

```
2.44 BSP (Bestimmt diverpente Folgen)
     (i) \lim_{n\to\infty} h = \infty \lim_{n\to\infty} (-n^2) = -\infty
    (ii) a_n = (-1)^n ist unbeschionht dohr oliverpent ober micht bestimmt divergent, denn o_2 \rightarrow \infty
                                  und Ozhen -> - 00
         Also ist obje Um kolvang von Z.43 (ii) Pols &
          bestimmt divergent anhex want )
1.45 Prop (Rechenrepela für une penfliche Grantvate)
Scien (on), (bn), (cn) (realle) Folgen mit on-) O GIR, bn, cn-) oo
 Donn pilt
(i) lim (on+bn)=lim(bn+on)=0
             (ii) \lim_{n \to \infty} (b_n + c_n) = \lim_{n \to \infty} (c_n + b_n) = \infty

(iii) \lim_{n \to \infty} (c_n - b_n) = \lim_{n \to \infty} (-b_n + c_n) = -\infty

(iv) folls 0>0: \lim_{n \to \infty} (c_n + b_n) = \lim_{n \to \infty} (b_n + c_n) = \infty

(v) \lim_{n \to \infty} (b_n + c_n) = \lim_{n \to \infty} (c_n + b_n) = \infty
 Baras: [UE]
 2.46 MARNUNG. Es pibl leane a molopin Rechenrepela fin

die Different Uneigentlich dies penter Folger

bar des Produkt von uneig. div. Folgen mit Nullfolgen:
     · lim n = 0, lim n = 0, lim (n-n)=0, lim (n-n2)=-0
```

· lim =0, lim =0, lim (n =)=1, lim (n =)=0

 $\begin{pmatrix}
(ii) & lim o_n = 0, o_n > 0 & + n \\
b + s & o_n < 0 & + n
\end{pmatrix} = \lim_{n \to \infty} \left[\frac{1}{o_n} \right] = \infty \left[\frac{1}{b} + s - \infty \right]$ Beucis. (i) · Es genûpt on >+ ~ 2a betrochten [vpl. Def 2.42iii)] · Der erste Tail der Rehouptung skellt siche, doss 4.4 on Zumindert für proße n bilden können. Er folgt unmittel-bor ales Def 2.42cis mit K=0; K=0 => Jnoex. ano K=0 Fizho Bemerke: 5, >0 finz ho · Wir zugen (on) -> 0. Sei 870, sete K=1/8 => JNG= H: 2n > K=1/2 +n=N => Vhz N:= mox(h, No); O< 1/0, < E. (ii) [UE] 2.48 BSP. $\lim_{n \to \infty} \left(\frac{n}{2^n}\right) = 0$ $\lim_{n \to \infty} \left(\frac{2^n}{n^n}\right) = \infty$ $\left[\frac{n}{2^n}\right] \left[\frac{n}{2^n}\right] \left[\frac{n}{2^n}\right$

2.49 BED (Unejenthihe Direpent reacht sich noch oben 50 Folls $O_n \leq b_n$ for fostoble n and $O_n \rightarrow \infty$ down folpt (direct our Def 2.42(i)) $b_n \rightarrow \infty$. Anolog für On \le bu und bu -> -0. \$3 VOUSTANDIGKEIT VON IR, KONVERGENFALINFIREN 3.1. Postivation (Ordnungsvoldstönsligkeit) Win hoben in unsven

