(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-17689

(43)公開日 平成10年(1998)1月20日

	•							
(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ					技術表示箇所
C08J 7/04			C 0	8 J	7/04		S	
B 2 9 D 7/01	•		B 2	9 D	7/01			
// C08F 299/02	MRS		C 0	8 F 2	99/02		MRS	
C 0 9 D 155/00	PGZ		C 0	9 D 1	55/00		PGZ	
175/04	PHX			17	75/04		PHX	
		審査請求	未請求	請求」	質の数 5	OL	(全 14 頁)	最終頁に続く
(21)出願番号	特願平8-178290		(71)	人類出	000000	387		
					旭電化	工業株	式会社	
(22)出願日	平成8年(1996)7	月8日			東京都	荒川区	東尾久7丁目	2番35号
			(72)	発明者	仲田	忠祥		
					埼玉県	南埼玉	郡菖蒲町昭和	沼20番地 旭電
					化工業	株式会	社内	
			(72)	発明者	岡正	史		
					埼玉県	南埼玉	郡菖蒲町昭和	沼20番地 旭電
					化工業	株式会	社内	
			(74)	人野升	弁理士	羽鳥	修	
		•						
•								

(54) 【発明の名称】 熱可塑性樹脂フィルム

(57)【要約】

【課題】 特に農業用のフィルムあるいは壁紙として好適に使用することのできるような耐光性、耐汚染性、耐傷性、防嚢性などの改良された熱可塑性樹脂フィルムを提供すること。

【解決手段】 本発明の熱可塑性樹脂フィルムは、片面または両面に、塗膜形成用水系樹脂組成物により形成された塗膜を有しており、該塗膜形成用水系樹脂組成物が、ポリウレタン樹脂1~85重量%およびアクリル樹脂1~85重量%を含有し、かつ、両者を合計した樹脂固形分2~90重量%を含有する水系樹脂組成物であって、該アクリル樹脂が、共重合可能な不飽和結合を有する反応性乳化剤の存在下にアクリル系不飽和単量体の混合物を重合させることによって得られたものであることを特徴とする。

【特許請求の範囲】

【請求項1】 片面または両面に、塗膜形成用水系樹脂組成物により形成された塗膜を有している熱可塑性樹脂フィルムにおいて、該塗膜形成用水系樹脂組成物が、ポリウレタン樹脂1~85重量%を含有し、かつ、両者を合計した樹脂固形分2~90重量%を含有する水系樹脂組成物であって、該アクリル樹脂が、共重合可能な不飽和結合を有する反応*

1

*性乳化剤の存在下にアクリル系不飽和単量体の混合物を 重合させることによって得られたものであることを特徴 とする熱可塑性樹脂フィルム。

【請求項2】 上記反応性乳化剤が、下記〔化1〕の一般式(1)で表される化合物であることを特徴とする請求項1記載の熱可塑性樹脂フィルム。

【化1】

(式中、 R_1 は水素原子またはメチル基を示し、 R_2 は炭素原子数 $6\sim30$ の炭化水素基またはアシル基を示し、Aは炭素原子数 $2\sim4$ のアルキレン基を示し、mは $0\sim100$ を示し、Xは $-CH_2-0-$ 、-C0-0-または $-CH_2-0-C0-$ を示し、Zは水素原子またはノニオンもしくはアニオン系の親水基を示す。)

【請求項3】 上記アクリル樹脂が、メタクリル酸グリ 20 シジルエステルまたはアクリル酸グリシジルエステルを 0. 1~50重量%含有する不飽和単量体混合物を重合して得られるものであることを特徴とする請求項1または2記載の熱可塑性樹脂フィルム。

【請求項4】 農業用フィルムとして使用することを特 徴とする請求項1~3の何れかに記載の熱可塑性樹脂フィルム。

【請求項5】 壁紙として使用することを特徴とする請 求項1~3の何れかに記載の熱可塑性樹脂フィルム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、熱可塑性樹脂フィルムに関し、詳しくは、片面または両面に、ボリウレタン樹脂および特定のアクリル樹脂を含有する水系樹脂組成物により形成された塗膜を有している、耐候性、防爆性などの改良された農業用フィルム、壁紙等に特に好適に用いることのできる熱可塑性樹脂フィルムに関する。【0002】

【従来の技術及び発明が解決しようとする課題】塩化ビニル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹 40 脂等の熱可塑性樹脂は、機械的強度、耐薬品性、耐候性等の物性に優れ、かつ比較的安価であるため、種々の用途に用いられている。例えば、これらの熱可塑性樹脂は、トンネル栽培、ハウス栽培等に使用される農業用フィルムなどに使用されている。

【0003】熱可塑性樹脂フィルムの耐候劣化は樹脂自体の劣化もあるが、それ以前に主として可塑剤などの添加剤がブリードして物性を低下したり、汚れを生じることなどによる悪影響も大きい。また、表面に傷が生じるなどの劣化も生じる。これもの表面の汚れや傷は、大陽

20 光の透過を妨げ、作物の発育にも悪影響を与えるおそれ があるため、解決しなければならない問題である。

【0004】樹脂の耐候性を改善する方法として、紫外線吸収剤などを添加剤を使用する方法などがあげられるが、上記のような表面の汚れや傷の問題を解決するためにはこれだけでは全く不十分なものである。

【0005】また、壁紙として使用した場合においても、ブリードを原因とした汚れの防止、傷の発生の抑制の問題とともに光による着色あるいは退色などの問題があり、これを解消することは必須である。

30 【0006】 これらの問題を解決する方法としては、熱可塑性樹脂フィルムの表面に各種コーティングを施すことが提案されている。例えば、(メタ)アクリル酸あるいはそのエステル類によるもの、これを架橋させたもの、フッ素系樹脂、珪素系樹脂などによるものあるいはこれらに紫外線吸収剤等の各種の添加剤を加えたものなど種々の方法が提案されているが、これまでに未だ満足できる性能のものは得られていない。

【0007】また、熱可塑性樹脂フィルムを農業用フィルムとして、展張使用する際に内面に水滴が付着することによる曇が生じて農作物の発育に悪影響を与えるという欠点を有しており、これを防止するために内壁に防滴剤を塗布あるいは練り混んだりする等の方法が取られているが、防滴剤が流れ出して通常1年程度で効果が低下し、再度塗布する必要が生じ、極めて非効率である。

【0008】これらの持続性を改善する方法として、フィルムの表面に親水性樹脂を塗布して塗膜を形成する方法が提案されている。しかし、これまではその防滴効果は全く不十分なものであり、この問題に関しても合わせて解決しなければならない問題であった。

などの劣化も生じる。これらの表面の汚れや傷は、太陽 50 【0009】従って、本発明の目的は、特に農業用のフ

ィルムあるいは壁紙として好適に使用することのできる ような耐光性、耐汚染性、耐傷性、防暑性などの改良さ れた熱可塑性樹脂フィルムを提供することにある。 [0010]

