Documentation

Design steps of parallel algorithm.

Sequential algorithm of complexity $O(n^3)$

is parallelized using OpenMP directives for loop parallelization.

The command

```
#pragma omp parallel for collapse (x) num_threads(threads)
```

was used for this purpose.

Here, **x** specifies the number of loops to be parallelized.

- **x** when replaced by 1 is equivalent to parallelizing only the outermost loop.
- **x** when replaced by 2 is equivalent to parallelizing the two outer loops.
- **x** when replaced by 3 is equivalent to parallelizing all three loops.

and **threads** specifies the number of threads used for parallelization.

Note: Single dimension array is used to represent a 2D array as contiguous memory allocation leads to more efficient cache operations.

Note: All three cases of loop parallelization have been handled in a single file using separate functions.

Performance graphs

Multiplication of two 100x100 matrices

Multiplication of two 250x250 matrices

Multiplication of two 500x500 matrices

As can be seen from the above graphs, the optimal number of threads is 4. For more than 4 threads, performance either degrades due to thread overhead or only slightly improves.

Execution

The command

is used to compile the program.

and

is used to execute it. No command line arguments are taken.

Enter matrix dimensions

```
100
Enter number of threads
2
```

When prompted enter a single positive integer for number of dimensions (**dims**) and number of threads (**threads**)

The program will generate two matrices with randomly generated elements, both of size dimsxdims.

These two matrices will be written to the file "generated_input.txt"

The matrices are multiplied using the three options specified above: outer loop parallelized, two outer loops parallelized, and all three loops parallelized. The number of threads is specified by **threads**.

The output of all three cases is written to "output.txt".