Лекция 3

Деревья

План

- Структура дерева
- Построение дерева
 - Решающий пень
 - Энтропия
 - о "Жадный" алгоритм
 - Критерий Джини
 - Дисперсия
- Регуляризация деревьев
 - Критерии остановки
 - Стрижка (Pruning)

Полезные ссылки

- Про деревья https://towardsdatascience.com/decision-trees-d07e0f420175
- Про деревья еще https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
- Про деревья регрессии отдельно
 https://towardsdatascience.com/tree-based-methods-regression-trees-4ee5d8db9fe9
- Обзор по алгоритмам бустинга (доп. материал)
 https://medium.com/diogo-menezes-borges/boosting-with-adaboost-and-gradient-boosting-9cbab2a1af81
- Подробный разбор параметров LGBM и сравнение с XGBoost (доп. материал) https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/

Структура дерева

Дерево решений

Decision Trees (деревья решений) или CART (Classification and Regression Trees)алгоритм обучения с учителем, основанный на логических условиях **IF**.

В отличие от написания программы, построение дерева происходит автоматически с использованием тренировочной выборки.

Дерево классификации: предсказать кредитный скоринг

Дерево регрессии: предсказать уровень загрязнения в городе

Ирисы Фишера

setosa
$$r_1(x) = [PL \leqslant 2.5]$$
virginica $r_2(x) = [PL > 2.5] \land [PW > 1.68]$ virginica $r_3(x) = [PL > 5] \land [PW \leqslant 1.68]$ versicolor $r_4(x) = [PL > 2.5] \land [PL \leqslant 5] \land [PW < 1.68]$

Регрессия

готовое дерево

Построение деревьев

Логические условия

Логические операторы делят датасет на несколько частей

- Пороговое условие
 - о применяется к числовым признакам
 - делит датасет на две части
- Деление по категориям
 - делит датасет используя один категориальный признак

Decision stump

Модель, которая использует одно правило называется *решающий пень*

Пень - это дерево с глубиной 1

Зам. Пороговое правило не может разделить датасет по наклонной линии

Выводим критерий качества

Всего: 15 черных точек и 18 зеленых

Это описывается частотой (frequency):

$$f = (14, 18)$$

Или вероятностью:

$$P = (0.44, 0.56)$$

В таком распределении большая неопределенность

Выводим критерий качества

Слева от прямой: 14 черных точек и 1 зеленая Справа: 1 черная и 17 зеленых

Это описывается частотой (frequency):

$$f_L = (1, 14)$$

$$f_R = (17, 1)$$

Или вероятностью:

$$P_L = (0.07, 0.93)$$

$$P_R = (0.95, 0.05)$$

А какие вероятности мы хотим видеть?

Энтропия - это мера неопределенности.

$$H(P) = -\sum_{i} p_{i}log(p_{i})$$

Энтропия также показывает, сколько информации содержится в послании.

Например: есть 8 равновероятных исходов некоторого эксперимента. Сколько бит нужно, чтобы их закодировать?

$$2^3 = 8$$

Ответ: 3 бита дают 8 комбинаций.

$$3 = \log_2(8)$$

3 бита - количество информации, которое содержится в послании с восемью возможными исходами.

$$3 = -\log_2(\frac{1}{8})$$

$$3 = -8 \cdot \frac{1}{8} \log_2(\frac{1}{8})$$

$$3 = -\sum_{i=1}^{8} \frac{1}{8} \log_2(\frac{1}{8})$$

$$H = -\sum_{i=1}^{N} p_i \log_2(p_i)$$

Оно уже не совсем в битах. Энтропия - это общее понятие *информации*

Энтропия максимальна когда вероятности исходов равны, и равна нулю, когда вероятность одного из исходов 1, а остальных - 0.

$$H(P) = -\sum_{i} p_{i} log(p_{i})$$

На картинке - случай с двумя исходами

$$P_L = (0.07, 0.93)$$

 $P_R = (0.95, 0.05)$

$$H(P) = -\sum_{i} p_{i}log(p_{i})$$

$$H(P) = -0.44 \log(0.44) - 0.56 \log(0.56) \approx 0.3$$

$$H(P_L) = -0.07 \log(0.07) - 0.97 \log(0.97) \approx 0.094$$

 $H(P_R) = -0.05 \log(0.05) - 0.95 \log(0.95) \approx 0.086$

Чему равна H при P = (0, 1)?

