Partie I: Préliminaire

- 1. (a) Soit $x \in]0, +\infty[$, démontrer que la fonction $t \mapsto e^{-t}t^{x-1}$ est intégrable sur $]0, +\infty[$
 - (b) On note, pour tout $x \in]0, +\infty[$, $\Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt$ (Fonction Gamma d'Euler). Démontrer que pour tout $x \in]0, +\infty[$, $\Gamma(x) > 0$.
 - (c) Démontrer que la fonction Γ est dérivable sur $]0,+\infty[$ puis exprimer $\Gamma'(x)$ sous forme d'inégrale.
- 2. Pour tout entier $n \ge 2$, on pose $u_n = \int_{-1}^n \frac{1}{t} dt \frac{1}{n}$.
 - (a) Utiliser un théorème du cours pour justifier simplement que la série $\sum_{n\geqslant 2}u_n$ converge
 - (b) Pour tout entier $n \ge 1$, on pose $H_n = \sum_{k=1}^n \frac{1}{k} \ln(n)$. Démontrer que la suite $(H_n)_{n \ge 1}$ converge. On note dans la suite $\gamma = \lim_{n \to +\infty} H_n$.

Dans la suite de ce problème, on définit pour tout $x \in]0, +\infty[, \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ appelée fonction Digamma.

Partie II: Expression de la fonction Digamma à l'aide d'une série

3. Pour $x \in]0, +\infty[$ et pour tout entier $n \ge 1$, on définit la fonction f_n sur $]0, +\infty[$ telle que :

pour tout
$$t \in]0, n], f_n(t) = \left(1 - \frac{t}{n}\right)^n t^{x-1}$$
 et pour tout $t \in]n, +\infty[, f_n(t) = 0]$

- (a) Démontrer que pour tout x < 1, $\ln(1-x) \le -x$. En déduire que pour tout entier $n \ge 1$, pour tout $x \in]0, +\infty[$ et tout $t \in]0, +\infty[$, $0 \le f_n(t) \le e^{-t}t^{x-1}$
- (b) En utilisant le théorème de convergence dominée, démontrer que pour tout $x \in]0, +\infty[$,

$$\Gamma(x) = \lim_{n \to +\infty} \int_{0}^{n} \left(1 - \frac{t}{n}\right)^{n} t^{x-1} dt$$

- 4. On pose, pour n entier naturel et pour $x \in]0, +\infty[, I_n(x) = \int_0^1 (1-u)^n u^{x-1} du$
 - (a) Après avoir justifié l'existence de l'intégrale $I_n(x)$, déterminer, pour x > 0 et pour $n \ge 1$, une relation entre $I_n(x)$ et $I_{n-1}(x+1)$
 - (b) En déduire, pour n entier naturel et pour $x \in]0, +\infty[$ une expression de $I_n(x)$
 - (c) Démontrer que, pour tout $x \in]0, +\infty[$,

$$\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{\displaystyle\prod_{k=0}^n (x+k)}$$
 Formule de Gauss

5. En remarquant que pour $n \ge 1$ et $x \in]0, +\infty[$, $\frac{1}{n^x} \prod_{k=1}^n \left(1 + \frac{x}{k}\right) = e^{xH_n} \prod_{k=1}^n \left[\left(1 + \frac{x}{k}\right)e^{\frac{-x}{k}}\right]$, démontrer que pour tout $x \in]0, +\infty[$,

$$\frac{1}{\Gamma(x)} = x e^{\gamma x} \lim_{n \to +\infty} \prod_{k=1}^n \left[\left(1 + \frac{x}{k} \right) e^{\frac{-x}{k}} \right] \quad \text{Formule de Weierstrass}$$

6. (a) En déduire que la série $\sum_{k\geqslant 1}\left[\ln\left(1+\frac{x}{k}\right)-\frac{x}{k}\right]$ converge simplement sur $]0,+\infty[$

- (b) On pose, pour tout $x \in]0, +\infty[$, $g(x) = \sum_{k=1}^{+\infty} \left[\ln\left(1 + \frac{x}{k}\right) \frac{x}{k} \right]$. Démontrer que l'application g est de classe \mathcal{C}^1 sur $]0,+\infty[$ et exprimer g'(x) comme somme d'une série de fonctions.
- (c) En déduire que, pour tout $x \in]0, +\infty[$, $\psi(x) = \frac{-1}{x} \gamma + \sum_{k=0}^{+\infty} \left(\frac{1}{k} \frac{1}{k+x}\right)$
- (a) Que vaut $\psi(1)$? En déduire la valeur de l'intégrale $\int_{0}^{+\infty} e^{-t} \ln(t) dt$
 - (b) Calculer, pour tout $x \in]0, +\infty[$, $\psi(x+1) \psi(x)$ puis démontrer que, pour tout entier $n \ge 2$,

