Chapter 11

Fourier Analysis

11.1 Fourier Series

1. The fundamental period of the functions is, by trial and error,

Function	Period	Function	Period
$\cos(x)$	2π	$\sin(x)$	2π
$\cos(2x)$	π	$\sin(2x)$	π
$\cos(\pi x)$	2	$\sin(\pi x)$	2
$\cos(2\pi x)$	1	$\sin(2\pi x)$	1

2. The fundamental period of the functions is, by trial and error,

Function	Period	Function	Period
$\cos(nx)$	$\frac{2\pi}{n}$	$\sin(nx)$	$\frac{2\pi}{n}$
$\cos\left(\frac{2\pi\ x}{k}\right)$	k	$\sin\left(\frac{2\pi\ x}{k}\right)$	k
$\cos\left(\frac{2\pi n\ x}{k}\right)$	$\frac{k}{n}$	$\sin\left(\frac{2\pi n\ x}{k}\right)$	$\frac{k}{n}$

3. If the functions f, g both have period p,

$$h(x) = af(x) + bg(x)$$
 $h(x+p) = af(x+p) + bg(x+p)$ 11.1.1
$$h(x+p) = af(x) + bg(x) = h(x)$$
 11.1.2

This means that h also has period p

4. b = 1/a proves the second half and is not covered here.

$$f(x+p) = f(p) a \neq 0 11.1.3$$

$$f(ax+q) = f(ax)$$
 $\Longrightarrow f(ax+q) = f(ax+ap)$ 11.1.4

$$f(ax + ap) = f(ax) 11.1.5$$

This means that the period scales with the reciprocal of the factor a.

5. Let the function f be a constant function.

$$f(x+p) = f(x) = c \qquad \forall c \in \mathcal{R}^+$$
 11.1.6

There is no smallest possible choice of p that satisfies this condition.

This means that a constant function has any positive real number as a period, but cannot have a fundamental period.

6. Plotting the function in the given domain

7. Plotting the function in the given domain

8. Plotting the function in the given domain

9. Plotting the function in the given domain

10. Plotting the function in the given domain

11. Performing integration by parts,

$$\int_{-\pi}^{\pi} x \cos(nx) \, dx = \left[\frac{x}{n} \sin(nx) \right]_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{\sin(nx)}{n} \, dx$$
11.1.7

$$= \left[\frac{\cos(nx)}{n^2}\right]_{-\pi}^{\pi} = 0 \tag{11.1.8}$$

$$\int_{-\pi}^{\pi} x^2 \sin(nx) \, dx = \left[\frac{-x^2}{n} \cos(nx) \right]_{-\pi}^{\pi} + \int_{-\pi}^{\pi} \frac{2x \cos(nx)}{n} \, dx$$
 11.1.9

$$= \left[\frac{\cos(nx)}{n^2}\right]_{-\pi}^{\pi} = 0$$
 11.1.10

$$\int_{-\pi}^{\pi} e^{-2x} \cos(nx) \, dx = \left[\frac{e^{-2x}}{n} \sin(nx) \right]_{-\pi}^{\pi} + \int_{-\pi}^{\pi} \frac{2e^{-2x} \sin(nx)}{n} \, dx$$
11.1.11

$$= \frac{2}{n} \int_{-\pi}^{\pi} e^{-2x} \sin(nx) dx$$
 11.1.12

$$= \left[\frac{-2e^{-2x}}{n^2} \cos(nx) \right]_{-\pi}^{\pi} - \frac{4}{n^2} \int_{-\pi}^{\pi} e^{-2x} \cos(nx) dx$$
 11.1.13

$$I = \frac{4 \cos(n\pi) \sinh(2\pi)}{n^2} - \frac{4I}{n^2}$$
 11.1.14

$$I = \frac{4\cos(n\pi) \sinh(2\pi)}{n^2 + 4}$$
 11.1.15

12. Finding the Fourier series using Euler's equations

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |x| \, dx = \frac{1}{2\pi} \left[\int_{-\pi}^{0} -x \, dx + \int_{0}^{\pi} x \, dx \right]$$
 11.1.16

$$= \left[\frac{-x^2}{4\pi}\right]_{-\pi}^0 + \left[\frac{x^2}{4\pi}\right]_0^{\pi} = \frac{\pi}{2}$$
 11.1.17

Finding the cosine coefficients

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos(nx) \, dx$$
 11.1.18

$$= \frac{1}{\pi} \left[\int_{-\pi}^{0} -x \cos(nx) \, dx + \int_{0}^{\pi} x \cos(nx) \, dx \right]$$
 11.1.19

$$= \frac{1}{\pi} \left[\frac{x \sin(nx)}{n} + \frac{\cos(nx)}{n^2} \right]_0^{-\pi} + \frac{1}{\pi} \left[\frac{x \sin(nx)}{n} + \frac{\cos(nx)}{n^2} \right]_0^{\pi}$$
 11.1.20

$$= \frac{2(\cos(n\pi) - 1)}{\pi n^2} = \begin{cases} 0 & n \text{ even} \\ \frac{-4}{\pi n^2} & n \text{ odd} \end{cases}$$
 11.1.21

Finding the sine coefficients

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \sin(nx) \, dx$$

$$= \frac{1}{\pi} \left[\int_{-\pi}^{0} -x \sin(nx) \, dx + \int_{0}^{\pi} x \sin(nx) \, dx \right]$$
 11.1.23

$$= \frac{1}{\pi} \left[\frac{x \cos(nx)}{n} - \frac{\sin(nx)}{n^2} \right]_{-\pi}^{0} + \frac{1}{\pi} \left[\frac{x \cos(nx)}{n} - \frac{\sin(nx)}{n^2} \right]_{\pi}^{0}$$
 11.1.24

$$=\frac{2(\cos(n\pi)-1)}{\pi n^2}=0$$
 11.1.25

Graphing the function itself and its partial sums,

13. Finding the Fourier series using Euler's equations

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi} \left[\int_{-\pi}^{0} x dx + \int_{0}^{\pi} (\pi - x) dx \right]$$
 11.1.26

$$= \left[\frac{x^2}{4\pi}\right]_{-\pi}^0 - \left[\frac{(\pi - x)^2}{4\pi}\right]_0^{\pi} = 0$$
 11.1.27

Finding the cosine coefficients

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |x| \cos(nx) \, dx$$
 11.1.28

$$= \frac{1}{\pi} \left[\int_{-\pi}^{0} x \cos(nx) \, dx + \int_{0}^{\pi} (\pi - x) \cos(nx) \, dx \right]$$
 11.1.29

$$= \frac{1}{\pi} \left[\frac{x \sin(nx)}{n} + \frac{\cos(nx)}{n^2} \right]_{-\pi}^{0} + \frac{1}{\pi} \left[\frac{\pi \sin(nx)}{n} - \frac{x \sin(nx)}{n} - \frac{\cos(nx)}{n^2} \right]_{0}^{\pi}$$
 11.1.30

$$= \frac{2(1 - \cos(n\pi))}{\pi n^2} = \begin{cases} 0 & n \text{ even} \\ \frac{4}{\pi n^2} & n \text{ odd} \end{cases}$$
 11.1.31

Finding the sine coefficients

$$b_n = \frac{1}{\pi} \left[\int_{-\pi}^0 (x) \sin(nx) \, dx + \int_0^{\pi} (\pi - x) \sin(nx) \, dx \right]$$
 11.1.32

$$= \frac{1}{\pi} \left[-\frac{x \cos(nx)}{n} + \frac{\sin(nx)}{n^2} \right]_{-\pi}^{0} + \frac{1}{\pi} \left[-\frac{\pi \cos(nx)}{n} + \frac{x \cos(nx)}{n} - \frac{\sin(nx)}{n^2} \right]_{0}^{\pi}$$
 11.1.33

$$= \frac{1}{\pi} \left[\frac{-\pi \cos(n\pi)}{n} + \frac{\pi}{n} \right] = \begin{cases} 0 & n \text{ even} \\ \frac{2}{n} & n \text{ odd} \end{cases}$$
 11.1.34

Graphing the function itself and its partial sums,

14. Finding the Fourier series using Euler's equations

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx$$
 11.1.35

$$= \left[\frac{x^3}{6\pi} \right]_{-\pi}^{\pi} = \frac{\pi^2}{3}$$
 11.1.36

Finding the cosine coefficients

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos(nx) dx$$
 11.1.37

$$= \left[\frac{(n^2x^2 - 2)\sin(nx) + 2nx\cos(nx)}{\pi n^3} \right]^{\pi}$$

$$= \frac{4\cos(n\pi)}{n^2} = \begin{cases} \frac{4}{n^2} & n \text{ even} \\ \frac{-4}{n^2} & n \text{ odd} \end{cases}$$
 11.1.39

Finding the sine coefficients

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \sin(nx) dx$$
 11.1.40

$$= \left[\frac{(2 - n^2 x^2) \cos(nx) + 2nx \sin(nx)}{\pi n^3} \right]_{-\pi}^{\pi}$$
 11.1.41

$$=\frac{4\cos(n\pi)}{n^2}=0$$
 11.1.42

Graphing the function itself and its partial sums,

15. Finding the Fourier series using Euler's equations

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) dx = \frac{1}{2\pi} \int_0^{2\pi} x^2 dx$$
 11.1.43

$$= \left[\frac{x^3}{6\pi}\right]_0^{2\pi} = \frac{4\pi^2}{3}$$
 11.1.44

Finding the cosine coefficients

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_0^{2\pi} x^2 \cos(nx) dx$$
 11.1.45

$$= \left[\frac{(n^2 x^2 - 2)\sin(nx) + 2nx\cos(nx)}{\pi n^3} \right]_0^{2\pi} = \frac{4}{n^2}$$
 11.1.46

Finding the sine coefficients

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_0^{2\pi} x^2 \sin(nx) dx$$
 11.1.47

$$= \left[\frac{(2 - n^2 x^2) \cos(nx) + 2nx \sin(nx)}{\pi n^3} \right]_0^{2\pi} = \frac{-4\pi}{n}$$
 11.1.48

Graphing the function itself and its partial sums,

 ${f 16.}$ The constant term is zero since the function is odd.

The cosine coefficients are zero since the function is odd.

Finding the sine coefficients

$$b_n = \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} x \sin(nx) dx$$
 11.1.49

$$= \frac{1}{\pi} \left[-\frac{x \cos(nx)}{n} + \frac{\sin(nx)}{n^2} \right]_{-\pi/2}^{\pi/2}$$
 11.1.50

$$= \begin{cases} \frac{-\cos(m\pi)}{n} & n = 2m\\ \frac{2}{\pi(2m-1)^2} (-1)^{m+1} & n = 2m-1 \end{cases}$$
 11.1.51

Graphing the function itself and its partial sums,

17. Finding the Fourier series using Euler's equations

-1

-0.5

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{1}{2\pi} \left[\int_{-\pi}^{0} (x+\pi) \, dx + \int_{0}^{\pi} (\pi-x) \, dx \right]$$
 11.1.52

0.5

 $\cdot \pi$

$$= \left[\frac{(x+\pi)^2}{4\pi} \right]_{-\pi}^0 - \left[\frac{(\pi-x)^2}{4\pi} \right]_0^{\pi} = \frac{\pi}{2}$$
 11.1.53

Finding the cosine coefficients

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
 11.1.54

$$= \frac{1}{\pi} \left[\int_{-\pi}^{0} (x+\pi) \cos(nx) \, dx + \int_{0}^{\pi} (\pi-x) \cos(nx) \, dx \right]$$
 11.1.55

$$= \frac{1}{\pi} \left[\frac{(x+\pi)\sin(nx)}{n} + \frac{\cos(nx)}{n^2} \right]_{-\pi}^{0} + \frac{1}{\pi} \left[\frac{(\pi-x)\sin(nx)}{n} - \frac{\cos(nx)}{n^2} \right]_{0}^{\pi}$$
 11.1.56

$$= \frac{2(1 - \cos(n\pi))}{\pi n^2} = \begin{cases} 0 & n \text{ even} \\ \frac{4}{\pi n^2} & n \text{ odd} \end{cases}$$
 11.1.57

Finding the sine coefficients

$$b_n = \frac{1}{\pi} \left[\int_{-\pi}^0 (x+\pi) \sin(nx) \, dx + \int_0^{\pi} (\pi-x) \sin(nx) \, dx \right]$$
 11.1.58

$$= \frac{1}{\pi} \left[-\frac{(x+\pi)\cos(nx)}{n} + \frac{\sin(nx)}{n^2} \right]_{-\pi}^{0} + \frac{1}{\pi} \left[-\frac{(\pi-x)\cos(nx)}{n} - \frac{\sin(nx)}{n^2} \right]_{0}^{\pi}$$
 11.1.59

$$=0$$

Graphing the function itself and its partial sums,

18. Finding the Fourier series using Euler's equations

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi} \int_{0}^{\pi} (1) dx$$
 11.1.61

$$= \left[\frac{x}{2\pi} \right]_0^{\pi} = \frac{1}{2}$$
 11.1.62

Finding the cosine coefficients

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_{0}^{\pi} (1) \cos(nx) dx$$
 11.1.63

$$=\frac{1}{\pi} \left[\frac{\sin(nx)}{n} \right]_0^{\pi} = 0 \tag{11.1.64}$$

Finding the sine coefficients

$$b_n = \frac{1}{\pi} \int_0^{\pi} (1) \sin(nx) dx = \frac{1}{\pi} \left[-\frac{\cos(nx)}{n} \right]_0^{\pi} = \frac{1 - \cos(n\pi)}{n\pi}$$
 11.1.65

Graphing the function itself and its partial sums,

19. Finding the Fourier series using Euler's equations

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi} \int_{0}^{\pi} x dx$$
 11.1.66

$$= \left[\frac{x^2}{4\pi} \right]_0^{\pi} = \frac{\pi}{4}$$
 11.1.67

Finding the cosine coefficients

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{1}{\pi} \int_{0}^{\pi} x \cos(nx) dx$$
 11.1.68

$$= \frac{1}{\pi} \left[\frac{x \sin(nx)}{n} + \frac{\cos(nx)}{n^2} \right]_0^{\pi} = \frac{(\cos(n\pi) - 1)}{\pi n^2}$$
 11.1.69

Finding the sine coefficients

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{1}{\pi} \int_{0}^{\pi} x \sin(nx) dx$$
 11.1.70

$$= \frac{1}{\pi} \left[-\frac{x \cos(nx)}{n} + \frac{\sin(nx)}{n^2} \right]_0^{\pi} = \frac{-\cos(n\pi)}{n}$$
 11.1.71

Graphing the function itself and its partial sums,

- ${\bf 20}.$ The constant term is zero since the function is odd.
 - The cosine coefficients are zero since the function is odd.

Finding the sine coefficients

$$b_n = \frac{1}{\pi} \left[\int_{-\pi}^{-\pi/2} (-\pi/2) \sin(nx) \, dx + \int_{-\pi/2}^{\pi/2} x \sin(nx) \, dx \right]$$
 11.1.72

$$+\int_{\pi/2}^{\pi} (\pi/2) \sin(nx) dx$$

$$= \frac{1}{2} \left[\frac{\cos(nx)}{n} \right]_{-\pi}^{-\pi/2} + \frac{1}{2} \left[\frac{-\cos(nx)}{n} \right]_{\pi/2}^{\pi}$$
 11.1.74

$$+\frac{1}{\pi} \left[-\frac{x \cos(nx)}{n} + \frac{\sin(nx)}{n^2} \right]_{-\pi/2}^{\pi/2}$$
 11.1.75

$$= \frac{-\cos(n\pi)}{n} + \frac{2\sin(n\pi/2)}{\pi n^2}$$
 11.1.76

Graphing the function itself and its partial sums,

21. Finding the Fourier series using Euler's equations

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{2\pi} \left[\int_{-\pi}^{0} (-x - \pi) dx + \int_{0}^{\pi} (\pi - x) dx \right]$$
 11.1.77

$$= -\left[\frac{(x+\pi)^2}{4\pi}\right]_{-\pi}^0 - \left[\frac{(\pi-x)^2}{4\pi}\right]_0^\pi = 0$$
 11.1.78

The cosine coefficients for an odd function are zero.

Finding the sine coefficients

$$b_n = \frac{1}{\pi} \left[\int_{-\pi}^0 -(x+\pi)\sin(nx) \, dx + \int_0^{\pi} (\pi-x)\sin(nx) \, dx \right]$$
 11.1.79

$$= \frac{1}{\pi} \left[\frac{(x+\pi) \cos(nx)}{n} - \frac{\sin(nx)}{n^2} \right]_{-\pi}^{0} + \frac{1}{\pi} \left[-\frac{(\pi-x) \cos(nx)}{n} - \frac{\sin(nx)}{n^2} \right]_{0}^{\pi}$$
 11.1.80

$$=\frac{2}{n}$$

Graphing the function itself and its partial sums,

- 22. Using the Fourier series graphs to identify out the underlying function,
 - (a) The function is a sawtooth wave y=x with a primary domain of $[-\pi,\pi]$.

(b) The function is a triangle wave with a primary domain of $[-\pi, \pi]$ and range [0, 1].

(c) The function is a downward parabola $y = -x + \pi^2$ with a primary domain of $[-\pi, \pi]$.

23. The average of the left and right handed limits of f(x) at x=0 needs to match the Fourier series expansion at x=0

$$\frac{f(0)^{+} + f(0)^{-}}{2} = \frac{\pi - \pi}{2} = 0$$
 11.1.82

$$F(x) = 0 + \sum_{n=1}^{\infty} \frac{2}{n} \sin(nx)$$
 11.1.83

$$F(0) = 0 11.1.84$$

This verifies the statement.

24. Performing the integration,

$$\int_{-a}^{a} \cos(mx) \cos(nx) dx = \frac{1}{2} \int_{-a}^{a} \cos(mx + nx) + \cos(mx - nx) dx$$
 11.1.85

$$= \frac{1}{2} \left[\frac{\sin(\alpha x)}{\alpha} + \frac{\sin(\beta x)}{\beta} \right]^a$$
 11.1.86

$$I(a) = \frac{\sin(\alpha a)}{\alpha} + \frac{\sin(\beta a)}{\beta}$$
 11.1.87

Here $\alpha = (m+n)$ and $\beta = (m-n)$ with both being nonzero integers.

$$I(a) = 0$$
 $\implies a = \pi$ 11.1.88

For $a \to a/k$, the condition becomes α , β are integer multiples of k. Performing the integration,

$$\int_{-a}^{a} \sin(mx) \sin(nx) dx = \frac{1}{2} \int_{-a}^{a} \cos(mx - nx) - \cos(mx + nx) dx$$
 11.1.89

$$= \frac{1}{2} \left[\frac{\sin(\beta x)}{\beta} - \frac{\sin(\alpha x)}{\alpha} \right]_{-\alpha}^{a}$$
 11.1.90

$$I(a) = \frac{\sin(\beta a)}{\beta} - \frac{\sin(\alpha a)}{\alpha}$$
 11.1.91

Performing the integration,

$$\int_{-a}^{a} \sin(mx) \cos(nx) dx = \frac{1}{2} \int_{-a}^{a} \cos(mx - nx) - \cos(mx + nx) dx$$
 11.1.92

$$= \frac{-1}{2} \left[\frac{\cos(\beta x)}{\beta} + \frac{\cos(\alpha x)}{\alpha} \right]_{-a}^{a}$$
 11.1.93

$$I(a) = 0$$
 identically 11.1.94

25. Order of Fourier coefficients in terms of the discontinuity in f and its higher-order derivatives.

. Start with f being discontinuous at x = a

$$a_n = \frac{1}{\pi} \int_{-\pi}^a f(x) \cos(nx) dx + \frac{1}{\pi} \int_a^{\pi} f(x) \cos(nx) dx$$
 11.1.95

$$= \frac{[f(a^{-}) - f(a^{+})] \sin(na)}{\pi n} - \frac{1}{n\pi} \left[\int_{-\pi}^{a} f'(x) \sin(nx) \, dx + \int_{a}^{\pi} f'(x) \sin(nx) \, dx \right]$$
 11.1.96

Clearly, if f is continuous, the procedure is the exact same acting on f' with an extra 1/n factor

introduced.

Thus, the order of the Fourier series is n^{-k} depending on the smallest discontinuous derivative of f being $f^{(k-1)}$.

The integral of a sine or consine function over the entire domain is identically zero, which gets rid of the earlier powers of 1/n in the Fourier expansion when the current derivative is still continuous.

Integration by parts requires recursive usage of differentiation until some discontinuity is hit.

