Combinatoire

I Cardinaux des ensembles finis

I.1 Ensembles finis et cardinaux

On dit que E et F ont le même cardinal s'il existe une bijection de E vers F, on note |E| = |F|.

On dit que E est **fini** s'il existe un entier n et une surjection $f : [1, n] \twoheadrightarrow E$ (ou une injection $g : E \hookrightarrow [1, n]$).

Si E est fini, et que $F \subset E$, alors F est fini aussi.

Tout sous-ensemble E de [1, n] peut être mis en bijection avec [1, p] pour un $p \le n$.

Soit $n, m \in \mathbb{N}$, si il existe une bijection de [1, n] vers [1, m], alors n = m.

I.2 Règles de calcul sur les cardinaux

On a
$$A\subset E$$
, ainsi $|A|=\sum_{k\in E}\mathbb{1}_A(k)$

On a $A_1,...,A_n$ des ensembles finis 2 à 2 disjoints, alors $|A_1\cup...\cup A_n|=|A_1|+...+|A_n|$

On a $A\subset B$, alors $|C_BA|=|B|-|A|$ et $|A|\leq |B|$ avec égalité si et seulement si A=B

On a $A \subset B$, alors $|A \times B| = |A| \times |B|$

On a la formule du crible de Poincaré :

$$|A_1 \cup \ldots \cup A_n| = \sum_{k=1}^n {(-1)}^{k-1} \left(\sum_{i \leq i_1 \leq \ldots \leq i_k \leq n} |A_i \cap \ldots \cap A_{i_k}| \right) = \sum_{I \subset [\![1,n]\!] \atop I \neq \emptyset} {(-1)}^{|I|-1} \ |\bigcap_{i \in I} A_i|$$

On a $A_1,...,A_n$ des ensembles finis, alors $|A_1\times...\times A_n|=|A_1|\times...\times |A_n|$

I.3 Comparaison de cardinaux en cas d'injectivité ou de surjectivité

On a $f: E \to F$ une application :

- si f est injective, alors $|E| \le |F|$
- si f est surjective, alors $|E| \ge |F|$
- si f est bijective, alors |E| = |F|

On a |E| = |F|, et $f: E \to F$, ainsi les propriétés suivantes sont équivalentes :

- f est injective
- f est surjective
- f est bijective

II Combinatoire

II.1 Combinatoire des ensembles d'applications

On rappelle que E^F est l'ensemble des applications de F vers E. On a $|E^F| = |E|^{|F|}$.

Une **p-liste** d'éléments de F (ou **p-uplet**) est un élément $(x_1,..,x_p)$ de F^p .

Le nombre de p-listes d'éléments de F est $|F|^p$.

On a
$$|P(E)| = 2^{|E|}$$

Lemme du berger : Soit $f: E \to F$, on suppose qu'il existe un entier $k \in \mathbb{N}^*$ tel que pour tout $y \in F$, $|f^{-1}(\{y\})| = k$. Alors $|E| = k \times |F|$.

Soit A et B tel que |A|=p et |B|=n, alors si $p\leq n$ le nombre d'injections de A vers B est $A_n^p=\frac{n!}{(n-p)!}$. Si p>n, alors $A_n^p=0$.

Soit |F|=n et $p\leq n$, le nombre de p-listes d'éléments distincts de F (ou **p-arrangements**) est $A_n^p=\frac{n!}{(n-p)!}$

Soit E un ensemble fini, $|\mathfrak{S}E| = |E|!$ et $|S_n| = n!$

II.2 Combinatoire de sous ensembles

Soit E et F deux ensembles de même cardinal, alors $|P_k(E)| = |P_k(F)|$.

Le **coefficent binomial** $\binom{n}{k}$ est le nombre de parties à k éléments de [1, n]. On a $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Soit $(n, k) \in \mathbb{N} \times \mathbb{Z}$,

- Si $n \geq 0$, et $k \notin [\![0,n]\!], {n \choose k} = 0$
- Si $n \geq 0$,
 - $\binom{n}{0} = \binom{n}{n} = 1$
 - $\binom{n}{1} = \binom{n}{n-1} = n$
 - $\binom{n}{2} = \binom{n}{n-2} = \frac{n(n-1)}{2}$

Pour tout $(n, k) \in \mathbb{Z}^2$, on a :

- $\binom{n}{k} = \binom{n}{n-k}$ (symétrie)
- $k \binom{n}{k} = n \binom{n-1}{k-1}$ (formule du comité-président)
- $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ (formule de Pascal)

Formule du binôme de Newton : Soit $n \in \mathbb{N}$ et $a, b \in \mathbb{R}$, alors $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

III Bijection, Déesse de la Combinatoire

Pour montrer que deux ensembles ont le même cardinal, on peut montrer qu'il existe une bijection entre les deux.

IV Preuves combinatoires d'identités

Pour démontrer combinatoirement :

1. Il faut trouver un modèle adapté à la formule, soit un ensemble d'objets dont le dénombrement est égal à celui d'un des membres de l'égalité. Il faut s'aider du membre le plus simple de l'égalité.

2. Dénombrer cet ensemble de 2 façons différentes. On procède d'une part à un dénombrement après un tri (soit une partition de l'ensemble) se traduisant par une somme, et d'autre part à un dénombrement en comptant les objets un par un.

⚠ Évidemment on ne fait ça que sur des entiers au risque d'avoir des petits soucis.

On a les formules suivantes :

- $\sum_{k=0}^{n} \binom{n}{k} = 2^n$
- $\sum_{k=0}^{n} {N \choose k} {M \choose n-k} = {N+M \choose n}$ (Vandermonde) $\sum_{k=0}^{p} {n+k \choose n} = {n+p+1 \choose n+1}$ (Sommation sur une colonne)

Un signe $\left(-1\right)^{k}$ correspond à une comparaison de parités de cardinaux. On peut passer d'un cardinal pair à un cardinal import avec la différence symétrique (Δ) avec un $\{x\}$ soit $X \mapsto X\Delta\{x\}$. C'est le principe de l'interrupteur.