

"Express Mail" mailing label number EV 314 902 635 US
Date of Deposit 4/13/04

Our File No. 9281-4799
Client Reference No. N US02192

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:)
Masamichi Saito)
Serial No. To Be Assigned)
Filing Date: Herewith)
For: CPP Giant Magnetresistive Head With)
Large-Area Metal Film Provided)
Between Shield and Element)

SUBMISSION OF CERTIFIED COPIES OF PRIORITY DOCUMENTS

Mail Stop Patent Application
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

Transmitted herewith are certified copies of priority documents Japanese
Patent Application Nos. 2003-114189 filed on April 18, 2003 and 2004-047758 filed
on February 24, 2004 for the above-named U.S. application.

Respectfully submitted,

Gustavo Siller, Jr.
Registration No. 32,305
Attorney for Applicant
Customer Number 00757

BRINKS HOFER GILSON & LIONE
P.O. BOX 10395
CHICAGO, ILLINOIS 60610
(312) 321-4200

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2003年 4月18日

出願番号 Application Number: 特願2003-114189

[ST. 10/C]: [JP2003-114189]

出願人 Applicant(s): アルプラス電気株式会社

2004年 2月 5日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願

【整理番号】 P5136

【あて先】 特許庁長官 殿

【国際特許分類】 G11B 5/39

【発明の名称】 C P P型巨大磁気抵抗効果ヘッド

【請求項の数】 10

【発明者】

【住所又は居所】 東京都大田区雪谷大塚町1番7号 アルプス電気株式会社内

【氏名】 斎藤 正路

【特許出願人】

【識別番号】 000010098

【氏名又は名称】 アルプス電気株式会社

【代理人】

【識別番号】 100083286

【弁理士】

【氏名又は名称】 三浦 邦夫

【手数料の表示】

【予納台帳番号】 001971

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 0113245

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 CPP型巨大磁気抵抗効果ヘッド

【特許請求の範囲】

【請求項1】 所定のシールド間隔をあけて形成した下部シールド層と上部シールド層と、この上下のシールド層の間に位置する、中間に非磁性材料層を有し、該非磁性材料層の上下に固定磁性層とフリー磁性層の一方と他方を有する巨大磁気抵抗効果素子とを備え、この巨大磁気抵抗効果素子の膜面に直交する方向に電流が流れるCPP型巨大磁気抵抗効果ヘッドにおいて、

下部シールド層の直上と上部シールド層の直下にそれぞれ、前記巨大磁気抵抗効果素子の固定磁性層とフリー磁性層の一方と他方に直接接触する、該固定磁性層とフリー磁性層よりも広い面積で形成された大面積非磁性金属膜を設けたことを特徴とするCPP型巨大磁気抵抗効果ヘッド。

【請求項2】 請求項1記載のCPP型巨大磁気抵抗効果ヘッドにおいて、前記大面積非磁性金属膜は前記シールド間隔の1/4以上の膜厚で形成され、前記巨大磁気抵抗効果素子は前記シールド間隔の3/4以下の膜厚で形成されているCPP型巨大磁気抵抗効果ヘッド。

【請求項3】 請求項2記載のCPP型巨大磁気抵抗効果ヘッドにおいて、前記大面積非磁性金属膜は、60Å以上300Å以下の膜厚で形成されているCPP型巨大磁気抵抗効果ヘッド。

【請求項4】 請求項1ないし3のいずれか一項に記載のCPP型巨大磁気抵抗効果ヘッドにおいて、前記大面積非磁性金属膜を形成する非磁性金属材料は、Au、Ag、Cu、Ru、Rh、Ir、Pdのうちいずれか1種又は2種以上であるCPP型巨大磁気抵抗効果ヘッド。

【請求項5】 請求項4記載のCPP型巨大磁気抵抗効果ヘッドにおいて、前記下部シールド層の直上に形成される大面積非磁性金属膜は、Ta/Cu、Ta/Ru/Cu又はTa/Crによって形成されているCPP型巨大磁気抵抗効果ヘッド。

【請求項6】 請求項1ないし5のいずれか一項に記載のCPP型巨大磁気抵抗効果ヘッドにおいて、前記巨大磁気抵抗効果素子は、前記固定磁性層よりも

ハイト方向奥側に、該固定磁性層の磁化方向を固定するための反強磁性層を備えているC P P型巨大磁気抵抗効果ヘッド。

【請求項7】 請求項1ないし5のいずれか一項に記載のC P P型巨大磁気抵抗効果ヘッドにおいて、前記固定磁性層は、前記フリー磁性層及び非磁性材料層よりもトラック幅方向に長く延びて形成されており、前記巨大磁気抵抗効果素子はさらに、この固定磁性層のトラック幅方向の両側部に接して該固定磁性層の磁化方向を固定する反強磁性層を備えているC P P型巨大磁気抵抗効果ヘッド。

【請求項8】 請求項1ないし5のいずれか一項に記載のC P P型巨大磁気抵抗効果ヘッドにおいて、前記固定磁性層は、前記大面積非磁性金属膜に接する第1固定磁性層と前記非磁性材料層に接する第2固定磁性層とが非磁性中間層を介して積層されたフェリ構造をなしており、この第1固定磁性層がトラック幅方向に長く延びて形成されていて、前記巨大磁気抵抗効果素子はさらに、第1固定磁性層のトラック幅方向の両側部に接して該第1固定磁性層の磁化方向を固定する反強磁性層を備えているC P P型巨大磁気抵抗効果ヘッド。

【請求項9】 請求項1ないし5のいずれか一項に記載のC P P型巨大磁気抵抗効果ヘッドにおいて、前記巨大磁気抵抗効果素子は反強磁性層を備えておらず、前記固定磁性層は、正磁歪を有する磁性材料又は保磁力の大きい磁性材料から形成され、該磁性材料自身の保持力によって磁化方向が固定されているC P P型巨大磁気抵抗効果ヘッド。

【請求項10】 請求項1ないし9のいずれか一項に記載のC P P型巨大磁気抵抗効果ヘッドにおいて、前記大面積非磁性金属膜の間であって前記巨大磁気抵抗効果素子の両側部には、前記非磁性材料層及びフリー磁性層の一部に接するハードバイアス層と、このハードバイアス層と前記大面積非磁性金属膜の間を埋める絶縁膜とが形成されているC P P型巨大磁気抵抗効果ヘッド。

【発明の詳細な説明】

【0001】

【発明の技術分野】

本発明は、膜厚方向（膜面に直交する方向）にセンス電流が流れるC P P型巨

大磁気抵抗効果ヘッドに関する。

【0002】

【従来技術およびその問題点】

ハードディスク装置や磁気センサなどに用いられる巨大磁気抵抗効果（GMR）素子は、素子を構成する各層の膜面に対して平行な方向にセンス電流が流れるCIP（Current In the Plane）型と、素子を構成する各層の膜面に対して垂直な方向にセンス電流が流れるCPP（Current Perpendicular to the Plane）型とに大別することができる。

【0003】

図7は、従来のCPP-GMR素子を用いたCPP-GMRヘッドの構造を示す縦断面図である。CPP-GMRヘッド100は、図示X方向に長く延びて形成された下部シールド層110、下部シールド層110の図示X方向の中央部上に形成された下部大面積非磁性金属膜120、この下部大面積非磁性金属膜120上に積層形成されたフリー磁性層131、非磁性金属材料層132、固定磁性層133、反強磁性層134及び上部大面積非磁性金属膜140、この上部大面積非磁性金属膜140の上に図示X方向に長く延びて形成された上部シールド層150、フリー磁性層131の一部及び非磁性材料層132の両側部に接して形成されたハードバイアス層163、及びハードバイアス層163と下部シールド層110及び上部シールド層150との間を埋める絶縁膜161、164を有している。

【0004】

上記構成のCPP-GMRヘッドでは、下部シールド層110及び上部シールド層150が電極膜を兼ねており、下部シールド層110及び上部シールド層150にも電流が流れる。この下部シールド層110及び上部シールド層150は、周知のように、例えばNiFeのような軟磁性材料によって形成されている。よって、下部シールド層110及び上部シールド層150にセンス電流が流れるとき、AMR（異方性磁気抵抗）効果が生じ、下部シールド層110及び上部シールド層150の抵抗値が増減する。この抵抗変化は、ヘッドの出力に対してノイズとなってしまう。

【0005】

特に、電流密度の高い範囲ではAMR効果によるノイズが大きくなってしまい、問題となっている。例えば図示例では、センス電流の出入口となる範囲（下部シールド層110と下部大面積非磁性金属膜120が接触している範囲、及び上部シールド層150と上部大面積非磁性金属膜140が接触している範囲）で電流密度が高くなっている。

【0006】

上記AMR効果によるノイズを低減させるには、AMR効果の小さいシールド材料を用いて下部シールド層110及び上部シールド層150を形成することが考えられるが、AMR効果の小さいシールド材料では、十分な磁気シールド効果が得られない。

【0007】

また上記構成のCPP-GMRヘッドでは、例えばPtMnにより形成される反強磁性層134にもセンス電流が流れる。反強磁性層134は、比抵抗が約 $200\mu\Omega\cdot cm$ 程度であり、大面積非磁性金属膜120、140やフリー磁性層131、固定磁性層133に比して非常に大きい。また反強磁性層134は、反強磁性特性を保持するために厚く形成する必要があり、例えば上下のシールド層間隔が 600 \AA 程度であるとき、反強磁性層134の膜厚は 200 \AA 程度とされる。このように比抵抗の大きい反強磁性層134が厚く設けられていると、反強磁性層134の抵抗が大きく、センス電流が流れることによって反強磁性層134が発熱する。この発熱により、ヘッド全体の温度が高くなるため、ヘッドの信頼性や高周波特性を悪化させている。

