

EXPERIMENTELLE MECHANIK

Kapitel 6

Kontinuumsmechanik

(Grundbegriffe der Elasto- und Fluidmechanik)

- 6.1. Aggregatzustände
- 6.2. Elastomechanik
- 6.3. Hydro- und Aerostatik
- 6.4. Hydro- und Aerodynamik

hhu Heinrich Heine Universität Düsseldorf 6.1.1 Mikroskopische Kräfte Mikroskopische statische Kräfte: COHESION • Kohäsion: Anziehende Kräfte innerhalb eines Stoffs durch die Wechselwirkung gleicher Teilchen miteinander. **ADHESION** Verantwortlich für: - Zusammenhalt eines Stoffes (Tropfen, Pfützen etc.) - Bildung glatter Flüssigkeitsoberflächen **Adhäsion:** Anziehende Kräfte von Teilchen eines Stoffs mit jenen eines anderen, benachbarten Stoffs. Adhäsion Kohäsion Verantwortlich für: Adhäsion - Benetzung einer Oberfläche mit Flüssigkeit - Verbindung mittels Klebstoff

6.1.2 Wichtige Größen: Die Dichte ρ

<u>Lokale Dichte:</u> $\rho(\vec{r}) = \frac{\mathrm{d}m}{\mathrm{d}V}$

Wenn der Körper homogen ist:

Globale Dichte: $\rho = \frac{M}{V}$

"Dichte ist Masse pro Volumen"

Dimension der Dichte:

Masse / Volumen = Masse / Länge³

SI-Einheit der Dichte:

 1 kg/m^3

(alt: $1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3$)

Beispiele:

Luft	1,3 kg/m ³
Wasser	1 000 kg/m ³
Blei	11 000 kg/m ³
Gold, Uran	19 000 kg/m ³

6.1.2 Wichtige Größen: Die spezifische Wärmekapazität c

<u>Wärmezufuhr</u> zu einem Medium führt in der Regel zu Temperaturerhöhung:

Wärmekapazität

Zusammenhang: $\Delta Q = c \cdot m \cdot \Delta T$ spezifische

Masse

Wärmezufuhr ΔQ (= thermische Energie) führt zu Temperaturerhöhung ΔT

<u>Definition:</u> Die <u>spezifische Wärmekapazität</u> c eines Stoffes bezeichnet jene Wärmemenge ΔQ , die m=1 kg dieses Stoffes zugeführt werden muss, um dessen Temperatur um $\Delta T=1$ K zu erhöhen.

<u>Verwendung:</u> • Wie viel Energie ist notwendig, um eine bestimmte Stoffmenge auf eine best. Temperatur zu erwärmen?

 Um wie viel steigt die Temperatur eines Körpers, wenn eine bestimmte Wärmemenge zugeführt wird?

6.1.2 Wichtige Größen: Thermische Längenausdehnung

Festkörper dehnen sich aus, wenn die Temperatur steigt

Bei Festkörpern ist die <u>relative Längenänderung</u> $\Delta L/L$ proportional zur Temperaturänderung:

$$\frac{\Delta L}{L} = \alpha \cdot \Delta T \quad \longrightarrow \quad \Delta L = \alpha \cdot L(T_0) \cdot \Delta T \qquad \qquad L(T_0 + \Delta T) = L(T_0) \cdot (1 + \alpha \cdot \Delta T)$$

$$L(T_0 + \Delta T) = L(T_0) \cdot (1 + \alpha \cdot \Delta T)$$

Die Konstante α heißt Längenausdehnungskoeffizient

$$\alpha = \frac{\mathrm{d}l}{l} \cdot \frac{1}{\mathrm{d}T}$$
 $[\alpha] = 1/\mathrm{K}$

Meist ist $\alpha > 0$, ganz selten aber auch $\alpha < 0$ (dann zieht sich der Körper bei zunehmender Temperatur zusammen).

Beispiele für α (10 ⁻⁶ / K) bei 20 °C :

