SCHULVEREIN DE LA SALLE

Gymnasium, Realgymnasium und Oberstufenrealgymnasium mit ÖR

1210 Wien, Anton-Böck-Gasse 37 Tel.: +43/1/29125-760 Fax.: +43/1/29125-763

VORWISSENSCHAFTLICHE ARBEIT

Maschinelle Werteanpassung bei einer hypothetischen allgemeinen künstlichen Intelligenz

Autor: Betreuungslehrer:

Franz Srambical Prof. Mag. Kurt Rauch & Mag.

Leonard Michlmayr

Klasse:

8C

Entwurf:

29. Dezember 2019

Abstract

Der Zusammenfassungstext kommt hier her. Abstract ist kein Vorwort und keine Einleitung!

Vorwort

Das Vorwort ist optional: d. h. man muss kein Vorwort schreiben! Wer will, kann das in dieser Form tun. Am Ende sollten Ort, Datum und der Name des Autors des Vorworts angegeben werden.¹

Wien am 29. Dezember 2019

Franz Srambical

¹ Vgl. WEIGL, Huberta. Vorwort. URL: http://www.ahs-vwa.at/pluginfile.php/31/mod_data/content/1315/02-VWA-Vorwort.pdf (besucht am 3.2.2017).

Inhaltsverzeichnis

1.	Ein	lleitung	5	
2.	_	gemeine künstliche Intelligenz	6	
		Definition von Intelligenz	6	
	2.2.	Definition von künstlicher Intelligenz		
	2.3.		7	
	2.4.		7	
		Wann wird es sie geben?	9	
	2.6.	Die These der Intelligenzexplosion	9	
3.	Pro	obleme einer allgemeinen künstlichen Intelligenz	11	
	3.1.	Fehlerhafte Vorstellungen einer KI-Katastrophe	11	
		3.1.1. KI, die ein Bewusstsein erlangt	11	
		3.1.2. Roboter als Auslöser einer Katastrophe	12	
		3.1.3. Bösartige AKI	12	
	3.2.	Auswirkungen einer AKI	13	
		3.2.1. Destruktives Potential	13	
		3.2.2. Machtverschiebung -und konzentration	13	
		3.2.3. Missbrauch	13	
	3.3.	Verzerrungen	13	
		3.3.1. Verzerrung in der Risikoeinschätzung	13	
		3.3.2. Verzerrung in der Werteformulierung	13	
		3.3.3. Verzerrung in der Kodierung	13	
4.	Mas	schinelle Werteanpassung	14	
5.	Sch	lluss	15	
Lii	terat	turverzeichnis	16	
		nt-Quellen		
		lio-Quellen		
		ernet-Quellen	17	
Al	bild	dungsverzeichnis	18	
Ta	belle	enverzeichnis	18	
Δ	Hie	er könnte Ihr Anhang stehen	19	
Ŀr	Kları	rungen	20	

1. Einleitung

Ich möchte diese Arbeit mit einem Gedankenexperiment beginnen.

Es existiere ein System, dass durch ein quantitativ und qualitativ höheres Lernniveau in der Lage ist, Ziele zu erreichen, die die Menschheit ohne eine solches System nicht erreichen könnte. Der Eigentümer einer Büroklammernfabrik ist im Besitz eines solchen Systems und gibt diesem das Ziel, so viele Büroklammern wie möglich herzustellen. Am Anfang beginnt das System, die Arbeitsabläufe in der Fabrik zu automatisieren. Nach einiger Zeit durchlebt es eine Intelligenzexplosion, optimiert sich selbst immer weiter und beginnt, Menschen zu töten, um aus ihnen Büroklammern herzustellen und hört damit nicht auf, bis das gesamte Universum nur noch aus Büroklammern besteht.¹

Es ist durchaus möglich, dass ein solches System mit einer allgemeinen künstlichen Intelligenz beim Erreichen der ihnen vorgegebenen Ziele nebenbei die gesamte Menschheit auslöscht.

Was rechtfertigt diese technovolatile Haltung?

