

MSE6701H, Multiscale Materials Modeling and Simulation –

Electronic DFT

Atomistic MD

Mesoscale PF

Lecture 09

Molecular Dynamics under T, P constraints

Guisen Liu (刘桂森)

Email: liuguisen@sjtu.edu.cn

2021.11.24

MD: overall flow chart

Outline for atomistic MD modeling

> Goals

- Gain systematic knowledge on basic ideas of MD simulation.
- Apply MD to solve realistic issues in materials science & engineering.
- Apply MD to understand relationship between structure, mechanism and properties for typical problems in materials science & engineering.

Weeks	Contents
MD-1	✓ Development and algorithm
MD-2	✓ Interatomic potentials
MD-3	✓ Molecular Statics: energy minimization
*MD-4/5	MD under T & P constraints; structure analyses
Experiments #1-2	 Physical properties calculations: diffusion Dislocation motion, plastic deformation

Melting of crystals

heterogeneous melting occurs near the back surface of the irradiated film

50 nm Ni Film

Absorbed Fluence: 430 J/m²

Depth: 38-55 nm

t = 20 ps

http://ftp.aip.org/epaps/phys_rev _lett/E-PRLTAO-91-052334/

- When & why control T in MD?
- How to control T in MD?
- How to characterize structures?

fcc-Al transforms to liquid as T increases

Contents

- 1. Ensembles
- 2. Temperature control
 - Andersen method
 - Nose-Hoover thermostat
- 3. Structure analyses
- 4. Pressure control (next lecture)
- Goals today
 - Tell when to control T, P
 - Apply T constraints to specific problems
 - Learn how to analyze crystal structures

Physically important conditions

- ✓ Basic MD run under energy conservation: NVE
- 1. Biological reactions occur under constant Temperature: NVT
- 2. Chemical reactions occur open to atmosphere (P): NPT

- Properties of a system depend on the applied constraints.
 - each set of constraints corresponds to a different ensemble.

MD simulations v.s. Statistical Physics

- ightharpoonup MD system: microstate \leftrightarrow one point in 6N-dimensional $\{r_i, p_i\}$ space
 - observed macrostate = time average

$$E_{obs} = \langle E \rangle = \frac{1}{t_0} \int_0^{t_0} E(t') dt'$$

- Statistical physics: go through all the points in the phase space, but in an probabilistic way
 - macrostate = <u>ensemble</u> average $\langle E \rangle = \sum_{i=1}^{N_{\rm all}} \rho_i E_i$

 ρ_i is **probability** density, depends on applied thermodynamic constraints!

Ergodicity

- Ergodicity: time average = ensemble average
 - Ideally, an ergodic system evolve long enough time will go through all points in 6*N*-dimensional $\{r_i, p_i\}$ space
 - Realistically?
 - Some points are surrounded by high potential energy barrier

Final state depends on the certain thermodynamic constraints

https://svenschnieders.com/an-introduction-to-ergodicity/

Equilibrium MD simulations

- Purpose
 - Go through all possible phase space efficiently
 - Obtain time averages = experimentally observed properties

In MD, solving the Newton equation of motion = NVE ensemble

- How to simulate other important ensembles?
 - NVT, constant temperature
 - NPT, constant pressure

1.1 Microcanonical ensemble (NVE)

- NVE: constant particle numbers N, volume V, and energy E.
- Equilibrium state
 - E = K + U is constant
 - K and U fluctuate around their averages, thus T varies.

- > How?
 - ✓ control E as a constant.

Completely isolated

System:

N, V, E

1.2 Canonical ensemble (NVT)

- NVT: Constant N, V & T, not isolated. system is in contact with a heat bath of temperature T which is in equilibrium
 - Energy exchange, internal energy dE ≠ 0, fluctuate
 - System (E_s) + bath (E_b) is isolated, but E_s << E_b

- > How?
 - \checkmark Control T as a constant.

