Optimalizace rozmístění obdelníkových útvarů pomocí evolučních algoritmů

Vojtěch Hordějčuk

FEL ČVUT

6. června 2011

Úvod

Řešený problém

- optimální rozmístění obdélníků na plochu
- NP-těžký optimalizační problém
- hlavní motivace = ušetřit

Využití v praxi

- VLSI floorplanning
- urbanistika
- plánování

Cíle práce

- 1. zvolit vhodnou a efektivní reprezentaci
- 2. navrhnout evoluční algoritmus
- 3. provést **benchmarky** (GSRC, MCNC)
- 4. **výsledky** vyhodnotit a porovnat

Varianty přístupu

Možné reprezentace

- Slicing Tree binární strom, slicing
- sekvenční páry uspořádaná dvojice permutací, non-slicing
- Corner Block List uspořádaná trojice, non-slicing
- O-Tree obecný strom, non-slicing
- ▶ B*-Tree binární strom, non-slicing

Používané optimalizační algoritmy

- deterministické (DFS, BFS)
- simulované ochlazování
- evoluční algoritmy

Navržené řešení

B*-Tree reprezentace + Algoritmus POEMS ¹

B*-Tree reprezentace

- binární strom
- levý potomek umístit vedle
- pravý potomek umístit nad

Algoritmus POEMS

- ▶ počáteční řešení (prototyp) ← best-fit heuristika
- iterativní hledání nejlepší modifikace prototypu
- ▶ modifikace prototypu ← sekvence definovaných akcí
- ▶ optimalizace sekvencí ← genetický algoritmus

¹http://code.google.com/p/vh-master-thesis/

B*-Tree reprezentace (příklad) ²

²kořen = vlevo nahoře, červená = levá, modrá = pravá

Algoritmus POEMS

- iterativní algoritmus
- lokální prohledávání pomocí evolučního algoritmu
- počáteční řešení (prototyp) náhodně či heuristikou
- modifikace prototypu sekvencemi elementárních akcí
 - 1. ROTATE
 - 2. MOVE NODE, MOVE VALUE, FLIP, MIRROR
 - 3. HANG NODE
- evoluční algoritmus mění akce a parametry

Algoritmus POEMS

Experimenty: Data a konfigurace

Benchmarky

- ► MCNC (9 49 bloků)
- ► GSRC (10 stovky bloků)

Algoritmy

- ▶ B*-Tree/POEMS navržený algoritmus, 50,000 iterací
- CompaSS O-Tree, Slicing Tree, větve a hranice
- ▶ **B*-Tree/I** iterativní algoritmus
- ▶ B*-Tree/SA simulované ochlazování

Experimenty: Výsledky

	B*-Tree/POEMS	CompaSS	B*-Tree/I	B*-Tree/SA
apte	0.78% (969 s)	0.78% (0 s)	0.77% (7 s)	1.59% (2 s)
xerox	2.30% (902 s)	3.45% (16 s)	2.48% (25 s)	3.85% (5 s)
hp	3.88% (1,927 s)	2.28% (3 s)	1.35% (55 s)	4.47% (20 s)
n100	1.98% (4,826 s)	7.32% (4 s)	N/A	N/A
n200	3.68% (8,408 s)	6.48% (10 s)	N/A	N/A

- průměrné hodnoty (10 a více běhů)
- většínou lepší výsledky než konkurence
- cenou za kvalitu je delší výpočet

Shrnutí

- navzdory nedostatečnému popisu v literatuře navržena efektivní a úsporná reprezentace
- dosažené výsledky ve kvalitě zhruba dvojnásobně překonávají slicing reprezentaci
- naměřené výsledky jsou minimálně srovnatelné a často lepší než ostatní porovnávané algoritmy
- připravujeme článek do časopisu

Animace (n300) - 1 / 20

Animace (n300) -2/20

Animace (n300) -3/20

Animace (n300) – 4 / 20

Animace (n300) - 5 / 20

Animace (n300) -6/20

Animace (n300) - 7 / 20

Animace (n300) – 8 / 20

Animace (n300) - 9 / 20

Animace (n300) - 10 / 20

Animace (n300) – 11 / 20

Animace (n300) – 12 / 20

Animace (n300) - 13 / 20

Animace (n300) – 14 / 20

Animace (n300) - 15 / 20

Animace (n300) – 16 / 20

Animace (n300) – 17 / 20

Animace (n300) – 18 / 20

Animace (n300) – 19 / 20

Animace (n300) - 20 / 20