11.2 Arbitrary Period, Even and Odd Functions, Half-Range Expansions

1. Checking the functions,

$e^{-x} \neq e^x$	Neither	11.2.1
$e^{- -x } = e^{- x }$	Even	11.2.2
$(-x)^3 \cos(-nx) = -x^3 \cos(nx)$	Odd	11.2.3
$(-x)^2 \tan(-\pi x) = -x^2 \tan(\pi x)$	Odd	11.2.4
$\sinh(-x) - \cosh(-x) = -\sinh(x) - \cosh(x)$	Neither	11.2.5

2. Checking the functions,

$\sin^2(-x)\sin^2(x)$	Even	11.2.6
$\sin\left((-x)^2\right) = \sin(x^2)$	Even	11.2.7
ln(-x) = not defined	Neither	11.2.8
$\frac{-x}{(-x)^2+1} = -\frac{x}{x^2+1}$	Odd	11.2.9
$(-x) \cot(-x) = x \cot(x)$	Even	11.2.10

3. For even functions f, g

$$f(-x) + g(-x) = f(x) + g(x)$$
 Even 11.2.11
$$f(-x) \cdot g(-x) = f(x) \cdot g(x)$$
 Even 11.2.12

4. For odd functions f, g

$$f(-x) + g(-x) = -f(x) - g(x) = -[f(x) + g(x)]$$
 Odd 11.2.13
 $f(-x) \cdot g(-x) = f(x) \cdot g(x)$ Even 11.2.14

5. For an odd function f

$$|f(-x)| = |-f(x)| = |x|$$
 Even

6. For odd function f and even function g,

$$f(-x) \cdot g(-x) = -f(x) \cdot g(x)$$
Odd
11.2.16

7. Functions need to be both even and odd,

$$f(-x) = f(x)$$
 $f(-x) = -f(x)$ 11.2.17

8. The function is even with period p = 2L = 2.

$$a_0 = \frac{1}{2} \int_{-1}^{1} f(x) \, \mathrm{d}x$$
 11.2.19

$$= \frac{1}{2} \left[\int_{-1}^{0} -x \, dx + \int_{0}^{1} x \, dx \right]$$
 11.2.20

$$= \left[\frac{-x^2}{4} \right]_{-1}^{0} + \left[\frac{x^2}{4} \right]_{0}^{1} = \frac{1}{2}$$
 11.2.21

Calculating the Fourier cosine coefficients,

$$a_n = \int_{-1}^{1} f(x) \cos(nx) dx$$
 11.2.22

$$= \int_{-1}^{0} -x \cos(n\pi x) dx + \int_{0}^{1} x \cos(n\pi x) dx$$
 11.2.23

$$= -\left[\frac{x\sin(n\pi x)}{n\pi} + \frac{\cos(n\pi x)}{n^2\pi^2}\right]_{-1}^{0} + \left[\frac{x\sin(n\pi x)}{n\pi} + \frac{\cos(n\pi x)}{n^2\pi^2}\right]_{0}^{1}$$
 11.2.24

$$= \frac{2}{n^2 \pi^2} \left[\cos(n\pi) - 1 \right]$$
 11.2.25

9. The function is odd with period p = 2L = 4.

$$a_0 = 0$$
 11.2.26

$$a_n = \frac{1}{2} \int_{-2}^2 f(x) \sin\left(\frac{n\pi x}{2}\right) dx$$
 11.2.27

$$= \frac{1}{2} \left[\int_{-2}^{0} (-1) \sin\left(\frac{n\pi x}{2}\right) dx + \int_{0}^{2} (1) \sin\left(\frac{n\pi x}{2}\right) dx \right]$$
 11.2.28

$$= \left[\frac{1}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]_{-2}^{0} - \left[\frac{1}{n\pi} \cos\left(\frac{n\pi x}{2}\right)\right]_{0}^{2}$$
 11.2.29

$$= \frac{2}{n\pi} \left[1 - \cos(n\pi) \right]$$
 11.2.30

10. The function is odd with period p = 2L = 8.

$$a_0 = 0$$
 $a_n = 0$ 11.2.31

Calculating the Fourier sine coefficients,

$$a_n = \frac{1}{4} \int_{-4}^4 f(x) \sin\left(\frac{n\pi x}{4}\right) dx$$
 11.2.32

$$= \frac{1}{4} \left[\int_{-4}^{0} (-x - 4) \sin\left(\frac{n\pi x}{4}\right) dx + \int_{0}^{4} (-x + 4) \sin\left(\frac{n\pi x}{4}\right) dx \right]$$
 11.2.33

$$= \frac{1}{4} \left[\frac{4(x+4)}{n\pi} \cos\left(\frac{n\pi x}{4}\right) - \frac{16}{n^2\pi^2} \sin\left(\frac{n\pi x}{4}\right) \right]_{-4}^{0}$$
 11.2.34

$$+\frac{1}{4} \left[\frac{4(x-4)}{n\pi} \cos\left(\frac{n\pi x}{4}\right) - \frac{16}{n^2\pi^2} \sin\left(\frac{n\pi x}{4}\right) \right]_0^4$$
 11.2.35

$$=\frac{8}{n\pi}$$
 11.2.36

11. The function is even with period p = 2L = 2.

$$b_n = 0 11.2.37$$

Calculating the constant term,

$$a_0 = \frac{1}{2} \int_{-1}^{1} f(x) \, \mathrm{d}x$$
 11.2.38

$$= \frac{1}{2} \left[\int_{-1}^{1} x^2 \, dx \right] = \frac{1}{2} \left[\frac{x^3}{3} \right]_{-1}^{1} = \frac{1}{3}$$
 11.2.39

$$a_n = \int_{-1}^{1} x^2 \cos(n\pi x) \, \mathrm{d}x$$
 11.2.40

$$= \left[\frac{x^2}{n\pi} \sin(n\pi x) + \frac{2x}{n^2 \pi^2} \cos(n\pi x) - \frac{2}{n^3 \pi^3} \sin(n\pi x) \right]_{-1}^{1}$$
 11.2.41

$$= \frac{4}{n^2 \pi^2} \cos(n\pi)$$
 11.2.42

12. The function is even with period p = 2L = 4.

$$b_n = 0 11.2.43$$

Calculating the constant term,

$$a_0 = \frac{1}{4} \int_{-1}^{1} f(x) \, \mathrm{d}x$$
 11.2.44

$$= \frac{1}{4} \left[\int_{-2}^{2} \left(1 - \frac{x^2}{4} \right) dx \right] = \frac{1}{4} \left[x - \frac{x^3}{12} \right]_{-2}^{2} = \frac{2}{3}$$
 11.2.45

Calculating the Fourier cosine coefficients,

$$a_n = \frac{1}{2} \int_{-2}^{2} \left(1 - \frac{x^2}{4} \right) \cos \left(\frac{n\pi x}{2} \right) dx$$
 11.2.46

$$= \frac{1}{2} \left[\frac{2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) \right]_{-2}^{2}$$
 11.2.47

$$-\frac{1}{8} \left[\frac{2x^2}{n\pi} \sin\left(\frac{n\pi x}{2}\right) - \frac{16}{n^3 \pi^3} \sin\left(\frac{n\pi x}{2}\right) + \frac{8x}{n^2 \pi^2} \cos\left(\frac{n\pi x}{2}\right) \right]_{-2}^{2}$$
 11.2.48

$$= \frac{-4}{n^2 \pi^2} \cos(n\pi)$$
 11.2.49

13. The function is even with period p = 2L = 1.

$$a_0 = \int_{-1/2}^{1/2} f(x) \, dx = \left[\int_0^{1/2} x \, dx \right] = \left[\frac{x^2}{2} \right]_0^{1/2} = \frac{1}{8}$$
 11.2.50

$$a_n = 2 \int_{-1/2}^{1/2} f(x) \cos(nx) dx = 2 \int_{0}^{1/2} (x) \cos(2n\pi x) dx$$
 11.2.51

$$= 2 \left[\frac{x}{2n\pi} \sin(2n\pi x) + \frac{1}{4n^2\pi^2} \cos(2n\pi x) \right]_0^{1/2}$$
 11.2.52

$$= \frac{1}{2n^2\pi^2} \left[\cos(n\pi) - 1\right]$$
 11.2.53

Calculating the Fourier sine coefficients,

$$b_n = 2 \int_{-1/2}^{1/2} f(x) \sin(nx) dx = 2 \int_{0}^{1/2} (x) \sin(2n\pi x) dx$$
 11.2.54

$$= 2 \left[-\frac{x}{2n\pi} \cos(2n\pi x) + \frac{1}{4n^2\pi^2} \sin(2n\pi x) \right]_0^{1/2}$$
 11.2.55

$$=\frac{-1}{2n\pi}\cos(n\pi)$$

14. The function is even with period p = 2L = 1.

$$a_0 = \int_{-1/2}^{1/2} f(x) \, dx = \left[\int_{-1/2}^{1/2} \cos(\pi x) \, dx \right] = \left[\frac{\sin(\pi x)}{\pi} \right]_{-1/2}^{1/2} = \frac{2}{\pi}$$
 11.2.57

Calculating the Fourier cosine coefficients,

$$a_n = 2 \int_{-1/2}^{1/2} f(x) \cos(nx) dx = 2 \int_{1/2}^{1/2} \cos(\pi x) \cos(2n\pi x) dx$$
 11.2.58

$$= \int_{-1/2}^{1/2} \cos[(2n+1)\pi x] + \cos[(2n-1)\pi x] dx$$
 11.2.59

$$= \left[\frac{\sin[(2n+1)\pi x]}{(2n+1)\pi} + \frac{\sin[(2n-1)\pi x]}{(2n-1)\pi} \right]_{-1/2}^{1/2}$$
 11.2.60

$$=\frac{4\cdot(-1)^n}{\pi(1+2n)(1-2n)}$$
 11.2.61

15. The function is odd with period $p = 2L = 2\pi$.

$$a_0 = 0$$
 11.2.62

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx$$
 11.2.63

$$= \frac{2}{\pi} \left[\int_0^{\pi/2} x \sin(nx) \, dx - \int_{\pi/2}^{\pi} (x - \pi) \sin(nx) \, dx \right]$$
 11.2.64

$$= \frac{2}{\pi} \left[\frac{x \cos(nx)}{n} - \frac{\sin(nx)}{n^2} \right]_{\pi/2}^0 + \frac{2}{\pi} \left[\frac{(x-\pi)\cos(nx)}{n} - \frac{\sin(nx)}{n^2} \right]_{\pi/2}^{\pi}$$
 11.2.65

$$= \frac{4}{\pi n^2} \sin(n\pi/2)$$
 11.2.66

16. The function is odd with period p = 2L = 2.

$$a_0 = 0$$
 $a_n = 0$ 11.2.67

Calculating the Fourier sine coefficients,

$$a_n = 2 \int_0^1 f(x) \sin(n\pi x) dx = 2 \int_0^1 x^2 \sin(n\pi x) dx$$
 11.2.68

$$= 2 \left[-\frac{x^2 \cos(n\pi x)}{n\pi} + \frac{2x \sin(n\pi x)}{n^2 \pi^2} + \frac{2 \cos(n\pi x)}{n^3 \pi^3} \right]_0^1$$
 11.2.69

$$= \frac{-2}{n\pi}\cos(n\pi) + \frac{4}{n^3\pi^3}[\cos(n\pi) - 1]$$
 11.2.70

17. The function is even with period p = 2L = 2.

$$b_n = 0 11.2.71$$

Finding the constant term,

$$a_0 = \int_0^1 (-x+1) \, \mathrm{d}x = \left[-\frac{(x-1)^2}{2} \right]_0^1 = \frac{1}{2}$$
 11.2.72

$$a_n = 2 \int_0^1 f(x) \cos(nx) dx = 2 \int_0^1 (-x+1) \cos(n\pi x) dx$$
 11.2.73

$$= 2 \left[\frac{(1-x)\sin(n\pi x)}{n\pi} - \frac{\cos(n\pi x)}{n^2\pi^2} \right]_0^1$$
 11.2.74

$$=\frac{2}{n^2\pi^2}[1-\cos(n\pi)]$$
 11.2.75

18. Half-wave rectifier acting on $v(x) = V_0 \cos(100\pi x)$

The function is even with period p = 2L = 0.02.

$$b_n = 0 11.2.76$$

Finding the constant term,

$$a_0 = \frac{1}{L} \int_0^L f\left(\frac{n\pi x}{L}\right) dx = 100 \int_0^{0.005} V_0 \cos(100\pi x) dx$$
 11.2.77

$$= \left[\frac{V_0 \sin(100\pi x)}{\pi} \right]_0^{0.005} = \frac{V_0}{\pi}$$
 11.2.78

$$a_n = 200 \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$
 11.2.79

$$= 200 \int_0^{0.005} V_0 \cos(100\pi x) \cos(100n\pi x) dx$$
 11.2.80

$$= 100V_0 \int_0^{0.005} \left[\cos[(n+1)100\pi x] + \cos[(n-1)100\pi x] \right] dx$$
 11.2.81

$$= 100V_0 \left[\frac{\sin[(n+1)100\pi \ x]}{(n+1)100\pi} + \frac{\sin[(n-1)100\pi \ x]}{(n-1)100\pi} \right]_0^{1/200}$$
11.2.82

$$= \frac{V_0}{\pi} \left[\frac{\cos(n\pi/2)}{(n+1)} - \frac{\cos(n\pi/2)}{(n-1)} \right] = \frac{-2V_0}{\pi(n^2-1)} \cos\left(\frac{n\pi}{2}\right)$$
 11.2.83

19. Fourier series expansions of powers of $\cos^3 x$,

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos^3 x \, dx$$
 11.2.84

$$= \left[\sin x - \frac{\sin^3 x}{3} \right]_{-\pi}^{\pi} = 0$$
 11.2.85

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^3 x \, \cos(nx) \, dx$$
 11.2.86

$$= \frac{1}{8\pi} \int_{-\pi}^{\pi} \left[3\cos[(n+1)x] + 3\cos[(n-1)x] \right]$$
 11.2.87

$$+\cos[(n+3)x] + \cos[(n-3)x]$$
 dx 11.2.88

$$= \frac{1}{8\pi} \left[\frac{3\sin[(n+1)x]}{(n+1)} + \frac{3\sin[(n-1)x]}{(n-1)} + \frac{\sin[(n+3)x]}{(n+3)} \right]$$
 11.2.89

$$+\frac{\sin[(n-3)x]}{(n-3)}\bigg]_{-\pi}^{\pi} = 0 \quad \forall \quad n \notin \{1,3\}$$

$$a_1 = \frac{3}{4} \qquad a_3 = \frac{1}{4} \tag{11.2.91}$$

A similar Fourier series expansion can be given for $\sin^3(x)$.

The expansion for $\cos^4(x)$ is

$$\cos^4(x) = \frac{[1 + \cos(2x)]^2}{4} = \frac{1 + \cos^2(2x) + 2\cos(2x)}{4}$$
 11.2.92

$$=\frac{3+4\cos(2x)+\cos(4x)}{8}$$
 11.2.93

This did not require explicit computation of the Fourier coefficients since it is a power of $\cos^2(x)$.

20. Using the Fourier series from Problem 11,

$$x^{2} = \frac{1}{3} + \sum_{n=1}^{\infty} \frac{4\cos(n\pi)}{n^{2}\pi^{2}} \cos(n\pi x)$$
 11.2.94

$$1 = \frac{1}{3} + \frac{4}{\pi^2} \left[\frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \dots \right]$$
 11.2.95

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 11.2.96

21. Plotting the first few partial sums for

(a) Problem 8

(b) Problem 9

(c) Problem 10

(d) Problem 11

22. Using the linearity of Fourier transforms,

$$f(x) = |x|$$
 $g(x) = 1 - |x| = 1 - f(x)$ 11.2.97

$$F(x) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[\cos(n\pi) - 1 \right]$$
 11.2.98

$$G(x) = \frac{1}{2} - \sum_{n=1}^{\infty} \frac{2}{n^2 \pi^2} \left[\cos(n\pi) - 1 \right]$$
 11.2.99

The inverse mapping $g \to f$ is also as simple.

23. The odd expansion of the given function is, with p = 2L = 8

$$f(x) = \begin{cases} -1 & x \in [-4, 0] \\ 1 & x \in [0, 4] \end{cases}$$
 11.2.100

$$a_0 = 0$$
 11.2.101

Calculating the Fourier sine coefficients,

$$a_n = \frac{1}{4} \int_{-4}^4 f(x) \sin\left(\frac{n\pi x}{4}\right) dx = \frac{1}{2} \int_0^4 (1) \sin\left(\frac{n\pi x}{4}\right) dx$$
 11.2.102

$$= \left[\frac{-2}{n\pi} \cos\left(\frac{n\pi x}{4}\right) \right]_0^4 = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right]$$
 11.2.103

The even expansion of the given function is,

$$a_0 = 1 a_n = b_n = 0 11.2.104$$

24. The odd expansion of the given function is, with p = 2L = 8

$$f(x) = \begin{cases} -1 & x \in [-4, -2] \\ 0 & x \in [-2, 2] \\ 1 & x \in [2, 4] \end{cases}$$
 11.2.105

$$a_0 = 0 a_n = 0 11.2.106$$

Calculating the Fourier sine coefficients,

$$b_n = \frac{1}{4} \int_{-4}^4 f(x) \sin\left(\frac{n\pi x}{4}\right) dx = \frac{1}{2} \int_{2}^4 (1) \sin\left(\frac{n\pi x}{4}\right) dx$$
 11.2.107

$$= \left[\frac{-2}{n\pi} \cos\left(\frac{n\pi x}{4}\right) \right]_2^4 = \frac{2}{n\pi} \left[\cos(n\pi/2) - \cos(n\pi) \right]$$
 11.2.108

The even expansion of the given function is, with p = 2L = 8

$$f(x) = \begin{cases} 1 & x \in [-4, -2] \\ 0 & x \in [-2, 2] \\ 1 & x \in [2, 4] \end{cases}$$
 11.2.109

$$b_n = 0 11.2.110$$

Calculating the Fourier cosine coefficients,

$$a_0 = \frac{1}{8} \int_{-4}^4 f(x) \, dx = \frac{1}{8} \left[\int_{-4}^{-2} (1) \, dx + \int_{2}^{4} (1) \, dx \right]$$
 11.2.111

$$=\frac{1}{2}$$
 11.2.112

$$a_n = \frac{1}{4} \int_{-4}^4 f(x) \cos\left(\frac{n\pi x}{4}\right) dx = \frac{1}{2} \int_{2}^4 (1) \cos\left(\frac{n\pi x}{4}\right) dx$$
 11.2.113

$$= \left[\frac{2}{n\pi} \sin\left(\frac{n\pi x}{4}\right)\right]_2^4 = \frac{-2}{n\pi} \sin(n\pi/2)$$
 11.2.114

25. The odd expansion of the given function is, with $p=2L=2\pi$

$$f(x) = \begin{cases} -x - \pi & x \in [-\pi, 0] \\ -x + \pi & x \in [0, \pi] \end{cases}$$
 11.2.115

$$a_0 = 0$$
 11.2.116

Calculating the Fourier sine coefficients,

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} (\pi - x) \sin(nx) dx$$
 11.2.117

$$= \frac{2}{\pi} \left[\frac{(x-\pi)\cos(nx)}{n} - \frac{\sin(nx)}{n^2} \right]_0^{\pi} = \frac{-2}{n}$$
 11.2.118

The even expansion of the given function is, with $p = 2L = 2\pi$

$$f(x) = \pi - |x|$$
 11.2.119

$$b_n = 0$$
 11.2.120

Calculating the Fourier cosine coefficients,

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} (\pi - x) dx$$
 11.2.121

$$=\frac{1}{\pi} \left[\frac{-(x-\pi)^2}{2} \right]_0^{\pi} = \frac{\pi}{2}$$
 11.2.122

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} (\pi - x) \cos(nx) dx$$
 11.2.123

$$= \frac{2}{\pi} \left[\frac{(\pi - x)\sin(nx)}{n} - \frac{\cos(nx)}{n^2} \right]_0^{\pi} = \frac{2}{\pi n^2} \left[1 - \cos(n\pi) \right]$$
 11.2.124

26. The odd expansion of the given function is, with $p=2L=2\pi$

$$f(x) = \begin{cases} -\pi/2 & x \in [-\pi, -\pi/2] \\ x & x \in [-\pi/2, \pi/2] \\ \pi/2 & x \in [\pi/2, \pi] \end{cases}$$
 11.2.125

$$a_0 = 0 a_n = 0 11.2.126$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$
 11.2.127

$$= \frac{2}{\pi} \int_0^{\pi/2} (x) \sin(nx) dx + \int_{\pi/2}^{\pi} (\pi/2) \sin(nx) dx$$
 11.2.128

$$= \frac{2}{\pi} \left[-\frac{(x)\cos(nx)}{n} + \frac{\sin(nx)}{n^2} \right]_0^{\pi/2} + \left[-\frac{\cos(nx)}{n} \right]_{\pi/2}^{\pi}$$
 11.2.129

$$= \frac{2\sin(n\pi/2)}{n\pi^2} - \frac{\cos(n\pi)}{n}$$
 11.2.130

The even expansion of the given function is, with $p=2L=2\pi$

$$f(x) = \begin{cases} \pi/2 & x \in [-\pi, -\pi/2] \\ |x| & x \in [-\pi/2, \pi/2] \\ \pi/2 & x \in [\pi/2, \pi] \end{cases}$$
 11.2.131

$$b_n = 0$$
 11.2.132

Calculating the Fourier cosine coefficients,

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, \mathrm{d}x$$
 11.2.133

$$= \frac{1}{\pi} \left[\int_0^{\pi/2} (x) \, dx + \int_{\pi/2}^{\pi} (\pi/2) \, dx \right]$$
 11.2.134

$$= \left[\frac{x^2}{2\pi}\right]_0^{\pi/2} + \left[\frac{x}{2}\right]_{\pi/2}^{\pi} = \frac{3\pi}{8}$$
 11.2.135

