Variables and Environments

Principles of Programming Languages
CAS CS 320
Lecture 16

Practice Problem

$$[(\lambda x.xy)/z](\lambda x.\lambda y.yz)$$
Perform the following substitution, avoiding variable capture.

$$[v/y]x = \begin{cases} v & x = y \\ x & \text{else} \end{cases}$$

$$[v/y](\lambda x \cdot e) = \begin{cases} \lambda x \cdot e & x = y \\ \lambda z \cdot [w/z][z/x]e & x \in FV(v), z \notin FV(e) \\ \lambda x \cdot [v/y]e & \text{else} \end{cases}$$

$$[v/y](e_1e_2) = ([v/y]e_1)([v/y]e_2)$$

Answer

Outline

Demo an <u>implementation</u> of the lambda calculus

Discuss the difference between <u>lexical</u> and <u>dynamic</u> scoping

Look at the semantics of <u>variable binding</u>, with examples using <u>environments</u>

Begin to look at how <u>closures</u> are used to implement lexical scoping with environments

Learning Objectives

- Describe the difference between dynamic and lexical scoping
- Give a sequence of reductions given a toy language which implements dynamic scoping
- Give a semantic derivation in the lambda calculus with let-expressions

Demo (The Lambda Calculus)

Variables

Two Major Concerns

- 1. Are variables *mutable*? Can we change their values? Are there restrictions to when we can change the value of a variable?
- 2. How are variables *scoped*? Dynamically or lexically? Does a binding define its own scope? Is it defined in a block?

OCaml variables are:

- » immutable
- » binding defined
- » lexically scoped

inferation = notable function & innulable lexical: pretty nulls every they dynamil:

Mutability

```
let x = 0
let f () =
  let x = 1 in
  ()
print_int x

Immutable (OCaml)
```

```
x = 0
def f():
    global x
    x = 1
print(x)

Mutable (Python)
```

Definition. (informal) A variable is mutable if we are allowed to change its value after it has been declared.

We think of variables as:

- » names if they're immutable
- » (abstract) memory locations when they're mutable

Ocami: Python:

Definition. (Informal) The scope of a variable binding is when and where a variable can be accessed

Scoping rules describe how the scope of bindings works in a program.

There are two standard paradigms:

- » dynamic scoping
- » lexical scoping (static scoping)

Warning. Scope is one of the most unclear terms in computer science, we might be talking about:

- » the scope of a function
- » scopes in general (like global scope)
- "this variables is not in scope..."

Dynamic Scoping echo \$y **B**ash print ralve of y

Dynamic scoping refers to when bindings are determined at runtime based on computational context

This is a *temporal view*, i.e., what a computation done beforehand which affected the value of a variable

Lexical Scoping

```
x = 0
def f():
    x = 1
    return x
assert(f() == 1)
assert(x == 0)
```

Python

```
let x = 0
let f () =
    let x = 1 in
let _ = assert (f () = 1)
let _ = assert (x = 0)
    OCaml
```

Lexical (static) scoping refers to the use of textual delimiters to define the scope of a binding

There are two common ways lexical scope is determined:

- » The binding defines it's own scope (let-bindings)
- » A block defines the scope of a variable (python functions)

Environments

High-Level

$$\{x \mapsto v , y \mapsto w , z \mapsto f\}$$

An *environment* is a data structure which maintains mappings of variables to values

Terminology. We call the individual mappings of variables to values variable bindings.

Usually it's implemented as an association list or a Map in OCaml. We have a special data structure called **env** for implementing environments.

The idea. We will evaluate expressions relative to an environment

{ x ~ 2 , y ~ 3} X+7

Operations

Math OCaml

& env

 $\mathscr{E}[x \mapsto v]$ add x v env

 $\mathscr{E}(x)$ find_opt x env

 $\mathscr{E}(x) = \bot$ find_opt x env = None

Most important operations on environments are the same that are useful for any dictionary-like data structure

Important: Adding mappings shadows existing mappings:

$$\mathscr{E}[x \mapsto v][x \mapsto w] = \mathscr{E}[x \mapsto w]$$

E with x bound to value of x in E 2 x 1 = 2 3 = 4 X 133

Dynamic Scoping

Toy Language (Syntax)

This is a small grammar for a language with, numbers, subroutines, and variable assignments

It's like a tiny fragment of Bash

Toy Language (Semantics)

```
<stmt1> ::= <var> | <var> = $<var>
                                                                                                               <var> = <num>
                                                                                                   <var>
                                                                                                            ::= ...
                                                                                                            ::= ...
                                                                                                   <num>
                                            \longrightarrow \langle \mathscr{E}[f \mapsto P], Q \rangle
\langle \mathscr{E}, f; Q \rangle \longrightarrow \langle \mathscr{E}, P Q \rangle
                            \mathscr{E}(y) = n \in \mathbb{Z}
                                                                            (aVar)

assignments
\langle E, x = \$y; Q \rangle \longrightarrow \langle \mathscr{E}[x \mapsto n], Q \rangle
                                                                                                  Note. The environment
                                                                                                  contains both
                                                                           (aNum)
                                                                                                  functions (F) and
\langle E, x = n; Q \rangle \longrightarrow \langle \mathscr{E}[x \mapsto n], Q \rangle
                                                                                                  numbers (\mathbb{Z})
```

