Theory of Average-Reward Markov Decision Processes

Mohammad Sadegh Talebi m.shahi@di.ku.dk Department of Computer Science

Average-Reward MDPs

Recall the definition of a generic MDP model: $M = \left(\mathcal{S}, \mathcal{A}, P, R\right)$

- ullet State-space ${\cal S}$
- Action-space $A = \bigcup_{s \in \mathcal{S}} A_s$
 - ullet \mathcal{A}_s is the set of actions available in state s
- Transition function P: Selecting $a \in \mathcal{A}_s$ in $s \in \mathcal{S}$ leads to a transition to s' with probability P(s'|s,a). $P(\cdot|s,a)$ is a probability distribution over \mathcal{S} , i.e.,

$$\sum_{s'} P(s'|s, a) = 1$$

• Reward function R: Selecting $a \in A_s$ in $s \in S$ yields a reward $r \sim R(s, a)$.

For simplicity, we consider an identical action set all states, i.e., $\mathcal{A}_s = \mathcal{A}$ for all $s \in \mathcal{S}$.

Interaction with MDP

An **agent** interacts with the MDP for N rounds.

At each time step t:

- ullet The agent observes the current state s_t and takes an action $a_t \in \mathcal{A}_{s_t}$
- The environment (MDP) decides a reward $r_t := r(s_t, a_t) \sim R(s_t, a_t)$ and a next state $s_{t+1} \sim P(\cdot|s_t, a_t)$
- The agent receives r_t (any time in step t before start of t+1)

This interaction produces a trajectory (or history)

$$h_t = (s_1, a_1, r_1, s_2, a_2, r_2, \dots, s_{t-1}, a_{t-1}, r_{t-1}, s_t)$$

Classification of MDPs based on N

• Finite-Horizon MDPs: $N < \infty$, and the goal is to solve

$$\max_{\text{all strategies}} \mathbb{E}\Big[\sum_{t=1}^{N-1} r(s_t, a_t) + r(s_N)\Big]$$

• Infinite-Horizon Discounted MDPs: $N=\infty$, and given discount factor $\gamma\in(0,1)$, the goal is to solve

$$\max_{\text{all strategies}} \mathbb{E}\Big[\sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t)\Big]$$

• Infinite-Horizon Undiscounted MDPs (Average-Reward MDPs): $N=\infty$, and the goal is to solve

$$\max_{\text{all strategies } N \to \infty} \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \Big[\sum_{t=1}^{N} r(s_t, a_t) \Big]$$

This lecture: We study Average-Reward MDPs.

The Optimality Criterion

Let's consider optimizing the N-step cumulative reward (a.k.a. total reward):

$$\sup_{\text{all strategies}} \mathbb{E}\Big[\sum_{t=1}^N r_t\Big]$$

 \implies An ill-defined objective as it could grow unbounded when $N \to \infty$, even with bounded rewards

We instead consider maximizing the average expected reward:

$$\sup_{\text{all strategies}} \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \Big[\sum_{t=1}^{N} r_t \Big]$$

- Hence the name average-reward MDPs.
- A well-defined objective.
- It also makes sense in practice. (More on this later.)

Assumption on Rewards

We assume:

Deterministic rewards so that

$$r_t = r(s_t, a_t) = R(s_t, a_t)$$

Bounded rewards in the following sense:

$$|r(s,a)| \le R_{\max} < \infty$$

Extension to stochastic reward is done by replacing r(s,a) with the $\mathbb{E}[r(s,a)]$ in the results.

Policy

When interacting with an MDP, actions are taken according to some policy. Policies classes are defined identically as in discounted MDPs, where a policy may be:

- deterministic or randmozied (stochastic)
- history-dependent or stationary

	Deterministic	Randomized
Stationary	$\pi:\mathcal{S} o\mathcal{A}$	$\pi: \mathcal{S} \to \Delta(\mathcal{A})$
History-dependent	$\pi:\mathcal{H}_t o\mathcal{A}$	$\pi: \mathcal{H}_t \to \Delta(\mathcal{A})$

- $\Delta(A)$ denotes the simplex of probability distributions over A.
- ullet \mathcal{H}_t the set of all possible history sequences up to time t
- For a randomized policy π , $\pi(a|s)$ denotes the probability of choosing a in s.

