Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

Tristan Delcourt, Louise Nguyen

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations
Crible Quadratique
Approximation logarithmique

Résultats

Les nombres RSA

- ▶ Factoriser N = pq où p et q sont premiers et très grands.
- Dernier nombre non factorisé: RSA-260 (260 chiffres)

N = 2211282552952966643528108525502623092761208950247001539441374831912882294140200198651272972656 9746599085900330031400051170742204560859276357953 7571859542988389587092292384910067030341246205457 8456641366454068421436129301769402084639106587591 4794251435144458199

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations
Crible Quadratique
Approximation logarithmique

Résultats

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

La méthode de Dixon

Congruences de carrés

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés

Etapes de la méthode L'algorithme final

Optimisations
Crible Quadratique
Approximation logarithmique

Résultats

La méthode de Dixon

Congruences de carrés

Congruence de carrés

N = pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

N = pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ► On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

N=pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

N=pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbb{N} \land (\mathbf{x}-\mathbf{y}) \neq \mathbf{1}$

Conclusion

N=pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x-y: $p \mid N \land (x-y)$, ce qui donne $\mathbf{N} \land (\mathbf{x} \mathbf{y}) \neq \mathbf{1}$

Conclusion

- La méthode de Dixon
 - Congruences de carrés

N = pq, p premier. Supp. $x^2 \equiv y^2 \pmod{N}$ et $x \neq \pm y$.

- ▶ On a $x^2 y^2 \equiv 0 \pmod{N}$ i.e. $N \mid (x y)(x + y)$
- ightharpoonup Donc $p \mid (x-y)(x+y)$
- Lemme d'Euclide: par exemple $p \mid x y$
- Alors p divise N et x y: $p \mid N \land (x y)$, ce qui donne $\mathbf{N} \land (\mathbf{x} \mathbf{y}) \neq \mathbf{1}$

Conclusion

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

La méthode de Dixon

Etapes de la méthode

Plan

Introduction et enjeux

La méthode de Dixon

Congruences de carrés

Etapes de la méthode

L'algorithme final

Optimisations

Crible Quadratique

Approximation logarithmique

Résultats

 $b\in\mathbb{N}$

2

3

5

.

•

•

 p_b

 $b\in\mathbb{N}$

 $oxed{\left(x_1,\quad x_2,\quad x_3,\quad \dots,\quad x_{b+1}
ight)}$

2

3

5

•

•

.

 p_b

2

3

5

•

•

•

 p_b

Etapes de la méthode

Construction de y - Pivot de Gauss

▶ On a b+1 vecteurs de \mathbb{F}_2^b et \mathbb{F}_2 corps, cela donne un système lié:

$$\exists (\lambda_i)_{i \in [\![1,b+1]\!]} \in \{0,1\}^{b+1} \mid \sum_{i=1}^{b+1} \lambda_i v_i = 0_{\mathbb{F}_2^b} = (2\alpha_1,\ldots,2\alpha_b)$$

On pose
$$y = \prod_{j=1}^b p_j^{\alpha_j}$$
 et $x = \prod_{j=1}^{b+1} x_j^{\lambda_j}$

On peut trouver les λ_i avec un système que l'on résout avec un **pivot de Gauss**.

$$x^2 \equiv y^2 \pmod{N}$$

Construction de y - Pivot de Gauss

▶ On a b+1 vecteurs de \mathbb{F}_2^b et \mathbb{F}_2 corps, cela donne un système lié:

$$\exists (\lambda_i)_{i \in [\![1,b+1]\!]} \in \{0,1\}^{b+1} \mid \sum_{i=1}^{b+1} \lambda_i v_i = 0_{\mathbb{F}_2^b} = (2\alpha_1,\ldots,2\alpha_b)$$

On pose
$$y = \prod_{j=1}^b p_j^{\alpha_j}$$
 et $x = \prod_{j=1}^{b+1} x_j^{\lambda_j}$

▶ On peut trouver les λ_i avec un système que l'on résout avec un **pivot de Gauss**.

Résultat admis (calcul)
$$x^2 \equiv y^2 \pmod{N}$$

Etapes de la méthode

Construction de y - Pivot de Gauss

▶ On a b+1 vecteurs de \mathbb{F}_2^b et \mathbb{F}_2 corps, cela donne un système lié:

$$\exists (\lambda_i)_{i \in [\![1,b+1]\!]} \in \{0,1\}^{b+1} \mid \sum_{i=1}^{b+1} \lambda_i v_i = 0_{\mathbb{F}_2^b} = (2\alpha_1,\ldots,2\alpha_b)$$

On pose
$$y = \prod_{j=1}^b p_j^{\alpha_j}$$
 et $x = \prod_{j=1}^{b+1} x_j^{\lambda_j}$

▶ On peut trouver les λ_i avec un système que l'on résout avec un **pivot de Gauss**.

Résultat admis (calcul)

$$x^2 \equiv y^2 \pmod{N}$$

La méthode de Dixon

∟Etapes de la méthode

Un exemple

- ► $N = 20382493 = 3467 \times 5879$ et b = 4, (2, 3, 5, 7)
- ► Ces 5 = b + 1 nombres x_j vérifient x_j^2 (mod N) = $2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}}$:

Xj	Vj
16853	(6,5,2,2)
32877	(3,0,7,0)
35261	(3,2,1,0)
48834	(0,2,3,1)

►
$$N = 20382493 = 3467 \times 5879$$
 et $b = 4$. $\begin{cases} x_j & v_j \\ 16853 & (6, 5, 2, 2) \\ 32877 & (3, 0, 7, 0) \\ 35261 & (3, 2, 1, 0) \\ 48834 & (0, 2, 3, 1) \end{cases}$

ightharpoonup On résout dans \mathbb{F}_2^5

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

►
$$N = 20382493 = 3467 \times 5879$$
 et $b = 4$. $\begin{cases} x_j & v_j \\ 16853 & (6, 5, 2, 2) \\ 32877 & (3, 0, 7, 0) \\ 35261 & (3, 2, 1, 0) \\ (5 = b + 1 \text{ relations}) & 48834 & (0, 2, 3, 1) \end{cases}$

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

►
$$N = 20382493 = 3467 \times 5879$$
 et $b = 4$. $\begin{cases} x_j & v_j \\ 16853 & (6, 5, 2, 2) \\ 32877 & (3, 0, 7, 0) \\ 35261 & (3, 2, 1, 0) \\ (5 = b + 1 \text{ relations}) & 48834 & (0, 2, 3, 1) \end{cases}$

ightharpoonup On résout dans \mathbb{F}_2^5

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

▶
$$N = 20382493 = 3467 \times 5879 \text{ et } b = 4.$$

▶ $x_j^2 \pmod{N} = 2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}} \text{ pour } j = 1, 2, 3, 4, 5$

(5 = $b + 1$ relations)

 $x_j \qquad v_j \qquad 16853 \qquad (6, 5, 2, 2)$
 $32877 \qquad (3, 0, 7, 0)$
 $35261 \qquad (3, 2, 1, 0)$
 $48834 \qquad (0, 2, 3, 1)$

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

$$\lambda = (1, 1, 1, 0, 1)$$
 solution.

$$x = \prod_{j=1}^{b+1} x_j^{\lambda_j} = 7248176$$

$$y = \prod_{j=1}^{b} p_j^{\alpha_j} = 4837786$$

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

 $\lambda = (1, 1, 1, 0, 1)$ solution.

$$N \wedge (x - y) = 5879 \text{ et}$$

 $N \wedge (x + y) = 3467.$

►
$$N = 20382493 = 3467 \times 5879$$
 et $b = 4$.
► $x_j^2 \pmod{N} = 2^{v_j^{(1)}} \cdots 7^{v_j^{(4)}}$ pour $j = 1, 2, 3, 4, 5$ $(5 = b + 1 \text{ relations})$ $(5 = b + 1 \text{ relations})$

$$\begin{cases} 6\lambda_1 + 3\lambda_2 + 5\lambda_3 + 0\lambda_4 + 3\lambda_5 = 0_{\mathbb{F}_2} \\ 5\lambda_1 + 0\lambda_2 + 3\lambda_3 + 2\lambda_4 + 2\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 7\lambda_2 + 0\lambda_3 + 3\lambda_4 + 1\lambda_5 = 0_{\mathbb{F}_2} \\ 2\lambda_1 + 0\lambda_2 + 1\lambda_3 + 1\lambda_4 + 0\lambda_5 = 0_{\mathbb{F}_2} \end{cases}$$

 $\lambda = (1, 1, 1, 0, 1)$ solution.

$$x = \prod_{j=1}^{b+1} x_j^{\lambda_j} = 7248176$$

$$y = \prod_{j=1}^{b} p_j^{\alpha_j} = 4837786$$

►
$$N \wedge (x - y) = 5879$$
 et $N \wedge (x + y) = 3467$.

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

La méthode de Dixon

Etapes de la méthode

Ce qu'il faut retenir

Le résultat principal

Étant donné $b \in \mathbb{B}$, trouver b+1 nombres tels que $\forall j \in [\![1,b+1]\!], x_j^2 \pmod{N}$ a ses facteurs premiers inferieurs à p_b

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

La méthode de Dixon

L'algorithme final

Plan

Introduction et enjeux

La méthode de Dixon

Congruences de carrés Etapes de la méthode

L'algorithme final

Optimisations
Crible Quadratique
Approximation logarithmique

Résultats

Entrée: $N \in \mathbb{N}$ composé, $b \in \mathbb{N}$

L'algorithme final

L'algorithme final

```
Algorithme 1 Recherche de nombres B-friables
```

```
Sortie: (v_i)_{i \in [1,b+1]}, (x_i)_{i \in [1,b+1]}
      pour i \leftarrow 1 \dots b + 1 faire
           en cours \leftarrow V
  2:
 3:
           tant que en_cours faire
 4:
                 x_i \leftarrow \mathbb{U}(1, N-1)
                 x_i' \leftarrow x_i^2 \mod N
 5:
                 si x_i' est B-friable (par algorithme naïf) alors
 6.
                en\_cours \leftarrow F
v_i \leftarrow (v_i^{(1)}, \dots, v_i^{(b)})
  7:
 8:
      renvoyer (v_i)_{i \in [1,b+1]}, (x_i)_{i \in [1,b+1]}
```

- La méthode de Dixon
 - L'algorithme final

L'algorithme final

Algorithme 2 Factorisation par la méthode de Dixon

Entrée: $N \in \mathbb{N}$ composé, $B \in \mathbb{N}$

Sortie: p et q, tels que $p \mid N$ et $q \mid N$

- 1: $b \leftarrow \pi(B)$
- 2: $(v_i)_{i \in \llbracket 1,b+1 \rrbracket}, (x_i)_{i \in \llbracket 1,b+1 \rrbracket} \leftarrow RechercheBFriables(N,b)$
- 3: $(\lambda_i)_{i \in \llbracket 1,b+1 \rrbracket} \leftarrow PivotdeGauss((v_i)_{i \in \llbracket 1,b+1 \rrbracket})$
- 4: $x \leftarrow \prod_{j=1}^{b+1} x_i^{\lambda_i}$
- 5: $y \leftarrow \prod_{j=1}^b p_j^{\alpha_j}$

renvoyer $N \wedge (x - y), N \wedge (x + y)$

Etude théorique (Louise Nguyen)

Une minoration de la densité des B-friables

Soit $B: \mathbb{N}^* \to \mathbb{N}^*$ une fonction telle que $\ln n = o(B(n))$ et $\ln B(n) = o(\ln n)$. Alors on a, pour $n \to +\infty$,

$$\Psi(B(n), n) \ge n \exp\left(\left(\frac{\ln n}{\ln B(n)} \ln \ln n\right) (-1 + o(1))\right)$$

Une complexité sous-exponentielle

$$\exp\left((1+o(1))2\sqrt{2}(\ln n \ln \ln n)^{1/2}\right)$$

lorsque
$$B = \exp\left(\frac{1}{\sqrt{2}}(\ln n \ln \ln n)^{1/2}\right)$$

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations
Crible Quadratique
Approximation logarithmique

Résultats

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

└ Optimisations

Crible Quadratique

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations

Crible Quadratique

Approximation logarithmique

Résultats

- └ Optimisations
 - Crible Quadratique

- ▶ Utilisation d'un polynôme $Q = (\sqrt{N} + X)^2 N$ pour générer les x_i
- ▶ Résolution de $Q(x) \equiv 0 \pmod{p}$ grâce à Tonelli-Shanks, 2 solutions x_1 et x_2 dans [1, p].
- $\triangleright p|Q(x) \implies \forall k \in \mathbb{N}, p|Q(x+kp)$
- ▶ Cribler sur un intervalle [1, S], puis sur [S + 1, 2S] etc...

- └ Optimisations
 - Crible Quadratique

- ▶ Utilisation d'un polynôme $Q = (\sqrt{N} + X)^2 N$ pour générer les x_i
- ▶ Résolution de $Q(x) \equiv 0 \pmod{p}$ grâce à Tonelli-Shanks, 2 solutions x_1 et x_2 dans [1, p].
- \triangleright $p|Q(x) \implies \forall k \in \mathbb{N}, p|Q(x+kp)$
- ▶ Cribler sur un intervalle [1, S], puis sur [S + 1, 2S] etc...

- └ Optimisations
 - Crible Quadratique

- ▶ Utilisation d'un polynôme $Q = (\sqrt{N} + X)^2 N$ pour générer les x_i
- ▶ Résolution de $Q(x) \equiv 0 \pmod{p}$ grâce à Tonelli-Shanks, 2 solutions x_1 et x_2 dans [1, p].
- $ightharpoonup p|Q(x) \implies \forall k \in \mathbb{N}, p|Q(x+kp)$
- ► Cribler sur un intervalle [1, S], puis sur [S + 1, 2S] etc...

- └ Optimisations
 - Crible Quadratique

- ▶ Utilisation d'un polynôme $Q = (\sqrt{N} + X)^2 N$ pour générer les x_i
- ▶ Résolution de $Q(x) \equiv 0 \pmod{p}$ grâce à Tonelli-Shanks, 2 solutions x_1 et x_2 dans [1, p].
- $ightharpoonup p|Q(x) \implies \forall k \in \mathbb{N}, p|Q(x+kp)$
- ▶ Cribler sur un intervalle [1, S], puis sur [S + 1, 2S] etc...

S = 10 N = 20382493

 $T = \left[Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)\right]$

$$S = 10$$
 $N = 20382493$

$$T = \left[Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)\right]$$

$$p=2 \mid \mid Q(1) \equiv 0 \pmod{2} \mid$$

$$S=10 \ | \ N=20382493$$

$$T = \left[Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)\right]$$

$$p=2 \mid \mid Q(1) \equiv 0 \pmod{2}$$

 $[2732, 11736, 20796, 29831, 38868, \ldots, Q(10)]$

$$S = 10$$
 $N = 20382493$

$$T = \left[Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)\right]$$

$$S = 10$$
 $N = 20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$S = 10$$
 $N = 20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$S=10$$
 $N=20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

$$S=10$$
 $N=20382493$

$$T = [Q(1), Q(2), Q(3), Q(4), Q(5), Q(6), Q(7), Q(8), Q(9), Q(10)]$$

└ Optimisations

Crible Quadratique

Algorithme 3 Algorithme du crible quadratique

```
Entrée: N \in \mathbb{N}^*. b \in \mathbb{N}^*. S > 1
Sortie: (v_i)_{i \in [1,k]}, (x_i)_{i \in [1,k]}, k \in [0,S]
 1: T \leftarrow \text{tableau tel que } T[i] \leftarrow (i + |\sqrt{N}|)^2 - N \text{ pour } i \in [1, S]
 2: V \leftarrow \text{tableau tel que } V[i] \leftarrow (0, \dots, 0) \in \mathbb{N}^b \text{ pour } i \in [1, S]
 3: pour p \in \{p_1, \dots, p_b\} tel que N est un carré modulo p faire
         x_1, x_2 \leftarrow \text{les racines de } (X + |\sqrt{N}|)^2 - N \text{ modulo } p
 4:
         pour i \in \{1, 2\} faire
 5:
 6:
               q \leftarrow x_i
 7:
               tant que a < S faire
 8.
                    tant que T[q] \mod p = 0 faire
                    T[q] \leftarrow T[q]/p
 9.
                    V[q] \leftarrow V[q] + (0, \dots, 1, \dots, 0) (en position p)
10:
11:
                    q \leftarrow q + p
     renvoyer L'ensemble des (i + |\sqrt{N}|, V[i]) tels que T[i] = 1 pour
     i \in [1, S]
```

Peut-on factoriser suffisamment rapidement les nombres en facteurs premiers?

└ Optimisations

Approximation logarithmique

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations

Crible Quadratique

Approximation logarithmique

Résultats

Annexe

└ Optimisations

Approximation logarithmique

- ▶ O(n) au lieu de $O(n^2)$, voire $O(n \log n)$
- ▶ $Q(x) = \prod_{i=1}^k p_i^{\alpha_i}$, soit $\ln(Q(x)) = \sum_{i=1}^k \alpha_i \ln(p_i)$. Idée: soustraire par $\alpha_i \ln(p_i)$ au lieu de diviser par $p_i^{\alpha_i}$
- $ightharpoonup \log_2(Q(x)) \approx \text{nb_bits}(Q(x))$
- Problème: on ne connaît pas α_i . Solution: on soustrait par $\log_2(p_i)$ seulement. Desapproximations nécessitent déjà un **seuil**

- └ Optimisations
 - Approximation logarithmique

- ▶ O(n) au lieu de $O(n^2)$, voire $O(n \log n)$
- ▶ $Q(x) = \prod_{i=1}^k p_i^{\alpha_i}$, soit $\ln(Q(x)) = \sum_{i=1}^k \alpha_i \ln(p_i)$. <u>Idée</u>: soustraire par $\alpha_i \ln(p_i)$ au lieu de diviser par $p_i^{\alpha_i}$
- $ightharpoonup \log_2(Q(x)) \approx \text{nb_bits}(Q(x))$
- Problème: on ne connaît pas α_i . Solution: on soustrait par $\log_2(p_i)$ seulement. Desapproximations nécessitent déjà un **seuil**

- └ Optimisations
 - Approximation logarithmique

- ▶ O(n) au lieu de $O(n^2)$, voire $O(n \log n)$
- ▶ $Q(x) = \prod_{i=1}^k p_i^{\alpha_i}$, soit $\ln(Q(x)) = \sum_{i=1}^k \alpha_i \ln(p_i)$. <u>Idée</u>: soustraire par $\alpha_i \ln(p_i)$ au lieu de diviser par $p_i^{\alpha_i}$
- ▶ $\log_2(Q(x)) \approx \text{nb_bits}(Q(x))$
- Problème: on ne connaît pas α_i . Solution: on soustrait par $\log_2(p_i)$ seulement. Desapproximations nécessitent déjà un **seuil**

- Optimisations
 - Approximation logarithmique

- ▶ O(n) au lieu de $O(n^2)$, voire $O(n \log n)$
- ▶ $Q(x) = \prod_{i=1}^k p_i^{\alpha_i}$, soit $\ln(Q(x)) = \sum_{i=1}^k \alpha_i \ln(p_i)$. <u>Idée</u>: soustraire par $\alpha_i \ln(p_i)$ au lieu de diviser par $p_i^{\alpha_i}$
- ▶ $\log_2(Q(x)) \approx \text{nb_bits}(Q(x))$
- Problème: on ne connaît pas α_i . Solution: on soustrait par $\log_2(p_i)$ seulement. Des approximations nécessitent déjà un **seuil**

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations
Crible Quadratique
Approximation logarithmique

Résultats

Annexe

Résultats

Après plusieurs centaines de tests, on a les résultats suivants:

Bits	Dixon	QSIEVE	MPQS
60	0.5s	0.05s	-
80	5s	0.1s	-
100	100s	0.1s	0.1s
120	-	2s	0.6s
140	-	5s	5s
160	-	-	80s

Graphique final

Annexe

Plan

Introduction et enjeux

La méthode de Dixon Congruences de carrés Etapes de la méthode L'algorithme final

Optimisations
Crible Quadratique
Approximation logarithmique

Résultats

Annexe

└─Annexe └─Démonstrations

Proposition

Soient $b \in \mathbb{N}$, $(x_i)_{i \in [\![1,b+1]\!]} \in \mathbb{N}^{b+1}$ et $(v_i)_{i \in [\![1,b+1]\!]} \in \mathbb{F}_2^b$ les vecteurs valuations de $x_i^2 \pmod{N}$ pour $i \in [\![1,b+1]\!]$ et finalement $(\lambda_i)_{i \in [\![1,b+1]\!]} \in \{0,1\}^{b+1}$ tels que,

$$\sum_{i=1}^{b+1} \lambda_i v_i = 0_{\mathbb{F}_2^b} = (2\alpha_1, \dots, 2\alpha_b)$$

On pose
$$y = \prod_{j=1}^b p_j^{\alpha_j}$$
 et $x = \prod_{j=1}^{b+1} x_j^{\lambda_j}$, alors $x^2 \equiv y^2 \pmod{N}$