【0008】

なお、CIP-GMRヘッドでは、センス電流が反強磁性層には1割程度しか流れず、シールド層には全く流れないため、上述のような問題は生じていない。

【0009】

【特許文献】

特開2000-123325号公報

特開2002-232040号公報

特開2002-319112号公報

米国特許第6023395号

米国特許第6052263号

米国特許第6259586B1号

米国特許第6330136B1号

【0010】

【発明の目的】

本発明は、シールド層のAMR効果によるノイズとジュール熱を低減可能なCPP型巨大磁気抵抗効果ヘッドを得ることを目的とする。

【0011】

【発明の概要】

本発明は、非磁性金属膜を厚い膜厚で広い範囲に設ければシールド層と非磁性金属膜の界面におけるセンス電流の集中を緩和できること、及び、センス電流の流れる範囲から反強磁性層をなくせば、非磁性金属膜を厚く形成することができ、さらに、素子抵抗が下がってヘッド動作時に発生するジュール熱も大幅に低減されることに着目したものである。

【0012】

すなわち、本発明は、所定のシールド間隔をあけて形成した下部シールド層と上部シールド層と、この上下のシールド層の間に位置する、中間に非磁性材料層を有し、該非磁性材料層の上下に固定磁性層とフリー磁性層の一方と他方を有する巨大磁気抵抗効果素子とを備え、この巨大磁気抵抗効果素子の膜面に直交する方向に電流が流れるCPP型巨大磁気抵抗効果ヘッドにおいて、下部シールド層の直上と上部シールド層の直下にそれぞれ、上記巨大磁気抵抗効果素子の固定磁性層とフリー磁性層の一方と他方に直接接触する、該固定磁性層とフリー磁性層よりも広い面積で形成された大面積非磁性金属膜を設けたことを特徴としている。

【0013】

大面積非磁性金属膜は、センス電流の集中を十分に緩和できるように、シールド間隔の1/4以上の膜厚で形成されていることが好ましい。この場合、結果的

に巨大磁気抵抗効果素子は、シールド間隔の3/4以下の膜厚で形成される。具体的に例えば、シールド間隔が480Å以上800Å以下であるとき、大面積非磁性金属膜は、60Å以上300Å以下の膜厚で形成されていることが好ましい。

【0014】

大面積非磁性金属膜を形成する非磁性金属材料は、シールド材料よりも比抵抗が小さい材料であり、具体的には、例えばAu、Ag、Cu、Ru、Rh、Ir、Pdのうちいずれか1種もしくは2種以上であることが好ましい。この大面積非磁性金属膜は、単層膜であっても積層膜であってもよい。

【0015】

下部シールド層の直上に形成される大面積非磁性金属膜は、巨大磁気抵抗効果素子のシード層として機能させることができる。大面積非磁性金属膜をシード層として機能させる場合には、大面積非磁性金属膜がTa/Cu、Ta/Ru/Cu又はTa/Crによって形成されていることが好ましい。

【0016】

巨大磁気抵抗効果素子は、固定磁性層よりもハイト方向奥側に、該固定磁性層の磁化方向を固定するための反強磁性層を備えていることが好ましい。あるいは、固定磁性層がフリー磁性層及び非磁性材料層よりもトラック幅方向に長く延びて形成されていて、この固定磁性層のトラック幅方向の両側部に接して該固定磁性層の磁化方向を固定する反強磁性層を備えていることが好ましい。このとき、固定磁性層を第1固定磁性層、非磁性中間層、第2固定磁性層からなるフェリ構造で形成する場合には、第1固定磁性層のみをトラック幅方向に長く延ばして形成し、この第1固定磁性層のトラック幅方向の両側端部に接して反強磁性層を備えることが好ましい。これらの態様によれば、センス電流が反強磁性層に流れないので、反強磁性層が発熱することもなく、ヘッド動作時に発生するジュール熱を大幅に低減することができる。

【0017】

また、巨大磁気抵抗効果素子に、固定磁性層の磁化方向を固定するための反強磁性層を備えない態様も可能である。すなわち、正磁歪を有する磁性材料又は保

磁力の大きな磁性材料によって固定磁性層を形成し、該磁性材料自体の保持力によって固定磁性層の磁化方向を固定すればよい。このように反強磁性層を備えない態様によつても、ヘッド動作時に発生するジュール熱を大幅に低減することができる。

【0018】

以上のCPP型巨大磁気抵抗効果ヘッドにおいて、大面積非磁性金属膜の間であつて巨大磁気抵抗効果素子の両側部には、非磁性材料層及びフリー磁性層の一部に接するハードバイアス層と、このハードバイアス層と大面積非磁性金属膜の間を埋める絶縁膜とが形成されていることが実際的である。

【0019】

【発明の実施の形態】

以下、図面に基づいて本発明を説明する。各図において、X方向はトラック幅方向、Y方向は記録媒体からの漏れ磁界方向、Z方向は記録媒体の移動方向及び巨大磁気抵抗効果素子を構成する各層の積層方向である。

