Power Screws

- Thread Standards and Definitions
- Stress Areas of Threads
- Mechanics of Power Screws (Square Threads)
- Self Locking Condition
- Power Screw Efficiency
- Power Screws with Acme Threads
- Presence of Collar Friction
- Body Stresses –Determine if it is safe for the Load

Thread Standards and Definitions

Pitch – distance between adjacent threads.
 Reciprocal of threads per inch

Major diameter — largest diameter of thread

- *Minor diameter* smallest diameter of thread
- *Pitch diameter* theoretical diameter between major and minor diameters, where tooth and gap are same width

Fig. 8–1

Standardization

- The *American National (Unified)* thread standard defines basic thread geometry for uniformity and interchangeability
- American National (Unified) thread
 - UN normal thread
 - UNR greater root radius for fatigue applications
- Metric thread
 - M series (normal thread)
 - MJ series (greater root radius)

Standardization

Coarse series UNC

- General assembly
- Frequent disassembly
- Not good for vibrations
- The "normal" thread to specify

Fine series UNF

- Good for vibrations
- Good for adjustments
- Automotive and aircraft

Extra Fine series UNEF

- Good for shock and large vibrations
- High grade alloy
- Instrumentation
- Aircraft

Standardization

- Basic profile for metric M and MJ threads shown in Fig. 8–2
- Tables 8–1 and 8–2 define basic dimensions for standard threads

Diameters and Areas for Metric Threads

Table 8-1

Diameters and Areas of Coarse-Pitch and Fine-Pitch Metric Threads.*

Nominal	C	oarse-Pitch	Series	Fine-Pitch Series				
Major Diameter d mm	Pitch P mm	Tensile- Stress Area Ar mm ²	Minor- Diameter Area Ar mm²	Pitch P mm	Tensile- Stress Area Ar mm ²	Minor- Diameter Area Ar mm²		
1.6	0.35	1.27	1.07					
2	0.40	2.07	1.79					
2.5	0.45	3.39	2.98					
3	0.5	5.03	4.47					
3.5	0.6	6.78	6.00					
4	0.7	8.78	7.75					
5	0.8	14.2	12.7					
6	1	20.1	17.9					
8	1.25	36.6	32.8	1	39.2	36.0		
10	1.5	58.0	52.3	1.25	61.2	56.3		
12	1.75	84.3	76.3	1.25	92.1	86.0		
14	2	115	104	1.5 125		116		
16	2	157	144	1.5	167	1.57		
20	2.5	245	225	1.5	272	259		
24	3	353	324	2	384	365		
30	3.5	561	519	2	621	596		
36	4	817	759	2	915	884		
42	4.5	1120	1050	2	1260	1230		
48	5	1470	1380	2	1670	1630		
56	5.5	2030	1910	2	2300	2250		
64	6	2680	2520	2	3030	2980		

Diameters and Areas for Unified Screw Threads

Table 8–2		Cod	arse Series—	-UNC	Fine Series—UNF				
Size Designation	Nominal Major Diameter in	Threads per Inch N	Tensile- Stress Area A, in ²	Minor- Diameter Area A _r in ²	Threads per Inch N	Tensile- Stress Area A, in ²	Minor- Diameter Area A, in ²		
0	0.0600				80	0.001 80	0.001 51		
1	0.0730	64	0.002 63	0.002 18	72	0.002 78	0.002 37		
2	0.0860	56	0.003 70	0.003 10	64	0.003 94	0.003 39		
3	0.0990	48	0.004 87	0.004 06	56	0.005 23	0.004 51		
4	0.1120	40	0.006 04	0.004 96	48	0.006 61	0.005 66		
5	0.1250	40	0.007 96	0.006 72	44	0.008 80	0.007 16		
6	0.1380	32	0.009 09	0.007 45	40	0.010 15	0.008 74		
8	0.1640	32	0.0140	0.011 96	36	0.014 74	0.012 85		
10	0.1900	24	0.0175	0.014 50	32	0.020 0	0.0175		
12	0.2160	24	0.024 2	0.0206	28	0.025 8	0.0226		
$\frac{1}{4}$	0.2500	20	0.0318	0.026 9	28	0.036 4	0.0326		
1/4 5/16	0.3125	18	0.052 4	0.045 4	24	0.058 0	0.052 4		
3 8 7 16	0.3750	16	0.077 5	0.067 8	24	0.087 8	0.080 9		
7 16	0.4375	14	0.106 3	0.093 3	20	0.1187	0.1090		
1/2	0.5000	13	0.1419	0.1257	20	0.1599	0.1486		
1 2 9 16	0.5625	12	0.182	0.162	18	0.203	0.189		
	0.6250	11	0.226	0.202	18	0.256	0.240		
3/4	0.7500	10	0.334	0.302	16	0.373	0.351		
5 8 3 4 7 8	0.8750	9	0.462	0.419	14	0.509	0.480		
ĭ	1.0000	8	0.606	0.551	12	0.663	0.625		
$1\frac{1}{4}$	1.2500	7	0.969	0.890	12	1.073	1.024		
$1\frac{1}{2}$	1.5000	6	1.405	1.294	12	1.581	1.521		

Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Shigley's Mechanical Engineering Design

Tensile Stress Area

- The tensile stress area, A_t , is the area of an unthreaded rod with the same tensile strength as a threaded rod.
- It is the effective area of a threaded rod to be used for stress calculations.
- The diameter of this unthreaded rod is the average of the pitch diameter and the minor diameter of the threaded rod.

Square and Acme Threads

 Square and Acme threads are used when the threads are intended to transmit power

Table 8–3 Preferred Pitches for Acme Threads

d, in	$\frac{1}{4}$	<u>5</u>	$\frac{3}{8}$	$\frac{1}{2}$	<u>5</u> 8	<u>3</u>	$\frac{7}{8}$	1	$1\frac{1}{4}$	$1\frac{1}{2}$	$1\frac{3}{4}$	2	$2\frac{1}{2}$	3
p, in	1/16	<u>1</u>	<u>1</u> 12	$\frac{1}{10}$	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$

• Power screw

- Used to change angular motion into linear motion
- Usually transmits power
- Examples include vises, presses, jacks, lead screw on lathe

Fig. 8–4

- Find expression for torque required to raise or lower a load
- Unroll one turn of a thread
- Treat thread as inclined plane
- Do force analysis

Fig. 8–6

For raising the load

$$\sum F_x = P_R - N \sin \lambda - f N \cos \lambda = 0$$

$$\sum F_y = -F - f N \sin \lambda + N \cos \lambda = 0$$
(a)

For lowering the load

$$\sum F_x = -P_L - N \sin \lambda + f N \cos \lambda = 0$$

$$\sum F_y = -F + f N \sin \lambda + N \cos \lambda = 0$$

Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Shigley's Mechanical Engineering Design

Fig. 8–6

Eliminate N and solve for P to raise and lower the load

$$P_R = \frac{F(\sin \lambda + f \cos \lambda)}{\cos \lambda - f \sin \lambda} \tag{c}$$

$$P_L = \frac{F(f\cos\lambda - \sin\lambda)}{\cos\lambda + f\sin\lambda} \tag{d}$$

• Divide numerator and denominator by $\cos \lambda$ and use relation $\tan \lambda = l/\pi d_m$

$$P_R = \frac{F[(l/\pi d_m) + f]}{1 - (fl/\pi d_m)}$$
 (e)

$$P_L = \frac{F[f - (l/\pi d_m)]}{1 + (fl/\pi d_m)}$$
 (f)

Raising and Lowering Torque

 Noting that the torque is the product of the force and the mean radius,

$$T_R = \frac{Fd_m}{2} \left(\frac{l + \pi f d_m}{\pi d_m - f l} \right) \tag{8-1}$$

$$T_L = \frac{Fd_m}{2} \left(\frac{\pi f d_m - l}{\pi d_m + f l} \right) \tag{8-2}$$

Self-locking Condition

$$T_L = \frac{Fd_m}{2} \left(\frac{\pi f d_m - l}{\pi d_m + f l} \right) \tag{8-2}$$

- If the lowering torque is negative, the load will lower itself by causing the screw to spin without any external effort.
- If the lowering torque is positive, the screw is *self-locking*.
- Self-locking condition is $\pi f d_m > l$
- Noting that $l/\pi d_m = \tan \lambda$, the self-locking condition can be seen to only involve the coefficient of friction and the lead angle.

