

Completions Real Time Streaming Application

Friday November 30, 2017

Team Members
Anna Smith
Justin Cornell
Kendra Reeves
Kenah Nyanat
Rashaw Williams

Real Time Streaming Application – Overview

Completions Operations Problem Statement

 Build a mobile or desktop application that can be used on field sites by Devon's Person in Charge (PIC) to improve operational decisions or behaviors, during hydraulic fracturing by streaming real-time treatment data

Decisions and Behaviors to Influence

- Better decisions on when to stop a stage
- Better decisions on optimal pump rate to minimize cost

High Level Impact

- Comparing current treating pressure to casing burst pressure
- Monitoring net treating pressure (screenout leading indicator)
- Predicting stage pump time remaining (cost savings measure)

Real Time Streaming Application – Solution / Benefits

Current

- Ability to stream and visualize second by second real-time treatment data via desktop and mobile application
- Apply KPI analytics "on-the-fly" at field sites, offices or anywhere
- Allows user customization of dashboard
- Scalable solution applied to multiple simultaneous treatment jobs
- "Easy To Read" visuals

Future State

- Real-time KPIs lookback with offset well treatment data (select well of choice for comparison)
- Overlay offset treatment plot "on-thefly" with current real time data to compare against successful "treatment signature"
- Utilizing Machine Learning to score historical data to develop predictive screenout model
- Ability to apply treatment changes "onthe-fly" to optimize well completion

Real Time Streaming Application – Data Architecture

Dashboard Widget #1 – Current Treating Pressure KPI

Methodology

- 80% of max casing burst pressure (~10k psi)
- Visual of pressure tolerances (median & max)

Business Impact

- Visualization monitoring "critical" pressure value
- Better decision for PIC to drop rate, flush well to prevent screenout (reduce friction pressure) or end stage

Future Enhancements

 Develop pressure threshold bounds through machine learning predictions (historical offset datasets)

Dashboard Widget #2 – Net Treating Pressure KPI

Methodology

• $\Delta P = P_{current} - P_{average} 1$

Change in Pressure

Business Impact

- Leading indicator of potential screenout
- Provide PIC with "easy to read" visualization of pressure trends

Future Enhancements

 Expand to incorporate visual KPI for rate of change of ΔP to further support leading indicator

Dashboard Widget #3 – Estimated Stage Pump Time Remaining KPI

Methodology

- Known user inputs
 - Planned Stage Total Proppant, Fluid & Rate
- Estimated Time Remaining = $\frac{Remaining\ Slurry}{Planned\ Slurry\ Rate}$

Business Impact

- Visualization to provide estimated time remaining based on planned job amounts
- Allows PIC to assess remaining stage time when encountering pressure control issues
- Optimization of time remaining (treatment parameters) results in cost savings

Future Enhancements

 Sensitivities of optimal time remaining based on incremental pump rate reduction

Field App for Fracturing Operations – Dashboard

Desktop

Continental

https://vimeo.com/245341233

50

Mobile

