Prova de Recuperação — Data: 25 jul. 2013

- [2,0 pontos] Uma empresa produz componentes elétricos (por exemplo, lâmpadas, relés ou resistores) em 3 fábricas distintas, F₁, F₂ e F₃, responsáveis, respectivamente, por 50%, 30% e 20% de sua produção total. Suponha que as probabilidades de se manufaturar um componente defeituoso em cada uma das fábricas são, respectivamente, 2%, 5% e 1%.
 - (a) Se um componente fabricado por essa empresa for escolhido ao acaso, qual é a probabilidade de que ele seja defeituoso?
 - (b) Se um componente escolhido ao acaso for defeituoso, qual é a probabilidade de que ele tenha sido manufaturado na fábrica F₃?

RESPOSTA:

- a) ((50/100)*(2/100)+(30/100)*(5/100)+(20/100)*(1/100))
- b) P(F3/D)=(P(D/F3)x P(F3)) / P(D) = (0.01*0.2) / 0.027 = 0.0074

Resolução (Paulinho)

- a) É necessário multiplicar as produções das fábricas pela prob. de fabricar um componente defeituoso em cada uma delas.
- P(D) = probabilidade de manufaturar um componente com defeito

$$P(D) = P(F1) \times P(D|F1) + P(F2) \times P(D|F2) + P(F3) \times P(D|F3)$$

 $P(D) = 0.5 \times 0.02 + 0.3 \times 0.05 + 0.2 \times 0.01 = 0.027 = 2,7 \%$

b) Pela regra de bayes, temos:

tores) em 3 fábricas distintas, F_1 , F_2 e F_3 , responsáveis, respectivamente, por 50%, 30% e 20% de sua produção total. Suponha que as probabilidades de se manufaturar um componente defeituoso em cada uma das fábricas são, respectivamente, 2%, 5% e 1%.

- (a) Se um componente fabricado por essa empresa for escolhido ao acaso, qual é a probabilidade de que ele seja defeituoso?
- (b) Se um componente escolhido ao acaso for defeituoso, qual é a probabilidade de que ele tenha sido manufaturado na fábrica F_3 ?
- 2. [4,0 pontos] Uma amostra de dez casais e seus respectivos salários anuais (em salários-mínimos) foi colhida numa determinada região e os dados aparecem na tabela abaixo.

Homem (X)	10	10	10	15	15	15	15	20	20	20
Man (V)	*	ar	10			10	15	10	10	15

- (a) Encontre o salário anual médio dos homens e seu desvio padrão.
- (b) Encontre o salário anual médio das mulheres e seu desvio padrão.
- (c) Construa o diagrama de dispersão para as variáveis X e Y.
- (d) Encontre o coeficiente de correlação entre os salários anuais dos homens e das mulheres.
- 3. [2.0 pontos] Uma máquina empacotadeira produz pacotes com massas ("pesos") distribuídas

RESPOSTA (Paulinho)

a) Precisamos montar a tabela para homens (X):

Salaarios	Freq
10	3
15	4
20	3
	total: 10

Salário médio anual (X) = 10*3 + 15*4 + 20*4 / 10 = 15

Desvio padrão: (raiz quadrada de: $3*(10-15)^2 + 4*(15-15)^2 + 3*(20-15)^2 / 10 = 3,872$

b) Precisamos montar a tabela para mulheres (Y):

Salaarios	Freq
5	2
10	6
15	2
	total: 10

Salário médio anual (X) = 5*2 + 10*6 + 15*2 / 10 = 10

Desvio padrão: (raiz quadrada de: $2*(5-10)^2 + 6*(10-10)^2 + 2*(15-10)^2 / 10 = 3,162$

- 3. [2,0 pontos] Uma máquina empacotadeira produz pacotes com massas ("pesos") distribuídas normalmente com média μ e desvio padrão 25 g.
 - (a) Quanto deve valer μ para que apenas 10% dos pacotes tenham menos do que 1000 g?
 - (b) Para o valor de μ encontrado no item (a), qual é a probabilidade de que a massa total de 5 pacotes escolhidos ao acaso seja inferior a 5 kg?

RESPOSTA:

Trocar os valores

Seja X: peso dos pacotes obtidos por essa máquina. Então $X \sim N(\mu,10^2)$.

(a) (0,5 ponto)

Temos que 10% dos pacotes têm menos de 500g, assim temos a seguinte relação,

$$P(X < 500) = 0.10 \Leftrightarrow P(Z < \frac{500 - \mu}{10}) = 0.10$$

Da tabela, temos que $z = \frac{500 - \mu}{10} = -1,28$. Logo $\mu = 500 + 12,8 =$ 512,8.

Portanto, com a máquina assim regulada, o peso médio deve ser $\mu=512.8~g$. Assim, a distribuição da máquina de empacotar um determinado produto é dada por $X\sim N(512.8;10^2)$.

4. [2,0 pontos] Qual deve ser o tamanho de uma amostra cujo desvio padrão é 10 para que a diferença da média amostral para a média da população, em valor absoluto, seja menor que 1 com coeficiente de confiança igual a (a) 95% e (b) 99%?

RESPOSTA:

$$95\% \rightarrow 1,96$$

 $99\% \rightarrow 2,575$

(a)
$$P(|\overline{X} - \mu| < e) = \gamma \Leftrightarrow P\left(-\frac{e}{s/\sqrt{n}} < \frac{\overline{X} - \mu}{s/\sqrt{n}} < \frac{e}{s/\sqrt{n}}\right) = \gamma \Leftrightarrow \frac{e}{s/\sqrt{n}} = z(\gamma) \Leftrightarrow n = \left(\frac{z(\gamma)s}{e}\right)^2$$

$$n = \left(\frac{1.96 \times 10}{1}\right)^2 = 384.16 \cong 385.$$

(b)
$$n = \left(\frac{2,576 \times 10}{1}\right)^2 = 663,58 \cong 664$$
.