$$\psi(n) = -\gamma + \sum_{k=1}^{n-1} \frac{1}{k}$$

- (c) On pose, pour tout $(x,y) \in]0, +\infty[^2$ et k entier naturel, $j_k(y) = \frac{1}{k+y+1} \frac{1}{k+y+x}$. Démontrer que la série $\sum_{i=1}^{n} j_k$ converge uniformément sur $]0, +\infty[$. En déduire $\lim_{n\to +\infty} (\psi(x+n) - \psi(1+n))$.
- 8. Déterminer l'ensemble des applications f définies sur $]0,+\infty[$ et à valeurs réelles vérifiant les trois conditions :
 - $f(1) = -\gamma$;

 - pour tout $x \in]0, +\infty[$, $f(x+1) = f(x) + \frac{1}{x};$ pour tout $x \in]0, +\infty[$, $\lim_{n \to +\infty} (f(x+n) f(1+n)) = 0.$

Partie III: Probabilité

Une urne contient n boules numérotées de 1 à n.

On effectue un premier tirage d'une boule dans l'urne et on adopte le protocole suivant : si on a tiré la boule numéro k, on la remet alors dans l'urne avec k nouvelles boules toutes numérotées k. Par exemple, si on a tiré la boule numéro 3, on remet quatre boules de numéro 3 dans l'urne (la boule tirée plus 3 nouvelles boules numéro 3). On effectue ensuite un deuxième tirage d'une boule. On note X (respectivement Y) la variable aléatoire égale au numéro de la boule choisie au premier tirage (respectivement au deuxième tirage).

- 9. Déterminer la loi de la variable aléatoire X ainsi que son espérance $\mathbb{E}(X)$;
- 10. Déterminer la loi de la variable aléatoire Y et vérifier que pour tout entier naturel non nul $k \in [1, n]$,

$$\mathbb{P}\left(Y=k\right) = \frac{1}{n} \left(\psi\left(2n+1\right) - \psi\left(n+1\right) + \frac{k}{k+n}\right)$$

11. Calculer l'espérance $\mathbb{E}(Y)$. On pourra utiliser, sans démonstration, que

$$\sum_{k=1}^{n} \frac{k^2}{n\left(n+k\right)} = \frac{1-n}{2} + n\left(\psi\left(2n+1\right) - \psi\left(n+1\right)\right)$$

Partie I: Partie préliminaire

- 1. (a) Soit x > 0. La fonction $h_x : t \mapsto e^{-t}t^{x-1}$ est continue sur $]0, +\infty[$ par produit de fonctions continues, les fonctions exponentielle et puissances étant bien continues sur $]0, +\infty[$.
 - En 0 : On a $h_x(t) \underset{t \to 0^+}{\sim} t^{x-1} = \frac{1}{t^{1-x}}$ avec 1 x < 1
 - En $+\infty$: On a $t^2 e^{-t} t^{x-1} = t^{x+1} e^{-t} \underset{t \to +\infty}{\longrightarrow} 0$ par croissance comparée, d'où $h_x(t) = \underset{t \to +\infty}{o} \left(\frac{1}{t^2}\right)$.

Ainsi, par comparaison de fonctions positives et critère de Riemann en 0 et en $+\infty$, $h_x: t \mapsto e^{-t}t^{x-1}$ est intégrable sur $]0, +\infty[$.

- (b) Soit x>0. La fonction h_x définie dans la question précédente est continue et strictement positive sur $]0,+\infty[$. La positivité de l'intégrale nous donne $\int_0^{+\infty}h_x(t)dt\geqslant 0$ et la continuité de h_x implique qu'on ne pourrait avoir $\int_0^{+\infty}h_x(t)dt=0$ que si h_x était identiquement nulle sur $]0,+\infty[$, ce qui n'est pas le cas. Ainsi $\Gamma(x)=\int_0^{+\infty}h_x(t)dt>0$, et ce pour tout x>0.
- (c) On définit $h: \left\{ \begin{array}{ccc} \mathbb{R}_+^* \times \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & h_x(t) = e^{-t}t^{x-1} \end{array} \right.$
 - Pour tout t > 0, $x \mapsto h(x,t)$ est de classe C^1 (et même C^{∞} en fait) sur \mathbb{R}_+^* . On a donc l'existence de $\frac{\partial h}{\partial x}$ sur tout $(\mathbb{R}_+^*)^2$ et, pour tout t > 0, la continuité de $x \mapsto \frac{\partial h}{\partial x}(x,t)$ sur \mathbb{R}_+^* .

