CS 4811 : Artificial Intelligence Group number : 13

Vrushali Shinde Soham Sheth Tejaswi Chintapalli

Emotion Based Music System

BACKGROUND

- Music plays an important role in everyone life at every part of our life.
- Selecting Music every time based our mood and emotions can be very lethargic or can break momentum of a individual or a group.
- For example if we are in a party, it is quite boring to select a song to play instead we can just tell computer what we are feeling and it will select a song for us
- This is where Artificial Intelligence plays an important role
- Hence, we tried to build a music recommendation system based on one's feeling.

PROBLEM STATEMENT

WHAT ?

Emotion based music recommendations system for a given text

WHY?

It is a fun game to play. We give a text and it predicts your emotion and from that emotion, it suggest a song

WHOM?

One individual or a group of people can be benefitted by this technology/machine/model

HOW ?Stay tuned...

OBJECTIVE

The main objective of our project is to play a song according to a person's message.

EXPECTED OUTCOME

- → The system is proposed to suggest a song , based on the emotion of a particular text
- → The concept of Artificial intelligence and machine learning models were used to build a robust model with acceptable accuracy.

Block Diagram

Steps

Data Transformation

Count Vectorizer, TFIDF Transformer.

Model Selection and Conclusion

Identifying which one is best and then using that model to conclude results and then use it in future scope.

Data Pre-processing

Involves Add/remove columns, Null values, Duplicates, Punctuation, Stop words, Stemming and Lemmatization

Data Splitting

Cross validation, Percentage of split, Random state

About the data set:

Name: "Emotion Detection Sentiment Analysis"

Number of Instances: 40,000

Number of Attributes: 3

Target (Diagnosis): emotion

Predictor Attributes: Content, tweet_id

Name: "Music"

Number of Instances:12 Number of Attributes: 3

Attributes: emotion, genre, songs

Music data set:

	sr_number	emotion	genres	songs
0	1	sadness	['Worship']	['God is Able', 'You are good' , 'Thank you Lo
1	2	enthusiasm	['Rock']	['Don't stop dancing' ,'More than words' ,'Alw
2	3	neutral	['Country music']	['The Wolves','Heading South','Never Leave']
3	4	worry	['Calm']	['Ocean eyes','July','Anchor']
4	5	surprise	['Celtic music']	['The Skye boat song','Mary queen of scots','L
5	6	love	['Salsa Music']	['Shape of you', 'Shivers', 'Please dont go']
6	7	fun	['Disco']	['Dancing queen','celebrations','You should be
7	8	hate	['Classical']	['Experience','Ala','On the nature of daylight']
8	9	happiness	['Jazz']	['Co-motion','Forever yours','Keep holding on']
9	10	boredom	['Opera']	['Handel','Norma','Turandot']
10	11	relief	['Meditative']	['Moving','Opening','Stay']
11	12	anger	['Soothing']	['River flows in you','Love yourself','I wont

Emotion Target Variable:

- 1. <u>Drop column:</u> 'tweet_id' is dropped
- 2. Add column: 'new_content' is added with all the null values
- 3. No duplicate and null values values

<u>Example: "@tiffanylue i know i was listenin to bad habit earlier and i started freakin at his part =["</u>

Noisy data: Removed tagged names such as '@youknowho', '@Johnydeep'

Stop words: Removed stop words like 'the', that', 'we', 'they' etc.,

Punctuations: Punctuations('!','+','-','=','_') are removed

Stemming and lemmatization:

This help to find the base word of a particular word.

AFTER DATA CLEANING

- 288 null values are removed
- No.of instance(39712, 2)

LET'S PROCEED TOWARDS DATA TRANSFORMATION

DATA TRANSFORMATION

COUNT VECTORIZER - BAG OF WORDS MODEL

- However we cannot directly feed the raw data to the algorithms so we need to vectorize it.
- Nothing but breaking down sentence or any text into words by preprocessing tasks like converting everything to lowercase characters or removing spaces.
- As NLP models only accepts numbers so this textual data needs to be vectorized.
- The steps means each data is preprocessed and then the each word is considered as separate token and this is represented as sparse matrix.

DATA TRANSFORMATION

TFIDF VECTORIZER:

- To give higher ranking to the most frequently used words
- Higher ranking,
- TF-IDF stands for term frequency-inverse document frequency.
- Quantifies the importance or relevance of string representations (words, phrases, lemmas, etc) in a document amongst a collection of documents.

