# Lecture 6: Regression

Al/ML Foundation Course with Python

Copyright © 2018 Ankita Sinha. All rights reserved



#### Sample

A part of the whole population of research interest



#### Dependent Variable

The factor being influenced by others



# Independent Variables

The factor that influences other variables.

# Simple Linear Regression

**x** → *Predictor*/Independent/ Explanatory Variable

y → *Response*/Dependent/Outcome Variable

**Linear Regression** → Relationship Between Two Variables.

Simple Linear Regression → Concerns the study of only one predictor variable.



# **Simple Linear Regression**



Find the best fitting line that minimizes the squared error



### 1. Deterministic

The observed data points (x.y) fall into a <u>straight line</u>

- $\rightarrow$  Circumference =  $\pi \times$  diameter Circumference of Circle
- → Fahrenheit = (9/5) \* C+ 32
  Temperature Conversion
- → | = V/R Ohm's Law



#### 2. Statistical

The observed data points (x,y) do not fall into a straight line. Therefore, Relationship between x, y is statistical in nature.

- → Height and Weight

  As height increases, weight tends to increase but not deterministically.
- Lung function and Years of smoking Lung function tends to decrease with years of smoking but not exactly.
- More Examples?
  x and y follow some sort of linear function



#### **Height (x) and Corresponding Weight (y)**

| ht | wt  |
|----|-----|
| 63 | 127 |
| 64 | 121 |
| 66 | 142 |
| 69 | 157 |
| 69 | 162 |
| 71 | 156 |
| 71 | 169 |
| 72 | 165 |
| 73 | 181 |
| 75 | 208 |
|    |     |

#### **Linear relation between x and y:**

$$\hat{y}_i = b_0 + b_1 x_i$$



 $yi \rightarrow$  denotes the observed response for experimental unit i

 $xi \rightarrow$  denotes the predictor value for experimental unit i

 $y^i \rightarrow is$  the predicted response (or fitted value) for experimental unit i



| i  | $x_i$ | $y_i$ | $\hat{y}_i$ | $(y_i - \hat{y}_i)$ | $(y_i - \hat{y}_i)^2$ |
|----|-------|-------|-------------|---------------------|-----------------------|
| 1  | 63    | 127   | 120.139     | 6.8612              | 47.076                |
| 2  | 64    | 121   | 126.276     | -5.2764             | 27.840                |
| 3  | 66    | 142   | 138.552     | 3.4484              | 11.891                |
| 4  | 69    | 157   | 156.964     | 0.0356              | 0.001                 |
| 5  | 69    | 162   | 156.964     | 5.0356              | 25.357                |
| 6  | 71    | 156   | 169.240     | -13.2396            | 175.287               |
| 7  | 71    | 169   | 169.240     | -0.2396             | 0.057                 |
| 8  | 72    | 165   | 175.377     | -10.3772            | 107.686               |
| 9  | 73    | 181   | 181.515     | -0.5148             | 0.265                 |
| 10 | 75    | 208   | 193.790     | 14.2100             | 201.924               |
|    |       |       |             |                     | 597.4                 |







#### **Note**

#### Simple Linear Regression Model

Potential Relationship between the Predictor "<u>High School GPA</u>" & the Response "<u>College</u> <u>Entrance Test Score</u>".

- 1) The mean of the response **E(Y<sub>i</sub>)** at each value of the predictor **x<sub>i</sub>** is a Linear function of the **x<sub>i</sub>**
- 2) The errors **E** are Independent.
- 3) The errors **E**<sub>i</sub> at each value of the predictor **x**<sub>i</sub> are Normally distributed.
- 4) The errors ε at each value of the predictor x have Equal variances (σ²).



#### Note

Four Conditions that comprise a Simple Linear Regression Model

$$\mu_Y = E(Y) = \beta_0 + \beta_1 x.$$

# Multiple Linear Regression

→ A regression model with two or more predictors (independent variables)

Multiple Regression models are defined using matrices due to large number of predictor variables.

