

#### VANCOUVER CONVENTION CENTRE – WEST BUILDING

### Omnidirectional Image Super-Resolution via Bi-Projection Fusion

Jiangang Wang<sup>1</sup>, Yuning Cui<sup>2</sup>, Yawen Li<sup>3</sup>, Wenqi Ren<sup>1\*</sup>, Xiaochun Cao<sup>1</sup>

<sup>1</sup>Shenzhen Campus of Sun Yat-sen University <sup>2</sup>Technical University of Munich <sup>3</sup>Beijing University of Posts and Telecommunications







### ■一、研究背景与意义





……推动三维图形生成、 动态环境建模、实时动作捕捉、 快速渲染处理等技术创新,发 展虚拟现实整机,感知交互、 内容采集制作等设备和开发工 具软件、行业解决方案。



医疗







元宇宙

工业 教育

全景视频实现沉浸式的体验,需要超高分辨(8K-16K)的画质

全景视频分析与处理技术已成为多媒体处理领域的研究热点



### ■ 二. 相关工作与挑战问题



#### **Single Image Super-Resolution**



network (EDSR). **EDSR** 



Figure 2: The architecture of the proposed SwinIR for image restoration.



**SAFMN** 

**SwinIR** 

### 传统2D图像与全景图像域间差异大,传统2D图像超分辨算法不适配





VS



全景图像



## 二. 相关工作与挑战问题



#### **Omnidirectional Image Super-Resolution**



Fig. 6. The progressive architecture of the proposed LAU-Net+. Each level is composed of feature enhancement module (FEM), drop-band decision module (DDM) and high-latitude enhancement module (HEM). The final HR image is obtained by merging the outputs from different levels



Figure 2. Overall framework of the proposed SphereSR.



Figure 4. Overall illustration of OSRT. From SwinIR [24], we replace the standard multi-head self-attention block with DAAB and insert DACB behind the end of the RSTB. Channel dimensions of  $\theta_{\text{offsets}}$  in DAAB and DACB are 2 and 18, respectively.

**OSRT** 

LAU-Net SphereSR

#### 现有全景图像超分辨仅使用ERP投影,全景图像特征利用不充分



地图投影





## ■■三、全景图像投影的特征分析



- 全景图像最常用的两种投影:
  - equirectangular projection (ERP) 圆柱形投影
  - cubemap projection (CMP)立方体投影





### ERP和CMP投影具有互补性

| 投影类型 优点 |       | 缺点               |  |  |  |
|---------|-------|------------------|--|--|--|
| ERP     | 全局视角  | 画面扭曲失真大,特别是高纬度地区 |  |  |  |
| CMP     | 扭曲失真小 | 画面只有局部视角、画面边缘不连续 |  |  |  |



# ■■三、全景图像投影的特征分析



### • ERP和 CMP 几何特征挖掘





(b): CMP Perspective Variability

| 投影类型 | 几何特征  | 模型结构设计  |  |  |
|------|-------|---------|--|--|
| ERP  | 水平相似性 | 局部相似性建模 |  |  |
| CMP  | 视角多变性 | 多视角信息融合 |  |  |



# 四、融合全景投影几何特征的模型设计



(b) Horizontal Striped

Windows



Different self-attention windows

(a) Square Windows (b) Horizontal Striped Windows.

As can be seen, Horizontal Striped Windows are more effective in capturing the similarity within ERP compared to Square Windows.

(a) Square Windows

The overall diagram illustrates the architecture of BPOSR

| 投影类型 | 几何特征  | 模型结构设计  |  |  |
|------|-------|---------|--|--|
| ERP  | 水平相似性 | 局部相似性建模 |  |  |
| CMP  | 视角多变性 | 多视角信息融合 |  |  |



# 四、融合全景投影几何特征的模型设计







**Block Attention Fusion Module** 

BAFM receives input from different projections and depths, employing a 3D self-attention mechanism to fuse all the features.

