FEDERÁLNÍ MINISTERSTVO DOPRAVY

ČSD **T 115/4**

OPRAVY VÝMĚNNÝCH DÍLŮ ZABEZPEČOVACÍCH ZAŘÍZENÍ

Příloha 4

VÝMĚNNÉ DÍLY UNIVERZÁLNÍHO AUTOMATICKÉHO BLOKU

Schváleno ředitelem odboru sdělovací a zabezpečovací techniky dne 8. února 1978 (č. j. 25 255/77-14)

Účinnost od 1. VII. 1979

NAKLADATELSTVÍ DOPRAVY A SPOJŮ • PRAHA

Příloha 4

VÝMĚNNÉ DÍLY UNIVERZÁLNÍHO AUTOMATICKÉHO BLOKU

1. Tato příloha předpisu pojednává o opravách výměnných dílů kolejových obvodů univerzálního automatického bloku (dále jen UAB), používaných v zabezpečovací technice.

2. Příloha je rozdělena na kapitoly:

- I Kodér automatický vysílač KAV
- II Dekodér fázový indikátor FID
- III Anulační soubor elektronický ASE

I. KODÉR — KÁV

- 3. Kodér je zdroj frekvenčního impulsního kódu o nosném kmitočtu 50 Hz nebo 73 ±2 Hz. **Skládá se ze tří částí:**
 - a) ferrorezonančního oscilátoru
 - b) tvarovacího a spínacího obvodu pulsu
 - c) výkonnové jednotky

4. Z hlediska frekvence napájecího napětí rozdělujeme kodéry na typ:

- a) KAV 2 frekvence napájecího napětí 50 Hz
- b) KAV 3 frekvence napájecího napětí 73 \pm 2 Hz

5. Postup při opravě:

- a) Před vlastní opravou se provede sejmutí krytu a celkové vyčištění.
- b) Provede se vizuálni kontrola všech součástí a pájených míst.
- c) Zkontroluje se správná hodnota síťové pojistky (2 A).
- d) Kodér se připojí na měřicí stůl MZK a přezkouší se jeho funkce.
- e) Nevykazuje-li kodér správnou činnost, přeměří se elektrické hodnoty všech diód a tyristoru. Stejně tak se přeměří í ostatní součásti.
- f) Po těchto úkonech se přistoupí k vlastnímu proměřování a nastavování elektrických hodnot.

6. Nastavování elektrických hodnot:

- a) Kmitočet kodéru se nastavuje odporem R 3, poměr impuls: mezera odporem Rř (R2).
- b) Nastavovaní jednoho prvku ovlivní částečně hodnotu i druhého prvku, proto

je nutno úkon opakovat až do dosažení potřebných hod- not.

U upravených kodérů starších typů sa pouze kontroluje rozsah regulace frekvence a poměru impuls — mezera.

7. Při závěrečném měřšení sa musí zkontrolovat:

- a) Výkonnové stupně výstupního zesilovače jsou dány propojkou na konektoru K1 v tomto poradí: 8—9, 10, 11, 14, 13, 12. Výstupní proud při takto určeném postupu musí vzrůstat.
- b) Zkontroluje se nezkreslený přenos kódu zeleného světla.
- c) Funkci kodéru indikuje doutnavka.
- d) Změří se izolační odpor živých částí proti kostře napětím 500 V. Hodnota odporu musí byt nejméně 50 M Ω .
- e) Naměřené hodnoty se zapíší do Měřicího protokolu vzor 1/4.

