DINÂMICA DOS CORPOS RÍGIDOS

Medidas de Distribuição de Massa:

Momentos:

Considere um corpo rígido de massa m e volume V, com um referencial $\{A\}$ fixo nele. Seja a função de densidade $\rho = \rho(^AP) = dm(^AP)/dV$, que descreve a quantidade infinitesimal de massa dm que é contida em um volume infinitesimal dV localizado na posição AP do corpo. Para caracterizar quantitativamente, de modo mais simples, a maneira como a massa está distribuída no corpo, definem-se as seguintes medidas de distribuição de massa:

Momento de ordem 0 – massa do corpo:

$$^{A}m^{(0)} = \int_{V} \rho(^{A}P).dV = m$$

Momento de ordem 1 − massa × centro de massa do corpo:

$$^{A}m^{(1)} = \int_{V} ^{A}P.\rho(^{A}P).dV = m.^{A}P_{G}$$

Onde, ^AP_G é a posição do centro de massa do corpo expressa no referencial {A}.

Momento de ordem 2 – tensor de inércia do corpo:

$${}^{A}m^{(2)} = \int_{V} [{}^{A}P \times].[{}^{A}P \times]^{T}.\rho({}^{A}P).dV = \int_{V} [({}^{A}P^{T}.{}^{A}P).I - ({}^{A}P.{}^{A}P^{T})].\rho({}^{A}P).dV = {}^{A}I$$

Onde, a matriz simétrica ^AI, de dimensões 3×3, é o tensor de inércia do corpo expresso no referencial {A}.

Os elementos da diagonal de ^AI são denominados <u>momentos de inércia</u> em torno dos eixos x_A, y_A e z_A, respectivamente:

$${}^{A}I_{xx} = \int_{V} ({}^{A}P_{y}^{2} + {}^{A}P_{z}^{2}).\rho ({}^{A}P).dV$$

$${}^{A}I_{yy} = \int_{V} ({}^{A}P_{z}^{2} + {}^{A}P_{x}^{2}).\rho ({}^{A}P).dV$$

$${}^{A}I_{zz} = \int_{V} ({}^{A}P_{x}^{2} + {}^{A}P_{y}^{2}).\rho ({}^{A}P).dV$$

Os elementos fora da diagonal de ${}^{A}I$, (desconsiderando o sinal negativo), são denominados <u>produtos de inércia</u> em relação aos pares de eixos (x_A, y_A) , (y_A, z_A) , (z_A, x_A) , respectivamente:

$$^{A}I_{xy} = -\int_{V} (^{A}P_{x}.^{A}P_{y}).\rho(^{A}P).dV$$

$$^{A}I_{yz} = -\int_{V} (^{A}P_{y}.^{A}P_{z}).\rho(^{A}P).dV$$

$$^{A}I_{zx} = -\int_{V} (^{A}P_{z}.^{A}P_{y}).\rho(^{A}P).dV$$

Teorema dos eixos paralelos (Teorema de Steiner):

Considere um corpo de massa m, cujo centro de massa está localizado na posição ${}^{U}P_{G}$ relativa a um referencial $\{U\}$. Seja $\{G\}$ um referencial com origem no centro de massa ${}^{U}P_{G}$ do corpo e com a mesma orientação de $\{U\}$, de modo que os eixos de $\{G\}$ são paralelos aos eixos de $\{U\}$. Então, o teorema dos eixos paralelos estabelece que:

$${}^{U}I = {}^{G}I + m.[{}^{U}P_{G} \times].[{}^{U}P_{G} \times]^{T} = {}^{G}I + m.[({}^{U}P_{G}^{T}.{}^{U}P_{G}).I - ({}^{U}P_{G}.{}^{U}P_{G}^{T})]$$

Exemplo: dado o paralelepípedo de densidade ρ constante e dimensões L_x , L_y e L_z , mostrado na figura abaixo, determine a sua massa, a posição do seu centro de massa AP_G em relação a um referencial $\{A\}$ fixo na quina do paralelepípedo e o tensor de inércia expresso em $\{A\}$ e em um referencial $\{G\}$ paralelo a $\{A\}$, com origem em AP_G .

