This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

CERTIFICATION OF TRANSLATION

Client: Heller, Ehrman, White & McAuliffe LLP 4250 Executive Square, 7th Floor La Jolla, CA 92037-9103

Date: September 8, 2000

Document Name:

Title of the Invention: Carcinostatic Method

Japanese Patent Application No. Sho51-159879

Corporate Translations Inc., hereby certifies that to the best of our knowledge and belief, has
made an accurate and complete translation from <u>Japanese</u> to <u>English</u> of the
original patent referenced above. The project has been adeptly managed through the three-phase
quality process by three different experts: the translator, editor and proofreader. The translation
team was specifically selected for their expertise in Patents & Medical/Research to
insure an accurate translation.
All necessary information including qualifications and expertise for the translation teams is on
file at Corporate Translations Inc.
19-10-
Lori Anding
Production Manager

	(19)	Japanese Patent O	ffice	(11) Ko	kai Num	ber '	
	Publicatio	n of Unexamined F	atent Appli	cation	Sho:	53-84998	
(51) Int. Cl. ²	ID Symbol	(52) Japan Ca	itegory	ЉО Fi	le No.	(43) Date of Publication	
•	•	• •				Showa53 (1978) July 26	
C 07 D 487/22		16 E 64		6736-4	4	•	
A 61 K 9/08		30 G 133.1		7432-4	4	Number of Inventions 1	
A 61 K 31/40 //	ADU	30 H 52		5727-4	4	Request for Examination	
						Not Requested	
(C 07 D 487/22		30 C 41		6617-4	4		
C 07 D 209/00			٠.				
C 07 D 257/00)						(Total 8 Pages)	
(54) Carcinostatic method No. 10							
* **		•	(71) A	plicant	Takash	i Yamamoto	
(21) Application	No. Sho	51-159879			2-40, Y	oyogi, Shibuya-ku, Tokyo	
(22) Filing Date	Sho	51(1976) Decembe	1976) December 29		No. 10		
(72) Inventor	Tak	Takashi Yamamoto (74) Agent (2-40, Yoyogi, Shibuya-ku, Tokyo			[illegible] Sugibayashi, Esq.		
	2-4						
		**	•	-			

Specifications

1. Title of the Invention

Carcinostatic Method

- 2. Claims
 - (1) Carcinostatic method characterized by the fact that phytochlorin sodium is used in the cancerous area, and then said location was exposed to visible spectrum light rays.
 - (2) Carcinostatic method in Claim 1 of this patent wherein phytochlorin sodium with a methyl GAG additive is used in the cancerous area.
- 3. Detailed Explanation of the Invention

This invention is a carcinostatic method characterized by the fact that the ultrahyperplasia of the cells within the body are modified by exposure to visible spectrum light rays and this process is halted in the presence of phytochlorin sodium, or a mixture of said phytochlorin sodium with a methyl GAG or glyoxal additive to increase the affinity of the phytochlorin sodium for ultra-hyperplastic cells.

(1)

The phytochlorin sodium and methyl GAG used in this invention are obtained by the methods stated below. For the phytochlorin sodium, crudely processed chlorophyll is dissolved in ethyl [ethanol?], a sodium hydroxide and methyl solution are added while stirring, and hydrolyzed, to get Mg chlorophyll sodium. Using this acidulous reaction solution, insoluble phytochlorin is extracted with ethyl [ethanol?], the ethyl stratum is rinsed with water to eliminate the impurities, abundant sodium hydroxide is added to this, phytochlorin sodium chloride that has become water-soluble is precipitated, and after rinsing the precipitate with ethyl [ethanol?], it is dried to obtain the product. The methyl GAG is simply that which is commercially available. Taking an isotonic neutral solution of this, the phytochlorin sodium is dissolved to produce the mixed solution. For one

example, a mixed solution of methyl GAG 400µg/ml tap water and phytochlorin sodium lmg/ml is used.

Experiment 1: MH 134 ascitic hepatoma cells 4 x 10⁶ cells/l were adjusted with pH 7.0 tap water so the phytochlorin sodium would be 200 / l; after heating with 2 rows of 20W white light bulbs at a distance of 60cm with a glass filter,

(2) -971-

under visible spectrum rays with 580erg/cm²/800 of energy, at 37° C for 30 minutes, the cells were stained with 0.2% nigrosine and observed under a microscope. As a control group, ascitic hepatoma cells were treated in the same manner with pH 7.0 tap water. Hepatoma cells unstained by nigrosine existed in the former, but the cells were swollen. In the latter, unstained hepatoma cells existed and there was no change from the treatment before. Treated hepatoma cells 4×10^6 cells/ml tap water in each of the above solutions were transplanted in C3H/He house mice; with the former, the cells did not proliferate but with the latter control group, they proliferated.

Experiment 2: MH 134 ascitic hepatoma cells 4 x 10⁶ cells/ml were adjusted with pH 7.0 tap water so the phytochlorin sodium would be 10, 20, 30, 100, 200 and 300µg/ml respectively, and heated for 30 minutes to act as the control group. Furthermore, methyl GAG 40µg/ml was added for each of the groups stated above. After treatment, the hepatoma cells were rinsed and stained with 0.2% nigrosine confirming that phytochlorin sodium cohered to the hepatoma cells, which were separated, extracted and quantified.

(3)

The former groups, treated only with phytochlorin sodium, had treatment concentrations of 0.7, 1.8, 2.9, 11.7, 22.9 and 32.5µg respectively; and the former groups, treated with phytochlorin sodium and methyl GAG additive, had 4.5, 6.0, 6.2, 15.0, 26.5 and 36.0µg, and on average, saw an increase in cohesion of 3.73µg compared to the groups treated with only phytochlorin sodium.

