

BANGALORE SAHODAYA SCHOOLS COMPLEX ASSOCIATION (BSSCA) PRE-BOARD EXAMINATION (2022-2023

Subject : MATHEMATIC	CS (Code No.041) -	SET 1				
Maximum Marks: 80		Time Allowed: 3 Hrs.				
General Instructions:						
 This Question Paper has 5 Sections A – E. Section A has 20 MCQs carrying 1 mark each Section B has 5 questions carrying 02 marks Section C has 6 questions carrying 03 marks Section D has 4 questions carrying 05 marks Section E has 3 case based integrated units of the values of 1, 1 and 2 marks each respectivel All Questions are compulsory. However, an marks and 2 Questions of 2 marks has been print the 2marks questions of Section E Draw neat figures wherever required. Take a 	s each. s each. s each. of assessment (04 mally. internal choice in 2 ovided. An internal c	Qs of 5 marks, 2 Qs of 3 choice has been provided				
Section	A					
(Section A consists of 20 que	stions of 1 mark eac	ch)				
1. Three numbers are in the ratio 3:4:5 and the	eir LCM is 1200. Th	en their HCF is				
(a) 40 (b) 60 (c) 20 (d) 120						
2. If a and b are the zeroes of a polynomial px	x^2 – 5x+q, then the val	ues of p and q, if				
a+b=ab=10, are						
(a) 5 and $\frac{1}{2}$ (b) 5 and 2	(c) $\frac{1}{2}$ and 5	(d) 10 and 1				
3. The pair of linear equation $x+2y=5$ and $3x+3$	-12y=10 has					
(a) unique solution (b) no solution (c) mo	re than two solutions	s (d) infinitely many				
solutions						
4. If the equation $x^2 - bx + 1 = 0$ does not possed	ess real roots, then _					
(a) $-3 < b < 3$ (b) $-2 < b < 2$	(c) $b > 2$	(d) $b < -2$				
5. In $\triangle ABC$ and $\triangle DEF$, $\angle B = \angle E$, $\angle F = \angle C$ and	dAB = 3DE. Then,	the two triangles are				
(a) congruent but not similar						
(b) similar but not congruent						
(c) neither congruent nor similar						
(d) congruent as well as similar						

6. For points $(2,3)$ and	(x,0), distance is 3. The	nen x is equal to	<u> </u>			
(a) 2	(b) 3	(c) -2	(d) -3			
7. If $\sin \theta = \frac{1}{2}$ and θ is	s an acute angle, then	$(3\cos\theta - 4\cos^3\theta)$ is	s equal to			
(a) 0	(b) $\frac{1}{2}$ (c) $1/6$ (d) -1					
8. If tangents PA and P	B from a point P to a c	circle with centre O as	re inclined to each other at			
angle of 80°, the ∠POA	is equal to					
(a) 50°	(b) 60°	(d) 80°				
9. The radius of a bicyc	ele wheel is 14cm. The	e distance covered by	the wheel after making			
50 complete rotations is						
(a) 88cm	(b) 2200 cm	(c) 440 cm	(d) 4400 cm			
10. If $\triangle ABC \sim \triangle EDF$	and ΔABC is not simil	lar to ΔDEF , then wh	nich of the following is not			
true?						
(a) $BC.EF = AC.FD$	(b) AB.EF=AC	DE (c) BC.DE	= AB.EF (d) BC.DE =			
AB.FD						
11. The midpoint of th	e line segment joinir	ng the points A (-2,	-5) and B (2,5) is			
(a) (0,0)	(b) (0,2)	(c) (2,0)	(d) (-2, 0)			
12. If 4 tan $\theta = 3$, then	$\frac{4\sin\theta - \cos\theta}{4\sin\theta - \cos\theta}$ is equal to					
(a) 2/3	(b) $1/3$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$					
13. If $\triangle PQR \sim \triangle XYZ$,	$\angle Q = 50^{\circ} \text{ and } \angle R = 70^{\circ}$	0° , then $\angle X + \angle Y$ is 6	equal to			
(a) 70°	(b) 110°	(c) 120°	(d) 50°			
14. The cumulative free	quency of a given class	s is obtained by addir	g the frequencies of all			
the classes	<u></u>					
(a) preceding it	(b) succeeding it	(c) Both (a) and (b)) (d) None of these			
15. If the probability of	an event is p, the prob	pability of its complete	mentary event will be			
(a) p-1	(b) p	(c) 1 – p	(d) $1 - 1/p$			
16. The mean of five no	umbers is 10. If each n	umber is decreased b	y 3, mean of the new			
number is						
(a) 13	(b) 10	(c) 7 (d) None of				
these.						

