RÉPUBLIQUE TUNISIENNE

Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et de la Technologie

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session : Juin 2003

Concours Mathématique-Physique et Physique-Chimie Épreuve de Sciences et Techniques de l'Ingénieur

Date: Mardi 10 Juin 2003

Heure: 8 H

Durée: 3 H

Nbre pages: 11

Barème:

Partie A: 11 points

Partie B: 2 points

Partie C: 7 points

Remarques:

1/Les parfies A. B et C sont indépendantes et doivent être rédigées sur des feuilles séparées.

2/ Le document-réponse page 6/11 est à rendre en fin d'épreuve

3/ Calculatrice de poche non programmable autorisée

BRAS ROBOTISÉ

Présentation

L'ensemble mécanique schématisé (figure 1) est une unité de transfert. Elle est composée principalement d'un bras robotisé permettant au moyen d'un moteur à courant continu et de deux réducteurs de générer simultanément deux rotations : la première s'effectue autour d'un axe fixe horizontal, la seconde autour d'un axe tournant dans un plan vertical.

Le bras assure le transfert de pièces cylindriques creuses entre deux postes P1 et P2. Ces pièces sont enfilées, au niveau du poste P1, dans le porte pièce au moyen d'un actionneur puis transportées et déposées au niveau du poste P2.

Figure 1 : Unité de transfert

La chaîne cinématique minimale du bras (figure 2) illustre les principaux éléments qui composent ce mécanisme, soient :

- le bâti (0),
- le support (1) en liaison pivot d'axe (O, X_0) avec le bâti (0) et équipé d'un moteur (MC),
- l'ensemble (2) en liaison pivot d'axe (A, \vec{X}_0) avec le support (1), cet ensemble est constitué d'une roue dentée conique, du coulisseau (C1) et du ressort (R1),
- l'ensemble (3) en liaison pivot d'axe (I, Y_1) avec le support (1), cet ensemble est constitué d'une roue dentée conique, du coulisseau (C2) et du ressort (R2),
- l'ensemble (4) en liaison pivot d'axe (K, \vec{Y}_1) avec le bras (1), Π est constitué de la pièce à transférer et du porte pièce qui est en liaison plane de normale (J, \vec{Y}_1) avec l'ensemble (3),
- le pignon arbré (5), en liaison pivot d'axe (C, \vec{X}_0) avec le porte satellite (6) et en liaison plane de normale (B, \vec{X}_0) avec l'ensemble (2). Il engrène en D avec la roue dentée fixe (C),
- le porte satellite (6) en liaison pivot d'axe (O, \vec{X}_0) avec le bâti(0).

Repères et paramétrage

Les repères et les paramètres adoptés sont définis comme suit :

- $R_0(O, \vec{X}_0, \vec{Y}_0, \vec{Z}_0)$ repère lié au bâti (0) supposé galiléen, tel que l'axe (O, \vec{Z}_0) est vertical ascendant,
- $R_1(O, \overrightarrow{X}_0, \overrightarrow{Y}_1, \overrightarrow{Z}_1)$ repère lié au support (1), tel que $\beta = (\overrightarrow{Y}_0, \overrightarrow{Y}_1) = (\overrightarrow{Z}_0, \overrightarrow{Z}_1)$,
- $R_2(A, \vec{X}_0, \vec{Y}_2, \vec{Z}_2)$ repère lié aux ensembles (2) et (5) tel que : $\theta = (\vec{Y}_1, \vec{Y}_2) = (\vec{Z}_1, \vec{Z}_2)$, (θ étant la rotation imposée par le moteur),
- $R_3(K, \overrightarrow{X}_3, \overrightarrow{Y}_1, \overrightarrow{Z}_3)$ repère lié aux ensembles (3) et (4) tel que : $\psi = (\overrightarrow{X}_0, \overrightarrow{X}_3) = (\overrightarrow{Z}_1, \overrightarrow{Z}_3)$.

