High Performance Computing: A brief introduction and demonstration

Y. Yin

Need for CPU

• Demand for CPU is usually very high in practical study, and increase significantly as the number of molecules involved.

Hexacene adsorption project	Structural	Single-point self-consistent
	$\operatorname{relaxation}$	calculation
Number of CPU cores	64	256
Requested memory (GB)	128	512
Typical running time for a	20	8
convergent calculation (hour)		
Estimated total committed	30000	300000
CPU hours (hour)		
Estimated total disk occupied	40	3000
(GB)		

TOP 500

 The TOP500 project ranks and details the 500 most high performance computer systems in the world. (HPC ~ "supercomuters")

ONASH University

TOP 500

 The TOP500 project ranks and details the 500 most high performance computer systems in the world. (HPC ~ "supercomuters")

Rank \$	Rmax Rpeak + (PFLOPS)	Name \$	Model ≑	Processor ≑	Interconnect ÷	Vendor ≑	Site country, year	Operating system \$
1	93.015 125.436	Sunway TaihuLight	Sunway MPP	SW26010	Sunway ^[13]	NRCPC	National Supercomputing Center in Wuxi China, 2016 ^[13]	Linux (Raise)
2	33.863 54.902	Tianhe-2	TH-IVB- FEP	Xeon E5–2692, Xeon Phi 31S1P	TH Express-2	NUDT	National Supercomputing Center in Guangzhou China, 2013	Linux (Kylin)
3	17.590 27.113	Titan	Cray XK7	Opteron 6274, Tesla K20X	Gemini	Cray	Oak Ridge National Laboratory United States, 2012	Linux (CLE, SLES based)
4	17.173 20.133	Sequoia	Blue Gene/Q	A2	Custom	IBM	Lawrence Livermore National Laboratory United States, 2013	Linux (RHEL and CNK)
5	14.015 27.881	Cori	Cray XC40	Xeon Phi 7250	Aries	Cray	National Energy Research Scientific Computing Center United States, 2016	Linux (CLE)
6	13.555 24.914	Oakforest- PACS	Fujitsu	Xeon Phi 7250	Intel Omni-Path	Fujitsu	Joint Center for Advanced High Performance Computing, Kashiwa Japan, 2016	Linux
7	10.510 11.280	K computer	Fujitsu	SPARC64 VIIIfx	Tofu	Fujitsu	Riken Advanced Institute for Computational Science (AICS) Japan, 2011	Linux
8	9.779 15.988	Piz Daint	Cray XC50	Xeon E5-2690v3, Tesla P100	Aries	Cray	Swiss National Supercomputing Centre Switzerland, 2016	Linux (CLE)
9	8.587 10.066	Mira	Blue Gene/Q	A2	Custom	IBM	Argonne National Laboratory United States, 2012	Linux (CNK)
10	8.101 11.079	Trinity	Cray XC40	Xeon E5–2698v3	Aries	Cray	Los Alamos National Laboratory United States, 2015	Linux (CLE)

HPC is also in Universities

Monash University: Monarch, 2000-core CPU

```
localmachine$ ssh jsmith@msgln6.its.monash.edu
jsmith@msgln6.its.monash.edu.au's password:
```

Last login: Mon Oct 7 12:01:22 2013 from localmachine.monash.edu.au

```
_____
* Please limit local CPU-intensive processes to *
* one at a time and no more than 30 mins. in
* duration. It is recommended to use qsub to
* execute longer jobs.
* It is recommended that jobs indicate:
   #$ -1 h_rt=hh:mm:ss
                     (for walltime)
   #$ -1 h vmem=nG
                     (for mem req'ts)
* For example:
   #$ -1 h rt=16:00:00
                     (for 16 hours)
   #$ -1 h vmem=2G
                     (for 2GB mem)
______
```


HPC is also in Universities

- Central South University: http://hpc.csu.edu.cn
- 1420-core CPU

National Computing Facilities in Australia

- Raijin
- 57,472 cores (Intel Xeon Sandy Bridge)
- 160 TB memory
- 1.5 MW power, 100 tonnes of water in cooling.

National Computing Facilities in Australia

- Pawsey Supercomputing Center
- Most powerful public research supercomputer in Southern Hemisphere
- 35,712 cores

HPC Structure

Requesting CPUs

Serial job - use only one core on one processor

unde							
Computer							
CPU Socket #0	CPU Socket #1						
CPU cores	CPU cores						

Requesting CPUs

• Parallel jobs – requesting multiple CPUs on one node or across nodes

Accessing HPC, Move/Transfer Files

• DEMO