### Statistica I

Esercitazione 7: tabelle di contingenza

#### **Tommaso Rigon**

Università Milano-Bicocca



## Descrizione del problema



- Per verificare l'effetto della vitamina C sull'accrescimento dei maiali, a n=30 maiali sono state somministrate dalla nascita dosi diverse di acido ascorbico.
- Ad una età prefissata è stata poi misurata la lunghezza media dei denti, usata come una misura della crescita.

## Dati grezzi

#### Lunghezza media dei denti in mm

```
[1] 15.2 21.5 17.6 9.7 14.5 10.0 8.2 9.4 16.5 9.7 19.7 23.3 23.6 [14] 26.4 20.0 25.2 25.8 21.2 14.5 27.3 25.5 26.4 22.4 24.5 24.8 30.9 [27] 26.4 27.3 29.4 23.0
```

#### Dose di acido ascorbico in mg

#### Domande

- Si costruisca la tabella di contingenza congiunta e si dica se esiste o non esiste indipendenza in distribuzione utilizzando l'indice  $\chi^2$ .
- Si calcolino le medie della 1unghezza condizionate alla dose. Si dica se esiste dipendenza in media. Si ottenga il rapporto di correlazione  $\eta^2$ .
- Si determini la retta di regressione e la si disegni tramite grafico opportuno assieme ai dati. Si ottenga l'indice di bontà d'adattamento  $R^2$  e il coefficiente di correlazione  $\rho$ .

# Tabella di contingenza

|      | 0.5 | 1 | 2 | Totale |
|------|-----|---|---|--------|
| 8.2  | 1   | 0 | 0 | 1      |
| 9.4  | 1   | 0 | 0 | 1      |
| 9.7  | 2   | 0 | 0 | 2      |
| 10   | 1   | 0 | 0 | 1      |
| 14.5 | 1   | 1 | 0 | 2      |
| 15.2 | 1   | 0 | 0 | 1      |
| 16.5 | 1   | 0 | 0 | 1      |
| 17.6 | 1   | 0 | 0 | 1      |
| 19.7 | 0   | 1 | 0 | 1      |
| 20   | 0   | 1 | 0 | 1      |
| 21.2 | 0   | 1 | 0 | 1      |
| 21.5 | 1   | 0 | 0 | 1      |
| 22.4 | 0   | 0 | 1 | 1      |
| 23   | 0   | 0 | 1 | 1      |
| 23.3 | 0   | 1 | 0 | 1      |
| 23.6 | 0   | 1 | 0 | 1      |
| 24.5 | 0   | 0 | 1 | 1      |
| 24.8 | 0   | 0 | 1 | 1      |
| 25.2 | 0   | 1 | 0 | 1      |
| 25.5 | 0   | 0 | 1 | 1      |
| 25.8 | 0   | 1 | 0 | 1      |
| 26.4 | 0   | 1 | 2 | 3      |
| 27.3 | 0   | 1 | 1 | 2      |
| 29.4 | 0   | 0 | 1 | 1      |
| 30.9 | 0   | 0 | 1 | 1      |

# Tabella frequenze attese

|      | 0.5  | 1    | 2    | Totale |
|------|------|------|------|--------|
| 8.2  | 0.33 | 0.33 | 0.33 | 1.00   |
| 9.4  | 0.33 | 0.33 | 0.33 | 1.00   |
| 9.7  | 0.67 | 0.67 | 0.67 | 2.00   |
| 10   | 0.33 | 0.33 | 0.33 | 1.00   |
| 14.5 | 0.67 | 0.67 | 0.67 | 2.00   |
| 15.2 | 0.33 | 0.33 | 0.33 | 1.00   |
| 16.5 | 0.33 | 0.33 | 0.33 | 1.00   |
| 17.6 | 0.33 | 0.33 | 0.33 | 1.00   |
| 19.7 | 0.33 | 0.33 | 0.33 | 1.00   |
| 20   | 0.33 | 0.33 | 0.33 | 1.00   |
| 21.2 | 0.33 | 0.33 | 0.33 | 1.00   |
| 21.5 | 0.33 | 0.33 | 0.33 | 1.00   |
| 22.4 | 0.33 | 0.33 | 0.33 | 1.00   |
| 23   | 0.33 | 0.33 | 0.33 | 1.00   |
| 23.3 | 0.33 | 0.33 | 0.33 | 1.00   |
| 23.6 | 0.33 | 0.33 | 0.33 | 1.00   |
| 24.5 | 0.33 | 0.33 | 0.33 | 1.00   |
| 24.8 | 0.33 | 0.33 | 0.33 | 1.00   |
| 25.2 | 0.33 | 0.33 | 0.33 | 1.00   |
| 25.5 | 0.33 | 0.33 | 0.33 | 1.00   |
| 25.8 | 0.33 | 0.33 | 0.33 | 1.00   |
| 26.4 | 1.00 | 1.00 | 1.00 | 3.00   |
| 27.3 | 0.67 | 0.67 | 0.67 | 2.00   |
| 29.4 | 0.33 | 0.33 | 0.33 | 1.00   |
| 30.9 | 0.33 | 0.33 | 0.33 | 1.00   |

