Оглавление

T	Деі	іствительные числа	3								
	1.1	Верхние и нижние грани числовых множеств	3								
	1.2	Теорема Кантора о вложенных отрезках	4								
	1.3	Счётные и несчётные множества	5								
2	Пре	едел числовой последовательности	8								
	2.1	Определение предела числовой последовательности	8								
	2.2	Единственность предела последовательности	8								
	2.3	Бесконечно малые последовательности	9								
	2.4	Свойства пределов, связанные с арифметическими опе-									
		рациями	11								
	2.5	Переход к пределу в неравенствах	12								
	2.6	Число е	14								
3	Понятие подпоследовательности, частичного предела										
		ледовательности. Критерий Коши	15								
	3.1	Понятие подпоследовательности, частичного предела									
		последовательности	15								
	3.2	Теорема Больцано-Вейерштрасса	16								
	3.3	Критерий Коши сходимости числовой последовательности	16								
4	Пре	едел функции	18								
	$4.\overline{1}$	Понятие предела функции	18								
	4.2	Критерий Коши существования конечного предела									
		функции	19								
	4.3	Односторонние пределы	21								
	4.4	Пределы монотонных функций	22								
5	Непрерывность функции в точке										
	5.1	Определение непрерывности в точке. Односторонняя									
		непрерывность. Точки разрыва, их классификация	23								
	5.2	Свойства функций, непрерывных в точке	25								
	5.3	Разрывы монотонных функций	26								
6	Сво	ойства функций, непрерывных на отрезке	28								

	0.1	отрезке функции	28								
7	Производная функции одной переменной										
	$7.\overline{1}$	Производная	30								
	7.2	Дифференциал	31								
	7.3	Геометрический смысл производной и дифференциала	32								
	7.4	Производная сложной функции	34								
	7.5	Производная функции, заданной параметрически	36								
8	Про	оизводные высших порядков	37								
	8.1	Производные высших порядков и формула Лейбница	37								
	8.2	Дифференциалы высших порядков	38								
9	Teo	Теоремы о среднем									
	9.1	Теорема Ферма	40								
	9.2	Теорема Ролля, Лагранжа, Коши	41								
	9.3	Правило Лопиталя раскрытия неопределённостей	44								
10	Фор	омула Тейлора	50								
	10.1	Формулы Тейлора	52								
11	Исс	ледование функции с помощью производных	54								
	11.1	Условия монотонности	54								
	11.2	Условия локального экстремума	55								
	11.3	Выпуклость	57								
		Доказательство теоремы 5 (необходимость)	61								
	11.5	Выпуклость в условиях второй производной	63								
12	Рав	номерная непрерывность функции на множестве	68								

1. Действительные числа

1.1. Верхние и нижние грани числовых множеств

Определение 1.1. 1) Число $M \in \mathbb{R}$ называется верхней гранью множества $A \subset \mathbb{R}$, если $\forall a \in A \hookrightarrow a \leqslant M$.

- 2) Множесство $A\subset\mathbb{R}$ называется ограниченным сверху, если существует (конечная) верхняя грань этого множества: $\exists M\in\mathbb{R}: \forall a\in A\hookrightarrow a\leqslant M.$
- 3) Число $m\in\mathbb{R}$ называется нижней гранью множества $A\subset\mathbb{R},$ если $\forall a\in A\hookrightarrow a\geqslant m.$
- 4) Множество $A \subset \mathbb{R}$ называется ограниченным снизу, если существует (конечная) нижняя грань этого множества: $\exists m \in \mathbb{R} : \forall a \in A \hookrightarrow a \geqslant m$.
- 5) Множество A называется ограниченным, если A ограничено сверху и ограничено снизу.

Определение 1.2.

$$\sup A = M \in \mathbb{R} \iff \left\{ \begin{array}{l} 1) \ \forall a \in A \hookrightarrow a \leqslant M \ u \\ 2) \ \forall M' < M \ \exists a \in A : \ M' < a. \end{array} \right.$$

ТЕОРЕМА 1.1. Пусть множество $A \subset \mathbb{R}$ ограничено сверху. Тогда существует единственное число $M \in \mathbb{R}$, которое является точной верхней гранью множества A.

Доказательство. Рассмотрим B — множество всех (конечных) верхних граней множества A. Так как множество A ограничено сверху, то B не пусто. Поскольку $\forall a \in A \ \forall b \in B \hookrightarrow a \leqslant b$, то по аксиоме непрерывности $\exists c \in \mathbb{R} : \forall a \in A \ \forall b \in B \hookrightarrow a \leqslant c \leqslant b$.

Покажем, что c является точной верхней гранью A. Так как $\forall a \in A \hookrightarrow a \leqslant c$, то c является верхней гранью A, т.е. $c \in B$. Поскольку $\forall b \in B \hookrightarrow c \leqslant b$, то c — минимальный элемент B. Итак, c — точная верхняя грань A.

Предположим, что $c_1, c_2 \in \mathbb{R}$ — две различные точные верхние грани множества A. Тогда c_1, c_2 — два различных минимальных элемента множества B. Пусть для определенности $c_1 < c_2$. Тогда c_2 не является минимальным элементом множества B. Противоречие. \square

1.2. Теорема Кантора о вложенных отрезках

Определение 1.3. Множество отрезков

$$\{[a_n; b_n]\}_{n=1}^{\infty} = \{[a_1; b_1], [a_2; b_2], \dots\},$$

 $-\infty < a_n < b_n < +\infty \forall n \in \mathbb{N},$

называется системой вложенных отрезков, если $[a_n; b_n] \supset [a_{n+1}; b_{n+1}] \ \forall n \in \mathbb{N}$, т.е. каждый отрезок содержит следующий за ним.

ТЕОРЕМА 1.2. (Кантора). Для всякой системы вложенных отрезков существует точка, принадлежащая всем отрезкам данной системы.

Доказательство. Для системы вложенных отрезков $\{[a_n;b_n]\}_{n=1}^{\infty}$ рассмотрим два непустых множества $A=\{a_n\}_{n=1}^{\infty}=\{a_1,a_2,\ldots\}$ и $B=\{b_n\}_{n=1}^{\infty}=\{b_1,b_2,\ldots\}$.

Очевидно, что $\forall n, m \in \mathbb{N}$

$$a_n \leqslant a_{n+m} < b_{n+m} \leqslant b_m$$
.

В силу аксиомы непрерывности существует число c такое, что

$$a_n \leqslant c \leqslant b_m \ \forall n, m \in \mathbb{N}.$$

В частности, при m=n получаем, что

$$c \in [a_n, b_n] \ \forall n \in \mathbb{N}.$$

П

1.3. Счётные и несчётные множества

Определение 1.4. Множества X и Y называются равномощными, если существует взаимно однозначное соотвествие $f:X\to Y$.

Определение 1.5. *Множество, равномощное множеству* \mathbb{N} , называется счётным.

Бесконечное множество, не являющееся счетным, называется несчётным.

ТЕОРЕМА 1.3. Множество рациональных чисел счётно.

Доказательство. Составим таблицу чисел (открытую снизу и справа), содержащую все рациональные числа (см. таблицу 1.1)

n m	0	1	-1	2	-2	3	-3	
1	0/1	1/1	-1/1	2/1	-2/1	3/1	-3/1	
2	0/2	1/2	-1/2	2/2	-2/2	3/2	-3/2	
3	0/3	1/3	-1/3	2/3	-2/3	3/3	-3/3	
:	:	::	:	:	:	:	:	:

Рис. 1.1 Таблица, содержащая все рациональные числа

[.] Будем двигаться по клеткам этой таблицы из левого верхнего угла по следующему пути:

n^m	0		1		-1		2	
1	$\frac{0}{1}$	\rightarrow	$\frac{1}{1}$		$\frac{-1}{1}$	\rightarrow	$\frac{2}{1}$	
			\downarrow		\uparrow		\downarrow	
2	$\frac{0}{2}$	\leftarrow	$\frac{1}{2}$		$\frac{-1}{2}$		$\frac{2}{2}$	
	↓				\uparrow		\downarrow	
3	$\frac{0}{3}$	\rightarrow	$\frac{1}{3}$	\rightarrow	$\frac{-1}{3}$		$\frac{2}{3}$	
							\downarrow	
			• • •		• • • •		• • •	• • •

нумеруя встречающиеся в клетках рациональные числа и пропуская при этом те из них, которые ранее уже встречались (сократимые дроби).

	v												
ЭЈ	п. табл.	$\frac{0}{1}$	<u>1</u>	$\frac{1}{2}$	$\frac{0}{2}$	$\frac{0}{3}$	$\frac{1}{3}$	$\frac{-1}{3}$	$\frac{-1}{2}$	$\frac{-1}{1}$	$\frac{2}{1}$	$\frac{2}{2}$	
	номер	1	2	3	_	_	4	5	6	7	8	_	

Тем самым мы установили взаимно однозначное соответствие между элементами таблицы (рациональными числами) и их номерами (натуральными числами), т. е. между множествами $\mathbb N$ и $\mathbb Q$. Следовательно, множество $\mathbb Q$ счётно. \square

ТЕОРЕМА 1.4. *Кантор. Множество всех точек отрезка* [0;1] *несчётно.*

Доказательство. Допустим противное. Тогда все точки отрезка [0;1] можно занумеровать: x_1,x_2,x_3,\ldots Поделим отрезок [0;1] на три равных отрезка и обозначим через $[a_1;b_1]$ один из них, свободный от точки x_1 . Поделим $[a_1;b_1]$ на три равных отрезка и обозначим через $[a_2;b_2]$ один из них, свободный от точки x_2 . Продолжая процесс, получим систему вложенных отрезков $\{[a_n;b_n]\}_{n=1}^{\infty}$. По теореме о вложенных отрезках существует точка c, принадлежащая всем отрезкам системы. Эта точка не совпадает ни с одной из занумерованных точек x_1,x_2,x_3,\ldots , так как любая из них x_j не содержится в отрезке $[a_j;b_j]$,

то время как c содержится в этом отрезке. Итак, при допущении, что все точки отрезка [0;1] занумерованы, мы пришли к противоречию, найдя точку $c\in[0;1]$, отличную от каждой из занумерованных. Это противоречие показывает, что наше допущение неверно. \square

Определение 1.6. Множество \mathbb{R} действительных чисел называют также числовым континуумом (continuum (лат.) — непрерывное, сплошное), а его мощность — мощностью континуума. Из теоремы Кантора следует, что множество \mathbb{R} несчётно.

2. Предел числовой последовательности

2.1. Определение предела числовой последовательности

Определение 2.1. Числовой последовательностью $\{a_n\}$ называется функция $a: \mathbb{N} \to \mathbb{R}$, где $a(n) = a_n$ для любого $n \in \mathbb{N}$. Элемент последовательности — это пара (n,a_n) , где n — номер элемента последовательности, а a_n — значение элемента последовательности.

Определение 2.2. Элемент $a\in \mathbb{R}$ называется пределом последовательности $\{a_n\}$, если

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow \ a_n \in U_{\varepsilon}(a).$$

Определение 2.3. Последовательность называется сходящейся (говорят, что она сходится), если она имеет конечный (т.е. принадлежащий \mathbb{R} предел). В противном случае последовательность называется расходящейся (говорят, что она расходится).

2.2. Единственность предела последовательности

ЛЕММА 2.1. Пусть $a,b \in \mathbb{R}$ и a < b. Тогда существует число $\varepsilon > 0$ такое, что

$$\forall x \in U_{\varepsilon}(a) \ \forall y \in U_{\varepsilon}(b) \ \hookrightarrow \ x < y,$$

а значит, окрестности $U_{\varepsilon}(a)$ и $U_{\varepsilon}(b)$ не пересекаются.

Доказательство. Возможны четыре случая:

- $(1) -\infty < a < b < +\infty;$
- $(2) -\infty < a < b = +\infty;$
- $(3) -\infty = a < b < +\infty;$
- $(4) -\infty = a < b = +\infty.$

в случае (1) положим
$$\varepsilon=\frac{b-a}{2}$$
, в случае (2): $\varepsilon=\frac{1}{|a|+1}$, в случае

(3):
$$\varepsilon = \frac{1}{|b|+1}$$
, в случае (4): $\varepsilon = 1$.

Пусть $x \in U_{\varepsilon}(a), \ y \in U_{\varepsilon}(b)$. Покажем, что в каждом из четырёх случаев x < y. Отсюда будет следовать, что окрестности $U_{\varepsilon}(a)$ и $U_{\varepsilon}(b)$ не пересекаются.

$$(1) x < a + \varepsilon = a + \frac{b-a}{2} = \frac{a+b}{2} = b - \varepsilon < y;$$

(2)
$$x \le a + 1 \le |a| + 1 = \frac{1}{\varepsilon} < y$$
.

Случаи (3) и (4) рассмотрите самостоятельно. \square

ТЕОРЕМА 2.1. (Единственность предела.) Числовая последовательность не может иметь более одного предела из $\bar{\mathbb{R}}$.

Доказательство. Предположим противное: последовательность $\{a_n\}$ имеет пределы $a,b\in\bar{\mathbb{R}},\ a\neq b.$ По лемме 2.1

$$\exists \varepsilon > 0 : U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = .$$

По определению предела

$$\exists N_1: \forall n \geqslant N_1 \hookrightarrow a_n \in U_{\varepsilon}(a),$$

$$\exists N_2: \ \forall n \geqslant N_2 \ \hookrightarrow \ a_n \in U_{\varepsilon}(b).$$

При $n\geqslant \max\{n_1,N_2\}$ получаем $a_n\in U_{arepsilon}(a)\cap U_{arepsilon}(b)$ — противоречие. \square

Задача 2.1. Докажите, что последовательность $\{a_n\}$, $a_n = \frac{1-(-1)^n}{2}$, не имеет ни конечного ни бесконечного предела.

2.3. Бесконечно малые последовательности

Определение 2.4. Последовательность $\{a_n\}$ называется бесконечно малой, если $\lim_{n\to\infty} a_n = 0$, т.е.

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow \ |a_n| < \varepsilon.$$

Непосредственно из определения предела последовательности следует, что $\lim_{n\to\infty} a_n = a \in \mathbb{R}$ тогда и только тогда, когда последовательность $\{a_n-a\}$ является бесконечно малой. Используя это обстоятельство, из свойств бесконечно малых последовательностей мы получим свойства пределов последовательностей, связанные с арифметическими действиями.

ЛЕММА 2.2. Если $\{a_n\}$, $\{b_n\}$ — бесконечно малые последовательности, то $\{a_n+b_n\}$ и $\{a_n-b_n\}$ — бесконечно малые последовательности.

Доказательство. Т.к.
$$\lim_{n\to\infty}a_n=0,\ \lim_{n\to\infty}b_n=0,\ \mathrm{to}$$

$$\forall \varepsilon > 0 \ \exists N_1 = N_1(\varepsilon) \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N_1 \ \hookrightarrow \ |a_n| < \frac{\varepsilon}{2},$$

$$\forall \varepsilon > 0 \ \exists N_2 = N_2(\varepsilon) \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N_2 \ \hookrightarrow \ |b_n| < \frac{\varepsilon}{2}.$$

Отсюда, используя неравенство треугольника

$$|a_n \pm b_n| \leqslant |a_n| + |b_n|,$$

получаем, что

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) = \max\{N_1, N_2\} \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow |a_n \pm b_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

T.e.
$$\lim_{n\to\infty} (a_n \pm b_n) = 0$$
. \square

ЛЕММА 2.3. Если $\{a_n\}$ — ограниченная последовательность, а $\{b_n\}$ — бесконечно малая последовательность, то $\{a_nb_n\}$ — бесконечно малая последовательность.

