Две ненулеви насочени отсетки \overrightarrow{AB} и \overrightarrow{CB} наригаме равни, ако имат равни дълнини - $|\overrightarrow{AB}| = |\overrightarrow{CB}|$ и лътите $|\overrightarrow{AB}|^2$ и $|\overrightarrow{CD}|^2$ са еднопосотни. По дефиниция всеки две нулеви насочени отсетки са равни. $|\overrightarrow{C}|$ $|\overrightarrow{B}|$ $|\overrightarrow{C}|$ $|\overrightarrow{B}|$ $|\overrightarrow{C}|$ $|\overrightarrow{B}|$ $|\overrightarrow{C}|$ $|\overrightarrow{C}|$

3. Ако насотените отсетки \overrightarrow{AB} и \overrightarrow{CD} са равни, то $\overrightarrow{AB} = \overrightarrow{CD}$ и $\overrightarrow{AC} = \overrightarrow{BD}$.

Реланцията равенство на насосени с D отсески е реланция на еквиванентност, защото

1.
$$\overrightarrow{AB} = \overrightarrow{AB}$$

2. $\overrightarrow{AKO} = \overrightarrow{AB} = \overrightarrow{CD}$, $\overrightarrow{TO} = \overrightarrow{CD} = \overrightarrow{AB}$.

Под действието на тоги релация мнонеството от ненулевите насотени отсетки се разбива на непреситащи се
класове на еквивалентност. Всеки такъв клас нартидене
свободен вектор. Ознатаване с \vec{a} , \vec{b} ,...

Нупевият вектор ознатаване с \vec{o} и
ститаме за коминеарен с кой да е вектор.

Всяка ненулева насотена отсетка попада в тосно един клос
и се нарита представител на вектора.

Ако О е фиксирана тотка, а \vec{a} вектор , то \vec{J} ! токка \vec{A} ,
такава се насотената отсетка е представител на вектора \vec{a} .

Прието е внесто \vec{h} е \vec{a} да се тише $\vec{A}\vec{b}$ = \vec{a} . Тогава векторот с представител \vec{b} се нарита
противоположен на \vec{a} и се белени с $-\vec{a}$.

Векторите \vec{a} и \vec{b} се наритат коминеарни, ако кои да е два техни
представители са коминеарни. Ознатаване \vec{a} П \vec{b} вектори, тишто представители са зспоредни на една и съща
равнина се наритат компланарни.

Събиране на вектори
Сор на два вектора \vec{a} и \vec{b} наритаме
вектора \vec{c} , опреженен по следния натин: \vec{b} а фонксираме произволна тотка $\vec{0}$ и
нека тотките \vec{A} и \vec{B} са такива, те $\vec{0}\vec{A} = \vec{a}$ и $\vec{A}\vec{B} = \vec{b}$. Тогава $\vec{c} := \vec{0}\vec{B}$ Коректност на дефиницията. Изе покажен, те опрежеланено
на вектора \vec{c} не зависи от избора на тотката $\vec{0}$.

Нека $\vec{0}_1 + \vec{0}_2$, \vec{A}_3 , $\vec{A}_4 = \vec{B}\vec{B}_3 \Rightarrow \vec{0}_3\vec{B}_3 = \vec{0}\vec{B}_3$.

Умножение на вектор \vec{c} тисло

Нека \vec{a} е ненулев вектор \vec{b} с делинина \vec{b} \vec

Алгебритна мярка на вектор е алгебрисната мярка на избран негов представител

От дефиницията на умноннение на вектор с тисло имаме, те $\chi \vec{a} = \chi \vec{a}$ (\vec{a} записваме \vec{a})

Свойства на събирането

1*
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$$

2* $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
3* $\vec{a} + \vec{o} = \vec{a}$
4* $\vec{a} + (-\vec{a}) = \vec{o}$.

