Evaluation of Operational Z-S Relationships in Marquette, Michigan

Alex Blackmer¹ Ali Tokay²

¹University of Utah, Salt Lake City, Utah ² Joint Center for Earth Systems Technology, UMBC, Baltimore, MD and NASA Goddard Space Flight Center, Greenbelt, MD

Acknowledgements

David Wolff - GPM GV Manager

Claire Pettersen & Mark Kulie - Site Pl

Jason Pippitt & David Marks - Radar analysts

Gauge Technicians

David Beachler - NWS Weather Station

John & Monique Wright - Citizen Weather Station

Motivation and Objective

 Accurate ground-based radar snow estimation is an integral component of NASA's Global Precipitation Measurement (GPM) mission validation network over the United States.

 This study aims to provide guidance on which reflectivity - snow water equivalent relationship to use given the atmospheric conditions.

Instrumentation

 NWS Dual-Polarization Radar (KMQT)

- Pluvio 200 & 400
 - Weighing bucket
 - 5 Heated and 4 Unheated
 - Single alter shield
- Surface Weather Stations
 - NWS
 - Citizen

MQT Data Acquisition Network

Site	Dis- 88D (km)	H_elev1 (km)	H_elev2 (km)
PL01	15.81	0.236	0.518
PL02	10.87	0.166	0.360
PL03	10.29	0.313	0.495
PL04	5.40	0.126	0.223
PL05	12.60	0.141	0.365
PL06	12.12	0.228	0.443
PL07	17.50	0.423	0.735
PL08	4.91	0.075	0.163
PL10	4.52	0.108	0.189

Radar Data Processing

- Used WS88-D Radar
 - 1 deg beam width
 - 1 km radial distance
- Data received at 10 min intervals and downscaled to 1 min intervals
- The center pixel (5) used as the equivalent radar reflectivity value
- If the center pixel is invalid, then a composite of the adjacent 4 pixels is used
- If the first elevation is invalid, then the same process is applied to the 2nd elevation

7	8	9
4	5	6
1	2	3

Gauge Data Processing

- Pluvio Details:
 - 0.01 mm resolution
 - 1 min sampling interval
 - Non-real time accumulation for periods of 10 min or longer
- Data Processing:
 - Sets of three accumulation time series were constructed
 - 2 wind corrected, 1 uncorrected
 - Only the uncorrected time series was used

Data Analysis

 Both Pluvio and Radar data are subject to systematic and random error

 Observed spikes in radar data, which were then filtered out

 Malfunctioning Pluvio gauges were omitted from analysis

Methodology

$$Z_e = aS^b$$

Z_e is the equivalent radar reflectivity

S is the liquid water equivalent snowfall rate

- Operational & Habit Relationships
 - 16 relationships applied to every event
- Event Specific Relationships
 - 16 event-based relationships applied individually

Dual Polarization Parameters

$$S(Z_e) = aZ_e^b$$

 $S(K_{DP}, Z_H) = a'K^{b'}_{DP}Z^{c'}_{H}$
 $S(K_{DP}, Z_{DR}) = a''K^{b''}_{DP}Z^{c''}_{DR}$
 $S(Z_H, Z_{DR}) = a*Z^{b*}_{H}Z^{c*}_{DR}$

• Equivalent radar reflectivity (Ze) was the only radar parameter used, as differential phase shift (KDP) and differential reflectivity(ZDR) were unused because hydrometeors sampled are both horizontally and vertically oriented.

Operational & Habit Z_e-S Relationships

Ze-S	A-coeff	В-ехр	Ze-S	A-coeff	B-exp
Wet Snow ²	614	1.4	Sierra Nevada ¹	222	2.0
Graupel ²	410	1.4	Canadian ³	1797	2.2
Dry Snow ²	300	1.4	MRMS ⁶	75	2.0
Dry Snow BB ²	71	1.4	Finland ⁵	100	2.0
Northeast ¹	120	2.0	Crystal ⁴	170	1.5
N-Plains Mid-W ¹	180	2.0	Aggregate ⁴	70	1.3
High Plains ¹	130	2.0	Rime ⁴	140	1.6
Mountain-West ¹	40	2.0	Graupel ⁴	202	1.6