Доказательство. Поскольку последовательность $\{a_n\}$ ограничена, то

$$\exists M > 0: \ \forall n \in \mathbb{N} \ \hookrightarrow \ |a_n| \leqslant M.$$

Так как последовательность $\{b_n\}$ является бесконечно малой, то

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow \ |b_n| < \varepsilon.$$

Следовательно,

$$\forall \varepsilon > 0 \ \exists \bar{N} = N\left(\frac{\varepsilon}{M}\right) \in \mathbb{N}: \ \forall n \in \mathbb{N}, \ n \geqslant \bar{N} \ \hookrightarrow \ |a_n b_n| < M \frac{\varepsilon}{M} = \varepsilon.$$

Поэтому последовательность $\{a_nb_n\}$ является бесконечно малой. \square

2.4. Свойства пределов, связанные с арифметическими операциями

TEOPEMA 2.2. Ecau $\lim_{n\to\infty}a_n=a\in\mathbb{R},\ \lim_{n\to\infty}b_n=b\in\mathbb{R},\ mo\ cywe-cmsyom\ \lim_{n\to\infty}(a_n+b_n)=a+b\ u\ \lim_{n\to\infty}(a_n-b_n)=a-b.$

Доказательство. Так как последовательности $\{a_n-a\}$ и $\{b_n-b\}$ являются бесконечно малыми, то в силу леммы 2.2 последовательности $\{a_n+b_n-(a+b)\}=\{(a_n-a)+(b_n-b)\}$ и $\{a_n-b_n-(a-b)\}=\{(a_n-a)-(b_n-b)\}$ являются бесконечно малыми, т.е. $\lim_{n\to\infty}(a_n+b_n)=a+b$, $\lim_{n\to\infty}(a_n-b_n)=a-b$. \square

TEOPEMA 2.3. Ecsu $\lim_{n\to\infty}a_n=a\in\mathbb{R},\ mo\ cymeembellinger \lim_{n\to\infty}|a_n|=|a|.$

Доказательство. Имеем $||a_n|-|a||\leqslant |a_n-a|$. Отсюда и из условия $\lim_{n\to\infty}a_n=a$ в силу определения предела получаем, что $\lim_{n\to\infty}|a_n|=|a|$.

Teopema 2.4. Echu $\lim_{n\to\infty}a_n=a\in\mathbb{R},\ \lim_{n\to\infty}b_n=b\in\mathbb{R},\ mo\ cywe-cmeyom\ \lim_{n\to\infty}(a_nb_n)=ab.$

Доказательство. Требуется доказать, что последовательность $\{a_nb_n-ab\}$ являетя бесконечно малой.

Заметим, что $a_nb_n-ab=a_n(b_n-b)+(a_n-a)b$. Так как последовательность $\{a_n\}$ сходится, то по теореме \ref{an} она ограничена. В силу леммы 2.3 последовательности $\{a_n(b_n-b)\}$ и $\{(a_n-a)b\}$ бесконечно малые, следовательно, по лемме 2.2 последовательность $\{a_nb_n-ab\}$ также является бесконечно малой. \square

ЛЕММА 2.4. Если $\forall n \in \mathbb{N} \hookrightarrow a_n \neq 0$ и $\lim_{n \to \infty} a_n = a \in \mathbb{R} \backslash \{0\}$, то $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a}$.

Доказательство. В силу теоремы 2.3 имеем $\lim_{n\to\infty}|a_n|=|a|>0$. Отсюда, положив в определении предела последовательности $\varepsilon=\frac{|a|}{2}$, получаем, что $\exists N\in\mathbb{N}: \, \forall n\in\mathbb{N}, \, n\geqslant N\hookrightarrow |a_n|>|a|-\varepsilon=\frac{|a|}{2}$, т.е. $\exists N\in\mathbb{N}: \, \forall n\in\mathbb{N}, \, n\geqslant N\hookrightarrow \left|\frac{1}{a_n}\right|<\frac{2}{|a|}$.

Определим число $M = \max\left\{\frac{1}{|a_1|}, \dots, \frac{1}{|a_{N-1}|}, \frac{2}{|a|}\right\}$. Тогда $\forall n \in \mathbb{N}$ $\hookrightarrow \left|\frac{1}{a_n}\right| \leqslant M$, т.е. последовательность $\left\{\frac{1}{a_n}\right\}$ ограничена. Следовательно, последовательность $\left\{\frac{1}{a_n a}\right\}$ также ограничена. Отсюда и из леммы 2.3 следует, что последовательность $\left\{\frac{1}{a_n a}\right\} = \left\{\frac{1}{a_n a}(a-a_n)\right\}$ является бесконечно малой, т.е. $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a}$. \square

TEOPEMA 2.5. Ecau $\forall n \in \mathbb{N} \hookrightarrow a_n \neq 0, \lim_{n \to \infty} a_n = a \in \mathbb{R} \setminus \{0\}$ $u \lim_{n \to \infty} b_n = b \in \mathbb{R}, \ mo \lim_{n \to \infty} \frac{b_n}{a_n} = \frac{b}{a}.$

Доказательство. В силу леммы 2.4 имеем $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a}$. Поэтому, согласно, теореме 2.4, $\lim_{n \to \infty} \frac{b_n}{a_n} = \lim_{n \to \infty} b_n \frac{1}{a_n} = b \frac{1}{a} = \frac{b}{a}$. \square

Задача 2.2. Пусть последовательности $\{a_n + b_n\}$ и $\{a_n b_n\}$ сходятся. Верно ли, что последовательности $\{a_n\}$ и $\{b_n\}$ сходятся?

Задача 2.3. Пусть $\forall n\in\mathbb{N}\hookrightarrow b_n\neq 0,\ \lim_{n\to\infty}(a_n+b_n)=x,$ $\lim_{n\to\infty}\frac{a_n}{b_n}=y\geqslant 0.$ Верно ли, что последовательности $\{a_n\}$ и $\{b_n\}$ cxoдятся?

2.5. Переход к пределу в неравенствах

TEOPEMA 2.6. $\Pi ycmb \lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$, $\epsilon de A, B \in \mathbb{R}$, A < B. $To \epsilon da \exists N \in \mathbb{N} \colon \forall n \in \mathbb{N}, n \geqslant N \hookrightarrow a_n < b_n$.

Доказательство. В силу леммы 2.1 существует число $\varepsilon > 0$ такое, что $\forall x \in U_{\varepsilon}(A) \ \forall y \in U_{\varepsilon}(B) \hookrightarrow x < y$.

По определению предела

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \geqslant N_1 \hookrightarrow a_n \in U_{\varepsilon}(A),$$

$$\exists N_2 \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \geqslant N_2 \hookrightarrow b_n \in U_{\varepsilon}(B).$$

Определив $N=\max\{N_1,N_2\}$ получаем требуемое утверждение. \square

ТЕОРЕМА 2.7. (О предельном переходе в неравенстве.) Ес $nu\lim_{n\to\infty}a_n=A, \lim_{n\to\infty}b_n=B, A,B\in\bar{\mathbb{R}}\ u\ \exists N\in\mathbb{N}: \forall n\in\mathbb{N},\ n\geqslant N\hookrightarrow A$ $a_n \leqslant b_n$, mo $A \leqslant B$.

Доказательство. Предположим противное: A > B. По теореме 2.6 $\exists N_1 \in \mathbb{N}: \, \forall n \in \mathbb{N}, \, n \geqslant N_1 \hookrightarrow b_n < a_n. \$ При $n \geqslant \max\{N,N_1\}$ получаем противоречие с условием $a_n \leqslant b_n$. \square

Следствие 2.1. Если $\exists N \in \mathbb{N}: \forall n \in \mathbb{N}, \ n \geqslant N \hookrightarrow a_n < B$, $\lim a_n = A, A, B \in \overline{\mathbb{R}}, mo A \leqslant B.$

Доказательство. Если $B \in \mathbb{R}$, то определим $\{b_n\} = \{B\}$ и, применяя теорему 2.7, получаем неравенство $A \leq B$.

Если $B = +\infty$, неравенство $A \leq B$ также выполнено.

Случай $B = -\infty$ не реализуется, т.к. $\forall n \in \mathbb{N}, n \geqslant N \hookrightarrow a_n < B$. \square

Замечание 2.1. Из условий $\forall n \in \mathbb{N} \hookrightarrow a_n < b_n$, $\lim_{n \to \infty} a_n = A$, $\lim_{n \to \infty} b_n = B \text{ ne credyem, umo } A < B.$

Например,
$$a_n = 0$$
, $b_n = \frac{1}{n}$, $A = B = 0$.

ТЕОРЕМА 2.8. (О трех последовательностях.) Если $\exists N \in$ \mathbb{N} . $\forall n \in \mathbb{N}, n \geqslant N \hookrightarrow a_n \leqslant b_n \leqslant n, \lim_{n \to \infty} a_n = \lim_{n \to \infty} n = A \in \mathbb{R}, mo$ $\lim_{n \to \infty} b_n = A.$

Доказательство. По определению предела для любого $\varepsilon > 0$

$$\exists N_1 \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \geqslant N_1 \hookrightarrow a_n \in U_{\varepsilon}(A),$$

$$\exists N_2 \in \mathbb{N} : \forall n \in \mathbb{N}, \ n \geqslant N_2 \hookrightarrow c_n \in U_{\varepsilon}(A).$$

Обозначим $\bar{N}=\max\{N,N_1,N_2\}$. Тогда при $n\geqslant \bar{N}$ имеем

$$A - \varepsilon < a_n \leqslant b_n \leqslant c_n < A + \varepsilon$$

следовательно, $b_n \in U_{\varepsilon}(A)$.

Итак,

$$\forall \varepsilon > 0 \; \exists \bar{N} \in \mathbb{N} : \; \forall n \in \mathbb{N}, \; n \geqslant \bar{N} \; \hookrightarrow \; b_n \in U_{\varepsilon}(A),$$

T.e. $\lim_{n\to\infty}b_n=A$. \square

Teopema 2.9. $\Pi y cmb \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, n \geqslant N \hookrightarrow a_n \leqslant b_n$. Torda

- 1) $ecnu \lim_{n\to\infty} a_n = +\infty$, $mo \lim_{n\to\infty} b_n = +\infty$; 2) $ecnu \lim_{n\to\infty} b_n = -\infty$, $mo \lim_{n\to\infty} a_n = -\infty$.

Доказательство.

1) По определению предела

$$\forall \varepsilon > 0 \ \exists N_1 \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N_1 \ \hookrightarrow \ a_n \in U_{\varepsilon}(+\infty) = (\varepsilon, +\infty),$$

т.е. $a_n>\varepsilon$, но тогда $b_n\geqslant a_n>\varepsilon$ $\forall n\in\mathbb{N},\ n\geqslant \max\{N,N_1\}$. Следовательно,

$$\forall \varepsilon > 0 \ \exists N_2 = \max\{N, N_1\} \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N_2 \ \hookrightarrow \ b_n \in U_{\varepsilon}(+\infty),$$

а значит, $\lim_{n\to\infty} b_n = +\infty$.

Доказательство пункта 2) аналогично. \square

2.6. Число *е*

ЛЕММА 2.5. (Якоб Бернулли) Для любого x > -1 и любого $n \in \mathbb{N}$ справедливо неравенство

$$(1+x)^n \geqslant 1 + nx.$$

Теорема 2.10. Последовательность $a_n = (1 + 1/n)^n$ сходится.

Доказательство. Рассмотрим вспомогательную последовательность $b_n = (1+1/n)^{n+1}$. Во-первых, она ограничена снизу: $b_n > 1$.

Далее, исследуем ее на монотонность. С этой целью рассмотрим отношение значений последовательности:

$$\frac{b_{n-1}}{b_n} = \left(\frac{n}{n-1}\right)^n \left(\frac{n}{n+1}\right)^{n+1} = \left(\frac{n^2}{n^2-1}\right)^{n+1} \frac{n-1}{n} =$$

$$= \left(1 + \frac{1}{n^2-1}\right)^{n+1} \frac{n-1}{n} \geqslant \left(1 + \frac{n+1}{n^2-1}\right) \frac{n-1}{n} = \left(1 + \frac{1}{n-1}\right) \frac{n-1}{n} = 1,$$

мы применили неравенство Бернулли с $x = (n^2 - 1)^{-1}$ и показателем n+1. Значит, последовательность b_n невозрастающая. Поэтому последовательность b_n сходится как ограниченная снизу и невозрастающая.

Поскольку $a_n=b_n(1+1/n)^{-1}$, то $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n/\lim_{n\to\infty}(1+1/n)=\lim_{n\to\infty}b_n$. \square

Определение 2.5. Числом Леонарда Эйлера (1707–1783) называют $e:=\lim_{n\to\infty}(1+1/n)^n$.

Доказано, что e — иррациональное число.

3. Понятие подпоследовательности, частичного предела последовательности. Критерий Коши

3.1. Понятие подпоследовательности, частичного предела последовательности

Определение 3.1. Последовательность $\{b_k\}$ называется подпоследовательностью последовательности $\{a_n\}$, если существует строго возрастающая последовательность натуральных чисел $\{n_k\}$: $\forall k \in \mathbb{N} \hookrightarrow b_k = a_{n_k}$.

ПРИМЕР 3.1. Сама последовательность является своей подпоследовательностью.

ПРИМЕР 3.2. Пусть задана последовательность $\{a_n\}$. Последовательность $\{a_{2k}\}$, составленная из элементов $\{a_n\}$ с четными номерами, является подпоследовательностью последовательности $\{a_n\}$. Действительно, для любого $k \in \mathbb{N}$ определим $n_k = 2k$. Тогда $\{n_k\}$ — строго возрастающая последовательность натуральных чиссел и $\forall k \in \mathbb{N} \hookrightarrow a_{2k} = a_{n_k}$.

Определение 3.2. Если последовательность $\{b_k\}$ является подпоследовательностью $\{a_n\}$ и существует $\lim_{k\to\infty}b_k=A\in\bar{\mathbb{R}},$ то А называется частичным пределом последовательности $\{a_n\}$.

3.2. Теорема Больцано-Вейерштрасса

ТЕОРЕМА 3.1. (Теорема Больцано-Вейерштрасса) Ограниченная последовательность имеет хотя бы один конечный частичный предел.

Доказательство. Пусть последовательность $\{x_n\}$ ограничена, т.е.

$$\exists a_0, b_0 : \forall n \in \mathbb{N} \hookrightarrow x_n \in [a_0, b_0].$$

Определим $c_0 = (a_0 + b_0)/2$. Если в отрезке $[a_0, 0]$ содержатся значения бесконечного набора членов $\{x_n\}$, то определим $[a_1, b_1] = [a_0, 0]$. В противном случае в отрезке $[c_0, b_0]$ содержатся значения бесконечного набора членов $\{x_n\}$, тогда определим $[a_1, b_1] = [c_0, b_0]$.

Пусть определён отрезок $[a_k,b_k]$, в котором содержатся значения бесконечного набора членов последовательности $\{x_n\}$. Обозначим $c_k=(a_k+b_k)/2$. Если в отрезке $[a_k,k]$ содержатся значения бесконечного набора членов $\{x_n\}$, то определим $[a_{k+1},b_{k+1}]=[a_k,k]$. В противном случае определим $[a_{k+1},b_{k+1}]=[c_k,b_k]$. Так как этот процесс не может оборваться, мы получаем последовательность вложенных отрезков, которые по теореме Кантора имеют общую точку $x\in\bigcap_{k\in\mathbb{N}}[a_k,b_k]$.

