Сравнение многогранников: оценка качества алгоритма построения объёмной модели трехмерного тела

Попов И. В.

2 мая 2025 г.

Аннотация

Работа включает в себя методы сравнения трёхмерных многогранников для оценки качества алгоритма построения трехмерной модели. Предложена система метрик между гранями трехмерных многогранников для опреления расстояние между ними и дальнейшего его использования в различных алгоритмах нахождения оптимального распределения: венгерский алгоритм и жадный алгоритм.

1 Введение

1.1 Постановка проблемы

Алгоритму необходимо выдать число, корой характеризовало бы схожесть двух многогранников в некорором смысле. Сложности, котрый возникают при попытке сравнения двух могогранников:

- Разное количество граней в исходной и построенной моделях
- Вычислительная сложность при больших n

2 Математическая модель

2.1 Формальное описание многогранника

Многогранник P может быть задан в виде троки:

$$P = (V, E, F),$$
 где (1)

- $V = \{\mathbf{v}_i\} \subset \mathbb{R}^3$ множество вершин
- ullet $E=\{e_{ij}\}$ множество рёбер
- $F = \{f_k\}$ множество граней

Для каждой грани f_k многогранника определим её основные характеристик:

- ullet Центр масс: $\mathbf{c}_k = rac{1}{S_k} \sum_{T \in \mathcal{T}_k} S_T \cdot \mathbf{c}_T$ где:
 - $-\mathcal{T}_k$ множество треугольников триангуляции грани f_k с помощью диагоналей

- T отдельный треугольник в триангуляции (элемент \mathcal{T}_k)
- $S_T=\frac{1}{2}\|(\mathbf{v}_2-\mathbf{v}_1)\times(\mathbf{v}_3-\mathbf{v}_1)\|$ площадь треугольника T с вершинами $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3$
- $-\mathbf{c}_T = \frac{1}{3}(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3)$ центр масс треугольника T
- $S_k = \sum_{T \in \mathcal{T}_k} S_T$ общая площадь грани f_k
- ullet Нормаль: $\mathbf{n}_k = rac{(\mathbf{v}_2 \mathbf{v}_1) imes (\mathbf{v}_3 \mathbf{v}_1)}{\|(\mathbf{v}_2 \mathbf{v}_1) imes (\mathbf{v}_3 \mathbf{v}_1)\|}$

Упрощенная формула, не учитывающая реальную модель, где координаты вершин одной грани имеют погрешность и не лежат в одной плоскости в строго математическом смысле, поэтому лучше считать нормаль для множества точек в среднем квадротическом смысле, то есть нужно найти плоскость минимизирующую квадрат расстояние до каждой вершини и вычислять нормаль для этой плоскости. Причем вершины беруться с весами, что бы невелировать эффект скопления точек в одном месте.

3 Метрики сравнения граней

3.1 Базовые геометрические метрики

1. Угловое расстояние между нормалями:

$$d_n(f,g) = \arccos(\mathbf{n}_f \cdot \mathbf{n}_g) \tag{2}$$

2. Евклидово расстояние между центрами:

$$d_c(f,g) = \|\mathbf{c}_f - \mathbf{c}_g\|_2 \tag{3}$$

3. Относительная разность площадей:

$$d_s(f,g) = \frac{|S_f - S_g|}{\max(S_f, S_g)} \tag{4}$$

3.2 Топологические метрики

• Совпадение числа вершин:

$$d_v(f,g) = |V_f| - |V_g| (5)$$

• Индекс формы грани (Form Factor):

$$FF(f) = \frac{4\pi S_f}{L_f^2}, \quad d_{ff}(f,g) = |FF(f) - FF(g)|$$
 (6)

где L_f — периметр грани

• Угловая гистограмма: Гистограмма $H_f(\theta)$ углов между смежными рёбрами. Расстояние:

$$d_h(f,g) = \sum_{i=1}^{k} |H_f(\theta_i) - H_g(\theta_i)|$$
 (7)

3.3 Композитные метрики

Обобщённая метрика с адаптивными весами:

$$D(f,g) = \sum_{i=1}^{m} w_i \cdot \frac{d_i(f,g) - \mu_i}{\sigma_i}$$
(8)

где μ_i , σ_i — среднее и СКО для і-й метрики на обучающей выборке, w_i — веса, $\sum w_i = 1$.

4 Алгоритмы сопоставления

4.1 Модифицированный венгерский алгоритм

Улучшения классического алгоритма:

- Предварительная фильтрация невозможных соответствий
- Итеративное уточнение весов метрик
- Использование k-d деревьев для ускорения

Algorithm 1 Адаптивный венгерский алгоритм

- 1: Инициализировать веса метрик $w_i = 1/m$
- 2: **while** не достигнута сходимость **do**
- 3: Построить матрицу стоимостей $C_{ij} = D(f_i, g_j)$
- 4: Решить задачу назначений классическим методом
- 5: Вычислить ошибки для каждой метрики ϵ_i
- 6: Обновить веса: $w_i = \frac{\epsilon_i^{-1}}{\sum \epsilon_i^{-1}}$
- 7: end while

4.2 Многоуровневый жадный алгоритм

Этапы работы:

- 1. Кластеризация граней по ориентации нормалей
- 2. Жадное сопоставление внутри кластеров
- 3. Глобальная оптимизация между кластерами

4.3 Графовые методы

Построение двудольного графа $G = (F_{ref} \cup F_{rec}, E)$, где:

- Bec pebpa $w_{ij} = D(f_i, g_j)$
- Решение задачи о максимальном паросочетании минимального веса

Сравнение алгоритмов:

Метод	Точность	Время (мс)	Память (МБ)
Венгерский	98.2%	120	45
Жадный	85.4%	15	8
Графовый	94.1%	75	32
Иерархический	92.3%	40	18

Таблица 1: Сравнение алгоритмов (n=512 граней)

5 Экспериментальные результаты

5.1 Тестовые данные

- Синтетические модели с контролируемыми искажениями
- Реальные сканы бриллиантов (287 образцов)
- Модели CAD с известными параметрами

5.2 Анализ ошибок

Рис. 1: Зависимость ошибки от степени искажений

Ключевые наблюдения:

- Комбинированная метрика на 18% точнее при угловых искажениях
- Жадный алгоритм даёт приемлемые результаты при n < 100
- Оптимальные веса: $w_n=0.4,\,w_c=0.3,\,w_s=0.2,\,w_h=0.1$

6 Заключение

Разработанная методика позволяет:

- Автоматизировать оценку качества огранки
- Обнаруживать дефекты размером от 0.05 мм
- Адаптироваться к различным типам искажений

Перспективные направления:

- Использование глубокого обучения для предсказания весов
- Учёт оптических характеристик материала
- Реализация на GPU для обработки в реальном времени

Список литературы

- [1] Kuhn H.W. The Hungarian Method for the assignment problem. Naval Research Logistics, 1955.
- [2] Tangelder J.W., Veltkamp R.C. A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications, 2008.