Assignment 1

Foundations of Machine Learning (CS564) Department of CSE, IIT Patna

Date:- 19-Aug-2018 **Marks:**- 20 Marks

Instructions:

- 1. All the assignments should be completed and uploaded by 26-Aug-2018, 11.00 pm.
- 2. Markings will be based on the correctness and soundness of the outputs. Marks will be *deducted in case of plagiarism*.
- 3. Be precise for your explanations in the report. Unnecessary verbosity will be penalized. Prepare a Detailed report of the assignment.
- 4. Code should be done in *Python* or *R*.
- 5. You should zip all the required files and name the zip file as *Group_no.zip*, eg. **Group_13.zip**.
- **6.** Upload your assignment (**the zip file**) in the following link: https://www.dropbox.com/request/ZJ0hsBb14A93EYx8wMi7

 The goal of t 	this assignment is to	experiment with	feature ext	traction meth	nods, linear i	methods
for regression	and logistic-regress	sion.				

Brief Description of dataset:

Dataset Download Link: https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

Download winequality-red.csv

Dataset Name	Wine Quality	Dataset Characteristic	Multivariate
Number of instance	1600	Attribute Characteristic	Real
Number of Attribute	12		

Attribute Description:

Attribute No	Description
1	fixed acidity
2	volatile acidity
3	citric acid
4	residual sugar
5	chlorides
6	free sulfur dioxide
7	total sulfur dioxide
8	density
9	рН
10	sulphates
11	alcohol Output variable (based on sensory data)
12	quality (score between 0 and 10)

Instruction Regarding Dataset:

Apply 5-fold cross validation on the dataset.

(https://en.wikipedia.org/wiki/Cross-validation_(statistics))

Questions

Linear Regression

- 1]Learn a linear classifier on the above dataset by using regression on alcohol variable (feature no 11). Report the
- a)Predicted alcohol content from learning(individual test data)
- b)Report the average **residual sum of squares (RSS)** over these 5 folds.

(https://en.wikipedia.org/wiki/Residual_sum_of_squares)

Regularized Linear Regression

- 2] Use Ridge-regression on the above data on **alcohol variable (feature no 11)**. Repeat the experiment for different values of λ (parameter).
- a) Report the residual error for each fold
- b) Which value of λ gives the best fit?

(The value of lambda determines the importance of this penalty term. When lambda is zero, the result will be same as conventional regression; when the value of lambda is large, the coefficients will approach zero.)

Logistic Regression

- 3] Perform multi-class(0-10 classes) Logistic Regression on variable quality (feature no 12).
 - a) Report per-class precision, recall and f-measure for each fold.
 - b) Report the average per-class precision, recall and f-measure for 5 fold cross-validation.
 - c) Report the misclassification (provide confusion matrix) and also carry out the error analysis on few misclassified instances.