EE5609: Matrix Theory Assignment-13

M Pavan Manesh EE20MTECH14017

Download all latex-tikz codes from

https://github.com/pavanmanesh/EE5609/tree/master/Assignment13

1 Problem

Let
$$\mathbf{M} = \{ \mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \text{ and eigen }$$
values of $\mathbf{A} \in \mathbb{Q} \}$

- 1) **M** is empty
- 2) $\mathbf{M} = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \}$
- 3) If $\mathbf{A} \in \mathbf{M}$ then the eigen values of $\mathbf{A} \in \mathbb{Z}$
- 4) If $\mathbf{A}, \mathbf{B} \in \mathbf{M}$ such that $\mathbf{A}\mathbf{B} = \mathbf{I}$ then $|\mathbf{A}| \in \{+1,-1\}$

M is empty	Consider $\mathbf{A} = \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. The elements of $\mathbf{A} \in \mathbb{Z}$ and it's eigen values $1 \in \mathbb{Q}$. So, \mathbf{M} is not empty.
$\mathbf{M} = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \}$	Let $\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ where elements of $\mathbf{A} \in \mathbb{Z}$. The characteristic equation can be written as: $\lambda^2 + 1 = 0 \implies \lambda = \pm i$ We see that $\lambda \in \mathbb{C}$ which is contradicting the main definition of \mathbf{M} . So, this is not correct.
Eigen values of $\mathbf{A} \in \mathbb{Z}$	Given $A \in M$.Let λ_1, λ_2 be the eigen values of A .The characteristic polynomial can be written as: $\lambda^2 - tr(A) + \det A = 0, \text{where } tr(A) = \lambda_1 + \lambda_2, \det A = \lambda_1 \lambda_2$ Given the eigen values $\lambda_1, \lambda_2 \in \mathbb{Q}$, For this to be possible the discriminant of above equation should $\in \mathbb{Z}$ $\frac{\sqrt{(\lambda_1 + \lambda_2)^2 - 4\lambda_1\lambda_2} \in \mathbb{Z}}{\sqrt{(\lambda_1 - \lambda_2)^2} \in \mathbb{Z}}$ $\Rightarrow \lambda_1 - \lambda_2 \in \mathbb{Z}$ This is possible when both $\lambda_1, \lambda_2 \in \mathbb{Z}$.
If $\mathbf{AB} = \mathbf{I}$ then $ \mathbf{A} \in \{+1,-1\}$	As $\mathbf{A}, \mathbf{B} \in \mathbf{M}$, $\Longrightarrow \mathbf{A} , \mathbf{B} \in \mathbb{Z}$ Given $\mathbf{A}\mathbf{B} = \mathbf{I} \implies \mathbf{A} \mathbf{B} = 1$ This is possible only when $ \mathbf{A} = \mathbf{B} = \pm 1$
Conclusion	options 3) and 4) are correct.