Let $C \in Cat$. Recall the nerve and geometric realization. Write $X_C = |NC|$.

Question. For which (connected) categories $C \in Cat$ does there exist a geometric morphism

 $\operatorname{Sh}(X_{\mathbf{C}}) \to \mathbf{Set}^{\mathbf{C}^{op}}$

which induces an isomorphism of profinite groups

$$\widehat{\pi}_1(|N\mathbf{C}|,|p|) \cong \pi_1\left(\mathbf{Set}^{\mathbf{C}^{op}},p\right)$$
?

Definition. Let \mathbf{C} be a category, $N\mathbf{C}$ the simplicial nerve and $X_{\mathbf{C}} = |N\mathbf{C}|$. Let \mathbf{C}/A be the slice category over A. Write D_f for the domain of a morphism f. We define the McCord space of A to be the topological space

$$\mu(A) := \left(\bigsqcup_{f \in \mathbf{C}/A} D_f^*\right) / \sim .$$

Elements of the coproduct $\bigsqcup D_f^*$ may be denoted as tuples (f,p) where $f:D_f\to A$ is an object of the slice category \mathbf{C}/A and $p\in D_f^*\subset X_{\mathbf{C}}$. Let \rhd be the binary relation defined by $(f,p)\rhd (g,q)\iff p=q$ in $X_{\mathbf{C}}$ and there exists a morphism $h:f\to g$ in \mathbf{C}/A and there exists an n-simplex $\sigma\in\operatorname{star}(h)$ such that $p\in\operatorname{int}(\sigma)$. This relation is reflexive, but in general neither symmetric nor transitive. Let \sim be the smallest equivalence relation generated by \rhd .

Define a map of sets

$$e_A: \mu(A) \to X_{\mathbf{C}}, \qquad [f, p] \mapsto p.$$

Definition. Let $f: A \to B$ be a morphism in \mathbb{C} . Then we have a functor $\mathbb{C}/f: \mathbb{C}/A \to \mathbb{C}/B$ given by sending an object $g \in \mathbb{C}/A$ to the composition $f \circ g$. Define a map $\mu(f): \mu(A) \to \mu(B)$ as sending an equivalence class $[g, p] \in \mu(A)$ to the equivalence class $[f \circ g, p]$.

Corollary. $\mu: \mathbb{C} \to LH/X_{\mathbb{C}}$ is a functor.

Definition. Let $p \in X_{\mathbf{C}}$. We define the *support* of p to be the full subcategory of \mathbf{C} given by

$$\mathbf{C}(p) := \left(\begin{array}{c} A \in \mathbf{C} : p \in A^* \\ + \\ \text{morphisms from } \mathbf{C} \end{array} \right).$$

Theorem. Let C be a finite T_0 -space, or equivalently a finite poset. For each $x \in C$, denote its minimal open set around x by U_x . Then there is a natural homeomorphism

$$\mu(x) \cong \mu_{\mathbf{C}}^{-1}(U_x).$$

Proof. I claim that the etale map $e_x : \mu(x) \to X_{\mathbf{C}}$ has a section on $\mu_{\mathbf{C}}^{-1}(U_x) \subset X_{\mathbf{C}}$. Take a point $p \in \mu_{\mathbf{C}}^{-1}(U_x)$. Write $M_p = \min \mathbf{C}(p)$. Then $M_p \in U_x$, so $M_p \leq x$. Write $u : M_p \to x$ for the unique morphism. We now have $[u, p] \in \mu(x)$. Define

$$s_x: \mu_{\mathbf{C}}^{-1}(U_x) \to \mu(x)$$

by sending the point p to [u,p]. The definition of s_x is unambiguous, because there is only one choice for u. Clearly we have $e_x \circ s_x = \mathrm{id}_{\mu_{\mathbf{C}}^{-1}(U_x)}$. So s_x is a section. We shall now prove that $s_x \circ e_x = \mathrm{id}_{\mu(x)}$. Take $[g,p] \in \mu(x)$ and suppose that $(s_x \circ e_x)([g,p]) = [u,p]$. We want to show that [g,p] = [u,p]. Note that $g: D_g \to x$ is unique. Moreover, $D_g \in \mathbf{C}(p)$, so $M_p \leq D_g$. Let $h: M_p \to D_g$ be the unique morphism. Again by uniqueness, $h \circ g = u$. We now have a morphism $h: g \to u$ in \mathbf{C}/x , and $(g,h) \in \mathrm{star}(h)$ with $p \in \mathrm{int}(g,h)$. So [g,p] = [u,g].

