

Solución arquitectónica de tecnologías de virtualización basada en contenedores para el grupo de investigación en redes, información y distribución (GRID)

Tesis de pregrado

Autores:

José Alejandro Arias Pinzón Cc: 1002652342

Anubis Haxard Correa Urbano Cc: 1004871385

Universidad del Quindío Facultad de ingeniería Programa de Ingeniería de Sistemas

Revisor: Ph.D. Luis Eduardo Sepúlveda Rodríguez

Asesor: Dra. Diana Marcela Rivera Valencia

A mi madre, por sus esfuerzos y sacrificios para brindarme una educación, además de enseñarme el valor del trabajo duro y la perseverancia. A mi padre, por enseñarme casi todo lo que sé y por ser un ejemplo de esfuerzo. A mi hermano, por su apoyo constante y por ser una fuente de inspiración. A mi esposa, por su amor, paciencia y comprensión, y por apoyarme de todas las maneras posibles en esta etapa de mi vida.
— José Alejandro Arias Pinzór
A mi familia, por creer siempre en mí y motivarme a alcanzar mis metas.
— Anubis Haxard Correa Urbano

Índice general

Dedicatoria	1
Glosario	g
Siglas y Abreviaturas	11
1. Metodología	13
2. Marco Conceptual	14
3. Marco Teórico	15
A. Anexo A	19

Resumen

Este es un breve resumen del contenido de la tesis.

Abstract

This is a brief summary of the thesis content in English.

Índice de figuras

Índice de cuadros

Introducción

La computación en la nube (Cloud Computing) es uno de los conceptos con más crecimiento en la industria de la tecnología(Jayaweera et al., 2024). Las organizaciones han identificado en esta forma de computación una manera de aprovisionamiento de recursos informáticos rápida y según la demanda. Entre sus principales beneficios se incluyen la flexibilidad, la escalabilidad y la eficiencia en costos(Ahmadi, 2024). La adopción de estos recursos ha transformado el desarrollo de soluciones tecnológicas, lo cual ha posibilitado que la planificación, el análisis, el diseño, el desarrollo, las pruebas y el mantenimiento se realicen completamente en la nube. Esto ha dado origen a aplicaciones nativas de este entorno, conocidas como cloud native apps.

Las cloud native apps permiten a las organizaciones implementar soluciones complejas con un rendimiento mejorado, distribuyendo sus cargas de trabajo en múltiples entornos de nube y optimizando el retorno de inversión(Alonso et al., 2023). Con el aumento en el uso de estas aplicaciones nativas, ha surgido también la necesidad de consolidar los recursos de TI. La virtualización es útil debido a que permite una consolidación de recursos según las necesidades organizacionales. Anteriormente el despliegue de aplicaciones se realizaba directamente sobre el sistema de la máquina física; actualmente, la gran mayoría se ejecuta sobre sistemas virtualizados(Jain and Choudhary, 2016). Las máquinas virtuales, o de sistema completo, han sido hasta ahora el estándar de facto para la segmentación de infraestructura de TI; sin embargo, la virtualización ligera, también conocida como virtualización basada en contenedores (VBC)¹, se ha ido posicionando como una alternativa moderna a las máquinas virtuales.

En este contexto, desde la aparición de Docker en 2013, la virtualización ligera ha transformado el desarrollo de software, fortaleciendo prácticas como DevOps, donde la escalabilidad y la replicabilidad son fundamentales(Docker, 2021). Docker ha experimentado un notable crecimiento en su adopción, debido a su capacidad para ejecutar aplicaciones en el mismo entorno en el que fueron construidas, sin importar el lugar donde se implementen. El crecimiento de Docker se ve evidenciado

¹Las siglas utilizadas en este documento se explican en el capítulo Siglas y Abreviaturas.

en el uso de Docker images por parte de los desarrolladores. En 2023 se registraron 130 mil millones de descargas, cifra que aumentó a 242 mil millones en 2024(Docker, 2024). A partir del auge de Docker, surgieron nuevas tecnologías de contenerización, la aparición de estas puede percibirse inicialmente como una ventaja para organizaciones, desarrolladores y demás actores de TI; sin embargo, la proliferación de estas herramientas puede representar un reto al momento de elegir la idónea en una arquitectura de solución.

