P5 设计文档

---Verilog 流水线

一、指令集

1. ADDU:不支持溢出的加法

	Opcode	r c	x+	rd	Shamt	Func
编码	000000	rs	rt	Ιū	00000	100001
	6	5	5	5	5	6
描述	GPR[rd] ← GPR[rs] + GPR[rt]					

2. SUBU: 不支持溢出的减法

编码	Opcode 000000	rs	rt	rd	Shamt 00000	Func 100011
	6	5	5	5	5	6
描述	GPR[rd] ← GPR[rs] - GPR[rt]					

3. ORI: 或立即数

编码	Opcode 001101	rs	rt	immediate
	6	5	5	16
描述	GPR[rt] ←	- GPR[rs] (OR zero_ex	tend(immediate)

4. LW: 加载字

编码	Opcode 100011	base	rt	offset
	6	5	5	16
描述	Addr ← GPR[base] + sign_extend(offset)		nd(offset)	
抽处	GPR[rt] ←	- memory[Ad	ddr]	

5. SW: 存储字

	Opcode	hago	rt	offset		
编码	101011	base	IL	Oliset		
	6	5	5	16		
描述	Addr ← GPR[base] + sign_extend(offset)		nd(offset)			
抽处	memory[Ad	memory[Addr] ← GPR[rt]				

6. BEQ: 相等时跳转

编码	Opcode 000100	rs	rt	offset		
	6	5	5	16		
If (GPR[rs] == GP: PC ← PC + 4 +				l(offset 0²)		
1mxc	Else					
	PC ← 1	PC + 4				

7. LUI: 立即数加载至高位

编码	Opcode 001111	0 00000	rt	immediate
	6	5	5	16
描述	$GPR[rt] \leftarrow immediate 0^16$			

8. JAL: 跳转并链接

		Opcode		
编码	000011	index		
		6	26	
	描述	PC ← PC[31:28] index 00		
	佃处	GPR[31] ←	- PC+4	

9. J: 跳转

编码	Opcode 000010	index	
	6	26	
描述	PC ← PC[31:28] index 00		

10. JR: 跳转至寄存器

编码	Opcode 000000	rs	0	0	Func 001000
	6	5	10	5	6
描述	PC ← GPR[rs]				

二、模块规格

1. PC: 指令地址寄存器(F级部件)

模块端口定义如下:

best in the section					
信号名	位数	方向	描述		
clk		I	内置时钟信号		
reset		ı	同步复位信号		
en		ı	写使能信号		
PCI	[31:0]	ı	下一条指令的地址		
PC	[31:0]	0	当前指令的地址		

模块功能说明如下:

라.ㅁ	-1.Ak +	LHA N
序号	功能名	描述
1	读指令地址	通过 PC 端口输出当前指令地址
2	写指令地址	时钟上升沿到来时若 en 信号为 1,则更新指令地址
3	同步复位	时钟上升沿到来时若 reset 信号为 1,则复位指令地址至初始状
		态 0x00003000

2. IM: 指令存储器(F级部件)

模块端口定义如下:

信号名	位数	方向	描述
IMI	[31:0]	ı	当前指令地址信号
IM	[31:0]	0	当前指令信号

模块功能说明如下:

序号	功能名	描述
1	读指令	读出指令存储器中 IMI 地址对应的指令并通过 IM 端口输出
2	初始化写指令	初始时向指令存储器中读入所有指令

3. GRF: 寄存器堆(D级部件,W级部件)

模块端口定义如下:

台口力	12: ¥1:		44.14
信号名	位数	方向	描述
clk		I	内置时钟信号
reset		I	同步复位信号
PC	[31:0]	ı	当前指令的地址信号
A1	[4:0]	ı	第一个读寄存器地址输入信号
A2	[4:0]	ı	第二个读寄存器地址输入信号
A3	[4:0]	I	写寄存器地址输入信号
WD	[31:0]	I	写入数据信号
WE		ı	写使能信号
RD1	[31:0]	0	A1 所对应的寄存器的数据信号
RD2	[31:0]	0	A2 所对应的寄存器的数据信号

模块功能说明如下:

序号	功能名	描述
1	读数据	读出 A1, A2 地址对应寄存器数据并通过 RD1, RD2 端口输出
	写数据	时钟上升沿到来时,若 WE 信号为 1,则向 A3 地址对应寄存器
2		写入数据 WD(0号寄存器不能被写入)并输出一条与 PC 有关
		的信息
2	同步复位	时钟上升沿到来时,若 reset 信号为 1,则复位所有寄存器至初
3		始状态 0x00000000

