DEUTSCHLAND

# BUNDESREPUBLIK @ G brauchsmusterschrift @ Int. Cl.7: <sup>®</sup> DE 202 10 139 U 1

# B 01 J 20/00

H 01 M 2/00

B 01 D 53/02

B 01 J 20/30 C 07 F 3/06 C 07 C 63/00 C 07 C 63/28 F 17 C 11/00

DEUTSCHES PATENT- UND

- (21) Aktenzeichen: Anmeldetag: im Patentblatt:
- 1. 7. 2002 (f) Eintragungstag: 12. 6, 2003 Bekanntmachung
  - 17. 7.2003

202 10 139.8

MARKENAMT

(3) Unionspriorität:

10/061147 01, 02, 2002 US

(3) Inhaber:

BASF AG, 67063 Ludwigshafen, DE

(7) Vertreter:

Patent- und Rechtsanwälte Bardehle, Pagenberg, Dost, Altenburg, Geissler, 81679 München

- (A) Vorrichtung zum Speichern, zur Aufnahme und Abgabe von Gasen unter Verwendung neuartiger Gerüstmaterialien
- Vorrichtung zur Aufnahme, zum Speichem oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas, enthaltend ein metallorganisches Gerüstmaterial, enthaltend Poren und zumindest ein Metallion sowie zumindest eine mindestens zweizähnige organische Verbindung, wobei diese organische Verbindung an das besagte Metallion angebunden ist, vorzugsweise über eine Koordinationsbindung.



BASF Aktiengesellschaft

5

10

20

25

1. Juli 2002 B01/0981GBM IB/RI/HTO/cl

## Vorrichtung zum Speichern, zur Aufnahme und Abgabe von Gasen unter Verwendung neuartiger Gerüstmaterialien

-1-

Die vorliegende Erfindung betrifft das technische Feld der Speicherung von Gasen einschließlich von Methan und Wasserstoff sowie insbesondere die Technik der Brennstoffzellen. Die Erfindung betrifft insbesondere eine Vorrichtung, die ein metallorganisches Gerüstmaterial, umfassend Poren und zumindest ein Metallion sowie mindestens eine zweizähnige organische Verbindung, die vorzugsweise als Koordinationsverbindung an das besagte Metallion gebunden ist, zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas, umfasst. Weiterhin betrifft die vorliegende Erfindung eine Brennstoffzelle, die die oben beschriebene Vorrichtung umfasst.

Die Technologie der Brennstoffzellen ist als eine der Kerntechnologien des 21. Jahrhunderts anzusehen, beispielsweise in Bezug auf stationäre Anwendungen, wie beispielsweise Kraftwerke, sowie auf mobile Anwendungen, wie beispielsweise Personenkraftfahrzeuge, Busse, Lastwagen, sowie auf tragbare Geräte, wie beispielsweise Mobiltelefone, Laptops, sowie so genannte "Auxiliary Power Units" (APU), wie sie zum Beispiel zur Energieversorgung in Kraftwerken verwendet werden. Der Grund hierfür liegt in der erhöhten Effizienz von Brennstoffzellen im Vergleich zu normalen Verbrennungsmotoren. Weiterhin erzeugen Brennstoffzellen signifikant weniger Schadstoffausstoß. Ein Überblick über die momentane Entwicklung auf dem Gebiet der Brennstoffzellentechnologie kann in Hynek et al. "Int. J. Hydrogen Energy", 22, no. 6, S. 601 - 610 (1997), J.A. Kerres

DE 202 10 139 U



"Journal of Membrane Science", 185, 2001, S. 3 - 27 sowie in einem weiteren Übersichtsartikel von G. March in "Materials Today", 4, No. 2 (2001), S. 20 - 24 gefunden werden.

5 Die Verwendung von metallorganischen Komplexen zum Speichern von gasförmigen C<sub>1</sub> bis C<sub>4</sub>-Kohlehydraten ist in der EP-A 0 727 608 offenbart. Die dort offenbarten Komplexe sind jedoch schwer zu synthetisieren. Weiterhin ist die Speicherkapazität der beschriebenen Materialien gering, wenn nicht zu gering, für industrielle Anwendungen.

10

Ein weiterer Versuch, um Materialien, die zum Speichern von Gasen geeignet sind, bereitzustellen, ist die Verwendung von mit Alkalimetallen dotierten oder undotierten Kohlenstoff-Nanotubes. Ein Überblick über den momentanen Status der Forschung auf diesem Gebiet findet sich beispielsweise in Yang, "Carbon" 38 (2000), S. 623 - 641 und Cheng et al. "Science" 286, S. 1127 - 1129.

Angesichts des oben angeführten Stands der Technik besteht eine Aufgabe der vorliegenden Erfindung darin, eine Vorrichtung bereitzustellen, die besonders zum Speichern und/oder zur Aufnahme und/oder zur Abgabe von Gasen geeignet ist.

20

Diese Aufgabe wird dadurch gelöst, und die vorliegende Erfindung bezieht sich auf eine Vorrichtung zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas, enthaltend ein metallorganisches Gerüstmaterial, enthaltend Poren und zumindest ein Metallion sowie zumindest eine mindestens zweizähnige organische Verbindung, wobei diese organische Verbindung an das besagte Metallion angebunden ist, vorzugsweise über eine Koordinationsbindung.



Vorzugsweise handelt es sich hierbei um eine Brennstoffzelle, die ein metallorganisches Gerüstmaterial umfasst, wie es hier definiert ist.

Weiterhin betrifft die vorliegende Erfindung stationäre, mobile oder mobil tragbare Einrichtungen, die die erfindungsgemäße Vorrichtung bzw. Brennstoffzelle
umfassen, wie z.B. Kraftwerke, Personenkraftfahrzeuge, Lastwagen, Busse, Mobiltelefone und Laptops.

Das metallorganische Gerüstmaterial, welches Poren enthält, besteht zumindest aus mindestens einem Metallion sowie einer mindestens zweizähnigen organischen Verbindung, wobei die besagte zweizähnige organische Verbindung an das besagte Metallion angebunden ist, vorzugsweise über eine Koordinationsverbindung. Solche Materialien sind per se bekannt und beschrieben, beispielsweise in US 5,648,508, EP-A-0 709 253, J. Sol. State Chem., 152 (2000) S. 3-20, Nature 402 (1999), S. 276 ff., Topics in Catalysis 9 (1999), S. 105-111, Science 291 (2001), S. 1021-23. Ein kostengünstiges Verfahren für die Herstellung dieser Materialien ist in der DE 10111230.0 beschrieben. Der diesbezügliche Inhalt der oben beschriebenen Druckschriften ist hierbei vollständig in die vorliegende Anmeldung einzubeziehen.

20

30

10

Die metallorganischen Gerüstmaterialien, wie sie in der vorliegenden Erfindung benutzt werden, enthalten Poren, insbesondere Mikro- und/oder Mesoporen, wobei Mikroporen definiert sind als Poren, die einen Durchmesser von 2 nm oder weniger aufweisen. Mesoporen sind definiert als Poren, die einen Durchmesser von mehr als 2 nm und bis zu 50 nm aufweisen, wie es definiert ist in Pure Applied Chem. 45, S. 71 ff., insbesondere S. 79 (1976). Das Vorliegen von Mikro- und/oder der Mesoporen kann durch Sorptionsmessungen überprüft werden, mit Hilfe derer die Aufnahmekapazität der metallorganischen Gerüstmaterialien bezüglich Stickstoff bei 77 K gemessen werden kann, und zwar gemäß der DIN 66131 sowie der DIN 66134. Ein I-förmiger Verlauf der Isothermen weist auf die Anwesenheit von Mikroporen hin. In einer bevorzugten Ausführungsform beträgt

Q.Z. @050/5315r

die spezifische Oberfläche, wie sie gemäß Langmuir-Modell berechnet worden ist, vorzugsweise mehr als 5 m $^2$ /g, weiter bevorzugt mehr als 20 m $^2$ /g, weiter bevorzugt mehr als 50 m $^2$ /g, weiter besonders bevorzugt mehr als 500 m $^2$ /g, wobei die spezifische Oberfläche auch größer als 2000 m $^2$ /g sein kann.

5

Betreffend die metallische Komponente des metallorganischen Gerüstmaterials, wie es im Rahmen der vorliegenden Erfindung verwendet werden soll, sind insbesondere die Metallionen der Elemente der Gruppen Ia, IIa, IIIa, IVa bis VIIIa sowie Ib bis VIb des periodischen Systems der Elemente zu nennen. Dabei sind insbesondere zu nennen Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb und Bi, wobei Zn, Cu, Ni, Pd, Pt, Ru, Rh und Co besondere zu nennen: Mg²+, Ca²+, Sr²+, Ba²+, Sc³+, Y³+, Ti⁴+, Zr⁴+, Hr⁴+, V⁴+, V³+, V²+, Nb³+, Ta³+, Cr³+, Mo³+, Mn³+, Mn³+, Re³+, Re²+, Fe³+, Fe²+, Ru³+, Ru²+, Os³+, Os²+, Co³+, Co²+, Rh²+, Rh²+, Ir²+, Ir²+, Ni²-, Ni²+, Pd²+, Pd²+, Pd²+, Pt²-, Pt²-, Cu²+, Cu²+, Ag²+, Ag²+, Ag²+, Ag³+, Ag³+, Sh³+, Sb³+, Sb³

- 20 Bezüglich der bevorzugten Metallionen sowie bezüglich weiterer Details betreffend diese Metallionen wird insbesondere auf die EP-A 0 790 253 verwiesen, insbesondere auf S. 10, Zeilen 8-30 des Abschnittes "The Metal Ions". Dieser Abschnitt ist in die vorliegende Anmeldung vollumfänglich einzubeziehen.
- 25 Bezüglich der mindestens zweizähnigen organischen Verbindung, die dazu in der Lage sein muss, mit dem Metallion zu koordinieren, sind im Prinzip alle Verbindungen denkbar, die für diesen Zweck eingesetzt werden können und die die oben genannten Bedingungen erfüllen, insbesondere, die mindestens zweizähnig sind. Die organische Verbindung muss zumindest zwei Zentren besitzen, die dazu in der Lage sind, mit den Metallionen eine koordinative Bindung einzugehen, insbesondere mit den Metallen der oben angegebenen Gruppen. Bezüglich der minde-





stens zweizähnigen organischen Verbindungen sollen die folgenden Verbindungen besonders erwähnt werden, wobei diese Verbindungen aufweisen:

- i) eine Alkylgruppen-Unterstruktur mit 1 bis 10 Kohlenstoffatomen,
- eine Arylgruppen-Unterstruktur mit 1 bis 5 Phenylringen,
  - iiii) eine Alkyl- oder Arylamin-Unterstruktur, bestehend aus Alkylgruppen mit 1 bis 10 Kohlenstoffatomen oder Arylgruppen mit 1 bis 5 Phenylringen,

wobei die besagten Unterstrukturen zumindest eine mindestens zweizähnige funktionelle Gruppe "X" an sie gebunden haben, die kovalent an die Unterstruktur der besagte Verbindung angebunden ist, und wobei die Gruppe X ausgewählt wird aus der Gruppe bestehend aus

CO<sub>2</sub>H, CS<sub>2</sub>H, NO<sub>2</sub>, SO<sub>3</sub>H, Si(OH)<sub>3</sub>, Ge(OH)<sub>3</sub>, Sn(OH)<sub>3</sub>, Si(SH)<sub>4</sub>, Ge(SH)<sub>4</sub>, Is Sn(SH)<sub>3</sub>, PO<sub>3</sub>H, AsO<sub>3</sub>H, AsO<sub>4</sub>H, P(SH)<sub>3</sub>, As(SH)<sub>3</sub>, CH(RSH)<sub>2</sub>, C(RSH)<sub>3</sub>, CH(RNH<sub>2</sub>)<sub>2</sub>, C(RNH<sub>2</sub>)<sub>3</sub>, CH(ROH)<sub>2</sub>, C(ROH)<sub>3</sub>, CH(RCN)<sub>2</sub>, C(RCN)<sub>3</sub>, wobei R eine Alkylgruppe ist, die 1 bis 5 Kohlenstoffatome aufweist, oder eine Arylgruppe mit 1 bis 2 Phenylringen, und CH(SH)<sub>2</sub>, C(SH)<sub>3</sub>, CH(NH<sub>2</sub>)<sub>2</sub>, C(NH<sub>2</sub>)<sub>2</sub>, CH(OH)<sub>2</sub>, C(OH)<sub>3</sub>, CH(CN)<sub>2</sub> und C(CN)<sub>3</sub>.

