

EC IA-2

on

Framing Multiple Choice Questions

Submitted By Group Number: C5 Group 6 (51 to 60)

Sr. No.	Roll No.	Name of the Student
1.	16014224051	Kothari Yajas Ashish
2.	16014224052	Kotian Aryan Ravi
3.	16014224053	Kulkarni Vedang Amit
4.	16014224054	Kumar Rajat
5.	16014224055	Kumbhar Mayuri Manoj
6.	16014224056	Kushwaha Jitesh Dhaniram
7.	16014224057	Lodaya Mannan Dipen
8.	16014224058	Lokhandwala Insiya
9.	16014224059	Madan Sadhil
10.	16014224060	Maddala Sai Shivani

Field	Details
Question	Which type of polymers are used as organic
	substrates specifically for electrical signal
	transduction in MEMS?
Options	A. Photo-polymers
	B. Conductive polymers
	C. Ferroelectric polymers
	D. Electrostrictive polymers
Correct Answer	B. Conductive polymers
Explanation	Conductive polymers are the organic materials that conduct electricity; thus, they are useful in MEMS for signal transduction. The conductive polymers facilitate effective signal transfer across MEMS devices and are capable of being molded into various shapes, which is particularly beneficial in miniaturized systems, hence making it the best polymer type for electrical signal transduction.
Reference	MEMS & Microsystems Design and Manufacture by <i>Tai- Ran-Hsu</i> https://drive.google.com/drive/folders/1pFOW1dUfj4 s-utozyZLXkldBGQ6Eh85S
Module/Topic	Material in Engineering applications 2.4 (Materials for MEMS and Microsystems)

Field	Details
Question	Which type of MEMS device is often utilized for measuring temperature in healthcare applications?
Options	A. Thermistors
	B. Micro thermocouples
	C. Capacitive Temperature Sensors
	D. Infrared Temperature Sensors
Correct Answer	B. Micro thermocouples
Explanation	Micro thermocouples are designed for temperature measurement. These have wide-ranging applications in the medical sector because of their small size, fast response, and accuracy. MEMS based thermocouples can be utilized in medical applications because they have compact size in being integrated into reliable devices, which provide necessary temperature measurements to monitor the patients.
Reference	https://drive.google.com/drive/folders/1pFOW1dUfj4 s- utozyZLXkldBGQ6Eh85S https://www.mdpi.com/1461918
Module/Topic	Material in Engineering applications 2.4 (Materials for MEMS and Microsystems)

Field	Details
Question	Which of the following is a primary benefit of
	miniaturization in MEMS?
Options	A. Higher energy consumption
	B. Reduced production cost
	C. Increased device size
	D. Limited processing speed
Correct Answer	B. Reduced production cost
Explanation	Miniaturization in electronics often leads to a
	reduction in production cost. Smaller components
	require less material and often allow for streamlined
	manufacturing processes, reducing overall
	expenses while also enhancing performance, energy
	efficiency, and portability in devices.
Reference	https://drive.google.com/drive/folders/1pFOW1dUfj4
	<u>s-</u> <u>utozyZLXkldBGQ6Eh85S</u>
	https://www.google.co.in/books/edition/Fundament
	$\frac{als \ of \ Microfabrication/90ZZDwAAQBAJ?hl=en\&gb}{pv=1}$
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	The above chart is MEMS as a micro-sensor. The "Q" represents the?
Options	A. Power Supply
	B. Micro Sensing Element
	C. Transduction Unit
	D. Actuator
Correct Answer	C. Transduction Unit
Explanation	MEMS as a Microsensor:
	Input Sensing Unit Signal Output Signal
Reference	https://drive.google.com/drive/folders/1pFOW1dUfj4s- utozyZLXkldBGQ6Eh85S book by Tai-Ran-Hsu
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	What material is commonly used in LB films for applications like sound transducers and tactile sensors?
Options	A. Polyvinyl chloride (PVC)
	B. Polytetrafluoroethylene (PTFE)
	C. Polyvinylidene fluoride (PVDF)
	D. Polyethylene terephthalate (PET)
Correct Answer	C. Polyvinylidene fluoride (PVDF)
Explanation	PVDF is a piezoelectric polymer widely used in
	Langmuir-Blodgett (LB) films for sound transducers,
	tactile sensors, and others. The piezoelectric
	properties of PVDF are such that it will make
	mechanical energy into electrical signals, which is a
	requirement for the type of sensors cited. Options
	other than PVC, PTFE, and PET do not possess
	piezoelectric capability.
Reference	MEMS & Microsystems Design and Manufacture
	by Tai- Ran-Hsu
	https://drive.google.com/drive/folders/1pFOW1d
	<u>Ufj4s-utozyZLXkldBGQ6Eh85S</u>
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	Which unique property of PDMS makes it particularly suitable for applications in BioMEMS devices that involve gas exchange, such as oxygen delivery in cell culture systems?
Options	A. High Young's modulus
	B. Optical transparency
	C. Gas permeability
	D. High refractive index
Correct Answer	C. Gas permeability
Explanation	PDMS has extremely high gas permeability; it allows the easy diffusion of gases such as oxygen and carbon dioxide. In BioMEMS applications involving cell culture systems, for instance, this property is a very important factor. Gas exchange is one of the necessary factors for cell viability. Other properties, such as optical transparency and mechanical strength, may be desirable but are unrelated to gas exchange concerns.
Reference	Mems for Biomedical Applications. (2012). United Kingdom: Woodhead Publishing. https://www.google.co.in/books/edition/Mems_forBiomedical_Applications/8s5ZAgAAQBAJ?hl=en&g bpv=0
Module/Topic	Material in Engineering applications 2.4 (Materials for MEMS and Microsystems)

