

Outline

Introduction	Methodology	Dataset Description	Result & Analysis	Conclusion
1	2	3	4	5
✓ Background	✓ Roadmap	✓ Overview	✓ Pre-processing	√ How does
Motivation	✓ Mechanism	✓ Splitting	✓ Pre-training	parallelism
✓ Goals	✓ Tools	✓ EDA	Hyperparameter tuning	perform in each phase?
			✓ Final Evaluation	

1 Introduction

1.1 Background

How much economic loss do plant diseases cause each year?

1 Introduction

1.1 Background

\$220 billion annually

according to the Food and Agriculture Organization of the **United Nations** developing countries, small stakeholders...

1 Introduction

1.2 Motivation & goal

Motivation

- Achieve timely disease identification
- Datasets are huge, Trainings are slow facing the challenge of the large image datasets

Goal

- Accelerate the training by leveraging the power of parallel techniques
- **Compare** the time efficiency of serial and parallel deep learning, analyze the potential benefits of parallel approaches.

2 Methodology

Roadmap

Step	Roadmap	Focuses	Tools	Parallelization Comparison
1	Exploratory Data Analysis	Number of classes	NumPy, Matplotlib	
2	Data Preprocessing	Mean, std calculation for dataset normalization	(1) Dask Scheduler (2) PyTorch	٧
3	Model Definition	Resnet18	Torchvision	
4	Model Pretraining	(1) Train on an initial set of hyperparameters on small number of epochs(2) Compare time efficiency between serial and parallel techniques	PyTorch (1) Serial (2) Using multi-process (num_workers) (3) Using multi-thread (DataParallel)	V
5	Hyperparameter Tuning	Bayesian optimization	Optuna	٧
6	Final Training and Model Evaluation	Use optimized hyperparameters on extended epochs accuracy, precision, recall, and F1 score, confusion matrix	PyTorch Scikit-learn, Seaborn	

3.1 Overview

New Notebook

New Plant Diseases Dataset

Image dataset containing different healthy and unhealthy crop leaves.

Data Card Code (280) Discussion (4)

About Dataset

This dataset is recreated using offline augmentation from the original dataset. The original dataset can be found on this github repo. This dataset consists of about 87K rgb images of healthy and diseased crop leaves which is categorized into 38 different classes. The total dataset is divided into 80/20 ratio of training and validation set preserving the directory structure. A new directory containing 33 test images is created later for prediction purpose.

Usability (i)

7.50

License

Data files © Original Authors

Expected update frequency

Not specified

Tags

Source:

https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset

Total size:

1.43 GB, contains 87.9k images

Dataset after splitting:

Subset	Image counts	Percent
train	61494	70%
valid	17572	20%
test	8814	10%
Total	87880	100%

3.2 Exploratory Data Analysis

3.2 Exploratory Data Analysis

The dataset is organized into 38 distinct categories based on plant species and specific diseases. Among these categories, there are 14 distinct plant categories and 26 types of plant diseases.

14 Plant Categories: Apple, Blueberry, Cherry, Corn, Grape, Orange, Peach, Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, Tomato.

	File Name	Image Count
0	AppleApple_scab	1764
1	AppleBlack_rot	1738
2	AppleCedar_apple_rust	1540
3	Applehealthy	1757
4	Blueberryhealthy	1589
5	Cherry_(including_sour)Powdery_mildew	1472
6	Cherry_(including_sour)healthy	1597
7	Corn_(maize)Cercospora_leaf_spot Gray_leaf	1436
8	Corn_(maize)Common_rust_	1668
9	Corn_(maize)Northern_Leaf_Blight	1669
10	Corn_(maize)healthy	1626
11	GrapeBlack_rot	1652
12	GrapeEsca_(Black_Measles)	1680
13	GrapeLeaf_blight_(Isariopsis_Leaf_Spot)	1506
14	Grapehealthy	1480
15	OrangeHaunglongbing_(Citrus_greening)	1758
16	PeachBacterial_spot	1608
17	Peachhealthy	1512
18	Pepper,_bellBacterial_spot	1673

