

2-3.여러 가지 방정식과 부등식_천재(류희찬)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2022-01-11
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

단원 ISSUE /

이 단원에서는 삼, 사차방정식과 연립이차방정식, 연립이차부등식 에 관련된 문제 등이 자주 출제되며 방정식 및 부등식을 정확하 게 해결할 수 있어야 응용 문제에 대한 접근이 용이하므로 기초 적인 문제부터 반복적으로 학습합니다.

평가문제

[스스로 확인하기]

- **1.** 사차방정식 $x^4 3x^3 + 3x^2 + x 6 = 0$ 의 근 중에서 실근의 합을 구하면?
 - 1 1

② 2

- 3 3
- (4) 4

⑤ 5

[스스로 확인하기]

- **2.** $x^4 + 3x^2 + 36 = 0$ 의 네 근을 α , β , γ , δ 라 할 때, $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ 의 값을 구하면?
 - $\bigcirc -2$
- 2 1

- 3 0
- **4** 1

⑤ 2

[스스로 확인하기]

- **3.** 삼차방정식 $2x^3 x^2 4x 1 = 0$ 의 세 근 중 정수 가 아닌 모든 근의 곱을 구하면?
 - ① $-\frac{1}{2}$
- $\bigcirc -\frac{3}{4}$
- $3\frac{1}{2}$
- $4 \frac{3}{4}$

[스스로 확인하기]

- **4.** 가로의 길이, 세로의 길이가 각각 $30 \, \mathrm{cm}$, $20 \, \mathrm{cm}$ 인 직사각형 모양의 철판이 있다. 철판의 네 귀퉁이에서 한 변의 길이가 $x \, \mathrm{cm}$ 인 정사각형을 잘라 내고 점선을 따라 접었더니 부피가 $1000 \, \mathrm{cm}^3$ 인 뚜껑 없는 상자가 되었다. 이때 x의 값의 합을 구하면?
 - ① 5
- ② 15
- $315-5\sqrt{2}$
- $4) 15 + 5\sqrt{2}$
- **⑤** 25

[스스로 마무리하기]

- **5.** 삼차방정식 $x^3 (p+1)x + p = 0$ 이 중근 α 와 또 다른 실근 β 를 가질 때, 모든 p의 값의 곱을 구하면?
 - 1 4
- $3 \frac{1}{2}$
- $\frac{1}{2}$

[스스로 마무리하기]

- **6.** 사차방정식 $x^4 + ax^3 + bx^2 ax + 6 = 0$ 의 두 근이 1, 2일 때, 나머지 두 근의 곱은? (단 a, b는 상수)
 - $\bigcirc -2$
- (2) -1
- $3\frac{1}{2}$
- $4 \frac{3}{2}$
- **⑤** 3

[스스로 확인하기]

- **7.** 실수 a,b에 대하여 삼차방정식 $x^3 + ax + b = 0$ 의 한 근이 i일 때, 방정식 $x^3 + bx^2 + a = 0$ 의 두 허근의 합을 구하면?
 - 1 1

② 2

3 3

4

(5) 5

[스스로 확인하기]

8. 사차방정식

(x+1)(x+3)(x+5)(x+7)=-15의 모든 유리수의 근의 곱을 p, 모든 무리수 근의 곱을 q라 할 때, p-q의 값을 구하면?

1 1

2 2

3 3

(4) 4

(5) 5

[스스로 확인하기]

- **9.** 연립방정식 $\begin{cases} x+y=2 \\ x^2+y^2=2 \end{cases}$ 의 해를 순서쌍 (x,y)로 나타낼 때, 순서쌍의 개수를 구하면?
 - \bigcirc 0
- ② 1
- 3 2
- **(4)** 3
- (5) 4

[스스로 확인하기]

- **10.** 연립방정식 $\begin{cases} x^2 3xy + 2y^2 = 0 \\ x^2 + y^2 + 3x + 1 = 0 \end{cases}$ 을 만족하는 실수 x,y에 대하여 x+y의 최댓값을 구하면?
 - $\bigcirc -3$
- (3) -1
- $(4) \frac{3}{5}$

- **11.** 연립방정식 $\begin{cases} ax-y=5 \\ x+y=7 \end{cases}$ 의 해가 $\begin{cases} x-y=b \\ x^2+y^2=25 \end{cases}$ 를 만 족할 때, a-b의 값은? (단, b>0)
 - $\bigcirc -3$
- $\bigcirc 2 2$
- ③ 0
- **4** 1
- ⑤ 3

[스스로 확인하기]

 $oldsymbol{12}$. 과거에는 A 도시에서 B 도시를 갈 때 높은 산이 있어 $\mathbb C$ 도시를 경유해야 했고, 이때 $\mathbb A$ 도시에서 $\mathbb C$ 도시를 경유하여 B 도시로 가는 도로의 총 길이는 24km 였다. 그런데, 산에 터널을 뚫어 A 도시와 B도시를 직접 연결하는 도로를 건설하였더니, C 도시 를 경유할 때보다 16km 단축되었다. A 도시와 C 도 시를 잇는 도로의 길이를 구하면? (단, 모든 도로는 직선도로이고, A 도시에서 B 도시와 C 도시를 잇는 두 도로는 서로 수직이다.)

