KAI CHEN

HKUST, Clear Water Bay, New Territories, Hong Kong SAR

Email: kai.chen@connect.ust.hk \lor Homepage: www.cse.ust.hk/kchenbf

RESEARCH OVERVIEW

My research aims at constructing reliable **Multi-modal** AI systems from a **data-centric** perspective. Recent deep learning has witnessed the success of the "**pre-training fine-tuning**" pipeline, enabled by training on massive amounts of datasets. Although remarkable, the intrinsic nature of supervised learning still poses the AI systems with severe risks, especially when encountering unseen "**corner cases**" during inference time. Thus, an effective and continual "**corner case collection and generation**" process is essential to obtain ultimate reliability of AI systems. This methodology has been explored in unimodal domains (*e.g.*, LLM only), which instead remains an open challenge for multi-modal models. Now, I'm trying to answer the following questions,

- How to construct end-to-end Multi-modal LLMs with frontier visual, textual, and speech capabilities?
- How to construct 3D visual world models in a controllable and scalable manner?
- How to enhance Multi-modal LLMs via training with synthetic data and world models?

Research Areas: Omni-modal LLMs, Visual World Modeling, Mixture-of-Experts (MoE)

EDUCATION

Hong Kong University of Science and Technology, Hong Kong SAR Sep 2020 - June 2026 (Expect) Ph.D. in Computer Science and Engineering

GPA: 4.10/4.0

Advisor: Prof. Dit-Yan Yeung

Fudan University(FDU), Shanghai, China

Sep 2016 - June 2020

B.S. in Computer Science, Minor in Economics (Outstanding Graduates of Shanghai)

Overall GPA: 3.70/4.0, Major GPA: 3.90/4.0, Ranking: 3/32

Advisor: Prof. Yanwei Fu

University of Manchester, Manchester, UK

Sep 2018 - Jan 2019

Exchange student in the **Department of Computer Science**

Advisor: Dr. Tingting Mu

EXPERIENCE

Mobile Intelligence Group (MIG), SenseTime

Oct 2019 - April 2020

Research Intern

Advisor:Dr. Wenxiu Sun, Sensetime

Research on real-time (portrait) instance segmentation deployable on mobile devices.

Computer Vision Lab, Indiana University Bloomington (IUB)

June 2019 - Sep 2019

Global Talent Attraction Program (GTAP) Visiting Scholar

Advisor: Prof. David Crandall, IUB

• Research on semi-supervised semantic segmentation and indoor 3D reconstruction.

SELECTED HONORS

CVPR 2025 Travel Awards	May 2025
HKUST Research Travel Grant	2023-2025
HKUST Postgraduate Scholarship	Sep 2020
Outstanding Graduates of Shanghai [Wechat Post] (5%, by Shanghai Government)	April 2020
Scholarship for Outstanding Graduates (5%, by Fudan University)	April 2020
Oversea Visiting Student Stipend of (15,000 CNY, Fudan University)	Dec 2019

Joel & Ruth Spira Scholarship (1%, by Lutron Electronics) National Scholarship (1%, by Ministry of Education of P.R.China)	Mar 2019 Sep 2018
Scholarship for Outstanding Undergraduate Students (5%, by Fudan University)	Oct 2017
PUBLICATIONS	
Full publication list on my Google Scholar. (* denotes equal contribution)	
I. Multi-modal Foundation Models RQ: How to construct multi-modal LLMs with visual, textual, and speech reasoning abilities	simultaneously?
[C23] EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions Kai Chen*, Yunhao Gou*, Runhui Huang*, Zhili Liu*, Daxin Tan*, and other 26 authors	CVPR 2025
[C22] Perceptual Decoupling for Scalable Multi-modal Reasoning via Reward-	Arxiv 2025
Optimized Captioning Yunhao Gou*, <u>Kai Chen*</u> , Zhili Liu*, Lanqing Hong, Xin Jin, Zhenguo Li, James T. Kwok, Yu Zhang.	[<u>link</u>]
II. Multi-modal Foundation Models - Mixture of Cluster-conditional Experts (Nature RQ: Does more data always result in better performance during model pre-training and fine-	,
[C21] Mixture of Cluster-conditional LoRA Experts for Vision-language	Arxiv 2023
Instruction Tuning Yunhao Gou*, Zhili Liu*, <u>Kai Chen*</u> , Lanqing Hong, Hang Xu, Aoxue Li, Dit-Yan Yeung, James Kwok, Yu Zhang.	$[\underline{ ext{link}}]$
[C20] Task-customized Masked Autoencoder via Mixture of Cluster-conditional Experts Zhili Liu*, Kai Chen*, Jianhua Han, Lanqing Hong, Hang Xu, Zhenguo Li, James Kwok.	2023 Spotlight
[C19] Task-Customized Self-Supervised Pre-training with Scalable Dynamic Routing Zhili Liu, Jianhua Han, <u>Kai Chen</u> , Lanqing Hong, Hang Xu, Chunjing Xu, Zhenguo Li.	,,
III. Multi-modal Foundation Models - (M)LLM Reliability via Self-alignment RQ: How reliable are frontier (M)LLMs? Can we enhance (M)LLM reliability with its intrin	$sic\ capabilities?$
[C18] Corrupted but Not Broken: Rethinking the Impact of Corrupted Data in Visual Instruction Tuning Yunhao Gou, Hansi Yang, Zhili Liu, <u>Kai Chen</u> , Yihan Zeng, Lanqing Hong, Zhenguo Li, Qun Liu, James T Kwok, Yu Zhang.	$\begin{array}{c} \mathbf{Arxiv} \ 2025 \\ \\ \underline{[link]} \end{array}$
 [J2] Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Mode Junjie Wu*, Tsz Ting Chung*, Kai Chen*, Dit-Yan Yeung. 	ls TMLR 2025
[C17] Mixture of insightful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment Zhili Liu*, Yunhao Gou*, Kai Chen*, Lanqing Hong, Jiahui Gao, Fei Mi, Yu Zhang, Zhangrus Li, Yin Jiang Oun Liu, James T. Krush.	ACL 2025 [<u>link</u>]
Zhenguo Li, Xin Jiang, Qun Liu, James T. Kwok. [C16] Eyes Closed, Safety On: Protecting Multimodal LLMs via Image-to-Text	ECCV 2024
Transformation Yunhao Gou*, <u>Kai Chen*</u> , Zhili Liu*, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung, James Kwok, Yu Zhang.	[<u>link</u>]
[C15] Gaining Wisdom from Setbacks: Aligning Large Language Models via	ICLR 2024
Mistake Analysis <u>Kai Chen*</u> , Chunwei Wang*, Kuo Yang, Jianhua Han, Lanqing Hong, Fei Mi, Hang Xu, Zhengying Liu, Wenyong Huang, Zhenguo Li, Dit-Yan Yeung, Lifeng Shang, Xin Jiang, Qur	[<u>link]</u> n Liu.

