MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Designers Data Sheet

SWITCHMODE SERIES NPN SILICON POWER TRANSISTOR

The 2N6545 transistor is designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. It is particularly suited for 115 and 220 volt line operated switch-mode applications such as:

- Switching Regulators
- PWM Inverters and Motor Controls
- · Solenoid and Relay Drivers
- Deflection Circuits

Specification Features -

High Temperature Performance Specified for: Reversed Biased SOA with Inductive Loads Switching Times with Inductive Loads Saturation Voltages

Leakage Currents

*MAXIMUM RATINGS

Rating	Symbol	2N6545	Unit
Collector-Emitter Voltage	VCEO(sus)	400	Vdc
Collector-Emitter Voltage	VCEX(sus)	450	Vdc
Collector-Emitter Voltage	VCEV	850	Vdc
Emitter Base Voltage	VEB	9.0	Vdc
Collector Current — Continuous — Peak (1)	I _C	8.0 16	Adc
Base Current — Continuous — Peak (1)	I _B	8.0 16	Adc
Emitter Current — Continuous — Peak (1)	lEW	16 32	Adc
Total Power Dissipation @ $T_C = 25^{\circ}C$ @ $T_C = 100^{\circ}C$ Derate above $25^{\circ}C$	PD	125 71.5 0.714	Watts W/ ^O C
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R_{θ} JC	1.4	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	ΤL	275	°C

*Indicates JEDEC Registered Data

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.

8 AMPERE NPN SILICON POWER TRANSISTOR

400 VOLTS 125 WATTS

Designer's Data for "Worst Case" Conditions

The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit data - representing device characteristics boundaries are given to facilitate "worst case" design.

- 1. DIMENSIONS Q AND V ARE DATUMS.
- To Its Seating Plane and Datum.
 Positional Tolerance for Mounting Hole Q:
- ♦ \$.13 (0.005) ⊙ T V ⊙
- FOR LEADS: ♦ 13 (0.005) ⊗ T V ⊗ Q ⊗
- DIMENSIONS AND TOLERANCES PER ANSI Y14.5, 1973.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	-	39.37	-	1.550	
В	-	21.08	-	0.830	
C	6.35	7.62	0.250	0.300	
D	0.97	1.09	0.038	0.043	
Ε	1.40	1.78	0.055	0.070	
F	30,15 BSC		1.187 BSC		
G	10.92 BSC		0.430 BSC		
Н	5.46 BSC		0.215 BSC		
J	16.89 BSC		0.665 BSC		
K	11.18	12.19	0.440	0.480	
a	3.81	4.19	0.150	0.165	
R	-	26.67		1.050	
U	4.83	5.33	0.190	0.210	
٧	3.81	4.19	0.150	0.165	

CASE 1-05 TO-204AA *ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

	Characteristic	Symbol	Min	Max	Unit
OFF CHARACTE	RISTICS (1)				-
Collector-Emitter S	Sustaining Voltage	VCEO (sus)		T.	Vdc
(I _C = 100 mA,	1 _B = 0) 2N6545	020 (303)	400	_	
Collector-Emitter S	Sustaining Voltage	VCEX(sus)			Vdc
(I _C = 4.5 A, V _c	lamp = Rated V _{CEX} , T _C = 100°C)		450	- '	
(I _C = 8.0 A, V _c T _C = 100	elamp = Rated V _{CEO} -100 V,		300	_	
Collector Cutoff C	urrent	CEV		<u> </u>	mAdc
(VCEV = Rated	d Value, VBE (off) = 1.5 Vdc)		-	0.5	ľ
(VCEV = Rated	d Value, V _{BE (off)} = 1.5 Vdc, T _C = 100 ^o C)		_	2.5	
Collector Cutoff C	urrent	ICER	_	3.0	mAdc
(V _{CE} = Rated '	V_{CEV} , $R_{BE} = 50 \Omega$, $T_{C} = 100^{\circ}C$	-CEN			
Emitter Cutoff Cu	rrent	1EBO	_	1.0	mAdc
(VEB = 9.0 Vd	c, IC = 0)				
SECOND BREAK	DOWN				
Second Breakdown	n Collector Current with base forward biased	I _{S/b}	0.2	_	Adc
t = 1.0 s (non-re	epetitive) (V _{CE} = 100 Vdc)				
ON CHARACTER	RISTICS (1)	•			
DC Current Gain		hFE			_
(I _C = 2.5 Adc,	V _{CE} = 3.0 Vdc)		12	60	1
(I _C = 5.0 Adc,	V _{CE} = 3.0 Vdc)		7.0	35	
Collector-Emitter	Saturation Voltage	V _{CE} (sat)			Vdc
(I _C = 5.0 Adc,		-	-	1.5	1
(I _C = 8.0 Adc,		-	-	5.0	1
	I _B = 1.0 Adc, T _C = 100 ^o C)	<u> </u>		2.5	
Base-Emitter Satur		VBE(sat)		1 :-	Vdc
(1 _C = 5.0 Adc,			_	1.6	1
(IC = 5.0 Adc,	I _B = 1.0 Adc, T _C = 100 ^o C)			1.6	l
DYNAMIC CHAR				·	·
Current-Gain - Ba		fτ	6.0	28	MHz
	dc, V _{CE} = 10 Vdc, f _{test} = 1.0 MHz)				<u> </u>
Output Capacitano		Cob	75	300	pF
	c, IE = 0, f _{test} = 1.0 MHz)			<u></u>	<u> </u>
SWITCHING CHA	RACTERISTICS				
Resistive Load				i	
Delay Time	(V _{CC} = 250 Vdc, I _C = 5.0 A,	^t d		0.05	μs
Rise Time	$I_{B1} = I_{B2} = 1.0 \text{ A}, t_p = 100 \ \mu \text{s},$	t _r	_	1.0	μs
Storage Time	Duty Cycle ≤ 2.0%)	t _S		4.0	μς
Fall Time	<u>and the second </u>	tf	I	1.0	μς
Inductive Load, C				·	<u> </u>
Storage Time	(IC = 5.0 A(pk), V _{clamp} = Rated VCEX,	ts	· -	4.0	μς
Fall Time	I _{B1} = 1.0 A, V _{BE(off)} = 5.0 Vdc, T _C = 100°C)	tę		0.9	μς
			Ty	/pical	
Storage Time	(IC = 5.0 A(pk), V _{clamp} = Rated V _{CEX} ,	t _s	1.2 μς		μς
Fall Time	$I_{B1} = 1.0 \text{ A}, V_{BE(off)} = 5.0 \text{ Vdc}, T_{C} = 25^{\circ}\text{C}$	tf		0.18	μς

^{*}Indicates JEDEC Registered Data.

⁽¹⁾ Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤ 2%.

3

DC CHARACTERISTICS

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 7 is based on $T_C = 25^{o}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25^{o}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 7 may be found at any case temperature by using the appropriate curve on Figure 91.

TJ(pk) may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. The reverse biased safe operating area (Figure 8) is the boundary the load line may traverse during turn-off.