Tabulka č. 1

TABULKA ELEKTRICKÝCH HODNOT

KAV 2, KAV 3

	KAV 2	KAV 3	Doporučené hodnoty
Jmenovité napětí U	220 V 50 Hz	220 V 73±2 Hz	220 V
Dovolené provozní napětí Us	180 – 240 V	180 – 240 V	220 V
Maximálni příkon v impulsu při šuntu (odporu) na základním vinutí stykového transformátoru $R \tilde{s} = 0.004~\Omega$ při provozu na kodér. Kolejový obvod musí být odpojen.	max. 40	00 V A	
Proud šunten Rš = 0,06 Ω umístěným na reléové straně kolejového obvodu délky 1800 m při, ízolačním odporu kolejového lože R = 1 Ω /km a napájecím napětím Us = 180 V a zařazené propojce 8—12.	min.	2 A	
Poměr doby trvání impulsu k mezeře při změnách síťového napětí od 180—240 V a teplotě prostředí od –25 °C do + 70 °C (šířka impulsu se počíta 67% špičkové hodnoty).	0,3 –	0,5 – 0,7	
Přepínací kmitočet v rozmezí síťového napětí od 180 V do 240 V při teplotě prostředí od - 25 °C do + 70 °C. Při minimálni teplotě je poměr doby impulsu k intervalu maximální a kmitočet minimální.	0,8 -	1,5	1,0 – 1,2
Proud šuntem 0,004 Ω v mezeře při provozu s mechanickým kodérem při Us = 240 V.	max. 40 (na Rš = 0,00		

II. DEKODÉR — FID

9. Fázový indikátor dekodér (dále jen FID) je zařízení,které vyhodnocuje na impulsním kolejovém obvodu amplitudu, frekvence, fázi a opakovací kmitočet výstupního napětí z kolejového obvodu. Svým funkčním provedením umožňuje zařízení úplné blokové podmínky na automatickém bloku.

10. FID se skladá z téchto hlavních funkčních častí:

- a) Fázový diskriminátor kontroluje frekvenci a fázi vstupního signálu.
- b) Fázový korektor upravuje fázový úhel mezi referenčním a kolejovým napětím na potřebnou hodnotu pro optimálni funkci diskriminátoru. Nastavuje se podle druhu a délky kolejového obvodu.
- c) *Indikátor* zesiluje napětí z fázového diskriminátoru. Vyhodnocuje amplitúdu prijímaného signálu a svou časovou charakteristikou umožňuje ve spolupráci s dekodérem vyhodnotit správnou opakovací frekvenci. Na výstupu má relé "B", které je napájeno v impulsu signálu.
- d) *Dekodér* —vyhodnocuje, zda výstupní signál indikátoru je impulsní. Na výstupu je relé "A", které je napájeno v mezeře vstupního signálu. Dekodér ve svém diferenciálním vinutí T4 hlídá shodnost polarizačních proudů.
- 11. Z hlediska frekvence napájecího a vstupního napětí rozdělujeme dekodéry na typ:
- a) FID 2 frekvence napájecího a vstupního napětí 50 Hz
- b) FID 3 frekvence napájecího a vstupního napětí 73 ±2 Hz.

12. Postup při opravě:

- a) Před vlastní opravou se provede sejmutí krytu a vyčištění jednotlivých dílů a konzervace odporových drah proměnných odporů vhodným prostředkem.
- b) Provede se vizuálni kontrola součástí a pájených míst, zkontrolují se správne hodnoty pojistek. Pro FID 2 je hodnota P1 = 0,25 A, P2 = 0,6 A, pro FID 3 P1 = 1 A, P2 = 0,6 A.
- c) Zkontroluje se nastavení základních propojek fázového korektoru. U FID 2 : la—5b, FID 3 : la—6b. Současně se překontroluje dotažení všech šroubů a propojek konektoru.
- d) Změří se kapacity všech elektrolytických kondenzátorů. torú.
- e) Dále se přeměří elektrické hodnoty všech prvků fázového korektoru. Vadné prvky se vymění.

f) Zkontrolují se pohledem relé A a B a ověří se, zda v době provozního použití FID neprojde u těchto relé doba provozního použítí. Pro jejich opravu platí ustanovení "přílohy l" tohoto předpisu.

