ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 15

O Problema da Parada

Profa. Ariane Machado Lima ariane.machado@usp.br

Na última aula

- Tese de Church-Turing
- Problemas computacionais descritos como linguagens
 - Ex: verificar se um grafo G1 é subgrafo de um grafo G2
- Linguagens (problemas) decidíveis
- Linguagens regulares e linguagens livres de contexto são decidíveis

Limites da computação

- Existem problemas que são Turingreconhecíveis mas NÃO Turing-decidíveis
- Existem problemas que NÃO são Turingreconhecíveis? (Insolúveis)

Limites da computação

- Existem problemas que são Turingreconhecíveis mas NÃO Turing-decidíveis
- Existem problemas que NÃO são Turingreconhecíveis? (Insolúveis)

SIM!

Ex: verificação de software

Limites da computação

- Existem problemas que são Turingreconhecíveis mas NÃO Turing-decidíveis
- Existem problemas que NÃO são Turingreconhecíveis? (Insolúveis)

SIM!

Ex: verificação de software

 Para provar, precisamos primeiro de alguns resultados da Matemática

Determinação de tamanho de conjuntos

- Comparar o tamanho de conjuntos finitos é fácil
- E para conjuntos infinitos?
- Georg Cantor: dois conjuntos infinitos têm o mesmo tamanho que seus elementos puderem ser emparelhados
 - f : A → B, onde f é uma função bijetora (uma correspondência)

DEFINIÇÃO 4.12

Suponha que tenhamos os conjuntos A e B e uma função f de Apara B. Digamos que f-é um-para-um se ela nunca mapeia dois elementos diferentes para um mesmo lugar — ou seja, se $f(a) \neq$ f(b) sempre que $a \neq b$. Digamos que f é sobrejetora se ela atinge todo elemento de B — ou seja, se para todo $b \in B$ existe um $a \in A$ tal que f(a) = b. Digamos que A e B são de *mesmo tamanho* se existe uma função um-para-um e sobrejetora $f: A \longrightarrow B$. Uma função que é tanto um-para-um quanto sobrejetora é denominada uma correspondência. Em uma correspondência, todo elemento de A mapeia para um único elemento de B e cada elemento de B tem um único elemento de A mapeando para ele. Uma correspondência $\acute{ ext{e}}$ simplesmente uma maneira de emparelhar os elementos de A com os elementos de B.

Exemplo – N (naturais) e os naturais pares

Exemplo – N (naturais) e os naturais pares

• f(n) = 2n

n	f(n)
1	2
2	4
3	6
•	
•	1 :
	1 .

Têm o mesmo tamanho!

DEFINIÇÃO 4.14

Um conjunto A é $\emph{contável}$ se é finito ou tem o mesmo tamanho que $\mathcal N$.

Exemplo - Q (racionais)

$$\mathcal{Q} = \{ \frac{m}{n} | m, n \in \mathcal{N} \}$$

Exemplo - Q (racionais)

$$\mathcal{Q} = \{ \frac{m}{n} | m, n \in \mathcal{N} \}_{\!\scriptscriptstyle{\mathbb{R}}}$$

- Têm o mesmo tamanho!
- Q é contável!

Exemplo – R (reais)

- Qualquer número com representação decimal
- Inclui números como $\pi = 3,1415926..., \sqrt{2} = 1,4142135...$
- Como seria f?

Exemplo – R (reais)

- Qualquer número com representação decimal
- Inclui números como $\pi = 3,1415926..., \sqrt{2} = 1,4142135...$
- Como seria f?
- Não há!

R é incontável

TEOREMA 4.17

 \mathcal{R} é incontável.

R é incontável

TEOREMA 4.17 \mathcal{R} é incontável.

Prova por contradição:

R é incontável

TEOREMA 4.17

 \mathcal{R} é incontável.

 Prova por contradição: vamos assumir que f existe e contruir um x que esteja fora da correspondência

R é incontável - Prova

- Vamos assumir que f existe
- Por exemplo:

n	f(n)
1	3,14159
2	55,55555
3	0,12345
4	0,50000
:	

- Construímos um x entre 0 e 1 cujo i-ésimo dígito após a vírgula seja diferente do i-ésimo dígito de f(i)
- Logo, x não é igual a nenhum f(i)
- Obs.: escolhemos dígitos diferentes de 10 e 9

R é incontável – Prova Diagonalização

- Vamos assumir que f existe
- Por exemplo:

n	f(n)
1	3,14159
2	55,55555
3	0,12345
4	0,50000
	•

- Construímos um x entre 0 e 1 cujo i-ésimo dígito após a vírgula seja diferente do i-ésimo dígito de f(i)
- Logo, x não é igual a nenhum f(i)
- Obs.: escolhemos dígitos diferentes de 10 e 9

O que isso tem a ver com Teoria da Computação ?

