Bounded and monotone convergence

Theorem (Bounded convergence – 33.11)

Suppose (f_n) are integrable on [a,b], $|f_n| \leq M$ for any n, $f_n \to f$ pointwise on [a,b], and f is integrable. Then $\lim_n \int_a^b f_n$ exists, and equals $\int_a^b f$.

Theorem (Monotone convergence – 33.12)

Suppose (f_n) are integrable on [a,b], $f_1 \leqslant f_2 \leqslant \ldots$, $f_n \to f$ pointwise on [a,b], and f is integrable. Then $\lim_n \int_a^b f_n$ exists, and equals $\int_a^b f$.

Proof of Monotone Convergence Theorem. For any n, $|f_n(x)| \leq M$, where $M = \max \big\{ \sup_{x \in [a,b]} |f_1(x)|, \sup_{x \in [a,b]} |f(x)| \big\}$. Apply Bounded Convergence Theorem.

Example. $\lim_n \int_0^1 \frac{dx}{1+nx^3} = 0$, since the sequence of functions

$$f_n(x)=rac{1}{1+nx^3}$$
 decreases to $f(x)=\left\{egin{array}{ll} 1 & x=0 \\ 0 & x\in(0,1] \end{array}
ight.$, and $\int_0^1 f=0$.

Fundamental Theorem of Calculus I

Convention. $\int_z^z g = 0$; if z > w, set $\int_z^w g = -\int_w^z g$. Why?

Recall additivity of integral: $\int_z^w g + \int_w^v g = \int_z^v g$.

(1)
$$\int_z^z g = \int_z^z g + \int_z^z g$$
, hence $\int_z^z g = 0$.

Geometric interpretation: area under the graph of g.

(2) We require $\int_z^w g + \int_w^v g = \int_z^v g$. For v = z, obtain $\int_z^w g + \int_w^z g = 0$.

Theorem (34.1 – Fundamental Theorem of Calculus I)

Suppose $g:[a,b]\to\mathbb{R}$ is continuous, differentiable on (a,b), and g' is integrable on [a,b]. Then $\int_a^b g'=g(b)-g(a)$.

Example.
$$\int_a^b x^n dx = \frac{b^{n+1} - a^{n+1}}{n+1}$$
. Use $g(x) = \frac{x^{n+1}}{n+1}$.

Examples:
$$g'$$
 need not be integrable! Let $g(x) = \begin{cases} x^2 \sin \frac{1}{x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$.

Then $g'(x) = \begin{cases} 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$. g' is unbounded on [0,1], hence not integrable.

Proof of Fundamental Theorem of Calculus

Theorem (34.1 – Fundamental Theorem of Calculus I)

Suppose $g:[a,b]\to\mathbb{R}$ is continuous, differentiable on (a,b), and g' is integrable on [a,b]. Then $\int_a^b g'=g(b)-g(a)$.

Proof. Consider a partition
$$P = (a = t_0 < t_1 < ... < t_n = b)$$
. For $1 \le k \le n$, find $x_k \in (t_{k-1}, t_k)$ s.t. $g'(x_k) = \frac{g(t_k) - g(t_{k-1})}{t_k - t_{k-1}}$ (use Mean Value Theorem). Then $m(g', [t_{k-1}, t_k]) \le g'(x_k) \le M(g', [t_{k-1}, t_k])$, so $L(g', P) \le \sum_{k=1}^n g'(x_k)(t_k - t_{k-1}) = g(b) - g(a) \le U(g', P)$. $U(g') = \inf_P U(g', P) \ge g(b) - g(a)$, $L(g') = \sup_P L(g', P) \le g(b) - g(a)$. But $U(g') = L(g') = \int_a^b g'$, hence $\int_a^b g' = g(b) - g(a)$.

Integration by parts

Theorem (34.2 – Integration by parts)

If $u, v : [a, b] \to \mathbb{R}$ are continuous, differentiable on (a, b), and u', v' are integrable on [a, b], then $\int_a^b uv' + \int_a^b u'v = uv \Big|_a^b$.

Proof. Let g = uv, then g' = u'v + uv'. u'v and uv' are integrable (as products of integrable functions). Apply FTC.

Example 2, p. 293. Compute $\int_0^{\pi} x \cos x \, dx$.

Let
$$u(x) = x$$
, $v(x) = \sin x$. Then $u'(x) = 1$, $v'(x) = \cos x$.

$$\int_0^{\pi} x \cos x \, dx = \int_0^{\pi} uv' = uv \Big|_0^{\pi} - \int_0^{\pi} u'v = x \sin x \Big|_0^{\pi} - \int_0^{\pi} \sin x \, dx = 0 + \cos x \Big|_0^{\pi} = -2$$
.

Fundamental Theorem of Calculus II

Theorem (34.3 – Fundamental Theorem of Calculus II)

Suppose $f:[a,b] \to \mathbb{R}$ is integrable. For $x \in [a,b]$ define $F(x) = \int_a^x f$. If f is continuous at c, then F is differentiable at c, with F'(c) = f(c).