20

Insbesondere sind zu nennen substituierte oder nicht-substituierte, mono- oder polynukleare aromatische Di-, Tri- oder Tetracarbonsäuren sowie substituierte oder unsubstituierte aromatische, zumindest ein Heteroatom enthaltende Di-, Tri- oder Tetracarbonsäuren. die einen oder mehrere Kerne umfassen.

25

Ein besonders bevorzugter Ligand ist die Terephthalsäure, und besonders bevorzugte Metallionen sind das Co<sup>2+</sup>- sowie das Zn<sup>2+</sup>-Ion.

Abgesehen von der zumindest zweizähnigen organischen Verbindung kann das metallorganische Gerüstmaterial, wie es im Zusammenhang mit der vorliegenden Erfindung verwendet wird, auch einen oder mehrere einzähnige Liganden enthal-





ten, wobei diese einzähnigen Liganden insbesondere von den folgenden Substanzen abgeleitet werden:

- a. Alkylamine und ihre entsprechenden Alkylammoniumsalze, enthaltend geradkettige oder verzweigte oder zyklische aliphatische Gruppen, die jeweils 1 bis 20 Kohlenstoffatome aufweisen (sowie ihre entsprechenden Ammoniumsalze):
  - Arylamine und deren entsprechende Arylammoniumsalze, aufweisend 1
     bis 5 Phenylringe;
- c. Alkylphosphoniumsalze, enthaltend unverzweigte, verzweigte oder zyklische aliphatische Gruppen, die jeweils 1 bis 20 Kohlenstoffatome aufweisen;
  - Arvlphosphoniumsalze mit 1 bis 5 Phenylringen;

=

5

20

25

- e. alkylische organische Säuren und deren entsprechende alkylische organi sche Anionen (sowie Salze), enthaltend unverzweigte, verzweigte oder zy klische aliphatische Gruppen mit 1 bis 20 Kohlenstoffatomen;
  - f. arylische organische Säuren und deren entsprechende arylorganische Anionen sowie Salze mit 1 bis 5 Phenylringen;
  - g. aliphatische Alkohole mit unverzweigten, verzweigten oder zyklischen aliphatischen Gruppen sowie aufweisend 1 bis 20 Kohlenstoffatome;
  - h. Arylalkohole mit 1 bis 5 Phenylringen;
  - anorganische Anionen ausgewählt aus der Gruppe umfassend:
     Sulfate, Nitrate, Nitrite, Sulfite, Bisulfite, Phosphate, Hydrogenphosphate,
     Dihydrogenphosphate, Diphosphate, Triphosphate, Phosphate, Phosphite,
     Chloride, Chlorate, Bromide, Bromate, Jodide, Jodate, Karbonate, Bikarbonate sowie die entsprechenden Säuren und Salze der vorstehend genannten Anionen,
- j. Ammoniak, Kohlenstoffdioxid, Methan, Sauerstoff, Ethylen, Hexan, Benzol, Toluol, Xylol, Chlorbenzol, Nitrobenzol, Naphthalen, Thiophen, Pyridin, Aceton, 1-2-Dichlorethan, Methylenchlorid, Tetrahydrofuran, Ethanolamin, Triethylamin sowie trifluoromethylsulfonische Säure.





Weitere Details betreffend die zumindest zweizähnige organische Verbindung sowie die einzähnigen Substanzen, von welchen die Liganden der metallorganischen Gerüstmaterialien, wie sie in der vorliegenden Verbindung verwendet werden, abgeleitet sind, können der EP-A 0 790 253 entnommen werden, deren diesbezüglicher Inhalt vollumfänglich in die vorliegende Anmeldung einzubeziehen ist.

Nachstehend findet sich eine Liste von Beispielen bereits synthetisierter und charakterisierter metallorganischer Gerüstmaterialien. Diese schließt neue isoreticulare metalorganische Gerüstmaterialien (IR-MOFs), die erfindungsgemäß eingesetzt
werden können, ein. Derartige Materialien besitzen untereinander die gleiche Gerüsttopologie jedoch unterschiedliche Porengrößen und Kristalldichten. Derartige
IR-MOFs werden u.a. in M. Eddouadi et al., Science 295 (2002) 469, beschrieben,
15 die voll umfänglich in den Kontext der vorliegenden Anmeldung durch Bezugnahme einsefüet wird.

Die verwendeten Lösungsmittel sind von besonderer Bedeutung für die Herstellung dieser Materialien und sind deshalb in nachstehender Tabelle ebenfalls aufgeführt. Die Werte der Zellen-Parameter (Winkel  $\alpha$ ,  $\beta$  and  $\gamma$  sowie die Zwischenräume a, b und c (in Angstrom)) wurden durch Röntgendiffraktometrie bestimmt und entsprechen der ebenfalls angegebenen Raumgruppe. - 8 -

DE 20210139.8 18.02,2003

| MOF-n                           | Bestandteile<br>Molverhältnisse<br>M+L                                                                      | Lösungs-<br>mittel<br>s | α     | β      | γ     | a      | ь      | c      | Raum-<br>gruppe |
|---------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------|-------|--------|-------|--------|--------|--------|-----------------|
| MOF-0                           | Zn(NO <sub>3</sub> ) <sub>2</sub> -6H <sub>2</sub> O<br>H <sub>3</sub> (BTC)                                | Ethanol                 | 90    | 90     | 120   | 16.711 | 16.711 | 14.189 | P6(3)/<br>Mcm   |
| MOF-2                           | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>(0.246 mmol)<br>H <sub>2</sub> (BDC)<br>0.241 mmol) | DMF<br>Toluol           | 90    | 102.8  | 90    | 6.718  | 15.49  | 12.43  | P2(1)/n         |
| MOF-3                           | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>(1.89 mmol)<br>H <sub>2</sub> (BDC)<br>(1.93mmol)   | DMF<br>MeOH             | 99.72 | 111.11 | 108.4 | 9.726  | 9.911  | 10.45  | P-1             |
| MOF-4                           | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>(1.00 mmol)<br>H <sub>3</sub> (BTC)<br>(0.5 mmol)   | Ethanol                 | 90    | 90     | 90    | 14.728 | 14.728 | 14.728 | P2(1)3          |
| MOF-5                           | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>(2.22 mmol)<br>H <sub>2</sub> (BDC)<br>(2.17 mmol)  | DMF<br>Chlorbenz<br>ol  | 90    | 90     | 90    | 25.669 | 25.669 | 25.669 | Fm-3m           |
| MOF-38                          | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>(0.27 mmol)<br>H <sub>3</sub> (BTC)<br>(0.15 mmol)  | DMF<br>Chlorbenz<br>ol  | 90    | 90     | 90    | 20.657 | 20.657 | 17.84  | 14cm            |
| MOF-31<br>Zn(ADC) <sub>2</sub>  | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>0.4 mmol<br>H <sub>2</sub> (ADC)<br>0.8 mmol        | Ethanol                 | 90    | 90     | 90    | 10.821 | 10.821 | 10.821 | Pn(-3)m         |
| MOF-12<br>Zn <sub>2</sub> (ATC) | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>0.3 mmol<br>H <sub>4</sub> (ATC)<br>0.15 mmol       | Ethanol                 | 90    | 90     | 90    | 15.745 | 16.907 | 18.167 | Pbca            |
| MOF-20<br>ZnNDC                 | Zn(NO <sub>1</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>0.37 mmol<br>H <sub>2</sub> NDC<br>0.36 mmol        | DMF<br>Chlorbenz<br>ol  | 90    | 92.13  | 90    | 8.13   | 16.444 | 12.807 | P2(1)/c         |
| MOF-37                          | Zn(NO <sub>1</sub> ) <sub>2</sub> -6H <sub>2</sub> O<br>0.2 mmol<br>H <sub>2</sub> NDC<br>0.2 mmol          | DEF<br>Chlor-<br>benzol | 72.38 | 83.16  | 84.33 | 9.952  | 11.576 | 15.556 | P-1             |
| MOF-8<br>Tb <sub>2</sub> (ADC)  | Tb(NO <sub>3</sub> ) <sub>3</sub> ·5H <sub>2</sub> O<br>0.10 mmol<br>H <sub>2</sub> ADC<br>0.20 mmol        | DMSO<br>MeOH            | 90    | 115.7  | 90    | 19.83  | 9.822  | 19.183 | C2/c            |
| MOF-9<br>Tb <sub>2</sub> (ADC)  | Tb(NO <sub>3</sub> ) <sub>3</sub> ·5H <sub>2</sub> O<br>0.08 mmol<br>H <sub>2</sub> ADB<br>0.12 mmol        | DMSO                    | 90    | 102.09 | 90    | 27.056 | 16.795 | 28.139 | C2/c            |
| MOF-6                           | Tb(NO <sub>3</sub> ) <sub>3</sub> ·5H <sub>2</sub> O<br>0.30 mmol<br>H <sub>2</sub> (BDC)<br>0.30 mmol      | DMF<br>McOH             | 90    | 91.28  | 90    | 17.599 | 19.996 | 10.545 | P21/c           |
| MOF-7                           | Tb(NO <sub>3</sub> ) <sub>3</sub> ·5H <sub>2</sub> O<br>0.15 mmol                                           | H <sub>2</sub> O        | 102.3 | 91.12  | 101.5 | 6.142  | 10.069 | 10.096 | P-1             |