- ① $\frac{19}{3}$ km
- ② 9km
- $3 \frac{28}{3} km$
- $\frac{32}{3}km$
- $\frac{40}{3} km$

[스스로 확인하기]

13. 어느 지방자치단체는 그림과 같이 정사각형 모양 으로 두 개의 상업용 지구와 한 개의 주거용 지구를 개발하고 각 지구의 둘레를 따라 도로를 건설하였

- (가) 두 개의 상업용 지구의 넓이는 서로 같다.
- (나) 두 개의 상업용 지구와 한 개의 주거용 지구의 넓이 의 합은 $150 \, \mathrm{km}^2$ 이고, 도로의 길이의 합은 $80 \, \mathrm{km}$ 이
- 위의 조건을 만족하는 주거용 지구의 넓이를 구하면? (단, 상업용 지구의 넓이는 주거용 지구의 넓이보다 작 고, 도로의 폭은 무시한다.)
 - ① $50km^2$
- ② $60km^2$
- $3) 80km^2$
- $\textcircled{4} 100km^2$
- $(5) 120km^2$

[스스로 마무리하기]

- **14.** x, y에 대한 연립방정식 $\begin{cases} x+y=2a+1 \\ xy=a^2-1 \end{cases}$ 이 실수인 해를 갖도록 하는 정수 a의 최솟값을 구하면?
 - ① -3
- 3 0
- **4** 1
- ⑤ 3

[스스로 확인하기]

- **15.** 연립방정식 $\begin{cases} y=|x|-1 \\ x^2+2y^2=34 \end{cases}$ 의 해가 $x=x_1,\ y=y_1$ 또는 $x=x_2,\ y=y_2$ 일 때, $|x_1y_1-x_2y_2|$ 의 값을 구하면?
 - ① 0

- ② 10
- 3 24
- **4** 30
- ⑤ 36

[스스로 마무리하기

16. 연립부등식 $\begin{cases} 7x < 27 - 2x \\ \frac{2}{3}x - \frac{3-x}{2} \ge \frac{5}{6}$ 를 만족하는 정수

*x*의 개수는?

① 1

② 3

- 3 5
- 4) 7
- (5) 9

- [스스로 확인하기]
- **17.** 부등식 ||x-2|-1|<10을 만족시키는 모든 정수 x의 개수를 구하면?
 - ① 10
- ② 15
- 3 21
- ④ 27
- **⑤** 30

- [스스로 확인하기]
- **18.** 연립부등식 $2x^2 + 1 < 3x \le x + a$ 의 해가 $\frac{1}{2} < x < 1$ 이 되도록 하는 실수 a의 값의 범위는?
 - ① a < -2
- ② $a \le -2$
- $\Im a \leq 2$
- $\textcircled{4} \ a < 2$
- \bigcirc $a \geq 2$

[스스로 확인하기]

- **19.** 부등식 $|x-3|+2|x-1| \le 10$ 을 만족하는 실수 x의 최댓값과 최솟값의 차를 구하면?
 - 1 2
- $2 \frac{8}{3}$
- $3\frac{11}{3}$
- $\frac{20}{3}$

- [스스로 확인하기]
- **20.** x에 대한 연립부등식 $\begin{cases} x-2 \leq 2x-a \\ 3x-4 \leq 12-5x \end{cases}$ 가 해를 갖도록 하는 상수 a의 최댓값을 구하면?
 - \bigcirc 2
- ② 3

- 3 4
- **4** 5
- (5) 6

- [스스로 마무리하기]
- **21.** 부등식 $|x+1| + \sqrt{x^2 4x + 4} < x + 2$ 를 만족시키는 정수 x의 값의 합을 구하면?
 - \bigcirc 0

2 1

32

④ 3

⑤ 4

[스스로 확인하기]

- **22.** 둘레의 길이가 40 m이고 넓이가 96 m^2 이상이 되는 직사각형 모양의 가축우리를 만들려고 한다. 세로의 길이가 가로의 길이보다 작거나 같을 때, 세로의 길이의 최댓값을 구하면?
 - ① 2
- ② 6
- 3 8
- **4**) 10
- ⑤ 12

[스스로 확인하기]

- **23.** 연립부등식 $\begin{cases} 2x^2+3x-5\leq 0 \\ -3\leq [x-1]\leq 2 \end{cases}$ 를 만족시키는 정수 x의 개수는? (단, [x]는 x보다 크지 않은 최대의 정수이다.)
 - ① 2
- ② 3
- 3) 4
- 4 5
- (5) 6

- [스스로 확인하기]
- **24.** 이차부등식 $ax^2+bx+c>0$ 의 해가 -2 < x < 3일 때, 이차부등식 $cx^2+bx+a < 0$ 의 해는 $\alpha < x < \beta$ 이다. 이 때, $10\left(\frac{1}{\beta}-\frac{1}{\alpha}\right)$ 의 값을 구하면?
 - ① 10
- ② 20
- 3 40
- **4**) 50
- (5) 80

- [스스로 확인하기]
- **25.** 다음 보기 중 이차부등식의 해가 모든 실수인 것을 모두 고른 것은?

