Sistemas de equações lineares

- 2. Sistemas de equações lineares
 - 2.1 Definição
 - 2.2 Classificação de sistemas
 - 2.3 Sistemas triangulares
 - 2.4 Método de eliminação de Gauss
 - 2.5 Método de eliminação de Gauss-Jordan
 - 2.6 Sistemas indeterminados (exemplos)
 - 2.7 Existência e unicidade de solução de uma sistema
 - 2.8 Sistemas possíveis e determinados e inversa da matriz dos coeficientes
 - 2.9 Cálculo da inversa de uma matriz (revisitado)

Pretende-se estudar métodos sistemáticos para a resolução de sistemas de equações lineares. Grande parte dos problemas matemáticos encontrados em aplicações científicas e industriais envolvem a resolução de um sistema de equações lineares em alguma etapa.

Definição

Sejam a_1, a_2, \ldots, a_n, b números reais, não todos nulos. Uma equação do tipo

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

é chamada uma equação linear em n incógnitas.

Para $m, n \in \mathbb{N}$, chamamos sistema de m equações lineares em n incógnitas x_1, x_2, \ldots, x_n a um conjunto de m equações lineares que se representa por

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$

onde a_{ij} e b_i são números reais.

Exemplos (sistemas de equações lineares)

a) Sistema de 2 equações em 2 incógnitas (sistema 2×2)

$$\begin{cases} x_1 + 2x_2 = 5 \\ 2x_1 + 3x_2 = 8 \end{cases}$$

b) Sistema de 3 equações em 2 incógnitas (sistema 3×2)

$$\begin{cases} x_1 + x_2 = 2 \\ x_1 - x_2 = 1 \\ x_1 = 4 \end{cases}$$

c) Sistema de 2 equações em 3 incógnitas (sistema 2×3)

$$\begin{cases} x_1 - x_2 + x_3 = 2 \\ 2x_1 + x_2 - x_3 = 4 \end{cases}$$

d) Sistema de 3 equações em 3 incógnitas (sistema 3×3)

$$\begin{cases} x_1 & - & x_2 & + & x_3 & = & 1 \\ x_1 & + & 2x_2 & - & 2x_3 & = & 1 \\ 2x_1 & & & = & 2 \end{cases}$$

Notação matricial

Este sistema pode ser escrito na forma matricial

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

e em notação abreviada

$$Ax = b$$

onde

- ▶ $A = [a_{ij}]$ é a **matriz simples do sistema**, designando-se os elementos a_{ij} por **coeficientes do sistema** (a_{ij} é o coeficiente da incógnita x_j na i-ésima equação);
- $ightharpoonup x = [x_i]$ denota o vetor das incógnitas;
- $lackbox{b} = [b_i]$ denota o vetor dos termos independentes.

À matriz

$$\begin{bmatrix} A & : \mathbf{b} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

designamos matriz ampliada do sistema.

Chama-se **solução do sistema** a uma sequência $(\alpha_1, \alpha_2, \dots, \alpha_n)$ tal que a igualdade matricial

$$Aegin{bmatrix} lpha_1 \ lpha_2 \ dots \ lpha_n \end{bmatrix} = oldsymbol{b}$$

se verifica. Ou seja, quando a incógnita x_i toma o valor α_i , i = 1, ..., n, a igualdade Ax = b torna-se válida.

Exemplos (solução de um sistema)

a) O sistema

$$\begin{cases} x_1 + 2x_2 = 5 \\ 2x_1 + 3x_2 = 8 \end{cases}$$

tem representação matricial

$$\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$

e matriz ampliada

$$\begin{bmatrix} 1 & 2 & | & 5 \\ 2 & 3 & | & 8 \end{bmatrix}.$$

O par (1,2) é solução do sistema já que

$$\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}.$$

Esta solução é a única solução do sistema.

Exemplos (solução de um sistema)

b) O sistema

$$\begin{cases} x_1 + x_2 = 2 \\ x_1 - x_2 = 1 \\ x_1 = 4 \end{cases}$$

não tem soluções.

A partir da terceira equação, vemos que $x_1 = 4$. Substituindo $x_1 = 4$ na segunda equação, obtemos

$$4 - x_2 = 1$$
, ou seja, $x_2 = 3$.

Substituindo agora $x_1 = 4$ e $x_2 = 3$ na primeira equação, vem

$$4 + 3 = 2$$

que é uma proposição falsa.

Exemplos (solução de um sistema)

c) O sistema

$$\begin{cases} x_1 - x_2 + x_3 = 2 \\ 2x_1 + x_2 - x_3 = 4 \end{cases}$$

tem várias soluções, por exemplo, (2,0,0), (2,1,1) e (2,2,2).

Se α é um número real qualquer, é fácil verificar que a sequência $(2,\alpha,\alpha)$ é uma solução do sistema. De facto, usando a notação matricial, temos

$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ \alpha \\ \alpha \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \qquad \alpha \in \mathbb{R}.$$

Ou seja, o sistema tem uma infinidade de soluções.

Classificação de sistemas

Definição

Um sistema de equações lineares diz-se

- impossível se não existe nenhuma solução do sistema;
- possível se existe pelo menos uma solução do sistema;
- possível e determinado se existe uma única solução do sistema;
- possível e indeterminado se existem várias soluções do sistema.

Nota: Se os termos independentes forem todos nulos, isto é, se $b_i=0$, para $i=1,\ldots,m$, temos o sistema $Ax=\mathbf{0}$, que se diz **homogéneo**.

Um sistema homogéneo tem sempre solução, dita solução trivial, x = 0.

Sistemas 2×2

Vamos examinar, do ponto de vista geométrico, um sistema com duas equações lineares em 2 incógnitas, um sistema da forma

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2 \end{cases}.$$

Cada uma destas equações representa graficamente uma reta no plano. O par ordenado (α_1,α_2) é uma solução do sistema se e somente se corresponder a um ponto no plano que pertence a ambas as retas.