Linguagens não Turingreconhecíveis

COROLÁRIO 4.18

Algumas linguagens não são Turing-reconhecíveis.

Ideia da Prova:

- Provar que o conjunto de todas as MTs é contável, mas o conjunto de todas as linguagens possíveis é incontável
- Para isso, mostrar que o conjunto de todas as linguagens têm o mesmo tamanho que o conjunto de todas as sequências binárias infinitas, que é incontável
- Para isso, usar diagonalização

Conjunto de MTs é contável

- Cada Máquina de Turing M tem uma codificação em uma cadeia <M>
 - Descartando aquelas cadeias que não são MT legítimas, podemos listar cadeias que representem MTs
- Σ* é contável
 - Basta listar suas cadeias por ordem crescente de tamanho e ordem lexicográfica (e associar um natural a cada uma)
 - Ex: $\Sigma = \{0,1\}$, lista = 0, 1, 00, 01, 10, 11, 000, ...

Linguagens não Turingreconhecíveis

COROLÁRIO 4.18 -----

Algumas linguagens não são Turing-reconhecíveis.

Ideia da Prova:

- Provar que o conjunto de todas as MTs é contável, mas o conjunto de todas as linguagens possíveis é incontável
- Para isso, mostrar que o conjunto de todas as linguagens têm o mesmo tamanho que o conjunto de todas as sequências binárias infinitas, que é incontável
- Para isso, usar diagonalização

Linguagens não Turingreconhecíveis

COROLÁRIO 4.18

Algumas linguagens não são Turing-reconhecíveis.

- Ideia da Prova:
 - Provar que o conjunto de todas as MTs é contável, mas o conjunto de todas as linguagens possíveis é incontável
 - Para isso, mostrar que o conjunto de todas as linguagens têm o mesmo tamanho que o conjunto de todas as sequências binárias infinitas, que é incontável
 - Para isso, usar diagonalização

O conjunto de todas as linguagens e o conjunto de todas as strings binárias infinitas possuem o mesmo tamanho

- Cada linguagem L_k pode ser representada por uma string binária infinita b_k
 - Ordene as cadeias de Σ* (s₁, s₂, ...)
 - A posição i da string binária b_k possui valor 1 se a cadeia s_i pertencer à linguagem L_k, e valor 0 caso contrário
 - Ex: A = {cadeias binárias começando com 0}

$$\Sigma^* = \{ \ \varepsilon \ , \ 0 \ , \ 1 \ , \ 00 \ , \ 01 \ , \ 10 \ , \ 11 \ , 000 \ , 001 \ , \ \cdots \ \} \ ; \ A = \{ \ \ \ 0 \ , \ \ \ 000 \ , \ 01 \ , \ \ \ \ 000 \ , 001 \ , \ \cdots \ \} \ ; \ \chi_A = \ \ 0 \ \ 1 \ \ 0 \ \ 1 \ \ 1 \ \ 0 \ \ 0 \ \ 1 \ \ 1 \ \ \cdots \ \ .$$

O conjunto de todas as strings binárias infinitas é incontável

 Usar técnica de diagonalização (usada para prova que R é incontável)

Linguagens não Turingreconhecíveis

COROLÁRIO 4.18

Algumas linguagens não são Turing-reconhecíveis.

Ideia da Prova:

- Provar que o conjunto de todas as MTs é contável, mas o conjunto de todas as linguagens possíveis é incontável
- Para isso, mostrar que o conjunto de todas as linguagens têm o mesmo tamanho que o conjunto de todas as sequências binárias infinitas, que é incontável
- Para isso, usar diagonalização

Linguagens não Turingreconhecíveis

COROLÁRIO 4.18

Algumas linguagens não são Turing-reconhecíveis.

Ideia da Prova:

- Provar que o conjunto de todas as MTs é contável, mas o conjunto de todas as linguagens possíveis é incontável
- Logo, existem linguagens que não podem ser reconhecidas por nenhuma máquina de Turing

- Vimos que linguagens regulares e livres de contexto são Turing-decidíveis
- O problema de determinar se uma MT aceita uma cadeia w é decidível?
 - Primeiro: como escrevemos esse problema em termos de linguagem?

