

planetmath.org

Math for the people, by the people.

fixed point property

Canonical name FixedPointProperty
Date of creation 2013-03-22 13:56:32
Last modified on 2013-03-22 13:56:32

Owner yark (2760) Last modified by yark (2760)

Numerical id 20

Author yark (2760)
Entry type Definition
Classification msc 55M20
Classification msc 54H25
Classification msc 47H10

Synonym fixed-point property

Related topic FixedPoint

Let X be a topological space. If every continuous function $f: X \to X$ has a http://planetmath.org/FixedPointfixed point, then X is said to have the fixed point property.

The fixed point property is obviously preserved under homeomorphisms. If $h: X \to Y$ is a homeomorphism between topological spaces X and Y, and X has the fixed point property, and $f: Y \to Y$ is continuous, then $h^{-1} \circ f \circ h$ has a fixed point $x \in X$, and h(x) is a fixed point of f.

Examples

- 1. A space with only one point has the fixed point property.
- 2. A closed interval [a, b] of \mathbb{R} has the fixed point property. http://planetmath.org/BrouwerFi can be seen using the mean value theorem.
- 3. The extended real numbers have the fixed point property, as they are homeomorphic to [0, 1].
- 4. The topologist's sine curve has the fixed point property.
- 5. The real numbers \mathbb{R} do not have the fixed point property. For example, the map $x \mapsto x + 1$ on \mathbb{R} has no fixed point.
- 6. An open interval (a, b) of \mathbb{R} does not have the fixed point property. This follows since any such interval is homeomorphic to \mathbb{R} . Similarly, an open ball in \mathbb{R}^n does not have the fixed point property.
- 7. Brouwer's Fixed Point Theorem states that in \mathbb{R}^n , the closed unit ball with the subspace topology has the fixed point property. (Equivalently, $[0,1]^n$ has the fixed point property.) The Schauder Fixed Point Theorem generalizes this result further.
- 8. For each $n \in \mathbb{N}$, the real projective space \mathbb{RP}^{2n} has the fixed point property.
- 9. Every simply-connected plane continuum has the fixed-point property.
- 10. The Alexandroff–Urysohn square (also known as the Alexandroff square) has the fixed point property.

Properties

- 1. http://planetmath.org/AnyTopologicalSpaceWithTheFixedPointPropertyIsConnected topological space with the fixed point property is connected and http://planetmath.org/TOS
- 2. Suppose X is a topological space with the fixed point property, and Y is a retract of X. Then Y has the fixed point property.
- 3. Suppose X and Y are topological spaces, and $X \times Y$ has the fixed point property. Then X and Y have the fixed point property. (Proof: If $f: X \to X$ is continuous, then $(x, y) \mapsto (f(x), y)$ is continuous, so f has a fixed point.)

References

- [1] G. L. Naber, Topological methods in Euclidean spaces, Cambridge University Press, 1980.
- [2] G. J. Jameson, Topology and Normed Spaces, Chapman and Hall, 1974.
- [3] L. E. Ward, Topology, An Outline for a First Course, Marcel Dekker, Inc., 1972.
- [4] Charles Hagopian, The Fixed-Point Property for simply-connected plane continua, Trans. Amer. Math. Soc. 348 (1996) 4525–4548.