Experiment 3: MH 134 hepatoma cells 4 x 10⁶ cells/0.1ml tap water were transplanted subcutaneously into the backs of C3H/He house mice to form malignant tumors. When the quantity [of phytochlorin sodium] detected in the transplanted hepatoma was shown as a percentage per g wet weight of the quantity detected in the liver of the same house mice 24 hours after injection of only 500µg/ml phytochlorin sodium into the abdominal cavity, 526% was obtained on the third day after the hepatoma transplant, 252% on the fifth day and 170% on the seventh day. On the other hand, compared to 24 hours after injection of 500µg/ml phytochlorin sodium with 200µg/ml methyl GAG additive, the quantity of phytochlorin sodium detected increased in all cases with 620% on the third day after transplantation, 410% on the fifth day and 300% on the seventh day. Also, for all the animals in both groups above, the quantity detected in the liver was not significantly different.

Experiment 4: MH 134 hepatoma cells 4 x 10⁶ cells/0.1ml were injected and transplanted subcutaneously in a depilated 2.0 x 20cm² area on the backs of male C3H/He house mice weighing from 28g to 30g in groups of 20 mice each, and after 24 hours, the control group was injected with 0.2l tap water, the experimental group A was injected with 200/0.2ml of phytochlorin sodium in tap water, and experimental group B was injected with 200 of phytochlorin sodium plus 200/0.2l of methyl GAG in tap water respectively into the malignant tumors once a day for three consecutive days. At the same time, all groups were exposed to visible spectrum light rays from white light bulbs 100V, 1.24A, 74W in lamps FOL30, 30W x 2 above the cages at a distance of 30cm through a glass filter for 10 hours per day for 3 consecutive days. The mice were kept for 90 days, and tumor formation as well as survival rates were confirmed.

All the mice in the above mentioned control group died with tumors within a 27.1 ± 1.6 day period. Of the 20 mice in experiment group \triangle , 12 mice died with tumors in a 49.4 ± 4.5 day period, and 8 mice survived the 90-day period without forming tumors. The survival rate was 40%.

(5)

Of the 20 mice in experiment group B, 4 mice died with tumors in a 56.2±6.6 day period, and 16 mice survived the 90-day period without forming tumors. The survival rate was 80%.

Experiment 5: MH 134 hepatoma cells were transplanted following the same procedures as in Experiment 4, and after 3 weeks, all 20 house mice in the control group with terminal cancer were injected with 0.5ml tap water, in the experimental group C with 500µg/0.5ml of phytochlorin sodium in tap water, and experimental group D with 0.5ml of a solution with 500µg of phytochlorin sodium and 200µg/0.5ml of methyl GAG in tap water respectively into the tumors once a day for 3 consecutive days; and, exposed to the visible spectrum light rays used in Experiment 4 for 10 hours per day for 3 consecutive days. All the mice in the control group died with tumors within a 32.1±1.0 day period. All the mice in experimental group C died with tumors within a 50.2±4.6 day period. With experimental group D, all the mice survived the 70-day observation period, but metastasis or recurrence of tumors was observed in 4 mice. The survival rate without tumor formation was 80%.

Experiment 6: All 50 [illegible] male C3H house mice were observed for naturally occurring breast cancer over a 4 month period.

(6) -972-

The control group was injected with 0.5ml tap water under ambient interior light, and experimental group E with 100µg of methyl GAG plus 250µg/0.5ml of phytochlorin sodium in tap water into the abdominal cavity under sun light. 10 mice developed breast cancer in the control group, but none developed breast cancer in the experimental group.

Experiment 7: MH 134 hepatoma cells were collected, 1 part cell mass to 9 parts 0.25M all bran were pulverized at ultra-high frequency to obtain a gradation from 15,000g to 105,000g, and the same number of parts of 0.25M all bran were added. This

experiment was conducted under the same visible spectrum light rays as in Experiment 4. The final volume was 0.6ml, adjusted to get final concentrations of phytochlorin sodium at 0, 10, 100 and 1000µg/ml. 0.1ml of this material was added to 0.1M [?] acid-alkali buffer solution at 0.3ml, 0.066M methyl GAG at 0.1ml, 0.012M reduced glutathione at 0.1ml, agitated under the said visible spectrum light rays at 37° C, 5µg was taken to determine the final methyl GAG, 0.067M semicarbazide hydrochloride was added, and stirred. After agitation and heating for 10 minutes, 5µg was taken, and treated in the same manner. After leaving at room temperature for a 15 minute period, the methyl GAG – [?] semicarbazol created as compared with semicarbazide was measured with a spectrophotometer at 286[nm? illegible] wave lengths. The methyl GAG consumed was calculated from the above mentioned to derive the level of glyoxalase I activity. With the amount of methyl GAG consumed in a 10 minute period per 1g of wet weight MH 134 hepatoma as a control group, taking this as 100% at 22µmoles, the suppression rate of glyoxalase was shown to 38%, 60% and 84% respectively for the layers with 10, 100 and 1000 µg/ml of phytochlorin sodium.

In Experiment 1, we learned that the proliferation of hepatoma cells was halted in the presence of phytochlorin sodium.

In Experiment 2, we learned that methyl GAG increased the affinity of phytochlorin sodium for ultra-hyperplastic cells. This can be seen in the charts that give the results of the experiment, Figure 1 and Figure 2.

In Experiment 3, in the same manner as Experiment 2 above, we learned that methyl GAG increased the affinity of phytochlorin sodium to ultra-hyperplastic cells.

(8)

Experiment 4 was an experiment on the results of clinical treatment, and as the statistics show, we learned that phytochlorin and phytochlorin plus methyl GAG are highly effective as a clinical treatment. Figure 3 gives the results of the experiment in graph form.

Experiment 5 was an experiment on the clinical treatment results with terminal cancer, and we learned that it is effective with terminal cancer as well.

Experiment 6 was an experiment on the prevention of cancer, and we learned that it is extremely effective as well for prevention.

It is clear from the results of the above experiments that the invention in this application modifies the ultra-hyperplasia in cells within a living body and can be used to halt this function. In general, the ultra hyperplasia function within cells exists within a oxidized glyoxalase environment. Already, said oxidized glyoxalase, which is composed of three components, glyoxalase I and II and the supplemental element reduced glutathione, is said to deactivate ketoaldehide, a substance that restricts cell division, and controls cell development.

