Analog and Digital Control

5th Group of Theoretical Exercises

Παναγιώτης Κουζής ΤΛ20411

Κοσμάς Παπαζαχαρίας ΤΛ20441

Άσκηση 1:

Assuming the following mechanical physical system, which moves **only** on the horizontal axis, **without** any friction:

Inputs: f_1, f_2

Outputs: $x_1, x_2, f_{k_1}, f_{c_1} f_{k_2}, f_{c_2}$

Find the State Space representation of the system.

Tip: Use the Newton's second law to extract the differential equations of motion.

\	[7
	la maja M1 Egospe 071:
	1- 22 (1) 2 1/14
	Ano 2º vopo zo Newton:
	SE a min o
100manus	$ \underbrace{\xi f}_{=m_i} \alpha = m_i \cdot \ddot{\chi}_i = 7 $ $ -k_1 \chi_1 - c_1 \cdot \dot{\chi}_1 + k_2 (\chi_2 - \chi_1) + c_1 (\dot{\chi}_2 - \dot{\chi}_1) + f_1 = m_1 \cdot \dot{\chi}_2 = 7 $
_	migi, + π, (c,+c2) + η,(k,+b2) = k2 π2 + c2 π2 + f, D
**************************************	Γ :ε ::
	La pasa M2 sparps ozi:
	1 92
	Arro 2º vopo zor Newton:
	EF= M: 1/2 =7
	2 T = M; /2 =/
To American	
	$-\frac{1}{2}(32-31)-\frac{1}{2}(32-31)+\frac{1}{2}=\frac{1}{2}$
	M2: 72 + C27/2 + k2 x2 = f2 + C2 x1 + k2 x1 2
_	
-	Expupe 4 petablytes katastasys $z = \frac{22}{23} = \frac{1}{23}$ (c)
_	Z4 (32C4)
	T
-	Timpon proposiges von Exprosorpe Tus D kar @ ws
	mpos z:
	0
	m, z3 + z3 (c,+c2) + z, (k,+k2) = k2 z2 + C2Z4+1=>
	Z3 = k2 22 + C2 24 - Z1(k1+l2) - Z3(C1+C2) + M, f, D
- Character	$0 m_2 z_4 + (2 z_4 + k_2 z_2 = f_2 + c_2 \dot{n}_1 + f_2 \chi_1) = z_4 = c_2 z_3 + \frac{k_2}{m_2} z_1 - \frac{c_2}{m_2} z_4 - \frac{k_2}{m_2} z_2 + \frac{1}{m_2} f_4$
	zy = c2 23 + k2 z1 - c2 zy - k2 z2 + fa 2
-	
_	

	z,	0	4	0	i -	07	7,		0	0]	
Z=	Z1 Z2 Z3	0	(0	0	1	72		0	0	f,
	Z4	Ki+kz	K-	<u> - </u>	M2	C2 M2	28	1		0	fz
	.4×1	k2 M2	- 10		C2	Ca M2 YX	24	10		1 12	2×1
			1			40	4.			4×2	
Yal											
				10.50					01		
				N							
	[3,]	T,	~Q	0	0	7,		0	0		
	3,		-0	0		7,		0	0	TP.	7
1 =	Se	1.4.3.	0		0	₹2	1	0	0	-	
3=	33 =	lei	0	0	0	72 23	+	0		P,]
_	Se	1.4.3.	1	0	0	₹2	+	0	0	-	2×1

Άσκηση 2 :

Evaluate the inverse Laplace transform of the following quantity:

$$F(s) = \frac{1}{s \cdot (s+1)^2 \cdot (s+2)^2 \cdot (s^2 + 2s + 5)}$$

F(s) = 1 5. (s+1)2. (s+2)2. (s42s+5) P,=0 P2=-1, P45=-2, P5,6=-1±2i F(s) = \frac{\kappa_1}{5} + \frac{A_1}{(5+1)'} + \frac{A_2}{(5+1)^2} + \frac{(1}{(5-P_5)} + \frac{(2}{(5-P_6)} + \frac{B_1}{(5+2)'} + \frac{B_2}{(5+2)^2} k1 - 5. Fcs) = 1+2+5 = 10 = 0.1 $A_1 = \frac{1}{1!} \frac{d}{ds} \left(s+1 \right)^2 f(s) = \frac{d}{ds} \left[\frac{1}{3} \left(s+2 \right)^2 \left(s^2 + 2s + 3 \right) \right] = \frac{d}{ds}$ $-\frac{5s^3+14s^2+23s+10}{(s^4+4s^3+9s^2+10s)^2(s+2)} = 1$ $A_2 = \frac{1}{0!} \cdot (5+1)^2 F_{cs} = \frac{1}{5 \cdot (5+2)^2 (5^2+25+5)} = \frac{1}{5 \cdot (5+2)^2 (5^2+25+5)}$ B1 = 1! ds (5+2) fcs) = d (5+2)2 (52+25+5) $-\frac{5s^3+11s^2+19s+5}{(s^4+3s^3+7s^4+5s)^2(s+1)} = 0.29$ $B_2 = \frac{1}{0!} (5+2)^3 f_{cs} = \frac{1}{s(s+1)^3 (s^2+2s+5)} = \frac{1}{s-2} = -0.1$