	IV. Visual World Models - Corner Cases for Autonomous Driving (CODA) RQ: How to enhance the robustness of self-driving agents towards road corner cases? A: 1) multi-modal reasoning, 2) corner case generation, and 3) corner case collection		
[C14	ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving Kai Chen*, Ruiyuan Gao*, Lanqing Hong*, Hang Xu, Xu Jia, Holger Caesar, Dengxin Dai,	ECCV	
	Bingbing Liu, Dzmitry Tsishkou, Songcen Xu, Chunjing Xu, Qiang Xu, Huchuan Lu, Dit-Yan	Yeung.	[<u>link</u>]
[C13	Automated Evaluation of Large Vision-Language Models on Self-driving Corner Cases	WACV	2025
	<u>Kai Chen*</u> , Yanze Li*, Wenhua Zhang*, Yanxin Liu, Pengxiang Li, Ruiyuan Gao, Lanqing Hong, Meng Tian, Xinhai Zhao, Zhenguo Li, Dit-Yan Yeung, Huchuan Lu, Xu Jia.		[link]
[C12	CODA: A Real-World Road Corner Case Dataset for Object Detection in	ECCV	2022
	Autonomous Driving Kaican Li*, <u>Kai Chen*</u> , Haoyu Wang*, Lanqing Hong, Chaoqiang Ye, Jianhua Han, Yukuai Chen, Wei Zhang, Chunjing Xu, Dit-Yan Yeung, Xiaodan Liang, Zhenguo Li, Hang Xu	ι.	[link]
	V. Visual World Models - Geometric-controllable Visual Generation (GeoDiffusion RQ: How to generate the 3D visual world in a controllable and scalable manner?	n)	
[C11	MagicDrive3D: Controllable 3D Generation for Any-View Rendering in Street Scenes Ruiyuan Gao, Kai Chen, Zhihao Li, Lanqing Hong, Zhenguo Li, Qiang Xu.	Arxiv	2024 [link]
[C10	MagicDrive-V2: High-Resolution Long Video Generation for Autonomous	ICCV	
[010	Driving with Adaptive Control Ruiyuan Gao, <u>Kai Chen</u> , Bo Xiao, Lanqing Hong, Zhenguo Li, Qiang Xu.	100,	[<u>link</u>]
[C9]	Implicit Concept Removal of Diffusion Models Zhili Liu*, Kai Chen*, Yifan Zhang, Jianhua Han, Lanqing Hong, Hang Xu, Zhenguo Li,	ECCV	2024 [link]
	Dit-Yan Yeung, James Kwok.		
[C8]	DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception	CVPR	
	Yibo Wang*, Ruiyuan Gao*, <u>Kai Chen*</u> , Kaiqiang Zhou, Yingjie Cai, Lanqing Hong, Zhenguo Li, Lihui Jiang, Dit-Yan Yeung, Qiang Xu, Kai Zhang.		[<u>link</u>]
[C7]	MagicDrive: Street View Generation with Diverse 3D Geometry Control Ruiyuan Gao*, <u>Kai Chen*</u> , Enze Xie, Lanqing Hong, Zhenguo Li, Dit-Yan Yeung, Qiang Xu.	ICLR	2024 [link]
[C6]	TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models Pengxiang Li*, <u>Kai Chen*</u> , Zhili Liu*, Ruiyuan Gao, Lanqing Hong, Dit-Yan Yeung, Huchuan Lu, Xu Jia.	WACV	2025 [<u>link</u>]
[C5]	GeoDiffusion: Text-Prompted Geometric Control for Object Detection Data Generation	ICLR	2024
	<u>Kai Chen*</u> , Enze Xie*, Zhe Chen, Yibo Wang, Lanqing Hong, Zhenguo Li, Dit-Yan Yeung.		[<u>link</u>]
	VI. Representation Learning - Object-level Self-supervised Learning (SSL) RQ: How to perform object-level SSL for better transferability on downstream dense perception	tasks?	
[C4]	Mixed Autoencoder for Self-supervised Visual Representation Learning Kai Chen*, Zhili Liu*, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung.	CVPR	$\frac{2023}{[\underline{link}]}$
[C3]	MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving	ICCV	2021
	Kai Chen, Lanqing Hong, Hang Xu, Zhenguo Li, Dit-Yan Yeung.		[<u>link</u>]

