CPSC-354 Report

Drew Floyd Chapman University

September 11, 2025

Abstract

This abstract will summarize the report at the end of the semester. For now, this is a placeholder.

Contents

1 Introduction								
2	Week by Week							
	2.1	Week	1					
		2.1.1	Notes and Exploration					
		2.1.2	Homework: The MU-Puzzle					
		2.1.3	Questions					
	2.2	Week	2					
		2.2.1	Notes and Exploration					
		2.2.2	Homework: Rewriting Assignment					
		2.2.3	Questions					
	2.3	Week	Veek 3					
		2.3.1	Notes and Exploration					
		2.3.2	Homework: String Rewriting Exercise 5 and 5b					
		2.3.3	Questions					
3	Ess	Essay (Synthesis)						
4	Evi	Evidence of Participation						
5	Cor	Conclusion						

1 Introduction

This report documents my learning throughout the course, including weekly homework, notes, and reflections. It is structured week-by-week following the provided template and incorporates diagrams, formal reasoning, and examples written in LATEX.

2 Week by Week

2.1 Week 1

2.1.1 Notes and Exploration

(Currently Notes are stored in Google Docs)

2.1.2 Homework: The MU-Puzzle

 $\mathrm{MI} \rightarrow \mathrm{MU}$

Rule 1: If you possess a string whose last letter is I, add U.

Rule 2: Suppose you have Mx, you may add Mxx.

Rule 3: If III occurs in one of the strings, you may make a new string with U in place of III.

Rule 4: If UU, you can drop it.

 $\begin{array}{ll} \mathbf{MI} \\ \mathbf{MII} & Mxx \\ \mathbf{MIIII} & Mxx \\ \mathbf{MIIIIIIIII} & Mxx \\ \mathbf{MUIIU} & MIU \\ \varnothing \end{array}$

MI \rightarrow use Mxx rule ∞ times MIIII...

No matter what Rule you use you will never be able to get 0 Mod3, because I will always be 1 mod 3 or 2 mod 3.

Rule 1 does not affect # of I's.

Rule 2 does not give 0 mod 3.

Rule 3 does not solve the problem as removing 3 I's does not change the output of mod3.

Rule 4 does not change the # of I's.

We can never get rid of all of the I's, 0 mod 3 is not possible. Thus you cannot get MU from MI.

2.1.3 Questions

What other invariants (besides mod 3) could be useful for proving impossibility results in rewriting systems?

2.2 Week 2

2.2.1 Notes and Exploration

(Currently Notes are stored in Google Docs)

2.2.2 Homework: Rewriting Assignment

1.
$$A = \{\}, R = \{\}$$

This diagram is terminating because there are no infinite loops, confluent because all paths lead to the same result, and has a unique normal form as there is only one final state.

2.
$$A = \{a\}, R = \{\}$$

This diagram is terminating because there are no infinite loops, confluent because all paths lead to the same result, and has a unique normal form as there is only one final state.

3.
$$A = \{a\}, R = \{(a, a)\}$$

This diagram is not terminating due to the presence of infinite loops, confluent because all paths merge, but does not have a unique normal form as multiple results are possible.

4.
$$A = \{a, b, c\}, R = \{(a, b), (a, c)\}$$

This diagram is terminating as there are no infinite loops, not confluent because paths diverge, and does not have a unique normal form due to multiple end states.

5.
$$A = \{a, b\}, R = \{(a, a), (a, b)\}$$

This diagram is not terminating due to the presence of infinite loops, confluent because all paths lead to b, it has a unique normal form as the single end state is b.

6. $A = \{a, b, c\}, R = \{(a, b), (b, b), (a, c)\}$

This diagram is not terminating due to the presence of infinite loops, not confluent because paths diverge, and has a unique normal form due to having a single end state on c.

7. $A = \{a, b, c\}, R = \{(a, b), (b, b), (a, c), (c, c)\}$

This diagram is not terminating due to the presence of infinite loops, not confluent because paths diverge, and does not have a unique normal form due to no end states.

Properties Table.

${ m T}$	\mathbf{C}	U	Example(s)	Explanation
True	True	True	1, 2	These examples terminate, are confluent, and have a
				unique normal form because all paths lead to a single
				final state without divergence or loops.
True	False	False	4	This example terminates but is not confluent due to
				diverging paths and does not have a unique normal
				form as multiple end states exist.
False	True	True	5	This example does not terminate because a is a loop,
				but since it loops on itself it can still be confluent and
				point to b to result in a unique normal form.
False	True	False	3	This example does not terminate but is confluent
				because all paths merge, though it does not have a
				unique normal form due to multiple results.
False	False	False	6, 7	These examples do not terminate, are not confluent
				due to diverging paths, and do not have a unique
				normal form as no single end state exists.

2.2.3 Questions

Can we always predict whether an ARS will have a unique normal form just by inspecting the rules, or do we need to test examples?

2.3 Week 3

2.3.1 Notes and Exploration

(Currently Notes are stored in Google Docs)

2.3.2 Homework: String Rewriting Exercise 5 and 5b

$$ab \to ba$$

$$ba \to ab$$

$$aa \to \varepsilon$$

$$b \to \varepsilon$$

Rewrite steps for abba and bababa:

$$\begin{array}{c} abba \rightarrow abab \rightarrow \infty \\ abba \rightarrow aaba \rightarrow aa \rightarrow \varepsilon \\ baba \rightarrow \infty \\ \\ ababa \rightarrow \infty \\ \\ bababa \rightarrow aaba \rightarrow aa \rightarrow a \\ \\ bababa \rightarrow \infty \end{array}$$

- 1. The ARS is not terminating because there is an infinite loop in the first two rules, as they are inverses of each other.
- 2. Two equivalence classes: $b \to \varepsilon$ means b's don't matter, and $aa \to \varepsilon$ means a's cancel in pairs. Normal forms: Even # of a's $\Rightarrow \varepsilon$ Odd # of a's $\Rightarrow a$
- 3. You can make the ARS terminating without changing the equivalence classes by removing one of the rules involved in the loop (either $ab \to ba$ or $ba \to ab$).

- 4. Semantic question the ARS can answer: "Is the number of a's even or odd?" This works because the complete invariant is the parity of # of a's.
- 5. If instead $aa \to a$, this changes the question from even-or-odd to: No a's $\Rightarrow \varepsilon$ At least one $a \Rightarrow a$

2.3.3 Questions

How does the choice of termination rule (e.g., $aa \to \varepsilon$ vs. $aa \to a$) change the kinds of invariants that can be expressed? And what are the applications of this?

3 Essay (Synthesis)

(Empty placeholder.)

4 Evidence of Participation

(Empty placeholder.)

5 Conclusion

(Empty placeholder.)

References

[BLA] Author, Title, Publisher, Year. Available at: https://example.com