Neuro-computing: an introduction

Susmita Ghosh

Computer Science & Engineering Department
Jadavpur University
Kolkata

- Primary task of all biological neural systems is to control various functions (mainly behavioral).
- Human being can do it almost instantaneously and without much effort. e.g., recognizing a scene or music immediately.
- Artificial Neural Network (ANN) or Neural Network (NN) models try to simulate the biological neural network with electronic circuitry.
- Also known as Connectionists Model/ Parallel Distributed Processing (PDP).

Purpose: To achieve human like performance (particularly in pattern recognition & image processing).

Definition

Definition: Massively parallel interconnected network of simple processing elements which are intended to interact with the objects of the real world in the same way as biological systems do.

- NN models are extreme simplifications of human neural systems.
- Computational elements (neurons/nodes/ processors) are **analogous** to that of the fundamental constituents (**neurons**) of the biological nervous system.

Similarity between BNN and ANN

- Gets input via synaptic connection
- Accumulated input is transformed to a single output
- Output is transmitted through axon
- \bullet If input > 0, the neuron fires
- ❖ Total output ← firing rate

Neural network

Summary

- An electronic neuron emulates a biological neuron
- Artificial neurons are then connected to form a network to mimic (!) the topology of human nervous system
- Functions performed by a NN is determined by the network topology, connection strength, processing performed at computing elements or nodes, and status updating rule

General framework of neural networks

Processing units

- Receives input from connected neurons, compute an output value and sends it to other connected neurons.
- Three types of units *input*, *output*, *hidden*.

Output value - $o_i(t) = f(I_i(t))$

- \triangleright Total input for ith neuron is I_i .
- \triangleright f is a threshold or squashing function.

Unidirectional connections (w_{ij})

- $\nearrow w_{ij} < 0 \rightarrow \text{unit } u_j \text{ inhibits unit } u_i.$
- $\triangleright w_{ij} = 0 \rightarrow \text{unit } u_i \text{ has no direct effect on unit } u_i.$
- $\triangleright w_{ij} > 0 \rightarrow \text{unit } u_i \text{ excites unit } u_i.$

Characteristics of neural networks

Exhibit a number of human brain's characteristics (partially).

- **Learn from example** shown a set of inputs, they selfadjust to produce consistent response.
- **Generalize from previous examples to new ones** once trained, a network's response is mostly insensitive to variations in input.
- * Abstract essential characteristics from inputs find the ideals (prototype) from imperfect inputs.

Popularly used NN models

Some common feature are there; but **differ in finer details**.

- Multi-layer perceptron (hetero associator/supervised classifier)
- Hopfield's model of associative memory (auto associator/CAM)
- * Kohonen's model of self-organizing neural network (regularity detector/ unsupervised classifier)
- Radial basis function network (supervised)
- * Adaptive resonance theory (regularity detector)
- Cellular neural network
- Neo-cognitron

Two input perceptron

Perceptron: A single neuron connected by weights to a set of inputs

- Let x & y be two inputs and w_1, w_2 be the weights.
- If $w_1x + w_2y > \theta$ then the output is **1** else **0**, where θ = threshold
- $\mathbf{w}_1 \mathbf{x} + \mathbf{w}_2 \mathbf{y} = \mathbf{\theta} \rightarrow \text{separating line}$

Learning rule

Learning: Present a set of input patterns, adjust the weights until the desired output occurs for each of them.

$$\mathbf{w_i}(t+1) = \mathbf{w_i}(t) + \Delta_i;$$

$$\Delta_{i} = \eta \delta x_{i};$$

$$\delta = T - A$$
 (i.e., target – actual).

*If the sets of patterns are linearly separable, the single layer perceptron algorithm is guaranteed to find a separating hyperplane in a finite number of steps.

Change of weights

Boolean functions

How to design other gates (NOR, NAND)?

