Part IA - Analysis I Theorems

Lectured by W. T. Gowers

Lent 2015

Limits and convergence

Sequences and series in R and C. Sums, products and quotients. Absolute convergence; absolute convergence implies convergence. The Bolzano-Weierstrass theorem and applications (the General Principle of Convergence). Comparison and ratio tests, alternating series test.

Continuity

Continuity of real- and complex-valued functions defined on subsets of \mathbb{R} and \mathbb{C} . The intermediate value theorem. A continuous function on a closed bounded interval is bounded and attains its bounds.

Differentiability

Differentiability of functions from \mathbb{R} to \mathbb{R} . Derivative of sums and products. The chain rule. Derivative of the inverse function. Rolle's theorem; the mean value theorem. One-dimensional version of the inverse function theorem. Taylor's theorem from \mathbb{R} to \mathbb{R} ; Lagranges form of the remainder. Complex differentiation.

Power series

Complex power series and radius of convergence. Exponential, trigonometric and hyperbolic functions, and relations between them. *Direct proof of the differentiability of a power series within its circle of convergence*.

Integration

Definition and basic properties of the Riemann integral. A non-integrable function. Integrability of monotonic functions. Integrability of piecewise-continuous functions. The fundamental theorem of calculus. Differentiation of indefinite integrals. Integration by parts. The integral form of the remainder in Taylor's theorem. Improper integrals. [6]

Contents

1	The	e real number system		
2	Convergence of sequences			
	2.1	Sums, products and quotients		
	2.2	Monotone-sequences property		
	2.3	Cauchy sequences		
	2.4	Limit supremum and infimum		
_	~			
3	Cor	overgence of infinite sums		

1 The real number system

Lemma. Let \mathbb{F} be an ordered field and $x \in \mathbb{F}$. Then $x^2 \geq 0$.

Lemma (Archimedean property v1)). Let $\mathbb F$ be an ordered field with the least upper bound property. Then the set $\{1,2,3,\cdots\}$ is not bounded above. (Note that these need not refer to natural numbers. We simply define 1 to be the multiplicative identity, $2=1+1,\ 3=1+2$ etc.)

2 Convergence of sequences

Lemma (Archimedean property v2). $1/n \rightarrow 0$.

Lemma. Every eventually bounded sequence is bounded.

2.1 Sums, products and quotients

Lemma (Sums of sequences). If $a_n \to a$ and $b_n \to b$, then

(i)
$$a_n + b_n \rightarrow a + b$$

Lemma (Scalar multiplication of sequences). Let $a_n \to a$ and $\lambda \in \mathbb{R}$. Then $\lambda a_n \to \lambda a$.

Lemma. Let a_n be bounded $b_n \to 0$. Then $a_n b_n \to 0$.

Lemma. Every convergent sequence is bounded.

Lemma (Product of sequences). Let $a_n \to a$ and $b_n \to b$. Then $a_n b_n \to ab$.

Lemma (Quotient of sequences). Let (a_n) be a sequence such that $\forall n \neq 0$. Suppose that $a_n \to a$ and $a \neq 0$. Then $1/a_n \to 1/a$.

Corollary. If $a_n \to a, b_n \to b, b_n, b \neq 0$. Then $a_n/b_n = a/b$.

Lemma (Sandwich rule). Let (a_n) and (b_n) be sequences that both converge to a limit x. Suppose that $a_n \leq c_n \leq b_n$ for every n. Then $c_n \to x$.

2.2 Monotone-sequences property

Lemma. Least upper bound property \Rightarrow monotone-sequences property.

Lemma. Monotone-sequences property. \Rightarrow Archimedean property.

Lemma. Monotone sequences property \Rightarrow least upper bound property.

Lemma. Let (a_n) be a sequence and suppose that $a_n \to a$. If $\forall n, a_n \le x$, then $a \le x$.

Lemma. A sequence can have at most 1 limit.

Lemma (Nested intervals property). Let \mathbb{F} be an ordered field with the monotone sequences property. Let $I_1 \supseteq I_2 \supseteq \cdots$ be closed bounded non-empty intervals. Then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proposition. \mathbb{R} is uncountable.

Theorem (Bolzano-Weierstrass theorem). Let \mathbb{F} be an ordered field with the monotone sequences property (i.e. $\mathbb{F} = \mathbb{R}$).

Then every bounded sequence has a convergent subsequence.

2.3 Cauchy sequences

Lemma. Every convergent sequence is Cauchy.

Lemma. Let (a_n) be a Cauchy sequence with a subsequence (a_{n_k}) that converges to a. Then $a_n \to a$.

Theorem (The general principle of convergence). Let \mathbb{F} be an ordered field with the monotone-sequence property. Then every Cauchy sequence of \mathbb{F} converges.

Lemma. Let \mathbb{F} be an ordered field with the Archimedean property such that every Cauchy sequence converges. The \mathbb{F} satisfies the monotone sequences property.

2.4 Limit supremum and infimum

Lemma. Let (a_n) be a sequence. The following two statements are equivalent:

- $-a_n \rightarrow a$
- $\limsup a_n = \liminf a_n = a$.

3 Convergence of infinite sums

Lemma. If
$$\sum_{n=1}^{\infty} a_n$$
 converges. Then $a_n \to 0$.

Lemma. Suppose that $a_n \ge 0$ for every n and the partial sums S_n are bounded above. Then $\sum_{n=1}^{\infty} a_n$ converges.

Lemma (Comparison test). Let (a_n) and (b_n) be non-negative sequences, and suppose that $\exists C, N$ such that $\forall n \geq N, a_n \leq CB_n$. Then if $\sum b_n$ converges, then so does $\sum a_n$.