

UNIVERSIDADE FEDERAL ALFENAS (UNIFAL)

Bacharelado em Ciência da Computação

Disciplina	Método de entrega	Data de entrega
DCE692 - Pesquisa operacional	Moodle da disciplina	23/08/2021
Professor		
Iago Augusto de Carvalho (iago.carvalho@unifal-mg.edu.br)		

Lista 02

Tema: Tableau Simplex

Cada aluno deverá submeter um arquivo .pdf com a resolução da lista.

A lista pode ser realizada de duas maneiras:

- Com papel e caneta, sendo posteriormente escaneada e enviada
- Digitada em algum editor de texto, e.g., Word ou LaTeX

A lista deverá ser entregue no Moodle da disciplina até a data limite.

• Atrasos não serão tolerados

Exercício 1

Observe o tableau abaixo que representa um modelo de programação linear e responda:

$$\begin{bmatrix} 1 & -40 & -50 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 & 40 \\ 0 & 4 & 4 & 0 & 1 & 0 & 120 \\ 0 & 0 & 1 & 0 & 0 & 1 & 15 \end{bmatrix}$$

- a) Quantas variáveis tem este modelo?
- b) Quantas restrições tem este modelo? Quais são elas?
- c) Identifique os vetores (ou matrizes) \mathbf{A} , \mathbf{B} , \mathbf{y} e \mathbf{c}
- d) Desenhe o modelo em um plano 2D, indicando
 - Qual linha representa cada restrição
 - A área de soluções viáveis
- e) Supondo que o problema seja de maximização, diga:
 - Qual é a solução ótima?
 - Qual é o valor da solução ótima?

Gabarito

Exercício 1

- a) Duas variáveis
- b) Três restrições. Elas são:
 - $\bullet \ x + 2y \le 40$
 - $4x + 4y \le 120$
 - *y* ≤ 15

c)
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 4 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 40 \\ 120 \\ 15 \end{bmatrix}$, $y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $c = \begin{bmatrix} 40 & 50 \end{bmatrix}$

e) A solução ótima é o ponto (x = 20, y = 10). O valor dela é 40 * 20 + 50 * 10 = 800 + 500 = 1300