JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10126380 A

(43) Date of publication of application: 15 . 05 . 98

(51) Int. CI

H04J 13/00 H04B 7/26 H04L 7/00

(21) Application number: 08297859

(22) Date of filing: 23 . 10 . 96

(71) Applicant:

N T T IDO TSUSHINMO

KK YOZAN:KK

(72) Inventor:

KOTOBUKI KOKURIYOU

SHU NAGAAKI SHU TERUHEI

YAMAMOTO MAKOTO TAKATORI SUNAO SAWAHASHI MAMORU **ADACHI FUMIYUKI**

(54) INITIAL SYNCHRONIZATION METHOD IN ASYNCHRONOUS CELLULAR SYSTEM BETWEEN DS-CDMA BASE STATIONS AND **RECEIVER**

(57) Abstract:

PROBLEM TO BE SOLVED: To attain high-speed cell search, high efficiency and miniaturization in the asynchronous cellular system between DS-CDMA base stations.

SOLUTION: When making cell search, a matched filter 22 detects correlation between short codes of a control channel and detects a correlation peak position of maximum power as a long-code timing. A plurality of correlation devices 28-1 to 28-n, provided in parallel for RAKE synthesis specify scheduled long codes to the system in a detected long-code timing. After the synchronization of long code is established, the correlation devices 28-1 to 28-n are used to receive a multi-path signal and to discriminate data through the RAKE synthesis. When searching peripheral cells, the matched filter 22 is used to identify long codes of object peripheral cells. A signal from a base station correcting to the correlation devices 28-1 to 28-n is

received and hand-over is safely realized.

COPYRIGHT: (C)1998,JPO

(19) 日本国特許庁 (JP)

(51) Int.Cl.6

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-126380

(43)公開日 平成10年(1998) 5月15日

(,	2700 17-2			
H04J 13/0	0	H 0 4 J 13/00 A		
H04B 7/2		H04L 7/00 C		
H04L 7/0	0	H 0 4 B 7/26 N	N	
		審査請求 未請求 請求項の数7 FD (全	21 頁)	
(21)出願番号	特願平8-297859	(71) 出顧人 392026693		
		エヌ・ティ・ティ移動通信網株式会	社	
(22) 出願日	平成8年(1996)10月23日	東京都港区虎ノ門二丁目10番1号		
		(71)出顧人 390010515		
		株式会社鷹山		
		東京都世田谷区北沢3-5-18 鷹	山ピル	
		(72)発明者 寿 国梁		
		東京都世田谷区北沢3-5-18 鷹	山ピル	
		株式会社鷹山内		
		(72)発明者 周 長明		
		東京都世田谷区北沢 3 - 5 - 18 廬	山ビル	
		株式会社鷹山内		
		(74)代理人 弁理士 髙橋 英生		
		最終頁	に続く	

FΙ

(54) 【発明の名称】 DS-CDMA基地局間非同期セルラ方式における初期同期方法および受信機

(57)【要約】

(修正有)

識別記号

【課題】 $\underline{DS-CDMA}$ 基地局間非同期セルラ方式におけるセルサーチを高速化するとともに、高効率化および小型化を実現する。

【解決手段】 セルサーチ時には、マッチドフィルタ22で制御チャンネルのショートコードとの相関を検出し、最大電力の相関ビーク位置をロングコードタイミングとして検出する。次いで、RAKE合成のため複数個並列に設けられた相関器28-1~28-nで、検出したロングコードタイミングでシステムに予定されているロングコードの特定を行なう。ロングコード同期確立後、前記相関器28-1~28-nを使ってマルチパス信号を受信し、RAKE合成してデータを判定する。周辺セルサーチ時には、マッチドフィルタ22を用いて候補となる周辺セルのロングコードの同定を行なう。相関器28-1~28-nにより接続中の基地局からの信号を受信し、安全にハンドオーバを実現する。

【特許請求の範囲】

【請求項1】 各セルに固有のロングコードと各通信 チャネルに対応したショートコードとからなる拡散符号 系列を用いるDS-CDMA基地局間非同期セルラ方式 における初期同期方法であって、

前記通信チャネルのうちの制御チャネルには各セルに共 通の特定のショートコードが割り当てられており、

(a) 初期セルサーチ時には、(a1) マッチドフィルタを用いて前記特定のショートコードと受信信号との相関を検出し、該相関出力の最大値に基づいて当該基地局からのロングコードのタイミングを検出し、(a2) 該検出されたロングコードタイミングに基づいて、並列に設けられた複数の相関器手段、または、該複数の相関器手段と前記マッチドフィルタの両者を用いて、当該システムにおいて使用されているロングコードの検出を並列に実行して、当該基地局のロングコードを特定し、

(b)周辺セルサーチ時には、(b1)前記マッチドフィルタを用いて前記特定のショートコードと受信信号との相関を検出し、該相関出力に基づいてハンドオーバ先の基地局のロングコードのタイミングを検出し、(b2)該検出されたロングコードのタイミングに基づいて、前記並列に設けられた複数の相関器手段により現在のセルの基地局との通信を行ないながら前記マッチドフィルタを用いて周辺セルに対応するロングコードとの相関を順次検出させ、前記マッチドフィルタを用いて現在のセルの基地局との通信を行ないながら前記複数の相関器手段を用いて周辺セルに対応するロングコードとの相関を順次検出させることにより、当該ハンドオーバ先基地局のロングコードを特定することを特徴とするDS-CDMA基地局間非同期セルラ方式における初期同期方法。

【請求項2】 各セルに固有のロングコードと各通信チャネルに対応したショートコードとからなる拡散符号系列を用いるDS-CDMA基地局間非同期セルラ方式であって、制御チャネルには各セルに共通の特定のショートコードが割り当てられているセルラ方式に使用される受信機であって、

受信信号と拡散符号系列との相関を検出するマッチドフィルタと、

前記受信信号と拡散符号系列との相関を検出する並列に 設けられた複数の相関器手段と、

前記マッチドフィルタからの相関出力の最大値を検出するロングコードタイミング検出部と、

前記マッチドフィルタからの相関出力が入力されるロン グコード同期判定部と、

前記複数の相関器手段からの相関出力が入力されるロン グコード同期判定手段と、

前記ロングコードタイミング検出部の出力が入力され、 前記複数の相関器手段の動作を制御する相関器制御部 と、 前記ロングコード同期判定部および前記ロングコード同期判定手段からの出力が入力され、前記マッチドフィルタおよび前記複数の相関器手段における相関動作に用いられる拡散符号系列を選択するための制御信号を出力する拡散符号制御部とを有することを特徴とするDS-CDMA基地局間非同期セルラ方式用受信機。

【請求項3】 前記複数個の相関器手段はさらに受信スペクトラム拡散信号の同期追跡を行なう遅延ロックループを有しており、

前記相関器制御部は前記マッチドフィルタからの相関出力のピーク位置に応じて前記複数個の相関器手段の動作を制御するように構成されており、

前記複数個の相関器手段の出力および前記マッチドフィルタの出力をRAKE合成してデータを判定するように 構成されていることを特徴とする前記請求項2に記載の DS-CDMA基地局間非同期セルラ方式用受信機。

【請求項4】 ロングコード同期確立後、前記マッチドフィルタおよび前記複数の相関器手段を用いてトラフィックチャネルの信号を受信し、マルチパスの信号をRAKE合成してデータを判定するように構成されていることを特徴とする前記請求項3に記載のDS-CDMA基地局間非同期セルラ方式用受信機。

【請求項5】 ロングコード同期確立後、前記マッチドフィルタと前記複数の相関器のうちの一部の相関器を用いて、現在のセルの基地局からのトラフィックチャネルの信号を受信し、それをRAKE合成し、残りの一部の相関器を用いて、周辺セルの基地局からの制御チャネルの信号を受信し、そのセルのロングコードを識別同し、その基地局からのトラフィックチャネルで送られてきた現在のセルの基地局から受信しているデータと同じデータの信号を受信して、両基地局あるいは複数個の基地局からの信号をレイク合成して判定するように構成されているものであることを特徴とする前記請求項3あるいは4に記載のDS-CDMA基地局間非同期セルラ方式用受信機。