Definition. We say C is an Alexandroff category if for all $p \in X_{\mathbf{C}}$

- 1. the support $\mathbf{C}(p)$ is totally ordered with a (unique) minimal element M_p , and
- 2. for every $A \in \mathbf{C}$ and for every $[f,p] \in e_A^{-1}(p)$ there exists a unique morphism $m: M_p \to D_f$ with the property that there is an n-simplex $\sigma \in \operatorname{star}(m)$ with $p \in \operatorname{int}(\sigma)$.

Definition. We say that \mathbb{C} is well-fibered if for all $p \in X_{\mathbb{C}}$ there exists an object $B \in \mathbb{C}$ such that $p^* \circ \mu \cong \operatorname{Hom}_{\mathbb{C}}(B, -)$.

Lemma. If C is Alexandroff, then it is well-fibered.

Proof. Let $p \in X_{\mathbf{C}}$. The claim is that $p^* \circ \mu \cong \operatorname{Hom}_{\mathbf{C}}(M_p, -)$, where M_p is defined as in $\ref{eq:condition}$. In other words, we need to find a natural isomorphism $\alpha: p^* \circ \mu \to \operatorname{Hom}_{\mathbf{C}}(M_p, -)$. To that end, define $\beta: \operatorname{Hom}_{\mathbf{C}}(M_p, -) \to p^* \circ \mu$ as follows. For each component $A \in \mathbf{C}$, we set

$$\beta_A: \operatorname{Hom}_{\mathbf{C}}(M_p, A) \to e_A^{-1}(p), \qquad h \mapsto [h, p].$$

Then naturality of β is clear. The natural transformation β will be the inverse for the natural transformation α . For the natural transformation α , define it as follows.

Take $[g,p] \in e_A^{-1}(p)$. Then $g: D_g \to A$ and $p \in D_g^*$. So $D_g \in \mathbf{C}(p)$. Since \mathbf{C} is Alexandroff, there exists a unique morphism $m: M_p \to D_g$ with the property that there is some $\sigma \in \mathrm{star}(m)$ such that $p \in \mathrm{int}(\sigma)$. For each component $A \in \mathbf{C}$, we set

$$\alpha_A : e_A^{-1}(p) \to \operatorname{Hom}_{\mathbf{C}}(M_p, A), \qquad [g, p] \mapsto g \circ m.$$

Because this m is unique, α_A is well-defined. Observe now that

$$(\beta_A \circ \alpha_A)[q,p] = [q \circ m,p].$$

But m has the property that we are also given a simplex $\sigma \in \text{star}(m)$ such that $p \in \text{int}(\sigma)$. That means that $(g \circ m, p) \rhd (g, p)$, so $[g \circ m, p] = [g, p]$. In the other direction we find

$$(\alpha_A \circ \beta_A)(h) = h,$$

so we conclude that α and β are each other's inverse transformations. \square

Lemma. If C is well-fibered, then $\mu : \mathbb{C} \to LH/X_{\mathbb{C}}$ is flat.

Proof. By ??, it suffices to prove that for every $p \in X_{\mathbf{C}}$ the functor $p^* \circ \mu$: $\mathbf{C} \to \mathbf{Set}$ is flat. This is the same thing as proving that the categoy of elements $\int_{\mathbf{C}} (p^* \circ \mu)$ is filtered, by ??. Since \mathbf{C} is well-fibered, there exists some object $B \in \mathbf{C}$ such that $p^* \circ \mu \cong \mathrm{Hom}_{\mathbf{C}}(B, -)$. Therefore,

$$\int_{\mathbf{C}} (p^* \circ \mu) \cong \int_{\mathbf{C}} \operatorname{Hom}_{\mathbf{C}} (B, -) \cong B \backslash \mathbf{C}.$$

Now the over-category $B \setminus \mathbf{C}$ is always filtered, because $\mathrm{id}_B : B \to B$ is an initial object.

So we see that when C is Alexandroff, μ is flat.

