Notation: $\hat{\Gamma} \vdash \delta_1, ..., \delta_n$ means $\hat{\Gamma} \vdash \delta_1$ and $\hat{\Gamma} \vdash \delta_2$ and ... and $\hat{\Gamma} \vdash \delta_n$, where each δ_i is a judgement.

Lemma 1 (Narrowing 1 (Subtypes)). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2 \text{ and } \hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau} \text{ then } \hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$

Proof. By induction on $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$. The tricky cases are S-TypePoly and S-TypeVar; the others follow by routine application of the inductive hypothesis to subderivations.

Case: S-Reflexive. Then $\hat{\tau}_1 = \hat{\tau}_2$, and $\hat{\tau}_1 <: \hat{\tau}_2$ holds in any context, including $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}$.

Case: S-Transitive. Let $\hat{\tau}_1 = \hat{\tau}_A$ and $\hat{\tau}_2 = \hat{\tau}_C$. By inversion, there is some $\hat{\tau}_B$ such that $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_B$ and $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_B <: \hat{\tau}_C$. Applying the inductive assumption, we get the judgements $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_B$ and $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_B <: \hat{\tau}_C$. Then by S-Transitive, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_C$, which is the same as $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$.

Case: S-RESOURCESET. Follows immediately, since the premises of this rule have nothing to do with the context. That is, if $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \{\overline{r_1}\} <: \{\overline{r_2}\}$, then by inversion, $r \in \overline{r_1} \implies r \in \overline{r_2}$. Then by S-RESOURCESET, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \{\overline{r_1}\} <: \{\overline{r_2}\}$.

Case: S-TypePoly. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash (\forall Y <: \hat{\tau}_A.\hat{\tau}_B) <: (\forall Z <: \hat{\tau}_A'.\hat{\tau}_B')$. By inversion, we have the following two judgements:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}'_A <: \hat{\tau}_A$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, Y <: \hat{\tau}'_A \vdash \hat{\tau}_B <: \hat{\tau}'_B$

Using (1) and the assumption $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, the inductive hypothesis can be used to obtain (3).

3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}'_A <: \hat{\tau}_A$

Let $\Delta' = \Delta, Y <: \hat{\tau}'_A$. With this, and the assumption $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, we shall apply the inductive hypothesis to obtain (4),

4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}' \vdash \hat{\tau}_B <: \hat{\tau}'_B$

Expanding the definition of Δ' , we get (5),

5. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}, Y <: \hat{\tau}'_A \vdash \hat{\tau}_B <: \hat{\tau}'_B$

From (3) and (5), we can use S-TypePoly to obtain (6), which is the theorem conclusion.

6. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash (\forall Y <: \hat{\tau}_A.\hat{\tau}_B) <: (\forall Z <: \hat{\tau}'_A.\hat{\tau}'_B)$

Case: S-TypeVar. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash Y <: \hat{\tau}_B$. There are two cases, depending on whether X = Y.

Subcase 1. X = Y. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash X <: \hat{\tau}$. It is also true that (1) $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash X <: \hat{\tau}'$, by use of S-TypeVar. The assumption $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$ can be widened to (2) $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}' <: \hat{\tau}$. Then by (1) and (2), we can apply S-Transitive to get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash X <: \hat{\tau}$.

Subcase 2. $X \neq Y$. Then $X <: \hat{\tau}$ is not used in the derivation of $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash Y <: \hat{\tau}_B$, so the judgement can be strengthened to $\hat{\Gamma}, \hat{\Delta} \vdash Y <: \hat{\tau}_B$. Then the judgement can be weakened to $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash Y <: \hat{\tau}_B$.

Lemma 2 (Narrowing 2 (Effects)). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2 \text{ and } \hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}, \text{ then } \hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$.

Proof. By induction on $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon_1 \subseteq \varepsilon_2$.

Lemma 3 (Narrowing 3 (Types)). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε and $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$ then $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε_A

Proof. By induction on the derivation of $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε_A . ε -ABS, ε -POLYTYPEABS, ε -POLYTYPEAPP, ε -POLYFXAPP are the tricky cases; they require the use of the inductive hypothesis in a slightly more tricky way. The other cases follow by routine induction.

[Case: ε-VAR.] Then $\hat{\Gamma}$, $X <: \hat{\tau}$, $\hat{\Delta} \vdash x : \hat{\tau}_A$ with Ø, where $\hat{e} = x$. Since $X <: \hat{\tau}$ is not used in the derivation, we can strengthen the context to get $\hat{\Gamma}$, $\hat{\Delta} \vdash x : \hat{\tau}_A$ with Ø. Then by weakening, $\hat{\Gamma}$, $X <: \hat{\tau}'$, $\hat{\Delta} \vdash x : \hat{\tau}_A$ with Ø.

