Network anomaly detection

Multiclass classification model to predict network anomolies

- Feb 2021
- Domino Valdano and Frank McQuillan

Summary

Our primary focus in this project was preprocessing and feature selection, rather than trying many different supervised learning algorithms. We landed here after working with the data for some time and trying to understand it in depth. Initial trys indicated that, for example, small differences in sampling methodologies resulted in very different accuracies on the validation dataset. This is, we suppose, the nature of this type of severely imbalanced problem.

In the end we found that oversampling minority classes and undersampling majority classes in a relatively simple way resulted in reasonable accuracy. However, oversampling minority classes by duplication tends to result in overfitting, as we typically achieved greater than 90% accuracy on both test/train splits, but only 60-something% on the public leaderboard. SMOTE-type approaches [1,2] were tried at for oversampling but did not figure in our final submission.

Preprocessing and feature selection

Started by plotting histograms to look at the nature of the data skew. Used data summarization methods to look at descriptive statistics like correlation. Tried clustering to see if decision boundaries were clean (they are not). Then use oversampling minority classes and undersampling majority classes to generate the data to feed to the random forest model.

Training methodology

We used a random forest with the following parameters:

```
10::integer, -- num trees
5::integer, -- num random features
5::integer, -- num permutations
10::integer, -- max tree depth
3::integer, -- min split
1::integer, -- min bucket
10::integer, -- num splits
```

We kept this constant while we experimented with sampling approaches. Random forest is commonly used on anomaly detection problems [3] and also has the benefit of not requiring 1-hot encoding or normalization/standardization. At least, normalization/standardization is less important in tree methods than other supervised learning methods.

Notable aspects

Keep it simple. Don't try to reverse engineer rules-based approaches since that is very time consuming and you will likely miss something important. Many of our laptop based Python methods had memory issues (e.g., with SMOTENC) so we found working in an MPP database very convenient, since ~5M examples is pretty small in MPP land. So we used Greenplum with Apache MADlib for most of the heavy lifting.

But most of all, we had fun trying things out!

References

[1] SMOTE for Imbalanced Classification with Python https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/) classification/)

[2] SMOTE algorithms https://imbalanced-learn.org/stable/references/over-sampling.html#smote-algorithms)

[3] Anomaly detection using random forest: A performance revisited https://ieeexplore.ieee.org/document/8285847 (https://ieeexplore.ieee.org/document/8285847)

Inline code comments

Please see notebook below.

Setup

- Dependencies
- Package Options
- Database Connection

Data Loading

Download Data and View Sample

Data Exploration

- Summary Statistics
- · Categorical Columns
- Continuous Columns
- Correlation Testing
- Clustering

Feature Engineering

Sampling and feature engineering

Model Development

• Training & Validation Sample Split

- Random Forest (MADlib)
 - Train model
 - Variable Importance
 - Score Validation Data
 - Confusion Matrix

Write out results

• CSV output

Setup

Create database connection and import libraries

```
In [1]:
        %load ext sql
In [2]: # Greenplum Database 5.x on GCP (PM demo machine) - via tunnel
        %sql postgresql://gpadmin@localhost:8000/madlib
        # PostgreSQL local
        #%sql postgresql://fmcquillan@localhost:5432/madlib
In [3]: # dependencies
        import psycopg2
                                      # Python-PostgreSQL Database Adapter - htt
        ps://pypi.python.org/pypi/psycopg2
        import pandas as pd
                                      # Python Data Analysis Library - https://p
        andas.pydata.org/
        import seaborn as sns
                                     # Statistical data visualization - http
        s://seaborn.pydata.org/
        import math
                                      # Mathematical functions - https://docs.py
        thon.org/2/library/math.html
        import textwrap as tw
                                      # Text wrapping and filling - https://doc
        s.python.org/2/library/textwrap.html
        import ipywidgets as widgets # Jupyter Widgets - https://ipywidgets.rea
        dthedocs.io/en/latest/
        import IPython.display as ipd # http://ipython.org/documentation.html
```

```
In [4]: # package options
# %matplotlib inline
%pylab inline

pylab.rcParams['figure.figsize'] = (12, 8)

pd.options.mode.chained_assignment = None
pd.set_option('display.max_colwidth', -1)

pd.options.display.max_rows = 10000
pd.options.display.max_columns = 10000
sns.set(style="darkgrid")
```

Populating the interactive namespace from numpy and matplotlib

```
In [5]: # init to default values
        database host = 'localhost'
        database_databasename = 'madlib'
        database_username = 'gpadmin'
        database password = ''
        database port = '8000'
        # interpret string as markdown
        def printmd(string):
            ipd.display(ipd.Markdown(string))
        message = "### Connection Details \n -----"
        printmd(message)
        printmd("**Host:**")
        inputHost = widgets.Text()
        ipd.display(inputHost)
        printmd("**Port:**")
        inputPort = widgets.Text()
        ipd.display(inputPort)
        printmd("**Database Name:**")
        inputDatabaseName = widgets.Text()
        ipd.display(inputDatabaseName)
        printmd("**Username:**")
        inputUsername = widgets.Text()
        ipd.display(inputUsername)
        printmd("**Password:**")
        inputPassword = widgets.Text()
        ipd.display(inputPassword)
        printmd("*Leave blank for default values*")
        def db connect():
            global conn, cur
            try:
                connString = "host='{}' dbname='{}' user='{}' password='{}' port
        ={}".format(database host,database databasename,database username,databa
        se password,database port)
                # print connString
                conn = psycopg2.connect(connString)
                cur = conn.cursor()
                conn.autocommit = True
                message = "<span style='color:green'>**Connection successful!**
        </span>"
                printmd(message)
            except:
                message = "<span style='color:red'>**ERROR: Unable to connect to
        the database ** </span>"
                printmd(message)
```

```
def on button click(b):
    global database host, database databasename, database username, data
base password, database port
    ipd.clear_output()
    message = "### Connection Details \n -----"
    printmd(message)
    if inputHost.value == "":
        message = "**Host:** {} (default)".format(database host)
        printmd(message)
    else:
        database host = inputHost.value
        message = "**Host:** {}".format(database_host)
        printmd(message)
    if inputPort.value == "":
        message = "**Port:** {} (default)".format(database port)
        printmd(message)
    else:
        database port = inputPort.value
        message = "**Port:** {}".format(database_port)
        printmd(message)
    if inputDatabaseName.value == "":
        message = "**Database name:** {} (default)".format(database data
basename)
        printmd(message)
    else:
        database databasename = inputDatabaseName.value
        message = "**Database name:** {}".format(database databasename)
        printmd(message)
    if inputUsername.value == "":
        message = "**Username:** {} (default)".format(database username)
        printmd(message)
    else:
        database username = inputUsername.value
        message = "**Username:** {}".format(database username)
        printmd(message)
    if inputPassword.value == "":
        message = "**Password:** {} (default)".format(database password)
        printmd(message)
    else:
        database password = inputPassword.value
        message = "**Password:** ########"
        printmd(message)
    printmd("----")
    db connect()
button = widgets.Button(description="Connect")
ipd.display(button)
button.on click(on button click)
```

Connection Details

Host: localhost

Port: 8000

Database name: madlib

Username: gpadmin

Password: (default)

Connection successful!

```
In [7]: def bar plot(data,title,x,xLabel,y,yLabel,color=None,xAxisRotation=90):
            # Bar plot
            pylab.rcParams['figure.figsize'] = (12, 8)
            seq col brew = sns.color palette("Blues r", 1)
            sns.color_palette(seq_col_brew)
            if color != None:
                plt = sns.barplot(x=x, y=y, data=data, color=color)
            else:
                plt = sns.barplot(x=x, y=y, data=data)
            # titles
            plt.set title(title,fontsize=30)
            plt.set xlabel(xLabel,fontsize=12)
            plt.set ylabel(yLabel, fontsize=12)
            # rotate x axis labels
            for item in plt.get xticklabels():
                item.set rotation(xAxisRotation)
            # remove scientific notation
            plt.ticklabel format(style='plain', axis='y')
```

```
In [8]: database_host = 'localhost'
    database_databasename = 'madlib'
    database_username = 'gpadmin'
    database_password = ''
    database_port = '8000'
    db_connect()
```

^{**}Connection successful!**

```
In [9]: # helper function
    def query_gpdb(query):
        cur.execute(query)
        colnames = [desc[0] for desc in cur.description]
        return pd.DataFrame(cur.fetchall(), columns=colnames)

In [8]: %sql SET search_path=public,madlib
        Done.
Out[8]: []
```

Data Loading

Training dataset

```
In [ ]: %%sql
         DROP TABLE IF EXISTS training data;
         CREATE TABLE training data (
             al TEXT,
             a2 TEXT,
             a3 TEXT,
             a4 FLOAT,
             a5 FLOAT,
             a6 INTEGER,
             a7 INTEGER,
             a8 INTEGER,
             a9 INTEGER,
             alo INTEGER,
             all INTEGER,
             all FLOAT,
             al3 FLOAT,
             al4 FLOAT,
             a15 INTEGER,
             al6 FLOAT,
             al7 FLOAT,
             al8 FLOAT,
             a19 FLOAT,
             a20 FLOAT,
             a21 FLOAT,
             a22 FLOAT,
             a23 FLOAT,
             a24 INTEGER,
             a25 FLOAT,
             a26 FLOAT,
             a27 FLOAT,
             a28 FLOAT,
             a29 FLOAT,
             a30 FLOAT,
             a31 FLOAT,
             a32 FLOAT,
             a33 FLOAT,
             a34 FLOAT,
             a35 FLOAT,
             a36 FLOAT,
             a37 FLOAT,
             a38 FLOAT,
             a39 FLOAT,
             a40 FLOAT,
             a41 FLOAT,
             a42 INTEGER,
             y TEXT
         );
         COPY training data FROM '/home/gpadmin/network data/training.csv' CSV DE
         LIMITER ',';
```

Add row number to training data

```
In [13]:
           %%sql
            DROP TABLE IF EXISTS training data id;
            CREATE TABLE training data id AS
            SELECT ROW_NUMBER() OVER()-1 AS id, * FROM training data;
            Done.
            4898431 rows affected.
 Out[13]: []
 In [14]:
            %%sql
            DROP TABLE training data;
            ALTER TABLE training_data_id RENAME TO training_data;
            Done.
            Done.
 Out[14]: []
Have a look at some sample data
 In [15]: %%sql
            SELECT * FROM training_data ORDER BY id LIMIT 5;
            5 rows affected.
 Out[15]:
                  а1
                          a2
                                 аЗ
                                                              a10
                                                                   a11
                                                                        a12 a13
                                                                                 a14
                                                                                     a15
                                                                                             a16
                                        a4
                                             а5
                                                a6 a7
                                                        а8
                                                           а9
               ICMP
                       ECR_I STAT10
                                    1032.0
                                            0.0
                                                 0
                                                     0
                                                         0
                                                            0
                                                                 0
                                                                     0
                                                                        0.0
                                                                             0.0
                                                                                  1.0
                                                                                        0 1397.0
                TCP
                     PRIVATE STAT06
                                       0.0
                                                                             0.0
                                                                                 0.08
                                                                                        0 1253.0
             1
                                            0.0
                                                 0
                                                     0
                                                         0
                                                            0
                                                                 0
                                                                     0
                                                                        0.0
               ICMP
                       ECR_I STAT10 1032.0
                                            0.0
                                                 0
                                                     0
                                                        0
                                                            0
                                                                 0
                                                                     0
                                                                        0.0
                                                                             0.0
                                                                                  1.0
                                                                                        0 1052.0
                TCP PRIVATE STAT06
                                       0.0
                                            0.0
                                                     0
                                                         0
                                                                        0.0
                                                                             0.0
                                                                                 0.01
                                                                                           996.0
                UDP
                       NTP_U STAT10
                                       48.0
                                           48.0
                                                 0
                                                     0
                                                         0
                                                            0
                                                                 0
                                                                     0
                                                                        0.0
                                                                             0.0
                                                                                  1.0
                                                                                        0 1082.0
 In [10]:
            %%sql
            SELECT COUNT(*) FROM training data;
            1 rows affected.
 Out[10]:
              count
             4898431
```

Evaluation dataset

```
In [ ]: %%sql
         DROP TABLE IF EXISTS eval data;
         CREATE TABLE eval_data (
             id INTEGER,
             al TEXT,
             a2 TEXT,
             a3 TEXT,
             a4 FLOAT,
             a5 FLOAT,
             a6 INTEGER,
             a7 INTEGER,
             a8 INTEGER,
             a9 INTEGER,
             alo INTEGER,
             all INTEGER,
             all FLOAT,
             al3 FLOAT,
             al4 FLOAT,
             a15 INTEGER,
             al6 FLOAT,
             al7 FLOAT,
             al8 FLOAT,
             a19 FLOAT,
             a20 FLOAT,
             a21 FLOAT,
             a22 FLOAT,
             a23 FLOAT,
             a24 INTEGER,
             a25 FLOAT,
             a26 FLOAT,
             a27 FLOAT,
             a28 FLOAT,
             a29 FLOAT,
             a30 FLOAT,
             a31 FLOAT,
             a32 FLOAT,
             a33 FLOAT,
             a34 FLOAT,
             a35 FLOAT,
             a36 FLOAT,
             a37 FLOAT,
             a38 FLOAT,
             a39 FLOAT,
             a40 FLOAT,
             a41 FLOAT,
             a42 INTEGER
         );
         COPY eval data FROM '/home/gpadmin/network data/eval-rev2-1.csv' DELIMIT
         ER ',' CSV HEADER;
```

Have a look at some rows from the eval dataset

```
%%sql
In [11]:
            SELECT * FROM eval data ORDER BY id LIMIT 5;
           5 rows affected.
Out[11]:
            id
                  a1
                         a2
                                 аЗ
                                        a4
                                                       а7
                                                           а8
                                                               а9
                                                                   a10
                                                                        a11
                                                                             a12
                                                                                 a13
                                                                                      a14
                                                                                                   a16
             0
               ICMP
                      ECR_I STAT10
                                    1032.0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                     0
                                                                          0
                                                                             0.0
                                                                                  0.0
                                                                                                1328.0
                                               0.0
                                                                                       1.0
                                                                                             0
                TCP
             1
                      HTTP
                             STAT10
                                      280.0 3413.0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                     1
                                                                          0
                                                                             0.0
                                                                                  0.0
                                                                                                 674.0
                                                                                       1.0
                                                                                             0
             2
                TCP
                      HTTP STAT10
                                     218.0 1493.0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                     1
                                                                         0
                                                                             0.0
                                                                                  0.0
                                                                                       1.0
                                                                                             0
                                                                                                 990.0
               ICMP
                      ECR_I STAT10
                                      520.0
                                               0.0
                                                    0
                                                        0
                                                            0
                                                                0
                                                                     0
                                                                          0
                                                                             0.0
                                                                                  0.0
                                                                                       1.0
                                                                                             0 1178.0
               ICMP
                      ECR_I STAT10
                                    1032.0
                                               0.0
                                                                0
                                                                          0
                                                                             0.0
                                                                                  0.0
                                                                                       1.0
                                                                                               1554.0
In [12]:
            %%sql
           SELECT COUNT(*) FROM eval_data;
           1 rows affected.
Out[12]:
             count
            311030
```

Data Exploration

Frequency histogram

```
In [48]: %%sql
    SELECT y, class_count, (class_count/SUM(class_count) OVER ()) AS percent
    FROM
    (
    SELECT y, COUNT(*) AS class_count FROM training_data GROUP BY y
    ) q ORDER BY percent DESC;
```

Out[48]:	У	class_count	percent
	class18	2807886	0.57322150704991047133
	class10	1072017	0.21884905595281427869
	normal	972781	0.19859032412623552317
	class17	15892	0.00324430414555191244
	class06	12481	0.00254795872392608980
	class15	10413	0.00212578272512157464
	class11	2316	0.00047280445514084000
	class01	2203	0.00044973584398759521
	class21	1020	0.00020822994138327150
	class20	979	0.00019985991432766941
	class14	264	0.000053894808358023211922
	class04	53	0.000010819791071875872090
	class02	30	0.000006124410040684455900
	class07	21	0.000004287087028479119130
	class22	20	0.000004082940027122970600
	class05	12	0.000002449764016273782360
	class16	10	0.000002041470013561485300
	class08	9	0.000001837323012205336770
	class03	8	0.000001633176010849188240
	class09	7	0.000001429029009493039710
	class13	4	8.16588005424594120E-7
	class12	3	6.12441004068445590E-7
	class19	2	4.08294002712297060E-7

So, this is an extremely unbalanced dataset!

Summary Deterministic Statistics

https://madlib.apache.org/docs/latest/group_grp_summary.html (https://madlib.apache.org/docs/latest/group_grp_summary.html)

```
In [17]: %%sql
SELECT * FROM training_summary;
```

Out[17]:	group_by	group_by_value	target_column	column_number	data_type	row_count	distinct_values
	None	None	a1	1	text	4898431	3
	None	None	a2	2	text	4898431	70
	None	None	а3	3	text	4898431	11
	None	None	a4	4	float8	4898431	7195
	None	None	а5	5	float8	4898431	22788
	None	None	а6	6	int4	4898431	2
	None	None	a7	7	int4	4898431	2
	None	None	a8	8	int4	4898431	3
	None	None	a9	9	int4	4898431	2
	None	None	a10	10	int4	4898431	2
	None	None	a11	11	int4	4898431	2
	None	None	a12	12	float8	4898431	42
	None	None	a13	13	float8	4898431	72

None	None	a14	14	float8	4898431	101
None	None	a15	15	int4	4898431	3
None	None	a16	16	float8	4898431	3083
None	None	a17	17	float8	4898431	101
None	None	a18	18	float8	4898431	9883
None	None	a19	19	float8	4898431	101
None	None	a20	20	float8	4898431	512
None	None	a21	21	float8	4898431	6
None	None	a22	22	float8	4898431	90
None	None	a23	23	float8	4898431	256
None	None	a24	24	int4	4898431	3

None	None	a25	25	float8	4898431	101
None	None	a26	26	float8	4898431	101
None	None	a27	27	float8	4898431	76
None	None	a28	28	float8	4898431	93
None	None	a29	29	float8	4898431	98
None	None	a30	30	float8	4898431	101
None	None	a31	31	float8	4898431	101
None	None	a32	32	float8	4898431	95
None	None	a33	33	float8	4898431	101
None	None	a34	34	float8	4898431	10

None	None	a35	35	float8	4898431	256
None	None	a36	36	float8	4898431	30
None	None	a37	37	float8	4898431	6
None	None	a38	38	float8	4898431	95
None	None	a39	39	float8	4898431	101
None	None	a40	40	float8	4898431	512
None	None	a41	41	float8	4898431	100
None	None	a42	42	int4	4898431	1
None	None	у	43	text	4898431	23

```
In [18]: %%sql SELECT * FROM eval_summary;
```

Out[18]:	group_by	group_by_value	target_column	column_number	data_type	row_count	distinct_values
	None	None	id	1	int4	311030	311030
	None	None	a1	2	text	311030	3
	None	None	a2	3	text	311030	65
	None	None	аЗ	4	text	311030	11
	None	None	a4	5	float8	311030	2504
	None	None	a 5	6	float8	311030	8906
	None	None	a6	7	int4	311030	2
	None	None	a7	8	int4	311030	2
	None	None	a8	9	int4	311030	3
	None	None	a9	10	int4	311030	2
	None	None	a10	11	int4	311030	2
	None	None	a11	12	int4	311030	2
	None	None	a12	13	float8	311030	12
	None	None	a13	14	float8	311030	87

None	None	a14	15	float8	311030	93
None	None	a15	16	int4	311030	3
None	None	a16	17	float8	311030	2736
None	None	a17	18	float8	311030	101
None	None	a18	19	float8	311030	745
None	None	a19	20	float8	311030	101
None	None	a20	21	float8	311030	442
None	None	a21	22	float8	311030	4
None	None	a22	23	float8	311030	92
None	None	a23	24	float8	311030	256
None	None	a24	25	int4	311030	4
None	None	a25	26	float8	311030	100

None	None	a26	27	float8	311030	101
None	None	a27	28	float8	311030	58
None	None	a28	29	float8	311030	21
None	None	a29	30	float8	311030	24
None	None	a30	31	float8	311030	100
None	None	a31	32	float8	311030	81
None	None	a32	33	float8	311030	79
None	None	a33	34	float8	311030	101
None	None	a34	35	float8	311030	5
None	None	a35	36	float8	311030	256
None	None	a36	37	float8	311030	18
None	None	a37	38	float8	311030	5
None	None	a38	39	float8	311030	100

