

PHYSICS 3APHY and 3BPHY

Formulae and Constants Sheet

Physics 3A/3B: Formulae and Constants Sheet

Forces and Motion

Mean velocity $v_{av} = \frac{s}{t} = \frac{v + u}{2}$

Equations of motion $a = \frac{\Delta v}{\Delta t}$; $s = ut + \frac{1}{2}at^2$; $v^2 = u^2 + 2as$; v = u + at

Force F = ma

Weight force F = mg

Momentum p = mv

Change in momentum (impulse) $F\Delta t = mv - mu$

Kinetic energy $E_k = \frac{1}{2} mv^2$

Gravitational potential energy $E_p = mgh$

Work done $W = Fs = \Delta E$

Power $P = \frac{W}{t} = \frac{\Delta E}{t} = Fv_a$

Centripetal acceleration $a_c = \frac{v^2}{r}$

Centripetal force $F_c = ma_c = \frac{mv}{r}$

Newton's Law of Universal $F = G \frac{m_1 m}{r^2}$

Gravitational field strength $g = G \frac{M}{r^2}$

Moment of a force T = rF

Electricity and Magnetism

Electric current $I = \frac{q}{t}$

Electric field $E = \frac{F}{q} = \frac{V}{d}$

Work and energy W = qV = VIt

Ohm's Law V = IR

Resistances in series $R_T = R_1 + R_2 + ...$

Resistances in parallel $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

Power $P=VI=I^2R=\frac{V^2}{R}$

Magnetic flux $\Phi = BA$

Electromagnetic induction $\mathrm{emf} = -\mathrm{N}\frac{\Delta\Phi}{\Delta t}, \ \mathrm{emf} = \ell \, \mathrm{v} \, \mathrm{B}$

Magnetic force $F = I \ell B$, F = qvB

Ideal transformer turns ratio $\frac{V_s}{V_p} = \frac{N_s}{N_p}$

Particles and waves

Energy of photon E = hf

Energy transitions $E_2 - E_1 = hf$

Wave period $T = \frac{1}{2}$

Wave equation $v_{wave} = f\lambda$

Internodal distance $d = \frac{1}{2}\lambda$

Absolute refractive index $n_x = \frac{c}{C}$

Snell's Law $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Physical Constants

Speed of light in vacuum or airc	$= 3.00 \times 10^8 \text{ m s}^{-1}$
Electron chargee	= -1.60 x 10 ⁻¹⁹ C
Mass of electronm _e	$= 9.11 \times 10^{-31} \text{ kg}$
Planck's constanth	$= 6.63 \times 10^{-34} \text{ J s}$
Universal gravitational constantG	= $6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Electron volt	$= 1.60 \times 10^{-19} \text{ J}$
Mass of protonm _p	$= 1.67 \times 10^{-27} \text{ kg}$
Mass of alpha m_{α}	$= 6.65 \times 10^{-27} \text{ kg}$

Physical Data

Physical Data		
Mean acceleration due to gravity on Earth	g	$= 9.80 \text{ m s}^{-2}$
Mean acceleration due to gravity on the Moon	g_{M}	$= 1.62 \text{ m s}^{-2}$
Mean radius of the Earth	R_E	$= 6.37 \times 10^6 \text{ m}$
Mass of the Earth	M_{E}	$= 5.98 \times 10^{24} \text{ kg}$
Mean radius of the Sun	R_s	$= 6.96 \times 10^8 \text{ m}$
Mass of the Sun	M_{S}	$= 1.99 \times 10^{30} \text{ kg}$
Mean radius of the Moon	R_{M}	$= 1.74 \times 10^6 \text{ m}$
Mass of the Moon	M_{M}	$= 7.35 \times 10^{22} \text{ kg}$
Mean Earth-Moon distance		3.84 x 10 ⁸ m
Mean Earth-Sun distance		1.50 x 10 ¹¹ m
Tonne1	tonne	$= 10^3 \text{ kg} = 10^6 \text{ g}$

Electromagnetic spectrum

Note: 1. Shaded areas represent regions of overlap.

2. Gamma rays and X-rays occupy a common region.

PHYSICS EXAM

4 FORMULAE AND CONSTANTS SHEET

Prefixes of the Metric System

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10^{12}	tera	T	10 ⁻³	milli	m
10^9	giga	G	10-6	micro	μ
10^6	mega	M	10-9	nano	n
10^3	kilo	k	10 ⁻¹²	pico	p

Mathematical expressions

Given
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The following expressions apply to the triangle ABC as shown:

The following expressions apply to the right-angled triangle ABC as shown:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$b = \sqrt{a^2 + c^2 - 2ac\cos B}$$

$$\sin A = \frac{a}{c}$$

$$\cos A = \frac{b}{c}$$

$$\tan A = \frac{a}{b}$$