Tema 6

Variables estadísticas bidimensionales. Regresión lineal

Bidimensionales. Regresión lineal

- □ Variables bidimensionales:
 - Frecuencias
 - Tablas
 - Gráfico
- ☐ Grado de dependencia. Independencia
- Covarianza y correlación
- ☐ Idea de la regresión
- ☐ Regresión lineal:
 - Lenguaje de regresión
 - Criterios de ajuste
 - Rectas de regresión
 - Bondad de ajuste

Variables bidimensionales

- ☐ Muchas veces se busca estudiar la **relación** que existe entre **dos características** estudiadas sobre la **misma población: variable bidimensional (X,Y).**
- N es el número de veces que se repite la experiencia en la que se observan las dos características.
- Los resultados diferentes obtenidos en las N experiencias son los pares (x_i, y_j)

$$i = 1, 2, ..., k$$
 $j = 1, 2, ..., m$.

Frecuencias

- □ La <u>frecuencia absoluta</u> de cada par (x_i, y_j) se representará por \mathbf{n}_{ij} o $\mathbf{n}(\mathbf{x}_i, \mathbf{y}_j)$, y es el **número** de veces que aparece dicho par.
- La <u>frecuencia relativa</u> de cada pareja (x_i, y_j) se representará por f_{ij} o $f(x_i, y_j)$, y es la **proporción** de veces que aparece dicho par en las N experiencias: $f(x_i, y_j) = \frac{n(x_i, y_j)}{N} \quad \forall i, j.$
- Se cumple: $\sum_{i=1}^{k} \sum_{j=1}^{m} n(x_i, y_j) = N$ $y = \sum_{i=1}^{k} \sum_{j=1}^{m} f(x_i, y_j) = 1$.

Tabla estadística una entrada

• A veces se manejan tablas de una entrada (como en la entrada de datos a una calculadora):

Xi	\mathbf{x}_1	\mathbf{x}_1	•••	\mathbf{x}_1	X 2	X 2	•••	X 2	•••	$\mathbf{x}_{\mathbf{k}}$	X _k	•••	X _k
y _i	y ₁	y ₂	•••	Уm	y_1	y ₂	•••	y _m	•••	y ₁	y ₂	•••	y _m
nij	n_{11}	n_{12}	•••	n_{1m}	n_{21}	n_{22}	• • •	n_{2m}	•••	n_{k1}	n_{k2}	• • •	n_{km}
fij	$ \mathbf{f}_{11} $	f ₁₂	•••	f_{1m}	f_{21}	f_{22}	•••	f_{2m}	•••	f_{k1}	f_{k2}	•••	f_{km}

Tabla estadística de dos entradas

☐ En otras ocasiones (como en tablas de contingencia) se construyen **tablas estadísticas de doble entrada.** La siguiente es una tabla con frecuencias absolutas:

$X \setminus Y$	y ₁	У2	•••	y _i		y _m
\mathbf{x}_1	n ₁₁	n ₁₂		n_{1j}		n _{1m}
\mathbf{x}_2	n ₂₁	n ₂₂		n_{2j}		n_{2m}
;	÷	;	٠.	:		÷
Xi	n_{i1}	n_{i2}		n_{ii}		n _{im}
:					٠.	
$\mathbf{x}_{\mathbf{k}}$	n_{k1}	n_{k2}		n_{kj}		n_{km}

Diagrama de dispersión

- ☐ El <u>diagrama de dispersión o nube de puntos</u> es la **representación gráfica** más habitual para las variables bidimensionales.
- \square Para ello, en unos ejes coordenados, se marcan los puntos de coordenadas (x_i, y_j) , indicando cuál es su frecuencia absoluta (no es necesario indicarla cuando su frecuencia es 1).

Grado de dependencia entre X e Y

En la variable bidimensional (X, Y) las variables X e Y tienen una relación más o menos fuerte.

Esta relación varía entre dos casos extremos:

- ☐ Independencia: el comportamiento de la variable X no influye en el de la variable Y, y viceversa.
- Dependencia funcional: la relación entre ambas variables es tan estrecha que existe una función f, de forma que Y=f(X) (o bien existe g, de forma que X=g(Y)).

En la mayor parte de las situaciones nos encontraremos en un grado de dependencia intermedio entre la independencia y la relación funcional.

Variables independientes

☐ Las variables X e Y son independientes si:

$$f(x_i, y_j) = f(x_i) \cdot f(y_j) \quad \forall i, j.$$

☐ Ejemplo: en la distribución de frecuencias de la tabla siguiente, X e Y son **independientes**:

X\Y	-2	-1	0	3	n _i
3	2	5	3	1	11
4	6	15	9	3	33
5	4	10	6	2	22
n _i	12	30	18	6	66

Nota: en variables independientes las **filas** de frecuencias son **proporcionales** entre sí (lo mismo le pasa a las **columnas**).