- Vimos que linguagens regulares e livres de contexto são Turing-decidíveis
- O problema de determinar se uma MT aceita uma cadeia w é decidível?
 - Primeiro: como escrevemos esse problema em termos de linguagem?

```
A_{\mathsf{MT}} = \{ \langle M, w \rangle | M \text{ \'e uma MT e } M \text{ aceita } w \}
```

- Vimos que linguagens regulares e livres de contexto são Turing-decidíveis
- O problema de determinar se uma MT aceita uma cadeia w é decidível?
 - Segundo: como poderia ser uma MT para esse problema?

- Vimos que linguagens regulares e livres de contexto são Turing-decidíveis
- O problema de determinar se uma MT aceita uma cadeia w é decidível?
 - Segundo: como poderia ser uma MT para esse problema?
- U = "Sobre a entrada $\langle M, w \rangle$, onde M é uma MT e w é uma cadeia:
 - \bullet 1. Simule M sobre a entrada w.
 - 2. Se *M* em algum momento entra no seu estado de aceitação, aceite; se *M* em algum momento entra em seu estado de rejeição, rejeite."

- Vimos que linguagens regulares e livres de contexto são Turing-decidíveis
- O problema de determinar se uma MT aceita uma cadeia w é decidível?
 - Segundo: como poderia ser uma MT para esse problema?
- U = "Sobre a entrada $\langle M, w \rangle$, onde M é uma MT e w é uma cadeia:
 - 1. Simule M sobre a entrada w.
 - 2. Se *M* em algum momento entra no seu estado de aceitação, aceite; se *M* em algum momento entra em seu estado de rejeição, rejeite."

Máquina de Turing universal – estímulo ao programa³ armazenado

Determinar se uma MT aceita uma cadeia w é decidível?

- M só entra em loop se w não pertencer à linguagem
- Como U poderia usar isso para decidir A_M?

Determinar se uma MT aceita uma cadeia w é decidível?

- M só entra em loop se w não pertencer à linguagem
- Como U poderia usar isso para decidir A_M?
 - Se puder prever que M entrará em loop, rejeita

Determinar se uma MT aceita uma cadeia w é decidível?

- M só entra em loop se w não pertencer à linguagem
- Como U poderia usar isso para decidir A_M?
 - Se puder prever que M entrará em loop, rejeita

Problema: dá para prever? (Problema da parada)

Determinar se uma MT aceita uma cadeia w é decidível?

- M só entra em loop se w não pertencer à linguagem
- Como U poderia usar isso para decidir A_M?
 - Se puder prever que M entrará em loop, rejeita

 Problema: dá para prever? (Problema da parada) NÃO

Determinar se uma MT aceita uma cadeia w é INdecidível

 $A_{\mathsf{MT}} = \{ \langle M, w \rangle | M \text{ \'e uma MT e } M \text{ aceita } w \}.$

TEOREMA 4.11

 $A_{\rm MT}$ é indecidível.

O Problema da Parada é INdecidível

 $A_{\mathsf{MT}} = \{ \langle M, w \rangle | \ M \ \text{\'e uma MT e } M \ \text{aceita } w \}.$

TEOREMA 4.11

 $A_{\rm MT}$ é indecidível.

O Problema da Parada é indecidível– Prova por contradição

Supomos A_{MT} decidível e H um decisor:

$$H(\langle M, w \rangle) = \begin{cases} aceite & \text{se } M \text{ aceita } w \\ rejeite & \text{se } M \text{ não aceita } w \end{cases}$$

- D outra MT, que usa H para determinar o que M faz com <M>, e faz o oposto:
- D = "Sobre a entrada $\langle M \rangle$, onde M é uma MT:
 - **1.** Rode H sobre a entrada $\langle M, \langle M \rangle \rangle$.
 - 2. Dê como saída o oposto do que H dá como saída; ou seja, se H aceita, rejeite e se H rejeita, aceite."

O Problema da Parada é indecidível – Prova por contradição

$$D(\langle M \rangle) = \begin{cases} aceite & \text{se } M \text{ não aceita } \langle M \rangle \\ rejeite & \text{se } M \text{ aceita } \langle M \rangle. \end{cases}$$

O Problema da Parada é indecidível – Prova por contradição

$$D(\langle M \rangle) = \begin{cases} aceite & \text{se } M \text{ não aceita } \langle M \rangle \\ rejeite & \text{se } M \text{ aceita } \langle M \rangle. \end{cases}$$

E se D tiver <D> como entrada?