$$f > \tan \lambda$$
 (8–3)

Collar Friction

- An additional component of torque is often needed to account for the friction between a collar and the load.
- Assuming the load is concentrated at the mean collar diameter d_c

$$T_c = \frac{F f_c d_c}{2} \tag{8--6}$$

Power Screw Efficiency

$$T_R = \frac{Fd_m}{2} \left(\frac{l + \pi f d_m}{\pi d_m - f l} \right) \tag{8-1}$$

• The torque needed to raise the load with no friction losses can be found from Eq. (8-1) with f = 0.

$$T_0 = \frac{Fl}{2\pi} \tag{g}$$

The efficiency of the power screw is:

$$e = \frac{T_0}{T_R} = \frac{Fl}{2\pi T_R}$$
 (8-4)

Power Screws with Acme Threads

- If Acme threads are used instead of square threads, the thread angle creates a wedging action.
- The friction components are increased.
- The torque necessary to raise a load (or tighten a screw) is found by dividing the **friction terms** in Eq. (8–1) by $\cos \alpha$.

$$T_R = \frac{F d_m}{2} \left(\frac{l + \pi f d_m}{\pi d_m - f l} \right)$$

$$T_R = \frac{F d_m}{2} \left(\frac{l + \pi f d_m \sec \alpha}{\pi d_m - f l \sec \alpha} \right)$$

Stresses in Body of Power Screws

Maximum nominal shear stress in torsion of the screw body

$$\tau = \frac{16T}{\pi d_r^3} \tag{8-7}$$

Axial stress in screw body

$$\sigma = \frac{F}{A} = \frac{4F}{\pi d_r^2} \tag{8--8}$$

Bearing stress in threads,

$$\sigma_B = -\frac{F}{\pi d_m n_t p/2} = -\frac{2F}{\pi d_m n_t p}$$

where n_t is number of engaged threads

Bending stress at root of thread,

$$Z = \frac{I}{c} = \frac{(\pi d_r n_t) (p/2)^2}{6} = \frac{\pi}{24} d_r n_t p^2$$

$$M = \frac{Fp}{4}$$

$$\sigma_b = \frac{M}{Z} = \frac{Fp}{4} \frac{24}{\pi d_r n_t p^2} = \frac{6F}{\pi d_r n_t p}$$

Fig. 8–8

• Transverse shear stress at center of root of thread,

$$\tau = \frac{3V}{2A} = \frac{3}{2} \frac{F}{\pi d_r n_t p/2} = \frac{3F}{\pi d_r n_t p}$$

Consider stress element at the top of the root "plane"

Obtain von Mises stress from:

$$\sigma' = \frac{1}{\sqrt{2}} \left[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2) \right]^{1/2}$$
 (5-14)

Design Equation using Maximum Distortion Energy:

$$n = S_{Y}/\sigma^{1}$$

Thread Deformation in Screw-Nut Combination

- The engaged threads cannot share the load equally.
- Experiments indicate the first thread carries 38% of the load, the second thread 25%, and the third thread 18%. The seventh thread is free of load.
- To find the largest stress in the first thread of a screw-nut combination, use 0.38F in place of F, and set $n_t = 1$.

Example-Power Screw

A square-thread power screw has a major diameter of 32 mm and a pitch of 4 mm with double threads, and it is to be used in an application similar to that in Fig. 8–4. The given data include $f = f_c = 0.08$, $d_c = 40$ mm, and F = 6.4 kN per screw.

- (a) Find the thread depth, thread width, pitch diameter, minor diameter, and lead.
- (b) Find the torque required to raise and lower the load.
- (c) Find the efficiency during lifting the load.
- (d) Find the body stresses, torsional and compressive.
- (e) Find the bearing stress.
- (f) Find the thread bending stress at the root of the thread.
- (g) Determine the von Mises stress at the root of the thread.
- (h) Determine the maximum shear stress at the root of the thread.

Fig. 8–4

Courtesy Joyce-Dayton Corp., Dayton, Ohio.