Case: ε -RESOURCE. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash r : \{\bar{r}\}$ with \varnothing , where $\hat{e} = r$. Since $X <: \hat{\tau}$ is not used in the derivation, we can strengthen the context to get $\hat{\Gamma}, \hat{\Delta} \vdash r : \{r\}$ with \varnothing . Then by weakening, $\hat{\Gamma}, x <: \hat{\tau}', \hat{\Delta} \vdash r : \{r\}$ with \varnothing .

Case: ε -OPERCALL. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1.\pi$: Unit with $\varepsilon_1 \cup \{r.\pi \mid r \in \overline{r}\}$, and $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \{\overline{r}\}$ with ε_1 . To this second judgement we apply the inductive hypothesis, giving $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 : \{\overline{r}\}$ with ε_1 . With this new judgement, apply ε -OPERCALL to get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1.\pi$: Unit with $\varepsilon_1 \cup \{r.\pi \mid r \in \overline{r}\}$.

Case: ε -Subsume. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε_A . By inversion, $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_B, \varepsilon \subseteq \varepsilon'$. By applying Narrowing Lemma 1 to the first judgement, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau} <: \hat{\tau}'$. By applying the Narrowing Lemma for effects¹, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \varepsilon \subseteq \varepsilon'$. With these two judgements, ε -Subsume can be used to obtain the judgement $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e} : \hat{\tau}_A$ with ε_A .

Case: ε -ABS. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda x : \hat{\tau}_1.\hat{e}_2 : \hat{\tau}_1 \rightarrow_{\varepsilon_2} \hat{\tau}_2$ with \varnothing , where $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, x : \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2$ with ε_2 . By letting $\hat{\Delta}' = \hat{\Delta}, x : \hat{\tau}_1$, this second judgement can be rewritten as (1),

1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}' \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2.$

Using (1) and the assumption that $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, apply the inductive hypothesis to obtain (2),

2. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}' \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2.$

Using the definition of $\hat{\Delta}'$, this can be simplified,

3. $\hat{\Gamma}$, $X <: \hat{\tau}'$, $\hat{\Delta}$, $x : \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2$ with ε_2 .

Then with (3) we can use ε -ABS to get (4),

 $4. \ \hat{\varGamma}, X <: \hat{\tau}', \hat{\varDelta} \vdash \lambda x : \hat{\tau}_1.e_2 : \hat{\tau}_1 \to_{\varepsilon_2} \hat{\tau}_2 \text{ with } \varnothing$

Case: ε -APP. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 \ \hat{e}_2 : \hat{\tau}_3$ with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$, where the following judgements are true from inversion:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_2 \rightarrow_{\varepsilon_3} \hat{\tau}_3$ with ε_1
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2$

By applying the inductive assumption to (1) and (2), we get (3) and (4),

3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_2 \rightarrow_{\varepsilon_3} \hat{\tau}_3$ with ε_1

¹ This has yet to be proven

4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2$

Then by ε -APP, we get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 \ \hat{e}_2 : \hat{\tau}_3 \ \text{with} \ \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$.

Case: ε -PolyTypeAbs. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda Y <: \hat{\tau}_1.\hat{e}_2 : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_2 \text{ with } \emptyset$. From inversion, we have $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, Y <: \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2$ with ε_2 . By letting $\Delta' = \Delta, Y <: \hat{\tau}_1$, the second judgement can be rewritten.

1.
$$\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}' \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2$$

By applying the inductive hypothesis to (1), we get judgement (2), which further simplifies to (3) by simplifying Δ' ,

- $\begin{array}{ll} 2. \ \hat{\varGamma}, X <: \hat{\tau}', \hat{\varDelta}' \vdash \hat{e}_2 : \hat{\tau}_2 \ \text{with} \ \varepsilon_2 \\ 3. \ \hat{\varGamma}, X <: \hat{\tau}', \hat{\varDelta}, Y <: \hat{\tau}_1 \vdash \hat{e}_2 : \hat{\tau}_2 \ \text{with} \ \varepsilon_2 \end{array}$

Then by ε -PolyTypeAbs, we get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \lambda Y <: \hat{\tau}_1.\hat{e}_2 : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_2 \text{ with } \emptyset$.

Case: ε -PolyFxAbs. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda \phi \subseteq \varepsilon. \hat{e}_1 : \forall \phi \subseteq \varepsilon. \hat{\tau}_1 \text{ caps } \varepsilon_1 \text{ with } \emptyset$. By inversion, $\hat{\Gamma}, X <: \hat{\tau}_1 \in \mathcal{E}_1$ $\hat{\tau}, \hat{\Delta}, \phi \subseteq \varepsilon \vdash \hat{e}_1 : \hat{\tau}_1$ with ε_1 . By letting $\hat{\Delta}' = \hat{\Delta}, \phi \subseteq \varepsilon$, the second judgement can be rewritten as (1),

1.
$$\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}' \vdash \hat{e}_1 : \hat{\tau}_1 \text{ with } \varepsilon_1$$

