# **ENE 3031 Computer Simulation**

**Week 1: Course Overview** 

**Chuljin Park** 

Assistant Professor
Industrial Engineering
Hanyang University

#### Instructor

- Chuljin Park (박철진)
- Assistant professor
- Email: <a href="mailto:parkcj@hanyang.ac.kr">parkcj@hanyang.ac.kr</a>
- Office: Engineering Center 706-2
- Phone: 02-2220-0476
- Homepage: https://sites.google.com/site/stochsim/
- Research Interests
  - Decision making under uncertainty
  - Stochastic simulation modeling and analysis
  - Stochastic Process and statistical quality control
  - Simulation optimization
  - Environmental management (Air quality and water quality)
  - Sensor network design



#### **Course Information**

- Title: Computer Simulation
   (컴퓨터 시뮬레이션)
- Course schedule
  - Tuesday (16:30 18:30) at H027 (제2공학관) #404
  - Wednesday (16:00 18:00) at H027 #208(50min lecture + 5 min break + another 50min lecture)
- Office Hour: TBA

Other times available by appointment



## **Grading Policy**

- Midterm (25%)
- Final (35%)
- Attendance (10%)
- Homework (10%)
- Project (20%)

**Total: 100%** 



# **Grading Policy**

• Final Grade: Calculate your total scores (out of 100%) and the curve is as follows.

| Grade | Score    |
|-------|----------|
| A+    | 95 ~ 100 |
| A0    | 90 ~ 94  |
| B+    | 85 ~ 89  |
| ВО    | 80 ~ 84  |
| C+    | 75 ~ 79  |
| CO    | 70 ~ 74  |
| D+    | 65 ~ 69  |
| D0    | 60 ~ 64  |
| F     | 0 ~ 59   |



#### **Book and Resource**

- Reference book
  - Discrete Event System Simulation (Paperback/5th Ed.)
  - ISBN: 9780138150372
- HY-IN
  - Readings & resources
  - Additional readings
  - Examples



## **Simulation Language: SIMIO**

 We will model with Simio, a comprehensive discrete-event simulation package with extensive modeling, animation, and statistical analysis capabilities.

 Download SIMIO at <u>http://www.simio.com/academics/student-</u> resources.htm.



#### **Tentative Schedule I**

| Week                 | Topics                                     | Comment              |
|----------------------|--------------------------------------------|----------------------|
| Week1 (9/2, 9/3)     | Introduction; Prob. and stat. review       |                      |
| Week2 (9/9, 9/10)    | Prob. and stat. review                     | Chuseok holiday      |
| Week3 (9/16, 9/17)   | Queueing system                            | HW1 due              |
| Week4 (9/23, 9/24)   | Hand and spreadsheet simulation            | HW2 due              |
| Week5 (9/30, 10/1)   | Random number generation                   | HW3 due              |
| Week6 (10/7, 10/8)   | General Principles and Simulation Language | HW4 due              |
| Week7 (10/14, 10/15) | Intro to SIMIO and SIMIO Lab 1             | HW5 due              |
| Week8 (10/21, 10/22) | Midterm (Tuesday 4:30 – 6:30)              | In-class/closed book |



#### **Tentative Schedule II**

| Week                  | Topics                                   | Comment                                    |
|-----------------------|------------------------------------------|--------------------------------------------|
| Week9 (10/28, 10/29)  | SIMIO Lab 2 & 3                          | HW 6due                                    |
| Week10 (11/4, 11/5)   | SIMIO Lab 4 Input Modeling               | Project report 1                           |
| Week11 (11/11, 11/12) | Input Modeling                           | INFORMS (conference)                       |
| Week12 (11/18, 11/19) | Verification and Validation              | HW7 due                                    |
| Week13 (11/25, 11/26) | Output Analysis for a single model       | HW8 due                                    |
| Week14 (12/2, 12/3)   | Comparison of alternative system designs | HW9 due                                    |
| Week15 (12/9, 12/10)  | Final presentations (project)            | Final presentation files (with SIMIO file) |
| Week16 (12/16, 12/17) | Final (Tuesday 4:30 – 6:30)              | In-class/closed book                       |



#### Advertisement I

- SOQ연구실에서 컴퓨터 시뮬레이션/시뮬레이션 최적화/통계적 품질관리/환경관리에 관심과 열정이 있는 (3, 4 학년) 학부인턴을 모집합니다. 관심 있는 학생들은 박철진 교수 에게 연락 바랍니다 (parkcj@hanyang.ac.kr).
- Looking for undergraduate interns who are interested in computer simulation/ simulation optimization/ statistical quality control/environmental management. If you are interested in, please contact Prof. Park (parkcj@hanyang.ac.kr).