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
 11.2.136

$$= \frac{2}{\pi} \int_0^{\pi/2} (x) \cos(nx) dx + \int_{\pi/2}^{\pi} (1) \cos(nx) dx$$
 11.2.137

$$= \frac{2}{\pi} \left[\frac{x \sin(nx)}{n} + \frac{\cos(nx)}{n^2} \right]_0^{\pi/2} + \left[\frac{\sin(nx)}{n} \right]_{\pi/2}^{\pi}$$
 11.2.138

$$= \frac{2}{\pi n^2} \left[\cos(n\pi/2) - 1 \right]$$
 11.2.139

27. The odd expansion of the given function is, with $p=2L=2\pi$

$$f(x) = \begin{cases} -\pi - x & x \in [-\pi, -\pi/2] \\ -\pi/2 & x \in [-\pi/2, 0] \\ \pi/2 & x \in [0, \pi/2] \\ \pi - x & x \in [\pi/2, \pi] \end{cases}$$
 11.2.140

$$a_0 = 0$$
 $a_n = 0$ 11.2.141

$$b_n = \frac{2}{\pi} \left[\int_0^{\pi/2} (\pi/2) \sin(nx) \, dx + \int_{\pi/2}^{\pi} (\pi - x) \sin(nx) \, dx \right]$$
 11.2.142

$$= \left[\frac{-\cos(nx)}{n} \right]_0^{\pi/2} + \frac{2}{\pi} \left[\frac{(x-\pi)\cos(nx)}{n} - \frac{\sin(nx)}{n^2} \right]_{\pi/2}^{\pi}$$
 11.2.143

$$=\frac{1}{n} + \frac{2\sin(n\pi/2)}{\pi n^2}$$
 11.2.144

The even expansion of the given function is, with $p=2L=2\pi$

$$f(x) = \begin{cases} x + \pi & x \in [-\pi, -\pi/2] \\ \pi/2 & x \in [-\pi/2, \pi/2] \\ \pi - x & x \in [\pi/2, \pi] \end{cases}$$
 11.2.145

$$b_n = 0$$
 11.2.146

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, \mathrm{d}x$$
 11.2.147

$$= \frac{1}{\pi} \left[\int_0^{\pi/2} (\pi/2) \, dx + \int_{\pi/2}^{\pi} (\pi - x) \, dx \right]$$
 11.2.148

$$= \left[\frac{-(\pi - x)^2}{2\pi} \right]_{\pi/2}^{\pi} + \left[\frac{x}{2} \right]_0^{\pi/2} = \frac{3\pi}{8}$$
 11.2.149

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
 11.2.150

$$= \frac{2}{\pi} \int_0^{\pi/2} (\pi/2) \cos(nx) dx + \frac{2}{\pi} \int_{\pi/2}^{\pi} (\pi - x) \cos(nx) dx$$
 11.2.151

$$= \frac{2}{\pi} \left[\frac{(\pi - x)\sin(nx)}{n} - \frac{\cos(nx)}{n^2} \right]_{\pi/2}^{\pi} + \left[\frac{\sin(nx)}{n} \right]_{0}^{\pi/2}$$
 11.2.152

$$= \frac{-2}{\pi n^2} \left[\cos(n\pi) - \cos(n\pi/2) \right]$$
 11.2.153

28. The odd expansion of the given function is, with p = 2L

$$f(x) = x ag{11.2.154}$$

$$a_0 = 0 a_n = 0 11.2.155$$

$$b_n = \frac{2}{L} \int_0^L (x) \sin\left(\frac{n\pi x}{L}\right) dx$$
 11.2.156

$$= \frac{2}{L} \left[-\frac{xL}{n\pi} \cos\left(\frac{n\pi x}{L}\right) + \frac{L^2}{n^2\pi^2} \sin\left(\frac{n\pi x}{L}\right) \right]_0^L$$
 11.2.157

$$=\frac{-2L}{n\pi}\cos(n\pi)$$
 11.2.158

The even expansion of the given function is, with p = 2L

$$f(x) = |x| b_n = 0 11.2.159$$

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx = \frac{1}{L} \int_{0}^{L} (x) dx$$
 11.2.160

$$= \left[\frac{x^2}{2L}\right]_0^L = \frac{L}{2}$$
 11.2.161

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$
 11.2.162

$$= \frac{2}{L} \int_0^L (x) \cos\left(\frac{n\pi x}{L}\right) dx$$
 11.2.163

$$= \frac{2}{L} \left[\frac{xL}{n\pi} \sin\left(\frac{n\pi x}{L}\right) + \frac{L^2}{n^2\pi^2} \cos\left(\frac{n\pi x}{L}\right) \right]_0^L$$
 11.2.164

$$= \frac{2L}{\pi^2 n^2} \left[\cos(n\pi) - 1 \right]$$
 11.2.165

29. The odd expansion of the given function is, with $p=2L=2\pi$

$$f(x) = \sin(x) \tag{11.2.166}$$

$$a_0 = 0 a_n = 0 11.2.167$$

$$b_n = \begin{cases} 1 & n = 1 \\ 0 & \text{otherwise} \end{cases}$$
 11.2.168

The even expansion of the given function is, with $p=2L=2\pi$

$$f(x) = |\sin(x)| b_n = 0 11.2.169$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} (\sin x) dx$$
 11.2.170

$$= \frac{1}{\pi} \left[-\cos x \right]_0^{\pi} = \frac{2}{\pi}$$
 11.2.171

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
 11.2.172

$$= \frac{2}{\pi} \int_0^{\pi} (\sin x) \cos(nx) dx$$
 11.2.173

$$= \frac{-1}{\pi} \left[\frac{\cos[(1+n)x]}{1+n} + \frac{\cos[(1-n)x]}{1-n} \right]_0^{\pi}$$
 11.2.174

$$= \begin{cases} \frac{-2}{\pi(n^2 - 1)} \left[1 - \cos[(n+1)\pi] \right] & n \ge 2\\ 0 & n = 1 \end{cases}$$
 11.2.175

30. The odd expansion of the given function is, with p = 2L

$$f(x) = -g(x+\pi) {11.2.176}$$

$$a_0 = 0 a_n = 0 11.2.177$$

$$f(x) = -\sum_{n=1}^{\infty} \left[\frac{1}{n} + \frac{2\sin(n\pi/2)}{\pi n^2} \right] \sin(nx + n\pi)$$
 11.2.178

$$= \sum_{n=1}^{\infty} \left[\frac{-\cos(n\pi)}{n} + \frac{2\sin(n\pi/2)}{\pi n^2} \right] \sin(nx)$$
 11.2.179

The even expansion of the given function is, with p=2L

$$f(x) = g(x+\pi) b_n = 0 11.2.180$$

Calculating the Fourier cosine coefficients,

$$a_0 = \frac{3\pi}{8}$$
 11.2.181

$$a_n = \sum_{n=1}^{\infty} \left[\frac{2}{\pi n^2} \left[\cos(n\pi/2) - \cos(n\pi) \right] \right] \cos(nx + n\pi)$$
 11.2.182

$$= \sum_{n=1}^{\infty} \left[\frac{2}{\pi n^2} \left[\cos(n\pi/2) - 1 \right] \right] \cos(nx)$$
 11.2.183

11.2.184

11.3 Forced Oscillations

1. Deriving the terms C_n ,

$$A_n = \frac{1}{n\pi D_n} \left[\frac{4(25 - n^2)}{n} \right] \qquad B_n = \frac{1}{n\pi D_n} \left[0.2 \right]$$
 11.3.1

$$C_n = \sqrt{A_n^2 + B_n^2}$$

$$= \frac{1}{n\pi D_n} \sqrt{\frac{(25 - n^2)^2 + (0.05n)^2}{n^2/16}}$$
 11.3.2

$$=\frac{4}{n^2\pi\sqrt{D_n}}$$
 11.3.3

2. The effect of changing k is,

$$C_n \propto \frac{1}{\sqrt{D_n}}$$
 $D_n = (k - n^2)^2 + (cn)^2$ 11.3.4

11.3.5

The maximum in amplitude shifts from n = 5 to n = 7, when $k = 7^2$.

The amplitude goes down as k increases, and as c increases.

3. The effect of *c* is to prevent the output being a pure cosine series by introducing sine terms proportional to the damping.

$$B_n \propto c$$
 $c \to 0 \implies B_n \to 0$ 11.3.6

$$C_n \to A_n$$
 11.3.7

In the limit of very large $c, B_n \gg A_n$ and the output is completely out of phase with the input.

4. The derivative of the input is,

$$r'(t) = \frac{-4}{n\pi} \sin(nt) = \lambda \sin(nt)$$
 $C_n = \frac{\lambda}{\sqrt{D_n}}$ 11.3.8

$$C_{\text{new}} = n C_{\text{old}}$$
 11.3.9

Differentiation leads to the amplitude C_n multiplied by a factor of n.

- 5. The fact that the driving frequency being larger than the resonant frequency makes the output the opposite phase as the input is reflected in those A_n terms being negative.
 - No such effect happens as a result of the damping, which means that the B_n terms always remain positive.
- **6.** Solving the ODE,

$$r(t) = \sin(\alpha t) + \sin(\beta t) \qquad \qquad \omega^2 \neq \alpha^2, \, \beta^2 \qquad \qquad 11.3.10$$

$$y'' + \omega^2 y = r(t) {11.3.11}$$

Using a guess for the solution, and solving the nh-ODE,

$$y_p = A_1 \cos(\alpha t) + A_2 \sin(\alpha t) + B_1 \cos(\beta t) + B_2 \sin(\beta t)$$
 11.3.12

$$[\cos(\alpha t)] \qquad 0 = (-\alpha^2 + \omega^2) A_1 \tag{11.3.13}$$

$$y_p = \frac{\sin(\alpha t)}{\omega^2 - \alpha^2} + \frac{\sin(\beta t)}{\omega^2 - \beta^2}$$
 11.3.17

Finding the general solution, by solving the h-ODE,

$$y'' + \omega^2 y = 0 11.3.18$$

$$y_h = C_1 \cos(\omega t) + C_2 \sin(\omega t)$$
 11.3.19

$$y = y_h + y_p \tag{11.3.20}$$

7. Solving the ODE,

$$r(t) = \sin(t) \qquad \qquad \omega^2 \neq 1 \qquad \qquad 11.3.21$$

$$y'' + \omega^2 y = r(t)$$
 11.3.22

Using a guess for the solution, and solving the nh-ODE,

$$y_p = A_1 \cos(t) + A_2 \sin(t)$$
 11.3.23

$$[\cos(t)] \qquad 0 = (-1 + \omega^2) A_1 \tag{11.3.24}$$

$$[\sin(t)] \qquad 1 = (-1 + \omega^2) A_2 \tag{11.3.25}$$

$$y_p = \frac{\sin(t)}{\omega^2 - 1} \tag{11.3.26}$$

Finding the general solution, by solving the h-ODE,

$$y'' + \omega^2 y = 0 11.3.27$$

$$y_h = C_1 \cos(\omega t) + C_2 \sin(\omega t)$$
 11.3.28

$$y = y_h + y_p \tag{11.3.29}$$

8. Finding the Fourier series representation of the input

$$r(t) = \frac{\pi}{4} |\cos t| \qquad \qquad \forall \quad x \in [-\pi, \pi]$$
 11.3.30

$$p = 2L = 2\pi \tag{11.3.31}$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{4} \int_{0}^{\pi} |\cos x| dx$$
 11.3.32

$$= \frac{1}{4} \left[\sin x \right]_0^{\pi/2} + \frac{1}{4} \left[\sin x \right]_{\pi}^{\pi/2} = \frac{1}{2}$$
 11.3.33

Finding the cosine coefficients

$$a_1 = \frac{1}{2} \int_0^{\pi/2} (\cos^2 x) \, dx + \frac{1}{2} \int_{\pi}^{\pi/2} (\cos^2 x) \, dx$$
 11.3.34

$$= \frac{1}{4} \left[x + \frac{\sin(2x)}{2} \right]_0^{\pi/2} + \frac{1}{4} \left[x + \frac{\sin(2x)}{2} \right]_{\pi}^{\pi/2} = 0$$
 11.3.35

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
 11.3.36

$$= \frac{1}{2} \int_0^{\pi/2} (\cos x) \cos(nx) \, dx + \frac{1}{2} \int_{\pi}^{\pi/2} (\cos x) \cos(nx) \, dx$$
 11.3.37

$$= \frac{1}{4} \left[\frac{\sin[(1+n)x]}{1+n} + \frac{\sin[(1-n)x]}{1-n} \right]_0^{\pi/2}$$
 11.3.38

$$+\frac{1}{4} \left[\frac{\sin[(1+n)x]}{1+n} + \frac{\sin[(1-n)x]}{1-n} \right]_{\pi}^{\pi/2} = \frac{\cos(n\pi/2)}{1-n^2}$$
 11.3.39

Using a guess for the solution, and solving the nh-ODE,

$$y_p = C + A_n \cos(nt) + B_n \sin(nt)$$

$$11.3.40$$

$$\omega^2 C = \frac{1}{2}$$
 11.3.41

$$\frac{\cos(n\pi/2)}{1-n^2} = (-n^2 + \omega^2)A_n$$
 11.3.42

$$0 = (-n^2 + \omega^2)B_n \tag{11.3.43}$$

$$y_p = \frac{1}{2\omega^2} + \sum_{n=2}^{\infty} \frac{\cos(n\pi/2)}{(1-n^2)(\omega^2 - n^2)} \cos(nt)$$
 11.3.44

Finding the general solution, by solving the h-ODE,

$$y'' + \omega^2 y = 0 11.3.45$$

$$y_h = C_1 \cos(\omega t) + C_2 \sin(\omega t)$$
 11.3.46

$$y = y_h + y_p \tag{11.3.47}$$

9. In Problem 8, even numbers for n give nonzero terms in the expansion of y_p , which can have zero in the denominator.

This means that no steady state solution exists for even number ω .

10. Finding the Fourier series representation of the input

$$r(t) = \frac{\pi}{4} |\sin x| \qquad \qquad \forall \quad x \in [-\pi, \pi]$$
 11.3.48

$$p = 2L = 2\pi \tag{11.3.49}$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{4} \int_{0}^{\pi} |\sin x| dx$$
 11.3.50

$$= \frac{1}{4} \left[-\cos x \right]_0^{\pi} = \frac{1}{2}$$
 11.3.51

Finding the cosine coefficients

$$a_1 = \frac{1}{2} \int_0^{\pi} (\sin x) \cos(x) dx$$
 11.3.52

$$= \left[\frac{-\cos(2x)}{8} \right]_0^{\pi} = 0$$
 11.3.53

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{1}{2} \int_{0}^{\pi} (\sin x) \cos(nx) dx$$
 11.3.54

$$= -\frac{1}{4} \left[\frac{\cos[(1+n)x]}{1+n} + \frac{\cos[(1-n)x]}{1-n} \right]_0^{\pi}$$
 11.3.55

$$=\frac{1}{2(1-n^2)}\left[\cos(n\pi)+1\right]$$
 11.3.56

Using a guess for the solution, and solving the nh-ODE,

$$y_p = C + A_n \cos(nt) + B_n \sin(nt)$$

$$11.3.57$$

$$\omega^2 C = \frac{1}{2} \tag{11.3.58}$$

$$\frac{1+\cos(n\pi)}{2(1-n^2)} = (-n^2 + \omega^2)A_n$$
 11.3.59

$$0 = (-n^2 + \omega^2)B_n \tag{11.3.60}$$

$$y_p = \frac{1}{2\omega^2} + \sum_{n=2}^{\infty} \frac{1 + \cos(n\pi)}{2(1 - n^2)(\omega^2 - n^2)} \cos(nt)$$
 11.3.61

Finding the general solution, by solving the h-ODE,

$$y'' + \omega^2 y = 0 ag{11.3.62}$$

$$y_h = C_1 \cos(\omega t) + C_2 \sin(\omega t)$$
 11.3.63

$$y = y_h + y_p \tag{11.3.64}$$

11. Finding the Fourier series representation of the input

$$r(t) = \begin{cases} -1 & x \in [-\pi, 0] \\ 1 & x \in [0, \pi] \end{cases}$$
 11.3.65

$$p = 2L = 2\pi$$
 $|\omega| \neq 1, 3, 5, \dots$ 11.3.66

$$a_0 = 0$$
 11.3.67

$$a_n = 0 11.3.68$$

Finding the sine coefficients

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} (1) \sin(nx) dx$$
 11.3.69

$$= -\frac{2}{\pi} \left[\frac{\cos(nx)}{n} \right]_0^{\pi} = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right]$$
 11.3.70

Using a guess for the solution, and solving the nh-ODE,

$$y_p = A_n \cos(nt) + B_n \sin(nt)$$
 11.3.71

$$0 = (-n^2 + \omega^2)A_n \tag{11.3.72}$$

$$\frac{4}{n\pi} = (-n^2 + \omega^2)B_n \tag{11.3.73}$$

$$y_p = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{[1 - \cos(n\pi)]}{n (\omega^2 - n^2)} \sin(nt)$$
 11.3.74

Finding the general solution, by solving the h-ODE,

$$y'' + \omega^2 y = 0 11.3.75$$

$$y_h = C_1 \cos(\omega t) + C_2 \sin(\omega t) \tag{11.3.76}$$

$$y = y_h + y_p \tag{11.3.77}$$

12. Graphing the input and output in Problem 11, with $C_1=0,\,C_2=1,\,\mathrm{and}\,\,\omega=7.5$

Undamped Driven Oscillations

Graphing the input and output in Problem 7, with C_1 = 0, C_2 = 1, and ω = 0.5

Undamped Driven Oscillations

13. For the damped oscillator, with k = 1,

$$D_n = (1 - n^2)^2 + (nc)^2$$
11.3.78

$$y_n = P_n \cos(nt) + Q_n \sin(nt)$$
 11.3.79

Consider the two general terms in the input,

$$y'' + cy' + y = a_n \cos(nt) + b_n \sin(nt)$$

$$a_n = (1 - n^2)P_n + ncQ_n$$

$$\cdots [\cos(nt)]$$
11.3.81

$$P_n = \frac{a_n(1 - n^2) - b_n(nc)}{D_n}$$
 11.3.83

$$Q_n = \frac{b_n(1-n^2) + a_n(nc)}{D_n}$$
 11.3.84

The above system is linear in P_n and Q_n .

14. From Problem 11, the Fourier series representation of the input is,

$$r(t) = \sum_{n=1}^{\infty} \frac{2[1 - \cos(n\pi)]}{n\pi} \sin(nt)$$
 11.3.85

$$y'' + cy' + y = a_n \cos(nt) + b_n \sin(nt)$$
11.3.86

$$0 = (1 - n^2)P_n + ncQ_n \qquad \cdots [\cos(nt)]$$
 11.3.87

$$P_n = \frac{-b_n(nc)}{D_n}$$
 11.3.89

$$Q_n = \frac{b_n(1-n^2)}{D_n}$$
 11.3.90

$$D_n = (1 - n^2)^2 + (nc)^2$$
11.3.91

Square Wave

15. Finding the fourier series representation of the input (odd function),

$$a_0 = 0 a_n = 0 11.3.92$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} (\pi^2 x - x^3) \sin(nx) dx$$
 11.3.93

$$= \frac{2}{\pi} \left[\sin(nx) \left(\frac{\pi^2 - 3x^2}{n^2} + \frac{6}{n^4} \right) + \cos(nx) \left(\frac{x(x^2 - \pi^2)}{n} - \frac{6x}{n^3} \right) \right]_0^{\pi}$$
 11.3.94

$$= -\frac{12}{n^3} \cos(n\pi)$$
 11.3.95

$$r(t) = \sum_{n=1}^{\infty} \frac{-12\cos(n\pi)}{n^3} \sin(nt)$$
 11.3.96

Using the standard result for a sinusoidal input to a damped oscillator,

$$y'' + cy' + y = a_n \cos(nt) + b_n \sin(nt)$$
11.3.97

$$0 = (1 - n^2)P_n + ncQ_n \qquad \cdots [\cos(nt)]$$
 11.3.98

$$P_n = \frac{-b_n(nc)}{D_n}$$
 11.3.100

$$Q_n = \frac{b_n(1-n^2)}{D_n}$$
 11.3.101

$$D_n = (1 - n^2)^2 + (nc)^2$$
11.3.102

Cubic polynomial wave

16. Finding the fourier series representation of the input(odd function)

$$a_0 = 0$$
 11.3.103

$$a_n = 0 11.3.104$$

Finding the sine coefficients,

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin(nx) dx$$
 11.3.105

$$= \frac{2}{\pi} \int_0^{\pi/2} x \sin(nx) dx + \frac{2}{\pi} \int_{\pi/2}^{\pi} (\pi - x) \sin(nx) dx$$
 11.3.106

$$= \frac{2}{\pi} \left[\frac{\sin(nx)}{n^2} - \frac{x \cos(nx)}{n} \right]_0^{\pi/2} + \frac{2}{\pi} \left[\frac{(x-\pi)\cos(nx)}{n} - \frac{\sin(nx)}{n^2} \right]_{\pi/2}^{\pi}$$
 11.3.107

$$= \frac{4}{\pi n^2} \sin(n\pi/2)$$
 11.3.108

$$r(t) = \sum_{n=1}^{\infty} \frac{4\sin(n\pi/2)}{\pi n^2} \sin(nt)$$
 11.3.109

Using the standard result for a sinusoidal input to a damped oscillator,

$$y'' + cy' + y = a_n \cos(nt) + b_n \sin(nt)$$
11.3.110

$$0 = (1 - n^2)P_n + ncQ_n \qquad \cdots [\cos(nt)]$$
 11.3.111

$$b_n = (1 - n^2)Q_n - ncP_n$$
 $\cdots [\sin(nt)]$ 11.3.112

$$P_n = \frac{-b_n(nc)}{D_n} \tag{11.3.113}$$

$$Q_n = \frac{b_n(1-n^2)}{D_n}$$
 11.3.114

$$D_n = (1 - n^2)^2 + (nc)^2$$
11.3.115

Cubic polynomial wave

17. The second order linear ODE for an RLC circuit with R = 10, L = 1, C = 0.1 is given by,

$$Lj'' + Rj' + \frac{1}{C} j = E'(t)$$

$$E'(t) = \begin{cases} -100t & t \in [-\pi, 0] \\ 100t & t \in [0, \pi] \end{cases}$$
11.3.116