Using (1) and the assumption that $\hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau}$, the inductive hypothesis gives judgement (2), which further simplifies to (3) by expanding the definition of $\hat{\Delta}'$,

- 2. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}' \vdash \hat{e}_1 : \hat{\tau}_1 \text{ with } \varepsilon_1$ 3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}, \phi \subseteq \varepsilon \vdash \hat{e}_1 : \hat{\tau}_1 \text{ with } \varepsilon_1$

Then from (2), we can apply ε -PolyFxAbs, giving the judgement $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \lambda \phi \subseteq \varepsilon. \hat{e}_1 : \forall \phi \subseteq \varepsilon. \hat{e}_1 : \forall \phi \subseteq \varepsilon. \hat{e}_2 : \forall \phi \in \varepsilon. \hat{e}_3 : \forall \phi \in \varepsilon. \hat{e}_4 : \psi \in \varepsilon. \hat{e}_4 : \forall \phi \in \varepsilon. \hat{e}_4 : \forall \phi \in \varepsilon. \hat{e}_4 : \forall \phi \in \varepsilon. \hat{e}$ $\varepsilon.\hat{\tau}_1$ caps ε_1 with \varnothing .

Case: ε -PolyTypeApp. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A \hat{\tau}'_1 : [\hat{\tau}'_1/Y]\hat{\tau}_2$ with $[\hat{\tau}'_1/Y]\varepsilon_1 \cup \varepsilon_2$, where the following judgements are from inversion:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$ 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_1' <: \hat{\tau}_1$

With the assumption that $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}' <: \hat{\tau} \text{ and } (1)$, we can apply the inductive hypothesis to get (3). With the same assumption and (2), we can apply Narrowing Lemma 1 (Subtypes) to get (4),

- 3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A : \forall Y <: \hat{\tau}_1.\hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$ 4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{\tau}'_1 <: \hat{\tau}_1$

From (3) and (4), ε -PolyTypeApp gives the judgement $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A \hat{\tau}'_1 : [\hat{\tau}'_1/Y]\hat{\tau}_2$ with $[\hat{\tau}'_1/Y]\varepsilon_1 \cup \varepsilon_2$.

Case: ε -PolyFxApp. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A \varepsilon' : [\varepsilon'/\phi]\hat{\tau}_2$ with $[\varepsilon'/\phi]\varepsilon_1 \cup \varepsilon_2$, where the following are true by inversion:

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_A : \forall \phi \subseteq \varepsilon. \hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon' \subseteq \varepsilon$

With the assumption that $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}' <: \hat{\tau}$ and (1), we can apply the inductive hypothesis to obtain (3). With the same assumption and (2), we can apply the Narrowing Lemma for Effect Judgements² to get (4),

- 3. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A : \forall \phi \subseteq \varepsilon. \hat{\tau}_2 \text{ caps } \varepsilon_1 \text{ with } \varepsilon_2$
- 4. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \varepsilon' \subseteq \varepsilon$

² Doesn't actually exist yet

With (3) and (4) we can apply ε -PolyFxAPP to get $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_A \varepsilon' : [\varepsilon'/\phi]\hat{\tau}_2$ with $[\varepsilon'/\phi]\varepsilon_1 \cup \varepsilon_2$.

Case: ε -IMPORT. (We prove for a single import). Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \text{import}(\varepsilon_s) \ x_1 = \hat{e}_1 \text{ in } e :$ annot (τ, ε_s) with $\varepsilon_s \cup \varepsilon_1$. By inversion, $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_1$ with ε_1 . By inductive hypothesis, $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_1$ with ε_1 . This, together with the other premises obtained by inversion, gives the judgement $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \text{import}(\varepsilon_s) \ x_1 = \hat{e}_1 \text{ in } e : \text{annot } (\tau, \varepsilon_s) \text{ with } \varepsilon_s \cup \varepsilon_1$.

Lemma 4 (Substitution (Values)). If $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau}$ with ε and $\hat{\Gamma} \vdash \hat{v} : \hat{\tau}'$ with \varnothing , then $\hat{\Gamma} \vdash [\hat{v}/x]\hat{e} : \hat{\tau}$ with ε

Proof. By induction on the derivation of $\hat{\Gamma}, x : \hat{\tau}' \vdash \hat{e} : \hat{\tau}$ with ε . We show for those extra cases in polymorphic CC.

Case: ε -PolyTypeAbs. Then $\hat{e} = \lambda X <: \hat{\tau}_1.\hat{e}_1$, and $[\hat{v}/x]\hat{e} = \lambda X <: \hat{\tau}_1.[\hat{v}/y]\hat{e}_1$. By inversion and inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}, x : \hat{\tau}'$. Then by applying ε -PolyTypeAbs, we get the conclusion.

