

# Sharpness-Aware Minimization

Farid Davletshin

Modern Optimization Methods

December 26, 2022



#### SAM in a few words

#### SAM is an optimization algorithm that:

- Minimizes loss value AND sharpness
- Is efficient and easy to implement
- Strongly improves generalization (SOTA on Imagenet, CIFAR, SVHN, and others)
- Robust to label noise



Figure: (left) A sharp minimum to which a ResNet trained with SGD converged. (right) A wide minimum to which the same ResNet trained with SAM converged.



#### SAM in a few words

Is more interpretable



Figure 3: Raw images (**Left**) and attention maps of ViT-S/16 with (**Right**) and without (**Middle**) sharpness-aware optimization.



## SOTA for today

| Task                                 | Dataset       | Model             | Metric Name        | Metric<br>Value | Global<br>Rank | Uses Extra<br>Training<br>Data | Result | Benchmark |
|--------------------------------------|---------------|-------------------|--------------------|-----------------|----------------|--------------------------------|--------|-----------|
| Fine-Grained Image<br>Classification | Birdsnap      | EffNet-L2 (SAM)   | Accuracy           | 90.07%          | # 1            | ~                              | -9     | Compare   |
| Image Classification                 | CIFAR-10      | PyramidNet (SAM)  | Percentage correct | 98.6            | # 28           | <i>✓</i>                       | -9     | Compare   |
| Image Classification                 | CIFAR-100     | PyramidNet (SAM)  | Percentage correct | 89.7            | # 28           | <b>✓</b>                       | -9     | Compare   |
| Image Classification                 | CIFAR-100     | EffNet-L2 (SAM)   | Percentage correct | 96.08           | # 1            | ~                              | Ð      | Compare   |
| Image Classification                 | Fashion-MNIST | Shake-Shake (SAM) | Percentage error   | 3.59            | #2             | ×                              | Ð      | Compare   |
|                                      |               |                   | Accuracy           | 96.41           | #3             | ×                              | -9     | Compare   |
| Fine-Grained Image<br>Classification | FGVC Aircraft | EffNet-L2 (SAM)   | Top-1 Error Rate   | 4.82            | # 1            | V                              | -5     | Compare   |
| Image Classification                 | Flowers-102   | EffNet-L2 (SAM)   | Accuracy           | 99.65%          | #4             | ~                              | -9     | Compare   |
| Fine-Grained Image<br>Classification | Food-101      | EffNet-L2 (SAM)   | Accuracy           | 96.18           | #1             | <i>✓</i>                       | Ð      | Compare   |



## SOTA for today

| Image Classification                 | ImageNet                   | ResNet-152 (SAM)             | Top 1 Accuracy              | 81.6%  | # 440 | × | Ð  | Compare |
|--------------------------------------|----------------------------|------------------------------|-----------------------------|--------|-------|---|----|---------|
|                                      |                            |                              | Top 5 Accuracy              | 95.65  | # 107 | × | Ð  | Compare |
| Image Classification                 | ImageNet                   | EfficientNet-L2-475<br>(SAM) | Top 1 Accuracy              | 88.61% | #32   | V | -9 | Compare |
|                                      |                            |                              | Number of params            | 480M   | # 775 | ~ | -9 | Compare |
|                                      |                            |                              | Hardware Burden             | None   | #1    | ~ | -9 | Compare |
|                                      |                            |                              | Operations per network pass | None   | #1    | ~ | Ð  | Compare |
| Fine-Grained Image<br>Classification | Oxford-IIIT Pet<br>Dataset | EffNet-L2 (SAM)              | Top-1 Error Rate            | 2.90%  | # 1   | ~ | -5 | Compare |
|                                      |                            |                              | Accuracy                    | 97.10% | #1    | ~ | Ð  | Compare |
| Fine-Grained Image<br>Classification | Stanford Cars              | EffNet-L2 (SAM)              | Accuracy                    | 95.96% | #4    | ~ | Ð  | Compare |
| Image Classification                 | SVHN                       | WRN28-10 (SAM)               | Percentage error            | 0.99   | # 1   | × | -3 | Compare |

## Neural Network training

- Training dataset  $S \triangleq \bigcup_{i=1}^{n} \{(\mathbf{x}_i, \mathbf{y}_i)\}$  drawn i.i.d. from distribution  $\mathscr{D}$
- Neural network with weights  $\mathbf{w} \in \mathcal{W} \subseteq \mathbb{R}^d$ ;
- Per-data-point loss function  $I: \mathcal{W} \times \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+$ ,
- Training loss  $L_S(\mathbf{w}) \triangleq \frac{1}{n} \sum_{i=1}^n I(\mathbf{w}, \mathbf{x}_i, \mathbf{y}_i)$  which approximates  $L_{\mathscr{D}}(\mathbf{w}) \triangleq \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim D}[I(\mathbf{w}, \mathbf{x}, \mathbf{y})].$

• Train the network to get w having low population loss  $L_{\mathscr{D}}(w)$ .