(Intersuchangen die Ordnungsvoldstöndigkeit

Von R (ouch Supremumseigenschoft; [],1.9.) (V) Jede nichtleere noch oben (unten) beschrönlite Ling Shronke Tailmenge von R besitzt an Supremum [Insimum] an wesenthichen Stellen versendet. Z.B folget die Archimedische Eigenschoft our (V) [vpl. [6] 1.11(i)] and diece Wiederum implified =>0. In diesem & wollen Wir (V) Und Seinen Konsephenten water nochsparen - (V) ist der rote Foden der Sich durch olie pe-Samle Anolysis Dicht. Fu diesem Jueck benötigen Wir erstlinmol I heur Je-griffe nombich Teilfolpe und foufungswert um du einem ersten flauptresultat der Vo zu pelangen, dem Sol ; von Palan-leientrol Bolzono-Waierstro J. 3.2 Porivation (Tailfolpe) Wir larner hill lin Verfohren

kanner um ow eine pepebenen Folge eine neue Folge for bosken-diens ist infuitiv schreinfoch tu

verstehen, sanc exolete Definition allerdings ethos fechnish 51 (Und dohe evH. vervirrend). Eine Talfolge eine gegebenen Folge (on) esholt mon, Wohn mon cinipe aliede von (on) our lott, 7. B. (Qn) = (2n) = (0,2,4,6,8,10,...) had character (0,4,8,16,...), (0,6,12,18,...), [alle duch 3 faith.] (0,4,10,18,...) [0,000pclossen, 03,04 occopolassen,...] Wesendlich dobe ist as, doss onur Gliebe der Ausgonpsfolge (on) vervindet woden und Iwor javails hochstens ainmol e die Rahen folge erholten bleibt. Lonst pible kancle Einschrönkungen. Insbesondre Konnen olle Folge-pliede on versen det woden | lad: Jede Folge ist It van sich selbet I oder beliebig probe verschiedene Licken pelossen werden. Keine TF von (on) sind 7.3 (0,1,2,4,6, ---) ode (0,2,6,4,---) Reinzelpe (kommt in (on) micht 10-) bzv. (0,2,2,4,6,...) Technisch beschrabt mon diesen Progers indem mon ous der Meye der Indites 0,1,2,3,--perisse oursollt obo +3 1,3,5,7, und domit dic Jugehöripen On's, also 01,03,05,07,... The aus (On) new gerisc (On) KEN [hier ho=1, m=3, hz=5, hz=]
mit hochi < ... < hecherg. Non official:

3.3 DEF (Tailfolge) Sai (On), ainc Folge. Ist (Nk) kext eine Folpe in X (d.h. line Folpe nohishiche Johlen)
mit der Eigenschoft Noch 1<h1<--- (d.h. Nk LNL+1 TREX) donn hill die tolpe $\begin{aligned}
\left(Q_{n_{k}}\right)_{k\in\mathbb{N}} &= \left(Q_{n_{0}},Q_{n_{1}},Q_{n_{2}}\right) \\
&= \left(\frac{1}{2}\right)_{k\in\mathbb{N}} \left($ $(b_{2k})_k = (1 + \frac{1}{2k})_{k \ge 1} = (1 + \frac{1}{2} = \frac{3}{2}, 1 + \frac{1}{2} = \frac{5}{2}, \dots)$ $\left(b_{2k+1}\right)_{k} = \left(-1 + \frac{1}{2k+1}\right)_{k \ge 0} = \left(-1 + 1 = 0, -1 + \frac{1}{3}\right) - 1$ $\frac{O_{2k+1}}{-1} \qquad O_{2k} \qquad 3l_{k}$ $(iii) (C_{h}) = (1, 2, \frac{1}{3}, \frac{1}{5}, \frac{1}{5}, \frac{1}{6}) \dots) = \begin{cases} n & \text{in periode} \\ \frac{1}{n} & \text{in unperiode} \end{cases}$ $holetwo T + (C_{2k})_{k \ge 1} = (2k)$ (C2k+1)KERI= (ZK+1) (iv) l.a. gibt es mobre effohler von (nx) um dieselle TF guertagen. So ist etus ouch (Q4k)=(1) k

(V) Kane TF von (On) ist (-1,0,-1,0,---) [0 kommtin 53 on with tost Keine TF von (bn) 156 (1+1) box (-1+1/3, 1+1/5) [2hen/ole fohd, dh.

