UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA MECÂNICA

José Pedro de Santana Neto

FERRAMENTA COMPUTACIONAL PARA ANÁLISE DA ACÚSTICA INTERNA DE DUTOS

Florianópolis

2016

José Pedro de Santana Neto

FERRAMENTA COMPUTACIONAL PARA ANÁLISE DA ACÚSTICA INTERNA DE DUTOS

Dissertação submetido ao Programa de Pós-Graduação para a obtenção do Grau de Mestre em Engenharia Mecânica. Orientador: Andrey Ricardo da Silva, Ph.D.

Florianópolis

2016

José Pedro de Santana Neto

FERRAMENTA COMPUTACIONAL PARA ANÁLISE DA ACÚSTICA INTERNA DE DUTOS

Este Dissertação foi julgado aprovado para a obtenção do Título de "Mestre em Engenharia Mecânica", e aprovado em sua forma final pelo Programa de Pós-Graduação.

	Florianópolis, 15 de Junho 2016.
	Armando Albertazzi Gonçalves Júnior, Dr. Eng. Coordenador
Banca E	Examinadora:
	Primeiro membro
	Universidade
	Andrew Diseards de Cilve Dh D
	Andrey Ricardo da Silva, Ph.D. Orientador
•	Segundo membro
	Universidade

Este trabalho é dedicado aos meus colegas de classe e aos meus queridos pais.

AGRADECIMENTOS

Agradeço bla bla bla.

Texto da Epígrafe. Citação relativa ao tema do trabalho. É opcional. A epígrafe pode também aparecer na abertura de cada seção ou capítulo.

(Autor da epígrafe, ano)

RESUMO

O texto do resumo deve ser digitado, em um único bloco, sem espaço de parágrafo. O resumo deve ser significativo, composto de uma sequência de frases concisas, afirmativas e não de uma enumeração de tópicos. Não deve conter citações. Deve usar o verbo na voz passiva. Abaixo do resumo, deve-se informar as palavras-chave (palavras ou expressões significativas retiradas do texto) ou, termos retirados de thesaurus da área.

Palavra-chave 1. Palavra-chave 2. Palavra-chave 3.

ABSTRACT

Resumo traduzido para outros idiomas, neste caso, inglês. Segue o formato do resumo feito na língua vernácula. As palavras-chave traduzidas, versão em língua estrangeira, são colocadas abaixo do texto precedidas pela expressão "Keywords", separadas por ponto.

Keywords: Keyword 1. Keyword 2. Keyword 3.

LISTA DE FIGURAS

Figura 1	Magnitudes do coeficiente de reflexão $ R $	30
Figura 2	Coeficientes de correção de terminação $l/a \dots$	31
Figura 3	Elaborado pelo autor	37

LISTA DE TABELAS

LISTA DE ABREVIAÇÕES

LISTA DE SÍMBOLOS

$\ R\ $	Magnitude do coenciente de reflexao
l	Coeficiente de correção da terminação
a	Raio do duto
R_r	Coeficiente de reflexão
Z_r	Impedância de radiação
Z_0	Impedância característica do meio
i	Número imaginário
k	Número de onda

Número de helmholtz

ka

SUMÁRIO

1 INTRODUÇÃO	25
1.1 CONTEXTO	25
1.2 PROBLEMA	26
1.3 OBJETIVOS	27
1.4 ORGANIZAÇÃO DO TRABALHO	
2 REVISÃO BIBLIOGRÁFICA	29
3 METODOLOGIA	33
4 RESULTADOS	35
5 CONCLUSÕES	
REFERÊNCIAS	39

1 INTRODUÇÃO

1.1 CONTEXTO

Sistemas de fluxo de massa (exaustão e sucção) possuem uma forte colaboração na composição de sons e ruídos. Escapamentos, sistemas de ventilação, buzinas, motores aeronáuticos e aspiradores de pó são exemplos desses sistemas que estão altamente presentes no diaadia. Cada vez mais a sociedade vem desenvolvendo consciência crítica dos danos que os ruídos desses tipos de sistemas podem acarretar a saúde da população. Tal fato é tão preponderante que, como é apresentado por Munjal (1987), desde os anos da década de 1920 há registros de esforços para entender e caracterizar esses tipos sistemas afim de colaborar com a manutenção e desenvolvimento de ambientes saudáveis no contexto acústico.