— Démonstrations

Démonstration

$$x^{2} = (\prod_{i=1}^{b+1} x_{i}^{2})^{\lambda_{i}} \equiv \prod_{i=1}^{b+1} \prod_{j=1}^{b} p_{j}^{\lambda_{i} v_{i}^{(j)}} \pmod{N}$$

$$\equiv \prod_{j=1}^{b} \prod_{i=1}^{b+1} p_{j}^{\lambda_{i} v_{i}^{(j)}} \pmod{N}$$

$$\equiv \prod_{j=1}^{b} p_{j}^{\sum_{i=1}^{b+1} \lambda_{i} v_{i}^{(j)}} \pmod{N}$$

$$\equiv (\prod_{j=1}^{b} p_{j}^{\alpha_{j}})^{2} \pmod{N}$$

$$\equiv y^{2} \pmod{N}$$

$$(\text{déf de } \alpha_{j})$$

$$\equiv y^{2} \pmod{N}$$

└─Annexe └─Démonstrations

Proposition

Si
$$Q = (\sqrt{N} + X)^2 - N$$
, alors $p \mid Q(x) \implies \forall k \in \mathbb{N}, p \mid Q(x + kp)$

Démonstration

En effet, supposons $p \mid Q(x)$, on a:

$$Q(x + kp) = (\sqrt{N} + x + kp)^{2} - N$$

= $Q(x) + 2kp(\sqrt{N} + x) + k^{2}p^{2}$

d'où $p \mid Q(x + kp)$

../c/vector.h

```
#pragma once
#include <gmp.h>
void mod_vect(int* v, int mod, int n1);
void add_vect(int* sum, int* op, int n1);
```

```
void div_vect(int* v, int d, int n1);
void sub_vect(int** v, int i, int j, int n1);
void prod_vect(mpz_t prod, mpz_t* z, int n1, system_t
s);
```

../c/vector.c

```
#include <gmp.h>
#include <assert.h>
#include < stdlib.h >
#include "system.h"
void mod_vect(int* v, int mod, int n1){
    for(int i = 0; i < n1; i++){
        v[i] = abs(v[i]) \% mod;
void add_vect(int* sum, int* op, int n1){
    for(int i = 0; i < n1; i++){
        sum[i] += op[i];
void div_vect(int* v, int d, int n1){
    for(int i = 0; i < n1; i++){
        assert(v[i]\%d == 0)
```

../c/tonellishanks.h

#pragma once

#include <gmp.h>

../c/tonellishanks.c

```
#include < stdint.h >
#include <gmp.h>
                                                             mpz_t temp, pj;
#include <stdio.h>
                                                             mpz_init(temp):
#include <assert.h>
                                                             mpz_init_set_ui(pi, p):
#include <stdlib.h>
                                                             if (ss == 1) {
uint64_t modpow(uint64_t a. uint64_t b. uint64_t n) {
                                                                 //uint64_t r1 = modpow(n, (p + 1) / 4, p):
                                                                  mpz_powm_ui(temp, n, (p+1)/4, pi);
    uint64_t \times = 1, y = a;
    while (b > 0) {
                                                                 uint64_t r1 = mpz_get_ui(temp);
        if (b \% 2 == 1) {
            x = (x * y) \% n; // multiplying with base
                                                                 *x1 = r1:
                                                                 *x2 = p - r1:
        y = (y * y) \% n; // squaring the base
                                                                 mpz_clears(temp, pi, NULL):
        b /= 2:
                                                                 return:
    return x % n:
                                                             while (modpow(z, (p-1) / 2, p) != (unsigned)
                                                                    long int) p = 1) { // uint_64 only there
void tonelli_shanks_ui(mpz_t n, unsigned long int p, int
                                                                     for the compiler to stop complaining
       * x1. int* x2) {
                                                                 z++:
    uint64_t q = p - 1;
    uint64_t ss = 0;
    uint64_t z = 2:
                                                             c = modpow(z, q, p);
    uint64_t c. r. t. m:
                                                             //r = modpow(n, (q + 1) / 2, p);
                                                             mpz_powm_ui(temp, n, (q+1)/2, pi);
    while ((q \& 1) == 0) {
                                                             r = mpz_get_ui(temp):
        ss += 1;
        a >>= 1:
                                                             //t = modpow(n, q, p);
                                                             mpz_powm_ui(temp, n, q, pj);
```

```
t = mpz_get_ui(temp):
                                                              mpz_t q, z;
                                                              mpz_init_set(q, p);
                                                              mpz_sub_ui(q, q, 1);
    m = ss:
                                                              int ss = 0:
    while(1){
                                                              mpz_init_set_ui(z, 2);
        uint64_t i = 0, zz = t;
                                                              while(mpz_divisible_ui_p(q, 2) != 0){
        uint64_t b = c. e:
        if (t == 1) {
                                                                  ss += 1;
            *x1 = r:
                                                                  mpz_divexact_ui(q, q, 2);
            *x2 = p - r;
            mpz_clears(temp, pj, NULL);
            return;
                                                              mpz_t op1;
                                                              mpz_init(op1):
        while (zz != 1 \&\& i < (m-1)) {
            zz = zz * zz \% p;
                                                              if (ss == 1) {
                                                                  //uint64_t r1 = modpow(n, (p + 1) / 4, p);
            i++:
                                                                   mpz_add_ui(op1, p, 1):
        e = m - i - 1:
                                                                  mpz_divexact_ui(op1, op1, 4);
        while (e > 0) {
                                                                  mpz_powm(op1, n, op1, p);
            b = b * b \% p:
            6--
                                                                  mpz_set(x1. op1):
                                                                  mpz\_sub(x2, p, x1);
        r = r * b \% p:
        c = b * b \% p:
                                                                  mpz_clears(q, z, op1, NULL);
        t = t * c \% p;
                                                                  return;
        m = i:
                                                              mpz_t op2, op3;
                                                              mpz_inits(op2, op3, NULL);
void tonelli_shanks_mpz(mpz_t n, mpz_t p, mpz_t x1.
       mpz_t \times 2){
                                                              mpz_sub_ui(op1, p, 1);
    assert(mpz\_legendre(n, p) == 1);
                                                              mpz_divexact_ui(op1, op1, 2);
```

mpz_powm(op2, z, op1, p);

```
mpz_sub_ui(op3, p, 1);
                                                               mpz_sub_ui(op1, m, 1);
while(mpz_cmp(op2, op3) != 0){
                                                               while(mpz_cmp_ui(zz, 1) != 0 \&\& mpz\_cmp(i)
    mpz_add_ui(z, z, 1):
                                                                       op1)<0){
    mpz_powm(op2, z, op1, p);
                                                                   mpz_mul(zz, zz, zz);
}
                                                                   mpz_mod(zz, zz, p);
                                                                   mpz_add_ui(i, i, 1):
mpz_t c, r, t, m, i, zz, b, e;
mpz_inits(c, r, t, m, i, zz, b, e, NULL);
mpz_powm(c, z, a, p):
                                                               mpz_sub(e, m, i):
                                                               mpz_sub_ui(e, e, 1);
mpz_add_ui(op1, q, 1);
                                                               while(mpz_sgn(e)>0){
mpz_divexact_ui(op1, op1, 2):
                                                                   mpz_mul(b, b, b):
mpz_powm(r, n, op1, p):
                                                                   mpz_mod(b, b, p):
                                                                   mpz_sub_ui(e, e, 1);
mpz_powm(t, n, q, p);
mpz_set_ui(m, ss);
                                                               mpz_mul(r, r, b);
                                                               mpz_mod(r, r, p);
while(1){
    mpz_set_ui(i, 0);
                                                               mpz_mul(c, b, b):
    mpz_set(zz, t);
                                                               mpz_mod(c, c, p);
    mpz_set(b, c):
                                                               mpz_mul(t, t, c);
    if(mpz\_cmp\_ui(t, 1) == 0){
                                                               mpz_mod(t, t, p);
        mpz_set(x1, r);
        mpz\_sub(x2, p, x1):
                                                               mpz_set(m, i):
        mpz_clears(c, r, t, m, i, zz, b, e, op1, op2,
                op3. g. z. NULL):
        return:
    }
```

../c/system.h

```
#pragma once
#include <stdbool.h>

typedef struct system {
   int** m;
   int* perm;
   int* sol;
   bool done;
   int n, n2, arb;
```

```
} system_s;

typedef system_s* system_t;

system_t init_gauss(int** v, int n1, int n2);
void gaussian_step(system_t s);
void free_system(system_t s);
```

../c/system.c

```
#include "system.h"
#include "vector.h"
                                                              return -1;
#include "list_matrix_utils.h"
#include <stdlib.h>
#include <stdio.h>
                                                          system_t transpose(int** v, int n1, int n2){
#include <stdbool.h>
                                                              system_t s = malloc(sizeof(system_s));
void swap_lines_horz(system_t s, int i, int j){
                                                              s->m = malloc(n2*sizeof(int*));
                                                              for(int i = 0; i < n2; i++){
    int* temp = s->m[i];
    s->m[i] = s->m[i]:
                                                                  s->m[i] = malloc(n1*sizeof(int));
    s->m[i] = temp:
                                                                  for(int j = 0; j < n1; j++){
                                                                      s->m[i][i] = v[i][i]:
void swap_lines_vert(system_t s, int i, int j){
    int temp = s->perm[i];
    s->perm[i] = s->perm[i];
                                                              s - > n1 = n2
                                                              s->n2=n1:
    s->perm[i] = temp:
                                                              return s;
    for(int k = 0; k < s -> n1; k++){
        int temp = s->m[k][i];
        s->m[k][i] = s->m[k][i]
                                                          void triangulate(system_t s){
        s->m[k][i] = temp;
                                                              s->perm = malloc(s->n2*sizeof(int));
                                                              for(int i = 0: i < s - > n2: i + + > 1
                                                                  s->perm[i] = i:
int find_index(system_t s, int from, int look){
    for(int i = from; i < s->n1; i++){
                                                              int i = 0:
        if(s->m[i][look]){
                                                              int i = 0:
                                                              while(i < s - > n1 \&\& i < s - > n2){
            return i:
                                                                  int k = find_index(s, i, i):
```

```
if(k! = -1)
            if(i!=i){
                 swap_lines_vert(s. i. i):
                                                               fprintf(stderr, "ERROR:-All-vectors-are-zero-in-
                                                                       system\n"):
                                                               exit(1);
            swap_lines_horz(s, i, k);
            for(int l = i + 1; l < s -> n1; l++){
                                                           void init_sol(system_t s){
                 if(s->m[l][i] == 1){
                                                               s->sol = malloc(s->n2*sizeof(int));
                     sub\_vect(s->m, l, i, s->n2);
                                                               for(int i = s - > arb; i < s - > n2; i + + ){
                     mod_vect(s->m[l], 2, s->n2);
                                                                   s->sol[i] = 0:
            i++:
                                                           void iter_sol(system_t s){
            i = i;
                                                               int i = s - > arb;
        else{
                                                               while(i < s -> n2 \&\& (s -> sol[i] == 1)){
                                                                   s->sol[i]=0;
                                                                   i++:
                                                               if(i >= s->n2){
                                                                   s->done = true;
void get_arbitary(system_t triangulated){
                                                                    return:
    for(int i = triangulated\rightarrown1-1; i>=0; i-){
                                                               s->sol[i]=1;
        int i = 0;
        while(j < triangulated->n2 && !triangulated
                ->m[i][j]){
            j++;
                                                           system_t init_gauss(int** v, int n1, int n2){
                                                               //printf("Initial vectors\n");
        if(j < triangulated -> n2){
                                                               //print_ll(v. n1. n2):
            triangulated—>arb = j+1;
            return;
                                                               system_t s = transpose(v, n1, n2);
                                                               s->done = false:
```

```
while(i < s->n2 && !s->m[i][i]){
    //printf("Transposed\n");
                                                                      i++:
    //print_{-}||(s->m, s->n1, s->n2)||
    for(int i = 0; i < s -> n1; i++){
                                                                  if(i < s -> n2){
                                                                      s->sol[i]=0;
        mod_vect(s->m[i], 2, s->n2);
                                                                      for(int k = s - > n2 - 1; k > j; k - - ){
                                                                          s->sol[i] -= s->m[i][k] * s->sol[
    //printf("Modded\n");
    //print_{-}||(s->m, s->n1, s->n2)||
                                                                      s->sol[i] = abs(s->sol[i]) \% 2;
    triangulate(s);
    //printf("Triangulated\n");
    //print_{ll}(s->m, s->n1, s->n2);
    get_arbitary(s);
                                                          void free_system(system_t s){
                                                              for(int i = 0; i < s -> n1; i++){
    init_sol(s);
                                                                  free(s->m[i]);
    return s:
                                                              free(s->m):
                                                              free(s->sol);
void gaussian_step(system_t s){
                                                              free(s->perm);
    iter_sol(s);
                                                              free(s);
```