20.02.03

DE 20210139.8

18.02.2003

|                                            | H₂(BDC)<br>0.15 mmol                                                                                    |                                                           |    |       |     |        |        |        |             |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----|-------|-----|--------|--------|--------|-------------|
| MOF-69A                                    | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>0.083 mmol<br>4,4'BPDC<br>0.041 mmol            | DEF<br>H <sub>2</sub> O <sub>2</sub><br>MeNH <sub>2</sub> | 90 | 111.6 | 90  | 23,12  | 20.92  | 12     | C2/c        |
| MOF-69B                                    | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>0.083 mmol<br>2,6-NCD<br>0.041 mmol             | DEF<br>H <sub>2</sub> O <sub>2</sub><br>MeNH <sub>2</sub> | 90 | 95.3  | 90  | 20.17  | 18.55  | 12.16  | C2/c        |
| MOF-11<br>Cu₂(ATC)                         | Cu(NO <sub>1</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.47 mmol<br>H <sub>2</sub> ATC<br>0.22 mmol  | H <sub>2</sub> O                                          | 90 | 93.86 | 90  | 12.987 | 11.22  | 11.336 | C2/c        |
| MOF-11<br>Cu <sub>2</sub> (ATC)<br>dehydr. |                                                                                                         |                                                           | 90 | 90    | 90  | 8.4671 | 8.4671 | 14.44  | P42/<br>mmc |
| MOF-14<br>Cu <sub>3</sub> (BTB)            | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.28 mmol<br>H <sub>3</sub> BTB<br>0.052 mmol | H <sub>2</sub> O<br>DMF<br>EtOH                           | 90 | 90    | 90  | 26.946 | 26.946 | 26.946 | lm-3        |
| MOF-32<br>Cd(ATC)                          | Cd(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.24 mmol<br>H <sub>4</sub> ATC<br>0.10 mmol    | H <sub>2</sub> O<br>NaOH                                  | 90 | 90    | 90  | 13.468 | 13.468 | 13.468 | P(-4)3m     |
| MOF-33<br>Zn <sub>2</sub> (ATB)            | ZnCl <sub>2</sub><br>0.15 mmol<br>H <sub>4</sub> ATB<br>0.02 mmol                                       | H <sub>2</sub> O<br>DMF<br>EtOH                           | 90 | 90    | 90  | 19.561 | 15.255 | 23.404 | lmma        |
| MOF-34<br>Ni(ATC)                          | Ni(NO <sub>3</sub> ) <sub>2</sub> -61I <sub>2</sub> O<br>0.24 mmol<br>H <sub>4</sub> ATC<br>0.10 mmol   | H <sub>2</sub> O<br>NaOH                                  | 90 | 90    | 90  | 10.066 | 11.163 | 19.201 | P2,2,2,     |
| MOF-36<br>Zn <sub>2</sub> (MTB)            | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.20 mmol<br>H <sub>4</sub> MTB<br>0.04 mmol    | H₂O<br>DMF                                                | 90 | 90    | 90  | 15.745 | 16.907 | 18.167 | Pbca        |
| MOF-39<br>Zn <sub>3</sub> O(HBTB)          | Zn(NO <sub>3</sub> ) <sub>2</sub> 4H <sub>2</sub> O<br>0.27 mmol<br>H <sub>3</sub> BTB<br>0.07 mmol     | H <sub>2</sub> O<br>DMF<br>EtOH                           | 90 | 90    | 90  | 17.158 | 21.591 | 25.308 | Pnma        |
| NO305                                      | FeCl <sub>2</sub> ·4H <sub>2</sub> O<br>5.03 mmol<br>Amcisensäure<br>86.90 mmol                         | DMF                                                       | 90 | 90    | 120 | 8.2692 | 8.2692 | 63.566 | R-3c        |
| NO306A                                     | FcCl <sub>2</sub> ·4H <sub>2</sub> O<br>5.03 mmol<br>Ameisensäure<br>86.90 mmol                         | DEF                                                       | 90 | 90    | 90  | 9.9364 | 18.374 | 18.374 | Pbcn        |

DE 20210139.8 18.02,2003



- 10 -

| NO29                                              | Mn(Ac)2·4H2O                                                         | DMF                           | 120   | 90     | 90      | 14.16  | 33.521   | 33.521 | P-1     |
|---------------------------------------------------|----------------------------------------------------------------------|-------------------------------|-------|--------|---------|--------|----------|--------|---------|
| MOF-0                                             | 0.46 mmol                                                            |                               |       |        |         |        |          |        |         |
| ähnlich                                           | H <sub>2</sub> BTC                                                   | 1 1                           |       |        |         |        |          |        |         |
| 1                                                 | 0.69 mmol                                                            | 1 1                           |       |        |         |        |          |        |         |
| BPR48                                             | Zn(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O                  | DMSO                          | 90    | 90     | 90      | 14.5   | 17.04    | 18.02  | Pbca    |
| A2                                                | 0.012 mmol                                                           | Toluol                        |       |        |         |        |          |        |         |
| 1 1                                               | H <sub>2</sub> BDC                                                   |                               |       | l '    |         |        | i '      |        |         |
| 1                                                 | 0.012 mmol                                                           | 1 1                           |       |        |         |        | 1        |        |         |
| BPR69                                             | Cd(NO <sub>1</sub> ) <sub>2</sub> 4H <sub>2</sub> O                  | DMSO                          | 90    | 98.76  | 90      | 14.16  | 15.72    | 17.66  | Cc      |
| BI                                                | 0.0212 mmol                                                          |                               |       |        |         |        |          | 11100  |         |
| 2.                                                | H₂BDC                                                                | 1 1                           |       |        | l       | 1      |          |        |         |
| 1                                                 | 0.0428 mmol                                                          | 1 1                           |       | 1      | ì       | l      | 1        | 1 1    |         |
| BPR92                                             | Co(NO <sub>1</sub> ) <sub>2</sub> ·6H <sub>2</sub> O                 | NMP                           | 106.3 | 107.63 | 107.2   | 7.5308 | 10.942   | 11.025 | Pl      |
| A2                                                | 0.018 mmol                                                           | 14144                         | 100.5 | 107.03 | 107.2   | 7.5500 | 10.742   | 11.025 |         |
|                                                   | H <sub>2</sub> BDC                                                   | 1 1                           |       |        | l       | l l    | 1        |        |         |
|                                                   | 0.018 mmol                                                           |                               |       |        | )       | 1      | l        | ) )    |         |
| BPR95                                             | Cd(NO <sub>3</sub> ) <sub>2</sub> 4H <sub>2</sub> O                  | NMP                           | 90    | 112.8  | 90      | 14.460 | 11.085   | 15.829 | P2(1)/n |
| C5                                                | 0.012 mmol                                                           | NMP                           | 90    | 112.8  | 90      | 14.400 | 11.065   | 15.829 | P2(1)/n |
| 0                                                 | H <sub>2</sub> BDC                                                   | l i                           |       |        | 1       | 1      | 1        |        |         |
| 1 1                                               | 0.36 mmol                                                            | 1                             |       |        |         | 1      |          | 1      |         |
| 0.0110                                            |                                                                      | DMF                           | 90    | 105.29 | 90      | 15.259 | 14.816   | 14.13  | DO(1)   |
| Cu C <sub>6</sub> H <sub>4</sub> O <sub>6</sub>   | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O               | Chlorbe                       | 90    | 105.29 | 90      | 15.259 | 14.816   | 14.13  | P2(1)/c |
| 1 1                                               | 0.370 mmol                                                           | nzol                          |       |        | 1       | Ì      |          |        |         |
| l I                                               | H <sub>2</sub> BDC(OH) <sub>2</sub>                                  | nzoi                          |       | 1      |         |        |          | 1      |         |
| I                                                 | 0.37 mmol                                                            |                               |       | L      | <u></u> | L      | <u> </u> |        |         |
| M(BTC)                                            | Co(SO <sub>4</sub> ) H <sub>2</sub> O                                | DMF                           |       | wic MC | JF-0    |        | 1        |        |         |
| MOF-0                                             | 0.055 mmol                                                           | 1                             |       |        |         |        | l        |        |         |
| ähnlich                                           | H <sub>3</sub> BTC                                                   |                               |       |        |         |        |          |        |         |
|                                                   | 0.037 mmol                                                           |                               |       |        |         | T      |          |        |         |
| Tb(C₀H₄O₀)                                        | Tb(NO <sub>3</sub> ) <sub>3</sub> ·5H <sub>2</sub> O                 | DMF                           | 104.6 | 107.9  | 97.147  | 10.491 | 10.981   | 12.541 | P-1     |
| 1 1                                               | 0.370 mmol                                                           | Chlorbe<br>nzol               |       | j      | j       | ľ      | l        |        |         |
| 1 1                                               | $H_2(C_6H_4O_6)$                                                     | nzoi                          |       |        | 1       | ł      |          |        |         |
|                                                   | 0.56 mmol                                                            | L                             |       | ļ      |         |        |          |        |         |
| Zn (C <sub>2</sub> O <sub>4</sub> )               | ZnCl <sub>2</sub>                                                    | DMF                           | 90    | 120    | 90      | 9.4168 | 9.4168   | 8.464  | P(-3)1m |
| ! !                                               | 0.370 mmol                                                           | Chlorbe                       |       |        | ŀ       |        | 1        |        |         |
| 1 (                                               | Oxalsāure                                                            | RZOI                          |       | ĺ      |         | l      |          |        |         |
| 1 1                                               | 0.37 mmol                                                            |                               |       | [      |         |        |          |        |         |
| Co(CHO)                                           | Co(NO <sub>1</sub> ) <sub>2</sub> ·5H <sub>2</sub> O                 | DMF                           | 90    | 91.32  | 90      | 11.328 | 10.049   | 14.854 | P2(1)/n |
| CO(CHO)                                           | 0.043 mmol                                                           | DIVIE                         | 90    | 91.32  | 90      | 11.328 | 10.049   | 14.834 | P2(1)/n |
| 1 1                                               | Ameisensäure                                                         |                               |       | ł      | 1       | }      | ł        |        |         |
| 1 1                                               | 1.60 mmol                                                            |                               |       |        | 1       | 1      |          |        |         |
| CHCITO                                            |                                                                      | DMF                           | 90    | 120    | 90      | 0.51(0 | 0.5160   | 20.674 |         |
| Cd(CHO)                                           | Cd(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.185 mmol   | DMF                           | 90    | 120    | 90      | 8.5168 | 8.5168   | 22.674 | R-3c    |
| 1 1                                               | Ameisensäure                                                         | 1                             |       | }      | 1       | 1      | 1        | 1      |         |
|                                                   | 0.185 mmol                                                           | 1                             |       |        | l       | 1      | l        |        |         |
| Cu(C <sub>3</sub> H <sub>2</sub> O <sub>4</sub> ) |                                                                      | DMF                           | 90    | 90     | 90      | 8.366  | 8.366    | 11.919 | P43     |
| Cu(C3F12O4)                                       | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.043 mmol | DIVIE                         | J 70  | 70     | 70      | 0.300  | 0.300    | 11.919 | F43     |
|                                                   | 0.043 mmoi<br>Malonsaure                                             | 1                             |       | 1      | 1       | 1      | 1        |        |         |
|                                                   |                                                                      | 1                             |       | ١      | [       | 1      | 1        | 1      |         |
| 7 0100                                            | 0.192 mmol                                                           | DIAC                          | - 00  | 95,902 | 90      | 10.504 | 16 100   | 1      |         |
| Zn <sub>6</sub> (NDC) <sub>5</sub><br>MOF-48      | Zn(NO <sub>3</sub> ) <sub>2</sub> -6H <sub>2</sub> O<br>0.097 mmol   | DMF<br>Chlorbe                | 90    | 95.902 | 90      | 19.504 | 16.482   | 14.64  | C2/m    |
| MUF-48                                            | 0.097 mmoi                                                           | nzol                          |       |        | 1       | 1      | 1        |        |         |
|                                                   |                                                                      | H <sub>2</sub> O <sub>2</sub> |       | l      |         | l      | l        |        |         |
|                                                   | 0.069 mmol                                                           | 11202                         | L     | L      |         |        |          |        |         |

