Лабораторная работа №6

Статическая маршрутизация VLAN

Коннова Татьяна Алексеевна

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	12
5	Контрольные вопросы	13

Список иллюстраций

3.1	Логическая область проекта с добавленным маршрутизатором	6
3.2	Конфигурация маршрутизатора	7
	Настройка порта 24 как trunk-порта	7
3.4	Конфигурация VLAN-интерфейсов маршрутизатора	8
3.5	Проверка доступности оконечных устройств	9
3.6	Проверка доступности оконечных устройств	9
3.7	Передвижения пакета ІСМР по сети	10
3.8	Передвижения пакета ІСМР по сети	10
3.9	Информация о PDU	11

1 Цель работы

Настроить статическую маршрутизацию VLAN в сети.

2 Задание

- 1. Добавить в локальную сеть маршрутизатор, провести его первоначальную настройку.
- 2. Настроить статическую маршрутизацию VLAN.
- 3. При выполнении работы необходимо учитывать соглашение об именовании

3 Выполнение лабораторной работы

Откроем файл .pkt, в котором мы выполняли предыдущую лабораторную работу(где уже есть сеть с какой-то настройкой).

В логической области проекта разместим маршрутизатор Cisco 2811, подключим его к порту 24 коммутатора msc-donskaya-sw-1 в соответствии с таблицей портов (рис. 3.1).

Рис. 3.1: Логическая область проекта с добавленным маршрутизатором

Используя приведённую в лабораторной работе последовательность команд по первоначальной настройке маршрутизатора, сконфигурируем маршрутизатор, задав на нём имя, пароль для доступа к консоли, настроем удалённое подключение к нему по ssh (рис. 3.2).

Рис. 3.2: Конфигурация маршрутизатора

Настроем порт 24 коммутатора msc-donskaya-sw-1 как trunk-порт (рис. 3.3).

```
msc-donskaya-takonnova-sw-1>en
Password:
msc-donskaya-takonnova-sw-1\( eonf t \)
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-takonnova-sw-1(config) \( \)\( e\) interface \( f\) (0/24 \)
msc-donskaya-takonnova-sw-1(config-if) \( \)\( e\)\( e\) interface \( f\) (0/24 \)
msc-donskaya-takonnova-sw-1(config-if) \( \)\( e\)\( e\
```

Рис. 3.3: Настройка порта 24 как trunk-порта

На интерфейсе f0/0 маршрутизатора msk-donskaya-gw-1 настроем виртуальные интерфейсы, соответствующие номерам VLAN. Согласно таблице IP-адресов (сделанной ранее) зададим соответствующие IP-адреса на виртуальных интерфейсах. Для этого используем приведённую в лабораторной работе последовательность команд по конфигурации VLAN-интерфейсов маршрутизатора (рис. 3.3).

Рис. 3.4: Конфигурация VLAN-интерфейсов маршрутизатора

Проверим доступность оконечных устройств из разных VLAN. Зайдем в терминал ПК (dk-donskaya-takonnova), посмотрим его ipconfig, увидим ip-адрес 10.128.3.201. Попробуем сначала пропинговать ПК из этой же сети. Как и раньше пингование проходит успешно (рис. 3.9).

Рис. 3.5: Проверка доступности оконечных устройств

Теперь попробуем пропинговать устройства из другой сети, по началу будет возникать задержка, потому что коммутаторы обучаются, но при повторном пингование задержка пропадает (рис. ??).

Рис. 3.6: Проверка доступности оконечных устройств

Используя режим симуляции в Packet Tracer, изучим процесс передвижения пакета ICMP по сети. Изучим содержимое передаваемого пакета и заголовки задействованных протоколов.

Сначала отправим пакет между устройствами в одной сети (рис. 3.6). Пакет движется через коммутаторы, к маршрутизатору не идет. Передача проходит успешно.

Рис. 3.7: Передвижения пакета ІСМР по сети

Теперь попробуем передать пакет между устройствами из разных сетей (рис. 3.7). Отследив путь, увидим, что пакет идет через коммутаторы к маршрутизатору, там он понимает, что ему делать дальше и идет к пункту назначения и обратно.

Рис. 3.8: Передвижения пакета ІСМР по сети

Посмотрим содержимое пакета (рис. 3.8). Увидим кадр канального уровня Ethernet, тут мы можем посмотреть mac-адреса источника и назначения. Далее идет кадр сетевого уроня IP, версия IP - 4, можем также увидеть ip-адреса источника и назначения, далее идет ICMP кадр.

Рис. 3.9: Информация о PDU

4 Выводы

В результате выполнения лабораторной работы я настроила статическую маршрутизацию VLAN в сети.

5 Контрольные вопросы

1. Охарактеризуйте стандарт IEEE 802.1Q.

IEEE 802.1Q — открытый стандарт, который описывает процедуру тегирования трафика для передачи информации о принадлежности к VLAN по сетям стандарта IEEE 802.3 Ethernet.

Так как 802.1Q не изменяет заголовки кадра (фрейма), то сетевые устройства, которые не поддерживают этот стандарт, могут передавать трафик без учёта его принадлежности к VLAN. Поскольку данный стандарт является открытым, он используется для построения «транковых» портов между оборудованием различных производителей. 802.1Q помещает внутрь фрейма тег, который передает информацию о принадлежности трафика к VLAN.

2. Опишите формат кадра IEEE 802.1Q.

Спецификация 802.1 Q определяет 12 возможных форматов инкапсуляции долнительного поля в кадры MAC-уровня. Эти форматы определяются в зависимости от трех типов кадров (Ethernet II, LLC в нормальном формате, LLC в формате Token Ring), двух типов сетей (802.3/Ethernet или Token Ring/FDDI) и двух типов меток VLAN (неявных или явных). Имеются также определенные правила трансляции исходных кадров Ethernet или Token Ring в помеченные кадры и обратной трансляции помеченных кадров в исходные.

Поле идентификатора протокола меток (Tag Protocol Identifier,TPI) заменило поле EtherType кадра Ethernet, которое заняло место после двухбайтного поля метки VLAN.

В поле метки VLAN имеется три подполя.

Подполе Priority предназначено для хранения трех бит приоритета кадра, что позволяет определить до 8 уровней приоритетов. Однобитный признак TR-Encapsulation показывает, содержат ли данные, переносимые кадром, инкапсулированный кадр формата IEEE (признак равен 1) 802.5 или же они соответствуют типу внешнего кадра (признак равен 0).

С помощью этого признака можно туннелировать трафик сетей Token Ring на коммутируемых магистралях Ethernet.

12-битный идентификатор VLAN (VID) уникально идентифицирует VLAN, к которой относится данный кадр.

Максимальный размер кадра Ethernet увеличивается при применении спецификации IEEE 802.1 Q не 4 байта- с 1518 байт до 1522 байт.