Proposition. There exists a geometric morphism

$$\tau(\mu): \mathbf{LH}/X_{\mathbf{C}} \to \mathbf{Set}^{\mathbf{C}^{op}}$$

for which the left-exact left adjoint $\tau(\mu)^*$ is given by sending a presheaf P on \mathbf{C} to the tensor product $P \otimes_{\mathbf{C}} \mu$, and for which the right adjoint $\tau(\mu)_*$ sends an etale space $e: E \to X_{\mathbf{C}}$ to the presheaf $\underline{\mathrm{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}}(\mu, E)$ defined for every object $A \in \mathbf{C}$ by

$$\underline{\operatorname{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}}(\mu, E)(A) = \operatorname{Hom}_{\mathbf{LH}/X_{\mathbf{C}}}(\mu(A), E).$$

Proof. Follows directly from the theory in [?, Chapter VII, Paragraph 7]. In particular, in [?, Theorem VII.7.2], take $\mathscr{E} = \mathbf{LH}/X_{\mathbf{C}}$. Alternatively, we spoke of the bijection between flat functors and geometric morphisms in ??.

We shall be needing the following proposition.

Proposition. Let $p: Y \to X$ be a (not necessarily finite) covering map, where Y is a topological space and X is a locally connected space. Let $f, g: Z \to Y$ be two continuous maps satisfying $p \circ f = p \circ g$, where Z is a connected topological space. If there is a point $z \in Z$ with f(z) = g(z), then f = g.

Proof. This is [?, Proposition 2.2.2]. We'll give a sketch of the proof here. Let $U = \{w \in Z : f(w) = g(w)\}$. Then prove that U is both open and closed in Z. Conclude that U must be all of Z by connectedness. \square

The following proposition is central.

Proposition. Let $\pi_E : E \to X_{\mathbf{C}}$ be a finite covering map of degree d > 0 and let A be an object of \mathbf{C} . Then we have a natural bijection of sets

$$\alpha_{A,E}: (\mathbf{LH}/X_{\mathbf{C}}) (\mu A, E) \to \pi_E^{-1}(|A|), \qquad \varphi \mapsto \varphi[\mathrm{id}_A, |A|].$$

Proof. By ??,

$$e_A^{-1}(|A|) = \{[\mathrm{id}_A, |A|]\} \subset \mu(A).$$

Write

$$\pi_E^{-1}(|A|) = \{x_1, \dots, x_d\} \subset E.$$

Now take a morphism $\varphi \in (\mathbf{LH}/X_{\mathbf{C}})(\mu(A), E)$. Then

$$\varphi[\mathrm{id}_A, |A|] \in \{x_1, \dots, x_d\}.$$

I claim that these d choices for $\varphi[\mathrm{id}_A, |A|]$ completely determine φ . So let $\psi \in (\mathbf{LH}/X_{\mathbf{C}})(\mu(A), E)$ be another morphism and suppose that

$$\varphi[\mathrm{id}_A, |A|] = x_1 = \psi[\mathrm{id}_A, |A|].$$

We will apply $\ref{eq:constraints}$. Take $Y = E, X = X_{\mathbf{C}}, Z = \mu(A), p = \pi_E, f = \varphi, g = \psi$ and $z = [\mathrm{id}_A, |A|]$ in $\ref{eq:constraints}$. Then $X_{\mathbf{C}}$ is a locally connected space, because it is a CW-complex by [?, Proposition I.2.3]. Moreover, $\mu(A)$ is connected by $\ref{eq:constraints}$?. Finally,

$$p \circ f = \pi_E \circ \varphi = e_A = \pi_E \circ \varphi = p \circ g.$$

This proves that

$$\# (\mathbf{LH}/X_{\mathbf{C}}) (\mu A, E) \leq d.$$

Let us now prove that the map $\alpha_{A,E}$ is surjective. Thus, given $x \in \pi_E^{-1}(|A|)$ we want to show that there exists some $\varphi \in (\mathbf{LH}/X_{\mathbf{C}})(\mu A, E)$ such that $\varphi[\mathrm{id}_A, |A|] = x$. We shall actually construct such a φ . First, observe that π_E is a Serre fibration. Then apply ?? to see that any two lifts of some $|\sigma| : \Delta^n \to X_{\mathbf{C}}$ are unique. For each $f \in \mathbf{C}/A$ (and so in particular for id_A) we have a commutative diagram

$$\begin{array}{ccc}
\Delta^0 & \xrightarrow{x} & E \\
|d_0| \int & \exists ! \widetilde{f} & & \downarrow \pi_E \\
\Delta^1 & \xrightarrow{|f|} & X_{\mathbf{C}}
\end{array}$$

and a unique diagonal filler $\tilde{f}:\Delta^1\to E$ as indicated by the dotted arrow in the diagram. Thus we have a collection of lifted paths $\tilde{f}:\Delta^n\to E$ all ending up at the point $x\in E$ and starting at some arbitrary point in E. Let us call the starting point $\tilde{f}(0)$.

