	0	3	0	2
558			min	-56.787	3	701	4	056	1	0	3	0	1	003	4
559		14	max	0	2	0	2	.059	3	0	1	0	3	0	2
560			min	-56.852	3	934	4	056	1	0	3	0	1	003	4
561		15	max	0	2	0	2	.059	3	0	_1_	0	3	0	2
562			min	-56.918	3	-1.168	4	056	1	0	3	0	1	002	4
563		16	max	0	2	0	2	.059	3	0	_1_	0	3	0	2
564			min	-56.983	3	-1.401	4	056	1	0	3	0	1	002	4
565		17	max	0	2	0	2	.059	3	0	1	0	3	0	2
566			min	-57.048	3	-1.635	4	056	1	0	3	0	1	001	4
567		18	max	0	2	0	2	.059	3	0	1	0	3	0	2
568			min	-57.113	3	-1.868	4	056	1	0	3	0	1_	0	4
569		19	max	0	2	0	2	.059	3	0	1	0	3	0	1
570			min	-57.178	3	-2.102	4	056	1	0	3	0	1	0	1
571	M16A	1	max	0	10	2.102	4	.028	1	0	3	0	3	0	1
572			min	-56.366	3	0	10	023	3	0	2	0	1	0	1
573		2	max	0	10	1.868	4	.028	1	0	3	0	3	0	10
574			min	-56.301	3	0	10	023	3	0	2	0	1	0	4
575		3	max	0	10	1.635	4	.028	1	0	3	0	3	0	10
576			min	-56.236	3	0	10	023	3	0	2	0	1	001	4
577		4	max	0	10	1.401	4	.028	1	0	3	0	3	0	10
578		_	min	-56.17	3	0	10	023	3	0	2	0	1	002	4
579		5	max	0	10	1.168	4	.028	1	0	3	0	3	0	10
580			min	-56.105	3	0	10	023	3	0	2	0	1	002	4
581		6	max	0	10	.934	4	.028	1	0	3	0	3	0	10
582		_	min	<u>-56.04</u>	3	0	10	023	3	0	2	0	1	003	4
583		7	max	0	10	.701	4	.028	1	0	3	0	3	0	10
584			min	-55.975	3	0	10	023	3	0	2	0	1	003	4
585		8	max	0	10	.467	4	.028	1	0	3	0	3	0	10
586			min	<u>-55.91</u>	3	0	10	023	3	0	2	0	1	003	4
587		9	max	0	10	.234	4	.028	1	0	3	0	3	0	10
588		40	min	-55.844	3	0	10	023	3	0	2	0	1	003	4
589		10	max	0	10	0	1	.028	1	0	3	0	3	0	10
590		44	min	-55.779	3	0	1	023	3	0	2	0	1	004	4
591		11	max	0	10	0	10	.028	1	0	3	0	3	0	10
592		10	min	-55.714	3	234	4	023	3	0	2	0	1	003	4
593		12	max	<u>0</u>	10 3	467	10	.028	3	0	2	0	3	0	10
594		13	min	-55.649	10			023 .028	<u>3</u>	0				003	4
595 596		13	max	0 -55.584	3	701	10 4	023	3	0	2	0	4	003	10
		11		_						-			_		
597		14	max	0 55 510	10	0	10	.028	3	0	3	0	3	0	10
598		15	min	<u>-55.519</u>	3	934 0	4	023		0	2	0	1	003	
599		15	max	0 55.453	10		10	.028	3	0	2	0	_	0	10
600		16	min	<u>-55.453</u>	3 10	-1.168	<u>4</u> 10	023 .028				_	1	002 0	10
601		10	max	0 -55.388		1 401		023	1	0	3	0		_	10
602		17	min		2	-1.401	4		<u>3</u>	0	2	0	1	002	10
603		17	max	.078 -55.323		-1.635	10 4	.028 023	3	0	2	0	3	001	10
604		10	min		3				<u> </u>	_			1		10
605		18	max	.165 -55.258	3	0 -1.868	10	.028 023	3	0	3	0		0	10
606		10	min				4				2		3	_	4
607		19	max	.252	2	0	10	.028	_1_	0	3	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-55.193	3	-2.102	4	023	3	0	2	0	3	0	1

