

EXPLORATORY DATA ANALYSIS FOR A NEW MOTION PICTURE STUDIO

TEAM:

- 1. Stanley Macharia
- 2. Lionel Ajeliti
- 3. Linet Awino
- 4. Stephen Munyiala
- 5. Sharon Mumanyi
- 6. Justin Mbugua

Introduction

Exploratory Data Analysis (EDA) is important for emerging studios into the ever-changing landscape of the entertainment business when it comes to what works at the boxoffice. This project performs exploratory data analysis on historical film data, looking for patterns that tie to the financial results of the film. Popular Genre, Release Timing, Budget Allocation, and Consumer Reception analysis will

help to obtain actionable insights for a nascent movie studio's content planning. The studio can make data-informed production decisions according to the market and future pattern which align so that the

Project Overview

Business Problem

Your company now sees all the big companies creating original video content and they want to get in on the fun. They have decided to create a new movie studio, but they don't know anything about creating movies. You are charged with exploring what types of films are currently doing the best at the box office. You must then translate those findings into actionable insights that the head of your company's new movie studio can use to help decide what type of films to create.

Business Understanding

The company is venturing into the interesting global of filmmaking with the release of a new movie studio. However, getting into the film industry with out prior revel in comes with its demanding situations. To ensure the studio starts strong, our role as data analysts is to dive deep into the dynamics of the film industry. By knowledge what drives container office achievement, we are able to offer actionable insights to assist form the studio's content advent and manufacturing strategies.

To do this, we'll discover key questions about the enterprise:

- 1. How many movies are released each year/month?
- 2. Which genre is most successful at the box office?
- 3. Which production budget range yield the most profitable movies?

Data Understanding

For the exploratory analysis, we will make use of data collected from the following sources:

Box Office(https://www.boxofficemojo.com/ (https://www.boxofficemojo.com/))

IMDB(https://www.imdb.com/ (https://www.imdb.com/))

Rotten Tomatoes(https://www.rottentomatoes.com/) (https://www.rottentomatoes.com/))

TheMovieDB(https://www.themoviedb.org/ (https://www.themoviedb.org/))

The Numbers (https://www.the-numbers.com/ (https://www.the-numbers.com/))

Data Cleaning and Preparation

```
In [94]:  | #Import the necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sqlite3
import seaborn as sns
%matplotlib inline
```

IMDB database

Creating a connection where we will be able to view and analyze what is in the database

```
In [95]:
          ▶ #Loading imdb database
            conn = sqlite3.connect('zippedData/im.db')
            movie_basics = pd.read_sql_query("SELECT * FROM movie_basics", conn)
            movie_ratings = pd.read_sql_query("SELECT * FROM movie_ratings", conn)
In [96]:
          ▶ # Check for missing values in each DataFrame
            print("Movie Basics Missing Values:\n", movie_basics.isnull().sum())
            print("\nMovie Ratings Missing Values:\n", movie_ratings.isnull().sum())
            Movie Basics Missing Values:
             movie id
                                  0
            primary_title
                                 21
            original_title
            start year
                                   0
            runtime_minutes
                               31739
                                5408
            genres
            dtype: int64
            Movie Ratings Missing Values:
             movie id
            averagerating
                             0
            numvotes
                             a
            dtype: int64
In [97]:
        # Drop rows with missing 'genres' in movie_basics
            movie_basics.dropna(subset=['genres'], inplace=True)
            movie ratings.dropna(inplace=True)
In [98]:
          ▶ #Fill the missing values in runtime minutes with its mode
            mode_runtime = movie_basics['runtime_minutes'].mode()[0]
            movie_basics['runtime_minutes'].fillna(mode_runtime, inplace=True)
          In [99]:
            movie_basics['runtime_minutes'] = pd.to_numeric(movie_basics['runtime_minutes']
```

```
# Use inner join to keep only matching rows
In [100]:
                 movie_data = pd.merge(movie_basics, movie_ratings, on='movie_id', how='inner')
                 movie_data
    Out[100]:
                         movie_id primary_title original_title start_year runtime_minutes
                                                                                                        genre
                        tt0063540
                                      Sunghursh
                                                   Sunghursh
                                                                   2013
                                                                                    175.0
                                                                                              Action, Crime, Dram
                                       One Day
                                      Before the
                                                 Ashad Ka Ek
                         tt0066787
                                                                   2019
                                                                                    114.0
                                                                                                Biography, Dram
                                          Rainy
                                                         Din
                                        Season
                                      The Other
                                                   The Other
                         tt0069049
                                                   Side of the
                                                                   2018
                                                                                    122.0
                                      Side of the
                                                                                                         Dram
                                                        Wind
                                          Wind
                                     Sabse Bada
                                                  Sabse Bada
                        tt0069204
                                                                   2018
                                                                                    90.0
                                                                                                  Comedy, Dram
                                          Sukh
                                                        Sukh
                                           The
                                                          lα
                         tt0100275
                                      Wandering
                                                   Telenovela
                                                                   2017
                                                                                    80.0 Comedy, Drama, Fantas
                                     Soap Opera
                                                      Errante
```

Here we will be able to see which genre has the most shows produced and also we will check the top 10 rate movies and from which genre they are from.

```
In [101]: # Analyze genre distribution
    genre_counts = movie_basics['genres'].str.split(',', expand=True).stack().value
    print("\nGenre Counts:\n", genre_counts)
```

```
Genre Counts:
 Documentary
                 51640
Drama
                49883
Comedy
                25312
Thriller
                11883
Horror
                10805
Action
                10335
                 9372
Romance
                 8722
Biography
Crime
                 6753
Adventure
                 6465
Family
                 6227
History
                 6225
                 4659
Mystery
Music
                 4314
Fantasy
                 3516
Sci-Fi
                 3365
Animation
                 2799
Sport
                 2234
News
                 1551
Musical
                 1430
War
                 1405
Western
                  467
Reality-TV
                   98
Talk-Show
                   50
Adult
                   25
Short
                   11
Game-Show
dtype: int64
```

