

آزمایشگاه شبکههای کامپیوتری

آزمایش دوم دانشكده مهندسي كامپيوتر دانشگاه صنعتی شریف

نیم سال دوم ۲۰-۰۱

استاد:

جناب آقای دکتر صفایی

اعضای گروه: محمدسپهر پورقناد - ۹۷۱۰۱۳۵۹ سپهر صفری - ۹۷۱۰۸۲٦۳ اميرمهدى نامجو - ٩٧١٠٧٢١٢

ا سوالات بخش اول

ابتدا ذکر این نکته ضروری است که برای این بخش از سایت old.sharif.ir استفاده کردیم. دلیل این که از خود سایت اصلی شریف استفاده نکردیم این است که سایت جدید شریف تنها از طریق پروتکل HTTPS در دسترس است و بعضی از قسمتهای تمرین، مثلا استخراج عکسها به دلیل رمزنگاری اطلاعات و نیاز به رمزگشایی آنان کمی بیش از حد لازم پیچیده میشد.

۱. برای این قسمت از امکانات آماری (Statistics) نرمافزار وایرشارک استفاده می کنیم. مطابق شکل ۱ پرکاربردترین پروتکل لایه انتقال TCP و پر کاربردترین پروتکل لایه انتقال HTTP و پر کاربردترین پروتکل لایه کاربرد لایه کاربرد به کاربرد است. همچنین شاهد این هستیم که در زیر شاخه پروتکلهای لایه کاربرد وابسته به UDS پرکابردترین (و تنها پروتکل) پروتکل DNS بوده است.

			Wireshark - Pr	rotocol Hierarchy	Statistics -	eth0		
Protocol	Percent Packets	Packets	Percent Bytes	Bytes	Bits/s	End Packets	End Bytes	End Bits/s
▼ Frame	100.0	1482	100.0	2380950	1,962k	0	0	0
→ Ethernet	100.0	1482	0.9	20748	17k			
 Internet Protocol Version 4 	100.0	1482	1.2	29640	24k			
 User Datagram Protocol 	0.4	6	0.0	48	39			
Domain Name System	0.4	6	0.0	336	276	6	336	276
 Transmission Control Protocol 	99.6	1476	97.8	2329588	1,920k	1318	2062741	1,700k
Transport Layer Security	2.4	36	1.2	28925	23k	36	28925	23k
 Hypertext Transfer Protocol 	8.2	122	95.5	2274546	1,874k	59	29227	24k
Portable Network Graphics	0.8	12	3.5	83772	69k	12	87307	71k
Line-based text data	2.5	37	57.6	1371191	1,130k	37	1382703	1,139k
JPEG File Interchange Forma	0.7	10	29.8	710253	585k	10	716151	590k
HTML Form URL Encoded	0.1		0.0	454	374		454	374
Compuserve GIF	0.1		2.1	50885	41k		51484	42k

شکل ۱: درصد استفاده از هر یک از پروتکلها

۲. مطابق دو شکل ۲ و ۳ درخواست HTTP GET در زمان 1646354879.725804168 ارسال شده و پاسخ
 آن در لحظه 1646354880.601833796 دریافت شده است. پس فاصله زمانی برابر

1646354880.601833796 - 1646354879.725804168 = 0.876029628s

است.

```
| The | Social Decision | Decisio
```

شكل ۲: اولين درخواست ۲: اولين

شکل ۳: پاسخ ۸۲ HTTP OK نظیر درخواست قبلی

برای بدست آوردن شماره ترتیب، از تنظیمات Preferences برنامه وایرشارک و قسمت پروتکل TCP محالت شماره گذاری نسبی را غیرفعال می کنیم. سپس بر روی اولین درخواست TTP ارسال شده TCP را انتخاب می کنیم تا بستههای TCP کلیک راست کرده و گزینه Follow و حالت SYN ارسال شده به جواب می رسیم. جواب مطابق شکل مربوط به آن را بیابیم. با یافتن اولین بسته SYN ارسال شده به جواب می رسیم. جواب مطابق شکل ۲۰ بوده و در این جا شماره ترتیب مطلق برابر 2296291942 است.

```
| Section | Sect
```