_(Pg.2)___

17. A cylindrical pencil sharpened at one edge is the combination of
(a) a cone and a cylinder (b) a hemisphere and a cylinder
(c) two cylinders (d) None of the above.
18. In a circle of radius 21cm, an arc subtends an angle of 60° at the centre. The length of
the arc is
(a) 11cm (b) 22cm (c) 27 cm (d) 44 cm
Directions: In the question nos. 19 & 20, a statement of assertion (A) is followed by a
statement of reason (R). Choose the correct choice.
19. Assertion (A): If the circumference of a circle is 176 cm, then its radius is 28 cm.
Reason (R) Circumference = $2\pi x$ radius
(a) Both Assertion (A) and reason (R) are true and reason (R) is the correct explanation of
assertion (A)
(b) Both Assertion (A) and reason (R) are true but reason (R) is not the correct explanation
of assertion (A)
(c) Assertion (A) is true but reason (R) is false
(d) Assertion (A) is false but reason (R) is true.
20. Assertion (A): The sum or difference of a rational number and an irrational number is
irrational.
Reason (R): Negative of an irrational number is rational
(a) Both Assertion (A) and reason (R) are true and reason (R) is the correct explanation of
assertion (A)
(b) Both Assertion (A) and reason (R) are true but reason (R) is not the correct explanation
of assertion (A)
(c) Assertion (A) is true but reason (R) is false
(d) Assertion (A) is false but reason (R) is true.
Section B
Section B consists of 5 questions of 2 marks each
21. For what value of p does the pair of linear equations given below have unique solution?
4x + py + 8 = 0 and 2x + 2y + 2 = 0 ?
22. From a point T outside a circle of centre O, tangents TP and TQ are drawn to the circle. Prove that OT is the right bisector of line segment PO.
Prove that OT is the right bisector of line segment PQ.
(Pg.3)

- 23. In a triangle PQR, ST || QR and $\frac{PS}{SQ} = \frac{3}{5}$ and PR = 28 cm, find PT.
- 24. If the perimeter of a protractor is 72 cm, calculate its area (Use $\pi = 22/7$)

(OR)

In the figure given below, OABC is a quadrant of a circle of radius 7cm. If OD = 4cm, find the area of the shaded region.

25. Express the trigonometric ratios sec A and tan A in terms of sin A.

(OR)

Prove that :
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$$

Section C

(Section C consists of 6 questions of 3 marks each)

- 26. Prove that $5 \sqrt{3}$ is irrational given that $\sqrt{3}$ is irrational.
- 27. If a and β are zeros of a polynomial $x^2 + 6x + 9$, then form a polynomial whose zeroes are -a and $-\beta$.
- **28.** A train travelling at a uniform speed for 360 km would have taken 48 minutes less to travel the same distance if its speed were 5 km/hour more. Find the original speed of the train. **(OR)**

Solve for x:
$$\frac{x+1}{x-1} + \frac{x-2}{x+2} = 4 - \frac{2x+3}{x-2}$$
; x \neq 1, -2, 2

