Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа_М3205	К работе допущен
Студент Аврора Степанюк, Виктория Тросько	Работа выполнена
Преполаватель Хвастунов Н Н	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.02

Изучение скольжения тележки по наклонной плоскости

- 1. Цель работы.
- 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
 - 2. Определение величины ускорения свободного падения д.
- 2. Задачи, решаемые при выполнении работы.
 - 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона.
 - 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
 - 3. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
 - 4. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.
- 3. Объект исследования.

Движение тележки по наклонной плоскости.

4. Метод экспериментального исследования.

Эксперимент.

- 5. Рабочие формулы и исходные данные.
 - 1. Коэффициент a в зависимости Y = aZ и его среднеквадратическое отклонение

$$a = \frac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_i^2}; \ \sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - aZ_i)^2}{(N-1) \sum_{i=1}^{N} Z_i^2}}$$

2. Абсолютная и относительная погрешность ускорения

$$\Delta_a = 2\sigma_a$$
; $\varepsilon_a = \frac{\Delta_a}{a} \cdot 100\%$

3. Синус угла наклона рельса к горизонту
$$\sin \alpha = \frac{(h_0 - h) - (h_0' - h')}{x' - x}$$

4. Ускорение и его погрешность для каждой серии измерений

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2};$$

$$\Delta a = \langle a \rangle \sqrt{\frac{\Delta x_{\text{H2}}^2 + \Delta x_{\text{H1}}^2}{(x_2 - x_1)^2} + 4 \frac{(\langle t_1 \rangle_{\Delta} t_1)^2 + (\langle t_2 \rangle_{\Delta} t_2)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}}$$

5. Линейная зависимость между перемещением и полуразностью квадратов значений времени $x_2-x_1=\frac{a}{2}(t_2^2-t_1^2)$

6. Коэффициенты линейной зависимости

Теоретическая зависимость a от $\sin \alpha$ в соответствии с a=g ($\sin \alpha - \mu$) имеет линейный характер: $a=A+B\sin \alpha$, где $A=-\mu g$, B=g, т. е. коэффициент B равен ускорению свободного падения.

$$B \equiv g = \frac{\sum_{i=1}^{N} a_i \sin \alpha_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} (\sum_{i=1}^{N} \sin \alpha_i)^2}$$

$$A = \frac{1}{N} \left(\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin \alpha_i \right)$$

7. СКО для ускорения свободного падения

$$\sigma_g = \sqrt{\frac{\sum_{i=1}^N d_i^2}{D(N-2)}}$$

$$d_i = a_i - (A + B \sin \alpha_i)$$

$$D = \sum_{i=1}^N \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^N \sin \alpha_i\right)^2$$

8. Абсолютная и относительная погрешность g

$$\Delta_g = 2\sigma_g$$
; $\varepsilon_g = \frac{\Delta_g}{g} \cdot 100\%$

9. Для вычисления погрешностей:

$$\Delta_{z} = \sqrt{\left(\frac{\partial f}{\partial a}\Delta_{a}\right)^{2} + \left(\frac{\partial f}{\partial b}\Delta_{b}\right)^{2} + \left(\frac{\partial f}{\partial c}\Delta_{c}\right)^{2} + \cdots}$$

$$\Delta_{a} = \frac{2}{3}\Delta_{\text{M}a}; \ \Delta_{b} = \frac{2}{3}\Delta_{\text{M}b}; \ \Delta_{c} = \frac{2}{3}\Delta_{\text{M}c}; \ \dots$$

$$\varepsilon_{z} = \sqrt{\left(\frac{\partial \ln z}{\partial a}\Delta_{a}\right)^{2} + \left(\frac{\partial \ln z}{\partial b}\Delta_{b}\right)^{2} + \left(\frac{\partial \ln z}{\partial c}\Delta_{c}\right)^{2} + \cdots \cdot 100\%}$$

6. Измерительные приборы.

