Автоматический вывод индуктивных инвариантов программ с алгебраическими типами данных

Костюков Юрий Олегович

Научный руководитель: д. т. н., доцент Кознов Дмитрий Владимирович

2024

Содержание

Обзор предметной области

Постановка задачи

Результаты

Научная новизна

Публикации и выступления

$$x, y := 0, 0$$
while * do
 $y := y + x$
 $x := x + 1$
assert $(y \ge 0)$

$$\{x = 0 \land y = 0\}$$
while * do
$$y := y + x$$

$$x := x + 1$$

$$\{y \ge 0\}$$

Как доказать корректность этой тройки Хоара?

$$\{x = 0 \land y = 0\}$$
while * do
$$y := y + x$$

$$x := x + 1$$

$$\{y \ge 0\}$$

Как доказать корректность этой тройки Хоара?

При помощи *пользовательского* **индуктивного инварианта** arphi

$$x = 0 \land y = 0 \quad \rightarrow \varphi(x, y)$$
$$\varphi(x, y) \land x' = x + 1 \land y' = y + x \quad \rightarrow \varphi(x', y')$$
$$\varphi(x, y) \quad \rightarrow y \ge 0$$

$$\{x = 0 \land y = 0\}$$
while * do
$$y := y + x$$

$$x := x + 1$$

$$\{y \ge 0\}$$

Как доказать корректность этой тройки Хоара?

При помощи *пользовательского* **индуктивного инварианта** φ

Пользователь: $y \ge 0$ — индуктивный инвариант?

$$x = 0 \land y = 0 \quad \rightarrow \varphi(x, y)$$

$$\varphi(x, y) \land x' = x + 1 \land y' = y + x \quad \rightarrow \varphi(x', y')$$

$$\varphi(x, y) \quad \rightarrow y \ge 0$$

$$\{x = 0 \land y = 0\}$$
while * do
$$y := y + x$$

$$x := x + 1$$

$$\{y > 0\}$$

(Как доказать корректность этой тройки Хоара?)

При помощи *пользовательского* **индуктивного инварианта** φ

Пользователь: $y \ge 0$ — индуктивный инвариант?

$$VC := \left\{ \begin{array}{ccc} \forall x, y. \Big(x = 0 \land y = 0 & \rightarrow y \ge 0 \\ \forall x, y, x', y'. \Big(y \ge 0 & \land x' = x + 1 \land y' = y + x & \rightarrow y' \ge 0 \\ \forall x, y. \Big(y \ge 0 & \rightarrow y \ge 0 \Big) \end{array} \right.$$

Как доказать корректность этой тройки Хоара?

При помощи *пользовательского* **индуктивного инварианта** arphi

 $oxedsymbol{eta}$ Пользователь: $y \geq 0$ — индуктивный инвариант?

$$VC \longrightarrow egin{pmatrix} \mathsf{SMT-} & \mathsf{(безопасно)} \\ \mathsf{решатель} & \mathsf{\times} & (\varphi(\overline{\mathsf{x}}) - \mathsf{не} \ \mathsf{инд.} \ \mathsf{инв.}) \end{pmatrix}$$

$$VC := \left\{ \begin{array}{ccc} \forall x, y. \Big(x = 0 \land y = 0 & \rightarrow y \geq 0 \\ \forall x, y, x', y'. \Big(y \geq 0 & \land x' = x + 1 \land y' = y + x & \rightarrow y' \geq 0 \\ \forall x, y. \Big(y \geq 0 & \rightarrow y \geq 0 \Big) \end{array} \right) \land$$

(Как доказать корректность этой тройки Хоара?)

При помощи *пользовательского* **индуктивного инварианта** arphi

 $\left(\mathsf{\Pi}\mathsf{o}\mathsf{льзoвaтeль}\colon y\geq 0$ — индуктивный инвариант?
ight)

 $\mathsf{SMT} ext{-}\mathsf{pemateль} ext{:} \mathsf{Het}, \mathsf{ индуктивность нарушается при } x\mapsto -1$

$$VC$$
 — SMT- \times (безопасно) \times ($\varphi(\overline{x})$ — не инд. инв.)

$$VC := \left\{ \begin{array}{ccc} \forall x, y. \Big(x = 0 \land y = 0 & \rightarrow y \geq 0 \\ \forall x, y, x', y'. \Big(y \geq 0 & \land x' = x + 1 \land y' = y + x & \rightarrow y' \geq 0 \\ \forall x, y. \Big(y \geq 0 & \rightarrow y \geq 0 \Big) \end{array} \right) \land$$

Как доказать корректность этой тройки Хоара?