【課題を解決するための手段】本発明者等は、種々検討 を重ねた結果、片面または両面に、ポリウレタン樹脂お よび特定のアクリル樹脂からなる水系樹脂組成物により 形成された塗膜を有している熱可塑性樹脂フィルムが、 上記目的を達成し得ることを知見した。

【0011】本発明は、上記知見に基づきなされたもの 10 で、片面または両面に、塗膜形成用水系樹脂組成物によ り形成された塗膜を有している熱可塑性樹脂フィルムに おいて、該塗膜形成用水系樹脂組成物が、ポリウレタン 樹脂1~85重量%およびアクリル樹脂1~85重量% を含有し、かつ、両者を合計した樹脂固形分2~90重 量%を含有する水系樹脂組成物であって、該アクリル樹 脂が、共重合可能な不飽和結合を有する反応性乳化剤の 存在下にアクリル系不飽和単量体の混合物を重合させる ことによって得られたものであることを特徴とする熱可 塑性樹脂フィルムを提供するものである。

【発明の実施の形態】以下、本発明の熱可塑性樹脂フィ ルムについて詳述する。本発明に使用される塗膜を形成 する前の熱可塑性樹脂フィルムは、熱可塑性樹脂から形 成されるものであり、該熱可塑性樹脂としては、例え は、塩化ビニル系樹脂、ポリオレフィン系樹脂、ポリエ ステル系樹脂などがあげられる。ここで、上記塩化ビニ ル系樹脂としては、塊状重合、溶液重合、懸濁重合、乳 化重合などその重合方法には特に限定されず、例えば、 ポリ塩化ビニル、塩素化ポリ塩化ビニル、ポリ塩化ビニ リテン、塩素化ポリエチレン、塩化ビニル-酢酸ビニル 共重合体、塩化ビニルーエチレン共重合体、塩化ビニル -プロピレン共重合体、塩化ビニル-スチレン共重合 体、塩化ビニルーイソブチレン共重合体、塩化ビニルー 塩化ビニリデン共重合体、塩化ビニルースチレンー無水 マレイン酸三元共重合体、塩化ビニルースチレンーアク リロニリトル共重合体、塩化ビニル-ブタジエン共重合 体、塩化ビニル-イソプレン共重合体、塩化ビニル-塩 素化プロビレン共重合体、塩化ビニル-塩化ビニリデン - 酢酸ビニル三元共重合体、塩化ビニル - マレイン酸エ ステル共重合体、塩化ビニルーメタクリル酸エステル共 重合体、塩化ビニルーアクリロニトリル共重合体、塩化 ビニル-各種ビニルエーテル共重合体などの塩化ビニル 系樹脂、およびそれら相互のブレンド品あるいは他の塩 素を含まない合成樹脂、例えば、アクリロニトリルース チレン共重合体、アクリロニトリルーブタジェンースチ レン共重合体、エチレン-酢酸ビニル共重合体、エチレ ン-エチル (メタ) アクリレート共重合体、ポリエステ ルなどとのブレンド品、ブロック共重合体、グラフト共 重合体などがあげられ、また、上記ポリオレフィン系樹 50 アネート、テトラメチレンジイソシアネート、ヘキサメ

脂としては、例えば、高密度、低密度または直鎖状低密 度ポリエチレン、ポリプロピレン、ポリプテン-1、ポ リー3-メチルペンテン、エチレン-プロピレン共重合 体等のα-オレフィンの単重合体または共重合体、これ らのα-オレフィンと共役ジェンまたは非共役ジェン等 の多不飽和化合物、アクリル酸、メタクリル酸、酢酸ビ ニル等との共重合体などがあげられ、また、上記ポリエ ステル系樹脂としては、例えば、ポリエチレンテレフタ レート、ポリブチレンテレフタレート、ポリエーテルポ リエステルなどがあげられる。

【0013】上記熱可塑性樹脂から上記フィルムを形成 する方法としては、通常の熱可塑性樹脂の加工方法が用 いられ、例えば、カレンダー加工、ロール加工、押出成 型加工、ブロー成型、インフレーション成型、溶融流延 法、加圧成型加工、ペースト加工、粉体成型等の方法を 好適に使用することができる。

【0014】また、上記フィルムを形成する際には、通 常の熱可塑性樹脂に用いられる添加剤、例えば、可塑 剤、有機カルボン酸、フェノール類および有機リン酸類 の金属塩、エボキシ化合物、β-ジケトン化合物、多価 アルコール、リン系、フェノール系または硫黄系などの 酸化防止剤、紫外線吸収剤、ヒンダードアミン系などの 光安定剤、ハイドロタルサイト化合物、ゼオライト化合 物、過塩素酸塩類、その他の無機金属化合物、架橋剤、 充填剤、帯電防止剤、プレートアウト防止剤、表面処理 剤、滑剤、難燃剤、蛍光剤、防黴剤、殺菌剤、金属不活 性剤、顔料、加工助剤、防爨剤、防霧剤などを配合する ことができる。

【0015】また、上記フィルムは、単層構造フィルム でも多層構造フィルムでもよい。

【0016】また、上記フィルムの膜厚は、好ましくは 0.001~1mmであり、更に好ましくは0.01~ 0.5mmである。

【0017】本発明に使用されるポリウレタン樹脂は周 知の方法で製造でき、例えば、ポリイソシアネート、ポ リオールおよびカルボキシル基またはスルホン酸基を有 するポリオールあるいは分子中に塩基性基を有するポリ オールを、反応に不活性で水との親和性の大きい溶媒中 でウレタン化反応させてプレポリマーとし、次いで、プ レポリマーを、中和剤により中和し、鎖延長剤により鎖 延長し、水を加えて水性ウレタンとすることによって製 造される。

【0018】上記水性ウレタンを製造するために使用さ れる上記ポリイソシアネートとしては、脂肪族、脂環式 および芳香族ポリイソシアネートがあげられ、具体的に は、2、4-トリレンジイソシアネート、2、6-トリ レンジイソシアネート、4,4-ジフェニルメタンジイ ソシアネート、フェニレンジイソシアネート、キシリレ ンジイソシアネート、テトラメチルキシリレンジイソシ

チレンジイソシアネート、リジンジイソシアネートエステル、1, 4 - シクロヘキシレンジイソシアネート、4, 4 ' - ジシクロヘキシルメタンジイソシアネート、3, 3 ' - ジメトキシー4, 4 ' - ピフェニレンジイソシアネート、1, 5 - ナフタレンジイソシアネート、1, 5 - テトラヒドロナフタレンジイソシアネート、イソホロンジイソシアネート等があげられる。