Covarianza

□ La <u>covarianza</u> de las variables X e Y, S_{XY}, es una medida de la relación entre X e Y. Se calcula

como:

$$S_{xy} = \frac{1}{N-1} \sum_{i=1}^{k} \sum_{j=1}^{m} (x_i - \overline{X}) (y_i - \overline{Y}) \cdot n(x_i, y_j).$$

- Si X e Y son independientes, entonces $S_{XY} = 0$ (el recíproco no es cierto).
- Si $S_{XY}>0$, entonces entre X e Y hay dependencia directa (a mayor valor de X, mayor valor de Y, o viceversa).
- Si S_{XY} <0, entonces entre X e Y hay dependencia inversa (a mayor valor de X, menor valor de Y, o viceversa).

Coeficiente de correlación

- Se define el coeficiente de <u>correlación lineal de</u>

 <u>Pearson</u> entre dos variables X e Y, y se denota por r, a $r = \frac{S_{XY}}{C}$.
 - $-1 \le r \le 1$.
 - Si X e Y son independientes, entonces r = 0 (el recíproco no es cierto).
 - Si r > 0 entre X e Y hay dependencia directa (a mayor valor de X, mayor valor de Y, o viceversa).
 - Si r < 0 entre X e Y hay dependencia inversa (a mayor valor de X, menor valor de Y, o viceversa).

Idea de la regresión

- □ En la regresión se plantea expresar la variable Y como función de X: Y=f(X) (o X como función de Y: X=g(Y)).
- ☐ Esto, en general, <u>no es posible</u>.
- □ En la mayoría de los casos lo que se va a conseguir es calcular una función que exprese Y en función de X con el menor error posible: regresión de Y sobre X (o X en función de Y: regresión de X sobre Y).

Regresión más simple

- □ Nos conformaremos con ajustar a una **recta** (que es la función **más sencilla**): <u>regresión lineal</u>.
- ☐ También se podrían realizar ajustes a otro tipo de funciones más complejas: <u>regresión no lineal</u>.

 No entraremos en este tipo de regresión.

Lenguaje de regresión

- ☐ En la **regresión de Y sobre X**:
 - X es la variable independiente o explicativa.
 - Y variable **dependiente o a predecir**.
- Si se trata de predecir un valor de la variable dependiente cuando la variable explicativa toma un valor en el intervalo $[x_1,x_k]$, se dice que la predicción es una **interpolación**. En caso contrario es una **extrapolación**.
- ☐ En general, las **interpolaciones son fiables** cuando se tiene un "buen ajuste", mientras que las extrapolaciones no suelen ser fiables.

Regresión lineal

En la regresión lineal se va a encontrar la rectay = a + bx

que mejor se "ajusta" a todos los puntos (x_i, y_j) de la variable bidimensional (X, Y): recta de regresión de Y sobre X.

☐ Si se intercambian los papeles de X e Y se obtiene la recta de regresión de X sobre Y.

Criterios de ajuste

☐ ¿Qué criterio debe ser utilizado para "acoplar" o "ajustar" la recta a la nube de puntos?

Modelo de regresión ortogonal

Modelo de regresión mínimo-cuadrática

☐ Por **operatividad** se elige el modelo de regresión mínimo-cuadrático.

Regresión mínimo-cuadrática

Regresión lineal mínimo-cuadrática

Las <u>separaciones elevadas al cuadrado</u> son <u>ponderadas</u> por la frecuencia asociada, con lo que **el objetivo** es <u>minimizar</u>:

$$\overline{E^2}(a,b) = \sum_{i=1}^k \sum_{j=1}^m f_{ij}(y_j - a - bx_i)^2$$

☐ Resolviendo se obtienen los valores:

$$a = \overline{Y} - \frac{S_{XY}}{S_X^2} \overline{X}, \qquad b = \frac{S_{XY}}{S_X^2}$$

Recta de regresión de Y/X

 \square Sustituyendo los valores de a y de b en la recta $\mathbf{y} = \mathbf{a} + \mathbf{b} \mathbf{x}$, obtenemos la expresión:

$$y - \overline{Y} = \frac{S_{XY}}{S_X^2} (x - \overline{X})$$

que es la recta de regresión de Y sobre X.

☐ Intercambiando los papeles de X e Y se obtiene la recta de regresión de X sobre Y:

$$x - \overline{X} = \frac{S_{XY}}{S_Y^2} (y - \overline{Y})$$

Rectas de regresión

☐ La recta de regresión de Y/X y la de X/Y, en general no coinciden, se cortan en el punto:

$$(\overline{X}, \overline{Y})$$

y ambas tienen **pendientes del mismo signo** (el de la covarianza o el del coeficiente de correlación).

