

Convolutional Neural Network

GoogLeNet

2022.02.21

김혜현

GoogLeNet

: Going Deeper with convolutions

당시 트렌드?

Inception module

(a) Inception module, naïve version

✓ Feature Map을 효과적으로
 추출하기 위해 1 x 1, 3 x 3, 5 x 5의
 convolution 연산을 각각 수행

Inception module

(b) Inception module with dimension reductions

1 x 1 convolution

of operations : (14*14*48)*(5*5*480) = 112.9M

of operations for 1*1: (14*14*16)*(1*1*480) = 1.5M

of operations for 5*5: (14*14*48)*(5*5*16) = 3.8M

Total number of operations: 1.5M + 3.8M = 5.3M

1 x 1 convolution

- ✓ 계산을 줄이기 위해 차원 축소 모듈로 사용됨
- ✓ 계산량을 줄임으로써 깊이와 너비를 늘릴 수 있음

당시 트렌드?

Inception module

(b) Inception module with dimension reductions

Auxiliary Classifier

Auxiliary Classifier(보조 분류기)란?

- 중간 단계에서 예측하는 부분
- 깊은 네트워크에서 학습이 잘 안될 수 있는 점을 이를 통해 추가적인 Gradient를 줌으로써 보완

total_loss = real_loss + 0.3 * aux_loss_1 + 0.3 * aux_loss_2

Auxiliary Classifier

-> Linear layer에 softmax를 사용한 1000-class classifier

-> Dropout layer (0.7)

- -> FC layer(1024 nodes) 및 ReLU
- -> Dimension reduction을 위한 1 x 1 conv layer(128 filters) 및 ReLU
- -> Filter size가 5 x 5이고, strides가 3인 average pooling layer. 출력의 shape은 (4a)와 (4d)에서 각각 4 x 4 x 512와 4 x 4 x 528이다.

GoogLeNet

✓ 성능을 높이기 위해 여러 기법 사용

1. 동일한 GoogLeNet 모델의 7가지 버전(wider version도 하나 포함)을 독립적으로 학습했으며, 이들을 이용한 ensemble prediction을 수행했다.

각 모델들은 동일한 weight initialization과 learning rate policy로 학습했으며, sampling 방법과 shuffle로 인한 학습 데이터의 순서에서만 차이가 있다.

GoogLeNet

✓ 성능을 높이기 위해 여러 기법 사용

2. Cropping 방식 적용

Shorter size가 각각 [256 / 288 / 320 / 352]인 4가지 scale로 이미지의 크기를 조정 [left / center / right] 의 Square를 취한다. 각 square에 대해 [모서리 4개 / 중앙] 에서 224 x 224 크기로 resize한 것과, 이들의 미러링 된 버전을 취한다.

결론

이미지 당 총 4 x 3 x 6 x 2 = 144개의 crop이 생성

GoogLeNet

✓ 성능을 높이기 위해 여러 기법 사용

Number of models	Number of Crops	Cost	Top-5 error	compared to base
1	1	1	10.07%	base
1	10	10	9.15%	-0.92%
1	144	144	7.89%	-2.18%
7	1	7	8.09%	-1.98%
7	10	70	7.62%	-2.45%
7	144	1008	6.67%	-3.45%

결론

- ✓ 계산량이 조금 증가하는 것에 비해, 성능이 아주 좋아짐
- ✓ AlexNet보다 12배 적은 parameter를 사용하면서, 더 좋은 성능을

BN-Inception

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$

Inception v2

Inception Module A

Inception v3

Inception Module B

이상 ADS 김혜현이었습니다. 감사합니다.