第 6 次作业 - 上下文无关文法的性质

2154312 郑博远

习题 7.2.1 用 CFL 泵引理来证明下面的语言都不是上下文无关的:

- a) $\{a^i b^j c^k \mid i < j < k\}$.
- b) $\{a^nb^nc^i \mid i \leq n\}$.
- c) $\{0^p \mid p \text{ 是素数}\}$ 。提示: 使用和例 4.3 中证明不是正则语言时采用相同的思想。
- d) $\{0^i 1^j | j = i^2\}_{\circ}$
- e) $\{a^nb^nc^i \mid n \leq i \leq 2n\}$.
- f) $\{ww^Rw \mid w \neq 0 \text{ 和 1 } \text{ 的串}\}$ 。也就是说,由某个串 w 和它的反向串再和它本身连接起来的串(比如 001100001)构成的集合。

解答:

- a) 假设该语言 L 是上下文无关的,且泵长度为 p。考察字符串 $s=\alpha^p b^{p+1} c^{p+2} \in L$ 。 设 s=uvwxy,由于 $|vwx| \le p$,所以 vwx 不会同时含有三个字符。
- 1. vwx 只包含 a。由于 $|vx| \ge 1$, uv^2wx^2y 中 a 的个数一定大于等于 b,因此 $uv^2wx^2y \notin L$;
- 2. vwx 只包含 b。由于 $|vx| \ge 1$, uv^2wx^2y 中 b 的个数一定大于等于 c,因此 $uv^2wx^2y \notin L$;
- 3. vwx 只包含 c。由于 $|vx| \ge 1$, uv^0wx^0y 中 c 的个数一定小于等于 b,因此 $uv^2wx^2y \notin L$:
- 4. v 中只含a, x 中只含b。由于 $|vx| \ge 1$, uv^2wx^2y 中一定有a 的个数大于等于b (|w| = 0) 或b 的个数大于等于c ($|w| \ne 0$), 因此 $uv^2wx^2y \notin L$;
- 5. v 中只含 b, x 中只含 c。由于 $|vx| \ge 1$,若 $|v| = 0(|x| \ge 1)$,则 uv^0wx^0y 中一定有 c 的个数小于等于 b,因此 $uv^0wx^0y \notin L$;若 $|v| \ne 0$, uv^0wx^0y 中 b 的个数一定小于等于 a,因此 $uv^0wx^0y \notin L$;
- 6. v或x中包含两种不同的符号。由于 $|vx| \ge 1$, uv^2wx^2y 中必将呈现两种字符交错出现的情况,因此 $uv^2wx^2y \notin L$ 。

综上所述, L 不是 CFL。

- b) 假设该语言 L 是上下文无关的,且泵长度为 p。考察字符串 $s=a^pb^pc^p\in L$ 。设 s=uvwxy,由于 $|vwx|\leq p$,所以 vwx 不会同时含有三个字符。
 - 1. vwx 只包含 a。由于 $|vx| \ge 1$, uv^2wx^2y 中 a、b个数不相等, uv^2wx^2y ∉ L;
 - 2. vwx 只包含 b。由于 $|vx| \ge 1$, uv^2wx^2y 中 a、b个数不相等, uv^2wx^2y ∉ L;
 - 3. vwx 只包含 c。由于 $|vx| \ge 1$, $uv^2wx^2y + c$ 的个数一定大于 b, $uv^2wx^2y \notin L$;
- 4. v 中只含 a, x 中只含 b。由于 $|vx| \ge 1$, uv^0wx^0y 中 a 或 b 的个数一定小于 c,因此 $uv^0wx^0y \notin L$;
- 5. v 中只含 b, x 中只含 c。由于 $|vx| \ge 1$,若 |v| = 0 ($|x| \ge 1$),则 uv^2wx^2y 中 c 个数一定大于 b; 若 $|v| \ne 0$, uv^2wx^2y 中 a 与 b 的个数一定不相等。因此 $uv^2wx^2y \notin L$;
- 6. v或x中包含两种不同的符号。由于 $|vx| \ge 1$, uv^2wx^2y 中必将呈现两种字符交错出现的情况,因此 $uv^2wx^2y \notin L$ 。