None	None	a39	40	float8	311030	78
None	None	a40	41	float8	311030	489
None	None	a41	42	float8	311030	100
None	None	a42	43	int4	311030	1

Columns a4 and a5 have a range of 1.3-1.4B, way more than other columns. Column a42 has all the same values so can be ignored. Let's create a widget to look at indidual features:

Categorical Columns

```
In [13]: catColumns = ['a1','a2','a3', 'a6','a7','a8', 'a9',
                        'a10', 'a11', 'a15', 'a24', 'a42',
                        'y'1
         def bar plot(data,title,x,xLabel,y,yLabel,color=None,xAxisRotation=90):
             # Bar plot
             pylab.rcParams['figure.figsize'] = (12, 8)
             seq col brew = sns.color palette("Blues r", 1)
             sns.color_palette(seq_col_brew)
             if color != None:
                 plt = sns.barplot(x=x, y=y, data=data, color=color)
             else:
                 plt = sns.barplot(x=x, y=y, data=data)
             # titles
             plt.set title(title,fontsize=30)
             plt.set xlabel(xLabel, fontsize=12)
             plt.set ylabel(yLabel, fontsize=12)
             # rotate x axis labels
             for item in plt.get xticklabels():
                  item.set_rotation(xAxisRotation)
             # remove scientific notation
             plt.ticklabel_format(style='plain', axis='y')
         def get cat data frame(col):
             query = """
                 SELECT *
                       ,round((record count * 100.0) / sum(record count) OVER(),
         2) AS perc records
                 FROM (
                      SELECT {} AS col
                            ,count(*) AS record count
                      FROM public.training data
                      GROUP BY 1
                  ) foo
                 ORDER BY perc records DESC
             """.format(col)
             cur.execute(query)
             colnames = [desc[0] for desc in cur.description]
             return pd.DataFrame(cur.fetchall(), columns=colnames)
         def on cat selection(res):
             if res['type'] == 'change' and res['name'] == 'value':
                  ipd.clear output()
                 printmd("----\n **Select Column:**")
                 ipd.display(catDropdown)
                 df = get cat data frame(res['new'])
                 bar_plot(df,res['new'],"col",res['new'],"perc_records","% Record
         s", None, 0)
         catDropdown = widgets.Dropdown(
```

```
options=catColumns,
    value=catColumns[0],
    description='Column:',
    disabled=False,
)

catDropdown.observe(on_cat_selection)
printmd("----\n **Select Column:**")
ipd.display(catDropdown)
df = get_cat_data_frame(catColumns[0])
bar_plot(df,catColumns[0],"col",catColumns[0],"perc_records","% Records"
, None, 0)
```

Select Column:

- Low % of values in any one class can skew model results and/or create unstable model.
- Histogram values are being calculated in the database minimal data movement back to client

Continuous Columns

```
In [14]: contColumns = ['a4', 'a5', 'a12', 'a13', 'a14', 'a16',
                          'a17', 'a18', 'a19', 'a20', 'a21',
                               'a23', 'a25', 'a26', 'a27',
                         'a22',
                         'a28', 'a29', 'a30', 'a31', 'a32', 'a33', 'a34', 'a35', 'a36', 'a37',
                         'a38', 'a39', 'a40', 'a41']
          sliderValue = 20
          colName = contColumns[0]
         def get_cont_data_frame(col, buckets):
              query = """
                  WITH aggs AS (
                      SELECT min({c}) AS min,
                             max({c}) AS max
                        FROM training data
                  SELECT width_bucket({c}, min, max, {b}-1) AS bucket,
                         ('[' || min({c}) || ',' || max({c}) || ')')::text as rang
         e,
                         count(*) as freq
                  FROM training data, aggs
                  GROUP BY bucket
                  ORDER BY bucket
              """.format(c=col, b=buckets)
              cur.execute(query)
              colnames = [desc[0] for desc in cur.description]
              return pd.DataFrame(cur.fetchall(), columns=colnames)
          def graph reset():
              ipd.clear output()
              printmd("----\n")
              ipd.display(widgets.HBox((contDropdown,bucketsSlider)))
              printmd("----\n")
              df = get cont data frame(colName, sliderValue)
              bar plot(df,colName, "range",colName, "freq", "Frequency", "#4378E2")
         def on cont selection(res):
              global colName
              if res['type'] == 'change' and res['name'] == 'value':
                  colName = res['new']
                  graph reset()
          def on slider selection(res):
              global sliderValue
              if res['new'] == {} and res['old']:
                  sliderValue = res['old']['value']
                  graph reset()
          # Look at log transforms
          #colsAddLogs = contColumns + ["log({} + 1)".format(c) for c in contColum
          ns1
         colsAddLogs = contColumns
          contDropdown = widgets.Dropdown(
              options=colsAddLogs,
```

```
value=colsAddLogs[0],
    description='Column:',
    disabled=False,
)
bucketsSlider = widgets.IntSlider(
    value=sliderValue,
    min=5,
    \max=50,
    step=1,
    description='# Buckets:',
    disabled=False,
    continuous_update=False,
    orientation='horizontal',
    readout=True,
    readout_format='d'
)
contDropdown.observe(on_cont_selection)
bucketsSlider.observe(on_slider_selection)
graph_reset()
```


- · Consider variable transformation if test non-tree based algorithm
- Histogram values are being calculated in the database minimal data movement back to client

Correlation Testing

https://madlib.apache.org/docs/latest/group_grp_correlation.html (https://madlib.apache.org/docs/latest/group_grp_correlation.html)

1 rows affected.

Out[23]:

Out[24]:

	id	a4	а5	а6	а7	a8	а9	
variable								
id	1.000000	NaN	NaN	NaN	NaN	NaN	NaN	
a4	-0.000906	1.000000e+00	NaN	NaN	NaN	NaN	NaN	
a5	0.000414	2.393421e-04	1.000000	NaN	NaN	NaN	NaN	
а6	-0.000261	-3.600888e- 05	0.000035	1.000000	NaN	NaN	NaN	
а7	0.000551	-1.082987e- 06	0.000004	-0.000018	1.000000e+00	NaN	NaN	
a8	0.000057	-4.110433e- 06	0.001204	-0.000131	-2.905093e- 06	1.000000	NaN	
а9	0.000189	-5.598723e- 06	0.000988	-0.000239	-5.276502e- 06	0.455745	1.000000	
a10	0.000052	2.009464e-04	0.002119	0.070524	1.560893e-03	0.011106	0.020172	1.00
a11	0.000436	-4.652790e- 06	-0.000004	-0.000069	-1.527701e- 06	-0.000011	-0.000020	-0.00
a12	0.000043	3.689192e-05	0.000256	0.001374	-6.116524e- 06	0.027821	0.034960	0.02
a13	-0.000568	-1.416911e- 04	0.000311	-0.003416	-1.284709e- 04	-0.000195	0.000561	0.33
a14	0.000168	6.682568e-04	0.000910	0.013920	-6.541574e- 05	0.002389	0.004378	0.21
a15	0.000491	-2.710890e- 05	-0.000026	-0.000438	-9.673614e- 06	-0.000069	-0.000125	-0.00
a16	-0.000488	2.636534e-04	0.000285	-0.000067	-8.255468e- 05	0.000094	0.000241	0.00
a17	0.000154	-7.953748e- 04	-0.000558	-0.034743	-8.037939e- 04	-0.005091	-0.008877	-0.46
a18	-0.000245	4.122073e-02	0.020392	0.002389	-2.106206e- 05	0.052088	0.026378	-0.02
a19	-0.000355	7.194917e-04	0.003306	0.012627	1.584927e-03	0.003444	0.000775	-0.05
a20	0.000531	-1.145882e- 03	-0.001983	-0.034332	-7.588268e- 04	-0.005398	-0.009475	-0.46
a21	-0.000562	-8.382461e- 08	0.000165	-0.000032	-7.051035e- 07	0.133023	0.089084	0.00
a22	0.000127	3.090613e-03	0.002313	-0.007417	-1.671306e- 04	-0.000671	-0.001494	-0.10
a23	0.000531	-1.716691e- 03	-0.001067	-0.042693	-1.084121e- 03	-0.006898	-0.002702	0.12
a24	0.000029	2.163766e-05	-0.000011	-0.000246	-5.434247e- 06	0.002852	0.036714	0.02
a25	-0.000309	-7.995773e- 04	-0.000749	-0.012967	2.000839e-04	-0.000305	-0.002911	-0.18
a26	0.000045	-1.949155e- 04	0.002345	-0.006446	-1.688235e- 04	-0.000364	-0.001441	-0.09

	id	a4	а5	a6	а7	a8	а9	
variable								
a27	-0.000724	5.183435e-06	0.000346	-0.003716	-1.001058e- 04	0.006156	0.009013	0.13
a28	-0.000293	-1.988572e- 06	0.001303	-0.000093	1.539340e-03	0.378266	0.187161	0.00
a29	-0.000289	4.838088e-06	0.001307	-0.000059	1.324177e-03	0.349526	0.172315	0.00
a30	0.000020	2.744574e-03	0.002354	-0.006813	-8.888032e- 05	-0.000435	-0.001556	-0.09
a31	0.000083	3.016217e-03	0.002310	-0.007442	-1.672473e- 04	-0.000567	-0.001447	-0.10
a32	-0.000317	-6.085324e- 04	-0.000757	-0.013001	5.557775e-04	-0.000600	-0.003040	-0.18
a33	0.000384	-1.549505e- 03	-0.000968	-0.033523	-1.116773e- 03	-0.005393	-0.000362	0.15
a34	0.000117	-2.217914e- 05	0.000352	-0.000035	-1.837455e- 05	0.259489	0.132047	0.07
a35	0.000503	-2.416744e- 03	-0.001534	-0.044079	2.197719e-04	-0.007813	-0.010920	-0.62
a36	0.000026	7.822762e-04	0.000126	0.803830	1.345546e-03	0.001926	0.017916	0.06
a37	0.000159	-6.910167e- 06	0.000632	0.004714	-2.805703e- 06	0.069186	0.023673	0.00
a38	0.000179	3.295169e-04	-0.000393	0.007031	3.700450e-03	-0.000555	-0.001371	-0.07
a39	-0.000310	-5.615874e- 04	-0.000758	-0.013010	1.323950e-04	-0.000667	-0.003076	-0.18
a40	0.000610	-1.652360e- 03	-0.002623	-0.045141	-9.963451e- 04	-0.007099	-0.012549	-0.62
a41	-0.000316	-6.110693e- 04	-0.000747	-0.013078	7.002152e-04	-0.000134	-0.002774	-0.18

