General Description

Artificial Intelligence (AI) requires extreme computational horsepower—but Maxim is cutting the power cord from AI insights. The MAX78000 is a new breed of AI microcontroller built to enable neural networks to execute at ultra low power and live at the edge of the IoT. These products combine the most energy efficient AI processing with Maxim's proven ultra-low power microcontrollers. Our hardware-based convolutional neural network (CNN) accelerator enables battery powered applications to execute AI inferences while spending only micro-Joules of energy.

The MAX78000 is an advanced system-on-chip featuring an Arm® Cortex®-M4 with FPU CPU for efficient system control with an ultra low power neural network accelerator. The CNN engine has a weight storage memory of 442KB, and can support 1, 2, 4, and 8-bit weights (supporting networks of up to 3.5 million weights). The CNN architecture is highly flexible, allowing networks to be trained in conventional toolsets like PyTorch and TensorFlow, then converted for execution on the MAX78000 using tools provided by Maxim. The CNN weight memory is SRAM-based, so AI network updates can be made on-the-fly.

In addition to the memory in the CNN engine, the MAX78000 has large on-chip system memory for the microcontroller core, with 512KB flash and up to 128KB SRAM. Multiple high-speed and low-power communications interfaces are sup¬ported including I²S and a parallel camera interface.

The device is available in 81-pin CTBGA (8mm x 8mm, 0.8mm pitch) and a 130-pin WLP (4.6mm x 3.7mm, 0.35mm pitch) packages.

Applications

- Image processing inferences on VGA images at 1 frame per second
- Facial recognition
- Object detection and classification
- Audio processing: multi-keyword recognition, sound classification, noise cancellation
- Time-series data processing: heart rate/health signal analysis, multi-sensor analysis, predictive maintenance

Benefits and Features

- Dual Core Ultra-Low Power Microcontroller
 - Arm Cortex-M4 Processor with FPU Up to 100MHz
 - · 512KB Flash and 128KB SRAM
 - Optimized performance with 16KB Instruction Cache
 - Optional Error Correction Code (ECC-SEC-DED) for SRAM
 - 32-bit RISC-V Co-processor up to 60MHz
 - Up to 52 General Purpose I/O Pins
 - 12-Bit Parallel Camera Interface
 - One I²S Master/Slave for Digital Audio Interface
- Convolutional Neural Net Accelerator
 - 442k 8bit weight capacity with 1,2,4,8-bit weights
 - Programmable input image size up to 1024 x 1024 pixels
 - · Programmable network depth up to 32 layers
 - Programmable per layer network channel widths up to 512 channels
 - · 1 and 2 dimensional convolution processing
 - · Streaming mode
- Power Management Maximizes Operating Time for Battery Applications
 - 1.7V to 3.6V supply voltage range
 - Integrated SIMO SMPS
 - Dynamic Voltage Scaling Minimizes Active Core Power Consumption
 - 23µA/MHz While Loop Execution at 3.3V from Cache (MCU only)
 - 110µA/MHz While Loop Execution at 3.3V from Cache plus CNN running continuous CIFAR-10 image inferences
 - 9μA (typ) at 3.3V Retention Current for 128KB (MCU only)
 - 30µA (typ) at 3.3V Retention Current for 128KB + CNN weight memories
 - Selectable SRAM Retention in Low Power modes with RTC enabled
- Security and Integrity
 - Available Secure Boot
 - AES 128/192/256 Hardware Acceleration Engine
 - · TRNG Seed Generator

Ordering Information appears at end of data sheet.

Simplified Block Diagram

Maxim Integrated | 2 www.maximintegrated.com

TABLE OF CONTENTS

General Description	1
Applications	1
Benefits and Features	1
Simplified Block Diagram	
Absolute Maximum Ratings	7
Package Information	7
81-CTBGA	7
Electrical Characteristics	7
Electrical Characteristics—SPI	19
Electrical Characteristics—I ² C	20
Electrical Characteristics—I ² S	21
Electrical Characteristics—PCIF	22
Electrical Characteristics—One Wire Master	22
Pin Configuration	27
81 CTBGA	27
Pin Description	28
Detailed Description	32
MAX78000	32
Arm Cortex-M4 with FPU Processor and RISC-V RV32 Processor	32
Convolutional Neural Network Accelerator (CNN)	32
Memory	
Internal Flash Memory	34
Internal SRAM	34
Comparators	
Clocking Scheme	34
General-Purpose I/O and Special Function Pins	
Parallel Camera Interface	36
Analog-to-Digital Converter	
Single-Inductor Multiple-Output Switch-Mode Power Supply (SIMO SMPS)	
Power Management	
Power Management Unit	
Active Mode	37
Sleep Mode	37
Low Power Mode	37
Micro Power Mode	37
Standby Mode	
Backup Mode	
Power Down Mode	39

TABLE OF CONTENTS (CONTINUED) AES.......44 Bootloader 45

Ultra-low Power ARM Cortex-M4F with Convolutional Neural Network Accelerator

PRELIMINARY

LIST OF FIGURES	
Figure 1. SPI Master Mode Timing Diagram	
Figure 2. SPI Slave Mode Timing Diagram	. 24
Figure 3. I ² C Timing Diagram	. 24
Figure 4. I ² S Timing Diagram	
Figure 5. Parallel Camera Interface Timing Diagram	. 25
Figure 6. One-Wire Master Data Timing Diagram	. 26

Ultra-low Power ARM Cortex-M4F with Convolutional Neural Network Accelerator

Table 3. Timer Configuration Options40Table 4. Watchdog Timer Configuration Options41Table 5. SPI Configuration Options42Table 6. UART Configuration Options43Table 7. Common CRC Polynomials44

U
刀
m
Ë
\leq
Z
70

www.maximintegrated.com Maxim Integrated | 6

LIST OF TABLES

Absolute Maximum Ratings

V _{CORE}	0.3V to +1.21V	V _{DDIOH} Combined Pins (sink)	100mA
	0.3V to +3.6V	V _{SSA}	100mA
V _{DDIOH}	0.3V to +3.6V	V _{SS}	TBDmA
	0.3V to +3.6V	V _{SSPWR}	TBDmA
	0.3V to V _{DDIO} + 0.5V	Output Current (sink) by Any GPIO Pin	25mA
RSTN, GPIO (V _{DDIOH})	0.3V to V _{DDIOH} + 0.5V	Output Current (source) by Any GPIO Pin	25mA
32KIN, 32KOUT	0.3V to V _{DDA} + 0.2V	Operating Temperature Range	40°C to +105°C
AIN[7:0]	0.3V to +3.6V	Storage Temperature Range	65°C to +150°C
V _{DDIO} Combined Pins (sink)	100mA	Soldering Temperature	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

81-CTBGA

Package Code	X8188+3C
Outline Number	21-0735
Land Pattern Number	90-0460
Thermal Resistance, Single-Layer Board:	
Junction-to-Ambient (θ _{JA})	N/A
Junction-to-Case Thermal Resistance (θ _{JC})	N/A
Thermal Resistance, Four-Layer Board:	
Junction-to-Ambient (θ _{JA})	N/A
Junction-to-Case Thermal Resistance (θ_{JC})	N/A

Electrical Characteristics

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES			·			
Core Input Supply	V _{COREA}	Falling	V _{COREA} V _{RST}	1.1	1.21	V
Voltage A		Rising	0.9	1.1	1.21	
Core Input Supply	V _{COREB}	Falling	V _{COREB} V _{RST}	1.1	1.21	V
Voltage B		Rising	0.9	1.1	1.21	
Input Supply Voltage,	V _{REGI}	Falling	2.0	3.0	3.6	V
Battery	V _{REGI_POR}	Rising	2.4	3.0	3.6]
Input Supply Voltage, Analog	V _{DDA}		1.71	1.8	1.89	V
Input Supply Voltage, GPIO	V _{DDIO}		1.71	1.8	1.89	V

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Supply Voltage, GPIO (High)	V _{DDIOH}		1.71	3.0	3.6	V	
		Monitors V _{COREA}	TBD	TBD			
Power-Fail Reset	V _{RST}	Monitors V _{COREB}	TBD	TBD		V	
		Monitors V _{DDA}	1.60	1.65	1.69		
Voltage		Monitors V _{DDIO}	1.60	1.65	1.69		
		Monitors V _{DDIOH}	TBD	TBD	TBD		
		Monitors V _{REGI}	1.94		2.08		
Power-On Reset Voltage	V _{POR}	Monitors V _{COREA}		0.63		- V	
		Monitors V _{DDA}		1.25			

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS	
		Dynamic, IPO enabled, $f_{SYS_CLK(MAX)} = 100 MHz$, total current into V_{REGI} pin, $V_{REGI} = 3.0 V$, CM4 in Active mode executing Coremark, RV32 in Sleep mode, ECC disabled, all CNN quadrants disabled, all CNN memory disabled, inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} , outputs source/sink 0mA	TBD			
	IREGI_DACT	Dynamic, IPO enabled, $f_{SYS_CLK(MAX)} = 100 MHz$, total current into V_{REGI} pin, $V_{REGI} = 3.0 V$, CM4 in Active mode executing While(1), RV32 in Active mode running While(1), ECC disabled, all CNN quadrants disabled, all CNN memory disabled, inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} , outputs source/sink 0mA	TBD			
V _{REGI} Current, Active Mode		Dynamic, IPO enabled, $f_{SYS_CLK(MAX)} = 100 MHz$, total current into V_{REGI} pin, $V_{REGI} = 3.0 V$, CM4 in Active mode executing While(1), RV32 in Sleep mode, ECC disabled, all CNN quadrants disabled, all CNN memory disabled, inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} , outputs source/sink 0mA	TBD	TBD		
		Dynamic, total current into V _{REGI} pin, V _{REGI} = 3.0V, CM4 in Sleep mode, RV32 in Active mode running from ISO, ECC disabled, all CNN quadrants disabled, all CNN memory disabled, inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} , outputs source/ sink 0mA	TBD			
		Fixed, IPO enabled, ISO enabled, total current into V _{REGI} , V _{REGI} = 3.0V, CM4 in Active mode 0MHz, RV32 in Active mode 0MHz, all CNN quadrants disabled, all CNN memory disabled, inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} , outputs source/ sink 0mA	TBD			

