Cardiac ACMG-ClinVar Penetrance Estimation

James Diao, under the supervision of Arjun Manrai June 27, 2017

Contents

1	Dov	vnload, Transform, and Load Data	2
	1.1	Collect ACMG Gene Panel	2
	1.2	Download ClinVar VCF	3
	1.3	Download 1000 Genomes VCFs	3
	1.4	Import and Process 1000 Genomes VCFs	4
	1.5	Import and Process gnomAD/ExAC VCFs	4
	1.6	Collect 1000 Genomes Phase 3 Populations Map	5
	1.7	Merge ClinVar with gnomAD, ExAC, and 1000 Genomes	5
	1.8	Overall Non-Reference Sites	6
	1.9	Fraction of Individuals with Pathogenic Sites	8
		Common Pathogenic Variants by Ancestry	10
2	Pen	etrance Estimates	11
	2.1	Bayes' Rule as a Model for Estimating Penetrance	11
	2.2	Collect and Aggregate Allele Frequencies at the Disease-Level	11
	2.3	Bootstrapped Distribution of Penetrance	13
w	orkir	ng Directory: /Users/jamesdiao/Documents/Kohane_Lab/2017-ACMG-penetrance/ACMG_Pen	netrance

1 Download, Transform, and Load Data

1.1 Collect ACMG Gene Panel

http://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/

Table from ACMG SF v2.0 Paper 60 x 8 (selected rows):

	Phenotype	MIM_disorder	PMID_Gene_Reviews_entry
$\overline{\mathbf{N1}}$	Hereditary breast and ovarian cancer	604370 612555	20301425
N2	Hereditary breast and ovarian cancer	604370 612555	20301425
N3	Li-Fraumeni syndrome	151623	20301488
N4	Peutz-Jeghers syndrome	175200	20301443
N5	Lynch syndrome	120435	20301390

Table continues below

	Typical_age_of_onset	Gene	MIM_gene	Inheritance	Variants_to_report
$\overline{\mathrm{N1}}$	Adult	BRCA1	113705	AD	KP&EP
N2	Adult	BRCA2	600185	AD	KP&EP
N3	Child/Adult	TP53	191170	AD	KP&EP
N4	Child/Adult	STK11	602216	AD	KP&EP
N5	Adult	MLH1	120436	AD	KP&EP

ACMG-59 Genes:

##	[1]	BRCA1	BRCA2	TP53	STK11	MLH1	MSH2	MSH6	PMS2
##	[9]	APC	MUTYH	BMPR1A	SMAD4	VHL	MEN1	RET	PTEN
##	[17]	RB1	SDHD	SDHAF2	SDHC	SDHB	TSC1	TSC2	WT1
##	[25]	NF2	COL3A1	FBN1	TGFBR1	TGFBR2	SMAD3	ACTA2	MYH11
##	[33]	MYBPC3	MYH7	TNNT2	TNNI3	TPM1	MYL3	ACTC1	PRKAG2
##	[41]	GLA	MYL2	LMNA	RYR2	PKP2	DSP	DSC2	TMEM43
##	[49]	DSG2	KCNQ1	KCNH2	SCN5A	LDLR	APOB	PCSK9	ATP7B
##	[57]	OTC	RYR1	CACNA1S					

1.2 Download ClinVar VCF

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar.vcf.gz

ClinVar is the central repository for variant interpretations. Relevant information from the VCF includes:

- (a) CLNSIG = "Variant Clinical Significance, 0 Uncertain, 1 Not provided, 2 Benign, 3 Likely benign, 4
- Likely pathogenic, 5 Pathogenic, 6 Drug response, 7 Histocompatibility, 255 Other"
- (b) CLNDBN = "Variant disease name"
- (c) CLNDSDBID = "Variant disease database ID"
- (d) CLNREVSTAT = "Review Status, no_assertion, no_criteria, single criterion provided single submitter, mult criteria provided multiple submitters no conflicts, conf criteria provided conflicting interpretations, exp Reviewed by expert panel, guideline Practice guideline"
- (e) INTERP = Pathogenicity (likely pathogenic or pathogenic; CLNSIG = 4 or 5)

1.3 Download 1000 Genomes VCFs

 $\label{lem:condition} $$ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.[chrom].phase3_[version].20130502.genotypes.vcf.gz Downloaded 1000 Genomes VCFs are saved in: /Users/jamesdiao/Documents/Kohane_Lab/2017-ACMG-penetrance/1000G/$

gene	name	chrom	start	end	downloaded
BRCA1	NM_007294	17	41196311	41277500	TRUE
BRCA2	$NM_{-}000059$	13	32889616	32973809	TRUE
TP53	NM_000546	17	7571719	7590868	TRUE
STK11	NM_000455	19	1205797	1228434	TRUE
MLH1	NM_000249	3	37034840	37092337	TRUE

1.4 Import and Process 1000 Genomes VCFs

- (a) Unnest the data frames to 1 row per variant_ID key (CHROM_POSITION_REF_ALT).
- (b) Remove all insertions, deletions, CNV, etc, and keep only missense variants (1 REF, 1 ALT)
- (c) For 1000 Genomes: convert genomes to allele counts. For example: (0|1) becomes 1, (1|1) becomes 2. Multiple alleles are unnested into multiple counts. For example: (0|2) becomes 0 for the first allele (no 1s) and 1 for the second allele (one 2).

