

人工智能技术及应用

Artificial Intelligence and Application

Recurrent Neural Network (RNN)

Example Application

Slot Filling

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Shanghai

1-of-N encoding

How to represent each word as a vector?

```
1-of-N Encodinglexicon = {apple, bag, cat, dog, elephant}The vector is lexicon size.apple = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}Each dimension correspondsbag = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}to a word in the lexiconcat = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}The dimension for the worddog = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}is 1, and others are 0elephant = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}
```

Beyond 1-of-N encoding

Dimension for "Other"

apple 0 bag cat dog 0 elephant 0 "other" w = "Naruto" w = "Gandalf"

Word hashing

Example Application

destination

time of departure

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

Shanghai

Example Application

destination

time of departure

Recurrent Neural Network (RNN)

Input sequence: $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots$

output sequence:

Example

 $\begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix}$

RNN

The same network is used again and again.

Probability of Probability of Probability of "Shanghai" in each slot "on" in each slot

Of course it can be deep ...

Elman Network & Jordan Network

Bidirectional RNN

Long Short-term Memory (LSTM)

$$f_{t} = sigmoid\left(W_{f,x}x_{t} + W_{f,h}h_{t-1} + b_{f}\right)$$

$$i_{t} = sigmoid\left(W_{i,x}x_{t} + W_{i,h}h_{t-1} + b_{i}\right)$$

$$g_{t} = \tanh\left(W_{g,x}x_{t} + W_{g,h}h_{t-1} + b_{g}\right)$$

$$c_{t} = g_{t} \cdot i_{t} + c_{t-1} \cdot f_{t}$$

$$o_{t} = sigmoid\left(W_{o,x}x_{t} + W_{o,h}h_{t-1} + b_{o}\right)$$

$$h_{t} = \tanh(c_{t}) \cdot o_{t}$$

LSTM - Example

When $x_2 = 1$, add the numbers of x_1 into the memory When $x_2 = -1$, reset the memory When $x_3 = 1$, output the number in the memory.

Original Network:

➤ Simply replace the neurons with LSTM

LSTM

LSTM

LSTM

Extension: "peephole"

Multiple-layer LSTM

This is quite standard now.

https://img.komicolle.org/2015-09-20/src/14426967627131.gif

Gated Recurrent Unit (GRU)

Only two gates: reset gate and update gate.

Learning Target

Learning

Unfortunately

RNN-based network is not always easy to learn
 Real experiments on Language modeling

The error surface is rough.

Why?

$$w=1$$
 \longrightarrow $y^{1000}=1$ Large $\partial L/\partial w$ Learning rate?

 $w=0.99$ \longrightarrow $y^{1000}\approx 0$ small $\partial L/\partial w$ Large Learning rate?

 $w=0.01$ \longrightarrow $y^{1000}\approx 0$ \longrightarrow Large Learning rate?

 $w=0.01$ \longrightarrow $y^{1000}\approx 0$

Helpful Techniques

Long Short-term Memory (LSTM)

Can deal with gradient vanishing (not gradient explode)

Memory and input are added

➤ The influence never disappears unless forget gate is closed

No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM

