CONVEX AND CONIC OPTIMIZATION

Homework 1

NILAVA METYA nilava.metya@rutgers.edu nm8188@princeton.edu

February 27, 2024

Problem 1

Let $S \subseteq \mathbb{R}^n$.

- 1. The convex hull of S is the intersection of all convex sets that contain S.
- 2. If *S* is closed, then the convex hull of *S* is closed.
- 3. If *S* is bounded, then the convex hull of *S* is bounded.
- 4. If S is compact, then the convex hull of S is compact.
- 5. The sum of two quasiconvex functions is quasiconvex.
- 6. A quadratic function $f(x) = x^{\top}Qx + b^{\top}x + c$ is convex if and only if it is quasiconvex.
- 7. Any closed convex set $\Omega \subseteq \mathbb{R}^n$ can be written as $\Omega = \{x \in \mathbb{R}^n \mid g(x) \leq 0\}$ for some convex function $g : \mathbb{R}^n \to \mathbb{R}$.
- 8. If $f: \mathbb{R}^n \to \mathbb{R}$ is convex on a convex set $S \subseteq \mathbb{R}^n$, then f is continuous on S.
- 9. Suppose $P \in \mathbb{R}^{n \times n}$ is a matrix with nonnegative entries whose columns each sum up to one. Then, there exists $x \in \mathbb{R}^n$ such that $Px = x, x \ge 0$, and $\sum_i x_i = 1$.
- 10. A continuous function $f: \mathbb{R}^n \to \mathbb{R}$ satisfying the midpoint convexity property

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x) + f(y)}{2} \forall x, y \in \mathbb{R}^n$$

is convex.

Solution

1. True.

Let $\mathcal{C} = \operatorname{conv}(S)$ as defined in class (collection of convex combinations) and let \mathcal{X} be the intersection of all convex sets that contain S.

It is clear that $S \subseteq \mathcal{C}$ whence $\mathcal{X} \subseteq \mathcal{C}$ by the description of \mathcal{X} .

Now, if T is a convex set containing S, then any convex combination x of points in S is a convex combination of points in T, so $x \in T$. This shows that $C \subseteq T$. Again by description of \mathcal{X} , we have $C \subseteq T$.

2. False.

Consider $S = \{(x,y) \in \mathbb{R}^2 \mid y \geq e^{-|x|}\}$. We'll show that $\mathcal{C} := \operatorname{conv}(S)$ is $\mathcal{X} := \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$. Clearly $S \subseteq \mathcal{X}$ because exponential takes only positive values, so $\boxed{\mathcal{C} = \operatorname{conv}(S) \subseteq \operatorname{conv}(\mathcal{X}) = \mathcal{X}}$, where the last equality is true because \mathcal{X} is convex (if two points have positive y-coordinate, so do their convex combinations).

On the other hand, say $(a,b) \in \mathcal{X}$, pick a large enough θ such that $\min(|a+\theta|,|a-\theta|) > \ln \frac{1}{b}$. This ensures that $e^{-|a\pm\theta|} < b$ so that $(a\pm\theta,b) \in S$ and thus their average $(a,b) \in \mathcal{C}$. This proves

So $\mathcal{X} = \text{conv}(S)$ where S is closed but \mathcal{X} (the strict upper half plane) is not.

S is the epigraph of this function

3. **True**.

S is bounded, so $\exists \delta > 0$ such that $S \subseteq B(0, \delta)$. Recall that $B(0, \delta)$ is convex. This implies that $\operatorname{conv}(S) \subseteq \operatorname{conv}(B(0, \delta)) = B(0, \delta)$, whence $\operatorname{conv}(S)$ is bounded.

4. True.

We'll use the fact that a set in Euclidean space is compact iff it is sequentially compact. We say that a set T is sequentially compact if every sequence of points in T has a convergent subsequence (with limit in T). We will use a \bullet in subscript to suppress the lower index of a sequence.

Assume S is compact (hence sequentially compact). It is also important to note that [0,1] is (sequentially) compact. Consider a sequence of points $\{a_k\}_{k\in\mathbb{N}}$ in $\operatorname{conv}(S)$. By Caratheodory's theorem, for each a_k , there are n+1 non-negative reals $\lambda_1^{(k)},\cdots,\lambda_{n+1}^{(k)}\in[0,1]$ adding to 1 and n+1 points $x_1^{(k)},\cdots,x_1^{(k)}\in S$ such that $a_k=\sum_{i=1}^n\lambda_i^{(k)}x_i^{(k)}$ (I want to emphasize again that this is for each a_k).

