VP160 Recitation Class IV

Angular Momentum & Rigid Body Dynamics Part I

Zeyi Ren

UM-SITU Joint Institute

July 14, 2021

Rigid Body Dynamnics Part I

$$\vec{L} = \vec{r} \times \vec{p}$$
$$[kg \cdot m^2/s]$$

$$[kg \cdot m^2/s]$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$[kg \cdot m^2/s]$$

How to derive?

$$\vec{F} = \frac{d\vec{p}}{dt}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$[kg \cdot m^2/s]$$

How to derive?

$$\vec{F} = \frac{d\vec{p}}{dt}$$

$$\Rightarrow \vec{r} \times \vec{F} = \vec{r} \times \frac{d\vec{p}}{dt} = \frac{d}{dt} (\vec{r} \times \vec{p}) - \frac{d\vec{r}}{dt} \times \vec{p}$$

$$\vec{L} = \vec{r} \times \vec{p}$$

$$[kg \cdot m^2/s]$$

How to derive?

$$\vec{F} = \frac{d\vec{p}}{dt}$$

$$\Rightarrow \vec{r} \times \vec{F} = \vec{r} \times \frac{d\vec{p}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{p}) - \frac{d\vec{r}}{dt} \times \vec{p}$$

Notice
$$\frac{d\vec{r}}{dt} \times \vec{p} = \vec{v} \times (m\vec{v}) = 0$$

$$\vec{L} = \vec{r} \times \vec{p}$$
$$[kg \cdot m^2/s]$$

How to derive?

$$\vec{F} = \frac{d\vec{p}}{dt}$$

$$\Rightarrow \vec{r} \times \vec{F} = \vec{r} \times \frac{d\vec{p}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{p}) - \frac{d\vec{r}}{dt} \times \vec{p}$$
Notice
$$\frac{d\vec{r}}{dt} \times \vec{p} = \vec{v} \times (m\vec{v}) = 0$$

$$\Rightarrow \underbrace{\vec{r} \times \vec{F}}_{\vec{\tau}} = \frac{d}{dt} \underbrace{\vec{r} \times \vec{p}}_{\vec{L}}$$

$$ec{ au}=rac{dec{L}}{dt}\Rightarrow ec{L}(t_2)-ec{L}(t_1)=\int_{t_1}^{t_2}ec{ au}dt$$

$$ec{ au}=rac{dec{L}}{dt}\Rightarrow ec{L}(t_2)-ec{L}(t_1)=\int_{t_1}^{t_2}ec{ au}dt$$

Law of Conservation of Angular Momentum

If
$$\vec{\tau} = 0 \Rightarrow \vec{L} = const$$

$$ec{ au}=rac{dec{L}}{dt}\Rightarrow ec{L}(t_2)-ec{L}(t_1)=\int_{t_1}^{t_2}ec{ au}dt$$

Law of Conservation of Angular Momentum

If
$$\vec{\tau} = 0 \Rightarrow \vec{L} = \text{const}$$

Applications:

• Central force field $(\vec{\tau} = \vec{r} \times \vec{F} = 0)$

$$ec{ au}=rac{dec{L}}{dt}\Rightarrow ec{L}(t_2)-ec{L}(t_1)=\int_{t_1}^{t_2}ec{ au}dt$$

Law of Conservation of Angular Momentum

If
$$\vec{\tau} = 0 \Rightarrow \vec{L} = \text{const}$$

Applications:

- Central force field $(\vec{\tau} = \vec{r} \times \vec{F} = 0)$
- Aerial velocity, e.g. motion of planets, Kepler's Second Laws

For planer motion, the **aerial velocity** may be defined

The surface area swept by \bar{r} over the time dt is $dA = \left|\frac{1}{2}\bar{r} \times d\bar{r}\right|$ and the rate of change of that area

$$\frac{dA}{dt} = \frac{1}{2} \left| \bar{r} \times \frac{d\bar{r}}{dt} \right| = \frac{1}{2} \left| \bar{r} \times \bar{v} \right|.$$

Aerial velocity vector (direction — right-hand rule)

$$\boxed{\bar{\sigma} = \frac{1}{2}(\bar{r} \times \bar{v})} \qquad \text{(direction same as } d\bar{\varphi}\text{)}$$

Recall:
$$\bar{L} = \bar{r} \times \bar{p} = \underline{\bar{r} \times m\bar{v}}$$
. Hence $\bar{L} = const \Leftrightarrow \bar{\sigma} = const$.

