Drumuri minime între toate perechile de vârfuri

Algoritmul Floyd-Warshall

Se dă:

□ un graf orientat ponderat G = (V, E, w)

Pentru oricare două vârfuri x și y ale lui G, să se determine distanța de la x la y și un drum minim de la x la y.

Ponderile pot fi și **negative** dar **NU** există **circuite cu cost negativ** în G.

Soluția 1

Se aplică algoritmul lui Dijkstra pentru fiecare vârf x.

Soluția 1

Se aplică algoritmul lui Dijkstra pentru fiecare vârf x.

!!! funcționează dacă ponderile sunt pozitive

Complexitate = n * complexitate Dijkstra

Soluția 2

Se aplică algoritmul lui Bellman Ford pentru fiecare vârf x.

Soluția 2

Se aplică algoritmul lui Bellman Ford pentru fiecare vârf x.

Complexitate = n * Complexitate Bellman Ford

$$\rightarrow$$
 n * n * m = n² * m

Soluția 3

Algoritmul Floyd-Warshall

Algoritmul Floyd-Warshall

Fie W = $(w_{ij})_{i, j = 1,...,n}$ matricea costurilor grafului G:

$$w_{ij} = \begin{cases} 0, & \text{dacă } i = j \\ w(i, j), & \text{dacă } ij \in E \\ \infty, & \text{dacă } ij \notin E \end{cases}$$

Vrem să calculăm <u>matricea distanțelor</u> D = $(d_{ij})_{i, j = 1,...,n}$:

$$d_{ij} = \delta(i, j)$$

Fie W = $(w_{ii})_{i, j = 1,...,n}$ matricea costurilor grafului G:

Vrem să calculăm <u>matricea distanțelor</u> D = $(d_{ij})_{i, j = 1,...,n}$:

$$d_{ij} = \delta(i, j)$$

Observație: w_{ij} = costul minim al unui i-j drum, fără vârfuri intermediare (cu cel mult un arc)

Ideea algoritmului Floyd-Warshall:

Pentru k = 1, 2, ..., n, calculăm, pentru oricare două vârfuri i, j:

costul minim al unui drum de la i la j, care are ca vârfuri intermediare doar vârfuri din mulţimea {1, 2, ..., k}

Ideea algoritmului Floyd-Warshall:

Astfel, pentru k = 1, 2, ..., n, calculăm matricea

$$D^{(k)} = (d^k_{ij})_{i, j = 1,...,n}$$

 d_{ii}^{k} = costul minim al unui drum de la i la j, care are vârfurile intermediare în {1, 2, ..., k}

Ideea algoritmului Floyd-Warshall:

Astfel, pentru k = 1, 2, ..., n, calculăm matricea

$$D^{(k)} = (d^k_{ij})_{i, j = 1,...,n}$$

d^k_{ij} = costul minim al unui drum de la i la j, care are vârfurile intermediare în {1, 2, ..., k}

□ Iniţializare: D⁽⁰⁾ = W

Care este matricea distanțelor?

Ideea algoritmului Floyd-Warshall:

Astfel, pentru k = 1, 2, ..., n, calculăm matricea

$$D^{(k)} = (d^k_{ij})_{i, j = 1,...,n}$$

d^k_{ii} = costul minim al unui drum de la i la j, care are vârfurile intermediare în {1, 2, ..., k}

□ Inițializare: D⁽⁰⁾ = W

Avem $D^{(n)} = D$

☐ Ideea algoritmului Floyd-Warshall:

Pentru a reține și un drum minim

☐ Ideea algoritmului Floyd-Warshall:

Pentru a reține și un drum minim

- matrice de predecesori $P^{(k)} = (p_{ij}^k)_{i, j = 1,...,n}$
- p^k_{ij} = predecesorul lui j pe drumul minim curent găsit de la i la j, care are vârfurile intermediare în {1, 2, ..., k}

Cum calculăm elementele matricei D^(k)?

Cum calculăm elementele matricei D^(k)?

Relație de recurență

☐ Ideea de calcul a matricei D^(k):

Fie P un drum de cost minim de la i la j, cu vârfurile intermediare în mulțimea {1, 2, ..., k}.

