

GROWTH OF INTERFACE CRACKS ON CONSECUTIVE FIBERS: ON THE SAME OR ON THE OPPOSITE SIDES?

L. Di Stasio^{1,2}, J. Varna¹, Z. Ayadi²

¹ Division of Materials Science, Luleå University of Technology, Luleå, Sweden
² EEIGM & IJL, Université de Lorraine, Nancy, France

12th International Conference on Composite Science and Technology (ICCST/12) Sorrento (IT), May 8-10, 2019

Outline

- Micromechanical Modeling of Initiation of Transverse Cracks
- Modeling the Fiber-Matrix Interface Crack
- Energy Release Rate of the Fiber-Matrix Interface Cracks
- Conclusions

Initiation of Transverse Cracks

Initiation of Transverse Cracking in FRPCs: Microscopic Observations

Left: front view of $[0, 90_2]_S$, visual inspection.

Center: edge view of $[0, 90]_S$, optical microscope.

Right:

edge view of $[0, 90]_S$, optical microscope.

Initiation of Transverse Cracking in FRPCs: Micromechanics

Stage 1: isolated debonds

Initiation of Transverse Cracking in FRPCs: Micromechanics

Stage 2: consecutive debonds

Initiation of Transverse Cracking in FRPCs: Micromechanics

Stage 3: kinking

Initiation of Transverse Cracking in FRPCs: Micromechanics

Stage 4: coalescence

Geometry Representative Volume Elements Equivalent Boundary Conditions Assumptions

umptions Solution

Geometry

Initiation of Transverse Cracks Debond Modeling Debond ERR Conclusions

Solution

Geometry

- L, W >> t
- \rightarrow L, W $\rightarrow \infty$
- Square packing
- \rightarrow $L_d >> \Delta \theta_d$
- → 2D RVE

Solution

Initiation of Transverse Cracks Debond Modeling Debond ERR Representative Volume Elements Equivalent Boundary Conditions Assumptions

Representative Volume Elements

$$n \times k$$
 – coupling

 $n \times k$ – asymm

cometry Representative Volume Elements Equivalent Boundary Conditions Assumptions Solution

Equivalent Boundary Conditions

Symmetric Coupling

$$u_z(x,h)=u_z^{\nu}$$

Anti-symmetric Coupling

$$u_z(x,h) - u_z(0,h) = -(u_z(-x,h) - u_z(0,h))$$

 $u_x(x,h) = -u_x(-x,h)$

Initiation of Transverse Cracks Debond Modeling Debond ERR Conclusions Geometry Representative Volume Elements Equivalent Boundary Conditions

Assumptions Solution

Assumptions

$$R_f = 1 \ [\mu m] \quad L = \frac{R_f}{2} \sqrt{\frac{\pi}{V_f}}$$

Material	E	ν
glass fiber	70.0	0.2
ероху	3.5	0.4

- Linear elastic, homogeneous and isotropic materials
- → Plane strain
- Frictionless contact interaction
- → Symmetric w.r.t. x-axis
- → Coupling of x-displacements on left and right side (repeating unit cell)
- → Applied uniaxial tensile strain $\bar{\varepsilon}_X = 1\%$

ransverse Cracks Debond Modeling Debond ERR

Solution

Assumptions

Solution

$$\begin{split} &\inf \Omega_f, \Omega_m: \\ &\frac{\partial^2 \varepsilon_{xx}}{\partial z^2} + \frac{\partial^2 \varepsilon_{zz}}{\partial x^2} = \frac{\partial^2 \gamma_{zx}}{\partial x \partial z} & \text{for } 0^\circ \leq \alpha \leq \Delta \theta: \\ &\varepsilon_f = \gamma_{xy} = \gamma_{yz} = 0 & \text{for } \Delta \theta \leq \alpha \leq 180^\circ: \\ &\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \tau_{zx}}{\partial z} = 0 & \overrightarrow{u}_m(R_f, \alpha) - \overrightarrow{u}_f(R_f, \alpha) = 0 \\ &\frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zz}}{\partial z} = 0 & \sigma_{ij} = E_{ijkl} \varepsilon_{kl} \\ &\frac{\partial \sigma_{zx}}{\partial x} + \frac{\partial \sigma_{zz}}{\partial z} = 0 & +BC \end{split}$$

Oscillating singularity

$$\sigma \sim r^{-\frac{1}{2}} \sin(\varepsilon \log r), \quad V_f \to 0$$

$$\begin{split} \varepsilon &= \frac{1}{2\pi} \log \left(\frac{1-\beta}{1+\beta} \right) \\ \beta &= \frac{\mu_2 \left(\kappa_1 - 1 \right) - \mu_1 \left(\kappa_2 - 1 \right)}{\mu_2 \left(\kappa_1 + 1 \right) + \mu_1 \left(\kappa_2 + 1 \right)} \end{split}$$

- Finite Element Method (FEM) in AbaqusTM
- 2nd order shape functions
- 6-nodes triangles & 8-nodes quadrilaterals
- regular mesh of quadrilaterals at the crack tip:
 - AR ~ 1
 - $-\delta = 0.05^{\circ}$

 $\sigma_{VV} = \nu \left(\sigma_{XX} + \sigma_{ZZ} \right)$

Strain Magnification Crack Shielding Consecutive Debonds: Mode I Consecutive Debonds: Mode II Non-Consecutive Debonds

Strain Magnification Crack Shielding Consecutive Debonds: Mode I Consecutive Debonds: Mode II Non-Consecutive Debonds

Strain Magnification

 $3 \times 1 - asymm$

Strain Magnification Crack Shielding Consecutive Debonds: Mode I Consecutive Debonds: Mode II Non-Consecutive Debonds

Strain Magnification

Strain Magnification Crack Shielding Consecutive Debonds: Mode I Consecutive Debonds: Mode II Non-Consecutive Debonds

Strain Magnification

Strain Magnification Crack Shielding Consecutive Debonds: Mode I Consecutive Debonds: Mode II Non-Consecutive Debonds

Strain Magnification

Consecutive Debonds: Mode I

Consecutive Debonds: Mode II

Consecutive Debonds: Mode II

Consecutive Debonds: Mode II

Non-Consecutive Debonds

 3×3 – coupling

Initiation of Transverse Cracks Debond Modeling

leling Debond ERR Concl

itiation of Transverse Cracks

Debond Modeling

and ERR Conclusions

Conclusions

 \rightarrow $f_{\text{straight crack}}(\Delta \theta): \sqrt{G_I}, \times G_{II}$

 $f_{\text{inclined crack}}(\Delta\theta)$: $\sqrt{G_I}$, $\sqrt{G_{II}}$, $\times \nexists f_{\text{inclined crack}}(\Delta\theta = \frac{\pi}{2})$

 $f_{\text{curved crack}}(\Delta \theta)$: $\sqrt{G_I}$, $\sqrt{G_{II}}$

⇒ scaling breaks for $\Delta\theta \leq 20^{\circ}$ → microstructure is important for small debonds!

