Lorsque ce n'est pas précisé, E désigne un \mathbb{K} -espace vectoriel non trivial.

- **Ex 1** Soient x_1, \ldots, x_n des vecteurs de E, et $1 \le p < n$. On pose $r = \operatorname{rg}(x_1, \ldots, x_n)$ et $s = \operatorname{rg}(x_1, \ldots, x_p)$. Montrer que $r s \le n p$.
- **Ex 2** Soient f et g deux endomorphismes de E (de dimension n) tels que $E = \operatorname{Im} f + \operatorname{Im} g = \ker f + \ker g$. Montrer que ces deux sommes sont directes.
- **Ex 3** Soit E un \mathbb{K} -espace vectoriel de dimension n, et $f \in \mathcal{L}(E)$.
 - a) Calculer dim $(\ker f + \operatorname{Im} f) + \dim (\ker f \cap \operatorname{Im} f)$.
 - b) En déduire que $E = \ker f \oplus \operatorname{Im} f \iff \ker f \cap \operatorname{Im} f = \{0_E\}.$
 - c) Application : on suppose que $f^3 + 3f^2 + f = 0$. Montrer que $E = \ker f \oplus \operatorname{Im} f$.
- Ex 4 Soit E un \mathbb{K} -espace vectoriel de dimension n, et f et g deux endomorphismes de E vérifiant

$$f \circ g = \mathbb{O}$$
 et $f + g \in GL(E)$

Montrer que $\operatorname{rg} f + \operatorname{rg} g = n$.

Ex 5 Soient E et F deux espaces de dimension finie sur \mathbb{K} , et f, g des applications linéaires de E dans F. Montrer (en considérant les images) :

$$|\operatorname{rg} f - \operatorname{rg} g| \leq \operatorname{rg} (f + g) \leq \operatorname{rg} f + \operatorname{rg} g$$

Ex 6 Inégalités de Sylvester : soient E un espace de dimension n sur \mathbb{K} , et f,g deux endomorphismes de E. En appliquant le théorème du rang à $h = f_{|\operatorname{Im} g}$, montrer que

$$\operatorname{rg} f + \operatorname{rg} g - n \leqslant \operatorname{rg} (f \circ g) \leqslant \min (\operatorname{rg} f, \operatorname{rg} g)$$

Ex 7 a) Soit f un endomorphisme de E de rang 1.

Montrer qu'il existe un vecteur non nul $a \in E$ et une forme linéaire non nulle $\varphi \in \mathcal{L}(E, \mathbb{K})$ tels que

$$\forall x \in E, \ f(x) = \varphi(x) a$$

- b) On suppose $E = \mathbb{R}^3$ et $f^2 = 0_{\mathcal{L}(E)}$ et $f \neq 0_{\mathcal{L}(E)}$. Montrer que l'on est dans le cas précédent.
- **Ex 8 Interpolation de Lagrange**: soient n un entier naturel non nul et x_0, x_1, \ldots, x_n des réels distincts deux à deux.
 - a) On se propose de montrer que, pour tout élément $Y = (y_0, y_1, \dots, y_n)$ de \mathbb{R}^{n+1} , il existe un unique polynôme P (interpolante de Lagrange) de degré inférieur à n tel que :

$$\forall i \in [0, n], \ P(x_i) = y_i$$

A cet effet, on introduit l'application $\varphi : \mathbb{R}_n [X] \to \mathbb{R}^{n+1}$ définie par

$$\forall P \in \mathbb{R}_n [X], \quad \varphi(P) = (P(x_0), P(x_1), \dots, P(x_n))$$

Montrer que l'application φ est un isomorphisme et en déduire le résultat proposé.

b) Calculer l'interpolante de $Y=(y_0,y_1,\ldots,y_n)$ à l'aide de la base de Lagrange (L_0,\ldots,L_n) , où l'on note

$$L_p = \prod_{k \neq p} \frac{X - x_k}{x_p - x_k}$$

- **Ex 9** Soit T une matrice triangulaire inversible de taille n. On note \mathcal{T}_n l'ensemble des matrices triangulaires supérieures de \mathcal{M}_n (\mathbb{K}), et on considère l'application $\varphi: \mathcal{M}_n \to \mathcal{M}_n$ définie par $\varphi(M) = TM$.
 - a) Montrer que φ est linéaire injective, qu'elle induit un automorphisme de \mathcal{T}_n .
 - b) En déduire que T^{-1} est triangulaire supérieure.
- Ex 10 Montrer que deux formes linéaires non nulles de E sont proportionnelles si et seulement si elles ont même noyau.

PCSI 1 Thiers 2019/2020

Ex 11 Soit E un \mathbb{K} -espace vectoriel de dimension n, et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

a) Montrer que si $(a_1, \ldots, a_n) \neq (0, \ldots, 0)$, alors

$$H = \{x = x_1e_1 + \dots + x_ne_n \in E \mid a_1x_1 + \dots + a_nx_n = 0\}$$

est un hyperplan de E.

b) Inversement, soit H est un hyperplan de E.

Montrer qu'il existe $(a_1, \ldots, a_n) \neq (0, \ldots, 0)$ tel que pour tout $x = x_1 e_1 + \cdots + x_n e_n \in E$ on ait

$$x \in H \iff a_1 x_1 + \dots + a_n x_n = 0$$

 $a_1x_1 + \cdots + a_nx_n = 0$ est appelée équation de H dans la base \mathcal{B} .

Ex 12 Soit $f \in \mathcal{L}(E)$ vérifiant $f^n = \mathrm{id}_E$ $(n \in \mathbb{N}^*)$. On pose $p = \frac{1}{n} \left(\mathrm{id}_E + f + \cdots + f^{n-1} \right)$.

- a) Montrer que $\operatorname{Im} p \subset \ker (f \operatorname{id}_E)$ et $\ker (f \operatorname{id}_E) \subset \ker (p \operatorname{id}_E)$ (interpréter).
- b) En déduire que p est un projecteur et donner son image.
- c) On suppose que E est de dimension finie. Calculer $\ker p$.

Ex 13 Soit E un \mathbb{K} -espace vectoriel de dimension 3n (où $n \in \mathbb{N}^*$), et $f \in \mathcal{L}(E)$ nilpotent d'ordre 3et de rang 2n.

On se propose de démontrer que

$$\operatorname{Im} f^2 = \ker f \subsetneq \operatorname{Im} f = \ker f^2$$

- a) Montrer que Im $f \subset \ker f^2$ et Im $f^2 \subset \ker f$. En déduire une majoration de $\operatorname{rg} f^2$.
- b) Montrer que $\ker f \subseteq \ker f^2$ et $\operatorname{Im} f^2 \subseteq \operatorname{Im} f$.
- c) Justifier que f induit une surjection $\tilde{f}: \operatorname{Im} f \to \operatorname{Im} f^2$ (définie par $\forall x \in \operatorname{Im} f, \ \tilde{f}(x) = f(x)$). Calculer $\ker \tilde{f}$ et majorer sa dimension.
- d) En appliquant le théorème du rang à \tilde{f} , prouver que rg $f^2 = n$. Conclure.

Ex 14 Soit E un \mathbb{R} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$.

Montrer l'existence de deux automorphismes de E tels que u = f - g.

Indication : compléter une base (e_1, \ldots, e_p) de ker u en une base $\mathcal{B} = (e_1, \ldots, e_n)$ de E

Compléter aussi $(u(e_{p+1}), \ldots, u(e_n))$ (base de Im u?) en une base \mathcal{B}' de E. Définir f et g sur \mathcal{B} .

Ex 15 Soit E un \mathbb{K} -espace vectoriel. On considère une transvection de E, c'est-à-dire un endomorphisme u vérifiant

$$\exists \varphi \in \mathcal{L}(E, \mathbb{K}) \setminus \{0\}, \ \exists a \in \ker \varphi / \forall x \in E, \ u(x) = x + \varphi(x) a$$

On note $H = \ker \varphi$

- a) Déterminer les sous-espaces vectoriels stables par u.
- b) Montrer que u est inversible et déterminer u^{-1} .
- c) Soit $g \in GL(E)$. Déterminer l'endomorphisme $v = g \circ u \circ g^{-1}$ (conjuguée de u)
- d) On suppose E de dimension finie. Montrer que deux transvections sont toujours conjuguées.

Ex 16 Soit E un \mathbb{K} -espace vectoriel de dimension finie et f un endomorphisme de E.

On rappelle que $\dim \mathcal{L}(E, F) = \dim E \times \dim F$

- a) On considère l'application $F: \mathcal{L}(E) \to \mathcal{L}(E)$ définie par $\forall g \in \mathcal{L}(E), \ F(g) = f \circ g$. Montrer que F est un endomorphisme de $\mathcal{L}(E)$ et déterminer son rang en fonction de celui de f.
- b) Même question avec $G: g \mapsto g \circ f$.

Ex 17 Quelles sont les suites $(u_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ vérifiant $\forall n\in\mathbb{N},\ u_{n+3}=2u_{n+2}+u_{n+1}-2u_n$?