Para utilizar equações em programas de engenharia, é necessário escrevê-las de maneira adequada e muitas vezes representando-as em linha. Escreva as equações abaixo da forma correta para uso no Excel ou MATLAB.

a)
$$E_c = \frac{m \cdot V^2}{2}$$
 b) $a = \frac{27 \cdot R^2 \cdot T_{cr}^2}{64 \cdot P_{cr}}$

c)
$$\dot{G} = C \cdot e^{-Q/R \cdot T}$$
 d) $\left(P + \frac{a}{v^2}\right) \cdot (v - b) = R \cdot T$

UNICESUMAR ENGENHARIA CIVIL PROGRAMAÇÃO PARA ENGENHARIA (NGER80_271) ANDRÉ MARTINS OTOMURA

Revisão:

Matrizes e vetores Estruturas condicionais (If - Else e Case) e suas implementações Estruturas de repetição (While e For) e suas implementações MATLAB Excel

AULA 1:

- Tipos de Algoritmos
 - Descrição narrativa
 - Fluxograma
 - Pseudocódigo
- Variáveis / Constantes
- Atribuição de dados nas variáveis
- Entrada de dados
 - Visualg
 - MATLAB / Scilab
- Saída de dados
 - Visualg
 - MATLAB / Scilab

AULA 2:

- Vetores
- Matrizes
- IF / ELSE
- FOR / WHILE
- Funções e Procedimentos
- Manipulação de arquivos

AULA 3:

- MATLAB
 - Variáveis
 - Comandos básicos
 - Declaração de variáveis
 - Atribuição de valores
 - Operações aritméticas
 - Vetores e Matrizes
 - Gráficos

AULA 4:

- MICROSOFT EXCEL
 - Variáveis / Células
 - Comandos básicos
 - Atribuição de valores nas células
 - Formatação de células
 - Formatação condicional
 - Fórmulas nas células (=)
 - Operadores aritméticos
 - Funções matemáticas e estatísticas
 - Média
 - Soma
 - PROCV / PROCH
 - Filtros
 - Tabelas
 - Gráficos
 - ATINGIR META

•••

DESCRIÇÃO NARRATIVA – REFERÊNCIAS

FLUXOGRAMA – REFERÊNCIAS

REFERÊNCIAS DE OPERAÇÕES MATEMÁTICAS

COMANDO	DESCRIÇÃO
+	Soma
_	Subtração
*	Multiplicação
/	Divisão
x^y	Faz x elevado a y

PSEUDOCÓDIGO - REFERÊNCIAS

COMANDO	DESCRIÇÃO
x <- y	
Escreva(x)	
Leia(x)	
Se () entao/ Senao / Fimse	
Para x de n1 ate n2 passo i faca / Fimpara	
Enquanto () faca/ Fimenquanto	
Repita / Ate ()	
"huehuehue"	

PSEUDOCÓDIGO - REFERÊNCIAS

COMANDO	DESCRIÇÃO
x <- y	Atribuição de valores
Escreva(x)	Imprime algo na tela
Leia(x)	Recebe um valor digitado
Se () entao/ Senao / Fimse	Estrutura Condicional
Para x de n1 ate n2 passo i faca / Fimpara	Laço de repetição FOR
Enquanto () faca/ Fimenquanto	Laço de repetição WHILE
Repita / Ate ()	Laço de repetição DO WHILE
"huehuehue"	Texto sempre entre aspas duplas

O MATLAB E O SCILAB DIFEREM ENTRE MAIÚSCULAS E minúsculas.

PORTANTO, CUIDADO AO ESCREVER OS COMANDOS E FUNÇÕES.

GERALMENTE TODOS OS COMANDOS SÃO EM LETRA minúscula.

COMANDO/FUNÇÃO	DESCRIÇÃO
x = y	
$x = [n1 \ n2 \ n3]$	
x = [n1 n2; m1 m2]	
x = [n1: i: n2]	
disp()	
input()	
if / else / end	
for / end	

COMANDO/FUNÇÃO	DESCRIÇÃO
x = y	Atribuição de valores
$x = [n1 \ n2 \ n3]$	Criação de um vetor
x = [n1 n2; m1 m2]	Criação de uma matriz
x = [n1: i: n2]	Criação de um vetor (incremento)
disp()	Imprime algo na tela
input()	Recebe um valor digitado
if / else / end	Estrutura Condicional
for / end	Laço de repetição FOR

COMANDO/FUNÇÃO	DESCRIÇÃO
sqrt(x)	
exp(x)	
log(x)	
log10(x)	
sin(x)	
cos(x)	
'texto'	

COMANDO/FUNÇÃO	DESCRIÇÃO
sqrt(x)	Calcula a raiz quadrada de x
exp(x)	Calcula e^x
log(x)	Calcula In de x
log10(x)	Calcula log de x
sin(x)	Calcula seno de x (em rad)
cos(x)	Calcula cosseno de x (em rad)
'texto'	Texto se escreve entre aspas simples

COMANDO/FUNÇÃO	DESCRIÇÃO
A*B	
A.*B	
A./B	
plot(x,y)	
xlabel('texto')	
ylabel('texto')	
title('texto')	