شكل ۴: اولين بسته TCP SYN نظير درخواست قبلي

Authoritative به معنی **A** و از نوع **A** به معنی **DNS** به شکل استاندارد و از نوع **A** به معنی UDP به بستر و با بستر پروتکل UDP ارسال شده است و پاسخ آن هم به صورت استاندارد و از نوع **A** بر همین بستر و با آدرس آیپی **B1.31.186.20** دریافت شده است.


```
| Section | Person | Section | Person |
```

شکل ۵: کوئری **DNS**

```
| The | Source | Decision | Protect Length Info | Protect Length I
```

شکل ٦: پاسخ DNS

۴. مطابق شکل ۷ برای مشاهده عکسها فیلتر image-jfif را روی وایرشارک اعمال می کنیم. سپس هر یک از عکسهای را انتخاب کرده و با کلیک راست روی JPEG File Interchangeable Format و انتخاب Export Packet Bytes عکسها را ذخیره می کنیم.

```
| File |
```

شکل ۷: مشاهده شکلهای دانلود شده از سرور

در زیر تعدادی از عکسهای دانلود شده از سرور که توسط وایرشارک بازیابی شدهاند را مشاهده می کنید.

شکل ۸: عکسهای دانلود شده از سرور

۲ سوالات بخش دوم

۱. مطابق شکل ۹ و نحوه شروع ارسال پکتها و دریافت آنان، آیپی مربوط به کلاینت 192.168.0.2 و آیپی مربوط به سرور 192.168.0.1 است.

No.	Time	Source	Destination	Protocol	Length Info
-	1 0.030303	192.168.0.2	192.168.0.1		74 1550 23 [SYN] Seq=2579865836 Win=32120 Len=0 MSS=1460 SACK_PERM=1 TSVal=10233636 TSecr=0 WS=1
	2 0.002525	192.168.0.1	192.168.0.2	TCP	74 23 - 1550 [SYN, ACK] Seq=401695549 Ack=2579865837 Win=17376 Len=0 MSS=1448 WS=1 TSval=2467372 TSecr=10233636
	3 0.002572	192.168.0.2	192.168.0.1	TCP	66 1550 - 23 [ACK] Seq=2579865837 Ack=401695550 Win=32120 Len=0 TSval=10233636 TSecr=2467372
	4 0.004160	192.168.0.2	192.168.0.1	TELNET	93 Telnet Data
	5 0.150335	192.168.0.1	192.168.0.2	TELNET	69 Telnet Data
	6 9.159492	192.168.0.2	192.168.0.1	TCP	66 1550 - 23 [ACK] Seq=2579865864 Ack=401695553 Win=32120 Len=0 TSval=10233651 TSecr=2467372
	7 0.159574	192.168.0.2	192.168.0.1	TELNET	69 Telnet Data
	8 9.151946	192.168.0.1	192.168.0.2	TCP	66 23 - 1550 [ACK] Seq=401695553 Ack=2579865867 Win=17376 Len=0 TSval=2467372 TSecr=10233651
	9 0.153657	192.168.0.1	192.168.0.2	TELNET	91 Telnet Data
	10 0.153865	192.168.0.2	192.168.0.1	TELNET	130 Telnet Data
	11 0.154984	192.168.0.1	192.168.0.2	TCP	66 23 - 1550 [ACK] Seg-401695578 Ack-2579865931 Win-17312 Len-0 TSval-2467372 TSecr-10233651
	12 0.155577	192.168.0.1	192.168.0.2	TELNET	84 Telnet Data
	13 0.155656	192.168.0.2	192.168.0.1	TELNET	75 Telnet Data

شکل ۹: وضعیت کلی پکتهای ارسالی Telnet

برای دو قسمت بعدی، پکتهای نوع **TELNET** را فیلتر کرده، روی اولین مورد کلیک راست کرده و Follow و TCP Stream را انتخاب میکنیم. بدین ترتیب کل دستورات و اطلاعات رد و بدل شده را مطابق شکل ۱۰ مشاهده خواهیم کرد.