4. EXT: 立即数拓展模块(D级部件)

模块端口定义如下:

ひらく 同一 たっくろ	人のでは、一人と人が行う。			
信号名	位数	方向	描述	
EXTIMM	[15:0]	I	参与拓展的立即数信号	
EXTOp	[1:0]	I	拓展方式的选择信号	
EXT	[31:0]	0	拓展完成后的数据信号	

模块功能说明如下:

序号	功能名	描述
1	符号拓展	若 EXTOp==00,将立即数加载至输出信号低位并用其最高位填
1		充输出信号的高 16 位
2	零拓展	若 EXTOp==01,将立即数加载至输出信号低位并用 0 填充输出
2		信号的高 16 位
2	低位零拓展	若 EXTOp==10,将立即数加载至输出信号高位并用 0 填充输出
3		信号的低 16 位

5. NPC: 指令地址计算器(D级部件)

模块端口定义如下:

信号名	位数	方向	描述
ADD4	[31:0]	I	PC+4 信号
PC4_D	[31:0]	I	F/D 级流水线寄存器中的 PC4 信号
imm_index	[25:0]	I	计算跳转地址的 imm/index 数据信号
M_RD1_D	[31:0]	I	D 级读取 rs 寄存器时的转发信号
ZERO		ı	b类跳转时的相等信号
Is_B		ı	b 类指令的判断信号(beq)
ls_J		ı	j 类指令的判断信号(j / jal)
PCOp	[1:0]	I	计算下一条指令地址的选择信号
TURE_NPC	[31:0]	0	下一条指令地址

模块功能说明如下:

序号	功能名	描述	
1	计算指令地址	若 PCOp==00,输出 PC+4 信号	
		若 PCOp==01,输出 M_RD1_D 信号	
		若 PCOp==10 且 is_B==1 且 ZERO==1,则计算 PC4_D+imm 拓展	
		并输出	
		若 PCOp==10 且 is_J==1,则计算 PC4_D 与 index 拓展信号并输	
		出	
		若 PCOp==10 且不属于以上情况,则输出 PC4_D+4 信号	

6. CMP: 数据比较器(D级部件)

模块端口定义如下:

信号名	位数	方向	描述
D1	[31:0]	I	参与比较的第一个数据信号
D2	[31:0]	ı	参与比较的第二个数据信号
СМР		0	比较结果信号

模块功能说明如下:

序号	功能名	描述	
1	比较数据	若二数据信号相等,则输出1,否则输出0	

7. ALU: 计算模块(E级部件)

模块端口定义如下:

信号名	位数	方向	描述
Α	[31:0]	ı	参与运算的第一个数据信号
В	[31:0]	ı	参与运算的第二个数据信号
ALUOp	[2:0]	ı	运算方式的选择信号
ALU	[31:0]	0	运算结果的数据信号

模块功能说明如下:

序号	功能名	描述
1	按位与运算	若 ALUOp==000,计算 A&B 并通过 ALU 端口输出
2	按位或运算	若 ALUOp==001,计算 A B 并通过 ALU 端口输出
3	不支持溢出加法	若 ALUOp==010,计算 A+B 并通过 ALU 端口输出
4	不支持溢出减法	若 ALUOp==011,计算 A-B 并通过 ALU 端口输出

8. DM:数据存储器(M级部件)

模块端口定义如下:

信号名	位数	方向	描述
clk		ı	内置时钟信号
reset		ı	同步复位信号
PC	[31:0]	ı	当前指令的地址信号
DMA	[31:0]	ı	存取的地址信号
DMD	[31:0]	ı	存取的数据信号
DMWE		ı	存数据使能信号
DM	[31:0]	0	取出的数据信号

模块功能说明如下:

序号	功能名	描述
1	存数据	时钟上升沿到来时,若 DMWE 信号为 1,则向数据存储器 DMA
		对应地址中写入 DMD 数据并输出一条与 PC 有关的信息
2	取数据	将数据存储器 DMA 地址对应的数据通过 DM 端口输出
3	同步复位	时钟上升沿到来时,若 reset 信号为 1,则复位数据存储器至初
		始状态 0x00000000

三、流水线寄存器规格

1. FDreg: F/D 级流水线寄存器

模块端口定义如下:

控制信号	输入信号	输出信号
clk	PC	IR_D
reset	IM	PC_D
en		PC4_D
		PC8_D

2. DEreg: D/E 级流水线寄存器

模块端口定义如下:

控制信号	输入信号	输出信号
clk	IR_D	IR_E
reset	PC_D	PC_E
en	PC4_D	PC4_E
	PC8_D	PC8_E
	RD1	RD1_E
	RD2	RD2_E
	EXT	EXT_E

3. EMreg: E/M 级流水线寄存器

模块端口定义如下:

控制信号	输入信号	输出信号
clk	IR_E	IR_M
reset	PC_E	PC_M
en	PC4_E	PC4_M
	PC8_E	PC8_M
	ALU	ALU_M
	RD2_E	RD2_M

4. MWreg: M/W 级流水线寄存器

模块端口定义如下:

控制信号	输入信号	输出信号
clk	IR_M	IR_W
reset	PC_M	PC_W
en	PC4_M	PC4_W
	PC8_M	PC8_W
	ALU_M	ALU_W
	DM	DM_W

四、冒险处理策略

1. 暂停处理表

	F/D			D/E		E/M
类型	寄存器	Tuse	cal_r rd/1	cal_i rt/1	load rt/2	load rt/1
cal_r addu subu	rs rt	1			S	
cal_i ori lui	rs	1			S	
load lw	rs	1			S	
store sw	rs	1			S	
store sw	rt	2				
beq	rs rt	0	S	S	S	S
jr	rs	0	S	S	S	S

2. 转发处理表

						D/E		E/M			M,	/ψ	
流水级	寄存器	指令	MUX	MUXOp	MUXOp==0	jal 0x1f/0	cal_r rd/0	cal_i rt/0	jal	cal_r rd/0	cal_i rt/0	load rt/0	jal
IR_D	rs	cal_r cal_i beq load store jr	M_RD1_D	M_RD1_D_Op	GRF. RD1	PC8_E	ALU_M	ALU_M	PC8_M	₩D	₩D	₩D	PC8_₩
	rt	cal_r store beq	M_RD2_D	M_RD2_D_Op	GRF. RD2	PC8_E	ALU_M	ALU_M	PC8_M	₩D	₩D	₩D	PC8_₩
IR_E	rs	cal_r cal_i load store	M_RD1_E	M_RD1_E_Op	RD1_E		ALU_M	ALU_M	PC8_M	₩D	₩D	₩D	PC8_₩
	rt	cal_r store	M_RD2_E	M_RD2_E_Op	RD2_E		ALU_M	ALU_M	PC8_M	₩D	₩D	₩D	PC8_₩
IR_M	rt	store	M_RD2_M	M_RD2_M_Op	RD2_M					₩D	₩D	WD	PC8_W
					0	3	1	1	4	2	2	2	5

