VERIFICATION OF BOOLEAN IDENTITIES USING EMBEDDED-C

Pavangoud Manchanpally pavangoud 461@gmail.com - FWC22125 IIT Hyderabad-Future Wireless Communication

Contents

6	SOFTWARE	5
5	IMPLEMENTATION 5.1 PROCEDURE	4 4
4	TRUTH TABLE	2
3	INTRODUCTION	2
2	COMPONENTS	2
1	PROBLEM	2

1 PROBLEM

(GATE CS-2019)

Q.6 Which one the following is not a valid identity?

(A)
$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$

(B)
$$(x+y) \oplus z = x \oplus (y+z)$$

(C)
$$x \oplus y = x + y, ifxy = 0$$

(D)
$$x \oplus y = (xy + x'y')'$$

2 COMPONENTS

Components	Value	Quantity
Resistor	220 Ohm	1
Arduino	UNO	1
Bread Board		1
Jumper Wires	M-M	10
LED		1

Table 1: Components

3 INTRODUCTION

An "identity" is merely a relationship that is always true, regardless of the values that any variables involved might take on; similar to laws or properties. Many of these can be analogous to normal multiplication and addition, particularly when the symbols 0,1 are used for FALSE, TRUE.

4 TRUTH TABLE

The Truth Table for the above identities is ass follows:

(A)
$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$

where $Y1 = (x \oplus y) \oplus z, Y2 = x \oplus (y \oplus z)$

x	y	\mathbf{z}	Y 1	Y2	F
0	0	0	0	0	1
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	1	1	1

Table 2: Truth Table

(B)
$$(x+y) \oplus z = x \oplus (y+z)$$

where $Y1 = (x+y) \oplus z, Y2 = x \oplus (y+z)$

x	y	\mathbf{z}	Y 1	Y2	\mathbf{F}
0	0	0	0	0	1
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	0	0	1
1	1	0	1	0	0
1	1	1	0	0	1

Table 3: Truth Table

(C)
$$x \oplus y = x + y, ifxy = 0$$

where $Y1 = x \oplus y = x + y, ifxy = 0$

x	y	Y 1	Y2	\mathbf{F}
0	0	0	0	1
0	1	1	1	1
1	0	1	1	1

Table 4: Truth Table

(D)
$$x \oplus y = (xy + x'y')'$$

where $(xy + x'y')' = (x' + y')(x + y)$
 $= x \oplus y$

The Truth Table for $x \oplus y$ is as follows:

x	\mathbf{y}	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Table 5: Truth Table

Here, Except (B) identity all other identies are valid according to the mentioned truth tables.

5 IMPLEMENTATION

Arduino	INPUT	OUTPUT
PIN		
2	x	
3	У	
4	Z	
13		F

Table 6: Connections

5.1 PROCEDURE

- 1. Connect the circuit as per the above table.
- 2. Connect one end of the resistor to a node of LED and cathode of LED to ground.
- 3. Connect the output pin to LED.
- 4. Connect inputs to Vcc for logic 1, ground for logic 0.
- 5. Execute the circuit using the below code.

6 SOFTWARE

Now execute the following codes and upload in arduino to see the results.

https://github.com/pavangoudmanchanpally/CS.6.2019/blob/main/codes