Now let $[f, p] \in \mu(A)$ be an arbitrary point. We are going to define what $\varphi[f, p]$ is. We have $f: D_f \to A$ and $p \in D_f^*$, so $p \in \text{int}(\sigma)$ for some *n*-simplex $\sigma \in \text{star}(D_f)$. We may assume that σ is non-degenerate by ??. If n = 0, then $p = |D_f|$. In that case, we define

$$\varphi[f,p] := \widetilde{f}(0).$$

Suppose now that n > 0. Let $\theta : \mathbf{0} \to \mathbf{n}$ be an injective order-preserving map as in ?? such that $D_f = \sigma \circ \Delta(-, \theta)$. Then we have a commutative diagram

$$\begin{array}{ccc}
\Delta^0 & \xrightarrow{\widetilde{f}(0)} & E \\
|\Delta(-,\theta)| & & \exists \widetilde{\sigma} & & \downarrow \pi_E \\
\Delta^n & & & \downarrow \sigma \\
& & & & \downarrow \sigma
\end{array}$$

and a unique diagonal filler $\tilde{\sigma}: \Delta^n \to E$. Let $t \in \Delta^n$ be the unique coordinates such that $p = |\sigma|(t)$. We define

$$\varphi[f,p] := \widetilde{\sigma}(t).$$

We must prove that this definition is independent of the chosen representative of the equivalence relation in $\mu(A)$. So suppose that $(f,p) \rhd (g,p)$. Then $p \in \operatorname{int}(\sigma_f)$ and $p \in \operatorname{int}(\sigma_g)$ for some σ_f having D_f as a vertex and some σ_g having D_g as a vertex. Suppose that we have uniquely lifted σ_f and σ_g to maps

$$\Delta^n \xrightarrow{\widetilde{\sigma_f}} E, \qquad \Delta^m \xrightarrow{\widetilde{\sigma_g}} E.$$

Let $t_f \in \Delta^n$ and $t_g \in \Delta^m$ be the unique coordinates such that

$$|\sigma_f|(t_f) = p = |\sigma_q|(t_q).$$

By the definition of \triangleright , There exists a morphism $h: f \to g$ in \mathbb{C}/A and a k-simplex $\tau \in \text{star}(h)$ such that $p \in \text{int}(\tau)$. Consider first the 2-simplex β given by

$$\beta = (h, g) : \Delta(-, 2) \to N\mathbf{C}.$$

Let $\widetilde{\beta}: \Delta^2 \to E$ be the unique lift of $|\beta|: \Delta^2 \to X_{\mathbf{C}}$. By [?, Exercise A.1], the face of a lift is the lift of a face, so we see that two of the faces of $\widetilde{\beta}$ upstairs in E are the lifts \widetilde{f} and \widetilde{g} . Denote by \widetilde{h} the third lift of $|h|: \Delta^1 \to X_{\mathbf{C}}$.

We may assume by ?? that τ , σ_f and σ_g are non-degenerate. This implies that $\tau = \sigma_f = \sigma_g$, and n = m = k, and $t_f = t_g$. Let $\theta' : \mathbf{1} \to \mathbf{m}$ be an injective order-preserving map as in ?? such that $h = \tau \circ \Delta(-, \theta')$. Then we have a commutative diagram

$$\begin{array}{ccc}
\Delta^1 & \xrightarrow{\widetilde{h}} & E \\
|\Delta(-,\theta')| & & \exists !\widetilde{\tau} & \xrightarrow{\exists !\widetilde{\tau}} & \downarrow \pi_E \\
\Delta^m & \xrightarrow{|\tau|} & X_{\mathbf{C}}
\end{array}$$

By uniqueness of the lifts, $\widetilde{\sigma_f} = \widetilde{\sigma_g} = \widetilde{\tau}$.

Continuity of φ follows from the fact that all the liftings $\tilde{\sigma}: \Delta^n \to E$ from the continuous maps $|\sigma|: \Delta^n \to X_{\mathbf{C}}$ are continuous. Moreover, the realization $X_{\mathbf{C}}$ is defined as the colimit

$$X_{\mathbf{C}} = \operatorname*{colim}_{\substack{\Delta(-,\mathbf{n}) \to N\mathbf{C} \\ \text{in } \Delta \downarrow N\mathbf{C}}} \Delta^n$$

So the gluing data comes from $X_{\mathbf{C}}$.