五、数据通路

1. 数据通路表

级别	部件名	输入端口	addu	subu	lui	ori	lv	SW	beq	i	jal	jr	iop	MUXOp=0	MUXOp=1	MUXOp=2
	PC	IIII (FIG.									,,,,					
IF级部件	ADD4		PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC			
AT AICHETT	IN		PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC			
D更新PC	PC		ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4			
DX-9/10	IR D		IN. IN	IN. IN	IM. IM	IN. IN	IM. IM	IN. IN	IM. IM	IM. IM	IN. IN	IM. IM	IM. IM	2		
F/D织实右哭	PC4 D		IM. IM	IM. IM	IM, IM	IN IN	IM. IM	IN IN	ADD4	ADD4	ADD4	ADD4	ADD4			
1/DW PILLER	PC8 D								ADD4+4	ADD4+4	ADD4+4	ADD4+4	ADD4+4			
		Å1	IR D[rs]	IR_D[rs]		IR_D[rs]	IR_D[rs]	IR D[rs]	IR_D[rs]	nuu-r-r	TUDT'T	IR_D[rs]	IR_D[rs]	`		
	GRF	A2	IR D[rt]	IR D[rt]		IK_D[15]	IK_D[IS]	IR D[rt]				IK_D[IS]	IR D[rt]			
	EXT	n2	IN_D[I t]	IK_D[I t]	TD D[inn]	TD D[:nm]	IR D[inn]		IK_D[I t]				IR D[inn]			
D-912 20.64	EAI	D1			TW_D[THIH]	TW_D[THUR]	TV_D[THIH]	TW_D[THH]	GRF. RD1				M_RD1_D			
DWINT	CMP	D2							GRF. RD2				M_RD2_D			
-		PC4							PC4_D	PC4 D	PC4 D		PC4_D	5	£	
	NPC	NPCIMM								IR_D[index]			IR_D[imm/index]			
n m time	PC	RFCIRM	ADD (ADD 4	ADD ((00.4	(DD)	1001						inn (W DD4 D	una
世史初れ			ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	NPC	NPC		M_RD1_D	PC_MUX	ADD4	M_RD1_D	NPC
-	IR_E		IR_D	IR_D	IR_D	IR_D	IR_D	IR_D			IR_D		IR_D			
_	PC4_E										PC4_D		PC4_D			
D/E级寄存器 -	PC8_E										PC8_D		PC8_D			
27 2300 P3 13 00	RD1_E		GRF. RD1	GRF. RD1		GRF. RD1	GRF. RD1	GRF. RD1				(6	M_RD1_D			
_	RD2_E		GRF. RD2	GRF. RD2				GRF. RD2					M_RD2_D			
	EXT_E				EXT. EXT	EXT. EXT	EXT. EXT	EXT. EXT					EXT. EXT			
	ALU	ALUA	RD1_E	RD1_E		RD1_E	RD1_E	RD1_E					M_RD1_E			
F4B AR件	Lo	ALUB	RD2_E	RD2_E	EXT_E	EXT_E	EXT_E	EXT_E	9				ALUB_MUX	M_RD2_E	EXT_E	
DAKHPII	XALU	D1											1			
		D2											/			
	IR_M		IR_E	IR_E	IR_E	IR_E	IR_E	IR_E			IR_E		IR_E			
	PC4_II										PC4_E		PC4_E			
P/D级寄存器 D级部件 E更新PC D/E级寄存器 E级部件 M级寄存器	PC8_H										PC8_E		PC8_E			
E/II:从可行台	ALUout_M		ALU. ALU	ALU. ALU	ALU. ALU	ALU. ALU	ALU. ALU	ALU. ALU			730		ALU. ALU			
2	XALUout_M												1			
	RD2_H				#EMILAL	W76		RD2_E				(c	M_RD2_E			
w4D ≿D4H	DM	DMA			截图(Alt	- A)	ALUout_M	ALUout_M					ALUout_M			
M 规语图 十	DW	DMD						RD2_N					M_RD2_H			
	IR_W		IR_M	IR_M	IR_M	IR_H	IR_M				IR_M		IR_M			
	PC4_W										PC4_II		PC4_M			
w (w47 dp + 00	PC8_¥										PC8_II		PC8_M			
11/1/ 纵奇仔器	ALUout W		ALUout M	ALUout M	ALUout M	ALUout M							ALUout M			
	XALUout W												1			
	DMout_W						DM. DM						DM. DM			
		A3	IR W[rd]	IR W[rd]	IR W[rt]	IR W[rt]	IR W[rt]				0x1f			IR W[rt]	IR W[rd]	0x1f
#級部件	GRF	VD.	ALUout W	ALUout W	ALUout W	ALUout V	DMout W				PC8 V			ALUout W	DMout W	PC8 W
							24040_8								2.00 00 0	100_1

六、控制器设计

1. 控制信号说明

序号	信号名	位数	描述
1	ALUOp	[2:0]	ALU 计算方式的选择信号
2	GRFA3_MUXOp	[1:0]	GRFA3 口连接信号的选择信号
3	ALUB_MUXOp		ALUB 口连接信号的选择信号
4	GRFWE		GRF 的写使能信号
5	DMWE		DM 的写使能信号
6	GRFWD_MUXOp	[1:0]	GRFWD 口连接信号的选择信号
7	EXTOp	[1:0]	EXT 拓展方式的选择信号
8	Is_B		B 类指令(beq)的特征信号
9	ls_J		J 类指令(j/jal)的特征信号
10	РСОр	[1:0]	PC 计算方式的选择信号