NaN

a42

NaN

NaN

NaN

NaN

NaN

NaN

See mix of positive and negative correlations

- · means complex interactions between features
- means can't take a rule-based approach or try to data engineer/reverse engineer the feature interactions
- means PCA may be a candidate to try to reduce dimensionality of problem

Clustering

Question: how well do minority classes cluster? This may tell us something about the sharpness of the decision boundary

First encode the text columns

```
In [ ]:
           %%sql
           DROP TABLE IF EXISTS training data encoded, training data encoded dictio
           SELECT madlib.encode_categorical_variables (
                     'training data',
                                                       -- Source table
                     'training data encoded',
                                                         -- Output table
                     'a1, a2, a3'
                                                                -- Categorical columns
                     );
In [49]:
           %%sql
           select * from training_data_encoded limit 5;
           5 rows affected.
Out[49]:
               а4
                                           a10
                                               a11
                                                    a12 a13 a14
                                                                  a15
                                                                          a16
                                                                                       a19
                                                                                               a20
                      а5
                          a6
                              а7
                                  а8
                                       а9
                                                                               a17
                                                                                   a18
             319.0 3229.0
                          0.0
                              0.0
                                  0.0
                                      0.0
                                           1.0
                                                0.0
                                                     0.0
                                                         0.0
                                                              1.0
                                                                   0.0
                                                                        360.0
                                                                              0.01
                                                                                    0.0
                                                                                         0.0
                                                                                              15.0
             520.0
                      0.0 0.0 0.0
                                 0.0
                                      0.0
                                           0.0
                                                0.0
                                                     0.0
                                                         0.0
                                                              1.0
                                                                   0.0 1324.0
                                                                               1.0
                                                                                    0.0
                                                                                         0.0
                                                                                             434.0
             520.0
                                                                   0.0 1473.0
                      0.0 0.0 0.0 0.0
                                      0.0
                                           0.0
                                                0.0
                                                     0.0
                                                         0.0
                                                              1.0
                                                                               1.0
                                                                                    0.0
                                                                                         0.0
                                                                                             454.0
            1032.0
                      0.0
                          0.0 0.0 0.0
                                      0.0
                                           0.0
                                                0.0
                                                     0.0
                                                         0.0
                                                              1.0
                                                                   0.0
                                                                       1903.0
                                                                               1.0
                                                                                    0.0
                                                                                         0.0 510.0
            1032.0
                      0.0 0.0 0.0 0.0 0.0
                                           0.0
                                                0.0
                                                     0.0
                                                         0.0
                                                                   0.0
                                                                        259.0
                                                                               1.0
                                                                                    0.0
                                                                                         0.0 511.0
                                                              1.0
```

Extract training data for minority classes with less than, say, 100 examples:

```
In [64]: %%sql
          drop table if exists training data work1;
          create table training data_work1 as
          (select * from training_data_encoded where y='class19'
                                                       or y='class12'
                                                        or y='class13'
                                                        or y='class09'
                                                        or y='class03'
                                                        or y='class08'
                                                        or y='class16'
                                                        or y='class05'
                                                        or y='class22'
                                                        or y='class07'
                                                        or y='class02'
                                                        or y='class04');
         Done.
         179 rows affected.
Out[64]: []
```

Prepare for clustering:

```
In [66]: %%sql
          drop table if exists training data work2, training data work2 summary;
          select madlib.cols2vec('training data work1',
                                  'training data work2',
                                  'у',
                                  'у'
                                  );
         Done.
         1 rows affected.
Out[66]:
          cols2vec
In [67]:
         %%sql
         ALTER TABLE training data work2 ADD column pid serial;
         Done.
Out[67]: []
```

Call kmeans++ clustering with 15 centroids, which is the number of classes that have less than 100 examples:

```
In [77]:
          %%sql
          DROP TABLE IF EXISTS training data work3;
          CREATE TABLE training data work3 AS
           (SELECT * FROM madlib.kmeanspp(
               'training data work2',
                                                            -- points table
               'feature_vector',
                                                           -- column name in point table
               15,
               'madlib.dist_norm1', -- distance function
               'madlib.avg',
                                                  -- aggregate function
               20,
                                                  -- max iterations
                                                 -- minimum fraction of centroids reass
               0.001
           igned to continue iterating
           ));
          Done.
          1 rows affected.
Out[77]: []
In [15]:
          %%sql
           select cluster variance, objective fn, frac reassigned, num iterations f
          rom training data work3;
          1 rows affected.
Out[15]:
                                                      objective_fn frac_reassigned num_iterations
                                      cluster_variance
                 [15794.6516666667, 3145.333333333333, 0.0,
           23800.7533333333. 0.0. 0.0. 0.0. 8784.16666666915.
                                                    167198.748966
                                                                           0.0
                                                                                         6
           6645.45, 32274.5410169492, 12993.9846153846, 0.0,
                     24033.3133333333, 32017.36, 7709.195]
```

So it converges in 6 iterations (pretty quick). Let's look at mapping of points to clusters but class:

In [17]: %%sql

DROP TABLE IF EXISTS point_cluster_map;

CREATE TABLE point cluster map AS

SELECT data.*, (madlib.closest_column(centroids, feature_vector, 'madli
b.squared_dist_norm2')).*

FROM training data work2 as data, training data work3;

ALTER TABLE point_cluster_map RENAME column_id to cluster_id; -- change column name

SELECT y, pid, cluster_id, distance FROM point_cluster_map ORDER BY y, d
istance desc;

Done. 179 rows affected. Done. 179 rows affected.

Out[17]:	у	pid	cluster_id	distance
	class02	17	13	80066368.3904
	class02	164	0	3541781.34629
	class02	146	14	1162567.47512
	class02	178	14	1057157.68512
	class02	50	14	840084.560966
	class02	97	0	826395.679621
	class02	156	8	790317.402777
	class02	143	10	591068.118111
	class02	28	0	571682.008921
	class02	71	14	547151.315616
	class02	35	14	509772.225116
	class02	39	14	508212.935116
	class02	101	0	436604.342254
	class02	81	8	428263.330217
	class02	121	0	360492.846287
	class02	24	14	331115.675616
	class02	119	3	315612.257602
	class02	22	8	168780.548337
	class02	139	10	142488.066296
	class02	116	0	116908.175587
	class02	6	8	104659.263217
	class02	112	0	93380.0129542
	class02	154	10	85657.2988805
	class02	77	8	66884.930217
	class02	75	8	56973.856217
	class02	99	14	43841.2004156
	class02	158	8	23743.754897
	class02	111	8	7906.354717
	class02	107	8	5670.030057
	class02	69	6	0.0
	class03	20	12	98446937.1023
	class03	171	10	732082.796573
	class03	166	3	511925.944464
	class03	2	9	398933.411413
	class03	84	3	152978.613158
	class03	170	9	115296.630227

class03	114	9	93671.8125522
class03	34	9	27822.6999217
class04	130	9	1100587.53498
class04	163	9	509820.212944
class04	3	9	448517.726267
class04	15	9	320515.003956
class04	123	3	305536.315124
class04	96	3	292535.265549
class04	103	3	273305.826235
class04	127	3	184128.509993
class04	51	3	174362.867086
class04	38	3	167971.468689
class04	128	10	159708.878511
class04	137	9	152888.920803
class04	157	9	138288.187527
class04	30	3	127495.679824
class04	85	9	112905.944057
class04	179	9	89604.3784302
class04	7	9	89480.3934725
class04	8	3	84954.5256842
class04	76	3	79623.1140465
class04	100	3	75762.103462
class04	83	3	75004.3529909
class04	19	9	74106.2510319
class04	86	3	71441.7307687
class04	23	9	70828.9885997
class04	49	3	70196.9812109
class04	32	9	69704.527681
class04	10	3	68976.2023665
class04	26	3	61254.258082
class04	25	9	48708.8051929
class04	131	3	47622.7892198
class04	4	9	46715.8002522
class04	90	9	44062.1102776
class04	82	9	35143.0246997
class04	62	9	34952.9547014
class04	133	9	32727.3226132

class04	153	9	32379.8764844
class04	16	3	28266.4520665
class04	176	3	26817.2812398
class04	147	3	21237.6877709
class04	14	3	17025.8145731
class04	126	9	15051.1072437
class04	117	9	11853.483159
class04	140	3	10950.7575776
class04	9	9	8694.06837593
class04	78	9	7662.85109966
class04	173	9	6408.91583355
class04	172	3	5635.77012869
class04	161	9	5202.45789288
class04	57	9	5129.39347254
class04	149	9	4522.63203864
class04	89	3	4157.1892198
class04	144	3	1053.72875758
class04	105	3	894.226253136
class05	125	3	1438258.83467
class05	120	13	473387.371069
class05	94	9	252347.810642
class05	27	3	183476.563818
class05	44	3	133095.459626
class05	95	9	119594.120025
class05	29	9	86624.9082861
class05	66	3	75903.6158176
class05	33	9	58177.183498
class05	21	9	43973.0558302
class05	141	9	40113.9766675
class05	54	5	0.0
class07	160	9	655396.49582
class07	87	3	225307.772269
class07	72	9	192845.242769
class07	104	3	167002.654282
class07	138	9	145682.727684
class07	175	3	137888.084591
class07	152	9	129814.50243

class07	136	9	97626.8463285
class07	88	3	85828.6509354
class07	134	9	84221.0294539
class07	11	3	69028.3242687
class07	48	3	65984.8137087
class07	145	3	59329.1620465
class07	46	3	59171.6729909
class07	65	3	54212.1919131
class07	93	3	53380.1978242
class07	31	9	48999.6156505
class07	53	9	40041.0194047
class07	174	9	31374.8737861
class07	113	9	28648.2676793
class07	13	9	28243.0029471
class08	167	9	1151342.81951
class08	43	13	1007360.27929
class08	91	10	573105.31888
class08	148	10	539632.965034
class08	165	0	438240.144454
class08	41	10	437567.490327
class08	108	3	292574.83538
class08	5	0	179139.382504
class08	70	10	118438.602073
class09	132	12	19197859.2789
class09	110	3	624011.23538
class09	73	13	473893.945958
class09	59	9	259906.231132
class09	142	3	174939.534369
class09	155	2	0.0
class09	67	4	0.0
class12	150	10	695877.374819
class12	80	10	547615.740196
class12	36	10	259164.797204
class13	177	13	3481635.25151
class13	1	13	3447830.81409
class13	63	13	2993114.49259
class13	18	13	2969575.4845

class16	129	12	30901833.2624	
class16	115	0	3093296.8618	
class16	68	13	1548677.67356	
class16	151	0	292053.334121	
class16	47	9	233497.449203	
class16	60	9	76597.6864912	
class16	79	9	70468.0253776	
class16	106	9	50279.7542878	
class16	124	9	38698.1217522	
class16	118	9	35061.1444641	
class19	159	9	691394.713284	
class19	42	10	332736.13405	
class22	37	0	2434722.84629	
class22	122	7	1851227.77778	
class22	109	1	1525286.22222	
class22	74	7	906586.277778	
class22	12	1	701883.888889	
class22	64	7	638810.444445	
class22	135	7	632929.944445	
class22	162	3	600954.902046	
class22	58	7	583093.444444	
class22	52	8	449902.104877	
class22	168	7	391944.777777	
class22	56	1	313365.222222	
class22	61	7	268381.611111	
class22	169	9	239240.931381	
class22	92	7	216626.111111	
class22	45	7	173480.611111	
class22	40	7	20504.7777778	
class22	98	7	6303.27777781	
class22	102	7	489.611111116	
class22	55	11	0.0	

```
In [90]: %%sql
SELECT y, pid, cluster_id, distance FROM point_cluster_map WHERE y='clas
s04';
```