Doporučené naměřené hodnoty:

Kondenzátor C1 =
$$50 - 100 \mu F/70 \text{ V min.}$$

C2 = $300 \pm {100 \over 50} \mu F/70 \text{ V min.}$
C3 = $500 + 100 \mu F/35 \text{ V min.}$

13. Postup při měření:

- a) FID se připojí normalizovanými zástrčkami k měřicímu stolu a provede se orientační měření.
- b) Napájecí napětí se nastaví na hodnotu U = 220 V.
- c) Napětí vstupní (U_T 1/1) se nastaví u souboru EID 2 na hodnotu 20-25 V a u souboru FID 3 na hodnotu 1,4-2 V.
- d) Frekvence U_T 1/1 (vstupní signál) se nastaví na 0,9 Hz a poměr impuls: mezera α na 0,7. Fázový úhel = 0°.
- e) Správna funkce FID je indikovaná spolehlivým přitažením relé "A" a "B" a pravidelným ohraničeným kmitaním indikační doutnavky v rytmu vstupního napětí.
- f) Nastaví se polarizační napětí dle tabulky elektrických hodnot č. 2. Obě napětí mají být stejná. Jejich rozdíl nesmí překročil 0,2 V.
- g) Změří se napětí U_{A} a U_{B} bez signálu.

Hodnota musí být menší než 1 V.

h) Zkontroluje se vyvážení fázového diskriminátoru (bez signálu). Kontrola se provede měřením napětí $U_{\rm D}$.

Hodnota odporů diskriminátoru (R3, R4) u Fid 2 = 900 $\Omega \pm 10\%$,

u FID 3 = 430 Ω ±10 %.

- i) Změří se referenční napětí (U_{R}) .
- j) Nastaví se napétí $U_s = 240 \text{ V}$ a $U_T 1/1$ se nastaví frekvence
- 0.9 a poměr impuls: mezera na 0.7. Napětí U_T 1/1 se plynule zvyšuje do úplného přítahu obou relé. Musí odpovídat hodnotám uvedeným v tabulce elektrických hodnot č. 2. Pokud neodpovídá těmto hodnotám, lze ji změnit (nastavit) změnou polarizace a rozvážením diskriminátoru v povolených tolerancích.
- k) U_s se sníží na 180 V a U_T 1/1 se plynulé snižuje až do odpadu obou relé. Hodnoty musí odpovídat údajům uvedeným v tabulce elektrických hodnot.
- l) Při napětí $U_s = 180 \text{ V}$ a při klidovém vstupním signálu musí relé "B" odpadnout, dle údajů uvedených v tabulce elektrických hodnot.

- m) Při Us = 240 V, klidovém vstupním napětí U_T 1/1 pro FID
- 2 = 18 V, pro FID 3 = 14 V se změří U_D .
- n) Při napětí $U_S=240\ V$ a U_T 1/1 pro FID $2=18\ V$, FID $3=1,4\ V$ přl vstupním signálu 0,9 a poměru 0,7 měří se napětí U_A , U_B a zapisují se horní a dolní výchylky měřících přístrojů. Získané údaje se liší podle použitých přístrojů, proto se neuvádí a odchylky lze statisticky vyhodnotit pouze na stejném měřicím zařízení.
- o) Nastaví se napětí sítě $U_S=240~V$, kód I, $U_T~1/1~pro~FID~2=18~V$, pro FID 3 1,1 V. Obě relé musí při uvedených podmínkách a při fázovem úhlu $\phi=0^\circ$ přitáhnout a držet.

Při kódu III a IV se zvýši napětí signálu postupně od 5 do 180 V u FID 2 a od 0 do 15 V u FID 3. Relé "A" zůstává odpadlé a relé "B" při určené hodnotě napětí přitahuje. V uvedeném rozmezí napětí signálu musí být relé "A" odpadlé. Při kódu II je poloha relé "A" libovolná. Krátky přítah a opětovný odpad relé "A" při snižování napětí není na závadu.