Há vários elementos estruturais que podem compor sistemas de exaustão, mas os dutos circulares se caracterizam como fundamentais e bastante presentes. Sua forma cilíndrica permite que vários fenômenos físicos possam ocorrer e interagir entre si, principalmente os fenômenos acústicos e de fluxo de massa (escoamentos). De acordo também com Munjal (1987), o corpo de estudos e conhecimentos da acústica interna de dutos está bem estabelecido, mas verifica-se na literatura vários questionamentos sobre o funcionamento do mesmo na presença de escoamentos (fenômenos aeroacústicos). Em vista disso, determinar a caracterização da acústica interna de dutos é de extrema importância visto as várias tecnologias relacionadas a sistemas de exaustão sem um amparo técnico bem estabelecido da literatura no ponto de vista da aeroacústica.

Em geral, pode-se utilizar dois parâmetros para caracterizar o fenômeno da acústica interna de dutos:

- a magnitude do coeficiente de reflexão ||R||, razão entre as componentes refletida e incidente da onda no duto;
- coeficiente de correção da terminação normalizado pelo raio do duto l/a em que a é o raio do duto. Tal parâmetro representa o comprimento acústico efetivo do duto. Em outras palavras, o fator l é a quantidade adicional medida a partir da abertura do duto a qual se deve propagar a onda incidente antes de ser refletida para o interior do duto com fase invertida.

Com o uso desses dois parâmetros pode-se projetar dutos com um comportamento acústico adequado a diversas situações que exigem atenuação de ruídos em certas frequências, além de poder prever com mais acurácia já que grande parte dos estudos consideram a acústica interna de dutos sem escoamentos.

1.2 PROBLEMA

Com relação ao contexto abordado, a solução exata para o problema de um duto circular não flangeado na ausência de escoamento foi proposta por Levine e Schwinger (1948). A solução assume que a espessura das paredes do duto são desprezíveis e o fluido é inviscido. A partir destas simplificações, as expressões exatas para $\|R\|$ e l são obtidas utilizando-se a técnica de Wiener-Hopf.

Apesar da utilidade do modelo de Levine e Schwinger, em boa parte das aplicações práticas, dutos circulares transportam escoamentos médios. Para tais circunstâncias, Munt (1990) propôs um modelo analítico exato, também baseado na técnica de Wiener-Hopf, em que se considera a presença de um escoamento subsônico no interior do duto. Considera-se nesse modelo as premissas de que o escoamento é uniforme, invíscido e que a camada cisalhante do jato é infinitamente fina. Além disso, o modelo considera a condição de Kutta na borda do duto para lidar com a singularidade da velocidade de partícula nesta região.

É importante ressaltar que modelos exatos para os parâmetros de radiação de dutos se limitam a condições de contorno simples. No entanto, observa-se na prática situações diversas em que há presença de escoamentos de exaustão e sucção com diversas geometrias.Para estes casos, não existem modelos que considerem a influência do escoamento nas propriedades de radiação. Tal fato é bastante crítico pois o comportamento acústico de um sistemas submetidos a fluxos de massa muda consideralmente.

No entanto, com o advento de novas tecnologias computacionais, é possível realizar procedimentos numéricos extremamente complexos com certa agilidade e precisão. Softwares como ANSYS (2017), COMSOL (2017) e PowerFLOW (2017) possuem a viabilidade de realizar cálculos de fluido dinâmica computacional de sistemas complexos como carros e aviões. Essa capacidade técnica é oriunda em maior parte pelas tecnologias de processamento paralelo multinúcleo de processadores e implementações de seus respectivos softwares protolocos como Open

MPI Project (2017). Essa evolução tecnológica é fundamental para esse presente trabalho e vem sendo essencial também para o surgimento de outras ferramentas, que dão suporte a exploração e descoberta de novos fenômenos físicos, antes muitas vezes inviáveis de estudar por alto custo de bancadas experimentais ou alta complexidade na consolidação de um modelo matemático representativo.