DATA SPLITTING

- Before applying any machine learning algorithm to the dataset, one need to define feature matrix and response variable
- i.e X and y assume
- features- input
- response- target
- observations- instances
 so we took it from dataframe

DATA SPLITTING

Percentage of Splitting:

- Any machine learning algorithms when we work on to classify or cluster or organize the data to find accuracy we need two things:
- Train Data: Subset of original data that can be used to train these machine learning algorithms.
- Test Data: Remaining subset of original data that is used to test the accuracy of the trained model.
- Default test data split if 25%
- Most popular ones are train data between 70-80% and test data between 20-30%

Cross Validation and Random State

- Cross Validation Number of folds mention are the number of possible combination of subsets of original data working with its complementary.
- Random State The integer number provided shuffles that many time the train and test data with randomness and due to which we may get every time different percentage of accuracy.

PERFORMANCE METRICS

PERFORMANCE METRICS

- F1 score = (2*precision*recall)/(precision + recall)
- Accuracy = TP + TN / TN + TP + FN + FP

MODEL SELECTION AND CONCLUSION

1. Multinomial Naive Bayes

- Always observed to be a baseline solution.
- Pipeline class was used to make the vectorizer => transformer => classifier.

		precision	recall	f1-score	support
	anger	0.00	0.00	0.00	27
	boredom	0.00	0.00	0.00	47
	empty	0.14	0.00	0.01	258
	enthusiasm	0.00	0.00	0.00	215
	fun	0.00	0.00	0.00	509
	happiness	0.32	0.31	0.32	1576
	hate	0.36	0.01	0.02	408
	love	0.48	0.31	0.38	1158
	neutral	0.32	0.41	0.36	2578
	relief	0.33	0.00	0.01	444
	sadness	0.29	0.17	0.21	1504
	surprise	0.03	0.00	0.00	660
	worry	0.30	0.64	0.41	2616
	accuracy			0.32	12000
	macro avg	0.20	0.14	0.13	12000
Michigan Technological University	weighted avg	0.29	0.32	0.27	12000

2. Logistic Regression

• Logistic regression (LR) is the most famous machine learning algorithm after linear regression.

C here instructs the model of how to choose the parameters. Default

value is 1	8	precision	recall	f1-score	support
	anger boredom	0.00 0.00	0.00	0.00	27 47
	empty	0.00	0.00	0.00	258
	enthusiasm	0.00	0.00	0.00	215
	fun	0.15	0.02	0.03	509
	happiness	0.35	0.36	0.35	1576
	hate	0.44	0.13	0.21	408
	love	0.50	0.38	0.43	1158
	neutral	0.33	0.58	0.42	2578
	relief	0.42	0.05	0.08	444
	sadness	0.36	0.24	0.29	1504
	surprise	0.20	0.03	0.05	660
	worry	0.34	0.46	0.39	2616
	accuracy			0.35	12000
	macro avg	0.24	0.17	0.17	12000
	weighted avg	0.33	0.35	0.32	12000

3. Random Forest

- Random forest is a type of supervised machine learning algorithm based on ensemble learning.
- Ensemble learning is a type of learning where the join different types of algorithms or same algorithm multiple times form a more powerful prediction model.

	precision	recall	f1-score	support
anger	1.00	1.00	1.00	27
boredom	1.00	1.00	1.00	47
empty	0.91	0.98	0.94	242
enthusiasm	0.99	1.00	0.99	213
fun	0.99	0.99	0.99	505
happiness	0.98	0.99	0.98	1560
hate	0.99	0.99	0.99	409
love	0.98	0.97	0.97	1181
neutral	0.98	0.96	0.97	2653
relief	0.95	0.99	0.97	428
sadness	0.98	0.99	0.98	1488
surprise	0.97	1.00	0.98	640
worry	0.98	0.99	0.98	2607
accuracy			0.98	12000
macro avg	0.98	0.99	0.98	12000
eighted avg	0.98	0.98	0.98	12000

4. SVM

- SVC function i.e Support Vector Classification used for the same.
- Support Vector Machine for Regression implemented using libsym.
- Fit() function is used to fit the svm model according to given training model

	precision	recall	f1-score	support
anger	0.00	0.00	0.00	0
boredom	0.00	0.00	0.00	3
empty	0.00	0.00	0.00	11
enthusiasm	0.00	0.00	0.00	12
fun	0.03	0.12	0.05	146
happiness	0.32	0.32	0.32	1542
hate	0.17	0.37	0.23	186
love	0.39	0.45	0.42	997
neutral	0.59	0.34	0.43	4476
relief	0.06	0.20	0.09	132
sadness	0.27	0.31	0.29	1289
surprise	0.05	0.15	0.07	204
worry	0.40	0.35	0.37	3002
accuracy			0.34	12000
macro avg	0.17	0.20	0.18	12000
weighted avg	0.43	0.34	0.37	12000

