How Efficient is LLM-Generated Code? A Rigorous & High-Standard Benchmark

Ruizhong Qiu† Weiliang Will Zeng‡ James Ezick‡ Christopher Lott‡ Hanghang Tong† † ፗ ILLINOIS 🛍 ‡ Qualcoww

{rq5,htong}@illinois.edu {wzeng,jezick,clott}@qti.qualcomm.com

- Level 3: $n \le 10000$

PROPOSED BENCHMARK: ENAMEL

- **Level 1**: *n* ≤ 30

PROPOSED METRIC: eff@k

- **Level 0**: *n* ≤ 10

- \triangleright Proposed metric eff_i@k (a generalization of pass_i@k): $\operatorname{eff}_{i}@k \coloneqq \mathbb{E}_{c_{i,1},\dots,c_{i,k}}[\max_{j=1}^{k} e_{i,j}];$
- $c_{i,j}$: the j-th LLM-generated code sample for problem i;
- $e_{i,j}$: the <u>efficiency</u> score of code $c_{i,j}$ compared with our <u>human expert</u>.
- \triangleright An estimator $\widehat{\text{eff}}_i@k$ for $\widehat{\text{eff}}_i@k$ using $n \ge k$ code samples:
- Let $e_{i,(r)}$ be the r-th smallest score among $e_{i,1}, \dots, e_{i,n}$. Estimator: $\widehat{\operatorname{eff}}_{i}@k \coloneqq \sum_{r=k}^{n} {r-1 \choose k-1} e_{i,(r)} / {n \choose k}.$
- ✓ Unbiasedness: for any $n \ge k$,

$$\mathbb{E}_{c_{i,1},\dots,c_{i,n}} \left[\sum_{r=k}^{n} {r-1 \choose k-1} e_{i,(r)} / {n \choose k} \right] = \mathbb{E}_{c_{i,1},\dots,c_{i,k}} \left[\max_{j=1}^{k} e_{i,j} \right].$$

✓ Variance reduction: for any $n \ge k$,

Example (*n*-th Fibonacci):

$$\operatorname{Var}_{c_{i,1},\dots,c_{i,n}} \left[\sum_{r=k}^{n} {r-1 \choose k-1} e_{i,(r)} / {n \choose k} \right] \leq \frac{k}{n} \operatorname{Var}_{c_{i,1},\dots,c_{i,k}} \left[\max_{j=1}^{k} e_{i,j} \right].$$

A numerically stable implementation: See our paper for detail...

EXPERT-WRITTEN SOLUTIONS

Problemset: 142 problems selected from HumanEval.

- Level 3: $n \le 9000$

Our expert solutions: much more efficient than HumanEval+'s.

ID	Problem Description	HumanEval+ Solution	Our Expert Solution
#10	Find the shortest palindrome that begins with a given string S	$O(S ^2)$: Enumerate suffixes and check palindromicity	$\Theta(S)$: Use Knuth–Morris–Pratt w.r.t. reversed S plus S
#36	Count digit 7's in positive integers $< n$ that are divisible by 11 or 13	$\Theta(n \log n)$: Enumerate integers $< n$ and count the digits	$\Theta(\log n)$: Design a dynamic programming over digits
#40	Check if a list l has three distinct elements that sum to 0	$O(l ^3)$: Enumerate triples in l and check their sums	$O(l ^2)$: Use a hash set and enumerate pairs in l
#109	Check if a list a can be made non-decreasing using only rotations	$O(a ^2)$: Enumerate the rotations of a and check	O(a): Check if the list a has at most one inversion
#154	Check if any rotation of a string b is a substring of a string a	$O(b ^2 a)$: Enumerate rotations and run string matching	O(a + b): Run the suffix automaton of a w.r.t. $b + b$

TAKEAWAYS

- Overall evaluation results: (table truncated)
- > Even strong LLMs fall short of generating expert-level efficient code.