1.3 OBJETIVOS

Considerando a problemática discutida acima, o objetivo principal desse trabalho é desenvolver uma ferramenta computacional para análise do comportamento acústico interno de dutos na presença de escoamentos de baixo número de Mach (M < 0.2).

Tem-se como objetivos específicos:

- implementar e validar o método numérico e condições de contorno no ponto de vista acústico;
- implementar, validar e analisar o comportamento acústico interno de dutos não flangeados sem escoamento e com ondas planas;
- implementar, validar e analisar o comportamento acústico interno de dutos não flangeados com escoamento de exaustão e com ondas planas;
- implementar, validar e analisar o comportamento acústico interno de dutos não flangeados com escoamento sugado e com ondas planas.

1.4 ORGANIZAÇÃO DO TRABALHO

Esse trabalho está organizado em capítulos. O capítulo 2 apresenta a revisão bibliográfica do problema de acústica de dutos e a aplicação do método de lattice Boltzmann nesse contexto. O capítulo 3 apresenta a metodologia do trabalho, apresentação do método numérico de lattice Boltzmann, o software desenvolvido como ferramenta computacional e o esquemático do modelo numérico. O capítulo 4 apresenta os resultados da implementação computacional, validações do modelo e análises com diferentes condições de escoamento. O capítulo 5 apresenta as conclusões e evoluções futuras do trabalho. Segue no final referências bibliográficas, apêndices e anexos.

2 REVISÃO BIBLIOGRÁFICA

A propagação de modos normais (ondas planas) é um problema clássico em acústica e continua tendo importância significativa mediante ao advento de novas tecnologias relacionadas a sistemas de exaustão e sucção. Em geral, pode-se utilizar dois parâmetros para caracterizar o fenômeno da acústica interna de dutos:

• a magnitude do coeficiente de reflexão ||R||, razão entre as componentes refletida e incidente da onda no duto, a qual é dada por

$$R_r = \frac{Z_r - Z_0}{Z_r + Z_0},\tag{2.1}$$

sendo Z_r a impedância de radiação e Z_0 a impedância característica do meio;

 coeficiente de correção da terminação normalizado pelo raio do duto l/a em que a é o raio do duto. Tal parâmetro representa o comprimento acústico efetivo do duto. Em outras palavras, o fator l é a quantidade adicional medida a partir da abertura do duto a qual deve propagar a onda incidente antes de ser refletida para o interior do duto com fase invertida. Tal coeficiente de correção da terminação l é dado por

$$l = \frac{1}{k} \arctan\left(\frac{Z_r}{Z_0 i}\right) \tag{2.2}$$

sendo k o número de onda.

Em relação aos parâmetros discutidos acima, a solução exata para o problema de um duto não flangeado na ausência de escoamento foi proposta por Levine e Schwinger (1948). A solução assume que a espessura das paredes do duto são desprezíveis e o fluido é inviscido. A partir destas simplificações, as expressões exatas para ||R|| e l são obtidas utilizando-se a técnica de Wiener-Hopf.

Apesar da utilidade do modelo de Levine e Schwinger, em boa parte das aplicações práticas, dutos transportam escoamentos médios. Para tais circunstâncias, Munt (1990) propôs um modelo analítico exato, também baseado na técnica de Wiener-Hopf, em que se considera a presença de um escoamento subsônico no interior do duto. Considera-se nesse modelo as premissas de que o escoamento é uniforme, invíscido

e que a camada cisalhante do jato é infinitamente fina. Além disso, o modelo considera a condição de Kutta na borda do duto para lidar com a singularidade da velocidade de partícula nesta região. As Figuras 1 e 2 apresentam as comparações entre casos com e sem escoamento para um duto não flangeado em termos de ||R|| e l/a.