Think of distribution of *error(s)* at a fixed value *for all the predictors.* 

| PIQ | Brain  | Height | Weight |
|-----|--------|--------|--------|
| 124 | 81.69  | 64.5   | 118    |
| 150 | 103.84 | 73.3   | 143    |
| 128 | 96.54  | 68.8   | 172    |
| 134 | 95.15  | 65.0   | 147    |
| 110 | 92.88  | 69.0   | 146    |
| 131 | 99.13  | 64.5   | 138    |
| 98  | 85.43  | 66.0   | 175    |
| 84  | 90.49  | 66.3   | 134    |
| 147 | 95.55  | 68.8   | 172    |
| 124 | 83.39  | 64.5   | 118    |
| 128 | 107.95 | 70.0   | 151    |
| 124 | 92.41  | 69.0   | 155    |
| 147 | 85.65  | 70.5   | 155    |
| 90  | 87.89  | 66.0   | 146    |
| 96  | 86.54  | 68.0   | 135    |
| 120 | 85.22  | 68.5   | 127    |
| 102 | 94.51  | 73.5   | 178    |
| 84  | 80.80  | 66.3   | 136    |
| 86  | 88.91  | 70.0   | 180    |
| 84  | 90.59  | 76.5   | 186    |
| 134 | 79.06  | 62.0   | 122    |
| 128 | 95.50  | 68.0   | 132    |
| 102 | 83.18  | 63.0   | 114    |
| 131 | 93.55  | 72.0   | 171    |
| 84  | 79.86  | 68.0   | 140    |
| 110 | 106.25 | 77.0   | 187    |
| 72  | 79.35  | 63.0   | 106    |

# Is a person's brain size predictive of his/her intelligence?

- → Predictor (x₁): Brain Counts based on MRI Scans
- $\rightarrow$  Predictor  $(x_1)$ : Height (in inches)
- $\rightarrow$  Predictor  $(x_1)$ : Weight (in pounds)
- → Response (y): Performance IQ (PIQ) Scores as a measure of individual's intelligence.

| PIQ | Brain  | Height | Weight |
|-----|--------|--------|--------|
| 124 | 81.69  | 64.5   | 118    |
| 150 | 103.84 | 73.3   | 143    |
| 128 | 96.54  | 68.8   | 172    |
| 134 | 95.15  | 65.0   | 147    |
| 110 | 92.88  | 69.0   | 146    |
| 131 | 99.13  | 64.5   | 138    |
| 98  | 85.43  | 66.0   | 175    |
| 84  | 90.49  | 66.3   | 134    |
| 147 | 95.55  | 68.8   | 172    |
| 124 | 83.39  | 64.5   | 118    |
| 128 | 107.95 | 70.0   | 151    |
| 124 | 92.41  | 69.0   | 155    |
| 147 | 85.65  | 70.5   | 155    |
| 90  | 87.89  | 66.0   | 146    |
| 96  | 86.54  | 68.0   | 135    |
| 120 | 85.22  | 68.5   | 127    |
| 102 | 94.51  | 73.5   | 178    |
| 84  | 80.80  | 66.3   | 136    |
| 86  | 88.91  | 70.0   | 180    |
| 84  | 90.59  | 76.5   | 186    |
| 134 | 79.06  | 62.0   | 122    |
| 128 | 95.50  | 68.0   | 132    |
| 102 | 83.18  | 63.0   | 114    |
| 131 | 93.55  | 72.0   | 171    |
| 84  | 79.86  | 68.0   | 140    |
| 110 | 106.25 | 77.0   | 187    |
| 72  | 79.35  | 63.0   | 106    |

### How?

### **Scatter Plot Matrix**

- → One Scatter Plot for Each Pair of Variables
- → Consider the relationship between the response and each of the predictor variable.
- → We also consider how the predictors are related among each other.

## Scatter Plots



### **Brain Count Vs PIQ**



# PIQ = 111.4 + 2.060 Brain - 2.73 Height + 0.001 Weight





# Multiple Regression Model with three quantitative predictors

$$y_i = (eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + eta_3 x_{i3}) + \epsilon_i$$

- $y_i$  is the intelligence (PIQ) of student i
- $\mathbf{x}_{i1}$  is the brain size (MRI) of student *i*
- $\mathbf{x}_{i2}$  is the height (Height) of student *i*
- $\mathbf{x}_{i3}$  is the weight (Weight) of student *i*
- independent error terms  $\varepsilon_i$  must follow a **normal** distribution with mean 0 and equal variance  $\sigma^2$ .