Envelope Member Section Deflections

	siope ivicini			on Dene											
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
1	M2	1	max	.003	1	.008	2	.01	1	-2.695e-5	15	NC	3	NC	2
2			min	003	3	008	3	001	3	-7.177e-4	1	4612.206	2	3742.124	1
3		2	max	.002	1	.007	2	.009	1	-2.582e-5	15	NC	3	NC	2
4			min	003	3	007	3	001	3	-6.879e-4	1	5025.729	2	4043.121	1
5		3	max	.002	1	.007	2	.008	1	-2.469e-5	15	NC	3	NC	2
6			min	003	3	007	3	0	3	-6.581e-4	1	5516.183	2	4398.218	1
7		4	max	.002	1	.006	2	.008	1	-2.355e-5	15	NC	1	NC	2
8			min	003	3	007	3	0	3	-6.283e-4	1	6101.984	2	4820.514	1
9		5		.002	1	.005	2	.007	1	-2.242e-5	15	NC	1	NC	2
		3	max		3							6807.642	2		4
10			min	003		006	3	0	3	-5.985e-4	1_			5327.515	
11		6	max	.002	1	.005	2	.006	1	-2.128e-5	<u>15</u>	NC 7000 044	1_	NC 5040,000	2
12			min	002	3	006	3	0	3	-5.687e-4	1_	7666.311	2	5943.032	1
13		7	max	.002	1	.004	2	.005	1	-2.015e-5	15	NC	1_	NC	2
14			min	002	3	006	3	0	3	-5.389e-4	1_	8723.707	2	6700.143	
15		8	max	.002	1	.004	2	.005	1	-1.902e-5	15	NC	_1_	NC	2
16			min	002	3	005	3	0	3	-5.091e-4	1	NC	1	7645.904	1
17		9	max	.001	1	.003	2	.004	1	-1.788e-5	15	NC	1_	NC	2
18			min	002	3	005	3	0	3	-4.793e-4	1	NC	1	8849.176	1
19		10	max	.001	1	.003	2	.003	1	-1.675e-5	15	NC	1	NC	1
20			min	002	3	005	3	0	3	-4.495e-4	1	NC	1	NC	1
21		11	max	.001	1	.002	2	.003	1	-1.561e-5	15	NC	1	NC	1
22			min	001	3	004	3	0	3	-4.197e-4	1	NC	1	NC	1
23		12	max	0	1	.002	2	.002	1	-1.448e-5	15	NC	1	NC	1
24		12	min	001	3	004	3	0	3	-3.899e-4	1	NC	1	NC	1
25		13	max	0	1	.001	2	.002	1	-1.335e-5	15	NC	1	NC	1
26		13	min	001	3	003	3	0	3	-3.601e-4	1	NC	1	NC	1
27		1.1			1		2	.001	_		•	NC NC	1	NC NC	1
		14	max	0		.001			1	-1.221e-5	<u>15</u>				_
28		4.5	min	0	3	003	3	0	3	-3.304e-4	1_	NC	1_	NC	1
29		15	max	0	1	0	2	.001	1	-1.108e-5	<u>15</u>	NC	1_	NC NC	1
30			min	0	3	002	3	0	3	-3.006e-4	_1_	NC	1_	NC	1
31		16	max	0	1	0	2	0	1	-9.944e-6	<u>15</u>	NC	1_	NC	1
32			min	0	3	002	3	0	3	-2.708e-4	<u>1</u>	NC	1_	NC	1
33		17	max	0	1	0	2	0	1	-8.81e-6	<u>15</u>	NC	<u>1</u>	NC	1
34			min	0	3	001	3	0	3	-2.41e-4	1_	NC	1	NC	1
35		18	max	0	1	0	2	0	1	-7.676e-6	15	NC	1	NC	1
36			min	0	3	0	3	0	3	-2.112e-4	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-6.452e-6	12	NC	1	NC	1
38			min	0	1	0	1	0	1	-1.814e-4	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	8.434e-5	1	NC	1	NC	1
40			min	0	1	0	1	0	1	3.044e-6	15	NC	1	NC	1
41		2	max	0	3	0	2	0	12	1.04e-4	1	NC	1	NC	1
42			min	0	2	0	3	0	1	3.786e-6	15	NC	1	NC	1
43		3	max	0	3	0	2	0	12		1	NC	1	NC	1
44		3	min	0	2	002	3	0	1	4.528e-6	15	NC NC	1	NC	1
		1									10				
45		4	max	0	3	0	2	0	12	1.434e-4	4.5	NC NC	1_1	NC	1
46		-	min	0	2	002	3	0	1	5.27e-6	<u>15</u>	NC NC	1_	NC NC	1
47		5	max	0	3	0	2	0	3	1.631e-4	1_	NC	1	NC NC	1
48			min	0	2	003	3	0	1	6.013e-6	15	NC	1_	NC	1
49		6	max	0	3	0	2	0	3	1.828e-4	_1_	NC	_1_	NC	1
50			min	0	2	004	3	0	1	6.755e-6	15	NC	1_	NC	1
51		7	max	0	3	0	2	0	3	2.025e-4	1_	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC					(n) L/z Ratio	
52			min	0	2	005	3	0	1	7.497e-6	15	NC	1_	NC	1
53		8	max	0	3	0	2	0	3	2.222e-4	_1_	NC	_1_	NC	1
54			min	0	2	005	3	0	1	8.239e-6	15	NC	1	NC	1
55		9	max	0	3	.001	2	0	3	2.419e-4	1_	NC	1_	NC	1
56			min	0	2	006	3	0	1	8.982e-6	15	NC	1	NC	1
57		10	max	0	3	.002	2	0	2	2.616e-4	1_	NC	1_	NC	1
58			min	0	2	006	3	0	15	9.724e-6	15	NC	1	NC	1
59		11	max	0	3	.002	2	0	1	2.813e-4	1	NC	1	NC	1
60			min	0	2	007	3	0	15	1.047e-5	15	NC	1	NC	1
61		12	max	0	3	.003	2	.001	1	3.01e-4	1	NC	1	NC	1
62			min	0	2	007	3	0	15	1.121e-5	15	NC	1	NC	1
63		13	max	0	3	.003	2	.002	1	3.207e-4	1	NC	1	NC	1
64			min	0	2	007	3	0	15	1.195e-5	15	NC	1	NC	1
65		14	max	.001	3	.004	2	.002	1	3.404e-4	1	NC	1	NC	1
66			min	0	2	007	3	0	15	1.269e-5	15	NC	1	NC	1
67		15	max	.001	3	.005	2	.003	1	3.601e-4	1	NC	1	NC	1
68			min	001	2	007	3	0	15	1.343e-5	15	9658.459	2	NC	1
69		16	max	.001	3	.006	2	.003	1	3.798e-4	1	NC	1	NC	1
70			min	001	2	008	3	0	15	1.418e-5	15	8138.898	2	NC	1
71		17	max	.001	3	.007	2	.004	1	3.995e-4	1	NC	1	NC	1
72			min	001	2	008	3	0	15	1.492e-5	15	6972.478	2	NC	1
73		18	max	.001	3	.008	2	.004	1	4.192e-4	1	NC	3	NC	1
74			min	001	2	008	3	0	15	1.566e-5	15	6065.967	2	NC	1
75		19	max	.001	3	.009	2	.005	1	4.389e-4	1	NC	3	NC	1
76			min	001	2	008	3	0	15	1.64e-5		5354.565	2	NC	1
77	M4	1	max	.002	1	.009	2	0	15	-2.173e-5	15	NC	1	NC	2
78			min	0	3	008	3	003	1	-5.943e-4	1	NC	1	5743.222	1
79		2	max	.002	1	.009	2	0	15	-2.173e-5	15	NC	1	NC	2
80			min	0	3	007	3	003	1	-5.943e-4	1	NC	1	6266.023	1
81		3	max	.002	1	.008	2	0	15	-2.173e-5	•	NC	1	NC	2
82			min	0	3	007	3	003	1	-5.943e-4	1	NC	1	6888.208	1
83		4	max	.002	1	.008	2	0	15	-2.173e-5	15	NC	1	NC	2
84			min	0	3	006	3	003	1	-5.943e-4	1	NC	1	7635.997	1
85		5	max	.001	1	.007	2	0	15	-2.173e-5	15	NC	1	NC	2
86		Ť	min	0	3	006	3	002	1	-5.943e-4	1	NC	1	8545.11	1
87		6	max	.001	1	.007	2	0	15	-2.173e-5	15	NC	1	NC	2
88			min	0	3	005	3	002	1	-5.943e-4	1	NC	1	9665.23	1
89		7	max	.001	1	.006	2	0	15	-2.173e-5	•	NC	1	NC	1
90			min	0	3	005	3	002	1	-5.943e-4	1	NC	1	NC	1
91		8	max	.001	1	.006	2	0	15	-2.173e-5	•	NC	1	NC	1
92			min	0	3	005	3	002	1	-5.943e-4		NC	1	NC	1
93		9	max	.001	1	.005	2	0		-2.173e-5		NC	1	NC	1
94			min	0	3	004	3	001	1	-5.943e-4		NC	1	NC	1
95		10	max	0	1	.005	2	0	15	-2.173e-5		NC	1	NC	1
96		10	min	0	3	004	3	001	1	-5.943e-4	1	NC	1	NC	1
97		11	max	0	1	.004	2	0	15	-2.173e-5	15	NC	1	NC	1
98			min	0	3	003	3	0	1	-5.943e-4		NC	1	NC	1
99		12		0	1	.004	2	0	15	-2.173e-5		NC	1	NC	1
100		12	max min	0	3	003	3	0	1	-5.943e-4		NC	1	NC	1
101		12		0	1	.003	2	0	15	-5.943e-4 -2.173e-5		NC NC	1	NC NC	1
101		13	max	0	3	003	3	0	1	-2.173e-5 -5.943e-4		NC NC	1	NC NC	1
102		11	min				2					NC NC		NC NC	
		14	max	0	1	.003		0	15				<u>1</u> 1		1
104		4.5	min	0	3	002	3	0	1 1 5	-5.943e-4		NC NC		NC NC	
105		15	max	0	1	.002	2	0	15	-2.173e-5		NC NC	1_4	NC	1
106		40	min	0	3	002	3	0	1	-5.943e-4		NC NC	1_	NC NC	1_
107		16	max	0	1	.002	2	0	15	-2.173e-5		NC NC	1	NC	1
108			min	0	3	001	3	0	1	-5.943e-4	1	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]					LC (n) L/z Ratio L		LC
109		17	max	0	1	.001	2	0	15	-2.173e-5	15	NC	1_	NC	1
110			min	0	3	0	3	0	1	-5.943e-4	1	NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-2.173e-5	15	NC	1_	NC	1
112			min	0	3	0	3	0	1	-5.943e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-2.173e-5	15	NC	1	NC	1
114			min	0	1	0	1	0	1	-5.943e-4	1	NC	1	NC	1
115	M6	1	max	.008	1	.028	2	.004	1	3.071e-4	3	NC	3	NC	2
116			min	01	3	024	3	004	3	-6.052e-8	10	1298.978	2	8819.733	1
117		2	max	.008	1	.026	2	.004	1	2.981e-4	3	NC	3	NC	2
118			min	01	3	023	3	004	3	-5.719e-8	10	1388.386	2	9506.55	1
119		3	max	.007	1	.024	2	.004	1	2.891e-4	3	NC	3	NC	1
120			min	009	3	021	3	003	3	-5.386e-8	10	1490.639	2	NC	1
121		4	max	.007	1	.023	2	.003	1	2.801e-4	3	NC	3	NC	1
122		•	min	009	3	02	3	003	3	-1.205e-6	2	1608.31	2	NC	1
123		5	max	.006	1	.021	2	.003	1	2.712e-4	3	NC	3	NC	1
124			min	008	3	019	3	003	3	-3.028e-6	2	1744.712	2	NC	1
125		6	max	.006	1	.019	2	.003	1	2.622e-4	3	NC	3	NC	1
126			min	008	3	018	3	003	3	-4.852e-6	2	1904.18	2	NC	1
127		7	max	.005	1	.017	2	.002	1	2.532e-4	3	NC	3	NC	1
128		-		007	3	016	3	002	3	-6.675e-6	2	2092.503	2	NC	1
129		8	min	.007	1	.016	2	.002	1	2.442e-4	3	NC	3	NC NC	1
		-	max		3		3		3		-				
130			min	006		015		002		-1.256e-5	1_	2317.578	2	NC NC	1
131		9	max	.005	1	.014	2	.002	1	2.352e-4	3_	NC OFFICE ACC	3_	NC NC	1
132		40	min	006	3	014	3	002	3	-1.847e-5	1_	2590.463	2	NC NC	1
133		10	max	.004	1	.012	2	.002	1	2.262e-4	3_	NC CCC7 400	3	NC NC	1
134		4.4	min	005	3	012	3	002	3	-2.438e-5	1_	2927.132	2	NC NC	1
135		11	max	.004	1	.011	2	.001	1	2.173e-4	3	NC	3	NC NC	1
136			min	005	3	011	3	001	3	-3.029e-5	1_	3351.548	2	NC	1
137		12	max	.003	1	.009	2	.001	1	2.083e-4	3	NC	3	NC	1
138			min	004	3	01	3	001	3	-3.62e-5	1_	3901.364	2	NC	1