Les positions des différents centres de liaison sont décrites par les relations vectorielles :

$$\vec{OA} = a_1 \vec{Y}_1, \ \vec{AD} = a_2 \vec{X}_0 - r_5 \vec{Y}_1, \ \vec{JK} = a_4 \vec{Y}_1, \ \vec{OI} = a_3 \vec{X}_0 + b_1 \vec{Y}_1,$$

$$\vec{OK} = a_3 \vec{X}_0 + b_2 \vec{Y}_1, \vec{AE} = c_1 \vec{X}_0 + r_2 \vec{Y}_1, \ \vec{EI} = r_3 \vec{X}_0 + c_2 \vec{Y}_1.$$

Les angles β , θ et ψ sont les paramètres angulaires du mécanisme. a_1 , a_2 , a_3 , a_4 , b_1 , b_2 , c_1 , c_2 , r_2 , r_3 et r_5 sont des constantes géométriques.

Partie A: ÉTUDE MÉCANIQUE

L'ensemble (4) est modélisé (voir figure 3) par un solide homogène constitué des éléments suivants :

- un disque de rayon R et de masse m
- une tige de longueur L et de masse mt
- un cylindre de longueur H, de rayon r et de masse M

L'action au point J de l'ensemble (3) sur l'ensemble (4) est modélisée par le torseur :

$$\left\{\tau_{3/4}\right\}_{J} = \left\{\vec{F}_{J} = N_{J} \vec{Y}_{I} \atop \vec{M}_{J} = C_{J} \vec{Y}_{I}\right\}$$

Toutes les liaisons sont parfaites sauf les liaisons planes : coulisseau (C1) - roue (5) en B et ensemble (4) - coulisseau (C2) en J qui sont obtenues par adhérence caractérisée par le coefficient de frottement f.

L'accélération de la pesanteur est telle que :

$$\vec{g} = -g\vec{Z}_0$$

Partie A-I: GÉOMÉTRIE DES MASSES

Tous les calculs d'inertie doivent être effectués dans le repère $R_3(K, \vec{X}_3, \vec{Y}_1, \vec{Z}_3)$

- I-1. La position du centre d'inertie G de l'ensemble (4) est définie par le vecteur $\overrightarrow{KG} = x\overrightarrow{X}_3 + y\overrightarrow{Y}_1$, exprimer, en fonction des caractéristiques géométriques et d'inertie de l'ensemble (4), les coordonnées x et y du centre G.
- I-2. Déterminer les matrices d'inertie centrales suivantes :
 - a- du disque
 - b- de la tige
 - c- du cylindre plein
- I-3. Montrer que la matrice d'inertie au point K, exprimée dans la base $de(\vec{X}_3, \vec{Y}_1, \vec{Z}_3)$, de l'ensemble (4) est de la forme :

$$\begin{bmatrix} I_{K}(4) \end{bmatrix} = \begin{bmatrix} A_{4} & -F_{4} & 0 \\ -F_{4} & B_{4} & 0 \\ 0 & 0 & C_{4} \end{bmatrix}$$

déterminer alors les moments d'inertie A_1 , B_2 , C_4 et le produit d'inertie F_1 .

N.B: Dans la suite des calculs, on ne retiendra que les formes da la matrice $[I_K(4)]$ et du vecteur position \overrightarrow{KG} . La masse de l'ensemble (4) sera notée m_4 .

Partie A-II : CINÉMATIQUE

Dans cette étude, on admettra que les liaisons (2)-(5) et (3)-(4) sont obtenues par adhérence (pas de glissement) et que la vitesse de rotation du moteur est constante ($\hat{\theta} = \omega$). Tous les calculs doivent être effectués dans la base $(\vec{X}_0, \vec{Y}_1, \vec{Z}_1)$.

II-1. Calculer les vecteurs vitesses suivants: $\vec{V}(A/R_0)$, $\vec{V}(I/R_0)$, $\vec{V}(K/R_0)$, $\vec{V}(E \in 2/R_1)$, $\vec{V}(E \in 3/R_1)$ et $\vec{V}(D \in 5/R_0)$.

II-2. Écrire les deux relations qui expriment la condition de roulement sans glissement aux points D et E. Déterminer, en fonction de $\dot{\theta}$, les vitesses angulaires $\dot{\beta}$ et $\dot{\psi}$.

II-3. La vitesse de G (centre d'inertie de l'ensemble (4)) par rapport à $R_0(O, \vec{X}_0, \vec{Y}_0, \vec{Z}_0)$ est de la forme: $\vec{V}(G/R_0) = V_x \vec{X}_0 + V_y \vec{Y}_1 + V_z \vec{Z}_1$. Déterminer les composantes V_x , V_y et V_z .