<보기>

- $x^2 x + 3 > 0$
- $x^2 3x + 3 \ge 0$
- ① ①
- 20,0
- 3 🗅 🖹
- (4) (7), (C), (C)
- (5) (L), (C), (E)

[스스로 확인하기]

- **26.** 두 이차방정식 $x^2 kx + 2 = 0$, $x^2 + kx + 2k = 0$ 중 하나는 실근, 다른 하나는 허근을 가질 때, 정수 k값의 합을 구하면?
 - ① 7
- ② 9
- 3 15
- (4) 22
- ⑤ 24

[스스로 확인하기]

- **27.** a < 0일 때, 이차부등식 $ax^2 + 10a^2x + 21a^3 > 0$ 의 해를 구하면?
 - ① 3a < x < 7a
 - ② -7a < x < -3a
 - ③ x < 7a 또는 x > 3a
 - $\bigcirc 3a < x < -7a$
 - ⑤ x < -3a 또는 x > -7a

[스스로 확인하기]

- **28.** 연립부등식 $\begin{cases} x^2-x-6<0 \\ x^2-2(a+1)x+a^2+2a\leq 0 \end{cases}$ 의 해가 존재하도록 하는 실수 a 값의 범위를 $\alpha < a < \beta$ 라할 때, $\alpha + \beta$ 의 값을 구하면?
 - $\bigcirc -2$
- $\bigcirc -1$
- ③ 0
- 4 1

(5) 2

[스스로 확인하기]

- **29.** 둘레의 길이가 36 cm인 직사각형의 넓이가 $56 cm^2$ 이상이 되도록 가로와 세로의 길이를 정할 때, 가로의 길이의 최솟값을 구하면? (단, 가로의 길이는 세로의 길이보다 길거나 같다.)
 - ① 5

② 6

3 8

4 12

⑤ 9

[스스로 마무리하기]

- **30.** $ax^2 + bx + c > 0$ 의 해가 $-1 \sqrt{5} < x < -1 + \sqrt{5}$ 일 때, $cx^2 2bx a < 0$ 의 해는?
 - ① 모든 실수
 - ② $x = -\frac{1}{2}$
 - $3 \frac{1}{2} \le x < \frac{1}{2}$
 - ④ $x \neq -\frac{1}{2}$ 인 모든 실수
 - ⑤ 해가 없다.

[스스로 마무리하기]

- **31.** 연립부등식 $\left\{ \begin{array}{ll} 2\mid x-2\mid < a \\ x^2+6x+8<0 \end{array} \right.$ 이 해를 갖지 않도록 하는 양수 a의 최댓값을 구하면?
 - ① 2
- ② 4
- ③ 6
- **(4)** 8
- (5) 10

[스스로 마무리하기]

- **32.** x에 대한 두 이차부등식 $x^2 + ax + b \ge 0$, $x^2 + cx + d \le 0$ 을 동시에 만족하는 x의 값의 범위가 $-3 \le x \le -1$ 또는 x = 2일 때, 상수 a, b, c, d의 합 a + b + c + d의 값을 구하면?
 - ① 2
- 2 4
- 3 6
- (4) 8
- (5) 10

[스스로 마무리하기]

33. 연립부등식 $\begin{cases} x^2-3x-4<0\\ x^2-(a+3)x+3a\leq 0 \end{cases}$ 의 해가

 $-1 < x \le 3$ 일 때, 실수 a의 최댓값을 구하면?

- ① -2
- 30
- **4** 1
- ⑤ 2

P

정답 및 해설

1) [정답] ①

[해설] $x^4 - 3x^3 + 3x^2 + x - 6 = 0$ 에서 x = -1, x = 2를 대입하면 성립하므로 조립제법을 이용하여 인수 분해하면

 $(x+1)(x-2)(x^2-2x+3)=0$ 이므로 주어진 방정식의 해는 x=-1 또는 x=2 또는 $x=1\pm\sqrt{2}i$ 이다. 따라서 모든 실근의 합은 1이다.

2) [정답] ③

[해설] 방정식 $x^4 + 3x^2 + 36 = 0$ 에서

$$(x^4 + 12x^2 + 36) - 9x^2 = 0$$

$$(x^2+6)^2-(3x)^2=0$$

$$(x^2+3x+6)(x^2-3x+6)=0$$

방정식 $x^2+3x+6=0$ 의 두 근을 α , β ,

방정식 $x^2-3x+6=0$ 의 두 근을 γ , δ 라 하면 근과 계수와의 관계에 의하여 $\alpha+\beta=-3$, $\alpha\beta=6$, $\gamma+\delta=3$, $\gamma\delta=6$ 이다.