Case: ε -PolyFxAbs. Then $\hat{e} = \lambda \phi \subseteq \varepsilon_1.\hat{e}_1$, and $[\hat{v}/x]\hat{e} = \lambda \phi \subseteq \varepsilon_1.[\hat{v}/x]\hat{e}_1$. By inversion and inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}, x : \hat{\tau}'$. Then by applying ε -PolyFxAbs, we get the conclusion.

Case: ε -PolyTypeApp. Then $\hat{e} = \hat{e}_1 \ \hat{\tau}_1$, and $[\hat{v}/x]\hat{e} = [\hat{v}/x]\hat{e}_1 \ \hat{\tau}_1$. By inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}, x : \hat{\tau}'$. Then by applying ε -PolyTypeApp, we get the conclusion.

Case: ε -PolyFxApp. Then $\hat{e} = \hat{e}_1 \varepsilon$, and $[\hat{v}/x]\hat{e} = [\hat{v}/x]\hat{e}_1 \varepsilon$. By inductive hypothesis, $[\hat{v}/x]\hat{e}_1$ in $\hat{\Gamma}$ can be typed the same as \hat{e}_1 in $\hat{\Gamma}$, $x : \hat{\tau}'$. Then by applying ε -PolyFxApp, we get the conclusion.

Lemma 5 (Type Substitution Preserves Subtyping). If $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2 \text{ and } \hat{\Gamma} \vdash \hat{\tau}' <: \hat{\tau} \text{ then } \hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$

Proof. By induction on the derivation of $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_1 <: \hat{\tau}_2$.

Case: S-Reflexive. Then $\hat{\tau}_1 = \hat{\tau}_2$, so $\hat{\Gamma} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$ by S-Reflexive. Then by widening, $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$

Case: S-Transitive. Let $\hat{\tau}_1 = \hat{\tau}_A$ and $\hat{\tau}_2 = \hat{\tau}_B$. By inversion, $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A <: \hat{\tau}_B$ and $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_B <: \hat{\tau}_C$. Applying the inductive assumption to these judgements, we get $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_A <: [\hat{\tau}'/X]\hat{\tau}_B$ and $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_B <: [\hat{\tau}'/X]\hat{\tau}_C$. Then by S-Transitive, $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_A <: [\hat{\tau}'/X]\hat{\tau}_C$.

Case: S-RESOURCESET. Sets of resources are unchanged by type-variable substitution, so $[\hat{\tau}'/X]\{\overline{r_1}\}=\{\overline{r_1}\}$ and $[\hat{\tau}'/X]\{\overline{r_2}\}=\{\overline{r_2}\}$. Then the subtyping judgement in the conclusion of the theorem can be the original one from the assumption.

Case: S-Arrow. Then the subtyping judgement from the assumption is $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_A \rightarrow_{\varepsilon} \hat{\tau}_B <: \hat{\tau}_A \rightarrow_{\varepsilon'} \hat{\tau}_B'$. By inversion we have judgements (1-3),

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}'_A <: \hat{\tau}_A$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_B <: \hat{\tau}_B'$
- 3. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon \subseteq \varepsilon'$

By applying the inductive hypothesis to (1) and (2), we get (4) and (5),

4. $\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}'_A <: [\hat{\tau}'/X]\hat{\tau}_A$

5.
$$\hat{\Gamma}, [\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_B <: [\hat{\tau}'/X]\hat{\tau}'_B$$

By inspection, type-variable bindings do not affect judgements of the form $\hat{\Gamma} \vdash \varepsilon \subseteq \varepsilon$. Furthermore, the types in a context do not affect judgements of this form. Therefore, we can rewrite (3) as (6),

7.
$$\hat{\Gamma}$$
, $[\hat{\tau}'/X]\hat{\Delta} \vdash \varepsilon \subseteq \varepsilon'$

From (4-6), we may apply S-ARROW to get $\hat{\Gamma}$, $[\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_A \to_{\varepsilon} [\hat{\tau}'/X]\hat{\tau}_B <: [\hat{\tau}'/X]\hat{\tau}_A \to_{\varepsilon'} [\hat{\tau}'/X]\hat{\tau}_B'$. By applying the definition of substitution on an arrow type in reverse, we can rewrite this judgement as $\hat{\Gamma}$, $\hat{\Delta} \vdash [\hat{\tau}'/X](\hat{\tau}_A \to_{\varepsilon} \hat{\tau}_B) <: [\hat{\tau}'/X](\hat{\tau}_A' \to_{\varepsilon'} \hat{\tau}_B')$, which is the same as $\hat{\Gamma}$, $[\hat{\tau}'/X]\hat{\Delta} \vdash [\hat{\tau}'/X]\hat{\tau}_1 <: [\hat{\tau}'/X]\hat{\tau}_2$.

Case: S-TypeVar. Then $\hat{\Gamma}, X <: \hat{\tau} \vdash Y <: \hat{\tau}_2$. There are two cases, depending on whether X = Y.

