ai2335 - HW3-Copy1

March 26, 2017

```
In [1]: import numpy as np
        from numpy.linalg import inv
        import math
        import itertools
        import pandas as pd
        import matplotlib
        import matplotlib.pyplot as plt
        %matplotlib inline
0.1 1-A
In [3]: # kernel matrix
        def kernel(X_1, X_2, b):
            k = np.linalg.norm(X_1[None,:,:]-X_2[:,None,:],axis=2)
            return np.exp(-1/b * (k**2))
        # Gaussian process
        def G_process(X_train, y_train, X_test, b, sigma):
            K_n = kernel(X_train, X_train, b)
            I = np.identity(X_train.shape[0])
            c = np.linalg.inv((sigma) * I + K_n)
            K_k = kernel(X_test, X_train, b).T
            w = np.dot(K_k, c)
            predict = np.dot(w, y_train)
            return predict
0.2 1-B
In [5]: rmse = RMSE(y_predict, y_test, c)
        rmse_table = pd.DataFrame(
            {'parameters': c, 'rmse_value': rmse})
        rmse_table
```

Out[5]:		parameters	rmse_value
	0	(5, 0.1)	1.966276
	1	(5, 0.2)	1.933135
	2	(5, 0.3)	1.923420
	3	(5, 0.4)	1.922198
	4	(5, 0.5)	1.924769
	5	(5, 0.6)	1.929213
	6	(5, 0.7)	1.934634
	7	(5, 0.8)	1.940583
	8	(5 , 0.9)	1.946820
	9	(5, 1)	1.953213
	10	(7, 0.1)	1.920163
	11	(7, 0.2)	1.904877
	12	(7, 0.3)	1.908080
	13	(7, 0.4)	1.915902
	14	(7, 0.5)	1.924804
	15	(7, 0.6)	1.933701
	16	(7, 0.7)	1.942254
	17	(7, 0.8)	1.950380
	18	(7, 0.9)	1.958093
	19	(7 , 1)	1.965438
	20	(9, 0.1)	1.897649
	21	(9, 0.2)	1.902519
	22	(9, 0.3)	1.917648
	23	(9, 0.4)	1.932514
	24	(9, 0.5)	1.945699
	25	(9, 0.6)	1.957235
	26	(9, 0.7)	1.967403
	27	(9, 0.8)	1.976492
	28	(9, 0.9)	1.984741
	29	(9, 1)	1.992341
	30	(11, 0.1)	1.890507
	31	(11, 0.2)	1.914981
	32	(11, 0.3)	1.938849
	33	(11, 0.4)	1.957936
	34	(11, 0.5)	1.973216
	35	(11, 0.6)	1.985764
	36	(11, 0.7)	1.996375
	37	(11, 0.8)	2.005603
	38		2.013835
	39		2.021345
	40		1.895849
	41		1.935586
	42		1.964597
	43		1.985502
	44	•	2.001314
	45	(13, 0.6)	2.013878
	46	(13, 0.7)	2.024310

```
47
    (13, 0.8)
                2.033307
   (13, 0.9)
48
                2.041317
    (13, 1)
49
                2.048642
50
   (15, 0.1)
              1.909603
51
    (15, 0.2)
                1.959549
    (15, 0.3)
52
                1.990804
53
   (15, 0.4)
                2.011915
   (15, 0.5)
54
              2.027370
55
   (15, 0.6)
               2.039465
   (15, 0.7)
56
               2.049463
   (15, 0.8)
57
              2.058105
58
   (15, 0.9)
               2.065845
    (15, 1)
                2.072976
59
```

0.3 1-C

```
In [6]: rmse_table.ix[rmse_table['rmse_value'].idxmin()]
Out[6]: parameters (11, 0.1)
    rmse_value 1.89051
    Name: 30, dtype: object
```

The best solution is for b = 11 and sigma = 0.1 with rmse value of 1.89051.

This approach comapring to homework 1 gives lower rmse, therefore we got a more accurate result using Gaussian Process. We can also have confidence intervals for predictions if we calculate covaraince.

However, Gaussian Process is computationally more expensive comparing to ridge and polynomial regression specially with large data. therefore there is an issue of scaling.

0.4 1-D

```
In [8]: plt.figure(figsize=(12, 8))
        plt.scatter(X_train_car_weight, y_train, alpha='0.8', facecolors='#fdfd96',
        plt.plot(df_4['x'], df_4['y'], '#966fd6', linewidth=2.5)

        plt.ylabel('y values')
        plt.xlabel('X values')

        labels = ['Mean Y Prediction', 'Training values']
        plt.legend(labels)

Out[8]: <matplotlib.legend.Legend at 0x11092fb00>
```


1 2

```
## 2 - A
```

```
In [12]: plt.figure(figsize=(12, 8))

    plt.plot(test_error, '#779ECB', train_error, '#FF6961')
    plt.title('Training and Test error for boosting algorithm')
    plt.ylabel('%')
    labels = ['Test error', 'Training error']
    plt.legend(labels)
Out[12]: <matplotlib.legend.Legend at 0x10318edd8>
```


1.1 2-B

1.2 2-C

1.3 2-D

```
In [15]: plt.figure(figsize=(12, 8))

    plt.plot(epsilon_list, '#CFCFC4')
    plt.title('Epsilon values over T')
    plt.ylabel('Epsilon')
    plt.xlabel('T')
    plt.xlim(-0.05, 1500.05)
    plt.ylim(0, 0.6)
Out[15]: (0, 0.6)
```



```
In [16]: plt.figure(figsize=(12, 8))

    plt.plot(alpha_list, '#AEC6CF')
    plt.title('Alpha values over T')
    plt.ylabel('Alpha')
    plt.xlabel('T')
    plt.xlim(-0.05, 1500.05)
    plt.ylim(0, 0.6)
Out[16]: (0, 0.6)
```