Event 003 - Description

- 01/03/2018 01/06/2018
- Shallow lake effect storm
- Maximum wet bulb temperature: -13 C
- Average wind speed 3.6 m/s
- Habit type: 90% Dendrites, 9% Needles
- PIP Maximum particle size < 5 mm
- MRR Doppler Velocity ~1 m/s
- MRR reflectivity < 15 dBZe

Event 003 – PIP Based Relationships

- Derived from Particle Imaging Package (PIP)
- Provided by Ali Tokay
- BM, HW, KC, MH are different methods for mass calculation
- x = 1.2, 1.3, 1.4, 1.5 and the maximum dimensions as a function of equivalent diameter (Dmax = xDpip)

Ze-S	A-coeff (1.2D _{PIP})	-exp (1.2D _{PIP})	A-coeff (1.3D _{PIP})	b-exp (1.3D _{PIP})	A-coeff (1.4D _{PIP})	b-exp (1.4D _{PIP})	A-coeff (1.5D _{PIP})	b-exp (1.5D _{PIP})
BM	34.49	1.25	37.40	1.26	38.75	1.25	47.44	1.25
HW	20.83	1.23	20.20	1.20	20.70	1.21	25.11	1.21
KC	28.02	1.29	29.19	1.28	31.12	1.28	36.47	1.27
МН	29.15	1.28	31.40	1.29	32.63	1.28	39.22	1.27

Event 003 – Est. vs Measured

Event 003 – Operational & Habit

Uncorrected

Event 003 - PIP Event Specific

Uncorrected

NWS Wind Corrected

Uncorrected

Event 003

 Red-Green represents lowest to highest % absolute bias

Op. Rel	% Abs.	PIP Rel	% Abs. Bias
	Bias		
Wet-Snow	75.88	BM-1.2	95.14
Graupel	67.76	BM-1.3	82.05
Dry-Snow	59.79		79.75
Dry-Snow-BB	20.99	BM-1.5	52.33
Northeast	17.17	HW-1.2	178.60
N-Plains/Mid-W	16.37	HW-1.3	191.29
High-Plains		HW-1.4	179.28
Mountain-W	77.56	HW-1.5	145.61
Sierra-Nevada	22.81	KC-1.2	130.82
Canadian	65.23	KC-1.3	127.58
MRMS	33.13	KC-1.4	109.34
Finland	23.55	KC-1.5	87.49
Crystal	49.08	MH-1.2	129.80
Aggregate	22.68	MH-1.3	119.25
Rime	15.06	MH-1.4	110.35
Graupel	24.80	MH-1.5	84.74

Op. Rel	% Abs.	PIP Rel	% Abs. Bias
	Bias		
Wet-Snow	83.95	BM-1.2	41.11
Graupel	78.55	BM-1.3	32.7
Dry-Snow	73.24	BM-1.4	31.38
Dry-Snow-BB	24.97	BM-1.5	20.71
Northeast	31.89	HW-1.2	92.25
N-Plains/Midwest	44.27	HW-1.3	100.69
High-Plains	34.40	HW-1.4	92.70
Mountain-W	22.42	HW-1.5	65.60
Sierra-Nevada	48.63	KC-1.2	60.4
Canadian	76.86	KC-1.3	58.29
MRMS	13.10	KC-1.4	44.69
Finland		KC-1.5	31.61
Crystal	66.12	MH-1.2	59.77
Aggregate	21.02	MH-1.3	52.75
Rime	39.68	MH-1.4	46.8
Graupel	45.01		

Event 032 - Description

- 01/03/2018 01/06/2018
- Shallow lake effect storm
- Maximum wet bulb temperature: -10 C
- Average wind speed 5.3 m/s
- Habit type: 76% Dendrites, 20%
 Needles
- PIP Maximum particle size < 5 mm
- MRR Doppler Velocity ~1 m/s
- MRR reflectivity < 15 dBZe

Event 032 – PIP Based Relationships

- Derived from Particle Imaging Package (PIP)
- Provided by Ali Tokay
- BM, HW, KC, MH are different methods for mass calculation
- x = 1.2, 1.3, 1.4, 1.5 and the maximum dimensions as a function of equivalent diameter (Dmax = xDpip)