【0019】上記ポリイソシアネートは、後述するポリオール、カルボキシル基またはスルホン酸基を有するポリオールおよび鎖延長剤の活性水素の合計に対し、好ま 10 しくは0.8~3倍当量、より好ましくは1~2倍当量となるように使用される。該イソシアネートの使用量が0.8倍当量未満の場合には過剰のポリオール等が残存することとなり、また、3倍当量より多い場合には水を加えたときに尿素結合を多量に生成することとなり、いずれの場合もその特性を低下させるおそれがある。

【0020】また、上記水性ウレタンを製造するために 使用される上記ポリオールとしては、例えば、エチレン グリコール、ジエチレングリコール、トリエチレングリ コール、1、2 - プロピレングリコール、1、3 - プロ 20 ピレングリコール、1,2-ブチレングリコール、1, 3-ブチレングリコール、1,4-ブチレングリコー ル、ヘキサメチレングリコール、水添ビスフェノール A、ビスフェノールAのエチレンオキシドおよび/また はプロピレンオキシド付加物等の低分子量ポリオール、 ポリエチレングリコール、ポリプロピレングリコール、 ポリエチレン/プロピレングリコール、ポリテトラメチ レングリコール等のポリエーテルポリオール、前記低分 子量ポリオールとコハク酸、グルタル酸、アジピン酸、 セバチン酸、フタル酸、イソフタル酸、テレフタル酸、 テトラヒドロフタル酸、エンドメチレンテトラヒドロフ タル酸、ヘキサヒドロフタル酸等の多塩基酸あるいは炭 酸との縮合物であるボリエステルボリオール、ボリカー ボネートポリオールおよびポリカプロラクトン等があげ られる。

【0021】また、上記水性ウレタンを製造するために使用される上記カルボキシル基またはスルホン酸基を有するボリオールとしては、例えば、2,2ージメチロールプロピオン酸、2,2ージメチロール酪酸、2,2ージメチロール吉草酸、1,4ーブタンジオールー2ース 40ルホン酸等があげられ、また、分子中に塩基性基を有するボリオールとしては、例えば、メチルジエタノールアミン、ブチルジエタノールアミン、トリイソプロパノールアミンなどがあげられ、特に、カルボキシル基を有するポリオールを用いた場合には分散性に優れる水性ウレタンが得られるので好ましい。

【0022】上記カルボキシル基またはスルホン酸基をシリーズ、日本ソフラン(株)製の「ソフラネート」シ 有するポリオールの使用量は、用いるポリオールおよびリーズ、花王(株)製の「ポイズ」シリーズ、三洋化成 ポリイソシアネートの種類にもよるが、通常は、水性ウ 50 工業(株)製の「サンプレン」シリーズ、保土谷化学工

レタンを構成する全ての反応成分に対して、 $0.5\sim5$ 0重量%、好ましくは $1\sim30$ 重量%が用いられる。該使用量が0.5重量%未満では保存安定性が劣り、また、50重量%を超えると特性に悪影響を及ぼすことが

【0023】また、上記水性ウレタンを製造するために使用される上記の反応に不活性で水との親和性の大きい有機溶媒としては、例えば、アセトン、メチルエチルケトン、ジオキサン、テトラヒドロフラン、N-メチルー2-ピロリドン等をあげることができる。これらの溶媒は、通常、プレボリマーを製造するために用いられる上記原料の合計量に対して、10~100重量%が用いられる

【0024】また、上記水性ウレタンを製造するために使用される上記中和剤としては、例えば、トリメチルアミン、トリプロピルアミン、トリプ チルアミン、トリブチルアミン、トリブチルアミン、トリエタノールアミン等の有機アミン、水酸化ナトリウム、水酸化カリウム、アンモニア等の無機塩基があげられ、これらはカルボキシル基またはスルホン酸基を中和するに十分な量が用いられる。

【0025】また、上記水性ウレタンを製造するために使用される上記鎖延長剤としては、例えば、エチレングリコール、プロピレングリコールなどのポリオール類、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、トリレンジアミン、キシリレンジアミン、ジアミノジフェニルメタン、ジアミノシクロヘキシルメタン、ピペラジン、2ーメチルピペラジン、イソホロンジアミン、メラミン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジド等のアミン類および水等があげられる。これらの鎖延長剤の使用量は、目的とするポリウレタン樹脂の分子量にもよるが、通常は、プレポリマーに対して0.5~10重量%が用いられる。

【0026】前述のように、これらの原料から水性ウレタンを製造することは周知であり、これらの原料の仕込み順序を適宜変更したり、あるいは分割して仕込むことも可能である。

【0027】このようにして得られた水性ウレタンは、) 通常、樹脂固形分が1~90重量%、より好ましくは5 ~80重量%となるように調整される。

【0028】また、市販されている水性ウレタンをそのまま使用することも勿論可能であり、例えば、旭電化工業(株)製の「アデカボンタイター」シリーズ、三井東圧化学(株)製の「オレスター」シリーズ、大日本インキ化学工業(株)製の「ボンディック」シリーズ、「ハイドラン」シリーズ、バイエル製の「インプラニール」シリーズ、日本ソフラン(株)製の「ソフラネート」シリーズ、花王(株)製の「ボイズ」シリーズ、三洋化成工業(株)製の「サンプレン」シリーズ、保土公化学工

i

業(株)製の「アイゼラックス」シリーズ、第一工業製 薬 (株) 製の「スーパーフレックス」シリーズ、ゼネカ (株) 製の「ネオレッツ」シリーズ等を用いることがで

【0029】本発明に使用されるアクリル樹脂は、アク リル酸またはメタクリル酸のエステルを含有するアクリ ル系不飽和単量体混合物を、これらと共重合可能な不飽 和結合を有する反応性乳化剤の存在下に、水性溶媒中に 乳化または分散させて、重合開始剤を用いて重合すると とによって得られるものである。ここで、上記アクリル 10 酸またはメタクリル酸エステルとしては、メチル、エチ ル、プロピル、イソプロピル、ブチル、イソブチル、第 二ブチル、第三ブチル、アミル、ヘキシル、シクロヘキ シル、オクチル、イソオクチル、2-エチルヘキシル、 ノニル、デシル、ドデシル、オクタデシル、2-ヒドロ キシエチル、グリシジルなどのエステルがあげられる。 【0030】また、上記アクリル酸エステルおよび/ま たはメタクリル酸エステルとともに他の不飽和単量体を 共重合させることも勿論できる。これらの他の不飽和単 **量体としては、例えば、エチレン、プロピレン、ブテ** ン、イソブテン、ブタジエン、塩化ビニル、塩化ビニリ デン等の脂肪族不飽和炭化水素およびハロゲン化脂肪族 不飽和炭化水素、スチレン、α-メチルスチレン、ビニ ルトルエン等の芳香族不飽和炭化水素、クロトン酸、イ タコン酸、フマル酸、マレイン酸等の他の不飽和カルボ ン酸のエステル(エステルを構成するアルコール成分と しては上記のアクリル酸およびメタクリル酸のエステル を構成するアルコール成分が例示される)、安息香酸ビ ニル、酢酸ビニル等のビニルエステル、アクリルアミ ド、メタクリルアミド、N-メチロールアクリルアミ ド、N-メチロールメタクリルアミド、アクリロニトリ ル等の窒素含有ビニルモノマー等があげられる。

