Revised: 7/20/2024

Memory Architecture I

Michael C. Hackett
Assistant Professor, Computer Science

Lecture Topics

- Sequential Circuits
 - Clocks
 - SR Latch
 - Flip-Flops
 - SR Flip-Flop
 - D Flip-Flop
 - JK Flip Flop
 - Registers

- Memory Hierarchy
- Memory Technologies
 - RAM
 - ROM

Sequential Circuits

- The combinational logic circuits we've seen have the following limitations:
 - They have no memory capability
 - The output changes as soon as the input changes

- Sequential logic circuits maintain a state- The circuit's output is determined by both:
 - The input it currently has
 - The input it has received over time

- In most cases, the components in a sequential circuit need to be synchronized
 - The components in the circuit must all update their states at the same time

- This is achieved with a clock signal
 - A 1-bit signal that alternates between 1 and 0 at regular intervals

 A clock cycle ("tick") is when the clock transitions from 0 to 1 and back to 0

• A clock period is the time it takes to complete 1 clock cycle

- The **clock frequency** (also called the **clock rate**) is the number of clock periods in some amount of (*wall clock*) time
 - Wall clock time is the seconds, minutes, hours, etc. that we experience
 - Time ticks by on a wall clock by the second, whereas these clocks may tick thousands (or millions or billions) of times per one second
- Clock frequency is measured in $\frac{cycle}{second}$ or Hertz (abbreviated Hz)

Clock frequency is the inverse of the clock period (and vice versa)

$$Period = \frac{seconds}{cycle} = \frac{1}{\frac{cycles}{second}} = \frac{1}{Frequency}$$
 Seconds per cycle

$$Frequency = \frac{cycles}{second} = \frac{1}{\frac{seconds}{cycle}} = \frac{1}{Period}$$
 Cycles per second

- Example: What is the clock rate of a processor with a clock period of 250 ps (picoseconds)?
 - $250ps = 250 * 10^{-12} seconds = 0.00000000025s$

•
$$Period = \frac{250 \times 10^{-12} seconds}{1 \ cycle} = \frac{0.00000000025 \ seconds}{1 \ cycle} = 0.000000000005 \ \frac{seconds}{cycle}$$

• Frequency =
$$\frac{1}{Period} = \frac{1}{\frac{250 \times 10^{-12} seconds}{1 cycle}} = \frac{250 \times 10^{-12} cycles}{1 second} = \frac{4,000,000,000 cycles}{1 second}$$

= $4,000,000,000,000 \frac{cycles}{second} = 4.0 \text{ GHz}$

• Example: What is the clock period of a processor with a clock rate of 3.8GHz?

• Frequency = 3,800,000,000
$$\frac{cycles}{second} = \frac{3,800,000,000 \ cycles}{1 \ second}$$

•
$$Period = \frac{1}{Frequency} = \frac{1}{\frac{3,800,000,000 \, cycles}{1 \, second}} = \frac{1 \, second}{\frac{3,800,000,000 \, cycles}{1 \, second}}$$

$$= 2.63 \times 10^{-10} \frac{seconds}{cycle} = 263 \times 10^{-12} \frac{seconds}{cycle}$$

$$= 263 \frac{picoseconds}{cycle}$$

Abstraction of a clock:

• A latch is a digital component that stores 1 bit of information

• An SR Latch has two inputs (Set and Reset) and two outputs (Q and its complement, \overline{Q})

Feedback

- The output of the top NOR is one input to the bottom NOR
- The output of the bottom NOR is one input to the top NOR

• Recall that, for a NOR gate, the output is 0 if either input is a 1

\boldsymbol{x}	у	x NOR y
0	0	1
0	1	0
1	0	0
1	1	0

- We'll start with the second row of the latch's truth table:
 - This is the Reset state

S	R	$\overline{m{Q}}$	Q	State
0	0			
0	1	1	0	Reset $(Q = 0)$
1	0			
1	1			

- R is 1, meaning the bottom NOR must have an output (Q) of 0
- S is 0 and the output of the bottom NOR was 0, so the top NOR must have an output (Q) of 1
 - This is a valid state since Q and \overline{Q} are complements

- Next is the third row of the latch's truth table:
 - This is the Set state

S	R	$\overline{m{Q}}$	Q	State
0	0			
0	1	1	0	Reset $(Q = 0)$
1	0	0	1	Set (Q = 1)
1	1			

