

Advanced Computer Vision Week 09

Nov. 1, 2022 Seokju Lee

Parts of slides are by Prof. In So Kweon and Prof. Shree Nayar

Structure-from-Motion (SfM)

Contents of Structure-from-Motion

Multi-view 3D reconstruction

- Pinhole camera model
- Two-view geometry
- Epipolar geometry
- Essential matrix
- Fundamental matrix
- Bundle adjustment

- ...

Pinhole Camera Model

$$x = K[R|t]X = PX$$

$$\mathbf{s} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{f}_x & \text{skew_cf}_x & \mathbf{c}_x \\ \mathbf{f}_y & \mathbf{c}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{r}_{11} & \mathbf{r}_{12} & \mathbf{r}_{13} & \mathbf{t}_1 \\ \mathbf{r}_{21} & \mathbf{r}_{22} & \mathbf{r}_{23} & \mathbf{t}_2 \\ \mathbf{r}_{31} & \mathbf{r}_{32} & \mathbf{r}_{33} & \mathbf{t}_3 \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ 1 \end{bmatrix}$$
• (X,Y,Z): 3D point in the world coordinate world coordinate into the camera coordinate world coordinate world coordinate into the camera coordinate world coordinate into the camera coordinate world coordinate world coordinate into the camera coordinate world coordinate

$$= K[R|t] \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- K: intrinsic parameters to represent the camera characteristics
- K[R|t]: camera projection matrix
- (x, y): 2D pixel location in the image plane
- s: scale factor

Multi-View 3D Reconstruction

Given only the 2D multi-view images of a scene, recover the underlying 3D **structure** and the camera **motion**.

- Q1. How to find **2D-3D points** to reconstruct?
- Q2. How to find an **optimal** 3D structure and camera poses for multiple view?

- Q1. How to find **2D-3D points** to reconstruct?
- Q2. How to find an **optimal** 3D structure and camera poses for multiple view?

Structure-from-Motion (1): Correpondence Search

Correpondence search

- Feature extraction
- Matching
- Geometric verification

Feature extraction & matching (graph)

Structure-from-Motion (1): Correpondence Search

c.f.) Homography matrix

Correpondence search

- Feature extraction
- Matching
- Geometric verification

- Epipolar geometry describes the relation of moving cameras (5 or 8-point algorithm) through the <u>essential</u> matrix, $\mathbf{E} \in \mathbb{R}^{3\times 3}$, or the <u>fundamental matrix</u>, $\mathbf{F} \in \mathbb{R}^{3\times 3}$
- If estimated **E** projects a sufficient number of features between the images, it is verified! **(RANSAC)**

Epipolar Geometry

Potential matches for x_L are on the epipolar line l_R

Essential Matrix

Given a point x_L in one image, multiplying by the **essential matrix** $\mathbf{E} \in \mathbb{R}^{3 \times 3}$ will make the epipolar line in the right view: $\mathbf{E} x_L = \mathbf{l}_R$

Epipolar Constraint

For a **linear** equation,

$$ax + by + c = 0$$
 in vector form $l = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$.

If the point x_R is on the epipolar line l_R ,

$$oldsymbol{x_R}^ op oldsymbol{l_R} = 0$$
 or, $oldsymbol{l_R}^ op oldsymbol{x_R} = 0$

Since $\mathbf{E} \mathbf{x}_L = \mathbf{l}_R$,

$$\mathbf{x}_{R}^{\mathsf{T}}\mathbf{E}\mathbf{x}_{L}=0$$

Structure-from-Motion (1): Correpondence Search

Correpondence search: Geometric verification

- 5-point / 8-point algorithm:
 - Estimating the essential matrix from the feature point correspondences.
 - \rightarrow Direct linear transform: $\mathbf{x}_{\mathbf{R}}^{\mathsf{T}}\mathbf{E}\mathbf{x}_{\mathbf{L}}=0 \rightarrow A\mathbf{p}=0 \rightarrow \mathsf{Use}\;\mathsf{SVD}\;\mathsf{to}\;\mathsf{solve!}$

Structure-from-Motion (1): Correpondence Search

Correpondence search: Geometric verification

- **5-point** / **8-point** algorithm: $x_R^{\mathsf{T}} \mathbf{E} x_L = 0 \to A \mathbf{p} = 0$ Sample at least **5** or **8** points and compute the **essential matrix**.
 - → **RANSAC** to discriminate **inliers/outliers** and the **best** essential matrix!

- Camera initialization
- Triangulation
- Bundle adjustment (refinement)

Starting from two views, aggregate more views to refine the estimation

- Camera initialization \rightarrow Estimate camera **projection** matrices from $\mathbf{E} \in \mathbb{R}^{3\times3}$
- Triangulation → **Lift** 2D points to 3D spaces using camera projection matrices
- Bundle adjustment (refinement)

Fundamental Matrix

(focal length = 1)