# Notation and Assumptions for Multiple Linear Regression Model

- $\rightarrow$  The estimates of the  $\beta$  coefficients are the values that minimize the sum of squared errors for the sample.
- $\rightarrow$  b0 is the sample estimate of β0, b1 is the sample estimate of β1 and so on.
- $\rightarrow$   $\beta$ 1 coefficient represents the change in the mean response, E(y), per unit increase in x1 when x2, x3, ..., xp-1 are held constant.
- → Residual (error) term is calculated as e=observed(y)-predicted(y), i.e, the difference between an actual and a predicted value of y.

$$y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \ldots + \beta_{p-1} x_{i,p-1} + \epsilon_i.$$

# What is a Matrix

An  $r \times c$  matrix is a rectangular array of symbols or numbers arranged in r rows and c columns.



$$A = \begin{bmatrix} 1 & 2 \\ 6 & 3 \end{bmatrix}$$

2x2 Square matrix



$$B = \begin{bmatrix} 1 & 80 & 3.4 \\ 1 & 92 & 3.1 \\ 1 & 65 & 2.5 \\ 1 & 71 & 2.8 \\ 1 & 40 & 1.9 \end{bmatrix}$$

**3x5 Square matrix** 



$$X = egin{bmatrix} 1 & x_{11} & x_{12} \ 1 & x_{21} & x_{22} \ 1 & x_{31} & x_{32} \ 1 & x_{41} & x_{42} \ 1 & x_{51} & x_{52} \ 1 & x_{61} & x_{62} \end{bmatrix}$$

3x6 Square matrix

# What is a Matrix

An  $r \times c$  matrix is a rectangular array of symbols or numbers arranged in r rows and c columns.



$$q = \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix}$$

3x1 Column Vector



$$h = [21 \quad 46 \quad 32 \quad 90]$$

1x4 Row Vector



46

1x1 Matrix : Scalar

# **Matrix Multiplication**

- The number of columns of the first matrix must equal the number of rows of the second matrix.
- The number of rows of the resulting matrix equals the number of rows of the first matrix
- The number of columns of the resulting matrix equals the number of columns of the second matrix.

$$C = AB = \begin{bmatrix} 1 & 9 & 7 \\ 8 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 & 5 \\ 5 & 4 & 7 & 3 \\ 6 & 9 & 6 & 8 \end{bmatrix} = \begin{bmatrix} 90 & 101 & 106 & 88 \\ 41 & 38 & 27 & 59 \end{bmatrix}$$

# **Matrix Addition**

 The number of rows and columns of the first matrix must equal the number of rows and columns of the second matrix.

$$C = A + B = \begin{bmatrix} 2 & 4 & -1 \\ 1 & 8 & 7 \\ 3 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 7 & 5 & 2 \\ 9 & -3 & 1 \\ 2 & 1 & 8 \end{bmatrix} = \begin{bmatrix} 9 & 9 & 1 \\ 10 & 5 & 8 \\ 5 & 6 & 14 \end{bmatrix}$$

# **Matrix Transpose**

• The transpose of a 2x3 matrix is a 3x2 matrix with same values.

$$A = \begin{bmatrix} 1 & 5 \\ 4 & 8 \\ 7 & 9 \end{bmatrix}$$

$$A' = A^T = \begin{bmatrix} 1 & 4 & 7 \\ 5 & 8 & 9 \end{bmatrix}$$

### **Polynomial Regression**

Polynomial Regression allows for a nonlinear relationship between y and x.

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \ldots + \beta_h X^h + \epsilon,$$



| i  | Temperature | Yield<br>3.3 |  |
|----|-------------|--------------|--|
| 1  | 50          |              |  |
| 2  | 50          | 2.8          |  |
| 3  | 50          | 2.9          |  |
| 4  | 70          | 2.3          |  |
| 5  | 70          | 2.6          |  |
| 6  | 70          | 2.1          |  |
| 7  | 80          | 2.5          |  |
| 8  | 80          | 2.9          |  |
| 9  | 80          | 2.4          |  |
| 10 | 90          | 3.0          |  |
| 11 | 90          | 3.1          |  |
| 12 | 90          | 2.8          |  |
| 13 | 100         | 3.3          |  |
| 14 | 100         | 3.5          |  |
| 15 | 100         | 3.0          |  |

## **Example: Yield Dataset**

Yield Data set contains measurements of yield from an experiment done at five different temperature levels -

50 70 80 90 100

The variables are --

y = yield

And,

x = temperature in degree Fahrenheit.

