Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>М3215</u>	К работе допущен
Студент <u>Лавренов Д.А., Васильков Д.А.</u>	Работа выполнена
Преподаватель Тимофеева Э.О.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.02

Характеристики источника тока

- 1. Цель работы.
 - 1) Исследовать зависимость полной мощности, полезной мощности, мощности потерь, падения напряжения во внешней цепи и КПД источника от силы тока в цепи.
 - 2) Найти значения параметров источника: электродвижущей силы и внутреннего сопротивления, оценить их погрешность.
- 2. Задачи, решаемые при выполнении работы.
 - 1) Измерить зависимость напряжения от силы тока при различном переменном сопротивлении.
 - 2) Найти внутреннее сопротивление источника и ЭДС.
 - 3) Посчитать I^* различными способами и сравнить результат.
- 3. Объект исследования.

Характеристики источника тока.

- 4. Метод экспериментального исследования.
 - 1) Измерение зависимости напряжения от силы тока при различном переменном сопротивлении.
 - 2) Построение графиков зависимостей.
 - 3) Метод наименьших квадратов.
- 5. Рабочие формулы и исходные данные.
 - 1) Напряжение на зажимах источника U по закону Ома для представленной цепи:

$$U = \mathcal{E} - Ir$$

2) Сила тока короткого замыкания источника:

$$I_K = \frac{\mathcal{E}}{r}$$

3) Полная мощность, развиваемая источником:

$$P = \mathcal{E}I$$

4) Полезная мощность во внешней цепи:

$$P_R = I^2 R$$

5) Мощность потерь внутри источника:

$$P_S = I^2 r$$

6) Зависимость полезной мощности от силы тока:

$$P_R = \mathcal{E}I = I^2r$$

7) Значения силы тока, при которых полезная мощность обращается в ноль:

$$I_{1,2} = \begin{cases} I_K = \frac{\mathcal{E}}{r}; \\ 0. \end{cases}$$

8) Вершины параболы:

$$I^* = \frac{I_1 + I_2}{2} = \frac{\mathcal{E}}{2r}$$

9) Максимальная мощность в нагрузке:

$$P_{R_{max}} = P_R(I^*) = \frac{\mathcal{E}^2}{4r}$$

10) КПД η источника тока:

$$\eta = \frac{P_R}{P} = \frac{UI}{\mathcal{E}I} = \frac{U}{\mathcal{E}}$$

11) Зависимость КПД от силы тока:

$$\eta = \frac{\mathcal{E} - lr}{\mathcal{E}} = 1 - \frac{lr}{\mathcal{E}}$$

12) Равенство максимальной общей мощности и максимальной мощности потерь при токе короткого замыкания:

$$P_{max} = P_{S_{max}} = \frac{\mathcal{E}^2}{r}$$

13) Значение КПД и соотношение P, P_R , P_S при максимуме полезной мощности: $\eta = \frac{U}{\mathcal{E}} = \frac{IR}{IR + Ir} = 50\%$

$$\eta = \frac{U}{\mathcal{E}} = \frac{IR}{IR + Ir} = 50\%$$

14) Внутреннее сопротивление источника ЭДС:

$$r = \frac{I_K}{\mathcal{E}}$$

6 Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	Амперметр	Электронный	0–20 мА	0.01 мА	
2	Вольтметр	Электронный	0–20 B	0.01 B	

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 1. Стенд «С3-ЭМ01»

Рис. 2. Генератор Напряжения «ГН1»

Рис. 3. Схема соединений источника, измерительных приборов и измерительного стенда.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Nº	U, B	I, мА	P_R , м $\mathrm{B}m$	P_{S} , м Bm	<i>P</i> ,м <i>B</i> m	η
1	0,52	16,04	8,341	175109,928	183,658	0,045
2	2,15	13,62	29,283	126257,230	155,949	0,188
3	3,21	12,06	38,713	98991,216	138,087	0,280
4	3,98	10,94	43,541	81458,552	125,263	0,348
5	4,62	9,99	46,154	67925,527	114,386	0,403
6	5,28	9,01	47,573	55252,461	103,165	0,461
7	5,76	8,31	47,866	47000,674	95,150	0,503
8	6,15	7,78	47,847	41196,587	89,081	0,537
9	6,59	7,09	46,723	34213,264	81,181	0,576
10	6,81	6,76	46,036	31102,510	77,402	0,595
11	7,09	6,34	44,951	27357,761	72,593	0,619
12	7,38	5,94	43,837	24014,576	68,013	0,645
13	7,62	5,60	42,672	21344,112	64,120	0,666
14	7,78	5,35	41,623	19480,926	61,258	0,679
15	7,89	5,19	40,949	18333,136	59,426	0,689

$$P_R = I^2 R = 0.016^2 \cdot \frac{0.52}{0.016} = 0.008341 \text{ B}m = 8.341 \text{ M}Bm$$

 $I_K = 0.016$ А, по данным Графика 2.

 $\mathcal{E} = 11,45$ В, по данным Графика 2.

$$r = \frac{\mathcal{E}}{I_K} = \frac{11,45}{0,016} = 680,616 \text{ Ом}$$

$$P_S = 0.016^2 \cdot r = 175,109928 \ Bm = 175109,928 \ \text{MBm}$$

$$P = I\epsilon = 0.016 \cdot 11.45 = 0.183658 \,\mathrm{B}m = 183.658 \,\mathrm{m}Bm$$

$$\eta = \frac{P_R}{P} = \frac{0,008341}{0.183658} = 0,045$$

$$I^* = \frac{\mathcal{E}}{2r} = \frac{11,45}{2 \cdot 680,616} = 0,008 A$$

 $I^{*'} = 0,0083 A$, поданным Графика 3.

$$r' = \frac{U}{I} = \frac{7,75}{0,011} = 704,545$$
 Ом, где U и I — проекция на Графике 2

$$\mathcal{E}' = U + Ir' = 7,75 + 11 \cdot 704,545 = 7,75775 \text{ B}$$

9. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\Delta r = |r' - r| = 704,545 - 680,616 = 23,93 \ O$$
M

$$\Delta \mathcal{E} = |\mathcal{E}' - \mathcal{E}| = 11,45 - 7,757 = 3,692 \text{ B}$$

10. Графики (перечень графиков, которые составляют Приложение 2).

График 1. Зависимости полной (P), полезной (P_R) мощности и мощности потерь (P_S) от I.

График 2. Зависимость U(I).

11. Окончательные результаты.

$$r = 680,616 \pm 23,93 \text{ Ом}$$

 $r' = 704,545 \pm 23,93 \text{ Ом}$
 $\mathcal{E} = 11,45 \pm 3,692 \text{ B}$
 $\mathcal{E}' = 7,75775 \pm 3,692 \text{ B}$
 $I^* = 0,008 \pm 0,0003 \text{ A}$
 $I^{*'} = 0,008 \pm 0,0003 \text{ A}$

12. Выводы и анализ результатов работы.

Мы исследовали зависимость полной мощности, полезной мощности, мощности потерь, падения напряжения во внешней цепи и КПД источника от силы тока в цепи; нашли значения параметров источника: электродвижущей силы и внутреннего сопротивления, оценили их погрешность. Также мы подсчитали значение I^* различными способами и получили близкие значения.

13. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Вессия Мосто 10,11,23 Дина 1. Воставления 1. Воста

Таблица 1: Результаты прямых измерений и их обработка

No	U, B	I, мА	P_R , мВ m	P_S , м Bm	Р, мВт	η
1		16,09				
2	2,15	13.62				
3	3,21	12,06				
4	3,98	10,94				
5	7,62	9,99				
6	5,28	9,01		-		
7	5,76	8,31				
8	6,15	7,78				
9	6,59	7.09				
10	6,81	0,76				
11	4,09	6,34				
12	4,38	5,94				
13	4,62	5,60				
14	4,48	5,35				37
15	4,89	5,19				
16						
17						
18				r x		
19						
20	1-4					