SS 2018 Sheet 3 04.05.2018

Scientific Computing II

Multigrid Methods

Exercise 1: Galerkin Construction of Coarse Grid Operator

We consider the discrete Poisson system with Dirichlet boundary conditions and 7 grid points,

$$\frac{-u_{i-1} + 2u_i - u_{i+1}}{h^2} = f_i, \quad i = 1...6$$

$$u_0 = u_6 = 1, \quad \text{(inhomogeneous)}$$
(1)

where the mesh size is $h := \frac{1}{6}$.

- (a) Formulate the system of equations in matrix form, i.e. $A_h u = b_h$. What do you need to do in order to re-use the (reduced) operator A_h from the first worksheet?
- (b) Define a linear mapping $R: \mathbb{R}^5 \to \mathbb{R}^2$ according to the full weighting scheme. Set up the respective matrix R.
- (c) Define a linear mapping $P: \mathbb{R}^2 \to \mathbb{R}^5$ which prolongates a solution vector from the coarse to the fine grid using linear interpolation. Set up the respective matrix P. How are R and P related?
- (d) Based on the matrices R, P and A_h , compute the coarse grid operator $A_{2h} := RA_hP$. Compare A_{2h} to the operator that you obtain by discretising the problem on the coarse grid. What do you observe?
- (e) What happens if you restrict a constant vector, e.g. $r = \vec{1}$. Can you "mend" the restriction operator such that a constant vector is invariant under restriction? Does it matter?
- (f) Say you are given routines for interpolation, restriction, and applying the fine grid operator. How could you compute RA_hP ?

Exercise 2: Multigrid for Convection-Diffusion

Consider the one-dimensional convection-diffusion equation

$$-\epsilon u_{xx} + u_x = f(x) \tag{2}$$

and its discrete representation

$$\frac{\epsilon}{h^2}(-u_{i-1} + 2u_i - u_{i+1}) + \frac{1}{h}(u_i - u_{i-1}) = f_i, \quad i = 1, ..., N - 1$$
(3)

with Dirichlet conditions $u_0 = u_N = 0$ and $\epsilon \ge 0$. In this exercise, we assume a vanishing right hand side f(x) = 0. The solution of the differential equation is thus given by u(x) = 0.

- (a) Show that for $\epsilon \ll 1$, the Jacobi method applied to Eq. (3) converges very slowly whereas the Gauss-Seidel method is expected to converge very fast. Hint: Insert an error frequency $u_n = \sin(\pi kih)$ into the respective iterative scheme and analyse the behaviour for $\epsilon \to 0$.
- (b) In programming assignment 3, we want to use matrix-dependent restriction and interpolation to set up multigrid for solving Eq. (3). Show that the Galerkin coarsening $A_{2h} := RA_hP$ applied to an arbitrary three-point stencil $[s_l \ s_c \ s_r]$ with $s_c = -(s_l + s_r)$ on the fine grid yields the coarse grid stencil

$$\frac{1}{s_c}[-s_l^2 \ (s_l^2 + s_r^2) \ -s_r^2]. \tag{4}$$