(9)

The phytochlorin sodium in this invention, as mentioned above, deactivates glyoxalase I. Also, the solution of phytochlorin sodium with a methyl GAG additive can be effectively used jointly against oxidized glyoxalase. As shown in Experiment 7, this is

because the solution of this invention restricts glyoxalase in ultra hyperplasia cells in a living body and methyl GAG purposefully eliminates the formation of tumors.

4. Simple Explanation of the Figures

Figures 1 and 2 give the results of Experiment 2, and Figure 3 is a graph of the results of Experiment 4.

Patent Applicant

Takashi Yamamoto

Agent

[illegible] Sugibayashi, Esq. [illegible seal]

(10) -973A)Figure 1.

B)Amount of Phytochlorin Sodium Mixed into MH 134 Hepatoma Cells 4 x 10⁶ (µg/ml)

C)Methyl GAG (40µg/ml)

D)Concentration of phytochlorin sodium (µg/ml)

E)Figure 2.

[across]

F)Phytochlorin Sodium

G)Methyl GAG

H)Phytochlorin Sodium Per MH 134 Hepatoma Cells 4 x 10⁶

- I) Under Light
- J) In the Dark

K)Decline in Proliferation Rate of MH 134 Hepatoma Cells 4 x 10⁶

- L) Under Light
- M) In the Dark

N)Figure 3.

O)Survival Curve of C3H/He House Mice Transplanted with MH 134 Hepatoma Cells

- P) Tap Water
- Q) (A)Phytochlorin
- R) (B) Methyl GAG Additive in Phytochlorin
- S)Survival Rate
- T) Number of Days after Transplantation

-974-

Amendment of Proceedings (Voluntarily Submitted)

August 27, 1977

Patent Office Head Clerk

Mr. [illegible]

1. Case Identification

Showa 51 [1976] No. 159879

2. Title of the Invention

Carcinostatic Drug, Carcinostatic Solution and Production Method

3. Party Filing the Amendment

Relationship to the Case

Patent Applicant

Address

2-40-10, Yoyogi, Shibuya-ku, Tokyo

Name

Takashi Yamamoto

4. Agent

Address

3-9-6, Kita-Urawa, Urawa 336

Tel. (0488) 31-5673

Name

(6546) [illegible] Sugibayashi, Esq.

[seal:] Sugibayashi

5. Date of Amendment Directive

6. Number of Additional Inventions (Claims) Added by the Amendment

None

7. Parts Amended

8. Content of the Amendment

Specifications

As per the attachment

[seal:] Patent Office 8/29/77 [illegible]

Specifications (Entire Text Amended)

1. Title of the Invention

Carcinostatic Drug, Carcinostatic Solution and Production Method

- 2. Claims
 - (1) Carcinostatic drug with anti-cancer action made of phytochlorin sodium.
 - (2) Carcinostatic drug with anti-cancer action with methyl GAG or glyoxal added to phytochlorin sodium.
 - (3) Production method for phytochlorin sodium wherein chlorophyll is dissolved with ethyl [ethanol?], a sodium hydroxide and methyl solution are added while stirring and subsequently hydrolyzed to get Mg-chlorophyll sodium. Using this acidulous reaction solution, insoluble phytochlorin is extracted with ethyl [ethanol?], the ethyl stratum is rinsed with water to eliminate impurities, abundant sodium hydroxide is added, phytochlorin sodium chloride that has become water-soluble is precipitated, and after rinsing the precipitate with ethyl [ethanol?], it is dried.

- (4) Carcinostatic solution with anti-cancer action wherein 10 to 1000µg/ml of phytochlorin sodium is mixed into pH 7.0 tap water or [handwritten: extending solution?].
- (5) Carcinostatic solution with anti-cancer action wherein 10 to 1000µg/ml of phytochlorin sodium is mixed into pH 7.0 tap water or [handwritten: extending solution?], and then, 40 to 1000µg/ml of methyl GAG or glyoxal is added.
- (6) Carcinostatic method characterized by the fact that the carcinostatic drug stated in Claim 1 is used in the afflicted area, and then, said location is exposed to visible spectrum light rays.
- (7) Carcinostatic method stated in Claim 6 using the carcinostatic drug stated in Claim 2.

3. Detailed Explanation of the Invention

This invention is a carcinostatic drug made with phytochlorin sodium, or with a mixture of phytochlorin sodium with a methyl GAG or glyoxal additive to increase the affinity of the said phytochlorin sodium for ultra-hyperplastic cells,

(2)

a carcinostatic method that modifies the ultra-hyperplasia of the cells within the body by exposure to visible spectrum light rays after using the carcinostatic drug in the afflicted area halting this function, and a carcinostatic solution made with the phytochlorin sodium in the carcinostatic drug mentioned above and phytochlorin sodium with a methyl GAG or glyoxal additive mixed into pH 7.0 tap water.

The phytochlorin sodium and methyl GAG used in this invention are obtained by the methods stated below. For the phytochlorin sodium, crudely processed chlorophyll is dissolved in ethyl [ethanol?], a sodium hydroxide and methyl solution are added while stirring, and hydrolyzed, to get Mg chlorophyll sodium. This reaction solution is made acidulous, phytochlorin insoluble in water is extracted with ethyl [ethanol?], the ethyl stratum is rinsed with water to eliminate the impunities, abundant sodium hydroxide is added to this, phytochlorin sodium chloride that has become water-soluble is precipitated, and after rinsing the precipitate with ethyl [ethanol?], it is dried to obtain the product.

(3) -975-

The methyl GAG is simply that which is a commercially available. Taking an isotonic neutral solution of this, the phytochlorin sodium is dissolved to produce the mixed solution. For one example, a mixed solution of 400µg/ml of methyl GAG in tap water and 1mg/ml of phytochlorin sodium is used.

Experiment 1: MH 134 hepatoma cells 4 x 10⁶ cells/l were adjusted with tap water at pH 7.0 with 200 μg/ml of phytochlorin sodium; after heating with 2 rows of 20W white light bulbs at a distance of 60cm with a glass filter, under visible spectrum rays with 580erg/cm2/800 of energy, at 37° C for 30 minutes, the cells were stained with 0.2% nigrosine and observed under a microscope. As a control group, ascitic hepatoma cells were treated in the same manner with tap water at pH 7.0. Hepatoma cells unstained by

nigrosine existed in the former, but the cells were swollen. In the latter, unstained hepatoma cells existed and there was no change from the treatment before. Treated hepatoma cells at 4 x 10⁶ cells/0.1ml in each of the above solutions were transplanted in C3H/He house mice; with the former, the cells did not proliferate but with the latter control group, they proliferated.

