Foundation Calculation Report: «1750 OX Residences - 1750 N Oxford Ave. - Eau Claire, WI»

XC structural engineering

July 7, 2019

Contents

1	Building codes	1
2	Loading criteria2.1 Gravity loading2.2 Wind design criteria2.3 Snow loading	2 2 2 2
3	Seismic design criteria	3
4	Dead loads	4
5	Live loads	5
6	Snow loads	5
7	Wind loads	6
8	Earthquake loads	7
\mathbf{L}	ist of Tables	
	1 Gravity Loads	2 3 3 3

List of Figures

1 Building codes

The following building and material codes were used for the design:

• Building code

 International Building Code, 2018 Edition (IBC 2018) with reference to Minimum Design Loads for Buildings and Other Structures by the American Society of Civil Engineers, 2016 Edition (ASCE 7).

Material codes

- Reinforced Concrete: Building Code Requirements for Structural Concrete and Commentary by the American Concrete Institute, 2019 Edition (ACI 318).
- Masonry: Building Code Requirements and Specification for Masonry Structures and Companion Commentaries, 2013 Edition (ACI 530/530).

2 Loading criteria

A summary of the project-specific loading criteria follows (see appendix A for a detailed list of load values).

2.1 Gravity loading

The gravity loads listed in Table 1 are in addition to the self weight of the structure. The minimum loading requirements were taken from ASCE 7 as well as the loading criteria supplied by the engineer of record. Loads are given in pounds per square foot (psf).

UseSuperimposed Live Loading Dead Loading Parking Garage 40 3 125 28 Storage/HVAC Stairways, exits 100 28 Level 1 residential 40 28 Level 1 corridors 100 28 Level 1 office, recreational 100 28 Level 1 courtyard (footprint) 150 150 Elevated levels residential 40 28 Elevated levels corridors 40 28 Cornices 60 28 Balconies 40 Roof 20 28

Table 1: Gravity Loads

In addition to these uniform slab loads, a perimeter dead load of 12 psf was applied to the structure to account for the weight of the cladding system.

2.2 Wind design criteria

Wind loading is in accordance with the IBC and ASCE 7 requirements as shown in Table 2.

2.3 Snow loading

Wind loading is in accordance with the ASCE 7 requirements as shown in Table 3.

pag. 2 de 7 rev. 0.0

Table 2: Wind Design Criteria

Parameter	Value
Basic Wind Speed, 3-second gust (ultimate)	115 mph
Basic Wind Speed, 3-second gust (nominal)	90 mph
Exposure	В
Occupancy Category	II
Importance Factor (I_w)	1.0
Topographic Factor (K_{zt})	1.0
Enclosure Classification	Enclosed
Mean Roof Height (h)	33'

Table 3: Snow Design Criteria

Parameter	Value
Ground snow load p_g	60 psf
Terrain category	В
Exposure factor C_e	1.0
Thermal factor C_t	1.0
Occupancy Category	II
Snow load importance factor I_s	1.0
Snow load flat roof	42 psf

3 Seismic design criteria

Seismic loads are in accordance with the IBC requirements as shown in Table 4.

Table 4: Seismic Design Criteria

Parameter	Value
Building Latitude/Longitude	44°49'01.8"N 91°30'34.8"W
Occupancy Category	II
Importance Factor I_e	1.0
Mapped Spectral Acceleration	$S_s = 0.045; S_1 = 0.038$
Site Class	В
Site Class Coefficients	$F_a = 1.0; F_v = 1.0$
Spectral Response Coefficients	$S_{DS} = 0.03; S_{D1} = 0.025$
Seismic Design Category	A

