Credit Card Fraud Detection System

Developed By <u>Richa Jhunjhunwala</u> <u>Rakhi Chandrasekhar</u> <u>Ashish Kumar Jha</u>

Agenda

- Objective
- Background
- Key Insights
- Cost Benefit Analysis
- > Appendix:
 - Data Attributes
 - Data Methodology

Objective

- Establishing an efficient credit card fraud detection system to mitigate financial losses.
- > Substantial expenditures arise from fraudulent activities and the absence of up-to-date financial technologies for timely data breach detection.

Background

- Developed a machine learning model for early fraud detection, aimed at minimizing losses.
- Conducted a comprehensive cost-benefit analysis to evaluate the deployment implications of the aforementioned model.

Key Insights

- The key variables of significance include the transaction amount, category, and gender.
- The three primary categories are gas and transport, grocery, and shopping.

	Varname	lmp
0	amt	0.876627
13	category_kids_pets	0.028953
8	category_gas_transport	0.023618
12	category_home	0.013925
18	category_shopping_pos	0.011293
19	category_travel	0.010896
10	category_grocery_pos	0.010110
15	category_misc_pos	0.008930
7	category_food_dining	0.004284
17	category_shopping_net	0.003880
1	gender	0.003284
3	age_at_trans	0.001899
2	city_pop	0.001509
11	category_health_fitness	0.000416
9	category_grocery_net	0.000194
4	lat_dist	0.000141
6	trans_month	0.000043
5	long_dist	0.000000
14	category_misc_net	0.000000
16	category_personal_care	0.000000

Current Incurred Losses

- There are 77,183 credit card transactions on average every month.
- Among these, 402 transactions are identified as fraudulent.
- The average monetary loss per fraudulent transaction is \$530.66.
- The cumulative expenses attributed to fraudulent transactions amount to \$213,392.

After New Model Deployment

- The model identified 8,607 fraudulent transactions, resulting in a total customer support cost of \$12,910.81.
- Additionally, 27 fraudulent transactions went undetected by the model, resulting in a loss of \$14,394.15.
- > The cumulative cost post-model deployment is \$27,304.96.
- As a result of implementing the new model, the final savings amount to \$186,086.69, reflecting an impressive reduction of approximately 87% in losses

Appendix: Data Attributes

> Snapshot of the Data

- index = Unique Identifier for each row
- transdatetrans_time = Transaction Date Time
- cc_num = Credit Card Number of Customer
- merchant = Merchant Name
- category = Category of Merchant
- amt = Amount of Transaction
- first = First Name of Credit Card Holder
- last = Last Name of Credit Card Holder

- gender = Gender of Credit Card Holder
- street = Street Address of Credit Card Holder
- city = City of Credit Card Holder
- state = State of Credit Card Holder
- zip = Zip of Credit Card Holder
- lat = Latitude Location of Credit Card Holder
- long = Longitude Location of Credit Card Holder
- city_pop = Credit Card Holder's City Population
- job = Job of Credit Card Holder

- dob = Date of Birth of Credit Card Holder
- trans_num = Transaction Number
- unix_time = UNIX Time of Transaction
- merch_lat = Latitude Location of
 Merchant
- mech_long = Longitude Location of Merchant
- is_fraud = Fraud Flag ← Target Class

Appendix: Data Methodology

- Utilizing a Kaggle-simulated dataset, a random forest classifier was developed.
- To address class imbalance, the Adaptive Synthetic (ADASYN) sampling method was employed. Due to the resource-intensive nature of Grid Search Cross Validation, manual hyperparameter tuning was conducted.