Notons d'ailleurs qu'on a, pour tout $(x,t) \in (\mathbb{R}_+^*)^2$, $\frac{\partial h}{\partial x}(x,t) = \ln(t)e^{-t}t^{x-1}$.

- Pour tout x > 0, $t \mapsto \frac{\partial h}{\partial x}(x,t)$ est continue (donc continue par morceaux) sur \mathbb{R}_+^* .
- Soit [a, b] un segment de \mathbb{R}_+^* . On a donc $0 < a \le b$.

$$\forall (x,t) \in [a,b] \times \mathbb{R}_+^*, \ \left| \frac{\partial h}{\partial x}(x,t) \right| \leqslant \begin{cases} |\ln(t)|e^{-t}t^{a-1} & \text{si } t \leqslant 1\\ \ln(t)e^{-t}t^{b-1} & \text{si } t > 1 \end{cases}$$

Notons donc φ la fonction définie sur \mathbb{R}_+^* par $\varphi(t) = \begin{cases} |\ln(t)|e^{-t}t^{a-1} & \text{si } t \leq 1 \\ \ln(t)e^{-t}t^{b-1} & \text{si } t > 1 \end{cases}$. Cette fonction est continue par morceaux (et même continue en fait).

- En $+\infty$: Pour t > 1, on a $t^2 \varphi(t) = t^{1+b} \ln(t) e^{-t}$, donc $t^2 \varphi(t) \xrightarrow[t \to +\infty]{} 0$ par croissance comparée, d'où $\varphi(t) = \underset{t \to +\infty}{o} \left(\frac{1}{t^2}\right)$.
- En 0: Pour $t \in]0,1]$, on a $t^{1-\frac{a}{2}}\varphi(t)=t^{\frac{a}{2}}|\ln(t)|e^{-t}\underset{t\to 0^+}{\longrightarrow}0$ (toujours par croissance comparée, car a>0), donc $\varphi(t)=\underset{t\to 0^+}{o}\left(\frac{1}{t^{1-\frac{a}{2}}}\right)$, avec $1-\frac{a}{2}<1$.

Donc φ est intégrable sur $]0, +\infty[$.

On en déduit l'hypothèse de domination sur tous les segments de $]0, +\infty[$.

Cela prouve finalement que Γ est de classe C^1 sur $]0, +\infty[$, donc dérivable, avec :

$$\forall x > 0, \ \Gamma'(x) = \int_0^{+\infty} \frac{\partial h}{\partial x}(x, t) dt = \int_0^{+\infty} \ln(t) e^{-t} t^{x-1} dt.$$

- 2. Pour tout entier $n \ge 2$, on pose $u_n = \int_{n-1}^n \frac{1}{t} dt \frac{1}{n}$.
 - (a) Notons $f: \left\{ \begin{array}{ccc} [1,+\infty[& \longrightarrow & \mathbb{R} \\ t & \longmapsto & \frac{1}{t} \end{array} \right.$ Comme la fonction f est continue (donc continue par morceaux), décroissante et à valeurs positives, le théorème de comparaison série intégrale indique que la série $\sum_{n\geqslant 2} \left(\int_{n-1}^n f(t)dt f(n) \right) \text{converge, c'est-à-dire que } \sum_{n\geqslant 2} u_n \text{ converge.}$

(b) Pour tout entier $n \geqslant 1$, on pose $H_n = \left(\sum_{k=1}^n \frac{1}{k}\right) - \ln(n)$. Pour $n \geqslant 2$, on a $\sum_{k=2}^n u_k = \int_1^n \frac{dt}{t} - \sum_{k=2}^n \frac{1}{k}$ par relation de Chasles, d'où : $\sum_{k=2}^n u_k = \ln(n) + 1 - \sum_{k=1}^n \frac{1}{k} = 1 - H_n$. Comme la suite $\left(\sum_{k=2}^n u_k\right)_{n\geqslant 2}$ converge par la question précédente, il s'ensuit que la suite $(H_n)_{n\geqslant 1}$ converge.

On note dans la suite $\gamma = \lim_{n \to +\infty} H_n$.

