Šestá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK)

Zimní semestr 2024

Šestá přednáška

Program

- sémantika predikátové logiky
- vlastnosti teorií
- podstruktura, expanze, redukt

Materiály

Zápisky z přednášky, Sekce 6.4-6.6 z Kapitoly 6

6.4 Sémantika

modely jsou struktury dané signatury,

- modely jsou struktury dané signatury,
- formule platí ve struktuře, pokud platí při každém ohodnocení volných proměnných prvky z domény,

- modely jsou struktury dané signatury,
- formule platí ve struktuře, pokud platí při každém ohodnocení volných proměnných prvky z domény,
- hodnoty termů (jsou to prvky z domény) se vyhodnocují podle jejich stromů, kde symboly nahradíme jejich interpretacemi (relacemi, funkcemi, a konstantami z domény),

- modely jsou struktury dané signatury,
- formule platí ve struktuře, pokud platí při každém ohodnocení volných proměnných prvky z domény,
- hodnoty termů (jsou to prvky z domény) se vyhodnocují podle jejich stromů, kde symboly nahradíme jejich interpretacemi (relacemi, funkcemi, a konstantami z domény),
- z hodnot termů získáme pravdivostní hodnoty atomických formulí: je výsledná n-tice v relaci?

- modely jsou struktury dané signatury,
- formule platí ve struktuře, pokud platí při každém ohodnocení volných proměnných prvky z domény,
- hodnoty termů (jsou to prvky z domény) se vyhodnocují podle jejich stromů, kde symboly nahradíme jejich interpretacemi (relacemi, funkcemi, a konstantami z domény),
- z hodnot termů získáme pravdivostní hodnoty atomických formulí: je výsledná n-tice v relaci?
- hodnoty složených formulí vyhodnocujeme také podle jejich stromu, přičemž (∀x) hraje roli 'konjunkce přes všechny prvky' a (∃y) hraje roli 'disjunkce přes všechny prvky' z domény struktury

Model jazyka L, nebo také L-struktura, je libovolná struktura v signatuře jazyka L.

Model jazyka L, nebo také L-struktura, je libovolná struktura v signatuře jazyka L. Třídu všech modelů jazyka označíme M_L .

Model jazyka L, nebo také L-struktura, je libovolná struktura v signatuře jazyka L. Třídu všech modelů jazyka označíme M_L .

zda je jazyk s rovností nebo bez nehraje roli

Model jazyka L, nebo také L-struktura, je libovolná struktura v signatuře jazyka L. Třídu všech modelů jazyka označíme M_L .

- zda je jazyk s rovností nebo bez nehraje roli
- proč třída a ne množina všech modelů M_L? doména je libovolná neprázdná množina, 'množina všech množin' neexistuje; třída je 'soubor' všech množin splňujících danou vlastnost (popsatelnou v jazyce teorie množin)

Model jazyka L, nebo také L-struktura, je libovolná struktura v signatuře jazyka L. Třídu všech modelů jazyka označíme M_L .

- zda je jazyk s rovností nebo bez nehraje roli
- proč třída a ne množina všech modelů M_L? doména je libovolná neprázdná množina, 'množina všech množin' neexistuje; třída je 'soubor' všech množin splňujících danou vlastnost (popsatelnou v jazyce teorie množin)

Mezi modely jazyka uspořádání $L=\langle\leq\rangle$ patří:

Model jazyka L, nebo také L-struktura, je libovolná struktura v signatuře jazyka L. Třídu všech modelů jazyka označíme M_L .

- zda je jazyk s rovností nebo bez nehraje roli
- proč třída a ne množina všech modelů M_L? doména je libovolná neprázdná množina, 'množina všech množin' neexistuje; třída je 'soubor' všech množin splňujících danou vlastnost (popsatelnou v jazyce teorie množin)

Mezi modely jazyka uspořádání $L = \langle \leq \rangle$ patří:

• částečně uspořádané množiny $\langle \mathbb{N}, \leq \rangle$, $\langle \mathbb{Q}, > \rangle$, $\langle \mathcal{P}(X), \subseteq \rangle$

Model jazyka L, nebo také L-struktura, je libovolná struktura v signatuře jazyka L. Třídu všech modelů jazyka označíme M_L .

- zda je jazyk s rovností nebo bez nehraje roli
- proč třída a ne množina všech modelů M_L? doména je libovolná neprázdná množina, 'množina všech množin' neexistuje; třída je 'soubor' všech množin splňujících danou vlastnost (popsatelnou v jazyce teorie množin)

Mezi modely jazyka uspořádání $L = \langle \leq \rangle$ patří:

- částečně uspořádané množiny $\langle \mathbb{N}, \leq \rangle$, $\langle \mathbb{Q}, > \rangle$, $\langle \mathcal{P}(X), \subseteq \rangle$
- libovolný orientovaný graf $G=\langle V,E\rangle$, typicky není částečné uspořádání, tj. nesplňuje axiomy teorie uspořádání

Model jazyka L, nebo také L-struktura, je libovolná struktura v signatuře jazyka L. Třídu všech modelů jazyka označíme M_L .

- zda je jazyk s rovností nebo bez nehraje roli
- proč třída a ne množina všech modelů M_L? doména je libovolná neprázdná množina, 'množina všech množin' neexistuje; třída je 'soubor' všech množin splňujících danou vlastnost (popsatelnou v jazyce teorie množin)

Mezi modely jazyka uspořádání $L = \langle \leq \rangle$ patří:

- částečně uspořádané množiny $\langle \mathbb{N}, \leq \rangle$, $\langle \mathbb{Q}, > \rangle$, $\langle \mathcal{P}(X), \subseteq \rangle$
- libovolný orientovaný graf $G=\langle V,E\rangle$, typicky není částečné uspořádání, tj. nesplňuje axiomy teorie uspořádání
- $\langle \mathbb{C}, R^{\mathbb{C}} \rangle$ kde $(z_1, z_2) \in R^{\mathbb{C}}$ právě když $|z_1| = |z_2|$ (není č. usp.)

Mějme term t jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a L-strukturu $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$.

Mějme term t jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a L-strukturu $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$. Ohodnocení proměnných v množině A je lib. funkce $e : \mathsf{Var} \to A$.

Mějme term t jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a L-strukturu $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, F^{\mathcal{A}} \rangle$. Ohodnocení proměnných v množině A je lib. funkce $e: Var \rightarrow A$. Hodnota termu t ve struktuře \mathcal{A} při ohodnocení e, značíme $t^{\mathcal{A}}[e]$, je definovaná induktivně:

Mějme term t jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a L-strukturu $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$. Ohodnocení proměnných v množině \mathcal{A} je lib. funkce $e : \mathsf{Var} \to \mathcal{A}$.

Hodnota termu t ve struktuře \mathcal{A} při ohodnocení e, značíme $t^{\mathcal{A}}[e]$, je definovaná induktivně:

• $x^{\mathcal{A}}[e] = e(x)$ pro proměnnou $x \in Var$,

Mějme term t jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a L-strukturu $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$. Ohodnocení proměnných v množině A je lib. funkce $e : \mathsf{Var} \to A$.

Hodnota termu t ve struktuře \mathcal{A} při ohodnocení e, značíme $t^{\mathcal{A}}[e]$, je definovaná induktivně:

- $x^{\mathcal{A}}[e] = e(x)$ pro proměnnou $x \in Var$,
- $c^{\mathcal{A}}[e] = c^{\mathcal{A}}$ pro konstantní symbol $c \in \mathcal{F}$, a

Mějme term t jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a L-strukturu $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$. Ohodnocení proměnných v množině A je lib. funkce $e : \mathsf{Var} \to A$.

Hodnota termu t ve struktuře \mathcal{A} při ohodnocení e, značíme $t^{\mathcal{A}}[e]$, je definovaná induktivně:

- $x^{\mathcal{A}}[e] = e(x)$ pro proměnnou $x \in Var$,
- $c^{\mathcal{A}}[e] = c^{\mathcal{A}}$ pro konstantní symbol $c \in \mathcal{F}$, a
- je-li $t=f(t_1,\ldots,t_n)$ složený term, kde $f\in\mathcal{F}$, potom:

Mějme term t jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a L-strukturu $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$. Ohodnocení proměnných v množině A je lib. funkce $e : \mathsf{Var} \to A$.

Hodnota termu t ve struktuře \mathcal{A} při ohodnocení e, značíme $t^{\mathcal{A}}[e]$, je definovaná induktivně:

- $x^{\mathcal{A}}[e] = e(x)$ pro proměnnou $x \in Var$,
- $c^{\mathcal{A}}[e] = c^{\mathcal{A}}$ pro konstantní symbol $c \in \mathcal{F}$, a
- je-li $t=f(t_1,\ldots,t_n)$ složený term, kde $f\in\mathcal{F}$, potom:

$$t^{\mathcal{A}}[e] = f^{\mathcal{A}}(t_1^{\mathcal{A}}[e], \dots, t_n^{\mathcal{A}}[e])$$

4

Mějme term t jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a L-strukturu $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$. Ohodnocení proměnných v množině A je lib. funkce $e : \mathsf{Var} \to A$.

Hodnota termu t ve struktuře \mathcal{A} při ohodnocení e, značíme $t^{\mathcal{A}}[e]$, je definovaná induktivně:

- $x^{\mathcal{A}}[e] = e(x)$ pro proměnnou $x \in Var$,
- $c^{\mathcal{A}}[e] = c^{\mathcal{A}}$ pro konstantní symbol $c \in \mathcal{F}$, a
- je-li $t=f(t_1,\ldots,t_n)$ složený term, kde $f\in\mathcal{F}$, potom:

$$t^{\mathcal{A}}[e] = f^{\mathcal{A}}(t_1^{\mathcal{A}}[e], \dots, t_n^{\mathcal{A}}[e])$$

závisí pouze na ohodnocení proměnných vyskytujících se v t

4

Mějme term t jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a L-strukturu $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$. Ohodnocení proměnných v množině A je lib. funkce $e : \mathsf{Var} \to A$.

Hodnota termu t ve struktuře \mathcal{A} při ohodnocení e, značíme $t^{\mathcal{A}}[e]$, je definovaná induktivně:

- $x^{\mathcal{A}}[e] = e(x)$ pro proměnnou $x \in Var$,
- $c^{\mathcal{A}}[e] = c^{\mathcal{A}}$ pro konstantní symbol $c \in \mathcal{F}$, a
- je-li $t=f(t_1,\ldots,t_n)$ složený term, kde $f\in\mathcal{F}$, potom:

$$t^{\mathcal{A}}[e] = f^{\mathcal{A}}(t_1^{\mathcal{A}}[e], \dots, t_n^{\mathcal{A}}[e])$$

- závisí pouze na ohodnocení proměnných vyskytujících se v t
- obecně, term t reprezentuje termovou funkci $f_t^{\mathcal{A}} \colon A^k \to A$, kde k je počet proměnných v t

Mějme term t jazyka $L = \langle \mathcal{R}, \mathcal{F} \rangle$ a L-strukturu $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$. Ohodnocení proměnných v množině \mathcal{A} je lib. funkce $e : \mathsf{Var} \to \mathcal{A}$.