Finding the Fourier series representation of the input, (even function),

$$b_n = 0$$
 11.3.117

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} (100x) dx$$
 11.3.118

$$= \left[\frac{50x^2}{\pi}\right]_0^{\pi} = 50\pi$$
 11.3.119

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} (100x) \cos(nx) dx$$
 11.3.120

$$= \frac{200}{\pi} \left[\frac{x \sin(nx)}{n} + \frac{\cos(nx)}{n^2} \right]_0^{\pi} = \frac{200}{\pi n^2} \left[\cos(n\pi) - 1 \right]$$
 11.3.121

Using the standard result for a sinusoidal input to a damped oscillator,

$$y'' + cy' + y = a_0 + \sum_{n=0}^{\infty} a_n \cos(nt) + b_n \sin(nt)$$
11.3.122

$$10P_0 = a_0 = 50\pi P_0 = 5\pi 11.3.123$$

$$y_n = P_n \cos(nt) + Q_n \sin(nt)$$
 11.3.124

$$a_n = (1 - n^2)P_n + ncQ_n$$
 $\cdots [\cos(nt)]$ 11.3.125

$$0 = (1 - n^2)Q_n - ncP_n \qquad \cdots [\sin(nt)]$$
 11.3.126

$$P_n = \frac{a_n(10 - n^2)}{D_n} \qquad Q_n = \frac{a_n(10n)}{D_n}$$
 11.3.127

$$D_n = (10 - n^2)^2 + (10n)^2$$
11.3.128

Triangular wave

18. The second order linear ODE for an RLC circuit with R = 10, L = 1, C = 0.1 is given by,

$$Lj'' + Rj' + \frac{1}{C} j = E'(t)$$

$$E'(t) = \begin{cases} 100(1-2t) & t \in [-\pi, 0] \\ 100(1+2t) & t \in [0, \pi] \end{cases}$$
11.3.129

Finding the Fourier series representation of the input, (even function),

$$b_n = 0$$
 11.3.130

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} (100)(1+2x) dx$$
 11.3.131

$$= \frac{100}{\pi} \left[x + x^2 \right]_0^{\pi} = 100(1 + \pi)$$
 11.3.132

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} (100)(1+2x) \cos(nx) dx$$
 11.3.133

$$= \frac{200}{\pi} \left[\frac{\sin(nx)}{n} + \frac{2x\sin(nx)}{n} + \frac{2\cos(nx)}{n^2} \right]_0^{\pi}$$
 11.3.134

$$= \frac{400}{\pi n^2} \left[\cos(n\pi) - 1 \right]$$
 11.3.135

Using the standard result for a sinusoidal input to a damped oscillator,

$$y'' + cy' + y = a_0 + \sum_{n=0}^{\infty} a_n \cos(nt) + b_n \sin(nt)$$
11.3.136

$$10P_0 = a_0 = 100(1+\pi)$$
 $P_0 = 10(1+\pi)$ 11.3.137

$$y_n = P_n \cos(nt) + Q_n \sin(nt)$$
 11.3.138

$$0 = (1 - n^2)Q_n - ncP_n \qquad \cdots [\sin(nt)] \qquad 11.3.140$$

$$P_n = \frac{a_n(10 - n^2)}{D_n} \qquad Q_n = \frac{a_n(10n)}{D_n}$$
 11.3.141

$$D_n = (10 - n^2)^2 + (10n)^2$$
11.3.142

Triangular wave

19. The second order linear ODE for an RLC circuit with R = 10, L = 1, C = 0.1 is given by,

$$Lj'' + Rj' + \frac{1}{C}j = E'(t)$$
 $E'(t) = 200(\pi^2 - 3t^2)$ 11.3.143

Finding the Fourier series representation of the input, (even function),

$$b_n = 0$$
 11.3.144

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} (200)(\pi^2 - 3x^2) dx$$
 11.3.145

$$= \frac{200}{\pi} \left[\pi^2 x - x^3 \right]_0^{\pi} = 0$$
 11.3.146

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} (200)(\pi^2 - 3x^2) \cos(nx) dx$$
 11.3.147

$$= \frac{400}{\pi} \left[\frac{(\pi^2 - 3x^2)\sin(nx)}{n} + \frac{6\sin(nx)}{n^3} - \frac{6x\cos(nx)}{n^2} \right]_0^{\pi}$$
 11.3.148

$$= -\frac{2400 \cos(n\pi)}{n^2}$$
 11.3.149

Using the standard result for a sinusoidal input to a damped oscillator,

$$y'' + cy' + y = a_0 + \sum_{n=0}^{\infty} a_n \cos(nt) + b_n \sin(nt)$$
11.3.150

$$10P_0 = a_0 = 0 P_0 = 0 11.3.151$$

$$y_n = P_n \cos(nt) + Q_n \sin(nt)$$
 11.3.152

$$a_n = (1 - n^2)P_n + ncQ_n$$
 $\cdots [\cos(nt)]$ 11.3.153

$$0 = (1 - n^2)Q_n - ncP_n \qquad \cdots [\sin(nt)]$$
 11.3.154

$$P_n = \frac{a_n(10 - n^2)}{D_n} \qquad Q_n = \frac{a_n(10n)}{D_n}$$
 11.3.155

$$D_n = (10 - n^2)^2 + (10n)^2$$
11.3.156

Cubic polynomial wave

20. Finding the solution to the ODE in Example 1, for general c and k,

$$D_n = (k - n^2)^2 + (cn)^2$$
 $C_n = \frac{4}{n^2 \pi} \cdot \frac{1}{\sqrt{D_n}}$ 11.3.157

Plotting a graph of C_n vs n for a fixed value of c = 0.05, and integer square values of k,

Amplitude of damped driven oscillator

11.4 Approximation by Trigonometric Polynomials

1. From Example 1 in the text,

$$f(x) = x + \pi$$
 $x \in [-\pi, \pi]$ 11.4.1

$$a_0 = \pi \tag{11.4.2}$$

$$a_n = 0 11.4.3$$

$$b_n = \frac{-2\cos(n\pi)}{n}$$
 11.4.4

$$\int_{-\pi}^{\pi} f^2 dx = \int_{-\pi}^{\pi} (x+\pi)^2 dx = \left[\frac{(x+\pi)^3}{3} \right]_{-\pi}^{\pi} = \frac{8\pi^3}{3}$$
 11.4.5

$$E^* = \frac{8\pi^3}{3} - 2\pi^3 - 4\pi \sum_{i=1}^{N} \frac{1}{n^2}$$
 11.4.6

Using sympy to evaluate the minimum error for various values of N,

N	E^*	N	E^*
1000	0.01256	6000	0.002094
2000	0.006282	7000	0.001795
3000	0.004188	8000	0.001571
4000	0.003141	9000	0.001396
5000	0.002513	10000	0.001257

Fourier approximation

2. Evaluating the Fourier coefficients,

$$f(x) = x \qquad \qquad x \in [-\pi, \pi]$$
 11.4.7

$$a_0 = 0$$
 11.4.8

$$a_n = 0 11.4.9$$

$$b_n = \frac{-2\cos(n\pi)}{n} \tag{11.4.10}$$

$$\int_{-\pi}^{\pi} f^2 dx = \int_{-\pi}^{\pi} (x)^2 dx = \left[\frac{x^3}{3} \right]_{-\pi}^{\pi} = \frac{2\pi^3}{3}$$
 11.4.11

$$2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \sum_{n=1}^{\infty} \frac{4}{n^2}$$
 11.4.12

$$E^* = \frac{\pi^3}{3} - 4\pi \sum_{i=1}^{N} \frac{1}{n^2}$$
 11.4.13

Using sympy to evaluate the minimum error for various values of N,

N	E^*
1	8.104
2	4.963
3	3.567
4	2.781
5	2.279

Fourier approximation

3. Evaluating the Fourier coefficients,

$$f(x) = |x| x \in [-\pi, \pi] 11.4.14$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} x dx = \left[\frac{x^2}{2\pi} \right]_{0}^{\pi} = \frac{\pi}{2}$$
 11.4.15

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) dx$$
 11.4.16

$$= \frac{2}{\pi} \left[\frac{x \sin(nx)}{n} + \frac{\cos(nx)}{n^2} \right]_0^{\pi} = \frac{2}{\pi n^2} \left[\cos(n\pi - 1) \right]$$
 11.4.17

$$b_n = 0 11.4.18$$

Calculating the error function,

$$\int_{-\pi}^{\pi} f^2 dx = \int_{-\pi}^{\pi} (x)^2 dx = \left[\frac{x^3}{3} \right]_{-\pi}^{\pi} = \frac{2\pi^3}{3}$$
 11.4.19

$$2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{\pi^2}{2} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{[\cos(n\pi) - 1]^2}{n^4}$$
 11.4.20

$$E^* = \frac{\pi^3}{6} - \frac{4}{\pi} \sum_{i=1}^{N} \frac{[\cos(n\pi) - 1]^2}{n^4}$$
 11.4.21

Using sympy to evaluate the minimum error for various values of N,

N	E^*
1	0.0747
3	0.0118
5	0.0037
7	0.0016
9	0.00083

Fourier approximation

4. Evaluating the Fourier coefficients,

$$f(x) = x^2$$
 $x \in [-\pi, \pi]$ 11.4.22

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} x^2 dx = \left[\frac{x^3}{3\pi} \right]_{0}^{\pi} = \frac{\pi^2}{3}$$
 11.4.23

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 \cos(nx) dx$$
 11.4.24

$$= \frac{2}{\pi} \left[\frac{x^2 \sin(nx)}{n} - \frac{2 \sin(nx)}{n^3} + \frac{2x \cos(nx)}{n^2} \right]_0^{\pi} = \frac{4 \cos(n\pi)}{n^2}$$
 11.4.25

$$b_n = 0$$
 11.4.26

Calculating the error function,

$$\int_{-\pi}^{\pi} f^2 dx = \int_{-\pi}^{\pi} (x)^4 dx = \left[\frac{x^5}{5} \right]_{-\pi}^{\pi} = \frac{2\pi^5}{5}$$
 11.4.27

$$2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{2\pi^4}{9} + 16\sum_{n=1}^{\infty} \frac{1}{n^4}$$
 11.4.28

$$E^* = \frac{8\pi^5}{45} - 16\pi \sum_{i=1}^{N} \frac{1}{n^4}$$
 11.4.29

Using sympy to evaluate the minimum error for various values of N,

N	E^*
1	4.138
2	0.9964
3	0.3758
4	0.1795
5	0.0991

Fourier approximation

5. Evaluating the Fourier coefficients,

$$f(x) = \begin{cases} -1 & x \in [-\pi, 0] \\ 1 & x \in [0, \pi] \end{cases}$$
 11.4.30

$$a_0 = 0$$
 11.4.31

$$a_n = 0 11.4.32$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} \sin(nx) dx$$
 11.4.33

$$= \left[-\frac{\cos(nx)}{n} \right]_0^{\pi} = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right]$$
 11.4.34

Calculating the error function,

$$\int_{-\pi}^{\pi} f^2 dx = \int_{-\pi}^{\pi} (1) dx = \left[x \right]_{-\pi}^{\pi} = 2\pi$$
 11.4.35

$$2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{[1 - \cos(n\pi)]^2}{n^2}$$
 11.4.36

$$E^* = 2\pi - \frac{4}{\pi} \sum_{i=1}^{N} \frac{[1 - \cos(n\pi)]^2}{n^2}$$
 11.4.37

Using sympy to evaluate the minimum error for various values of N,

N	E^*
1	1.1902
2	0.6243
3	0.4206
4	0.3167
5	0.2538

Fourier approximation

6. The discontinuity at x=0 in Problem 5 makes the Fourier series a very bad approximation to the function around x=0. This makes the errors much larger.

7. Evaluating the Fourier coefficients,

$$f(x) = x^3$$
 $x \in [-\pi, \pi]$ 11.4.38

$$a_0 = 0$$
 11.4.39

$$a_n = 0 11.4.40$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} x^3 \sin(nx) dx$$
 11.4.41

$$= \frac{2}{\pi} \left[\sin(nx) \left(\frac{3x^2}{n^2} - \frac{6}{n^4} \right) + \cos(nx) \left(\frac{-x^3}{n} + \frac{6x}{n^3} \right) \right]_0^{\pi}$$
 11.4.42

$$= \cos(n\pi) \left[\frac{12}{n^3} - \frac{2\pi^2}{n} \right]$$
 11.4.43

Calculating the error function,

$$\int_{-\pi}^{\pi} f^2 dx = \int_{-\pi}^{\pi} x^6 dx = \left[\frac{x^7}{7}\right]_{-\pi}^{\pi} = \frac{2\pi^7}{7}$$
 11.4.44

$$2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \sum_{n=1}^{\infty} \left[\frac{12}{n^3} - \frac{2\pi^2}{n} \right]^2$$
 11.4.45

$$E^* = \frac{2\pi^7}{7} - \pi \sum_{i=1}^{N} \left[\frac{12}{n^3} - \frac{2\pi^2}{n} \right]^2$$
 11.4.46

Using sympy to evaluate the minimum error for various values of N,

N	E^*
1	674.774
10	116.065
100	12.1793
500	2.4457
1000	1.2235

Fourier approximation

8. Evaluating the Fourier coefficients,

$$f(x) = |\sin(x)| \qquad \qquad x \in [-\pi, \pi]$$

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{\pi} \sin(x) dx = \frac{1}{\pi} \left[-\cos(x) \right]_{0}^{\pi} = \frac{2}{\pi}$$
 11.4.48

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = \frac{2}{\pi} \int_{0}^{\pi} \sin(x) \cos(nx) dx$$
 11.4.49

$$= \frac{2}{\pi} \left[\frac{n \sin(x) \sin(nx) + \cos(x) \cos(nx)}{n^2 - 1} \right]_0^{\pi}$$
 11.4.50

$$= \frac{-2}{\pi(n^2 - 1)} \left[1 + \cos(n\pi) \right]$$
 11.4.51

$$a_1 = \frac{1}{\pi} \int_0^{\pi} \sin(2x) dx = \left[\frac{-\cos(2x)}{2\pi} \right]_0^{\pi} = 0$$
 11.4.52

$$b_n = 0 11.4.53$$

Calculating the error function,

$$\int_{-\pi}^{\pi} f^2 dx = \int_{-\pi}^{\pi} \sin^2(x) dx = \left[\frac{x}{2} + \frac{\sin(2x)}{4} \right]_{-\pi}^{\pi} = \pi$$
 11.4.54

$$2a_0^2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) = \frac{8}{\pi^2} + \frac{4}{\pi^2} \sum_{n=2}^{\infty} \frac{[1 + \cos(n\pi)]^2}{(n^2 - 1)^2}$$
 11.4.55

$$E^* = \pi - \frac{8}{\pi} - \frac{4}{\pi} \sum_{n=2}^{N} \frac{[1 + \cos(n\pi)]^2}{(n^2 - 1)^2}$$
 11.4.56

Using sympy to evaluate the minimum error for various values of N,

N	E^*
2	0.0292
4	0.00659
6	0.002436
8	0.001153
10	0.000634

Fourier approximation

- **9.** The minimized square error is a series of squares of Fourier coefficients, which are all nonnegative. The negative scalar factor makes the function monotonically decreasing in N.
- 10. The more trigonometric the actual function is, the faster E^* decreases with increasing N. Compare Problems 2-8 using sympy to program $E^*(N)$.
- 11. From Example 1 in Section 11.1, the Fourier series expansion is

$$f(x) = \begin{cases} -1 & x \in [-\pi, 0] \\ 1 & x \in [0, \pi] \end{cases}$$
 11.4.57

$$a_0 = a_n = 0 11.4.58$$

$$b_n = \frac{2}{n\pi} \left[1 - \cos(n\pi) \right]$$
 11.4.59

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, dx = 2a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2$$
 11.4.60

$$2 = \frac{4}{\pi^2} \sum_{n=1}^{\infty} \left[\frac{1 - \cos(n\pi)}{n} \right]^2$$
 11.4.61

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$
 11.4.62

Fourier series partial sums

12. From Problem 14 in Section 11.1, the Fourier series expansion is

$$f(x) = x^2 11.4.63$$

$$a_0 = \frac{\pi^2}{3}$$
 11.4.64

$$a_n = \frac{4\cos(n\pi)}{n^2} \tag{11.4.65}$$

$$b_n = 0 11.4.66$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, dx = 2a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2$$
 11.4.67

$$\frac{2\pi^4}{5} = \frac{2\pi^4}{9} + 16\sum_{n=1}^{\infty} \left[\frac{1}{n^2}\right]^2$$
 11.4.68

$$\frac{\pi^4}{90} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$$
 11.4.69

Fourier series partial sums

13. From Problem 17 in Section 11.1, the Fourier series expansion is

$$f(x) = \begin{cases} x + \pi & x \in [-\pi, 0] \\ -x + \pi & x \in [0, \pi] \end{cases}$$
 11.4.70

$$a_0 = \frac{\pi}{2}$$
 11.4.71

$$a_n = \frac{2}{\pi n^2} \left[1 - \cos(n\pi) \right]$$
 11.4.72

$$b_n = 0 11.4.73$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) \, dx = 2a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2$$
11.4.74

$$\frac{2\pi^2}{3} = \frac{\pi^2}{2} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \left[\frac{1 - \cos(n\pi)}{n^2} \right]^2$$
 11.4.75

$$\frac{\pi^4}{99} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$$
 11.4.76

Fourier series partial sums

14. Using Parseval's identity,

$$f(x) = \cos^2(x) = \frac{1 + \cos(2x)}{2}$$
 11.4.77

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx = 2a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2$$
 11.4.78

$$\int_{-\pi}^{\pi} \cos^4(x) \, \mathrm{d}x = \pi \left[\frac{2}{2^2} + \frac{1}{4} \right] = \frac{3\pi}{4}$$
 11.4.79

15. Using Parseval's identity,

$$f(x) = \cos^3(x) = \frac{3\cos(x) + \cos(3x)}{4}$$
 11.4.80

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx = 2a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2$$
 11.4.81

$$\int_{-\pi}^{\pi} \cos^6(x) \, dx = \pi \left[0 + \frac{9}{16} + \frac{1}{16} \right] = \frac{5\pi}{8}$$
 11.4.82

11.5 Sturm-Liouville Problems, Orthogonal Functions

1. (a) For Case III, where p(a) = 0, $p(b) \neq 0$,

$$(\lambda_m - \lambda_n) \int_a^b (r \ y_m \ y_n) \ dx = p(b) \ z(b) - p(a) \ z(a)$$
 11.5.1

$$z(x) = y'_n(x) y_m(x) - y'_m(x) y_n(x)$$
 11.5.2

From the boundary conditions,

$$k_1 y_n(b) + k_2 y'_n(b) = 0$$
 11.5.3

$$k_1 y_m(b) + k_2 y'_m(b) = 0$$
 11.5.4

$$k_2 z(b) = 0$$
 Eliminating k_1 11.5.5

Here, assume $k_2 \neq 0$, since at least one of k_1 , k_2 has to be nonzero. The argument for the opposite case is identical

$$k_2 \neq 0 \implies z(b) = 0 \tag{11.5.6}$$

$$p(a) = 0, \ z(b) = 0 \implies y_m, \ y_n \text{ are orthogonal}$$
 11.5.7

(b) For Case IV, where $p(a) \neq 0$, $p(b) \neq 0$,

$$(\lambda_m - \lambda_n) \int_a^b (r \ y_m \ y_n) \ dx = p(b) \ z(b) - p(a) \ z(a)$$
 11.5.8

$$z(x) = y'_n(x) y_m(x) - y'_m(x) y_n(x)$$
11.5.9

From the boundary conditions,

$$k_1 y_n(b) + k_2 y'_n(b) = 0$$
 11.5.10

$$k_1 \ y_m(b) + k_2 \ y_m'(b) = 0$$
 11.5.11

$$k_2 \ z(b) = 0$$
 Eliminating k_1 11.5.12

Here, assume $k_2 \neq 0$, since at least one of k_1 , k_2 has to be nonzero. The argument for the opposite case is identical.

Additionally, the same process leads to

$$k_2 \ z(a) = 0$$
 11.5.13

$$k_2 \neq 0 \implies z(b) = z(a) = 0$$
 11.5.14

$$z(a) = 0, \ z(b) = 0 \implies y_m, \ y_n \text{ are orthogonal}$$
 11.5.15

2. Proving that a scalar multiple of an eigenfunctino is also an eigenfunction,

$$z_m = c \ y_m \qquad c \neq 0$$
 11.5.16

$$\left[py_m'\right]' + \left[q + \lambda r\right]y = 0$$
 11.5.17

$$\left[pz'_{m}\right]' + \left[q + \lambda r\right]z = p'z'_{m} + p \ z''_{m} + \left[q + \lambda r\right]z_{m}$$
11.5.18

$$= c (p'y'_m) + c (p y''_m) + c [q + \lambda r] y_m$$
 11.5.19

$$=0$$
 11.5.20

By the linearity of differentiation, it is trivial to see that z_m also satisfies the boundary conditions of the Sturm-Liouville problem.

