

Readings for today

• Vergassola, M., Villermaux, E., & Shraiman, B. I. (2007). 'Infotaxis' as a strategy for searching without gradients. Nature, 445(7126), 406-409.

Topics

- Infotaxis by entropy reduction
- Curiosity-driven search

Infotaxis by entropy reduction

Recall the problem of the plume

Search for information

Infotaxis

A search strategy that organisms or algorithms use to find a source of interest by optimizing the acquisition of information from the environment, often in situations where the source is intermittently detectable or has a sparse distribution.

A balance between exploring areas of uncertainty and exploiting areas where the source has been previously detected.

Infotaxis algorithm

Shannon entropy

detection probability

$$H(s) = -\sum_{\mathbf{x}} p(\mathbf{x}) \log_2 p(\mathbf{x})$$
belief state $s = [\mathbf{x}^a, p(\mathbf{x})]$

Expected entropy

upon taking action a in belief state s

$$H(s \mid a) = \sum_{s'} P(s' \mid s, a) H(s')$$
successor state

Information gain

with action a in belief state s

$$G(s, a) = H(s) - H(s \mid a)$$

 $\begin{tabular}{ll} \begin{tabular}{l} \begin{ta$

Infotaxis policy

Select the action a that maximizes the expected information gain in belief s

$$\pi^{info}(s) = \underset{a}{\operatorname{arg min}} \sum_{s'} P\left(s' \mid s, a\right) H(s'),$$

Maximizing information gain

Information gain is entropy reduction

Note: In Vergassola et al. 2007, S is used as the symbol for entropy. Here we use the traditional H

Infotaxis policy in more detail

Infotaxis policy

$$\pi^{info}(s) = \underset{a}{\arg\min} \sum_{s'} \Pr(s' \mid s, a) H(s')$$

$$= \underset{a}{\arg\max} G(s, a)$$

$$= \underset{a}{\arg\min} H(s \mid a)$$

At each time step, the searcher chooses the direction that **locally maximizes the expected rate of information acquisition**. Entropy decreases faster closer to the source because cues arrive at a faster rate.

Optimal source-tracking policy

$$\pi^*(s) = \underset{\pi}{\arg\min} \mathbb{E}_{p_0,\pi}[T] \longrightarrow T = \text{search duration}$$

$$= \underset{a}{\arg\min} \sum_{s'} \Pr\left(s' \mid s, a\right) \left[1 + v^*(s')\right]$$
Optimal value

Optimal Infotaxis policy

$$\pi^*(s) = 1 + \arg\min_{a} \sum_{s'} \Pr(s' \mid s, a) v^*(s')$$

Efficiency of infotaxis

Without wind

Scent detection (hit)

With wind

Infotaxis allows for a fast and efficient search in high entropy environments by tracking the information obtained from sparse signal detection events.

Robustness of infotaxis

Infotaxis allows is effective even in dynamic environments where the spatial distribution of signal varies with time.

Curiosity-driven search

Information seeking valentino (Info)

Information seeking valentino (Info)

Information Memory ${\cal E}$

1/n	1/n	1/n	1/n	1/n
1/n	1/n	1/n	1/n	1/n
1/n	1/n	1/n	1/n	1/n
1/n	1/n	1/n	1/n	1/n
1/n	1/n	1/n	1/n	1/n

- Give Info a spatial memory, E,of the information contained at each position of the grid
- Initialize E as a uniform distribution at first, giving each position equal amounts of information.
- Update the information at each point in the grid.

The "info" algorithm

Algorithm 4 Info

```
1: Set n_{max} number steps
 2: Set a information threshold
 3: Determine n_{pos} number of positions on the grid
 4: Initialize grid memory \forall i, jE(i,j) = 1/n_{pos}
 5: Set probability of tumble when \Delta o > 0 as \rho_+
 6: Set probability of tumble when \Delta o \leq 0 as \rho_{-}
 7: for step = 1, \ldots, n_{max} do
        Sample gradient: \Delta o = o_s - o_{s-1}
        Sample state: \eta_t \sim U(0,1)
10:
        if \Delta o > 0 then
11:
            hit = 1
12:
13:
        {f else}
            hit = 0
14:
        end if
15:
16:
        Get old info state: p(i, j) = E(i, j)
17:
        Determine info gain: \Delta E = D_{KL}(p(i,j), hit)
18:
19:
        if (\Delta E > a \text{ and } \eta_s > \rho_+) or (\Delta E \leq a \text{ and } \eta_s > \rho_-) then
20:
            Select direction: \theta_s \sim U(1,4)
21:
22:
        {f else}
            Select direction: \theta_s = \theta_{s-1}
        end if
24:
        Change memory: E(i,j) = hit
        Move 1 step in \theta_s direction
28: end for
```


Take home message

- Infotaxis uses the information gained from sparsely occurring events as a policy to determine search.
- Infotaxis allow for fast and efficient search behaviors in dynamic, low-signal environments.

Lab 8: Infotaxis

URL: https://coaxlab.github.io/BIX-book/notebooks/lab7-infotaxis.html