139		13	max	.003	1	.008	2	0	1	1.993e-4	3_	NC	3	NC	1
140			min	003	3	008	3	0	3	-4.211e-5	1_	4639.33	2	NC	1
141		14	max	.002	1	.006	2	0	1	1.903e-4	3_	NC	3	NC	1
142			min	003	3	007	3	0	3	-4.801e-5	1_	5678.38	2	NC	1
143		15	max	.002	1	.005	2	0	1	1.813e-4	3_	NC	1_	NC	1
144			min	002	3	006	3	0	3	-5.392e-5	1	7244.365	2	NC	1
145		16	max	.001	1	.004	2	0	1	1.723e-4	3	NC	_1_	NC	1
146			min	002	3	004	3	0	3	-5.983e-5	1	9864.227	2	NC	1
147		17	max	0	1	.002	2	0	1	1.634e-4	3	NC	1_	NC	1
148			min	001	3	003	3	0	3	-6.574e-5	1	NC	1	NC	1
149		18	max	0	1	.001	2	0	1	1.544e-4	3	NC	1	NC	1
150			min	0	3	001	3	0	3	-7.165e-5	1	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.454e-4	3	NC	1	NC	1
152			min	0	1	0	1	0	1	-7.756e-5	1	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	3.569e-5	1	NC	1	NC	1
154			min	0	1	0	1	0	1	-6.733e-5	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	2.987e-5	1	NC	1	NC	1
156			min	0	2	002	3	0	1	-5.03e-5	3	NC	1	NC	1
157		3	max	0	3	.002	2	0	3	2.405e-5	1	NC	1	NC	1
158			min	0	2	004	3	0	1	-3.327e-5	3	NC	1	NC	1
159		4	max	0	3	.004	2	0	3	1.823e-5	1	NC	1	NC	1
160		1	min	0	2	00 4	3	0	1	-1.625e-5	3	NC	1	NC	1
		F			3						1	NC NC	1		1
161		5	max	0		.005	2	.001	3	1.241e-5	10			NC NC	1
162		_	min	001	2	007	3	0	1	1 7010 5	10	8468.963	2	NC NC	
163		6	max	.001	3	.007	2	.001	3	1.781e-5	3	NC	3	NC NC	1
164		7	min	001	2	009	3	0	1	0	10	6791.746	2	NC NC	1
165		7	max	.001	3	.008	2	.002	3	3.484e-5	3	NC	3	NC	1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
166			min	002	2	01	3	0	1	0	10	5645.15	2	NC	1
167		8	max	.002	3	.01	2	.002	3	5.186e-5	3	NC	3	NC	1
168			min	002	2	012	3	001	1	-5.049e-6	<u>1</u>	4804.763	2	NC	1
169		9	max	.002	3	.011	2	.002	3	6.889e-5	3	NC	3	NC	1
170		10	min	002	2	<u>013</u>	3	001	1	-1.087e-5	1_	4158.781	2	NC	1
171		10	max	.002	3	.013	2	.002	3	8.592e-5	3	NC	3	NC NC	1
172		44	min	003	2	01 <u>5</u>	3	001	1	-1.669e-5	1_	3645.247	2	NC NC	1
173		11	max	.002	3	.014	2	.002	3	1.029e-4	3	NC	3	NC NC	1
174		40	min	003	2	016	3	002	1	-2.251e-5	1_	3226.973	2	NC NC	1
175		12	max	.003	3	.016 017	3	.002 002	3	1.2e-4	3	NC 2880.173	2	NC NC	1
176 177		13	min	003 .003	3		2	.002	3	-2.833e-5 1.37e-4	1	NC	3	NC NC	1
178		13	max	004	2	.018 018	3	002	1	-3.414e-5	<u>3</u>	2588.815	2	NC NC	1
179		14	max	.003	3	016 .02	2	.002	3	1.54e-4	3	NC	3	NC NC	1
180		14	min	004	2	019	3	002	1	-3.996e-5	1	2341.604	2	NC	1
181		15	max	.003	3	.022	2	.002	3	1.711e-4	3	NC	3	NC	1
182		10	min	004	2	02	3	002	1	-4.578e-5	1	2130.289	2	NC	1
183		16	max	.004	3	.024	2	.002	3	1.881e-4	3	NC	3	NC	1
184		''	min	004	2	021	3	002	1	-5.16e-5	1	1948.647	2	NC	1
185		17	max	.004	3	.026	2	.002	3	2.051e-4	3	NC	3	NC	1
186			min	005	2	022	3	002	1	-5.742e-5	1	1791.875	2	NC	1
187		18	max	.004	3	.028	2	.002	3	2.221e-4	3	NC	3	NC	1
188			min	005	2	023	3	002	1	-6.324e-5	1	1656.185	2	NC	1
189		19	max	.004	3	.03	2	.002	3	2.392e-4	3	NC	3	NC	1
190			min	005	2	024	3	002	1	-6.906e-5	1	1538.553	2	NC	1
191	M8	1	max	.005	1	.032	2	.002	1	-8.341e-8	10	NC	1	NC	2
192			min	0	3	024	3	001	3	-1.845e-4	3	NC	1	9333.752	1
193		2	max	.005	1	.03	2	.002	1	-8.341e-8	10	NC	1	NC	1
194			min	0	3	023	3	001	3	-1.845e-4	3	NC	1	NC	1
195		3	max	.005	1	.028	2	.002	1	-8.341e-8	10	NC	1_	NC	1_
196			min	0	3	021	3	001	3	-1.845e-4	3	NC	1	NC	1
197		4	max	.004	1	.026	2	.002	1	-8.341e-8	10	NC	_1_	NC	1
198			min	0	3	02	3	001	3	-1.845e-4	3	NC	1_	NC	1
199		5	max	.004	1	.025	2	.001	1	-8.341e-8	10	NC	_1_	NC	1
200		_	min	0	3	019	3	0	3	-1.845e-4	3	NC	_1_	NC	1
201		6	max	.004	1	.023	2	.001	1	-8.341e-8	<u>10</u>	NC	_1_	NC	1
202			min	0	3	<u>017</u>	3	0	3	-1.845e-4	3	NC	1_	NC	1
203		7	max	.004	1	.021	2	.001	1	-8.341e-8	10	NC	1_	NC NC	1
204			min	0	3	016	3	0	3	-1.845e-4	3_	NC	_1_	NC NC	1
205		8	max	.003	1	.019	2	0	1	-8.341e-8		NC NC	1_	NC NC	1
206			min		3	015	3	0		-1.845e-4		NC NC	1	NC NC	1
207		9	max	.003	1	.018	2	0	1	-8.341e-8		NC NC	1	NC NC	1
208		10	min	.003	3	013 .016	2	0	1	-1.845e-4 -8.341e-8		NC NC	<u>1</u> 1	NC NC	1
		10	max	.003	3		3	<u> </u>	3	-0.341e-6		NC NC	1	NC NC	1
210		11	min max	.002	1	012 .014	2	0	1	-8.341e-8	10	NC NC	1	NC NC	1
212		11	min	0	3	011	3	0	3		3	NC	1	NC	1
213		12	max	.002	1	.012	2	0	1	-8.341e-8		NC	1	NC	1
214		12	min	0	3	009	3	0	3	-1.845e-4	3	NC	1	NC	1
215		13	max	.002	1	.009 .011	2	0	1	-8.341e-8		NC NC	1	NC NC	1
216		13	min	.002	3	008	3	0	3	-0.341e-6	3	NC NC	1	NC NC	1
217		14	max	.001	1	.009	2	0	1	-8.341e-8	_	NC	1	NC	1
218		17	min	0	3	007	3	0	3	-1.845e-4		NC	1	NC	1
219		15	max	.001	1	.007	2	0	1	-8.341e-8		NC	1	NC	1
220		10	min	0	3	005	3	0	3	-1.845e-4	3	NC	1	NC	1
221		16	max	0	1	.005	2	0	1	-8.341e-8		NC	1	NC	1
222		1.0	min	0	3	004	3	0	3			NC	1	NC	1
					_				_	110 100 T			_		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	1	.004	2	0	1	-8.341e-8	10	NC	1	NC	1
224			min	0	3	003	3	0	3	-1.845e-4	3	NC	1	NC	1
225		18	max	0	1	.002	2	0	1	-8.341e-8	10	NC	1	NC	1
226			min	0	3	001	3	0	3	-1.845e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1		10	NC	1	NC	1
228		1.0	min	0	1	0	1	0	1	-1.845e-4	3	NC	1	NC	1
229	M10	1	max	.003	1	.008	2	0	3	7.486e-4	1	NC	3	NC	1
230	IVITO	+ -	min	003	3	008	3	001	1	-3.489e-4	3	4617.652	2	NC	1
231		2		.002	1	.007	2	0	3	7.123e-4	1	NC	3	NC	1
232			max	003	3	007	3	001	1	-3.378e-4	3	5031.824	2	NC NC	1
		2	min							6.760.4					_
233		3	max	.002	1	.007	2	0	3	6.76e-4	1_	NC	3	NC	1
234		-	min	003	3	007	3	001	1	-3.268e-4	3	5523.076	2	NC NC	1
235		4	max	.002	1	.006	2	0	3	6.397e-4	1_	NC	1_	NC	1
236			min	002	3	007	3	001	1	-3.158e-4	3	6109.87	2	NC	1
237		5	max	.002	1	.005	2	0	3	6.034e-4	_1_	NC	_1_	NC	1
238			min	002	3	006	3	001	1	-3.048e-4	3	6816.776	2	NC	1
239		6	max	.002	1	.005	2	0	3	5.671e-4	1_	NC	1_	NC	1
240			min	002	3	006	3	001	1	-2.938e-4	3	7677.032	2	NC	1
241		7	max	.002	1	.004	2	0	3	5.308e-4	1	NC	1	NC	1
242			min	002	3	006	3	0	1	-2.828e-4	3	8736.477	2	NC	1
243		8	max	.002	1	.004	2	0	3	4.945e-4	1	NC	1	NC	1
244			min	002	3	005	3	0	1	-2.718e-4	3	NC	1	NC	1
245		9	max	.001	1	.003	2	0	3	4.583e-4	1	NC	1	NC	1
246		+ -	min	002	3	005	3	0	1	-2.608e-4	3	NC	1	NC	1
247		10		.002	1	.003	2	0		4.22e-4	1	NC	1	NC	1
248		10	max	001	3	005	3	0	1	-2.498e-4	3	NC NC	1	NC NC	1
		4.4							•				•		
249		11	max	.001	1	.002	2	0	3	3.857e-4	1_	NC	1_	NC	1
250		10	min	001	3	004	3	0	1	-2.387e-4	3	NC	1_	NC NC	1
251		12	max	0	1	.002	2	0	3	3.494e-4	1_	NC	1_	NC	1
252			min	001	3	004	3	0	1	-2.277e-4	3	NC	1_	NC	1
253		13	max	0	1	.001	2	0	3	3.131e-4	_1_	NC	_1_	NC	1
254			min	0	3	003	3	0	1	-2.167e-4	3	NC	1_	NC	1
255		14	max	0	1	.001	2	0	3	2.768e-4	1_	NC	1_	NC	1
256			min	0	3	003	3	0	1	-2.057e-4	3	NC	1	NC	1
257		15	max	0	1	0	2	0	3	2.405e-4	1	NC	1	NC	1
258			min	0	3	002	3	0	1	-1.947e-4	3	NC	1	NC	1
259		16	max	0	1	0	2	0	3	2.042e-4	1	NC	1	NC	1
260			min	0	3	002	3	0	1	-1.837e-4	3	NC	1	NC	1
261		17	max	0	1	0	2	0	3	1.68e-4	1	NC	1	NC	1
262		+ ' '	min	0	3	001	3	0	1	-1.727e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3		1	NC	1	NC	1
264		10			3	_	3	_	1	-1.617e-4	3	NC		NC	1
		10	min	0		0		0			1		1_1		
265		19	max	0	1	0	1	0	1	9.538e-5		NC NC	1_	NC NC	1
266	N444	4	min	0	1	0	1	0	1	-1.506e-4	3	NC NC	1_	NC NC	1
267	M11	1_	max	0	1	0	1	0	1	7.017e-5	3	NC	1_	NC NC	1
268			min	0	1	0	1	0	1	-4.524e-5	1	NC	1_	NC	1
269		2	max	0	3	0	2	0	1	5.257e-5	3	NC	_1_	NC	1
270			min	0	2	0	3	0	3	-7.769e-5	1	NC	1_	NC	1
271		3	max	0	3	0	2	0	1	3.497e-5	3	NC	1_	NC	1
272			min	0	2	002	3	0	3	-1.101e-4	1	NC	1	NC	1
273		4	max	0	3	0	2	0	1	1.737e-5	3	NC	1	NC	1
274			min	0	2	002	3	0	3	-1.426e-4	1	NC	1	NC	1
275		5	max	0	3	0	2	0	10	-2.336e-7	3	NC	1	NC	1
276			min	0	2	003	3	001	3	-1.75e-4	1	NC	1	NC	1
277		6	max	0	3	0	2	0	10		15	NC	1	NC	1
278			min	0	2	004	3	001	3	-2.075e-4	1	NC	1	NC	1
279		7		0	3	0	2	<u>001</u> 0	10		15	NC	1	NC	1
213			max	U	J	U	<u> </u>	U	ΙŪ	-0.003 E- 0	ıυ	INC		INC	<u> </u>

