Ch16: Time Series

24 Nov 2011 BUSI275 Dr. Sean Ho

- HW8 due tonight
- Please download:22-TheFed.xls

Outline for today

- Time series data:
 - Dependent observations
- Trend-based approach:
 - Trends, cycles, seasons
 - Additive vs. multiplicative model
- Autoregressive approach:
 - Autocorrelation
 - Correlogram
 - Finite differencing and the ARIMA model
- Combining trends with ARIMA

Time series data

- Time is one of the independent variables
 - Often only 1 DV and 1 IV (time)
 - But can also have other time-varying IVs
- Why not just use regression with time as the IV?
 - Assumptions of regression: in particular, observations need to be independent!
- Two (complementary) approaches:
 - Model the time-varying patterns and factor them out to leave residuals that are independent (uncorrelated)
 - Model the conditional dependence of the present value on past values

Patterns

- Patterns to look for:
 - Trend: linear growth/loss

- Cycle: multi-year repeating pattern
- Season: pattern that repeats each year
 - e.g., if data is quarterly, use dummy vars for the seasons: b₂S₂ + b₃S₃ + b₄S₄
- Additive model:
 - Y_t = (b₀ + b₁t) + (cyclical component)
 + (seasonal component) + (residual)
- Assumes residuals are independent, normally distributed, with constant variance

Additive vs. multiplicative

- Homoscedasticity of residuals is often an issue
- Plot resids vs. predicted value
 - Look for systematic variation in residual SD
 - "Spread vs. level" plot:
 √(std resids) vs. predicted value
- If you see a distinct "fan" shape,
 - i.e., the SD of the random variation grows with the level of the variable
- Then apply a log transform to the variable:
 - ln(Y_t) = (linear) + (cyclic) + (seasonal)
- This is equivalent to a multiplicative model:

Y₊ = (linear) * (cyclic) * (seasonal)

Autocorrelation

- Another approach models the correlation of the current value against past values:
 - P(Y_t | Y_{t-1})
 - Or in general: P(Y, | {Y, all s<t})
- The autocorrelation (ACF) r_p of a variable Y is the correlation of the variable against a time-shifted version of itself:
 - Let Covar(x, y) = $(1/n) \Sigma (x \overline{x})(y \overline{y})$
 - Then $r_p = Cov(Y_t, Y_{t-p}) / Var(Y_t)$
 - p is the lag (always positive)
- e.g., quarterly seasonal data may have large r₄

Correlogram

- The correlogram is a column chart illustrating the autocorrelation for various lags
- Statistical software will also show the critical value for each autocorrelation
 - Autocorrelations that are significant suggest an autoregressive model with lag p: AR(p)
- TheFed data: AR(2) model

Differencing

- Another tool to reduce dependencies of consecutive values is finite differencing:
 - Look at Y_t Y_{t-d}, where d is the lag
 - Year-over-year change on annual data: d=1
 - Year-over-year change on quarterly: d=4
- A model that combines finite differencing (integration) with autoregression and moving averages is called an ARIMA(p,d,q) model:
 - p = lag for autocorrelation
 - d = lag for differencing
 - q = lag for moving average
 - Use partial correlogram (PACF)

Combining approaches

- The trend-based approach and the autoregressive approach can be combined:
- First fit broad trends/cycles/seasons
 - Resulting residuals
 (de-trended, de-seasonalized data)
 may still be auto-correlated
- Use correlograms to choose an ARIMA model for the residuals
- Goal is to get the residuals to be small, independent, normally distributed, and with constant variance

TODO

- HW8 (ch15,12): due tonight
- Projects:
 - Presentations next week!
 - Final paper due Wed 7Dec