1.3 other ensembles

- Isobaric-isothermal ensemble NPT: constant pressure P and temp T
 - Common in lab constraints & phase transformation
 - Energy and volume fluctuate around mean value
- Grand canonical ensemble μVT
 - constant chemical potential µ.
 - N, P, E fluctuate
 - Effective in alloy design, particles are discrete

Example: NVT vs. NVE

- \triangleright A system of 3 atoms, with 6 possible energy levels: $E_n = ne_0$.
 - Each microstate {E₁, E₂, E₃ }
 - Total E = $E_1 + E_2 + E_3$

- \rightarrow If *NVE*: e.g. total E = 9e₀
 - Microstate such as {2, 3, 4}, {3, 3, 3} etc. has equal probability
 - Increase E, number of microstates rapidly increase. Entropy?
- > If NVT
 - All energy states are possible, but probability is not equal
 - Probability $\propto \exp(-E_{\alpha}/k_BT)$

Exercise

- For a given system of N atoms
 - 1. To approach thermo-states assembling the microcanonical (NVE) ensemble, you need to control (?)
 - 2. To approach thermo-states assembling the canonical (NVT) ensemble, you need to control (?)
 - A. Temperature
 - B. Internal energy
- 3. How to define the temperature for a system of *N* atoms?

Short summary on ensembles

- ✓ Solution to Newton's equation → NVE
 - Basic MD run under NVE
- $\dot{\mathbf{r}}_i = \mathbf{p}_i / m_i$ $\dot{\mathbf{p}}_i = m_i \ddot{\mathbf{r}}_i = \mathbf{F}_i$
 - However, isolated system with constant E is uncommon.
 - In lab condition, control T or P is easier than control energy

- Physical ensembles
 - 1. Biological reactions occur under constant Temperature: NVT
 - 2. Chemical reactions occur open to atmosphere (P): NPT

Contents

- 1. Ensembles
- 2. Temperature control (NVT)
 - Andersen method
 - Nose-Hoover thermostat
- 3. Structure analyses
- 4. Pressure control

2.1 Thermostat: Andersen method

- Exchange energy with surroundings: heat bath
- How: give the randomly selected atom (with some probability) a new velocity consistent with the desired heat bath temperature
- Pros: intuitive interpretation of NVT
- Cons: randomly assigned velocity is unphysical perturbation on the equation of motion for the selected atom

2.2 Thermostat: Nose-Hoover method (1)

- Idea: Modify equation of motion to include a non-Newtonian term to maintain E_k.
- ightharpoonup Constrained motion: $\ddot{\mathbf{r}}_i = \mathbf{F}_i / m_i \lambda \dot{\mathbf{r}}_i$ artificial frictional force
 - λ : friction coefficient $\dot{\lambda} = (T(t) T_0) / M_s \rightarrow 0$ means dynamics at steady
 - M_s : thermal "mass" that controls the rate of heat exchange with exterior

If $T > desired T_0$, λ increases \rightarrow velocity decreases, and vice versa \rightarrow T fluctuates around desired T_0

2.2 Thermostat: Nose-Hoover method (2)

> Pros

- leads to NVT (canonical distribution);
- The trajectories conserve the total energy of the *extended* system (\widetilde{H})

> Cons

- Approach equilibrium: but oscillates (M_s)
- Large M_s : weak coupling with heat bath
- Small M_s : energy oscillate too much

$$\tilde{H} = \sum_{i=1}^{N} \frac{1}{2} m_i |\mathbf{v}_i|^2 + U(\{\mathbf{r}_i\}) + \frac{1}{2} M_s \lambda^2 + 3N k_B T \ln s \quad \text{http://www.acclab.helsinki.fi/~knordlun/moldyn/lecture06.pdf}$$

Comments on temperature control

Don't control local T when simulating thermal activated process.

LAMMPS NVT: A Nose-Hoover thermostat will not work well for arbitrary values of *Tdamp*. If *Tdamp* is too small, the temperature can fluctuate wildly; if it is too large, the temperature will take a very long time to equilibrate. A good choice for many models is a *Tdamp* of around 100 timesteps. Note that this is NOT the same as 100 time units for most units settings.

Example: effects of Tdamp

Example: MD simulation of melting

- 1. PBC to simulate the bulk response
- 2. Experiments: melting starts at surface
- 3. Whole model starts to transform to liquid → instability. Requiring extra energy to overcome the energy barrier.

Structure with increasing Temperature

Contents

- 1. Ensembles
- 2. Temperature control (NVT)
 - Andersen method
 - Nose-Hoover thermostat
- 3. Structure analyses
- 4. Pressure control

3.1 Why structure analyses

When simulating phase transformation (melting)

Solid Regular spacing

Liquid Irregular spacing

Gas
More irregular spacing

- Concepts
 - Measure distance of atoms to their neighbors
 - Average over large number of atoms
 - Average over time (MD) → structure evolution

3.2 Centro-Symmetry Parameter (1)

- ▶ Idea: an atom possesses local centro-symmetry when for each of its neighbors at the relative position r, there is another neighbor at the relative position -r. (inversion-symmetry crystal, e.g. fcc, bcc ...)
- > How
 - CSP = $\sum_{i=1}^{N/2} |\mathbf{r}_i + \mathbf{r}_{i+N/2}|^2$ N = number of nearest neighbors (NN)
 - compute centro/atom

Kelchner, Plimpton, Hamilton, Phys Rev B, 58, 11085 (1998).

3.2 Centro-Symmetry Parameter (2)

$$ightharpoonup CSP = \sum_{i=1}^{N/2} |\mathbf{r}_i + \mathbf{r}_{i+N/2}|^2$$

	ВСС
Nearest neighbors (N)	8

Perfect crystal, CSP = ?

Whenever the local atomic arrangement deviates from the perfect crystal structure, the same two atoms may no longer be centro-symmetric. CSP?

3.3 Radial Distribution Function

RDF: pair distribution/correlation function

$$g(r) = \frac{\rho(r)}{\rho}$$

- $\rho(r)$: local density within Δr , $\Delta N/V_{dr}$
- ρ : overall density of atoms, N_{tot}/V
- Absolute value depends on Δr
- RDF can be measured experimentally
 - x-ray or neutron-scattering

$$g(r) = \frac{N(r \pm \frac{\Delta r}{2})}{\Omega(r \pm \frac{\Delta r}{2})\rho}$$

Density

$$\rho = N/V$$

https://www.lptmc.jussieu.fr/user/mmi/IMI lecture/lecture 5/OPEN Micoulaut lecture5 calculating properties.pdf

Example: RDF

- Peaks in RDF characterize NN distance, from which can infer the crystal structure.
- In fcc: 12, 6, 24 in first three shells.
- Comments about PDF
 - Describes how atoms are packed on avera
 - Provide evolution of structure,
 but not about how fast atoms move.
 - Instantaneous disorder
 - compute rdf

$$1^{st}$$
 NN r = a/sqrt(2) = 0.38 nm

3.4 Common Neighbor Analysis

➤ CNA: atoms i and j are nearest neighbors if $r_{ij} \le r_{\text{cut}}$.

compute cna/atom

$$egin{align} r_c^{fcc} = &rac{1}{2} \left(rac{\sqrt{2}}{2} + 1
ight) \mathrm{a} \simeq 0.8536 \, \mathrm{a} \ & r_c^{bcc} = &rac{1}{2} (\sqrt{2} + 1) \mathrm{a} \simeq 1.207 \, \mathrm{a} \ & r_c^{hcp} = &rac{1}{2} \left(1 + \sqrt{rac{4 + 2x^2}{3}}
ight) \mathrm{a} \ & \end{array}$$

- Starting with a pair of atom *i*—*j*, a set of four indexes (i-iv) is used to describe their common neighbors:
- i. 1 or 2 indicates i and j are nearest neighbors (= 1) or not (= 2).
- ii. # of nearest neighbors k shared by the *i*–*j* pair (common neighbors)
- iii. # of bonds ($k \leftrightarrow k$) among the common neighbors
- iv. Differentiates diagrams with same (i-iii) and different bonding among common neighbors.

7 pairs, bcc: 1661

3.4 CNA analysis

- i. 1 or 2 indicates i and j are nearest neighbors (=1) or not (=2).
- ii. # of nearest neighbors k shared by the i-j pair (common neighbors)
- iii. # of bonds ($k \leftrightarrow k$) among the common neighbors
- iv. Differentiates diagrams with same (i-iii) and different boding among common neighbors.