【0020】

図1は、本発明の第1実施形態におけるCPP型巨大磁気抵抗効果ヘッド(CPP-GMRヘッド)1の構造を、記録媒体との対向面側から見て示す部分断面図である。

【0021】

CPP-GMRヘッド1は、図示Z方向に所定のシールド間隔R-GLをあけて形成された下部シールド層10と上部シールド層50の間に、下部大面積非磁性金属膜20、巨大磁気抵抗効果を發揮するGMR素子30及び上部大面積非磁性金属膜40を有している。

【0022】

下部シールド層10及び上部シールド層50は、磁気シールドと電極としての機能を有し、図1及び図2に示すように、GMR素子30よりも十分に広い面積で形成されている。この下部シールド層10及び上部シールド層50は、十分な磁気シールド効果が得られる軟磁性材料、例えばNiFeにより、約1μm程度の膜厚で形成されている。

【0023】

下部大面積非磁性金属膜20は、下部シールド層10の直上に形成されたギャップ層であり、電極及びGMR素子30を規則的に形成するためのシード層としても機能する。上部大面積非磁性金属膜40は、上部シールド層50の直下に位置するギャップ層であり、上部シールド層50と共に電極としても機能する。

【0024】

下部大面積非磁性金属膜20及び上部大面積非磁性金属膜40は、GMR素子30の上面（第2固定磁性層33c）と下面（フリー磁性層31）に直接接しており、図1及び図2に示すようにGMR素子30よりも十分広く、下部シールド層10及び上部シールド層50とほぼ同じ面積を有している。

【0025】

この下部大面積非磁性金属膜20及び上部大面積非磁性金属膜40は、下部シールド層10及び上部シールド層50よりも比抵抗が小さい非磁性金属材料で形成されている。具体的には、例えばAu、Ag、Cu、Ru、Rh、Ir、Pdのいずれか1種又は2種以上の元素により形成されることが好ましい。これら大面積非磁性金属膜20、40は、単層膜であっても積層膜であってもよい。本実施形態の下部大面積非磁性金属膜20は、GMR素子30のシード層としても機能させるため、例えばTa/Cu、Ta/Ru/Cu又はTa/Crによって形成されている。

【0026】

上記下部大面積非磁性金属膜20及び上部大面積非磁性金属膜40は、シールド間隔R-GLの（1/4）以上となる膜厚で形成される。例えば、シールド間隔R-GLが480～800Åであるとき、大面積非磁性金属膜20、40の膜厚t₂₀、t₄₀は60～300Åであることが好ましい。この範囲内であれば、大面積非磁性金属膜20、40の比抵抗を、シールド層10、50の構成材料であるNiFeの1/5～1/10程度まで低減することができる。すなわち、大面積非磁性金属膜20、40の膜厚が60～300Åであるときのシート抵抗は、NiFe膜が300～3000Åの膜厚で形成されている場合のシート抵抗に相当する。よって、センス電流は大面積非磁性金属膜20、40を流れやすく

、大面積非磁性金属膜20、40とシールド層10、50との境界面でセンス電流の集中を緩和することができる。これにより、下部シールド層10及び上部シールド層50のAMR効果による抵抗変化は小さく抑えられる。なお、下部大面積非磁性金属膜20の膜厚 t_{20} と上部大面積非磁性金属膜40の膜厚 t_{40} は、同一であっても異なっていてもよい。

【0027】

GMR素子30は、図1に示されるようにトラック幅方向（図示X方向）においてシールド層10、50及び大面積非磁性金属膜20、40のほぼ中央部に位置しており、上下面が大面積非磁性金属膜20、40によって挟まれている。このGMR素子30は、大面積非磁性金属膜20、40がシールド間隔R—GLの（1／4）以上の膜厚で形成されているため、シールド間隔R—GLの（3／4）以下となる膜厚で形成されている。

【0028】

GMR素子30は、下部大面積非磁性金属膜20側から順にフリー磁性層31、非磁性材料層32及び固定磁性層33を有し、さらに固定磁性層33よりもハイト方向（図示Y方向）奥側に反強磁性層34（図3）を有している。図1に示す記録媒体との対向面（ABS面）には、フリー磁性層31、非磁性材料層32及び固定磁性層33が露出し、反強磁性層34は露出しない。なお、GMR素子30は、図示例とは上下を逆にして、下から固定磁性層、非磁性材料層及びフリー磁性層の順番で積層形成されていてもよい。

【0029】

固定磁性層33は、磁性材料により形成された第1固定磁性層33c及び第2固定磁性層33aと、これらの間に位置させて非磁性材料により形成された非磁性中間層33bとからなる積層フェリ構造で形成されている。

