Cox Proportional Hazard Model

Chao Cheng

December 22, 2022

Contents

1	Introduction	1
	Estimation 2.1 What is $L_1(\beta)$	2
3	Inference	3

1 Introduction

In this note we will talk about the Cox's proportional hazards (Cox's PH) model. Suppose we observe some non-informatively right-censored data (U, δ) with covariate vector Z. That is, for subject i, the covariate vector is Z_i , survival time T_i and censoring time C_i . The observed data is (U_i, δ_i) where $U_i = \min(T_i, C_i)$ and $\delta_i = 1$ ($T_i \leq C_i$). Also $T_i \perp C_i | Z_i$.

And now we want to model the relationship between Z and T. One way to do that is to incorporate Z into the hazard function $h(\cdot)$, e.g.,

$$T \sim Exp(\lambda_Z) \implies h(t) = \lambda_Z \stackrel{\Delta}{=} e^{\alpha + \beta Z} = \lambda_0 e^{\beta Z},$$

where $\lambda_0 = e^{\alpha}$ can be viewed as a baseline hazard. If $\beta = 0$ then Z is not associated with T.

We can generalize this idea as

$$h\left(t|Z\right) = h_0\left(t\right) \times g\left(Z\right).$$

So the hazard can be factorized and this model is sometimes called a "multiplicative intensive model" or "multiplicative hazard model" or "proportional hazard model" because this factorization implies that

$$\frac{h\left(t|Z=z_{1}\right)}{h\left(t|Z=z_{2}\right)}=\frac{g\left(z_{1}\right)}{g\left(z_{2}\right)}.$$

The hazard ratio is constant with respect to t, hence the (constant) proportional hazard. So in our previous model (the exponential survival time), the hazard ratio is

$$\frac{h(t|Z=z_1)}{h(t|Z=z_2)} = e^{\beta(z_1-z_2)}.$$

Also this exponential form of g(Z)

$$h(t|Z) = h_0(t) \cdot e^{\beta Z} \tag{1}$$

is the Cox's PH model.

2 Estimation

(1) implies that

$$S(t|Z) = \exp(-H(t|Z))$$

$$= \exp\left(-\int_0^t h(u|Z) du\right)$$

$$= \exp\left(-\int_0^t h_0(t) du \cdot g(Z)\right)$$

$$= (S_0(t))^{g(Z)} = (S_0(t))^{\exp(\beta Z)},$$

where $S_0(t) = \exp\left(-\int_0^t h_0(t) du\right)$, the survival function for Z = 0, hence S(t|Z = 0). Also remember that f(t|Z) = h(t|Z) S(t|Z). Thus, given n independent data (u_i, δ_i, z_i) , the likelihood (one can refer to our previous notes about survival analysis.) is

$$L(\beta, h_0(\cdot)) = \prod_{i=1}^{n} (f(u_i|z_i))^{\delta_i} (S(u_i|z_i))^{1-\delta_i} = \prod_{i=1}^{n} h(u_i|z_i)^{\delta_i} S(u_i|z_i)$$

$$= \prod_{i=1}^{n} (h_0(u_i|z_i) e^{\beta z_i})^{\delta_i} \left(\exp\left(-\int_0^{u_i} h_0(t) dt\right) \right)^{\exp(\beta z_i)}$$
=function $(data, h_0(\cdot), \beta)$.

If $h_0(\cdot)$ is allowed to be "arbitary", then the "parameter space" is

$$\mathcal{H} \times \mathcal{R}^{p} = \left\{ \left(h\left(\cdot \right), \beta \right) \middle| h_{0}\left(\cdot \right) \geq 0, \int_{0}^{\infty} h_{0}\left(t \right) \mathrm{d}t = \infty, \beta \in \mathcal{R}^{p} \right\},\,$$

where $\int_{0}^{\infty} h_{0}(t) dt = \infty$ ensures that $S_{0}(\infty) = 0$.

In general this likelihood is hard to maximize. And Cox proposed this idea: to factor $L(\beta, h_0(\cdot))$ as

$$L(\beta, h_0(\cdot)) = L_1(\beta) \times L_2(\beta, h_0(\cdot)),$$

where L_1 only depends on β and its maximization $(\hat{\beta})$ enjoys nice properties such as consistency and asymptotic normality while L_2 contains relatively little information about β . And this L_1 is called a **partial likelihood**.

2.1 What is $L_1(\beta)$

In this section we introduce the L_1 proposed by Cox. First let's assume there are **NO** tied nor censoring observations. And define the distinct times of failure $\tau_1 < \tau_2 < \cdots$. Denote

$$R_i = \{i | U_i \ge \tau_i\} = \text{risk set at } \tau_i,$$

and

$$Z_{(j)}$$
 = value of Z for the subject who fails at τ_j .

Note that under this setting (no tie, no censor), we can reconstruct the data from $\{\tau_j\}$, $\{R_j\}$ and $\{Z_{(j)}\}$. And L_1 is defined as

$$L_{1}(\beta) \stackrel{\Delta}{=} \prod_{j} \left\{ \frac{e^{\beta Z_{(j)}}}{\sum\limits_{l \in R_{j}} e^{\beta Z_{l}}} \right\}$$

3 Inference

References