Table 7: Regression ability in terms of mean square error (MSE) and termination criterion (Ter) obtained with the proposed algorithms (Linear, Constant and Cubic) and with four different activation functions (Sig, Amp, ReLU, Shape), on a set of real world problems from the UCI data set. Best results are shown in **bold**. See the main text for more details.

				Const	ant	Tine	ar	Cubic	Ji.	S. S.	5	Amp	2	BeI.I		Shane	٥
Function	#W	#I	Z #	MSE	Ter	MSE	Ter	MSE	Ter	MSE	- Ter	MSE	Ter	MSE	Ter	MSE	Ter
			2	0.0168	41.6	0.0171	39.1	0.0184	39.8	0.0155	138.1	0.0212	57.0	0.0814	39.6	0.0290	26.7
Airfoil	ಬ	1503	ಬ	0.0150	44.9	0.0150	39.9	0.0136	45.0	0.0138	131.7	0.0154	65.2	0.0549	44.8	0.0287	27.9
			10	0.0137	62.9	0.0136	56.1	0.0131	62.4	0.0135	112.6	0.0144	53.9	0.0471	47.7	0.0294	27.2
2			2	0.0031	30.9	0.0030	27.5	0.0036	40.5	0.0043	77.3	0.0101	44.2	0.0158	35.5	0.0050	13.6
C_rower	4	926	ಬ	0.0030	38.1	0.0029	34.5	0.0030	48.3	0.0042	68.3	0.0054	41.9	0.0137	33.4	0.0048	10.9
Flant			10	0.0028	38.4	0.0027	38.1	0.0028	59.2	0.0042	50.4	0.0059	34.1	0.0123	34.0	0.0070	7.2
0,000000			2	0.0129	9.68	0.0123	96.0	0.0146	101.2	0.0131	170.0	0.0223	78.1	0.0163	40.5	0.0126	53.6
Collerete	∞	1030	ಬ	0.0112	94.1	0.0104	104.3	0.0136	103.6	0.0100	174.6	0.0120	137.3	0.0115	46.0	0.0108	56.9
COIII-SU			10	0.0095	107.1	0.0098	106.9	0.0116	103.9	0.0122	159.5	0.0105	123.5	0.0097	51.4	0.0109	52.5
Consonoto			2	0.0291	78.7	0.0279	93.7	0.0206	88.2	0.0245	140.7	0.0236	100.4	0.0072	93.8	0.0152	88.5
Concrete	10	103	ಬ	0.0180	95.9	0.0158	9.66	0.0106	94.1	0.0106	178.8	0.0284	107.2	0.0068	83.7	0.0103	6.78
dumic			10	0.0145	76.3	0.0132	81.5	0.0095	92.9	0.0110	162.7	0.0128	114.1	0.0097	93.3	0.0097	89.1
			2	0.0053	9.82	0.0053	67.5	0.0058	67.5	0.0094	136.3	0.0198	51.8	0.0095	58.1	0.0094	36.9
Effersy Ffficient	∞	892	ಬ	0.0057	70.1	0.0054	73.6	0.0058	74.0	0.0066	121.1	0.0105	59.6	0.0068	38.4	0.0063	38.9
EllicientA			10	0.0054	88.1	0.0056	71.6	0.0058	9.68	0.0064	105.8	0.0107	41.2	0.0058	47.4	0.0072	34.1
			2	0.0081	61.6	0.0081	54.9	0.0083	54.2	0.0097	132.3	0.0190	58.0	0.0100	65.3	0.0103	36.9
Energy FR 2:524D	_∞	892	ಬ	0.0080	61.3	0.0082	49.2	0.0081	59.9	0.0083	95.2	0.0101	59.0	0.0081	36.8	0.0080	36.9