【0031】上記アクリル酸またはメタクリル酸のエス テルの含有量は任意に設定できるが、通常は、全単量体 中の30重量%以上、好ましくは、50重量%以上であ り、30重量%未満ではアクリル酸またはメタクリル酸 エステルを用いたことによる効果が発現しがたくなる。 特に、これらのアクリル酸またはメタクリル酸エステル として、グリシジルメタクリレートまたはグリシジルア クリレートを全単量体中の0.1~50重量%、より好 ましくは1~30重量%となるように含有することが好 ましく、グリシジルメタクリレートまたはグリシジルア クリレートを含有する不飽和単量体を用いることによ り、皮膜の耐水性、耐薬品性等が著しく改善される。 【0032】また、アクリル酸、メタクリル酸、クロト

ン酸、イタコン酸、フマル酸、マレイン酸等の他の不飽 和カルボン酸を不飽和単量体成分として使用し、かつ中 和剤を使用することでアクリル系樹脂自体に水溶性を付 与することもでき、これら中和剤としては、例えば、前 記水性ウレタンにおいて使用されたものなどがあげられ 50 334号公報、同63-54930号公報、同63-7

る。

【0033】とれらの不飽和単量体は、反応当初に一括 して仕込むことも、また、分割あるいは連続的に仕込む ことも可能であり、さらに、必要に応じてメルカプタン 類などの連鎖移動剤を添加することもできる。

8

【0034】また、上記アクリル樹脂を製造するために 使用される上記重合開始剤は、特に制限を受けず、通常 のエマルジョン重合に用いられる水溶性開始剤ばかりで なく、油溶性開始剤も使用することができる。これらの 重合開始剤としては、例えば、過硫酸カリウム、過硫酸 アンモニウム、アゾビスシアノ吉草酸、アゾビスイソブ チロニトリル、第三ブチルハイドロパーオキサイド、ジ クミルパーオキサイド、過酸化ベンゾイル等があげら れ、また、これらの重合開始剤と亜硫酸塩、スルホキシ レートとの組み合わせよりなるいわゆるレドックス系触 媒を使用することもできる。

【0035】上記重合開始剤の使用量は、単量体の種 類、濃度、反応温度等によっても変化するが、通常は全 単量体に対して0.01~10重量%、より好ましくは 20 0.1~5重量%である。

【0036】また、上記重合開始剤は、全量を一括して 添加することも、あるいは、分割または連続的に添加す ることもできる。

【0037】上記アクリル樹脂を製造する際の反応温度 は、使用する単量体および重合開始剤の種類および量に 応じて変化するが、通常は0℃~100℃である。

【0038】また、本発明に用いられる上記反応性乳化 剤は、分子内に上記不飽和単量体と共重合しえる不飽和 結合を有するものであれば、ノニオン系、アニオン系あ るいはカチオン系を問わず使用することができる。

【0039】上記反応性乳化剤は、分子内に、疎水性 基、親水性基および反応性基を各々少なくとも1個有す る化合物であり、該疎水性基は脂肪族または芳香族炭化 水素基からなり、該親水性基はポリオキシアルキレンエ ーテル基に代表されるノニオン性基、スルホン酸塩、カ ルボン酸塩、燐酸塩に代表されるアニオン性基および第 4級アンモニウム塩に代表されるカチオン性基を含有 し、該反応性基はビニルエーテル基、アリルエーテル 基、ビニルフェニル基、アリルフェニル基、アクリル酸 またはメタクリル酸のエステルまたはアミド基、マレイ ン酸等の不飽和二塩基酸のエステルまたはアミド基を含 有するものである。

【0040】また、上記反応性乳化剤としては、例え ば、特開昭62-22803号公報、同62-1048 02号公報、同62-104803号公報、同62-2 21431号公報、同62-221432号公報、同6 2-225237号公報、同62-244430号公 報、同62-286528号公報、同62-28922 8号公報、同62-289229号公報、同63-12

7530号公報、同63-77531号公報、同63-77532号公報、同63-84624号公報、同63-84624号公報、同63-84625号公報、同63-126535号公報、同63-126535号公報、同63-126536号公報、同63-147530号公報、同63-319035号公報、特開平1-11630号公報、同1-22627号公報、同1-22628号公報、同1-34431号公報、同1-34432号公報、同1-34431号公報、同1-34432号公報、同1-34431号公報、同1-99639号公報、同1-99638号公報、同1-99639号公報、同4-55401号公報、同4-53802号公報、同4-55401号公報 に記載されたものがあげられる。

【0041】更に、上記反応性乳化剤の具体例としては、例えば、下記〔化2〕(前記〔化1〕と同じ)の一般式(I)で表される化合物、即ち1-(メタ)アリロキシまたは(メタ)アリロキシカルボニルメチル-3-アルコキシ(ボリオ*

(式中、 R_1 は水素原子またはメチル基を示し、 R_2 は炭素原子数 6 ~ 3 0 の炭化水素基またはアシル基を示し、Aは炭素原子数 2 ~ 4 のアルキレン基を示し、mは 0 ~ 1 0 0 を示し、Xは $-CH_2-0-$ 、-C0-0-または $-CH_2-0-C0-$ を示し、Zは水素原子またはノニオンもしくはアニオン系の親水基を示す。)

があげられる。

【0043】上記反応性乳化剤の中でも、上記一般式(I)で表される化合物を用いてアクリル樹脂を製造した場合には、特に耐水性および耐薬品性に優れた被膜が得られるので、本発明においては、上記一般式(I)で表される反応性乳化剤を用いることが好ましい。

【0044】上記一般式(I)において、R.で表される 炭素原子数6~30の炭化水素基としては、例えば、ヘ キシル、オクチル、イソオクチル、2-エチルヘキシ ル、ノニル、イソノニル、デシル、イソデシル、ウンデ シル、ドデシル、トリデシル、イソトリデシル、テトラ デシル、ヘキサデシル、オクタデシル、エイコシル、ド コシル、テトラコシル、トリアコンチルなどのアルキル 基、オクテニル、デセニル、ドデセニル、オクタデセニ ルなどのアルケニル基、オクチルフェニル、ノニルフェ ニル、ジノニルフェニルなどのアルキルフェニル がられ、アシル基としては上記のアルキル基およびアル ケニル基から誘導されるアシル基およびアルケニル基から誘 導されるアシル基があげられる。

