Al 2002 Artificial Intelligence

Knowledge, Reasoning and Logic

Knowledge

Humans know things ...

⇒ the knowledge helps them to do various tasks.

- ⇒ The knowledge has been achieved
 - not by purely reflex mechanisms
 - but by the processes of reasoning
- In AI, the example is **knowladge-based agent** which contains **set of sentences** referred as **knowledge-base**.

Knowledge-based Agent

For a generic knowledge-based agent:

- A percept is given to the agent.
- The agent adds the percept to its knowledge base.
- Perform best action according to the knowledge base.
- Tells the knowledge base that it has in fact taken that action.

Knowledge-based Agent

function KB-AGENT(percept) returns an action persistent: KB, a knowledge base t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) $action \leftarrow Ask(KB, Make-Action-Query(t))$ TELL(KB, Make-Action-Sentence(action, t))

 $t \leftarrow t + 1$ return action

constructs a **sentence** asserting that the agent **perceived the given percept** at time **t**

constructs a sentence that asks **what action should be done** at time **t**

constructs a sentence that **the chosen action was executed** at time **t**

The Wumpus World Example

The Wumpus World Example

4	55555 Stench S		Breeze	PIT
3		Breeze SStench S Gold	РІТ	Breeze
2	SSTSSS SStench S		Breeze	
1	START	-Breeze -	РП	-Breeze -
	1	2	3	4

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A	2,1	3,1	4,1
OK	OK		

The PEAS description for Wumpus World:

Performance measure:

- +1000 for climbing out of the cave with the gold,
- ▶ -1000 for falling into a pit or being eaten by the Wumpus,
- ▶ −1 for each action taken
- ▶ −10 for using up the arrow

Environment:

▶ A 4×4 grid of rooms. The agent starts in the square labelled [1,1], facing to the right.

The game ends either when the agent dies or when the agent climbs out of the cave.

The PEAS description for Wumpus World:

Actuators:

► The agent can move *Forward, TurnLeft by 90°, TurnRight by 90°*, grab, shoot

Sensors:

- The square adjacent directly (not diagonally) to the square containing Wumpus, the agent will perceive a Stench.
- The squares adjacent to a pit, the agent will perceive a Breeze.
- The square with gold, the agent will perceive a Glitter.
- An agent walks into a wall, it will perceive a Bump.
- When the Wumpus is killed, it emits a woeful Scream.

4 \$\$\frac{\$\frac{8}{5\frac{5}{5\frac

2 3 4

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

A = Agent

B = Breeze

G = Glitter, Gold

OK = Safe square

P = Pit

S = Stench

V = Visited

W = Wumpus

Breeze in (1,2) and (2,1) \Rightarrow no safe actions

Assuming pits uniformly distributed, (2,2) has pit w/ prob 0.86, vs. 0.31

Smell in (1,1) \Rightarrow cannot move

Can use a strategy of coercion:
shoot straight ahead
wumpus was there \Rightarrow dead \Rightarrow safe
wumpus wasn't there \Rightarrow safe

The knowledge bases consist of sentences.

How to represent these sentances?

- ▶ Logic, a formal language, is the solution --- a way of manipulating expressions in the language.
- Logic has
 - Syntax
 - Semantics

Syntax:

What expressions are legal --- what are allowed to write down.

The notion of syntax is clear enough with the example: "x + y = 4" is a well-formed sentence, whereas "x4y+=" is not.

Semantics:

What legal expression means --- meaning of sentences

- the sentence "x + y = 4" is **true** in a **world** where x is 2 and y is 2, but **false** in a **world** where x is 1 and y is 1.
- Syntax is a form and semantics is the content.

Semantics:

- ▶ The semantics defines the <u>truth</u> of each sentence with respect to each <u>possible world</u>.
- The term model can be used in place of "possible world."
- If a sentence α is true in model m, we say that m satisfies α or sometimes m is a model of α .
- The notation $M(\alpha)$ --- the set of all **model**s of α .

Logic --- Entailment

Entailment:

means that one thing follows from another:

$$\alpha \models \beta$$

• if and only if, in every model in which α is true, β is also true. We can write

$$\alpha \models \beta$$
 if and only if $M(\alpha) \subseteq M(\beta)$

▶ The notation ⊆ means that: if $\alpha \models \beta$, then α is a stronger assertion than β

Logic --- Entailment

- We say m is a model of sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α

Then $KB \models \alpha \text{ iff } M(KB) \subseteq M(\alpha)$

Example:

- The sentence x = 0 entails the sentence xy = 0
 - In any model where x is zero, it is the case that xy is zero (regardless of the value of y)

- Situation after detecting nothing in [1,1], moving right, breeze in [1,2]
- Consider possible models for KB assuming only pits
- ▶ 3 Boolean choices ⇒ 8 possible models

3 Boolean choices \Rightarrow 8 possible models

regardless of wumpus-world rules

KB = wumpus-world rules + observations

KB = wumpus-world rules + observations α_1 = "[1,2] is safe", KB = α_1 , proved by model checking

KB = wumpus-world rules + observations α_2 = "[2,2] is safe", $KB \not\models \alpha_2$

Inference

If an inference algorithm i can derive α from KB, we write

$$KB \vdash_i \alpha$$

• which is pronounced " α is derived from KB by i" or "i derives α from KB."

Soundness:

- An inference algorithm that derives only entailed sentences is called sound or truth preserving.
- Soundness is a highly desirable property.

Completeness:

An inference algorithm is complete if it can derive any sentence that is entailed.

We'll look at two kinds of logic:

Propositional Logic

which is relatively simple.

First-order Logic

which is more complicated.

Reading Material

- Artificial Intelligence, A Modern Approach Stuart J. Russell and Peter Norvig
 - Chapter 7.