K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS Single Stage FET Amplifier

Numerical 1:

For the circuit shown in figure 1, determine

a. I_{DQ} , V_{GSQ} & V_{DSQ}

b. A_V , $R_i \& R_o$

JFET having $I_{DSS} = 8mA \& V_p = -4V$

Figure 1: Circuit 1

Solution: The above circuit 1 is a common source JFET amplifier employing a n-channel JFET in voltage divider bias configuration

DC Analysis:

All capacitors acts as open circuited, since f = 0

Figure 2: DC Equivalent Circuit

$$V_G = \frac{R_2}{R_1 + R_2} \times V_{DD}$$
$$= \frac{1M\Omega}{1M\Omega + 7M\Omega} \times 24V = 3V$$

$$V_S = I_D R_S$$

$$V_{GS} = 3 - I_D R_S$$

$$V_{GS} = 3 - I_D (2.5k\Omega)$$
.....(1)

Assuming JFET is working in saturation region,

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_p} \right)^2$$

$$= (8mA) \left(1 + \frac{V_{GS}}{4} \right)^2 \qquad \dots (2)$$

Substituting equation (2) in equation (1), we get

$$V_{GS} = 3 - (20) \left(1 + \frac{V_{GS}}{2} + \frac{V_{GS}^2}{16} \right)$$

$$= 3 - 20 - 10V_{GS} - 1.25V_{GS}^2$$

$$1.25V_{GS}^2 + 11V_{GS} + 17 = 0$$

$$V_{GS} = -2V \quad \text{or} \quad V_{GS} = -6.8V$$

Since $V_{GS} > V_p$ for saturation,

$$\therefore V_{GSQ} = -2\mathbf{V}$$

Applying KVL to input Gate Source loop,

$$V_{GS} = 3 - I_D R_S$$

$$I_D = \frac{3 - V_{GS}}{R_S}$$

$$I_D = \frac{3 - (-2)}{2.5k\Omega}$$

$$I_{DQ} = 2\mathbf{m}\mathbf{A}$$

Applying KVL to outer Drain Source loop,

$$V_{DD} - I_D R_S - V_{DS} - I_D R_S = 0$$

 $V_{DS} = 24 - I_D (R_D + R_S)$
 $V_{DS} = 24 - (2mA)(4.7k\Omega + 2.5k\Omega)$
 $V_{DSQ} = \mathbf{9.6V}$

Small Signal Analysis:

$$g_m = \frac{2I_{DSS}}{|V_p|} \left(1 - \frac{V_{GS}}{V_p} \right)$$
$$= \frac{2 \times 8mA}{|4V|} \left(1 - \frac{(-2V)}{-4V} \right)$$
$$= 2\mathbf{m}\mathbf{A}/\mathbf{V}$$

Figure 3: Small Signal Equivalent Circuit

Small Signal Voltage Gain (A_V) :

$$A_V = -g_m R_D$$
$$= (-2mA/V)(4.7k\Omega)$$
$$= -9.4$$

Negative sign of A_V indicates that the output wavform is 180° out of phase with input waveform

Input and Ouput Impedance:

Input Impedance $(R_i) = R_1 \parallel R_2$

$$R_i = 1M\Omega \parallel 7M\Omega = 875k\Omega$$

Ouput Impedance $(R_o) = R_D$

$$R_o = 2\mathbf{k}\mathbf{\Omega}$$

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

Figure 4: Circuit Schematic

The input and output waveform are shown in figure 5

Figure 5: $V_{IN}(t) \& V_{OUT}(t)$

${\bf Comparison\ of\ Theoretical\ and\ Simulated\ results:}$

Parameters	Theoretical	Simulated
V_{GSQ}	-2V	-2V
V_{DSQ}	9.6V	9.6V
I_{DQ}	2mA	2mA
A_V	-9.4	-9.3845

Table 1: Numerical 1

Numerical 2:

Determine Z_i , Z_o & A_V for the amplifier given in figure 6. Given $k_n = 0.3mA/V^2$

Figure 6: Circuit 2

Solution: The above circuit 2 is a common source enhancement type n-channel MOS-FET amplifier in drain feedback configuration

DC Analysis:

We remove all the capacitors as frequency is 0 and thus they are open circuited.

