

差异表达 - 差异排序图

网址: https://www.xiantao.love

更新时间: 2023.03.14

目录

基本概念	3
应用场景	3
分析流程	3
主要结果	4
数据格式	5
参数说明	6
阈值	6
标注	7
点	8
标题	9
图注(Legend)	9
风格	0
图片1	1
结果 <mark>说明</mark>	2
主要结果 1	2
补 <mark>充结果</mark>	2
方法学 1	4
如何引用 1	5
常见问题 1	6

基本概念

➤ 差异排序图: 差异分析后得到差异倍数(FoldChange)和经过转换的校正后的 p 值,通过最终所得差异倍数数据的大小进行排序,做出差异排序图,展示 差异分析的结果,也是火山图的另外一种可选的可视化形式。

应用场景

主要用于可视化差异分析后的结果, 需要提供 logFC 和校正后的 p 值(或者 p 值)

上传数据 绘制差异排序图

差异倍数排序

主要结果

通过差异排序图展示差异分析结果。

- ➤ 图中横坐标为差异表达基因根据差异倍数排序后(从大到小)的位置,纵坐标为差异表达倍数(log 化处理)。图中的点越靠近左右两边,差异倍数的绝对值越大。
- ▶ 图中每个点代表一个分子(基因,即上传数据的 ID 列),点的相对大小对应其 logFC 值(即上传数据的第2列),点的颜色代表经过校正后的 p 值(或 p 值,即上传数据的第3列)。
- 》(<mark>阈值线</mark>)图中的两根横线,分别代表 logFC 为 -1 和 1 的横线,还有一根竖线,代表差异表达基因数量中位数的线。(阈值可以通过参数调整)
- ▶ <mark>图注说明</mark>,一个代表按照矫正后的 p 值范围的颜色渐变,另一个图注代表按照 logFC 的值画出相对应差异基因代表的点的大小。
- 补充说明:如果上传的数据中分子的信息含有缺失,这些分子信息会被删除,只会保留信息全的(都含有 logFC 和校正后 p 值或者 p 值的)的内容。 所以如果上传的数据中含有缺失的,可能最终图中实际的分子数量会少。

数据格式

1	А	В	С
1	gene	logFC	padj
2	TINAG	11.42176924	0.002045602
3	CPLX2	10.78346635	1.72926E-24
4	INS-IGF2	-10.72502805	3.40332E-08
5	CLEC4M	-10.4939252	1.13013E-21
6	HOXA13	10.24743564	6.05726E-09
7	PAGE4	10.02038069	0.001547695
8	CLEC1B	-9.694371799	2.12659E-27
9	CHP2	9.146296978	0.147290991
10	RTBDN	8.80808934	0.044341667
11	CFTR	-8.793154523	3.58571E-09
12	SPRR1B	-8.625761728	0.181574636
13	CXCL14	-8.488664898	7.93508E-33

数据要求:

- ▶ 需要 3 列数据: ID 列 | logFC 列 | p 值或者校正后 p 值(p.adj)列, 至少 10 行以上。注意命名问题。
- ▶ 第 1 列为分子名(也可以是其他名),不能含有重复的名字,列名可以随意。这部分数据将可能会用于标注分子功能。
- ➤ 第 2 列为 logFC 值,对应分子经过差异分析后的 logFC 值,不需要原始 Fold Change 值 (不需要转成 Fold Change 值),这里的数值即为每个分子 对应的 y 坐标,不能有异常值。列名必须要为 logFC, 否则可能会存在识别错误。
- ▶ 第 3 列为校正后的 p 值, 列名必须 为 pvalue 或者 p.adj。 (不需要手动 转成 -log10 的形式)
- ▶ 补充说明: 如果上传的数据中分子的信息含有缺失,这些分子信息会被删除,只会保留信息全的(都含有 logFC 和校正后 p 值或者 p 值的)的内容。
 所以如果上传的数据中含有缺失的,可能最终图中实际的分子数量会少。。
- ▶ 最多 70000 行, 若验证数据时返回报错, 需要在上传数据内进行相应的调整, 然后再上传数据。(如果文件过大, 请适当减少 一些没用的列或者更换文件格式)

参数说明

(说明: 标注了颜色的为常用参数。)

阈值

- ▶ log₂FC 阈值:主要控制图中划分是否有显著差异表达对应的差异倍数 (FoldChange) 阈值的阈值线,默认 1。设置 log₂FC 为 2 时,即差异倍数为
 - 4, 注意与y轴垂直的两条竖线, 如下:

标注

▶ 标注 id: 可以输入想要标注的分子。这里输入的分子要和上传数据中的第一 列对应,如果在上传数据的第一列中没有找到,则无法进行标注。另外,如 果标注的分子比较多或者分子间距离比较近,可能也会无法标注。

▶ 标注大小:控制图中需标注的文字大小,默认是 5pt。

点

- ▶ 填充色:点的填充色颜色选项,主要控制显著性 p 值的颜色范围,修改第一和第二色卡作为数值从大到小的渐变色,最多支持修改 2 个颜色。受配色方案全局性修改。
- ➤ <mark>描边色</mark>:点的描边色颜色选项,主要控制显著性 p 值的颜色范围,修改第一和第二色卡作为数值从大到小的渐变色,最多支持修改 2 个颜色。受配色方案全局性修改。
- ▶ 样式:点的样式类型,可选择 <u>圆形、正方形、菱形、三角形、倒三角</u>,默认为圆形。单选,选择后全局修改。
- ▶ 大小:点的相对大小,取决于logFC的数值范围。
- ▶ 不透明度:点的透明度。0为完全透明,1为完全不透明。

标题

▶ 大标题: 大标题文本

➤ x 轴标题: x 轴标题文本

▶ y轴标题: y轴标题文本

▶ 补充:在要换行的中间插入\n。如果需要上标,可以用两个英文输入法下的 大括号括住,比如 {{2}};如果需要下标,可以用两个英文输入法下的中括 号括住,比如 [[2]]。

图注(Legend)

▶ 是否展示:是否展示图注

▶ 图注标题:可以添加图注标题,修改颜色图注

▶ 图注位置:可选择 默认、右、上。

风格

▶ 边框:是否添加外框

▶ 网格:是否添加网格

➤ xy 颠倒: 可以颠倒 xy 轴

> 文字大小: 针对图中所有文字整体的大小控制

图片

▶ 宽度: 图片横向长度,单位为 cm

▶ 高度:图片纵向长度,单位为 cm

> 字体:可以选择图片中文字的字体

结果说明

主要结果

主要结果格式为图片格式,提供 PDF、TIFF 格式下载,结果报告可以下载包括 pdf 以及说明文本的内容。

补充结果

差异统计	
统计一些常见阈值(logFC 大于2或者1或者是0.58(0.58换算过来就是1.5倍))下的差异分子数量	
筛选条件	筛选后的数量
LogFC >2 & p.adj<0.05	700
LogFC >1.5 & p.adj<0.05	881
LogFC >1 & p.adj<0.05	942
LogFC >0.58 & p.adj<0.05	942

此表格提供在上传数据中,一些常见阈值的差异分子数量统计。可以根据需要下载差异分析结果后用 excel 表进行过滤。

方法学

所有分析和可视化均在 R 4.2.1 中进行

涉及的 R 包: ggplot2 包 (用于可视化)

处理过程:利用 ggplot2 包对上传的差异分析结果进行可视化。

如何引用

生信工具分析和可视化用的是 R 语言,可以直接写自己用 R 来进行分析和可视化即可,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。

常见问题

1. 如何标注分子?

答:

可以在 标注 参数中【标注 id】输入分子,这里输入的分子要和上传数据中的分子列对应。

如果输入了不存在的分子,则无法进行标注。另外,如果标注的分子比较多或者分子间距离比较近,可能也会无法标注。

1	Α	В	С
1	gene	logFC	padj
2	TINAG	11.42176924	0.002045602
3	CPLX2	10.78346635	1.72926E-24
4	INS-IGF2	-10.72502805	3.40332E-08
5	CLEC4M	-10.4939252	1.13013E-21
6	HOXA13	10.24743564	6.05726E-09
7	PAGE4	10.02038069	0.001547695
8	CLEC1B	-9.694371799	2.12659E-27
9	CHP2	9.146296978	0.147290991
10	RTBDN	8.80808934	0.044341667

2. 为什么标注了分子没有在图中标注出来?

答:

首先,需要保证输入的分子能在上传数据中的第一列找到,如果在上传数据的分子列中没有找到,则无法进行标注。另外,如果标注的分子比较多或者分子间距离比较近,可能也会无法标注。

3. 是否需要过滤掉不满足差异阈值的分子,仅保留差异表达的分子? 答:

不建议只保留差异表达的分子,建议是用差异分析后的全部的结果。

4. 上传数据中有一些分子没有 logFC 或者 p 值,这种是否需要去掉? 答:

可以不用去掉,模块会自动去掉。分子中只要缺少了 logFC 或者 p 值就无法在 图中出现。

