BINUS University

Academic Career: <i>Undergraduate / Maste</i>	*/ Doctoral *)	Class Prog	,	nar	rt Program/Global Class *)
☑ Mid Exam □ Short Term Exan	☐ Final Exam ☐ Others Exam :	Term: Od	ld/ Even / Short	*)	
☑ Kemanggisan □ Senayan	☑ Alam Sutera ☐ Bekasi ☐ Bandung ☐ Malang	Academic 2021 / 20			
Faculty / Dept. :	School of Computer Science	Deadline	Day / Date Time	:	Selasa / 23 Nov 2021 13:00 – 16:20 (200 Menit)
Code - Course :	COMP6153001 - Operating System	Class		:	All Classes
Lecturer :	Team	Exam Type	e	:	Online
*) Strikethrough the un	necessary items The penalty for CHEATING	is DROP OU	U T!!!		

Learning Outcomes:

LO1 :Describe each of the components of the Operating Systems and their interrelationship

LO2: Demonstrate different techniques of the design of the Operating System

LO3: Relate the fundamental design to the current development of Operating System

LO4: Demonstrate the skills in programming to write user programs to interact with the operating system

I. Esai (100%)

1. Computer and O/S Overview

- a) [LO 2, 5 poin] Jelaskan bagaimana *interrupt* meningkatkan efisiensi prosesor, sedangkan komputer saat ini sudah memiliki *clock speed* yang tinggi dan *memory* yang besar?
- **b) [LO 2, 6 poin]** Beberapa Sitem Operasi contohnya LINUX, tidak membutuhkan *Hardware Driver*. Jelaskan alasannya. Apa yang terjadi jika kernel tidak mengenali sebuah *hardware* yang terpasang?
- c) [LO 1, 4 poin] Pada servis yang disediakan oleh Sistem Operasi, jelaskan yang dimaksud dengan pernyataan "controlled access to files" dan berikan contoh.

2. Process Description and Control

- a) [LO 2, 5 poin] Suatu proses dapat terganggu eksekusinya oleh *interrupt* maupun *trap*. Jelaskan perbedaan antara *interrupt* dan *trap* dan berikan contoh untuk *interrupt* dan *trap*.
- b) [LO 4, 10 poin] Jelaskan bagaimana system call fork() dapat membuat proses-proses baru yang dapat berjalan secara parallel. Berikan contoh program dengan menggunakan system call fork() dimana parent process membuat proses baru dan membentuk suatu hiraki seperti tergambar dibawah ini:

Void of hi
Verified by,
[Muhammad Amien Ibrahim] (D6580) and sent to Program on Oct 31, 2021

Setiap proses akan menampilkan masing-masing proses ID nya. (gunakan system call pid())

3. Multiprocessor, Multicore and Embedded System

- a) [LO 1, 8 poin] Kenapa jam tangan pintar, mobil otonom, sensor parkir dikategorikan sebagai deeply embedded system? Kendala apa saja yang timbul dalam implementasi deeply embedded system (min 3)?
- **b) [LO 2, 7 poin]** Jelaskan permasalahan-permsalahan yang ada dalam penjadwalan proses pada *multiprocessor system* (min 2).

4. Threads

- a) [LO 2, 5 poin] Dalam situasi apa *single thread* memberikan lebih keuntungkan dibandingkan *muli-thread*.
- **b) [LO 3, 10 poin]** Jelaskan apa perbedaan dan hubungan antara proses dan *multi-thread*, termasuk hubungan *state*, *address*, *data*.

5. Process Scheduling

[LO 3, 20 poin] Dalam suatu sistem operasi, terdapat 4 proses yang sedang berjalan dengan rincian sbb:

Drasass	CPU Burst	Arrival
Process	Time	Time
Α	12	0
В	1	2
С	4	7
D	3	10

Anda ingin memastikan, penjadwalan mana yang lebih baik, diantara penjadwalan *First Come First Serve, Shortest Job First (preemptive)* dan *Round Robin* dengan *time slice* = 4. Simulasikan ke tiga algoritma tersebut, hitung rata-*rata turnaround time* dan *waiting time*. Lakukan perbandingan dan tentukan algoritma yang paling efisien. Dalam melakukan perbandingan, anda harus juga melihat dari sisi *CPU Utilization*.

CPU Utilization dapat dihitung berdasarkan formula:

$$\frac{T_r}{T_s} = \frac{1}{1-p}$$

Dimana T_r adalah turnaround time

T_s adalah rata-rata **Service time** p adalah **CPU Utilization**

6. Synchronization and Deadlock

a) [LO 1, LO 4, 10 poin] Sebutkan dan jelaskan *Common concurrency mechanism* (min. 3) dan berikan contoh penggunaannya dalam bentuk *pseudo-code* atau *program code*.

Verified by,

[Muhammad Amien Ibrahim] (D6580) and sent to Program on Oct 31, 2021

b) [LO 2, 10 poin] Dalam sebuah sistem 4 proses (A, B, C and D) dan 4 sumber daya (S, T, U and V) sedang berjalan. Pada saat tersebut, proses sedang menggunakan sumber daya seperti tertera pada *matrix* dibawah ini. Sistem tersebut memiliki secara keseluruhan 5 unit sumber daya S, 5 unit sumber daya T, 5 unit sumber daya U and 5 unit sumber daya V.

Currer	nt Alloca	ation		
	S	T	U	V
Α	1	1	0	2
В	1	0	1	1
С	2	2	1	1
D	0	1	3	1

Matrix dibawah ini menunjukkan sumber daya yang masih dibutuhkan untuk dapat menyelesaikan proses.

	Need				
	S	Т		U	٧
А	1		1	0	0
В	0		0	3	0
С	3		4	1	1
D	2		1	0	1

Menggunakan algoritma Banker's, tentukan urutan poses yang harus dijalankan agar tidak terjadi *deadlock* (Jika ada).

-- Selamat Mengerjakan --