Mathematical Methods Cheatsheet

Calculus of Single and Multiple Variables

• Basic Differentiation: $\frac{d}{dx}[x^n] = nx^{n-1}$

• Basic Integration: $\int x^n dx = \frac{x^{n+1}}{n+1} + C$

• Partial Derivatives: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$

• Exact vs. In exact Differentials: df is exact if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ for Mdx + Ndy = 0

• Jacobian Determinant: $J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$

• Taylor Expansion: $f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots$

• Fourier Series (Periodic Function f(x)):

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

where $a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(x) dx$, $a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \cos \frac{n\pi x}{L} dx$, and $b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(x) \sin \frac{n\pi x}{L} dx$.

• Tips and Tricks:

- Chain Rule Shortcut: $\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)$. Example: $\frac{d}{dx}[\sin(x^2)] = \cos(x^2) \cdot 2x$.

- Small Angle Approximations: For small x, $\sin(x) \approx x$, $\cos(x) \approx 1 - \frac{x^2}{2}$, and $e^x \approx 1 + x$.

Vector Algebra and Calculus

• Vector Dot Product: $\mathbf{A} \cdot \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \cos \theta$

• Vector Cross Product: $\mathbf{A} \times \mathbf{B} = |\mathbf{A}| |\mathbf{B}| \sin \theta \hat{n}$

• Gradient: $\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$

• Divergence: $\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$

• Curl: $\nabla \times \mathbf{A} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$

• Green's Theorem: $\int_C {\bf F} \cdot d{\bf r} = \iint_R (\nabla \times {\bf F}) \cdot \hat{n} \ dA$

• Stokes' Theorem: $\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS$

• Divergence Theorem: $\iiint_V \nabla \cdot \mathbf{F} \, dV = \iint_S \mathbf{F} \cdot \mathbf{n} \, dS$

• Multiple Integrals: Evaluate volume integrals as nested integrals, e.g., $\int_{x_1}^{x_2} \int_{y_1}^{y_2} \int_{z_1}^{z_2} f(x, y, z) dz dy dx$.

• Tips and Tricks:

- **Gradient Insight**: ∇f points in the direction of steepest ascent. Level curves are orthogonal to it.

- **Divergence Theorem Symmetry**: For symmetric fields, use spherical or cylindrical coordinates to simplify volume integrals.

Differential Equations

• First Order Linear ODE: $\frac{dy}{dx} + P(x)y = Q(x)$

Solution:
$$y \cdot \mu(x) = \int Q(x) \cdot \mu(x) dx$$
, where $\mu(x) = e^{\int P(x) dx}$

• Second Order Linear ODE (Constant Coefficients):

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

Solution depends on roots of characteristic equation $ar^2 + br + c = 0$

- Distinct Roots: $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$
- Repeated Roots: $y = (c_1 + c_2 x)e^{r_1 x}$
- Complex Roots: $y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$
- Homogeneous Equations: Mdx + Ndy = 0 is solved using substitution y = vx.
- Tips and Tricks:
 - Variable Separation: For $\frac{dy}{dx} = g(y)/h(x)$, separate variables and integrate.
 - Particular Solution Guessing: Match the form of the non-homogeneous term (e.g., exponential, polynomial, or sine/cosine).

Matrices and Determinants

- Matrix Multiplication: $(AB)_{ij} = \sum_k A_{ik} B_{kj}$
- Determinant of 2x2 Matrix: $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc$
- Inverse Matrix (2x2): $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
- **Eigenvalues**: Solve $det(A \lambda I) = 0$ for eigenvalues λ .
- **Diagonalization**: For $A = PDP^{-1}$, where D is diagonal and columns of P are eigenvectors.
- Trace and Determinant: $Tr(A) = \sum eigenvalues, det(A) = \prod eigenvalues.$
- Tips and Tricks:
 - Row Reduction for Determinants: Use elementary row operations to simplify calculation.
 - Symmetric Matrices: Eigenvalues are real, and eigenvectors are orthogonal.
 - Complex Matrices: For Hermitian matrices, eigenvalues are real.