Out[90]:	у	pid	cluster_id	distance
	class04	19	9	74106.2510319
	class04	26	3	61254.258082
	class04	30	3	127495.679824
	class04	3	9	448517.726267
	class04	4	9	46715.8002522
	class04	7	9	89480.3934725
	class04	8	3	84954.5256842
	class04	32	9	69704.527681
	class04	38	3	167971.468689
	class04	51	3	174362.867086
	class04	9	9	8694.06837593
	class04	10	3	68976.2023665
	class04	14	3	17025.8145731
	class04	15	9	320515.003956
	class04	16	3	28266.4520665
	class04	23	9	70828.9885997
	class04	25	9	48708.8051929
	class04	62	9	34952.9547014
	class04	76	3	79623.1140465
	class04	82	9	35143.0246997
	class04	89	3	4157.1892198
	class04	103	3	273305.826235
	class04	105	3	894.226253136
	class04	49	3	70196.9812109
	class04	57	9	5129.39347254
	class04	78	9	7662.85109966
	class04	83	3	75004.3529909
	class04	117	9	11853.483159
	class04	123	3	305536.315124
	class04	85	9	112905.944057
	class04	86	3	71441.7307687
	class04	90	9	44062.1102776
	class04	96	3	292535.265549
	class04	100	3	75762.103462
	class04	127	3	184128.509993
	class04	131	3	47622.7892198

```
133
                     9 32727.3226132
class04
class04
        137
                        152888.920803
class04
        163
                        509820.212944
                     9
class04
        126
                     9
                        15051.1072437
class04
        128
                     10
                        159708.878511
class04
        172
                     3
                        5635.77012869
class04
        173
                        6408.91583355
class04 176
                     3
                        26817.2812398
class04
        179
                     9
                        89604.3784302
class04
        130
                        1100587.53498
class04
        140
                     3
                        10950.7575776
                        1053.72875758
class04
        144
class04
        147
                     3
                        21237.6877709
class04
        149
                        4522.63203864
class04
        153
                        32379.8764844
class04
        157
                        138288.187527
                     9
class04 161
                        5202.45789288
```

Not seeing a super clear decision boundary since given classes are mapping to multiple centroids. Probably need to normalize features since they have very different ranges in order to do this properly.

Check sihlhouette value:

```
In [91]:
          %%sql
          SELECT * FROM madlib.simple silhouette( 'training data work2',
           -- Input points table
                                                           'feature vector',
          -- Points column in input table
                                                           (select centroids from tra
                                        -- Column in centroids table containing cen
          ining data work3),
          troids
                                                           'madlib.squared dist norm
          2 '
               -- Distance function
                                                  );
          1 rows affected.
Out[91]:
          simple_silhouette
            0.818159540208
```

This is a pretty low silhouette value, so not a great decision boudary. Let's look at silhouette by point:

```
In [92]: | %%sql
         DROP TABLE IF EXISTS km points silh;
         SELECT * FROM madlib.simple silhouette points( 'training data work2',
         -- Input points table
                                                         'km points silh',
          Output table
                                                         'pid',
          Point ID column in input table
                                                         'feature_vector',
         -- Points column in input table
                                                         'training data work3',
         -- Centroids table
                                                         'centroids',
          Column in centroids table containing centroids
                                                         'madlib.squared_dist_norm
             -- Distance function
                                                 );
         SELECT * FROM km_points_silh ORDER BY centroid_id;
```

Done.
1 rows affected.

centroid_id 0	neighbor_centroid_id	silh 0.935808256274
	14	0.935808256274
0		
· ·	14	0.93625464132
0	14	0.961721329119
0	14	0.886829404236
0	13	0.631878539057
0	14	0.96597102327
0	14	0.981133477231
0	8	0.0533889996169
0	14	0.936659712261
0	14	0.987592846725
0	14	0.563960453975
0	14	0.989223745617
1	7	0.908629047708
1	7	0.965324555962
1	7	0.931354905229
2	11	1.0
3	9	0.456257974465
3	9	0.169233121146
3	9	0.945042006946
3	9	0.875607862266
3	9	0.0226586445892
3	9	0.858241432486
3	9	0.611939302388
3	9	0.789954163633
3	9	0.781116483353
3	9	0.935156569057
3	9	0.848145882248
3	9	0.935441571694
3	9	0.959581383253
3	9	0.879767856284
3	9	0.890129505526
3	9	0.889167849502
3	9	0.998790324126
3	9	0.928706120481
3	9	0.993949061371
3	9	0.853312710236
		0 14 0 14 0 13 0 14 0 14 0 14 0 14 0 8 0 14 0 14 0 14 0 14 1 7 1 7 1 7 1 7 1 7 1 7 2 11 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9

110	3	9	0.678144421048
84	3	9	0.660789282205
76	3	9	0.796116657838
86	3	9	0.944135479978
88	3	9	0.826885013155
66	3	9	0.904283374477
176	3	9	0.946486690137
96	3	9	0.852108894436
172	3	9	0.991228151725
100	3	9	0.941679555819
166	3	9	0.766833134909
104	3	9	0.451978223416
48	3	9	0.888507795269
108	3	9	0.722195588166
46	3	9	0.935480452168
44	3	9	0.671792038605
38	3	9	0.209801660831
8	3	9	0.936401167169
30	3	9	0.529883009128
16	3	9	0.942914455433
14	3	9	0.982734528476
10	3	9	0.813040686399
26	3	9	0.842060427617
144	3	9	0.998638419267
140	3	9	0.981383826671
162	3	9	0.226853637986
67	4	5	1.0
54	5	4	1.0
69	6	12	1.0
45	7	1	0.981760107023
135	7	1	0.922261037626
61	7	1	0.977541257494
102	7	1	0.999959525809
98	7	1	0.999464472901
92	7	1	0.982635512602
168	7	1	0.976154780416
74	7	1	0.922219957461

			· -	
64	7	1	0.942272818685	
58	7	1	0.95029286846	
40	7	1 0.99822415584		
122	7	1	0.919167134734	
156	8	10	0.590586986887	
158	8	14	0.990440297162	
52	8	10	0.574635453916	
6	8	14	0.953939421749	
22	8	14	0.914167831513	
75	8	14	0.972603085203	
77	8	14	0.970761004966	
107	8	14	0.997705761441	
81	8	14	0.800338263684	
111	8	14	0.996705399629	
79	9	3	0.886813411447	
53	9	3	0.935718363641	
21	9	3	0.953078822192	
19	9	3	0.796800768985	
161	9	3	0.993273499725	
159	9	3	0.296928045246	
157	9	3	0.908819238326	
153	9	3	0.934039713218	
149	9	3	0.993703986806	
141	9	3	0.95348827964	
85	9	3	0.609855367426	
59	9	3	0.217110982292	
57	9	3	0.992684454911	
47	9	3	0.27576005115	
33	9	3	0.913758617495	
31	9	3	0.9142347384	
29	9	3	0.927356736414	
25	9	3	0.957919366172	
23	9	3	0.809639344968	
15	9	3	0.842461600973	
13	9	3	0.963658195144	
9	9	3	0.989932915948	
7	9	3	0.728570163203	

3	9	3	0.808693137334
179	9	3	0.73022287036
173	9	3	0.990500002267
169	9	3	0.0596669341311
167	9	10	0.646004634942
163	9	3	0.79479606889
137	9	3	0.34297870699
133	9	3	0.932717389759
117	9	3	0.980522768381
113	9	3	0.962145539413
95	9	3	0.913528417893
114	9	3	0.927884904466
106	9	3	0.941598573002
170	9	3	0.888789170611
34	9	3	0.967691239785
32	9	3	0.812476801711
124	9	3	0.937483813595
126	9	3	0.983938625716
136	9	3	0.76425560899
138	9	3	0.90365387684
134	9	3	0.820188677538
130	9	3	0.69899935564
160	9	3	0.765796066841
152	9	3	0.630342923769
78	9	3	0.991002755392
82	9	3	0.926992353063
2	9	3	0.500306895413
72	9	3	0.268769269845
90	9	3	0.90107169752
174	9	3	0.965873820871
62	9	3	0.927429054928
60	9	3	0.887869865315
4	9	3	0.892587685052
94	9	3	0.86326781737
118	9	3	0.946513279748
70	10	8	0.956707890382
150	10	8	0.628416893535

* *			
0.845344961622	9	10	42
0.853665598597	8	10	36
0.691812956729	8	10	80
0.97133675931	8	10	154
0.59288369722	3	10	148
0.933594509808	8	10	128
0.562842837393	9	10	91
0.954308553244	8	10	139
0.682480843222	8	10	171
0.684946497101	3	10	41
0.608601364911	9	10	143
1.0	2	11	55
0.854878504143	13	12	129
0.890192321999	13	12	20
0.922830705682	13	12	132
0.537046645618	0	13	18
0.977480253272	0	13	120
0.799350132586	0	13	68
0.530013909127	0	13	63
0.4885040702	0	13	1
0.504040227792	0	13	177
0.904620210277	0	13	43
0.504370214577	0	13	17
0.962159315565	0	13	73
0.978954500426	8	14	99
0.772704403851	8	14	39
0.876110468883	8	14	35
0.811398595337	8	14	71
0.665921108206	8	14	178
0.889975291064	8	14	24
0.709497094899	8	14	146
0.797274623372	8	14	50

Try different numbers of centroids:

```
In [19]:
         %%sql
         DROP TABLE IF EXISTS k auto, k auto summary;
         SELECT madlib.kmeanspp_auto(
              'training data work2',
                                                       -- points table
              'k auto',
                                             -- output table
              'feature_vector',
                                                      -- column name in point table
                                                               -- k values to try
             ARRAY[12, 13, 14, 15, 16, 17, 18],
              'madlib.squared dist norm2',
                                             -- distance function
              'madlib.avg',
                                             -- aggregate function
             20,
                                             -- max iterations
                                              -- minimum fraction of centroids reas
             0.001,
         signed to continue iterating
                                              -- centroid seed
             1.0,
              'both'
                                             -- k selection algorithm (silhouette
          or elbow or both)
         );
```

Done.