Dacă vârful k este vârf intermediar al lui P

☐ Ideea de calcul a matricei D^(k):

Fie P un drum de cost minim de la i la j, cu vârfurile intermediare în mulțimea {1, 2, ..., k}.

□ Dacă vârful k este vârf intermediar al lui P

 \Box Ideea de calcul a matricei $D^{(k)}$:

Fie P un drum de cost minim de la i la j, cu vârfurile intermediare în mulțimea {1, 2, ..., k}.

□ Dacă vârful k este vârf intermediar al lui P

□ Se obţine, astfel, relaţia:

$$d_{ij}^{k} = \min \{ d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1} \}$$

- Observaţii
 - o Avem:

$$d^{k}_{ik} = d^{k-1}_{ik}$$
 $d^{k}_{ki} = d^{k-1}_{ki}$

De aceea, în implementarea algoritmului, putem folosi o singură matrice

□ Se obţine, astfel, relaţia:

$$d_{ij}^{k} = \min \{ d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1} \}$$

☐ Observaţii

Când se actualizează $\mathbf{d}_{ij}^{k} = \mathbf{d}_{ik}^{k-1} + \mathbf{d}_{kj}^{k-1}$, trebuie actualizat și \mathbf{p}_{ij}^{k}

$$p^{k}_{ij} = p^{k-1}_{kj}$$

Implementare

Conform observațiilor anterioare, putem folosi o unică matrice D

Inițializare

$$d[i][j] = w(i, j) - costul arcului(i, j)$$

$$p[i][j] = \begin{cases} i, & \text{dacă ij} \in E \\ 0, & \text{altfel} \end{cases}$$

```
for (i=1; i <= n; i++) // initial, d = matricea costurilor</pre>
    for (j=1; j <= n; j++) {
        d[i][j] = w[i][j];
        if (w[i][j] == \infty)
             p[i][i] = 0:
        else
             p[i][j] = i;
for (k=1; k <= n; k++)
    for (i=1; i <= n; i++)
        for (j=1; j <= n; j++)
```

```
for (i=1; i <= n; i++) // initial, d = matricea costurilor</pre>
    for (j=1; j <= n; j++) {
        d[i][j] = w[i][j];
        if (w[i][j] == \infty)
            p[i][i] = 0:
        else
             p[i][i] = i:
for (k=1; k <= n; k++)
    for (i=1; i <= n; i++)
        for (j=1; j <= n; j++)
             if (d[i][j] > d[i][k]+d[k][j]) {
                 d[i][i] = d[i][k]+d[k][i];
                 p[i][j] = p[k][j];
```

leșire: matricea d = matricea distanțelor minime

Afișarea unui drum de la i la j, dacă d[i][j] < ∞, se face folosind matricea p

leșire: matricea d = matricea distanțelor minime

Afișarea unui drum de la i la j, dacă d[i][j] < ∞, se face folosind matricea p

```
void drum(int i, int j) {
    if (i != j)
        drum(i, p[i][j]);
    cout << j << " ";
}</pre>
```

Complexitate - ?

Complexitate - O(n³)

W = d =	0	5	10	1
	∞	0	3	∞
	∞	∞	0	2
	3	20	16	0

0	1	1	1
0	0	2	0
0	0	0	3
4	4	4	0

p =

$$W = d = \begin{bmatrix} 0 & 5 & 10 & 1 \\ \infty & 0 & 3 & \infty \\ \infty & \infty & 0 & 2 \\ \hline 3 & 20 & 16 & 0 \end{bmatrix}$$