Policy

	Deterministic	Randomized
Stationary	$\pi:\mathcal{S} o\mathcal{A}$	$\pi: \mathcal{S} \to \Delta(\mathcal{A})$
History-dependent	$\pi:\mathcal{H}_t o\mathcal{A}$	$\pi: \mathcal{H}_t \to \Delta(\mathcal{A})$

 \bullet Π^{SD} : Stationary deterministic policies

ullet Π^{SR} : Stationary randomized policies

 \bullet $\Pi^{\text{HD}} \colon$ History-dependent deterministic policies

ullet Π^{HR} : History-dependent randomized policies

(i)
$$\Pi^{SD} \subset \Pi^{SR} \subset \Pi^{HR}$$

(ii) $\Pi^{SD} \subset \Pi^{HD} \subset \Pi^{HR}$

Example 1

A continual task in RiverSwim

- Variant 1: The agent interacts with RiverSwim for an unspecified number N
 of round.
- Variant 2: If in s_L and taking 'right', *Kystvagten* brings the agent to a random state, and the task repeats —the corresponding transition is not shown here.

Can you guess an optimal policy in either variants?

Example 2

- Task: Transporting an arbitrary number of packages between source (in yellow) and destination (in red).
- The transportation cost differs across paths, and we are interested in minimizing the total cost.
- One package per round. Occasionally, a charging station must be visited.

Example 3

- ullet A grid-world with S=20 states, and 4 actions (Up, Down, Left, Right).
- E.g., 'Up' yields: moving up (w.p. 0.7), no move (w.p. 0.1), or moving left or right (each w.p. 0.1) —walls act as reflector.
- Reward is zero everywhere, except in the goal state (in red).
- The task is continual: Once in the goal state, the agent is teleported to the initial state.

Gain and Bias

Gain vs. Value

- For discounted and finite-horizon MDPs we defined notions of value function to distinguish the quality of various policies.
- Value functions measure the sum of future (discounted) rewards starting from any state.
- This machinery does not carry over to average-reward MDPs as cumulative reward could grow without bound.
- Instead, we define the notion of gain and bias to rank policies.

Gain

The gain function of policy π is a mapping $g^{\pi}: \mathcal{S} \to \mathbb{R}$ defined as

$$g^{\pi}(\mathbf{s}) := \lim_{N \to \infty} \frac{1}{N} \mathbb{E}^{\pi} \left[\sum_{t=1}^{N} r(s_t, a_t) \middle| s_1 = \mathbf{s} \right].$$

where \mathbb{E}^{π} indicates expectation over trajectories generated by π .

- $g^{\pi}(s)$ measure the per-step reward obtained under π starting from s, in the long run.
- The limit may not exist for all policies.
- For all π and s:

$$|g^{\pi}(s)| \leq R_{\max}$$

where $R_{\rm max}$ is an upper bound on the rewards.

Optimization using Gains

Solving an average-reward MDP ${\cal M}$ amounts to solving the following optimization problem:

$$g^{\star}(s) = \sup_{\pi \in \Pi^{\mathsf{HR}}} g^{\pi}(s) \,,$$

for all $s \in \mathcal{S}$.

- $g^*: \mathcal{S} \to \mathbb{R}$ is called the optimal gain.
- Any policy achieving g^{*}(s) for all s is called gain-optimal (or optimal, for short) and denoted by π^{*}.
- Do we have other optimality criteria? Discussion in class.

Is Gain Sufficient?