1 rows affected.

Out[19]: kmeanspp_auto

In [22]: %%sql

SELECT cluster_variance, objective_fn, frac_reassigned, num_iterations, silhouette, elbow, selection_algorithm FROM k_auto_summary;

1 rows affected.

Out[22]:

In [23]: %%sql

SELECT cluster_variance, objective_fn, frac_reassigned, num_iterations,
 silhouette, elbow FROM k_auto ORDER BY k;

elbo	silhouette	num_iterations	frac_reassigned	objective_fn	cluster_variance	Out[23]:
31936211.42	0.86935801181	6	0.0	210665887.587	[36094131.4341202, 37349426.5333333, 0.0, 0.0, 0.0, 0.0, 0.0, 38483830.7682562, 7861154.54450667, 0.0, 33259529.652835, 57617814.6536667]	
10713657.26	0.798808476983	8	0.0	160960180.066	[13547850.1317583, 37349426.5333333, 0.0, 0.0, 0.0, 0.0, 10.0, 0.0, 10595018.3640367, 876223.99025, 52995357.0571684, 45596303.9899481, 0.0]	
-5807471.0229	0.754280855921	6	0.0	175126895.398	[31580457.7297298, 37349426.5333333, 0.0, 0.0, 0.0, 0.0, 0.0, 82739299.8503419, 10617528.3301614, 0.0, 0.0, 0.0, 12840182.95434, 0.0]	
9322629.9296	0.813210035641	3	0.0	104403394.086	[8999116.26861961, 5690378.66666667, 0.0, 0.0, 0.0, 0.0, 0.0, 7883394.42190189, 0.0, 52995357.0571684, 0.0, 17557233.8039177, 2540535.3333333, 876223.99025, 7861154.54450667]	
19175850.03(0.788313135166	7	0.0	116358019.117	[349817.306933333, 37349426.5333333, 0.0, 0.0, 0.0, 0.0, 2913377.04604444, 0.0, 876223.99025, 45596303.9899481, 0.0, 7983310.83413192, 13314059.6529424, 1588320.5, 0.0, 6387179.263775]	

[5530556.05006, 37349426.5333333, 0.0, 0.0, 0.0, 0.0, 0.0, 12840182.95434, 0.0, 6196840.223915, 1467675.53907692, 876223.99025, 0.0, 7861154.54450667, 8558832.19872308, 4312149.24188627, 144086.548866667]	85137127.825	0.0	6	0.801506774799	29394274.14 [,]
[2292795.37918788, 37349426.5333333, 0.0, 0.0, 0.0, 0.0, 57617814.6536667, 0.0, 12840182.95434, 120819.4565, 626350.292509091, 4999903.073075, 2103101.57553, 0.0, 2737496.38614667, 2858953.04728837, 5530556.05006, 5215143.58095385]	134292542.983	0.0	7	0.78306291267	40188153.2 ′

Plot the silhouette profiles

```
In [98]: # get range of k values tested
         k range = %sql SELECT k FROM k auto ORDER BY k;
         # outer loop on k
         # plot clusters for each k value
         for n clusters in k range:
             # create table mapping each point to its centroid
             kval = n clusters[0]
             %sql DROP TABLE IF EXISTS k plot1;
             %sql CREATE TABLE k plot1 AS (SELECT data.*, (madlib.closest column
         (centroids, feature_vector, 'madlib.squared_dist_norm2')).column_id as c
         luster_id FROM training_data_work2 as data, k_auto WHERE k=$kval);
             # get info from tables and reshape to np arrays
             # number of points
             num_points_proxy= %sql SELECT COUNT(*) FROM k plot1;
             num points= num points proxy[0][0]
             # points
             points proxy = %sql SELECT feature vector FROM k plot1 ORDER BY pid;
             points = np.array(points_proxy).reshape(num_points,123)
             # cluster id
             cluster id proxy = %sql SELECT cluster id FROM k plot1 ORDER BY pid;
             cluster_id = np.array(cluster_id_proxy).reshape(num_points)
             # centroids
             centroids proxy = %sql SELECT centroids FROM k auto WHERE k=$kval;
             centers = np.array(centroids proxy[0][0]).reshape(kval,123)
             # The silhouette score gives the average value for all the samples.
             # This gives a perspective into the density and separation of the fo
         rmed
             # clusters
             silhouette avg = %sql SELECT silhouette FROM k auto WHERE k=$kval;
             print("For n clusters =", kval,
                   "The average silhouette score is : ", silhouette avg)
             # Create a subplot with 1 row and 2 columns
             fig, (ax1, ax2) = plt.subplots(1, 2)
             fig.set size inches(18, 7)
             # The 1st subplot is the silhouette plot
             # The silhouette coefficient can range from -1, 1 but in this exampl
         e all
             # lie within [-0.1, 1]
             ax1.set xlim([-0.1, 1])
             # The (n clusters+1)*10 is for inserting blank space between silhoue
         tte
             # plots of individual clusters, to demarcate them clearly.
             len X = %sql select count(*) from training data work2;
             len X = len X[0][0]
             ax1.set ylim([0, len X + (kval + 1) * 10])
             y lower = 10
```

```
# inner loop on number of centroids
    for i in range(kval):
        %sql DROP TABLE IF EXISTS points_distr1;
        %sql SELECT * FROM madlib.simple silhouette points( 'training da
ta_work2', 'points_distr1', 'pid', 'feature_vector', (SELECT centroids F
ROM k_auto WHERE k=$kval), 'madlib.squared_dist_norm2');
        ith cluster silhouette values proxy = %sql SELECT silh from poin
ts distr1 WHERE centroid id=$i ORDER BY silh;
        ith cluster silhouette values = np.array(ith cluster silhouette
values proxy).reshape(len(ith cluster silhouette values proxy))
        size cluster i proxy = %sql SELECT COUNT(*) from points distr1 W
HERE centroid id=$i;
        size cluster i = size cluster i proxy[0][0]
        y_upper = y_lower + size_cluster_i
        color = cm.nipy spectral(float(i) / kval)
        ax1.fill betweenx(np.arange(y lower, y upper),
                  0, ith_cluster_silhouette_values,
                  facecolor=color, edgecolor=color, alpha=0.7);
        # Label the silhouette plots with their cluster numbers at the m
iddle
        ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i));
        # Compute the new y lower for next plot
        y lower = y upper + 10 # 10 for the 0 samples
    ax1.set title("Silhouette plot for the various clusters.")
    ax1.set xlabel("Silhouette coefficient values")
    ax1.set ylabel("Cluster label")
    # The vertical line for average silhouette score of all the values
    ax1.axvline(x=silhouette avg, color="red", linestyle="--")
    ax1.set yticks([]) # Clear the yaxis labels / ticks
    ax1.set xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
    # 2nd Plot showing the actual clusters formed
    centroids = %sql SELECT centroid id FROM points distrl ORDER BY pid;
    cluster labels = np.array(centroids).reshape(len(centroids))
    colors = cm.nipy spectral(cluster labels.astype(float) / kval)
    #ax2.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7,
                 c=colors, edgecolor='k')
    # Labeling the clusters
    # Draw white circles at cluster centers
    #ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
                 c="white", alpha=1, s=200, edgecolor='k')
    #for i, c in enumerate(centers):
    # ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
                     s=50, edgecolor='k')
```

```
7 rows affected.
Done.
179 rows affected.
1 rows affected.
179 rows affected.
179 rows affected.
1 rows affected.
1 rows affected.
('For n_clusters =', 12, 'The average silhouette_score is :', [(0.84790
4829929578,)])
1 rows affected.
Done.
1 rows affected.
15 rows affected.
1 rows affected.
Done.
1 rows affected.
15 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
10 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
26 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
3 rows affected.
1 rows affected.
Done.
```

```
104 rows affected.
1 rows affected.
179 rows affected.
Done.
179 rows affected.
1 rows affected.
179 rows affected.
179 rows affected.
1 rows affected.
1 rows affected.
('For n_clusters =', 13, 'The average silhouette_score is :', [(0.86713
9583945893,)])
1 rows affected.
Done.
1 rows affected.
108 rows affected.
1 rows affected.
Done.
1 rows affected.
3 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
3 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
12 rows affected.
1 rows affected.
Done.
1 rows affected.
16 rows affected.
```

```
Done.
1 rows affected.
12 rows affected.
1 rows affected.
Done.
1 rows affected.
19 rows affected.
1 rows affected.
179 rows affected.
Done.
179 rows affected.
1 rows affected.
179 rows affected.
179 rows affected.
1 rows affected.
1 rows affected.
('For n_clusters =', 14, 'The average silhouette_score is :', [(0.86803
1309555745,)])
1 rows affected.
Done.
1 rows affected.
20 rows affected.
1 rows affected.
Done.
1 rows affected.
12 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
2 rows affected.
1 rows affected.
Done.
1 rows affected.
104 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
```

```
15 rows affected.
1 rows affected.
Done.
1 rows affected.
3 rows affected.
1 rows affected.
Done.
1 rows affected.
16 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
179 rows affected.
Done.
179 rows affected.
1 rows affected.
179 rows affected.
179 rows affected.
1 rows affected.
1 rows affected.
('For n_clusters =', 15, 'The average silhouette_score is :', [(0.79200
9469731866,)])
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
3 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
3 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
```

```
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
8 rows affected.
1 rows affected.
Done.
1 rows affected.
3 rows affected.
1 rows affected.
Done.
1 rows affected.
12 rows affected.
1 rows affected.
Done.
1 rows affected.
59 rows affected.
1 rows affected.
Done.
1 rows affected.
20 rows affected.
1 rows affected.
Done.
1 rows affected.
19 rows affected.
1 rows affected.
Done.
1 rows affected.
46 rows affected.
1 rows affected.
179 rows affected.
Done.
179 rows affected.
1 rows affected.
179 rows affected.
179 rows affected.
1 rows affected.
1 rows affected.
('For n clusters =', 16, 'The average silhouette score is :', [(0.78399
5460343156,)])
1 rows affected.
Done.
1 rows affected.
8 rows affected.
1 rows affected.
Done.
1 rows affected.
15 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
```

- 1 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 51 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 1 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 1 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 40 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 1 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 2 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 4 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 16 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 13 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 1 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 15 rows affected.
- 1 rows affected.