따라서
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{\alpha + \beta}{\alpha \beta} + \frac{\gamma + \delta}{\gamma \delta} = 0$$
이다.

3) [[정답] ①

[해설] x = -1일 때, 주어진 방정식이 성립하므로 조 립제법에 의하여

 $(x+1)(2x^2-3x-1)=0$

 $2x^2-3x-1=0$ 을 만족하는 정수근은 없으므로 구하는 근의 곱은 $-\frac{1}{2}$ 이다.

4) [정답] ③

[해설] 네 귀퉁이를 잘라내어 만든 상자의 부피가 1000 cm^3 이므로 (30-2x)(20-2x)x = 1000.

$$x^3 - 25x^2 + 150x - 250 = 0$$
,

 $(x-5)(x^2-20x+50)=0$ 이고 x=5 또는

 $x=10\pm 5\sqrt{2}$ 이다.

0 < x < 10이므로 x = 5 또는 $x = 10 - 5\sqrt{2}$ 이다. 따라서 x의 값의 합은 $15 - 5\sqrt{2}$ 이다.

5) [정답] ③

[해설] $f(x) = x^3 - (p+1)x + p$ 라 하면

f(1) = 1 - (p+1) + p = 0이므로 f(x)를 조립제법

을 이용하여 인수분해하면

 $f(x) = (x-1)(x^2 + x - p)$ 이다.

 $(x-1)(x^2+x-p)=0$ 이 중근을 갖기 위해서는 $x^2+x-p=0$ 이 중근을 가지거나

x = 1이 $x^2 + x - p = 0$ 의 근이어야 한다.

(i) $x^2 + x - p = 0$ 이 중근을 가질 때,

판별식 D=0이므로 D=1+4p=0이고 $p=-\frac{1}{4}$ 이다.

(ii) $x^2 + x - p = 0$ 이 근 x = 1을 가질 때,

1+1-p=0이고 p=2이다.

(i), (ii)에 의해 p의 값의 곱은 $-\frac{1}{4} \times 2 = -\frac{1}{2}$ 이다.

6) [정답] ⑤

[해설] 방정식 $x^4 + ax^3 + bx^2 - ax + 6 = 0$ 의 두 근이 1, 2이므로 x = 1, x = 2를 각각 대입하면 1 + a + b - a + 6 = 0, 16 + 8a + 4b - 2a + 6 = 0이고 연립하여 풀면 a = 1, b = -7이다. 따라서 주어진 방정식은 $x^4 + x^3 - 7x^2 - x + 6 = 0$

따라서 주어진 방정식은 $x^4+x^3-7x^2-x+6=0$ 이고, 두 근이 1, 2이므로 조립제법을 이용하여 인수분해하면 $(x-1)(x-2)(x^2+4x+3)=0$ 이다. 따라서 주어진 방정식의 나머지 두 근은

 $x^2 + 4x + 3 = 0$ 의 근이므로 근과 계수와의 관계에 의하여 구하는 두 근의 곱은 3이다.

7) [정답] ①

[해설] 주어진 삼차방정식 $x^3+ax+b=0$ 의 계수가 실수이므로 i가 근이면 -i도 근이다. 따라서 나머지 한 근을 α 라 하면 근과 계수의 관계에 의하여 $i+(-i)+\alpha=0,\ i(-i)+(-i)\alpha+i\alpha=\alpha$ $i(-i)\alpha=-b$

위의 세 식을 연립하여 풀면 $\alpha=0,\ a=1,\ b=0$ 이므로 방정식 $x^3+1=0$ 의 좌변을 인수분해하면 $(x+1)(x^2-x+1)=0$ 이다. 따라서 이 방정식의 두 허근은 이차방정식 $x^2-x+1=0$ 의 근이므로 그 합은 1이다.

8) [정답] ②

[해설] (x+1)(x+3)(x+5)(x+7)

 $= \{(x+1)(x+7)\}\{(x+3)(x+5)\}$

 $= \{(x^2+8x+7)\}\{(x^2+8x+15)\}$

 $x^2 + 8x = X$ 로 놓으면 주어진 방정식은

 $(X+7)(X+15)=-15, X^2+22X+120=0$

(X+10)(X+12)=0에서

X=-10 또늘 X=-12이다.

(i) X = -10 $\stackrel{\square}{=}$ $\stackrel{\square}{=}$ $\frac{1}{10}$, $x^2 + 8x = -10$, $x = -4 \pm \sqrt{6}$

(ii) X=-12일 때, $x^2+8x=-12$,

 $x^{2}+8x+12=0$, (x+2)(x+6)=0

 $x = -2 \, \, \pm \pm \, \, x = -6$

따라서 p=12, q=10이므로 p-q=2이다.

