

Códigos de Reed-Muller

Tobias Briones

April 7, 2021

Universidad Nacional Autónoma de Honduras Códigos de Reed-Muller, Código Dual

Proposición

Si $\dot{G}_{r,m}$ es una matriz generadora de $\mathcal{RM}(r,m)$ entonces una matriz generadora para $\mathcal{RM}(r+1,m+1)$ es dada por:

$$G_{r+1,m+1} = \begin{pmatrix} G_{r+1,m} & G_{r+1,m} \\ 0 & G_{r,m} \end{pmatrix}$$

La dimensión de $\mathcal{RM}(r,m)$ es:

$$1 + \binom{m}{1} + \binom{m}{2} + \dots + \binom{m}{r}$$

El peso mínimo es igual a la distancia mínima de $\mathcal{RM}(r,m)$ igual a 2^{m-r} .

Proposición

El conjunto de todos los posibles productos externos de hasta m de v_i forma una base para \mathbb{F}_2^n .

Prueba:

Existen $\sum_{i=0}^{m} \binom{m}{s} = 2^m = n$ vectores que satisfacen esa condición. \mathbb{F}_2^n tiene dimensión n por lo que basta verificar que los n vectores son generados, o también, que $\mathscr{RM}(m,m) = \mathbb{F}_2^n$.

Sea x un vector binario de longitud m, un elemento de X. Sea $(x)_i$ el i-ésimo elemento de x. Definir

$$\begin{cases} v_i, & \text{si } (x)_i = 0 \\ v_0 + v_i, & \text{si } (x)_i = 1 \end{cases}$$

donde $1 \le i \le m$.

Entonces $\mathbb{I}_{x}=y_{1}\wedge...\wedge y_{m}$. Con la expansión mediante la propiedad distributiva del producto externo nos da $\mathbb{I}_{x}\in\mathscr{RM}(m,m)$. Entonces ya que los vectores $\{\mathbb{I}_{x}|\mathbf{x}\in X\}$ generan \mathbb{F}_{2}^{n} tenemos que $\mathscr{RM}(m,n)=\mathbb{F}_{2}^{n}$.

Proposición

El codigo $\mathcal{RM}(r,m)$ tiene dimensión

$$\sum_{i=0}^{r} \binom{m}{s}$$

Prueba:

Con la proposición anterior, todos los productos externos deben de ser linealmente independientes, así que la dimensión de $\mathcal{RM}(r,m)$ debe de ser la cantidad de estos vectores.