Theorem. If $\pi: E \to X_{\mathbf{C}}$ is a finite covering map, then $\underline{\mathrm{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}}(\mu, E)$ is a locally constant finite presheaf on \mathbf{C} . Conversely, if P is a locally constant finite presheaf on \mathbf{C} , then $P \otimes_{\mathbf{C}} \mu$ has the structure of a finite covering space over $X_{\mathbf{C}}$.

Proof. The claim that $P \otimes_{\mathbf{C}} \mu$ is a finite covering map whenever $P \in \left(\mathbf{Set}^{\mathbf{C}^{op}}\right)_{\mathrm{lef}}$ is covered in ??. (Use ?? there for the translation between sheaves and etale spaces). Explicitly, the finite covering map is given by

$$\pi: P \otimes_{\mathbf{C}} \mu \to X_{\mathbf{C}}, \qquad x \otimes [f, p] \mapsto p.$$

The degree of π is the number of elements in P(A), for any $A \in \mathbb{C}$. This is well-defined by ?? and the assumption that $X_{\mathbb{C}}$ is connected.

We shall prove the other direction, which is the remarkable one. So we want to show that given a finite covering map $\pi_E : E \to X_{\mathbf{C}}$ and given a morphism $f : A \to B$ in \mathbf{C} , the map

$$(\mathbf{LH}/X_{\mathbf{C}})(\mu B, E) \to (\mathbf{LH}/X_{\mathbf{C}})(\mu A, E), \qquad \varphi \mapsto \varphi \circ \mu(f)$$
 (1)

is a bijection. By $\ref{eq:condition}$, it suffices to prove that the map in eq. (1) is injective. So take two morphisms $\varphi, \psi \in (\mathbf{LH}/X_{\mathbf{C}})(\mu B, E)$ and suppose that $\varphi \circ \mu(f) = \psi \circ \mu(f)$. We want to prove that $\varphi = \psi$. In $\ref{eq:condition}$, take Y = E, $X = X_{\mathbf{C}}$, $Z = \mu(B)$, $p = \pi_E$, $f = \varphi$, $g = \psi$. As in the proof of $\ref{eq:condition}$, all conditions of $\ref{eq:condition}$? are satisfied, except that we need to supply a point $[h, p] \in \mu(B)$ such that $\varphi[h, p] = \psi[h, p]$. But we know that

$$\forall \ [g,p] \in \mu(A): \varphi[f \circ g,p] = \psi[f \circ g,p].$$

Now $\mu(A)$ is non-empty, because $[\mathrm{id}_A, |A|] \in \mu(A)$. Therefore

$$\varphi[f, |A|] = \psi[f, |A|]$$

and we are done.

Proposition. Let $E \in \mathbf{FinCov}/X_{\mathbf{C}}$. Then the counit at the component E

$$\underline{\operatorname{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}}(\mu, E) \otimes_{\mathbf{C}} \mu \to E$$

of the adjunction $- \otimes_{\mathbf{C}} \mu \dashv \underline{\mathrm{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}}(\mu, -)$ is an isomorphism.

Proof. The counit is given by the continuous map over the base space $X_{\mathbf{C}}$

$$\varepsilon_{E}: \underline{\operatorname{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}}(\mu, E) \otimes_{\mathbf{C}} \mu \to E, \qquad \varphi \otimes [f, p] \mapsto \varphi\left([f, p]\right),$$

where $\varphi \in (\mathbf{LH}/X_{\mathbf{C}})$ ($\mu(A), E$) for some $A \in \mathbf{C}$ and $[f, p] \in \mu(A)$. Like for sheaves, it suffices to prove that ε_E is an isomorphism on the level of stalks, i.e. fibers of the finite covering maps. First of all, it suffices to look at points p of the form p = |A| for some object $A \in \mathbf{C}$, for recall (viz. ?? , ??) that μ is well-fibered, so that $p^* \circ \mu \cong \operatorname{Hom}(M_p, -)$. This gives

$$p^* \circ \left(\underline{\operatorname{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}} (\mu, E) \otimes_{\mathbf{C}} \mu \right) \cong \underline{\operatorname{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}} (\mu, E) \otimes_{\mathbf{C}} (p^* \circ \mu)$$

$$\cong \underline{\operatorname{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}} (\mu, E) \otimes_{\mathbf{C}} \operatorname{Hom} (M_p, -)$$

$$\cong \underline{\operatorname{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}} (\mu, E) (M_p)$$

$$= \operatorname{Hom}_{\mathbf{LH}/X_{\mathbf{C}}} (\mu(M_p), E)$$

$$\cong \pi_F^{-1} (|M_p|)$$

Now if we follow the isomorphisms, the composition is precisely the counit.

