The Meaning of Cohen's d

Note and Disclaimer

- (1) This PDF is part of YouTube tutorials (https://youtu.be/p5Y5xJG5mDg). This PDF is for individual, personal usage only.
- (2) The author accepts no responsibility for the topicality, correctness, completeness or quality of the information provided.

Data Example

Group	1	2
	10	15
	20	25
	30	35
	40	45
	50	55
Mean	30	35
SD	15.81	15.81

Mean Difference

$$m_2 - m_1 = 35 - 30 = 5$$

Cohen's d

$$d = \frac{m_2 - m_1}{s_{pooled}} = \frac{m_2 - m_1}{\sqrt{\frac{s_1^2 + s_2^2}{2}}} = \frac{5}{15.81} = 0.32$$

Thus, the sole distinction between Cohen d and mean difference lies in the consideration of standard deviation.

Different Sizes of Effect Size

The following effect size numbers are from Jacob Cohen's Statistical Power Analysis for the Behavioral Sciences.

Effect Size	d.
	0.0
Small	0.2
Medium	0.5
T	0.0
Large	0.8

Cohen's d > 1

Cohen d can be greater than 1, when the pooled standard deviation is smaller than the mean difference.

Group	1	2
	1	6
	2	7
	3	8
	4	9
	5	10
Mean	3	8
SD	1.58	1.58

$$d = \frac{m_2 - m_1}{s_{pooled}} = \frac{m_2 - m_1}{\sqrt{\frac{s_1^2 + s_2^2}{2}}} = \frac{5}{1.58} = 3.16$$

Data Examples

Mean difference = 5 and SD = 1.58:

$$d = \frac{5}{1.58} = 3.16$$

```
# Set the seed for reproducibility
set.seed(123)
# Specify parameters
n1 <- 100 # Sample size for group 1
n2 <- 100 # Sample size for group 2
mean_diff <- 5  # Desired mean difference between groups
sd <- 1.58 # Common standard deviation for both groups
# Generate random samples for two groups
group1 <- rnorm(n1, mean = 0, sd = sd)</pre>
group2 <- rnorm(n2, mean = mean_diff, sd = sd)</pre>
# Perform a two-sample t-test
t.test(group1, group2)
##
##
   Welch Two Sample t-test
##
## data: group1 and group2
## t = -22.309, df = 197.35, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.101572 -4.272897
## sample estimates:
## mean of x mean of y
## 0.1428413 4.8300761
```

Mean difference = 5 and SD = 10:

$$d = \frac{5}{10} = 0.5$$

```
# Set the seed for reproducibility
set.seed(123)
# Specify parameters
n1 <- 100 # Sample size for group 1
n2 <- 100 # Sample size for group 2
mean_diff <- 5 # Desired mean difference between groups</pre>
sd <- 10 # Common standard deviation for both groups
# Generate random samples for two groups
group1 \leftarrow rnorm(n1, mean = 0, sd = sd)
group2 <- rnorm(n2, mean = mean_diff, sd = sd)</pre>
# Perform a two-sample t-test
t.test(group1, group2)
##
## Welch Two Sample t-test
##
## data: group1 and group2
## t = -2.2714, df = 197.35, p-value = 0.0242
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.6428618 -0.3980841
## sample estimates:
## mean of x mean of y
## 0.9040591 3.9245320
```

Mean difference = 5 and SD = 20:

$$d = \frac{5}{20} = 0.25$$

```
# Set the seed for reproducibility
set.seed(123)

# Specify parameters
n1 <- 100  # Sample size for group 1
n2 <- 100  # Sample size for group 2
mean_diff <- 5  # Desired mean difference between groups
sd <- 20  # Common standard deviation for both groups

# Generate random samples for two groups
group1 <- rnorm(n1, mean = 0, sd = sd)
group2 <- rnorm(n2, mean = mean_diff, sd = sd)

# Perform a two-sample t-test
t.test(group1, group2)</pre>
```

```
##
## Welch Two Sample t-test
##
## data: group1 and group2
## t = -0.3914, df = 197.35, p-value = 0.6959
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.285724  4.203832
## sample estimates:
## mean of x mean of y
## 1.808118  2.849064
```

Observations:

- (1) While the mean difference is kept the same, different standard deviations to different effect sizes, which lead to different p-values.
- (2) For the same sample size, larger effect sizes will lead to smaller p-values.