Devoir surveillé n°07: corrigé

Solution 1

- 1. Supposons que a et b divisent c et que a et b sont premiers entre eux. D'après le théorème de Bézout, il existe $(u, v) \in \mathbb{Z}^2$ tel que au + bv = 1. Par conséquent, acu + bcv = c. Mais comme a et b divisent c, il existe $(k, l) \in \mathbb{Z}^2$ tel que c = ka = lb. On obtient alors albu + bkav = c ou encore ab(lu + kv) = c, ce qui prouve que ab divise c.
- 2. Soit d un diviseur commun de p et q. Comme p est premier, $d \in \{1, p\}$. De même, comme q est premier, $d \in \{1, q\}$. Ainsi $d \in \{1, p\} \cap \{1, q\}$. Mais comme $p \neq q$, $\{1, p\} \cap \{1, q\} = \{1\}$. Ainsi d = 1 i.e. $p \wedge q = 1$.
- 3. Comme $e \wedge M = 1$, le théorème de Bézout montre qu'il existe $(u, v) \in \mathbb{Z}^2$ tel que eu + Mv = 1. On a donc $eu \equiv 1[M]$. Cependant, on ne sait pas si u est positif. On considère alors d le reste de la division euclidienne de u par M. Alors d est positif et $d \equiv u[n]$. Par conséquent, $ed \equiv eu \equiv 1[n]$.
- **4.** Par définition, e et d sont positifs donc $ed \ge 0$. Supposons que ed = 0. Alors 0 = 1[M] et donc M divise 1 puis M = 1. Ceci signifierait que p 1 = q 1 = 1 puis que p = q = 2, ce qui contredit le fait que p et q sont distincts.
- 5. Remarquons déjà qu'il existe $k \in \mathbb{Z}$ tel que ed = 1 + kM. Mais comme $ed \ge 1$ et $M \ge 1$, k est positif. Ceci est nécessaire pour la suite car un entier élevé à une puissance strictement négative n'est généralement pas un entier.
 - **a.** Dans ce cas, $x \equiv 0[p]$. Comme $ed \ge 1$, $x^{ed} \equiv 0[p]$. On a donc bien $x^{ed} \equiv x[p]$.
 - **b.** D'après le petit théorème de Fermat, $x^{p-1} \equiv 1[p]$. Par conséquent, $x^{(p-1)(q-1)} \equiv 1^{q-1}[p]$ i.e. $x^{M} \equiv 1[p]$. Comme $x^{ed} = x \cdot (x^{M})^{k}$, $x^{ed} \equiv x[p]$.
- **6.** On a montré que $x^{ed} \equiv x[p]$ et on montre de la même manière que $x^{ed} \equiv x[q]$. Ainsi p et q divisent $x^{ed} x$. Comme $p \land q = 1$, N = pq divise également $x^{ed} x$ d'après la question **1**. Ainsi $x^{ed} \equiv x[N]$.

Solution 2

1. Clairement $\mathbb{Z}[\sqrt{2}] \subset \mathbb{R}$.

$$1 = 1 + 0\sqrt{2} \in \mathbb{Z}[\sqrt{2}].$$

Soit $(x, y) \in \mathbb{Z}[\sqrt{2}]^2$. Il existe donc $(a, b, c, d) \in \mathbb{Z}^4$ tel que $x = a + b\sqrt{2}$ et $y = c + d\sqrt{2}$.

Alors $x - y = (a - c) + (b - d)\sqrt{2}$ et $(a - c, b - d) \in \mathbb{Z}^2$ donc $x - y \in \mathbb{Z}[\sqrt{2}]$.

Également, $xy = (ac + 2bd) + (ad + bc)\sqrt{2}$ et $(ac + 2bd, ad + bc) \in \mathbb{Z}^2$ donc $xy \in \mathbb{Z}[\sqrt{2}]$.

Ainsi $\mathbb{Z}[\sqrt{2}]$ est donc un sous-anneau de $(\mathbb{R}, +, \times)$.

