## Project 2

1. Figure of the Fourier magnitude spectra using Log scale.



2. Image constructed by DFT coefficients inside the circular region with radius =30 pixels.

Take real part after iDft



Take absolute value after iDft



3. Image constructed by DFT coefficients outside the circular region with radius =30 pixels.

Take real part after iDft



Take absolute value after iDft



4. Table of top 25 DFT frequencies (u, v) in the left half frequency region

| Top25 | и   | ν   |
|-------|-----|-----|
| 1     | 256 | 254 |
| 2     | 256 | 255 |
| 3     | 255 | 255 |
| 4     | 257 | 255 |
| 5     | 257 | 254 |
| 6     | 253 | 255 |
| 7     | 259 | 254 |
| 8     | 258 | 255 |
| 9     | 259 | 255 |
| 10    | 253 | 254 |
| 11    | 256 | 253 |
| 12    | 258 | 252 |
| 13    | 254 | 254 |
| 14    | 258 | 253 |
| 15    | 252 | 253 |
| 16    | 248 | 255 |
| 17    | 254 | 255 |

| 18 | 254 | 252 |
|----|-----|-----|
| 19 | 260 | 254 |
| 20 | 262 | 255 |
| 21 | 254 | 253 |
| 22 | 255 | 252 |
| 23 | 255 | 254 |
| 24 | 252 | 255 |
| 25 | 261 | 254 |

## 5. Source code

```
clc
clear
% Read the image, data type: uint8
I=imread('Bird 2.tif');
% Get Fourier transform of input image and change the data type to
double
F=fft2(double(I));
% Shift zero_frequency component to center of spectrum
S F=fftshift(F);
% The Fourier magnitude spectra using Log scale
F log=log(1+abs(S F));
% Show the image's Fourier magnitude in Log scale
figure(1)
imagesc(F log)
colormap('gray') % Let the image present gray-level
colorbar % show colorbar
%title('Fourier magnitude of the image')
% Images re-synthesize (inside, outside)
M = size(I,1);
N = size(I, 2);
```

```
center_v = 2*M/2; % the centered coordinate of the image (v)
center_u = 2*N/2; % the centered coordinate of the image (u)
w_{inside30} = zeros(2*M,2*N);
w_outside30 = zeros(2*M,2*N);
d=30; % radius=30
% Padded image of size(2M*2N)
I 1024 = zeros(1024, 1024);
I 1024(1:M,1:N) = double(I);
% Construct filters
for i=1:2*M
   for ii=1:2*N
       if sqrt((i-center_v).^2 + (ii-center_u).^2) < 2*d</pre>
          w inside30(i,ii)=1;
          w outside30(i,ii)=0;
       else
          w inside30(i,ii)=0;
          w outside30(i,ii)=1;
       end
   end
end
F 1024=fft2(I 1024);
S_F_{1024} = fftshift(F_{1024});
output=w inside30.*S F 1024;
output1=w outside30.*S F 1024;
% Shift the zero-frequency component back
output=ifftshift(output);
output1=ifftshift(output1);
% Get the output image using 2-D fast Foirier transform
output=ifft2(output);
```

```
output1=ifft2(output1);
% Adjust the scale range to 0-255
output = real(output); %Both absolute value and real part is fine
output = output-min(output(:));
output inside30 = output ./ max(output(:)).*255;
output1 = real(output1); %Both absolute value and real part is fine
output1 = output1-min(output1(:));
output outside30 = output1 ./ max(output1(:)).*255;
%Crop M*N image
output inside30=output inside30(1:M,1:N);
output outside30=output outside30(1:M,1:N);
% Show the out put image
figure(2)
imshow(uint8(output inside30));
%title('Synthesized image inside 30')
figure(3)
imshow(uint8(output outside30));
%title('Synthesized image outside 30')
% Top 25 freq in the half freq region(0 <= u <= M-1, 0 <= v <= N/2-1)
M = size(I,1);
N = size(I, 2);
input top25=[];
img log= F log;
for kk=1:25
   a=max(max(img log(1:M,1:N/2)));
   for u=1:M
       for v=1:N/2
          if img log(u,v) == a
             input top25\{kk\}=[u-1,v-1]; %start from(0,0)
             img log(u,v) = 0;
          end
       end
```

end

end