Среди всех возможных разбиений находят такое, которое сильнее всего понижает энтропию

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

А помните, была кросс-энтропия?

$$H(\hat{p},p) = -\sum_{i} p_{i} log(\hat{p}_{i})$$
 - для одного сэмпла

Как она связана с этой энтропией?

$$H(P) = -\sum_{i} p_{i}log(p_{i})$$

В этих формулах р означает не одно и то же!

$$Loss = -\frac{1}{N} \sum_{k=1}^{N} \sum_{k=1}^{K} [y_k = k] \log(\hat{p}_k)$$

$$Loss = -\sum_{k=1}^{K} \frac{1}{N} \sum_{k=1}^{N} [y_k = k] \log(\hat{p}_k)$$

$$Loss = -\sum_{k=1}^K p_k \log(\hat{p}_k)$$
 - для всех сэмплов

$$p_k = \hat{p}_k$$

Критерий Джини

Помимо энтропии есть еще критерий Джини, который выводится из функции потерь Бриера.

Критерий Джини, также, как и энтропия, показывает неопределенность вероятностного распределения.

Критерий Джини вычисляется быстрее, так как не содержит логарифмов.

$$H(R) = \min_{\sum_{k} c_{k} = 1} \frac{1}{|R|} \sum_{(x_{i}, y_{i}) \in R} \sum_{k=1}^{K} (c_{k} - [y_{i} = k])^{2}.$$

$$H(R) = \sum_{k=1}^{K} p_k (1 - p_k).$$

Дисперсия

А если целевая переменная - число? Какая тогда мера неопределенности?

Дисперсия:

$$H(R) = \sum_{i} (y_i - \bar{y})^2$$

А как дисперсия связана со среднеквадратичным отклонением предсказания от реального значения?

Резюме

Чтобы выбрать наилучшее логическое условие для разделения тренировочной на несколько подвыборок, используют следующие критерии:

- Для классификации:
 - Энтропия
 - Критерий Джини
- Для регрессии:
 - Стандартное отклонение

Все эти критерии говорят о том, насколько **уменьшилась неопределенность** при разделении тренировочного набора на подвыборки с помощью данного правила

Дерево решений

Итак, мы разбили датасет на две подвыборки, в каждой из которых уменьшилась (допустим) энтропия.

Что дальше?

Итак, мы разбили датасет на две подвыборки, в каждой из которых уменьшилась (допустим) энтропия.

Что дальше?

Делим еще раз!

Итак, мы разбили датасет на две подвыборки, в каждой из которых уменьшилась (допустим) энтропия.

Что дальше?

Делим еще раз!

Делим еще раз!

А как оно будет выглядеть в случае классификации?

А как оно будет выглядеть в случае классификации?

А как оно будет выглядеть в случае классификации?

Дерево классификации: предсказать кредитный скоринг

Дерево регрессии: предсказать уровень загрязнения в городе

У дерева есть:

- Узлы
 - Корневой узел
 - Внутренние узлы
 - о Листья
- Ветки

В каждом узле происходит деление датасета на несколько частей

Из каждого узла исходят несколько веток, которые идут в другие узлы

Узлы, из которых не выходят ветки называются листьями

Decision Tree Diagram

Регуляризация деревьев

Критерий остановки

Когда останавливать деление датасета?

- а) Когда достигнем нужной глубины
- b) Когда в узле будет число точек меньше, чем min_samples_split
- c) ..

Критериев остановки много, давайте лучше посмотрим на параметры конструктора класса

DecisionTreeClassifier:

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Стрижка деревьев

Стрижка (pruning) - метод регуляризации дерева.

B sklearn реализован алгоритм Minimal Cost-Complexity Pruning

Суть метода в том, чтобы найти дерево, которое минимизирует следующую функцию ошибки:

$$R_{\alpha}(T) = R(T) + \alpha |T|$$

Параметр альфа известен как complexity parameter

- 1. Обучают дерево
- 2. Создают последовательность деревьев $T_0 \dots T_m$, где каждое следующее дерево имеет меньше веток, чем предыдущее.

 T_0 -- исходное дерево T_m -- только корневой узел

3. Из всех этих деревьев выбирают то, у которого функция ошибки минимальна.

На каждой итерации удаляют ту ветку (subtree), у которой минимален следующий критерий:

$$\frac{\operatorname{err}(\operatorname{prune}(T,t),S) - \operatorname{err}(T,S)}{|\operatorname{leaves}(T)| - |\operatorname{leaves}(\operatorname{prune}(T,t))|}$$

Стрижка деревьев