Заметим, что $b_k-a_k=\frac{b_0-a_0}{2^k}$. Индукцией по k получаем, что $2^k>k$ $\forall k\in\mathbb{N}$. Поэтому $b_k-a_k=\frac{b_0-a_0}{2^k}\to 0$ при $k\to\infty$. Следовательно, для любого $\varepsilon>0$ найдётся $k\in\mathbb{N}$: $b_k-a_k<\varepsilon/2$. Отсюда и из включения $x\in[a_k,b_k]$, получаем, что $[a_k,b_k]\subset U_\varepsilon(x)$. Итак,

$$\forall \varepsilon > 0 \ \exists k \in \mathbb{N} : \ [a_k, b_k] \subset U_{\varepsilon}(x).$$

Таким образом, для любого $\varepsilon > 0$ в $U_{\varepsilon}(x)$ содержатся значения бесконечного набора элементов $\{x_n\}$. В силу критерия частичного предела число x является частичным пределом $\{x_n\}$. \square

3.3. Критерий Коши сходимости числовой последовательности

Определение 3.3. Будем говорить, что последовательность $\{x_n\}$ фундаментальна или удовлетворяет условию Коши, если

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N}: \ \forall n, m \in \mathbb{N}, \ n \geqslant N, \ m \geqslant N \ \hookrightarrow \ |x_n - x_m| < \varepsilon.$$

ЛЕММА 3.1. Сходящаяся последовательность фундаментальна.

Доказательство. Пусть $\{x_n\}$ сходится к числу x. Тогда

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow \ |x_n - x| < \varepsilon/2$$

и, следовательно,

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N}: \ \forall n, m \in \mathbb{N}, \ n \geqslant N, \ m \geqslant N \ \hookrightarrow N$$

$$\hookrightarrow |x_n - x_m| \le |x_n - x| + |x_m - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

ЛЕММА 3.2. Фундаментальная последовательность ограничена.

Доказательство. Пусть $\{x_n\}$ фундаментальна. Возьмём $\varepsilon=1$, тогда $\exists N=N(\varepsilon)\in\mathbb{N}: \ \forall n,m\in\mathbb{N},\ n\geqslant N,\ m\geqslant N \ \hookrightarrow \ |x_n-x_m|<\varepsilon$, следовательно, $\forall n\in\mathbb{N},\ n\geqslant N \ \hookrightarrow \ |x_N-x_n|<1$. Определим $M=\max\{|x_1|,\ldots,|x_{N-1}|,|x_N|+1\}$. Тогда $\forall n\in\mathbb{N} \ \hookrightarrow \ |x_n|\leqslant M$. \square

ТЕОРЕМА 3.2. (**Критерий Коши**) $\{x_n\}$ сходится $\Leftrightarrow \{x_n\}$ фундаментальна.

Доказательство. Если $\{x_n\}$ сходится, то по лемме 3.1 она фундаментальна. Пусть $\{x_n\}$ фундаментальна. По лемме 3.2 $\{x_n\}$ ограничена, следовательно, по теореме Больцано-Вейерштрасса существует $x \in \mathbb{R}$ — частичный предел $\{x_n\}$. Докажем, что $\lim_{n \to \infty} x_n = x$.

Пусть задано любое $\varepsilon>0$. Из фундаментальности $\{x_n\}$ следует существование номера N такого, что

$$\forall n, m \in \mathbb{N}, \ n \geqslant N, \ m \geqslant N \ \hookrightarrow \ |x_n - x_m| < \varepsilon/2.$$

В силу критерия частичного предела найдётся номер $m\geqslant N$ такой, что $|x-x_m|<\varepsilon/2$. Следовательно,

$$\forall n \in \mathbb{N}, n \geqslant N \iff |x_n - x| \leqslant |x_n - x_m| + |x_m - x| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Итак,

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \ \forall n \in \mathbb{N}, \ n \geqslant N \ \hookrightarrow \ |x_n - x| < \varepsilon.$$

Поэтому последовательность $\{x_n\}$ сходится к x. \square

4. Предел функции

4.1. Понятие предела функции

Определение 4.1. (Определение предела по Коши.) Пусть задана функция $f:X\to\mathbb{R}$ и заданы $A\in\overline{\mathbb{R}}\cup\{\infty\},\,x_0\in\overline{\mathbb{R}}\cup\{\infty\},\,$ причём $\exists \delta_0>0\colon \overset{o}{U}_{\delta_0}(x_0)\subseteq X.$ Тогда пишут

$$A = \lim_{x \to x_0} f(x) \ \textit{unu} \ f(x) \to A \ \textit{npu} \ x \to x_0,$$

ecnu

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) \in (0; \delta_0] : \; \forall x \in \overset{\circ}{U_{\delta}}(x_0) \; \hookrightarrow \; f(x) \in U_{\varepsilon}(A). \tag{4.1}$$

Определение 4.2. Последовательность $\{x_n\}$ называется последовательностью Гейне в точке $x_0 \in \overline{\mathbb{R}}$, если

- $1) \lim_{n \to \infty} x_n = x_0 \ u$
- 2) $x_n \neq x_0 \ \forall n \in \mathbb{N}$.

Определение 4.3. (Определение предела по Гейне.) Пусть задана функция $f: X \to \mathbb{R}$ и заданы элементы $A \in \overline{\mathbb{R}} \cup \{\infty\}$, $x_0 \in \overline{\mathbb{R}} \cup \{\infty\}$. Тогда пишут $A = \lim_{x \to x_0} f(x)$, если для любой $\{x_n\} -$ последовательности Гейне в точке x_0 такой, что $x_n \in X$ при всех $n \in \mathbb{N}$, предел последовательности $\{f(x_n)\}$ существует и равен A.

ТЕОРЕМА 4.1. Пусть задана функция $f: X \to \mathbb{R}$, пусть $x_0, A \in \mathbb{R} \cup \{\infty\}$ и $U_{\delta_0}(x_0) \subseteq X$, $\delta_0 > 0$. Следующие условия эквивалентны:

- (1) $A = \lim_{x \to x_0} f(x)$ no Kowu;
- (2) $A = \lim_{x \to x_0} f(x)$ по Гейне.

Доказательство.

(1) \Rightarrow (2). Пусть $A=\lim_{x\to x_0}f(x)$ по Коши, т.е.

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) \in (0; \delta_0] : \; \forall x \in \stackrel{\circ}{U_\delta}(x_0) \; \hookrightarrow \; f(x) \in U_\varepsilon(A). \tag{4.2}$$

Пусть $\{x_n\}$ — произвольная последовательность Гейне в точке x_0 . Тогда по определению предела последовательности и в силу условия $x_n \neq x_0$ имеем

$$\forall \delta > 0 \; \exists N = N(\delta) \in \mathbb{N} : \; \forall n \in \mathbb{N}, \; n \geqslant N \; \hookrightarrow \; x_n \in \overset{\circ}{U_{\delta}}(x_0). \tag{4.3}$$

Применим (7.3) к δ из (4.2), тогда

$$\forall \varepsilon > 0 \; \exists N = N(\delta) \in \mathbb{N} : \; \forall n \in \mathbb{N}, \; n \geqslant N \; \hookrightarrow \; f(x_n) \in U_{\varepsilon}(A),$$

т.е. $\lim_{n\to\infty}f(x_n)=A$. Значит, $A=\lim_{x\to x_0}f(x)$ по Гейне.

 $(2){\Rightarrow}(1).$ Предположим противное: $A=\lim_{x\to x_0}f(x)$ по Гейне, но не по Коши.

Тогда

$$\exists \varepsilon > 0 : \forall \delta \in (0; \delta_0] \ \exists x \in \overset{\circ}{U_{\delta}} (x_0) : \ f(x) \notin U_{\varepsilon}(A).$$

Следовательно,

$$\exists \varepsilon > 0 : \forall n \in \mathbb{N} \ \exists x_n \in \stackrel{\circ}{U}_{\delta_0/n}(x_0) : \ f(x_n) \notin U_{\varepsilon}(A).$$

Из условия $\forall n \in \mathbb{N} \hookrightarrow \exists x_n \in \stackrel{o}{U}_{\delta_0/n}(x_0)$ следует, что $\lim_{n \to \infty} = x_0$ и $x_n \neq x_0 \ \forall n \in \mathbb{N}$. Таким образом, мы получили последовательность Гейне $\{x_n\}$ в точке x_0 такую, что $f(x_n) \nrightarrow A$ при $n \to \infty$ — противоречие. \square

4.2. Критерий Коши существования конечного предела функции

ЛЕММА 4.1. Пусть функция f определена в некоторой $\overset{\circ}{U}_{\delta_0}(x_0)$, $x_0 \in \overline{\mathbb{R}}$, u пусть для любой последовательности Гейне $\{x_n\}$ в точке x_0 существует $\lim_{n \to \infty} f(x_n) = A \in \mathbb{R}$.

Тогда этот предел не зависит от последовательности Гейне: $\exists A \in \mathbb{R}$: для любой последовательности Гейне $\{x_n\}$ в точке $x_0 \hookrightarrow A = \lim_{n \to \infty} f(x_n)$.

Доказательство. Пусть имеются две произвольные последовательности Гейне в точке x_0 : $\{x_n\}$ и $\{y_n\}$, т.е. $\lim_{n\to\infty} x_n = x_0$, $\lim_{n\to\infty} y_n = x_0$ и $\forall n\in\mathbb{N} \hookrightarrow x_n\neq x_0,\ y_n\neq y_0$. Составим из них последовательность $\{z_k\}$:

$$z_k = \begin{cases} x_n, & k = 2n - 1, \\ y_n, & k = 2n. \end{cases}$$

Последовательность $\{z_k\}$ также является последовательностью Гейне, так как $\lim_{k\to\infty}z_k=x_0,\,\forall k\in\mathbb{N}\hookrightarrow z_k\neq x_0.$ Поэтому в силу условия леммы, $\exists\lim_{k\to\infty}f(z_k).$ Так как последовательности $\{f(x_n\}\text{ и }\{f(y_n\}\text{ являются подпоследовательностями сходящейся последовательности }\{f(z_k\},\text{ то }\lim_{n\to\infty}f(x_n)=\lim_{n\to\infty}f(y_n).$

Определение 4.4. Пусть функция f определена в некоторой $\stackrel{o}{U}_{\delta_0}(x_0)$. Условие Коши существования предела функции в точке x_0 состоит в том, что

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) \in (0; \delta_0] : \; \forall x_1, x_2 \in \overset{\circ}{U}_{\delta}(x_0) \; \hookrightarrow \; |f(x_1) - f(x_2)| < \varepsilon. \tag{4.4}$$

ТЕОРЕМА 4.2. (Критерий Коши.)

 $\exists \lim_{x \to x_0} f(x) \in \mathbb{R} \Leftrightarrow$ выполнено условие Коши существования предела функции f в точке x_0 .

Доказательство.

$$(\Rightarrow)$$
 Пусть $\exists \lim_{x \to x_0} f(x) = A \in \mathbb{R}$. Тогда

$$\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) \in (0; \delta_0] : \; \forall x \in \overset{\circ}{U}_{\delta}(x_0) \; \hookrightarrow \; |f(x) - A| < \varepsilon/2.$$

Следовательно,

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) \in (0; \delta_0] : \ \forall x_1, x_2 \in \overset{\circ}{U}_{\delta}(x_0) \ \hookrightarrow$$

$$\hookrightarrow |f(x_1) - f(x_2)| \leq |f(x_1) - A| + |f(x_2) - A| < \varepsilon/2 + \varepsilon/2 < \varepsilon$$

т.е. выполнено условие Коши.

 (\Leftarrow) Пусть выполнено условие Коши. Возьмём произвольную последовательность Гейне в точке x_0 : $x_n \to x_0, x_n \neq x_0$. Тогда

$$\forall \delta \in (0; \delta_0] \ \exists N \in \mathbb{N} : \ \forall n \geqslant N \ \hookrightarrow \ x_n \in \overset{o}{U}_{\delta} (x_0). \tag{4.5}$$

Используя условие (4.5) для δ из (4.4), получаем

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, k \in \mathbb{N}, n \geqslant N, k \geqslant N \ \hookrightarrow \ |f(x_n) - f(x_k)| < \varepsilon,$$

т.е. выполнено условие Коши существования предела последовательности $\{f(x_n)\}$. В силу критерия Коши для последовательностей существует $\lim_{n\to\infty} f(x_n) = A \in \mathbb{R}$.

Итак, для любой последовательности Гейне $\{x_n\}$ в точке x_0 существует $A=\lim_{n\to\infty}f(x_n)\in\mathbb{R},$ тогда по лемме 4.1

$$\exists A \in \mathbb{R} : \ \forall \ \text{посл.}$$
 Гейне $\{x_n\}$ в точке $x_0 \hookrightarrow A = \lim_{n \to \infty} f(x_n)$.

Пользуясь определением предела функции по Гейне, получаем $\exists \lim_{x \to x_0} f(x) = A \in \mathbb{R}.$ \Box

Задача 4.1. Пусть

$$\forall \varepsilon > 0 \ \exists A \in \mathbb{R} \ \exists \delta > 0 : \ 0 < |x - x_0| < \delta \ \hookrightarrow \ |f(x) - A| < \varepsilon.$$

Верно ли, что $\exists \lim_{x \to x_0} f(x) = A \in \mathbb{R}$?

Задача 4.2. Пусть задана функция $f:(0,+\infty)\to\mathbb{R}$. Верно ли, что $\exists\lim_{x\to+\infty}f(x)=\mathbb{R},\ ecлu$

- a) $\forall \varepsilon > 0 \ \forall d > 0 \ \exists x_0 > 0 : \ \forall x > x_0 \ \hookrightarrow \ |f(x+d) f(x)| < \varepsilon;$
- $(6)\ \forall \varepsilon>0\ \exists x_0>0:\ \forall d>0\ \hookrightarrow\ |f(x_0+d)-f(x_0)|<\varepsilon?\ Paccмompemb$ данный вопрос отдельно для каждого из условий a) и б)?

4.3. Односторонние пределы

Определение 4.5. Пусть функция f определена на интервале (a,x_0) . Предел функции f в точке x_0 по множеству (a,x_0) называют пределом слева функции f в точке x_0 и обозначают $\lim_{x\to x_0-0} f(x)$ или $f(x_0-0)$.

Определение 4.6. Пусть функция f определена на интервале (x_0, b) . Предел функции f в точке x_0 по множеству (x_0, b) называют пределом справа функции f в точке x_0 и обозначают $\lim_{x \to x_0 + 0} f(x)$ или $f(x_0 + 0)$.

4.4. Пределы монотонных функций

ТЕОРЕМА 4.3. (Об одностороннем пределе монотонной функции.)

- 1. Если функция f нестрого возрастает на (a, x_0) , то $\exists f(x_0 0) = \sup_{x \in (a, x_0)} f(x)$.
- 2. Если функция f нестрого убывает на (a, x_0) , то $\exists f(x_0 0) = \inf_{x \in (a, x_0)} f(x)$.
- 3. Если функция f нестрого возрастает на $(x_0,b),$ то $\exists f(x_0+0)=\inf_{x\in(x_0,b)}f(x).$
- 4. Если функция f нестрого возрастает на $(x_0,b),$ то $\exists f(x_0+0)=\sup_{x\in(x_0,b)}f(x).$

Доказательство. Пусть функция f нестрого возрастает на (a, x_0) . Так как конечный или бесконечный супремум любого множества существует, то существует $\sup_{x \in (a, x_0)} f(x) = M \in \mathbb{R} \bigcup \{+\infty\}$.