- ullet Is gain alone is sufficient? \Longrightarrow Yes, if only the steady-state regime of MDP is concerned.
- However, for finite N,

$$\mathbb{E}^{\pi} \left[\sum_{t=1}^{N} r(s_t, a_t) \middle| s_1 = s \right] \quad \neq \quad Ng^{\pi}(s)$$

- The difference $\mathbb{E}^{\pi} \Big[\sum_{t=1}^{N} r(s_t, a_t) \Big| s_1 = s \Big] Ng^{\pi}(s)$ reflects the transient rewards.
- To capture the difference due to the transient regime we define bias.

Bias

The bias function (or simply, bias) of policy π is a mapping $b^{\pi}: \mathcal{S} \to \mathbb{R}^{S}$ defined as

$$b^{\pi}(\mathbf{s}) := \mathbb{E}^{\pi} \left[\sum_{t=1}^{\infty} \left(r(s_t, a_t) - g^{\pi}(s_1) \right) \middle| s_1 = \mathbf{s} \right].$$

where \mathbb{E}^{π} indicates expectation over trajectories generated by π .

- Assume $g^{\pi}(s) = g$ is constant, i.e., the MDP *forgets* the initial state —for example, it holds in RiverSwim for π prescribing to take 'right' action.
- Then $b^{\pi}(s) b^{\pi}(s')$ indicates how much reward could have been obtained by starting in s rather than in s'.

Digression: Classification of MDPs Based on Reachability

MDP Classes

A classification of MDPs in terms of reachability of various states:

- \bullet An MDP is ${\bf ergodic}$ if it is possible to reach any state from any other state under every $\pi\in\Pi^{\rm SD}.$
- ② An MDP is **communicating** if it is possible to reach any state from any other state under some $\pi \in \Pi^{\text{SD}}$.
- An MDP is weakly communicating if its state-space can be partitioned into two sets:
 - (i) a set that is transient under every $\pi \in \Pi^{\text{SD}}$; and
 - (ii) a closed set in which every two states can reach each other under $\underline{\mathsf{some}}\ \pi \in \Pi^\mathsf{SD}.$

In words, a weakly communicating MDP \equiv a communicating MDP + some extra transient states.

MDP Classes

Hierarchy of MDP classes:

Diameter

Connectivity in MDPs can be measured via diameter (Jaksch et al., 2010).

Diameter of MDP

Let $T^\pi(s',s)$ denote the first hitting time of state s' when following $\pi\in\Pi^{\text{SD}}$ from $s(\neq s')$ in an MDP M. The diameter D of M is defined as

$$D := \max_{s \neq s'} \min_{\pi \in \Pi^{SD}} \mathbb{E} [T^{\pi}(s', s)].$$

ullet Intuitively, D measures the worst-case shortest-path in the MDP:

$$D := \max_{\substack{s \neq s' \\ \text{worst-case}}} \ \min_{\substack{\pi \in \Pi^{\text{SD}} \\ \text{shortest-path for } s \rightarrow s'}} \mathbb{E} \big[T^{\pi}(s', s) \big] \,.$$

- MDP M is communicating $\iff M$ has a finite diameter.
- We may have $D = \infty$ for a weakly communicating MDP.

Example: RiverSwim

Is this MDP ergodic? Is it communicating?

Example: Ergodic RiverSwim

Is this MDP ergodic? Is it communicating?

MDP Classes: Gain

- In ergodic MDPs: g^π for any π does not depend on the starting state, i.e., $g^\pi(s) = g^\pi$ for all s.
- In weakly-communicating MDPs: g^* does not depend on the starting state, i.e., $g^*(s) = g^*$ for all s.

	ergodic	communicating	weakly-communicating
g^{π}	constant	(maybe) state-dependent	(maybe) state-dependent
g^{\star}	constant	constant	constant
D	finite	finite	(maybe) infinite

From now on, we only consider weakly-communicating MDPs.

Finding a Gain-Optimal Policy

Optimal Policy

In a weakly-communicating MDPs, at least one stationary deterministic policy exists, which is gain-optimal.