Field	Details
Question	Which type of energy conversion is commonly used in microactuators for precise movement?
Options	A. Chemical to Thermal
	B. Electrical to Mechanical
	C. Thermal to magnetic
	D. Light to chemical
Correct Answer	B. Electrical to Mechanical
Explanation	Microactuators typically convert electrical energy to mechanical movement. This allows for controlled and precise movements on a small scale, necessary in microsystems.
Reference	Microelectromechanical Systems (MEMS) (reference pdf) https://drive.google.com/drive/folders/1pFOW1dUfj4 s- utozyZLXkldBGQ6Eh85S
Module/Topic	Material in Engineering applications 2.4 (Materials for MEMS and Microsystems)

Field	Details
Question	Which of the following statements are false with respect to major technical issues involved in the application of MEMS in bio-medicine?
Options	A. Controllability, mobility, and easy navigation for the operations such as those required in a laparoscopy
	B. Adaptivity to existing instruments and equipment
	C. Compatibility with biological system of patients
	D. None of the above statements is false
Correct Answer	D. None of the above statements is false
Explanation	All of the following statements are true for the reason that all these options point to real technical challenges in applying MEMS in bio-medicine: Controllability and Navigation: MEMS devices have to exhibit smooth motion and easy control, especially for very precise procedures like laparoscopy. Adaptivity to Existing Tools: MEMS should easily work with the tools of the present; otherwise, its integration will be a problem. Compatibility with Body: MEMS must be harmless to the human body to prevent any adverse reactions.
Reference	MEMS & Microsystems Design and Manufacture by Tai- Ran-Hsu https://drive.google.com/drive/folders/1pFOW 1dUfj4s-utozyZLXkldBGQ6Eh85S
Module/Topic	Material in Engineering applications 2.4 (Materials for MEMS and Microsystems)

