When the sample space is discrete:

$$\Omega = \{ \omega_k : k \ge 1 \}$$
 or $\{ \omega_k : k = 0, \pm 1, \pm 2, ... \}$

When the sample space is discrete:

$$\Omega = \{ \omega_k : k \ge 1 \}$$
 or $\{ \omega_k : k = 0, \pm 1, \pm 2, ... \}$

In many discrete applications it will be convenient to rename the sample points and identify them with integers: $\omega_k = k$, $\Omega = \mathbb{Z}$.

When the sample space is discrete:

$$\Omega = \{ \omega_k : k \ge 1 \}$$
 or $\{ \omega_k : k = 0, \pm 1, \pm 2, ... \}$

In many discrete applications it will be convenient to rename the sample points and identify them with integers: $\omega_k = k$, $\Omega = \mathbb{Z}$.

• Atoms (singleton sets consisting of single sample points) carry probabilistic mass called the atomic probabilities:

$$\mathbf{P}\{\boldsymbol{\omega}_k\} := \boldsymbol{p}(k) \ge 0, \qquad \sum_k \boldsymbol{p}(k) = 1$$

When the sample space is discrete:

$$\Omega = \{ \omega_k : k \ge 1 \}$$
 or $\{ \omega_k : k = 0, \pm 1, \pm 2, ... \}$

In many discrete applications it will be convenient to rename the sample points and identify them with integers: $\omega_k = k$, $\Omega = \mathbb{Z}$.

 Atoms (singleton sets consisting of single sample points) carry probabilistic mass called the atomic probabilities:

Positivity

$$\mathbf{P}\{\boldsymbol{\omega}_k\} := \boldsymbol{p}(k) \ge 0, \qquad \sum \boldsymbol{p}(k) = 1$$

Normalisation

$$\sum_{k} p(k) = 1$$

When the sample space is discrete:

$$\Omega = \{ \omega_k : k \ge 1 \}$$
 or $\{ \omega_k : k = 0, \pm 1, \pm 2, ... \}$

In many discrete applications it will be convenient to rename the sample points and identify them with integers: $\omega_k = k$, $\Omega = \mathbb{Z}$.

 Atoms (singleton sets consisting of single sample points) carry probabilistic mass called the atomic probabilities:

Positivity

Normalisation

$$\mathbf{P}\{\boldsymbol{\omega}_k\} := \boldsymbol{p}(k) \ge 0, \qquad \sum \boldsymbol{p}(k) = 1$$

$$\sum_{k} p(k) = 1$$

$$A = \{\omega_{k_1}, \omega_{k_2}, \dots\} \subseteq \Omega$$

$$\mathbf{P}(A) = \sum_{\omega \in A} \mathbf{P}\{\omega\} = p(k_1) + p(k_2) + \dots$$

When the sample space is discrete:

$$\Omega = \{ \omega_k : k \ge 1 \}$$
 or $\{ \omega_k : k = 0, \pm 1, \pm 2, ... \}$

In many discrete applications it will be convenient to rename the sample points and identify them with integers: $\omega_k = k$, $\Omega = \mathbb{Z}$.

 Atoms (singleton sets consisting of single sample points) carry probabilistic mass called the atomic probabilities:

Positivity

Normalisation

$$\mathbf{P}\{\boldsymbol{\omega}_k\} := \boldsymbol{p}(k) \ge 0, \qquad \sum \boldsymbol{p}(k) = 1$$

$$\sum_{k} p(k) = 1$$

$$A = \{\omega_{k_1}, \omega_{k_2}, \dots\} \subseteq \Omega$$

$$P(A) = \sum_{\omega \in A} P\{\omega\} = p(k_1) + p(k_2) + \dots$$

When the sample space is discrete:

$$\Omega = \{ \omega_k : k \ge 1 \}$$
 or $\{ \omega_k : k = 0, \pm 1, \pm 2, ... \}$

In many discrete applications it will be convenient to rename the sample points and identify them with integers: $\omega_k = k$, $\Omega = \mathbb{Z}$.

 Atoms (singleton sets consisting of single sample points) carry probabilistic mass called the atomic probabilities:

Positivity

Normalisation

$$\mathbf{P}\{\boldsymbol{\omega}_k\} := \boldsymbol{p}(k) \ge 0, \qquad \sum \boldsymbol{p}(k) = 1$$

$$\sum_{k} p(k) = 1$$

$$A = \{\omega_{k_1}, \omega_{k_2}, \dots\} \subseteq \Omega$$

$$\mathbf{P}(A) = \sum_{\omega \in A} \mathbf{P}\{\omega\} = p(k_1) + p(k_2) + \dots$$

When the sample space is discrete:

$$\Omega = \{ \omega_k : k \ge 1 \}$$
 or $\{ \omega_k : k = 0, \pm 1, \pm 2, ... \}$

In many discrete applications it will be convenient to rename the sample points and identify them with integers: $\omega_k = k$, $\Omega = \mathbb{Z}$.

 Atoms (singleton sets consisting of single sample points) carry probabilistic mass called the atomic probabilities:

Positivity

Normalisation

$$\mathbf{P}\{\boldsymbol{\omega}_k\} := \boldsymbol{p}(k) \ge 0, \qquad \sum \boldsymbol{p}(k) = 1$$

$$\sum_{k} p(k) = 1$$

$$A = \{\omega_{k_1}, \omega_{k_2}, \dots\} \subseteq \Omega$$

$$\mathbf{P}(A) = \sum_{\omega \in A} \mathbf{P}\{\omega\} = p(k_1) + p(k_2) + \cdots$$
 Additivity

* Atoms (singleton events) $\{\omega_k\}$ carry mass in discrete spaces.

- * Atoms (singleton events) $\{\omega_k\}$ carry mass in discrete spaces.
- * The atomic probabilities $p(k) := P\{\omega_k\}$ determine a function called the mass function or distribution. This function satisfies *positivity*, $p(k) \ge 0$, and is properly *normalised*, $\sum_k p(k) = 1$.

- * Atoms (singleton events) $\{\omega_k\}$ carry mass in discrete spaces.
- * The atomic probabilities $p(k) := P\{\omega_k\}$ determine a function called the mass function or distribution. This function satisfies *positivity*, $p(k) \ge 0$, and is properly *normalised*, $\sum_k p(k) = 1$.
- * The probability measure $P(\cdot)$ is determined from the distribution $p(\cdot)$ via additivity:

$$P\{\omega_{k_1}, \omega_{k_2}, \omega_{k_3}, \ldots\} = p(k_1) + p(k_2) + p(k_3) + \cdots$$

Any *honest* mass function p(k) induces a discrete probability measure. All we have to do is verify that it is *positive* and properly *normalised*.