(При помощи *пользовательского* **индуктивного инварианта** arphi)

Пользователь: $y \geq 0$ — индуктивный инвариант?

 $\mathsf{SMT} ext{-}\mathsf{peшатель} ext{:} \ \mathsf{Het}, \ \mathsf{undyktubhoctb} \ \mathsf{hapywaetcs} \ \mathsf{npu} \ \mathsf{x} \mapsto -1$

Пользователь: А усиленная формула: $x \geq 0 \land y \geq 0$?

$$x = 0 \land y = 0 \quad \rightarrow \varphi(x, y)$$

$$\varphi(x, y) \land x' = x + 1 \land y' = y + x \quad \rightarrow \varphi(x', y')$$

$$\varphi(x, y) \quad \rightarrow y \ge 0$$

Как доказать корректность этой тройки Хоара?

При помощи *пользовательского* **индуктивного инварианта** arphi

 $oxedsymbol{oxedsymbol{oxed}}$ Пользователь: $y \geq 0$ — индуктивный инвариант?

 $\mathsf{SMT} ext{-}\mathsf{pemateль} ext{:} \mathsf{ Het,} \mathsf{ индуктивность нарушается при } x\mapsto -1$

Пользователь: А усиленная формула: $x \ge 0 \land y \ge 0$?

SMT-решатель: Да, эта формула является индуктивным инвариантом

$$x = 0 \land y = 0 \quad \rightarrow \varphi(x, y)$$

$$\varphi(x, y) \land x' = x + 1 \land y' = y + x \quad \rightarrow \varphi(x', y')$$

$$\varphi(x, y) \quad \rightarrow y \ge 0$$

Дизъюнкты Хорна с ограничениями

Как автоматизировать вывод индуктивных инвариантов?

$$x = 0 \land y = 0 \rightarrow I(x, y)$$

$$I(x, y) \land x' = x + 1 \land y' = y + x \rightarrow I(x', y')$$

$$I(x, y) \rightarrow y \ge 0$$

Дизъюнкты Хорна с ограничениями

Как автоматизировать вывод индуктивных инвариантов?

Заменить пользовательскую формулу на неинтерпретированный символ I

$$x = 0 \land y = 0 \rightarrow I(x, y)$$

$$I(x, y) \land x' = x + 1 \land y' = y + x \rightarrow I(x', y')$$

$$I(x, y) \rightarrow y \ge 0$$

Дизъюнкты Хорна с ограничениями

Как автоматизировать вывод индуктивных инвариантов?

(Заменить пользовательскую формулу на неинтерпретированный символ I)

Дизъюнкты Хорна с ограничениями

$$I(x,y) \land x' = x + 1 \land y' = y + x \rightarrow I(x,y)$$
$$I(x,y) \rightarrow y \geq 0$$

Дизъюнкты Хорна формально

Дизъюнкт Хорна С — это формула первого порядка следующего вида:

$$\varphi \wedge P_1(\overline{x}_1) \wedge \ldots \wedge P_n(\overline{x}_n) \to H$$

- ightharpoonup ограничение φ это формула теории
- ightharpoonup голова H это либо ложь \bot , либо атом $P(\overline{x})$
- ▶ $P_1, ..., P_n, P$ это неинтерпретированные символы
- все переменные (неявно) универсально квантифицированы

Система дизъюнктов Хорна — это конъюнкция дизъюнктов Хорна Хорн-решатель — программа, проверяющая выполнимость системы дизъюнктов

Применения Хорн-решателей

¹ Gurfinkel и др. The SeaHorn Verification Framework. CAV'15

² Tan и др. SolType: refinement types for arithmetic overflow in solidity. POPL'22

³ Alt и др. SolCMC: Solidity Compiler's Model Checker. CAV'22

⁴ Hoenicke и др. Thread Modularity at Many Levels. POPL'17

⁵ Shemer и др. Property Directed Self Composition. CAV'19

Дизъюнкты Хорна над алгебраическими типами данных (АТД)

Пример программы на языке HASKELL:

```
data Nat = Z | S Nat
data List = nil | cons Nat List
drop Z xs = xs
drop _ nil = nil
drop (S n) (cons(_, xs)) = drop n xs
assert (¬∃ n xs . xs /= nil && drop n xs == drop (S n) xs)
```

Условия верификации в виде дизъюнктов Хорна над АТД:

Пусть \mathcal{H} — модель теории АТД, \mathcal{S} — система дизъюнктов Хорна.