Z-S	A-coeff (1.2 D _{PIP})	B-exp (1.2D _{PIP})	A-coeff (1.3 D _{PIP})	B-exp (1.3D _{PIP})	A-coeff (1.4 D _{PIP})	B-exp (1.4D _{PIP})	A-coeff (1.5 D _{PIP})	B-exp (1.5D _{PIP})
BM	33.74	1.19	37.09	1.21	37.80	1.19	45.43	1.20
HW	19.07	1.14	20.64	1.16	20.76	1.15	23.71	1.16
KC	27.83	1.24	28.53	1.22	31.05	1.23	34.67	1.21
МН	38.05	1.22	31.90	1.22	31.30	1.23	28.44	1.22

Event 032 – Est. vs Measured

Event 032 – Operational & Habit

Uncorrected

Event 032 - PIP Event Specific

Uncorrected

NWS Wind Corrected

Uncorrected

Event 032

 Red-Green represents lowest to highest % absolute bias

Op. Rel	%	PIP Rel	% Abs.
	Abs. Bias		Bias
Wet-Snow	80.80	BM-1.2	87.73
Graupel	78.13	BM-1.3	141.60
Dry-Snow	75.46	BM-1.4	103.20
Dry-Snow-BB	60.53	BM-1.5	98.40
Northeast	60.00	HW-1.2	80.80
N-Plains/Mid-W	52.80	HW-1.3	137.87
High-Plains		HW-1.4	98.40
Mountain-W	102.93	HW-1.5	89.86
Sierra-Nevada	54.66	KC-1.2	109.60
Canadian	66.13	KC-1.3	213.86
MRMS	86.66	KC-1.4	136.26
Finland	94.66	KC-1.5	126.66
Crystal	68.26	MH-1.2	97.60
Aggregate	91.73	MH-1.3	168.53
Rime	89.33	MH-1.4	117.33
Graupel	118.13	MH-1.5	112.80

Op. Rel	% Abs. Bias	PIP Rel	% Abs. Bias
Wet-Snow	88.62	BM-1.2	63.30
Graupel	84.92	BM-1.3	73.82
Dry-Snow	81.50	BM-1.4	63.58
Dry-Snow-BB	68.70		
Northeast	63.01	HW-1.2	65.00
N-Plains/Midwest	67.70	HW-1.3	71.8
High-Plains	63.58		63.01
Mountain-W	53.20	HW-1.5	61.87
Sierra-Nevada	66.71	KC-1.2	67.85
Canadian	76.52	KC-1.3	97.01
MRMS	54.48	KC-1.4	70.98
Finland	57.61	KC-1.5	69.50
Crystal	60.59	MH-1.2	66.00
Aggregate	63.15	MH-1.3	82.50
Rime	61.02	MH-1.4	68.27
Graupel	66.14	MH-1.5	67.56

Event 034 - Description

- 01/03/2018 01/06/2018
- Deep lake effect storm
- Maximum wet bulb temperature: -12 C
- Average wind speed 2 m/s
- Habit type: 63% Dendrites, 14%
 Needles, 22% Plates
- PIP Maximum particle size < 5 mm
- MRR Doppler Velocity ~1 m/s
- MRR reflectivity < 15 dBZe

Event 034 - PIP Based Relationships

- Derived from Particle Imaging Package (PIP)
- Provided by Ali Tokay
- BM, HW, KC, MH are different methods for mass calculation
- x = 1.2, 1.3, 1.4, 1.5 and the maximum dimensions as a function of equivalent diameter (Dmax = xDpip)

Z-S	A-coeff (1.2 D _{PIP})	B-exp (1.2D _{PIP})	A-coeff (1.3 D _{PIP})	B-exp (1.2D _{PIP})	A-coeff (1.4 D _{PIP})	B-exp (1.2D _{PIP})	A-coeff (1.5 D _{PIP})	B-exp (1.2D _{PIP})
BM	33.74	1.19	37.09	1.21	37.80	1.19	45.43	1.20
HW	19.07	1.14	20.64	1.16	20.76	1.15	23.71	1.16
KC	27.83	1.24	28.53	1.22	31.05	1.23	34.67	1.21
МН	38.05	1.22	31.90	1.22	31.30	1.23	28.44	1.22