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
V _{REGI} Current, Sleep Mode	l _{REGI_DSLP}	Dynamic, IPO enabled, $f_{SYS_CLK(MAX)} = 100MHz$, ISO enabled, total current into V_{REGI} pins, $V_{REGI} = 3.0V$, CM4 in Sleep mode, RV32 in Sleep mode, ECC disabled, all CNN quadrants disabled, all CNN memory disabled, standard DMA with two channels active, inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} , outputs source/ sink 0mA	TBD		μ Α/ MHz
	'REGI_DSLP	Dynamic, IPO enabled, f _{SYS_CLK(MAX)} = 100MHz, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.0V, CM4 in Sleep mode, RV32 in Sleep mode, ECC disabled, DMA disabled, all CNN quadrants disabled, all CNN memory disabled, inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} , outputs source/sink 0mA	TBD		
	IREGI_FSLP	Fixed, IPO enabled, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.0V, CM4 in Sleep mode, RV32 in Sleep mode, ECC disabled, all CNN quadrants disabled, all CNN memory disabled, inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} , outputs source/sink 0mA	TBD		μА
V _{REGI} Current, Low- Power Mode	I _{REGI_DLP}	Dynamic, ISO enabled, total current into VREGI pins, VREGI = 3.0V, CM4 powered off, RV32 in Active mode, fSYS_CLK(MAX) = 60MHz, all CNN quadrants disabled, all CNN memory disabled, inputs tied to VSS, VDDIO, or VDDIOH, outputs source/ sink 0mA	TBD		μΑ/MHz
	I _{REGI_FLP}	Fixed, ISO enabled, total current into V _{REGI} pins, V _{REGI} = 3.0V, CM4 powered off, RV32 in Active mode 0MHz, all CNN quadrants disabled, all CNN memory disabled,inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} , outputs source/sink 0mA>	TBD		μА
V _{REGI} Current, Micro- Power Mode	IREGI_DMP	Dynamic, ERTCO enabled, IBRO enabled, total current into V_{REGI} pins, $V_{REGI} = 3.0V$, LPUART active, $f_{LPUART} = 32.768$ kHz, all CNN quadrants disabled, all CNN memory disabled, inputs tied to V_{SS} , V_{DDIO} , or V_{DDIOH} , outputs source/sink 0mA	TBD		μА

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
V _{REGI} Current, Standby Mode	I _{REGI_STBY}	Fixed, total current in V _{REGI} = 3.0V, all CN disabled, all CNN me inputs tied to V _{SS} , V outputs source/sink (TBD		μΑ		
		Total current into	All SRAM retained		TBD			
		V _{REGI} pins, V _{REGI} = 3.0V, V _{COREA} =	No SRAM retention		TBD			
		$V_{COREB} = 0.81V$,	SRAM0 retained		TBD			
V _{REGI} Current, Backup	I _{REGI_BK}	RTC disabled, all CNN quadrants	SRAM0 and SRAM1 retained		TBD		μA	
Mode	memory disal inputs tied to V _{DDIO} , or V _D	memory disabled, inputs tied to V _{SS} , V _{DDIO} , or V _{DDIOH} , outputs source/sink	SRAM0, SRAM1, and SRAM2 retained		TBD		,	
V _{REGI} Current, Power- Down Mode	I _{REGI_PDM}	Total current into V _R 3.0V, inputs tied to V _{DDIOH} , outputs sou		TBD		μΑ		
V _{REGO_X} Output Current	V _{REGO_X_IOU}	Output current for ea		5	50	mA		
V _{REGO_X} Output Current Combined	V _{REGO_X_IOU} T_TOT	All three V _{REGO_X} o		15	100	mA		
V _{REGO_X} Output Voltage Range	V _{REGO_X_RA}	V _{REGI} ≥ V _{REGO_X} +	200mV	0.5	1.0	1.85	٧	
V _{REGO_X} Efficiency	V _{REGO_X_EFF}	V_{REGI} = 2.7V, V_{REG} 30mA	_{O_X} = 1.1 V, load =		90		%	
Sleep Mode Resume Time	t _{SLP_ON}	TBD. Are there any i	relevant bit settings?		TBD		μs	
Low-Power Mode Resume Time	t _{LP_ON}	TBD. Are there any r	relevant bit settings?		TBD		μs	
Micro-Power Mode Resume Time	t _{MP_ON}	TBD. Are there any r	relevant bit settings?		TBD		us	
Standby Mode Resume Time	t _{STBY_ON}	TBD. Are there any relevant bit settings? Includes system initialization and ROM execution time???			TBD		ms	
Backup Mode Resume Time	t _{BKU_ON}	TBD. Are there any relevant bit settings? Includes system initialization and ROM execution time???			TBD		ms	
CLOCKS								
System Clock Frequency	f _{SYS_CLK}			0.0625		100,000	kHz	

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	UNITS
System Clock Period	tsys_clk				1/ fsys_cl K		ns
Internal Primary Oscillator (IPO)	f _{IPO}				100		MHz
Internal Secondary Oscillator (ISO)	fiso				60		MHz
Internal Baud Rate Oscillator (IBRO)	f _{IBRO}				7.3728		MHz
		8kHz selected			8		
Internal Nano-Ring Oscillator (INRO)	f _{INRO}	16kHz selected			16		kHz
		30kHz selected			32		
External RTC Oscillator (ERTCO)	fERTCO	32kHz watch crysta 90kΩ, C ₀ ≤ 2pF	I, C _L = 6pF, ESR <		32.768		kHz
RTC Operating Current	I _{RTC}	All power modes, R	TC enabled		TBD		μA
RTC Power-Up Time	t _{RTC_ON}				250		ms
External I ² S Clock Input Frequency	fEXT_I2S_CLK	I2S_CLKEXT select	I2S_CLKEXT selected			25	MHz
External System Clock Input Frequency	fEXT_CLK	EXT_CLK selected				80	MHz
External Low Power Timer 1 Clock Input Frequency	fEXT_LPTMR1_ CLK	LPTMR1_CLK selected				8	MHz
External Low Power Timer 2 Clock Input Frequency	fEXT_LPTMR2_ CLK	LPTMR2_CLK selected				8	MHz
CONVOLUTIONAL NEU	RAL NETWORK						
V _{REGI} Mask Memory Retention Current	IREGI_CNNMR	V _{COREB} = 0.81V	x16 Quadrant 0 only. x16 Quadrant 1, 2, 3 powered down and isolated		TBD	TBD	μА
			x16 Quadrant 0, 1, 2, and 3 enabled		TBD	TBD	1
V _{REGI} CNN Inactive Current	IREGI_CNNIA	CNN enabled/ inactive, clocks disabled	x16 Quadrant 0 enabled, x16 Quadrant 1, 2, 3 powered down and isolated		TBD	TBD	mA
			x16 Quadrant 0, 1, 2, and 3 enabled		TBD	TBD	mA

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
V _{REGI} CNN Datapath Current	I _{REGI_CNNDP}	CNN enabled, datapath clocks active, CNN not actively processing	x16 Quadrant 0 enabled, x16 Quadrant 1, 2, 3 powered down and isolated		TBD	TBD	mA
		data	x16 Quadrant 0, 1, 2, and 3 enabled		TBD	TBD	

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN TYP	MAX	UNITS
			x16 Quadrant 0 enabled, x16 Quadrant 1, 2, 3 powered down and isolated	TBD	TBD	mA
		Max power network, data, mask configuration (TBD specification)	x16 Quadrant 0 enabled, x16 Quadrant 1, 2, 3 powered down and isolated	TBD	TBD	pJ/MAC
			x16 Quadrant 0, 1, 2, and 3 enabled	TBD	TBD	mA
			x16 Quadrant 0, 1, 2, and 3 enabled	TBD	TBD	pJ/MAC
	I _{REGI_CNNA}	Max power	x16 Quadrant 0 enabled, x16 Quadrant 1, 2, 3 powered down and isolated	TBD	TBD	mA
V _{REGI} CNN Active Current		network, min power data and min power mask configuration (TBD specification)	x16 Quadrant 0 enabled, x16 Quadrant 1, 2, 3 powered down and isolated	TBD	TBD	pJ/MAC
			x16 Quadrant 0, 1, 2, and 3 enabled	TBD	TBD	mA
			x16 Quadrant 0, 1, 2, and 3 enabled	TBD	TBD	pJ/MAC
			x16 Quadrant 0 enabled, x16 Quadrant 1, 2, 3 powered down and isolated	TBD	TBD	mA
		Standard dataset, optimized network (TBD specification)	x16 Quadrant 0 enabled, x16 Quadrant 1, 2, 3 powered down and isolated	TBD	TBD	pJ/MAC
			x16 Quadrant 0, 1, 2, and 3 enabled	TBD	TBD	mA
			x16 Quadrant 0, 1, 2, and 3 enabled	TBD	TBD	pJ/MAC