شکل ۱۰: اطلاعات رد و بدل شده در Telnet

۲. مطابق شکل ۱۰ اطلاعات استفاده شده به صورت

login: fake
Password: user

است، پس پسورد استفاده شده user است.

۳. مطابق شکل ۱۰ دستورات استفاده شده چهار مورد زیر هستند:

- \$ /sbin/ping www.yahoo.com
- \$ ls
- \$ ls -a
- \$ exit

٣ سوالات بخش سوم

۱. مطابق شکل ۱۱ دستور را در یک سیستمعامل لینوکسی و برای سایت www.digikala.com انجام دادهایم. از آن جایی که فایل etc/resolv.conf/ سیستم ما به صورت

nameserver 192.168.1.1

تنظیم شده بود، این کوئری برای DNS سرور لوکال یعنی 192.168.1.1 ارسال شده است. در صورتی که دستور را به صورت dig @8.8.8.8 www.digikala.com اجرا کنیم، دستور برای DNS Server های گوگل به آدرس 8.8.8.8 ارسال می شود که این موضوع را در شکل ۱۲ مشاهده می کنید.

```
| Free | 23: 99 bytes on wire | (702 bits), 99 bytes captured | (702 bits), 99 bytes | (7
```

شکل ۱۱: کوئری DNS اجرا شده از طریق دستور DNS اجرا شده از طریق دستور

شكل ۱۲: كوئرى DNS اجرا شده از طريق دستور DNS دستور

۲. مطابق شکلهای ۱۱ و ۱۳ که به ترتیب نشان دهنده درخواست و پاسخ هستند، مشاهده می کنیم که همان طور که انتظار می رود DNS بر بستر UDP ارسال شده و سرآیندهای رایج آن نظیر پورت مبدا و مقصد را دارد.

علاوه بر آن خود DNS سرآیندهای مخصوص خود را هم دارد. به طور کلی کوئری و پاسخ DNS شامل سرآیندهای زیر است:

Number of answers ، Number of questions ، Flags ، Identification Number of additional و Number of authority resource records (RRs) RR است. در این میان تنها flag نیاز به توضیح اضافی دارد.

در درخواست یعنی شکل ۱۱ مشاهده میکنیم که فلگ مربوط به درخواست بودن ست شده است. همچنین مشخص شده که این کوئری استاندارد است. بریده (Truncate) نشده است. انجام کوئری به صورت بازگشتی مدنظر است. فلگ AD به معنی Authenticate Data ست شده است و در فلگ بعدی مشخص شده است که داده ای که Authenticate Data نشده قابل قبول نیست. در مورد Authenticate Data در rfc3655 توضیحاتی داده شده است.

در پاسخ یعنی شکل ۱۳ در ابتدا مشخص شده که این یک پاسخ است. سپس مشخص شده که از نوع پاسخ استاندارد است. سپس مشخص شده که سرور گفته شده یک Authoritative Server نیست. پیام بریده نشده است. انجام کوئری به صورت بازگشتی مد نظر قرار گرفته است و امکان پذیر هم بوده است. پاسخ Authenticate نشده. پاسخ Authenticate نشده قابل قبول نیست و در نهایت با کد داده شده مشخص شده که پاسخ به اروری برخورد نکرده است.

```
| Block | Score | Debtoom | Protocol Length Info
| 172 | 172 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173 | 173
```

شکل ۱۳: پاسخ دریافت شده DNS از طریق دستور ۱۳ پاسخ دریافت شده