

Valstybinio brandos egzamino užduotis

Pagrindinė sesija

2007 m. gegužės 16 d.

Egzamino trukmė – 3 val. (180 min.)

Valstybinio brandos egzamino formulės

Trikampis. $S = \sqrt{p(p-a)(p-b)(p-c)} = rp = \frac{abc}{4R}$; čia a, b, c – trikampio kraštinės, p – pusperimetris,

r ir R – įbrėžtinio ir apibrėžtinio apskritimų spinduliai, S – trikampio plotas.

Skritulio išpjova. $S = \frac{\pi R^2}{360^{\circ}} \cdot \alpha$, $l = \frac{2\pi R}{360^{\circ}} \cdot \alpha$; čia α – centrinio kampo didumas laipsniais,

S – išpjovos plotas, l – išpjovos lanko ilgis, R – apskritimo spindulys.

Nupjautinis kūgis. $S=\pi(R+r)\cdot l$, $V=\frac{1}{3}\pi H(R^2+Rr+r^2)$; čia R ir r-kūgio pagrindų spinduliai,

S – šoninio paviršiaus plotas, V – tūris, H – aukštinė, l – sudaromoji.

Nupjautinės piramidės tūris. $V = \frac{1}{3}H(S_1 + \sqrt{S_1S_2} + S_2)$; čia S_1, S_2 – pagrindų plotai, H – aukštinė.

Rutulys. $S = 4\pi R^2$, $V = \frac{4}{3}\pi R^3$; čia S – rutulio paviršiaus plotas, V – tūris, R – spindulys.

Rutulio nuopjovos tūris. $V = \frac{1}{3}\pi H^2(3R - H)$; čia R – spindulys, H – nuopjovos aukštinė.

Vektorių skaliarinė sandauga. $\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2 = |\vec{a}| \cdot |\vec{b}| \cos \alpha;$

čia α – kampas tarp vektorių $\vec{a}\{x_1, y_1, z_1\}$ ir $\vec{b}\{x_2, y_2, z_2\}$.

Geometrinė progresija. $b_n = b_1 q^{n-1}, S_n = \frac{b_1 (1 - q^n)}{1 - q}.$

Begalinė nykstamoji geometrinė progresija. $S = \frac{b_1}{1-q}$

Trigonometrinės funkcijos. $1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$, $1 + ctg^2 \alpha = \frac{1}{\sin^2 \alpha}$, $2\sin^2 \alpha = 1 - \cos 2\alpha$,

 $2\cos^2\alpha = 1 + \cos 2\alpha \,, \ \sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta, \ \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta,$

$$\sin\alpha\pm\sin\beta=2\sin\frac{\alpha\pm\beta}{2}\cos\frac{\alpha\mp\beta}{2},\;\cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2},\;\cos\alpha-\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha+\beta}{2$$

$$= -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}, \ \operatorname{tg}(\alpha\pm\beta) = \frac{\operatorname{tg}\alpha\pm\operatorname{tg}\beta}{1\mp\operatorname{tg}\alpha\cdot\operatorname{tg}\beta}. \begin{bmatrix} \sin x = a, \\ x = (-1)^k \arcsin a + \pi k, \ k \in \mathbb{Z}, -1 \le a \le 1; \end{bmatrix}$$

$$\begin{bmatrix} \cos x = a, \\ x = \pm \arccos a + 2\pi k, & k \in \mathbb{Z}, -1 \le a \le 1; \end{bmatrix} \begin{bmatrix} \operatorname{tg} \ x = a, \\ x = \operatorname{arctg} \ a + \pi k, & k \in \mathbb{Z}. \end{bmatrix}$$

Deriniai.
$$C_n^k = C_n^{n-k} = \frac{n!}{k!(n-k)!}$$

Tikimybių teorija. Atsitiktinio dydžio X matematinė viltis yra $EX = x_1p_1 + x_2p_2 + ... + x_np_n$, dispersija $DX = (x_1 - EX)^2 p_1 + (x_2 - EX)^2 p_2 + ... + (x_n - EX)^2 p_n$.

Išvestinių skaičiavimo taisyklės. (Cu)' = Cu'; $(u \pm v)' = u' \pm v'$; (uv)' = u'v + uv'; $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$;

čia *u* ir *v* – taške diferencijuojamos funkcijos, *C* – konstanta. $(a^x)' = a^x \ln a$, $(\log_a x)' = \frac{1}{x \cdot \ln a}$.

Sudėtinės funkcijos h(x)=g(f(x)) išvestinė h'(x)=g'(f(x))f'(x).

Funkcijos grafiko liestinės taške $(x_0; f(x_0))$ lygtis. $y = f(x_0) + f'(x_0)(x - x_0)$.

