

planetmath.org

Math for the people, by the people.

Cook reduction

Canonical name CookReduction
Date of creation 2013-03-22 13:01:41
Last modified on 2013-03-22 13:01:41

Owner Henry (455) Last modified by Henry (455)

Numerical id 7

Author Henry (455)
Entry type Definition
Classification msc 68Q10
Classification msc 68Q05
Defines Karp reduction

Given two (search or decision) problems π_1 and π_2 and a complexity class \mathcal{C} , a \mathcal{C} Cook reduction of π_1 to π_2 is a Turing machine appropriate for \mathcal{C} which solves π_1 using π_2 as an oracle (the Cook reduction itself is not in \mathcal{C} , since it is a Turing machine, not a problem, but it should be the class of bounded Turing machines corresponding to \mathcal{C}). The most common type are \mathcal{P} Cook reductions, which are often just called Cook reductions.

If a Cook reduction exists then π_2 is in some sense "at least as hard" as π_1 , since a machine which solves π_2 could be used to construct one which solves π_1 . When \mathcal{C} is closed under appropriate operations, if $\pi_2 \in \mathcal{C}$ and π_1 is \mathcal{C} -Cook reducible to π_2 then $\pi_1 \in \mathcal{C}$.

A C Karp reduction is a special kind of C Cook reduction for decision problems L_1 and L_2 . It is a function $g \in C$ such that:

$$x \in L_1 \leftrightarrow g(x) \in L_2$$

Again, \mathcal{P} Karp reductions are just called Karp reductions.

A Karp reduction provides a Cook reduction, since a Turing machine could decide L_1 by calculating g(x) on any input and determining whether $g(x) \in L_2$. Note that it is a stronger condition than a Cook reduction. For instance, this machine requires only one use of the oracle.