Real Analysis

Problem Set 7

August 16, 2021

- 1. Let $U \subseteq \mathbb{R}$ be nonempty and open. Show that $\exists r \in \mathbb{Q}, s \in \mathbb{R} \setminus \mathbb{Q}$ such that $r, s \in U$.
- 2. Let $U \subseteq \mathbb{R}$ be clopen (i.e., both open and closed). Show that U is either \emptyset or \mathbb{R} .
- 3. Prove that every closed set in \mathbb{R} is the intersection of a countable collection of open sets.
- 4. Let $U, V \subseteq \mathbb{R}$. Show that $(U \cap V)^{\sigma} = U^{\sigma} \cap V^{\sigma}$, $(U \cup V)^{\sigma} \supseteq U^{\sigma} \cup V^{\sigma}$ and $(U \cup V)' = U' \cup V'$.
- 5. Show that S' is closed for any $S \subseteq \mathbb{R}$.
- 6. Let $S \subseteq \mathbb{R}$ be a bounded set containing infinitely many points.
 - (a) Show that there must be reals $a, b \in \mathbb{R}$ such that $S \subseteq [a, b]$.
 - (b) Show that we can find an increasing sequence (a_n) and a decreasing sequence (b_n) such that
 - $a \le a_1 \le b_1 \le b$
 - $b_n a_n = \frac{b a}{2^n} \forall n$
 - $[a_n, b_n] \cap S$ is an infinite set $\forall n$.
 - (c) Show that $\sup a_n = \inf b_n$. Call this l.
 - (d) Conclude that S has a limit point. (**Hint**: *l* will be a limit point of S).
- 7. Let $S \subseteq [a, b]$ be a set with no limit point.
 - (a) Let $x \in [a, b]$. Show that \exists an open set $U_x \subseteq \mathbb{R}$ such that $x \in U_x$ and $U_x \cap S \subseteq \{x\}$.
 - (b) Conclude that S is finite. (Hint: Compactness of closed intervals).
- 8. Let $S \subseteq [a, b]$ be an infinite set.
 - (a) Prove that there is a sequence in [a, b], all of whose terms are in S with no repeated terms.
 - (b) Show that the above sequence has a limit point $l \in [a, b]$.
 - (c) Conclude that S has a limit point. (**Hint:** *l* will be a limit point of S).
- 9. $S \subseteq \mathbb{R}$ is a bounded infinite set. Let $T := \{x \in \mathbb{R} : \text{there are infinitely many points in } S \text{ more than } x\}$.
 - (a) Show that $T \neq \emptyset$ and T is bounded above. Let $s := \sup T$. Clearly $s \in \mathbb{R}$.
 - (b) Let $a \in \mathbb{R} \setminus T$. Show that a is an upper bound of T.
 - (c) Show that s is a limit point of S.

- 10. Let $\mathfrak{C}_1, \mathfrak{C}_2, \cdots$ be a decreasing (under containment) sequence of compact sets of \mathbb{R} . Suppose $\bigcap_{n \in \mathbb{N}} \mathfrak{C}_n = \emptyset$.
 - (a) Show that $\mathcal{U} := \{\mathbb{R} \setminus \mathfrak{C}_n : n \in \mathbb{N}\}$ is an open cover of \mathfrak{C}_1 .
 - (b) Show that $\exists K \in \mathbb{N}$ such that $k \ge K \implies \mathfrak{C}_k = \emptyset$.
- 11. For a bounded set $S \subseteq \mathbb{R}$ define

$$\operatorname{diam} S \coloneqq \sup_{x,y \in S} |x - y|.$$

Let $\mathfrak{C}_1, \mathfrak{C}_2, \cdots$ be a decreasing sequence of nonempty compact sets of \mathbb{R} such that $\lim_{n \to 0} (\operatorname{diam} \mathfrak{C}_n) = 0$. Show that $\bigcap_{n \in \mathbb{N}} \mathfrak{C}_n$ is a singleton.

12. Let $\mathfrak{C}_1, \mathfrak{C}_2, \cdots$ be a sequence of closed subsets of compact $\mathfrak{C} \subseteq \mathbb{R}$ such that $\bigcap_{i \in A} \mathfrak{C}_i \neq \emptyset$ for any finite $A \subseteq \mathbb{N}$. Show $\bigcap_{i \in A} \mathfrak{C}_n \neq \emptyset$.

(**Hint:** Use a similar construction as in problem 10).

- 13. For $S \subseteq \mathbb{R}$, show that $\mathbb{R} \setminus (\overline{S}) = (\mathbb{R} \setminus S)^{o}$.
- 14. (Something from sequences and series) Let (a_n) be a sequence of real numbers converging to a. Define a sequence (b_n) by $b_n \coloneqq \frac{\sum_{i=1}^n i \cdot a_i}{n(n+1)}$. Prove that $\lim_{n \to \infty} b_n = \frac{a}{2}$.