3.

(a) The residual sum of squares for a model containing only block effects is 1.0199, while that for a model containing both blocks and treatments is 0.1468. So for these data, an ANOVA decomposition is:

source	d.f.	sum of squares
blocks (chamber sessions)	7	0.5194 = 1.5393 - 1.0199
treatments after blocks	3	0.8731 = 1.0199 - 0.1468
residuals	13	0.1468
corrected total	23	1.5393

(b)

block	A-B	A-C	A-D	B-C	B-D	C-D
1		0.16	0.29			0.13
2	0.48		0.73		0.25	
3	0.49	0.08		-0.41		
4				-0.32	0.04	0.36
5		0.14	0.28			0.14
6	0.47		0.75		0.28	
7	0.46	0.07		-0.39		
8				-0.20	0.06	0.26

A appears to have higher response than B, C, or D. D appears to have higher response than A, B, or C. C appears to have higher response than B. This suggests the ordering A > C > B > D.

7. For this BIBD, r = 8 and $\lambda = 2$.

- (a) $Var(\widehat{\tau_1 \tau_2}) = \frac{k}{\lambda t} \mathbf{c}' \mathbf{c} \sigma^2 = \frac{2}{2 \times 5} 2\sigma^2 = \frac{2}{5} \sigma^2$.
- (b) $t_{0.975}(16) = 2.120$.
- (c) $\frac{\lambda t}{k} \frac{\sum (\tau_i \bar{\tau})^2}{\sigma^2} = \frac{2 \times 5}{2} \frac{4}{2} = 10.$

6.

(a) Using R (for instance) with a model matrix as defined in class for both blocks (first 8 columns) and treatments (last 4):

fit2<-lsfit(X,y,intercept=F)</pre>

fit2\$coefficients

So the intra-block estimate of $\tau_1 - \tau_2 = 0.498125 - 0.061250 = 0.436875$, and MSE can be computed as:

MSE2<-sum(fit2\$residuals^2)/(24-11) ... 0.01129199

(b) Partitioning X above into X1 and X2 representing blocks and treatments, respectively:

U<-t(X1)%*%X2

fit3<-lsfit(U,z)

fit3\$coefficients

0.575

Х1

ΧЗ

So the inter-block estimate of $\tau_1 - \tau_2 = 0.575 - 0.937 = -0.362$, and MSE for this fit is:

17.480 0.185 0.000

MSE3<-sum(fit3\$residuals^2)/(8-4) ... 0.1291125

(c) Estimated weights are proportional to:

$$\hat{w}_1 \propto \frac{1}{k} MSE3/(r-\lambda) = \frac{1}{3}0.1291125/(6-4) = 0.02151875.$$

 $\hat{w}_2 \propto \text{MSE2}/(t\lambda) = 0.01129199/(4 \times 4) = 0.0007057493.$

Hence the weights are $\hat{w}_1 = 0.96824$ and $\hat{w}_2 = 0.03176$, so the combined estimate of $\tau_1 - \tau_2$ is:

$$0.43688 \times 0.96824 - 0.36200 \times 0.03176 = 0.41151.$$

(d)

Intra-block analysis: $\sqrt{\mathbf{c}'\mathbf{c} \times k \times \mathtt{MSE2}/(\lambda t)} = \sqrt{2 \times 0.002117248} = 0.065073$.

Inter-block analysis: $\sqrt{\mathbf{c'c} \times \mathtt{MSE3}/(r-\lambda)} = \sqrt{2 \times 0.06455625} = 0.3593223$. Combined: $\sqrt{\hat{w}_1^2 Var_{intra} + \hat{w}_2^2 Var_{inter}} = \sqrt{0.96824^2 \times 0.065073^2 + -.03176^2 \times 0.35932^2} = 0.064031$.

7.

(a) $\mathbf{H}_1 = \frac{1}{2} \text{diag}(\mathbf{J}_{2\times 2}, \mathbf{J}_{2\times 2}, \mathbf{J}_{2\times 2}, ..., \mathbf{J}_{2\times 2}),$

$$\mathbf{X}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{X}_{2|1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 \\$$

The resulting reduced normal equation, $\mathbf{X}_2(\mathbf{I} - \mathbf{H}_1)\mathbf{X}_2\hat{\boldsymbol{\tau}} = \mathbf{X}_2(\mathbf{I} - \mathbf{H}_1)\mathbf{y}$, are:

$$\begin{array}{l} \frac{3}{2}\hat{\tau}_1 - \frac{3}{2}\hat{\tau}_2 = \frac{1}{2}\sum_{i=1}^3 y_{i1} - \frac{1}{2}\sum_{i=1}^3 y_{i2} \\ -\frac{3}{2}\hat{\tau}_1 + \frac{3}{2}\hat{\tau}_2 = -\frac{1}{2}\sum_{i=1}^3 y_{i1} + \frac{1}{2}\sum_{i=1}^3 y_{i2} \end{array}$$

Either, when simplified, leads to $\widehat{\tau_1 - \tau_2} = \frac{1}{3} (\sum_{i=1}^3 y_{i1} - \sum_{i=1}^3 y_{i2})$.

Residual degrees of freedom are 17(corrected total) - 8(blocks) - 1(treatments) = 8.

(b) Using a model for block totals denoted by z:

$$\mathbf{X}_{1}'\mathbf{X}_{2} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 0 \\ 2 & 0 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \end{pmatrix}, \quad (\mathbf{I} - \frac{1}{9}\mathbf{J})\mathbf{X}_{1}'\mathbf{X}_{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & -1 \\ 1 & -1 \\ 1 & -1 \\ -1 & 1 \\ -1 & 1 \\ -1 & 1 \end{pmatrix}.$$

The resulting reduced normal equation, $\mathbf{X}_2'\mathbf{X}_1(\mathbf{I}-\frac{1}{9}\mathbf{J})\mathbf{X}_1'\mathbf{X}_2\hat{\boldsymbol{\tau}}=\mathbf{X}_2'\mathbf{X}_1(\mathbf{I}-\frac{1}{9}\mathbf{J})\mathbf{z}$, are:

$$6\hat{\tau}_1 - 6\hat{\tau}_2 = \sum_{i=4}^6 y_{i.} - \sum_{i=7}^9 y_{i.} - 6\hat{\tau}_1 + 6\hat{\tau}_2 = -\sum_{i=4}^6 y_{i.} + \sum_{i=7}^9 y_{i.}$$

Either, when simplified, leads to $\widehat{\tau_1 - \tau_2} = \frac{1}{6} (\sum_{i=4}^6 y_i - \sum_{i=7}^9 y_i)$. Residual degrees of freedom are 8(corrected total) - 1(treatments) = 7.