Life Science Model 1: To Predict New Molecules:

MoLFormer-XL-both-10%

MoLFormer is a class of models pretrained on SMILES string representations of up to 1.1B molecules from ZINC and PubChem. This repository is for the model pretrained on 10% of both datasets.

Dataset Size:

Train set size: (12000, 13) Test set size: (5896, 2)

Sample Input:

Component	Description				
Model Type	Transformer-XL variant (MoLFormer-XL)				
Task	Multi-task binary classification				
Input	SMILES strings (molecular representations)				
Tokenizer	Learned substructure-aware tokenizer				
Architecture	Embedding → Transformer layers → [CLS]/pool → Linear				
Loss Function	BCE With Logits Loss				
Activation	Sigmoid on logits				

Model Description

MoLFormer is a large-scale chemical language model designed with the intention of learning a model trained on small molecules which are represented as SMILES strings. MoLFormer leverges masked language modeling and employs a linear attention Transformer combined with rotary embeddings.

MoLFormer-XL-both-10%

MoLFormer is a class of models pretrained on SMILES string representations of up to 1.1B molecules from ZINC and PubChem. This repository is for the model pretrained on 10% of both datasets.

• **Ref:** https://huggingface.co/ibm-research/MoLFormer-XL-both-10pct

Steps:

Load & Preprocess Data

• Read SMILES strings and task labels from CSV files (train and test files).

Tokenizer Initialization

• Use the pretrained MoLFormer-XL tokenizer to convert SMILES strings into token IDs.

Model Architecture Setup

- Load MoLFormer-XL with a classification head (num_labels=1) for binary classification.
- It adds a linear layer on top of a deep Transformer-XL encoder.

Custom Dataset Definition

Create a SMILESDataset class to return tokenized inputs (and labels during training).

Task-wise Looping

For each of the 11 tasks (task1 to task11), repeat fine-tuning and inference separately.

Tokenization of Inputs

- Tokenize both training and test SMILES strings for the current task using the same tokenizer.
- · Pad and truncate to fixed size for uniform input.

Dataloader Preparation

· Create PyTorch DataLoader objects for both training and test sets, enabling batching and shuffling.

Model Training

- Fine-tune the MoLFormer model using 8 epochs of training on the filtered dataset.
- Use BCEWithLogitsLoss and AdamW optimizer to update weights.

• Prediction (Inference)

• Pass test SMILES through the trained model, apply sigmoid() to logits to get probabilities.

- 2, 2, 2, 2, 2, 2, 2]], device='cuda:0')
 [3] Token Embeddings Shape: torch.Size([16, 242, 768])
- [4] Last Hidden Layer Shape: torch.Size([16, 242, 768])
- [5] Logits Output (pre-sigmoid): tensor([-0.3631, 0.0641], device='cuda:0')
- [6] Sigmoid Probabilities: tensor([0.4102, 0.5160], device='cuda:0')

Architecture Core components:

1.Embedding Layer:

- Maps SMILES tokens to dense vectors (token_embeddings).
- •Learned embeddings for atoms, bonds, special tokens (like = for double bond, etc.).

2.Transformer Layers (XL):

- Deep stack (24+ layers) with **self-attention** and **memory mechanism** from Transformer-XL.
- •XL allows longer dependencies by caching past key-value states, useful for long SMILES strings.

3. Sequence Pooling:

- •Uses [CLS] token or mean pooling over the sequence output.
- Produces a fixed-size vector for the full SMILES string.

4. Classification Head:

- •Linear projection layer: [hidden_dim] \rightarrow [1] (scalar logit per sample).
- •Logits later passed through sigmoid() to get probabilities.

```
[1] Input SMILES: ['N=c1nc(0)c2ncn(COC(CO)CO)c2[nH]1', 'CC[C@]1(0)C[C@H]2CN(CCc3c([nH]c4ccccc34)[C@@](C(=0)OC)(c3cc4c(cc3OC)
tensor([[ 0, 10, 12, 4, 6, 9, 7, 10, 26, 10, 12, 4, 26, 5, 8,
     6, 30, 6, 12, 9, 7, 31, 7, 22, 8, 1, 2, 2, 2, 2,
     2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2,
           2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
           2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
             7, 5, 8, 5, 5, 5, 5, 5, 8, 1, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
           2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2]], device='cuda:0')
[3] Token Embeddings Shape: torch.Size([16, 242, 768])
```

- [4] Last Hidden Layer Shape: torch.Size([16, 242, 768])
- [5] Logits Output (pre-sigmoid): tensor([-0.3631, 0.0641], device='cuda:0')
- [6] Sigmoid Probabilities: tensor([0.4102, 0.5160], device='cuda:0')

```
Train set size: (12000, 13)
                                                                            Processing task2...
Test set size: (5896, 2)
                                                                            Some weights of Molform
                                                                            You should probably TRA
Sample rows from training data:
  Unnamed: 0
                                                  smiles task1 \
                                                                            Epoch 1 loss: 0.6916
          0 CC=C(CCC(C)C1CCC2C3=CCC4C(C)C(0)CCC4(C)C3CCC21...
                                                                            Epoch 2 loss: 0.5955
1
                           0=c1cc(-c2cccc2)oc2cc(0)cc(0)c12
                                                                            Epoch 3 loss: 0.5117
2
                                          CC(C)(C)0CC1C01
          3
                   CN(C(=0)CCCOc1ccc2[nH]c(=0)ccc2c1)C1CCCCC1
                                                                            Epoch 4 loss: 0.3973
                C(=C/c1cccc1)\CN1CCN(C(c2cccc2)c2cccc2)CC1
                                                                            Epoch 5 loss: 0.2945
                                                                            Epoch 6 loss: 0.2298
                                                                            Epoch 7 loss: 0.1446
                                                              -1
                                                                            Epoch 8 loss: 0.1652
                                                              -1
                                                                           Processing task1...
                                                              -1
                                                                           Some weights of Molformer
Sample rows from test data:
                                                                           You should probably TRAIN
  Unnamed: 0
                                                  smiles
                                                                           Epoch 1 loss: 0.2768
                 Cc1ncc(CN2CC=C(c3ccccc3)CC2)c(=N)[nH]1.Cl.Cl
                                       N=C(N)Nc1ccc(Cl)cc1
                                                                           Epoch 2 loss: 0.1711
          2 NCC10C(0C2C(N)CC(N)C(0C30C(C0)C(0)C(N)C30)C20)...
                                                                           Epoch 3 loss: 0.1202
3
          3
                                              Clcc(Br)CBr
                                                                           Epoch 4 loss: 0.0802
4
          4
                               Oc1ccc2[nH]cc(C3=CCNCC3)c2n1
                                                                           Epoch 5 loss: 0.0557
                                                                           Epoch 6 loss: 0.0449
                                                                           Epoch 7 loss: 0.0267
```

Epoch 8 loss: 0.0251

While During Training:

AUC mean	AUC Task1	AUC Task2	AUC Task3	AUC Task4	AUC Task5	AUC Task6	AUC Task7	AUC Task8	AUC Task9 1
0.702	0.875	0.615	0.905	0.333	0.877	0.696	0.359	0.654	0.888
0.652	0.892	0.505	0.922	0.69	0.673	0.49	0.434	0.667	0.9

Final AUC Results: