Cache: associatividade e desempenho

Melhoria de desempenho

Ciclos gastos com paradas devidas a faltas

- Redução da taxa de faltas (mr)
 - Posicionamento mais flexível via associatividade
 - » Mapeamento direto
 - » Memória associativa por conjunto
 - » Memória totalmente associativa
- Redução da penalidade
 - Memória entrelaçada
 - Múltiplos níveis de cache

- Bloco da MP → única posição da cache
- Consequência: para procurar um bloco
 - Uma única posição é pesquisada
 - » Bloco encontrado via indexação
 - Requer 1 comparador/cache

- Bloco da MP → qualquer posição da cache
- Consequência: para procurar um bloco
 - Todas as posições precisam ser pesquisadas.
 - » Bloco encontrado via associação de um padrão binário
 - » Nenhum índice é utilizado
 - Requer 1 comparador/posição da cache.

Cache associativa por conjunto

- Bloco da MP → número fixo de posições da cache
 - Qualquer posição dentro de um único conjunto
 - » Cache associativa por conjunto com n alternativas
 - » "n-way set-associative cache"
- Consequência: Para procurar um bloco na cache
 - Um único conjunto é pesquisado
 - » Conjunto encontrado via indexação
 - Todas as n posições do conjunto são pesquisadas
 - » Bloco encontrado via associação de padrão binário
 - Requer 1 comparador/posição do conjunto
- Mapeamento:
 - (Endereço do bloco) mod (número de conjuntos da cache)

Tipos de posicionamento na cache

Exemplo: bloco de memória cujo endereço é 12

Exemplo de estrutura

- Cache
 - 4 blocos de uma palavra
- Alternativas
 - totalmente associativa,
 - 2-way
 - mapeamento direto
- Sequência de endereços de bloco
 - -0, 8, 0, 6, 8
- Objetivo
 - Computar o número de faltas para cada alternativa

```
Bloco de
                                      Bloco da
                memória
                                       cache
                                 (0 \text{ modulo } 4) = 0
                                 (6 \text{ modulo } 4) = 2
                    6
                                 (8 \text{ modulo } 4) = 0
Bloco da
              F ou A
                          BI. 0
                                     BI. 1
                                                BI. 2
                                                            BI. 3
memória
                 F
                         Mem[0]
    0
```

```
Bloco de
                                      Bloco da
                memória
                                       cache
                                 (0 \text{ modulo } 4) = 0
                                 (6 \text{ modulo } 4) = 2
                    6
                                 (8 \text{ modulo } 4) = 0
Bloco da
                          BI. 0
              F ou A
                                      BI. 1
                                                BI. 2
                                                            BI. 3
memória
                         Mem[0]
    0
                         Mem[8]
```

Bloco de	Bloco da
memória	cache
0	(0 modulo 4) = 0
6	(6 modulo 4) = 2
8	(8 modulo 4) = 0

Bloco da memória	F ou A	BI. 0	BI. 1	BI. 2	BI. 3
0	F	Mem[0]			
8	F	Mem[8]			
0	F	Mem[0]			

Bloco da
cache
(0 modulo 4) = 0
(6 modulo 4) = 2
(8 modulo 4) = 0

Bloco da memória	F ou A	BI. 0	BI. 1	BI. 2	BI. 3
0	F	Mem[0]			
8	F	Mem[8]			
0	F	Mem[0]			
6	F	Mem[0]		Mem[6]	

Mapeamento direto

Bloco de	Bloco da
memória	cache
0	(0 modulo 4) = 0
6	(6 modulo 4) = 2
8	(8 modulo 4) = 0

Bloco da memória	F ou A	BI. 0	BI. 1	BI. 2	BI. 3
0	F	Mem[0]			
8	F	Mem[8]			
0	F	Mem[0]			
6	F	Mem[0]		Mem[6]	
8	F	Mem[8]		Mem[6]	

5 faltas!

```
Bloco de memória cache 0 	mtext{ (0 modulo 2) = 0} 6 	mtext{ (6 modulo 2) = 0} 8 	mtext{ (8 modulo 2) = 0}
```

```
Bloco da Fou A Conj. 0 Conj. 1 Conj. 1 memória 0 F Mem[0]
```

Bloco de	Bloco da
memória	cache
0	(0 modulo 2) = 0
6	(6 modulo 2) = 0
8	(8 modulo 2) = 0

F ou A	Conj. 0	Conj. 0	Conj. 1	Conj. 1
F	Mem[0]			
F	Mem[0]	Mem[8]		
	E	F Mem[0]	F Mem[0]	F Mem[0]

Bloco da
cache
(0 modulo 2) = 0
(6 modulo 2) = 0
(8 modulo 2) = 0

Bloco da memória	F ou A	Conj. 0	Conj. 0	Conj. 1	Conj. 1
0	F	Mem[0]			
8	F	Mem[0]	Mem[8]		
0	Α	Mem[0]	Mem[8]		

Bloco da
cache
(0 modulo 2) = 0
(6 modulo 2) = 0
(8 modulo 2) = 0

Bloco da memória	F ou A	Conj. 0	Conj. 0	Conj. 1	Conj. 1
0	F	Mem[0]			
8	F	Mem[0]	Mem[8]		
0	Α	Mem[0]	Mem[8]		
6	F	Mem[0]	Mem[6]		

2-way

Bloco de	Bloco da
memória	cache
0	(0 modulo 2) = 0
6	(6 modulo 2) = 0
8	(8 modulo 2) = 0

Bloco da memória	F ou A	Conj. 0	Conj. 0	Conj. 1	Conj. 1
0	F	Mem[0]			
8	F	Mem[0]	Mem[8]		
0	Α	Mem[0]	Mem[8]		
6	F	Mem[0]	Mem[6]		
8	F	Mem[8]	Mem[6]		

4 faltas!

```
Bloco da Fou A Bl. 0 Bl. 1 Bl. 2 Bl. 3 memória 0 F Mem[0]
```

Bloco da memória	F ou A	BI. 0	BI. 1	BI. 2	BI. 3
0	F	Mem[0]			
8	F		Mem[8]		

Bloco da memória	F ou A	BI. 0	BI. 1	BI. 2	BI. 3
0	F	Mem[0]			
8	F	Mem[0]	Mem[8]		
0	Α	Mem[0]	Mem[8]		

Bloco da	F ou A	BI. 0	BI. 1	Bl. 2	BI. 3
memória					
0	F	Mem[0]			
8	F	Mem[0]	Mem[8]		
0	Α	Mem[0]	Mem[8]		
6	F	Mem[0]	Mem[8]	Mem[6]	

Cache totalmente associativa

Bloco da memória	F ou A	BI. 0	BI. 1	BI. 2	BI. 3
0	F	Mem[0]			
8	Ė		Mem[8]		
0	A	Mem[0]			
6	F			Mem[6]	
8	Α	Mem[0]	Mem[8]	Mem[6]	

3 faltas!

O impacto da associatividade

- Cache de dados do Intrinsity FastMATH (16 KB)
- SPEC2000 benchmarks
- Associatividade: de 1 a 8

Associativity	Data miss rate
1	10,3%
2	8,6%
4	8,3%
8	8,1%

Organização de uma cache n-way

Luiz C. V. dos Santos, INE/CTC/UFSC

Desempenho da cache

Tempo de CPU:

$$tempo_{execução} = (ciclos_{CPU} + ciclos_{stall}) \times T$$

Ciclos de paradas por faltas em cache:

$$ciclos_{stall} = ciclos_{stall}$$
 (leitura) + $ciclos_{stall}$ (escrita)

Desempenho da cache

Ciclos de paradas por faltas em leitura:

$$ciclos_{stall}$$
 (leitura) = $\frac{leituras}{programa} \times mr$ (leitura) × penalidade (leitura)

Ciclos de paradas por faltas em escrita:

[Hipóteses: 1) se write through: overhead insignificante com buffer de escrita; 2) se write back: penalidade captura tempo para copiar na memória o bloco a ser substituído; 3) se write allocate: penalidade captura tempo de leitura de bloco antes de nele escrever-se uma palavra.

$$ciclos_{stall}$$
 (escrita)= $\frac{escritas}{programa} \times mr$ (escrita)× penalidade (escrita)

Desempenho da cache

- Combinando escrita e leitura
 - Supondo penalidades idênticas
 - » Sob a hipótese de write allocate
 - Taxa de faltas (mr) combinada

$$ciclos_{stall}(memória) = \frac{acessos}{programa} \times mr \times penalidade$$

Cache: exemplo de impacto no CPI

Dado um programa, suponha

- mr (I) = 2% e mr (D) = 4%
- CPI = 2 para cache ideal (não gera paradas)
- Penalidade = 100 ciclos
- Loads + stores = 36% (SPECInt2000)

Objetivo

- Comparar o desempenho de duas configurações:
 - » CPU com cache ideal (mr=0)
 - » CPU com cache real (mr≠0)

Comparação ideal x real

Ciclos de parada por falta no acesso a instruções:

$$I \times 2\% \times 100 = 2 \times I$$

Ciclos de parada por falta no acesso a dados:

$$(I \times 36\%) \times 4\% \times 100 = 1,44 \times I$$

CPI total capturando o efeito das paradas:

$$CPI_{total} = 2 + 3,44 = 5,44$$

· Razão dos tempos de execução:

$$\frac{\text{tempo}_{\text{execução}} \text{ (real)}}{\text{tempo}_{\text{execução}} \text{ (ideal)}} = \frac{I \times \text{CPI}_{\text{real}} \times T}{I \times \text{CPI}_{\text{ideal}} \times T} = \frac{5,44}{2} = 2,72$$

Impacto com redução do CPI

- O que aconteceria com a aceleração da CPU ?
 - Por exemplo: CPI = $2 \rightarrow 1$;
 - Sistema de memória permanece o mesmo
- CPI total capturando efeito das paradas:

$$CPI_{total} = 1 + 3,44 = 4,44$$

Razão dos tempos de execução:

$$\frac{\text{tempo}_{\text{execução}} \text{ (real)}}{\text{tempo}_{\text{execução}} \text{ (ideal)}} = \frac{I \times CPI_{\text{real}} \times T_r}{I \times CPI_{\text{ideal}} \times T_r} = \frac{4,44}{1} = 4,44$$

Comparação CPI = 2 → 1

- Em relação à ideal:
 - 2,72 mais lenta → 4,44 mais lenta
- Porcentagem do tempo gasto com paradas:

$$\frac{3,44}{5,44} = 63\%$$
 \longrightarrow $\frac{3,44}{4,44} = 77\%$

- Conclusão:
 - Quanto menor o CPI, maior o impacto das paradas.
- Tendência:
 - Emissão múltipla: CPI ↓
- · Desempenho: compromisso entre pipeline e cache.

Impacto com aumento de f

- Dado um programa, suponha
 - mr (I) = 2% e mr (D) = 4%
 - CPI = 2 para cache ideal (não gera paradas)
 - Loads + stores = 36% (SPECInt2000)
 - Frequência 2 vezes maior
 - Velocidade da MP não é alterada
 - » Penalidade = 2 x 100 = <u>200 ciclos</u>
- CPI capturando <u>apenas</u> o efeito das paradas:

$$2\% \times 200 + 36\% \times 4\% \times 200 = 6.88$$

Impacto com aumento de f

Razão dos tempos de execução

$$\frac{\text{tempo}_{\text{execução}} \text{ (lento)}}{\text{tempo}_{\text{execução}} \text{ (rápido)}} = \frac{I \times \text{CPI}_{\text{lento}} \times T}{I \times \text{CPI}_{\text{rápido}} \times T/2} = \frac{5,44}{8,88 \times 1/2} = 1,23$$

- O computador tem o dobro da frequência
 - Mas seu desempenho é apenas 1,2 vezes maior
 - » Devido às faltas na cache
- Conclusão:
 - Quanto maior a f, maior o impacto dos "stalls".
- Tendência
 - Mesmo quando a frequência da CPU aumenta
 - A velocidade da MP não aumenta na mesma proporção
- Desempenho: compromisso entre pipeline e cache.