Partie II: Expression de la fonction Digamma à l'aide d'une série

3. Pour $x \in]0, +\infty[$ et pour tout entier $n \ge 1$, on définit la fonction f_n sur $]0, +\infty[$ par :

$$f_n: t \mapsto \begin{cases} \left(1 - \frac{t}{n}\right)^n t^{x-1} & \text{si } t \in]0, n] \\ 0 & \text{si } t > n \end{cases}$$

(a) On peut établir l'inégalité souhaitée par simple étude de la fonction $x \mapsto \ln(1-x) + x$ sur $]-\infty, 1[$, ou bien par un argument de convexité : en effet la fonction ln est concave sur \mathbb{R}_+^* , donc son graphe est au-dessous de chacune de ses tangentes. Comme la tangente en x=1 a pour équation y=x-1, on en déduit : $\forall x \in \mathbb{R}_+^*$, $\ln(x) \leqslant x-1$. Il vient ensuite, via deux changements de variable successifs : $\forall x > -1$, $\ln(1+x) \leqslant x$, puis $\forall x < 1$, $\ln(1-x) \leqslant -x$.

Ensuite, soit $n \ge 1$ (et, normalement, x > 0 est déjà fixé aussi dès l'énoncé de la question III.3.). La fonction f_n est positive par définition.

De plus, pour tout $t \in]0, n[$, $f_n(t) = e^{n \ln(1-\frac{t}{n})}t^{x-1}$, avec $\ln(1-\frac{t}{n}) \leqslant -\frac{t}{n}$ par la question précédente, vu qu'on a bien $\frac{t}{n} < 1$ pour $t \in]0, n[$. On en déduit, par croissance de l'exponentielle et produit par une quantité positive : $f_n(t) \leqslant e^{n \times (-\frac{t}{n})}t^{x-1} = e^{-t}t^{x-1}$. Enfin f_n est nulle sur $[n, +\infty[$, tandis que la fonction $t \mapsto e^{-t}t^{x-1}$ est positive, d'où finalement l'encadrement :

$$\forall t > 0, \ 0 \leqslant f_n(t) \leqslant e^{-t} t^{x-1}.$$

- (b) Comme demandé, on applique le théorème de convergence dominée :
 - Pour tout $n \ge 1$, f_n est continue par morceaux sur \mathbb{R}_+^* .
 - Soit t > 0. Il existe $N \in \mathbb{N}$ tel que $N \ge t$, par exemple $N = \lfloor t \rfloor + 1$. Alors, pour tout $n \ge N$, $t \in]0, n]$, et donc $f_n(t) = \left(1 \frac{t}{n}\right)^n t^{x-1}$. Or, $\left(1 \frac{t}{n}\right)^n = e^{n\ln\left(1 \frac{t}{n}\right)}$, et $\ln\left(1 \frac{t}{n}\right) = -\frac{t}{n} + o\left(\frac{1}{n}\right)$, donc $\left(1 \frac{t}{n}\right)^n = e^{n\left(-\frac{t}{n} + o\left(\frac{1}{n}\right)\right)} = e^{-t+o(1)} \xrightarrow[n \to +\infty]{} e^{-t}$ par continuité de l'exponentielle. Donc $f_n(t) \xrightarrow[n \to +\infty]{} e^{-t}t^{x-1}$.

On a ainsi prouvé que $(f_n)_{n\geqslant 1}$ converge simplement sur \mathbb{R}_+^* vers la fonction $t\mapsto e^{-t}t^{x-1}$.

— De plus, pour tout $n \ge 1$ et pour tout t > 0, $|f_n(t)| \le e^{-t}t^{x-1}$ par la question précédente, et on a prouvé dans la première question du problème que la fonction $t \mapsto e^{-t}t^{x-1}$ est (continue bien sûr et) intégrable sur \mathbb{R}_+^* .

Donc, par le théorème de convergence dominée, $\int_0^{+\infty} f_n(t)dt \xrightarrow[n \to +\infty]{} \int_0^{+\infty} e^{-t}t^{x-1}dt$. Comme f_n est nulle sur $[n, +\infty[$, cela donne finalement :

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt \underset{n \to +\infty}{\longrightarrow} \Gamma(x),$$

et ce raisonnement a bien été mené pour tout x > 0.

- 4. Pour tout entier naturel n et tout x > 0, on pose $I_n(x) = \int_0^1 (1-u)^n u^{x-1} du$.
 - (a) Soient $n \in \mathbb{N}^*$ et x > 0. La fonction $\alpha : u \mapsto (1-u)^n u^{x-1}$ est bien définie et continue sur]0,1].

De plus, $\alpha(u) \underset{u \to 0^+}{\sim} u^{x-1} = \frac{1}{u^{1-x}}$, avec 1-x < 1, donc α est intégrable sur]0,1] par comparaison de fonctions positives et critère de Riemann.

Cela assure la bonne définition de $I_n(x)$.

