HOMEWORK-8: BAYESIAN STATISTICS

Problem 1.1:

For school-1:

Theta Posterior mean = **9.286568**

Confidence Interval = (7.777469, 10.826767)

Sigma Posterior mean = **3.917722**

Sigma Confidence Interval = (3.018060, 5.164001)

For School -2:

Theta Posterior mean = 6.963921

Confidence Interval = (5.202915, 8.740464)

Sigma Posterior mean = **7.815385**

Sigma Confidence Interval = (6.202766, 9.421261)

For School -3:

Theta Posterior mean = **7.815385**

Confidence Interval = (6.202766, 9.421261)

Sigma Posterior mean = **3.737627**

Sigma Confidence Interval = (2.786237, 5.122137)

1.2:

Posterior probabilities for theta_i < theta_j < theta_k:

 $P(theta_1 < theta_2 < theta_3) = 0.005$

 $P(theta_1 < theta_3 < theta_2) = 0.0034$

 $P(theta_2 < theta_1 < theta_3) = 0.084$

 $P(theta_2 < theta_3 < theta_1) = 0.6733$

 $P(theta_3 < theta_1 < theta_2) = 0.0154$

 $P(theta_3 < theta_2 < theta_1) = 0.2189$

1.3:

Posterior probabilities for $Y_i < Y_j < Y_k$:

$$P(Y_1 < Y_2 < Y_3) = 0.0974$$

$$P(Y_1 < Y_3 < Y_2) = 0.1095$$

$$P(Y_2 < Y_1 < Y_3) = 0.1789$$

$$P(Y_2 < Y_3 < Y_1) = 0.2707$$

$$P(Y_3 < Y_1 < Y_2) = 0.1443$$

$$P(Y_3 < Y_2 < Y_1) = 0.1992$$

1.4:

 $P(theta_1 > theta_2 and theta_3) = 0.8922$ $P(y_tilde_1 > y_tilde_2 and y_tilde_3) = 0.4699$

2:

Problem 2(M)

We need to show that,

$$P(B|y)$$
 d $\frac{\exp(yB)}{(1+\exp(B))^{N}} \exp\left(-\frac{(B-u)^{2}}{26^{2}}\right)$
 $P^{Y^{1}}O^{3}$ distribution fool $D \sim Noamal(u,G^{2})$

Binomial likelihood foo(y10) with R and $P = \frac{\exp(B)}{(1+\exp(B))^{N}}$
 $P^{Y^{1}}O^{3}$ distribution

 $P^{Y^{1}}O^{3}$ defining distribution

 $P^{Y^{1}}O^{3}$ definition $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 $P^{Y^{1}}O^{3}$ definition

 P^{Y

2.2:

Pr(theta > 0 | y) = 0.5919925

95% CI for theta: [-0.4024024, 0.5105105]