Name:	Signature:
P525/1	
CHEMISTRY	
Paper 1	
April./May. 2022	S.5
2 ¾ hours	

THE CHEMISTRY DEPARTMENT END OF TERM ONE- 2022

CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS:

Answer all questions in this section A and six questions in section B.

Allanswers must be written in the spaces provided.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers, with equations where applicable.

Where necessary, use the following;

Molar gas constant, $R=8.31 \text{ JK}^{-1}\text{mol}^{-1}$.

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273K.

Standard pressure = 101325Nm⁻²

For Teachers' Use Only																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

Answer all questions in this section

. (a) Alu moist	ıminium chloride is covalent and rapidly undergoes air.	hydrolysis in
(i)	State three other properties to show that alumissis covalent.	$(1\frac{1}{2} marks)$
(ii)	Write an equation for the hydrolysis of aluminic moist air.	um chloride in (01 mark)
(b) (i) laboro	State how anhydrous aluminium chloride can be pratory.	epared in the (01 mark)
(ii) W	rite equation for the reaction in b(i) above.	(01 mark)
 ? (a) Cor	nplete the following nuclear reactions;	
. ,	${}_{4}^{9}Be + \gamma \longrightarrow {}_{4}^{8}Be + \dots \dots$	(01 mark)
0.012	^{19}F + $^{1}_{0}n$ \longrightarrow	ntegrate into or 0.016mg of

	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••••	••••••	••••••	••••••	•••••	••••••		•••••
			• • • • • • • • • • • • • • • • • • • •									
			• • • • • • • • • • • • • • • • • • • •					•••••			•••••	
			•••••									
3.		•		following the rec	_	•	s and	in	each	case	outline	the
	(a)	CH_3	CH_2C	H_2OH		Con	ic.H ₂ SC heat) ₄ →			(02 mc	arks)
		•••••										
	(b)	CH_3	<i>CH</i> =	CH_2		Br_2/H_2) 				(03 m	arks)
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••			••••••	••••••			
••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••			•••••	••••••		••••••	
••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••			• • • • • • • • • • • • • • • • • • • •	••••••		••••••	
••••		•••••	• • • • • • • • • • • • • • • • • • • •		•••••			• • • • • • • • • • • • • • • • • • • •	••••••			
••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••			• • • • • • • • • • • • • • • • • • • •	••••••		••••••	

4. (a) Define t	he term nuclear stability .	(01 mark)
	graph below shows the variation of n h proton numbers.	umber of neutrons in
Neutron	Stability	⁷ belt
Number	///r < s	Stability line

proton number Explain why the band of nuclear stability (stability belt) deviates from n/p = 1 (stability line) after atomic number 20. (02 marks)

82

20

	etermine the number of alpha and beta particles th ed for $^{232}_{\ 90}Th$ to transform to $^{208}_{\ 82}Pb$	at must be (02 marks)							
	(a) Lead(IV) oxide reacts with hydrochloric acid according to the redox reaction below:								
(i)	$PbO_2(s) + 4HCl(aq) \longrightarrow PbCl_2(aq) + Cl_2(g) + 2d$ State the condition(s) for the above reaction.	- ` `							
(ii)	Write the half reduction and oxidation reaction overall redox reaction above.	ns from the (02 marks)							
	ead(IV) oxide was added to an acidified solution and the mixture heated.	of potassium							
(i)	State what was observed.	(01 mark)							
(ii)	Write equation for the reaction that took place.								
produ (i)	ete each of the following equations and name the ct. $ (CH_3)_2C = CH $ * main product;	(1 ½ marks)							

(ii)	$\frac{Conc. HNO_3}{Conc. H_2SO_4, 55-60^{\circ}C}$	(1 ½ marks)
Name of	main product;	
(iii)	$CH_3CH = CH_2 \qquad \frac{H^+/H_2O}{heat}$	(1 ½ marks)
Name of	main product;	
7. (a) Pot	assium manganate (VII) is a commonly used reag	ent in volumetric
analys	is and yet it is not a primary standard.	
(i) Wh	at is meant by the term 'primary standard'?	(01 mark)
standard	e two reasons why potassium manganate (VII)	(01 mark)
potassiun	ain why hydrochloric acid is not used to acidin n manganate(VII) solution in volumetric analysis.	(03 marks)
•••••		
•••••		
•••••		

	what would be observed and write equation	(s) for the reaction(s)
(i)	ake place when: hydrogen sulphide is bubbled through c acidified potassium dichromate(VI).	an aqueous solution of
Observat	•	(1 ½ marks)
Equation		(1 ½ marks)
(ii)	An aqueous solution of sodium thiosulph air.	ate is left standing in
Observat	rion	(1 ½ marks)
Equation		(1 ½ marks)
effect condit	equation(s) to show how the following ted. In each case indicate the necesions. $CH_3CH_2C \equiv CH \text{ to } CH_3CH_2CHCH_3$	

