Name:	PID:

Do not turn the page until told to do so.

- 1. No calculators, tablets, phones, or other electronic devices are allowed during this exam.
- 2. Read each question carefully and answer each question completely.
- 3. Show all of your work. No credit will be given for unsupported answers, even if correct.
- 4. If you are unsure of what a question is asking for, do not hesitate to ask an instructor or course assistant for clarification.
- 5. This exam has 7 pages.

Question	Points Available	Points Earned
1	50	
2	50	
TOTAL	100	

1. [50 points] Let $\theta \in \mathbb{R}^p$ and define

$$f(\theta) = \mathbb{E}\{F(\theta; X)\} = \int_{\mathcal{X}} F(\theta; x) dP(x),$$

where $F(\cdot;x)$ is convex in its first argument (in θ) for all $x \in \mathcal{X}$, and P is a probability distribution. We assume $F(\theta;\cdot)$ is integrable for all θ . Recall that a function h is convex if

$$h(t\theta + (1-t)\theta') \le th(\theta) + (1-t)h(\theta')$$
 for all $\theta, \theta' \in \mathbb{R}^p$, $t \in [0,1]$.

Let $\theta_0 \in \arg\min_{\theta} f(\theta)$, and assume that f satisfies the following ν -strong convexity property:

$$f(\theta) \ge f(\theta_0) + \frac{\nu}{2} \|\theta - \theta_0\|^2$$
 for all θ satisfying $\|\theta - \theta_0\| \le \beta$,

where $\beta > 0$ is some constant. We also assume that $F(\cdot; x)$ is L-Lipschitz with respect to the norm $\|\cdot\|$, the Euclidean norm in \mathbb{R}^p .

Let X_1, \ldots, X_n be an iid sample from P, and define $f_n(\theta) = (1/n) \sum_{i=1}^n F(\theta; X_i)$. Let

$$\hat{\theta}_n \in \arg\min_{\theta} f_n(\theta).$$

(a) Show that for any convex function $h: \mathbb{R}^p \to \mathbb{R}$, if there is some r > 0 and a point θ_0 such that $h(\theta) > h(\theta_0)$ for all θ such that $\|\theta - \theta_0\| = r$, then $h(\theta') > h(\theta_0)$ for all θ' with $\|\theta' - \theta_0\| > r$.

Solution: For any θ' with $\|\theta' - \theta_0\| > r$, there exists a $t \in (0,1)$, such that $\theta = t\theta_0 + (1-t)\theta'$, and $||\theta - \theta_0|| = r$. By the definition of convexity,

$$h(\theta_0) < h(\theta) < th(\theta_0) + (1-t)h(\theta'),$$

which implies $h(\theta') > h(\theta_0)$.

(b) Show that f and f_n are convex.

Solution: For any $\theta, \theta' \in \mathbb{R}^p$, and $t \in [0, 1]$,

$$f(t\theta + (1-t)\theta') = \int_{\mathcal{X}} F(t\theta + (1-t)\theta'; x) dP(x)$$

$$\leq t \int_{\mathcal{X}} F(\theta; x) dP(x) + (1-t) \int_{\mathcal{X}} F(\theta'; x) dP(x)$$

$$= tf(\theta) + (1-t)f(\theta').$$

The proof for f_n is similar.

(c) Show that θ_0 is unique.

Solution: For any $\theta \neq \theta_0$, if $||\theta - \theta_0|| \leq \beta$, then by the local strong convexity,

$$f(\theta) \ge f(\theta_0) + \frac{\nu}{2} \|\theta - \theta_0\|^2 > f(\theta_0),$$

and if $||\theta - \theta_0|| > \beta$, by the property of part (a), $f(\theta) > f(\theta_0)$. Hence, θ_0 is the unique minimizer of $f(\cdot)$.