### **Example: Yield Dataset: Linear Fit**



Yield Data set contains measurements of yield from an experiment done at five different temperature levels -

Y- axis = yield

And,

x - axis = temperature in degree Fahrenheit.

### **Example: Yield Dataset: Quadratic Fit**



Yield Data set contains measurements of yield from an experiment done at five different temperature levels -

Y- axis = yield

And,

x - axis = temperature in degree Fahrenheit.

### **Cost Function**

#### **Cost Function**

- Objective
  Minimize Cost Function
- Brute Force?
- Optimization algorithms?

This cost function is also called the mean squared error function.

In a 3D Plot with x-axis, y-axis and z-axis --

• The point where the height of the plot is least represents the point where the cost function is minimized.



### **Gradient Descent**

#### **Gradient Descent**

→ An Optimization Algorithm that Minimizes a Function for the Regression Model

#### How?

→ Slope of the tangent line at the local minima, will be equal to zero.

$$Y = mX + B$$

MSE = 
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$
\_\_\_\_



#### **Gradient Descent**

- Training a machine learning algorithm or a neural network really is just the process of minimizing the cost function with time.
- Minimizing the derivatives as close as possible to zero determines how close you are to reaching your local maxima/minima.
- Say, after 1000 iterations, it returns m\_optimum, b\_optimum and cost.

$$\frac{\partial}{\partial \mathbf{m}} = \frac{2}{N} \sum_{i=1}^{N} -x_i (y_i - (mx_i + b))$$

$$\frac{\partial}{\partial \mathbf{b}} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (mx_i + b))$$

Calculating Gradient of the Slope and the Intercept

#### **Stochastic Gradient Descent**

- Gradient descent takes into account entire training set in computing cost & gradient
- One has to run thru all the samples in a single iteration to do one update for the parameters.
- MB-GD computes gradient using few mini-batches (~256) of sample training examples. 1<k<n instead of using all training set.
- MB Convergres in even fewer iterations than GD

- Batch Optimization Methods are Too Slow, Time consuming, Memory Restrictive and impractical in case of very large training sets.
- An alternative approach to Gradient Descent in calculating the parameters of the model is SGD.
- SGD uses a single training example to calculate the parameters updating one example at a time towards the local optima.

### **Gradient Descent VS SGD**

- Correctness
- Cost function iterates over all training samples before every single update.
- Deterministic
- Batch Size : n
- Smaller number of Iterations
- High computational cost of each iteration

$$J(a,b) = \frac{1}{n} \sum_{i=1}^{n} (y_{i,actual} - y_{i,predicted})^{2}$$

- Speed
- Cost function only accounts for one training sample chosen at random.
- Stochastic
- Batch Size = 1
- Smaller Learning Rate to avoid skipping Global minima
- Lower computational cost

$$J(a, b) = (y_{i,actual} - y_{i,predicted})^2$$

## **Support Vector Regression (SVR)**

- Training a machine learning algorithm or a neural network really is just the process of minimizing the cost function with time.
- Support Vector.
- Maximum Margin



# **Decision Tree Regression**

- → Flow-chart-like structure
- → Builds model in the form of a tree structure
- → Each internal (non-leaf) node denotes a test on an attribute
- → Each branch represents the outcome of a test
- → Each leaf (or terminal) node holds a class label.
- → The topmost node in a tree is the root node.
- → Decision trees capture nonlinear interaction between the features much more effectively than linear models.

# **Decision Tree Regression**



# **Decision Tree Regression**

How To Grow A Decision Tree for Regression?

- → Goal is to find out a f(x) that minimizes the error.
- → Tree is built from Top to Bottom.
- → At each step, we have to find a better split (branch) in the decision tree.