19	Pepper,_bellhealthy	1739
20	PotatoEarly_blight	1696
21	PotatoLate_blight	1696
22	Potatohealthy	1596
23	Raspberryhealthy	1558
24	Soybeanhealthy	1769
25	SquashPowdery_mildew	1519
26	StrawberryLeaf_scorch	1552
27	Strawberryhealthy	1596
28	TomatoBacterial_spot	1489
29	TomatoEarly_blight	1680
30	TomatoLate_blight	1619
31	TomatoLeaf_Mold	1646
32	TomatoSeptoria_leaf_spot	1526
33	${\sf Tomato} _{\sf Spider_mites} \ {\sf Two-spotted_spider_mite}$	1523
34	TomatoTarget_Spot	1598
35	TomatoTomato_Yellow_Leaf_Curl_Virus	1715
36	TomatoTomato_mosaic_virus	1566
37	Tomatohealthy	1685

3.2 Exploratory Data Analysis

The dataset is organized into 38 distinct categories based on plant species and specific diseases. Among these categories, there are 14 distinct plant categories and 26 types of plant diseases.

14 Plant Categories: Apple, Blueberry, Cherry, Corn, Grape, Orange, Peach, Pepper, Potato, Raspberry, Soybean, Squash, Strawberry, Tomato.

4.1 Data Preprocessing

Data Cleaning: Identify or delete dirty image data and control image data pixel consistency.

Import all the crucial libraries:

import os import dask import dask.array as da from skimage.io import imread import numpy as np

Data Transformation:

Read the image and convert it to an array of values. Convert an image to a PyTorch tensor using transforms.Compose.

Data Normalization: Calculate mean and Standard Deviation

Classic ImageNet statistics:

mean = [0.485, 0.456, 0.406]

std = [0.229, 0.224, 0.225]

4.1 Data Preprocessing

Using Dask

Workers	Time(s)	Speed-up
1	1321.3	1
2	840.0	1.57
4	526.0	2.47
8	459.9	2.87

4.1 Data Preprocessing

Using PyTorch

Workers	Time(s)	Speed-up
1	378.3	1
2	207.8	1.82
4	122.3	3.09
8	83.7	4.52

4.2 Pre-training

Serial Training

Hardware

CPU

Intel(R) Xeon(R) Gold 6240 CPU @

2.60GHz

Architecture: X86_64

Count: 4 (1 processes)

GPU

Tesla T4

Count: 1

+ N	VVID	IA-SMI	535.104.05	Driver	Version: 53			on: 12.2
	3PU Fan	Name Temp	Perf	Persistence-M Pwr:Usage/Cap	Bus-Id	Disp.A	Volatile	Uncorr. ECC Compute M. MIG M.
== N 		Tesla 52C	T4 P0	Off 29W / 70W	00000000:3E 2MiB /	======= 3:00.0 Off / 15360MiB	6%	0 Default N/A

4.2 Pre-training

Serial Training

Progress

```
Running on 1 GPU with 1 process-----
Epoch [1/5]-----
| Train Loss: 2.6422 | Train Acc: 0.3406 | Val Loss: 2.2021, Val Acc: 0.4074
Elapsed Time: 445.8777 s | Max GPU Memory Alloc: 1960.8457 MB
Epoch [2/5]----
| Train Loss: 2.0209 | Train Acc: 0.4719 | Val Loss: 1.7971, Val Acc: 0.5216
Elapsed Time: 424.5686 s | Max GPU Memory Alloc: 1960.8472 MB
Epoch [3/5]----
| Train Loss: 1.8274 | Train Acc: 0.5141 | Val Loss: 1.6481, Val Acc: 0.5436
Elapsed Time: 425.9290 s | Max GPU Memory Alloc: 1960.8481 MB
Epoch [4/5]-----
| Train Loss: 1.2209 | Train Acc: 0.6451 | Val Loss: 1.2316, Val Acc: 0.6412
 Elapsed Time: 428.5931 s | Max GPU Memory Alloc: 1960.8491 MB
Epoch [5/5]-----
| Train Loss: 1.2085 | Train Acc: 0.6483 | Val Loss: 1.2196, Val Acc: 0.6451
| Elapsed Time: 427.7931 s | Max GPU Memory Alloc: 1960.8501 MB
total time: 2153.4934573173523
best valid acc: 0.6450603232415206
```

4.2 Pre-training

Using Multi-process (workers)

Parallel Mechanism

Multi workers in DataLoader

It uses multiple processes to load and process batch data from the disk into memory and puts it into a queue.