Индуктивный инвариант \mathcal{I} — расширение модели $\mathcal{I} = \langle \mathcal{H}, \mathcal{R} \rangle$, такое что $\mathcal{I} \models \mathcal{S}$.

Пусть \mathcal{H} — модель теории АТД, \mathcal{S} — система дизъюнктов Хорна.

 ${\sf N}$ Индуктивный инвариант ${\cal I}$ — расширение модели ${\cal I}=\langle {\cal H},{\cal R}
angle$, такое что ${\cal I}\models {\cal S}.$

$$x = Z \land y = S(Z)
ightarrow inc(x,y)$$
 $x' = S(x) \land y' = S(y) \land inc(x,y)
ightarrow inc(x',y')$
 $x = y \land inc(x,y)
ightarrow \perp$
 $\mathcal{I}_1 = \mathcal{H} \Big\{ inc \mapsto \{(x,y) \mid y = S(x) \Big\}$
 $\mathcal{I}_2 = \mathcal{H} \Big\{ inc \mapsto \{(x,y) \mid x \neq y \}$
 $\mathcal{I}_3 = \dots$

Индуктивные инварианты составляют решётку

Пусть \mathcal{H} — модель теории АТД, \mathcal{S} — система дизъюнктов Хорна.

 ${\sf N}$ Индуктивный инвариант ${\cal I}$ — расширение модели ${\cal I}=\langle {\cal H},{\cal R}
angle$, такое что ${\cal I}\models {\cal S}.$

$$x = Z \land y = S(Z) \rightarrow inc(x, y)$$
 $x' = S(x) \land y' = S(y) \land inc(x, y) \rightarrow inc(x', y')$
 $x = y \land inc(x, y) \rightarrow \bot$
 $\mathcal{I}_1 = \mathcal{H} \Big\{ inc \mapsto \{(x, y) \mid y = S(x) \Big\}$
 $\mathcal{I}_2 = \mathcal{H} \Big\{ inc \mapsto \{(x, y) \mid x \neq y \}$
 $\mathcal{I}_3 = \dots$

Как представлять эти бесконечные множества?

Пусть \mathcal{H} — модель теории АТД, \mathcal{S} — система дизъюнктов Хорна.

Индуктивный инвариант \mathcal{I} — расширение модели $\mathcal{I} = \langle \mathcal{H}, \mathcal{R} \rangle$, такое что $\mathcal{I} \models \mathcal{S}$.

$$x = Z \land y = S(Z) \rightarrow inc(x, y)$$
 $x' = S(x) \land y' = S(y) \land inc(x, y) \rightarrow inc(x', y')$
 $x = y \land inc(x, y) \rightarrow \bot$
 $\mathcal{I}_1 = \mathcal{H} \Big\{ inc \mapsto y = S(x) \Big\}$
 $\mathcal{I}_2 = \mathcal{H} \Big\{ inc \mapsto \neg(x = y) \Big\}$
 $\mathcal{I}_3 = \dots$

Как представлять эти бесконечные множества?

Инварианты обычно представляются в логике первого порядка (ЛПП) ЛПП задаёт т.н. *класс элементарных инвариантов*

$$egin{aligned} x &= Z
ightarrow ext{even}(x) \ ext{even}(y) \land x &= S(S(y))
ightarrow ext{even}(x) \ ext{even}(x) \land ext{even}(S(x))
ightarrow ota \end{aligned}$$

$$x=Z o even(x)$$
 $even(y) \wedge x=S(S(y)) o even(x)$ $even(x) \wedge even(S(x)) o ot$

$$x = Z \rightarrow even(x)$$

$$even(y) \land x = S(S(y)) \rightarrow even(x)$$

$$even(x) \land even(S(x)) \rightarrow +$$

Вывод инвариантов в языке АТД расходится!

например, Z3/SPACER расходится

Инвариант выразим элементарно

 $\mathcal{I}(\mathit{even}) \equiv \varphi$

Инвариант невыразим элементарно

???

$$x = Z \rightarrow even(x)$$

$$even(y) \land x = S(S(y)) \rightarrow even(x)$$

$$even(x) \land even(S(x)) \rightarrow d$$

Проблема: класс элементарных инвариантов невыразителен

Инвариант выразим элементарно

$$\mathcal{I}(\textit{even}) \equiv \varphi$$

Инвариант невыразим элементарно

???

Постановка задачи

Цель работы — предложение новых классов индуктивных инвариантов для программ с АТД и создание для них методов автоматического вывода. **Задачи**:

- 1. Предложить методы вывода инвариантов в существующих классах
- 2. Предложить новый класс индуктивных инвариантов программ с АТД
- 3. Предложить метод автоматического вывода инвариантов в новом классе
- 4. Выполнить пилотную программную реализацию предложенных методов
- 5. Провести экспериментальное сопоставление реализованного инструмента с существующими на представительном тестовом наборе

Результаты

- 1. Предложен метод вывода регулярных инвариантов при помощи поиска конечных моделей и доказана его корректность
- 2. Предложен метод вывода синхронных регулярных инвариантов при помощи поиска конечных моделей и доказана его корректность
- 3. Предложен новый класс инвариантов, основанный на булевой комбинации элементарных и регулярных инвариантов
- 4. Предложен метод совместного вывода инвариантов в этом классе посредством вывода инвариантов в подклассах и доказана его корректность
- 5. Проведено теоретическое сравнение рассмотренных классов инвариантов
- 6. Выполнена пилотная реализация предложенных методов на языке F# в рамках инструмента RInGen Разработанный инструмент решил из бенчмарка «Tons of Inductive Problems» в 3.74 раза больше задач, чем наилучший из существующих инструментов

Результат 1. Предложен метод вывода регулярных инвариантов при помощи поиска конечных моделей и доказана его корректность

Этап 1. Устранить АТД ограничения при помощи унификации и введения новых дизъюнктов

Система дизъюнктов

$$op even(Z)$$
 $even(y) op even(S(S(y)))$
 $even(x) \wedge even(S(x)) o ot$

АТД ограничения устранены

Результат 1. Предложен метод вывода регулярных инвариантов при помощи поиска конечных моделей и доказана его корректность Этап 2. Трансформировать систему в формулу ЛПП введением логических связок

Система дизъюнктов как формула ЛПП

Результат 1. Предложен метод вывода регулярных инвариантов при помощи поиска конечных моделей и доказана его корректность

Этап 3. Передать формулу в сторонний инструмент поиска конечных моделей

Система дизъюнктов как формула ЛПП

Результат 1. Предложен метод вывода регулярных инвариантов при помощи поиска конечных моделей и доказана его корректность

Этап 3. Передать формулу в сторонний инструмент поиска конечных моделей

Результат 1. Предложен метод вывода регулярных инвариантов при помощи поиска конечных моделей и доказана его корректность

Этап 4. По конечной модели построить автомат над деревьями

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$

$$\mathcal{M}(Z) = 0$$

$$\mathcal{M}(S)(x) = 1 - x$$

$$\mathcal{M}(even) = \{0\}$$

Этап 4. По конечной модели построить автомат над деревьями

$$|\mathcal{M}|_{Nat} = \{0,1\}$$
 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(even) = \{0\}$

Результат 1. Предложен метод вывода регулярных инвариантов при

помощи поиска конечных моделей и доказана его корректность

Этап 4. По конечной модели построить автомат над деревьями

$$|\mathcal{M}|_{Nat} = \{0, 1\}$$
 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(even) = \{0\}$

Этап 4. По конечной модели построить автомат над деревьями

$$|\mathcal{M}|_{\mathit{Nat}} = \{0,1\}$$
 $\mathcal{M}(Z) = 0$
 $\mathcal{M}(S)(x) = 1 - x$
 $\mathcal{M}(\mathit{even}) = \{0\}$

Этап 4. По конечной модели построить автомат над деревьями

$$|\mathcal{M}|_{\mathit{Nat}} = \{0,1\}$$
 $\mathcal{M}(Z) = 0$ $\mathcal{M}(S)(x) = 1-x$ $\mathcal{M}(\mathit{even}) = \{0\}$

Язык построенного автомата является регулярным инвариантом исходной системы $\mathcal{I}(\textit{even}) = \mathcal{L}(\mathcal{A}) = \{S^{2n}(Z) \mid n \geq 0\}$

Регулярные языки не позволяют представлять синхронные отношения

$$op op lt(Z,S(x))$$
 $lt(x,y) op lt(S(x),S(y))$
 $lt(x,y) ext{ } \land lt(y,x) op ot$

Этап 1. Устранить АТД ограничения при помощи унификации и введения новых дизъюнктов

Регулярные языки не позволяют представлять синхронные отношения

$$T \to lt(Z, S(x))$$

$$lt(x, y) \to lt(S(x), S(y))$$

$$lt(x, y) \land lt(y, x) \to \bot$$

Этап 2. Построить декларативное описание синхронного автомата, выражающего инвариант системы