【0045】また、上記一般式(I)中、Aで表される

炭素原子数2~4のアルキレン基としては、エチレン、1,2-プロピレン、1,3-プロピレン、1,2-プ チレン、1,3-ブチレン、1,4-ブチレンがあげられる。

【0046】また、上記一般式(I)中、Zで表されるノニオン系の親水基としては、例えば、Zが水素原子である化合物の炭素原子数2~4のアルキレンオキサイド1~100モル付加物があげられ、また、アニオン系の親水基としてはZが水素原子である化合物またはZが上記ノニオン系の親水基である化合物を硫酸またはリン酸エステル塩化した化合物があげられる。

○ 【0047】即ち、上記一般式(I)で表される化合物は以下に示すように、Zが水素原子である化合物(〔化3〕の式I-1)、Zがノニオン系親水基である化合物(〔化4〕の式I-2)およびZがアニオン系親水基である化合物(〔化5〕の式I-3)に分類される。これらの化合物の中でも、Zがノニオン系またはアニオン系の親水基である化合物(式I-2およびI-3)が好ましい。

[0048]

【化3】

10

オキシアルキレノキシ) またはアシロキシ (ポリオキシ

アルキレノキシ) -2-ヒドロキシプロパンまたはその

アルキレンオキシド付加物あるいはこれらの硫酸または

燐酸エステルアルカリまたはアンモニウム塩、ビスフェ

ノール化合物またはグリコール化合物のアルキレンオキ

シド付加物あるいはとれらの硫酸または燐酸エステルア ルカリまたはアンモニウム塩、ビニルまたはアリルフェ

ノール化合物のアルキレンオキシド付加物あるいはこれ

ム塩、スルホコハク酸のモノアリルーモノアルキルエス

テルアルカリまたはアンモニウム塩、スルホコハク酸の

モノ(3-アリロキシ-2-ヒドロキシブロビル)-モ

ノアルキルエステルアルカリまたはアンモニウム塩など

10 らの硫酸または燐酸エステルアルカリまたはアンモニウ

* キシアルキレノキシ) またはアルキルフェノキシ (ボリ

$$\begin{array}{c} 11 \\ \text{CH}_2 = \text{C} - \text{X} - \text{CH}_2 - \text{CH} - \text{CH}_2 - 0 - (\text{A} - 0)_{\text{m}} - \text{R}_2 \\ | & | & | & | \\ \text{R}_1 & 0 - \text{H} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_2 = \text{C} - \text{X} - \text{CH}_2 - \text{CH} - \text{CH}_2 - 0 - (\text{A} - 0)_{\text{m}} - \text{R}_2 \\ | & | & | & | \\ \text{CH}_2 = \text{C} - \text{X} - \text{CH}_2 - \text{CH} - \text{CH}_2 - 0 - (\text{A} - 0)_{\text{m}} - \text{R}_2 \\ | & | & | & | \\ \text{R}_1 & 0 - (\text{A} - 0)_{\text{m}} \text{H} \\ \end{array}$$

$$\begin{array}{c} \text{CH}_2 = \text{C} - \text{X} - \text{CH}_2 - \text{CH} - \text{CH}_2 - 0 - (\text{A} - 0)_{\text{m}} - \text{R}_2 \\ | & | & | & | \\ \text{R}_1 & 0 - (\text{A} - 0)_{\text{m}} \text{Z}' \\ \end{array}$$

$$\begin{array}{c} \text{CH}_2 = \text{C} - \text{X} - \text{CH}_2 - \text{CH} - \text{CH}_2 - 0 - (\text{A} - 0)_{\text{m}} - \text{R}_2 \\ | & | & | & | \\ \text{R}_1 & 0 - (\text{A} - 0)_{\text{m}} \text{Z}' \\ \end{array}$$

【0051】上記式 I-1~I-3において、R₄、R₅、 X、A及びmは前述の一般式(I)におけると同様の意 味を表し、nは1~100を表し、pは0~100を表 し、Z'は-SO,-M または-PO(O-M)(O-M) を表し、M お よびMは互いに独立に、水素原子、アルカリ金属、アル カリ土類金属、アンモニウム、アルキルアンモニウムま たはヒドロキシアルキルアンモニウムを表す。

【0052】上記反応性乳化剤の使用量は、全不飽和単 量体に対して好ましくは0.1~20重量%であり、該 20 使用量が0.1重量%未満の場合には乳化安定性が不十 分であり、また、20重量%を超えると得られる水系樹 脂から形成される被膜の特性に悪影響を及ぼすおそれが ある。

【0053】また、上記反応性乳化剤とともに、少量の 非反応性乳化剤を使用することも可能であるが、前述の ように、系内に残存する乳化剤が被膜の特性に悪影響を 及ぼすので、その使用量はできるだけ少なくすべきであ る。

【0054】本発明に用いられる塗膜形成用水系樹脂組 成物は、前記のポリウレタン樹脂およびアクリル樹脂を 含有するものであるが、その調整方法には特に制限を受 けず、別途に製造した水性ウレタンとアクリルエマルジ ョンを混合する方法あるいは水性ウレタンにアクリル系 不飽和単量体混合物および反応性乳化剤を加えて重合さ せる方法のいずれでも採用することができる。

【0055】別途に製造した水性ウレタンとアクリルエ マルジョンを混合する方法においては、混合の順序、温 度等の条件については特に制限を受けず、例えば、アク リルエマルジョン中に水性ウレタンを少量ずつ添加混合 する方法、水性ウレタン中にアクリルエマルジョンを少 量ずつ添加混合する方法、両者を一度に混合する方法の いずれでも良く、また、両者を冷却した後混合しても、 一方あるいは両方が高温のときあるいは加熱下に混合し ても良い。

【0056】特に、グリシジルメタクリレートまたはグ リシジルアクリレートを含有する不飽和単量体混合物か ら得られたアクリルエマルジョンを用いる場合には、5 0~100℃で水性ウレタンと混合するか、あるいは水 性ウレタン中で50~100℃でアクリル系不飽和単量 50 【0061】本発明の熱可塑性樹脂フィルムの用途は特

体混合物を重合させることによって得られる上記水系樹 脂組成物を用いることにより、形成された皮膜の特性が 改善される傾向が認められる。このような高温下で製造 した水系樹脂組成物を用いることによって形成される皮 膜の特性が改善される理由は明らかではないが、ポリウ レタン樹脂に含有されるカルボキシル基またはスルホン 酸基とアクリル樹脂に含有されるグリシジル基が反応し て両者の間に部分的な化学的な結合が生じ、両樹脂の均 一性が改善されるためであると推定される。

【0057】また、上記塗膜形成用水系樹脂組成物は、 ボリウレタン樹脂1~85重量%およびアクリル樹脂1 ~85重量%を含有し、かつ、両者を合計した樹脂固形 分が2~90重量%、好ましくは5~80重量%となる ように調整される。該樹脂固形分が2重量%未満の場合 は乾燥に長時間を要することとなり、また、樹脂固形分 が90重量%を超えると、粘度が高く取扱に不便である ばかりでなく、保存安定性が低下する。