(d) Let

$$\Delta(\theta, x) = \{ F(\theta; x) - f(\theta) \} - \{ F(\theta_0; x) - f(\theta_0) \}.$$

Show that $\Delta(\theta, X)$ (with $X \sim P$) is $4L^2 \|\theta - \theta_0\|^2$ -sub-Gaussian. [We say a random variable X with mean μ is ν^2 -sub-Gaussian if $\log \mathbb{E}e^{\lambda(X-\mu)} \leq \lambda^2\nu^2/2$ for all $\lambda \in \mathbb{R}$.]

Solution: We can check that $\mathbb{E}[\Delta(\theta, x)] = 0$, and

$$|\Delta(\theta, x)| \le |F(\theta; x) - F(\theta_0; x)| + |f(\theta) - f(\theta_0)| \le 2L||\theta - \theta_0||.$$

The sub-Gaussianity follows from Homework 1, question 1.

(e) Show that for some constant $\sigma < \infty$, which may depend on the parameters of the problem (you should specify this dependence in your solution),

$$\mathbb{P}\bigg(\|\hat{\theta}_n - \theta_0\| \ge \sigma \cdot \frac{1+t}{\sqrt{n}}\bigg) \le Ce^{-t^2}$$

for all $t \geq 0$, where $C < \infty$ is a numerical constant. [Hint: The quantity $\Delta_n(\theta) := (1/n) \sum_{i=1}^n \Delta(\theta, X_i)$ may be helpful, as may be the bounded differences inequality.]

Solution: Define

$$\Delta_n(\theta) := \frac{1}{n} \sum_{i=1}^n \Delta(\theta, X_i)$$

as in the hint. The following argument is mainly based on the global convexity and local strong convexity.

Let $r \leq \beta$ be the deviation we want to show, and define a local ball $\Theta_r = \{\theta : ||\theta - \theta_0|| \leq r\}$. If $\hat{\theta}_n \notin \Theta_r$, then there is a $t \in (0,1)$ and $\theta' = t\theta_0 + (1-t)\hat{\theta}_n \in \partial \Theta_r$ such that $||\theta' - \theta_0|| = r$ and

$$f_n(\theta') \le t f_n(\theta_0) + (1 - t) f_n(\hat{\theta}_n) \le f_n(\theta_0).$$

Combining this result with the local strong convexity gives

$$\frac{\nu}{2}r^2 = \frac{\nu}{2}||\theta' - \theta_0||^2 \le f(\theta') - f(\theta_0)$$

$$\le (f_n(\theta_0) - f(\theta_0)) - (f_n(\theta') - f(\theta')) \le \sup_{\theta \in \Theta_r} |\Delta_n(\theta)|. \tag{1}$$

This means the event $\{\hat{\theta}_n \notin \Theta_r\}$ implies (1), then we derive a probabilistic bound for the local fluctuation $\sup_{\theta \in \Theta_r} |\Delta_n(\theta)|$.

Let $\Delta'_n(\theta)$ be the counterpart of $\Delta_n(\theta)$ with X_i replaced by X'_i , for some $i \in [n]$. By the Lipschitz continuity of F, it can be found that

$$\left| \sup_{\theta \in \Theta_r} |\Delta_n(\theta)| - \sup_{\theta \in \Theta_r} |\Delta'_n(\theta)| \right| \le \sup_{\theta \in \Theta_r} |\Delta_n(\theta) - \Delta'_n(\theta)|$$

$$\le \frac{2L}{n} \sup_{\theta \in \Theta_r} ||\theta - \theta_0|| = \frac{2Lr}{n}.$$

