Problema 1. Aplique o análise nodal para achar v_o no circuíto da figura. Solución: $v_o(t) = 6.154 \cos (10^3 t + 70,26^\circ) \text{ V}$

Problema 2. Para o circuíto da figura atopa o equivalente Norton entre os terminais a-b.

Solución: $\mathbf{Z}_{N} = 44,72 / 63,43^{\circ} \Omega$, $\mathbf{I}_{N} = 3 / 60^{\circ}$ A

Problema 3. No circuito da figura desease transferir a máxima potencia promedio a carga $\mathbf{Z_{L}}$. $i_s(t)=5\cos 40t$ A . Calcula o valor de Z e Pmax. Solución: $Z_L=8,008+0,3252$ j Ω ; Pmax = 35,09 mW

Problema 4. Calcule a potencia complexa absorbida por cada elemento. Solución: Fonte: 5,12 + 2,56 j VA; Condensador: -3,84 j VA; Resistencia: 5,12 VA, Inductor/bobina: 6,4 j VA.

Problema 5. Determine I_s no circuito da figura se a fonte de tensión suministra 2.5 kW e 0.4 kVAR (adiantada).

Solución ; Is= -16,22 -10,256 j = 19,19 $\sqrt{-147}$,69° A.

Problema 6. Se o filtro rechazabanda da figura debe rechazar una senoide de 200 Hz, mentres que deixa pasar outras frecuencias, calcule os valores de L e C. Considere $R=150~\Omega$ e o ancho de banda de 100 Hz. Solución: L=0,2387 H; C= 2,653 μ F.

