Stet 134 lec 33

Marmot 11:00 - 11:10

The joint density $f_{X,Y}$ (by $f_{X,Y}$ (by $f_{X,Y}$) where $f_{X,Y}$ (by $f_{X,Y}$).

Find the density of Z=Y-X what distribution is Z?

 $\begin{array}{ll}
2 \text{ V. Beff } (2, 4) \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \right) \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0} \\
&= c f \left(\frac{1}{1 - 5} \right) \frac{1}{x^2} - \frac{g}{x^2} \Big|_{x = 0}^{x = 0$

 $U_{(q)} - U_{(q)} = Should have the same$ $U_{(q)} - U_{(q)} = U_{(q)} \wedge Beta(2,10-244)$ $U_{(q)} - U_{(q)} - U_{(q)} \wedge Beta(2,10-244)$ $U_{(q)} - U_{(q)} \wedge Beta(2,10-244)$

Announcement: MTZ Friday 11/19 (take home)
Announcement: MTZ Friday 11/19 (take home) approx 50 min. M6F, chap 4 (skip sec 4.3),
Chap 5.
revieu materials coming.
Last three
Sec 5.4 Density Convolution Formula of S=X+Y
Assure X70, Y70
$f(s) = \int f(x, s-x) dx$
S X=0 Convolution
Communication Contraction
sencities.
er (triangular density)
\1
S=X+Y
L (0 = (5 for 0(5())
$f_s(s) = \begin{cases} s & \text{for o(s(1))} \\ 2-s & \text{fo 1(s(2))} \end{cases}$
Canudutton formla for 2=4-x for 0(XCY
1.5
$f(z) = \int f(x, x+z) dz$
Tolan (See#13 p355) Unitorn Spacing
Sec 5.4 More Convolution Formics
3) sec 6.1, 6.7 Conditional Distribution, Expectation case
(4) sec 5.4 General Convolution Cormula

(See#13 p 355) Unitorn Spacing

we saw above Let $X \wedge U_{(7)}$, $Y \wedge U_{(9)}$ for 10 ild U(0,1). Hen $Z = Y - X \wedge Beta(2,9)$

We know $U_{(q)} - U_{(1)}$ and $U_{(2)}$ both we Beta (2,9)

More generally (Uniform Spacing)

You revolutely throw in dest at [0,1].
For exacatken, U - U is?

(a+k) (a) 'U(k) N Beda (5, mk+1)

$$\Rightarrow f(z) = \int_{X=0}^{2\pi} f(x, zx) \times dx = \int_{X=0}^{2\pi} f(x) f(zx) \times dx$$

$$= \int_{X=0}^{2\pi} f(x, zx) \times dx = \int_{X=0}^{2\pi} f(x) f(zx) \times dx$$

Hint: use convolution formula

$$f_{2}(z) = \int_{x=0}^{\infty} f(x) f(zx) \times dx$$

$$= \int_{x=0}^{\infty} \frac{1}{(x)} f(zx) \times dx$$

=
$$\frac{1}{\text{Constant Park of Gamma (2, 1+2)}} = \frac{\Gamma(z)}{(1+z)^2}$$
 for $\frac{1}{z}$

3
$$\frac{\sec G_{i}}{\sec G_{i}}$$
 Gondletonal Distribution: Discrete case.

let x_{i} N discrete RUs of Gard distribution $P(X=x_{i}N=n)$.

 $\frac{Bayes}{P(X=x_{i}N=n)} = \frac{P(X=x_{i}N=n)}{P(N=n)}$

$$= P(X=K,N=n) = P(X=X|N=n)P(N=n)$$

Rule of average conditional Probablistics

$$P(X=x) = \sum_{n} P(X=x, N=n)$$

$$= \sum_{n} P(X=x|N=n) P(N=n)$$

at bosses in 1 min

ex

deen Prosent in I may

Let N have Poisson (λ) distribution. Let X be a random variable with the following property: for every n, the conditional distribution of X given (N=n) is binomial (n,p). Find the unconditional distribution of X and state its parameter(s). Show all your work for full credit.

$$P(N=N) = \frac{e^{\lambda} \lambda^{n}}{e^{\lambda}}$$

$$P(X=x|N=N) = \frac{e^{\lambda} \lambda^{n}}{N!} P(N=N) P(N=N)$$

$$P(X=x) = \sum_{n=X}^{\infty} P(X=x|N=n) P(N=N)$$

$$P(X=x) = \sum_{n=X}^{\infty} P(X=x|N=n) P(N=N)$$

$$P(X=x) = \sum_{n=X}^{\infty} \frac{(n-x)!}{N!} P(N=N)$$

$$P(X=x) = \sum_{n=X}^{\infty} \frac{(n-x)!}{N!$$