西安交通大学实验报告

果程:			实	验	日	期
专业班号	组	别	交	报告	計 日	期
姓 名	学	号	报	告	退	发
司 组 者		_ 教室审批签字				

成绩					
年	月	日			
年	月	日			
(订正、重做)					

实验名称

8.6 换热器综合实验

一、实验目的

- (1) 熟悉换热器性能的测试方法,了解影响换热器性能的因素。
- (2) 掌握间壁式换热器对数平均温差以及传热系数 k 的测定方法。
- (3) 了解套管式换热器、板式换热器和列管式换热器的结构特点及其性能的差别。

二、实验原理

本实验所用的均是热量通过固体避免由热流体传递给冷流体的间壁式换热器。 根据传热方程式的一般形式,换热器传热系数可有下式决定:

$$k = \frac{\Phi}{A\Delta t_m} \tag{1}$$

不论顺流、逆流,对数平均温差的计算式为:

$$\Delta t_m = \frac{\Delta t_{max} - \Delta t_{min}}{ln \frac{\Delta t_{max}}{\Delta t_{min}}} \tag{2}$$

冷、热流体通过套管交换的热量,可根据如下热平衡方程式求得

$$q_{V1}\rho_1 c_{v1}(t_1' - t_1'') = q_{V2}\rho_2 c_{v2}(t_2'' - t_2')$$
(3)

保持冷水流量不变的情况下,改变热水的流量,进行不同工况的实验测定,可进一步得出传 热系数 k 与热水流量的关系特性曲线。

三、实验装置

1.冷水泵 2.冷水箱 3.冷水流量计 4.冷水顺逆流阀门组 5.列管式换热器 6.套管式换热器 7.板式换热器 8.热水流量计 9.热水箱 10.热水泵 11.电加热器

四、实验内容

- 1、 工况稳定后,测量冷、热水进、出口温度、流量,重复测量 5 次;
- 2、 以 5 次测量的平均值, 现场计算实验工况的热平衡偏差, 要求热平衡偏差在±5%左右;
- 3、 保持冷水流量 160L/h 不变, 改变热水流量 (550,500,450,400,350L/h 左右), 进行测量及 计算:
- 4、 按照以上操作步骤,分别转换开闭指定换热器(顺流和逆流),进行实验,测读数据;

五、实验数据整理

1. 对数平均温差

根据实验测定结果,按(2)式计算顺、逆流换热器的对数平均温差 Δt_m 。

2. 换热量

热水侧放热量 $\Phi_1 = q_{V1}\rho_1c_{p1}(t_1'-t_1'')$ (W) 冷水侧放热量 $\Phi_2 = q_{V2}\rho_2c_{p2}(t_2''-t_2')$ (W)

平均换热量
$$\Phi_m = \frac{\Phi_1 + \Phi_2}{2}$$
(W)

热平衡偏差
$$\delta = \frac{\Phi_1 - \Phi_2}{\Phi_m} \times 100\%$$

3. 传热系数
$$k = \frac{\Phi}{A\Delta t_m}$$

4. 实验结果的拟合

采用最小二乘法拟合整理套管式换热器的传热系数与流速的关系式,以传热系数 k 为纵坐标,以热水流速为横坐标,在坐标图上标绘实验点及所得关系式。

5. 换热器主要结构参数

类型	套管式换热器
	内管 Φ13×1.5
细构参数(mm)	外管 Φ29×1.5
换热面积(m²)	0.25

六、附录

1. 实验数据

流向	${t_1}'/{^\circ}\!{\mathbb C}$	${t_1}''/\mathbb{C}$	$q_1/L \cdot \mathrm{h}^{-1}$	${t_2}''/{\mathbb C}$	${t_2}''/{\mathbb C}$	$q_2/L \cdot h^{-1}$
顺流	60.24	52.68	495.10	11.68	35.06	157.00
	60.24	52.06	451.00	11.60	34.46	157.00
	60.56	51.51	400.10	11.50	33.95	157.00
	60.86	50.70	350.18	11.44	33.26	157.00
	61.08	49.60	300.44	11.48	32.36	157.00
逆流	60.40	52.94	501.02	11.30	34.58	157.00
	60.54	52.32	449.58	11.36	34.22	157.00
	60.71	51.56	398.80	11.34	33.90	157.00
	61.00	50.70	348.96	11.38	33.20	157.00
	61.08	49.50	299.90	11.38	32.50	157.00