【請求項6】 前記マッチドフィルタを用いて現在のセルの基地局との通信を行なう場合、前記マッチドフィルタの出力に含まれているマルチバスの信号をRAKE合成されるようになされ、また、前記マッチドフィルタにより現在のセルあるいは周辺セルに対応するロングコードの検出を実行する場合、ロングコードをショートコードの長さで分割し、シンボル毎に順次相関検出を行なうように構成されていることを特徴とする前記請求項3~5のいずれか1項に記載のDS-CDMA基地局間非同期セルラ方式用受信機。

【請求項7】 前記マッチドフィルタは、複数のサンプルホールド回路と、前記各サンプルホールド回路の出力を拡散符号系列の対応するビットの値に応じて第1あるいは第2の出力端子に出力する複数の乗算部と、前記各乗算部の第1の出力端子の出力を加算する第1のアナ

ログ加算回路と、前記各乗算部の第2の出力端子の出力 を加算する第2のアナログ加算回路と、前記第1のアナログ加算回路の出力と前記第2のアナログ加算回路の出力と前記第2のアナログ加算回路とを有するものであることを特徴とする前記請求項2~6のいずれか1項に記載のDS-CDMA基地局間非同期セルラ方式用受信機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、DS-CDMA (Direct Sequence - Code Devision Mutiple Access) 基地局間非同期セルラ方式における初期同期方法および そのための受信機に関する。

[0002]

【従来の技術】近年の陸上移動通信の発展に伴い、チャネル容量を大幅に増加することが可能な直接拡散(DS)型のスペクトラム拡散(SS)を用いた符号分割多元接続(CDMA)方式を用いたCDMAセルラ方式が注目されている。一般に、CDMA方式においては他局との相互干渉があるため、他の多元接続方式(FDMA、TDMA)に比べて周波数利用効率が劣化する。しかし、セルラ方式においては、空間的な周波数再利用効率(同一周波数のセル繰り返し率)が総合的な周波数利用効率に寄与するため、干渉に強くセル繰り返し率の高いCDMA方式も有力な方式となる。

【0003】一般にセルラシステムにおいては、移動機が接続するセルを最初に捕捉する初期セルサーチと、ハンドオーバ時に周辺のセルをサーチする周辺セルサーチの2種類のセルサーチが必要となる。特にDS-CDMAセルラシステムにおいては、各セルが同一の周波数を用いているため、セルサーチと同時に受信信号の拡散符号と受信機において生成する拡散符号レブリカとのタイミング誤差を1/2チップ周期以内に捕捉する初期同期を行なうことが必要である。

【0004】このようなDS-CDMAセルラシステムは、全基地局間の時間同期を厳密に行なう基地局間同期システムと、これを行なわない基地局間非同期システムとの2つの方式に分類される。基地局間同期システムは、GPSなどの他のシステムを利用して基地局間同期を実現するもので、各基地局では同一のロングコードを各基地局毎に異なる遅延を与えて使用するため、初期セルサーチはロングコードのタイミング同期を行なうのみでよい。また、ハンドオーバ時の周辺セルサーチは、移動機にはそれが属する基地局から周辺基地局のコード遅延情報を通知されるため、より高速に行なうことができる。

【0005】これに対し、基地局間非同期システムでは、基地局を識別するために各基地局で用いる拡散符号を変えているため、移動機は、初期セルサーチにおいて拡散符号を同定することが必要となる。また、ハンドオ

ーパ時の周辺セルサーチでは、それが属する基地局から 周辺基地局で使用している拡散符号の情報を得ることに より、同定する拡散符号の数を限定することが可能とな る。しかし、いずれの場合でも、前記基地局間同期シス テムの場合と比較するとサーチ時間が大きくなり、拡散 符号にロングコードを使用する場合にはセルサーチに要 する時間は膨大なものとなる。しかしながら、この基地 局間非同期システムは、GPS等の他のシステムを必要 としないというメリットがある。

【0006】このような基地局間非同期システムの問題を解決し、初期同期を高速に行なうことができるセルサーチ方式が提案されている(樋口健一、佐和橋衛、安達文幸、「DS-CDMA基地局間非同期セルラ方式におけるロングコードの2段階高速初期同期法」信学技報、CS-96,RCS96-12(1996-05))。この提案されている初期同期法は、最初に各セル共通のショートコードをマッチドフィルタを用いて逆拡散してロングコードのタイミングを検出し、次に、マッチドフィルタあるいはスライディング相関器を用いて各セル特有のロングコード特定を行なうものである。

【0007】以下、この提案されている初期同期法について説明する。図8にセル構成を示す。この図に示すように、各セル内にはそれぞれ基地局BS1、BS2、・・・BSNが設けられており、各基地局はそれぞれ異なるロングコードlong code #1、long code #2、・・・、long code #Nと各チャネルを識別するためのショートコードshort code #0~short code #M とを用いて2重に拡散したシンボルを用いて移動機100と伝送を行なう。ここで、前記ショートコードshort code #0 short code #M は各セルにおいて共通であり、また、各セルとも制御チャネルにはショートコードshort code #0 が割り当てられている。

【0008】図9を用いて、上記提案されている2段階 高速初期同期法について詳細に説明する。この図におい て(1)は移動機における受信信号の例を示しており、 この図には基地局BS_i、BS_{i+1}、BS_{i+2} からそれ ぞれ送信された制御チャネルの受信信号が示されてい る。図示するように、各制御チャネルは、1ロングコー ド周期で、各基地局共通に制御チャネルに割り当てられ ているショートコードshort code #0 のみで拡散された シンボル (図中斜線部分) を有している。これは、一定 周期でロングコード拡散を行なわないようにすることに より実現されている。また、その他のシンボル位置は各 基地局毎に異なるロングコードlong code#iと前記ショ ートコードshort code #0 により2重に拡散されてい る。これにより、万が一、セル間のロングコードのタイ ミングが同期して移動機で受信された場合でも、当該制 御コードの復調が可能となる。このように、BS₁~B Siiなどの各基地局から送信された制御チャネルは非 同期に多重化されて移動機に受信される。

【0009】移動機においては次に示す2段階の構成で セルサーチを行なう。図9の(2)はその第1段階にお ける動作を説明するもので、移動機では、マッチドフィ ルタを用いて、受信信号と制御チャネルのショートコー ドレプリカshort code #0 との相関を検出する。前述し たように、受信信号中の各制御チャネルはロングコード の周期で各基地局共通のショートコードshort code #0 で拡散されたシンボル (図中の斜線の部分) を有してい る。このため、1ロングコード周期の期間前記ショート コードシンボルレプリカを用いて相関の検出を行なう と、図9の(2)に示すように、各制御チャネルにおけ るショートコード#0拡散シンボルの受信タイミングに対 応する位置にそれぞれ相関のビークが検出される。移動 機では、そのうちの最大の相関ピークを検出したタイミ ングを接続希望基地局の制御チャネルのロングコード同 期タイミングであると決定する。

【0010】次に、移動機では、前記基地局を識別する ために、前記ロングコード同期タイミングを検出した制 御チャネルを拡散しているロングコードの同定を、1個 のスライディング相関器を用いて行なう。このために、 初期セルサーチにおいては、システムで定められている ロングコード群long code #1~long code #Nのなかから 順次ロングコードlong code #iを選択し、該選択したロ ングコードlong code#i+ショートコードshort code #0 のレプリカ符号を生成して、前記第1段階で得られた 同期タイミングに対して相関検出を行なう。また、ハン ドオーバ時の周辺セルサーチにおいては、現在接続して いる基地局から通知された周辺セルのロングコード群か ら、同様に順次ロングコードlong code #i+ショートコ ードshort code #0 のレプリカ符号を生成し、前記同期 タイミングに対して相関検出を行なう。このようにし て、相関検出値が閾値を超えるまでロングコードlong c ode#iを変えて相関検出を行ない、閾値を超えたロング コードlong code #kを受信制御チャネルのロングコード であると判定してセルサーチを終了する。これにより、 当該基地局を識別することができる。

【0011】以上のように、ロングコードのタイミング 同期とロングコードの同定とを分離することによりセルサーチを高速に行なうことができる。通常の基地局間非 同期セルラシステムにおいてはセルサーチを行なうのに (拡散符号の数×拡散符号の位相数) 回程度の相関検出を行なうことが必要であるのに対し、この提案されている方法によれば、(拡散符号の数+拡散符号の位相数) 回程度の相関検出で済むこととなる。

