UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Discussion 6

Fall 2023

1. Chernoff Bound

Prove that

- $P(X > t) \le \frac{M_X(\lambda)}{e^{\lambda t}} \ \forall \lambda > 0$, and $P(X < t) \le \frac{M_X(\lambda)}{e^{\lambda t}} \ \forall \lambda < 0$. For $X \sim \mathcal{N}(\mu, \sigma^2)$, upper bound the probability of deviation from mean $P(|X \mu| > t)$.

Solution: See Chernoff Bound references (e.g. Wikipedia).

2. Exponential Bounds

Let $X \sim \text{Exponential}(\lambda)$. For $x > \lambda^{-1}$, find bounds on $\mathbb{P}(X \geq x)$ using Markov's inequality, Chebyshev's inequality, and the Chernoff bound.

Solution: Since $\mathbb{E}(X) = \lambda^{-1}$, Markov's inequality gives

$$\mathbb{P}(X \ge x) \le \frac{\mathbb{E}(X)}{x} = \frac{1}{\lambda x},$$

and from $var(X) = \lambda^{-2}$, Chebyshev's inequality gives

$$\mathbb{P}(X \ge x) = \mathbb{P}(X - \lambda^{-1} \ge x - \lambda^{-1}) \le \mathbb{P}(|X - \lambda^{-1}| \ge x - \lambda^{-1})$$
$$\le \frac{\text{var}(X)}{(x - \lambda^{-1})^2} = \frac{1}{(\lambda x - 1)^2}.$$

By the Chernoff bound, for any s > 0,

$$\mathbb{P}(X \ge x) = \mathbb{P}\left(\exp(sX) \ge \exp(sx)\right) \le \frac{M_X(s)}{\exp(sx)} = \frac{\lambda}{(\lambda - s)\exp(sx)}.$$

We wish to optimize this bound over s > 0; we note that it suffices to maximize the denominator $(\lambda - s) \exp(sx)$. Differentiating,

$$-\exp(sx) + x(\lambda - s)\exp(sx) = 0,$$

so $1 = x(\lambda - s)$, that is, $s = \lambda - x^{-1}$. Thus

$$\mathbb{P}(X \ge x) \le \frac{\lambda}{(\lambda - (\lambda - x^{-1})) \exp((\lambda - x^{-1})x)} = \frac{\lambda}{x^{-1} \exp(\lambda x - 1)}$$
$$= \lambda x \exp(-(\lambda x - 1)).$$

Observe that the Chernoff bound is the only one which decreases exponentially with x, which is the true behavior: $\mathbb{P}(X \ge x) = \exp(-\lambda x)$.

3. Almost Sure Convergence Implies Convergence in Probability

For random variables X_1, X_2, \ldots and X on a common probability space (Ω, \mathcal{F}, P) , prove that if $X_n \stackrel{\text{a.s.}}{\to} X$ then $X_n \stackrel{\text{p}}{\to} X$.

Solution: The Wikipedia page contains good proofs on the topic.