Таблица 1: Измерительные приборы

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Линейка на рельсе	130 см	1 см	0,5 см
2	Линейка на угольнике	25 см	0,1 см	0,05 см
3	ПКЦ-3 в режиме секундомера	100 с	0,1 с	0,1 c

7. Схема установки.

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

8. Результаты прямых измерений и их обработки.

Таблица 2:

<i>x</i> , M	χ' , M	h_{0} , мм	h_0' , мм
0,22	1	193	219

Таблица 3: Результаты прямых измерений (Задание 1)

	1				(/ / 1	,		
		Из	вмеренные	величині	Ы	Рассчитанные величины		
N	x_1 ,	М	x_2 , M	<i>t</i> ₁ , c	t ₂ , c	$x_2 - x_1$, M	$\frac{t_2^2-t_1^2}{2}$, c^2	
1	0,1	.5	0,4	1,3	2,6	0,25	2,54	
2	0,1	.5	0,5	1,3	3,1	0,35	3,96	
3	0,1	.5	0,7	1,3	3,6	0,55	5,64	
4	0,1	5	0,9	1,3	4,1	0,75	7,56	
5	0,1	5	1,1	1,3	4,6	0,95	9,74	

Таблица 4: Результаты прямых измерений (Задание 2)

ΙI	прямых измерений (Задание 2)								
	$N_{\Pi J}$	<i>h,</i> мм	h^\prime , mm	t_1 , c	t_2 , c				
				1,3	4				
				1,2	4,1				
	1	178	168	1,2	4,1				
				1,4	4,2				
				1,3	4,2				
				1,1	3,2				
				1	3,2				
	2	187	175	1,3	3,4				
				1,4	3				
				1,1	3,2				
		213	186	1,1	2,9				
				1	2,8				
	3			1,1	2,9				
				0,9	3,1				
				1	3,2				
			195	0,7	2,3				
				0,7	2,3				
	4	225		0,6	2,2				
				0,7	2,2				
				0,7	2,3				
				0,6	2				
			200	0,6	2				
	5	235		0,6	1,9				
				0,6	2				
				0,6	2				

 $N_{\Pi \Pi}$ – количество пластин h - высота на координате x=0,22 м h' - высота на координате x'=1 м

Таблица 5: Результаты расчетов (Задание 2)

$N_{\Pi JI}$	$\sin \alpha$	$\langle t_1 \rangle \pm \Delta_{t_1}$, c	$\langle t_2 \rangle \pm \Delta_{t_2}$, c	$\langle a \rangle \pm \Delta_a, \frac{M}{C^2}$
1	0,046	1,28 ± 0,07	4,12 ± 0,07	0,124 ± 0,05
2	0,049	1,18 ± 0,1	3,2 ± 0,09	0,215 ± 0,015
3	0,068	1,02 ± 0,07	2,98 ± 0,1	0,24 ± 0,019

4	0,072	0,68 ± 0,06	2,26 ± 0,06	0,41 ± 0,024			
5	0,078	0,6 ± 0,05	1,98 ± 0,05	$0,53 \pm 0,034$			
$N_{\Pi \Pi}$ — количество пластин $\langle t_{1,2} \rangle = rac{1}{2} \sum_{i=1,2}^{N} t_{1i,2i}$							

9. Расчет результатов косвенных измерений.

Для первого задания:

МНК:
$$a\approx 0.097~\frac{\text{M}}{c^2}$$
 СКО: $\sigma_a\approx 0.0013~\frac{\text{M}}{c^2}$ Для второго задания: $B\equiv g=10.27~\frac{\text{M}}{c^2}$ $A=-0.34~\frac{\text{M}}{c^2}$ $\sigma_g=2.2~\frac{\text{M}}{c^2}$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