Out[102]:

	primary_title	genres	averagerating	numvotes
0	Exteriores: Mulheres Brasileiras na Diplomacia	Documentary	10.0	5
1	The Dark Knight: The Ballad of the N Word	Comedy,Drama	10.0	5
2	Freeing Bernie Baran	Crime,Documentary	10.0	5
3	Hercule contre Hermès	Documentary	10.0	5
4	l Was Born Yesterday!	Documentary	10.0	6
5	Dog Days in the Heartland	Drama	10.0	5
6	Revolution Food	Documentary	10.0	8
7	Fly High: Story of the Disc Dog	Documentary	10.0	7
8	All Around Us	Documentary	10.0	6
9	The Paternal Bond: Barbary Macaques	Documentary	10.0	5

From the output above we can see that Documentaries are dominating the top 10 movies table. This shows that people enjoy watching documentaries more.

```
In [103]: # Acquire writers name from writer and persons table

writers_query = """
SELECT writers.movie_id, persons.primary_name AS writers_names
FROM writers
JOIN persons ON writers.person_id = persons.person_id;
"""

writers_df = pd.read_sql(writers_query, conn)
writers_df
```

Out[103]:

	movie_id	writers_names
0	tt0285252	Tony Vitale
1	tt0438973	Steve Conrad
2	tt0438973	Sean Sorensen
3	tt0462036	Bill Haley
4	tt0835418	Peter Gaulke
255866	tt8999892	Bradley T. Castle
255867	tt8999974	Daysi Burbano
255868	tt9001390	Bernard Lessa
255869	tt9004986	Fredrik Horn Akselsen
255870	tt9010172	Vibol S. Sungkriem

In [104]: ► conn.close()

A. Loading Data

At this section we will load all the datasets from various trusted sources; clean to make it make sense then do some exploration for the next section after this which will be data analysis.

1. Movie Info tsv file

(1560, 12)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1560 entries, 0 to 1559
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	id	1560 non-null	int64
1	synopsis	1498 non-null	object
2	rating	1557 non-null	object
3	genre	1552 non-null	object
4	director	1361 non-null	object
5	writer	1111 non-null	object
6	theater_date	1201 non-null	object
7	dvd_date	1201 non-null	object
8	currency	340 non-null	object
9	box_office	340 non-null	object
10	runtime	1530 non-null	object
11	studio	494 non-null	object
dtype	es: int64(1),	object(11)	

memory usage: 146.4+ KB

None

Out[105]:

	id	synopsis	rating	genre	director	writer	theater_date	dvc
0	1	This gritty, fast-paced, and innovative police	R	Action and Adventure Classics Drama	William Friedkin	Ernest Tidyman	Oct 9, 1971	s
1	3	New York City, not- too-distant- future: Eric Pa	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	
2	5	Illeana Douglas delivers a superb performance	R	Drama Musical and Performing Arts	Allison Anders	Allison Anders	Sep 13, 1996	1
3	6	Michael Douglas runs afoul of a treacherous su	R	Drama Mystery and Suspense	Barry Levinson	Paul Attanasio Michael Crichton	Dec 9, 1994	А
4	7	NaN	NR	Drama Romance	Rodney Bennett	Giles Cooper	NaN	
4								

2. Reviews tsv file

```
▶ | reviews_df = pd.read_csv('./zippedData/rt.reviews.tsv', sep='\t', header=0, enc

In [106]:
              print(reviews_df.shape)
              print(reviews df.info())
              reviews_df.head()
              (54432, 8)
              <class 'pandas.core.frame.DataFrame'>
              RangeIndex: 54432 entries, 0 to 54431
              Data columns (total 8 columns):
                               Non-Null Count Dtype
                   Column
                   _____
                               _____
              ---
                                               ____
                               54432 non-null int64
               0
                   id
               1
                   review
                               48869 non-null object
               2
                   rating
                               40915 non-null object
               3
                   fresh
                               54432 non-null object
               4
                   critic
                               51710 non-null object
                   top_critic 54432 non-null int64
               5
               6
                               54123 non-null object
                   publisher
                   date
                               54432 non-null object
              dtypes: int64(2), object(6)
              memory usage: 3.3+ MB
              None
   Out[106]:
                 Ы
                                 review rating fresh
                                                       critic top critic
                                                                       publisher
                                                                                      date
In [107]:
           ▶ reviews df["rating"]
   Out[107]: 0
                         3/5
              1
                         NaN
              2
                         NaN
              3
                         NaN
                         NaN
              54427
                         NaN
              54428
                         1/5
              54429
                         2/5
              54430
                       2.5/5
              54431
                         3/5
              Name: rating, Length: 54432, dtype: object
In [108]:
           #Filling in the missing values
              #filling missing reviews with "No review available" to distinguish them from ac
              reviews_df['review'].fillna("No review available", inplace=True)
              #Extract valid numeric ratings in the form "x/y"
              numeric_ratings = reviews_df['rating'].str.extract(r'(\d+(\.\d+)?)/\d+').astype
              #Assign numeric values back to `rating` and fill missing values with the median
              reviews_df['rating'] = numeric_ratings[0]
              reviews_df['rating'].fillna(reviews_df['rating'].median(), inplace=True)
```

```
▶ reviews_df["rating"]
In [109]:
   Out[109]: 0
                        3.0
               1
                        3.0
                        3.0
               3
                        3.0
               4
                        3.0
               54427
                        3.0
               54428
                        1.0
               54429
                        2.0
               54430
                        2.5
               54431
                        3.0
               Name: rating, Length: 54432, dtype: float64
```