COMANDO/FUNÇÃO	DESCRIÇÃO
A*B	Multiplica matrizes, se A e B forem possíveis de serem multiplicadas.
A.*B	Faz a multiplicação elemento por elemento das matrizes.
A./B	Faz a divisão elemento por elemento das matrizes.
plot(x,y)	Cria um gráfico 2D simples
xlabel('texto')	Modifica o título do eixo x
ylabel('texto')	Modifica o título do eixo y
title('texto')	Modifica o título do gráfico

EXCEL - REFERÊNCIAS

•••

PSEUDOCÓDIGO

```
algoritmo "salario"
// Seção de Declarações
var
sal: real
i, contador: inteiro
inicio
// Seção de Comandos
i < -0;
contador<-0;
para i de 1 ate 5 passo 1 faca
   escreva ("Digite o salario do funcionário ",i, ": ")
   leia (sal)
   se sal>300 entao
      contador<-contador+1
   fimse
fimpara
escreval (contador, " Funcionários recebem salários superiores a R$
300,00.")
fimalgoritmo
```

2. Escreva um algoritmo que calcule a área de um triângulo.

3. Construa um algoritmo que leia o preço de um produto, o percentual de desconto e calcule o valor a pagar e o valor do desconto.

ESTRUTURAS DE REPETIÇÃO: FOR (PARA)

```
Algoritmo "tabuada"
Var
   Num, i, mult: inteiro
Inicio
   Escreva ("Digite um número:")
   Leia (num)
   Para i de 1 ate 10 passo 1 faca
      mult ← num*i
      Escreva (num, "x", i, "=", mult)
   fimpara
Fimalgoritmo
```

SUPER EXERCÍCIO – EQ. DO 1º GRAU?? (MATLAB)

CONSTRUA UM ALGORITMO QUE ENTRE COM OS COEFICIENTES DE UMA EQUAÇÃO DO SEGUNDO GRAU E IMPRIMA OS VALORES DAS RAÍZES.

QUANDO NÃO FOR POSSÍVEL ENCONTRAR RAÍZES REAIS, O ALGORITMO DEVE AVISAR QUE NÃO HÁ SOLUÇÃO.

ALÉM DISSO, CASO NÃO SEJA DIGITADO UM VALOR VÁLIDO PARA 'a', O ALGORITMO DEVE AVISAR QUE NÃO SE TRATA DE UMA EQ. DO SEGUNDO GRAU.

A FORMA PADRÃO DE UMA EQUAÇÃO DO SEGUNDO GRAU É: $a.x^2 + b.x + c = 0$

DICA: "BHASKARA"

EXERCÍCIOS

Elabore um fluxograma que calcule o custo de aluguel de um veículo, sabendo que o aluguel é composto por um valor fixo (R\$135,00) mais R\$50,00 por dia alugado e R\$0,85 por km rodado.

O algoritmo deverá receber do usuário apenas os dias que o veículo será alugado e também a quantidade de km rodados.

Após terminar o fluxograma, desenvolva o algoritmo em um dos programas a seguir:

- MATLAB;
- Excel;
- Visualg.

Para utilizar equações em programas de engenharia, é necessário escrevê-las de maneira adequada e muitas vezes representando-as em linha. Escreva as equações abaixo da forma correta para uso no Excel ou MATLAB.

a)
$$E_c = \frac{m \cdot V^2}{2}$$
 b) $a = \frac{27 \cdot R^2 \cdot T_{cr}^2}{64 \cdot P_{cr}}$

c)
$$\dot{G} = C \cdot e^{-Q/R \cdot T}$$
 d) $\left(P + \frac{a}{v^2}\right) \cdot (v - b) = R \cdot T$

EXERCÍCIOS (MATLAB OU EXCEL)

Calcule a inversa da matriz A. Em seguida, crie uma matriz identidade (I) de mesma ordem e multiplique a matriz A pela matriz I. Analise os resultados.

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

EXERCÍCIOS (MATLAB)

A.12 Uma viga é presa de um lado e suportada por um rolamento em sua outra extremidade. A deflexão y no ponto x de uma viga carregada da forma mostrada é dada pela equação:

$$y = \frac{-w_0 x}{360EIL} (3x^3 - 10L^2 x^2 + 7L^4)$$

onde E é o módulo elástico, I é o momento de inércia e L é o comprimento da viga. Para a viga mostrada na figura, L = 6 m, $E = 70 \times 10^9$ Pa (alumínio), $I = 9,19 \times 10^{-6}$ m⁴ e $w_0 = 800$ N/m.

Trace a deflexão y da viga em função de x.

•••

Se o pagamento mensal M de um dado empréstimo P para y anos a uma taxa de juros r é dado pela formula:

$$M = \frac{P(r/12)}{1 - (1 + r/12)^{-12y}}$$

Determine o pagamento mensal para um empréstimo de R\$85000,00 para 15 anos a uma taxa de juros de 5,75% (0,0575) e também o valor total a ser pago no período. Elabore um programa no MATLAB que peça ao usuário os dados do problema, faça os cálculos e apresente o resultado na forma de frase escrita.

EXERCÍCIOS (EXCEL)

Dado um polinômio do terceiro grau do tipo $y = ax^3 + bx^2 + cx + d$, escreva um conjunto de pares (x,y) para valores de x variando de uma unidade entre 0 e 10. Os parâmetros são a = 3, b = -1, c = 2 e d = 7, a planilha deve se recalcular automaticamente, caso esses valores sejam alterados. Encontre a média dos valores encontrados utilizando a função apropriada, depois recalcule a média considerando a = -3.

Plote (faça o gráfico) utilizando os dados de x e y.