Figura 4.3. Distribuição de massa em um paralelepípedo.

$$\begin{split} \mathbf{m} &= {}^{A}\mathbf{m}^{(0)} = \int_{V} \rho({}^{A}P).dV = \rho.\int_{V} dV = \rho.V = \rho.L_{x}.L_{y}.L_{z} \\ {}^{A}\mathbf{m}^{(1)} &= \int_{V} {}^{A}P.\rho({}^{A}P).dV = \rho.[(L_{y}.L_{z}.L_{x}^{2})/2 \quad (L_{z}.L_{x}.L_{y}^{2})/2 \quad (L_{y}.L_{z}.L_{x}^{2})/2]^{T} \\ \mathbf{Mas}, {}^{A}P_{G} &= {}^{A}\mathbf{m}^{(1)}/\mathbf{m} \quad \Rightarrow \quad {}^{A}P_{G} &= [L_{x}/2 \quad L_{y}/2 \quad L_{z}/2]^{T} \\ {}^{A}\mathbf{I} &= {}^{A}\mathbf{m}^{(2)} &= \int_{V} [{}^{A}P\times].[{}^{A}P\times]^{T}.\rho({}^{A}P).dV = \rho.\int_{V} [{}^{A}P\times].[{}^{A}P\times]^{T}.dV \\ \Rightarrow {}^{A}\mathbf{I} &= \rho \int_{V} \begin{bmatrix} (y^{2}+z^{2}) & -x.y & -x.z \\ -y.x & (z^{2}+x^{2}) & -y.z \\ -z.x & -z.y & (x^{2}+y^{2}) \end{bmatrix} dV \\ \Rightarrow {}^{A}\mathbf{I} &= \mathbf{m}. \begin{bmatrix} (L_{y}^{2}+L_{z}^{2})/3 & -L_{x}.L_{y}/4 & -L_{x}.L_{z}/4 \\ -L_{z}.L_{x}/4 & (L_{z}^{2}+L_{x}^{2})/3 & -L_{y}.L_{z}/4 \\ -L_{z}.L_{x}/4 & -L_{z}.L_{y}/4 & (L_{x}^{2}+L_{y}^{2})/3 \end{bmatrix} \\ {}^{A}\mathbf{I} &= {}^{G}\mathbf{I} + \mathbf{m}.[{}^{A}P_{G}\times].[{}^{A}P_{G}\times]^{T} \Rightarrow \qquad {}^{G}\mathbf{I} &= {}^{A}\mathbf{I} - \mathbf{m}.[{}^{A}P_{G}\times].[{}^{A}P_{G}\times]^{T} \\ \Rightarrow {}^{G}\mathbf{I} &= \mathbf{m}. \begin{bmatrix} (L_{y}^{2}+L_{z}^{2})/12 & 0 & 0 \\ 0 & (L_{z}^{2}+L_{x}^{2})/12 & 0 \\ 0 & 0 & (L_{z}^{2}+L_{y}^{2})/12 \end{bmatrix} \end{split}$$

Dinâmica:

Equações de movimento:

Um corpo rígido movimentando-se livremente no espaço possui seis graus de liberdade de movimento, três de posição e três de orientação. Assim, seis equações independentes são necessárias para descrever o seu movimento. Considere um corpo rígido cuja posição em relação a um referencial inercial $\{U\}$ é descrita pelo vetor UP_G ligando a origem de $\{U\}$ à origem do referencial $\{G\}$ fixo no corpo e com origem no centro de massa do mesmo. Considere um referencial $\{UG\}$ paralelo a $\{U\}$, mas com a mesma origem de $\{G\}$, (ou seja, no centro de massa do corpo), conforme mostra a figura abaixo. Assumindo que o corpo rígido possui um momento linear M_L e um momento angular M_A , então, o corpo é submetido a uma força resultante externa Uf_G e a um conjugado resultante externo em torno de $\{G\}$ Un_G dados pela Segunda Lei do movimento de Newton:

