• Single Diode Reference:

- > I_{REF}: *DC Bias Current*
- Creates a voltage drop of V_D (or V_{BE}) across the diode of $\sim 0.7 \ V$
- \succ Known as V_{BE} (or V_D)

 Reference
- > Precision quite poor
- > Thermal tracking poor

• Multiple Diode Reference:

- > Putting multiple diodes in series
- > DC bias current I_{REF}
 pushed through them
- Each diode creates a drop of V_D across it
- > Has same problems as Single Diode Reference
- Note: n can only be an integer

- V_{BE} (or V_D) Multiplier Circuit:
 - Previous two circuits provide $V_0 = nV_D$, with n being an integer ≥ 1
 - For any arbitrary value of n
 (≥1), this circuit becomes useful
 - > Immensely popular because of its simplicity and effectiveness
 - ➤ Biased by a DC current source

 I_{REF}

> Neglecting base current:

$$V_{BE} = \frac{R_2}{R_1 + R_2} V_0$$

$$\Rightarrow V_0 = \left(1 + \frac{R_1}{R_2}\right) V_{BE}$$

- $\Rightarrow V_{BE}$ Multiplier with multiplication factor $(1 + R_1/R_2)$
- Any arbitrary ratio of R_1 and R_2 can be used, but the multiplication factor is always ≥ 1

- ► Least possible $V_0 = V_{BE} [R_1 = 0 \text{ (short-circuit)}]$ and $R_2 \to \infty \text{ (open-circuit)}]$
 - ⇒ Diode-Connected BJT
- ightharpoonup Has excellent thermal tracking, since TC_F of R_1 and R_2 cancel each other, but the TC_F of V_{RF} remains
- So far, we have got voltage references having $V_0 \ge V_{BE}$
- \succ How to have a voltage reference having $V_0 < V_{BE}$?

• Saturated Transistor:

> Neglecting base current:

$$V_0 = V_{BE} - I_{REF}R$$

- Note: V_0 is actually V_{CE} , which is $< V_{BE}$
 - $\Rightarrow Q$ saturated
 - ⇒ Analysis highly approximate, since base current can't be neglected in saturation
- > Typical range of $V_0 \sim 0.2$ -0.7 V

