

Trabajo Práctico Nº1

Diodo PN

Objetivos del trabajo

- Estudiar la curva I-V de un diodo y predecir su comportamiento a partir de los conceptos y principios físicos estudiados en la materia.
- Estudiar mediante simulaciones el comportamiento de un diodo PN.
- Medir la curva I-V de un diodo y contrastarla con lo predicho por los cálculos teóricos y simulaciones.

Enunciado

En este trabajo práctico se estudiará el diodo 1N4148 usando su modelo analítico, simulaciones y mediciones de laboratorio. Primero se realizarán cálculos teóricos que permitan predecir su comportamiento mediante la ecuación de corriente del diodo. A continuación, se realizarán simulaciones con el programa LTSpice utilizando un modelo provisto por el fabricante. Finalmente, se realizarán mediciones en el laboratorio y se llevará a cabo una comparación entre con toda la información recabada para extraer conclusiones. Para todo el trabajo, se debe suponer que la temperatura ambiente es de $T=300\,\mathrm{K}$.

Parte I: Cálculos teóricos

Suponer que el diodo está basado en silicio y es P^+N . El dopaje del lado donor es $N_D=1\times 10^{14}\,\mathrm{cm}^{-3}$ y tiene un área $A=0.14\,\mathrm{cm}^2$. Además, se sabe que la capacitancia de difusión es $C_D=4.1\,\mathrm{pF}$ cuando la corriente que circula por el diodo es $I_D=10\,\mathrm{mA}$. Teniendo en cuanta estos datos se pide:

- Determinar el valor de la corriente de saturación I_0 .
- Dibujar el modelo de pequeña señal y hallar su valores cuando $V_D = 0.4 \, \mathrm{V}$.

Nota: suponer que el ancho de la zona desierta es despreciable frente al ancho del diodo.

Parte II: Simulación de la característica I-V

En *LTSpice*, armar un circuito que contenga una fuente de tensión conectada en serie con un diodo **1N4148** como se muestra en la Figura 1 . Luego, realizar una simulación *DC sweep* variando la tensión de la fuente en el rango $-0.8 \, \mathrm{V} < V_S < 0.8 \, \mathrm{V}$.

Figura 1: Circuito para la simulación de la curva de transferencia.

DISPOSITIVOS SEMICONDUCTORES 1^{er} cuatrimestre de 2023

Parte III: Medición

En el laboratorio, armar el banco de medición de la Figura 2. Para ello será necesario contar con los equipos y componentes que se listan a continuación:

- 1 fuente de tensión de DC.
- 1 protoboard o placa de prototipado.
- 1 diodo 1N4148.
- 1 resistencia limitadora $R_F = 120 \,\Omega$.
- 1 potenciómetro **multivuelta** (R_P) de $100 \,\mathrm{k}\Omega$.
- 2 multímetros, para medir simultáneamente la corriente y tensión.

Figura 2: Banco para la medición de la curva de transferencia.

Con la fuente de tensión configurada en 5 V se pide:

- Previo a la medición, estimar la máxima corriente que se podrá medir con este banco de medición. Luego, comparar el valor anterior con la máxima corriente que se logró medir.
- Relevar la curva I-V del diodo variando el valor de la resistencia R_P y midiendo la tensión y corriente usando los multímetros. Elegir la cantidad de mediciones para tener una adecuada resolución de la curva.
- Determinar que factor de idealidad n se necesita en el modelo analítico para lograr un mejor ajuste con las mediciones. Utilizar el valor de I_0 obtenido en la Parte I.

Requisitos del informe

- Seguir las pautas del modelo de informe.
- Todo resultado presentado en el informe debe estar analizado. Las comparaciones deben ser realizadas cuantitativamente.
- Explicar todas las suposiciones realizadas y justificarlas.
- Se deben incluir como mínimo las siguientes figuras:

DISPOSITIVOS SEMICONDUCTORES 1^{er} cuatrimestre de 2023

- 1. Dos gráficos (uno en escala lineal y uno en escala semilogarítmica) que contengan la curva I-V teórica, simulada y medida. Para la curva teórica, utilizar la I_0 obtenida en la Parte I y el factor de idealidad n ajustado en la Parte III. ¿Se observan diferencias entre todas las curvas? Cuantifíquelas. ¿Cuál podría ser la causa? (ver clase $Diodo\ Real$).
- 2. Un esquemático completo del banco de medición usado.