Hodnota termu t ve struktuře \mathcal{A} při ohodnocení e, značíme $t^{\mathcal{A}}[e]$, je definovaná induktivně:

- $x^{\mathcal{A}}[e] = e(x)$ pro proměnnou $x \in Var$,
- $c^{\mathcal{A}}[e] = c^{\mathcal{A}}$ pro konstantní symbol $c \in \mathcal{F}$, a
- je-li $t=f(t_1,\ldots,t_n)$ složený term, kde $f\in\mathcal{F}$, potom:

$$t^{\mathcal{A}}[e] = f^{\mathcal{A}}(t_1^{\mathcal{A}}[e], \dots, t_n^{\mathcal{A}}[e])$$

- závisí pouze na ohodnocení proměnných vyskytujících se v t
- obecně, term t reprezentuje termovou funkci $f_t^A \colon A^k \to A$, kde k je počet proměnných v t
- speciálně, hodnota konstantního termu na ohodnocení nezávisí, konstantní termy reprezentují konstantní funkce

1. Hodnota termu $t=-(x\vee\bot)\wedge y$ v Booleově algebře $\mathcal{A}=\mathcal{P}(\{0,1,2\})$ při ohodnocení e ve kterém:

- $e(x) = \{0, 1\}$
- $e(y) = \{1, 2\}$

- 1. Hodnota termu $t=-(x\vee\bot)\wedge y$ v Booleově algebře $\mathcal{A}=\mathcal{P}(\{0,1,2\})$ při ohodnocení e ve kterém:
 - $e(x) = \{0, 1\}$
 - $e(y) = \{1, 2\}$

$$t^{\mathcal{A}}[e] = \{2\}$$

- 1. Hodnota termu $t=-(x\vee\bot)\wedge y$ v Booleově algebře $\mathcal{A}=\mathcal{P}(\{0,1,2\})$ při ohodnocení e ve kterém:
 - $e(x) = \{0, 1\}$
 - $e(y) = \{1, 2\}$

$$t^{\mathcal{A}}[e] = \{2\}$$

2. Hodnota termu x+1 ve struktuře $\mathcal{N}=\langle\mathbb{N},\cdot,3\rangle$ jazyka $L=\langle+,1\rangle$ při ohodnocení e ve kterém e(x)=2

- 1. Hodnota termu $t=-(x\vee\bot)\wedge y$ v Booleově algebře $\mathcal{A}=\mathcal{P}(\{0,1,2\})$ při ohodnocení e ve kterém:
 - $e(x) = \{0, 1\}$
 - $e(y) = \{1, 2\}$

$$t^{\mathcal{A}}[e] = \{2\}$$

2. Hodnota termu x+1 ve struktuře $\mathcal{N}=\langle\mathbb{N},\cdot,3\rangle$ jazyka $L=\langle+,1\rangle$ při ohodnocení e ve kterém e(x)=2

$$(x+1)^{\mathcal{N}}[e]=6$$

5

Buď φ v jazyce L, $A \in M_L$, $e : Var \to A$ ohodnocení proměnných. Pravdivostní hodnota φ v A při ohodnocení e, $PH^A(\varphi)[e]$:

Buď φ v jazyce L, $A \in M_L$, $e : Var \to A$ ohodnocení proměnných. Pravdivostní hodnota φ v A při ohodnocení e, $PH^A(\varphi)[e]$:

• pro atomickou formuli $R(t_1, \ldots, t_n)$:

$$\mathrm{PH}^{\mathcal{A}}(R(t_1,\ldots,t_n))[e] = egin{cases} 1 & \mathsf{pokud}\ (t_1^{\mathcal{A}}[e],\ldots,t_n^{\mathcal{A}}[e]) \in R^{\mathcal{A}}\ 0 & \mathsf{jinak} \end{cases}$$

Buď φ v jazyce L, $A \in M_L$, $e : Var \to A$ ohodnocení proměnných. Pravdivostní hodnota φ v A při ohodnocení e, $PH^A(\varphi)[e]$:

• pro atomickou formuli $R(t_1, \ldots, t_n)$:

$$\mathrm{PH}^{\mathcal{A}}(R(t_1,\ldots,t_n))[e] = egin{cases} 1 & \mathsf{pokud}\ (t_1^{\mathcal{A}}[e],\ldots,t_n^{\mathcal{A}}[e]) \in R^{\mathcal{A}}\ 0 & \mathsf{jinak} \end{cases}$$

• pro formuli tvaru $(\neg \varphi)$:

$$\mathrm{PH}^{\mathcal{A}}(\neg\varphi)[e] = f_{\neg}(\mathrm{PH}^{\mathcal{A}}(\varphi)[e]) = 1 - \mathrm{PH}^{\mathcal{A}}(\varphi)[e]$$

Pravdivostní hodnota formule

Buď φ v jazyce L, $A \in M_L$, $e : Var \to A$ ohodnocení proměnných. Pravdivostní hodnota φ v A při ohodnocení e, $PH^A(\varphi)[e]$:

• pro atomickou formuli $R(t_1, \ldots, t_n)$:

$$\mathrm{PH}^{\mathcal{A}}(R(t_1,\ldots,t_n))[e] = egin{cases} 1 & \mathsf{pokud}\ (t_1^{\mathcal{A}}[e],\ldots,t_n^{\mathcal{A}}[e]) \in R^{\mathcal{A}}\ 0 & \mathsf{jinak} \end{cases}$$

• pro formuli tvaru $(\neg \varphi)$:

$$\mathrm{PH}^{\mathcal{A}}(\neg \varphi)[e] = f_{\neg}(\mathrm{PH}^{\mathcal{A}}(\varphi)[e]) = 1 - \mathrm{PH}^{\mathcal{A}}(\varphi)[e]$$

• pro formuli tvaru $(\varphi \square \psi)$ kde $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$:

$$\mathrm{PH}^{\mathcal{A}}(\varphi \square \psi)[e] = f_{\square}(\mathrm{PH}^{\mathcal{A}}(\varphi)[e], \mathrm{PH}^{\mathcal{A}}(\psi)[e])$$

• pro formuli tvaru $(Qx)\varphi$ kde $Q \in \{\forall, \exists\}$:

$$\begin{aligned} & \mathrm{PH}^{\mathcal{A}}((\forall x)\varphi)[e] = \min_{a \in A} (\mathrm{PH}^{\mathcal{A}}(\varphi)[e(x/a)]) \\ & \mathrm{PH}^{\mathcal{A}}((\exists x)\varphi)[e] = \max_{a \in A} (\mathrm{PH}^{\mathcal{A}}(\varphi)[e(x/a)]) \end{aligned}$$

■ pro formuli tvaru $(Qx)\varphi$ kde $Q \in \{\forall, \exists\}$:

$$\begin{aligned} & \mathrm{PH}^{\mathcal{A}}((\forall x)\varphi)[e] = \min_{a \in \mathcal{A}}(\mathrm{PH}^{\mathcal{A}}(\varphi)[e(x/a)]) \\ & \mathrm{PH}^{\mathcal{A}}((\exists x)\varphi)[e] = \max_{a \in \mathcal{A}}(\mathrm{PH}^{\mathcal{A}}(\varphi)[e(x/a)]) \end{aligned}$$

kde e(x/a) je ohodnocení získané z e změnou e(x) na a

• pro formuli tvaru $(Qx)\varphi$ kde $Q \in \{\forall, \exists\}$:

$$\begin{aligned} & \mathrm{PH}^{\mathcal{A}}((\forall x)\varphi)[\mathrm{e}] = \min_{a \in \mathcal{A}}(\mathrm{PH}^{\mathcal{A}}(\varphi)[\mathrm{e}(x/a)]) \\ & \mathrm{PH}^{\mathcal{A}}((\exists x)\varphi)[\mathrm{e}] = \max_{a \in \mathcal{A}}(\mathrm{PH}^{\mathcal{A}}(\varphi)[\mathrm{e}(x/a)]) \end{aligned}$$

kde e(x/a) je ohodnocení získané z e změnou e(x) na a

Pozorování: Závisí pouze na ohodnocení volných proměnných. Speciálně, pro sentenci nezávisí na ohodnocení.

■ pro formuli tvaru $(Qx)\varphi$ kde $Q \in \{\forall, \exists\}$:

$$\begin{aligned} & \mathrm{PH}^{\mathcal{A}}((\forall x)\varphi)[\mathrm{e}] = \min_{a \in \mathcal{A}}(\mathrm{PH}^{\mathcal{A}}(\varphi)[\mathrm{e}(x/a)]) \\ & \mathrm{PH}^{\mathcal{A}}((\exists x)\varphi)[\mathrm{e}] = \max_{a \in \mathcal{A}}(\mathrm{PH}^{\mathcal{A}}(\varphi)[\mathrm{e}(x/a)]) \end{aligned}$$

kde e(x/a) je ohodnocení získané z e změnou e(x) na a

Pozorování: Závisí pouze na ohodnocení volných proměnných. Speciálně, pro sentenci nezávisí na ohodnocení.

tedy v ohodnocení e nastavíme hodnotu proměnné x postupně na všechny prvky a ∈ A a požadujeme, aby PH byla jedna vždy (v případě ∀) nebo alespoň jednou (v případě ∃)

■ pro formuli tvaru $(Qx)\varphi$ kde $Q \in \{\forall, \exists\}$:

$$PH^{\mathcal{A}}((\forall x)\varphi)[e] = \min_{a \in \mathcal{A}}(PH^{\mathcal{A}}(\varphi)[e(x/a)])$$
$$PH^{\mathcal{A}}((\exists x)\varphi)[e] = \max_{a \in \mathcal{A}}(PH^{\mathcal{A}}(\varphi)[e(x/a)])$$

kde e(x/a) je ohodnocení získané z e změnou e(x) na a

Pozorování: Závisí pouze na ohodnocení volných proměnných. Speciálně, pro sentenci nezávisí na ohodnocení.

- tedy v ohodnocení e nastavíme hodnotu proměnné x postupně na všechny prvky a ∈ A a požadujeme, aby PH byla jedna vždy (v případě ∀) nebo alespoň jednou (v případě ∃)
- speciálně, $PH^{\mathcal{A}}(t_1 = t_2)[e] = 1 \Leftrightarrow (t_1^{\mathcal{A}}[e], t_2^{\mathcal{A}}[e]) \in =^{\mathcal{A}}$ (identita na A), tj. $t_1^{\mathcal{A}}[e] = t_2^{\mathcal{A}}[e]$ (je to stejný prvek A)

Vezměme si uspořádané těleso $\underline{\mathbb{Q}}.$ Potom:

Vezměme si uspořádané těleso $\mathbb Q.$ Potom:

• $PH^{\mathbb{Q}}(x \le 1 \land \neg(x \le 0))[e] = 1$ právě když $e(x) \in (0,1]$

Vezměme si uspořádané těleso \mathbb{Q} . Potom:

- $PH^{\mathbb{Q}}(x \le 1 \land \neg(x \le 0))[e] = 1$ právě když $e(x) \in (0,1]$
- $PH^{\mathbb{Q}}((\forall x)(x \cdot y = y))[e] = 1$ právě když e(y) = 0

Vezměme si uspořádané těleso Q. Potom:

- $PH^{\mathbb{Q}}(x \le 1 \land \neg(x \le 0))[e] = 1$ právě když $e(x) \in (0,1]$
- $PH^{\mathbb{Q}}((\forall x)(x \cdot y = y))[e] = 1$ právě když e(y) = 0
- $PH^{\mathbb{Q}}((\exists x)(x \le 0 \land \neg x = 0))[e] = 1$ pro každé ohodnocení e (je to sentence)

Vezměme si uspořádané těleso Q. Potom:

- $PH^{\mathbb{Q}}(x \le 1 \land \neg(x \le 0))[e] = 1$ právě když $e(x) \in (0,1]$
- $PH^{\mathbb{Q}}((\forall x)(x \cdot y = y))[e] = 1$ právě když e(y) = 0
- $PH^{\mathbb{Q}}((\exists x)(x \le 0 \land \neg x = 0))[e] = 1$ pro každé ohodnocení e (je to sentence)

Ale pro strukturu $\mathcal{A}=\langle \mathbb{N},+,-,0,\cdot,1,\leq
angle$ máme:

Vezměme si uspořádané těleso Q. Potom:

- $PH^{\mathbb{Q}}(x \le 1 \land \neg(x \le 0))[e] = 1$ právě když $e(x) \in (0,1]$
- $PH^{\mathbb{Q}}((\forall x)(x \cdot y = y))[e] = 1$ právě když e(y) = 0
- $PH^{\mathbb{Q}}((\exists x)(x \le 0 \land \neg x = 0))[e] = 1$ pro každé ohodnocení e (je to sentence)

Ale pro strukturu $\mathcal{A} = \langle \mathbb{N}, +, -, 0, \cdot, 1, \leq \rangle$ máme:

• $PH^{\mathcal{A}}((\exists x)(x \leq 0 \land \neg x = 0))[e] = 0$

Mějme formuli φ , strukturu \mathcal{A} (ve stejném jazyce), a ohodnocení e.

• je-li $\mathrm{PH}^{\mathcal{A}}(\varphi)[e] = 1$, φ platí v \mathcal{A} při ohodnocení e, $\mathcal{A} \models \varphi[e]$

- je-li $\mathrm{PH}^{\mathcal{A}}(\varphi)[e]=1$, φ platí v \mathcal{A} při ohodnocení e, $\mathcal{A}\models\varphi[e]$
- je-li $\mathrm{PH}^{\mathcal{A}}(\varphi)[e]=0$, φ neplatí v \mathcal{A} při ohodnoc. e, $\mathcal{A}\not\models\varphi[e]$

- je-li $\mathrm{PH}^{\mathcal{A}}(\varphi)[e]=1$, φ platí v \mathcal{A} při ohodnocení e, $\mathcal{A}\models\varphi[e]$
- je-li $\mathrm{PH}^{\mathcal{A}}(\varphi)[e]=0$, φ neplatí v \mathcal{A} při ohodnoc. e, $\mathcal{A}\not\models\varphi[e]$
- φ je pravdivá (platí) v \mathcal{A} , $\mathcal{A} \models \varphi$, pokud platí při každém ohodnocení $e: Var \rightarrow A$

- je-li $\mathrm{PH}^{\mathcal{A}}(\varphi)[e]=1$, φ platí v \mathcal{A} při ohodnocení e, $\mathcal{A}\models\varphi[e]$
- je-li $\mathrm{PH}^{\mathcal{A}}(\varphi)[e]=0$, φ neplatí v \mathcal{A} při ohodnoc. e, $\mathcal{A}\not\models\varphi[e]$
- φ je pravdivá (platí) v A, A ⊨ φ, pokud platí při každém ohodnocení e : Var → A
- φ je lživá v \mathcal{A} , pokud neplatí při žádném ohodnocení (v tom případě $\mathcal{A} \models \neg \varphi$)

- je-li $\mathrm{PH}^{\mathcal{A}}(\varphi)[e]=1$, φ platí v \mathcal{A} při ohodnocení e, $\mathcal{A}\models\varphi[e]$
- je-li $\mathrm{PH}^{\mathcal{A}}(\varphi)[e]=0$, φ neplatí v \mathcal{A} při ohodnoc. e, $\mathcal{A}\not\models\varphi[e]$
- φ je pravdivá (platí) v \mathcal{A} , $\mathcal{A} \models \varphi$, pokud platí při každém ohodnocení $e: Var \rightarrow A$
- φ je lživá v \mathcal{A} , pokud neplatí při žádném ohodnocení (v tom případě $\mathcal{A} \models \neg \varphi$)
- pozor, lživá není totéž, co není pravdivá (neplatí)!
 (je to pravda jen pro sentence)

- je-li $\mathrm{PH}^{\mathcal{A}}(\varphi)[e]=1$, φ platí v \mathcal{A} při ohodnocení e, $\mathcal{A}\models\varphi[e]$
- je-li $\mathrm{PH}^{\mathcal{A}}(\varphi)[e]=0$, φ neplatí v \mathcal{A} při ohodnoc. e, $\mathcal{A}\not\models\varphi[e]$
- φ je pravdivá (platí) v \mathcal{A} , $\mathcal{A} \models \varphi$, pokud platí při každém ohodnocení $e: Var \rightarrow A$
- φ je lživá v \mathcal{A} , pokud neplatí při žádném ohodnocení (v tom případě $\mathcal{A} \models \neg \varphi$)
- pozor, lživá není totéž, co není pravdivá (neplatí)!
 (je to pravda jen pro sentence)
- platnost je klíčový pojem sémantiky a celé logiky

Zřejmé vlastnosti platnosti ve struktuře při ohodnocení

- $\mathcal{A} \models \neg \varphi[e]$ právě když $\mathcal{A} \not\models \varphi[e]$
- $\mathcal{A} \models (\varphi \land \psi)[e]$ právě když $\mathcal{A} \models \varphi[e]$ a $\mathcal{A} \models \psi[e]$
- $\mathcal{A}\models(\varphi\vee\psi)[e]$ právě když $\mathcal{A}\models\varphi[e]$ nebo $\mathcal{A}\models\psi[e]$
- $\mathcal{A} \models (\varphi \rightarrow \psi)[e]$ právě když platí: jestliže $\mathcal{A} \models \varphi[e]$ potom $\mathcal{A} \models \psi[e]$
- $\mathcal{A} \models (\varphi \leftrightarrow \psi)[e]$ právě když platí: $\mathcal{A} \models \varphi[e]$ právě když $\mathcal{A} \models \psi[e]$
- $\mathcal{A} \models (\forall x) \varphi[e]$ právě když $\mathcal{A} \models \varphi[e(x/a)]$ pro každé $a \in A$
- $\mathcal{A}\models (\exists x)\varphi[e]$ právě když $\mathcal{A}\models \varphi[e(x/a)]$ pro nějaké $a\in A$
- je-li term t substituovatelný za proměnnou x do φ , potom: $\mathcal{A} \models \varphi(x/t)[e] \text{ právě když } \mathcal{A} \models \varphi[e(x/a)] \text{ pro } a = t^{\mathcal{A}}[e]$
- je-li ψ varianta φ , potom $\mathcal{A}\models\varphi[e]$ právě když $\mathcal{A}\models\psi[e]$

(dokažte si snadno z definic, najděte protipříklady)

Zřejmé vlastnosti platnosti ve struktuře

- pokud $\mathcal{A} \models \varphi$, potom $\mathcal{A} \not\models \neg \varphi$; je-li φ sentence, platí i opačná implikace
- $\mathcal{A} \models \varphi \land \psi$ právě když $\mathcal{A} \models \varphi$ a $\mathcal{A} \models \psi$
- pokud $\mathcal{A} \models \varphi$ nebo $\mathcal{A} \models \psi$, potom $\mathcal{A} \models \varphi \lor \psi$; je-li φ sentence, platí i opačná implikace.
- $\mathcal{A} \models \varphi$ právě když $\mathcal{A} \models (\forall x) \varphi$
- speciálně, $\varphi(x_1,\ldots,x_n)$ platí ve struktuře \mathcal{A} , právě když v \mathcal{A} platí její generální uzávěr, tj. sentence $(\forall x_1)\cdots(\forall x_n)\varphi$

(dokažte si snadno z definic, najděte protipříklady)

6.5 Vlastnosti teorií

• teorie jazyka L je množina L-formulí, její prvky jsou axiomy

- teorie jazyka *L* je množina *L*-formulí, její prvky jsou axiomy
- model teorie T je L-struktura, ve které platí všechny axiomy T, tj. $\mathcal{A} \models \varphi$ pro všechna $\varphi \in T$, značíme $\mathcal{A} \models T$

- teorie jazyka *L* je množina *L*-formulí, její prvky jsou axiomy
- model teorie T je L-struktura, ve které platí všechny axiomy T, tj. $\mathcal{A} \models \varphi$ pro všechna $\varphi \in T$, značíme $\mathcal{A} \models T$
- třída modelů teorie T je:

$$\mathsf{M}_{L}(T) = \{ \mathcal{A} \in \mathsf{M}_{L} \mid \mathcal{A} \models T \}$$

- teorie jazyka *L* je množina *L*-formulí, její prvky jsou axiomy
- model teorie T je L-struktura, ve které platí všechny axiomy T, tj. $\mathcal{A} \models \varphi$ pro všechna $\varphi \in T$, značíme $\mathcal{A} \models T$
- třída modelů teorie T je:

$$\mathsf{M}_{L}(T) = \{ \mathcal{A} \in \mathsf{M}_{L} \mid \mathcal{A} \models T \}$$

- teorie jazyka *L* je množina *L*-formulí, její prvky jsou axiomy
- model teorie T je L-struktura, ve které platí všechny axiomy T, tj. $\mathcal{A} \models \varphi$ pro všechna $\varphi \in T$, značíme $\mathcal{A} \models T$
- třída modelů teorie T je:

$$\mathsf{M}_{L}(T) = \{ \mathcal{A} \in \mathsf{M}_{L} \mid \mathcal{A} \models T \}$$

Je-li T teorie v jazyce L a φ L-formule, potom φ je:

■ pravdivá (platí) v T, značíme $T \models \varphi$, pokud $A \models \varphi$ pro všechna $A \in M(T)$ (neboli: $M(T) \subseteq M(\varphi)$)

- teorie jazyka L je množina L-formulí, její prvky jsou axiomy
- model teorie T je L-struktura, ve které platí všechny axiomy T, tj. $\mathcal{A} \models \varphi$ pro všechna $\varphi \in T$, značíme $\mathcal{A} \models T$
- třída modelů teorie T je:

$$\mathsf{M}_{L}(T) = \{ \mathcal{A} \in \mathsf{M}_{L} \mid \mathcal{A} \models T \}$$

- pravdivá (platí) v T, značíme $T \models \varphi$, pokud $A \models \varphi$ pro všechna $A \in M(T)$ (neboli: $M(T) \subseteq M(\varphi)$)
- Iživá v T, pokud $T \models \neg \varphi$, tj. pokud je Iživá v každém modelu T (neboli: $M(T) \cap M(\varphi) = \emptyset$)

- teorie jazyka L je množina L-formulí, její prvky jsou axiomy
- model teorie T je L-struktura, ve které platí všechny axiomy T, tj. $\mathcal{A} \models \varphi$ pro všechna $\varphi \in T$, značíme $\mathcal{A} \models T$
- třída modelů teorie T je:

$$\mathsf{M}_{L}(T) = \{ \mathcal{A} \in \mathsf{M}_{L} \mid \mathcal{A} \models T \}$$

- pravdivá (platí) v T, značíme $T \models \varphi$, pokud $A \models \varphi$ pro všechna $A \in M(T)$ (neboli: $M(T) \subseteq M(\varphi)$)
- Iživá v T, pokud $T \models \neg \varphi$, tj. pokud je Iživá v každém modelu T (neboli: $M(T) \cap M(\varphi) = \emptyset$)
- nezávislá v T, pokud není pravdivá v T ani lživá v T

- teorie jazyka *L* je množina *L*-formulí, její prvky jsou axiomy
- model teorie T je L-struktura, ve které platí všechny axiomy T, tj. $\mathcal{A} \models \varphi$ pro všechna $\varphi \in T$, značíme $\mathcal{A} \models T$
- třída modelů teorie *T* je:

$$\mathsf{M}_L(T) = \{ \mathcal{A} \in \mathsf{M}_L \mid \mathcal{A} \models T \}$$

- pravdivá (platí) v T, značíme $T \models \varphi$, pokud $A \models \varphi$ pro všechna $A \in M(T)$ (neboli: $M(T) \subseteq M(\varphi)$)
- Iživá v T, pokud $T \models \neg \varphi$, tj. pokud je Iživá v každém modelu T (neboli: $M(T) \cap M(\varphi) = \emptyset$)
- nezávislá v T, pokud není pravdivá v T ani lživá v T
- je-li $T = \emptyset$ (tj. $M(T) = M_L$), píšeme jen $\models \varphi$, a říkáme, že φ je pravdivá (v logice), (logicky) platí, je tautologie, apod.

Další sémantické pojmy o teorii

■ T je sporná, pokud v ní platí spor \bot (definujeme jako $R(x_1, ..., x_n) \land \neg R(x_1, ..., x_n)$, kde R je lib. relační symbol)

Další sémantické pojmy o teorii

- T je sporná, pokud v ní platí spor \bot (definujeme jako $R(x_1, ..., x_n) \land \neg R(x_1, ..., x_n)$, kde R je lib. relační symbol)
- T je sporná, právě když v ní platí každá formule (ekvivalentně, nemá žádný model), jinak je bezesporná (neplatí-li v ní spor, má-li alespoň jeden model)

Další sémantické pojmy o teorii

- T je sporná, pokud v ní platí spor \bot (definujeme jako $R(x_1, ..., x_n) \land \neg R(x_1, ..., x_n)$, kde R je lib. relační symbol)
- T je sporná, právě když v ní platí každá formule (ekvivalentně, nemá žádný model), jinak je bezesporná (neplatí-li v ní spor, má-li alespoň jeden model)
- důsledky T jsou sentence pravdivé v T, množina všech důsledků T v jazyce L je

$$\mathsf{Csq}_L(T) = \{ \varphi \mid \varphi \text{ je sentence a } T \models \varphi \}$$

Kompletnost v predikátové logice

T je kompletní, je-li bezesporná a každá sentence je v ní buď pravdivá, nebo lživá. Pozor: neplatí, že má jediný model!

