TD Deep learning

Perceptron et apprentissage : premiers pas

Ce premier exercice permet de vous familiariser avec le calcul *feed-forward* et de réaliser à la main une première étape de révision des poids du réseau, avant de commencer à l'automatiser.

Soit le tableau suivant décrivant une série de mesures réalisées sur 7 individus :

Individu	x_1	x_2	x_3	type
i_1	0.2	0.4	0.05	1
i_2	0.17	0.42	0.3	2
i_3	0.46	0.38	0.44	3
i_4	0.33	0.44	0.27	2
i_5	0.12	0.44	0.11	1
i_6	0.82	0.37	0.75	3
i_7	0.47	0.39	0.29	2

A partir de ces données, répondez aux questions suivantes :

1. Soit le perceptron sans couche cachée suivant :

Le tableau ci-dessous donne les poids du réseau, w_{ij} correspondant au poids de l'arc reliant la cellule x_i au neurone de sortie o_i , ainsi que les seuils θ_i pour chaque neurone :

w_{11}	w_{12}	w_{13}	w_{21}	w_{22}	w_{23}	w_{31}	w_{32}	w_{33}	θ_1	θ_2	θ_3
-0.4	0.1	0.5	0.1	-0.1	-0.1	-0.6	0.2	0.4	-0.1	0	0.3

En supposant que la fonction d'activation de ces 3 neurones est une fonction à seuil, dont le seuil θ_i est précisé ci-dessus, calculez la sortie de cette machine apprenante pour les individus i_k , $k=1,\ldots 7$.

- 2. Que pouvez-vous en déduire sur la pertinence de cette machine?
- 3. Donnez la matrice de confusion calculée sur ces 7 individus, en considérant qu'un individu classé dans plusieurs catégories est finalement associé à la mauvaise classe (approche pessimiste).
- 4. Comment calculez-vous l'erreur apparente à partir de cette matrice? Donnez la valeur obtenue.
- 5. En utilisant un pas $\lambda=0.1$, utilisez l'algorithme d'apprentissage vu en cours afin d'essayer d'améliorer les résultats obtenus par le réseau. Attention : vous n'effectuerez qu'une seule passe sur les exemples, ce qui veut dire que chaque exemple n'est considéré qu'une seule fois pour chacun des neurones.
- 6. Quelle est la nouvelle matrice de confusion et la nouvelle erreur? Qu'en déduisez-vous?
- 7. Comment pouvez-vous modifier le réseau pour obtenir la probabilité $p(c/i_n)$ qu'un nouvel objet i_n soit classé dans l'une ou l'autre de ces trois classes c?
- 8. A présent, implémentez avec le language R ou Python la procédure d'apprentissage afin de pouvoir réaliser plusieurs pas et observer les résultats.

Master Data Mining – Université Lumière (Lyon 2) © 2020 Responsable du cours : Julien Velcin