Applying the one-sided bounded difference inequality gives

$$\mathbb{P}\left(\sup_{\theta \in \Theta_r} |\Delta_n(\theta)| \ge \mathbb{E}\left[\sup_{\theta \in \Theta_r} |\Delta_n(\theta)|\right] + t\right) \le \exp\left(-\frac{nt^2}{2L^2r^2}\right)$$
 (2)

for any t > 0. In the next step, we give an upper bound for the expected supremum. Using similar technique as Homework 6, question 2(c), we can show that $\sqrt{n}\Delta_n(\theta)/(2L)$ is a sub-Gaussian process, and there is a constant c such that

$$\mathbb{E}\left[\sup_{\theta\in\Theta_r}|\Delta_n(\theta)|\right] \le c'\frac{L}{\sqrt{n}}\int_0^r \sqrt{\log(N(\Theta_r,||\cdot||,\epsilon))}d\epsilon \le c\frac{Lr\sqrt{p}}{\sqrt{n}}.$$

Combining this display and (2) with some algebra, we obtain

$$\mathbb{P}\left(\sup_{\theta \in \Theta_r} |\Delta_n(\theta)| \ge c \frac{Lr}{\sqrt{n}} (\sqrt{p} + t)\right) \le \exp(-t^2)$$
(3)

for any t>0. Choosing $r=2cL(\sqrt{p}+t)/(\nu\sqrt{n})$ and combining (1), (3) gives

$$\mathbb{P}(\|\hat{\theta}_n - \theta_0\| \ge r) \le \mathbb{P}\left(\sup_{\theta \in \Theta_r} |\Delta_n(\theta)| \ge \frac{\nu}{2}r^2\right)$$
$$= \mathbb{P}\left(\sup_{\theta \in \Theta_r} |\Delta_n(\theta)| \ge c\frac{Lr}{\sqrt{n}}(\sqrt{p} + t)\right) \le \exp(-t^2)$$

under the scaling condition $\sqrt{p} + t \lesssim \sqrt{n}$. Finally, taking

$$\sigma = \sigma(L, \nu, p) := \frac{2cL\sqrt{p}}{\nu}$$

completes the proof.

2. [50 points] In the phase retrieval problem, the goal is to recover a signal $\theta^* \in \mathbb{R}^p$ based on noisy observations of the magnitudes of inner products $\langle X_i, \theta^* \rangle$ with a sample of n vectors $X_1, \ldots, X_n \in \mathbb{R}^p$. In physical detectors, we observe a number of photons $Y_i \in \mathbb{N}$ (here \mathbb{N} denotes the collection of all non-negative integers) that scale roughly with $\langle X_i, \theta^* \rangle^2$. This association is usually characterized via a Poisson regression model, that is, the distribution of Y_i given X_i is

$$Y_i|X_i \sim \text{Poisson}(\langle X_i, \theta^* \rangle^2).$$

Recall that $Y \sim \text{Poisson}(\lambda)$ if the probability mass function of Y is

$$p_{\lambda}(k) = \frac{e^{-\lambda}\lambda^k}{k!}, k = 0, 1, \dots$$

Consider the (conditional) expectation of negative log-likelihood

$$\varphi_i(\theta) = \mathbb{E}_{\theta^*} \{ -\log p_{\langle X_i, \theta \rangle^2}(Y_i) \},$$

where the expectation is taken over $Y_i \sim \text{Poisson}(\langle X_i, \theta^* \rangle^2)$.

(a) Suppose that $Y \sim \text{Poisson}(\lambda_0)$ for some $\lambda_0 > 0$. Show that

$$\mathbb{E}\{-\log p_{\lambda}(Y)\} - \mathbb{E}\{-\log p_{\lambda_0}(Y)\} \ge \frac{1}{4}\min\bigg\{|\lambda - \lambda_0|, \frac{(\lambda - \lambda_0)^2}{\lambda_0}\bigg\}.$$

Solution: It can be calculated that

$$\mathbb{E}\{-\log p_{\lambda}(Y)\} - \mathbb{E}\{-\log p_{\lambda_0}(Y)\} = \lambda - \lambda_0 + \lambda_0 \log \frac{\lambda_0}{\lambda}.$$

The desired result can be established by discussing two cases (1) $\lambda \geq 2\lambda_0$ and (2) $\lambda < 2\lambda_0$ separately.