NaCl 40 Aluminium 23.2 Kupfer 16,5 Beton Glas

 $0.02 (0^{\circ}C - 50^{\circ}C)$ Zerodur

Kohlenstofffasern -0,5

6.1.2 Wichtige Größen: Thermische Längenausdehnung

Festkörper dehnen sich aus, wenn die Temperatur steigt

Beispiel: Längenausdehnung einer Brücke

Länge $L = 100 \,\mathrm{m}$

Temperaturbereich ΔT = 50 K

Koeffizient $\alpha = 10 \cdot 10^{-6} / \text{ K}$

Längenvariation $\Delta L = \alpha \cdot L \cdot \Delta T$

 $\rightarrow \Delta L = 5 \text{ cm}$

Dehnungsfuge

6.1.2 Wichtige Größen: Thermische Volumsausdehnung

Bei Fluiden ist die <u>relative Volumsänderung</u> $\Delta V/V$ proportional zur Temperaturänderung ΔT :

$$\frac{\Delta V}{V} = \gamma \cdot \Delta T \qquad \longrightarrow \quad \Delta V = \gamma \cdot V(T_0) \cdot \Delta T \qquad \qquad V(T_0 + \Delta T) = V(T_0) \cdot (1 + \gamma \cdot \Delta T)$$

 γ heißt <u>Volumsausdehnungskoeffizient</u> ([γ] = 1/K)

Der Koeffizient γ für verschiedene Flüssigkeiten:

Material γ [10 -6 / K] bei 20 °CQuecksilber180Wasser210Etylen1100Gase3661(p = const, T = 0°C)

Bei Festkörpern gilt: $\gamma = 3 \cdot \alpha$

6.2.1 Dehnung

Verlängerung durch eine Kraft senkrecht zur Oberfläche

Zugspannung

$$\sigma = \frac{F_A}{A}$$
 $[\sigma] = \text{N/m}^2$

Relative Längenänderung ("Dehnung")

$$\varepsilon = \frac{\Delta l}{l}$$
 $[\varepsilon] = 1$ (Prozent)

Für kleine Dehnung: Linearer Zusammenhang:

$$\sigma = E \cdot \varepsilon$$
 E : Elastizitätsmodul (Hookesches Gesetz) $[E] = \text{N/m}^2$

Werte:

Diamant: $E = 800 \text{ kN/mm}^2$ Eisen, Stahl: 200 Glas: 70 Beton: 25 Holz: 12 Gummi 0,5

6.2.2 Biegung

Biegung: Flächenträgheitsmomente

Rechteck-Rohr:

$$I_h = \frac{1}{12} \cdot (B \cdot H^3 - b \cdot h^3)$$

(volles Rechteck: b = h = 0)

Dreieck-Profil:

$$I_h = \frac{1}{36} \cdot (a \cdot h^3)$$

 $I_h = \frac{1}{12} \cdot (B \cdot H^3 - b \cdot h^3)$

6.2.2 Biegung

Beispiel: Einseitig eingespannter Stab:

Mitte: "Neutrale Faser" (konstante Länge)

Oben: Zugspannung (Verlängerung)

Unten: Druckspannung (Verkürzung)

Biegemoment: $M_h(x) = F \cdot (L - x)$

maximal: $M_b = F \cdot L$

Biegespannung: $\sigma_b(y) = \frac{M_b}{I_b} \cdot y$

mit "Flächenträgheitsmoment" I_h (Maß für Biegesteifigkeit)

Durchbiegung:

$$f(x) = \frac{F}{E \cdot I_h} \cdot \left(\frac{L \cdot x^2}{2} - \frac{x^3}{6}\right)$$

Am Ende: $f(L) = \frac{F}{E \cdot I_h} \cdot \frac{L^3}{3}$

6.2.2 Biegung

Beispiel: Zweiseitig aufliegender Stab:

Mitte: "Neutrale Faser" (konstante Länge) Oben: Druckspannung (Verkürzung)

Unten: Zugspannung (Verlängerung)

 $M_{max} = \frac{F}{2} \cdot \frac{L_S}{2}$ Max. Biegemoment:

 $\sigma_b(y) = \frac{M_b}{I_b} \cdot y$ Biegespannung:

<u>Durchbiegung in der Mitte:</u> $f(L_S/2) = \frac{F}{E \cdot I_h} \cdot \frac{L_S^3}{48}$

6.2.3 Scherung

A

hhu Heinrich Heine Universität Düsseldorf

Verformung durch eine Kraft parallel zur Oberfläche

Scherspannung $\tau = \frac{F_T}{A}$ $[\tau] = \text{N/m}^2$

Verkippung ("Scherung")

Im elastischen Bereich:

$$\tau = G \cdot \gamma$$
 mit G : Schubmodul

$$G = \frac{E}{2 \cdot (1 + \nu)}$$

6.2.3 Torsion

Verdrehung durch Drehmoment in den Oberflächen

Elastische Torsion

$$D = -\kappa \cdot \varphi$$

Richtmoment:

$$\kappa = \frac{\pi}{2} \cdot G \cdot \frac{r^4}{l} \qquad [\kappa] = \text{Nm}$$

6.3.1 Der Druck *p*

<u>Definition:</u> Wirkt auf eine Fläche A

die Kraft F, dann nennt man die Größe $p = \frac{F}{A}$ den auf diese Fläche wirkenden **Druck**.

