Business Analytics 2020 Fall

School of Industrial Management Engineering, Korea University

1. Course Description

• This course provides advanced topics in statistical/machine learning fields. This course also aims at fostering graduate students to have Python programming skills to implement the introduced algorithms during the lecture.

2. Topics

- <u>Dimensionality reduction</u>: forward/backward/stepwise selection, genetic algorithm, principal component analysis (PCA), multidimensional scaling (MDS), locally linear embedding, ISOMAP, t-SNE, etc.
- <u>Kernel-based learning</u>: support vector machine (SVM), support vector regression (SVR), Kernel Fisher discriminant analysis (KFDA), Kernel principal component analysis (KPCA), etc.
- <u>Novelty detection</u>: Gaussian density estimation, mixture of Gaussians, Parzen window density estimation, 1-SVM, SVDD, local outlier factor (LOF), iForests, etc.
- Ensemble learning: Bagging, AdaBoost, Gradient Boosting Machine (GBM), XGBoost, CatBoost, Random Forests, etc.
- <u>Semi-supervised learning</u>: Self-training, Generative models, semi-supervised SVM, Graph-based SSL, Co-training, etc.

3. Prerequisites

- Linear algebra: Eigenvector/Eigenvalue, Singular value decomposition (SVD), Lagrangian multiplier
- Basic machine learning algorithms: Linear regression, Logistic regression, Decision tree, etc.
- Optimization: Gradient descent, expectation-maximization (EM) algorithm, etc.

4. Time, Place, Lecturer, and Course Homepage

- Time: Tue/Thu 15:30 ~ 17:00
- Place: 218, New Engineering Hall
- Lecturer: Pilsung Kang, Innovation Hall 801A, 02-3290-3383, pilsung kang@korea.ac.kr
- Course homepage
 - 1. Github: https://github.com/pilsung-kang/Business-Analytics-IME654-
 - 2. Youtube:
 - https://www.youtube.com/watch?v=ytRmxBvyGG0&list=PLetSlH8YjIfWMdw9AuLR5ybkVvGcoG2EW
 - 3. Slack Channel: ime654-koreauniv.slack.com

5. Textbook

• Necessary materials such as journal/conference articles or book chapters will be provided.

6. Introduce Yourself

- ✓ Submit your self-introduction slide (max. 5 pages) to the lecturer via E-mail by the end of the 2nd week.
- ✓ Required information: Name, department, e-mail, cell phone number, recent photo(s)

7. Assessments

- 1 final exam (25%)
 - 1. Three pages of cheating sheets are allowed
- Youtube videos (25%)
 - 1. Students must upload a short video (max 5 minutes) that reviews the topic covered in the scheduled lecture within 48 hours after the class.
 - 2. A student must explain what he/she learns in the class to his/her partner.
- 5 paper reproduction posts (50%, 10% each)
 - 1. Students are required to reproduce one excellent (at least good) paper with Python for each topic category (5 reproductions in total).
 - 2. The contents of the selected paper and corresponding python code should be explained in a single web page post.

8. Schedule

Week	Topics
1	Orientation
2	Dimensionality reduction: forward/backward/stepwise selection, genetic algorithm,
	PCA
3	Dimensionality reduction: MDS, ISOMAP, LLE, t-SNE
4	Kernel-based learning: SVM
5	Kernel-based learning: SVR, KFDA, KPCA
6	Novelty detection: Gauss, MoG, Parzen
7	Novelty detection: k-NN, LOF, 1-SVM, SVDD
8	No Class
9	Novelty detection: PCA-based, Clustering-based, iForest, Robust random cut forsts
10	Ensemble learning: Bagging, Random Forests
11	Ensemble learning: AdaBoost, GBM
12	Ensemble learning: XGBoost, CatBoost
13	Semi-supervised learning: Self-training, Generative models
14	Semi-supervised learning: SS-SVM, Graph-based SSL
15	Semi-supervised learning: Co-Training, (Re)MixMatch, FixMatch
16	Final Exam