Foundations of Deep Learning

Fall 2024

Exercise 8: Generalization II

Lecturer: Aurelien Lucchi

Problem 1 (Vapnik-Chervonenkis Theory):

To quantify the effective 'size' or 'richness' of an infinite class of functions, we use the concept of shattering coefficient (aka growth function). The **shattering coefficient** of a binary function class \mathcal{F} is defined as the maximum number of ways into which n points can be classified by the function class \mathcal{F}

$$S_{\mathcal{F}}(n) := \sup_{(\mathbf{x}_1, \dots, \mathbf{x}_n)} |\{(f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)) : f \in \mathcal{F}\}|$$
(1)

where $|\cdot|$ denotes the cardinality of the set.

Since the label takes value in $\{-1,1\}$, it follows that $\mathcal{S}_{\mathcal{F}}(n) \leq 2^n$. (Why?) If $\mathcal{S}_{\mathcal{F}}(n) = 2^n$, it means there is a set of n points such that the class of functions \mathcal{F} can generate any classification on these points, in which case we say that \mathcal{F} shatters the set.

- a) Show that if $S_{\mathcal{F}}(N) < 2^N$ for some N > 1, then $S_{\mathcal{F}}(n) < 2^n$ for all $n \geq N$, i.e. that if \mathcal{F} cannot shatter any set of cardinality N, it cannot shatter sets of larger cardinalities.
- b) The **VC** dimension of a class \mathcal{F} is defined as the size of the largest set that it can shatter. In other words, the VC dimension of class \mathcal{F} is the largest n such that any assignment of labels can be learned. For a concrete example, let $\mathcal{F} = \{f : \mathbb{R}^2 \to \{0,1\} : f \text{ linear classifier}\}$ be the function class of linear classifier on the 2-dimensional plane (separating points by a line on the plane).
 - i) Compute shattering coefficients $\mathcal{S}_{\mathcal{F}}(1), \mathcal{S}_{\mathcal{F}}(2), \mathcal{S}_{\mathcal{F}}(3)$ and $\mathcal{S}_{\mathcal{F}}(4)$.
 - ii) Compute the VC dimension VC-dim(\mathcal{F}).
- c) It turns out that the shattering coefficient can be used as a measure of the 'size' of a class of function as demonstrated by the Vapnik-Chervonenkis theorem:

Theorem 1. (Vapnik-Chervonenkis) Let $\mathcal{R}(f)$, $\mathcal{R}_n(f)$ denote the excess risk and empirical risk of the function f resp. For any $\delta > 0$, with probability at least $1 - \delta$,

$$\forall f \in \mathcal{F}, \quad \mathcal{R}(f) - \mathcal{R}_n(f) \le 2\sqrt{2\frac{\log \mathcal{S}_{\mathcal{F}}(2n) + \log \frac{2}{\delta}}{n}}$$
 (2)

What condition on the VC dimension of \mathcal{F} is needed for the empirical risk to converge uniformly over the class of functions to the true risk? Explain.

d) In modern maching learning, the models are often over-parameterized and hence the function class \mathcal{F} is enormous. Hence the VC-dimension can be much larger than the size of the training dataset. Show that the bound in Theorem 1 become vacuous when the dataset has size n and $\mathcal{S}_{\mathcal{F}}(2n) = 2^{2n}$.

Further reading: Bousquet et al. (2003) https://link.springer.com/chapter/10.1007/978-3-540-28650-9_8 (You can access the article for free if you are within the UniBasel (VPN) network.)

Exercise 8: Generalization II

Problem 2 (PAC Bayes Bounds):

Let S denote a training set of size |S| = m,

$$S = \{(\mathbf{x}_i, y_i)\}_{i=1,\dots,m}, \text{ where } (\mathbf{x}_i, y_i) \in (\mathcal{X} \times \mathcal{Y}).$$
(3)

2

Let \mathcal{M} denote the set of all probability measures on the data space $\mathbb{R}^k \times \{-1,1\}$. We will assume that the training examples are i.i.d. samples from some $\mu \in \mathcal{M}$.

A parametric family of classifiers is a function $F : \mathbb{R}^d \times \mathbb{R}^k \to \{-1,1\}$, where $f_{\mathbf{w}} := F(\mathbf{w},\cdot) : \mathbb{R}^k \to \{-1,1\}$ is the classifier indexed by the parameter $\mathbf{w} \in \mathbb{R}^d$. The hypotheses space induced by F is $\mathcal{F} = \{f_{\mathbf{w}} : \mathbf{w} \in \mathbb{R}^d\}$

A randomized classifier is a distribution Q on \mathbb{R}^d . Informally, we will speak of distributions on \mathcal{F} when we mean distributions on the underlying parametrization.

We are interested in the 0-1 loss $e_f: \mathbb{R}^k \times \{-1,1\} \to \{0,1\}$

$$e_f(\mathbf{x}, y) := \mathbb{I}[f(\mathbf{x}) \neq y].$$

We denote by $e_f^{\mu} := \mathbb{E}_{\mu}[e_f(\mathbf{x}, y)]$ the expected error and $e_f^S := \frac{1}{m} \sum_{i=1}^m e_f(\mathbf{x}_i, y_i)$ the empirical error w.r.t. sample $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$.

The main PAC-Bayesian theorem is the following:

Theorem 2 (McAllister 1999). For fixed P and any $Q, \epsilon \in (0,1)$ with prob $\geq 1 - \epsilon$ over sample sets $S \stackrel{i.i.d.}{\sim} \mu$:

$$\mathbb{E}_{Q}[e_{f_{\mathbf{w}}}^{\mu}] - \mathbb{E}_{Q}[e_{f_{\mathbf{w}}}^{S}] \leq \sqrt{\frac{2}{|S|} \left[KL(Q||P) + \ln\left(\frac{2\sqrt{|S|}}{\epsilon}\right) \right]}$$

$$(4)$$

By reviewing the lecture notes and/or reading the paper by Dziugaite and Roy "Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data" https://arxiv.org/abs/1703.11008, answer the following questions:

- a) What is a "non-vacuous" generalization bound resp. when is a generalization bound considered "non-vacuous" (in contrast to when it is considered to be "vacuous")?
- b) In the proof of the McAllister Theorem, we need the condition that Q is absolutely continuous with respect to P. What does this mean and why is it needed?
- c) Describe in simple words what the McAllister theorem tells us. What is the role of P and Q? Why is the PAC Bayes bound considered to be a data dependent generalization bound (e.g. in contrast to data independent VC bounds)?
- d) How is the PAC Bayes bound used for DNNs in practice? What is a stochastic neural network and how is it implemented in practice?
- e) The KL divergence is minimized when Q = P. To get bounds on a deterministic classifier, we could imagine choosing Q to be a Dirac-delta distribution which is non-zero for only one weight. Would that work? Explain.

Further reading: Dziugaite and Roy (2017) https://arxiv.org/abs/1703.11008

References

Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning theory. In Summer school on machine learning, pages 169–207. Springer, 2003.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data. arXiv preprint arXiv:1703.11008, 2017.