601.445/645 Practical Cryptographic Systems

Asymmetric Cryptography II

Instructor: Matthew Green

Housekeeping

- A2 released
 - Due 23rd February, 11:59pm
 - Start early!
- Quiz moved to 19th February
 - Will follow-up on any (minor) changes to the material
 - Primarily based on Boneh/Shoup readings

Review

How do parties agree on a common key?

Key Exchange

Key Exchange

Kerberos

Asymmetric Cryptography

- Aka "public-key" crypto
 - Gives us a way to encrypt material without pre-existing shared secrets

Diffie-Hellman Key Exchange

Agreeing on a common secret over an untrusted/public channel

Key Idea: Exploiting asymmetry

Often present in the real world!

Diffie-Hellman Key Exchange

Agreeing on a common secret over an untrusted/public channel

Key Idea: Exploiting asymmetry

Diffie-Hellman Key Exchange

Mathematical equivalent of the mixture separation?

- \mathbb{Z} : The set of integers
- Let $a, N \in \mathbb{Z}$ with N > 1

 $[a \mod N] \equiv \text{remainder when } a \text{ is divided by } N$

where remainder is in $\{0,...,N-1\}$

• For any $a, b, N \in \mathbb{Z}$ with N > 1

If $[a \mod N] = [b \mod N]$ then we say "a is congruent to b modulo N" and denote it by

$$a \equiv b \mod N$$

- Let $a \equiv c \mod N$ and $b \equiv d \mod N$
 - $a + c \equiv b + d \mod N$
 - $a c \equiv b d \mod N$
 - $a \cdot c \equiv b \cdot d \mod N$
- What about division?

Division

- Division in modular arithmetic
 - If $a \equiv c \mod N$ and $b \equiv d \mod N$ then

 $[a/b \mod N]$ need not equal $[c/d \mod N]$

• It may not even be well defined:

 $12 \equiv 4 \mod 4$ and $5 \equiv 1 \mod 4$

But $12/5 \not\equiv 4/1 \mod 4$

 $\implies ab \equiv cb \mod N \operatorname{does} NOT \operatorname{imply} a \equiv c \mod N$

Example: a = 5, c = 9, b = 2, N = 8.

Multiplicative Inverse

• Multiplicative Inverse: Given $b \in \mathbb{Z}$, if there exists $d \in \mathbb{Z}$ such that

$$bd \equiv 1 \mod N$$

then d is called the multiplicative inverse of b modulo N.

- If $b \in \mathbb{Z}$ has a multiplicative inverse modulo N then it has a **unique** inverse in the range $\{0,...,N-1\}$.
 - We denote this multiplicative inverse by b^{-1}

Multiplicative Inverse

• If $ab \equiv cb \mod N$ and b has a multiplicative inverse b^{-1} , then

$$ab \cdot b^{-1} \equiv cb \cdot b^{-1} \mod N \implies a \equiv c \mod N.$$

• Which integers b are invertible modulo N?

Modular Arithmetic Multiplicative Inverse

Mod 7	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Mod 9	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	4	6	8	1	3	5	7
3	3	6	0	3	6	0	3	6
4	4	8	3	7	2	6	1	5
5	5	1	6	2	7	3	8	4
6	6	3	0	6	3	0	6	3
7	7	5	3	1	8	6	4	2
8	8	7	6	5	4	3	2	1

Modular Arithmetic Multiplicative Inverse

Mod 7	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

Mod 9	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	4	6	8	1	3	5	7
3	3	6	0	3	6	0	3	6
4	4	8	3	7	2	6	1	5
5	5	1	6	2	7	3	8	4
6	6	3	0	6	3	0	6	3
7	7	5	3	1	8	6	4	2
8	8	7	6	5	4	3	2	1

Multiplicative Inverse

• If $ab \equiv cb \mod N$ and b has a multiplicative inverse b^{-1} , then

$$ab \cdot b^{-1} \equiv cb \cdot b^{-1} \mod N \implies a \equiv c \mod N.$$

• Which integers b are invertible modulo N?

b has a multiplicative inverse modulo N if and only if

b is co-prime to N i.e., gcd(b, N) = 1.

If N is a prime number then each element in $\{1,...,N-1\}$ has a multiplicative inverse.

Group

- An (abelian) group is a set \mathbb{G} with an operation $\cdot : \mathbb{G} \times \mathbb{G} \to \mathbb{G}$ such that
 - Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, for all $a, b, c \in \mathbb{G}$.
 - Commutativity: $a \cdot b = b \cdot a$, for all $a, b, c \in \mathbb{G}$.
 - Identity element: There exists $e \in \mathbb{G}$ such that for all $a \in \mathbb{G}$, $e \cdot a = a$.
 - Inverse element: For all $a \in \mathbb{G}$, there exists $b \in \mathbb{G}$ such that $a \cdot b = e$.
- Examples: $(\{0\}, +), (\{1\}, \cdot), (\mathbb{Z}_N, +), (\mathbb{Z}_N^*, \cdot)$
- In particular, $\mathbb{Z}_p^* = \{1, \ldots, p-1\}$

Cyclic Group

- An (abelian) group is a set \mathbb{G} with an operation $\cdot : \mathbb{G} \times \mathbb{G} \to \mathbb{G}$ such that
 - Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, for all $a, b, c \in \mathbb{G}$.
 - Commutativity: $a \cdot b = b \cdot a$, for all $a, b, c \in \mathbb{G}$.
 - Identity element: There exists $e \in \mathbb{G}$ such that for all $a \in \mathbb{G}$, $e \cdot a = a$.
 - Inverse element: For all $a \in \mathbb{G}$, there exists $b \in \mathbb{G}$ such that $a \cdot b = e$.
 - **Generator:** There exists at least one generator $g \in \mathbb{G}$ such that g_1, g^2, g^3, \ldots produces every element in the group.