# **Decision Tree Regression:** Example

| Predictors |      |          | larget |              |
|------------|------|----------|--------|--------------|
| Outlook    | Temp | Humidity | Windy  | Hours Played |
| Rainy      | Hot  | High     | Falce  | 26           |
| Rainy      | Hot  | High     | True   | 30           |
| Overoast   | Hot  | High     | Falce  | 48           |
| Sunny      | Mild | High     | Falce  | 46           |
| Sunny      | Cool | Normal   | Falce  | 62           |
| Sunny      | Cool | Normal   | True   | 23           |
| Overoast   | Cool | Normal   | True   | 43           |
| Rainy      | Mild | High     | False  | 36           |
| Rainy      | Cool | Normal   | Falce  | 38           |
| Sunny      | Mild | Normal   | False  | 48           |
| Rainy      | Mild | Normal   | True   | 48           |
| Overoast   | Mild | High     | True   | 62           |
| Overoast   | Hot  | Normal   | False  | 44           |
| Sunny      | Mild | High     | True   | 30           |

### Decision Tree Regression: Example



- → Top-down
- → Greedy search through the space of possible branches
- → No backtracking.

- Decision tree is built top down from the root node.
- → Involves partitioning the data into subsets containing similar values
- → If numerical sample is completely homogeneous, standard deviation is zero.

Standard Deviation for Response Variable (one attribute)

| Hours<br>Played |    |  |  |
|-----------------|----|--|--|
| 25              |    |  |  |
| 30              |    |  |  |
| 46              | Ģ  |  |  |
| 45              |    |  |  |
| 52              | Ö  |  |  |
| 23              | 2  |  |  |
| 43              | 7  |  |  |
| 35              |    |  |  |
| 38              |    |  |  |
| 46              |    |  |  |
| 48              | į, |  |  |
| 52              |    |  |  |
| 44              | Ö  |  |  |
| 30              |    |  |  |

$$S = \sqrt{\frac{\sum (x - \mu)^2}{n}}$$



Standard Deviation

$$S = 9.32$$

Standard Deviation for Response and Predictor (two attributes)





#### **Standard Deviation Reduction**

- → SDR is based on the decrease in std dev after a data is split on an attribute.
- → Find that attribute which returns the highest standard deviation reduction (i.e the most similar branches).
- → Assign it as root of the decision tree.

#### **Standard Deviation Reduction: Steps (1-5)**

- 1. The standard deviation of the target is calculated.
- 2. The dataset is then split on different attributes.
- 3. The standard deviation for each branch is calculated.
- 4. The resulting standard deviation is subtracted from the standard deviation before the split.
- 5. The result is the standard deviation reduction.

- 6. The standard deviation of the target is calculated.
- 7. The attribute with the largest standard deviation reduction is chosen for the decision node.
- 8. Dataset is divided based on the values of the selected Attribute.
- 9. A branch set with standard deviation more than 0 needs further splitting.
- 10. The process is run recursively on the non-leaf branches, until all data is processed.

#### Standard deviation (Hours Played) = 9.32

|         |          | Hours<br>Played<br>(StDev) |
|---------|----------|----------------------------|
| Outlook | Overcast | 3.49                       |
|         | Rainy    | 7.78                       |
|         | Sunny    | 10.87                      |
|         | SDR=1.66 |                            |

|          | , c      | Hours<br>Played<br>(StDev) |
|----------|----------|----------------------------|
| Humidity | High     | 9.36                       |
|          | Normal   | 8.37                       |
| 7        | SDR=0.28 | 9                          |

|       |         | Hours<br>Played<br>(StDev) |
|-------|---------|----------------------------|
| Temp. | Cool    | 10.51                      |
|       | Hot     | 8.95                       |
|       | Mild    | 7.65                       |
| ĵ     | SDR=0.1 | 17                         |

|       |         | Hours<br>Played<br>(StDev) |
|-------|---------|----------------------------|
| Windy | False   | 7.87                       |
|       | True    | 10.59                      |
|       | SDR=0.2 | 9                          |

$$SDR(T, X) = S(T) - S(T, X)$$

**SDR**(Hours , Outlook) = 
$$\mathbf{S}$$
(Hours ) –  $\mathbf{S}$ (Hours, Outlook)  
=  $9.32 - 7.66 = 1.66$ 

Standard deviation (Hours Played) = 9.32

| *       |          | Hours<br>Played<br>(StDev) |
|---------|----------|----------------------------|
| Outlook | Overcast | 3.49                       |
|         | Rainy    | 7.78                       |
|         | Sunny    | 10.87                      |
|         | SDR=1.66 |                            |