【0030】

第1固定磁性層33cは、ハイト方向（図示Y方向）奥側にて反強磁性層34と接しており、反強磁性層34との間に生じる交換異方性磁界により、磁化方向がハイト方向に固定されている。第2固定磁性層33aの磁化方向は、非磁性中間層33bを介した第1固定磁性層33cと第2固定磁性層33aとのRKKY

相互作用により、ハイト方向と反平行方向に固定されている。

【0031】

第1固定磁性層33c及び第2固定磁性層33aは、例えばNiFeやCoFe等の磁性材料により、10～70Å程度の膜厚で形成されている。非磁性中間層33bは、第1固定磁性層33cと第2固定磁性層33aの間にRKKY相互作用がはたらく材質及び膜厚で形成される。本実施形態の非磁性中間層33bは、例えばRuにより3～10Å程度の膜厚で形成されている。なお、固定磁性層33は、積層フェリ構造ではなく、磁性膜による単層構造または積層構造であってもよい。

【0032】

反強磁性層34は、元素Z（ただし元素Zは、Pt、Pd、Ir、Rh、Ru、Osのうち1種または2種以上の元素である）とMnとを含有する反強磁性材料で形成されることが好ましい。あるいは、元素Zと元素Z'（ただし元素Z'は、Ne、Ar、Kr、Xe、Be、B、C、N、Mg、Al、Si、P、Ti、V、Cr、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、Cd、Sn、Hf、Ta、W、Re、Au、Pb、及び希土類元素のうち1種又は2種以上の元素である）とMnとを含有する反強磁性材料により形成されることが好ましい。これら反強磁性材料は、耐食性に優れていてブロッキング温度も高く、反強磁性層34と第1固定磁性層33cの界面で大きな交換結合磁界を発生させることができる。反強磁性層34は、80Å以上で300Å以下の膜厚で形成されることが好ましく、本実施形態では約150Åの膜厚で形成されている。

【0033】

非磁性材料層32は、電気抵抗の低い導電材料によって形成されることが好ましく、本実施形態では例えばCuにより形成されている。この非磁性材料層32は、例えば25Å程度の膜厚で形成される。フリー磁性層31は、例えばNiFeやCoFe等の磁性材料により、100Å程度の膜厚で形成されている。このフリー磁性層31は、磁性膜による単層構造をなしているが、磁性膜による積層構造とすることも積層フェリ構造とすることも可能である。フリー磁性層31及

び非磁性材料層32の両側部には、トラック幅方向に磁化されているハードバイアス層63が接している。フリー磁性層31の磁化は、ハードバイアス層63の縦バイアス磁界によって、トラック幅方向（図示X方向）に揃えられている。

【0034】

また大面積非磁性金属膜20、40の間には、GMR素子30のトラック幅方向の両側部に位置させて、下から順に第1絶縁層61、バイアス下地層62、上述のハードバイアス層63、第2絶縁層64が積層形成されている。

【0035】

第1絶縁層61及び第2絶縁層64は、例えば Al_2O_3 や SiO_2 などの絶縁材料で形成され、ハードバイアス層63（及びハードバイアス下地層62）と大面積非磁性金属膜20、40の間を埋めている。すなわち、第1絶縁層61は、フリー磁性層31の両側部の一部に接する膜厚で、下部大面積非磁性金属膜20の上に形成されている。第2絶縁層64は、固定磁性層33の両側部に接する膜厚で、ハードバイアス層63の上に形成されている。

【0036】

バイアス下地層62は、ハードバイアス層63の特性（保持力 H_c 、角形比 S ）を向上させ、ハードバイアス層63から発生するバイアス磁界を増大させるために設けられている。バイアス下地層62は、体心立方構造（bcc構造）の金属膜で形成されることが好ましく、具体的にはCr、W、Mo、V、Mn、Nb、Taのいずれか1種または2種以上の元素で形成されることが好ましい。このバイアス下地層62は、ハードバイアス層63の下側のみに形成されていることが好ましいが、フリー磁性層31の両側部とハードバイアス層63との間に若干介在していてもよい。フリー磁性層31の両側部とハードバイアス層63の間に形成されるバイアス下地層62のトラック幅方向における膜厚は、1nm以下であることが好ましい。バイアス下地層62が介在していれば、ハードバイアス層63とフリー磁性層31とを磁気的に連続体にすることができ、フリー磁性層31の端部が反磁界の影響を受けるバックリング現象を防止することができ、フリー磁性層31の磁区制御が容易になる。

【0037】

以上の全体構成を有するCPP-GMRヘッド1は、センス電流がGMR素子30の膜面に対して垂直方向（膜厚方向）に流れたとき、GMR素子30の巨大磁気抵抗効果を利用して記録媒体からの漏れ磁界を検出することができる。図4に示す矢印は、上部シールド層50側から下部シールド層10側に向かってセンス電流を流した場合に生じる電流経路を示している。