Processed 1000 Genomes VCFs: 43274 x 2516 (selected rows/columns):

	GENE	AF_1000G	VAR_ID	CHROM	POS	ID
62715	MYBPC3	0.000199681	11_47352958_G_A	11	47352958	rs527543611
62716	MYBPC3	0.000199681	$11_47352974_C_T$	11	47352974	rs541031071
62717	MYBPC3	0.000199681	$11_47353028_C_T$	11	47353028	rs564117422
62718	MYBPC3	0.018770000	$11_47353058_C_T$	11	47353058	rs11570121
62719	MYBPC3	0.000199681	$11_47353134_C_T$	11	47353134	rs549643481

Table continues below

	REF	ALT	HG00096	HG00097	HG00099	HG00100	HG00101	HG00102
62715	G	A	0	0	0	0	0	0
62716	\mathbf{C}	${ m T}$	0	0	0	0	0	0
62717	\mathbf{C}	${ m T}$	0	0	0	0	0	0
62718	\mathbf{C}	${ m T}$	0	0	0	0	0	0
62719	\mathbf{C}	${ m T}$	0	0	0	0	0	0

1.5 Import and Process gnomAD/ExAC VCFs

- (a) Unnest the data frames to 1 row per variant_ID key (CHROM_POSITION_REF_ALT).
- (b) Remove all insertions, deletions, CNV, etc, and keep only missense variants (1 REF, 1 ALT)
- (c) Collect superpopulation-level allele frequencies: African = AFR, Latino = AMR, European (Finnish + Non-Finnish) = EUR, East.Asian = EAS, South.Asian = SAS.

Processed gnomAD VCFs: 31729 x 49 (selected rows/columns):

	GENE	AF_GNOMAD	AF_GNOMAD_NFE
22531	MYH7	0.000004119	0.000000000000
24995	TPM1	0.000032280	0.000000000000
6720	DSG2	0.000004063	0.000008958486
14845	LDLR	0.000004061	0.000000000000
541	PKP2	0.000004066	0.000000000000

1.6 Collect 1000 Genomes Phase 3 Populations Map

This will allow us to assign genotypes from the 1000 Genomes VCF to ancestral groups. From: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502. ALL.panel

Phase 3 Populations Map Table: 2504 x 4 (selected rows)

sample	pop	super_pop	gender
NA19027	LWK	AFR	male
HG02028	KHV	EAS	female
HG01524	$_{\mathrm{IBS}}$	EUR	$_{\mathrm{male}}$
NA20514	TSI	EUR	female
HG00362	FIN	EUR	female
HG03788	ITU	SAS	$_{\mathrm{male}}$

1.7 Merge ClinVar with gnomAD, ExAC, and 1000 Genomes

Breakdown of ClinVar Variants

Subset_ClinVar	Number_of_Variants
Total ClinVar	224657
LP/P	42826
ACMG LP/P	9139
ACMG LP/P in gnomAD	662
ACMG LP/P in 1000 Genomes	53

Breakdown of ACMG-gnomAD Variants

Subset_gnomAD	Number_of_Variants
ACMG in gnomAD ClinVar-ACMG in gnomAD	31729 4089
LP/P-ACMG in gnomAD	662

1.8 Overall Non-Reference Sites

1.8.0.1 For 1000 Genomes

Each individual has n non-reference sites, which can be found by counting. The mean number is computed for each population.

Ex: the genotype of 3 variants in 3 people looks like this:

	HG00366	HG00367	HG00368
Variant 1	0	0	0
Variant 2	0	0	0
Variant 3	0	0	0

Count the number of non-reference sites per individual:

HG00366	HG00367	HG00368
0	0	0

Note: the error bars denote standard deviation, not standard error.

1.8.0.2 For gnomAD/ExAC

The mean number of non-reference sites is E(V), where $V = \sum_{i=1}^{n} v_i$ is the number of non-reference sites at all variant positions v_1 through v_n .

At each variant site, the probability of having at least 1 non-reference allele is $P(v_i) = P(v_{i,a} \cup v_{i,b})$, where a and b indicate the 1st and 2nd allele at each site.

If the two alleles are independent, $P(v_{i,a} \cup v_{i,b}) = 1 - (1 - P(v_{i,a}))(1 - P(v_{i,b})) = 1 - (1 - AF(v_i))^2$

If all variants are independent, $E(V) = \sum_{i=1}^{n} 1 - (1 - AF(v_i))^2$ for any set of allele frequencies.