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
GENERAL-PURPOSE I/O)	1					
Input Low Voltage for All GPIO Except P3.0 and P3.1	V _{IL_} VDDIO	P3.0 and P3.1 can only use V _{DDIOH} as I/O supply and cannot use V _{DDIO} as I/O supply	V _{DDIO} selected as I/O supply			0.3 × V _{DDIO}	V
Input Low Voltage for All GPIO	V _{IL_VDDIOH}	V _{DDIOH} selected as	I/O supply			0.3 × V _{DDIOH}	V
Input Low Voltage for RSTN	V _{IL_RSTN}				0.5 x V _{DDIOH}		V
Input High Voltage for All GPIO Except P3.0 and P3.1	V _{IH_} VDDIO	P3.0 and P3.1 can only use V _{DDIOH} as I/O supply and cannot use V _{DDIO} as I/O supply	V _{DDIO} selected as I/O supply	0.7 × V _{DDIO}			V
Input High Voltage for All GPIO	V _{IH_VDDIOH}	V _{DDIOH} selected as	I/O supply	0.7 × V _{DDIOH}			V
Input High Voltage for RSTN	V _{IH_RSTN}				0.5 x V _{DDIOH}		V
			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 00, I _{OL} = 1mA		0.2	0.4	
Output Low Voltage for	V	P3.0 and P3.1 can only use VDDIOH	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 01, I _{OL} = 2mA		0.2	0.4	V
All GPIO Except P3.0 and P3.1	as I/O supply and cannot use V _{DDIO} as I/O supply	cannot use V _{DDIO}	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 10, I _{OL} = 4mA		0.2	0.4	v
			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 11, I _{OL} = 8mA		0.2	0.4	

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS
		V _{DDIOH} selected as = 1.71V, GPIOn_DS = 1mA			0.2	0.4	
Output Low Voltage for	Va	V _{DDIOH} selected as = 1.71V, GPIOn_DS = 2mA			0.2	0.4	V
All GPIO	Vol_vddioh	V _{DDIOH} selected as = 1.71V, GPIOn_DS = 4mA			0.2	0.4	
		V _{DDIOH} selected as = 1.71V, GPIOn_DS = 8mA	I/O supply, V _{DDIOH} _SEL[1:0] = 11, I _{OL}		0.2	0.4	
Combined I _{OL} , All GPIO	I _{OL_TOTAL}					48	mA
Output High Voltage for			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 00, I _{OL} = -1mA	V _{DDIO} - 0.4			
	V _{OH_VDDIO}	P3.0 and P3.1 can only use V _{DDIOH} as I/O supply and cannot use V _{DDIO} as I/O supply	V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 01, I _{OL} = -2mA	V _{DDIO} - 0.4			V
All GPIO Except P3.0 and P3.1			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 10, I _{OL} = -4mA	V _{DDIO} - 0.4			V
			V _{DDIO} selected as I/O supply, V _{DDIO} = 1.71V, GPIOn_DS_SEL[1: 0] = 11, I _{OL} = -8mA	V _{DDIO} - 0.4			
		V _{DDIOH} selected as = 1.71V, GPIOn_DS = -1mA		V _{DDIOH} - 0.4			
Output High Voltage for	Vauveen	V _{DDIOH} selected as = 1.71V, GPIOn_DS = -2mA		V _{DDIOH} - 0.4			V
All GPIO Except P3.0 and P3.1	VOH_VDDIOH	V _{DDIOH} selected as = 1.71V, GPIOn_DS = -8mA		V _{DDIOH} - 0.4			V
		V _{DDIOH} selected as = 1.71V, GPIOn_DS = -8mA	I/O supply, V _{DDIOH} _SEL[1:0] = 11, I _{OL}	V _{DDIOH} - 0.4			

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONE	OITIONS	MIN	TYP	MAX	UNITS
Output High Voltage for P3.0 and P3.1	Voh_vddioh	V _{DDIOH} = 1.71V, GI fixed at 00, I _{OL} = -1		V _{DDIOH} - 0.4			V
Combined I _{OH} , All GPIO	I _{OH_TOTAL}					-48	mA
Input Hysteresis (Schmitt)	V _{IHYS}				300		mV
Input Leakage Current Low	I _{IL}	V _{DDIO} = 1.89V, V _{DE} selected as I/O supp pullup disabled	$D_{IOH} = 3.6V, V_{DDIOH}$ bly, $V_{IN} = 0V$, internal	-100		+100	nA
	Ιιн	V _{DDIO} = 1.89V, V _D selected as I/O supprinternal pulldown dis		-100		+100	nA
Input Leakage Current High	I _{OFF}	V _{DDIO} = 0V, V _{DDIO} selected as I/O supp		-1		+1	μA
	I _{IH3V}	V _{DDIO} = V _{DDIOH} = selected as I/O supp	1.71V, V_{DDIO} bly, $V_{IN} = 3.6V$	-2		+2	
Input Pullup Resistor RSTN	R _{PU_R}	Pullup to V _{DDIOH}			25		kΩ
Input Pullup/Pulldown	R _{PU1}	Normal resistance, I	P1M = 0		25		kΩ
Resistor for All GPIO	R _{PU2}	Highest resistance,	P1M = 1		1		ΜΩ
ADC (DELTA-SIGMA)							
Resolution					10		Bits
ADC Clock Rate	fACLK			0.1		8	MHz
ADC Clock Period	t _{ACLK}		T		1/f _{ACLK}		μs
		AIN[7:0], ADC_DIVSEL = [00], ADC_CH_SEL = [7:0]	REF_SEL = 0, INPUT_SCALE = 0	V _{SSA} + 0.05		V_{BG}	
Input Voltage Pange	V	AIN[7:0], ADC_DIVSEL = [01], ADC_CH_SEL = [7:0]	REF_SCALE = 0, INPUT_SCALE = 0	V _{SSA} + 0.05		2 x V _{BG}	V
Input Voltage Range	Vain	AIN[7:0], ADC_DIVSEL = [10], ADC_CH_SEL = [7:0]	REF_SCALE = 0, INPUT_SCALE = 0, V _{DDIOH} selected as the I/O supply	V _{SSA} + 0.05		V _{DDIOH}	v
		AIN[7:0], ADC_DIVSEL = [11], ADC_CH_SEL = [7:0]	REF_SEL = 0, INPUT_SCALE = 0, V _{DDIOH} selected as the I/O supply	V _{SSA} + 0.05		V _{DDIOH}	

Electrical Characteristics (continued)

(Limits are 100% tested at T_A = +25°C and T_A = +105°C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested. Specifications to the minimum operating temperature are guaranteed by design and are not production tested. GPIO are only tested at T_A = +105°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Input Impedance	R _{AIN}		30		kΩ
Analog Input		Fixed capacitance to V _{SSA}	1		pF
Capacitance	C _{AIN}	Dynamically switched capacitance	250		fF
Integral Nonlinearity	INL	Measured at 25°C, Insignificant temperature drift due to architecture		±2	LSb
Differential Nonlinearity	DNL	Measured at 25°C, Insignificant temperature drift due to architecture		±1	LSb
Offset Error	Vos		±1		LSb
ADC Active Current	I _{ADC}	ADC active, reference buffer enabled, input buffer disabled	210		μA
ADC Setup Time	t _{ADC_SU}	Any power-up of ADC clock or ADC bias to CpuAdcStart		10	μs
ADC Output Latency	t _{ADC}		1067		tACLK
ADC Sample Rate	f _{ADC}			7.8	ksps
ADC Input Leakage	I _{ADC_LEAK}	ADC inactive or channel not selected	0.16		nA
Full-Scale Voltage	V _{FS}	ADC code = 0x3FF	1.2		V
Bandgap Temperature Coefficient	V _{TEMPCO}	Box method	30		ppm
COMPARATORS					•
Input Offset Voltage	V _{OFFSET}		+/-1		mV
		AINCOMPHYST[1:0] = 00	±23		
Input Hysteresis	\/ -	AINCOMPHYST[1:0] = 01	±50		mV
input Hysteresis	V _{HYST}	AINCOMPHYST[1:0] = 10	±2		IIIV
		AINCOMPHYST[1:0] = 11	±7		
Input Voltage Range	V _{IN_CMP}	Common-mode range	0.6	1.35	V
FLASH MEMORY					
Flash Erase Time	t _{M_ERASE}	Mass erase	20		me
Tiasii Liase Tiille	tp_ERASE	Page erase	20		ms
Flash Programming Time per Word	t _{PROG}		42		μs
Flash Endurance			10		kcycles
Data Retention	t _{RET}	T _A = +85°C	10		years

Electrical Characteristics—SPI

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MASTER MODE						•
SPI Master Operating Frequency for SPI0	f _{MCK0}	f _{SYS_CLK} = 100MHz, f _{MCK0(MAX)} = f _{SYS_CLK} /2			50	MHz
SPI Master Operating Frequency for SPI1	f _{MCK1}	f _{SYS_CLK} = 100MHz, f _{MCK1(MAX)} = f _{SYS_CLK} /4			25	MHz
SPI Master SCK Period	t _{MCKX}			1/f _{MCKX}		ns
SCK Output Pulse- Width High/Low	t _{MCH} , t _{MCL}		t _{MCKX} /2			ns
MOSI Output Hold Time After SCK Sample Edge	^t MOH		t _{MCX} /2			ns
MOSI Output Valid to Sample Edge	t _{MOV}		t _{MCKX} /2			ns
MOSI Output Hold Time After SCK Low Idle	t _{MLH}			t _{MCKX} /2		ns
MISO Input Valid to SCK Sample Edge Setup	t _{MIS}			5		ns
MISO Input to SCK Sample Edge Hold	t _{MIH}			t _{MCKX} /2		ns
SLAVE MODE						
SPI Slave Operating Frequency	f _{SCK}				50	MHz
SPI Slave SCK Period	tsck			1/f _{SCK}		ns
SCK Input Pulse-Width High/Low	t _{SCH} , t _{SCL}			t _{SCK} /2		
SSx Active to First Shift Edge	t _{SSE}			10		ns
MOSI Input to SCK Sample Edge Rise/Fall Setup	t _{SIS}			5		ns
MOSI Input from SCK Sample Edge Transition Hold	t _{SIH}			1		ns
MISO Output Valid After SCLK Shift Edge Transition	tsov			5		ns
SCK Inactive to SSx Inactive	t _{SSD}			10		ns
SSx Inactive Time	tssh			1/f _{SCK}		μs
MISO Hold Time After SSx Deassertion	^t SLH			10		ns