Por exemplo, considerem-se os três sistemas a seguir:

a)
$$\begin{cases} x_1 + x_2 = 2 \\ x_1 - x_2 = 2 \end{cases}$$
 b)
$$\begin{cases} x_1 + x_2 = 2 \\ x_1 + x_2 = 1 \end{cases}$$

$$c) \begin{cases} x_1 + x_2 = 2 \\ -x_1 - x_2 = -2 \end{cases}$$

Sistemas triangulares

Os algoritmos de resolução de sistemas triangulares são relativamente simples. Além disso, os que serão introduzidos mais tarde para resolver sistemas lineares, caso geral, pressupõem a capacidade de resolver sistemas triangulares.

Consideremos o seguinte sistema de n equações lineares em n incógnitas:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots \\ a_{nn}x_n = b_n \end{cases}$$

A matriz do sistema é a matriz triangular superior

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ & a_{22} & \cdots & a_{2n} \\ & & \ddots & \vdots \\ & & & a_{nn} \end{bmatrix}$$

e o sistema designa-se por um sistema triangular superior.

Sistemas triangulares superiores - método de resolução

Vamos supor que se tem $a_{ii} \neq 0$, i = 1, ..., n.

Método de substituição inversa

$$x_{n} = \frac{b_{n}}{x_{nn}}$$

$$x_{n-1} = (b_{n-1} - a_{n-1,n}x_{n})/a_{n-1,n-1}$$

$$x_{n-2} = (b_{n-2} - a_{n-2,n-1}x_{n-1} - a_{n-2,n}x_{n})/a_{n-2,n-2}$$

$$\vdots$$

$$x_{1} = (b_{1} - a_{12}x_{2} - \cdots a_{1n}x_{n})/a_{11}$$

Ou seja, da última equação, obtém-se x_n . Substituindo o valor calculado para x_n na penúltima equação, obtém-se x_{n-1} . Substituindo os valores calculados para x_n e x_{n-1} na antepenúltima equação, obtém-se x_{n-2} . E assim sucessivamente até se obter x_1 .

Sistemas triangulares inferiores - método de resolução

Quando a matriz do sistema é a matriz triangular inferior

$$\begin{bmatrix} a_{11} & & & \\ a_{21} & a_{22} & & \\ \vdots & \vdots & \ddots & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

o sistema designa-se por sistema triangular inferior.

O **método de substituição direta** é um método análogo ao de substituição inversa mas aplica-se ao caso de um sistema de equações cuja matriz dos coeficientes é triangular inferior com $a_{ii} \neq 0$, i = 1, ..., n. O processo de substituição é semelhante, obtendo-se primeiro o valor de x_1 e, sucessivamente, os valores de $x_2, x_3, ..., x_n$.

Exemplo (sistema triangular superior)

Considere o sistema

$$\begin{cases} 2x_1 + 2x_2 + x_3 + 4x_4 = 5 \\ -4x_2 + 1.5x_3 + x_4 = -0.5 \\ 0.25x_3 + 1.5x_4 = 1.25 \end{cases}$$

Por substituição inversa, calcula-se:

$$\begin{cases} x_4 = 2/2 = 1 \\ x_3 = (1.25 - 1.5x_4)/0.25 = (1.25 - 1.5 \times 1)/0.25 = -1 \\ x_2 = (-0.5 - x_4 - 1.5x_3)/(-4) = (-0.5 - 1 - 1.5 \times (-1))/(-4) = 0 \\ x_1 = (5 - 4x_4 - x_3 - 2x_2)/2 = (5 - 4 \times 1 - (-1) - 2 \times 0)/2 = 1 \end{cases}$$

Método de eliminação de Gauss

Iremos estudar um processo algorítmico que permite, de forma sistemática, determinar o conjunto das soluções de um sistema de equações lineares - método de eliminação de Gauss.

Este método é baseado numa "transformação" do sistema dado num sistema equivalente cuja matriz dos coeficientes é triangular superior. Este pode ser facilmente resolvido por substituição inversa.

Definição

Dois sistemas dizem-se **equivalentes** se admitem o mesmo conjunto de soluções.

O processo de eliminação define-se como uma sequência de *operações elementares* sobre as equações do sistema, operações que não alteram o conjunto de soluções.

Operações elementares

Proposição

Dado um sistema de equações lineares Ax = b, obtém-se um sistema equivalente ao dado realizando as seguinte operações:

- 1. troca de duas equações;
- 2. multiplicação de uma equação por um número não nulo e
- substituição de uma equação pela sua soma com outra equação multiplicada por um número.

As estas operações chamamos **operações elementares** sobre as equações do sistema.

Operações elementares na matriz ampliada

Na matriz ampliada do sistema, estas operações correspondem a efetuar uma

- 1. troca de duas linhas;
- multiplicação de todos os elementos de uma linha por um número não nulo e
- substituição de uma linha pela sua soma com outra linha multiplicada por um número.

A estas operações chamamos também **operações elementares** sobre as linhas da matriz ampliada.

Método de eliminação de Gauss (sistemas $n \times n$)

O método de eliminação de Gauss, para o caso de sistemas cuja matriz dos coeficientes é uma matriz quadrada, tem por base o teorema seguinte.

Teorema

Seja Ax = b um sistema possível e determinado de n equações em n incógnitas. Então, realizando uma sequência finita de operações elementares sobre as equações, é possível transformá-lo num sistema equivalente cuja matriz dos coeficientes é triangular superior.

Em cada passo, em paralelo com o processo de resolução do sistema, representa-se a matriz ampliada correspondente à operação elementar realizada sobre o sistema (ou operações elementares).

