

IPRE100V01 and ICP100V02

About this document

Pressure calibration procedure for the Barometric Pressure Sensor assembled using MEMS die IPRE100V01 and the ASIC die ICP100V02.

Scope and purpose

This document covers the general description of the setup used for pressure calibration, the calibration flow and the registers map.

Intended audience

This document is for Pressure Sensor bare die customers

Table of contents

	About this document	1
	Table of contents	1
1	Introduction	3
2	Packaging of MEMS and ASIC	4
3	Pressure Measurement and Calibration Setup Diagram	
4	Pressure Calibration flow	6
4.1	Pressure Calibration flow diagram	
4.1.1	Pressure and Temperature settings	
4.1.2	BE_power_up	
4.1.3	Register access test	
4.1.4	BE_offset	
4.1.5	BE_gain	13
4.1.6	BE_defaultgainoffset	15
4.1.7	BE_ptrim	16
4.1.8	BE_fusechip_defaultval	18
4.1.9	BE_fuse	20
4.1.10	BE_sense	23
4.1.11	BE_coefficients_calculator	24
5	ASIC Registers Map	28
6	Register Description	36
6.1	Pressure Data (PRS_Bn)	36
6.1.1	PRS_B2	36
6.1.2	PRS_B1	36

Pressure Sensor Calibration Method

Table of contents

FIFO Status (FIFO_STS) Soft Reset and FIFO flush (RESET) Product and Revision ID (ID) Calibration Coefficients (COEF) Coefficient Source Appendix A. Digital Pressure Sensor (DPS) quick start Revision History	464748
FIFO Status (FIFO_STS) Soft Reset and FIFO flush (RESET) Product and Revision ID (ID) Calibration Coefficients (COEF) Coefficient Source	46 46 47
FIFO Status (FIFO_STS) Soft Reset and FIFO flush (RESET) Product and Revision ID (ID) Calibration Coefficients (COEF)	46 46
FIFO Status (FIFO_STS)	46
FIFO Status (FIFO_STS)	46
FIFO Status (FIFO_STS)	
• • • •	45
· · · · · · · · · · · · · · · · · · ·	
Interrupt Status (INT_STS)	44
Interrupt and FIFO configuration (CFG_REG)	43
Sensor Operating Mode and Status (MEAS_CFG)	42
Temperature Configuration(TMP_CFG)	41
Pressure Configuration (PRS_CFG)	39
TMP_B0	38
TMP_B1	38
TMP_B2	37
Temperature Data (TMP_Tn)	37
PRS_B0	37
	PRS_B0 Temperature Data (TMP_Tn) TMP_B2 TMP_B1 TMP_B0 Pressure Configuration (PRS_CFG) Temperature Configuration(TMP_CFG) Sensor Operating Mode and Status (MEAS_CFG)

Pressure Sensor Calibration Method

1 Introduction

1 Introduction

This application note is describing the pressure calibration procedure for the Barometric Pressure Sensor assembled using MEMS die IPRE100V01 and the ASIC die ICP100V02. It is supposed the MEMS die and the ASIC die are properly co-packaged to offer good electrical connectivity and mechanical stress decoupling. The pressure calibration method and the setup described in this document can be used as example and adjusted accordingly with the customer needs.

2 Packaging of MEMS and ASIC

2 Packaging of MEMS and ASIC

For best system performance we recommend to use a shielded package (metal or metal coat with connection to ground). The MEMS die should be decoupled from the mechanical stress caused by the package or PCB as good as possible. A soft glue with a Young's modulus of less than 0.5MPa is recommended. The bond line thickness below the MEMS should be higher than 50um. All materials in the package should have a glass transition temperature that is higher than the operating temperatures, in order to avoid persistent tensions.

Figure 1 MEMS and ASIC configuration

3 Pressure Measurement and Calibration Setup Diagram

3 Pressure Measurement and Calibration Setup Diagram

Figure 2 Pressure Measurement and Calibration Setup

4 Pressure Calibration flow

4 Pressure Calibration flow

The basic calibration sequence consist of:

- ADC buffer offset trimming which is setting the ADC output in its middle range for the middle pressure operation range (Poffset). The optimal offset value (XXXXX) will be recorded and finally it will be fused;
- ADC buffer gain trimming which is setting the max values of the ADC for minimum value of the pressure operation range. The optimal gain value (YYYY) will be recorded and finally it will be fused.
- Record ADC output value for differed pressures and different temperatures (BE_ptrim), calculate the coefficients (Poly31)
- The Fuse sequence is fusing the values into OTP's. the "0" value can be overwritten with "0" or "1"

The full sequence and also the detailed description of the Pressure, Temperature and electrical settings are described in the next chapter.

The Voltage values for VDD and VDDIO mentioned in this chapter are given as example and can have any value mentioned as operational voltage in the ICP100V02 datasheet. When fusing, the VDD value must be 4.1V like mentioned in the BE_fuse sub-chapter.

4 Pressure Calibration flow

4.1 Pressure Calibration flow diagram

Figure 3 Pressure Calibration flow diagram

4 Pressure Calibration flow

4.1.1 Pressure and Temperature settings

Pressure and Temperature settings example

used T and P							
T1=	25	degC					
T2=	60	degC					
P1=	400	hPa					
P2=	850	hPa					
P3=	950	hPa					
P4=	1050	hPa					
			for				
Poffset	P2	hPa	offset				
Pgain	P1	hPa	for gain				

4 Pressure Calibration flow

4.1.2 BE_power_up

This sequence describes the power up of the DUT, Pressure and Temperature settings, when doing Pressure calibration.

P controller: any (the user is free to choose the Pressure value)
T controller: any (the user is free to choose the Temperature value)

I2C frequency [100kHz]
Pattern length: 60.15ms
I2C address: 0x77

Connect at tester: VDD to chip supply

VDDIO to chip supply

GND to ground GND to ground SCL to I2C master SDA/SDI to I2C master

CSB open SDO open

Table 1 Power up sequence

Power	SW extra	Chip Control				
		description	R/W	Address	Data	
Power up						
control VDD=1.8V						
control VDDIO=1.8V						
		wait>	40ms			
	check if correct power up; if "0xC0" cannot be read, repeat for 40ms, if then not read the chip is defect		R	0x08	expect: 0xC0	
			re	ad chip ID		
		store Chip ID in	R	0x25	Chip ID<30:23>	
		database (use with data of	R	0x26	Chip ID<22:15>	
		etrim and P/T	R	0x27	Chip ID<14:7>	
		measurements)	R	0x28	Chip ID<6:9>	
		Read IDDmin, <1	ıA expected			

4 Pressure Calibration flow

4.1.3 Register access test

This sequence describes the registers involved in Pressure calibration read/write checking via I2C interface.

P controller: any Temperature: any

I2C frequency: 100.00 [kHz]
Pattern length: 1.1[ms]
I2C address = 0x77

connect at tester: VDD to chip supply

VDDIO to chip supply

GND to ground
GND to ground
SCL to I2C master
SDA/SDI to I2C master

CSB open SDO open

Table 2 BE_reg

Power	SW extra	Chip control				
		description	R/W	Address	Data	
control VDD=1.8V						
Control VDD=1.8V						
			che	ck register access	·	
		write signature 1	W	0x0E	0xA5	
		write signature 2	W	0x0F	0x96	
		this checks the	W	0x40 - 0x50	0xAA	
		chip access with	R	0x40 - 0x50	=0xAA?	
		120	W	0x40 - 0x50	0x55	
			R	0x40 - 0x50	=0x55?	
			W	0x40 - 0x50	0x00	
			R	0x40 - 0x50	=0x00?	

4 Pressure Calibration flow

4.1.4 BE_offset

This sequence describes the ADC buffer offset trimming procedure, Pressure&Temperature settings and R/W commands to be send via I2C interface.

