## Solutions to short-answer questions

- 1 True: d, e
- 2 a It is not raining.
  - **b** It is raining.
  - $\mathbf{c} \quad 2+3 \leq 4$
  - $\mathbf{d} \quad x \neq 5 \text{ or } y \neq 5$
  - **e**  $x \neq 3$  and  $x \neq 5$  (i.e.  $x \notin \{3, 5\}$ )
  - f It is raining and windy.

3 a

| A | В | $A \oplus B$ | $A \oplus (A \oplus B)$ |
|---|---|--------------|-------------------------|
| Т | Т | F            | Т                       |
| Т | F | Т            | F                       |
| F | Т | Т            | Т                       |
| F | F | F            | F                       |

## Note:

$$\blacksquare \ A \oplus (A \oplus B) \equiv B$$

b

| $\boldsymbol{A}$ | $\boldsymbol{B}$ | $A \lor B$ | $A \oplus (A \vee B)$ |
|------------------|------------------|------------|-----------------------|
| Т                | Т                | Т          | F                     |
| Т                | F                | Т          | F                     |
| F                | Т                | Т          | Т                     |
| F                | F                | F          | F                     |

1

| A | $\boldsymbol{B}$ | $\neg A$ | A 	o B | eg A 	o (A 	o B) |  |
|---|------------------|----------|--------|------------------|--|
| Т | Т                | F        | Т      | Т                |  |
| Т | F                | F        | F      | Т                |  |
| F | Т                | Т        | Т      | Т                |  |
| F | F                | Т        | Т      | Т                |  |

5 a i

| $\boldsymbol{x}$ | $\boldsymbol{y}$ | x' | $x' \wedge y$ | f(x,y) |
|------------------|------------------|----|---------------|--------|
| 0                | 0                | 1  | 0             | 0      |
| 0                | 1                | 1  | 0             | 0      |
| 1                | 0                | 0  | 0             | 1      |
| 1                | 1                | 0  | 1             | 1      |

ii 
$$x \lor (x' \land y) = (x \lor x') \land (x \lor y)$$
  
=  $1 \land (x \lor y)$   
=  $x \lor y$ 

| $\boldsymbol{x}$ | $\boldsymbol{y}$ | x' | $x \lor y$ | $x' \lor y$ | f(x,y) |
|------------------|------------------|----|------------|-------------|--------|
| 0                | 0                | 1  | 0          | 1           | 0      |
| 0                | 1                | 1  | 1          | 1           | 1      |
| 1                | 0                | 0  | 1          | 0           | 0      |
| 1                | 1                | 0  | 1          | 1           | 1      |

ii 
$$(x \lor y) \land (x' \lor y) = (x \land x') \lor y$$
  
=  $0 \lor y$   
=  $y$ 

b i



- If  $a^3 < b^3$  , then a < b . 7 a
  - $\begin{array}{ll} \mathbf{b} & \text{ If } a^3 \geq b^3 \text{, then } a \geq b. \\ \textbf{Solutions to multiple-choice questions} \end{array}$

- 1 В
- 2 C
- 3 D
- 4 C
- 5
- 6
- 7 Ε
- 8 В

## Solutions to extended-response questions

| $\boldsymbol{x}$ | $\boldsymbol{y}$ |   |
|------------------|------------------|---|
| 0                | 0                | 0 |
| _                | 1                | - |

| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

$$\mathbf{b} \quad (x' \wedge y) \vee (x \wedge y')$$

C



2 a 
$$_{\mathbf{i}}$$
  $\ell=1$ 

ii 
$$h=30$$

$$\mathbf{b} \quad \mathrm{LCM}(x,x') = 30 = h \text{, for all } x \in B \text{; } \mathrm{HCF}(x,x') = 1 = \ell \text{, for all } x \in B$$

3 a

| $\boldsymbol{x}$ | $\boldsymbol{y}$ | $\boldsymbol{z}$ | Light |
|------------------|------------------|------------------|-------|
| 0                | 0                | 0                | 0     |
| 0                | 0                | 1                | 0     |
| 0                | 1                | 0                | 0     |
| 0                | 1                | 1                | 1     |
| 1                | 0                | 0                | 0     |
| 1                | 0                | 1                | 1     |
| 1                | 1                | 0                | 1     |
| 1                | 1                | 1                | 1     |

$$\mathbf{b} \quad (x' \wedge y \wedge z) \vee (x \wedge y' \wedge z) \vee (x \wedge y \wedge z') \vee (x \wedge y \wedge z)$$

$$\mathbf{c} \qquad (x \wedge y) \vee (y \wedge z) \vee (z \wedge x)$$

d



- $4\,\mathsf{a}_{\,\mathbf{i}}$  d
  - ii 1
  - iii 0

$$\mathbf{b} \quad d \vee d' = d \neq 1 \text{ and } d \wedge d' = d \neq 0$$