DE 20210139.8 18.02.2003 20.02.03

- 11 -

| MOF-47                             | Zn(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O                  | DMF                           | 90 | 92.55 | 90  | 11.303  | 16.029 | 17.535   | P2(1)/c   |
|------------------------------------|----------------------------------------------------------------------|-------------------------------|----|-------|-----|---------|--------|----------|-----------|
|                                    | 0.185 mmol                                                           | Chlorbe                       |    |       |     |         |        |          |           |
|                                    | H <sub>2</sub> (BDC[CH <sub>3</sub> ] <sub>4</sub> )                 | nzol                          |    |       |     |         |        |          | 1         |
|                                    | 0.185 mmol                                                           | H <sub>2</sub> O <sub>2</sub> |    |       |     |         |        |          |           |
| MO25                               | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O               | DMF                           | 90 | 112.0 | 90  | 23.880  | 16.834 | 18.389   | P2(1)/c   |
|                                    | 0.084 mmol                                                           |                               |    |       |     | 1       |        |          |           |
|                                    | BPhDC                                                                | 1 1                           |    |       |     | 1       |        |          |           |
|                                    | 0.085 mmol                                                           |                               |    |       |     |         |        |          |           |
| Cu-Thio                            | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O               | DEF                           | 90 | 113.6 | 90  | 15.4747 | 14.514 | 14.032   | P2(1)/c   |
|                                    | 0.084 mmol                                                           | 1                             |    |       |     | 1       |        |          |           |
|                                    | Thiophen-                                                            |                               |    |       |     |         |        |          |           |
|                                    | dicarbonsăure                                                        |                               |    |       |     | 1       |        | i        | 1         |
|                                    | 0.085 mmol                                                           |                               |    |       |     |         |        |          |           |
| CIBDCI                             | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O0.0            | DMF                           | 90 | 105.6 | 90  | 14.911  | 15.622 | 18.413   | C2/c      |
|                                    | 84 mmol                                                              |                               |    |       |     |         |        |          |           |
|                                    | H <sub>2</sub> (BDCCl <sub>2</sub> )                                 |                               |    |       |     | l       |        |          |           |
|                                    | 0.085 mmol                                                           |                               |    |       |     |         |        |          |           |
| MOF-101                            | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O               | DMF                           | 90 | 90    | 90  | 21.607  | 20.607 | 20.073   | Fm3m      |
|                                    | 0.084 mmol                                                           |                               |    |       | 1   | l       |        |          | 1         |
|                                    | BrBDC                                                                |                               |    |       | ł   | 1       |        |          | !         |
|                                    | 0.085 mmol                                                           |                               |    |       |     |         |        |          |           |
| Zn <sub>3</sub> (BTC) <sub>2</sub> | ZnCl <sub>2</sub>                                                    | DMF                           | 90 | 90    | 90  | 26.572  | 26.572 | 26.572   | Fm-3m     |
|                                    | 0.033 mmol                                                           | EtOH-                         |    |       | ŀ   | 1.      |        |          | 1         |
|                                    | H <sub>3</sub> BTC                                                   | Basenzu                       |    |       |     | 1       |        |          |           |
|                                    | 0.033 mmol                                                           | gabe                          |    |       |     | İ       |        |          | l         |
| MOF-j                              | Co(CH <sub>3</sub> CO <sub>2</sub> ) <sub>2</sub> ·4H <sub>2</sub> O | H <sub>2</sub> O              | 90 | 112.0 | 90  | 17.482  | 12.963 | 6.559    | C2        |
|                                    | (1.65 mmol)                                                          |                               |    |       |     | ĺ       |        |          | ĺ         |
|                                    | H₃(BZC)                                                              |                               |    |       | l   |         |        |          |           |
|                                    | (0.95 mmol)                                                          |                               |    |       |     | 1       |        |          |           |
| MOF-n                              | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O                 | Ethanol                       | 90 | 90    | 120 | 16.711  | 16.711 | 14.189   | P6(3)/mcm |
|                                    | H <sub>3</sub> (BTC)                                                 |                               |    |       |     |         |        |          | ·         |
| PbBDC                              | Pb(NO <sub>3</sub> ) <sub>2</sub>                                    | DMF                           | 90 | 102.7 | 90  | 8.3639  | 17.991 | 9.9617   | P2(1)/n   |
|                                    | (0.181 mmol)                                                         | Ethanol                       |    |       |     | 1       | l      | ł        | i         |
|                                    | H₂(BDC)                                                              |                               |    | 1     |     |         | i      | l        | l         |
|                                    | (0.181 mmol)                                                         |                               |    |       |     |         |        |          | l         |
| Znhex                              | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O                 | DMF                           | 90 | 90    | 120 | 37.1165 | 37.117 | 30.019   | P3(1)c    |
|                                    | (0.171 mmol)                                                         | p-Xylol                       |    |       |     |         |        | l        | 1         |
| 1                                  | H <sub>3</sub> BTB                                                   | Ethanol                       |    |       |     |         |        | ļ        |           |
|                                    | (0.114 mmol)                                                         |                               |    |       |     |         |        |          |           |
| AS16                               | FeBr <sub>2</sub>                                                    | DMF                           | 90 | 90.13 | 90  | 7.2595  | 8.7894 | 19.484   | P2(1)c    |
|                                    | 0.927 mmol                                                           | Wasserf                       |    |       | ļ   |         | 1      | 1        |           |
|                                    | H₂(BDC)                                                              | r.                            |    | l     | l   | 1       | l      |          | l         |
|                                    | 0.927 mmol                                                           | L                             |    |       |     | 1       |        |          |           |
| AS27-2                             | FeBr <sub>2</sub>                                                    | DMF                           | 90 | 90    | 90  | 26.735  | 26.735 | 26.735   | Fm3m      |
|                                    | 0.927 mmol                                                           | Wasserf                       |    | l     | 1   | 1       | 1      | l        | İ         |
|                                    | H <sub>3</sub> (BDC)                                                 | r.                            |    | ĺ     | 1   | (       | 1      | ĺ        | 1         |
|                                    | 0.464 mmol                                                           |                               |    |       |     |         |        | <u> </u> | L         |
| AS32                               | FeCl <sub>3</sub>                                                    | DMF                           | 90 | 90    | 120 | 12.535  | 12.535 | 18.479   | P6(2)c    |
|                                    | 1.23 mmol                                                            | wasserfr                      |    | 1     | 1   | 1       | 1      | 1        |           |
|                                    | H₂(BDC)                                                              |                               |    |       | 1   | 1       | l      | 1        | 1         |
|                                    | 1,23 mmol                                                            | Ethanol                       |    | ı     | 1   | 1       | ı      | l        | I         |