Electrical Characteristics—I²C

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STANDARD MODE						
Output Fall Time	t _{OF}	Standard mode, from V _{IH(MIN)} to V _{IL(MAX)}		150		ns
SCL Clock Frequency	f _{SCL}		0		100	kHz
Low Period SCL Clock	t_{LOW}		4.7			μs
High Time SCL Clock	^t HIGH		4.0			μs
Setup Time for Repeated Start Condition	t _{SU;STA}		4.7			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		4.0			μs
Data Setup Time	tsu;dat			300		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			800		ns
Fall Time for SDA and SCL	t _F			200		ns
Setup Time for a Stop Condition	tsu;sto		4.0			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		4.7			μs
Data Valid Time	$t_{VD;DAT}$		3.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		3.45			μs
FAST MODE						
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		150		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		400	kHz
Low Period SCL Clock	t_{LOW}		1.3			μs
High Time SCL Clock	tHIGH		0.6			μs
Setup Time for Repeated Start Condition	tsu;sta		0.6			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		0.6			μs
Data Setup Time	t _{SU;DAT}			125		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			30		ns

PRELIMINARY

Electrical Characteristics—I²C (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	tsu;sto		0.6			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		1.3			μs
Data Valid Time	t _{VD;DAT}		0.9			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.9			μs
FAST MODE PLUS						
Output Fall Time	t _{OF}	From V _{IH(MIN)} to V _{IL(MAX)}		80		ns
Pulse Width Suppressed by Input Filter	t _{SP}			75		ns
SCL Clock Frequency	f _{SCL}		0		1000	kHz
Low Period SCL Clock	t_{LOW}		0.5			μs
High Time SCL clock	tHIGH		0.26			μs
Setup Time for Repeated Start Condition	tsu;sta		0.26			μs
Hold Time for Repeated Start Condition	t _{HD;STA}		0.26			μs
Data Setup Time	t _{SU;DAT}			50		ns
Data Hold Time	t _{HD;DAT}			10		ns
Rise Time for SDA and SCL	t _R			50		ns
Fall Time for SDA and SCL	t _F			30		ns
Setup Time for a Stop Condition	tsu;sto		0.26			μs
Bus Free Time Between a Stop and Start Condition	t _{BUS}		0.5			μs
Data Valid Time	t _{VD;DAT}		0.45			μs
Data Valid Acknowledge Time	t _{VD;ACK}		0.45			μs

Electrical Characteristics—I²S

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Bit Clock Frequency	fBCLK				25	MHz
BCLK High Time	twBCLKH			0.5		1/f _{BCLK}

Electrical Characteristics—I²S (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
BCLK Low Time				0.5		1/f _{BCLK}
LRCLK Setup Time	tLRCLK_BLCK			25		ns
Delay Time, BCLK to SD (Output) Valid	tBCLK_SDO			12		ns
Setup Time for SD (Input)	tsu_sdi			6		ns
Hold Time SD (Input)	t _{HD_SDI}			3		ns

Electrical Characteristics—PCIF

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PCIF			•			
PCIF Operating Frequency	fCLK			TBD		MHz
PCIF Clock Period	tCLK			1/f _{CLK}		ns
PCIF_PCLK Output Pulse-Width High/Low	t _{WCH} , t _{WCL}		t _{CLK} /2			ns
PCIF_VSYNC, PCIF_HSYNC Setup Time	tssu		TBD			ns
PCIF_VSYNC, PCIF_HSYNC Hold Time	tSHLD		TBD			ns
PCIF_D0-PCIF_D11 Setup TIme	t _{DSU}		TBD			ns
PCIF_D0_PCIF_D11 Hold Time	t _{DHLD}		TBD			ns

Electrical Characteristics—One Wire Master

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Write O Low Time	twoL	Standard		60			
Write 0 Low Time		Overdrive		8		μs	
		Standard		6			
Write 1 Low Time	t _{W1L}	Standard, long line mode		8		μs	
		Overdrive		1			
		Standard		70			
Presence Detect Sample	t _{MSP}	Standard, Long Line mode	85 9			μs	
		Overdrive					

Electrical Characteristics—One Wire Master (continued)

(Timing specifications are guaranteed by design and not production tested.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP I	MAX	UNITS	
		Standard	15			
Read Data Value	t _{MSR}	Standard, Long Line mode	24		μs	
		Overdrive	3			
		Standard	10			
Recovery Time	t _{REC0}	Standard, Long Line mode	20		μs	
		Overdrive	4			
Dood Time High	t _{RSTH}	Standard	480		μs	
Reset Time High		Overdrive	58			
Reset Time Low	t _{RSTL}	Standard	600		μs	
Reset Time LOW		Overdrive	70			
Time Clet	4	Standard	70			
Time Slot	tslot	Overdrive	12		μs	

Figure 1. SPI Master Mode Timing Diagram

Figure 2. SPI Slave Mode Timing Diagram

Figure 3. I²C Timing Diagram

Figure 4. I²S Timing Diagram

Figure 5. Parallel Camera Interface Timing Diagram

Figure 6. One-Wire Master Data Timing Diagram

PRELIMINARY

Pin Configuration

81 CTBGA

Pin Description

			FUNCTION MODE							
PIN	NAME Primary Signal Alternate Alternate (Default) Function 1 Function 2		FUNCTION							
POWER (See the Applications Information section for bypass capacitor recommendations.)										
C9, C6	V _{REGI}	_	_	_	Battery power supply for the SIMO Switchmode Power Supply (SMPS). Bypass device pin C9 with 2 x 47µF capacitors placed as close as possible to the device pin C9 and V _{SSPWR} pins for applications using a coin-cell as the battery. See Bypass Capacitors for more information. If power to the device is cycled, the voltage applied to this device pin must reach V _{REGI_POR} .					
C7	V_{DDA}	_	_	_	1.8V Analog Power Supply					
D9, E1	V _{COREA}	_	_	_	Digital Core Supply Voltage A					
D8	V _{COREB}	_		_	Digital Core Supply Voltage B					
C8	V _{BST}	_	_	_	The boosted supply voltage for the gate drive of high-side switches. Bypass V _{BST} to LXB with a 3.3nF capacitor.					
В8	V _{REGO_} A	_	-	_	Buck Converter A Voltage Output. Bypass V_{REGO_A} with a 22 μ F capacitor to V_{SS} placed as close as possible to the V_{DDA} device pin.					
A7	V _{REGO_B}	_	_	_	Buck Converter B Voltage Output. Bypass V _{REGO_B} with a 22µF capacitor to V _{SS} placed as close as possible to the closest V _{COREB} device pin.					
В7	V _{REGO_C}	_	-	_	Buck Converter C Voltage Output. Bypass V_{REGO_C} with a 22 μ F capacitor to V_{SS} placed as close as possible to the closest V_{COREA} device pin.					
A4, D1, J5	V _{DDIO}	_	_	_	GPIO Supply Voltage. Bypass this pin to V_{SS} with a 1.0 μ F capacitor placed as close as possible to the package.					
A3, C1, J4	V _{DDIOH}			_	GPIO Supply Voltage, High. $V_{DDIOH} \ge V_{DDIO}$. Bypass this pin to V_{SS} with a 1.0µF capacitor placed as close as possible to the package.					
A1, A6, C4, C5, E9, J6	V _{SS}	_	_	_	Digital Ground.					
В6	V _{SSA}	_	_	_	Analog Ground.					
A9	V _{SSPWR}	_	_	_	Ground for the SIMO Switchmode Power Supply (SMPS). This device pin is the return path for the the V _{REGI} device pins C6 and C9.					
В9	LXA	_	_	_	Switching Inductor Input A. Connect a 2.2µH inductor between LXA and LXB.					
A8	LXB	_	_	_	Switching Inductor Input B. Connect a 2.2µH inductor between LXA and LXB.					

