

#### **Linear Cryptanalysis of MORUS**

Tomer Ashur, Maria Eichlseder, Martin M. Lauridsen, Gaëtan Leurent, Brice Minaud, Yann Rotella, Yu Sasaki, Benoît Viguier

DS Lunch Talk, June 22, 2018

## Overview

► MORUS & MiniMORUS

► Linear Cryptanalysis of MiniMORUS

► Extension to MORUS and Consequences



- ► Authenticated encryption algorithm (Encrypt-and-MAC)
- ▶ Designed by Wu and Huang

**Table:** Security goals of MORUS.

|                | Confidentiality (bits) | Integrity (bits) |  |
|----------------|------------------------|------------------|--|
| MORUS-640-128  | 128                    | 128              |  |
| MORUS-1280-128 | 128                    | 128              |  |
| MORUS-1280-256 | 256                    | 128              |  |

Impose rekeying every 2<sup>64</sup> encrypted blocks.

#### MORUS state:

- ▶ 5 registers of 4 words.
- ightharpoonup MORUS-640, 32-bit words  $\implies$  128-bit registers  $\implies$  SSE instructions.
- ightharpoonup MORUS-1280, 64-bit words  $\implies$  256-bit registers  $\implies$  AVX2 instructions.











#### MiniMORUS!



## MiniMORUS with chosen plaintext!



Linear Cryptanalysis of MiniMORUS

## Weight and Bias

This linear approximation holds with a bias  $\varepsilon$ :

$$\Pr(E) = \frac{1}{2} + \varepsilon$$

The correlation and weight of an approximation is:

$$\mathsf{cor}(E) := 2 \, \mathsf{Pr}(E) - 1 = 2 arepsilon$$
  $\mathsf{weight}(E) := -\log_2 |\, \mathsf{cor}(E)|$ 

#### Pilling Up Lemma (Matsui M., 1993)

The correlation (resp. weight) of an XOR of independent variables is equal to the product (resp. sum) of their individual correlations (resp. weights)

## MiniMORUS: trails $\alpha, \beta, \gamma, \delta, \varepsilon$



# **Building Trails**



























$$C_{27}^0 \oplus C_0^1 \oplus C_8^1 \oplus C_{26}^1 \oplus C_7^2 \oplus C_{13}^2 \oplus C_{31}^2 \oplus C_{12}^3 \to S_{2,0}^2$$











# MiniMORUS: Weight of $\beta_i^t \oplus \gamma_i^t$



Weight of  $\beta_i^t \oplus \gamma_i^t$  is 0 (not 2).

## MiniMORUS-640: Weight corrected



## MiniMORUS: Full Trail

► MiniMORUS-640

$$\chi_1 \oplus \chi_2 = C_{27}^0 \oplus C_0^1 \oplus C_2^1 \oplus C_8^1 \oplus C_{16}^1 \oplus C_{16}^2 \oplus C_{13}^2 \oplus C_{13}^2 \oplus C_{27}^2 \oplus C_{27}^2 \oplus C_{31}^3 \oplus C_6^3 \oplus C_{14}^3 \oplus C_{20}^3 \oplus C_{19}^4 \to 0$$

► MiniMORUS-1280

$$C_{51}^{0} \oplus C_{0}^{1} \oplus C_{25}^{1} \oplus C_{33}^{1} \oplus C_{55}^{1} \oplus C_{4}^{2} \oplus C_{7}^{2} \oplus C_{29}^{2} \oplus C_{37}^{2} \oplus C_{38}^{2} \oplus C_{46}^{2} \oplus C_{51}^{2} \oplus C_{11}^{3} \oplus C_{20}^{3} \oplus C_{42}^{3} \oplus C_{50}^{3} \oplus C_{24}^{4} \to 0$$

In both case, the weight of the trail is 7 + 9 = 16.

