${\rm CB}\ {\rm N}^{\circ}{\rm 1}$ - Raisonnement - Vocabulaire ensembliste - Sujet ${\rm 1}$

1. Questions de cours

Compléter les propositions suivantes, et les démontrer :

a. $\rceil (P \land Q) \Leftrightarrow (\rceil P \lor \rceil Q)$

1 \		/ (1	1 0 /			
P	Q	$P \wedge Q$	$\rceil (P \land Q)$	$\rceil P$	$\rceil Q$	$\rceil P \lor \rceil Q$
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

- **b.** Soient E, F et G des ensembles, $f \in F^E g \in G^F$; si $g \circ f$ est surjective, alors g est surjective. Soit $g \in G$; comme $g \circ f$ est surjective, il existe $g \in E$ tel que g(f(x)) = g on a donc l'existence de $g = f(x) \in F$ tel que g(g) = g donc g est surjective.
- 2. Donner la négation de l'assertion suivante :

$$\exists a \in \mathbb{R}, \ \forall x \in \mathbb{R}, \quad (|x - a| < 1) \Rightarrow (|f(x) - f(a)| \le 1)$$
$$\forall a \in \mathbb{R}, \ \exists x \in \mathbb{R}, \quad ((|x - a| < 1) \land (|f(x) - f(a)| > 1))$$

- 3. f désigne une fonction réelle, traduire à l'aide de quantificateurs les expressions suivantes :
 - **a.** f s'annule en chaque entier : $\forall n \in \mathbb{Z}, f(n) = 0$
- **b.** Tout réel est inférieur à son image par $f: \forall x \in \mathbb{R}, x \leq f(x)$
- **c.** f n'est pas croissante : $\exists (x,y) \in \mathbb{R}^2$, $((x \le y) \land (f(x) > f(y)))$
- 4. P,Q et R désignent des assertions. Montrer que

$$((P \lor Q) \land \rceil (Q \lor R)) \Leftrightarrow (P \land \rceil Q \land \rceil R)$$

$$((P \lor Q) \land \rceil (Q \lor R)) \Leftrightarrow ((P \lor Q) \land (\rceil Q \land \rceil R) \Leftrightarrow (P \land \rceil Q \land \rceil R) \lor \underbrace{(Q \land \rceil Q \land \rceil R)}_{\text{assertion fausse}}) \Leftrightarrow (P \land \rceil Q \land \rceil R)$$

5. Montrer que pour tout $n \in \mathbb{N}^*$, $3^{6n-4} - 2$ est un multiple de 7.

Pour $n \in \mathbb{N}^*$, on note $H_n: 3^{6n-4} - 2$ est un multiple de 7.

On a $3^{6-4} - 2 = 9 - 2 = 7$ est un multiple de 7 donc H_1 est vraie.

Soit $n \in \mathbb{N}^*$. On suppose H_n vraie, c'est-à-dire qu'il existe $k \in \mathbb{Z}$ tel que $3^{6n-4} - 2 = 7k$.

On a : $3^{6(n+1)-4} - 2 = 3^6 \times 3^{6n-4} - 2 = 3^6 \times (3^{6n-4} - 2) + 3^6 \times 2 - 2 = 7k + 7 \times 208$ est un multiple de 7 donc H_{n+1} est vraie.

Par principe de récurrence, H_n est vraie pour tout $n \in \mathbb{N}^*$.

- 6. Étudier l'injectivité et la surjectivité des applications suivantes (justifier la réponse) :
- **a.** $f: \begin{vmatrix} [-1,0] & \to & [0,1] \\ x & \mapsto & |x| \end{vmatrix}$ f est bijective car pour $x \in [-1,0], |x| = -x$ donc on a: $f(a) = f(b) \Rightarrow -a = -b \Rightarrow a = b \quad \text{donc } f \text{ est injective};$ $\forall y \in [0,1], f(-y) = y \text{ donc } y \text{ admet un antécédent dans } [-1,0] \text{ par } f \text{ et } f \text{ est surjective}.$

Sup PTSI A

b.
$$g: \begin{bmatrix} -\frac{1}{2}, \frac{1}{2} \\ x \end{bmatrix} \rightarrow [-1, 1]$$
 $x \mapsto \cos(\pi x)$

$$g$$
 n'est pas injective car $g\left(-\frac{1}{2}\right)=g\left(\frac{1}{2}\right)=0.$

g n'est pas surjective car $\left(x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \stackrel{'}{\Rightarrow} \pi x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$ et le cosinus d'un angle de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est toujours positif donc -1 (par exemple) n'a pas d'antécédent par g.

c.
$$h: \begin{bmatrix} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x+y \end{bmatrix}$$

h n'est pas injective car h(0,1) = h(1,0).

h est surjective car pour $a \in \mathbb{R}$, h(a,0) = a donc a admet un antécédent dans \mathbb{R}^2 par h.

CB n°1 - Raisonnement - Vocabulaire ensembliste - Sujet 2

1. Questions de cours

Compléter les propositions suivantes, et les démontrer :

a.
$$\rceil (P \lor Q) \Leftrightarrow (\rceil P \land \rceil Q)$$

P	Q	$P \lor Q$	$\rceil (P \lor Q)$	$\rceil P$	$\rceil Q$	$\rceil P \wedge \rceil Q$	
V	V	V	F	F	F	F	
V	F	V	F	F	V	F	
F	V	V	F	V	F	F	
F	F	F	V	V	V	V	

b. Soient E, F et G des ensembles, $f \in F^E g \in G^F$; si $g \circ f$ est injective, alors f est injective. Si f(a) = f(b) alors g(f(a)) = g(f(b)) et comme $g \circ f$ est injective a = b.

2. Donner la négation de l'assertion suivante :

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \in \mathbb{N}, \quad (n \ge N) \Rightarrow (|u_n| \le \varepsilon))$$
$$\exists \varepsilon > 0, \ \forall N \in \mathbb{N}, \ \exists n \in \mathbb{N}, \ (n \ge N) \land (|u_n| > \varepsilon)$$

3. f désigne une fonction réelle, traduire à l'aide de quantificateurs les expressions suivantes :

a. f ne s'annule qu'une fois sur
$$\mathbb{R}$$
 $\exists ! x \in \mathbb{R}, f(x) = 0$

b. f n'admet pas de minimum
$$\forall m \in \mathbb{R}, \exists x \in \mathbb{R}, f(m) > f(x)$$

c.
$$f$$
 n'est pas de signe constant $\exists (x,y) \in \mathbb{R}^2, \ f(x)f(y) < 0$

4. P, Q et R désignent des assertions. Montrer que

$$((P \wedge \rceil Q) \wedge \rceil (R \wedge \rceil Q)) \Leftrightarrow (P \wedge \rceil (Q \vee R))$$

$$((P \wedge \rceil Q) \wedge \rceil (R \wedge \rceil Q)) \Leftrightarrow ((P \wedge \rceil Q) \wedge (\lceil R \vee Q)) \Leftrightarrow ((P \wedge \rceil Q \wedge \rceil R) \vee \underbrace{(P \wedge \rceil Q \wedge Q)}_{\text{assertion fausse}}) \Leftrightarrow (P \wedge (\lceil Q \wedge \rceil R)) \Leftrightarrow (P \wedge \rceil (Q \vee R))$$

Sup PTSI A Page 2 sur 3

5. Montrer que pour tout $x \in \mathbb{R}^+$ et tout $n \in \mathbb{N}, (1+x)^n \ge 1 + nx$.

Pour $n \in \mathbb{N}$, on note $H_n : \forall x \in \mathbb{R}^+, (1+x)^n \ge 1 + nx$.

On a, pour $x \in \mathbb{R}^+$: $(1+x)^0 = 1$ et $1+0 \times x = 1$ donc H_0 est vraie.

Soit $n \in \mathbb{N}$. On suppose H_n vraie, c'est-à-dire pour tout $x \in \mathbb{R}^+$, $(1+x)^n \ge 1 + nx$.

Soit $x \ge 0$, on a 1 + x > 0 donc $(1 + x)^n (1 + x) \ge (1 + nx)(1 + x)$. Or $(1 + nx)(1 + x) = 1 + (n + 1)x + nx^2$ et $nx^2 \ge 0$ on obtient donc:

 $(1+x)^{n+1} \ge 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$. H_{n+1} est donc vraie.

Par principe de récurrence, H_n est vraie pour tout $n \in \mathbb{N}$.

6. Étudier l'injectivité et la surjectivité des applications suivantes (justifier la réponse) :

a.
$$f: \begin{vmatrix} [-1,1] & \rightarrow & [0,1] \\ x & \mapsto & |x| \end{vmatrix}$$

f n'est pas injective car f(-1) = f(1).

f est surjective car pour $x \in [0,1], f(x) = x$ donc x admet un antécédent dans [-1,1] par f.

 $\mathbf{b.} \quad g: \left| \begin{array}{ccc} [0,1] & \rightarrow & [-1,1] \\ x & \mapsto & \sin(\pi x) \end{array} \right|$

g n'est pas injective car g(0) = g(1) = 0.

g n'est pas surjective car $(x \in [0,1] \Rightarrow \pi x \in [0,\pi])$ et le sinus d'un angle dans $[0,\pi]$ est toujours positif donc -1 (par exemple) n'a pas d'antécédent par g.

c.
$$h: \begin{vmatrix} \mathbb{R} & \to & \mathbb{R}^2 \\ x & \mapsto & (x, x^2) \end{vmatrix}$$

h est injective car $(h(a) = h(b) \Leftrightarrow (a, a^2) = (b, b^2) \Leftrightarrow a = b)$.

h n'est pas surjective car (0,1) (par exemple) n'a pas d'antécédent par h puisque $0^2 \neq 1$.

Sup PTSI A Page 3 sur 3