(4)

Experiment 2: MH 134 hepatoma cells 4 x 10⁶ cells/ml were adjusted with pH 7.0 tap water so the phytochlorin sodium would be 10, 20, 30, 100, 200 and 300μg/ml respectively, and heated to 37° C for 30 minutes to act as the control group. Furthermore, 40μg/ml of methyl GAG was added to each of the groups stated above. After treatment, the hepatoma cells were rinsed and stained with 0.2% nigrosine confirming that phytochlorin sodium cohered to the hepatoma cells, which were separated, extracted and quantified. The former groups, treated only with phytochlorin sodium, had treatment concentrations of 0.7, 1.8, 2.9, 11.7, 22.9 and 32.5μg respectively; and the former groups, treated with phytochlorin sodium and methyl GAG additive, had 4.5, 6.0, 6.2, 15.0, 26.5 and 36.0μg, and on average, saw an increase in cohesion of 3.73μg compared to the groups treated with only phytochlorin sodium.

Experiment 3: MH 134 hepatoma cells 4 x 10⁶ cells/0.1ml tap water were transplanted subcutaneously into the backs of C3H/He house mice to form malignant tumors.

(5)

When the quantity [of phytochlorin sodium] detected in the transplanted hepatoma was shown as a percentage per g wet weight of the quantity detected in the liver of the same house mice 24 hours after injection of only 500µg/ml of phytochlorin sodium into the abdominal cavity, 526% was obtained on the third day after the hepatoma transplant, 252% on the fifth day and 170% on the seventh day. On the other hand, compared to 24 hours after injection of 500[µg]/ml of phytochlorin sodium with 200[µg]/ml of methyl GAG additive, the quantity of phytochlorin sodium detected increased in all cases with 620% on the third day after transplantation, 410% on the fifth day and 300% on the seventh day. Also, for all the animals in both groups above, the quantity detected in the liver was not significantly different.

Experiment 4: MH 134 hepatoma cells 4 x 10⁶ cells/0.1ml tap water were injected and transplanted subcutaneously in a depilated 2.0 x 20cm² area on the backs of male C3H/He house mice weighing from 28g to 30g in groups of 20 mice each, and after 24 hours, the control group was injected with 0.2ml tap water, the experimental group was injected with 200 /0.2l of phytochlorin sodium in tap water, and experimental group B was injected with 200µg phytochlorin sodium plus 200 /0.2 of methyl GAG in tap water respectively into the malignant tumors once a day for three consecutive days.

At the same time, all groups were exposed to visible spectrum light rays from white light bulbs 100V, 1.24A, 74W in lamps FOL30, 30W x 2 above the cages at a distance of 30cm through a glass filter for 10 hours per day for 3 consecutive days. The mice were kept for 90 days, and tumor formation as well as survival rates were confirmed.

All the mice in the above mentioned control group died with tumors within a 27.1±1.6 day period. Of the 20 mice in experiment group **A**, 12 mice died with tumors in a 49.4±4.5 day period, and 8 mice survived the 90-day period without forming tumors. The survival rate was 40%. Of the 20 mice in experiment group B, 4 mice died with tumors in a 56.2±6.6 day period, and 16 mice survived the 90-day period without forming tumors. The survival rate was 80%.

Experiment 5: MH 134 hepatoma cells were transplanted following the same procedures as in Experiment 4, and after 3 weeks, all 20 house mice in the control group with terminal cancer were injected with 0.5ml tap water, in the experimental group C with 500µg/0.5ml of phytochlorin sodium in tap water, and experimental group D with 0.5ml of a solution with 500µg phytochlorin sodium and 200µg/0.5ml methyl GAG in tap water respectively into the tumors once a day for 3 consecutive days; and, exposed to the visible spectrum light rays used in Experiment 4 for 10 hours per day for 3 consecutive days.

(7) -976

All the mice in the control group died with tumors within a 32.1±1.0 day period. All the mice in experimental group C died with tumors within a 50.2±4.6 day period. With experimental group D, all the mice survived the 70-day observation period, but metastasis or recurrence of tumors was observed in 4 mice. The survival rate without tumor formation was 80%.

Experiment 6: All 50 [illegible] male C3H house mice were observed for naturally occurring breast cancer over a 4 month period. The control group was injected with 0.5ml of tap water under ambient interior light, and experimental group E with 100µg of methyl GAG plus 250µg/0.5ml of phytochlorin sodium in tap water into the abdominal cavity under sun light. 10 mice developed breast cancer in the control group, but none developed breast cancer in the experimental group.

Experiment 7: MH 134 hepatoma cells were collected, 1 part cell mass to 9 parts 0.25M all bran were pulverized at ultra-high frequency to obtain a gradation from 15,000g to 105,000g, and the same number of parts of 0.25M all bran were added. This experiment was conducted under the same visible spectrum light rays as in Experiment 4.

(8)

The final volume was 0.6ml, adjusted to get final concentrations of phytochlorin sodium at 0, 10, 100 and 1000µg/ml. 0.1ml of this material was added to 0.1M [?]acid-alkali buffer solution 0.3ml, 0.066M methyl GAG at 0.1ml, 0.012M reduced glutathione at 0.1ml, agitated under the said visible spectrum light rays at 37° C, 5µg was taken to determine the final methyl GAG, 0.067M semicarbazide hydrochloride was added, and then stirred. After agitation and heating for 10 minutes, 5µg was taken, and treated in the

same manner. After leaving at room temperature for a 15 minute period, the methyl GAG – [?] semicarbazol created as compared with semicarbazide was measured with a spectrophotometer at 286[nm?illegible] wave lengths. The methyl GAG consumed was calculated from the above mentioned to derive the level of glyoxalase I activity. With the amount of methyl GAG consumed in a 10 minute period per 1g of wet weight MH 134 hepatoma as a control group, taking this as 100% at 22µmoles, the suppression rate of glyoxalase was shown to 38%, 60% and 84% respectively for the layers with 10, 100 and 1000 µg/ml of phytochlorin sodium.

 $\cdot (9)$

In Experiment 1, we learned that the proliferation of hepatoma cells was halted in the presence of phytochlorin sodium.

In Experiment 2, we learned that methyl GAG increased the affinity of phytochlorin sodium for ultra-hyperplastic cells. This can be seen in the charts that give the results of the experiment, Figure 1 and Figure 2.

In Experiment 3, in the same manner as Experiment 2 above, we learned that methyl GAG increased the affinity of phytochlorin sodium for ultra-hyperplastic cells.

Experiment 4 was an experiment on the results of clinical treatment, and as the statistics show, we learned that phytochlorin and phytochlorin plus methyl GAG are highly effective as a clinical treatment. Figure 3 gives the results of the experiment in graph form.

Experiment 5 was an experiment on the clinical treatment results with terminal cancer, and we learned that it is effective with terminal cancer as well.

Experiment 6 was an experiment on the prevention of cancer, and we learned that it is extremely effective as well for prevention.

(10)

It is clear from the results of the above experiments that the invention in this application modifies the ultra-hyperplasia in cells within a living body and can be used to halt this mechanism. In general, the ultra hyperplasia function within cells exists within a oxidized glyoxalase environment. Already, said oxidized glyoxalase, which is composed of three components, glyoxalase I and II and the supplemental element reduced glutathione, is said to deactivate ketoaldehide, a substance that restricts cell division, and controls cell development.

The phytochlorin sodium in this invention, as mentioned above, deactivates glyoxalase I. Also, the solution of phytochlorin sodium with a methyl GAG additive can be effectively used jointly against oxidized glyoxalase. As shown in Experiment 7, this is because the solution of this invention restricts glyoxalase in ultra hyperplasia cells in a living body and methyl GAG purposefully eliminates the formation of tumors.

4. Simple Explanation of the Figures

(11)

Figures 1 and 2 give the results of Experiment 2, and Figure 3 is a graph of the results of Experiment 4.

Patent Applicant

Takashi Yamamoto

Agent

[illegible] Sugibayashi, Esq. [illegible seal]

(12) -978-

1/1 WPAT - (C) Derwent

AN - 1978-62584A [35]

TI - Anticarcinogenic phytochlorin sodium - opt. contg. methyl glyoxal or glyoxal, prepd. from crude chlorophyll

DC - B02

AW - ANTICANCER

PA - (YAMA/) YAMAMOTO T

NP - 2

NC - 1

PN - JP53084998 A 19780726 DW1978-35 * - JP86006043 B 19860224 DW1986-12

PR - 1976JP-0159879 19761229

IC - A61K-009/08 A61K-031/40 C07D-487/22

AB - JP53084998 A

Anticarcinogenic agent is composed of phytochlorin sodium. Also claimed is the anticarcinogenic agent composed of phytochlorin sodium contg. methyl glyoxal or glyoxal. Anticarcinogenic soln. is composed of phytochlorin sodium (10-1000 ug/ml) dissolved in saline soln. of Ph 7.0 or isotonic soln., opt. contg. methyl glyoxal or glyoxal (40-1000 ug/ml).

- Phytochlorin sodium is produced by dissolving crude chlorophyll in ether; adding NaOH-MeOH soln. under stirring to form, by hydrolysis, Mg-chlorophylline sodium; rending the soln. weakly acid to extract water-insoluble phytochlorin with ether; washing the ether phase with water to remove impurities; adding excess NaOH to the soln. to ppte. water-soluble converted phytochlorin sodium salt and washing the ppte with ether, followed by drying. The anticarcinogenic agent is applied to a cancer and irradiated with visible light.

MC - CPI: B04-A07F B10-D01 B12-G07

UP - 1978-35

UE - 1986-12

19日本国特許庁

10特許出願公開

公開特許公報

昭53-84998

① Int. Cl.²C 07 D 487/22	識別記号	❷日本分類 16 € 64	庁内整理番号 6736—44	砂公開 昭和	53年(1978)7月26日
A 61 K 9/08 A 61 K 31/40 // (C 07 D 487/22	A D U	30 G 133.1 30 H 52 30 C 41	7432—44 5727—44 6617—44	発明の数 審査請求 >	1 未請求
C 07 D 209/00 C 07 D 257/00)				•	(全8頁)

匈制癌方法

10号

②特 願 昭51-159879

⑪出 願 人 山本孝

②出 願 昭51(1976)12月29日

東京都渋谷区代々木2丁目40番 10号

仍発 明 者 山本孝

创代 理 人 弁理士 杉林信義

東京都渋谷区代々木2丁目40番

明 # 書

1 発明の名称

2. 特許請求の範囲

制癌方法

(1) 息部にフィトクロリン・ナトリウムを使用し、その後数個所に可視光線を照射することを特徴とする創稿方法。

(2) 息部に、メテルクリオキャル抵加のフィト クロリン・ナトリウムを使用した券許請求の範囲オ1項記載の創稿方法。

3. 発明の詳細な説明

実験 1 : MH 1 8 4 肝癌細胞 6 × 10⁴ 個/4 ドフィトタロリン・ナトリウム 8 0 0 / 4 となるように PH 7 0 生 気^kで調整し、白色 姜光灯 8 0 〒 8 列、 距離 6 0 年、ガラスフィルターを使用して ○5 8 0 • ræ/æ/800 のエネルギーの可視光線下で37℃にて30分間加湿した後、0.2 メニグロシンにて染色鏡検した。一方対照群としてPB 7.0 生食水で上記と同一処理をした肝癌細胞を使用した。前者においてはニグロシンに不染で肝癌細胞は生存し、処理前と変化がなかつた。上記処理細胞を各々 4 × 10 個 / m² 生食水とし、03H/Ho ハッカネズミに移植したが前者においては増殖しなかつたが、後者の対照群においては増殖した。

