

CHI Learning & Development (CHILD) System

Project Title

Efficacy, Feasibility and Cost-effectiveness of Parent Coaching via Telerehabilitation for Autism in Early Childhood

Project Lead and Members

Project lead: : A/Prof Isaac Sia Efficacy, Feasibility and Cost-effectiveness of Parent

Coaching via Telerehabilitation for Autism in Early Childhood

Project members: A/Prof Chong Shang Chee, Dr Kang Ying Qi, Dr Aishworiya

Ramkumar, Evania Yeo, Lee Huijun, Philina Lai

Organisation(s) Involved

Khoo Teck Puat-National University Children's Medical Institute, National University
Health System

Healthcare Family Group(s) Involved in this Project

Medical, Allied Health

Applicable Specialty or Discipline

Pediatrics, Healthcare Administrator

Project Period

Start date: 1 January 2019

Completed date: 31 May 2023

Aims

- Is telerehabilitation as effective as standard care in improving short term outcomes for children with autism and their parents?
- How feasible and acceptable is telerehabilitation?
- Is telerehabilitation cost-effective relative to standard care?

CHI Learning & Development (CHILD) System

Background

- Global increase in autism prevalence, with 1 in 100 children in Singapore with autism autism.
- Robust and growing evidence base demonstrating effectiveness of Naturalistic
- Developmental Behavioural Interventions 2, 3, 4
- Telerehabilitation has increased access to intervention services in rural or geographically large settings settings5. Other benefits include remote guided practice of therapeutic strategies strategies6 and reduced costs
- Preliminary evidence that telerehabilitation is comparable with face face-to face intervention intervention7

Methods

See poster appended/below

Results

See poster appended/below

Conclusion

See poster appended/below

Project Category

Technology

Digital Health, Telehealth, Tele-rehabilitation, Tele-consultation

Care & Process Redesign

Productivity, Cost Saving, Manhour Saving, Value Based Care, Functional Outcome

Care Continuum

Quality of Life

CHI Learning & Development (CHILD) System

Keywords

Tele-rehabilitation, Proof of value, Functional outcome, Autism, Early Childhood

Name and Email of Project Contact Person(s)

Name: Philina Lai

Email: philina_lai@nuhs.edu.sg

VALUE-BASED HEALTHCARE **CONFERENCE 2024**

22-23 AUGUST 2024

Efficacy, Feasibility and Cost-effectiveness of Parent Coaching via Telerehabilitation for Autism in Early Childhood

Authors: Chong Shang Chee^{1,2} (Main), Isaac Sia¹, Kang Ying Qi^{1,2}, Aishworiya Ramkumar^{1,2}, Evania Yeo¹, Lee Huijun¹, Philina Lai¹ 1) Child Development Unit, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore 2) Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

AIMS

- Is telerehabilitation as effective as standard care in improving short term outcomes for children with autism and their parents?
- How feasible and acceptable is telerehabilitation?
- Is telerehabilitation cost-effective relative to standard care?

BACKGROUND

- Global increase in autism prevalence, with 1 in 100 children in Singapore with autism¹
- Robust and growing evidence base demonstrating effectiveness of Naturalistic Developmental Behavioural Interventions^{2, 3, 4}
- Telerehabilitation has increased access to intervention services in rural or geographically large settings⁵. Other benefits include remote guided practice of therapeutic strategies⁶ and reduced costs
- Preliminary evidence that telerehabilitation is comparable with face-to-face intervention⁷

METHODOLOGY

- A parallel-group, randomised, controlled, noninferiority trial was conducted from January 2019 to May 2023 (Published trial protocol)⁸
- Inclusion criteria: a) Children aged 15 48 months, b) Diagnosis of autism based on ADOS-2, c) At least one parent with access to the internet and is digitally literate
- Therapists coached parents on intervention strategies using an in-house therapy program based on the Foundational Skills Curriculum⁹

ADOS-2: Autism Diagnostic Observation Schedule-2 **Primary outcome measure:** MSEL: Mullen Scales of Early Learning **Secondary outcome measures:** VABS-III: Vineland Adaptive Behaviour Scales PSI: Parental Stress Index JERI: Joint Engagement Rating Inventory

NDBI-Fi: Implementation fidelity of NDBI strategies by caregiver FEIQoL: Families in Early Intervention Quality of Life

⁹Cumine, V., Dunlop, J., & Stevenson, G. (2009). Autism in the early years: A practical guide. Routledge.

All other outcome measures were designed in accordance to study needs.

KEY FINDINGS

200 children (Mean age = 28.41 months, SD = 8.15; 69% male) were randomised into telerehabilitation (n=102) and standard care (n=98). Quantitative data used for analysis included data from the standard (n=68) and telerehabilitation (n=50) arms.

MSEL: Improvement was observed in receptive language and overall Early Learning Composite (ELC). Telerehabilitation is non-inferior based on 3 of 4 MSEL subscales (visual reception, fine motor and receptive language). It is inconclusive if telerehabilitation is non-inferior to standard care based on ELC and Expressive Language scores.

	Standard			Telerehabilitation				
	Baseline (n=98)	Final (n=68)	р	Cohen' s d	Baseline (n=102)	Final (n=50)	р	Cohen's d
MSEL T-Score, Mean(SD)								
Visual Reception	31.2 (10.8)	35.1 (15.9)	0.438	0.29	31.4 (11.6)	34.2 (16.2)	0.082	0.20
Fine Motor	31.7 (11.6)	35.3 (16.0)	0.494	0.26	31.9 (11.9)	31.9 (16.1)	0.328	0.00
Receptive Language	26.4 (9.3)	32.9 (13.9)	<0.001	0.55	26.8 (9.7)	31.1 (12.6)	<0.001	0.38
Expressive Language	26.0 (9.4)	30.6 (10.4)	<0.001	0.46	26.5 (8.6)	27.8 (10.2)	0.237	0.14
Early Learning Composite (ELC)	62.5 (12.7)	70.7 (22.9)	0.009	0.44	61.6 (13.2)	67.2 (21.3)	0.012	0.32

VABS-III: Strong evidence that telerehabilitation is **comparable** to standard care based on overall Adaptive Behaviour Composite and all subdomains of VABS-III, including the socialization subdomain.