Kompletnost v predikátové logice

- T je kompletní, je-li bezesporná a každá sentence je v ní buď pravdivá, nebo lživá. Pozor: neplatí, že má jediný model!
- máme-li jeden model, máme i nekonečně mnoho izomorfních modelů (liší se jen pojmenováním prvků, definujeme později)

- T je kompletní, je-li bezesporná a každá sentence je v ní buď pravdivá, nebo lživá. Pozor: neplatí, že má jediný model!
- máme-li jeden model, máme i nekonečně mnoho izomorfních modelů (liší se jen pojmenováním prvků, definujeme později)
- uvažovat jediný model až na izomorfismus ale také nestačí!

- T je kompletní, je-li bezesporná a každá sentence je v ní buď pravdivá, nebo lživá. Pozor: neplatí, že má jediný model!
- máme-li jeden model, máme i nekonečně mnoho izomorfních modelů (liší se jen pojmenováním prvků, definujeme později)
- uvažovat jediný model až na izomorfismus ale také nestačí!

Struktury \mathcal{A}, \mathcal{B} (v témž jazyce) jsou elementárně ekvivalentní, píšeme $\mathcal{A} \equiv \mathcal{B}$, pokud v nich platí tytéž sentence.

- T je kompletní, je-li bezesporná a každá sentence je v ní buď pravdivá, nebo lživá. Pozor: neplatí, že má jediný model!
- máme-li jeden model, máme i nekonečně mnoho izomorfních modelů (liší se jen pojmenováním prvků, definujeme později)
- uvažovat jediný model až na izomorfismus ale také nestačí!

Struktury \mathcal{A}, \mathcal{B} (v témž jazyce) jsou elementárně ekvivalentní, píšeme $\mathcal{A} \equiv \mathcal{B}$, pokud v nich platí tytéž sentence.

Pozorování: Teorie je kompletní, právě když má právě jeden model až na elementární ekvivalenci.

- T je kompletní, je-li bezesporná a každá sentence je v ní buď pravdivá, nebo lživá. Pozor: neplatí, že má jediný model!
- máme-li jeden model, máme i nekonečně mnoho izomorfních modelů (liší se jen pojmenováním prvků, definujeme později)
- uvažovat jediný model až na izomorfismus ale také nestačí!

Struktury \mathcal{A}, \mathcal{B} (v témž jazyce) jsou elementárně ekvivalentní, píšeme $\mathcal{A} \equiv \mathcal{B}$, pokud v nich platí tytéž sentence.

Pozorování: Teorie je kompletní, právě když má právě jeden model až na elementární ekvivalenci.

Příklad: uspořádané množiny $\mathcal{A}=\langle\mathbb{Q},\leq\rangle$ a $\mathcal{B}=\langle\mathbb{R},\leq\rangle$.

- T je kompletní, je-li bezesporná a každá sentence je v ní buď pravdivá, nebo lživá. Pozor: neplatí, že má jediný model!
- máme-li jeden model, máme i nekonečně mnoho izomorfních modelů (liší se jen pojmenováním prvků, definujeme později)
- uvažovat jediný model až na izomorfismus ale také nestačí!

Struktury \mathcal{A}, \mathcal{B} (v témž jazyce) jsou elementárně ekvivalentní, píšeme $\mathcal{A} \equiv \mathcal{B}$, pokud v nich platí tytéž sentence.

Pozorování: Teorie je kompletní, právě když má právě jeden model až na elementární ekvivalenci.

Příklad: uspořádané množiny $\mathcal{A}=\langle\mathbb{Q},\leq\rangle$ a $\mathcal{B}=\langle\mathbb{R},\leq\rangle$.

■ nejsou izomorfní, Q je spočetná a R nespočetná množina, neexistuje dokonce žádná bijekce mezi doménami

- T je kompletní, je-li bezesporná a každá sentence je v ní buď pravdivá, nebo lživá. Pozor: neplatí, že má jediný model!
- máme-li jeden model, máme i nekonečně mnoho izomorfních modelů (liší se jen pojmenováním prvků, definujeme později)
- uvažovat jediný model až na izomorfismus ale také nestačí!

Struktury \mathcal{A}, \mathcal{B} (v témž jazyce) jsou elementárně ekvivalentní, píšeme $\mathcal{A} \equiv \mathcal{B}$, pokud v nich platí tytéž sentence.

Pozorování: Teorie je kompletní, právě když má právě jeden model až na elementární ekvivalenci.

Příklad: uspořádané množiny $\mathcal{A}=\langle\mathbb{Q},\leq
angle$ a $\mathcal{B}=\langle\mathbb{R},\leq
angle$.

- nejsou izomorfní, Q je spočetná a R nespočetná množina, neexistuje dokonce žádná bijekce mezi doménami
- ale $\mathcal{A} \equiv \mathcal{B}$: indukcí dle struktury sentence φ lze ukázat $\mathcal{A} \models \varphi \Leftrightarrow \mathcal{B} \models \varphi$; netriviální případ je \exists , klíčová je hustota

Otázku platnosti v teorii lze převést na problém existence modelu:

Otázku platnosti v teorii lze převést na problém existence modelu:

Tvrzení (O nesplnitelnosti a pravdivosti): Je-li T teorie a φ sentence (v témž jazyce), potom: $T \models \varphi \Leftrightarrow T \cup \{\neg \varphi\}$ nemá model.

Otázku platnosti v teorii lze převést na problém existence modelu:

Tvrzení (O nesplnitelnosti a pravdivosti): Je-li T teorie a φ sentence (v témž jazyce), potom: $T \models \varphi \Leftrightarrow T \cup \{\neg \varphi\}$ nemá model.

Důkaz: Platí následující ekvivalence:

Otázku platnosti v teorii lze převést na problém existence modelu:

Tvrzení (O nesplnitelnosti a pravdivosti): Je-li T teorie a φ sentence (v témž jazyce), potom: $T \models \varphi \Leftrightarrow T \cup \{\neg \varphi\}$ nemá model.

Důkaz: Platí následující ekvivalence:

• $T \cup \{\neg \varphi\}$ nemá model,

Otázku platnosti v teorii lze převést na problém existence modelu:

Tvrzení (O nesplnitelnosti a pravdivosti): Je-li T teorie a φ sentence (v témž jazyce), potom: $T \models \varphi \Leftrightarrow T \cup \{\neg \varphi\}$ nemá model.

Důkaz: Platí následující ekvivalence:

- $T \cup \{\neg \varphi\}$ nemá model,
- právě když $\neg \varphi$ neplatí v žádném modelu T,

Otázku platnosti v teorii lze převést na problém existence modelu:

Tvrzení (O nesplnitelnosti a pravdivosti): Je-li T teorie a φ sentence (v témž jazyce), potom: $T \models \varphi \Leftrightarrow T \cup \{\neg \varphi\}$ nemá model.

Důkaz: Platí následující ekvivalence:

- $T \cup \{\neg \varphi\}$ nemá model,
- právě když $\neg \varphi$ neplatí v žádném modelu T,
- právě když φ platí v každém modelu T (φ je sentence!). \square

Otázku platnosti v teorii lze převést na problém existence modelu:

Tvrzení (O nesplnitelnosti a pravdivosti): Je-li T teorie a φ sentence (v témž jazyce), potom: $T \models \varphi \Leftrightarrow T \cup \{\neg \varphi\}$ nemá model.

Důkaz: Platí následující ekvivalence:

- $T \cup \{\neg \varphi\}$ nemá model,
- právě když $\neg \varphi$ neplatí v žádném modelu T,
- právě když φ platí v každém modelu T (φ je sentence!). \square

NB: Předpoklad, že φ je sentence, je nutný: pro $T = \{P(c)\}$ a formuli $\varphi = P(x)$ je $P(c) \not\models P(x)$ ale $\{P(c), \neg P(x)\}$ nemá model.

Teorie grafů: $L = \langle E \rangle$ s rovností, axiomy ireflexivity a symetrie

Teorie grafů: $L = \langle E \rangle$ s rovností, axiomy ireflexivity a symetrie

$$T_{\mathsf{graph}} = \{ \neg E(x, x), E(x, y) \rightarrow E(y, x) \}$$

Teorie grafů: $L = \langle E \rangle$ s rovností, axiomy ireflexivity a symetrie

$$T_{\mathsf{graph}} = \{ \neg E(x, x), E(x, y) \rightarrow E(y, x) \}$$

Modely: $\mathcal{G} = \langle \mathcal{G}, \mathcal{E}^{\mathcal{G}} \rangle$, kde $\mathcal{E}^{\mathcal{G}}$ je symetrická ireflexivní relace, tj. jednoduché grafy, hranu $\{x,y\}$ reprezentuje dvojice (x,y),(y,x)

Teorie grafů: $L = \langle E \rangle$ s rovností, axiomy ireflexivity a symetrie

$$T_{\mathsf{graph}} = \{ \neg E(x, x), E(x, y) \rightarrow E(y, x) \}$$

Modely: $\mathcal{G} = \langle G, E^{\mathcal{G}} \rangle$, kde $E^{\mathcal{G}}$ je symetrická ireflexivní relace, tj. jednoduché grafy, hranu $\{x,y\}$ reprezentuje dvojice (x,y),(y,x)

 Formule ¬x = y → E(x, y) platí v grafu, právě když je úplný. Je tedy nezávislá v T_{graph}.

Teorie grafů: $L = \langle E \rangle$ s rovností, axiomy ireflexivity a symetrie

$$T_{\mathsf{graph}} = \{ \neg E(x, x), E(x, y) \rightarrow E(y, x) \}$$

Modely: $\mathcal{G} = \langle G, E^{\mathcal{G}} \rangle$, kde $E^{\mathcal{G}}$ je symetrická ireflexivní relace, tj. jednoduché grafy, hranu $\{x,y\}$ reprezentuje dvojice (x,y),(y,x)

- Formule ¬x = y → E(x, y) platí v grafu, právě když je úplný. Je tedy nezávislá v T_{graph}.
- Formule $(\exists y_1)(\exists y_2)(\neg y_1 = y_2 \land E(x, y_1) \land E(x, y_2) \land (\forall z)(E(x, z) \rightarrow z = y_1 \lor z = y_2)$ vyjadřuje, že každý vrchol má stupeň právě 2.

Teorie grafů: $L = \langle E \rangle$ s rovností, axiomy ireflexivity a symetrie

$$T_{\mathsf{graph}} = \{ \neg E(x, x), E(x, y) \rightarrow E(y, x) \}$$

Modely: $\mathcal{G} = \langle G, E^{\mathcal{G}} \rangle$, kde $E^{\mathcal{G}}$ je symetrická ireflexivní relace, tj. jednoduché grafy, hranu $\{x,y\}$ reprezentuje dvojice (x,y),(y,x)

- Formule $\neg x = y \rightarrow E(x,y)$ platí v grafu, právě když je úplný. Je tedy nezávislá v T_{graph} .
- Formule $(\exists y_1)(\exists y_2)(\neg y_1 = y_2 \land E(x,y_1) \land E(x,y_2) \land (\forall z)(E(x,z) \rightarrow z = y_1 \lor z = y_2)$ vyjadřuje, že každý vrchol má stupeň právě 2. Platí tedy právě v grafech, které jsou disjunktní sjednocení kružnic, a je nezávislá v teorii T_{graph} .

Teorie uspořádání: v jazyce uspořádání $L=\langle\leq\rangle$ s rovností, axiomy reflexivity, antisymetrie, a tranzitivity

Teorie uspořádání: v jazyce uspořádání $L=\langle\leq\rangle$ s rovností, axiomy reflexivity, antisymetrie, a tranzitivity

$$T = \{x \le x, \ x \le y \land y \le x \to x = y, \ x \le y \land y \le z \to x \le z\}$$

Teorie uspořádání: v jazyce uspořádání $L=\langle\leq\rangle$ s rovností, axiomy reflexivity, antisymetrie, a tranzitivity

$$T = \{x \le x, \ x \le y \land y \le x \to x = y, \ x \le y \land y \le z \to x \le z\}$$

Modely: $\langle S, \leq^S \rangle$, kde \leq^S je částečné uspořádání.

