CSE 431/531: Algorithm Analysis and Design (Fall 2024) Dynamic Programming

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

	1	2	3	4	5	6
\overline{A}	b	a	С	d	С	a
\overline{B}	а	d	b	С	d	а

	0	1	2	3	4	5	6
0	0 Т	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥
1	0 ⊥	0 ←	0 ←	1 🔨	$1 \leftarrow$	1 ←	1 ←
2	0 Т	1 🔨	1 ←	1 ←	1 ←	1 ←	2 <
3	0 Т	1 ↑	1 ←	1 ←	2 <	2 ←	2 ←
4	0 Т	1 ↑	2 <	2 ←	2 ←	3 <	3 ←
5	0 Т	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0 ⊥	1 🔨	$2\uparrow$	2 ←	3 ↑	3 ←	4 🔨

	1	2	3	4	5	6
\overline{A}	b	a	С	d	С	a
\overline{B}	а	d	b	С	d	а

	0	1	2	3	4	5	6
0	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 Т	0 ⊥	0 ⊥
1	0 ⊥	0 ←	0 ←	1 🔨	1 ←	1 ←	1 ←
2	0 ⊥	1 🔨	1 ←	1 ←	1 ←	1 ←	2 <
3	0 ⊥	1 ↑	1 ←	1 ←	2 <	2 ←	2 ←
4	0 ⊥	1 ↑	2	2 ←	2 ←	3 <	3 ←
5	0 ⊥	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0	1 <	$2\uparrow$	2 ←	3 ↑	3 ←	4 🔨

	1	2	3	4	5	6
\overline{A}	b	a	С	d	С	a
\overline{B}	а	d	b	С	d	а

	0	1	2	3	4	5	6
0	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 Т	0 ⊥	0 Т
1	0 ⊥	0 ←	0 ←	1 🔨	1 ←	1 ←	1 ←
2	0 ⊥	1 🔨	1 ←	1 ←	1 ←	1 ←	2
3	0 ⊥	1 ↑	1 ←	1 ←	2 <	2 ←	2 ←
4	0 ⊥	1 ↑	2	2 ←	2 ←	3 <	3 ←
5	0 ⊥	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0	1 <	$2\uparrow$	2 ←	3 ↑	3 ←	4 <

	1	2	3	4	5	6
\overline{A}	b	a	С	d	С	a
\overline{B}	а	d	b	С	d	а

	0	1	2	3	4	5	6
0	0 ⊥	0 ⊥	0 Т	0 Т	0 ⊥	0 ⊥	0 ⊥
1	0 ⊥	0 ←	0 ←	1 🔨	1 ←	1 ←	1 ←
2	0 ⊥	1 🔨	1 ←	1 ←	1 ←	1 ←	2 <
3	0 ⊥	1 ↑	1 ←	$1 \leftarrow$	2 <	2 ←	2 ←
4	0 ⊥	1 ↑	2 <	2 ←	2 ←	3 <	3 ←
5	0 ⊥	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0 ⊥	1 🔨	$2\uparrow$	2 ←	3 ↑	3 ←	4 🔨

	1	2	3	4	5	6
\overline{A}	b	а	С	d	С	a
\overline{B}	а	d	b	С	d	a

	0	1	2	3	4	5	6
0	0 Т	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥
1	0 ⊥	0 ←	0 ←	1 🔨	1 ←	1 ←	1 ←
2	0 Т	1 🔨	1 ←	1 ←	1 ←	1 ←	2 <
3	0 ⊥	1 ↑	1 ←	1 ←	2 <	2 ←	2 ←
4	0 Т	1 ↑	2 <	2 ←	2 ←	3 <	3 ←
5	0 Т	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0 ⊥	1 🔨	$2\uparrow$	2 ←	3 ↑	3 ←	4 🔨

			3			
\overline{A}	b	а	С	d	С	a
B	а	d	b	С	d	a

	0	1	2	3	4	5	6
0	0 Т	0 ⊥	0 Т	0 ⊥	0 Т	0 ⊥	0 ⊥
1	0 ⊥	0 ←	0 ←	1 🔨	1 ←	1 ←	1 ←
2	0 Т	1 🔨	1 ←	1 ←	1 ←	1 ←	2 <
3	0 Т	1 ↑	1 ←	1 ←	2 <	2 ←	2 ←
4	0 Т	1 ↑	2 <	2 ←	2 ←	3 <	3 ←
5	0 ⊥	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0 ⊥	1 🔨	$2\uparrow$	2 ←	3 ↑	3 ←	4 🔨

	1	2	3	4	5	6
\overline{A}	b	a	С	d	С	a
\overline{B}	а	d	b	С	d	а

	0	1	2	3	4	5	6
0	0 Т	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥	0 ⊥
1	0 ⊥	0 ←	0 ←	1 🔨	$1 \leftarrow$	1 ←	1 ←
2	0 Т	1 🔨	1 ←	1 ←	1 ←	1 ←	2 <
3	0 Т	1 ↑	1 ←	1 ←	2 <	2 ←	2 ←
4	0 Т	1 ↑	2 <	2 ←	2 ←	3 <	3 ←
5	0 Т	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0 ⊥	1 🔨	$2\uparrow$	2 ←	3 ↑	3 ←	4 🔨

