KonukhinaOV 17092024-193351

Найти точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса $z=2.34\text{-}0.46\mathrm{i}$.

Рисунок 1 – Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.504	-114.8	23.794	108.5	0.026	51.4	0.512	-55.8
1.8	0.476	-144.1	15.511	90.9	0.033	50.8	0.362	-69.6
2.5	0.470	-161.8	11.306	79.3	0.040	51.6	0.294	-81.7
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
3.9	0.482	175.9	7.221	62.5	0.056	51.9	0.251	-99.5
4.6	0.496	167.6	6.102	54.9	0.065	50.4	0.235	-107.4
5.3	0.498	160.9	5.240	48.0	0.074	49.0	0.219	-113.6
6.0	0.504	153.6	4.645	41.1	0.084	45.8	0.204	-121.2
6.8	0.519	143.8	4.077	32.9	0.093	42.3	0.177	-133.4

и частоты $f_{\scriptscriptstyle \rm H}=1.1$ ГГц, $f_{\scriptscriptstyle \rm B}=6.8$ ГГц.

Найти обратные потери по выходу на $f_{\scriptscriptstyle \mathrm{H}}$.

Варианты ОТВЕТА:

1) 5.8 дБ 2) 7.5 дБ 3) 11.6 дБ 4) 15.0 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
6.0	0.504	153.6	4.645	41.1	0.084	45.8	0.204	-121.2
6.1	0.505	152.3	4.569	40.1	0.085	45.3	0.201	-122.8
6.2	0.507	151.1	4.495	39.1	0.086	44.8	0.198	-124.4
6.3	0.508	149.8	4.422	38.1	0.087	44.3	0.196	-126.0
6.4	0.510	148.5	4.351	37.0	0.089	43.9	0.193	-127.7
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
6.6	0.515	146.1	4.212	34.9	0.091	43.0	0.186	-130.8
6.8	0.519	143.8	4.077	32.9	0.093	42.3	0.177	-133.4
7.0	0.525	141.5	3.947	30.8	0.096	41.6	0.169	-136.4
7.2	0.530	139.6	3.824	29.0	0.098	40.9	0.158	-139.2
7.4	0.535	137.7	3.704	27.2	0.101	40.3	0.147	-142.3

и частоты $f_{\mbox{\tiny H}}=6.3$ ГГц, $f_{\mbox{\tiny B}}=7.2$ ГГц.

Найти модуль $s_{12}\;$ в дБ на частоте $f_{\scriptscriptstyle \rm B}$.

Варианты ОТВЕТА:

- 1) -20.1 дБ
- 2) 11.7 дБ
- 3) -16.0 дБ
- 4) -5.5 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.5	0.480	-178.9	8.017	66.8	0.051	52.1	0.259	-96.2
3.6	0.480	179.8	7.814	65.8	0.052	52.0	0.257	-97.0
3.7	0.480	178.5	7.614	64.8	0.054	52.0	0.255	-97.8
3.8	0.481	177.2	7.416	63.7	0.055	51.9	0.253	-98.7
3.9	0.482	175.9	7.221	62.5	0.056	51.9	0.251	-99.5
4.0	0.484	174.6	7.029	61.3	0.058	51.8	0.249	-100.4
4.1	0.485	173.4	6.866	60.3	0.059	51.6	0.247	-101.5
4.2	0.487	172.2	6.706	59.3	0.060	51.3	0.244	-102.7
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
4.4	0.492	169.9	6.393	57.0	0.062	50.9	0.239	-105.1
4.5	0.494	168.7	6.240	55.8	0.064	50.7	0.237	-106.3

и частоты $f_{\mbox{\tiny H}}=3.6$ $\Gamma\Gamma\mbox{ц},\,f_{\mbox{\tiny B}}=4.2$ $\Gamma\Gamma\mbox{ц}.$

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B},$ используя рисунок 2.

Рисунок 2 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 2.2 дБ 2) 0.6 дБ 3) 0.7 дБ 4) 1.3 дБ

Задан двухполюсник на рисунке 3, причём R1 = 39.21 Om.

Рисунок 3 – Двухполюсник

Найти полуокружность (см. рисунок 4), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 4 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.512	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
8.6	0.595	128.1	3.105	14.9	0.118	33.0	0.136	167.9

Найти точку (см. рисунок 5), соответствующую s_{22} на частоте 5.4 $\Gamma\Gamma$ ц.

Рисунок 5 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D