Theory of Automata and Formal Language Lecture-24

Dharmendra Kumar (Associate Professor) Department of Computer Science and Engineering United College of Engineering and Research, Prayagraj June 4, 2021

Simplification of Context Free Grammar

Simplification of grammar means to remove the useless symbols (variables and terminals) and production rules from the grammar.

Active Variable A variable A is said to be active if it derives a terminal string i.e

$$A{\rightarrow}\ x$$
 , where $x{\in}\ \Sigma^*$

Reachable symbols A symbol is said to be reachable if it appears in a string derives from starting symbol of the grammar i.e. If $S \Rightarrow X$, then every symbols in X are said to be reachable.

Useful Variable A variable is said to be useful if it is active and reachable both.

Construction of a Grammar in which all the variables are active (Elimination of Non-Active Variables from a Grammar)

Suppose the given context free grammar is

$$\mathsf{G} = \big(\mathsf{V},\!\Sigma,\!\mathsf{S},\!\mathsf{P}\big)$$

Now we construct a context free grammar G' in which all the variables are active.

$$G' = (V', \Sigma, S, P')$$

Step-1: Determination of V'

Let A_i denote the set of active variables. A_i is determined recursively as following:-

$$A_1 = \{ A \in V \mid \text{if } A \rightarrow x \in P, \text{ where } x \in \Sigma^* \}$$

 $A_2 = A_1 \cup \{ A \in V \mid \text{if } A \rightarrow \alpha \in P, \text{ where } \alpha \in (A_1 | cup \Sigma)^* \}$

$$A_{i+1} = A_i \cup \{A \in V \mid \text{if } A \to \alpha \in P, \text{ where } \alpha \in (A_i | cup \Sigma)^* \}$$

Repeat this process until $A_{i+1} = A_i$

Now, we terminate this process. Now, $V' = A_i$

Step-2: Determination of P'

P' is obtained from P by removing those production rules in which non-active variables belong.

Example: Consider the grammar $G = (\{S,A,B,C,E\}, \{a,b,c\}, P, S)$ where $P = \{S \rightarrow AB, A \rightarrow a, B \rightarrow b, B \rightarrow C, E \rightarrow c/\epsilon$ Eliminate the non-active variables from this grammar.

3

Construction a Grammar in which all the symbols are reachable (Elimination of Non-Reachable Symbols from a Grammar)

Suppose the given context free grammar is

$$G = (V, \Sigma, S, P)$$

Now we construct a context free grammar G' in which all the symbols are reachable.

$$G' = (V', \Sigma', S, P')$$

Step-1: Determination of V' and Σ'

Let R_i denote the set of reachable symbols. R_i is determined recursively as following:-

$$R_1 = \{S\}$$

$$R_2 = R_1 \cup \{x \mid A \rightarrow \alpha \in P, \text{ where } A \in R_1 \text{ and } \alpha \in (V \cup \Sigma)^* \text{ and } \alpha \text{ contains } x\}$$

.....

 $R_{i+1} = R_i \cup \{x \mid A \rightarrow \alpha \in P, \text{ where } A \in R_i \text{ and } \alpha \in (V \cup \Sigma)^* \text{ and } \alpha \text{ contains } x\}$

Repeat this process until $R_{i+1} = R_i$

Now, we terminate this process.

Now, $V' = R_i \cap V$

Now, $\Sigma' = R_i \cap \Sigma$

Step-2: Determination of P'

P' is obtained from P by removing those production rules in which non-reachable symbols belong.

Example: Consider the grammar

$$G = (\{S,A,B,C,E\}, \{a,b,c\}, P, S)$$

where P = { S \rightarrow AB, A \rightarrow a, B \rightarrow b, B \rightarrow C, E \rightarrow c/ ϵ

Eliminate the non-reachable symbols from this grammar.

Construction of Reduced Grammar

Reduced Grammar: A grammar is said to be reduced grammar if all the symbols and production rules are useful.

Procedure:

Suppose the given grammar is G.

This methods consists of two steps. They are:-

Step-1: Find the grammar G' equivalent to G in which all the variables are active.

Step-2: Find the grammar G" equivalent to G' which includes only reachable symbols.

This grammar G" is a reduced grammar equivalent to G.

Example: Find the reduced grammar equivalent to the following grammar

 $S \to AB/CA$

 $\mathsf{B} \to \mathsf{BC}/\mathsf{AB}$

 $\mathsf{A} \to \mathsf{a}$

 $C \rightarrow aB/b$

Example: Reduce the following grammar

 $\mathsf{S} \to \mathsf{a}\mathsf{A}\mathsf{a}$

 $\mathsf{A} \to \mathsf{Sb/bCC/DaA}$

 $\mathsf{C} \to \mathsf{abb}/\mathsf{DD}$

 $\mathsf{E} \to \mathsf{aC}$

 $\mathsf{D} \to \mathsf{a} \mathsf{D} \mathsf{A}$