3. Movie Budgets tsv file

```
movie budget df = pd.read csv('./zippedData/tn.movie budgets.csv')
In [110]:
               print(movie_budget_df.shape)
               print(movie_budget_df.info())
               movie_budget_df.head()
                     id
                0
                                          5782 non-null
                                                            int64
                1
                     release_date
                                          5782 non-null
                                                            object
                2
                     movie
                                          5782 non-null
                                                            object
                     production_budget 5782 non-null
                3
                                                            object
                4
                     domestic gross
                                          5782 non-null
                                                            object
                5
                     worldwide_gross
                                          5782 non-null
                                                            object
               dtypes: int64(1), object(5)
               memory usage: 271.2+ KB
               None
    Out[110]:
                   id
                      release_date
                                                   production_budget domestic_gross worldwide_gross
                                            movie
                                                        $425,000,000
                      Dec 18, 2009
                                            Avatar
                                                                       $760,507,625
                                                                                      $2,776,345,279
                                       Pirates of the
                      May 20, 2011
                                                        $410,600,000
                                                                       $241,063,875
                                                                                      $1,045,663,875
                   2
                                      Caribbean: On
                                      Stranger Tides
```

\$350,000,000

\$330,600,000

\$42,762,350

\$459,005,868

Dark Phoenix

Avengers: Age of

3

2

3

Jun 7, 2019

May 1, 2015

\$149,762,350

\$1,403,013,963

Out[111]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
count	5782.000000	5782	5782	5782	5782	5782
unique	NaN	2418	5698	509	5164	5356
top	NaN	Dec 31, 2014	King Kong	\$20,000,000	\$0	\$0
freq	NaN	24	3	231	548	367
mean	50.372363	NaN	NaN	NaN	NaN	NaN
std	28.821076	NaN	NaN	NaN	NaN	NaN
min	1.000000	NaN	NaN	NaN	NaN	NaN
25%	25.000000	NaN	NaN	NaN	NaN	NaN
50%	50.000000	NaN	NaN	NaN	NaN	NaN
75%	75.000000	NaN	NaN	NaN	NaN	NaN
max	100.000000	NaN	NaN	NaN	NaN	NaN

Out[163]:

	id	release_date	title	production_budget	domestic_gross	worldwide_gross	release_yeaı
0	1	2009-12-18	Avatar	425000000.0	760507625.0	2.776345e+09	2009
1	2	2011-05-20	Pirates of the Caribbean: On Stranger Tides	410600000.0	241063875.0	1.045664e+09	2011
2	3	2019-06-07	Dark Phoenix	350000000.0	42762350.0	1.497624e+08	2019
3	4	2015-05-01	Avengers: Age of Ultron	330600000.0	459005868.0	1.403014e+09	2015
4	5	2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000.0	620181382.0	1.316722e+09	2017
4							•

In [116]: ▶ #movie_budget_df['Total_Earnings']=movie_budget_df['Total_Earnings'].str.replac


```
Non-Null Count Dtype
                       -----
---
0
    id
                       5782 non-null
                                       int64
1
    release_date
                       5782 non-null
                                       datetime64[ns]
2
    title
                       5782 non-null
                                       object
                                       float64
3
    production_budget 5782 non-null
4
    domestic gross
                       5782 non-null
                                       float64
5
                                       float64
    worldwide_gross
                       5782 non-null
                       5782 non-null
6
    release_year
                                       int64
7
                       5782 non-null
    release_month
                                       int64
                       5782 non-null
                                       float64
8
    Total_Earnings
                       5782 non-null
9
    net_income
                                       float64
10 PB_ranges
                       5782 non-null
                                       object
11 profitable
                       5782 non-null
                                       object
dtypes: datetime64[ns](1), float64(5), int64(3), object(3)
```

memory usage: 542.2+ KB

4. TMBD csv file

```
In [118]:
             M | df_popularity = pd.read_csv('./zippedData/tmdb.movies.csv')
                print(df_popularity.shape)
                print(df popularity.info())
                df_popularity.head()
                 8
                      vote_average
                                            26517 non-null
                                                              float64
                      vote_count
                                            26517 non-null
                                                              int64
                dtypes: float64(2), int64(3), object(5)
                memory usage: 2.0+ MB
                None
    Out[118]:
                    Unnamed:
                                            id original_language original_title popularity release_date
                              genre_ids
                                                                  Harry Potter
                                                                                                       F
                                                                      and the
                                 [12, 14,
                                                                                                      an
                 0
                            0
                                         12444
                                                                      Deathly
                                                                                 33.533
                                                                                          2010-11-19
                                  10751]
                                                                                                      De
                                                                 Hallows: Part
                                                                                                     Hall
                                                                                                       F
                                                                                                      Н
                                                                  How to Train
                                 [14, 12,
                                         10191
                                                                                 28.734
                                                                                          2010-03-26
                               16, 10751]
                                                                  Your Dragon
                                                                                                      Dr
```

