Modern Inference (Statistical Learning) - University of Milano-Bicocca

Homework 1 - Solution

1 Darwin's plants experiment

1.1 Galton's model

TASK 1:

1. Analysis Plan:

Answer: If we assume that ϵ_i and ϵ_i have a N(0,1) distribution, we can use a two-sample t test (t = 2.4371, df = 28, p-value = 0.02141).

2. **Code:**

```
Answer: t.test(height \sim type, data=darwin, var.equal=TRUE)
```

3. Claim:

Answer:

From the two-sample t test we obtain a point estimate of $\hat{\theta} = 20.19 - 17.57 = 2.62$ along with a 95% confidence interval (0.417, 4.816) not including 0. The answer to G1 is there is a significant height increase - estimated on average 2.62 eighths of an inch for cross-fertilized plants - and we reject $H_0: \theta = 0$ with p-value = 0.021 (two-sided alternative). The answer to G2 is that the average height increase is between (0.417, 4.816) with 95% confidence.

1.2 Fisher's model

TASK 2:

1. Analysis Plan:

Answer: If we assume that ϵ_i and ϵ_i have a N(0,1) distribution, we can use a paired t test, or one-sample t test for the difference (t = 2.148, df = 14, p-value = 0.0497).

2. Code:

```
Answer: differences = apply(darwin_pair[,3:2],1,diff); t.test(differences)
```

3. Claim:

Answer:

From the one-sample t test we obtain a point estimate of $\hat{\theta} = 2.62$ (exactly as before) along with a 95% confidence interval (0.004, 5.24). The answer to G1 is that although we obtain the same estimated height increase of 2.62 for cross-fertilized plants, there more uncertainty than before in concluding that it is significantly different from zero (p-value = 0.0497, two-sided alternative). The answer to G2 is that the average height increase is between (0.004, 5.24) with 95% confidence. A long interval close to zero is not surprising given the small sample size (n = 15).

1.3 A more general model

TASK 3:

1. Analysis Plan:

Answer: If we assume that ϵ_i and ϵ_i are independent and symmetrically distributed around 0, then D_i is symmetrically distributed around θ and we can test $H_0: \theta = 0$ by a nonparametric or distribution-free test, the *sign test* for the difference (number of successes = 13, number of trials = 15, p-value = 0.007385 [two-sided], where success means that in a given pair the height of cross-fertilized > self-fertilized, and trials are the number of pairs).

2. **Code:**

Answer: binom.test(x=13, n=15, p=0.5, alternative="two.sided")

3. Claim:

Answer:

The sign test provides significant evidence that $\theta \neq 0$ (p-value = 0.007385, two-sided alternative) with little assumptions. The probability for cross-fertilized plant of being higher than its self-fertilized counterpart is estimated 86% with a 95% confidence interval of (0.59, 0.98).

4. Let $X \sim f(x)$ and $Y \sim g(y)$ be continuously distributed random variables with density functions f and g, and assume that f is symmetric around 0, g is symmetric around 0, and X and Y are independent. Prove that Z = X - Y is symmetric around 0

Answer: Note that Y is equal in distribution to -Y, so we need to prove that X + Y is symmetric around 0. See https://stats.stackexchange.com/questions/95002/the-sum-of-two-symmetric-random-variables-is-symmetric for the proof.

2 Galieo's inclined plane experiment (1604)

TASK 4:

1. Analysis Plan Assume a Gaussian linear model $y = X\beta + \varepsilon$, where y represents the distance and X is the design matrix including the intercept, time and time². This represents Galileo model. Aristotle's model is a particular case with $\beta_2 = 0$. Then we can use the F test for comparing nested models.

2. Code

```
experiment = data.frame(distance=c(33,130,298,526,824,1192,1620,2104), time=1:8)
Galileo = lm(distance ~ 1 + time + I(time²), experiment)
Aristotle = lm(distance ~ 1 + time, experiment)
anova(Aristotle, Galileo)

Analysis of Variance Table

Model 1: distance ~ 1 + time
Model 2: distance ~ 1 + time + I(time^2)
    Res.Df RSS Df Sum of Sq F Pr(>F)
1    6 179415
2    5    75    1    179340 11917 1.223e-09 ***
```

3. Claim

We reject Aristotle model in favour of Galileo model.