MSO201A: PROBABILITY & STATISTICS Problem Set #6

[1] The probability density function of the random variable X is

$$f_X(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

i.e. $X \sim U(0,1)$. Find the distribution of the following functions of X

(a)
$$Y = \sqrt{X}$$
; (b) $Y = X^2$; (c) $Y = 2X + 3$; (d) $Y = -\lambda \log X$; $\lambda > 0$.

- [2] Let X be a random variable with $U(0,\theta)$, $\theta > 0$ distribution. Find the distribution of $Y = \min(X, \theta/2)$.
- [3] The probability density function of X is given by

$$f_X(x) = \begin{cases} \frac{1}{2}, & -\frac{1}{2} < x < \frac{3}{2} \\ 0, & \text{otherwise} \end{cases}$$

Find the distribution of $Y = X^2$

[4] The probability density function of X is given by

$$f_X(x) = \begin{cases} k \frac{x^{p-1}}{(1+x)^{p+q}} & x > 0\\ 0 & \text{otherwise,} \end{cases}$$

p,q > 0. Derive the distribution of $Y = (1 + X)^{-1}$.

[5] The probability density function of X is given by

$$f_X(x) = \begin{cases} k x^{\beta - 1} \exp(-\alpha x^{\beta}) & x > 0\\ 0 & \text{otherwise,} \end{cases}$$

 $\alpha, \beta > 0$. Derive the distribution of $Y = X^{\beta}$

[6] According to the Maxwell-Boltzmann law of theoretical physics, the probability density function of V, the velocity of a gas molecule, is

$$f_V(v) = \begin{cases} k v^2 \exp(-\beta v^2) & v > 0\\ 0 & \text{otherwise,} \end{cases}$$

where, $\beta > 0$ is a constant which depends on the mass and absolute temperature of the molecule and k > 0 is a normalizing constant. Derive the distribution of the kinetic energy $E = mV^2/2$.

[7] The probability density function of the random variable X is

$$f_X(x) = \begin{cases} \frac{3}{8}(x+1)^2 & -1 < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

Find the distribution of the following functions of $Y = 1 - X^2$.

- Let X be a random variable with U(0,1) distribution. Find the distribution function of $Y = \min(X, 1 - X)$ and the probability density function of Z = (1 - Y)/Y.
- Suppose $X \sim N(\mu, \sigma^2)$, $\mu \in \Re, \sigma \in \Re^+$. Find the distribution of 2X 6.
- [10] Let X be a continuous random variable on (a,b) with p.d.f f and c.d.f. F. Find the p.d.f. of $Z = -\log(F(X))$.

[11] Let X be a continuous r.v. having the following p.d.f.
$$f(x) = \begin{cases} 6x(1-x) & \text{if } 0 \le x \le 1\\ 0 & \text{if otherwise.} \end{cases}$$

Derive the distribution function of X and hence find the p.d.f. of $Y = X^2(3-2X)$.

- [12] Let X be distributed as double exponential with p.d.f. $f(x) = \frac{1}{2} e^{-|x|}$; $x \in \Re$. Find the p.d.f. of Y = |X|
- [13] 3 balls are placed randomly in 3 boxes B_1, B_2 and B_3 . Let N be the total number of boxes which are occupied and X_i be the total number of balls in the box B_i , i = 1, 2, 3. Find the joint p.m.f. of (N, X_1) and (X_1, X_2) . Obtain the marginal distributions of N, X_1 and X_2 from the joint p.m.f.s.
- [14] The joint p.m.f. of X and Y is given by

$$p(x,y) = \begin{cases} c \ xy & \text{if } (x,y) \in \{(1,1),(2,1),(2,2),(3,1)\} \\ 0 & \text{otherwise.} \end{cases}$$

Find the constant c, the marginal p.m.f. of X and Y and the conditional p.m.f. of X given Y = 2.

[15] The joint p.m.f. of X and Y is given by

$$p(x,y) = \begin{cases} (x+2y)/18 & \text{if } (x,y) \in \{(1,1),(1,2),(2,1),(2,2)\} \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the marginal distributions.
- (b) Verify whether X and Y are independent random variables.
- (c) Find P(X < Y), P(X + Y > 2).
- (d) Find the conditional p.m.f. of Y given X = x, x = 1, 2.
- [16] 5 cards are drawn at random without replacement from a deck of 52 playing cards. Let the random variables X_1, X_2, X_3 denote the number of spades, the number of hearts, the number of diamonds, respectively, that appear among the five cards. Find

the joint p.m.f. of X_1, X_2, X_3 . Also determine whether the 3 random variables are independent.

- [17] Consider a sample of size 3 drawn with replacement from an urn containing 3 white, 2 black and 3 red balls. Let the random variables X_1 and X_2 denote the number of white balls and number of black balls in the sample, respectively. Determine whether the two random variables are independent.
- [18] Let $X = (X_1, X_2, X_3)^T$ be a random vector with joint p.m.f.

$$f_{X_1,X_2,X_3}\left(x_1,x_2,x_3\right) = \begin{cases} 1/4 & (x_1,x_2,x_3) \in \mathcal{X} \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathcal{X} = \left\{ (1,0,0), (0,1,0), (0,0,1), (1,1,1) \right\}. \text{ Show that } X_1, X_2, X_3 \text{ are pairwise}$$

independent but are not mutually independent.

Note: The above problem shows that random variables may be pairwise independent without being mutually independent.