I Les définitions

On considère une expérience aléatoire dont l'univers, noté Ω , est fini et à partir duquel on définit une loi de probabilité.

Soit A et B deux événements de l'univers Ω .

Un petit rappel, sous forme d'exemple, s'impose :

On prend un dé bien équilibré à six faces. Notre **expérience aléatoire** consistera à le lancer et à relever le nombre de la face supérieure.

Ici on relève le nombre 2

Notre univers est alors composé de six nombres : 1;2;3;4;5 et 6

On écrira $\Omega = \{1; 2; 3; 4; 5; 6\}$

{1}; {2}; {3}; {4}; {5} et {6} sont des événements élémentaires avec lesquels on peut décrire des événements comme, par exemple :

Obtenir un nombre pair : $\{2\} \cup \{4\} \cup \{6\} = \{2; 4; 6\}$

Pour chaque événement élémentaire, on donne sa probabilité, on appelle cela la loi de probabilité.

(En général, on la donne sous forme de tableau)

Loi de probabilité							
Événement élémentaire	{1}	{2}	{3}	[4]	{5}	[6]	Total
Probabilité	<u>1</u>	<u>1</u>	$\frac{1}{6}$	<u>1</u>	<u>1</u>	<u>1</u>	1

Grâce à cette loi de probabilité on peut calculer les probabilités des événements.

Par exemple si on appelle A: « Obtenir un nombre pair »

$$p(A)=p({2;4;6}) = p({2}\cup{4}\cup{6}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6} = \frac{1}{2}$$

La probabilité d'un événement est la somme des probabilités des événements élémentaires qui le composent.

Définition n°1.

Événement contraire

On note \overline{A} (et on lit « A barre ») l'ensemble des événements élémentaires qui ne sont pas contenus dans A .

on garde la meme experience aleatoire.				
A: « Obtenir un nombre pair »	\overline{A} : « Ne pas obtenir un nombre pair »			
$A = \{2\} \cup \{4\} \cup \{6\} = \{2; 4; 6\}$	$\overline{A} = \Omega \setminus \{2; 4; 6\} = \{1; 3; 5\}$			
A possède trois éléments, on note $Card(A)=3$ « Cardinal de A vaut 3 »	\overline{A} possède trois éléments, on note $Card(\overline{A})=3$			
B : « Obtenir un multiple de trois »	\overline{B} : « Ne pas obtenir un multiple de trois »			
$B = \{3\} \cup \{6\} = \{3 ; 6\}$	$\overline{B} = \Omega \setminus \{3; 6\} = \{1; 2; 4; 5\}$			
B possède deux éléments, on note $Card(B) = 2$	\overline{B} possède quatre éléments, on note $Card(\overline{B}) = 4$			

	В	\overline{B}	Total
A			3
\overline{A}			3
Total	2	4	6

Les cases coloriées correspondent à \overline{A}

Diagramme de Venn illustrant \overline{A}

Définition n°2. Intersection de deux événements

On note $A \cap B$ (et on lit « A inter B ») l'ensemble des événements élémentaires contenus à la fois dans A et B

 $A\cap B$

On garde la même expérience aléatoire.

A: « Obtenir un nombre pair » et B: « Obtenir un multiple de trois »

 $A \cap B$: « Obtenir un nombre pair ET un multiple de trois »

On peut aussi écrire : « Obtenir un multiple de 6 »

$$A \cap B = \{2; 4; 6\} \cap \{3; 6\} = \{6\}$$
 (On ne garde que ce qu'il y a en commun)

$$Card(A \cap B) = 1$$

Remarque : Attention, la couleur rouge nous indique que l'on parle de l'événement $A \cap B$ mais, dans le tableau, on écrira son cardinal : $Card(A \cap B) = 1$

Définition n°3. Union de deux événements

On note $A \cup B$ (et on lit « A union B ») l'ensemble des événements élémentaires contenus dans A ou B .

Remarque n°1.

Attention, c'est un « ou inclusif » : l'événement peut appartenir à A , à B mais aussi à A et B en même temps

 $A \cup B$

On garde la même expérience aléatoire.

A: « Obtenir un nombre pair » et B: « Obtenir un multiple de trois »

 $A \cup B$: « Obtenir un nombre pair OU un multiple de trois »

 $A \cup B = \{2; 4; 6\} \cup \{3; 6\} = \{2; 3; 4; 6\}$ (On prend tous les éléments mais on ne les fait apparaître qu'une fois)

Même remarque, la couleur rouge nous indique toutes les cases qui concernent $A \cup B$ mais on écrira les cardinaux correspondants.

	В	\overline{B}	Total
A	$1 = Card(A \cap B)$	$2 = Card\left(A \cap \overline{B}\right)$	3
\overline{A}	$1 = Card\left(\overline{A} \cap B\right)$	$2 = Card(\overline{A} \cap \overline{B})$	3
Total	2	4	6

Les cases coloriées correspondent à $A \cup B$

Remarque:

On retrouve bien sûr que $Card(A \cup B) = Card(A \cap B) + Card(\overline{A} \cap B) + Card(A \cap \overline{B})$

Définition n°4. Probabilité conditionnelle

On appelle **probabilité de B** sachant **A** et on note $p_A(B)$ le nombre défini par :

$$p_{A}(B) = \frac{Card(A \cap B)}{Card(A)}$$

Propriété n°1.

$$p_A(B) = \frac{P(A \cap B)}{P(A)}$$

preuve:

$$\frac{p(A \cap B)}{p(A)} = \frac{\frac{Card\left(A \cap B\right)}{Card\left(\Omega\right)}}{\frac{Card\left(A\right)}{Card\left(\Omega\right)}} = \frac{Card\left(A \cap B\right)}{Card\left(\Omega\right)} \times \frac{Card\left(\Omega\right)}{Card\left(A\right)} = \frac{Card\left(A \cap B\right)}{Card\left(A\right)} = p_A(B)$$

Remarque n°2. rappel

Card(A) est le nombre d'événements élémentaires contenus dans A