INTEGRATED CIRCUITS

DATA SHEET

TDA7073A; TDA7073AT Dual BTL power driver

Product specification Supersedes data of 1994 July File under Integrated Circuits, IC01

Dual BTL power driver

TDA7073A; TDA7073AT

FEATURES

- No external components
- · Very high slew rate
- · Single power supply
- · Short-circuit proof
- High output current (0.6 A)
- · Wide supply voltage range
- · Low output offset voltage
- Suited for handling PWM signals up to 176 kHz
- · ESD protected on all pins.

GENERAL DESCRIPTION

The TDA7073A/AT are dual power driver circuits in a BTL configuration, intended for use as a power driver for servo systems with a single supply. They are specially designed for compact disc players and are capable of driving focus, tracking, sled functions and spindle motors.

Missing Current Limiter (MCL)

A MCL protection circuit is built-in. The MCL circuit is activated when the difference in current between the output terminal of each amplifier exceeds 100 mA (typical 300 mA). This level of 100 mA allows for headphone applications (single-ended).

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	positive supply voltage range		3.0	5.0	18	V
G _v	voltage gain		32.5	33.5	34.5	dB
I _P	total quiescent current	V _P = 5 V; R _L = ∞	_	8	16	mA
SR	slew rate		_	12	_	V/μs
Io	output current		_	_	0.6	Α
I _{bias}	input bias current		_	100	300	nA
f _{co}	cut-off frequency	-3 dB	_	1.5	_	MHz

ORDERING INFORMATION

TYPE NUMBER			
NAME		DESCRIPTION	VERSION
TDA7073A	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-1
TDA7073AT	SO16	plastic small outline package; 16 leads; body width 7.5 mm	SOT162-1

Dual BTL power driver

TDA7073A; TDA7073AT

BLOCK DIAGRAM

4

Dual BTL power driver

TDA7073A; TDA7073AT

PINNING

SYMBOL	PIN	DESCRIPTION	
IN1-	1	negative input 1	
IN1+	2	positive input 1	
n.c.	3	not connected	
n.c.	4	not connected	
V_{P}	5	positive supply voltage	
IN2+	6	positive input 2	
IN2-	7	negative input 2	
n.c.	8	not connected	
OUT2+	9	positive output 2	
GND2	10	ground 2	
n.c.	11	not connected	
OUT2-	12	negative output 2	
OUT1-	13	negative output 1	
GND1	14	ground 1	
n.c.	15	not connected	
OUT1+	16	positive output 1	

FUNCTIONAL DESCRIPTION

The TDA7073A/AT are dual power driver circuits in a BTL configuration, intended for use as a power driver for servo systems with a single supply. They are particular designed for compact disc players and are capable of driving focus, tracking, sled functions and spindle motors.

Because of the BTL configuration, the devices can supply a bi-directional DC current in the load, with only a single supply voltage. The voltage gain is fixed by internal feedback at 33.5 dB and the devices operate in a wide supply voltage range (3 to 18 V). The devices can supply a maximum output current of 0.6 A. The outputs can be short-circuited over the load, to the supply and to ground at all input conditions. The differential inputs can handle common mode input voltages from ground level up to $(\mbox{$V_P$}-2.2\mbox{ V}$ with a maximum of 10 V). The devices have a very high slew rate. Due to the large bandwidth, they can handle PWM signals up to 176 kHz.

Dual BTL power driver

TDA7073A; TDA7073AT

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _P	positive supply voltage range		_	18	V
I _{ORM}	repetitive peak output current		_	1	А
I _{OSM}	non repetitive peak output current		_	1.5	А
P _{tot}	total power dissipation				
	TDA7073A	T _{amb} < 25 °C	_	2.5	W
	TDA7073AT	T _{amb} < 25 °C T _{amb} < 25 °C	_	1.32	W
T _{stg}	storage temperature range		-55	+150	°C
T _{vj}	virtual junction temperature		_	150	°C
T _{sc}	short-circuit time	see note 1	_	1	hr

Note

1. The outputs can be short-circuited over the load, to the supply and to ground at all input conditions.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th (j-a)}	from junction to ambient			
	TDA7073A	in free air; note 1	50	K/W
	TDA7073AT	in free air; note 2	95	K/W

Notes

- 1. TDA7073A: $V_P = 5$ V; $R_L = 8$ Ω ; The typical voltage swing = 5.8 V and V_{loss} is 2.1 V therefore $I_O = 0.36$ A and $P_{tot} = 2 \times 0.76$ W = 1.52 W; $T_{amb~(max)} = 150 1.52 \times 50 = 74$ °C.
- 2. TDA7073AT: V_P = 5 V; R_L = 16 Ω ; typical voltage swing = 5.8 V and V_{loss} is 2.1 V therefore I_O = 0.18 A and P_{tot} = 2 × 0.38 W = 0.76 W; $T_{amb\ (max)}$ = 150 0.76 × 95 = 77 °C.

Dual BTL power driver

TDA7073A; TDA7073AT

CHARACTERISTICS

 V_P = 5 V; f = 1 kHz; T_{amb} = 25 °C; unless otherwise specified (see Fig.3). TDA7073A: R_L = 8 Ω ; TDA7073AT: R_L = 16 Ω .

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _P	positive supply voltage range		3.0	5.0	18	V
I _{ORM}	repetitive peak output current		_	_	0.6	Α
I _P	total quiescent current	$V_P = 5 \text{ V}; R_L = \infty;$ note 1	_	8	16	mA
ΔV_{OUT}	output voltage swing	note 2	5.2	5.8	_	V
THD	total harmonic distortion					
	TDA7073A	V _{OUT} = 1 V (RMS)	_	0.3	_	%
	TDA7073AT	$V_{OUT} = 1 V (RMS)$	_	0.1	_	%
G _v	voltage gain		32.5	33.5	34.5	dB
V _{no(rms)}	noise output voltage (RMS value)	note 3	_	75	150	μV
В	bandwidth		_	_	1.5	MHz
SVRR	supply voltage ripple rejection	note 4	38	55	_	dB
ΔV _{16-13,12-9}	DC output offset voltage	$R_S = 500 \Omega$	_	_	100	mV
V _{I(CM)}	DC common mode voltage range	note 5	0	_	2.8	V
CMRR	DC common mode rejection ratio	note 6	_	100	_	dB
Z _I	input impedance		_	100	_	kΩ
I _{bias}	input bias current		_	100	300	nA
α	channel separation		40	50	_	dB
IΔGVI	channel unbalance		_	_	1	dB
SR	slew rate		_	12	_	V/μs

Notes

- 1. With a load connected to the outputs the quiescent current will increase, the maximum value of this increase being equal to the DC output offset voltage divided by R_L.
- 2. The output voltage swing is typically limited to $2 \times (V_P 2.1 \text{ V})$ (see Fig.4).
- 3. The noise output voltage (RMS value), unweighted (20 Hz to 20 kHz) is measured with R_S = 500 Ω .
- 4. The ripple rejection is measured with $R_S = 0 \Omega$ and f = 100 Hz to 10 kHz. The ripple voltage of 200 mV (RMS value) is applied to the positive supply rail.
- 5. The DC common mode voltage range is limited to $(V_P 2.2 \text{ V})$ with a maximum of 10 V).
- 6. The common mode rejection ratio is measured at $V_{ref} = 1.4 \text{ V}$, $V_{I(CM)} = 200 \text{ mV}$ and f = 1 kHz.

Dual BTL power driver

TDA7073A; TDA7073AT

APPLICATION INFORMATION

- (1) This capacitor can be omitted if the 220 μF electrolytic capacitor is connected close to pin 5.
- (2) $\,$ R $_{\!L}$ can be: focus, tracking, sled function or spindle motor.

Fig.3 Test and application diagram.

7

Dual BTL power driver

TDA7073A; TDA7073AT

Dual BTL power driver

TDA7073A; TDA7073AT

PACKAGE OUTLINES

DIP16: plastic dual in-line package; 16 leads (300 mil); long body

SOT38-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.7	0.51	3.7	1.40 1.14	0.53 0.38	0.32 0.23	21.8 21.4	6.48 6.20	2.54	7.62	3.9 3.4	8.25 7.80	9.5 8.3	0.254	2.2
inches	0.19	0.020	0.15	0.055 0.045	0.021 0.015	0.013 0.009	0.86 0.84	0.26 0.24	0.10	0.30	0.15 0.13	0.32 0.31	0.37 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT38-1	050G09	MO-001AE				92-10-02 95-01-19

Dual BTL power driver

TDA7073A; TDA7073AT

SO16: plastic small outline package; 16 leads; body width 7.5 mm

SOT162-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	10.5 10.1	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.41 0.40	0.30 0.29	0.050	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE						ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	
SOT162-1	075E03	MS-013AA				-95-01-24 97-05-22

Dual BTL power driver

TDA7073A; TDA7073AT

SOLDERING

Introduction

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "Data Handbook IC26; Integrated Circuit Packages" (document order number 9398 652 90011).

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mount components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.

Through-hole mount packages

SOLDERING BY DIPPING OR BY SOLDER WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joints for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature $(T_{stg(max)})$. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

MANUAL SOLDERING

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

Surface mount packages

REFLOW SOLDERING

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

WAVE SOLDERING

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is **preferred** to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

 For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

MANUAL SOLDERING

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300\ ^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

Dual BTL power driver

TDA7073A; TDA7073AT

Suitability of IC packages for wave, reflow and dipping soldering methods

MOUNTING	PACKAGE	SOLDERING METHOD					
MOONTING	PACKAGE	WAVE	REFLOW ⁽¹⁾	DIPPING			
Through-hole mount	DBS, DIP, HDIP, SDIP, SIL	suitable ⁽²⁾	_	suitable			
Surface mount	BGA, LFBGA, SQFP, TFBGA	not suitable	suitable	_			
	HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS	not suitable ⁽³⁾	suitable	_			
	PLCC ⁽⁴⁾ , SO, SOJ	suitable	suitable	_			
	LQFP, QFP, TQFP	not recommended ⁽⁴⁾⁽⁵⁾	suitable	_			
	SSOP, TSSOP, VSO	not recommended ⁽⁶⁾	suitable	_			

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.
- 3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Dual BTL power driver

TDA7073A; TDA7073AT

NOTES

Dual BTL power driver

TDA7073A; TDA7073AT

NOTES

Dual BTL power driver

TDA7073A; TDA7073AT

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248. Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,

220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773

Belgium: see The Netherlands Brazil: see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America Czech Republic: see Austria

Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,

Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920

France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,

Tel. +33 1 4099 6161, Fax. +33 1 4099 6427

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 2353 60, Fax. +49 40 2353 6300

Hungary: see Austria

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,

Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division,

Gedung Philips, Jl. Buncit Raya Kav. 99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),

Tel. +39 039 203 6838. Fax +39 039 203 6800

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811

Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327

Portugal: see Spain

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,

Tel. +27 11 471 5401, Fax. +27 11 471 5398 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP. Brazil.

Tel. +55 11 821 2333. Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745

Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd. 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,

Tel. +66 2 745 4090, Fax. +66 2 398 0793

Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye, ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

Uruguay: see South America Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 62 5344, Fax.+381 11 63 5777

For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

Internet: http://www.semiconductors.philips.com

© Philips Electronics N.V. 1999 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

545002/03/pp16

Date of release: 1999 Aug 30 Document order number: 9397 750 06375

Let's make things better.

SCA 67