Problem Set 1

D. Zack Garza

November 9, 2019

Contents

1	Prob	blem 6																			1
	1.1	Part 1					_			 	_					 			 		1

1 Problem 6

1.1 Part 1

Let $M = S^2$ as a smooth manifold, and consider a vector field on M,

$$X: M \to TM$$

We want to show that there is a point $p \in M$ such that X(p) = 0.

Every vector field on a compact manifold without boundary is complete, and since S^2 is compact with $\partial S^2 = \emptyset$, X is necessarily a complete vector field.

Thus every integral curve of X exists for all time, yielding a well-defined flow

$$\phi: M \times \mathbb{R} \to M$$

and thus a one-parameter family

$$\phi_t: M \to M \in \mathrm{Diff}(M,M).$$

In particular, $\phi_0 = \mathrm{id}_M$, and $\phi_1 \in \mathrm{Diff}(M, M)$. Moreover ϕ_0 is homotopic to ϕ_1 via the homotopy

$$H: M \times I \to M$$

 $(p,t) \mapsto \phi_t(p).$

We can now apply the Lefschetz fixed-point theorem to ϕ_0 and ϕ_1 . For an arbitrary map $f: M \to M$, we have

$$\Lambda(f) = \sum_{k} \operatorname{Tr} \left(f_* \Big|_{H_k(X;\mathbb{Q})} \right).$$

where $f_*: H_*(X; \mathbb{Q}) \to H_*(X; \mathbb{Q})$ is the induced map on homology, and $\Lambda_f = 0$ iff f has a fixed point.

In particular, we have

$$\begin{split} \Lambda(\mathrm{id}_M) &= \sum_k \mathrm{Tr}(\mathrm{id}_{H_k(X;\mathbb{Q})}) \\ &= \sum_k \dim H_k(X;\mathbb{Q}) \\ &= \chi(M), \end{split}$$

the Euler characteristic of M.

Since homotopic maps induce equal maps on homology, we also have $\Lambda(\phi_1) = \chi(M)$.

Since

$$H_k(S^2) = \begin{cases} \mathbb{Z} & k = 0, 2\\ 0 & \text{otherwise} \end{cases}$$

we have $\chi(S^2) = 2 \neq 0$, and ht