	Измеренные величины			НЫ	Рассчитанные величины		Погрешности			
№	х ₁ , м	х ₂ , м	t_1 , c	t ₂ , c	$x_2 - x_1$, M	$\frac{t_2^2-t_1^2}{2}$, c^2	Δ_Y , M	Δ_Z , M	ε_Y , %	ε_Z , %
1	0,15	0,4	1,3	2,6	0,25	2,54	0,005	0,203	2	7,99
2	0,15	0,5	1,3	3,1	0,35	3,96	0,005	0,308	2	7,7
3	0,15	0,7	1,3	3,6	0,55	5,64	0,005	0,371	2	6,05
4	0,15	0,9	1,3	4,1	0,75	7,56	0,005	0,258	2	3,41
5	0,15	1,1	1,3	4,6	0,95	9,74	0,005	0,239	2	2,45

$$\Delta_{z} = \sqrt{\left(\frac{\partial z}{\partial t_{1}} \Delta_{t_{1}}\right)^{2} + \left(\frac{\partial z}{\partial t_{2}} \Delta_{t_{2}}\right)^{2}} = \sqrt{\left(-t_{1} \cdot \Delta_{t_{1}}\right)^{2} + \left(t_{2} \cdot \Delta_{t_{2}}\right)^{2}}$$

$$\Delta_{g_{\text{Ta6},\pi}} = |g - g_{\text{Ta6},\pi}| = 10,27 - 9,81 = 0,46 \frac{M}{c^{2}}$$

$$\varepsilon_{g_{\text{Ta6},\pi}} = \frac{\Delta_{g_{\text{Ta6},\pi}}}{g_{\text{Ta6},\pi}} \cdot 100\% = \frac{0,46}{9,81} \cdot 100\% = 4,69\%$$

$$\Delta_{a} = 2\sigma_{a} = 2 \cdot 0,0013 = 0,0026 \frac{M}{c^{2}}$$

$$\varepsilon_{a} = \frac{\Delta_{a}}{a} \cdot 100\% = \frac{0,0026}{0,097} \cdot 100\% = 2,68\%$$

$$\Delta_{g} = 2\sigma_{g} = 2 \cdot 2,2 = 4,4 \frac{M}{c^{2}}$$

$$\varepsilon_{g} = \frac{\Delta_{g}}{a} \cdot 100\% = \frac{4,4}{9.81} \cdot 100\% = 44,85\%$$

11. Графики.

График 1: Зависимость Y(Z)

График 2: Аппроксимирующая линейная зависимость $a = A + B \sin \alpha$

12. Окончательные результаты.

$$a = (0.097 \pm 0.003) \frac{M}{c^2}$$
; $\varepsilon_a = 2.68\%$; $\alpha = 0.9$
 $g = (10.3 \pm 4.4) \frac{M}{c^2}$; $\varepsilon_g = 44.85\%$; $\alpha = 0.9$

13. Выводы и анализ результатов работы.

В процессе выполнения работы мы провели ряд экспериментов, которые помогли проверить основные законы равноускоренного движения, исследовали время движения тележки при разных обстоятельствах, проверили равноускоренность движения тележки, а также определили ускорение свободного падения. Также нам удалось рассчитать характеристики равноускоренного движения, их погрешности и построить графики зависимости при разном наклоне опорной плоскости от времени в квадрате, а также ускорения от синуса угла наклона установки.

Теоретическая зависимость Y(Z) = aZ является линейной функцией, относительная погрешность ускорения составляет 2,68%, а графики, полученные экспериментальным и теоретическим путем практически идентичны, что позволяет сделать вывод о том, что движение тележки можно считать равноускоренным.

Сравнив абсолютную погрешность Δ_g с модулем разности между табличным и экспериментальным значением $|g_{\text{эксп}}-g_{\text{табл}}|$ получили, что табличное значение g входит в доверительный интервал экспериментально полученных значений, что позволяет сделать вывод о достоверности результатов измерений. Однако, относительная погрешность ε_g составляет 44,85%, что говорит о недостаточной точности измерений. Это связано с погрешностью инструментов, используемых для измерения, оборудования, наличием силы трения, которая полностью не компенсируется насосом, а также трудностями с эксплуатацией установки.

14. Замечания преподавателя

- 1) На графиках лишние нули и слишком мелкие подписи (и буквы и цифры)
- 2) В окончательных результатах количество знаков проверьте