Model	Greedy		Sampling							
Model	eff@1	pass@1	eff@1	pass@1	eff@10	pass@10	eff@100	pass@100		
GPT-4 Turbo	0.470	0.796		_	_	-	_	_		
GPT-4	0.454	0.831		_	_					
Llama 3 70B Instruct	0.421	0.746	0.438	0.747	0.526	0.836	0.575	0.880		
Llama 3 8B Instruct	0.344	0.592	0.345	0.564	0.500	0.770	0.595	0.874		
Mixtral 8x22B Instruct	0.408	0.746	0.407	0.721	0.575	0.870	0.704	0.923		
Mixtral 8x7B Instruct	0.266	0.444	0.279	0.456	0.436	0.689	0.542	0.810		
Claude 3 Opus	0.401	0.789	_	_	_					
Claude 3 Sonnet	0.345	0.662	0.365	0.677	0.498	0.814	0.594	0.887		
Claude 3 Haiku	0.386	0.739	0.382	0.730	0.478	0.831	0.529	0.861		
Phind Code Llama V2	0.394	0.683	0.372	0.638	0.584	0.862	0.723	0.935		
ChatGPT	0.364	0.683	0.374	0.673	0.557	0.847	0.690	0.937		
Code Llama 70B Python	0.264	0.500	0.082	0.177	0.326	0.610	0.614	0.908		
Code Llama 34B Python	0.268	0.458	0.226	0.405	0.511	0.786	0.711	0.934		
Code Llama 13B Python	0.216	0.408	0.204	0.372	0.487	0.732	0.714	0.899		
Code Llama 7B Python	0.247	0.373	0.180	0.320	0.432	0.663	0.643	0.837		
StarCoder	0.195	0.352	0.134	0.236	0.355	0.557	0.542	0.787		
CodeGen 16B	0.169	0.310	0.122	0.219	0.326	0.512	0.536	0.761		
CodeGen 6B	0.193	0.296	0.111	0.188	0.298	0.455	0.491	0.694		
CodeGen 2B	0.153	0.254	0.098	0.168	0.264	0.389	0.421	0.602		
CodeT5+ 16B	0.160	0.317	0.130	0.250	0.343	0.551	0.551	0.785		

- Evaluation on two subsets: (table truncated)
 - LLMs struggle in designing advanced algorithms.
- LLMs are largely unaware of implementation optimization.

Model	Algorithm Design Subset					Implementation Optimization Subset						
Model	eff@1	pass@1	eff@10	pass@10	eff@100	pass@100	eff@1	pass@1	eff@10	pass@10	eff@100	pass@100
Llama 3 70B Instruct	0.246	0.660	0.306	0.749	0.359	0.750	0.404	0.791	0.497	0.869	0.551	0.920
Llama 3 8B Instruct	0.201	0.518	0.303	0.724	0.367	0.849	0.313	0.582	0.468	0.806	0.571	0.906
Mixtral 8x22B Instruct	0.225	0.635	0.363	0.837	0.470	0.900	0.376	0.783	0.556	0.914	0.686	0.947
Mixtral 8x7B Instruct	0.124	0.391	0.244	0.681	0.344	0.850	0.248	0.473	0.411	0.699	0.515	0.827
Claude 3 Sonnet	0.184	0.577	0.328	0.804	0.450	0.950	0.358	0.723	0.475	0.846	0.548	0.893
Claude 3 Haiku	0.149	0.692	0.208	0.752	0.266	0.775	0.360	0.772	0.465	0.889	0.513	0.923
Phind Code Llama V2	0.185	0.554	0.353	0.789	0.401	0.849	0.351	0.712	0.567	0.901	0.732	0.968
ChatGPT	0.120	0.488	0.304	0.799	0.483	0.950	0.337	0.715	0.508	0.864	0.633	0.949
Code Llama 70B Python	0.018	0.100	0.129	0.519	0.402	0.950	0.076	0.181	0.294	0.627	0.589	0.920
Code Llama 34B Python	0.071	0.293	0.271	0.713	0.425	0.881	0.197	0.415	0.473	0.804	0.687	0.949
Code Llama 13B Python	0.058	0.212	0.276	0.665	0.478	0.844	0.176	0.405	0.476	0.784	0.715	0.928
Code Llama 7B Python	0.068	0.202	0.231	0.589	0.393	0.761	0.165	0.349	0.417	0.703	0.620	0.863

Distribution of problem difficulties:

➤ High pass;@1, low eff;@1: seemingly easy task, non-trivial algorithm.