Figura 1: Resultados analíticos exatos para magnitude do coeficiente de reflexão ||R|| ao final de um duto não flangeado. A linha contínua apresenta o resultado sem escoamento de Levine e Schwinger (1948) e a linha tracejada apresenta o resultado com escoamento de Mach = 0,15 de Munt (1990).

Como é mostrado na Figura 1, a magnitude do coeficiente de reflexão $\|R\|$ aumenta consideravelmente na presença de um escoamento subsônico. Além disso, pode-se perceber que, em algumas frequências, $\|R\|$ torna-se maior do que a unidade, implicando que a amplitude da onda refletida torna-se maior do que a da onda incidente. Este fenômeno ocorre, sobretudo, pela transferência de energia cinética rotacional do escoamento para o campo acústico. Essa transferência de energia cinética ocorre sobretudo pelo desprendimento periódico de vórtices na borda do duto.

Figura 2: Resultados analíticos exatos para o coeficiente de correção da terminação normalizado pelo raio l/a de um duto não flangeado. A linha contínua apresenta o resultado sem escoamento de Levine e Schwinger (1948) e a linha tracejada apresenta o resultado com escoamento de Mach = 0,15 de Munt (1990).

De acordo com a Figura 2, a correção normalizada da terminação l/a torna-se consideravelmente menor do que aquela obtida na ausência de escoamento, sobretudo para baixos números de helmholtz (ka). Em outras palavras, para baixas frequências e na presença de um escoamento a onda acústica é refletida em uma região mais próxima da abertura, em comparação à situação sem escoamento.

No que diz respeito a modelos analíticos aproximados, o trabalho de Carrier (1955) foi um dos primeiros a abordar o cálculo do coeficiente de reflexão e correção da terminação com escoamento de exaustão num duto não flangeado. Para tal foi considerado um gás perfeito invíscido com o tipo de escoamento uniforme (plug). Nessa abordagem usou-se a mesma metodologia que Levine and Schwinger porém acoplando à formulação matemática o método de Prandtl-Glauert.

Mani (1973) deu prosseguimento a mesma abordagem de Carrier (1955), porém considerando a continuidade do deslocamento das partículas acústicas transversais. Esse tipo de solução mostra diver-

sos fenômenos antes não previstos com os outros modelos citados como efeitos de convecção, zonas de silêncio relativo e refrações.

3 METODOLOGIA

4 RESULTADOS

5 CONCLUSÕES

Neste tópico será abordado a duração de cada uma das etapas de trabalho como pode ser visto na Figura 3. Desta forma será possível uma melhor organização do mesmo.

Figura 3: Elaborado pelo autor.

REFERÊNCIAS

ANSYS, I. ANSYS Home page. 2017. Disponível em: https://www.ansys.com.

CARRIER, G. Sound transmission from a tube with flow. [S.l.], 1955.

COMSOL, I. *COMSOL Home page*. 2017. Disponível em: https://br.comsol.com.

LEVINE, H.; SCHWINGER, J. On the radiation of sound from an unflanged circular pipe. *Physical review*, APS, v. 73, n. 4, p. 383, 1948.

MANI, R. Refraction of acoustic duct waveguide modes by exhaust jets. 1973.

MUNJAL, M. L. Acoustics of ducts and mufflers with application to exhaust and ventilation system design. [S.l.]: John Wiley & Sons, 1987.

MUNT, R. Acoustic transmission properties of a jet pipe with subsonic jet flow: I. the cold jet reflection coefficient. *Journal of Sound and Vibration*, Elsevier, v. 142, n. 3, p. 413–436, 1990.

POWERFLOW, I. EXA Home page. 2017. Disponível em: http://exa.com/en/product/simulation-tools/powerflow-cfd-simulation.

PROJECT, O. M. Open MPI Project Home page. 2017. Disponível em: https://www.open-mpi.org.