Event 034 – Est. vs Measured

Event 034 – Operational & Habit

Uncorrected

Event 034 - PIP Event Specific

Uncorrected

NWS Wind Corrected

Uncorrected

Event 034

 Red-Green represents lowest to highest % absolute bias

Op. Rel	% Abs.	PIP Rel	% Abs. Bias
	Bias		2.0.0
Wet-Snow	79.12	BM-1.2	66.93
Graupel	72.10	BM-1.3	177.18
Dry-Snow	65.36	BM-1.4	92.39
Dry-Snow-BB	25.21		
Northeast	18.68	HW-1.2	54.67
N-Plains/Mid-W	23.49	HW-1.3	158.03
High-Plains	19.42	HW-1.4	90.57
Mountain-W	62.96	HW-1.5	75.70
Sierra-Nevada	28.10	KC-1.2	67.45
Canadian	66.53	KC-1.3	185.09
MRMS	29.95	KC-1.4	99.59
Finland	20.93	KC-1.5	93.71
Crystal	42.36	MH-1.2	47.56
Aggregate	19.82	MH-1.3	150.46
Rime		MH-1.4	81.15
Graupel	7.08	MH-1.5	109.75

Op. Rel	% Abs. Bias	PIP Rel	% Abs. Bias
Wet-Snow	83.11	BM-1.2	39.59
Graupel	77.44	BM-1.3	124.17
Dry-Snow	71.98	BM-1.4	56.74
Dry-Snow-BB	26.91		
Northeast	24.37	HW-1.2	33.36
N-Plains/Midwest	38.12	HW-1.3	108.69
High-Plains	27.16	HW-1.4	55.42
Mountain-W	36.32	HW-1.5	45.19
Sierra-Nevada	41.85	KC-1.2	35.43
Canadian	72.93	KC-1.3	130.57
MRMS	16.30	KC-1.4	61.42
Finland	12.89	KC-1.5	56.67
Crystal	53.38	MH-1.2	24.27
Aggregate	20.61	MH-1.3	102.56
Rime	24.70	MH-1.4	46.51
Graupel	21.16	MH-1.5	69.64

Event 362 - Description

- 01/03/2018 01/06/2018
- Deep lake effect storm
- Maximum wet bulb temperature: -14 C
- Average wind speed 1.7 m/s
- Habit type: 82% Dendrites, 4.5%
 Needles, 13.5% Plates
- PIP Maximum particle size < 5 mm
- MRR Doppler Velocity ~1 m/s
- MRR reflectivity < 15 dBZe

Event 362 – PIP Based Relationships

- Derived from Particle Imaging Package (PIP)
- Provided by Ali Tokay
- BM, HW, KC, MH are different methods for mass calculation
- x = 1.2, 1.3, 1.4, 1.5 and the maximum dimensions as a function of equivalent diameter (Dmax = xDpip)

Z-S	A-coeff (1.2 D _{PIP})	B-exp (1.2D _{PIP})	A-coeff (1.3 D _{PIP})	B-exp (1.2D _{PIP})	A-coeff (1.4 D _{PIP})	B-exp (1.2D _{PIP})	A-coeff (1.5 D _{PIP})	B-exp (1.2D _{PIP})
BM	26.02	1.15	29.29	1.17	29.27	1.15	35.57	1.15
HW	15.59	1.12	16.09	1.13	16.46	1.13	18.66	1.12
KC	21.94	1.20	23.35	1.19	24.27	1.19	27.24	1.16
МН	23.31	1.20	24.66	1.20	26.38	1.20	30.25	1.18