【0058】また、上記塗膜形成用水系樹脂組成物にお ける、ボリウレタン樹脂とアクリル樹脂の比率(重量 比)は特に制限を受けないが、通常は1:10~10: 1である。該比率が上記範囲を外れる場合は、ポリウレ タン樹脂またはアクリル樹脂の量が少なくなりすぎ、所 望の特性が得られないことが多い。

【0059】また、上記塗膜形成用水系樹脂組成物に は、目的に応じて、フッ素系またはシロキサン系などの 帯電防止剤、コロイダルシリカまたはコロイダルアルミ ナなどの無機質コロイドゾル、酸化防止剤、紫外線吸収 剤、光安定剤、着色剤、ワックス類、防曇剤、防腐剤、 消泡剤、可塑剤、溶剤、造膜助剤、分散剤、増粘剤、香 料等の慣用の添加物を加えることもできる。

【0060】上記フィルム上に上記水系樹脂組成物の塗 膜を形成する方法としては、例えば、浸漬法あるいはグ ラピアコーター、リバースロールコーター、エアナイフ コーターなどによるコーティング法などを用いて、熱可 塑性樹脂フィルムの片面あるいは両面に塗布して乾燥 し、乾燥膜厚が好ましくは0.1~10μm、更に好ま しくは0.2~5μmの塗膜を形成する方法等があげら れる。

に限定されるものではないが、ハウス、トンネル、マルチ等の農業用フィルム(いわゆる農ビ、農ポリ、農サクビ、農PO、硬質フィルム等)あるいは壁紙などに特に好適に使用することができる。

[0062]

【実施例】以下、製造例および実施例によって本発明を さらに詳細に説明するが、本発明は下記の実施例によっ て制限を受けるものではない。尚、製造例および実施例 における部は特にことわりのないかぎり重量部を表す。

【0063】製造例1(水性ウレタンの製造例) 平均分子量1000のポリプロピレングリコール(PPG1000)49部、ジシクロヘキシルメタンジイソシアネート(水添MDI)176部、ジメチロールプロピオン酸70部およびN-メチルピロリドン196部を反応容器にとり、80~100℃に保ちながら反応させて、プレポリマーを製造した。

【0064】次いで、トリエチルアミン48部を加えて中和した後、ヘキサメチレンジアミン5部を加え、水を添加しながら35℃以下で架橋反応を行い、反応終了までに456部の水を加えて樹脂固形分35重量%の水性 20ウレタン(水性ウレタンA)を製造した。

【0065】製造例2(水性ウレタンの製造例) 平均分子量790のピスフェノールAのプロピレンオキシド付加物(BPAPO)140部、キシリレンジイソシアネート151部およびN-メチルピロリドン120部を反応容器にとり、80~85℃でNCO含有率が10.3重量%となるまで反応させ、プレポリマーを製造 した。

【0066】次いで、ジメチロールプロピオン酸14部 および1、4ープチレングリコール25部を加え、同温 度で架橋反応を行い、赤外吸収スペクトルでイソシアネート基の吸収が消失するまで反応させた後、トリエチルアミン12部および水538部を加えて中和し、さらに 1時間熟成させて樹脂固形分34重量%の水性ウレタン(水性ウレタンB)を製造した。

【0067】製造例3(水性ウレタンの製造例)

二塩基酸成分としてテレフタル酸およびイソフタル酸(重量比1:1)を用い、グリコール成分としてエチレングリコールおよびジエチレングリコール(重量比2:3)を用いた分子量1000のボリエステルボリオール(ボリエステルボリオール1)100部、イソホロンジイソシアネート107部およびメチルエチルケトン90部を反応容器にとり、75℃で十分に混合した後、ジメチロールプロピオン酸20部を加え、70℃で12時間反応させた。5%アンモニア水60部を加え中和した後、減圧下にメチルエチルケトンを留去し、水を加えて樹脂固形分23重量%の水性ウレタン(水性ウレタンC)を製造した。

【0068】更に、上記製造例1と同様な操作により、下記〔表1〕に示す成分を用いて、水性ポリウレタン樹脂(水性ウレタンD~G)を製造した。

[0069]

【表1】

15

13							
水性ウレタン	Α	В	С	D	E	F	G
PPG1000	45			150			
BPAPO		140					191
まりエステムポリオールし	•		100		-	85	
ゴリエステかポリオール2*1		· · · · ·			132		
ジメテロールプロピオン 酸	70	14	20	18	17	46	
水浴MDI	175				103	130	
キシタレンダイソシアネート		151					150
イソホロンジイソシアネート			107				
トリレンダイソシアネート				118			
ヘキサメチシンジアミン	\$						
1, 4・ブチシングリコール		2.5					17
エチレンジアミン				ş	9	4	
N-メチルジェタノールアミン							6
トリエチルアミン	48	12		14	14	3 \$	
アンモニア			3			[
酢酸							3
N-メチルとロリドン	196	120		207	122	144	117
*	456	538	770	678	603	576	516
合 計	1000	1000	1000	1000	1000	1000	1000
固形分(wt%)	3 5	34	. 23	31	2.8	28	37

*1:アジピン酸とネオペンチルグリコールの縮合物(分子量1000)

【0070】製造例4(アクリル樹脂の製造) *3時間をイオン交換水100部および下記〔化6〕の式で表され 時間反応る反応性乳化剤(乳化剤A)2部をとり、70℃に昇温 に調整ししてから過硫酸アンモニウム0.6部を加えた。ここ ジョン(に、メチルメタクリレート45部、n-ブチルアクリレ 【007ート45部、グリシジルメタクリレート10部、乳化剤 30 【化6】A1部およびイオン交換水30部からなる混合乳化液を*

*3時間を要して滴下し、滴下終了後、さらに同温度で1時間反応させた。その後、アンモニア水でpHを8~9に調整し、樹脂固形分44重量%のアクリル樹脂エマルジョン(アクリル樹脂エマルジョンA)を製造した。【0071】

CH₂=CH-CH₂-O-CH₂-CH-CH₂-O (乳化剤A)
0-(C₂H₄-O)₁₀SO₃NH₄

【0072】更に、上記製造例4と同様な操作により、下記〔表2〕に示す成分を用いてアクリルエマルジョン(B~F)を製造した。

【0073】 【表2】

17

7タリルエマルジョン	A	В	С	D	Е	F
エチルアクリソート						
1551997b-}	4 5	4 5	3 0	30	4 5	4 5
プチルアクリレー >	4.5	4 5	4 5		5 5	5 5
グリシジをようクリレート	10	10	7	7		
3ーエチおへもシガアタリンート				4 5		
N- <i>1</i> +2-8799873F			3	3		
ステレン			15	15		
乳化剤A:	3		3	3	3	
比較乳化剤*2		3				3
イオン交換水	130	130	130	130	130	130
合 計	233	233	233	233	233	233
固形分(重量%)	4 4	4 4	44	44	44	44

【0074】製造例5~9(アクリルエマルジョンの製

*外は製造例4と同様にしてアクリルエルジョンG、H、 I、JおよびKを製造した。

反応性乳化剤を、下記〔化7〕~〔化11〕の式で表さ

[0075]

れる反応性乳化剤B、C、D、EおよびFに変更する以*20 【化7】

【0080】実施例1

(水性ウレタンとアクリルエマルジョンとの混合による 水系樹脂組成物の製造)下記〔表3〕に示す配合により 水性ウレタンおよびアクリルエマルジョンを30℃で2 時間混合して水系樹脂組成物No.1~No.5 およびNo.8 *

〔配合〕

* を調整した。No.6およびNo.7はそのまま用いた。

【0081】(塩化ビニル樹脂フィルムの作成)下記配 合により180℃カレンダー加工法により0.1mm厚 のフィルムを作成した。

[0082]

SOaNa

五田中
100
5 0
5
2

20 19 ソルビタンモノパルミテート 1.5 0.5 メチレンビスステアリン酸アミド DHT-4A. 0.5 0.5 ステアリン酸亜鉛 ステアリルリン酸バリウム 0.5 オクタデシル-3-(3,5-ジ第三プチル-4-0.1

ヒドロキシフェニル) プロピオネート

*3:協和化学工業(株)製合成ハイドロタルサイト

【0083】(積層フィルムの作成)次に、この塩化ビ 樹脂組成物を、130メッシュグラビアレコーダーによ り塗布し、厚さ2μmの塗膜を形成した。

【0084】ととで得られたフィルムを塗布面を外側に して屋外(埼玉県浦和市)暴露して、6か月後、12か 月後および18か月後のサンプルについて表面状態を観 察した。評価は目視により汚れや傷の発生状況を総合し て10段階で評価(耐候性)し、1が暴露前とほとんど 差のない状態を表し、数値が大きくなるに従って劣化が 進行している状態を表す。またこれに加え、オリジナル と12か月後のフィルムについてJIS K 7105 20 に従い光線透過率を測定した。

【0085】また、フィルムと塗布層との密着性を確認 するため未暴露、暴露6か月後および12か月後のフィ ルムの塗布面側にセロファンテープを指で擦り付けて貼米

*った後に強く引き剥がして評価した。評価基準は、〇が ニル樹脂フィルムの片面に、前記合成例で得られた水系 10 完全に塗布層が残っていることを表し、△が部分的に剥 離がみられることを表し、×がほぼ完全に剥離したこと を表す。

> 【0086】さらに、未暴露のフィルムを使用して防曇 性の試験を行った。試験方法は、四方を木板で囲んだ曇 観察用のフレームの天井傾斜面に塗布面を内側にして試 験フィルムを張り、予め用意した水温約40℃の水槽上 に乗せ、25℃の室温で48時間放置する。次いで、水 浴を40℃に保持したまま室温を5℃に下げ、1時間後 にフィルム内表面(水槽に面した側の表面)の曇の発生 状態を目視により確認した。×、△および○の三段階で 評価した。

【0087】それらの結果を下記〔表3〕に示す。 [0088] 【表3】

		実	施	69		ı	七較	Ø	
水系樹脂組成物	No. 1	No. 2	No.3	No. 4	No. 5	No. 6	Na 7	Na.8	_
水性ウレタンA	200								_
水性ウレタンE		200	200	200	200	100		200	1
アクリルエマルジョン A	233	85	233	640			100		7
7クリルエマルション B		Ī						233	ーティングなし
7クリルエマルジョン C					233				し
固形分	3.7	32	37	40	31	28	44	37	
耐候性 6ヵ月後	2	2	2	2	2	4	3	3	6
12ヵ月後	3	4	3	4	4	7	6	6	9
18ヵ月後	5	5	5	5	6	9	8	8	10
光線透過率	9 1	9 1	90	9 1	90	9 1	9 1	90	9 1
12#月後	8 9	8 7	88	87	88	78	74	7.9	71
密着性	0	0	0	0	0	0	0	0	-
6ヵ月後	0	0	0	0	0	Δ	0	0	_
12ヵ月後	0	0	0	0	0	×	Δ	0	
防蟲性	0	0	0	0	0	×	Δ	Δ	×

【0089】実施例2

水系ウレタン中でのアクリル系モノマーの重合による水 系樹脂組成物の製造

イオン交換水126部、乳化剤A3部、水性ウレタンE 200部をとり、60℃に昇温した。下記〔表4〕に示 す組成からなる不飽和単量体混合物100部および第三

3時間を要して滴下した。滴下終了後70℃に1時間保 って重合反応を完結させ、樹脂固形分40重量%の水系 樹脂組成物(水系樹脂組成物No.9~14)を製造し た。

【0090】得られた水系樹脂組成物を用いて、実施例 1と同様に塩化ビニル樹脂フィルムに被覆して、耐候性 ブチルハイドロパーオキサイドの10%水分散液4部を 50 試験および12か月後の光線透過率の測定を行った。そ

れらの結果を下記〔表4〕に示す。

21

*【表4】

[0091]

*

	実施例	比較例	実施例	比較例	実が	5 例
水系樹脂組成物	No. 9	No. 1 O	No. 1 1	Na. 1 2	No. 1 3	No. 14
水性ウレタンE	200	200	200	200	200	200
メチルメタクリレート	4 5	4 5	4 5	4 5	3 0	30
7557936-1	5 5	5 5	4 5	4 5	45	
グリッジルステクリケート			10	10	7	7
2-175445277955-}						4 5
N-170-3709173					3	3
スチレン					15	1 5
反応性乳化剤A	3		3		3	3
比較乳化剤*1		3		3		
イオン交換水	130	130	130	130	130	130
合計	433	433	433	433	433	433
固形分	37	32	37	40	37	28
耐候性 6ヵ月後	1	3	2	3	2	2
12ヵ月後	3	7	3	7	4	4
18ヵ月後	5	9	5	9	6	5
光線透過率	9 1	9 1	90	90	9 1	90
12カ月後	8.8	78	88	76	87	8 6

【0092】実施例3

(塩化ビニル樹脂フィルムの作成)次の配合物を石川式 ライカイ機で混練した後、真空脱法処理を行ない、均一 なペーストゾルを作成した。そのゾルを紙上に0.2 m mの厚さで塗布し、150℃のギヤーオーブンで60秒※

(配 合)

塩化ビニル樹脂 (PSL-280 鐘淵化学製) 炭酸カルシウム (H) 二酸化チタン (R) ジー2-エチルヘキシルフタレート ミネラルスピリット アゾジカルボンアミド C9~10ネオカルボン酸亜鉛

