VİTMO

Основы электротехники

Отчет по лабораторной работе №3

Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока

Группа *Р3333*

Вариант 48

Выполнил: Рахматов Неъматджон

Дата сдачи: *07.01.2025*

Контрольный срок сдачи: *04.12.2024*

Количество баллов:

Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока.

Цель работы

Исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов.

1. Измерение действующих значений входного напряжения, тока и фазового сдвига между ними для каждого двухполюсника

1.1 Схема №1

Схема моделирования в программе LTspice представлена на рисунке1.

Рисунок 1 – Схема моделирования

Результат моделирования в программе LTspice представлен на рисунке 2.

Рисунок 2 – График моделирования

$$\omega = 2 \pi \cdot f = 2000 \Gamma \mu;$$
 $X_C = \frac{1}{\omega \cdot C} = 0 \text{ Ом};$
 $X_L = \omega \cdot L = 0 \text{ Ом};$
 $R = 30 \text{ Ом};$
 $Z = \sqrt{R^2 + (X_L - X_C)^2} = 30 \text{ Ом};$
 $I = \frac{U}{Z} = 0.433 \text{ A};$
 $\varphi = arctg\left(\frac{X}{R}\right) = 0^\circ.$

Векторная диаграмма, полученная в результате моделирования представлена на рисунке 6.

Рисунок 3 – Векторная диаграмма

При активной нагрузке угол сдвига фаз между током и напряжением равен 0° .

1.2 Схема №2

Схема моделирования в программе LTspice представлена на рисунке 4.

Рисунок 4 – Схема моделирования

Результат моделирования в программе LTspice представлен на рисунке 5.

Рисунок 5 – График моделирования

$$\omega = 2 \,\pi \cdot f = 2000 \,\Gamma \text{ц};$$
 $X_C = \frac{1}{\omega \cdot C} = 21,007 \,\text{Ом};$
 $X_L = \omega \cdot L = 0 \,\text{Ом};$
 $R = 30 \,\text{Ом};$
 $Z = \sqrt{R^2 + (X_L - X_C)^2} = 21,007 \,\text{Ом};$

$$I = \frac{U}{Z} = 0.619 \text{ A};$$

 $\varphi = arctg\left(\frac{X}{R}\right) = -90^{\circ}.$

Векторная диаграмма, полученная в результате моделирования представлена на рисунке 6.

Рисунок 6 – Векторная диаграмма

При емкостной нагрузке угол сдвига фаз между током и напряжением равен – 90° .

1.3 Схема №3

Схема моделирования в программе LTspice представлена на рисунке 7.

Рисунок 7 – Схема моделирования

Результат моделирования в программе LTspice представлен на рисунке 8.

Рисунок 8 – График моделирования

$$\omega = 2 \pi \cdot f = 2000 \Gamma \text{ц};$$
 $X_C = \frac{1}{\omega \cdot C} = 21,007 \text{ Ом};$
 $X_L = \omega \cdot L = 0 \text{ Ом};$
 $R = 30 \text{ Ом};$
 $Z = \sqrt{R^2 + (X_L - X_C)^2} = 36,62 \text{ Ом};$
 $I = \frac{U}{Z} = 0,35 \text{ A};$
 $\varphi = arctg\left(\frac{X}{R}\right) = -35,0^\circ.$

Векторная диаграмма, полученная в результате моделирования представлена на рисунке 9.

Рисунок 9 – Векторная диаграмма

При активно-емкостной нагрузке угол сдвига фаз между током и напряжением находится в пределах $0 < \varphi < -90^\circ$.

1.4 Схема №4

Схема моделирования в программе LTspice представлена на рисунке 10.

Рисунок 10 – Схема моделирования

Результат моделирования в программе LTspice представлен на рисунке 11.