2. a. Soit $x \in \mathbb{Z}[\sqrt{2}]$. L'existence d'un couple $(a, b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$ découle simplement de la définition de $\mathbb{Z}[\sqrt{2}]$. Soit maintenant $(c, d) \in \mathbb{Z}^2$ tel que

$$x = a + b\sqrt{2} = c + d\sqrt{2}$$

On a donc $(a-c)=(d-b)\sqrt{2}$. Si $d\neq b,\sqrt{2}$ serait rationnel. Ainsi b=d et par suite a=c. D'où l'unicité du couple (a,b).

b. Soit $(x, y) \in \mathbb{Z}[\sqrt{2}]$. Il existe donc $(a, b, c, d) \in \mathbb{Z}^4$ tel que $x = a + b\sqrt{2}$ et $y = c + d\sqrt{2}$. Alors

$$\overline{x \cdot y} = \overline{(a+b\sqrt{2})(c+d\sqrt{2})} = \overline{ac+2bd+(ad+bc)\sqrt{2}} = ac+2bd-(ad+bc)\sqrt{2}$$

$$\overline{x} \cdot \overline{y} = \overline{a+b\sqrt{2}c+d\sqrt{2}} = (a-b\sqrt{2})(c-d\sqrt{2}) = ac+2bc-(ad+bc)\sqrt{2}$$

On a donc bien $\overline{x \cdot y} = \overline{x} \cdot \overline{y}$.

- 3. a. Soient $x \in \mathbb{Z}[\sqrt{2}]$ et $(a, b) \in \mathbb{Z}^2$ tel que $x = a + b\sqrt{2}$. Alors $N(x) = a^2 2b^2 \in \mathbb{Z}$.
 - **b.** Soit $(x, y) \in \mathbb{Z}[\sqrt{2}]^2$. Alors, en utilisant la question précédente

$$N(xy) = xy\overline{x \cdot y} = xy\overline{x} \cdot \overline{y} = x\overline{x}y\overline{y} = N(x)N(y)$$

c. Soit $x \in \mathbb{Z}[\sqrt{2}]$.

Supposons x inversible. Il existe donc $y \in \mathbb{Z}[\sqrt{2}]$ tel que xy = 1. Ainsi N(xy) = N(1) = 1. D'après la question précédente, N(xy) = N(x)N(y) d'où N(x)N(y) = 1. Puisque N(x) et N(y) sont entiers, on a donc $N(x) = \pm 1$ i.e. |N(x)| = 1.

Réciproquement soit $x \in \mathbb{Z}[\sqrt{2}]$ tel que |N(x)| = 1. Si N(x) = 1, alors $x\overline{x} = 1$ donc x est inversible (d'inverse \overline{x}). Si N(x) = -1, alors $x(-\overline{x}) = 1$ donc x est inversible (d'inverse $-\overline{x}$).

- **4. a.** Supposons $a \ge 0$ et $b \ge 0$. On ne peut avoir (a, b) = (0, 0) car $0 \notin H$. Un des deux entiers naturels a et b est donc non nul. Ainsi $a \ge 1$ ou $b \ge 1$ et, dans les deux cas, $x \ge 1$.
 - **b.** Supposons $a \le 0$ et $b \le 0$. On ne peut avoir (a, b) = (0, 0) car $0 \notin H$. Un des deux entiers a et b est donc non nul. Ainsi $a \le -1$ ou $b \le -1$ et, dans les deux cas, $x \le -1$.
 - **c.** Supposons $ab \le 0$. Alors $a(-b) \ge 0$. Les deux questions précédentes montrent que $|\overline{x}| \ge 1$. Puisque $|N(x)| = |x||\overline{x}| = 1$, $|x| \le 1$.
- **5. a.** Puisque x > 1, la question précédente montre qu'on ne peut avoir $a \le 0$ et $b \le 0$ ni $ab \le 0$. C'est donc que nécessairement a > 0 et b > 0.
 - **b.** $u \in H^+ \text{ car } u > 1 \text{ et } N(u) = -1.$

Soient $x \in H^+$ et $(a,b) \in \mathbb{Z}^2$ tel que $x=a+b\sqrt{2}$. D'après la question précédente, $a \ge 1$ et $b \ge 1$ donc $x \ge u$. Ainsi u est un minorant de H^+ . u est donc le minimum de H^+ .