综上所述, L不是CFL。

c) 假设该语言 L 是上下文无关的,且泵长度为 p。考察字符串 $s=0^{p_0}$ (p_0 是大于p0 的素数) \in L,则 $s'=uv^kwx^ky=0^{p_0+(k-1)|vx|}$ \in L。取 $k=p_0+1$,则 $s'=0^{p_0(|vx|+1)}$ 。由于 $|vx|\geq 1$, $p_0(|vx|+1)$ 不是素数,因此 $uv^kwx^ky\not\in L$,与假设矛盾。

综上所述, L 不是 CFL。

- d) 假设该语言 L 是上下文无关的,且泵长度为 p。考察字符串 $s=0^{p}1^{p^2}\in L$ 。设 s=uvwxy。
- 1. vwx 只包含 0。由于 $|vx| \ge 1$,显然 uv^2wx^2y 中 1 的个数与 0 的个数不满足平方 关系, $uv^2wx^2y \notin L$;
- 2. vwx 只包含 1。由于 $|vx| \ge 1$,显然 $uv^2 wx^2 y$ 中 1 的个数与 0 的个数不满足平方 关系, $uv^2 wx^2 y \notin L$;
- 3. v 中只含 0, x 中只含 1。考察串 $uv^2wx^2y = 0^{p+|v|}1^{p^2+|x|}$ 。 $(p+|v|)^2 = p^2 + 2p|v| + |v|^2$ 。当 |v| = 0 时,由于 $|vx| \ge 1$ 有 $|x| \ge 1$,则 $(p+|v|)^2 = p^2 \ne p^2 + |x|$;当 $|v| \ne 0$ 时,由于 $|x| \le p$, $(p+|v|)^2 < p^2 + x$ 。因此, $(p+|v|)^2 \ne p^2 + x$, $uv^2wx^2y \notin L$ 。
 - 4. v 或 x 中包含两种不同的符号。由于 $|vx| \ge 1$, uv^2wx^2y 中必将呈现两种字符交错出现的情况,因此 $uv^2wx^2v \notin L$ 。

综上所述, L不是CFL。

e) 假设该语言 L 是上下文无关的,且泵长度为 p。考察字符串 $s = a^p b^p c^p \in L$ 。设

s = uvwxv, 由于 $|vwx| \le p$, 所以 vwx 不会同时含有三个字符。

- 1. vwx 只包含 a。由于 $|vx| \ge 1$, uv^2wx^2y 中 a、b个数不相等, uv^2wx^2y ∉ L;
- 2. vwx 只包含 b。由于 $|vx| \ge 1$, uv^2wx^2y 中 a、b个数不相等, uv^2wx^2y ∉ L;
- 3. vwx 只包含 c。由于 $|vx| \ge 1$, uv^0wx^0y 中 c 的个数一定小于 b, $uv^2wx^2y \notin L$;
- 4. v 中只含a, x 中只含b。由于 $|vx| \ge 1$, uv^2wx^2y 中 a 或 b 的个数一定大于 c, 因此 $uv^2wx^2y \notin L$;
- 5. v 中只含 b, x 中只含 c。由于 $|vx| \ge 1$,若 |v| = 0 ($|x| \ge 1$),则 uv^0wx^0y 中 b 的 个数一定大于 c 的个数,因此 uv^0wx^0y \notin L。若 $|v| \ne 0$, uv^0wx^0y 中 a 与 b 的个数一定不相等,因此 uv^0wx^0y \notin L:
- 6. v或 x 中包含两种不同的符号。由于 $|vx| \ge 1$, uv^2wx^2y 中必将呈现两种字符交错出现的情况,因此 $uv^2wx^2y \notin L$ 。

综上所述, L 不是 CFL。

- f) 假设该语言 L 是上下文无关的,且泵长度为 p。考察字符串 $s=0^{p}1^{2p}0^{2p}1^{p}\in L$ 。设 s=uvwxy,由于 $|vwx|\leq p$,所以 vwx 不会横跨 3 个 0、1 段。
- 1. $v \to x$ 都在第一部分的 0 中。由于 $|vx| \ge 1$, $uv^2wx^2y = 0^{p+|vx|}1^{2p}0^{2p}1^p$ 无法被划分为 ww^Rw 的形式($2p \ne 2(p+|vx|)$,无法划分成 w^Rw), $uv^2wx^2y \notin L$;
- 2. $v \to x$ 都在第一部分的 1 中。由于 $|vx| \ge 1$,同理 $uv^2wx^2y = 0^p1^{2p+|vx|}0^{2p}1^p$ 无 法被划分为 ww^Rw 的形式, $uv^2wx^2y \notin L$:
- 3. v 和 x 都在第二部分的 0 中。由于 $|vx| \ge 1$,同理 $uv^2wx^2y = 0^p1^{2p}0^{2p+|vx|}1^p$ 无 法被划分为 ww^Rw 的形式, $uv^2wx^2y \notin L$;
- 4. $v \to x$ 都在第二部分的 $1 \to 0$ 由于 $|vx| \ge 1$,同理 $uv^2wx^2y = 0^p1^{2p}0^{2p}1^{p+|vx|}$ 无 法被划分为 ww^Rw 的形式, $uv^2wx^2y \notin L$;
- 5. v 在第一部分的 0 中,x 在第一部分的 1 中。由于 $|vx| \ge 1$,同理 $uv^2wx^2y = 0^{p+|v|}1^{2p+|x|}0^{2p}1^p$ 无法被划分为 ww^Rw 的形式, $uv^2wx^2y \notin L$;
- 6. v 在第一部分的 1 中,x 在第二部分的 0 中。由于 $|vx| \ge 1$,同理 $uv^2wx^2y = 0^p 1^{2p+|v|} 0^{2p+|x|} 1^p$ 无法被划分为 $ww^R w$ 的形式, $uv^2wx^2y \notin L$;
- 7. v 在第二部分的 0 中,x 在第二部分的 1 中。由于 $|vx| \ge 1$,同理 $uv^2wx^2y = 0^p1^{2p}0^{2p+|v|}1^{p+|x|}$ 无法被划分为 ww^Rw 的形式, $uv^2wx^2y \notin L$;
 - 8. v或x中包含两种不同的符号。打圈的部分会产生小于p长度的0、1字符交错,

但其他部分的0、1 部分长度均大于p,因此无法找到对应的另外两部分串。即 $uv^2wx^2y=$ 无法被划分为 ww^Rw 的形式. $uv^2wx^2v \notin L$ 。

综上所述, L 不是 CFL。

习题 7.2.5 使用奥格登引理(习题 7.2.3)来证明下列语言不是 CFL:

- a) $\{0^i 1^j 0^k \mid j = \max(i, k)\}$.
- b) $\{a^nb^nc^i|i\neq n\}$ 。提示: 如果 n 是奥格登引理的常数,考虑串 $z=a^nb^nc^{n+n!}$ 。

解答:

- a) 假设该语言 L 是上下文无关的,且泵长度为 p。考察字符串 $s=0^{2p}1^{2p}0^p\in L$,选择末尾部分的 n 个 0 为显著位置。设 s=uvwxy,由奥格登引理可得 vx 中至少有一个显著位置。因此,x 中一定包含末尾部分的 0。
- 1. v或x中包含两种不同的符号。由于 $|vx| \ge 1$, uv^2wx^2y 中必将呈现两种字符交错出现的情况,因此 $uv^2wx^2y \notin L$;
- 2. v 中只含开始部分的 0, x 中只含末尾部分的 0。由于 vx 中至少有一个显著位置, $|x| \ge 1$ 。考察字符串 $uv^{2p+1}wx^{2p+1}y$,末尾部分的 0 个数一定大于 2p,但 1 的个数仍然为 2p,不满足 $j = \max(i,k)$,因此 $uv^2wx^2y \notin L$;
- 3. v 中只含 1, x 中只含末尾部分的 0。考虑将 v 和 x 打 i 圈的情况,则 $s'=0^{2p}1^{2p+(i-1)|v|}0^{p+(i-1)|x|}$ 。显然有 i 满足 p+(i-1)|x|>2p,且 $2p+(i-1)|v|\neq p+(i-1)|x|$,此时 $uv^iwx^iv\notin L$ 。
- 4. v 和 x 中都只含末尾部分的 0。由于 vx 中至少有一个显著位置,考察字符串 $uv^{2p+1}wx^{2p+1}y$,末尾部分的 0 个数一定大于 2p,但 1 的个数仍然为 2p,不满足 $j=\max(i,k)$,因此 $uv^2wx^2y \notin L$ 。

综上所述, L 不是 CFL。

- b) 假设该语言 L 是上下文无关的,且泵长度为 n。考察字符串 $s=a^nb^nc^{n+n!}\in L$,选择所有的字符 a 为显著位置。设 s=uvwxy,由奥格登引理可得 vx 中至少有一个显著位置。因此,v 中一定包含字符 a。
 - 1. v 或 x 中包含两种不同的符号。由于 $|vx| \ge 1$, uv^2wx^2y 中必将呈现两种字符交

错出现的情况,因此 $uv^2wx^2v \notin L$;

- 2. v 中仅含 a, x 中仅含 a。由于 $|vx| \ge 1$, uv^2wx^2y 中必然有 a 的字符个数大于 b 的字符个数,因此 $uv^2wx^2y \notin L$;
- 3. v 中仅含 a, x 中仅含 b。 若 $|v| \neq |x|$, uv^2wx^2y 中必然有 a 的字符个数与 b 不相等,因此 $uv^2wx^2y \notin L$ 。 若 |v| = |x|,打 i 圈后有 $uv^iwx^iy = a^{n+(i-1)|v|}b^{n+(i-1)|v|}c^{n+n!}$ 。由于 $|v| \leq n$,取 $i = \frac{n!}{|v|} + 1$ 。此时, $uv^iwx^iy = a^{n+n!}b^{n+n!}c^{n+n!}\notin L$;
- 4. v 中仅含 a, x 中仅含 c。由于 vx 中至少有一个显著位置, v 中一定包含字符 a, uv^2wx^2y 中必然有 a 的字符个数大于 b 的字符个数, 因此 $uv^2wx^2y \notin L$ 。

综上所述, L 不是 CFL。

补充习题 1 构造与下列文法等价的 CNF。

$$S \rightarrow ABB \mid bAA$$

$$B \to aBa \mid aa \mid \varepsilon$$

$$A \rightarrow bbA \mid \varepsilon$$

解答:

消除 ε -产生式:

$$S \rightarrow ABB \mid BB \mid AB \mid A \mid B \mid bAA \mid bA \mid b \mid \varepsilon$$

$$B \rightarrow aBa \mid aa$$

$$A \rightarrow bbA \mid bb$$

消除单一产生式:

$$S \rightarrow ABB \mid BB \mid AB \mid bAA \mid bA \mid b \mid \varepsilon \mid aBa \mid aa \mid bbA \mid bb$$

$$B \rightarrow aBa \mid aa$$

$$A \rightarrow bbA \mid bb$$

引入新变元:

$$S \to AC \mid BB \mid AB \mid G_bD \mid G_bA \mid G_aE \mid G_aG_a \mid FA \mid G_bG_b \mid b \mid \varepsilon$$

$$B \to G_aE \mid G_aG_a$$

$$A \to FA \mid G_bG_b$$

$$G_a \rightarrow a$$

$$G_b \to b$$

$$C \to BB$$

$$D \to AA$$

$$E \to BG_a$$

$$F \to G_b G_b$$