Lecture Summary: Bias, Variance, and Risk of Estimators

Lecture: 9.4 - Bias, Variance, and Risk of an Estimator

Source: Lecture 8.4.pdf

Key Points

- Point Estimation Problem:
 - Given iid samples from a distribution described by a parameter θ , the goal is to estimate θ .
 - Estimators are functions of the samples that provide an approximation of θ .
- Bias of an Estimator:
 - Definition:

$$\operatorname{Bias}(\hat{\theta}, \theta) = \mathbb{E}[\hat{\theta}] - \theta.$$

- Intuition:
 - * Measures how far the expected value of the estimator is from the true parameter.
 - * An unbiased estimator has Bias = 0.
- Variance of an Estimator:
 - Definition:

$$\operatorname{Var}(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2].$$

- Intuition:
 - * Describes the spread of the estimator's distribution.
 - * A low variance ensures consistency in estimates across different samples.
- Risk of an Estimator:
 - Squared Error Risk:

$$R(\hat{\theta}, \theta) = \mathbb{E}[(\hat{\theta} - \theta)^2].$$

- Alternate Terminology:
 - * Also known as Mean Squared Error (MSE).
- Components:

$$R(\hat{\theta}, \theta) = \text{Bias}^2 + \text{Var}(\hat{\theta}).$$

- Bias-Variance Tradeoff:
 - To minimize risk:
 - * Reduce bias (ensure $\mathbb{E}[\hat{\theta}] \approx \theta$).
 - * Control variance (ensure estimates are consistent).
 - Tradeoff arises because reducing bias may increase variance and vice versa.

• Examples:

- 1. Estimator 1: $\hat{\theta}_1 = \frac{1}{2}$ (Constant)
 - Bias: $\frac{1}{2} \theta$.
 - Variance: 0 (constant value).
 - Risk: $(\frac{1}{2} \theta)^2$.
- 2. Estimator 2: $\hat{\theta}_2 = \frac{X_1 + X_2}{2}$ (Two Samples)
 - Bias: 0 (unbiased).
 - Variance: $\frac{p(1-p)}{2}$.
 - Risk: $\frac{p(1-p)}{2}$.
- 3. Estimator 3: $\hat{\theta}_3 = \frac{\sum_{i=1}^n X_i}{n}$ (Sample Mean)
 - Bias: 0 (unbiased).
 - Variance: $\frac{p(1-p)}{n}$.
 - Risk: $\frac{p(1-p)}{n}$.

• Key Insights:

- Estimator $\hat{\theta}_3$ outperforms others because its risk decreases with n, ensuring better accuracy with larger sample sizes.
- Adjustments to estimators (e.g., scaling terms) may alter bias, variance, and risk significantly.

Simplified Explanation

Key Idea: Estimators should have low bias, variance, and risk to reliably approximate the parameter θ . **Why It Matters:** Bias and variance directly affect an estimator's accuracy, and their relationship highlights tradeoffs in estimation design.

Conclusion

In this lecture, we:

- Defined and analyzed bias, variance, and risk for parameter estimators.
- Explored their relationships through the Bias-Variance decomposition.
- Demonstrated calculations for common estimators in Bernoulli trials.

Understanding these concepts is essential for evaluating and designing effective statistical estimators.