2. 处理后的数据

流向			顺流					逆流		
$t_1'/{\mathbb C}$	60. 24	60. 24	60.56	60.86	61.08	60.40	60.54	60.71	61.00	61.08
$t_1''/{}^{\!$	52. 68	52. 06	51. 51	50.70	49.60	52. 94	52. 32	51.56	50.70	49.50
$q_1/L\cdot \mathbf{h^{-1}}$	495. 10	451.00	400.10	350. 18	300. 44	501.02	449.58	398.80	348.96	299.90
$t_2''/{}^{\circ}\!{\mathbb C}$	11.68	11.60	11.50	11. 44	11. 48	11.30	11.36	11.34	11.38	11.38
$t_2^{\prime\prime}/{}^{\circ}\!{\mathbb{C}}$	35.06	34. 46	33. 95	33. 26	32. 36	34. 58	34. 22	33.90	33. 20	32.50
$q_2/L\cdot \mathbf{h}^{-1}$	157. 00	157. 00	157.00	157.00	157.00	157.00	157.00	157.00	157.00	157. 00
$\Delta t_1/{}^{\circ}\mathbb{C}$	48. 56	48. 64	49.06	49. 42	49.60	25. 82	26. 32	26. 81	27. 80	28. 58
$\Delta t_2/{}^{}\mathbb{C}$	17. 62	17. 60	17. 56	17. 44	17. 24	41.64	40.96	40. 22	39. 32	38. 12
$\Delta t_m/^{\circ}\!$	30. 52	30. 53	30.66	30.70	30. 62	33. 10	33. 10	33.06	33. 23	33. 12
$\overline{t_1}/{}^{}\mathbb{C}$	56. 46	56. 15	56.04	55. 78	55. 34	56. 67	56. 43	56.14	55. 85	55. 29
$\overline{t_2}/\mathbb{C}$	23. 37	23. 03	22. 73	22. 35	21. 92	22.94	22.79	22.62	22. 29	21.94
$c_{p1}/kJ\cdot kg^{-1}\cdot \textit{K}^{-1}$	4. 18	4. 18	4. 18	4. 18	4. 18	4. 18	4. 18	4. 18	4.18	4. 18
$c_{p2}/kJ\cdot kg^{-1}\cdot \textit{K}^{-1}$	4. 18	4. 18	4. 18	4. 18	4. 18	4. 18	4. 18	4. 18	4.18	4. 18
$q_{V1}/m^3\cdot s^{-1}$	1. 38E-04	1.25E-04	1.11E-04	9.73E-05	8. 35E-05	1.39E-04	1. 25E-04	1.11E-04	9.69E-05	8.33E-05
$q_{V2}/m^3\cdot s^{-1}$	4. 36E-05	4.36E-05	4.36E-05	4.36E-05	4. 36E-05	4. 36E-05	4. 36E-05	4.36E-05	4.36E-05	4.36E-05
$\rho_1/kg\cdot m^{-3}$	984. 87	985. 03	985. 08	985. 21	985. 43	984.77	984. 89	985.03	985. 18	985. 46
$\rho_2/kg\cdot m^{-3}$	997. 36	997. 44	997. 52	997. 61	997.72	997.47	997.50	997. 55	997.63	997.72
Φ_1/W	4. 277	4. 216	4. 139	4. 067	3. 943	4. 271	4. 223	4. 171	4. 108	3.971
Φ_2/W	4. 251	4. 157	4. 083	3. 969	3. 799	4. 233	4. 157	4. 103	3. 969	3.842
Φ_{m}/W	4. 264	4. 187	4. 111	4.018	3. 871	4. 252	4. 190	4. 137	4. 039	3.906
δ/%	0.625	1. 423	1. 355	2. 437	3.732	0. 882	1. 574	1.631	3. 450	3. 279
$k/W\cdot m^{-2}\cdot \mathit{K}^{-1}$	0. 559	0.548	0.536	0.523	0.506	0. 514	0.506	0.500	0. 486	0.472

3. 散点图线性拟合与最小二乘法线性回归

热水流速-传热系数图线

根据最小二乘法回归得到的两条曲线的方程为:

顺流: $k(W/(m^2 \cdot K)) = 966.0232 \cdot q1(m^3/s) + 0.42738$ 逆流: $k(W/(m^2 \cdot K)) = 744.9078 \cdot q1(m^3/s) + 0.41303$