Prova 2 - Matemática Discreta

Prof. Márcio Moretto Ribeiro

4 de dezembro de 2024

(2.0) Exercício 1

Prove, utilizando indução, que para todo $n \in \mathbb{N}$,

$$2^n > n^2$$
 para $n \ge 5$.

(2.0) Exercício 2

Considere as seguintes funções definidas em \mathbb{Z} :

$$f(x) = 2x + 1$$
, $g(x) = 3x - 4$.

- (a) Calcule g(f(x)).
- (b) Calcule f(g(x)).
- (c) Determine se g(f(x)) = f(g(x)). Justifique.
- (d) Encontre x tal que g(f(x)) = 0

(2.0) Exercício 3

Resolva as relações de recorrência fornecendo fórmulas explícitas para a_n . Em cada caso, calcule a_5 :

(a)
$$a_n = 3a_{n-1} + 2$$
, com $a_0 = 1$.

(b)
$$a_n = 2a_{n-1} - 4$$
, com $a_0 = 5$.

(2.0) Exercício 4

Exercício

Determine se as afirmações abaixo são verdadeiras ou falsas. Justifique suas respostas:

- (a) $12 \equiv -1 \pmod{13}$.
- (b) Se $a \cdot b \equiv 0 \pmod{m}$, então $a \equiv 0 \pmod{m}$ ou $b \equiv 0 \pmod{m}$.
- (c) Se $a \equiv b \pmod{m}$ e $c \equiv d \pmod{m}$, prove ou refute:

$$a+c \equiv b+d \pmod{m}$$
.

2 = 6 1 mod 41

(d) Se $a \equiv b \pmod{m}$ e $b \equiv c \pmod{m}$, então $a \equiv c \pmod{m}$.

- 4 = 4 mod 4

(2.0) Exercício 5

Dada a permutação π que reordena os elementos $\{1,2,3,4,5,6,7\}$ da seguinte forma:

$$\pi(1) = 2$$
, $\pi(2) = 3$, $\pi(3) = 4$, $\pi(4) = 5$, $\pi(5) = 1$, $\pi(6) = 7$, $\pi(7) = 6$,

responda:

0=5 1 mod 51

(a) Calcule π^2 (a composição de π consigo mesma).

3 = 81 moch 51

(b) Determine π^{-1} , o inverso de π .

3 = 13 (mod 5)

c 130

K1. 4+1