P controller: Poffset Temperature: T1

I2C frequency: 100.00 [kHz] Pattern length: 115.54 [ms]

I2C address = 0x77

connect at tester: VDD to chip supply

VDDIO to chip supply

GND to ground GND to ground SCL to I2C master SDA/SDI to I2C master

CSB open SDO open

Table 3 BE_offset

Power	SW extra	Chip control				
		description	R/W	Address	Data	
control VDD=1.8V						
control VDDIO=1.8V						
		P resolution config	W	0x06	0x36	
		set P result shift for longer integration (average>2048), No FIFO No T shift	W	0x09	0x04	
		normal gain for P and high gain for T	W	0x62	0x02	
		default AMP gain and UI trim	W	0x64	0b01100UUU	
		Start cont P MM	W	0x08	0x05	
		default Bridge offset (XXXXX = 00000) or better starting value and binary search in loop A-B	W	0x65	0b000XXXXX	
		read P result (clear P-ready bit)	R	0x00-0x02		
	А		wa	it>105ms		

11

Pressure Sensor Calibration Method

4 Pressure Calibration flow

Table 3 BE_offset (continued)

Power	SW extra	Chip control					
	change bridge offset in loop A-B	poll if result available	R	0x08	expect: 0xD5 loop until timeout, if no '0xD5' can be read -> defect!		
until minimum P result found	minimum P result	read P result	R	0x00-0x02	store MSB/LSB/XLSB convert to 2s complement, search minimum		
	В	Bridge offset	W	0x65	0b000XXXXX		
		restore found Bridge offset	W	0x65	0b000XXXXX		
		Stop P MM	W	0x08	0x00		
		read P result, clear the P- ready bit	R	0x00-0x02			
			R	0x08	expect 0xC0		

4 Pressure Calibration flow

4.1.5 BE_gain

This sequence describes the procedure for ADC buffer amplification trimming including Pressure and Temperature settings.

T/P measurement P controller: Pgain Temperature: T1

I2C frequency 100 [kHz] Pattern length: 115.49 [ms]

I2C address = 0x77

connect at tester: VDD to chip supply

VDDIO to chip supply

GND to ground GND to ground SCL to I2C master SDA/SDI to I2C master

CSB open SDO open

Table 4 BE_gain

Power	SW extra	Chip control				
		description	R/W	Address	Data	
control VDD=1.8V						
control VDDIO=1.8V						
		P resolution config	W	0x06	0x36	
		set P result shift for longer integration (average>2048), No FIFO No T shift	W	0x09	0x04	
		normal gain for P and high gain for T	W	0x62	0x02	
		default AMP gain and UI trim (YYYY may start with 0000 or with a better start value and a binary search in loop A- B)		0x64	0bYYYY0111	

Pressure Sensor Calibration Method

4 Pressure Calibration flow

BE_gain (continued) Table 4

Power	SW extra	Chip control				
		reload found Bridge offset	W	0x65	0b000XXXXX	
		Start cont P MM	W	0x08	0x05	
		read P result (clear P-ready bit)	R	0x00-0x02		
	A	wait>105ms				
	change bridge gain in loop A-B until desired P result found (~700000)	poll if result available	R	0x08	expect: 0xD5 loop until timeout, if no '0xD5' can be read -> defect!	
		read P result	R	0x00 - 0x02	store MSB/LSB/ XLSB convert to 2s complement	
	В	vary AMP gain (YYYY), keep other bits constant	W	0x64	0bYYYY0111	
		reload found AMP gain	W	0x64	0bYYYY0111	
		Stop P MM	W	0x08	0x00	
		read P result, clear the P-ready bit	W	0x00 - 0x02		
			R	0x08	expect 0xC0	

14

V0.6

4 Pressure Calibration flow

4.1.6 BE_defaultgainoffset

This sequence is describing the settings for ADC buffer gain and offset found in the previous insertion (see "Insertion 1" from the Pressure calibration flow diagram).

P controler: any Temperature: T2

I2C frequency 100.00 [kHz] Pattern length 0.06 [ms]

I2C address = 0x77

connect at tester: VDD to chip supply

VDDIO to chip supply

GND to ground GND to ground CSB open SDO open

Table 5 BE_defaultgainoffset

Power	SW extra	Chip control	Chip control				
		description	R/W	Address	Data		
control VDD=1.8V							
control VDDIO=1.8V			default values				
		reload bridge offset	W	0x65	0b000XXXXX		
		reload found AMP gain	W	0x64	0bYYYY0111		

4 Pressure Calibration flow

4.1.7 BE_ptrim

This sequence is describing the Pressure trim procedure using four Pressure test points and two temperatures.

P controller P1/P2/P3/P4

Temperature T1/T2

I2C frequency 100.00 8kHz]
Pattern length: 2101.20 [ms]

I2C address = 0x77

connect at tester: VDD to chip supply

VDDIO to chip supply

GND to ground GND to ground

SCL to I2C master

SDA/SDI to I2C master

CSB open SDO open

Table 6 BE_ptrim

Power	SW extra	Chip control				
		description	R/W	Address	Data	
control Vdd=1.8V VDDIO=1.8V						
		write signature 1	W	0x0E	0xA5	
		write signature 2	W	0x0F	0x96	
		P resolution config	W	0x06	0x36	
		set P result shift for longer integration (average>2048), no FIFO No T shift	W	0x09	0x04	
		T resolution config	W	0x07	0xB0	
		normal gain for P and high gain for T	W	0x62	0x02	
		Start P/T MM	W	0x08	0x07	

Pressure Sensor Calibration Method

4 Pressure Calibration flow

Table 6 BE_ptrim (continued)

Power	SW extra	Chip control				
		read P and T (continuous access)	R	0x00 - 0x05	data: 24 bit 2's complement P data (from address 0x00-0x02) and 24 bit 2's complement T data (from address 0x03-0x06)	
	READ IDDmax, <400uA expected					
		Stop P/T MM	W	0x08	0x00	

17

4 Pressure Calibration flow

4.1.8 BE_fusechip_defaultval

This sequence is describing the chip ID fusing procedure.

I2C freq 100.00 [kHz]

Pattern length: 115.18 [ms]

I2C address = 0x77

connect at tester: VDD to chip supply

VDDIO to chip supply

GND to ground

GND to ground

SCL to I2C master

SDA/SDI to I2C master

CSB open

SDO open

Write the fields according below table (write also the '0'), use "Address when fusing"

The chip ID is fused in front-end and all allocated bits must be written 0 to preserve it

Table 7 EFUSE Map

Descript ion	Address when fusing	Address accesibl e in user space	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	0x40	0x10		'	1	'	0	1	-	
	0x41	0x11					0			
	0x42	0x12					0			
	0x43	0x13					0			
	0x44	0x14					0			
	0x45	0x15					0			
	0x46	0x16					0			
	0x47	0x17					0			
	0x48	0x18					0			
	0x49	0x19					0			
	0x4A	0x1A					0			
	0x4B	0x1B					0			
	0x4C	0x1C					0			
	0x4D	0x1D					0			
	0x4E	0x1E					0			
	0x4F	0x1F					0			
	0x50	0x20					0			
	0x51	0x21					0			

Pressure Sensor Calibration Method

4 Pressure Calibration flow

Table 7 EFUSE Map (continued)

Descript ion	Address when fusing	Address accesibl e in user space	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	0x52	0x22					0			
	0x53	0x23					0			
	0x54	0x24	0	0			chip	ID<37:32>		
	0x55	0x25				chip l	ID <31:24>			
	0x56	0x26				chip l	ID <23:16>			
	0x57	0x27				chip	ID <15:8>			
	0x58	0x28	0				chip ID <	5:0>		
	0x60	0x30	0				101101	.1		
	0x61	0x31	0	0	0			10110)	
	0x62	0x32	0	0	0	0	0	0	1	0
	0x63	0x33	0	1	1	0	0	1	1	0
	0x64	0x34	0	0	0	0	0	1	1	1
	0x65	0x35	0	0	0	0	0	0	0	0
	0x66	0x36	0	0	0	0	0	0	0	0
	0x67	0x37	0	0	0	0	0	0	0	0
	0x68	0x38	0	0	0	0	0	1	1	1
	0x69	0x39	0	0	0	0	0	0	0	0
	0x6F	0x3F	0	0	0	0	0	0	0	0

