Curso de Tecnologia em Sistemas de Computação Gabarito da 2ª Avaliação a Distância de Física para Computação

Nome:	
Pólo:	_

Questão	Valor	Nota
1ª Questão	1,0	
2ª Questão	1,5	
3ª Questão	1,0	
4ª Questão	1,0	
5ª Questão	1,5	
6ª Questão	1,5	
7ª Questão	1,0	
8ª Questão	1,5	
TOTAL	10,0	

1ª Questão:

Um dipolo elétrico consiste em uma carga positiva +q sobre o eixo x em x = +a e uma carga negativa -q sobre o eixo x em x = -a, conforme mostrado na Figura. Determine o potencial no eixo x para x>>a em função do momento do dipolo p=2qa.

Solução: O potencial é dado pela contribuição de cada carga. Sendo assim temos: 1)Para x>a :

$$V = \frac{kq}{\underbrace{x - a}_{\substack{distância \\ P \text{ até} + q}} + \underbrace{\frac{k(-q)}{\underbrace{x + a}}_{\substack{distância \\ P \text{ até} - q}} = \frac{2kqa}{x^2 - a^2}$$

$$V \approx \frac{k2qa}{x^2} = \frac{kp}{x^2}$$

2ª Questão:

Obtenha uma expressão para o cálculo da capacitância de um capacitor cilíndrico constituído por dois condutores, cada um de comprimento L. Um dos condutores é um cilindro de raio R_1 e o outro é um casca coaxial com raio interno R_2 , de modo que $R_1 < R_2 < < L$.

Solução:

Vamos considerar que o condutor interno tenha uma carga +Q e o externo uma carga -Q. Com isso vamos calcular a diferença de potencial V=V₂-V₁ através da lei de Gauss. Analisando que o campo elétrico não é uniforme, ele depende da variação de R (raio da superfície gaussiana que nesse caso é um cilindro colocado entre os dois condutores), precisaremos realizar um integração para obter a diferença de potencial.

- 1 A capacitância é definida através da relação : C = Q/V
- 2 O potencial V está relacionado ao campo elétrico: $dV = \vec{E} \cdot \vec{d\ell}$, onde ℓ é o comprimento da superfície gaussiana, isto é, o comprimento do cilindro que colocamos entre os dois condutores.
- 3 Para se obter o E_r , define-se, como já mencionado, uma superfície gaussiana de forma cilíndrica com raio R e comprimento ℓ , onde $(R_1 < R < R_2)$ e $\ell << L$. A superfície cilíndrica é localizada longe das extremidades das cascas cilíndricas($\ell << L$).
- 4 Longe das extremidades das cascas o campo $\stackrel{\rightarrow}{E}$ é radial, de modo que não há fluxo de $\stackrel{\rightarrow}{E}$ através das extremidades planas do cilindro. A área da região curva do cilindro é $2\pi\,R\ell$, de modo que a lei de Gauss fornece :

$$\phi_{res} = \oint_{S} E_{n} dA = \frac{1}{\varepsilon_{0}} Q_{int}$$
$$= E_{r} 2\pi R \ell = \frac{1}{\varepsilon_{0}} Q_{int}$$

- 5 Admitindo que a carga por unidade de comprimento no interior da casca seja uniformemente distribuída, obtemos Q_{int} : $Q_{int} = \frac{\ell}{L}Q$
 - 6 Utilize a expressão de Q_{int} e explicite E_r:

$$E_r 2\pi R\ell = \frac{1}{\varepsilon_0} \frac{\ell}{L} Q$$

e logo,

$$E_r = \frac{Q}{2\pi L \varepsilon_0 R}$$

7 – Agora parar achar o potencial temos:

$$V_{R2} - V_{R1} = -\int_{R1}^{R2} E_r dR$$

$$= -\frac{Q}{2\pi L \varepsilon_0} \int_{R1}^{R2} \frac{dR}{R} = -\frac{Q}{2\pi L \varepsilon_0} \ln \frac{R_2}{R_1}$$

assim,

$$V = |V_{R2} - V_{R1}| = \frac{Q}{2\pi L \varepsilon_0} \ln \frac{R_2}{R_1}$$

E portanto temos que a capacitância é dada por:

$$C = \frac{Q}{V} = \frac{2\pi L \varepsilon_0}{\ln \frac{R_2}{R_1}}$$

Observe que a capacitância em capacitores cilíndricos é proporcional ao comprimento dos condutores.

3ª Questão:

(a) Determine a corrente em cada ramo do circuito na figura. (b) Determine também a energia dissipada no resistor de 4Ω em 3s.