- p) Při $\phi=180^\circ,$ kódu I a $U_s=240V$ zvyšujeme signál U_T 1/1 na maximum 180 V u FID 2 a 12 V u FID 3. Relé "A" i "B" musí zůstat odpadlé
- r) Při U_s = 180 V, kódu I a U_T 1/1 V rozmezí 18 30 V u FID 2
- a 1,4 2,5V u FID 3se rozpojí jeden z obvodů polarizačního proudu. Relé "A" musí spolehlivě odpadnout.
- s) Kontrola necitlivosti přijímače na signál cizí frekvence 50 Hz u FID se provádí tímto způsobem:
- Síťové napětí U_{S} bude 180 V/73 \pm 2 Hz, fázový korektor se nastaví do polohy 1a— 6b. Signál je klidový, jeho úroveň se postupně zvyšuje až na maximální hodnotu U_{T} 1/1 = 9 V. V celém rozsahu 0—9 V nesmí dojít k přítahu relé "B".
- t) Podle potřeby se přezkouší činnost FID na umělém kolejovém obvodu.
- u) Izolační stav FID nesmí být menší než 50 MOhmů. Měří se při napětí 500 V.
- v) Naměřěné hodnoty se zapíší do Měřicího protokolu "Vzor 1/4".

Tabulka č.2

TABULKA ELEKTRICKÝCH HODNOT PRO	LKA ELEKTRICKÝCH HODNOT PRO FID 2, FI			
Dovolené provozní napětí	FID 2	FDD 3		
	180-240 V	180-240 V		
Maximálni příkon	50 VA	55 VA		
Vstupní impedance T1 1— 2 měřená při U _T 1/1	1600 Ω 75° 80 V	10 Ω 75° 5 V		
U _P při U _S 220 V	2,5 — 3,6 V	2,2 — 2,9V		
U_D při U_T 1/1 = 0 U_s = 220 V	0 ± 0,1 V	0 ± 0,1 V		
U_A, U_B při $U_T 1/1 = 0$, $U_S = 220 \text{ V}$	≤1V	≤ 1V		
U _R při Us = 240 V při korektoru	50 — 68 V 1a — 5b	70 — 75 V 1a — 6b		
U_D při $U_S=240~V,\phi=0^\circ$ při $U_T~1/1$	2,4-2,7 V 18 V	1,9-2,3 V 1,4 V		
Relé A i B musí přitáhnout při U_T l/l, $f=0.9$ i/m = 0.7, $\phi=0^\circ$ $U_S=240$ V	15 - 20 V	0,9 - 1,1 V		
Relé A i B musí odpadnout při U_T 1/1, $f=0.9$ i/m = 0,7, $\phi=0^\circ~U_S=180~V$	≥6,3 V	≥ 0,4 V		
Relé B musí odpadnout při U_T 1/1, U_S = 180 V, $\phi = 0^\circ \text{ , signál klidový}$	≥ 2 V	≥ 0,2 V		
Relé A i B nesmí přitáhnout při U_T 1/1, U_s = 240 V, ϕ = 180° kód I	5-180 V	0,5-12 V		
Při kódu II, III, IV musí relé "B" přitáhnot při vstupním napětí U_T 1/1 max.	25 V	1,4 V		

III. ANULAČNÍ SOUBOR ELEKTRONICKÝ – ASE

- 14. Anulační soubor elektronický (dále jen ASE) je zařízení, které vyhodnocuje průjezd vlaku v malém prostorovém, úseku. Pracuje na princípu dvou překrývajícich se neohraničených kolejových obvodů.
- 15. Z hlediska frekvence napájecího napětí rozdělujeme ASE na typ:
- a) ASE 2 f rekvence napájecího napětí 50 Hz
- b) ASE 3 f rekvence napájecího napětí 73 ± 2 Hz
- 16. ASE se skládá ze dvou častí, které jsou zároveň i konštrukční celky a tyto se oddělené opravují a měří:
- a) Výměnná panelová jednotka elektronická část
- b) Napájecí část a indikační relé A, B

Výměnná panelová jednotka (dále jen VPJ) je stejná pro ASE 2 a ASE 3.

17. Postup při opravě:

Před vlastní opravou se provede sejmutí krytu, vyjmutí VPJ a celkové očištění vnitřních častí.