Teorie uspořádání: v jazyce uspořádání $L=\langle\leq\rangle$ s rovností, axiomy reflexivity, antisymetrie, a tranzitivity

$$T = \{x \le x, \ x \le y \land y \le x \to x = y, \ x \le y \land y \le z \to x \le z\}$$

Modely: $\langle S, \leq^S \rangle$, kde \leq^S je částečné uspořádání.

 $\mathsf{P\check{r}\mathsf{i}\mathsf{k}\mathsf{lad}}\colon\ \mathcal{A}=\langle\mathbb{N},\leq\rangle\ ,\ \mathcal{B}=\langle\mathcal{P}(X),\subseteq\rangle\ \mathsf{pro}\ X=\{0,1,2\}.$

Teorie uspořádání: v jazyce uspořádání $L=\langle\leq\rangle$ s rovností, axiomy reflexivity, antisymetrie, a tranzitivity

$$T = \{x \le x, \ x \le y \land y \le x \rightarrow x = y, \ x \le y \land y \le z \rightarrow x \le z\}$$

Modely: $\langle S, \leq^S \rangle$, kde \leq^S je částečné uspořádání.

Příklad: $\mathcal{A}=\langle \mathbb{N},\leq \rangle$, $\mathcal{B}=\langle \mathcal{P}(X),\subseteq \rangle$ pro $X=\{0,1,2\}.$

Formule $x \leq y \vee y \leq x$ (linearita) platí v \mathcal{A} , ale neplatí v \mathcal{B} : neplatí např. při ohodnocení kde $e(x) = \{0\}$, $e(y) = \{1\}$ (píšeme $\mathcal{B} \not\models \varphi[e]$). Je tedy nezávislá v T.

Teorie uspořádání: v jazyce uspořádání $L=\langle\leq\rangle$ s rovností, axiomy reflexivity, antisymetrie, a tranzitivity

$$T = \{x \le x, \ x \le y \land y \le x \rightarrow x = y, \ x \le y \land y \le z \rightarrow x \le z\}$$

Modely: $\langle S, \leq^S \rangle$, kde \leq^S je částečné uspořádání.

Příklad: $\mathcal{A}=\langle \mathbb{N},\leq \rangle$, $\mathcal{B}=\langle \mathcal{P}(X),\subseteq \rangle$ pro $X=\{0,1,2\}.$

- Formule $x \le y \lor y \le x$ (linearita) platí v \mathcal{A} , ale neplatí v \mathcal{B} : neplatí např. při ohodnocení kde $e(x) = \{0\}$, $e(y) = \{1\}$ (píšeme $\mathcal{B} \not\models \varphi[e]$). Je tedy nezávislá v \mathcal{T} .
- Sentence $(\exists x)(\forall y)(y \le x)$ (označme ψ) je pravdivá v \mathcal{B} a lživá v \mathcal{A} , píšeme $\mathcal{B} \models \psi$, $\mathcal{A} \models \neg \psi$. Je také nezávislá v \mathcal{T} .

Teorie uspořádání: v jazyce uspořádání $L=\langle\leq\rangle$ s rovností, axiomy reflexivity, antisymetrie, a tranzitivity

$$T = \{x \le x, \ x \le y \land y \le x \to x = y, \ x \le y \land y \le z \to x \le z\}$$

Modely: $\langle S, \leq^S \rangle$, kde \leq^S je částečné uspořádání.

Příklad: $\mathcal{A}=\langle \mathbb{N},\leq \rangle$, $\mathcal{B}=\langle \mathcal{P}(X),\subseteq \rangle$ pro $X=\{0,1,2\}.$

- Formule $x \le y \lor y \le x$ (linearita) platí v \mathcal{A} , ale neplatí v \mathcal{B} : neplatí např. při ohodnocení kde $e(x) = \{0\}$, $e(y) = \{1\}$ (píšeme $\mathcal{B} \not\models \varphi[e]$). Je tedy nezávislá v \mathcal{T} .
- Sentence $(\exists x)(\forall y)(y \leq x)$ (označme ψ) je pravdivá v \mathcal{B} a lživá v \mathcal{A} , píšeme $\mathcal{B} \models \psi$, $\mathcal{A} \models \neg \psi$. Je také nezávislá v \mathcal{T} .
- Formule $(x \le y \land y \le z \land z \le x) \rightarrow (x = y \land y = z)$ (označme χ) je pravdivá v T, píšeme $T \models \chi$.

Teorie uspořádání: v jazyce uspořádání $L=\langle\leq\rangle$ s rovností, axiomy reflexivity, antisymetrie, a tranzitivity

$$T = \{x \le x, \ x \le y \land y \le x \to x = y, \ x \le y \land y \le z \to x \le z\}$$

Modely: $\langle S, \leq^S \rangle$, kde \leq^S je <u>částečné uspořádání</u>.

 $\mathsf{P\check{r}\mathsf{i}\mathsf{k}\mathsf{l}\mathsf{a}\mathsf{d}}\colon\; \mathcal{A}=\langle \mathbb{N},\leq\rangle\;\text{,}\;\; \mathcal{B}=\langle \mathcal{P}(X),\subseteq\rangle\;\;\mathsf{pro}\;X=\{0,1,2\}.$

- Formule $x \le y \lor y \le x$ (linearita) platí v \mathcal{A} , ale neplatí v \mathcal{B} : neplatí např. při ohodnocení kde $e(x) = \{0\}$, $e(y) = \{1\}$ (píšeme $\mathcal{B} \not\models \varphi[e]$). Je tedy nezávislá v \mathcal{T} .
- Sentence $(\exists x)(\forall y)(y \le x)$ (označme ψ) je pravdivá v \mathcal{B} a lživá v \mathcal{A} , píšeme $\mathcal{B} \models \psi$, $\mathcal{A} \models \neg \psi$. Je také nezávislá v \mathcal{T} .
- Formule $(x \le y \land y \le z \land z \le x) \rightarrow (x = y \land y = z)$ (označme χ) je pravdivá v T, píšeme $T \models \chi$. Totéž platí pro její generální uzávěr $(\forall x)(\forall y)(\forall z)\chi$.

Teorie grup: $L = \langle +, -, 0 \rangle$ s rovností, axiomy asociativita +, neutralita 0 vůči +, a -x je inverzní prvek k x (vůči + a 0)

Teorie grup: $L = \langle +, -, 0 \rangle$ s rovností, axiomy asociativita +, neutralita 0 vůči +, a -x je inverzní prvek k x (vůči + a 0) $T_1 = \{x + (y + z) = (x + y) + z, \\ 0 + x = x, \ x + 0 = x, \\ x + (-x) = 0, \ (-x) + x = 0\}$

Teorie grup: $L = \langle +, -, 0 \rangle$ s rovností, axiomy asociativita +, neutralita 0 vůči +, a -x je inverzní prvek k x (vůči + a 0) $T_1 = \{x + (y + z) = (x + y) + z, \\ 0 + x = x, \ x + 0 = x, \\ x + (-x) = 0, \ (-x) + x = 0\}$

Teorie komutativních grup: navíc komutativita +

18

Teorie grup: $L = \langle +, -, 0 \rangle$ s rovností, axiomy asociativita +, neutralita 0 vůči +, a -x je inverzní prvek k x (vůči + a 0)

$$T_1 = \{x + (y + z) = (x + y) + z,$$

 $0 + x = x, \ x + 0 = x,$
 $x + (-x) = 0, \ (-x) + x = 0\}$

Teorie komutativních grup: navíc komutativita +

$$T_2 = T_1 \cup \{x + y = y + x\}$$

Teorie grup: $L = \langle +, -, 0 \rangle$ s rovností, axiomy asociativita +, neutralita 0 vůči +, a -x je inverzní prvek k x (vůči + a 0)

$$T_1 = \{x + (y + z) = (x + y) + z,$$

 $0 + x = x, \ x + 0 = x,$
 $x + (-x) = 0, \ (-x) + x = 0\}$

Teorie komutativních grup: navíc komutativita +

$$T_2 = T_1 \cup \{x + y = y + x\}$$

Teorie okruhů: $L=\langle +,-,0,\cdot,1\rangle$ s rovností, navíc neutralita 1 vůči ·, asociativita ·, a (levá i pravá) distributivita · vůči +

Teorie grup: $L = \langle +, -, 0 \rangle$ s rovností, axiomy asociativita +, neutralita 0 vůči +, a -x je inverzní prvek k x (vůči + a 0)

$$T_1 = \{x + (y + z) = (x + y) + z,$$

 $0 + x = x, x + 0 = x,$
 $x + (-x) = 0, (-x) + x = 0\}$

Teorie komutativních grup: navíc komutativita +

$$T_2 = T_1 \cup \{x + y = y + x\}$$

Teorie okruhů: $L=\langle +,-,0,\cdot,1\rangle$ s rovností, navíc neutralita 1 vůči ·, asociativita ·, a (levá i pravá) distributivita · vůči +

$$T_3 = T_2 \cup \{1 \cdot x = x \cdot 1,$$

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z,$$

$$x \cdot (y + z) = x \cdot y + x \cdot z,$$

$$(x + y) \cdot z = x \cdot z + y \cdot z\}$$

Teorie komutativních okruhů: navíc axiom komutativity ::

Teorie komutativních okruhů: navíc axiom komutativity ::

$$T_4 = T_3 \cup \{x \cdot y = y \cdot x\}$$

Teorie komutativních okruhů: navíc axiom komutativity ::

$$T_4 = T_3 \cup \{x \cdot y = y \cdot x\}$$

Teorie těles je ve stejném jazyce, ale má navíc axiomy existence inverzního prvku k · a netriviality:

Teorie komutativních okruhů: navíc axiom komutativity ::

$$T_4 = T_3 \cup \{x \cdot y = y \cdot x\}$$

Teorie těles je ve stejném jazyce, ale má navíc axiomy existence inverzního prvku k · a netriviality:

$$T_5 = T_4 \cup \{\neg \, x = 0 \rightarrow (\exists y)(x \cdot y = 1), \ \neg \, 0 = 1\}$$

Teorie komutativních okruhů: navíc axiom komutativity ::

$$T_4 = T_3 \cup \{x \cdot y = y \cdot x\}$$

Teorie těles je ve stejném jazyce, ale má navíc axiomy existence inverzního prvku k · a netriviality:

$$T_5 = T_4 \cup \{ \neg x = 0 \rightarrow (\exists y)(x \cdot y = 1), \ \neg 0 = 1 \}$$

Teorie uspořádaných těles je v jazyce $\langle +, -, 0, \cdot, 1, \leq \rangle$ s rovností, sestává z axiomů teorie těles, teorie uspořádání spolu s axiomem linearity, a z následujících axiomů kompatibility uspořádání:

- $x \le y \to (x + z \le y + z)$
- $(0 \le x \land 0 \le y) \rightarrow 0 \le x \cdot y$

Teorie komutativních okruhů: navíc axiom komutativity ::

$$T_4 = T_3 \cup \{x \cdot y = y \cdot x\}$$

Teorie těles je ve stejném jazyce, ale má navíc axiomy existence inverzního prvku k · a netriviality:

$$T_5 = T_4 \cup \{ \neg x = 0 \rightarrow (\exists y)(x \cdot y = 1), \ \neg 0 = 1 \}$$

Teorie uspořádaných těles je v jazyce $\langle +, -, 0, \cdot, 1, \leq \rangle$ s rovností, sestává z axiomů teorie těles, teorie uspořádání spolu s axiomem linearity, a z následujících axiomů kompatibility uspořádání:

- $x \le y \to (x + z \le y + z)$
- $(0 \le x \land 0 \le y) \rightarrow 0 \le x \cdot y$

Modely jsou tělesa s lineárním (totálním) uspořádáním, které je kompatibilní s tělesovými operacemi.

