





Chapter 08

# **FACILITY PLANNING**

# **HIERACHIES OF FACILITY PLANNING**















#### **TYPES AND PROPERTIES OF SPACES**



# **Types and Properties**

# **Types of Spaces**

- Storage area
- Transportation area
- Handling area
- Office space
- Recreational area
- Buffer zones
- ...

# **Potential Space Properties**

- Lighting properties
- Temperature
- Soil bearing capacity
- Clearance
- Safety (theft)
- Fire protection
- Expandability
- Range of use (flexibility)
- ..

# Network

- Storage areas
- Handling areas
- ..

#### **Facility**

- Storage areas
- Recreational areas
- Office spaces
- ..

#### **System**

- Buffer zones
- Storage areas
- Picking areas
- Transportation areas
- ...

# Examples

# **RECREATIONAL AREAS**





- Space:  $min. 6m^2 + 1m^2$  per user
- Enough day light
- Pleasant room temperature
- Sufficient Ventilation

# **FACILITY-LEVEL SPACE REQUIREMENTS**







- Administration
- Recreational areas
- Parts delivery / shipping
- External area
- Parking lot
- Manufacturing shop floor

# TYPICAL FLOOR SPACE IN A MANUFACTURING FIRM





# **SPACE REQUIREMENT CALCULATION**





# SPACE REQUIREMENT CALCULATION SYNTHETIC APPROACH



#### **Main Functional Areas:**

- Production space
- directly relevant logistics and storage areas
- supporting and other spaces, such as production control, quality control, packaging, etc.

Main Functional Area:  $A_{MF} = A_M + A_{WIP} + A_T + A_Q + A_F [m^2]$ 

 $A_{M}$  = total space of machine

 $A_{WIP} = WIP$  area

 $A_T$  = transportation area

 $A_{O}$  = quality control area

 $A_F$  = free area

# TOTAL SPACE OF MACHINES (AM) – FUNCTIONAL AREAS





#### Movement areas

Contiguous, unobstructed floor areas at the workplace that are at least necessary to enable employees to change work postures and compensate movements during their work.



#### Free Movement Area

Contiguous, unobstructed space at the workplace that is at least required to allow employees to change work postures and compensate movements during their work.



# Corridors to workplaces\*

Traffic routes that allow unhindered access to the personally assigned workplaces



#### Aisles to operating facilities

Used occasionally are traffic routes that allow unhindered access to the use of operating facilities (e.g. heating, windows, electrical supply)



# Storage / WIP areas

floor areas required for work equipment (e.g. raw materials, equipment), fixtures, fittings and other items (e.g. waste) regardless of whether they touch the ground or not.



#### Additional functional areas\*

floor areas that are covered by moving parts of work equipment, fixtures and fittings.



# Areas for safety distances\*

floor areas at workplaces, work equipment, fixtures and fittings that are required to avoid endangering employees.

# **TOTAL SPACE OF MACHINES (AM) - CALCULATION**



# Functional areas of a work station e.g. CNC Lathe







- (Raw) Material supply area A<sub>Mati</sub>
- 4 Tool supply area A<sub>Ti</sub>
- Aisle to operating facilities (Maintenance) A<sub>Mi</sub>
- 6 Area for scrap A<sub>Si</sub>



#### **Calculation of Total Space of Machines**

$$A_M = \sum_{i=1}^n A_{Mi}$$

$$\mathbf{A_{Mi}} = \mathbf{M_{fi}} + \mathbf{A_{Opi}} + \mathbf{A_{Mati}} + \mathbf{A_{Ti}} + \mathbf{A_{Mi}} + \mathbf{A_{Si}}$$

# TOTAL SPACE OF MACHINES (AM) – FUNCTIONAL AREAS





Industrial Engineering - Facility Planning

# TOTAL SPACE OF MACHINES (AM) – SPACE COEFFICIENT







projected machine footprint in m²

# STORAGE OR WIP AREA FOR PROCESSED PARTS (AWIP)





#### Calculation of Storage/WIP area

$$A_{WIP} = 0.2 * A_{M}$$

#### Condition:

- Handling of material in bins
- Piling up to 3 bins
- *Transportation with fork lifts, cranes, etc.*

# OVERALL TRANSPORTATION AREAS (A<sub>T</sub>)





# **Calculation of Transportation Area**

$$A_T = (0.2 \dots 0.3) * A_M$$

#### Condition:

• *Path width* 2.5 - 3.0 m

# OVERALL TRANSPORTATION AREAS (A<sub>T</sub>) PATHS FOR MOVEMENT OF EMPLOYEES



|                                                                                  | Min. Path<br>Widths |
|----------------------------------------------------------------------------------|---------------------|
| Walkways dependent on # of simultaneously present people in the building (up to) |                     |
| 5                                                                                | 0.88 m              |
| 20                                                                               | 1.00 m              |
| 200                                                                              | 1.20 m              |
| 300                                                                              | 1.80 m              |
| 400                                                                              | 2.40 m              |
| Corridors to workplaces                                                          | 0.60 m              |
| Path for people between rack stores in warehouses                                | 1.25 m              |
| Path for people in side aisles in warehouses for manual handling                 | 0.75 m              |





# OVERALL TRANSPORTATION AREAS (A<sub>T</sub>) PATHS FOR VEHICLES



|   | Vehicle Type                                              | Width a <sub>L</sub> | Length      |
|---|-----------------------------------------------------------|----------------------|-------------|
| 1 | Manual forklift                                           | 0.8 – 1.3 m          | 1.2 – 2.0 m |
| 2 | Forklift with conductor in upright position               | 0.9 – 1.5 m          | 1.5 – 2.5 m |
| 3 | Forklift with conductor in sitting position (capacity 3t) | 0.9 – 1.5 m          | 2.5 – 3.8 m |
| 4 | Mobile cranes (up to 9t)                                  | 1.5 – 2.5 m          | 3.5 – 5.5 m |
| 5 | Small trucks (capacity up to 1.5t)                        | 1.5 – 2.4 m          | 4.0 – 5.0 m |











# OVERALL TRANSPORTATION AREAS (A<sub>T</sub>) PATHS FOR VEHICLES







| Total path width           | $b = a_{L1} + a_{L2} + 2Z_1 + Z_2$ |  |
|----------------------------|------------------------------------|--|
| Vehicle widths             |                                    |  |
| One way                    | a <sub>L2</sub> = 0                |  |
| Two way                    | $a_{L1} = a_{L2}$                  |  |
| Edge distances             |                                    |  |
| For goods                  | Z <sub>1</sub> = 0.5 m             |  |
| For people                 | Z <sub>1</sub> = 0.75 m            |  |
| Traffic distances          |                                    |  |
| one way                    | Z <sub>2</sub> = 0                 |  |
| two way                    | Z <sub>2</sub> = 0.4 m             |  |
| less people and goods flow | $2Z_1 + Z_2 \ge 1.1 \text{ m}$     |  |

# **OVERALL QUALITY CONTROL AREA (AQ)**





# **Calculation of Quality Control Area**

$$A_Q = 0.13 * A_M$$

#### Condition:

- 25% 35% of parts in quality control work places
- Rest in self-control

# **OVERALL FREE AREA (A<sub>F</sub>)**





#### **Calculation of Free Area**

$$A_F = 0.18 * A_M$$

# Examples:

- Building restrictions (pillars, etc.)
- Shop floor management
- Terminals
- Disposal areas

# **FLOOR CHARACTERISTICS**



#### Surface

- 1 Load-bearing capacity
- 2 Durability
- 3 Evenness
- 4 Slipperiness
- 5 Easiness to clean



#### Installation

- 1 Power
- 2 Phone connection
- 3&4 HVAC
- 5 Clear installation hight



#### **Construction Physics**

- 1 Thermal insulation
- 2 Tightness
- 3 Fire protection
- 4 Noise protection
- 5 Discharge capability



#### **Elements**

- 1 Dimensional system
- 2 Mounting plates
- 3 Construction joints
- 4 Rearrangement effort



# **CONSTRUCTION SHAPES**





Chapter 08 Industrial Engineering - Facility Planning

# **CONSTRUCTION TYPES**



|                                            | Multi-storey Building                                                                                                    | Single-storey Building                                                              | Hall                                                                                  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                            | 3.5-4.5m                                                                                                                 | +5.0-6.0m<br>+7.5/15 10/10m                                                         | 6-15 m<br>15-30(-50)m                                                                 |
| Characteristics                            | <ul><li>Limited space in stacked floors</li><li>Many work places</li><li>Stairs and lifts</li></ul>                      | At ground level                                                                     | <ul><li>Extensive width &amp; hight</li><li>Less work places</li><li>cranes</li></ul> |
| Load-bearing capacity                      | Light to medium ( <1Mp/m²)                                                                                               | Light to heavy (<2 Mp/m²)                                                           | Heavy to very heavy (5 Mp/m²)                                                         |
| Utilization                                | High-precision manufacturing Optics manufacturing Electronics manufacturing Food manufacturing Apparel manufacturing R&D | Machinery manufacturing Car manufacturing Textile manufacturing Paper manufacturing | Heavy machinery manufacturing Steel manufacturing                                     |
| Space requirement                          | Small to medium                                                                                                          | high                                                                                | high                                                                                  |
| Dimensions -Length -Pillar distance -Hight | 9 – 12 ( -16) m<br>4 – 10 m<br>3.5 – 4.5 m                                                                               | 10 – 18 m<br>5 – 10 m<br>5 – 6 m                                                    | 15 – 30 (50) m<br>5 – 25 m<br>6 – 15 (25) m                                           |
| Transportation -Horizontal                 | light floor conveyors & forklifts<br>light cranes (=1 Mp)                                                                | Forklifts, conveyors, cranes                                                        | Forklifts, cranes (>5 Mp)                                                             |
| -Vertical                                  | lift, slides, conveyors                                                                                                  | N/A                                                                                 | N/A                                                                                   |

# **HALL**





- Full flexibility
- Scalability (horizontally & vertically)
- No special equipment for material flow
- Easy installations of machines
- Heavy machinery and goods
- Good overview of shop floor processes

Extensive space requirements

Chapter 08 Industrial Engineering - Facility Planning Page 24

# **SINGLE-STOREY BUILDING**





- High flexibility
- No special equipment for material flow
- Easy installations of machines
- Heavy machinery and goods
- Good overview of shop floor processes
- Extensive use of sunlight possible
- Additional installations on roof

- Extensive space requirements
- Limited scalability

# **MULTI-STOREY BUILDING**









- Efficient use of given space
- Lightweight machines and products
- Additional installations on roof possible

- Low flexibility
- No scalability
- Complicated installations of machines
- Special equipment for material flow
- Hardly overview of shop floor processes

# **GENERAL TYPES OF LAYOUT**



| Characteristics                                                                                                                                                                                                                                                      | Principle                                                                                           | Structure |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------|
| <ul> <li>U-Shaped</li> <li>U-shaped material flow with logistics and dispatch area at the center</li> <li>Feasible with centralized logistics concept</li> </ul>                                                                                                     | $ \begin{array}{cccc} \hline E & F & G & H \\ \hline D & & & \\ \hline C & B & A & \\ \end{array} $ |           |
| <ul> <li>Coupling of different areas</li> <li>Functioning of those areas only possible through true ring structure</li> <li>Challenge for projects that are realized sequentially</li> </ul>                                                                         | B A F                                                                                               |           |
| <ul> <li>Spine</li> <li>Supporting (material supply) and processing (manufacturing) areas</li> <li>Possibilities for expansion: <ul> <li>Macro expansion (extension of the spine)</li> <li>Micro expansion (extension of manufacturing areas)</li> </ul> </li> </ul> | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                               |           |

# **U-SHAPED-FACTORY**





# **U-SHAPED LAYOUT**



- Efficient use of given space
- Lightweight machines and products
- Additional installations on roof possible

Uneven workload for employees possible



# **SPINE SHAPE DEVELOPMENT**





# **COMBINATION OF SHAPES**





# **CONSECUTIVE EXERCISE**



- Calculate the space requirements for the needed machines
  - Use spreadsheets S25 & S26