4 Dead loads

Materials			
Wood structural panel	$36.0 \text{ pcf} = 5655 \frac{\text{newton}}{\text{meter}^3}$		
Concrete reinforced stone (including gravel)	150.0 pcf = $23563 \frac{\text{newton}}{\text{meter}^3}$		
Steel	$489.0 \text{ pcf} = 76816 \frac{\text{newton}}{\text{meter}^3}$		
Gypsum crete	$115.0 \text{ pcf} = 18065 \frac{\text{newton}}{\text{meter}^3}$		
Gypsum,loose	$70.0 \text{ pcf} = 10996 \frac{\text{newton}}{\text{meter}^3}$		
Earth (not submerged) sand and gravel (wet)	$120.0 \text{ pcf} = 18850 \frac{\text{newton}}{\text{meter}^3}$		
Water	$62.4 \text{ pcf} = 9802 \frac{\text{newton}}{\text{meter}^3}$		
Frame partitions Wood or steel studs, ½in gypsum board inside Wood studs, 2x4 unplastered Wood studs, 2x4 plastered one side Wood studs, 2x4 plastered two sides Movable steel partitions Frame walls Extension study well 2x4 @ 16in 5 gypsum insulated	8 psf = 383 pascal 4 psf = 192 pascal 12 psf = 575 pascal 20 psf = 958 pascal 4 psf = 192 pascal		
Exterior stud wall 2x4 @ 16in, $\frac{5}{8}$ gypsum insulated, $\frac{3}{8}$ in siding	11 psf = 526 pascal		
Exterior stud wall 2x6 @ 16in, $\frac{5}{8}$ gypsum insulated, $\frac{3}{8}$ in siding	12 psf = 575 pascal		
Exterior stud wall with brick veneer CMU wall 8in Window, glass, frame and sash	48 psf = 2298 pascal 60 psf = 9425 pascal 8 psf = 383 pascal		
Cladding Fiber cement panels, large format $38.4 \text{in} \times 102 \text{in}$ Fiber cement panels, small scale $9.6 \text{in} \times 102 \text{in}$ Perforated metal panel at exterior HVAC location	3.2 psf = 153 pascal 3.2 psf = 153 pascal		
Floor truss Single chord @ 24in o.c. spacing Double chord @ 24in o.c. spacing	3.2 psf = 153 pascal 4.25 psf = 203 pascal		
Sheating Roof sheating Floor sheating Ceilings Deck composite sleeperes (3in)	3.5 psf = 167 pascal 2.5 psf = 120 pascal 2.5 psf = 120 pascal 9.00 psf = 431 pascal		

pag. 4 de 7 $rev. \ 0.0$

5 Live loads

Occupancy or use	Uniform	Concentrated	Notes
Private rooms and corridors	40.0 psf =	-	IBC-2018 Table 1607.1
serving them in multifamily	1915 pascal		
dwelling			
Stairs and exits	100.0 psf =	300 pound =	IBC-2018 Table 1607.1.
	4788 pascal	1334 newton	Concentrated load on stair treads applied on an area
			of 2 inches by 2 inches
Balconies and decks	same as occu-	-	IBC-2018 Table 1607.1
	pancy served		
Garages (passenger vehicles	40.0 psf =	-	IBC-2018 Table 1607.1
only)	1915 pascal		
Cornices	60.0 psf =	-	IBC-2018 Table 1607.1
	2873 pascal		
Elevator machine room and con-	-	300 pound =	IBC-2018 Table 1607.1.
trol room grating		1334 newton	Concentrated load applied
			on an area of 2 inches by
El-t f (t:-1-1-)	20.0f	200 1	2 inches
Flat roof (not occupiable) + maintenace	$20.0 \text{ psf} = 0.50 \text{ psg/s}^{-1}$	300 pound = 1334 newton	IBC-2018 Table 1607.1
	958 pascal	1554 newton	 IBC-2018 Table 1607.1
Yards and terraces, pedestrians	100.0 psf = 4788 pascal	_	1BC-2018 1aute 1007.1
Sidewalks, vehicular driveways	250.0 psf =	8000 pound =	IBC-2018 Table 1607.1
and yards, subject to trucking	11970 pascal	35586 newton	
Corridors first floor	100.0 psf =	-	IBC-2018 Table 1607.1
	4788 pascal		
Store first floor	100.0 psf =	-	IBC-2018 Table 1607.1
	4788 pascal		