$$\begin{cases} 2x_2 + 4x_3 - 4x_4 = 2 \\ x_1 - 2x_2 + x_3 = -1 \\ 3x_1 - 2x_2 + 2x_3 + x_4 = 0 \\ x_1 + x_2 + 4x_3 = 1 \end{cases} = \begin{bmatrix} 0 & 2 & 4 & -4 & 2 \\ 1 & -2 & 1 & 0 & -1 \\ 3 & -2 & 2 & 1 & 0 \\ 1 & 1 & 4 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 & 4 & -4 & 2 \\ 1 & -2 & 1 & 0 & -1 \\ 3 & -2 & 2 & 1 & 0 \\ 1 & 1 & 4 & 0 & 1 \end{bmatrix}$$

$$eq_1 \longleftrightarrow eq_2$$

$$\begin{cases} x_1 & -2x_2 + x_3 & = -1 \\ & 2x_2 + 4x_3 - 4x_4 = 2 \\ 3x_1 - 2x_2 + 2x_3 + x_4 = 0 \\ x_1 + x_2 + 4x_3 & = 1 \end{cases} \begin{bmatrix} 1 & -2 & 1 & 0 & -1 \\ 0 & 2 & 4 & -4 & 2 \\ 3 & -2 & 2 & 1 & 0 \\ 1 & 1 & 4 & 0 & 1 \end{bmatrix}$$

$$l_1 \longleftrightarrow l_2$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 & -1 \\ 0 & 2 & 4 & -4 & 2 \\ 3 & -2 & 2 & 1 & 0 \\ 1 & 1 & 4 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} x_1 & -2x_2 + x_3 & = -1 \\ 2x_2 + 4x_3 - 4x_4 & = 2 \\ 3x_1 - 2x_2 + 2x_3 + x_4 & = 0 \\ x_1 + x_2 + 4x_3 & = 1 \end{cases} \begin{bmatrix} 1 & -2 & 1 & 0 & | & -1 \\ 0 & 2 & 4 & -4 & | & 2 \\ 3 & -2 & 2 & 1 & | & 0 \\ 1 & 1 & 4 & 0 & | & 1 \end{bmatrix}$$

$$eq_3 \leftarrow eq_3 - 3eq_1$$

$$eq_4 \leftarrow eq_4 - eq_1 \qquad \qquad l_3 \leftarrow l_3 - 3l_1$$

$$l_4 \leftarrow l_4 - l_1$$

$$\begin{cases} x_1 - 2x_2 + x_3 & = -1 \\ 2x_2 + 4x_3 - 4x_4 & = 2 \\ 4x_2 - x_3 + x_4 & = 3 \\ 3x_2 + 3x_3 & = 2 \end{cases} \begin{bmatrix} 1 & -2 & 1 & 0 & | & -1 \\ 0 & 2 & 4 & -4 & | & 2 \\ 0 & 4 & -1 & 1 & | & 3 \\ 0 & 3 & 3 & 0 & | & 2 \end{cases}$$

2^{o} passo:

$$\begin{cases} x_1 - 2x_2 + x_3 & = -1 \\ 2x_2 + 4x_3 - 4x_4 & = 2 \\ 4x_2 - x_3 + x_4 & = 3 \\ 3x_2 + 3x_3 & = 2 \end{cases} \begin{bmatrix} 1 - 2 & 1 & 0 & -1 \\ 0 & 2 & 4 & -4 & 2 \\ 0 & 4 & -1 & 1 & 3 \\ 0 & 3 & 3 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 & -1 \\ 0 & 2 & 4 & -4 & 2 \\ 0 & 4 & -1 & 1 & 3 \\ 0 & 3 & 3 & 0 & 2 \end{bmatrix}$$

$$eq_2 \longleftarrow eq_2/2$$

$$l_2 \longleftarrow l_2/2$$

$$\begin{cases} x_1 - 2x_2 + x_3 & = -1 \\ x_2 + 2x_3 - 2x_4 & = 1 \\ 4x_2 - x_3 + x_4 & = 3 \\ 3x_2 + 3x_3 & = 2 \end{cases} \begin{bmatrix} 1 - 2 & 1 & 0 & -1 \\ 0 & 1 & 2 - 2 & 1 \\ 0 & 4 - 1 & 1 & 3 \\ 0 & 3 & 3 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 & | & -1 \\ 0 & \boxed{1} & 2 & -2 & | & 1 \\ 0 & 4 & -1 & 1 & | & 3 \\ 0 & 3 & 3 & 0 & | & 2 \end{bmatrix}$$

$$\begin{cases} x_1 - 2x_2 + x_3 & = -1 \\ x_2 + 2x_3 - 2x_4 & = 1 \\ 4x_2 - x_3 + x_4 & = 3 \\ 3x_2 + 3x_3 & = 2 \end{cases} \qquad \begin{bmatrix} 1 - 2 & 1 & 0 & | & -1 \\ 0 & 1 & 2 & -2 & | & 1 \\ 0 & 4 & -1 & 1 & | & 3 \\ 0 & 3 & 3 & 0 & | & 2 \end{bmatrix}$$

$$eq_3 \leftarrow eq_3 - 4eq_2$$

$$eq_4 \leftarrow eq_4 - 3eq_2$$

$$eq_4 \leftarrow eq_4 - 3eq_2$$

$$\begin{cases} x_1 - 2x_2 + x_3 & = -1 \\ x_2 + 2x_3 - 2x_4 & = 1 \\ - 9x_3 + 9x_4 & = -1 \\ - 3x_3 + 6x_4 & = -1 \end{bmatrix} \qquad \begin{bmatrix} 1 - 2 & 1 & 0 & | & -1 \\ 0 & 1 & 2 & -2 & | & 1 \\ 0 & 0 & -9 & 9 & | & -1 \\ 0 & 0 & -3 & 6 & | & -1 \end{bmatrix}$$

$$\begin{cases} x_1 - 2x_2 + x_3 & = -1 \\ x_2 + 2x_3 - 2x_4 & = 1 \\ - 9x_3 + 9x_4 & = -1 \\ - 3x_3 + 6x_4 & = -1 \end{cases} \begin{bmatrix} 1 -2 & 1 & 0 & | & -1 \\ 0 & 1 & 2 & -2 & | & 1 \\ 0 & 0 & -9 & 9 & | & -1 \\ 0 & 0 & -3 & 6 & | & -1 \end{bmatrix}$$

$$eq_3 \leftarrow eq_3/(-9)$$

$$\begin{cases} x_1 - 2x_2 + x_3 & = -1 \\ x_2 + 2x_3 - 2x_4 & = 1 \\ + x_3 - x_4 & = 1/9 \\ - 3x_3 + 6x_4 & = -1 \end{cases} \begin{bmatrix} 1 -2 & 1 & 0 & | & -1 \\ 0 & 1 & 2 - 2 & | & 1 \\ 0 & 0 & 1 & -1 & | & 1/9 \\ 0 & 0 & -3 & 6 & | & -1 \end{bmatrix}$$

$$\begin{cases} x_1 - 2x_2 + x_3 & = -1 \\ x_2 + 2x_3 - 2x_4 & = 1 \\ + x_3 - x_4 & = 1/9 \\ - 3x_3 + 6x_4 & = -1 \end{cases} \begin{bmatrix} 1 - 2 & 1 & 0 & | -1 \\ 0 & 1 & 2 - 2 & | & 1 \\ 0 & 0 & 1 & -1 & | & 1/9 \\ 0 & 0 & -3 & 6 & | & -1 \end{bmatrix}$$

$$eq_4 \longleftarrow eq_4 + 3eq_3$$

$$\begin{cases} x_1 - 2x_2 + x_3 & = -1 \\ x_2 + 2x_3 - 2x_4 & = 1 \\ + x_3 - x_4 & = 1/9 \\ 3x_4 & = -2/3 \end{cases} \begin{bmatrix} 1 - 2 & 1 & 0 & -1 \\ 0 & 1 & 2 - 2 & 1 \\ 0 & 0 & 1 - 1 & 1/9 \\ 0 & 0 & 0 & 3 & -2/3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 & | & -1 \\ 0 & 1 & 2 & -2 & | & 1 \\ 0 & 0 & \boxed{1} & -1 & | & 1/9 \\ 0 & 0 & -3 & 6 & | & -1 \end{bmatrix}$$

$$l_4 \longleftarrow l_4 + 3l_3$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 & -1 \\ 0 & 1 & 2 & -2 & 1 \\ 0 & 0 & 1 & -1 & 1/9 \\ 0 & 0 & 0 & 3 & -2/3 \end{bmatrix}$$

$$\begin{cases} x_1 - 2x_2 + x_3 & = -1 \\ x_2 + 2x_3 - 2x_4 & = 1 \\ + x_3 - x_4 & = 1/9 \\ 3x_4 & = -2/3 \end{cases} \begin{bmatrix} 1 - 2 & 1 & 0 & -1 \\ 0 & 1 & 2 - 2 & 1 \\ 0 & 0 & 1 - 1 & 1/9 \\ 0 & 0 & 0 & 3 & -2/3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 & -1 \\ 0 & 1 & 2 & -2 & 1 \\ 0 & 0 & 1 & -1 & 1/9 \\ 0 & 0 & 0 & 3 & -2/3 \end{bmatrix}$$

$$eq_4 \leftarrow eq_4/3$$

$$l_4 \longleftarrow l_4/3$$

$$\begin{cases} x_1 - 2x_2 + x_3 & = -1 \\ x_2 + 2x_3 - 2x_4 & = 1 \\ + x_3 - x_4 & = 1/9 \\ x_4 & = -2/9 \end{cases} \begin{bmatrix} 1 - 2 & 1 & 0 & -1 \\ 0 & 1 & 2 - 2 & 1 \\ 0 & 0 & 1 & -1 & 1/9 \\ 0 & 0 & 0 & 1 & -2/9 \end{bmatrix}$$

Obtivemos um sistema equivalente ao inicial, em que a matriz simples é triangular superior e os elementos da diagonal são iguais a 1. Esta última condição não seria necessária mas no cálculo manual é vantajosa.

$$\begin{bmatrix} 1 & -2 & 1 & 0 & -1 \\ 0 & 1 & 2 & -2 & 1 \\ 0 & 0 & 1 & -1 & 1/9 \\ 0 & 0 & 0 & 1 & -2/9 \end{bmatrix}$$

Por substituição inversa, conclui-se que a solução do sistema é

$$\begin{cases} x_1 = -1 + 2x_2 - x_3 = -1 + \frac{14}{9} + \frac{1}{9} = \frac{6}{9} = \frac{2}{3} \\ x_2 = 1 - 2x_3 + 2x_4 = 1 + \frac{2}{9} - \frac{4}{9} = \frac{7}{9} \\ x_3 = \frac{1}{9} + x_4 = \frac{1}{9} - \frac{2}{9} = -\frac{1}{9} \\ x_4 = -\frac{2}{9} \end{cases}$$

Vamos agora exibir os passos da eliminação de Gauss apresentando apenas a matriz ampliada do sistema.

$$A = \begin{bmatrix} 0 & 2 & 4 & -4 & 2 \\ 1 & -2 & 1 & 0 & -1 \\ 3 & -2 & 2 & 1 & 0 \\ 1 & 1 & 4 & 0 & 1 \end{bmatrix} \xrightarrow{l_1} \underbrace{l_1 \longleftrightarrow l_2} \begin{bmatrix} 1 & -2 & 1 & 0 & -1 \\ 0 & 2 & 4 & -4 & 2 \\ 3 & -2 & 2 & 1 & 0 \\ 1 & 1 & 4 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{c}
\longleftarrow \\
l_3 \longleftarrow l_3 - 3l_1 \\
l_4 \longleftarrow l_4 - l_1
\end{array}
\begin{bmatrix}
1 & -2 & 1 & 0 & | & -1 \\
0 & 2 & 4 & -4 & | & 2 \\
0 & 4 & -1 & 1 & | & 3 \\
0 & 3 & 3 & 0 & 2
\end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 & | & -1 \\ 0 & \boxed{2} & 4 & -4 & | & 2 \\ 0 & 4 & -1 & 1 & | & 3 \\ 0 & 3 & 3 & 0 & | & 2 \end{bmatrix} \longleftrightarrow \underbrace{l_2 \longleftarrow l_2/2} \begin{bmatrix} 1 & -2 & 1 & 0 & | & -1 \\ 0 & \boxed{1} & 2 & -2 & | & 1 \\ 0 & 4 & -1 & 1 & | & 3 \\ 0 & 3 & 3 & 0 & | & 2 \end{bmatrix}$$