Dataset for Autonomous Driving	NeurIPS 2021
Jianhua Han, Xiwen Liang, Hang Xu, <u>Kai Chen</u> , Lanqing Hong, Jiageng Mao, Chaoqiang Ye, Wei Zhang, Zhenguo Li, Xiaodan Liang, Chunjing Xu.	[link]
Early Works	
[J1] Automatic Dense Annotation for Monocular 3D Scene Understanding Md. Alimoor Reza, <u>Kai Chen</u> , Akshay Naik, David Crandall, Soon-Heung Jung.	$2 \text{ Access } 2020$ $[\underline{\text{link}}]$
[C1] Automatic Annotation for Semantic Segmentation in Indoor Scenes Md Alimoor Reza, Akshay Naik, <u>Kai Chen</u> , David Crandall.	IROS 2019 [<u>link</u>]
ACADEMIC SERVICES	
Program Committee / Organizer	
• The 1st W-CODA Workshop at ECCV 2024 on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving.	2024
• The 2nd SSLAD workshop at ECCV 2022.	2022
• The 1st SSLAD workshop at ICCV 2021 on Self-supervised Learning for Next-generation Industry-level Autonomous Driving.	2021
Area Chair	
• International Joint Conferences on Artificial Intelligence (IJCAI)	2025
Conference Reviewer	
• IEEE Conference on Computer Vision and Pattern Recognition (CVPR)	2022-2025
• IEEE International Conference on Computer Vision (ICCV)	2023 - 2025
• European Conference on Computer Vision (ECCV)	2022 - 2024
• ACM International Conference on Multimedia (ACM MM)	2025
• International Conference on Learning Representations (ICLR)	2023-2025
• International Conference on Machine Learning (ICML)	2025
• Neural Information Processing Systems (NeurIPS)	2021-2025
• International Joint Conferences on Artificial Intelligence (IJCAI)	2023-2025
• AAAI Conference on Artificial Intelligence (AAAI)	2022
• International Conference on Robotics and Automation (ICRA)	2022
• Asian Conference on Computer Vision (ACCV)	2024
Journal Reviewer	
• IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)	
IEEE Transactions on Cincuits and Createness for Video Technology (TCCVT)	

- IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
- IEEE Transactions on Image Processing (TIP)
- IEEE Access

PATENTS

- [CN116665219A] GeoDiffusion: Text-Prompted Geometric Control for Object Detection Data Generation. Enze Xie, <u>Kai Chen</u>, Lanqing Hong, Zhenguo Li. *Published in May 26th*, 2023.
- [CN115731530A] MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving. Kai Chen, Lanqing Hong, Hang Xu, Zhenguo Li. Published in Aug. 24th, 2021.

TEACHING

• HKUST COMP 2012 - Object-Oriented Programming and Data Structures, Teaching Assistant, Fall 2024.

- HKUST COMP 2012 Object-Oriented Programming and Data Structures, Teaching Assistant, Fall 2021.
- HKUST COMP 2012 Object-Oriented Programming and Data Structures, Teaching Assistant, Spring 2021.

INVITED TALKS

- [AI TIME Online] EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions. [Recording]
- [VALSE Webinar] Geometric-controllable Visual Generation: A Systemetric Solution. [Recording]
- [AIDriver Online] Controllable Corner Case Generation for Autonomous Driving. [Recording]
- [AI TIME Online] Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake Analysis. [Recording]
- [TechBeat Online] Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake Analysis. [Recording]
- [VALSE 2023@Wuxi] Mixed Autoencoder for Self-supervised Visual Representation Learning. [Recording]
- [VALSE 2023@Wuxi] CODA: A Real-World Road Corner Case Dataset for Object Detection in Autonomous Driving. [Recording]

TECHNICAL SKILLS

 $\label{eq:program Languages} \textbf{Program Languages} \qquad \text{Python, Matlab, C/C++/C\#, SQL, } \textbf{LATEX}$

Framework Pytorch, Tensorflow

Language Native in Mandarin, Fluent in English and Japanese

CET-4(649), CET-6(619), TOEFL-iBT(101)