RDBMS Presentation

Topic:

"Concept of Indexing"

INDEX IN DATABASE

WHAT IS AN INDEX IN DATABASE?

- ➤ A database index is a DATA STRUCTURE that improves the SPEED OF DATA RETRIEVAL operations on a database table.
- > It is used to LOCATE AND ACCESS the data in a database table QUICKLY, this process is called as INDEXING.

Why Indexing is used?

Processor

Speed: Very High (MIPS)
Capacity: Low (Hz)

Volatile & Temporary

Speed: High (TIPS) Capacity: Low (GB)

Non_Volatile & Permanent

Speed : Low Capacity : High (TB)

PRIMARY MEMORY

SECONDARY MEMORY

Index in Books

	SEARCH KEY	DATA POINTER
S.NO.	TOPIC	PAGE NO.
1	Tables in Database	1
2	Keys in Database	6
3	Dependencies in Database	11
4	Normalization in Database	15
5	Indexing in Database	28
6	Data Dictionary in Database	35
7	E-R Model	42

- A database index is a DATA STRUCTURE that improves the SPEED OF DATA RETRIEVAL operations on a database table.
- It is used to LOCATE AND ACCESS the data in a database table QUICKLY, this process is called as INDEXING.
- Indexing is used to OPTIMIZE the performance of a database by MINIMIZING THE NUMBER OF DISK ACCESSES REQUIRED when a QUERY IS PROCESSED.
- Indexes are created using a FEW DATABASE COLUMNS.
- ➤ An INDEX is a small table having ONLY TWO COLUMNS.
- ➤ The FIRST COLUMN comprises a copy of the PRIMARY or CANDIDATE KEY of a table.
- > Its SECOND COLUMN contains a SET OF POINTERS for holding the ADDRESS of the DISK BLOCK where that SPECIFIC KEY value stored.

Indexing is defined based on indexing attributes, they are:

- 1) ACCESS TYPES: This refers to the type of access such as value based search, range access, etc.
- 2) ACCESS TIME: It refers to the time needed to find particular data element or set of elements.
- 3) INSERTION TIME: It refers to the time taken to find the appropriate space and insert a new data.
- 4) **DELETION TIME**: Time taken to find an item and delete it as well as update the index structure.
- 5) **SPACE OVERHEAD**: It refers to the additional space required by the index.

PRIMARY INDEX

CLUSTER INDEX

SECONDARY INDEX

Defined on an Ordered data file, which is based on a PRIMARY KEY field of the relation.

Defined on an Ordered data file, which is based on a NON-KEY field.

Defined on an un-ordered data file, generated from a CANDIDATE KEY of the relation.

DENSE INDEX

Stores ALL SEARCH-KEY values, needs MORE SPACE, make SEARCHING FASTER.

SPARSE INDEX

Stores only SOME SEARCH-KEY values.

PRIMARY INDEX – DENSE INDEX

- Data is SORTED based on Primary Key.
- Dense Index Stores ALL SEARCH-KEY VALUES.
- Needs MORE SPACE and MAKES SEARCHING FASTER.
- Index records contain SEARCH KEY VALUE and a POINTER to the ACTUAL RECORD on the DISK.

PRIMARY INDEX – SPARSE INDEX

- ➤ Data is **SORTED** based on Primary Key.
- Stores ONLY SOME SEARCH-KEY values.
- Needs LESS SPACE, LESS MAINTENANCE overhead.
- In Sparse indexing technique, a RANGE OF INDEX COLUMNS stores the same DATA BLOCK ADDRESS, and when data needs to be RETRIEVED, the block ADDRESS will be FETCHED.

ECC III EETCLI					
ESS will be FETCH	ED.	E_ID	E_NAME	ADHR_No	
PRIMAR	VINDEV	1	RAJNEESH	568	
PRIIVIAR	TINDEX	2	SHOBHIT	896	
Search Key	Pointer	3	D.PRAVEEN	456	BLOCK
		4	ANJALI	125	
1		5	SONIYA	157	
5		6	ANU	865	
		7	SHIVANI	325	BLOCK
10		8	MANALI	421	
15		9	SAFIYA	874	
		10	SANJU	652	
		11	BHAGIRATH	124	
		12	SHIVANSHI	128	BLOCK
		13	SHEETAL	475	
		14	POORNIMA	280	

HARD DISK or HARD DRIVE

INDEX - CLUSTERED INDEX

INDEX CLUSTERED INDEXWhen to use Clustered Index?

- 1) Ordered Data.
- 2) Data already have Primary Index
- 3) Non-Key based search required.
- ➤ Mostly clustered Index will have COMBINATION OF NON KEY ATTRIBUTE ALONG WITH CANDIDATE KEY of the tables.
- Clustered Index is a SPARSE INDEX TYPE, where only ONE SEARCH KEY VALUE per block.

INDEX – CLUSTERED INDEX

INDEX – SECONDARY INDEX

When to use Secondary Index?

- 1) Unordered Data
- 2) Non-Key or Key based search required.
- 3) Data already have Primary Index
- Data searching requires MORE TIME as compared to the clustered index
- Secondary Index is of DENSE INDEX type, where ALL SEARCH KEY VALUE pointing to specific block.

INDEX - SECONDARY INDEX

➤ When you need to search data OTHER THAN KEY OF PRIMARY INDEX, such as Aadhar Card No, which is also a UNIQUE KEY IN DATABASE.

	HARD DISK or HARD DRIVE				
	E_ID	E_NAME	ADHR_No		
▼	1	RAJNEESH	568		
7	2	SHOBHIT	896		
¥	3	D.PRAVEEN	456		
Ħ	4	ANJALI	125	۲	
A	5	SONIYA	157		
	6	ANU	865		
	7	SHIVANI	325		
	8	MANALI	421		
	9	SAFIYA	874	1	
	10	SANJU	652	/	
	11	BHAGIRATH	124	/	
	12	SHIVANSHI	128	ļ	
	13	SHEETAL	475		
	14	POORNIMA	280		

SECONDARY INDEX		
Search Key	Pointer	
	124	
	125	
	128	
	157	
	280	
	325	
	421	
	456	

HARD DISK or HARD DRIVE				
E_ID	E_NAME	ADHR_No		
1	RAJNEESH	568		
2	SHOBHIT	896		
3	D.PRAVEEN	456		
4	ANJALI	125		
5	SONIYA	157		
6	ANU	865		
7	SHIVANI	325		
8	MANALI	421		
9	SAFIYA	874		
5	SANJU	652		
6	BHAGIRATH	124		
7	SHIVANSHI	128		
8	SHEETAL	475		
9	POORNIMA	280		

QUICK RECAP

WHAT IS AN INDEX IN DATABASE?

- > A database index is a DATA STRUCTURE that improves the SPEED OF DATA RETRIEVAL operations on a database table.
- > It is used to LOCATE AND ACCESS the data in a database table QUICKLY, this process is called as INDEXING.

PRIMARY INDEX

CLUSTER INDEX

SECONDARY INDEX

Defined on an Ordered data file, which is based on a PRIMARY KEY field of the relation.

Defined on an Ordered data file, which is based on a NON-KEY field.

Defined on an un-ordered data file, generated from a CANDIDATE KEY of the relation.

TYPES:

DENSE INDEX
SPARSE INDEX

TIME: LESS

Clustered index type is of Sparse type index

TIME: More than Primary Index

Secondary index type is of Dense type index

TIME: More than Clustered Index