The chip ID coding is:

Lot ID week (6 bit): ID(37:32)

Lot ID running number (10 bit): ID(31:22)

Wafer number (5 bit): ID(21:17) Chip X coordinate (8 bit): ID(16:9) Chip Y coordinate (8 bit): ID(8 & 6:0)

4 Pressure Calibration flow

4.1.9 BE_fuse

This sequence describes the fusing procedure for calibration coefficients

I2C frequency 100.00 [kHz]

Pattern length: 115.66 [ms]

I2C address = 0x77

connect at tester VDD to chip supply

VDDIO to chip supply

GND to ground

GND to ground

SCL to I2C master

SDA/SDI to I2C master

CSB open

SDO open

Write the fields according below table (write also the '0'), use "Address when fusing"

Table 8 Blow efuse coefficients values

Power	SW extra			Chip control	
		description	R/W	Address	Data
control VDDIO=1.8V					
		write signature 1	W	0x0E	0xA5
		write signature 2	W	0x0F	0x96
		read the 8bit in register 0x31 and store to intermediate variable 'foundOSC'	R	0x31	0x??
		read the 8bit in register 0x33 and store to intermediate variable 'foundLDO'	R	0x33	0x??
		Write found trimming HW/SW values to Efuse shadow	W	0x40 to 0x6F	previous found trimming info write also 0 for not to be fused cells in specific address
control VDD=4.1V	wait for VDD settling 20ms				
		select internal 2kHz clock	W	0x70	0x20

4 Pressure Calibration flow

 Table 8
 Blow efuse coefficients values (continued)

Power	SW extra			Chip control	
		blow command	W	0x70	0x22
	The next two write operations to 0x61 and 0x63 should be performed at 3.2ms after the blow command. If this timing is not possible on the test system, it must be assured that the write command does not happen after 3.2ms, so a wait time shorter than 3.2ms is in this case also OK				
		write 'foundOSC' to register 0x61	W	0x61	'foundOSC'
		write 'foundLDO' to register 0x63	W	0x63	'foundLDO'
	wait until reg 0x70==0x20	poll if blow is ready - expect X==0	R	0x70	0x2X
control VDD=1.8V	wait for VDD settling 20ms				
		normal clocking again	W	0x70	0x00

Table 9 EFUSE Map

Descript ion	Address when fusing	Address accesibl e in user space	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
	0x40	0x10				C0	<11:4>				
	0x41	0x11		С	0<3:0>			C1	<11:8>		
	0x42	0x12				C1	<7:0>				
	0x43	0x13		C00 <19:12>							
	0x44	0x14		C00 <11:4>							

4 Pressure Calibration flow

Table 9 EFUSE Map (continued)

Descript on	Address when fusing	Address accesibl e in user space	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	0x45	0x15		C00)<3:0>			C10	0<19:16>	
	0x46	0x16				C10) <15:8>			
	0x47	0x17				C1	0 <7:0>			
	0x48	0x18				C01	<15:8>			
	0x49	0x19				C0.	1 <7:0>			
	0x4A	0x1A				C11	<15:8>			
	0x4B	0x1B				C1.	1 <7:0>			
	0x4C	0x1C				C20) <15:8>			
	0x4D	0x1D				C2	0 <7:0>			
	0x4E	0x1E				C21	<15:0>			
	0x4F	0x1F				C2.	1 <7:0>			
	0x50	0x20				C30) <15:8>			
	0x51	0x21				C3(0 <7:0>			
	0x52	0x22					0			
	0x53	0x23					0			
	0x54	0x24					0			
	0x55	0x25					0			
	0x56	0x26					0			
	0x57	0x27					0			
	0x58	0x28	1				0			
	0x60	0x30	0				0			
	0x61	0x31	0	0	0			0		
	0x62	0x32	0	0	0	0	0	0	0	0
	0x63	0x33	0	0	0	0	0	0	0	0
	0x64	0x34	Υ	Υ	Υ	Υ	0	0	0	0
	0x65	0x35	0	0	0	Х	Х	Х	Х	Х
	0x66	0x36	0	0	0	0	0	0	0	0
	0x67	0x37	0	0	0	0	0	0	0	0
	0x68	0x38	0	0	0	0	0	0	0	0
	0x69	0x39	0	0	0	0	0	0	0	0
	0x6F	0x3F	0	0	0	0	0	0	0	0

4 Pressure Calibration flow

4.1.10 BE_sense

This sequence is describing the fuse values checking procedure.

Pcontroller: any Temperature: any

I2C frequency: 100:00 [kHz] Pattern length: 1.52 [ms]

I2C address = 0x77

connect at tester: VDD to chip supply

VDDIO to chip supply

GND to ground
GND to ground
SCL to I2C master
SDA/SDI to I2C master

CSB open SDO open

Table 10 BE_sense

Power	SW extra			Chip control	
		descripti on	R/W	Address	Data
control VDD=1.8V control VDDIO=1.8V					
		write signature 1	W	0x0E	0xA5
		write W signature 2		0x0F	0x96
		reset	W	0x0C	0x00
		latch where efuse is sensed to	W	0x0C	0x03
		sense comman d	W	0x70	0x01

Pressure Sensor Calibration Method

4 Pressure Calibration flow

Table 10 BE_sense (continued)

Power	SW extra			Chip control	
		read the sensed values	R	0x10 - 0x3F	compare data to expected (== previously fused) values eg.: reg 0x10 == reg 0x40 reg 0x11 == reg 0x41 reg 0x3F == reg 0x6F
		reset latch where efuse is sensed to	W	0x0C	0x00
		reset latch where efuse is sensed to	W	0x0C	0x03
		sense comman d with test margin high	W	0x70	0x05
		read the sensed values	R	0x10-0x3F	compare data to expected (== previously fused) values eg.: reg 0x10 == reg 0x40 reg 0x11 == reg 0x41 reg 0x3F == reg 0x6F

4.1.11 BE_coefficients_calculator

4 Pressure Calibration flow

Calculation of Calibration Coefficient

Following the Ptrim procedure described in the previous sections, the user should end up to a number of matrices namely x, y, xt, yt of Pressure and Temperature raw data, as well as Reference Pressure and Temperature data. These matrices will be used for fitting the experimental data to a user defined calibration formula. An example-formula (poly31) is shown below. The fitting process in case of poly31 calibration formula involves 4 pressure and 2 temperature points.

Poly31
$$Pcal = c00 + Praw_{sc} * (c10 + Praw_{sc} * (c20 + Praw_{sc} * c30)) + Traw_{sc} * c01 + Traw_{sc} * Praw_{sc} * (c11 + Praw_{sc} * c21);$$

with $Praw_{sc} = \frac{Praw}{kP}$, $Traw_{sc} = \frac{Traw}{kT}$ the normalized raw data and \underline{kP} and \underline{kT} the corresponding normalization parameters given in the table below:

Oversampling Rate	Scale Factor (kP or kT)	
1 (single)	524288	
2 times (Low Power)	1572864	
4 times	3670016	
8 times	7864320	
16 times (Standard)	253952	
32 times	516096	
64 times (High Precision)	1040384	
128 times	2088960	

The matrices in such case have the following form:

$$x = \begin{bmatrix} P1(T1)/kP & T1(P1)/kT \\ P2(T1)/kP & T1(P2)/kT \\ P3(T1)/kP & T1(P3)/kT \\ P4(T1)/kP & T1(P4)/kT \\ P1(T2)/kP & T2(P1)/kT \\ P2(T2)/kP & T2(P2)/kT \\ P3(T2)/kP & T2(P3)/kT \end{bmatrix}, y = \begin{bmatrix} Pref1(Tref1) \\ Pref3(Tref1) \\ Pref1(Tref2) \\ Pref2(Tref2) \\ Pref3(Tref2) \\ Pref3(Tref2) \end{bmatrix}$$

where

 $P_i(T_j)$ corresponds to the pressure raw data measured at pressure Prefi and temperature Trefi,

 $T_i(P_i)$ corresponds to the Temperature raw data measured at Pressure Pi and temperature Tj,

4 Pressure Calibration flow

The user should keep as a remark that in general the size of the matrices might vary depending on the number of pressure and temperature test points used for the calibration process.

