Named Entity Disambiguation Boosted With Knowledge Graph

Brian Lin
Shane Ong
Cory Williams
Yun Bin (Matteo) Zhang

Overview

Knowledge Base:

- Jaguar Cars (car)
- Jaguar Land Rover (company)
- Jaguar (animal)

I want to drive my **Jaguar** around the city.

Overview

Knowledge Base:

- Jaguar Cars (car)
- Jaguar Land Rover (company)
- Jaguar (animal)

I want to drive my **Jaguar** around the city.

Overview

... I want to drive my <mark>Jaguar</mark> around the city. ... It is so much better than my previous Toyota Prius

C

Data

- Moving from 5000 to 385000 Wikipedia article introductions (~1% of articles)
- Computational constraints to further expand
- Currently training on actual Wikipedia article hyperlinks rather than NER identified entities
 - Focuses on NED rather than NER and Candidate Selection
 - Test metrics are not 'contaminated' by previous stages
 - Final pipeline will include generic NER and Candidate Selection components

Model 1

Model 1 Example

Jaguar

Model 1 Architecture

Layer (type)	Output	Shape	Param #	Connected to
input_3 (InputLayer)	(None,	20)	0	
embedding_1 (Embedding)	(None,	20, 100)	44588100	input_3[0][0]
lstm_1 (LSTM)	(None,	128)	117248	embedding_1[0][0]
input_4 (InputLayer)	(None,	250)	0	
concatenate_1 (Concatenate)	(None,	378)	0	lstm_1[0][0] input_4[0][0]
dense_1 (Dense)	(None,	256)	97024	concatenate_1[0][0]
dropout_1 (Dropout)	(None,	256)	0	dense_1[0][0]
dense_2 (Dense)	(None,	1)	257	dropout_1[0][0]

Model 1 Results

Training Set: 9363481 rows, Test Set: 2337813

o 20.11% positive, 79.89% negative labels

Window size: 20

Test Accuracy: 0.8662

Model 1 Candidate List Results

I want to drive my Jaguar around the city.

From candidate selection:

Candidate List = [Jaguar (animal), Jaguar (car), Jaguar (novel)]

- NED: Select the the highest predicted probability:
 - Jaguar (animal): 0.9
 - Jaguar (car): 0.6
 - Jaguar (novel): 0.2
- Test set accuracy: 0.7497

Without word embeddings

- Without word embeddings
- Test accuracy (individual): 0.8503
- Test accuracy (candidate list): 0.6894

- Without knowledge graph embeddings
- Test accuracy (individual): 0.7995
- Test accuracy (candidate list): 0.3559

Model 1 Abstaining By Threshold

- Candidate list with missing candidates
- Add the option of abstaining when max probability below threshold
- Without abstaining (candidate list):
 - Test accuracy: 0.75
 - o Test recall: 0.75
- Abstaining at threshold = 0.25
 - Test accuracy: 0.77
 - Test recall: 0.65
 - Abstaining rate: 16.18%

Model 2

Model 2 - Embedding

...I want to drive my Jaguar around the city...

to	drive	my	Jaguar	around	the	city
w2v ₁	w2v ₁	w2v ₁	w2v ₁	w2v ₁	w2v ₁	w2v ₁
w2v ₁₀₀	w2v ₁₀₀	w2v ₁₀₀	w2v ₁₀₀	w2v ₁₀₀	w2v ₁₀₀	w2v ₁₀₀
e ₁	e ₁	e ₁	e ₁	e ₁	e ₁	e ₁
		•••				
e ₁₀₀	e ₁₀₀	e ₁₀₀	e ₁₀₀	e ₁₀₀	e ₁₀₀	e ₁₀₀

Model 2 - Results

Actual KG Embedding

Mean: 0.015 Std Dev: 0.322

-0.012	
-0.823	
0.473	
0.094	
0.637	

Predicted Embedding

Mean: 0.0066 Std Dev: 0.098

0.003
-0.004
0.008
-0.009
0.012

Next Steps

Create overall pipeline using Model 1

o Input: Text file

Output: Annotated text file with linked entities

Get Model 2 working

- o Change loss function?
- Add candidate list avg KG embeddings as input to model?