

# INDIAN INSTITUTE OF INFORMATION TECHNOLOGY, DESIGN AND MANUFACTURING, KANCHEEPURAM

### **RFMCD PRACTICE LAB 5**

NAME: K.NITHESH

**ROLL NO: ESD191008** 

**AIM**: To observe signal propagation in a X-band rectangular waveguide

**Tools Required**: HFSS(ANSYS ELECTROMAGNETIC DESKTOP)

#### Waveguide design:



#### S parameters plot:



#### TE10 MODE:





#### **TE20 MODE:**









#### **TE01 MODE:**







#### TE11 MODE:





## ACTIVITY 2 :Calculate cutoff frequency of all the 4 modes and compare simulated vs calculated frequency plot.

| Calulated | Simulated                  |
|-----------|----------------------------|
| 6.651     | 7.5                        |
| 13.1233   | 13.1                       |
| 14.763    | 15.1                       |
| 16.1562   | 16.2                       |
|           | 6.651<br>13.1233<br>14.763 |



#### **INFERENCE:**

- By observing the vector field we can identify the direction of propagation.
- If we take frequency less than cutoff frequency it will not propagate from one port to another port in waveguide.
- By observing the S parameter plot we can identify the cutoff frequency.
- By observing the shape of propagation we can identify the mode of propagation.
- TE modes (Transverse Electric) have no electric field component in the direction of propagation
- TM modes (Transverse Magnetic) have no magnetic field component in the direction of propagation.
- all the modes meet at 0 and form a straight line when they reach cut-off frequency

#### **Conclusion:**

Signal propagation on the rectangular waveguide is observed after the rectangular waveguide has been created using Ansys software. Then, we observed the s-parameter. Observed different modes of propagation.