## Narzędzia typu CASE

- CASE Computer-Aided Software Engineering = Wspomagana komputerowo inżynieria oprogramowania
- Oprogramowanie, które umożliwia wspieranie realizacji kolejnych zadań w ramach procesu tworzenia systemów informatycznych.
- Wspomaga w opisie wycinka rzeczywistości w wersji elektronicznej
- Mogą być freeware i shareware w zależności od wersji, różna ilość dostępnych funkcji

#### Podstawowe elementy narzędzi CASE

- Słownik danych
- Moduł inżynierii odwrotnej
- Narzędzia RAD (rapid application development)
- Moduł import/eksport
- Moduł kontroli poprawności
- Moduł kontroli jakości
- Edytory diagramów
- Moduł projektowania interfejsów
- Moduł pracy sieciowej
- Moduł zarządzania pracą grupową
- Moduł zarządzania wersjami
- Generator raportów
- Generator dokumentacji technicznej
- Generatory kodów

#### Rozwój UML



#### HISTORY

#### FORMAL VERSIONS

| VERSION | ADOPTION DATE     | URL                                 |
|---------|-------------------|-------------------------------------|
| 2.5.1   | grudnia 2017      | https://www.omg.org/spec/UML/2.5.1/ |
| 2.4.1   | lipca 2011        | https://www.omg.org/spec/UML/2.4.1/ |
| 2.3     | maja 2010         | https://www.omg.org/spec/UML/2.3/   |
| 2.2     | stycznia 2009     | https://www.omg.org/spec/UML/2.2/   |
| 2.1.2   | października 2007 | https://www.omg.org/spec/UML/2.1.2/ |
| 2.0     | lipca 2005        | https://www.omg.org/spec/UML/2.0/   |
| 1.5     | marca 2003        | https://www.omg.org/spec/UML/1.5/   |
| 1.4     | września 2001     | https://www.omg.org/spec/UML/1.4/   |
| 1.3     | lutego 2000       | https://www.omg.org/spec/UML/1.3/   |
| 1.2     | lipca 1999        | https://www.omg.org/spec/UML/1.2/   |
| 1.1     | grudnia 1997      | https://www.omg.org/spec/UML/1.1/   |

26.10.2021

## Struktura diagramów UML



#### Język SysML

- Język modelowania ogólnego przeznaczenia
- Służy do:
  - Specyfikowania
  - Analizy
  - Projektowania
  - Weryfikacji złożonych systemów
- Jest graficznym językiem modelowania, oparty ma semantyce, umożliwiającej reprezentowanie wymagań, dynami, struktury oraz cech systemu
- Wykorzystywany jest w inżynierii systemów wielodyscyplinarne podejście do przekształcania zestawu potrzeb i wymagań interesariuszy w zharmonizowane rozwiązanie systemowe, zaspokajające te wymagania.
- Wywodzi się z języka modelowania UML
- Obecna wersja języka w wersji 1.6 jest z grudnia 2019 r.

## DIAGRAM WYMAGAŃ SYSTEMOWYCH

Wymagania są wyrażonymi w sposób formalny potrzebami klienta – funkcjonalnościami lub cechami, które system winien spełniać. Pozyskiwanie wymagań stanowi podstawę całego procesu budowy systemów, a od rezultatów tego etapu uzależniony jest dalszy sposób realizacji projektu; dobrze określone wymagania zapewniają lepszą jakoś przyszłego oprogramowania i, w konsekwencji, wyższy poziom satysfakcji zamawiającego.



Figure A.1: SysML Diagram Taxonomy

#### Klasyfikacja wymagań – cz. 1

#### Docelowo, wymagania powinny być opisane na 3 poziomach:

- 1. **(WB) Wymagania biznesowe / strategiczne** Są to wymagania opisujące cele biznesowe lub strategiczne, które system pomoże osiągnąć. Nie są na tym etapie opisywane oczekiwane funkcjonalności rozwiązania, a raczej oczekiwania co do rozwiązania ogółem co aplikacja mi da, co dzięki niej otrzymam, jak będę mógł osiągnąć swoje cele przy pomocy rozwiązania.
- 2. **(WU) Wymagania użytkownika** Bardziej szczegółowy opis tego, jak potencjalni użytkownicy wyobrażają sobie korzystanie z aplikacji co im ułatwi, co im przyspieszy, czego dzięki niej nie będą musieli robić. Nie piszemy jeszcze o konkretnych funkcjonalnościach (wyszukiwarka, proces, wydruki), a raczej o korzyściach i wartości dostarczonej użytkownikom.
- 3. Wymagania systemowe konkretne właściwości, które rozwiązanie powinno posiadać. W podziale na funkcjonalności (wymagania systemowe) oraz spełniane ograniczenia pozafunkcjonalne (wymagania niefunkcjonalne).
  - a. (WF) Wymagania funkcjonalne Funkcjonalności (funkcje, możliwości) które powinno posiadać rozwiązanie.
  - b. (WNF) Wymagania niefunkcjonalne Ograniczenia związane z wydajnością, bezpieczeństwem, stosem architektonicznym, dostępnością, polityką backupów, awariami, SLA itp.