Ex: the allele frequencies of 3 variants across the 5 superpopulations looks like this:

	AFR	AMR	EAS	EUR	SAS
Variant 1 Variant 2	0.1	0.2	0	0	0.3
variant 2	0.2	U	0.3	U	0.1

The probability of having at least 1 non-reference site at each variant - (0|1) (1|0) or (1|1) is given by $1 - (1 - AF)^2$. Note that this is approximately 2 * AF when AF is small:

	AFR	AMR	EAS	EUR	SAS
Variant 1	0.19	0.36	0	0	0.51
Variant 2	0.36	0	0.51	0	0.19

By linearity of expectation, the expected (mean) number of non-reference sites is $\sum E(V_i) = \sum (columns)$.

AFR	AMR	EAS	EUR	SAS
0.55	0.36	0.51	0	0.7

Fraction of Individuals with Pathogenic Sites 1.9

1.9.0.1 For 1000 Genomes

We can count up the fraction of individuals with 1+ non-reference site(s) in each population. This is the fraction of individuals who would receive a positive genetic test result in at least 1 of the ACMG-59 genes.

Ex: the genotype of 3 variants in 3 people looks like this:

	HG00366	HG00367	HG00368
Variant 1	0	0	0
Variant 2	0	0	0
Variant 3	0	0	0

Count each individual as having a non-reference site (1) or having only reference sites (0):

HG	00366	HG00367	HG00368
	0	0	0

Mean = 0

Population

1.9.0.2 For gnomAD/ExAC

The probability of having at least 1 non-reference site is P(X), where X indicates a non-reference site at any variant position v_1 through v_n .

Recall that $P(v_i) = P(v_{i,a} \cup v_{i,b}) = 1 - (1 - AF(v))^2$ when alleles are independent.

If all alleles are independent, $P(X) = P(\bigcup_{i=1}^n v_i) = 1 - \prod_{i=1}^n (1 - AF(v_i))^2$

Ex: the allele frequencies of 3 variants across the 5 superpopulations looks like this:

-	AFR	AMR	EAS	EUR	SAS
Variant 1	0.1	0.2	0	0	0.3
Variant 2	0.2	0	0.3	0	0.1

The probability of having at least 1 non-reference site at each variant - (0|1) (1|0) or (1|1) is given by $1 - (1 - AF)^2$. Note that this is approximately 2 * AF when AF is small:

	AFR	AMR	EAS	EUR	SAS
Variant 1	0.19	0.36	0	0	0.51
Variant 2	0.36	0	0.51	0	0.19

The expected (mean) number of non-reference sites is given by $1 - \prod (1 - AF)^2$.

AFR	AMR	EAS	EUR	SAS
0.4816	0.36	0.51	0	0.6031

1.10 Common Pathogenic Variants by Ancestry

Max-Population Variants in 1000G, No Conflicts

2 Penetrance Estimates

2.1 Bayes' Rule as a Model for Estimating Penetrance

Let V_x be the event that an individual has 1 or more variant related to disease x, and D_x be the event that the individual is later diagnosed with disease x.

In this case, we can define the following probabilities:

- 1. Prevalence = $P(D_x)$
- 2. Population Allele Frequency (PAF) = $P(V_x)$
- 3. Case Allele Frequency (CAF) = $P(V_x|D_x)$
- 4. Penetrance = $P(D_x|V_x)$

By Bayes' Rule, the penetrance of a variant related to disease x may be defined as:

$$P(D_x|V_x) = \frac{P(D_x) * P(V_x|D_x)}{P(V_x)} = \frac{(Prevalence)(Population \ Allele \ Frequency)}{(Case \ Allele \ Frequency)}$$

To compute penetrance estimates for each of the diseases related to the ACMG-59 genes, we will use the prevalence data we collected into Literature_Prevalence_Estimates.csv, allele frequency data from 1000 Genomes/ExAC/gnomAD, and a broad range of values for case allele frequency.

2.2 Collect and Aggregate Allele Frequencies at the Disease-Level

We define AF(disease) as the probability of having at least 1 variant associated with the disease. The variants can be assigned to diseases in two ways:

- (1) By associating it by MIM. An MIM code is assigned for around 31% of assertions in each dataset.
- (1) By associating it by MedGen. An MIM code is assigned for around 22% of assertions in each dataset.
- (2) By associating it by gene. All variants are associated with genes, but some variants may be designated as pathogenic for non-ACMG conditions.

The frequencies across the relevant variants can be aggregated in two ways:

- (1) By direct counting, from genotype data in 1000 Genomes.
- (2) AF(disease) = $1 \prod_{variant} (1 AF_{variant})$, from population data in 1000 Genomes, ExAC, or gnomAD (assumes independence).

Scatterplot: gnomAD v. 1000 Genomes

2.3 Bootstrapped Distribution of Penetrance

Disease Allele Frequency Posterior Distributions