[0012]

【発明が解決しようとする課題】以上説明したように、この提案されている2段階高速初期同期法によれば、セルサーチを高速に実行することができるが、より高速に初期同期をとることが望まれている。

【0013】そこで、本発明は、基地局間非同期CDM

A通信システムにおいて、より高速にセルサーチを行うことのできるDS-CDMA基地局間非同期セルラ方式における初期同期方法および受信機を提供することを目的としている。また、マルチパスフェージングが発生する環境においても、良好な受信品質で信号を受信することができるDS-CDMA基地局間非同期セルラ方式用受信機を提供することを目的としている。

[0014]

【課題を解決するための手段】上記目的を達成するため に、本発明の、各セルに固有のロングコードと各通信チ ャネルに対応したショートコードとからなる拡散符号系 列を用いるDS-СDMA基地局間非同期セルラ方式に おける初期同期方法は、前記通信チャネルのうちの制御 チャネルには各セルに共通の特定のショートコードが割 り当てられており、初期セルサーチ時には、マッチドフ ィルタを用いて前記特定のショートコードと受信信号と の相関を検出し、該相関出力の最大値に基づいて当該基 地局からのロングコードのタイミングを検出し、該検出 されたロングコードタイミングに基づいて、並列に設け られた複数の相関器手段、または、該複数の相関器手段 と前記マッチドフィルタの両者を用いて、当該システム において使用されているロングコードの検出を並列に実 行して、当該基地局のロングコードを特定し、周辺セル サーチ時には、前記マッチドフィルタを用いて前記特定 のショートコードと受信信号との相関を検出し、該相関 出力に基づいてハンドオーバ先の基地局のロングコード のタイミングを検出し、該検出されたロングコードのタ イミングに基づいて、前記並列に設けられた複数の相関 器手段により現在のセルの基地局との通信を行ないなが ら前記マッチドフィルタを用いて周辺セルに対応するロ ングコードとの相関を順次検出させ、または、前記マッ チドフィルタを用いて現在のセルの基地局との通信を行 ないながら前記複数の相関器手段を用いて周辺セルに対 応するロングコードとの相関を順次検出させることによ り、当該ハンドオーバ先基地局のロングコードを特定す るようにしたものである。

【0015】また、本発明のDS-CDMA基地局間非同期セルラ方式用受信機は、各セルに固有のロングコードと各通信チャネルに対応したショートコードとからなる拡散符号系列を用いるDS-CDMA基地局間非セルラ方式であって、制御チャネルには各セルに共通の特定のショートコードが割り当てられているセルラ方式に使用される受信機であって、受信信号と拡散符号系列との相関を検出する並列に設けられた複数の相関器手段と、前記マッチドフィルタからの相関出力が入力されるロングコード同期判定手段と、の相関出力が入力されるロングコード同期判定手段と、の相関出力が入力されるロングコード同期判定手段と、の相関出力が入力されるロングコード同期判定手段と、の相関出力が入力されるロングコード同期判定手段と、の相関出力が入力されるロングコード同期判定手段と、

前記ロングコードタイミング検出部の出力が入力され、前記複数の相関器手段の動作を制御する相関器制御部と、前記ロングコード同期判定部および前記ロングコード同期判定手段からの出力が入力され、前記マッチドフィルタおよび前記複数の相関器手段における相関動作に用いられる拡散符号系列を選択するための制御信号を出力する拡散符号制御部とを有するものである。

【0016】また、前記複数個の相関器手段はさらに受信スペクトラム拡散信号の同期追跡を行なう遅延ロックループを有しており、前記相関器制御部は前記マッチドフィルタからの相関出力のピーク位置に応じて前記複数個の相関器手段の動作を制御するように構成されており、前記複数個の相関器手段の出力はRAKE合成されるように構成されているものである。さらにまた、ロングコード同期確立後、前記マッチドフィルタおよび前記複数の相関器手段を用いてトラフィックチャネルの信号を受信し、マルチバスの信号をRAKE合成してデータを判定するように構成されているものである。

【0017】さらにまた、ロングコード同期確立後、前 記マッチドフィルタと前記複数の相関器のうちの一部の 相関器を用いて、現在のセルの基地局からのトラフィッ クチャネルの信号を受信し、それをRAKE合成し、残 りの一部の相関器を用いて、周辺セルの基地局からの制 御チャネルの信号を受信し、そのセルのロングコードを 識別同期し、その基地局からのトラフィックチャネルで 送られてきた現在のセルの基地局から受信しているデー タと同じデータの信号を受信して、両基地局あるいは複 数個の基地局からの信号をレイク合成して判定するよう に構成されているものである。さらにまた、前記マッチ ドフィルタを用いて現在のセルの基地局との通信を行な う場合、前記マッチドフィルタの出力に含まれているマ ルチパスの信号をRAKE合成されるようになされ、前 記マッチドフィルタにより現在のセルあるいは周辺セル に対応するロングコードの検出を実行する場合、ロング コードをショートコードの長さで分割し、シンボル毎に 順次相関検出を行なうように構成されているものであ

【0018】さらにまた、、前記マッチドフィルタは、 複数のサンプルホールド回路と、前記各サンプルホール ド回路の出力を拡散符号系列の対応するビットの値に応 じて第1あるいは第2の出力端子に出力する複数の乗算 部と、前記各乗算部の第1の出力端子の出力を加算する 第1のアナログ加算回路と、前記各乗算部の第2の出力 端子の出力を加算する第2のアナログ加算回路と、前記 第1のアナログ加算回路の出力と前記第2のアナログ加 算回路の出力との減算を行う第3のアナログ加算回路と を有するものである。

【0019】ロングコードのタイミング検出をマッチドフィルタを用いて実行し、ロングコードの特定を複数個の相関器手段を用いて並列に実行するために初期セルサ /

・・・チを非常に高速に行うことができる。また、周辺セルサーチ時には、マッチドフィルタを用いて周辺セルサーチを実行させ、前記複数個の相関器手段では当該基地局との通信を行っているために、ハンドオーバを実現することができる。そして、通信時に前記複数の相関器手段はマルチバスの受信に使用されており、初期セルサーチ時、ハンドオーバ時および通話時に共通なデバイスが使用されるため、高効率化および小型化を実現することができる。さらに、相関器手段を複数個設けてRAKE受信方式で受信することにより、マルチバスフェージングのある環境においても良好な受信を行なうことができる。さらにまた、サンブルホールド回路、乗算器およびアナログ加算器により構成されたマッチドフィルタを使用する場合には、消費電力を低減することができる。【0020】

【発明の実施の形態】図1は、本発明のDS-CDMA基地局間非同期セルラ方式用受信機の一実施の形態の構成を示すブロック図である。この実施の形態においては、図示しない基地局送信機から拡散変調された送信信号がPSK変調され、拡散符号系列によって、I、QチャネルそれぞれBPSK(Binary PSK)変調されているものとして説明する。なお、データ変調と拡散符号系列がともにQPSK(Quadrature PSK)変調あるいはBPSK変調の場合でも、基本的に似たような構成で実現することができる。

【0021】図1において、11は図示しない基地局か らのスペクトラム拡散された送信信号を受信する受信ア ンテナ、12は該受信アンテナ11から入力されるスペ クトラム拡散信号を中間周波信号に変換する高周波受信 部、13は該高周波受信部12からの中間周波出力を2 つに分割する分配器である。14は中間周波数の信号. (cosω, t)を発生する発振器、15は該発振器1 4からの発振信号の位相をπ/2だけ移相する位相シフ ト回路、16は前記分配器13の出力と前記発振器14 の出力とを乗算する乗算器、17は前記分配器13の出 力と前記位相シフト回路15の出力(sinω、t)と を乗算する乗算器である。18は前記乗算器16からの **乗算結果が入力されるローパスフィルタ(LPF)であ** り、該LPF18から同相成分のベースバンド信号Ri が出力される。また、19は前記乗算器17からの乗算 結果信号が入力されるローパスフィルタ (LPF) であ り、該LPF19より直交成分のベースバンド信号RQ が出力される。