## Not all minima created are equal

Training a neural network with different optimization strategies (for example, change batch size), we get:

- Perfect fit on the training set.
- Training loss approaching zero.
- But very different test accuracy.

**Table:** Train and test accuracy for a convolutional network trained on CIFAR10, for different batch sizes (reproducing an experiment from  $[SMN^+16]$ )

| batch size | train accuracy        | test accuracy      | train loss         |
|------------|-----------------------|--------------------|--------------------|
| 1          | 100.0 (100.0 - 100.0) | 77.2 (77.7 - 76.4) | 0.00 (0.00 - 0.00) |
| 8          | 100.0 (100.0 - 100.0) | 76.5 (76.7 - 75.9) | 0.00 (0.00 - 0.00) |
| 256        | 100.0 (100.0 - 100.0) | 63.2 (63.4 - 61.3) | 0.00 (0.00 - 0.00) |
| 2048       | 100.0 (100.0 - 99.8)  | 60.2 (60.6 - 58.6) | 0.00 (0.02 - 0.00) |

Conclusion: Some global minima generalize better than others

#### Main theorem

#### Theorem

For any  $\rho > 0$ , with high probability over training set S generated from distribution  $\mathcal{D}$ ,

$$L_{\mathscr{D}}(\mathbf{w}) \leq \max_{\|\mathbf{\epsilon}\|_{2} < \rho} L_{\mathcal{S}}(\mathbf{w} + \mathbf{\epsilon}) + h(\|\mathbf{w}\|_{2}^{2}/\rho^{2}),$$

where  $h: \mathbb{R}^+ \to \mathbb{R}^+$  is a strictly increasing function (under some technical conditions on  $L_{\mathscr{D}}(\mathbf{w})$ ).



## Simplifying lower bound

Re-arranging the terms to make the sharpness term more explicit:

$$[\max_{\|\boldsymbol{\epsilon}\|_2 \leq \rho} L_{\mathcal{S}}(\boldsymbol{w} + \boldsymbol{\epsilon}) - L_{\mathcal{S}}(\boldsymbol{w})] + L_{\mathcal{S}}(\boldsymbol{w}) + h(\|\boldsymbol{w}\|_2^2/\rho^2).$$

The expression of h heavily depends on the proof method, we substitute the second term with  $\lambda \|\mathbf{w}\|_2^2$  for standard L2 regularization.

#### This gives us the SAM objective:

$$\min_{\boldsymbol{w}} L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) + \lambda ||\boldsymbol{w}||_{2}^{2} \quad \text{where} \quad L_{\mathcal{S}}^{SAM}(\boldsymbol{w}) \triangleq \max_{||\boldsymbol{\epsilon}||_{p} \leq \rho} L_{\mathcal{S}}(\boldsymbol{w} + \boldsymbol{\epsilon}),$$





## Solving min-max problem

Do a first order approximation of the objective:

$$egin{aligned} \epsilon^*(oldsymbol{w}) & riangleq rg \max_{\|oldsymbol{\epsilon}\|_{
ho} \leq 
ho} L_{\mathcal{S}}(oldsymbol{w} + oldsymbol{\epsilon}) pprox rg \max_{\|oldsymbol{\epsilon}\|_{
ho} \leq 
ho} L_{\mathcal{S}}(oldsymbol{w}) + oldsymbol{\epsilon}^T 
abla_{oldsymbol{w}} L_{\mathcal{S}}(oldsymbol{w}) & = rg \max_{\|oldsymbol{\epsilon}\|_{
ho} \leq 
ho} \epsilon^T 
abla_{oldsymbol{w}} L_{\mathcal{S}}(oldsymbol{w}). \end{aligned}$$

Well known solution to the dual norm problem:

$$\hat{\epsilon}(\mathbf{w}) = \rho \operatorname{sign}(\nabla_{\mathbf{w}} L_{\mathcal{S}}(\mathbf{w})) |\nabla_{\mathbf{w}} L_{\mathcal{S}}(\mathbf{w})|^{q-1} / \left( \|\nabla_{\mathbf{w}} L_{\mathcal{S}}(\mathbf{w})\|_{q}^{q} \right)^{1/\rho}$$
(2)

Computing the SAM gradient

$$\nabla_{w} L_{S}^{SAM}(w) \approx \nabla_{w} L_{S}(w + \hat{\epsilon}(w)) = \frac{d(w + \hat{\epsilon}(w))}{dw} \nabla_{w} L_{S}(w)|_{w + \hat{\epsilon}(w)}$$
$$= \nabla_{w} L_{S}(w)|_{w + \hat{\epsilon}(w)} + \frac{d\hat{\epsilon}(w)}{dw} \nabla_{w} L_{S}(w)|_{w + \hat{\epsilon}(w)}.$$