The main training process then consumes batches from this queue, reducing the overall time taken for each training iteration.

4.2 Pre-training

Using Multi-process (workers)

Hardware

CPU

Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz

Architecture: X86_64

Count: 4 (2, 4, 8 processes)

GPU

Tesla T4 Count: 1

NVID:	IA-SMI	535.104.05	Driver Version: 535.104.05 CUDA Version: 12.2					
GPU Fan	Name Temp	Perf	Persisten Pwr:Usage	ce-M	Bus-Id		Volatile	Uncorr. ECC
	Tesla 52C	T4 P0	29W /	Off 70W		======== 0:3B:00.0 Off iB / 15360MiB	•	0 Default N/A

Proces				_		
GPU	GI	CI	PID	Туре	Process name	GPU Memory
	TD	ID				Usage

4.2 Pre-training

Using Multi-process (workers)

Progress

```
Running on 1 GPU with 2 processes-----
Epoch [1/5]-----
| Train Loss: 2.6422 | Train Acc: 0.3406 | Val Loss: 2.2021, Val Acc: 0.4074
Elapsed Time: 248.3875 s | Max GPU Memory Alloc: 1960.8457 MB
Epoch [2/5]----
| Train Loss: 2.0209 | Train Acc: 0.4719 | Val Loss: 1.7971, Val Acc: 0.5216
Elapsed Time: 227.4754 s | Max GPU Memory Alloc: 1960.8472 MB
Epoch [3/5]----
| Train Loss: 1.8274 | Train Acc: 0.5141 | Val Loss: 1.6481, Val Acc: 0.5436
Elapsed Time: 231.8289 s | Max GPU Memory Alloc: 1960.8481 MB
Epoch [4/5]-----
| Train Loss: 1.2209 | Train Acc: 0.6451 | Val Loss: 1.2316, Val Acc: 0.6412
Elapsed Time: 227.1396 s | Max GPU Memory Alloc: 1960.8491 MB
Epoch [5/5]----
| Train Loss: 1.2085 | Train Acc: 0.6483 | Val Loss: 1.2196, Val Acc: 0.6451
Elapsed Time: 234.1333 s | Max GPU Memory Alloc: 1960.8501 MB
```

total_time: 1169.8230679035187 best valid acc: 0.6450603232415206 2

processes

4.2 Pre-training

Using Multi-process (workers)

Progress

```
Running on 1 GPU with 4 processes-----
Epoch [1/5]-----
| Train Loss: 2.6422 | Train Acc: 0.3406 | Val Loss: 2.2021, Val Acc: 0.4074
| Elapsed Time: 223.4081 s | Max GPU Memory Alloc: 1960.8457 MB
Epoch [2/5]----
| Train Loss: 2.0209 | Train Acc: 0.4719 | Val Loss: 1.7971, Val Acc: 0.5216
Elapsed Time: 222.7155 s | Max GPU Memory Alloc: 1960.8472 MB
Epoch [3/5]-----
| Train Loss: 1.8274 | Train Acc: 0.5141 | Val Loss: 1.6481, Val Acc: 0.5436
| Elapsed Time: 223.5448 s | Max GPU Memory Alloc: 1960.8481 MB
Epoch [4/5]-----
| Train Loss: 1.2209 | Train Acc: 0.6451 | Val Loss: 1.2316, Val Acc: 0.6412
Elapsed Time: 220.5944 s | Max GPU Memory Alloc: 1960.8491 MB
Epoch [5/5]--
| Train Loss: 1.2085 | Train Acc: 0.6483 | Val Loss: 1.2196, Val Acc: 0.6451
| Elapsed Time: 223.2077 s | Max GPU Memory Alloc: 1960.8501 MB
```

total_time: 1114.2051734924316 best_valid_acc: 0.6450603232415206 4

processes

4.2 Pre-training

Using Multi-process (workers)

Progress

8 processes

over-subscription

total_time: 1113.5023527145386 best_valid_acc: 0.6450603232415206

Warning local/lib/python3.9/site-packages/torch/utils/data/dataloader.py:557: UserWarning: This DataLoader will cre ate 8 worker processes in total. Our suggested max number of worker in current system is 4, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even fre eze, lower the worker number to avoid potential slowness/freeze if necessary.