5. Decision Tree Classifier

	precision	recall	f1-score	support
anger	0.00	0.00	0.00	7
boredom	0.02	0.04	0.03	28
empty	0.04	0.05	0.04	217
enthusiasm	0.02	0.03	0.02	144
fun	0.08	0.11	0.10	394
happiness	0.25	0.25	0.25	1582
hate	0.22	0.23	0.23	386
love	0.34	0.33	0.33	1191
neutral	0.44	0.32	0.37	3518
relief	0.08	0.11	0.10	322
sadness	0.23	0.25	0.24	1387
surprise	0.07	0.12	0.09	400
worry	0.29	0.32	0.31	2424
accuracy macro avg	0.16	0.17	0.27 0.16	12000 12000
weighted avg	0.30	0.27	0.28	12000

6. XGB Classifier

- XGBoost is short for "eXtreme Gradient Boosting."
- XGBoost includes a unique split-finding algorithm to optimize trees, along with built-in regularization that reduces overfitting.

	precision	recall	f1-score	support
anger	0.00	0.00	0.00	0
boredom	0.00	0.00	0.00	5
empty	0.00	0.00	0.00	0
enthusiasm	0.00	0.00	0.00	0
fun	0.01	0.18	0.01	17
happiness hate	0.23 0.17	0.35 0.44	0.28	1004 154
love neutral	0.37 0.77	0.53 0.29	0.43 0.42	813 6894
relief sadness	0.04 0.18	0.27 0.40	0.07 0.25	71 685
surprise worry	0.01 0.30	0.15 0.34	0.02 0.32	46 2311
accuracy macro avg	0.16	0.23	0.33 0.16	12000 12000
weighted avg	0.56	0.33	0.37	12000

7. kNN Classification

- In KNN, K is the number of nearest neighbors.
- Suppose you consider one point P1 and then which label needs to be predict.
- Then find k closest point to P1 and then classify which majority of its neighbors.

 precision recall f1-score support

	precision	recall	+1-score	support
anger	0.00	0.00	0.00	0
boredom empty	0.00	0.00	0.00	5 0
enthusiasm	0.00	0.00	0.00	0
fun	0.01	0.18	0.01	17
happiness	0.23	0.35	0.28	1004
hate	0.17	0.44	0.24	154
love	0.37	0.53	0.43	813
neutral	0.77	0.29	0.42	6894
relief	0.04	0.27	0.07	71
sadness	0.18	0.40	0.25	685
surprise	0.01	0.15	0.02	46
worry	0.30	0.34	0.32	2311
accuracy			0.33	12000
macro avg	0.16	0.23	0.16	12000
weighted avg	0.56	0.33	0.37	12000

Results and analysis of implemented model

Models	Accuracy		
MultiNomial Naive Bayes(NB)	32 %		
Logistic Regression	35 %		
Support Vector Machine (SVM)	34 %		
K-nearest neighbors	33 %		
Decision Tree classifier	27 %		
XGB Classifier	33 %		
Random Forest	98 %		

CONCLUSION

RANDOM FOREST GIVES THE HIGHEST ACCURACY, THUS SELECTING ITS PREDICTED RESULTS TO CONCLUDE

	emotion	genres	songs
0	worry	['Calm']	['Ocean eyes','July','Anchor']
1	neutral	['Country music']	['The Wolves','Heading South','Never Leave']
2	neutral	['Country music']	['The Wolves','Heading South','Never Leave']
3	neutral	['Country music']	['The Wolves','Heading South','Never Leave']
4	sadness	['Worship']	['God is Able', 'You are good', 'Thank you Lo

REFERENCES

- https://scikit-learn.org/stable/
- Wikipedia
- https://ieeexplore.ieee.org/document/8802550
- https://www.google.com/url?sa=t&source=web&rct=j&url=https://www.ijert.org/research/mood-based-music-recommendation-system-IJERT_V10IS060253.pdf&ved=2ahUKEwiW68fvvuj6AhUsl4kEHbbOAH04ChAWegQIFxAB&usg=AOvVaw3_XJG1KLXB7k6kVNmaLAFw
- https://www.kaggle.com/code/rishabh2007/emotion-detection-sentime nt-analysis-2-4

THANK YOU

