Semaine du 31 Mars - Planche nº 1

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. Formules des probabilités composées.
- 2. Inégalité de Markov.
- 3. $P_X: A \in \mathcal{P}(X(\Omega)) \mapsto P(X \in A) \in [0,1]$ est une probabilité sur l'ensemble fini $X(\Omega)$.

Exercice nº 2:

(Probabilités) : On lance un dé quatre fois de suite. Calculer les probabilités suivantes :

- 1. On obtient quatre fois le même chiffre.
- 2. On obtient quatre chiffres différents.
- 3. On obtient quatre chiffres qui se suivent (en ordre croissant ou décroissant).

Exercice no 3:

(Probabilités) : ABCD est un carré de centre O. Un jeton posé sur l'un des cinq points peut se déplacer de façon aléatoire vers l'un des autres voisins suivant le mode suivant :

- * Tous les pas issus de l'un des sommets A, B, C et D ont pour probabilité $\frac{1}{3}$.
- * Tous les pas issus de O ont une probabilité de $\frac{1}{4}$.

Un chemin est une suite de pas successifs. On suppose qu'au départ le jeton est en A.

- 1. Le jeton fait deux pas. Calculer la probabilité qu'ill arrive en A, en B, en C, en D, en O?
- 2. Il fait un pas de plus. Quelle est la probabilité qu'il arrive en O?
- 3. Soit $n \in \mathbb{N}^*$. On note p_n la probabilité pour que le jeton arrive en O après n pas. Démontrer que

$$\forall n \in \mathbb{N}, p_{n+1} = \frac{1}{3}(1 - p_n)$$

4. Exprimer p_n en fonction de n et déterminer sa limite quand $n \to +\infty$. (Interpréter?)

Semaine du 31 Mars - Planche nº 2

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. Formule des probabilités totales.
- 2. Si X, Y sont indépendantes, alors $(X \in A)$ et $(Y \in B)$ sont indépendants.
- 3. Si X, Y sont indépendantes, alors f(X) et g(Y) sont indépendantes.

Exercice nº 2:

(Probabilité): Dans une urne se trouvent 4 boules noires et deux boules blanches. Cinq personnes tirent successivement (sans remise) une boule dans l'urne. Le premier qui tire une boule blanche a gagné, quelle est la probabilité de gain pour chaque personne?

Exercice no 3:

(Probabilités) : Pour se rendre au lycée, un élève a le choix entre 4 itinéraires : A, B, C, D.

- * La probabilité qu'il a de choisir A (respectivement B, C) est $\frac{1}{3}$ (respectivement $\frac{1}{4}, \frac{1}{12}$).
- * La probabilité d'arriver en retard en empruntant A (respectivement B, C) est $\frac{1}{20}$ (respectivement $\frac{1}{10}, \frac{1}{5}$).
- * En empruntant D, il n'est jamais en retard.

On suppose que l'élève arrive en retard. Quelle est la probabilité qu'il ait emprunté l'itinéraire D? C?

Exercice no 4:

(Probabilités) : Soit $n \ge 2$. On choisit au hasard un entier compris entre 1 et n. Pour p diviseur de n, on note A_p l'évènement "le nombre choisi est divisible par p".

- 1. Calculer $P(A_p)$ pour tout $p \in \{1, ..., n\}$.
- 2. Montrer que si p_1, \ldots, p_r sont les diviseurs premiers distincts de n, alors les évènements A_{p_1}, \ldots, A_{p_r} sont mutuellement indépendants.
- 3. On désigne par φ la fonction indicatrice d'Euler : $\forall n \in \mathbb{N}^*, \varphi(n) = \operatorname{Card}(\{k \in \{1, \dots, n\} \mid k \wedge n = 1\})$. En déduire que $\frac{\varphi(n)}{n} = \prod_{i=1}^r \left(1 - \frac{1}{p_i}\right)$.

Semaine du 31 Mars - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer les propositions suivantes : En introduisant tout les objets mis en jeu, pour avoir un énoncé complet et précis.

- 1. Formules de Bayes.
- 2. (A_n, \circ) est un groupe appelé groupe alterné et $Card(A_n) = \frac{n!}{2}$.
- 3. $E(X) = \sum_{\omega \in \Omega} P(\{\omega\}) X(\omega)$ et croissance de l'espérance.

Exercice nº 2:

(Probabilités) : On tire au hasard (sans remise) deux dominos dans un jeu de dominos. Quelle est la probabilité qu'on puisse les poser côte à côte?

Exercice no 3:

(Probabilités) : On lance une pièce équilibrée n fois $(n \ge 2)$. Pour tout $k \in \{1, ..., n\}$, A_k désigne l'évènement « on obtient Pile au k-ième lancer ». Soit A_{n+1} l'évènement « le nombre de Piles obtenus au cours des n lancers est pair ».

- 1. (a) Montrer que pour tout $p \in \mathbb{N}^*$, $\sum_{\substack{0 \le k \le p \\ k \equiv 0[2]}} \binom{p}{k} = \sum_{\substack{0 \le k \le p \\ k \equiv 1[2]}} \binom{p}{k} = 2^{p-1}$.
 - (b) Déterminer les probabilités des évènements A_k pour $k \in \{1, \dots, n+1\}$.
- 2. Déterminer la probabilité $P(A_{n+1}|A_1 \cap \cdots \cap A_n)$. En déduire que les évènements A_1, \ldots, A_{n+1} ne sont pas mutuellement indépendants.
- 3. Montrer que pour toute sous famille de n évènements choisis parmi $A_1, \ldots, A_n, A_{n+1}$ est formée d'évènements mutuellement indépendants.