Регулярные языки не позволяют представлять синхронные отношения

$$T \to lt(Z, S(x))$$

$$lt(x, y) \to lt(S(x), S(y))$$

$$lt(x, y) \land lt(y, x) \to \bot$$

Декларативное описание синхронного автомата

$$R(q)
ightarrow R(p(d(f,g,q),d(f,g,q))) \ R(p(q_1,q_2))
ightarrow \left(F(q_1)
ightarrow F(d(S,S,q_2))
ight)$$

• • •

Этап 3. Передать формулу в сторонний инструмент поиска конечных моделей

Регулярные языки не позволяют представлять синхронные отношения

$$op op lt(Z,S(x))$$
 $lt(x,y) op lt(S(x),S(y))$
 $lt(x,y) heta lambda lt(y,x) op oxed{\perp}$

Декларативное описание синхронного автомата

$$R(q)
ightharpoonup R(p(d(f,g,q),d(f,g,q))) \ R(p(q_1,q_2))
ightharpoonup \left(F(q_1)
ightharpoonup F(d(S,S,q_2))
ight)$$

• • •

Этап 4. По конечной модели построить автомат над деревьями

Из модели можно извлечь определение синхронного автомата

$$A = \left\langle \{0,1\}, \Sigma_F^{\leq 2}, \{1\}, \Delta \right
angle \ \langle Z,Z
angle \mapsto 0 \ \langle Z,S
angle (q) \mapsto 1 \ \langle S,Z
angle (q) \mapsto 0 \ \langle S,S
angle (q) \mapsto q$$

 $\mathcal{L}(A) = \{ \langle S^n(Z), S^m(Z) \rangle \mid n < m \}$

Результат 3. Предложен новый класс инвариантов, основанный на булевой комбинации элементарных и регулярных инвариантов

Новый класс комбинированных инвариантов представляется формулами вида:

$$\varphi ::= \overline{t} \in \mathcal{L}(A) \mid t = t' \mid \neg \psi \mid \psi \land \psi' \mid \psi \lor \psi'$$

 $lackbox{ar{t}} \in \mathcal{L}(A)$ — принадлежность кортежа термов регулярном языку автомата A

Результат 4. Предложен метод совместного вывода инвариантов в этом классе посредством вывода инвариантов в подклассах и доказана его корректность

Результат 4. Предложен метод совместного вывода инвариантов в этом классе посредством вывода инвариантов в подклассах и доказана его корректность

Результат 5. Проведено теоретическое сравнение рассмотренных классов инвариантов

Результаты, доказанные в диссертации; результаты с тривиальным доказательством

Класс	Elem	SizeElem	Reg	Reg+	Reg_{\times}	ElemReg
Свойство				· ·		
Замкнут по ∩	Да	Да	Да	Да	Да	Да
Замкнут по ∪	Да	Да	Да	Да	Да	Да
Замкнут по \	Да	Да	Да	Да	Да	Да
Разрешимо $\overline{t} \in I$	Да	Да	Да	Да	Да	Да
P азрешимо $\mathit{I}=arnothing$	Да	Да	Да	Да	Да	Да
Выразимы рекурсив-	Нет	Частично	Да	Да	Да	Да
ные отношения	1101	iderii iiie				
Выразимы синхронные	Да	Да	Нет	Частично	Да	Да
отношения	Да	Да	1101	тастично	Да	Да

Класс	Elem	SizeElem	Reg	Reg+	Reg_{\times}	ElemReg
Elem	Ø	Ø	lr	lr	lr	Ø
SizeElem	∞	Ø	lr	lr	lr	lt .
Reg	even	even	Ø	Ø	Ø	Ø
Reg+	even	even	∞	Ø	Ø	lt
Reg_{\times}	even	even	∞	∞	Ø	lt
ElemReg	∞	even	∞	lr	lr	Ø

Реализация

 ${\sf Puc.:}$ Хорн-решатель ${\sf RInGen: https://github.com/Columpio/RInGen}$

Эксперименты

Инструмент	SAT	UNSAT
RACER	26	22
Eldarica	46	12
VeriCaT	16	10
CVC5-IND	0	13
RInGen(cvc5)	25	21
RInGen(Vampire)	135	46
RInGen-Sync	43	21
RInGen-CICI(cvc5)	117	19
RInGen-CICI(VAMPIRE)	189	28

