A Pipeline to Improve Face Recognition Datasets and Applications

IVCNZ 2018, 19-21 November 2018

Possible scenarios for Face Recognition

- Security issues
- HR management in companies
- Hi-Tech applications
- Taking roll at university

Image Classification before Deep Learning

- 1. Supervised Dataset: (X, Y)
- 2. Feature Extraction (HOG, SIFT, ...)
- 3. Feature Selection
- 4. Training a model (SVM, MLP,...)

Fig. 5: (a) Face image divided into 4×4 local regions. (b) Histograms of LBP descriptors computed from each local region.

Image Classification with Deep Learning

- 1. Supervised Dataset: (X, Y)
- 2. Training a model (CNN)

CNN Feature Maps

Objectives

- Dataset Creation or Cleaning
- Pipeline for Face Recognition

The Proposed Pipeline

Inception ResNet-v1 model - GoogleNet (2012)

Softmax vs Center loss

Datasets

Datasets used in this paper are:

Still images

- 1. VGGFace2, 3.3M faces of 9000+ identities
- 2. MS-Celeb-1M, 10M faces of 100k identities
- 3. UMDFaces, 367k faces of 8.3k identities
- 4. Casia WebFace, 494k images of 10k identities

Video images

- 5. YouTube Faces, 3.4k videos of 1595 identities
- 6. 7Pixel dataset, 25 videos of 25 identities.

Datasets - Samples (1/3)

Fig. 3. In each row some examples of representative images/frames of datasets used in this paper: VGGFace2 (a), UMDFaces (b), MS-Celeb-1M (c), YouTube Faces (d) and 7Pixel-Face (e).

Datasets - Samples (2/3)

Fig. 2. Some aligned faces of a single cluster obtained merging 3 different videos from YouTube. In each video of Anthony Hopkins we have different environmental settings, qualities and lightings.

Datasets - Samples (3/3)

Fig. 4. In each line some problematic examples of faces extracted from videos that contain more than one identity of the 7Pixel-Face dataset. Blur and motion problems, in some cases, lead to clusters of faces with errors: the top row and the bottom row represent some errors found in two different clusters.

Face Recognition Classification process

- Given an image, we extract 128-dimensional embedding through an Inception ResNet-v1 model
- Embedding Classification with SVM

Results - Face Recognition (1/3)

YouTube YouTube YouTube 50-identities 100-identities 200-identities 100 95 VGGFace2 MS-Celeb = 90 Casia = %) 80 Accuracy 75 70 65 60 55 50 10 15 20 10 15 20 No. of images per identity

Fig. 5. Face recognition accuracy obtained from a trained SVM on the MS-Celeb-1M dataset varying the number of identities and the number of images per identity. The SVM receives embeddings obtained from a CNN trained on a Center loss function with VGGFace2, MS-Celeb and Casia datasets.

Fig. 6. Face recognition accuracy obtained from a trained SVM on the YouTube Faces dataset varying the number of identities and the number of images per identity. The SVM receives embeddings obtained from a CNN trained on a Center loss function with VGGFace2, MS-Celeb and Casia datasets.

Results - Clustering (2/3)

TABLE I

ACCURACY (ACC), PRECISION (P) AND RECALL (R) OF THE CLEANING PROCESS APPLIED TO 50 RANDOMLY SELECTED IDENTITIES OF THE MS-CELEB DATASET. POSITIVE IMAGES BELONG TO A SELECTED IDENTITY, WHILE NEGATIVE ARE ALL REMAINING IMAGES.

	Positive	Negative	Acc=97.35%
Biggest cluster	2617	86	P=99.32%
Other clusters	18	1206	R=96.82%

Results - Clean vs Unclean (3/3)

Conclusion

- We proposed a semi-supervised solution based on a CNN model with Center loss, that speeds-up the faces labeling process from a video containing a set of identities.
 - A pipeline to create a dataset from scratch or cleaning an existing one
 - Face Recognition application

References

- Ignazio Gallo, Shah Nawaz, Alessandro Calefati and Gabriele Piccoli, A Pipeline to Improve Face Recognition
 Datasets and Applications, 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ).
- Yandong Wen, Kaipeng Zhang, Zhifeng Li and Yu Qiao, A discriminative feature learning approach for deep face recognition, 2016 European conference on computer vision (ECCV).
- https://www.quora.com/How-was-facial-recognition-performed-before-without-deep-learning
- https://en.wikipedia.org/wiki/Softmax_function
- https://engmrk.com/lenet-5-a-classic-cnn-architecture/

Questions?