Finally, for the calculation of the cij coefficients, the test data have to be fitted to the formula. To obtain such coefficient estimates, the user can use the linear least squares method since the fitting polynomial is linear. In case of more customized calibration functions the user can instead use nonlinear least squares, linear or piecewise interpolation etc. depending on the complexity of the function. For simplicity we provide below an example of fitting code in Matlab where by default linear least squares method is used:

```
% Fitting
[fit_inv_m,gof_m] = fit(x,y,'poly31')
c00 = fit_inv_m.p00;
c10 = fit_inv_m.p10;
c20 = fit_inv_m.p20;
c30 = fit_inv_m.p30;
c01 = fit_inv_m.p01;
c11 = fit_inv_m.p11;
c21 = fit_inv_m.p21;
```

The "round" function rounds the coefficients to the nearest integer neighbor before these are being stored to the corresponding ASIC registers.

% Quantisation

```
c00q =round(fit_inv_m.p00);
c10q =round(fit_inv_m.p10);
c20q =round(fit_inv_m.p20);
c30q =round(fit_inv_m.p30);
c01q =round(fit_inv_m.p01);
c11q =round(fit_inv_m.p11);
c21q =round(fit_inv_m.p21);
```

For the temperature calibration, the same methodology can be used. In such case the xt.vt matrices have to fitted in the following equation:

```
Tcal = c0 * 0.5 + c1 * Traw_{sc}
```

The matrices xt, yt are provided below:

4 Pressure Calibration flow

```
xt = \begin{bmatrix} T1(P1)/kT \\ T1(P2)/kT \\ T1(P3)/kT \\ T1(P4)/kT \\ T2(P1)/kT \\ T2(P2)/kT \\ T2(P3)/kT \end{bmatrix}, y = \begin{bmatrix} Tref1(Pref1) \\ Tref1(Pref2) \\ Tref1(Pref3) \\ Tref2(Pref1) \\ Tref2(Pref1) \\ Tref2(Pref2) \\ Tref2(Pref3) \end{bmatrix}
```

For the calculation of the c0,c1 coefficients, the test data have to be fitted to the formula. To obtain such coefficient estimates, the user can use the linear least squares method since the fitting polynomial is also linear. For simplicity we provide below an example of fitting code in Matlab where by default linear least squares method is used:

```
% Fitting
[fit inv tm,gof tm] = fit(xt,yt,'poly1');
c1 = fit_inv_tm.p1;
c0 = fit_inv_tm.p2;
% Quantisation
c1q = round(fit_inv_tm.p1);
c0q = round(fit_inv_tm.p2*2^1);
```


5 ASIC Registers Map

5 ASIC Registers Map

Table 11 Registers Map

Descripti on	Add r	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Comme	
Pressure data	0x0 0	PRESSURI	E_DATA_OUT	Γ[23:16] (r)						
	0x0 1	PRESSUR	E_DATA_OUT	Γ[15:8] (r)							
	0x0 2	PRESSURE	E_DATA_OU1	Γ[7:9] (r)							
Temperat ure data	0x0 3	TEMPERA	TURE_DATA_	_OUT[23:1	.6] (r)						
	0x0 4	TEMPERA	TURE_DATA_OUT[15:8] (r)								
	0x0 TEMPERATURE_DATA_OUT[7:0] (r) 5										
PRESSUR E CONFIG	0x0 6	-	PRESSURE rate, pm_ra			Pressure m pm_res[3:0					
TEMP CONFIG	0x0 7	Temp Ext 0 - Internal 1 - External	Temperatu rate - tm_ra			Temperatu tm_res [3:0		rement r	esolution		
Measurem ent Control Reg	0x0 8	Init_com plete 1- Autosens e has complete d 0- Autosens e in progress (r)	Trim_com plete 1- Trimsense has complete d 0 - Trimsense in progress (r)	Temp Data Ready 1- new data availabl e (cleared when P result is read) (r)	(cleare		000- Idle 001 - Pre 010-Tem Measure defined 1 Continou Measure	/Stop Ba ssure Me perature ment 011 L00- Not us Pressu ment 110	L - Not defined 101-		

Table 11 Registers Map (continued)

Descripti on	Add r	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Comme nts
Config Register	0x0 9	INT_H_L Interrupt Active Level: 0- Active low 1- Active High (Interrup t can be output on SDO pin when in I2C mode or 3-wire SPI) (rw)	INT_SEL[2: 1Pressure enabled, 0. INT_SEL<1: Interrupt e interrupt IN 1FIFO full enabled, 0. interrupt (r	Interrupt .no P inte > 1Tempe nabled, 0. NT_SEL<22 Interrupt . no FIFO	rrupt erature . no T	T result shift enable 1shift result right in 24bit reg 0no shift (rw)	P result shift enable 1 shift result right in 24bit reg 0no shift (rw)	FIFO enable 1 enable FIFO mode (read result by cycling through addr 0x00-0x 03; 32x24bi t values stored) 0P/T result in separat e register s (rw)	SPI Mode 0 - 4wire interface 1- 3-wire interface (rw)	
Interrupt Status/ Source Register (Bits clared when register is read)	0x0 A	-	-	-	-	-	Int_FIFO _full 0 - No interrupt active 1- interrupt active (r)	t active	Int_Press 0 - No interrupt active 1 - interrupt active (r))	
FIFO status	0x0 B	-	-	-	-	-	-	FIFO full 132 valid data values in FIFO (r)	FIFO empty 1 No data in FIFO 0 Valid data in FIFO (r)	

Pressure Sensor Calibration Method

Table 11 Registers Map (continued)

Descripti on	Add r	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Comme
RESET	0x0 C	FIFO flush 1 Empty FIFO (read pointer to write pointer). Do a flush after read out of FIFO in order to delete old data (rw)	-	-	-	perform to reset 001 Used for Efuse pro triggered	the same s 1 - SW rese Lab debug ogramming l only, if a t	sequence a et of the Ef gging - and g (this "res	rom 0000	
Product ID - Revision # metal mask proramma ble	0x0 D	Rev_ID[7:4	4] (r)			Prod_ID[Reset value: 0x10he x		
Signature	0x0 E	"Hidden R	egister" Si	ignature N	/ISB <7:0>	(w)				
	0x0 F	"Hidden Register" Signature LSB <7:0> (w)								

Table 11 Registers Map (continued)

Descripti on	Add r	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Comme	
200 bit calibratio n data Every	0x4 0 0x1 0										
sensor module has individual coefficient	0x4 1 0x1 1	C0 <3:0> (rw) C1 <11:8> (rw)									
s. Before the first calculatio n of	0x4 2 0x1 2	C1<7:0> (rw)									
temperatu re and pressure, the master reads out the EFuse data. (only the	0x4 3 0x1 3	C00 <19:12> (rw)									
	0x4 4 0x1 4	C00 <11:4> (rw)									
right address is accesible in user	0x4 5 0x1 5	C00<3:0> (rw) C10<19:16> (rw)									
space)	0x4 6 0x1 6	C10 <15:8> (rw)									
	0x4 7 0x1 7	C10<7:0> (rw)									
	0x4 8 0x1 8	C01<15:8> (rw)									
	0x4 9 0x1 9										

Pressure Sensor Calibration Method

Table 11 Registers Map (continued)

