Optimization methods Lecture 5: Introduction to numerical optimization methods. Gradient descent

Alexandr Katrutsa

Modern State of Artificial Intelligence Masters Program Moscow Institute of Physics and Technology

Brief reminder of the previous lectures

- How convexity of the problem helps to solve it
- Disciplined convex programming
- CVXPy
- Optimality conditions

Problem statement

$$\min_{\mathbf{x} \in S} f_0(\mathbf{x})$$
 s.t. $f_j(\mathbf{x}) = 0, \ j = 1, \dots, m$
$$g_k(\mathbf{x}) \leq 0, \ k = 1, \dots, p$$
 where $S \subseteq \mathbb{R}^n, \ f_j: S \to \mathbb{R}, \ j = 0, \dots, m,$

► All functions here are at least continuous

 $q_k: S \to \mathbb{R}, \ k = 1, \ldots, p$

 Nonlinear optimization problems are numerically intractable in general case

Reminder of analytical results

First order necessary condition

If x^* is a local minimizer of differentiable function f(x), then

$$f'(\mathbf{x}^*) = 0$$

Reminder of analytical results

First order necessary condition

If \mathbf{x}^* is a local minimizer of differentiable function $f(\mathbf{x})$, then

$$f'(\mathbf{x}^*) = 0$$

Second order necessary condition

If \mathbf{x}^* is a local minimizer of twice differentiable function $f(\mathbf{x})$, then

$$f'(\mathbf{x}^*) = 0$$
 и $f''(\mathbf{x}^*) \succeq 0$

Reminder of analytical results

First order necessary condition

If \mathbf{x}^* is a local minimizer of differentiable function $f(\mathbf{x})$, then

$$f'(\mathbf{x}^*) = 0$$

Second order necessary condition

If \mathbf{x}^* is a local minimizer of twice differentiable function $f(\mathbf{x})$, then

$$f'(\mathbf{x}^*) = 0 \quad \mathbf{u} \quad f''(\mathbf{x}^*) \succeq 0$$

Sufficient condition

Let $f(\mathbf{x})$ be twice differentiable functio, and \mathbf{x}^* satisfies the following conditions

$$f'(\mathbf{x}^*) = 0 \quad f''(\mathbf{x}^*) \succ 0,$$

then \mathbf{x}^* is a local minimizer of $f(\mathbf{x})$

Features of numerical solving

 Exact solution can not be obtained due to machine precision

Features of numerical solving

- Exact solution can not be obtained due to machine precision
- ▶ The stopping criterion is needed

Features of numerical solving

- Exact solution can not be obtained due to machine precision
- The stopping criterion is needed
- Information about the problem

General scheme

- ▶ Initial guess x_0
- ▶ Desired tolerance ε
- Update solution approximation

Questions

1. What stopping criteria are possible?

Questions

- 1. What stopping criteria are possible?
- 2. How the next point is computed?

Stopping criteria

1. Convergence by argument:

$$\|\mathbf{x}_k - \mathbf{x}^*\|_2 < \varepsilon$$

Stopping criteria

1. Convergence by argument:

$$\|\mathbf{x}_k - \mathbf{x}^*\|_2 < \varepsilon$$

2. Convergence by objective:

$$||f_k - f^*||_2 < \varepsilon$$

Stopping criteria

1. Convergence by argument:

$$\|\mathbf{x}_k - \mathbf{x}^*\|_2 < \varepsilon$$

2. Convergence by objective:

$$||f_k - f^*||_2 < \varepsilon$$

3. Necessary condition

$$||f'(\mathbf{x}_k)||_2 < \varepsilon$$

How to update point

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k$$

How to update point

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k$$

Line search

- 1. Find a direction \mathbf{h}_k
- 2. After that compute «optimal» value α_k

How to compare optimization methods?

