ОГЛАВЛЕНИЕ

	Ст
ОРГАНИЗАТОРЫ И СПОНСОРЫ	
МЕЖДУНАРОДНЫЙ ОРГКОМИТЕТ КОНФЕРЕНЦИИ	
ПРОГРАММНЫЙ КОМИТЕТ	
ПРИВЕТСТВИЯ КОНФЕРЕНЦИИ	
ПАМЯТИ М.М. АНТОНОВОЙ	
ПАМЯТИ В.Б. ЧЕРНОГОРЕНКО	
Секция 1 ГИДРИДЫ МЕТАЛЛОВ	
Секция 1.1 ПОЛУЧЕНИЕ ГИДРИДОВ МЕТАЛЛОВ	
Алюмо- и боргидриды металлов: история, свойства, технология, применение	
Булычев Б.М.	
Кинетика гидрогенолиза интерметаллида TiNi	
Братанич Т., Скороход В., Крапивка Н.	
Гидридные фазы в системе	
Sm_2Fe_{17} — NH_3 Фокин В.Н., Шульга Ю.М., Тарасов Б.П., Фокина Э.Э., Коробов И.И., Бурлакова А.Г., Шилкин С.П.	
Взаимодействие интерметаллических соединений RT_2 ($R = La, Ce, Y, Er; T = Ni, Co$) со щелочными растворами MBH_4 ($M = Na, Rb$)	
Механохимический синтез и свойства сорбентов водорода в системе гидрид магния – графит Клямкин С.Н., Тарасов Б.П., Страз Е.Л.	•
Корреляция в распределении атомов внедрения в ГПУ сплавах АВ	
Матысина З.А., Загинайченко С.Ю., Щур Д.В., Власенко А.Ю.	
Разграничение областей гидрирования и гидрогенолиза интерметаллидов	
Братанич Т., Пермякова Т., Скороход В.	
Влияние микрокапсулирования сплавов типа AB_2 на процесс последующей активации поверхности	
······· Чупров С.С., Щербакова Л.Г., Хомко Т.В.	
Синтез и кристаллическая структура гидрида к-	
Zr ₉ V ₄ SH _{23.5}	
Предупреждение пожаров и взрывов при получении гидрида ниобия	
Смирнова Т.М., Чибисов А.Л., Копылов Н.П., Черемных Г.С.	
Синтез и свойства ИМС CeNi _{8.5} Si _{4.5} со структурой, производной от NaZn ₁₃ , и его гидрида и нитрида	
Никитин С.А., Терешина И.С., Вербецкий В.Н., Саламова А.А.	
Взаимодействие в системах NbVCo-H ₂ и NbVFe-H ₂ при давлении водорода до 2000	
атм	

Гидридообразующие системы сплавов с нанокластеризованной структурой для накопления водорода Ткаченко В.Г.	49
Формирование, стабильность и влияние на свойства титана нанокристаллических	52
гидридов Мурзинова М.А., Салищев Г.А., Афоничев Д.Д.	
Изменение аморфной структуры $Mg_{65}Cu_{25}Y_{10}$ сплава при электрохимическом насыщении водородом Савяк М.П., Геберт А., Улеман М.	56
Гидрирование механических сплавов магния с неорганическими солями	60
Первый цикл гидрирования механических сплавов магния с добавками NaF или NaCl	64
Гидрирование фаз Лавеса Gd(Mn,Al) ₂ , Tb(Mn,Al) ₂ и Tb(Fe,Al) ₂	67
Рентгенофазовый анализ гидридных фаз в системах « H_2 - La $Ni_{5-X}M_X$ », где M-Al, Sn; $x<0,3$ Филатова Е.А., Яковлева Н.А., Семененко К.Н.	70
Секция 1.2 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ГИДРИДОВ МЕТАЛЛОВ	73
Термодинамические характеристики тетрагидроборатов лантаноидов	76
Специфика образования и поведения ванадийсодержащих гидридных фаз	80
Термодинамические характеристики тетрагидроборатов лантаноидов	77
Электросопротивлениие бинарных упорядочивающихся сплавов ГПУ структур при наличии примесных атомов или термических вакансий	85
Микроскопические характеристики диффузии H и диффузного рассеяния излучений в гпу-Ln–H (по данным релаксации электросопротивления).	90
Татаренко В.А., Радченко Т.М., Молодкин В.Б. Инициирование водородом синтез соединений A^{II} (B^{V} , B^{VII}) и A^{III} B^{V} в присутствии гидрида алюминия Мирсаидов У., Норматов И.Ш.	94
Центры аннигиляции позитронов и локализации водорода в нанокристаллическом сплаве Mg65Cu25Y10.	98
Лихторович С. П., Нищенко М. М., Савяк М., Геберт А.	
Структура и свойства гидридов $Zr(Hf)_3MO_x(M=Fe, Co, Dx)$	102
Ni)	
Гидридо-подобные наносегрегации на дислокациях в металлах и сплавах, в связи с водородными диффузией, растворимостью, растрескиванием, блистерингом, охрупчиванием и пластифицированием материалов	105
Механизмы разложения гидридов металлов	108