Este trabajo aborda la situación ya expuesta, cuyo objetivo principal es proponer una arquitectura de solución basada en contenedores para el Grupo de Investigación en Redes, Información y Distribución (GRID) de la Universidad del Quindío. Inicialmente, se realiza una valoración de necesidades de la organización cliente, destacando sus objetivos misionales enfocados en el apoyo a la docencia, la investigación y la extensión. El desafío consiste en el aprovechamiento de la infraestructura actual del GRID aportando al cumplimiento de sus objetivos misionales. Lo anterior, haciendo uso de los aportes del presente trabajo. Posteriormente, se profundiza en una revisión del estado del arte mediante un estudio de mapeo sistemático (Systematic Mapping Study — SMS), con el objetivo de comprender las tecnologías de virtualización basada en contenedores (VBC) y los dominios de TI en los que se desarrollan. Paso seguido, se realiza un análisis DAR (Decision Analysis and Resolution) basado en el modelo de CMMI, el cual permite definir la tecnología de contenedores adecuada en la implementación de una solución. A partir de este análisis, se desarrolla la arquitectura de solución con base en las necesidades del grupo de investigación

Glosario

En este apartado se encuentran términos clave y conceptos relevantes utilizados a lo largo de este proyecto.

\mathbf{B}

Benchmarking: Mide el rendimiento o el grado de éxito alcanzado en comparación con otras empresas para una actividad, flujo de valor u otros factores de interés determinados. Estas medidas se convierten en la base para el análisis y el rediseño (Peter Wootton, 2024).

\mathbf{C}

Cloud Computing: La computación en la nube es un modelo que permite el acceso a la red, ubicuo, práctico y bajo demanda, a un conjunto compartido de recursos informáticos configurables que pueden aprovisionarse y liberarse rápidamente con un mínimo esfuerzo de gestión o interacción con el proveedor de servicios (Mell, 2011).

${f E}$

Escalabilidad: El escalado automático en computación se refiere al ajuste automático de los recursos informáticos a medida que aumenta la carga de trabajo. Los servicios en la nube aumentan automáticamente sus recursos informáticos en respuesta al aumento de la carga de trabajo, las solicitudes y las actividades. Como parte de este proceso, se asignan servidores adicionales, se asignan recursos de memoria y se gestionan los requisitos de red (Tari et al., 2024).

\mathbf{H}

Hypervisor: Es responsable de crear, administrar y programar máquinas virtuales, que representan máquinas reales para los sistemas operativos que se ejecutan en ellas (Cinque et al., 2024).

P

Private Cloud: Una nube privada virtual se refiere a una nube privada alojada en un entorno de nube pública o compartida. Permite la conexión entre la infraestructura heredada y los servicios en la nube mediante una conexión de red virtual segura (Collins, 2016).

Producto mínimo viable (PMV): El producto mínimo viable es aquella versión de un nuevo producto que permite a un equipo recopilar la máxima cantidad de aprendizaje validado sobre los clientes con el menor esfuerzo (Ries, 2020).

\mathbf{V}

Virtualización: Virtualización significa máquina virtual, que no existe pero proporciona todas las facilidades del mundo real, que se utilizan para mejorar la eficiencia de la computación en la nube (Meena and Kumar Banyal, 2021).

Siglas y Abreviaturas

API Interfaz de Programación de Aplicaciones

CMMI Capability Maturity Model Integration

CPU Unidad Central de Procesamiento

DAR Decision Analysis and Resolution

GRID Grupo de Investigación en Redes, Información y Distribución

IT Tecnologías de la Información

SMS Systematic Mapping Study

VBC Virtualización Basada en Contenedores

1. Objetivos

1.1 Objetivo general

Especificar una arquitectura de tecnologías de virtualización basadas en contenedores (VBC), evaluando sus características a través de un benchmarking, seleccionando la que mejor se adapte a la necesidad, problema y oportunidad del GRID (Grupo de Investigación en Redes, Información y Distribución), haciendo un análisis DAR e implementando un producto mínimo viable (PMV).