$$\begin{array}{c}
\longleftarrow \\
l_3 \longleftarrow l_3 - 4l_2 \\
l_4 \longleftarrow l_4 - 3l_2
\end{array}
\begin{bmatrix}
1 & -2 & 1 & 0 & | & -1 \\
0 & 1 & 2 & -2 & | & 1 \\
0 & 0 & -9 & 9 & | & -1 \\
0 & 0 & -3 & 6 & | & -1
\end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 & | & -1 \\ 0 & 1 & 2 & -2 & | & 1 \\ 0 & 0 & \boxed{-9} & 9 & | & -1 \\ 0 & 0 & -3 & 6 & | & -1 \end{bmatrix} \xrightarrow{l_3 \leftarrow l_3/(-9)} \begin{bmatrix} 1 & -2 & 1 & 0 & | & -1 \\ 0 & 1 & 2 & -2 & | & 1 \\ 0 & 0 & \boxed{1} & -1 & | & 1/9 \\ 0 & 0 & -3 & 6 & | & -1 \end{bmatrix}$$

$$\begin{array}{c} \longleftarrow \\ l_4 \longleftarrow l_4 + 3l_3 \end{array}
\begin{bmatrix}
1 & -2 & 1 & 0 & -1 \\
0 & 1 & 2 & -2 & 1 \\
0 & 0 & \boxed{1} & -1 & 1/9 \\
0 & 0 & 0 & 3 & -2/3
\end{bmatrix}$$

4º passo:

$$\begin{bmatrix} 1 & -2 & 1 & 0 & & -1 \\ 0 & 1 & 2 & -2 & & 1 \\ 0 & 0 & 1 & -1 & & 1/9 \\ 0 & 0 & 0 & 3 & & -2/3 \end{bmatrix} \xleftarrow{l_4 \longleftarrow l_4/3} \begin{bmatrix} 1 & -2 & 1 & 0 & & -1 \\ 0 & 1 & 2 & -2 & & 1 \\ 0 & 0 & 1 & -1 & & 1/9 \\ 0 & 0 & 0 & 1 & & -2/9 \end{bmatrix}$$

Por substituição inversa, conclui-se que a solução do sistema é

$$\begin{cases} x_1 = -1 + 2x_2 - x_3 = -1 + \frac{14}{9} + \frac{1}{9} = \frac{6}{9} = \frac{2}{3} \\ x_2 = 1 - 2x_3 + 2x_4 = 1 + \frac{2}{9} - \frac{4}{9} = \frac{7}{9} \\ x_3 = \frac{1}{9} + x_4 = \frac{1}{9} - \frac{2}{9} = -\frac{1}{9} \\ x_4 = -\frac{2}{9} \end{cases}$$

Algoritmo de eliminação de Gauss (sistemas $m \times n$)

Seja $\begin{bmatrix} A \mid b \end{bmatrix}$ a matriz ampliada de um sistema de equações lineares com m linhas e n colunas. O algoritmo de eliminação gaussiana é um algoritmo recursivo que se pode descrever da forma como o fazemos a seguir.

- 1. Se a matriz é a matriz nula, o processo está concluído;
- 2. caso contrário, fazer sucessivamente, [Passos de eliminação]
 - 2.1 procurar a primeira coluna, da esquerda para a direita, que tem elementos não nulos; seja essa coluna a coluna *j*;
 - 2.2 designando o primeiro elemento não nulo da coluna j por a, trocar a linha que contém a com a primeira linha;
 - 2.3 multiplicar a primeira linha por $\frac{1}{a}$; trata-se da **linha pivô** e o **elemento pivô** fica igual a 1;
 - 2.4 para cada linha i abaixo da primeira, multiplicar a primeira linha pelo simétrico do elemento que se encontra na posição (i,j) e somar à linha i; obtém-se o valor 0 na posição (i,j).
- Repetir os passos 1. e 2. com a matriz resultante de se eliminar a primeira linha à matriz obtida.

Método de eliminação de Gauss-Jordan

Exemplo

Da aplicação do método de eliminação de Gauss ao exemplo anterior obtivemos a matriz ampliada

$$\begin{bmatrix} 1 & -2 & 1 & 0 & -1 \\ 0 & 1 & 2 & -2 & 1 \\ 0 & 0 & 1 & -1 & 1/9 \\ 0 & 0 & 0 & 1 & -2/9 \end{bmatrix}.$$

Após a eliminação de Gauss, obtida esta matriz ampliada, em que a matriz dos coeficientes é triangular superior, com o método de Gauss-Jordan continuamos a aplicar operações elementares sobre a matriz ampliada, agora de baixo para cima, de forma a obter a matriz identidade como matriz dos coeficientes e, assim, a solução do sistema na última coluna da matriz ampliada.

$$\begin{bmatrix} 1 & -2 & 1 & 0 & & -1 \\ 0 & 1 & 2 & -2 & & 1 \\ 0 & 0 & 1 & -1 & & 1/9 \\ 0 & 0 & 0 & 1 & & -2/9 \end{bmatrix} \xrightarrow{l_3 \longleftarrow l_3 + l_4} \begin{bmatrix} 1 & -2 & 1 & 0 & & -1 \\ 0 & 1 & 2 & 0 & & 5/9 \\ 0 & 0 & 1 & 0 & & -1/9 \\ 0 & 0 & 0 & 1 & & -2/9 \end{bmatrix}$$

Solução do sistema inicial:

$$(x_1, x_2, x_3, x_4) = (2/3, 7/9, -1/9, -2/9).$$

Exercícios

Use o método de eliminação de Gauss para resolver os sistema de equações lineares seguintes.

a)

$$\begin{cases} - & x_2 - x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 6 \\ 2x_1 + 4x_2 + x_3 - 2x_4 = -1 \\ 3x_1 + x_2 - 2x_3 + 2x_4 = 3 \end{cases}$$

Solução única: (2, -1, 3, 2)

b)

$$\begin{cases} 2x_1 + 2x_2 + 2x_3 + 4x_4 = 6 \\ x_1 - 3x_2 + 2x_3 + 3x_4 = 2 \\ -x_1 + x_2 - x_3 - x_4 = -1 \\ x_1 - x_2 + x_3 + 2x_4 = 2 \end{cases}$$

Solução única: (1/2, 1/2, 0, 1)

Realize as operações elementares apenas sobre as linhas da matriz ampliada do sistema.

Sistemas indeterminados (exemplos)

Apresentamos dois exemplos de aplicação do método de eliminação de Gauss ao cálculo da solução de dois sistemas indeterminados.

