

HOJA DE REGLAS DE INFERENCIAS LÓGICAS

<u>Nota</u>: Una regla lógica es un razonamiento válido con premisas Pi (i=1,...n) y conclusión Q / P_1 , P_2 ,... $P_n \Rightarrow Q$. Cada regla viene definida por un acrónimo (nombre de la regla), por símbolos A, B, ... que representan fórmulas lógicas cualesquiera, por las conectivas entre fórmulas (ej., v, ^...) y por subdeducciones, (ej. $A\Rightarrow C$ en regla ED), El deductor \Rightarrow indica la fórmula que se deduce de las premisas. El símbolo \Leftrightarrow expresa la equivalencia lógica (deducción en ambos sentidos).

REGLAS DE CONJUNCIÓN	
IC (Introducción conjunción)	$A, B \implies A \wedge B$
EC (Eliminación conjunción)	$A \wedge B \Rightarrow A A \wedge B \Rightarrow B$
ECQ (EX CONTRADICTIONE QUODLIBET)	$A \land \neg A \Rightarrow C$ (de contradicción se deduce cualquier fórmula)

REGLAS DE DISYUNCIÓN	
ID (Introducción disyunción)	$A \Rightarrow \underline{A} \lor B$
ED (Prueba por casos)	$A \vee B$, $(A \Rightarrow C)$, $(B \Rightarrow C) \Rightarrow C$

REGLAS DE IMPLICACIÓN / CONDICIONAL	
TD (Introduce implicador/ Teorema d Deducción)	$(A \Rightarrow B) \Rightarrow A \rightarrow B$
MP (Modus Ponens)	$A \rightarrow B, A \Rightarrow B$
MT (Modus Tollens)	$A \rightarrow B$, $\neg B \Rightarrow \neg A$
ECO (Eliminación bicondicional)	$(A \leftrightarrow B) \Leftrightarrow (A \to B) \land (B \to A)$

REGLAS DE NEGACIÓN	
IN (Introducción del negador/ Absurdo)	$(A \Rightarrow B \land \neg B) \Rightarrow \neg A$
EN (Eliminación del negador)	¬¬A ⇒ A
IDN (Introducción del doble negador)	A ⇒ ¬¬A

SILOGISMOS	
SH (Silogismo Hipotético)	$A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C$
SD (Silogismo Disyuntivo)	$A \vee B$, $\neg B \Rightarrow A$

DILEMAS	
Dil ₁	$\neg A \lor \neg B$, $C \to A$, $C \to B \Rightarrow \neg C$
Dil ₂	$A \vee B$, $A \rightarrow C$, $B \rightarrow D \Rightarrow C \vee D$
Dil ₃	$\neg A \lor \neg B$, $C \to A$, $D \to B \Rightarrow \neg C \lor \neg D$

REGLAS DE EQUIVALENCIA	
(Dly) (Definición implicador conjunción)	$A \longrightarrow B \Leftrightarrow \neg(A \land \neg B)$
(Dlv) (Definición implicador disyunción)	$A \rightarrow B \Leftrightarrow \neg A \vee B$
CP (Contrapositivo)	$A \to B \Leftrightarrow \neg B \to \neg A$
De Morgan	(DMv) \neg (A \lor B) \Leftrightarrow \neg A \land \neg B; (DMy) \neg (A \land B) \Leftrightarrow \neg A \lor \neg B
Idempotencia	$(Idc) A \wedge A \Leftrightarrow A; \qquad (Idd) \qquad A \vee A \Leftrightarrow A$
Absorción	(Absy) $A \wedge (A \vee B) \Leftrightarrow A$; (Absv) $A \vee (A \wedge B) \Leftrightarrow A$
Distributiva	(Dy) $A \wedge (B \vee C) \Rightarrow (A \wedge B) \vee (A \wedge C)$
	(Dv) $A \vee (B \wedge C) \Rightarrow (A \vee B) \wedge (A \vee C)$
Equivalencias semánticas	E_1 : A $\wedge \neg$ A = F E_2 : A $\vee \neg$ A = V E_3 : A \wedge V = p
	$\mathbf{E_4}$: $\mathbf{A} \lor \mathbf{V} = \mathbf{V}$ $\mathbf{E_5}$: $\mathbf{A} \land \mathbf{F} = \mathbf{F}$ $\mathbf{E_6}$: $\mathbf{A} \lor \mathbf{F} = \mathbf{p}$