Emclentb			10	0.0073	80.1	0.0079	63.2	0.0081	72.6	0.0083	84.2	0.0098	41.1	0.0077	44.5	0.0089	
Domoc4			2	0.0027	42.8	0.0028	38.5	0.0030	52.9	0.0044	145.4	0.0044	32.7	0.0035	108.3	0.0034	l
Forest	12	517	ಬ	0.0030	72.2	0.0030	67.2	0.0032	87.1	0.0045	138.4	0.0044	55.7	0.0036	85.3	0.0034	
T. II C			10	0.0033	6.86	0.0037	93.2	0.0036	110.3	0.0045	109.1	0.0044	64.3	0.0042	81.7	0.0034 sec	
			2	0.0119	123.8	0.0114	118.4	0.0115	115.1	0.0139	171.2	0.0222	74.0	0.0133	81.4	0.0141 🖺	
Housing	13	206	ಬ	0.0116	105.9	0.01111	104.4	0.0107	117.7	0.0110	160.4	0.0163	8.69	0.0116	57.9	0.0139	
			10	0.0116	89.2	0.0116	80.5	0.0110	125.3	0.0107	150.8	0.0147	69.2	0.0109	67.5	0.0161	35.3
Darkinson			2	0.0035	83.3	0.0033	86.4	0.0046	88.0	0.0048	151.5	2200.0	76.3	0.0048	91.2	0.00389	41.5
Tolomonit	21	5875	ಒ	0.0033	91.3	0.0032	97.6	0.0048	95.3	0.0046	128.2	0.0050	83.5	0.0044	67.3	0.0037 F	
Telemonic			10	0.0032	95.4	0.0031	84.3	0.0041	98.1	0.0046	106.2	0.0053	68.5	0.0040	7.07	0.0038 gr	30.2
Wine			2	0.0184	65.7	0.0182	64.6	0.0182	62.9	0.0184	120.5	0.0210	53.6	0.0215	50.9	0.01910	
Quality	11	1599	ಬ	0.0184	45.3	0.0178	55.4	0.0179	75.7	0.0182	74.3	0.0193	45.8	0.0213	31.2	0.01879	
Red			10	0.0177	49.9	0.0176	50.5	0.0172	115.6	0.0182	48.0	0.0195	32.1	0.0211	29.7	0.0189 a	25.3
Wine			2	0.0172	34.2	0.0171	37.4	0.0173	29.7	0.0170	81.0	0.0178	56.0	0.0182	40.3	0.0173	
Quality	11	4898	ಒ	0.0167	56.6	0.0165	30.1	0.0171	33.1	0.0168	67.3	0.0172	43.9	0.0180	29.4	0.0170	17.3
White			10	0.0160	34.1	0.0158	36.5	0.0169	36.0	0.0167	53.4	0.0171	36.0	0.0176	34.2	0.0172	14.7
Vacht			2	2200.0	93.4	0.0071	87.1	0.0158	97.2	0.0137	189.7	0.0233	94.3	0.0147	103.0	0.0201	55.4
Hydrody	9	308	ಸಾ	0.0033	111.2	0.0017	112.2	0.0016	126.3	0.0079	189.4	0.0131	77.2	0.0081	7.97	0.0207	46.0
IIyaay.			10	0.0059	106.3	0.0038	106.2	0.0026	98.5	0.0065	180.1	0.0122	2.99	0.0072	85.8	0.0186	51.0

Table 5: Generalization ability in terms of accuracy (Acc) and termination criterion (Ter) obtained with the proposed algorithms (Linear, Constant and Cubic) and with four different activation functions (Sig, Amp, ReLU, Shape), on a set of real world problems from the UCI data set. Best results are shown in **bold**. See the main text for more details.