Subcase 1. X = Y. Then $\hat{\Gamma}, X <: \hat{\tau} \vdash X <: \hat{\tau}$. We want to show (1) $\hat{\Gamma}, X <: \hat{\tau} \vdash [\hat{\tau}'/X]X <: [\hat{\tau}'/X]\hat{\tau}$. Firstly, $[\hat{\tau}'/X]X = \hat{\tau}'$. Secondly, because $\mathtt{WF}(\hat{\Gamma}, X <: \hat{\tau})$ then $X \notin \mathtt{free-vars}(\hat{\tau})$, so $[\hat{\tau}'/X]\hat{\tau} = \hat{\tau}$. Therefore, judgement (1) is the same as $\hat{\Gamma}, X <: \hat{\tau} \vdash \hat{\tau}' <: \hat{\tau}$, which is true by assumption.

Subcase 2. $X \neq Y$. Then $X <: \hat{\tau}$ is not used in the derivation, so $\hat{\Gamma}, X <: \hat{\tau} \vdash Y <: \hat{\tau}_2$ is true by widening the context in the judgement $\hat{\Gamma} \vdash Y <: \hat{\tau}_2^3$. Then $\hat{\Gamma} \vdash [\hat{\tau}'/X]Y <: [\hat{\tau}'/X]\hat{\tau}_2$ by inductive assumption. By widening, $\hat{\Gamma}, X <: \hat{\tau} \vdash [\hat{\tau}'/X]Y <: \hat{\tau}'/X]\hat{\tau}_2$.

Lemma 6 (Type Substitution Preserves Typing). If $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e} : \hat{\tau} \text{ with } \varepsilon \text{ and } \hat{\Gamma} \vdash \hat{\tau}'' <: \hat{\tau}', \text{ then } \hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e} : [\hat{\tau}''/X]\hat{\tau} \text{ with } \varepsilon$

Proof. By induction on the derivation of $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -VAR, ε -RESOURCE. Then $\hat{e} = [\hat{\tau}''/X]\hat{e}$, so the typing judgement in the consequent can be the one from the antecedent.

Case: ε -OPERCALL. Then $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1.\pi :$ Unit with $\varepsilon_1 \cup \{r.\pi \mid r \in \bar{r}\}$. By inversion we have (1). Noting that $[\hat{\tau}''/X]\{\bar{r}\} = \{\bar{r}\}$, we can apply the inductive hypothesis to get (2),

- 1. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \hat{e}_1 : \{\bar{r}\} \text{ with } \varepsilon_1$ 2. $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e}_1 : \{\bar{r}\} \text{ with } \varepsilon_1$
- Then from (2), we can apply ε -OPERCALL to get $\hat{\Gamma}$, $[\hat{\tau}''/X]\hat{\Delta} \vdash [\hat{\tau}''/X](\hat{e}_1.\pi)$: Unit with $\varepsilon_1 \cup \{r.\pi \mid r \in \bar{r}\}$. Since $[\hat{\tau}''/X]$ Unit = Unit, we're done.

Case: ε -Subsume. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}$ with ε . By inversion, (1) and (2) are true.

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}_2 <: \hat{\tau}$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon_2 \subseteq \varepsilon$
- 3. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e} : \hat{\tau}_2 \text{ with } \varepsilon_2$

By a previous lemma, type substitution preserves subtyping. Applying this to (1) yields (4). On the other hand, only effect-variable bindings in a context will affect subsetting judgements. Based on this, we can delete the binding $X <: \hat{\tau}$ and perform the substitution $[\hat{\tau}''/X]\hat{\Delta}$, neither of which will change any effect-variable bindings, and in doing so obtain judgement (5). Lastly, we can apply the inductive hypothesis to (3), obtaining (6).

³ Note there is no explicit widening rule; be careful with this one.

- 5. $\hat{\Gamma}$, $[\hat{\tau}''/X]\hat{\Delta} \vdash [\hat{\tau}''/X]\hat{\tau}_2 <: [\hat{\tau}''/X]\hat{\tau}$
- 6. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash \varepsilon_2 \subseteq \varepsilon$
- 7. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] \hat{e} : [\hat{\tau}''/X] \hat{\tau}_2$ with ε_2

From (4-6) we can apply ε -Subsume to get $\hat{\Gamma}$, $[\hat{\tau}''/X]\hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e} : [\hat{\tau}''/X]\hat{\tau}$ with ε_2 .

Case: ε -ABS. Then $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta} \vdash \lambda y : \hat{\tau}_2.\hat{e}_3 : \hat{\tau}_2 \to_{\varepsilon_3} \hat{\tau}_3$ with \varnothing . By inversion, we have (1). By setting $\hat{\Delta}' = \hat{\Delta}, y : \hat{\tau}_2$, this can be rewritten as (2). From inductive hypothesis we get (3). Then by simplifying $\hat{\Delta}'$, this simplifies to (4).

- 1. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}, y : \hat{\tau}_2 \vdash \hat{e}_3 : \hat{\tau}_3 \text{ with } \varepsilon_3$
- 2. $\hat{\Gamma}, X <: \hat{\tau}', \hat{\Delta}' \vdash \hat{e}_3 : \hat{\tau}_3 \text{ with } \varepsilon_3$ 3. $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta}' \vdash [\hat{\tau}''/X]\hat{e}_3 : [\hat{\tau}''/X]\hat{\tau}_3 \text{ with } \varepsilon_3$
- 4. $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta}, y: [\hat{\tau}''/X]\hat{\tau}_2 \vdash [\hat{\tau}''/X]\hat{e}_3: [\hat{\tau}''/X]\hat{\tau}_3$ with ε_3

From (4) we can apply ε -ABS to get $\hat{\Gamma}$, $[\hat{\tau}''/X]\hat{\Delta} \vdash \lambda y : [\hat{\tau}''/X]\hat{\tau}_2 . [\hat{\tau}''/X]\hat{\tau}_3 : [\hat{\tau}''/X]\hat{\tau}_2 \to_{\varepsilon_3} [\hat{\tau}''/X]\hat{\tau}_3$ with \varnothing . This can be rewritten as $\hat{\Gamma}$, $|\hat{\tau}''/X|\hat{\Delta} \vdash |\hat{\tau}''/X|(\lambda y : \hat{\tau}_2.\hat{e}_3) : |\hat{\tau}''/X|(\hat{\tau}_2 \to_{\epsilon_3} \hat{\tau}_3)$ with \varnothing .

Case: ε -APP. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 \ \hat{e}_2 : \hat{\tau}_3 \text{ with } \varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$. By inversion, we have:

- 1. $\hat{\Gamma}, X <: \hat{\tau}_1, \hat{\Delta} \vdash \hat{e}_1 : \hat{\tau}_2 \rightarrow_{\varepsilon_3} \hat{\tau}_3$ with ε_1
- 2. $\hat{\Gamma}, X <: \hat{\tau}_1, \hat{\Delta} \vdash \hat{e}_2 : \hat{\tau}_2 \text{ with } \varepsilon_2$

Applying inductive hypothesis to (1) and (2) gives (3) and (4),

- 3. $\hat{\Gamma}, \hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e}_1 : [\hat{\tau}''/X](\hat{\tau}_2 \rightarrow_{\varepsilon_3} \hat{\tau}_3)$ with ε_1 4. $\hat{\Gamma}, \hat{\Delta} \vdash [\hat{\tau}''/X]\hat{e}_2 : [\hat{\tau}''/X]\hat{\tau}_2$ with ε_2

Then from (3) and (4) we can apply ε -APP to get $\hat{\Gamma}$, $\hat{\Delta} \vdash [\hat{\tau}''/X](\hat{e}_1 \ \hat{e}_2) : [\hat{\tau}''/X]\hat{\tau}_3$ with $\varepsilon_1 \cup \varepsilon_2 \cup \varepsilon_3$.

Case: ε -PolyTypeAbs, Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda Y <: \hat{\tau}_B.\hat{e}_A : \forall Y <: \hat{\tau}_B.\hat{\tau}_A \text{ cap } \varepsilon_A \text{ with } \emptyset$. By inversion, we have (1). Setting $\hat{\Delta}' = \hat{\Delta}, Y <: \hat{\tau}_B$, we can rewrite it as (2). Inductive hypothesis gives us (3). Expanding $\hat{\Delta}'$ lets us rewrite this as (4).

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, Y <: \hat{\tau}_B \vdash \hat{e}_A : \hat{\tau}_A \text{ with } \varepsilon_A$
- $2. \ \hat{\varGamma}, X <: \hat{\tau}, \hat{\varDelta'} \vdash \hat{e}_A : \hat{\tau}_A \ \text{with} \ \varepsilon_A$
- 3. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta}' \vdash [\hat{\tau}''/X] \hat{e}_A : [\hat{\tau}''/X] \hat{\tau}_A \text{ with } \varepsilon_A$ 4. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta}, Y <: [\hat{\tau}''/X] \hat{\tau}_B \vdash [\hat{\tau}''/X] \hat{e}_A : [\hat{\tau}''/X] \hat{\tau}_A \text{ with } \varepsilon_A$

From (4) we can apply ε -PolyTypeAbs, giving (5), which can be rewritten as (6).

- 5. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash \lambda Y <: [\hat{\tau}''/X] \hat{\tau}_B. [\hat{\tau}''/X] \hat{e}_A : \forall Y <: [\hat{\tau}''/X] \hat{\tau}_B. [\hat{\tau}''/X] \hat{\tau}_A \text{ cap } \varepsilon_A \text{ with } \varnothing$
- 6. $\hat{\Gamma}, |\hat{\tau}''/X| \Delta \vdash |\hat{\tau}''/X| (\lambda Y <: \hat{\tau}_B.\hat{e}_A : \forall Y <: \hat{\tau}_B.\hat{\tau}_A \text{ cap } \varepsilon_A)$ with \varnothing

Case: ε -PolyFxAbs. | Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \lambda \phi \subseteq \varepsilon_A.\hat{e}_B : \forall \phi \subseteq \varepsilon_A.\hat{\tau}_B \text{ cap } \varepsilon_B \text{ with } \varnothing$. By inversion we have (1). Setting $\hat{\Delta}' = \hat{\Delta}, \phi \subset \varepsilon_A$, this can be rewritten as (2). The inductive hypothesis gives us (3). Expanding Δ' lets us rewrite that as (4).

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}, \phi \subseteq \varepsilon_A \vdash \hat{e}_B : \hat{\tau}_B \text{ with } \varepsilon_B$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta}' \vdash \hat{e}_B : \hat{\tau}_B \text{ with } \varepsilon_B$
- 3. $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta}' \vdash [\hat{\tau}''/X]\hat{e}_B : [\hat{\tau}''/X]\hat{\tau}_B \text{ with } \varepsilon_B$
- 4. $\hat{\Gamma}, [\hat{\tau}''/X]\hat{\Delta}, \phi \subseteq \varepsilon_A \vdash [\hat{\tau}''/X]\hat{e}_B : [\hat{\tau}''/X]\hat{\tau}_B \text{ with } \varepsilon_B$

From (4) we can apply ε -PolyFxABS, giving (5), which an be rewritten as (6).

- 5. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash \lambda \phi \subseteq \varepsilon_A. [\hat{\tau}''/X] \hat{e}_B : \forall \phi \subseteq \varepsilon_A. [\hat{\tau}''/X] \hat{\tau}_B \text{ cap } \varepsilon_B \text{ with } \varnothing$
- 6. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] (\lambda \phi \subseteq \varepsilon_A.\hat{e}_B) : [\hat{\tau}''/X] (\forall \phi \subseteq \varepsilon_A.\hat{\tau}_B \text{ cap } \varepsilon_B) \text{ with } \varnothing$

Case: ε -POLYTYPEAPP. Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 \hat{\tau}'_A : [\hat{\tau}'_A/Y]\hat{\tau}_B$ with $[\hat{\tau}'_A/Y]\varepsilon_B \cup \varepsilon_C$, where we get (1) and (2) from inversion.

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \forall Y <: \hat{\tau}_A.\hat{\tau}_B \text{ caps } \varepsilon_B \text{ with } \varepsilon_C$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{\tau}'_A <: \hat{\tau}_A$

By inductive hypothesis on (1) we get (3). By a previous lemma, type substitution preserves subtyping, so from (2) we obtain (4).

3.
$$\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] \hat{e}_1 : [\hat{\tau}''/X] (\forall Y <: \hat{\tau}_A.\hat{\tau}_B \text{ caps } \varepsilon_B) \text{ with } \varepsilon_C$$
4. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] \hat{\tau}_A' <: [\hat{\tau}''/X] \hat{\tau}_A$

From (3-4), applying ε -POLYTYPEAPP gives (5).

5.
$$\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] (\hat{e}_1 \ \hat{\tau}'_A) : [\hat{\tau}''/X] ([\hat{\tau}'_A/Y] \hat{\tau}_B)$$
 with $[\hat{\tau}'_A/Y] \varepsilon_B \cup \varepsilon_C$

Case: ε -PolyFxApp Then $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 \ \varepsilon'_A : [\varepsilon'_A/\phi]\hat{\tau}_B$ with $[\varepsilon'_A/\phi]\hat{\varepsilon}_B \cup \varepsilon_C$, where we get (1) and (2) from inversion

- 1. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \hat{e}_1 : \forall \phi \subseteq \varepsilon_A.\hat{\tau}_B \text{ caps } \varepsilon_B \text{ with } \varepsilon_C$
- 2. $\hat{\Gamma}, X <: \hat{\tau}, \hat{\Delta} \vdash \varepsilon_A' \subseteq \varepsilon_A$

By inductive hypothesis on (1) we get (3). By a previous lemma, type substitution preserves subsetting⁴. Using this, and the knowledge that type-variable substitution on an effect-set does nothing, we obtain (4) from (2).

1.
$$\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] \hat{e}_1 : [\hat{\tau}''/X] (\forall \phi \subseteq \varepsilon_A. \hat{\tau}_B \text{ caps } \varepsilon_B) \text{ with } \varepsilon_C$$
2. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash \varepsilon_A' \subseteq \varepsilon_A$

From (3-4), applying ε -PolyFxAPP gives (5).

1. $\hat{\Gamma}, [\hat{\tau}''/X] \hat{\Delta} \vdash [\hat{\tau}''/X] (\hat{e}_1 \ \varepsilon_A') : [\hat{\tau}''/X] ([\varepsilon_A'/\phi] \hat{\tau}_B)$ with $[\varepsilon_A'/\phi] \hat{\varepsilon}_B \cup \varepsilon_C$

Case: ε -Import

Theorem 1 (Progress). If $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε and \hat{e} is not a value, then $\hat{e} \longrightarrow \hat{e}' \mid \varepsilon$, for some \hat{e}', ε .

