CSE 167:

Introduction to Computer Graphics Lecture #2: Coordinate Transformations

> Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

Announcements

- Homework #1 due Friday Sept 30, 1:30pm; presentation in lab 260
- Don't save anything on the C: drive of the lab PCs in Windows. You will lose it when you log out!

Overview

- Linear Transformations
- Homogeneous Coordinates
- Affine Transformations
- Concatenating Transformations
- Change of Coordinates
- Common Coordinate Systems

Linear Transformations

- Scaling, shearing, rotation, reflection of vectors, and combinations thereof
- Implemented using matrix multiplications

Scaling

Uniform scaling matrix in 2D

Analogous in 3D

$$\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} \mathbf{v} = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} v'_x \\ v'_y \end{bmatrix} = \mathbf{v}'$$

Scaling

Nonuniform scaling matrix in 2D

Analogous in 3D

$$\begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} \mathbf{v} = \begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} v_x' \\ v_y' \end{bmatrix} = \mathbf{v}'$$

Shearing

Shearing along x-axis in 2D

Analogous for y-axis, in 3D

$$\mathbf{v}' = \left[\begin{array}{cc} 1 & s \\ 0 & 1 \end{array} \right] \mathbf{v}$$

Rotation in 2D

- Convention: positive angle rotates counterclockwise
- Rotation matrix

$$\mathbf{R}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Rotation in 3D

Rotation around coordinate axes

$$\mathbf{R}_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$\mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$\mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation in 3D

Concatenation of rotations around x, y, z axes

$$\mathbf{R}_{x,y,z}(\theta_x,\theta_y,\theta_z) = \mathbf{R}_x(\theta_x)\mathbf{R}_y(\theta_y)\mathbf{R}_z(\theta_z)$$

- $m{\theta}_x, \theta_y, \theta_z$ are called Euler angles
- ▶ Result depends on matrix order!

$$\mathbf{R}_x(\theta_x)\mathbf{R}_y(\theta_y)\mathbf{R}_z(\theta_z) \neq \mathbf{R}_z(\theta_z)\mathbf{R}_y(\theta_y)\mathbf{R}_x(\theta_x)$$

Rotation in 3D

Around arbitrary axis

$$\mathbf{R}(\mathbf{a}, \theta) = \begin{bmatrix} 1 + (1 - \cos(\theta))(a_x^2 - 1) & -a_z \sin(\theta) + (1 - \cos(\theta))a_x a_y & a_y \sin(\theta) + (1 - \cos(\theta))a_x a_z \\ a_z \sin(\theta) + (1 - \cos(\theta))a_y a_x & 1 + (1 - \cos(\theta))(a_y^2 - 1) & -a_x \sin(\theta) + (1 - \cos(\theta))a_y a_z \\ -a_y \sin(\theta) + (1 - \cos(\theta))a_z a_x & a_x \sin(\theta) + (1 - \cos(\theta))a_z a_y & 1 + (1 - \cos(\theta))(a_z^2 - 1) \end{bmatrix}$$

- Rotation axis a
 - a must be a unit vector: $|\mathbf{a}| = 1$
- Right-hand rule applies for direction of rotation
 - Counterclockwise rotation

Overview

- Linear Transformations
- Homogeneous Coordinates
- Affine Transformations
- Concatenating Transformations
- Change of Coordinates
- Common Coordinate Systems

Homogeneous Coordinates

Generalization: homogeneous point

$$\mathbf{p}_h = wp_x\mathbf{x} + wp_y\mathbf{y} + wp_z\mathbf{z} + w\mathbf{o} \begin{bmatrix} wp_x \\ wp_y \\ wp_z \\ w \end{bmatrix}$$

- Homogeneous coordinate
- lacktriangle Corresponding 3D point: divide by homogeneous coordinate w

$$\mathbf{p} = p_x \mathbf{x} + p_y \mathbf{y} + p_z \mathbf{z} + \mathbf{o} \begin{bmatrix} w p_x / w \\ w p_y / w \\ w p_z / w \\ w / w \end{bmatrix}$$

Homogeneous coordinates

- lacktriangle Usually for 3D points you choose w=1
- For 3D vectors w = 0
- ▶ Benefit: same representation for vectors and points

Translation

Using homogeneous coordinates

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} \qquad \mathbf{t} = \begin{bmatrix} t_x \\ t_y \\ t_z \\ 0 \end{bmatrix} \qquad \mathbf{p} + \mathbf{t} = \begin{bmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \\ 1 \end{bmatrix}$$

Translation

Using homogeneous coordinates

Matrix notation

$$\mathbf{p} + \mathbf{t} = \left[egin{array}{cccc} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{array}
ight] \left[egin{array}{c} p_x \\ p_y \\ p_z \\ 1 \end{array}
ight] = \left[egin{array}{c} p_x + t_x \\ p_y + t_y \\ p_z + t_z \\ 1 \end{array}
ight]$$