	:		1.5	Constant	ant	Linear	ar	Cubic	ic	Sig	ы	Amp	at	ReL	D.	Shape	De
Function	#W	#	z #	Acc	Ter	Acc	Ter	Acc	Ter	Acc	Ter	Acc	Ter	Acc		Acc	Ter
ال ال			2	79.03	43.9	79.16	29.0	80.25	36.8	78.51	113.5	76.35	28.9	92.92	102.5	75.54	24.3
Diood Thendfield	ಬ	748	ಬ	79.70	25.1	80.84	35.1	79.54	40.2	77.84	70.2	78.11	37.5	76.62	44.3	76.43	23.2
Iransiusion			10	81.84	27.7	78.86	27.9	78.12	41.6	78.92	50.1	78.24	31.1	76.49	36.0	77.03	20.7
			2	97.32	37.2	92.60	38.3	97.79	35.1	88.34	131.1	86.38	43.0	95.97	52.6	96.53	22.6
Cancer	6	286	ಬ	97.32	43.0	97.34	45.1	97.76	40.6	95.85	9.68	95.69	40.6	96.03	33.0	96.52	25.7
			10	97.44	43.7	97.53	42.0	97.33	53.1	95.56	62.6	95.75	35.2	95.79	32.4	96.93	23.6
			2	85.99	44.1	86.16	46.9	86.71	37.6	81.35	47.5	78.97	31.0	86.09	56.2	84.52	23.4
Card	51	069	ಬ	85.90	45.7	86.12	49.8	86.69	35.6	84.39	35.6	83.71	33.5	85.15	47.7	82.54	15.9
			10	96.98	58.6	86.90	55.7	86.14	47.9	84.10	33.6	84.25	56.6	80.29	38.4	78.46	21.7
			2	92.30	34.4	92.56	40.9	92.76	48.0	91.04	95.1	90.48	15.7	90.52	92.0	92.17	90.08
Climate	18	540	ro	92.59	39.8	92.65	46.5	93.01	49.9	91.70	83.1	90.46	14.7	90.13	7.07	92.48	27.1
			10	93.00	57.5	93.00	59.6	93.11	47.5	91.65	8.92	90.46	12.2	90.65	56.5	92.37	21.7
			2	75.50	35.9	75.90	37.0	76.85	35.5	71.49	107.4	74.87	62.4	71.43	46.0	68.84	17.5
Diabetes	∞	892	ಬ	76.59	31.6	96.92	39.9	76.54	36.8	75.78	2.69	75.34	53.3	20.02	27.0	69.41	14.3
			10	77.09	37.4	77.01	34.6	76.24	37.9	75.25	54.3	75.09	41.0	71.66	30.3	68.16	12.8
			2	88.20	20.2	88.50	24.6	88.44	23.2	86.70	56.0	86.90	21.7	87.80	82.1	88.00	42.0
Fertility	10	100	ಬ	87.10	27.8	87.00	24.6	88.52	23.1	85.90	49.0	87.00	26.9	87.00	45.6	88.00	35.9
			10	86.20	25.1	85.30	24.6	88.32	25.8	85.90	33.1	86.90	27.4	87.50	37.9	87.80	25.5
			2	80.53	48.2	79.13	43.7	81.22	43.2	78.97	69.2	73.60	27.3	82.10	69.5	80.27	23.5
heartc	35	303	ಬ	80.83	51.8	80.60	50.2	81.62	45.2	79.57	47.7	79.33	30.6	81.13	53.3	78.20	14.0
			10	81.20	40.7	81.67	49.0	80.98	53.1	79.70	37.8	77.80	17.6	78.70	42.1	74.33	5.9
			2	81.77	50.1	82.69	53.1	83.65	62.4	74.43	111.4	73.31	42.8	90.92	8.96	72.60	20.5
Ionosphere	34	351	ಬ	87.46	2.99	87.57	64.1	85.38	6.09	87.51	89.5	84.71	77.0	74.51	9.08	99.72	13.2
			10	88.83	58.9	87.57	58.5	89.78	65.1	89.23	78.0	89.66	78.4	64.14	52.2	75.97	9.1
			2	61.75	43.8	64.65	50.1	65.03	57.8	28.90	82.8	58.30	31.6	68.35	88.7	62.05	22.6
Sonar	09	208	ಬ	70.85	68.4	73.35	59.3	69.74	58.9	72.85	77.1	68.40	46.7	68.15	6.02	66.85	17.1
			10	75.50	47.6	73.95	51.8	72.26	59.7	75.55	8.77	72.90	50.5	66.40	55.1	66.45	14.8
C++10%			2	81.52	40.2	81.11	39.2	81.16	40.8	78.60	75.5	75.07	48.5	82.48	72.2	82.66	25.8
(Heart)	35	270	ಬ	82.00	39.8	80.85	38.1	81.71	42.2	80.78	58.0	79.93	44.2	81.26	42.3	80.37	18.7
(Heart)			10	81.70	36.1	81.96	44.2	81.96	42.1	80.04	37.8	80.11	32.0	80.00	33.5	77.44	14.5
Vertebral			2	79.42	37.4	79.16	29.0	80.61	37.4	83.87	165.8	89.69	29.3	75.16	62.4	78.39	33.8
Column	9	310	ഹ	79.70	25.1	81.03	40.8	86.76	42.3	85.77	133.2	75.78	44.4	90.82	44.2	82.90	29.2
			10	81.84	27.7	84.55	45.2	81.33	43.8	85.16	151.1	77.74	30.0	80.01	54.4	72.58	25.1