81 CTBGA

			FUNCTION MODE					
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION			
RESET A	ND CONTROL							
B4	RSTN	_	_	_	Active-Low, External System Reset Input. The device remains in reset while this pin is in its active state. When the pin transitions to its inactive state, the device performs a POR reset (resetting all logic on all supplies except for real-time clock circuitry) and begins execution. This pin has an internal pullup to the VDDIOH supply.			
CLOCK								
A5	32KOUT	_	<u> </u>	_	32kHz Crystal Oscillator Output			
B5	32KIN	-	l	_	32kHz Crystal Oscillator Input. Connect a 32kHz crystal between 32KIN and 32KOUT for RTC operation. Optionally, this pin can be configured as the input for an external CMOS-level clock source.			
GPIO AND ALTERNATE FUNCTION (See the Applications Information section for GPIO and Alternate Function Matrices.)								
J9	P0.0	P0.0	UART0_RX	_	UART0 Receive			
H9	P0.1	P0.1	UART0_TX		UART0 Transmit			
J8	P0.2	P0.2	TMR0_0	UART0_CTS	32-bit Timer 0 bi-directional 32 bits or lower 16-bits; UART0 Clear To Send			
H8	P0.3	P0.3	EXT_CLK/ TMR0_1	UART0_RTS	External Clock for use as SYS_OSC/Timer 0 bidirectional 16 bits; UART0 Request To Send			
J7	P0.4	P0.4	SPI0_SS0	TMR0_0B/ TMR0_CAPEV ENT0	SPI0 Slave Select 0; 32-bit Timer 0 inverted 16-bit output from lower 16-bits/Timer 0 Capture Event Input to lower 16-bits			
H7	P0.5	P0.5	SPI0_MOSI	TMR0_1B/ TMR0_CAPEV ENT1	SP0 Master Out Slave In Serial Data 0; 32-bit Timer 0 inverted 16-bit output form upper 16-bits/Timer 0 Capture Event input to upper 16-bits			
G7	P0.6	P0.6	SPI0_MISO	OWM_IO	SPI0 Master In Slave Out Serial Data 1; 1-Wire Master Data I/O			
H6	P0.7	P0.7	SPI0_SCK	OWM_PE	SPI0 Clock; 1-Wire Master Pullup Enable Output			
G6	P0.8	P0.8	SPI0_SDIO2	TMR0_0	SPI0 Data 2 I/O; 32-bit Timer 0 bi-directional 32 bits or lower 16-bits			
F6	P0.9	P0.9	SPI0_SDIO3	TMR0_1	SPI0 Data 3 I/O; 32-bit Timer 0 bi-directional upper 16-bits			
E6	P0.10	P0.10	I2C0_SCL	SPI0_SS2	I2C0 Clock; SPI0 Slave Select 2			
D6	P0.11	P0.11	I2C0_SDA	SPI0_SS1	I2C0 Serial Data; SPI0 Slave Select 1			
H5	P0.12	P0.12	UART1_RX	TMR1_0B/ TMR1_CAPEV ENT0	UART1 Receive; 32-bit Timer 1 inverted 16-bit output from lower 16-bits/Timer 1 Capture Event Input to lower 16-bits			

81 CTBGA

	FUNCTION MODE					
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION	
G5	P0.13	P0.13	UART1_TX	TMR1_1B/ TMR1_CAPEV ENT1	UART1 Transmit; 32-bit Timer 1 inverted 16-bit output form upper 16-bits/Timer 1 Capture Event input to upper 16-bits	
F5	P0.14	P0.14	TMR1_0	I2S_CLKEXT	32-bit Timer 1 bi-directional 32 bits or lower 16-bits; I2S External Clock Input	
E5	P0.15	P0.15	TMR1_1	PCIF_VSYNC	32-bit Timer 1 bi-directional upper 16-bits; Parallel Camera Interface Vertical Sync	
D5	P0.16	P0.16	I2C1_SCL	PT2	I2C1 Clock; Pulse Train 2	
H4	P0.17	P0.17	I2C1_SDA	PT3	I2C1 Serial Data; Pulse Train 3	
G4	P0.18	P0.18	PT0	OWM_IO	Pule Train 0; 1-Wire Master Data I/O	
F4	P0.19	P0.19	PT1	OWM_PE	Pulse Train 1; 1-Wire Master Pullup Enable Output	
E4	P0.20	P0.20	SPI1_SS0	PCIF_D0	SPI1 Slave Select 0; Parallel Camera Interface Data 0	
D4	P0.21	P0.21	SPI1_MOSI	PCIF_D1	SPI1_Master Out Slave In Serial Data 0; Parallel Camera Interface Data 1	
J3	P0.22	P0.22	SPI1_MISO	PCIF_D2	SPI1 Master In Slave Out Serial Data 1; Parallel Camera Interface Data 2	
H3	P0.23	P0.23	SPI1_SCK	PCIF_D3	SPI1 Clock; Parallel Camera Interface Data 3	
G3	P0.24	P0.24	SPI1_SDIO2	PCIF_D4	SPI1 Data 2; Parallel Camera Interface Data 4	
F3	P0.25	P0.25	SPI1_SDIO3	PCIF_D5	SPI1 Data 3; Parallel Camera Interface Data 5	
E3	P0.26	P0.26	TMR2_0	PCIF_D6	32-bit Timer 2 bi-directional 32 bits or lower 16-bits; Parallel Camera Interface Data 6	
J2	P0.27	P0.27	TMR2_1	PCIF_D7	32-bit Timer 2 bi-directional upper 16-bits; Parallel Camera Interface Data 7	
H2	P0.28	P0.28	SWDIO	_	Serial Wire Debug Data I/O	
J1	P0.29	P0.29	SWCLK	_	Serial Wire Debug Clock	
H1	P0.30	P0.30	I2C2_SCL	PCIF_D8	I2C2 Clock; Parallel Camera Interface Data 8	
G2	P0.31	P0.31	I2C2_SDA	PCIF_D9	I2C2 Serial Data; Parallel Camera Interface Data 9	
G1	P1.0	P1.0	UART2_RX	RV_TCK	UART2 Receive; 32-bit RISC-V Test Port Clock	
F1	P1.1	P1.1	UART2_TX	RV_TMS	UART2 Transmit; 32-bit RISC-V Test Port Select	
F2	P1.2	P1.2	I2S_SCK	RV_TDI	I2S Bit Clock; 32-bit RISC-V Test Port Data Input	
E2	P1.3	P1.3	12S_WS	RV_TDO	I2S Left/Right Clock; 32-bit RISC-V Test Port Data Output	
D2	P1.4	P1.4	I2S_SDI	TMR3_0	I2S Serial Data Input; 32-bit Timer 3 bi- directional 32 bits or lower 16-bits	
D3	P1.5	P1.5	I2S_SDO	TMR3_1	I2S Serial Data Output; 32-bit Timer 3 bi- directional upper 16-bits	

81 CTBGA

			FUNCTION MODE		
PIN	NAME	Primary Signal (Default)	Alternate Function 1	Alternate Function 2	FUNCTION
B1	P1.6	P1.6	TMR3_0	PCIF_D10	32-bit Timer 3 bi-directional 32 bits or lower 16-bits; Parallel Camera Interface Data 10
C2	P1.7	P1.7	TMR3_1	PCIF_D11	32-bit Timer 3 bi-directional upper 16-bits; Parallel Camera Interface Data 11
A2	P1.8	P1.8	PCIF_HSYNC	RXEV0	Parallel Camera Interface Horizontal Sync; CM4 RX event input
B2	P1.9	P1.9	PCIF_XCLK	TXEV0	Parallel Camera Interface Clock; CM4 TX event output
D7	P2.0	P2.0	AIN0/AINON	_	Analog To Digital Converter Input 0/Comparator 0 Negative Input
E8	P2.1	P2.1	AIN1/AIN0P	_	Analog To Digital Converter Input 1/Comparator 0 Positive Input
E7	P2.2	P2.2	AIN2/AIN1N	_	Analog To Digital Converter Input 2/Comparator 1 Negative Input
F9	P2.3	P2.3	AIN3/AIN1P	_	Analog To Digital Converter Input 3/Comparator 1 Positive Input
F8	P2.4	P2.4	AIN4/AIN2N	LPTMR0	Analog To Digital Converter Input 4/Comparator 2 Negative Input; Low Power Timer 0 Output
F7	P2.5	P2.5	AIN5/AIN2P	LPTMR1	Analog To Digital Converter Input 5/Comparator 2 Positive Input; Low Power Timer 1 Output
G8	P2.6	P2.6	LPTMR0_CLK/ AIN6/AIN3N	LPUART_RX	Low Power Timer 0 External Clock Input/Analog To Digital Converter Input 6/Comparator 3 Negative Input; Low Power UART 0 Receive
G9	P2.7	P2.7	LPTMR1_CLK/ AIN7/AIN3P	LPUART_TX	Low Power Timer 1 External Clock Input/Analog To Digital Converter Input 7/Comparator 3 Positive Input; Low Power UART Transmit
C3	P3.0	P3.0	PDOWN	WAKEUP	Power Down Output; Wakeup Input. This device pin can only be powered by V _{DDIOH}
В3	P3.1	P3.1	SQWOUT	WAKEUP	Square Wave Output; Wakeup Input. This device pin can only be powered by V _{DDIOH}

Detailed Description

MAX78000

MAX78000 is a new breed of low-power microcontrollers built to thrive in the rapidly evolving AI at the edge market. These products include Maxim's proven ultra-low power MCU IP along with deep neural network AI acceleration.

The MAX78000 is an advanced system-on-chip featuring an Arm® Cortex®-M4 with FPU CPU for efficient computation of complex functions and algorithms with integrated power management. It also includes 432KB weight Convolutional Neural Network (CNN) accelerator. The devices offer large on-chip memory with 512KB flash and up to 128KB SRAM. Multiple high-speed and low-power communications interfaces are supported including high-speed SPI, High-speed I²C serial interface, and LPUART. Additional low-power peripherals include flexible LPTIMER and analog comparators. A Parallel Camera Interface is included for capturing images from an image sensor for processing by the CNN. An I²S interface is included for interfacing to an aduio condec for capturing audio samples also for processing by the CNN.

Arm Cortex-M4 with FPU Processor and RISC-V RV32 Processor

The Arm Cortex-M4 with FPU processor CM4 is ideal for the artificial intelligence system control. The architecture combines high-efficiency signal processing functionality with low power, low cost, and ease of use.

The Arm Cortex-M4 with FPU DSP supports single instruction multiple data (SIMD) path DSP extensions, providing:

- Four parallel 8-bit add/sub
- Floating point single precision
- Two parallel 16-bit add/sub
- Two parallel MACs
- 32- or 64-bit accumulate
- Signed, unsigned, data with or without saturation

The addition of a 32-bit RISC-V co-processor RV32 provides the system with ultra low power consumption signal processing.