6. a. Il suffit de poser $n = \left\lfloor \frac{\ln x}{\ln u} \right\rfloor$. On a alors

$$n \le \frac{\ln x}{\ln u} < n + 1$$

ou encore

$$n \ln(u) \le \ln(x) < (n+1) \ln u$$

car $\ln u > 0$. Puis par stricte croissance de l'exponentielle

$$u^n \le x < u^{n+1}$$

b. Supposons $x \neq u^n$. Alors

$$u^n < x < u^{n+1}$$

puis

$$1 < \frac{x}{u^n} < u$$

car u > 0. Or H et $u \in H$ donc $u^n \in H$. On sait également que $x \in H$ donc $\frac{x}{u^n} \in H$ car H est un groupe. Or $\frac{x}{u^n} > 1$ donc $\frac{x}{u^n} \in H^+$. Or $\frac{x}{u^n} < u$, ce qui contredit la minimalité de u. On a donc prouvé que $x = u^n$.

7. On sait que $u \in H$ donc $u^n \in H$ pour tout $n \in \mathbb{Z}$ car H est un groupe. Puisque $-1 \in H$, on a également $-u^n \in H$ pour tout $n \in \mathbb{Z}$. Ainsi

$$\{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\} \subset \mathcal{H}$$

Soit maintenant $x \in H$. On sait que $0 \notin H$ donc $x \neq 0$.

- Si x > 1, alors $x \in H^+$ et il existe donc $n \in \mathbb{Z}$ tel que $x = u^n$ d'après la question précédente.
- Si x = 1, alors $x = u^0$.
- Si 0 < x < 1, alors $\frac{1}{x} \in H^+$ donc il existe $n \in \mathbb{Z}$ tel que $\frac{1}{x} = u^n$ i.e. $x = u^{-n}$.
- Si x < 0, alors $-x \in H$ et -x > 0, et les cas précédents montrent l'existence d'un $n \in \mathbb{Z}$ tel que $-x = u^n$ i.e. $x = -u^n$.

On a donc prouvé que

$$H \subset \{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\}$$

Par double inclusion

$$H = \{u^n, n \in \mathbb{Z}\} \cup \{-u^n, n \in \mathbb{Z}\}\$$

Solution 3

1. On trouve

$$d_0 = 123$$
 $\epsilon_0 = 0,456$ $d_1 = 4$ $\epsilon_1 = 0,56$ $d_2 = 5$ $\epsilon_2 = 0,6$ $\epsilon_3 = 0$

On montre alors par récurrence que $d_n = \varepsilon_n = 0$ pour tout $n \ge 4$. En effet, $d_4 = \lfloor 10\varepsilon_3 \rfloor = 0$ et $\varepsilon_4 = 10\varepsilon_3 - d_4 = 0$ puisque $\varepsilon_3 = 0$. Supposons que $d_n = 0$ pour un certain $n \ge 4$. Alors $d_{n+1} = \lfloor 10\varepsilon_n \rfloor = 0$ et $\varepsilon_{n+1} = 10\varepsilon_n - d_{n+1} = 0$. Par récurrence, $d_n = 0$ pour tout $n \ge 4$.

- **a.** Soit $n \in \mathbb{N}$. Si n = 0, $\varepsilon_0 = x \lfloor x \rfloor \in [0,1[$ puisque $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$. Sinon $\varepsilon_n = 10\varepsilon_{n-1} \lfloor 10\varepsilon_{n-1} \rfloor \in [0,1[$ $car [10\varepsilon_{n-1}] \le 10\varepsilon_{n-1} < [10\varepsilon_{n-1}] + 1.$
 - **b.** Soit $n \in \mathbb{N}^*$. Alors $\varepsilon_{n-1} \in [0,1[$ d'après la question **2.a** et donc $10\varepsilon_{n-1} \in [0,10[$. On en déduit que $d_n = 0$ $[10\varepsilon_{n-1}] \in [0, 9].$
 - **c.** Pour tout $n \in \mathbb{N}$.

