

Decoder

Encoder

Multiplexer

Demultiplexer

7.1.1 Decoder Structure

Figure 7.1 n-to-2ⁿ decoder.

Table 7.1 Truth table for a 3-to-8 decoder.

$\mathbf{x}_2 \mathbf{x}_1 \mathbf{x}_0$	D_0	D_1	D_2	D_3	D_4	D_5	D_{ϵ}	5 D ₇
0 0 0	1	0	0	0	0	0	0	0
0 0 1	0	1	0	0	0	0	0	0
0 1 0	0	0	1	0	0	0	0	0
0 1 1	0	0	0	1	0	0	0	0
1 0 0	0	0	0	0	1	0	0	0
1 0 1	0	0	0	0	0	1	0	0
1 1 0	0	0	0	0	0	0	1	0
1 1 1	0	0	0	0	0	0	0	1

7.1.2 Decoders with Active-Low Outputs

Table 7.2 Truth table for a 3-to-8 decoder

Figure 7.2 n-to-2ⁿ decoder with active-low outputs.

$$D_i = M_i$$

7.1.3 Decoders with Enable Control

$$D_0 = EN (x_1' x_0')$$

 $D_1 = EN (x_1' x_0)$
 $D_2 = EN (x_1 x_0')$
 $D_3 = EN (x_1 x_0)$

Figure 7.3 2-to-4 decoder with enable control.

Table 7.3 Truth table for Figure 7.7.

$EN x_1 x_0$	$D_0 D_1 D_2 D_3$
0 d d	0 0 0 0
1 0 0	1 0 0 0 0 1 0 0 0 0 1 0
1 0 1	0 1 0 0
1 1 0	0 0 1 0
1 1 1	0 0 0 1

Figure 7.4 Realization of 3-to-8 decoder by 2-to-4 decoders.

Figure 7.4 Realization of 3-to-8 decoder by 2-to-4 decoders.

7.1.5 Implementation of Functions Using Decoders

$$F(A, B, C) = \Sigma m(0, 3, 5)$$

Figure 7.6 Function realization using decoder and OR gate.

 $F(A, B, C) = \Sigma m(0, 3, 5)$

 $F'(A,B,C) = \pi M(0,3,5) = \Sigma m(1,2,4,6,7)$

Figure 7.7 Function realization using decoder and OR gate.

Figure 7.8 Function realization using decoder with inverted output and AND gate.

 $F = \Sigma m(0, 3, 5) = \pi M(1, 2, 4, 6, 7)$

Figure 7.9 Function realization using decoder with inverted output and NAND gate.

7.2.1 Encoder Structure

Figure 7.10 4-to-2 encoder.

Table 7.4 Truth table for a 4-to-2 encoder.

D_3	D_2	$\mathbf{x}_1 \mathbf{x}_0$		
1	0	0	0	1 1
0	1	0	0	1 0
0	0	1	0	0 1
0	0	0	1	0 0

$$x_1 = \Sigma m(4, 8) + d(0, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15) = D_3 + D_2$$

$$x_0 = \Sigma m(2, 8) + d(0, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15) = D_3 + D_1$$

Figure 7.11 4-to-3 encoder.

Table 7.5 Truth table for a 4-to-3 encoder.

$D_3 D_2 D_1 D_0$	$X_2 X_1 X_0$
1 0 0 0	1 1 1
0 1 0 0	1 1 0
0 0 1 0	1 0 1
0 0 0 1	1 0 0
All other input states	0 0 0

$$x_2 = \Sigma m(1, 2, 4, 8)$$

= $D_3'D_2'D_1'D_0 + D_3'D_2'D_1D_0' + D_3'D_2D_1'D_0' + D_3D_2'D_1'D_0'$

$$x_1 = \Sigma m(4, 8) = D_3'D_2D_1'D_0' + D_3D_2'D_1'D_0'$$

$$x_0 = \Sigma m(2, 8) = D_3'D_2'D_1D_0' + D_3D_2'D_1'D_0'$$

7.2.2 Priority Encoders

Figure 7.12 4-to-2 priority encoder.

Table 7.6 Truth table for a 4-to-2 priority encoder.

D_3	$D_3 D_2 D_1 D_0$					G
0		0	0	0	0	0
0	0	0	1	0	0	
0		1		0	1	1
0	1	d	d	1	0	1
1	d	d	d	1	1	1

$$x_1 = \Sigma m(4 - 7, 8 - 15) = D_3 + D_2'$$

 $x_0 = \Sigma m(2, 3, 8 - 15) = D_3 + D_2'D_1$
 $G = \Sigma m(1-15) = M_0 = D_3 + D_2 + D_1 + D_0$

7.3 Multiplexers

7.3.1 Multiplexer Structure

Figure 7.13 Logic diagram of a 2ⁿ-to-1 multiplexer.

n-to-2ⁿ decoder D_0 0 D_1 n-1 x_{n-1} n-2 D_2 x_{n-2} \mathbf{x}_2 \mathbf{x}_1 $-D_{2}^{n}$ $-D_{2}^{n}$ $-D_{2}^{n}$ 0 2^n -2 \mathbf{x}_0 2^n-1

Figure 7.1 n-to-2ⁿ decoder.

Table 7.7 Truth table for a 4-to-1 multiplexer.

A B	Y
0 0	I_0
0 1	I_1
1 0	I_2
1 1	I_3

Figure 7.14 Logic diagram for a 4-to-1 multiplexer.

$$Y = A'B'I_0 + A'BI_1 + A'BI_2 + ABI_3$$

$$Y = m_0 I_0 + m_1 I_1 + m_2 I_2 + m_3 I_3 = \sum_{i=0}^{3} m_i I_i$$

The above equation can be generalized to a 2ⁿ-to-1 multiplexer.

$$Y = \sum_{i=0}^{2^n-1} m_i I_i$$

Table 7.7 Truth table for a 4-to-1 multiplexer.

A	В	Y
0	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

Figure 7.14 Logic diagram for a 4-to-1 multiplexer.

$$Y = A'B'I_0 + A'BI_1 + A'BI_2 + ABI_3$$

$$Y = m_0 I_0 + m_1 I_1 + m_2 I_2 + m_3 I_3 = \sum_{i=0}^{3} m_i I_i$$

The above equation can be generalized to a 2ⁿ-to-1 multiplexer.

$$Y = \sum_{i=0}^{2^{n}-1} m_{i} I_{i}$$

7.3.2 Design of Multiplexers

Figure 7.15 Design of a 4-to-1 multiplexer using a 2-to-4 decoder.

Figure 7.16 Logic diagram of a tri-state buffer.

EN = 1 X = YEN = 0 High Z

Figure 7.17 Design of a multiplxer using a decoder and four tri-state buffers.

7.3.3 Multiplexers with Enable Control

Similar to decoders, multiplexers may be enabled or disabled. When the enable signal is asserted, a multiplexer is activated. One of the data inputs is routed to the output. When the enable signal is de-asserted, a multiplexer is disabled. The output is de-asserted and has a value of 0 for active-high output, or a value of 1 for active-low output. The standard expression for a 2ⁿ-to-1 multiplexers can be modified as follows. EN is the enable input.

$$Y = EN \left(\sum_{i=0}^{2^{n}-1} m_{i} I_{i} \right)$$

For an active-low enable input /EN,

$$Y = (/EN)' \quad (\sum_{i=0}^{2^{n}-1} m_{i} I_{i})$$

7.3.5 Implementation of Functions Using Multiplexers

Table 7.8 Combined table for F(A,B,C) and an 8-to-1 multiplexer.

A	В	C	Y	F(A,B,C)
0	0	0	I_0	0
0	0	1	I_1	0
0	1	0	I_2	1
0	1	1	I_3	1
1	0	0	I_4	1
1	0	1	I_5	0
1	1	0	I_6	0
1	1	1	I_7	1

Figure 7.20 Implementation of a 3-variable function by an 8-to-1 multiplexer.

Implementation of F(A,B,C) by a 4-to-1 multiplexer

3-variable function F(A,B,C) is expanded with A and B

$$F = A'B'F_{AB=00} + A'BF_{AB=01} + AB'F_{AB=10} + ABF_{AB=11}$$
(7.2)

Implementation of F(A,B,C) by a 4-to-1 multiplexer

4-to-1 multiplexer output $Y = A'B'(I_0) + A'B(I_1) + AB'(I_2) + AB(I_3)$ (7.1)

3-variable function F(A,B,C) is expanded with A and B

$$F = A'B'F_{AB=00} + A'BF_{AB=01} + AB'F_{AB=10} + ABF_{AB=11}$$
(7.2)

Compare Equations (7.1) and (7.2)

$$F = Y \qquad \qquad \text{if} \qquad \qquad I_0 = F_{AB=00}, I_1 = F_{AB=01}, \\ I_2 = F_{AB=10}, \qquad \qquad I_3 = F_{AB=11}$$

$F(A,B,C) = \Sigma m(2, 3, 4, 7) = A'B + BC + AB'C'$

$$I_0 = F_{AB=00} = 0$$

$$I_1 = F_{AB=01} = 1$$

$$I_2 = F_{AB=10} = C'$$

$$I_3 = F_{AB=11} = C$$

Figure 7.21 Realization of a 3-variable function by a 4-to-1 multiplexer.

\$ Example 7.1

A 4 variable function is implemented by an 8-to-1 multiplexer in this example. The minterm list form of the function is

$$F(A,B,C,D) = \sum m(0, 2, 3, 5, 7, 10, 14, 15)$$

$$I_0 = B' \qquad I_1 = B \qquad I_2 = B' \qquad I_3 = 1$$

$$I_4 = 0 \qquad I_5 = 0 \qquad I_6 = 1 \qquad I_7 = B$$

Figure 7.22 Sub-function K-maps as data inputs in the implementation of a 4variable function by an 8to-1 multiplexer.

Example 7.2

Implementation of a 4-variable function F using a 4-to-1 multiplexer.

 $F(A, B, C, D) = \Sigma m(0, 1, 3, 5, 8, 11, 14, 15) + d(9, 10, 13)$

$I_0 = C' + D \qquad I_1 = C'D$ Control inputs A, B Control inputs C, D \mathbf{I}_1 I_3 I_2 $F_{AB\,=\,00}\quad F_{AB\,=\,01}\quad F_{AB\,=\,11}\quad F_{AB\,=\,10}$ CD 1 8

0

0

0

6

0

0

d

12

13

15

14

d

1

d

11

10

00

01

11

10

 $I_3 = C$

Figure 7.23 Sub-function K-maps as data inputs in the implementation of a 4-variable function by a 4-to-1 multiplexer.

 $I_2 = 1$

Control inputs B, C $I_1 = D$ $I_0 = 1$ $I_3 = A$ $I_2 = D$ $I_0 = B'C' \qquad \qquad I_1 = B' + C'$ Control inputs A, D $I_2 = B' + C$ $I_3 = 1$ BC \mathbf{I}_1 I_0 I_3 I_2 00 01 11 10 $F_{BC\,=\,00}\quad F_{BC\,=\,01}\quad F_{BC\,=\,11}\quad F_{BC\,=\,10}$ AD 0_{2} $I_0 F_{AD = 00}$ 1 0 0 0 6 0_4 00 0 $I_1 \quad F_{AD=01}$ 0 01 0 5 $I_3 F_{AD=11}$ d_{9} d 11 d d 11 13 11 15 I_2 $F_{AD=10}$ 10 0 d 1 0 d 10 12 8 10 14 12

Figure 7.23 Sub-function K-maps as data inputs in the implementation of a 4-variable function by a 4-to-1 multiplexer.

Control inputs A, C

$$I_0 = B' + D$$
 $I_1 = B'D$
 $I_2 = B'$ $I_3 = 1$

Control inputs B, D

$$I_0 = C'$$
 $I_1 = 1$
 $I_2 = AC$ $I_3 = A + C'$

Figure 7.23 Sub-function K-maps as data inputs in the implementation of a 4-variable function by a 4-to-1 multiplexer.

$$I_0 = C' + D$$
 $I_1 = C'D$

$$I_1 = C'D$$

$$I_2 = 1$$

$$I_2 = 1$$
 $I_3 = C$

Control inputs C, D

$$I_0 = B'$$
 $I_1 = 1$

$$I_1 = 1$$

$$I_2 = A$$

$$I_3 = A + B'$$

Control inputs B, C

$$I_0 = 1$$

$$I_0 = 1$$
 $I_1 = D$

$$I_2 = D$$

$$I_2 = D$$
 $I_3 = A$

Control inputs A, D

$$I_0 = B'C$$

$$I_0 = B'C' \qquad \qquad I_1 = B' + C'$$

$$I_2 = B' + C$$
 $I_3 = 1$

$$I_3 = 1$$

Control inputs A, C

$$I_0 = B' + D$$
 $I_1 = B'D$

$$I_1 = B'D$$

$$I_2 = B'$$
 $I_3 = 1$

$$I_3 = 1$$

Control inputs B, D

$$I_0 = C'$$
 $I_1 = 1$

$$I_1 = 1$$

$$I_2 = AC$$

$$I_2 = AC$$
 $I_3 = A + C'$

7.4 Demultiplexer

Figure 7.24 Example of a de-multiplexer.

2-to-4 decoder with enable EN (Section 7.1.4)

Demultiplexer

$$D_0 = EN(x_1, x_0)$$
 $D_1 = EN(x_1, x_0)$

$$Y_0 = I(x_1, x_0)$$

$$D_2 = EN(x_1 x_0')$$

$$Y_1 = I(x_1, x_0)$$

$$D_3 = EN(x_1 x_0)$$

$$Y_2 = I(x_1 x_0')$$

$$\mathbf{Y}_3 = \mathbf{I} (\mathbf{x}_1 \mathbf{x}_0)$$

EN input of decoder as data input for demultiplexer

Demultiplexer with Enable

$$Y_0 = I \bullet EN \bullet (x_1, x_0)$$

$$Y_1 = I \bullet EN \bullet (x_1, x_0)$$

$$Y_2 = I \bullet EN \bullet (x_1 x_0')$$

$$Y_3 = I \bullet EN \bullet (x_1 x_0)$$

Figure 7.25 A de-multiplexer with enable input.

Demultiplexer with Enable

Data input: I

Control signals: x_1, x_2 Enable (Strobe): EN Outputs: Y_0, Y_1, Y_2, Y_3

Decoder with Enable

Inputs: x_1, x_2

Enable (strobe): EN, I Outputs: Y₀, Y₁, Y₂, Y₃

74155 Dual 2-to-4 Decoders/Demultiplexers

 $EN (active-high) \rightarrow G (active-low)$

I (active-high) \rightarrow C (active-low in 1), C (active-high in 2)

 $x_1, x_2 \rightarrow B$, A respectively

Active-high outputs \rightarrow Active-low outputs

Conversion of 74155 to 3-to-8 Decoder

74153 Dual 4-to-1 Multiplexer

Active-low strobe G. Active-high output.

Conversion of 74153 to 8-to-1 Multiplexer

