CS 101 Computer Programming

Instructors: Nasiba Alimova, Ibrokhimjon Makhamadaliev

Topic: Number systems: Binary, Octal, Decimal and Hexadecimal

True and False

- Today we covered 4 types of number system: binary, unary, decimal, hexadecimal
- Decimal numbers can be converted into binary by dividing by two and recording the remainders.

Lab session - # Week 2

Term: Spring 2023

- The most significant digit is the rightmost, largest-weight digit in a number.
- In a number system, each position of a digit represents a specific power of the base.
- The octal number system consists of eight digits, 0 through 7.
- When converting from decimal to binary by the repeated division-by-two method, the initial remainder becomes the MSD.
- This numbers has the same value in decimal and hexadecimal: 8
- 1111 in Binary is the same as 10 in Octal?

Multiple choice questions

- 1. What could be the maximum value of a single digit in an octal number system?
 - (a) 8
 - (b) 7
 - (c) 6
 - (d) 5
- 2. The maximum number of bits sufficient to represent an octal number in binary is
 - (a) 4
 - (b) 3
 - (c) 7
 - (d) 8

3. Convert $(22)_8$ into its corresponding decimal number.			
(a) 28			
(b) 18			
(c) 81			
(d) 82			
4. The binary number 111 in octal format is			
(a) 6			
(b) 7			
(c) 8			
(d) 5			
5. The next hexadecimal number after F is:			
(a) 10			
(b) F0			
(c) G			
(d) 11			
6. Any number with an exponent of zero is equal to			
(a) itself			
(b) ten			
(c) zero			
(d) one			

Solve on the board

Problem 1

Convert the following decimal numbers into binary and show solving procedure

Decimal	Binary
54	
43	
39	
27	
82	
76	
101	
210	

Problem 2

Convert the following binary numbers into decimal and show solving procedure

Binary	Decimal
1000111001	
1100010001	
1010111001	
1000110001	
1111100011	
1110000001	
11110111101	
1000011111	

Problem 3

Convert the given numbers to appropriate number system

Binary	Octal	Decimal	Hex
10010011			
	1407		
		1407	
			FACE
		555	
	765		
1010110101			
	603		

Problem 2

Convert the following binary numbers into decimal and show solving procedure

Binary	Decimal
1000111001	
1100010001	
1010111001	
1000110001	
1111100011	
1110000001	
11110111101	
1000011111	

Problem 4

Fill in the missing values and show solving procedure

binary	decimal	octal	hex
10111011			
	653		
		437	
			65D
		213	
	427		
11011110			
	92		

Problem 5

Convert the following hexadecimal numbers to decimal

11E =	197 =
1B0 =	150 =
198 =	191 =
146 =	1D2 =
73 =	1A2 =
86 =	18D =
71 =	83 =
47 =	1DA =

Solve on the board

Problem 6

Convert the following binary numbers to decimal numbers:

a) 101010

c) 100001

b) 111000

d) 10111000

Problem 7

Convert the following decimal numbers to binary numbers:

a) 129

c) 98

b) 34

d) 202

Problem 8

Determine in binary form:

a) 1111 + 11101

c) 110011 + 1000100

b) 10000101 + 10000101

d) 1000100 + 1010100

Problem 9

Convert:

a) $2C_{16}$ into decimal

d) 200_{10} into hex

g) $A21_{16}$ into binary

b) $2F1_{16}$ into decimal

e) 11010111_2 into hex

h) 572₈ into binary

c) 54_{10} into hex

f) 10100101₂ into hex

i) 1265₈ into binary

Problem 10

Match the correct answer

octal	\mathbf{hex}
35	a. B9
642	b. 1D4
271	c. 1F9
724	d. 1A2
102	e. 35
65	f. 85
771	g. 1D
205	h. 42

Review

1's and 2's complement

Questions

- 1. What extra step do we take when we form the 2's complement of a negative binary number?
- 2. In 2's complement, what do all the positive numbers have in common?
- 3. What advantage does 2's complement have over 1's complement?
- 4. If you want to write the number 7_{10} using 2's complement representation, what do you need to do?
- 5. If you want to write the number -7_{10} using 2's complement representation, what do you need to do?
- 6. What is the general technique for converting a decimal number to 2's complement representation?

Problem 1

Write the 2's complement for each of the following 5-bit binary numbers.

a) 01001₂

c) 00111₂

e) 01101₂

b) 01011₂

d) 00001₂

f) 00011₂

Problem 2

Convert the following decimal numbers to binary using 6-bit 2's complement representation.

a) -16_{10}

c) -3_{10}

e) 26₁₀

b) 13₁₀

d) -10_{10}

f) -31_{10}

Problem 3

Solve the expressions in binary representation:

a) $25_{10} + 44_{10} = ?_2$

c) 348_{10} - 213_{10} =?₂

b) $1001110_2 + 11100_2 = ?_2$

d) 1010101_2 - 10111101_2 = $?_2$

Problem 4

Show 2's complement of the following binary numbers with 8 bits:

a) 110011₂

c) 101010_2

b) 110001₂

d) 100110₂