Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Системное и прикладное программное обеспечение. Программная инженерия.

Лабораторная работа №6. Асинхронный обмен данными с ВУ.

Предмет: ОПД.

Преподаватель: Блохина Елена Николаевна

Выполнил: Бусыгин Иван.

Группа: Р3112.

Вариант: 621225.

Санкт-Петербург 2021 год

Цель работы.

Изучение организации процесса прерывания программы и исследования порядка функционирования ЭВМ при обмене данными в режиме прерывания программы.

Задание.

Лабораторная работа №6

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

Введите номер варианта 621225

- 1. Основная программа должна инкрементировать содержимое X (ячейки памяти с адресом 009₁₆) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=2X-6 на данное ВУ, а по нажатию кнопки готовности ВУ-2 вычесть утроенное содержимое РД данного ВУ из X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

Описание программы.

Программа "наращивает" число Х в ячейке 9 инкрементированием в цикле.

По нажатию кнопки готовности ВУ-3 на это устройство выводится значение 2X - 6. Если X в этот момент лежит вне ОДЗ, ему сначала присваивается значение -61 (минимальное из ОДЗ).

По нажатию кнопки готовности ВУ-2 полученное из него значение утраивается и вычитается из X. Если в результате X выходит за рамки ОДЗ, ему присваивается значение -61.

Расположение в памяти:

Минимальное значение из ОД3 и следующее за максимальным лежат в ячейках 38_{16} и 39_{16} соответственно.

Первая исполняемая команда – 3D₁₆.

Текст программы на языке Ассемблер.

ORG 0

V0: WORD \$INT0, 0x180 V1: WORD \$INT1, 0x180

ORG 9

IRET

X: WORD 0

ORG 17
INTO: PUSH
LD \$X
NOP
CALL \$DEF
ASL
SUB #6
OUT 6
POP

ORG 30
INT1: PUSH
IN 4
PUSH
ASL
ADD &0
ST &0
LD \$X
NOP
SUB &0
CALL \$DEF
NOP
POP

POP IRET

ORG 47 ORG 61 DEF: **BVS SETMIN** START: DΙ CLA **CMP MAX BGE SETMIN** OUT 3 LD #8 CMP MIN **BLT SETMIN** OUT 7 **BR FINISH** LD #9 SETMIN: LD MIN OUT 5 FINISH: ST \$X ΕI LD \$X **RET** WORD 0xFFC3 INCLP: INC MIN: MAX: WORD 0x43 ST \$X BR INCLP

Методика проверки.

- 1. Загрузить комплекс программ в память базовой ЭВМ.
- 2. Изменить значения точки останова по адресу 13_{16} на HLT.
- 3. Изменить значения точки останова по адресу 25_{16} на HLT.
- 4. Изменить значения точки останова по адресу 28_{16} на HLT.
- 5. Запустить основную программу в автоматическом режиме с адреса $3D_{16}$.
- 6. Установить "Готовность ВУ-3".
- 7. Дождаться останова.
- 8. Записать содержимое аккумулятора в момент останова программы (это X).
- 9. Продолжить выполнение программы.
- 10. Записать число, выведенное на ВУ-3.
- 11. Установить "Готовность ВУ-2".
- 12. Дождаться останова.
- 13. Записать содержимое аккумулятора в момент останова программы (это X).
- 14. Продолжить выполнение программы.
- 15. Дождаться останова.
- 16. Записать содержимое аккумулятора в момент останова программы (это новое значение X).
- 17. Можно перейти в пультовый режим, записать какое-либо значение в ячейку 9 (X) и запустить программу с адреса 46_{16} повторяя пункты с 6-го и дальше.

Результаты проверки.

Устройство ввода.	Исходное значение X.	Результат.

Векторы прерываний.

Адрес	Значение	Номер	Комментарий
000	0011	0	Адрес программы обработки нулевого прерывания.
001	0180		Биты регистра состояния.
002	001E	1	Адрес программы обработки первого прерывания.
003	0180		Биты регистра состояния.

Программа обработки нулевого прерывания.

Адрес	Код	Мнемоника	Комментарий
011	0C00	PUSH	Положить в стек.
012	A009	LD 9	Загрузка. Прямая адресация.
013	0000	NOP	Точка останова. Смотрим Х.
014	D02F	CALL 2F ₁₆	Вызов подпрограммы. Прямая адресация.
015	0500	ASL	Логический сдвиг влево.
016	6F06	SUB #6	Вычитание. Прямая загрузка.
017	1306	OUT 6	Запись в RD КВУ-3
018	0800	POP	Взять из стека.
019	0B00	IRET	Возврат из прерывания.

Программа обработки первого прерывания.

Адрес	Код	Мнемоника	Комментарий
01E	0C00	PUSH	Положить в стек.
01F	1204	IN 4	Ввод из RD КВУ-2.
020	0C00	PUSH	Положить в стек.
021	0500	ASL	Логический сдвиг влево.
022	4C00	ADD &0	Сложение со значением из стека.
023	EC00	ST &0	Сохранение в ячейку стека.
024	A009	LD 9	Загрузка. Прямая адресация.
025	0000	NOP	Точка останова. Смотрим X.
026	6C00	SUB &0	Вычитание значения из стека.
027	D02F	CALL 2F ₁₆	Вызов подпрограммы. Прямая адресация.
028	0000	NOP	Точка останова. Смотрим результат.
029	0800	POP	Взять из стека.
02A	0800	POP	Взять из стека.
02B	0B00	IRET	Возврат из прерывания.

Подпрограмма.

Адрес	Код	Мнемоника	Комментарий
02F	F605	BVS IP + 5	Переход, если переполнение.
030	7E08	CMP IP + 8	Сравнение. Относительная адресация.
031	F903	BGE IP + 3	Переход, если больше или равно.
032	7E05	CMP IP + 5	Сравнение. Относительная адресация.
033	F801	BLT IP + 1	Переход, если меньше.
034	CE01	BR IP + 1	Безусловный переход.
035	AE02	LD IP + 2	Загрузка. Относительная адресация.
036	E009	ST 9	Сохранение. Прямая адресация.
037	0A00	RET	Возврат из подпрограммы.

Основная программа.

Адрес	Код	Мнемоника	Комментарий
03D	1000	DI	Запрет прерываний.
03E	0200	CLA	Очистка аккумулятора.
03F	1303	OUT 3	Запись в MR КВУ-1.
040	AF08	LD #8	Прямая загрузка.
041	1307	OUT 7	Запись в MR КВУ-3.
042	AF09	LD #9	Прямая загрузка.
043	1305	OUT 5	Запись в MR КВУ-2.
044	1100	EI	Разрешение прерываний.
045	A009	LD 9	Загрузка. Прямая адресация.
046	0700	INC	Инкремент.
047	E009	ST 9	Сохранение. Прямая адресация.
048	CEFD	BR INCLP	Безусловный переход.

Вывод.

Научился обрабатывать прерывания.