Logaritmo pagrindo keitimo formulė. $\log_a b = \frac{\log_c b}{\log_c a}$.

Kiekvienas teisingai išspręstas uždavinys (1–6) vertinamas 1 tašku.

- 1. $2^{2008} 2^{2007} =$
 - **A** 2^{1004} **B** 2^{2007}
- **C** 2
- **E** 1

- 2. Nurodykite funkcijos $y = 4x^2 + 4x + 10$ reikšmių sritį^I.

- **A** $\left(-\infty;+\infty\right)$ **B** $\left[0;+\infty\right)$ **C** $\left[9;+\infty\right)$ **D** $\left[10;+\infty\right)$ **E** $\left[-\frac{1}{2};+\infty\right]$

- 3. Nurodykite, kokia yra funkcijos $f(x) = \cos^2 x$ išvestinės reikšmė taške $x = \frac{\pi}{3}$.

 - **A** $-\sqrt{3}$ **B** $-\frac{\sqrt{3}}{2}$ **C** $\frac{3}{4}$ **D** 1

NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sąsiuvinio puslapyje.

 $^{^{\}rm I}$ reikšmių sritis – zbiór wartości – область значений išvestinė – pochodna – производная $^{\rm III}$ reikšmė – wartość – значение

4. Kuri iš nubraižytų kreivių yra funkcijos y = |1 + x| + |1 - x| grafiko^I eskizas?

- 5. Skaičiai $\sqrt[k]{18}$, $\sqrt[3]{18}$, $\sqrt{18}$ nurodyta tvarka yra geometrinės progresijos i nariai i Tuomet kyra:
- **B** 4
- **C** 6
- **E** 5

- **6.** Nurodykite, kiek nelyginių skaičių^{IV} galima sudaryti iš skaičiaus 3694 skaitmenų^V, jeigu skaitmenys nesikartoja?
 - **A** 12
- **B** 24
- **C** 30
- **D** 64
- **E** 32

NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sąsiuvinio puslapyje.

grafikas – wykres – график

II geometrinė progresija – сіąg geometryczny – геометрическая прогрессия III narys – wyraz – член IV nelyginis skaičius – liczba nieparzysta – нечётное число

^V skaitmuo – cyfra – цифра

7.	Išspręskite nelygybę ^I :			Čia ra	ašo verti	ntojai
	767	$\frac{1-3x}{1-2x} \le 1.$		I	П	III
			(2 taškai)			

 $^{^{\}rm I}$ nelygybė — nierówność — неравенство

8.	Automobilis iš miesto A į miestą B nuvažiavo 30 km/h vidutiniu greičiu ¹ .	Čia ra	išo verti	ntojai
	Po to apsisuko ir grįžo atgal. Apskaičiuokite, koks vidutinis grįžimo greitis,	I	II	III
	jei visos kelionės vidutinis važiavimo greitis 35 km/h.			
	(2 taškai)			

6

^I vidutinis greitis – prędkość średnia – средняя скорость

9. Lygiagretainio ABCD kraštinių BC ir CD vidurio taškai X yra X ir X. Vektorių \overrightarrow{KL} išreikškite vektoriais $\overrightarrow{m} = \overrightarrow{AB} \text{ ir } \overrightarrow{n} = \overrightarrow{AC}.$

 $^{^{\}rm I}$ lygiagretainis — równoległobok — параллелограмм $^{\rm II}$ kraštinė — bok — сторона $^{\rm III}$ vidurio taškas — środek — середина

10.	Išspręskite lygti ^I :	
T O •	inspignment if the interest of the second se	

		Cia rašo vertintoj		
$\frac{\lg(6x-5)}{2} = 1$		I	II	III
$2 \lg x$				
	(3 taškai)			

I lygtis – równanie – уравнение

11.	Parašykite funkcijos	$f(x) = 2 \cdot e^{-x}$	grafiko	liestinės ^I ,	nubrėžtos	per	tašką	Čia ra	šo verti	ntojai
	M (0; 2), lygtį.							I	II	III
	Parašykite funkcijos M (0; 2), lygtį.					(2 to	aškai)			

^I liestinė – styczna – касательная

12. Į lygiašonę trapeciją^I įbrėžti 5 vienodo dydžio besiliečiantys skrituliai^{II} (žr. pav.). Skritulio spindulys^{III} yra lygus 4. Apskaičiuokite užspalvintos dalies plotą^{IV}.

Ciuru	iso reru	niojai
I	II	III

(4 taškai)

I lygiašonė trapecija – trapez równoramienny – равнобедренная трапеция II skritulys – koło – круг III spindulys – promień – радиус IV plotas – pole – площадь

13.	Išspro	eskite	lvgti:
···	TOOPI	PRIME	1 / 5 H.

$$(1+\cos x)\cdot tg\frac{x}{2}=0.$$

$$(3 taškai)$$

$$\begin{bmatrix}
\text{Čia rašo vertintojai} \\
I & II \\
III
\end{bmatrix}$$

14. Įrodykite, kad su visomis realiosiomis k reikšmėmis funkcijos $f(x) = (x-2)(x-3) - k^2$ grafikas kerta Ox ašį dviejuose taškuose.

(3 taškai)

15.	Juvelyras gavo užsakymą pagaminti 38 gramų dirbinį, kurio aukso ir	Čia ra	šo verti	ntojai
	sidabro masių santykis ^I 7:12. Savo dirbtuvėje jis turi du lydinius, kurių	I	II	III
	aukso ir sidabro masių santykiai atitinkamai yra 1:2 ir 2:3. Kiek gramų			
	kiekvieno lydinio juvelyras turėtų paimti, kad sulydęs juos gautų norimos			
	sudėties juvelyrinį dirbinį?			
	(4 taškai)			

 $^{^{\}rm I}$ santykis – stosunek – отношение

16. Jeigu trikampio *ABC* elementus sieja lygybė¹ $\frac{a-b}{a} = 1 - 2\cos C$, tai trikampis yra lygiašonis^{II}. Įrodykite.

^I lygybė – równość – равенство ^{II} lygiašonis – równoramienny – равнобедренный

17.	Krepšelyje yra keturi saldainiai, kurie sveria atitinkamai	7 & 9 ir 10	Čia ra	šo verti	ntojai
1/.			I	II	III
	gramų. Atsitiktinai ^I paėmęs du saldainius, Jonas atiduo	oda sunkesnį			
	draugui. Sakykime, atsitiktinis dydis $^{\mathrm{II}}X$ – Jonui tekusio salda	inio svoris.			
	1. Parodykite, kad $P(X=8) = \frac{1}{3}$.	(2 taškai)			
		(2 tuskut)			
	2. Raskite atsitiktinio dydžio <i>X</i> skirstini ^{III} .				
	,	(1 taškas)			
	3. Apskaičiuokite atsitiktinio dydžio <i>X</i> matematinę viltį ^{IV} .				
		(1 taškas)			l
		Tašku suma			

^I atsitiktinai – losowo – случайно
^{II} atsitiktinis dydis – zmienna losowa – случайная величина
^{III} skirstinys – rozkład – распределение
^{IV} matematinė viltis – nadzieja matematyczna – математическое ожидание

Čia rašo vertintojai

18. Duotas stačiakampis gretasienis $^{I}ABCDA_{I}B_{I}C_{I}D_{I}$.

4. Apskaičiuokite šio gretasienio tūrį.

1. Nubrėžta plokštuma, einanti per taškus A_I , D_I , C. Įrodykite, kad tiesė B_1C_1 yra lygiagreti^{II} plokštumai A_1D_1CB .

(1 taškas)

2. Plokštuma A_1D_1C su pagrindo ABCD plokštuma sudaro 30° kampa ir AB = a. Parodykite, kad $AA_1 = \frac{\sqrt{3}}{3}a$.

(1 taškas)

3. Įrodykite, kad iš visų stačiakampių gretasienių, tenkinančių sąlygas AB = a, $AA_1 = \frac{\sqrt{3}}{3}a$, AD = 2 - a, didžiausią tūrį^{III} turi gretasienis, kurio briauna^{IV} $AB = \frac{4}{3}$.

(3 taškai)

(1 taškas)

Taškų suma

¹ stačiakampis gretasienis – prostopadłościan – прямоугольный параллелепипед

Il lygiagretus – równoległy – параллельный tūris – objętość – объём IV briauna – krawędź – ребро

71MAVU1	2007 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS

19. Duota funkcija $f(x) = \sqrt{2x}$, kai $x \ge 0$. Čia rašo vertintojai 1. Parodykite, kad jos atvirkštinė^I funkcija $g(x) = \frac{1}{2}x^2$, kai $x \ge 0$. (1 taškas) **2.** Raskite funkcijų f(x) ir g(x) grafikų susikirtimo taškų abscises^{II}. (2 taškai) 3. Apskaičiuokite plota figūros, kurią riboja funkcijų f(x) ir g(x) grafikai. (3 taškai) Taškų suma

^I atvirkštinė – odwrotna – обратная ^{II} abscisė – odcięta – абсцисса

20.	Iš natūraliųjų skaičių sudaromos grupės (1), (2, 3, 4), (5, 6, 7, 8, 9), (10,	Čia ra	išo verti	ntojai
	11, 12, 13, 14, 15, 16),, kurių kiekviena baigiasi eilės numerio	I	II	III
	kvadratu. Apskaičiuokite m – tosios grupės narių sumą.			
	(4 taškai)			