II-4. L'accélération de G par rapport $R_0(O, \vec{X}_0, \vec{Y}_0, \vec{Z}_0)$ est de la forme : $\vec{\Gamma}(G/R_0) = \Gamma_x \vec{X}_0 + \Gamma_y \vec{Y}_1 + \Gamma_z \vec{Z}_1$. Déterminer les composantes Γ_x , Γ_y et Γ_z .

Partie A-III: ÉTUDE DYNAMIQUE

Dans cette partie on s'intéresse à l'étude dynamique de l'ensemble (4) au moment où il occupe la position instantanée définie par : $\psi = 0$ ($\psi \neq 0$).

Pour représenter l'action du solide (i) sur le solide (j) au point P, on utilisera la notation suivante :

$$\left\{ A_{i/j} \right\}_{P} = \left\{ \begin{aligned} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{aligned} \right\}_{base}$$

III-1. Donner les torseurs des actions mécaniques extérieures appliquées à (4) au point K, les exprimer dans la base $(\vec{X}_0, \vec{Y}_1, \vec{Z}_1)$.

III-2. Écrire les équations dynamiques qui découlent du théorème de la résultante dynamique appliqué à (4) dans son mouvement par rapport à $R_0(O, \vec{X}_0, \vec{Y}_0, \vec{Z}_0)$.

III-3. Écrire les équations dynamiques qui découle du théorème de moment dynamique appliqué à (4) dans son mouvement par rapport à $R_0(O, \vec{X}_0, \vec{Y}_0, \vec{Z}_0)$.

III-4. En supposant que la pression de contact entre le coulisseau (C2) et l'ensemble (4) est uniforme sur la totalité de la surface du disque et que l'adhérence est à la limite du glissement, exprimer en fonction de f, R et N_J la valeur absolue du couple C_J .

III-5. Déduire alors les inconnues X_{I4} , Y_{I4} , N_J , Z_{I4} , L_{I4} , C_J et N_{I4} .

RÉPUBLIQUE TUNISIENNE

Ministère de l'Enseignement Supérieur, de la Recherche Scientifique et de la Technologie

Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs

Signature des surveillants	

Session: Juin 2003.....concours: ... MP-PC

Ne f	en inscrire	ici
Ne II	Bline	

Nom :.....Prénom (s):....

Épreuve:...STI.....

Institution d'origine.....

Identification:

Série :

N°de la Total des doubles feuille feuilles remises

	1
N°de la feuille	Total des doubles feuilles remises

Partie B: TECHNOLOGIE DE CONCEPTION

- 1. Quel est le rôle des ressorts (R1) et (R2)?
- 2. Quelle est la nature des liaisons suivantes ?
 - -(C1) avec (5):
 - (C1) avec les constituants de l'ensemble 2 :
 - (C) avec (5):
- 3. Donner une solution technologique pour assurer la liaison complète entre l'axe du bâti (0) et la roue dentée fixe (C) (Préciser les éléments de liaison utilisés et compléter le dessin ci dessous).

Partie C: AUTOMATIQUE

N.B.: Les deux parties C-I et C-II sont indépendantes.

Dans cette partie, on s'intéresse dans un premier temps, à l'étude de la commande séquentielle d'un système de transfert de pièces et dans un second temps, à la mise en œuvre d'un asservissement de position angulaire d'un axe du bras robotisé.

Partie C - I : ÉTUDE DE LA COMMANDE SÉQUENTIELLE DU SYSTÈME DE TRANSFERT DE PIÈCES

Description du système

L'unité de transfert (figure 4) se compose de :

- Un bras robotisé constitué de :
 - un servomoteur assurant le mouvement entre les postes P1, P2 (T12 et T21) et deux capteurs de position permettant de repérer la présence du robot soit au poste P1 soit au poste P2 (pp1, pp2)
 - un porte pièce pour le serrage (S) et le desserrage (D) d'une pièce. La présence d'une pièce est détectée par un capteur de proximité (op2).
- un poste d'alimentation P1, qui est constitué de :
 - un tapis roulant d'aménage entraîné par un moto-réducteur (MT1),
 - un capteur optique (op1) sert à détecter la présence d'une pièce au poste P1.
 - un plateau d'entrée (PE1) dont le déplacement vertical est assuré par un vérin à double effet (V1). Les différentes positions du plateau (PE1) sont détectées par des capteurs de proximité (v1b) et (v1h).
- un poste d'évacuation P2, qui est composé de :
 - un tapis roulant d'évacuation entraîné par un moto-réducteur (MT2),
 - un plateau de sortie (PS2) servant à ramener la pièce vers le tapis d'évacuation. Le déplacement vertical du plateau (PS2) est assuré par un vérin à double effet (V2). Les différentes positions du plateau (PS2) sont détectées par des capteurs de proximité (v2b) et (v2h).
 - un vérin à double effet (V3) permettant d'éjecter la pièce du plateau (PS2) vers le tapis d'évacuation. Les différentes positions du vérin (V3) sont détectées à l'aide de capteurs de proximité (v3a) et (v3r).