"There are all sorts of extreme forces coming onto the game board that were not there before. To expect them to all fail or exactly cancel out for the purpose of making the outcome normal would be one heck of a coincidence."²

Jede technologische Neuentdeckung bedeutet in erster Linie Veränderung. Die Erfindungen der letzten Jahrhunderte hatten mehrheitlich positive Auswirkungen zur Folge, sonst wäre unser Lebensstandard heute nicht der höchste in der Menschheitsgeschichte.³ So ermutigend das auch klingt, so dürfen wir nicht einfach nach dem Trend der Vergangenheit in die Zukunft extrapolieren, sondern müssen – so Easterlin – versuchen, die Kräfte zu verstehen, die für den Anstieg der Lebensqualität verantwortlich sind.⁴ Was eine allgemeine künstliche Intelligenz betrifft, müssen wir sie nicht nur verstehen, sondern auch lenken können, um das Wohlbefinden der Spezies Mensch nicht zu gefährden, sondern zu stärken.

¹ Vgl. Bostrom, Nick. Superintelligence: Paths, Dangers, Strategies. Oxford: Oxford University Press, 3. Juli 2014. 328 S. ISBN: 978-0-19-967811-2, S. 123-124.

² Eliezer Yudkowsky on Intelligence Explosion - YouTube. URL: https://www.youtube.com/watch?v=D6peN9LiTWA (besucht am 7.8.2019), 30:51-31:07.

³ Vgl. EASTERLIN, Richard A. "The Worldwide Standard of Living since 1800". In: *The Journal of Economic Perspectives* 14.1 (2000), S. 7–26. ISSN: 0895-3309. URL: https://www.jstor.org/stable/2647048 (besucht am 9.8.2019), S. 22–23.

⁴ Vgl. ebd., S. 23.

2. Allgemeine künstliche Intelligenz

2.1. Definition von Intelligenz

Seit Jahrhunderten versuchen Wissenschaftler und Laien gleichermaßen eine Definition für den Intelligenzbegriff zu finden. Da bis heute keine Definition ihre Vollständigkeit oder Richtigkeit beweisen konnte, wird in dieser Arbeit der Einfachheit halber versucht, den Begriff durch Beobachtungen zu erklären, wie Yudkowsky in dem Podcast "AI: Racing Toward the Brink" vorschlägt.¹

- 1. Menschen waren auf dem Mond.
- 2. Mäuse waren nicht auf dem Mond.

Yudkowsky wählt dieses Beispiel, um zwei Thesen zu belegen:

Menschen sind intelligenter als Mäuse, weil sie domänenübergreifend arbeiten können. Damit sei das domänenübergreifende Erlernen neuer Fähigkeiten ein zentraler Teil des Intelligenzbegriffs.

Die natürliche Selektion ist neben der menschlichen Lernfähigkeit eine der wenigen Vorgänge, die zu einer domänenübergreifenden Leistungsoptimierung führt, das oben genannte Beispiel belegt jedoch, dass die Menschheit auch Orte erreichen kann, wofür die natürliche Selektion sie nicht vorbereitet hat. Dies und die Tatsache, dass die Evolution Millionen Jahre benötigte, um aus dem Homo Sapien den Homo Erectus zu formen,² während der Mensch mit seinen Entdeckungen und Erfindungen in wenigen Jahrhunderten zur dominantesten Spezies der Erde geworden ist, zeigt, dass der Mensch der schnellere und effizientere Optimierer ist. Effizienz ist also ein weiterer Teilaspekt der Intelligenz.³

¹ Vgl. YUDKOWSKY, Eliezer. AI: Racing Toward the Brink. Sam Harris. Feb. 2018. URL: https://samharris.org/podcasts/116-ai-racing-toward-brink/, 07:30-09:45.

² Vgl. Grzimek, Bernhard. Grzimeks Tierleben. Band 11 Säugetiere. DTV Deutscher Taschenbuchverlag, 1979, S. 508.

³ Vgl. Yudkowsky, Eliezer. *Intelligence Explosion Microeconomics*. Technical report. Berkeley, CA: Machine Intelligence Research Institute, 2013, S. 9.

2.2. Definition von künstlicher Intelligenz

"Artificial intelligence (AI)—defined as a system's ability to correctly interpret external data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation"⁴

Laut angeführter Definiton muss eine künstliche Intelligenz nicht nur Daten richtig interpretieren, sondern auch die dadurch gewonnen Erkenntnisse mittels dynamischer Anpassung zur Erreichung bestimmter Ziele benützen können.