Рисунок 11 – График моделирования

$$\omega = 2 \pi \cdot f = 2000 \Gamma \mu;$$
 $X_C = \frac{1}{\omega \cdot C} = 0 \text{ Ом};$
 $X_L = \omega \cdot L = 7.002 \text{ Ом};$
 $R = R_k = 10 \text{ Ом};$
 $Z = \sqrt{R^2 + (X_L - X_C)^2} = 12.208 \text{ Ом};$
 $I = \frac{U}{Z} = 1.065 \text{ A};$

$$\varphi = arctg\left(\frac{X}{R}\right) = 35.0^{\circ}.$$

Векторная диаграмма, полученная в результате моделирования представлена на рисунке 12.

Рисунок 12 – Векторная диаграмма

При активно-индуктивной нагрузке (с учетом активного сопротивления катушки) угол сдвига фаз между током и напряжением находится в пределах $0 < \varphi < 90^\circ$.

1.5 Схема №5

Схема моделирования в программе LTspice представлена на рисунке 13.

Рисунок 13 – Схема моделирования

Результат моделирования в программе LTspice представлен на рисунке 14.

Рисунок 14 – График моделирования

$$\omega = 2 \pi \cdot f = 2000 \Gamma \mu;$$
 $X_C = \frac{1}{\omega \cdot C} = 0 \text{ Ом};$
 $X_L = \omega \cdot L = 7.002 \text{ Ом};$
 $R = R_k + R_1 = 40 \text{ Ом};$
 $Z = \sqrt{R^2 + (X_L - X_C)^2} = 40.608 \text{ Ом};$
 $I = \frac{U}{Z} = 0.32 \text{ A};$

$$\varphi = arctg\left(\frac{X}{R}\right) = 9.9^{\circ}.$$

Векторная диаграмма, полученная в результате моделирования представлена на рисунке 15.

Рисунок 15 – Векторная диаграмма

При активно-индуктивной нагрузке (с учетом активного сопротивления катушки) угол сдвига фаз между током и напряжением находится в пределах $0 < \varphi < 90^\circ$.

1.6 Схема №6

Схема моделирования в программе LTspice представлена на рисунке 16.

Рисунок 16 – Схема моделирования

Результат моделирования в программе LTspice представлен на рисунке 17.

Рисунок 17 – График моделирования

$$\omega = 2 \pi \cdot f = 2000 \Gamma \text{ц};$$
 $X_C = \frac{1}{\omega \cdot C} = 21,007 \text{ Ом};$
 $X_L = \omega \cdot L = 7.002 \text{ Ом};$
 $R = R_k + R_1 = 40 \text{ Ом};$
 $Z = \sqrt{R^2 + (X_L - X_C)^2} = 42.381 \text{ Ом};$
 $I = \frac{U}{Z} = 0.307 \text{ A};$

$$\varphi = arctg\left(\frac{X}{R}\right) = -19.2^{\circ}.$$

Векторная диаграмма, полученная в результате моделирования представлена на рисунке 18.

Рисунок 18 – Векторная диаграмма

При смешанной нагрузке (активной с учетом активного сопротивления катушки, емкостной, индуктивной) угол сдвига фаз между током и напряжением определяется преобладающим реактивным сопротивлением, при сопротивлении $X_C > X_L$ угол сдвига фаз между током и напряжением находится в пределах $0 < \phi < -90^\circ$, при $X_C < X_L$ угол сдвига фаз между током и напряжением находится в пределах $0 < \phi < 90^\circ$.

1.7 Схема №7

Схема моделирования в программе LTspice представлена на рисунке 19.

Рисунок 19 – Схема моделирования

Результат моделирования в программе LTspice представлен на рисунке 20.

Рисунок 20 – График моделирования

$$\omega = 2 \pi \cdot f = 2000 \Gamma \text{ц};$$
 $X_C = \frac{1}{\omega \cdot C} = 21,007 \text{ Om};$
 $X_L = \omega \cdot L = 0 \text{ Om};$
 $R = R_1 = 30 \text{ Om};$
 $G = \frac{1}{R} = 0,033 \text{ Cm};$
 $B_C = \omega \cdot C = 0.048 \text{ Om};$

Y =
$$\sqrt{G^2 + {B_C}^2}$$
 = 0,058 Om;
 $I = U \cdot Y = 0.755 \text{ A};$
 $\varphi = arctg\left(\frac{B_C}{G}\right) = -54.9^\circ.$

Векторная диаграмма, полученная в результате моделирования представлена на рисунке 21.