Remark. F is called the indefinite integral of f (with basepoint a). F is Lipschitz. Indeed, $\exists B \geqslant 0$ s.t. $|f| \leqslant B$. We claim that $|F(x) - F(y)| \leqslant B|x - y|$, for $x, y \in [a, b]$. By relabeling, can assume y < x. Then $F(x) - F(y) = \int_y^x f$. Write $-B \leqslant f \leqslant B$, and integrate.

Example.
$$G(x) = \int_2^{x^2} \sin(t^2) dt$$
. Find $G'(x)$.

Write $G(x) = F(x^2)$, where $F(y) = \int_2^y \sin(t^2) dt$. The function $\sin(t^2)$ is continuous for any t, hence $F'(y) = \sin(y^2)$. By Chain Rule, $G'(x) = 2xF'(x^2) = 2x\sin(x^4)$.

Fundamental Theorem of Calculus II is sharp

Theorem (34.3 – Fundamental Theorem of Calculus II)

Suppose $f:[a,b]\to\mathbb{R}$ is integrable. For $x\in[a,b]$ define $F(x)=\int_a^x f$. If f is continuous at c, then F is differentiable at c, with F'(c)=f(c).

- (1) If f is not continuous at c, then F'(c) need not exist. Let $f(x) = \operatorname{sgn}(x)^1$. Then $F(x) = \int_{-1}^x f = |x| 1$ (verify!). f is continuous everywhere except at 0. F is not differentiable at 0.
- (2) If f is not continuous at c, and F'(c) exists, then it may happen that $f(c) \neq F'(c)$.
- Define f(x) = 2 if x = 1, f(x) = 0 otherwise. Then $F(z) = \int_0^z f = 0$, for any z. $F'(z) = 0 \Rightarrow F'(1) = 0 \neq f(1)$.

 $^{^{1}}f(x) = 1$ if x > 0, f(x) = -1 if x < 0, f(x) = 0 if x = 0

Proof of Fundamental Theorem of Calculus II

FTC II. If f is continuous at c, then F is differentiable at c, with F'(c) = f(c).

Proof. Need to show: $f(c) = \lim_{x \to c} \frac{F(x) - F(c)}{x - c}$. Fix $\varepsilon > 0$. Need to find $\delta > 0$ s.t. $\left| \frac{F(x) - F(c)}{x - c} - f(c) \right| \le \varepsilon$ if $0 < |x - c| < \delta$.

$$F(x) - F(c) = \int_{c}^{x} f(t) dt. \text{ Write } (x - c)f(c) = \int_{c}^{x} f(c) dt, \text{ hence } \frac{F(x) - F(c)}{x - c} - f(c) = \frac{1}{x - c} \left(\int_{c}^{x} f(t) dt - \int_{c}^{x} f(c) dt \right) = \frac{1}{x - c} \int_{c}^{x} \left(f(t) - f(c) \right) dt.$$

Pick $\delta > 0$ s.t. $|f(t) - f(c)| \le \varepsilon$ whenever $|t - c| < \delta$. This δ works.

Indeed, if $x \in (c, c + \delta)$, then

$$-\varepsilon(x-c) = \int_c^x (-\varepsilon) dt \leqslant \int_c^x (f(t) - f(c)) dt \leqslant \int_c^x \varepsilon dt = \varepsilon(x-c), \text{ so }$$
$$\left| \frac{F(x) - F(c)}{x} - f(c) \right| \leqslant \varepsilon.$$

The case of $x \in (c - \delta, c)$ is handled similarly.

Change of variable for integrals

Theorem (34.4 – Change of variable)

Suppose J, I are open intervals, $u: J \to I$, u' is continuous, $f: I \to \mathbb{R}$ is continuous. Then, for $a, b \in J$, $\int_a^b f(u(x))u'(x) \, dx = \int_{u(a)}^{u(b)} f(t) \, dt$.

Mnemonic: t = u(x), dt = u'(x) dx.

Proof. Fix $c \in I$, let $F(v) = \int_{c}^{v} f$. Then F'(v) = f(v). Let $g = F \circ u$ - that is, $g(x) = \int_{c}^{u(x)} f$. By Chain Rule, g'(x) = F'(u(x))u'(x) = f(u(x))u'(x). $\int_{a}^{b} f(u(x))u'(x) dx = \int_{a}^{b} g'(x) dx = g(b) - g(a) = F(u(b)) - F(u(a)) = \int_{c}^{u(b)} f - \int_{c}^{u(a)} f = \int_{u(a)}^{u(b)} f$.

Example. Find $A = \int_1^4 \frac{\sin \sqrt{x}}{\sqrt{x}} dx$. Let $u(x) = \sqrt{x}$, then $u'(x) = \frac{1}{2\sqrt{x}}$, so $f(t) = 2 \sin t$. $A = \int_1^2 2 \sin t \, dt = 2(\cos 1 - \cos 2)$.