Lecture 005

Shrinkage methods

Edward Rubin 28 February 2021

Admin

Admin

Material

Last time

- Linear regression
- Model selection
 - Best subset selection
 - Stepwise selection (forward/backward)

Today

- tidymodels
- Shrinkage methods

Admin

Upcoming

Readings

- Today ISL Ch. 6
- Next ISL 4

Problem sets Next problem set: Soon!

Shrinkage methods

Intro

Recap: Subset-selection methods (last time)

- 1. algorithmically search for the "best" subset of our p predictors
- 2. estimate the linear models via least squares

These methods assume we need to choose a model before we fit it...

Alternative approach: Shrinkage methods

- fit a model that contains all p predictors
- simultaneously: shrink[†] coefficients toward zero

Idea: Penalize the model for coefficients as they move away from zero.

† Synonyms for *shrink*: constrain or regularize

Shrinkage methods

Why?

- Q How could shrinking coefficients twoard zero help or predictions?
- A Remember we're generally facing a tradeoff between bias and variance.
 - Shrinking our coefficients toward zero reduces the model's variance.
 - Penalizing our model for larger coefficients shrinks them toward zero.
 - The optimal penalty will balance reduced variance with increased bias.

Now you understand shrinkage methods.

- Ridge regression
- Lasso
- Elasticnet

[†] Imagine the extreme case: a model whose coefficients are all zeros has no variance.

Back to least squares (again)

Recall Least-squares regression gets $\hat{\beta}_i$'s by minimizing RSS, i.e.,

$$\min_{\hat{eta}} ext{RSS} = \min_{\hat{eta}} \sum_{i=1}^n e_i^2 = \min_{\hat{eta}} \sum_{i=1}^n \left(y_i - \left[\hat{eta}_0 + \hat{eta}_1 x_{i,1} + \dots + \hat{eta}_p x_{i,p}
ight]
ight)^2 = \hat{y}_i$$

Ridge regression makes a small change

- adds a shrinkage penalty = the sum of squared coefficients $\left(\lambda \sum_{j} \beta_{j}^{2}\right)$
- minimizes the (weighted) sum of RSS and the shrinkage penalty

$$\min_{\hat{eta}^R} \sum_{i=1}^n \left(oldsymbol{y_i} - \hat{oldsymbol{y}}_i
ight)^2 + \lambda \sum_{j=1}^p eta_j^2$$

Ridge regression

Least squares

$$\min_{\hat{eta}^R} \sum_{i=1}^n \left(oldsymbol{y_i} - \hat{oldsymbol{y}}_i
ight)^2 + \lambda \sum_{j=1}^p eta_j^2$$

$$\min_{\hat{eta}} \sum_{i=1}^n \left(y_i - \hat{y}_i \right)^2$$

 λ (≥ 0) is a tuning parameter for the harshness of the penalty.

 $\lambda = 0$ implies no penalty: we are back to least squares.

Each value of λ produces a new set of coefficients.

Ridge's approach to the bias-variance tradeoff: Balance

- reducing **RSS**, i.e., $\sum_i (y_i \hat{y}_i)^2$
- reducing coefficients (ignoring the intercept)

→ determines how much ridge "cares about" these two quantities.

†

 \dagger With $\lambda=0$, least-squares regression only "cares about" RSS.

λ and penalization

Choosing a *good* value for λ is key.

- If λ is too small, then our model is essentially back to OLS.
- If λ is too large, then we shrink all of our coefficients too close to zero.

Q So what do we do?

A Cross validate!

(You saw that coming, right?)

Penalization

Note Because we sum the **squared** coefficients, we penalize increasing big coefficients much more than increasing small coefficients.

Example For a value of β , we pay a penalty of $2\lambda\beta$ for a small increase.

- At $\beta = 0$, the penalty for a small increase is 0.
- At $\beta=1$, the penalty for a small increase is 2λ .
- At $\beta=2$, the penalty for a small increase is 4λ .
- At $\beta=3$, the penalty for a small increase is 6λ .
- At $\beta=10$, the penalty for a small increase is 20λ .

Now you see why we call it *shrinkage*: it encourages small coefficients.

[†] This quantity comes from taking the derivative of $\lambda \beta^2$ with respect to β .

Penalization and standardization

Important Predictors' units can drastically affect ridge regression results.

Why? Because \mathbf{x}_j 's units affect β_j , and ridge is very sensitive to β_j .

Example Let x_1 denote distance.

Least-squares regression

If x_1 is *meters* and $\beta_1=3$, then when x_1 is km, $\beta_1=3,000$. The scale/units of predictors do not affect least squares' estimates.