#Wohl von he mit Me Chen] 3.5 NOTIVATION (Hanjungswert) In 3.4 (i) und (ii) hober die Punte ±1 eine sperielle Rolle: Sie sind je weils brunz weite von Trilfolgen $(O_{2k} = (1)_k \longrightarrow 1, O_{2k+1} = (-1) \longrightarrow -1,$ $b_{2k} = (1 + \frac{1}{24}) \longrightarrow 1, b_{2k+1} = -1 + \frac{1}{2k+1} \longrightarrow -1$ Solche Puntite sind interessent & radienen einen agenen 3.6 DEF (Houfungsweet eine Folpe) Sei (On) p eine reelle tolge und OER. a hailt Haupungsvert (Hu) vo- (an), Polls aine Teilfolge $(O_{n_k})_k$ von (O_n) existient mit 3 lim $O_{n_k} = 0$ 3 7 R R (HII)3.7 BSP (HU) (i) Sei 8= limon donn ist or [foderwase] ouch fouturesset (ii) Die V7-Roschine On=(-1) hot die beiden HW I 1 (iii) $b_n = ((-1)^n + \frac{1}{n})_{n \ge 1}$ hot ebent de beiden $HU \pm 1$ (iv) $C_n = \begin{cases} h & n \text{ prode} \\ \overline{h} & n \text{ unperode} \end{cases}$ hot obtaintiples HWO. 5.8 Notivation (Vieviele Folgerpliede sind note frem HU!) Sei a=limen, donn liggen in jeder E-Umgebung Von a fost dle (d.h. olle bis out entlich ride) on

[rpl. 2.7]	54
bill (nor) Q ist Hu von (on), down of (nor) IF Onk	
mil On - Q; ono liegen olde bis out endhich ricle	
de one in jedem Uq(0) - dos sins Juminstest unendlich vicle der an. Diese Eipenschaft ist Cheroliteisierend für Her-wie die nachste Prop lehrt. Vorher noch eine)
Vicle der On. Diese Eigenschoft ist Cherole to isiere-ul	
für flu - wie die nachste Prop lehrt. Vorher noch eine	
WARNUNG: In Object Situation missen die olle bis out	
endlich viden On micht schon oble bis out endlis	4
Viele der On sein VMit ondern Worten	
$\lim_{n \to \infty} \frac{3.76i}{n} = \lim_{n \to \infty} 0$	
Ein explisite began by ist due b= (11) + 1 mit HU + 1/3.	.} <i>(ùi)</i>
In jedem Uz (1), Uzt-1) liegen oriete by. Abe für Ect pict	/
Uz(1) nUz(-1)= & und doho Konnen in keine de beiden Meng	Cn
Uz(1) nUz(-1) = p und dohe Konnen in kaine de beiden Menge fost alle bu liegen (exblichen für die ondere viel Justinize bu	7
Torigh	
(1 (1 m))	
fostable Ozum fost alle 024	
co-riele on) (co-riele on)	
3.8 PROP (Chorokterisierung von Hus) Si (On) eine (reelle) Folge, OEIK	>
Jede E-Umpebung von a	
Jede E-Umperang von a (a ist HW von (on) (=) enthilt unendlich viele on, olh	
(France Victorian To The No Just of Med Just of Med Just of the State	
To be the many of)

