Name:	

CIS 351 Practice Test 2

Updated October 3, 2022

- 1. Explain **specifically** what makes a carry-lookahead adder faster than a ripple-carry adder of the same size.
- 2. Draw a nine-bit carry-select adder with 3-adder blocks. How many adders and muxes are required to build your circuit? Give the propagation delay for all of the sum bits (not just the final ones).
- 3. Build a 4:1 mux using logic gates.
- 4. Show how to build an AND gate and an OR gate out of a mux.
- 5. Use a Karnaugh map to simplify the following Boolean expression:

Remember: it should be easy to write out the truth table for an expression that is already in sum-of-products form.

6. Complete the characteristic table for the circuit shown below:

A_n	B_n	Q_n	Q_{n+1}		
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0		-	
1	0	1			
1	1	0			
1	1	1			

What fundamental circuit has the same characteristic table?

Name:	

7. Complete the characteristic table for the circuit shown below: Note, there is no clock pulse here. Your answers should show the states Q and \bar{Q} after they have reached a steady state given R, S, and current values of Q and \bar{Q} . If the given inputs will produce a non-deterministic output (i.e., the output depends on which gate changes first), write "random" in the row.

R	S	Q_{now}	\bar{Q}_{now}	Q_{next}	\bar{Q}_{next}
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

- 8. Choose a row labeled "random", and explain why the output is random.
- 9. Review the Sequential Circuits homework.
- 10. Review the "golfer" example from Week 5 activities there were several questions related to this example. (You should review the activities in general, but these ones test several skills you will need on the exam.)
- 11. Design a sequential circuit to run a countdown timer. This circuit should contain two registers: One for the minutes and one for the seconds. Decrement the seconds every time the clock ticks. Stop decrementing when the timer reaches 0. This circuit should have three outputs: minutes, seconds, and a one-bit alarm output that will be set to 1 when the timer reaches 0.