PART 3 Generalisations

Generalised Entangled Basis

for Elliptic Curves

just need

With our knowledge of 2-profiles, we know we

a Montgomery curve.

Using **Theorem 5**, we can easily sample basis

This gives

to generalize this to any elliptic curve

with different non-trivial profiles

denote the reduced 2-Tate pairings.

in terms of 2-torsion

Easy: Solve the linear system

where the

 $t_2(P) \neq t_2(Q)$

 $f_1(P) =$

 $f_1(Q)$

 $f_2(P) =$

 $-f_3(Q)$

 $-f_2(Q)$

 $f_3(P) =$

Definition 5. Let $f: A \to B$ be a separable isogeny between abelian varieties over a finite field k. Let $(\ker f)(k)$ be of type δ with associated basis $\langle P_1, ..., P_r \rangle$. The *generalised f-Tate profile* $t_{\ker f}$ is the map

 $t_{\ker f}: (\operatorname{coker} \hat{f})(k) \to \mu_{\delta}, \qquad Q \mapsto (t_f(P_1, Q), ..., t_f(P_r, Q)).$

Man at the Street (2003)

Man at the Street (2003)