Reves. Do es sich um eine Aprivalent hondelt) 55
Nevas. [Do es sich um eine Aplivalent handelt] 55 1 a HW von $(o_n) = \overline{3}.$ 1 TF $(o_{nk})_{k}$: $\lim_{k \to \infty} o_{nk} = 0$
Sci ED = JK TKZK OME EUE (0)
Sei NON $\Rightarrow \int k_1 Z K mit n_{k_1} Z N$ $\left[\operatorname{Def} 3.3: n_{k-1} < n_k < n_{k+1} < \cdots \right]$
f [$Dcf 3.3$; $h_{k-1} < h_k < h_{k+1} <$]
Solve $m = n_k = 0$ $\alpha_m = \alpha_{n_k} \in \mathcal{U}_{\mathcal{E}}(0)$
Es pette die Bed. auf der 1. S. Lu Prop ohs
YESO FNEN JUZN: One (/E(a) (X)
Wir konstruieren induktiv eine $\overline{IF}(O_{n_k})_{k\geq 1}$ von (a_n) mit $o_n \in U_1(a)$ $k=1: Schre \varepsilon = 1 = 1 \iff (x)$ $\Rightarrow J_{n_1} = 1: O_{n_n} \in U_1(a)$
KHK+1: Sei $O_{n_k} \in U_{k}(Q)$ schon definielt Setze $\varepsilon = 1/k+1$, $N = N_k + 1$
Settle $\varepsilon = 1/k_{+1}$, $N = N_k + 1$
$\stackrel{(x)}{\Longrightarrow} \exists_{n} = \mathcal{N} \Rightarrow n_{k} : Q_{n} \in \mathcal{U}_{1}(a)$
- Wir Justen Comon = Q;
Sei E>D und sei KEN mit { < E [1.3cis]
$\Longrightarrow \frac{1}{1} \frac{1}{k^2 K} \frac{1}{k$
Do noch Karskelika
an E (11(0) / Tdeeder Konstruktion: Zoomen mit Umpeloge
W-/kry Vnh
Q-1/km 0+1/km 0+1/k

3. 10 NOTIVATION (In Richtung Boltono-Warerstrol)	56
3.10 Notivation (In Richtung Politono-Warerstroß) Wir Wissen schon [2.7, 2.8]: (an) beschr (an) konvergent	<u> </u>
Abe wenn eine Felpe beschrankt ist down missen sich die	
(abjohlbor vielen) Folpenplieder in einem beschrönkten Intervo tummeln-und down missen sich Jumindest monche nohe	\mathcal{U}
Kommen und einen HH bilden, wie der nachste Sold lehrt,	
de fentral sir urser Verstandnis reelle Folges ist.	
3.MTHM (Sold von Boldono-Wierstroß)	
Jede beschrönkte reelle Folge hot einen floufungsweit	
Perses. (1) Vir veruenden die Ordnungsvollstondipküt umeinen Kændidoten für einen HU zu behommen. On beschr Detzah JK>0: on = K Vnext Pishangan. Wir behochten die Penpe	
an beschr Detzik -JK>0: On/=K thex Tiskens	
Wir betrochten die Penpe	الحين الحين
A:= { X \in IR 0, > X pilt for hochstons Except to the wide in \in \in IR	
A:= $\{x \in \mathbb{R} \partial_n > x \text{ pilt for hochstens} \}$ enslish vicle $n \} \subseteq \mathbb{R}$ • $A \neq \emptyset$, denn $K \in A$ [kin on enfalls on > K] • $A \Rightarrow h.u.b.$, denn falls $x \in K = A$, who is $1 \neq 3 \neq 4$, oho is $1 \neq 3 \neq 4$.	
· Aist n.u.b., dem falls xc-K=) x & A, oho ist +3K-1	,
oke on?-K untreSchronk	E
$\frac{(V)}{-} = \inf A = \underbrace{\sum_{s=1}^{l} \sum_{s=1}^{l} e^{ss}}_{s=1}$	

(2) Vir Jajan, doss a HW der Folge (on) ist: Sc. 820 57
• Q+ € > A ist kine untre Schronbe für A [o=infA] → Jx∈A: 0< x<0τ €
DotA Ocidente l'infort oble n, d.h.
Jnoe H thismo On < Ote (X)
· a ist unt. Schr. v. A => 0-E &A => O-E ir unandlish
• a ist unt. Schr. v. $A \Longrightarrow 0-\varepsilon \not\in A \Longrightarrow 0_n > 0-\varepsilon \not = 0$ in unand bil $\forall h_n \in X \mid J_{m \ge n_n}: 0-\varepsilon < 0_m (xx)$ Viele u, dh.
· Kombinotion von (*) & (**) pibt obie Beh.
Sei NEN gepeben, donn Wohle M, = mox (No, N)
$\stackrel{(\times \times)}{\Longrightarrow} \int mz n_1 z N : 0 - \varepsilon < 0 m $ $\stackrel{(\times \times)}{\Longrightarrow} \left[m_2 n_0 \right] O_m < 0 + \varepsilon $ $\stackrel{(\times \times)}{\Longrightarrow} \left[m_2 n_0 \right] O_m < 0 + \varepsilon $
$\stackrel{(\times)}{\Longrightarrow} [m_2 n_0] \qquad O_m < O + \xi \int O_m \epsilon U_{\xi}(0)$
Skitte 7 w Kontrulition
$\frac{(\partial_n)}{-K} \frac{(\partial_n)}{Q-E} \frac{(\partial_n)}{K}$
Q=Sup A

