# 12. FLOW OVER SUBMERGED BOD

When a fluid flows and passes the submerged body with a relative velocity  $(U_{\infty})$ , every differential surface area experiences a pair of forces due to





- - a. Drag Force: Along the axis of  $U_{\infty}$
  - b. Lift Force: Perpendicular to the direction of  $U_{\infty}$

 $dF_D = \tau_0 dA \cos \theta + P dA \sin \theta$  |  $\tau_0 dA \cos \theta$  = Shear or Friction Drag  $PdA \sin \theta = Pressure Drag$ 

| CLASSIFICATION OF BODY                                 |                                                         |  |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| STREAMLINE BODY                                        | BLUFF BODY                                              |  |  |  |  |
| A body whose surface coincides with the streamlines of | A body Which obstructs the streamlines of flow is       |  |  |  |  |
| flow.                                                  | known as bluff or blunt body.                           |  |  |  |  |
| Pressure Drag is very low & total drag is also less.   | Relatively Higher Pressure Drag & Total Drag is high.   |  |  |  |  |
| Boundary layer separation is low. Hence, lesser eddies | Boundary layer separation is high. Hence, Higher eddies |  |  |  |  |
| and subsequent losses.                                 | and subsequent losses.                                  |  |  |  |  |
| E.g. Fishes Shape, Aerofoil, Hydrofoils, etc           | E.g. Cylinders, etc                                     |  |  |  |  |

#### **DRAG FORCE:**

| $F_D = C_D A_{ch} \frac{1}{2} \rho U_\infty^2$ | $C_D$ =Coefficinet of Drag= $f(Re, Geometry, Ma (For compressible flow))$<br>$A_{ch}$ = Characteristic area |                                          |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| $A_{ch} = A_{Proj}(For B$                      | llunt Body)                                                                                                 | $A_{ch} = A_{Plan}(For Streamline Body)$ |  |

# **POWER LOST DUE TO DRAG:** $P_D = F_D U_{\infty}$

 $F_D$  mostly acting in the direction opposite to desired motion of the body.

### LIFT FORCE:

| $F_L = C_L A_{Plan} \frac{1}{2} \rho U_{\infty}^2$ | $C_D$ =Coefficinet of Lift= $f(Re, Geometry, Ma (For compressible flow))$<br>$A_{Plan}$ = Plan area |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                    |                                                                                                     |

**Note:** If effective area is mentioned, then replace  $A_{Plan} \& A_{Proj}$  With  $A_{eff}$ .

## **DRAG ON SPHERES:**

- 1. Pressure Drag/Shear Drag = 0.5
- If  $Re \leq 1$ , the flow is known as **Stokes Flow**. And Stokes Law is valid.
- Q. Obtain Terminal Velocity of a sphere falling(down) under gravity in a dense and viscous fluid. Assume stokes law is valid.

At equilibrium Condition,  $W = F_B + F_D \Rightarrow U_\infty = (\gamma_b - \gamma_f)D^2/(18\mu)$ 

**STOKES LAW:**  $F_D = 3\pi\mu DU_{\infty}$ For Stokes Law,  $C_D = 24/Re$ 

 $A_{ch} = \pi D^2 / 4 \& Re \le 1$ 

TERMINAL VELOCITY:

The constant Velocity obtained by a body when it reaches equilibrium.

#### **DRAGS ON CYLINDERS:**

When the  $Re \ge 45$ , The vortices in the region of wake become highly unstable loading to shading of vortices. This phenomenon is referred as "Karman Vortex Trails" (Shown in fig.).



Frequency of vortex Shading= n

Strouhal Number =  $\frac{nD}{U_{m}}$  = 0.198 (1 -

If the Frequency of vortex shading matches with the natural frequency of cylinder, then resonance takes place. Due to resonance a sound is developed & it's known as singing of wires.

MAGNUS EFFECT: The lifting effect generated on rotating body when it's placed in a stream of flow. E.g. Lifting of table tennis ball When given a spin, etc...

## LIFT ON CYLINDER:

| $F_L = \rho U_{\infty} \Gamma L = 2\pi R \rho U_{\infty} V_T L$ | $\rho$ =Density of Fluid                    |
|-----------------------------------------------------------------|---------------------------------------------|
| $U_{\infty}$ = Free Stream Velocity of Fluid                    | $\Gamma = \text{Circulation} = V_T(2\pi R)$ |
| relative to the body                                            | L = Length of the Cylinder                  |

- 1.  $C_L$ on Cylinder Experiencing Magnus Effect =  $2\pi V_T/U_{\infty}$
- 2. Velocity on a cylinder Experiencing magnus Effect:  $V_A = V_T + 2U_\infty \sin \theta$  If  $V_A < 2U_\infty \Rightarrow C_L < 4\pi(2 St. Pt)$  Condition for a single stagnation point,  $V_A = 0 \& \theta = -90^\circ \Rightarrow C_L = 4\pi$  If  $V_A = 2U_\infty \Rightarrow C_L = 4\pi(1 St. Pt)$



| <b>AEROFOILS:</b> | Stall | Condition: | α | > | $\alpha_{@maxLif}$ | t |
|-------------------|-------|------------|---|---|--------------------|---|
|-------------------|-------|------------|---|---|--------------------|---|

|                            |                      | C III CONTE |           |
|----------------------------|----------------------|-------------|-----------|
| Area = $LC$                | Aspect Ratio = $L/C$ | L = Span    | C = Chord |
| $\alpha$ = Angle of Attack |                      |             |           |

At stall Condition, 1) BL Separation take place, 2)  $C_D$  drastically increases Circulation around an aerofoil,  $\mathbf{\Gamma} = \boldsymbol{\pi} \boldsymbol{C} \, \boldsymbol{U}_{\infty} \sin \alpha$  Lift Force on aerofoil,  $\boldsymbol{F}_L = \boldsymbol{\rho} \boldsymbol{U}_{\infty} \boldsymbol{\Gamma} \boldsymbol{L} = \pi \sin \alpha \, C L \boldsymbol{\rho} U_{\infty}^2$  For Aerofoil,  $C_L = 2\pi \sin \alpha$ 



# **UNDER STEADY LIFT OF AEROPLANE:**

In the Steady State Condition,

$$\sum \overrightarrow{F} = 0$$

 $\sum_{\overrightarrow{F}} \overrightarrow{F} = 0$  Forces Acting/Developed in the Aeroplane,

| $F_D = $ Drag Force | $F_L$ = Lift Force |
|---------------------|--------------------|
|                     |                    |

W = Weight of The Aeroplane  $F_T = \text{Thrust Developed by Aeroplane}$ Power Required to overcome Drag,  $P_D = F_D U_\infty$ 

