

CLAIMS

What is claimed is:

- 1 1. A method in a computer graphics system for rendering on an output device, having a finite
2 number of pixels, a non-zero thickness line segment with reduced aliasing, comprising:
3 expanding an edge of the line segment touching but not covering a pixel center of the line
4 segment to be rendered on the output device so that the expanded line segment covers the center
5 of the pixel touched;
6 determining, using the pixel centers, the pixels to be included in the expanded line
7 segment, the line segment being distinguishable from a background over which said line segment
8 is rendered by having a shade different from a shade of the background; and
9 for each pixel that is included in said non-zero thickness expanded line segment,
10 determining the area of the pixel partially or fully covered by said line segment;
11 and
12 based on the area of the pixel covered, determining a shading value for the pixel
13 by interpolating between the shade of said line segment and the shade of the background.

- 1 2. A method for rendering a non-zero thickness line segment as recited in claim 1,
2 wherein the output device has a x-y coordinate system established thereon and the pixels
3 of the output device each have centers with an x-y coordinate; and
4 wherein the step of expanding an edge includes moving the edge of said line segment by
5 an amount equal to $(a+b)/2a$ in the x-direction to include the center of a pixel that has a corner
6 traversed by an edge of said line segment, wherein a is greater than or equal to zero and b is
7 greater than or equal to zero.
1 3. A method for rendering a non-zero thickness line as recited in claim 1,
2 wherein the output device has a x-y coordinate system established thereon and the pixels
3 of the output device each have centers with an x-y coordinate;
4 wherein an edge of said line segment has an equation $ax + by + c = 0$; and
5 wherein the step of expanding an edge includes altering the equation of an edge of said
6 line segment by adding an amount $(|a|+|b|)/2$ to the c parameter of the equation.

1 4. A method for rendering a non-zero thickness line as recited in claim 1,
2 wherein the output device has a x-y coordinate system established thereon and the pixels
3 of the output device each have centers with an x-y coordinate; and
4 wherein the step of determining the pixels to be included in the non-zero thickness line
5 includes:

6 evaluating the equation of an edge of said expanded line segment with the x and
7 y-coordinates of the center of each pixel; and
8 testing whether the result of the computation is greater than or equal to zero.

1 5. A method for rendering a non-zero thickness line as recited in claim 4, wherein evaluating the
2 equation of an edge of said expanded line segment with the x and y-coordinates of the center of
3 each pixel includes computing $ax_0 + by_0 + c + (|a|+|b|)/2$, where x_0 and y_0 are the coordinates of
4 the pixel center.

1 6. A method for rendering a non-zero thickness line as recited in claim 1,
2 wherein the shade of the pixel covered and the shade of the background are each
3 indicated by a numerical value; and
4 wherein the step of determining the shading value of the pixel by interpolating includes:
5 forming a first product of the shade numerical value of said line segment and a
6 fraction f representing the area of the pixel covered;
7 forming a second product of the shade numerical value of the background and a
8 fraction $(1-f)$ representing the area of the pixel not covered; and
9 adding the first and second products.

1 7. A method for rendering a non-zero thickness line as recited in claim 1,
2 wherein the output device has a x-y coordinate system established thereon and said line
3 segment has a slope factor sf related to the slope of said line segment and a parameter p
4 proportional to an x-distance between an edge of said line segment traversing a pixel and a pixel
5 boundary; and
6 wherein, for an edge of said line segment that traverses a partially covered pixel, the step
7 of determining the area of a partially covered pixel includes:

8 determining that the area covered is less than or equal to a first predetermined
9 limit; and
10 computing the triangular area covered by said line segment.

1 8. A method for rendering a non-zero thickness line as recited in claim 7,
2 wherein the parameter p is equal to the product of the slope factor sf and the distance
3 between an edge of said line segment traversing the pixel and a pixel boundary;
4 wherein the line segment has a slope m and the slope factor sf equals $m/(m+1)$; and
5 wherein the step of computing the triangular area covered by said line segment includes
6 forming a product $\frac{1}{2} * p^2 * (1-sf)^{-1} * sf^1$ to find the area.

1 9. A method for rendering a non-zero thickness line as recited in claim 1,
2 wherein the output device has an x-y coordinate system established thereon and said line
3 segment has a slope factor sf related to the slope of said line segment and a parameter p
4 proportional to an x-directed distance between an edge of said line segment traversing a pixel
5 and a pixel boundary; and
6 wherein, for an edge of said line segment that traverses a partially covered pixel, the step
7 of determining the area of a partially covered pixel includes:
8 determining that the area covered is greater than a first predetermined limit;
9 computing the maximum triangular area covered by said line segment;
10 computing the area of a parallelogram covered by said line segment; and
11 computing the sum of the maximum triangular area and the parallelogram area.

1 10. A method for rendering a non-zero thickness line as recited in claim 9, wherein the slope
2 factor sf equals $m/(m+1)$, where m is the slope of said line segment.

1 11. A method for rendering a non-zero thickness line as recited in claim 9, wherein the p
2 parameter equals the product of said x-directed distance and the slope factor sf .

1 12. A method for rendering a non-zero thickness line as recited in claim 11, wherein said x-
2 directed distance is computed as the quotient $ax_0+by_0 + c + (|a|+|b|)/2$ and a , where x_0 and y_0 are
3 the coordinates of the center of the pixel and the line segment edge has an equation $ax+by+c=0$.

1 13. A method for rendering a non-zero thickness line as recited in claim 9, wherein the first
2 predetermined limit is the maximum area triangular area covered by said line segment traversing
3 through the pixel.