【0022】22は同相成分用のマッチドフィルタと直交成分用のマッチドフィルタの2つのマッチドフィルタが設けられている複素型マッチドフィルタであり、前記 LPF18および19の出力が入力されている。21は 拡散符号生成器であり、この拡散符号生成器21において発生された拡散符号は前記複素型マッチドフィルタ22に入力され、前記同相成分のベースパンド信号Riお

よび直交成分のベースバンド信号R q との相関がとられる。なお、前記複素型マッチドフィルタ 2 2 に用いられている各マッチドフィルタとしては、CCD (Charge C oupled DeviceやS AW (Surface Acoustic Wave)フィルタを用いたもの、あるいは、デジタル I C回路によるものなどを使用することができる。また、後述するようなアナログ演算回路により構成された低消費電力のマッチドフィルタを使用することができる。

【0023】また、20は前記複素型マッチドフィルタ22に対する電源電圧の供給を制御する電源制御回路である。この電源制御回路20により、前記複素型マッチドフィルタ22は、待ち受け時に所定の時間間隔をもって相関値のピークを検出することが可能な時間だけ駆動されるようになされている。これにより、本発明の受信機においては、同期捕捉のために消費電力の大きいマッチドフィルタを使用しているが、その動作は間欠的に行なわれているために全体としての消費電力を少なく抑えることが可能となる。

【0024】23は前記複素型マッチドフィルタ22か ら出力される相関出力の大きさを検出する電力計算部、 24は該電力計算部23の出力から受信波の各パスの伝 搬遅延時間を検出するバス検出部であり、この実施の形 態においては、最大n個までのパスを検出することがで きるようになされている。また、25は前記電力計算部 23の出力が入力され、最大の相関ピークの位置を検出 するロングコードタイミング検出部、32は前記電力計 算部23から出力される相関ピークが所定の閾値を超え たか否かを判定するロングコード同期判定部である。さ らに、26は前記パス検出部24および前記ロングコー ドタイミング検出部25の出力のうちのいずれか一方を 選択して相関器制御部27に出力する選択回路である。 【0025】27は相関器制御部であり、前記選択回路 26から入力される前記パス検出部24あるいは前記ロ ングコードタイミング検出部25からの出力に基づい て、相関器 2 8 - 1 ~ 2 8 - n の うちの 所定 の数 の 相関

ングコードタイミング検出部25からの出力に基づいて、相関器28-1~28-nのうちの所定の数の相関器に対してベースバンド信号RiおよびRqと電源電圧を供給してその動作を開始させるとともに、各相関器内にそれぞれ設けられている拡散符号生成器により生成される拡散符号系列の種類およびその位相を制御するように動作する。

【0026】ロングコード同期捕捉時、前記選択回路26において前記ロングコードタイミング検出部25からの出力が選択され、該ロングコードタイミングに応じて、相関器28-1~28-nにおいて各セルのロングコードに対応する拡散符号系列がセットされる。これにより、前記相関器28-1~28-nは前記ロングコードタイミングに対応して入力信号を逆拡散することとなる。

【0027】並列に設けられたn個の相関器28-1~28-nには、それぞれ前記LPF18および19から

の出力信号RiおよびRqが入力されており、これら相関器 $28-1\sim28-n$ においてそれぞれ逆拡散が行なわれる。なお、各相関器 $28-1\sim28-n$ の詳細な構成については後述することとする。各相関器 $28-1\sim28-n$ からそれぞれ出力される I 成分および Q 成分の復調データは R AK E 合成および復調部 30 に入力されるとともに、電力計算部 $29-1\sim29-n$ に印加される。各電力計算部 $29-1\sim29-n$ において各バスに対応する受信電力がそれぞれ計算され、該計算結果はロングコード同期判定手段 31 にそれぞれ入力されるともに、前記電源制御部 20 に入力される。

【0028】また、ロングコード同期が確定しトラフィックデータ信号を受信する時には、前記選択回路26において前記パス検出部24の出力が選択され、前記パス検出部24において最大n個まで検出された各パスの遅延情報に応じて相関器 $28-1\sim28-n$ における逆拡散に用いられる拡散符号系列の位相が制御されて、各相関器 $28-1\sim28-n$ はそれぞれ対応するパスの受信信号を並列に逆拡散することとなる。

【0029】前記各相関器28-1~28-nからの各パスに対応する逆拡散後のデータはRAKE合成および復調部30において複素型マッチドフィルタ22からの出力に基づいて決定された重み係数を用いて合成され、シリアルデータに復調されて出力される。

【0030】また、前記ロングコード同期判定手段31においては、前記電力計算部29-1~29-nからの相関出力が所定の閾値を超えているか否かが判定され、該判定結果は拡散符号制御部33に入力される。この拡散符号制御部33には前記ロングコード同期判定部32からの出力も入力されており、これら各ロングコード同期判定手段(部)からの出力に基づいてロングコードを特定し、それに応じて前記拡散符号生成器21および各相関器28-1~28-n内の拡散符号生成器で生成する拡散符号系列を指定するための制御信号を各拡散符号生成器に出力する。

【0031】図2は、前記相関器 $28-1\sim28-n$ の構成の一例を示すブロック図である。前記各相関器 $28-1\sim28-n$ はいずれもこの図2に示す構成を有している。この図に示すように、各相関器は、入力信号RiおよびRqの供給を制御するためのスイッチ34iおよび34q、逆拡散部40およびDLL(Delay LockedLop) 部50を有している。ここで、前記スイッチ34i および34qは前記相関器制御部27の出力により導通制御される。

【0032】DLL部50において、61は拡散符号生成器であり、前記相関器制御部27により指定される位相を有し、前記拡散符号制御部33から印加される制御信号に対応した拡散符号系列を生成する。この拡散符号生成器61から出力される拡散符号系列はE-Codeとして、後述する乗算器51iおよび51qに印加される。

62は前記拡散符号生成器61により生成された拡散符号系列B-Codeを1/2チップ周期(Tc/2)だけ遅延する遅延回路であり、この遅延回路62から出力される拡散符号系列はP-Codeとして後述する乗算器41iおよび41qに逆拡散のために印加される。63は前記遅延回路62と同様に拡散符号系列を1/2チップ周期(Tc/2)だけ遅延させる遅延回路であり、この遅延回路63から出力される拡散符号系列はL-Codeとして後述する乗算器55iおよび55qに印加される。

【0033】このようにして、前記拡散符号生成器 6 1、遅延回路 62 および 63 から、それぞれ、P-Codeに 対してTc/2だけ位相の進んだE-Code (Early Code)、正しい位相のP-Code (Punctual Code) およびTc/2だけ位相の遅れたL-Code (Late Code) の3通りの拡散符号系列が出力される。

【0034】逆拡散部40において、41iおよび41 qは前記正しい位相の拡散符号系列P-Codeと前記スイッチ34iおよび34qを介して入力される受信信号Ri およびRqとの乗算を行なう乗算器、42iおよび42 qは該乗算器41iおよび41qからそれぞれ出力される乗算結果信号をショートコードの1周期分加算する累算器である。これら乗算器41iおよび41q、累算器42iおよび42qにより、受信信号の逆拡散が行なわれ、送信されたデータが復調される。

【0035】また、51iおよび51qは前記Tc/2だけ位相の進んだ拡散符号系列E-Codeと前記受信信号RiおよびRqを乗算する乗算器、52iおよび52qは前記各乗算器51iおよび51qからの出力をショートコードの1周期分だけ累算する累算器であり、これら乗算器51i、51q、累算器52iおよび52qにより受信信号RiおよびRqと前記拡散符号系列E-Codeとの相関値が算出される。前記各累算器52i、52qからの相関出力は、それぞれ、包絡線検波回路53i、53qに入力され、前記各相関出力における変調の影響が取り除かれて、加算器54において加算される。

【0036】さらにまた、前記Tc/2だけ位相の遅れた拡散符号系列L-Codeと前記受信信号RiおよびRqは乗算器55iおよび55qにおいてそれぞれ乗算され、各乗算結果はそれぞれ累算器56i、56qにおいてショートコードの1周期分だけ累算される。これにより、前記受信信号RiおよびRqと前記拡散符号系列L-Codeとの相関が算出される。前記累算器56iおよび56qの出力は包絡線検波回路57iおよび57qを介して変調の影響が取り除かれて、加算回路58において加算される。

