1 2

1 2

11 .

WHAT IS CLAIMED IS:

1. A method of inhibiting human telomerase activity comprising the step of contacting human telomerase with a polynucleotide comprising an antisense sequence of at least 7 nucleotides that specifically hybridizes to a nucleotide sequence within an accessible region of the RNA component of a human telomerase ("hTR"), but that does not hybridize to a sequence within a template region of the human telomerase, wherein the sequence within an accessible region is a sequence selected from nucleotides 137-193, 290-319, and 350-380 of hTR, whereby the polynucleotide inhibits the activity of the telomerase.

- 2. The method of claim 1 wherein the antisense sequence is between 10 and 50 nucleotides in length.
- 3. The method of claim 1 wherein the antisense sequence is between 15 and 35 nucleotides in length.
- 4. The method of claim 1 wherein the step of providing the cell with the polynucleotide comprises transfecting the cell with an expression vector comprising expression control sequences operatively linked to a nucleotide sequence encoding the antisense polynucleotide which vector expresses the polynucleotide.
 - 5. The method of claim 1 wherein the cell is a cancer cell.
- 6. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and:
- (1) a polynucleotide comprising an antisense sequence of at least 7 nucleotides that specifically hybridizes to a nucleotide sequence within an accessible region of the RNA component of a human telomerase ("hTR"), but that does not hybridize to a sequence within a template region of the human telomerase, wherein the sequence within an accessible region is a sequence selected from nucleotides 137-193, 290-319, and 350-380 of hTR, or
- (2) an expression vector comprising expression control sequences operatively linked to a nucleotide sequence encoding the polynucleotide which vector expresses the polynucleotide.

1

2 3

5

8

10

11 12

13 14

u Ti	15
	16
	1
	1 2 3
	3
	1
	1 2
	1
	1 2
	1
	1 2
/ 2	
\rangle \rangl	2
Sign	1 2 3 4

12.

	31					
	- 7. A method of treating a telomerase-related condition involving cells					
	exhibiting telomerase activity in a subject comprising the step of administering to the					
	subject a pharmaceutical composition in an amount effective to inhibit telomerase activity					
	in the cells, wherein the pharmaceutical composition comprises a pharmaceutically					
	acceptable carrier and:					
	(1) a polynucleotide comprising a sequence of at least 7 nucleotides					
	that specifically hybridizes to a nucleotide sequence within an accessible region of the					
	RNA component of a human telomerase ("hTR"), but that does not hybridize to a					
	sequence within a template region of the human telomerase, wherein the sequence within					
	an accessible region is a sequence selected from nucleotides 137-193, 290-319, and 350-					
	380 of hTR, or					
	(2) an expression vector comprising expression control sequences					
	operatively linked to a nucleotide sequence encoding the polynucleotide which vector					
	expresses the antisense polynucleotide,					
	whereby inhibiting telomerase activity in the cells provides the					
	treatment of the condition.					
	·					
	8. The method of claim 7 wherein the telomerase-related condition is					
	cancer and inhibition of telomerase activity in the cancer cells inhibits the growth of the					
	cancer.					
	9. The method of claim 7 wherein the pharmaceutical composition is					
	an injectable solution administered by injection.					
	10. The method of claim 7 wherein the pharmaceutical composition					
comprises the polynucleotide						
	11. The method of claim 7 wherein the pharmaceutical composition					
comprises the expression vector.						

A polynucleotide comprising an antisense sequence of at least 7

nucleotides that specifically hybridizes to a nucleotide sequence within an accessible

hybridize to a sequence within a template region of the human telomerase, wherein the

region of the RNA component of a human elomerase ("hTR"), but that does not

5	sequence within an accessible region is a sequence selected from nucleotides 137-193,		
6	290-319, and 350-380 of hTR.		
1	13. The polynucleotide of claim 12 wherein the sequence is between 10		
2	and 50 nucleotides in length.		
1	14. The polynucleotide of claim 12 wherein the sequence is between 15		
2	14. The polynucleotide of claim 12 wherein the sequence is between 15 and 35 nucleotides in length.		
2	and 33 nucleotides in length.		
1	15. The polynucleotide of claim 12 whose sequence consists essentially		
2	of the sequence within the an accessible region.		
	•		
1	16. The polynucleotide of claim 12 comprising DNA or RNA.		
1	17. The polynucle of claim 12 comprising a nucleotide analog		
2	selected from phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl		
3.	phosphonates, 2-O-methyl ribonucleotides and peptide-nucleic acids.		
1	18. The polynucled tide of claim 12 further comprising an inhibitory		
2	moiety.		
1	19. The polynucleo tide of claim 12 wherein the sequence is		
2	complementary to the nucleotide sequence within an accessible region.		
1	20. The polynucleotide of claim 12 which is at most 50 nucleotides		
2	long.		
I	21. The polynucleotide of claim 12 of less than about 50 nucleotides in		
2	a sequence that specifically hybridizes to an accessible region of the RNA component of		
3	telomerase.		
1	22. The polynucleotide of claim 12 whose nucleotide sequence is		
2	selected from the group consisting of		
3	CGT TCC TCT TCC TGC GGC CTG AAA CGG TGA (SEQ ID NO:2)		

1 2

3

5

6 7

8

2

3

4

5

6

1

2

1

2

4		CGT TCC TCT TCC	TGC GGC CT (SEQ ID NO:3)
5	·	CGT TCC TCT TCC	(SEQ ID NO:4)
6		CTG ACA GAG CC	C AAC TCT TCG CGG TGG CAG (SEQ ID NO:5)
7		CTG ACA GAG CC	AAO TCT TC (SEQ ID NO:6)
8		CCA ACT CTT CGC	GOT GGC AG (SEQ ID NO:7)
9		GCT CTA GAA TGA	ACG OTG GAA GGC GGC AGG (SEQ ID NO:8)
10		GCT CTA GAA TG	ACG GTG G (SEQ ID NO:9)
11		GCT CTA GAA TGA	ACG (SEQ ID NO:10)
12		GCT CTA GAA TG	(SEQ ID NO:11)
13		GCT CTA G (SEQ I	D NO:12)
14		CAT TIT TIG TIT	GCT CTA GA (SEQ ID NO:13) and
15		CGG GCC AGC AG	C TGA CA (SEQ ID NO:14).
			,

- 23. An expression vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked with a nucleotide sequence encoding a polynucleotide comprising an antisense sequence of at least 7 nucleotides that specifically hybridizes to a nucleotide sequence within an accessible region of the RNA component of a human telomerase ("hTR"), but that does not hybridize to a sequence within a template region of the human telorherase, wherein the sequence within an accessible region is a sequence selected from nucleotides 137-193, 290-319, and 350-380 of hTR.
- 24. The expression vector of claim 23 wherein the expression control sequences comprise a promoter selected from the metallothionein promoter, the constitutive adenovirus major late promoter, the dexamethasone-inducible MMTV promoter, the SV40 promoter, the MRP/polIII promoter, the constitutive MPSV promoter, the tetracycline-inducible CMV promoter (such as the human immediate-early CMV promoter), and the constitutive CMV promoter.
- 25. The expression vedtor of claim 23 wherein a viral vector or a plasmid vector comprising the recombinant polynucleotide.
- The expression vector of claim 25 wherein the vector is a plasmid 26. vector contained in a liposome.