Field	Details
Question	Where is Silicon primarily used in
	microelectronics?
Options	A. Integrated circuit carrier
	B. Thermal insulator
	C. Signal amplifier
	D. Fluid conductor
Correct Answer	A. Integrated circuit carrier
Explanation	Silicon is primarily used as a carrier for integrated circuits in microelectronics. For micro-systems, it is the preferred material for sensors and actuators, as well as common substrates for micro-fluids. Silicon's thermal stability and semiconductor properties make it ideal for creating the base layers for Integrated Circuit Carriers.
Reference	MEMS & Micro-systems Design and
	Manufacture by <i>Tai- Ran-Hsu</i>
	https://drive.google.com/drive/folders/1pFOW1dUfj4
	<u>s-</u> <u>utozyZLXkldBGQ6Eh85S</u>
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	Bio Sensors work on the principle of:
Options	A. Chemical Analysis
	B. Bio-recognition and Signal Transduction
	C. Electrical Induction
	D. Mechanical Motion Detection
Correct Answer	B. Bio-recognition and Signal Transduction
Explanation	Biosensors work according to the principle of sensing
	specific biological molecules (bio-recognition) and
	changing this biological response into some observable
	signal (signal transduction).
Reference	MEMS & Microsystems Design and
	Manufacture by Tai- Ran-Hsu
	https://drive.google.com/drive/folders/1pFO
	W1dUfj4s-utozyZLXkldBGQ6Eh85S
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	Which type of MEMS device is particularly
	advantageous for continuous glucose
	monitoring in diabetic patients?
Options	A. Micro-valves
	B. Micro-needle arrays
	C. Inertial sensors
	D. Optical tweezers
Correct Answer	B. Micro-needle arrays
Explanation	Micro-needle arrays are especially beneficial for
	continuous glucose monitoring in diabetic patients
	because they can painlessly penetrate the skin to
	access interstitial fluid, where glucose levels can be
	measured.
Reference	https://drive.google.com/drive/folders/1pFOW1dUfj4
	s- utozyZLXkldBGQ6Eh85S
	https://www.researchgate.net/publication/3284892 40 Microneedles for Transdermal Drug Delivery A Systematic Review
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	Miniaturization in microelectronics is crucial for the advancement of which emerging technology?
Options	A. Blockchain
	B. AI and Robotics
	C. Fiber Optics
	D. Pneumatics
Correct Answer	B. AI and Robotics
Explanation	By making electronic components smaller and more
	efficient, it allows robots and AI driven devices to
	operate more effectively in compact spaces, using less
	power while delivering higher processing speeds. This
	has applications in everything from mobile robots to
	autonomous drones and wearable AI devices,
	consumer products and healthcare.
Reference	https://drive.google.com/drive/folders/1pFOW1dUfj4
	<u>s-</u> <u>utozyZLXkldBGQ6Eh85S</u>
	$\frac{https://www.google.co.in/books/edition/Fundament}{als\ of\ Microfabrication/90ZZDwAAQBAJ?hl=en\&gb}{pv=1}$
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	Which property makes micro-sensors using
	conductive polymers particularly sensitive
	for environmental conditions?
Options	A. High flexibility
	B. Reversible absorption of gas species
	C. High temperature resistance
	D. Controlled refractive index
Correct Answer	B. Reversible absorption of gas species
Explanation	Conductive polymers are very sensitive to
	environmental conditions because they can absorb and
	desorb various gas species reversibly. These
	characteristic changes the conductivity of the polymer
	based on environmental factors like humidity or gas
	concentration, making them ideal for microsensors in
	environmental monitoring.
Reference	MEMS & Microsystems Design and
	Manufacture by <i>Tai- Ran-Hsu</i>
	https://drive.google.com/drive/folders/1pFO
	W1dUfj4s-utozyZLXkldBGQ6Eh85S
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	What is Micromachining?
Options	A. Process of creating large scale mechanical parts for industrial machinery
	B. Set of design and fabrication tools that precisely form structures and elements at a micro-scale
	C. Method used for arranging electronic devices by manual tools
	D. Technique used for designing large automotive parts
Correct Answer	B. Set of design and fabrication tools that precisely form structures and elements at a micro-scale
Explanation	Micromachining is defined as the process of making the minute physical features of a device. This can be done through various forming techniques including laser machining, chemical etching, and lithography which are conducted in very-layered environments. These technologies are used frequently in MEMS or microelectromechanical systems, and biomedical technologies. The other alternatives are poorly explained methods describing processes of a macroscopic nature which are indifferent to the concept of micromachining.
Reference	Introduction to MEMS by SATISH KUMAR https://drive.google.com/drive/folders/1pFOW1dUfj4
	<u>s-</u> <u>utozyZLXkldBGQ6Eh85S</u>