【0038】

図4に示されるように、上部シールド層50に与えられたセンス電流は、その大部分が上部シールド層50よりも比抵抗の小さい上部大面積非磁性金属膜40に流れ込む。上部大面積非磁性金属膜40に流れ込んだセンス電流は、上部大面積非磁性金属膜40がGMR素子30よりも広い範囲に存在しているため、該上部大面積非磁性金属膜40内を膜面に対して平行に流れ、上部大面積非磁性金属膜40と固定磁性層33の界面から該GMR素子30の膜面に直交する方向（膜厚方向）に流れた後、フリー磁性層31と下部大面積非磁性金属膜20の界面から下部大面積非磁性金属膜20に入る。下部大面積非磁性金属膜20内に入ったセンス電流は、下部大面積非磁性金属膜20の比抵抗が下部シールド層50よりも小さく且つ下部大面積非磁性金属膜20がGMR素子30よりも広い範囲に存在しているため、その大部分が比抵抗のより小さい下部大面積非磁性金属膜20内を膜面に対して平行に流れ、GMR素子30の下層に位置する範囲の下部シールド層10にはほとんど流れない。

【0039】

このような電流経路によれば、GMR素子30が形成されている範囲の上層位置又は下層位置に、センス電流が集中することがない。すなわち、大面積非磁性金属膜20、40とシールド層10、50の界面における電流密度は小さくなり、シールド層10、50のAMR効果が生じても、該AMR効果によるノイズ（シールド層10、50の抵抗変化）を小さく抑えられる。なお、下部シールド層10から上部シールド層50に向かってセンス電流を流す場合には、センス電流の流れる方向は逆向きであるが、同様の電流経路ができる。

【0040】

また、上述したように固定磁性層33（第1固定磁性層33a）の磁化方向を

固定するための反強磁性層34は第1固定磁性層33cよりもハイト方向奥側に形成されており、図4に示される電流経路中には反強磁性層34が存在していない。一般に反強磁性層は、GMR素子30や大面積非磁性金属膜20、40に比して比抵抗が大幅に大きく、また、反強磁性特性を得るために70～300Å程度の厚い膜厚で形成されるため、電流が流れると大きなジュール熱を発生させる。よって、本実施形態のように電流経路中に反強磁性層が存在していなければ、センス電流を流しても反強磁性層が発熱しないので、ヘッドの温度が過度に上昇せず、信頼性を改善することができる。また、電流経路中に反強磁性層が存在していなければ、ヘッドの高周波特性も改善される。

【0041】

また本実施形態では、電流経路中に反強磁性層を設けないことにより、シールド間隔R-GLを従来よりも小さくすることができ、さらに、上部大面積非磁性金属膜20及び下部大面積非磁性金属膜40を従来よりも厚い膜厚t20、t40で形成できている。なお、従来では、図7に示すように固定磁性層の直上に反強磁性層が厚い膜厚で形成されていたため、シールド間隔R-GL'を大きくさせずに非磁性金属膜を十分に厚くすることができなかった。

【0042】

以下では、図1に示すCPP-GMRヘッド1の製造方法について説明する。

【0043】

先ず、下から順に下部シールド層10、下部大面積非磁性金属膜20、フリー磁性層31、非磁性材料層32、第2固定磁性層33a、非磁性中間層33b、及び第1固定磁性層33cを真空中でベタ膜上に連続成膜する。各層の材料及び膜厚は、図1に示された完成状態のCPP-GMRヘッド1と同じである。

【0044】

次に、第1固定磁性層33cの上に、形成すべきGMR素子30の光学的な素子面積と同程度、あるいは該素子面積よりも若干小さい面積を覆うリフトオフ用のレジスト層を形成する。

【0045】

レジスト層を形成したら、レジスト層に覆われていない第1固定磁性層33c

、非磁性中間層33b、第2固定磁性層33a、非磁性材料層32及びフリー磁性層31をイオンミリング等により除去する。この工程により、下部大面積非磁性金属膜20のトラック幅方向のほぼ中央部上に、フリー磁性層31から第1固定磁性層33cまでの各層で構成されるGMR素子30が略台形状となって残される。なお、GMR素子30の両側端面にはイオンミリングで除去された物質の一部が再付着するので、この再付着物を再度ミリングで除去することが好ましい。

【0046】

続いて、GMR素子30の両側端面にかけて、第1絶縁層61、バイアス下地層62、ハードバイアス層63及び第2絶縁層64を連続でスパッタ成膜する。上記各層の材料及び膜厚は、図1に示された完成状態のCPP-GMRヘッド1と同じである。なお、スパッタ成膜時におけるスパッタ粒子角度は、下部大面積非磁性金属膜20に対してほぼ垂直方向とすることが好ましい。スパッタ成膜後は、レジスト層を除去する。

【0047】

レジスト層を除去したら、図3に示すように、第1固定磁性層33cのハイト方向奥側に反強磁性層34を形成する。すなわち、第1固定磁性層33c及び第2絶縁層64の上に、反強磁性層形成エリアを空間とするレジスト層を形成し、このレジスト層に覆われていない第2絶縁層64を例えればイオンミリング等により除去し、除去部分に反強磁性層34を形成する。反強磁性層34の材料及び膜厚は、図3に示された完成状態のCPP-GMRヘッド1と同じである。反強磁性層34の形成後は、レジスト層を除去する。