Figure 7: DC Equivalent Circuit

Since,
$$I_G = 0$$

$$\therefore V_{GS} \approx V_{DS}$$

Applying KVL to Drain Source loop,

$$V_{DS} = V_{DD} - I_D R_D$$

$$V_{GS} = 16 - I_D (22k\Omega) \qquad [Since, V_{GS} \approx V_{DS}] \qquad(1)$$

$$I_D = k_n (V_{GS} - V_{TN})^2$$

$$= (0.3mA/V^2)(V_{GS} - 3V)^2 \qquad(2)$$

Substituting equation (2) in equation (1),

$$V_{GS} = 16 - 6.6(V_{GS}^2 - 6V_{GS} + 9)$$

= 16 - 6.6V_{GS}² + 39.6V_{GS} - 59.4

$$6.6V_{GS}^2 - 38.6V_{GS} + 43.4 = 0$$

$$\therefore V_{GS} = 4.3292V \quad \text{or} \quad V_{GS} = 1.5187V$$

$$V_{GS} > V_{TN}$$

Thus, $V_{GSQ} = 4.3297V$

From equation (1),

$$I_{DQ} = \frac{16 - V_{GSQ}}{22k\Omega}$$

= $\frac{16 - 4.3297}{22k\Omega}$
= $\mathbf{0.53046mA}$

Given that $r_d = 100k\Omega$

Also,
$$r_d = \frac{1}{\lambda I_{DQ}} \Longrightarrow \lambda = \mathbf{0.01885V^{-1}}$$

Small Signal Analysis:

$$g_m = 2k_n(V_{GSQ} - V_{TN})$$

= $2 \times (0.3mA/V^2)(4.3297 - 3)$
= $0.7978mA/V$

Figure 8: Small Signal Equivalent Circuit

From the figure 3 we can observe,

$$\begin{split} I_i &= g_m V_{gs} + \frac{V_o}{r_d \parallel R_D} \\ &= g_m V_i + \frac{V_o}{r_d \parallel R_D} \end{split}$$
 [Since, $V_{GS} = V_i$]

$$I_{i} - g_{m}V_{i} = \frac{V_{o}}{r_{d} \parallel R_{D}}$$

$$V_{o} = (r_{d} \parallel R_{D})(I_{i} - g_{m}V_{i})$$

$$I_{i} = \frac{V_{i} - V_{o}}{R_{G}} = \frac{V_{i} - (r_{d} \parallel R_{D})(I_{i} - g_{m}V_{i})}{R_{G}}$$

$$I_{i}R_{G} = V_{i} - (r_{d} \parallel R_{D})I_{i} + (r_{d} \parallel R_{D}) g_{m}V_{i}$$

$$V_{i}[1 + g_{m}(r_{d} \parallel R_{D})] = I_{i}[R_{G} + r_{d} \parallel R_{D}]$$

$$\frac{V_{i}}{I_{i}} = \frac{R_{G} + (r_{d} \parallel R_{D})}{1 + g_{m}(r_{d} \parallel R_{D})}$$

Input and Ouput Impedance:

Input Impedance
$$(Z_i) = \frac{V_i}{I_i}$$

$$\therefore Z_i = \frac{R_G + (r_d \parallel R_D)}{1 + g_m(r_d \parallel R_D)}$$

$$= \frac{10M\Omega + (100k\Omega \parallel 22k\Omega)}{1 + (0.7978mA/V)(100k\Omega \parallel 22k\Omega)}$$

$$10M\Omega$$

 $= 649.918k\Omega$

For Ouput Impedance (Z_o) , we substitute $V_i = 0V$, $V_{GS} = 0$ & $g_m V_{GS} = 0$, with a short circuit from gate to ground

$$Z_{o} = R_{G} \parallel r_{d} \parallel R_{D}$$

$$= 10M\Omega \parallel 100k\Omega \parallel 22k\Omega$$

$$= 99.009k\Omega \parallel 22k\Omega$$

$$= 18k\Omega$$

Small Signal Voltage Gain (A_V):

$$A_V = \frac{V_o}{V_i}$$

From the small signal equivalent circuit,

Applying KCL at D,

$$I_i = g_m V_{gs} + \frac{V_o}{r_d \parallel R_D}$$

$$I_i = \frac{V_i - V_o}{R_G}$$
[Since, $V_i = V_{gs}$]

$$\frac{V_i - V_o}{R_G} = g_m V_i + \frac{V_o}{r_d \parallel R_D}$$

$$V_i = \frac{1}{r_d \parallel R_D} = \frac{1}{r_d \parallel R_D}$$

$$V_i \left[\frac{1}{R_G} - g_m \right] = V_o \left[\frac{1}{R_G} + \frac{1}{r_d \parallel R_D} \right]$$

Negative sign of A_V indicates that the output wavform is 180° out of phase with input waveform

SIMULATED RESULTS

The above circuit is simulated in LTspice and results are presented below:

Figure 9: Circuit Schematic

The input and output waveform are shown in figure 10

Figure 10: $V_{IN}(t) \& V_{OUT}(t)$

Comparison of Theoretical and Simulated results:

Parameters	Theoretical	Simulated
I_{DQ}	0.53046mA	0.532648mA
V_{GSQ}	4.3297V	4.28175V
A_V	-14.3604	-15.123

Table 2: Numerical 2