Из определения супремума следует, что $\forall x \in (a, x_0) \hookrightarrow f(x) \leqslant M$ и, кроме того, $\forall M_1 < M \ \exists x_1 \in (a, x_0) : M_1 < f(x_1)$. Отсюда и из возрастания функции f следует, что $\forall x \in x_1, x_0 \hookrightarrow M_1 < f(x_1) \leqslant f(x)$.

Итак, $\forall M_1 < M \ \exists x_1 \in (a,x_0) : \forall x \in x_1, x_0 \hookrightarrow M_1 < f(x_1) \leqslant f(x)$. Следовательно, $\forall \varepsilon > 0 \ \exists x_1 \in (a,x_0) : \forall x \in x_1, x_0 \hookrightarrow f(x) \in U_\varepsilon(M)$, т.е. $\forall \varepsilon > 0 \ \exists \delta = x_0 - x_1 > 0 : \forall x \in x_0 - \delta, x_0 \hookrightarrow f(x) \in U_\varepsilon(M)$, а значит, $M = f(x_0 - 0)$. Другие случаи рассматриваются аналогично. \square

5. Непрерывность функции в точке

5.1. Определение непрерывности в точке. Односторонняя непрерывность. Точки разрыва, их классификация

Определение 5.1. Пусть функция f определена в некоторой δ -окрестности точки x_0 . Тогда f называется непрерывной в точке x_0 , если $\lim_{x\to x_0}=f(x_0)$.

Определение 5.2. Пусть функция f определена в $\overset{\circ}{U}_{\delta}$ (x_0) . Тогда

а) если $\exists \lim_{x \to x_0} f(x) \in \mathbb{R}$, но в точке x_0 функция f не определена либо $f(x_0) \neq \lim_{x \to x_0} f(x)$, то точка x_0 называется точкой устранимого разрыва;

б) если $\exists \ f(x_0 \pm 0) \in \mathbb{R}$, но $f(x_0 - 0) \neq f(x_0 + 0)$, то $x_0 - m$ очка разрыва первого рода;

в) если какой-либо из пределов $f(x_0-0),\ f(x_0+0)$ не существует или бесконечен, то x_0 — точка разрыва второго рода.

ЛЕММА 5.1. Пусть f определена в $U_{\delta_0}(x_0)$. Следующие условия эквивалентны:

- (1) f непрерывна в x_0 ;
- (2) $\forall \varepsilon > 0 \ \exists \delta \in (0, \delta_0] : \ \forall x \in U_{\delta}(x_0) \ \hookrightarrow \ |f(x) f(x_0)| < \varepsilon;$
- (3) $\forall \{x_n\} \subset U_{\delta_0}(x_0) : \lim_{n \to \infty} x_n = x_0 \hookrightarrow \lim_{n \to \infty} f(x_n) = f(x_0).$

Доказательство.

- (1) \Leftrightarrow (2) следует из определения $\lim_{x\to x_0} f(x) = f(x_0)$ по Коши. В данном случае условие $x\neq x_0$ можно не писать, так как при $x=x_0$ выполняется $|f(x)-f(x_0)|=0<\varepsilon$.
- (1) \Leftrightarrow (3) следует из определения $\lim_{x\to x_0}f(x)=f(x_0)$ по Гейне. В данном случае условие $x\neq x_0$ можно не писать, так как при $x=x_0$ выполняется $f(x_n)=f(x_0)$. \square

5.2. Свойства функций, непрерывных в точке

ТЕОРЕМА 5.1. Пусть функции f и g определены g $U_{\delta}(x_0)$ и непрерывны g точке g0. Тогда функции g0, g0, g0, g0, непрерывны g0 точке g0. Если дополнительно g0, g0, то функция g1, непрерывна g2, непрерывна g3.

Доказательство состоит в применении теоремы об арифметических свойствах пределов функций.

ПРИМЕР 5.1. Пусть $x_0, y_0, A \in \mathbb{R}$, $\lim_{x \to x_0} y(x) = y_0$, $\lim_{y \to y_0} f(y) = A$. Верно ли, что предел сложной функции $f \circ y$ в точке x_0 существует и равен A: $\exists \lim_{x \to x_0} f(y(x)) = A$?

Решение. Неверно. Например,

$$y(x) = 0 \ \forall x \in \mathbb{R}, \ f(y) = \begin{cases} 0, \ y \neq 0, \\ 1, \ y = 0. \end{cases}$$

Тогда A=0, но $f(y(x))=1 \ \forall x\in \mathbb{R}$ и $\lim_{x\to x_0}f(y(x))=1\neq A$.

Теорема 5.2. (О пределе сложной функции)

Пусть заданы функции $y: \overset{\cdot}{U}_{\delta_0}(x_0) \to \mathbb{R}$ и $f:\overset{\cdot}{U}_{\beta_0}(y_0) \to \mathbb{R}$, пусть $\lim_{x \to x_0} y(x) = y_0 \in \overline{\mathbb{R}}$, $\lim_{y \to y_0} f(y) = A \in \overline{\mathbb{R}}$ и пусть выполнено хотя бы одно из следующих дополнительных условий:

- (a) $\exists \delta_0 > 0 : \forall x \in U_{\delta_0}(x_0) \hookrightarrow y(x) \neq y_0 \text{ unu}$
- (б) $f(y_0) = A$ (т.е. функция f непрерывна в точке y_0).

Тогда сложная функция $\varphi(x)=f(y(x))$ определена в некоторой $\overset{\circ}{U}_{\delta}(x_0)$ и $\exists \lim_{x\to x_0} f(y(x))=\lim_{y\to y_0} f(y)=A.$

Доказательство. Зафиксируем произвольное число $\varepsilon>0$. Так как $\lim_{y\to y_0}f(y)=A$, то

$$\exists \beta \in (0, \beta_0) : \forall y \in \overset{\circ}{U}_{\beta} (y_0) \hookrightarrow f(y) \in U_{\varepsilon}(A). \tag{5.1}$$

По определению предела $\lim_{x \to x_0} y(x) = y_0$

$$\exists \delta \in (0, \delta_0) : \forall x \in \overset{\circ}{U}_{\delta}(x_0) \hookrightarrow y(x) \in U_{\beta}(y_0). \tag{5.2}$$

Покажем, что сложная функция $\varphi(x)=f(y(x))$ определена в $\overset{\circ}{U}_{\delta}(x_0)$ и

$$\forall x \in \overset{\circ}{U_{\delta}}(x_0) \hookrightarrow f(y(x)) \in U_{\varepsilon}(A). \tag{5.3}$$

Зафиксируем произвольную точку $x \in \overset{\circ}{U}_{\delta}(x_0)$. В силу условия (5.2) получаем $y(x) \in U_{\beta}(y_0)$. В случае $y(x) \neq y_0$ имеем $y(x) \in \overset{\circ}{U}_{\beta}(y_0)$, и согласно (5.1) включение $f(y) \in U_{\varepsilon}(A)$ выполнено. Рассмотрим случай $y(x) = y_0$. В этом случае дополнительное условие (а) реализоваться не может. Следовательно, реализуется дополнительное условие (б), а значит, $f(y(x)) = f(y_0) = A \in U_{\varepsilon}(A)$. Таким образом, доказано соотношение (5.3). Итак,

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x \in \overset{\circ}{U}_{\delta} (x_0) \; \hookrightarrow \; f(y(x)) \in U_{\varepsilon}(A).$$

Следовательно, $\lim_{x\to x_0} f(y(x)) = A$. \square

ТЕОРЕМА 5.3. (О непрерывности сложной функции в точке)

Пусть функция у определена в некоторой $U_{\delta_0}(x_0)$ и непрерывна в точке x_0 . Пусть функция f определена в некоторой $U_{\beta_0}(y_0)$ и непрерывна в точке $y_0=y(x_0)$. Тогда сложная функция $\varphi(x)=f(y(x))$ определена в некоторой $U_{\delta_1}(x_0)$ и непрерывна в точке x_0 .

Доказательство состоит в применении пункта (б) теоремы о пределе сложной функции для случая $y_0 = y(x_0)$.

5.3. Разрывы монотонных функций

ТЕОРЕМА 5.4. (О разрывах монотонных функций)

Eсли функция монотонна на интервале (a,b) (конечном или бесконечном), тогда

- 1) она имеет только разрывы первого рода;
- 2) множество точек разрыва не более, чем счетно.

Доказательство. Без ограничения общности будем считать, что функция f на интервале (a,b) является неубывающей. Пусть $x_0 \in (a,b)$ — её точка разрыва. По теореме об одностороннем пределе монотонной функции и в силу неубывания функции, существуют конечные односторонние пределы

$$f(x_0 - 0) = \sup_{x \in (a, x_0)} f(x) \leqslant f(x_0) \leqslant \inf_{x \in (x_0, b)} f(x) = f(x_0 + 0).$$

Если оба знака " \leq " внутри оценки есть равенства, то f непрерывна в x_0 по определению. Значит, $f(x_0-0) < f(x_0+0)$, т.е. x_0 — точка разрыва первого рода.

С каждой точкой разрыва связан интервал $(f(x_0-0),f(x_0+0))$, причём, в силу монотонности функции, интервалы, отвечающие разным точкам разрыва не пересекаются:

если
$$x_0 < x_1$$
, то

$$f(x_0-0) < f(x_0+0) = \inf_{x \in (x_0,x_1)} f(x) \leqslant \sup_{x \in (x_0,x_1)} f(x) = f(x_1-0) < f(x_1+0)$$

(равенство внутри не исключено). Возьмём в каждом интервале по одному произвольному рациональному числу. Эти числа заведомо не совпадают, а их множество не более, чем счётно. □

6. Свойства функций, непрерывных на отрезке

6.1. Теорема о промежуточных значениях непрерывной на отрезке функции

ТЕОРЕМА 6.1. (Tеорема Kоши о промежуточном значении функции)

Пусть функция f непрерывна на отрезке [a,b], f(a) = A, f(b) = B. Пусть C находится между A и B: $A \leqslant C \leqslant B$ или $B \leqslant C \leqslant A$. Тогда

$$\exists \xi \in [a, b] : f(\xi) = C.$$

Доказательство. Пусть, для определённости, $A = f(a) \leqslant C \leqslant f(b) = B$. Поделим отрезок [a,b] пополам и через $[a_1,b_1]$ обозначим такую его половину, для которой $f(a_1) \leqslant C \leqslant f(b_1)$. Затем поделим отрезок $[a_1,b_1]$ пополам и через $[a_2,b_2]$ обозначим такую его половину, для которой $f(a_2) \leqslant C \leqslant f(b_2)$. Продолжая процесс, получим стягивающуюся систему вложенных отрезков $\{[a_n,b_n]\}$, для которых

$$f(a_n) \leqslant C \leqslant f(b_n).$$

Пусть $\xi \in [a_n, b_n] \ \forall n \in \mathbb{N}$. Тогда $a_n \to \xi$, $b_n \to \xi$ при $n \to \infty$ и (в силу непрерывности функции f в точке ξ)

$$f(a_n) \to f(\xi), \ f(b_n) \to f(\xi)$$
 при $n \to \infty$.

Переходя к пределу в последнем неравенстве, получаем

$$f(\xi) \leqslant C \leqslant f(\xi) \implies f(\xi) = C.$$

Следствие 6.1. Пусть функция f непрерывна на [a,b], причём f(a) и f(b) имеют разные знаки. Тогда

$$\exists \xi \in (a,b): \ f(\xi) = 0.$$

Следствие 6.2. Пусть функция f непрерывна на [a,b], $m=\min_{[a,b]}f$, $M=\max_{[a,b]}f$. Тогда функция f принимает все значения из [m,M] и только эти значения.

7. Производная функции одной переменной

7.1. Производная

Определение 7.1. Пусть функция f определена в некоторой окрестности $U(x_0)$ точки $x_0 \in \mathbb{R}$.

Предел $\lim_{x\to x_0} \frac{f(x)-f(x_0}{x-x_0}$, если он существует и конечен, называется производной (от) функции f в точке x_0 и обозначается символом $f'(x_0)$.

ТЕОРЕМА 7.1. (Арифметические свойства производных) Пусть существуют $f'(x_0)$, $g'(x_0)$. Тогда

- (1) $(f \pm g)'(x_0) = f'(x_0) \pm g'(x_0);$
- (2) $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0);$ в частности, $(Cf)'(x_0) = Cf'(x_0)$, где C постоянная;
 - (3) $ecnu\ g(x_0) \neq 0$, mo

$$\exists \left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

Доказательство приведём лишь для дифференцирования дроби. Другие формулы устанавливаются аналогично. Положим $\Delta x := x - x_0$ (называется приращением аргумента в точке x_0), $\Delta f := f(x_0 + \Delta x) - f(x_0)$ (называется приращением функции f в точке x_0), $\Delta g := g(x_0 + \Delta x) - g(x_0)$. Тогда

$$\frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)}}{\Delta x} =$$

$$= \frac{(f(x_0) + \Delta f)g(x_0) - f(x_0)(g(x_0) + \Delta g)}{\Delta x g(x_0 + \Delta x)g(x_0)} =$$

$$=\frac{\frac{\Delta f}{\Delta x}g(x_0)-f(x_0)\frac{\Delta g}{\Delta x}}{g(x_0+\Delta x)g(x_0)}\rightarrow$$

$$\rightarrow\frac{f'(x_0)g(x_0)-f(x_0)g'(x_0)}{g(x_0)^2}$$
 при $x\rightarrow x_0.$

7.2. Дифференциал

Определение 7.2. Пусть функция f определена в некоторой окрестности $U(x_0)$ точки $x_0 \in \mathbb{R}$. Пусть её приращение в точке x_0 может быть представлено в виде

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = A\Delta x + o(\Delta x) \tag{7.1}$$

 $npu \ \Delta x \to 0, \ r\partial e \ A \in \mathbb{R}.$

Tогда функцию f называют дифференцируемой в точке x_0 , а линейную функцию

$$df(x_0) = A\Delta x, -\infty < \Delta x < \tag{7.2}$$

— дифференциалом функции f в точке x_0 .

ТЕОРЕМА 7.2. Функция f дифференцируема в точке x_0 тогда и только тогда, когда существует $f'(x_0)$. При этом $A = f'(x_0)$.

Доказательство.

 1° . Пусть функция f дифференцируема в точке x_0 . Тогда справедливо равенство (4.1). Поделив его почленно на Δx , получим

$$\frac{\Delta f(x_0)}{\Delta x} = A + o(1).$$

Переходя в этом равенстве к пределу при $\Delta x \to 0$, получаем, что $\exists f'(x_0) = A$.

2°. Пусть теперь существует

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x}.$$

Тогда

$$f'(x_0) - \frac{\Delta f(x_0)}{\Delta x} = o(1)$$
 при $\Delta x \to 0$.

Умножая последнее равенство на Δx , получаем

$$\Delta f(x_0) = f'(x_0)\Delta x + o(\Delta x)$$
 при $\Delta x \to 0.$ (7.3)

Это означает, что приращение функции f представлено в виде (4.1) с $A = f'(x_0)$, так что функция f дифференцируема в точке x_0 . \square

ТЕОРЕМА 7.3. Пусть функция f дифференцируема в точке x_0 . Тогда f непрерывна в точке x_0 .

Доказательство. По условию теоремы приращение $\Delta f(x_0)$ представимо в виде (4.1), из которого следует, что $\Delta f(x_0) \to 0$ при $\Delta x \to 0$, а это и означает непрерывность функции f в точке x_0 . \square

ПРИМЕР 7.1. функция f(x) = |x|, точка $x_0 = 0$. Этот пример показывает, что непрерывность функции в точке не влечет за собой ее дифференцируемости в этой точке.

