

Teória sietí

Opakovanie

Náhodné požiadavky

v náhodnom

čase mieste

Náhodné požiadavky

Zdroje požiadaviek

Komunikačné prostredie

Komunikačné prostredie

Voľba podľa vlastností

Výhody

Komunikačné prostredie		
delené	spoločné	
 nízka réžia na prenos garancia kvality počas prenosu nemožnosť "kradnutia kapacity" 	 netreba výstavbu spojenia možnosť krátkodobého prekročenia kapacity vyššie využitie prostredia možnosť garancie prístupu 	

KIS – FRI ŽU

Sieť integrovaných služieb

Ktorý princíp použiť?

Komunikačné prostredie

Štúdium vlastností prostredia

delené prostredie = n x spoločné prostredie

preto začneme štúdiom vlastností spoločného komunikačného prostredia

Klasifikácia prostredí

bez riadenia prístupu s riadením prístupu

Siet' ALOHA

Spoločné komunikačné prostredie bez riadenia prístupu

Priepustnosť prostredia

Stredný počet vysielaní

Klasifikácia prostredí

Klasifikácia prostredí

Spoločné komunikačné prostredie s riadením prístupu so synchrónnym prenosom s neúplnou s úplnou informáciou o stave prostredia

Spoločné komunikačné prostredie

s úplnou informáciou o stave synchrónneho kanála

žiadosti o prenos

Spoločné komunikačné prostredie

s úplnou informáciou o stave synchrónneho kanála

Poissonov proces požiadaviek

$$p_k(t) = P\{N(t) = k\} = \frac{(\lambda t)^k}{k!} e^{-\lambda t} \ k = 0,1,... ; \ 0 \le t$$

Výstupný proces požiadaviek

Intenzita výstupného procesu

intenzita v stave 1

$$\mu = \lim_{t \to 0^+} \sum_{k=1}^{\infty} P\{N(t) = k\}$$

Intenzita výstupného procesu

nech sú časy obsadenia (vysielania) nezávislé náhodné veličiny s exponenciálnym rozdelením

$$F(t) = P\{\tau_k < t\} = 1 - e^{-\alpha t}, \forall k, \alpha > 0, t \ge 0$$

Dokážte:

$$P{N(t)=k} = \frac{(\alpha t)^k}{k!} e^{-\alpha t}, \quad k = 0,1,...$$

Stavový proces

stavy prostredia

Stavový proces

stavy prostredia

matica intenzít

$$\mathbf{\Lambda} = \begin{pmatrix} -\lambda & \lambda \\ \mu & -\mu \end{pmatrix}$$

Určenie invariantného rozdelenia

$$0 = \pi \Lambda$$

Spoločné komunikačné prostredie s úplnou informáciou o stave synchrónneho kanála

$$\mathbf{\Lambda} = \begin{pmatrix} -\lambda & \lambda \\ \mu & -\mu \end{pmatrix} \qquad \mathbf{0}$$

$$\boldsymbol{\pi} = (\pi_0, \pi_1)$$

Určenie invariantného rozdelenia

$$0 = -\lambda \pi_0 + \mu \pi_1$$
$$0 = \lambda \pi_0 - \mu \pi_1$$

Rovnice sú lineárne závislé

$$1 = \pi_0 + \pi_1$$

$$\pi_0 = \frac{\mu}{\lambda + \mu} \qquad \pi_1 = \frac{\lambda}{\lambda + \mu}$$

Priepustnosť prostredia s odmietaním

$$\pi_0 = \frac{\mu}{\mu + \lambda'}$$
 $\pi_0 = \frac{\lambda}{\lambda'}$

$$\rho = \lambda \frac{1}{\mu} \qquad \rho' = \lambda' \frac{1}{\mu}$$

Priepustnosť prostredia s odmietaním

$$\pi_0 = \frac{1}{1+\rho'} \qquad \pi_0 = \frac{\rho}{\rho'}$$

$$\rho = \frac{\rho'}{1 + \rho'}$$

Priepustnosť prostredia s odmietaním

Priepustnosť prostredia s opakovaním

$$\pi_0 = \frac{\mu}{\mu + \lambda'}$$
 $\pi_0 = \frac{\lambda}{\lambda'}$

$$\rho = \lambda \frac{1}{\mu} \qquad \rho' = \lambda' \frac{1}{\mu}$$

Priepustnosť prostredia s opakovaním

$$\pi_0 = \frac{1}{1+\rho'} \qquad \pi_0 = \frac{\rho}{\rho'}$$

$$\rho = \frac{\rho'}{1 + \rho'}$$

Priepustnosť prostredia s opakovaním

Stabilita prostredia s odmietaním

Pravdepodobnosť opakovania

Stredný počet vysielaní

Porovnanie prevádzkových parametrov

		Systém s opakovaním	taktovaná ALOHA
celkové zaťaženie systému		50%	50%
z toho	čerstvá prevádzka	66,6%	60,6%
	opakovaná prevádzka	33,3%	39,4%
pravdepodobnosť opakovania /kolízie		0,33	0,39
stredný počet vysielaní		1,5	1,65

KIS – FRI ŽU

Vplyv času šírenia

Spoločné komunikačné prostredie s riadením prístupu so synchrónnym prenosom s neúplnou s úplnou informáciou o stave prostredia

Sústredené komunikačné prostredie

Nulový čas šírenia

Idealne sústredené prostredie

Rozl'ahlé komunikačné prostredie

doba vysielania informácie 1 rámec

Ideálne rozľahlé prostredie

Keby stanice vedeli o obsadení a mohli odložiť

Ideálne rozľahlé prostredie

Klasifikácia prostredí

Spoločné komunikačné prostredie s riadením prístupu so synchrónnym prenosom s úplnou s neúplnou informáciou o stave prostredia

KIS – FRI ŽU

Ethernet

1973 Xerox - Robert Metcalfe, David Boggs

Sieťová karta

Ethernet

Logická štruktúra: zbernica

Riadenie pristupu: CSMA/CD

Carrier Sense Multiple Access with Collision Detection

Viacnásobný prístup s počúvaním nosnej a detekciou kolízií

Referencia: IEEE 802.3

Prednáška 8

Ďakujem za pozornosť