S.KARTHIKEYAN ECE 113323106049 aut113323ecb26

Innovation & Problem Solving

Title: Artificial Intelligence Healthcare Diagnosis and Treatment

Objective

The main goal of Phase 5 is to complete and verify a solid, real-time Al-driven healthcare diagnosis and treatment system. Deployment of the system, usability, complete multilingual and voice-based integration, verification of data security, and aggregation of actionable insights from pilot runs in real-world healthcare settings are the main aspects of this phase.

1. Deployment and Real-World Testing

Overview:

The chatbot and Al solution have also been installed in regulated environments like clinics and trial diagnostic labs.

Implementation:

- Mass Pilot Testing Conducted in 5 clinics using real patients.
- Voice Input Integration:Integrated speech-to-text modules for hands-free interaction
- Device Compatibility: Ensured system compatibility with Android tablets, desktops, and smartphones.

Outcome:

Real-time testing confirmed high accuracy, practical utility, and public usability readiness.

2. Usability Enhancements

Overview:

Improved front-end and interaction logic according to Phase 4 feedback and Phase 5 pilot test results.

Improvements:

- Voice Assistant: Built-in natural language voice commands.
- Accessibility UI:For older and differently-abled users.
 - Multilingual Interface: Hindi, Kannada, and English fully implemented

Outcome:

Substantial enhancements in user interaction and satisfaction among various user groups.

3. Al Model Final Tuning and Validation

Overview:

The model was subsequently trained on anonymized patient data collected through pilot testing

Enhancements:

- Feedback Loop Included doctor corrections and user feedback. Cross-validation:Conducted 10-fold validation to achieve uniform performance.
- Explainability: Integrated visual explanation capability (e.g., SHAP values) for clinicians.

Outcome:

Increased trust and transparency of Al-based diagnosis decisions.

4. Chatbot Extension and Real-Time Interaction

Overview:

Improved the backend to support real-time symptom explanation and diagnosis lookup.

Enhancements:

- 24/7 Response Support: Chatbot handles queries continuously. Medical Escalation: Highlighting acute symptoms to be checked by human physicians.
- Learning Module: Auto-improvement of FAQ suggestions.

Outcome:

Continuous low-latency interaction with greater contextual relevance.

5. IoT Integration Finalization

Overview:

Wearable integration was polished to deliver stable and interpretable outputs.

Enhancements:

- Custom Alerts: Sends emergency alerts based on vital sign thresholds. Initiates emergency alerts based on key sign thresholds
- Integration Layer: Tight integration with Apple HealthKit and Google Fit •

Predictive Monitoring: * Machine learning predicts unusual patterns of health.

Outcome:

Full real-time physiological data flowing into the diagnosis engine.

6. Security & Compliance Final Review

Overview:

Re-audited all modules for vulnerabilities and compliance.

Actions:

- HIPAA/GDPR Audit Completion
- Role-based Access Control (RBAC)
 - Consent Ledger System: Immutable blockchain-based logging of consent.

Outcome:

No weaknesses discovered; exam completed in complete accordance.

Key Challenges Faced in Phase 5

1. Voice Model Accents Handling

Solution: Included accent-specific data sets to enhance speech recognition.

2. Compliance with Live Data Privacy Law

Solution: Edge Al preprocessing and on-device encryption.

Multisource Device Support Issues
 Solution:Designed responsive layout and light version.

Final Outcomes

- Live-tested Al Diagnosis System available for deployment.
- Multilingual Voice Chatbot enables real-life consultations.
- IoT and Real-Time Monitoring functional and synchronized.
 - Complete Security Compliance successfully completed all test processes.

Next Steps

- Hospital deployment on a scale.
- Partner with health-tech firms for patient engagement.
- Roll out in rural clinics through mobile-first strategy.
- Incorporate voice output for visually impaired users. Incorporate voice output for visually impaired users.

Sample Code Implementation

Python code for integrating AI diagnosis, voice chatbot input, and IoT streaming will be incorporated.

Performance Metrics Screenshots

- Accuracy before and after tuning
- Chatbot response time logs
- Live IoT data streaming and analysis screenshots