POLYTECH° SORBONNE

Calculabilité - Décidabilité (ICC)

TD nº 1 - Automates finis

Exercice 1. Donner des automates finis acceptant les langages définis sur l'alphabet {0,1} ci-dessous :

- 1. L'ensemble des chaînes de caractères se terminant par 00.
- 2. L'ensemble des chaînes de caractères contenant trois 0 consécutifs.
- 3. L'ensemble des chaînes de caractères contenant 011.
- **4.** L'ensemble des chaînes de caractères dont le 10-ième symbole compté à partir de la fin est 1.
- 5. L'ensemble des chaînes de caractères qui commencent ou terminent par 01.
- **6.** L'ensemble des chaînes de caractères dont le nombre de 0 est divisible par 3.

Exercice 2. Soit *A* un automate fini déterministe et *q* un état de *A* tel que $\delta(q, a) = q$ pour tout symbole *a*. Montrer par induction sur la longueur des mots d'entrée que $\widehat{\delta}(q, w) = q$.

Exercice 3. Soit *A* un automate fini déterministe et *a* un symbole accepté par *a* tel que pour tout état q de A, $\delta(q, a) = q$.

- **1.** Montrer par induction sur n que pour tout $n \ge 0$, $\widehat{\delta}(q, a^n) = q$.
- **2.** Montrer que $\{a\}^* \subset L(A)$ ou $\{a\}^* \cap L(A) = \emptyset$.

Exercice 4. Soit $A = (Q, \Sigma, \delta, q_0, \{q_f\})$ un automate fini déterministe et supposons que pour tout a dans Σ , $\delta(q_0, a) = \delta(q_f, a)$.

- **1.** Montrer que pour tout $w \neq \varepsilon$, on a $\widehat{\delta}(q_0, w) = \widehat{\delta}(q_f, w)$.
- **2.** Montrer que si x est un mot non vide dans L(A), alors pour tout k > 0, x^k est aussi dans L(A).

Exercice 5. On considère un automate fini déterministe ayant la table de transition suivante :

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow A & A & B \\ \star B & B & A \end{array}$$

Décrire le langage accepté par cet automate en prouvant par induction sur la longueur des mots d'entrée que votre description est correcte.

Même question lorsque la table de transition est :

$$\begin{array}{c|cccc}
 & 0 & 1 \\
\hline
 \rightarrow \star A & B & A \\
 \star B & C & A \\
 C & C & C
\end{array}$$

Exercice 6. Convertir l'automate fini non-déterministe dont la table de transition est donnée ci-dessous en un automate fini déterministe :

	0	1
$\rightarrow p$	{ <i>p</i> , <i>q</i> }	{ <i>p</i> }
q	{ <i>r</i> }	{ <i>r</i> }
r	{s}	Ø
* S	{ <i>s</i> }	{ <i>s</i> }

Même question pour l'automate fini non-déterministe dont la table de transition est donnée ci-dessous :

	0	1
$\rightarrow p$	$\{q,s\}$	<i>{q}</i>
*q	{ <i>r</i> }	$\{q,r\}$
r	{s}	{ <i>p</i> }
*S	Ø	{ <i>p</i> }

Exercice 7. Donner des automates finis non-déterministes acceptant les langages définis ci-dessous (tirer profit au maximum du caractère non-déterministe) :

- 1. L'ensemble des chaînes de caractères sur l'alphabet {0,1,2,3,4,5,6,7,8,9} telles que leur dernier chiffre est apparu précédemment.
- 2. L'ensemble des chaînes de caractères sur l'alphabet {0,1,2,3,4,5,6,7,8,9} telles que leur dernier chiffre n'est pas apparu précédemment.
- 3. L'ensemble des chaînes de caractères sur l'alphabet $\{0,1\}$ telles qu'elles contiennent deux zéros séparés par un nombre de lettres qui est multiple de 4.

Exercice 8. On considère un ε -automate fini non-déterministe donné par la table de transition suivante :

- 1. Calculer la ε -cloture de chaque état.
- 2. Donner toutes les chaînes de caractères de longueur inférieur ou égale à trois acceptées par cet automate.
- 3. Convertir cet automate en un automate fini déterministe.

Exercice 9. Écrire les automates finis reconnaissant les langages suivants (ainsi que les expressions régulières associées):

- 1. L'ensemble des mots de l'alphabet $\{a, b, c\}$ contenant au moins un a et au moins un b.
- 2. L'ensemble des mots de l'alphabet {0,1} dont le dixième symbole compté à partir de la fin est 1.
- 3. L'ensemble des mots de l'alphabet {0,1} qui contiennent au moins une paire de 1 consécutifs.
- 4. L'ensemble des mots de l'alphabet $\{0,1\}$ tels que toute paire de 1 adjacents est précédée d'une paire de 0 adjacents.
- 5. L'ensemble des mots de l'alphabet {0,1} tels que le nombre de 0 contenus est divisible par cinq.
- 6. L'ensemble des mots de l'alphabet $\{0,1\}$ tels qu'ils ne contiennent pas 101.
- 7. L'ensemble des mots de l'alphabet {0,1} tels que 0 et 1 apparaissent le même nombre de fois et qu'aucun préfixe a deux 0 de plus que de 1 ni deux 1 de plus que de 0.

Exercice 10. Convertir l'automate fini déterministe dont la table des transitions est donnée ci-dessous en une expression régulière. On utilisera la technique d'élimination d'état vue en cours.

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_1 & q_2 & q_3 \\ q_2 & q_1 & q_3 \\ \star q_3 & q_2 & q_1 \end{array}$$

2

Exercice 11. Convertir les expressions régulières ci-dessous en automates finis non-déterministes avec ε -transitions :

- 1. 01*
- 2. (0+1)01
- 3. $00(0+1)^*$

Exercice 12. Prouver ou exhiber un contre-exemple aux lois algébriques faisant intervenir des expressions régulières ci-dessous :

- $(R+S)^* = R^* + S^*$
- $-(RS+R)^*R = R(SR+R)^*$
- $--(RS+R)^*RS = (RR^*S)^*$
- $-(R+S)^*S = (R^*S^*)^*$
- $S(RS + R)^*R = RR^*S(RR^*S)^*$

Exercice 13. Prouver que les langages suivants ne sont pas réguliers :

- 1. $\{0^n1^n \mid n \ge 1\}$
- 2. L'ensemble des chaînes de caractères bien parenthésées.
- 3. $\{0^n 10^n \mid n \ge 1\}$
- 4. $\{0^n1^m2^n \mid n \text{ et } m \text{ sont des entiers arbitraires}\}$
- 5. $\{0^n 1^m \mid n \le m\}$
- 6. $\{0^n1^{2n} \mid n \ge 1\}$

Exercice 14. On considère un automate dont la table de transition figure ci-dessous.

	0	1
→ A	В	A
В	Α	С
С	D	В
* D	D	A
Е	D	F
F	G	Е
G	F	G
Н	G	D

Donner la table des états distinguables et minimiser l'automate.

Exercice 15. Même exercice que le précédent pour l'automate décrit par la table de transition ci-dessous :

0	1
В	E
С	F
D	Н
Е	Н
F	I
G	В
Н	В
I	С
A	E
	B C D E F G