Взаимодействие водорода с растворенными атомами в ГПУ металлах	112
Механизм взаимодействия с кислородом водородопоглощающего сплава NiZr	115
Чуприна В.Г., Шаля И.М.,Карпиков И.И.	
Влияние водорода на термическое расширение сплавов алюминия с	118
кремниемПопова М.В.	
Изотопические эффекты в квазиупругом мессбауэровском поглощении атомами 57 Fe в NbH $_{0.78}$ и NbD $_{0.76}$ Вордель Р., Вагнер Ф.Э.	126
Взаимодействие с кислородом водородопоглощающего сплава NiZr при низких	129
температурах Чуприна В.Г., Шаля И.М.	
RNi ₂ -гидриды: закономерности и	131
особенностиШилов А.Л., Падурец Л.Н.	
Влияние интеркалирования и деинтеркалирования водорода на экситонные спектры слоистого кристалла	134
InSe	
Влияние водородо-термической обработки на структуру и свойства материалов системы AlN-	138
Si ₃ N ₄ Морозов Р.А., Морозов И.А., Рогозинская А.А., Панашенко В.М., Дубовик Т.В., Крушинская Л.А.	
Моделирование ТДС-спектра	142
дегидрирования	
Механизмы водородного охрупчивания сплавов на основе железа	146
Сверхструктура в нано-доменах дигидрида скандия, выявленная методом электронной микроскопии Антонов В.Е., Башкин И.О., Федотов В.К., Николайчик В.И., Натканец И., Падурец Л.Н., Шилов А.Л.	152
Сплавы – накопители водорода и их предельные возможности по обратимой сорбции водорода	156
Нелинейные явления на заряженной поверхности жидкого	160
водорода Бражников М.Ю., Колмаков Г.В., Левченко А.А., Межов-Деглин Л.П.	
Взаимодействие атомарного и молекулярного водорода с палладиевой мембраной	164
T–P фазовые диаграммы и изотопные эффекты в системах Мо- H/D	168
Антонов В.Е., Латынин А.И., Ткач М., Заварицкая В.А.	
Равновесные давления дейтерия над палладием и его	172
сплавами	
Водородсорбционные и электрохимические свойства интерметаллического соединения La_2Ni_7 Левин Э.Е., Донской П.А., Морозкин А.В., Вербецкий В.Н., Сафонова Т.Я., Петрий О.А.	176
Калориметрическое исследование взаимодействия водорода с $Ti_{0.9}Zr_{0.1}Mn_{1.3}V_{0.5}$	179
Влияние гидрирования на спинпереориентационные фазовые переходы в соединениях R_2 Fe $_{14}$ BH $_X$ ($R=$ Ho,	181
Ег)	

Изменение обменных и магнитокристаллических взаимодействий в интерметаллических соединениях при гидрировании и азотировании	183
Особенности теплового расширения монокристаллов $YFe_{11-X}Co_XTiH$	185
Исследование структуры, водородсорбционных и электрохимических свойств сплавов системы $Ti_{0.45}Zr_{0.55}Ni_yV_{0.45}Mn_x$ со структурой фаз Лавеса в области субстехиометрических составов	188
Термодинамика системы Al-H	192
Ангармонизм и анизотропия неупругого рассеяния нейтронов гцк PdD_1 . $_xH_x$	196
Анализ железо-титан-ванадий содержащих сплавов методом дифференциальной спектрофотометрии Иванов А.В., Николаева Т.М.	199
Квантовая топология и компьютерное моделирование атома водорода, локализованного на компактном носителе	202
Металлографические исследования фазовых превращений в ходе процесса Solid-ГДДР в ферромагнитных сплавах на основе соединения $Dd_2Fe_{14}B$ ($Dd=Nd$, Pr , La , Ce , Dy)	206
Диффузия водорода в двойных и тройных неупорядоченных сплавах	210
Сегрегация водорода в поле остаточных напряжений. Власов Н.М., Федик И.И.	216
Применение термодинамической теории возмущений для моделирования РСТ-диаграмм металлогидридов в области неупорядоченных α , $\beta(\alpha')$ -фаз	220
Маринин В.С., Умеренкова К.Р., Шмалько Ю.Ф.	
Влияние водорода на преобразование электрических и структурных свойств приповерхностных ионно-имплантированных слоев кремния	224
Назаров А.Н., Вовк Я.Н., Назарова Т.М., Теруков Е.И., Бер Б.Е., Давыдов В.Ю., Ашок С., Ранган С.	
Релаксационные и гистерезисные явления в наводороженных сплавах на основе железа	228
Механическое поведение и дислокационная структура наводороженных монокристаллов на основе железа. Теус С.М., Шиванюк В.Н., Петров Ю.Н., Гаврилюк В.Г.	232
Диагностика «псевдогидгидов» в сплавах на основе железа и их роли в водородном охрупчивании	236
Диффузия водорода в квазикристаллах Ti-Zr- Ni	240
Ажажа В., Гриб А., Хаджай Г., Малыхин С., Мерисов Б., Пугачов А.	
Корреляция между объемом и составом в гидридах металлов	244

