Independent Component Analysis

- Independent Component Analysis (ICA)
 - o Also called: "blind source separation"
- Suppose *m* independent signals are mixed, and sensed by *m* independent sensors.
 - Cocktail party with speakers and microphones [demo]
 - o EEG with brain wave sources and sensors
 - Brain Computer Interface videos: [demo1, demo2, demo3].
 - o etc
- Can we reconstruct the original signals, given the mixed data from the sensors?

Independent Component Analysis

- The sources **s** must be independent.
 - o And they must be non-Gaussian.
 - (If Gaussian, then there is no way to find unique independent components.)
- Linear mixing to get the sensor signals x.

$$\circ$$
 $\mathbf{x} = \mathbf{A}\mathbf{s}$

$$\circ~$$
 or $\mathbf{s} = \mathbf{W}\mathbf{x}$ (i.e., $\mathbf{W} = \mathbf{A}^{-1}$)

• A is called bases; W is called filters

6

Algorithm for ICA

- There are several formulations of ICA:
 - Maximum likelihood
 - Maximizing non-Gaussianity

Maximum-likelihood

• Maximum likelihood learning for W

 $\circ\quad$ By definition, the sources are independent

the sources are independent
$$p(\mathbf{x})Vol(d\mathbf{x}) = p(\mathbf{s})Vol(d\mathbf{s})$$

$$p(\mathbf{x})Vol(d\mathbf{x}) = p(\mathbf{s})Vol(d\mathbf{s})$$

$$p(\mathbf{x})|d\mathbf{x}| = p(\mathbf{s})|d\mathbf{s}|$$

$$p(\mathbf{s}) = \prod_{j=1} p_s(s_j)$$

the observed data distribution is

• Then, the observed data distribution is given as:

$$p(\mathbf{x}) = \prod_{j=1}^{m} p_s(\mathbf{w}_j^T \mathbf{x}) \cdot |W|$$

• We model CDF of source distribution as sigmoid:

$$\int_{-\infty}^{s} p_s(s') ds' = g(s) \to p_s(s) = g'(s)$$
$$g(s) = 1/(1 + e^{-s}) = g(s)(1 - g(s))$$

 $= p(\mathbf{s})|Wd\mathbf{x}|$

 $= p(\mathbf{s})|W| \cdot |d\mathbf{x}|$

Use "change of variables" trick given:

s = Wx

Maximum-likelihood (cont'd)

Maximum likelihood learning for W

 $\,\,{}^{\bigcirc}\,\,$ We model CDF of source distribution as sigmoid:

$$p_s(s) = g'(s) = g(s)(1 - g(s))$$
 $g(s) = 1/(1 + e^{-s})$

o Our loss is the log-likelihood of data

$$\ell(W) = \sum_{i=1}^{N} \left(\sum_{j=1}^{m} \log g'(\mathbf{w}_{j}^{\top} \mathbf{x}^{(i)}) + \log |W| \right)$$

Maximum-likelihood (cont'd)

Maximum likelihood learning for W

To get the update rule,

$$\ell(W) = \sum_{i=1}^{N} \left(\sum_{j=1}^{m} \log g'(\mathbf{w}_{j}^{\top} \mathbf{x}^{(i)}) + \log |W| \right)$$

 \circ SGD by taking derivative and using $\left.
abla_{W} |W| = |W| \left(W^{-1}
ight)^{ op}$

$$W := W + \alpha \left(\begin{bmatrix} 1 - 2g(\mathbf{w}_{\perp}^{\top} \mathbf{x}^{(i)}) \\ 1 - 2g(\mathbf{w}_{\perp}^{\top} \mathbf{x}^{(i)}) \\ \vdots \\ 1 - 2g(\mathbf{w}_{m}^{\top} \mathbf{x}^{(i)}) \end{bmatrix} \mathbf{x}^{(i)\top} + (W^{\top})^{-1} \right)$$

Algorithm for ICA

- There are several formulations of ICA:
 - Maximum likelihood
 - Maximizing non-Gaussianity

ICA by Maximizing non-Gaussianity

- Common steps of ICA (e.g., FastICA):
 - · Apply PCA whitening (aka sphering) to the data
 - Find orthogonal unit vectors along which that the non-Gaussianity are maximized

$$\max_{W} L(W\widetilde{\mathbf{x}})$$

s.t. $WW^{\top} = I$

• where L(x) can be Kurtosis, L1-norm, etc.