6.6 Podstruktura, expanze, redukt

 podstruktura zobecňuje podgrupu, podprostor vektorového prostoru, (indukovaný) podgraf: na podmnožině B univerza vytvoříme strukturu, která "zdědí" relace, funkce a konstanty

- podstruktura zobecňuje podgrupu, podprostor vektorového prostoru, (indukovaný) podgraf: na podmnožině B univerza vytvoříme strukturu, která "zdědí" relace, funkce a konstanty
- B musí být uzavřená na všechny funkce (vč. konstant)

- podstruktura zobecňuje podgrupu, podprostor vektorového prostoru, (indukovaný) podgraf: na podmnožině B univerza vytvoříme strukturu, která "zdědí" relace, funkce a konstanty
- B musí být uzavřená na všechny funkce (vč. konstant)

Struktura $\mathcal{B} = \langle \mathcal{B}, \mathcal{R}^{\mathcal{B}}, \mathcal{F}^{\mathcal{B}} \rangle$ je (indukovaná) podstruktura struktury $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ (v též signatuře $\langle \mathcal{R}, \mathcal{F} \rangle$), značíme $\mathcal{B} \subseteq \mathcal{A}$, jestliže:

- podstruktura zobecňuje podgrupu, podprostor vektorového prostoru, (indukovaný) podgraf: na podmnožině B univerza vytvoříme strukturu, která "zdědí" relace, funkce a konstanty
- B musí být uzavřená na všechny funkce (vč. konstant)

Struktura $\mathcal{B} = \langle \mathcal{B}, \mathcal{R}^{\mathcal{B}}, \mathcal{F}^{\mathcal{B}} \rangle$ je (indukovaná) podstruktura struktury $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ (v též signatuře $\langle \mathcal{R}, \mathcal{F} \rangle$), značíme $\mathcal{B} \subseteq \mathcal{A}$, jestliže:

∅ ≠ B ⊆ A

- podstruktura zobecňuje podgrupu, podprostor vektorového prostoru, (indukovaný) podgraf: na podmnožině B univerza vytvoříme strukturu, která "zdědí" relace, funkce a konstanty
- B musí být uzavřená na všechny funkce (vč. konstant)

Struktura $\mathcal{B} = \langle \mathcal{B}, \mathcal{R}^{\mathcal{B}}, \mathcal{F}^{\mathcal{B}} \rangle$ je (indukovaná) podstruktura struktury $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ (v též signatuře $\langle \mathcal{R}, \mathcal{F} \rangle$), značíme $\mathcal{B} \subseteq \mathcal{A}$, jestliže:

- ∅ ≠ B ⊆ A
- $R^{\mathcal{B}}=R^{\mathcal{A}}\cap B^{\operatorname{ar}(\mathrm{R})}$ pro každý relační symbol $R\in\mathcal{R}$

- podstruktura zobecňuje podgrupu, podprostor vektorového prostoru, (indukovaný) podgraf: na podmnožině B univerza vytvoříme strukturu, která "zdědí" relace, funkce a konstanty
- B musí být uzavřená na všechny funkce (vč. konstant)

Struktura $\mathcal{B} = \langle \mathcal{B}, \mathcal{R}^{\mathcal{B}}, \mathcal{F}^{\mathcal{B}} \rangle$ je (indukovaná) podstruktura struktury $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ (v též signatuře $\langle \mathcal{R}, \mathcal{F} \rangle$), značíme $\mathcal{B} \subseteq \mathcal{A}$, jestliže:

- ∅ ≠ B ⊆ A
- $R^{\mathcal{B}}=R^{\mathcal{A}}\cap B^{\operatorname{ar}(\mathrm{R})}$ pro každý relační symbol $R\in\mathcal{R}$
- $f^{\mathcal{B}} = f^{\mathcal{A}} \cap (B^{\operatorname{ar}(f)} \times B)$ pro každý funkční symbol $f \in \mathcal{F}$, tj. $f^{\mathcal{B}}$ je restrikce $f^{\mathcal{A}}$ na množinu B, a výstupy jsou všechny z B

- podstruktura zobecňuje podgrupu, podprostor vektorového prostoru, (indukovaný) podgraf: na podmnožině B univerza vytvoříme strukturu, která "zdědí" relace, funkce a konstanty
- B musí být uzavřená na všechny funkce (vč. konstant)

Struktura $\mathcal{B} = \langle \mathcal{B}, \mathcal{R}^{\mathcal{B}}, \mathcal{F}^{\mathcal{B}} \rangle$ je (indukovaná) podstruktura struktury $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ (v též signatuře $\langle \mathcal{R}, \mathcal{F} \rangle$), značíme $\mathcal{B} \subseteq \mathcal{A}$, jestliže:

- ∅ ≠ B ⊆ A
- $R^{\mathcal{B}}=R^{\mathcal{A}}\cap B^{\operatorname{ar}(\mathrm{R})}$ pro každý relační symbol $R\in\mathcal{R}$
- $f^{\mathcal{B}} = f^{\mathcal{A}} \cap (B^{\operatorname{ar}(f)} \times B)$ pro každý funkční symbol $f \in \mathcal{F}$, tj. $f^{\mathcal{B}}$ je restrikce $f^{\mathcal{A}}$ na množinu B, a výstupy jsou všechny z B

speciálně, pro konstantní symbol $c \in \mathcal{F}$ máme $c^\mathcal{B} = c^\mathcal{A} \in \mathcal{B}$

Množina $C \subseteq A$ je uzavřená na funkci $f: A^n \to A$, pokud $f(x_1, \ldots, x_n) \in C$ pro všechna $x_i \in C$.

Množina $C \subseteq A$ je uzavřená na funkci $f: A^n \to A$, pokud $f(x_1, \ldots, x_n) \in C$ pro všechna $x_i \in C$.

Pozorování: Množina $\emptyset \neq C \subseteq A$ je univerzem podstruktury, právě když je uzavřená na všechny funkce struktury \mathcal{A} (včetně konstant). V tom případě je to restrikce \mathcal{A} na množinu C, značíme $\mathcal{A} \upharpoonright C$.

Množina $C \subseteq A$ je uzavřená na funkci $f: A^n \to A$, pokud $f(x_1, \ldots, x_n) \in C$ pro všechna $x_i \in C$.

Pozorování: Množina $\emptyset \neq C \subseteq A$ je univerzem podstruktury, právě když je uzavřená na všechny funkce struktury \mathcal{A} (včetně konstant). V tom případě je to restrikce \mathcal{A} na množinu C, značíme $\mathcal{A} \upharpoonright C$.

Množina $C \subseteq A$ je uzavřená na funkci $f: A^n \to A$, pokud $f(x_1, \ldots, x_n) \in C$ pro všechna $x_i \in C$.

Pozorování: Množina $\emptyset \neq C \subseteq A$ je univerzem podstruktury, právě když je uzavřená na všechny funkce struktury \mathcal{A} (včetně konstant). V tom případě je to restrikce \mathcal{A} na množinu C, značíme $\mathcal{A} \upharpoonright C$.

- $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ je podstrukturou obou těchto struktur, platí: $\underline{\mathbb{N}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{N} = \underline{\mathbb{Z}} \upharpoonright \mathbb{N}$

Množina $C \subseteq A$ je uzavřená na funkci $f: A^n \to A$, pokud $f(x_1, \ldots, x_n) \in C$ pro všechna $x_i \in C$.

Pozorování: Množina $\emptyset \neq C \subseteq A$ je univerzem podstruktury, právě když je uzavřená na všechny funkce struktury \mathcal{A} (včetně konstant). V tom případě je to restrikce \mathcal{A} na množinu C, značíme $\mathcal{A} \upharpoonright C$.

- $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ je podstrukturou obou těchto struktur, platí: $\underline{\mathbb{N}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{N} = \underline{\mathbb{Z}} \upharpoonright \mathbb{N}$
- Množina $\{k \in \mathbb{Z} \mid k \leq 0\}$ není univerzem podstruktury $\underline{\mathbb{Z}}$ ani $\underline{\mathbb{Q}}$, není uzavřená na násobení.

Pozorování: Je-li $\mathcal{B}\subseteq\mathcal{A}$, φ otevřená formule, a $e\colon \mathsf{Var}\to \mathcal{B}$, potom platí: $\mathcal{B}\models \varphi[e]$ právě když $\mathcal{A}\models \varphi[e]$.

Pozorování: Je-li $\mathcal{B} \subseteq \mathcal{A}$, φ otevřená formule, a $e \colon \mathsf{Var} \to \mathcal{B}$, potom platí: $\mathcal{B} \models \varphi[e]$ právě když $\mathcal{A} \models \varphi[e]$.

Důkaz: Snadno indukcí dle struktury φ , pro atomickou zřejmé. \square

Pozorování: Je-li $\mathcal{B}\subseteq\mathcal{A}$, φ otevřená formule, a $e\colon \mathsf{Var}\to \mathcal{B}$, potom platí: $\mathcal{B}\models\varphi[e]$ právě když $\mathcal{A}\models\varphi[e]$.

Důkaz: Snadno indukcí dle struktury φ , pro atomickou zřejmé. \square

Důsledek: Otevřená formule platí ve struktuře \mathcal{A} , právě když platí v každé podstruktuře $\mathcal{B} \subseteq \mathcal{A}$.

Pozorování: Je-li $\mathcal{B}\subseteq\mathcal{A}$, φ otevřená formule, a $e\colon \mathsf{Var}\to \mathcal{B}$, potom platí: $\mathcal{B}\models \varphi[e]$ právě když $\mathcal{A}\models \varphi[e]$.

Důkaz: Snadno indukcí dle struktury φ , pro atomickou zřejmé. \square

Důsledek: Otevřená formule platí ve struktuře \mathcal{A} , právě když platí v každé podstruktuře $\mathcal{B} \subseteq \mathcal{A}$.

Teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

Pozorování: Je-li $\mathcal{B}\subseteq\mathcal{A}$, φ otevřená formule, a $e\colon \mathsf{Var}\to \mathcal{B}$, potom platí: $\mathcal{B}\models \varphi[e]$ právě když $\mathcal{A}\models \varphi[e]$.

Důkaz: Snadno indukcí dle struktury φ , pro atomickou zřejmé. \square

Důsledek: Otevřená formule platí ve struktuře \mathcal{A} , právě když platí v každé podstruktuře $\mathcal{B} \subseteq \mathcal{A}$.

Teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

Pozorování: Je-li $\mathcal{B}\subseteq\mathcal{A}$, φ otevřená formule, a $e\colon \mathsf{Var}\to \mathcal{B}$, potom platí: $\mathcal{B}\models \varphi[e]$ právě když $\mathcal{A}\models \varphi[e]$.

Důkaz: Snadno indukcí dle struktury φ , pro atomickou zřejmé. \square

Důsledek: Otevřená formule platí ve struktuře \mathcal{A} , právě když platí v každé podstruktuře $\mathcal{B} \subseteq \mathcal{A}$.

Teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

Důsledek: Modely otevřené teorie jsou uzavřené na podstruktury, tj. každá podstruktura modelu této teorie je také její model.

 Teorie grafů je otevřená. Podstruktura grafu je také graf: (indukovaný) podgraf. Stejně podgrupy, Booleovy podalgebry.

Pozorování: Je-li $\mathcal{B}\subseteq\mathcal{A}$, φ otevřená formule, a $e\colon \mathsf{Var}\to \mathcal{B}$, potom platí: $\mathcal{B}\models\varphi[e]$ právě když $\mathcal{A}\models\varphi[e]$.

Důkaz: Snadno indukcí dle struktury φ , pro atomickou zřejmé. \square

Důsledek: Otevřená formule platí ve struktuře \mathcal{A} , právě když platí v každé podstruktuře $\mathcal{B} \subseteq \mathcal{A}$.

Teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

- Teorie grafů je otevřená. Podstruktura grafu je také graf: (indukovaný) podgraf. Stejně podgrupy, Booleovy podalgebry.
- Teorie těles není otevřená.

Pozorování: Je-li $\mathcal{B}\subseteq\mathcal{A}$, φ otevřená formule, a $e\colon \mathsf{Var}\to \mathcal{B}$, potom platí: $\mathcal{B}\models\varphi[e]$ právě když $\mathcal{A}\models\varphi[e]$.

Důkaz: Snadno indukcí dle struktury φ , pro atomickou zřejmé. \Box

Důsledek: Otevřená formule platí ve struktuře \mathcal{A} , právě když platí v každé podstruktuře $\mathcal{B} \subseteq \mathcal{A}$.

Teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

- Teorie grafů je otevřená. Podstruktura grafu je také graf: (indukovaný) podgraf. Stejně podgrupy, Booleovy podalgebry.
- Teorie těles není otevřená. Později ukážeme, že ani otevřeně axiomatizovatelná (kvantifikátoru v axiomu o existenci inverzního prvku se nezbavíme).

