Atividade 2: Análise do Escalonador MLFQ

Objetivo

Executar o simulador mlfq.py com diferentes configurações de filas, quanta e boosts, analisando a saída para compreender o funcionamento do escalonador MLFQ (Multilevel Feedback Queue), com foco em prioridade, aging, escalonamento e justiça.

Parâmetros relevantes do simulador

-n	Número de filas de prioridade.
-q	Quantum fixo para todas as filas.
-Q	Lista de quanta por fila, ex: -Q 5,10,20.
-B	Intervalo de boost (em unidades de tempo) que restaura todos
	os jobs para a prioridade máxima.
-j -1	Número de jobs gerados aleatoriamente.
-1	Lista manual de jobs: start,run,io:start,run,io:
-m, -M	Máximo tempo de execução / frequência de I/O dos jobs
	aleatórios.
-i	Tempo fixo de I/O.
-S	Reinicia ticks e mantém prioridade ao fazer I/O.
-I	Ao terminar I/O, move o job para o início da fila.
-c	Exibe estatísticas finais automaticamente.

Experimentos

Experimento 1 – Comportamento Básico do MLFQ

```
python mlfq.py -n 3 -Q 5,10,20 -B 30 -l 0,20,0:2,8,0:4,12,0 -c
```

- a) Qual foi o tempo de resposta e turnaround de cada job?
- b) Algum job desceu de prioridade? Em que momento?
- c) O boost ocorreu? Qual foi seu impacto?

Experimento 2 – Alterando o Quantum

Modifique o comando anterior para:

$$-Q 2,4,8$$

- a) O tempo de resposta dos jobs aumentou ou diminuiu?
- b) Houve mais ou menos trocas de contexto?
- c) Quais efeitos foram observados em jobs curtos?

Experimento 3 – Starvation e Boost

Execute:

python mlfq.py —
n 3 —Q 5,10,20 —B 10000 —l 0,60,0:2,60,0:4,60,0:6,5,0 —c Depois, altere para:

-B 20

- a) O job mais curto sofreu starvation?
- b) O que mudou ao incluir o boost frequente?

Experimento 4 – Testando -S e -I

 $python\ mlfq.\,py\ -n\ 3\ -Q\ 3\,,6\,,10\ -B\ 50\ -l\ 0\,,60\,,5:0\,,60\,,5\ -S\ -I\ -c$

- a) Qual job teve menor turnaround?
- b) Que diferença os parâmetros -S e -I provocaram?
- c) O comportamento do escalonador foi justo?