PLSC 504 – Autumn 2017 Panel Models for Censored And Count Responses

November 2, 2017

Censored Y

"Lower" censored Y:

$$Y_i = Y_i^* \text{ if } Y_i^* > L$$

= $L \text{ if } Y_i^* \leq L$

"Upper-censored":

$$Y_i = Y_i^* \text{ if } Y_i^* > L$$

= $U \text{ if } Y_i^* \ge L$

ightarrow bias in $\hat{oldsymbol{eta}}$ (toward zero) + inconsistency...

Censoring Bias

Censoring Bias

In the lower-censoring case, for $Y^* > L$, we have:

$$\mathbf{L}_1(\boldsymbol{\beta}, \sigma^2 | Y, L) = \prod_{Y_i > L} \phi(Y_i^* | \mathbf{X}_i, \boldsymbol{\beta}, \sigma^2).$$

and for $Y^* < L$:

$$Pr(Y_i = L) = Pr(Y_i^* \le L)$$

$$= \int_{-\infty}^{L} \phi(Y_i^* | \mathbf{X}_i, \boldsymbol{\beta}, \sigma^2) dY^*$$

$$= \Phi(L | \mathbf{X}_i, \boldsymbol{\beta}, \sigma^2).$$

which implies:

$$\mathbf{L}_{2}(\boldsymbol{\beta}, \sigma^{2} | Y, L) = \prod_{Y \leftarrow I} \Phi(L | \mathbf{X}_{i}, \boldsymbol{\beta}, \sigma^{2}).$$

Combined likelihood:

$$\mathbf{L}(\boldsymbol{\beta}, \sigma^2 | Y, L) = \prod_{Y_i > L} \phi(Y_i^* | \mathbf{X}_i, \boldsymbol{\beta}, \sigma^2) \prod_{Y_i = L} \Phi(L | \mathbf{X}_i, \boldsymbol{\beta}, \sigma^2).$$

Panel Tobit

One-way unit effects:

$$Y_i^* = \mathbf{X}_i \boldsymbol{\beta} + \alpha_i + u_i$$

Models:

- ullet No fixed-effects conditioning (a la logit) o inconsistency.
- Generally use random effects (via survival or xttobit).

Event Counts: Unit Effects

$$Y_{it} \sim \mathsf{Poisson}(\mu_{it} = \alpha_i \lambda_{it})$$

with $\lambda_{it} = \exp(\mathbf{X}_{it}\boldsymbol{\beta})$ implies:

$$E(Y_{it} \mid \mathbf{X}_{it}, \alpha_i) = \mu_{it}$$

$$= \alpha_i \exp(\mathbf{X}_{it}\beta)$$

$$= \exp(\delta_i + \mathbf{X}_{it}\beta)$$

where $\delta_i = \ln(\alpha_i)$.

Fixed-Effects Poisson

- No "incidental parameters" problem (see e.g. Cameron and Trivedi, pp. 281-2)
- Means "brute force" approach works
- Via xtpoisson (and xtnbreg) in Stata, glmmML in R

Random-Effects Models

$$Pr(Y_{i1} = y_{i1}, ... Y_{iT} = y_{iT}) = \int_0^\infty Pr(Y_{i1} = y_{i1}, ... Y_{iT} = y_{iT}) f(\alpha_i) d\alpha_i$$
$$= \int_0^\infty \left[\prod_{t=1}^T Pr(Y_{it} \mid \alpha_i) \right] f(\alpha_i) d\alpha_i$$

- Simplest to assume $\alpha_i \sim \Gamma(\theta)$
- Yields a model with $\mathsf{E}(Y_{it}) = \lambda_{it}$ and $\mathsf{Var}(Y_{it}) = \lambda_{it} + \frac{\lambda_{it}^2}{\theta}$
- Via xtpois, re in Stata and glmmML or glmer in R
- ∃ random effects negative binomial too...

