

UNIVERSITÄT BERN

Deep-learning Your Brain

Classification of movement execution and imagination using EEG signals

Tim Fischer, Özhan Özen, Joaquin Penalver-Andres

21st May 2019, University of Bern, Advanced Topics in Machine Learning, Prof. Dr. Paolo Favaro

UNIVERSITÄT BERN

Classification of movement execution and imagination using EEG signals

What do we aim for?

UNIVERSITÄT

Why to read your mind? Current and future applications

How to understand people's intention? EEG Basics

Time Domain

Frequency Domain

Spatial Domain

b UNIVERSITÄT BEDN

Each person, one world Challenges in EEG analysis

Images:

Imagenet >14 mio. Images

EEG: Physionet BCI 2000109 subjects, 64 electrodes,
7 different tasks

Artefacts

Complex neural processes

Limited Data

UNIVERSITÄT

Prior attempts

Classification on EEG Data

Yannick et. al. (2019), arXiv:1901.05498

- Zhang et al. (2018), Advances in Knowledge Discovery and Data Mining
 - 20 subjects, 5 tasks
 - Sliding window (10 points, 50% overlap)
 - 3D-CNN + LSTM + RL
 - 93% accuracy
- Schirrmeister et al. (2017), Hum. Brain Mapp
 - Compared FBCSP, Deep and Shallow CNN in 5 task clasiffication
 - Best accuracy over datasets 93% in Shallow CNN

Adam optimizer, Cross Entropy Loss, *with Time Cropping, 20 Subj. (Zhang,2018)

Results

UNIVERSITÄT BERN

Neural Network	Test Accuracy
3D-CNN cropped	77.1%
3D-CNN	28.9%
2D-CNN cropped	73.1%
2D-CNN	32.2%

Class	Test accuracy
Exec. Left Hand	75%
Exec. Right Hand	78%
Imag. Left Hand	75%
Imag. Right Hand	76%
Exec. Both Hand	80%
Exec. Both Feet	76%
Imag. Both Hand	76%
Imag. Both Feet	77%

Discussion and Future Works

- b UNIVERSITÄT BERN
- Time cropping is improving performance. Better local temporal information (high frequency), in exchange of slowly changing global temporal change information.
- 3D-CNN outperforms 2D-CNN due to exploitation of spatial information.

Future Steps:

- Integrate RNN to capture global temporal aspects (Zhang, 2018).
- Using transfer learning to exploit big Phisionet dataset for motor learning experiments with robots.

UNIVERSITÄT BERN

Thanks for your attention! Questions...?

Take part in our motor learning experiments;)
Write to
joaquin.penalverdeandres
@artorg.unibe.ch