Особенности первых циклов гидрирования-дегидрирования в системах RT_5 - H_2	248
Яковлева Н.А., Цихоцкая А.А., Клямкин С.Н., Тарасов Б.П.	
Экспериментальное исследование процесса парциального окисления метана, стимулированного плазмой микроволнового разряда атмосферного давления	252
Новые аспекты кристаллохимии металлогидридов: подтверждения и исключения из правил	256
Восстановление N-бис(2-фторэтил)-3,4-метилендиоксибензамида системой LiAlH $_4$ - AlCl $_3$	259
Гидриды бинарных и псевдобинарных соединений $R(Cu,Ni)_2$ (R = La, Ce, Pr и Nd)	262
Метод температурных осцилляций для исследования формирования и разложения гидридов металлов Евард Е.А., Войт А.П., Габис И.Е.	266
Кинетика выделения водорода из гидридов эрбия и ванадия	270
Кинетика выделения водорода при взаимодействии металлов и их гидридов с влагой воздуха	274
Фазовые превращения в системе LaNi _{5-x} Co _x –H ₂ (x=0,2; 0,6; 1,0; 1,5 и 2,0). Булык И.И., Тростянчин А.М., Синюшко В.Г., Сокальская И.В.	280
Градиенты электрических полей в позициях водорода и алюминия в тригидриде алюминия	284
Кинетика образования металлического алюминия при термолизе тригидрида и тридейтерида алюминия по данным ЯМР	288
О роли водорода в охрупчивании азотированных сталей. Кочнев Д.В., Шашков Д. П., Котков Ю. К.	293
Секция 1.3 ИСПОЛЬЗОВАНИЕ ГИДРИДОВ МЕТАЛЛОВ	295
Металлогидридные аккумуляторы водорода на основе сплавов магния и редкоземельных металлов с никелем	300
. Тарасов Б.П., Клямкин С.Н., Фокин В.Н., Борисов Д.Н., Гусаченко Е.И., Яковлева Н.А., Щур Д.В., Шилкин С.П.	
Исследование синтеза силикокарбида титана при спекании	303
Моделирование работы тепло - или холодопроизводящей установки с гидридным тепловым насосом Шанин Ю.И.	306
Некоторые схемные решения использования гидридных устройств в автомобиле	310
Восстановление амидов 4-бромкубанкарбоновой кислоты алюмогидридом лития и гидридом алюминия Захаров В.В., Бугаева Г.П., Баринова Л.С., Романова Л.Б., Еременко Л.Т., Логинова М.В.	314
Структурные и кинетические особенности процесса десорбции водорода на Al/Sn межфазных границах Муктепавела Ф.О., Васильев М.А., Столярова С.В.	318

Альтернативные способы микроплакирования никелем порошков гидридобразующих интерметаллидов Слысь И., Щербакова Л., Рогозинская А Щур Д., Рогозинский А., Помыткин А.	322
Термодинамический расчет и экспериментальные результаты процессов водородо-термической обработки порошков нитридов бора и кремния	326
Формирование газотермических композиционных тугоплавких и оксидных покрытий с использованием гидридов-интерметалидов	332
Теория явлений переноса на поверхности раздела плазма — металлогидрид	335
Роль водорода в улучшении термостабильности полупроводникового кремния, структуры и свойств поршневых силуминов	340
Влияние кислородного модифицирования, легирования и ГДДР-обработки на зарядно-разрядные характеристики МГ-электродов на основе ${ m Ti}_2{ m Ni}$	344
Салдан И.В., Завалий И.Ю.	
Воздействие водорода на циркониевые сплавы для изделий активных зон реакторов на тепловых нейтронах	348
Применение эффекта металлогидридого активирования водорода в плазмохимических технологиях Шмалько Ю.Ф., Клочко Е.В.	352
Определение безопасной удельной скорости выделения водорода в технологическом процессе	356
Процессы фазообразования в сплавах системы Ni-Cr-Al легированных гидридами иттрия	360
Поведение композиционной керамики Si ₃ N ₄ -TiN системы Ti-N-Si-N под воздействием лучистой	363
энергии. Людвинская Т.А., Подчерняева И.А., Панасюк А.Д.,Нешпор И.П., Макаренко Г.Н., Дереновская Н.А.	
Применение электролитического наводороживания шихтового кремния для повышения свойств	
силуминов	366
Получение высокопрочного деформируемого поршневого сплава $Al - (15 \div 20)\% Si - H$	370
Обработка расплава силуминов гидридом кислорода	374
Влияние обработки расплава гидридом кислорода на свойства доменного чугуна	378
Реализация кислородного и водородного циклов в герметичном никель-металлгидридном аккумуляторе Семыкин А.В., Казаринов И.А., Хомская Е.А.	382
Некоторые свойства компактного гидрида титана как материала радиационной защиты	386
Низкотемпературные суперионные сенсоры водорода	388
Диффузия водорода в аморфных и сильно деформированных сплавах	394

