1 FastLSH for l_1 distance

For given vector pair $(\boldsymbol{v}, \boldsymbol{u})$, let $s = \|\boldsymbol{v} - \boldsymbol{u}\|_1$. For our purpose, the collection of n entries $|v_i - u_i|$ $\{i = 1, 2, \dots, n\}$ is viewed as a population, which follows an unknown distribution with finite mean $\mu = (\sum_{i=1}^n |v_i - u_i|)/n$ and variance $\sigma^2 = (\sum_{i=1}^n (|v_i - u_i| - \mu)^2)/n$. After performing the sampling operator $S(\cdot)$ of size m, \boldsymbol{v} and \boldsymbol{u} are transformed into $\tilde{\boldsymbol{v}} = S(\boldsymbol{v})$ and $\tilde{\boldsymbol{u}} = S(\boldsymbol{u})$, and the l_1 distance of $(\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{u}})$ is $\tilde{\boldsymbol{s}} = \sum_{i=1}^m |\tilde{v}_i - \tilde{u}_i|$. By Central Limit Theorem, we have the following lemma:

Lemma 1.1. If m is sufficiently large, then the sum \tilde{s} of m i.i.d random samples $|\tilde{v}_i - \tilde{u}_i|$ $(i \in 1, 2, ..., m)$ converges asymptotically to the normal distribution with mean $m\mu$ and variance $m\sigma^2$, i.e., $\tilde{s} \sim \mathcal{N}(m\mu, m\sigma^2)$.

Since $\tilde{s} \geq 0$, \tilde{s} can be modeled by normal distribution $\tilde{s} \sim \mathcal{N}(m\mu, m\sigma^2)$ over the truncation interval $[0, +\infty)$, that is, the singly-truncated normal distribution $\psi(x; \tilde{\mu}, \tilde{\sigma}^2, 0, +\infty)$, where $\tilde{\mu} = m\mu$ and $\tilde{\sigma}^2 = m\sigma^2$.

If \boldsymbol{a} is a projection vector with entries being i.i.d samples drawn from standard Cauchy distribution. It follows from the p-stability that the distance between projections $(\boldsymbol{a}^T\boldsymbol{v}-\boldsymbol{a}^T\boldsymbol{u})$ for two vectors \boldsymbol{v} and \boldsymbol{u} is distributed as $\|\boldsymbol{v}-\boldsymbol{u}\|_1 X$, i.e., sX, where X follows standard Cauchy distribution. Similarly, the projection distance between $\tilde{\boldsymbol{v}}$ and $\tilde{\boldsymbol{u}}$ under $\tilde{\boldsymbol{a}}$ $(\tilde{\boldsymbol{a}}^T\tilde{\boldsymbol{v}}-\tilde{\boldsymbol{a}}^T\tilde{\boldsymbol{u}})$ follows the distribution $\tilde{s}X$. Next, we will use the following Lemma 1.2 to determine the distribution of $\tilde{s}X$.

Lemma 1.2. The characteristic function of the product of two independent random variables W = XY is as follows:

$$\varphi_W(x) = E_Y \{ exp(-|xY|) \}$$

where X is a standard Cauchy random variable and Y is an independent random variable with mean μ and variance σ^2 .

Proof. This proof is similar to Lemma A.1 in Appendix.

Since the distribution of a random variable is determined uniquely by its characteristic function. With respect to $\tilde{s}X$, the characteristic function can be obtained by Lemma 1.3 since X follows Cauchy distribution:

Lemma 1.3. The characteristic function of $\tilde{s}X$ is as follows:

$$\varphi_{\tilde{s}X}(x) = \frac{1}{2(1 - \Phi(\frac{-\tilde{\mu}}{\tilde{\sigma}}))} \cdot exp(\frac{-\tilde{\mu}^2 + (\tilde{\mu} - \tilde{\sigma}^2|x|)^2}{2\tilde{\sigma}^2})$$
$$\cdot \operatorname{erfc}(\frac{\tilde{\sigma}^2|x| - \tilde{\mu}}{\sqrt{2}\tilde{\sigma}}) \quad (-\infty < x < +\infty)$$

where $\operatorname{erfc}(t) = \frac{2}{\sqrt{\pi}} \int_t^{+\infty} \exp(-x^2) dx \ (-\infty < t < +\infty)$ is the complementary error function.

Proof. According to Lemma 1.1 and Lemma 1.2, we have:

$$\begin{split} \varphi_{\tilde{s}X}(x) &= \frac{1}{\sqrt{2\pi}\tilde{\sigma}} \int_0^{+\infty} \frac{\exp(-\left|x\right|y - \frac{(y - \tilde{\mu})^2}{2\tilde{\sigma}^2})}{\Phi(a_2; \tilde{\mu}, \tilde{\sigma}^2) - \Phi(a_1; \tilde{\mu}, \tilde{\sigma}^2)} dy \\ &= \frac{1}{\sqrt{2\pi}\tilde{\sigma}} \int_0^{+\infty} \frac{\exp(-\frac{(y^2 - 2\tilde{\mu}y + 2\left|x\right|\tilde{\sigma}^2y + \tilde{\mu}^2})}{\Phi(a_2; \tilde{\mu}, \tilde{\sigma}^2) - \Phi(a_1; \tilde{\mu}, \tilde{\sigma}^2)} dy \\ &= \frac{1}{\sqrt{2\pi}\tilde{\sigma}} \int_0^{+\infty} \frac{\exp(\frac{-\tilde{\mu} + (\tilde{\mu} - \left|x\right|\tilde{\sigma}^2)^2}{2\tilde{\sigma}^2}) \cdot \exp(-\frac{(y - (\tilde{\mu} - \left|x\right|\tilde{\sigma}^2))^2}{2\tilde{\sigma}^2})}{\Phi(a_2; \tilde{\mu}, \tilde{\sigma}^2) - \Phi(a_1; \tilde{\mu}, \tilde{\sigma}^2)} dy \\ &= \frac{1}{2(1 - \Phi(\frac{-\tilde{\mu}}{\tilde{\sigma}}))} \cdot \exp(\frac{-\tilde{\mu} + (\tilde{\mu} - \left|x\right|\tilde{\sigma}^2)^2}{2\tilde{\sigma}^2}) \cdot \operatorname{erfc}(\frac{\left|x\right|\tilde{\sigma}^2 - \tilde{\mu}}{\sqrt{2}\tilde{\sigma}}) \end{split}$$

where $a_2 = \infty$ and $a_1 = 0$. Hence we prove this Lemma

2 FastLSH for $l_{\frac{1}{2}}$ distance

For given vector pair $(\boldsymbol{v}, \boldsymbol{u})$, let $s = \|\boldsymbol{v} - \boldsymbol{u}\|_{\frac{1}{2}}$. For our purpose, the collection of n entries $(v_i - u_i)^{\frac{1}{2}}$ $\{i = 1, 2, ..., n\}$ is viewed as a population, which follows an unknown distribution with finite mean $\mu' = (\sum_{i=1}^n (v_i - u_i)^{\frac{1}{2}})/n$ and variance $\sigma^2 = (\sum_{i=1}^n ((v_i - u_i)^{\frac{1}{2}} - \mu)^2)/n$. After performing the sampling operator $S(\cdot)$ of size m, \boldsymbol{v} and \boldsymbol{u} are transformed into $\tilde{\boldsymbol{v}} = S(\boldsymbol{v})$ and $\tilde{\boldsymbol{u}} = S(\boldsymbol{u})$, and the squared root distance of $(\tilde{\boldsymbol{v}}, \tilde{\boldsymbol{u}})$ is $\tilde{s}^{\frac{1}{2}} = \sum_{i=1}^m (\tilde{v}_i - \tilde{u}_i)^{\frac{1}{2}}$. By Central Limit Theorem, we have the following lemma:

Lemma 2.1. If m is sufficiently large, then the sum $\tilde{s}^{\frac{1}{2}}$ of m i.i.d random samples $(\tilde{v}_i - \tilde{u}_i)^{\frac{1}{2}}$ $(i \in 1, 2, ..., m)$ converges asymptotically to the normal distribution with mean $m\mu$ and variance $m\sigma^2$, i.e., $\tilde{s}^{\frac{1}{2}} \sim \mathcal{N}(m\mu, m\sigma^2)$.

Since $\tilde{s}^{\frac{1}{2}} \geq 0$, $\tilde{s}^{\frac{1}{2}}$ can be modeled by normal distribution $\tilde{s}^{\frac{1}{2}} \sim \mathcal{N}(m\mu, m\sigma^2)$ over the truncation interval $[0, +\infty)$, that is, the singly-truncated normal distribution $\psi(x; \tilde{\mu}, \tilde{\sigma}^2, 0, +\infty)$. Considering the fact that $\tilde{s} \geq 0$, we have $Pr[\tilde{s} < t] = Pr[\tilde{s}^{\frac{1}{2}} < t^{\frac{1}{2}}]$ for any t > 0. Therefore, the CDF of \tilde{s} , denoted by $F_{\tilde{s}}$, can be computed as follows:

$$F_{\tilde{s}}(t) = Pr[\tilde{s} < t] = Pr[\tilde{s}^{\frac{1}{2}} < t^{\frac{1}{2}}]$$

$$= \int_{0}^{t^{\frac{1}{2}}} \psi(x; \tilde{\mu}, \tilde{\sigma}^{2}, 0, \infty) dx$$

$$\tag{1}$$

where $\tilde{\mu} = m\mu$ and $\tilde{\sigma}^2 = m\sigma^2$. Due to the fact that the PDF is the derivative of the CDF, the PDF of \tilde{s} , denoted by $f_{\tilde{s}}$, is derived as follows:

$$f_{\tilde{s}}(t) = \frac{d}{dt}[F_{\tilde{s}}(t)] = \frac{1}{2}t^{-\frac{1}{2}}\psi(t^{\frac{1}{2}}; \tilde{\mu}, \tilde{\sigma}^2, 0, \infty)$$
 (2)