Interpretación pendiente r.r. Y/X

☐ En la recta de **regresión de Y sobre X** la <u>pendiente</u> es el coeficiente "b",

$$b = \frac{S_{XY}}{S_X^2},$$

y se interpreta como <u>la variación que</u> <u>experimenta la variable Y cuando X varía en</u> una unidad.

Interpretación pendiente r.r. X/Y

☐ En la recta de **regresión de X sobre Y** la <u>pendiente</u> es el <u>inverso</u> del coeficiente "b",

$$b' = \frac{S_{XY}}{S_Y^2},$$

y se interpreta como <u>la variación que</u> experimenta la variable X cuando Y varía en una unidad.

Variable predicción

La variable $Y^* = a + bX = \overline{Y} + \frac{S_{XY}}{S_{XY}^2} (X - \overline{X})$

es la variable <u>predicción de Y a partir de X</u> en la recta de regresión de Y sobre X.

☐ Sus valores son las predicciones

$$y_{i}^{*} = f(x_{i}) = a + bx_{i} = \overline{Y} + \frac{S_{XY}}{S_{X}^{2}} (x_{i} - \overline{X}).$$

☐ Intercambiando X e Y se tiene la <u>predicción de</u> <u>X a partir de Y.</u>

Variable error

□ La variable

$$E = Y - Y^* = Y - \left(\overline{Y} + \frac{S_{xy}}{S_x^2} \left(X - \overline{X}\right)\right)$$

es la variable <u>error al predecir Y a partir de X</u> con la recta de regresión de Y sobre X.

☐ Sus valores son los errores

$$e_{ij} = y_{j} - y_{i}^{*} = y_{j} - \left(\overline{Y} + \frac{S_{xy}}{S_{x}^{2}}(x_{i} - \overline{X})\right).$$

☐ Intercambiando X e Y se tienen los <u>errores de</u> X a partir de Y.

Bondad del ajuste lineal

- Tras encontrar la recta que mejor se "acopla" a un conjunto de datos bidimensionales, hay que medir **el "grado de acoplamiento"** (bondad del ajuste) de los datos a la función.
- ☐ El caso ideal es cuando todos los puntos están sobre la recta (dependencia funcional). En general esto **no ocurre**.
- □ Por tanto, hay que "medir" el grado de alejamiento de los datos de la muestra a la recta de regresión calculada (o variabilidad de los datos respecto a la recta).

Coeficiente r y r²

- ☐ Los coeficientes de bondad del ajuste lineal más utilizados son:
 - r, coeficiente de correlación entre las variables $X \in Y : r_{XY} = \frac{S_{XY}}{S_{Y}S_{Y}}.$
 - El cuadrado de este coeficiente, r², recibe el nombre de *coeficiente de determinación*.

 También se puede calcular como

$$\mathbf{r}_{xy}^2 = \frac{\mathbf{S}_{y^*}^2}{\mathbf{S}_{y}^2} = 1 - \frac{\mathbf{S}_{E}^2}{\mathbf{S}_{y}^2}.$$

Interpretación de r²

r²×100 es el porcentaje de variabilidad de Y que queda explicada por la regresión.

- Si $\mathbf{r}^2 = \mathbf{1}$: el 100% la variabilidad de Y queda explicada por la regresión. El **ajuste es perfecto** (los puntos están sobre la recta de regresión). Ambas rectas de regresión **coinciden**.
- Si $r^2 = 0$ (variables *incorreladas*) nada en la variabilidad de Y está explicada por la regresión lineal a partir de X (independientes linealmente). <u>Las rectas de regresión son perpendiculares y paralelas a los ejes</u>.
- Suele considerarse que la regresión es aceptable si r²≥0.75.

Interpretación de 1-r²

(1-r²)×100 es el porcentaje de variabilidad de Y que no está explicada por la regresión.

- ☐ Si 1-**r**² = **0**: el 0% la variabilidad de Y no está explicada por la regresión. El **ajuste es perfecto** (los puntos están sobre la recta de regresión). <u>Ambas rectas de regresión **coinciden**.</u>
- Si 1-r² = 1 (variables *incorreladas*) el 100% de variabilidad de Y está sin explicar por la regresión lineal a partir de X (independientes linealmente). Las rectas de regresión son perpendiculares y paralelas a los ejes.
- Suele considerarse que la regresión es aceptable si el porcentaje no explicado es $1-r^2<0.25$.

Fiabilidad de la predicción

- Recuerda que la predicción puede ser interpolación o extrapolación.
 - Las extrapolaciones no suelen ser fiables.
 - Las interpolaciones son fiables si $\underline{r^2 \ge 0.75}$ (ya que el ajuste es aceptable en este caso).