< ::= { <stmt>; }

<stmt1>

<stmt> ::= <var>() { { <stmt1>; } }

Toy Language (Example)

```
f() { x=23; g; }; g() { y=$x; }; f;
(aVar)
(
 ({f +> x=23; g; }, g() {4=4x; }; f; >>
 くをよい、, g ト y=$x3, チョンー
  ( 1 f 1 - ..., g 1 - ... 3, x = 23; g; ) ->
 ({x 1-> 23, f1=..., g1=...}, gi)
 ({x b 23, f b ..., g b ...}, y=$x;) >>> 

({x b 23, y b 23, f b ..., g b ...3, e> /
```

 $\langle \mathscr{E}, f() \{ P \}; Q \rangle \longrightarrow \langle \mathscr{E}[f \mapsto P], Q \rangle$

$$\frac{\mathscr{E}(f) = P \in \mathbb{F}}{\langle \mathscr{E}, f; Q \rangle \longrightarrow \langle \mathscr{E}, P Q \rangle}$$
 (call)

$$\frac{\mathscr{E}(y) = n \in \mathbb{Z}}{\langle E, x = \$y; Q \rangle \longrightarrow \langle \mathscr{E}[x \mapsto n], Q \rangle}$$
 (aVar

$$\frac{\sum}{\langle E, x = n; Q \rangle \longrightarrow \langle \mathscr{E}[x \mapsto n], Q \rangle}$$
 (aNum)

The Takeaway

Defining and implementing dynamic scoping is very easy

It's like maintaining only a global scope

But it's behavior is harder to track, and arguably more error prone, you have to *remember* if there is some computation which will put a variable into scope.

Most modern programming languages implement lexical scoping

Lexical Scoping

Didn't we do this?

let x = v in ...

We've already implemented lexical scoping using the substitution model (mini-project 1)

Why do it again?

Answer. The substitution model is inefficient

Each substitution has to "crawl" through the entire remainder of the program

bis expr enhy 1 or 2 x's

The Environment Model (High-Level)

Rather than *eagerly* substituting variables, we'll keep track of their values in an environment

We'll then evaluate *relative* to the environment, *lazily* filling in variable values along the way

Now the **configurations** in our semantics have nonempty state

(This might feel a bit more natural than substitution from the perspective of imperative languages)

Lambda Calculus⁺ (Syntax)

This is a grammar for the lambda calculus with let-expressions and numbers

Challenge Problem. Rewrite this grammar so that it is not ambiguous

let x = 0 in let $f = \lambda y \cdot x$ in let x = 1 in f = 10

Lambda Calculus⁺ (Semantics)

$$\frac{\langle \mathscr{E}, \lambda x. e \rangle \Downarrow \lambda x. e}{\langle \mathscr{E}, x \rangle \Downarrow \mathscr{E}(x)} \xrightarrow{} ras. eval. to it's in value in \mathscr{E}

$$\frac{\langle \mathscr{E}, x \rangle \Downarrow \mathscr{E}(x)}{\langle \mathscr{E}, e_1 \rangle \Downarrow \lambda x. e} \xrightarrow{\langle \mathscr{E}, e_2 \rangle \Downarrow v_2} \frac{\langle \mathscr{E}[x \mapsto v_2], e \rangle \Downarrow v}{\langle \mathscr{E}, e_1 e_2 \rangle \Downarrow v} \xrightarrow{} same$$

$$\frac{\langle \mathscr{E}, e_1 \rangle \Downarrow v_1}{\langle \mathscr{E}, e_1 e_2 \rangle \Downarrow v_2} \xrightarrow{} \langle \mathscr{E}, |e_1 e_2 \rangle \Downarrow v_2} \xrightarrow{} same$$$$

Important. These rules are incorrect!

What went wrong?

$$\begin{aligned} &\det[x] = 0 \text{ in} \\ &\det f = \lambda y \text{ in} \\ &\det x = 1 \text{ in} \end{aligned}$$

$$\int f \cdot 0$$

What is the value of this expression?

We'll see on the next slide that we accidentally implemented dynamic scoping

The Derivation

$$\overline{\langle \mathscr{E}, \lambda x . e \rangle \Downarrow \lambda x . e} \qquad \overline{\langle \mathscr{E}, n \rangle \Downarrow n}$$

$$\overline{\langle \mathscr{E}, x \rangle \Downarrow \mathscr{E}(x)}$$

$$\frac{\langle \mathcal{E}, e_1 \rangle \Downarrow \lambda x. e \qquad \langle \mathcal{E}, e_2 \rangle \Downarrow v_2 \qquad \langle \mathcal{E}[x \mapsto v_2], e \rangle \Downarrow v}{\langle \mathcal{E}, e_1 e_2 \rangle \Downarrow v}$$

$$\frac{\langle \mathscr{E}, e_1 \rangle \Downarrow v_1 \qquad \langle \mathscr{E}[x \mapsto v_1], e_2 \rangle \Downarrow v_2}{\langle \mathscr{E}, \mathsf{let} \; x = e_1 \; \mathsf{in} \; e_2 \rangle \Downarrow v_2}$$

 $\langle \emptyset \rangle$, let x = 0 in let $f = \lambda y \cdot x$ in let x = 1 in $f(0) \rangle \downarrow 1$

Closures (Looking Ahead)

let
$$x = 0$$
 in
let $f = \lambda y \cdot x$ in
let $x = 1$ in
 $f(10)$

What do we do about this?

The problem was that f saw a different value of x than what it was when f 0 was evaluated

So functions will need to remember the environments they were defined in

Summary

To deal with variables in an imperative setting, we need environments

To deal with variables in a function setting, we don't *need* environments, but they will make our implementation more efficient

Dynamic scoping says a variable binding is determined by the computational context whereas <u>lexical</u> scoping says its determine by its lexical (textual) context