1. Considere o sistema

$$\begin{cases} x_1 - 2x_2 + 3x_3 = 1 \\ 2x_1 + 6x_3 = 6 \\ -x_1 + 3x_2 - 3x_3 = 0 \end{cases}$$

Usemos o método de eliminação de Gauss para obter a solução do sistema.

$$\begin{bmatrix}
1 & -2 & 3 & | & 1 \\
2 & 0 & 6 & | & 6 \\
-1 & 3 & -3 & | & 0
\end{bmatrix}
\xrightarrow{l_2 \leftarrow l_2 - 2l_1}
\begin{bmatrix}
1 & -2 & 3 & | & 1 \\
0 & 4 & 0 & | & 4 \\
0 & 1 & 0 & | & 1
\end{bmatrix}$$

$$\begin{bmatrix} \boxed{1} & -2 & 3 & 1 \\ 2 & 0 & 6 & 6 \\ -1 & 3 & -3 & 0 \end{bmatrix} \quad \xrightarrow[l_2 \leftarrow l_2 - 2l_1]{} \quad \begin{bmatrix} 1 & -2 & 3 & 1 \\ 0 & 4 & 0 & 4 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow[l_2 \longleftarrow \frac{1}{4}l_2]{\begin{array}{c} 1 & -2 & 3 & 1 \\ 0 & \boxed{1} & 0 & 1 \\ 0 & 1 & 0 & 1 \end{array}} \xrightarrow[l_3 \longleftarrow l_3 - l_2]{\begin{array}{c} 1 & -2 & 3 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}}$$

Temos, então, o sistema triangular equivalente ao sistema inicial:

$$\begin{cases} x_1 & - & 2x_2 & + & 3x_3 & = & 1 \\ & & x_2 & & = & 1 \end{cases}.$$

Donde

$$\begin{cases} x_1 = 1 + 2x_2 - 3x_3 \\ x_2 = 1 \end{cases},$$

ou seja,

$$\begin{cases} x_1 = 3 - 3x_3 \\ x_2 = 1 \end{cases}.$$

O valor de x_3 , sendo abitrário, representemo-lo por α . A solução neste caso pode ser escrita na forma

$$\begin{cases} x_1 = 3 - 3\alpha \\ x_2 = 1 \\ x_3 = \alpha \end{cases}, \quad \alpha \in \mathbb{R},$$

ou

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$

e designa-se por **solução geral** do sistema. Podemos também escrever o conjunto de soluções do sistema na forma:

$$\{(3-3\alpha,1,\alpha): \alpha \in \mathbb{R}\}.$$

Álgebra Linear - Sistemas de equações lineares

2. Considere o sistema homogéneo Ax = 0 em que

$$A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 1 & 1 & 1 & -1 \\ 2 & 2 & 2 & -1 \\ 1 & 0 & 2 & -1 \end{bmatrix}.$$

Um sistema homogéneo é sempre um sistema possível. A solução x = 0 é chamada a solução trivial.

Note-se também que um sistema homogéneo apenas pode ser equivalente a outro sistema homogéneo.

Com o objectivo de resolver o sistema, pode condensar-se apenas a matriz simples, pois a última coluna de cada uma das sucessivas matrizes ampliadas é constituida por zeros.

$$\begin{bmatrix}
1 & 2 & 0 & -1 \\
1 & 1 & 1 & -1 \\
2 & 2 & 2 & -1 \\
1 & 0 & 2 & -1
\end{bmatrix}
\xrightarrow{l_2 \longleftarrow l_2 - l_1}
\begin{bmatrix}
1 & 2 & 0 & -1 \\
0 & -1 & 1 & 0 \\
0 & -2 & 2 & 1 \\
0 & -2 & 2 & 0
\end{bmatrix}$$

O sistema triangular correspondente é

$$\begin{cases} x_1 + 2x_2 & -x_4 = 0 \\ x_2 - x_3 & = 0 \\ x_4 = 0 \\ 0 = 0 \end{cases}$$

Assim, as soluções do sistema satisfazem

$$\begin{cases} x_1 = -2\alpha \\ x_2 = \alpha \\ x_4 = 0 \\ x_3 = \alpha \end{cases}, \quad \alpha \in \mathbb{R},$$

OU

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \alpha \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$

Sistemas indeterminados (exercício)

Exercício

Aplique o método de eliminação de Gauss ao sistema

$$\begin{bmatrix} 1 & 3 & -1 & 2 & 1 \\ -1 & -3 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 7 \\ 1 & 3 & -1 & 1 & 0 \\ 3 & 9 & -2 & 2 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

e verifique que o conjunto de soluções é

$$\big\{(-3\alpha-7\beta,\alpha,1-8\beta,1-\beta,\beta):\ \alpha,\beta\in\mathbb{R}\big\}.$$

Sistemas com mais equações do que incógnitas (exercício)

Um sistema linear tem mais equações do que incógnitas se m > n. Em geral (mas nem sempre), tais sistemas são impossíveis.

Exercício

Use o método de eliminação de Gauss para verificar que o sistema

a)
$$\begin{cases} x_1 + x_2 = 1 \\ x_1 - x_2 = 3 & \textit{\'e impossível.} \\ -x_1 + 2x_2 = -2 \end{cases}$$

b)
$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 2x_1 - x_2 + x_3 = 2 \\ 4x_1 + 3x_2 + 3x_3 = 4 \\ 2x_1 - x_2 + 3x_3 = 5 \end{cases}$$

tem extamente uma solução (0.1, -0.3, 1.5).

Sistemas com mais equações do que incógnitas (exercício)

c)
$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 2x_1 - x_2 + x_3 = 2 \\ 4x_1 + 3x_2 + 3x_3 = 4 \\ 3x_1 + x_2 + 2x_3 = 3 \end{cases}$$

é possível e indeterminado com solução geral $(1-0.6\alpha,-0.2\alpha,\alpha),\ \alpha\in\mathbb{R}.$

Sistemas com menos equações do que incógnitas (exercício)

Um sistema linear tem menos equações do que incógnitas se m < n. Em geral tais sistemas são possíveis e indeterminados, embora possam ser impossíveis.

Nunca podemos ter uma sistema possível e determinado, isto é, um sistema com uma solução única.