0	1	1	1
0	0	2	0
0	0	0	3
4	4	4	0

p =

d =	∞	0	3	∞
	∞	∞	0	2
	3	8	13	0
	0	1	1	1
	0	0	2	0
n =				

0

 ∞

2

	0	5	10	1
	∞	0	3	∞
W = d =	∞	∞	0	2
	3	20	16	0

0	1	1	1
0	0	2	0
0	0	0	3
4	4	4	0

p =

	3	8	13	0
	0	1	1	1
	0	0	2	0
p =	0	0	0	3
	4	4	4	

 ∞

d =

0	5	8	1
∞	0	3	∞
∞	∞	0	2
3	8	11	0
0	1	2	1

0	1	2	1
0	0	2	0
0	0	0	3
4	1	2	0

	0	5	10	1
	∞	0	3	∞
W = d =	∞	∞	0	2
	3	20	16	0

K- I				
_	∞	0	3	∞
d =	∞	∞	0	2
	3	8	13	0

p =

0	J	0	'
∞	0	3	∞
∞	∞	0	2
3	8	11	0
0	1	2	1
	'		'
0	0	2	0

k=3	0	5	8	1
	∞	0	3	5
	∞	∞	0	2
	3	8	11	0
	0	1	2	1
	0	0	2	3

0	5	10	1
∞	0	3	8
∞	∞	0	2
3	20	16	0

0	1	1	1
0	0	2	0
0	0	0	3
4	4	4	0

p =

k=4

d =	∞	∞	0	2
	3	8	13	0
	0	1	1	1
	0	0	2	0
p =	0	0	0	3
	4	1	1	0

∞	0	3	∞
∞	∞	0	2
3	8	11	0
0	1	2	1
0	0	2	0
0	0	0	3
4	1	2	0

5

W = d =

k=3

∞	0	3	5
∞	∞	0	2
3	8	11	0
0	1	2	1
0	0	2	3
0	0	0	3
4	1	2	0

8

0	5	8	1
8	0	3	5
5	10	0	2
3	8	11	0
0	1	2	1
4	0	2	3
4	1	0	3
4	1	2	0

Floyd-Warshall

Algoritmul funcționează corect chiar dacă arcele au și costuri negative (dar graful nu are circuite negative).

□ Cum putem detecta, pe parcursul algoritmului, existența unui circuit negativ? (⇒ datele de intrare nu sunt corecte)

Floyd-Warshall

Algoritmul funcționează corect chiar dacă arcele au și costuri negative (dar graful nu are circuite negative).

- □ Cum putem detecta, pe parcursul algoritmului, existența unui circuit negativ? (⇒ datele de intrare nu sunt corecte)
- □ Reuşim să optimizăm diagonala principală să obținem un cost negativ!

Aplicație Închiderea tranzitivă a unui graf orientat

Algoritmul Roy-Warshall

Aplicație: Închiderea tranzitivă a unui graf orientat G=(V, E) (!!! neponderat):

$$G^* = (V, E^*)$$
, unde

 $E^* = \{ (i, j) \mid există drum (de lungime minim 1) de la i la j în G \}$

Utilitate:

grupări de obiecte aflate în relație (directă sau indirectă): optimizări în baze de date, analize în rețele, logică

Exemplul 1

Închiderea tranzitivă

Închiderea tranzitivă ⇔ calculăm matricea existenței drumurilor (matricea de adiacență a închiderii tranzitive)

$$D = (d_{ij})_{i, j = 1,...,n}$$
:

Observație

Dacă A este matricea de adiacență a unui graf și

$$\mathbf{A}^{\mathbf{k}} = (\mathbf{a}^{\mathbf{k}}_{ij})_{i, j=1,...,n}$$
: puterea k a matricei (k < n)

atunci $\mathbf{a}^{\mathbf{k}}_{ij}$ = numărul de drumuri distincte de lungime k de la i la j (! nu neapărat elementare)

Demonstrație - Inducție. Temă

Observație

Dacă A este matricea de adiacență a unui graf și

$$\mathbf{A}^{\mathbf{k}} = (\mathbf{a}^{\mathbf{k}}_{ij})_{i, j=1,...,n}$$
: puterea k a matricei (k < n)

atunci $\mathbf{a}^{\mathbf{k}}_{ij}$ = numărul de drumuri distincte de lungime k de la i la j (! nu neapărat elementare)

Consecință

$$D = A \vee A^2 \vee ... \vee A^{n-1}$$

unde o valoare diferită de 0 se interpretează ca true