7.3. Геометрический смысл производной и дифференциала

Проведем секущую M_0M_h через точки $M_0=(x_0,f(x_0))$ и $M_h=(x_0+h,f(x_0+h))$ графика функции y=f(x), где $h\neq 0$ (см. рис. 1).

Уравнение секущей M_0M_h имеет вид

$$y=k(h)(x-x_0)+y_0,$$
 где $y_0=f(x_0), \ k(h)=rac{f(x_0+h)-f(x_0)}{h}.$

Устремим $h \to 0$, тогда точка $M_h \to M_0$, и секущая $M_0 M_h$ поворачивается, меняя свой угловой коэффициент k(h), который стремится к конечному пределу тогла и только тогда, когда существует $f'(x_0)$: $k(h) \to k_0 = f'(x_0)$.

Прямую, проходящую через точку $(x_0, f(x_0))$ графика и являющуюся «предельным положением» секущей, называют *касательной*. Дадим точное определение:

Определение 7.3. Пусть существует $f'(x_0)$. Касательной к графику функции f в точке $(x_0, f(x_0))$ называется прямая

$$y = f'(x_0)(x - x_0) + y_0$$
, $\theta e y_0 = f(x_0)$.

ТЕОРЕМА 7.4. Пусть функции f определена на $U(x_0)$ и дифференцируема в точке x_0 . Тогда среди всех прямых, проходящих через точку $(x_0, f(x_0))$

$$y_{np} = \lambda (x - x_0) + y_0$$
, $i \partial e \ y_0 = f(x_0)$,

только касательная к графику обладает свойством

$$f(x) - y_{np} = o(x - x_0) \quad npu \quad x \to x_0.$$

Доказательство. Поскольку функция f дифференцируема в точке x_0 , имеем

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0)$$
 при $x \to x_0$.

Отсюда

$$f(x) - y_{np} = (f'(x_0) - la)(x - x_0) + o(x - x_0)$$
 при $x \to x_0$.

Правая часть равенства есть величина $o(x-x_0)$ тогда и только тогда, когда $\lambda = f'(x_0)$, то есть когда прямая $y_{np} = \lambda (x-x_0) + y_0$ является касательной. \square

Теорема показывает, что касательная к графику в окрестности точки касания расположена ближе всех остальных прямых.

Определение 7.4. Пусть функция f непрерывна в точке x_0 u

$$\frac{\Delta f}{\Delta x} \to +\infty \ (-\infty, \infty)$$

Тогда говорят, что функция f имеет бесконечную производную в точке x_0 и пишут

$$f'(x_0) = +\infty \ (-\infty, \infty),$$

и что график функции f имеет в точке $(x_0, f(x_0))$ вертикальную касательную $x=x_0$.

Ранее рассмотренную касательную с конечным угловым коэффициентом $f'(x_0)$ часто называют наклонной касательной.

Определение 7.5. Правой (соответственно, левой) односторонней производной функции f в точке x_0 называется число

$$f'_{+}(x_0) := \lim_{\Delta x \to 0+0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x},$$

соответственно,

$$f'_{-}(x_0) := \lim_{\Delta x \to 0-0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x},$$

если этот предел существует и конечен.

Слово «односторонняя» часто опускают и называют $f'_{+}(x_0)$ правой, а $f'_{-}(x_0)$ левой производной.

ТЕОРЕМА 7.5. Производная $f'(x_0)$ существует тогда и только тогда, когда существуют односторонние производные $f'_{-}(x_0)$ и $f'_{+}(x_0)$ и они равны друг другу.

7.4. Производная сложной функции

ТЕОРЕМА 7.6. Пусть существуют производные $f'(y_0)$ и $\varphi'(x_0)$, где $y_0 = \varphi(x_0)$. Тогда существует производная композиции функций f и g в точке x_0 и выполнено равенство

$$(f(\varphi))'(x_0) = f'(y_0) \varphi'(x_0).$$

Доказательство. Из существования $f'(y_0)$ и $\varphi'(x_0)$ следует, что f,g непрерывны в точках y_0, x_0 , соответственно. По теореме о непрерывности суперпозиции непрерывных функций суперпозиция

$$z = F(x) := f(\varphi(x))$$

определена и непрерывна на некоторой окрестности $U(x_0)$ точки x_0 . Из условий теоремы следует, что приращения $\Delta x, \Delta y$ функций f, φ представимы в виде

$$\Delta z = f'(y_0) \Delta y + \varepsilon(\Delta y) \Delta y, \quad \varepsilon(\Delta y) \to 0 \quad \text{при} \quad \Delta y \to 0,$$

$$\Delta y = \varphi'(x_0) \Delta x + \varepsilon_1(\Delta x) \Delta x, \quad \varepsilon_1(\Delta x) \to 0 \quad \text{при} \quad \Delta x \to 0.$$

Доопределим функцию ε в точке 0, положив $\varepsilon(0) = 0$, тогда первое из этих равенств окажется верным и при $\Delta y = 0$.

Считая, что впервом из этих приращение Δy вызвано приращением Δx , выразим Δz через Δx , подставляя Δy из второго равенства в первое:

$$\Delta z = \Delta F(x_0) =$$

$$= f'(y_0)[\varphi'(x_0)\Delta x + \varepsilon_1(\Delta x)\Delta x] + \varepsilon(\Delta y)\Delta y =$$

$$= f'(y_0)\varphi'(x_0)\Delta x + f'(y_0)\varepsilon_1(\Delta x)\Delta x + \varepsilon(\Delta y)\Delta y.$$

Разделив это равенство почленно на Δx , получим

$$\frac{\Delta z}{\Delta x} = f'(y_0)\varphi'(x_0) + f'(y_0)\varepsilon_1(\Delta x) + \varepsilon(\Delta y)\frac{\Delta x}{\Delta y}.$$

Учитывая, что $\Delta y \to 0$, а $\frac{\Delta y}{\Delta x} \to \varphi'(x_0)$ при $\Delta x \to 0$, и переходя в последнем равенстве к пределу $\Delta x \to 0$, получаем утверждение теоремы.

Рассмотрим в точке $t_0 \in (\alpha, \beta)$ дифференциал сложной функции f(x), где функции $f:(a,b) \to \mathbb{R}$ и $x:(\alpha,\beta) \to (a,b)$ имеют производные $f'(x_0)$ и $x'(t_0)$, где $x_0 = x(t_0)$. Тогда в силу теоремы о производной сложной функции имеем:

$$df(x)(t_0) = f'(x(t_0))x'(t_0) dt = f'(x_0) dx(t_0).$$

Опустим обозначение аргумента t_0 , получается:

$$df(x) = f'(x) dx$$
, где $x : (\alpha, \beta) \to (a, b)$.

Здесь dx — дифференциал функции. Мы видим, что дифференциал df(x) имеет ту же форму, как если бы x было независимым переменным. Это свойство называется инвариантностью формы первого дифференциала.

7.5. Производная функции, заданной параметрически

Производная функции, заданной параметрически, т.е. функции y(x), заданной в виде

$$\begin{cases} x = \varphi(t), \\ y = \psi(t). \end{cases}$$

Пусть $x_0 = \varphi(t_0)$. Будем считать, что функция φ непрерывна и строго монотонная на $U(t_0)$ и что существуют производные $\varphi'(t_0) \neq 0$, $\psi'(t_0)$. Тогда $t = \varphi^{-1}(x)$, $y = \psi(t) = \psi(\varphi^{-1}(x))$. Применяя формулу дифференцирования сложной функции, получаем

$$\frac{dy}{dx}(x_0) = \psi'(t_0) \frac{1}{\varphi'(t_0)} = \frac{\psi'(t_0)}{\varphi'(t_0)}.$$

8. Производные высших порядков

8.1. Производные высших порядков и формула Лейбница

Пусть на $U(x_0)$ функция f определена и имеет производную f'(x). Производная f'(x) также является функцией переменного x. Если в точке x_0 она имеет производную $(f')'(x_0)$, то эту производную называют второй производной функции f в точке x_0 и обозначают $f''(x_0)$.

Производная порядка n функции f определяется равенством

$$f^{(n)}(x_0) = \left(f^{(n-1)}(x)\right)'\Big|_{x=x_0}, \ n \in \mathbb{N}.$$

Из него видно, в частности, что если существует производная $f^{(n)}(x_0)$, то производная $f^{(n-1)}$ должна быть определена в некоторой окрестности $U(x_0)$ точки x_0 .

Производную порядка n обозначают также символом $\frac{d^n f(x_0)}{dx^n}$. Удобно считать по определению, что $f^{(0)}(x) := f(x)$.

Теорема 8.1. (Свойства производных высших порядков) Пусть существуют $f^{(n)}(x_0)$, $g^{(n)}(x_0)$. Тогда в точке x_0 : $1^{\circ} \ (f \pm g)^{(n)} = f^{(n)} \pm g^{(n)}$; $2^{\circ} \ (\text{формула Лейбница})$

$$(fg)^{(n)} = f^{(n)}g + C_n^1 f^{(n-1)}g^{(1)} + \dots + fg^{(n)} = \sum_{k=0}^n C_n^k f^{(n-k)}g^{(k)},$$

$$\operatorname{rde} C_n^k = \frac{n!}{k!(n-k)!}.$$

Доказательство формулы Лейбница проведём по индукции. В случае n=1 эта формула была установлена в прошлой теме (теорема об арифметических свойствах производных). В предположении, что она верна для производной порнядка n, установим её для производной порядка n+1.

Имеем

$$(fg)^{(n+1)} = \left((fg)^{(n)} \right)' = \left(\sum_{k=0}^{n} C_n^k f^{(n-k)} g^{(k)} \right)' =$$

$$= \sum_{k=0}^{n} C_n^k \left(f^{(n-k+1)} g^{(k)} + f^{(n-k)} g^{(k+1)} \right) =$$

$$= \sum_{k=0}^{n} C_n^k f^{(n+1-k)} g^{(k)} + \sum_{j=1}^{n+1} C_n^{j-1} f^{(n+1-j)} g^{(j)} =$$

$$= C_n^0 f^{(n+1)} g + \sum_{k=1}^{n} (C_n^k + C_n^{k-1}) f^{(n+1-k)} g^{(k)} + C_n^n f^{(0)} g^{(n+1)}.$$

Осталось показать, что $C_n^k + C_n^{k-1} = C_{n+1}^k$. Имеем

$$C_n^k + C_n^{k-1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!} = \frac{n!(n-k+1+k)}{k!(n-k+1)!} = \frac{(n+1)!}{k!(n+1-k)!} = C_{n+1}^k.$$

 \Box

Следствие 8.1. $(Cf)^{(n)}(x_0) = Cf^{(n)}(x_0)$, если существует $f^{(n)}(x_0)$, C = const.

8.2. Дифференциалы высших порядков

Введём теперь понятие дифференциалов высших порядков.

Если функция f такова, что её производная f' существует в некоторой окрестности $U(x_0)$ точки x_0 , то дифференциал функции f

$$df(x) = f'(x)dx, \ x \in U(x_0),$$

является функцией аргумента x (помимо этого, дифференциал является линейной функцией аргумента dx, но в данном случае будем считать dx фиксированным). Если f' дифференцируема в точке x_0 (т.е. существует (конечная) $f''(x_0)$), то можно рассмотреть дифференциал от df(x), т.е. $\delta(df(x))$ (этот дифференциал обозначим новым символом δ , чтобы отличить его от ранее построенного дифференциала df). Соответственно дифференциал независимого переменного в выражении дифференциала δ будем обозначать через δx .

Определение 8.1. Вторым дифференциалом функции f в точке x_0 называется

$$d^{2}f(x_{0}) := \delta(df)(x_{0}) \Big|_{\delta x = dx} = \delta(f'(x)dx)(x_{0}) \Big|_{\delta x = dx} =$$

$$= (f'(x)dx)'(x_{0})\delta x \Big|_{\delta x = dx} = f''(x_{0})(dx)^{2}.$$

В этой цепочке равенств содержится не только определение второго дифференциала (первое равенство), но и его выражение через $f''(x_0)$.

Определение 8.2. n-м дифференциалом функции f в точке x_0 называется

$$d^n f(x_0) := \delta(d^{n-1} f)(x_0) \bigg|_{\delta x = dx}.$$

Применяя метод математической индукции, убеждаемся, что если существует $f^{(n)}(x_0)$, то существует

$$d^{n} f(x_{0}) = f^{(n)}(x_{0})(dx)^{n}. (8.1)$$

Последняя формула при $n\geqslant 2$ (в отличие от n=1) верна лишь в случае, когда x — независимая переменная. Покажем это для случая n=2. Найдём выражение второго дифференциала сложной функции f(x), считая, что функция f дважды дифференцируема в точке x_0 , а её аргумент x является дважды дифференцируемой в точке t_0 функцией x=x(t) некоторой независимой переменной $t, x_0=x(t_0)$. Имеем

$$d^{2}f(x) = (f(x))''_{tt}(dt)^{2} = (f'(x)x')'_{t}(dt)^{2} =$$

$$= (f''(x)(x')^{2} + f'(x)x'')(dt)^{2} = f''(x)(dx)^{2} + f'(x)d^{2}x.$$

Итак, $d^2 f(x) = f''(x)(dx)^2 + f'(x)d^2x$.

Сравнивая полученное выражение с (8.1) при n=2, убеждаемся, что второй дифференциал не обладает свойством инвариантности формы.

9. Теоремы о среднем

9.1. Теорема Ферма

Определение 9.1. Пусть функции f определена в некоторой окрестности точки $x_0 \in \mathbb{R}$. Точка x_0 называется точкой локального строгого (нестрогого) максимума (минимума), если существует такая её δ -окрестность, что для всех $x \in \overset{\circ}{U}_{\delta}(x_0)$ выполняется $f(x_0) > f(x) \ (\geqslant, <, \leqslant)$.

Точки локального максимума и минимума называются точками строгого (нестрогого) локального экстремума функции f. Точки строгого экстремума автоматически являются точками нестрогого экстремума. Обратное в общем случае неверно.

ПРИМЕР 9.1. У функции $f(x) \equiv const$ все точки числовой прямой являются точками нестрогого максимума и минимума одновременно.

ТЕОРЕМА 9.1. (Необходимое условие экстремума (Пьер Φ ерма))

Если в точке x_0 нестрогого экстремума функция дифференцируема, то $f'(x_0) = 0$.

Геометрическая формулировка: в условиях теоремы в точке экстремума касательная параллельна оси абсцисс.

Доказательство. Пусть, для определённости, x_0 — точка минимума. Поскольку в ней существует конечная производная, то существуют односторонние и равные между собой производные. Из определения минимума и теореме о предельном переходе в неравенстве получаем, что

$$f'(x_0) = f'_+(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0,$$

$$f'(x_0) = f'_{-}(x_0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0,$$

поскольку в обоих случаях числитель неотрицательный, а знаменатель в первом случае положительный, а во втором отрицательный.

Следовательно,

$$f'(x_0) \geqslant 0 \land f'(x_0) \leqslant 0 \Rightarrow f'(x_0) = 0.$$

Замечание 9.1. Теорема Ферма дает только необходимое условие существования экстремума для функции, имеющей производную. Это условие не является достаточным: контрпример $f(x)=x^3$, $x_0=0$.

Замечание 9.2. В точке локального экстремума производная может отсутствовать.

