CS 771A: Introduction to Machine Learning			Quiz 2	(30 Aug 2019)	
Name					30 marks
Roll No	De	ept.			Page 1 of 2

Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in block letters neatly with ink.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ. We will entertain no requests for leniency.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

Q1. Write T or F for True/False (write only in the box on the right hand side) (8x2=16 marks)

	,	
1	When minimizing a convex function f using (sub)gradient descent (without any constraints), it does not matter what step lengths we choose since f is convex	
2	Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = 2x^2 + x + 2$, the subdifferential of f at $x = -1$ i.e. $\partial f(-1)$ is the set $\{-3, 3\}$	
3	Executing one step of mini-batch stochastic gradient descent with large batch size is usually more expensive that executing one step of stochastic gradient descent	
4	The Hessian of a function $f:\mathbb{R}^2 \to \mathbb{R}$ is always a 2×2 PSD matrix	
5	If $f,g:\mathbb{R}\to\mathbb{R}$ are two non-differentiable functions, then the function $f+g$ will always be non-differentiable as well	
6	k-means++ is a more powerful algorithm than k-means since k-means++ uses the Mahalanobis distance instead of the Euclidean distance to cluster data points	
7	Suppose X is a random variable such that $x \ge 1$ for all $x \in S_X$ where S_X is the support of X . Then the variance of X must be greater than 1 too i.e. $\mathbb{V}[X] \ge 1$	
8	Suppose we define Y as the indicator variable of an event A i.e. $Y = \mathbb{I}\{A\}$. Then $\mathbb{E}[Y]$ can never be strictly negative i.e. we must always have $\mathbb{E}[Y] \geq 0$	

Q2. Fill the circle (don't tick) next to all the correct options (many may be correct).(2x3=6 marks)

2.1 Suppose X,Y are two random variables (r.v. for short) such that X+Y=4 i.e. for all outcomes $\omega \in \Omega$, we have $X(\omega)+Y(\omega)=4$. Which all of the following statements is true?

Α	We must have $\mathbb{E}[X+Y]=4$	
В	If we are told that $\mathbb{E}[X]=5$, then $\mathbb{E}[Y]$ cannot be positive	C
С	We cannot have $\mathbb{V}[X+Y]=0$ i.e. we must have $\mathbb{V}[X+Y]>0$	
D	If X is a constant r.v. then Y must be a constant r.v. too	

2.2 Let Z denote a random variable with support $S_Z = \{0, 2\}$. Then which all of the given statements is true about Z?

Α	We must always have $\mathbb{E}[Z] \leq 1$	\bigcirc
В	We must always have $\mathbb{V}[Z] \leq 1$	\bigcirc
C	We must always have $\mathbb{E}[Z] \leq 2$	\bigcirc
D	We must always have $\mathbb{V}[Z] \leq 2$	\bigcirc

Page	2	of	2
------	---	----	---

Q3 Consider the optimization problem to the right. Write down the Lagrangian	1 ,
of the problem. Then write down the dual of the problem. Eliminate the primal	$ \min_{x \in \mathbb{R}} \frac{1}{2}x^2 $
variable and write down the simplified dual problem with the primal variable	s. t. $x \ge 2$
eliminated. Then solve the dual problem and write down the optimal values of	
the primal and dual variables that you have obtained. (1+1-	+1+2 = 5 marks)
Q4. Let $\mathbf{a} \in \mathbb{R}^d$ be a constant vector and $b \in \mathbb{R}$ be a constant scalar. Let $f \colon \mathbb{R}^d \to \mathbb{R}^d$	${\mathbb R}$ be a function
defined as $f(\mathbf{x}) = \max\{\mathbf{a}^{T}\mathbf{x} + b, 0\}$. Find an expression for subdifferential of f at	any $\mathbf{x} \in \mathbb{R}^d$.
Show all the main steps of your derivation briefly in the space provided.	(3 marks)
	l

----- END OF QUIZ ------