2. 指令与控制信号真值表

func	100001	100011								001000	000000
opcode	000000	000000	001101	001111	100011	101011	000100	000010	000011	000000	000000
指令名	addu	subu	ori	lui	1w	SW	beq	j	jal	jr	nop
GRFA3_MUXOp	01	01	00	00	00	00	00	00	10	01	00
ALUB_MUXOp	0	0	1	1	1	1	0	0	0	0	0
GRFWE	1	1	1	1	1	0	0	0	1	1	0
DMWE	0	0	0	0	0	1	0	0	0	0	0
GRFWD_MUXOp	00	00	00	00	01	00	00	00	10	00	00
EXTOp	00	00	01	10	00	00	00	00	00	00	00
Is_B	0	0	0	0	0	0	1	0	0	0	0
ALUOp	010	011	001	010	010	010	011	000	000	000	000
Is_J	0	0	0	0	0	0	0	1	1	0	0
PCOp	00	00	00	00	00	00	010	10	10	01	00

七、测试样例

1. 暂停组合

(1) D: cal_r E: load

```
ori $t1, 1
   ori $t2, 2
   addu $s1, $t1, $t2
   sw $s1, 0 ($0)
   addu $s1, $s1, $s1 @00003000; $ 9 <= 00000001
                   @00003004: $10 <= 00000002
   nop
                   @00003008: $17 <= 00000003
   nop
   nop
                   @0000300c: *00000000 (= 00000003
   nop
                   @00003010: $17 <= 00000006
   nop
                   @00003028: $17 <= 00000003
   1w $s1, 0 ($0)
   addu $s1, $s1, $s1 @0000302c: $17 <= 00000006
(2) D: cal i
                   E: load
   ori $t1, 1
   ori $t2, 2
   addu $s1, $t1, $t2
   sw $s1, 0 ($0)
   addu $s1, $s1, $s1 @00003000: $ 9 <= 00000001
   nop
                   @00003004: $10 <= 00000002
   nop
                   @00003008: $17 <= 00000003
   nop
                   @0000300c: *00000000 <= 00000003
   nop
                   @00003010: $17 <= 00000006
   nop
                   @00003028: $17 <= 00000003
   1= $s1, 0 ($0)
   ori $s1, $s1, 0
                   @0000302c: $17 <= 00000003
(3) D: load
                   E: load
   ori $t1, 2
   ori $t2, 2
   addu $s1, $t1, $t2
   sw $s1, 0 ($0)
                   @00003000: $ 9 <= 00000002
   sw $s1, 4 ($0)
                   @00003004: $10 <= 00000002
   ori $s1, $0, 8
                   @00003008: $17 <= 00000004
   nop
                   @0000300c: *00000000 <= 00000004
   nop
   nop
                   @00003010: *00000004 <= 00000004
   nop
                   @00003014: $17 <= 00000008
   nop
                   @0000302c: $17 <= 00000004
   1w $s1, 0 ($0)
                   @00003030: $18 <= 00000004
   1w $s2, 0 ($s1)
(4) D: store
                   E: load
```

```
ori $t1, 2
  ori $t2, 2
  addu $51, $t1, $t2
  sw $s1, 0 ($0)
                 @00003000: $ 9 <= 00000002
  sw $s1, 4 ($0)
                  @00003004: $10 <= 00000002
  ori $s1, $0, 8
                  @00003008: $17 <= 00000004
  nop
                  @0000300c: *00000000 <= 00000004
  nop
  nop
                  @00003010: *00000004 <= 00000004
  nop
                  @00003014: $17 <= 00000008
  nop
                  @0000302c: $17 <= 00000004
  lw $s1, 0 ($0)
                 @00003030: *00000004 <= 00000000
  sw $s2, 0 ($s1)
(5) D: beq
                  E: cal r
  ori $t1, 2
   ori $t2, 2
   ori $s2, 4
  nop
  nop
  nop
  nop
                  @00003000: $ 9 <= 00000002
  nop
   addu $s1, $t1, $t2
                  @00003004: $10 <= 00000002
  beq $s1, $s2, end
                  @00003008: $18 <= 00000004
  nop
   ori $v0, 1
                  @00003020: $17 <= 00000004
   end:
                  @00003030: $ 2 <= 0000000a
   ori $v0, 10
(6) D: beq
                  E: cal i
   ori $t1. 2
   ori $t2. 2
   ori $s2, 4
  nop
  nop
  nop
  nop
                 @00003000: $ 9 <= 00000002
  nop
  ori $s1, 4
                 @00003004: $10 <= 00000002
  beq $s1, $s2, end
                 @00003008: $18 <= 00000004