12

13

PCA Whitening

- To whiten the input data,
 - We want a linear transformation

$$\widetilde{\mathbf{x}} = \mathbf{V}\mathbf{x}$$

So the components are uncorrelated:

$$\mathbb{E}\left[\widetilde{\mathbf{x}}\widetilde{\mathbf{x}}^{ op}
ight] = \mathbf{I}$$

- From PCA transformation matrix, $\, \Sigma = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{ op} \,$

$$\mathbf{V} = \mathbf{\Lambda}^{-rac{1}{2}}\mathbf{U}^{ op}$$

Recause

$$\mathbb{E}\left[\widetilde{\mathbf{x}}\widetilde{\mathbf{x}}^\top\right] = \mathbb{E}\left[\mathbf{V}\mathbf{x}\mathbf{x}^\top\mathbf{V}^\top\right] = \mathbf{I}$$

Maximizing non-Gaussianity

Kurtosis

$$\operatorname{Kurt}[X] = \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right] = \frac{\mathbb{E}\left[(X-\mu)^4\right]}{\left(\mathbb{E}[(X-\mu)^2]\right)^2} = \frac{\mu_4}{\sigma_4}$$

- Measure the "tailed-ness" of a distribution
- All Gaussian distributions have Kurt=3
- By maximizing Kurtosis, we can increase the "non-gaussianity".

Kurtosis - Wikipedia https://en.wikipedia.org/wiki/Kurtesis

 $\mu_{\rm 4}$ is the fourth central moment

PCA whitening (preprocessing for ICA): data from Gaussian

Apply PCA: $\Sigma = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{ op}$

PCA whitening (preprocessing for ICA): data from Gaussian

- Apply PCA: $\Sigma = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{ op}$
- Project (rotate) to the principal components

PCA whitening (preprocessing for ICA): : data from Gaussian

- Apply PCA: $\Sigma = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{ op}$
- Project (rotate) to the principal components
- "Scale" each axis so that the transformed data has identity as covariance.

data with Gaussian distribution

(Next slide:) For non-Gaussian whitened data to maximize

$$\mathbf{x}_{ ext{PCA}} = \mathbf{U}^{ op} \mathbf{x} \quad \mathbf{x}_{ ext{white}} = \mathbf{\Lambda}^{-rac{1}{2}} \mathbf{U}^{ op} \mathbf{x}$$

ICA illustration: data from non-Gaussian distribution

- **PCA** whitening
 - \circ Apply PCA: $\Sigma = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{ op}$

ICA illustration: data from non-Gaussian distribution

- PCA whitening
 - \circ Apply PCA: $\Sigma = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{ op}$
 - o Project (rotate) to the principal components

ICA illustration: data from non-Gaussian distribution

- PCA whitening
 - \circ Apply PCA: $\Sigma = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{ op}$
 - Project (rotate) to the principal components
 - "Scale" each axis so that the transformed data has identity as covariance.

$$\mathbf{x}$$
 $\mathbf{x}_{\mathrm{PCA}} = \mathbf{U}^{\mathsf{T}} \mathbf{x}$ $\mathbf{x}_{\mathrm{white}} = \mathbf{\Lambda}^{-\frac{1}{2}} \mathbf{U}^{\mathsf{T}} \mathbf{x}$

ICA illustration: data from non-Gaussian distribution

- PCA whitening
 - Apply PCA: $\Sigma = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{ op}$
 - Project (rotate) to the principal components
 - "Scale" each axis so that the transformed data has identity as covariance.
- Rotate to maximize non-Gaussianity

Independent Component Analysis

Mixture example.

Input signals and density

Independent Component Analysis

Remove correlations by whitening (sphering) the data.

Independent Component Analysis

Step 1 of FastICA

Separated signals after 1 step of FastICA

Independent Component Analysis

Step 2 of FastICA

Separated signals after 2 steps of FastICA

Independent Component Analysis

Step 3 of FastICA

Separated signals after 3 steps of FastICA

Independent Component Analysis

Step 4 of FastICA

Separated signals after 4 steps of FastICA

Independent Component Analysis

Step 5: note that $p(\mathbf{x}_{ICA,1}, \mathbf{x}_{ICA,2}) = p(\mathbf{x}_{ICA,1})p(\mathbf{x}_{ICA,2})$

Separated signals after 5 steps of FastICA

ICA: summary

- Learning is done by PCA whitening followed by maximizing non-Gaussianity after transformations (kurtosis maximization).
- ICA is widely used for "blind-source separation."
- The ICA components can be used for features.
- · Limitations:
 - Difficult to learn overcomplete bases due to the orthogonality constraint
 - $\circ\quad$ Difficult to handle situations where mixing is non-linear.

Blind Source Separation: Audio Examples https://www.kecl.ntt.co.jp/ici/signal/sawada/demo/bss2to4/index.html https://cnl.salk.edu/~tewon/Blind/blind_audio.html

30