O.Z. 0050/53151/Gro DE 20210139.8

18.02.2003

20.02.03

- 12 -

| AS54-3                   | FeBr <sub>2</sub>                                                 | DMF               | 90    | 109.98  | 90     | 12.019  | 15.286   | 14.399 | C2                |
|--------------------------|-------------------------------------------------------------------|-------------------|-------|---------|--------|---------|----------|--------|-------------------|
|                          | 0.927                                                             | wasserfr          |       |         |        |         |          |        |                   |
|                          | BPDC                                                              |                   |       |         |        |         |          |        |                   |
| i                        | 0.927 mmol                                                        | n-                |       |         |        |         |          |        |                   |
|                          |                                                                   | Propano<br>1      |       |         |        | İ       |          |        |                   |
| AS61-4                   | FeBr <sub>2</sub>                                                 | Pyridin           | 90    | 90      | 120    | 13.017  | 13.017   | 14.896 | P6(2)c            |
|                          | 0.927 mmol                                                        | wasserfr          |       | 1       |        |         |          | - 1    |                   |
|                          | m-BDC                                                             |                   |       |         |        |         |          |        |                   |
|                          | 0.927 mmol                                                        |                   |       |         |        |         |          |        |                   |
| AS68-7                   | FeBr <sub>2</sub>                                                 | DMF               | 90    | 90      | 90     | 18.3407 | 10.036   | 18.039 | Pca2 <sub>1</sub> |
| 1                        | 0.927 mmol                                                        | wasserfr          |       | l       |        |         |          |        |                   |
| 1                        | m-BDC                                                             | l. : l            |       |         |        |         |          |        |                   |
|                          | 1.204 mmol                                                        | Pyridin           |       |         |        |         |          |        |                   |
| Zn(ADC)                  | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O              | DMF               | 90    | 99.85   | 90     | 16.764  | 9.349    | 9.635  | C2/c              |
|                          | 0.37 mmol                                                         | Chlorbe           |       | l       |        |         |          | 1 1    |                   |
| 1                        | H₂(ADC)                                                           | nzol              |       | l       |        |         |          |        |                   |
| 1100.10                  | 0.36 mmol                                                         | I                 |       |         |        | 1001-   | 1000     | 10165  | - ni              |
| MOF-12                   | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O              | Ethanol           | 90    | 90      | 90     | 15.745  | 16.907   | 18.167 | Pbca              |
| Zn <sub>2</sub> (ATC)    | 0.30 mmol                                                         | 1 1               |       |         |        |         | 1        |        |                   |
|                          | H <sub>4</sub> (ATC)                                              | 1 1               |       |         |        |         | l        |        |                   |
| MOF-20                   | 0.15 mmol                                                         | DMF               | 90    | 92.13   | 90     | 8.13    | 16.444   | 12.807 | DO(1)/-           |
| ZnNDC                    | Zn(NO <sub>3</sub> ) <sub>2</sub> -6H <sub>2</sub> O<br>0.37 mmol | Chlorbe           | 90    | 92.13   | 90     | 8.13    | 16.444   | 12.807 | P2(1)/c           |
| ZIINDC                   | H <sub>2</sub> NDC                                                | nzol              |       |         | i      |         | ł        |        |                   |
|                          | 0.36 mmol                                                         | 11201             |       |         | l      | l       |          |        |                   |
| MOF-37                   | Zn(NO <sub>1</sub> ) <sub>2</sub> ·6H <sub>2</sub> O              | DEF               | 72.38 | 83.16   | 84.33  | 9.952   | 11.576   | 15,556 | P-1               |
| MOF-37                   | 0.20 mmol                                                         | Chlorbe           | 12.30 | 83.10   | 04.55  | 9.932   | 11.570   | 13.330 | 6-1               |
|                          | H <sub>2</sub> NDC                                                | nzol              |       |         |        | 1       | 1        |        |                   |
|                          | 0.20 mmol                                                         | 1                 |       |         | ļ      | i .     |          |        |                   |
| Zn(NDC)                  | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O              | DMSO              | 68.08 | 75.33   | 88.31  | 8,631   | 10.207   | 13.114 | P-1               |
| (DMSO)                   | H <sub>2</sub> NDC                                                | 5                 | 00.00 |         | 0      |         | 1.0.20   | 10.111 | ` '               |
| Zn(NDC)                  | Zn(NO <sub>1</sub> ) <sub>2</sub> -6H <sub>2</sub> O              |                   | 90    | 99.2    | 90     | 19.289  | 17.628   | 15.052 | C2/c              |
|                          | H <sub>2</sub> NDC                                                | 1 1               |       |         |        |         |          |        |                   |
| Zn(HPDC)                 | Zn(NO <sub>1</sub> ) <sub>2</sub> -4H <sub>2</sub> O              | DMF               | 107.9 | 105.06  | 94.4   | 8.326   | 12.085   | 13.767 | P-1               |
| ` ′                      | 0.23 mmol                                                         | H <sub>2</sub> O  |       | i       | ĺ      | l       | ĺ        |        |                   |
|                          | H <sub>2</sub> (HPDC)                                             | 1 1               |       | 1       |        | l       |          | 1      |                   |
|                          | 0.05 mmol                                                         | i I               |       |         | 1      |         | l        |        |                   |
| Co(HPDC)                 | Co(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O              | DMF               | 90    | 97.69   | 90     | 29.677  | 9.63     | 7.981  | C2/c              |
|                          | 0.21 mmol                                                         | H <sub>2</sub> O/ |       | l       | Ì      | l       | 1        |        |                   |
|                          | H₂ (HPDC)                                                         | Ethanol           |       | 1       |        |         | 1        |        | i                 |
|                          | 0.06 mmol                                                         |                   |       |         |        |         |          |        |                   |
| Zn <sub>3</sub> (PDC)2.5 | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O              | DMF/              | 79.34 | 80.8    | 85.83  | 8.564   | 14.046   | 26.428 | P-1               |
|                          | 0.17 mmol                                                         | ClBz              |       | i       | l      | 1       | l        | 1      | 1                 |
|                          | H₂(HPDC)                                                          | H <sub>2</sub> 0/ |       | 1       | 1      | l       | 1        | l      |                   |
|                          | 0.05 mmol                                                         | TEA               |       |         |        |         | L        |        |                   |
| Cd₂ (TPDC)2              | Cd(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O              | Methano           | 70.59 | 72.75   | 87.14  | 10.102  | 14.412   | 14.964 | P-1               |
|                          | 0.06 mmol                                                         | I/CHP             |       |         | ĺ      | ĺ       | 1        | 1      | l                 |
|                          | H₂(HPDC)                                                          | H <sub>2</sub> O  |       | 1       | l      | l       | l        | 1      |                   |
|                          | 0.06 mmol                                                         | 1                 |       | <b></b> |        | L       | <u> </u> | l      | ļ                 |
| Tb(PDC)1.5               | Tb(NO <sub>3</sub> ) <sub>3</sub> ·511 <sub>2</sub> O             | DMF               | 109.8 | 103.61  | 100.14 | 9.829   | 12.11    | 14.628 | P-1               |
|                          | 0.21 mmol                                                         | H <sub>2</sub> O/ |       | 1       |        | l       | l        | 1      | Ì                 |
|                          | H₂(PDC)                                                           | Ethanol           |       | 1       | 1      | 1       | 1        | l      |                   |
|                          | 0.034 mmol                                                        | 1                 |       | L       | I      |         |          | l      |                   |

DE 20210139.8

18.02.2003

- 13 -

| ZnDBP                  | Zn(NO <sub>1</sub> ) <sub>2</sub> -6H <sub>2</sub> O | McOH                                     | 90 | 93,67       | 90          | 9.254    | 10,762 | 27.93  | P2/n  |
|------------------------|------------------------------------------------------|------------------------------------------|----|-------------|-------------|----------|--------|--------|-------|
| ZRUBP                  | 0.05 mmol                                            | Meon                                     | 90 | 93.07       | 90          | 9.234    | 10.762 | 21.93  | F211  |
|                        | Dibenzylphosphat                                     | i i                                      |    |             |             |          |        |        |       |
|                        | 0.10 mmol                                            | 1 1                                      |    |             |             | 1        |        |        |       |
| Zn <sub>3</sub> (BPDC) | ZnBr <sub>2</sub>                                    | DMF                                      | 90 | 102.76      | 90          | 11.49    | 14.79  | 19.18  | P21/n |
| Zn <sub>3</sub> (BPDC) |                                                      | DMF                                      | 90 | 102.76      | 90          | 11.49    | 14.79  | 19.18  | PZI/M |
|                        | 0.021 mmol                                           | 1 1                                      |    |             |             |          |        |        |       |
| 1                      | 4,4'BPDC                                             | 1                                        |    |             |             |          |        |        |       |
| - Cinno                | 0.005 mmol                                           |                                          |    | 05.05       |             |          |        | 14.01  | 2011  |
| CdBDC                  | Cd(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O | DMF                                      | 90 | 95.85       | 90          | 11.2     | 11.11  | 16.71  | P21/n |
|                        | 0.100 mmol                                           | Na <sub>2</sub> SiO <sub>3</sub><br>(aq) |    |             |             | l        |        |        |       |
| !                      | H₂(BDC)                                              | (aq)                                     |    |             | !           |          |        |        |       |
| 01 770                 | 0.401 mmol                                           | D.C.                                     | 90 | 101.1       | 90          | 12.00    | 10.25  | 1401   | 627   |
| Cd-mBDC                | Cd(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O | DMF                                      | 90 | 101.1       | 90          | 13.69    | 18.25  | 14.91  | C2/c  |
|                        | 0.009 mmol                                           | MeNH <sub>2</sub>                        |    |             |             |          |        |        |       |
|                        | H <sub>2</sub> (mBDC)                                | 1 1                                      |    |             | 1           | 1        |        |        |       |
|                        | 0.018 mmol                                           | <del>   </del>                           |    |             | <del></del> |          |        |        |       |
| Zn₄OBNDC               | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | DEF                                      | 90 | 90          | 90          | 22.35    | 26.05  | 59.56  | Fmmm  |
|                        | 0.041 mmol                                           | McNH <sub>2</sub>                        |    |             | ĺ           | 1 1      |        |        |       |
|                        | BNDC                                                 | H <sub>2</sub> O <sub>2</sub>            |    |             |             |          |        |        |       |
| Eu(TCA)                | Eu(NO <sub>3</sub> ) <sub>3</sub> ·6H <sub>2</sub> O | DMF                                      | 90 | 90          | 90          | 23.325   | 23.325 | 23.325 | Pm-3n |
| ł                      | 0.14 mmol                                            | Chlorbe                                  |    | ł           | 1           |          |        |        |       |
| l                      | TCA                                                  | nzol                                     |    | ł           | ł           |          |        |        |       |
|                        | 0.026 mmol                                           |                                          |    |             |             |          |        |        |       |
| Tb(TCA)                | Tb(NO₃)₃-6H₂O                                        | DMF                                      | 90 | 90          | 90          | 23.272   | 23.272 | 23.372 | Pm-3n |
| ì                      | 0.069 mmol                                           | Chlorbe                                  |    |             | 1           | 1        | i      |        |       |
| l                      | TCA                                                  | nzol                                     |    |             |             | 1        | }      |        |       |
|                        | 0.026 mmol                                           | 1                                        |    |             |             | <u> </u> |        |        |       |
| Formiat                | Ce(NO <sub>3</sub> ) <sub>3</sub> -6H <sub>2</sub> O | H <sub>2</sub> O                         | 90 | 90          | 120         | 10.668   | 10.667 | 4.107  | R-3m  |
|                        | 0.138 mmol                                           | Ethanol                                  |    | ì           | 1           | ]        | 1      |        |       |
| l                      | Ameisensäure                                         | 1 1                                      |    | 1           |             | 1        | 1      |        |       |
|                        | 0.43 mmol                                            |                                          |    |             |             | l        |        |        |       |
| l                      | FeCl <sub>2</sub> -4H <sub>2</sub> O                 | DMF                                      | 90 | 90          | 120         | 8.2692   | 8.2692 | 63.566 | R-3c  |
| l                      | 5.03 mmol                                            | 1 1                                      |    | [           | 1           | ľ        | ĺ      |        |       |
| ì                      | Ameisensäure                                         | 1 1                                      |    | ĺ           | 1           | l        | }      |        |       |
|                        | 86.90 mmol                                           |                                          |    | <del></del> |             |          | L      |        |       |
| 1                      | FeCl <sub>2</sub> ·4H <sub>2</sub> O                 | DEF                                      | 90 | 90          | 90          | 9.9364   | 18.374 | 18.374 | Pbcn  |
| 1                      | 5.03 mmol                                            |                                          |    | 1           | l           | ł        | ł      | 1      |       |
| 1                      | Ameisensäure                                         |                                          |    | 1           | ļ           | l .      | l      | 1      |       |
| <u> </u>               | 86.90 mmol                                           | DEE                                      |    | H           |             | 1 0 325  | 0.225  |        | P. 24 |
| 1                      | FeCl <sub>2</sub> ·4H <sub>2</sub> O                 | DEF                                      | 90 | 90          | 90          | 8.335    | 8.335  | 13.34  | P-31c |
| 1                      | 5.03 mmol                                            | 1                                        |    | l           | l           | l        | 1      | 1      |       |
| 1                      | Ameisensäure                                         | 1                                        |    | l           | 1           | 1        | l      |        |       |
| NO336                  | 86.90 mmol                                           | -                                        |    |             |             | 0.774    | 11.000 | 0.2205 |       |
| NO330                  | FeCl <sub>2</sub> ·4H <sub>2</sub> O                 | Form-<br>amid                            | 90 | 90          | 90          | 8.7749   | 11.655 | 8.3297 | Pnna  |
| )                      | 0.50 mmol                                            | amid                                     |    | 1           | 1           | l        | ļ      |        |       |
|                        | Ameisensäure                                         |                                          |    | i           | 1           | 1        | 1      |        |       |
|                        | 8.69 mmol                                            |                                          |    | L           | -           |          |        |        |       |
| NO332                  | FeCl <sub>2</sub> 4H <sub>2</sub> O                  | DIP                                      | 90 | 90          | 90          | 10.0313  | 18.808 | 18.355 | Pbcn  |
| i                      | 0.50 mmol                                            | 1                                        |    | 1           | l           | 1        | 1      |        |       |
| 1                      | Ameisensäure                                         |                                          |    | 1           |             | i        |        | 1      |       |
| L                      | 8.69 mmol                                            |                                          |    | L           |             | <u></u>  |        | L      |       |