#### KAŻDE Z WYMAGAŃ POWINNO ZAWIERAĆ CO NAJMNIEJ:

- 1. Kod (WB/WU/WF/WNF\_001, \_002...),
- 2. Opis (WB i WU zgodny z formułą Jako [kto], Chcę móc [coś], aby osiągnąć [coś]. WF i WNF formuła to "System powinien być w stanie/umożliwiać... [opis funkcjonalności lub ograniczenia)
- 3. Powiązani użytkownicy dla wymagań użytkownika
- 4. (Opcjonalnie) dodatkowe notatki i komentarze

#### DO WYBORU FORMA PRZEDSTAWIENIA WYMAGAŃ:

- 1. TABELA
- 2. DIAGRAM WYMAGAŃ

| Rodzaj informacji                      | Definicja                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Wymagania biznesowe                    | "Informacja, która opisuje dlaczego organizacja podjęła się projektu, określa cele biznesowe, definiuje wizję produktu i zawiera inne informacje dotyczące ustalania kierunku." (Wiegers i Hokanson, 2024, p. 22)                                                                                                                                                                                                                   |  |
| Reguła biznesowa                       | "Dyrektywa, która definiuje lub ogranicza działania w ramach operacji organizacji. Polityka, regulacja, prawo lub standard, które prowadzą do wynikających nich wymagań rozwiązania, które go egzekwują lub z nim są zgodne"                                                                                                                                                                                                        |  |
| Ograniczenia                           | "Ograniczenie nałożone na wymagania, projekt lub implementację"                                                                                                                                                                                                                                                                                                                                                                     |  |
| Wymagania danych                       | "Definicja obiektu danych lub elementu, którym system musi manipulować, jego budowy, atrybutów, relacji między<br>obiektami danych oraz ich formatu wejściowego i wyjściowego"                                                                                                                                                                                                                                                      |  |
| Wymagania dla interfejsów zewnętrznych | "Opis połączenia między tworzonym rozwiązaniem a innymi elementami otaczającego go świata, w tym<br>użytkownikami, innymi systemami oprogramowania, urządzeniami sprzętowymi i sieciowymi"                                                                                                                                                                                                                                          |  |
| Wymagania funkcjonalne                 | "Opis pewnego zachowania, jakie produkt będzie wykazywał w określonych okolicznościach"                                                                                                                                                                                                                                                                                                                                             |  |
| Wymagania niefunkcjonalne              | "Najczęściej odnosi się do tego, co jest również znane jako "wymaganie dotyczące cech jakościowych. Cechy jakościowe opisują różne jakości, obsługę lub parametry wydajności rozwiązania"                                                                                                                                                                                                                                           |  |
| Wymagania dotyczące rozwiązania        | "Opis możliwości lub cechy, które produkt w trakcie tworzenia musi posiadać, aby zaspokoić określone wymagania użytkowników i przyczynić się do osiągnięcia celów biznesowych projektu. Wymagania dotyczące rozwiązania obejmują wymagania funkcjonalne, niefunkcjonalne, dotyczące danych oraz operacje manualne"                                                                                                                  |  |
| Wymagania systemowe                    | "Opis głównej możliwości lub cechy złożonego systemu, który składa się z wielu podsystemów, często obejmujących zarówno elementy sprzętowe, jak i oprogramowanie. Wymagania systemowe stanowią podstawę pochodnych wymagań dotyczących rozwiązania oprogramowania"                                                                                                                                                                  |  |
| Wymagania użytkownika                  | "Opis zadania lub celu, który użytkownik chce osiągnąć za pomocą rozwiązania. Międzynarodowy Instytut Analizy Biznesowej (IIBA) uogólnia tę kategorię jako < <wymagania klientów="">&gt;, ale w rzeczywistości wszystkie wymagania pochodzą od pewnych klientów. Tutaj szczególnie odnosimy się do rzeczy, których użytkownik musi dokonać, i oczekiwań specyficznych dla użytkownika, które rozwiązanie musi spełniać"</wymagania> |  |

### Klasyfikacja wymagań – cz. 2

- Wymagania funkcjonalne
- Wymagania pozafunkcjonalne
  - Użyteczność (usability) spełnienie tych wymagań skutkuje zwiększeniem stopnia przyswajalności
    obsługi systemu przez użytkowników dzięki estetycznemu i ergonomicznemu interfejsowi użytkownika,
    zapewniającemu intuicyjną nawigację w systemie;
  - **Niezawodność** (reliability) czyli własność systemu, określająca, czy pracuje on poprawnie; jej miernikami są miedzy innymi: średni czas międzyawaryjnymi, średni czas wdrożenia obejścia (bypass), średni czas naprawy, liczba błędów na 1k linii kodu;
  - **Wydajność** (performance) wolumen pracy wykonanej przez system w określonym czasie i przy zaangażowaniu określonych zasobów; miernikami wydajności mogą być między innymi: czas odpowiedzi systemu, liczba transakcji w jednostce czasu, liczba jednocześnie obsługiwanych klientów zdalnych;
  - **Przystosowalność** (supportability) czyli łatwość konfigurowania, aktualizowania, serwisowania systemu, rejestrowania zdarzeń systemowych w logach i przystosowania oprogramowania do specyficznych potrzeb użytkownika przez help desk i personel wsparcia technicznego.

