Notatki z AiSD, Nr 21.

22 czerwca 2024

Wyszukiwanie wzorców

IIUWr. II rok informatyki

1 Definicja problemu i notacja

Definicja 1 Niech w i x będą słowami nad alfabetem Σ . Mówimy, że

- w jest prefiksem x, jeśli istnieje $y \in \Sigma^*$ takie, że wy = x,
- w jest sufiksem x, jeśli istnieje $y \in \Sigma^*$ takie, że yw = x.

OZNACZENIA:

- $w \sqsubseteq x$ w jest prefiksem x-a
- $w \supset x$ w jest sufiksem x-a

Definicja 2 Mówimy, że słowo P występuje w słowie T z przesunięciem s, jeśli istnieje słowo y o długości s takie, że $yP \sqsubset T$.

Problem wyszukiwania wzorca definiowany jest na wiele sposobów. My będziemy zainteresowani następującą jego wersją:

Definicja 3 (PROBLEM WYSZUKIWANIA WZORCA)

Dane: słowa P i T; nazywamy je odpowiednio wzorcem i tekstem

Zadanie: znaleźć wszystkie wystąpienia P w T

(tj. znaleźć wszystkie przesunięcia, z którymi P występuje w T).

Tradycyjnie długość P oznaczana jest przez m, a długość T przez n. Ponadto będziemy stosować następujące oznaczenia:

- x_i i- ta litera słowa X (w szczególności: p_i oznacza i-tą literę wzorca P a t_i i-tą literę tekstu T),
- X_k k literowy prefiks słowa X, tj. $X_k = x_1 \dots x_k$.

2 Algorytmy

2.1 Algorytm naiwny

Algorytm naiwny polega na sprawdzeniu występowania wzorca ze wszystkimi kolejnymi przesunięciami. Dla każdego przesunięcia sprawdzamy zgodność wzorca z tekstem literka po literce.

```
\begin{array}{l} \textbf{procedure} \ AlgorytmNaiwny(T,P) \\ \textbf{for} \ s \leftarrow 0 \ \textbf{to} \ n-m \ \textbf{do} \\ i \leftarrow 1 \\ \textbf{while} \ (i \leq m \ \textbf{and} \ p_i = t_{s+i}) \ \textbf{do} \ i \leftarrow i+1 \\ \textbf{if} \ (i=m) \ \textbf{write}(\text{"wzorzec występuje z przesunięciem", s}) \end{array}
```

Koszt: $\Theta((n-m+1)m)$ w najgorszym przypadku.

Narzucające się usprawnienia algorytmu naiwnego możemy podzielić z grubsza na dwie grupy:

- wyeliminowanie złych przesunięć,
- efektywniejsze sprawdzanie występowania wzorca dla danego przesunięcia.

Przykład.

Szukając algorytmem naiwnym wzorca P=aaabaabab w tekście T=aaabaaa... napotykamy niezgodność w trakcie sprawdzania siódmego znaku wzorca.

W takiej sytuacji nie ma sensu sprawdzać, czy wzorzec występuje z przesunięciem 1. Gdyby bowiem wzorzec miał występować z takim przesunięciem, to sześcioliterowy prefiks wzorca (tj. *aaabaa*) musiałby być sufiksem przeczytanego fragmentu tekstu, czyli słowa *aaabaaa*. Z tego samego powodu przesunięcia 2 i 3 nie są sensowne.

2.2 Algorytm Karpa-Rabina

IDEA:

Słowa nad d-literowym alfabetem Σ traktujemy jako liczby d-arne. Jeśli p oznacza liczbę odpowiadającą wzorcowi P, a t_s - liczbę odpowiadającą T[s+1..s+m] (s=0,..n-m), to wzorzec występuje z przesunięciem s iff $p=t_s$. Gdy m jest duże, to p oraz t_i są duże i ich porównywanie jest kosztowne. Dlatego wybieramy liczbę q (zwykle jest to liczba pierwsza) taką, że dq mieści się w słowie maszynowym i liczby p oraz t_i obliczamy modulo q. Wówczas

- (1) $p \neq t_s \Rightarrow P$ nie występuje w T z przesunięciem s,
- (2) $p = t_s \Rightarrow P$ może występować w T z przesunięciem s.

```
\begin{aligned} & \mathbf{procedure} \ Karp - Rabin - matcher(T, P, d, q) \\ & n \leftarrow length(T) \\ & m \leftarrow length(P) \\ & h \leftarrow d^{m-1} \mod q \\ & p \leftarrow 0; \ t_0 \leftarrow 0 \\ & \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ m \ \mathbf{do} \\ & p \leftarrow (dp + P[i]) \ \mathrm{mod} \ q \\ & t_0 \leftarrow (dt_0 + T[i]) \ \mathrm{mod} \ q \\ & \mathbf{for} \ s \leftarrow 0 \ \mathbf{to} \ n - m \ \mathbf{do} \\ & \mathbf{if} \ p = t_s \ \mathbf{then} \\ & \mathbf{if} \ P[1..m] = T[s + 1..s + m] \ \ \mathbf{then} \ \mathrm{write}(\text{``wzorzec występuje z przesunięciem''}, s) \\ & \mathbf{if} \ s < n - m \ \mathbf{then} \ t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \ \mathrm{mod} \ q \end{aligned}
```

Koszt: $\Theta((n-m+1)m)$ w najgorszym przypadku. Gdy wzorzec występuje w tekście niewiele razy oraz gdy t_i przyjmują wartości $\{0,..,q-1\}$ z równym prawdopodobieństwem, to wybierając q większe od m koszt powyższej procedury można oszacować przez O(m+n).

UWAGA: Algorytm ten łatwo uogólnia się na problem szukania wzorców dwuwymiarowych.

2.3 Wyszukiwanie wzorców automatami skończonymi.

2.3.1 Konstrukcja automatu

IDEA:

Dla danego wzorca P skonstruujemy automat skończony M_P o stanach ze zbioru $\{0,..m\}$. Automat, czytając tekst T, będzie znajdować się w stanie d, jeśli ostatnich d liter tekstu może rozpoczynać wzorzec i dla żadnego e > d, e ostatnio wczytanych liter nie może rozpoczynać wzorca. W szczególności dojście do stanu m będzie oznaczać, że m ostatnio wczytanych liter tekstu tworzy wzorzec.

Definicja 4 Dla automatu skończonego $M = (Q, q_0, A, \Sigma, \delta)$, określamy funkcję $\phi : \Sigma^* \to Q$:

$$\phi(\varepsilon) = q_0
\phi(wa) = \delta(\phi(w), a),$$

Innymi słowy $\phi(w)$ ="stan, w którym znajdzie się M po przeczytaniu w".

Definicja 5 Dla wzorca P definiujemy funkcję $\sigma: \Sigma^* \to \{0, \dots, m\}$:

$$\sigma(x) = \max\{k \mid P_k \sqsupset x\}$$

Czyli $\sigma(x) = \text{"długość najdłuższego prefiksu } P$, który jest sufiksem x-a".

Fakt 1 (Własności funkcji σ)

- (a) $\sigma(x) = |P|$ iff $P \supset x$
- (b) $x \supset y \Rightarrow \sigma(x) \leq \sigma(y)$

Definicja 6 (Automatu skończonego M_P dla wzorca P)

- $zbi\acute{o}r\ stan\acute{o}w$: $Q = \{0, 1, \dots, m\},$
- $stan\ początkowy:\ q_0=0,$
- $zbi\acute{o}r\ stan\acute{o}w\ ko\acute{n}cowych$: $A = \{m\},$
- funkcja przejścia: $\forall_{q \in Q, a \in \Sigma} \ \delta(q, a) = \sigma(P_q a)$.