Diese Definition enthält im Gegensatz zum oben beschriebenen Ansatz zur Intelligenzerklärung die Idee des domänenübergreifenden Lernens nicht, was laut Experten jedoch nicht an einer unvollständigen Definition liegt, sondern vielmehr daran, dass wir den Begriff der KI in einer Art gebrauchen, wofür er nicht vorgesehen war. Um Missverständnisse zu vermeiden, wird für KI wie sie heutzutage bereits in Benutzung ist der Begriff schwache KI (engl. weak AI oder narrow AI) verwendet. Dieser beschreibt eine domänenspezifische KI.

2.3. Definition von allgemeiner künstlicher Intelligenz

Als allgemeine künstliche Intelligenz (AKI; auch $starke\ KI$ genannt; engl. $strong\ AI$ oder $general\ AI$) bezeichnet man ein technisch fortgeschrittenes System, dessen Lernkapazität nicht auf einzelne Domänen begrenzt ist, sondern als allgemein bezeichnet werden kann.

2.4. Werte einer allgemeinen künstlichen Intelligenz

"The goal is to build AI systems that are trying to do what you want them to do"⁷

⁴ KAPLAN, Andreas und HAENLEIN, Michael. "Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence". In: *Business Horizons* 62.1 (1. Jän. 2019). ISSN: 0007-6813. DOI: 10.1016/j.bushor.2018.08.004. URL: http://www.sciencedirect.com/science/article/pii/S0007681318301393 (besucht am 6.8.2019), S. 15.

⁵ Vgl. Bostrom, Superintelligence, S. 18–19.

⁶ Vgl. Goertzel, Ben und Wang, Pei. Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. Google-Books-ID: t2G5srpFRhEC. IOS Press, 2007. 305 S. ISBN: 978-1-58603-758-1, S. 1.

⁷ PAUL, Christiano. "Current Work in AI Alignment". Effective Altruism Global. San Francisco, 2019. URL: https://www.youtube.com/watch?v=-vsYtevJ2bc (besucht am 2.11.2019), 01:51-01:57.

Der Instrumental Convergence Thesis nach gibt es bestimmte Ressourcen, die für eine AKI beim Erreichen der ihnen vorgegebenen Ziele in den meisten Fällen behilflich sind. Dazu gehören unter anderem Materie oder Energie, eine AKI wird jedoch auch Quellcodeveränderungen, die zu einem potenziellen Erschweren ihrer Zielerfüllung führen könnten, zu stoppen versuchen. Sie kann also Menschen schaden, ohne dass sie Werte besitzt, die dies explizit fordern. Für ein rein rational denkendes System sind Menschen nichts als eine Ansammlung von Atomen, die auch für das Erreichen seiner Ziele eingesetzt werden können.⁸

Ein fortgeschrittenes System wie eine AKI muss ihre Ziele daher auf der Basis von Werten verfolgen, von denen die Menschheit als Gesamtes profitiert, um ungewollten Nebenwirkungen wie der in der Einleitung genannten Auslöschung der Menschheit durch unpräzises Definieren ihrer Ziele mit größtmöglicher Sicherheit vorzubeugen. Aber auch Missbrauch in Form einer Machtkonzentration oder Ähnlichem muss unter allen Umständen vermieden werden.

Der Ansatz eine antropomorphe Maschine, also ein System mit menschenähnlichen Eigenschaften, zu entwickeln, gilt deshalb als veraltet. Während einige menschliche Werte und Eigenschaften implementiert werden müssen, um mögliche Dissonanzen zwischen der AKI und der Menschheit zu vermeiden, dürfen andere menschliche Eigenschaften nicht übernommen werden. Ansonsten werden Vorurteile ohne rationalem Grundsatz in das System aufgenommen, was zu systematischer Diskriminierung führt, sodass eine AKI beim Erreichen ihrer Ziele beispielsweise Frauen oder Afrikaner benachteiligt oder Asiaten automatisch als intelligenter einstuft.⁹

Menschliche Werte in einer Programmiersprache nachzubilden ist nach der *Complexity* of Value Thesis aufwendig, da sie - selbst in idealisierter Form - eine hohe algorithmische Komplexität vorweisen. Daher muss eine AKI komplexe Informationen gespeichert haben, damit sie die ihr vorgegebenen Ziele auf eine menschengewollte Weise erfüllen kann. Dabei reichen auch keine vereinfachten Zielstellungen wie "Menschen glücklich machen", denn es gibt keinen "Geist im System", der diese abstrakte Zielsetzung ohne Weiteres versteht.