## Elementy diagramu wymagań



#### Zagnieżdżenie

- Najpowszechniej stosowany
- Umożliwia ono połączenie wymagań nadrzędnych z podrzędnymi, przez co tworzona jest wielopoziomowa, hierarchiczna struktura wymagań systemowych.
- Wymaganie na danym poziomie hierarchii może mieć tylko jeden element nadrzędny. Nie dotyczy wymagania będącego na szczycie hierarchii, które naturalnie nie posiada wymagań nadrzędnych.
- Wymaganie nadrzędne zostaje spełnione, gdy wszystkie podrzędne.
- Wielokrotne użycie danego wymagania pomiędzy różnymi gałęziami hierarchii wymagań jest możliwe dzięki zależności powielania <<copy>>



#### Zależność wyprowadzania

- Wykorzystuje stereotyp <<derive>>
- Pozwala na wyprowadzenie wymagania docelowego z wymagania źródłowego.
- Zazwyczaj pojedyncze wymaganie źródłowe wspierane jest przez szereg wymagań docelowych, powiązanych osobnymi zależnościami wyprowadzania.



# Zależność realizacji

- Wykorzystuje stereotyp <<satisfy>>
- Pozwala określać skutki zmian w obrębie wymagania wobec elementów od niego zależnych i zarazem wskazywać, które z kluczowych elementów projektu i implementacji systemu są podatne na zmiany w obrębie danego wymagania i jakie ma to implikacje dla tego wymagania.





#### Zależność powielania

- Używa stereotypu <<copy>>
- Jest sprzeczna z uniwersalną zasadą ponownego wykorzystania (reuse), konsekwentnie stosowaną w systemach obiektowych. Powoduje to niepotrzebny chaos w projekcie, jak również utrudnia śledzenie zmian.
- W momencie poprowadzenia zależności pomiędzy dwoma wymaganiami przyjmuje się, że wymaganie docelowe ma charakter tylko do odczytu, tj. przyjmuje ono tożsamą treść w stosunku do wymagania źródłowego.
- Zastosowania tego związku eliminuje zatem konieczność wyszukania wszystkich wymagań o analogicznej treści i stosownego wprowadzania korekt. Z kolei numery porządkowe oraz nazwy wymagań źródłowych i docelowych mogą się różnić.

## Zależność weryfikowania

- Używa stereotypu <<verify>>
- Zaliczana jest do dobrych praktyk pozwala poprzez testy sprawdzić czy poszczególne wymagania zostały zrealizowane, poprzez pisanie testów.
- Zależność weryfikowania wyprowadzona jest od elementu docelowego, którym jest tzw. testowy przypadek użycia.
- Wymaganie może mieć przypisanych kilka testów
- Testowemu przypadkowi użycia można także przypisać dodatkowe stereotypy testowania, odpowiadające różnym metodom testowania, np.:
  - Analyse
  - Inspect
  - Demonstrate
  - Test
- Ma szczególne znaczenie w iteracyjno-przyrostowym cyklu życia systemu



# Zależność precyzowania

- Używa stereotypu <<refine>>
- Pozwala na wprowadzenie do diagramu wymagań systemowych licznych detali, reprezentowanych poprzez docelowe elementy związku.
- Ułatwiają zrozumienie sensu wymagania











#### Zależność śledzenia



- Używa stereotypu <<trace>>
- Umożliwia na zaprezentowanie nieformalnego związku pomiędzy wymaganiem a dowolnym elementem modelu systemu, w tym innym wymaganiem
- Specyfikacja SysML pozwala na swobodę stosowania tego typu związków

## Mapowanie Wymagań na przypadki użycia

- Każde wymaganie powinno być realizowane przynajmniej przez jeden przypadek użycia.
- Jeden przypadek użycia może realizować więcej niż 1 wymaganie.
- Jeżeli zostanie(-ą) puste komórki, oznacza że proces wydobycia wymagań był błędny lub mapowanie nie zostało przeprowadzone poprawnie
- Tabela mapowania

|                       | Wymaganie<br>1 | Wymaganie<br>2 | Wymaganie<br>3 | Wymaganie<br>4 | Wymaganie<br>X |
|-----------------------|----------------|----------------|----------------|----------------|----------------|
| Przypadek<br>użycia 1 | R              |                |                |                |                |
| Przypadek<br>użycia 2 |                | R              |                | R              |                |
| Przypadek<br>uzycia 3 |                |                |                |                | R              |
| Przypadek<br>użycia X |                |                | R              |                |                |