The state of the s

CLAIM OR CLAIMS:

WHAT IS CLAIMED IS:

- 1. A functional fluid composition that generates reduced levels of carboxylic acid during use comprising:
 - (a) a basestock comprising a phosphate ester, and
 - (b) at least one acid scavenger selected from
 - (i) epoxides of the formula

$$\begin{array}{c}
R^1 \\
R^2 \\
R^3
\end{array}$$

10

(ii) epoxides of the formula

$$\mathbb{R}^{8}$$
 \mathbb{R}^{6}
 \mathbb{R}^{7}
 \mathbb{R}^{5}

(II), or

(I)

15

(iii) mixtures thereof;

wherein R^1 , R^2 and R^3 are independently selected from H, $-(CH_2)_n$ -R and -C(O)- R^{12} , and wherein one or two of R^1 , R^2 and R^3 are -C(O)- R^{12} or $-(CH_2)_n$ -R; R^4 is selected from H or

20 –CH₃; and R⁵, R⁶, R⁷ and R⁸ are independently selected from H, –(CH₂)_n-R and –C(O)-R¹², and wherein up to two of R⁵, R⁶, R⁷ and R⁸ are –C(O)-R¹² or –(CH₂)_n-R; wherein R is selected from H, a linear or branched alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, -O-R¹⁰, -O-R⁹-O-R¹⁰,

Docket: 393042

, or $-\text{Si-}(OR^{11})_3$; R^{12} is selected from a linear or branched alkyl group having 1 to 12 carbon atoms, or an arylalkyl group having 7 to 12 carbon atoms, n is an integer from 1 to 4, R^9 is an alkylene group having 2 to 6 carbon atoms, R^{10} is an alkyl group having 1 to 12 carbon atoms, R^{11} is an alkyl group having 1 to 8 carbon atoms, and R^{12} is an alkyl group having 1 to 12 carbon atoms.

- 2. The composition of claim 1 wherein said acid scavenger is an epoxide of formula (I).
- 10 3. The composition of claim 2 wherein one of R^1 , R^2 and R^3 is $-C(O)-R^{12}$ or $-(CH_2)_n-R$.
 - 4. The composition of claim 3 wherein one of R^1 , R^2 and R^3 is $-(CH_2)_n$ -R.
- 5. The composition of claim 4 wherein R is selected from a linear or branched alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, -O-R¹⁰, -O-R⁹-O-R¹⁰.
 - 6. The composition of claim 5 wherein n is 1.
 - 7. The composition of claim 2 wherein R^1 and R^2 are $-C(O)-R^{12}$ or $-(CH_2)_n-R$.
- 20 8. The composition of claim 7 wherein R^1 and R^2 is $-(CH_2)_n$ -R.
 - 9. The composition of claim 8 wherein R is selected from a linear or branched alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, $-O-R^{10}$, $-O-R^9-O-R^{10}$.
- 25 10. The composition of claim 9 wherein n is 1.
 - 11. The composition of claim 2 wherein R^1 and R^3 are $-C(O)-R^{12}$ or $-(CH_2)_n-R$.
 - 12. The composition of claim 11 wherein R^1 and R^3 is $-(CH_2)_n$ -R.

15

20

- 13. The composition of claim 12 wherein n is 1.
- 14. The composition of claim 2 wherein R^4 is H.
- 15. The composition of claim 1 wherein said acid scavenger is an epoxide of formula (II).
- 5 16. The composition of claim 15 wherein one of R^5 , R^6 , R^7 and R^8 is $-C(O)-R^{12}$ or $-(CH_2)_n-R$.
 - 17. The composition of claim 16 wherein one of R^5 , R^6 , R^7 and R^8 is $-(CH_2)_n$ -R.
 - 18. The composition of claim 17 wherein n is 1.
- 19. The composition of claim 1 wherein said acid scavenger is

20. The composition of claim 15 wherein said acid scavenger is:

21. The composition of claim 6 wherein said acid scavenger is

22. The composition of claim 6 wherein said acid scavenger is:

23. The composition of claim 6 wherein said acid scavenger is:

$$O \longrightarrow O \longrightarrow (CH_2)_3CH_3$$

24. The composition of claim 1 wherein said acid scavenger is:

25. The composition of claim 6 wherein said acid scavenger is:

26. The composition of claim 3 wherein said acid scavenger is:

27. The composition of claim 3 wherein said acid scavenger is

28. The composition of claim 13 wherein said acid scavenger is:

15

10

5

5

29. The composition of claim 6 wherein said acid scavenger is:

30. The composition of claim 18 wherein said acid scavenger is:

31. A method for reducing the production of carboxylic acid during use of a functional fluid comprising (a) a basestock comprising a phosphate ester, and (b) at least one acid scavenger, said method comprising admixing in said functional fluid at least one acid scavenger selected from epoxides of the formula:

$$\begin{array}{c}
\mathbf{R}^{1} \\
\mathbf{R}^{2} \\
\mathbf{R}^{3} \\
(I),
\end{array}$$

epoxides of the formula:

$$\mathbb{R}^{8}$$
 \mathbb{R}^{6}
 \mathbb{R}^{7}
 \mathbb{R}^{5}
(II), or

mixtures thereof; wherein R^1 , R^2 and R^3 are independently selected from H, $-(CH_2)_n$ -R and -C(O)- R^{12} , and wherein one or two of R^1 , R^2 and R^3 are -C(O)- R^{12} or $-(CH_2)_n$ -R; R^4 is selected from H or $-CH_3$; and R^5 , R^6 , R^7 and R^8 are independently selected from H, $-(CH_2)_n$ -R and -C(O)- R^{12} , and wherein up to two of R^5 , R^6 , R^7 and R^8 are -C(O)- R^{12} or $-(CH_2)_n$ -R; wherein R is selected from H, a linear or branched alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, -O- R^{10} , -O- R^9 -O- R^{10} ,

