1

GATE-2023, EC-35

EE23BTECH11033- JASWANTH KILLANA

Question:

direction

In the circuit shown below, switch S was closed for a long time. If the switch is opened at t=0, the maximum magnitude of the voltage V_R in volts is. (round off to nearest integer).

solution: here at t < 0, switch is closed

Fig. 0.

parameter	description	value
i (0-)	current at $t < 0$	_
i (0+)	current at $t > 0$	_
V_R	voltage across 2Ω	-
L	inductance	1
i(t)	current in small loop after $t = 0$	$\frac{V_R}{2}$

TABLE 0
INPUT PARAMETERS

after t = 0, switch is opened for an inductor

$$i(0^+) = i(0^-)$$
 (1)

apply KVL before t < 0 inductor acts as wire

$$-2V + i(0^{-}) = 0 (2)$$

$$\implies i(0^-) = i(0^+) = 2A \tag{3}$$

after t = 0;

KVL in loop of inductor and 2Ω resistor

let i be current in the loop in anti clockwise

$$L\frac{di}{dt} = -2i\tag{4}$$

$$\implies \frac{di}{i} = \frac{-2dt}{L} \tag{5}$$

$$\int_{i(0^+)}^{i(t)} \frac{1}{i} \, di = \int_0^t \frac{-2}{L} \, dt \tag{6}$$

$$ln\left(\frac{i\left(t\right)}{2}\right) = -2t\tag{7}$$

$$\implies i(t) = 2 \cdot e^{-2t} \tag{8}$$

$$V_R = 2i(t) V (9)$$

$$= 4 \cdot e^{-2t} V \tag{10}$$

$$As, t \to \infty$$
 (11)

$$e^{-2t} \to 1 \tag{12}$$

$$|V_R(max)| = 4V (13)$$