The University of Newcastle School of Electrical Engineering and Computer Science

COMP3260 Data Security

GAME 2 SOLUTIONS

14th March 2019

Number of Questions: 5 Time allowed: 50min Total mark: 5

In order to score marks you need to show all the workings and not just the end result.

	Student Number	Student Name
Student 1		
Student 2		
Student 3		
Student 4		
Student 5		
Student 6		
Student 7		

Question 1	Question 2	Question 3	Question 4	Question 5	TOTAL

1. Find the GCD of 1,496 and 1,989

Solution: We use Euclid's algorithm:

```
Algorithm gcd(a,n)

//n \ge a

begin

g_0 := n;

g_1 := a;

i := 1;

while g_i \ne 0 do

begin

g_{i+1} := g_{i-1} \mod g_i;

i := i+1

end;

gcd := g_{i-1}
```

When we run the algorithm on 1,496, 1,989 we get:

i	g_i
0	1,496
1	1,989
2	493
3	17
4	0

end

Therefore, GCD(1,496, 1,989)=17

2. Find the inverse of 3 modulo 101.

Solution:

```
\overline{x = 3^{100-1}} \mod 101 = 3^{99} \mod 101 = 3 \times 3^{98} \mod 101 = 3 \times (3^2)^{49} \mod 101 = 3 \times 9 \times (9)^{48} \mod 101 = 27 \times (9^2)^{24} \mod 101 = 27 \times (81^2)^{12} \mod 101 = 27 \times (97^2)^6 \mod 101 = 27 \times (16^2)^3 \mod 101 = 27 \times 54 \times 54^2 \mod 101 = 27 \times 54 \times 88 \mod 101 = 34
```

- 3. For the equation $\Phi(x) = y$, y=1 has two solutions: x=1 and x=2. Find all solutions for each of the following.
 - a. y=2
 - b. y=8
 - c. y=29

Solution:

- a. $x \in \{3, 4, 6\}$
- b. $x \in \{15, 16, 20, 24, 30\}$
- c. no solution
- **4.** Calculate $\Phi(45)$.

Solution:

$$\overline{45 = 3^2 \times 5}$$

 $\Phi(45) = 3^{2-1} \times (3-1) \times (5-1) = 24$

5. Suppose there are 5 possible messages, A, B, C, D and E, with the probabilities p(A) = p(B) = 1/3, p(C) = 1/6, p(D) = p(E) = 1/12. What is the expected number of bits needed to encode these messages in optimal encoding? (That is, find H(M).) Provide optimal encoding.

Solution:

$$H(M) = \text{Sigma p(M) log2 1/p(M)}$$

$$= 2 * 1/3 \log_2 3 + 1/6 \log_2 6 + 2 * 1/12 \log_2 12$$

$$= 4/6 \log_2 3 + 1/6 \log_2 3 + 1/6 \log_2 2 + 1/6 \log_2 3 + 1/6 \log_2 4$$

$$= \log_2 3 + 1/6 + 2/6$$

$$= \frac{1}{2} + \log_2 3$$

$$= 2.085 \text{ Bits}$$

Gives the encoding:

A = 00, B =01, C = 10, D = 110 and E = 111

$$N_{AVG} = 2 (2 * 1/3) + (2 * 1/6) + 2 (3 * 1/12) = 13/6 = 2.17 \text{ bits}$$