1.2 Objetivos específicos

- Reconocer necesidades del GRID (Grupo de Investigación en Redes, Información y Distribución) con relación a las tecnologías de virtualización basadas en contenedores.
- Identificar las tecnologías de virtualización basadas en contenedores.
- Caracterizar tecnologías de virtualización basadas en contenedores.
- Seleccionar un conjunto de tecnologías de contenedores para realizar pruebas de concepto.
- Diseñar una especificación arquitectónica para las herramientas seleccionadas.
- Implementar el prototipo funcional.
- Validar casos con relación a la necesidad del cliente.

2. Justificación

El presente trabajo se justifica por la necesidad del Grupo de Investigación en Redes, Información y Distribución (GRID) de la Universidad del Quindío de modernizar su infraestructura tecnológica mediante la adopción de tecnologías de virtualización basada en contenedores (VBC). Esta modernización es crucial para mejorar la eficiencia operativa, la escalabilidad y la flexibilidad de sus servicios, alineándose con las tendencias actuales en el desarrollo de software y la gestión de infraestructuras de TI.

Capítulo 1

Metodología

Texto de la metodología.

Capítulo 2

Marco Conceptual

Texto del marco conceptual.

Capítulo 3

Marco Teórico

Texto del marco teórico.

Desarrollo Metodológico

1. Entendimiento de la organización

El primer paso en el desarrollo metodológico es comprender la organización y su contexto. Esto implica identificar

2. Definición de objetivos

Los objetivos del proyecto deben ser claros y alcanzables. Esto incluye la identificación de las metas a corto y largo plazo, así como los indicadores de éxito que se utilizarán para medir el progreso.

3. Definición de objetivos

Bibliografía

- Ahmadi, S. (2024). Systematic Literature Review on Cloud Computing Security: Threats and Mitigation Strategies. *Journal of Information Security*, 15(02):148–167.
- Alonso, J., Orue-Echevarria, L., Casola, V., Torre, A. I., Huarte, M., Osaba, E., and Lobo, J. L. (2023). *Understanding the challenges and novel architectural models of multi-cloud native applications a systematic literature review.* Springer Berlin Heidelberg.
- Cinque, M., De Simone, L., and Ottaviano, D. (2024). Temporal isolation assessment in virtualized safety-critical mixed-criticality systems: A case study on Xen hypervisor. *Journal of Systems and Software*, 216:112147.
- Collins, L. (2016). Virtual Private Cloud.
- Docker (2021). Developers Bring Their Ideas to Life with Docker.
- Docker (2024). Docker Index: Dramatic Growth in Docker Usage Affirms the Continued Rising Power of Developers.
- Jain, N. and Choudhary, S. (2016). Overview of virtualization in cloud computing. 2016 Symposium on Colossal Data Analysis and Networking, CDAN 2016.
- Jayaweera, M., Kithulwatta, W., and Rathnayaka, R. (2024). An Approach to Examine and Recognize Anomalies on Cloud Computing Platforms with Machine. International Journal of Research in Cloud Computing.
- Meena, J. K. and Kumar Banyal, R. (2021). Efficient Virtualization in Cloud Computing. In *Proceedings 5th International Conference on Computing Methodologies and Communication, ICCMC 2021*, pages 227–232.
- Mell, P. G. (2011). The NIST Definition of Cloud Computing. *National institute of standart and technology*.

Peter Wootton (2024). Benchmarking.

Ries, E. (2020). Minimum Viable Product: a guide. August 3, 2009. Retrieved July, 29.

Tari, M., Ghobaei-Arani, M., Pouramini, J., and Ghorbian, M. (2024). Auto-scaling mechanisms in serverless computing: A comprehensive review. *Computer Science Review*, 53:100650.

Apéndice A

Anexo A

Contenido adicional.