Hibbard beschreibt in seinem Buch eine Möglichkeit, Maschinen das abstrakte Gefühl der Freude zu erklären. Dabei lernt eine hypothetische KI durch einen riesigen Datensatz, bei welchen Gesichtsausdrücken, Stimmeigenschaften und Körperhaltungen

⁸ Vgl. Yudkowsky, Intelligence Explosion Microeconomics, S. 14.

⁹ Vgl. YUDKOWSKY, Eliezer. What is Friendly AI? / Kurzweil. What is Friendly AI? 5. März 2001. URL: https://www.kurzweilai.net/what-is-friendly-ai (besucht am 1.10.2019).

¹⁰ Vgl. Yudkowsky, Intelligence Explosion Microeconomics, S. 13–14.

ein Mensch glücklich ist.¹¹ Yudkowsky ist der Meinung, dass dies keinesfalls eine Lösung für das Problem der exakten Zielsetzung ist und führt Hibbards Gedankenexperiment fort. Falls diese KI nun ein Bild von einem winzigen, molekularen Smiley-Gesicht sieht, so ist es nicht unwahrscheinlich, dass die KI dies als Glücklichsein interpretiert und das Universum in eine einzige Ansammlung von winzigen, molekularen Smiley-Gesichtern umzuwandeln versucht, um den höchstmöglichen Zustand des Glücklichseins zu erreichen.¹²

2.5. Wann wird es sie geben?

Eine Befragung durch die KI-Wissenschaftler V. C. Müller und N. Bostrom kam zu dem Ergebnis, dass KI-Experten dem Erreichen einer AKI in den Jahren 2040 bis 2050 eine Wahrscheinlichkeit von über 50 und dem Erreichen bis 2075 eine Wahrscheinlichkeit von 90 Prozent zuordnen. Es ist also - sollten sich die Expertenmeinungen als richtig herausstellen - davon auszugehen, dass eine AKI bereits in diesem Jahrhundert zur Realität und bereits für die jetzige Generation mehr als nur relevant sein wird.

2.6. Die These der Intelligenzexplosion

Eine AKI wird - unabhängig von ihren Zielen - Selbstoptimierung hinsichtlich ihrer Intelligenz anstreben, weil sie dadurch ihre Ziele schneller und effizienter erreichen kann. Sobald die erste KI programmiert werden würde, die qualitativ bessere - also noch intelligentere - KIs programmieren könnte, käme es zu einem Kreislauf der kognitiven Leistungssteigerung. Die KI der Tochtergeneration könnte nun als verbesserter KI-Designer noch bessere KIs programmieren. Anders als bei biologischer Intelligenz kann eine KI bei Verfügbarkeit entsprechender Hardware einfach kopiert werden. Eine Gruppe von KIs hätte dann gemeinsam quantitativ und qualitativ höhere kognitive Fähigkeiten, ähnlich einer Schwarmintelligenz. Dieser hypothetische Kreislauf ist die

¹¹ Vgl. HIBBARD, Bill. Super-Intelligent Machines. Springer US, 2002. ISBN: 978-0-306-47388-3. DOI: 10.1007/978-1-4615-0759-8. URL: https://www.springer.com/gp/book/9780306473883 (besucht am 29.10.2019), S. 115.

¹² Vgl. Yudkowsky, Eliezer. "Complex Value Systems in Friendly AI". In: Artificial General Intelligence. Hrsg. von Schmidhuber, Jürgen u. a. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2011, S. 388–393. ISBN: 978-3-642-22887-2. DOI: 10.1007/978-3-642-22887-2_48, S. 3.

