

Music Emotion Predictions Using Back Propagation Neural Network and ABC Algorithm

PRESENTATION BY:
XINYU CHANG, XIANGYU ZHANG, YULU RAN, HAORUO ZHANG

Introduction

- Our projects examines using Neural Networks to interpret emotions in music.
- Improve music recommendations based on listeners' moods
- Explore the therapeutic potential of music.

Procedure

- Sample a collection of music
- Divide songs and pick slices
- Feature extraction
- Artificial bee colony (ABC) algorithm + Back propagation

Data

 900 music samples with each sample 30 seconds long, randomly selected from the whole music.

Music Emotion Recognition Process

- Input: the features of each music sample after feature extraction
- Output: the 4 quadrants of the Russell's Valence-Arousal Emotion Model

Dataset (1)

panda_dataset_taffic_annotations.csv (900 rows, 2 columns)
 Music ID with their Quadrants (We will consider those as our labels).

25	
Song	Quadrant
MT0000004637	Q3
MT0000011357	Q2
MT0000011975	Q2
MT0000040632	Q1
MT0000044741	Q3
MT0000054705	Q4
MT0000082187	Q1
MT0000088320	Q3
MT0000092267	Q4

Dataset (2)

panda_dataset_taffic_metadata.csv (900 rows, 14 columns)

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N
1	Song	Artist	Title	Quadrant	PQuad	Moods Total	Moods	Moods FoundS tr	MoodsStr	MoodsStr Split	Genres	GenresStr	Sample	SampleURL
2	MT0000004637	Charlie Poole	Bulldog Down in Sunny Tennessee	Q3	0.66666667	3	3	All and Arthropic Architecture	Circular; Greasy; Messy	Circular; Greasy; Messy	2	Country; International	1	http://rovimusi c.rovicorp.com/ playback.mp3? c=loVS25PIM05.
3	MT0000011357	Disme mber	Reborn in Blasphemy	Q2	0.66666667	3	3	jittery; negativ e;	Negative; Nervous/J ittery	Negative; Nervous; Jittery	3	Electronic; International; Pop/Rock	1	http://rovimusi c.rovicorp.com/ playback.mp3?

Featurization of music

Turn audio clips into trainable vectors: Librosa package

Featurization of music

Alternative feature extraction package: musif, openSMILE

In this work, we introduce musif, a Python package that facilitates the automatic extraction of features from symbolic music scores. The package includes the implementation of a large number of features, which have been developed by a team of experts in musicology, music theory, statistics, and computer science. 2023年7月3日

musif: a Python package for symbolic music feature extraction

release v3.0.2 release date october 2023 downloads 14k docs 3.0

openSMILE (open-source Speech and Music Interpretation by Large-space Extraction) is a complete and opensource toolkit for audio analysis, processing and classification especially targeted at speech and music applications, e.g. automatic speech recognition, speaker identification, emotion recognition, or beat tracking and chord detection.

It is written purely in C++, has a fast, efficient, and flexible architecture, and runs on desktop, mobile, and embedded platforms such as Linux, Windows, macOS, Android, iOS and Raspberry Pi.

See also the standalone opensmile Python package for an easy-to-use wrapper if you are working in Python.

Model

- Back Propagation Neural Network(BP NN) + Artificial Bee Colony(ABC)
- The introduce of ABC can improve the global search ability of BP

Future Work

- Employ Librosa to convert audio clips into feature vectors.
- Construct a model combining Back Propagation Neural Networks (BP NN) with the Artificial Bee Colony (ABC) algorithm
- Assess the necessity of hyperparameter tuning to enhance our model's predictive accuracy.
- Select a test set of 100 audio clips at random from a collection of 900 samples for evaluation.

[1] Yang, J. (2021) 'A novel music emotion recognition model using neural network technology', *Frontiers in Psychology*, 12. doi:10.3389/fpsyg.2021.760060.
[2] Panda, R., Malheiro, R. and Paiva, R.P. (2020) 'Novel audio features for Music Emotion Recognition', *IEEE Transactions on Affective Computing*, 11(4), pp. 614–626. doi:10.1109/taffc.2018.2820691.