18. Oprava a měření napájecí části:

- a) Změří se kapacity filtračních elektrolytů C2, C3.
- Odkrytují se relé "A" a "B" a provede jejich vyčištění, případně výměna vadných součástí.
- c) Provede se mechanická justáž kontaktů a nastaví se tak, aby jejich spoluchod byl viditelný.
- d) ASE se připojí konektory k měřicímu stolu a zasune se pomocná panelová jednotka na místo původní VPJ a připojí měřicí lišta.
- e) Nastaví se přítah relé A, B v mezích 0,4—0,44 V. Tento přítah se jemně upraví změnou tlaku per v povolených mezích.
- f) Zkontroluje se, případně seřídí napětí odpadu v mezích 0,13—0,15 V. Nastavení se provede šroubkem v kotvě relé.
- g) Změří se hodnoty anodového napětí Ua a proudu Ia, žhaviclho napětí Už a proudu Iž. Tyto jsou uvedeny v tabulce elektrických hodnot č. 3. Správne hodnoty Ua a Už se nastaví volbou vhodných odboček na napájecím transformátoru TR 1, případně jemné nastavení Ua se dosáhne změnou hodnoty odporu R4.
- h) Přezkouší se správna činnost stabilizátoru změnou napájecího napětí.
- i) Překontroluje se správna hodnota napájecí pojistky (0,5~A) a změří se příkon. Změří se isolační odpor napájecího transformátoru při napětí 500 V proti kostře. Hodnota nesmí být menší než 50 $M\Omega$.

- j) Zkontroluje se správna činnost zapojení tlačítka anodového napětí "T".
- k) Soubor ASE se odpojí od měřicího stolu a zakrytují se relé.
- 1) Zkontroluje se správnost ukostření napájecí části na svorku K 14.

h) Oprava a měření výměnné panelové jednotky:

- a) Provede se odkrytování výměnné panelové jednotky a přezkouší správne hodnoty pojistek (1A).
- b) Změří se statické hodnoty elektronek na měřiči elektronek. Elektronky, které vykazují statické hodnoty nižší než 50 % hodnot stanovených katalogem se vymění.
- c) Změří se elektrolytické katodové kondenzátory. Jejich hodnota nesmí poklesnout pod 30 µF.
- d) VPJ se připojí konektorem k měřicímu stolu a nastaví se Us = 210 V.
- e) Změří se, případně nastavení jádrem cívky L1 frekvence 50 KHz ±5KHz.
- e) Potenciometry P1^I, P1^{II} se vytočí na maximum a změří se napětí U_{RA}, U_{RB} při šuntovaném kolejovém obvodu. Napětí na obou relé nesmí být nižší než 0,8 V. Je-li na některém relé hodnota nižší, je nutno zjistit příčinu.
- g) Nastaví se stejné výstupní napětí na obou relé. Musí mít hodnotu nejméně 0,8 V.
- j) Napětí na volném kolejovém obvodu musí byt nejméně 6X menší než na obvodu obsazeném.
- i) Naměřené hodnoty se zapíší do měřicího protokolu (Vzor 1/4).

Všeobecne:

U všech popisovaných zařízení se před uzavřením překontrolují všechny pájená místa a zajistí nastavení regulačních členů lakem. Soubory se zakrytují, zaplombují a opatří kontrolním štítkem.

TABULKA ELEKTRICKÝCH HODNOT ASE 2, ASE 3

Měření napájecí části: Provozní napětí U _S	hodnoty: 180— 240V
U_a při $U_S = 210 \text{ V}$	$200 \pm 3V$
I_a při $U_S = 210 \text{ V}$	64 mA ± 10 %
$U_{\tilde{z}}$ při $U_{S}=210~V$ $I_{\tilde{Z}}$ při $U_{S}=210~V$	$6.3 ^{+0.3}_{-0.6} \text{ V stř.}$ $1.6 \text{ A} \pm 10 \%$
Kontrola činnosti stabilizátoru: $ \text{od } U_S = 180 \text{ do } 240 \text{ V} $	max změna U _a = 10 V
Měření výměnné panelové jednotky:	
UR _A při šuntovaném kolejovém obvodu	min. 0,8 V
UR _B při šuntovaném kolejovém obvodu	min. 0,8 V
UR_A , UR_B při volném kolejovém obvodu	nejméně 6 x menší než napětí na obsazeném kolejovém obvodu
Hodnoty relé A a B:	
Napětí přítahu	0,4—0,44 V
Napětí odpadu	0,13—0,15 V