Нека а, би с са произволни вектори. Тогава са в сила

 \pm оказателство. 1°. Нека Ое произволна фиксирана тотка и тотките A, B и C са такива, те $\vec{OA} = \vec{a}$, $\vec{AB} = \vec{b}$, $\vec{BC} = \vec{C}$. Следователно $\vec{OB} = \vec{a} + \vec{b}$ и $\vec{AC} = \vec{b} + \vec{C}$. Имаме $\vec{OC} = \vec{OB} + \vec{BC}$ и $\vec{OC} = \vec{OA} + \vec{AC} \implies$ изпълнено е 1°.

2*. За векторите \vec{a} и \vec{b} има \vec{d} везмонности - ими \vec{c} са колинеарни или не.

Нека \vec{a} Н \vec{b} и \vec{o} - фиксирана тотка, а \vec{A} , \vec{b} и \vec{c} са такива тотки, \vec{c} \vec{o} \vec{A} = \vec{a} , $\vec{A}\vec{b}$ = \vec{b} и $\vec{o}\vec{c}$ = \vec{b} . Тотава от успорежика \vec{c} : \vec{a} \vec{b} \vec{b} \vec{o} \vec{b} = \vec{o} \vec{A} + $\vec{A}\vec{b}$ както и \vec{o} \vec{b} = \vec{o} \vec{c} + \vec{c} \vec{b} ,

ОТКЕДЕТО Следва, те а+6=6+а.

3а колинеарни вектори \vec{a} и \vec{b} има ме, те алгебритна \vec{a} м 3рка на сбора им е сбор от алгебритните им мерки $\vec{a} + \vec{b} = \vec{a} + \vec{b}$

Hexa allb u OA = a, AB = b => OB = a+b, OC = bucb= a => OB = b+a.

Ако а и в са еднопосогни, то а+в, както и в+а са еднопососки - както са, така и св. Също така, в този сичай $1\vec{a}+\vec{B}/=|\vec{a}|+|\vec{B}/|$ 0, \vec{a} , \vec{p} , \vec{b} , \vec{b} Ако \vec{a} и \vec{b} са противотоготни, то венторите $\vec{a}+\vec{b}$ и $\vec{b}+\vec{a}$ са еднопохотни или с \vec{a} или с \vec{b} в зависиност от това дали $1\vec{a}/|\vec{b}|$ или $|\vec{a}/||\vec{b}|$. 0, \vec{a} , \vec{b} , \vec{b} , \vec{a} , \vec{a} , \vec{b} , \vec{b} , \vec{b} , \vec{b} , \vec{c}

Свайства на чиношението $-\vec{a}, \vec{b}$ -вектори $, \lambda, \mu \in \mathbb{R}$.

5°. 1. $\vec{a} = \vec{a}$ 6°. $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$ 7°. $\lambda(\mu \vec{a}) = (\lambda \mu) \cdot \vec{a}$ 8°. $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$ Dokazarencto. 5° е пътълнено непогредствено ет дефонницията.

6° $(\lambda + \mu)\vec{a} = (\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$ - натолява се диструбутивния закон за елененти на тислово поле). Съпцо тожа е ясно, те векторите $(\lambda + \mu)\vec{a}$ и $\lambda \vec{a} + \mu \vec{a}$ са колинеарни.

7°. Аналогитно на доказателството на творожнието в 6° селеторите $\lambda(\mu \vec{a})$ и $\lambda(\mu \vec{a})$ и

8* В слугая, когато векторите \vec{a} и \vec{b} са коминеарни верността на твърдението отново се опира на предходните наблюдения имане $\lambda(\vec{a}+\vec{b}) = \lambda(\vec{a}+\vec{b}) = \lambda(\vec{a}+\vec{b}) = \lambda\vec{a} + \lambda\vec{b} = \lambda\vec{a} + \lambda\vec{b}$. Нека \vec{a} и \vec{b} са неколинеарни сфиксираме $\vec{\tau}$. О, а тотките \vec{a} , \vec{b} , \vec{b} , \vec{b} , \vec{c} , \vec{c} тоткита от правата ов като \vec{c} , \vec