Figure 4 : Système de transfert de pièces robotisé

Par ailleurs, on suppose que le système au repos est correctement positionné :

- plateau d'entrée en position basse,
- plateau de sortie en position haute,
- vérin d'éjection V3 reculé,
- bras robotisé présent au niveau du poste P2,
- absence de pièce dans le porte pièce.

Cycle de fonctionnement

L'action sur le commutateur de départ cycle (Dcy), met en marche simultanément les tapis roulants d'aménage et d'évacuation, le desserrage du porte pièce et le mouvement du bras robotisé vers le poste P1. L'arrivé d'une pièce sur le plateau d'entrée (PE1), détecté par (op1), entraîne l'arrêt du tapis roulant d'aménage. Une fois le robot est prêt à recevoir une pièce, le plateau d'entrée (PE1) monte au niveau du plan de travail, afin que la pièce soit enfilée dans le bras robotisé par serrage. Ensuite le plateau d'entrée (PE1) reprend sa position basse et la pièce sera transférée sur le plateau de sortie (PS2) (supposé en position haute) après desserrage. La pièce sera déposée, par la suite, sur le tapis d'évacuation par la descente du plateau de sortie (PS2) puis l'avance du verin (V3). Après évacuation de la pièce, le vérin (V3) et le plateau de sortie (PS2) se mettent en position intiale de repos. Après 40 secondes (temps nécessaire pour évacuer la pièce), le tapis roulant d'évacuation s'arrête et le système sera prêt pour exécuter un nouveau cycle.

Liste des actions

T12	Action commandant le bras robotisé pour
	passer du poste P1 vers le poste P2
T21	Action commandant le bras robotisé pour
	passer du poste P2 vers le poste P1
S	Action de serrage du porte pièce
D	Action de desserrage du porte pièce
MV1	Montée du vérin V1
DV1	Descente du vérin V1
MV2	Montée du vérin V2
DV2	Descente du vérin V2
AV3	Avance du vérin V3
RV3	Recul du vérin V3
MT1	Mise en marche du tapis roulant d'aménage
MT2	Mise en marche du tapis roulant d'évacuation

Liste des informations

op1	Détection pièce au poste P1 par u	
	capteur optique	
op2	Présence pièce dans le porte pièce	
pp1	Présence bras robotisé poste P1	
pp2	Présence bras robotisé poste P2	
S	Réponse « porte pièce serré »	
d	Réponse « porte pièce desserré »	
vIb	Réponse vérin V1 en position basse	
v1h	Réponse vérin V1 en position haute	
v2b	Réponse vérin V2 en position basse	
v2h	Réponse vérin V2 en position haute	
v3a	Réponse vérin V3 avancé	
v3r	Réponse vérin V3 reculé	
Dcy	Bouton départ cycle	
Au	Bouton d'arrêt d'urgence	
Acq	Bouton d'acquittement	

- I-1. Établir le grafcet G1 du point de vue commande (niveau 2) du système de transfert d'une pièce sur ordre de départ de cycle (Dcy).
- I-2. Modifier le grafcet G1 en tenant compte d'un arrêt d'urgence (Au). L'action sur ce dernier, au cours du mouvement du bras robotisé de P1 vers P2, entraîne l'arrêt immédiat du bras robotisé et des tapis roulants. Pour des raisons de sécurité, le bras robotisé ne doit en aucun cas, relâcher la pièce en cours de mouvement. La reprise du cycle se fera par action sur un bouton d'acquittement (Acq).

