Γραμματική λογικών εκφράσεων

(για συνθήκες σε if/while/for statements)

Στόχος

- Κατασκευή γραμματικής λογικών εκφράσεων
 - Για χρήση σε συνθήκες (conditions)
- Ζητούμενο
 - Δυνατότητα συνδυασμών με λογικούς τελεστές
 - and, or, not
 - Με τη συνήθη προτεραιότητα
 - Με αποφυγή αχρείαστων υπολογισμών (short-circuiting)

Μέρη λογικής έκφρασης

- Συγκρίσεις
 - π.χ. expr >= expr (όλοι οι γνωστοί τελεστές σύγκρισης)
- Άλλες λογικές εκφράσεις σε παρένθεση
- (Αριθμητικές) εκφράσεις
 - Έμμεση μετατροπή σε λογική έκφραση, όπως στις συνήθεις γλώσσες προγραμματισμού

Βήμα 1ο

- Κατασκευάστε την LL(1) γραμματική των λογικών εκφράσεων
- Βρείτε τα τερματικά σύμβολα που απαιτούνται και κατασκευάστε τον λεκτικό αναλυτή (plex)
 - Προς το παρόν θεωρήστε ότι οι (αριθμητικές) εκφράσεις αντιπροσωπεύονται από το προσωρινό τερματικό σύμβολο "expr"
 - Θα το διορθώσουμε αργότερα

Λύση

Σύνολα FIRST	Κανόνες	
not expr lparen	Lexpr	→ Lterm Ltermtail
or	Ltermtail	→ or Lterm Ltermtail ε
not expr lparen	Lterm	→ Lfactor Lfactortail
and	Lfactortail	→ and Lfactor Lfactortail ε
not expr lparen	Lfactor	→ Latom not Latom
expr lparen	Latom	→ expr Latom_rest lparen Lexpr rparen
relop	Latom_rest	→ relop expr ε

Αντικαταστήστε με Lfactor -> not Lfactor | Latom αν θέλετε να υποστηρίζετε εκφράσεις όπως "not not expr"

Βήμα 2ο

- Κατασκευάστε τον συντακτικό αναλυτή
 - Σύμφωνα με τη γραμματική
 - Απλά συντακτική ανάλυση, όχι παραγωγή AST

Βήμα 3ο

- Προσθέστε στον κώδικα του συντακτικού αναλυτή την παραγωγή του AST
 - Αποφασίστε για τα είδη κόμβων στο AST
 - Για κάθε είδος κόμβου περιγράψτε τον τρόπο επεξεργασίας του
 - Κατασκευάστε τον κώδικα για το tree-walking του AST (εκτός από το expr που θα αντικατασταθεί στη συνέχεια)

Βήμα 4ο

- Προσθέστε στον συντακτικό αναλυτή τις μεθόδους ανάλυσης του (αριθμητικού) Expr
 - Είναι η γραμματική που προκύπτει LL(1);
 - Υπόδειξη: ποιο το FIRST set του Expr;
 - Στον συντακτικό αναλυτή με τη μέθοδο recursive descent μπορούμε να το προσπεράσουμε :-)

Βήμα 5ο

- Συνδυάστε τον κώδικα tree-walking για τις αριθμητικές εκφράσεις με εκείνον των λογικών εκφράσεων
 - Θα πρέπει να μπορείτε να υπολογίσετε τώρα την τιμή (true/false) μιας λογικής έκφρασης (χωρίς μεταβλητές)