Analiza sprawności sprzężenia pomiędzy laserem a światłowodem włóknistym

W projekcie należy wyznaczyć współczynnik sprawności sprzężenia pomiędzy laserem, a jednomodowym światłowodem włóknistym – włóknem oraz straty na wprowadzanie światła z lasera do włókna dla wskazanych parametrów układu i dokonać analizy przedstawiając odpowiednie wykresy. Uzyskane wyniki należy przedstawić w formie raportu.

Analizowany układ.

Rys. 1 Wprowadzanie wiązki światła laserowego do włókna. Błędy wprowadzania: Δ_x – przesunięcie osi; Δ_z – rozsunięcie osi; Δ_θ – odchylenie od osi.

Schemat z rys. 1 przedstawia wiązkę światła emitowanego przez laser, która po przejściu przez soczewkę jest ogniskowana na płaszczyźnie czołowej włókna. Sprawność wprowadzania światła laserowego do włókna silnie zależy położenia włókna względem ogniskowej soczewki. W idealnym przypadku czoło włókna powinno znajdować się dokładnie w ogniskowej, oś włókna powinna pokrywać się z osią soczewki. W rzeczywistości trudno jest tak dokładnie umiejscowić włókno. Może ono być odsunięte od ogniskowej (Δ_z), oś włókna może być odchylona pod pewnym kątem względem osi soczewki (Δ_θ) i przesunięta (Δ_x).

Współczynnik sprawności sprzężenia. Współczynnik ten jest wyliczony z całki przekrywania pomiędzy amplitudą fali padającej z lasera $\psi_b(x,y)$ i modu sprzęgniętego do włókna $\psi_F(x,y)$ na powierzchni poprzecznej włókna w układzie kartezjańskim (x,y):

$$\eta = \frac{\left|\int\limits_{-\omega_{F}}^{\omega_{F}} \int\limits_{-\omega_{F}}^{\omega_{F}} \psi_{b}(x,y) \cdot \psi_{F}^{*}(x,y) dx dy\right|^{2}}{\int\limits_{-\omega_{F}}^{\omega_{F}} \int\limits_{-\omega_{F}}^{\omega_{F}} \left|\psi_{b}(x,y)\right|^{2} dx dy \int\limits_{-\omega_{F}}^{\omega_{F}} \int\limits_{-\omega_{F}}^{\omega_{F}} \left|\psi_{F}(x,y)\right|^{2} dx dy}$$

gdzie mod podstawowy włókna jest przybliżony przez kołowa funkcję gaussowską $\psi_F(x,y)$:

$$\psi_F(x,y) = \sqrt{\frac{2}{\pi}} \frac{1}{\omega_F} \exp\left(-\frac{x^2 + y^2}{\omega_F^2}\right),$$

a promień modu włókna jest równy ω_F . Zakłada się, że dioda laserowa emituje promieniowanie o eliptycznym rozkładzie gaussowskim. Dlatego też, na czoło włókna pada skupiona wiązka - plamka, którą można opisać wzorem $\psi_b(x,y)$:

$$\psi_b(x,y) = \sqrt{\frac{2}{\pi\omega_x\omega_y}} \exp\left(-\frac{x^2}{\omega_x^2}\right) \exp\left(-\frac{y^2}{\omega_y^2}\right),$$

w którym wymiary poprzeczne plamki to $2\omega_x$ i $2\omega_v$.

Współczynnik sprawności sprzężenia uwzględniający błędy wprowadzania dla wiązki eliptycznej. Jeżeli w analizie sprawności sprzęgania światła zostaną uwzględnione błędy wynikające z odsunięcia włókna od ogniskowej soczewki wzdłuż osi optycznej (Δ_z) i w poprzek tej osi (Δ_x i Δ_y) oraz błędy związane z odchyleniem osi włókna pod pewnym kątem względem osi soczewki (Δ_θ), to współczynnik sprawności przyjmie postać:

$$\eta_e = \eta_x \cdot \eta_y \cdot \eta_\theta$$

gdzie:

$$\eta_x = \frac{2}{\sqrt{\left(\frac{\omega_F}{\omega_x} + \frac{\omega_x}{\omega_F}\right)^2 + \frac{\lambda^2 \Delta_z^2}{\pi^2 \omega_x^2 \omega_F^2}}} \exp\left(-\frac{2\Delta_x^2}{\omega_F^2 + \omega_x^2}\right),$$

$$\eta_{y} = \frac{2}{\sqrt{\left(\frac{\omega_{F}}{\omega_{y}} + \frac{\omega_{y}}{\omega_{F}}\right)^{2} + \frac{\lambda^{2} \Delta_{z}^{2}}{\pi^{2} \omega_{y}^{2} \omega_{F}^{2}}}} \exp\left(-\frac{2\Delta_{y}^{2}}{\omega_{F}^{2} + \omega_{y}^{2}}\right),$$

$$\eta_{\theta} = \exp\left(-\frac{2\pi^2}{\lambda^2} \cdot \frac{\Delta_{\theta}^2 \omega_F^2 \omega_x^2}{\omega_F^2 + \omega_x^2}\right),$$

λ to długość fali generowanej przez laser w powietrzu.

Straty sprzęgania uwzględniające blędy wprowadzania dla wiązki kolowej. W literaturze bardzo często sprawność sprzęgania wyrażana jest jako straty wprowadzania światła do włókna. Straty te są wówczas wyrażone w decybelach:

$$\Phi_{tot} = -10\log(\eta_{tot}) \quad \text{[dB]},$$

W zależności na starty Φ_{tot} występuje współczynnik sprawności sprzężenia η_{tot} uwzględniający błędy wprowadzania dla wiązki kołowej (zakłada się że $\Delta_x = \Delta_y$ oraz $\omega_x = \omega_y$):

$$\eta_{tot} = \left(\frac{4D}{B}\right) \exp\left(\frac{-AC}{B}\right),$$

gdzie:

$$A = \frac{(k\omega_x)^2}{2}$$
, $B = G^2 + (D+1)^2$,

$$C = (D+1)F^2 + 2DFG\sin(\Delta_{\theta}) + D(G^2 + D+1)^2[\sin(\Delta_{\theta})]^2,$$

$$D = \left(\frac{\omega_F}{\omega_x}\right)^2, \qquad F = \frac{2\Delta_x}{k\omega_x^2}, \qquad G = \frac{2\Delta_z}{k\omega_x^2}, \qquad k = \frac{2\pi \cdot n_0}{\lambda},$$

współczynnik załamania n_0 jest współczynnikiem materiału pomiędzy laserem a włóknem, czyli w większości przypadków jest współczynnikiem załamania powietrza $n_0 = 1$.

Parametry układu. W ogólności zakłada się, że laser emituje promieniowanie o długości fali wypadającej w oknie telekomunikacyjnym $\lambda = 0.85$ µm. Pozostałe parametry są związane z badanymi współczynnikami:

-dla współczynnika sprawności sprzężenia η :

$$2\omega_{\rm r} = 4.5 \, \mu{\rm m};$$
 $2\omega_{\rm r} = 4.5 \, \mu{\rm m};$ $2\omega_{\rm F} = 2.5 \, \mu{\rm m};$

-dla współczynnika sprawności sprzężenia uwzględniającego błędy wprowadzania dla wiązki eliptycznej η_e :

$$2\omega_x = 4.5 \text{ } \mu\text{m};$$
 $2\omega_y = 3.5 \text{ } \mu\text{m};$ $2\omega_F = 2.5 \text{ } \mu\text{m};$ $\Delta_x = 0.5 \text{ } \mu\text{m};$ $\Delta_y = 0.25 \text{ } \mu\text{m};$ $\Delta_z = 1 \text{ } \mu\text{m};$ $\Delta_z = 1 \text{ } \mu\text{m};$

-dla strat sprzegania uwzględniających błędy wprowadzania dla wiązki kołowej Φ_{tot} :

• dla współczynnika sprawności sprzężenia η_{tot} i strat Φ_{tot} :

$$2\omega_x = 3.5 \ \mu \text{m};$$
 $2\omega_F = 2.5 \ \mu \text{m};$ $\Delta_x = 0.5 \ \mu \text{m};$ $\Delta_z = 1 \ \mu \text{m};$ $\Delta_\theta = 0.7 \ \text{stopnia} \ (\text{nie radiana})$