For fixed class of problems the following ways of comparison are possible

- 1. Complexity
- 2. Convergence speed
- 3. Experiments

1. Sublinear

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Ck^{\alpha},$$

where $\alpha < 0$ and $0 < C < \infty$

1. Sublinear

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Ck^{\alpha},$$

where
$$\alpha < 0$$
 and $0 < C < \infty$

2. Linear (geometric)

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^k,$$

where
$$q \in (0,1)$$
 u $0 < C < \infty$

1. Sublinear

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Ck^{\alpha},$$

where
$$\alpha < 0$$
 and $0 < C < \infty$

2. Linear (geometric)

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^k,$$

where
$$q \in (0,1)$$
 и $0 < C < \infty$

3. Super-linear

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^{k^p},$$

where
$$q \in (0,1)$$
, $0 < C < \infty$ and $p > 1$

1. Sublinear

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Ck^{\alpha},$$

where $\alpha < 0$ and $0 < C < \infty$

2. Linear (geometric)

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^k,$$

where $q \in (0,1)$ u $0 < C < \infty$

3. Super-linear

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^{k^p},$$

where $q \in (0,1)$, $0 < C < \infty$ and p > 1

4. Quadratic

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le C \|\mathbf{x}_k - \mathbf{x}^*\|_2^2$$
, or $\|\mathbf{x}_{k+1} - \mathbf{x}^*\|_2 \le Cq^{2^k}$

where $q \in (0,1)$ and $0 < C < \infty$

Comparison of convergence speed

What profits can give convergence theorems

class of problems for which the method is applicable

- class of problems for which the method is applicable
 - convexity

- class of problems for which the method is applicable
 - convexity
 - smoothness

- class of problems for which the method is applicable
 - convexity
 - smoothness
- qualitative behavior of method

- class of problems for which the method is applicable
 - convexity
 - smoothness
- qualitative behavior of method
 - is initial guess significant for convergence or not

- class of problems for which the method is applicable
 - convexity
 - smoothness
- qualitative behavior of method
 - is initial guess significant for convergence or not
 - what type of convergence can we expect

- class of problems for which the method is applicable
 - convexity
 - smoothness
- qualitative behavior of method
 - is initial guess significant for convergence or not
 - what type of convergence can we expect
- convergence speed estimate

- class of problems for which the method is applicable
 - convexity
 - smoothness
- qualitative behavior of method
 - is initial guess significant for convergence or not
 - what type of convergence can we expect
- convergence speed estimate
 - theoretical estimate without any experiments

- class of problems for which the method is applicable
 - convexity
 - smoothness
- qualitative behavior of method
 - is initial guess significant for convergence or not
 - what type of convergence can we expect
- convergence speed estimate
 - theoretical estimate without any experiments
 - identification of factors that affect convergence

- class of problems for which the method is applicable
 - convexity
 - smoothness
- qualitative behavior of method
 - is initial guess significant for convergence or not
 - what type of convergence can we expect
- convergence speed estimate
 - theoretical estimate without any experiments
 - identification of factors that affect convergence
 - sometimes it is possible to set number of iterations in advance to achieve pre-defined tolerance

What facts convergence theorems do not establish

▶ if method converges, this fact does not signal of any practical gain of using this method

What facts convergence theorems do not establish

- if method converges, this fact does not signal of any practical gain of using this method
- convergence estimate depends on the unknown constants

What facts convergence theorems do not establish

- ▶ if method converges, this fact does not signal of any practical gain of using this method
- convergence estimate depends on the unknown constants
- rounding errors are out of scope

Method order

 \blacktriangleright Zero-order methods: oracle provides only the value of $f(\mathbf{x})$

Method order

- ightharpoonup Zero-order methods: oracle provides only the value of $f(\mathbf{x})$
- First-order methods: oracle provides objective function value $f(\mathbf{x})$ and gradient $f'(\mathbf{x})$

Method order

- ightharpoonup Zero-order methods: oracle provides only the value of $f(\mathbf{x})$
- First-order methods: oracle provides objective function value $f(\mathbf{x})$ and gradient $f'(\mathbf{x})$
- ▶ Second-order method: oracle provides objective function $f(\mathbf{x})$, gradient $f'(\mathbf{x})$ and hessian $f''(\mathbf{x})$.