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC .	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
280			min	0	2	005	3	002	3	-2.399e-4	1	NC	1	NC	1
281		8	max	0	3	0	2	0	10	-1.01e-5	15	NC	1	NC	1
282			min	0	2	005	3	002	3	-2.724e-4	1	NC	1	NC	1
283		9	max	0	3	.001	2	0	10	-1.139e-5	15	NC	1	NC	1
284			min	0	2	006	3	002	3	-3.048e-4	1	NC	1	NC	1
285		10	max	0	3	.002	2	0	15	-1.268e-5	15	NC	1	NC	1
286			min	0	2	006	3	003	1	-3.373e-4	1	NC	1	NC	1
287		11	max	0	3	.002	2	0	15	-1.397e-5	15	NC	1	NC	1
288			min	0	2	007	3	003	1	-3.697e-4	1	NC	1	NC	1
289		12	max	0	3	.003	2	0	15		15	NC	1	NC	1
290		1	min	0	2	007	3	004	1	-4.022e-4	1	NC	1	NC	1
291		13	max	0	3	.003	2	0	15	-1.656e-5	15	NC	1	NC	2
292		10	min	0	2	007	3	005	1	-4.346e-4	1	NC	1	9886.57	1
293		14	max	.001	3	.004	2	0	15	-1.785e-5	15	NC	1	NC	2
294		17	min	0	2	007	3	005	1	-4.671e-4	1	NC	1	8509.007	1
295		15	max	.001	3	.005	2	0	15	-1.914e-5	15	NC	1	NC	2
296		10	min	001	2	008	3	006	1	-4.995e-4	1	9674.019	2	7460.093	1
297		16	max	.001	3	.006	2	0	15	-2.043e-5	15	NC	1	NC	2
298		10	min	001	2	008	3	007	1	-5.32e-4	1	8150.681	2	6644.986	
299		17	max	.001	3	.007	2	0	15	-2.172e-5	15	NC	1	NC	2
300		17	min	001	2	008	3	008	1	-5.645e-4	1	6981.663	2	6001.647	1
301		18	max	.001	3	.008	2	0	15	-2.301e-5	15	NC	3	NC	2
302		10	min	001	2	008	3	008	1	-5.969e-4	1	6073.323	2	5488.141	1
303		19	max	.001	3	.009	2	0	15	-2.43e-5	15	NC	3	NC	2
304		19	min	001	2	008	3	009	1	-6.294e-4	1	5360.612	2	5075.376	
305	M12	1	max	.002	1	.009	2	.008	1	5.441e-4	1	NC	1	NC	3
306	IVIIZ		min	0	3	008	3	0	15	2.165e-5	15	NC	1	2527.198	
		2			1		2	.007				NC NC	1		
307		2	max	.002	3	.009 007	3		1	5.441e-4	<u>1</u> 15	NC NC	1	NC 2756.193	3
308		2	min	0	1		2	0	15	2.165e-5		NC NC	1	NC	1
309		3	max	.002 0	3	.008	3	.006 0	15	5.441e-4 2.165e-5	1_	NC NC	1	3028.77	3
310		1	min			007					<u>15</u>	NC NC	_		
311		4	max	.002	3	.008	2	.006	1	5.441e-4	1_		1	NC	2
312		-	min	0		006	3	0	15	2.165e-5	<u>15</u>	NC NC	1	3356.416	1
313		5	max	.001	1	.007	2	.005	1	5.441e-4	1_	NC NC	<u>1</u> 1	NC	2
314		_	min	0	3	006	3	0	15	2.165e-5	<u>15</u>	NC NC	_	3754.782	1
315		6	max	.001	1	.007	2	.005	1	5.441e-4	1_	NC	1	NC 40.45.000	2
316		-	min	0	3	005	3	0	15	2.165e-5	<u>15</u>	NC NC	1_	4245.638	
317		7	max	.001	1	.006	2	.004	1_1	5.441e-4	1_	NC	1	NC 4050.00	2
318			min	0	3	005	3	0	15	2.165e-5	15	NC	1_	4859.99	1
319		8	max	.001	1	.006	2	.003	1	5.441e-4	1_	NC	1_	NC 5040.045	2
320			min	0	3	005	3	0			15	NC NC	1	5643.245	
321		9	max	.001	1	.005	2	.003	1	5.441e-4	1_	NC NC	1_	NC 0004 00	2
322		10	min	0	3	004	3	0	15	2.165e-5	<u>15</u>	NC NC	1_	6664.09	1
323		10	max	0	1	.005	2	.002	1_	5.441e-4	1_	NC	1_	NC NC	2
324		1.1	min	0	3	004	3	0	15	2.165e-5	15	NC	1_	8030.51	1
325		11	max	0	1	.004	2	.002	1	5.441e-4	_1_	NC	_1_	NC	2
326		1.0	min	0	3	003	3	0	15	2.165e-5	<u>15</u>	NC	1_	9920.378	
327		12	max	0	1	.004	2	.002	1_	5.441e-4	1_	NC		NC NC	1
328			min	0	3	003	3	0	15	2.165e-5	15	NC	1_	NC	1
329		13	max	0	1	.003	2	.001	1	5.441e-4	1_	NC	1_	NC	1
330			min	0	3	003	3	0	15	2.165e-5	15	NC	1_	NC	1
331		14	max	0	1	.003	2	0	1	5.441e-4	1_	NC		NC	1
332		1	min	0	3	002	3	0	15	2.165e-5	<u>15</u>	NC	1_	NC	1
333		15	max	0	1	.002	2	0	1	5.441e-4	_1_	NC	1_	NC	1
334			min	0	3	002	3	0	15	2.165e-5	15	NC	1_	NC	1
335		16	max	0	1	.002	2	0	1	5.441e-4	_1_	NC	_1_	NC	1
336			min	0	3	001	3	0	15	2.165e-5	15	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	1	5.441e-4	_1_	NC	_1_	NC	1
338			min	0	3	0	3	0	15	2.165e-5	15	NC	1_	NC	1
339		18	max	0	1	0	2	00	1_	5.441e-4	_1_	NC	_1_	NC	1
340			min	0	3	0	3	0	15	2.165e-5	15	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	5.441e-4	1_	NC	1_	NC	1
342	5.4.4		min	0	1	0	1	0	1	2.165e-5	15	NC NC	1_	NC NC	1
343	<u>M1</u>	1_	max	.007	3	.023	3	.002	3	1.424e-2	1_	NC	1	NC NC	1
344			min	007	2	021	2	004	1	-1.701e-2	3	NC NC	1_	NC NC	1
345		2	max	.007	3	.013	3	.002	3	6.825e-3	1	NC	4	NC NC	1
346		2	min	007	2	012	3	007	1	-8.413e-3	3	4915.433 NC	<u>2</u> 4	NC NC	2
347		3	max	.007	3	.004		.001	1	2.905e-5 -4.514e-4	<u>3</u>	2525.093	2	7857.959	
349		4	min	008 .007	3	003 .005	2	01 0	3	3.099e-5	3	NC	4	NC	2
350		4	max	008	2	003	3	011	1	-3.845e-4	1	1769.402	2	6515.711	1
351		5		.007	3	.011	2	<u>011</u> 0	3	3.293e-5	3	NC	5	NC	2
352		- 5	max	008	2	01	3	011	1	-3.176e-4	1	1404.101	2	6274.521	1
353		6	max	.007	3	.017	2	0	3	3.487e-5	3	NC	5	NC	2
354		—	min	008	2	015	3	01	1	-2.506e-4	1	1195.741	2	6742.358	
355		7	max	.007	3	.021	2	0	3	3.68e-5	3	NC	5	NC	2
356			min	008	2	019	3	009	1	-1.837e-4	1	1067.597	2	8084.053	1
357		8	max	.007	3	.024	2	0	3	3.874e-5	3	NC	5	NC	1
358			min	008	2	021	3	007	1	-1.167e-4	1	987.634	2	NC	1
359		9	max	.007	3	.026	2	0	3	4.068e-5	3	NC	5	NC	1
360			min	008	2	023	3	005	1	-4.98e-5	1	940.755	2	NC	1
361		10	max	.007	3	.027	2	0	3	4.262e-5	3	NC	5	NC	1
362			min	008	2	023	3	003	1	1.006e-6	15	919.79	2	NC	1
363		11	max	.007	3	.027	2	0	3	8.408e-5	1	NC	5	NC	1
364			min	008	2	022	3	001	1	3.458e-6	15	922.214	2	NC	1
365		12	max	.007	3	.025	2	.001	1	1.51e-4	1_	NC	5	NC	1
366			min	008	2	02	3	0	15	5.91e-6	15	949.183	2	NC	1
367		13	max	.007	3	.022	2	.003	1	2.18e-4	_1_	NC	5	NC	2
368			min	008	2	017	3	0	15	8.361e-6	15	1006.143	2	8352.781	1
369		14	max	.007	3	.017	2	.004	1	2.849e-4	_1_	NC	5	NC	2
370			min	008	2	014	3	0	15	1.081e-5		1105.546	2	6908.47	1
371		15	max	.007	3	.011	2	.005	1_	3.518e-4	_1_	NC	4_	NC	2
372		40	min	008	2	009	3	0	15	1.326e-5		1274.626	2	6396.309	
373		16	max	.007	3	.004	2	.004	1	3.997e-4	1_	NC 4570.7	4_	NC	2
374		4-	min	008	2	003	3	0	15	1.503e-5	15	1579.7	2	6615.539	
375		17	max	.007	3	.003	3	.003	1	3.659e-5	3_	NC 0000 C4.4	4	NC	2
376		10	min max	008	3	005	3	0	1 <u>5</u>	-7.166e-6	2	2230.614	2	7957.373	1
377		18		.007	2	.01	2	.001		8.719e-3		NC	2	NC NC	1
378 379		19	min	008 .007	3	015	3	<u> </u>	1 <u>5</u>	-3.846e-3 1.758e-2	2	4317.765 NC	1	NC NC	1
380		19	max min	008	2	.018 027	2	002	1	-7.801e-3	3	NC NC	1	NC NC	1
381	M5	1	max	.022	3	.074	3	.002	3	1.917e-6	3	NC	1	NC	1
382	IVIO		min	027	2	074	1	004	1	3.924e-8	15	NC NC	1	NC	1
383		2	max	.022	3	.043	3	.003	3	8.25e-5	3	NC	5	NC	1
384			min	027	2	04	1	004	1	-7.092e-5	1	1473.599	1	NC	1
385		3	max	.022	3	.013	3	.004	3	1.615e-4	3	NC	5	NC	1
386			min	027	2	01	1	004	1	-1.406e-4	1	758.73	2	NC	1
387		4	max	.022	3	.015	2	.005	3	1.577e-4	3	NC	5	NC	1
388			min	027	2	011	3	004	1	-1.343e-4	1	531.185	2	NC	1
389		5	max	.022	3	.037	2	.005	3	1.539e-4	3	NC	5	NC	1
390		Ť	min	027	2	032	3	004	1	-1.279e-4	1	421.145	2	NC	1
391		6	max	.022	3	.056	2	.005	3	1.501e-4	3	NC	5	NC	1
392			min	027	2	048	3	004	1	-1.216e-4	1	358.349	2	NC	1
393		7	max	.022	3	.07	2	.005	3	1.463e-4	3	NC	15	NC	1
			,								_				<u> </u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				LC
394			min	027	2	06	3	004	1	-1.153e-4	1	319.697	2	NC	1
395		8	max	.022	3	.081	2	.005	3	1.425e-4	3	NC	15	NC	1
396			min	027	2	068	3	003	1	-1.09e-4	<u>1</u>	295.543	2	NC	1
397		9	max	.022	3	.088	2	.005	3	1.387e-4	3	NC	15	NC	1
398		40	min	027	2	<u>073</u>	3	003	1	-1.027e-4	1_	281.336	2	NC	1
399		10	max	.022	3	.091	2	.005	3	1.348e-4	3	NC 074.040	<u>15</u>	NC NC	1
400		44	min	027	2	074	3	003	1	-9.634e-5	1_	274.913	2	NC NC	1
401		11	max	.022	3	.089	2	.005	3	1.31e-4	3_	NC 075 500	15	NC NC	1
402		40	min	027	2	071	3	003	1	-9.002e-5	1	275.506	2	NC NC	1
403		12	max	.022 027	3	.084	3	.004 003	3	1.272e-4	<u>3</u>	NC 283.454	<u>15</u>	NC NC	1
405		13	min	.022	3	065 .073	2	003 .004	3	-8.37e-5 1.234e-4	3	NC	<u>2</u> 5	NC NC	1
406		13	max min	027	2	056	3	003	1	-7.738e-5	<u> </u>	300.38	2	NC NC	1
407		14	max	.022	3	.058	2	.003	3	1.196e-4	3	NC	5	NC NC	1
407		14	min	027	2	044	3	002	1	-7.106e-5	1	330.01	2	NC NC	1
409		15	max	.021	3	.038	2	.002	3	1.158e-4	3	NC	5	NC	1
410		13	min	027	2	029	3	002	1	-6.474e-5	1	380.503	2	NC	1
411		16	max	.021	3	.013	2	.002	3	1.085e-4	3	NC	5	NC	1
412		10	min	027	2	011	3	002	1	-6.25e-5	1	471.776	2	NC	1
413		17	max	.021	3	.01	3	.001	3	1.78e-5	3	NC	5	NC	1
414			min	027	2	017	2	002	1	-1.574e-4	1	667.275	2	NC	1
415		18	max	.021	3	.033	3	0	3	7.97e-6	3	NC	5	NC	1
416			min	027	2	052	2	002	1	-8.032e-5	1	1292.651	2	NC	1
417		19	max	.021	3	.057	3	0	3	0	1	NC	1	NC	1
418			min	027	2	089	2	002	1	-3.337e-7	3	NC	1	NC	1
419	M9	1	max	.007	3	.023	3	.002	3	1.702e-2	3	NC	1	NC	1
420			min	007	2	021	2	005	1	-1.424e-2	1	NC	1	NC	1
421		2	max	.007	3	.013	3	0	3	8.42e-3	3	NC	4	NC	1
422			min	007	2	012	2	001	1	-6.992e-3	1	4918.15	2	NC	1
423		3	max	.007	3	.004	3	.001	1	1.19e-4	1_	NC	4	NC	2
424			min	007	2	003	2	0	3	-1.901e-5	3	2526.527	2	8110.804	
425		4	max	.007	3	.005	2	.003	1	6.397e-5	1_	NC	4	NC	2
426			min	008	2	004	3	001	3	-2.635e-5	3	1770.428	2	6737.245	
427		5	max	.007	3	.011	2	.003	1	2.318e-5	2	NC	5_	NC	2
428		_	min	008	2	01	3	002	3	-3.37e-5	3	1404.914	2	6500.565	
429		6	max	.007	3	.017	2	.003	1	7.783e-6	10	NC	5	NC	2
430			min	008	2	015	3	002	3	-4.607e-5	1_	1196.426	2	7004.023	1
431		7	max	.007	3	.021	2	.002	1	3.178e-6	10	NC	5	NC	2
432			min	008	2	019	3	003	3	-1.011e-4	1_	1068.2	2	8433.995	
433		8	max	.007	3	.024	2	0	2	-1.427e-6	10	NC 000 400	5	NC NC	1
434			min		2	021	3	003		-1.561e-4			2	NC NC	1
435		9	max	.007	3	.026	2	0		-6.033e-6		NC	5	NC NC	1
436		10	min	008	2	023	2	003	3	-2.111e-4	1_	941.267	2	NC NC	1
437 438		10	max min	.007 008	3	.027 023	3	0 004	3	-9.823e-6 -2.662e-4	1	NC 920.281	5	NC NC	1
439		11	max	.007	3	023 .027	2	004 0		-2.002e-4 -1.187e-5		920.261 NC	<u>2</u> 5	NC NC	1
440		11	min	008	2	022	3	005	1	-3.212e-4	1	922.696	2	NC	1
441		12	max	.007	3	.025	2	<u>005</u> 0	15			NC	5	NC	1
442		12	min	008	2	02	3	007	1	-3.762e-4	1	949.668	2	NC	1
443		13	max	.007	3	.022	2	<u>007</u> 0	15		15	NC	5	NC	2
444		13	min	008	2	017	3	008	1	-4.312e-4	1	1006.644	2	8418.724	
445		14	max	.007	3	.017	2	008		-4.312e-4 -1.801e-5		NC	5	NC	2
446		'-	min	008	2	014	3	009	1	-4.862e-4	1	1106.082	2	6992.039	
447		15	max	.007	3	.011	2	<u>.009</u>	•	-2.006e-5		NC	4	NC	2
448		13	min	008	2	009	3	009	1	-5.413e-4	1	1275.226	2	6488.636	
449		16	max	.007	3	.004	2	0	15		•	NC	4	NC	2
450		1.5	min	008	2	003	3	009	1	-5.831e-4		1580.414		6719.298	
100			1111111	.000		.000		.000		1 010010 T		TITIOUUITIT		0.200	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
451		17	max	.007	3	.003	3	0	15	1.549e-5	3	NC	4	NC	2
452			min	008	2	005	2	008	1	-3.099e-4	<u>1</u>	2231.555	2	8087.314	1
453		18	max	.007	3	.01	3	0	15	3.873e-3	3	NC	4_	NC	1
454			min	008	2	015	2	005	1	-8.757e-3	2	4319.527	2	NC	1
455		19	max	.007	3	.018	3	0	3	7.8e-3	3	NC	1	NC	1
456			min	008	2	027	2	002	1	-1.758e-2	2	NC	1	NC	1
457	M13	1	max	.005	1	.023	3	.007	3	3.686e-3	3	NC	1	NC	1
458			min	002	3	021	2	007	2	-3.498e-3	2	NC	1	NC	1
459		2	max	.005	1	.154	3	.018	1	4.612e-3	3	NC	5	NC	2
460			min	002	3	131	1	003	10	-4.423e-3	1	1095.25	3	6382.592	1
461		3	max	.005	1	.262	3	.048	1	5.538e-3	3	NC	5	NC	3
462			min	002	3	221	1	0	10	-5.351e-3	1	601.595	3	2749.655	1
463		4	max	.005	1	.33	3	.073	1	6.463e-3	3	NC	5	NC	3
464			min	002	3	279	1	0		-6.278e-3	1	467.924	3	1876.358	
465		5	max	.005	1	.352	3	.084	1	7.389e-3	3	NC	5	NC	3
466		<u> </u>	min	002	3	298	1	0		-7.206e-3	1	437.605	3	1642.827	1
467		6	max	.005	1	.327	3	.078	1	8.315e-3	3	NC	5	NC	3
468		—	min	002	3	278	1	002		-8.133e-3	1	473.445	3	1762.113	
469		7	max	.002	1	.265	3	.056	1	9.24e-3	3	NC	5	NC	2
470			min	002	3	228	1	006		-9.061e-3	1	594.537	3	2391.358	1
471		8	max	.004	1	.184	3	.025	1	1.017e-2	3	NC	5	NC	2
472		1	min	002	3	161	1	01		-9.988e-3	1	895.599	3	4953.616	1
473		9	max	.004	1	.109	3	.02	3	1.109e-2	3	NC	4	NC	1
474		1 3	min	002	3	099	1	021		-1.092e-2	1	1677.651	3	NC	1
475		10	max	.002	1	<u>099</u> .074	3	.022	3	1.202e-2	3	NC	4	NC	4
476		10	min	002	3	074	1	027		-1.184e-2	1	2787.522	3	7491.618	
477		11		.002	1	.109	3	.025	3	1.109e-2	3	NC	4	NC	1
477		11	max	002	3	099	1	025		-1.092e-2	1	1677.65	3	8213.161	3
479		12	min	.002	1	<u>099</u> .184	3	.026	3			NC	<u>5</u>	NC	2
		12	max	002	3		1			1.017e-2	<u>3</u>	895.598			1
480 481		13	min	002 .004	1	161 .265	3	01 .057		<u>-9.988e-3</u> 9.243e-3	3	NC	<u>3</u> 5	4865.001 NC	2
482		13	max		3			006		-9.061e-3		594.537		2373.714	1
		14	min	002	1	228	3				1	NC	<u>3</u> 5	NC	5
483		14	max	.004 002	3	.327 278	1	.078	1	8.318e-3 -8.133e-3	<u>3</u> 1				1
484		4.5	min				•	002			•	473.445 NC	3	1756.991	
485		15	max	.004	1	.352	3	.083	1	7.393e-3	3		5	NC	5
486		40	min	002	3	298	1	0		-7.206e-3	1_	437.604	3	1643.217	-
487		16	max	.004	1	.331	3	.072	1	6.468e-3	3	NC 407.004	5_	NC	3
488		47	min	002	3	279	1	0		-6.278e-3	1_	467.924	3_	1882.538	
489		17	max	.004	1	.262	3	.048	1	5.543e-3	3	NC	5	NC 0700 000	3
490		10	min	002	3	221	1	0		-5.351e-3	1_	601.594	3	2769.609	1
491		18		.004	1	.154	3	.018		4.619e-3	3_	NC	5	NC 0.47.4.00.4	2
492		40	min	002	3	131	1	003		-4.423e-3	1	1095.25	3	6474.204	
493		19	max	.004	1	.023	3	.007	3	3.694e-3	3_	NC	1_	NC NC	1
494	1440		min	002	3	021	2	007	2	-3.5e-3	2	NC	1_	NC	1
495	<u>M16</u>	1	max	.002	1	.018	3	.007		4.229e-3	2	NC	1_	NC NC	1
496			min	0	3	027	2	008		-2.825e-3	3	NC	1_	NC NC	1
497		2	max	.002	1	.078	3	.018	1	5.331e-3	2	NC	5	NC	2
498			min	0	3	<u>163</u>	2	003	10	-3.52e-3	3	1059.453	2	6376.983	
499		3	max	.002	1	.128	3	.048	1	6.433e-3	2	NC	5	NC	3
500			min	0	3	274	2	0		-4.215e-3	3	581.34	2	2747.918	
501		4	max	.002	1	.161	3	.072	1	7.535e-3	2	NC	5_	NC	3
502			min	0	3	346	2	0	10	-4.91e-3	3	451.335	2	1875.441	1
503		5	max	.002	1	.172	3	.083		8.637e-3	2	NC	5	NC	5
504			min	0	3	369	2	0		-5.605e-3	3	420.783	2	1642.25	1
505		6	max	.002	1	.163	3	.077	1	9.739e-3	2	NC	_5_	NC	5
506			min	0	3	345	2	002		-6.299e-3	3	452.828	2	1761.883	
507		7	max	.002	1	.138	3	.056	1	1.084e-2	2	NC	5	NC	2

