Question 1: Expressions to Machines

(a)

(b)

(c)

Question 2: Just One Difference

$$L_1 = \{xy \mid x, y \in \{a, b\}^*, \#a(x) = \#b(y)\}$$

$$L_2 = \{xcy \mid x, y \in \{a, b\}^*, \#a(x) = \#b(y)\}$$

 L_1 is regular while L_2 is not.

$$L_1 = \{a, b\}^*$$

Therefore, L_1 is regular

Now, prove L_2 is not regular.

For any given $p \ge 1$

 $let w = a^p c b^p$

For any ways to writes w as w = xyz with $|xy| \le p$, $|y| \ge 1$, y must be a string of a(s) and have at least one a, $y = a^k$, $1 \le k \le q$. Therefore, if we pump y twice we get $a^{k+q}cb^q$, which is not an element of L_2 . In conclusion, L_2 is not regular.

Question 3: Context Free Grammars

```
b. First proving that L(G) \subseteq A
Base Case:
S \xrightarrow{1} \epsilon If x = y = \epsilon, then \#a(x) = \#b(y), so \epsilon \in A
```

a. $S \to aS|bS|\epsilon$

For the inductive step, suppose the claim is true for some $i \geq 1$. That is, suppose we know that for any $m \in \Sigma$, if $S \xrightarrow{i} m$ then $m \in A$. Now consider $n \in \Sigma$ such that $S \xrightarrow{i+1} n$; we want to show that $n \in A$. There are four cases:

1) $S \xrightarrow{1} aS \xrightarrow{s} n$. Then n = am for some $m \in \Sigma^*$. By induction hypothesis, m = xy where #a(x) = #b(y) If we let x' = a followed by x except last charter in x and y' = last character in x followed by y,

either this character is a, then #a(x') = 1 + #a(x) - 1 = #a(x) and #b(y') = 0 + #b(y) = #b(y)

or this character is b, then #a(x') = #a(x) - 1 and #b(y') = #b(y) - 1Either way, we still get #a(x') = #b(y'), so $n \in A$

2) $S \xrightarrow{1} bS \xrightarrow{s} n$. Then n = bm for some $m \in \Sigma^*$. By induction hypothesis, m = xy where #a(x) = #b(y) If we let x' = a followed by x and y' = y, then #a(x') = #a(x) and #b(y') = #b(y)

we still get #a(x') = #b(y'), so $n \in A$

By mathematical induction, $n \in A$. Thus $L(G) \subseteq A$

Now proving that $A \subseteq L(G)$

Base case: $m = \epsilon$. Then $S \xrightarrow{1} \epsilon$ is the derivation for m. Induction Hypothesis: For the inductive step, consider a palindrome n with $|n| \ge 1$ and suppose the claim is true for all shorter n. We must have either n = am or n = bm for some m. If n= am then we can use derivation $S \xrightarrow{1} aS \xrightarrow{*} am = n$ If n = bm then we can use derivation $S \xrightarrow{1} bS \xrightarrow{*} bm = n$ By mathematical induction, $n \in L(G)$. Thus, $A \subseteq L(G)$