Proof. By induction on the derivation of $\hat{\Gamma} \vdash \hat{e} : \hat{\tau}$ with ε .

Case: ε -PolyTypeAbs. Trivial; \hat{e} is a value.

Case: ε -PolyFxAbs. Trivial; \hat{e} is a value.

Case: ε -PolyTypeApp. Then $\hat{e} = \hat{e}_1 \ \hat{\tau}'$. If \hat{e}_1 is not a value then $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$ by inductive hypothesis, and applying E-PolyTypeApp1 gives the reduction $\hat{e}_1 \ \hat{\tau}' \longrightarrow \hat{e}''\hat{\tau}' \mid \varepsilon$. Otherwise, \hat{e} is a value, so $\hat{e} = \lambda X <: \hat{\tau}_1.\hat{e}_2$, and applying E-PolyTypeApp2 gives the reduction $(\lambda X <: \hat{\tau}_1.\hat{e}_2)\hat{\tau}' \longrightarrow [\hat{\tau}'/X]\hat{e}_2 \mid \varnothing$.

Case: ε -PolyfxApp. Then $\hat{e} = \hat{e}_1 \varepsilon'$. If \hat{e}_1 is not a value then $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$ by inductive hypothesis, and applying E-PolyfxApp1 gives the reduction $\hat{e}_1 \varepsilon' \longrightarrow \hat{e}'_1 \varepsilon' \mid \varepsilon$. Otherwise, \hat{e} is a value, so $\hat{e} = \lambda \phi \subseteq \varepsilon_1.\hat{e}_2$, and applying E-PolyfxApp2 gives the reduction $(\lambda \phi \subseteq \varepsilon_1.\hat{e}_2)\varepsilon' \longrightarrow [\varepsilon'/\phi]\hat{e}_2$.

Theorem 2 (Preservation). If $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$, then $\hat{\Gamma} \vdash \hat{e}_B : \hat{\tau}_B$ with ε_B , where $\hat{e}_B <: \hat{e}_A$ and $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$, for some $\hat{e}_B, \varepsilon, \hat{\tau}_B, \varepsilon_B$.

⁴ Haven't stated and proved this yet

Proof. By induction on the derivations of $\hat{\Gamma} \vdash \hat{e}_A : \hat{\tau}_A$ with ε_A and $\hat{e}_A \longrightarrow \hat{e}_B \mid \varepsilon$.

Case: ε -PolyTypeAbs. Trivial; \hat{e} is a value.

Case: ε -PolyFxAbs. Trivial; \hat{e} is a value.

Case: ε -PolyTypeApp. Then $\hat{e} = \hat{e}_1 \hat{\tau}'$. Consider which reduction rule was used.

Subcase: E-PolyTypeApp1. Then \hat{e}_1 $\hat{\tau}' \longrightarrow \hat{e}'_1$ $\hat{\tau}' \mid \varepsilon$. By inversion, $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$. With the inductive hypothesis and subsumption, \hat{e}'_1 can be typed in $\hat{\Gamma}$ the same as \hat{e}_1 . Then by ε -PolyTypeApp, $\hat{\Gamma} \vdash \hat{e}'_1$ $\hat{\tau}'$: $\hat{\tau}_A$ with ε_A . That $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$ follows by inductive hypothesis.

Subcase: E-PolyTypeApp2. Then $(\lambda X <: \hat{\tau}_3.\hat{e}')\hat{\tau}' \longrightarrow [\hat{\tau}'/X]\hat{e}' \mid \varnothing$.

The result follows by the substitution lemma.

Case: ε -PolyFxApp. Then $\hat{e} = \hat{e}_1 \varepsilon'$. Consider which reduction rule was used.

Subcase: E-PolyFxApp1. Then $\hat{e}_1 \in \mathcal{E}' \longrightarrow \hat{e}'_1 \in \mathcal{E}' \mid \varepsilon$. By inversion, $\hat{e}_1 \longrightarrow \hat{e}'_1 \mid \varepsilon$. With the inductive hypothesis and subsumption, \hat{e}'_1 can be typed in $\hat{\Gamma}$ the same as \hat{e}_1 . Then by ε -PolyFxApp, $\hat{\Gamma} \vdash \hat{e}'_1 \in \mathcal{E}'$: $\hat{\tau}_A$ with ε_A . That $\varepsilon \cup \varepsilon_B \subseteq \varepsilon_A$ follows by inductive hypothesis.

Subcase: E-PolyFxApp2. Then $(\lambda \phi \subseteq \varepsilon_3.\hat{e}')\varepsilon' \longrightarrow [\varepsilon'/X]\hat{e}' \mid \varnothing$. The result follows by the substitution lemma.