Exercício

Verifique, usando o método de eliminação de Gauss, que o sistema

a)
$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 2x_1 + 4x_2 + 2x_3 = 3 \end{cases}$$
 é impossível.

b)
$$\begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 = 2 \\ x_1 + x_2 + x_3 + 2x_4 + 2x_5 = 3 \\ x_1 + x_2 + x_3 + 2x_4 + 3x_5 = 2 \end{cases}$$

é possível e indeterminado com solução geral $(1 - \alpha - \beta, \alpha, \beta, 2, -1), \alpha, \beta \in \mathbb{R}$.

Característica de uma matriz

Definição

Diz-se que uma matriz está em escada quando de linha para linha aumenta o número de elementos nulos à esquerda do primeiro elemento não nulo (chamado pivô da linha) até que, eventualmente, sobrem apenas linhas nulas.

Observação

O algoritmo de eliminação de Gauss aplicado a uma matriz qualquer A com m linhas e n colunas produz sempre uma matriz em escada.

Definição

Dada uma matriz A com m linhas e n colunas, dá-se o nome de característica de A, e denota-se por $\operatorname{car}(A)$, ao número de linhas não nulas da matriz em escada produzida pela aplicação do método de Gauss (igual para qualquer matriz em escada equivalente por linhas à matriz A).

Característica de uma matriz (exemplos)

1.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$
 é uma matriz em escada e $car(A) = 3$.

2.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} e D = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

são matrizes em escada e car(A)=2, car(B)=2, car(C)=1, e car(D)=1.

3.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 0 & 1 & -2 \end{bmatrix}$$
 não é uma matriz em escada.

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 0 & 1 & -2 \end{bmatrix} \xrightarrow{l_2 \longleftrightarrow l_2 - l_1} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \\ 0 & 1 & -2 \end{bmatrix}$$

$$\xrightarrow{l_3 \longleftrightarrow l_3 + l_2} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathsf{Assim},\, \mathrm{car}(A) = 2, \\ \mathsf{\acute{A}lgebra}\,\mathsf{Linear}\,\text{-}\,\mathsf{Sistemas}\,\mathsf{de}\,\mathsf{equações}\,\mathsf{lineares}$$

Existência e unicidade de solução

As condições que apresentamos para classificar um sistema de equações lineares Ax = b quanto à existência e unicidade de solução fazem uso do conceito de característica de uma matriz.

Teorema

Seja Ax = b um sistema de equações lineares com m equações em n incógnitas. Então,

- o sistema Ax = b é possível se e só se car(A) = car(A|b)(o sistema Ax = b é impossível se e só se $car(A) \neq car(A|b)$);
- o sistema Ax = b é possível e determinado se e só se car(A) = car(A|b) = n;
- o sistema Ax = b é possível e indeterminado se e só se car(A) = car(A|b) < n.

Observação

Um sistema homogéneo $Ax = \mathbf{0}$ com m equações em n incógnitas (que é sempre possível) é determinado se e só se car(A) = n.

Exercício

Verifique que o sistema

(a)

$$\begin{cases} + & 2x_2 - x_3 & = 1 \\ x_1 + & x_2 & = 2 \\ -x_1 + & x_2 + x_3 + x_4 = 1 \\ & 2x_2 + x_3 + x_4 = 2 \end{cases}$$

é impossível.

(b)

$$\begin{cases} x_1 + 3x_2 + x_3 & = 1 \\ x_1 + x_2 & = 2 \\ 3x_1 + x_2 + x_3 + x_4 & = 1 \\ x_2 + 2x_3 + x_4 & = 2 \end{cases}$$

é possível e determinado sendo (-6, 8, -17, 28) a única solução.

(c)

$$\begin{cases} x_1 - 2x_2 + 3x_3 = 1 \\ 2x_1 + 6x_3 = 6 \\ -x_1 + 3x_2 - 3x_3 = 0 \end{cases}$$

é possível e indeterminado e o seu conjunto-solução é $\{(3-3\alpha,1,\alpha)\in\mathbb{R}^3:\alpha\in\mathbb{R}\}$

Exercício

Use o método de eliminação de Gauss para determinar os valores dos parâmetros reais α e β para os quais o sistema Ax = b,

$$\begin{cases} x + y + 3z = -2 \\ x + 2y + 4z = -3 \\ -x + 3y + \alpha z = \beta \end{cases},$$

não tem solução, tem uma única solução ou um número infinito de soluções. Resolva o sistema para

(i)
$$\alpha = 2 e \beta = -2$$
; (ii) $\alpha = 1 e \beta = -2$.

Resolução.

$$\begin{bmatrix} 1 & 1 & 3 & -2 \\ 1 & 2 & 4 & -3 \\ -1 & 3 & \alpha & \beta \end{bmatrix} \xrightarrow{l_2 \leftarrow l_2 - l_1} \begin{bmatrix} 1 & 1 & 3 & -2 \\ 0 & 1 & 1 & -1 \\ 0 & 4 & \alpha + 3 & \beta - 2 \end{bmatrix}$$

$$\xrightarrow{l_3 \leftarrow l_3 - 4l_2} \begin{bmatrix} 1 & 1 & 3 & -2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & \alpha - 1 & \beta + 2 \end{bmatrix}$$

► Se $\alpha = 1$ e $\beta = -2$, temos a matriz ampliada

$$\begin{bmatrix} 1 & 1 & 3 & | -2 \\ 0 & 1 & 1 & | -1 \\ 0 & 0 & 0 & | 0 \end{bmatrix}.$$

Neste caso o sistema é possível e indeterminado pois $\operatorname{car}(A|\boldsymbol{b}) = \operatorname{car}(A) = 2 < 3 = n$ (característica da matriz ampliada é igual à característica da matriz simples e menor do que o número de incógnitas).

► Se $\alpha = 1$ e $\beta \neq -2$, a matriz ampliada é a matriz

$$\begin{bmatrix} 1 & 1 & 3 & -2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & \beta+2 \end{bmatrix}$$

e o sistema correspondente é um sistema impossível, pois a última equação corresponde à condição $0 = \beta + 2$ que é impossível já que $\beta + 2 \neq 0$. De facto, neste caso temos $car(A|\mathbf{b}) = 3 \neq car(A) = 2$.

