supervised by:
Prof. Ali Haidar
Eng. Hafez Al Khatib
Eng. Hassan Fayad

Mohamad Ghoush 202300735 Wafik Ibrahim 202301238 Abed Al Rida Nehme 202303149 Mostafa Ajineh 202304458

Key Problems

- -Doctor's physical unavailability
- -Time-sensitive operations

Introduction

Key Problems

- -Doctor's physical unavailability
- -Time-sensitive operations

Introduction

Purpose

-To enable remote surgical control via robotic arm for doctors

Key Problems

- -Doctor's physical unavailability
- -Time-sensitive operations

Introduction

Purpose

-To enable remote surgical control via robotic arm for doctors

Key solutions

-Real-time gesture control with the IMU sensors -Patient monitoring and Al integration

Remote control of robotic arm

Gesture-based 2 motion control

Real-time feedback 3 with patient vitals

Integration of data inputs

Addressing doctor unavailability 5

Objectives

Components

IMU sensors

We used the 10DOF version to control the tilt, rotation and movement of the hand

ESP8266

We used it to ensure good communication and ensure a good data logging and good control

Raspberry Pi

We used the 10DOF version to control the tilt, rotation and movement of the hand

camera

System architecture

Key components

Controlling side

- IMU sensors on glove
- ESP8266 for Wi-Fi communication

Controlled side

- Raspberry Pi for processing •
- Servo motors for arm movement
 - Camera for live video •
- Virtual sensors (Hear-Rate, Bp,etc...) •

Data Transmission and MQTT

Why MQTT?

Optimized for IoT • Low latency and • lightweight

Role

Sends IMU sensor data and receives video/vital feedback

MQTT

Lightweight protocol for loT

Programming tools:

Software Development

- Python Libraries
- Motor Control: RPI, GPIO, Pigpio.

Programming tools:

Software Development

- Python Libraries
- Motor Control: RPI, GPIO, Pigpio.

Data Processing

- Analyze IMU data -> Control servo motors
- Integrate Ai insights for doctor assistance

Programming tools:

Software Development

- Python Libraries
- Motor Control: RPI, GPIO, Pigpio.

Ensures precision of

sensors

Data Processing

- Analyze IMU data -> Control servo motors
- Integrate Ai insights for doctor assistance

System Accuracy

95% motion detection accuracy

Results and Evaluation

Key achievements

- Gesture control and motor
 Operation successful
- Integration of data and realtime feedback

Results and Evaluation

Data transmission

 The connection between the raspberry pi and the ESP was successful to a certain level

Results and Evaluation

Technical Challenges

- Sensor drift and inaccuracy
- Network latency issues
- Power supply stability

Challenges

Challenges

Mitigation

- Identify and Assess Risks
- Implement Preventive Measures
- Monitor and Adjust

Future Work

enhancements

Use high-definition camera
 Optimize motors and robot arm design
 Use dedicated servers for

communication

Future Work

Integration Options

-Combine IMU sensors with camera-based gesture recognition

enhancements

Use high-definition cameras
 Optimize motors and robotic are design
 Use dedicated servers for communication

Future Work

Broader Applications

-Manufacturing, Healthcare, Robotics, Research

Integration Options

-Combine IMU sensors with camera-based gesture recognition

enhancements

Use high-definition cameras
 Optimize motors and robotic and design
 Use dedicated servers for communication

Broader Applications

-Manufacturing, Healthcare, Robotics, Research

Integration Options

-Combine IMU sensors with camera-based gesture recognition

enhancements

Use high-definition cameras
 Optimize motors and robotic and design
 Use dedicated servers for communication

Biomedical Field

Remote surgeries, rehabilitation

Industrial use

Material handling, precision tasks

Research

Automation in various sectors

Practical Applications

-The project successfully demonstrated the integration of hardware and software to remotely control a robotic arm, achieving its primary objectives.

-The challenges faced provided valuable learning experiences, enhancing technical and problem-solving skills.

-Future improvements will focus on increasing precision, optimizing communication, and exploring real-world applications in fields like automation and manufacturing.

Conclusion