Stats 120B Homework 1: Due Wed, Jan. 18

- 1. Let X and Y be two independent random variables following beta distributions Beta(120, 2017).
 - (a) [5 pts] What's P(X = 0.5)?
 - (b) [5 pts] What's P(X + 3 < 2Y)?
 - (c) [5 pts] What's P(X > Y)?
- 2. Suppose that X has the gamma distribution with parameters α and β .
 - (a) [10 pts] Determine the mode of X. (Be careful about the range of α)
 - (b) [5 pts] Let c be a positive constant. Show that cX has the gamma distribution with parameters α and β/c .
- 3. Suppose that $X_i \sim \text{Gamma}(\alpha_i, \beta)$ independently for i = 1, ..., N. The mgf of X_i is $M_{X_i}(t) = (1 \frac{t}{\beta})^{-\alpha_i}$.
 - (a) [5 pts] Use the mgf of X_i to derive the mgf of $\sum_{i=1}^{N} X_i$.
 - (b) [5 pts] Determine the distribution of $\sum_{i=1}^{N} X_i$ based on its mgf.
 - (c) [5 pts] Suppose that $Y_1, \ldots, Y_N \stackrel{\text{iid}}{\sim} \text{Exp}(\beta)$, determine the distribution of $\sum_{i=1}^N Y_i$ using results from part (b).
 - (d) [5 pts] Determine the distribution of sample mean $\bar{Y} = \sum_{i=1}^{N} Y_i/N$, using results from problem 2.
- 4. Let X follow beta distribution Beta(α, β).
 - (a) [10 pts] Determine the mode of X. (Be careful about the range of α and β)
 - (b) [5 pts] Show that 1-X has the beta distribution with parameters β and α .
- 5. The Cauchy distribution, named after great mathematician Augustin Cauchy, has been widely used in statistics and physics. Let X follow a standard Cauchy distribution, its pdf is given by

$$f(x) = \frac{1}{\pi(1+x^2)}, x \in (-\infty, \infty).$$

- (a) [5 pts] Verify that f(x) is a valid probability density function.
- (b) [5 pts] Show that $\int_{-\infty}^{\infty} x f(x) dx$ does not exist. Hence conclude that the mean of Cauchy distribution does not exist.
- (c) [5 pts] Read examples 4.1.8 and 4.1.9 on your textbook. Explain in words, why the mean of Cauchy distribution does not exist.
- 6. [10 pts] Suppose that a random variable X can take each of the six values -2, -1, 0, 1, 2, 3 with equal probability. Determine the probability mass function of $Y = X^2 X$.

7. [10 pts] Suppose that X_1, \ldots, X_k are independent random variables, and $X_i \sim \operatorname{Exp}(\beta_i)$ for $i = 1, \ldots, k$. Let $Y = \min\{X_1, \ldots, X_k\}$. Show that $Y \sim \operatorname{Exp}(\sum_{i=1}^k \beta_i)$.