

RaspberryPi 와 클라우드 환경을 이용한 실습실 설계 및 구현

201311263 김민환 201310173 이종하

- 2019 종합설계1 -

Index

.....

工。全洲

1. 요약

- 1.소개
- Ⅱ. 설계
- Ⅲ. 구현
- Ⅳ. 시연
- V. 발전방향

- [naspberry Fi]
- OpenStack을 활용하여 Cloud Infra를 구성

● Raspberry Pi를 Desktop을 대체할 장비로 활용

● RDP프로토콜을 활용하여 Windows 와 Linux 데스크탑 환경을 자유롭게

2. 문제점 분석

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[하드웨어] [컴퓨터 실습실]

[OS 및 소프트웨어]

2. 문제접 분석

- 1.소개
- Ⅱ. 설계
- Ⅲ. 구현
- Ⅳ. 시연
- V. 발전방향

- 실수 발생 가능성 존재
- 완벽히 같은 환경 구성의 어려움
- 시간과 비용의 소요 큼

- 실수 발생 가능성 차단
- 완벽히 같은 환경 구성 가능
- 시간과 비용의 소요 적음

3. 해결 방안

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

Virtual Desktop Infrastructure (VDI)

3. 해결 방안

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

3. 해결 방안

1. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

4. 이접

1. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[선택의 이유]

- 생산 단가를 낮출 수 있음
- 좋은 품질의 VDI 제공

4. 이접

1. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

	본 과제	타 기업	일반
Quick Power On	Ο	X	X
Image 배포	0	X	X
SW 관리	0	X	X
Client 관리	Ο	Ο	X
SW 비용	Low	Middle	Low
HW 비용	Low	Middle	Low
전력소모	Low	Middle	Low

工。 설계

1. 시나리오

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[건국대학교 컴퓨터 실습실]

- VDI 솔루션 구축을 원함

- VDI 솔루션 구축을 <mark>진행</mark>
- 업체별로 Lisence 정보 관리

2. 건국대학교 서버실 설계

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[건국대학교 신 공학관 서버 설계도]

2. 건국대학교 서버실 설계

l . 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[Ubuntu maas 관리자 화면]

3. 건국대학교 실습실 설계

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[Client 구성 관리자 화면]

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[AWS를 이용한 Serverless 설계도]

l . 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[GitHub 화면]

[SE][Linux]OpenStack에서 image upload가 되지 않을 때 조 치 방법

NerdKim edited this page 8 days ago · 1 revision

OpenStack web에서 image(OS file) upload가 되지 않을 때, openstack-cli(openstack-client)를 이용하여 API를 통해 업로드 진행한다.

• OpenStack-Client: https://github.com/openstack/python-openstackclient

이 때, openstack-cli 명령 실행 시, insecure를 추가하여 SSL 인증을 진행하지 않는다.

OpenStack image create with insecure SSL openstack image create "Windows-10-Pro-PreBuilt" --disk-format qcow2 --container-format bare

※참고: OpenStack 셋팅 시 다음과 같이 환경변수 설정을 진행해야 한다(Wiki에서 확인 가능).

+ Add a custom footer

▼ Pages 11
Find a Page
Home
[SE][Linux]Let's Encrypt SSL 생 성
[SE][Linux]OpenStack 전용 Windows image(OS) 생성 방법
[SE][Linux]OpenStack 환경변수
[SE][Linux]OpenStack에서 image upload가 되지 않을 때 조치 방법
[SE]서비스 최고 관리 정보
[Windows]Chrome을 insecure mode로 실행하기
Curl to AWS API Gateway
GitHub credential
vdi admin 계정 정보
Windows driver name 변경

New Page

[GitHub Wiki 화면]

l . 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

vdi-license-server-production

l . 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

업데이트

삭제

스택 작업 ▼

[AWS CloudFormation 화면]

皿。一章

1. 기존 자원

1. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

[건국대학교 DMS 랩실]

2. 장비 조립·점검·교체

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

3. 서버실 설계

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[Rack1: Proxy, Infra, Nat/MAAS, HaProxy서버 | Rack2: Storage, Compute node]

3. 서버실 설계

1 . 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

3. 서버실 설계

ㅣ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

[Rack2]

IV. 시면

1. ThinClient 완제품

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

2. ThinClient 포트 연결

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

3. 가상PC환경 접속

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

1. 현재의 한계점

1. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[건국대학교 구형 실습실 컴퓨터 SPEC]

1. 현재의 한계점

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

○ 해결방안 -〉교체

[SSD]

[고사양 서버]

2. Client 개선 사항

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

저사양의 Single Board Computer

(단가 인하)

[BananaPi]

가벼운 OS **Embeded OS** (성능 향상)

[TinyCore OS]

[Zero Client]

3. Server 개선 사항

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[Xen Hypervisor]

[Web management service]

3. Server 개선 사항

Ⅰ. 소개

Ⅱ. 설계

Ⅲ. 구현

Ⅳ. 시연

V. 발전방향

[전체적인 프로젝트 설계도]

THANK YOU