  nop
   ori $v0, 1
                 @00003020: $17 <= 00000004
   end:
                 @00003030: $ 2 <= 0000000a
  ori $v0, 10
(7) D: beq
                 E: load
```

```
ori $t1, 2
   ori $t2, 2
   ori $s2, 4
   sw $s2, 0 ($0)
  nop
  nop
  nop
  nop
                 @00003000: $ 9 <= 00000002
  nop
                 @00003004: $10 <= 00000002
  1w $s1, 0 ($0)
  beq $s1, $s2, end @00003008: $18 (= 00000004
                 @0000300c: *00000000 <= 00000004
   ori $v0, 1
                @00003024: $17 <= 00000004
   end:
                @00003034: $ 2 <= 0000000a
   ori $v0, 10
(8) D: beq
                 M: load
   ori $t1, 2
   ori $t2, 2
   ori $s2, 4
   sw $s2, 0 ($0)
   nop
   nop
   nop
                 @00003000: $ 9 <= 00000002
   nop
   nop
                 @00003004: $10 <= 00000002
   1- $s1, 0 ($0)
  addu $s2, $s2, $0 @00003008: $18 <= 00000004
   beq $s1, $s2, end @0000300c: *00000000 <= 00000004
                 @00003024: $17 <= 00000004
   ori $v0, 1
                 @00003028: $18 <= 00000004
   end:
                 @00003038: $ 2 <= 0000000a
   ori $v0, 10
(9) D: jr
                 E: cal_r
```

```
ori $t1, 2
   ori $t2, 2
   jal begin
   addu $s2, $t1, $s2 @00003000: $ 9 <= 00000002
   addu $s3, $t1, $s3 @00003004: $10 <= 00000002
                 @00003008: $31 <= 00003010
   nop
                 @0000300c: $17 <= 00000002
   nop
   nop
                 @0000302c: $ 1 <= 00000000
   beq $0, $0, end
                 @00003030: $ 1 <= 00000004
   begin:
   addu $ra, $ra, 4 @00003034: $31 (= 00003014
   jr $ra
                 @00003014: $19 <= 00000002
   end:
                 @0000302c: $ 1 <= 00000000
   nop
(10) D: jr
                E: cal i
   略
(11) D: jr
                E: load
   略
(12) D: jr
                M: load
   略
2. 转发组合
(1) D: cal r E: jal
                          R: rs
   jal begin
   addu $31, $31, $31 @00003000: $31 <= 00003008
   begin:
                @00003004: $31 <= 00006010
   nop
(2) D: cal i
                E: jal
                           R: rs
   jal begin
   ori $1,$31,0 @00003000: $31 (= 00003008
   begin:
             @00003004: $ 1 <= 00003008
   nop
(3) D: beq
                 E: jal
                          R: rs
   Undefined Behaviour
(4) D: load
               E: jal
                          R: rs
   略
(5) D: store E: jal
                          R: rs
   略
(6) D: jr
                E: jal
                           R: rs
   Undefined Behaviour
(7) D: cal r E: jal
                          R: rt
```

```
jal begin
  addu $31, $31, $31 (= 00003008
  begin:
              @00003004: $31 <= 00006010
  nop
(8) D: store
             E: jal
                        R: rt
  略
(9) D: beq
              E: jal
                       R: rt
  Undefined Behaviour
(10) D: cal r M: cal r R: rs
  ori $t1, $0, 1
  nop
  nop
  nop
  nop
             @00003000: $ 9 <= 00000001
  nop
  addu $51, $51, $t1 @00003018: $17 <= 00000001
  nop
  addu $s2, $s1, $s1 @00003020: $18 (= 00000002
(11) D: cal i M: cal r R: rs
(12) D: beq
             M: cal r R: rs
(13) D: load
            M: cal r R: rs
(14) D: store M: cal r R: rs
(15) D: jr
             M: cal r R: rs
(16) D: cal r M: cal r R: rt
(17) D: store M: cal r R: rt
(18) D: beq
              M: cal r R: rt
(19) D: cal r M: cal i R: rs
(20) D: cal i M: cal i R: rs
(21) D: beq
             M: cal i R: rs
(22) D: load M: cal i R: rs
(23) D: store M: cal i R: rs
(24) D: jr M: cal i R: rs