Pozorování: Je-li $\mathcal{B}\subseteq\mathcal{A}$, φ otevřená formule, a $e\colon \mathsf{Var}\to \mathcal{B}$, potom platí: $\mathcal{B}\models\varphi[e]$ právě když $\mathcal{A}\models\varphi[e]$.

Důkaz: Snadno indukcí dle struktury φ , pro atomickou zřejmé. \square

Důsledek: Otevřená formule platí ve struktuře \mathcal{A} , právě když platí v každé podstruktuře $\mathcal{B} \subseteq \mathcal{A}$.

Teorie T je otevřená, jsou-li všechny její axiomy otevřené formule.

- Teorie grafů je otevřená. Podstruktura grafu je také graf: (indukovaný) podgraf. Stejně podgrupy, Booleovy podalgebry.
- Teorie těles není otevřená. Později ukážeme, že ani otevřeně axiomatizovatelná (kvantifikátoru v axiomu o existenci inverzního prvku se nezbavíme). Podstruktura tělesa ℚ na množině ℤ, ℚ ↑ ℤ, není těleso. (Je to tzv. okruh.)

Co když podmnožina univerza není uzavřená? Vezmeme její uzávěr.

Co když podmnožina univerza není uzavřená? Vezmeme její uzávěr.

Mějme $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ a $\emptyset \neq X \subseteq A$. Buď $B \subseteq A$ nejmenší podmnožina, která obsahuje X a je uzavřená na všechny funkce \mathcal{A} (tj. obsahuje i všechny konstanty). Potom podstruktura $\mathcal{A} \upharpoonright B$ je generovaná X, značíme ji $\mathcal{A}\langle X \rangle$.

Co když podmnožina univerza není uzavřená? Vezmeme její uzávěr.

Mějme $\mathcal{A}=\langle A,\mathcal{R}^{\mathcal{A}},\mathcal{F}^{\mathcal{A}}\rangle$ a $\emptyset\neq X\subseteq A$. Buď $B\subseteq A$ nejmenší podmnožina, která obsahuje X a je uzavřená na všechny funkce \mathcal{A} (tj. obsahuje i všechny konstanty). Potom podstruktura $\mathcal{A}\upharpoonright B$ je generovaná X, značíme ji $\mathcal{A}\langle X\rangle$.

Např. pro
$$\underline{\mathbb{Q}}=\langle\mathbb{Q},+,\cdot,0\rangle$$
 , $\underline{\mathbb{Z}}=\langle\mathbb{Z},+,\cdot,0\rangle$, $\underline{\mathbb{N}}=\langle\mathbb{N},+,\cdot,0\rangle$:

Co když podmnožina univerza není uzavřená? Vezmeme její uzávěr.

Mějme $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ a $\emptyset \neq X \subseteq A$. Buď $B \subseteq A$ nejmenší podmnožina, která obsahuje X a je uzavřená na všechny funkce \mathcal{A} (tj. obsahuje i všechny konstanty). Potom podstruktura $\mathcal{A} \upharpoonright B$ je generovaná X, značíme ji $\mathcal{A}\langle X \rangle$.

Např. pro
$$\underline{\mathbb{Q}}=\langle\mathbb{Q},+,\cdot,0\rangle$$
 , $\underline{\mathbb{Z}}=\langle\mathbb{Z},+,\cdot,0\rangle$, $\underline{\mathbb{N}}=\langle\mathbb{N},+,\cdot,0\rangle$:

$$\bullet \ \underline{\mathbb{Q}}\langle\{1\}\rangle = \underline{\mathbb{N}}$$

Co když podmnožina univerza není uzavřená? Vezmeme její uzávěr.

Mějme $\mathcal{A}=\langle A,\mathcal{R}^{\mathcal{A}},\mathcal{F}^{\mathcal{A}}\rangle$ a $\emptyset\neq X\subseteq A$. Buď $B\subseteq A$ nejmenší podmnožina, která obsahuje X a je uzavřená na všechny funkce \mathcal{A} (tj. obsahuje i všechny konstanty). Potom podstruktura $\mathcal{A}\upharpoonright B$ je generovaná X, značíme ji $\mathcal{A}\langle X\rangle$.

Např. pro
$$\underline{\mathbb{Q}}=\langle\mathbb{Q},+,\cdot,0\rangle$$
 , $\underline{\mathbb{Z}}=\langle\mathbb{Z},+,\cdot,0\rangle$, $\underline{\mathbb{N}}=\langle\mathbb{N},+,\cdot,0\rangle$:

- $\bullet \ \underline{\mathbb{Q}}\langle\{1\}\rangle = \underline{\mathbb{N}}$
- $\bullet \ \underline{\mathbb{Q}}\langle\{-1\}\rangle=\underline{\mathbb{Z}}$

Co když podmnožina univerza není uzavřená? Vezmeme její uzávěr.

Mějme $\mathcal{A} = \langle A, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ a $\emptyset \neq X \subseteq A$. Buď $B \subseteq A$ nejmenší podmnožina, která obsahuje X a je uzavřená na všechny funkce \mathcal{A} (tj. obsahuje i všechny konstanty). Potom podstruktura $\mathcal{A} \upharpoonright B$ je generovaná X, značíme ji $\mathcal{A}\langle X \rangle$.

Např. pro
$$\underline{\mathbb{Q}}=\langle\mathbb{Q},+,\cdot,0\rangle$$
 , $\underline{\mathbb{Z}}=\langle\mathbb{Z},+,\cdot,0\rangle$, $\underline{\mathbb{N}}=\langle\mathbb{N},+,\cdot,0\rangle$:

- $\bullet \quad \mathbb{Q}\langle\{1\}\rangle = \underline{\mathbb{N}}$
- $\bullet \ \underline{\mathbb{Q}}\langle\{-1\}\rangle=\underline{\mathbb{Z}}$
- $\underline{\mathbb{Q}}\langle\{2\}\rangle$ je podstruktura $\underline{\mathbb{N}}$ na množině všech sudých čísel

Co když podmnožina univerza není uzavřená? Vezmeme její uzávěr.

Mějme $\mathcal{A}=\langle A,\mathcal{R}^{\mathcal{A}},\mathcal{F}^{\mathcal{A}}\rangle$ a $\emptyset\neq X\subseteq A$. Buď $B\subseteq A$ nejmenší podmnožina, která obsahuje X a je uzavřená na všechny funkce \mathcal{A} (tj. obsahuje i všechny konstanty). Potom podstruktura $\mathcal{A}\upharpoonright B$ je generovaná X, značíme ji $\mathcal{A}\langle X\rangle$.

Např. pro
$$\underline{\mathbb{Q}}=\langle\mathbb{Q},+,\cdot,0\rangle$$
 , $\underline{\mathbb{Z}}=\langle\mathbb{Z},+,\cdot,0\rangle$, $\underline{\mathbb{N}}=\langle\mathbb{N},+,\cdot,0\rangle$:

- $\bullet \quad \mathbb{Q}\langle\{1\}\rangle = \underline{\mathbb{N}}$
- $\bullet \ \underline{\mathbb{Q}}\langle\{-1\}\rangle=\underline{\mathbb{Z}}$
- $\underline{\mathbb{Q}}\langle\{2\}\rangle$ je podstruktura $\underline{\mathbb{N}}$ na množině všech sudých čísel

Pokud \mathcal{A} nemá žádné funkce (ani konstanty), např. graf či uspořádání, potom není čím generovat, a $\mathcal{A}\langle X\rangle=\mathcal{A}\upharpoonright X$.

Mějme $L\subseteq L'$, L-strukturu $\mathcal A$ a L'-strukturu $\mathcal A'$ na stejné doméně. Je-li interpretace každého symbolu z L stejná v $\mathcal A$ i v $\mathcal A'$, potom:

Mějme $L \subseteq L'$, L-strukturu \mathcal{A} a L'-strukturu \mathcal{A}' na stejné doméně. Je-li interpretace každého symbolu z L stejná v \mathcal{A} i v \mathcal{A}' , potom:

• \mathcal{A}' je expanze \mathcal{A} do L' (L'-expanze struktury \mathcal{A})

Mějme $L \subseteq L'$, L-strukturu \mathcal{A} a L'-strukturu \mathcal{A}' na stejné doméně. Je-li interpretace každého symbolu z L stejná v \mathcal{A} i v \mathcal{A}' , potom:

- \mathcal{A}' je expanze \mathcal{A} do \mathcal{L}' (\mathcal{L}' -expanze struktury \mathcal{A})
- A je redukt A' na L (L-redukt struktury A')

Mějme $L \subseteq L'$, L-strukturu \mathcal{A} a L'-strukturu \mathcal{A}' na stejné doméně. Je-li interpretace každého symbolu z L stejná v \mathcal{A} i v \mathcal{A}' , potom:

- \mathcal{A}' je expanze \mathcal{A} do \mathcal{L}' (\mathcal{L}' -expanze struktury \mathcal{A})
- A je redukt A' na L (L-redukt struktury A')

Mějme $L \subseteq L'$, L-strukturu \mathcal{A} a L'-strukturu \mathcal{A}' na stejné doméně. Je-li interpretace každého symbolu z L stejná v \mathcal{A} i v \mathcal{A}' , potom:

- \mathcal{A}' je expanze \mathcal{A} do \mathcal{L}' (\mathcal{L}' -expanze struktury \mathcal{A})
- A je redukt A' na L (L-redukt struktury A')

Například:

■ Mějme grupu celých čísel $\langle \mathbb{Z}, +, -, 0 \rangle$. Potom:

Mějme $L \subseteq L'$, L-strukturu \mathcal{A} a L'-strukturu \mathcal{A}' na stejné doméně. Je-li interpretace každého symbolu z L stejná v \mathcal{A} i v \mathcal{A}' , potom:

- \mathcal{A}' je expanze \mathcal{A} do \mathcal{L}' (\mathcal{L}' -expanze struktury \mathcal{A})
- A je redukt A' na L (L-redukt struktury A')

- Mějme grupu celých čísel $(\mathbb{Z},+,-,0)$. Potom:
 - struktura $\langle \mathbb{Z}, + \rangle$ je její redukt

Mějme $L \subseteq L'$, L-strukturu \mathcal{A} a L'-strukturu \mathcal{A}' na stejné doméně. Je-li interpretace každého symbolu z L stejná v \mathcal{A} i v \mathcal{A}' , potom:

- \mathcal{A}' je expanze \mathcal{A} do \mathcal{L}' (\mathcal{L}' -expanze struktury \mathcal{A})
- A je redukt A' na L (L-redukt struktury A')

- Mějme grupu celých čísel $(\mathbb{Z}, +, -, 0)$. Potom:
 - struktura $\langle \mathbb{Z}, + \rangle$ je její redukt
 - struktura $\langle \mathbb{Z}, +, -, 0, \cdot, 1 \rangle$ (okruh celých čísel) je její expanze

Mějme $L \subseteq L'$, L-strukturu \mathcal{A} a L'-strukturu \mathcal{A}' na stejné doméně. Je-li interpretace každého symbolu z L stejná v \mathcal{A} i v \mathcal{A}' , potom:

- \mathcal{A}' je expanze \mathcal{A} do \mathcal{L}' (\mathcal{L}' -expanze struktury \mathcal{A})
- A je redukt A' na L (L-redukt struktury A')

- Mějme grupu celých čísel $\langle \mathbb{Z}, +, -, 0 \rangle$. Potom:
 - struktura $\langle \mathbb{Z}, + \rangle$ je její redukt
 - struktura $\langle \mathbb{Z}, +, -, 0, \cdot, 1 \rangle$ (okruh celých čísel) je její expanze
- Mějme graf $\mathcal{G} = \langle G, E^{\mathcal{G}} \rangle$. Potom expanze \mathcal{G} o jména prvků (z množiny G) je struktura $\langle G, E^{G}, c_{v}^{\mathcal{G}} \rangle_{v \in G}$ v jazyce $\langle E, c_{v} \rangle_{v \in G}$, kde $c_{v}^{\mathcal{G}} = v$ pro všechny vrcholy $v \in G$.

 splnit formuli s volnou proměnnou x je totéž, co splnit formuli, ve které je x nahrazena novým konstantním symbolem c

- splnit formuli s volnou proměnnou x je totéž, co splnit formuli, ve které je x nahrazena novým konstantním symbolem c
- proč: nový symbol lze v modelu interpretovat každým prvkem