4.2 Pre-training

Using Multi-process

Count of Process	Elapsed time (s)	Speedup
Serial (1 process)	2153.4935	1
2 processes	1169.8231	1.8409
4 processes	1114.2052	1.9328
8 processes	1113.5024	1.9340

Comparison

Multi-process Elapsed Time and Speedup

4.2 Pre-training

Using Multi-thread (DataParallel)

Parallel Mechanism

Distribute the input data and the model across multiple GPUs

Compute the forward and backward passes on each GPU

Aggregate the results to update the model parameters

Before we dive in, let's clarify why, despite the added complexity, you would consider using DistributedDataParallel over DataParallel:

• First, DataParallel is single-process, multi-thread, and only works on a single machine, while

DistributedDataParallel is multi-process and works for both single- and multi- machine training. DataParallel is usually slower than DistributedDataParallel even on a single machine due to GIL contention across threads, per-

4.2 Pre-training

Using Multi-thread (DataParallel)

Hardware

CPU

Intel(R) Xeon(R) Gold 6240 CPU @

2.60GHz

Architecture: X86_64

Count: 4

GPU

Tesla T4

Count: 2, 4(expected)

NVID	IA-SMI	470.1	.61.03 I	Driver	Version:	470.161.03	CUDA \	/ersic	on: 11.4
GPU Fan	Name Temp			:		Disp.A Memory-Usage	:		
0 N/A	Tesla 46C	T4 P8	10W /	Off 70W		0:00:04.0 Off iB / 15109MiE	!	0%	0 Default N/A
1 N/A	Tesla 43C	T4 P8	10W /	j	0M:	0:00:05.0 Off iB / 15109MiE	3 	0%	N/A
Proc	esses: GI ID	CI ID	PII			ess name			GPU Memory Usage
No	===== runnin	===== g proc	esses fo	===== und	:======	========	:=====	=====	:=======

4.2 Pre-training

Using Multi-thread (DataParallel)

Progress

```
Running DataParrallel on 2 GPUs------
Epoch [1/5]-----
 Train Loss: 2.7000 | Train Acc: 0.3273 | Val Loss: 2.3335, Val Acc: 0.3904
 Elapsed Time: 335.0122 s | Max GPU Memory Alloc: 1079.4219 MB
Epoch [2/5]-----
 Train Loss: 2.0822 | Train Acc: 0.4565 | Val Loss: 1.8347, Val Acc: 0.5254
 Elapsed Time: 321.0952 s | Max GPU Memory Alloc: 1079.4233 MB
Epoch [3/5]-----
 Train Loss: 1.9114 | Train Acc: 0.4969 | Val Loss: 1.7686, Val Acc: 0.5411
 Elapsed Time: 319.5789 s | Max GPU Memory Alloc: 1079.4243 MB
Epoch [4/5]----
| Train Loss: 1.2854 | Train Acc: 0.6260 | Val Loss: 1.2389, Val Acc: 0.6403
 Elapsed Time: 324.5508 s | Max GPU Memory Alloc: 1079.4253 MB
Epoch [5/5]----
Train Loss: 1.2701 | Train Acc: 0.6299 | Val Loss: 1.2242, Val Acc: 0.6469
 Elapsed Time: 329.6849 s | Max GPU Memory Alloc: 1079.4263 MB
```

total_time: 1630.4430594444275 best valid acc: 0.6469383109492375 **GPU**

2

4.2 Pre-training

Using Multi-thread (DataParallel)

Comparison

Count of GPU	Elapsed time (s)	Speedup
Serial (1 GPU)	2153.4935	1
2 GPU	1630.4431	1.3208
4 GPU	-	-

DataParallel Elapsed Time and Speedup

4.2 Pre-training

Comparison Summary

Training	Resources	Elapsed Time (s)	Speedup	
Serial	Main process	2153.4935	1	
	2 processes	1169.8231	1.8409	
Multi-process (workers)	4 processes	1114.2052	1.9328	
	8 processes	1113.5024	1.9340	
Multi-thread	2 GPUs	1630.4431	1.3208	
(DataParallel)	4 GPUs	-	-	

DistributedDataParallel

4.2 Pre-training

Comparison Summary

4.3 Hyperparameter Tuning

Parallel Mechanism

Optuna study
Apply parallelism using
Joblib threading

Hyperparameters we tuned:

- learning rate
- step size
- weight decay
- momentum

```
import joblib
from joblib import delayed
from joblib import Parallel
```

```
with Parallel(n_jobs=n_jobs, prefer="threads") as parallel:
    if not isinstance(
        parallel._backend, joblib.parallel.ThreadingBackend
    ) and isinstance(self._storage, storages.InMemoryStorage):
        msg = (
            "The default storage cannot be shared by multiple processes. "
            "Please use an RDB (RDBStorage) when you use joblib for "
            "multi-processing. The usage of RDBStorage can be found in "
            "https://optuna.readthedocs.io/en/stable/tutorial/rdb.html."
```

4.3 Hyperparameter Tuning

Hardware

CPU

AMD EPYC 7543 32-Core

Processor

Architecture: X86_64

Count: 4

GPU

A100-SXM4-80GB

Count: 1

Ì	NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2								
		Name Temp	Perf			M	Disp.A emory-Usage	GPU-Util	Compute M. MIG M.
	Ø N/A		A100-SXM4-800 P0	6B C 59W / 56		000000:	81:00.0 Off / 81920MiB		0 Default Disabled
+	Proce GPU	esses: GI ID	CI PID	Type Pr	rocess n	ame			GPU Memory Usage

No running processes found

4.3 Hyperparameter Tuning

```
thread
Trial 0 starts-----
[I 2023-12-13 02:49:02,477] Trial 0 finished
Trial 1 starts-----
[I 2023-12-13 02:52:21,330] Trial 1 finished
Trial 2 starts-----
[I 2023-12-13 02:55:39,138] Trial 2 finished
Trial 3 starts-----
[I 2023-12-13 02:59:02,808] Trial 3 finished
Trial 4 starts-----
[I 2023-12-13 03:02:25,692] Trial 4 finished
Trial 5 starts-----
[I 2023-12-13 03:05:50,770] Trial 5 finished
Trial 6 starts-----
[I 2023-12-13 03:09:11,952] Trial 6 finished
Trial 7 starts-----
[I 2023-12-13 03:12:33,509] Trial 7 finished
Elapsed time: 1633.419298171997 s
```

threads

```
Trial 9 starts-----
Trial 8 starts-----
[I 2023-12-13 03:16:45,775] Trial 9 finished
[I 2023-12-13 03:16:45,776] Trial 8 finished
Trial 10 starts-----
Trial 11 starts-----
[I 2023-12-13 03:20:42,194] Trial 11 finished
[I 2023-12-13 03:20:42,197] Trial 10 finished
Trial 12 starts-----
Trial 13 starts-----
[I 2023-12-13 03:24:35,779] Trial 12 finished
[I 2023-12-13 03:24:35,780] Trial 13 finished
Trial 14 starts-----
Trial 15 starts-----
[I 2023-12-13 03:28:37,332] Trial 15 finished
[I 2023-12-13 03:28:37,334] Trial 14 finished
Elapsed time: 954.1966986656189 s
```

4.3 Hyperparameter Tuning

threads	threads
Trial 17 starts	Trial 25 starts
Elapsed time: 591.6575014591217 s	Elapsed time: 508.36329221725464 s

4.3 Hyperparameter Tuning

Count of Threads	Total Elapsed time (s)	speedup
Serial (1 thread)	1633.4193	1
2 threads	954.1967	1.7118
4 threads	591.6575	2.7608
8 threads	508.3633	3.2131