Секция 2 УГЛЕРОДНЫЕ НАНОСТРУКТУРНЫЕ МАТЕРИАЛЫ	
Секция 2.1 ПОЛУЧЕНИЕ УГЛЕРОДНЫХ НАНОСТРУКТУР	397
Синтез углеродных нанотрубок в жидкой фазе	400
Электродуговой синтез углеродных одностенных нанотрубок с применением сплавов никеля с иттрием Мурадян В.Е., Куюнко Н.С., Фурсиков П.В., Шульга Ю.М., Тарасов Б.П.	406
Исследование каталитической активности LaNi₅ при синтезе УНТ	412
Метод синтеза спиралеподобных углеродных нанотрубок	416
Способ получения высокодисперсных порошков. Дубовой А.Г.	420
Влияние природы материала стенки реактора на морфологию и структуру продуктов дугового распыления графита	424
Образование и структура фрактальных сажевых кластеров	430
Нанотрубки ромбоэдрического карбида бора, B_4C	434
Новая модель формирования углеродных наноструктур	438
Получение углеродных наноразмерных структур путем каталитического пиролиза толуола	442
Получение полых наночастиц	447
Исследование катодных депозитов, образующихся при электродуговом распылении Zr-M-графитовых электродов	452
Получение и структура нанокластерных систем кристаллического графита	456
Углеродные луковицы, получение и водород-сорбционные свойства	460
К вопросу о механизме испарения поверхности центрального электрода в плазменном фокусе	464
Новые подходы к синтезу и выделению эндоэдральных металлофуллеренов	468
Тонкопленочные наноуглеродные материалы: синтез и свойства	472
Золотухин А.А., Образцов А.Н., Волков А.П., Устинов А.О.	471
Синтез углеродных наноструктур пиролизом C_2H_4 на порошках $LaNi_5$	476

квантово-химические исследования моделеи роста однослоиных углеродных нанотруоок на полиеновых кольцах, полусфере фуллерена и поверхности алмаза	480
Лебедев Н.Г., Запороцкова И.В., Чернозатонский Л.А.	
Неподвижные фазы для препаративного хроматографического разделения фуллеренов	483
Оптимизация технологии получения чистого C_{60} и C_{70}	485
Синтез и структурные особенности терморасширенного графита, модифицированного углеродными наноструктурами	488
К вопросу о механизме образования углеродных нанотрубок из графита	492
Управляющая роль электронной концентрации в плазмохимическом синтезе	496
Селективное и неселективное осаждение углеродных наноматериалов методом сверхбыстрого нагрева паров этанола	500
Кластерный механизм роста наноструктурного алмаза	504
Детонационные наноалмазы. Структура, фазовые переходы и применения	507
Получение нанопористых углей с молекулярно-ситовыми свойствами из скорлупы кедровых орехов Бакланова О.Н., Плаксин Г.В., Дроздов В.А., Дуплякин В.К., Чесноков Н.В., Кузнецов Б.Н.	510
Получение из природного графита и антрацита углеродных наноструктурных сорбентов и носителей Кузнецов Б.Н., Чесноков Н.В., Микова Н.М., Шендрик Т.Г., Любчик С.Б., Савоськин М.В.	514
Гетерометаллические фуллериды переходных металлов состава K_2MC_{60} K_2MC_{60} Кульбачинский В.А., Булычев Б.М., Лунин Р.А., Кречетов А.В., Кытин В.Г., Похолок К.В.	518
О фуллереновой дуге с потоком гелия	524
Дыменко В.В., Касумов М.М., Малашенков С.П. Производство фуллереновых наноструктур методом сжигания: оценки и перспективы Литвиненко Ю.М.	527
Наноконструкции Т-типа на (0001)-поверхности графита на основе углеродных (6,6)- нанотрубок Попов А.П., Бажин И.В.	529
Ультрадисперсные образования свободного углерода в сплавах железа	532
Агрегация наночастиц углерода шунгита	536
Исследование борозамещенного фуллерена	540
Синтез и свойства новых фосфорилированных производных фуллерена С ₆₀	544