A similar thing occurs with the unit.

Proposition. Let P be a locally constant finite presheaf. Then the unit of the adjunction $-\otimes_{\mathbf{C}} \mu \dashv \underline{\mathrm{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}}(\mu, -)$ at the component P is an isomorphism.

Proof. The unit is a map of presheaves

$$\eta: P \to \underline{\operatorname{Hom}}_{\mathbf{LH}/X_{\mathbf{C}}}(\mu, P \otimes_{\mathbf{C}} \mu)$$
(2)

which for a given object $A \in \mathbf{C}$ is a map of sets

$$\eta_A: P(A) \to \operatorname{Hom}_{\mathbf{LH}/X_{\mathbf{C}}}(\mu(A), P \otimes_{\mathbf{C}} \mu)$$

and, since $\mathbf{LH}/X_{\mathbf{C}}$ is cartesian closed (because it is a topos), this is the same thing as giving a map of sets

$$\eta_A^{\top}: P(A) \times \mu(A) \to P \otimes \mu$$

and this map is given by

$$\eta_A^{\top}(x,[f,p]) = x \otimes [f,p].$$

Now the isomorphism in ?? is precisely the unit.

Corollary. The left and right adjoint of ?? restrict to an equivalence of categories

$$\mathbf{FinCov}/X_{\mathbf{C}} \cong \left(\mathbf{Set}^{\mathbf{C}^{op}}\right)_{\mathrm{lcf}}.$$

Proof. Apply ?? and ??.

Corollary. Let $A \in \mathbb{C}$ be an object. Then there is a natural isomorphism of profinite groups

$$\widehat{\pi}_1\left(X_{\mathbf{C}}, |A|\right) \cong \pi_1\left(\mathbf{Set}^{\mathbf{C}^{op}}, A\right).$$

Proof. Interpret A as a geometric morphism (point)

$$A:\mathbf{Set} o \mathbf{Set}^{\mathbf{C}^{op}}$$

where the inverse image part sends a presheaf P on \mathbb{C} to P(A), and the direct image part sends a set S to the "underline Hom" from $\ref{from P}$. So A is a point of the topos $\mathbf{Set}^{\mathbf{C}^{op}}$. The category $\left(\mathbf{Set}^{\mathbf{C}^{op}}\right)_{\mathrm{lcf}}$ is a Galois category with fundamental functor given by the inverse image part of the point A. From $\ref{from P}$, we obtain

$$\pi_1\left(\mathbf{Set}^{\mathbf{C}^{op}}, A\right) \cong \pi_1\left(\mathrm{Sh}(X_{\mathbf{C}}), |A|\right).$$

Then from [?, Theorem 1.15, or 3.10], we obtain

$$\pi_1\left(\operatorname{Sh}(X_{\mathbf{C}}), |A|\right) \cong \widehat{\pi}_1\left(X_{\mathbf{C}}, |A|\right).$$

Example. Take **C** to be the graph category $x \Rightarrow y$ with $f, g : x \rightarrow y$. Then $X_{\mathbf{C}}$ is a circle with fundamental group \mathbb{Z} , so ?? tells us that

$$\pi_1\left(\mathbf{Sets}^{\mathbf{C}^{op}}, x\right) = \widehat{\mathbb{Z}}.$$

Compare this with section 3.3.

Example. Take C to be the (co)equalizer category from ?? or ??. Both realizations $X_{\mathbf{C}}$ are disks, so we can immediately conclude that $\pi_1\left(\mathbf{Set}^{\mathbf{C}^{op}},x\right)=0$.

Example. Take **C** to be the category given by $x \Rightarrow y \Leftarrow z$. Then the realization $X_{\mathbf{C}}$ is a figure-8. The fundamental group of the figure-8 can be computed using the Van Kampen theorem to find that $\pi_1\left(\mathbf{Set}^{\mathbf{C}^{op}},x\right) = \widehat{\mathbb{Z}*\mathbb{Z}}$.

Example. Take C to be any finite poset. Then the fundamental group of $\mathbf{Set}^{\mathbf{C}^{op}}$ is the profinite completion of the fundamental group of C viewed as a finite T_0 -space by $\ref{eq:complete}$.