Method order

- ightharpoonup Zero-order methods: oracle provides only the value of $f(\mathbf{x})$
- First-order methods: oracle provides objective function value $f(\mathbf{x})$ and gradient $f'(\mathbf{x})$
- ▶ Second-order method: oracle provides objective function $f(\mathbf{x})$, gradient $f'(\mathbf{x})$ and hessian $f''(\mathbf{x})$.

Q: do higher-order methods exist?

Method order

- ightharpoonup Zero-order methods: oracle provides only the value of $f(\mathbf{x})$
- First-order methods: oracle provides objective function value $f(\mathbf{x})$ and gradient $f'(\mathbf{x})$
- ▶ Second-order method: oracle provides objective function $f(\mathbf{x})$, gradient $f'(\mathbf{x})$ and hessian $f''(\mathbf{x})$.

Q: do higher-order methods exist?

A: yes, but they are still mostly under development to make them a technology not art. Original paper¹

¹Nesterov Y. Implementable tensor methods in unconstrained convex optimization //Mathematical Programming. – 2019. – P. 1-27.

How can we use previous points?

1. One-step methods

$$\mathbf{x}_{k+1} = \Phi(\mathbf{x}_k)$$

How can we use previous points?

1. One-step methods

$$\mathbf{x}_{k+1} = \Phi(\mathbf{x}_k)$$

2. Multi-step methods

$$\mathbf{x}_{k+1} = \Phi(\mathbf{x}_k, \mathbf{x}_{k-1}, \dots)$$

Main facts from intro

- Why do we need numerical methods
- General scheme
- How can we compare optimization methods
- Zoo of problems and methods

Descent methods

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k$$

such that

$$f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$$

Descent methods

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k$$

such that

$$f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$$

Definition

Direction \mathbf{h}_k is called descent direction

Descent methods

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{h}_k$$

such that

$$f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$$

Definition

Direction \mathbf{h}_k is called *descent direction*

Remark

There exist methods that do not require monotonic decreasing of the objective function but converge faster

Definition

Let L > 0. A function f is called L-smooth if it is differentiable and satisfies

$$||f'(\mathbf{x}) - f'(\mathbf{y})||_2 \le L||\mathbf{x} - \mathbf{y}||_2.$$

Definition

Let L > 0. A function f is called L-smooth if it is differentiable and satisfies

$$||f'(\mathbf{x}) - f'(\mathbf{y})||_2 \le L||\mathbf{x} - \mathbf{y}||_2.$$

▶ L is a Lipschitz constant of gradient

Definition

Let L > 0. A function f is called L-smooth if it is differentiable and satisfies

$$||f'(\mathbf{x}) - f'(\mathbf{y})||_2 \le L||\mathbf{x} - \mathbf{y}||_2.$$

- L is a Lipschitz constant of gradient
- ▶ The minimal possible L > 0 is especially important

Definition

Let L > 0. A function f is called L-smooth if it is differentiable and satisfies

$$||f'(\mathbf{x}) - f'(\mathbf{y})||_2 \le L||\mathbf{x} - \mathbf{y}||_2.$$

- L is a Lipschitz constant of gradient
- ▶ The minimal possible L > 0 is especially important

Descent lemma

Let f be an L-smooth function. Then for any \mathbf{x}, \mathbf{y}

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle f'(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

Gradient descent

Global upper bound for function f at point \mathbf{x}_k :

$$f(\mathbf{y}) \le f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{y} - \mathbf{x}_k \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}_k||_2^2 \equiv g(\mathbf{y}),$$

where $\lambda_{\max}(f''(\mathbf{x})) \leq L$ for all feasible \mathbf{x} .

Gradient descent

Global upper bound for function f at point \mathbf{x}_k :

$$f(\mathbf{y}) \le f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{y} - \mathbf{x}_k \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}_k||_2^2 \equiv g(\mathbf{y}),$$

where $\lambda_{\max}(f''(\mathbf{x})) \leq L$ for all feasible \mathbf{x} .