Done.

- 1 rows affected.
- 9 rows affected.
- 1 rows affected.
- 179 rows affected.

Done.

- 179 rows affected.
- 1 rows affected.
- 179 rows affected.
- 179 rows affected.
- 1 rows affected.

```
1 rows affected.
('For n_clusters =', 17, 'The average silhouette_score is :', [(0.82974
5366314852,)))
1 rows affected.
Done.
1 rows affected.
46 rows affected.
1 rows affected.
Done.
1 rows affected.
3 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
2 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
9 rows affected.
1 rows affected.
Done.
1 rows affected.
8 rows affected.
1 rows affected.
1 rows affected.
10 rows affected.
1 rows affected.
Done.
1 rows affected.
12 rows affected.
1 rows affected.
```

Done.

```
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
11 rows affected.
1 rows affected.
Done.
1 rows affected.
58 rows affected.
1 rows affected.
Done.
1 rows affected.
13 rows affected.
1 rows affected.
179 rows affected.
Done.
179 rows affected.
1 rows affected.
179 rows affected.
179 rows affected.
1 rows affected.
1 rows affected.
('For n_clusters =', 18, 'The average silhouette_score is :', [(0.77131
9343876484,)])
1 rows affected.
Done.
1 rows affected.
45 rows affected.
1 rows affected.
Done.
1 rows affected.
7 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
1 rows affected.
1 rows affected.
Done.
1 rows affected.
```

3 rows affected.

- 1 rows affected. Done.
- 1 rows affected.
- 1 rows affected.
- 1 rows affected.
- Done.
- 1 rows affected.
- 1 rows affected.
- 1 rows affected.
- Done.
- 1 rows affected.
- 20 rows affected.
- 1 rows affected.
- Done.
- 1 rows affected.
- 8 rows affected.
- 1 rows affected.
- Done.
- 1 rows affected.
- 11 rows affected.
- 1 rows affected.
- Done.
- 1 rows affected.
- 8 rows affected.
- 1 rows affected.
- Done.
- 1 rows affected.
- 2 rows affected.
- 1 rows affected.
- Done.
- 1 rows affected.
- 11 rows affected.
- 1 rows affected.
- Done.
- 1 rows affected.
- 5 rows affected.
- 1 rows affected.
- Done.
- 1 rows affected.
- 52 rows affected.
- 1 rows affected.
- 179 rows affected.

Silhouette analysis for KMeans clustering on sample data with n_clusters = 12

Silhouette analysis for KMeans clustering on sample data with n_clusters = 13

Silhouette analysis for KMeans clustering on sample data with n_clusters = 14

Silhouette analysis for KMeans clustering on sample data with n_clusters = 15

Silhouette analysis for KMeans clustering on sample data with n_clusters = 16

Silhouette analysis for KMeans clustering on sample data with n_clusters = 17

Silhouette analysis for KMeans clustering on sample data with n_clusters = 18

Profiles above show decision boundary to be overlapping and centroid=15 is not better than others really. We can aggregate the view to confirm (higher silh value is better):

```
In [100]: # get silhouette values for each k
k = %sql SELECT k FROM k_auto ORDER BY k;
silhouette = %sql SELECT silhouette FROM k_auto ORDER BY k;

#plot
plt.title('Silhouette method by k');
plt.xlabel('k');
plt.ylabel('Silhouette score');
plt.grid(True,);
plt.plot(k, silhouette, 'g.-');
plt.legend();
```

7 rows affected. 7 rows affected.

But the elbow method does show 15 to be the best number of centroids (bigger elbow value is better)

```
In [105]: # get elbow values for each k
elbow = %sql SELECT elbow FROM k_auto ORDER BY k;

#plot
plt.title('Elbow method by k');
plt.xlabel('k');
plt.ylabel('Score');
plt.grid(True,);
plt.plot(k, elbow, 'g.-');
plt.legend();
```

7 rows affected.

Feature Engineering

We tried several variations on the sampling theme but only 1 is show below: undersample classes with more than 1000 examples down to 1000, and sample the rest to 100. Other more complex schemes like stratified sampling did not seem to yield better results.

Extract classes with > 1000 examples:

```
In [9]: %%sql
          DROP TABLE IF EXISTS y;
          CREATE TABLE y AS SELECT y, (COUNT(*)>=1000) AS is top FROM public.train
          ing_data GROUP BY y;
         Done.
         23 rows affected.
Out[9]: []
In [10]: | %%sql DROP TABLE IF EXISTS training_data_top;
          CREATE TABLE training data top AS
              SELECT *
          FROM public.training data JOIN y USING(y) WHERE is top=TRUE;
          SELECT COUNT(*) FROM training_data_top
         4897009 rows affected.
         1 rows affected.
Out[10]:
            count
          4897009
```

Extract classes with < 1000 examples:

Undersample majority 9 classes to 1000 each:

```
In [12]: %%sql
          DROP TABLE IF EXISTS training data top sample2;
          SELECT madlib.balance_sample(
                                          'training data top',
                                                                              -- Sourc
          e table
                                          'training_data_top_sample2', -- Outpu
          t table
                                          'y',
                                                                -- Class column
                                          'uniform',
                                                                -- Uniform sample
                                           9000);
                                                                -- Desired output tab
          le size
          Done.
          1 rows affected.
Out[12]:
          balance_sample
In [13]: %sql SELECT y, COUNT(*) FROM training data top sample2 GROUP BY y;
          9 rows affected.
Out[13]:
               y count
          class06
                  1000
          class11
                  1000
          class15
                 1000
          class17
                  1000
          class01
                  1000
          class10
                 1000
          class18
                  1000
          class21
                  1000
                  1000
           normal
In [14]:
          %%sql
          DROP TABLE IF EXISTS training data bottom sample2;
          SELECT madlib.balance sample(
                                          'training data bottom',
                                                                                  -- So
          urce table
                                          'training data bottom sample2',
                                                                                  -- Ou
          tput table
                                          'у',
                                                                -- Class column
                                                                -- Uniform sample
                                           'uniform',
                                           1400);
                                                                -- Desired output tab
          le size
          Done.
          1 rows affected.
Out[14]:
```

localhost:8888/nbconvert/html/Technical/vmw_ml_fun_jan2021/network_anomaly_present_v1.ipynb?download=false

balance_sample

```
In [15]: %sql SELECT y, COUNT(*) FROM training_data_bottom_sample2 GROUP BY y;
14 rows affected.
```

```
Out[15]:
                   y count
             class03
                        100
             class05
                        100
             class07
                        100
             class09
                        100
             class12
                        100
             class14
                        100
             class16
                        100
             class02
                        100
             class04
                        100
             class08
                        100
             class13
                        100
                        100
             class19
             class20
                        100
             class22
                        100
```

Now UNION them and check results:

```
In [18]: | %sql SELECT y,count(*) FROM training_data_balanced2 GROUP BY y ORDER BY
            у;
           23 rows affected.
Out[18]:
                 y count
            class01
                    1000
            class02
                     100
            class03
                     100
                     100
            class04
            class05
                     100
            class06
                    1000
            class07
                     100
            class08
                     100
            class09
                     100
                    1000
            class10
            class11
                    1000
            class12
                     100
            class13
                     100
            class14
                     100
                    1000
            class15
            class16
                     100
            class17
                    1000
            class18
                    1000
            class19
                     100
            class20
                     100
                    1000
            class21
                     100
            class22
                    1000
            normal
           %sql ALTER TABLE training_data_balanced2 DROP COLUMN is_top;
In [19]:
           Done.
Out[19]: []
```

Create test/train split on 80/20 basis:

```
In [20]: %%sql
           DROP TABLE IF EXISTS balanced2 train, balanced2 test;
          SELECT madlib.train_test_split(
                                                'training_data_balanced2', -- Source
            table
                                                'balanced2',
                                                                           -- Output table
                                                0.8,
                                                            -- Sample proportion
                                               NULL,
                                                            -- Sample proportion
                                               NULL,
                                                            -- Strata definition
                                               NULL, -- Columns to output
FALSE, -- Sample without replacement
TRUE); -- Do not separate output tabl
                                                           -- Do not separate output tabl
           es
          SELECT y,COUNT(*) FROM balanced2_train GROUP BY y;
```

Done.

1 rows affected.

y count

23 rows affected.

Out[20]:

У	Count
class01	788
class03	83
class05	87
class07	83
class09	85
class10	801
class12	84
class14	83
class16	83
class18	821
class21	816
normal	804
class02	73
class04	85
class06	784
class08	85
class11	786
class13	74
class15	771
class17	820
class19	77
class20	75
class22	72

```
In [21]: %sql SELECT y,COUNT(*) FROM balanced2_test GROUP BY y;
            23 rows affected.
Out[21]:
                  y count
             class02
                        27
             class04
                        15
             class06
                       216
             class08
                        15
             class11
                       214
             class13
                        26
             class15
                       229
             class17
                       180
             class19
                        23
             class20
                        25
             class22
                        28
             class01
                       212
             class03
                        17
             class05
                        13
             class07
                        17
             class09
                        15
             class10
                       199
             class12
                        16
             class14
                        17
             class16
                        17
             class18
                       179
             class21
                       184
             normal
                       196
```

Train model with Random Forest

https://madlib.apache.org/docs/latest/group grp random forest.html (https://madlib.apache.org/docs/latest/group grp random forest.html)

```
In [23]: %sql ALTER TABLE balanced2_test DROP COLUMN __madlib_id__;
         Done.
Out[23]: []
In [24]:
         %%sql
         DROP TABLE IF EXISTS rf model2, rf model2 summary, rf model2 group;
         SELECT madlib.forest_train(
                      'balanced2_train', -- source table
                      'rf model2',
                                                 -- output table
                      'id',
                                                 -- unique row id
                      'у',
                                                 -- dependent var
                      '*',
                                                 -- indep var
                      null,
                                                 -- cols to exclude
                      null,
                                                 -- grouping
                      10::integer,
                                                 -- num trees
                      5::integer,
                                                 -- num random features
                      true::boolean,
                                                 -- importance
                                                -- num permutations
                      5::integer,
                      10::integer,
                                                -- max tree depth
                                                 -- min split
                      3::integer,
                                                -- min bucket
                      1::integer,
                                                 -- num splits
                      10::integer,
                                                 -- null handling
                      NULL,
                      TRUE
                                                 -- verbose
                  );
```

Done.