5. Movie Gross csv file

```
In [119]:
               movie gross df = pd.read csv('./zippedData/bom.movie gross.csv')
               print(movie gross df.shape)
               print(movie_gross_df.info())
               movie_gross_df.head()
               (3387, 5)
               <class 'pandas.core.frame.DataFrame'>
               RangeIndex: 3387 entries, 0 to 3386
               Data columns (total 5 columns):
                #
                    Column
                                     Non-Null Count
                                                      Dtype
                0
                    title
                                     3387 non-null
                                                      object
                1
                    studio
                                     3382 non-null
                                                      object
                2
                    domestic_gross 3359 non-null
                                                      float64
                3
                    foreign_gross
                                     2037 non-null
                                                      object
                                     3387 non-null
                                                      int64
                    year
               dtypes: float64(1), int64(1), object(3)
               memory usage: 132.4+ KB
               None
   Out[119]:
                                                title studio domestic gross foreign gross
                                                                                      year
                0
                                          Toy Story 3
                                                       BV
                                                              415000000.0
                                                                            652000000
                                                                                      2010
                              Alice in Wonderland (2010)
                                                       R\/
                                                              334200000 0
                                                                            601300000 2010
```

Data Analysis

B. Merging Datasets

In this section we will merge the datasets that can be connected together by a similer id or field that they both share. This will help in Exloratory Data Analysis(EDA) where we will be able to come up with comprehensive findings.

We are going to merge **review_df** and **movie_info_df** on the id column since they share a common column and are from the same source. Rotten Tomatoes

1. review and movie_info

2. movie_basics and movie_ratings

In [121]: # Merge movie_basics and movie_ratings on 'movie_id'
#Both share primary and foreign keys
imdb_data = pd.merge(movie_basics, movie_ratings, on='movie_id', how='left')
imdb_data

Out[121]:

	movie_id	primary_title	original_title	start_year	runtime_minutes	genres
0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime,Drama
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography,Drama
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	90.0	Comedy,Drama
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy,Drama,Fantasy
140731	tt9916428	The Secret of China	The Secret of China	2019	90.0	Adventure,History,War
140732	tt9916538	Kuambil Lagi Hatiku	Kuambil Lagi Hatiku	2019	123.0	Drama
140733	tt9916622	Rodolpho Teóphilo - O Legado de um Pioneiro	Rodolpho Teóphilo - O Legado de um Pioneiro	2015	90.0	Documentary
140734	tt9916706	Dankyavar Danka	Dankyavar Danka	2013	90.0	Comedy
140735	tt9916754	Chico Albuquerque - Revelações	Chico Albuquerque - Revelações	2013	90.0	Documentary
140736	rows × 8 co	olumns				
4						

3. imdb_data and df_popularity

In [122]:

Merge 'imdb_data' and 'df_popularity' DataFrames on the 'original_title' coluimdb_tmdb = pd.merge(imdb_data, df_popularity, on='original_title', how = 'inne imdb_tmdb

Out[122]:

	movie_id	primary_title	original_title	start_year	runtime_minutes	genres
0	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama
1	tt0112502	Bigfoot	Bigfoot	2017	90.0	Horror,Thriller
2	tt4503112	Bigfoot	Bigfoot	2018	90.0	Action,Horror
3	tt9181914	Bigfoot	Bigfoot	2018	86.0	Animation,Family
4	tt0249516	Foodfight!	Foodfight!	2012	91.0	Action,Animation,Comedy
20774	tt9678886	Vacancy	Vacancy	2018	81.0	Documentary
20775	tt9777830	John Leguizamo's Latin History for Morons	John Leguizamo's Latin History for Morons	2018	90.0	Comedy
20776	tt9814730	The Flare	The Flare	2017	63.0	Sport
20777	tt9862978	Terra	Terra	2018	60.0	Documentary
20778	tt9869514	Wake Up Call	Wake Up Call	2017	90.0	Action
20779 r	rows × 17 o	columns				
4						

In [123]:	-		mdb['avg_		_	ng and vote_d 'averageratin	_	Lumns b_tmdb['vote_avera
		3	tt9181914	Bigfoot	Bigfoot	2018	86.0	Animation,Fan
		4	tt0249516	Foodfight!	Foodfight!	2012	91.0	Action,Animation,Come
		20774	tt9678886	Vacancy	Vacancy	2018	81.0	Document
		20775	tt9777830	John Leguizamo's Latin History for Morons	John Leguizamo's Latin History for Morons	2018	90.0	Come
		20776	tt9814730	The Flare	The Flare	2017	63.0	Sp
		20777	tt9862978	Terra	Terra	2018	60.0	Document
		20778	tt9869514	Wake Up Call	Wake Up Call	2017	90.0	Act
		20779	rows × 18 c	columns				

Out[124]:

	movie_id	primary_title	original_title	start_year	runtime_minutes	genres				
0	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama				
1	tt0112502	Bigfoot	Bigfoot	2017	90.0	Horror, Thriller				
2	tt4503112	Bigfoot	Bigfoot	2018	90.0	Action, Horror				
3	tt9181914	Bigfoot	Bigfoot	2018	86.0	Animation,Family				
4	tt0249516	Foodfight!	Foodfight!	2012	91.0	Action,Animation,Comedy				
20774	tt9678886	Vacancy	Vacancy	2018	81.0	Documentary				
20775	tt9777830	John Leguizamo's Latin History for Morons	John Leguizamo's Latin History for Morons	2018	90.0	Comedy				
20776	tt9814730	The Flare	The Flare	2017	63.0	Sport				
20777	tt9862978	Terra	Terra	2018	60.0	Documentary				
20778	tt9869514	Wake Up Call	Wake Up Call	2017	90.0	Action				
20779	20779 rows × 20 columns									

4. movie_budget_df and movie_gross_df

merged_data_df = pd.merge(movie_budget_df,movie_gross_df, on= 'title', how = 'l
merged_data_df

Out[125]:

	id	release_date	title	production_budget	domestic_gross_x	worldwide_gross	releas
0	1	2009-12-18	Avatar	425000000.0	760507625.0	2.776345e+09	
1	2	2011-05-20	Pirates of the Caribbean: On Stranger Tides	410600000.0	241063875.0	1.045664e+09	
2	3	2019-06-07	Dark Phoenix	350000000.0	42762350.0	1.497624e+08	
3	4	2015-05-01	Avengers: Age of Ultron	330600000.0	459005868.0	1.403014e+09	
4	5	2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000.0	620181382.0	1.316722e+09	
5777	78	2018-12-31	Red 11	7000.0	0.0	0.000000e+00	
5778	79	1999-04-02	Following	6000.0	48482.0	2.404950e+05	
5779	80	2005-07-13	Return to the Land of Wonders	5000.0	1338.0	1.338000e+03	
5780	81	2015-09-29	A Plague So Pleasant	1400.0	0.0	0.000000e+00	
5781	82	2005-08-05	My Date With Drew	1100.0	181041.0	1.810410e+05	
5782	rows	× 13 columns	3				
4							

```
▶ #Calculate sum of missing values
In [126]:
              merged_data_df.isna().sum()
   Out[126]: id
              release_date
                                      0
              title
                                      0
              production_budget
                                      0
              domestic_gross_x
                                      0
              worldwide_gross
                                      0
                                      0
              release_year
              release_month
                                      0
              Total_Earnings
                                      0
              studio
                                   4536
              domestic_gross_y
                                   4537
              foreign_gross
                                   4696
              year
                                   4535
              dtype: int64
In [127]:
           ▶ #Remove rows with missing values from the merged datasets
              merged_data_df.dropna(inplace=True)
           merged_data_df.duplicated().sum()
In [128]:
   Out[128]: 0
```

5. movie_gross_df and imdb_data

In [129]: # Merge imdb output to the movie_gross_df
merged_data = pd.merge(movie_gross_df, imdb_data, left_on='title', right_on='pr
merged_data

Out[129]:

	title	studio	domestic_gross	foreign_gross	year	movie_id	primary_title	origina
0	Toy Story 3	BV	415000000.0	652000000	2010	tt0435761	Toy Story 3	Toy
1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010	NaN	NaN	
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010	NaN	NaN	
3	Inception	WB	292600000.0	535700000	2010	tt1375666	Inception	Inc
4	Shrek Forever After	P/DW	238700000.0	513900000	2010	tt0892791	Shrek Forever After	Foreve
4102	The Quake	Magn.	6200.0	NaN	2018	tt6523720	The Quake	٤
4103	Edward II (2018 re- release)	FM	4800.0	NaN	2018	NaN	NaN	
4104	El Pacto	Sony	2500.0	NaN	2018	NaN	NaN	
4105	The Swan	Synergetic	2400.0	NaN	2018	NaN	NaN	
4106	An Actor Prepares	Grav.	1700.0	NaN	2018	tt5718046	An Actor Prepares	A Pr

4107 rows × 13 columns

In [130]: ▶

Check missing values in merged data print(merged_data.isna().sum())

0 title studio 5 domestic_gross 35 foreign_gross 1618 year 0 movie_id 781 primary_title 781 original_title 781 start_year 781 runtime_minutes 781 781 genres averagerating 1087 numvotes 1087 dtype: int64

```
In [131]: ► #Handle Missing values in key columns
              # filling missing studio values with 'Unknown'
              merged_data['studio'].fillna('Unknown', inplace=True)
              # filling missing domestic gross and foreign gross with '0'
              merged_data['domestic_gross'].fillna(0, inplace=True)
              merged data['foreign gross'].fillna(0, inplace=True)
              # finding median runtime and replacing missing runtimes
              median_runtime = merged_data['runtime_minutes'].median()
              merged_data['runtime_minutes'].fillna(median_runtime, inplace=True)
              # filling missing genres with 'Unknown'
              merged_data['genres'].fillna('Unknown', inplace=True)
              # finding mean rating and replace to missing average ratings
              mean rating = merged data['averagerating'].mean()
              merged data['averagerating'].fillna(mean rating, inplace=True)
              # dropping rows that do not have movie id
              merged_data.dropna(subset=['movie_id'], inplace=True)
              # check if there are further missing values
              merged_data.isna().sum()
```

title 0 studio 0 domestic_gross 0 foreign_gross 0 0 year movie_id primary_title 0 original_title 0 start_year runtime_minutes genres averagerating 0 306 numvotes dtype: int64

```
In [132]:  # Standardize genre column
def clean_and_explode(df, genre_column):
    df[genre_column] = df[genre_column].str.split(',')
    df = df.explode(genre_column).reset_index(drop=True)
    return df

merged_data = clean_and_explode(merged_data, 'genres')

merged_data['averagerating'] = merged_data['averagerating'].fillna(merged_data[
merged_data.head()
```

Out[132]:

	title	studio	domestic_gross	foreign_gross	year	movie_id	primary_title	original_title	S
0	Toy Story 3	BV	415000000.0	652000000	2010	tt0435761	Toy Story 3	Toy Story 3	
1	Toy Story 3	BV	415000000.0	652000000	2010	tt0435761	Toy Story 3	Toy Story 3	
2	Toy Story 3	BV	415000000.0	652000000	2010	tt0435761	Toy Story 3	Toy Story 3	
3	Inception	WB	292600000.0	535700000	2010	tt1375666	Inception	Inception	
4	Inception	WB	292600000.0	535700000	2010	tt1375666	Inception	Inception	
4]	