Convolutional Neural Network Accelerator (CNN)

The CNN accelerator consists of 64 parallel processors with 512KB of SRAM-based storage. Each processor includes a pooling unit and a convolutional engine with dedicated weight memory. Four processors share one data memory. A group of sixteen processors shares certain common controls and can be operated as a slave to another group or independently. Data is read from SRAM associated with each processor and written to any data memory located within the accelerator. ANy given processor has visibility of its dedicated weight memory and to the data memory instance it shares with the three other processors in its group.

The features of the CNN accelerator include:

- 512KB SRAM data storage
 - Configured as 8Kx8 bit integers x64 channels or 32Kx8 bit integers x4 channels for input layers
 - · Hardware load and unload assist
- 64 Parallel Physical Channel Processors
 - Organized as 4x16 Processors
 - 8-bit integer data path with option for 32 bit integers on the output layer
 - · Per Channel Processor Enable/Disable
 - Expandable to 1024 parallel logical channel processors
- Fixed 3x3 2D kernal size
- Configurable 1D kernal size to 1x9
- Full resolution sum-of-product arithmetic for 1024 8 bit integer channels
- Operating frequency up to 50MHz
- Nominal 1 output channel per clock, maximum 4 output channels per clock (passthru)

Ultra-low Power ARM Cortex-M4F with Convolutional Neural Network Accelerator

- Configurable Input Layer Image Size
 - · 32K pixels, 16 channels, non-streaming
 - 8K pixels, 4 channels, non-streaming
 - 1024 x 1024 pixels, 4 channels, streaming
- Hidden Layers
 - Up to 8K 8-bit integer data per channel, x64 channels, non-streaming
 - 8K bytes can be split equally across 1-16 logical channels, non-streaming
 - 1M 8-bit integer data per channel, x64 channels, streaming
 - 1M bytes can be split equally across 8 layers, streaming
- Optional Interrupt on CNN completion
- User accessible BIST on all SRAM storage
- User accessible Zeroization of all SRAM storage
- Single-step operation with full data SRAM access for CNN operation debug
- Flexible Power Management
 - Independent x16 processor supply enables
 - Independent x16 processor mask retention enables
 - Independent x16 data path clock enables
 - Active APB clock gating with per x16 processor override
 - CNN clock frequency scaling (divide by 2, 4, 8, 16)
 - · Chip level voltage control for performance power optimization
- Configurable Weight Storage
 - SRAM based weight storage with selectable data retention
 - Configurable from 432K 8-bit integer weights to 3.456M 1-bit logical weights
 - Organized as 768X9X64 8-bit integer weights to 768x72x64 1-bit logical weights
 - Programmable Per x16 processor weight RAM start address start pointer and mask count
 - · Optional weight load hardware assist for packed weight storage
- 32 Independently configurable layers
 - Processor and mask enables (16 channels)
 - · Input data format
 - · Per layer data streaming
 - · Stream start relative to prior stream
 - · Dual stream processing delay counters 1 column, 1 row delta counter
 - Data SRAM circular buffer size
 - Input data size (Row, Column)
 - Row and Column Padding 0 to 4 bytes
 - Number of Input channels 1 to 1024
 - Kernel bit width size (1, 2, 4, 8)
 - Kernel SRAM start pointer and count
 - Inflight input image pooling
 - · Pool Mode None, Maximum or Average
 - Pool Size 2x2 to 16x16
 - Stride 1 Row, 1 Column to 4 Rows, 4 Columns
 - · Data SRAM read pointer base address
 - Data SRAM write pointer configuration
 - · Base Address
 - · Independent offsets for output channel storage in SRAM
 - · Programmable stride increment offset
 - Bias 2048 8-bit integers with option for 512 32-bit integers
 - · Pre-activation output scaling from 0 to 8 bits
 - · Output Activation None, ReLU, Absolute Value
 - Passthru 8-bit or 32-bit integers

Ultra-low Power ARM Cortex-M4F with Convolutional Neural Network Accelerator

- · Element-wise operations (add, subtract, xor, or) with optional convolution up to 16 elements
- Deconvolution
- · Flattening for MLP processing
- 1x1 Convolution

Memory

Internal Flash Memory

512KB of internal flash memory provides nonvolatile storage of program and data memory.

Internal SRAM

The internal 128KB SRAM provides low-power retention of application information in all power modes except Power Down. The SRAM is divided into 4 banks. SRAM0 and SRAM1 are both 32KB, SRAM2 is 48KB and SRAM3 is 16KB. SRAM2 and SRAM3 are accessible by the RV-32 in Low Power mode. For enhanced system reliability, SRAM0 (32KB) can be configured with error correction coded (ECC) single error correction-double error detection (SED-DED). This data retention feature is optional, and is configurable. This granularity allows the application to minimize its power consumption by only retaining the most essential data.

Comparators

The eight AIN[7:0] inputs can be configured as four pairs and deployed as four independent comparators with the following features:

- Comparison events can trigger interrupts
- Events can wake the CM4 from Sleep, Low Power, Micro Power, Standby, or Backup operating modes
- Can be active in all power modes

Clocking Scheme

Multiple clock sources can be selected as the system clock:

- Internal primary oscillator (IPO) at a nominal frequency of 100MHz
- Internal secondary oscillator (ISO) at a nominal frequency of 60MHz
- Configurable Internal nano-ring oscillator (INRO) at 8kHz, 16kHz or 30kHz
- External RTC oscillator at 32.768kHz (ERTCO) (external crystal required)
- Internal baud rate oscillator at 7.3728MHz (IBRO)
- External square wave clock up to 80MHz

There are multiple external clock inputs:

- LPTMR0 and LPTMR1 can be clocked from unique external sources
- I²S can be be clocked from its own external source

General-Purpose I/O and Special Function Pins

Most general-purpose I/O (GPIO) pins share both a firmware-controlled I/O function and one or more alternate functions associated with peripheral modules. Pins can be individually enabled for GPIO or peripheral special function use. Configuring a pin as a special function usually supersedes its use as a firmware-controlled I/O. Although this multiplexing between peripheral and GPIO functions is usually static, it can also be done dynamically. The electrical characteristics of a GPIO pin are identical whether the pin is configured as an I/O or special function, except where explicitly noted in the Electrical Characteristics tables.

In GPIO mode, pins are logically divided into ports of 32 pins. Each pin of a port has an interrupt function that can be

Ultra-low Power ARM Cortex-M4F with Convolutional Neural Network Accelerator

independently enabled, and configured as a level- or edge-sensitive interrupt. All GPIOs of a given port share the same interrupt vector.

When configured as GPIO, the following features are provided. The features can be independently enabled or disabled on a per-pin basis.

- Configurable as input, output, bidirectional, or high impedance
- Optional internal pullup resistor or internal pulldown resistor when configured as input
- Exit from low-power modes on rising or falling edge
- Selectable standard- or high-drive modes

The MAX78000 provide up to 52 GPIO pins. Caution is needed since Port 3 (P3.0 and P3.1 device pins) are configured in a different manner from the above description.

Parallel Camera Interface

The Parallel Camera Interface (PCIF) is a low voltage interface suited for CMOS image sensors. It provides up to 12-bits of parallel access capability with single capture and continuous mode operation.

Analog-to-Digital Converter

The 10-bit delta-sigma ADC provides an integrated reference generator and a single-ended input multiplexer. The multiplexer selects an input channel from one of the eight external analog input signals (AIN0–AIN7) or the internal power supply inputs.

The reference for the ADC can be:

- Internal 1.22V bandgap
- V_{SSA} analog supply

An optional feature allows samples captured by the ADC to be automatically compared against user-programmable high and low limits. Up to four channel limit pairs can be configured in this way. The comparison allows the ADC to trigger an interrupt (and potentially wake the CPU from a low-power sleep mode) when a captured sample goes outside the preprogrammed limit range. Since this comparison is performed directly by the sample limit monitors, it can be performed even while the CPU is is in Sleep or DeepSleep mode. The eight AIN[7:0] inputs can be configured a four pairs and deployed as four independent comparators.

The ADC measures the following voltages:

- AIN[7:0] up to 3.3V
- V_{REGI}
- V_{SSA}
- V_{COREA}
- VCOREB
- V_{DDIOH}
- V_{DDIO}

Single-Inductor Multiple-Output Switch-Mode Power Supply (SIMO SMPS)

The SIMO SMPS built into the device provides a monolithic power supply architecture for operation from a single lithium cell. The SIMO provides three buck regulator outputs that are voltage programmable. This architecture optimizes power consumption efficiency of the device and minimizes the bill of materials for the circuit design since only a single inductor/capacitor pair is required.

Power Management

Power Management Unit

The power management unit (PMU) provides high-performance operation while minimizing power consumption. It exercises intelligent, precise control of power distribution to the CPUs and peripheral circuitry.

Ultra-low Power ARM Cortex-M4F with Convolutional Neural Network Accelerator

The PMU provides the following features:

- User-configurable system clock
- Automatic enabling and disabling of crystal oscillators based on power mode
- Multiple power domains
- Fast wake-up of powered-down peripherals when activity detected

Active Mode

In this mode, the CM4 and the RV32 can execute application code and all digital and analog peripherals are available on demand. Dynamic clocking disables peripherals not in use, providing the optimal mix of high performance and low power consumption. The CM4 has access to all system SRAM. The RV32 has access to SRAM2 and SRAM3. Both the CM4 and the RV32 can execute from internal flash simultaneously. SRAM3 can be configured as an instruction cache for the RV32.

Sleep Mode

This mode consumes less power, but wakes faster because the clocks can optionally be enabled.

The device status is as follows:

- CM4 is asleep
- RV32 is asleep
- The CNN quadrants and memory are configurable
- Peripherals are on
- Standard DMA is available for optional use

Low Power Mode

This mode is suitable for running the RV32 processor to collect and move data from enabled peripherals.