O реакциях бис-карбонильных соединений с фуллереном C ₆₀	548
Губская В.П., Карасева И.П., Овечкина Е.В., Сибгатуллина Ф.Г., Янилкин В.В., Зверев В.В., Азанчеев Н.М. Нуретдинов И.А.	
Ковалентно-связаные углеродные нанотрубы: моделирование процессов формирования и	
энергетических характеристик	551
Металлокомплексы фуллеренов с оптически активным лигандом (+)DIOP	554
Цикалова М.В., Филатов А.И., Башилов В.В., Соколов В.И., Новиков Ю.Н.	
Газодинамический метод извлечения фуллеренов из углеродной сажи	558
Особенности плазмохимического синтеза нанопорошков металлов и их соединений	562
Гексагональная модификация фуллерита C_{60} — механизм образования, фазовые переходы	566
Окисление фуллерита С ₆₀ при низких температуре и давлении	571
кислорода	
Покрытия, содержащие C_{60} и карбиды	575
металлов	
Защитные композиционные покрытия, содержащие фуллерен-60, наноалмазы или графит	577
Электрохимическая интеркаляция фуллеренов	580
Получение фуллеритов методом осаждения фуллеренов спиртами из растворов толуола	584
Секция 2.2 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ	587
Углеродные наноматериалы под высоким давлением	590
К проблеме устойчивости атомных и молекулярных систем (фуллерены, углеводороды, химические элементы, магические ядра)	594
Определение коэффициентов экстинкции растворов C_{60} и C_{70} с помощью ЭВМ	598
Майстренко М.И., Аникина Н.С., Золотаренко А.Д., Лысенко Е.А., Сивак Г.А., Щур Д.В.	
Концепция закономерностей осаждения углеродных наноструктурных материалов (УНМ) разложением CO	602
Гарбуз В.В., Корнилова В.И., Кузьменко Л.Н., Муратов В.Б.	
Сорбционная активность наноалмазных композиционных материалов по отношению к цианидным комплексам золота (I)	606
Гордеев С.К., Ибрагимова Р.И., Корчагина С.Б., Воробьев-Десятовский Н.В.	

Позитронная аннигиляция в наноструктурном термически расширенном графите	610
Масс-спектрометрия углеродных нанотрубок, полученных методом пиролиза ацетилена	614
Возможный механизм межмолекулярного переноса заряда в ударно- сжатом фуллерите C_{60}	617
Количественный анализ толуольных растворов фуллеренов C_{60} и C_{70} спектрофотометрическим	
методом. Аникина Н.С., Загинайченко С.Ю., Золотаренко А.Д., Майстренко М.И., Сивак Г.А. Щур Д.В.	620
Удельная электропроводность кристаллов фуллерена C_{60} в условиях динамического	624
сжатия	
ИК-спектры пропускания наноструктурных материалов. Хотыненко Н.Г., Савенко А.Ф., Боголепов В.А., Аникина Н.С., Дубовой А.Г., Щур Д.В.	628
Фото-индуцированные изменения структуры и микротвердости монокристаллов и пленок фуллерита C_{60} .	632
Маника И., Маникс Я., Калначс Я.	032
Синтез и физико-химические свойства фторида фуллерена	635
$C_{60}F_{18}$ Гольдт И.В., Денисенко Н.И., Стрелецкий А.В., Болталина О.В., Буяновская А.Г., Сидоров Л.Н.	
Колебательные моды углеродсодержащих материалов: SEIRA и КР спектроскопия	637
Дериватографические исследования термического разложения дисперсных частиц металлоуглеродных композитов.	640
. Головко Э.И., Дубовой А.Г., Зеленская О.Г., Мелешевич К.А., Коваль А.Ю., Загинайченко С.Ю., Щур Д.В.	
Термодинамика углеродных наноструктур: фуллерена C_{60} , полимерных фаз C_{60} , гидрофуллерена $C_{60}H_{36}$ Маркин А.В., Лебедев Б.В., Смирнова Н.Н.	644
Колебательные спектры и строение молекул гидрофуллеренов $C_{60}H_{18},C_{60}D_{18}$ и $C_{60}H_{36}$ по данным ИК и КР спектроскопии и неэмпирических расчетов.	648
Попов А.А., Сенявин В.М., Грановский А.А., Лобач А.С.	
Рентгеноструктурное исследование депозитов, сформировавшихся при электродуговом распылении композитов Me ₁ -Me ₂ -C.	652
Рогозинская А.А., Клочков Л.А., Шапошникова Т.И., Тимофеева И.И., Симановский А.П., Рогозинский А.А., Щур Д.В., Лукашенко Н.В.	
Адиабатическое сродство к электрону сольватированных метанофуллеренов и превращения их анионных состояний	656
Янилкин В.В., Настапова Н.В., Торопчина А.В., Морозов В.И., Губская В.П., Бережная Л.Ш., Сибгатуллина Ф.Г., Нуретдинов И.А.	
Ударное сжатие фуллерита C_{60} Уткин А.В., Якушев В.В., Милявский В.В., Жук А.З., Фортов В.Е.	660
Мессбауэровское исследование углеродных наноструктур, полученных на Fe-Ni катализаторе	664
Термодинамические свойства фуллереноподобных наноструктур в области от $T \rightarrow 0$ до 670 К и стандартном давлении	668

Моделирование облучения и фрагментации фуллеренов пучками частиц	672
Фуллереновые комплексы металла, содержащие карборановый или монокарболлидный лиганды	676
Усатов А.В., Мартынова Е.В., Лебедев В.Н., долгушин Ф.М., Новиков Ю.Н.	
Природные нанотрубки цилиндрического типа - суперконцентраторы жидких углеводородов из водных сред	680
Швец Д., Супруненко К.	000
Электрические и магнитные свойства носителей тока в нанопористом углероде изготовленном из карбида ZC (Z= Si, Ti, B_4)	684
Шанина Б.Д., Кончиц А.А., Колесник С.П., Вейнгер А.И., Данишевский А.М., Попов В.В., Гордеев С.К., Шуман В.Б., Курдюков Д.А.	
Индивидуальные изомеры бис-аддуктов [60] фуллерена с изоцианурато- и	600
нитропиримидинозамещенными азидами	688
Электронное строение и термодинамика фуллеренов и наноструктур	692
Гидродинамические и молекулярные характеристики водорастворимых звездообразных производных фуллерена C_{60} на основе	696
поливинилпирролидона	
Новые углеродные материалы на основе полифуллеренов C_{60} : синтез, идентификация, исследование	
свойств	700
Влияние облучения на спектры комбинационного рассеяния света однослойных углеродных	704
нанотрубок	704
Колебательные спектры пленок Cu-C ₆₀	708
Электронная и кристаллическая структура пленок	712
С ₆₀	
Рентгеновский дифрактометр для исследования сорбции водорода при давлениях до 10 МПа	716
Физико-химические свойства покрытий на основе фуллерена C_{60}	720
С60	
Термохимические свойства гидрофуллеренов по данным экспериментальных измерений и квантово- механических	723
расчетовПопов А.А., Мельханова С.В.	
Калориметрическое изучение карбиноидных структур в области от $T \to 0$ до 450 К	726
Быкова Т.А., Смирнова Н.Н., Лебедев Б.В.	
Классификация углеродных структур	732
Беленков Е.А.	

Краевые эффекты ароматических углеродных поверхностей	736
Сера и селен в нанопористом углероде	740
Колебательные спектры полимеризованных состояний фуллерена C ₆₀ : эксперимент и квантовомеханические расчеты	743
Структурно-фазовые превращения в имплантированных пленках титан – фуллерен Баран Л.В., Шпилевский Э.М., Окатова Г.П.	746
Энтальпия С-F связи во фторированном графите и некоторых фторидах фуллерена C_{60}	750
Нейтронные исследования соединений фуллеренов с легкими атомами и молекулами	754
Влияние ионной бомбардировки на форму спектров остовных фотоэлектронов углеродных нанотрубок	758
Воинкова И.В., Песин Л.А., Бржезинская М.М., Грибов И.В., Москвина Н.А., Кузнецов В.Л.	
Влияние давления на молекулярные комплексы TMTSF· C_{60} · $2(CS_2)$ и ET_2 · C_{60}	762
Трехмерные полимерные структуры кубической симметрии на основе фуллеренов C_{28}	765
Секция 2.3 ХРАНЕНИЕ ВОДОРОДА В НАНОСТРУКТУРНОМ УГЛЕРОДЕ	767
Позитронная спектроскопия нанопористых углеродсодержащих материалов	772
Диффузия, сорбция и хранение водорода в наноструктурном углероде	776
Система комбинированного автомобильного питания с применением водородного адсорбера на углеродных наноструктурах	780
Квантово-химические исследования процессов гидрогенизации однослойных углеродных нанотрубок Лебедев Н.Г., Запороцкова И.В., Чернозатонский Л.А.	784
Моделирование адсорбции молекул водорода внутри углеродных нанотрубок при различных давлениях и температурах	788
Локализация и состояние водорода в наноразмерных областях в алмазных пленках и кристаллах	792
Углеродные материалы, гидрированные под высоким давлением	798
Адсорбционные свойства многостенных углеродных нанотрубок, полученных в дуговом разряде	802
Хранение водорода в хемосорбционных комплексах соединений на металлах	806