In [133]: # Ensuring that revenue data is captured as int or float for analysis
merged_data['domestic_gross'] = pd.to_numeric(merged_data['domestic_gross'], er
merged_data['foreign_gross'] = pd.to_numeric(merged_data['foreign_gross'], erro

```
▶ # Aggregated Domestic and Foreign Revenue by Genre
In [134]:
              genre_revenue = merged_data.groupby('genres')[['domestic_gross', 'foreign_gross']
                   'domestic_gross': ['sum', 'mean'],
                   'foreign_gross': ['sum', 'mean'],
                   'averagerating': 'mean'
              }).reset_index()
              # rename main columns for easier identity
              genre_revenue.columns = ['genre', 'total_domestic_gross', 'average_domestic_gro
              # Sort by total domestic gross revenue
              genre_revenue = genre_revenue.sort_values(by='total_domestic_gross', ascending=
              print(genre_revenue)
                          4.0392200+10
                                                  4.00/4000+0/
                                                                      0.400140
              7
                          4.262900e+10
                                                  2.272335e+07
                                                                      6.580984
              17
                          2.368079e+10
                                                  1.703654e+08
                                                                      6.451325
              19
                          2.182380e+10
                                                 4.556117e+07
                                                                      6.188146
              2
                          2.587052e+10
                                                  1.647804e+08
                                                                      6.692310
              5
                          1.012734e+10
                                                  2.596755e+07
                                                                      6.479150
              9
                          1.861195e+10
                                                  1.051523e+08
                                                                      6.250903
              16
                          9.261870e+09
                                                  1.917571e+07
                                                                      6.339292
              11
                          9.251392e+09
                                                  3.544594e+07
                                                                      5.746856
              3
                          7.633332e+09
                                                  2.494553e+07
                                                                      6.938005
              8
                          8.359439e+09
                                                 6.480185e+07
                                                                      6.246531
              6
                          6.099421e+09
                                                 1.826174e+07
                                                                      7.025342
                          7.247272e+09
                                                  3.279308e+07
                                                                      6.286514
              14
              10
                          3.742451e+09
                                                 2.511712e+07
                                                                      6.842021
              18
                          2.318602e+09
                                                 4.067724e+07
                                                                      6.839196
              12
                          2.191535e+09
                                                  2.236260e+07
                                                                      6.738278
              13
                          7.411853e+08
                                                 3.900975e+07
                                                                      6.324134
              21
                          7.018230e+08
                                                 3.190105e+07
                                                                      6.557207
              20
                          5.830160e+08
                                                  1.100030e+07
                                                                      6.789002
              15
                          4.800000e+07
                                                  8.000000e+06
                                                                      6.886181
```

Collinearity Check using heatmap

Explanation:

The perfect correlation between each variable and itself is represented by the diagonal values in this correlation heatmap being all 1.00. The correlations between runtime_minutes, averagerating, and numvotes are extremely weak, ranging between -0.01 and 0.04 when we look at the off-diagonal values. This shows that these numerical features are not significantly correlated with one another, indicating that there is no significant collinearity between them. Also, there is no need to worry about multicollinearity or redundancy when using each of these features separately in a model.

A simple linear regression Model

```
#Importing from sklearn
In [165]:
              from sklearn.model_selection import train_test_split
              from sklearn.linear model import LinearRegression
              from sklearn.metrics import mean squared error, r2 score
              # Assigning the X and Y variables
              X = movie_budget_df['production_budget'].values.reshape(-1, 1)
              y = movie_budget_df['Total_Earnings'].values
              # Splitting the data into training and testing sets
              X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random
              # Creating the linear regression model
              model = LinearRegression()
              # Training the model
              model.fit(X_train, y_train)
              # Making predictions
              y_pred = model.predict(X_test)
              # Plotting the data and the regression line
              fig, ax = plt.subplots(figsize=(12,6))
              sns.scatterplot(x=movie budget df['production budget'], y=movie budget df['Tota'
              sns.lineplot(x=X test.flatten(), y=y pred, color='red', ax=ax)
              # Customizing the plot
              ax.set title('Relationship between Production Budget and the Total Gross')
              ax.set_xlabel('Production Budget ($)')
              ax.set_ylabel('Total Gross Earnings ($)')
              # Evaluating the model by finding the mse and the r2 scores
              mse = mean squared error(y test, y pred)
              r2 = r2 score(y test, y pred)
              print(f'Mean Squared Error: {mse}')
              print(f'R^2 Score: {r2}')
              plt.show()
```

Mean Squared Error: 2.4964034400804492e+16 R^2 Score: 0.5355997835611248

Interpreting the model:

The Coefficient of Determination with the value of 0.5355997835611248 suggesthat the model explains about 54% of the variance which indicates moderate levels of explanatory power.

In this case, the MSE is quite large (2.4964034400804492e+16). Since the values are squared, this large number suggests that there are significant differences between the actual and predicted values.