## MiniMORUS: Experimental verification

|          |                                                                                                                 |    | Weight |       |  |
|----------|-----------------------------------------------------------------------------------------------------------------|----|--------|-------|--|
| Арр      | Approximations for MiniMORUS-640                                                                                |    | Bool.  | Meas. |  |
| $\chi_1$ | $S_0^{2,2} = C_{27}^0 \oplus C_{0,8,26}^1 \oplus C_{7,13,31}^2 \oplus C_{12}^3$                                 | 7  | 7      | 7     |  |
| $\chi_2$ | $S_0^{2,2} = C_2^1 \oplus C_{1,7,15,27}^2 \oplus C_{6,14,20}^3 \oplus C_{19}^4$                                 | 9  | 9      | 9     |  |
| χ        | $0 = C_{27}^0 \oplus C_{0,2,26,8}^1 \oplus C_{1,13,15,27,31}^2 \oplus C_{6,12,14,20}^3 \oplus C_{19}^4$         | 16 | 16     | 15.5  |  |
| Арр      | roximations for MiniMORUS-1280                                                                                  |    |        |       |  |
| $\chi_1$ | $S_0^{2,2} = C_{51}^0 \oplus C_{0,33,55}^1 \oplus C_{4,37,46}^2 \oplus C_{50}^3$                                | 7  | 7      | 7     |  |
| $\chi_2$ | $S_0^{2,2} = C_{25}^1 \oplus C_{7,29,38,51}^2 \oplus C_{11,20,42}^3 \oplus C_{24}^4$                            | 9  | 9      | 9     |  |
| χ        | $0 = C_{51}^0 \oplus C_{0,25,33,55}^1 \oplus C_{4,7,29,37,38,46,51}^2 \oplus C_{11,20,42,50}^3 \oplus C_{24}^4$ | 16 | 16     | 15.9  |  |

The programs we used to verify the bias experimentally are available at: https://github.com/ildyria/MorusBias

**Extension to MORUS and Consequences** 

#### From MiniMORUS to MORUS

► Trail extension:

 $S_{i,j}$  in MiniMORUS is translated into  $S_{i,j} \oplus S_{i,j+w} \oplus S_{i,j+2w} \oplus S_{i,j+3w}$  in MORUS e.g.  $S_{2,0}$  in MiniMORUS-1280  $\iff S_{2,0} \oplus S_{2,64} \oplus S_{2,128} \oplus S_{2,192}$  in MORUS-1280.

- ▶ Weight implication: word "equality" occurs with probability  $\frac{1}{2^4}$  ⇒ weight ×4
- $ightharpoonup eta_i + \gamma_i$  has weight 0 in MiniMORUS but weight 4 in MORUS

#### Weight of the trails

MORUS-640: Weight(
$$\chi$$
) = 73

MORUS-1280: Weight(
$$\chi$$
) = 76

#### Impact for MORUS

#### ► Keystream correlation

- The bias is absolute: does not depends on Key or Nonce!
- Similar to RC4, BEAST attack...
- Known plaintext  $\implies$  Distinguisher.
- $\bullet \ \ \mathsf{Multiple} \ \mathsf{fixed} \ \mathsf{plaintext} \ \Longrightarrow \ \mathsf{plaintext} \ \mathsf{recovery}.$

#### Impact for MORUS

#### ▶ Keystream correlation

- The bias is absolute: does not depends on Key or Nonce!
- Similar to RC4, BEAST attack...
- Known plaintext  $\implies$  Distinguisher.
- ullet Multiple fixed plaintext  $\Longrightarrow$  plaintext recovery.

#### ▶ Data complexity

- Immune to rekeying every 2<sup>64</sup> encrypted block.
- Require 2<sup>146</sup> blocks for MORUS-640
- Require 2<sup>152</sup> blocks for MORUS-1280 (violate 256-bit confidentiality claim)
- trail is immune to bit-shift:
  - save 2<sup>5</sup> data for MORUS-640.
  - save 2<sup>6</sup> data for MORUS-1280.
- Not practical. :(

https://eprint.iacr.org/2018/464.pdf