Essential matrix ($\mathbf{E} \in \mathbb{R}^{3 \times 3}$): Relation between <u>normalized</u> pixel correpondences **Fundamental matrix** ($\mathbf{F} \in \mathbb{R}^{3 \times 3}$): Relation between <u>camera</u> pixel correpondences

$$\widehat{x}_{L} = K_{L} x_{L} \qquad \widehat{x}_{R} = K_{R} x_{R}$$

$$x_{L} = K_{L}^{-1} \widehat{x}_{L} \qquad x_{R} = K_{R}^{-1} \widehat{x}_{R}$$

$$x_{R}^{\top} \mathbf{E} x_{L} = \left(K_{R}^{-1} \widehat{x}_{R}\right)^{\top} \mathbf{E} \left(K_{L}^{-1} \widehat{x}_{L}\right)$$

$$= x_{R}^{\top} \left(K_{R}^{\top}\right)^{-1} \mathbf{E} \left(K_{L}^{-1}\right) \widehat{x}_{L} = 0$$

$$= \mathbf{F}$$

Starting from two views, aggregate more views to refine the estimation

- Camera initialization \rightarrow Estimate camera **projection** matrices from $\mathbf{E} \in \mathbb{R}^{3\times3}$
- If we capture images with the **same** camera,

$$p_{img}^{\prime \top} \mathbf{F} p_{img} = \mathbf{0}$$
 $\mathbf{F} = (\mathbf{K}^{\top})^{-1} \mathbf{E} \mathbf{K}^{-1}$

$$\mathbf{F} = \left(K^{\mathsf{T}} \right)^{-1} \mathbf{E} K^{-1}$$

$$\mathbf{E} = \mathbf{K}^{\mathsf{T}} \mathbf{F} \mathbf{K}$$

Camera initialization: Estimate camera projection matrices P, P' from $E \in \mathbb{R}^{3\times3}$

- Suppose $P = [I|0] \in \mathbb{R}^{3\times 4}$ (center of the world-coordinate)
- From derivation, there are $\underline{4}$ possible candidates for \mathbf{P}'
- Triangulate 2D point correspondences from two views, and physically verify P'

Camera initialization: Estimate camera projection matrices P, P' from $E \in \mathbb{R}^{3\times3}$

- Suppose $P = [I|0] \in \mathbb{R}^{3\times 4}$ (center of the world-coordinate)
- From derivation, there are $\underline{4}$ possible candidates for \mathbf{P}'
- Triangulate 2D point correspondences from two views, and physically verify P'

Target 3D point is located in front of the two camera views

Four solutions of essential matrix

- Camera initialization \rightarrow Estimate camera **projection** matrices from $\mathbf{E} \in \mathbb{R}^{3\times3}$
- Triangulation → **Lift** 2D points to 3D spaces using camera projection matrices
- Bundle adjustment (refinement)

Triangulation

(known) (known) (unknown)

Given a set of corresponding points x_L , x_R and camera matrices P, P', estimate X

Fundamental matrix ($\mathbf{F} \in \mathbb{R}^{3 \times 3}$): Relation between <u>camera</u> pixel correpondences

$$x = PX = \alpha PX$$

homogeneous coordinate

same direction but differs by a scale factor

$$egin{aligned} x(\mathbf{p}_{3,row}^{\intercal}\mathbf{X}) - (\mathbf{p}_{1,row}^{\intercal}\mathbf{X}) &= 0 \\ y(\mathbf{p}_{3,row}^{\intercal}\mathbf{X}) - (\mathbf{p}_{2,row}^{\intercal}\mathbf{X}) &= 0 \\ x(\mathbf{p}_{2,row}^{\intercal}\mathbf{X}) - y(\mathbf{p}_{1,row}^{\intercal}\mathbf{X}) &= 0 \end{aligned}$$

One 2D to 3D point correspondence gives **two** equations

(known) (unknown)

$$\overrightarrow{x} \times \overrightarrow{PX} = 0$$

cross product is zero (this equality removes scale factor)

$$\begin{bmatrix} x\mathbf{p}_{3,row}^{\intercal} - \mathbf{p}_{1,row}^{\intercal} \\ y\mathbf{p}_{3,row}^{\intercal} - \mathbf{p}_{2,row}^{\intercal} \\ x'\mathbf{p}'^{3\intercal} - \mathbf{p}'^{1\intercal} \\ y'\mathbf{p}'^{3\intercal} - \mathbf{p}'^{2\intercal} \end{bmatrix} \mathbf{X} = 0$$

Now we can make system equations.

Use SVD to solve!

→ Two-view geometry

- Camera initialization \rightarrow Estimate camera **projection** matrices from $\mathbf{E} \in \mathbb{R}^{3\times3}$
- Triangulation → **Lift** 2D points to 3D spaces using camera projection matrices
- Bundle adjustment (refinement)

Bundle adjustment: Non-linear method for jointly refining SfM

- **Bundle** of light rays leaving each 3D points and **converging** on each camera center
- Refining 3D points and the camera poses by minimizing reprojection error
- Usually optimized with Levenberg-Marquardt optimization

Bundle adjustment: Non-linear method for jointly refining SfM

- **Bundle** of light rays leaving each 3D points and **converging** on each camera center
- Refining 3D points and the camera poses by minimizing reprojection error
- Usually optimized with Levenberg-Marquardt optimization

Correpondence search

- Feature extraction
- Matching
- Geometric verification

Correspondence Search Feature Extraction Matching Geometric Verification

- Camera initialization
- Triangulation
- Bundle adjustment (refinement)

Experiment: Build Your Own 3D Structure

https://view.kentech.ac.kr/f088fa7f-874e-44bc-bd6d-6084b42dfdf7