【0037】そして、加算回路59において、前記加算回路54の出力から前記加算回路58の出力が減算され、その出力はローパスフィルタ60を介して前記拡散符号生成器61に入力され、拡散符号生成器61により発生される拡散符号の位相が制御されるようになされて

いる。

【0038】これにより、実際の信号がP-Codeより位相 が進んだ時には減算器59の出力はプラスの信号にな り、位相が遅れた時には減算器59の出力はマイナスの 信号になる。位相が完全に同期したときには、減算器5 9の出力はゼロである。したがって、この減算器59の 出力を拡散符号生成器61にフィードバックして、この 減算器59の出力が正のときには拡散符号生成器61で 発生される拡散符号系列の位相を遅らせる方向に制御 し、出力が負のときには拡散符号系列の位相を進ませる 方向に制御することにより、出力が0となるように系を 安定に制御することができ、実際の逆拡散に使用される P-codeを受信信号に対して同期した状態にトラッキング することができる。なお、このトラッキングループの制 御部 (図2中に一点鎖線で示したDLL制御部50-S) は、後述するロングコード同期の場合には動作しな いようになされている。

【0039】このように図2の回路により同期追跡を行なうためには、この回路によるトラッキングが開始されるまでに受信信号の拡散系列と受信機内の拡散系列との間の位相差が $\pm T$ c / 2 以内に収まっていることが必要である。本発明においては、前述した複素型マッチドフィルタ22によりこの精度で同期捕捉を行なっている。なお、この実施の形態においては、E-CodeとL-Codeとの位相差をT c L

【0040】このように構成されたCDMA受信機において実行される本発明の初期同期方法について、図3のフローチャートおよび図4のタイミングチャートを参照して説明する。図3の(a)は初期セルサーチを行うときの動作を示すフローチャート、同図(b)は周辺セルサーチ時の動作フローチャートである。また、図4の

(1) は受信アンテナ11に受信されるスペクトラム拡散信号の一例を示しており、この図には制御チャネルの受信信号のみが示されている。さらに、同図(2)はロングコードのタイミングを検出する動作を説明するための図であり、同図(3)はロングコードを特定する動作を説明するための図である。

【0041】(初期セルサーチ)初期セルサーチが開始されると、図3(a)におけるステップS11に示すように、拡散符号制御部33は拡散符号生成器21に対し制御チャネルのショートコードshort code #0を発生させ、複素型マッチドフィルタ22において受信スペクトラム拡散信号との相関をとり、その出力に基づいてロングコードタイミング検出部25においてロングコードのタイミングが検出される。

【0042】すなわち、図4の(1)に示すように、各

基地局 $BS_i \sim BS_{in}$ からはそれぞれ、前記図9に関して説明した場合と同様に、ロングコード周期で所定期間 (例えば1シンボル期間) だけ制御チャネルに予め割り当てられたショートコードshort code #0 で拡散され、その他の期間はそれぞれの基地局に固有のロングコードlong code #i + ショートコードshort code#0で拡散された信号が制御チャネルとして送信されており、前記受信アンテナ11にはこれらの信号の合成された信号が受信されている。

【0043】前記拡散符号生成器21からは、前記拡散 符号制御部33からの指示によりショートコードshort code #0 が生成され、前記複素型マッチドフィルタ 2 2 において、1ロングコード周期の期間、前記ショートコ ードshort code #0 と前記受信信号との相関がとられ る。この相関出力は前記電力計算部23を介して前記ロ ングコードタイミング検出部25に入力される。この電 力計算部23の出力は、例えば図4の(2)に示すよう に、各基地局からの制御チャネル信号のショートコード short code #0 のみで拡散されている期間にピークを有 する波形となり、このうちの最大の電力を有するピーク の位置がこの移動機が属しているセルの基地局のロング コードタイミングであると判定される。この例において は、図示するように、基地局BSi+2からの受信信号 のレベルが最も高く、その受信信号の相関ピークが最大 となっている。したがって、前記ロングコードタイミン グ検出部25は、このタイミングをロングコードタイミ ングTとして検出する。

【0044】次にステップS12に進み、n個の相関器 $28-1\sim28-n$ に電源電圧とベースバンド信号RiおよびRqを供給し、それらを並列に用いて受信信号と longcode $\#1\sim10$ ng code $\#N\sim1\sim10$ 和との相関をとり、ロングコード検出手段31の出力が最大となるロングコードlong code $\#N\sim1\sim1\sim10$ 表示により、この移動機が属しているセルの基地局のロングコードがlong code $\#N\sim1\sim1\sim10$ を $\#N\sim1\sim1\sim10$ に $\#N\sim1\sim1\sim1\sim10$ に $\#N\sim1\sim1\sim1\sim10$ に $\#N\sim1\sim1\sim1\sim10$ に $\#N\sim1\sim1\sim1\sim10$ に $\#N\sim1\sim1\sim1\sim10$ に $\#N\sim1\sim1\sim1\sim10$ に $\#N\sim1\sim1\sim10$ に $\#N\sim1\sim10$ に $\#N\sim10$ に $MN\sim10$ に $MN\sim10$

【0045】すなわち、図4の(3)に示すように、拡散符号制御部33はn個の相関器28-1~28-nにそれぞれ設けられている拡散符号生成器61に対し、このシステムにおいて使用されているロングコード(long code #1~long code #N) + short code #0 をそれぞれ割り当てて生成させる。また、前記ロングコードタイミング検出部25の出力は選択回路26を介して相関器225つに印加され、該相関器制御部27は各相関器28-1~28-n内に各々設けられている前記拡散符号生成器61に対し、該検出されたロングコードタイミングTに同期して拡散符号を生成するように制御する。このようにして、相関器28-1~28-nを用いて受信スペクトラム拡散信号とシステムにおいて予定されてなコングコードとの相関処理が並行して行われる。なお、このロングコードを特定する処理を実行するときに

は、前記DLL制御部50-Sは非動作状態とされている。

【0046】各相関器28-1~28-nからの相関出 カ(I成分とQ成分)はそれぞれ電力計算部29-1~ 29-nに入力され、ここでその絶対値が算出され、該 絶対値出力はそれぞれロングコード同期判定手段31に 入力される。図4の(3)は、電力計算部29-1~2 9-nの出力の一例を示しており、この図には電力計算 部29-kの出力に相関のピークがある例が記載されて いる。ロングコード同期判定手段31は、各入力が閾値 を超えるピークを有するものであるか否かを判定し、そ の判定結果および閾値を超えたビーク値自体を前記拡散 符号制御部33に出力する。これにより、拡散符号制御 部33において、閾値を超えたピーク値が複数ある場合 には最大の相関を得ることができたロングコードが決定 され、この移動機が属するセルのロングコードを特定す ることができる。図示した例においては、long code #k が特定される。

【0049】(受信処理)以上により、初期セルサーチが終了し、前記ステップS12において特定したロングコードlong code #kを用いて通常の受信処理が行われることとなる。すなわち、ステップS13において、前記拡散符号制御部33は、前記拡散符号生成器21を前記特定したロングコードlong code #kと通信のために割り当てられたショートコードshort code #j とからなる拡散符号系列long code #k+short code #j を発生するように制御し、複素型マッチドフィルタ22において受信スペクトラム拡散信号との相関をとる。

【0050】理想的には、受信信号と拡散符号系列の相関出力には1つのピークだけが現われるはずであるが、実際には、送信側から送信された信号は、直接アンテナに到達するもの(直接波)以外にも建物や地面等により反射されて到達するもの(反射波)があり、多数の伝搬経路(マルチパス)を通った信号が受信アンテナ11に到達することとなる。これらの受信信号はそれぞれの伝

搬経路に応じた伝搬遅延時間をもって受信されることとなるため、複数の相関ピークが現われることとなる。このような複数の経路を伝搬してきた信号が受信される場合には、受信信号同士が干渉していわゆるマルチパスフェージングが発生することとなるため、この実施の形態においては、並列に設けたn個の相関器(逆拡散部)28-1~28-nにおいて各パスの信号の逆拡散を行ない、この各逆拡散部からの出力をRAKE合成することによりパスダイバーシティ受信を行なうようにしている