9) [정답] ②

[해설]
$$y=2-x$$
를 $x^2+y^2=2$ 에 대입하면
$$x^2+(2-x)^2=2, \ x^2-2x+1=0$$

$$(x-1)^2=0$$
이고 $x=1$ 이다.
$$x=1$$
을 $y=2-x$ 에 대입하면 $y=1$ 이다. 따라서 순서쌍 (x,y) 는 $(1,1)$ 의 1개이다.

10) [정답] ④

[해설]
$$x^2-3xy+2y^2=0$$
에서
$$(x-y)(x-2y)=0$$
이고 $x=y$ 또는 $x=2y$ 이다. (i) $y=x$ 를 $x^2+y^2+3x+1=0$ 에 대입하면
$$y^2+y^2+3y+1=0, \ 2y^2+3y+1=0$$
 ($y+1$)(2 $y+1$)=0이고 $y=-1$ 또는 $y=-\frac{1}{2}$ 이

다. 따라서
$$\begin{cases} x=-1 \\ y=-1 \end{cases}$$
 또는 $\begin{cases} x=-\frac{1}{2} \\ y=-\frac{1}{2} \end{cases}$ 이다.

$$4y^2 + y^2 + 6y + 1 = 0$$
, $5y^2 + 6y + 1 = 0$
 $(y+1)(5y+1) = 0$ 이고 $y = -1$ 또는 $y = -\frac{1}{5}$ 이

(ii) x = 2y를 $x^2 + y^2 + 3x + 1 = 0$ 에 대입하면

다. 따라서
$$\begin{cases} x=-2 \\ y=-1 \end{cases}$$
 또는 $\begin{cases} x=-rac{2}{5} \\ y=-rac{1}{5} \end{cases}$ 이다.

(i), (ii)에서
$$x+y$$
의 최댓값은 $-\frac{2}{5}-\frac{1}{5}=-\frac{3}{5}$ 이다.

11) [정답] ④

[해설]
$$\begin{cases} ax-y=5\\ x+y=7 \end{cases}$$
의 해는 $\begin{cases} x-y=b\\ x^2+y^2=25 \end{cases}$ 의 해와 같다. $y=7-x$ 를 $x^2+y^2=25$ 에 대입하면 $x^2+(7-x)^2=25$, $2x^2-14x+24=0$, $x^2-7x+12=0$, $(x-3)(x-4)=0$ 이므로 $x=3$ 또는 $x=4$ 이다. 이를 $y=7-x$ 에 각각 대입하면 $x=3,\ y=4$ 또는 $x=4,\ y=3$ 이다. $b=x-y>0$ 이므로 $x=4,\ y=3$ 이고 $b=4-3=1$ 이다. $x=4,\ y=3$ 을 $ax-y=5$ 에 대입하면 $4a-3=5,\ 4a=8$ 이고 $a=2$ 이다. 따라서 $a-b=2-1=1$ 이다.

12) [정답] ④

직선 도로 AB의 길이는 24-16=8(km)이다. 직선 도로 AC, BC의 길이를 각각 a, b라고 하 면 a+b=24이고 $8^2+a^2=b^2$.

$$64 = (b+a)(b-a)$$
 이므로 $b-a = \frac{8}{3}$ 이다.

따라서
$$a+b=24$$
와 $b-a=\frac{8}{3}$ 를 연립하면 $a=\frac{32}{3}$, $b=\frac{40}{3}$ 이고 직선 도로 AC의 길이는 $\frac{32}{3}$ km 이다.

13) [정답] ④

[해설] 상업용 지구와 주거용 지구의 한 변의 길이를 각각 x km, y km (단, x > 0, y > 0)라 하면 넓 이의 합은 $2x^2 + y^2 (\text{km}^2)$ 이므로 $2x^2 + y^2 = 150$ 이다. 도로의 총 길이는 8x + 4y = 80 (km)이고 2x + y = 20이다.

$$y=20-2x$$
를 $2x^2+y^2=150$ 에 대입하면 $2x^2+(20-2x)^2=150$ $3x^2-40x+125=0$, $(x-5)(3x-25)=0$ $x=5$ 또는 $x=\frac{25}{3}$ 이다.

$$x=5$$
일 때, $y=10$, $x=\frac{25}{3}$ 일 때, $y=\frac{10}{3}$
그런데 상업용 지구의 넓이는 주거용 지구의 넓이보다 작으므로 $x=5$, $y=10$ 이다.

따라서 주거용 지구의 넓이 y^2 은 $100(km^2)$ 이다.

14) [정답] ②

[해설] $x, y \leftarrow t^2 - (2a+1)t + (a^2-1) = 0$ 의 두 근이 므로 $t^2 - (2a+1)t + (a^2-1) = 0$ 이 실근을 가질 때, 주어진 연립방정식은 실수해를 가진다.

$$D = (2a+1)^2 - 4(a^2 - 1) \ge 0$$
$$4a^2 + 4a + 1 - 4a^2 + 4 \ge 0$$

$$4a+5\geq 0$$
이고 $a\geq -rac{5}{4}$ 이므로 정수

 $4a+5\geq 0$ 이고 $a\geq -\frac{5}{4}$ 이므로 정수 a의 최솟값 은 -1이다.

15) [정답] ③

[해설] (i) $x \ge 0$ 일 때,

$$\begin{cases} y=x-1\\ x^2+2y^2=34 \end{cases}$$
이고, $y=x-1$ 을 $x^2+2y^2=34$ 에 대입하면 $x^2+2(x-1)^2=34$, $3x^2-4x-32=0$, $(3x+8)(x-4)=0$

그런데 $x \ge 0$ 이므로 x = 4이고 y = 3이다.

(ii) x<0일 때,

$$\begin{cases} y = -x - 1 \\ x^2 + 2y^2 = 34 \\ \end{cases}$$
이고, $y = -x - 1$ 을 $x^2 + 2y^2 = 34$ 에

대입하면 $x^2+2(-x-1)^2=34$, $3x^2+4x-32=0$, (3x-8)(x+4)=0

그런데 x < 0이므로 x = -4이고 y = 3이다.

(i), (ii)에서 x=4, y=3 또는 x=-4, y=3이므로 $|x_1y_1-x_2y_2|=|12-(-12)|=24$ 이다.

16) [정답] ①

[해설] 7x < 27 - 2x에서 9x < 27이고 x < 3이다.

$$\frac{2}{3}x-\frac{3-x}{2}\geq \frac{5}{6}$$
의 양변에 6을 곱하면 $4x-3(3-x)\geq 5,\ 7x\geq 14$ 이고 $x\geq 2$ 이다. 따라서 $x<3,\ x\geq 2$ 의 공통범위는 $2\leq x<3$ 이 므로 정수 x 의 개수는 1개이다.

17) [정답] ③

- [해설] ||x-2|-1| < 10에서 -10 < |x-2|-1 < 10, -9 < |x-2| < 11이다.
 - (i) -9 < |x-2|의 해는 모든 실수이다.
 - (ii) |x-2| < 11에서 -11 < x-2 < 11이고 -9 < x < 13이다.

따라서 (i), (ii)의 공통범위는 -9 < x < 13이고 만족하는 정수 x의 개수는 21개이다.

18) [정답] ⑤

[해설] (i) $2x^2+1 < 3x$ 에서 $2x^2-3x+1 < 0$,

$$(2x-1)(x-1) < 0$$
 이코 $\frac{1}{2} < x < 1$ 이다.

- (ii) $3x \le x + a$ 에서 $2x \le a$ 이고 $x \le \frac{a}{2}$ 이다.
- (i), (ii)에 의해 $\frac{1}{2} < x < 1$ 이므로

 $\frac{a}{2} \ge 1$ 에서 $a \ge 2$ 이다.

19) [정답] ④

[해설] (i) $x \ge 3$ 일 때,

 $(x-3)+2(x-1) \le 10$ 이므로 $x \le 5$ 이다.

따라서 $3 \le x \le 5$ 이다.

(ii) $1 \le x < 3$ 일 때,

 $-(x-3)+2(x-1) \le 10$ 이므로 $x \le 9$ 이다.

따라서 $1 \le x < 3$ 이다.

(iii) x < 1일 때,

$$-(x-3)-2(x-1) \le 10$$
이므로 $x \ge -\frac{5}{3}$ 이다.

따라서
$$-\frac{5}{3} \le x < 1$$
이다.

(i), (ii), (iii)에 의해 $-\frac{5}{3} \le x \le 5$ 이고 최댓값

과 최솟값의 차는 $5-\left(-\frac{5}{3}\right)=\frac{20}{3}$ 이다.

20) [정답] ③

[해설] (i) $x-2 \le 2x-a$ 에서 $x \ge a-2$ 이다.

(ii) $3x-4 \le 12-5x$ 에서 $x \le 2$ 이다.

연립방정식의 해가 존재하기 위해서는 $x \ge a-2$ 와 $x \le 2$ 의 공통범위가 존재하면 된다. 따라서 $a-2 \le 2$, $a \le 4$ 이고 a의 최댓값은 4이다.

21) [정답] ③

[해설] $\sqrt{x^2-4x+4} = \sqrt{(x-2)^2} = |x-2|$ 이므로 주어 진 부등식은 |x+1|+|x-2| < x+2이다.

(i) x <-1일 때

-(x+1)-(x-2) < x+2,

-x-1-x+2 < x+2, -3x < 1 0 1 $x > -\frac{1}{3}$ 0

다. 그런데 x < -1이므로 해는 없다.

(ii) -1 ≤ x < 2일 때

x+1-(x-2) < x+2이고 x > 1이다.

그런데 $-1 \le x < 2$ 이므로 1 < x < 2이다.

(iii) $x \ge 2$ 일 때

(x+1)+(x-2) < x+2이고 x < 3이다.

