Introduction to color science

- Trichromacy
- Spectral matching functions
- CIE XYZ color system
- xy-chromaticity diagram
- Color gamut
- Color temperature
- Color balancing algorithms

Newton's Prism Experiment - 1666

Color: visible range of the electromagnetic spectrum

Radiometric quantities

Quant	ty Unit				Dimens	Notes				
Name	Symbol ^[nb 1]	Name	Symbol		Symbol	Notes				
Radiant energy Radiant energy dens Radiant flux Spectral flux Radiant intensity Spectral intensity	Radiance		$L_{\mathrm{e},\Omega}^{[\mathrm{nb}]}$	5]	watt per steradian per square metre			W·sr ^{−1} ·m ^{−2}	M·T ^{−3}	Radiant flux emitted, reflected, transmitted or received by a <i>surface</i> , per unit solid angle per unit projected area. This is a <i>directional</i> quantity. This is sometimes also confusingly called "intensity".
Radiance Spectral radiance Irradiance Spectral irradiance Radiosity	Spectral radiance		$L_{\mathrm{e},\Omega,v}^{\mathrm{[r]}}$ or $L_{\mathrm{e},\Omega,\lambda}^{\mathrm{[r]}}$		or	steradian per square metre per steradian per square metre, pe		$W \cdot sr^{-1} \cdot m^{-2} \cdot Hz^{-1}$ or $W \cdot sr^{-1} \cdot m^{-3}$	M·T ⁻² <i>or</i> M·L ⁻¹ ·T ⁻³	Radiance of a <i>surface</i> per unit frequency or wavelength. The latter is commonly measured in W·sr ⁻¹ ·m -2·nm ⁻¹ . This is a <i>directional</i> quantity. This is sometimes also confusingly called "spectral intensity".
Spectral radiosity Radiant exitance	Irradiance		E _e ^[nb 2] wa		watt per square metre			W/m ²	M·T ⁻³	Radiant flux <i>received</i> by a <i>surface</i> per unit area. This is sometimes also confusingly called "intensity".
Spectral exitance	or	or		or W/m ³	or M·L ^{−1} ·T	"Spectral emittance" is an old term for this quantity. This	is sometimes als	o confusingly called "spectral intensity".		
Radiant exposure	$M_{\rm e,\lambda}^{ m [nb~4]}$ watt per square metre, per metre $H_{\rm e}$ joule per square metre		е	J/m ²	M·L ⁻¹ ·T		diant energy received by a <i>surface</i> per unit area, or equivalently irradiance of a <i>surface</i> integrated over time of adiation. This is sometimes also called "radiant fluence".			
Spectral exposure	H _{e,v} ^[nb 3] joule per square metre per hertz		:	J·m ⁻² ·Hz ⁻¹	Z ⁻¹ M·T ⁻¹ Radiant exposure of a <i>surface</i> per unit frequency or wavelength.		elength. The latte	r is commonly measured in J·m ⁻² ·nm ⁻	1.	

Photometric quantities

Quantity	Unit		Dimension			
Name	Symbol ^[nb 1]	Name	Symbol	Symbol	Notes	
Luminous energy	Q _v [nb 2]	lumen second Im·s		T.J [nb 3]	Units are sometimes called talbots.	
Luminous flux / Luminous power	Φ _V [nb 2]	lumen (= cd·sr)	lm	J [nb 3]	Luminous energy per unit time.	
Luminous intensity	I _V	candela (= lm/sr)	cd	J [nb 3]	Luminous power per unit solid angle.	
Luminance	L_{V}	candela per square metre	cd/m ²	L ^{−2} ·J	Luminous power per unit solid angle per unit <i>projected</i> source area. Units are sometimes called <i>nits</i> .	
Illuminance	E _v	lux (= lm/m ²)	lx	L ⁻² ·J	Luminous power incident on a surface.	
Luminous exitance / Luminous emittance	M _v	lux	lx	L ⁻² ⋅J	Luminous power <i>emitted</i> from a surface.	
Luminous exposure	H _v	lux second	lx⋅s	L ⁻² ·T·J		
Luminous energy density	ω_{v}	lumen second per cubic metre	lm·s·m ⁻³	L ⁻³ .T.J		
Luminous efficacy	η ^[nb 2]	lumen per watt	lm/W	$M^{-1} \cdot L^{-2} \cdot T^3 \cdot J$	Ratio of luminous flux to radiant flux.	
Luminous efficiency / Luminous coefficient	V			1		