3.12 BEM (a ist der proste HW) Dosins obipen Bever Konstruierte a ist der pronte Hw Von (o_n) .

Denn sei b>0 = inlA JceA: a<cebSelze E=b-c (>0?) => $U_E(b)$ enthold hochslins a C b DalA endlich viele on $U_E(b)$ A $(for diese pillips o_n>CEA)$ => b ist nicht HW von Xn Anolog dozu konnen wir ouch den kleinsten Hw von (an) konstruieren [diere konnte pleich dem protten Diese sperialler Hu verdienen einen einen Apenen Nomen 3.13 DEF (lim inf, lim sup) (i) Sc. (on) eine beschrünkte (reelle) Folge. Der größte [kleinste] HW a von (on) [Fuegen BV 3.M] heint Limes superior [inferior] by kurzer limsup [liminf] und wir schreiben und wir schreiber

Q = limsup On = lim On [liminfon = lim On] (ii) Folls (on) nicht von oben [unten] beschrönkt ist, down solven wir $\lim_{n \to \infty} o_n = \infty$ [$\lim_{n \to \infty} o_n = -\infty$]. 3.14 BSP (lim inf/Sup) -1 0

(i) $Q_n = (-1)^h (1+1/n)$ lim 0, = 1, lim 0, = -1 (ii) On = n hot kainen HV and as pilt limen = 0 Flinon

3.15 MOTIVATION (Konvergentprintipien) Erinnern Wir uns en unsue bisherigen Konur pantbarase (VOII) \$2 and UE): Bown a richtig loppehen Kounte, hoben wir mest einer (pulen) Kondistoken für den limes Automorphisme de processor de processor de la Scainpurper nicht nur die Existent aines HU sondern Schon des lines liefert - ohne einen Kondidolen f. den Cerentwert In benstipen. Die machtipsten diese Konvegentprintipien sind des Louchy-Printip und des Konvegentprintip f. monolone, beschränkte Folpen. Als Konus werder wir sehen doss es monchmol relative laut ist, den Grentwest aus Jurachnen, wenn schon klor ist, doss aberhoupt Konvepent rockept. Alserskes benöhipen wir dozu den Begrift Couchy-Folge. Dos sind Folger, bei denen sich die Folpenpliede schließhich beliebig note kommen. Anschochish im Bilol des "Spotiaporps" in 77=12 (vpl. 2.4ci)) versondet die Folge d.h. die Schribe werden immer kleiner... Conocier pv Achtung nicht nur die einzelne Schrifweite

3.16 DEF (louchy-Folpe) Eine reelle Folge (on)

3. No DEF (louchy-Folpe) Eine reelle Folge (on)

46>0 JNON + MINON / On-Om/ < 5 3. AT BEM (Bedeutung von (F) Vir werden pleich sehen doss CF penou die konve penten Folgon sind – doher exibript as sich Bop ontuschen. Im Sinne von 3.15 bemerke, doss mon Jui Uberprofung ob eine Folpe (on) eine CF ist (im Printip) den Limes a nicht kannen muß [a kommt in 2.16 kines vor - dos wird mit dem Aufrchen von Z Indites (m2n) erkouft ...]. 3.18 THA (Couchy-Printip) Soi lon) line { reelle Folge. Down pilt (On) konvegiert (=) (On) ist CF Beras. Sevas.

a = i (obie laichte Richtung-Cin E/2-Bevas)

Selze Q:= limon

26

FNEX: |on-a| < E/2 + ForN.