- 14 -

DE 20210139.8

18.02.2003

| NO333                                                                     | FeCl <sub>2</sub> ·4H <sub>2</sub> O<br>0.50 mmol<br>Ameisensäure<br>8.69 mmol                            | DBF                        | 90  | 90     | 90 | 45.2754 | 23.861 | 12.441 | Cmcm    |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------|-----|--------|----|---------|--------|--------|---------|
| NO335                                                                     | FcCl <sub>2</sub> ·4H <sub>2</sub> O<br>0.50 mmol<br>Ameisensäure<br>8.69 mmol                            | CHF                        | 90  | 91.372 | 90 | 11.5964 | 10.187 | 14.945 | P21/n   |
| NO336                                                                     | FeCl <sub>2</sub> ·4H <sub>2</sub> O<br>0.50 mmol<br>Ameisensäure<br>8.69 mmol                            | MFA                        | 90  | 90     | 90 | 11.7945 | 48.843 | 8.4136 | Pbcm    |
| NO13                                                                      | Mn(Ac) <sub>2</sub> ·4H <sub>2</sub> O<br>0.46 mmol<br>Benzoesäure<br>0.92 mmol<br>Bipyridin<br>0.46 mmol | Ethanol                    | 90  | 90     | 90 | 18.66   | 11.762 | 9.418  | Pben    |
| NO29<br>MOF-0<br>ähnlich                                                  | Mn(Ac) <sub>2</sub> ·4H <sub>2</sub> O<br>0.46 mmol<br>H <sub>3</sub> BTC<br>0.69 mmol                    | DMF                        | 120 | 90     | 90 | 14.16   | 33.521 | 33.521 | P-1     |
| Mn(hfac) <sub>2</sub><br>(O <sub>2</sub> CC <sub>6</sub> H <sub>5</sub> ) | Mn(Ac) <sub>2</sub> ·4H <sub>2</sub> O<br>0.46 mmol<br>Hfac<br>0.92 mmol<br>Bipyridin<br>0.46 mmol        | Ether                      | 90  | 95.32  | 90 | 9.572   | 17.162 | 14.041 | C2/c    |
| BPR43G2                                                                   | Zn(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>0.0288 mmol<br>H <sub>2</sub> BDC<br>0.0072 mmol  | DMF<br>CH <sub>3</sub> CN  | 90  | 91.37  | 90 | 17.96   | 6.38   | 7.19   | C2/c    |
| BPR48A2                                                                   | Zn(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O<br>0.012 mmol<br>H <sub>2</sub> BDC<br>0.012 mmol     | DMSO<br>Toluol             | 90  | 90     | 90 | 14.5    | 17.04  | 18.02  | Pbca    |
| BPR49B1                                                                   | Zn(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O<br>0.024 mmol<br>H <sub>2</sub> BDC<br>0.048 mmol     | DMSO<br>Methano<br>I       | 90  | 91.172 | 90 | 33.181  | 9.824  | 17.884 | C2/c    |
| BPR56E1                                                                   | Zn(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O<br>0.012 mmol<br>H <sub>2</sub> BDC<br>0.024 mmol     | DMSO<br>n-<br>Propano<br>I | 90  | 90.096 | 90 | 14.5873 | 14.153 | 17.183 | P2(1)/n |
| BPR68D10                                                                  | Zn(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O<br>0.0016 mmol<br>H <sub>3</sub> BTC<br>0.0064 mmol   | DMSO<br>Benzol             | 90  | 95.316 | 90 | 10.0627 | 10.17  | 16.413 | P2(1)/c |
| BPR69B1                                                                   | Cd(NO <sub>3</sub> ) <sub>2</sub> 4H <sub>2</sub> O<br>0.0212 mmol<br>H <sub>2</sub> BDC<br>0.0428 mmol   | DMSO                       | 90  | 98.76  | 90 | 14.16   | 15.72  | 17.66  | Cc      |

DE 20210139.8 18.02.2003



- 15 -

| BPR73E4                                        | Cd(NO <sub>3</sub> ) <sub>2</sub> 4H <sub>2</sub> O<br>0.006 mmol<br>H <sub>2</sub> BDC<br>0.003 mmol                    | DMSO<br>Toluol          | 90    | 92.324 | 90     | 8.7231  | 7.0568 | 18.438 | P2(1)/n |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|--------|--------|---------|--------|--------|---------|
| BPR76D5                                        | Zn(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O<br>0.0009 mmol<br>H <sub>2</sub> BzPDC<br>0.0036 mmol                | DMSO                    | 90    | 104.17 | 90     | 14.4191 | 6.2599 | 7.0611 | Pc      |
| BPR80B5                                        | Cd(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.018 mmol<br>H <sub>2</sub> BDC<br>0.036 mmol                   | DMF                     | 90    | 115.11 | 90     | 28.049  | 9.184  | 17.837 | C2/c    |
| BPR80H5                                        | Cd(NO <sub>3</sub> ) <sub>2</sub> 4H <sub>2</sub> O<br>0.027 mmol<br>H <sub>2</sub> BDC<br>0.027 mmol                    | DMF                     | 90    | 119.06 | 90     | 11.4746 | 6.2151 | 17.268 | P2/c    |
| BPR82C6                                        | Cd(NO <sub>3</sub> ) <sub>2</sub> 4H <sub>2</sub> O<br>0.0068 mmol<br>H <sub>2</sub> BDC<br>0.202 mmol                   | DMF                     | 90    | 90     | 90     | 9.7721  | 21.142 | 27.77  | Fdd2    |
| BPR86C3                                        | Co(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O<br>0.0025 mmol<br>H <sub>2</sub> BDC<br>0.075 mmol                   | DMF                     | 90    | 90     | 90     | 18.3449 | 10.031 | 17.983 | Pca2(1) |
| BPR86H6                                        | Cd(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>0.010 mmol<br>H <sub>2</sub> BDC<br>0.010 mmol                   | DMF                     | 80.98 | 89.69  | 83.412 | 9.8752  | 10.263 | 15.362 | P-1     |
|                                                | Co(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O                                                                      | NMP                     | 106.3 | 107.63 | 107.2  | 7.5308  | 10.942 | 11.025 | Pl      |
| BPR95A2                                        | Zn(NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O<br>0.012 mmol<br>H <sub>2</sub> BDC<br>0.012 mmol                    | NMP                     | 90    | 102.9  | 90     | 7.4502  | 13.767 | 12.713 | P2(1)/c |
| CuC <sub>6</sub> F <sub>4</sub> O <sub>4</sub> | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.370 mmol<br>H <sub>2</sub> BDC(OH) <sub>2</sub><br>0.37 mmol | DMF<br>Chlor-<br>benzol | 90    | 98.834 | 90     | 10.9675 | 24.43  | 22.553 | P2(1)/n |
| Fe Formic                                      | FeCl <sub>2</sub> ·4H <sub>2</sub> O<br>0.370 mmol<br>Ameisensäure<br>0.37 mmol                                          | DMF                     | 90    | 91.543 | 90     | 11.495  | 9.963  | 14.48  | P2(1)/n |
| Mg Formic                                      | Mg(NO <sub>3</sub> ) <sub>2</sub> -6H <sub>2</sub> O<br>0.370 mmol<br>Ameisensäure<br>0.37 mmol                          | DMF                     | 90    | 91.359 | 90     | 11.383  | 9.932  | 14.656 | P2(1)/n |
| MgC <sub>6</sub> H <sub>4</sub> O <sub>6</sub> | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O<br>0.370 mmol<br>H <sub>2</sub> BDC(OH) <sub>2</sub><br>0.37 mmol   | DMF                     | 90    | 96.624 | 90     | 17.245  | 9.943  | 9.273  | C2/c    |
| Zn C₂H₄BDC<br>MOF-38                           | ZnCl <sub>2</sub><br>0.44 mmol<br>CBBDC<br>0.261 mmol                                                                    | DMF                     | 90    | 94.714 | 90     | 7.3386  | 16.834 | 12.52  | P2(1)/n |
| MOF-49                                         | ZnCl <sub>2</sub>                                                                                                        | DMF                     | 90    | 93.459 | 90     | 13.509  | 11.984 | 27.039 | P2/c    |

20.02.03

DE 20210139.8

18.02.2003

- 16 -

|                                            | m-BDC<br>0.261 mmol                                                                                                        |                  |       |        |        |         |        |        |         |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------|-------|--------|--------|---------|--------|--------|---------|
| MOF-26                                     | Cu(NO <sub>3</sub> ) <sub>2</sub> ·5H <sub>2</sub> O<br>0.084 mmol<br>DCPE<br>0.085 mmol                                   | DMF              | 90    | 95.607 | 90     | 20.8797 | 16.017 | 26.176 | P2(1)/n |
| MOF-112                                    | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.084 mmol<br>o-Br-m-BDC<br>0.085 mmol                           | DMF<br>Ethanol   | 90    | 107.49 | 90     | 29.3241 | 21.297 | 18.069 | C2/c    |
| MOF-109                                    | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.084 mmol<br>KDB<br>0.085 mmol                                  | DMF              | 90    | 111.98 | 90     | 23.8801 | 16.834 | 18.389 | P2(1)/c |
| MOF-111                                    | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.084 mmol<br>o-BrBDC<br>0.085 mmol                              | DMF<br>Ethanol   | 90    | 102.16 | 90     | 10.6767 | 18.781 | 21.052 | C2/c    |
| MOF-110                                    | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2·5H <sub>2</sub> O<br>0.084 mmol<br>Thiophendicarbonsă<br>ure<br>0.085 mmol            | DMF              | 90    | 90     | 120    | 20.0652 | 20.065 | 20.747 | R-3/m   |
| MOF-107                                    | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.084 mmol<br>Thiophendicarbonsä<br>ure.085 mmol                 | DEF              | 104.8 | 97.075 | 95.206 | 11.032  | 18.067 | 18.452 | P-1     |
| MOF-108                                    | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.084 mmol<br>Thiophendicarboxyl<br>0.085 mmol                   | DBF/<br>Methanol | 90    | 113.63 | 90     | 15.4747 | 14.514 | 14.032 | C2/c    |
| MOF-102                                    | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.084 mmol<br>H <sub>2</sub> (BDCCl <sub>2</sub> )<br>0.085 mmol | DMF              | 91.63 | 106.24 | 112.01 | 9.3845  | 10.794 | 10.831 | P-1     |
| Clbdcl                                     | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.084 mmol<br>H <sub>2</sub> (BDCCl <sub>2</sub> )<br>0.085 mmol | DEF              | 90    | 105.56 | 90     | 14.911  | 15.622 | 18.413 | P-1     |
| Cu(NMOP)                                   | Cu(NO <sub>3</sub> ) <sub>2</sub> ·2.5H <sub>2</sub> O<br>0.084 mmol<br>NBDC<br>0.085 mmol                                 | DMF              | 90    | 102.37 | 90     | 14.9238 | 18.727 | 15.529 | P2(1)/n |
| Tb(BTC)                                    | Tb(NO <sub>3</sub> ) <sub>3</sub> ·5H <sub>2</sub> O<br>0.033 mmol<br>H <sub>3</sub> BTC<br>0.033 mmol                     | DMF              | 90    | 106.02 | 90     | 18.6986 | 11.368 | 19.721 |         |
| Zn <sub>3</sub> (BTC) <sub>2</sub><br>Honk | ZnCl <sub>2</sub><br>0.033 mmol<br>H <sub>3</sub> BTC<br>0.033 mmol                                                        | DMF<br>Ethanol   | 90    | 90     | 90     | 26.572  | 26.572 | 26.572 | Fm-3n   |
| Zn <sub>4</sub> O(NDC)                     | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.066 mmol<br>14NDC<br>0.066 mmol                                  | DMF<br>Ethanol   | 90    | 90     | 90     | 41.5594 | 18.818 | 17.574 | aba2    |
| CdTDC                                      | Cd(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.014 mmol                                                         | DMF<br>H₂O       | 90    | 90     | 90     | 12.173  | 10.485 | 7.33   | Pmma    |