¹³ Vgl. MÜLLER, Vincent C. und BOSTROM, Nick. "Future Progress in Artificial Intelligence: A Survey of Expert Opinion". In: Fundamental Issues of Artificial Intelligence. Hrsg. von Müller, Vincent C. Synthese Library. Cham: Springer International Publishing, 2016, S. 555–572. ISBN: 978-3-319-26485-1. DOI: 10.1007/978-3-319-26485-1_33. URL: https://doi.org/10.1007/978-3-319-26485-1_33 (besucht am 5.9.2019), S. 566.

Grundlage der These der Intelligenzexplosion. Nach ihr wird ab einer bestimmten Schwelle die Leistungssteigerung mit jeder KI-Iteration exponentiell größer, was zu einer Superintelligenz führt, die der Menschheit kognitiv um einige Größenordnungen überlegen ist. 14

¹⁴ Vgl. Muehlhauser, Luke und Salamon, Anna. "Intelligence Explosion: Evidence and Import". In: Singularity Hypotheses: A Scientific and Philosophical Assessment. Hrsg. von Eden, Amnon H. u. a. The Frontiers Collection. Berlin, Heidelberg: Springer, 2012, S. 15–42. ISBN: 978-3-642-32560-1. DOI: 10.1007/978-3-642-32560-1_2. URL: https://doi.org/10.1007/978-3-642-32560-1_2 (besucht am 30.10.2019), S. 13.

3. Probleme einer allgemeinen künstlichen Intelligenz

Eine mögliche AKI bietet die Chance, die Lebensverhältnisse aller Menschen zu verbessern, birgt aber auch immense Gefahren, die nicht außer Acht gelassen werden dürfen. Mit Macht kommt auch immer Verantwortung. Es gilt schon jetzt Verantwortung zu übernehmen und Vorkehrungen zu treffen, um eine sichere AKI und einen positiven Effekt auf die Menschheit zu garantieren.

3.1. Fehlerhafte Vorstellungen einer KI-Katastrophe

In der allgemeinen Bevölkerung überwiegen fehlerhafte Vorstellungen einer KI-Katastrophe. Die folgenden Unterkapitel dienen der Aufklärung von Missverständnissen und dem Widerlegen von Mythen.

3.1.1. KI, die ein Bewusstsein erlangt

In der Laienwelt sowie in großen Teilen der KI-Forschung ist eine These bekannt, die besagt, dass eine KI ab einer bestimmten Intelligenzschwelle ein Bewusstsein erlangt. Anders als vielerorts angenommen hätte selbst ein Beweis dieser These keinerlei Implikationen auf die AKI-Forschung. Diese beschäftigt sich ausschließlich mit der Entwicklung und den Folgen einer AKI. Ein Szenario, in dem ein autonomes Fahrzeug eine Person X bewusst vom Ort A zum Ort B chauffiert, wird zum gleichen Ergebnis führen wie ein Szenario, in dem selbiges unbewusst geschieht. Somit ist der Bewusstseinszustand einer AKI zwar noch nicht wissenschaftlich erforscht - damit beschäftigt sich ein eigenes Teilgebiet der KI-Forschung - , zum Erreichen einer sicheren KI ist er aber irrelevant.

¹ Vgl. AI Safety Myths. Future of Life Institute. URL: https://futureoflife.org/background/aimyths/ (besucht am 6.8.2019).

3.1.2. Roboter als Auslöser einer Katastrophe

Ein in der Populärliteratur besonders stark ausgeprägter Mythos ist jener einer existenziellen Bedrohung durch Roboter, die die Welt erobern. Geschuldet ist dies nicht nur den klassischen Science-Fiction-Romanen. Es ist eine domänenübergreifend anzutreffende Neigung der Spezies Mensch, Wesen oder Systeme, die einem unverständlich sind, zu vermenschlichen. Von den Wikingern, nach denen ein menschenähnliches Wesen namens Thor Donner und Blitz lenkt, zu den modernen Weltreligionen, in denen Antropomorphismus in selbigem Ausmaß gang und gäbe ist, ist dieses Phänomen schon seit jeher in der Geschichte des Menschen zu beobachten. Trotz alledem ist der Antropomorphismus nichts anderes als ein misslungener Erklärungsversuch unseres Gehirns für unverständliche Beobachtungen.