【0048】

続いて、GMR素子T1をハイト方向（図示Y方向）の磁場中でアニールし、反強磁性層34と第1固定磁性層33cの間にそれぞれ交換結合磁界を発生させる。このとき、アニール温度は例えば270℃程度であり、印加磁界の大きさは800kA/m程度である。この磁場中アニール処理により、第1固定磁性層33cの磁化方向はハイト方向に固定され、第2固定磁性層33aの磁化方向はハイト方向に対して反平行方向に固定される。

【0049】

アニール処理後は、図5に示すように、第1固定磁性層33c及び第2絶縁層64の上に上部大面積非磁性金属膜40をスパッタ成膜し、上部大面積非磁性金属膜40の上面にCMP加工又はイオンミリングを施す。このCMP加工又はイオンミリングにより、上部大面積非磁性金属膜40の上面が平坦化される。上部大面積非磁性金属膜40の材料及びCMP加工後の膜厚t40は、図1に示された完成状態のCPP-GMRヘッド1と同じである。

【0050】

そして、平坦化された上部大面積非磁性金属膜40の上に、上部シールド層50をスパッタ成膜する。上部シールド層50の材料及び膜厚は、図1に示す完成状態のCPP-GMRヘッド1と同じである。

【0051】

以上により、図1に示すCPP-GMRヘッド1が完成する。

【0052】

以上の本実施形態では、下部シールド層10の直上と上部シールド層50の直下に、フリー磁性層31又は固定磁性層33（第1固定磁性層33c）に直接接し、これらフリー磁性層31及び固定磁性層33よりも十分広い面積で形成された下部大面積非磁性金属膜20と上部大面積非磁性金属膜40がそれぞれ備えられているので、下部シールド層10及び上部シールド層50におけるセンス電流の集中を緩和することができ、下部シールド層10及び上部シールド層50のAMR効果によるノイズを低減可能である。

【0053】

また本実施形態では、下部大面積非磁性金属膜20及び上部大面積非磁性金属膜40がシールド間隔R-GLの（1/4）以上の膜厚で形成されているので、センス電流は下部大面積非磁性金属膜20及び上部大面積非磁性金属膜40を流れやすく、下部シールド層10及び上部シールド層50にはほとんど流れない。これにより、下部シールド層10及び上部シールド層50でAMR効果が生じても該AMR効果によるノイズは小さく抑えられる。

【0054】

また本実施形態では、第1固定磁性層33cよりもハイト方向奥側に反強磁性層34を設け、センス電流の流れる電流経路から反強磁性層34を隔離してあるので、GMR素子30にセンス電流を流しても反強磁性層34が発熱することがない。よって、図7のように電流経路中に反強磁性層が存在していた従来よりもGMR素子30の発熱が大幅に低減され、この結果、素子温度の上昇が抑制されて、信頼性が向上する。また図1に示すABS面において、シールド間隔R-G-Lを図7に示す従来よりも狭くすることができ、GMR素子30の各層及び大面積非磁性金属膜20、40の膜厚の設計自由度も高くなる。

【0055】

本実施形態では、反強磁性層34を第1固定磁性層33cよりもハイト方向奥側に設けているが、第1固定磁性層33cの磁化方向を固定する態様は種々の変形が可能である。

【0056】

例えば、図6に示すように、第1固定磁性層33cをトラック幅方向に十分に長く延ばし、延ばした第1固定磁性層33cの両側端部に接する反強磁性層35を備える態様であってもよい。固定磁性層33がフェリ構造でない場合には、固定磁性層全体をトラック幅方向に十分長く延ばし、その両側端部に接する反強磁性層を備えればよい。

【0057】

また、反強磁性層を設けずに、正磁歪を有する磁性材料又は保磁力の大きい磁性材料によって固定磁性層33を形成し、固定磁性層33自体の保磁力によってその磁化方向を固定する態様としてもよい。この態様では、記録媒体との対向面から見たヘッド構造は図1に示す実施形態と同じになり、第1固定磁性層33cのハイト方向奥側には反強磁性層34の替わりに第2絶縁層64が形成される。

【0058】

さらに本実施形態では、上部大面積非磁性金属膜40がGMR素子30及び第2絶縁層64を覆って形成されていることから、上部大面積非磁性金属膜40にCMP加工を施すことができ、平坦性を確保することができる。よって、上部シールド層50上に記録用のインダクティブヘッドを積層して形成する際にも平坦

性が保障される。

【0059】

本実施形態のCPP-GMRヘッド1は、シングルスピンバルブタイプのGMR素子30を備えているが、本発明はデュアルスピンバルブタイプのGMR素子を備えたCPP-GMRヘッドにも適用可能である。