Multi-thread Tuning Elapsed Time and Speedup

4.4 Final Training & Model Evaluation

Training acc: 68.43% Validation acc: 67.36%

4.4 Final Training & Model Evaluation

		precision	recall	f1-score	support
	AppleApple_scab	0.64	0.58	0.61	504
	AppleBlack_rot	0.63	0.60	0.62	497
	Apple Cedar_apple_rust	0.69	0.68	0.68	440
	Applehealthy	0.59	0.67	0.63	502
	Blueberryhealthy	0.74	0.78	0.76	454
	Cherry_(including_sour)Powdery_mildew	0.70	0.76	0.73	421
	Cherry_(including_sour)healthy	0.74	0.77	0.76	456
	Corn_(maize)Cercospora_leaf_spotGray_leaf_spot	0.74	0.62	0.67	410
	Corn_(maize)Common_rust_	0.96	0.97	0.96	477
- 400	Corn_(maize)Northern_Leaf_Blight	0.74	0.82	0.78	477
	Corn_(maize)healthy	0.94	0.95	0.95	465
	GrapeBlack_rot	0.52	0.56	0.54	472
	<pre>GrapeEsca_(Black_Measles)</pre>	0.63	0.66	0.64	480
	<pre>GrapeLeaf_blight_(Isariopsis_Leaf_Spot)</pre>	0.75	0.76	0.76	430
	Grapehealthy	0.75	0.72	0.73	423
- 300	OrangeHaunglongbing_(Citrus_greening)	0.85	0.82	0.83	503
	PeachBacterial_spot	0.69	0.61	0.64	459
	Peachhealthy	0.72	0.85	0.78	432
	Pepper,_bellBacterial_spot	0.51	0.51	0.51	478
	Pepper,_bellhealthy	0.53	0.45	0.49	497
- 200	PotatoEarly_blight	0.71	0.75	0.73	485
200	PotatoLate_blight	0.52	0.56	0.54	485
	Potatohealthy	0.55	0.54	0.55	456
	Raspberryhealthy	0.65	0.68	0.67	445
	Soybeanhealthy	0.74	0.75	0.74	505
	SquashPowdery_mildew	0.85	0.88	0.87	434
- 100	StrawberryLeaf_scorch	0.67	0.68	0.68	444
	Strawberryhealthy	0.71	0.72	0.72	456
	TomatoBacterial_spot	0.69	0.75	0.72	425
	TomatoEarly_blight	0.49	0.43	0.45	480
	TomatoLate_blight	0.49	0.38	0.43	463
	TomatoLeaf_Mold	0.59	0.55	0.57	470
- o	TomatoSeptoria_leaf_spot	0.42	0.38	0.40	436
	TomatoSpider_mitesTwo-spotted_spider_mite	0.55	0.55	0.55	435
	TomatoTarget_Spot	0.55	0.50	0.52	457
	TomatoTomato_Yellow_Leaf_Curl_Virus	0.63	0.69	0.66	490
	TomatoTomato_mosaic_virus	0.78	0.81	0.79	448
	Tomato healthy	0.87	0.87	0.87	481

Test acc: 67.33%

5 Conclusion

In data preprocessing

- Both frameworks effectively harness parallel processing to expedite computations and enhance overall efficiency.
- Compared to Dask, PyTorch exhibits a more substantial time reduction compared to Dask during data preprocessing tasks.

In model training

- Utilizing multiprocessing yields speedup improvements, but diminishing returns occur when processes exceed CPU core count.
- Increased GPU count with DataParallel accelerates training times, though multiprocessing outperforms in terms of performance.

In hyperparameters tuning

• Optuna demonstrates notable speedup improvements in hyperparameter tuning with an increasing number of threads.

References

- Gula, L. T. (2023, February 6). Researchers helping protect crops from pests. National Institute of Food and Agriculture. https://www.nifa.usda.gov/about-nifa/blogs/researchers-helping-protect-crops-pests
- Ingle, A. (2020, December 15). Plant disease classification resnet-99.2%. Kaggle. https://www.kaggle.com/code/atharvaingle/plant-disease-classification-resnet-99-2
- Brownlee, J. (2019, July 5). How to manually scale image pixel data for deep learning. MachineLearningMastery. https://machinelearningmastery.com/how-to-manually-scale-image-pixel-data-for-deep-learning/
- Schmitt, M. (n.d.). Understanding dask architecture: Client, scheduler, workers. Datarevenue. https://www.datarevenue.com/enblog/understanding-dask-architecture-client-scheduler-workers.
- Modi, R. (2022, February 25). ResNet-understand and implement from scratch. Medium. https://medium.com/analytics-vidhya/resnet-understand-and-implement-from-scratch-d0eb9725e0db
- Datasets & dataloaders. Datasets & DataLoaders PyTorch Tutorials
 2.1.1+cu121 documentation. (n.d.).
 https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
- Zhu, J. (n.d.). Getting started with distributed data parallel. Getting Started with Distributed Data Parallel PyTorch Tutorials 2.2.0+cu121 documentation.

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