	1	2	3	4	5	6
\overline{A}	b	a	С	d	С	a
\overline{B}	а	d	b	С	d	а

	0	1	2	3	4	5	6
0	0 Т	0 ⊥	0 Т	0 ⊥	0 ⊥	0 ⊥	0 ⊥
1	0 ⊥	0 ←	0 ←	1 🔨	1 ←	1 ←	1 ←
2	0 Т	1 🔨	1 ←	1 ←	1 ←	1 ←	2 <
3	0 ⊥	1 ↑	1 ←	1 ←	2 <	2 ←	2 ←
4	0 Т	1 ↑	2 <	2 ←	2 ←	3 <	3 ←
5	0 Т	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0 ⊥	1 🔨	$2\uparrow$	2 ←	3 ↑	3 ←	4 🔨

	1	2	3	4	5	6
\overline{A}	b	а	С	d	С	a
\overline{B}	а	d	b	С	d	a

	0	1	2	3	4	5	6
0	0 ⊥	0 ⊥	0 Т	0 ⊥	0 ⊥	0 ⊥	0 ⊥
1	0 ⊥	0 ←	0 ←	1 🔨	1 ←	1 ←	1 ←
2	0 ⊥	1 🔨	1 ←	1 ←	1 ←	1 ←	2 <
3	0 ⊥	1 ↑	1 ←	1 ←	2 <	2 ←	2 ←
4	0 ⊥	1 ↑	2 <	2 ←	2 ←	3 <	3 ←
5	0 ⊥	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0 ⊥	1 🔨	$2\uparrow$	2 ←	3 ↑	3 ←	4 🔨

	1	2	3	4	5	6
\overline{A}	b	а	С	d	С	a
B	а	d	b	С	d	a

	0	1	2	3	4	5	6
0	0 ⊥	0 ⊥	0 Т	0 Т	0 ⊥	0 ⊥	0 ⊥
1	0 ⊥	0 ←	0 ←	1 🔨	1 ←	1 ←	1 ←
2	0 ⊥	1 🔨	1 ←	1 ←	1 ←	1 ←	2 <
3	0 ⊥	1 ↑	1 ←	$1 \leftarrow$	2 <	2 ←	2 ←
4	0 ⊥	1 ↑	2 <	2 ←	2 ←	3 <	3 ←
5	0 ⊥	1 ↑	2 ↑	2 ←	3 <	3 ←	3 ←
6	0	1 🔨	$2\uparrow$	2 ←	3 ↑	3 ←	4 🔨

Find Common Subsequence

```
1: i \leftarrow n, j \leftarrow m, S \leftarrow ()
2: while i > 0 and j > 0 do
3: if \pi[i,j] = \text{``} \text{`'} then
4: add A[i] to beginning of S, i \leftarrow i-1, j \leftarrow j-1
5: else if \pi[i,j] = \text{``} \text{''} then
6: i \leftarrow i-1
7: else
8: j \leftarrow j-1
9: return S
```

Edit Distance with Insertions and Deletions

Input: a string A and a string B

each time we can delete a letter from \boldsymbol{A} or insert a letter

to A

Output: minimum number of operations (insertions or deletions) we

need to change A to B?

Edit Distance with Insertions and Deletions

Input: a string A and a string B each time we can delete a letter from A or insert a letter to A

Output: minimum number of operations (insertions or deletions) we need to change A to B?

Example:

- A = occurrence, B = occurrence
- 3 operations: insert 'c', remove 'a' and insert 'e'

Edit Distance with Insertions and Deletions

Input: a string A and a string B each time we can delete a letter from A or insert a letter to A

Output: minimum number of operations (insertions or deletions) we need to change A to B?

Example:

- A = ocurrence, B = occurrence
- 3 operations: insert 'c', remove 'a' and insert 'e'

```
Obs. \#\mathsf{OPs} = \mathsf{length}(A) + \mathsf{length}(B) - 2 \cdot \mathsf{length}(\mathsf{LCS}(A, B))
```

Edit Distance with Insertions, Deletions and Replacing

Input: a string \boldsymbol{A} and a string \boldsymbol{B}

each time we can delete a letter from A, insert a letter to A or change a letter

Output: how many operations do we need to change A to B?

Edit Distance with Insertions, Deletions and Replacing

Input: a string A and a string B each time we can delete a letter from A, insert a letter to A or change a letter

Output: how many operations do we need to change A to B?

Example:

- A = ocurrance, B = occurrence.
- 2 operations: insert 'c', change 'a' to 'e'

Edit Distance with Insertions, Deletions and Replacing

Input: a string A and a string B each time we can delete a letter from A, insert a letter to A or change a letter

Output: how many operations do we need to change A to B?