1 14. A method for rendering a non-zero thickness line as recited in claim 9, wherein the step of
2 computing the maximum triangular area covered by said line segment includes forming a
3 product $\frac{1}{2} * (1-sf) * sf^1$ to find the maximum triangular area.

1 15. A method for rendering a non-zero thickness line as recited in claim 9, wherein the step of
2 computing the parallelogram area covered by said line segment includes forming a sum of $p*sf^1$
3 and $(1-sf^1)$ to find the parallelogram area.

1 16. A method for rendering a non-zero thickness line as recited in claim 1, wherein, for an edge
2 of said line segment that traverses a partially covered pixel, the step of determining the area of a
3 partially covered pixel includes:

4 determining that the area covered is greater than a second predetermined limit, leaving a
5 triangular area not covered;

6 computing the triangular area not covered by said line segment; and

7 computing the difference between one and the triangular area not covered to find the area
8 of the pixel covered.

1 17. A method for rendering a non-zero thickness line as recited in claim 16, wherein the second
2 predetermined limit is the sum of the maximum triangular area and the maximum parallelogram
3 area of said line segment traversing the pixel.

- 1 18. A method for rendering a non-zero thickness line as recited in claim 16, wherein the step of
2 computing the triangular area covered by said line segment includes forming a product $\frac{1}{2} * p^2 *$
3 $(1-sf)^{-1} * sf^1$ to find the triangular area covered.
- 1 19. A method for rendering a non-zero thickness line as recited in claim 1, wherein when two
2 parallel edges of said line segment traverse a partially covered pixel, the step of determining the
3 area of the partially covered pixel includes:
4 computing a first area of the pixel not covered by the first parallel edge;
5 computing a second area of the pixel not covered by the second edge; and
6 summing the first and second areas and subtracting the sum from one.
- 1 20. A method for rendering a non-zero thickness line as recited in claim 1, wherein when a first
2 edge along said line segment and a second edge orthogonal to said line segment traverse a
3 partially covered pixel, the step of determining the area of the partially covered pixel includes:
4 computing a first area of the pixel not covered by the first parallel edge and subtracting
5 the first area from one to form a first difference;
6 computing a second area of the pixel not covered by the second edge and subtracting the
7 second area from one to form a second difference; and
8 forming a product of the first and second differences.
- 1 21. A method for rendering a non-zero thickness line as recited in claim 1, wherein when two
2 parallel edges and a third orthogonal edge of said line segment traverse a partially covered pixel,
3 the step of determining the area of the partially covered pixel includes:
4 computing a first area of the pixel not covered by the first parallel edge;
5 computing a second area of the pixel not covered by the second parallel edge; and
6 summing the first and second areas and subtracting the sum from one to form a first
7 difference;
8 computing a third area of the pixel not covered by the third orthogonal edge and
9 subtracting the third area from one to form a second difference; and
10 forming a product of the first difference and the second difference.

1 22. A method for rendering a non-zero thickness line as recited in claim 1, wherein, when two
2 parallel edges and a third and forth orthogonal edge of said line segment traverse a partially
3 covered pixel, the step of determining the area of the partially covered pixel includes:

4 computing a first area of the pixel not covered by the first parallel edge;

5 computing a second area of the pixel not covered by the second parallel edge; and

6 summing the first and second areas and subtracting the sum from one to form a first
7 difference;

8 computing a third area of the pixel not covered by the third orthogonal edge;

9 computing a fourth area of the pixel not covered by the fourth orthogonal edge;

10 summing the third and fourth areas and subtracting the sum from one to form a second
11 difference; and

12 forming a product of the first difference and the second difference.

1 23. A graphics pipeline for rendering a non-zero thickness line segment on an output device,
2 having a finite number of pixels, comprising:

3 an interpolator processor for computing a parameter proportional to a displacement

4 representing an x-directed distance between an edge of said line segment and the boundary of a
5 pixel that is partially covered by said line segment, the edge of said line segment having a known
6 edge relation that defines a slope factor for the edge, the pixel having a center with known x and
7 y coordinates; and

8 a shading processor for computing the area of the pixel covered by said line based on the

9 displacement parameter, the slope factor of said line segment, the edge relation and the x and y
10 coordinates of the pixel center.

1 24. A graphics pipeline as recited in claim 23, wherein said x-directed distance is computed as
2 the quotient $ax_0+by_0 + c + (a+b)/2$ and a , where x_0 and y_0 are the coordinates of the center of
3 the pixel and the edge relation is $ax+by+c \geq 0$, and the slope factor is $a/(a+b)$.

1 25. A graphics pipeline as recited in claim 23, said displacement parameter is computed as $sf *$
2 $x_0+(1-sf) * y_0 + sf * c/a + 1/2$, where x_0 and y_0 are the coordinates of the center of the pixel, the
3 edge relation is $ax+by+c \geq 0$, and the slope factor is $a/(a+b)$.

- 1 26. A graphics pipeline as recited in claim 23,
 - 2 wherein the pixel has center coordinates (x0, y0), the edge relation of the line segment is
 - 3 $ax+by+c \geq 0$, and the slope factor is $a/(a+b)$;
 - 4 wherein said interpolator process evaluates interpolator function, $Ps + Px * x + Py * y$, to
 - 5 perform interpolation calculations; and
 - 6 wherein displacement parameter is computed by setting Ps to $(sf * c/a + 1/2)$, Px to sf and
 - 7 Py to $(1-sf)$ and evaluating the interpolator function at $(x0, y0)$.
- 1 27. A graphics pipeline as recited in claim 23, wherein the interpolator processor is a fixed
- 2 function single-instruction, multiple-data (SIMD) processor capable of operating on multiple
- 3 data items with the same instruction.
- 1 28. A graphics pipeline as recited in claim 23, wherein the shading processor is an instruction-based computing element.