Hacking Into Someone's Home using Radio Waves

Ethical Hacking of Securitas' Alarm System

Axel Lindeberg, master thesis presentation

The Agenda for Today

- 1. Introduction
- 2. Method
- 3. The System under Consideration
- 4. Threat model
- 5. Penetration tests
 - 5.1. RF Replay attack
 - 5.2. RF Reverse Engineering
 - 5.3. RF Jamming Attack
 - 5.4. Insecure Network Services
- 6. Conclusions

The Rise of Connected IoT Devices

An estimated 30 billion connected IoT devices by 2025

Set to outnumber non-loT devices to by 3:1 in 2025

The Rise of Smart Home Alarm Systems

Have become increasingly complex:

- Controlled remotely (mobile, web)
- Home Automation
- Smart speakers (Alexa, Google home)
- Smart locks

20% expected market growth in 2021.

Verisure alone is installed in 360 000 Swedish homes.

How secure are they against cyber attacks?

Method

Penetration testing methodology

Seven-step penetration testing methodology (Weidman, 2014)

- 1. Pre-engagement
- 2. Information Gathering
- 3. Threat Modeling
- 4. Vulnerability Analysis
- 5. Exploitation
- 6. Post Exploitation
- 7. Reporting

Threat modeling technique

A process to identify and analyze threats against a system.

A six-step process, specialized for IoT systems presented by Guzman et al. (2017).

- 1. Identify IoT assets
- 2. Create an architecture overview
- 3. Decompose the IoT system
- 4. Identify threats
- 5. Document threats
- 6. Rate the threats

Related Work in Identifying Threats

- The STRIDE model of threats
- OWASP IoT Top 10
- ETSI EN 303 645 standard

The System under Consideration

The SecuritasHome Alarm System

The Hardware:

Five components, including a central panel that controls the whole system.

Manufactured by a Taiwanese company called Climax Technology

(e) Smoke Detector

The Securitas Home Alarm System

The Software:

A website and a mobile app. Allows the user to remotely control the system.

Developed by an American company called *Alarm.com*

Threat model

Identified Assets

Initial step: Identify the assets of the system.

- Physical access to the house
- Personal four-digit pin
- Arm/disarm state of the system
- State of triggers, like the sabotage sensors
- Door contact sensor state
- Authentication to the admin web application
- Triggered alarm state
- Login credentials to the local webserver

Architecture Overview

Identified use-cases:

- The user arms/disarms the system via:
 - the remote keypad panel.
 - the web portal.
 - the mobile app.
- The user receives a notification about a state change in the system via:
 - a mobile notification.
 - an email.
- The user requests a photo be taken by the camera.

Identified Threats

The STRIDE model, OWASP IoT Top 10, and ETSI EN 303 645 standard were used to identify threats against the system:

- Spoof hardware components via RF communication
- RF Replay attack
- Insecure or non-existent encryption in communication
- DoS/Jamming attack against the RF communication
- Insecure default credentials
- Insecure network services
- ... And more

Penetration Tests

- 1. RF Replay attack
- 2. RF reverse engineering
- 3. RF jamming attack
- 4. Insecure Network services

RF Communication

- IoT Systems often use Radio Frequencies (RF) to communicate wirelessly.
- They communicate at a specific, predetermined frequency.
- WiFi, Bluetooth, Zigbee, proprietary protocols

RF Hacking - Why?

"RF Hacking today is the same as Web Security in the 90s"

Harshit Agrawal, MIT Academy of Engineering

- Security is often overlooked/ignored by manufacturers.
- Riddled with trivial vulnerabilities, unencrypted traffic, etc.
- Lack of cybersecurity competence among RF engineers.
- Higher barrier to entry, requires specific hardware.
- Not common knowledge among pentesters like web security.

Software Defined Radios (SDR)

RF Hacking requires specific hardware, SDRs.

- Used to receive and transmit arbitrary RF signals.
- Controlled and tunable in software.
- Have become cheap and readily available in recent years.

Penetration Tests

Task 1: RF Replay attack

Task 1: RF Replay attack

A general attack on network communication.

A message is recorded and then retransmitted later to achieve the same effect.

A "zero-knowledge" attack.

- First, establish the center frequency.
- Used the open-source tool Universal Radio Hacker (URH).
- Communicates at 868,64 MHz.

Next, signals were recorded using URH.

These are saved as a file of raw IQ-data of signed bytes.

Was repeated for all identified RF endpoints.

Lastly, the recorded signals were transmitted using URH.

Task 1: RF Replay attack - Results

<u>All</u> identified RF communication endpoints were deemed vulnerable to replay attacks.

Captured signals still worked months later.

An attacker can <u>disarm an armed system</u>, completely bypassing the systems functionality.

Task 1: RF Replay attack - Discussion

A critical mistake, compromising the entire security.

A well-known issue in RF communication.

Can be hard to protect against in some IoT systems.

- Timestamps
- One-time passwords
- Rolling codes

Does, however, require first recording the signal.

Penetration Tests

Task 2: Reverse engineering the RF protocol

Task 2: RF reverse engineering

The system uses a proprietary RF protocol.

Ideally, one would like to understand the RF protocol structure.

