МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3
по дисциплине «Построение и анализ алгоритмов»
Тема: Редакционное расстояние
Вариант 46.

Студентка гр. 3388	Беннер В.А.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург

2025

Цель работы:

Изучить алгоритмы Левенштейна для нахождения редукционного расстояния. Также реализовать задание по варианту.

Задание.

Расстоянием Левенштейна назовём минимальное количество операций вставки одного символа, удаления одного символа и замены одного символа на другой, необходимых для превращения одной строки в другую. Разработайте программу, осуществляющую поиск расстояния Левенштейна между двумя строками.

Вариант 4б. Добавляется 4-я операция со своей стоимостью: замена двух символов на один символ.

Реализация

Программа реализует модифицированный алгоритм Левенштейна, который вычисляет редакционное расстояние между двумя строками с учетом дополнительной операции - замены двух символов на один. Этот алгоритм определяет минимальную стоимость преобразования строки S в строку T с использованием четырех операций редактирования.

Шаги алгоритма

1. Инициализация:

- Создается матрица dp размером (m+1) x (n+1), где m и n длины строк S и T.
- Первая строка матрицы заполняется стоимостью вставки всех символов Т.
- Первый столбец заполняется стоимостью удаления всех символов S.

2. Заполнение матрицы:

- Для каждой позиции і в S и ј в Т:
 - о Если символы S[i-1] и Т[j-1] совпадают:
 - dp[i][j] = dp[i-1][j-1] (стоимость не меняется)
 - о Если символы разные:

- Рассчитываются стоимости всех возможных операций:
 - 1) Замена: dp[i-1][j-1] + replace cost
 - 2) Вставка: dp[i][j-1] + insert_cost
 - 3) Удаление: dp[i-1][j] + delete_cost
 - 4) Двойная замена (если i > 1): dp[i-2][j-1] + double replace cost
- Выбирается операция с минимальной стоимостью.

3. Результат:

• Значение dp[m][n] содержит минимальную стоимость преобразования S в T.

Оценка сложности алгоритма:

Временная сложность:

 $O(m \times n)$ - два вложенных цикла по длинам строк (m и n). На каждом шаге константное число операций (4 варианта редактирования).

Пространственная сложность

O(m×n) при полной матрице.

Тестирование

Таблица 1. Тестирование.

Входные данные	Параметры операций	Результат
s: "kitten"	replace=1	3
t: "sitting"	insert=1	
	delete=1	
	double=1	
s: "abcde"	replace=1	1
t: "abde"	insert=1	
	delete=1	
	double=1	

s: "abcdef"	replace=2	1
t: "abzef"	insert=1	
	delete=1	
	double=1	
s: "intention"	replace=1	5
t: "execution"	insert=1	
	delete=1	
	double=1	
s: "a"	replace=5	3
t: "b"	insert=3	
	delete=2	
	double=1	
s: "abcd"	replace=3	1
t: "acd"	insert=2	
	delete=1	
	double=4	

Вывод

В ходе лабораторной работы были написаны программы с использованием алгоритма Левенштейна.