GOMORY-CHVATAL CUTS

Overall Idea

$$\begin{array}{cccc} \max & \mathbf{c}^{\intercal} \mathbf{x} & & \\ \mathbf{s.t.} & A\mathbf{x} + \mathbf{x_s} & = & \mathbf{b} \\ & \mathbf{x}, \mathbf{x_s} & \geq & \mathbf{0} \\ & \mathbf{x}, \mathbf{x_s} & \in & \mathbb{Z} \end{array}$$

I. Solve the LP relaxation using Simplex algorithm.

Final Dictionary all integer entries? Optimal solution to ILP found!! $\mathbf{x}_{\mathbf{B}}$ fractional entries Derive a cutting plane

Example: Final Dictionary

$$x_1 = 1.2, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0, x_6 = 2.5$$

Cutting Plane Derivation: Step 1

Step | Identify row with fractional constant.

$$x_1 + 3.1x_2 - 4.3x_3 + 0.5x_5 = 1.2$$

Cutting Plane Derivation: Step 2

$$x_1 + 3.1x_2 - 4.3x_3 + 0.5x_5 = 1.2$$

$$\underbrace{(x_1 + 3x_2 - 5x_3 + 0x_5)}_{A} + \underbrace{(0.1x_2 + 0.7x_3 + 0.5x_5)}_{B} = 1 + 0.2$$

A: integer

B: integer + fraction
$$B \ge 0$$

$$A + B = 1.2$$

Claim

Conclusion:

- I. Fractional part of B is 0.2
- 2. $B \ge 0.2$

B

In other words,

- I. B 0.2 is an integer.
- 2. B $-0.2 \ge 0$

$2 + 0.7x_3$	$+0.5x_5$	=1	+0.2
B			

В	A+B	Possible
0.2	1.2	YES
-0.8	1.2	No
0.1	1.2	No
-2.8	1.2	No
4.2	1.2	Yes
101.2	1.2	Yes

Cutting Plane

x_1	1.2	$-3.1x_2$	$+4.3x_{3}$	$-0.5x_{5}$
x_4	1	$-x_2$	$+x_3$	$-x_5$
x_6	2.5	$+1.3x_2$	$-2.1x_3$	$+x_5$
\overline{z}	1.7	$-1.2x_2$	$-2.3x_{3}$	$-2.1x_{5}$

Cutting Plane:

$$0.1x_2 + 0.7x_3 + 0.5x_5 \ge 0.2$$

Cutting Plane: Definition.

$$x_{B1} = b_1 + a_{11}x_{I1} + \cdots + a_{1j}x_{Ij} + \cdots + a_{1n}x_{In}$$

$$\vdots \qquad \qquad b_k \not\in \mathbb{Z}$$

$$x_{Bk} = b_k + a_{k1}x_{I1} + \cdots + a_{kj}x_{Ij} + \cdots + a_{kn}x_{In}$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$x_{Bm} = b_m + a_{m1}x_{I1} + \cdots + a_{mj}x_{Ij} + \cdots + a_{mn}x_{In}$$

$$z = c_0 + c_1x_{I1} + \cdots + c_jx_{Ij} + \cdots + c_nx_{In}$$

Cutting Plane

$$\operatorname{frac}(-\mathsf{a_{k1}})x_{I1} + \dots + \operatorname{frac}(-\mathsf{a_{kn}})x_{In} \ge \operatorname{frac}(\mathsf{b_k})$$

$$\operatorname{frac}(\mathsf{x}) = x - \lfloor x \rfloor$$

$$frac(-a_{k1})x_{I1} + \cdots + frac(-a_{kn})x_{In} \ge frac(b_k)$$

Plane

Claim: Every (integer) feasible point of the ILP satisfies the cutting plane constraint.

We have

$$x_{Bk}+\sum_{j=1}(-a_{kj})x_{Ij}=b_k$$
 Since $-a_{kj}\geq\lfloor -a_{kj}\rfloor$ and $x_{Ij}\geq 0,$ we obtain

$$\sum_{i=1}^{n} (-a_{kj}) x_{Ij} \ge \sum_{i=1}^{n} \lfloor -a_{kj} \rfloor x_{Ij}$$

$$\sum_{i=1}^{n} (a_i + b_i)^{-1}$$

 $x_{Bk} + \sum_{i=1}^{n} (-a_{kj})x_{Ij} \ge x_{Bk} + \sum_{i=1}^{n} [-a_{kj}]x_{Ij}$

 $b_k \ge x_{Bk} + \sum_{j=1}^{n} \lfloor -a_{kj} \rfloor x_{Ij}$

$$\lfloor b_k \rfloor \ge x_{Bk} + \sum_{i=1}^n \lfloor -a_{kj} \rfloor x_{Ij}$$

In other words, $\sum_{j=1}^{n} \operatorname{frac}(-a_{kj}) x_{Ij} \geq \operatorname{frac}(b_k)$

Combining (4) with (1), we have,

 $|b_k - |b_k| \le \sum_{i=1}^n (-a_{ki} - |-a_{ki}|) x_{Ii}$

(3)

(4)

(1)

$$\frac{d_{mn}x_{In}}{d_{n}x_{In}}$$

$$+\cdot$$

Example

$$0.7x_2 + 0.1x_3 + 0x_5 \ge 0.5$$

$$0.2x_2 + 0.3x_3 + 0.1x_5 \ge 0.7$$