On définit maintenant sur]0,1] les fonctions $\alpha_1: u \mapsto (1-u)^n$ et $\alpha_2: u \mapsto \frac{u^x}{x}$. Ces fonctions sont de classe C^1 , et on a $\alpha_1(u)\alpha_2(u)$ qui admet une limite finie pour $u \longrightarrow 0^+$, en l'occurrence 0. On en déduit, par intégration par parties :

$$I_n(x) = \int_0^1 \alpha_1(u)\alpha_2'(u)du$$

$$= \alpha_1(1)\alpha_2(1) - \lim_{u \to 0^+} \alpha_1(u)\alpha_2(u) - \int_0^1 \alpha_1'(u)\alpha_2(u)du$$

$$= 0 - 0 + \frac{n}{x} \int_0^1 (1 - u)^{n-1} u^x du$$

$$= \frac{n}{x} I_{n-1}(x+1)$$

(b) Soit x > 0.

On a
$$I_0(x) = \int_0^1 u^{x-1} du = \left[\frac{u^x}{x} \right]_0^1 = \frac{1}{x}$$
.

Soit $n \ge 1$. On a, par une récurrence immédiate,

$$I_n(x) = \frac{n}{x} I_{n-1}(x+1) = \frac{n}{x} \times \frac{n-1}{x+1} I_{n-2}(x+2) = \frac{n!}{x(x+1)\cdots(x+n-1)} I_0(x+n) = \frac{n!}{x(x+1)\cdots(x+n)} I_{n-2}(x+1) = \frac{n!}{x(x+1)\cdots(x+n)} I_{n-2}(x+1) = \frac{n!}{x(x+1)\cdots(x+n)} I_{n-2}(x+1) = \frac{n!}{x(x+1)\cdots(x+n-1)} I_$$

(c) La fonction $t \mapsto \frac{t}{n}$ réalise une bijection strictement croissante et de classe C^1 de]0,n] sur]0,1]. Via le changement de variable $u = \frac{t}{n}$, on obtient donc :

$$\int_0^n \left(1 - \frac{t}{n}\right)^n t^{x-1} dt = \int_0^1 (1 - u)^n (nu)^{x-1} n du = n^x \int_0^1 (1 - u)^n u^{x-1} du = n^x I_n(x).$$

Le résultat de la question 3.b. se réécrit ainsi : $\Gamma(x) = \lim_{n \to +\infty} n^x I_n(x)$. Et le calcul de la question précédente permet de conclure :

$$\Gamma(x) = \lim_{n \to +\infty} n^x \times \frac{n!}{x(x+1)\cdots(x+n)} = \lim_{n \to +\infty} \frac{n!n^x}{\prod\limits_{k=0}^n (x+k)}.$$

Cette relation est appelée formule de Gauss

5. Soient $n \in \mathbb{N}^*$ et x > 0.

L'indication donnée (fallait-il la prouver?) est immédiate en remarquant qu'on a

$$e^{xH_n} = e^{x \sum_{k=1}^{n} \frac{1}{k}} e^{-x \ln(n)} = \left(\prod_{k=1}^{n} e^{\frac{x}{k}}\right) \times \frac{1}{n^x}$$

Ensuite, d'après la formule de Gauss établie à la question précédente, on a :

$$\frac{1}{\Gamma(x)} = \lim_{n \to +\infty} \frac{\prod\limits_{k=0}^{n} (x+k)}{n!n^x} = \lim_{n \to +\infty} \frac{x}{n^x} \times \frac{\prod\limits_{k=1}^{n} (k+x)}{\prod\limits_{k=1}^{n} k} = \lim_{n \to +\infty} \frac{x}{n^x} \prod_{k=1}^{n} \left(1 + \frac{x}{k}\right).$$

Grâce à l'indication fournie, on réécrit :

$$\frac{1}{\Gamma(x)} = \lim_{n \to +\infty} x e^{xH_n} \prod_{k=1}^{n} \left[\left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}} \right].$$

Or $H_n \xrightarrow[n \to +\infty]{} \gamma$ donc, par continuité de l'exponentielle, $e^{xH_n} \xrightarrow[n \to +\infty]{} e^{x\gamma}$ et, finalement, par produit de limites,

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \lim_{n \to +\infty} \prod_{k=1}^{n} \left[\left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}} \right].$$

Cette formule est appelée formule de Weierstrass.