$$^{U}f_{G}=d(M_{L})/dt$$

$$^{U}n_{G} = d(M_{A})/dt$$

Assumindo que a massa do corpo é constante e igual a m, o momento linear é:

$$M_L = m.d(^UP_G)/dt = m.^Uv_G$$

Figura 4.4. Momentos e esforços resultantes em um corpo rígido.

Assim, a força resultante sobre o corpo é dada pela Equação de Newton:

$${}^{U}f_{G} = m.d^{2}({}^{U}P_{G})/dt^{2} = m.d({}^{U}v_{G})/dt = m.{}^{U}v_{G}$$

Considerando que ${}^Uf_G = {}^UR_G. {}^Gf_G$ e Uv_G ' = ${}^UR_G. {}^Gv_G$ ', então, a equação de Newton no referencial $\{G\}$ fixo no corpo é dada por:

$$^{G}f_{G} = m.^{G}v_{G}$$

Considere que o corpo gira com uma velocidade angular ${}^{UG}\omega_G = {}^{U}\omega_G$, conforme mostrado na figura abaixo. Seja dV o volume de uma partícula infinitesimal do mesmo, então, sua massa é dada por $dM = \rho.dV$, onde ρ é a densidade da partícula. Sejam ${}^{U}P$ o vetor de posição da partícula em relação a $\{U\}e$ ${}^{UG}P$ o vetor de posição da partícula em relação a $\{UG\}$, tal que ${}^{U}P = {}^{U}P_G + {}^{UG}P$. A velocidade linear com que a partícula se desloca em relação ao eixo de rotação é dada por $d({}^{UG}P)/dt = {}^{UG}\omega_G \times {}^{UG}P$. Então, o momento angular da partícula infinitesimal é dado por:

$$dM_A = {^{UG}P} \times [(\rho.dV).d({^{UG}P})/dt] = {^{UG}P} \times [(\rho.dV).({^{UG}\omega_G} \times {^{UG}P})]$$

Figura 4.5. Rotação de um corpo rígido.

Assim, o momento angular total do corpo pode ser obtido integrando dM_A ao longo de todo o volume V do mesmo:

$$M_{A} = \int_{V} dM_{A} = \int_{V} {}^{UG}P \times ({}^{UG}\omega_{G} \times {}^{UG}P) \cdot \rho \cdot dV$$

$$\Rightarrow \mathbf{M}_{\mathbf{A}} = \left(\int_{V} [^{\mathrm{UG}} \mathbf{P} \times] [^{\mathrm{UG}} \mathbf{P} \times]^{\mathrm{T}} . \rho . dV \right) .^{\mathrm{UG}} \omega_{\mathbf{G}} = {^{\mathrm{UG}} \mathbf{I}} .^{\mathrm{UG}} \omega_{\mathbf{G}}$$

Assim, o conjugado resultante externo sobre o corpo rígido é dado por:

$$^{U}n_{G} = d(^{UG}I.^{UG}\omega_{G})/dt$$

Como o referencial {UG} é paralelo ao referencial inercial {U}, o tensor de inércia UG I não será constante, variando de acordo com a orientação relativa entre {G} e {UG}. Por outro lado, expressando o momento angular no referencial {G}, temos $M_A = {}^UR_G.{}^GM_A$, ou ${}^GM_A = {}^UR_G{}^T.M_A$. Como ${}^{UG}\omega_G = {}^U\omega_G = {}^UR_G.{}^G\omega_G$, temos:

$${}^{G}M_{A} = {}^{U}R_{G}^{T}.{}^{UG}I.{}^{U}R_{G}.{}^{G}\omega_{G} = {}^{G}I.{}^{G}\omega_{G}$$