MĚŘÍCI PROTOKOL SOUBORŮ KAV, FID, ASE přední strana Vzor č. 1/4

Číslo	Výro	bní	ní rok Zařízení - typ			
lístku	číslo	rok				
C	pravil		dne	Přezk	oušel	dne
Poznámk	a:			Spotřeba m	ateriálu	
				Označení		Ks
						1

zadní strana

KAV	$U_{s}=240$	OV	$U_s=1$.80V	$U_s = 240V$			$U_{s} = 180V$			$U_s = 240V$			
	příko (A)		α	f	α	Ī	f	0,06 Ω μ		proud šuntem 0,06 Ω při signálu (mV)		$0,06~\Omega$ při $0,004~\Omega$ v		4 Ω v
FID	U _s =180	OV		$U_s = 240V$					$U_{s} = 220V$					
	odpad A α = 0,7 f = 0,9 (V		přítah α = 0,7 f = 0,9		U _r (V)	U_A $f = 0.9$ $\alpha = 0.7$		U_B f = 0,9 α = 0,7	U (V	(D)	U_{p1} $(V=)$	U _{p2} (V=)		
ASE				- U	RA	U	RB	R	A		R_{B}	ce 1z)		
U _A (V)	I _A (mA)	U _ž (V)	I _Ž (mA)	kol. o	obvod obsaz.	kol. o volný	obvod obsaz.	přít.	odp.	přít.	odp.	příkon Is (A) frekvence osc. (Khz)		

SEZNAM TABUIEK K PŘEDPISU T 115 OPRAVY VÝMĚNNÝCH DÍLŮ ZABEZPEČOVACÍCH ZAŘÍZENÍ

Příloha 4 VÝMĚNNÉ DÍLY UNIVERZÁLNÍHO AUTOMATICKÉHO BLOKU

číslo:	název:		strana:
1	Tabulka elektrických hodnot I	KAV 2, KAV 3	3
2	Tabulka elektrických hodnot F	FID 2, FID 3	8
3	Tabulka elektrických hodnot A	ASE 2, ASE 3	12

SEZNAM SOUVISEJÍCÍCH PŘEDPISŮ, NOREM, TECHNICKÝCH PODMÍNEK

Zkušební předpis a technický popis KAV
Zkušební předpis a technický popis FID
Technické podmínky pro KAV a FID
Zkušební předpis a technický popis ASE

[—] Líniový vlakový zabezpečovač LS II, LS III, LS IV —

ing. Zbyňek Macoun, ing. Bohumil Nádvorník.

OBSAH

Příloha 4

Výměnné díly univerzálního antomatického bloku

Kapitola:	strana:						
I. Kodér — automatický vysílač KAV.							3
II. Dekodér — fázový indikátor FID .							6
III. AnulacnI soubor elektronický ASE							10
Seznam tabulek k předpisu T115 díl 4.							14
Seznam souvisejících předpisů, norem, te	echn	ick	ých	poo	lmíı	nek	14

OPRAVY VÝMĚNNÝCH DÍLŮ ZABEZPEČOVACÍCH ZAŘÍZENÍ Příloha 4

VÝMĚNNÉ DÍLY UNIVERÁLNÍHO AUTOMATICKÉHO BLOKU

Zpracoval odbor sdělovací a zabezpečovací techniky FMD Vydalo Nakladatelství dopravy a spojů ● Praha Vytiskla Státní tiskárna, závod 3, Praha l, Jungmannova 15 Náklad 2100 výtisků