Down pild tmn 3N $|o_{n}-o_{m}|=|o_{n}-o+0-o_{m}|\leq |o_{n}-o|+|o_{m}-o|\leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$

3.19 BSP (Konverpont ohne Limes) -NICHI VOKGEIKHUEN &
Se. (Ok) eine reelle Folpe mit $|O_k| = 0 < 1 + k \in \mathbb{N}$ Wir betrochten die Reihe Z. Ok und Zeigen mittels - NICHT VORGETRAGEN 62 Couchy-Pringips thre Konveyent (i) Abschötzung für die Differenz von Porholsummen. Vie Thlich setten wir sn= Zak Donn pill für men $|S_{1}-S_{m}| = |\frac{h}{2} Q_{k}| \leq \frac{1}{2} |Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}| \leq \frac{1}{2} |Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}| \leq \frac{1}{2} |Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}| \leq \frac{1}{2} |Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}| \leq \frac{1}{2} |Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}| \leq \frac{h}{2} |Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}| \leq \frac{h}{2} |Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}| \leq \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}| \leq \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}| \leq \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} Q_{k}|^{k} \leq \frac{h}{2} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} Q_{k}|^{k} Q_{k}|^{k} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} Q_{k}|^{k} Q_{k}|^{k} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} Q_{k}|^{k} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} Q_{k}|^{k} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} Q_{k}|^{k} Q_{k}|^{k} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} Q_{k}|^{k} Q_{k}|^{k} Q_{k}|^{k}$ $= \frac{h}{2} Q_{k}|^{k} Q_{k}|^{k} Q_{k}|$ (ii) (Sn) ist CF. Se. 500. Wegen $0 \le \theta < 1 \Longrightarrow JN \in \mathbb{N}$: $0 \le \theta^{m+1} \le (1-\theta)$ Tohe pill $f n > m \ge N$ $|S_n - S_m| \le \theta^{m+1} \le (+\infty)$ $|S_n - S_m| \le \theta^{m+1} \le (+\infty)$ Gront ondop bosest mon (XX) für olle minZN. Schließlich pilt für m=h ZN, doss Sm-Sn=0 Also ist (Sn) inspesomt eine CF (iii) 3.18 => $S_n = \sum_{k=0}^{n} O_k^k$ konverplet

(ND: Vir hoben keine Ahnung was ale Limes $\sum_{k=0}^{\infty} O_k^k$ ist V_k^k i A konn chieser ouch nicht berechnet werden.

3.20 MOTIVATION (Monotone Folpen - Konvapentprintip)
Um des in 3.15 ongekundipte honvepent printip für
3.20 Motivation (Monotone Folgen - Konverpentprintip) Um des in 3.15 ongekundipte Konverpent printip für monotone, beschr. Folgen ontapehen mussen vir Juerst der
erstien septiff exokt fossen.
3.21 DEF (Monotonie von Folgen) Sei (on) eine reelle Folge.
(i) (on) heind [sweng] monoton wochsend, folls
On & On+1 [On (On+1] FrEN (X)
(ii) (on) heild [streng] monoton follend, folls
On 2 On+1 [On > On+1] frex (XX)
(iii) Folls JNEN sodoss (X) byv (XX) nor FnZN pelhen so sopon vir (Qn) hot one respensive Eigenschoft ob N.
the x pellen so sopon uir (an) hot obje respensive
Cipenschoft ob N.
3.22 BSP (Nonotone Folpen) Die Fibonocci-Folpe (fn) [siche 2.5(ir)] ist monoton wochsend and streng monoton wochsend ab N=2.
Die Fibonocci-tolpe (fn) [siehe 2.5(ir)] ist
monoton Wochsend and Streng monoton Wochsend
a5 N=2.
Totsachlich pilt fo=011=f1=f2 und fn70 fn71 und doha
und dohe
$f_{n+1} = f_{n+1} - f_{n-1} > f_n + 0 \qquad \forall n \ge 2$
3.23 BEMERKUNG. (Nonofonie & Schronken)
3.23 REMERKUNG. (Nonotonie & Schronken) Ci) Eine mon. wochsende noch oben beschrönkte Folge ci) ist beschrönkt, denn sei on & C donn pilt Yn
ist beschrönkt, denn sei on & C donn pill th