実験2: MH134 癌細胞4×10 個/m8 化フィトクロリン・ナトリウムを各々10,20,30,100,200及び300/1/m8 となるようにPH7.0 生食水にて調製し、57℃で30分間加盛し対照群とした。一方前配と同様に操作し、且つ上配資料中の各群にメテルグリオキサル40/1/m8 を各々加えた。処理後、肝癌細胞を洗滌し、0.2 メニグロン・次色にて生存を確認した後、肝癌細胞に結合せるフィトクロリン・ナトリウムを分離抽出定量

(3)

○意差はなかつた。

Oした。フィトクロリン・ナトリウム単独処理群の 前者においては処理機度の順に各々 0.7、 1.8、 2.9、 11.7、 22.9 及び 32.5 / 3 であり、メチルク リオキャル添加フィトクロリン・ナトリウム処理 群の後者では 4.5、 6.0、 6.2、 15.0、 26.5 及 び 3 6.0 / 3 で平均して単独処理群に比らべ 3.73 / 9 結合量の増加があつた。

実験36 MH134 肝癌細胞 4 × 10 個 / 0.1 mg 生食水を03日/Be ハッカネズミの背部皮下に移植し、固型癌を形成した。フィトクロリン・ナトリウム 500月/mg 半波旋陸内注入24時間後で、移植肝癌よりの検出量を同一ハッカネズミの肝よりの検出量に対する湿重量 8 当りの百分率で示すと、肝癌移植3日目で526%、5日目で252%、7日目で170%であつた。 一方メテルクリオキャル200月/mg 添加フィトクロリン・ナトリウム 500月/mg 注入24時間後では、移植3日目で620%、5日目で410%、7日目で300%と何れにかいてもフィトクロリン・ナトリウムの検出量に増加した。又上配両野共に肝での検出量に有

(4)

Oた。実験群 B では 2 0 匹中 6 匹が 5 6・2 ± 6・6 日間に腫瘍死し、1 6 匹は 9 0 日間で腫瘍の形成なく生存した。生存率 8 0 % であつた。

突数 5 ・ 多経盤の姓 0 5 日 ヘッカネズミ の各 5 0 匹の 4 ケ月間にかける自然発生乳癌を観察し 今た。室内光の下で対照群においては生食水を 0.5 mg、突厥群 B ではメテルクリオキサル 100/mg/・フィトクロリン・ナトリウム 250/mg/0:5 mg生食水 を隔日に設陸内に注入した。対照群は 10 匹に乳癌が発生したが、突厥群においては乳癌の発生がなかつた。

実験では、MH134肝筋細胞を集積し、細胞塊1容に9容の0.26 M麻糖を加え、凍結器解し、超高波破線し、15,000g乃至105,000g間の分面を得て、同容の0.25 M麻糖を加えた。との実験は前配実験4の可視光線下で行なつた。最終容量は0.6 mg でフィトクロリン・ナトリウムは最終複度が0,10,100及び1000/ff/mg となるように調整した。0.1 M燐酸カリ穀衡液0.3 mg、0.06 g Mメテルグリオキサル0.1 mg、0.01 g M湿元ダルタテオン0.1 mg、これに上配資料を0.1 mg 加えて設可視光線下で37℃で振盪し、最初のメテルグリオキサル決定のため5 μg 採取し、0.06 γ M セミカルパザイド填散塩を3.0 mg 加入して混和した。振動加温10分後に5 μg 採取し、同様に操作し

(7)

O増殖能細胞への親和性を増加することがわかる。

実験もは治療効果実験で数字の示すとかりフィトクロリン・ナトリウム及びフィトクロリン・ナトリウム及びフィトクロリン・ナトリウムナメテルグリオキサルが治療にきわめて有効であることがわかる。オコ図はこの実験結果をグラフにしたものである。

実験 5 は、宋期癌の治療効果実験であり、宋期 癌においても有効であることがわかる。

実験では、倍予防実験であるが、予防において もきわめて有効であることがわかる。

上記実験結果によって明らかなよりにとの出題の発明は生体内での細胞の異常増殖能を変化でもできる。一般的に細胞内での異常増殖能の本態はグリオヤサラーゼ酸素系に依存するものと思われる。即ち政グリオヤサラーゼを素がは、グリオヤサラーゼを表が、グリオヤサラーゼを表が、グリオヤサラーゼを表が、グリオヤサラーゼを表が、グリオヤサラーゼを表が、グリオヤサラーゼを表が、グリオヤサラーゼを表が、グリオヤサラーゼを表が、グリオヤサラーゼを表が、グラーゼを表が、クリオヤサラーゼを表が、クリオヤサラーゼを表が、クリオヤサラーゼを表が、クリオヤサラーゼを表が、クリオヤサラーゼを表が、クリオヤサラーゼを表が、クリオヤサラーである。

Oた。室間に 1 5 分間放電した後、分光光度計で被長 2 8 6 mで生成したメテルグリオキャルーデセミカルパソンをセミカルパザイドを対照として測定した。上記より消費されたメテルグリオキャルを算出し、グリオキャラーゼI活性度とした。 MH 134 肝癌の優重量 1 8 当りの 1 0 分間に消費されたメテルグリオキャル量は対照群で 22μmoleeで、これを 100 % としてグリオキャラーゼの抑制率をみると、フィトクロリン・ナトリウム添加10,100 及び 1000 μ/m8 の順にそれぞれ 3 8 %、6 0 % 及び 8 4 % を示した。

実験 1 において、フィトクロリン・ナトリゥム の存在下で肝癌細胞の増殖を抑止することがわか る。

実験 2 では、メチルグリオキサルの添加によりフィトクロリン・ナトリウムが異常増殖能細胞への親和性を増加することがわかる。これはオ1回、オ2回の実験結果を現わした表より明らかである。

実験 5 も上記実験 2 と同様メテルグリオキサル の鉱加によりフィトタロリン・ナトリウムが異常

(B ')