(b) Benzene from ethanol.	(04 marks)
SECTION B: (54 MARKS)	
Answer any six questions from this sec 10. (a) (i) Define the term enthalpy of a reaction.	tion. (01 mark)
(ii) State four factors affecting the quantity of an	enthalpy change
of a reaction.	(02 marks)
	••••••
	•••••
••••••	••••••
(b) The standard heat of formation of ethanol, co water are -227.0, -393.5 and -285.5 kJmol ⁻¹ res	
(i) Calculate the standard heat of combustion of information above.	ethanol using the $(3\frac{1}{2} marks)$
injoinjunon above.	(J Z Murks)

	•••••		
			•••••
	(ii)	From your calculation in above and energy changes	s in <i>b(i)</i>
		above, what can be the ideal use of ethanol in che	
		a reason for your answer.	(1 ½ marks)
	••••••		•••••
	•••••		
11		w how the following conversions can be effected.	
11		w how the following conversions can be effected. cate the reagents and conditions for the reaction	
11	indic	w how the following conversions can be effected. cate the reagents and conditions for the reaction	In each case,
11	indic	w how the following conversions can be effected. cate the reagents and conditions for the reaction	In each case,
	indic	w how the following conversions can be effected. cate the reagents and conditions for the reaction	In each case,
	indic	w how the following conversions can be effected. cate the reagents and conditions for the reaction	In each case,
	indic	w how the following conversions can be effected. cate the reagents and conditions for the reaction	In each case,

	(02 marks)
(c) \boldsymbol{R} reacts with sodium metal with evolution of a	gas. Write the
structural formulae of all possible is	
	(02 marks)
(d) R reacts with anhydrous zinc chloride an	
hydrochloric acid to form a cloudy solution in about (i) Identify R	o minutes. (01 mark)
(i) Identify R	,
(ii) Write equation(s) to show how can be synthes	ized from
but-2-ene	(01 mark)
12 Control to the Collection of Associations	
13. Explain the following observations.	
(a) When refluxed with aqueous potassium hydrox	kide followed by
	•

•••••			•••••		•••••	••••••
•••••						•••••
						•••••
(b)	Iron(III) chloride					
	aqueous solution.					narks)
(c) ⁻	The mass spectrum ass to charge ratio	of dichloro	methane(C	SH_2Cl_2) sh	ows three	peaks
•••••						
•••••		••••••	••••••			•••••
•••••		••••••	••••••	••••••	•••••••	•••••
				•••••		•••••

14.(a) V (i)	Vrite equation for the reaction between water and the Aluminium	$(1\frac{1}{2} \text{ marks})$
(ii)	Sulphur	(1 ½ marks)
(iii)	Phosphorus	(1 ½ marks)
(b)	Write an equation for the reaction between concent hydroxide and : Aluminium	(1 ½ marks)
(ii)	Chlorine	$(1\frac{1}{2} \text{ marks})$
(iii)	Aluminium oxide	(1 ½ marks)
15.(a) A	In organic compound X has a molecular formula C4H9Br Name the functional group in X.	(01 mark)

(ii)	Write the structural formulae and name of X.	(04 marks)
(iii)	Identify two isomers in a(ii) that we ethanolic potassium hydroxide solution	then reacted with hot give the same product. (01 mark)
(iv)	Write the structural formula and name	of the product in a(iii) (01 mark)
and ben	line the mechanism for the reaction betw zene in presence of an acid.	een the product in a(iii) (02 marks)

16.(a) Write an equation between water and the oxide of	
(i) Sodium	$(1\frac{1}{2} marks)$
(ii) Magnesium	(1 ½ marks)
(iii) Phosphorus	(1 ½ marks)
(b)Write equation for the reaction between concentrate	ed sulphuric acid
and:	(4.1. 1.1
(i) magnesium	(1 ½ marks)
(ii) aluminium	(1 ½ marks)
(iii) phosphorus	(1 ½ marks)
17. Write a mechanism for the reaction that occurs be of:	tween a mixture
(a) ethanol and concentrated sulphuric acid at 140°C.	(2 ½ marks)

(b) boiling methylbenzene and chlorine in the presence light.	of ultraviolet (03 marks)
(c) butan-1-ol and hot concentrated orthophosphoric acid	l. (3 ½ marks)

THE PERIODIC TABLE

1	2			/								3	4	5	6	7	8
1.0 H 1					-						-					1.0 H 1	4.0 He 2
	9.0 Be 4								*			10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25			-	63.5 Cu 29	65.7 Zn 30	69.7 Ga 31		100000	79.0 Se 34	79.9 Br 35	83.8 Kr 36
85.5 Rb 37		88.9 Y 39	91.2 Zr 40	92.9 Nb 41		98.9 Tc 43	101 Ru 44	103 Rh 45		108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52		131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75		192 Ir 77	195 Pt 78	197 Au 79	1100000	204 TI 81	207 Pb 82	Bi	Po	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89															
			139 La 57	140 Ce 58	141 Pr 59	144 Nd 60		150 Sm 62	100000000000000000000000000000000000000	157 Gd 64				T-170	169 Tm 69	173 Yb 70	71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95	247 Cm 96	247 Bk 97	251 Cf 98	254 Es 99	257 Fm 100		254 No 102	260 Lw 103