Descripti on	Add r	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Comme nts				
continue 200 bit calibratio n map	0x4 A 0x1 A													
	0x4 B 0x1 B		C11<7:0> (rw)											
	0x4 C 0x1 C	C20<15:8> (rw)												
	0x4 D 0x1 D	C20<7:0> (rw)												
	0x4 E 0x1 E	C21<15:8> (rw)												
	0x4 F 0x1 F	C21<7:0> (rw)												
	0x5 0 0x2 0	C30<15:8> (rw)												
	0x5 1 0x2 1	C30<7:0> (rw)												

Pressure Sensor Calibration Method

Table 11 Registers Map (continued)

Descripti on	Add r	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Comme nts		
continue 200 bit calibratio n map	0x5 2 0x2 2		Calibration Register 18 <7:0> (rw)									
	0x5 3 0x2 3		Calibration Register 19 <7:0> (rw)									
	0x5 4 0x2 4			Calibr	ation Re	gister 20 <	7:0> (rw)					
	0x5 Running Chip ID number <30:23> (rw) 5 0x2 5											
	0x5 6 0x2 6	Running Chip ID number <22:15> (rw)										
	0x5 7 0x2 7	Running Cchip ID number <14:7> (rw)										
	0x5 8 0x2 8	Ox5 Temperat Running Chip ID number <6:0> (rw) (for identification of tester/lab samples only) Ox2 in coeff										
1280KHz Osc Trim register	0x6 0 0x3 0											
LP (8KHz) Osc Trim register	0x6 1 0x3 1											

Pressure Sensor Calibration Method

Table 11 Registers Map (continued)

Descripti on	Add r	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Comme nts
Analog Config	0x6 2 0x3 2								Analog Conf <0> hi_gain for P measure ment: 1 increases the ADC gain by a factor of 1.6 (= +4.08dB) (rw)	
LDO 1.5V Trim VCM08 Trim	0x6 3 0x3 3									
Amplifier adj	0x6 4 0x3 4	Gain 0 1	n[3:0] Code 525fF 0dB 1 2.08dB 3 107	1350fF 1.0	06dB 2					
MEMS Offset	0x6 5 0x3 5				MEM	S Offset [4:0 25f] Range: -1 F , 0->100f		75fF, step	
Datapath Configurat ion	0x6 6 0x3 6									
I2C address	0x6 7 0x3 7									
I2C PHY Configurat ion	0x6 8 0x3 8									
Spare	0x6 9 0x3 9									

Table 11 Registers Map (continued)

Table 11	Kegi	sters map	(continuea)							
Descripti on	Add r	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Comme nts
Efuse_Fus ed	0x6 F 0x3 F								Efuse_Fus ed 1 - fused, signature enabled 0 - not finally fused, no signature needed to access hidden address	
Efuse controls	0x7 0			2kIntClk 0- Internal 8kHz Clock selecte d 1- Internal 2kHz Clock selecte d (use the 2kHz clock, 8kHz is only fortest) (rw)	Sel 0 - Intern al 8kHz Clock select	-	TestMar gin 0 - TestMar gin off 1 - TestMar gin on (rw)	00 -Idle 10 - B	space ntrol <1:0> 01 - Sense low 11 - ined (rw)	EFuse Control

6 Register Description

6 Register Description

6.1 Pressure Data (PRS_Bn)

The Pressure Data registers contains the 24 bit (3 bytes) 2's complement pressure measurement value. If the FIFO is enabled, the register will contain the FIFO pressure and/or temperature results. Otherwise, the register contains the pressure measurement results and will not be cleared after read.

6.1.1 PRS B2

The highest byte of the three bytes measured pressure value.

PRS_B2				00 _H				
Pressure (MS	B data)		Re	eset value:		00 _H		
7	6	5	4	3	2	1	0	
PRS23	PRS22	PRS21	PRS20	PRS19	PRS18	PRS17	PRS16	
				r				

r

Field	Bits	Туре	Description
PRS[23:16]	7:0	r	MSB of 24 bit 2´s complement pressure data.

6.1.2 PRS_B1

The middle byte of the three bytes measured pressure value.

PRS_B1	RS_B1 Address:								
Pressure (LSE	3 data)				00 _H				
7	6	5	4	3	2	1	0		
PRS15	PRS14	PRS13	PRS12	PRS11	PRS10	PRS9	PRS8-		

r

Field	Bits	Туре	Description
PRS[15:8]	7:0	r	LSB of 24 bit 2´s complement pressure data.

6 Register Description

6.1.3 PRS_B0

The lowest byte of the three bytes measured pressure value.

PRS_B0				Address:			02 _H
Pressure (XLS	B data)		Reset value:				
7	6	5	4	3	2	1	0
PRS7	PRS6	PRS5	PRS4	PRS3	PRS2	PRS1	PRS0

Field	Bits	Туре	Description
PRS[7:0]	7:0	r	XLSB of 24 bit 2´s complement pressure data.

6.2 Temperature Data (TMP_Tn)

The Temperature Data registers contain the 24 bit (3 bytes) 2's complement temperature measurement value (unless the FIFO is enabled, please see FIFO operation) and will not be cleared after the read.

6.2.1 TMP_B2

The highest byte of the three bytes measured temperature value.

	•	•	•	r	•	•	•	
TMP23	TMP22	TMP21	TMP20	TMP19	TMP18	TMP17	TMP16	
7	6	5	4	3	2	1	0	
Temperature	(MSB data)		Re	Reset value:				
TMP_B2			Address:	Address:				

Field	Bits	Туре	Description
TMP[23:16]	7:0	r	MSB of 24 bit 2´s complement temperature data.

6 Register Description

6.2.2 TMP_B1

The middle byte of the three bytes measured temperature value.

TMP_B1				04 _H			
Temperature (LSB data) Reset value:							00 _H
7	6	5	4	3	2	1	0
TMP15	TMP14	TMP13	TMP12	TMP11	TMP10	ТМР9	TMP8
			1	r			

FieldBitsTypeDescriptionTMP[15:8]7:0rLSB of 24 bit 2´s complement temperature data.

6.2.3 TMP_B0

The lowest part of the three bytes measured temperature value.

TMP_B0				Address:			05 _H	
Temperature	(XLSB data)		Reset value:					
7	6	5	4	3	2	1	0	
TMP7	TMP6	TMP5	TMP4	TMP3	TMP2	TMP1	TMP0	
				r				

 Field
 Bits
 Type
 Description

 TMP[7:0]
 7:0
 r
 XLSB of 24 bit 2 's complement temperature data.

6 Register Description

6.3 Pressure Configuration (PRS_CFG)

Configuration of pressure measurement rate (PM_RATE) and resolution (PM_PRC).

PRS_CFG				Address:			06 _H
Pressure mea	sure measurement configuration			Reset value:			00 _H
7	6	5	4	3	2	1	0
-		PM_RATE[2:0]			PM_PI	RC[3:0]	
-		rw			r	w	

Field	Bits	Туре	Description
-	7	-	Reserved.
PM_RATE[2:0]	6:4	rw	Pressure measurement rate:
			000 - 1 measurements pr. sec.
			001 - 2 measurements pr. sec.
			010 - 4 measurements pr. sec.
			011 - 8 measurements pr. sec.
			100 - 16 measurements pr. sec.
			101 - 32 measurements pr. sec.
			110 - 64 measurements pr. sec.
			111 - 128 measurements pr. sec.
			Applicable for measurements in Background mode only
PM_PRC[3:0]	3:0	rw	Pressure oversampling rate:
			0000 - Single. (Low Precision)
			0001 - 2 times (Low Power).
			0010 - 4 times.
			0011 - 8 times.
			0100 *)- 16 times (Standard).
			0101 *) - 32 times.
			0110 *) - 64 times (High Precision).
			0111 *) - 128 times.
			1xxx - Reserved

^{*)} Note: Use in combination with a bit shift. See *Interrupt and FIFO configuration (CFG_REG)* register

6 Register Description

Table 12 Precision (Pa_{RMS}) and pressure measurement time (ms) versus oversampling rate

Oversampling (PRC[3:0])	Single (0000)	2 times (0001)	4 times (0010)	8 times (0011)	16 times (0100)	32 times (0101)	64 times (0110)	128 times (0111)
Measurement time (ms)	3.6	5.2	8.4	14.8	27.6	53.2	104.4	206.8
Precision (Pa _{RMS})	5		2.5		1.2	0.9	0.5	

Table 13 Estimated current consumption (uA)

Oversampling (PRC[3:0])	Single (0000)	2 times (0001)	4 times (0010)	8 times (0011)	16 times (0100)	32 times (0101)	64 times (0110)	128 times
Measurements pr sec. (PM_RATE([2:0])								(0111)
1 (000)	2.1	2.7	3.8	6.1	11	20	38	75
2 (001)								
4 (010)								
8 (011)		current con Consumption			ated as the N sec.	Measuremer	nt Rate *	n.a.
16 (100)							n.a.	n.a.
32 (101)						n.a.	n.a.	n.a.
64 (110)					n.a.	n.a.	n.a.	n.a.
128 (111)			n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

Note: The table shows the possible combinations of Pressure Measurement Rate and oversampling when no temperature measurements are performed. When temperature measurements are performed the possible combinations are limited to Rate_{temperature} x Measurement Time_{temperature} + Rate_{pressure} x Measurement Time_{pressure} < 1 second.

The temperature measurement time versus temperature oversampling rate is similar with pressure measurement time versus pressure oversampling rate

6 Register Description

6.4 Temperature Configuration(TMP_CFG)

Configuration of temperature measurement rate (TMP_RATE) and resolution (TMP_PRC).

 TMP_CFG
 Address:
 07_H

 Temperature measurement configuration
 Reset value:
 00_H

 7
 6
 5
 4
 3
 2
 1
 0

 TMP_EXT
 TMP_RATE[6:4]
 TMP_PRC[3:0]

 rw

Field	Bits	Туре	Description
TMP_EXT	7	rw	Temperature measurement
			0 - Internal sensor (in ASIC)
			1 - External sensor (in pressure sensor MEMS element)
			Note: It is highly recommended to use the same temperature sensor as the source of the calibration coefficients. Please see the Coefficient Source register
TMP_RATE[2:0]	6:4	rw	Temperature measurement rate:
			000 - 1 measurement pr. sec.
			001 - 2 measurements pr. sec. 010 - 4 measurements pr. sec.
			011 - 8 measurements pr. sec.
			100 - 16 measurements pr. sec.
			101 - 32 measurements pr. sec.
			110 - 64 measurements pr. sec.
			111 - 128 measurements pr. sec Applicable for measurements in Background mode only
TMP_PRC[2:0]	3:0	rw	Temperature oversampling (precision):
			0000 - single. (Default) - Measurement time 3.6 ms.
			Note: Following are optional, and may not be relevant:
			0001 - 2 times. 0010 - 4 times.
			0011 - 8 times. 0100 - 16 times.
			0101 - 32 times. 0110 - 64 times
			0111 - 128 times.
			1xxx - Reserved.

6 Register Description

6.5 Sensor Operating Mode and Status (MEAS_CFG)

Setup measurement mode.

MEAS_CFG
Measurement configuration

Reset value:

CO_H

7
6
5
4
3
2
1
0

COEF DRY SENSOR_R THE DRY DRS DRY

COEF_RDY	SENSOR_R DY	TMP_RDY	PRS_RDY	-	MEAS_CTRL
					W1.1

Field	Bits	Туре	Description
COEF_RDY	7	r	Coefficients will be read to the Coefficents Registers after start- up:
			0 - Coefficients are not available yet.
			1 - Coefficients are available.
SENSOR_RDY	6	r	The pressure sensor is running through self initialization after start-up.
			0 - Sensor initialization not complete
			1 - Sensor initialization complete
			It is recommend not to start measurements until the sensor has completed the self intialization.
TMP_RDY	5	r	Temperature measurement ready
			1 - New temperature measurement is ready. Cleared when temperature measurement is read.
PRS_RDY	4	r	Pressure measurement ready
			1 - New pressure measurement is ready. Cleared when pressurement measurement is read.
-	3	-	Reserved.
MEAS_CTRL	2:0	rw	Set measurement mode and type:
			Standby Mode
			000 - Idle / Stop background measurement
			Command Mode
			001 - Pressure measurement
			010 - Temperature measurement
			011 - na.
			100 - na.
			Background Mode
			101 - Continous pressure measurement
			110 - Continous temperature measurement
			111 - Continous pressure and temperature measurement

6 Register Description

6.6 Interrupt and FIFO configuration (CFG_REG)

Configuration of interupts, measurement data shift, and FIFO enable.

CFG_REG Address: 09_{H} Configuration register Reset value: 00_{H}

7	6	5	4	3	2	1	0
INT_HL	INT_FIFO	INT_TMP	INT_PRS	T_SHIFT	P_SHIFT	FIFO_EN	SPI_MODE
rw.	rw	rw	rw	rw	rw	rw	rw

Field	Bits	Туре	Description
INT_HL	7	rw	Interupt (on SDO pin) active level:
			0 - Active low.
			1 - Active high.
INT_FIFO	6	rw	Generate interupt when the FIFO is full:
			0 - Disable.
			1 - Enable.
INT_TMP	5	rw	Generate interupt when a temperature measurement is ready:
			0 - Disable.
			1 - Enable.
INT_PRS	4	rw	Generate interupt when a pressure measurement is ready:
			0 - Disable.
			1 - Enable.
T_SHIFT	3	rw	Temperature result bit-shift
			0 - no shift.
			1 - shift result right in data register.
			Note: Must be set to '1' when the oversampling rate is >8 times.
P_SHIFT	2	rw	Pressure result bit-shift
			0 - no shift.
			1 - shift result right in data register.
			Note: Must be set to '1' when the oversampling rate is >8 times.
FIFO_EN	1	rw	Enable the FIFO:
			0 - Disable.
			1 - Enable.
SPI_MODE	0	rw	Set SPI mode:
			0 - 4-wire interface.
			1 - 3-wire interface.

6 Register Description

6.7 Interrupt Status (INT_STS)

Interrupt status register. The register is cleared on read.

_STS rrupt state	us		Re	Address: set value:			0A _H 00 _H
7	6	5	4	3	2	1	0
		-			INT_FIFO_F ULL	INT_TMP	INT_PRS
		_			r	r	r

Field	Bits	Туре	Description
-	7:3	-	Reserved.
INT_FIFO_FULL	2	r	Status of FIFO interrupt
			0 - Interrupt not active
			1 - Interrupt active
INT_TMP	1	r	Status of temperature measurement interrupt
			0 - Interrupt not active
			1 - Interrupt active
INT_PRS	0	r	Status of pressure measurement interrupt
			0 - Interrupt not active
			1 - Interrupt active

6 Register Description

6.8 FIFO Status (FIFO_STS)

FIFO status register

FIFO_STS				Address:			0B _H	
FIFO status re	gister		Re	set value:			00 _H	
7	6	5	4	3	2	1	0	

'	0	3	7	3	2	-	0
		-				FIFO_FULL	FIFO_EMPT Y
						r	r

Field	Bits	Туре	Description
-	7:2	-	Reserved.
FIFO_FULL	1	r	0 - The FIFO is not full
			1 - The FIFO is full
FIFO_EMPTY	0	r	0 - The FIFO is not empty
			1 - The FIFO is empty

6 Register Description

6.9 Soft Reset and FIFO flush (RESET)

Flush FIFO or generate soft reset.

RESET				Address:	$0C_{H}$		
FIFO flush and s	oft reset		Re	eset value:			00 _H
7	6	5	4	3	2	1	0
FIFO_FLUSH		-			SOFT	r_RST	
W		_			,	M	

Field	Bits	Туре	Description
FIFO_FLUSH	7	W	FIFO flush 1 - Empty FIFO After reading out all data from the FIFO, write '1' to clear all old data.
-	6:4	-	Reserved.
SOFT_RST	3:0	w	Write '1001' to generate a soft reset. A soft reset will run though the same sequences as in power-on reset.

6.10 Product and Revision ID (ID)

Product and Revision ID.

ID				Address: 0D _I				
Product and	revision ID		Re	eset value:			0x10 _H	
7	6	5	4	3	2	1	0	
	REV	_ID			PRO	D_ID		
						r		

Field	Bits	Туре	Description
REV_ID	7:4	r	Revision ID
PROD_ID	3:0	r	Product ID

6 Register Description

6.11 Calibration Coefficients (COEF)

The Calibration Coefficients register contains the 2´s complement coefficients that are used to calculate the compensated pressure and temperature values.

Table 14 Calibration Coefficients

Coefficient	Addr.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
c0	0x10	c0 [11:4]				1	,		
c0/c1	0x11	c0 [3:0]				c1 [11:8	<u>[</u>		
c1	0x12	c1[7:0]							
c00	0x13	c00 [19:1	.2]						
c00	0x14	c00 [11:4	<u>.</u>]						
c00/c10	0x15	c00 [3:0]				c10 [19:	:16]		
c10	0x16	c10 [15:8	3]						
c10	0x17	c10 [7:0]							
c01	0x18	c01 [15:8	3]						
c01	0x19	c01 [7:0]							
c11	0x1A	c11 [15:8	3]						
c11	0x1B	c11 [7:0]							
c20	0x1C	c20 [15:8	3]						
c20	0x1D	c20 [7:0]							
c21	0x1E	c21 [15:8	3]						
c21	0x1F	c21 [7:0]							
c30	0x20	c30 [15:8	3]						
c30	0x21	c30 [7:0]							

Note: Generate the decimal numbers out of the calibration coefficients registers data:

```
C20 := reg0x1D + reg0x1C * 2^8 if (C20 > (2^15 - 1))
C20 := C20 - 2^16 end if

C0 := (reg0x10 * 2^4) + ((reg0x11 / 2^4) & 0x0F) if (C0 > (2^11 - 1))
C0 := C0 - 2^12 end if
```


6 Register Description

6.12 Coefficient Source

States which internal temperature sensor the calibration coefficients are based on: the ASIC temperature sensor or the MEMS element temperature sensor. The coefficients are only valid for one sensor and it is highly recommended to use the same temperature sensor in the application. This is set-up in the Temperature Configuration register.

TMP_COEF_SR	CE	Address:					28 _H
Temperature C	oefficients So	ource	Reset value:				XX_H
7	6	5	4	3	2	1	0
TMP_COEF_ SRCE				-			

Field	Bits	Туре	Description
TMP_COEF_SRCE	7	r	Temperature coefficients are based on:
			0 - Internal temperature sensor (of ASIC)
			1 - External temperature sensor (of pressure sensor MEMS element)
-	6:0	-	Reserved

7 Appendix A. Digital Pressure Sensor (DPS) quick start

7 Appendix A. Digital Pressure Sensor (DPS) quick start

I. Power up

For the application example circuitry see the datasheet or below figures:

The example application circuit example uses the I²C serial interface. The SDO pin can be used for interrupt or to set least significant bit of the device address.

Component	Symbol	Values	is .	20.	Unit	Note / Test Condition			
	50000	Min.	Тур.	Max.		105			
Pull-up/down Resistor	R ₁ , R ₂	5		100	ΚΩ	R ₂ is optional and will set the address to 0x76 instead of 0x77.			
Supply Blocking Capacitor	C ₁ , C ₂	100	100		nF	The blocking capacitors should be placed as close to the package pins as possible.			

The DPS starts up when VDD>=1,7V and VDDIO>=1,2V is connected. Both supplies may also be connected together, eg. to a common 1,8V. Power up is finished when COEF_RDY=='1' and SENSOR RDY=='1':

7 Appendix A. Digital Pressure Sensor (DPS) quick start

These bits need not to be read, if it can be ensured, that after connecting the supplies the chip is not accessed before a wait time of 40ms.

II. Interfacing (I2C)

The I2C address is 0x77 (SDO unconnected or connected to VDDIO), or 0x76 (SDO connected to GND).

The I2C protocol follows the standard, and supports the normal mode, FS, FS+ and HS mode:

http://www.nxp.com/documents/user_manual/UM10204.pdf

The basic timing is shown in the figure below (source UM10204.pdf);

In one access (without stop) incremental read (address is auto increment) and incremental write (autoincrement) is supported. The read and write access is described below:

ш									
S	Module Add	ress	WA	Register Address	Α	Register Data <7:0>	Α	P	
DPS	S310 register, aut	oincrem	ent						
S	Module Add	ress	R A	Register Address	Α	Register Data 1 < 7:0:	A]	Register Data N <7:0>
DPS	310 register								
S	Module Add		R A	Register Address	Α	Register Data	Α	N P	
	Module Add 310 register, auto	oincreme		Register Address Register Address	A	Register Data	A	N P	RegisterN <7:0>
DPS S	310 register, auto	oincreme	nt						RegisterN <7.0>
DPS S	310 register, auto Module Add	oincreme	nt						RegisterN <7:0>
S S P	Module Add	oincreme	nt						RegisterN <7:0>
S S P W	Module Add	oincreme	nt						RegisterN <7.0>
S S P W R	Module Add start stop write	oincreme	nt						RegisterN <7.0>

7 Appendix A. Digital Pressure Sensor (DPS) quick start

III. Interfacing (SPI)

SPI Mode 3 (CPOL=1, CPHA=1) is supported. Clock speed up to 10MHz. When reading from the device, the returned data address is automatically incremented as long as the Chip Select (SS) is low.

(source

https://de.wikipedia.org/wiki/Serial_Peripheral_Interface#/media/File:SPI_timing_diagram2.svg)

7 Appendix A. Digital Pressure Sensor (DPS) quick start

Example SPI Write (first bit is W=0/R=1):

Example SPI Read (first bit is W=0/R=1):

IV. Read the DPS coefficients

Read register 0x10 - 0x20 to get the coefficients. The coefficients are stored as two's complement numbers.

7 Appendix A. Digital Pressure Sensor (DPS) quick start

C0 and C1 are 12 bit two's complement numbers.
C01, C11, C20, C21,C30 are 16 bit two's complement numbers.
C00, C10 are 20 bit two's complement numbers.

The coefficients are stored like described below:

Coefficient	Addr.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
c0	0x10	c0 [11:4]			•	•	•		
c0/c1	0x11	c0 [3:0]				c1 [11:8]			
c1	0x12	c1[7:0]							
c00	0x13	c00 [19:1	.2]						
c00	0x14	c00 [11:4]						
c00/c10	0x15	c00 [3:0]				c10 [19:1	l 6]		
c10	0x16	c10 [15:8]			•			
c10	0x17	c10 [7:0]							
c01	0x18	c01 [15:8]						
c01	0x19	c01 [7:0]							
c11	0x1A	c11 [15:8]						
c11	0x1B	c11 [7:0]							
c20	0x1C	c20 [15:8]						
c20	0x1D	c20 [7:0]							
c21	0x1E	c21 [15:8]						
c21	0x1F	c21 [7:0]							
c30	0x20	c30 [15:8]						
c30	0x21	c30 [7:0]							

Generate the decimal numbers out of the "raw coefficients".

53

7 Appendix A. Digital Pressure Sensor (DPS) quick start

V. Read from where the temperature is read

Read the Coefficient source register. States which internal temperature sensor the calibration coefficients are based on: the ASIC temperature sensor or the MEMS element temperature sensor. The coefficients are only valid for one sensor and it is highly recommended to use the same temperature sensor in the application.