for(int i = s - > n1 - 1; i > = 0; $i - -){$

int i = 0:

../c/parse_input.h

```
mpz_t N;
#pragma once
#include <gmp.h>
                                                            bool quiet;
#include <stdbool.h>
                                                            TYPE algorithm;
                                                            int extra:
typedef enum {DIXON, QSIEVE, MPQS, PMPQS}
                                                            int delta;
       TYPE:
                                                        } input_t;
typedef struct input_s {
                                                        input_t* parse_input(int argc, char** argv);
    char* output_file;
                                                        void free_input(input_t* input);
    int bound, sieving_interval;
```

../c/parse_input.c

```
#include "parse_input.h"
                                                           void free_input(input_t* input){
                                                               if(input->output_file) free(input->output_file);
#include <stdlib.h>
#include < string.h>
                                                               mpz_clear(input—>N):
#include <gmp.h>
                                                               free(input):
#include <stdbool.h>
input_t* init_input(void){
                                                           input_t* parse_input(int argc, char** argv){
    input_t* input = malloc(sizeof(input_t));
                                                               input_t* input = init_input();
    input->bound = -1;
    input->output_file = NULL:
                                                               int i = 1
    input-> sieving\_interval = -1:
                                                               while(i<argc){
    input->extra = -1:
                                                                    if(strcmp(argv[i], "-b") == 0 || strcmp(argv[i]) ||
                                                                           il. "--bound") == 0){
    input->quiet = false:
    input->algorithm = QSIEVE:
                                                                        i++:
    input - > delta = 0:
                                                                        if(i<argc){</pre>
    mpz_init_set_ui(input->N, 0);
                                                                            if(valid_int(argv[i])) input—>bound =
                                                                                     atoi(argv[i]);
    return input:
                                                                            else return NULL;}
                                                                        else return NULL;
bool valid_int(char* str){
    int i = 0:
    char c = str[i];
                                                                    else if(strcmp(argv[i], "-s") == 0 || strcmp(
                                                                           argv[i], "--sieving_interval") == 0){
    while(c != '\setminus 0'){
        if(c<48 | | c>57) return false:
                                                                        i++:
        c = str[++i];
                                                                        if(i<argc){</pre>
    }
                                                                            if(valid_int(argv[i])) input->
                                                                                    sieving\_interval = atoi(argv[i]):
                                                                            else return NULL;}
    return true;
                                                                        else return NULL:
```

```
if(i<argc) input—>output_file = argv[i]:
else if(strcmp(argv[i], "-e") == 0 || strcmp(
                                                              else return NULL:
       argv[i] "--extra") == 0){
    i++:
                                                          else if(strcmp(argv[i], "-t") == 0 || strcmp(
    if(i<argc){</pre>
                                                                 argv[i]. "——type") == 0){
        if(valid_int(argv[i])) input—>extra =
               atoi(argv[i]);
                                                              i++:
        else return NULL;}
                                                              if(i<argc) {</pre>
                                                                  if(strcmp(argv[i], "dixon") == 0)
    else return NULL:
                                                                          input->algorithm = DIXON:
                                                                   else if(strcmp(argv[i], "qsieve") ==
else if(strcmp(argv[i], "-n") == 0 || strcmp(
                                                                          0) input->algorithm =
       argv[i], "--number") == 0){
                                                                          QSIEVE:
                                                                   else if(strcmp(argv[i], "mpqs") == 0)
    i++:
                                                                           input->algorithm = MPQS:
    if(i<argc){</pre>
        if(valid_int(argv[i])) mpz_set_str(input
                                                                   else if(strcmp(argv[i], "pmpqs") ==
                —>N, argv[i], 10);
                                                                          0) input->algorithm =
        else return NULL;}
                                                                          PMPQS:
    else return NULL;
                                                                   else return NULL;}
                                                              else return NULL:
else if(strcmp(argv[i], "-d") == 0 || strcmp(
       argv[i]. "--delta") == 0){
                                                          else if(strcmp(argv[i], "-q") == 0 ||
                                                                  strcmp(argy[i], "-stfu") == 0 /*
    i++\cdot
                                                                          easter egg*/||
    if(i<argc){</pre>
        if(valid_int(argv[i])) input—>delta =
                                                                   strcmp(argv[i], "--quiet") == 0){
                atoi(argv[i]):
                                                              input->quiet = true:
        else return NULL;}
    else return NULL:
                                                          else return NULL:
else if(strcmp(argv[i], "-o") == 0){
                                                          i++;
    i++:
```

return input;

../c/list_matrix_utils.h

#pragma once

void print_list(int* I, int n);

void print_ll(int** ll, int n1, int n2);
void free_ll(int** m, int n1);

../c/list_matrix_utils.c

../c/factorbase.h

```
#pragma once
#include <gmp.h>

// bruh
bool is_prime(int n);

// calculates pi(n), the number of prime numbers <= n
int pi(int n);

// returns a list of piB first primes</pre>
```

../c/factorbase.c

```
#include <stdbool.h>
#include <gmp.h>
                                                           int* primes(int piB, int B){
#include <stdlib.h>
                                                               int* p = malloc(piB*sizeof(int));
                                                               int k = 0:
bool is_prime(int n) {
                                                               for (int i = 2; i <= B; i++) {
    // Corner cases
                                                                    if (is_prime(i)){
    if (n \ll 1)
                                                                        p[k] = i:
        return false;
                                                                        k++;
    if (n <= 3)
        return true:
                                                               return p;
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n \% 2 == 0 || n \% 3 == 0)
        return false:
                                                           /* Used for legendre symbol, exists in gmp already
                                                           bool euler_criterion(mpz_t n, int p){
    for (int i = 5; i * i <= n; i = i + 6)
                                                               int e = (p-1)/2:
        if (n \% i == 0 || n \% (i + 2) == 0)
                                                               mpz_t r, p1;
            return false:
                                                               mpz_init(r);
                                                               mpz_init_set_ui(p1, p);
                                                               mpz_powm_ui(r, n, e, p1):
    return true:
                                                               return(mpz\_cmp\_ui(r, 1) == 0);
int pi(int n) {
    int k = 0:
    for (int i = 2; i <= n; i++) {
                                                           int* prime_base(mpz_t n, int* pb_len, int* primes, int
        if (is_prime(i)) k++:
                                                                  piB){
                                                               int* pb = malloc(piB*sizeof(int));
    return k;
                                                               pb[0] = 2;
```

```
 \begin{array}{lll} \text{int } j = 1; & & & \\ \text{mpz.t } p1; & & & \\ \text{mpz.init}(p1); & & & \\ \text{for}(\text{int } i = 1; i < piB; i++) \{ & & \\ \text{mpz.set.ui}(p1, \text{primes}[i]); & & \\ \text{if}(\text{mpz.legendre}(n, p1) == 1) \{ & & \\ \text{mpt.init}("\%A) n", \text{primes}[i]); & & \\ \text{pb}[j] = \text{primes}[i]; & & \\ \text{j} + + : & & \\ \end{array} \right.
```