Panel Models: Software

R:

- Tobit = censReg (in censReg)
- Poisson (random effects) = glmmML in glmmML or glmer in lme4
- Poisson (fixed effects) = glmmML or "brute force"

Stata:

- Tobit = xttobit (re only)
- Poisson / negative binomial = xtpoisson, xtnbreg (both with fe, re options)
- See notes for more details / examples

Example: State Failure Task Force

```
> summary(SFTF)
  countryid
                    vear
                                sftprev
                                              sftpeth
                                                            sftpreg
AFG
               Min.
                      :1957
                             Min. :0.0
                                           Min. :0.00
                                                         Min. :0.00
ALB.
               1st Qu.:1967
                             1st Qu.:0.0
                                           1st Qu.:0.00
                                                         1st Qu.:0.00
ARG
               Median:1977
                             Median:0.0
                                           Median:0.00
                                                         Median:0.00
AUL.
               Mean
                      :1979
                             Mean
                                    :0.1
                                           Mean
                                                 :0.13
                                                         Mean
                                                                :0.12
AUS
               3rd Qu.:1992
                             3rd Qu.:0.0
                                           3rd Qu.:0.00
                                                         3rd Qu.:0.00
BEI.
                      :1997
                             Max.
                                    :1.0
                                           Max. :1.00
                                                                :1.00
               Max.
                                                         Max.
 (Other):1149
                              unuurbpc
   sftpgen
                  poldurab
                                              ciob
                                                          cioc
Min.
       :0.00
               Min.
                      : 0
                           Min.
                                         Min.
                                                : 0
                                                     Min.
                                                          : 0.0
 1st Qu.:0.00
               1st Qu.: 4
                           1st Qu.: 23
                                         1st Qu.:14
                                                     1st Qu.: 2.0
Median:0.00
               Median:12
                           Median: 41
                                         Median:19
                                                    Median: 5.0
Mean
       :0.08
               Mean
                      :21
                           Mean: 43
                                        Mean
                                                :19
                                                    Mean : 5.6
3rd Qu.:0.00
               3rd Qu.:30
                           3rd Qu.: 62
                                         3rd Qu.:24
                                                     3rd Qu.: 8.0
Max.
       :1.00
               Max.
                      :97
                           Max.
                                  :100
                                         Max.
                                                :38
                                                     Max.
                                                            :24.0
                      :5
               NA's
                           NA's
                                  :57
    POT.TTY
                  SumEvents
Min.
       :-10.0
               Min.
                     : 0
              1st Qu.: 0
1st Qu.: -7.0
Median: -4.0
               Median: 0
Mean
       : -0.7
               Mean
3rd Qu.: 8.0
               3rd Qu.: 5
       : 10.0
               Max.
                       :61
Max.
NA's
       :14
                NA's
                       : 9
> pdim(SFTF)
```

Unbalanced Panel: n=170, T=1-9, N=1203

Panel Tobit: R (see here)

```
> library(plm)
> SFTF.panel<-pdata.frame(SFTF.i="countryid")
> library(censReg)
> Tobit.panel<-censReg(SumEvents~POLITY+unuurbpc+poldurab+year,
                    data=SFTF.panel,method="BHHH")
> summary(Tobit.panel)
Call:
censReg(formula = SumEvents ~ POLITY + unuurbpc + poldurab +
   vear, data = SFTF.panel, method = "BHHH")
Observations:
       Total Left-censored
                             Uncensored Right-censored
        1132
                      707
                                    425
Coefficients:
             Estimate Std. error t value Pr(> t)
(Intercept) -1385.21151 60.10481 -23.047 < 2e-16 ***
POT.TTY
         -0.58977 0.09008 -6.547 5.87e-11 ***
unuurbpc -0.31374 0.03263 -9.616 < 2e-16 ***
          poldurab
            year
logSigmaMu 2.83694 0.05035 56.341 < 2e-16 ***
logSigmaNu
             2.58187
                        0.02160 119.522 < 2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
BHHH maximisation, 40 iterations
Return code 2: successive function values within tolerance limit
Log-likelihood: -2020 on 7 Df
```