2.3.2 Program symulujący automat M_P .

```
\begin{array}{c} \mathbf{procedure} \ Finite - automaton - matcher(T, \delta, m) \\ n \leftarrow length(T) \\ q \leftarrow 0 \\ \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \\ q \leftarrow \delta(q, T[i]) \\ \mathbf{if} \ q = m \ \mathbf{then} \ write(\ \text{``wzorzec występuje z przesunięciem''} \ , i - m) \end{array}
```

Koszt procedury: O(n) (koszt ten nie obejmuje kosztu obliczenia funkcji δ).

2.3.3 Analiza poprawności

Poniższe lematy i twierdzenie pokazują, że jeśli po wczytaniu *i*-tej litery tekstu M_P jest w stanie q (= $\phi(T_i)$), to q jest długością najdłuższego sufiksu T_i , który jest prefiksem P (= $\sigma(T_i)$). Ponieważ $\sigma(T_i) = m$ iff $P \supset T_i$, więc stan akceptujący będzie osiągany wtedy i tylko wtedy, gdy m ostatnio przeczytanych znaków tworzy wzorzec.

- Lemat 1 $\forall_{x \in \Sigma^*} \forall_{a \in \Sigma} \quad \sigma(xa) \leq \sigma(x) + 1$,
- Lemat 2 $\forall_{x \in \Sigma^*} \forall_{a \in \Sigma} \quad q = \sigma(x) \Rightarrow \sigma(xa) = \sigma(P_q a)$
- Twierdzenie 1 $\forall_{i=0,1,\ldots,n}$ $\phi(T_i) = \sigma(T_i)$.

2.3.4 Obliczanie funkcji δ

• Sposób naiwny.

```
\begin{aligned} & \mathbf{procedure} \ Compute - Transition - Function(P, \Sigma) \\ & m \leftarrow length(P) \\ & \mathbf{for} \ q \leftarrow 0 \ \mathbf{to} \ \mathbf{m} \ \mathbf{do} \\ & \mathbf{for} \ \mathbf{each} \ a \in \Sigma \ \mathbf{do} \\ & k \leftarrow \min(m+1, q+2) \\ & \mathbf{repeat} \ k \leftarrow k-1 \ \mathbf{until} \ P_k \ \square \ P_q a \\ & \delta(q, a) \leftarrow k \end{aligned}
```

Koszt: $O(m^3 |\Sigma|)$

• Sposób zdecydowanie mniej naiwny (będzie przedmiotem ćwiczeń). Wykorzystuje funkcję prefiksową, którą zdefiniujemy opisując algorytm Knutha-Morrisa-Pratta. Czas jego działania wynosi $O(m|\Sigma|)$.

2.4 Algorytm Knutha-Morrisa-Pratta.

2.4.1 Idea

Podobna jak poprzednio: po przeczytaniu T_i chcemy wiedzieć jaki najdłuższy prefiks P jest sufiksem T_i . Załóżmy, że długość tego prefiksu wynosi k. Jeśli T[i+1] = P[k+1], to wiemy, że po przeczytaniu T_{i+1} ta długość wynosi k+1. Gorzej jeśli $T[i+1] \neq P[k+1]$. Funkcja δ pozwalała nam tę długość określić w jednym kroku. Pociągało to jednak za sobą konieczność wstępnego obliczenia wartości δ dla wszystkich par (k,a). To jest kosztowne! Teraz unikamy tego, pozwalając, by algorytm poświęcił więcej czasu na określenie długości prefiksu w trakcie czytania tekstu. Algorytm korzysta przy tym z pomocniczej funkcji π , którą oblicza wstępnie na podstawie wzorca w czasie O(m).

Definicja 7 Dla wzorca P definiujemy funkcję prefiksową $\pi: \{1,..,m\} \rightarrow \{0,..,m-1\}$

$$\pi(q) = \max\{k \mid k < q \ i \ P_k \sqsupset P_q\}$$

KOMENTARZ: W sytuacji gdy k ostatnich znaków tekstu tworzy prefiks P, a kolejny znak tekstu jest niezgodny z k+1-szym znakiem P, algorytm może sprawdzać czy znak ten jest zgodny z krótszymi prefiksami P, będącymi jednocześnie sufiksami wczytanego tekstu. Jako kandydatów na te prefiksy algorytm próbuje te prefiksy wzorca, które są sufiksami P_k . O tym, które są to prefiksy mówi funkcja π .