H. Tsuzuki, et al. Computer Physics Communications. 177, 518 (2007).

Summary

> Ensembles

- > Temperature control
- Structure analyses

Homework

- 1. Numerical implementation of the Nose-Hoover equation of motion in updating position of atoms using velocity Verlet algorithm.
- 2. Calculate melting point for Cu by MD using Mishin's EAM potential (2001), and compare it with reference. Visualize the structure using CSP and CNA analysis by OVITO.

Due: Dec 1, 2021

Next Lecture:

Pressure (stress) control & MD Experiment #1

Supplementary: Kinetic energy vs T

For continuous systems described by positions and momenta, the partition function takes the form

$$Q_{NVT} = \frac{1}{N!h^{3N}} \iint e^{-\mathcal{H}(\mathbf{r}^N, \mathbf{p}^N)/k_B T} d\mathbf{r}^N d\mathbf{p}^N, \qquad (G.14)$$

where the value of the Hamiltonian function $\mathcal{H}(\mathbf{r}^N, \mathbf{p}^N) = K(\mathbf{p}^N) + U(\mathbf{r}^N)$ is the total energy [223]. In Eq. (G.14), the limits of integration for the positional coordinates are such that they lie in the volume V. The components of the momenta can take on any values between $-\infty$ and ∞ .

If the potential depends only on the positions,¹⁰ the integrals over momenta and positions are separable into a set of integrals over the momenta multiplied by a set of integrals over the positions. We can then evaluate the integrals over the momenta separately and, it turns out, analytically¹¹ and the partition function becomes

$$Q_{NVT} = \frac{1}{N!\Lambda^{3N}} \int e^{-U(\mathbf{r}^N)/k_B T} d\mathbf{r}^N, \qquad (G.15)$$

where $\Lambda = h/\sqrt{2\pi m k_B T}$ is the thermal de Broglie wavelength. The momenta thus do not appear directly in Q_{NVT} . For quantities that depend only on position, for example, the potential energy, averages take the form

$$\langle U \rangle = \frac{1}{Z_{NVT}} \int e^{-U(\mathbf{r}^N)/k_B T} U(\mathbf{r}^N) d\mathbf{r}^N, \qquad (G.16)$$

where the *configurational integral* is

$$Z_{NVT} = \int e^{-U(\mathbf{r}^N)/k_B T} d\mathbf{r}^N.$$
 (G.17)

Note that the de Broglie wavelength cancels out in Eq. (G.16).

1. Note averages in NVT satisfy

$$\langle K \rangle = \frac{\sum_{\alpha} \exp(-K_{\alpha}/k_{B}T)K_{\alpha}}{Q_{NVT}} = \frac{\int \exp\left(-\frac{K(\mathbf{p}^{N})}{k_{B}T}\right)K(\mathbf{p}^{N})d\mathbf{p}^{N}}{\int \exp\left(-\frac{K(\mathbf{p}^{N})}{k_{B}T}\right)d\mathbf{p}^{N}}$$

2.
$$K(\mathbf{p}^N) = (p_x^2 + p_y^2 + p_z^2)/2m$$

$$3. \quad \Rightarrow \langle K \rangle = \frac{3}{2} N k_B T$$

The integrals over each coordinate of the momenta for each atom are $\int_{-\infty}^{\infty} \exp(-(p_x^2/2m)/k_BT)dp_x$. These are just Gaussian integrals of the form $\int_{-\infty}^{\infty} \exp(-ax^2)dx = \sqrt{\pi/a}$. Thus $\int_{-\infty}^{\infty} \exp(-(p_x^2/2m)/k_BT)dp_x = \sqrt{2\pi mk_BT}$ for each coordinate. For each atom we have three identical integrals multiplying each other, one for p_x , one for p_y , and one for p_z . Thus, the contribution from each atom is $(2\pi mk_BT)^{3/2}$. If all the atoms are the same, then we have a product of N such integrals, so the net contribution of K to the partition function is $(2\pi mk_BT)^{3N/2}$.