3. Given that $\{y_m\}$ is an orthogonal set under the weight function r(x) = 1 in the interval $x \in [a, b]$,

$$\int_{a}^{b} r(x) y_{m}(x) y_{n}(x) dx = 0 \qquad \forall m \neq n$$
11.5.21

Making the substitution x = ct + k for some c > 0 and constants c, k,

$$x = a \implies t_a = \frac{a - k}{c}$$
 11.5.22

$$x = b \implies t_b = \frac{b - k}{c}$$
 11.5.23

$$dx = c dt 11.5.24$$

$$\int_{t_0}^{t_b} y_m(ct+k) \ y_n(ct+k) \ c \ dt = 0 \qquad \forall \ m \neq n$$
 11.5.25

4. Using Problem 3, and setting $c = \pi$, k = 0,

$$\int_{-1}^{1} (1) \cos(m\pi t) \cos(n\pi t) \pi dt = 0$$
11.5.26

$$\int_{-1}^{1} (1) \cos(m\pi t) \sin(n\pi t) \pi dt = 0$$
11.5.27

$$\int_{-1}^{1} (1) \sin(m\pi t) \sin(n\pi t) \pi dt = 0$$
11.5.28

For all $m \neq n$, which proves their orthogonality in the domain $t \in [-1, 1]$

5. Legendre polynomials in $\cos \theta$, using the substitution $\cos \theta = x$,

$$r(\theta) = \sin \theta \qquad \qquad \theta \in [0, \pi] \qquad \qquad \text{11.5.29}$$

$$\cos \theta = x \qquad dx = -\sin \theta \ d\theta \qquad 11.5.30$$

$$\int_0^{\pi} P_n(\cos \theta) P_m(\cos \theta) \sin(\theta) d\theta = \int_{-1}^1 P_n(x) P_m(x) dx$$
 11.5.31

Looking at the Legendre ODE which yields Legendre polynomials as eigenfunctions,

$$(1 - x^2) y'' - 2x y' + n(n+1) y = 0 [(1 - x^2) y']' + \lambda y = 0 11.5.32$$

$$\lambda = n(n+1)$$
 $p(x) = 1 - x^2$ 11.5.33

$$q(x) = 0$$
 $r(x) = 1$ 11.5.34

Since the Legendre polynomials for integer n are solutions to the ODE, they are eigenfunctions of the Sturm-Lioville equation and the orthogonality relation holds.

6. Transforming variables,

$$0 = y'' + fy' + (g + \lambda h)y$$
 $q = gp$ $r = hp$ 11.5.35

$$p = \exp\left(\int f \, dx\right)$$
 $p' = f \cdot \exp\left(\int f \, dx\right) = fp$ 11.5.36

$$0 = py'' + (fp)y' + (gp + \lambda \ hp)y \qquad \qquad 0 = \left[py'\right]' + (q + \lambda \ r)y \qquad \qquad 11.5.37$$

The advantage of reframing the original ODE as a Sturm-Liouville ODE is that a set of orthogonal solutions are guaranteed to exist.

7. Reframing as a Sturm-Lioville problem,

$$y'' + \lambda y = 0$$
 $y(0) = 0$ $y(10) = 0$ 11.5.38

$$f = 0$$
 $p = \exp\left(\int_0^{10} f \, dx\right) = 1$ 11.5.39

$$g=0 q=gp=0 11.5.40$$

$$h = 1$$
 $r = hp = 1$ 11.5.41

Solving the ODE for negative eigenvalues,

$$0 = \left[py' \right]' + \left[q + \lambda \ r \right] y \qquad \qquad \lambda = -\nu^2$$
 11.5.42

$$y(x) = c_1 e^{\nu x} + c_2 e^{-\nu x}$$
 $y(0) = 0 = c_1 + c_2$ 11.5.43

$$y(10) = 0 = c_1 e^{10\nu} + c_2 e^{-10\nu}$$
 $c_1 = c_2 = 0$ 11.5.44

Solving the ODE for positive eigenvalues,

$$0 = \left[py' \right]' + \left[q + \lambda \ r \right] y \qquad \qquad \lambda = \nu^2 \qquad \qquad 11.5.45$$

$$y(x) = c_1 \cos(\nu x) + c_2 \sin(\nu x)$$
 $y(0) = 0 = c_1$ 11.5.46

$$y(10) = 0 = c_1 \cos(10\nu) + c_2 \sin(10\nu) \qquad 10\nu = n\pi \qquad 11.5.47$$

For $\lambda = 0$, only the trivial solution exists. The eigenfunctions and corresponding eigenvalues are,

$$y_n(x) = \sin\left(\frac{n\pi}{10} x\right) \qquad \lambda_n = \left(\frac{n\pi}{10}\right)^2 \qquad 11.5.48$$

8. Solving the ODE for negative eigenvalues, using Problem 7,

$$0 = \left[py' \right]' + \left[q + \lambda \ r \right] y \qquad \qquad \lambda = -\nu^2$$
 11.5.49

$$y(x) = c_1 e^{\nu x} + c_2 e^{-\nu x}$$
 $y(0) = 0 = c_1 + c_2$ 11.5.50

$$y(L) = 0 = c_1 e^{L\nu} + c_2 e^{-L\nu}$$
 $c_1 = c_2 = 0$ 11.5.51

Solving the ODE for positive eigenvalues,

$$0 = \left[py' \right]' + \left[q + \lambda \ r \right] y \qquad \qquad \lambda = \nu^2$$
 11.5.52

$$y(x) = c_1 \cos(\nu x) + c_2 \sin(\nu x)$$
 $y(0) = 0 = c_1$ 11.5.53

$$y(L) = 0 = c_1 \cos(L\nu) + c_2 \sin(L\nu)$$
 $L\nu = n\pi$ 11.5.54

For $\lambda = 0$, only the trivial solution exists. The eigenfunctions and corresponding eigenvalues are,

$$y_n(x) = \sin\left(\frac{n\pi}{L}x\right)$$

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2$$
 11.5.55

9. Solving the ODE for negative eigenvalues, using Problem 7,

$$0 = \left[py' \right]' + \left[q + \lambda \ r \right] y \qquad \qquad \lambda = -\nu^2$$
 11.5.56

$$y(x) = c_1 e^{\nu x} + c_2 e^{-\nu x}$$
 $y(0) = 0 = c_1 + c_2$ 11.5.57

$$y'(L) = 0 = \nu c_1 e^{\nu L} - \nu c_2 e^{-\nu L}$$
 $c_1 = c_2 = 0$ 11.5.58

Solving the ODE for positive eigenvalues,

$$0 = \left[py' \right]' + \left[q + \lambda \ r \right] y \qquad \qquad \lambda = \nu^2$$
 11.5.59

$$y(x) = c_1 \cos(\nu x) + c_2 \sin(\nu x)$$
 $y(0) = 0 = c_1$ 11.5.60

$$y'(L) = 0 = \nu c_2 \cos(L\nu) - \nu c_1 \sin(L\nu) \qquad L\nu = \frac{(2n-1)\pi}{2}$$
 11.5.61

For $\lambda = 0$, only the trivial solution exists. The eigenfunctions and corresponding eigenvalues are,

$$y_n(x) = \sin\left(\frac{(2n-1)\pi}{2L} x\right) \qquad \lambda_n = \left(\frac{(2n-1)\pi}{2L}\right)^2$$
 11.5.62

for integers $n = \{1, 2, 3, \dots\}$

10. Solving the ODE for negative eigenvalues, using Problem 7,

$$0 = \left[py' \right]' + \left[q + \lambda \ r \right] y \qquad \qquad \lambda = -\nu^2$$
 11.5.63

$$y(x) = c_1 e^{\nu x} + c_2 e^{-\nu x}$$
 11.5.64

$$y(0) = y(1)$$
 $c_1 + c_2 = c_1 e^{\nu} + c_2 e^{-\nu}$ 11.5.65

$$y'(0) = y'(1)$$
 $\nu(c_1 - c_2) = \nu(c_1 e^{\nu} - c_2 e^{-\nu})$ 11.5.66

$$c_1 = 0 c_2 = 0 11.5.67$$

Solving the ODE for positive eigenvalues,

$$0 = \left[py' \right]' + \left[q + \lambda \ r \right] y \qquad \qquad \lambda = \nu^2$$
 11.5.68

$$y(x) = c_1 \cos(\nu x) + c_2 \sin(\nu x)$$
11.5.69

$$y(0) = y(1)$$
 $c_1 = c_1 \cos(\nu) + c_2 \sin(\nu)$ 11.5.70

$$y'(0) = y'(1)$$

$$\nu c_2 = -\nu c_1 \sin(\nu) + \nu c_2 \cos(\nu)$$
 11.5.71

$$c_2 = c_1 \frac{1 - \cos(\nu)}{\sin(\nu)}$$
 $0 = c_1 \left(1 + \left(\frac{1 - \cos\nu}{\sin\nu}\right)^2\right)$ 11.5.72

$$c_1 = 0$$
 $c_2 = 0$ 11.5.73

The above case requires $\sin(\nu) \neq 0$. Looking at this special case,

$$\nu = n\pi \qquad c_1 = c_1 \cos(n\pi) \qquad 11.5.74$$

$$c_2 = c_2 \cos(n\pi) \qquad \qquad \cos(n\pi) = 1 \implies n = 2k$$
 11.5.75

A nontrivial solution is now

$$y_k(x) = c_1 \cos(2k\pi \ x) + c_2 \sin(2k\pi \ x)$$
 $\lambda_k = (2k\pi)^2$ 11.5.76

To prove orthogonality use the result from Problem 4

$$\int_{-1}^{1} (1) \ y_m \ y_n \ \mathrm{d}x = 0$$

11. Reframing as a Sturm-Lioville problem,

$$0 = \left(\frac{y'}{x}\right)' + \frac{\lambda + 1}{x^3} y \qquad x = e^t$$
 11.5.78

$$\frac{\mathrm{d}x}{\mathrm{d}t} = e^t = x \qquad \qquad y' = \dot{y} \frac{\mathrm{d}t}{\mathrm{d}x} = \dot{y} e^{-t} \qquad \qquad 11.5.79$$

$$y'' = \frac{d}{dt} [\dot{y} \ e^{-t}] \ \frac{dt}{dx}$$

$$y'' = \ddot{y}e^{-2t} - \dot{y}e^{-2t}$$
 11.5.80

$$0 = \frac{y''}{x} - \frac{y'}{x^2} + \frac{\lambda + 1}{x^3} y \qquad 0 = \ddot{y} - 2\dot{y} + (\lambda + 1)y \qquad 11.5.81$$

This is an second order linear ODE with constant coefficients.

$$\mu = \frac{2 \pm \sqrt{4 - 4(\lambda + 1)}}{2} \qquad \qquad \mu_1, \ \mu_2 = 1 \pm \sqrt{-\lambda}$$
 11.5.82

For the case where $\lambda = -\nu^2$,

$$y = c_1 e^{(1+\nu)t} + c_2 e^{(1-\nu)t}$$

$$y(t=0) = y(t=\pi) = 0$$
 11.5.83
$$0 = c_1 + c_2$$

$$0 = c_1 e^{(1+\nu)\pi} + c_2 e^{(1-\nu)\pi}$$
 11.5.84
$$c_1 = 0$$

$$c_2 = 0$$
 11.5.85

This leads to the trivial solution.

For the case where $\lambda = \nu^2$,

$$y = e^t \left[c_1 \cos(\nu t) + c_2 \sin(\nu t) \right]$$
 $y(t = 0) = y(t = \pi) = 0$ 11.5.86
 $0 = c_1$ $0 = c_2 \sin(\nu \pi)$ 11.5.87
 $c_1 = 0$ $\nu = n$ 11.5.88
 $y_n(x) = e^t \sin(nt)$ 11.5.89

For $\lambda = 0$,

$$y = (c_1 + c_2 t) e^t$$
 $y(t = 0) = y(t = \pi) = 0$ 11.5.90
 $0 = c_1$ $0 = c_1 + c_2 \pi$ 11.5.91

This also leads to the trivial solution.

Reverting to the original variable x,

$$y_n(x) = x \sin(n \ln x) \qquad \lambda_n = n^2$$
 11.5.92

Checking for orthogonality,

$$I = \int_{1}^{e^{\pi}} x^{2} \sin(n \ln x) \sin(m \ln x) (x^{-3}) dx$$
 11.5.93

$$\ln(x) = u \qquad \frac{1}{x} dx = du \qquad 11.5.94$$

$$I = \int_0^\pi \sin(nu) \sin(mu) \, \mathrm{d}u$$
 11.5.95

This is proven orthogonal already.

12. Using the result from Problem 11,

$$0 = y'' - 2y' + (\lambda + 1)y$$
 11.5.96

$$\mu = \frac{2 \pm \sqrt{4 - 4(\lambda + 1)}}{2} \qquad \qquad \mu_1, \ \mu_2 = 1 \pm \sqrt{-\lambda}$$
 11.5.97

For the case where $\lambda = -\nu^2$,

$$y = c_1 e^{(1+\nu)x} + c_2 e^{(1-\nu)x}$$
 $y(0) = y(1) = 0$ 11.5.98
 $0 = c_1 + c_2$ $0 = c_1 e^{(1+\nu)} + c_2 e^{(1-\nu)}$ 11.5.99
 $c_1 = 0$ $c_2 = 0$ 11.5.100

This leads to the trivial solution.

For the case where $\lambda = \nu^2$,

$$y = e^x \left[c_1 \cos(\nu x) + c_2 \sin(\nu x) \right]$$
 $y(0) = y(1) = 0$ 11.5.101
 $0 = c_1$ $0 = c_2 \sin(\nu)$ 11.5.102
 $c_1 = 0$ $\nu = n\pi$ 11.5.103
 $y_n(x) = e^x \sin(n\pi x)$ $\lambda_n = (n\pi)^2$ 11.5.104

For $\lambda = 0$,

$$y = (c_1 + c_2 x) e^x$$
 $y(0) = y(1) = 0$ 11.5.105
 $0 = c_1$ $0 = c_1 + c_2$ 11.5.106

This also leads to the trivial solution.

13. Using the result from Problem 11,

$$0 = y'' + 8y' + (\lambda + 16)y$$

$$\mu = \frac{-8 \pm \sqrt{64 - 4(\lambda + 16)}}{2}$$

$$\mu_1, \ \mu_2 = -4 \pm \sqrt{-\lambda}$$
11.5.108

For the case where $\lambda = -\nu^2$,

$$y = c_1 e^{(-4+\nu)x} + c_2 e^{(-4-\nu)x}$$
 $y(0) = y(\pi) = 0$ 11.5.109
 $0 = c_1 + c_2$ $0 = c_1 e^{(-4+\nu)\pi} + c_2 e^{(-4-\nu)\pi}$ 11.5.110
 $c_1 = 0$ $c_2 = 0$ 11.5.111

This leads to the trivial solution.

For the case where $\lambda = \nu^2$,

$$y = e^{-4x} \left[c_1 \cos(\nu x) + c_2 \sin(\nu x) \right]$$
 $y(0) = y(\pi) = 0$ 11.5.112

$$0 = c_1 \qquad \qquad 0 = c_2 \sin(\nu \pi) \qquad \qquad 11.5.113$$

$$c_1 = 0$$
 $\nu = n$ 11.5.114

$$y_n(x) = e^{-4x} \sin(nx) \qquad \qquad \lambda_n = n^2$$
 11.5.115

For $\lambda = 0$,

$$y = (c_1 + c_2 x) e^{-4x}$$
 $y(0) = y(\pi) = 0$ 11.5.116

$$0 = c_1 0 = c_1 + c_2 11.5.117$$

This also leads to the trivial solution.

- 14. Special families of orthogonal polynomials,
 - (a) Chebyshev polynomials of the first kind, with $\arccos(x) = \theta$

$$T_n(x) = \cos(n \operatorname{arccos}(x)) = \cos(n\theta)$$
 11.5.118

$$T_0(x) = \cos(0) = 1$$
 11.5.119

$$T_1(x) = \cos(\arccos(x)) = x$$
 11.5.120

$$T_2(x) = \cos(2 \arccos(x)) = 2\cos^2(\theta) - 1 = 2x^2 - 1$$
 11.5.121

$$T_3(x) = \cos(3\theta) = 4\cos^3(\theta) - 3\cos(\theta) = 4x^3 - 3x$$
 11.5.122

Chebyshev polynomials of the second kind, with $\arccos(x) = \theta$

$$U_n(x) = \frac{\sin[(n+1)\arccos(x)]}{\sqrt{1-x^2}} = \frac{\sin[(n+1)\theta]}{\sin(\theta)}$$
 11.5.123

$$U_0(x) = \cos(0) = 1 11.5.124$$

$$U_1(x) = \frac{\sin(2\theta)}{\sin\theta} = 2\cos\theta = \frac{2x}{2}$$
 11.5.125

$$U_2(x) = \frac{\sin(3\theta)}{\sin\theta} = 3\cos^2(\theta) - \sin^2(\theta) = 4x^2 - 1$$
 11.5.126

$$U_3(x) = \frac{\sin(4\theta)}{\sin(\theta)} = 4\cos^3(\theta) - 4\cos(\theta)\sin^2(\theta) = 8x^3 - 4x$$
 11.5.127

Checking the orthogonality of the polynomials $T_n(x)$,

$$\arccos(x) = \theta \qquad \frac{-1}{\sqrt{1 - x^2}} \, \mathrm{d}x = \, \mathrm{d}\theta \qquad 11.5.128$$

$$r(x) = \frac{1}{\sqrt{1 - x^2}} \qquad I = \int_{-1}^{1} T_n(x) \ T_m(x) \ \frac{\mathrm{d}x}{\sqrt{1 - x^2}} \quad \text{11.5.129}$$

$$I = \int_0^{\pi} \cos(n\theta) \cos(m\theta) d\theta$$
 11.5.130

This is known to be orthogonal which proves the relation.

Verifying the set $\{T_n\}$ satisfy the Chebyshev ODE,

$$(1 - x^2)y'' - xy' + n^2y = 0$$
 11.5.131

$$n = 0 \implies (1 - x^2)(0) - x(0) + 0(1) = 0$$
 11.5.132

$$n = 1 \implies (1 - x^2)(0) - x(1) + 1(x) = 0$$
 11.5.133

$$n = 2 \implies (1 - x^2)(4) - x(4x) + 4(2x^2 - 1) = 0$$
 11.5.134

$$n = 3 \implies (1 - x^2)(24x) - x(12x^2 - 3) + 9(4x^3 - 3x) = 0$$
 11.5.135

(b) LaGuerre polynomials,

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$
 11.5.136

$$L_1(x) = \frac{e^x}{1!} \frac{\mathrm{d}}{\mathrm{d}x} [xe^{-x}] = 1 - x$$
 11.5.137

$$L_2(x) = \frac{e^x}{2!} \frac{\mathrm{d}^2}{\mathrm{d}x^2} [x^2 e^{-x}] = \frac{2 - 4x + x^2}{2} = 1 - 2x + \frac{x^2}{2}$$
 11.5.138

$$L_3(x) = \frac{e^x}{3!} \frac{\mathrm{d}^3}{\mathrm{d}x^3} [x^3 e^{-x}] = \frac{6 - 18x + 9x^2 - x^3}{6} = 1 - 3x + \frac{3x^2}{2} - \frac{x^3}{6}$$
 11.5.139

To prove orthogonality, consider L_n , L_k with k < n, without loss of generality. Now, since integration is linear, the polynomial L_k is a linear combination of powers of x.

$$I = \int_0^\infty e^{-x} x^k L_n(x) dx$$
 11.5.140

$$= \int_0^\infty e^{-x} x^k \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x}) dx$$
 11.5.141

$$I = \left[\frac{x^k}{n!} \frac{\mathrm{d}^{n-1}}{\mathrm{d}x^{n-1}} (x^n e^{-x}) \right]_0^{\infty} - \int_0^{\infty} \frac{kx^{k-1}}{n!} \frac{\mathrm{d}^{n-1}}{\mathrm{d}x^{n-1}} (x^n e^{-x}) \, \mathrm{d}x$$
 11.5.142

The first term above is always zero for all positive (n-k), since the polynomial $e^{-\infty}=0$ and

$$0^k = 0$$

$$\frac{\mathrm{d}^{n-k}}{\mathrm{d}x^{n-k}}(x^n e^{-x}) = e^{-x} \cdot Q(x)$$
11.5.143

After k such integrations by part,

$$I = \left[(-1)^k \frac{k!}{n!} \frac{\mathrm{d}^{n-k-1}}{\mathrm{d}x^{n-k-1}} (x^n e^{-x}) \right]_0^{\infty} = 0$$
11.5.144

11.6 Orthogonal Series, Generalized Fourier Series

1. Expanding into a Fourier-Legendre series, neglecting the integrals of odd functions in [-1, 1]

$$f(x) = 63x^5 - 90x^3 + 35x ag{11.6.1}$$

$$a_m = \frac{1}{\|P_m\|^2} \int_{-1}^1 f(x) P_m(x) dx$$
 $\|P_m\| = \sqrt{\frac{2}{2m+1}}$ 11.6.2

$$a_1 = \frac{3}{2} \int_{-1}^{1} (63x^5 - 90x^3 + 35x)(x) dx$$
 = 8

$$a_3 = \frac{3}{2} \int_{-1}^{1} (63x^5 - 90x^3 + 35x)(2.5x^3 - 1.5x) dx = -8$$
 11.6.4

$$a_5 = \frac{11}{16} \int_{-1}^{1} (63x^5 - 90x^3 + 35x)(63x^5 - 70x^3 + 15x) dx = 8$$
 11.6.5

$$f(x) = 8P_1 - 8P_3 + 8P_5 11.6.6$$

2. Expanding into a Fourier-Legendre series, neglecting the integrals of odd functions in [-1, 1]

$$f(x) = (x+1)^2 11.6.7$$

$$a_m = \frac{1}{\|P_m\|^2} \int_{-1}^1 f(x) P_m(x) dx$$
 $\|P_m\| = \sqrt{\frac{2}{2m+1}}$ 11.6.8

$$a_0 = \frac{1}{2} \int_{-1}^{1} (x+1)^2 (1) dx$$
 = $\frac{4}{3}$ 11.6.9

$$a_1 = \frac{3}{2} \int_{-1}^{1} (x^3 + 2x^2 + x) \, dx$$
 = 2

$$a_5 = \frac{5}{4} \int_{-1}^{1} (x+1)^2 (3x^2 - 1) dx$$
 $= \frac{2}{3}$ 11.6.11

$$f(x) = \frac{4P_0 + 6P_1 + 2P_2}{3}$$

3. Expanding into a Fourier-Legendre series, neglecting the integrals of odd functions in [-1, 1]

$$f(x) = 1 - x^4 11.6.13$$

$$a_m = \frac{1}{\|P_m\|^2} \int_{-1}^1 f(x) \; P_m(x) \; \mathrm{d}x$$
 $\|P_m\| = \sqrt{\frac{2}{2m+1}}$ 11.6.14

$$a_0 = \frac{1}{2} \int_{-1}^{1} (1 - x^4) \, dx$$
 $= \frac{4}{5}$ 11.6.15

$$a_2 = \frac{5}{4} \int_{-1}^{1} (1 - x^4)(3x^2 - 1) dx$$
 $= \frac{-4}{7}$ 11.6.16

$$a_4 = \frac{9}{16} \int_{-1}^{1} (1 - x^4)(35x^4 - 30x^2 + 3) dx = \frac{-8}{35}$$
 11.6.17

$$f(x) = \frac{28P_0 - 20P_2 - 8P_4}{35}$$
 11.6.18

4. By observation,

$$1 = P_0 x = P_1 11.6.19$$

$$x^2 = \frac{2P_2 + P_0}{3} \qquad \qquad x^3 = \frac{2P_3 + 3P_1}{5}$$
 11.6.20

$$x^4 = \frac{8P_4 + 20P_2 + 7P_0}{35}$$
 11.6.21

5. Assume f(x) is odd. Then $f(x)P_n(x)$ is also odd for even n. Further, the integral of an odd function in a region symmetric about the origin is zero. This means that the coefficients of odd Legendre polynomials is zero.