The device status is a follows:

- The CM4, SRAM0, SRAM1 are in state retention
- CNN quadrants and memory are configurable and active
- The RV32 can access the SPI, all UARTS, all Timers, I²C, 1-Wire, timers, pulse train engines, I²S, CRC, AES, TRNG, PCIF, Comparators as well as SRAM2 and SRAM3. SRAM3 can be configured to operate as RV32 instruction cache.
- The transition from Low Power mode to Active mode is faster than the transition from Backup mode because system initialization is not required
- The DMA can access flash
- The following oscillators are powered down:
 - IPO
- · The following oscillators are enabled:
 - IBRO
 - ERTCO
 - INRO
 - ISO

Micro Power Mode

This mode is used for extremely low power consumption while using a minimal set of peripherals to provide wakeup capability.

The device status is a follows:

- Both CM4 and RV32 are state retained. System state and all SRAM is retained
- CNN quadrants are powered off
- CNN memory provides selectable retention
- The GPIO pins retain their state
- All non-Micro Power peripherals are state retained

Ultra-low Power ARM Cortex-M4F with Convolutional Neural Network Accelerator

- The following oscillators are powered down:
 - IPO
 - ISO
- The following oscillators are enabled:
 - IBRO
 - ERTCO
 - INRO
- The following Micro Power mode peripherals are available for use to wakeup the device:
 - LPUARTO, LPUART1
 - WWDT1
 - · All four low power analog comparators

Standby Mode

This mode is used maintain the system operation while keeping time with the RTC.

The device status is a follows:

- Both CM4 and RV32 are state retained. System state and all SRAM is retained
- CNN quadrants are powered off
- CNN memory provides selectable retention
- The GPIO pins retain their state
- · All peripherals are state retained
- The following oscillators are powered down:
 - IPO
 - ISO
 - IBRO
- The following oscillators are enabled:
 - ERTCO
 - INRO

Backup Mode

This mode is used maintain the system RAM. The device status is a follows:

- CM4 and RV32 are powered off.
- SRAM0, SRAM1, SRAM2 and SRAM3 can be configured to be state retained as per Table 1
- CNN memory provides selectable retention
- · All peripherals are powered off

The following oscillators are powered down:

- IPO
- ISO
- IBRO
- INRO

The following oscillators are enabled:

• ERTCO

Table 1. Backup Mode SRAM Retention

RAM BLOCK	RAM SIZE
SRAM0	32KB + ECC
SRAM1	32KB
SRAM2	48KB

Table 1. Backup Mode SRAM Retention (continued)

SRAM3	16KB
-------	------

Power Down Mode

This mode is used during product level distribution and storage

The device status is a follows:

- The CM4 and RV32 are powered off
- All peripherals and SRAM are powered down
- All oscillators are powered down
- There is no data retention in this mode, but values in the flash are preserved
- Voltage monitors are operational.

Wake-up Sources

The sources of wakeup from the Sleep, Low Power, Micro Power, Standby, Backup, and Power Down operating modes can be summarized in Table 2

Table 2. Wake-up Sources

	•
OPERATING MODE	WAKE-UP SOURCE
Sleep	Any enabled peripheral with interrupt capability; RSTN
Low Power	SPI0, I ² S, I ² C, UARTs, Timers, Watchdog Timers, Wakeup Timer, All Comparators, RTC, GPIOs, RSTN and RV32
Micro Power	All Comparators, LPUART, LPTMR1, LPTIMER2, LPWDT0, RTC, Wakeup Timer, GPIOs, RSTN
Standby	RTC, Wakeup Timer, GPIOs, CMP0, RSTN
Backup	RTC, Wakeup Timer, GPIOs, CMP0, RSTN
Power Down	P3.0, P3.1, RSTN

Real-Time Clock

A real-time clock (RTC) keeps the time of day in absolute seconds. The 32-bit seconds register can count up to approximately 136 years and be translated to calendar format by application software.

The RTC provides a time-of-day alarm that can be programmed to any future value between 1 second and 12 days. When configured for long intervals, the time-of-day alarm can be used as a power-saving timer, allowing the device to remain in an extremely low-power mode, but still awaken periodically to perform assigned tasks. A second independent 32-bit 1/4096 subsecond alarm can be programmed with a tick resolution of 244µs. Both can be configured as recurring alarms. When enabled, either alarm can cause an interrupt or wake the device from most low power modes.

The time base is generated by a 32.768kHz crystal or an external clock source that must meet the electrical/timing requirements in the *Electrical Characteristics* table.

The RTC calibration feature provides the ability for user software to compensate for minor variations in the RTC oscillator, crystal, temperature, and board layout. Enabling the SQWOUT alternate function outputs a timing signal derived from the RTC. External hardware can measure the frequency and adjust the RTC frequency in increments of ±127ppm with 1ppm resolution. Under most circumstances, the oscillator does not require any calibration.

Programmable Timers

32-Bit Timer/Counter/PWM (TMR, LPTMR)

General-purpose, 32-bit timers provide timing, capture/compare, or generation of pulse-width modulated (PWM) signals with minimal software interaction.

The timer provides the following features:

- 32-bit up/down autoreload
- Programmable prescaler
- PWM output generation
- Capture, compare, and capture/compare capability
- External pin multiplexed with GPIO for timer input, clock gating or capture
- Timer output pin
- TMR0-TMR3 can be configured as 2 × 16-bit general-purpose timers
- Timer interrupt

The MAX78000 provides six 32-bit timers (TMR0, TMR1, TMR2, TMR3, LPTMR0, LPTMR1). LPTMR0 and LPTMR1 are capable of operation in the Sleep, Low Power, and Micro Power modes.

I/O functionality is supported for all of the timers. Note that the function of a port can be multiplexed with other functions on the GPIO pins, so it might not be possible to use all the ports depending on the device configuration. See <u>Table 3</u> for individual timer features.

Table 3. Timer Configuration Options

	REGISTER	SINGLE	DUAL	SINGLE	POWER				CI	OCK SOL	JRCE	
INSTANCE	ACCESS NAME	32 BIT	16 BIT	16 BIT	MODE	PCLK	ISO	IBRO	INRO	ERTCO	LPTMR0_CLK	LPTMR1_CLK
TMR0	TMR0	YES	YES	NO	ACTIVE SLEEP LOW POWER	YES	YES	YES	NO	YES	NO	NO R
TMR1	TMR1	YES	YES	NO	ACTIVE SLEEP LOW POWER	YES	YES	YES	NO	YES	NO	NO
TMR2	TMR2	YES	YES	NO	ACTIVE SLEEP LOW POWER	YES	YES	YES	NO	YES	NO	NO
TMR3	TMR3	YES	YES	NO	ACTIVE SLEEP LOW POWER	YES	YES	YES	NO	YES	NO	NO R
LPTMR0	TMR4	NO	NO	YES	ACTIVE SLEEP LOW POWER MICRO POWER	NO	NO	YES	YES	YES	YES	NO
LPTMR1	TMR5	NO	NO	YES	ACTIVE SLEEP LOW POWER MICRO POWER	NO	NO	YES	YES	YES	NO	YES

Watchdog Timer (WDT)

Microcontrollers are often used in harsh environments where electrical noise and electromagnetic interference (EMI) are abundant. Without proper safeguards, these hazards can disturb device operation and corrupt program execution. One of the most effective countermeasures is the windowed watchdog timer (WDT), which detects runaway code or system unresponsiveness.

The WDT is a 32-bit, free-running counter with a configurable prescaler. When enabled, the WDT must be periodically reset by the application software. Failure to reset the WDT within the user-configurable timeout period indicates that the application software is not operating correctly and results in a WDT timeout. A WDT timeout can trigger an interrupt, system reset, or both. Either response forces the instruction pointer to a known good location before resuming instruction execution. The windowed timeout period feature provides more detailed monitoring of system operation, requiring the WDT to be reset within a specific window of time. See <u>Table 4</u> for individual timer features.

The MAX78000 provides two instances of the watchdog timer (WDT0, LPWDT0).

Table 4. Watchdog Timer Configuration Options

INSTANCE NAME	REGISTER ACCESS NAME	POWER MODE	CLOCK SOURCE				
INSTANCE NAME	REGISTER ACCESS NAME	POWER MODE	PCLK	IBRO	INRO	ERTCO	
WDT0	WDT0	ACTIVE SLEEP LOW POWER	YES	YES	NO	NO	
LPWDT0	WDT1	ACTIVE SLEEP LOW POWER MICRO POWER	NO	YES	YES	YES	

Pulse Train Engine (PT)

Multiple, independent pulse train generators can provide either a square wave or a repeating pattern from 2 to 32 bits in length. Any single pulse train generator or any desired group of pulse train generators can be synchronized at the bit level allowing for multibit patterns. Each pulse train generator is independently configurable.

The pulse train generators provide the following features:

- Independently enabled
- Safe enable and disable for pulse trains without bit banding
- Multiple pin configurations allow for flexible layout
- Pulse trains can be started/synchronized independently or as a group
- Frequency of each enabled pulse train generator is also set separately, based on a divide down (divide by 2, divide by 4, divide by 8, and so on) of the input pulse train module clock
- Input pulse train module clock can be optionally configured to be independent from the system AHB clock
- Multiple repetition options
 - Single shot (nonrepeating pattern of 2 to 32 bits)
 - Pattern repeats user-configurable number of times or indefinitely
 - · Termination of one pulse train loop count can restart one or more other pulse trains

The pulse train engine feature is an alternate function associated with a GPIO pin. In most cases, enabling the pulse train engine function supersedes the GPIO function.

The MAX78000 provide up to 4 instances of the pulse train engine peripheral (PT[3:0]).

Serial Peripherals

I²C Interface (I2C)

The I²C interface is a bidirectional, two-wire serial bus that provides a medium-speed communications network. It can operate as a one-to-one, one-to-many or many-to-many communications medium. These engines support standard-mode, fast-mode plus and high-speed mode I²C speeds. It provides the following features:

- Master or slave mode operation
 - Supports up to 4 different slave addresses in slave mode
- Supports standard 7-bit addressing or 10-bit addressing
- RESTART condition

Ultra-low Power ARM Cortex-M4F with Convolutional Neural Network Accelerator

- Interactive receive mode
- Tx FIFO preloading
- Support for clock stretching to allow slower slave devices to operate on higher speed busses
- Multiple transfer rates
 - Standard mode: 100kbps
 - Fast mode: 400kbps
 - · Fast mode plus: 1000kbps
- Internal filter to reject noise spikes
- Receiver FIFO depth of 8 bytes
- Transmitter FIFO depth of 8 bytes

The MAX78000 provides three instances of the I²C peripheral (I2C0, I2C1, I2C2).

I²S Interface (I2S)

The I²S interface is a bidirectional, four-wire serial bus that provides serial communications for codecs and audio amplifiers compliant with the I²S Bus Specification, June 5, 1996. It provides the following features:

- Master and Slave mode operation
- Support for 4 channels
- 8, 16, 24, and 32 bit frames
- · Receive and transmit DMA support
- Wakeup on FIFO status (full/empty/threshold)
- Pulse Density Modulation support for receive channel
- Word select polarity control
- First bit position selection
- Interrupts generated for FIFO status
- Receiver FIFO depth of 32 bytes
- Transmitter FIFO depth of 32 bytes

The MAX78000 provides one instance of the I²S peripheral (I2S0).

Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) is a highly configurable, flexible, and efficient synchronous interface among multiple SPI devices on a single bus. The bus uses a single clock signal and multiple data signals, and one or more slave select lines to address only the intended target device. The SPI operates independently and requires minimal processor overhead.

The provided SPI peripherals can operate in either slave or master mode and provide the following features:

- SPI modes 0, 1, 2, 3 for single-bit communication
- 3- or 4-wire mode for single-bit slave device communication
- Full-duplex operation in single-bit, 4-wire mode
- Multimaster mode fault detection
- Programmable interface timing
- Programmable SCK frequency and duty cycle
- 32-byte transmit and receive FIFOs
- Slave select assertion and deassertion timing with respect to leading/trailing SCK edge

The MAX78000 provides two instances of the SPI peripheral (SPI0, SPI1). See <u>Table 5</u> for configuration options.

Table 5. SPI Configuration Options

INSTANCE	DATA	SLAVE SELECT LINES	MAXIMUM FREQUENCY MASTER MODE (MHz)	MAXIMUM FREQUENCY SLAVE MODE (MHz)
		81-CTBGA		

Table 5. SPI Configuration Options (continued)

SPI0	3 wire, 4 wire	3	50	50
SPI1	3 wire, 4 wire	1	25	50

UART (UART, LPUART)

The universal asynchronous receiver-transmitter (UART, LPUART) interface supports full-duplex asynchronous communication with optional hardware flow control (HFC) modes to prevent data overruns. If HFC mode is enabled on a given port, the system uses two extra pins to implement the industry standard request to send (RTS) and clear to send (CTS) flow control signaling. Each instance is individually programmable.

- 2-wire interface or 4-wire interface with flow control
- 8-byte send/receive FIFO
- Full-duplex operation for asynchronous data transfers
- Interrupts available for frame error, parity error, CTS, Rx FIFO overrun and FIFO full/partially full conditions
- Automatic parity and frame error detection
- Independent baud-rate generator
- Programmable 9th-bit parity support
- Multidrop support
- Start/stop bit support
- Hardware flow control using RTS/CTS
- TBDkbaud for UART maximum baud rate
- TBDkbaud for LPUART maximum baud rate
- Two DMA channels can be connected (read and write FIFOs)
- Programmable word size (5 bits to 8 bits)

The MAX78000 provides 4 instances of the UART peripheral (UART0, UART1, UART2, LPUART0). LPUART0 is capable of operation in the Sleep, Low Power, and Micro Power modes. See <u>Table 6</u> for configuration options.

Table 6. UART Configuration Options

INSTANCE NAME	REGISTER ACCESS NAME	HARDWARE FLOW CONTROL	POWER MODE	CLOCK SOURCE		
INSTANCE NAME	REGISTER ACCESS NAME	HARDWARE FLOW CONTROL	POWER MODE	PCLK	IBRO	ERTCO
UART0	UART0	YES	ACTIVE SLEEP LOW POWER	YES	YES	NO
UART1	UART1	NO	ACTIVE SLEEP LOW POWER	YES	YES	NO
UART2	UART2	NO	ACTIVE SLEEP LOW POWER	YES	YES	NO
LPUART0	UART3	NO	ACTIVE SLEEP LOW POWER MICRO POWER	NO	YES	YES

1-Wire Master (OWM)

Maxim's 1-wire bus consists of one signal that carries data and also supplies power to the slave devices and a ground return. The bus master communicates serially with one or more slave devices through the bidirectional, multidrop 1-Wire bus. The single contact serial interface is ideal for communication networks requiring minimal interconnection.

The provided 1-Wire master supports the following features:

Ultra-low Power ARM Cortex-M4F with Convolutional Neural Network Accelerator

- Single contact for control and operation
- Unique factory identifier for any 1-Wire device
- Multiple device capability on a single line

The OWM supports both standard (15.6 kbps) and overdrive (110 kbps) speeds.

Standard DMA Controller

The standard DMA controller allows automatic one-way data transfer between two entities. These entities can be either memories or peripherals. The transfers are done without using CPU resources. The following transfer modes are supported:

- 4-channel
- Peripheral to data memory
- Data memory to peripheral
- Data memory to data memory
- Event support

All DMA transactions consist of an AHB burst read into the DMA FIFO followed immediately by an AHB burst write from the FIFO.

The MAX78000 provide one instance of the standard DMA controller.

Security

AES

The dedicated hardware-based AES engine supports the following algorithms:

- AES-128
- AES-192
- AES-256

The AES keys are automatically generated by the engine and stored in dedicated flash to protect against tampering. Key generation and storage is transparent to the user.

True Random Number Generator (TRNG) Non-Deterministic Random Bit Generator (NDRBG)

The device provides a non-deterministic entropy source that can be used to generate cryptographic seeds or strong encryption keys as part of an overall framework for a secure customer application.

Software can use random numbers to trigger asynchronous events that add complexity to program execution to thwart replay attacks or key search methodologies.

The TRNG can support the system-level validation of many security standards. Maxim Integrated will work directly with the customer's validation laboratory to provide the laboratory with any required information. Contact Maxim Integrated for details of compliance with specific standards.

CRC Module

A cyclic redundancy check (CRC) hardware module provides fast calculations and data integrity checks by application software. It supports a user-defined programmable polynomial up to 32-bits. Direct memory access copies data into the CRC module so that CRC calculations on large blocks of memory are performed with minimal CPU intervention. Examples of common polynomials are depicted in <u>Table 7</u>.

Table 7. Common CRC Polynomials

ALGORITHM	POLYNOMIAL EXPRESSION	ORDER	POLYNOMIAL	CHECK
CRC-32-ETHERNET	$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+$ $x^{2}+x^{1}+x^{0}$	0xEDB8 8320	LSB	0xDEBB 20E3
CRC-CCITT	x ¹⁶ + x ¹² + x ⁵ + x ⁰	0x0000 8408	LSB	0x0000 F0B8

Table 7. Common CRC Polynomials (continued)

CRC-16	x ¹⁶ + x ¹⁵ + x ² + x ⁰	0x0000 A001	LSB	0x0000 B001
USB DATA	χ ¹⁶ + χ ¹⁵ + χ ² + χ ⁰	0x8005 0000	LSB	0x800D 0000
PARITY	x ¹ + x ⁰	0x0000 0001	MSB	-

Bootloader

The bootloader allows loading and verification of program memory through a UART or SWD interface. It provides the following features:

- · Program loading of Motorola SREC format files
- Permanent lock state prevents altering or erasing program memory
- Access to the USN for device or customer application identification
- Disable SWD interface to block Debug Access Port functionality

Secure Bootloader

Versions of the device which support the secure feature provides the following features:

- Optional challenge/response via secret HMAC SHA256 authenticates host before executing bootloader commands
- Automatic program memory verification and authentication before execution after every reset

Debug and Development Interface (SWD, JTAG)

The serial wire debug interface is used for code loading and ICE debug activities for the CM4. JTAG interface is provided for the RV32. All devices in mass production have the debugging/development interface enabled.

Applications Information

Bypass Capacitors

The proper use of bypass capacitors reduces noise generated by the IC into the ground plane. The <u>Pin Descriptions</u> table indicates which pins should be connected to bypass capacitors, and the appropriate ground plane.

It is recommended that one instance of a bypass capacitor should be connected to each pin/ball of the IC package. For example, if the *Pin Descriptions* table shows 4 device pins associated with voltage supply A, a separate capacitor should be connected to each pin for a total of 4 capacitors.

Capacitors should be placed as close as possible to their corresponding device pins. Pins which recommend more than one value of capacitor per pin should place them in parallel with the lowest value capacitor first, closest to the pin.

Ordering Information

PART	FLASH (KB)	SYSTEM RAM (KB)	BOOT LOADER	SECURE BOOT	PIN-PACKAGE
MAX78000EXG+	512	128 + ECC 8	YES	YES	81-CTBGA
MAX78000EXG+T	512	128 + ECC 8	YES	YES	81-CTBGA

T = Tape and reel. Full reel.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	5/15/2020	Preliminary Release	_

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.