Dies gilt ganz allgemein, für alle Aggregatzustände und Situationen.

Dimension des Drucks: Kraft / Fläche

SI-Einheit des Drucks: 1 Pa = 1 N/m² = 1 kg/(m·s²) (Pascal)

Wirkt auf eine Fläche von $A=1~\mathrm{m^2}$ eine Kraft von $F=1~\mathrm{N}$, dann beträgt der Druck $p=1~\mathrm{Pa}$ 1 Pa ist eine kleine Einheit!

Blaise Pascal (1623 – 1662)

Weitere gebräuchliche Einheiten

1 bar ("Bar") = $10^5 Pa = 100 000 Pa$

1 mbar = 100 Pa = 1 hPa ("Hektopascal")

1 torr = 133,32 Pa (→ 750 torr = 1 bar)

1 atm = 1013,25 mbar ("Atmosphäre")

= 760 torr (Standardluftdruck)

"1 mm Hg" = 1 torr = 133,32 Pa

 $_{3}$ 1 mm $H_{2}0$ " = 9,807 Pa

Anzeige eines Blutdruckmessers

6.3.1 Der Druck *p*

Der Druck eines Gases gibt die **mechanische Energiedichte** \boldsymbol{w} an, die darin gespeichert ist.

Dimension:

$$\text{E-dichte} = \frac{\text{Energie}}{\text{Volumen}} = \frac{\text{Kraft} \cdot \text{Weg}}{\text{Fläche} \cdot \text{Länge}} = \frac{\text{Kraft}}{\text{Fläche}} = \text{Druck}$$

Einheit:

[w] =
$$1 \text{ J/m}^3 = 1 \text{ kg/(m} \cdot \text{s}^2) = 1 \text{ Pa} = [p]$$

In vielen technischen Anwendungen wird ein großer Teil dieser Energiedichte genutzt

Beispiel: Drucklufthammer

6.3.1 Der Druck *p*

Isotropie des Drucks:

- · Der Druck ist ein Skalar und kein Vektor
- · Der Druck hat keine Richtung
- Der Druck auf ein kleines Volumenelement ist von allen Seiten gleich.
- Druck in ruhenden Flüssigkeiten und Gasen: Auf jede Fläche wirkt eine Kraft und eine gleich große Gegenkraft.

"Allseitige Gleichheit des Drucks":

Der Druck im Inneren eines Gefäßes und an den Grenzflächen ist überall gleich groß, unabhängig von der Form des Gefäßes (abgesehen vom Schwerdruck).

6.3.1 Der Druck *p*

Anwendung der Druck-Isotropie: Hydraulische Presse

$$\begin{array}{ll} \underline{\text{Druck:}} & p_{\text{I}} = p_{\text{2}} & \rightarrow & \frac{F_{\text{EXT}}}{A_{\text{I}}} = \frac{F_{\text{2}}}{A_{\text{2}}} \\ & & \Longrightarrow \text{Kraftverstärkung} & F_{\text{2}} = \frac{A_{\text{2}}}{A_{\text{I}}} \cdot F_{\text{EXT}} >> F_{\text{EXT}} \end{array}$$

Arbeit:
$$W = F_{\text{EXT}} \cdot d_{\text{EXT}} = p \cdot \Delta V$$
 (Volumen gegen Druck komprimieren)

Prinzip: kleine Kraft auf langem Weg bewirkt große Kraft auf kurzem Weg

6.3.2 Der Schweredruck von Flüssigkeiten

Druck in einer Tiefe h:

Masse des Wassers darüber: $m = \rho \cdot V = \rho \cdot A \cdot h$

Gewichtskraft: $F_q(h) = m \cdot g$

 $\text{Druck auf die Fläche $A:$} \quad p_g = \frac{F_g}{A} = \frac{m \cdot g}{A} = \frac{\rho \cdot A \cdot h \cdot g}{A}$

Schweredruck einer Flüssigkeit

 $p_g = \rho \cdot g \cdot h$

Der Schweredruck ...

