Octubre del 2023

Docente: Yohandri Rondón

4to Año "A" y "B"

Área de formación: Física

• Todos a producir por nuestra Venezuela Soberana.

• Movimiento en dos dimensiones (Lanzamiento de Proyectil)

Movimiento en dos dimensiones (Lanzamiento de Proyectil)

Imaginemos un proyectil es lanzado desde la superficie terrestre con una velocidad inicial (v_o) , formando un ángulo con la horizontal (\emptyset) . Si la tierra no ejerciera atracción, el ocuparía las posiciones **A**, **B**, **C**; Pero no ocurre así, puesto que el proyectil por efecto de

gravedad, ocupa las siguientes posiciones $A^{'}B^{'}C^{'}$. Describiendo una trayectoria parabólica.

Como podemos evidenciar el proyectil ejerce dos tipos de movimiento, uno horizontal y uno vertical, en este caso el proyectil se puede considerar como el movimiento resultante de estos dos:

- a) uno horizontal con velocidad constante, es decir la componente horizontal de la aceleración es cero (a_x =**0**)
- b) Otro vertical con aceleración constante **g**, dirigida hacia abajo, $a_y = -g$

Ecuaciones:

De la siguiente imagen podemos describir las ecuaciones que describen este tipo de movimiento.

Donde:

 v_o : Es la velocidad inicial.

 v_{ox} : es la componente horizontal de la velocidad inicial.

 v_{oy} : es la componente vertical de la velocidad inicial.

 θ : ángulo de la velocidad inicial.

 \vec{v} : Velocidad en cualquier instante de tiempo.

 v_x : Componente de la velocidad en el eje x.

 v_y : Componente de la velocidad en el eje y.

 Y_{max} : Altura máxima

 t_{max} : Tiempo máximo.

R: alcance horizontal.

Variable a calcular	Ecuación	
Componentes de la velocidad inicial	Componente horizontal:	
	$v_{ox} = v_o \cdot \cos \theta$	
	Componente vertical:	
	$v_{oy} = v_o \cdot \sin \theta$	
	Componente horizontal:	
Velocidad para cualquier instante de tiempo	v_x : constante = v_{ox} = v_o . $\cos \theta$	
	Componente vertical:	
	$v_y = v_{oy} + g.t$	
	Magnitud de la velocidad:	
	$v = \sqrt{v_x^2 + v_y^2}$	
	Dirección de la velocidad:	
	$\tan \propto = \frac{v_y}{v_x}$	
	v_x	
	Horizontal	
	$x = v_o \cdot \cos \theta \cdot t$	
Posición	Vertical	
	$y=v_o\sin\theta.t+\frac{1}{2}g.t^2$	
	23	
	_v	
Tiempo máximo	$t_{max} = \frac{-v_{oy}}{a}$	
Tempo maximo	g 	
	$-v^{-2}$	
Altura máxima	$y_{max} = \frac{-v_{oy}^2}{2.g}$	
Tiempo de Vuelo	$t_{v}=2.t_{max}$	

Alcance horizontal	$R = v_{ox} \cdot t_{v}$

Es importante aclarar los siguientes términos:

- **La altura máxima** ($y_{max}\dot{c}$: es la posición que tiene la partícula en llegar punto más alto de la gráfica con respecto al eje horizontal.
- **Tiempo máximo** t_{max} : es el tiempo empleado por la partícula en alcanzar la altura máxima.
- Tiempo de vuelo: es el tiempo empleado por la partícula desde el inicio hasta el Final.

Unidades del Movimiento

	Significado	Unidad de Medida	Otra Unidad de Medida
Х,у	posición	m	Km
٧	velocidad	m/s	Km/h
t	tiempo	S	h

Ejemplo:

Un balón se dispara con una velocidad inicial de $15\frac{m}{s}$, formando un ángulo con la horizontal de 37° . Calcular:

- a) Componentes horizontal y vertical de la velocidad inicial.
- b) los valores de la componente de la velocidad a los 0,5 s.
- c) los valores de las componentes de la posición a los 0,5 s.
- d) el tiempo en alcanzar la altura máxima.
- e) La altura máxima
- f) La distancia horizontal que alcanza al caer al piso.

Solución

Primero se muestra la representación del problema.

Datos:

$$v_o = 15 \frac{m}{s}$$

a)
$$v_{ox}$$
, v_{oy} :?

b)
$$v_x, v_y t:5s:?$$

$$\mathbf{d})t_{max}$$
:?

a) Las componentes de la velocidad inicial se calculan mediante la siguiente ecuaciones:

Componente horizontal: $v_{ox} = v_o . \cos \theta$

Componente vertical: $v_{oy} = v_o \cdot \sin \theta$

Sustituyendo los datos en las ecuaciones nos quedan:

$$v_{ox} = 15 \frac{m}{s} \cdot \cos 37^{\circ} = 15 \frac{m}{s} \cdot 0.8 = 12 \frac{m}{s}$$

$$v_{oy} = 15 \frac{m}{s} \cdot \sin 37^{\circ} = 15 \frac{m}{s} \cdot 0.6 = 0.9 \frac{m}{s}$$

b) Al cabo de 0,5 s la velocidad es constante en el eje horizontal y su valor es $v_x = 12 \frac{m}{s}$, la velocidad en el eje vertical tenemos la siguiente ecuación:

$$v_y = v_{oy} + g.t$$

Sustituyendo los datos tenemos:

$$v_y = 9 \frac{m}{s} - 9.8 \frac{m}{s^2} \cdot 0.5 s = 4.1 \frac{m}{s}$$

c) La posición al cabo de 0,5s se calcula mediante las siguientes ecuaciones:

Horizontal

$$x = v_o \cdot \cos \theta \cdot t$$

Vertical

$$y = v_o \sin \theta . t + \frac{1}{2} g . t^2$$

Sustituyendo los datos nos queda:

Horizontal

$$x=12\frac{m}{s}.0,5s=6,0m$$

Vertical

$$y = 9 \frac{m}{s} \sin 37^{\circ}.0,5 s - \frac{1}{2} 9,8 \frac{m}{s^{2}}.0,5 s^{2} = 3,7 m$$

d) Para calcular el tiempo que tarda en alcanza la altura máxima tenemos la siguiente ecuación:

$$t_{max} = \frac{-v_{oy}}{g}$$

Sustituyendo los datos tenemos:

$$t_{max} = \frac{-9\frac{m}{s}}{-9.8\frac{m}{s^2}} = 0.91s$$

El tiempo máximo que tardó en recorrer la altura máxima es de 0,91s.

e) Para determinar la altura máxima tenemos la siguiente ecuación:

$$y_{max} = \frac{-v_{oy}^2}{2.g}$$

Sustituyendo tenemos:

$$y_{max} = \frac{-9\frac{m^2}{s}}{2.-9.8\frac{m}{s^2}} = 4.13 \text{m}$$

La altura máxima es de 4,13 m.

f) Por último el alcance horizontal viene dado por la siguiente ecuación:

$$R = v_{ox} \cdot t_{v}$$

En este caso para sustituir datos, no conocemos el tiempo de vuelo el cual hay q conocer

$$t_v = 2.t_{max} = 2.0,91 \text{ s} = 1,8 \text{s}$$

Ahora sustituyendo los valores tenemos:

$$R = 12 \frac{m}{s}.1,8 s = 21,6$$

PARTE I: Investigar

- 1. Defina las magnitudes físicas.
- 2. ¿Cuál es la diferencia entre rapidez y velocidad?
- 3. ¿Qué es una magnitud escalar y una magnitud vectorial?
- **4.** ¿Qué son vectores?
- **5.** Describa las características del vector
- **6.** Operaciones con vectores.

Nota: El estudiante debe pasar a guía en el cuaderno, ya que el docente explicará en clases la parte práctica.