Information chiffrée

Rappels. 7 % = $\frac{7}{100}$ = 0, **0**7. x % de truc = $\frac{x}{100}$ × truc par ex. 37 % de 200 € = 0,37 × 200 = 74 €.

Définition. La proportion d'une population P_B dans une population P_A est $p = \frac{P_B}{P_A}$

Propriété. Proportions d'ensembles emboîtés.

Soit trois ensembles A, B et C représentant des populations telles que $C \subset B \subset A$.

On note p la proportion de la population P dans la population P.

On note p' la proportion de la population C dans la population B.

Alors la proportion de la population C dans la population A est $p \times p'$

Exemple. La moitié des Français sont des femmes. Parmi celles-ci, 90 % sont droitières. La proportion de femmes droitières parmi les Français est donc $\frac{1}{2} \times \frac{90}{100} = 0.45 = 45 \%$.

On suppose qu'une quantité passe d'une valeur initiale V_i à une valeur finale V_f .

Définition. La variation absolue est $\Delta V = V_f - V_i$ **Définition.** Le taux d'évolution est $t = \frac{V_f - V_i}{V_i}$

(On l'appelle aussi variation relative)

Exemple. La population d'une ville passe de 55 000 à 74 250 habitants.

La variation absolue de cette population est 74250 - 55000 = +19250 habitants.

Le taux d'évolution de cette population est $t = \frac{74250-55000}{55000} = \frac{19250}{55000} = 0.35 = +35\%$.

On dit que « La population de la ville a augmenté de 35 % ».

Propriété.
$$V_f = (1+t)V_i$$

(Car
$$(1+t)V_i = \left(1 + \frac{V_f - V_i}{V_i}\right)V_i = V_i + V_f - V_i = V_f$$
)

Définition. $c = 1 + t = \frac{V_f}{V_i}$ est appelé **coefficient multiplicateur**. **Propriété.** $V_f = c \times V_i$

Exemple. Un salarié touchant 2000 € par mois est augmenté de 17 %. Quel est son nouveau salaire? Le taux d'évolution de son salaire est $t = \frac{17}{100} = 0.17$. Son nouveau salaire est $(1 + 0.17) \times 2000 = 2340$ €. Le coefficient multiplicateur est c = 1,17.

Définitions et propriétés. Evolutions successives.

Lorsque l'on a une évolution d'une valeur V_1 à une valeur V_2

suivie d'une autre évolution de la valeur V_2 à V_3 :

Le coefficient multiplicateur global c_g est le coefficient multiplicateur entre V_1 et V_3 . On a $c_g = c \times c'$ Le taux d'évolution global est noté t_g . On a $t_g = c_g - 1$ (Car $c_a = 1 + t_a$)

Exemple. Le nombre d'abonnés d'un journal en ligne augmente de 30 % puis de baisse de 10 %. Il est donc multiplié par 1,3 puis par 0,9. Alors $c_g=$ 1,3 \times 0,9 = 1,17. Le taux d'évolution global est donc $t_g = 1,17 - 1 = 0,17 = 17$ %. Le nombre d'abonnés a donc globalement augmenté de 17 %.

Propriété et définition. Evolution réciproque.

Lorsqu'on a une évolution d'une valeur V_i à une valeur V_f , le coefficient réciproque est le coefficient permettant de revenir de V_f à V_i .

Le coefficient multiplicateur réciproque est $c_r = \frac{1}{c}$ où c est le coefficient multiplicateur de départ. Le taux d'évolution réciproque est $t_r = c_r - 1$

Exemple. Un pantalon à $80 \in$ augmente de 25 % : son prix est multiplié par $c = 1 + \frac{25}{100} = 1,25$. Il vaut alors $80 \times 1,25 = 100$ €. Le coefficient réciproque qui permet de revenir au prix initial est $c_r = \frac{1}{1.25} = 0,8$. En effet $100 \times 0.8 = 80$ €. Donc $t_r = 0.8 - 1 = -0.2$. Revenir au prix initial correspond à une baisse de 20 %.