

eg. Ha: 0,-02 \$0, Ho: 01-02-0, X=5% Control 'N1 = 81, 8x1, = 27 => 0, = 27 =0.333 Experiementa 1 12 2 79, EX21 = 12 = 02 = 12 -0 152 110 O shared = 27+12 2-244 to be not mal sud. But us You else Anotheres (obvious) Wald Test & tet X1, Xn id Dup with mean o and variance isigora-squared CLT implies that. d NCO(1) Know

*	Another Wald fest for two independent Samples with unknown variances and
	You wish to test a differt in means.
	$\frac{O_1 - O_2}{O_1 - O_2} d > N(O_{11}) \Rightarrow \sqrt{S_1^{\perp} S_2^{\perp}} d > N(O_{11})$ $\sqrt{O_1^{\perp} + O_2^{\perp}} d > N(O_{11}) \Rightarrow \sqrt{S_1^{\perp} S_2^{\perp}} d > N(O_{11})$ $\sqrt{O_1^{\perp} + O_2^{\perp}} d > N(O_{11}) \Rightarrow \sqrt{S_1^{\perp} S_2^{\perp}} d > N(O_{11})$
	it 'I would n't be so bad because unless
(Harris)	Your population distributions were so very stewed it should be time.
	Let's use the asymptotic normality of the MLE than (last class) to do a wald Test. Hw 41, m has Dup. X1, - Xn iid humbellow)
	The Cumbel is a nu model for "extreme events" Think maximum trainfall per month.
1000	

There are there goals of slatistical inference (1) Point E stimation here is to Provide a lest guess, & of othe Value of O. You don't know it your specific guess is good, is close, is bad, is far ... How do we ask the question "ixit good / bad? We imagined & Coming from those a distribution of the " Sampling distribution". Mhere are proporties about the sampling distribution eg. Somegod properties are unbiasedness, consistency, low MSE, low risk (fore general loss functions) (2) Testing; Here is to test a theory about a specific O, we used hypothesis testing. what makes a good text! One property is a power. There

	arce other propertiges we did not discuss.
410	rate haligina to see and new made
	(3) Confidence Sets
100 1	The Goal here in to create a set of values
nd ad	fore & that you are " Confident in". The
- 12 at	approch we use here is the "Confidence"
1	interval.
1 600 11	interval:
2.7	Definition, an "interval estimate" are
13/	two statistics.
Marry STY	C. R. & milled with the profession of the land of
- L p.o.	Wi (XI, Xn) & Wu (XI Xn) St. WILWy for all data
estimate is a	Combined in an interval: [Wi(XI Xn), Wu(XI Xn)]
munter	e.g [1.789, 2.463]
	To lecting
està mater	and of course, the interval octimals is
rundom	and of course, the interval Ostimator is
Variable.	W2 (X1 X2), Wu (X2,X2)
419/5	Which is a "randory interval".

ı	
	Definition: An interval estimator has
Sint	"Covercage probability"
Pala	P(OE [WL(Xm, Xn), Wu(X2, Xn) O).
100	An illustration!
Kan	rom to all brightword and may
	Dataset 1:
	Me corrects
	Dutaset 2: E Probability is computed we over every dataset. For
F	Dataset 3: Dataset 3: Where four datasets, the coverage was probability would be 3/4=75/
	Data set 4. Wy
18-11	We define the "Confidence interval"
	Parameter & as this interval estimate and interval estimator (depending on context)