O との発明のフィトクロリン・ナトリウムは、上記グリオキャラーゼIを不活性化する。又メテトクリオキャル 添加によるフィトクロリン・ナトリウムの混合被は はかり オキャクーゼ 藤 系に対して有効に作用し合目的である。 これは上記実験 体内細胞の異常増殖時にグリオキャラーゼを抑制は大きなのように、 クリオキャルを有意として関係形成能を稍失せしめるためである。

▲ 図面の簡単な説明

オ 1 図、オ 2 図は実験 2 を設にしたもので、オ 3 図は実験 4 をクラフにしたものである。

> 特許出願人 山 本 孝 代理人弁理士 杉 林 信 戦

明 細 鲁 (全文訂正)

手続補正杏(食類)

特許庁長官 館谷 二股

1. 事件の表示

昭和 51 年 特許董 第 15 9 8 7 9 号

- 2. 発明の名称 製造製 製造製造とび製造力法
- 3. 補正をする者

事件との関係 特許出票人

在 所 東京都設谷区代本末 2 丁目 40 看 10 号

氏名 山本

4. 代 理 人 宁536

在 所 随和市北德和 S 丁目 9 番 6 号

氏名 [4844] 血细土 拉 林 俊

- 5. 補正命令の日付 なし
- 6. 補正により増加する発明の数
- 7. 福正の対象 明細書 52.8.29
- 8. 補正の内容 別紙のと記む

- 713 等張榜沒
- (4) PB 7・0 生食水中にフィトクロリン・ナト リウム 10~1000/43/m& を混入した創癌作 用を有する創稿溶液。
- (5) PR 7.0 生食水中にフィトクロリン・ナトリウム 10~1000//3/パルを混入し、さらにノテルクリオキサル若しくはクリオキサル40~1000//3/パルタを設加した創稿作用を有する創稿複数。
- (6) 息部に特許請求の範囲オュ項記載の創癌剤 を使用し、その後該循所に可視光離を限制す ることを特徴とする創癌方法。
- (7) 息部に特許請求の範囲オ 8 項記載の創稿剤 を使用した特許請求の範囲オ 6 項記載の創稿 方法。
- 5. 発明の辞報な説明

この発明はフィトターリン・ナトリウム、又は フィトターリン・ナトリウムと、放フィックーリン・ナトリウムが具常増殖館をもつ。級組への親和 性を増加するために添加されるメテルクリオキナル若しくはグリオキサルとの混合物より成る網絡 1 発明の名称

創癌剤・創癌剤をよび製造方法。

- 2. 特許請求の範囲
 - (1) フィトクロリン・ナトリウムより成る制癌 作用を有する制癌剤。
 - (2) フィトクロリン・ナトリウムにメチルクリ オキサル若しくはクリオキサルを添加した創 癌作用を有する創癌剤。
 - (3) 粗製クロロフィルのをエーテルに溶かし、温和したがら水酸化ナトリウム、メタノール溶液を加え、加水分解して Mg-クロフィリン・ナトリウムとし、エーテルで水に不溶性のフィトリロンを抽出し、エーテル層を水洗して不溶性のフィータロリンを抽出し、エーテル層を水洗して水溶性となったフィータロリン・ナトリウム塩を洗して成るフィータロリン・ナトリウムの製造方法。

(1)

利、数割癌剤を患部に使用した後に可視光線を照射することにより生体内の細胞の具常増殖を変化させても数値法かよび上記割癌剤を製造する方法、並びに上記割癌剤のフィトクロリン・ナトリウム及びメテルグリオキャル若しくはグリオキャル添加のフィトクロリン・ナトリウムをPH 7・0 生食水中に洗入して成る割癌溶液に関するものである。

(4)

移植肝癌よりの検出量を同一ヘッカネズミの肝よりの検出量に対する温度量を辿りの百分率で示すと、肝癌移植3日目で5.86%、5日目で25.2%、7日目で170%であつた。一方メテルグリオやマル200 /=8産加フィトクロリン・ナトリウムの検出量に20%、5日目で410%、7日目で500%と何れにかいてもフィトクロリン・ナトリウムの検出量は増加した。又上配両群共に肝での検出量に有意強はなかつた。

実験4: 境の5日/日・ヘッカネメを体置 98g 乃至 50g 各群 80 匹で、その各々の背部を 9.0 × 80 cm² 脱毛した皮下に、 MH 154 肝癌細胞 4 × 10 個/0・1 mg 生食水を注入移植し、 9 4 時間後より 一方の対風群には生食水 0・8 mgを、他方では実験 群 4 にかいてはフィトクロリン・ナトリウム 200

/0.8 mf 生食水を、実験群 B にかばてはフィークロリン・ナトリウム 200/g+ メテルグリオキャル 200 /0.8 mf 生食水を、各々1日1回、5日間連続し遺瘍部に往入した。これと同時に同群の

実験 2 : MH13 4 癌細胞 4 × 10 個/mg にっ イトクロリン・ナトリウムを各々 10, 20, 30, 100. 200 及び 300/m/mB とたるように PH 7.0 生食水 にて調製し、37℃で50分間加强し 対照群とした。 一方前配と同様に操作し、且つ上記資料中の各群 にメナルグリオキャル 40/9/=8 を各々加えた。 処理後、肝癌細胞を洗滌し、0.2 メニクロシン型 色にて生存を確認した後、肝癌細胞に対合せるフ イトクロリン・ナトリウムを分離抽出定量した。 フィトクロリン・ナトリウム単独処理群の前者に おいては処理機度の順に各々 0.7, 1.8, 2.9, 11.7、22.9 及び 32.5/9でもり、メテルグリオキ ナル設加フイトクロリン・ナトリウム処理群の後 者では4.5, 6.0, 6.2, 15.0, 26.5 及び360 州で平均して単独処理群に比らべ 3·73/H 結合量の 増加があつた。

実験 5 : ME154 肝癌細胞 4 × 10⁶ 個 / 0·1 me 生 女 水 を 0 5 H / H 。 ヘッカネズ t の 背部皮下に 移植し、 固 超 癌 を 形成 した。 フィト クロ リン・ナト リ o A 5 0 0/4/ = 8 単 独 度 腔 内 注 入 2 4 時間 後 で、

(5)