- S is 1, meaning the top NOR must have an output (\overline{Q}) of 0
- R is 0, and the output of the top NOR was 0, so the bottom NOR must have an output (Q) of 1
 - This is a valid state since Q and \overline{Q} are complements

- Next is the fourth row of the latch's truth table:
 - This is the Unknown state

S	R	$\overline{m{Q}}$	Q	State
0	0			
0	1	1	0	Reset $(Q = 0)$
1	0	0	1	Set (Q = 1)
1	1	0	0	Unknown

- S is 1 and R is 1 meaning both NOR gates must have an output of 0
- \bullet This doesn't make sense since Q and \overline{Q} are supposed to be complements

- Back to the first row of the latch's truth table:
 - This is the Unchanged state

S	R	$\overline{m{Q}}$	Q	State
0	0	$ar{Q}$	Q	Unchanged
0	1	1	0	Reset $(Q = 0)$
1	0	0	1	Set (Q = 1)
1	1	0	0	Unknown

- S is 0 and R is 0, the current state will depend on the previous state
 - If the previous state was the set state, the current state will still be in the set state
 - If the previous state was the reset state, the current state will still be in the reset state

- Turning Q from 0 (Reset) to 1 (Set)
 - S = 0, S = 1, S = 0

- Turning Q from 1 (Set) to 0 (Reset)
 - R = 0, R = 1, R = 0

SR Flip-Flop

- An extension of the SR Latch is the SR Flip-Flop.
- The S and R inputs are each and'ed with a clock signal.
 - The state can only be changed when the clock signal is 1

S	R	Clock	$\overline{m{Q}}$	Q	State
0	0	1	$ar{Q}$	Q	Unchanged
0	1	1	1	0	Reset $(Q = 0)$
1	0	1	0	1	Set (Q = 1)
1	1	1	0	0	Unknown
Χ	X	0	$ar{Q}$	Q	Unchanged

D Flip-Flop

- A D Flip-Flop has one input (D) and two outputs (Q and its complement, \overline{Q})
- The input is and'ed with a clock signal prior to the NOR gates.
 - The state can only be changed when the clock signal is 1

D	Clock	$\overline{m{Q}}$	Q	State
0	1	1	0	Reset $(Q = 0)$
1	1	0	1	Set (Q = 1)
X	0	$ar{Q}$	Q	Unchanged

JK Flip-Flop

- In a JK Flip-Flop, the input is and'ed with a clock signal *and* an output prior to the NOR gates.
 - The state can only be changed when the clock signal is 1

J	K	Clock	$\overline{m{Q}}$	Q	State
0	0	1	$ar{Q}$	Q	Unchanged
0	1	1	1	0	Reset $(Q = 0)$
1	0	1	0	1	Set (Q = 1)
1	1	1	Q	$ar{Q}$	Toggle
Χ	Χ	0	$ar{Q}$	Q	Unchanged

Flip-Flops

Abstractions of Flip-Flops:

 By now, we are familiar with the use of registers from assembly programming to temporarily store data.

- Since flip-flops store 1 bit of information, we can create a register from a series of flip-flops
 - 4 flip-flops for a 4-bit register, 32 flip-flops for a 32-bit register, etc.

• A 2-bit register:

• A 4-bit register:

• An 8-bit register:

• Abstractions of Registers:

- The **Memory Hierarchy** is the structured levels of a computer system's memory.
 - As the distance from the processor increases, the size and the access time increases
 - Registers (Fastest/Smallest)
 - 2. Cache Memory
 - 3. Main Memory
 - 4. Secondary Storage (Slowest/Largest)

• In the first tier are *registers*, which is memory used for storing data currently in use by the CPU.

• Registers have the fastest access time, but they are limited in number.

• In the second tier is *cache memory*, which is memory used for storing data the CPU has recently used.

- The cache memory is built into the CPU and has a much larger capacity than the limited number of registers.
 - Cache memory is still limited in space, as only so much can fit in the CPU.

• In the third tier is *main memory*, which is memory used for storing data the CPU doesn't immediately need.

- Main Memory is often referred to as the system's RAM
 - In this course, RAM will indicate a specific type of memory technology.

Much larger capacity than the CPU's cache memory.

- In the fourth tier is *secondary storage*, which is memory used for storing data long term.
 - Magnetic Disks and Tape, Flash Memory, Optical Disks, etc.
- It is the memory with the slowest access time but has the greatest capacities.
- Secondary storage use **non-volatile** memory technologies.
 - The data stored in these technologies remains stored even when the system's power is turned off.
- Registers, cache and main memory use volatile memory technologies.
 - The data stored in these technologies are lost when the system's power is turned off.

