UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería de Sistemas e Informática

PROBLEMA DE OPTIMIZACIÓN

PROGRAMACIÓN LINEAL

Asignatura:

ALGORITMOS EVOLUTIVOS Y DE APRENDIZAJE

Alumno: VASQUEZ RAMOS, Jose Manuel

Código: 0202114010

Docente: Ms. LOPEZ HEREDIA, Johan Max

Nuevo Chimbote – Perú

2025

PRÁCTICA: FORMULANDO UN PROBLEMA SIMPLE

Escenario: Una pequeña empresa produce dos tipos de artesanías: A y B.

- Artesanía A requiere 2 horas de trabajo y da S/50 de ganancia.
- Artesanía B requiere 3 horas de trabajo y da S/80 de ganancia.
- Se dispone de un máximo de 120 horas de trabajo por semana.
- Se deben producir al menos 10 unidades de A y 5 de B.

Objetivo: Maximizar la ganancia semanal.

Tarea:

- 1. Identifiquen:
 - Variables de Decisión (¿Qué decide la empresa?).
 - Función Objetivo (¿Qué quiere maximizar? Escriban la fórmula).
 - Restricciones (¿Qué limitaciones tiene? Escríbanlas).

PLANTEAMIENTO

1. Variables de Decisión

La empresa decide cuántas unidades de cada artesanía producir. Entonces:

- x = número de unidades de artesanía A a producir por semana
- y = número de unidades de artesanía B a producir por semana

2. Función Objetivo

La empresa quiere maximizar la ganancia semanal, que es:

- Cada unidad de A da S/ 50
- Cada unidad de B da S/80

Por lo tanto, la función objetivo es:

Maximizar
$$Z = 50x + 80y$$

3. Restricciones

• Tiempo disponible máximo: Cada unidad de A requiere 2 horas, cada unidad de B requiere 3 horas, y hay máximo 120 horas por semana:

$$2x + 3y \le 120$$

- Producción mínima: $x \ge 10$, $y \ge 10$
- No pueden producir cantidades negativas: $x \ge 0, y \ge 0$

SOLUCIÓN

Encontrar los vértices del área factible

La región factible está delimitada por las restricciones. Puntos clave (vértices):

1. Restricciones de mínimos:

$$x = 10 \text{ y } y = 5$$

2. Intersección entre la restricción de tiempo x = 10:

Reemplazamos x = 10 en la restricción de tiempo:

$$2(10) + 3y \le 120$$

$$y \le \frac{100}{3}$$

Entonces un punto posible es: $\left(10, \frac{100}{3}\right)$

3. Intersección entre la restricción de tiempo y y = 5:

Reemplazamos y = 5 en la restricción de tiempo:

$$2x + 3(5) \le 120$$

$$x \le 105/2$$

Punto posible: $\left(\frac{105}{2}, 5\right)$

4. Intersección entre la restricción de tiempo y ambas variables:

Para encontrar el punto en la línea 2x + 3y = 120 dentro de los mínimos, solo hay que ver si los valores mínimos cumplen:

Para
$$x = 10$$
, $y = 5$:

$$2(10) + 3(5) = 20 + 15 = 35 \le 120$$

Sí cumple, por lo tanto, el punto (10,5) está en la región factible.

Evaluar la función objetivo en cada vértice

PUNTO	COORDENADAS	VALOR DE LA FUNCIÓN OBJETIVO
	(x,y)	50x + 80y
А	$\left(10,\frac{100}{3}\right)$	$50(10) + 80\left(\frac{100}{3}\right) = \frac{9500}{3}$
В	$\left(\frac{105}{2},5\right)$	$50\left(\frac{105}{2}\right) + 80(5) = 3025$
С	(10,5)	50(10) + 80(5) = 900

Gráfica de los puntos factibles

Conclusión

El máximo se alcanza en (10,33.33), con una ganancia de S/ 3166.4.

En números enteros tendríamos x=10 y y=33, con una ganancia de S/ 3140.00

RESPUESTA

La empresa debería producir **10 unidades de A** y aproximadamente **33 unidades de B** para maximizar su ganancia, respetando las horas disponibles y la producción mínima. La ganancia obtenida en este escenario es de **S/ 3140.00**.