The right-hand side is a quadratic form such that its minimizer has analytical expression:

$$g'(\mathbf{y}^*) = 0$$

$$f'(\mathbf{x}_k) + L(\mathbf{y}^* - \mathbf{x}_k) = 0$$

$$\mathbf{y}^* = \mathbf{x}_k - \frac{1}{L}f'(\mathbf{x}_k) \equiv \mathbf{x}_{k+1}$$

This approach estimates step size as $\frac{1}{L}$.

Step size selection

- ▶ Constant step size $\alpha_k \equiv \text{const} < \frac{2}{L}$
- ▶ Decreasing sequence such that $\sum_{k=1}^{\infty} \alpha_k = \infty$, e.g.

$$\frac{1}{k}, \frac{1}{\sqrt{k}}$$

- Adaptive step size
- ▶ The steepest descent rule: the search of the best α_k

Important note

The best step size does not provide better theoretical convergence rate

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

▶ Descent condition: $\alpha_k - \frac{L\alpha_k^2}{2} > 0 \Rightarrow \alpha_k < \frac{2}{L}$

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

- ▶ Descent condition: $\alpha_k \frac{L\alpha_k^2}{2} > 0 \Rightarrow \alpha_k < \frac{2}{L}$

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

- ▶ Descent condition: $\alpha_k \frac{L\alpha_k^2}{2} > 0 \Rightarrow \alpha_k < \frac{2}{L}$
- $f(\mathbf{x}_k) f(\mathbf{x}_{k+1}) \ge \frac{1}{2L} ||f'(\mathbf{x}_k)||_2^2$

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

- ▶ Descent condition: $\alpha_k \frac{L\alpha_k^2}{2} > 0 \Rightarrow \alpha_k < \frac{2}{L}$
- $f(\mathbf{x}_k) f(\mathbf{x}_{k+1}) \ge \frac{1}{2L} ||f'(\mathbf{x}_k)||_2^2$
- $\frac{1}{2L} \sum_{k=0}^{T} ||f'(\mathbf{x}_k)||_2^2 \le f(\mathbf{x}_0) f(\mathbf{x}_{T+1}) \le f(\mathbf{x}_0) f^*$

$$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{x}_{k+1} - \mathbf{x}_k \rangle + \frac{L}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2^2 =$$

$$f(\mathbf{x}_k) - \alpha_k \|f'(\mathbf{x}_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(\mathbf{x}_k)\|_2^2 =$$

$$f(\mathbf{x}_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(\mathbf{x}_k)\|_2^2$$

- ▶ Descent condition: $\alpha_k \frac{L\alpha_k^2}{2} > 0 \Rightarrow \alpha_k < \frac{2}{L}$
- $f(\mathbf{x}_k) f(\mathbf{x}_{k+1}) \ge \frac{1}{2L} ||f'(\mathbf{x}_k)||_2^2$
- $\frac{1}{2L} \sum_{k=0}^{T} ||f'(\mathbf{x}_k)||_2^2 \le f(\mathbf{x}_0) f(\mathbf{x}_{T+1}) \le f(\mathbf{x}_0) f^*$
- f is bounded below, $||f'(\mathbf{x}_k)||_2 \to 0, k \to \infty$

Convergence: convex function

Theorem

Let f be convex function with Lipschitz gradient and $\alpha=\frac{1}{L}$, then gradient descent converges like

$$f(\mathbf{x}_{k+1}) - f^* \le \frac{2L\|\mathbf{x} - \mathbf{x}_0\|_2^2}{k+4} = \mathcal{O}(1/k)$$

► As a consequence of strongly convexity

$$f(\mathbf{z}) \ge f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{z} - \mathbf{x}_k \rangle + \frac{\mu}{2} ||\mathbf{z} - \mathbf{x}_k||_2^2$$

As a consequence of strongly convexity

$$f(\mathbf{z}) \ge f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{z} - \mathbf{x}_k \rangle + \frac{\mu}{2} ||\mathbf{z} - \mathbf{x}_k||_2^2$$

Minimize both sides by z

$$f(\mathbf{x}^*) \ge f(\mathbf{x}_k) - \frac{1}{2\mu} \|f'(\mathbf{x}_k)\|_2^2, \quad \|f'(\mathbf{x}_k)\|_2^2 \ge 2\mu (f(\mathbf{x}_k) - f^*)$$