【0051】前記複素型マッチドフィルタ22から出力される相関出力は、電力計算部23に入力され、ここでその相関出力の大きさが検出される。この電力計算の結果、所定値よりも大きい相関ピーク出力が検出されたときには、この受信機で受信すべきスペクトラム拡散変調信号が受信されたとしてバス検出部24に出力信号が出力される。バス検出部24は前記電力計算部23から出力される相関出力から受信波のバスおよび各バスの伝搬遅延時間に対応する位相オフセットを検出する。

【0052】前記パス検出部24からの出力は相関器制御部27に入力され、相関器制御部27は、相関器28 $-1\sim28-n$ のうちの前記検出されたパスの数と位相オフセットに対応する数の相関器に対してベースパンド信号RiおよびRqと電源電圧を供給してその動作を開始させるとともに、該各相関器内にそれぞれ設けられている拡散符号生成器により生成される拡散符号系列の位相を対応するパスの位相オフセットに応じて制御する。また、前記拡散符号制御部33は前記相関器28 $-1\sim28-n$ のうちの前記検出されたパスの数と位相オフセットに対応する相関器内の拡散符号生成器に対してlong code # + short code # j を発生するように制御する。これにより、各相関器2 $8-1\sim28-n$ は、それぞれ対応するパスの受信信号を並列に逆拡散することとなる。

【0053】各相関器 $28-1\sim 28-n$ からそれぞれ出力される I 成分および Q 成分の復調データは R A K E 合成および Q 調部 30 に入力されるとともに、電力計算部 $29-1\sim 29-n$ に印加される。電力計算部 $29-1\sim 29-n$ に印加される。電力計算部 $29-1\sim 29-n$ において各パスに対応する受信電力が計算され、前記電源制御部 20 に入力される。前記各相関器 $28-1\sim 28-n$ からの各パスに対応する逆拡散後のデータは R A K E 合成および 復調部 30 において所定の係数を乗算されて R A K E 合成され、シリアルデータに復調されて出力されることとなる。

【0054】なお、上記においては、複数の相関器28 $-1\sim28-n$ を用いて当該基地局からのトラフィックチャネルの信号の受信を行なっているが、前記マッチドフィルタ22も前記相関器28 $-1\sim28-n$ とともにこの信号の受信に使用することができる。このときは、前記マッチドフィルタ22の出力は前記RAKE合成お

よび復調部30に入力され、該出力に含まれているマルチパスの信号はそれぞれ所定の所定の遅延を受けた後、所定の係数を乗算され、前記相関器28-1~28-nからの他のパスに対応する出力とともにRAKE合成される。

【0055】(周辺セルサーチ)通話状態にある移動機 100が隣接する他のセルに移動する場合には、当該他のセルの基地局の通信チャネルに切り換えて通話を継続させること (ハンドオーバ)が必要となる。このためには、周辺にあるセルの基地局からの信号を受信し、最も信号強度の大きい基地局をサーチすることが必要となる。この周辺サーチについて、図3の(b)を参照して説明する。

【0056】まず、ステップS21において、前記複案型マッチドフィルタ22を使用して、各セル共通に制御チャネルとして使用されているshort code #0を用いて、受信信号との相関を検出する。これにより、前記電力計算部23から、図4の(2)に示す各基地局からの制御信号の強度に応じた相関出力が検出される。この出力により、前述の場合と同様に、ロングコードタイミング検出部25から、現在通信中の基地局を除いた最大の信号強度となる基地局のロングコードのタイミングを得ることができる。

【0057】次に、ステップS22において、前記、現 在通信中の基地局を除いた最大の信号強度となった基地 局を特定するために、ロングコードの特定を行なう。前 述のように、相関器28-1~28-nはチャネルが接 続されている基地局との通話に使用されているため、こ のステップS22の処理は、マッチドフィルタ22を用 いて行なわれることとなる。すなわち、現在属している セルに隣接するセルに関する情報は予め通話中の基地局 から与えられているため、拡散符号発生部21におい て、候補となるセルのロングコードを順次発生させ、そ の相関出力が最大となるロングコードをロングコード同 期判定部32において検出し、ハンドオーバ先のロング コードであると決定する。ここでは、このロングコード をlong code 押とする。なお、この処理は、並列に実行 される前述した初期セルサーチの場合とは異なり、ロン ・グコードを順次切り換えながら実行されるのであるが、 前述したようにマッチドフィルタ22は相関出力を高速 に出力することができるものであり、また、この周辺セ ルサーチにおいては、予め候補となるロングコードが分 かっているため、高速にこの周辺セルサーチを実行する ことができる。

【0058】また、上述においては、前記マッチドフィルタ22を用いて当該ロングコードの同定を行なっているが、これとは逆に、前述した初期セルサーチ時と同様に、前記複数の相関器28-1~28-nを並列に用いてロングコードの同定を行ない、前記マッチドフィルタを用いて現在接続されている基地局からのトラフィック

チャネル信号の受信を行なうようにしてもよい。なお、このときには前記マッチドフィルタ22の出力が前記RAKE合成および復調部30に供給され、トラフィックチャネルのRAKE受信が行なわれることとなる。

【0059】さらに、前述した通常受信時のバスの数が前記複数の相関器の数nよりも少ない場合には、前記複数の相関器のうちの現在属しているセルとの通信に用いられていない相関器を周辺セルサーチに使用することができる。この場合には、前記マッチドフィルタ22とこれらの相関器との両者を用いて隣接したセルのロングコードの同定を行うことができる。

【0060】このようにしてハンドオーバ先の基地局が ステップS22において特定された後、図示しない制御 局等の制御により、前記ステップS22でハンドオーバ 先と特定された基地局は通話チャネルを使用して、当該 移動機に対して現在接続されている基地局と同一の通話 信号を送出する。移動機は、ステップS23において、 このハンドオーバ先の基地局からの信号を前記マッチド フィルタ22を使用して受信する。すなわち、前記拡散 符号発生部21において前記特定したハンドオーバ先の セルのロングコードlong code 畑と当該通信チャネルの ショートコードshort code #j を発生させて、当該基地 局からの信号を受信する。すなわち、前から接続されて いた基地局からの信号を前記相関器28-1~28-n を用いて受信し、それと並行してハンドオーバ先の基地 局からの信号を前記マッチドフィルタ22を用いて受信 している。このとき、このマッチドフィルタ22の出力 も、前記RAKE合成および復調部30に入力されてい るため、このRAKE合成および復調部30において、 前記複数の相関器28-1~28-nからの出力と、前 記マッチドフィルタ22からの出力とをRAKE合成す ることができる。すなわち、同時に複数の基地局から受 信した信号をRAKE合成して受信することができる。 なお、このとき、前記電力計算部23の出力に基づいて 最大nパス検出部24からこのハンドオーバ先セルの基 地局からの信号のパスと対応する位相オフセットが検出 される。

【0061】次に、ステップS24に進み、前記相関器28-1~28-nにハンドオーバ先の通信チャネルに対応する拡散符号long code #u+short code #jをセットし、前記最大nバス検出部24により検出されたバスに対応するタイミングで各相関器を動作させて、前記ステップS14と同様に、通常の信号受信を行なう。このようにして、同時に複数の基地局から信号を受信してハンドオーバを行なうことができる。

【0062】また、前述のように、ハンドオーバ先のロングコードの特定を、複数の相関器28-1~28-nを用いて行う場合、あるいは、マッチドフィルタ22と現在接続されている基地局との信号の受信に用いられていない複数の相関器を用いて行う場合においても、同様

に、RAKE合成を行うことができ、複数の基地局から の信号を受信するハンドオーバを実現することができ る。

【0063】(他の実施の形態)次に、消費電力が少なくされた本発明の他の実施の形態について説明する。この実施の形態は、消費電力の少ないマッチドフィルタを使用してより消費電力を軽減するようにしたものである。図5にこのマッチドフィルタの構成を示す。なお、この図に示すマッチドフィルタは前記複素型マッチドフィルタ22内に2つ設けられている同一構成のマッチドフィルタのうちの1つを示すものである。また、図5においては、拡散符号系列が6ビットからなるものとし、6段の遅延段を有するものとりなるが、実際に使用される拡散符号系列は数10ビット〜数100ビットの長さを有する符号系列が使用されるものであり、それに対応する数の段数を有するものとすることが必要である。