Human retina

[Roorda, Williams, 1999]

Pseudo-color image of nasal retina, 1 degree eccentricity, in two male subjects, scale bar 5 micron

Absorption of light in the cones of the human retina

Three-receptor model of color perception

[T. Young, 1802] [J.C. Maxwell, 1890]

- Different spectra can map into the same tristimulus values and hence look identical ("metamers")
- Three numbers suffice to represent any color

Color matching

- Suppose 3 primary light sources with spectra $P_k(\lambda)$, k = 1, 2, 3
- Intensity of each light source can be adjusted by factor β_k
- How to choose β_k , k = 1,2,3, such that desired tristimulus values $(\alpha_R, \alpha_G, \alpha_B)$ result?

$$C(\lambda) = \int_{\lambda}^{S_{R}(\lambda)C(\lambda)d\lambda} \cdots \alpha_{R}$$

$$\beta_{1}P_{1}(\lambda) + \beta_{2}P_{2}(\lambda) + \beta_{3}P_{3}(\lambda)$$

$$\int_{\lambda}^{S_{R}(\lambda)C(\lambda)d\lambda} \cdots \alpha_{B}$$

$$\int_{\lambda}^{S_{R}(\lambda)C(\lambda)d\lambda} \cdots \alpha_{B}$$

$$\alpha_{i} = \int_{\lambda} S_{i}(\lambda) \left[\beta_{1} P_{1}(\lambda) + \beta_{2} P_{2}(\lambda) + \beta_{3} P_{3}(\lambda) \right] d\lambda$$

$$= \beta_{1} \cdot K_{i,1} + \beta_{2} \cdot K_{i,2} + \beta_{3} \cdot K_{i,3}$$
with $K_{i,j} = \int_{\lambda} S_{i}(\lambda) P_{j}(\lambda) d\lambda$

Color matching is linear!

Additive vs. subtractive color mixing

Color matching experiment

Courtesy B. Wandell, from [Foundations of Vision, 1996]

Spectral matching functions

- Color matching experiment: Monochromatic test light vs. mixture of 3 monochromatic primaries
- "Negative intensity": color is added to test color
- CIE (Commision Internationale de L'Eclairage), 1931: Spectral RGB primaries (scaled, such that $R_{\lambda}=G_{\lambda}=B_{\lambda}$ matches spectrally flat white).

Luminosity function

- Experiment:
 - Match the brightness of a white reference light and a monochromatic test light of wavelength λ
- Links photometric to radiometric quantities

CIE 1931 XYZ color system

Properties:

All positive spectral matching functions

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} .490 & .310 & .200 \\ .177 & .813 & .011 \\ .000 & .010 & .990 \end{pmatrix} \begin{pmatrix} R_{\lambda} \\ G_{\lambda} \\ R_{\lambda} \end{pmatrix}$$

- Y corresponds to luminance
- Equal energy white: X=Y=Z
- Virtual primaries

Color gamut and chromaticity

$$x = \frac{X}{X + Y + Z}$$
$$y = \frac{Y}{X + Y + Z}$$

CIE chromaticity diagram

Perceptual non-uniformity of xy chromaticity

Just noticeable chromaticity differences (10X enlarged)

[MacAdam, 1942]