$$\left(S_{n+1} + \frac{\varepsilon_{n+1}}{10^{n+1}}\right) - \left(S_n + \frac{\varepsilon_n}{10^n}\right) = S_{n+1} - S_n + \frac{\varepsilon_{n+1} - 10\varepsilon_n}{10^{n+1}} = \frac{d_{n+1}}{10^{n+1}} - \frac{\lfloor 10\varepsilon_n \rfloor}{10^{n+1}} = 0$$

La suite de terme général $S_n + \frac{\varepsilon_n}{10^n}$ est donc constante égale à son premier terme $S_0 + \frac{\varepsilon_0}{10^0} = d_0 + \varepsilon_0 = x$.

d. Puisque $\varepsilon_n \in [0,1[$ pour tout $n \in \mathbb{N}$, on déduit de la question précédente que pour tout $n \in \mathbb{N}$

$$x - \frac{1}{10^n} < S_n \le x$$

Puisque $\lim_{n\to+\infty}\frac{1}{10^n}=0$, on obtient $\lim_{n\to+\infty}S_n=x$ d'après le théorème des gendarmes.

3. **a.** Soit $n \in \mathbb{N}$.

$$\begin{split} u_{n+1} &= 10^{\mathrm{N+T}} \mathbf{S}_{n+\mathrm{N+T+1}} - 10^{\mathrm{N}} \mathbf{S}_{\mathrm{N+}n+1} = 10^{\mathrm{N+T}} \left(\mathbf{S}_{n+\mathrm{N+T}} + \frac{d_{n+\mathrm{N+T+1}}}{10^{n+\mathrm{N+T+1}}} \right) - 10^{\mathrm{N}} \left(\mathbf{S}_{n+\mathrm{N}} + \frac{d_{n+\mathrm{N+1}}}{10^{n+\mathrm{N+1}}} \right) \\ &= u_n + \frac{d_{n+\mathrm{N+T+1}} - d_{n+\mathrm{N+1}}}{10^{n+1}} = u_n \end{split}$$

car (d_n) est T-périodique à partir du rang N. On en déduit que (u_n) est constante.

b. Comme (u_n) est constante, $u_n = u_0$ pour tout $n \in \mathbb{N}$.

$$u_0 = 10^{N+T} S_{N+T} - 10^N S_N = \sum_{k=0}^{N+T} d_k 10^{N+T-k} - \sum_{k=0}^{N} d_k 10^{N-k}$$

Pour $k \in [\![0,\mathrm{N}+\mathrm{T}]\!]$, $10^{\mathrm{N}+\mathrm{T}-k} \in \mathbb{Z}$ et $d_k \in \mathbb{Z}$ donc $\sum_{k=0}^{\mathrm{N}+\mathrm{T}} d_k 10^{\mathrm{N}+\mathrm{T}-k} \in \mathbb{Z}$. De même, pour $k \in [\![0,\mathrm{N}]\!]$, $10^{\mathrm{N}-k} \in \mathbb{Z}$ et $d_k \in \mathbb{Z}$ donc $\sum_{k=0}^{\mathrm{N}} d_k 10^{\mathrm{N}-k} \in \mathbb{Z}$. On en déduit que $u_0 \in \mathbb{Z}$. En posant $p = u_0$, on a donc bien pour tout $n \in \mathbb{N}$

$$10^{N+T}S_{n+N+T} - 10^{N}S_{n+N} = p$$

- c. Puisque (S_{n+N}) et (S_{n+N+T}) convergent toutes deux vers x (en tant que suites extraites de (S_n)), on obtient par unicité de la limite $10^{N+T}x 10^Nx = p$ et donc $x = \frac{p}{10^N(10^T-1)}$ puisque $10^T \ge 10 > 1$. Ceci prouve que x est
- **4.** On remarque que $10^6x 10^3x = 123333$. Ainsi $x = \frac{123333}{999000} = \frac{41111}{333000}$
- **a.** La suite (r_n) est à valeurs dans l'ensemble *fini* [0, q-1]. Elle ne peut donc être injective. Ainsi il existe des entiers N et M distincts tels que $r_N = r_M$.
 - **b.** Pour simplifier, supposons N < M et posons T = M N. On va montrer par récurrence que (r_n) est T-périodique à partir du rang N.