1 rows affected.

Out[24]: forest_train

10 rows affected.

Out[25]:	gid	sample_id
	1	1
	1	2
	1	3
	1	4
	1	5
	1	6
	1	7
	1	8
	1	9
	1	10

Variable Importance

Impurity importance:

	feature_name	impurity_feature_importance	oob_feature_importance
0	a4	1.597629	0.046803
1	a2	1.321560	0.034117
2	a23	0.968556	0.037731
3	a19	0.831987	0.033349
4	a17	0.741452	0.048955
5	a33	0.726509	0.044693
6	a40	0.679008	0.055408
7	a36	0.663073	0.014740
8	a35	0.648912	0.010236
9	a5	0.586486	0.038223

out of bag importance:

Score Validation/Training Data

https://madlib.apache.org/docs/latest/group_grp_random_forest.html (https://madlib.apache.org/docs/latest/group_grp_random_forest.html)

```
In [27]: # Evaluate validation dataset
         query = """
             SET search path=network anomaly run2, madlib;
             DROP TABLE IF EXISTS rf_model2_scored;
             SELECT madlib.forest_predict('rf_model2',
                                            'balanced2 test',
                                            'rf_model2_scored',
                                            'response');
             DROP TABLE IF EXISTS rf_model2_scored_tmp;
             CREATE TABLE rf model2 scored tmp AS
             SELECT *
             FROM rf model2 scored
             JOIN balanced2 test
             USING (id);
             DROP TABLE rf model2 scored;
             ALTER TABLE rf model2 scored tmp RENAME TO rf model2 scored;
             SELECT * FROM rf model2 scored LIMIT 10;
         0.00
         cur.execute(query)
```

```
In [ ]: # Evaluate training dataset
        query = """
            DROP TABLE IF EXISTS rf model4 scored;
            SELECT madlib.forest predict('rf model4',
                                           'balanced4 train',
                                           'rf model4 scored',
                                           'response');
            DROP TABLE IF EXISTS rf model4 scored tmp;
            CREATE TABLE rf model4 scored tmp AS
            SELECT *
            FROM rf model4 scored
            JOIN balanced4 train
            USING (id);
            DROP TABLE rf model4 scored;
            ALTER TABLE rf model4 scored tmp RENAME TO rf model4 scored;
            SELECT * FROM rf model4 scored LIMIT 10;
        cur.execute(query)
```

```
In [27]: # Evaluate on entire 4.9-million "training" dataset
         query = """
             DROP TABLE IF EXISTS rf_model2_scored;
             SELECT madlib.forest_predict('rf_model2',
                                            'public.training data',
                                            'rf model2 scored',
                                            'response');
             DROP TABLE IF EXISTS rf_model2_scored_tmp;
             CREATE TABLE rf model2 scored tmp AS
             SELECT *
             FROM rf_model2_scored
             JOIN public.training data
             USING (id);
             DROP TABLE rf_model2_scored;
             ALTER TABLE rf model2 scored tmp RENAME TO rf model2 scored;
             SELECT * FROM rf model2 scored LIMIT 10;
         0.00
         cur.execute(query)
```

```
In [31]: # Evaluate on 311K "eval" dataset
         query = """
             SET search path=network anomaly run2, madlib;
             DROP TABLE IF EXISTS rf_model2_scored;
             SELECT madlib.forest_predict('rf_model2',
                                            'public.eval data',
                                            'rf model2 scored',
                                            'response');
             DROP TABLE IF EXISTS rf model2 scored tmp;
             CREATE TABLE rf model2 scored tmp AS
             SELECT *
             FROM rf model2 scored
             JOIN public.eval data
             USING (id);
             DROP TABLE rf model2 scored;
             ALTER TABLE rf model2 scored tmp RENAME TO rf model2 scored;
             SELECT * FROM rf model2 scored LIMIT 10;
         0.00
         cur.execute(query)
```

In [36]: %config SqlMagic.autopandas=True

```
In [34]: %%sql
select * from rf_model2_scored order by id limit 10;
```

10 rows affected.

Out[34]:

	id	estimated_y	a1	a2	а3	a4	а5	a6	а7	a8	а9	a10	a11	a12	a13
0	0	class18	ICMP	ECR_I	STAT10	1032.0	0.0	0	0	0	0	0	0	0.0	0.0
1	1	normal	TCP	HTTP	STAT10	280.0	3413.0	0	0	0	0	1	0	0.0	0.0
2	2	normal	TCP	HTTP	STAT10	218.0	1493.0	0	0	0	0	1	0	0.0	0.0
3	3	class18	ICMP	ECR_I	STAT10	520.0	0.0	0	0	0	0	0	0	0.0	0.0
4	4	class18	ICMP	ECR_I	STAT10	1032.0	0.0	0	0	0	0	0	0	0.0	0.0
5	5	class18	ICMP	ECR_I	STAT10	1032.0	0.0	0	0	0	0	0	0	0.0	0.0
6	6	normal	UDP	PRIVATE	STAT10	42.0	0.0	0	0	0	0	0	0	0.0	0.0
7	7	normal	TCP	HTTP	STAT10	305.0	1846.0	0	0	0	0	1	0	0.0	0.4
8	8	class18	ICMP	ECR_I	STAT10	1032.0	0.0	0	0	0	0	0	0	0.0	0.0
9	9	class18	ICMP	ECR_I	STAT10	520.0	0.0	0	0	0	0	0	0	0.0	0.0

```
In [ ]: %%sql
    SET search_path=network_anomaly_run2, madlib;
```

Confusion matrix:

In [30]: %%**sql**

%%sql
DROP TABLE IF EXISTS confusion;
SELECT madlib.confusion_matrix('rf_model2_scored', 'confusion', 'estima
ted_y', 'y');
SELECT * FROM confusion ORDER BY "class";

Done.

1 rows affected.

23 rows affected.

Out[30]:

	row_id	class	confusion_arr
0	1	class01	[2202, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1	2	class02	[0, 25, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
2	3	class03	[0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3	4	class04	[0, 0, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
4	5	class05	[0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
5	6	class06	[0, 0, 0, 0, 0, 12447, 0, 0, 0, 0, 0, 0, 0, 7, 1, 5, 0, 0, 0, 0, 21]
6	7	class07	[0, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
7	8	class08	[0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,
8	9	class09	[0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,2,0]
9	10	class10	[0,0,0,0,108,0,108,0,0,1060156,11,0,0,0,11247,0,256,0,1,0,0,0,130]
10	11	class11	[0,0,0,0,832,0,0,0,5,1476,0,0,0,0,0,0,0,0,0,0,0]
11	12	class12	[0,0,0,0,0,0,0,0,0,0,0,0,0,0
12	13	class13	[0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0]
13	14	class14	[0,0,0,0,0,5,0,0,0,0,0,0,259,0,0,0,0,0,0,0,0]
14	15	class15	[1, 0, 0, 0, 0, 6, 4, 0, 0, 3, 1, 1, 0, 0, 10352, 0, 38, 0, 0, 0, 0, 0, 7]
15	16	class16	[0,0,1,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,1]
16	17	class17	[0, 0, 1, 0, 0, 10, 0, 1, 0, 19, 10, 0, 0, 0, 38, 0, 15749, 0, 0, 0, 3, 0, 61]
17	18	class18	[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 2807744, 0, 0, 0, 0, 135]
18	19	class19	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
19	20	class20	[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 977, 0, 0, 0]
20	21	class21	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
21	22	class22	[0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,18,0]
22	23	normal	[399, 221, 527, 227, 134, 4090, 189, 729, 37, 29, 12428, 222, 151, 6, 89, 330, 631, 4, 210, 336, 16682, 0, 935110]

In [28]: | %%sql DROP TABLE IF EXISTS accuracy_by_class; CREATE TABLE accuracy by class AS

SELECT y,correct, total,correct::FLOAT/total as accuracy

FROM (SELECT y, COUNT(*) AS correct FROM rf_model2_scored WHERE y=estima ted y GROUP BY y) c JOIN

(SELECT y,count(*) AS total FROM rf_model2_scored GROUP BY y) t USI NG(y);

SELECT * FROM accuracy by class ORDER BY y;

Done.

- 23 rows affected.
- 23 rows affected.

Out[28]:

accuracy	total	correct	У
1.0	212	212	class01
0.740740740741	27	20	class02
0.411764705882	17	7	class03
1.0	15	15	class04
0.846153846154	13	11	class05
0.976851851852	216	211	class06
1.0	17	17	class07
1.0	15	15	class08
0.0666666666667	15	1	class09
0.964824120603	199	192	class10
0.995327102804	214	213	class11
1.0	16	16	class12
1.0	26	26	class13
1.0	17	17	class14
0.995633187773	229	228	class15
0.823529411765	17	14	class16
0.983333333333	180	177	class17
1.0	179	179	class18
1.0	23	23	class19
0.96	25	24	class20
1.0	184	184	class21
0.964285714286	28	27	class22
0.979591836735	196	192	normal

This is overfitting ^^^ likely

CSV output for submission

```
In [37]: eval_result = %sql select id as "ID", estimated_y as "ANOMALY" from rf m
          odel2 scored order by ID;
          311030 rows affected.
          eval result[:5]
In [38]:
Out[38]:
             ID ANOMALY
                   class18
           0
              0
           1
                   normal
              2
                   normal
                   class18
           3
              3
                   class18
```

Write out eval dataset results to CSV to submit:

```
In [39]: eval_result.to_csv("/Users/fmcquillan/Downloads/eval_result_run2.csv")
```

Done for now!