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
508			min	0	3	282	2	006	10	-6.994e-3	3	563.044	2	2392.354	1
509		8	max	.002	1	.104	3	.025	1	1.194e-2	2	NC	5_	NC	2
510			min	0	3	2	2	01	10	-7.689e-3	3	830.575	2	4967.071	1
511		9	max	.002	1	.072	3	.023	3	1.304e-2	2	NC	4	NC	1
512			min	0	3	124	2	021	2	-8.384e-3	3	1479.688	2	8880.776	3
513		10	max	.002	1	.057	3	.021	3	1.415e-2	2	NC	4_	NC	4
514			min	0	3	089	2	027	2	-9.079e-3	3	2300.783	2	7488.857	2
515		11	max	.002	1	.072	3	.021	3	1.304e-2	2	NC	4_	NC	1
516			min	0	3	124	2	021	2	-8.383e-3	3	1479.688	2	NC	1
517		12	max	.002	1	.104	3	.025	1	1.194e-2	2	NC	5	NC	2
518			min	0	3	2	2	01	10	-7.687e-3	3	830.575	2	4929.958	1
519		13	max	.002	1	.138	3	.056	1	1.084e-2	2	NC	5	NC	2
520			min	0	3	282	2	006	10	-6.992e-3	3	563.044	2	2389.819	1
521		14	max	.002	1	.163	3	.077	1	9.74e-3	2	NC	5	NC	3
522			min	0	3	345	2	002	10	-6.296e-3	3	452.828	2	1765.553	
523		15	max	.002	1	.172	3	.083	1	8.638e-3	2	NC	5	NC	3
524			min	0	3	369	2	0	10	-5.6e-3	3	420.783	2	1649.979	1
525		16	max	.002	1	.161	3	.072	1	7.536e-3	2	NC	5	NC	3
526			min	0	3	346	2	0	10	-4.905e-3	3	451.335	2	1889.875	1
527		17	max	.002	1	.128	3	.047	1	6.434e-3	2	NC	5	NC	3
528			min	0	3	274	2	0	10	-4.209e-3	3	581.34	2	2781.069	1
529		18	max	.002	1	.078	3	.018	1	5.333e-3	2	NC	5	NC	2
530			min	0	3	163	2	003	10	-3.513e-3	3	1059.454	2	6507.614	1
531		19	max	.002	1	.018	3	.007	3	4.231e-3	2	NC	1	NC	1
532			min	0	3	027	2	008	2	-2.818e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	3.516e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-6.001e-5	2	NC	1	NC	1
535		2	max	0	3	002	15	.001	1	8.372e-4	3	NC	1	NC	1
536			min	0	2	009	4	0	3	-5.719e-4	2	9029.93	4	NC	1
537		3	max	0	3	004	15	.004	1	1.323e-3	3	NC	5	NC	1
538			min	0	2	018	4	003	3	-1.084e-3	2	4595.023	4	NC	1
539		4	max	0	3	006	15	.008	1	1.808e-3	3	NC	15	NC	4
540			min	0	2	026	4	007	3	-1.596e-3	2	3152.454	4	7129.531	1
541		5	max	0	3	008	15	.012	1	2.294e-3	3	NC	15	NC	4
542			min	0	2	033	4	011	3	-2.107e-3	1	2459.892	4	4700.523	3
543		6	max	0	3	009	15	.017	1	2.78e-3	3	8807.18	15	NC	4
544			min	0	2	039	4	016	3	-2.624e-3	1	2070.259	4	3423.134	3
545		7	max	0	3	01	15	.022	1	3.265e-3	3	7810.38	15	NC	4
546			min	0	2	044	4	021	3	-3.141e-3	1	1835.946	4	2676.269	3
547		8	max	0	3	011	15	.027	1	3.751e-3	3	7212.15	15	NC	4
548			min	0	2	048	4	026	3	-3.658e-3	1	1695.324	4	2206.805	3
549		9	max	0	3	012	15	.031	1	4.237e-3	3	6890.147	15	NC	4
550			min	001	2	05	4	031	3	-4.175e-3	1	1619.632	4	1899.603	3
551		10	max	0	3	012	15	.035	1	4.722e-3	3	6788.281	15	NC	5
552			min	001	2	051	4	035	3	-4.692e-3	1	1595.687	4	1696.846	3
553		11	max	0	3	012	15	.037	1	5.208e-3	3	6890.147	15	NC	5
554			min	001	2	05	4	037	3	-5.209e-3	1	1619.632	4	1568.185	3
555		12	max	0	3	011	15	.038	1	5.693e-3	3	7212.15	15	NC	5
556			min	001	2	048	4	038	3	-5.726e-3	1	1695.324	4	1498.558	3
557		13	max	0	3	01	15	.037	1	6.179e-3	3	7810.38	15	NC	5
558			min	002	2	045	4	037	3	-6.243e-3	1	1835.946	4	1483.59	3
559		14	max	0	3	009	15	.034	1	6.665e-3	3	8807.18	15	NC	5
560			min	002	2	04	4	034	3	-6.759e-3	1	2070.259	4	1529.74	3
561		15	max	0	3	008	15	.029	1	7.15e-3	3	NC	15	NC	4
562			min	002	2	034	4	028	3	-7.276e-3	1	2459.892	4	1660.766	
563		16	max	.001	3	006	15	.021	1	7.636e-3	3	NC	15	NC	4
564			min	002	2	026	4	02	3	-7.793e-3	1	3152.454	4	1941.197	

