TD 6 Ranking et Recommandations

jmFourneau

March 17, 2021

Attendre la disponibilité des slides du cours 8 pour faire les exercices sur la SVD.

1 Exercice 1

On étudie un système où les utilisateurs notent les hotels et qui propose des recommandations. Voici la table des notes (entre 1 et 5). Un point signifie que l'hotel n'a pas été noté.

User	Similarité	Ibis	Mercure	H10	Holliday Inn
Alice	0.9		3	5	1
Bob	0.2	•	3	1	1
Charlie	0.7	2			5
David	0.9		3	5	2
Estelle	0.4	1	5	5	4
Franck	0.8	2			1

La similarité avec l'utilisateur cible est déjà calculée et elle est en colonne 2 de la table.

- 1. Calculez la note prédite pour chacun des hotels pour l'utilisateur cible et indiquez l'hotel proposé (donnez tous les détails du calcul)
- 2. Le premier hotel dans la liste (Ibis) veut améliorer son classement. Il crèe un utilisateur virtuel "Gus" et réussit à avoir une note de similarité égale à 0.8. Dans un premier temps, "Gus" donne la note maximale (5) Ibis, et ne fait que cela. Que deviennent les notes globales pour les hotels et que devient la recommandation?
- 3. De plus, "Gus" donne de mauvaises notes (1) à tous les autres hotels pour baisser leur note globale. Que deviennent les notes globales pour les hotels et que devient la recommandation?

2 Exercice 2 : SVD

Supposez qu'on a une décompostion SVD de $A = U\Sigma V^t$.

- 1. Montrez que $AV = U\Sigma$
- 2. Montrez que Σ^2 contient les valeurs propres à gauche de A^tA
- 3. Montrez que V contient les vecteurs propres à gauche de A^tA
- 4. Montrez que U contient les vecteurs propres à droite de AA^t

3 Exercice 3: SVD

Supposez qu'on a une décompostion SVD de $A=U\Sigma V^t.$ Montrez que cela implique que :

$$A(i,j) = \sum_k U(i,k) \Sigma(k,k) V(j,k)$$

4 Exercice 4: SVD

Supposez qu'on a une décompostion SVD de $A=U\Sigma V^t$. Montrez que si σ est la racine carrée d'un élément diagonal de Σ alors il existe deux vecteurs u et v vérifiant $\sigma u=Mv$ et $\sigma v=M^tu$.