- splnit formuli s volnou proměnnou x je totéž, co splnit formuli, ve které je x nahrazena novým konstantním symbolem c
- proč: nový symbol lze v modelu interpretovat každým prvkem
- podobný trik využijeme v tablo metodě

- splnit formuli s volnou proměnnou x je totéž, co splnit formuli, ve které je x nahrazena novým konstantním symbolem c
- proč: nový symbol lze v modelu interpretovat každým prvkem
- podobný trik využijeme v tablo metodě

Věta (O konstantách): Mějme L-formuli φ s volnými proměnnými x_1, \ldots, x_n . Označme jako L' rozšíření L o nové konstantní symboly c_1, \ldots, c_n a buď T' stejná teorie jako T, ale v jazyce L'. Potom:

$$T \models \varphi$$
 právě když $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$

- splnit formuli s volnou proměnnou x je totéž, co splnit formuli, ve které je x nahrazena novým konstantním symbolem c
- proč: nový symbol lze v modelu interpretovat každým prvkem
- podobný trik využijeme v tablo metodě

Věta (O konstantách): Mějme L-formuli φ s volnými proměnnými x_1, \ldots, x_n . Označme jako L' rozšíření L o nové konstantní symboly c_1, \ldots, c_n a buď T' stejná teorie jako T, ale v jazyce L'. Potom:

$$T \models \varphi$$
 právě když $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$

Důkaz: stačí ukázat pro jednu volnou proměnnou, rozšířit indukcí

- splnit formuli s volnou proměnnou x je totéž, co splnit formuli, ve které je x nahrazena novým konstantním symbolem c
- proč: nový symbol lze v modelu interpretovat každým prvkem
- podobný trik využijeme v tablo metodě

Věta (O konstantách): Mějme L-formuli φ s volnými proměnnými x_1, \ldots, x_n . Označme jako L' rozšíření L o nové konstantní symboly c_1, \ldots, c_n a buď T' stejná teorie jako T, ale v jazyce L'. Potom:

$$T \models \varphi$$
 právě když $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$

Důkaz: stačí ukázat pro jednu volnou proměnnou, rozšířit indukcí

 \Rightarrow **Víme:** φ platí v každém modelu T. **Chceme:** $\varphi(x/c)$ platí v každém modelu T'.

- splnit formuli s volnou proměnnou x je totéž, co splnit formuli, ve které je x nahrazena novým konstantním symbolem c
- proč: nový symbol lze v modelu interpretovat každým prvkem
- podobný trik využijeme v tablo metodě

Věta (O konstantách): Mějme L-formuli φ s volnými proměnnými x_1, \ldots, x_n . Označme jako L' rozšíření L o nové konstantní symboly c_1, \ldots, c_n a buď T' stejná teorie jako T, ale v jazyce L'. Potom:

$$T \models \varphi$$
 právě když $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$

Důkaz: stačí ukázat pro jednu volnou proměnnou, rozšířit indukcí

⇒ **Víme:** φ platí v každém modelu T. **Chceme:** $\varphi(x/c)$ platí v každém modelu T'. Mějme model $\mathcal{A}' \models T'$ a ohodnocení e: Var $\to A'$ a ukažme, že $\mathcal{A}' \models \varphi(x/c)[e]$.

Buď \mathcal{A} redukt \mathcal{A}' na L ('zapomeneme' konstantu $c^{\mathcal{A}'}$). Všimněte si, že \mathcal{A} je model T (axiomy T=T' neobsahují nový symbol c).

Buď \mathcal{A} redukt \mathcal{A}' na L ('zapomeneme' konstantu $c^{\mathcal{A}'}$). Všimněte si, že \mathcal{A} je model T (axiomy T=T' neobsahují nový symbol c). Dle předpokladu $\mathcal{A}\models\varphi$, tj. $\mathcal{A}\models\varphi[e']$ pro libovolné ohodnocení e', speciálně pro $e(x/c^{\mathcal{A}'})$ kde x ohodnotíme interpretací c v \mathcal{A}' .

Buď \mathcal{A} redukt \mathcal{A}' na L ('zapomeneme' konstantu $c^{\mathcal{A}'}$). Všimněte si, že \mathcal{A} je model T (axiomy T=T' neobsahují nový symbol c). Dle předpokladu $\mathcal{A}\models\varphi$, tj. $\mathcal{A}\models\varphi[e']$ pro libovolné ohodnocení e', speciálně pro $e(x/c^{\mathcal{A}'})$ kde x ohodnotíme interpretací c v \mathcal{A}' .

Máme $\mathcal{A} \models \varphi[e(x/c^{\mathcal{A}'})]$, což ale znamená $\mathcal{A}' \models \varphi(x/c)[e]$.

Buď \mathcal{A} redukt \mathcal{A}' na L ('zapomeneme' konstantu $c^{\mathcal{A}'}$). Všimněte si, že \mathcal{A} je model T (axiomy T=T' neobsahují nový symbol c). Dle předpokladu $\mathcal{A}\models\varphi$, tj. $\mathcal{A}\models\varphi[e']$ pro libovolné ohodnocení e', speciálně pro $e(x/c^{\mathcal{A}'})$ kde x ohodnotíme interpretací c v \mathcal{A}' .

Máme $\mathcal{A} \models \varphi[e(x/c^{\mathcal{A}'})]$, což ale znamená $\mathcal{A}' \models \varphi(x/c)[e]$.

 \leftarrow Víme: $\varphi(x/c)$ platí v každém modelu T'. Chceme: φ platí v každém modelu T.

Buď \mathcal{A} redukt \mathcal{A}' na L ('zapomeneme' konstantu $c^{\mathcal{A}'}$). Všimněte si, že \mathcal{A} je model T (axiomy T=T' neobsahují nový symbol c). Dle předpokladu $\mathcal{A}\models\varphi$, tj. $\mathcal{A}\models\varphi[e']$ pro libovolné ohodnocení e', speciálně pro $e(x/c^{\mathcal{A}'})$ kde x ohodnotíme interpretací c v \mathcal{A}' .

Máme $\mathcal{A} \models \varphi[e(x/c^{\mathcal{A}'})]$, což ale znamená $\mathcal{A}' \models \varphi(x/c)[e]$.

 \leftarrow Víme: $\varphi(x/c)$ platí v každém modelu T'. Chceme: φ platí v každém modelu T. Zvolme $A \models T$ a ohodnocení e: Var $\rightarrow A$ a ukažme, že $A \models \varphi[e]$.

Buď \mathcal{A} redukt \mathcal{A}' na L ('zapomeneme' konstantu $c^{\mathcal{A}'}$). Všimněte si, že \mathcal{A} je model T (axiomy T=T' neobsahují nový symbol c). Dle předpokladu $\mathcal{A}\models\varphi$, tj. $\mathcal{A}\models\varphi[e']$ pro libovolné ohodnocení e', speciálně pro $e(x/c^{\mathcal{A}'})$ kde x ohodnotíme interpretací c v \mathcal{A}' .

Máme $\mathcal{A} \models \varphi[e(x/c^{\mathcal{A}'})]$, což ale znamená $\mathcal{A}' \models \varphi(x/c)[e]$.

 \leftarrow Víme: $\varphi(x/c)$ platí v každém modelu T'. Chceme: φ platí v každém modelu T. Zvolme $A \models T$ a ohodnocení $e \colon \mathsf{Var} \to A$ a ukažme, že $A \models \varphi[e]$.

Buď \mathcal{A}' expanze \mathcal{A} do \mathcal{L}' , kde c interpretujeme jako $c^{\mathcal{A}'}=e(x)$.

Buď \mathcal{A} redukt \mathcal{A}' na L ('zapomeneme' konstantu $c^{\mathcal{A}'}$). Všimněte si, že \mathcal{A} je model T (axiomy T=T' neobsahují nový symbol c). Dle předpokladu $\mathcal{A}\models\varphi$, tj. $\mathcal{A}\models\varphi[e']$ pro libovolné ohodnocení e', speciálně pro $e(x/c^{\mathcal{A}'})$ kde x ohodnotíme interpretací c v \mathcal{A}' .

Máme $\mathcal{A} \models \varphi[e(x/c^{\mathcal{A}'})]$, což ale znamená $\mathcal{A}' \models \varphi(x/c)[e]$.

 \leftarrow Víme: $\varphi(x/c)$ platí v každém modelu T'. Chceme: φ platí v každém modelu T. Zvolme $A \models T$ a ohodnocení e: Var $\rightarrow A$ a ukažme, že $A \models \varphi[e]$.

Buď \mathcal{A}' expanze \mathcal{A} do L', kde c interpretujeme jako $c^{\mathcal{A}'}=e(x)$. Dle předpokladu platí $\mathcal{A}'\models\varphi(x/c)[e']$ pro všechna ohodnocení e'.

Buď \mathcal{A} redukt \mathcal{A}' na L ('zapomeneme' konstantu $c^{\mathcal{A}'}$). Všimněte si, že \mathcal{A} je model T (axiomy T=T' neobsahují nový symbol c). Dle předpokladu $\mathcal{A}\models\varphi$, tj. $\mathcal{A}\models\varphi[e']$ pro libovolné ohodnocení e', speciálně pro $e(x/c^{\mathcal{A}'})$ kde x ohodnotíme interpretací c v \mathcal{A}' .

Máme $\mathcal{A} \models \varphi[e(x/c^{\mathcal{A}'})]$, což ale znamená $\mathcal{A}' \models \varphi(x/c)[e]$.

 \leftarrow Víme: $\varphi(x/c)$ platí v každém modelu T'. Chceme: φ platí v každém modelu T. Zvolme $A \models T$ a ohodnocení e: Var $\rightarrow A$ a ukažme, že $A \models \varphi[e]$.

Buď \mathcal{A}' expanze \mathcal{A} do L', kde c interpretujeme jako $c^{\mathcal{A}'}=e(x)$. Dle předpokladu platí $\mathcal{A}'\models\varphi(x/c)[e']$ pro všechna ohodnocení e'. Tedy $\mathcal{A}'\models\varphi(x/c)[e]$, což znamená $\mathcal{A}'\models\varphi[e]$ ($e=e(x/c^{\mathcal{A}'})$, z toho plyne $\mathcal{A}'\models\varphi(x/c)[e]\Leftrightarrow\mathcal{A}'\models\varphi[e(x/c^{\mathcal{A}'})]\Leftrightarrow\mathcal{A}'\models\varphi[e]$).

Buď \mathcal{A} redukt \mathcal{A}' na L ('zapomeneme' konstantu $c^{\mathcal{A}'}$). Všimněte si, že \mathcal{A} je model T (axiomy T=T' neobsahují nový symbol c). Dle předpokladu $\mathcal{A}\models\varphi$, tj. $\mathcal{A}\models\varphi[e']$ pro libovolné ohodnocení e', speciálně pro $e(x/c^{\mathcal{A}'})$ kde x ohodnotíme interpretací c v \mathcal{A}' .

Máme $\mathcal{A} \models \varphi[e(x/c^{\mathcal{A}'})]$, což ale znamená $\mathcal{A}' \models \varphi(x/c)[e]$.

 \leftarrow **Víme:** $\varphi(x/c)$ platí v každém modelu T'. **Chceme:** φ platí v každém modelu T. Zvolme $A \models T$ a ohodnocení $e: Var \rightarrow A$ a ukažme, že $A \models \varphi[e]$.

Buď \mathcal{A}' expanze \mathcal{A} do L', kde c interpretujeme jako $c^{\mathcal{A}'}=e(x)$. Dle předpokladu platí $\mathcal{A}'\models\varphi(x/c)[e']$ pro všechna ohodnocení e'. Tedy $\mathcal{A}'\models\varphi(x/c)[e]$, což znamená $\mathcal{A}'\models\varphi[e]$ ($e=e(x/c^{\mathcal{A}'})$, z toho plyne $\mathcal{A}'\models\varphi(x/c)[e]\Leftrightarrow\mathcal{A}'\models\varphi[e(x/c^{\mathcal{A}'})]\Leftrightarrow\mathcal{A}'\models\varphi[e]$).

Formule φ neobsahuje c (je nový), máme tedy i $\mathcal{A} \models \varphi[e]$.