From fastq to trim primers

Contents

- Install softwares
- Concat fastqs into one fastq
- Quality filter
- Length Filter
- Primer match and trim

Let's install them all

Software Used

Concat fastqs into one fastq command line

Quality filter NanoFilt

Length Filter seqkit

Primer match and trim cutadapt

Trim extra ONT adapters porechop

Cluster sequences into MOTUs VSEARCH

BLAST BLAST

Other helper softwares: bbmap, R, command line

Set up

- Download Fastq folder from google drive
- Make folder in annotate home directory: data/florida_cf
- transer fastq folder to data/florida_cf
- transfer other files too

Concat fastqs into one fastq

cat data/florida_cf/fastq/**/*.fastq > data/florida_cf/barcodes-04-10.fastq

Quality Filter

First, let's actually look at a fastq file

head data/florida_cf/barcodes-04-10.fastq tail data/florida_cf/barcodes-04-10.fastq Note: ONT uses
Sanger fastq file
notation

https://www.cs.cmu.edu/~pattis/15-1XX/common/handouts/ascii.html

Q = ascii value - 33

Quality filter (rm reads with average q score < 10)

```
singularity exec images/nanofilt.sif \
NanoFilt --q 10 data/florida_cf/barcodes-04-10.fastq > \
data/florida_cf/barcodes-04-10.q10.fastq
```

View stats before and after

Now starts primer specific steps (needs to be repeated for each primer used)

Length Filter

- Let's focus on MiFish (this run used Folmer, MiFish, and V5)
- Miya MiFish amplicon length = 163-185 bp
- Raw Length out of sequencer = ?
 - o primers x2 + barcodes x2 + adapters x? + amplicon = ?

Can just look at empirical length distribution

```
singularity exec images/bbmap.sif \
readlength.sh \
in=data/florida_cf/barcodes-04-10.q10.fastq \
out=data/florida_cf/barcodes-04-10.q10.readlength.txt
```

(bonus to plot it)

>MiFish_Forward GTCGGTAAAACTCGTGCCAGC >MiFish_Reverse CATAGTGGGGTATCTAATCCCAGTTTG

How many times to run cutadapt per primer set?

Need to consider

- Linked + unlinked primers
- Reverse complement (bc of pcr dna replication?)

Unlinked: CAT... Unlinked: ...CGT Linked: CAT...CGT

Unlinked: ACG... Unlinked: ...ATG Linked: ACG...ATG

con't

Cutadapt parameters

https://cutadapt.readthedocs.io/en/stable/guide.html

- -g 5' adapter
- -a 3' adapter
- -e error tolerance (proportion different bwtn primer and read)
- --no-indels no insertions or deletions when matching primers
- --discard-untrimmed output will not contain reads that didn't match the primer
 - --cores number of cpu cores to use (don't really need bc cutadapt
 - is very fast)

>MiFish_Forward GTCGGTAAAACTCGTGCCAGC >MiFish_Reverse

CATAGTGGGGTATCTAATCCCAGTTTG

con't

Linked primer #1 - cutadapt command

https://en.vectorbuil der.com/tool/dnareversecomplement.html

```
singularity exec images/cutadapt.sif \
cutadapt -g GTCGGTAAAACTCGTGCCAGC...CAAACTGGGATTAGATACCCCACTATG \
--cores 4 -e Ø.2 --no-indels --discard-untrimmed \
data/florida_cf/barcodes-Ø4-1Ø.q1Ø.fastq > \
data/florida_cf/barcodes-Ø4-1Ø.q1Ø.mifish_linked_1.fastq
```

Next Steps

- Look at read length distribution
- Repeat for other linked primer
- Repeat for unlinked primers x4
- combine linked x2
- combine unlinked x4

Enough for today