그런데 $x \ge 2$ 이므로 $2 \le x < 3$ 이다.

(i), (ii), (iii)에 의해 1 < x < 3이고 정수 x의 합은 2이다.

22) [정답] ④

[해설] 세로의 길이를 x m 라고 하면 x>0이고, 가로 의 길이와 세로의 길이의 합이 20 m 이므로 $0< x \leq 20-x$ 이다. … \bigcirc

또한 가축우리의 넓이가 96 m^2 이상이므로 $x(20-x) \ge 96$ 이다. …①

 \bigcirc , \bigcirc 를 연립하여 풀면 $8 \le x \le 10$ 이고 세로 길이의 최댓값은 10이다.

23) [정답] ③

[해설] (i) $2x^2+3x-5 \le 0$, $(2x+5)(x-1) \le 0$ 이므 로 $-\frac{5}{2} \le x \le 1$ 이다.

(ii) $-3 \le [x-1] \le 2$, $-3 \le x-1 < 3$ 이므로 $-2 \le x < 4$ 이다.

(i), (ii)에서 연립부등식의 해는 $-2 \le x \le 1$ 이다. 따라서 구하는 정수 x는 4개이다.

24) [정답] ④

[해설] 이차부등식 $ax^2+bx+c>0$ 의 해가 -2 < x < 3이므로 a < 0이다. 그러므로 x^2 의 계수가 a이고 해가 -2 < x < 3인 이차부등식은 a(x+2)(x-3)>0, $ax^2-ax-6a>0$ 이고 b=-a, c=-6a이다. 주어진 이차부등식 $cx^2+bx+a<0$ 에서 $-6ax^2-ax+a<0$, $-a(6x^2+x-1)<0$ 이고 -a>0이므로 (3x-1)(2x+1)<0이다.

따라서
$$-\frac{1}{2} < x < \frac{1}{3}$$
이고 $\alpha = -\frac{1}{2}$, $\beta = \frac{1}{3}$ 이 므로 $10\Big(\frac{1}{\beta} - \frac{1}{\alpha}\Big) = 10\{3 - (-2)\} = 50$

25) [정답] ②

$$() x^2 - x + 3 = \left(x - \frac{1}{2} \right)^2 + \frac{11}{4} > 0$$
이므로

 $x^2 - x + 3 > 0$ 의 해는 모든 실수이다.

©
$$x^2 - 3x + 3 = \left(x - \frac{3}{2}\right)^2 + \frac{3}{4} > 0$$
 ○] □ 로

 $x^2 - 3x + 3 \ge 0$ 의 해는 모든 실수이다.

②
$$-2x^2+3x-1\leq 0$$
, $(2x-1)(x-1)\geq 0$ 이므로 $x\leq \frac{1}{2}$ 또는 $x\geq 1$ 이다.

따라서 해가 모든 실수인 것은 ①, ⓒ이다.

26) [정답] ④

[해설] $x^2-kx+2=0$ 의 판별식을 D_1 , $x^2+kx+2k=0$ 의 판별식을 D_2 라 하면 $D_1=(-k)^2-8,\ D_2=k^2-8k$

(i) $x^2 - kx + 2 = 0$ 이 실근, $x^2 + kx + 2k = 0$ 이 허 그을 가질 때.

$$\begin{split} D_1 &= k^2 - 8 = (k + 2\sqrt{2}\,)(k - 2\sqrt{2}\,) \ge 0$$
이 코
$$k \le &- 2\sqrt{2} \quad \text{또는} \quad k \ge 2\sqrt{2} \text{ 이다}. \end{split}$$

$$D_2 = k^2 - 8k = k(k-8) < 0$$
이고 $0 < k < 8$ 이다.

따라서 공통 범위를 구하면 $2\sqrt{2} \le k < 8$ 이다.

(ii) $x^2 - kx + 2 = 0$ 이 허근, $x^2 + kx + 2k = 0$ 이 실근을 가질 때,

$$\begin{split} D_1 &= k^2 - 8 = (k + 2\sqrt{2}\,)(k - 2\sqrt{2}\,) < 0$$
이고
$$-2\sqrt{2} < k < 2\sqrt{2}\,\text{이다}. \end{split}$$

$$D_2 = k^2 - 8k = k(k-8) \ge 0$$

 $k \le 0$ 또는 $k \ge 8$ 이다.

따라서 공통 범위를 구하면 $-2\sqrt{2} < k \le 0$

(i), (ii)에 의하여 *k*의 값의 범위는

 $-2\sqrt{2} < k \le 0$ 또는 $2\sqrt{2} \le k < 8$ 이므로 이 범위에 속하는 정수 k는 -2, -1, 0, 3, 4, 5, 6, 7의 8개이다. 따라서 그 합은 22 이다.