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
565		17	max	.001	3	004	15	.01	1	8.122e-3	3	NC	5	NC	4
566			min	002	2	018	4	008	3	-8.31e-3	1	4595.023	4	2573.492	3
567		18	max	.001	3	002	12	.007	3	8.607e-3	3	NC	1_	NC	4
568			min	002	2	01	4	011	2	-8.827e-3	1	9029.93	4	4581.853	3
569		19	max	.001	3	.003	2	.026	3	9.093e-3	3	NC	1	NC	1
570			min	002	2	002	9	029	2	-9.344e-3	1	NC	1	NC	1
571	M16A	1	max	0	10	0	10	.008	3	2.677e-3	3	NC	1	NC	1
572			min	001	3	001	9	008	2	-2.662e-3	2	NC	1	NC	1
573		2	max	0	10	002	15	.003	9	2.567e-3	3	NC	1	NC	1
574			min	001	3	009	4	002	2	-2.543e-3	2	9029.93	4	NC	1
575		3	max	0	10	004	15	.009	1	2.457e-3	3	NC	5	NC	4
576			min	001	3	018	4	004	3	-2.424e-3	2	4595.023	4	6068.951	1
577		4	max	0	10	006	15	.013	1	2.347e-3	3	NC	15	NC	4
578			min	0	3	026	4	008	3	-2.305e-3	2	3152.454	4	4609.509	1
579		5	max	0	10	008	15	.016	1	2.237e-3	3	NC	15	NC	4
580			min	0	3	033	4	01	3	-2.186e-3	2	2459.892	4	3974.662	1
581		6	max	0	10	009	15	.018	1	2.127e-3	3	8807.18	15	NC	4
582			min	0	3	039	4	012	3	-2.067e-3	2	2070.259	4	3694.195	1
583		7	max	0	10	01	15	.019	1	2.017e-3	3	7810.38	15	NC	4
584			min	0	3	044	4	013	3	-1.948e-3	2	1835.946	4	3620.358	1
585		8	max	0	10	011	15	.019	1	1.908e-3	3	7212.15	15	NC	4
586			min	0	3	048	4	013	3	-1.829e-3	2	1695.324	4	3701.983	1
587		9	max	0	10	012	15	.018	1	1.798e-3	3	6890.147	15	NC	4
588			min	0	3	05	4	012	3	-1.71e-3	2	1619.632	4	3930.921	1
589		10	max	0	10	012	15	.016	1	1.688e-3	3	6788.281	15	NC	4
590			min	0	3	051	4	011	3	-1.591e-3	2	1595.687	4	4329.221	1
591		11	max	0	10	012	15	.014	1	1.578e-3	3	6890.147	15	NC	4
592			min	0	3	05	4	009	3	-1.472e-3	2	1619.632	4	4953.434	1
593		12	max	0	10	011	15	.012	1	1.468e-3	3	7212.15	15	NC	4
594			min	0	3	048	4	008	3	-1.353e-3	2	1695.324	4	5915.841	1
595		13	max	0	10	01	15	.009	1	1.358e-3	3	7810.38	15	NC	2
596			min	0	3	044	4	006	3	-1.234e-3	2	1835.946	4	7438.801	1
597		14	max	0	10	009	15	.007	1	1.248e-3	3	8807.18	15	NC	2
598			min	0	3	039	4	004	3	-1.116e-3	2	2070.259	4	9997.282	1
599		15	max	0	10	008	15	.004	1	1.138e-3	3	NC	15	NC	1
600			min	0	3	033	4	002	3	-9.966e-4	2	2459.892	4	NC	1
601		16	max	0	10	006	15	.002	1	1.029e-3	3	NC	15	NC	1
602			min	0	3	026	4	0	3	-8.776e-4	2	3152.454	4	NC	1
603		17	max	0	10	004	15	0	9	9.186e-4	3	NC	5	NC	1
604			min	0	3	018	4	0	2	-7.587e-4	2	4595.023	4	NC	1
605		18	max	0	10	002	15	0	4	8.087e-4	3	NC	1	NC	1
606			min	0	3	009	4	0	2	-6.397e-4	2	9029.93	4	NC	1
607		19	max	0	1	0	1	0	1	6.988e-4	3	NC	1	NC	1
608			min	0	1	0	1	0	1	-5.208e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location:

Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,l}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253 92	256.00	0 995	1.00	1 000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{grout}\phi V_{sa}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

l _e (in)	da (in)	λ	f'_c (psi)	Ca1 (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cby} = \phi (A_V$	$_{/c}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,V}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)				
Avc (in ²)	Avco (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
238.44	288.00	0.897	1.000	1.000	8488	0.70	4411	

Shear perpendicular to edge in x-direction:

V _{bv} =	7(1,/	$(d_0)^{0.2}$	2 da 2	Vf'acas	1.5 (F	a. D-24)
v bx -	' I Vie/	uai	VUa/L	VI CLAT	1 1	J. D-241

l _e (in)	d _a (in)	λ	f_c (psi)	c _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / Avco) Yed, v Yc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)	
--	--

I _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m p,Na}$	N _{a0} (lb)	Na (lb)	, ,	
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: No

Project description:

Location:

Fastening description:

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Z

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 3>

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	5.333	10469				
$\phi N_{cbg} = \phi (A_I)$	Nc / A_{Nco}) $\Psi_{ec,N}$ Ψ_{ed}	$_{l,N} arPsi_{c,N} arPsi_{cp,N} N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\mathscr{V}_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d$	la) ^{0.2} √daλ√f'c C a1 ^{1.}	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$arPhi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$(A_{Vc}/A_{Vco})\Psi_{ec,V}$	V $\Psi_{\text{ed,V}} \Psi_{\text{c,V}} \Psi_{\text{h,V}}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$arPsi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{CPG}} = \phi \min[k_{\textit{CP}} N_{\textit{eg}} \; ; \; k_{\textit{CP}} N_{\textit{CbG}}] = \phi \min[k_{\textit{CP}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{g},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{p},\textit{Na}} N_{\textit{a0}} \; ; \; k_{\textit{CP}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{c},\textit{N}} \; \Psi_{\textit{c},\textit{N}} N_{\textit{b}}] \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3	0.20	0.25	45.0 %	1.2	Pass
------------	------	------	--------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.