onde ${}^{G}I = [{}^{U}R_{G}{}^{T}.{}^{UG}I.{}^{U}R_{G}]$ é o tensor de inércia no referencial $\{G\}$. Expressando ${}^{UG}I$ em função de ${}^{G}I$, temos:

$$^{\mathrm{UG}}\mathbf{I} = [^{\mathrm{U}}\mathbf{R}_{\mathrm{G}}.^{\mathrm{G}}\mathbf{I}.^{\mathrm{U}}\mathbf{R}_{\mathrm{G}}^{\mathrm{T}}]$$

Como o referencial {G} é fixo no corpo, ^GI é um tensor constante. Assim,

$${}^{U}n_{G}=d(M_{A})/dt=d({}^{U}R_{G}.{}^{G}M_{A})/dt={}^{U}R_{G}.d({}^{G}M_{A})/dt+{}^{U}\omega_{G}\times({}^{U}R_{G}.{}^{G}M_{A})$$

$$\Rightarrow {}^{\mathrm{U}}n_{G} = {}^{\mathrm{U}}R_{G}.d({}^{\mathrm{G}}I.{}^{\mathrm{G}}\omega_{G})/dt + ({}^{\mathrm{U}}R_{G}.{}^{\mathrm{G}}\omega_{G}) \times ({}^{\mathrm{U}}R_{G}.{}^{\mathrm{G}}I.{}^{\mathrm{G}}\omega_{G})$$

$$\Rightarrow {}^{U}n_{G} = {}^{U}R_{G}.[{}^{G}I.d({}^{G}\omega_{G})/dt + {}^{G}\omega_{G}\times({}^{G}I.{}^{G}\omega_{G})]$$

Mas, como ${}^{U}n_{G} = {}^{U}R_{G}$. ${}^{G}n_{G}$ e $d({}^{G}\omega_{G})/dt = {}^{G}\omega_{G}$ ', temos:

$$^{G}n_{G} = ^{G}I.^{G}\omega_{G}$$
, $+ ^{G}\omega_{G} \times (^{G}I.^{G}\omega_{G})$

A expressão acima é a Equação de Euler descrita no referencial $\{G\}$. Para representar a Equação de Euler no referencial $\{U\}$, é necessário converter a aceleração angular para este sistema de eixos:

$$d(^{U}\omega_{G})/dt = d(^{U}R_{G}.^{G}\omega_{G})/dt = {^{U}R_{G}.d(^{G}\omega_{G})/dt} + {^{U}\omega_{G}}\times {^{U}\omega_{G}} = {^{U}R_{G}.^{G}\omega_{G}}$$

$$\Rightarrow$$
 $^{U}n_{G} = {^{U}R_{G}} \cdot {^{G}I} \cdot {^{G}\omega_{G}}' + (^{U}\omega_{G}) \times (^{U}R_{G} \cdot {^{G}I} \cdot {^{G}\omega_{G}}) =$

$$\Rightarrow$$
 $^{\mathrm{U}}n_{\mathrm{G}} = {^{\mathrm{U}}R_{\mathrm{G}}}^{\mathrm{G}}I. {^{\mathrm{U}}R_{\mathrm{G}}}^{\mathrm{T}}. {^{\mathrm{U}}\omega_{\mathrm{G}}}' + (^{\mathrm{U}}\omega_{\mathrm{G}}) \times (^{\mathrm{U}}R_{\mathrm{G}}. {^{\mathrm{G}}I}. {^{\mathrm{U}}R_{\mathrm{G}}}^{\mathrm{T}}. {^{\mathrm{U}}\omega_{\mathrm{G}}})$

$$\Rightarrow$$
 $^{U}n_{G} = ^{UG}I.^{U}\omega_{G}$, $+(^{U}\omega_{G})\times(^{UG}I.^{U}\omega_{G})$