Рисунок 21 – Векторная диаграмма

При активно-емкостной нагрузке угол сдвига фаз между током и напряжением находится в пределах $0 < \varphi < -90^\circ$.

1.8 Схема №8

Схема моделирования в программе LTspice представлена на рисунке 22.

Рисунок 22 — Схема моделирования

Результат моделирования в программе LTspice представлен на рисунке 23.

Рисунок 23 – График моделирования

$$\omega = 2 \pi \cdot f = 2000 \Gamma \text{ц};$$
 $X_C = \frac{1}{\omega \cdot C} = 0 \text{ Ом};$
 $X_L = \omega \cdot L = 7.002 \text{ Ом};$
 $R_1 = 30 \text{ Ом};$
 $R_k = 10 \text{ Ом};$
 $G_1 = \frac{1}{R_1} = 0,033 \text{ CM};$

$$G_k = \frac{R_k}{R_k^2 + X_L^2} = 0,067 \text{ Cm};$$

$$B_k = \frac{X_L}{R_k^2 + X_L^2} = 0,067 \text{ Cm};$$

$$G = G_1 + G_k = 0,1 \text{ Cm};$$

$$Y = \sqrt{G^2 + B_k^2} = 0,111 \text{ Cm};$$

$$I = U \cdot Y = 1,441 \text{ A};$$

$$\varphi = arctg\left(\frac{B_k}{G}\right) = -25,0^\circ.$$

Векторная диаграмма, полученная в результате моделирования представлена на рисунке 24.

Рисунок 24 – Векторная диаграмма

При активно-индуктивной нагрузке (с учетом активного сопротивления катушки) угол сдвига фаз между током и напряжением находится в пределах $0 < \varphi < 90^\circ$.

1.9 Схема №9

Схема моделирования в программе LTspice представлена на рисунке 25.

Рисунок 25 – Схема моделирования

Результат моделирования в программе LTspice представлен на рисунке 26.

Рисунок 26 – График моделирования

$$ω = 2 π \cdot f = 2000 Γι;$$
 $X_C = \frac{1}{ω \cdot C} = 21,007 \text{ Om};$
 $X_L = ω \cdot L = 7.002 \text{ Om};$
 $R_1 = 30 \text{ Om};$
 $R_k = 10 \text{ Om};$

$$G_1 = \frac{R_1}{R_1^2 + X_C^2} = 0,022 \text{ Cm};$$

$$B_1 = \frac{X_C}{R_1^2 + X_C^2} = 0,016 \text{ Cm};$$

$$G_k = \frac{R_k}{R_k^2 + X_L^2} = 0,067 \text{ Cm};$$

$$B_k = \frac{X_L}{R_k^2 + X_L^2} = 0,047 \text{ Cm};$$

$$G = G_1 + G_k = 0,089 \text{ Cm};$$

$$B = B_k - B_1 = 0,031 \text{ Cm};$$

$$Y = \sqrt{G^2 + B_k^2} = 0,095 \text{ Cm};$$

$$I = U \cdot Y = 1,232 \text{ A};$$

$$\phi = arctg\left(\frac{B_k}{G}\right) = 19.3^\circ.$$

Векторная диаграмма, полученная в результате моделирования представлена на рисунке 27.

Рисунок 27 — Векторная диаграмма

При смешанной нагрузке (активной с учетом активного сопротивления катушки, емкостной, индуктивной) угол сдвига фаз между током и напряжением определяется преобладающим реактивным сопротивлением, при сопротивлении $X_C > X_L$ угол сдвига фаз между током и напряжением находится в пределах $0 < \varphi < -90^\circ$, при $X_C < X_L$ угол сдвига фаз между током и напряжением находится в пределах $0 < \varphi < 90^\circ$.

Результаты расчетов и моделирования в программе LTspice приведены в таблице 1.