Ridge regression pays a much larger penalty for $\beta_1=3,000$ than $\beta_1=3$. You will not get the same (scaled) estimates when you change units.

Solution Standardize your variables, i.e., $x_{stnd} = (x - mean(x))/sd(x)$.

Example

Let's return to the credit dataset.

Recall We have 11 predictors and a numeric outcome balance.

I standardized our **predictors** using preProcess() from caret, i.e.,

```
# Standardize all variables except 'balan ce'
credit_stnd = preProcess(
    # Do not process the outcome 'balance'
    x = credit_dt %>% dplyr::select(-balance),
    # Standardizing means 'center' and 'scale'
    method = c("center", "scale")
)
# We have to pass the 'preProcess' object to 'predict' to get new data
credit_stnd %<% predict(newdata = credit_dt)</pre>
```

Example

For ridge regression[†] in R, we will use glmnet() from the glmnet package.

The **key arguments** for glmnet() are

- x a **matrix** of predictors
- y outcome variable as a vector
- standardize (T Or F)
- alpha elasticnet parameter
 - alpha=0 gives ridge
 - alpha=1 gives lasso

- lambda tuning parameter (sequence of numbers)
- nlambda alternatively, R picks a sequence of values for λ

Example

We just need to define a decreasing sequence for λ , and then we're set.

```
# Define our range of lambdas (glmnet wants decreasing range)
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Fit ridge regression
est_ridge = glmnet(
    x = credit_stnd %>% dplyr::select(-balance) %>% as.matrix(),
    y = credit_stnd$balance,
    standardize = T,
    alpha = 0,
    lambda = lambdas
)
```

The glmnet output (est_ridge here) contains estimated coefficients for λ . You can use predict() to get coefficients for additional values of λ .

Ridge regression coefficents for λ between 0.01 and 100,000

Example

glmnet also provides convenient cross-validation function: cv.glmnet().

```
# Define our lambdas
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Cross validation
ridge_cv = cv.glmnet(
    x = credit_stnd %>% dplyr::select(-balance) %>% as.matrix(),
    y = credit_stnd$balance,
    alpha = 0,
    standardize = T,
    lambda = lambdas,
    # New: How we make decisions and number of folds
    type.measure = "mse",
    nfolds = 5
)
```

Cross-validated RMSE and λ : Which λ minimizes CV RMSE?

Cross-validated RMSE and λ : Which λ minimizes CV RMSE?

Example

We can also use train() from caret to cross validate ridge regression.

```
# Our range of lambdas
lambdas = 10^{\circ}seq(from = 5, to = -2, length = 1e3)
# Ridge regression with cross validation
ridge cv = train(
  # The formula
 balance ~ .,
  # The dataset
 data = credit stnd,
  # The 'glmnet' package does ridge and lasso
 method = "glmnet",
  # 5-fold cross validation
 trControl = trainControl("cv", number = 10),
  # The parameters of 'glmnet' (alpha = 0 gives ridge regression)
 tuneGrid = expand.grid(alpha = 0, lambda = lambdas)
```

Prediction in R

Once you find your λ via cross validation

1. Fit your model on the full dataset using the optimal λ

```
# Fit final model
final_ridge = glmnet(
    x = credit_stnd %>% dplyr::select(-balance) %>% as.matrix(),
    y = credit_stnd$balance,
    standardize = T,
    alpha = 0,
    lambda = ridge_cv$lambda.min
)
```

Prediction in R

Once you find your λ via cross validation

- 1. Fit your model on the full dataset using the optimal λ
- 2. Make predictions

```
predict(
  final_ridge,
  type = "response",
  # Our chosen lambda
  s = ridge_cv$lambda.min,
  # Our data
  newx = credit_stnd %>% dplyr::select(-balance) %>% as.matrix()
)
```

Shrinking

While ridge regression *shrinks* coefficients close to zero, it never forces them to be equal to zero.

Drawbacks

- 1. We cannot use ridge regression for subset/feature selection.
- 2. We often end up with a bunch of tiny coefficients.
- Q Can't we just drive the coefficients to zero?
- **A** Yes. Just not with ridge (due to $\sum_{j} \hat{\beta}_{j}^{2}$).

Intro

Lasso simply replaces ridge's squared coefficients with absolute values.

Ridge regression

$$\min_{\hat{eta}^R} \sum_{i=1}^n \left(y_i - \hat{y}_i
ight)^2 + \lambda \sum_{j=1}^p eta_j^2$$

Lasso

$$\min_{\hat{eta}^L} \sum_{i=1}^n \left(oldsymbol{y_i} - \hat{oldsymbol{y}}_i
ight)^2 + \lambda \sum_{j=1}^p \left| eta_j
ight|$$

Everything else will be the same—except one aspect...