../c/main.c

```
#include <stdbool.h>
                                                          */
#include <gmp.h>
#include < sys/time.h>
#include <stdio.h>
                                                         void rebuild_mpqs(mpz_t prod, mpz_t* d, int* v, int*
#include <stdlib.h>
                                                                primes, int n1, system_t s){
#include <assert.h>
                                                             mpz_set_ui(prod, 1);
#include "system.h"
                                                             mpz_t temp:
#include "vector.h"
                                                             mpz_init(temp);
#include "parse_input.h"
                                                             for(int i = 0; i < n1; i++){
#include "factorbase.h"
                                                                 if(s->sol[i]){
#include "list_matrix_utils.h"
                                                                     mpz_mul(prod, prod, d[s->perm[i]]):
// Include algorithms
                                                                 mpz_ui_pow_ui(temp, primes[i], v[i]);
// Dixon's method
                                                                 mpz_mul(prod. prod. temp):
#include "./dixon/dixon.h"
                                                             mpz_clear(temp);
// The Quadratic Sieve
#include "./qsieve/qsieve.h"
                                                         void rebuild(mpz_t prod, int* v, int* primes, int n1){
// Multipolynomial Quadratic Sieve
                                                             /** Rebuilds the product of primes to the power
#include "./mpqs/polynomial.h"
                                                                    of half
#include "./mpgs/mpgs.h"
                                                              * the solution found by the gaussian solve
#include "./mpgs/parallel_mpgs.h"
                                                              * FX-
                                                              *v = (1, 2, 3, 1)
/**
                                                              * primes = [2, 3, 5, 7]
                                                              * prod = 2**1 * 3** 2 * 5**3 * 7**1
                                                              * returns prod
 * START OF ALGORITHM
```

```
int pb_len:
    mpz_set_ui(prod, 1);
                                                             int* pb;
    mpz_t temp:
                                                             switch(input->algorithm){
    mpz_init(temp):
                                                                 case DIXON:
    for(int i = 0; i < n1; i++){
                                                                     pb = p
        mpz_ui_pow_ui(temp, primes[i], v[i]);
                                                                     pb_len = piB;
        mpz_mul(prod, prod, temp);
                                                                     break:
                                                                 case QSIEVE:
                                                                     pb = prime_base(input->N, &pb_len, p,
    mpz_clear(temp);
                                                                             piB):
                                                                     if(!input->quiet) printf("base-reduction-
void sum_lignes(int* sum, int** v, system_t s){
                                                                             %f%%\n", (float)pb_len/piB*100)
    /** Sums the lines of vectors into 'sum' according
            the solution of the
                                                                     free(p):
     * output of the system 's', such that each power
                                                                     break:
                                                                 case MPQS:
            is even
                                                                     pb = prime_base(input->N, &pb_len, p.
    for(int i = 0; i < s -> n1; i++){
                                                                             piB);
        sum[i] = 0;
                                                                     pb[pb_len] = -1;
                                                                     if(!input->quiet) printf("base-reduction-
                                                                             %f%%\n". (float)pb_len/piB*100)
    for(int i = 0; i < s -> n2; i++){
        if(s->sol[i]){
                                                                     free(p):
            add_vect(sum, v(s->perm[i]), s->n1):
                                                                     break:
                                                                 case PMPQS:
                                                                     pb = prime_base(input->N, &pb_len, p,
                                                                             piB):
                                                                     pb[pb\_len] = -1;
void factor(input_t* input){
                                                                     if(!input->quiet) printf("base-reduction-
    int piB = pi(input->bound):
                                                                             %f%%\n". (float)pb_len/piB*100)
    if(!input->quiet) printf("pi(B)--%d\n", piB);
    int* p = primes(piB, input->bound);
                                                                     free(p);
                                                                     break:
```

```
case PMPQS:
int target_nb = pb_len + input—>extra;
                                                                  d = malloc(target_nb*sizeof(mpz_t));
                                                                  for(int i = 0: i < target_nb: i++){
mpz_t*z = malloc((target_nb)*sizeof(mpz_t));
                                                                      mpz_init(d[i]):
for(int i = 0; i < target_nb; i++){
    mpz_init(z[i]);
                                                                  v = parallel_mpqs(z, d, input->N, pb_len
                                                                         , pb, input->extra, input->
                                                                         sieving_interval, input->delta,
//Getting zis
                                                                         input->quiet);
int** v:
                                                                  break:
mpz_t* d:
struct timeval t1, t2;
gettimeofday(&t1. 0):
                                                         gettimeofday(&t2. 0):
switch(input->algorithm){
                                                         long seconds = t2.tv_sec - t1.tv_sec:
    case DIXON:
                                                         long microseconds = t2.tv_usec - t1.tv_usec;
                                                         double time_spent = seconds + microseconds*1e
        v = dixon(z, input -> N, pb_len, pb, input
               ->extra. input->quiet):
                                                                 -6.
                                                         if(!input->quiet) printf("Time-to-get-zi:-%fs\n",
        break:
    case QSIEVE:
                                                                time_spent);
        v = gsieve(z, input -> N, pb_len, pb.
               input->extra, input->
                                                         mpz_t f. Z1. Z2. test1. test2:
                                                         mpz_inits(f, Z1, Z2, test1, test2, NULL);
               sieving_interval, input—>quiet);
        break:
    case MPQS:
                                                         //gaussian init
        d = malloc(target_nb*sizeof(mpz_t));
                                                         system_t s;
        for(int i = 0; i < target_nb; i++){
                                                         int* sum:
            mpz_init(d[i]):
                                                         switch(input->algorithm){
                                                              case DIXON:
        v = mpqs(z, d, input -> N, pb_len, pb,
                                                                  s = init_gauss(v, target_nb, pb_len);
               input->extra, input->
                                                                  sum = malloc(pb\_len*sizeof(int)):
               sieving_interval, input->delta.
                                                                  break:
                                                             case QSIEVE:
               input->quiet);
                                                                  s = init_gauss(v, target_nb, pb_len):
        break:
```

```
sum = malloc(pb\_len*sizeof(int)):
                                                                                                                                                                                                                                                                                                                                                                                                s):
                                           break:
                                                                                                                                                                                                                                                                                                                                                            break:
                    case MPQS:
                                                                                                                                                                                                                                                                                                                                       case PMPQS:
                                        // for -1
                                                                                                                                                                                                                                                                                                                                                            rebuild_mpas(Z2, d, sum, pb, pb_len,
                                          s = init_gauss(v, target_nb, pb_len+1);
                                                                                                                                                                                                                                                                                                                                                                                                s);
                                          sum = malloc((pb\_len+1)*sizeof(int));
                                                                                                                                                                                                                                                                                                                                                            break:
                                          break:
                    case PMPQS:
                                        // for -1
                                                                                                                                                                                                                                                                                                                  // TEST
                                          s = init_gauss(v, target_nb, pb_len+1):
                                                                                                                                                                                                                                                                                                                  mpz_set(test1, Z1):
                                        sum = malloc((pb\_len+1)*sizeof(int));
                                                                                                                                                                                                                                                                                                                  mpz_mul(test1, test1, test1);
                                        break;
                                                                                                                                                                                                                                                                                                                    mpz_set(test2, Z2);
                                                                                                                                                                                                                                                                                                                    mpz_mul(test2, test2, test2):
 if(!input->quiet) printf("2^%d-solutions-to-iterate
                                                                                                                                                                                                                                                                                                                    assert(mpz_congruent_p(test1, test2, input->
                                    n, s->n2 - s->arb);
                                                                                                                                                                                                                                                                                                                                                       N) != 0);
                                                                                                                                                                                                                                                                                                                    // END TEST
bool done = false:
 while(!done){
                                                                                                                                                                                                                                                                                                                    mpz_sub(f, Z1, Z2);
                                                                                                                                                                                                                                                                                                                    mpz_gcd(f, f, input->N);
                    gaussian_step(s);
                    prod_vect(Z1, z, target_nb, s);
                                                                                                                                                                                                                                                                                                                  if(mpz\_cmp\_ui(f, 1) != 0 \&\& mpz\_cmp(f, 1) != 0 \&\& mpz\_cmp(f, 1) := 0 \&\& mpz\_cmp(f, 1) 
                    sum_lignes(sum, v, s);
                                                                                                                                                                                                                                                                                                                                                       input—>N) != 0){
                                                                                                                                                                                                                                                                                                                                        assert(mpz_divisible_p(input->N, f));
                    div_vect(sum, 2, pb_len):
                                                                                                                                                                                                                                                                                                                                       if(!input->quiet) gmp_printf("%Zd-=-0-
                                                                                                                                                                                                                                                                                                                                                                           [\%Zd]\n", input—>N, f);
                    switch(input—>algorithm){
                                          case DIXON:
                                                                                                                                                                                                                                                                                                                                       done = true:
                                                              rebuild(Z2, sum, pb, pb_len):
                                                              break:
                                          case QSIEVE:
                                                                                                                                                                                                                                                                                                                  mpz_add(f, Z1, Z2);
                                                              rebuild(Z2, sum, pb, pb_len):
                                                                                                                                                                                                                                                                                                                  mpz_gcd(f, f, input->N):
                                                              break:
                                          case MPQS:
                                                                                                                                                                                                                                                                                                                    if(mpz\_cmp\_ui(f, 1) != 0 \&\& mpz\_cmp(f, 1) != 0 \&\& mpz\_cmp(f, 1) := 0 \&\& mpz\_cmp(f, 1)
```

 $input -> N) != 0){$

rebuild_mpgs(Z2, d, sum, pb, pb_len,

```
assert(mpz_divisible_p(input—>N, f)):
                                                                         mpz_clear(d[i]):
        if(!input->quiet) gmp_printf("%Zd-=-0-
                                                                  free(d);
               [\%Zd]\n'', input—>N, f):
                                                                  break:
        done = true:
    if(s->done){
                                                          mpz_clears(f, Z1, Z2, test1, test2, NULL);
        if(!input->quiet) fprintf(stderr, "ERROR
               :-no-solution-for-this-set-of-zi\n");
        exit(1);
                                                     int main(int argc, char** argv){
                                                          input_t* input = parse_input(argc, argv);
                                                          if(input==NULL){
                                                              fprintf(stderr, "ERROR:-Invalid-input\n"):
free(sum):
                                                              return 1:
free(pb);
free_system(s);
free_ll(v, target_nb);
                                                          if(mpz\_cmp\_ui(input->N, 0) == 0){
for(int i = 0; i < target_nb; i++){
                                                              fprintf(stderr, "ERROR:-No-input-number,-use-
    mpz_clear(z[i]);
                                                                     -n-%%number%%\n");
                                                              return 1:
free(z):
switch(input->algorithm){
    case DIXON:
                                                          if(input->bound == -1) input->bound =
        break:
                                                                 10000:
                                                          if(input->sieving\_interval == -1) input->
    case QSIEVE:
                                                                 sieving_interval = 100000;
        break:
    case MPQS:
                                                          if(input->extra == -1) input->extra = 1:
        for(int i = 0; i < target_nb; i++)
               mpz_clear(d[i]);
                                                          struct timeval t1, t2:
        free(d):
                                                          gettimeofdav(&t1. 0):
        break:
                                                          factor(input);
    case PMPQS:
                                                          gettimeofday(&t2, 0);
        for(int i = 0: i < target_nb: i++)
                                                          long seconds = t2.tv\_sec - t1.tv\_sec:
```

}

```
\label{long_microseconds} \begin{tabular}{ll} long microseconds = t2.tv\_usec - t1.tv\_usec; \\ double time\_spent = seconds + microseconds*1e \\ -6; \\ if(!input->quiet) printf("Total-time:%fs\n", \\ time\_spent); \\ \end{tabular} $$ return 0; \\ \end{tabular}
```

../c/dixon/dixon.h

#pragma once

int** dixon(mpz_t* z, mpz_t N, int pb_len, int* pb, int

 $\mathsf{extra}, \ \mathsf{bool} \ \mathsf{tests});$

../c/dixon/dixon.c

```
#include <gmp.h>
#include <stdbool.h>
#include <stdio.h>
                                                            int ** dixon(mpz_t* z, mpz_t N, int pb_len, int * pb, int
#include <stdlib.h>
                                                                    extra. bool tests){
                                                                /** Gets pb_len+extra b-smooth realtions
bool vectorize_dixon(mpz_t n, int* v, int pb_len, int*
                                                                        definied at:
       }(da
                                                                  * Quadratic sieve factorisation algorithm
    /** Attemps naive factorisation to 'n' with the
                                                                  * Bc. Ondrej Vladyka
                                                                  * Definition 1.11 (p.5)
            primes in
     * the prime base 'pb' and putting the result into '
                                                                  */
             v'. vector of powers of
     * the primes in the prime base
                                                                //ceil(sqrt(n))
     * If it succeeds, returns true, otherwise, returns
                                                                mpz_t sart_N:
             false
                                                                mpz_init(sqrt_N);
    */
                                                                mpz\_sqrt(sqrt\_N, N);
    for(int i = 0; i < pb\_len; i++){
                                                                mpz_add_ui(sqrt_N, sqrt_N, 1);
        v[i] = 0;
    }
                                                                mpz_t zi;
                                                                mpz_t zi_cpy;
                                                                mpz_init_set(zi, sqrt_N);
    for(int i = 0: i < pb_len && (mpz_cmp_ui(n, 1))!=
            0); i++){
                                                                mpz_init(zi_cpv);
        while (mpz_divisible_ui_p(n, pb[i])){
             v[i]++:
                                                                int** v = malloc((pb_len+extra)*sizeof(int*));
             mpz_divexact_ui(n, n, pb[i]);
                                                                for(int i = 0; i < pb\_len+extra; i++){
    }
                                                                     bool found = false;
                                                                     int* vi = malloc(pb_len*sizeof(int));
    if(mpz\_cmp\_ui(n, 1) == 0)
        return true:
                                                                     while(!found){
    return false:
                                                                         mpz_add_ui(zi, zi, 1):
```

```
mpz_mul(zi_cpy, zi, zi);
    mpz_mod(zi_cpy, zi_cpy, N);
    found = vectorize_dixon(zi_cpy, vi, pb_len,
            pb);
                                                       if(!tests) printf("\n");
if(!tests){
                                                       mpz_clears(sqrt_N, zi, zi_cpy, NULL);
    printf("\r");
    printf("%.1f%%", (float)i/(pb_len+extra
```

-1)*100);

fflush(stdout);

v[i] = vi;mpz_set(z[i], zi);

return v:

../c/qsieve/qsieve.h

```
#pragma once
#include <gmp.h>
#include <stdbool.h>
```

bool vectorize_qsieve(mpz_t n, int* v, int pb_len, int*

../c/qsieve/qsieve.c

```
#include <gmp.h>
#include <stdbool.h>
#include <stdio.h>
                                                                if(mpz\_cmp\_ui(n, 1) == 0)
#include <stdlib.h>
                                                                    return true:
#include <assert.h>
                                                                return false;
#include <math.h>
#include " .. /system.h"
                                                            float* prime_logs(int* pb, int pb_len){
#include "../tonellishanks.h"
                                                                float* plogs = malloc(pb_len*sizeof(float));
bool vectorize_gsieve(mpz_t n, int * v, int pb_len, int *
                                                                for(int i = 0; i < pb_len; i++){
       pb){
                                                                    plogs[i] = log2(pb[i]);
    /** Attemps naive factorisation to 'n' with the
            primes in
     * the prime base 'pb' and putting the result into '
                                                                return plogs;
             v', vector of powers of
     * the primes in the prime base
     * If it succeeds, returns true, otherwise, returns
                                                            int calculate_threshhold(mpz_t N, mpz_t sqrt_N, int s,
             false
                                                                   int loop_number, int* pb, int pb_len){
    */
    for(int i = 0; i < pb_len; i++){
                                                                mpz_t qstart;
                                                                mpz_init_set_ui(qstart, s);
        v[i] = 0;
    }
                                                                mpz_mul_ui(qstart, qstart, loop_number);
                                                                mpz_add(qstart, qstart, sqrt_N);
    for(int i = 0; i < pb\_len && (mpz\_cmp\_ui(n, 1) !=
                                                                mpz_mul(gstart, gstart, gstart);
            0); i++){
                                                                mpz_sub(qstart, qstart, N);
        while (mpz_divisible_ui_p(n, pb[i])){
                                                                int t = mpz_sizeinbase(qstart, 2) - (int) log2(pb[
             v[i]++
             mpz_divexact_ui(n, n, pb[i]);
                                                                        pb_len-1]);
                                                                mpz_clear(gstart):
```

```
mpz_init(temp):
    return t:
                                                                 // END TESTS
int ** qsieve(mpz_t* z, mpz_t N, int pb_len, int * pb,
       int extra, int s, bool quiet){
                                                                 int* \times 1 = malloc(pb\_len*sizeof(int));
    /** Gets pb_len+extra zis that are b-smooth,
                                                                 int* x2 = malloc(pb_len*sizeof(int));
            definied at:
     * Quadratic sieve factorisation algorithm
                                                                 // find solution for 2
     * Bc. Ondrej Vladyka
                                                                 mpz_set(temp, sqrt_N);
     * Definition 1.11 (p.5)
                                                                 mpz_mul(temp, temp, temp):
                                                                 mpz_sub(temp, temp, N);
                                                                 \times 1[0] = 0;
    //ceil(sart(n))
                                                                 if(mpz_divisible_ui_p(temp, 2) == 0) \times 1[0] = 1:
    mpz_t sart_N:
    mpz_init(sqrt_N);
                                                                 int sol1, sol2:
    mpz_sqrt(sqrt_N, N);
                                                                 for(int i = 1; i < pb_len; i++){
    mpz_add_ui(sgrt_N, sgrt_N, 1):
                                                                         tonelli_shanks_ui(N, pb[i], &sol1, &sol2);
                                                                         x1[i] = sol1;
    mpz_t zi;
    mpz_init_set(zi, sqrt_N);
                                                                         x2[i] = sol2:
    mpz_t ax:
                                                                         // change solution from x = n [p] to (sqrt
    mpz_init(qx);
                                                                                 (N) + x) = n [p]
                                                                         mpz_set_ui(temp, x1[i]);
    int** v = malloc((pb_len+extra)*sizeof(int*));
    for(int i = 0; i < pb\_len + extra; i++){
                                                                         mpz_sub(temp, temp, sqrt_N);
        v[i] = malloc(pb_len*sizeof(int*));
                                                                         mpz_mod_ui(temp, temp, pb[i]);
    float* sinterval = malloc(s*sizeof(float));
                                                                         \times 1[i] = mpz_get_ui(temp);
    float* plogs = prime_logs(pb, pb_len);
                                                                         mpz_set_ui(temp, x2[i]):
                                                                         mpz_sub(temp, temp, sqrt_N);
    // TESTS
                                                                         mpz_mod_ui(temp, temp, pb[i]);
```

mpz_t temp:

```
\times 2[i] = mpz_get_ui(temp):
                                                                          //next interval
mpz_clear(temp):
                                                                          \times 1[i] = \times 1[i] - s:
                                                                          \times 2[i] = \times 2[i] - s:
int loop\_number = 0;
int relations found = 0:
int tries = 0:
                                                                     int t = calculate_threshhold(N, sqrt_N, s,
while(relations_found < pb_len + extra){
                                                                             loop_number, pb, pb_len);
                                                                     //printf("t = %d n", t);
    for(int i = 0: i < s: i++){
        sinterval[i] = 0:
                                                                     bool found:
    }
                                                                     for(int i = 0; i < s && relations_found <
                                                                             pb_len + extra: i++){
    // sieve for 2
                                                                          if(sinterval[i] > t){
    while(\times 1[0] < s){
                                                                              tries++:
        sinterval[x1[0]] += plogs[0];
        \times 1[0] += pb[0]:
                                                                              //zi = sart(n) + x where x = s*
                                                                                       loopnumber + i
    \times 1[0] = \times 1[0] - s
                                                                               mpz_set_ui(zi, s);
                                                                               mpz_mul_ui(zi, zi, loop_number);
    // sieve other primes
                                                                               mpz_add_ui(zi, zi, i);
    for(int i = 1; i < pb\_len; i++){
                                                                               mpz_add(zi, zi, sqrt_N);
                                                                              // ax = zi**2 - N
        while(\times 1[i] < s){
             sinterval[x1[i]] += plogs[i];
                                                                               mpz_mul(qx, zi, zi);
             \times 1[i] += pb[i]:
                                                                               mpz_sub(qx, qx, N);
                                                                               found = vectorize_qsieve(qx, v[
        while(\times 2[i] < s){
                                                                                       relations_found], pb_len, pb);
             sinterval[x2[i]] += plogs[i]:
                                                                               if(found){
             \times 2[i] += pb[i]:
                                                                                   mpz_set(z[relations_found], zi);
                                                                                   relations_found++:
```

```
found = false:
                                           }
if(!quiet){
    printf("\r");
                                          if(!quiet) printf("\n");
    printf("%.1f%%-|-%.1f%%",
            (float)relations_found
                                          mpz_clears(sqrt_N, zi, qx, NULL);
            /(pb_len+extra)*100,
                                          free(x1);
            (float)relations_found
                                          free(x2);
            /tries*100);
                                          free(sinterval);
    fflush(stdout);
                                          free(plogs);
                                          return v;
```

loop_number++:

../c/mpqs/common_mpqs.h

```
#pragma once
#include <gmp.h>
#include <stdbool.h>
```

../c/mpqs/common_mpqs.c

```
#include <gmp.h>
#include <stdbool.h>
#include < math.h >
#include <stdlib.h>
#include <stdio.h>
int calculate_threshhold_mpgs(mpz_t sgrt_N, int s, int*
        pb, int pb_len, int delta){
    mpz_t astart:
    mpz_init_set_ui(gstart, s):
    mpz_mul(gstart, gstart, sgrt_N);
    int t = mpz_sizeinbase(qstart, 2) - (int) log2(pb[
           pb_len-1]) - delta;
    mpz_clear(gstart);
    return t:
float* prime_logs_mpgs(int* pb, int pb_len){
    float* plogs = malloc(pb_len*sizeof(float));
    for(int i = 0: i < pb_len: i++){
        plogs[i] = log2(pb[i]):
    }
    return plogs;
bool vectorize_mpqs(mpz_t n, int* v, int pb_len, int*
```

```
}(da
/** Attemps naive factorisation to 'n' with the
       primes in
 * the prime base 'pb' and putting the result into '
         v', vector of powers of
 * the primes in the prime base
 * If it succeeds, returns true, otherwise, returns
         false
*/
for(int i = 0; i < pb\_len; i++){
    v[i] = 0:
if(mpz_sgn(n) < 0){
    v[pb\_len] = 1;
    mpz_neg(n, n);
else {
    v[pb\_len] = 0;
for(int i = 0; i < pb\_len \&\& (mpz\_cmp\_ui(n, 1) !=
       0); i++){
    while (mpz_divisible_ui_p(n, pb[i])){
        v[i]++:
         mpz_divexact_ui(n, n, pb[i]);
if(mpz\_cmp\_ui(n, 1) == 0)
    return true:
```

```
\begin{tabular}{ll} \textbf{return false}; & \textbf{return true}; \\ \begin{tabular}{ll} \textbf{bool already\_added(mpz\_t zi, mpz\_t* z, int} & \textbf{return false}; \\ \begin{tabular}{ll} \textbf{for(int } i = 0; i < relations\_found; i+++) \{ & if(mpz\_cmp(zi, z[i]) = = 0) \{ \end{tabular} \label{tabular}
```

../c/mpqs/polynomial.h

../c/mpqs/polynomial.c

```
#include "polynomial.h"
                                                         mpz_clears(g, n, m, NULL):
#include <gmp.h>
#include <stdlib.h>
                                                         mpz_set(p->b, p->d):
#include <assert.h>
                                                         mpz_mul(p->b, p->b, p->op1):
#include <stdio.h>
                                                         mpz_add(p->b, p->b, x1):
#include "../tonellishanks.h"
                                                         mpz\_mul(p->op1, p->b, p->b):
                                                         assert(mpz_congruent_p(p->op1, p->N. p->a)
void calc_coefficients(poly_t p){
                                                                 != 0):
    mpz_mul(p->a, p->d, p->d):
                                                         mpz\_sub(p->c, p->op1, p->N):
    mpz_t x1, x2:
                                                         mpz divexact(p->c, p->c, p->a):
    mpz_inits(x1, x2, NULL):
   tonelli_shanks_mpz(p->N, p->d, x1, x2):
                                                         mpz_clears(x1, x2, NULL);
    // getting ready for congruence solve for raising
          solution
                                                     void get_next_polv(polv_t p){
    mpz_mul_ui(p->op1, x1, 2);
                                                         mpz_nextprime(p->d, p->d);
                                                         while(mpz_legendre(p->N, p->d) != 1){
    mpz_mul(p->op2, \times1, \times1):
                                                             mpz_nextprime(p->d, p->d):
    mpz_sub(p->op2, p->op2, p->N):
    mpz_divexact(p->op2, p->op2, p->d);
                                                         calc_coefficients(p);
   mpz_neg(p->op2, p->op2):
    mpz_mod(p->op2, p->op2, p->d):
                                                     poly_t init_poly(mpz_t N, int M){
                                                         poly_t p = malloc(sizeof(struct poly_s));
    mpz_t g, n, m;
    mpz_inits(g, n, m, NULL);
    mpz_gcdext(g, n, m, p->d, p->op1);
                                                         mpz_inits(p->d, p->N, p->a, p->b, p->c,
    assert(mpz\_cmp\_ui(g, 1) == 0);
                                                                p = > op1, p = > op2, p = > op3, p = > zi, p
    mpz_mul(p->op1, p->op2, m): // t
                                                                ->ax. NULL):
```

```
mpz_set(p->N, N):
                                                       mpz_add(p->qx, p->qx, p->c);
   // choose value of d according to 2.4.2
   // sart( (sart(2N))/M )
   mpz_mul_ui(p->op1, N, 2);
   mpz\_sart(p->op1, p->op1);
                                                   void free_poly(poly_t p){
   mpz_div_ui(p->op1, p->op1, M):
                                                       mpz\_clears(p->d, p->N, p->a, p->b, p->c
   mpz\_sqrt(p->op1, p->op1);
                                                              , p->op1, p->op2, p->op3, p->zi, p
   mpz_prevprime(p->d, p->op1);
                                                              ->ax. NULL):
                                                       free(p):
   // get next prime such that (n/p) = 1
   while(mpz_legendre(N, p->d) !=1){
       mpz_nextprime(p->d, p->d):
                                                   poly_t copy_poly(poly_t p){
                                                       polv_t cpv = malloc(sizeof(struct polv_s)):
   calc_coefficients(p);
                                                       mpz_inits(cpy->d, cpy->N, cpy->a, cpy->b,
   return p:
                                                              cpv->c, cpv->op1, cpv->op2, cpv->
                                                             op3, cpy->zi, cpy->qx, NULL);
void calc_polv(polv_t p, mpz_t x){
                                                       mpz_set(cpv->d, p->d):
                                                       mpz_set(cpv->N, p->N):
   mpz_mul(p->zi, p->a, x):
   mpz add(p->zi, p->zi, p->b):
                                                       mpz_set(cpv->a, p->a):
                                                       mpz_set(cpv->b, p->b):
   mpz_mul(p->qx, x, x):
   mpz_mul(p->qx, p->qx, p->a):
                                                       mpz\_set(cpv->c, p->c);
   mpz\_mul(p->op1, p->b, x):
                                                       return cpv:
   mpz_mul_ui(p->op1, p->op1, 2);
   mpz add(p->qx, p->qx, p->qx):
```

../c/mpqs/mpqs.h

#pragma once

#include <gmp.h>

#include <stdbool.h>

int ** mpqs(mpz_t * z, mpz_t * d, mpz_t N, int pb_len, int* pb, int extra, int s, int delta, bool quiet);

../c/mpqs/mpqs.c

```
#include <gmp.h>
#include <stdbool.h>
#include <stdio.h>
#include < stdlib.h >
#include <assert.h>
#include <math.h>
#include <time.h>
#include "polynomial.h"
#include "common_mpgs.h"
#include "../system.h"
#include "../tonellishanks.h"
int ** mpgs(mpz_t* z. mpz_t* d. mpz_t N. int pb_len.
       int* pb, int extra, int s, int delta, bool quiet){
    /** Gets pb_len+extra zis that are b-smooth,
           definied at:
     * Quadratic sieve factorisation algorithm
     * Bc. Ondrej Vladyka
     * Definition 1.11 (p.5)
     */
    //ceil(sart(n))
    mpz_t sart_N:
    mpz_init(sqrt_N);
    mpz_sqrt(sqrt_N, N);
    mpz_add_ui(sgrt_N, sgrt_N, 1):
    mpz_t x;
    mpz_init(x):
```

```
polv_t Q = init_polv(N, s):
int** v = malloc((pb\_len+extra)*sizeof(int*)):
for(int i = 0: i < pb_len + extra: i++){
    v[i] = malloc((pb\_len+1)*sizeof(int*)); // +1
float* sinterval = malloc(2*s*sizeof(float));
float* plogs = prime_logs_mpqs(pb, pb_len);
int t = calculate_threshhold_mpgs(sgrt_N, s, pb.
       pb_len, delta):
// TESTS
mpz_t temp;
mpz_init(temp);
// END TESTS
int* r = malloc(pb_len*sizeof(int));
int* x1 = malloc(pb_len*sizeof(int));
int* x2 = malloc(pb_len*sizeof(int));
int sol1. sol2:
for(int i = 1; i < pb\_len; i++){
    tonelli_shanks_ui(N, pb[i], &sol1, &sol2);
    r[i] = sol1:
mpz_t g, m, n, pi;
```

```
mpz_inits(g, m, n, pi, NULL):
                                                                     //calc_polv(Q, temp):
                                                                     //assert(mpz\_divisible\_ui\_p(Q->qx, pb[i])
                                                                             != 0):
int relations_found = 0:
clock_t start:
start = clock();
                                                                     mpz_set_ui(temp, pb[i]);
int tries = 0;
                                                                     mpz_sub_ui(temp, temp, r[i]);
while(relations_found < pb_len + extra){</pre>
                                                                     mpz_sub(temp, temp, Q->b);
                                                                     mpz_mul(temp, temp, m);
    // for 2
                                                                     mpz_mod(temp, temp, pi);
    mpz_set_ui(temp, 0):
    calc_poly(Q, temp);
                                                                     \times 2[i] = mpz_get_ui(temp):
    \times 1[0] = 0;
    if(mpz_divisible_ui_p(Q->ax, 2) == 0) \times 1[0]
                                                                     //calc_polv(Q, temp):
                                                                     //assert(mpz_divisible_ui_p(Q->qx, pb[i])
                                                                             l = 0):
    //others
    for(int i = 1: i < pb_len: i++){
        mpz_set_ui(pi, pb[i]);
                                                                     //realign sieving interval to [-s, s]
        mpz\_gcdext(g, m, n, Q->a, pi);
                                                                     int k = (x1[i] + s)/pb[i];
        if(mpz\_cmp\_ui(g, 1) != 0){
                                                                     \times 1[i] -= k * pb[i]:
            fprintf(stderr, "ERROR:-Number-is-too
                                                                     \times 1[i] += s:
                    -small-for-the-current-
                    implementation-of-MPQS\n"):
                                                                     k = (x2[i] + s)/pb[i]:
            exit(1);
                                                                     \times 2[i] -= k * pb[i]:
                                                                     x2[i] += s;
        mpz_set_ui(temp, r[i]):
                                                                     //mpz\_set\_si(temp, -s):
        mpz_sub(temp, temp, Q->b);
                                                                     //mpz_add_ui(temp, temp, x1[i]);
        mpz_mul(temp, temp, m);
                                                                     //calc_poly(Q, temp);
        mpz_mod(temp, temp, pi):
                                                                     //assert(mpz_divisible_ui_p(Q->ax. pb[i])
                                                                             != 0):
        x1[i] = mpz_get_ui(temp);
```

```
for(int i = 0: i < 2*s: i++){
                                                                        mpz_set_si(x, -s):
    sinterval[i] = 0;
                                                                        mpz_add_ui(x, x, i);
                                                                        calc_polv(Q, x):
                                                                        if(!already_added(Q->zi, z,
// sieve for 2
                                                                               relations_found)){
while(\times 1[0] < 2*s){
                                                                            found = vectorize\_mpqs(Q->qx,
    sinterval[\times 1[0]] += plogs[0];
                                                                                     v[relations_found], pb_len,
    \times 1[0] += pb[0]:
                                                                                     pb);
}
                                                                            if(found){
*/
                                                                                 mpz_set(z[relations_found], Q
                                                                                         ->zi);
// sieve other primes
                                                                                 mpz_set(d[relations_found], Q
for(int i = 30: i < pb_len: i++){
                                                                                         ->d):
                                                                                 relations_found++:
    while(x1[i] < 2*s){
                                                                                 update_time = true;
         sinterval[x1[i]] += plogs[i]:
                                                                                 found = false:
         \times 1[i] += pb[i];
                                                                                 if(!quiet){
                                                                                     printf("\r");
                                                                                     printf("%.1f%%-|-%.1f
                                                                                             %%", (float)
    while(x2[i] < 2*s){
         sinterval[\times 2[i]] += plogs[i];
                                                                                             relations_found/(
        \times 2[i] += pb[i]:
                                                                                             pb_len+extra)
                                                                                             *100, (float)
                                                                                             relations_found/
                                                                                             tries*100);
                                                                                     fflush(stdout):
bool found:
bool update_time = false;
for(int i = 0: i < 2*s && relations_found <
        pb_len + extra; i++){
    if(sinterval[i] > t){
```

tries++:

```
\label{eq:continuous} \begin{tabular}{lll} if(update\_time && !quiet) printf("-("%.0fs-left )----", (double)(clock() - start)/ & free(x2); & free(x2)
```

free(x1);