例 育ケージ上方 3 0 ca の距離より ガラスフィルター 越しに白色 接光灯 1 0 0 ₹、1・2 4 Å、 7 4 ₹、 ランプ F 0 L 3 0、3 0 ₹ × 2 の 可視光線を 1 日 1 0 時間 遠続 3 日間 原射した。 9 0 日間 何 育し、 腫瘍の 発育と生存率を確認した。

上記対照群にかいては 27・1 ± 1・6 日間に 全例が 腫瘍死した。実験群 A では 3 0 匹中 1 2 匹が 49・4 ± 4・5 日間に 腫瘍死し、8 匹は 9 0 日間で 腫瘍の形成なく生存した。 生存率は 4 0 % でもつた。実験課 3 では 2 0 匹中 4 匹が 56・2 ± 6 6 日間に 腫瘍死し、1 6 匹は 9 0 日間で腫瘍の形成なく生存した。生存率 8 0 % でもつた。

実験 5 : 実験 4 と同様の操作でMRIS 4 肝癌 調整を移植し、5 週間後の末期癌へッカネズ 4 各 3 0 匹で、対照群は生食水 0・5 mg、実験群 0 では フィトクロリン・ナトリウム 5 0 0/5/0・5 mg 生食 水を、実験群 D ではフィトクロリン・ナトリウム 80 0/5 と 3 テルクリオヤナル 3 0 0/5/0・5 mg 生食 次の混合被を 0・5 mgを、各々腫瘍内に 1 日 1 回、 連続 3 日間往入し、実験 4 で使用された可視光線

を1日10時間連続3日間照射した。対照群に⇒ いては肝癌移植後 52・1 ± 1・0 日間に 全例屋傷死 した。実験群 0 では 50・2 +・6 日間に 金例屋裏 死した。実験群Dでは70日間の観察で全例生存 したが、転移又は腫瘍再発が観察されたものも匹 て、腫瘍の形成なく生存したものは80%であつ **た** .

多経窟の雌 03日 ヘッカネメミ の各 50匹の4ヶ月間にかける自然発生乳癌を観察し た。 宮内光の下で対照群においては生食水を 0.5 mB、実験群 B ではメチルグリオキサル 100/4+フ イトクロリン・ナトリウム 250/3/0·5mg生食水 を隔日に腹腔内に往入した。対照離は 10 匹に乳 癌が発生したが、実験群においては乳癌の発生が なかつた。

雅 論 7 : MH134 肝癌細胞を集積し、細胞塊 1 容に 9 容の 0.25 M 庶籍を加え、凍結密解し、超 高波破壊し、15,0008万至105,0008間の分画 を得て、同容の 0・85 M 庶籍を加えた。 この実験 は前配実験4の可視光線下で行なつた。最終容量

突殺1にかいて、フィトクロリン・ナトリウム の存在下で肝癌細胞の増殖を抑止するととがわか ъ,

実験2では、メテルグリオキサルの森加により フィトクロリン・ナトリウムが異常増殖組細胞へ の親和性を増加することがわかる。これはオ1図、 オ2図の実験結果を現わした姿より明らかである。

実験3も上記実験8と同様メテルグリオキサル の最加によりフィトクロリン・ナトリウムが異常 増殖的細胞への鍵和性を増加することがわかる。

実験6は治療効果実験で数字の示すとかりフィ トクロリン・ナトリウム及びフィトタロリン・ナ トリウムナメナルグリオキャルが治療に言わめて 有効であるととがわかる。オ3図はとの実験結果 モノラフにしたものである。

実験8は、宋期語の治療効果実験であり、宋期 癌にかいても有効であることがわかる。 突鎖6は、循予防突線であるが、予防にかいても きわめて有効であるととがわかる。

上紀実験結果によつて明らかたようにこの出版

-977-

は O・8 mBでフィトクロリン・ナトリウムは最終後 度が 0, 10, 100及び 1000円/=8 とえるように 調整した。 0・1 M 燐酸カリ級物故 0・5 m.g. 0・0 6 6 M メテルグリオキサル 0·1 =€、0·0 1 8 M 産元グル タチオン 0·1 =8、これに上記安料を 0·1=8加えて 鉄町視光線下で37℃で提慢し、最初のメチルクリ オキサル決定のため 5月 採取し、0.06711 セミカ ルパザイド塩酸塩を 3·0 m4加入しで混和した。扱 量加温10分径に 5/44 採取し、同様に操作した。 窪温に 1 5 分間放置した後、分光光度計で波長 886年で生成したメテルグリオキャルーデセミカ ルパソンをセミカルパサイドを対照として御定し た。上記より前受されたメテルグリオキサルを算 出し、グリオキサラーゼI活性度とした。ME134 肝癌の復業量18当りの10分間に消費されたメ テルグリオキサル丘は対照群で 8.8/moles で、と れを100メとしてグリオキャラーゼの抑制率を みると、フィトクロリン・ナトリウム添加10. 100及び1000/9/28 の頃にそれぞれる8%、

(9)

60多及び848を示した。

○の発明は生体内での細胞の具常増殖館を変化させ てその機能を停止させる作用を発揮するもので 一般的に細胞内での具常増殖館の本盤はグリ オキサラーゼ酵素系に依存するものと思われる。 即ち紋グリオキサラーゼ降来系は、グリオキサラ ーゼ』と『及び補助因子である遺元型のグルタチ オンの三者により構成されており、細胞分裂を抑 餌する物質であるケトアルデヘイドを不活性化し て細胞発育を調節するといわれている。

との発明のフィトクロリン・ナトリゥムは、上 記グリオヤサラーゼーを不活性化する。又メナル グリオキサル設加によるフィトクロリン・ナトリ ウムの混合欲は致クリオキャラーセ源素系に対し て有効に作用し合目的である。とれは上配実験? に示されているように、との発明の場合放が生体 内線風の異常増殖時にグリオキャラーゼ 抑制し メテルグリオキサルを有意として腫瘍形成能を消 失せしめるためである。

4 - 四回の簡単な説明

オ1回、オ2回は実験8を表にしたもので、オ

特許出顧人 山 本 章 代理人弁理士 杉 林 信 数

(12)

de Control de Control

-978-