9.2. Теорема Ролля, Лагранжа, Коши

ТЕОРЕМА 9.2. (Мишель Ролль)

Пусть функция f непрерывна на отрезке [a,b] и дифференцируема внутри него. Пусть f(a)=f(b). Тогда существует точка $c\in(a,b)$ такая, что f'(c)=0.

Доказательство. По теореме Вейерштрасса непрерывная на отрезке функция f достигает своего минимального m и максимального M значений в некоторых точках x_1 и x_2 соответственно. Если m=M,

то функция есть константа. В этом случае в качестве c можно взять произвольную точку отрезка.

Если m < M, то из условия f(a) = f(b) следует, что или минимум, или максимум достигаются внутри отрезка. Значит, существует хотя бы одна точка локального экстремума $c \in (a,b)$. Тогда из теоремы Ферма следует, что f'(c) = 0. \square

Замечание 9.3. Ещё раз подчеркнём, что c – внутренняя точка отрезка [a,b].

Замечание 9.4. Отказаться от условия f(a) = f(b) нельзя, иначе минимум или максимум функции могут достигаться на концах отрезка, где производная не обязана обнуляться. Например, функция f(x) = x на отрезке [0,1] достигает точных граней на краях.

ТЕОРЕМА 9.3. (Жозеф-Луи Лагранж)

Пусть функция f непрерывна на отрезке [a,b] и дифференцируема внутри него. Тогда существует точка $c \in (a,b)$, для которой справедлива формула конечных приращений:

$$f(b) - f(a) = f'(c)(b - a). (9.1)$$

Геометрическая интерпретация теоремы состоит в том, что на графике найдётся точка, в которой касательная параллельна замыкающей хорде AB, где A(a, f(a)), B(b, f(b)).

Доказательство сводит условия Лагранжа к условиям Ролля. С этой целью рассмотрим вспомогательную функцию

$$D(\widetilde{f}) = [a, b], \ \widetilde{f}(x) := f(x) - \frac{f(b) - f(a)}{b - a}(b - a).$$

Функция \widetilde{f} удовлетворяет всем условиям теоремы Ролля, в частности, $\widetilde{f}(a) = \widetilde{f}(b) = f(a)$. Поэтому существует точка $c \in (a,b)$, в которой производная обнуляется:

$$0 = \widetilde{f}'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}(b - a) \implies f(b) - f(a) = f'(c)(b - a).$$

ТЕОРЕМА 9.4. (Огюстен Луи Коши)

Пусть функции y = f(t) и x = g(t) непрерывны на отрезке $[\alpha, \beta]$ и дифференцируемы внутри него. Пусть для любой точки $t \in (\alpha, \beta)$ производная $g'(t) \neq 0$. Тогда существует точка $\xi \in (\alpha, \beta)$, для которой справедлива формула:

$$\frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} = \frac{f'(\xi)}{g'(\xi)}.$$
(9.2)

Геометрическая интерпретация. Теорему Коши можно доказать с помощью функции $h(x)=(f\circ g^{-1})(x),$ заданной параметрически. Однако для этого предварительно нужно доказать строгую монотонность функции x=g(t). Множество $\Gamma:=\{x=g(t),y=f(t)\}$ представляет собой график функции h, в каждой внутренней точке которого существует касательная прямая. Из теоремы следует, что существует такая внутренняя точка $C(g(\xi),f(\xi))\in \Gamma,$ в которой касательная параллельна замыкающей хорде AB, где $A=(g(\alpha),f(\alpha)),$ $B=(g(\beta),f(\beta)).$

Физическая интерпретация теоремы состоит в том, что существует момент времени, в котором вектор $(g'(\xi),f'(\xi))$ мгновенной скорости движения по кривой (траектории) Γ параллелен вектору \overrightarrow{AB} замыкающей хорды.

Доказательство. Во-первых, заметим, что $g(\alpha) \neq g(\beta)$ (в противном случае из теоремы Ролля следует, что найдётся точка $t_0 \in (\alpha, \beta)$, в которой $g'(t_0) = 0$). Следовательно, формулировка теоремы корректна.

Рассмотрим вспомогательную функцию $\varphi: [\alpha, \beta] \to \mathbb{R}$

$$\varphi(t) := f(t) - \frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} (g(t) - g(\alpha)).$$

Функция φ удовлетворяет всем условиям теоремы Ролля, поэтому существует точка $\xi \in (\alpha, \beta)$, для которой

$$0 = \varphi'(\xi) = f'(\xi) - \frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)}g'(\xi) \implies \frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} = \frac{f'(\xi)}{g'(\xi)}.$$

П

Замечание 9.5. Теорема Лагранжа является частным случаем и следствием теоремы Коши: возьмите в формуле (9.2) функцию g(t) = t. Теорема Ролля является частным случаем теоремы Лагранжа: возьмите в формуле (9.1) конечных приращений f(a) - f(b) = 0. Однако теорема Ролля не следует из теоремы Лагранжа, поскольку для доказательства последней мы применяли теорему Ролля.

9.3. Правило Лопиталя раскрытия неопределённостей

Правило Лопиталя позволяет раскрывать неопределенности вида $\frac{0}{0}$ и $\frac{\infty}{\infty}$, заменяя функции в числителе и знаменателе их производными. Обоснования правила опираются на теоремы о среднем. Но предварительно (для сравнения) мы докажем утверждение, вытекающее из определения производной.

ЛЕММА 9.1. Если функции f и g дифференцируемы в точке a, f(a)=g(a)=0, и $g'(a)\neq 0,$ то

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$$

Доказательство. Из определения производной получаем

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(a)(x-a) + o(x-a)}{g'(a)(x-a) + o(x-a)} =$$

$$= \lim_{x \to a} \frac{f'(a) + o(x-a)/(x-a)}{g'(a) + o(x-a)/(x-a)} = \frac{f'(a)}{g'(a)}.$$

ТЕОРЕМА 9.5. (О неопределённости типа $\frac{0}{0}$ в конечной точке, Гийом Франсуа Лопиталь)

Пусть функции f и g дифференцируемы в некоторой проколотой окрестности точки $a \in \mathbb{R}$. Пусть

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0, \ \forall x \neq a \ \hookrightarrow \ g'(x) \neq 0.$$

Пусть существует предел отношения производных $\lim_{x\to a} f'(x)/g'(x) \in \mathbb{R}$. Тогда существует предел отношения функций и оба предела равны:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Доказательство. Доопределим функции f и g в точке a: f(a)=g(a)=0. Теперь обе функции непрерывны в некоторой окрестности U(a) точки a и дифференцируемы в проколотой окрестности этой точки. Из теоремы Коши следует, что для любого $x\in \stackrel{o}{U}_{\delta}(a)$ найдется такое число c строго между a и x, что

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Определим для каждого $x\in \overset{o}{U}_{\delta}(a)$ указанное число c произвольным единственным способом. Тем самым мы определили функцию c=c(x) (возможно разрывную), обладающую свойствами: $c(x)\to a$ при $x\to a$, но $c(x)\ne a$ при $x\ne a$

Поэтому из полученных выше равенств и теоремы о замене переменной под знаком предела следует утверждение теоремы. \square

Замечание 9.6. Из доказательства видно, что утверждение теоремы справедливо и для односторонних пределов.

Следствие 9.1. (О неопределённости типа 0/0 в бесконечности)

Пусть функции f и g дифференцируемы на луче $(c,+\infty)$ (c>0). Пусть

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = 0, \quad \forall x > c \iff g'(x) \neq 0.$$

Пусть существует предел отношения производных $\lim_{x\to +\infty} (f'(x)/g'(x)) \in \overline{\mathbb{R}}$. Тогда существует предел отношения функций и оба предела равны:

$$\lim_{x\to +\infty} \frac{f(x)}{g(x)} = \lim_{x\to +\infty} \frac{f'(x)}{g'(x)}.$$

Доказательство. Рассмотрим функцию

$$\varphi: (1/c, 0) \to (c, +\infty), \quad \varphi(t) = \frac{1}{t},$$

которая всюду строго убывает и непрерывна, $\lim_{t\to +0}\varphi(t)=+\infty$, а $Im(\varphi)=D(f/g)$. Согласно теореме о пределе сложной функции $\lim_{t\to +0}(f(1/t)/g(1/t))$ существует только в том случае, когда существует предел внешней функции $\lim_{x\to +\infty}(f(x)/g(x))$, причем пределы совпадают. Но предел сложной функции мы найдем с помощью теоремы О

неопределённости типа $\frac{0}{0}$ в конечной точке и теореме о пределе сложной функции:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{t \to +0} \frac{f(1/t)}{g(1/t)} = \lim_{t \to +0} \frac{(f(1/t))'}{(g(1/t))'} =$$

$$= \lim_{t \to +0} \frac{f'(1/t)(-1/t^2)}{g'(1/t)(-1/t^2)} = \lim_{t \to +0} \frac{f'(1/t)}{g'(1/t)} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

Замечание 9.7. Чтобы иметь возможность сослаться на теорему о неопределённости типа $\frac{0}{0}$ в конечной точке, мы дважды применяли фактически одну и ту же замену — сначала в одну сторону, потом в противоположную.

ТЕОРЕМА 9.6. (Лопиталя об одностороннем пределе в конечной точке для неопределенности типа ∞/∞)

Пусть функции f и g дифференцируемы при $x \in (a,b)$ и $g'(x) \neq 0$ при $x \in (a,b)$. Пусть

$$\lim_{x \to a+0} f(x) = \infty, \quad \lim_{x \to a+0} g(x) = \infty.$$

Наконец, пусть $\lim_{x \to a+0} \frac{f'(x)}{g'(x)} = C \in \mathbb{R}$. Тогда существует

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)} = C.$$

Доказательство. Покажем, что разность между отношением функций f(x)/g(x) и числом C становится сколь угодно малой при $x \to a+0$. С помощью искусственных преобразований и теоремы Коши о среднем оценим эту разность через отношение производных $f'(\xi)/g'(\xi)$, где точка $\xi \to a+0$ при $x \to a+0$. Пусть $n \in \mathbb{N}$ столь велико, что $a+(1/n) \in (a,b)$, тогда

$$\left| \frac{f(x)}{g(x)} - C \right| =$$

$$= \left| \frac{f(a + (1/n)) - f(x)}{g(a + (1/n)) - g(x)} \left(\frac{g(a + (1/n)) - g(x)}{f(a + (1/n)) - f(x)} \cdot \frac{f(x)}{g(x)} \right) - C \right| = \dots$$

1) К первой дроби с $x \in (a, a + (1/n))$ применим теорему Коши с некоторым значением $\xi_n(x) \in (x, a + (1/n)) \subset (a, a + (1/n))$;

- 2) в числителе второй дроби вынесем за скобки g(x), а в знаменателе второй дроби вынесем за скобки f(x);
- 3) прибавим и вычтем слагаемое, которое позволяет сгруппировать пары с общими множителями . . .

$$\dots = \left| \frac{f'(\xi_n(x))}{g'(\xi_n(x))} \cdot \frac{\frac{g(a+(1/n))}{g(x)} - 1}{\frac{f(a+(1/n))}{f(x)} - 1} - C \frac{\frac{g(a+(1/n))}{g(x)} - 1}{\frac{f(a+(1/n))}{f(x)} - 1} + C \frac{\frac{g(a+(1/n))}{g(x)} - 1}{\frac{f(a+(1/n))}{f(x)} - 1} - C \right| \le$$

$$\le \left| \frac{\frac{g(a+(1/n))}{g(x)} - 1}{\frac{f(a+(1/n))}{f(x)} - 1} \right| \left| \frac{f'(\xi_n(x))}{g'(\xi_n(x))} - C \right| + |C| \left| \frac{\frac{g(a+(1/n))}{g(x)} - 1}{\frac{f(a+(1/n))}{f(x)} - 1} - 1 \right| \le \dots$$

Пусть $C \neq 0$. Зафиксируем произвольное $\varepsilon > 0$.

1) Выберем такое $n(\varepsilon)$, чтобы для всех $x\in(a,a+(1/n(\varepsilon)))$ выполнялось

$$\left| \frac{f'(\xi_n(x))}{g'(\xi_n(x))} - C \right| < \varepsilon/4;$$

2) выберем такое $0<\delta(n(\varepsilon))<1/n(\varepsilon),$ чтобы для всех $x\in(a,a+\delta(n(\varepsilon)))$ выполнялось

(a)
$$\left| \frac{g(a + (1/n))}{g(x)} - 1 \right| < 1 + (\varepsilon/2),$$

(b)
$$\left| \frac{f(a+(1/n))}{f(x)} - 1 \right| > 1 - (\varepsilon/2),$$

$$(c) \left| \frac{\frac{g(a+(1/n))}{g(x)} - 1}{\frac{f(a+(1/n))}{f(x)} - 1} - 1 \right| < \frac{\varepsilon}{2|C|}.$$

Тогда

$$\dots \leqslant \frac{\varepsilon}{2}$$

Если C=0, то рассуждения ещё проще (сделайте). \square

Замечание 9.8. Доказательство для случая $x \to a$ осуществляется точно так же. Случай неопределенности ∞/∞ при $x \to +\infty$ формулируется аналогично теореме Лопиталя об одностороннем пределе в конечной точке для неопределенности типа ∞/∞ и доказывается аналогично следствию о неопределённости типа 0/0 в бесконечности. Теорема Лопиталя об одностороннем пределе в конечной точке для неопределенности типа ∞/∞ справедлива и для случаев $C = \pm \infty$ и $C = \infty$.

Для удобства применения приводим единую формулировку всех случаев применения правила Лопиталя:

ТЕОРЕМА 9.7. Пусть функции f и g дифференцируемы g некоторой проколотой окрестности (полуокрестности) точки $a \in \overline{\mathbb{R}} \cup \{\infty\}$, причём g указанной окрестности $g'(x) \neq 0$. Пусть

 $u_{\Lambda}u$

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$

 $u_{\Lambda}u$

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty(\pm \infty).$$

Если существует $\lim_{x\to a} \frac{f'(x)}{g'(x)}=C\in \overline{\mathbb{R}}\cup\{\infty\},$ то существует $\lim_{x\to a} \frac{f(x)}{g(x)}=C.$

Замечание 9.9. Правило Лопиталя — это достаточное условие существования предела. Предел отношения производных может отсутствовать, а предел отношения функций существовать.