Consequently, for motion in a central force field $\bar{\sigma}={\rm const.}$

Angular Momentum in System of Particles

Conservation of the Angular Momentum Law

If the net torque of external forces on a system of particles is equal to zero, then the total angular momentum of that system is conserved.

Angular Momentum in System of Particles

Conservation of the Angular Momentum Law

If the net torque of external forces on a system of particles is equal to zero, then the total angular momentum of that system is conserved.

$$\frac{d\vec{L}}{dt} = \vec{\tau} = \vec{\tau_{ext}} + \underbrace{\vec{\tau_{int}}}_{=0}$$

Angular Momentum in System of Particles

Conservation of the Angular Momentum Law

If the net torque of external forces on a system of particles is equal to zero, then the total angular momentum of that system is conserved.

$$\frac{d\vec{L}}{dt} = \vec{\tau} = \vec{\tau_{\text{ext}}} + \underbrace{\vec{\tau_{\text{int}}}}_{-0}$$

Why $\vec{\tau_{int}} = 0$?

For any two particles k, l in the system,

$$\tau_{k\to l} = -\tau_{l\to k}$$

Applications:

Use with other conservation laws:

- Conservation of Energy
- Conservation of Momentum

Applications:

Use with other conservation laws:

- Conservation of Energy
- Conservation of Momentum

Exercise 1

A particle with mass m is put into a force field $\vec{F}=\alpha\vec{r}$, where α is a positive constant. the Particle's initial velocity is $\vec{v_0}$ and its initial position is P_0 , when it moves to the position P_e , the instantaneous velocity $\vec{v_e}$ is orthogonal to its radius vector $\vec{r_e}$. Take $\alpha=\frac{mv_0^2}{4a^2}$ and calculate the value of $\frac{|\vec{v_e}|}{|\vec{v_e}|}$.

Rigid Body

A body is called rigid if $|\vec{r_i} - \vec{r_j}| = \text{const for any point } i, j \text{ in the body.}$

Rigid Body

A body is called rigid if $|\vec{r_i} - \vec{r_j}| = \text{const for any point } i, j \text{ in the body.}$

Degree of freedom of a rigid body?

Rigid Body

A body is called rigid if $|\vec{r_i} - \vec{r_i}| = \text{const for any point } i, j \text{ in the body.}$

Degree of freedom of a rigid body?

FoR associated with the rigid body is, in general, non-inertial —the body can move arbitrarily.

O' — a point of the body

We have (see the derivation of dynamics in non-inertial FoRs)

$$\overline{r}_{i} = \overline{r}_{O'} + \overline{r}'_{i},$$

$$\overline{v}_{i} = \overline{v}_{O'} + \underbrace{\overline{v}'_{i}}_{=0} + \overline{\omega} \times \overline{r}'_{i},$$

where $\overline{v}'_i = 0$ due to the fact that the body is rigid (no relative motion of the rigid body's points).

Eventually, the velocity of any point of a rigid body

$$\overline{\mathbf{v}}_i = \overline{\mathbf{v}}_{O'} + \overline{\omega} \times \overline{\mathbf{r}}_i'.$$

The first term on the right hand side corresponds to the **translational motion**, while the second term to the **rotational motion** about an *instantaneous axis of rotation*.

rotational motion

Consequently, the total momentum of an arbitrarily moving rigid body (in lab FoR) is

$$\overline{P} = \sum_{i=1}^{N} m_{i} \overline{v}_{i} = \sum_{i=1}^{N} m_{i} \overline{v}_{O'} + \sum_{i=1}^{N} m_{i} (\overline{\omega} \times \overline{r}_{i'}) =$$

$$= M \overline{v}_{O'} + \overline{\omega} \times \sum_{i=1}^{N} m_{i} \overline{r}_{i'} = \underbrace{M \overline{v}_{O'}}_{\text{translational motion}} + \underbrace{M \overline{\omega} \times \overline{r}'_{\text{cm}}}_{\text{rotational motion}}$$

