Estructura de Computadores

Recuperación Parcial 2	19 Junio - 2017
------------------------	-----------------

Nombre:			Grupo:	
(3 puntos) Un sistema ba de Instrucciones y una L1 de 64B. La política de fallo er (actualización) es de escrito a) (0,5 puntos) Indique la principal	de Datos), cuya conf n escritura es de Ub ura Posterior (<i>write b</i>	figuración es de 8 KB cad picación (<i>write allocate</i>) y	da una, 2 vías y ta la política de aci mplazo es LRU.	amaño de bloque erto en escritura
Número de lír Número de conju	ntos el tamaño en bits de líneas o entradas		ol de la cache de	
			V(1007)	
		e los elementos V[1] a 'ecera del vector (element		

```
. data 0x2F000800
A:
      . word 1, 2, 3, ..., 4096
                               # vector de 4096 enteros (32 bits)
      .\ text\ 0x00400000
_start:li $t4,4095
                               # carga contador
      li $t2,0
                               # inicializa suma=0
      lui $t0, 0x2F00
                               # carga puntero a vector A
      ori $t0, $t0, 0x0800
buc:
      lw $t1, 4($t0)
                               # lee V[i]
      add $t2, $t2, $t1
                               # suma=suma+V[i]
      addi $t0, $t0, 4
                               # incrementa puntero a vector V
      addi $t4, $t4, -1
                               # decrementa contador
      bnez $t4, buc
                               # mientras contado<>0, seguir en el bucle
      lui $t0, 0x2F00
                               # carga puntero a vector V
      ori $t0, $t0, 0x0800
      sw $t2,0($t0)
                               # V[0]=suma
      . end
```

d.1) (1,25 puntos) Calcule los siguientes valores tanto para Instrucciones como para Datos

	CÓDIGO	DATOS	-
Número de bloques que lo contienen			
Número de bloque de los dos primeros bloques (hex)			
Conjunto al que se mapea el primer bloque (hex)			
Etiqueta del primer bloque			
Número de FALLOS			
Número de ACCESOS			
(Mostrar el cálculo)			
Número de reemplazos de bloque			
TASA DE ACIERTOS	H _{L11} =	H _{L1D} =	
TASA DE ACIERTOS PROMEDIO (Mostrar el cálculo)	H _{L1} =		
acierto H _{L2} = 0,9, y suponie ns, respectivamente, y que	ndo que los tiempos de acces	e cache (Unificada I+D), con tasa o de los niveles L1 y L2 son 1 ns oal es de 300ns, calcule cuál serí nterior programa	y 4
correspondencia asociativa	por conjuntos de 2 vías, mante	correspondencia directa en lugar niedo la capacidad. Comente cóm noria de control. Razone la respue	o se

2

(2,5 puntos) La figura muestra la interfaz de un disco magnético. Esta interfaz se conecta a una CPU MIPS R2000. La interfaz soporta transferencia por PIO y por DMA. Los registros Estado y Control, que son de 8 bits, poseen los siguientes bits significativos:

Registro **CONTROL**:

- PIO/DMA (bit 7), a 0 indica el modo PIO y a 1 el modo DMA.
- A (bit 4), a 1 ordena al interfaz el inicio de una operación de lectura/escritura sobre el disco magnético.
- CL (bit 2), a 1 hace R=0.
- **IE** (bit 1), a 1 habilita la interrupción INT3*. Si IE=1, la interrupción se emitirá cada vez que R sea igual a 1.
- **R/W** (bit 0), indica al interfaz si se trata operación de lectura (R/W=1) o de escritura (R/W=0) sobre el disco magnético.

Registro **ESTADO**:

• R (bit 7) se activa a 1 cuando la transferencia del bloque a/desde memoria ha concluido

Nota: Los registros Control y Estado son de 8 bits, el resto son de 32 bits

a) (0,3 puntos) Calcule la dirección base (DB) del interfaz

DB=

b) (0,7 puntos) Calcule la dirección (DB+X) de cada uno de los registros del interfaz

Registro	Dirección	Registro	Dirección
ESTADO		ID_BLOQUE	

CONTROL	CONTADOR
DATOS	PUNTERO

c) (1 punto) En el driver del disco magnético controlado a través del interfaz del esquema anterior se define la siguiente función que permite leer o escribir un bloque de 512 bytes:

Función	Índice	Argumentos
RW_Block	\$v0= 444	\$a0: Puntero a buffer de memoria
		\$a1: Identificador del bloque
		\$a2: 1 lectura – 0 escritura

La sincronización con el dispositivo se realiza por **INTERRUPCIÓN** al nivel de bloque. La función RW_Block deberá configurar adecuadamente el interfaz y habilitar la interrupción int3* en el interfaz. Suponiendo que el identificador del bloque que se desea escribir en el disco es 0xABCD0123, se pide:

Nota: Debe tenerse en cuenta que se está en un contexto en el que **múltiples procesos** pueden estar ejecutándose concurrentemente

c.1) (0,4 puntos) Escriba el código empleado en la invocación de la función RW_Bl ock para leer de disco dicho bloque y almacenarlo en la zona reservada por la etiqueta Buffer.	c.2) (0,6 puntos) Escriba el código que implementa la función RW_Bl ock si se usa el modo DMA; tenga en cuenta que se transfiere una palabra en cada ciclo y el registro contador es de ciclos.
. data 0x2000000	RW_Block:
Buffer: .space 512 # 512 bytes	
•	
.text 0x00400000	
	j retexc
	JIELEAC

d) (0,5 puntos) Describa brevemente las acciones que debería realizar la rutina de servicio de INT3* tanto en este caso (que usa DMA) como en el caso de usar PIO.

Acciones en modo DMA:		
Acciones en modo PIO:		

3 (3 puntos) Se quiere desarrollar un sistema de apertura de una cerradura mediante un teclado, de forma que cuando se introduzca la clave correcta de n cifras, seguida de "Llave", se abra la cerradura. Para ello se dispone de los siguientes dispositivos:

Teclado numérico con dos leds y un altavoz en la dirección base 0xFFFF0000, conectado a la interrupción INTO del MIPS, y que posee los siguientes registros :

Registro de órdenes y estado (Lectura/escritura. Dirección = Base)

- R (bit 0, sólo lectura). Indicador de dispositivo preparado: R = 1 cada vez que se pulsa una tecla. Para la cancelación (hacer R = 0) es necesario realizar un acceso de lectura en el registro de datos.
- E: (bit 1, sólo escritura). Habilitación de la interrupción (mientras E = 1, el valor R = 1 activa la línea de interrupción del dispositivo)
- LED Rojo: (bit 3, sólo escritura). Valor 1 enciende el LED, 0 lo apaga.
- LED Verde: (bit 4, sólo escritura). Valor 1 enciende el LED, 0 lo apaga.
- Sonido: (bits 7..5, sólo escritura). Suena un sonido durante 1 segundo con un tono de 1 al 7, siendo el valor 0 sin sonido.

Registro de datos (Sólo lectura. Dirección = Base + 4)

• COD (bits 7...0). Código de la tecla del 0 al 9 ó 15 para "Llave". Leer de este registro provoca que R = 0.

Cerradura electrónica en la dirección base 0xFFFF0010 y conectada a la interrupción INT4 del MIPS:

Registro de órdenes y estado (Lectura/escritura. Dirección = Base)

- R (bit 0, sólo lectura). Indicador de cambio de estado: R = 1 cada vez que la cerradura se abre o se cierra.
- P (bit 1, sólo lectura). Indica si la cerradura está abierta (P=1) o cerrada (P=0).
- A (bit 2, sólo escritura). Abre la cerradura cuando se escribe un 1. La cerradura se cierra automáticamente con un temporizador.
- C (bit 3, sólo escritura). Escribiendo un 1 hace R = 0.
- E: (bit 4, sólo escritura). Habilitación de la interrupción (mientras E = 1, el valor R = 1 activa la línea de interrupción del dispositivo)

Se definen dos variables del kernel:

kdata

cl ave: . word 0x1234 codpul sado: . word 0

Se pide:

a) (1 punto) Programe las siguientes funciones del sistema

Función	Índice	Argumentos	Resultado
inicializar	\$v0=550		 Habilita las interrupciones 0 y 4 en el coprocesador 0 del MIPS, dejando el resto de bits inalterados Habilita las interrupciones en los dispositivos. Apaga el led verde Enciende el led rojo Inicializa a cero la variable codpulsado.
set_clave	\$v0=560	\$a0 = la nueva clave	Fija la clave con el valor de \$a0, la clave es un número hexadecimal en el que cada cifra sólo puede valer de 0 a 9. Asumimos que la clave tiene este formato, no es necesario verificarlo.

La figura adjunta muestra el contenido del Registro de Estado (\$12) del MIPS

1: habilitadas

inicializar:
THI CI al I Zai .
j retexc
J
set_clave:
j retexc
J Teleat
b) (1 punto) Programe el código de servicio de la rutina de interrupción int4, que encenderá el led verde
(apagando el rojo) y emitirá un tono 5 cuando se abra la cerradura, mientras que encenderá el led rojo
(apagando el verde) y emitira un tono 4 cuando se cierre la cerradura. Se pueden usar \$t0, \$t1 y \$t2.
int4:
j retexc
1

c) (1 punto) Programe el código de la rutina de servicio de interrupción int0 que actualiza la variable codpul sado con las teclas pulsadas y que verifica la clave tras pulsar "Llave", procediendo a abrir la puerta si la clave es correcta. Véase el ejemplo:

Tecla pulsada	Valor de codpul sado
	0x0000
5	0x0005
7	0x0057
3	0x0573
llave	Después de verificar, se pone de nuevo a 0x0

El comportamiento debe ajustarse al siguiente algoritmo:

```
Si la tecla es llave
Si codpulsado == clave
Abrir cerradura
codpulsado = 0
Sino
Emitir tono 7
Encender led rojo
codpulsado = 0
Sino
```

Emitir tono 1

int0:

Añadir tecla a codpulsado (por la derecha, mediante desplazamientos a izquierda)

Se pueden usar \$t0, \$t1 y \$t2.

(1 punto) En un sistema como el que se indica en la figura se está reproduciendo en tiempo real un vídeo almacenado en el DVD. Este codifica 2 minutos de película (vídeo+audio) en formato MPEG, con un tamaño de archivo de 960 MB. Se utiliza la GPU para descomprimir el vídeo y el audio. De esta forma, se mueve el vídeo comprimido por DMA desde el DVD a Memoria, mientras que la CPU lo lee de Memoria y lo transmite a la GPU, que procesará y enviará las imágenes descomprimidas a un monitor 4K a través de un conector HDMI, mientras que el sonido es enviado al equipo de audio, ambos también por DMA. La película descomprimida está formada por escenas de 4096×2160×24 bits a 60 escenas/segundo; por su parte, el audio es de 5.1 canales de 24 bits, y se halla muestreado a 96 Khz.

a) (0.5 puntos) Indique los siguientes anchos de banda requeridos, en MBps:

Lectura del vídeo MPEG desde el DVD a la Memoria:

Reproducción de las imágenes enviadas desde la GPU al Monitor:

Reproducción del audio enviado desde la GPU al equipo de audio:

b) (0.5 puntos) Estando en la situación anterior, se procede a transferir un archivo de 2 GB (10⁹ bytes) desde el disco HD hasta el Pendrive, garantizando en todo momento la correcta reproducción de vídeo y audio. Para ello se lee del disco HD por DMA a la Memoria (MEM); la CPU lo va leyendo desde la memoria y envía desde ésta al Pendrive, también por DMA de forma concurrente. ¿Cuánto se tardará en transferir el archivo del disco HD al Pendrive? Indique también la ocupación (%) de los buses NS y USB 2.0

USB 2.0		

5 (0.5 puntos) Sea un disco duro magnético formado por cuatro platos. El área útil de los platos está delimitada por un radio interno de 1" y un radio externo de 3", y se encuentra distribuida en 4 zonas o anillos. Cada anillo contiene 10.000 cilindros. La distribución de sectores (de 512 bytes de capacidad) es la siguiente:

	Zona 0	Zona 1	Zona 2	Zona 3
Sectores/pista	1000	850	650	500

do que el disco gira a 15000 rpm, que el tiempo medio de posicionamiento es de 6 ms, y que -track time es de 1 ms, se pide.
os) Calcule los siguientes parámetros del disco:
d del disco en GB (10 ⁹ B):
media rotacional en ms:
banda de transferencia de la Zona 3 en MBps:
os) Calcule el tiempo medio necesario para leer un archivo de 10 MB (10x10 ⁶ B), ubicado er? Suponga que el archivo está almacenado en el disco de forma óptima.