Таблица 1 - Результаты расчетов и моделирования в программе LTspice

Номер схемы цепи		_	метры юсников			Результать измерений	Результаты вычислений		
	R1	Rk	L	С	U	I	φ	I	φ
	Ом		Гн	мкФ	В	A	٥	A	0
1	30	-	-	-	13,0	0,43	0	0,43	0
2	30	-	-	23,802	13,0	0,62	-89,9	0,62	-90,0
3	30	-	-	23,802	13,0	0,35	-35,1	0,35	-35,0
4	30	10	3,501	-	13,0	1,06	35,0	1,06	35,0
5	30	10	3,501	-	13,0	0,32	9,9	0,32	9,9
6	30	10	3,501	23,802	13,0	0,31	-19,2	0,31	-19,2
7	30	10	-	-	13,0	0,75	-55,0	0,75	54,9
8	30	10	3,501	-	13,0	1,44	25,0	1,44	25,0
9	30	10	3,501	23,802	13,0	1,23	19,2	1,23	19,2

Выводы по 1 части работы:

В ходе выполнения лабораторной работы было проведено измерение действующих значений входного напряжения, тока и фазового сдвига между ними для каждого двухполюсника, а также проведены расчеты соответствующих параметров.

Расчётные и экспериментальные значения действующих токов, фазовых сдвигов и напряжений практически полностью совпадают. Небольшие погрешности в экспериментальных данных связаны с ручным измерением значений в LTSpice, а также округлением в процессе расчета.

- 2. Исследование и анализ частотных характеристик электрической цепи с последовательным и параллельным соединением резистивного, индуктивного и ёмкостного элементов
- 2.1 Исследование и анализ частотных характеристик электрической цепи с последовательным соединением резистивного, индуктивного и ёмкостного элементов.

Схема моделирования представлена на рисунке 28.

Рисунок 28 – Схема моделирования

Результат моделирования в программе LTspice представлен на рисунке 29.

Рисунок 29 – График моделирования

Расчётные формулы и расчёты:

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{LC}} = 551.337 \, \Gamma \text{ц};$$

$$\omega = 2 \, \pi \cdot f_0 = 3464 \, \Gamma \text{ц};$$

$$X_C = \frac{1}{\omega \cdot C} = 12,128 \, \text{Ом};$$

$$X_L = \omega \cdot L = 12,128 \, \text{Ом};$$

$$R_1 = 12 \, \text{Ом};$$

$$R_k = 10 \, \text{Ом};$$

$$Z = \sqrt{(R_1 + R_k)^2 + (X_L - X_C)^2} = 22,0 \, \text{Ом};$$

$$I = \frac{U}{Z} = 0,591 \, \text{A};$$

$$U_{R1} = I \cdot R_1 = 7,091 \, \text{B};$$

$$U_C = I \cdot X_C = 7,167 \, \text{B};$$

$$U_{Rk} = I \cdot R_k = 5,909 \, \text{B};$$

$$U_L = I \cdot X_L = 7,167 \, \text{B};$$

$$\rho = \sqrt{\frac{L}{C}} = 12,128 \, \text{Om};$$

$$\rho = \frac{\rho}{R_1 + R_k} = 0,551.$$

Выше приведён пример расчёта для резонансной частоты. Расчеты для остальных частот сведены в таблицу 2.