C9~10ネオカルボン酸バリウム

【0094】(積層フィルムの作成)次に、との塩化ビニル樹脂フィルムの片面に、前記合成例で得られた水系樹脂組成物を、130メッシュグラビアレコーダーによ 40り塗布し、厚さ2μmの塗膜を形成した。

【0095】得られた被覆シートを63℃フェードメーター中に入れ、500時間後、1000時間後および2000時間後に取り出し、着色性を観察した。評価は1

※間加熱し、ゲル化シートを得た。そのゲル化シートを用いて、220℃のギヤーオーブンでそれぞれ50秒加熱 発泡させ、発泡シートを作成した。

[0093]

重量部	
100	
100	
1 5	
6 0	
. 7	
4	
1.	5
1.	0

0段階で、1がほどんど着色していない状態を表し、数値の増大に伴い着色が大きくなっている。また、2000時間後のシートについては表面のブリードを観察した。それらの結果を下記〔表5〕に示す。

[0096]

【表5】

. =		実	施	64) 1	七 較	91	
水系樹脂組成物	Na 1	No. 2	Na.3	No. 4	No 5	Na 6	No 7	No. 8	_
水性ウレタンA	200								
水性ウレタンE		200	200	200	100	100		500	7
アクリルエマルジョン A	233	6.5	233	640	i		100		コーティングなし
7クリダエマダジョン B								233	7
79りおエマルジョン C					133				なし
固形分	37	32	37	10	37	28	44	37	
着色性 \$00時間	1	2	1	1	1	2	2	2	3
1000時間	2	3	2	2	2	4	5	5	7
1000時間	4	3	4	3	3	7	8	8	9
ブリード	なし	なし	なし	なし	なし	少い	少い	少い	多い

【0097】実施例4

* した。

(ポリエチレンフィルムの作成) 下記配合によりインフ

[0098]

レーション加工法により0.1mm厚のフィルムを作成*

〔配合〕	重量部
低密度ポリエチレン(密度0.923g/cm² _ MFR=2.0)	100
トリス(2,4-ジ第三ブチルフェニル)ホスファイト	0.2
2-ヒドロキシベンゾフェノン	0.1
メチレンビスアマイド	0.2
DHT = 4A	0 9

【0099】(積層フィルムの作成)次にこのポリエチレンフィルムの片面に、前記合成例で得られた水系樹脂組成物を、130メッシュグラビアレコーダーにより塗布し、厚さ2μmの塗膜を形成した。

※月後、密着性試験は6か月後まで行ない、劣化後の光透 過率は6か月のものを測定した。それらの結果を下記 〔表6〕に示す。

[0101]

【0100】ここで得られたフィルムを用いて実施例1

【表6】

と同様の試験を行なった。ただし、耐候性試験は12か※

		実	施	例 .		j	七較	91	
水系樹脂組成物	No. 1	No. 2	No. 3	No. 4	No. 5	Na 6	Na 7	Na 8	
水性ウレタンA	200								_
水性ウレタンE		200	200	300	200	100		200	1 -
704NITAS37 A	233	8.5	233	640			100		7
7クリルエマルジョン B								233	コーティングなし
70リルエマルジョン C					233				່ ເ
固形分	37	3 2	37	40	37	2 8	44	31	
耐候性 6ヵ月後	2	3	2	2	2	4	3	3	6
12.0月後	5	6	5	5	6	9	8	8	10
光線透過率	8 7	8 6	8 7	87	88	89	88	87	8 6
5点月後	8 4	83	84	84	8 5	71	68	68	6 5
密着性	0	0	0	0	0	0	0	0	_
5カ月後	0	0	0	0	0	Δ	0	0	-
防曇性	0	0	0	0	0	×	Δ	Δ	×

【0102】実施例5

★出法により O. 1 mm厚のフィルムを作成した。

(ポリエステルフィルムの作成) 下記配合により溶融押★

[0103]

〔配合〕 ポリエチレンテレフタレート 重量部 100

トリス(2,4-ジ第三ブチルフェニル)ホスファイト

2-ヒトロキシベンゾフェノン

26 0.2

0.1

【0104】(積層フィルムの作成)次に、このポリエ ステルフィルムの片面に、前記合成例で得られた水系樹 脂組成物を、130メッシュグラビアレコーダーにより 塗布し、厚さ2μmの塗膜を形成した。

*と同様の試験を行なった。それらの結果を下記〔表7〕 に示す。

[0106]

【表7】

【0105】ととで得られたフィルムを用いて実施例1*

		実	施	6 94		Е	比較	<i>5</i> 4]
水系樹脂組成物	No.1	No. 2	<i>‰</i> 3	Na 4	Na 5	Na 6	Na 7	No. 8	
水性ウレタンA	300								
水性ウレタンE		200	200	\$00	200	100		100	1
7918178992 A	233	15	233	610			100		コーティングなし
7915278932 B								233	グ
79リルエマルジョン C					233				ΰ
固形分	3 7	32	31	f0	31	28	11	37	
时候性 6ヵ月後	2	2	2	2	2	4	3	3	5
12ヵ月後	3	3	3	3	3	6	6	6	8
18ヵ月後	5	5	5	5	5	8	8	8	10
光線透過率	8 5	8 6	8 5	8 5	8 5	8 4	85	8 5	86
11カ月後	8 4	8 4	8 4	83	84	77	76	79	72
密着性	0	0	0	0	0	0	0	0	
62月後	0	0	0	0	0	0	0	0	-
17ヵ月後	0	0	0	0	0	Δ	Δ	0	-
防養性	0	0	0	0	0	×	Δ	Δ	×

【0107】実施例から明らかなように、コーティング を施していない熱可塑性樹脂フィルムはブリードを起こ しやすく、汚れや傷が生じ、また光線透過率の低下も著 しい。これを改善するために水性ウレタンあるいはアク 30 率も維持することができる。 リルエマルジョンをそれぞれ単独で使用したコーティン グを施した場合には幾らかの改善は見られるもののその 効果は未だ不十分なものである。また、水性ウレタンと ともに非反応型の界面活性剤を用いてなるアクリルエマ ルジョンからなる水系樹脂組成物を使用した場合におい てもその効果は不十分である。

【0108】これに対し、本発明に係る水系ウレタンと※

※ 反応性乳化剤を用いてなるアクリルエマルジョンとから なる水系樹脂組成物を用いてコーティングすることで、 ブリードを抑制し、汚れや傷の発生も少なく、光線透過

[0109]

【発明の効果】ポリウレタン樹脂および特定のアクリル 樹脂とを含有する水系樹脂組成物を用いてコーティング した本発明の熱可塑性樹脂フィルムは、耐候性、耐傷性 が著しく改善され、農業用フィルムあるいは壁紙などの 用途に適したものである。

フロントページの続き

(51) Int.Cl.

識別記号 庁内整理番号 FΙ

技術表示箇所

B29K 101:12