DEGENERATE POLYHEDRA

Degenerate Dictionaries

$$\begin{aligned}
 x_1 &= 3 & -\frac{1}{3}x_4 & +\frac{1}{3}x_3 \\
 x_2 &= 11 & -x_4 & +0x_3 \\
 x_5 &= 11 & -\frac{2}{3}x_4 & -\frac{1}{3}x_3 \\
 x_6 &= 0 & +\frac{1}{3}x_4 & -\frac{1}{3}x_3 \\
 z &= 25 & -\frac{7}{3}x_4 & +\frac{1}{3}x_3
 \end{aligned}$$

- 1. Understand geometry of degeneracy
- 2. Highly degenerate polyhedra.

Vertex (Definition)

A feasible solution x to the constraints is a vertex iff

$$\begin{vmatrix} a_{11}x_1 & +a_{12}x_2 & +\cdots + & a_{1n}x_n & \leq & b_1 \\ & & \ddots & & \vdots \\ a_{j1}x_1 & +a_{j2}x_2 & +\cdots + & a_{jn}x_n & \leq & b_j \\ & & \ddots & & \vdots \\ a_{m1}x_1 & +a_{m2}x_2 & +\cdots + & a_{mn}x_n & \leq & b_m \end{vmatrix}$$

at least n ineqs. are active for x.

rank of the active constraints for x is n

Vertices and Active Constraints

x_1			\leq	1
	x_2		\leq	1
		x_3	\leq	1
x_1			\geq	0
	x_2		\geq	0
		x_3	\geq	0

Vertex Issue #2

Can a vertex activate more than n constraints?

Degenerate Vertex (Definition)

Vertex x is degenerate iff

it activates n+k constraints for k>0

Degenerate vs. Non-degenerate vertex

Non-degenerate:

- Activates exactly n constraints.
- Exactly n faces meet at the vertex.
- Unique dictionary associated with vertex.

Degenerate:

- Activates n + k constraints (k > 0)
- More than n faces meet at the vertex.
- Multiple dictionaries associated with vertex.

Degeneracy due redundancy

```
max
                 \mathcal{X}
 s.t.
C_1: y \le 2
C_2: x -y \le 1
C_3: x +y \le 3
C_4: x \le 2
```


Degeneracy due to redundancy

$$\begin{array}{c|ccccc} w_1 & 1 & -\frac{1}{2}w_2 & +\frac{1}{2}w_3 \\ x & 2 & -\frac{1}{2}w_2 & -\frac{1}{2}w_3 \\ y & 1 & +\frac{1}{2}w_2 & -\frac{1}{2}w_3 \\ \hline w_4 & 0 & +\frac{1}{2}w_2 & +\frac{1}{2}w_3 \\ \hline z & 2 & -\frac{1}{2}w_2 & -\frac{1}{2}w_3 \\ \hline & z & 2 & -w_4 \\ y & 1 & +w_2 & -w_4 \\ w_3 & 0 & -w_2 & +2w_4 \\ \hline z & 2 & -w_4 \\ \hline \end{array}$$

Degeneracy without redundancy

Removing any of the constraints changes

Simplex over Degenerate Polyhedra