This suggests a weak positive covariance

The model has a moderate fit, as indicated by the R² score. While it explains a significant portion of the variance, further investigation may be needed but we've already established a positive linear relationship

Visualizations

1. Correlation between ratings and revenue by genre

2. Genre income from the domestic market

3. Comparison of revenue generated in the domestic and foreign markets

Business Questions

Question 1

How many movies are released each year?

```
In [140]:
                 # getting the overall data
                 df_popularity.head()
    Out[140]:
                     Unnamed:
                                genre_ids
                                              id original_language original_title popularity release_date
                                                                                                             title
                                                                                                            Harry
                                                                     Harry Potter
                                                                                                            Potter
                                                                         and the
                                  [12, 14,
                                                                                                           and the
                  0
                             0
                                           12444
                                                                         Deathly
                                                                                    33.533
                                                                                              2010-11-19
                                   10751]
                                                                                                          Deathly
                                                                    Hallows: Part
                                                                                                          Hallows
                                                                                                            Part 1
                                                                                                           How to
                                                                    How to Train
                                                                                                             Trair
                                  [14, 12,
                                           10191
                                                                                    28.734
                                                                                              2010-03-26
                                16, 10751]
                                                                     Your Dragon
                                                                                                             You
                                                                                                           Dragor
                                  [12, 28,
                                                                                                         Iron Mar
                                           10138
                                                                                              2010-05-07
                  2
                                                                      Iron Man 2
                                                                                    28.515
                                                                en
                                     8781
                                  [16, 35,
                                                                                                              Toy
                  3
                             3
                                             862
                                                                       Toy Story
                                                                                    28.005
                                                                                              1995-11-22
                                                                en
                                                                                                            Story
                                   10751]
                                 [28, 878,
                                           27205
                                                                       Inception
                                                                                    27.920
                                                                                              2010-07-16 Inception
                                                                en
                                      12]
In [141]:
                #dropping unnecessary columns
                 df_popularity= df_popularity.drop(df_popularity.columns[0], axis=1)
                # Checked for null values
In [142]:
                 df_popularity.isna().sum()
    Out[142]: genre_ids
                                          0
                                          0
                 original_language
                                          0
                 original_title
                                          0
                 popularity
                                          0
                 release_date
                                          0
                 title
                                          0
                                          0
                 vote_average
                 vote count
                                          0
                 dtype: int64
```

```
In [143]: # checking for duplicates
dupl=df_popularity[df_popularity.duplicated()]
dupl
```

Out[143]:

	genre_ids	id	original_language	original_title	popularity	release_date	title	V
2473	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	
2477	[16, 35, 10751]	863	en	Toy Story 2	22.698	1999-11-24	Toy Story 2	
2536	[12, 28, 878]	20526	en	TRON: Legacy	13.459	2010-12-10	TRON: Legacy	
2673	[18, 10749]	46705	en	Blue Valentine	8.994	2010-12-29	Blue Valentine	
2717	[35, 18, 14, 27, 9648]	45649	en	Rubber	8.319	2010-09-01	Rubber	
26481	[35, 18]	270805	en	Summer League	0.600	2013-03-18	Summer League	
26485	[27, 53]	453259	en	Devils in the Darkness	0.600	2013-05-15	Devils in the Darkness	
26504	[27, 35, 27]	534282	en	Head	0.600	2015-03-28	Head	
26510	[99]	495045	en	Fail State	0.600	2018-10-19	Fail State	
26511	[99]	492837	en	Making Filmmakers	0.600	2018-04-07	Making Filmmakers	

1020 rows × 9 columns

In [145]: ► df_popularity.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 25497 entries, 0 to 26516
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	genre_ids	25497 non-null	object
1	id	25497 non-null	int64
2	original_language	25497 non-null	object
3	original_title	25497 non-null	object
4	popularity	25497 non-null	float64
5	release_date	25497 non-null	object
6	title	25497 non-null	object
7	vote_average	25497 non-null	float64
8	vote_count	25497 non-null	int64
dtyp	es: float64(2), int	64(2), object(5))
memo	ry usage: 1.9+ MB		

```
# Converting the columns type to datetime
In [146]:
                df popularity['release date'] = pd.to datetime(df popularity['release date'],
                                                             format='%Y-%m-%d', errors='coerce')
                df_popularity['release_date'].dtype
    Out[146]: dtype('<M8[ns]')</pre>
In [147]:
            | # Checking if there are any null values emerged due to an error.
                df_popularity['release_date'].isnull().sum()
    Out[147]: 0
               # Created new columns of year and month.
In [148]:
                df_popularity['release_year'] = df_popularity['release_date'].dt.year
                df_popularity['release_month'] = df_popularity['release_date'].dt.month
                df popularity.head()
    Out[148]:
                   genre_ids
                                 id original_language original_title popularity release_date
                                                                                            title vote_aver
                                                                                           Harry
                                                      Harry Potter
                                                                                           Potter
                                                          and the
                      [12, 14,
                                                                                          and the
                 0
                                                                     33.533
                                                                              2010-11-19
                             12444
                                                 en
                                                          Deathly
                      10751]
                                                                                         Deathly
                                                     Hallows: Part
                                                                                         Hallows:
                                                                                           Part 1
                                                                                          How to
                      [14, 12,
                                                      How to Train
                                                                                            Train
                             10191
                                                                     28.734
                                                                             2010-03-26
                1
                                                 en
                    16, 10751]
                                                      Your Dragon
                                                                                            Your
                                                                                          Dragon
                      [12, 28,
                                                                                         Iron Man
                 2
                              10138
                                                 en
                                                       Iron Man 2
                                                                     28.515
                                                                              2010-05-07
                        878]
                                                                                              2
                                                                                             Toy
                      [16, 35,
                 3
                               862
                                                        Toy Story
                                                                     28.005
                                                                              1995-11-22
                                                 en
                      10751]
                                                                                           Story
                     [28, 878,
                             27205
                                                                     27.920
                                                                             2010-07-16 Inception
                                                 en
                                                        Inception
                         12]
             HIT is clear the number of movies increased each year from 2009.
In [149]:
                df_popularity['release_year'].value_counts()[:15]
    Out[149]:
               2015
                         3066
                2013
                         3066
                2014
                         3052
                2016
                         2970
                2017
                         2921
                2011
                         2645
                2012
                         2615
                2018
                         2496
                2010
                         2393
                2019
                           63
                2009
                           39
                2008
                           13
                2004
                           10
                            9
                2005
                            9
                2006
                Name: release_year, dtype: int64
```


1.1 Findings:

According to the visualizations above we can see that the number of movies released increased after 2009 where we see the highrst number of movies released was in 2013, 2014 and 2015 and then the number went down. We can also see that the month in which many movies are released is in January followed by October.