If a is a projection vector with entries being i.i.d samples drawn from standard Lévy distribution. It follows from the p-stability that the distance between

projections $(\boldsymbol{a}^T\boldsymbol{v} - \boldsymbol{a}^T\boldsymbol{u})$ for two vectors \boldsymbol{v} and \boldsymbol{u} is distributed as $\|\boldsymbol{v} - \boldsymbol{u}\|_1 X$, i.e., sX, where X follows standard Lévy distribution. Similarly, the projection distance between $\tilde{\boldsymbol{v}}$ and $\tilde{\boldsymbol{u}}$ under $\tilde{\boldsymbol{a}}$ $(\tilde{\boldsymbol{a}}^T\tilde{\boldsymbol{v}} - \tilde{\boldsymbol{a}}^T\tilde{\boldsymbol{u}})$ follows the distribution $\tilde{s}X$. Next, we will use the following Lemma 2.2 to determine the distribution of $\tilde{s}X$.

Lemma 2.2. The characteristic function of the product of two independent random variables W = XY is as follows:

$$\varphi_W(x) = E_Y\{exp(-\sqrt{2ixY})\}$$

where X is a standard Lévy random variable and Y is an independent random variable with mean μ and variance σ^2 .

Proof. This proof is similar to Lemma A.1 in Appendix.

Since the distribution of a random variable is determined uniquely by its characteristic function. With respect to $\tilde{s}X$, the characteristic function can be obtained by Lemma 1.3 since X follows Lévy distribution:

Lemma 2.3. The characteristic function of $\tilde{s}X$ is as follows:

$$\varphi_{\tilde{s}X}(x) = \frac{1}{2(1 - \Phi(\frac{-\tilde{\mu}}{\tilde{\sigma}}))} \cdot exp(\frac{-\tilde{\mu}^2 + (\tilde{\mu} - \sqrt{-2ix}\tilde{\sigma}^2)^2}{2\tilde{\sigma}^2})$$
$$\cdot \operatorname{erfc}(\frac{\sqrt{-2ix}\tilde{\sigma}^2 - \tilde{\mu}}{\sqrt{2}\tilde{\sigma}}) \quad (-\infty < x < +\infty)$$

where $\operatorname{erfc}(t) = \frac{2}{\sqrt{\pi}} \int_t^{+\infty} \exp(-x^2) dx \ (-\infty < t < +\infty)$ is the complementary error function.

Proof. According to Eqn. (2) and Lemma 2.2, we have:

$$\begin{split} \varphi_{\tilde{s}X}(x) &= \frac{1}{\sqrt{2\pi}\tilde{\sigma}} \int_{0}^{+\infty} \frac{\exp(-\sqrt{-2ixy} - \frac{(\sqrt{y} - \tilde{\mu})^2}{2\tilde{\sigma}^2})}{2\sqrt{y}(\Phi(a_2; \tilde{\mu}, \tilde{\sigma}^2) - \Phi(a_1; \tilde{\mu}, \tilde{\sigma}^2))} dy \\ &= \frac{1}{\sqrt{2\pi}\tilde{\sigma}} \int_{0}^{+\infty} \frac{\exp(-\sqrt{-2ixy^2} - \frac{(y - \tilde{\mu})^2}{2\tilde{\sigma}^2})}{\Phi(a_2; \tilde{\mu}, \tilde{\sigma}^2) - \Phi(a_1; \tilde{\mu}, \tilde{\sigma}^2)} dy \\ &= \frac{1}{\sqrt{2\pi}\tilde{\sigma}} \int_{0}^{+\infty} \frac{\exp(-\frac{(y^2 - 2\tilde{\mu}y + 2\sqrt{-2ix}\tilde{\sigma}^2y + \tilde{\mu}^2})}{2\tilde{\sigma}^2})}{\Phi(a_2; \tilde{\mu}, \tilde{\sigma}^2) - \Phi(a_1; \tilde{\mu}, \tilde{\sigma}^2)} dy \\ &= \frac{1}{\sqrt{2\pi}\tilde{\sigma}} \int_{0}^{+\infty} \frac{\exp(-\frac{\tilde{\mu} + (\tilde{\mu} - \sqrt{-2ix}\tilde{\sigma}^2)^2}{2\tilde{\sigma}^2}) \cdot \exp(-\frac{(y - (\tilde{\mu} - \sqrt{-2ix}\tilde{\sigma}^2))^2}{2\tilde{\sigma}^2})}{\Phi(a_2; \tilde{\mu}, \tilde{\sigma}^2) - \Phi(a_1; \tilde{\mu}, \tilde{\sigma}^2)} dy \\ &= \frac{1}{2(1 - \Phi(-\frac{\tilde{\mu}}{2}))} \cdot \exp(-\frac{\tilde{\mu} + (\tilde{\mu} - \sqrt{-2ix}\tilde{\sigma}^2)^2}{2\tilde{\sigma}^2}) \cdot \operatorname{erfc}(\frac{\sqrt{-2ix}\tilde{\sigma}^2 - \tilde{\mu}}{\sqrt{2}\tilde{\sigma}}) \end{split}$$

where $a_2 = \infty$ and $a_1 = 0$. Hence we prove this Lemma