Bsp.: Wassersäule, 10 m hoch:

... wirkt nach allen Seiten gleich ... nimmt linear mit der Tiefe zu

 $p_{q}(10 \text{ m}) = 1000 \text{ kg/m}^3 \cdot 9,81 \text{ m/s}^2 \cdot 10 \text{ m}$

 $\approx 10^5 \, \text{Pa} = 1 \, \text{bar (Standard-Luftdruck)}$

6.3.2 Der Schweredruck von Flüssigkeiten

hhu Heinrich Heine Universität Düsseldorf

Das "hydrostatische Paradoxon":

Der Druck auf den Gefäßboden $p_{g} = \rho \cdot g \cdot h$

- ist abhängig von Höhe h der Wassersäule
 - Dichte ρ der Flüssigkeit
 - Erdbeschleunigung g,

unabhängig von

· Form des Gefäßes

B. Pascal, 1648: Weinfass platzt durch Kapillare>

"Kommunizierende Röhren":

Unterschiedliche, nicht-mischende Flüssigkeiten:

U-Rohr-Schenkel im Kräfte-Gleichgewicht,

$$\begin{aligned} \text{wenn } F_{\text{g,1}} &= F_{\text{g,2}} \\ A \cdot p_1 &= A \cdot p_2 \\ A \cdot h_1 \cdot \rho_1 \cdot g &= A \cdot h_2 \cdot \rho_2 \cdot g \\ \hline h_1 \cdot \rho_1 &= h_2 \cdot \rho_2 \end{aligned}$$

z.B. Dichtebestimmung:

$$\rho_{\text{LEICHT}} = \frac{h_{\text{SCHWER}}}{h_{\text{LEICHT}}} \cdot \rho_{\text{SCHWER}}$$

6.3.2 Der Schweredruck von Flüssigkeiten

"Wie entleert man ein Aquarium?"

- 1. $p_1 \approx p_2 = p$ Luftdruckänderung über Höhe h_2 - h_1 ist vernachlässigbar.
- 2. Druck an der "Grenzfläche" (rot):

links:
$$p_{\text{links}} = p_1 - h_1 \rho g$$

rechts:
$$p_{\text{rechts}} = p_2 - h_2 \rho g$$

$$p_{\text{links}} > p_{\text{rechts}} \Rightarrow \text{Wasser fließt aus}$$

6.3.3 Auftrieb

Kraft auf die obere Fläche:

$$\begin{aligned} F_1 &= -p_1 \cdot A & p_1 &= \rho \cdot g \cdot h_1 \\ F_1 &= -\rho \cdot g \cdot h_1 \cdot A & \end{aligned}$$

• Kraft auf die untere Fläche:

$$F_2 = + \rho \cdot g \cdot h_2 \cdot A$$

· Gesamtkraft auf den Körper:

$$F_{ges} = F_g + F_1 + F_2$$

= $-g \cdot M + g \cdot \rho \cdot (h_2 - h_1) \cdot A$
= $-g \cdot (M - M_{FL})$

Archimedisches Prinzip:

Die auftreibende Kraft (der Auftrieb) entspricht der Gewichtskraft des verdrängten Fluids. $F_{\rm A} = \rho_{\rm FL} \cdot V_{\rm K} \cdot g$

$$F_{\mathsf{A}} = \rho_{\mathsf{FL}} \cdot V_{\mathsf{K}} \cdot g$$

6.3.4 Druckmessung

Messflüssigkeit Wasser (H₂O): Barometer: Luftdruckmessung

$$p = \rho_{\text{H2O}} \cdot g \cdot h_{\text{Hg}}$$

 $p_2 = 0$ (Vakuum) Luftdruck

Messung des Drucks p durch Schweredruck einer Flüssigkeit Messflüssigkeit Quecksilber (Hg):

 $h_{\rm Hg}(p$ = 1013 mbar) = 760 mm

$$h_{\rm H2O}(p = 1013 \text{ mbar}) = 10,33 \text{ m}$$

Historisches Wasserbarometer

6.3.5 Flüssigkeitsoberflächen

Wirken Kraftkomponenten parallel zur Flüssigkeitsoberfläche, werden Teilchen verschoben.

→ "Form" der Flüssigkeit ist erst dann im Gleichgewicht, wenn die Oberfläche überall senkrecht auf die örtlich wirkende Kraft steht.

Vektor in Richtung der Oberfläche $\vec{s} = \begin{pmatrix} g \\ \omega^2 \chi \end{pmatrix}$ (es muss gelten: $\vec{F} \cdot \vec{s} = 0$):

Oberfläche beschrieben durch Funktion y = f(x)

Steigung ist bekannt: $f'(x) = \frac{s_y}{s_x} = \frac{\omega^2}{g} \cdot x$

$$\rightarrow$$
 $f(x) = y_0 + \frac{1}{2} \frac{\omega^2}{g} \cdot x^2$ (Parabel)