, or $-\text{Si-}(OR^{11})_3$; R^{12} is selected from a linear or branched alkyl group having 1 to 12 carbon atoms, or an arylalkyl group having 7 to 12 carbon atoms, n is an integer from 1 to 4, R^9 is an alkylene group having 2 to 6 carbon atoms, R^{10} is an alkyl group having 1 to 12 carbon atoms, R^{11} is an alkyl group having 1 to 8 carbon atoms, and R^{12} is an alkyl group having 1 to 12 carbon atoms.

- 32. The method of claim 31 wherein said acid scavenger is an epoxide of formula (I).
- 33. The method of claim 32 wherein one of R^1 , R^2 and R^3 is $-C(O)-R^{12}$ or $-(CH_2)_n-R$.
 - 34. The method of claim 33 wherein one of R^1 , R^2 and R^3 is $-(CH_2)_n-R$.
- 35. The method of claim 34 wherein R is selected from a linear or branched alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, -O-R¹⁰, -O-R⁹-O-R¹⁰.
 - 36. The method of claim 35 wherein n is 1.
 - 37. The method of claim 32 wherein R^1 and R^2 are $-C(O)-R^{12}$ or $-(CH_2)_n-R$.
 - 38. The method of claim 37 wherein R^1 and R^2 is
- 20 $-(CH_2)_n-R$.
 - 39. The method of claim 38 wherein R is selected from a linear or branched alkyl group having 1 to 12 carbon atoms, an arylalkyl group having 7 to 12 carbon atoms, -O-R¹⁰, -O-R⁹-O-R¹⁰.
 - 40. The method of claim 39 wherein n is 1.
- 25 41. The method of claim 32 wherein R^1 and R^3 are $-C(O)-R^{12}$ or $-(CH_2)_n-R$.
 - 42. The method of claim 41 wherein R^1 and R^3 is $-(CH_2)_n-R$.
 - 43. The method of claim 42 wherein n is 1.

- 44. The method of claim 32 wherein R^4 is H.
- 45. The method of claim 31 wherein said acid scavenger is an epoxide of formula (II).
- 46. The method of claim 45 wherein one of R^5 , R^6 , R^7 and R^8 is $-C(O)-R^{12}$ or $-(CH_2)_n-R$.
 - 47. The method of claim 46 wherein one of R^5 , R^6 , R^7 and R^8 is $-(CH_2)_n-R$.
 - 48. The method of claim 47 wherein n is 1.
 - 49. The method of claim 31 wherein said acid scavenger is

10

50. The method of claim 45 wherein said acid scavenger is:

15

51. The method of claim 36 wherein said acid scavenger is

52. The method of claim 36 wherein said acid scavenger is:

53. The method of claim 36 wherein said acid scavenger is:

20

54. The method of claim 31 wherein said acid scavenger is:

55. The method of claim 36 wherein said acid scavenger is:

56. The method of claim 33 wherein said acid scavenger is:

57. The method of claim 33 wherein said acid scavenger is

58. The method of claim 43 wherein said acid scavenger is:

59. The method of claim 36 wherein said acid scavenger is:

10

5

60. The method of claim 48 wherein said acid scavenger is:

61. An acid scavenger selected from the group consisting of

- 3-benzoxymethyl-7-oxabicyclo[4.1.0]heptane, 3-decyloxymethyl-7-oxabicyclo[4.1.0]heptane, 3-(2-n-butoxyethoxymethyl)-7-oxabicyclo[4.1.0]heptane,
 3-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinanoxymethyl)-7-oxabicyclo[4.1.0]heptane,
 3-(2-ethylhexoxymethyl)-7-oxabicyclo[4.1.0]heptane,
 1-(7-oxabicyclo[4.1.0]hept-3-yl)-1-hexanone,
 4-methyl-3-hexoxymethyl-7-oxabicyclo[4.1.0]heptane,
 3-(phenylmethyl)-7-oxabicyclo[4.1.0]heptane,
 3-(phenylmethyl)-7-oxabicyclo[4.1.0]heptane,
 - 62. An acid scavenger represented by the formula:

$$\mathbb{R}^{\frac{8}{6}}$$
 $\mathbb{R}^{\frac{1}{7}}$
 \mathbb{R}^{5}

wherein R⁵, R⁶, R⁷ and R⁸ are independently selected from H, –(CH₂)_n-R and

-C(O)-R¹², and at least one of R⁵, R⁶, R⁷ and R⁸ is –(CH₂)_n-R or –C(O)-R¹²; wherein R¹² is selected from a linear or branched alkyl group having 1 to 12 carbon atoms, or an arylalkyl group having 7 to 12 carbon atoms.