Consider the sequence $\left\{\lambda_k^{(1)}\right\}_{k\in\mathbb{N}}$. This is a sequence in the compact unit interval and thus has a convergent subsequence, say $\left\{\lambda_{d_k^{(1)}}^{(1)}\right\}_{k\in\mathbb{N}}$. Let the limit of this subsequence be $\lambda^{(1)}$. Next note that $\left\{x_{d_k^{(1)}}^{(1)}\right\}_{k\in\mathbb{N}}$ is a sequence in the compact set S and thus has a convergent subsequence, say $\left\{x_{\tilde{d}_k^{(1)}}^{(1)}\right\}_{k\in\mathbb{N}}$. So $\left\{\tilde{d}_k^{(1)}\right\}_{k\in\mathbb{N}}$ is a subsequence of $\left\{d_k^{(1)}\right\}_{k\in\mathbb{N}}$, and thus does not affect the convergence of $\lambda_{\tilde{d}_k^{(1)}}^{(1)}$. Let the limit of $\left\{x_{\tilde{d}_k^{(1)}}^{(1)}\right\}_{k\in\mathbb{N}}$ be $x^{(1)} \in S$. Notice that $\lim_{k \to \infty} \lambda_{\tilde{d}_k^{(1)}}^{(1)} x_{\tilde{d}_k^{(1)}}^{(1)} = \lambda^{(1)} x^{(1)}$, which happens because

$$\begin{split} \left\| \lambda_{\tilde{d}_{k}^{(1)}}^{(1)} x_{\tilde{d}_{k}^{(1)}}^{(1)} - \lambda^{(1)} x^{(1)} \right\| & \leq \left\| \lambda_{\tilde{d}_{k}^{(1)}}^{(1)} x_{\tilde{d}_{k}^{(1)}}^{(1)} - \lambda_{\tilde{d}_{k}^{(1)}}^{(1)} x^{(1)} \right\| + \left\| \lambda_{\tilde{d}_{k}^{(1)}}^{(1)} x^{(1)} - \lambda^{(1)} x^{(1)} \right\| \\ & = \lambda_{\tilde{d}_{k}^{(1)}}^{(1)} \underbrace{\left\| x_{\tilde{d}_{k}^{(1)}}^{(1)} - x^{(1)} \right\|}_{\text{can be made arbitrarily small}} + \underbrace{\left\| \lambda_{\tilde{d}_{k}^{(1)}}^{(1)} - \lambda^{(1)} x^{(1)} - \lambda^{(1)} x^{(1)} \right\|}_{\text{can be made arbitrarily small}} \cdot \left\| x^{(1)} - x^{(1)} \right\| \\ & = \lambda_{\tilde{d}_{k}^{(1)}}^{(1)} + \frac{1}{\tilde{d}_{k}^{(1)}} \cdot x^{(1)} - \lambda^{(1)} x^{(1)} - \lambda^{(1)} x^{(1)} \right\| \\ & = \lambda_{\tilde{d}_{k}^{(1)}}^{(1)} + \frac{1}{\tilde{d}_{k}^{(1)}} \cdot x^{(1)} - \lambda^{(1)} x^{(1)}$$

By following a similar procedure, one can further extract a subsequence $\left\{d_k^{(2)}\right\}_{k\in\mathbb{N}}$, which makes $\lambda_{ullet}^{(2)}$ converge to $\lambda^{(2)}$, and a further sub-subquence $\left\{\tilde{d}_k^{(2)}\right\}_{k\in\mathbb{N}}$ which makes $x_{ullet}^{(2)}$ converge to $x^{(2)}$. Note that this smaller sequence does not affect the convergence of $\lambda_{ullet}^{(1)}$ and $x_{ullet}^{(1)}$ (and also their product). By the same argument as above, $\lim_{k\to\infty}\lambda_{\tilde{d}_k^{(2)}}^{(2)}x_{\tilde{d}_k^{(2)}}^{(2)}=\lambda^{(2)}x^{(2)}$.

We do this (extracting subsequences in turn for convergence of subsequences of $\lambda^{(1)}_{\bullet}, x^{(1)}_{\bullet}, \lambda^{(2)}_{\bullet}, x^{(2)}_{\bullet}, \lambda^{(3)}_{\bullet}, \cdots$) for a total of n+1 times, and finally get a subsequence $\left\{\tilde{d}^{(n+1)}_k\right\}_{k\in\mathbb{N}}$ which ensures convergence of $\lambda^{(i)}_{\tilde{d}^{(n+1)}_k} \xrightarrow{k\to\infty} \lambda^{(i)}$ and $x^{(i)}_{\tilde{d}^{(n+1)}_k} \xrightarrow{k\to\infty} x^{(i)}$ for every $i=1,\cdots,n+1$. It thus stands that $\lambda^{(i)}\in[0,1]$, $x^{(i)}\in S \ \forall i$ and $\sum_{i=1}^{n+1}\lambda^{(i)}_i=\sum_{i=1}^{n+1}\lim_{k\to\infty}\lambda^{(i)}_{\tilde{d}^{(n+1)}_k}=\lim_{k\to\infty}\sum_{i=1}^{n+1}\lambda^{(i)}_{\tilde{d}^{(n+1)}_k}=\lim_{k\to\infty}1=1$ where the sum and limit could be exchanged because each limit exists. Thus $\left\{a_{\tilde{d}^{(n+1)}_k}\right\}_{k\in\mathbb{N}}$ is a subsequence of $\{a_k\}_{k\in\mathbb{N}}$ which converges to $a:=\sum_{i=1}^{n+1}\lambda^{(i)}x^{(i)}$. $a\in \operatorname{conv}(S)$ because each $x^{(i)}\in S$ by construction and the $\lambda^{(i)}$'s form a convex weight for the $x^{(i)}$'s.

5. False.

Consider $f(x)=x^3, g(x)=x^2$. Then f is quasiconvex with sublevel sets $S_{\alpha}(f)=\left(-\infty,\alpha^{\frac{1}{3}}\right]$ and g is quasiconvex with sublevel sets $S_{\alpha}(g)=\begin{cases} [-\sqrt{\alpha},\sqrt{\alpha}] & \text{if } \alpha\geq 0\\ \varnothing & \text{otherwise} \end{cases}$. But $(f+g)(x)=x^3+x^2$ is not quasiconvex. Indeed, $f+g\leq 0\iff x^2(x+1)\leq 0\iff x=0 \text{ or } x\leq -1, \text{ so } S\coloneqq S_0(f+g)=(-\infty,-1]\cup\{0\}$ which is not convex because $\frac{-1+0}{2}=\frac{-1}{2}\notin S$ even though $0,-1\in S$.

6.

7.

8. False.

The counterexample is obtained by taking $S=[0,1]\subseteq\mathbb{R}$ and $f(x)=\mathbf{1}_{x=1}=\begin{cases} 0 & \text{if } 0\leq x<1\\ 1 & \text{otherwise} \end{cases}$. In each dimension, there is a counterexample, namely $S=[0,1]^n\subseteq\mathbb{R}^n$ and $f=\mathbf{1}_{x=(1,\cdots,1)}$. S is clearly convex. The function is convex because it is constant 0 except for one point and if $p=(1,\cdots,1)$ and $q\in S\smallsetminus\{p\}$ then for any $\lambda\in(0,1]$ we have $\lambda p+(1-\lambda)q\neq(1,\cdots,1)$ whence $f(\lambda p+(1-\lambda)q)=0\leq \lambda=\lambda f(p)+(1-\lambda)f(q)$. But clearly f is not continuous.

9.

10. **True**.

Say f is midpoint convex (that is, satisfies the given condition). Consider $\operatorname{epi}(f) = \{(x,t) \in \mathbb{R}^n \times \mathbb{R} \mid f(x) \leq t\}$. Consider a sequence $\{(x_n,t_n)\}_{n \in \mathbb{N}}$ of points in $\operatorname{epi}(f)$ that converge to $(a,s) \in \mathbb{R}^n \times \mathbb{R}$. This implies $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} t_n = s$. By choice of points, $t_n \geq f(x_n)$ whence $\lim_{n \to \infty} t_n \geq \lim_{n \to \infty} f(x_n) \stackrel{f \text{ continuous}}{=} f(a)$. By definition, $(a,s) \in \operatorname{epi}(f)$. Thus, $\operatorname{epi}(f)$ is closed.

Say $(x,t), (y,u) \in \operatorname{epi}(f)$. So $u \geq f(y), t \geq f(x)$. Then by midpoint convexity of f, we have $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2} \leq \frac{u+t}{2}$ and, by definition of $\operatorname{epi}(f)$, this implies $\left(\frac{x+y}{2},\frac{u+t}{2}\right) \in \operatorname{epi}(f)$. So $\operatorname{epi}(f)$ is mid-point convex.

Since epi(f) is closed and midpoint convex, epi(f) is convex. This implies f is convex.