DNA, Orecchio

Parte IX

Indice

1	\mathbf{DN}	A: uso nella biometria	2
	1.1	Introduzione	2
		1.1.1 DNA e biometria	2
	1.2	Vantaggi e Svantaggi del DNA	3
	1.3	Cos'è il DNA	3
		1.3.1 Segmenti di DNA	3
		1.3.2 Replicazione del DNA	4
		1.3.3 Geni e alleli	4
	1.4	Che feature si estraggono dal DNA	4
		1.4.1 DNA satellite	4
		1.4.2 Quali dati mettiamo nel template	5
	1.5	Estrazione del DNA	5
		1.5.1 Dove trovare il DNA per le analisi	5
		1.5.2 Fasi principali	5
		1.5.3 PCR per STR e contaminazioni	6
		1.5.4 Processo di estrazione	6
	1.6	Matching	7
		1.6.1 Attenzione! Gemelli omozigoti	7
	1.7	Problemi di privacy	8
2	Ore	cchio	9
	2.1	Perché? Vantaggi e Svantaggi	9
	2.2		0
		2.2.1 Eigenears (come autofacce)	0
			0
			.1
	23	In case fosse stuggito qualcosa	2

Capitolo 1

DNA: uso nella biometria

1.1 Introduzione

Le caratteristiche dei sistemi di riconoscimento degli individui basati sul DNA pongono questa metodologia come la più accurata nel panorama biometrico.

Trova applicazioni in tanti ambiti:

- biometrico
- medico
- ambientale
- ricerche storiche
- forense

La **produzione di sensori allo stato solido** per analisi del DNA e la loro crescente diffusione fa prevedere nel futuro sempre più diffusione di sistemi biometrici basati sul DNA ed in nuovi campi.

È una tecnica relativamente giovane: il DNA come identificativo biometrico è stato usato per la prima volta intorno al 1984.

1.1.1 DNA e biometria

Il DNA è un ottimo strumento di identficazione perché:

- è presente in ogni cellula del nostro corpo in modo omogeneo
- la duplicazione cellulare (mitosi) duplica con estrema precisione il DNA
- è una sequenza unica per ogni individuo:
 - solo dal 0,1% al 0,5% è diverso per ogni individuo, il resto è uguale per tutti

- questa porzione variabile è composta da milioni di coppie di basi (elementi costituenti del DNA)
- è sufficiente una piccola porzione di campione per effettuare l'acquisizione del tratto

1.2 Vantaggi e Svantaggi del DNA

• Vantaggi

- è la tecnica più accurata a disposizione
- bastano poche cellule
- è possibile scoprire una associazione tra sample di consanguinei

• Svantaggi

- analisi non in real-time, servono alcuni minuti/ore
- non è ancora completamente automatizzato
- analisi costosa (da 100 fino a 2000 dollari)

1.3 Cos'è il DNA

- Il DNA ha una forma di doppia elica, si trova nel nucleo delle cellule
- È un polimero, ovvero una lunga molecola di unità di base (nucleotidi) ripetute; possono essere di 4 tipi:
 - A (adenina)
 - C (citosina)
 - G (guanina)
 - T (timina)
- tutta l'informazione per generare un uomo è contenuta in una cellula, rappresentabile come una sequenza di coppie
- il genoma umano è composto da circa 3 miliardi di coppie (3 TB)

1.3.1 Segmenti di DNA

Le **coppie base** sono C-G/A-T, e si usano come unità di misura per contare la lunghezza di un **segmento** di DNA.

1.3.2 Replicazione del DNA

Se un intero individuo nasce da una cellula (embrione) e per tutta la sua vita in tutte le cellule vi è sempre la stessa molecola di DNA, significa che la **duplicazione del DNA è molto affidabile**. Il processo naturale prende il nome di mitosi.

La **PCR** (*Polymerase Chain Reaction*) è una tecnica che riesce a duplicare artificialmente delle piccole porzioni di DNA miliardi di volte in poche ore.

1.3.3 Geni e alleli

Ogni gene (porzione di DNA che ha informazioni su proteine o RNA) ha fino a 100 versioni diverse, chiamati alleli.

1.4 Che feature si estraggono dal DNA

Si potrebbe estrarre direttamente la sequenza di basi per un certo gene, ma sarebbe inutilmente troppo complesso.

In alcuni zone del DNA (*locus*) ci sono dei **pattern di basi ripetuti**, ma ripetuti un **numero diverso** di volte per ogni individuo:

 \rightarrow la vera feature biometrica quindi è il <u>numero di ripetizioni</u> in un locus

Con queste feature non è possibile scoprire malattie genetiche, \dots non è come avere tutte le informazioni di tutti i geni.

1.4.1 DNA satellite

Le porzioni di DNA che vengono ripetute prendono il nome di **satelliti**; si dividono in:

• Macro satelliti (> 100 coppie base)

- Mini satelliti (10-100 coppie base)
- \bullet Micro satelliti (2-7 coppie base), chiamati anche STR (Short Tandem Repeat)

1.4.2 Quali dati mettiamo nel template

L'FBI usa per il suo template:

- 20 locus
- conteggia gli STR

1.5 Estrazione del DNA

1.5.1 Dove trovare il DNA per le analisi

- sangue
- sperma
- saliva
- \bullet urina
- capelli
- denti
- ossa
- tessuti

È sufficiente una microscopica goccia di sangue o saliva per ottenere un campione valido per una analisi forense; normalmente si usa un campione di sangue o saliva.

1.5.2 Fasi principali

- 1. Collection
- 2. Specimen storage
- 3. Extraction
- $4. \ \ Quantitation$
- 5. *PCR*
- 6. STR typing
- 7. Interpretation of results

- 8. Database storage & searching
- 9. Probability of matching

1.5.3 PCR per STR e contaminazioni

- La porzione di DNA che può essere amplificata è limitata, quindi si amplificano solo i locus di interesse
- Gli STR che si usano sono estraibili dal DNA con enzimi specifici
- L'amplificazione PCR è estremamente sensibile a contaminazioni
- La fase di quantizzazione è fondamentale:
 - troppo poco DNA significa perdere degli alleli (una delle forme che può assumere un gene in un locus)
 - troppo DNA provoca malfunzionamenti

1.5.4 Processo di estrazione

- Il DNA è un polimero carico elettrostaticamente, quindi viene attirato dai campi elettrici
- Si possono separare dei segmenti di DNA in base alla loro lunghezza mettendoli in un gel posto in un campo elettrico
- Ogni segmento di DNA, con lunghezza e carica diversa, si muove a velocità diversa (quelli con meno ripetizioni sono più veloci)

1.6 Matching

Dai tracciati risultanti, i software per la genotipizzazione e l'esperto producono e controllano tutti i dati per il template da confrontare e/o memorizzare.

Bisogna fare attenzione ai problemi sperimentali che potrebbero causare falsi picchi di alleli o farli scomparire; da questo punto di vista anche il DNA può sbagliare!

1.6.1 Attenzione! Gemelli omozigoti

Derivano da una singola cellula uovo fecondata da uno spermatozoo; al concepimento hanno lo stesso DNA. Tuttavia, durante lo sviluppo possono intervenire mutazioni somatiche che vanno a differenziare il DNA.

Solo pochi laboratori capaci di analisi molto avanzate trovano in modo affidabile le piccolissime differenze del DNA degli omozigoti.

1.7 Problemi di privacy

- Mandando il DNA ad una azienda per l'analisi, si possono rintracciare i parenti dato che contengono le stesse porzioni DNA
 - \rightarrow il problema è che vengono esposti anche i discendenti nel futuro!
- 1 solo individuo espone più di 1000 persone al tracciamento
- oltre alla possibilità di essere riconosciuto, il DNA rivela dati su malattie e predisposizioni . . . informazioni sensibili!

Usando dati pubblici è stato creato un albero genealogico di 13 milioni di individui.

Capitolo 2

Orecchio

2.1 Perché? Vantaggi e Svantaggi

• Vantaggi

- -tratto spesso nascosto \rightarrow difficile da copiare, privacy compliant
- non si conoscono attacchi realistici su questo tratto
- usabile quando il volto è laterale e non funzionano i sistemi classici
- implementabile su molti device (cellulare, webcam)

• Svantaggi

- non standard (no ISO, ...)
- occlusioni
- non sempre applicabile

2.2 Estrazione delle feature

${\bf 2.2.1}\quad {\bf Eigenears}\ ({\bf come}\ {\bf autofacce})$

2.2.2 Estrazione mediante contorni

2.2.3 Distanze dal centro dei punti principali

Non semplice e ben automatizzabile selezionare i punti specifici.

2.3 In caso fosse sfuggito qualcosa ...

- \bullet Volto parzialmente occluso, riflessi, vista laterale, \dots
- È un tratto che può essere usato con i sistemi multimodali, e che entra in funzione quando gli altri smettono