Study for ML Exam

Category	Machine Learning
Date Created	@Mar 28, 2020 8:25 PM
□ Due Date	@Apr 01, 2020 3:00 PM
Priority	High 🖖
Status	Next Up

ML Cheat Sheet

Topics

- Classification
 - ✓ Binary Logistic Regression
 - Multinomial Logistic Regression
- ✓ Important Concepts
 - ✓ SGD
 - Regularization
 - **Feature Engineering**
- **▼** Feature Learning
 - Neural Networks
 - ✓ Basic NN Architectures
 - Backpropogation
- **✓ Learning Theory**
 - Pac Learning
- **✓** Generative Models

Study for ML Exam 1

- Generative vs. Discriminative
- ✓ MLE / MAP
- Naïve Bayes

Logistic Regression Fit Function

```
# trainX --> training data
# weights --> vector for each feature
# trainY --> output in [0, 1] for each xi
def fit():
    for i in range(num_epochs):
        for j in range(trainX.shape[0]):
            xi = trainX[j]
            dotProduct = np.dot(xi, weights)
            p = sigmoid(dotProduct)

        weights = weights + learning_rate * (trainY[j] - p) # update rule for SGD
```

Neural Network Fit Function

```
def train():
 for i in range(num_epochs):
   for j, xi in enumerate(trainX):
     # begin forward propogation
     a = xi.dot(alpha) # alpha is first set of weights
     z = sigmoid(a)
     z_{-} = np.append([1], z) # appending the bias in hidden layer
     b = z_{-}.dot(beta) # beta is second set of weights
     y_prime = softmax(b)
     # end of forward propogation
     db = np.copy(y_prime)
     db[y[j]] = db[y[j]] - 1 # y[j] gives index of correct label
     dbeta = np.asmatrix(db).T.dot(np.asmatrix(z_{)}) #calculating backprop for beta
     dz = db.T.dot(beta[:, 1:]).T # omit bias in calculation of dz
     da = dz * z * (1-z) # element-wise multiplication to find da
     dalpha = np.asmatrix(da).T.dot(np.asmatrix(xi)) # calculating backprop for alpha
     # end of backpropogation
      # updates for stochastic gradient descent
```

Study for ML Exam 2

beta += learning_rate * dbeta
alpha += learning_rate * dalpha

Study for ML Exam 3