	Standard			Telerehabilitation			р		
	Baseline	Final	р	Cohen's	Baseline	Final	р	Cohen's	Difference
	(n=98)	(n=68)		d	(n=102)	(n=50)		d	i
VABS-III, Mean (SD)									
Adaptive Behaviour	69.1 (11.3)	78.5 (12.3)	<0.001	0.80	66.9 (10.8)	74.6 (12.3)	<0.001	0.67	0.948
Composite	09.1 (11.3)	70.3 (12.3)	\0.001	0.00	00.9 (10.0)	74.0 (12.3)	\0.001	0.07	0.946
Communication	61.6 (17.9)	77.5 (16.8)	<0.001	0.92	60.1 (18.6)	70.6 (18.3)	<0.001	0.57	0.728
Daily Living Skills	74.0 (15.4)	85.1 (14.7)	<0.001	0.74	70.6 (14.1)	82.9 (13.7)	<0.001	0.88	0.707
Socialisation	74.4 (12.5)	78.5 (12.4)	0.051	0.33	71.3 (11.0)	74.4 (12.3)	0.004	0.27	0.681

- JERI: Parents in both groups significantly and comparatively improved in joint engagement, an important precursor to language and social communication.
- FEIQoL: Increase in QoL across both arms, especially in access to information.
- *PSI*: No pre-post difference in parenting stress across both arms.
- NDBI-Fi: Parents in the telerehabilitation arm have reached or are close to reaching fidelity in carrying out the different NDBI strategies.

	Cost	Standard	Telerehab			
Therapy		\$752.00	\$602.80			
Transportation		\$296.90	\$34.90			
Productivity Loss	from Transportation Time	\$388.30	\$49.20			
Productivity Loss	from Therapy Time	\$419.00	\$265.30			
Total Program Co	st	\$1,856.20	\$952.20			
Interventionist Tir	ne	\$1,267.00	\$898.00			
Space Rental		\$61.00	\$26.00			
Total Healthcare	System Cost	\$1,328.00	\$924.00			
	Qualitative themes from	interview				
	Reduced cost, time and travel					
High acceptability	Eliminated challenges of commuting					
	Positive experience with therapist's guidance					
	Home environment: Familiar but unconducive					
Limited feasibility	Video conferencing: Constraints in therapist's guidance, difficulties in observing interaction, distracted by device					

- Overall cost reduction of 48.8% and 30.4% for telerehabilitation in total program and healthcare system costs respectively.
- Direct (i.e. therapy) and indirect (i.e. transportation and productivity loss) cost savings
- Manpower time and rental cost savings for healthcare provider
- Telerehabilitation was highly acceptable to parents with some limitations in feasibility
- Parent satisfaction survey: Majority of parents in telerehab agreed that the program helped their child's learning

CONCLUSION

- Telerehabilitation was largely comparable to standard care (face-to-face intervention) based on child, parent and parent-child outcomes
- This alternative platform for coaching parents of children with autism has cost savings and is acceptable to parents
- Future studies could explore designing a hybrid program to optimise the benefits of both face-to-face and telerehabilitation sessions for parent coaching

The study was funded under the Ministry of Health, Health Service Development Program (HSDP) Project No.: 18NU02

²Tiede, G., & Walton, K. M. (2019). Meta-analysis of naturalistic developmental behavioral interventions for young children with autism spectrum disorder. Autism. 23(8), 2080-2095.

³Sandbank, M., Bottema-Beutel, K., Crowley, S., Cassidy, M., Dunham, K., Feldman, J. I., ... & Woynaroski, T. G. (2020). Project AIM: Autism intervention meta-analysis for studies of young children. Psychological bulletin, 146(1), 1. ⁴Song, J., Reilly, M., & Reichow, B. (2024). Overview of Meta-Analyses on Naturalistic Developmental Behavioral Interventions for Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 1-13. ⁵Simacek, J., Elmquist, M., Dimian, A. F., & Reichle, J. (2021). Current trends in telehealth applications to deliver social communication interventions for young children with or at risk for autism spectrum disorder. Current Developmental Disorders

¹Zheng, R. M., Chan, S. P., Law, E. C., Chong, S. C., & Aishworiya, R. (2023). Validity and feasibility of using the Modified Checklist for Autism in Toddlers, Revised with Follow-Up (M-CHAT-R/F) in primary care clinics in Singapore. Autism, 0(0).

Reports, 8, 15-23. ⁶Sutherland, R., Trembath, D., & Roberts, J. (2018). Telehealth and autism: A systematic search and review of the literature. International journal of speech-language pathology, 20(3), 324-336. ⁷Pacia, C., Holloway, J., Gunning, C., & Lee, H. (2022). A systematic review of family-mediated social communication interventions for young children with autism. Review Journal of Autism and Developmental Disorders, 9(2), 208-234.

8Sim IKM, Kang YQ, Lai PL, Mahesh M, Chong SC. Parent coaching via telerehabilitation for young children with autism spectrum disorder (ASD): study protocol for a randomised controlled trial. Trials, 2023 Jul 19;24(1):462.