【0064】図5において、71-1~71-6はいずれも受信信号RiまたはRqをサンプルホールドするサンプルホールド回路、73-1~73-6は各サンプルホールド回路71-1~71-6の出力と拡散符号とを乗算する乗算部、76から81は各乗算部73-1~73-6の出力を加算する加算回路である。また、72は前記サンプルホールド回路71-1~71-6におけるサンプリングタイミングを制御する制御部、74は各乗算部73-1~73-6に基準電圧を入力するための基準電圧発生回路、75は拡散符号系列を生成するための拡散符号生成器である。

【0065】図示するように、各サンプルホールド回路 71-1~71-6は、制御部72からの制御信号により制御されるアナログスイッチ、キャパシタンスC1および反転増幅器Ampとから構成されている。また、前記各加算器76~81は複数の入力端子に接続されたキャパシタンスと反転増幅器Ampとから構成されている。このように、このマッチドフィルタにおいては、前記サンプルホールド回路および加算器において、入力側に接続されたキャパシタンスと反転増幅器とからなるアナログ演算回路(ニューロオペアンプ)を用いているものである。

【0066】図6の(a)に前記反転増幅器Ampの構成を示す。この図において、82は電源Vddと増幅器Ampとの間に直列に接続されたスイッチであり、このスイッチは前述した電源制御部20により制御されるものである。また、Viは入力端子、Voは出力端子であり、両端子の間には帰還用のキャパシタンスCfが設けられている。92、93および94はいずれもCMOSインバータ回路であり、この反転増幅器AmpはCMOSインバータの出力がハイレベルからローレベルあるいはローレベルからハイレベルに遷移する部分を利用して、インバータを増幅器として使用するものであり、奇

数段、例えば図示するように3段直列に接続されたCM OSインバータにより構成されている。なお、抵抗R1 およびR2は増幅器のゲインを制御するために、また、 キャパシタンスCgは位相調整のためにそれぞれ設けら れており、いずれも、この反転増幅器Ampの発振を防 止するために設けられている。

【0067】ここで、この反転増幅器にキャパシタンス を介して入力電圧を印加するニューロオペアンプの動作 について図7を参照して説明する。図7において、Am pは前述した反転増幅器であり、入力電圧V1 とV2 が それぞれキャパシタンス C1よび C2 を介して前記反転 増幅器Ampに印加されている。前記反転増幅器Amp の電圧増幅率は非常に大きいためこの反転増幅器Amp

(1).

ここで、各入力電圧V1 およびV2 をB点の電圧Vbを 基準とする電圧に置き換え、V(1) = V1 - V b、V

 $V'out = -\{(C1/Cf) V(1) + (C2/Cf) V(2)\} \cdot \cdot \cdot (2)$

すなわち、ニューロオペアンプからは、大きさが各入力 電圧Viに入力キャパシタンスCiとフィードバックキ ャパシタンスCfとの比である係数(Ci/Cf)を乗 算した値の和で、極性が反転された出力電圧 Vout が出 力されることとなる。

【0069】前記サンプルホールド回路71-1~71 -6においては、前述した図7において入力端子が一つ だけの場合に相当し、入力キャパシタンスC1の値とフ ィードバックキャパシタンスCfの値とが等しくされて いるため、その出力電圧は前記(2)式より、-V(1) となる。すなわち、前記制御部72により入力スイッチ が開放された時点における入力電圧Ri(またはRq) の極性の反転した電圧-Ri(または-Ra)がサンプ ルホールド回路71-1~71-6から出力される。

【0070】前記制御部72は、各サンプルホールド回 路71-1~71-6に対し順次制御信号を印加して、 各サンプルホールド回路71-1~71-6に設けられ ているアナログスイッチを一旦閉成し、拡散変調信号の 各チップに対応するタイミングで各サンプルホールド回 路71-1~71-6のスイッチを順次開放して入力電 圧を取り込むように制御する。これにより、各サンプル ホールド回路71-1~71-6には拡散符号系列の1 周期分の受信信号が取り込まれ、その極性の反転した受 信信号が出力される。

【0071】前記各サンプルホールド回路71-1~7 1-6からの出力がそれぞれ入力される乗算部73-1 ~73-6は、同一の構成を有する2個のマルチプレク サ回路MUX1およびMUX2により構成されている。 図6の(b)にこのマルチプレクサ回路MUXの構成を 示す。この図において、95はCMOSインバータ、9 6および97はCMOSトランスミッションゲートであ る。また、Siは制御信号入力端子であり、具体的には の入力側のB点における電圧はほぼ一定の値となり、こ のB点の電圧をVb とする。このとき、図中のB点は、 各キャパシタンスC1、C2、CfおよびCMOSイン バータ92を構成するトランジスタのゲートに接続され た点であり、いずれの電源からもフローティング状態に ある点である。

【0068】したがって、初期状態において、各キャバ シタンスに蓄積されている電荷が0であるとすると、入 力電圧V1 およびV2 が印加された後においても、この B点を基準としてみたときの各キャパシタンスに蓄積さ れる電荷の総量は0となる。これにより、次の電荷保存 式が成立する。

C1 (V1 - Vb) + C2 (V2 - Vb) + Cf (Vout - Vb) = $0 \cdot \cdot \cdot$

(2) = V2 - Vb、V'out = Vout - Vbとすると、前 記(1)式より次の(2)式を導くことができる。

前記拡散符号生成器 75 から出力される拡散符号系列の

うちのこのマルチプレクサ回路MUXが含まれている乗 算部73-iに対応するピットのデータが入力される。 また、Inl およびIn2 は第1および第2の入力端子、Ou t は出力端子である。このような構成において、制御信 号Siが「1」 (ハイレベル) のときには、トランスミ ッションゲート96が導通、97が非導通となり、第1 の入力端子In1 からの入力信号が出力端子Out に出力さ れる。一方、Siが「0」(ローレベル)のときには、 トランスミッションゲート96が非導通、97が導通と なり、第2の入力端子In2からの入力信号が出力端子Ou t に出力されることとなる。

【0072】前述したように各乗算部73-1~73-6には、上述したマルチプレクサ回路MUXがMUX1 とMUX2の2つ設けられており、第1のマルチプレク サ回路MUX1の出力は該乗算部73-iのH出力、第 2のマルチプレクサ回路MUX2の出力は乗算部73iのL出力とされている。第1のマルチプレクサ回路M UX1の第1の入力端子In1 には対応するサンプルホー ルド回路71-iからの出力電圧Vi、第2の入力端子 In2 には前記基準電圧発生回路74から入力される基準 電圧 V r が印加されている。一方、第2のマルチプレク サ回路MUX2の各入力端子In1 およびIn2 には、前記 第1のマルチプレクサ回路MUX1とは逆の関係の入力 電圧が印加されている。すなわち、第1の入力端子In1 には基準電圧Vrが、また、第2の入力端子In2にはサ ンプルホールド回路71-iの出力電圧Viが印加され

【0073】したがって、制御端子に印加される拡散符 号の対応するヒットSiの値が「1」のときは、MUX 1からはその出力Hに対応するサンプルホールド回路7 1-iからの入力電圧を出力し、MUX2はその出力L

に基準電圧発生回路74からの基準電圧Vェを出力し、一方、拡散符号の対応するビットが「0」のときは、MUX1はその出力Hに基準電圧発生回路74からの基準電圧Vェを出力し、MUX2はその出力Lに対応するサンプルホールド回路71-iからの入力電圧を出力するようになされている。

【0074】図6の(c)に基準電圧発生回路(Vref) 74の構成を示す。この図において、92、93お よび94は前記図6(a)に示した反転増幅器Ampに おけるものと同様のCMOSインバータ回路、R1およ びR2はゲイン制御用抵抗、Cgは位相調整用キャパシ タである。また、82は電源Vddと前記各CMOSイ ンバータ92~94および抵抗R1との間に挿入された スイッチであり、前記電源制御部20により導通制御さ れるものである。この回路は、その入出力電圧が等しく なる安定点に出力電圧が収束するものであり、各CMO Sインバータ92~94の閾値の設定等により所望の基 準電圧Vァを生成することができる。ここでは、ダイナ ミックレンジを大きくすることができるように、基準電 EVr=電源電圧Vdd/2=Vbとされている。した がって、前記乗算部 73-1~73-6の H 出力または L出力から基準電圧Vrが出力されている場合には、前 記(2)式における入力電圧V(i)は0となる。