The overall diagram illustrates the architecture of BPOSR

# ■■五、实验与结果



|       | Dataset  | ODI-SR  |         |         |         |         | SUN360  |            |         |         |         |         |         |
|-------|----------|---------|---------|---------|---------|---------|---------|------------|---------|---------|---------|---------|---------|
|       | Scale    | ×4      |         | ×8      |         | ×16     |         | $\times 4$ |         | ×8      |         | ×16     |         |
|       | Method   | WS-PSNR | WS-SSIM | WS-PSNR | WS-SSIM | WS-PSNR | WS-SSIM | WS-PSNR    | WS-SSIM | WS-PSNR | WS-SSIM | WS-PSNR | WS-SSIM |
|       | Bicubic  | 24.62   | 0.6555  | 19.64   | 0.5908  | 17.12   | 0.4332  | 24.61      | 0.6459  | 19.72   | 0.5403  | 17.56   | 0.4638  |
|       | SRCNN    | 25.02   | 0.6904  | 20.08   | 0.6112  | 18.08   | 0.4501  | 26.30      | 0.7012  | 19.46   | 0.5701  | 17.95   | 0.4684  |
|       | VDSR     | 25.92   | 0.7009  | 21.19   | 0.6334  | 19.22   | 0.5903  | 26.36      | 0.7057  | 21.60   | 0.6091  | 18.91   | 0.5935  |
|       | LapSRN   | 25.87   | 0.6945  | 20.72   | 0.6214  | 18.45   | 0.5161  | 26.31      | 0.7000  | 20.05   | 0.5998  | 18.46   | 0.5068  |
| SISR  | MemNet   | 25.39   | 0.6967  | 21.73   | 0.6284  | 20.03   | 0.6015  | 25.69      | 0.6999  | 21.08   | 0.6015  | 19.88   | 0.5759  |
| SI    | MSRN     | 25.51   | 0.7003  | 23.34   | 0.6496  | 21.73   | 0.6115  | 25.91      | 0.7051  | 23.19   | 0.6477  | 21.18   | 0.5996  |
|       | EDSR     | 25.69   | 0.6954  | 23.97   | 0.6483  | 22.24   | 0.6090  | 26.18      | 0.7012  | 23.79   | 0.6472  | 21.83   | 0.5974  |
|       | D-DBPN   | 25.50   | 0.6932  | 24.15   | 0.6573  | 22.43   | 0.6059  | 25.92      | 0.6987  | 23.70   | 0.6421  | 21.98   | 0.5958  |
|       | RCAN     | 26.23   | 0.6995  | 24.26   | 0.6554  | 22.49   | 0.6176  | 26.61      | 0.7065  | 23.88   | 0.6542  | 21.86   | 0.5938  |
|       | DRN      | 26.24   | 0.6996  | 24.32   | 0.6571  | 22.52   | 0.6212  | 26.65      | 0.7079  | 24.25   | 0.6602  | 22.11   | 0.6092  |
|       | 360-SS   | 25.98   | 0.6973  | 21.65   | 0.6417  | 19.65   | 0.5431  | 26.38      | 0.7015  | 21.48   | 0.6352  | 19.62   | 0.5308  |
| SR    | LAU-Net  | 26.34   | 0.7052  | 24.36   | 0.6602  | 22.52   | 0.6284  | 26.48      | 0.7062  | 24.24   | 0.6708  | 22.05   | 0.6058  |
| ODISR | SphereSR | _       | _       | 24.37   | 0.6777  | 22.51   | 0.6370  | _          | _       | 24.17   | 0.6820  | 21.95   | 0.6342  |
| 0     | OSRT     | 26.89   | 0.7581  | 24.53   | 0.6780  | 22.69   | 0.6261  | 27.47      | 0.7985  | 24.38   | 0.7072  | 22.13   | 0.6388  |
|       | BPOSR    | 26.95   | 0.7598  | 24.61   | 0.6782  | 22.72   | 0.6285  | 27.59      | 0.7997  | 24.47   | 0.7084  | 22.16   | 0.6433  |

Quantitative comparisons (WS-PSNR/WS-SSIM) with SISR and ODISR algorithms on benchmark datasets. The best results are highlighted in **bold.** 

<sup>[1]</sup> Deng, X.; Wang, H.; Xu, M.; Guo, Y.; Song, Y.; and Yang, L. 2021. LAU-Net: Latitude Adaptive Upscaling Network for Omnidirectional Image Super-Resolution. CVPR 2021, 9189–9198.