On a bien $r_{N+T} = r_N$.

Supposons que $r_{n+T} = r_n$ pour un certain entier $n \ge N$. On sait que r_{n+1} et r_{n+1+T} sont les restes respectifs des divisions euclidiennes de $10r_n$ et $10r_{n+T}$ par b. Mais puisque $10r_n = 10r_{n+T}$, on a $r_{n+1} = r_{n+1+T}$ par unicité du reste dans la division euclidienne.

Par récurrence, $r_{n+T} = r_n$ pour tout $n \ge N$. Ainsi (r_n) est T-périodique à partir du rang N.

- c. Soit $n \ge N+1$. On sait que q_n et q_{n+T} sont les quotients respectifs de $10r_{n-1}$ et $10r_{n-1+T}$ par b. Puisque $n-1 \ge N$ et que (r_n) est T-périodique à partir du rang N, $r_{n-1} = r_{n-1+T}$ et donc $10r_{n-1} = 10r_{n-1+T}$. Par unicité du quotient dans la division euclidienne, $q_n = q_{n+T}$. On a donc prouvé que (q_n) était T-périodique à partir du rang N+1.
- **d.** Tout d'abord, $a = bq_0 + r_0$ avec $0 \le r_0 < b$. On en déduit que

$$x - 1 = \frac{a}{b} - 1 < q_0 \le \frac{a}{b} = x$$

et donc que $q_0 = \lfloor x \rfloor = d_0$. Par ailleurs,

$$r_0 = a - bq_0 = b\left(\frac{a}{b} - q_0\right) = b(x - \lfloor x \rfloor) = b\varepsilon_0$$

Supposons que $q_n = d_n$ et $r_n = b\varepsilon_n$ pour un certain $n \in \mathbb{N}$. Par définition,

$$10\varepsilon_n = d_{n+1} + \varepsilon_{n+1}$$

et donc

$$10b\varepsilon_n = bd_{n+1} + b\varepsilon_{n+1}$$

ou encore

$$10r_n = bd_{n+1} + b\varepsilon_{n+1}$$

On sait que $d_{n+1} \in \mathbb{Z}$ d'après la question **2.b**. De plus, $b\varepsilon_{n+1} = 10r_n - bd_{n+1} \in \mathbb{Z}$. Enfin, $\varepsilon_{n+1} \in [0,1[$ d'après la question **2.a** donc $0 \le b\varepsilon_{n+1} < b$. On en déduit que d_{n+1} et $b\varepsilon_{n+1}$ sont le quotient et le reste de la division euclidienne de $10r_n$ par b. Par unicité du quotient et du reste dans la division euclidienne, $q_{n+1} = d_{n+1}$ et $r_{n+1} = b\varepsilon_{n+1}$.

Par récurrence, $q_n = d_n$ et $r_n = b\varepsilon_n$ pour tout $n \in \mathbb{N}$.

6. On trouve successivement

$q_0 = 0$	$r_0 = 13$
$q_1 = 3$	$r_1 = 25$
$q_2 = 7$	$r_2 = 5$
$q_3 = 1$	$r_3 = 15$
$q_4 = 4$	$r_4 = 10$
$q_5 = 2$	$r_5 = 30$
$q_6 = 8$	$r_6 = 20$
$q_7 = 5$	$r_7 = 25$

On a $r_1 = r_7$ donc (r_n) est 6-périodique à partir du rang 1 d'après la question **5.b**. Toujours d'après la question **5.b**, (q_n) est 6-périodique à partir du rang 2. Mais puisque les suites (d_n) et (q_n) sont identiques, (d_n) est également 6-périodique à partir du rang 2.