# Αρχιτεκτονική Διάλεξη Εισαγωγική

### Λογικές πύλες:

| Όνομα<br>Πύλης       | NOT                      | AND                                                             | OR                          | NAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOR                         | XOR              | XNOR                        |
|----------------------|--------------------------|-----------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|-----------------------------|
| Αλγεβρική<br>εξίσωση | $F = \overline{A}$       | F = A . B                                                       | F = A + B                   | $F = \overline{A \cdot B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $F = \overline{A + B}$      | $F = A \oplus B$ | $F = \overline{A \oplus B}$ |
| Πύλη                 | _ <u></u>                |                                                                 | $\rightarrow$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>→</b>                    |                  |                             |
| Πίνακας<br>αλήθειας  | Input Output A F 0 1 1 0 | Inputs   Output   A   B   F   O   O   O   O   O   O   O   O   O | Inputs   Output   A   B   F | Inputs   Output   A   B   F   O   0   1   1   O   1   1   1   1   1   1   O   Duration   The state of the s | Inputs   Output   A   B   F | Inputs   Output  | Inputs   Output             |

### Άλγεβρα Boole:

- $\bullet$   $\chi' = \overline{\chi}$
- or: + ισοδυναμεί με V
- and: ισοδυναμεί με Λ
- Invert: 'ισοδυναμεί με Not,Οχί, ¬

#### Ιδιότητες Άλγεβρας Boole:

- $a+b=b+a \leftrightarrow a*b=b*a$  "Αντιμεταθετική "
- $a+1=1 \leftrightarrow a*0=0$
- $a+0=a \leftrightarrow a+1=a$
- $a+(b+c)=(a+b)+c \leftrightarrow a(b*c)=(a*b)c$  "Προσεταιριστική"
- $a*(b+c)=ab+ac \leftrightarrow a+bc=(a+b)(a+c)$  "Επιμεριστική"
- $a+\bar{a}=1$ , a+a=a, a\*a=a,  $a*\bar{a}=0$ ,  $a+\bar{a}=1$

#### Δυισμός:

Αν αντικαταστήσω το  $0 \leftrightarrow 1$  η το  $+ \leftrightarrow *$  σε οποιαδήποτε ιδιότητα συνεχίζει να ισχύει

$$0'=1 \leftrightarrow 1'=0$$
  $\overline{x}=x'$   $(ab)'=\overline{ab}$   $(a')'=a$   $a'b=\overline{ab}$ 

#### Nόμοι De Morgan:

$$\frac{\overline{a} + \overline{b} = \overline{a} * \overline{b}}{a \overline{b} = \overline{a} + \overline{b}} \frac{\overline{x} 1 * x^2 * x^3 * x^4 * \dots * x \overline{n} = \overline{x} 1 + \overline{x} 2 + \overline{x} 3 + \overline{x} 4 + \overline{x} \overline{n}}{x^1 + x^2 + x^3 + x^4 + \dots + x \overline{n} = \overline{x} 1 * \overline{x} 2 * \overline{x} 3 * \overline{x} 4 * \overline{x} \overline{n}}$$

Θεώρημα απορρόφησης: a+a\*b=a  $a+\overline{a}b=a+b$ 

• 
$$a + \overline{b} \, \overline{c} = \overline{a} * \overline{b} \overline{c} = \overline{a}$$
bc

• 
$$\overline{a + \overline{b} c} = \overline{a} * \overline{b} \overline{c} = \overline{a} + (\overline{b} + \overline{c}) = \overline{a} (b + c) = \overline{a} b + \overline{a} c$$

## Τρόποι ελαχιστοποίησης:

1) Άλγεβρα Boole δηλαδή όπως στο παράδειγμα εδω:

### 2) Ελαχιστοποιηση Karnaugh

- α) Βάσει του πλήθος μεταβλητών επιλέγουμε τον κατάλληλο χάρτη
- b) Εκφράζουμε την F ως άθροισμα ελαχιστόρων . Δηλαδη Σ(1,2,3,..) και τοποθετούμε τις μονάδες στις θέσεις του χάρτη που αντιστοιχουν σε αυτους τους ελαχιστόρους
- c) Δημιουργούμε ομάδες από άσσους οι οποίες
  - i) το πλήθος των ασσων σε κάθε ομάδα είναι δύναμη του 2 (1,2,4,8,16,32)
  - ii) κάθε ομάδα πρέπει να περιέχει ΜΕΓΙΣΤΟ πλήθος άσσων δηλαδή αν εχω την δυνατότητα να πάρω μια τετράδα δεν θα πάρω δυο δυάδες
  - πρέπει όλοι οι ασσοι να βρεθούν σε τουλάχιστον μια ομάδα
  - iv) μπορούμε έναν άσσο να το συμπεριλάβουμε σε περισσότερες από 1 ομάδες
- d) Κάθε ομάδα δημιουργεί εναν ΑΠΛΟΠΟΙΗΜΈΝΟ όρο γινομένου,
   Αν έχουμε π.χ. 2 ομάδες θα έχουμε 2 ορους γινομένου, οι οποιοι θα αθροιστούν. Δηλαδή N ομαδες 

   Ν όρους γινομένου οπου για π.χ:



e) Αθροίζουμε τα γινομενα απο το d