Memory Technologies

- There are a variety of memory technologies used for secondary storage.
 - We'll discuss them in the next lecture

 This lecture focuses on the more fundamental types of memory technologies: RAM and ROM

Memory Technologies

- In older computer systems, reels of magnetic tape were used for main memory and secondary storage
- To access data, the reels were spun forward and reverse
 - Sequential Access
- And yes, tape is still a thing for secondary storage
 - Cost efficient means of backing up data

- RAM (Random Access Memory) is a type of volatile memory that does not retain its stored bits when the system is powered off.
- Data stored in RAM can be accessed at random using an address
- Consists of N words of M bits each $(N \times M \text{ memory})$
 - Each word has a unique address
- For example, a 4096×8 memory:
 - 4096 8-bit words (32768 bits total)
 - 4096 unique addresses (0 through 4095)

• Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM) are types of RAM built from an array of memory cells

- Each cell can store one bit of information
 - SRAM memory cell: Uses transistors and a loop of not gates
 - DRAM memory cell: Uses transistors and a capacitor
- Each cell is connected to a word enable line and data line
 - The word enable line allows the cell's value to be changed
 - The data line is the data to be stored in the cell

RAM – SRAM Cell

RAM Memory Cells Decd

Hackett - Community College of Philadelphia - CSCI 213

- To select a word, the word's address is decoded to enable that row of cells
 - The "Word Enable" here is controlling if the decoder is enabled
 - Each output is a word enable to a row of cells
 - The "Address" is the input to the decoder

Hackett - Community College of Philadelphia - CSCI 213

Hackett - Community College of Philadelphia - CSCI 213

Hackett - Community College of Philadelphia - CSCI 213

Hackett - Community College of Philadelphia - CSCI 213

Hackett - Community College of Philadelphia - CSCI 213

- Repeated reads and writes are required to refresh the capacitor in a DRAM cell
 - As opposed to the static storage of SRAM
 - This gives SRAM faster access than DRAM

- DRAM cells have fewer components and thus much smaller than SRAM cells
 - DRAM cells can be packed more densely than SRAM cells
 - DRAM is cheaper per bit than SRAM

- An improvement of DRAM is Synchronous DRAM (SDRAM)
 - The clock keeps the processor and main memory synchronized.
- The use of a clock gives SDRAM the benefit of implementing pipelining
 - Pipelining allows a device to perform multiple operations at once
 - For example, SDRAM might output data to the processor while receiving the next address- simultaneously
 - We'll discuss pipelining in a later lecture

- An improvement of SDRAM allows two words to be written or read during a single clock cycle
 - One word when the clock is 1, and another word when the clock is 0
- This is referred to as Double Data Rate (DDR) SDRAM

DDR SDRAM

- DDR2 doubled the data rate by allowing four words to be read/written during a single cycle
- DDR3 quadrupled the data rate by allowing eight words to be read/written during a single cycle
- DDR4 used a more advanced architecture for a higher transfer rate with a faster clock
 - Does not increase the words read/written during a single cycle
- DDR5 (current technology)

ROM

- ROM (Read-Only Memory) is a type of non-volatile memory that retains its stored bits.
- ROM is used by technologies that write data slowly, meaning writing data to the ROM is less frequent than reading data from it.
 - Contrary to what its name suggests, writing to ROM ("programming the ROM") is possible.
- ROM commonly uses a floating-gate transistor (FGT), where electrons remain trapped even when no longer powered
 - A large positive voltage traps the electrons
 - A large negative voltage releases the electrons

ROM

- There are several different types of ROM
 - Masked-Programmed ROM: The word line to bit line connections are hardwired and can never be changed
 - One-Time Programmable ROM (OTP ROM): The word line to bit line connections have a fuse that, when blown, can break the connection; Can only be programmed once.
 - Erasable Programmable ROM (EPROM): Electrons are trapped in FGTs using a large positive voltage; Electrons are released when the chip is exposed to ultraviolet light

ROM

- Electrically Erasable Programmable ROM (EEPROM): Electrons are trapped in FGTs using a large positive voltage; Electrons are released from FGTs using a large negative voltage.
- **Flash**: A type of EEPROM; Electrons are trapped in FGTs using a large positive voltage; Using a large negative voltage, electrons in entire blocks of FGTs are released at once.

