Name:	 	
CSCI S-89c Deep Reinforcement Learning		
Part I of Assignment 3		

Please consider a Markov Decision Process with $S = \{s^L, s^R\}$.

Given a particular state $s \in \mathcal{S}$, the agent is allowed to either stay there or try switching to another state. The change of the state, given the agent's intention is to switch, however, happens in 70% of cases only - the states are "sticky." Let's denote an intention to stay by 0 and an attempt to change the state by 1, i.e. $\mathcal{A}(s^L) = \{0, 1\}$ and $\mathcal{A}(s^R) = \{0, 1\}$. Further, assume that the agent receives reward c_1 on the entrance to s^L and reward c_2 on the entrance to s^R .

- (a) Please write down the transition probabilities p(s', r|s, a). You need to explicitly specify all possible cases.
- (b) Assuming policy $\pi(a|s)$ is to always take action 1 (i.e. try to switch states), find $v_{\pi}(s^L)$ and $v_{\pi}(s^R)$.

Hint: Write down the Bellman equation for $v_{\pi}(s)$ and solve it.

SOLUTION: