Growth of Functions

Marcos Daniel Calderón-Calderón

October 7, 2020

1 \mathcal{O} -Notation

1.1 Definition of \mathcal{O} -Notation

 $\mathcal{O}(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$

1.2 \mathcal{O} -Notation: Exercises

1. If
$$T(n) = a_k n^k + \cdots + a_1 n + a_0$$
. $T(n) = \mathcal{O}(n^k)$?

Solution. In this case, with $n_0 = 1$ and $c = |a_k| + \cdots + |a_1| + |a_0|$. For every $n \ge n_0$ then $T(n) \le cn^k = |a_k|n^k + \cdots + |a_1|n^k + |a_0|n^k$.

2. Is
$$n^k = \mathcal{O}(n^{k-1})$$
?

Solution. By contradiction, suppose $n^k = \mathcal{O}(n^{k-1})$ then, there exist constants n_0 and c such that $n^k \leq cn^{k-1}$ for all $n \geq n_0$. If the mentioned inequality is simplified, we obtain $n \leq c$ for all $n \geq n_0$ wich is clearly false. Thus $n^k \neq \mathcal{O}(n^{k-1})$.

3. If
$$T(n) = \frac{1}{2}n^2 + 3n$$
, it is true that $T(n) = \mathcal{O}(n^3)$?

Solution. With $n_0=1$ and c=4. For every $n\geq n_0$ then $T(n)\leq cn^3$.