Translation matrix

Transformations

- Add 4th row/column to 3 x 3 transformation matrices
- Example: rotation

$$\mathbf{R}(\mathbf{a}, \theta) \in \mathbf{R}^{3 \times 3}$$

Transformations

Concatenation of transformations:

- Arbitrary transformations (scale, shear, rotation, translation) $\mathbf{M}_3, \mathbf{M}_2, \mathbf{M}_1 \in \mathbf{R}^{4 imes 4}$
- lacksquare Build "chains" of transformations $\mathbf{p}_h' = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1 \mathbf{p}_h$
- Result depends on order

Overview

- Linear Transformations
- Homogeneous Coordinates
- Affine Transformations
- Concatenating Transformations
- Change of Coordinates
- Common Coordinate Systems

Affine transformations

- Generalization of linear transformations
 - Scale, shear, rotation, reflection (linear)
 - **▶** Translation
- Preserve straight lines, parallel lines
- Implementation using 4x4 matrices and homogeneous coordinates

Translation p'

$$\mathbf{p} = \left[egin{array}{c} p_x \ p_y \ p_z \ 1 \end{array}
ight] \qquad \mathbf{t} = \left[egin{array}{c} t_x \ t_y \ t_z \ 0 \end{array}
ight]$$

$$\mathbf{p}' = \mathbf{p} + \mathbf{t} = \left[egin{array}{c} p_x + t_x \ p_y + t_y \ p_z + t_z \ 1 \end{array}
ight]$$

$$\begin{bmatrix} p'_x \\ p'_y \\ p'_z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{T}(\mathbf{t})\mathbf{p}$$

Translation

Inverse translation

$$\mathbf{T}(\mathbf{t})^{-1} = \mathbf{T}(-\mathbf{t})$$

$$\mathbf{T}(\mathbf{t}) = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{T}(-\mathbf{t}) = \begin{bmatrix} 1 & 0 & 0 & -t_x \\ 0 & 1 & 0 & -t_y \\ 0 & 0 & 1 & -t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

• Origin does not change

$$\mathbf{S}(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling

Inverse of scale:

$$\mathbf{S}(s_x, s_y, s_z)^{-1} = \mathbf{S}(1/s_x, 1/s_y, 1/s_z)$$

Shear

$$\mathbf{p}' = \left[\begin{array}{cc} 1 & z \\ 0 & 1 \end{array} \right] \mathbf{p}$$

Pure shear if only one parameter is non-zero

$$\mathbf{Z}(z_1 \dots z_6) = \left[egin{array}{cccc} 1 & z_1 & z_2 & 0 \ z_3 & 1 & z_4 & 0 \ z_5 & z_6 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

Rotation around coordinate axis

Origin does not change

$$\mathbf{R}_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R}_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation around arbitrary axis

- Origin does not change
- Angle θ , unit axis **a**

$$c_{\theta} = \cos \theta, s_{\theta} = \sin \theta$$

$$\mathbf{R}(\mathbf{a},\theta) = \begin{bmatrix} a_x^2 + c_\theta(1 - a_x^2) & a_x a_y(1 - c_\theta) - a_z s_\theta & a_x a_z(1 - c_\theta) + a_y s_\theta & 0 \\ a_x a_y(1 - c_\theta) + a_z s_\theta & a_y^2 + c_\theta(1 - a_y^2) & a_y a_z(1 - c_\theta) - a_x s_\theta & 0 \\ a_x a_z(1 - c_\theta) - a_y s_\theta & a_y a_z(1 - c_\theta) + a_x s_\theta & a_z^2 + c_\theta(1 - a_z^2) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation matrices

- Orthonormal
 - Rows, columns are unit length and orthogonal
- Inverse of rotation matrix:
 - Its transpose

$$\mathbf{R}(\mathbf{a}, \theta)^{-1} = \mathbf{R}(\mathbf{a}, \theta)^T$$

Overview

- Linear Transformations
- Homogeneous Coordinates
- Affine Transformations
- Concatenating Transformations
- Change of Coordinates
- Common Coordinate Systems

Rotating with pivot

Rotation around origin

Rotation with pivot

Rotating with pivot

1. Translation ${f T}$ 2. Rotation ${f R}$ 3. Translation ${f T}^{-1}$

$$\mathbf{p}' = \mathbf{T}^{-1} \mathbf{R} \mathbf{T} \mathbf{p}$$

Concatenating transformations

Arbitrary sequence of transformations

$$\mathbf{p}' = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1 \mathbf{p}$$
 $\mathbf{M}_{total} = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1$ $\mathbf{p}' = \mathbf{M}_{total} \mathbf{p}$

Note: associativity

$$\mathbf{M}_{total} = (\mathbf{M}_3 \mathbf{M}_2) \mathbf{M}_1 = \mathbf{M}_3 (\mathbf{M}_2 \mathbf{M}_1)$$

Overview

- Linear Transformations
- Homogeneous Coordinates
- Affine Transformations
- Concatenating Transformations
- Change of Coordinates
- Common Coordinate Systems