Se $\alpha \neq 1$, o sistema é possível e determinado qualquer que seja o valor de β pois acontece sempre $car(A|\mathbf{b}) = car(A) = 3 = n$.

(i) Para $\alpha = 2$ e $\beta = -2$ temos a matriz ampliada

$$\begin{bmatrix} 1 & 1 & 3 & | & -2 \\ 0 & 1 & 1 & | & -1 \\ 0 & 0 & 1 & | & 0 \end{bmatrix}$$

que corresponde ao sistema

$$\begin{cases} x + y + 3z = -2 \\ y + z = -1 \\ z = 0 \end{cases}$$

Por substituição inversa, obtém-se

$$z = 0$$
, $y = -1$, $x = -2 - 3 \times 0 - (-1) = -1$.

(ii) Para $\alpha=1$ e $\beta=-2$, como já observado, temos o sistema possível e indeterminado

$$\begin{cases} x + y + 3z = -2 \\ y + z = -1 \\ 0 = 0 \end{cases}$$

A variável z é uma variável livre e, por substituição inversa, obtém-se

$$y = -1 - z$$
, $x = -2 - 3z - (-1 - z) = -2z - 1$.

O conjunto de soluções é, então,

$$\{(-2\gamma-1,-1-\gamma,\gamma)\in\mathbb{R}^3\colon\gamma\in\mathbb{R}\}.$$

Sistemas possíveis e determinados

Proposição

O sistema Ax = b de n equações lineares em n incógnitas é possível e determinado se e só se A é invertível.

Vamos aplicar o método de Gauss-Jordan para a determinação da inversa de uma dada matriz invertível.

Se A é uma matriz de ordem n invertível a sua inversa A^{-1} verifica, por definição,

$$AA^{-1} = I_n$$
 e $A^{-1}A = I_n$,

onde I_n denota a matriz identidade de ordem n.

Assim, podemos escrever

$$\begin{array}{c}
Ax = \mathbf{b} & \Longleftrightarrow A^{-1}Ax = A^{-1}\mathbf{b} & \Longleftrightarrow I_n \mathbf{x} = A^{-1}\mathbf{b} \\
& \Longleftrightarrow \mathbf{x} = A^{-1}\mathbf{b}
\end{array}$$

Cálculo da inversa de uma matriz (de novo)

Verficar se A é invertível e, em caso afirmativo, calcular a sua inversa, resume-se a resolver a equação

$$AX = I_n$$
.

Esta equação é equivalente a resolver n sistemas de n equações lineares em n incógnitas.

Escrevamos X fraccionada por colunas:

$$X = \begin{bmatrix} x_1 | x_2 | \cdots | x_n \end{bmatrix}.$$

Fraccionando I_n também por colunas, tem-se

$$I_n = [e_1 | e_2 | \cdots | e_n].$$

Cálculo da inversa de uma matriz

Assim,

$$AX = I_n \iff A \begin{bmatrix} x_1 | x_2 | \cdots | x_n \end{bmatrix} = \begin{bmatrix} e_1 | e_2 | \cdots | e_n \end{bmatrix}$$

$$\iff \begin{bmatrix} Ax_1 | Ax_2 | \cdots | Ax_n \end{bmatrix} = \begin{bmatrix} e_1 | e_2 | \cdots | e_n \end{bmatrix}$$

$$\iff \begin{cases} Ax_1 = e_1 \\ Ax_2 = e_2 \\ \vdots \\ Ax_n = e_n \end{cases}$$

Cálculo da inversa de uma matriz

$$AX = I_n \iff \begin{cases} A \begin{bmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} & \text{Se } A \\ x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} & \text{são} \\ \text{nado} \\ \text{men} \\ \text{poss} \\ \vdots \\ A^{-1} \\ A \begin{bmatrix} x_{1n} \\ x_{2n} \\ \vdots \\ x_{nn} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Se A é invertível, então os n sistemas de equações lineares são todos possíveis e determinados. Caso contrário, pelo menos um dos sistemas é impossível.

$$A^{-1} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{bmatrix}$$

Cálculo da inversa de uma matriz

Dado que a matriz simples destes n sistemas é sempre a matriz A, pode pensar-se em resolver simultaneamente os n sistemas para não repetir as operações elementares sobre a matriz A.

Ou seja, podemos aplicar o método de eliminação à matriz

$$A \mid I_n$$
.

O processo de redução deve ser aplicado tendo como objectivo obter uma matriz com a forma

$$\left[I_n\mid X\right]=\left[I_n\mid A^{-1}\right]$$

usando o método de eliminação de Gauss-Jordan.

$$\left[A\mid I_{n}\right]\longrightarrow\cdots\longrightarrow\left[I_{n}\mid A^{-1}\right]$$

Exemplo (inversa de uma matriz)

Calculemos a inversa A^{-1} da matriz

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -1 & 0 & -1 & -1 \\ 1 & 0 & 0 & 1 \end{bmatrix}.$$

e usemos A^{-1} para resolver o sistema $Ax = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$. Temos

$$\begin{bmatrix} A : I_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & -1 & -1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{matrix} \longrightarrow \\ I_3 \longleftarrow I_3 + I_1 \\ I_4 \longleftarrow I_4 - I_1 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & -1 & 0 & 0 & 1 \end{bmatrix} \qquad \xrightarrow{l_3 \longleftrightarrow l_4}$$

Exemplo (inversa de uma matriz)

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{l_3 \leftarrow -l_3} \begin{matrix} l_4 \leftarrow -l_4 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 & 0 & -1 & 0 \end{bmatrix} \xrightarrow{l_3 \leftarrow l_3 + l_4} \begin{matrix} l_2 \leftarrow l_2 - l_4 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & -1 & 0 \end{bmatrix} \xrightarrow{l_1 \leftarrow l_1 - l_3}$$

Exemplo (inversa de uma matriz)

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 & -1 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} I_4 & A^{-1} \end{bmatrix}$$

Assim, A é invertível e a inversa é

$$A^{-1} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 \\ -1 & 0 & -1 & 0 \end{bmatrix}.$$

A solução do sistema $Ax = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ é dada por

$$\mathbf{x} = A^{-1} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 \\ -1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ -2 \\ -2 \end{bmatrix}.$$