Definitionen

- 1. Transponierte Matrix: Sei $A \in \mathbb{R}^{m \times n}$ eine Matrix. Die transponierte Matrix $A^t \in \mathbb{R}^{m \times n}$ entsteht, indem man Zeilen und Spalten vertauscht: $a^t_{ij} := a_{ji}$.
- 2. Quadratisch: Matrizen, die genau so viele Zeilen wie Spalten haben, heißen quadratisch.
- 3. Invertierbar: Eine Matrix A heißt invertierbar, wenn die zu A gehörige lineare Abbildung f (mit $f(\vec{x}) := A\vec{x}$) bijektiv ist (d.h. Isomorphismus). Die Matrix der Umkehrabbildung d^{-1} heißt inverse Matrix A^{-1} .
- **4. Determinante:** Eine Determinante ist eine Funktion $det: \mathbb{K}^{n \times n} \to \mathbb{K}$ mit den Eigenschaften:
 - 1. detE = 1
 - 2. Wenn A zwei gleiche Zeilen besitzt, dann gilt det A = 0
 - 3. Die Funktion det ist linear in jeder Zeile:
 - a) $det(z_1, \ldots, \lambda z_i, \ldots, z_n) = \lambda det(z_1, \ldots, z_i, \ldots, z_n)$
 - b) $det(z_1,\ldots,z_i+z,\ldots,z_n) = det(z_1,\ldots,z_i,\ldots,z_n) + det(z_1,\ldots,z,\ldots,z_n)$
- **5. Lösungsmenge:** Die Lösungsmenge eines LGS ist die Menge aller Vektoren, die alle Gleichungen simultan erfüllen: $\mathbb{L}_{A,\vec{b}} := \{(u_{<},\ldots,u_{n}) \in \mathbb{R}^{n} | A \cdot \vec{u} = \vec{b}\}$
- **6. Rang:** Der Rang einer Matrix $A \in \mathbb{K}^{m \times n}$ ist das Bild $(A : \mathbb{K}^n \to \mathbb{K}^m)$.
- 7. Zeilenrang: Der Zeilenrang einer Matrix ist die Maximalzahl linear unabhängiger Zeilen.
- 8. Spaltenrang: Der Spaltenrang einer Matrix ist die Maximalzahl linear unabhängiger Spalten.
- 9. linear unabhängig: Die Vektoren $\vec{a_1}, \ldots, \vec{a_n}$ heißen linear unabhängig, wenn $\lambda_1 \vec{a_1} + \cdots + \lambda_n \vec{a_n} = \vec{0}$ nur für die triviale Lösung $\lambda_1 = \cdots = \lambda_n = 0$ gilt.
- 10. Unterbestimmt: Ein LGS ist unterbestimmt, wenn der Rang von A kleiner als n ist. D.h. wenn es weniger Gleichungen als Variablen gibt (m < n).
- 11. Überbestimmt: Ein LGS ist überbestimmt, wenn der Rang von A größer als n ist. D.h. wenn es mehr Gleichungen als Variablen gibt (m > n).
- 12. Lineare Differentialgleichung: Wir ersetzen die Potenz x^n durch die n-fache Ableitung $f^{(n)}$ einer Funktion f und suchen eine Lösung für: $a_n f^{(n)} + \dots a_1 f' + a_0 f = 0$
- 13. Erzeugendensystem: Sei $X \subset V$. X ist ein Erzeugendensystem, wenn jeder beliebige Vektor $v \in V$ durch eine Linearkombination $\lambda_1 \cdot v_1 + \cdots + \lambda_n \cdot v_n$ darstellbar ist.
- 14. Basis: Sei V ein Vektorraum. Eine Menge $B \subset V$ heißt Basis, wenn B linear unabhängig ist und V erzeugt. Dabei enthält eine Basis immer genau so viele Vektoren, wie der Vektorraum Dimensionen: $dim\mathbb{R}^n=n$ Basisvektoren.
- 15. Kern: Der Kern einer Matrix A ist eine Menge von Vektoren, die durch Multiplikation mit einer Matrix M den Nullvektor erzeugen. geschrieben: Kern(M)
- 16. Eindeutig lösbar: Ein quadratisches LGS $A\vec{x} = \vec{b}$ ist genau dann eindeutig lösbar, wenn $det A \neq 0$.

Rechenregeln:

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} wobeiA^t = \begin{pmatrix} a_{1,1} & \dots & a_{m,1} \\ \vdots & \ddots & \vdots \\ a_{1,n} & \dots & a_{m,n} \end{pmatrix}$$

$$\mathbf{Addition:} \ A + B = \begin{pmatrix} a_{1,1} + b_{1,1} & \dots & a_{1,n} + b_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} + b_{m,1} & \dots & a_{m,n} + b_{m,n} \end{pmatrix}$$

Multiplikation:

$$A \cdot B = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{pmatrix} \begin{pmatrix} a_{1,1} \cdot b_{1,1} + a_{1,2} \cdot b_{2,1} \\ a_{2,1} \cdot b_{1,1} + a_{2,2} \cdot b_{2,1} \\ a_{3,1} \cdot b_{1,1} + a_{3,2} \cdot b_{2,1} \end{pmatrix}$$
Einheitsmatrix:
$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Die Einheitsmatrix ist das neutrale Element für Matrizen. Es gilt also: $A \cdot E = A$

Berechnung der Determinanten:

Für A =
$$\begin{pmatrix} a_{11} & * & \dots & * \\ 0 & a_{22} & * & \vdots \\ \vdots & & & & \\ 0 & \dots & 0 & a_{nn} \end{pmatrix} \text{ gilt } \det A = a_{11} \dots a_{n,n}$$

Dies geht nur bei Quadratischen Matrizen