O Problema da Parada é indecidível– Prova por contradição

$$D(\langle M \rangle) = \begin{cases} aceite & \text{se } M \text{ não aceita } \langle M \rangle \\ rejeite & \text{se } M \text{ aceita } \langle M \rangle. \end{cases}$$

E se D tiver <D> como entrada?

$$D(\langle D \rangle) = \begin{cases} aceite & \text{se } D \text{ não aceita } \langle D \rangle \\ rejeite & \text{se } D \text{ aceita } \langle D \rangle. \end{cases}$$

O Problema da Parada é indecidível – Prova por contradição

$$D(\langle M \rangle) = \begin{cases} aceite & \text{se } M \text{ não aceita } \langle M \rangle \\ rejeite & \text{se } M \text{ aceita } \langle M \rangle. \end{cases}$$

E se D tiver <D> como entrada?

$$D(\langle D \rangle) = \begin{cases} aceite & \text{se } D \text{ não aceita } \langle D \rangle \\ rejeite & \text{se } D \text{ aceita } \langle D \rangle. \end{cases}$$

Contradição! H e D não podem existir!

Descrevendo a contradição por diagonalização

	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 \rangle$	$\langle M_4 angle$	
M_1	aceite		aceite		*
M_2	aceite	aceite	aceite	aceite	
M_3					
M_4	aceite	aceite			31 (5.6)
:					
•			•		

FIGURA 4.19

A entrada i, j é aceite se M_i aceita $\langle M_j \rangle$.

Descrevendo a contradição por diagonalização

	$\langle M_1 angle$	$\langle M_2 \rangle$	$\langle M_3 angle$	$\langle M_4 \rangle$	
M_1	aceite	rejeite	aceite	rejeite	
M_2	aceite	aceite	aceite	aceite	
M_3	rejeite	rejeite	rejeite	rejeite	• • •
M_4	aceite	aceite	rejeite	rejeite	
:					
•					

FIGURA 4.20

A entrada i, j é o valor de H sobre a entrada $\langle M_i, \langle M_j \rangle \rangle$.

Descrevendo a contradição por diagonalização

	$\langle M_1 angle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$	
M_1	\underline{aceite}	rejeite	aceite	rejeite		aceite	
M_2	aceite	\underline{aceite}	aceite	aceite		aceite	
M_3	rejeite	rejeite	rejeite	rejeite		rejeite	
M_4	aceite	aceite	$\overline{rejeite}$	rejeite		aceite	
:					٠.		
D	rejeite	rejeite	aceite	aceite			
:							٠.

FIGURA 4.21

Se D estiver na figura, uma contradição ocorre em "?".

Voltando às linguagens Turing-NÃO-Reconhecíveis

- Vimos que existem linguagens que NÃO são Turing-reconhecíveis
- Perguntas:
 - Quais são alguns exemplos delas?
 - O que isso tem a ver com linguagens Turingdecidíveis?

Decidibilidade e reconhecibilidade

- Uma linguagem é Turing-decidível se ela E seu complemento forem ambas Turingreconhecíveis
- Uma linguagem é co-Turing-reconhecível se ela for o complemento de uma linguagem Turing-reconhecível (def. do livro)
- Uma linguagem é co-Turing-reconhecível se seu complemento for Turing-reconhecível (acho mais fácil de entender)

Decidibilidade e reconhecibilidade

TEOREMA 4.22

Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível.

Em outras palavras, uma linguagem é decidível exatamente quando ela e seu complemento são ambas Turing-reconhecíveis.

Prova

TEOREMA 4.22

Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível.

- (=>) fácil (direto das definições)
- (<=) Se uma linguagem A é Turingreconhecível, consigo aceitar todas as cadeias de A. O problema são as cadeias do complemento de A... Mas se o complemento também é reconhecível, posso rejeitar tudo o que a MT do complemento aceita...

Prova

M = "Sobre a entrada w:

- 1. Rode ambas, M_1 e M_2 , sobre a entrada w em paralelo.
- 2. Se M_1 aceita, aceite; se M_2 aceita, rejeite."

 Onde rodar em paralelo significa rodar cada MT em uma fita diferente, rodando um passo de cada uma de cada vez e alternadamente, até que uma delas aceita

COROLÁRIO 4.23

 $\overline{A_{\mathsf{MT}}}$ não é Turing-reconhecível.

COROLÁRIO 4.23

 $\overline{A_{\mathsf{MT}}}$ não é Turing-reconhecível.

PROVA Sabemos que A_{MT} é Turing-reconheível. Se \overline{A}_{MT} também fosse Turing-reconhecível, A_{MT} seria decidível. O Teorema 4.11 nos diz que A_{MT} não é decidível, portanto \overline{A}_{MT} não pode ser Turing-reconhecível.

Lista 4

- 4.12, 4.22 e 4.28
- Entrega: dia 22/10