Color gamut

NTSC phosphors

R: x=0.67, y=0.33 G: x=0.21, y=0.71 B: x=0.14, y=0.08

Reference white: x=0.31, y=0.32 Illuminant C

White at different color temperatures

Blackbody radiation

Planck's Law, 1900

$$B_{T}(\lambda) = \frac{2hc^{2}/\lambda^{5}}{e^{hc/\lambda kT} - 1}$$

Wien's Law

$$\lambda_{peak}[nm] = \frac{2,900,000}{T[K]}$$

Color balancing

- Effect of different illuminants can be cancelled only in the spectral domain (impractical)
- Color balancing in 3-d color space is practical approximation
- Color constancy in human visual system: gain control in cone space LMS [von Kries, 1902]
- Von Kries hypothesis applied to image acquisition devices (cameras, scanners)

• How to determine k_L , k_M , k_S automatically?

Color balancing (cont.)

Von Kries hypothesis

$$\begin{pmatrix} L' \\ M' \\ S' \end{pmatrix} = \begin{pmatrix} k_L & 0 & 0 \\ 0 & k_M & 0 \\ 0 & 0 & k_S \end{pmatrix} \begin{pmatrix} L \\ M \\ S \end{pmatrix}$$

If illumination (or a patch of white in the scene) is known, calculate

$$k_{L} = \frac{L_{desired}}{L_{actual}}; \quad k_{M} = \frac{M_{desired}}{M_{actual}}; \quad k_{S} = \frac{S_{desired}}{S_{actual}}$$

Color balancing with unknown illumination

Gray-world

$$k_{L} \sum_{x,y} L[x,y] = k_{M} \sum_{x,y} M[x,y] = k_{S} \sum_{x,y} S[x,y]$$

Scale-by-max

$$\left| k_{L} \max_{x,y} L \lfloor x, y \rfloor = k_{M} \max_{x,y} M \lfloor x, y \rfloor = k_{S} \max_{x,y} S \lfloor x, y \rfloor \right|$$

Shades-of-gray[Finlayson, Trezzi, 2004]

$$k_{L}\left(\sum_{x,y}L^{p}\left[x,y\right]\right)^{\frac{1}{p}}=k_{M}\left(\sum_{x,y}M^{p}\left[x,y\right]\right)^{\frac{1}{p}}=k_{S}\left(\sum_{x,y}S^{p}\left[x,y\right]\right)^{\frac{1}{p}}$$

- » Special cases: gray-world (p = 1), scale-by-max $(p = \infty)$
- » Best performance for $p \approx 6$
- Refinements: smooth image, exclude saturated color/dark pixels, use spatial derivatives instead ("gray-edge," "max-edge") [van de Weijer, 2007])

Color balancing example

Color balancing example

Original image courtesy Ciurea and Funt

Color conversion cheat sheet (e.g., for HW2)

Great website for insights, every possible color conversion scheme, and much more: www.brucelindbloom.com

Spectrum to CIE XYZ: (no illuminant)

$$X = \int_{\lambda} \overline{x}(\lambda) P(\lambda) d\lambda$$

$$Y = \int_{\lambda} \overline{y}(\lambda) P(\lambda) d\lambda$$

$$Z = \int_{\lambda} \overline{z}(\lambda) P(\lambda) d\lambda$$

CIE XYZ to CIE xyY: $x = \frac{X}{X + Y + Z}$

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$Y = Y$$

CIE XYZ to CIE RGB:
$$\begin{bmatrix} R_{linear} \\ G_{linear} \\ B_{linear} \end{bmatrix} = M^{-1} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

approximation of CIE gamma: $\begin{cases} R & G & R \end{cases}$

$$\left\{R,G,B\right\} = \left\{R,G,B\right\}_{linear}^{1/\gamma}$$

$$\left[egin{array}{c} X \ Y \ \end{array}
ight] = M \left[egin{array}{c} R_{linear} \ G_{linear} \ \end{array}
ight]$$