Wydział	lmię i nazwisko		Rok	Grupa	Zespół
	1.				
	2.				
PRACOWNIA	Temat:	Nr ćwiczenia			
FIZYCZNA					
WFiIS AGH					
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej

Cel ćwiczenia

Wyznaczenie rozkładu natężenia światła laserowego dla obrazu dyfrakcyjnego pojedynczej szczeliny i układu dwu szczelin. Obliczanie szerokości szczeliny.

	Zagadnienia kontrolne	Ocena i podpis
1.	Przedstaw własności wiązki laserowej i porównaj je z własnościami wiązki uzyskiwanej z naturalnego źródła promieniowania jakim jest np. Słońce.	
2.	Dyfrakcja światła na pojedynczej szczelinie (omówienie obrazu dyfrakcyjnego).	
3.	Opisz w jaki sposób można wyznaczyć szerokość nieznanej szczeliny w oparciu o uzyskany obraz dyfrakcyjny dla światła monochromatycznego.	
4.	Wyjaśnij dlaczego w celu wyznaczenia szerokości szczeliny w omawianym ćwiczeniu odległość szczelina - ekran powinna wynosić przynajmniej 70 cm.	
5.	Jakiej szerokości maksimum dyfrakcyjne otrzymamy dla szczeliny o szerokości $d=0,1$ mm, długości fali światła laserowego $\lambda=600$ nm i odległości ekran szczelina $L=90$ cm?	
6.	Przedstaw schemat elektryczny układu do pomiaru natężenia światła.	
7.	Oszacuj stosunek natężenia światła mierzonego w pierszym maksimum bocznym $I(x_{\max}^{(1)})$ do natężenia światła w maksimum głównym I_0 .	

1. Układ pomiarowy

W skład <u>części optycznej</u> zestawu pomiarowego (rys. w1) wchodzą zamocowane na ławie optycznej elementy:

- 1. Laser emitujący światło czerwone, zasilany z zasilacza sieciowego. Długość fali $\lambda = 650 \text{ nm}$.
- 2. Przesłona metalowa zawierająca: szczelinę podwójną, szczelinę pojedynczą i układ 4 szczelin, z układem przesuwu umożliwiającym wybór szczeliny lub opcjonalnie (tylko zestaw b) pojedyncza szczelina o regulowanej szerokości
- 3. Ekran zaopatrzony w fotodiodę oraz układ jej przesuwu w kierunku poziomym i pionowym.

Rys. w1. Schemat układu pomiarowego: 1 - badana szczelina, 2 - detektor (fotodioda),

- 3 regulacja położenia fotodiody w osi y, 4 doprowadzenie zasilania fotodiody,
- 5 regulacja położenia fotodiody w osi x, 6 doprowadzenie zasilania lasera.

Wewnątrz obudowy lasera znajduje się właściwa dioda laserowa oraz układ optyczny formujący wiązkę światła. Wiązka światła jest skierowana na badaną szczelinę. Obraz dyfrakcyjny obserwujemy na ekranie.

W płaszczyźnie równoległej do ekranu możemy ustawiać fotodiodę. Położenie fotodiody regulujemy w kierunku poziomym tak, by natężenie światła miało wartość maksymalną. Właściwy pomiar wykonujemy w kierunku pionowym przy pomocy układu przesuwu umożliwiającego pomiar położenia fotodiody z dokładnością 0.01 mm (pokrętło 5 na rys. W1).

Układ elektryczny pomiaru natężenia światła przedstawia rys. w2. W skład obwodu wchodzą:

- 4. Fotodioda (umieszczonej w przesuwniku *x-y*), por. rys. w1.
- 5. Woltomierz cyfrowy o pojedynczym zakresie pomiarowym 400 mV do odczytu względnych zmian natężenia światła w obrazie dyfrakcyjnym.
- 6. Bateria zasilająca $2 \times 1,5 \text{ V}.$
- 7. Opornik regulowany dekadowy $10 \times 100 \Omega$.
- 8. Dodatkowe oporniki $1 \text{ k}\Omega$ i $2 \text{ k}\Omega$.