- dla charakterystyk strat Φ_{tot} w funkcji średnicy modu włókna zmieniającej się w zakresie $2\omega_F < 2.5 \ \mu m$; 10 $\mu m >$ dla różnych parametrów układu:
 - 1. zmiana średnicy wiązki lasera:

$$2\omega_x = 3.5 \ \mu m$$
 $2\omega_x = 5.5 \ \mu m$ $2\omega_x = 7.5 \ \mu m$ $\Delta_z = 0 \ \mu m$ $\Delta_z = 0 \ \mu m$ $\Delta_\theta = 0 \ \text{stopnia} \ (\text{nie radiana})$

2. odsunięcie włókna od ogniskowej soczewki:

$$Δz = 1 μm;$$
 $Δz = 10 μm;$
 $Δz = 100 μm;$
 $Δz = 100 μm;$
 $Δθ = 0 \text{ stopnia (nie radiana);}$
 $2ωx = 3.5 μm;$

3. rozsunięcie osi soczewki i włókna:

```
\Delta_x = 1 \text{ } \mu\text{m}; \Delta_x = 2 \text{ } \mu\text{m}; \Delta_x = 3 \text{ } \mu\text{m}; \Delta_z = 0 \text{ } \mu\text{m}; \Delta_\theta = 0 \text{ stopnia (nie radiana)}; 2\omega_x = 3.5 \text{ } \mu\text{m};
```

4. odchylenie osi włókna od soczewki o pewien kąt:

```
\Delta_{\theta} = 0 stopnia (nie radiana); \Delta_{\theta} = 0.7 stopnia (nie radiana); \Delta_{\theta} = 3 stopnia (nie radiana); \Delta_{z} = 0 µm; \Delta_{z} = 0 µm; \Delta_{z} = 0 µm; \Delta_{z} = 0 µm;
```

Obliczenia i charakterystyki. W projekcie, dla podanych wyżej parametrów, należy wykonać obliczenia wartości (katy podane są w stopniach, a nie w radianach):

- współczynnika sprawności sprzężenia η ;
- współczynnika sprawności sprzężenia uwzględniającego błędy wprowadzania dla wiązki eliptycznej η_e ;
- współczynnika sprawności sprzężenia uwzględniającego błędy wprowadzania dla wiązki kołowej η_{tot} ;
- strat sprzęgania uwzględniających błędy wprowadzania dla wiązki kołowej Φ_{tot} .

Należy również wykreślić charakterystyki strat sprzęgania uwzględniających błędy wprowadzania dla wiązki kołowej w funkcji promienia modu włókna ω_F dla parametrów podanych wyżej. Będą to następujące wykresy:

Wykres 1 – zmiana średnicy wiązki lasera;

Wykres 2 – odsunięcie włókna od ogniskowej soczewki;

Wykres 3 – rozsunięcie osi soczewki i włókna;

Wykres 4 – odchylenie osi włókna od soczewki o pewien kat.

Raport. W raporcie należy przedstawić problem projektowy (co było celem, dla jakiego układu), obliczone wartości współczynników i start, a także odpowiednio oznaczone i podpisane uzyskane charakterystyki. Raport zapisany jako plik PDF wraz ze spakowanym kodem źródłowym swojego programu należy przesłać pocztą elektroniczną.

Raport. W raporcie należy przedstawić:

- -problem projektowy (cel projektu, dla jakiego układu wykonano obliczenia),
- -obliczone wartości współczynników i start,
- -odpowiednio oznaczone i podpisane uzyskane charakterystyki (tytuł wykresu, zmienne na osiach, jednostki, wykaz parametrów dla jakich wykonano wykres, oznaczenie wykreślonych krzywych ze wskazaniem jakim parametrem się różnią),
- -krótkie wnioski do wszystkich obliczonych wartości współczynników i start oraz do każdego wykresu sformułowane na podstawie otrzymanych charakterystyk.

Ocenie projektu podlegają wyżej wymienione punkty, przejrzystość rysunków, poprawność obliczeń oraz poprawność językowa.