FK Ex 4 - Probeklausur

1 Quickies

- (a) Was ist Licht?
- (b) Welche verschiedenen Arten von Polarisationen gibt es?
- (c) Durch welche Effekte kann man aus unpolarisiertem Licht polarisiertes Licht erzeugen?
- (d) Geben Sie die Wellenfunktion einer beliebigen harmonischen Welle an und erläutern Sie die Begriffe Dispersionsrelation, Phasengeschwindigkeit, Gruppengeschwindigkeit und das Huygensche Prinzip.
- (e) Sonnenlicht ist nicht blau oder rot. Trotzdem sehen wir einen blauen Himmel und einen roten Sonnenuntergang. Erklären Sie diese Phänomene.

2 Ebener Spiegel

Vor einem ebenen Spiegel befindet sich im Abstand a ein Gegenstand der Größe y.

- (a) Führen Sie die Bildkonstruktion durch. Entsteht ein virtuelles Bild?
- (b) Ermitteln Sie die Bildweite a^* mit Hilfe der Abbildungsgleichung.

3 Teleskop

Ein Teleskop zur Betrachtung weit entfernter Sterne besteht aus zwei sphärischen Spiegeln (Skizze). Der Krümmungsradius des großen Spiegels (mit einem Loch im Zentrum) sei 2 m, derjenige des kleinen betrage 0.6 m. Der Abstand der Scheitel S_1, S_2 der beiden Spiegel ist 0.75 m.

- (a) Berechnen Sie den Abstand des bildseitigen Brennpunkts F des Spiegelsystems vom Scheitel S_2 des kleinen Spiegels (parallel einfallende Strahlen, siehe Skizze).
- (b) Bestimmen Sie die effektive Brennweite der Anordnung beider Spiegel (effektive Brennweite = Brennweite einer Sammellinse mit gleichen abbildenden Eigenschaften wie das Spiegelsystem).
- (c) Mit Hilfe eines Okulars $f_{\rm Ok}=2$ cm wird nun das reelle Zwischenbild des Sterns mit entspanntem Auge betrachtet. Berechnen Sie die Vergrößerung des Gesamtsystems.
- (d) Was sind die Hauptvorteile von Spiegelteleskopen gegenüber astronomischen Fernrohren (Linsenteleskopen)?

4 Interferenz

Eine Radarstation beobachtet den Venusaufgang. Die Station steht auf einer Klippe am Ufer des Atlantiks und sendet zu diesem Zweck elektromagnetische Wellen mit einer Wellenlänge von $\lambda=300$ m aus. Die Höhe der Station gegenüber Meereshöhe beträgt h=350 m. Die Intensität der von der Venus reflektierten Radarsignale hat ein erstes Minimum wenn die Venus den Winkel α über dem Horizont erreicht. Berechnen Sie diesen Winkel α . (**Hinweis:** Das meer ist als plane, perfekt reflektierende Fläche zu betrachten. Beugungseffekte, der Einfluss der Atmosphäre und die Erdkrümmung sollen vernachlässigt werden. Außerdem ist die Venus ziemlich weit weg!)

5 Schwarzer Körper

Außerhalb der Erdatmosphäre misst man das Maximum des Sonnenspektrums bei einer Wellenlänge von $\lambda=465~\mathrm{nm}$

- a) Betrachten Sie die Sonne näherungsweise als schwarzen Strahler und bestimmen Sie die Oberflächentemperatur T_S der Sonne.
- b) Die vom Merkur ausgesandte Schwarzkörperstrahlung entspricht einer Temperatur von $T_M=442,5$ K. Bestimmen Sie den Abstand r des Merkurs von der Sonne unter der Annahme thermischen Gleichgewichts und eines kreisförmigen Orbits. Der Radius der Sonne beträgt $R_S=6,96\cdot 10^5$ km, der des Merkurs ist $R_M=2439,7$ km. (Nehmen Sie an, dass die Oberfläche des Merkurs nicht reflektierend ist!)

6 Atomare Übergänge

Wir betrachten das wasserstoffähnliche Kalium Atom ($^{39}_{19} Ka^{+18}$).

- a) Wie groß ist die Ionisierungsenergie des letzten Elektrons, wenn sich dieses im Grundzustand befindet? Wie groß ist der Bahnradius des Grundzustandes?
- b) Wie viel kinetische Energie hätte ein Neutron ($m_n = 1,65 \cdot 10^{-27}$ kg) mit der gleichen Wellenlänge, wie das in a) zur Ionisierung benötigte Photon?