Hence,

$$g^{\star}(s) = g^{\star} = \sup_{\pi \in \Pi^{\mathsf{HR}}} g^{\pi}(s) = \max_{\pi \in \Pi^{\mathsf{SD}}} g^{\pi}(s)$$

- Hence, we can restrict attention to $\pi \in \Pi^{SD}$.
- \bullet Such optimal policy in $\pi \in \Pi^{\rm SD}$ can be characterized using Bellman optimality equations.

Bellman Optimality Equations

Theorem

If M is weakly communicating, then:

$$g^* + b^*(s) = \max_{a \in \mathcal{A}} \left(r(s, a) + \sum_{x \in \mathcal{S}} P(x|s, a)b^*(x) \right), \quad \forall s \in \mathcal{S}.$$

Furthermore, $\pi \in \Pi^{SD}$ is optimal if and only if:

$$\pi(s) \in \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left(r(s, a) + \sum_{x \in \mathcal{S}} P(x|s, a) b^{\star}(x) \right), \quad \forall s \in \mathcal{S}.$$

- $b^{\star}: \mathcal{S} \to \mathbb{R}$ is called the optimal bias function.
- g^* is uniquely defined. (Why?)
- But b^{\star} is defined up to an additive constant: If b^{\star} is a solution, so is $b^{\star} + c\mathbf{1}$ for any $c \in \mathbb{R}$.

VI

- We can use Value Iteration to solve Bellman Optimality Equations.
- The update is similar to the one in discounted MDPs:

$$V_{n+1}(s) = \max_{a \in \mathcal{A}} \left(r(s, a) + \sum_{x \in \mathcal{S}} P(x|s, a) V_n(x) \right), \quad s \in \mathcal{S}.$$

- V_n could grow unbounded. Yet we can show that $V_{n+1}-V_n$ could converge (to g^{\star}).
- Hence, we choose to stop as soon as

$$\max_{s \in \mathcal{S}} \left(V_{n+1}(s) - V_n(s) \right) - \min_{s \in \mathcal{S}} \left(V_{n+1}(s) - V_n(s) \right) < \varepsilon$$

Or $\operatorname{sp}(V_{n+1}-V_n)<\varepsilon$, where 'sp' denotes the span operator (or span semi-norm) defined as

Given
$$f: \mathcal{S} \to \mathbb{R}^S$$
, $\operatorname{sp}(f) := \max_{s \in \mathcal{S}} f(s) - \min_{s \in \mathcal{S}} f(s)$.

VI

- ullet input: arepsilon
- initialization: Select $V_0 \in \mathbb{R}^S$ arbitrarily. Set n = -1.
- repeat:
 - Increment n
 - Update, for each $s \in \mathcal{S}$,

$$V_{n+1}(s) = \max_{a \in \mathcal{A}} \left(r(s,a) + \sum_{x \in \mathcal{S}} P(x|s,a) V_n(x) \right)$$
 until $\mathrm{sp}\big(V_{n+1} - V_n\big) < \varepsilon$

output:

$$\pi^{VI}(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left(r(s, a) + \sum_{x \in \mathcal{S}} P(x|s, a) V_n(x) \right), \quad s \in \mathcal{S}$$

VI: Convergence

Theorem

In weakly communicating MDPs,

• For any $V_0 \in \mathbb{R}$, $(V_n)_{n \geq 0}$ generated by VI satisfies,

$$\lim_{n \to \infty} (V_{n+1}(s) - V_n(s)) = g^*, \quad \forall s \in \mathcal{S}.$$

- VI converges after finitely many iterations. Furthermore, π^{VI} is ε -optimal: For all $s \in \mathcal{S}$, $g^{\pi^{VI}}(s) \geq g^* \varepsilon$.
- $V_{n+1}(s) V_n(s)$ for any s gives an approximation to g^* . It is best to approximate g^* as:

$$\frac{1}{2} \left[\max_{s \in \mathcal{S}} (V_{n+1}(s) - V_n(s)) + \min_{s \in \mathcal{S}} (V_{n+1}(s) - V_n(s)) \right]$$

• V_n also gives an approximation for b^* . So does $V_n - (\min_s V_n(s))\mathbf{1}$ (why?)