$$SDR(T, X) = S(T) - S(T, X)$$

**SDR**(Hours , Outlook) = 
$$\mathbf{S}$$
(Hours ) –  $\mathbf{S}$ (Hours, Outlook)  
=  $9.32 - 7.66 = 1.66$ 



| Outlook  | Temp | Humidity | Windy | Hours Played |
|----------|------|----------|-------|--------------|
| Sunny    | Mild | High     | FALSE | 45           |
| Sunny    | Cool | Normal   | FALSE | 52           |
| Sunny    | Cool | Normal   | TRUE  | 23           |
| Sunny    | Mild | Normal   | FALSE | 46           |
| Sunny    | Mild | High     | TRUE  | 30           |
| Rainy    | Hot  | High     | FALSE | 25           |
| Rainy    | Hot  | High     | TRUE  | 30           |
| Rainy    | Mild | High     | FALSE | 35           |
| Rainy    | Cool | Normal   | FALSE | 38           |
| Rainy    | Mild | Normal   | TRUE  | 48           |
| Overcast | Hot  | High     | FALSE | 46           |
| Overcast | Cool | Normal   | TRUE  | 43           |
| Overcast | Mild | High     | TRUE  | 52           |
| Overcast | Hot  | Normal   | FALSE | 44           |

| Temp | Humidity | Windy | Hours Played |
|------|----------|-------|--------------|
| Mild | High     | FALSE | 45           |
| Cool | Normal   | FALSE | 52           |
| Mild | Normal   | FALSE | 46           |
| Cool | Normal   | TRUE  | 23           |
| Mild | High     | TRUE  | 30           |

|       | *      | Hours Played<br>(StDev) |
|-------|--------|-------------------------|
| Windy | False  | 3.09                    |
|       | True   | 3.50                    |
|       | SDR= 7 | .62                     |

SDR = 10.87 - ((3/5)\*3.09 + (2/5)\*3.5)



When the number of instances is more than one at a leaf node we calculate the average as the final value for the target.



The process is run recursively on the non-leaf branches, until all data is processed.

## **Random Forest Regression**

- **→** Most Effective model for Predictive Analytics
- → The random forest model is a sum of multiple base models.
- → This is called model ensembling.
- → Predictive Performance is increased by combining predictions from multiple base models.
- → Each base classifier is a decision tree.
- → All base models are creating independently using a different subsample of the data.
- Random forest works best with tabular data with numerical features.

# Random **Forest** Regression (Example)



# **Tuning Parameters**

- Num\_trees: Controls the number of trees in the final model. More trees, more the training & prediction time. Num\_trees~Higher accuracy.
- Max\_depth: Restricts the depth of each individual tree to prevent overfitting.
- Step\_size: Smaller value will take more iterations to reach the same level of training error of a larger step size.
- min\_child \_weight: The minimum observations required at a leaf node. Larger value produces simpler trees.
- Min\_loss\_reduction: This restricts the reduction of loss function for a node split.
   Larger value produces simpler trees.
- Row\_subsample: Using only a fraction of rows at each iteration to produce more robust model.
- Column\_subsample: Using only a subset of the columns to use at each iteration.

#### Evaluating Model Performance using Regression Metrics

In a Regression task, model learns to predict numeric scores.

E.g., Predicting the price of a stock for future based on past price history.

Or, Or predicting a user's rating on an item based on past trends.

Two Methods of Measuring Performance

★ Root Mean Squared Error★ Max-Error

# Root Mean Squared Error (RMSE)

Defined as the square root of the average squared difference between the actual score and the predicted score:

$$rmse = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}}$$

yi → denotes the true score for the i-th data point

And,

Yi → denotes the predicted value.

#### R Squared

R2 measures the proportion of variation in the data that is accounted for in the model.

It evaluates how well the model fits the data.

R-Square =  $\frac{\sum (Y_actual - Y_predicted)^2}{\sum (Y_actual - Y_mean)^2}$ 

Also known as the coefficient of determination

#### **Max Error**

- → Worst case error
- → Rarely used
- → Finds out the maximum error possible between specified Quantile Ranges.

•

#### Summary

- 1. Multiple Linear regression models the relation between a response variable Y and multiple predictor variables X1.....Xp.
- 2. Factor variables need to be converted into numeric variables for use in a regression.
- 3. The most common method to encode a factor variable with P distinct values is to represent them using P-1 dummy values.

#### Hands-on Lab

- → Using numpy, Sklearn and matplotlib
- → Plotting regression models using scatterplot
- → Creating correlation plots