【0060】

本実施形態のCPP-GMRヘッドは、再生用薄膜磁気ヘッドのみでなく、この再生用薄膜磁気ヘッド上にさらに記録用のインダクティブヘッドを積層した録再用薄膜磁気ヘッドにも適用可能である。

【0061】

【発明の効果】

本発明によれば、下部シールド層の直上と上部シールド層の直下に、フリー磁性層又は固定磁性層に直接接し、これらフリー磁性層及び固定磁性層よりも十分広い面積で形成された大面積非磁性金属膜がそれぞれ備えられているので、下部シールド層及び上部シールド層におけるセンス電流の集中を緩和することができ、下部シールド層及び上部シールド層のAMR効果によるノイズを低減可能である。また本発明によれば、大面積非磁性金属膜がシールド間隔の（1／4）以上の膜厚で形成されているので、センス電流は、大面積非磁性金属膜を流れやすく、下部シールド層及び上部シールド層にはほとんど流れない。これにより、下部シールド層及び上部シールド層ではAMR効果が生じず、また生じてもAMR効果によるノイズは小さく抑えられる。さらに本発明によれば、センス電流の流れる電流経路中に反強磁性層が存在していないので、センス電流を流したときに発生するジュール熱は大幅に減少し、ヘッドの信頼性が向上する。

【図面の簡単な説明】

【図1】

本発明の一実施形態であるCPP型巨大磁気抵抗効果ヘッド（CPP-GMRヘッド）の構造を、記録媒体との対向面から見て示す縦断面図である。

【図2】

図1の上部大面積非磁性金属膜及び下部大面積非磁性金属膜とGMR素子の形成範囲を示すXY平面図である。

【図3】

図1のIII-III線に沿って切断した断面図である。

【図4】

上部シールド層から下部シールド層に向かってセンス電流を流したときに生じる電流経路を示す概念図である。

【図5】

図1に示すCPP型巨大磁気抵抗効果ヘッドの製造方法の一工程を示す縦断面図である。

【図6】

図1とは別の態様で反強磁性層を設けたCPP型巨大磁気抵抗効果ヘッドの構造を、記録媒体との対向面から見て示す縦断面図である。

【図7】

従来のCPP型巨大磁気抵抗効果ヘッドの構造を、記録媒体との対向面から見て示す縦断面図である。

【符号の説明】

- 1 CPP-GMRヘッド (CPP型巨大磁気抵抗効果ヘッド)
- 1 0 下部シールド層
- 2 0 下部大面積非磁性金属膜
- 3 0 GMR素子 (巨大磁気抵抗効果素子)
- 3 1 フリー磁性層
- 3 2 非磁性材料層
- 3 3 固定磁性層
- 3 3 a 第2固定磁性層
- 3 3 b 非磁性中間層
- 3 3 c 第1固定磁性層
- 3 4 反強磁性層

- 4 0 上部大面積非磁性金属膜
- 5 0 上部シールド層
- 6 1 第1絶縁層
- 6 2 バイアス下地層
- 6 3 ハードバイアス層
- 6 4 第2絶縁層

【書類名】

図面

【図1】

【図2】

【図3】

【図 4】

Z
↑
X
⊗
Y

【図5】

【図6】

【図7】

【書類名】 要約書

【要約】

【目的】 シールド層のAMR効果によるノイズとジュール熱を低減可能なCP
P型巨大磁気抵抗効果ヘッドを得る。

【構成】 所定のシールド間隔をあけて形成した下部シールド層と上部シールド
層と、この上下のシールド層の間に挿入された、中間に非磁性材料層を有し、該
非磁性材料層の上下に固定磁性層とフリー磁性層の一方と他方を有する巨大磁気
抵抗効果素子とを備え、この巨大磁気抵抗効果素子の膜面に直交する方向に電流
が流れるCPP型巨大磁気抵抗効果ヘッドにおいて、下部シールド層の直上と上
部シールド層の直下にそれぞれ、上記巨大磁気抵抗効果素子の固定磁性層とフリ
ー磁性層の一方と他方に直接接触する、該固定磁性層とフリー磁性層よりも広い
面積で形成された大面積非磁性金属膜を設けた。この大面積非磁性金属膜はシ
ールド間隔の1/4以上の膜厚で形成し、巨大磁気抵抗効果素子はシールド間隔の
3/4以下の膜厚で形成する。

【選択図】 図1

認定・付加情報

特許出願の番号 特願2003-114189
受付番号 50300647529
書類名 特許願
担当官 第八担当上席 0097
作成日 平成15年 4月21日

<認定情報・付加情報>

【提出日】 平成15年 4月18日

次頁無

出証特2004-3006912

特願 2003-114189

出願人履歴情報

識別番号 [000010098]

1. 変更年月日 1990年 8月27日

[変更理由] 新規登録

住所 東京都大田区雪谷大塚町1番7号

氏名 アルプス電気株式会社