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	Which method is primarily used for creating strong, hermetic bonds between Pyrex glass and Silicon in MEMS devices?
Options	A. Plasma-Assisted CVD
	B. Anodic bonding
	C. Ion beam etching
	D. Deep reactive ion etching (DRIE)
Correct Answer	B. Anodic bonding
Explanation	Anodic bonding is one of the techniques which use heat, pressure, and an electric field to bond Pyrex glass with Silicon. This enables a very strong and hermetic seal, important when functionality depends on a vacuum or sealed environment inside MEMS devices. Other methods like Plasma-Assisted CVD do not bond materials such as Pyrex glass with Silicon, but have been defined for thin film depositions.
Reference	Microsystems, MEMS-applications, manufacturing methods for MEMS ~ Kari Vierinen Metropolia University of Applied Sciences Research Gate Paper https://drive.google.com/drive/folders/1pFOW1dUfj4 s-utozyZLXkldBGQ6Eh85S
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	In MEMS, which principle is used to detect
	mechanical displacement?
Options	A. Chemical Reactions
	B. Radio frequency Waves
	C. Magnetic Fields
	D. Electrostatic Forces
Correct Answer	D. Electrostatic Forces
Explanation	Capacitive sensors in MEMS use electrostatic forces to
	detect changes in position or displacement, as
	changes in distance between electrodes alter the
	capacitance.
Reference	Working Principles of MEMS & Microsystems
	https://drive.google.com/drive/folders/1pFOW1dUfj4
	s- utozyZLXkldBGQ6Eh85S
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	What are the great challenges faced by engineers in Bio-MEMS?
Options	A. Knowledge in molecular biology is required
	B. Knowledge in physical chemistry is required
	C. Both (a) and (b)
	D. Knowledge of organic chemistry is required
Correct Answer	C. Both (a) and (b)
Explanation	Bio-MEMS present a great challenge to engineers, as
	the design and manufacture of this type of sensor and
	instruments require the knowledge and experience in
	molecular biology as well as physical chemistry, in
	addition to engineering.
Reference	MEMS & Microsystems Design and Manufacture
	by Tai- Ran-Hsu
	https://drive.google.com/drive/folders/1pFOW1
	<u>dUfj4s-utozyZLXkldBGQ6Eh85S</u>
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	Which fabrication technique is critical in the
	development of MEMS devices for ensuring
	high precision and reliability?
Options	A. Bulk micro-machining
	B. Chemical vapor deposition (CVD)
	C. Screen printing
	D. Injection molding
Correct Answer	A. Bulk micro-machining
Explanation	Bulk micro-machining is a process used in MEMS to
	create precise and reliable structures by etching into a
	material. This technique allows for the production of
	complex, tiny parts that are important for the high
	precision and reliability needed in MEMS devices.
Reference	https://drive.google.com/drive/folders/1pFOW1dUfj4
	<u>s- utozyZLXkldBGQ6Eh85S</u>
	https://www.researchgate.net/publication/38076213
	8 Microfabrication techniques and technology
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	Which of the following chemical sensors has the incorrect working principle?
Options	A. Chemi Resistive Sensors - Organic polymers are used with embedded metal which on exposure to reactions, change their electric conductivity of the metal
	B. Chemi Capacitive Sensors - Capacitance of the capacitor changes on exposure of the metal plates to the reactions
	C. Chemi Mechanical Sensors - Certain polymers change their mechanical properties when they are exposed to certain chemicals
	D. Metal Oxide Gas Sensors - Metallic Sensors on exposure to certain gases form oxide layers, resulting in change in resistance
Correct Answer	B. Chemi Capacitive Sensors - Capacitance of the capacitor changes on exposure of the metal plates to the reactions
Explanation	Some polymers can be used as the dielectric material in capacitor. The exposure of these polymers to certain gases can alter the dielectric constant of the material, which in turn changes the capacitance between the metal electrodes.
Reference	MEMS & Microsystems book by Tai-Ran-Hsu
	https://drive.google.com/drive/folders/1pFOW1dUfj4
	<u>s- utozyZLXkldBGQ6Eh85S</u>
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)

Field	Details
Question	Which type of polymers are used create patterns on substrates by photo-lithography in MEMS applications?
Options	A. Ferro-electric polymer
	B. Langmuir-Blodgett (LB) films
	C. Photoresist polymer
	D. Conductive polymers
Correct Answer	C. Photoresist polymer
Explanation	Photoresist polymers are special formulated materials designed to produce patterns on substrates through photolithography. Photoresists are applied on the substrates and exposed to light in specified areas that are then developed to show the desired patterns.
Reference	MEMS & Microsystems Design and
	Manufacture by <i>Tai- Ran-Hsu</i>
	https://drive.google.com/drive/folders/1pFOW
	1dUfj4s-utozyZLXkldBGQ6Eh85S
Module/Topic	Material in Engineering applications 2.4
	(Materials for MEMS and Microsystems)