Field	Bits	Туре	Description
TMP_COEF_SRCE	7	r	Temperature coefficients are based on:
			0 - Internal temperature sensor (of ASIC)
			External temperature sensor (of pressure sensor MEMS element)
-	6:0	-	Reserved

SELTMP=0x00

See in next chapter how this info is used when the register 0x07 (TMP_CFG) is configured

54

7 Appendix A. Digital Pressure Sensor (DPS) quick start

VI. Configure the measurement accuracy of DPS

Some register settings must be done – depending on the expected operation in standard, high precision or low power mode. Note, that for higher precision a shift has to be programmed into register 0x09.

For three different configurations examples are given:

low power	average 512 (precision: two times)							
ADR	Val							
0x06	0x01	P config						
0x07	0x00 SELTMP	T config						

standard	average	average 4096 (precision: 16 times)						
ADR	Val							
0x06	0x04	P config						
0x07	0x00 SELTMP	T config						
0x09	0x04	P shift config						

high <u>precision</u>	average 16384 (precision: 64 times)						
ADR	Val						
0x06	0x06	P config					
0x07	0x00 SELTMP	T config					
0x09	0x04	P shift config					

7 Appendix A. Digital Pressure Sensor (DPS) quick start

VII. Start the Pressure Measurement

Write to register 0x08 to start a measurement:

ADR	Val	
0x08	0x01	P start

VIII. Read the Pressure Result

- Wait for some time (depending on accuracy, 100ms is always safe)
 OR
- 2.) Check if result is available: read register 0x08, check if PRS_RDY (bit 4) == 1

3.) Read register 0x00 -0x02 for the result

Register Name	Addr.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
PSR_B2	0x00	PSR[23:1	[6] (r)						
PSR_B1	0x01	PSR[15:8	PSR[15:8](r)						
PSR_B0	0x02	PSR[7:0]	(r)						
TMP_BZ	UXU3	TMP[Z3:	16] (r)						
TMP_B1	0x04	TMP[15:	TMP[15:8] (r)						
TMP_B0	0x05	TMP[7:0]	l (r)						

Generate a Praw out of the result

(result is stored in registers as 24 bit 2s complement number).

e.g.:

Praw= reg0x02+ reg0x01<<8+reg0x00<<16;

If Praw > (2^23-1)

Praw=Praw-2^24;

7 Appendix A. Digital Pressure Sensor (DPS) quick start

IX. Start the Temperature Measurement

Write to register 0x08 to start a measurement:

ADR	Val	
0x08	0x02	T <u>start</u>

X. Read the Temperature Result

Wait for some time (depending on accuracy, 100ms is always safe)

2.) Check if result is available: read register 0x08, check if Temp Data Ready (bit 5) == 1

Generate a Traw out of the result

(result is stored in registers as 24 bit 2s complement number).

e.g.:

Traw=reg0x05+reg0x04<<8+reg0x03<<16;

If Traw > (2^23-1)

Traw=Traw-2^24;

7 Appendix A. Digital Pressure Sensor (DPS) quick start

XI. Calculate the physical Pressure and Temperature

Praw_sc= Praw/kP; (Praw ... 24bit two's complement value out of reg_0-2)

Traw_sc=Traw/kT; (Traw ... 24bit two's complement value out of reg 3-5)

<u>kP</u> and <u>kT</u> can be looked up in a reference table.

In the above configuration example the <u>kP</u> or <u>kT</u> are:

average	kP.or.kT.	
16384	1040384	kP (high Precision)
12288	778240	
8192	516096	
6144	385024	
4096	253952	kP (Standard)
3072	188416	
2048	7864320	
1536	5767168	
1024	3670016	
768	2621440	
512	1572864	kP. (Low Power)
384	1048576	
256	524288	kT (Low Power/Standard/high Precision)

Pcomp(Pa) = c00 + Praw_sc*(c10 + Praw_sc*(c20+ Praw_sc*c30)) + Traw_sc*c01 + Traw_sc*Praw_sc*(c11+Praw_sc*c21)

 $T_{comp}(^{\circ}C) = c0*0.5 + c1*T_{raw_sc}$

7 Appendix A. Digital Pressure Sensor (DPS) quick start

XII. Register reference

Register Name	Addr.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Reset State
PSR_B2	0x00	PSR[23:	PSR[23:16] (r)						00 _h	
PSR_B1	0x01	PSR[15:	PSR[15:8](r)							00 _h
PSR_B0	0x02	PSR[7:0	PSR[7:0](r)							00 _h
TMP_B2	0x03	TMP[23	TMP[23:16] (r)							00 _h
TMP_B1	0x04	TMP[15	TMP[15:8] (r)							00 _h
TMP_B0	0x05	TMP[7:0	TMP[7:0] (r)							00 _h
PRS_CFG	0x06	-	PM_RATE [2:0] (rw) PM_PRC [3:0] (rw)							00 _h
TMP_CFG	0x07	TMP_ EXT (rw)	TMP_RAT	E [2:0] (r	w)	TM_PRC [3:0] (rw)				00 _h
MEAS_CFG	0x08	COEF_ RDY (r)	SENSOR _RDY (r)	TMP_ RDY (r)	PRS_ RDY (r)	-	MEAS_C	MEAS_CRTL [2:0] (rw)		00 _h
CFG_REG	0x09	INT_ HL (rw)	INT_ SEL [2:0] (rw)			TMP_ SHIFT_ EN (rw)	PRS_ SHIFT_ EN (rw)	FIFO_ EN (rw)	SPI_ MODE (rw)	00 _h
INT_STS	0x0A		-	5			INT_ FIFO_ FULL (r)	INT_ TMP(r)	INT_ PRS(r)	00 _h
FIFO_STS	0x0B	-	-			-	-	FIFO_ FULL(r)	FIFO_ EMPTY(r)	00 _h
RESET	0x0C	FIFO_ FLUSH (w)	FLUSH							00 _h
ID	0x0D	PROD_ID [3:0] (r) REV_ID [3:0] (r)							00 _h	
COEF	0x10- 0x21	< see register description >							XX _h	
Reserved	0x22- 0x27	Reserved						XX _h		
COEF_SRCE	0x28	TMP_C OEF_S RCE (r)					XX _h			

Confidential

Pressure Sensor Calibration Method

8 Revision History

8 Revision History

Major changes since previous revision

Table 15 Revision History

Reference	
v0.1	first released
v0.2	BE_fuse update
v0.3	BE_fuse updated VDD=4.1V when fusing; eFuse map bit 1 = 0 on the address 0x62 when fusing e-trimmed ASIC; Register map, CFG_REG
v0.4	BE_fuse update
v0.5	BE_fuse update
v0.6	BE_fusechip_default and BE_gain update

Trademarks of Infineon Technologies AG

µHVIC", µIPM", µPFC", AU-ConvertIR", AURIX", C166", CanPAK", CIPOS", CIPURSE", CoolDP", CoolGaN", COOLIR", CoolMOS", CoolSiC", DAVE", DI-POL", DirectFET", DrBlade", EasyPIM", EconoBRIDGE", EconoDUAL", EconoPACK", EconoPIM", EiceDRIVER", eupec", FCOS", GaNpowIR", HEXFET", HITFET", HybridPACK", iMOTION", IRAM", ISOFACE", IsoPACK", LEDrivIR", LITIX", MIPAQ", ModSTACK", my-d", NovalithIC", OPTIGA", OptiMOS", ORIGA", PowIRaudio", PowIRstage", PrimePACK", PrimeSTACK", PROFET", PRO-SIL", RASIC", REAL3", SmartLEWIS", SOLID FLASH", SPOC", StrongIRFET", SupIRBuck", TEMPFET", TRENCHSTOP", TriCore", UHVIC", XHP", XMC".

Trademarks Update 2015-12-22

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-8-11 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference IFX-poe1436167344349

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury