

#### **D** MAVT

Dr. Paolo Tiso



### 3.1 Starrkörper

### 3.1 Rigid body

**Definition**: Der Abstand zwischen zwei zum Körper gehörenden Punkten ist constant:



Es ist möglich, einen Einheitsvektor **e** zu definieren, der in die Richtung von PQ zeigt:

$$\frac{(\mathbf{r}_Q - \mathbf{r}_P)}{|\mathbf{r}_Q - \mathbf{r}_P|} \cdot (\mathbf{v}_Q - \mathbf{v}_P) = \mathbf{e} \cdot (\mathbf{v}_Q - \mathbf{v}_P) = 0$$

## 3.2 Satz der Projizierten Geschwindigkeiten

3.2 Theorem of projected velocities



$$\mathbf{e} \cdot (\mathbf{v}_Q - \mathbf{v}_P) = 0 \Rightarrow \mathbf{v}_Q \cdot \mathbf{e} = \mathbf{v}_P \cdot \mathbf{e} \Rightarrow \mathbf{v}_Q' = \mathbf{v}_P'$$

### Satz der projizierten Geschwindigkeiten (SdpG)

$$|\mathbf{r}_Q - \mathbf{r}_P| = \text{Konst. } \forall P, Q \in \mathcal{K} \to \mathbf{v}_Q \cdot \mathbf{e} = \mathbf{v}_P \cdot \mathbf{e}$$

wo 
$$\mathbf{e} = rac{\mathbf{r}_Q - \mathbf{r}_P}{|\mathbf{r}_Q - \mathbf{r}_P|}$$

«Die Projektionen v'<sub>P</sub> und v'<sub>Q</sub> der Geschwindigkeit von zwei beliebigen Punkten P und Q eines starren Körper sind gleich"

# 3.2 Satz der Projizierten Geschwindigkeiten

### Beispiel 3.1: Geführter Stab



Was ist die Beziehung zwischen  $\mathbf{v}_A$  und  $\mathbf{v}_B$ ?.

Den Bindungen gemäss:

$$\mathbf{v}_A = -v_A \mathbf{e}_y \qquad \qquad \mathbf{v}_B = v_B \mathbf{e}_x$$

Es muss also eine Beziehung zwischen den Geschwindigkeiten von A und B vorhanden sein. Um dies zu ermitteln, kann man die SdpG anwenden.

Geschwindigkeiten von A und B auf AB projizieren:

$$\mathbf{v}_B \cdot \mathbf{e} = \mathbf{v}_B \cdot \mathbf{e} \quad v_A' = v_B' \rightarrow v_A \sin \alpha = v_B \cos \alpha \rightarrow v_B = v_A \frac{\sin \alpha}{\cos \alpha} = v_A \tan \alpha$$

# 3.2 Satz der Projizierten Geschwindigkeiten

Beispiel 3.1 (forts.): Wenn das Vorzeichen der Geschwindigkeit nicht im Voraus bekannt ist:



$$\mathbf{v}_A = v_A \mathbf{e}_y \qquad \qquad \mathbf{v}_B = v_B \mathbf{e}_x$$

Die entsprechenden Ortsvektoren sind einfach:

$$\mathbf{r}_B = L\cos\alpha\mathbf{e}_x \qquad \mathbf{r}_A = L\sin\alpha\mathbf{e}_y$$

Der Einheitsvektor in Richtung des Stabes wird wie folgt ausgedrückt:

$$\mathbf{r}_B - \mathbf{r}_A = L\cos\alpha\mathbf{e}_x - L\sin\alpha\mathbf{e}_y$$

$$\mathbf{e} = \frac{\mathbf{r}_B - \mathbf{r}_A}{|\mathbf{r}_B - \mathbf{r}_A|} = \frac{L\cos\alpha\mathbf{e}_x - L\sin\alpha\mathbf{e}_y}{L} = \cos\alpha\mathbf{e}_x - \sin\alpha\mathbf{e}_y$$

Jetzt kann man den SdpG anwenden:

$$\mathbf{v}_A \cdot \mathbf{e} = \mathbf{v}_B \cdot \mathbf{e} \to v_A \mathbf{e}_y \cdot (\cos \alpha \mathbf{e}_x - \sin \alpha \mathbf{e}_y) = v_B \mathbf{e}_x \cdot (\cos \alpha \mathbf{e}_x - \sin \alpha \mathbf{e}_y)$$
$$-v_A \sin \alpha = v_B \cos \alpha \to v_B = v_A \tan \alpha$$
Negative Forzeichen!

## 3.3 Momentaner Bewegungszustand

3.3 Instantaneous act of motion

Wir interessieren uns für **momentanen Bewegungszustand** (Geschwindigkeiten zu einem bestimmten Zeitpunkt)









## 3.4 Bewegungsarte

### 3.4 types of motion

- Starre Bewegung: SdpG zu jedem Zeitpunkt erfüllt (Körper kann auch nicht starr sein!)
  - Translation:  $\mathbf{v}_P = \mathbf{v} \ \forall P \in \mathcal{K}$
  - Rotation:  $\exists P,Q \in \mathcal{K} \ | \mathbf{v}_P = \mathbf{0}, \mathbf{v}_Q = \mathbf{0}$



#### • **Ebene Bewegung** (planar motion)

1. Alle Geschwindigkeiten sind zu einer gegeben Ebene E parallel

$$\Rightarrow \mathbf{v}(x,y,z) = v_x(x,y,z)\mathbf{e}_x + v_y(x,y,z)\mathbf{e}_y$$

2. Alle Punkte auf einer Normalen zu E haben diegleiche Geschwindigkeit

$$\Rightarrow$$
  $\mathbf{v}(x,y,z) = v_x(x,y)\mathbf{e}_x + v_y(x,y)\mathbf{e}_y$ 



**ETH** zürich

## 3.5 Translation und Rotation für ebene Bewegungen

3.5 translation and rotation for planar motions

Eine starre, ebene Bewegung ist entweder eine Translation oder eine Rotation.

#### 1. Translation

Alle Geschwindigkeiten sind parallel



#### 2. Rotation



M: Momentanzentrum

Eng: center of instantaneous rotation

$$v_P \cos \alpha = v_Q \cos \beta$$
$$r_{MP} \cos \alpha = r_{MQ} \cos \beta$$

>

Hängt nicht von Punkten ab!

$$\frac{v_P}{r_{MP}} = \frac{v_Q}{r_{MQ}} = \omega \qquad v_P = \omega r_{MP}$$

$$v_Q = \omega r_{MQ}$$

 $\omega$  heisst Winkelschnelligkeit/Rotationschnelligkeit

Eng: angular speed / rotational speed

### 3.6 Satz von Momentanzentrum

#### 3.6 Instantaneous center of rotation theorem

Es kann auch vektoriell ausgedrückt werden, durch die Einführung des Winkelgeschwindigkeitsvektor (eng. angular velocity vector)

#### Satz von Momentanzentrum

Die Geschwindigkeit des Punktes P steht senkrecht auf der Verbindungsgeraden durch P und das Momentanzentrum M.

$$\mathbf{v}_P = \boldsymbol{\omega} \times \mathbf{r}_{MP}$$

- Die Winkelgeschwindigkeitsvektor ist immer senkrecht zur Ebene E.
- M ist Momentanzentrum relativ zum entsprechenden Zeitpunkt.
- Die Schnelligkeit ist proportional zum Abstand von Punkt zum Momentanzentrum.
- M ist im allgemeinen kein materieller Punkt.









### 3.6 Satz von Momentanzentrum

### Beispiel 3.2 Rollendes Rad (rollen ohne zu gleiten):



Das Zentrum des Rades  $\mathbf{C}$  bewegt sich mit Geschwingidkeit  $\mathbf{v}_{\mathbb{C}}$  nach rechts:

$$\mathbf{v}_C = v_C \mathbf{e}_x$$

Was ist die Winkelgeschwindigkeit? Lassen uns den Satz von Momentanzentrum anwenden:

$$\boldsymbol{\omega} \times \mathbf{r}_{MC} = \mathbf{v}_C$$

$$\omega \mathbf{e}_z \times R \mathbf{e}_y = v_C \mathbf{e}_x \to \omega = -\frac{v_C}{R}$$

Jetzt können wir die Geschwindigkeit von allen anderen Punkten berechnen. Zum Beispiel, für A und B:

$$\omega \times \mathbf{r}_{MA} = \mathbf{v}_A \to -\omega \mathbf{e}_z \times (-R\mathbf{e}_x + R\mathbf{e}_y) = \omega R(\mathbf{e}_x + \mathbf{e}_y)$$

$$\omega \times \mathbf{r}_{MB} = \mathbf{v}_B \to -\omega \mathbf{e}_z \times 2R\mathbf{e}_y = 2\omega R\mathbf{e}_x$$

## 3.7 Starrkörpersysteme

### 3.7 systems of rigid bodies

- Jeder Starrkörper hat seine eigene Winkelgeschwindigkeit und Momentanzentrum!
- SdpG und SM für jeden starrkörper gültig!



## 3.7 Starrkörpersysteme



- O ist Momentanzentrum von OC;
- C gehört zu OC: die Geschwindigkeit von C muss senkrecht zu OC sein;
- Wenn die Winkelgeschwindigkeit von OC bekannt ist, kann man  $\mathbf{v}_{\mathbb{C}}$  mit SM bestimmen
- Die Richtung von  $\mathbf{v}_{B}$  ist auch bekannt, da B zu OC gehört;
- Die Projektion von  $\mathbf{v}_A$  auf BA ist auch bekannt.

#### Lösungsstrategie:

- 1. **v**<sub>A</sub> auf AB projizieren;
- 2. **v**<sub>B</sub> mit Hilfe von SdpG bestimmen;
- 3. SM für OC anwenden und  $\omega_{OC}$  ermitteln;
- 4.  $\mathbf{v}_{C}$  mit Hilfe von SM bestimmen.

# 3.7 Starrkörpersysteme

### Beispiel 3.3 (forts.)



1. **v**<sub>A</sub> auf AB projizieren:

$$v_A' = v_A \cos \frac{\pi}{3} = \frac{v_A}{2}$$



2. **v**<sub>B</sub> mit Hilfe von SdpG bestimmen:

$$v_B \cos \frac{\pi}{6} = v_A' \to v_B \frac{\sqrt{3}}{2} = \frac{v_A}{2}$$

$$v_B = \frac{v_A}{\sqrt{3}}$$



3. SM für OC anwenden und  $\omega_{\text{OC}}$  ermitteln:

$$\omega_{OC} = \frac{v_B}{L} = \frac{v_A}{\sqrt{3}L}$$

 $\pi/2$   $\pi/2$  B  $\omega_{OC}$   $\pi/3$   $\pi/6$  A  $V_A$   $\pi/3$ 

4. **v**<sub>C</sub> mit Hilfe von SM bestimmen:

$$v_C = 2L\omega_{OC} = \frac{2v_A}{\sqrt{3}}$$