6 Snow loads

Ground snow load	$p_q = 60.0 \text{ psf} = 2873 \text{ pascal}$	ASCE 7. Figure 7.1
Exposure factor	$C_e = 1.0$	ASCE 7. Table 7-2. Terrain cat-
		egory B, roof partially exposed
Thermal factor	$C_t = 1.0$	ASCE 7. Table 7-3.
Snow load importance factor	$I_s = 1.0$	ASCE 7. Table 7-4. Structure
		risk category II
Snow load flat roof	$p_f = 0.7 \times C_e \times C_t \times I_s \times p_q = 0.7 \times$	ASCE 7. Sect. 7.3
	$1.0 \times 1.0 \times 1.0 \times 60.0 = 42.0 \text{ psf} =$	
	2873 pascal	

7 Wind loads

Alternate all-heights method.		IBC-2018, sect. 1609.6. Reg-
		ularly shaped building, less than
		75 feet in height, not sensitive
		to dynamic effects, not channel-
		ing effects or buffeting, simple di-
		aphragm building
Ultimate design wind speed	$V_{ult} = 115 \frac{\text{miles}}{\text{hour}} = 51 \frac{\text{meters}}{\text{second}}$	IBC-2018, figure 1609.3(1). Risk
		category II building
Velocity pressure exposure coef-	$K_z = 0.72$	ASCE 7, table 27.3.1. Exposure
ficient		B, height above ground level $z \approx$
		33 feet
Topographic factor	$K_{zt} = 1.0$	ASCE 7, sect. 26.8

Net pressure coefficients C_{net} . Main windforce-			<i>IBC-2018</i> ,
resisting frames and syst	closed		
Description	C_{net} + Internal C_{net} - Internal		
	pressure	presure	
Windward wall	0.43	0.73	
Leeward wall	-0.51	-0.21	
Sidewall	-0.66	-0.35	
Parapet windward wall	1.2	28	
Parapet leeward wall	-0.8	85	
Flat roof	-1.09	-0.79	
			•

IBC-2018, Table 1609.6.2, enclosed

Design wind pressure	IBC- 2018, sect.		
			1609.6.3
$P_{net} = 0.00256 \times V^2 \times I$	$K_z \times C_{net} \times K_{zt}$		
Description	P_{net} + Internal	P_{net} - Internal	
	pressure	presure	
Windward wall	10.5 psf = 501 pascal	17.8 psf = 852 pascal	
Leeward wall	-12.4 psf = -595 pascal	-5.1 psf = -245 pascal	
Sidewall	-16.1 psf = -770 pascal	-8.5 psf = -409 pascal	
Parapet windward wall	31.2 psf =	1494 pascal	
Parapet leeward wall	-20.7 psf =	-992 pascal	
Flat roof	-26.6 psf = -1272 pascal	-19.3 psf = -992 pascal	

pag. 6 de 7 $rev. \ 0.0$

8 Earthquake loads

Parameter 0.2-second spectral response acceleration	$S_s = 0.045$	IBC-2018, figure 1613.3.1(1). Site class B
Parameter 1-second spectral response acceleration	$S_1 = 0.038$	IBC-2018, figure 1613.3.1(2). Site class B
Seismic design category	$S_1 \leq 0.04 \ and \ S_s \leq 0.15 \rightarrow \mathrm{SDS} \ \mathrm{A}$	IBC-2018, sect. 1613.3.1
Site coefficients	$F_a = 1.0, F_v = 1.0$	IBC-2018, $tables$
		1613.3.3(1) and
		1613.3.3(2). Site class B
Maximum considered earthquake spectral re- sponse acceleration for short periods	$S_{MS} = F_a \cdot S_s = 0.045$	IBC-2018, sect. 163.3.3
	$S_{M1} = F_a \cdot S_1 = 0.038$	IBC-2018, sect. 163.3.3
Design spectral response acceleration parameters	$S_{DS} = \frac{2}{3} S_{MS} = 0.03$	IBC-2018, sect. 163.3.4
	$S_{D1} = \frac{2}{3} S_{M1} = 0.025$	IBC-2018, sect. 163.3.4