Die größte Sorge der Forschung nach einer sicheren AKI gilt nicht möglichen Robotern, sondern der Intelligenz selbst, genauer gesagt einer Intelligenz, deren Ziele nicht eindeutig mit den unseren übereinstimmen. Intelligenz ermöglicht Kontrolle, und eine fortgeschrittene Intelligenz braucht auch keine Roboter, um ihre Ziele zu erreichen. Heutzutage reicht eine Internetverbindung völlig aus.²

3.1.3. Bösartige AKI

Eine AKI, deren Ziele nicht eindeutig mit den unseren übereinstimmen, ist nicht die Folge ihres bösartigen Willens, sondern die Folge einer unzureichend spezifizierten Zielsetzung. Ein autonomes Fahrzeug, dessen alleiniges Ziel es ist, seine Insassen vom Ort A zum Ort B zu befördern, wird nicht auf die Gesundheit anderer Verkehrsteilnehmer achten, die Straßenverkehrsordnung nicht befolgen, nicht nur auf Straßen fahren, unangenehm Bremsen, unökologisch Beschleunigen und nicht nach den weiteren unzähligen, geschriebenen und ungeschriebenen menschlichen Werten und Normen handeln.

Es gibt keinen Geist in der Maschine, der unser geschriebenes Programm durchliest und uns auf alle Stellen aufmerksam macht, die wir nicht so gemeint haben, wie wir sie geschrieben haben. Eine AKI ist nicht gut oder böse, sie folgt nur unseren Anweisungen.³

² Vgl. AI Safety Myths.

³ Vgl. Yudkowsky, "Complex Value Systems in Friendly AI", S. 1.

3.2. Auswirkungen einer AKI

3.2.1. Destruktives Potential

 $https://80000 hours.org/podcast/episodes/allan-dafoe-politics-of-ai/\ https://80000 hours.org/topic/pripaths/ai-policy/$

3.2.2. Machtverschiebung -und konzentration

3.2.3. Missbrauch

3.3. Verzerrungen

3.3.1. Verzerrung in der Risikoeinschätzung

KOMMENTAR: Auch Zeitpunkt einer AKI

3.3.2. Verzerrung in der Werteformulierung

3.3.3. Verzerrung in der Kodierung

Nutzenfunktion (eng. utility function)

4. Maschinelle Werteanpassung

Es ist schwer menschliche Werte in Computersystemen zu programmieren (siehe Kapitel 2.4), deshalb haben IRVING u.a. einen anderen Ansatz der Werteanpassung verfolgt: die des menschlichen Feedbacks.

Hierbei fragt eine KI einen menschlichen Operator nach der Richtigkeit und Sicherheit ihres Verhaltens. Bei schlechter Bewertung passt die KI ihre Lösungsfunktion an. Dies funktiert so lange gut, bis der Operator nicht mehr in der Lage ist, das Handeln der KI nachzuvollziehen und zu beurteilen.¹

1	1 mussichauchmachen.	

5. Schluss

Literaturverzeichnis

Print-Quellen

- Bostrom, Nick. Superintelligence: Paths, Dangers, Strategies. Oxford: Oxford University Press, 3. Juli 2014. 328 S. ISBN: 978-0-19-967811-2.
- EASTERLIN, Richard A. "The Worldwide Standard of Living since 1800". In: *The Journal of Economic Perspectives* 14.1 (2000), S. 7–26. ISSN: 0895-3309. URL: https://www.jstor.org/stable/2647048 (besucht am 9.8.2019).
- GOERTZEL, Ben und WANG, Pei. Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. Google-Books-ID: t2G5srpFRhEC. IOS Press, 2007. 305 S. ISBN: 978-1-58603-758-1.
- Grzimek, Bernhard. *Grzimeks Tierleben. Band 11 Säugetiere*. DTV Deutscher Taschenbuchverlag, 1979.
- HIBBARD, Bill. Super-Intelligent Machines. Springer US, 2002. ISBN: 978-0-306-47388-3. DOI: 10.1007/978-1-4615-0759-8. URL: https://www.springer.com/gp/book/9780306473883 (besucht am 29.10.2019).
- IRVING, Geoffrey; CHRISTIANO, Paul und AMODEI, Dario. "AI safety via debate". In: arXiv:1805.00899 [cs, stat] (22. Okt. 2018). arXiv: 1805.00899. URL: http://arxiv.org/abs/1805.00899 (besucht am 29.12.2019).
- Kaplan, Andreas und Haenlein, Michael. "Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence". In: *Business Horizons* 62.1 (1. Jän. 2019). ISSN: 0007-6813. DOI: 10.10 16/j.bushor.2018.08.004. URL: http://www.sciencedirect.com/science/article/pii/S0007681318301393 (besucht am 6.8.2019).
- MUEHLHAUSER, Luke und SALAMON, Anna. "Intelligence Explosion: Evidence and Import". In: Singularity Hypotheses: A Scientific and Philosophical Assessment. Hrsg. von Eden, Amnon H.; Moor, James H.; Søraker, Johnny H. und Steinhart, Eric. The Frontiers Collection. Berlin, Heidelberg: Springer, 2012, S. 15–42. ISBN: 978-3-642-32560-1. DOI: 10.1007/978-3-642-32560-1_2. URL: https://doi.org/10.1007/978-3-642-32560-1_2 (besucht am 30.10.2019).