- 29. The incircle of a \triangle ABC touches the sides AB, BC and CA at P, Q, R respectively. Show that AP + BQ + CR = PB + QC + RA = $\frac{1}{2}$ (Perimeter of \triangle ABC)
- 30. If tan(A+B) = 1 and $tan(A-B) = \frac{1}{\sqrt{3}}$, $0^{\circ} < A+B < 90^{\circ}$, A > B, then find the values of A and B. **(OR)**

If $7 \sin^2 A + 3 \cos^2 A = 4$, show that $\tan A = \frac{1}{\sqrt{3}}$

- 31. Two coins are tossed simultaneously. Find the probability of getting:
 - (a) two heads
- (b) atmost one head
- (c) no head

Section D

(Section D consists of 4 questions of 5 marks each)

32. A man sold a chair and a table together for Rs. 1520 thereby making a profit of 25% on chair and 10% on table. By selling them together for Rs. 1535, he would have made a profit of 10% on the chair and 25% on the table. Find the cost price of each.

(OR)

Places A and B are 80 km apart from each other on a highway. A car starts from A and another from B at the same time. If they move in the same direction, they meet in 8 hours and if they move in opposite directions, they meet in 1 hour 20 minutes. Find the speed of the two cars.

- 33. (i) Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio. (3 marks)
- (ii) ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the point O. Show that $\frac{AO}{BO} = \frac{CO}{DO}$ (2 marks)
- **34.** Water is flowing through a cylindrical pipe of internal diameter 2 cm, into a cylindrical tank of base radius 40 cm, at the rate of 0.4 m/s. Determine the rise in level of water in the tank in half an hour. **(OR)**

A solid wooden toy is in the form of a hemisphere surmounted by a cone of same radius. The radius of hemisphere is 3.5 cm and the total wood used in the making of toy is 166^{5} cm³.

Find the height of the toy. Also find the cost of pairing the hemisphere part of the toy at the rate of Rs. 10 per cm² (use $\pi = \frac{22}{7}$)

35. The median of the following data is 525. Find the values of x and y if the total frequency is 100.

Class	0-100	100-	200-	300-	400-	500-	600-	700-	800-	900-
Interval		200	300	400	500	600	700	800	900	1000
Frequency	2	5	X	12	17	20	У	9	7	4

Section E

(Case Study based questions, 3 compulsory questions of 4 marks each)

36. In the sport of cricket the Captain sets the field according to a plan. He instructs the players to take a position at a particular place. There are two reasons to set a cricket field- to take wickets and to stop runs being scored. The following graph shows the position of players during a cricket match.

(Pg.5	
	, <u> </u>

(i) If the distance between the points showing the players at Gully A (1,0) and wicketkeeper
at B $(4,p)$ is 5 m, then $p = (1 \text{ mark})$
(ii) The ratio in which (4,5) divides the line segment joining the points Extra Cover S (2,3)
and Fine leg (7,8) is (1 mark)
(iii) If the points $(4,3)$ and $(x,5)$ are on the circular field with centre $(2,4)$ then find the value
of x. (2 marks)
37. Clinometer is a tool used to measure the angle of elevation. We can use a clinometer to
measure the height of tall things, ie, flag poles, towers, buildings, tree etc.
Study some results after using clinometer:
R_1 : The angle of elevation of the top of a tower from a point on the ground, which is 30 m
away from the foot of the tower is 30°
R_2 : The elevation of the sun is 30°
Refer R_1 :
(i) The height of the tower is (1 mark)
(ii) In case, the angle of elevation is 60° , then the height of the tower is
(1 mark)
Refer R ₂ :
(iii) The length of the shadow cast by a tower of 150 m height is (2 marks)
38. Pranav wants to buy a car and plans to take a loan from the bank for his car. He repays

(Pg.6)_____

his total loan of Rs. 1,18,000 by paying every month staring with the first instalment of Rs.

1000. If he increases the instalment by Rs.100 every month, answer the following: (i) Find the amount paid by him in the 30th instalment. (ii) Find the total amount paid by him in 30

instalments. (iii) It total instalments are 40, then find the amount paid in the last instalment.