BSCS5002: Introduction to Natural Language Processing

Meaning Representation: Logical Semantics & Semantic Role Labelling

Parameswari Krishnamurthy

Language Technologies Research Centre IIIT-Hyderabad

param.krishna@iiit.ac.in

1106 KABAD

Introduction to Meaning Representation

- Meaning Representation involves representing the meaning of natural language in a form that machines can process and manipulate.
- It is crucial for enabling deeper understanding and inference in tasks like machine translation, question answering, and summarization.
- Two major approaches in meaning representation:
 - Logical Semantics
 - Semantic Role Labeling (SRL)

Challenges in Meaning Representation

- Natural language is ambiguous, context-dependent, and flexible.
- Meaning must be captured in a formalized, precise structure to enable:
 - Inference
 - Reasoning
 - Question answering
- Complexities include handling negation, quantifiers, modality, and disambiguation.

Logical Semantics Overview

- Logical Semantics is the study of meaning using formal logic.
- It provides a precise, unambiguous structure for representing sentence meaning.
- It helps us answer questions like:
 - What are the truth conditions of a sentence?
 - How do we represent meaning in a form that computers can process?
- The most common formalism is First-Order Logic (FOL).

Components of First-Order Logic (FOL)

- Constants: Represent specific entities (e.g., 'John').
- Predicates: Express properties or relations between entities (e.g., Loves(John, Mary)).
- Variables: Represent arbitrary entities (e.g., $\forall x, \exists y$).
- Quantifiers: Express quantities (e.g., $\forall x, \exists y$).
- Connectives: Logical operators (e.g., AND, OR, NOT).

Example of First-Order Logic (FOL)

Sentence: John loves Mary.

Logical Form: 'Loves(John, Mary)'

Predicate: 'Loves'

Arguments: 'John' and 'Mary'

 Interpretation: This formal representation can be used for reasoning, querying, and making inferences.

Quantifiers in First-Order Logic (FOL)

- Universal Quantifier (\forall): Indicates that the statement applies to all entities.
 - Example: All humans are mortal can be written as $\forall x (\operatorname{Human}(x) \to \operatorname{Mortal}(x)).$
- Existential Quantifier (∃): Indicates that the statement applies to at least one entity.
 - Example: There exists a person who loves Mary can be written as $\exists x (\mathsf{Person}(x) \land \mathsf{Loves}(x, \mathsf{Mary})).$

Logical Semantics and Truth Conditions

- Truth Conditions: Logical semantics can be used to define when a statement is true or false.
- A sentence like 'Loves(John, Mary)' is true if, in the world, John loves Mary.
- This is essential for building systems that can reason about the truth of statements or make inferences.

What is Semantic Role Labeling (SRL)?

- Semantic Role Labeling (SRL) is a process that identifies the roles of words in a sentence (who did what to whom).
- It captures the relationships between the predicate (verb) and its arguments (subject, object, etc.).
- SRL helps in understanding the meaning of sentences in tasks like machine translation, summarization, and question answering.

Importance of Semantic Role Labeling (SRL)

- SRL enables machines to understand who is doing what to whom, when, and where.
- It abstracts away from surface syntax, focusing on the deeper semantic structure of sentences.
- SRL is widely used in NLP tasks like information extraction, machine translation, and textual entailment.

Key Concepts in SRL

- Predicate: The main verb or action in the sentence.
- Arguments: The participants involved in the action.
- Semantic Roles:
 - Agent: The doer of the action.
 - Patient: The entity affected by the action.
 - Instrument: The tool used to perform the action.
 - Location: Where the action occurs.

Thematic Role	Definition	Example
Agent	The volitional causer of an event	The waiter spilled the soup.
Experiencer	The experiencer of an event	John has a headache.
Force	The non-volitional causer of the event	The wind blows debris from the mall into our yards.
Theme	The participant most directly affected by an event	Only after Benjamin Franklin broke the ice
Result	The end product of an event	The city built a regulation-size baseball diamond
Content	The proposition or content of a propositional event	Mona asked "You met Mary Ann at a supermarket?"
Instrument	An instrument used in an event	He poached catfish, stunning them with a shocking device
Beneficiary	The beneficiary of an event	Whenever Ann Callahan makes hotel reservations for her boss
Source	The origin of the object of a transfer event	I flew in from Boston.
Goal	The destination of an object of a transfer event	I drove to Portland.

Table: Thematic roles with their definitions. ¹

¹Speech and Language Processing. Daniel Jurafsky & James H. Martin.

Example of Semantic Role Labeling (SRL)

Figure: 1

Figure: 2

Example of Semantic Role Labeling (SRL)

Figure: 3

Figure: 4

Example of Semantic Role Labeling (SRL)

Sentence: John gave Mary a book.

- Predicate: Gave
- Agent (Who): John (the giver)
- Recipient (To whom): Mary (the receiver)
- Theme (What): A book (the item given)
- SRL Tags: [John] (Agent) [gave] (Predicate) [Mary] (Recipient) [a book] (Theme)

Semantic Role Sets

- Different semantic role sets are used in SRL systems:
 - PropBank: Focuses on predicate-argument structures for verbs.
 - FrameNet: Uses a broader set of semantic roles based on frames and scenarios.
- These role sets help standardize the labeling of different roles in sentences.

PropBank and FrameNet

- PropBank: Annotates predicates and their arguments based on verb-specific roles (e.g., 'Arg0', 'Arg1' for subject and object roles).
- FrameNet: Groups words into semantic frames that capture relationships between different participants in a scenario.
- Both frameworks are commonly used in SRL tasks to represent meaning in a structured way.

SRL and Machine Learning

- Supervised learning is often used to train SRL models.
- These models learn to identify semantic roles by training on labeled data (e.g., PropBank annotations).
- Techniques include Conditional Random Fields (CRF), Recurrent Neural Networks (RNNs), and Transformers.

Evaluation Metrics for SRL

- Precision: Proportion of correctly identified roles out of all roles identified.
- Recall: Proportion of correctly identified roles out of all true roles.
- F1 Score: Harmonic mean of precision and recall.

Logical Semantics vs. SRL

- Logical Semantics: Focuses on truth conditions and logical structure of sentences.
- Semantic Role Labeling: Focuses on identifying the roles of participants in an action.
- Both approaches contribute to understanding meaning, but they do so in different ways.

Applications of Logical Semantics and SRL

- Logical Semantics: Used in formal reasoning, query systems, and ontology mapping.
- Semantic Role Labeling: Used in information extraction, machine translation, and summarization.
- Both techniques are essential for enabling machines to "understand" natural language.

Conclusion

- Meaning representation is crucial for building systems that can understand and reason with natural language.
- Logical Semantics provides a formal structure for reasoning about truth conditions.
- Semantic Role Labeling (SRL) captures relationships between words in a sentence, focusing on "who did what to whom."