(a) From Fig. 8–3a the thread depth and width are the same and equal to half the pitch, or 2 mm. Also

$$d_m = d - p/2 = 32 - 4/2 = 30 \text{ mm}$$
 Answer $d_r = d - p = 32 - 4 = 28 \text{ mm}$ Answer $l = np = 2(4) = 8 \text{ mm}$ Answer

(b) Using Eqs. (8–1) and (8–6), the torque required to turn the screw against the load is

$$T_R = \frac{Fd_m}{2} \left(\frac{l + \pi f d_m}{\pi d_m - f l} \right) + \frac{Ff_c d_c}{2}$$

$$= \frac{6.4(30)}{2} \left[\frac{8 + \pi (0.08)(30)}{\pi (30) - 0.08(8)} \right] + \frac{6.4(0.08)40}{2}$$

$$= 15.94 + 10.24 = 26.18 \text{ N} \cdot \text{m}$$
 Answer

Using Eqs. (8–2) and (8–6), we find the load-lowering torque is

$$T_L = \frac{Fd_m}{2} \left(\frac{\pi f d_m - l}{\pi d_m + f l} \right) + \frac{Ff_c d_c}{2}$$

$$= \frac{6.4(30)}{2} \left[\frac{\pi (0.08)30 - 8}{\pi (30) + 0.08(8)} \right] + \frac{6.4(0.08)(40)}{2}$$

$$= -0.466 + 10.24 = 9.77 \text{ N} \cdot \text{m}$$
Answer

(c) The overall efficiency in raising the load is

$$e = \frac{Fl}{2\pi T_R} = \frac{6.4(8)}{2\pi (26.18)} = 0.311$$
 Answer

(d) The body shear stress τ due to torsional moment T_R at the outside of the screw body is

$$\tau = \frac{16T_R}{\pi d_s^3} = \frac{16(26.18)(10^3)}{\pi (28^3)} = 6.07 \text{ MPa}$$
 Answer

The axial nominal normal stress σ is

$$\sigma = -\frac{4F}{\pi d_{\pi}^2} = -\frac{4(6.4)10^3}{\pi (28^2)} = -10.39 \text{ MPa}$$
 Answer

(e) The bearing stress σ_B is, with one thread carrying 0.38F,

$$\sigma_B = -\frac{2(0.38F)}{\pi d_m(1)p} = -\frac{2(0.38)(6.4)10^3}{\pi (30)(1)(4)} = -12.9 \text{ MPa}$$
 Answer

(f) The thread-root bending stress σ_b with one thread carrying 0.38F is

$$\sigma_b = \frac{6(0.38F)}{\pi d} = \frac{6(0.38)(6.4)10^3}{\pi (28)(1)4} = 41.5 \text{ MPa}$$
 Answer

(g) The transverse shear at the extreme of the root cross section due to bending is zero. However, there is a circumferential shear stress at the extreme of the root cross section of the thread as shown in part (d) of 6.07 MPa. The three-dimensional stresses, after Fig. 8–8, noting the y coordinate is into the page, are

$$\sigma_x = 41.5 \text{ MPa}$$
 $\tau_{xy} = 0$

$$\sigma_y = -10.39 \text{ MPa}$$
 $\tau_{yz} = 6.07 \text{ MPa}$

$$\sigma_z = 0$$
 $\tau_{zx} = 0$

For the von Mises stress, Eq. (5–14) of Sec. 5–5 can be written as

$$\sigma' = \frac{1}{\sqrt{2}} \{ (41.5 - 0)^2 + [0 - (-10.39)]^2 + (-10.39 - 41.5)^2 + 6(6.07)^2 \}^{1/2}$$

$$= 48.7 \text{ MPa}$$
Answer

Power Screw – Assignment

A single-thread power screw is 25-mm in diameter and has thread pitch of 5-mm. A vertical load on the screw reached 5 kN. The coefficients of friction are 0.06 for the collar and 0.09 for the threads. The frictional diameter of the collar is 45 mm. For a square thread, find:

- a. Mean and root diameters
- b. Determine if the screw will self-lock.
- c. The torques require to raise the load and to lower the load
- d. The lifting efficiency of the screw
- e. The minimum yield strength of the screw material based on maximum distortion energy and a factor of safety of 5.0