(a) On note qu'on pourrait répondre directement à la question à l'aide d'un DL d'ordre 2. Si l'on veut rester dans les clous du sujet, on commence par réécrire la formule précédente :

$$\prod_{k=1}^{n} \left[\left(1 + \frac{x}{k} \right) e^{-\frac{x}{k}} \right] \xrightarrow[n \to +\infty]{} \frac{1}{\Gamma(x) x e^{\gamma x}}.$$

Par continuité de ln, on en déduit :

$$\ln\left(\prod_{k=1}^{n}\left[\left(1+\frac{x}{k}\right)e^{-\frac{x}{k}}\right]\right)\underset{n\to+\infty}{\longrightarrow}\ln\left(\frac{1}{\Gamma(x)xe^{\gamma x}}\right), \text{ c'est-à-dire}$$

$$\sum_{k=1}^{n} \left[\ln \left(1 + \frac{x}{k} \right) - \frac{x}{k} \right] \underset{n \to +\infty}{\longrightarrow} - \ln \left(\Gamma(x) x e^{\gamma x} \right).$$

En particulier, on a prouvé que la série $\sum_{k>1} \left[\ln \left(1 + \frac{x}{k} \right) - \frac{x}{k} \right]$ converge. Ceci ayant été démontré pour

tout x > 0, on a établi la convergence simple de la série de fonctions $\sum_{k>1} g_k$ sur $]0, +\infty[$, où l'on pose

$$g_k: x \mapsto \ln\left(1 + \frac{x}{k}\right) - \frac{x}{k}.$$

(b) On note $g = \sum_{k=1}^{+\infty} g_k \text{ sur }]0, +\infty[.$

Outre la convergence de $\sum_{k\geq 1} g_k$ vers g établie à la question précédente, on a :

- Les fonctions g_k sont toutes de classe C^1 sur $]0, +\infty[$.
- Pour tout $k \geqslant 1$, pour tout x > 0, $g'_k(x) = \frac{1}{k+x} \frac{1}{k} = -\frac{x}{k(k+x)}$.

Soit [a, b] un segment de \mathbb{R}_+^* . On a donc $0 < a \le b$. Alors pour tout $k \ge 1$ et tout $x \in [a, b], |g_k'(x)| \le \frac{b}{k^2}$ et, comme $\sum_{k>1} \frac{b}{k^2}$ converge, on a établi la convergence normale, donc uniforme, de $\sum_{k>1} g'_k$ sur [a,b].

On en déduit que g est de classe C^1 , avec : $\forall x > 0$, $g'(x) = \sum_{k=1}^{+\infty} g'_k(x) = \sum_{k=1}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k}\right)$.

(c) Par la question 6.a., on a, pour tout x > 0

$$g(x) = -\ln(\Gamma(x)xe^{\gamma x}) = -\ln(\Gamma(x)) - \ln(x) - \gamma x.$$

Dérivant cette relation sur \mathbb{R}_+^* , on obtient :

$$g'(x) = -\frac{\Gamma'(x)}{\Gamma(x)} - \frac{1}{x} - \gamma,$$

c'est-à-dire, vu que $\psi = \frac{\Gamma'}{\Gamma}$, $\psi(x) = -g'(x) - \frac{1}{x} - \gamma$. Comme $-g'(x) = -\sum_{k=1}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k}\right) = \sum_{k=1}^{+\infty} \left(-\frac{1}{k+x} + \frac{1}{k}\right)$, on a finalement établi :

$$\forall x > 0, \ \psi(x) = -\frac{1}{x} - \gamma + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right).$$

7. (a) Posant x=1 dans la formule précédente, on trouve : $\psi(1)=-1-\gamma+\sum_{k=1}^{+\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)$, d'où, par télescopage, $\psi(1) = -1 - \gamma + 1 = -\gamma$. De plus $\Gamma(1) = \int_0^{+\infty} e^{-t} dt = \lim_{X \to +\infty} [-e^{-t}]_0^X = \lim_{X \to +\infty} 1 - e^{-X} = 1$ donc, vu que $\psi(1) = \frac{\Gamma'(1)}{\Gamma(1)}$, on obtient $\Gamma'(1) = -\gamma$. On constate que $\Gamma'(1) = \int_0^{+\infty} e^{-t} \ln(t) dt$, d'où finalement :

$$\int_0^{+\infty} e^{-t} \ln(t) dt = -\gamma.$$

(b) D'après la formule de la question 6.c., on a, pour tout x > 0,

$$\psi(x+1) - \psi(x) = -\frac{1}{x+1} + \frac{1}{x} + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+1} \right) - \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right)$$
$$= \frac{1}{x} - \frac{1}{x+1} + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+1} - \frac{1}{k} + \frac{1}{k+x} \right)$$

par somme de séries convergentes. Et donc

$$\psi(x+1) - \psi(x) = \frac{1}{x} - \frac{1}{x+1} + \sum_{k=1}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k+x+1} \right) = \sum_{k=0}^{+\infty} \left(\frac{1}{k+x} - \frac{1}{k+x+1} \right) = \frac{1}{x}.$$