Panel Poisson (Random Effects)

```
> library(lme4)
> Poisson.RE<-glmer(ciob~POLITY+unuurbpc+poldurab+I(year-1900)+(1|countryid),
                     data=SFTF, family="poisson")
> summary(Poisson.RE)
Generalized linear mixed model fit by maximum likelihood (Laplace
  Approximation) [glmerMod]
Family: poisson (log)
Formula:
ciob ~ POLITY + unuurbpc + poldurab + I(year - 1900) + (1 | countryid)
   Data: SFTF
    ATC
             BTC
                 logLik deviance df.resid
    6811
            6841
                  -3399
                              6799
                                      1126
Random effects:
Groups
          Name
                      Variance Std.Dev.
 countryid (Intercept) 0.159
                             0.399
Number of obs: 1132, groups: countryid, 160
Fixed effects:
               Estimate Std. Error z value
                                             Pr(>|z|)
(Intercept)
               1.200274 0.063085
                                   19.03
                                              < 2e-16 ***
POLITY
              -0.003484 0.001812 -1.92
                                                0.055 .
unuurbpc
              0.005996 0.001064 5.64 0.000000017 ***
poldurab
              0.001167
                        0.000672
                                   1.74
                                                0.082
I(vear - 1900) 0.016385
                        0.000855
                                   19.16
                                              < 2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Correlation of Fixed Effects:
           (Intr) POLITY unrbpc poldrb
POT.TTY
            0.354
unuurbpc
          -0.075 -0.139
poldurab
           0.224 0.348 -0.087
I(ver-1900) -0.628 -0.273 -0.589 -0.313
convergence code: 0
Model failed to converge with max|grad| = 0.00158426 (tol = 0.001, component 1)
Model is nearly unidentifiable: very large eigenvalue
 - Rescale variables?
```

Panel Poisson (Random Effects – Alternative)

```
> library(glmmML)
> Poisson.RE.alt<-glmmML(ciob~POLITY+unuurbpc+poldurab+I(year-1900),</pre>
                        data=SFTF, cluster=countryid,
                        family="poisson")
> summary(Poisson.RE.alt)
Call: glmmML(formula = ciob ~ POLITY + unuurbpc + poldurab + I(year - 1900),
      family = "poisson", data = SFTF, cluster = countryid)
                  coef se(coef)
                                   z Pr(>|z|)
(Intercept) 1.20027 0.063120 19.02 0.000000000
POLITY
              -0.00348 0.001814 -1.92 0.055000000
unuurbpc 0.00600 0.001064 5.63 0.000000018
poldurab 0.00117 0.000672 1.74 0.082000000
I(year - 1900) 0.01639 0.000856 19.15 0.000000000
Scale parameter in mixing distribution: 0.399 gaussian
Std. Error:
                                        0.0263
       LR p-value for H_0: sigma = 0: 2.28e-289
Residual deviance: 1590 on 1126 degrees of freedom AIC: 1600
```

Panel Poisson (Fixed Effects – "brute force")

```
> Poisson.FE<-glm(ciob~POLITY+unuurbpc+poldurab+I(year-1900)+
             as.factor(countryid),data=SFTF,family="poisson")
> summary(Poisson.FE)
Call:
glm(formula = ciob ~ POLITY + unuurbpc + poldurab + I(year -
   1900) + as.factor(countryid), family = "poisson", data = SFTF)
Deviance Residuals:
           1Q Median
   Min
-4.806 -0.312 0.069 0.364
                               2.863
Coefficients:
                        Estimate Std. Error z value Pr(>|z|)
(Intercept)
                       1.040769 0.117296 8.87 < 2e-16 ***
                      -0.007437 0.001939 -3.84 0.00013 ***
POT.TTY
                      0.005011 0.001580 3.17 0.00151 **
unuurbpc
                       -0.000477 0.000749 -0.64 0.52386
poldurab
I(vear - 1900)
                        0.018411 0.001115 16.51 < 2e-16 ***
as.factor(countryid)ALB -0.376632   0.142587   -2.64   0.00826 **
as.factor(countryid)ALG 0.200591 0.131453 1.53 0.12702
as.factor(countryid)ZAM 0.094994 0.132209
                                              0.72 0.47244
as.factor(countryid)ZIM -0.053680 0.137511 -0.39 0.69627
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 4453.85 on 1131 degrees of freedom
Residual deviance: 942.45 on 968 degrees of freedom
  (71 observations deleted due to missingness)
AIC: 6483
Number of Fisher Scoring iterations: 5
```