Nome: Arthur Hernandes Silva de Souza

$$A \cdot B$$

$$A \cdot B = \begin{bmatrix} -1 & 2 & 0 \\ 1 & -3 & 4 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & -2 \\ 2 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & -2 \\ 4 & 3 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & -2 \\ 4 & 3 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} -4 & 9 & -4 \\ 2 & -6 & 8 \end{bmatrix}$$

B.
$$A = \begin{bmatrix} 3 & -2 \\ 1 & -3 \\ -4 & 0 \end{bmatrix}$$
. $A = \begin{bmatrix} 1 & -2 & -9 \\ 5 & -24 & 2 & -12 \\ -20 & -8 & 4 & -1 & 9 \\ -20 & -8 & +0 & 4 & +0 \end{bmatrix} = \begin{bmatrix} 1 & -2 & -9 \\ -16 & -10 & -10 \\ -20 & -8 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

A. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A = \begin{bmatrix} -1 & 0 \\ 1 & 4 \end{bmatrix}$

B. $A =$

Ouma motig 2 x 4; es linhos serão es olimentes es restourantes, e as columos serão es olimentes ronumidos nos estabeleimentes. 25 50 200 20 20 28 60 150 22 Numo motriz 4x2, os los representam es al-mentes, e as colunas es d'Aribridares. Os volores d'Aribridas rerõe e prece los estas produtes em coda ditribudor.

Porticularidades sabe produte matricial
0
Drangier uma motriz t vongreta Poz com que a merma reterne ou reu Permote eriginal.
$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ $A^{\dagger} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ $A^{\dagger} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
1000 A = (At) t
de motriges
Quendo Amxn Brxp e Cpxp9 (A.B). C = A. (B.C)
Se Am , Bm e Cm , entôg todos es indus Nos queis, logo $m = m = p = q$. Sindo essim, a propriedote e verdodina, e $A(BC) = C(AB)$ (Setra d.)

