Lecture 10: Single-Cell RNA Sequencing BIOINF3005/7160: Transcriptomics Applications

Dr Stephen Pederson

Bioinformatics Hub. The University of Adelaide

May 25th, 2020

scRNA Protocols

Cell Isolation
Sequencing Protocols

Data Analysis

QC Quantification Normalisation Clustering DE Analysis Trajectory Analysis

Spatial Transcriptomics

Data Ana

Background

Spatial Transcriptomics

Introduction

- scRNA-Seq is the 'latest and greatest' transcriptomic technique
- Previously all our analysis involved multiple cells per sample
- All were combined during tissue extraction, library preparation etc.
- Most experiments have **highly** heterogeneous cell populations, e.g.

- scRNA-Seq is the 'latest and greatest' transcriptomic technique
- Previously all our analysis involved multiple cells per sample
- All were combined during tissue extraction, library preparation etc.
- Most experiments have **highly** heterogeneous cell populations, e.g.
 - Different regions of the brain contain highly specialised cells
 - The immune system is highly complex
 - Cancer samples have both infiltrating and tumour cells

Introduction

- If a gene is increased 2-fold in expression:
 - Is this 2-fold in 100% of cells?
 - Or is it 4-fold in 50% of cells?
 - Or is it down 2-fold in 25% and up 8-fold in 25% and unchanged in 50%?
- Changes in gene expression can be highly specific to individual cell-types
- In general, determining heterogeneity of our samples is challenging

- The most intuitive solution is to obtain RNA from each cell and sequence
- Reality is much trickier than this

00000

Introduction

- The most intuitive solution is to obtain RNA from each cell and sequence
- Reality is much trickier than this
- How do we characterise which cell is which cell-type?
- How do we capture as many transcripts from each cell as we can?
 - Missing values are a huge issue in scRNA-seq
- How do we compare within the same cell-types between experimental groups?
 - E.g., treated and untreated cell types may not be assigned to the same cluster/cell-type

Workflow Outline

scRNA Protocols

Isolating Individual Cells

- Early protocols used a dilution series or manual isolation with a microscope (micromanipulation)
- Laser Capture Micro-dissection (LCM)
- Fluorescence-Activated Cell Sorting (FACS)
 - Labelled antibodies to specific surface markers
 - MACS is a magnetic-based approach
- Microfluidics/Droplet-based approaches

Protocol Timeline

Protocol Timeline

IFC Capture

- Integrated Fluidic Circuit (IFC) chips
 - Most common is the Fluidigm C1
- Deliver tiny volumes into 'reaction chambers'
- Early chips had 96 chambers ⇒ multiple chips / experiment
- Recent chips handle $\sim\!800$ cells

Protocol Timeline

Droplet-based Approaches

Droplet-based Approaches

Flow rate is modelled as a Poisson process to minimise doublets

Sequencing Overview

- Individual cells are isolated

 how do we sequence?
- Need a method to track which reads come from which cell
- Sequencing is performed on a standard Illumina machine, i.e. multiplexed
- Each cell is essentially an individual library prep

•000000000

- Barcodes / UMIs are used for cell / molecule identification
- ullet For bulk RNA-Seq we need $0.1-1\mu {
 m g}$ of RNA $(10^5-10^6 {
 m pg})$
 - An individual cell contains 1-50pg

SMART¹-Seq (C1)

- 1. All reagents are in the IFC reaction chambers
- 2. Cells are lysed
- 3. polyA RNA reverse transcribed into full length cDNA
 - oligo(dT) priming and template switching
- 4. 12-18 PCR cycles
- 5. cDNA fragmentation and Adapter ligation

Droplet-based Methods

- Popularised by the 10X Genomics Chromium System
- Each gel bead contains the reagents
 - 30nt poly(dT) primer with 16nt 10x Barcode, 12nt UMI²
- Illumina primers and restriction enzymes added later

0000000000

10X Chromium Protocol

Barcoded, full-length cDNA is pooled then PCR amplified

10X Chromium Protocol

Barcoded, full-length cDNA is pooled then PCR amplified

10X Chromium Protocol

• Only R2 contains the sequence information

0000000000

- Only the 3' end is sequenced
- ullet Each template RNA should have one UMI \Longrightarrow PCR duplicates can be identified

Other Variations

CITE-Seq³

- Prior to sorting cells can be 'labelled' with antibody-oligo complexes
- Oligos allow additional recognition of surface proteins
- On cell lysis these oligos are amplified along with RNA

³Cellular Indexing of Transcriptomes and Epitopes by sequencing

Other Variations

SPLIT-Seq⁴

- Cells are split into pools and fixed
- One barcode/pool
- Multiple rounds of pooling and barcoding
- All amplification is in situ
- Able to be applied to single nuclei

Comparison of Methods

Protocol	C1 (SMART-Seq)	SMART-Seq2	Chromium	SPLIT-Seq
Platform	Microfluidics	Plate-based	Droplet	Plate-based
Transcript	Full-length	Full-length	3'-end	3'-end
Cells	$10^2 - 10^3$	$10^2 - 10^3$	$10^3 - 10^4$	$10^3 - 10^5$
Reads/Cell	106	10^{6}	$10^4 - 10^5$	10^{4}

Protocol Timeline

Data Analysis

Data Analysis

Spatial Transcriptomics

