a) Find the dual of this expression: $F = AB\bar{C} + D\bar{E}$

$$(A+B+\overline{C})(D+\overline{E})=F$$

b) $\bar{F} = (A + \bar{B} + \bar{C})(D + \bar{E})$ Use DeMorgan's Theorem to find F. Your final answer must be in sum-of-products (SOP) form.

$$F = \overline{(A + \overline{B} + \overline{C})(0 + \overline{E})} = \overline{(A + \overline{B} + \overline{C})} + \overline{(D + \overline{E})}$$

$$F = \overline{A}BC + \overline{D}E$$

c) $F = A\bar{B} + \bar{C}D\bar{E}$ Use DeMorgan's Theorem to find \bar{F} . Your final answer must be in product-of-sums (POS) form.

$$\overline{F} = (\overline{A} + B)(C + \overline{D} + E)$$