(25) D: cal r M: cal_i R: rt
(26) D: store M: cal i R: rt
(27) D: beg
              M: cal i R: rt
(28) D: cal r M: jal
                       R: rs
(29) D: cal i M: jal
                       R: rs
(30) D: beq
             M: jal
                       R: rs
(31) D: load M: jal
                       R: rs
(32) D: store M: jal
                       R: rs
(33) D: jr
              M: jal
                       R: rs
(34) D: cal r M: jal
                       R: rt
(35) D: store M: jal
                       R: rt
(36) D: beg
              M: jal
                        R: rt
```

```
(37) D: cal r W: cal r R: rs
(38) D: cal i W: cal r R: rs
(39) D: beq W: cal_r R: rs
(40) D: load W: cal r R: rs
(41) D: store W: cal r R: rs
(42) D: jr W: cal r R: rs
(43) D: cal r W: cal r R: rt
(44) D: store W: cal_r R: rt
(45) D: beq W: cal r R: rt
(46) D: cal r W: cal i R: rs
(47) D: cal i W: cal i R: rs
(48) D: beq W: cal_i R: rs
(49) D: load W: cal_i R: rs
(50) D: store W: cal i R: rs
(51) D: jr W: cal i R: rs
(52) D: cal r W: cal i R: rt
(53) D: store W: cal_i R: rt
(54) D: beq W: cal i R: rt
(55) D: cal r W: load R: rs
(56) D: cal i W: load R: rs
(57) D: beq W: load R: rs
(58) D: load W: load R: rs
(59) D: store W: load R: rs
(60) D: jr W: load R: rs
(61) D: cal r W: load R: rt
(62) D: store W: load R: rt
(63) D: beq W: load R: rt
(64) D: cal r W: jal R: rs
(65) D: cal i W: jal R: rs
(66) D: beq W: jal R: rs
(67) D: load W: jal
                     R: rs
(68) D: store W: jal R: rs
(69) D: jr
          ₩: jal
                     R: rs
(70) D: cal r W: jal
                     R: rt
(71) D: store W: jal R: rt
(72) D: beq W: jal
                     R: rt
(73) E: cal r M: cal_r R: rs
(74) E: cal_i M: cal_r R: rs
(75) E: load M: cal r R: rs
(76) E: store M: cal r R: rs
(77) E: cal r M: cal r R: rt
(78) E: store M: cal_r R: rt
(79) E: cal_r M: cal_i R: rs
(80) E: cal i M: cal i R: rs
```

```
(81) E: load M: cal i R: rs
(82) E: store M: cal i R: rs
(83) E: cal r M: cal i R: rt
(84) E: store M: cal_i R: rt
(85) E: cal r M: jal
                      R: rs
(86) E: cal i M: jal
                      R: rs
(87) E: load M: jal
                      R: rs
(88) E: store M: jal
                      R: rs
(89) E: cal_r M: jal R: rt
(90) E: store M: jal R: rt
(91) E: cal r W: cal r R: rs
(92) E: cal_i W: cal_r R: rs
(93) E: load W: cal_r R: rs
(94) E: store W: cal r R: rs
(95) E: cal r W: cal r R: rt
(96) E: store W: cal_r R: rt
(97) E: cal r W: cal i R: rs
(98) E: cal i W: cal i R: rs
(99) E: load W: cal i R: rs
(100) E: store W: cal i R: rs
(101) E: cal r W: cal i R: rt
(102) E: store W: cal i R: rt
(103) E: cal r W: load R: rs
(104) E: cal i W: load R: rs
(105) E: load W: load R: rs
(106) E: store W: load R: rs
(107) E: cal r W: load R: rt
(108) E: store W: load R: rt
(109) E: cal r W: jal R: rs
(110) E: cal i W: jal R: rs
(111) E: load W: jal
                      R: rs
(112) E: store W: jal R: rs
(113) E: cal r W: jal
                      R: rt
(114) E: store W: jal
                      R: rt
(115) M: store W: cal r R: rt
(116) M: store W: cal_i R: rt
(117) M: store W: load R: rt
(118) M: store W: jal
```

R: rt

思考题

1. 在本实验中你遇到了哪些不同指令类型组合产生的冲突? 你又是如何解决的? 相应的测试样例是什么样的?

本实验中指令根据其所需要读写的寄存器位置(rs/rt)的不同可分为以下八类: cal_r (addu/subu)、cal_i (ori/lui)、store (sw)、load (lw)、beq、j、jal、jr。在指令需要用到RD1/RD2的值时,若此时该数据未完成回写/未产生,则发生了冲突,分别需要用转发/暂停来解决。具体冲突组合见设计文档中的冒险处理策略部分,相应测试样例见设计文档中的测试样例部分。