Cascading layers

Two layers: Generates convex decision regions

Three layers: Decision regions of any shape

Multi-layer network

Multi-layer perception

OUTPUT PATTERN

INPUT PATTERN

- Nodes of two different consecutive layers are connected by *links* or weights.
- *There is no connection among the elements of the same layer.
- *The layer where the inputs are presented is known as the *input layer*.
- *On the other hand the output producing layer is called the *output* layer.
- The layers in between the input and the output layers are known as hidden layers.
- *The total input (I_i) to the i^{th} unit

$$I_i = \sum_i w_{ij} O_i$$

 $I_i = \sum_j w_{ij} o_j$ o_j is the output of the j^{th} neuron.

The output of a node *i* is obtained as

$$o_i = f(I_i)$$
, f is the activation function.

*Mostly the activation function is sigmoidal/squashing, with the form (smooth, non-linear, differentiable & saturating),

*Initially very small random values are assigned to the links/weights.

Parameter updating

- For learning (training) we present the input pattern $X=\{x_i\}$, and ask the net to adjust its set of weights/biases in the connecting links such that the desired output $T=\{t_i\}$ is obtained at the output layer.
- \bullet Then another pair of *X* and *T* is presented for learning.
- *Learning tries to find a simple set of weights and biases that will be able to discriminate among all the input/output pairs presented to it.
- *The output $\{o_i\}$ will not be the same as the target $\{t_i\}$.

Error is,

$$E = \frac{1}{2} \sum_{i} (t_i - o_i)^2$$

- For learning the correct set of weights error is E is reduced as rapidly as possible.
- * Use gradient descent technique.

The incremental change in the direction of negative gradient is

$$\Delta w_{ji} \propto -\frac{\partial E}{\partial w_{ji}} = -\eta \frac{\partial E}{\partial w_{ji}} = -\eta \frac{\partial E}{\partial I_j} \frac{\partial I_j}{\partial w_{ji}} = \eta \delta_j o_i$$

where
$$\delta_j = -\frac{\partial E}{\partial I_j} = -\frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial I_j} = -\frac{\partial E}{\partial o_j} f'(I_j)$$
.

For the links connected to the output layer the change in weight is given by $\partial E = \partial E = \partial E = \partial E$

$$\Delta w_{ji} = \eta \left(-\frac{\partial E}{\partial o_j} \right) f'(I_j) o_i.$$

For nodes in the hidden layers

$$\frac{\partial E}{\partial o_{j}} = \sum_{k} \frac{\partial E}{\partial I_{k}} \frac{\partial I_{k}}{\partial o_{j}} = \sum_{k} \frac{\partial E}{\partial I_{k}} \frac{\partial}{\partial o_{j}} \sum_{i} w_{ki} o_{i} = \sum_{k} \frac{\partial E}{\partial I_{k}} w_{kj} = \sum_{k} (-\delta_{k}) w_{kj}.$$

Hence for the hidden layer we have

$$\Delta w_{ji} = \eta \left(\sum_{k} \delta_{k} w_{kj}\right) f'(I_{j}) o_{i}$$

If
$$o_j = \frac{1}{1 + e^{-\left(\sum_i w_{ji} o_i - \theta_j\right)}}$$
 then $f'(I_j) = \frac{\partial o_j}{\partial I_j} = o_j(1 - o_j)$

and thus we get

$$\Delta w_{ji} = \begin{cases} \eta \left(-\frac{\partial E}{\partial o_j} \right) o_j (1 - o_j) o_i & \to \text{output layer} \\ \eta \left(\sum_k \delta_k w_{kj} \right) o_j (1 - o_j) o_i & \to \text{hidden layer} \end{cases}$$

- \clubsuit A large value of η corresponds to rapid learning but might result in oscillations.
- A momentum term of $\alpha \Delta w_{ji}(t)$ can be added to increase the learning rate without oscillation.

$$\Delta w_{ji}(t+1) = \eta \delta_{j} o_{i+} \alpha \Delta w_{ji}(t)$$

The second term is used to specify that the change in w_{ji} at $(t+1)^{th}$ instant should be somewhat similar to the change undertaken at instant t.