Solução:

(a)

O circuito possui três ramos e como vemos três correntes I, I_1 e I_2 . Com isso precisamos de três relações para encontra-las. A primeira relação é dada pela aplicação da lei dos nós ao nó b: $I = I_1 + I_2$. (1)

Agora aplicamos a lei das malhas em abcdefa:

$$12V - (2\Omega)I_2 - 5V - (3\Omega)(I_1 + I_2) = 0$$

Dividindo essa equação por 1Ω e lembrando que $1V/1\Omega = 1A$, temos:

$$7A - 3I_1 - 5I_2 = 0 (2)$$

Para obter a terceira relação procedemos de maneira análoga no circuito bedeb e obtemos:

$$-5A + 4I_1 - 2I_2 = 0 (3)$$

Resolvendo o sistema formado pelas equações (2) e (3), obtemos: I_1 = 1,5A e I_2 = 0,5A.

Utilizando a equação (1), temos que I = 2,0A.

(b) Potência dissipada: $P = I_1^2 R = (1.5A)^2 (4\Omega) = 9W$

E a energia total dissipada é dada por: $W = P\Delta t = (9W)*3s = 27J$

4ª Questão:

Um capacitor de $2 \mu F$ é carregado até 20V, e o capacitor é então conectado a um indutor de $6\mu H$. (a) Qual a freqüência de oscilação? (b) Qual é o valor de pico da corrente?

Solução:

Admitindo que estamos trabalhando com um oscilador LC, temos que em (b) a corrente é máxima quando dQ/dt é máxima, então a amplitude da corrente é w Q_{pico} . E $Q=Q_{pico}$ quando $V=V_{pico}$, onde V é a tensão através do capacitor.

(a)A frequência de oscilação depende apenas dos valores da capacitância e da indutância:

$$f = \frac{w}{2\pi} = \frac{1}{2\pi \sqrt{LC}} = \frac{1}{2\pi \sqrt{(6X10^{-6}H)(2X10^{-6}F)}} = 4,59X10^{4}Hz$$

(b)O valor de pico da corrente está relacionado com o valor do pico da carga:

$$I_{pico} = wQ_{pico} = \frac{Q_{pico}}{\sqrt{LC}}$$

E o pico da carga sobre o capacitor está relacionado ao pico de queda de potencial através do capacitor: $Q_{\it pico}$ = $CV_{\it pico}$

E portanto:

$$I_{pico} = \frac{CV_{pico}}{\sqrt{LC}} = \frac{(2\mu F)(20V)}{\sqrt{(6\mu H)(2\mu F)}} = 11.5A$$

5ª Questão:

Uma lâmpada de bulbo emite ondas eletromagnéticas esféricas uniformemente em todas as direções. Encontre (a) a intensidade, (b) a pressão de radiação e (c) os módulos dos campos elétricos e magnéticos a uma distância de 3m da lâmpada, admitindo que 50W de radiação eletromagnética são emitidos.

Solução:

A uma distância r da lâmpada, a energia está distribuída uniformemente sobre a área $4\pi r^2$. A intensidade é a potência dividida pela área. A pressão de radiação pode então ser encontrada a partir de $P_r = \frac{I}{a}$.

(a)
$$I = \frac{50W}{4\pi r^2} = \frac{50W}{4\pi 3^2} = 0.442W/m^2$$

(b)
$$P_r = \frac{I}{c} = \frac{0.442W/m^2}{3X10^8 m/s} = 1.47X10^{-9} Pa$$

(c)
$$B_0 = \sqrt{2\mu_0 P_r} = \sqrt{[2(4\pi X 10^{-7} Tm / A)(1,47X 10^{-9} Pa)]} = 6,08X 10^{-8} T$$

$$E_0 = cB_0 = (3X10^8 m/s)(6,08X10^{-8}T) = 18,2V/m$$

Os módulos dos campos elétrico e magnético naquele ponto são da forma:

$$E = E_0 \operatorname{sen}(wt)$$
 e $B = B_0 \operatorname{sen}(wt)$
com $E_0 = 18,2V/m$ e $B_0 = 6,08X10^{-8}T$

6ª Questão:

Duas fendas com largura a=0,015 mm estão separadas por uma distância d=0,06mm e são iluminadas por uma luz com comprimento de onda λ =650nm. Quantas franjas claras são vistas no máximo de difração central?

Solução:

Precisamos encontrar m para o qual o m-ésimo máximo de interferência coincida com o primeiro mínio de difração e portanto existirão N=2m-1 franjas no máximo central.

