Контрольные вопросы и задачи к разделу 12, глава 2

- **1.** Дайте определение диаметра ограниченного множества точек. Чему равен диаметр: а) квадрата со стороной 2; б) равностороннего треугольника со стороной 2?
 - **2.** Интегрируема ли функция 1/(x-y) по квадрату $0 \le x \le 1$, $0 \le y \le 1$?
 - **3.** Не вычисляя интеграла $\iint_D \ln(1-\sin(x+y))dxdy$, установите его знак, если

$$D = \{(x, y) : x \ge 0, y \ge 0, x + y \le \pi / 6\}.$$

4. Сведите двойной интеграл $\iint_D f(x,y) dx dy$ к повторному двумя способами,

если: a) (D) – область, ограниченная линиями $y = 3x^2$, y = 6 - 3x;

- б) (D) трапеция с вершинами (-1,4), (5,4), (1,1), (4,1).
- 5. Измените порядок интегрирования в интеграле:

$$\int_{-2}^{-1} dx \int_{-\sqrt{-x^2-2x}}^{0} f(x,y) dy + \int_{-1}^{0} dx \int_{x}^{0} f(x,y) dy$$
 И.

- **6.** Найдите среднее значение f(x, y) = x + 2y по прямоугольнику, ограниченному прямыми x = 1, y = 2 и осями координат.
- **7.** Изобразите на плоскости *Оху* образ фигуры $G' = \{(r, \varphi): 2 \le r \le 3, 0 \le \varphi \le \pi/4\}$ при отображении $x = r \cos \varphi$, $y = r \sin \varphi$. Является ли это отображение взаимно однозначным?
- 8. Интеграл $\iint_D f(x,y) dx dy$ с помощью подходящей замены переменных преобразовать к определённому, если область D ограничена гиперболами: xy = 1, xy = 4 и параболами $y^2 = x$, $y^2 = 2x$. Указание. Выполнить преобразование координат по формулам: xy = u, $y^2 = vx$.
- **9.** Вычислите интеграл $\iint_{\Gamma} xy^2 dy x^2 y dx$, где Γ окружность $x^2 + y^2 = a^2$, применяя формулу Γ рина.
 - 10. Найдите площадь фигуры, ограниченной линиями:

a)
$$xy = 4$$
, $x + y = 5$;

6)
$$(x^2 + y^2) = 8xy$$
, $x^2 + y^2 = 1$ $(x^2 + y^2 \le 1)$.

- **11.** Найдите площадь конической поверхности $z = \sqrt{x^2 + y^2}$, заключенной внутри цилиндра $x^2 + y^2 = 2x$.
- **12.** Найдите площадь части конической поверхности $x = \sqrt{y^2 + z^2}$, вырезанной цилиндром $x^2 = 4z$.
 - **13.** Найдите объём тела, ограниченного поверхностями $z = \ln(1 + x^2 + y^2)$,

$$z = 0$$
, $x^2 + y^2 = 2$.

14. Найдите координаты центра тяжести однородной плоской пластины, ограниченной линиями x + y = 4, $x^2 = 2y$.

Ответы на контрольные вопросы и задачи к разделу 12, глава 2

1. а) $2\sqrt{2}$; б) *а*. 2. нет, так как на прямой x = y подынтегральная функция неограничена. 3. Интеграл имеет знак минус, так как подынтегральная функция отрицательна на области интегрирования.

4. a)
$$\int_{-2}^{1} dx \int_{3x^2}^{6-3x} f(x,y) dy = \int_{0}^{3} dy \int_{-\sqrt{y/3}}^{\sqrt{y/3}} f(x,y) dx + \int_{0}^{12} dy \int_{-\sqrt{y/3}}^{2-y/3} f(x,y) dx.$$
 (см. рис.)

$$6) \int_{-1}^{1} dx \int_{(5-3x)/2}^{4} f(x,y) \, dy + \int_{1}^{4} dx \int_{1}^{4} f(x,y) \, dy + \int_{4}^{5} dx \int_{3x-11}^{4} f(x,y) \, dy = \int_{1}^{4} dy \int_{(5-2y)/3}^{(y+11)/3} f(x,y) \, dx \, .$$

5.
$$\int_{-1}^{0} dy \int_{-1-\sqrt{1-y^2}}^{x} f(x,y) dx$$
. **6. 5/2. 8.** $3 \ln 2 \int_{1}^{4} f(u) du$. **9.** $\frac{\pi a^4}{2}$. **11.** $\pi \sqrt{2}$.

12. $4\pi\sqrt{2}$ **. 13.** $\pi(3\ln 3-2)$. 14. $(-1,\frac{16}{5})$.

Рис. 1. К примеру 4а

Рис. 2. К примеру 4б