(b) Let $g: \mathbb{R}^p \to \mathbb{R}$ be a twice-differentiable convex function and satisfy $\nabla^2 g(\theta) \succeq \lambda I_p$ (I_p is the $p \times p$ identity matrix) for all θ satisfying $\|\theta - \theta_0\| \leq c$. Show that

$$g(\theta) \ge g(\theta_0) + \nabla g(\theta_0)^{\mathsf{T}} (\theta - \theta_0) + \frac{\lambda}{2} \min\{\|\theta - \theta_0\|^2, c\|\theta - \theta_0\|\}.$$

Solution: If $||\theta - \theta_0|| \le c$, the result follows directly from a Taylor expansion to the second order. If $||\theta - \theta_0|| > c$, there is a $t \in (0,1)$ such that $\theta' = t\theta_0 + (1-t)\theta$ and $||\theta' - \theta|| = c$. By the convexity,

$$tg(\theta_0) + (1 - t)g(\theta) \ge g(\theta') \ge g(\theta_0) + \nabla g(\theta_0)^{\mathsf{T}} (\theta' - \theta_0) + \frac{\lambda}{2} \|\theta' - \theta_0\|^2$$
$$= g(\theta_0) + (1 - t)\nabla g(\theta_0)^{\mathsf{T}} (\theta - \theta_0) + \frac{\lambda}{2} (1 - t)^2 \|\theta - \theta_0\|^2.$$

Rearranging the above result gives

$$g(\theta) \ge g(\theta_0) + \nabla g(\theta_0)^{\mathsf{T}} (\theta - \theta_0) + \frac{\lambda}{2} c \|\theta - \theta_0\|.$$

(c) Show that

$$\varphi_i(\theta) - \varphi_i(\theta^*) \ge \frac{1}{4} \min \left\{ |\langle X_i, \theta - \theta^* \rangle \langle X_i, \theta + \theta^* \rangle|, \frac{|\langle X_i, \theta - \theta^* \rangle \langle X_i, \theta + \theta^* \rangle|^2}{\langle X_i, \theta^* \rangle^2} \right\}.$$

Solution: This is trivial from part (a) by taking $\lambda = \langle X_i, \theta \rangle^2$ and $\lambda_0 = \langle X_i, \theta^* \rangle^2$.

(d) Suppose that $X_i \in \mathbb{R}^p$ are random vectors satisfying

$$\mathbb{P}(|\langle X_i, v \rangle| \ge \epsilon ||v||_2) \ge 1 - \epsilon$$
 and $\mathbb{E}\langle X_i, \theta^* \rangle^2 \le M^2 ||\theta^*||_2^2$

for all $\epsilon \geq 0$ and all vectors $v \in \mathbb{R}^p$. Show that for (numerical) constants c_0, c_1 , for any $\delta \in (0, 1)$, if

$$\sqrt{\frac{p + \log(1/\delta)}{n}} \le c_0,$$

then with probability at least $1 - \delta$,

$$\frac{1}{n} \sum_{i=1}^{n} \{ \varphi_i(\theta) - \varphi_i(\theta^*) \} \ge c_1 \min \left\{ d(\theta, \theta^*) \cdot \max\{\|\theta\|_2, \|\theta^*\|_2\}, \frac{d^2(\theta, \theta^*)}{M^2} \right\}$$

holds simultaneously for all $\theta \in \mathbb{R}^p$, where $d(\theta, \theta^*) := \min_{s \in \{1, -1\}} \|\theta + s\theta^*\|_2$ is the distance (ignoring sign) between θ and θ^* .