изучение физико-механических своиств гидридов и других материалов в конденсированном состоянии методами акустомикроскопической дефектоскопии	810
Буданов А.В., Кустов А.И., Мигель И.А.	
Исследование влияния водорода на зависимости строения и свойств твердых материалов, полученных по технологии спекания	814
Дуговое распыление графита в	818
жидкостях	
Аникина П.С., дуоовой А.Г., Загинаиченко С.Ю., Тарасов В.П., Шульга Ю.М., щур д.В.	
Секция 2.4 ДРУГИЕ ПРИМЕНЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ	821
Автоэмиссионные исследования допированных углеродных нанотрубок	824
Синтез, изучение и применение для холодных эмиттеров электронов наноструктурированных углеродных материалов	828
Защита ценных бумаг с помощью фуллеренов	832
Синтез сверхтвердых материалов с использованием нанокристаллических форм углерода	836
Использование нанотрубок в углерод-углеродном аккумуляторе	840
Фуллеренсодержащая силиконовая композиция для изготовления искусственной радужной оболочки	
глаза	843
Синтез нанотрубок нитрида кремния с использованием наноструктурного	846
углерода	
Наночастицы металлов и оксидов на поверхности углеродных волокон – эффективные катализаторы химических превращений	850
эпоксиолигомеров	
Особенности использования люминофоров в источниках света с холодным катодом	853
О возможности создания фуллерен-кислород-йодного лазера с оптической накачкой	855
Метод нанесения никель-фосфорных покрытий на углеродные	857
нанотрубки	
Карбонизация полимерных покрытий на мезопористых керамических трубках с целью получения углеродных газоразделительных мембран	860
Фуллеренсодержащие жидкокристаллические дендримеры: синтез и свойства в растворах	864
Евлампиева Н.П., Лавренко П.Н., Dardel B., Deschenaux R.	

Литий в нанопористом углеродном материале, полученном из SiC	868
Котина И.М., Лебедев В.М., Ильвес А.Г., Пацекина Г.В., Тухконен Л.М., Данишевский А.М., Гордеев С.К., Яговкина М.А.	
Синтез, классификация, механизмы формирования и транспортные свойства углеродных Y- и T- соединений.	871
Чернозатонский Л.А.	
Композиционные углепластики для узлов трения автомобильных агрегатов	874
Углеродные герметизирующие материалы для статических и подвижных уплотнений теплоэнергетического оборудования	878
Фуллерен С $_{60}$ в матрице полиэтиленоксида: образование комплекса через подавление окислительной термодеструкции	882
Структура и реакционная способность шунгитовых углеродов в среде водорода и кислорода	886
Сопоставительный анализ свойств высокодисперсных порошков алмаза, синтезированных детонационным методом	890
Компьютерное моделирование теплоемкости однослойных углеродных нанотрубок	894
Металлсодержащие наночастицы в полимерных матрицах	898
Генетические эффекты 1-метил-2[бис(2хлорэтил)аминофенил] 3,4-фуллеро[С60] пирролидина и 1-метил-2[N-метил (2хлорэтил) аминофенил 3,4-фуллеро [С60] пирролидина	902
Углеродные герметизирующие материалы для статических и подвижных уплотнений теплоэнергетического оборудования	878
Влияние гидратированных фуллеренов на фазовые равновесия в системе вода-биополимер- электролит Рожков С.П., Горюнов А.С., Суханова Г.А., Борисова А.Г., Рожкова Н.Н.	906
Мишень перезарядной инжекции на основе металло-углеродных структур	909
Фуллерены, нанотрубки и нанокластеры в качестве оптических ограничителей	912
Численное моделирование оптического ограничения суспензией углеродных наночастиц	916
Полифункциональные композиты на основе вторичного полиамида	919
Изучение взаимодействия биологических молекул с углеродосодержащими материалами: данные SEIRA	921