Rys. w2. Schemat elektryczny układu do pomiaru natężenia światła. Elementy pokazane wewnątrz przerywanej ramki umocowane są na płytce montażowej.

2. Wykonanie ćwiczenia

2A. Pojedyncza szczelina

- 1. Zapoznać się z układem eksperymentalnym. W szczególności przyrzeć się układowi szczelin oraz fotodiodzie będącej detektorem światła. Połączyć (lub sprawdzić połączenia) układu zasilania detektora światła.
- 2. W obecności prowadzącego włączyć zasilanie lasera i układu detekcyjnego.
- 3. Regulacja położenia szczeliny względem wiązki lasera.

Ćwiczenie wykonujemy przy użyciu szczeliny stałej (jedna z trzech w zestawie, pozostałe, to szczelina podwójna i poczwórna) lub szczeliny o regulowanej szerokości. Wstawić do wiązki lasera wybraną szczelinę. Wykorzystując regulację pionowego położenia szczeliny dążyć do uzyskania jak największej jasności obrazu dyfrakcyjnego. W celu ułatwienia obserwacji obrazu ustawić przed fotodiodą pomocniczy ekran w postaci np. kartki papieru.

4. Przygotowanie pomiaru rozkładu natężenia.

Wypróbować przesuw fotodiody w obu kierunkach. Przy użyciu przesuwu poziomego oraz pionowego nastawić element czynny fotodiody na maksimum jasności obrazu dyfrakcyjnego, kierując się wskazaniami woltomierza. Następnie ustawić wartość oporu R do uzyskania jak największej wartości wskazań woltomierza, ale nie przekraczającej zakresu 400 mV. Wykorzystujemy w tym celu opornik dekadowy $10 \times 100~\Omega$ (rys. W2) (Możliwe jest też powiększenie oporu o dodakowe $1~k\Omega$ i $2~\Omega$ przez przeniesienie połączenia do baterii i wotomierza z zacisku A na zacisk B lub C (rys. W2)). Od tego momentu nie zmieniamy wartości oporu.

5. Wykonać pomiar natężenia światła I w funkcji położenia x w zakresie obejmującym maksimum główne oraz co najmniej po dwa prążki boczne po obu stronach maksimum

głównego. By odtworzyć kształt dość złożonej krzywej potrzeba kilkadziesiąt punktów pomiarowych – zalecany jest przesuw detektora co 0,2 mm.

Uwaga: tabela wyników pomiaru zawiera tylko dwie kolumny, położenie fotodiody [mm] oraz natężenie światła I w jednostkach umownych ([j. u.]). Ta jednostka używana jest przez eksperymentatorów, jeżeli chcemy podkreślić, że bezwzględna wartość badanej wielkości pozostaje nieznana, ale jest proporcjonalna do wskazań jakiegoś przyrządu pomiarowego. W wykonywanym ćwiczeniu jako [j.u.] można wpisywać albo napięcie woltomierza w mV, albo same cyfry z jego wyświetlacza, bez nieistotnego przecinka dziesiętnego.

- 6. Wyłączyć laser i zasilanie fotodiody.
- 7. Zmierzyć odległość L od szczelin do ekranu, zapisać długość fali światła lasera.

2B. Szczelina podwójna.

- 1. Przy pomocy układu przesuwu pionowego nasunąć podwójną szczelinę na wiązkę lasera.
- 2. Czynności przygotowawcze oraz pomiar ilościowy obrazu dyfrakcyjnego wykonujemy jak dla szczeliny pojedynczej. Winien obejmować kilkanaście prążków interferencyjnych.