#### **Advertisement II**

2014 한국 경영과학회 주최 대학생 경영과학상 경연대회

국문: 대학생 경영과학상

(English Title: The Undergraduate Operations Research Prize)

• 주제: 재난안전 또는 환경 및 에너지 문제를 해결하는 경영과학 응용 & 경영과학 전 분야 (Topics: Disaster, safety, environmental, or energy problems & any problem in management science)

• 제출마감: 2014년 9월 29일 월 오후 9시

(Due date: September/29/2014)

• 관심 있는 학생은 박철진 교수 (parkcj@hanyang.ac.kr)로 문의하세요.

(If you are interested in, please contact Prof. Park (parkcj@hanyang.ac.kr).)



#### **Intro to Simulation**

- Models are high-level representations of the operations of a real-world process or system.
- Our concern will be with models that are

How can we "solve" a model?



#### Simulation?

Simulation is

 Simulation involves the generation of an artificial history to draw inferences concerning the operating characteristics of the real system that is represented.



#### Simulation is ...

- One of the top three industrial engineering / operations research technologies
- Used by academics and practitioners on a wide array of theoretical and applied problems
- An indispensable methodology



#### When do we need simulation?

• We use simulation to:



## Why do we simulate?

- Will the system accomplish its goals?
  - Current system won't accomplish its goals.
- Now what?
  - Need incremental improvement
  - Resolve disputes
  - Solve a problem, like a bottleneck
  - Sell an idea
  - Create a specification or plan of action



## **Advantages of Simulation**

- Can study models
- Can study detailed relations that might be lost in the
- Can be used as a basis for experimental studies of systems
- Can be used to check
- Really nice demo method
- •



## Disadvantages

- Sometimes
- Simulations give (and lots of misinterpretation of results is possible)
- To do a certain problem, better methods than simulation may exist.
- ...



## Origins: Mfg/Material Handling

- Simulation is the technique of choice
  - Calculatessystem components
  - Evaluates through the system
  - Examines conflicting demand for resources
  - Examines contemplated changes before their introduction
  - Eliminates major design blunders



### **Typical Questions**

- What will be the throughput?
- How can we change it?
- Where are the
- Which is
- What is the reliability of the system?
- What is

## **Applications**

- Manufacturing
  - Automobile Production Facility
  - Carpet Production Facility
- Service systems
  - Call Center Analysis
  - Fast Food Drive-Thru
  - Fast-Food Drive-Thru Call Center
  - Airport Security Line



## Applications (con'd)

- Inventory and Supply Chain Analysis
- Financial Analysis
  - Portfolio Analysis
  - Options Pricing
- Traffic Simulation
- Airspace Simulation
- Service Sector
- Health Systems



## Healthcare systems

- Patient Flow in a Hospital
- Hospital Room Allocation
- Optimization of Doctor / Nurse Scheduling
- Procurement of Supplies
- Propagation of Disease Spread
- Disease Surveillance
- Humanitarian Logistics



## **Simulation Examples**

- 1. Let's make some Pi
- 2. Fun with calculus
- 3. Evil Random Numbers

Thanks to Dave.



#### Ex 1. Let's make some Pi

- Use Monte Carlo simulation to estimate  $\pi$ .
- Idea:
  - Area of a unit square is 1.
  - Area of an inscribed circle is  $\pi/4$ .
  - Probability that a dart thrown at the square will land in the circle is  $\pi/4$ .
  - Throw lots of darts. Proportion that will land in circle should approach  $\pi/4$ .



#### Ex 2. Fun with calculus

Use simulation to integrate

$$f(x) = \sin(\pi x) \text{ over } [0,1].$$

- Idea:
  - Sample n rectangles.
  - Each is centered randomly on [0,1] and has width
     1/n and height f(x).
  - Add up areas.
  - Make n really, really big.

#### Ex 3. Evil Random Numbers

- See what happens when you use a bad random number generator.
- Idea:
  - Simulate heights vs weights.
  - Should be a 2-D bell curve (normal distribution)
     with most observations in the middle and some on the outside.
  - Do observations "look" random?

## **Bigger Examples with SIMIO**

- 1. Airport terminal
- 2. Theme park
- 3. Inventory system
- 4. Emergency department (hospital)

© SIMIO



## **Next topic**

Probability and statistics review

