A Predictive Model for Oil Peak Rate Rice Datathon24 Chevron Track

PROJECT
OBJECTIVE

By exploring the oil peak rate, we aim to develop a model to optimize Chevron's resource management and strategy for asset development.

How can we predict the Oil Peak Rate?

PROJECT WORKFLOW

DATA WRAGLING

Remove irrelevant or unnecessary data

Use KNN imputer to process missing values

1

COMPARATIVE ANALYSIS OF OIL PEAK RATE BY OPERATOR

DISTRIBUTION OF OIL PRODUCTION PEAK RATES

EXPLORATION OF NUMERICAL DATA -1

EXPLORATION OF NUMERICAL DATA -2

EXPLORATION OF NUMERICAL DATA -3

ADDING 4 NEW FEATURES

PROPPANT_EFFICIENCY

 $proppant_efficiency_f = \frac{total_proppant}{true_vertical_depth}$

FLUID_EFFICIENCY

$$fluid_efficiency_f = \frac{total_fluid}{true_vertical_depth}$$

WELL_TRAJECTORY_LENGTH

$$well_trajectory_length_f = \\ \sqrt{(surface_x - bh_x)^2 + (surface_y - bh_y)^2 + (true_vertical_depth)^2}$$

WELL_INCLINATION

$$well_inclination_f = arccos\left(\frac{true_vertical_depth}{well_trajectory_length_f}\right)$$

DATA SCALING

MinMax Scaler

preferred when the features contains less outliers.

Robust Scaler

preferred when the features contains many outliers.

MODEL COMPARISON

MODEL	RMSE	
LinearRegression	0.6935	
CatBoostRegressor	O.4712	
GradientBoostingRegressor	0.5898	
LGBMRegressor	0.4953	
RandomForestRegressor	0.4311	
DecisionTreeRegressor	0.6257	
ANN	0.5078	

FEATURE IMPORTANCE

We utilized mutual information scores with significant correlation matrix values to identify important features, which are then employed to tune the model.

MODEL TUNING

Model	RMSE Before Tuning	RMSE After Tuning	RMSE Difference
CatBoostRegressor	0.4712	0.4494	0.0218
LGBMRegressor	0.4953	0.4692	0.0262
RandomForestRegressor	0.4311	0.4284	0.0027

RandomizedSearchCV efficiently tunes machine learning models by randomly sampling parameter combinations, saving time and computational resources while effectively optimizing model performance.

THANK YOU