3. Wyniki pomiarów

Tabela 1. Pojedyncza szczelina: odległość szczelina-fotodioda: [mm]

<i>x</i> [mm]	<i>I</i> [j. u.]
	+
	1

Tabela 2. Szczelina podwójna: odległość szczelina-fotodioda: [mm]

<i>x</i> [mm]	<i>I</i> [j. u.]
λ[IIIII]	<i>I</i> լյ. ս.յ
<u> </u>	
1	

podpis

4. Opracowanie wyników pomiarów

4A. Pojedyncza szczelina

- 1. Wykonać wykres zależności natężenia światła *I* od położenia detektora *x*: (i) we współrzędnych zwykłych, oraz (ii) z użyciem skali logarytmicznej na osi pionowej. (Por. rysunki 2b i 4). Wykres we współrzędnych półlogarytmicznych zrealizować przu użyciu papieru półlogarytmicznego lub stosowanej opcji w programie komputerowym. Niezależnie od sposobu realizacji, przez punkty pomiarowe *I*(*x*) poprowadzić odręcznie gładką krzywą.
- 2. Odczytać z wykresu, z prawej i lewej strony maksimum głównego:
 - a) położenia x_l oraz x_p pierwszego minimum bocznego z lewej i prawej strony maksimum głównego
 - b) położenia i amplitudę maksimum pierwszego rzędu po obu stronach maksimum głównego
 - c) współrzędne dalszych minimów i maksimów. Wyniki zestawić w tabeli 3.
- 3. Na podstawie położeń znalezionych dla a), b) etc. obliczyć wartość średnią współrzędnej, na podstawie wzorów na położenie minimów i maksimów (wzory 9 i 10 w skrypcie) wartości szerokości szczeliny d. Następnie średnią i jej niepewność.
- 4. Obliczyć z danych doświadczalnych stosunek natężeń prążków bocznych do natężenia światła w maksimum, I/I_0 . Porównać z wartościami teoretycznymi (wzór 11).

Tabela 3. Położenia maksimów i minimów natężenia światła

Element obrazu dyfrakcyj- nego	Położenie z lewej x _l [mm]	Położenie z prawej x _p [mm]	$x = \frac{x_p - x_l}{2}$ [mm]	Obliczona szerokość szczeliny d [mm]
1 minimum				
1 maksimum boczne				
2 minimum				
2 maksimum boczne				

Tabela 4. Natężenie światła w maksimach bocznych

Natężenie światła w maksimum głównym: $I_0 = \dots$ [j. u.]

Element obrazu dyfrakcyj- nego	Natężenie z lewej I _l [j. u.]	Natężenie z prawej I_p [j. u.]	Natężenie względne doświadczalne $\frac{I(x_{\text{max}})}{I_0} = \frac{I_l + I_p}{2 I_0}$	Natężenie względne teoretyczne $\frac{I(x_{\text{max}})}{I_0}$
1 maksimum boczne				
2 maksimum boczne				

4B. Szczelina podwójna.

- 1.Wykonać wykres zależności natężenia światła I od położenia detektora x w skali liniowej.
- 2. Ponumeruj maksima interferencyjne na wykresie przy użyciu liczb całkowitych $m \ (... -3, -2, -1, 0, 1, 2, 3,)$ tak, by wskaźnik zero wypadał dla maksimum o największym natężeniu.
- 3. Dla kolejnych maksimów o tym samym wskaźniku dodatnim i ujemnym (-m oraz m) odczytaj odpowiadające położenia x_l o oraz x_p a następnie oblicz położenie średnie i wynikającą wartość odległości między szczelinami d.
- 4. Obliczyć wartość średnią i niepewność d.
- 5. Odczytaj z wykresu maksymalne natężenie I_{max} i natężenie w najbliższym minimum I_{min} , a następnie stosunek I_{min} / I_{max} .

Uwaga: wartość ta, będąca liczbą z przedziału (0,1) jest miarą jakości obrazu interferencyjnego. Dla idealnego obrazu $I_{\rm min}/I_{\rm max}=0$, wartość $I_{\rm min}/I_{\rm max}=1$ odpowiada zniknięciu prążków interferencyjnych.

Tabela 5. Położenia maksimów natężenia światła

Numer maksimum $ m $	Położenie z lewej x _l [mm]	Położenie z prawej x_p [mm]	$x = \frac{x_p - x_l}{2}$ [mm]	Obliczona odległość d [mm]

Wnioski: