QUESTÕES CAPÍTULO 11/12 TEORÍA

Problema 11.1. Para uma multiplicação de dois operandos de 24 bits, aplique o método de dividir para conquistar e obtenha o custo e caminho critico dos blocos considerando A_{FA} e T_{FA} como a área e atraso por *Full-Adder*, e $0.5 \times A_{FA}$ e $0.5 \times T_{FA}$, para o *Half-Adder*, $\frac{a}{2} \times A_{FA}$ e $\frac{a}{2} \times T_{FA}$ para o $(2^a:1)$ MUX.

Problema 12.1. Projete um AMM 2×2 , com duas entradas de soma de dois bits usando unicamente 4 full adders e 4 portas AND.

- a) Mostre como conectar os AMMs projetados para projetar um multiplicador 4×4.
- b) Determine o caminho critico usando o Full adder como unidade de atraso.
- c) Pode ser usado o multiplicador do apartado a como um AMM 4×4?.

Problema 12.2. Projete os seguintes AMMs usando unicamente 2×4 AMMs:

- a) 4×4 AMM;
- b) 2×8 AMM;
- c) 6×6 AMM
- d) 4×8 AMM
- e) 4×8 AMM (usando 4×4 AMMs).
- f) Compare a eficiência de d) e e) em área e atraso considerando A_{FA} e T_{FA} como a área e atraso por *Full-Adder*, e $0.5 \times A_{FA}$ e $0.5 \times T_{FA}$, para o *Half-Adder*.

Problema 12.3. Projete o circuito AMM da seguinte expressão: $A \times B \times C + 2^b D + 2^c E + 2^a F$, onde A, D tem a=4 bits, B, E tem b=3 bits e C, F tem c=2 bits.

Problema 12.4. Projete a estrutura do multiplicador quadrático RNS para os seguintes módulos:

- a) 29;
- b) 31;
- c) 13.