

How DoorDash leverages
Al in its world-class
on-demand
logistics engine

Raghav Ramesh DoorDash

How DoorDash leverages Al in its on-demand Logistics Engine

Raghav Ramesh Machine Learning Engineer, DoorDash May 2018

Outline

DoorDash Overview

Al in Logistics

Delivery Time Predictions

Batching Algorithms

Logistics Engine

The AI system that powers DoorDash deliveries

Optimal Matching

In plain English

• Pick the best Dasher for a Delivery

In canonical Operations Research

• Vehicle Routing Problem

DoorDash specific considerations

- Real-time fulfillment
- Optimize supply for future demand
- Decide when to assign

Challenges

Complexity

Combinatorial options Delivery constraints

Time constraint

Asap delivery
Real-time Consumer demand
Dasher flexibility

Variance

Merchant operations Traffic Weather

ML meets OR

Operations Research (OR)

 Given deliveries, Dashers, and business goals, determine cost function to use and identify the optimal matching

Machine Learning (ML)

- Set up the marketplace
 - Forecast supply and demand
 - Balance
- Calculate inputs to the cost function
 - Travel times, Food preparation times
- Calculate constraints
 - o Variances, Batching estimates
- Auxiliary
 - o Help with decision on when to assign

Delivery Time Predictions

When every second is worth a million dollars

Delivery time predictions

- 10+ time point predictions for every delivery
- Capture each part of the delivery process
- Critical component of Logistics system

Features

Order Features

Real time features

Subtotal # of orders

Cuisine # of total Dashers

Type of order - group, Time of day - lunch / dinner

catering, etc. Day of week - weekend /

Merchant details holiday

Historical aggregates

Past X weeks average delivery

times for

Store

City

Market

Time of day

Similarly

- average parking times
- variance in historical times

Limitations

- Minimizing mean squared error makes sure we are right on average.
- But, it is more important to deliver by the estimated delivery time, not just be correct on average

What we have

Actual Delivery Time = Estimated Delivery Time + Error

What we want

Prob (Actual Delivery Time > Estimated Delivery Time) < X%

Quantile Regression

- Modeling technique to generate prediction intervals
- Instead of Mean Squared Error, the Loss function used is:

$$L(y, F(x)) = h_q(y - F(x))$$

where

$$h_q(z) = z * (q - I_{z<0})$$

q is the percentile value to use

I is the indicator function

Quantile Regression Model

- Choosing two q values (say 0.05, 0.95) gives you a prediction interval where 90% predictions would lie
- Model evaluated using % predictions within the interval and average estimated value
- **Ideal value of** *q* identified through experiments to optimize retention

Extensions

- Geographical ensembling
 - Market specific model for larger markets
- Use of Embeddings
 - Store
 - Market
 - Time of day
- Near real time aggregates

Batching algorithms

Doing more with less

Context

What is batching?

 One Dasher working on more than one delivery simultaneously

Why is it important?

- Increases marketplace efficiency
- Help manage supply demand spikes

On-time delivery to Consumer

Increase marketplace efficiency

Challenges

Orders emerge on the fly

Batching deliveries is easier if orders are all pre-scheduled and have a delivery window

Food Quality

5 extra minutes due to batching could mean a burger is no longer bot

Scale

Optimization system can not exhaustively match all pairs of deliveries

Interdependence

Multiple deliveries being dependent on each other increases variance further

Batching Quality Model

Route of Normal Delivery

Pickup_1, Dropoff_1

Route of a Batched Delivery

Pickup_1, Pickup_2, Dropoff_1, Dropoff_2

Model Intuition

- Any delay in Pickup_2 affects Dropoff_1
- We should not batch if the probability of delay is high

Model Details

Problem Type

Classification

Target

Boolean: Actual Pickup time > Estimated pickup time

Evaluation Metric

PR-AUC

Use in optimization system

- Two approaches
 - Used as constraints
 - Use in cost function

Takeaways

- Machine learning helps efficiently solve traditional Operations Research problems
- Particularly important in real-time, high variance environments like DoorDash
- Quantile Regression is an effective technique to generate prediction intervals

The Future

Price Self Driving

Automated menu optimization

Product placements

DoorDash Drive Robotics

Demand shaping

Dispatch for Support experience new verticals

Marketing Fraud prevention