<sup>[2]</sup> Yoon, Y.; Chung, I.; Wang, L.; and Yoon, K.-J. SphereSR: 360deg Image Super-Resolution With Arbitrary Projection via Continuous Spherical Image Representation. CVPR 2022, 5677–5686.

<sup>[3]</sup> Yu, F.; Wang, X.; Cao, M.; Li, G.; Shan, Y.; and Dong, C. 2023. OSRT: Omnidirectional Image Super-Resolution With Distortion-Aware Transformer. CVPR 2023, 13283–13292



# ■■五、实验与结果





SUN360 (× 8): 060



SUN360 (× 8): 049



HR PSNR/SSIM



360-SS 18.58/0.5553



HR PSNR/SSIM



360-SS 19.80/0.6088



**SRCNN** 20.58/0.6014



LAU-Net 20.89/0.6535



**SRCNN** 21.67/0.6549



LAU-Net 22.35/0.7077



**RCAN** 21.05/0.6660



**OSRT** 21.05/0.6635



**RCAN** 22.48/0.7186

**OSRT** 

22.54/0.7167



**EDSR** 

21.23/0.6778

**BPOSR** 

21.31/0.6827

**BPOSR** 22.85/0.7313





# ■■五、实验与结果

20.26/0.5095





(a) ODI-SR ( $\times$  8): 046



22.50/0.5492

22.51/0.5548

22.63/0.5629



(c) ODI-SR (× 8): 005







**RCAN** 22.90/0.7939











22.95/0.7963



(b) ODI-SR ( $\times$  8): 064





(d) ODI-SR ( $\times$  8): 091



360-SS

20.76/0.5373

360-SS

HR

HR SRCNN PSNR/SSIM 22.26/0.5701







**EDSR** 23.16/0.6330 23.26/0.6408







**BPOSR** 23.20/0.6420

LAU-Net 23.02/0.6200

23.05/0.6238







**Figure: Local Attribution Maps (LAM)** results for different networks. The LAM attribution reflects the importance of each pixel in the inputLR image when reconstructing the patch marked with a box.

| Method      | WS-PSNR | WS-SSIM |  |  |
|-------------|---------|---------|--|--|
| BPOSR       | 24.61   | 0.6782  |  |  |
| Variant-CMP | 24.30   | 0.6620  |  |  |
| Variant-ERP | 24.47   | 0.6716  |  |  |

Table: Ablation studies for Bi-Projection



Figure: WS-PSNR vs. the number of parameters. The circle size indicates MACs.

| Method   | Venue    | MACs    | Params | WS-PSNR |  |
|----------|----------|---------|--------|---------|--|
| LapSRN   | CVPR'17  | 23.0G   | 1.3M   | 20.72   |  |
| EDSR     | CVPRW'17 | 2894.5G | 45.5M  | 23.97   |  |
| MSRN     | ECCV'18  | 294.4G  | 6.2M   | 23.34   |  |
| RCAN     | ECCV'18  | 602.0G  | 16.0M  | 24.26   |  |
| 360-SS   | MMSP'19  | 148.2G  | 1.6M   | 21.65   |  |
| SwinIR   | ICCVW'21 | 484.4G  | 11.9M  | 24.56   |  |
| LAU-Net  | CVPR'21  | 342.8G  | 9.4M   | 24.36   |  |
| ELAN     | ECCV'22  | 279.6G  | 8.5M   | 24.42   |  |
| SRFormer | ICCV'23  | 509.8G  | 10.5M  | 24.57   |  |
| OSRT     | CVPR'23  | 434.9G  | 11.8M  | 24.53   |  |
| BPOSR    | -        | 160.7G  | 2.3M   | 24.61   |  |

Table: Numerical comparisons with other state-of-theart algorithms in terms of complexity, parameters, and accuracy.



# **Thanks**