Partie C - II : ASSERVISSEMENT DE POSITION D'UN AXE DU BRAS ROBOTISÉ

Il s'agit ici d'étudier, d'une manière très simplifiée, le problème de positionnement d'un axe du bras robotisé dans une configuration particulière (c'est à dire autour d'une position d'équilibre). Pour cela, on considère le schéma bloc de la figure 5 qui représente la chaîne d'asservissement simplifiée.

Figure 5 : Schéma bloc de la chaîne d'asservissement d'un axe du bras robotisé

On désigne par :

Oref: position angulaire de référence (en rad)

U: tension de commande du moteur électrique (en V)

C_r: couple résistant caractéristique des variations de la charge (en mN)

Ω_m : vitesse de rotation de l'arbre du moteur électrique (en rad.s⁻¹)

 Θ_c : position angulaire de la charge (en rad)

Le modèle de l'ensemble {moteur électrique, réducteur, charge} est donné par le schéma fonctionnel de la figure 6. Dans ce modèle, on suppose que le réducteur est parfait et que le moteur est à courant continu, fonctionnant à flux constant et dont on néglige l'effet de l'inductance de son induit.

Figure 6 : Schéma fonctionnel de l'ensemble moteur électrique, réducteur, charge

Liste des paramètres			
Paramètres	Désignations		
R	Résistance de l'induit		
k_c	Constante du couple moteur		
k _e	Constante de la force contre électromotrice		
J_m	Moment d'inertie de la partie tournante du moteur		
fm	Coefficient de frottement visqueux de l'arbre moteur		
ρ	Rapport de réduction		
J_c	Moment d'inertie de la charge		
fc	Coefficient de frottement visqueux de la charge		

II-1. Mettre le schéma fonctionnel de la figure 6 sous la forme suivante :

Démontrer que les fonctions de transfert $T_1(p)$ et $T_2(p)$ peuvent s'écrire :

$$T_1(p) = \frac{K_1}{1 + \tau_m p}$$
 et $T_2(p) = \frac{K_2}{1 + \tau_m p}$

avec $\tau_m = \frac{R J_e}{k_e k_c + R f_e}$ constante de temps électromécanique

 $K_1 = \frac{k_c}{k_c k_c + R f_c}$ gain statique de la fonction de transfert $T_1(p)$

 $K_2 = \frac{R}{\rho(k_e k_c + R f_e)}$ gain statique de la fonction de transfert $T_2(p)$

 $J_{e} = J_{m} + \frac{J_{c}}{\rho^{2}}$ moment d'inertie équivalent ramené sur l'arbre du moteur

 $f_e = f_m + \frac{f_c}{\rho^2}$ coefficient de frottement visqueux équivalent ramené sur l'arbre du moteur

II-2. Pour un couple résistant nul $(C_r = 0)$, on trace la réponse indicielle (figure 7) de la fonction de transfert $T_1(p)$ à un échelon de tension d'amplitude 25 V. Déterminer K_1 et τ_m .

Figure 7 : Réponse indicielle de T₁(p) à un échelon de tension d'amplitude 25 V

 Π -3. Dans cette question, on cherche à déterminer convenablement la valeur de l'amplificateur (A) de la boucle d'asservissement. Pour cela, on considère le schéma bloc de la figure 8.

On donne $\alpha = 0.8 \text{ V/rad}$, $K_2 = 0.75 \text{ rad.(s.mN)} \cdot 1 \text{ et } \rho = 50.$

Figure 8 : Schéma bloc de l'asservissement de position angulaire

- a. En boucle fermée, mettre l'expression de la sortie sous la forme suivante $\Theta_c(p) = H_1(p) \Theta_{ref}(p) H_1(p) C_r(p)$. Déterminer les fonctions de transfert $H_1(p)$ et $H_2(p)$. En déduire les expressions du coefficient d'amortissement (noté m) et de la pulsation propre non amortie (notée ω_0) en fonction de K_I , τ_m , ρ , α et A.
- b. Calculer la valeur de A de façon que le système en boucle fermée présente un coefficient d'amortissement m = 0,7. En déduire le dépassement et le temps de pic.
- c. On pose $\varepsilon_1 = \Theta_{ref} \Theta_c = \frac{1}{\alpha} \varepsilon$, calculer l'expression de ε_1 en fonction de Θ_{ref} et C_r . Pour la valeur de A trouvée dans la question II-3-b, calculer l'erreur statique pour une consigne en rampe unitaire et un couple résistant en échelon de position d'amplitude 100 mN.