Random Number Generator 解题报告

第一部分(10%) $n \le 10^{18}, k \le 3000$

记矩阵
$$\begin{bmatrix} A_k \\ \dots \\ A_2 \\ A_1 \end{bmatrix}$$
 为 W_i ,记转移矩阵 $\begin{bmatrix} C_1 & \dots & C_{k-1} & C_k \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$ 为 P ,则 $W_i = P^{i-1}W_1$ 。因此,

我们可以用矩阵快速幂在 $\Theta(k^3\log n)$ 的时间里求出 W_n ,从而求出 A_n 。但这个复杂度明显会超时。

我们发现,由于 $A_i = C_1 A_{i-1} + ... + C_k A_{i-k}$,所以 $W_{i+1} = C_1 W_i + ... + C_k W_{i-k+1}$,即 $P^i W_1 = C_1 P^{i-1} W_1 + ... + C_k P^{i-k} W_1$,将等式两边同时乘上 W_1 的逆矩阵,我们就得到了用 $P^{i-1} P^{i-k}$ 来表示 P^i 的式子。进过若干次降次后,我们可以用 $P^{k-1} P^0$ 来表示 P^i 。

我们采用倍增的方法来求出 P^{n-1} : 假设我们已经知道关于 P^i 的 k-1 次多项式,那么我们计算 $P^{2i} = P^i \times P^i$,就得到了一个 2k-2 次的多项式,暴力将其降为 k-1 次即可。

得到 P^{n-1} 后,我们就可以很容易地求出 W_n ,进而求出 A_n 。

时间复杂度: $\Theta(k^2 \log n)$

第二部分(90%) $n \le 10^{18}, k \le 30000$

我们发现,在上面的算法中,有且仅有多项式乘法和降次的时间复杂度达到了 $\Theta(k^2)$,下面,我们尝试将它们优化到 $\Theta(k \log k)$ 。

多项式乘法使用快速傅里叶变换 (FFT) 即可。

在降次方面,我们不断使用 $P^i=C_1P^{i-1}+...+C_kP^{i-k}$ 来降次,实际上相当于将原多项式对 $P^k-C_1P^{k-1}-...-C_kP^0$ 取模。下面介绍一种优秀的多项式取模算法。

假设我们现在想知道 n 次多项式 f(x)模 m 次多项式 g(x)的结果。

设商为 n-m 次多项式 q(x),余数为 m-1 次多项式 r(x),则 f(x)=g(x)q(x)+r(x),所以 $x^n f(\frac{1}{x}) = (x^m g(\frac{1}{x}))(x^{n-m} q(\frac{1}{x})) + x^{n-m+1}(x^{m-1} r(\frac{1}{x}))$, 记 $x^n f(\frac{1}{x})$ 为 f'(x) ,则 $f'(x) = g'(x)q'(x) + x^{n-m+1}r'(x)$,注意到 f'(x) 依旧是 n 次多项式,只是系数与 f(x)全部相 反了,g,q,r 也是这样,因此 $q'(x) \equiv f'(x)(g'(x))^{-1} (\text{mod } x^{n-m+1})$ 。至此,我们只需求出 g'(x)

在模 x^{n-m+1} 下的逆元即可。

设 $g'(x)h_i(x)\equiv 1(\bmod x^{2^i})$, 易 知 $h_0(x)=1$ 。 而 由 于 $g'(x)(g'(x)h_{i-1}(x)^2-2h_{i-1}(x))\equiv 1-(g'(x)h_{i-1}(x)-1)^2\equiv 1(\bmod x^{2^i})$, 所 以 $h_i(x)\equiv g'(x)h_{i-1}(x)^2-2h_{i-1}(x)(\bmod x^{2^i})$ 。 因此我们可以用倍增的方法求出 $h_i(x)$,其中 t 是 满 足 $n-m+1\leq 2^i$ 的 最 小 整 数 。 由 于 $g'(x)h_i(x)\equiv 1(\bmod x^{2^i})$, 所 以 $g'(x)h_i(x)\equiv 1(\bmod x^{n-m+1})$ 。 在本题中,n=2k-2,m=k,n-m+1=k-1。至此,一次操作的复杂度 降为 $\Theta(k\log^2 k)$ 。

我们可以先预处理出h(x),每次操作时直接使用即可。

时间复杂度: $\Theta(k \log k \log n)$