27) [정답] ④

[해설] a < 0이므로 $ax^2 + 10a^2x + 21a^3 > 0$ 에서 $x^2 + 10ax + 21a^2 < 0, \ (x + 7a)(x + 3a) < 0$ 이때 -7a > -3a이므로 구하는 해는 -3a < x < -7a이다.

28) [정답] ②

[해설]
$$\begin{cases} x^2 - x - 6 < 0 \\ x^2 - 2(a+1)x + a^2 + 2a \le 0 \end{cases}$$

$$x^2 - x - 6 < 0$$
을 풀면

 $\begin{array}{ll} (x+2)(x-3)<0 & \div -2 < x < 3 \\ x^2-2(a+1)x+a^2+2a \le 0 \ \texttt{을} \ \Xi \mathbf{E} \\ (x-a)\{x-(a+2)\} \le 0 & \div a \le x \le a+2 \\ \\ \text{주어진 연립부등식의 해가 존재하려면} \\ -2 < x < 3과 \quad a \le x \le a+2 \\ \text{어야 한다. } a+2>-2, \ a < 3에서 \ -4 < a < 3 \ \text{이 } \\ \text{다. 따라서 } \alpha+\beta=(-4)+3=-1 \ \text{이다.} \end{array}$

29) [정답] ⑤

[해설] 직사각형의 둘레의 길이가 36cm이므로 가로의 길이를 xcm 라고 하면 세로의 길이는 (18-x)cm이다. 가로의 길이가 세로의 길이보다 길거나 같으므로 $x \ge 18-x$ 이고 $x \ge 9$ 이다. 또 $x(18-x) \ge 56$ 이므로 $-x^2+18x-56 \ge 0$ $x^2-18x+56 \le 0, \ 4 \le x \le 14$ 이다. $x \ge 9, \quad 4 \le x \le 14$ 의 공통부분을 구하면 $9 \le x \le 14$ 이다. 따라서 가로의 길이의 최솟값은 9이다.

30) [정답] ⑤

[해설] $ax^2+bx+c>0$ 의 해가 $-1-\sqrt{5} < x < -1+\sqrt{5} \ \text{이므로} \ a < 0 \ \text{이다}.$ 해가 $-1-\sqrt{5} < x < -1+\sqrt{5} \ \text{이고} \ \text{이차항의}$ 계수가 a인 부등식은 $a\{x-(-1-\sqrt{5})\}\{x-(-1+\sqrt{5})\}<0,$ $ax^2+2ax-4a>0$ 이므로 b=2a, c=-4a이다. b=2a, c=-4a을 $cx^2-2bx-a<0$ 에 대입하면 $-4ax^2-4ax-a<0,$ $4x^2+4x+1<0,$ $(2x+1)^2<0$ 이므로 해는 없다.

31) [정답] ④

[해설] 2|x-2| < a에서 -a < 2(x-2) < a -a+4 < 2x < a+4이고 $\frac{-a+4}{2} < x < \frac{a+4}{2}$ 이다. $x^2+6x+8 < 0$ 에서 (x+4)(x+2) < 0이고 -4 < x < -2이다. 연립부등식이 해를 갖지 않으려면 두 부등식의 공통부분이 존재하지 않아야한다. a > 0이므로 $\frac{-a+4}{2} \ge -2$ 이고 $a \le 8$ 이다. 로 $0 < a \le 8$ 이다. 따라서 a의 최댓값은 8이다.

32) [정답] ④

[해설] $\begin{cases} x^2 + ax + b \geq 0 \\ x^2 + cx + d \leq 9 \end{cases}$ 에서 두 이차부등식을 동시에 만족하는 x의 값의 범위가 $-3 \leq x \leq -1$ 또는 x = 2이므로 $x^2 + ax + b \geq 0$ 는 $x \leq -1$ 또는 $x \geq 2$ 의 해를 가져야 한다. $(x+1)(x-2) \geq 0$, $x^2 - x - 2 \geq 0$ 이므로 a = -1, b = -2이다. 또한 $x^2 + cx + d \leq 0$ 는 $-3 \leq x \leq 2$ 의 해를 가져야 한다. $x^2 + x - 6 \leq 0$ 이므로 c = 1, d = -6이다. 따라서 a + b + c + d = -1 + (-2) + 1 + (-6) = -8이다.

33) [정답] ②

[해설]
$$\begin{cases} x^2-3x-4<0 \\ x^2-(a+3)x+3a\leq 0 \end{cases}$$
 에서 $x^2-3x-4<0$ 을 풀면 $-1< x<4$ 이다. $x^2-(a+3)x+3a\leq 0$ 을 풀면 $(x-a)(x-3)\leq 0$, $3\leq x\leq a$ 또는 $a\leq x\leq 3$ 이다. 이때 $-1< x<4$ 과 $3\leq x\leq a$ 또는 $a\leq x\leq 3$ 을 동시에 만족하는 x 값의 범위가 $-1< x\leq 3$ 이어야 하므로 $a\leq -1$ 이다. 따라서 구하는 실수 a 의 최댓값은 -1 이다.