LITERATURE SURVEY

Date	19 September 2022
Team ID	PNT2022TMID05499
Project Name	Project - AI-powered Nutrition Analyzer for Fitness
	Enthusiasts

Team Members:

Prathiksha V (921319205102)

Kitchammal S (921319205063)

Muhil Rusmitha G (921319205077)

Nivedha B (921319205094)

INTRODUCTION

The main aim of the project is to building a model which is used for classifying the fruitdepends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.)

LITERATURE SURVEY

S.NO	AUTHOR	TITLE	OBJECTIVE
1.	Praveen Chopra et	ProgressiveSpinal Net	In this paper the Progressive SpinalNet
	al. (2022)	architecture for FC layers	progressive computational network for FC
			layers of deep- networks is introduced
			as an upgraded version of the DNN
			concept.
2.	H M Dipu Kabir et	SpinalNet: Deep Neural	In this research, the SpinalNet DNN model
	al. (2022)	Network with Gradual Input	was introduced. The
		[2]	chordate nervous system, which has a
			special way of connecting a lot of sensing
			data and making
			local decisions, is mimicked in the
			construction of Spinal Net.

3.	Mirra K B	Classification of	In this study a deep learning-based system
		Fruits Using Deep	for classifying fruits is suggested. A DCNN
		Learning	model, an AlexNet model, and a
		Algorithms [3]	MobileNetV2 model were investigated in
			the proposed framework. Three datasets
			with different sizes and levels
			of complexity were used to test the
			recommended framework.
4.	Feras Albardi et al	A Comprehensive Study on	This study attempts to investigate various
	(2021)	Torchvision Pre- trained	pre-trained models provided in the PyTorch
		Models for Fine-grained Inter-	library's Torchvision package.
		species	And look into how well they can classify
		Classification	fine- grained photos.
5.	Navyan Vyana	Fruits	In this man are you are min a the mathed of far
3.	Nguyen Vuong		In this paper, we examine the methods for
	Thinh et al (2021)	classification by	classifying images that can be used to
		using machine	categorise fruits. The study's findings can
		learning - An	be used to place fruit on the correct shop
		experiment using	shelves, spot fruit mismatches there, or
		popular	check fruit prices without using a barcode
		approaches on	scanner. Three well-known classification
		local data	models—Random Forest, K-Nearest
			Neighbors (KNN), and Support
			Vector Machine—are employed in this
			study (SVM).
6.	Haci Bayram Ünal	Fruit Recognition	This suggested study employs image
	et al. (2021)	and Classification	processing techniques for fruit recognition.
		with Deep Learning	Convolutional Neural Networks (ConNN)*
		Support on	deep learning model for classification is
		Embedded System	created in the study. The Keras platform
		(fruitnet)	was used to construct the suggested
			model.
<u> </u>			

7.	Marieke van Erp	Using Natural	According to this paper's point of view,
	et al. (2021)	Language	Interdisciplinary approaches should be
		Processing and	used to address food and recipe research in
		Artificial	order to address health and sustainability
		Intelligence to	issues. These approaches should combine
		Explore the	NLP and other AI techniques with
		Nutrition and	historical food research, food science,
		Sustainability of	nutrition, and sustainability expertise.
		Recipes and Food	
8.	Mehenag Khatun	Fruits	This study investigates a CNN-based
	et	Classification	classification of fruits. For five
	al. (2020)	using	scenarios utilising the fruits-360 dataset,
		Convolutional	the accuracy and loss curves were created
		NeuralNetwork	using various combinations of
			hidden layers. This paper discusses several
			computer vision-based approaches and
			algorithms for fruit recognition and
			classification.
9.	Siyuan Lu et al.	Fruit classification	In this study, we introduced a brand-new
	(2016)	by HPA-SLFN	fruit classification method called HPA-
			SLFN. The findings indicated that HPA-
			classification SLFN's accuracy of 89.5%
			was superior to those of other classification
			techniques.
10.	Ghulam	Date fruits	In this study a suggested technique breaks
	Muhammad et al.	classification using	down a visual image of a date into its
	(2015)	texture descriptors	component colours. The local texture
		and shape-size	descriptor, such as a Weber local descriptor
		features [10]	(WLD) histogram or a local binary pattern
			(LBP), is then applied to each component
			in order to encode the texture pattern of the
			date. To characterise the image, the texture
			patterns fromeach component are
			combined.
	ı.		,

REFERENCES:

- [1] Muhammad, Ghulam. "Date fruits classification using texture descriptors and shape-size features." Engineering Applications of Artificial Intelligence 37 (2015): 361-367.
- [2] Lu, Siyuan, et al. "Fruit classification by HPA-SLFN." 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP). IEEE, 2016.
- [3] Khatun, Mehenag, et al. "Fruits Classification using Convolutional Neural Network." GRD Journals-Global Research and Development Journal for Engineering 5.8 (2020).
- [4] Ünal, Haci Bayram, et al. "Fruit recognition and classification with deep learning support on embedded system (fruitnet)." 2020 Innovations in Intelligent Systems and Applications Conference (ASYU). IEEE, 2020.
- [5] Thinh, Nguyen Vuong, et al. "Fruits classification by using machine learning-An experiment using popular approaches on local data." 2021 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT). IEEE, 2021.
- [6] Albardi, Feras, et al. "A comprehensive study on torchvision pre-trained models for fine-grained inter-species classification." 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2021.
- [7] KB, Mirra, and R. Rajakumari. "Classification of Fruits Using Deep Learning Algorithms." Available at SSRN 4068366.
- [8] Chopra, Praveen. "Progressivespinalnet architecture for fc layers." arXiv preprint arXiv:2103.11373 (2021).
- [9] Kabir, HM Dipu, et al. "Spinalnet: Deep neural network with gradual input." IEEE Transactions on Artificial Intelligence (2022).
- [10] Van Erp, Marieke, et al. "Using natural language processing and artificial intelligence to explore the nutrition and sustainability of recipes and food." Frontiers in artificial intelligence 3 (2021): 621577.