Network Layer

Delivery, Forwarding and Routing

Delivery: It refers to the way a packet is handled by the underlying networks under the control of the network layer.

Forwarding: It refers to the way a packet is delivered to the next station.

Routing: It refers to the way routing tables are created to help in forwarding.

Types of Delivery

1. Direct Delivery

- (i)Source and destination are in the same network
- (ii) Delivery is between the last router and destination

2. Indirect Delivery

Destination is not in the same destination

Direct Delivery

Indirect Delivery

FORWARDING

Forwarding Techniques

- 1. Next hop method
- 2. Network specific method
- 3.Host specific method
- 4. Default method

Next-hop method

A

Destination	Route
Host B	R1, R2, Host B

R1

Destination	Route
Host B	R2, Host B

R2

Destination	Route
Host B	Host B

a. Routing tables based on route

A

Destination	Next Hop
Host B	R1

R1

Destination	Next Hop
Host B	R2

R2

Destination	Next Hop
Host B	

b. Routing tables based on next hop

Network-specific method

Host-specific routing

Default routing

Switching

Figure 1 Switched network

Figure 2 Taxonomy of switched networks

CIRCUIT-SWITCHED NETWORKS

Figure 3 *A trivial circuit-switched network*

Example 1: Figure 4 Circuit Switched Network

Example 2: Figure 5 Circuit-switched network

Figure 6 Delay in a circuit-switched network

Datagram Networks

Figure 7 A datagram network with four switches (routers)

Figure 8 Routing table in a datagram network

Destination address	Output port
1232 4150	1 2
:	:
9130	3

Figure 9 Delay in a datagram network

Virtual Circuit Network

Figure 10 *Virtual-circuit network*

Addressing:

- 1.Global Address
- 2. Virtual Circuit Identifier

Data Transfer Phase:

Figure 13 Source-to-destination data transfer in a virtual-circuit network

Connection Setup Phase

Connection Setup Request:

Connection Setup Phase

Acknowledgment

Figure 16 Delay in a virtual-circuit network

STRUCTURE OF A SWITCH

- 1.Structure of Circuit Switches
 - 1.1 Space Division Switch
 - 1.2 Time Division Switch
- 2. Structure of Packet Switches

Space Division Switch: Crossbar Switch

Figure 17 Crossbar switch with three inputs and four outputs

Space Division Switch: Multistage Switch

Figure 18 Multistage switch

Note

In a three-stage switch, the total number of crosspoints is $\frac{2kN+k(N/n)^2}{\text{which is much smaller than the number of crosspoints in a single-stage switch (N^2).}$

Example 1

Design a three-stage, 200×200 switch (N = 200) with k = 4 and n = 20.

Example 1

Design a three-stage, 200×200 switch (N = 200) with k = 4 and n = 20.

Solution

In the first stage we have N/n or 10 crossbars, each of size 20×4 . In the second stage, we have 4 crossbars, each of size 10×10 . In the third stage, we have 10 crossbars, each of size 4×20 . The total number of crosspoints is $2kN + k(N/n)^2$, or 2000 crosspoints. This is 5 percent of the number of crosspoints in a single-stage switch (200 × 200 = 40,000).

Time Division Switch

Figure 19 Time-slot interchange

Figure 20 Time-space-time switch

Structure of Packet Switch

Figure 21 Packet switch components

Figure 22 Input and output port

Figure 23 A banyan switch

Figure 24 Examples of routing in a banyan switch

a. Input 1 sending a cell to output 6 (110)

b. Input 5 sending a cell to output 2 (010)