

Contents

- Introduction
- Flow Structure
- Results
- Conclusion
- Challenges
- Future Goals

Introduction

• Data about 768 individuals (Numerical Data only)

Target Variable	Predictors
• Outcome	 Pregnancies Glucose Blood Pressure Skin Thickness Insulin BMI Diabetes Pedigree Function Age

Flow Structure

Connecting Data

EDA and Preprocessing

Training ML model

Conclusions

Connected diabetes.csv to analyze the data

Created different visualizations to learn more about the data, Done data cleaning and preprocessing

Created classifier

Models to fit and predict
the outcome

Coming up with conclusions using EDA, and machine learning models

- Dataset does not contain any null values
- Dataset Description:

	count	mean	std	min	25%	50%	75%	max
Pregnancies	768.0	3.845052	3.369578	0.000	1.00000	3.0000	6.00000	17.00
Glucose	768.0	120.894531	31.972618	0.000	99.00000	117.0000	140.25000	199.00
BloodPressure	768.0	69.105469	19.355807	0.000	62.00000	72.0000	80.00000	122.00
SkinThickness	768.0	20.536458	15.952218	0.000	0.00000	23.0000	32.00000	99.00
Insulin	768.0	79.799479	115.244002	0.000	0.00000	30.5000	127.25000	846.00
ВМІ	768.0	31.992578	7.884160	0.000	27.30000	32.0000	36.60000	67.10
DiabetesPedigreeFunction	768.0	0.471876	0.331329	0.078	0.24375	0.3725	0.62625	2.42
Age	768.0	33.240885	11.760232	21.000	24.00000	29.0000	41.00000	81.00
Outcome	768.0	0.348958	0.476951	0.000	0.00000	0.0000	1.00000	1.00

Heatmap of Predictors

Pairplot for features

Boxplot for Outcome vs predictors

Distribution of Data

Distribution of Diabetic vs Non-diabetic

Results/ Conclusions

Random Forest Classifier Model

Accuracy: 0.752688

Precision: 0.628571

Recall: 0.687500

F1 score: 0.656716

ROC-AUC score: 0.737193

Logistic Regression Model

Accuracy: 0.698925

Precision: 0.547619

Recall: 0.718750

F1 score: 0.621622

ROC-AUC score: 0.703637

Conclusions

- 1. All the predictors have a relationship with the outcome. People who has diabetes seem to have a higher value for each of the predictors.
- 2. The highest correlation is between Skin thickness and insulin, second highest is BMI vs skin thickness, and third highest is Blood pressure vs BMI. It is interesting that most of the predictors have positive correlation between each other than pregnancies.
- 3. The mean glucose level for diabetic people is 141 and non-diabetic people is 110.
- 4. -According to accuracy, precision, ROC-AUC and f1 score scores the random forest classification model is better at classifying. However according to recall Logistic regression model is better. As roc-auc curve is better at doing binary classification in this case (TPR and FPR) we can conclude that the random forest model is better.

Challenges

Limited time

Future Goals

- More EDA to learn more about the dataset
- More data cleaning