## The algorithm

```
Input: Training set S \triangleq \bigcup_{i=1}^{n} \{(x_i, y_i)\}, Loss function
              I: \mathcal{W} \times \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_+, Batch size b, Step size \eta > 0,
              Neighborhood size \rho > 0.
Output: Model trained with SAM
Initialize weights \mathbf{w}_0, t=0;
while not converged do
       Sample batch \mathcal{B} = \{(x_1, y_1), ...(x_b, y_b)\};
       \delta(\mathbf{w}) = \nabla_{\mathbf{w}} L_{\mathcal{B}}(\mathbf{w}):
      \hat{\epsilon} = \frac{\delta(w_t)}{\|\delta(w_t)\|};
      \mathbf{w}_{\mathrm{adv}} = \mathbf{w}_t + \hat{\boldsymbol{\epsilon}}:
      \mathbf{g} = \delta(\mathbf{w}_{\mathrm{adv}});
      \mathbf{w}_{t+1} = \mathbf{w}_t - \eta \mathbf{g};
       t = t + 1:
end
return w<sub>t</sub>
```

## The algorithm

Figure: One update of SAM against one update of plain gradient descent.







## Robustness to corrupted labels

| Method             | Noise rate (%) |      |      |      |  |
|--------------------|----------------|------|------|------|--|
|                    | 20             | 40   | 60   | 80   |  |
| [SOA+19]           | 94.0           | 92.8 | 90.3 | 74.1 |  |
| [ZS18]             | 89.7           | 87.6 | 82.7 | 67.9 |  |
| [LYL+19]           | 87.1           | 81.8 | 75.4 | -    |  |
| [CLCZ19]           | 89.7           | -    | -    | 52.3 |  |
| [HQJZ19]           | 92.6           | 90.3 | 43.4 | -    |  |
| MentorNet [JZL+17] | 92.0           | 91.2 | 74.2 | 60.0 |  |
| Mixup [ZCDLP17]    | 94.0           | 91.5 | 86.8 | 76.9 |  |
| MentorMix [JHLY19] | 95.6           | 94.2 | 91.3 | 81.0 |  |
| SGD                | 84.8           | 68.8 | 48.2 | 26.2 |  |
| Mixup              | 93.0           | 90.0 | 83.8 | 70.2 |  |
| Bootstrap + Mixup  | 93.3           | 92.0 | 87.6 | 72.0 |  |
| SAM                | 95.1           | 93.4 | 90.5 | 77.9 |  |
| Bootstrap + SAM    | 95.4           | 94.2 | 91.8 | 79.9 |  |

**Table:** Test accuracy on the clean test set for models trained on CIFAR-10 with noisy labels. Lower block is our implementation, upper block gives scores





#### Multiple Columns

#### Heading

- Statement
- 2 Explanation
- Example

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer lectus nisl, ultricies in feugiat rutrum, porttitor sit amet augue. Aliquam ut tortor mauris. Sed volutpat ante purus, quis accumsan dolor.

#### Obtained results

Table: Test error rates for ResNet trained on CIFAR-10, with and without SAM.

| CIFAR-10 | Еросн | тор-1 | тор-к |
|----------|-------|-------|-------|
| No SAM   | 100   | 15.34 | 0.91  |
| No SAM   | 200   | 12.94 | 0.89  |
| No SAM   | 400   | 11.24 | 0.8   |
| SAM      | 100   | 14.5  | 0.7   |
| SAM      | 200   | 12.48 | 0.55  |
| SAM      | 400   | 11.07 | 1.08  |

#### Obtained results

Table: Test error rates for ResNet trained on CIFAR-100, with and without SAM.

| CIFAR-100 | Еросн | тор-1 | тор-к |
|-----------|-------|-------|-------|
| No SAM    | 100   | 89.93 | 66.33 |
| No SAM    | 200   | 90.19 | 66.19 |
| No SAM    | 400   | 48.98 | 20.6  |
| SAM       | 100   | 57.6  | 25.5  |
| SAM       | 200   | 55.25 | 24.93 |
| SAM       | 400   | 78.09 | 43.27 |

## FGSM (Fast Gradient Sign Method)



Figure 1: The Fast Gradient Sign Method (FGSM) for adversarial image generation

$$\hat{\epsilon}(\mathbf{w}) = \rho \operatorname{sign}(\nabla_{\mathbf{w}} L_{\mathcal{S}}(\mathbf{w}))$$





#### References



Pierre Foret, Ariel Kleiner, Hossein Mobahi, 2021 Sharpness-aware Minimization for Efficiently Improving Generalization *ICLR Spotlight* 12(3), 656 – 678.



Jungmin Kwon, Jeongseop Kim, Hyunseo Park, 2022

Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks

Proceedings of Machine Learning Research (ICML) 9(5),538 – 567.



## The End

