

Unit 1 EXPERIMENT 3

CO2: Utilize a modeler to create, manage, and run data mining streams.

Experiment 1.3: To perform a Chi-Square Goodness of Fit test using OriginPro to determine if the observed frequencies of a categorical variable differ significantly from the expected frequencies.

Objective

To perform and understand the Chi-Square Test, analyze whether observed frequencies differ from expected frequencies.

Theory

Chi-Square Test Overview

The Chi-Square Test is a statistical method used to compare observed data with data expected to be obtained according to a specific hypothesis. There are two main types of Chi-Square Tests:

- 1. **Chi-Square Goodness of Fit Test (Parametric)**: Determines if sample data matches a population with a specific distribution.
- 2. **Chi-Square Test of Independence (Non-Parametric)**: Assesses whether two categorical variables are independent.

Formula

Goodness of Fit Test:

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

where O_i is the observed frequency and E_i is the expected frequency.

Test of Independence:

$$\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

where O_{ij} is the observed frequency for the ith row and jth column, and E_{ij} is the expected frequency for the ith row and jth column.

Sample Data

Sample Table for Goodness of Fit (Observed Frequencies)

Category	Observed Frequency
A	15
В	25
С	30
D	20
Е	10

Sample Table for Test of Independence

	Category 1	Category 2	Total
Group A	15	10	25
Group B	20	30	50
Total	35	40	75

Procedure

Goodness of Fit Test (Parametric)

1. **Input Data**:

- o Open OriginPro 8.5.
- o Enter the observed frequencies into a worksheet column.

2. Calculate Expected Frequencies:

o Assume a theoretical distribution (e.g., equal distribution across categories).

3. Perform Chi-Square Test:

- o Go to Statistics > Descriptive Statistics > Chi-Square Test for Variance.
- o Select the column containing observed frequencies.
- o Enter expected frequencies if not calculated by OriginPro.

4. Analyze Results:

- o Check the Chi-Square statistic and p-value.
- o Determine if the observed frequencies significantly differ from expected frequencies.

Test of Independence (Non-Parametric)

1. Input Data:

o Enter the observed frequencies into a contingency table format in the worksheet.

2. Perform Chi-Square Test:

- o Go to Statistics > Descriptive Statistics > Chi-Square Test for Variance.
- o Select the table with observed frequencies.
- o OriginPro will calculate expected frequencies based on row and column totals.

3. Analyze Results:

- o Check the Chi-Square statistic and p-value.
- o Determine if the variables are independent.

Results

Goodness of Fit Test:

- \circ Chi-Square statistic (e.g., $\chi 2=5.67$)
- \circ p-value (e.g., p=0.34p = 0.34p=0.34)

• Test of Independence:

- o Chi-Square statistic (e.g., $\chi 2=8.49 \cdot \text{chi}^2 = 8.49 \cdot \text{2}=8.49$)
- o p-value (e.g., p=0.04p=0.04p=0.04)

Learning Outcomes

1. Understanding of Chi-Square Tests:

- o Differentiate between Goodness of Fit and Test of Independence.
- o Interpret the Chi-Square statistic and p-value.

2. Proficiency with OriginPro 8.5:

- o Input data and perform Chi-Square Tests using the software.
- o Analyze and interpret results.

3. Application of Statistical Concepts:

- o Use the Chi-Square Test to analyze real-world data.
- Assess the independence of categorical variables and the fit of observed data to theoretical distributions.