Consequently, the total momentum of an arbitrarily moving rigid body (in lab FoR) is

$$\overline{P} = \sum_{i=1}^{N} m_{i} \overline{v}_{i} = \sum_{i=1}^{N} m_{i} \overline{v}_{O'} + \sum_{i=1}^{N} m_{i} (\overline{\omega} \times \overline{r}_{i'}) =$$

$$= M \overline{v}_{O'} + \overline{\omega} \times \sum_{i=1}^{N} m_{i} \overline{r}_{i'} = \underbrace{M \overline{v}_{O'}}_{\text{translational motion}} + \underbrace{M \overline{\omega} \times \overline{r}'_{\text{cm}}}_{\text{rotational motion}}$$

$$\Rightarrow \vec{p} = M\vec{v_c}$$

In the lab FoR

$$\overline{L} = \sum_{i=1}^{N} \overline{L}_{i} = \sum_{i=1}^{N} m_{i} \overline{r}_{i} \times \overline{v}_{i} = \sum_{i=1}^{N} [m_{i} (\overline{r}_{O'} + \overline{r}'_{i}) \times (\overline{v}_{O'} + \overline{\omega} \times \overline{r}'_{i})]$$

$$= \sum_{i=1}^{N} m_{i} (\overline{r}_{O'} \times \overline{v}_{O'}) + \sum_{i=1}^{N} m_{i} \overline{r}_{O'} \times (\overline{\omega} \times \overline{r}'_{i}) +$$

$$+ \sum_{i=1}^{N} m_{i} \overline{r}'_{i} \times \overline{v}_{O'} + \sum_{i=1}^{N} m_{i} \overline{r}'_{i} \times (\overline{\omega} \times \overline{r}'_{i})$$

$$= M \overline{r}_{O'} \times \overline{v}_{O'} + M \overline{r}_{O'} \times (\overline{\omega} \times \overline{r}'_{cm}) + M \overline{r}'_{cm} \times \overline{v}_{O'} +$$

$$+ \sum_{i=1}^{N} m_{i} \overline{r}'_{i} \times (\overline{\omega} \times \overline{r}'_{i})$$

In the lab FoR

$$\overline{L} = \sum_{i=1}^{N} \overline{L}_{i} = \sum_{i=1}^{N} m_{i} \overline{r}_{i} \times \overline{v}_{i} = \sum_{i=1}^{N} \left[m_{i} (\overline{r}_{O'} + \overline{r}'_{i}) \times (\overline{v}_{O'} + \overline{\omega} \times \overline{r}'_{i}) \right]$$

$$= \sum_{i=1}^{N} m_{i} (\overline{r}_{O'} \times \overline{v}_{O'}) + \sum_{i=1}^{N} m_{i} \overline{r}_{O'} \times (\overline{\omega} \times \overline{r}'_{i}) +$$

$$+ \sum_{i=1}^{N} m_{i} \overline{r}'_{i} \times \overline{v}_{O'} + \sum_{i=1}^{N} m_{i} \overline{r}'_{i} \times (\overline{\omega} \times \overline{r}'_{i})$$

$$= M \overline{r}_{O'} \times \overline{v}_{O'} + M \overline{r}_{O'} \times (\overline{\omega} \times \overline{r}'_{cm}) + M \overline{r}'_{cm} \times \overline{v}_{O'} +$$

$$+ \sum_{i=1}^{N} m_{i} \overline{r}'_{i} \times (\overline{\omega} \times \overline{r}'_{i})$$

$$\Rightarrow \vec{L} = \underbrace{\vec{L_c}}_{=M\vec{r_c} \times \vec{v_c}} + \vec{L'}$$

In the lab FoR

$$\overline{L} = \sum_{i=1}^{N} \overline{L}_{i} = \sum_{i=1}^{N} m_{i} \overline{r}_{i} \times \overline{v}_{i} = \sum_{i=1}^{N} \left[m_{i} (\overline{r}_{O'} + \overline{r}'_{i}) \times (\overline{v}_{O'} + \overline{\omega} \times \overline{r}'_{i}) \right]$$

$$= \sum_{i=1}^{N} m_{i} (\overline{r}_{O'} \times \overline{v}_{O'}) + \sum_{i=1}^{N} m_{i} \overline{r}_{O'} \times (\overline{\omega} \times \overline{r}'_{i}) +$$

$$+ \sum_{i=1}^{N} m_{i} \overline{r}'_{i} \times \overline{v}_{O'} + \sum_{i=1}^{N} m_{i} \overline{r}'_{i} \times (\overline{\omega} \times \overline{r}'_{i})$$

$$= M \overline{r}_{O'} \times \overline{v}_{O'} + M \overline{r}_{O'} \times (\overline{\omega} \times \overline{r}'_{cm}) + M \overline{r}'_{cm} \times \overline{v}_{O'} +$$

$$+ \sum_{i=1}^{N} m_{i} \overline{r}'_{i} \times (\overline{\omega} \times \overline{r}'_{i})$$

$$\Rightarrow \vec{L} = \underbrace{\vec{L_c}}_{=M\vec{r_c} \times \vec{v_c}} + \vec{L'}$$