10. Формула Тейлора

Определение 1. Пусть существует конечная производная $f^{(n)}(x_0)$. Многочленом Тейлора n-го порядка функции f в точке x_0 называется многочлен

$$P_n(f; x - x_0) = f(x_0) + \frac{1}{1!}f'(x_0)(x - x_0) + \dots$$

$$\dots + \frac{1}{k!} f^{(k)}(x_0)(x - x_0)^k + \dots + \frac{1}{n!} f^{(n)}(x_0)(x - x_0)^n.$$

Разность $r_n(f;x-x_0):=f(x)-P_n(f;x-x_0)$ называется **остаточным членом** n-го порядка функции f в точке x_0 . \boxtimes '

Определение. Представление функции f в виде

$$f(x) = P_n(f, x - x_0) + r_n(f, x - x_0) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k + r_n(f; x - x_0)$$
(10.1)

называется формулой Тейлора в точке x_0 . \boxtimes

Лемма 1. Пусть существует конечная производная $f^{(n)}(x_0)$. Тогда в некоторой окрестности точки x_0 верно:

1. Производная многочлена Тейлора функции f равна многочлену Тейлора на единицу меньшего порядка от производной f':

$$(P_n(f;x-x_0))' \equiv P'_n(f;x-x_0) \equiv P_{n-1}(f';x-x_0).$$

2. Производные (до порядка п включительно) многочлена Тейлора по переменной $t = x - x_0$ в точке $t_0 = 0$ совпадают с соответствующими производными функции f в точке x_0 :

$$f^{(k)}(x_0) = P_n^{(k)}(f;0), \quad k = 0, 1, \dots, n.$$

3. Производная остаточного члена n-го порядка равна остаточному члену на единицу меньшего порядка от производной:

$$(r_n(f;x-x_0))' \equiv r'_n(f;x-x_0) \equiv r_{n-1}(f';x-x_0).$$

4. Производные (до порядка п включительно) остаточного члена по переменной $t=x-x_0$ в точке $t_0=0$ равны нулю:

$$r_n^{(k)}(f;0) = 0, \quad k = 0, 1, \dots, n.$$

Доказательство п. 1.:

$$P'_n(f; x - x_0) = \left(\sum_{k=0}^n \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k\right)' =$$

$$\sum_{k=1}^n \frac{1}{(k-1)!} f^{(k)}(x_0) (x - x_0)^{k-1} =$$

$$\sum_{k=0}^{n-1} \frac{1}{(k)!} (f')^{(k)}(x_0) (x - x_0)^k = P_{n-1}(f'; x - x_0).$$

Доказательство п. 2. Во-первых, для любой функции g, имеющей в точке x_0 производную порядка m, очевидно справедливо равенство $P_m(g;0)=g(x_0)$. Во-вторых, применяя утверждение п. 1 k раз $(k\leq n)$, получаем $P_n^{(k)}(f;x-x_0)=P_{n-k}(f^{(k)};x-x_0)$. Поэтому $P_n^{(k)}(f;0)=P_{n-k}(f^{(k)};0)=f^{(k)}(x_0)$.

Доказательство п. 3. В силу замечания 2, мы можем продифференцировать остаточный член и воспользоваться п. 1:

$$r'_n(f; x - x_0) = (f(x) - P_n(f; x - x_0))' = f'(x) - P'_n(f; x - x_0) = f'(x) - P_{n-1}(f'; x - x_0) = r_{n-1}(f'; x - x_0).$$

Доказательство п. 4. Применим k раз утверждение п. 3 к остаточному члену $r_n(f;x-x_0)$; к полученному выражению применим определение 10; к полученному выражению k раз применим утверждение п. 1 – в результате:

$$r_n^{(k)}(f; x - x_0) = r_{n-k}(f^{(k)}; x - x_0) =$$

$$= f^{(k)}(x) - P_{n-k}(f^{(k)}; x - x_0) = f^{(k)}(x) - P_n^{(k)}(f; x - x_0).$$

Теперь подставим $x = x_0$ и воспользуемся п. 2. \blacksquare

10.1. Формулы Тейлора

Теорема 1 (формула Тейлора с остаточным членом в форме Пеано).

Пусть в точке x_0 существует конечная производная $f^{(n)}(x_0)$. Тогда справедлива формула (10.1), в которой $r_n(f; x-x_0) = o((x-x_0)^n)$ при $x \to x_0$.

Доказательство индукцией по n для любой функции. При n=1 это определение $\ref{eq:constraint}$ дифференцируемости с учетом теоремы $\ref{eq:constraint}$? об эквивалентности существования конечной производной и дифференцируемости. Пусть утверждение верно при n-1 для любой функции. Применяя формулу ($\ref{eq:constraint}$) Лагранжа конечных приращений и пп. $\ref{eq:constraint}$ леммы $\ref{eq:constraint}$ имеем:

$$\frac{r_n(f;x-x_0)}{(x-x_0)^n} \stackrel{\text{II}}{=} \frac{4}{x_n(f;x-x_0)-r_n(f;0)} \stackrel{\text{Лагранж}}{=}$$

$$= \frac{r_n'(f;c(x-x_0))(x-x_0)}{(x-x_0)^n} \stackrel{\text{II}}{=} \frac{3}{x_{n-1}(f';c(x-x_0))} \stackrel{\text{индукция}}{=}$$

$$= \frac{o((c(x-x_0))^{n-1})}{(x-x_0)^{n-1}},$$

где $c=c(x-x_0)$ — произвольная функция, определяемая теоремой Лагранжа, значения которой находятся строго между нулем и $x-x_0$. Переходя к пределу, получаем

$$\frac{o((c(x-x_0))^{n-1})}{(x-x_0)^{n-1}} = \frac{o((c(x-x_0))^{n-1})}{(c(x-x_0))^{n-1}} \cdot \frac{(c(x-x_0))^{n-1}}{(x-x_0)^{n-1}} \stackrel{x \to x_0}{\longrightarrow} 0, \quad (10.2)$$

поскольку первая дробь в (10.2) имеет пределом ноль, а модуль второй ограничен единицей. Следовательно, $r_n(f;x-x_0)=o((x-x_0)^n)$ при $x\to x_0$.

Наличие дополнительной производной позволяет уточнить вид остаточного члена.

Теорема 2 (формула Тейлора с остаточным членом в форме Лагранжа)

Пусть в некоторой **окрестности** $U(x_0)$ точки x_0 существует конечная производная $f^{(n+1)}(x)$. Тогда в этой окрестности справедлива формула (10.1), в которой

$$r_n(f; x - x_0) = \frac{f^{(n+1)}(x_0 + \xi)}{(n+1)!} (x - x_0)^{n+1},$$

где ξ — некоторое число строго между нулем $u \ x - x_0$, если $x \neq x_0$, $u \xi$ — любое достаточно малое число при $x = x_0$.

Доказательство индукцией по n, начиная с нуля. При n=0 получаем формулу $(\ref{eq:constraint})$ Лагранжа. Пусть утверждение верно при n-1 для любой функции. Применяя формулу $(\ref{eq:constraint})$ Коши и пп. 3,4 леммы 10, имеем

$$\begin{split} &\frac{r_n(f;x-x_0)}{(x-x_0)^{n+1}} \stackrel{\text{I. 4}}{=} \frac{r_n(f;x-x_0)-r_n(f;0)}{(x-x_0)^{n+1}-(x_0-x_0)^{n+1}} \stackrel{\text{Коши}}{=} \\ &= \frac{r'_n(f;\eta(x-x_0))}{(n+1)(\eta(x-x_0))^n} \stackrel{\text{II. 3}}{=} \frac{r_{n-1}(f';\eta(x-x_0))}{(n+1)(\eta(x-x_0))^n} \stackrel{\text{индукция}}{=} \\ &= \frac{(f')^n(x_0+\xi(\eta))(\eta(x-x_0))^n}{(n+1)n!(\eta(x-x_0))^n} = \frac{f^{(n+1)}(x_0+\xi(\eta))}{(n+1)!}, \end{split}$$

где $\eta(x-x_0)$ строго между нулем и $x-x_0$, а $\xi(\eta)$ строго между нулем и η . (Например, если $x>x_0$, то $0<\xi<\eta< x-x_0$.) При $x=x_0$ получаем $r_n(f;0)=0$ независимо от выбора ξ .

Замечание. В теореме 1 требуется существование n-й производной e move; в теореме 2 требуется существование следующей (n+1)-й производной e oxpecmnocmu исследуемой точки, т.е. существенно больше. Зато появляется возможность использовать свойства (n+1)-й производной на всей окрестности, т.е. на некотором интервале, которому принадлежит точка x_0 .

11. Исследование функции с помощью производных

11.1. Условия монотонности

Теорема 1 (критерий нестрогой монотонности функции).

Пусть функция непрерывна на отрезке [a,b] и дифференцируема внутри него. Она нестрого возрастает (убывает) на отрезке тогда и только тогда, когда ее производная неотрицательна (неположительна). В символах:

$$\forall x_1, x_2 : a \le x_1 < x_2 \le b \hookrightarrow f(x_1) \le f(x_2) \Leftrightarrow$$

$$\forall x \in (a, b) \hookrightarrow f'(x) \ge 0.$$

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ. Дифференцируемая функция нестрого возрастает только в том случае, когда угол наклона касательной в каждой внутренней точке графика неотрицательный.

Доказательство

 \Rightarrow

Из условия следует, что

$$\operatorname{sgn}\left(\frac{f(x+\Delta x)-f(x)}{\Delta x}\right) \geq 0 \Rightarrow f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \geq 0.$$

 \Leftarrow

При условии $x_2 > x_1$ из теоремы Лагранжа следует, что

$$\operatorname{sgn}(f(x_2) - f(x_1)) = \operatorname{sgn}(f'(\xi)(x_2 - x_1)) = \operatorname{sgn} f'(\xi) \ge 0. \blacksquare$$

Теорема 2. (достаточные условия строгой монотонности функции).

Пусть функция непрерывна на отрезке [a,b] и дифференцируема внутри него. Если ее производная всюду положительна (отрицательна), то функция строго возрастает (убывает) на отрезке. В символах:

$$\forall x \in (a,b) \hookrightarrow f'(x) > 0 \implies \forall x_1, x_2 : a \le x_1 < x_2 \le b \hookrightarrow f(x_1) < f(x_2).$$

Доказательство. При условии $x_2>x_1$ из теоремы Лагранжа следует, что

$$sgn(f(x_2) - f(x_1)) = sgn(f'(\xi)(x_2 - x_1)) = sgn f'(\xi) > 0. \blacksquare$$

Замечание 1. В условиях теорем 1 и 2 отрезок можно заменить промежутком (в том числе, и с бесконечными концами).

Замечание 2. В теореме 2 сформулированы именно достаточные условия строгой монотонности.

Пример 1. Функция $y=x^3$ строго возрастает на всей оси, однако в точке x=0 ее производная равна нулю.

11.2. Условия локального экстремума

Если функция дифференцируема, теорема ?? Ферма дает *необхо- димые* условия локального экстремума (обнуление производной).

Теорема 3. (достаточные условия строгого локального экстремума).

Пусть функция f непрерывна в некоторой окрестности точки x_0 и дифференцируема в проколотой окрестности. Пусть слева от x_0 производная строго положительна (отрицательна), а справа — строго отрицательна (положительна). Тогда точка x_0 является точкой строгого максимума (минимума). Другими словами: если знак производной меняется c плюса (минуса) на минус (плюс), то x_0 — точка строгого максимума (минимума)

Доказательство. Из теоремы 2 следует, что на полуинтервале $(x_0-\delta,x_0]$ функция строго возрастает, на полуинтервале $[x_0,x_0+\delta)$ – строго убывает. \blacksquare

Замечание 3. Ценность теоремы 3 в том, что не требуется существование производной в исследуемой точке x_0 . \square

Примеры 1. $f_1(x) = |x|$, $f_2(x) = \sqrt{|x|}$ — в обоих случаях точка $x_0 = 0$ является строгим минимумом, в которой производная отсутствует (рис. 11.1, 11.2)

Если первая и несколько следующих производных обнуляются в точке x_0 , то знак первой отличной от нуля производной характеризует поведение функции в точке x_0 :

Теорема 4. (достаточные условия строгого экстремума в терминах производных высших порядков).

Пусть функция f определена в некоторой окрестности точки x_0 . Пусть для некоторого $n \in \mathbb{N}, \ n \geq 2$ имеют место условия

$$f'(x_0) = \dots = f^{(n-1)}(x_0) = 0, \ f^{(n)}(x_0) \in \mathbb{R}, \ f^{(n)}(x_0) \neq 0.$$

Тогда:

- 1. если n=2m четно $(m\in\mathbb{N})$, то точка x_0 является точкой локального экстремума: $npu\ f^{(2m)}(x_0)>0$ точкой строгого локального минимума, $npu\ f^{(2m)}(x_0)<0$ точкой строгого локального максимума;
- 2. если n=2m+1 нечетно, то точка x_0 НЕ является точкой нестрогого локального экстремума.

Доказательство. Из условия теоремы и формулы Тейлора следует, что

$$f(x) - f(x_0) = (x - x_0)^n \left(\frac{f^{(n)}(x_0)}{n!} + \varepsilon(x - x_0) \right),$$

где функция $\varepsilon(x-x_0)\to 0$ при $x\to x_0$. При всех x достаточно близких к x_0 знак выражения в скобках совпадает со знаком производной. При четном n все выражение в малой проколотой окрестности имеет знак производной и обнуляется только в точке x_0 . Следовательно, это точка строгого экстремума. При нечетном n выражение меняет меняет знак при переходе через точку x_0 . Следовательно, это не есть точка экстремума.

Замечание 4. Теоремы 3 и 4 дают достаточные условия строгого экстремума, однако в первой предъявляются требования к функции в некоторой проколотой окрестности точки, а во второй – в самой точке x_0 . Подчеркнем, что условия теорем 3 и 4 именно достаточные для существования локального экстремума.

Рис. 11.3

11.3. Выпуклость

Определение выпуклости функции.

Функция f называется нестрого выпуклой вниз (вверх) на промежутке $\langle a,b \rangle$, если для любых двух точек $x_1 < x_2$ из этого промежутка и любого числа $t \in (0,1)$ выполняется неравенство

$$f((1-t)x_1 + tx_2) \le \ge (1-t)f(x_1) + tf(x_2). \tag{11.1}$$

Функция f называется **строго** выпуклой вниз (вверх) на промежут-ке $\langle a,b \rangle$, если предыдущее неравенство выполняется c < > вместо $\leq \geq$ соответственно.

Геометрический смысл. Соединим точки $A(x_1,f(x_1))$ и $B(x_2,f(x_2))$ графика функции f хордой AB. Параметрическое задание хорды имеет вид:

$$C(t): x(t) = (1-t)x_1 + tx_2, y(t) = (1-t)f(x_1) + tf(x_2), t \in [0,1].$$

Рис. 11.4

Точка $D((1-t)x_1+tx_2,f((1-t)x_1+tx_2))$, принадлежащая графику, имеет ту же абсциссу, что и точка C. Следовательно, неравенство (11.1) означает, что каждая точка C любой хорды AB графика нестрого (строго) выпуклой вниз функции находится не ниже (выше) соответствующей точки D дуги AB графика (рис. 11.4). Часто выпуклую вниз функцию называют просто выпуклой, а выпуклую вверх — вогнутой.

Замечание 5. Выпуклость и монотонность – независимые между собой свойства функции. Выпуклость и экстремальные свойства функции связаны: строго выпуклая вниз функция может иметь только строгий минимум, строго выпуклая вверх – может иметь только строгий максимум. \Box

Оказывается, понятие выпуклости проявляет себя через odnocmo-ponnue производные:

Теорема 5.

 Φ ункция f нестрого выпукла вниз на **интервале** (a,b) тогда u m. m., когда выполнены два условия:

Рис. 11.5

1. в каждой точке $x \in (a,b)$ существуют конечные односторонние производные $f'_+(x)$, причем левая не больше правой:

$$\forall x \in (a, b) \hookrightarrow -\infty < f'_{-}(x) \le f'_{+}(x) < +\infty;$$

2. для любых двух разных точек правая производная в левой точке не больше левой производной в правой точке:

$$\forall x_1, x_2 : a < x_1 < x_2 < b \hookrightarrow f'_+(x_1) \le f'_-(x_2).$$

Из теоремы 5 следует

Теорема 6 (основные свойства выпуклых функций).

Если функция нестрого выпукла вниз на интервале, то она на нем:

- 1. всюду непрерывна;
- 2. всюду имеет конечные односторонние производные, которые нестрого возрастают;
- 3. за исключением, возможно, счетного множества функция дифференцируема, причем если в точках $x_1 < x_2$ функция дифференцируема, то $f'(x_1) \le f'(x_2)$.