Shrinkage

Unlike ridge, lasso's penalty does not increase with the size of β_i .

You always pay λ to increase $|\beta_i|$ by one unit.

The only way to avoid lasso's penalty is to **set coefficents to zero**.

This feature has two **benefits**

- 1. Some coefficients will be **set to zero**—we get "sparse" models.
- 2. Lasso can be used for subset/feature **selection**.

We will still need to carefully select λ .

Example

We can also use glmnet() for lasso.

Recall The **key arguments** for glmnet() are

- x a **matrix** of predictors
- y outcome variable as a vector
- standardize (T Or F)
- alpha elasticnet parameter
 - alpha=0 gives ridge
 - alpha=1 gives lasso

- lambda tuning parameter (sequence of numbers)
- nlambda alternatively, R picks a sequence of values for λ

Example

Again, we define a decreasing sequence for λ , and we're set.

```
# Define our range of lambdas (glmnet wants decreasing range)
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Fit ridge regression
est_lasso = glmnet(
    x = credit_stnd %>% dplyr::select(-balance) %>% as.matrix(),
    y = credit_stnd$balance,
    standardize = T,
    alpha = 1,
    lambda = lambdas
)
```

The glmnet output (est_lasso here) contains estimated coefficients for λ . You can use predict() to get coefficients for additional values of λ .

Lasso coefficents for λ between 0.01 and 100,000

Compare lasso's tendency to force coefficients to zero with our previous ridge-regression results.

Ridge regression coefficents for λ between 0.01 and 100,000

Example

We can also cross validate λ with cv.glmnet().

```
# Define our lambdas
lambdas = 10^seq(from = 5, to = -2, length = 100)
# Cross validation
lasso_cv = cv.glmnet(
    x = credit_stnd %>% dplyr::select(-balance) %>% as.matrix(),
    y = credit_stnd$balance,
    alpha = 1,
    standardize = T,
    lambda = lambdas,
    # New: How we make decisions and number of folds
    type.measure = "mse",
    nfolds = 5
)
```

Cross-validated RMSE and λ : Which λ minimizes CV RMSE?

Cross-validated RMSE and λ : Which λ minimizes CV RMSE?

Ridge or lasso?

Ridge regression

- + shrinks $\hat{\beta}_j$ near 0
- many small \hat{eta}_j
- doesn't work for selection
- difficult to interpret output
- **+** better when all $\beta_j \neq 0$

Best: p is large & $\beta_j \approx \beta_k$

Lasso

- + shrinks $\hat{\beta}_j$ to 0
- + many $\hat{\beta}_i = 0$
- + great for selection
- + sparse models easier to interpret
- implicitly assumes some $\beta = 0$

Best: p is large & many $eta_j pprox 0$

[N]either ridge... nor the lasso will universally dominate the other.

ISL, p. 224

Ridge and lasso

Why not both?

Elasticnet combines ridge regression and lasso.

$$\min_{eta^E} \sum_{i=1}^n ig(y_i - \hat{y}_i ig)^2 + (1-lpha) \lambda \sum_{j=1}^p eta_j^2 + lpha \lambda \sum_{j=1}^p ig|eta_jig|$$

(We now have two tuning parameters: λ and α .

Remember the alpha argument in glmnet()?

- $\alpha = 0$ specifies ridge
- $\alpha = 1$ specifies lasso

Ridge and lasso

Why not both?

We can use train() from caret to cross validate α and λ .

Note You need to consider all combinations of the two parameters. This combination can create *a lot* of models to estimate.

For example,

- 1,000 values of λ
- 1,000 values of lpha

leaves you with 1,000,000 models to estimate.[†]

```
# Our range of \lambda
lambdas = 10^{seq}(from = 5, to = -2, length = 1e3)
# Our range of a
alphas = seq(from = 0, to = 1, by = 0.1)
# Ridge regression with cross validation
net cv = train(
  # The formula
  balance ~ ..
  # The dataset
  data = credit_stnd,
  # The 'glmnet' package does ridge and lasso
  method = "glmnet",
  # 5-fold cross validation
  trControl = trainControl("cv", number = 10),
  # The parameters of 'glmnet'
  tuneGrid = expand.grid(alpha = alphas, lambda = lambdas)
```

Sources

These notes draw upon

• An Introduction to Statistical Learning (ISL) James, Witten, Hastie, and Tibshirani

Table of contents

Admin

- Today
- Upcoming

Shrinkage

- Introduction
- Why?

Ridge regression

- Intro
- Penalization
- Standardization
- Example
- Prediction

(The) lasso

- Intro
- Shrinkage
- Example

Ridge or lasso

- Plus/minus
- Both?

Other

• Sources/references