UTN FBA AMI – Z1041

Análisis Matemático I - Parcial 1

Apellido y nombres del o la estudiante:

Apellido y nombre de la profesora:

1		2		3	4		5	Nota
а	b	а	b		а	b		

Condición mínima de aprobación (6 puntos): 50% del examen correctamente resuelto

Lea con atención las consignas para resolver argumentando los resultados con los teoremas, propiedades y procedimientos necesarios según el caso.

Actividad 1

a) Hallar los valores de los reales a y b para que la función:

$$f: R \to R/f(x) = \begin{cases} 2 + \frac{\sin^2(x^2 + x)}{ax} & \text{si } x < 0\\ b + 3x & \text{si } x \ge 0 \end{cases}$$

Sea derivable en su dominio.

b) Encontrar, si existen, las asíntotas lineales de la gráfica de la siguiente función: $f(x) = \frac{\sqrt{x+3}-2}{x^2-x}$

Actividad 2

- a) La ecuación $x^2 + y^2 yx = 27$ define y = f(x) en un cierto subconjunto de \mathbb{R} . Encontrar en que puntos la recta tangente al gráfico de f es horizontal.
- b) Sea f(x) una función derivable, si $h(x) = 4e^{x^2+2x+1} + f(2x^2-x) \cdot \cos^2\left(\frac{x}{2}\right)$, sabiendo que h'(0) = e, calcular f'(0).

Actividad 3

Hallar, si existe, el valor real de k tal que la recta tangente al gráfico de $f: \mathbb{R} \to \mathbb{R} / f(x) = -x^3 + kx^2$ en el punto de abscisa x = 1, sea paralela a la recta de ecuación y = 5x + 3.

Actividad 4 Dada la función $f(x) = x \cdot \ln(x)$

- a) Hallar dominio, intervalos de crecimiento y decrecimiento.
- b) Hallar máximos y mínimos relativos. Justifique su respuesta.

Actividad 5

Determinar los vértices B y C del triángulo ABC de mayor área si: A = (0; 0), B = (x, f(x)) y C = (2x, 0) siendo $f: [0; +\infty) \to \mathbb{R}/f(x) = \frac{1}{x^2+4}$.

Resultados

1. a.
$$a = \frac{1}{3}$$
, $b = 2$.

b.
$$x = 0, y = 0$$

2.
$$(3,6), (-3,-6).$$

3.
$$k = 4$$
.

4. $Dom f = \mathbb{R}^+$, crece en $(e^{-1}, +\infty)$, $decrece\ en\ (0, e^{-1})$ Máximo no tiene, Mínimo $(e^{-1}, -e^{-1})$.

= \mathbb{N}

I1 = As intota(f)

:

$$= \{y = 0, x = 0\}$$

Entrada...

Los vértices del triángulo de mayor área son
$$A = (0,0)$$
, $B = (2,\frac{1}{8})$ y $C = (4,0)$.

5.