 $\vec{L}' = \sum_{i=1}^{N} m_i \vec{r}_i' \times (\bar{\omega} \times \bar{r}_i')$: Rigid body's angular momentum w.r.t its center of mass

Tensor of Inertia

$$\vec{L}' = \sum_{i=1}^{N} m_i \vec{r}_i' \times (\bar{\omega} \times \bar{r}_i') = I \vec{\omega}$$

Tensor of Inertia

$$\vec{L}' = \sum_{i=1}^{N} m_{i} \vec{r}'_{i} \times (\bar{\omega} \times \bar{r}'_{i}) = I \vec{\omega}$$

$$I = \begin{bmatrix} I_{x'x'} & I_{x'y'} & I_{x'z'} \\ I_{y'x'} & I_{y'y'} & I_{y'z'} \\ I_{z'x'} & I_{z'y'} & I_{z'z'} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} m_{i} \left(y_{i}'^{2} + z_{i}'^{2} \right) & \sum_{i=1}^{N} -m_{i} x_{i}' y_{i}' & \sum_{i=1}^{N} -m_{i} x_{i}' z_{i}' \\ \sum_{i=1}^{N} -m_{i} y_{i}' x_{i}' & \sum_{i=1}^{N} m_{i} \left(x_{i}'^{2} + z_{i}'^{2} \right) & \sum_{i=1}^{N} -m_{i} y_{i}' z_{i}' \\ \sum_{i=1}^{N} -m_{i} z_{i}' x_{i}' & \sum_{i=1}^{N} -m_{i} z_{i}' y_{i}' & \sum_{i=1}^{N} m_{i} \left(x_{i}'^{2} + y_{i}'^{2} \right) \end{bmatrix}$$

Tensor of Inertia

$$\vec{L}' = \sum_{i=1}^{N} m_{i} \vec{r}'_{i} \times (\bar{\omega} \times \bar{r}'_{i}) = I \vec{\omega}$$

$$I = \begin{bmatrix} I_{x'x'} & I_{x'y'} & I_{x'z'} \\ I_{y'x'} & I_{y'y'} & I_{y'z'} \\ I_{z'x'} & I_{z'y'} & I_{z'z'} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{N} m_{i} \left(y_{i}'^{2} + z_{i}'^{2} \right) & \sum_{i=1}^{N} -m_{i} x_{i}' y_{i}' & \sum_{i=1}^{N} -m_{i} x_{i}' z_{i}' \\ \sum_{i=1}^{N} -m_{i} y_{i}' x_{i}' & \sum_{i=1}^{N} m_{i} \left(x_{i}'^{2} + z_{i}'^{2} \right) & \sum_{i=1}^{N} -m_{i} y_{i}' z_{i}' \\ \sum_{i=1}^{N} -m_{i} z_{i}' x_{i}' & \sum_{i=1}^{N} -m_{i} z_{i}' y_{i}' & \sum_{i=1}^{N} m_{i} \left(x_{i}'^{2} + y_{i}'^{2} \right) \end{bmatrix}$$

 \vec{L} can not be always parallel to $\vec{\omega}$, when will it be? By a random choice of x', y', z', e.g. $\omega_x', \omega_y', \omega_z'$ all contributes to $\vec{\mathbf{L}}_{\mathbf{x}}'$, it's hard to see, but if we ... By choosing a better set of \tilde{x}' , \tilde{y}' , \tilde{z}' , we can obtain a diagonal form of I.

$$I = \left[\begin{array}{ccc} I_{\tilde{x}'\tilde{x}'} & 0 & 0 \\ 0 & I_{\tilde{y}'\tilde{y}'} & 0 \\ 0 & 0 & I_{\tilde{z}'\tilde{z}'} \end{array} \right]$$

By choosing a better set of \tilde{x}' , \tilde{y}' , \tilde{z}' , we can obtain a diagonal form of I.

$$I = \left[\begin{array}{ccc} I_{\tilde{x}'\tilde{x}'} & 0 & 0 \\ 0 & I_{\tilde{y}'\tilde{y}'} & 0 \\ 0 & 0 & I_{\tilde{z}'\tilde{z}'} \end{array} \right]$$

Then, ω_x' only contributes to $\vec{\mathbf{L}_x'}$, so do ω_y' and ω_z'

$$\Rightarrow L_{x'} = I_{\tilde{x}'\tilde{x}'} \cdot \omega_{x'}, \quad L_{y'} = I_{\tilde{y}'\tilde{y}'} \cdot \omega_{y'}, \quad L_{z'} = I_{\tilde{z}'\tilde{z}'} \cdot \omega_{z'}$$

By choosing a better set of \tilde{x}' , \tilde{y}' , \tilde{z}' , we can obtain a diagonal form of I.

$$I = \left[\begin{array}{ccc} I_{\tilde{x}'\tilde{x}'} & 0 & 0 \\ 0 & I_{\tilde{y}'\tilde{y}'} & 0 \\ 0 & 0 & I_{\tilde{z}'\tilde{z}'} \end{array} \right]$$

Then, ω_x' only contributes to $\vec{\mathbf{L}_x'}$, so do ω_y' and ω_z'

$$\Rightarrow L_{x'} = I_{\tilde{x}'\tilde{x}'} \cdot \omega_{x'}, \quad L_{y'} = I_{\tilde{y}'\tilde{y}'} \cdot \omega_{y'}, \quad L_{z'} = I_{\tilde{z}'\tilde{z}'} \cdot \omega_{z'}$$

The axis in this special sets of axes is called the **Pricipal axis**, which is our main focus.

lacktriangle Find the mass center C of the rigid body, let C be the origin

- lacktriangle Find the mass center C of the rigid body, let C be the origin
- ② Use the current coordinates x, y, z to derive the tensor of inertia I

- ullet Find the mass center C of the rigid body, let C be the origin
- ② Use the current coordinates x, y, z to derive the tensor of inertia I
- **3** Let $det(I \lambda \mathbb{1}) = 0$ to find $\lambda_1, \lambda_2, \lambda_3$.

- ullet Find the mass center C of the rigid body, let C be the origin
- ② Use the current coordinates x, y, z to derive the tensor of inertia I
- **3** Let $det(I \lambda \mathbb{1}) = 0$ to find $\lambda_1, \lambda_2, \lambda_3$.
- 9 Plug back λ_i into the equation $(I \lambda_i \mathbb{1})\vec{u_i} = 0$, find the solution $\vec{u_1}, \vec{u_2}, \vec{u_3}$

- ullet Find the mass center C of the rigid body, let C be the origin
- ② Use the current coordinates x, y, z to derive the tensor of inertia I
- **3** Let $det(I \lambda \mathbb{1}) = 0$ to find $\lambda_1, \lambda_2, \lambda_3$.
- Plug back λ_i into the equation $(I \lambda_i \mathbb{1})\vec{u_i} = 0$, find the solution $\vec{u_1}, \vec{u_2}, \vec{u_3}$
- **1** Use the direction of $\vec{u_1}$, $\vec{u_2}$, $\vec{u_3}$ as axes, calculate the new I_p .
 - Use symmetry to "guess" the principle axes.

- ullet Find the mass center C of the rigid body, let C be the origin
- ② Use the current coordinates x, y, z to derive the tensor of inertia I
- **3** Let $det(I \lambda \mathbb{1}) = 0$ to find $\lambda_1, \lambda_2, \lambda_3$.
- Plug back λ_i into the equation $(I \lambda_i \mathbb{1})\vec{u_i} = 0$, find the solution $\vec{u_1}, \vec{u_2}, \vec{u_3}$
- **1** Use the direction of $\vec{u_1}$, $\vec{u_2}$, $\vec{u_3}$ as axes, calculate the new I_p .
 - Use symmetry to "guess" the principle axes.
 - Why does this methods always works?

- Find the mass center C of the rigid body, let C be the origin
- ② Use the current coordinates x, y, z to derive the tensor of inertia I
- **3** Let $det(I \lambda \mathbb{1}) = 0$ to find $\lambda_1, \lambda_2, \lambda_3$.
- Plug back λ_i into the equation $(I \lambda_i \mathbb{1})\vec{u}_i = 0$, find the solution $\vec{u}_1, \vec{u}_2, \vec{u}_3$
- **1** Use the direction of $\vec{u_1}$, $\vec{u_2}$, $\vec{u_3}$ as axes, calculate the new I_p .
 - Use symmetry to "guess" the principle axes.
 - Why does this methods always works?
- Recall the form of I, it's a self-adjoint matrix.
 To learn the mathematical details, have a look at:
 zxj_Eigenvalue & Diagonalization.pdf (under canvas RC folder).

Exercise 2

Use the example in slide(s-21hp14) to practice.

(answer: in slide)

Reference

Yigao Fang.

VP160 Recitation Slides.

2020

Haoyang Zhang.

VP160 Recitation Slides.

2020