

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	

Лабораторная работа №7

Дисциплина	Моделирование							
Тема	Определение вероятности отказа.							
	GPSS							
-								
Студент	Набиев Ф.М.							
Группа	ИУ7-73Б							
Оценка (баллы)								
Преподаватель	Рудаков И.В.							

УСЛОВИЕ

В информационный центр приходят клиенты через интервал времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса пользователя за 20 ± 5 ; 40 ± 10 ; 40 ± 20 . Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель. Откуда выбираются на обработку. На первый компьютер запросы от 1 и 2-ого операторов, на второй — запросы от 3-его. Время обработки запросов первым и 2-м компьютером равны соответственно 15 и 30 мин. Промоделировать процесс обработки 300 запросов. Определить вероятность отказа.

1 Теоретическая часть

На рисунке1 изображена структурная схема рассматриваемой концептуальной модели.

Рис. 1 – Структурная схема

2 Практическая часть

Листинг 1 – Текст программы

```
1 GENERATE 10,2,0,300; Ввод транзактов в модель:
; со средним временным интервалом появления 10;
; разбросом 2;
; временем появления первого транзакта 0;
; общим числом генерируемых транзактов 300.
```

```
7
                             OPER1, OPERATOR2; Если первый оператор занят,
8
   OPERATOR1
                 GATE NU
9
                                              ; переход ко второму
10
       SEIZE
                 OPER1
                             ; Занять первого оператора
11
       ADVANCE 20,5
                              ; Задержка транзакта на 20 с разбросом 5
12
       RELEASE OPER1
                              ; Освободить первого оператора
13
       TRANSFER ,COMPUTER1
                             ; Переход к первому компьютеру
14
   OPERATOR2
15
                 GATE NU
                             OPER2, OPERATOR3; Если второй оператор занят,
16
                                              ; переход к третьему
       SEIZE
                 OPER2
17
                             ; Занять второго оператора
18
       ADVANCE 40,10
                              ; Задержка транзакта на 40 с разбросом 10
19
       RELEASE OPER2
                             ; Освободить второго оператора
20
       TRANSFER ,COMPUTER1
                             ; Переход к первому компьютеру
21
22
   OPERATOR3
                 GATE NU
                             OPER3. REJECT
                                              ; Если третий оператор занят,
23
                                              ; переход к отказу на заявку
24
       SEIZE
                 OPER3
                             ; Занять третьего оператора
25
       ADVANCE 40,20
                             ; Задержка транзакта на 40 с разбросом 20
                             ; Освободить третьего оператора
26
       RELEASE OPER3
                             ; Переход ко второму компьютеру
27
       TRANSFER ,COMPUTER2
28
   COMPUTER1
                                  ; Помещение транзакта в конец очереди QUEUE1
29
                 QUEUE QUEUE1
30
       SEIZE
                 COMP1
                          ; Занять первый компьютер
31
       DEPART
                 QUEUE1
                          ; Удаление транзакта из очереди QUEUE1
       ADVANCE 15
                          ; Задержка транзакта на 15
32
33
       RELEASE COMP1
                          ; Освободить первый компьютер
       TRANSFER ,SUCCESS ; Переход к завершению успешного выполнения
34
35
   COMPUTER2
                                  ; Помещение транзакта в конец очереди QUEUE2
36
                 QUEUE QUEUE2
37
       SEIZE
                 COMP2
                          ; Занять второй компьютер
38
       DEPART
                 QUEUE2
                          ; Удаление транзакта из очереди QUEUE2
39
       ADVANCE 30
                          ; Задержка транзакта на 30
       RELEASE COMP2
                          ; Освободить второй компьютер
40
41
       TRANSFER ,SUCCESS ; Переход к завершению успешного выполнения
42
43
   SUCCESS TRANSFER
                        ,FINAL
                                  ; Переход к завершению
   REJECT TRANSFER
                        .FINAL
                                  ; Переход к завершению
45
46
47
   FINAL
           SAVEVALUE REJECT QTY, N$REJECT ; Количество отказанных заявок
48
            ; Вероятность отказа
49
           SAVEVALUE PROBABILITY, ((N$REJECT)/(N$SUCCESS + N$REJECT))
50
           TERMINATE
            START 300
51
```

На рисунке 2 представлены результаты выполнения программы на

GPSS.

FACILITY	ENTRIES	UTIL.	AVE. TIME	AVAIL. O	WNER I	PEND	INTER	RETRY	DELAY
OPER1	121	0.788	19.92	1 1	0	0	0	0	0
OPER2	59	0.772	40.036	5 1	0	0	0	0	0
OPER3	51	0.711	42.640	1	0	0	0	0	0
COMP1	180	0.883	15.000	1	0	0	0	0	0
COMP2	51	0.500	30.000	0 1	0	0	0	0	0
QUEUE	MAX C	ONT. ENTR	Y ENTRY(0)	AVE.CONT	. AVE	.TIME	AVI	E. (-0)	RETRY
QUEUE1	2	0 180		0.279		4.737		7.165	
QUEUE2	1	0 51	48	0.004	(0.212		3.598	0
SAVEVALUE		RETRY	VALUE						
REJECT QTY		0	69.000						
PROBABILITY		0	0.230						

Рис. 2 – Результаты

вывод

В настоящей лабораторной работе была промоделирована информационная система, в которую поступают клиенты. Эта система состоит нескольких блоков, а именно: генератор заявок, три оператора, два накопителя и два компьютера. Выходными данными являются вероятность отказа и количество клиентов, отказ получивших.