Solution: For any $\epsilon > 0$, define a boolean function class

$$\mathcal{F} = \{x : I\{|\langle x, u \rangle| \ge \epsilon, |\langle x, v \rangle| \ge \epsilon, \langle x, \theta^* \rangle^2 \epsilon \le M^2 ||\theta^*||_2^2\} | u \in \mathbb{S}^{p-1}, v \in \mathbb{S}^{p-1} \}.$$

By Markov inequality,

$$\mathbb{P}(\langle x, \theta^* \rangle^2 \epsilon \ge M^2 ||\theta^*||_2^2) \le \frac{\mathbb{E}\langle x, \theta^* \rangle^2}{M^2 ||\theta^*||_2^2 / \epsilon} \le \epsilon,$$

so $Pf \geq 1 - 3\epsilon$, for any $f \in \mathcal{F}$. Notice that the event $\{|\langle x, u \rangle| \geq \epsilon\}$ is the union of two events defined with closed half-spaces, conducting similar analysis as Homework 3, question 1 with discussions in review notes, the VC-dimension of \mathcal{F} can be bounded by

$$\mathcal{V}(\mathcal{F}) \le cp$$

for some constant c. For any t > 0, applying bounded difference inequality with Theorem 1.3 of Lecture 8 gives us

$$\mathbb{P}\left(\sup_{f\in\mathcal{F}}|P_nf - Pf| \ge C\sqrt{\frac{p+t}{n}}\right) \le e^{-t},$$

where C is a constant. The above inequality can be equivalently stated as with probability at least $1 - \exp(-t)$,

$$P_n f \ge (1 - 3\epsilon) - C\sqrt{\frac{p+t}{n}} \tag{4}$$

holds for any $f \in \mathcal{F}$. Now, combining (4) with the lower bound from part (c), with probability at least $1 - \exp(-t) - 3\epsilon$,

$$\begin{split} &\frac{1}{n}\sum_{i=1}^{n}\{\varphi_{i}(\theta)-\varphi_{i}(\theta^{*})\}\\ &\geq \frac{1}{4n}\sum_{i=1}^{n}\min\bigg\{|\langle X_{i},\theta-\theta^{*}\rangle\langle X_{i},\theta+\theta^{*}\rangle|,\frac{|\langle X_{i},\theta-\theta^{*}\rangle\langle X_{i},\theta+\theta^{*}\rangle|^{2}}{\langle X_{i},\theta^{*}\rangle^{2}}\bigg\}\\ &\geq \frac{1}{4n}\bigg[(1-3\epsilon)-C\sqrt{\frac{p+t}{n}}\bigg]\min\bigg\{\epsilon^{2}||\theta-\theta^{*}||_{2}||\theta+\theta^{*}||_{2},\frac{\epsilon^{6}||\theta-\theta^{*}||_{2}^{2}||\theta+\theta^{*}||_{2}^{2}}{M^{2}||\theta^{*}||_{2}^{2}}\bigg\}\\ &\geq \frac{1}{4n}\bigg[(1-3\epsilon)-C\sqrt{\frac{p+t}{n}}\bigg]\min\bigg\{\epsilon^{2}d(\theta,\theta^{*})\cdot\max\{\|\theta\|_{2},\|\theta^{*}\|_{2}\},\frac{\epsilon^{6}d^{2}(\theta,\theta^{*})}{M^{2}}\bigg\},\end{split}$$

where the last inequality comes from the fact

$$\max\{\|\theta\|_2, \|\theta^*\|_2\} \le \max\{\|\theta - \theta^*\|_2, \|\theta + \theta^*\|_2\}, \tag{5}$$

so that

$$\min\{\|\theta - \theta^*\|_2, ||\theta + \theta^*||_2\} \cdot \max\{\|\theta\|_2, \|\theta^*\|_2\} \le ||\theta - \theta^*||_2||\theta + \theta^*||_2.$$

(5) can be easily verified by drawing a parallelogram.

Finally, taking $\epsilon > 0$ small enough and t > 0 satisfying the scaling condition $p + t \lesssim n$ completes the proof.