

SWCON104 Web & Python Programming

Variables

Department of Software Convergence

Today

- Python basics
- Variables and computer memory
- Assignment statement
- Augmented statement

[Textbook]
Practical Programming
(An Introduction to Computer Science Using Python),
by Paul Gries, Jennifer Campbell, Jason Montojo.
The Pragmatic Bookshelf, 2017

Practice

• Practice_03_Variables.ipynb

Fast paced course?

- New to programming?
- PRACTICE PRACTICE !!
- You can't break your computer
- Don't be afraid to test your code
- Worst case: reboot

What is programming?

- A program is a set of instructions
- You can "order" a computer using a software

Why Python?

- It is free and well documented
- It runs everywhere
 - supports multiple platforms
- It has a clean syntax
- It is relevant
 - many companies use it every day
- It is well supported by tools
 - Jupyter Notebook
 - MS Visual Studio Code

What is a Bug?

- May cause a program crash
- May give incorrect results
- Every program has bugs!
- Kinds of errors
 - Syntax error: Interpreter cannot understand your code and refuses to execute it
 - Runtime error: When executing your program (at runtime), your program suddenly terminates with an error message
 - Semantic error: Your program runs without error messages, but does not do what it is supposed to do

Python basics

- © [] Brackets (대괄호)
- { } Braces (중괄호)
- o () Parentheses (소괄호)

How does a computer run a python program?

Interact in a Python shell

- Arithmetic in Python
 - Addition, subtraction, multiplication, division
- Types
 - o int, float, complex


```
>>> a=0o34
>>> a
28
>>> b=0x8f
>>> b
143
>>>
```

Symbol	Operator	Example	Result
-	Negation	-5	-5
+	Addition	11 + 3.1	14.1
-	Subtraction	5 - 19	-14
*	Multiplication	8.5 * 4	34.0
/	Division	11/2	5.5
//	Integer Division	11 // 2	5
%	Remainder	8.5 % 3.5	1.5
**	Exponentiation	2 ** 5	32

Finite precision

Computers have a finite amount of memory

- Operator precedence
 - Ex) Fahrenheit to Celsius: (F 32) * 5/9
 - \circ Ex) 212 °F = 100 °C

Variables

- Let's give a name to a value
 - X, species5618, degrees_celsius
 - 777obj(X), no-way(X), hello!(X)
- Assignment statement

```
>>> degrees_celsius = 26.0
```

You can assign a new value to the existing variable

```
>>> degrees_celsius = 26.0
>>> degrees_celsius
26.0
>>> 9 / 5 * degrees_celsius + 32
78.80000000000001
>>> degrees_celsius / degrees_celsius
1.0
```

```
>>> degrees_celsius = 26.0
>>> 9 / 5 * degrees_celsius + 32
78.800000000000001
>>> degrees_celsius = 0.0
>>> 9 / 5 * degrees_celsius + 32
32.0
```

Note that = means "assignment", not "equality"

Variable

- Every location in the computer's memory has a memory address
- Object: a value (or thing) at a memory address with a type26.0 id1 float

Variable contains the memory address of the object degrees_celsius

Values, variables, and computer memory

- Object: a value at a memory address with a type26.0 id1 float
- Variable contains the memory address of the object

- Value 26.0 has the memory address id1.
- The object at the memory address id1 has type float and the value 26.0
- Variable degree_celsius contains the memory address id1.

Assignment statement

```
>>> degrees_celsius = 26.0 + 5
                                        >>> difference = 20
                                        >>> double = 2 * difference
>>> degrees celsius
31.0
                                        >>> double
                         id1: float
                                        40
               id1
                            31.0
degrees celsius
                                        >>> difference = 5
                                        >>> double
                                        40
                                                            id1: int
                                        difference
                                                            id2: int
                                                  id2
                                           double
                                                                40
                                                            id3: int
```

http://pythontutor.com/visualize.html


```
>>> number = 3
>>> number
3
>>> number = 2 * number
>>> number
6
>>> number = number * number
>>> number
36
```

```
>>> number = 3
>>> number
3
>>> number = 2 * number
>>> number
6
>>> number = number * number
>>> number
36
```



```
>>> number = 3
>>> number
3
>>> number = 2 * number
>>> number
6
>>> number = number * number
>>> number
36
```



```
>>> number = 3
>>> number
3
>>> number = 2 * number
>>> number
6
>>> number = number * number
>>> number
36
```


Augmented assignment

>>> score = 50	>>> score =50
>>> score	>>> score
50	50
>>> score = score + 20	>>> score += 20
>>> score	>>> score
70	70

Augmented assignment

Symbol	Example	Result
+=	x = 7 x += 2	x refers to 9
-=	x = 7 x -= 2	x refers to 5
*=	x = 7 x *= 2	x refers to 14
/=	x = 7 x /= 2	x refers to 3.5
//=	x = 7 x //= 2	x refers to 3
%=	x = 7 x %= 2	x refers to 1
**=	x = 7 x **= 2	x refers to 49

Table 3—Augmented Assignment Operators

Summary

- Programs are made up of commands that tell the computer what to do. These commands are called statements, which the computer executes.
- This chapter described the simplest of Python's statements and shows how they can be used to do arithmetic, which is one of the most common tasks for computers and also a great place to start learning to program. It's also the basis of almost everything that follows.

Thank you