Can let an attacker send arbitrary RF messages.

Need to convert raw signal data back into binary data.

Task 2: Background - Modulation

Digital Modulation, encoding binary data in radio signals.

Three main types:

- Amplitude-Shift keying (ASK)
- Frequency-Shift keying (FSK)
- Phase-Shift keying (PSK)

Many, more complicated schemes (OOK, GFSK, MFSK, QAM, FHSS, ...)

Task 2: Background - Demodulation

Digital Demodulation, is the process of converting a modulated signal back into binary data.

Usually done in hardware, using efficient specialized circuitry.

Signals were captured using the method described previously.

Next, we need to find the modulation scheme used.

Visually inspecting the signal we see it is FSK, also documented

in the user manual.

Frequency: 868MHz

Modulation: FSK

Antenna type: Monopole antenna

Antenna gain: 1.75dBi

Protocol: Climax

Encryption: Private Encryption Method

URH tries to automatically demodulate, however, it failed for these signals.

Was instead demodulated by hand using *Audacity*.

Complicated process involving many steps.

Essentially, implements this simplified circuit:

Lastly, the binary wave had to be decoded into binary data.

This was done using a small python script.

Parameters were measured by hand, using a *matplotlib* graph.

```
import matplotlib.pyplot as plt
SIGNAL_LEN, SYMBOL_LEN = 34000, 200
FILE, SIGNAL_OFFSETS = "door-868_638MHz-2MSps-2MHz.raw", [1800, ...]
with open(FILE, "rb") as f:
  signal = [b if b < 128 else b - 256 for b in f.read()]
for i, offset in enumerate(SIGNAL_OFFSETS):
  xs = range(offset, offset + SIGNAL_LEN, SYMBOL_LEN)
  plt.scatter(xs, [0 for _ in xs], c="red")
  bits = "".join(['1' if signal[x] > 0 else '0' for x in xs])
  print(f"Packet {str(i).ljust(2)} =", hex(int(bits, 2)))
plt.plot(signal)
plt.show()
```

Task 2: RF Reverse engineering - Result

Door tamper sensor on	Camera tamper sensor on
0xaaaaaaa29cd29cd0a000015d477e072b922530064	0x155555554539a539a14000034164758f44cfae66f1
0xaaaaaaa29cd29cd0a0000028648b07e291d2ceecc	0x155555554539a539a14000034164758f44cfae66f1
0xaaaaaaa29cd29cd0a0000280b9d2e1d2d2ca7f31c	0x155555554539a539a14000034164758f44cfae66f1
0xaaaaaaa29cd29cd0a00002548c662f2feeea7fe22	0x155555554539a539a14000034164758f44cfae66f1
0xaaaaaaa29cd29cd0a000019201db301398d538674	0x155555554539a539a14000034164758f44cfae66f1
0xaaaaaaa29cd29cd0a00000806d6a5ee37481e2f76	0x155555554539a539a14000034164758f44cfae66f1
Door tamper sensor off	Camera tamper sensor off
0xaaaaaaa29cd29cd0a0000102366a5cb78d61c0d0c	0x155555554539a539a140000342724d66fce053d3d7
0xaaaaaaa29cd29cd0a00000a3b2cb0867bf62aa616	0x155555554539a539a140000342724d66fce053d3d7
0xaaaaaaa29cd29cd0a000028fe2271f089a9e8c984	0x155555554539a539a140000342724d66fce053d3d7
0xaaaaaaa29cd29cd0a00001e23195bcbe8c65107ec	0x155555554539a539a140000342724d66fce053d3d7
0xaaaaaaa29cd29cd0a00001913b1ee7e3448da1cf0	0x155555554539a539a140000342724d66fce053d3d7
0xaaaaaaa29cd29cd0a000006f69dbb732deb2a120c	0x155555554539a539a140000342724d66fce053d3d7

We now have a bunch of bits!

One can clearly see a structure in the messages.

Task 2: RF Reverse engineering - Result

Task 2: Discussion

The messages follow a classic structure for RF protocols.

The payload is encrypted, or at least obfuscated.

Further investigation would most likely require reverse engineering the firmware.

Task 3: RF Jamming Attack

The RF equivalent of a *DoS* attack. Almost impossible to protect against.

This is detected by the system.

However, it is not reported to the user.

Fast Noise Source

Variate Pool Size: 8.192k

Noise Type: Uniform

Amplitude: 1M

Seed: 0

Task 4: Insecure Network Services

Very common source of vulnerabilities (OWASP IoT #2). Three services on the system, found via *Nmap* port scanning.

```
    53/tcp, 53/udp (DNS)
    80/tcp (HTTP)
    58098/tcp (Backdoor?)
```

No additional vulnerabilities found. However, the services are all seemingly unnecessary and the last one is very *suspicious*.

Conclusion

Conclusion

The system does a lot of things right:

- GSM telecommunication
- Backup battery
- Tamper sensors on all devices
- Encryption in most communication channels

However, in cybersecurity one mistake can be all it takes.

Among other smaller vulnerabilities, a glaring security flaw in the RF protocol was found. This allows an attacker to <u>disarm an armed system</u>.

Thanks for Listening!

Questions?