Logic in CS Autumn 2024

Problem Sheet 9

S. Krishna

1. Consider the following set of sentences $\Gamma = \{F_1, F_2, F_3, F_4\}$ such that

$$F_1 = \forall x (\forall y (C(x, y) \rightarrow R(y)) \rightarrow H(x))$$

$$F_2 = \forall x (G(x) \to R(x))$$

$$F_3 = \forall x (\exists y (C(y, x) \land G(y)) \rightarrow G(x))$$

$$F_4 = \forall x (G(x) \to H(x)).$$

- (a) What is the signature τ of Γ ?
- (b) Skolemize F_1, \ldots, F_4 and obtain G_1, \ldots, G_4 . What is the signature of G_1, \ldots, G_4 ?
- (c) Show that propositional resolution gives \emptyset by resolution applied on ground instances of G_1, \ldots, G_4 .
- 2. Give an example of a finite set of clauses F in first-order logic such that $Res^*(F)$ is infinite.
- 3. Give an example of a signature τ that has at least one constant symbol and a τ -formula F (that does not mention equality) such that F is satisfiable but does not have a Herbrand model.
- 4. A closed formula is in the class $\exists^* \forall^*$ if it has the form $\exists x_1 \dots \exists x_m \forall y_1 \dots \forall y_n F$, where F is quantifier-free and $m, n \geq 0$.
 - (a) Prove that if an $\exists^*\forall^*$ -formula over a signature with no function symbols has a model then it has a finite model.
 - (b) Suggest an algorithm for deciding whether a given $\exists^*\forall^*$ -formula over a signature with no function symbols has a model.
 - (c) Argue that the satisfiability problem for the class of \forall^* -formulas that may mention function symbols is undecidable.
- 5. Execute ground resolution to show that the following formula is unsatisfiable:

$$\forall x \forall y ((P(x) \land \neg Q(y,y)) \rightarrow Q(x,y)) \land \neg \exists x (P(x) \land \exists y (Q(y,y) \land Q(x,y))) \land \exists y (P(y))$$