1. 1 Questions

How to make equivalence from real structures?

2. 2 Vibration mode

2.1. 2.1 Longitudinal vibration

Area: A, Length: L. Governing equation:

$$\rho u_{tt} = E u_{xx} \tag{1}$$

Frequency of lowest mode under fixed-fixed, free-free condition:

$$\omega = \sqrt{\frac{E}{\rho}} \frac{\pi}{L} \tag{2}$$

End conditions of the bar	Boundary conditions	Frequency equation	Mode shapes (normal functions)	Natural frequencies of vibration
1. Fixed–free	u(0,t) = 0	$\cos \frac{\omega l}{c} = 0$	$U_n(x) =$	$\omega_n = \frac{(2n+1)\pi c}{2l}$
	$\frac{\partial u}{\partial x}(l,t) = 0$	c	$C_n \sin \frac{(2n+1)\pi x}{2l}$	$n=0,1,2,\ldots$
2. Fixed–fixed	u(0,t) = 0	$\sin \frac{\omega l}{c} = 0$	$U_n(x) =$	$\omega_n = \frac{n\pi c}{c}$
	u(l,t)=0	c		$n=1,2,3,\ldots$
3. Fixed-attached mass	u(0,t)=0	$\alpha \tan \alpha = \beta$	$U_n(x) =$	$\omega = \frac{\alpha_n c}{\alpha_n c}$
<i>m M</i>	$EA\frac{\partial u}{\partial x}(l,t) = -M\frac{\partial^2 u}{\partial t^2}(l,t)$			
4. Fixed-attached spring	u(0,t)=0	141	$U_{-}(x) =$	$\omega = \frac{\alpha_n c}{\alpha_n c}$
//	$u(0,t) = 0$ $EA \frac{\partial u}{\partial x}(l,t) = -ku(l,t)$	$\alpha = \frac{\omega l}{c}$ $\gamma = \frac{m\omega^2}{L}$	$C_n \sin \frac{\omega_n x}{c}$	$n = 1, 2, 3, \dots$
6. Fixed-attached spring and mass	(0, t) = 0	ĸ.	<i>II</i> () —	$\alpha_n c$
m M k	$EA\frac{\partial u}{\partial x}(l,t) = -M\frac{\partial^2 u}{\partial t^2}(l,t)$ $-ku(l,t)$	$\alpha \cot \alpha = \frac{\omega}{\beta} - \frac{\omega}{k_0}$ $\beta = \frac{m}{M}$ $k_0 = \frac{AE}{l}$	$C_n \sin \frac{\omega_n x}{c}$	$\omega_n = \frac{1}{l},$ $n = 1, 2, 3, \dots$
i. Free–free		•		11 1 1 1 1 1 1 1 1 1
	$\frac{\partial u}{\partial x}(0,t) = 0$ $\frac{\partial u}{\partial x}(l,t) = 0$	$\sin\frac{\omega l}{c} = 0$		$\omega_n = \frac{n\pi c}{l},$ $n = 0, 1, 2, \dots$
7. Free–attached mass	$\frac{\partial u}{\partial x}(0,t) = 0$	$\tan \alpha = -\alpha \beta$	$U_n(x) =$	$\omega_n = \frac{\alpha_n c}{l}$
<i>m M</i>	$EA\frac{\partial u}{\partial x}(l,t) = -M\frac{\partial^2 u}{\partial t^2}(l,t)$		$C_n \cos \frac{\omega_n x}{c}$	
8. Free–attached spring	$\frac{\partial u}{\partial x}(0,t) = 0$	$\alpha \cot \alpha = \delta$	$U_n(x) =$	$\omega_n = \frac{\alpha_n c}{l}$
m k //	$EA\frac{\partial u}{\partial x}(l,t) = -ku(l,t)$	$\delta = \frac{AE}{lk}$	$C_n \cos \frac{\omega_n x}{c}$	$n=1,2,3,\ldots$

Frequency of lowest mode under fixed-free condition:

$$\omega = \sqrt{\frac{E}{\rho}} \frac{\pi}{2L} \tag{3}$$

Rao, S. S. (2019). Vibration of continuous systems. John Wiley & Sons.

2.2. 2.2 Flexural vibration

The governing equation is

$$\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 w}{\partial x^2} \right) + \rho A \frac{\partial^2 w}{\partial t^2} = f(x, t) \tag{4}$$

where

$$I = I_y = \iint_A z^2 dA \tag{5}$$

Lowest mode for beam simply supported at both ends

$$\omega = (\beta_1 l)^2 \left(\frac{EI}{\rho A l^4}\right)^{1/2} = \pi^2 \left(\frac{EI}{\rho A L^4}\right)^{1/2}.$$
 (6)

2.3. 2.3 Torsional Vibration of Shafts

The governing equation is

$$\frac{\partial}{\partial x} \left(GJ \frac{\partial \theta(x,t)}{\partial x} \right) + m_t(x,t) = I_0 \frac{\partial^2 \theta(x,t)}{\partial t^2} \tag{7}$$

where $I_0=
ho J$, $J=\int_A r^2 dA$. Uniform and without attached mass m_t , we have

$$G\frac{\partial^2 \theta(x,t)}{\partial x^2} = \rho \frac{\partial^2 \theta(x,t)}{\partial t^2} \tag{8}$$

Frequency of lowest mode under fixed-fixed, free-free condition:

$$\omega = \sqrt{\frac{G}{\rho}} \frac{\pi}{L} \tag{9}$$

Frequency of lowest mode under fixed-free condition:

$$\omega = \sqrt{\frac{G}{\rho}} \frac{\pi}{2L} \tag{10}$$

where

2.4. 2.4 Shear vibration

Lowest frequency for shear mode is

$$\omega = \frac{\pi}{2b} \sqrt{\frac{\mu}{\rho}} \tag{11}$$

where b is half of the thickness d. Or

$$\omega = \frac{\pi}{4d} \sqrt{\frac{\mu}{\rho}} \tag{12}$$

where d is the thickness.

2.5. 2.5 Bending vibration of the plate

Governing equation is

$$D\nabla^4 w + \rho h \ddot{w} - f = 0 \tag{13}$$

in which ${\cal D}$ represents the flexural rigidity of the plate:

$$D = \frac{Eh^3}{12(1-\nu^2)} \tag{14}$$

Solution for a simply supported rectangular plate is

Vibration of Continuous System-----Shaoyun Wang-----2024-10-16

$$\omega_{mn} = \lambda_{mn}^2 \left(\frac{D}{\rho h}\right)^{1/2} = \pi^2 \left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 \right] \left(\frac{D}{\rho h}\right)^{1/2} \tag{15}$$

The lowest mode (if a > b) is

$$\omega = \pi^2 \left(\frac{1}{a}\right)^2 \left(\frac{D}{\rho h}\right)^{1/2} \tag{16}$$

Solution for circular plate is

$$\omega_{mn} = \lambda_{mn}^2 \left(\frac{D}{\rho h}\right)^{1/2} \tag{17}$$

where λ_{mn} is the solution of the following equation

$$I_m(\lambda a)J_{m-1}(\lambda a) - J_m(\lambda a)I_{m-1}(\lambda a) = 0, \quad m = 0, 1, 2, \dots$$
 (18)

The lowest root is $\lambda_{01}a=3.196$. Therefore, the frequency of lowest mode is

$$\omega = \left(\frac{3.196}{a}\right)^2 \left(\frac{D}{\rho h}\right)^{1/2} \tag{19}$$