Remarque: On aurait aussi pu procéder ainsi:

$$\psi(x+1) - \psi(x) = \frac{\Gamma'(x+1)}{\Gamma(x+1)} - \frac{\Gamma'(x)}{\Gamma(x)} = \frac{d}{dx} \left(\ln \left(\frac{\Gamma(x+1)}{\Gamma(x)} \right) \right).$$

Or, il est bien connu que $\Gamma(x+1) = x\Gamma(x)$ (il suffit d'intégrer par parties), donc

$$\psi(x+1) - \psi(x) = \frac{d}{dx}(\ln(x)) = \frac{1}{x}.$$

En particulier, pour tout $k \in \mathbb{N}^*$, $\psi(k+1) - \psi(k) = \frac{1}{k}$ Il s'ensuit, pour tout entier $n \ge 2$,

$$\psi(n) = \psi(1) + \sum_{k=1}^{n-1} (\psi(k+1) - \psi(k)) = -\gamma + \sum_{k=1}^{n-1} \frac{1}{k}.$$

(c) Soit x > 0 fixé. Pour tout $k \in \mathbb{N}$, on définit $j_k : \begin{cases} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ y & \longmapsto & \frac{1}{k+y+1} - \frac{1}{k+y+x} \end{cases}$.

Cette notation est discutable : il aurait peut-être été préférable de noter $j_{k,x}$, pour insister sur le fait que

l'on travaille à x>0 fixé, et que la convergence uniforme étudiée ici ne porte que sur la variable y. On peut réécrire $j_k(y)=\frac{k+y+x-k-y-1}{(k+y+1)(k+y+x)}=\frac{x-1}{(k+y+1)(k+y+x)}$ donc,

$$\forall y > 0, \ |j_k(y)| \le \frac{|x-1|}{(k+1)(k+x)}$$

Comme $\sum_{k\geqslant 0} \frac{|x-1|}{(k+1)(k+x)}$ est une série convergente, vu que $\frac{|x-1|}{(k+1)(k+x)} \sim \frac{|x-1|}{k^2}$, on a la convergence normale, donc uniforme, de $\sum_{k\geqslant 0} j_k$ sur $]0,+\infty[$.

Ensuite, reprenant la formule de 6.c., on a, pour tout $n \in \mathbb{N}^*$,

$$\psi(x+n) - \psi(1+n) = -\frac{1}{x+n} + \frac{1}{n} + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x+n} \right) - \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+1+n} \right),$$

et selon le même principe de calcul qu'à la question précédente, on aboutit à :

$$\psi(x+n) - \psi(1+n) = \sum_{k=0}^{+\infty} \left(\frac{1}{k+1+n} - \frac{1}{k+x+n} \right) = \sum_{k=0}^{+\infty} j_k(n).$$

Or, pour tout $k \in \mathbb{N}$, $j_k(n) \xrightarrow[n \to +\infty]{} 0$ donc, par le théorème de la double limite (qui s'applique ici car la série de fonctions étudiée converge uniformément sur un voisinage de $+\infty$),

$$\lim_{n \to +\infty} (\psi(x+n) - \psi(1+n)) = \sum_{k=0}^{+\infty} \lim_{n \to +\infty} j_k(n) = 0.$$

- 8. Par analyse-synthèse:
 - Analyse : Soit f solution. On va montrer que f vérifie la formule de ψ établie en 6.c., à savoir :

$$\forall x > 0, \qquad f(x) = -\frac{1}{x} - \gamma + \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right)$$

Puisque $\frac{1}{t} = f(t+1) - f(t)$ pour tout t > 0, on a

$$\sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+x} \right) = \sum_{k=1}^{+\infty} \left(f(k+1) - f(k) - f(k+x+1) + f(k+x) \right)$$

$$= \lim_{n \to +\infty} \left(\sum_{k=1}^{n} \left(f(k+1) - f(k) \right) + \sum_{k=1}^{n} \left(f(k+x) - f(k+x+1) \right) \right)$$

$$= \lim_{n \to +\infty} \left(f(n+1) - \underbrace{f(1)}_{=-\gamma} + f(1+x) - f(n+x+1) \right)$$

$$= f(x+1) + \gamma - \lim_{n \to +\infty} \left(f(x+1+n) - f(1+n) \right) = f(x) + \frac{1}{x} + \gamma,$$

ce qui montre bien la relation voulue, et donc $f = \psi$.

