Mini project # 1

Submitted By:

Neelu Choudhary 5085296

PART1

a)

r=1 r=2

r=3

r=1 r=2

r=3

d)


```
Part 2
2)
[n,p]=size(Z); % finding the dimension of Z
mz=zeros(n,1);
%calculating mean of columns of Z matrix
 for k=1:p
    mz=mz+Z(:,k);
 end
mz=mz/p;
% Finding centred matrix by subtracting mean of columns from Z
Zc=zeros(n,p);
for k=1:p
    Zc(:,k) = Z(:,k) - mz;
end
% Calculating Unitary matrix and eigenvalues
[A,B,C] = svd(Zc/sqrt(p-1));
prompt='what is the value of r?'; % Asking for r
r=input(prompt);
% Finding Principal component matrix
U=zeros(n,r);
for k=1:r
    U(:,k) = A(:,k);
save 'U.mat' 'U';
3)
% calculating mean centered input T matrix and orthogonal
extimation
Tx=zeros(n,2);
P=zeros(n,2);
for k=1:2
    Tx(:,k) = T(:,k) - mz;
    P(:,k) = U*U'*Tx(:,k);
% output matrix by adding back the mean vector
```

Ty=zeros (n, 2);

% drawing the image

drawnow;
pause(0.01);

Ty(:,k) = P(:,k) + mz;

reshapedimage = reshape(Ty(:,2), 112,92);

imagesc(reshapedimage); colormap gray; axis equal;

for k=1:2

Image 1:

Original

r = 0

r=1

r= 25

r=50

r= 100

Original r= 0

As the value of r increases the output image becomes more focused and clear. Because we are taking more dimensions into account while approximating the data for highter r.

graph of eigen values

From the above figure it can be said that r=100 (approximately) is enough for approximation. The relevant number of eigenvalues are much smaller than total.

Part 3 eigenvalues

original r=10

r=5