Change of coordinates

- Point with homogeneous coordinates $\left| \begin{array}{c} p_x \\ p_y \\ p_z \\ 1 \end{array} \right|$
- ▶ Position in 3D given with respect to a coordinate system

$$\mathbf{p}_{xyz} = p_x \mathbf{x} + p_y \mathbf{y} + p_z \mathbf{z} + \mathbf{o}$$

Change of coordinates

Goal: Find coordinates of \mathbf{p}_{xyz} with respect to new **uvwq** coordinate system

Change of coordinates

Coordinates of xyzo frame w.r.t. uvwq frame

$$\mathbf{x} = \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} \qquad \mathbf{o} = \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix}$$

Change of coordinates

Same point p in 3D, expressed in new uvwq frame

$$\mathbf{p}_{uvw} = p_x \begin{bmatrix} x_u \\ x_v \\ x_w \\ 0 \end{bmatrix} + p_y \begin{bmatrix} y_u \\ y_v \\ y_w \\ 0 \end{bmatrix} + p_z \begin{bmatrix} z_u \\ z_v \\ z_w \\ 0 \end{bmatrix} + \begin{bmatrix} o_u \\ o_v \\ o_w \\ 1 \end{bmatrix}$$

Change of coordinates

$$\mathbf{p}_{uvw} = \begin{bmatrix} x_u & y_u & z_u & o_u \\ x_v & y_v & z_v & o_v \\ x_w & y_w & z_w & o_w \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} & \mathbf{o} \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix}$$

Change of coordinates

Inverse transformation

- **b** Given point \mathbf{p}_{uvw} w.r.t. frame $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{q}$
- ightharpoonup Coordinates \mathbf{P}_{xyz} w.r.t. frame $\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{o}$

$$\mathbf{p}_{xyz} = \left[egin{array}{cccc} x_u & y_u & z_u & o_u \ x_v & y_v & z_v & o_v \ x_w & y_w & z_w & o_w \ 0 & 0 & 0 & 1 \end{array}
ight]^{-1} \left[egin{array}{c} p_u \ p_v \ p_w \ 1 \end{array}
ight]$$

Overview

- Linear Transformations
- Homogeneous Coordinates
- Affine Transformations
- Concatenating Transformations
- Change of Coordinates
- Typical Coordinate Systems

Typical Coordinate Systems

▶ Camera, world, object coordinates:

Object Coordinates

- Coordinates the object is defined with
- Often origin is in middle, base, or corner of object
- No right answer, whatever was convenient for the creator of the object

World coordinates

World Coordinates

- "World space"
- Common reference frame for all objects in the scene
- Chosen for convenience, no right answer
 - If there is a ground plane, usually x/y is horizontal and z points up (height)
 - In OpenGL x/y is screen plane, z comes out

World coordinates

World Coordinates

- Transformation from object to world space is different for each object
- Defines placement of object in scene
- Given by "model matrix" (model-to-world transform) M

World coordinates

Camera Coordinate System

- "Camera space"
- Origin defines center of projection of camera
- x-y plane is parallel to image plane
- z-axis is perpendicular to image plane

Camera Coordinate System

- The Camera Matrix defines the transformation from camera to world coordinates
 - Placement of camera in world
- ▶ Transformation from object to camera coordinates

$$\mathbf{p}_{camera} = \mathbf{C}^{-1} \mathbf{M} \mathbf{p}_{object}$$

World coordinates

Camera Matrix

Construct from center of projection e, look at d, up-vector up:

Camera Matrix

Construct from center of projection e, look at d, up-vector up:

Camera Matrix

z-axis

$$\mathbf{z}_c = rac{\mathbf{e} - \mathbf{d}}{\|\mathbf{e} - \mathbf{d}\|}$$

x-axis

$$\mathbf{x}_c = \frac{\mathbf{up} \times \mathbf{z}_c}{\|\mathbf{up} \times \mathbf{z}_c\|}$$

y-axis

$$\mathbf{y}_c = \mathbf{z_c} \times \mathbf{x}_c$$

$$\mathbf{C} = \begin{bmatrix} \mathbf{x_c} & \mathbf{y_c} & \mathbf{z_c} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Inverse of Camera Matrix

- ▶ How to calculate the inverse of the camera matrix C⁻¹?
- Generic matrix inversion is complex and computeintensive
- Observation:
 - camera matrix consists of rotation and translation: R x T
- Inverse of rotation: $\mathbf{R}^{-1} = \mathbf{R}^{T}$
- Inverse of translation: $T(t)^{-1} = T(-t)$
- Inverse of camera matrix: $C^{-1} = T^{-1} \times R^{-1}$

Objects in Camera Coordinates

- We have things lined up the way we like them on screen
 - *x* to the right
 - y up
 - \rightarrow -z going into the screen
 - Dbjects to look at are in front of us, i.e. have negative z values
- But objects are still in 3D
- Next step: project scene into 2D

Next Lecture

- Rendering Pipeline
- Perspective Projection