Question 2

Which genre is the most successful in movie box?

2.1 Findings

According to the data, the most popular genre at the box office is commedy|drama, which is followed by drama. This indicates that viewers enjoy movies that are funny and evoke feelings presented by the drama genre.

Concentrating on genres like "Comedy|Drama" and "Drama" could be a lucrative approach to filmmaking. Also, diversity in genres, such as combining comedy and musicals or drama and science fiction, also offers substantial financial potential.

Question 3

Which production budget ranges yield the most profitable movies?

Does a higher production budget lead to more profitable movies than those with lower production budgets?

```
# checking for min and max and outliers
In [155]:
              movie_budget_df['net_income'].describe()
   Out[155]: count
                       5.782000e+03
              mean
                       1.017730e+08
                       2.108880e+08
              std
                      -1.574753e+08
              min
              25%
                      -3.098222e+05
              50%
                       2.499538e+07
                       1.111648e+08
              75%
              max
                       3.111853e+09
              Name: net_income, dtype: float64
In [156]:
              #making scatter plot which shows positive connection between production budget
              movie_budget_df.plot.scatter(x='production_budget',
                                     c='Blue',
                                    y='net_income',)
```

Out[156]: <AxesSubplot:xlabel='production_budget', ylabel='net_income'>


```
In [158]:
            #defining a function for different ranges
               def product_budg_range(production_budget):
                   if production_budget < 5000000:</pre>
                        return "< $5M"
                   elif 5000000 <= production budget <= 10000000:
                       return "$5-10M"
                   elif 10000000 <= production_budget <= 20000000:</pre>
                       return "$10-20M"
                   elif 2000000 <= production_budget <= 30000000:</pre>
                       return "$20-30M"
                   elif 3000000 <= production_budget <= 40000000:</pre>
                        return "$30-40M"
                   elif 40000000 <= production_budget <= 500000000:</pre>
                        return "$40-50M"
                   elif 50000000 < production budget <= 60000000:
                       return "$50-60M"
                   elif 60000000 < production_budget <= 70000000:</pre>
                        return "$60-70M"
                   elif 70000000 <= production_budget <= 80000000:</pre>
                       return "$70-80M"
                   elif 80000000 < production_budget <= 90000000:
                       return "$80-90M"
                   elif 90000000 < production_budget <= 10000000000:</pre>
                        return "$90-100M"
                   else:
                        return "> $100M"
```

In [159]: # #creating a new column to connect each movie with it's production budget range.
movie_budget_df['PB_ranges'] = movie_budget_df['production_budget'].apply(produmovie_budget_df.head()

Out[159]:

	id	release_date	title	production_budget	domestic_gross	worldwide_gross	release_yeaı
0	1	2009-12-18	Avatar	425000000.0	760507625.0	2.776345e+09	2009
1	2	2011-05-20	Pirates of the Caribbean: On Stranger Tides	410600000.0	241063875.0	1.045664e+09	2011
2	3	2019-06-07	Dark Phoenix	350000000.0	42762350.0	1.497624e+08	2019
3	4	2015-05-01	Avengers: Age of Ultron	330600000.0	459005868.0	1.403014e+09	2015
4	5	2017-12-15	Star Wars Ep. VIII: The Last Jedi	317000000.0	620181382.0	1.316722e+09	2017
4							•

In [160]: ► #a

#adding a column that tells us whether or not a movie was profitable

movie_budget_df['profitable'] = movie_budget_df['net_income'].apply(lambda x:
movie_budget_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5782 entries, 0 to 5781
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	id	5782 non-null	int64
1	release_date	5782 non-null	datetime64[ns]
2	title	5782 non-null	object
3	<pre>production_budget</pre>	5782 non-null	float64
4	domestic_gross	5782 non-null	float64
5	worldwide_gross	5782 non-null	float64
6	release_year	5782 non-null	int64
7	release_month	5782 non-null	int64
8	Total_Earnings	5782 non-null	float64
9	net_income	5782 non-null	float64
10	PB_ranges	5782 non-null	object
11	profitable	5782 non-null	object
dtyp	es: datetime64[ns](1), float64(5),	<pre>int64(3), object(3)</pre>

memory usage: 542.2+ KB

Out[169]: Text(0.5, 1.03, 'Distribution of Profitability by Budget Ranges')

3.1 Findings:

The scatter plot indicates that net income and production budget are positively correlated. Although returns vary greatly, bigger production budgets typically result in higher net revenues. Some expensive films don't make a lot of money, proving that money isn't the only factor that determines success.

From 2010 to 2018, the mean net income of films increased steadily, as shown by the bar chart (second image). The biggest increase is seen beginning in 2016, suggesting that the movie business has become more profitable over time.

As shown in the third chart, films with smaller budgets (less than 5 million) make less money. However, the frequency of lucrative films climbs with the production budget, particularly in the 10M–20M and 90M–100M categories. This trend implies that films with medium to high budgets have a higher chance of making money.

Business Recommendations

1. Invest in the highly rated genres

The business should expand into genres where success is closely correlated with higher ratings. T' genres of commedy|drama, drama, and drama|sport and fitness show that favorable reviews great increase their revenue.

2. Target global market

The company should consider investing in the global audience. Our analysis indicates that almost every genre does well in the foreign market compared to the domestic market.

[n []	:	K	
--------	---	---	--