

Ministério da Educação Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE

Departamento de Ciências Exatas - DCEX

Discip	lina:	Cal	cul	$N \subset$	um	erico
Prof.:	Luiz	С.	Μ.	de	Ag	uino

Aluno((a):	:	 Data:	/ ,	/

Avaliação I

Instruções

- Todas as justificativas necessárias na solução de cada questão devem estar presentes nesta avaliação;
- As respostas finais de cada questão devem estar escritas de caneta;
- Esta avaliação tem um total de 25,0 pontos.
- 1. [6,0 pontos] Dado $a \in \mathbb{R}_+^*$ proponha uma maneira de usar o Método da Bisseção para calcular um valor aproximado de \sqrt{a} com tolerância de 10^{-5} . Em seguida, use a sua proposta para calcular o valor aproximado de $\sqrt{2}$.
- 2. [4,0 pontos] Dê exemplo de uma função contínua que possua uma única raiz no intervalo [1;3], mas para a qual não é possível aplicar o Método da Secante para aproximar essa raiz usando os chutes iniciais $x_0 = 1, 4$ e $x_1 = 2, 6$. Justifique porque não é possível usar o método no seu exemplo.
- 3. [5,0 pontos] A cada passo no Método da Falsa Posição, escolhemos $x_k = \frac{a_k |f(b_k)| + b_k |f(a_k)|}{|f(a_k)| + |f(b_k)|}$, sendo que no intervalo $[a_k; b_k]$ temos $f(a_k)f(b_k) < 0$. Prove que esta escolha de x_k coincide com a abscissa do ponto de interseção entre o eixo x e a reta passando por $(a_k, f(a_k))$ e $(b_k, f(b_k))$.
- 4. [4,0 pontos] Explique como utilizar o Método de Newton para determinar aproximadamente qual é o ponto da circunferência $x^2 + y^2 = 1$ que está mais próximo da reta x + 2y 4 = 0.
- 5. [6,0 pontos] Seja $f:[0;1] \to [0;1]$ uma função contínua em todo o seu domínio. Prove que para todo $n \in \mathbb{N}^*$, existe $\bar{x} \in [0;1]$ que é solução da equação $f(x) x^n = 0$. Indique qual é a interpretação geométrica dessa afirmação.