Homework #2 MME 529

Page 37 Burton please do problems 1,2,3,5,6

additionally:

- 1. Suppose x is an integer and someone has applied the Fundamental Theorem of Arithmetic to it, obtaining $x = p_1^{\alpha_1} p_2^{\alpha_2} ... p_n^{\alpha_n}$ What would x^3 look like? What generalization can you make out of this?
- 2. If p is a prime number, does px ky = 1 have solutions? k could be any integer here.
- 3. If p is a prime number, argue why p must divide $C_{p,r}$ (binomial coefficient)
- 4. See if you can prove the following:

if \mathbf{x} divides the product \mathbf{bc} and \mathbf{x} is prime then \mathbf{x} divides either \mathbf{b} or \mathbf{c} .

Make up a counterexample where \mathbf{x} is *not* prime and \mathbf{x} divides their product but not either one.