This means that the Fourier-Legendre expansion will only contain odd n terms.

The proof for odd functions g(x) is the exact same. Examples are problems 1, 2, 3, 4 above.

- **6.** Suppose f is not a constant function and its MacLaurin series only contains terms of the form x^{4m} . Its Fourier-Legendre polynomials cannot contain odd terms by observation.
 - Further, even Legendre polynomials contain terms of the form x^{4m+2} , which can be made to cancel out when expanding f(x) in terms of the even Legendre polynomials.
- 7. Changing the coefficient of x^m inside f(x), changes the coefficients of all the Legendre polynomials P_m , P_{m-2} , P_{m-4} and so on.
- 8. Finding the Fourier-Legendre expansion,

$$f(x) = \sin(\pi x) \tag{11.6.22}$$

$$a_m = \frac{1}{\|P_m\|^2} \int_{-1}^1 f(x) P_m(x) dx$$
 $\|P_m\| = \sqrt{\frac{2}{2m+1}}$ 11.6.23

9. Finding the Fourier-Legendre expansion,

$$f(x) = \sin(2\pi x) \tag{11.6.24}$$

$$a_m = \frac{1}{\|P_m\|^2} \int_{-1}^1 f(x) P_m(x) dx$$
 $\|P_m\| = \sqrt{\frac{2}{2m+1}}$ 11.6.25

10. Finding the Fourier-Legendre expansion,

$$f(x) = \exp(-x^2)$$
 11.6.26

$$a_m = \frac{1}{\|P_m\|^2} \int_{-1}^1 f(x) P_m(x) dx$$
 $\|P_m\| = \sqrt{\frac{2}{2m+1}}$ 11.6.27

11. Finding the Fourier-Legendre expansion,

$$f(x) = \frac{1}{1+x^2} \tag{11.6.28}$$

$$a_m = \frac{1}{\|P_m\|^2} \int_{-1}^1 f(x) P_m(x) dx$$
 $\|P_m\| = \sqrt{\frac{2}{2m+1}}$ 11.6.29

12. Finding the Fourier-Legendre expansion, with $\alpha = \alpha_{0,1}$

$$f(x) = \frac{1}{1+x^2} \tag{11.6.30}$$

$$a_m = \frac{1}{\|P_m\|^2} \int_{-1}^1 f(x) P_m(x) dx$$
 $\|P_m\| = \sqrt{\frac{2}{2m+1}}$ 11.6.31

13. Finding the Fourier-Legendre expansion, with $\beta = \alpha_{0,2}$

$$f(x) = \frac{1}{1+x^2} \tag{11.6.32}$$

$$a_m = \frac{1}{\|P_m\|^2} \int_{-1}^1 f(x) P_m(x) dx$$
 $\|P_m\| = \sqrt{\frac{2}{2m+1}}$ 11.6.33

14. Hermite's polynomials

(a) For small values of n,

$$H_n(x) = (-1)^n e^{x^2/2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (e^{-x^2/2})$$
 11.6.34

$$H_1(x) = -e^{x^2/2} \frac{\mathrm{d}}{\mathrm{d}x} (e^{-x^2/2}) = x$$
 11.6.35

$$H_2(x) = e^{x^2/2} \frac{\mathrm{d}^2}{\mathrm{d}x^2} (e^{-x^2/2}) = -1 + x^2$$
 11.6.36

$$H_3(x) = -e^{x^2/2} \frac{\mathrm{d}^3}{\mathrm{d}x^3} (e^{-x^2/2}) = x^3 - 3x$$
 11.6.37

$$H_4(x) = e^{x^2/2} \frac{\mathrm{d}^4}{\mathrm{d}x^4} (e^{-x^2/2}) = x^4 - 6x^2 + 3$$
 11.6.38

(b) The Maclaurin series is given by,

$$f(t=0) = \sum_{n=0}^{\infty} \frac{f^{(n)}(t=0)}{n!} t^n$$
 11.6.39

$$f(t) = \exp\left(tx - \frac{t^2}{2}\right) = \exp\left[\frac{x^2}{2} - \frac{(x-t)^2}{2}\right]$$
 11.6.40

$$\frac{\mathrm{d}^n f}{\mathrm{d}t^n} = e^{x^2/2} \frac{\mathrm{d}^n}{\mathrm{d}t^n} \exp\left[\frac{-(x-t)^2}{2}\right]$$
 11.6.41

$$z = (x - t) \qquad \qquad t = 0 \rightarrow z = x \tag{11.6.42}$$

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n} = (-1)^n \frac{\mathrm{d}^n}{\mathrm{d}z^n}$$
 11.6.43

$$\frac{\mathrm{d}^n f}{\mathrm{d}t^n} = (-1)^n e^{x^2/2} \frac{\mathrm{d}^n}{\mathrm{d}z^n} (e^{-z^2/2})$$
11.6.44

$$\frac{\mathrm{d}^n f}{\mathrm{d}t^n} \bigg|_{t=0} = \left[(-1)^n e^{x^2/2} \frac{\mathrm{d}^n}{\mathrm{d}z^n} (e^{-z^2/2}) \right]_{z=x}$$
11.6.45

$$= (-1)^n e^{x^2/2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (e^{-x^2/2}) = H_n(x)$$
 11.6.46

Thus, the given function f is a generating function of the Hermite polynomials.

(c) Differentiating with respect to x gives,

$$\exp\left(tx - \frac{t^2}{2}\right) = \sum_{n=0}^{\infty} H_n(x) \, \frac{t^n}{n!}$$
 11.6.47

$$t \exp\left(tx - \frac{t^2}{2}\right) = \sum_{n=0}^{\infty} H'_n(x) \frac{t^n}{n!}$$
 11.6.48

$$\sum_{n=0}^{\infty} H'_n(x) \frac{t^n}{n!} = \sum_{n=0}^{\infty} (n+1)H_n(x) \frac{t^{n+1}}{(n+1)!}$$
 11.6.49

Equating coefficients of t^n , gives,

$$H_n' = n \cdot H_{n-1}$$
 11.6.50

(d) Checking orthogonality on the real line, assuming n < m

$$r(x) = e^{-x^2/2} 11.6.51$$

$$I = \int_{-\infty}^{\infty} e^{-x^2/2} H_n(x) H_m(x) dx$$
 11.6.52

$$= \int_{-\infty}^{\infty} (-1)^m H_n \frac{\mathrm{d}^m}{\mathrm{d}x^m} (e^{-x^2/2}) \, \mathrm{d}x$$
 11.6.53

$$= (-1)^m \left[H_n \frac{\mathrm{d}^{m-1}}{\mathrm{d}x^{m-1}} (e^{-x^2/2}) \right]_{-\infty}^{\infty}$$
 11.6.54

$$-(-1)^m \int_{-\infty}^{\infty} (nH_{n-1}) \frac{\mathrm{d}^{m-1}}{\mathrm{d}x^{m-1}} (e^{-x^2/2}) \, \mathrm{d}x$$
 11.6.55

Since $\exp(-x^2/2)$ is always dominant over any polynomial in in x, the first term in the integration by parts is always zero. Repetitive integration by parts yields,

$$I = (-1)^{m+n} (n!) \int_{-\infty}^{\infty} (H_0) \frac{\mathrm{d}^{m-n}}{\mathrm{d}x^{m-n}} (e^{-x^2/2}) \, \mathrm{d}x$$
 11.6.56

$$= (-1)^{m+n} n! H_0 \left[\frac{\mathrm{d}^{m-n-1}}{\mathrm{d}x^{m-n-1}} (e^{-x^2/2}) \right]_{-\infty}^{\infty} = 0$$
 11.6.57

(e) Differentiating with respect to t,

$$H_n(x) = (-1)^n e^{x^2/2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (e^{-x^2/2})$$
 11.6.58

$$H'_n(x) = (-1)^n x e^{x^2/2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (e^{-x^2/2}) + (-1)^n e^{x^2/2} \frac{\mathrm{d}^{n+1}}{\mathrm{d}x^{n+1}} (e^{-x^2/2})$$
 11.6.59

$$H_n' = x \cdot H_n - H_{n+1}$$
 11.6.60

Rewriting with (n-1) instead of n,

$$H_n' = x \cdot H_n - H_{n+1}$$
 11.6.61

$$H_n'' = H_n + xH_n' - H_{n+1}'$$
 11.6.62

$$= H_n + xH_n' - (n+1)H_n$$
 11.6.63

$$=xH_n'-n\ H_n$$
 11.6.64

$$y'' = xy' - ny 11.6.65$$

Checking if $w = e^{-x^2/4} y$ solves Weber's equation,

$$w' = e^{-x^2/4} y' - \frac{x}{2} e^{-x^2/4} y$$
 11.6.66

$$w'' = e^{-x^2/4} y'' - x e^{-x^2/4} y' + \left(\frac{x^2}{4} - \frac{1}{2}\right) e^{-x^2/4} y$$
 11.6.67

$$w'' = e^{-x^2/4} (-ny) + \left(\frac{x^2}{4} - \frac{1}{2}\right) e^{-x^2/4} y$$
 11.6.68

$$w'' = -w \left[n + \frac{1}{2} - \frac{x^2}{4} \right]$$
 11.6.69

- 15. Using a CAS to plot Fourier-Bessel expansions,
 - (a) Plotting the first 10 functions in the family $\{J_0(\alpha_{0,k} \ x)\}$

$$y = J_0(\alpha x), \ \alpha \in [1, 5]$$

- (b) Since $J_0(x)$ is an even function, the program can only handle even functions. Program written in sympy. Trial runs TBC.
- (c) Let f(x) = 1. This is an even function and thus can be expanded in terms of $J_0(\alpha x)$.

$$[x^{\nu} J_{\nu}(x)]' = x^{\nu} J_{\nu-1}(x)$$
11.6.70

$$a_m = \frac{2}{J_1^2(\lambda)} \int_0^1 x \ J_0(\lambda x) \ \mathrm{d}x$$
 11.6.71

$$= \left[\frac{2}{J_1^2(\lambda)} \cdot \frac{xJ_1(\lambda x)}{\lambda}\right]_0^1$$
11.6.72

$$=\frac{2}{\lambda \cdot J_1(\lambda)}$$
 11.6.73

Here, λ is shorthand for $\alpha_{0,m}$, the m^{th} root of J_0

The convergence of the series is very slow because it is very dissimilar to a sinusoidal function.

11.7 Fourier Integral

1. Calculating the Fourier cosine integral of f(x),

$$f(x) = \pi e^{-x} \qquad \forall x > 0$$

$$A(w) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \cos(wu) du = \int_{0}^{\infty} e^{-u} \cos(wu) du$$
 11.7.2

$$= \left[e^{-u} \frac{\sin(wu)}{w} \right]_0^\infty + \int_0^\infty e^{-u} \frac{\sin(wu)}{w} du$$
 11.7.3

$$= 0 - \left[e^{-u} \frac{\cos(wu)}{w^2} \right]_0^{\infty} - \int_0^{\infty} e^{-u} \frac{\cos(wu)}{w^2} du = \frac{1 - A(w)}{w^2}$$
 11.7.4

$$A(w) = \frac{1}{1+w^2} \tag{11.7.5}$$

Calculating the Fourier sine integral of f(x),

$$B(w) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \sin(wu) \, du = \int_{0}^{\infty} e^{-u} \sin(wu) \, du$$
 11.7.6

$$= \left[e^{-u} \frac{-\cos(wu)}{w} \right]_0^\infty - \int_0^\infty e^{-u} \frac{\cos(wu)}{w} du$$
 11.7.7

$$= \frac{1}{w} - \left[e^{-u} \frac{\sin(wu)}{w^2} \right]_0^{\infty} - \int_0^{\infty} e^{-u} \frac{\sin(wu)}{w^2} du = \frac{w - B(w)}{w^2}$$
 11.7.8

$$B(w) = \frac{w}{1 + w^2}$$
 11.7.9

Writing out the fourier integral of f(x),

$$f(x) = \int_0^\infty \left[\frac{\cos(xw)}{1+w^2} \right] + \left[\frac{w \sin(xw)}{1+w^2} \right] dw$$
 11.7.10

The value of f(x) at the jump discontinuity x = 0 is equal to the average of the left-handed limit (0) and right-handed limit π .

2. Calculating the Fourier sine integral of f(x), since a cosine term is absent from the expression,

$$f(x) = \begin{cases} \frac{\pi}{2} & \sin(x) & x \in [0, \pi] \\ 0 & x > \pi \end{cases}$$
 11.7.11

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \sin(wu) du = \int_0^\pi \sin(u) \sin(wu) du$$
 11.7.12

$$= \int_0^\pi \frac{\cos[(1-w)u] - \cos[(1+w)u]}{4} du$$
 11.7.13

$$= \frac{1}{2} \left[\frac{\sin[(1-w)u]}{1-w} - \frac{\sin[(1+w)u]}{1+w} \right]_0^{\pi} = \frac{\sin(w\pi)}{(1-w^2)}$$
 11.7.14

Writing out the fourier integral of f(x),

$$f(x) = \int_0^\infty \left[\frac{\sin(\pi w)}{1 - w^2} \sin(xw) \right] dw$$
 11.7.15

3. Calculating the Fourier sine integral of f(x), since a cosine term is absent from the expression,

$$f(x) = \begin{cases} \frac{\pi}{2} & x \in (0, \pi) \\ 0 & x > \pi \end{cases}$$
 11.7.16

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \sin(wu) du = \int_0^\pi \sin(wu) du$$
 11.7.17

$$= \int_0^\pi \frac{\cos[(1-w)u] - \cos[(1+w)u]}{4} du$$
 11.7.18

$$= \left[\frac{-\cos(wu)}{w} \right]_0^{\pi} = \frac{1 - \cos(w\pi)}{w}$$
 11.7.19

Writing out the fourier integral of f(x),

$$f(x) = \int_0^\infty \left[\frac{1 - \cos(\pi w)}{w} \sin(xw) \right] dw$$
 11.7.20

4. Calculating the Fourier cosine integral of f(x), since a sine term is absent from the expression,

$$f(x) = \begin{cases} \frac{\pi}{2} & \cos(x) & |x| \in (0, \pi/2) \\ 0 & |x| \ge \pi/2 \end{cases}$$
 11.7.21

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \cos(wu) du = \int_0^{\pi/2} \cos(u) \cos(wu) du$$
 11.7.22

$$= \int_0^{\pi/2} \frac{\cos[(1-w)u] + \cos[(1+w)u]}{2} du$$
 11.7.23

$$= \frac{1}{2} \left[\frac{\sin[(1-w)u]}{(1-w)} + \frac{\sin[(1+w)u]}{(1+w)} \right]_0^{\pi/2} = \frac{\cos(w\pi/2)}{1-w^2}$$
 11.7.24

Writing out the fourier integral of f(x),

$$f(x) = \int_0^\infty \left[\frac{\cos(w\pi/2)}{1 - w^2} \cos(xw) \right] dw$$
 11.7.25

5. Calculating the Fourier sine integral of f(x), since a cosine term is absent from the expression,

$$f(x) = \begin{cases} \frac{\pi x}{2} & x \in (0, 1) \\ \frac{\pi}{4} & x = 1 \\ 0 & x > 1 \end{cases}$$
 11.7.26

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \sin(wu) du = \int_0^1 (u) \sin(wu) du$$
 11.7.27

$$= \left[\frac{\sin(wu)}{w^2} - \frac{u \cos(wu)}{w} \right]_0^1 = \frac{\sin(w) - w \cos(w)}{w^2}$$
 11.7.28

Writing out the fourier integral of f(x),

$$f(x) = \int_0^\infty \left[\frac{\sin(w) - w \cos(w)}{w^2} \sin(xw) \right] dw$$
 11.7.29

The value of f(x) at the jump discontinuity x = 1 is equal to the average of the left-handed limit $(\pi/2)$ and right-handed limit (0).

6. Calculating the Fourier sine integral of f(x), since a cosine term is absent from the expression, using

the result from Problem 1,

$$f(x) = \frac{\pi e^{-x}}{2} \cos(x) \qquad \forall \ x > 0$$
 11.7.30

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \sin(wu) du = \int_0^\infty (e^{-u}) \cos(u) \sin(wu) du$$
 11.7.31

$$= \frac{1}{2} \int_0^\infty e^{-u} \left[\sin[(1+w)u] - \sin[(1-w)u] \right] du$$
 11.7.32

$$= \frac{1}{2} \left[\frac{1+w}{1+(1+w)^2} - \frac{1-w}{1+(1-w)^2} \right] = \frac{w^3}{w^4+4}$$
 11.7.33

7. Calculating the Fourier cosine integral,

$$f(x) = \begin{cases} 1 & x \in (0, 1) \\ 0 & x > 1 \end{cases}$$
 11.7.34

$$A(w) = \frac{2}{\pi} \int_0^\infty f(u) \cos(wu) \ \mathrm{d}u = \frac{2}{\pi} \int_0^1 (1) \cos(wu) \ \mathrm{d}u$$
 11.7.35

$$= \frac{2}{\pi} \left[\frac{\sin(wu)}{w} \right]_0^1 = \frac{2}{\pi} \cdot \frac{\sin(w)}{w}$$
 11.7.36

8. Calculating the Fourier cosine integral,

$$f(x) = \begin{cases} x^2 & x \in (0,1) \\ 0 & x > 1 \end{cases}$$
 11.7.37

$$A(w) = \frac{2}{\pi} \int_0^\infty f(u) \; \cos(wu) \; du = \frac{2}{\pi} \int_0^1 (u^2) \; \cos(wu) \; du$$
 11.7.38

$$= \frac{2}{\pi} \left[\frac{w^2 u^2 - 2}{w^3} \sin(wu) + \frac{2u}{w^2} \cos(wu) \right]_0^1$$
 11.7.39

$$= \frac{2}{\pi} \left[\frac{w^2 - 2}{w^3} \sin(w) + \frac{2}{w^2} \cos(w) \right]$$
 11.7.40

9. Calculating the Fourier cosine integral, using the Laplace integral (k = 1),

$$f(x) = \frac{1}{1+x^2} \qquad \forall \ x > 0$$
 11.7.41

$$A(w) = \frac{2}{\pi} \int_0^\infty f(u) \; \cos(wu) \; \mathrm{d}u = \frac{2}{\pi} \int_0^\infty \frac{1}{1+u^2} \; \cos(wu) \; \mathrm{d}u \qquad \qquad \text{11.7.42}$$

$$= e^{-w} (w > 0) 11.7.43$$

10. Calculating the Fourier cosine integral,

$$f(x) = \begin{cases} a^2 - x^2 & x \in (0, a) \\ 0 & x > a \end{cases}$$
 11.7.44

$$A(w) = \frac{2}{\pi} \int_0^\infty f(u) \cos(wu) du = \frac{2}{\pi} \int_0^a (a^2 - u^2) \cos(wu) du$$
 11.7.45

$$= \frac{2}{\pi} \left[\frac{2 + a^2 w^2 - w^2 u^2}{w^3} \sin(wu) - \frac{2u}{w^2} \cos(wu) \right]_0^a$$
 11.7.46

$$= \frac{2}{\pi} \left[\frac{2}{w^3} \sin(wa) - \frac{2a}{w^2} \cos(wa) \right]$$
 11.7.47

11. Calculating the Fourier cosine integral,

$$f(x) = \begin{cases} \sin(x) & x \in (0, \pi) \\ 0 & x > \pi \end{cases}$$
 11.7.48

$$A(w) = \frac{2}{\pi} \int_0^\infty f(u) \cos(wu) \, du = \frac{2}{\pi} \int_0^\pi \sin(u) \cos(wu) \, du$$
 11.7.49

$$= \frac{-1}{\pi} \left[\frac{\cos[(1+w)u]}{1+w} + \frac{\cos[(1-w)u]}{1-w} \right]_0^{\pi}$$
 11.7.50

$$= \frac{2}{\pi} \left[\frac{1 + \cos(\pi w)}{1 - w^2} \right]$$
 11.7.51

12. Calculating the Fourier cosine integral, using the recursive nature of integration by parts,

$$f(x) = \begin{cases} e^{-x} & x \in (0, a) \\ 0 & x > a \end{cases}$$
 11.7.52

$$A(w) = \frac{2}{\pi} \int_0^\infty f(u) \cos(wu) du = \frac{2}{\pi} \int_0^a (e^{-u}) \cos(wu) du$$
 11.7.53

$$= \frac{2}{\pi} \left[e^{-u} \frac{\sin(wu)}{w} \right]_0^a + \frac{2}{\pi} \int_0^a e^{-u} \frac{\sin(wu)}{w} du$$
 11.7.54

$$= \frac{2e^{-a}}{\pi w} \sin(wa) + \left[\frac{-2e^{-u}}{\pi w^2} \cos(wu) \right]_0^a - \frac{2}{\pi} \int_0^a e^{-u} \frac{\cos(wu)}{w^2} du$$
 11.7.55

$$= \frac{2}{\pi} \left[\frac{we^{-a} \sin(wa) - e^{-a} \cos(wa) + 1}{w^2} \right] - \frac{B(w)}{w^2}$$
 11.7.56

$$A(w) = \frac{2}{\pi} \left[\frac{we^{-a} \sin(wa) - e^{-a} \cos(wa) + 1}{1 + w^2} \right]$$
 11.7.57

13. Graphing the integral function in Problem 7 using a CAS,

$$f(x) = \int_0^\infty \frac{2}{\pi} \cdot \frac{\sin(w)}{w} \cos(xw) dw$$
 11.7.58

Graphing the integral function in Problem 9 using a CAS,

$$f(x) = \int_0^\infty e^{-w} \cos(xw) \, dw$$
 11.7.59

Fig 11 TBC. Sympy getting stuck on function definition.