Example:

- A = ocurrance, B = occurrence.
- 2 operations: insert 'c', change 'a' to 'e'
- Not related to LCS any more

Edit Distance with Replacing: Reduction to a Variant of LCS

- Need to match letters in A and B, every letter is matched at most once and there should be no crosses.
- However, we can match two different letters: Matching a same letter gives score 2, matching two different letters gives score 1.
- Need to maximize the score.
- DP recursion for the case i > 0 and j > 0:

$$opt[i,j] = \begin{cases} opt[i-1,j-1] + \mathbf{2} & \text{if } A[i] = B[j] \\ \\ \max \begin{cases} opt[i-1,j] \\ \\ opt[i,j-1] & \text{if } A[i] \neq B[j] \\ \\ \\ opt[i-1,j-1] + \mathbf{1} \end{cases} \end{cases}$$

• Relation : $\#\mathsf{OPs} = \mathsf{length}(A) + \mathsf{length}(B)$ - $\mathsf{max_score}$

• $opt[i,j], 0 \le i \le n, 0 \le j \le m$: edit distance between $A[1 \dots i]$ and $B[1 \dots j]$.

- $opt[i,j], 0 \le i \le n, 0 \le j \le m$: edit distance between $A[1 \dots i]$ and $B[1 \dots j]$.
- if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.

- $opt[i,j], 0 \le i \le n, 0 \le j \le m$: edit distance between $A[1 \dots i]$ and $B[1 \dots j]$.
- if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.
- if i > 0, j > 0, then

$$opt[i,j] = \begin{cases} & \text{if } A[i] = B[j] \\ \\ & \text{if } A[i] \neq B[j] \end{cases}$$

- $opt[i,j], 0 \le i \le n, 0 \le j \le m$: edit distance between $A[1 \dots i]$ and $B[1 \dots j]$.
- if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.
- if i > 0, j > 0, then

$$opt[i,j] = \begin{cases} opt[i-1,j-1] & \text{if } A[i] = B[j] \\ & \text{if } A[i] \neq B[j] \end{cases}$$

- $opt[i,j], 0 \le i \le n, 0 \le j \le m$: edit distance between A[1 ... i] and B[1 ... j].
- if i = 0 then opt[i, j] = j; if j = 0 then opt[i, j] = i.
- if i > 0, j > 0, then

$$opt[i,j] = \begin{cases} opt[i-1,j-1] & \text{if } A[i] = B[j] \\ opt[i-1,j] + 1 & \\ opt[i,j-1] + 1 & \text{if } A[i] \neq B[j] \\ opt[i-1,j-1] + 1 & \end{cases}$$

Outline

• Longest Common Subsequence in Linear Space

Computing the Length of LCS

```
1: for j \leftarrow 0 to m do
    opt[0,j] \leftarrow 0
 3: for i \leftarrow 1 to n do
     opt[i,0] \leftarrow 0
 4:
    for j \leftarrow 1 to m do
 5:
             if A[i] = B[j] then
 6:
                  opt[i, j] \leftarrow opt[i-1, j-1] + 1
 7:
             else if opt[i, j-1] \ge opt[i-1, j] then
 8:
                  opt[i, j] \leftarrow opt[i, j-1]
 9:
             else
10:
                  opt[i, j] \leftarrow opt[i-1, j]
11:
```

Obs. The *i*-th row of table only depends on (i-1)-th row.

Reducing Space to O(n+m)

Obs. The *i*-th row of table only depends on (i-1)-th row.

Q: How to use this observation to reduce space?

Reducing Space to O(n+m)

Obs. The i-th row of table only depends on (i-1)-th row.

Q: How to use this observation to reduce space?

A: We only keep two rows: the (i-1)-th row and the i-th row.

Linear Space Algorithm to Compute Length of LCS

```
1: for i \leftarrow 0 to m do
    opt[0,j] \leftarrow 0
 3: for i \leftarrow 1 to n do
      opt[i \bmod 2, 0] \leftarrow 0
 4:
      for i \leftarrow 1 to m do
 5:
             if A[i] = B[j] then
 6:
                 opt[i \mod 2, j] \leftarrow opt[i-1 \mod 2, j-1] + 1
 7:
             else if opt[i \mod 2, j-1] > opt[i-1 \mod 2, j] then
 8:
                 opt[i \mod 2, j] \leftarrow opt[i \mod 2, j-1]
 9:
             else
10:
                 opt[i \mod 2, j] \leftarrow opt[i-1 \mod 2, j]
11:
12: return opt|n \mod 2, m|
```

 \bullet Only keep the last two rows: only know how to match A[n]

- ullet Only keep the last two rows: only know how to match A[n]
- Can recover the LCS using n rounds: time = $O(n^2m)$

- \bullet Only keep the last two rows: only know how to match A[n]
- Can recover the LCS using n rounds: time = $O(n^2m)$
- Using Divide and Conquer + Dynamic Programming:

- \bullet Only keep the last two rows: only know how to match A[n]
- Can recover the LCS using n rounds: time = $O(n^2m)$
- Using Divide and Conquer + Dynamic Programming:
 - Space: O(m+n)

- \bullet Only keep the last two rows: only know how to match A[n]
- Can recover the LCS using n rounds: time = $O(n^2m)$
- Using Divide and Conquer + Dynamic Programming:
 - Space: O(m+n)
 - Time: O(nm)