Таблица 2 – Результаты расчетов

	U =	$U=13~\mathrm{B};\mathrm{R_1}=12~\mathrm{Om};\mathrm{R_k}=10~\mathrm{Om};\mathrm{L}=3{,}501~\mathrm{m}\Gamma\mathrm{h};\mathrm{C}=23{,}802~\mathrm{mk}\Phi;\mathrm{f_0}=551.337~\Gamma\mathrm{ц}$									
c			Расчёт			Эксперимент					
f			$Q_p = 0.551$			Q _e =0,551					
	φ	I	UR1	Uk	UC	φ	I	UR1	Uk	UC	
Гц	٥	A	В	В	В	0	A	В	В	В	
55,1	-79,6	0,11	1,28	1,07	12,92	-79,6	0,11	1,28	1,07	12,92	
110,3	-69,3	0,21	2,51	2,15	12,67	-69,3	0,21	2,51	2,15	12,67	
165,4	-59,1	0,30	3,64	3,23	12,26	-59,1	0,30	3,64	3,23	12,26	
220,5	-49,2	0,39	4,64	4,29	11,71	-49,1	0,39	4,64	4,29	11,71	
275,7	-39,6	0,46	5,46	5,33	11,05	-39,5	0,46	5,46	5,33	11,05	
330,8	-30,5	0,51	6,11	6,30	10,30	-30,4	0,51	6,11	6,30	10,30	
385,9	-21,9	0,55	6,58	7,19	9,50	-21,8	0,55	6,58	7,19	9,50	
441,1	-13,9	0,57	6,88	7,99	8,69	-13,9	0,57	6,88	7,99	8,69	
496,2	-6,6	0,59	7,04	8,69	7,91	-6,6	0,59	7,04	8,69	7,91	
551,3	0,0	0,59	7,09	9,29	7,17	0,00	0,59	7,09	9,29	7,17	
606,5	6,0	0,59	7,05	9,80	6,48	6,0	0,59	7,05	9,80	6,48	
661,6	11,4	0,58	6,95	10,23	5,85	11,4	0,58	6,95	10,23	5,85	
716,7	16,3	0,57	6,81	10,59	5,29	16,3	0,57	6,81	10,59	5,29	
771,9	20,7	0,55	6,63	10,89	4,79	20,7	0,55	6,63	10,89	4,79	
827,0	24,7	0,54	6,44	11,15	4,34	24,6	0,54	6,44	11,15	4,34	
882,1	28,3	0,52	6,25	11,36	3,95	28,2	0,52	6,25	11,36	3,95	
937,3	31,5	0,50	6,05	11,54	3,59	31,5	0,50	6,05	11,54	3,59	
992,4	34,5	0,49	5,85	11,70	3,28	34,4	0,49	5,85	11,70	3,28	
1047,5	37,1	0,47	5,65	11,83	3,01	37,1	0,47	5,65	11,83	3,01	
1102,7	39,6	0,46	5,46	11,95	2,76	39,5	0,46	5,46	11,95	2,76	

По результатам моделирования получены зависимости I(f), $\phi(f)$, $U_{R1}(f)$, $U_k(f)$, $U_C(f)$, $U_L(f)$, графики представлены на рисунке 30.

Рисунок $30-\Gamma$ рафики $I(f),\,\phi(f),\,U_{R1}(f),\,U_k(f),\,U_C(f),\,U_L(f)$

Векторная диаграмма, полученная в результате моделирования представлена на рисунке 31.

Рисунок 31 – Векторная диаграмма

2.1 Исследование и анализ частотных характеристик электрической цепи с параллельным соединением ветвей с индуктивным и ёмкостным элементами.

Схема моделирования представлена на рисунке 32.

Рисунок 32 – Схема моделирования

Результат моделирования в программе LTspice представлен на рисунке 33.

Рисунок 33 – График моделирования

Расчётные формулы и расчёты:

$$\rho = \sqrt{\frac{L}{C}} = 12,128 \text{ Om};$$

$$f_0` = \frac{1}{2 \cdot \pi \cdot \sqrt{LC}} \cdot \sqrt{\frac{\rho^2 - R_k^2}{\rho^2 - R_1^2}} = 2153 \text{ Fu};$$

