1 Алгоритм симплекс-метода

1. Каноническая система ограничений $A\vec{x}=\vec{b}$ приводится к виду, в котором базисные переменные выражены через свободные, а целевая функция к примерно тому же:

$$f(x) = \gamma_0 - (\gamma_{r+1}x_{r+1} + \dots + \gamma_n x_n)$$

$$\begin{cases} x_1 = \beta_1 - (\alpha_{1r+1}x_{r+1} + \dots + \alpha_{1n}x_n) \\ x_i = \beta_i - (\alpha_{ir+1}x_{r+1} + \dots + \alpha_{in}x_n) \\ x_r = \beta_r - (\alpha_{rr+1}x_{r+1} + \dots + \alpha_{rn}x_n) \end{cases}$$

2. Заполняется симплекс-таблица:

Каждая строка таблицы соответствует уравнению, а последняя строка соответствует целевой функции.

- 3. В строке коэффициентов целевой функции (не считая γ_0) выбирается $\gamma_j < 0$, максимальное по модулю. Если все $\gamma_j \geq 0$, то оптимальное решение достигнуто, причём значения переменных определяются столбцом свободных членов, а оптимальное значение функции клеткой, соответствующей свободному члену.
- 4. В j-ом столбце среди положительных коэффициентов α_{ij} выбирается разрешающий элемент α_{lj} , т.е. элемент, для которого минимально отношение $\frac{\beta_l}{\alpha_{lj}}$. Если положительных коэффициентов нет, то задача не имеет решений.
- 5. Делятся все члены строки, содержащей разрешающий элемент, на α_{lj} . Полученная строка вносится на то же место в новой таблице.
- 6. Из каждой оставшейся i-й ($i \neq l$) строки вычитается получившаяся строка, умноженная на коэффициент при x_j в l-й строке. В результате в клетках, соответствующих j-му столбцу, появляются нули. Преобразованные строки записываются в новой таблице на место прежних.
 - 7. Переменная x_j вводится в базис вместо x_l . Далее идёт переход на шаг 3.