- MÜLLER, Vincent C. und BOSTROM, Nick. "Future Progress in Artificial Intelligence: A Survey of Expert Opinion". In: Fundamental Issues of Artificial Intelligence. Hrsg. von Müller, Vincent C. Synthese Library. Cham: Springer International Publishing, 2016, S. 555–572. ISBN: 978-3-319-26485-1. DOI: 10.1007/978-3-319-26485-1_33. URL: https://doi.org/10.1007/978-3-319-26485-1_33 (besucht am 5.9.2019).
- PAUL, Christiano. "Current Work in AI Alignment". Effective Altruism Global. San Francisco, 2019. URL: https://www.youtube.com/watch?v=-vsYtevJ2bc (besucht am 2.11.2019).
- Yudkowsky, Eliezer. "Complex Value Systems in Friendly AI". In: Artificial General Intelligence. Hrsg. von Schmidhuber, Jürgen; Thórisson, Kristinn R. und Looks, Moshe. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2011, S. 388–393. ISBN: 978-3-642-22887-2. DOI: 10.1007/978-3-642-22887-2_48.
- Intelligence Explosion Microeconomics. Technical report. Berkeley, CA: Machine Intelligence Research Institute, 2013.

Audio-Quellen

YUDKOWSKY, Eliezer. AI: Racing Toward the Brink. Sam Harris. Feb. 2018. URL: https://samharris.org/podcasts/116-ai-racing-toward-brink/.

Internet-Quellen

- AI Safety Myths. Future of Life Institute. URL: https://futureoflife.org/background/aimyths/ (besucht am 6.8.2019).
- Eliezer Yudkowsky on Intelligence Explosion YouTube. URL: https://www.youtube.com/watch?v=D6peN9LiTWA (besucht am 7.8.2019).
- WEIGL, Huberta. Vorwort. URL: http://www.ahs-vwa.at/pluginfile.php/31/mod_data/content/1315/02-VWA-Vorwort.pdf (besucht am 3.2.2017).
- YUDKOWSKY, Eliezer. What is Friendly AI? / Kurzweil. What is Friendly AI? 5. März 2001. URL: https://www.kurzweilai.net/what-is-friendly-ai (besucht am 1.10.2019).

Abbildungsverzeichnis

Tabellenverzeichnis

A. Hier könnte Ihr Anhang stehen

Erklärungen

Selbstständigkeitserklärung

Ich erkläre, dass ich diese vorwissenschaftliche Arbeit eigenständig angefertigt und nur die im Literaturverzeichnis angeführten Quellen und Hilfsmittel benutzt habe.

Wien, 29. Dezember 2019

Franz Srambical

In formatik schwerpunkt

Die vorliegende Arbeit erfüllt die Kriterien zur Abbildung des Informatikschwerpunktes an der De La Salle Schule Strebersdorf, AHS.

Begründung: Die Arbeit wurde in L^AT_EX mit entscheidenden Kenntnissen zum Quelltext verfasst.

Geprüft am ...durch Mag. Rainer Zufall und Mag. Ernst Haft