Event 362 – Est. vs Measured

Event 362 – Operational & Habit

Uncorrected

Event 362 - PIP Event Specific

Uncorrected

NWS Wind Corrected

Uncorrected

Event 362

 Red-Green represents lowest to highest % absolute bias

-				
Op. Rel	% Abs. Bias	PIP Rel	% Abs. Bias	
Wet-Snow	86.57	BM-1.2	31.04	
Graupel	82.42	BM-1.3	30.76	
Dry-Snow	78.16	BM-1.4	31.13	
Dry-Snow-BB	39.62	BM-1.5	34.24	
Northeast	33.29	HW-1.2	63.31	
N-Plains/Mid-W	38.20	HW-1.3	61.14	
High-Plains	33.29	HW-1.4	58.79	
Mountain-W	46.17	HW-1.5	45.34	
Sierra-Nevada	34.49	KC-1.2	85.79	
Canadian	62.55	KC-1.3	79.20	
MRMS	30.67	KC-1.4	65.75	
Finland	37.99	KC-1.5	51.45	
Crystal	14.84	MH-1.2	111.75	
Aggregate		MH-1.3	105.45	
Rime	41.59	MH-1.4	89.27	
Graupel	102.51	MH-1.5	66.50	

Op. Rel	% Abs. Bias	PIP Rel	% Abs. Bias
Wet-Snow	88.73	BM-1.2	32.57
Graupel	85.25	BM-1.3	34.22
Dry-Snow	81.68	BM-1.4	34.85
Dry-Snow-BB	48.07	BM-1.5	37.46
Northeast	37.82	HW-1.2	44.79
N-Plains/Midwest	46.33	HW-1.3	42.98
High-Plains	38.73	HW-1.4	41.00
Mountain-W	35.98	HW-1.5	32.88
Sierra-Nevada	42.85	KC-1.2	55.75
Canadian	68.58	KC-1.3	50.23
MRMS	24.45	KC-1.4	38.95
Finland	19.78	KC-1.5	27.12
Crystal	14.65	MH-1.2	77.52
Aggregate	12.45	MH-1.3	72.23
Rime	18.77	MH-1.4	58.67
Graupel	69.87	MH-1.5	39.58

Conclusion

After wind correction, the event-based relationships generally exhibited lower % absolute bias

Based on the percent absolute bias calculated from wind corrected gauge measurements, the following was found:

- Bohm Method derived relationships are typically the event-based relationship with the lowest % absolute bias for all 4 events.
- Regarding regional relationships, MRMS and Finland performed best, while the Canadian relationship consistently overestimated
- Among the NWS phase-based relationships, Dry-Snow-BB was the best
- For habit-based relationships, crystal and aggregate were the best

Future Work:

- Partner with Tim Garrett (University of Utah) and Ali Tokay
- Use Multi-Angle Snowflake Camera (MASC) and Differential Emissivity Imaging Disdrometer (DEID)
- Will analyze habit-based snowfall estimate relationships using in-situ measurements of snow habit, fall velocity, and density

References

- 1. Bukovčić, P., Ryzhkov, A., Zrnić, D., & Zhang, G. (2018). Polarimetric Radar Relations for Quantification of Snow Based on Disdrometer Data. *Journal of Applied Meteorology and Climatology, 57*(1), 103-120. doi:10.1175/jamc-d-17-0090.1
- 2. Fabry, F. (2017). Radar Meteorology Principles and Practice. Cambridge: Cambridge University Press.
- 3. Hassan, D., Taylor, P. A., & Isaac, G. A. (2017). Snowfall rate estimation using C-band polarimetric radars. *Meteorological Applications*, 24(1), 142-156. doi:10.1002/met.1613
- 4. Lim, S., Moisseev, D., Chandrasekar, V., & Lee, D. (2013). Classification and Quantification of Snow Based on Spatial Variability of Radar Reflectivity. *Journal of the Meteorological Society of Japan. Ser. II*, 91(6), 763-774. doi:10.2151/jmsj.2013-603
- 5. Saltikoff, E., Lopez, P., Taskinen, A., & Pulkkinen, S. (2015). Comparison of quantitative snowfall estimates from weather radar, rain gauges and a numerical weather prediction model. *Boreal Environment Research*, (20), 667–678.
- 6. Zhang, J., Howard, K., Langston, C., Kaney, B., Qi, Y., Tang, L., . . . Kitzmiller, D. (2016).
 Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation: Initial Operating Capabilities. *Bulletin of the American Meteorological Society,* 97(4), 621-638.
 doi:10.1175/bams-d-14-00174.1