2.4.2 Algorytm

```
\begin{array}{c} \mathbf{procedure} \ KMP - Matcher(T,P) \\ n \leftarrow length(T); \ m \leftarrow length(P) \\ \pi \leftarrow Compute - Prefix - Function(P) \\ q \leftarrow 0 \\ \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n \ \mathbf{do} \\ \mathbf{while} \ q > 0 \ \mathbf{and} \ P[q+1] \neq T[i] \ \mathbf{do} \ q \leftarrow \pi(q) \\ \mathbf{if} \ P[q+1] = T[i] \ \mathbf{then} \ q \leftarrow q+1 \\ \mathbf{if} \ q = m \ \mathbf{then} \ write(\ \text{``wzorzec występuje z przesunięciem''}, i-m) \\ q \leftarrow \pi(q) \end{array}
```

Fakt 2 Algorytm $KMP-Matcher\ w\ czasie\ O(n+"czas\ działania\ procedury\ Compute-Prefix-Function").$

UZASADNIENIE. W każdej iteracji pętli **for** wartość zmiennej q zwiększa się o nie więcej niż 1 lub maleje (w pętli **while**), ale nigdy nie jest ujemna.

2.4.3 Obliczanie funkcji prefiksowej

```
 \begin{aligned} & \textbf{procedure} \ Compute - Prefix - Function(P) \\ & m \leftarrow length(P) \\ & \pi(1) \leftarrow 0; \ k \leftarrow 0 \\ & \textbf{for} \ q \leftarrow 2 \ \textbf{to} \ \textbf{m} \ \textbf{do} \\ & \textbf{while} \ k > 0 \ \textbf{and} \ P[k+1] \neq P[q] \ \textbf{do} \ k \leftarrow \pi(k) \\ & \textbf{if} \ P[k+1] = P[q] \ \textbf{then} \ k \leftarrow k+1 \\ & \pi(q) \leftarrow k \end{aligned}
```

Fakt 3 Procedura Compute – Prefix – Function działa w czasie O(m).

UZASADNIENIE. Podobne jak dla algorytmy KMP-Matcher. Tym razem obserwujemy zmiany wartości zmiennej k.

2.5 Algorytm Boyera-Moore'a

IDEA:

Metoda podobna do metody naiwnej: sprawdzamy kolejne przesunięcia s, ale dla danego s tekst sprawdzamy począwszy od końca wzorca. Gdy napotkamy niezgodność korzystamy z dwóch heurystyk do zwiększenia s (stosujemy tę, która proponuje większe przesunięcie):

- heurystyka "zły znak",
- heurystyka "dobry sufiks".

2.5.1 Heurystyka "zły znak"

Jeśli niezgodność wystąpiła dla $P[j] \neq T[s+j]$ $(1 \leq j \leq m)$, to niech

$$k = \left\{ \begin{array}{ll} \max \ \{z \ | \ P[z] = T[s+j]\} & \text{ jeśli takie } z \text{ istnieje,} \\ 0 & \text{w p.p.} \end{array} \right.$$

Jeśli k=0 lub k< j, to ta heurystyka proponuje przesunąć s o j-k znaków. Gdy k>j, to heurystyka nic nie proponuje.

2.5.2 Heurystyka "dobry sufiks"

Definicja 8 Mówimy, że Q jest podobne do R (i piszemy $Q \sim R$) iff $Q \supset R$ lub $R \supset Q$.

Heurystyka "dobry sufiks" mówi, że gdy napotkamy niezgodność $P[j] \neq T[s+j]$ $(1 \leq j \leq m)$, to s możemy zwiększyć o $m-\max\{k \mid 0 \leq k < m \ \& \ P[j+1..m] \sim P_k\}$.