Para o primeiro mínimo de difração temos: $sen \theta_1 = \frac{\lambda}{a}$.

Para o m-ésimo máximo de difração temos: $sen \theta_m = \frac{m\lambda}{d}$

E como queremos q eles coincidam basta igualarmos esses ângulos:

$$\frac{m\lambda}{d} = \frac{\lambda}{a} \Rightarrow m = \frac{d}{a} = \frac{0.06mm}{0.015mm} = 4$$

Portanto N=2m-1=2*4-1=7 franjas claras.

7ª Questão:

O primeiro estado excitado de um átomo de gás está 2,86eV acima do estado fundamental. (a) Qual é o comprimento de onda da radiação para a absorção ressonante? (b) Se o gás é irradiado com luz monocromática de comprimento de onda de 320nm, qual é o comprimento de onda da luz com espalhamento Raman?

Solução:

 a) Calculamos o comprimento de onda da radiação absorvida em uma transição do estado fundamental para o primeiro estado excitado, vamos admitir que o estado fundamental seja zero:

$$\lambda = \frac{hc}{\Delta E} = \frac{1240eV.nm}{2,86eV} = 434nm$$

b) Para a luz monocromática temos:

$$\lambda = \frac{hc}{\Delta E} \Rightarrow 320nm = \frac{1240eV.nm}{\Delta E} \Rightarrow \Delta E = \frac{1240eV.nm}{320nm} = 3,88eV$$

E portanto,

$$\lambda = \frac{hc}{\Delta E} = \frac{1240eV.nm}{3,88 - 2,86eV} = 1215nm$$

8ª Questão:

Determine as funções de onda correspondentes a um elétron confinado em uma região unidimensional de comprimento L e as energias correspondentes. Calcule a probabilidade de encontrar a partícula em uma faixa de largura 0,02.L centrada no meio da caixa, nos estados correspondentes aos números quânticos 1,2,3 e 4.

Solução:

As funções de onda normalizadas do elétron na caixa são:

$$\Psi_n(x) = \sqrt{\frac{2}{L}} \operatorname{sen}\left(n\pi \, \frac{x}{L}\right).$$

Já a energia total do elétron é dado pela sua energia cinética:

$$E_{cin} = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

E pela relação de Broglie temos:

$$E_{cin} = E_n = \frac{h^2}{2m\lambda_n^2}$$

Considerando que a função de onda seja contínua e portanto nula nos extremos x = 0 e x = L. Temos a mesma situação das ondas estacionárias numa corda fixa em x = 0 e x = 0

= L, e os resultados são os mesmos, portanto o comprimento de onda é dado por $\lambda_n = 2L/n$. e portanto as energias permitidas são dadas por:

$$E_n = n^2 \frac{h^2}{8mL^2} = n^2 E_1$$

Agora vamos admitir que o elétron esteja no estado fundamental e a probabilidade P de se encontrar o elétron em um intervalo infinitesimal dx é $\Psi^2 dx$ onde Ψ é dada pela relação anterior. Nesse caso a probabilidade nesse caso é dada por $\Psi^2 \Delta x$ onde $\Delta x = 0.02L$. Assim,

$$\Psi_n(x) = \sqrt{\frac{2}{L}} \operatorname{sen}\left(n\pi \, \frac{x}{L}\right)$$

Logo

$$\Psi_n^2(\frac{L}{2}) = \frac{2}{L} \operatorname{sen}^2 \left(n\pi \frac{\frac{L}{2}}{L} \right) = \frac{2}{L} \operatorname{sen}^2 \left(\frac{n\pi}{2} \right)$$

E a probabilidade é dada por:

$$P_n = \Psi_n^2 \left(\frac{L}{2}\right) \Delta x = \frac{2}{L} \operatorname{sen}^2 \left(\frac{n\pi}{2}\right) \Delta x$$

E como $\Delta x = 0.02L$, temos:

$$P_n = \frac{2}{L} \text{sen}^2 \left(\frac{n\pi}{2} \right) 0.02L = 0.04 \text{sen}^2 \left(\frac{n\pi}{2} \right)$$

Portanto para cada número quântico:

$$P_{1} = 0.04 \operatorname{sen}^{2} \left(\frac{\pi}{2} \right) = 0.04$$

$$P_{2} = 0.04 \operatorname{sen}^{2} (\pi) = 0$$

$$P_{3} = 0.04 \operatorname{sen}^{2} \left(\frac{3\pi}{2} \right) = 0.04$$

$$P_{4} = 0.04 \operatorname{sen}^{2} (2\pi) = 0$$