Example: RiverSwim

Optimal gain and optimal bias function in 6-state RiverSwim, computed via VI:

$$g^* = 0.467$$

 $b^*(s_1) = 0$, $b^*(s_2) = 0.78$, $b^*(s_3) = 2.04$
 $b^*(s_4) = 3.37$, $b^*(s_5) = 4.70$, $b^*(s_6) = 6.03$

Total Reward and Gain

N-step total reward, $\sum_{t=1}^{N} r_t$ is naturally connected to the average-reward.

Theorem

In weakly communicating MDPs, under π^* ,

(i)
$$\mathbb{E}\left[\sum_{t=1}^{N} r_t \middle| s_1 = s\right] = Ng^* + \mathcal{O}(\operatorname{sp}(b^*))$$

(ii)
$$\sum_{t=1}^{N} r_t = Ng^* + \mathcal{O}\left(\operatorname{sp}(b^*)\sqrt{N\log(N/\delta)}\right), \quad \textit{w.p.} \geq 1 - \delta$$

(i) is evident from the definition of bias function, and (ii) follows from Hoeffding's inequality.

Evaluating Gain and Bias

(outside of the scope of OReL)

Induced MRPs

Every $\pi \in \Pi^{SR}$ induces a Markov reward process (MRP) —defined identically as in discounted MDPs.

• The transition matrix P^{π} of MRP:

$$P^{\pi}(s, s') = \sum_{a \in \mathcal{A}} \pi(a|s) P(s'|s, a), \quad s, s' \in \mathcal{S}$$

• The reward vector of r^{π} of MRP:

$$r^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s)r(s,a), \quad s \in \mathcal{S}$$

Gain of Stationary Policies

Theorem

Let $\pi \in \Pi^{SR}$. Then, $q^{\pi} = \overline{P}^{\pi} r^{\pi}$, where

$$\overline{P}^{\pi} := \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} (P^{\pi})^{t-1}$$

is the limiting matrix or the Cesaro-average of P^{π} ,

Proof. For $N \in \mathbb{N}$, the N-step accumulated reward in the MRP induced by π is

$$\mathbb{E}^{\pi} \left[\sum_{t=1}^{N} r(s_{t}, a_{t}) \middle| s_{1} = s \right]$$

$$= \mathbb{E}^{\pi} [r(s_{1}, a_{1}) \middle| s_{1} = s] + \mathbb{E}^{\pi} [r(s_{2}, a_{2}) \middle| s_{1} = s] + \dots + \mathbb{E}^{\pi} [r(s_{N}, a_{N}) \middle| s_{1} = s]$$

$$= r^{\pi}(s) + [P^{\pi} r^{\pi}](s) + \dots + [(P^{\pi})^{N-1} r^{\pi}](s) = \sum_{t=1}^{N} [(P^{\pi})^{t-1} r^{\pi}](s)$$

where we used that for any $t \geq 1$, when following $\pi \in \Pi^{SR}$,

Bellman Equation for Π^{SR}

Theorem (Bellman Equation for Policy π)

Let $\pi \in \Pi^{SR}$. Assume that π induces an MRP, which is irreducible or unichain. Then

$$g^{\pi} \mathbf{1} = \overline{P}^{\pi} r^{\pi}$$

Furthermore, the bias function b^{π} satisfies the Bellman equation:

$$g^{\pi} \mathbf{1} + (I - P^{\pi})b^{\pi} = r^{\pi}$$
.

As a result,

$$b^{\pi} = (I - P^{\pi} + \overline{P}^{\pi})^{-1}(I - \overline{P}^{\pi})r^{\pi} + c\mathbf{1},$$

where c is any arbitrary scalar.

Note that the matrix $I-P^\pi+\overline{P}^\pi$ is non-singular, so the last assertion above is well-defined.