поверхностей микроплазмоискровым методом	924
Секция 3 МАТЕРИАЛЫ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ	927
Водородные топливные элементы, состояние и проблемы. Коровин Н.В.	928
Энергетические системы на основе топливных элементов с твердым полимерным электролитом (обзор Баранов И.Е., Фатеев В.Н., Григорьев С.А., Русанов В.Д.	p) 932
Аккумулятор кислорода для изолированных топливных элементов	936
Транспорт воды в каталитических и гидрофобных слоях топливного элемента с твердым полимерным	
электролитом	940
Особенности формирования кристаллической структуры нанопорошков ZrO_2 –3mol% Y_2O_3	946
Ближний порядок и транспорт водорода в аморфном сплаве на основе железа	950
Влияние катионного допирования на анионную подрешетку цератов бария и стронция	954
Аксенова Т.И., Хромушин И.В., Букенов К.Д., Медведева З.В.	
Моделирование дегидратации и дегидрогенизации в чистом и Ва-, Са-, Sr- или Y-модифицированном нанослое диоксида циркония	958
Изучение двумерного роста зерен в пленках Au. Сурсаева В.Г.	964
Использование рентгеновской спектроскопии при изучении электронной структуры катодных материалов топливных элементов	968
Бондаренко Т.Н., Зырин А.В.	
Жаростойкие инварные сплавы для согласования с керамикой высокотемпературных топливных элементов.	972
Родионов Ю.Л., Кормс И.А., Мишанин С.В. Могутнов Б.М.	075
Нанопорошки диоксида циркония возможности получения и применения	975
Многостадийная сверхпластичность микрокристаллических материалов	978
Секция 4 ВОДОРОДНАЯ ЭНЕРГЕТИКА И ПРОБЛЕМЫ ОКРУЖАЮЩЕЙ СРЕДЫ	981
Бензино-водородная смесь в качестве горючего для двигателей внутреннего сгорания	984
Научно-технические предпосылки в Украине для создания ветроводородных станций	988
Структура нанокристаллических адсорбентов на основе гидроксоапатита кальция	992
Шпак А.П., Мельникова В.А., Карбовский В.Л.	
Изоморфизм кальциевого гидроксоапатита и проблемы эндо- и экзоекологии	996
Шпак А.П. Карбовский В.Л. Трачевский В.В. Смоляк С.С. Курган Н.А. Влайков Г.Г.	

Получение водорода путем частичного окисления оогатых керосино-воздушных смесеи в волнах фильтрационного горения	1000
Дмитренко Ю.М., Жданок С.А., Минкина В.Г.	
Роль водорода в экотехнологии очистки энергетического оборудования	1004
Жидкофазный радиолиз систем вода-н-	1010
гексан	
Спектральные характеристики полупроводниковых фотоэлектродов на основе TiO_2 и $SrTiO_3$	1014
Особенности водородовыделения в протонноблученном монокристаллическом кремнии	1018
Пожаровзрывоопасность гидридхлорсиланов и средства их тушения	1022
Гармонизированный непрерывно-дискретный каталитический гумификатор	1026
Экоресурсосберегающий Кодекс	1030
Диффузионные параметры водорода в малоактивируемых реакторных сталях и их сварных соединениях Засадный Т.М., Федоров В.В., Демина Е.В., Прусакова М.Д	1034
Примесный водяной конденсат (водяной гель) в жидком гелии	1038
Анализ развития дефектов в водородосодержащих конструкциях	1042
Перспективный материал для тонкопленочных датчиков газов	1046
Детекторы водорода на основе Pd и электроактивных полимеров	1050
Нитрид титана – ингибитор водородопроницаемости	1056
Оптимизация процессов сгорания углеводородного топлива при решении задач защиты атмосферного воздуха от загрязнений	1060
Пленки гидрогенизированного аморфного карбида кремния как перспективные трибологические покрытия и полупроводниковые слои	1064
О перспективах использования оксидных нанофаз для получения водорода методом фотоэлектролиза воды под действием солнечного света	1068
Данько Д.Б., Солонин Ю.М.	
К расчетам тепловых труб с металловолокновыми структурами, перспективных для устройств водородной энергетики	1074
Проблемы сероводорода и его переработка в черном море	1078

Экстраполяция экологических факторов	1082
Текстурированные слои из активированных кристаллов MoO_3 для сенсоров водорода	1086
Пассивации водородом примесей и дефектов в Cd _x Zn _{1-x} Te выращеных методом сублимации Британ В.Б., Цюцюра Д.И., Пигур О.М.	1090
Применение генератора водорода в газоаналитическом приборостроении	1094
Влияние водорода на замедленное разрушение ГПУ є-сталей на основе Fe-Mn твердого раствора	1098
Нанотехнологии и окружающая средаПишук О.В., Тесленко Л.О., Пишук В.К., Щур Д.В.	1104
Обзор методов хранения водорода	1108
АВТОРСКИЙ УКАЗАТЕЛЬ	1118
ОГЛАВЛЕНИЕ	1126
Оптические исследования процессов интеркаляции-деинтеркаляции водорода в слоистых полупроводниковых кристаллах γ-InSe	1157
Жирко Ю.И., Ковалюк З.Д., Пырля М.М., Боледзюк В.Б.	
Разработка топливных элементов в Украине	1159
Перспективы развития воздухонезависимых энергетических установок на водородном топливеИгнатьев К. Ю., Юрин А. В.	1162