— **Synthèse**: La seule solution éventuelle au problème est donc ψ . Mais on a prouvé en 7.a., 7.b. et 7.c. que ψ satisfait les trois conditions voulues, donc finalement ψ est solution, et c'est la seule.

Partie III: Autour de la fonction Digamma

Soit $n \in \mathbb{N}^*$.

9. On suppose les boules indiscernables, ce qui implique qu'à tout moment de l'expérience, chaque boule de l'urne a la même probabilité d'être tirée, peu importe son numéro (cette hypothèse n'était pas faite par l'énoncé – est-ce un oubli ou un acte volontaire de la part du concepteur du sujet? – mais elle est éminemment raisonnable).
Avec cette hypothèse, X suit la loi uniforme sur {1,...,n}. On a donc, pour tout k ∈ {1,...,n}, P(X = k) = ½.
Il s'ensuit

$$\mathbb{E}(X) = \sum_{k=1}^{n} k P(X = k) = \frac{1}{n} \sum_{k=1}^{n} k = \frac{n(n+1)}{2n} = \frac{n+1}{2}$$

10. Vu l'expérience, Y prend ses valeurs dans $\{1,\ldots,n\}$. Soit $k\in\{1,\ldots,n\}$.

On utilise la formule des probabilités totales, avec le système complet d'événements $\{(X=1), (X=2), \dots, (X=n)\}$:

$$P(Y = k) = \sum_{j=1}^{n} P_{(X=j)}(Y = k) \times P(X = j) = \frac{1}{n} \sum_{j=1}^{n} P_{(X=j)}(Y = k).$$

On calcule cette somme en distinguant selon les valeurs de j (j = k ou $j \neq k$). En effet, pour j = k, le premier tirage aura amené k boules numérotées k en plus dans l'urne, tandis que pour $j \neq k$, le premier tirage n'aura pas amené de boule numérotée k supplémentaire dans l'urne. Ainsi :

$$P(Y = k) = \frac{1}{n} \left(P_{(X=k)}(Y = k) + \sum_{1 \le j \le n, \ j \ne k} P_{(X=j)}(Y = k) \right) = \frac{1}{n} \left(\frac{k+1}{k+n} + \sum_{1 \le j \le n, \ j \ne k} \frac{1}{j+n} \right),$$

$$= \frac{1}{n} \left(\frac{k}{k+n} + \sum_{j=1}^{n} \frac{1}{j+n} \right).$$

Or, par 7.b., $\psi(2n+1) - \psi(n+1) = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=n+1}^{2n} \frac{1}{k} = \sum_{j=1}^{n} \frac{1}{j+n}$, d'où finalement :

$$\forall k \in \{1, \dots, n\}, \ P(Y = k) = \frac{1}{n} \left(\frac{k}{k+n} + \psi(2n+1) - \psi(n+1) \right)$$

11. On a
$$\mathbb{E}(Y) = \sum_{k=1}^{n} kP(X=k) = \sum_{k=1}^{n} \frac{k}{n} \left(\frac{k}{k+n} + \psi(2n+1) - \psi(n+1) \right)$$
, donc :

$$\mathbb{E}(Y) = \sum_{k=1}^{n} \frac{k^2}{n(n+k)} + \frac{n+1}{2} (\psi(2n+1) - \psi(n+1)).$$

Utilisant l'indication fournie,

$$\mathbb{E}(Y) = \frac{1-n}{2} + n(\psi(2n+1) - \psi(n+1)) + \frac{n+1}{2}(\psi(2n+1) - \psi(n+1))$$
$$= \frac{1-n}{2} + \frac{3n+1}{2}(\psi(2n+1) - \psi(n+1)).$$

Et on est un peu perplexe devant ce résultat : était-ce ce à quoi l'énoncé voulait arriver ?

Remarque : Il n'était pas demandé de démontrer l'indication fournie, mais elle n'avait rien d'extraordinaire :

$$\sum_{k=1}^{n} \frac{k^2}{n(n+k)} = \sum_{k=1}^{n} \left(\frac{k}{n} - \frac{k}{n+k}\right) = \frac{n+1}{2} - \sum_{k=1}^{n} \frac{n+k-n}{n+k} = \frac{n+1}{2} - \sum_{k=1}^{n} \left(1 - \frac{n}{n+k}\right)$$

$$= \frac{n+1}{2} - n + n \sum_{k=1}^{n} \frac{1}{n+k} = \frac{1-n}{2} + n \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1-n}{2} + n (\psi(2n+1) - \psi(n+1)).$$

CCP-M2