Результаты

- 1. Предложен метод вывода регулярных инвариантов при помощи поиска конечных моделей и доказана его корректность
- 2. Предложен метод вывода синхронных регулярных инвариантов при помощи поиска конечных моделей и доказана его корректность
- 3. Предложен новый класс инвариантов, основанный на булевой комбинации элементарных и регулярных инвариантов
- 4. Предложен метод совместного вывода инвариантов в этом классе посредством вывода инвариантов в подклассах и доказана его корректность
- 5. Проведено теоретическое сравнение рассмотренных классов инвариантов
- 6. Выполнена пилотная реализация предложенных методов на языке F# в рамках инструмента RINGEN Разработанный инструмент решил из бенчмарка «Tons of Inductive Problems» в 3.74 раза больше задач, чем наилучший из существующих инструментов

Соответствие результатов паспорту специальности 2.3.5

Результаты соответствуют направлению исследования № 1

 Модели, методы и алгоритмы проектирования, анализа, трансформации, верификации и тестирования программ и программных систем
 из паспорта специальности.

Научная новизна

- 1. Впервые предложен класс инвариантов, основанный на булевой комбинации элементарных и регулярных инвариантов
- 2. Впервые предложен алгоритм вывода инвариантов для программ с АТД, основанный на поиске конечных моделей
- 3. Предложен новый алгоритм совместного вывода инвариантов в комбинации классов инвариантов на базе методов вывода инвариантов в подклассах
- 4. Впервые введены и доказаны леммы о «накачке» для языков первого порядка в сигнатуре теории АТД

Публикации по теме диссертации

- [1] Kostyukov Yurii, Mordvinov Dmitry, Fedyukovich Grigory. Beyond the Elementary Representations of Program Invariants over Algebraic Data Types // Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. PLDI 2021. New York, NY, USA: Association for Computing Machinery, 2021. P. 451–465.
- [2] Kostyukov Yurii, Mordvinov Dmitry, Fedyukovich Grigory. Collaborative Inference of Combined Invariants // Proceedings of 24th International Conference on Logic for Programming, Artificial Intelligence and Reasoning / Ed. by Ruzica Piskac, Andrei Voronkov. — Vol. 94 of EPiC Series in Computing. — EasyChair, 2023. — P. 288–305.
- [3] Автоматическое доказательство корректности программ с динамической памятью / Юрий Олегович Костюков, Константин Аланович Батоев, Дмитрий Александрович Мордвинов и др. // Труды Института системного программирования РАН. 2019. Т. 31, № 5. С. 37–62.
- [4] Генерация слабейших предусловий программ с динамической памятью в символьном исполнении / Александр Владимирович Мисонижник, Юрий Олегович Костюков, Михаил Павлович Костицын и др. // Научно-технический вестник информационных технологий, механики и оптики. 2022. Т. 22, № 5. С. 982–991.

Выступления по теме диссертации

- ► Международный семинар HCVS 2021 (28 марта 2021, Люксембург)
- ► Семинар компании Huawei (18-19 ноября 2021, Санкт-Петербург)
- Ежегодный внутренней семинар JetBrains Research (18 декабря 2021, Санкт-Петербург)
- Конференция PLDI 2021 (23-25 июня 2021, Канада)
- Внутренний семинар Венского технического университета (3 июня 2022, Австрия)
- ▶ Конференция LPAR 2023 (4-9 июня 2023, Колумбия)

Разработанный инструмент в 2021 и 2022 годах занял, соответственно, 2 и 1 место на АТД секции международных соревнований СНС-СОМР.

Сравнение Хорн-решателей с поддержкой АТД

Инструмент	Класс	Метод	Возвращает	Полностью
	инвариантов		инвариант	автоматический
Spacer	Elem	IC3/PDR	Да	Да
RACER	CatElem	IC3/PDR	Нет	Нет
Eldarica	SizeElem	CEGAR	Да	Да
VERICAT	_	Трансф.	Нет	Да
HoIce	ELEM	ICE	Да	Да
RCHC	Reg+	ICE	Да	Да
RInGen(cvc5)	Reg	Трансф. +	Да	Да
		FMF		
RInGen(Vampire)	_	Трансф. +	Нет	Да
		Насыщение		
RInGen-Sync	$\mathrm{Reg}_{ imes}$	Трансф. +	Да	Да
		FMF		
RInGen-CICI(cvc5)	ElemReg	$CEGAR(\mathcal{O})$	Да	Да
RInGen-CICI(VAMPIRE)	_	$CEGAR(\mathcal{O})$	Нет	Да