O.Z. 0050/53151/Gro DE 20210139.8 18.02.2003 - 17 -

|          | Thiophen<br>0.040 mmol<br>DABCO<br>0.020 mmol                                                                                          |                |    |    |    |        |        |        |       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------|----------------|----|----|----|--------|--------|--------|-------|
| IRMOF-2  | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.160 mmol<br>o-Br-BDC<br>0.60 mmol                                            | DEF            | 90 | 90 | 90 | 25.772 | 25.772 | 25.772 | Fm-3m |
| IRMOF-3  | Zn(NO <sub>3)2</sub> ·4H <sub>2</sub> O<br>0.20 mmol<br>H <sub>2</sub> N-BDC<br>0.60 mmol                                              | DEF<br>Ethanol | 90 | 90 | 90 | 25.747 | 25.747 | 25.747 | Fm-3m |
| IRMOF-4  | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.11 mmol<br>[C <sub>3</sub> H <sub>7</sub> O] <sub>2</sub> ·BDC<br>0.48 mmol  | DEF            | 90 | 90 | 90 | 25.849 | 25.849 | 25.849 | Fm-3m |
| IRMOF-5  | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.13 mmol<br>[C <sub>3</sub> H <sub>11</sub> O] <sub>2</sub> -BDC<br>0.50 mmol | DEF            | 90 | 90 | 90 | 12.882 | 12.882 | 12.882 | Pm-3m |
| IRMOF-6  | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.20 mmol<br>[C <sub>2</sub> H <sub>4</sub> ]-BDC<br>0.60 mmol                 | DEF            | 90 | 90 | 90 | 25.842 | 25.842 | 25.842 | Fm-3m |
| IRMOF-7  | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.07 mmol<br>1,4NDC<br>0.20 mmol                                               | DEF            | 90 | 90 | 90 | 12.914 | 12.914 | 12.914 | Pm-3m |
| IRMOF-8  | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.55 mmol<br>2,6NDC<br>0.42 mmol                                               | DEF            | 90 | 90 | 90 | 30.092 | 30.092 | 30.092 | Fm-3m |
| IRMOF-9  | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.05 mmol<br>BPDC<br>0.42 mmol                                                 | DEF            | 90 | 90 | 90 | 17.147 | 23.322 | 25.255 | Pnnm  |
| IRMOF-10 | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.02 mmol<br>BPDC<br>0.012 mmol                                                | DEF            | 90 | 90 | 90 | 34.281 | 34.281 | 34.281 | Fm-3m |
| IRMOF-11 | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.05 mmol<br>HPDC<br>0.20 mmol                                                 | DEF            | 90 | 90 | 90 | 24.822 | 24.822 | 56.734 | R-3m  |
| IRMOF-12 | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.017 mmol<br>HPDC<br>0.12 mmol                                                | DEF            | 90 | 90 | 90 | 34.281 | 34.281 | 34.281 | Fm-3m |

O.Z. 0050/53151/Gro DE 20210139.8 18.02.2003

| IRMOF-13 | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O                                     | DEF        | 90 | 90 | 90  | 24.822 | 24.822 | 56.734 | R-3m  |
|----------|------------------------------------------------------------------------------------------|------------|----|----|-----|--------|--------|--------|-------|
|          | 0.048 mmol<br>PDC                                                                        |            |    |    |     |        |        |        |       |
|          | 0.31 mmol                                                                                |            |    |    | L _ |        |        |        |       |
| IRMOF-14 | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.17 mmol<br>PDC<br>0.12 mmol    | DEF        | 90 | 90 | 90  | 34.381 | 34.381 | 34.381 | Fm-3m |
| IRMOF-15 | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.063 mmol<br>TPDC<br>0.025 mmol | DEF        | 90 | 90 | 90  | 21.459 | 21.459 | 21.459 | lm-3m |
| IRMOF-16 | Zn(NO <sub>3</sub> ) <sub>2</sub> ·4H <sub>2</sub> O<br>0.0126 mmol<br>TPDC<br>0.05 mmol | DEF<br>NMP | 90 | 90 | 90  | 21.49  | 21.49  | 21.49  | Pm-3m |

- 18 -

|    | ADC | Acetylchulcai bolisaute |
|----|-----|-------------------------|
|    | NDC | Naphthalindicarbonsäure |
| 5  | BDC | Benzoldicarbonsäure     |
|    | ATC | Adamantantetracarbonsā  |
|    | BTC | Benzoltricarbonsäure    |
|    | BTB | Benzoltribenzoat        |
|    | мтв | Methantetrabenzoat      |
| 10 | ATB | Adamantantetrabenzoat   |
|    | ADD | Adamantandibenzoat      |

Besonders bevorzugt im Rahmen der vorliegenden Erfindung sind Gerüstmaterialien der

Art, wie sie hier beschrieben sind, die Zn<sup>2+</sup> als Metallion enthalten sowie Liganden, die

von der Terephthalsäure als zweizähnige Verbindung abgeleitet sind. Solche

Gerüstmaterialien sind auch bekannt als MOF-5 in der Literatur.

Weitere Metallionen sowie mindestens zweizähnige organische Verbindungen sowie 20 einzähnige Substanzen, die jeweils für die Herstellung der besagten metallorganischen Gerüstmaterialien nützlich sein können und in der vorliegenden Erfindung benutzt werden können, sowie Verfahren zur Herstellung derselben sind insbesondere offenbart in der EP-A 0 790 253, der US 5.648,508 sowie der DE 10111230.0.



Bezüglich der Lösungsmittel, die besonders für die Herstellung von MOF-5 nützlich sind, sind zusätzlich zu den Lösungsmitteln, die in den oben genannten
Druckschriften offenbart sind, die folgenden Lösungsmittel zu nennen: Diethylformamid, Diethylformamid sowie N-Methylpyrollidon. Diese können allein, in
Verbindung miteinander oder in Verbindung mit anderen Lösungsmitteln verwendet werden. Während der Herstellung der organischen Gerüstmaterialien, insbesondere während der Herstellung von MOF-5, werden die Lösungsmittel sowie
die Mutterlaugen nach der Kristallisation in das Verfahren zurückgeführt, um Kosten und Material zu sparen.

10

20

25

Das Abtrennen der organischen Gerüstmaterialien, insbesondere von MOF-5, von der Mutterlauge nach der Kristallisation kann mit allen Verfahren, die dem Fachmann bekannt sind, erreicht werden. Solche Verfahren sind beispielsweise Fest-Flüssig-Trennungen wie Zentrifugieren, Extraktion, Filtration, Membranfiltration, Cross-Flow-Filtration, Flockung unter Verwendung von Flockungsmitteln (nichtionischen, kationischen sowie anionischen Zusatzstoffen) oder die Zugabe von Substanzen, die den pH-Wert verschieben, wie beispielsweise Salze, Säuren oder Basen; weiterhin durch Flotation, Sprühtrocknung oder Sprühgranulation, sowie auch durch Verdampfen der Mutterlauge bei erhöhten Temperaturen und/oder im Vakuum sowie durch Außkonzentrieren des Festkörpers.

Die abgetrennten Gerüstmaterialien, insbesondere MOF-5, können kompaktiert geschmolzen, extrudiert, koextrudiert, verpresst, versponnen, aufgeschäumt werden. Weiterhin können sie entsprechend den Verfahren, die von der Verarbeitung von Kunststoffen bekannt sind, granuliert werden. Ganz allgemein werden die Materialien in der Form von Pellets oder als dünne Schichten oder als dünne Platten im Sinne der vorliegenden Erfindung verwendet. Jedoch erlauben die oben genannten Verfahren die Herstellung verschiedener weitergehender Geometrien und körperlicher Ausführungsformen, die notwendig sind für die weit verbreiteten Anwendungen der besagten Materialien im Sinne der vorliegenden Erfindung,





insbesondere wenn sie in tragbaren oder mobilen Anwendungen eingesetzt werden sollen.

Bezüglich der Gase, die aufgenommen und/oder gespeichert und/oder abgegeben werden sollen, sind insbesondere zu nennen: Kohlenwasserstoffe, Alkohole, Wasserstoff, Stickstoff, Edelgase, CO, CO<sub>2</sub>, natürlich vorkommende Gase, Synthesegase, Verbindungen, die diese Gase erzeugen und/oder liefern, sowie Mischungen von mindestens zwei der vorstehend genannten Substanzen. Besonders bevorzugt sind Wasserstoff, Mischungen, die Wasserstoff enthalten, Substanzen, die Wasserstoff erzeugen und liefern, sowie eine Gasmischung, die zumindest eine Wasserstoff liefernde und/oder Wasserstoff erzeugende Substanz enthalten.

In einer weiteren Ausführungsform wird das metallorganische Gerüstmaterial in Kontakt gebracht mit zumindest einer Substanz, die die Kapazität erhöht, wobei diese Substanz ausgewählt wird aus der Gruppe bestehend aus: Lösungsmittel, Komplexe, Metalle, Metallhydride, Legierungen, sowie Mischungen von mindestens zwei der vorstehend genannten Substanzen. Dies betrifft beispielsweise Ausführungsformen der oben genannten Substanzen, abgeleitet von Palladium, Platin, Nickel und Ruthenium als Metall.

20

Weiterhin betrifft die vorliegende Erfindung eine Vorrichtung wie eingangs definiert.

Die besagte Vorrichtung kann die folgenden weiteren Komponenten enthalten:

25

- einen Behälter, der das metallorganische Gerüstmaterial aufnimmt;
- eine Öffnung zur Zu- oder Abfuhr, die es zumindest einem Gas erlaubt, in die Vorrichtung oder aus der Vorrichtung zu gelangen;
- ein gasdichter Aufnahmemechanismus, der dazu in der Lage ist, das Gas unter Druck innerhalb des Containers zu halten.

30





Die vorliegende Erfindung betrifft weiterhin eine Brennstoffzelle, die das Speichermedium umfassend das mindestens eine metallorganische Gerüstmaterial, wie in der vorliegenden Erfindung beschrieben, aufnimmt.

5 Die vorliegende Erfindung beschreibt auch die Verwendung des Mediums, umfassend zumindest ein metallorganisches Gerüstmaterial, wie es in der vorliegenden Erfindung beschrieben ist, zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zur Abgabe, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe oven mindestens einem Gas in den folgenden Anwendungen bzw. Einrichtungen: stationäre, mobile, mobile tragbare Anwendungen/Einrichtungen, vorzugsweise Kraftwerken, Personenkraftfahrzeugen, Lastwagen, Bussen, Mobiltelefonen, Laptops, sowie die Verwendung der Vorrichtung gemäß der vorliegenden Erfindung zur Energielieferung in Kraftwerken, Personenkraftfahrzeugen, Lastwagen, Bussen, Mobiltelefonen sowie Laptops.

Die vorliegende Erfindung beschreibt weiterhin ein Verfahren zur Verwendung der Brennstoffzelle, umfassend mindestens ein metallorganisches Gerüstmaterial, zur Lieferung von Energie an Kraftwerke, Personenkraftfahrzeuge, Lastwagen, Busse. Mobiltelefone sowie Lantops.

Die vorliegende Erfindung wird nachfolgend im Rahmen der folgenden Beispiele beschrieben. Dabei sind die Beispiele nicht so zu verstehen, dass sie den Umfang der vorliegenden Erfindung in irgendeiner Art und Weise begrenzen oder einschränken.

#### BEISPIELE

20

Fig. 1 zeigt ein Pulverröntgendiffraktogramm des MOF-5-organischen Gerüstmaterials, wie es gemäß Beispiel 1 hergestellt worden ist. Dabei bezeichnet die horizontake x-Achse den Streuwinkel 20 in Grad und die

DE 202 10 139 U



vertikale y-Achse repräsentiert eine Streuintensität in willkürlichen Einheiten

Fig. 2 zeigt die Sorptionsisotherme bezüglich Argon von einem MOF-5-Material bei 87 K. Dabei gibt die horizontale x-Achse den relativen Druck P/P<sub>0</sub> an und die vertikale y-Achse das adsorbierte Volumen in cm<sup>2</sup>/g bei Standardbedingungen.

Fig. 3 zeigt die Wasserstoffsorptionsisotherme bezüglich Wasserstoff von MOF-5 bei 30 °C. Dabei gibt die horizontale x-Achse den Wasserstoff-Partialdruck in mbar an, während die vertikale y-Achse die adsorbierte Menge in mg/g Adsorbens angibt. Die oberen durch eine Linie verbundenen Punkte bezeichnen dabei das erfindungsgemäße Gerüstmaterial, wohingegen der untere Linienzug das Vergleichsmaterial aus Bsp. 3 repräsentiert.

#### Beispiel 1 (Herstellung von MOF-5)

| Ausgangsmaterial       | molare Menge | Berechnet | experimentell |
|------------------------|--------------|-----------|---------------|
| Terephthalsäure        | 12,3 mmol    | 2,04 g    | 2,04 g        |
| Zinknitrat-Tetrahydrat | 36,98 mmol   | 9,67 g    | 9,68 g        |
| Diethylformamid        | 2568,8 mmol  | 282,2 g   | 282,2 g       |
| (Merck)                |              |           |               |

20

10

15

Die oben genannten Mengen an Ausgangsmaterialien wurden in einem Becherglas gelöst, und zwar in der Reihenfolge: Diethylformamid, Terephtalsäure und Zinknitrat. Die daraus resultierende Lösung wurde in zwei Autoklaven (250 mm) gefüllt, wobei jeweils die Innenwände mit Teflon bedeckt waren.

25





Die Kristallisation wurde bei 150 °C durchgeführt und dauerte 20 Stunden. Danach wurde das orangefarbene Lösungsmittel von den gelben Kristallen dekantiert
und die besagten Kristalle wurden noch einmal mit 20 mm an Diemethylformamid bedeckt, welches wiederum dekantiert wurde. Dieses Verfahren wurde dreimal wiederholt. Danach wurden 20 mm Chloroform auf den Festkörper aufgebracht, der danach gewaschen und mit dem besagten Lösungsmittel zwei weitere
Male dekantiert wurde.

Die Kristalle (14,4 g), die noch feucht waren, wurden in eine Vakuumapparatur eingeschleust und zunächst bei Raumtemperatur im Vakuum (10<sup>4</sup> mbar) getrocknet und daran anschließend bei 120 °C getrocknet. Daran anschließend wurde das so entstandene Produkt durch Röntgenpulverdiffraktometrie charakterisiert, sowie durch eine Bestimmung der Absorptionsisothermen zur Bestimmung der Mikroporen. Das Produkt zeigt das Röntgenpulver-diffraktogramm wie in Abbildung I dargestellt, welches genau das Diffraktogramm ist, welches man von MOF-5 erwartet.

Die Sorptionsisotherme, wie sie in Fig. 2 dargestellt ist, wurde unter Verwendung von Argon bestimmt (bei 87 K; Micromeritics ASAP 2010) und zeigt eine Isotherme vom Typ I, welche typisch ist für mikroporöse Materialien. Es wird eine spezifische Oberfläche von 3020 mm²/g bestimmt, berechnet entsprechend der Langmuir-Isotherme. Weiterhin ergibt sich ein Volumen der Mikroporen von 0,07 mm/g (bei einem Relativdruck von p/p² = 0,4).

25

#### Beispiel 2

Die Fähigkeit des Materials aus Beispiel 1, Wasserstoff aufzunehmen, wurde durch Verwendung einer magnetischen Suspensionswaage der Firma Rubotherm Präzisionsmesstechnik GmbH, Bochum, bestimmt, und zwar in folgender Weise:





Die Probe wurde gewogen und in die Apparatur eingebracht. Nach dem Schließen der Apparatur und dem Evakuieren der Probe auf einen Druck von 10<sup>-5</sup> mbar durch Verwendung einer Membranvorpumpe sowie einer Turbomolekularpumpe, wurde die Probe unter Vakuum für 16 Stunden auf 100 °C erhitzt.

Nachdem die Probe thermisch bei einer Temperatur von 30 °C stabilisiert worden ist, wurde Wasserstoff (Reinheit 99,999 %; Firma Messer) bei verschiedenen Drucken, wie in Fig. 3 dargestellt, hinzufügt. Die daraus resultierende Sorptionsisotherme ist in Fig. 3 gezeigt. Diese Figur zeigt, dass bei einem Wasserstoffdruck von ungefähr 150 mbar die Probe dazu in der Lage ist, ungefähr 1 Gew.-% Wasserstoff, relativ zum Gesamtgewicht der aktivierten Probe, zu speichern. Durch weiteres Erhöhen des Druckes kann die Speicherkapazität sogar noch weiter erhöht werden

### 15 Beispiel 3 (Vergleichsbeispiel)

5

Unter Verwendung desselben experimentellen Aufbaus und desselben Verfahrens wie in Beispiel 2 dargestellt, wurde die Speicherkapazität bezüglich Wasserstoff von aktiviertem Kohlenstoff (Firma CECA, AC40; spezifische Oberfläche gemäß Langmuir-Isotherme 2037 m²/g) gemessen. Figur 3 zeigt eine signifikant geringere Kapazität des aktivierten Kohlenstoffs im Vergleich zum MOF-5-Material.

-1-

D.Z. 0060 53 51

BASF Aktiengesellschaft

1. Juli 2002 B01/0981GBM IB/RI/HTo/cl

#### Schutzansprüche

- Vorrichtung zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zur Abgabe, oder zur Aufnahme und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas, enthaltend ein metallorganisches Gerüstmaterial, enthaltend Poren und zumindest ein Metallion sowie zumindest eine mindestens zweizähnige organische Verbindung, wobei diese organische Verbindung an das besagte Metallion angebunden ist, vorzugsweise über eine Koordinationsbindung.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Gas aus mindestens einem Gas ausgewählt aus der folgenden Gruppe besteht: Wasserstoff, Stickstoff, Edelgase, CO, CO<sub>2</sub> sowie Verbindungen, die diese Gase erzeugen und/oder liefern.
- Vorrichtung nach Anspruch 1 oder 2, wobei das Gas Wasserstoff ist, eine
   Gasmischung, die Wasserstoff enthält, eine Substanz, die Wasserstoff erzeugt oder liefert, eine Gasmischung, umfassend zumindest eine Wasserstoff-liefernde und/oder Wasserstoff-erzeugende Substanz.
- Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Metallion ausgewählt wird aus der Gruppe der Ionen der Elemente aus den Gruppen Ia, IIa, IIIa, IVa bis VIIIa sowie Ib bis VIb des Periodensystems der Elemente.

DE 202 10 139 U



5. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das metallorganische Gerüstmaterial in Kontakt gebracht wird mit zumindest einem Medium, welches die Speicherkapazität erhöht, und welches ausgewählt wird aus der Gruppe bestehend aus: Lösungsmittel, Komplexe, Metalle, Metallhydride, Metalllegierungen sowie Mischungen von mindestens zwei der vorstehend genannten Substanzen.

5

10

- 6. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens zweizähnige organische Verbindung ausgewählt wird aus substituierten oder nicht substituierten aromatischen Polycarbonsäuren, die einen oder mehrere Kerne umfassen; sowie substituierten oder unsubstituierten aromatischen Polycarbonsäuren, die mindestens ein Heteroatom enthalten und einen oder mehrere Kerne enthalten können.
- Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das metallorganische Gerüstmaterial Poren umfasst und eine
  spezifische Oberfläche von ≥20 m²/g aufweist, wobei die spezifische
  Oberfläche via BET-Absorption gemäß DIN 66131 bestimmt wird.
- Vorrichtung nach einem der vorstehenden Ansprüche, weiter enthaltend:
   einen Behälter, welcher das metallorganische Gerüstmaterial aufnimmt;
   eine Öffnung, bzw. einen Auslass, der es ermöglicht, dass das mindestens
   eine Gas in die oder aus der Vorrichtung gelangt;
   einen gasdichten Aufnahme-Mechanismus, der dazu in der Lage ist, das
   Gas unter Druck innerhalb des Behältnisses zu halten.
  - Brennstoffzelle, enthaltend eine Vorrichtung nach einem der vorstehenden Ansprüche.
- Stationäre, mobile und mobil tragbare Einrichtung enthaltend eine Vorrichtung nach einem der Ansprüche 1 bis 8.

DE 202 10 139 U



- Stationäre, mobile und mobil tragbare Einrichtung enthaltend eine Brennstoffzelle nach Anspruch 9.
- Kraftwerk, Personenkraftfahrzeug, Lastwagen, Bus, Mobiltelefon, Laptop, enthaltend eine Vorrichtung nach einem der Ansprüche 1 bis 8.
  - Kraftwerk, Personenkraftfahrzeug, Lastwagen, Bus, Mobiltelefon, Laptop, enthaltend eine Brennstoffzelle nach Anspruch 9.

10

FIG.1



FIG.2



DE 202 10 139 U

FIG.3

