Рубежный контроль

Вариант: 15

Номер задачи №1: *15* Номер задачи №2: *35*


```
: max_death=data["Deaths"].max()
for i in range(data.shape[0]):
    data.iloc[i,4]=math.log10(data.iloc[i,4])/math.log10(max_death)
data.head()
```

	State/UTs	Total Cases	Active	Discharged	Deaths	Active Ratio	Discharge Ratio	Death Ratio	Population
0	Andaman And Nicobar	10032	1	9902	0.408268	0.01	98.70	1.29	100896618
1	Andhra Pradesh	2319504	346	2304428	0.806289	0.01	99.35	0.64	128500364
2	Arunachal Pradesh	64484	0	64188	0.478042	0.00	99.54	0.46	658019
3	Assam	724196	1358	716199	0.739340	0.19	98.90	0.92	290492
4	Bihar	830459	32	818171	0.790842	0.00	98.52	1.48	40100376

```
: #Для студентов группы ИУ5—24М, ИУ5И—24М —
#для произвольной колонки данных построить график "Скрипичная диаграмма (violin plot)".
```

: sns.violinplot(x=data["Total Cases"])

<AxesSubplot:xlabel='Deaths'>


```
#Для набора данных проведите процедуру отбора признаков (feature selection).
#Используйте метод вложений (embedded method). Используйте подход на основе дерева решений
```

#Выберите данные для обработки

```
y=data['Total Cases']
x=data.drop(['Total Cases','State/UTs'],axis=1)
```

#Установите порог для выбора модели на 0,145

```
from sklearn import datasets
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.feature_selection import SelectFromModel
model = ExtraTreesClassifier()
new_model = SelectFromModel(model,threshold=0.145)
x_new=new_model.fit_transform(x, y)
print(x_new.shape)
print(new_model.get_support(indices=True))

(36, 3)
[2 5 6]

plt.figure(figsize=(10,8))
sns.barplot(x=x.columns.values,y=ExtraTreesClassifier().fit(x,y).feature_importances_)
```


: #Выбранные признаки являются вторым (DEATH), пятым (DEATH RATIO) и шестым (POPULATION) в массиве.