(30n 20n-1 3 -.. 300 to 1)

- (ii) Andop far n. u.b Folper, olic mon. fallen. (iii) In beiden Follen werden wir plaish sehen doss die Folpen sogor konvopieren. Vorhei noch ein mohivierenses 3.24 BSP (Approximation für 13) Sai x500. Vir definieren rekursir die Folge (xn) via $X_{n+1} = \frac{1}{2} \left(X_n + \frac{3}{X_n} \right) \quad (m \in \mathbb{X}) \tag{X}$ Bemake X, >0 Frext. [Indulation] (1) (X_n) ist n.u.b. penouer $\forall n \ge 1$: $3 \le X_n^2$. Totsochlich pilt $x_{n+1}^2 - 3 = \frac{1}{4} \left(x_n + \frac{3}{x_n} \right)^2 - 3 = \frac{1}{4} \left(x_n^2 + 6 + \frac{9}{x_n^2} \right) - 3$ $= \frac{4}{4} \left(x_n^2 - 6 + \frac{9}{x_n^2} \right) = \frac{4}{4} \left(x_n - \frac{3}{x_n} \right)^2 \ge 0$ (2) (x_n) ist monfolland of N=1. Fir halfpild $X_{n} - X_{n+1} = X_{n} - \frac{X_{n}}{2} - \frac{3}{2x_{n}} = \frac{1}{2x_{n}} \left(X_{n}^{2} - 3 \right) \ge 0$ (3) (xn) konvergiert penoue Fx := lim xn lout dem in 3.23ciii) ongekindipten Thm 3.25 (unten) das uir hier schon vervensen.
 - [Sinn ist es du sehen, doss ans (3) umo phiht lim x, oles furalmen of

(4) lim
$$x_n = 13$$

French benerhe $0 < 13 \le x$ (wegen (1)). Wir agehen nan out beiden seihen der Rehursion (4)

Fum Limes über:

 $x_{n+1} = \frac{1}{2}(x_1 + \frac{3}{x_n})$
 $x_{n+1} = \frac{1}{2}(x_1 + \frac{3}{x_n})$

Aho pilt $x = \frac{1}{2}(x_1 + \frac{3}{x_n})$
 $x_n = \frac{1}{2}(x_1 + \frac{3}{x_n})$

Beuas. Sai (on) nob & mon wochsend. (1) Produzieren eines Kondidolen für lim on [(V) ob Existent moschine Infuitives Bild:

00 < 01 < -- Q=xpA die on's verden segen a gedröngt

So: A:= {On | n & x/] 3.23ci) => On beschrönlit => Abeschrönlit (V) _ (A+p, klo-] $= \int a = \sup A$ (nicht oboe Schronke) { Ct. Def sup (2) $\lim_{n \to \infty} a = a$ Sc: 520. 0= sup A => JNEN: 0-E=0N = 0 (On) mon wochsend =) The N: Q-E-ON & ON & Q Dohe Fuzx 10-0,125. 3.26 BEOBACHTUNG (On-) Sup A) Objet Beses Jeight explisit limen = sup of On /ne A] und in diesem Sinne wird dos intentive Bild bestohipt: eine monden Hochsende n.o.b. Felpe Wird geson ihr Erpremum gepuctscht Dos motivicit ouch des Studium von Respon de hestolt {OnlneH} byw noch oblpemainer die Polpenden [spoter Schr Wichtigen J Begriffe für Kunktmenpen in TR.