### Indice di connessione

■ Pertanto si ottiene che

$$\chi^2 = \frac{(1 - 0.3333)^2}{0.3333} + \frac{(0 - 0.3333)^2}{0.3333} + \dots + \frac{(1 - 0.3333)^2}{0.3333} = 50.$$

■ Di conseguenza, l'indice di connessione normalizzato è

$$\chi^2_{\rm norm} = \frac{50}{30 \min\{25-1, 3-1\}} = \frac{50}{60} = 0.83333.$$

■ Tale risultato indica una forte dipendenza in distribuzione.

### Analisi della varianza

Otteniamo ora la tabella delle medie e varianze condizionate.

|     | Numerosità | Media | Varianza | Devianza |
|-----|------------|-------|----------|----------|
| 0.5 | 10         | 13.23 | 17.90    | 179.00   |
| 1   | 10         | 22.70 | 13.77    | 137.66   |
| 2   | 10         | 26.06 | 6.34     | 63.44    |

■ La media complessiva è pari a  $\bar{y} = 20.66333$ . Da questa tabella è quindi agevole calcolare la devianza tra i gruppi, ottenendo:

$$\mathscr{D}_{tr}^2 = 10(13.23 - 20.66)^2 + 10(22.70 - 20.66)^2 + 10(26.06 - 20.66)^2 = 885.265.$$

■ Inoltre, la devianza entro i gruppi è pari a

$$\mathcal{D}_{en}^2 = 179.001 + 137.660 + 63.444 = 380.105,$$

da cui si ottiene che  $\mathscr{D}^2=885.265+380.105=1265.37.$  Il rapporto di correlazione è pertanto pari a

$$\eta^2 = \frac{\mathscr{D}_{\rm tr}^2}{\mathscr{D}^2} = \frac{885.265}{1265.37} = 0.699.$$

# **Boxplot**



## Retta di regressione

Otteniamo in primo luogo alcune quantità di interesse:

$$\sum_{i=1}^{n} x_i y_i = 814.35, \qquad \sum_{i=1}^{n} x_i^2 = 52.5, \qquad \sum_{i=1}^{n} y_i^2 = 14074.57,$$

■ Inoltre, è possibile calcolare le medie aritmetiche delle due variabili precedenti:

$$\bar{x} = 1.166667, \quad \bar{y} = 20.66333.$$

■ Dalle precedenti quantità, è possibile ottenere che:

$$cov(x, y) = 3.037778, var(x) = 0.3888889, var(y) = 42.17899.$$

- Di conseguenza, otteniamo le seguenti stime ai minimi quadrati:  $\hat{\beta}=7.811$  e  $\hat{\alpha}=\bar{y}-7.8111\bar{x}=11.550$ .
- Inoltre, semplici calcoli portano a  $\rho = 0.75$  e quindi  $R^2 = \rho^2 = 0.5626$ .

# Diagramma a dispersione



### Commento ai risultati

- Tutti gli indicatori di dipendenza (connessione, rapporto di correlazione e correlazione di Pearson) evidenziano una marcata dipendenza tra dose e lunghezza dei denti.
- Tuttavia le conclusioni sono via via più dettagliate:
  - Indice  $\chi^2$  denota una differenza tra le tre distribuzioni "di qualsiasi tipo".
  - Indice  $\eta^2$  denota una differenza tra le medie delle distribuzioni.
  - $\blacksquare$  Indice  $\rho$  suggerisce che all'aumentare della dose la lunghezza cresce a sua volta di un determinato ammontare.
- Inoltre, il modello lineare si adatta abbastanza bene ai dati, però sembra sottostimare la lunghezza media dei denti per la dose pari a 1mg.
- lacktriangle II modello lineare prevede che in assenza di acido ascorbico, la lunghezza media dei denti sarebbe di  $\hat{lpha}=11.550$ mm.