../c/mpqs/parallel_mpqs.h

```
#pragma once
#include <gmp.h>
#include "polynomial.h"
#include <sys/time.h>
#include <stdint.h>
struct sieve_arg_s {
    // used for sieveing
    int* pb;
    int pb_len;
    int extra:
    int* r:
    float* plogs;
    int s:
    int t:
    int * relations_found:
    int** v;
    bool auiet:
    mpz_t* z:
    mpz_t* d;
```

```
poly_t Qinit:
    // used to print progress and predicted time left
    struct timeval begin;
    uint_fast64_t* tries:
    // used to constantly have a certain number of
            threads running
    int thread_id:
    bool* threads_running;
}:
typedef struct sieve_arg_s sieve_arg_t;
bool already_added(mpz_t zi, mpz_t* z, int
       relations_found):
void* sieve_100_polys (void* args);
int ** parallel_mpqs(mpz_t* z, mpz_t* d, mpz_t N, int
       pb_len, int* pb, int extra, int s, int delta, bool
       auiet):
```

../c/mpqs/parallel_mpqs.c

```
#include <gmp.h>
#include <stdbool.h>
                                                              for(int i = 0; i < 100 \&\& *(arg -> relations\_found)
#include <stdio.h>
                                                                      < arg - > pb_len + arg - > extra: i++){
#include <stdlib.h>
                                                                  get_next_polv(Q):
#include <assert.h>
#include <math.h>
                                                                  //get sol for 2
#include < time.h >
                                                                  mpz_set_ui(temp, 0):
#include <pthread.h>
                                                                  calc_poly(Q, temp);
                                                                  \times 1[0] = 0;
#include <sys/time.h>
                                                                  if(mpz_divisible_ui_p(Q->qx, 2) == 0) \times 1[0]
#include "polynomial.h"
                                                                         = 1:
#include "common_mpgs.h"
#include "parallel_mpgs.h"
                                                                  //get sol for others
#include "../system.h"
                                                                  for(int i = 1: i < arg - > pb_len: i++){
#include "../tonellishanks.h"
                                                                      mpz_set_ui(pi, arg->pb[i]);
                                                                      mpz_gcdext(g, m, n, Q->a, pi);
pthread_mutex_t mutex:
                                                                      if(mpz\_cmp\_ui(g, 1) != 0){
                                                                           fprintf(stderr, "ERROR:-Number-is-too
                                                                                  -small-for-the-current-
void* sieve_100_polys (void* args){
                                                                                  implementation-of-MPQS\n"):
    sieve_arg_t* arg = (sieve_arg_t*) args;
                                                                           exit(1);
    polv_t Q = copv_polv(arg->Qinit):
                                                                      mpz_set_ui(temp, arg->r[i]):
                                                                      mpz_sub(temp, temp, Q->b);
    mpz_t temp, g, m, n, pi, x;
    mpz_inits(temp, g, m, n, pi, x, NULL);
                                                                      mpz_mul(temp, temp, m);
    float* sinterval = malloc(2*arg->s*sizeof(float))
                                                                      mpz_mod(temp, temp, pi):
    int* x1 = malloc(arg->pb_len*sizeof(int));
                                                                      \times 1[i] = mpz_get_ui(temp);
    int* x2 = malloc(arg->pb_len*sizeof(int)):
```

```
//calc_polv(Q, temp):
                                                             for(int i = 0: i < 2*arg - >s: i + + ){
    //assert(mpz_divisible_ui_p(Q->qx, arg
                                                                 sinterval[i] = 0;
            ->pb[i]) != 0:
    mpz_set_ui(temp, arg->pb[i]);
    mpz_sub_ui(temp, temp, arg->r[i]);
                                                             // sieve for 2
    mpz_sub(temp, temp, Q->b);
                                                             while(x1[0] < 2*arg -> s){
                                                                 sinterval[x1[0]] += arg -> plogs[0];
    mpz_mul(temp, temp, m);
                                                                 \times 1/01 += arg -> pb/01:
    mpz_mod(temp, temp, pi);
    \times 2[i] = mpz_get_ui(temp);
    //calc_polv(Q, temp):
                                                             // sieve other primes
    //assert(mpz_divisible_ui_p(Q->ax, arg
                                                             for(int i = 30: i < arg -> pb_len: i++){
           -> pb[i]) != 0):
                                                                 while(\times 1[i] < 2*arg -> s){
                                                                      sinterval[x1[i]] += arg->plogs[i];
    //realign sieving interval to [-s. s]
                                                                     \times 1[i] += arg -> pb[i]:
    int k = (x1[i] + arg -> s)/arg -> pb[i];
    \times 1[i] = k * arg = > pb[i];
                                                                 while(\times 2[i] < 2*arg -> s){
    \times 1[i] += arg -> s:
                                                                      sinterval[x2[i]] += arg->plogs[i];
                                                                     \times 2[i] += arg -> pb[i];
    k = (x2[i] + arg -> s)/arg -> pb[i];
    \times 2[i] -= k * arg -> pb[i]:
    \times 2[i] += arg -> s:
                                                             bool found:
    //mpz\_set\_si(temp, -arg->s);
                                                             bool update_time = false;
    //mpz_add_ui(temp, temp, x1[i]):
                                                             pthread_mutex_lock(&mutex):
    //calc_poly(Q, temp);
                                                             for(int i = 0; i < 2*arg -> s && *(arg -> s)
    //assert(mpz_divisible_ui_p(Q->qx, arg
                                                                    relations_found) < arg->pb_len + arg
           -> pb[i]) != 0):
                                                                    ->extra: i++){
                                                                 if(sinterval[i] > arg = >t){}
                                                                      *(arg->tries) += 1;
//reset sieveing_interval
                                                                      mpz_set_si(x, -arg->s):
```

```
mpz_add_ui(x, x, i):
                                                                     fflush(stdout):
calc_poly(Q, x);
if(!alreadv\_added(Q->zi, arg->z)
       *(arg->relations_found))){
    found = vectorize_mpqs(Q->qx)
            arg->v[*(arg->
           relations_found)], arg->
                                                struct timeval current:
           pb_len, arg->pb);
                                                gettimeofday(&current, 0);
    if(found){
                                                long seconds = current.tv_sec - arg->begin.
        mpz_set(arg->z[*(arg->
                                                       tv_sec:
               relations_found)], Q
                                                long microseconds = current.tv_usec - arg
               ->zi):
                                                       -> begin.tv_usec:
        mpz_set(arg->d[*(arg->
                                                double elapsed = seconds + microseconds*1e
               relations_found)], Q
                                                if(update_time && !arg->quiet) printf("-
               ->d):
                                                       (~%.0fs-left)----", elapsed/(*arg->
        *(arg->relations_found) +=
                                                       relations_found)*(arg->pb_len+arg
        found = false:
                                                       ->extra - (*arg->relations_found))
        update_time = true:
        if(!arg->quiet){
                                                pthread_mutex_unlock(&mutex):
            printf("\r");
            printf("%.1f%%-|-%.1f
                   %%", (float)(*(
                                            mpz_clears(temp, g, m, n, pi, x, NULL);
                   arg->
                                            free(\times 1);
                   relations_found))
                                            free(x2);
                   /(arg->pb_len+
                                            free(sinterval):
                   arg—>extra)
                                            free_poly(Q);
                   *100, (float)(*(
                   arg->
                                            arg—>threads_running[arg—>thread_id] = false:
                   relations_found))
                                            return NULL:
                   /(*(arg->tries))
                   *100):
```

```
int ** parallel_mpqs(mpz_t* z, mpz_t* d, mpz_t N, int
                                                                         pb_len, delta):
       pb_len, int* pb, int extra, int s, int delta, bool
       auiet){
                                                                 sieve\_arg\_t* args = malloc(8*sizeof(sieve\_arg\_t)):
    /** Gets pb_len+extra zis that are b-smooth.
                                                                  pthread_t* threads = malloc(8*sizeof(pthread_t)):
            definied at:
                                                                  bool* threads_running = malloc(8*sizeof(bool));
     * Quadratic sieve factorisation algorithm
                                                                 for(int i = 0; i < 8; i++){
     * Bc. Ondrei Vladvka
                                                                      threads\_running[i] = false:
     * Definition 1.11 (p.5)
     */
                                                                 int relations_found = 0:
    //ceil(sqrt(n))
                                                                 uint_fast64_t tries = 0:
    mpz_t sqrt_N;
                                                                 struct timeval begin;
    mpz_init(sart_N):
                                                                 gettimeofday(&begin, 0):
    mpz_sart(sart_N, N):
                                                                 while(relations_found < pb_len + extra){</pre>
    mpz_add_ui(sqrt_N, sqrt_N, 1);
                                                                      for(int i = 0; i < 8; i++){
                                                                          if(!threads_running[i]){
    polv_t Q = init_polv(N, s):
                                                                               args[i] = (sieve_arg_t) {
                                                                                   pb,
    int** v = malloc((pb_len+extra)*sizeof(int*));
                                                                                   pb_len,
    for(int i = 0: i < pb_len + extra: i++){
                                                                                   extra.
        v[i] = malloc((pb\_len+1)*sizeof(int*)); // +1
                                                                                   r,
                 for -1
                                                                                   plogs,
                                                                                   s.
    float* plogs = prime_logs_mpqs(pb, pb_len);
                                                                                   t.
                                                                                   &relations_found.
                                                                                   ٧.
    int* r = malloc(pb_len*sizeof(int));
                                                                                   auiet.
    int sol1, sol2:
                                                                                   z,
    for(int i = 1; i < pb_len; i++){
                                                                                   d.
        tonelli_shanks_ui(N, pb[i], &sol1, &sol2);
                                                                                   Q.
        r[i] = sol1:
                                                                                   begin,
                                                                                   &tries,
    int t = calculate_threshhold_mpgs(sgrt_N, s, pb.
                                                                                   i,
```

```
threads_running
                                                                pthread_join(threads[i], NULL);
             threads_running[i] = true;
             pthread_create(threads+i, NULL,
                                                            free(threads);
                    sieve_100_polys, args+i);
                                                            free(args);
                                                            free(r);
        for(int i = 0; i < 100; i++){
                                                            free(plogs);
             get_next_poly(Q);
                                                            free(threads_running);
                                                            free_poly(Q);
                                                            mpz_clear(sqrt_N);
if(!quiet) printf("\n");
                                                            return v;
```

for(int i = 0; i < 8; i++){