Задача. Сформулируйте основные свойства функции, которая нестрого выпукла вверх на интервале.

Замечание 6. Утверждения теоремы 6 показывают, что выпуклость сильнее, чем непрерывность и (с точностью до счетного множества) дифференцируемость.

Замечание 7. Определение выпуклости сохраняет свой смысл и на (полу) отрезке. Однако свойство непрерывности может в концах отрезка исчезнуть, а односторонние производные стать бесконечными.

Опираясь на теорему 5, дадим сразу

Доказательство теоремы 6.

- П. 1. В силу существования конечных односторонних производных (первое условие теоремы 5, в каждой точке функция непрерывна и слева, и справа; следовательно, она непрерывна (см. теорему ?? и лемму ??).
 - П. 2. Из обоих условий теоремы 5 следует, что

$$\forall x_1, x_2 : \ a < x_1 < x_2 < b \iff$$

$$f'_{-}(x_1) \le f'_{+}(x_1) \le f'_{-}(x_2) \le f'_{+}(x_2). \tag{11.2}$$

П. 3. Из доказанного п. 2 и теоремы ?? о разрывах монотонных функций следует, что односторонние производные имеют не более, чем счетное множество разрывов первого рода. Покажем, что разрывы могут происходить только одновременно в обеих односторонних производных. Пусть x_0 – точка непрерывности функции f'_+ . Согласно оценкам (11.2), в произвольных точках $x_1 < x_2 < x_0 < x_3 < x_4$ справедливо

$$f'_{+}(x_1) \le f'_{-}(x_2) \le f'_{+}(x_0) \le f'_{-}(x_3) \le f'_{+}(x_4).$$

Воспользовавшись непрерывностью функции f'_+ в точке x_0 , сделаем предельный переход при $x_1 \to x_0 - 0$ и $x_4 \to x_0 + 0$:

$$\lim_{x_2 \to x_0 - 0} f'_{-}(x_2) = f'_{+}(x_0) = \lim_{x_3 \to x_0 + 0} f'_{-}(x_3).$$

Последнее означает непрерывность функции f'_- в точке x_0 и cosnade- ние $f'_-(x_0)=f'_+(x_0).$

Аналогично доказывается, что непрерывность функции f'_- влечет непрерывность f'_+ и их совпадение.

Итак, обе односторонние производные разрываются одновременно не более, чем на счетном множестве точек. Значит, во всех остальных точках односторонние производные совпадают и равны производной: $f'_{-}(x) = f'_{+}(x) = f'(x)$.

11.4. Доказательство теоремы 5 (необходимость)

Оно опирается на свойства выражения (функции двух переменных)

$$\operatorname{tg}(f; x_1, x_2) := \frac{f(x_2) - f(x_1)}{x_2 - x_1},$$
 где $x_1 \neq x_2.$

Геометрический смысл этого выражения — тангенс угла наклона секущей AB (рис. 11.6).

Лемма 1 (свойства тангенса наклона секущей).

Eсли функция f нестрого выпукла вниз на (a,b), то ее функция тангенса

- 1. симметрична: $tg(x_1, x_2) = tg(x_2, x_1)$;
- 2. нестрого возрастает по каждой переменной в каждом допустимом интервале; например, при $x_1 < x_2 < x_2'$ верно $\operatorname{tg}(x_1, x_2) \leq \operatorname{tg}(x_1, x_2');$
- 3. справедливо неравенство трех точек: для любых $x_1 < x < x_2$ верно

$$\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}.$$
 (11.3)

См. рис. 11.6 и 11.7.

Рис. 11.6

Доказательство.

 Π . 1. Следует из определения функции $tg(x_1, x_2)$.

Рис. 11.7

П. 2. Следует из определения (11.1) после специальных преобразований. Пусть $x_2=x_1+\delta,\,x_2'=x_1+\Delta,$ где $0<\delta<\Delta.$ Тогда

$$f(x_2) = f(x_1 + \delta) = f\left(\left(1 - \frac{\delta}{\Delta}\right)x_1 + \frac{\delta}{\Delta}(x_1 + \Delta)\right) \stackrel{(11.1)}{\leq}$$

$$\leq \left(1 - \frac{\delta}{\Delta}\right)f(x_1) + \frac{\delta}{\Delta}f(x_1 + \Delta) = \left(1 - \frac{x_2 - x_1}{x_2' - x_1}\right)f(x_1) + \frac{x_2 - x_1}{x_2' - x_1}f(x_2') \iff$$

$$f(x_2) \leq f(x_1) + \frac{x_2 - x_1}{x_2' - x_1}(f(x_2') - f(x_1)) \iff$$

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \leq \frac{f(x_2') - f(x_1)}{x_2' - x_1}.$$

Первое неравенство в (11.3) есть следствие п. 2 по второй переменной, второе неравенство в (11.3) – следствие п. 2 по первой переменной.

Доказательство теоремы 5 (необходимость). Зафиксируем точку x. В неравенстве (11.3) рассмотрим крайние дроби как неубывающие функции по переменным $x_1 < x$ и $x_2 > x$ соответственно:

$$\frac{f(x_1) - f(x)}{x_1 - x} \le \frac{f(x_2) - f(x)}{x_2 - x}.$$

Указанная монотонность позволяет в неравенстве перейти к пределу:

$$-\infty < f'_{-}(x) = \sup_{x_1 < x} \frac{f(x_1) - f(x)}{x_1 - x} \le \inf_{x_2 > x} \frac{f(x_2) - f(x)}{x_2 - x} = f'_{+}(x) < +\infty.$$

 Π . 1 теоремы доказан.

Зафиксируем точки x_1, x_2 , а точку x понимаем как переменную. Учитывая, что существование конечных односторонних производных уже обосновано, из левого и правого неравенств в (11.3) получаем:

$$f'_{+}(x_1) = \inf_{x > x_2} \frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1};$$

$$f'_{-}(x_2) = \sup_{x < x_2} \frac{f(x) - f(x_2)}{x - x_2} \ge \frac{f(x_2) - f(x_1)}{x_2 - x_1},$$

что доказывает п. 2.

Задача.

- 1) Доказательство достаточности в теореме 5 опирается на теорему Лагранжа о среднем для односторонних производных: пусть функция f непрерывна на отрезке [a,b] и имеет на (a,b) конечную правую производную $f'_+(x)$. Докажите, что: или существует точка $c \in (a,b)$, в которой имеет место формула конечных приращений $f(b) f(a) = f'_+(c)(b-a)$, или существуют две разные точки $c_1, c_2 \in (a,b)$, в которых $f(b) f(a) < f'_+(c_1)(b-a)$ и $f(b) f(a) > f'_+(c_2)(b-a)$.
- 2) Опираясь на предыдущее утверждение, докажите достаточность в теореме 5.

11.5. Выпуклость в условиях второй производной

Теперь, когда мы увидели, что выпуклость связана с монотонностью первой производной, естественно исследовать ее в предположении существования второй производной. Нам понадобится следующее вспомогательное утверждение.

Лемма 2

Eсли в точке x_0 существует конечная вторая производная, то ее можно вычислить по формуле

$$f''(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) + f(x_0 - \Delta x) - 2f(x_0)}{(\Delta x)^2}.$$
 (11.4)

Замечание 8. Предложенная формула не эквивалентна определению второй производной, поскольку указанный предел может существовать и в том случае, когда вторая производная отсутствует.

Ценность формулы (11.4) в том, что она позволяет вычислять вторую производную не через первую производную (как требует определение), а непосредственно через функцию.

Доказательство. Выпишем формулу Тейлора для двух видов приращений аргумента:

$$f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + \frac{f''(x_0)}{2}(\Delta x)^2 + o((\Delta x)^2),$$

$$f(x_0 - \Delta x) = f(x_0) - f'(x_0)\Delta x + \frac{f''(x_0)}{2}(\Delta x)^2 + o((\Delta x)^2).$$

Сложим равенства, разделим полученное равенство на квадрат приращения и перейдем к пределу при $\Delta x \to 0$. Получим требуемое.

Теорема 7 (критерий нестрогой выпуклости в условиях существования второй производной).

Пусть функция f дважды дифференцируема на интервале (a,b). Тогда функция f нестрого выпукла вниз (вверх) на $(a,b) \Leftrightarrow \forall x \in (a,b) \hookrightarrow f''(x) \geq 0$ $(f''(x) \leq 0)$.

Доказательство

 \implies Пусть функция выпукла вверх. Тогда в любой точке интервала x и для произвольного достаточно малого приращения Δx точки $x \pm \Delta x \in (a,b)$, в силу определения выпуклости, получаем при t=1/2:

$$f(x) = f\left(\frac{(x + \Delta x) + (x - \Delta x)}{2}\right) \ge \frac{f(x + \Delta x) + f(x - \Delta x)}{2}.$$

Следовательно,

$$f(x + \Delta x) + f(x - \Delta x) - 2f(x) \le 0.$$

Разделим полученное неравенство на $(\Delta x)^2$ и перейдем к пределу при условии $\Delta x \to 0$. Из равенства (11.4) получаем, что $f''(x) \le 0$.

$$(1-t)f(x_1)+tf(x_2)-f(x(t))=(1-t)(f(x_1)-f(x(t)))+t(f(x_2)-f(x(t)))\dots$$

Применим формулу Тейлора в форме Лагранжа к полуинтервалам $(x_1, x(t)]$ и $[x(t), x_2)$ $(t \in (0, 1))$:

... =
$$(1-t)(f'(x(t))(x_1-x(t)) + \frac{1}{2}f''(c_1)(x_1-x(t))^2) +$$

+
$$t(f'(x(t))(x_2-x(t)) + \frac{1}{2}f''(c_2)(x_2-x(t))^2)...$$

Поскольку вторые производные неположительны, отбрасывая слагаемые с ними, мы не уменьшаем выражение. Поэтому

$$\dots \le f'(x(t))((1-t)x_1 - (1-t)x(t) + tx_2 - tx(t)) =$$

$$= f'(x(t))((1-t)x_1 + tx_2 - x(t)) = 0. \quad \blacksquare$$

Теорема 8 (достаточные условия строгой выпуклости при существовании второй производной).

Пусть функция f дважды дифференцируема на интервале (a,b). Если вторая производная всюду строго положительна (отрицательна), то функция f строго выпукла вниз (вверх) на (a,b).

Задача. Докажите теорему 8.

Замечание 9. В теореме 8 сформулированы именно достаточные условия строгой выпуклости.

Пример 2. Функция $f(x) = x^4$ строго выпукла вниз на всей оси, однако в точке x = 0 ее вторая производная равна нулю.

Замечание 10. Обращаем внимание, что теоремы $1\ u\ 2\ o$ монотонности u теоремы $7\ u\ 8\ o$ выпуклости имеют аналогичные логические конструкции.

Определение. Точка x_0 называется точкой перегиба функции f, если в этой точке: 1) функция непрерывна, 2) существует производная $f'(x_0) \in \mathbb{R}$ и 3) найдется такое $\delta > 0$, что на интервале $(x_0 - \delta, x_0)$ функция нестрого выпукла вверх (вниз), а на интервале $(x_0, x_0 + \delta)$ – нестрого выпукла вниз (вверх) (рис. 11.8, 11.9).

Другими словами, в точке перегиба график имеет касательную прямую и при переходе через эту точку меняется тип выпуклости. В силу теоремы 9, по разные сторона от точки перегиба график находится по разные стороны от касательной (в широком смысле). Заметим, что на рис. 11.10 в точке $x_0=0$ происходит изменение характера выпуклости, но такую точку мы не трактуем как точку перегиба, поскольку в ней отсутствует касательная к графику. Точку разрыва, в которой

существует бесконечная производная (рис. 11.11) мы также не трактуем как точку перегиба. Не следует думать, что точка перегиба обязательно изолирована: если график содержит отрезок, то все его точки автоматически являются точками перегиба.

Теорема 10 (критерий точки перегиба в условиях существования второй производной).

Пусть: 1) функция f непрерывна в точке x_0 , 2) существует $f'(x_0) \in \mathbb{R}$, 3) в проколотой окрестности существует конечная вторая производная f''(x). Тогда точка x_0 является точкой перегиба в том и только том случае, если найдется такое $\delta > 0$, что одновременно выполняются два условия:

$$\begin{cases} \forall x \in (x_0 - \delta, x_0) \hookrightarrow f''(x) \le 0 & (\ge 0), \\ \forall x \in (x_0, x_0 + \delta) \hookrightarrow f''(x) \ge 0 & (\le 0). \end{cases}$$

T.e. вторая производная нестрого меняет знак при переходе через точку x_0 .

Доказательство немедленно вытекает из теоремы 7.

Задача.

Пусть $f'(x_0)=f''(x_0)=0,$ а $f'''(x_0)\neq 0.$ Докажите, что точка x_0 является точкой перегиба.

12. Равномерная непрерывность функции на множестве

Определение 1. Функция f называется равномерно непрерывной на подмножестве $X \subset \mathbb{R}$, если для любого $\varepsilon > 0$ найдется такое $\delta > 0$, что для любых двух точек $x, \widehat{x} \in X$ таких, что $\rho(x, \widehat{x}) < \delta$, справедлива оценка $|f(x) - f(\widehat{x})| < \varepsilon$:

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon): \ \forall x, \widehat{x} \in X \ \rho(x, \widehat{x}) < \delta \ \hookrightarrow \ |f(x) - f(\widehat{x})| < \varepsilon. \ (12.1)$$

Пемма 1. Если функция равномерно непрерывна на некотором множестве X, то она равномерно непрерывна на любом его подмножестве $\widetilde{X} \subset X$.

Пемма 2. Из равномерной непрерывности функции на X следует ее непрерывность на X.

Доказательство. Хотя утверждение очевидно, рассмотрим ситуацию формально-логически на языке кванторов. Сравнивая определения (??) и (12.1), мы видим, что в первом определении точка x стоит neped выбором δ , поэтому δ зависит от x. Во втором определении δ не зависит от x. Значит, из второго определения следует первое.

Теорема 1 (Кантора о равномерной непрерывности на компакте). Если функция f непрерывна на компактном подмножестве, то она равномерно непрерывна на нем.

Доказательство от противного. Тогда выполняется $(\ref{eq:condition})$. Чтобы построить последовательность точек, возьмем последовательность чисел $\delta_k = 1/k$ $(k=1,2\ldots)$. Возникают две последовательности точек

 $x_k, \widehat{x}_k \in X$ таких, что $\rho(x_k, \widehat{x}_k) < 1/k$, но $|f(x_k) - f(\widehat{x}_k)| \ge \varepsilon_0$. В силу компактности X, из последовательности $\{x_k\}$ выбираем сходящуюся подпоследовательность: $x_{k_m} \to x_0 \in X$ при $m \to \infty$. Поскольку

$$\rho(\widehat{x}_{k_m}, x_0) < \rho(\widehat{x}_{k_m}, x_{k_m}) + \rho(x_{k_m}, x_0) < \frac{1}{k_m} + \rho(x_{k_m}, x_0) \to 0$$

при $m\to\infty$, то получаем вторую сходящуюся к той же точке x_0 подпоследовательность $\widehat{x}_{k_m}\to x_0$. В силу непрерывности функции в точке x_0 , получаем

$$\lim_{m \to \infty} f(x_{k_m}) = \lim_{m \to \infty} f(\widehat{x}_{k_m}) = f(x_0).$$

Поэтому $\lim_{m \to \infty} |f(x_{k_m}) - f(\widehat{x}_{k_m})| = 0$. Что противоречит допущению.

Следствие 1. Функция f, непрерывная на отрезке [a,b], равномерно непрерывна на нем.