$$\omega = 2 \pi \cdot f_0` = 13530 \text{ Fu};$$

$$X_C = \frac{1}{\omega \cdot C} = 3,106 \text{ Om};$$

$$X_L = \omega \cdot L = 47,36 \text{ Om};$$

$$R_1 = 12 \text{ Om};$$

$$R_k = 10 \text{ Om};$$

$$G_1 = \frac{R_1}{R_1^2 + X_C^2} = 0,078 \text{ Cm};$$

$$G_k = \frac{X_C}{R_1^2 + X_C^2} = 0,002 \text{ Cm};$$

$$G_k = \frac{X_L}{R_k^2 + X_L^2} = 0,004 \text{ Cm};$$

$$G = G_1 + G_k = 0,082 \text{ Cm};$$

$$G = G_1 + G_k = 0,082 \text{ Cm};$$

$$Y = \sqrt{G^2 + B_k^2} = 0,082 \text{ Cm};$$

$$I = U \cdot Y = 1,071 \text{ A};$$

Выше приведён пример расчёта для резонансной частоты. Расчеты для остальных частот сведены в таблицу 3.

Таблица 3 – Результаты расчетов

	$U=13~\mathrm{B};~\mathrm{R_1}=12~\mathrm{Om};~\mathrm{R_k}=10~\mathrm{Om};~\mathrm{L}=3{,}501~\mathrm{m}\Gamma_\mathrm{H};~\mathrm{C}=23{,}802~\mathrm{mk}\Phi;~\mathrm{f_0}=551.337~\Gamma$ ц								
f		Pac	чёт		Эксперимент				
	φ	I	I_1	I_2	φ	I	I_1	I_2	
Гц	0	A	В	В	٥	A	В	В	
215	6,6	1,21	0,39	1,17	6,6	1,21	0,39	1,17	
431	6,5	1,10	0,66	0,94	6,5	1,10	0,66	0,94	
646	4,1	1,05	0,82	0,75	4,1	1,05	0,82	0,75	
861	2,3	1,05	0,91	0,61	2,3	1,05	0,91	0,61	
1077	1,3	1,05	0,96	0,51	1,3	1,05	0,96	0,51	
1292	0,7	1,06	0,99	0,43	0,7	1,06	0,99	0,43	
1507	0,4	1,06	1,02	0,38	0,4	1,06	1,02	0,38	
1722	0,2	1,07	1,03	0,33	0,2	1,07	1,03	0,33	
1938	0,1	1,07	1,04	0,30	0,1	1,07	1,04	0,30	
2153	0,0	1,07	1,05	0,27	0,0	1,07	1,05	0,27	
2368	0,0	1,07	1,05	0,25	0,0	1,07	1,05	0,25	
2584	-0,1	1,07	1,06	0,23	-0,1	1,07	1,06	0,23	
2799	-0,1	1,08	1,06	0,21	-0,1	1,08	1,06	0,21	
3014	-0,1	1,08	1,07	0,19	-0,1	1,08	1,07	0,19	
3230	-0,1	1,08	1,07	0,18	-0,1	1,08	1,07	0,18	
3445	-0,1	1,08	1,07	0,17	-0,1	1,08	1,07	0,17	
3660	-0,1	1,08	1,07	0,16	-0,1	1,08	1,07	0,16	
3875	-0,1	1,08	1,07	0,15	-0,1	1,08	1,07	0,15	
4091	-0,1	1,08	1,07	0,14	-0,1	1,08	1,07	0,14	
4306	-0,1	1,08	1,07	0,14	-0,1	1,08	1,07	0,14	

По результатам моделирования получены зависимости I(f), ϕ ,(f), $I_1(f)$, $I_2(f)$, графики представлены на рисунке 34.

Рисунок $34 - \Gamma$ рафики $I(f) \, \phi(f), \, I_1(f), \, I_2(f)$

Векторная диаграмма, полученная в результате моделирования представлена на рисунке 35.

Рисунок 35 – Векторная диаграмма

Выводы по 2 части работы:

В ходе выполнения 2 части лабораторной работы было проведено исследование и анализ частотных характеристик электрической цепи с последовательным и параллельным соединением резистивного, индуктивного и ёмкостного элементов.

В результате работы произведены теоретические расчеты, которые были сопоставлены с результатами, полученными в ходе моделирования в программе в LTSpice. Небольшие погрешности в экспериментальных данных связаны с ручным измерением значений в LTSpice, а также округлением в процессе расчета.

Цель лабораторной работы достигнута.