【0075】前記乗算部 $73-1\sim73-3$ におけるM UX1からの出力 (H出力) は加算器76に入力される。加算器76において、各乗算部 $73-1\sim73-3$ からの入力電圧にそれぞれ対応する入力キャバシタンス C2、C3およびC4の大きさは、フィードバックキャバシタンスCfの1/3の大きさとされているため、前述した(2)式より、各乗算部 $73-1\sim73-3$ からの出力電圧の和の1/3の大きさを有する電圧が出力される。なお、この出力電圧の極性は、このマッチドフィルタの入力電圧Ri(Rq)と同一の極性である。

【0076】また、加算器78には乗算部73-4~73-6のH出力が入力されており、前記の場合と同様にして、それらの和の大きさを有する電圧が出力される。なお、この電圧の極性はRi(Rq)と同一のものとなる。この加算器76と加算器78の出力は加算器80に入力される。この加算器80における入力キャパシタンスC5およびC6の値はともにフィードバックキャパシタンスCfの値の1/2とされており、該加算器80からは前記加算器76の出力の1/2の大きさの電圧と前記加算器78の出力の1/2の大きさの電圧と前記加算器78の出力の1/2の大きさの電圧と前記加算器78の出力の1/2の大きさの電圧の和の電圧が出力される。この電圧はRi(Rq)と逆の極性を有している。

【0077】一方、前記乗算部73-1~73-3におけるMUX2の出力(L出力)は加算器77に入力され、前述の場合と同様にして、これらの和の大きさを有する電圧が出力される。また、前記乗算部73-4~73-6のL出力は加算器79に入力され、それらの和の

大きさを有し、Ri (Rq)と同一の極性を有する電圧が出力される。

【0078】前記加算器80、77および79の出力は加算器81に入力される。この加算器81における前記加算器80からの入力に対応する入力キャパシタンスC7の大きさはフィードバックキャパシタンスCfの大きさはフィードバックキャパシタンスCfの大きさはフィードバックキャパシタンスCfの大きさはで79からの入力に対応する入力キャパシタンスC8およびC9の大きさはCf/2とされているため、該加算器81からは、前記加算器80の出力電圧と前記加算器77の出力電圧の1/2の電圧と前記加算器79の出力電圧の1/2の電圧との和の電圧との差に対応する電圧が出力されることとなる。したがって、この加算器81からは、拡散符号生成器75から出力される拡散符号系列における「1」が供給されるサンプルホールド回路71-1~71-6の出力の和と、拡散符号系列における

「0」が供給される出力の和との差の電圧、すなわち拡 散符号系列との相関値が出力されることとなる。

【0079】なお、前記加算器80において入力電圧の和の1/2の電圧が出力されるようにし、前記加算器81において加算器77および79からの出力電圧の1/2の電圧が加算されるようにしているのは、最大電圧が電源電圧を超えることがないようにするためである。

【0080】このようにして加算器81から相関値が出力された後、このマッチドフィルタにおいては、拡散符号生成器75から出力される拡散符号系列を1チップシフトさせて、前述と同様の演算処理を行い次の相関値を得るようにしている。これにより、サンブルホールドされた信号のシフト処理を行う必要がなくなるため、それによる誤差の発生を防止することができる。このようにして、拡散符号系列のシフトを順次行うことにより、前述した同期捕捉を行うことができる。

【0081】このマッチドフィルタによれば、前記ニューロオペアンプによる演算処理は容量結合によるアナログ処理により実行されるため、回路規模はデジタル処理の場合に比べて大幅に減縮することができ、また、並列演算であるために高速に処理を実行することができる。さらに、各回路における入出力は全て電圧信号であるため、非常に低消費電力のものとすることができる。

【0082】なお、上述した実施の形態においてはQPSK変調された信号の場合を例にとって説明したが、これに限られることはなく、BPSKなど他の変調方式を採用した場合にも本発明を適用することができることは明らかである。

[0083]

【発明の効果】以上説明したように、本発明の初期同期 方法によれば、初期セルサーチ時に、マッチドフィルタ を用いてロングコードのタイミングを検出し、複数個並 列に設けられた相関器により該検出したロングコードタ イミングでロングコードの特定を行なっているので、高 速に初期セルサーチを行なうことができる。また、周辺 セルサーチ時に、マッチドフィルタを用いてハンドオー バ先のロングコードのタイミング検出とロングコードの 特定を行ない、相関器により現在接続中の基地局からの 信号を受信し、同時にマッチドフィルタによりハンドオ ーバ先の基地局からの信号を受信することができるた め、ハンドオーバを実現することができる。

【0084】さらにまた、相関器手段を複数個設けてRAKE受信を行なっているために、マルチパスフェージメングのある環境においても、良好な受信品質を保つことができる。さらにまた、初期セルサーチ時、ハンドオーバ時、および通話時(マルチパス受信時)において、マッチドフィルタおよび複数の相関器を共用することができ、高効率化および小型化を実現することができる。さらにまた、ニューロオペアンプを使用したマッチドフィルタを使用することにより、低消費電力の受信機を提供することが可能となる。

【図面の簡単な説明】

- 【図1】 本発明の初期同期方法が適用される受信機の 一実施の形態の構成を示すブロック図である。
- 【図2】 図1の受信機における相関器の一実施の形態の構成を示すブロック図である。
- 【図3】 本発明の方法によるセルサーチ動作を説明するためのフローチャートである。
- 【図4】 本発明の方法によるセルサーチ動作を説明するためのタイミング図である。
- 【図5.】 本発明の他の実施の形態におけるマッチドフィルタの構成例を示すプロック図である。
- 【図6】 図5のマッチドフィルタにおける各部の構成を示す回路図である。
- 【図7】 図5のマッチドフィルタにおける加算部の動作を説明するための図である。
- 【図8】 基地局間非同期セルラシステムのセル構成例を示す図である。
- 【図9】 従来のDS-CDMA基地局間非同期セルラシステムにおけるセルサーチ動作を説明するためのタイミング図である。

【符号の説明】

11 受信アンテナ

- 12 高周波受信部
- 13 分配回路
- 14、107 発振器
- 15、108 位相シフト回路
- 16, 17, 41i, 41q, 51i, 51q, 55
- i、55a 乗算器
- 18、19、60 ローパスフィルタ
- 20 電源制御部
- 21、61、75 拡散符号生成器
- 22 複素型マッチドフィルタ
- 23、29-1~29-n 電力計算部
- 24 パス検出部
- 25 ロングコードタイミング検出部
- 26 選択回路
- 27 相関器制御部
- 28-1~28-n 相関器
- 29-1~29-n 電力計算部
- 30 RAKE合成および復調部
- 31-1~31-n ロングコード同期判定手段
- 32 ロングコード同期判定部
- 33 拡散符号制御部
- 34i、34q、82 スイッチ
- 40 逆拡散部
- 42i、42q、52i、52q、56i、56q 累 算器
- 50 DLL部
- 50-S DLL制御部
- 53i、53q、57i、57q 包絡線檢波回路
- 54、58、59、62、63、64、76~81 加算器
- 62、63 1/2Tc遅延回路
- 71-1~71-n サンプルホールド回路
- 72 制御部
- 73-1~73-6 乗算部
- 74 基準電圧発生回路
- 92~95 CMOSインバータ
- 96、97 トランスミッションゲート
- 100 移動機

【図1】

(a)

(9)

[図4]

[図5]

[図6]

[図7]

【図8】

(c)

フロントページの続き

(72)発明者 周 旭平

東京都世田谷区北沢3-5-18 鷹山ビル

株式会社鷹山内

(72)発明者 山本 誠

東京都世田谷区北沢3-5-18 鷹山ビル

株式会社鷹山内

(72)発明者 高取 直

東京都世田谷区北沢3-5-18 鷹山ビル

株式会社鷹山内

(72)発明者 佐和橋 衛

東京都港区虎ノ門二丁目10番1号 エヌ・

ティ・ティ移動通信網株式会社内

(72)発明者 安達 文幸

東京都港区虎ノ門二丁目10番1号 エヌ・

ティ・ティ移動通信網株式会社内