As a consequence of strongly convexity

$$f(\mathbf{z}) \ge f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{z} - \mathbf{x}_k \rangle + \frac{\mu}{2} ||\mathbf{z} - \mathbf{x}_k||_2^2$$

Minimize both sides by z

$$f(\mathbf{x}^*) \ge f(\mathbf{x}_k) - \frac{1}{2\mu} \|f'(\mathbf{x}_k)\|_2^2, \quad \|f'(\mathbf{x}_k)\|_2^2 \ge 2\mu (f(\mathbf{x}_k) - f^*)$$

• Remember that $\alpha_k \equiv \frac{1}{L}$

$$f^* \le f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \frac{1}{2L} ||f'(\mathbf{x}_k)||_2^2$$

As a consequence of strongly convexity

$$f(\mathbf{z}) \ge f(\mathbf{x}_k) + \langle f'(\mathbf{x}_k), \mathbf{z} - \mathbf{x}_k \rangle + \frac{\mu}{2} ||\mathbf{z} - \mathbf{x}_k||_2^2$$

Minimize both sides by z

$$f(\mathbf{x}^*) \ge f(\mathbf{x}_k) - \frac{1}{2\mu} \|f'(\mathbf{x}_k)\|_2^2, \quad \|f'(\mathbf{x}_k)\|_2^2 \ge 2\mu (f(\mathbf{x}_k) - f^*)$$

• Remember that $\alpha_k \equiv \frac{1}{L}$

$$f^* \le f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \frac{1}{2L} ||f'(\mathbf{x}_k)||_2^2$$

And finally get linear convergence

$$f(\mathbf{x}_{k+1}) - f^* \le \left(1 - \frac{1}{\kappa}\right) \left(f(\mathbf{x}_k) - f^*\right)$$

Theorem about strongly convex functions

Theorem

Let f be L-smooth and μ -strongly convex, $\alpha_k=\frac{2}{\mu+L}$, then gradient descent converges like

$$f(\mathbf{x}_k) - f^* \le \frac{L}{2} \left(\frac{L - \mu}{L + \mu} \right)^{2k} \|\mathbf{x}_0 - \mathbf{x}^*\|_2^2$$

What affect the linear convergence?

$$q^* = \frac{L - \mu}{L + \mu} = \frac{L/\mu - 1}{L/\mu + 1} = \frac{\kappa - 1}{\kappa + 1},$$

where κ is an estimate of condition number of $f''(\mathbf{x})$.

What affect the linear convergence?

$$q^* = \frac{L - \mu}{L + \mu} = \frac{L/\mu - 1}{L/\mu + 1} = \frac{\kappa - 1}{\kappa + 1},$$

where κ is an estimate of condition number of $f''(\mathbf{x})$.

▶ If $\kappa \gg 1$, $q^* \to 1 \Rightarrow$, we have very slow convergence. For example, if $\kappa = 100$, then $q^* \approx 0.98$

What affect the linear convergence?

$$q^* = \frac{L - \mu}{L + \mu} = \frac{L/\mu - 1}{L/\mu + 1} = \frac{\kappa - 1}{\kappa + 1},$$

where κ is an estimate of condition number of $f''(\mathbf{x})$.

- ▶ If $\kappa \gg 1$, $q^* \to 1 \Rightarrow$, we have very slow convergence. For example, if $\kappa = 100$, then $q^* \approx 0.98$
- ▶ If $\kappa \simeq 1$, $q^* \to 0 \Rightarrow$ implies acceleration of convergence. For example, if $\kappa = 4$, then $q^* = 0.6$

Can we do better?

What do we know by now?

- Gradient descent converges like $\mathcal{O}(1/k)$ for convex L-smooth functions
- ▶ Gradient descent converges linearly with factor $q = \frac{\kappa 1}{\kappa + 1}$ for strongly convex L-smooth functions

Q: do methods with faster convergence exist and how can we derive them?

Take home message

- General scheme of numerical optimization methods
- Convergence speed
- Gradient descent
- Properties and convergence theorems