14. Properties of Fourier cosine and sine integrals

(a) Using the fourier cosine integral,

$$f(ax) = \int_0^\infty A(u) \cos(u \ ax) \ du \qquad a > 0$$
 11.7.60

$$w = au$$
 $dw = a du$ 11.7.61

$$f(ax) = \frac{1}{a} \int_0^\infty A\left(\frac{w}{a}\right) \cos(wx) dw$$
 11.7.62

Using the fact that an odd function times an even function is odd,

$$A(w) = \frac{2}{\pi} \int_0^\infty f(u) \cos(wu) du$$
 11.7.63

$$-\frac{\mathrm{d}A}{\mathrm{d}w} = \frac{2}{\pi} \int_0^\infty u \ f(u) \ \sin(wu) \ \mathrm{d}u$$
 11.7.64

$$g(x) = x \cdot f(x) = \int_0^\infty \left[\frac{2}{\pi} \int_0^\infty g(u) \sin(wu) du \right] \sin(wx) dw$$
 11.7.65

$$= \int_0^\infty \left[-\frac{\mathrm{d}A}{\mathrm{d}w} \right] \sin(wx) \, \mathrm{d}w$$
 11.7.66

Performing the differentiation twice,

$$A(w) = \frac{2}{\pi} \int_0^\infty f(u) \cos(wu) du$$
 11.7.67

$$-\frac{\mathrm{d}A}{\mathrm{d}w} = \frac{2}{\pi} \int_0^\infty u \ f(u) \ \sin(wu) \ \mathrm{d}u$$

$$-\frac{\mathrm{d}^2 A}{\mathrm{d}w^2} = \frac{2}{\pi} \int_0^\infty u^2 f(u) \cos(wu) \, du$$
 11.7.69

$$g(x) = x^2 \cdot f(x) = \int_0^\infty \left[\frac{2}{\pi} \int_0^\infty g(u) \cos(wu) \, du \right] \cos(wx) \, dw$$
 11.7.70

$$= \int_0^\infty \left[-\frac{\mathrm{d}^2 A}{\mathrm{d}w^2} \right] \cos(wx) \, \mathrm{d}w$$
 11.7.71

(b) Using the above results to solve Problem 8,

$$A(w) = \frac{2}{\pi} \cdot \frac{\sin(w)}{w}$$
 11.7.72

$$-\frac{\mathrm{d}^2 A}{\mathrm{d}w^2} = \frac{2}{\pi} \cdot \left[\frac{w^2 - 2}{w^3} \sin(w) + \frac{2}{w^2} \cos(w) \right]$$
 11.7.73

which agrees with the earlier solution.

(c) Verifying the relation,

$$f(x) = \begin{cases} 1 & x \in (0, a) \\ 0 & x > a \end{cases} \qquad A(w) = \frac{2a}{\pi} \cdot \frac{\sin(w)}{w}$$
 11.7.74

$$\frac{\mathrm{d}A}{\mathrm{d}w} = \frac{2a}{\pi} \cdot \left[\frac{\cos(w)}{w} - \frac{\sin(w)}{w^2} \right]$$
 11.7.75

$$g(x) = \begin{cases} x & x \in (0, a) \\ 0 & x > a \end{cases} \qquad B(w) = \frac{2}{\pi} \int_0^1 u \sin(wu) du \qquad 11.7.76$$

$$= \frac{2}{\pi} \left[\frac{\sin(wu)}{w^2} - \frac{u\cos(wu)}{w} \right]_0^1 \qquad B(w) = -\frac{\mathrm{d}A}{\mathrm{d}w}$$
 11.7.77

(d) Finding similar formulas for Fourier sine integrals,

$$f(ax) = \int_0^\infty B(u) \sin(u \, ax) \, du \qquad a > 0$$
 11.7.78

$$w = au dw = a du 11.7.79$$

$$f(ax) = \frac{1}{a} \int_0^\infty B\left(\frac{w}{a}\right) \sin(wx) dw$$
 11.7.80

Using the fact that an odd function times an odd function is even,

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \sin(wu) du$$
 11.7.81

$$\frac{\mathrm{d}B}{\mathrm{d}w} = \frac{2}{\pi} \int_0^\infty u \ f(u) \ \cos(wu) \ \mathrm{d}u$$
 11.7.82

$$g(x) = x \cdot f(x) = \int_0^\infty \left[\frac{2}{\pi} \int_0^\infty g(u) \cos(wu) \, du \right] \cos(wx) \, dw$$
 11.7.83

$$= \int_0^\infty \left[\frac{\mathrm{d}B}{\mathrm{d}w} \right] \cos(wx) \, \mathrm{d}w$$
 11.7.84

Performing the differentiation twice,

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \sin(wu) du$$
 11.7.85

$$\frac{\mathrm{d}B}{\mathrm{d}w} = \frac{2}{\pi} \int_0^\infty u \ f(u) \ \cos(wu) \ \mathrm{d}u$$

$$-\frac{\mathrm{d}^2 B}{\mathrm{d}w^2} = \frac{2}{\pi} \int_0^\infty u^2 f(u) \sin(wu) \, \mathrm{d}u$$
 11.7.87

$$g(x) = x^2 \cdot f(x) = \int_0^\infty \left[\frac{2}{\pi} \int_0^\infty g(u) \sin(wu) du \right] \sin(wx) dw$$
 11.7.88

$$= \int_0^\infty \left[-\frac{\mathrm{d}^2 B}{\mathrm{d}w^2} \right] \cos(wx) \, \mathrm{d}w$$
 11.7.89

15. Plotting the sine integral and seeing the convergence of the extrema to $y = \pi/2$,

The Gibbs phenomenon at x = 0 moves closer and closer to the y - axis as the approximation improves.

16. Calculating the Fourier sine integral

$$f(x) = \begin{cases} x & x \in (0, a) \\ 0 & x > a \end{cases}$$
 11.7.90

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \sin(wu) du = \frac{2}{\pi} \int_0^a (u) \sin(wu) du$$
 11.7.91

$$= \frac{2}{\pi} \left[\frac{\sin(wu) - wu \cos(wu)}{w^2} \right]_0^a = \frac{2}{\pi} \left[\frac{\sin(wa) - wa \cos(wa)}{w^2} \right]$$
 11.7.92

17. Calculating the Fourier sine integral

$$f(x) = \begin{cases} 1 & x \in (0,1) \\ 0 & x > 1 \end{cases}$$
 11.7.93

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \sin(wu) du = \frac{2}{\pi} \int_0^1 (1) \sin(wu) du$$
 11.7.94

$$= \frac{2}{\pi} \left[\frac{-\cos(wu)}{w} \right]_0^1 = \frac{2}{\pi} \left[\frac{1 - \cos(w)}{w} \right]$$
 11.7.95

18. Calculating the Fourier sine integral,

$$f(x) = \begin{cases} \cos(x) & x \in (0, \pi) \\ 0 & x > \pi \end{cases}$$
 11.7.96

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \sin(wu) du = \frac{2}{\pi} \int_0^\pi \cos(u) \sin(wu) du$$
 11.7.97

$$= \frac{1}{\pi} \left[-\frac{\cos[(1+w)u]}{1+w} + \frac{\cos[(1-w)u]}{1-w} \right]_0^{\pi}$$
 11.7.98

$$= \frac{-\cos(wu) - 1}{1 - w} + \frac{1 + \cos(wu)}{1 + w} = \frac{2}{\pi} \left[\frac{w}{w^2 - 1} \left[1 + \cos(\pi w) \right] \right]$$
 11.7.99

19. Calculating the Fourier sine integral, using the recursive nature of integration by parts,

$$f(x) = \begin{cases} e^x & x \in (0, 1) \\ 0 & x > 1 \end{cases}$$
 11.7.100

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \sin(wu) du = \frac{2}{\pi} \int_0^1 (e^u) \sin(wu) du$$
 11.7.101

$$= \frac{-2}{\pi} \left[e^u \frac{\cos(wu)}{w} \right]_0^1 + \frac{2}{\pi} \int_0^1 e^u \frac{\cos(wu)}{w} du$$
 11.7.102

$$= \frac{2}{\pi w} \left[1 - e \cos(w) \right] + \left[\frac{2e^u}{\pi w^2} \sin(wu) \right]_0^1 - \frac{2}{\pi} \int_0^1 e^u \frac{\sin(wu)}{w^2} du$$
 11.7.103

$$= \frac{2}{\pi} \left[\frac{w - we \cos(w) + e \sin(w)}{w^2} \right] - \frac{B(w)}{w^2}$$
 11.7.104

$$B(w) = \frac{2}{\pi} \left[\frac{w - we \cos(w) + e \sin(w)}{1 + w^2} \right]$$
 11.7.105

20. Calculating the Fourier sine integral, using the recursive nature of integration by parts,

$$f(x) = \begin{cases} e^{-x} & x \in (0, 1) \\ 0 & x > 1 \end{cases}$$
 11.7.106

$$B(w) = \frac{2}{\pi} \int_0^\infty f(u) \sin(wu) du = \frac{2}{\pi} \int_0^1 (e^{-u}) \sin(wu) du$$
 11.7.107

$$= \frac{-2}{\pi} \left[e^{-u} \frac{\cos(wu)}{w} \right]_0^1 - \frac{2}{\pi} \int_0^1 e^{-u} \frac{\cos(wu)}{w} du$$
 11.7.108

$$= \frac{2}{\pi w} \left[1 - e^{-1} \cos(w) \right] - \left[\frac{2e^{-u}}{\pi w^2} \sin(wu) \right]_0^1 - \frac{2}{\pi} \int_0^1 e^{-u} \frac{\sin(wu)}{w^2} du$$
 11.7.109

$$= \frac{2}{\pi} \left[\frac{w - we^{-1} \cos(w) - e^{-1} \sin(w)}{w^2} \right] - \frac{B(w)}{w^2}$$
 11.7.110

$$B(w) = \frac{2}{\pi} \left[\frac{w - we^{-1} \cos(w) - e^{-1} \sin(w)}{1 + w^2} \right]$$
 11.7.111

11.8 Fourier Cosine and Sine Transforms

1. Finding the Fourier cosine transform,

$$f(x) = \begin{cases} 1 & x \in (0, 1) \\ -1 & x \in (1, 2) \\ 0 & x > 2 \end{cases}$$
 11.8.1

$$\widehat{f}_c(w) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(wx) dx$$
11.8.2

$$= \sqrt{\frac{2}{\pi}} \left[\int_0^1 (1) \cos(wx) \, dx + \int_1^2 (-1) \cos(wx) \, dx \right]$$
 11.8.3

$$=\sqrt{\frac{2}{\pi}}\left[\frac{\sin(wx)}{w}\right]_0^1 - \sqrt{\frac{2}{\pi}}\left[\frac{\sin(wx)}{w}\right]_1^2 = \sqrt{\frac{2}{\pi}}\left[\frac{2\sin(w) - \sin(2w)}{w}\right]$$
 11.8.4

2. Finding the Fourier cosine transform,

$$\widehat{f_c}(w) = \sqrt{\frac{2}{\pi}} \left[\frac{2\sin(w) - \sin(2w)}{w} \right]$$
 11.8.5

$$f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty \widehat{f_c}(w) \cos(wx) dw$$
 11.8.6

$$= \frac{2}{\pi} \int_0^\infty \left[\frac{2\sin(w) - \sin(2w)}{w} \right] \cos(wx) dw$$
 11.8.7

$$I_1 = \frac{2}{\pi} \int_0^\infty \left[\frac{\sin[(1+x)w]}{w} + \frac{\sin[(1-x)w]}{w} \right] dw$$
 11.8.8

$$= \frac{2}{\pi} \left[\frac{\pi}{2} \operatorname{sgn}(1+x) + \frac{\pi}{2} \operatorname{sgn}(1-x) \right] = \operatorname{sgn}(1+x) + \operatorname{sgn}(1-x)$$
 11.8.9

$$I_2 = \frac{-1}{\pi} \int_0^\infty \left[\frac{\sin[(2+x)w]}{w} + \frac{\sin[(2-x)w]}{w} \right] dw$$
 11.8.10

$$= \frac{-1}{\pi} \left[\frac{\pi}{2} \operatorname{sgn}(2+x) + \frac{\pi}{2} \operatorname{sgn}(2-x) \right] = \frac{-1}{2} \left[\operatorname{sgn}(2+x) + \operatorname{sgn}(2-x) \right]$$
 11.8.11

$$f(x) = \begin{cases} 1 & x \in (0, 1) \\ -1 & x \in (1, 2) \\ 0 & x > 2 \end{cases}$$
 11.8.12

3. Finding the Fourier cosine transform,

$$f(x) = \begin{cases} x & x \in (0, 2) \\ 0 & x > 2 \end{cases}$$
 11.8.13

$$\hat{f}_c(w) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(wx) dx = \sqrt{\frac{2}{\pi}} \left[\int_0^2 (x) \cos(wx) dx \right]$$
 11.8.14

$$= \sqrt{\frac{2}{\pi}} \left[\frac{x \sin(wx)}{w} + \frac{\cos(wx)}{w^2} \right]_0^2 = \sqrt{\frac{2}{\pi}} \left[\frac{\cos(2w) - 1 + 2w \sin(2w)}{w^2} \right]$$
 11.8.15

4. Finding the Fourier cosine transform,

$$f(x) = e^{-ax} (a > 0) 11.8.16$$

$$f''(x) = a^2 f(x) 11.8.17$$

$$\mathcal{F}_c\{f''\} = -w^2 \ \mathcal{F}_c\{f\} - \sqrt{\frac{2}{\pi}} \ f'(0)$$
 11.8.18

$$a^2 \ \mathcal{F}_c\{f\} = -w^2 \ \mathcal{F}_c\{f\} - \sqrt{\frac{2}{\pi}}(-a)$$
 11.8.19

$$\mathcal{F}_c\{f\} = \sqrt{\frac{2}{\pi}} \left[\frac{a}{a^2 + w^2} \right]$$
 11.8.20

5. Finding the Fourier cosine transform,

$$f(x) = \begin{cases} x^2 & x \in (0, 1) \\ 0 & x > 1 \end{cases}$$
 11.8.21

$$\hat{f}_c(w) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(wx) dx = \sqrt{\frac{2}{\pi}} \left[\int_0^1 (x^2) \cos(wx) dx \right]$$
 11.8.22

$$= \sqrt{\frac{2}{\pi}} \left[\frac{x^2 \sin(wx)}{w} - \frac{2 \sin(wx)}{w^3} + \frac{2x \cos(wx)}{w^2} \right]_0^1$$
 11.8.23

$$= \sqrt{\frac{2}{\pi}} \left[\frac{w^2 - 2}{w^3} \sin(w) + \frac{2}{w^2} \cos(w) \right]$$
 11.8.24

6. Finding the Fourier cosine transform directly,

$$g(x) = \begin{cases} 2 & x \in (0,1) \\ 0 & x > 1 \end{cases}$$
 11.8.25

$$\hat{f}_c(w) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(wx) dx = \sqrt{\frac{2}{\pi}} \left[\int_0^1 (2) \cos(wx) dx \right]$$
 11.8.26

$$=\sqrt{\frac{2}{\pi}}\left[\frac{2\sin(wx)}{w}\right]_0^1 = \sqrt{\frac{2}{\pi}}\left[\frac{2\sin(w)}{w}\right]$$
 11.8.27

Trying to find it using the double derivative relation,

$$f''(x) = g(x) 11.8.28$$

$$\mathcal{F}_c\{f''\} = -w^2 \ \mathcal{F}_c\{f\} - \sqrt{\frac{2}{\pi}} \ f'(0)$$
 11.8.29

$$\mathcal{F}_c\{g\} = \sqrt{\frac{2}{\pi}} \left[\left(-w + \frac{2}{w} \right) \sin(w) - 2\cos(w) \right]$$
 11.8.30

The results do not match since f(x) is not continuous on the real line. This makes the second method invalid.

7. Outside of the limit $x \to 0^+$, both functions are continuous and eligible. Looking at this limit,

$$\lim_{x \to 0^+} \frac{\sin(x)}{x} = \lim_{x \to 0^+} \cos(x) = 1$$
11.8.31

The limit is an indeterminate form that does exist using L'Hospital rule. Yes

$$\lim_{x \to 0^+} \frac{\cos(x)}{x} = \text{LDNE}$$

The limit does not exist. No

8. A function is absolutely integrable if the following integral exists and is finite.

$$\int_{-\infty}^{\infty} |f(x)| \, \mathrm{d}x = \int_{-\infty}^{\infty} |k| \, \mathrm{d}x = \infty$$

So, this function does not have Fourier cosine and sine transforms.

9. Finding the Fourier sine transform directly, using the standard result,

$$f(x) = e^{-ax} (a > 0)$$
 11.8.34

$$\widehat{f}_s(w) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin(wx) dx = \sqrt{\frac{2}{\pi}} \int_0^\infty (e^{-ax}) \sin(wx) dx$$
 11.8.35

$$= \sqrt{\frac{2}{\pi}} \left[-e^{-ax} \quad \frac{a\sin(wx) + w\cos(wx)}{a^2 + w^2} \right]_0^{\infty} = \sqrt{\frac{2}{\pi}} \left[\frac{w}{a^2 + w^2} \right]$$
 11.8.36

10. Finding it using the double derivative relation,

$$f''(x) = a^2 f(x) 11.8.37$$

$$\mathscr{F}_s\{f''\} = -w^2 \mathscr{F}_s\{f\} + \sqrt{\frac{2}{\pi}} wf(0)$$
 11.8.38

$$\mathcal{F}_s\{g\} = \sqrt{\frac{2}{\pi}} \left[\frac{w}{a^2 + w^2} \right]$$
 11.8.39

The results do not match since f(x) is not continuous on the real line. This makes the second method invalid.

11. Finding the Fourier sine transform,

$$f(x) = \begin{cases} x^2 & x \in (0, 1) \\ 0 & x > 1 \end{cases}$$
 11.8.40

$$\hat{f}_s(w) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \sin(wx) dx = \sqrt{\frac{2}{\pi}} \left[\int_0^1 (x^2) \sin(wx) dx \right]$$
 11.8.41

$$= \sqrt{\frac{2}{\pi}} \left[\frac{2x \sin(wx)}{w^2} + \frac{2 \cos(wx)}{w^3} - \frac{x^2 \cos(wx)}{w} \right]_0^1$$
 11.8.42

$$= \sqrt{\frac{2}{\pi}} \left[\frac{2}{w^2} \sin(w) + \frac{(2-w^2)}{w^3} \cos(w) - \frac{2}{w^3} \right]$$
 11.8.43

12. Finding the Fourier sine transform using the derivative relation,

$$g(x) = e^{-x^2/2}$$
 $f(x) = xe^{-x^2/2} = -g'(x)$ 11.8.44

$$\mathcal{F}_s\{g'(x)\} = -w \ \mathcal{F}_c\{g(x)\} \qquad \qquad \mathcal{F}_s\{f\} = w \ \mathcal{F}_c\{e^{-x^2/2}\} \qquad \qquad \text{11.8.45}$$

$$\mathcal{F}_s\{f\} = we^{-w^2/2}$$
 11.8.46

13. Finding the Fourier sine transform using the derivative relation,

$$f(x) = e^{-x}$$
 $f'(x) = -f(x)$ 11.8.47

$$\mathcal{F}_c\{f'(x)\} = w \ \mathcal{F}_s\{f(x)\} - \sqrt{\frac{2}{\pi}} \ f(0) \qquad -\mathcal{F}_c\{e^{-x}\} = w \ \mathcal{F}_s\{f(x)\} - \sqrt{\frac{2}{\pi}} \qquad \text{11.8.48}$$

$$\mathscr{F}_s\{f(x)\} = \sqrt{\frac{2}{\pi w}} \left[\frac{-1}{1+w^2} + 1 \right] \qquad = \sqrt{\frac{2}{\pi}} \left[\frac{w}{1+w^2} \right]$$
 11.8.49

14. Using the formulas in the Table,

$$\mathcal{F}_s \left\{ \frac{1}{\sqrt{x}} \right\} = \frac{1}{\sqrt{w}} \qquad \qquad \mathcal{F}_s \{ x^{a-1} \} = \sqrt{\frac{2}{\pi}} \, \frac{\Gamma(a)}{w^a} \, \sin\left(\frac{a\pi}{2}\right) \qquad \qquad 11.8.50$$

$$a = 1/2 \qquad \qquad \frac{1}{\sqrt{w}} = \frac{\Gamma(1/2)}{\sqrt{\pi w}} \qquad \qquad \text{11.8.51}$$

$$\Gamma(1/2) = \sqrt{\pi} \tag{11.8.52}$$

- 15. TBC. Refer notes.
 - Direct computation
 - Derivative relation
 - Second derivative relation

11.9 Fourier Transform, Discrete and Fast Fourier Transforms

1. Proving the relations using the definition of i,

$$e^{-ix} = \cos(-x) + i \sin(-x)$$
 = $\cos(x) - i \sin(x)$ 11.9.2

$$e^{ix} + e^{-ix} = \cos(x) + i \sin(x) + \cos(x) - i \sin(x)$$
 = $2\cos(x)$ 11.9.3

$$e^{ix} - e^{-ix} = \cos(x) + i \sin(x) - \cos(x) + i \sin(x)$$
 = 2i \sin(x) 11.9.4

Using the Taylor series expansions of $\cos(kx)$ and $\sin(kx)$,

$$\sin(kx) = kx - \frac{(kx)^3}{3!} + \frac{(kx)^5}{5!} - \dots$$
 11.9.5

$$\cos(kx) = 1 - \frac{(kx)^2}{2!} + \frac{(kx)^4}{4!} - \dots$$
 11.9.6

$$\cos(kx) + i \sin(kx) = 1 + (ikx) + \frac{(ikx)^2}{2!} + \frac{(ikx)^3}{3!} + \frac{(ikx)^4}{4!} + \dots$$
 11.9.7

$$= \exp(ikx) \tag{11.9.8}$$

2. Finding the Fourier transform by integration,

$$f(x) = \begin{cases} e^{2ix} & x \in (-1, 1) \\ 0 & \text{otherwise} \end{cases}$$
 11.9.9

$$\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx$$
 11.9.10

$$= \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{ix(2-w)} dx = \frac{1}{\sqrt{2\pi}} \left[\frac{e^{ix(2-w)}}{i(2-w)} \right]_{-1}^{1}$$
 11.9.11

$$=\frac{1}{\sqrt{2\pi}}\,\frac{2\sin(2-w)}{(2-w)}$$

3. Finding the Fourier transform by integration, assuming a < b

$$f(x) = \begin{cases} 1 & x \in (a, b) \\ 0 & \text{otherwise} \end{cases}$$
 11.9.13

$$\widehat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx$$
11.9.14

$$= \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-iwx} dx = \frac{1}{\sqrt{2\pi}} \left[\frac{e^{-iwx}}{(-iw)} \right]_{a}^{b}$$
 11.9.15

$$= \frac{i}{\sqrt{2\pi}} \frac{e^{-iwb} - e^{-iwa}}{w}$$
 11.9.16

4. Finding the Fourier transform by integration, assuming k > 0

$$f(x) = \begin{cases} e^{kx} & x < 0 \\ 0 & x > 0 \end{cases}$$
 11.9.17

$$\widehat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx$$
11.9.18

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{(k-iw)x} dx = \frac{1}{\sqrt{2\pi}} \left[\frac{e^{(k-iw)x}}{(k-iw)} \right]_{-\infty}^{0}$$
 11.9.19

$$= \frac{1}{\sqrt{2\pi}} \frac{1}{k - iw} = \frac{1}{\sqrt{2\pi}} \frac{k + iw}{k^2 + w^2}$$
 11.9.20

5. Finding the Fourier transform by integration, assuming a > 0

$$f(x) = \begin{cases} e^x & x \in (-a, a) \\ 0 & \text{otherwise} \end{cases}$$
 11.9.21

$$\widehat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx$$
11.9.22

$$= \frac{1}{\sqrt{2\pi}} \int_{-a}^{a} e^{(1-iw)x} dx = \frac{1}{\sqrt{2\pi}} \left[\frac{e^{(1-iw)x}}{(1-iw)} \right]_{-a}^{a}$$
 11.9.23

$$= \frac{1}{\sqrt{2\pi}} \frac{e^{(1-iw)a} - e^{-(1-iw)a}}{1 - iw}$$
 11.9.24

6. Finding the Fourier transform by integration, assuming a > 0

$$f(x) = \begin{cases} e^x & x < 0 \\ e^{-x} & x > 0 \end{cases}$$
 11.9.25

$$\widehat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx$$
11.9.26

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{(1-iw)x} dx + \int_{0}^{\infty} e^{(-1-iw)x} dx$$
 11.9.27

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{e^{(1-iw)x}}{(1-iw)} \right]_{-\infty}^{0} + \frac{1}{\sqrt{2\pi}} \left[\frac{e^{(-1-iw)x}}{(-1-iw)} \right]_{0}^{\infty}$$
 11.9.28

$$=\frac{1}{\sqrt{2\pi}}\,\frac{2}{1+w^2}$$
 11.9.29

7. Finding the Fourier transform by integration, assuming a > 0

$$f(x) = \begin{cases} x & x \in (0, a) \\ 0 & \text{otherwise} \end{cases}$$
 11.9.30

$$\widehat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \ e^{-iwx} \ \mathrm{d}x = \int_{0}^{a} x \ e^{-iwx} \ \mathrm{d}x$$
 11.9.31

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{xe^{-iwx}}{-iw} \right]_0^a - \frac{1}{\sqrt{2\pi}} \int_0^a \frac{e^{-iwx}}{-iw} dx$$
 11.9.32

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{ae^{-iwa}}{-iw} \right] + \frac{1}{\sqrt{2\pi}} \left[\frac{e^{-iwx}}{w^2} \right]_0^a$$
 11.9.33

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{(iwa+1)e^{-iwa} - 1}{w^2} \right]$$
 11.9.34

8. Finding the Fourier transform by integration,

$$f(x) = \begin{cases} xe^{-x} & x \in (-1,0) \\ 0 & \text{otherwise} \end{cases}$$
 11.9.35

$$\widehat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx = \int_{-1}^{0} x e^{-(1+iw)x} dx$$
 11.9.36

$$= \frac{1}{\sqrt{2\pi}} \left[-\frac{1 + (1+iw)x}{(1+iw)^2} e^{-(1+iw)x} \right]_{-1}^{0}$$
 11.9.37

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{-iw \ e^{(1+iw)} - 1}{(1+iw)^2} \right]$$
 11.9.38

9. Finding the Fourier transform by integration,

$$f(x) = \begin{cases} |x| & x \in (-1, 1) \\ 0 & \text{otherwise} \end{cases}$$
 11.9.39

$$\widehat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx$$
11.9.40

$$= \int_{-1}^{0} (-x) e^{-iwx} dx + \int_{0}^{1} (x) e^{-iwx} dx$$
 11.9.41

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{1 + iwx}{-w^2} e^{-iwx} \right]_{-1}^{0} + \frac{1}{\sqrt{2\pi}} \left[\frac{1 + iwx}{-w^2} e^{-iwx} \right]_{1}^{0}$$
 11.9.42

$$= \frac{2}{\sqrt{2\pi}} \left[\frac{\cos(w) + w \sin(w) - 1}{w^2} \right]$$
 11.9.43

10. Finding the Fourier transform by integration,

$$f(x) = \begin{cases} x & x \in (-1, 1) \\ 0 & \text{otherwise} \end{cases}$$
 11.9.44

$$\widehat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx$$
11.9.45

$$= \sqrt{\frac{1}{2\pi}} \int_{-1}^{1} (x) e^{-iwx} dx = \frac{1}{\sqrt{2\pi}} \left[\frac{1 + iwx}{w^2} e^{-iwx} \right]_{-1}^{1}$$
 11.9.46

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{(1+iw)e^{-iw} - (1-iw)e^{iw}}{w^2} \right]$$
 11.9.47

$$=\frac{2i}{\sqrt{2\pi}}\left[\frac{w\ \cos(w)+\sin(w)}{w^2}\right]$$
 11.9.48

11. Finding the Fourier transform by integration,

$$f(x) = \begin{cases} -1 & x \in (-1, 0) \\ 1 & x \in (0, 1) \\ 0 & \text{otherwise} \end{cases}$$
 11.9.49

$$\widehat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx$$
11.9.50

$$= \sqrt{\frac{1}{2\pi}} \int_{-1}^{0} (-1) e^{-iwx} dx + \frac{1}{\sqrt{2\pi}} \int_{0}^{1} (1) e^{-iwx} dx$$
 11.9.51

$$=\frac{1}{\sqrt{2\pi}} \left[\frac{e^{-iwx}}{iw} \right]_{-1}^{0} - \frac{1}{\sqrt{2\pi}} \left[\frac{e^{-iwx}}{iw} \right]_{0}^{1}$$
11.9.52

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{1 - e^{iw} - e^{-iw} + 1}{iw} \right] = \frac{2}{\sqrt{2\pi}} \left[\frac{1 - \cos(w)}{iw} \right]$$
 11.9.53

12. Using the table,

$$f(x) = \begin{cases} xe^{-x} & x > 0 \\ 0 & x < 0 \end{cases} \qquad g(x) = \begin{cases} e^{-x} & x > 0 \\ 0 & x < 0 \end{cases}$$
 11.9.54

$$\mathcal{F}\{g\} = \frac{1}{\sqrt{2\pi}} \frac{1}{1+iw} \qquad f'(x) = (1-x)e^{-x} = g(x) - f(x) \qquad 11.9.55$$

$$\mathscr{F}{f'} = iw \ \mathscr{F}{f} = \mathscr{F}{g - f}$$
 $\mathscr{F}{f} = \frac{1}{\sqrt{2\pi}} \frac{1}{(1 + iw)^2}$ 11.9.56

13. Using the table,

$$f(x) = e^{-x^2/2} \qquad \mathscr{F}\left\{e^{-ax^2}\right\} = \frac{1}{\sqrt{2a}} e^{-w^2/4a} \qquad (a > 0) \qquad 11.9.57$$

$$\mathcal{F}\{f(x)\} = e^{-w^2/2} \tag{11.9.58}$$

14. Obtaining formula 7 from formula 8,

$$f(x) = \begin{cases} e^{iax} & x \in (b, c) \\ 0 & \text{otherwise} \end{cases} \qquad g(x) = \begin{cases} e^{iax} & x \in (-b, b) \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{F}{f} = \frac{i}{\sqrt{2\pi}} \frac{e^{ib(a-w)} - e^{ic(a-w)}}{a-w} \qquad b \to -c$$
 11.9.60

$$\mathscr{F}\{g\} = \frac{i}{\sqrt{2\pi}} \frac{e^{-ic(a-w)} - e^{ic(a-w)}}{a - w} \qquad \qquad \mathscr{F}\{g\} = \frac{2}{\sqrt{2\pi}} \frac{\sin[c(w-a)]}{w - a} \qquad \qquad 11.9.61$$

Which mathces the formula in the table with $b \leftrightarrow c$

15. Obtaining formula 1 from formula 2,

$$f(x) = \begin{cases} 1 & x \in (b, c) \\ 0 & \text{otherwise} \end{cases}$$

$$g(x) = \begin{cases} 1 & x \in (-b, b) \\ 0 & \text{otherwise} \end{cases}$$
 11.9.62

$$\mathcal{F}\{f\} = \frac{1}{\sqrt{2\pi}} \frac{e^{-ibw} - e^{-icw}}{iw} \qquad b \to -c$$
 11.9.63

$$\mathcal{F}\{g\} = \frac{1}{\sqrt{2\pi}} \frac{e^{icw} - e^{-icw}}{iw} \qquad \qquad \mathcal{F}\{g\} = \frac{2}{\sqrt{2\pi}} \frac{\sin(cw)}{w}$$
 11.9.64

Which matches the formula in the table with $b \leftrightarrow c$

16. Shifting,

(a) Shifting in x,

$$\mathcal{F}\{f(x-a)\} = \int_{-\infty}^{\infty} f(x-a) e^{-iwx} dx$$
 11.9.65

$$y = (x - a) \qquad dy = dx \qquad 11.9.66$$

$$\mathcal{F}\{f(x-a)\} = \int_{-\infty}^{\infty} f(y) \ e^{-iwy} \ e^{-iwa} \ dy$$
 11.9.67

$$=e^{-iwa} \mathcal{F}\{f(x)\}$$
 11.9.68

(b) Obtaining formula 1 from formula 2,

$$\frac{b+c}{2} = \alpha \qquad \qquad \frac{c-b}{2} = \beta \qquad \qquad 11.9.69$$

$$f(x) = \begin{cases} 1 & x \in (\alpha - \beta, \alpha + \beta) \\ 0 & \text{otherwise} \end{cases}$$
 11.9.70

Using the fourier transform from the table and x shifting,

$$\mathcal{F}\{f(x)\} = \frac{1}{\sqrt{2\pi}} \frac{e^{-iw(\alpha-\beta)} - e^{-iw(\alpha+\beta)}}{iw}$$
 11.9.71

$$= \frac{e^{-iw\alpha}}{\sqrt{2\pi}} \frac{e^{iw\beta} - e^{-iw\beta}}{iw} = e^{-iw\alpha} \left[\sqrt{\frac{2}{\pi}} \frac{\sin(\beta w)}{w} \right]$$
 11.9.72

$$g(x) = \begin{cases} 1 & x \in (-\beta, \beta) \\ 0 & \text{otherwise} \end{cases}$$
 11.9.73

$$f(x) = g(x - \alpha) \tag{11.9.74}$$

This proves the relation.

(c) Shifting in w,

$$\mathcal{F}^{-1}\{\widehat{f}(w-a)\} = \int_{-\infty}^{\infty} \widehat{f}(w-a) e^{iwx} dw$$
 11.9.75

$$y = (w - a) \qquad \qquad \mathrm{d}y = \mathrm{d}w \qquad \qquad 11.9.76$$

$$\mathcal{F}\{f(w-a)\} = \int_{-\infty}^{\infty} \widehat{f}(y) e^{ixy} e^{ixa} dy$$
 11.9.77

$$=e^{iax} \mathcal{F}^{-1}\{\hat{f}(w)\} = e^{iax} \cdot f(x)$$
 11.9.78

(d) Obtaining formula 7 from formula 1,

$$f(x) = \begin{cases} 1 & x \in (-b, b) \\ 0 & \text{otherwise} \end{cases} \qquad g(x) = \begin{cases} e^{iax} & x \in (-b, b) \\ 0 & \text{otherwise} \end{cases}$$

$$\mathcal{F}\{f\} = \sqrt{\frac{2}{\pi}} \frac{\sin(bw)}{w} \qquad \qquad \mathcal{F}\{g\} = \mathcal{F}\{e^{iax} \cdot f\} \qquad \qquad 11.9.80$$

$$\mathscr{F}{g} = \sqrt{\frac{2}{\pi}} \frac{\sin(bw - ba)}{w - a}$$

Formula 8 is similarly derived from formula 2 by simple substitution.

17. The derivative relation cannot be used because its requirements are not satisfied by Problem 9

18. Here, n = 4

$$w = \exp\left(\frac{-2\pi i}{N}\right) = -i$$

$$\mathbf{F}_{4} = \begin{bmatrix} w^{0} & w^{0} & w^{0} & w^{0} \\ w^{0} & w^{1} & w^{2} & w^{3} \\ w^{0} & w^{2} & w^{4} & w^{6} \\ w^{0} & w^{3} & w^{6} & w^{9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}$$
11.9.83

$$\mathbf{f} = \begin{bmatrix} 0 \\ 1 \\ 4 \\ 9 \end{bmatrix} \qquad \qquad \hat{\mathbf{f}} = \mathbf{F}_4 \ \mathbf{f} = \begin{bmatrix} 14 \\ -4 + 8i \\ -6 \\ -4 - 8i \end{bmatrix}$$
 11.9.84

19. Here, n=4, and the general signal has 4 samples.

$$w = \exp\left(\frac{-2\pi i}{N}\right) = -i$$

$$\mathbf{F}_{4} = \begin{bmatrix} w^{0} & w^{0} & w^{0} & w^{0} \\ w^{0} & w^{1} & w^{2} & w^{3} \\ w^{0} & w^{2} & w^{4} & w^{6} \\ w^{0} & w^{3} & w^{6} & w^{9} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}$$
11.9.86

$$\mathbf{f} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \qquad \qquad \mathbf{\hat{f}} = \mathbf{F}_4 \ \mathbf{f} = \begin{bmatrix} (a+b+c+d) \\ (a-c)-i \ (b-d) \\ (a-b+c-d) \\ (a-c)+i \ (b-d) \end{bmatrix}$$
 11.9.87

20. Finding the inverse matrix of \mathbf{F}_4 in Example 4,

$$\mathbf{F}_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix} \qquad \mathbf{F}_{4}^{-1} = \frac{1}{4} \mathbf{F}_{4}^{\dagger} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$
 11.9.88

$$\mathbf{f} = \mathbf{F}_{4}^{-1} \hat{\mathbf{f}} = \mathbf{F}_{4}^{-1} \begin{bmatrix} 14 \\ -4 + 8i \\ -6 \\ -4 - 8i \end{bmatrix} \qquad \mathbf{f} = \frac{1}{4} \begin{bmatrix} 0 \\ 4 \\ 16 \\ 39 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 4 \\ 9 \end{bmatrix}$$
 11.9.89

21. Here, n=2, and the general signal has 4 samples.

$$w = \exp\left(\frac{-2\pi i}{N}\right) = -1$$

$$\mathbf{F}_2 = \begin{bmatrix} w^0 & w^0 \\ w^0 & w^1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
11.9.90

$$\widehat{\mathbf{f}} = \begin{bmatrix} a \\ b \end{bmatrix} \qquad \qquad \widehat{\mathbf{f}} = \mathbf{F}_2 \ \mathbf{f} = \begin{bmatrix} a+b \\ a-b \end{bmatrix}$$
 11.9.91

22. Finding the inverse matrix of \mathbf{F}_2 ,

$$\mathbf{F}_{2} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \qquad \mathbf{F}_{2}^{-1} = \frac{1}{2} \mathbf{F}_{2}^{\dagger} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \qquad 11.9.92$$

$$\mathbf{f} = \mathbf{F}_{2}^{-1} \hat{\mathbf{f}} = \mathbf{F}_{2}^{-1} \begin{bmatrix} a+b \\ a-b \end{bmatrix} \qquad \qquad \mathbf{f} = \frac{1}{2} \begin{bmatrix} 2a \\ 2b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} \qquad \qquad 11.9.93$$

23. For N = 8,

$$z = \exp\left(\frac{-2\pi i}{8}\right) = \cos(\pi/4) - i \sin(\pi/4) = \frac{1-i}{\sqrt{2}}$$

$$z^2 = \frac{(1-i)^2}{2} = \frac{1+(-1)-2i}{2} = -i \qquad z^2 = w_4 \implies z = w_8$$
11.9.95

24. For w = 8, the DFT matrix is,

 $z^{r+8} = z^r$

$$\mathbf{F}_{8} = \begin{bmatrix} w^{0} & w^{0} \\ w^{0} & w^{1} & w^{2} & w^{3} & w^{4} & w^{5} & w^{6} & w^{7} \\ w^{0} & w^{2} & w^{4} & w^{6} & w^{8} & w^{10} & w^{12} & w^{14} \\ w^{0} & w^{3} & w^{6} & w^{9} & w^{12} & w^{15} & w^{18} & w^{21} \\ w^{0} & w^{4} & w^{8} & w^{12} & w^{16} & w^{20} & w^{24} & w^{28} \\ w^{0} & w^{5} & w^{10} & w^{15} & w^{20} & w^{25} & w^{30} & w^{35} \\ w^{0} & w^{6} & w^{12} & w^{18} & w^{24} & w^{30} & w^{36} & w^{42} \\ w^{0} & w^{7} & w^{14} & w^{21} & w^{28} & w^{35} & w^{42} & w^{49} \end{bmatrix}$$

$$z^{0} = 1$$
 $z = \frac{1-i}{\sqrt{2}}$ $z^{2} = -i$ $z^{3} = \frac{-1-i}{\sqrt{2}}$ 11.9.97 $z^{4} = -1$ $z^{5} = \frac{-1+i}{\sqrt{2}}$ $z^{6} = i$ $z^{7} = \frac{1+i}{\sqrt{2}}$ 11.9.98

11.9.99

25. TBC. Performed using CAS. Coded in sympy