

Cloud Infrastructure from an Attackers Perspective

Kat Traxler | Principal Security Researcher – Public Cloud ktraxler@vectra.ai

November 2023

About Me

kattraxler.github.io. // @NightmareJs

- ▼ Researching the tactics, techniques and procedures of threat actors in the cloud
- ▼ Passionate about communicating the unique risks of the cloud
- ▼ In my past lives I've worked in:
 - Cloud Security Engineering
 - Application Security Penetration Testing
 - Secure Code Review
 - Cloud Security Architecture
 - App Development
 - Security Training and Course Development

What Makes the Cloud Uniquely Challenging?

In the cloud, the playing field is scrambled?

- ▼ Shared Responsibility Model
- ▼ Lack of Physical Control
- ▼ Multiple (and new) Attack Vectors
- ▼ Multi-Tenancy

Agenda

- ▼ Traditional Tech Stack
 - Threat Model, Attack Progression,
 Defender Visibility
- ▼ Cloud Control-Plane Architecture
 - Threat Model, Attack Progression,
 Defender Visibility
- ▼ Cloud-Native Attacks
 - Exfiltration over the backbone
- ▼ Detection Strategies for Cloud-Native Attacks

Traditional Tech Stack - Threat Model

External access is
well guarded Creating a thick,
outer shell defended
by network and web
application firewalls

Traditional Tech Stack - Attack Progression

Attacker techniques are dictated by the characteristics of the tech stack

Cloud Architecture, Threat Model and Attacker Techniques

How do attackers work within the layers of abstraction in the cloud

Cloud Control-Plane Architecture

Value Proposition of the Cloud

Cloud Architecture - Threat Model

Cloud Architecture – **Attack Progression**

Cloud-Native Attack Techniques

Data exfiltration leveraging cloud architecture

CSP Backbone Network

Only identity-layer controls are available to restrict data movement between cloud-native storage repositories

Backbone networks connect managed services like S3 buckets and enable the cloud control plane

Data Exfiltration Over the Backbone

Data
movement
between
managed
services
occurs over
the
providers'
network

Cloud Defenders Visibility

Network Layer Logs?

Host Layer Logs?

Host Logs ?

Cloud-Plane Logs?

Cloud Control-Plane Logs Tell the Tale

Cloud-Plane Visibility into Attack Techniques

Data Exfiltration From S3 Bucket to S3 Bucket

VPC Flow Logs

IAM Permissions

```
"Action": [
   "s3:PutObject",
   "s3:GetObject",
   "s3:CopyObject"]
```

Cloud Trail

- Captured as a Data-Plane Event
- { eventSource":"s3.amazo
 naws.com", "eventName":"
 CopyObject", "awsRegion"
 :"us-east
 1", "sourceIPAddress":"7
 5.72.14.230", "userAgent
 ":"[aws-cli/2.2.43
 Python/3.8.8
 Darwin/20.5.0
 exe/x86_64 prompt/off
 command/s3.sync]"}
- Both Src and Dest Buckets Logged

Debrief

- ▼ Adversaries leverage cloud-native services just like normal cloud customers
- ▼ They leave their footprints across the cloud control plane
- ▼ Distinguishing between benign activity and a malicious actor is what we specialize in at Vectra

