

HAE301E - Electronique analogique

TD/TP 4 : Régime variable

Analyse de circuits à l'aide du formalisme de Laplace

Exercice 1 : Réponse d'un circuit du 1er ordre

On considère le circuit de la figure 1. On considère que les conditions initiales sont nulles (i.e. à t=0 le condensateur est déchargé). Le circuit est alimenté par e(t) est un échelon de tension d'amplitude E.

Figure 1

- 1) Faire le schéma du circuit dans le formalisme de Laplace avec les impédances opérationnelles.
- 2) Calculer S(p) et I(p) les transformées de Laplace respectives de s(t) et i(t). Ecrire S(p) et I(p) sous la forme d'une somme d'éléments simples.
- 3) Calculer s(t) et i(t) en utilisant la table des transformées de Laplace donnée dans l'annexe 1.
- 4) A l'aide de Matlab, vérifier les résultats obtenus dans la question précédente en calculant les transformées de Laplace inverse de S(p) et I(p). On s'aidera de l'annexe 2 pour la syntaxe Matlab.
- 5) Avec Matlab, tracer s(t) et i(t). On prendra $R_1=10~\Omega$, $R_2=8~\Omega$, C= 100 μF et E=10 V. Pour cela, on définira un vecteur temps t de 0 à 5 ms contenant 500 points : t=linspace(0,5e-3,500).

Exercice 2 : Réponse d'un circuit du 2nd ordre

On considère le circuit de la figure 2. Les conditions initiales sont nulles. On prendra R=1 k Ω et C= 1 μ F.

Figure 2

- 1) Faire le schéma équivalent du circuit dans le formalisme de Laplace avec les impédances opérationnelles.
- 2) Déterminer la fonction de transfert opérationnelle H(p). On mettra la fonction de transfert sous la forme canonique suivante :

$$H(p) = \frac{H_0 \left[1 + \left(\frac{p}{\omega_0} \right)^2 \right]}{1 + \frac{2mp}{\omega_0} + \left(\frac{p}{\omega_0} \right)^2}$$

On déterminera $H_0\text{, }\omega_0$ et m.

Nous allons à présent étudier la réponse harmonique de ce circuit.

- 3) A l'aide de Matlab et du formalisme de Laplace, déterminer à réponse à différents signaux d'entrée :
 - i. $e_1(t) = cos(2\pi \cdot 20 \cdot t) \cdot u(t)$
 - ii. $e_2(t) = cos(2\pi \cdot 170 \cdot t) \cdot u(t)$
 - iii. $e_3(t) = cos(2\pi \cdot 10^4 \cdot t) \cdot u(t)$

On trouve que les signaux de sortie sont sous la forme $s(t) = a \cdot cos(2\pi \cdot f \cdot t + \varphi) \cdot u(t)$

- 4) Tracer le diagramme de Bode de ce circuit. On s'aidera de l'annexe 3. A quel type de filtre correspond ce circuit ?
- 5) Utiliser le diagramme de Bode pour estimer a et φ pour les trois signaux d'entrée.

Annexe 1 : Table des transformées de Laplace

f(t) pour t>0	F(p)
δ (impulsion)	1
1 (échelon unité)	$\frac{1}{p}$
t (rampe)	$\frac{1}{p}$ $\frac{1}{p^2}$
t	$\frac{n!}{p^{n+1}}$
e ^{-a.t}	$\frac{1}{p+a}$
$\frac{1}{T}e^{-t/T}$	$\frac{1}{1+T.p}$
t .e -a.t	$\frac{n!}{(p+a)^{n+1}}$
cos(ω.t)	$\frac{p}{p^2 + \omega^2}$
sin(ω.t)	$\frac{\omega}{p^2 + \omega^2}$
e ^{-at} .cos(ω.t)	$\frac{p+a}{(p+a)^2+\omega^2}$
e ^{-at} .sin(ω.t)	$\frac{\omega}{(p+a)^2+\omega^2}$

Annexe 2 : Exemples de l'utilisation de fonctions Matlab

Déclaration de variables symboliques	>> syms x y;
Dérivation	<pre>>> syms x y; >> f = sin(x)^2 + cos(y)^2; >> diff(f, y, 2) % Dérivée seconde de f en fonction de y ans = 2*sin(y)^2 - 2*cos(y)^2</pre>
Transformée de Laplace et	>> syms t a p;
Laplace inverse	>> f = exp(-a*t); >> F=laplace(f,t,p)
	F =
	1/(a + p)
	>> f=ilaplace(F,p,t)

	f = 1/exp(a*t)
Substitution des variables	>> syms a b;
symboliques par des nombres (i.e.	>> f=subs(a + b, a, 4)
variables numériques)	
, ,	f =
	b + 4
Tracé d'une courbe	% x et y sont des variables numériques
	>> plot(x,y) % trace y et fonction de x
Fonction Heaviside (fonction	>> syms t
échelon unité)	>> heaviside(t)
<i>'</i>	

Annexe 3 : Exemple de tracé du diagramme de Bode à l'aide de Matlab.

Dans cet exemple, on considère la fonction de transfert d'un circuit RC :

$$\underline{H} = \frac{\underline{S}}{\underline{E}} = \frac{1}{1 + jRC\omega}$$
 avec R=1 k Ω et C=1 μ F.

```
R
clear all
                                                                      s(t)
                                     e(t)
close all
% déclaration des variables
R=1e3; %ohm
C=1e-6; %F
w=logspace(0,6,1000); % déclaration d'un vecteur pulsation [100, 106]
contenant 1000 points
% fonction de transfert
H=1./(1+1i*R*C*w);
% Gain (dB)
G=20*log10(abs(H));
% Phase(°)
Phi=angle(H)*180/pi;
% Tracé du diagramme de Bode
figure(1)
semilogx(w,G)
xlabel('Pulsation (rad/s)')
ylabel('Gain (dB)')
figure(2)
semilogx(w, Phi)
xlabel('Pulsation (rad/s)')
ylabel('Phase (°)')
```