BROWANG, Matteo (mgb19)

Imperial College London

Department of Computing Academic Year **2019-2020**

Page created Thu Feb 20 02:15:19 GMT 2020

499 fbelard 6 s5 mgb19 v1

Electronic submission

Mon - 17 Feb 2020 17:33:16

mgb19

Exercise Information

Module: 499 Modal Logic for Strategic

Reasoning in AI

Exercise: 6 (CW)

Title: Coursework2
FAO: Belardinelli, Francesco (fbelard)

Issued: Wed - 05 Feb 2020

Due: Wed - 19 Feb 2020

Assessment: Individual Submission: Electronic

Student Declaration - Version 1

• I declare that this final submitted version is my unaided work.

Signed: (electronic signature) Date: 2020-02-06 16:36:17

For Markers only: (circle appropriate grade)

BROWANG,	Matteo	01797461	s5	2020-02-06 16:36:17	A *	A	В	C	D	\mathbf{E}	\mathbf{F}
(mgb19)											

Imperial College London

COURSEWORK 2: TEMPORAL LOGIC

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

Modal Logic

Author:

Matteo Browang (CID: 01797461) matteo.browang19@imperial.ac.uk

Date: February 17, 2020

Question 1

- (a) The truth condition that defines $\varphi R \psi$ are: $\pi \models \varphi R \psi$ iff $\pi[i...\infty] \models \varphi$ for some $i \ge 0$, and $\pi[j...\infty] \models \psi$ for all $0 \le j \le i$
- **(b)** A LTL formula that formalizes the meaning of $\varphi R \psi$ is:

$$(\psi \wedge X\psi)U\varphi$$

(c) We translate the formula found in **(b)** to the corresponding truth conditions according to the definition in Lecture 5:

```
\pi \models (\psi \land X\psi)U\varphi \text{ iff } \pi[i\dots\infty] \models \varphi \text{ for some } i \ge 0, \text{ and } \pi[j\dots\infty] \models (\psi \land X\psi) \text{ for all } 0 \le j < i \text{ iff } \pi[i\dots\infty] \models \varphi \text{ for some } i \ge 0, \text{ and } \pi[j\dots\infty] \models \psi \text{ and } \pi[j\dots\infty] \models X\psi \text{ for all } 0 \le j < i \text{ iff } \pi[i\dots\infty] \models \varphi \text{ for some } i \ge 0, \text{ and } \pi[j\dots\infty] \models \psi \text{ and } \pi[j+1\dots\infty] \models \psi \text{ for all } 0 \le j < i \text{ iff } \pi[i\dots\infty] \models \varphi \text{ for some } i \ge 0, \text{ and } \pi[j\dots\infty] \models \psi \text{ for all } 0 \le j \le i
```

This last truth condition exactly corresponds to the truth condition that we found in (a).

(d) We write the truth condition (that we found (a)) corresponding to $\perp R\psi$:

$$\pi \models \bot R\psi$$
 iff $\pi[i...\infty] \models \bot$ for some $i \ge 0$, and $\pi[j...\infty] \models \psi$ for all $0 \le j \le i$

By definition \perp is never true, so this truth condition becomes:

$$\pi \models \bot R \psi \text{ iff } \pi[j \dots \infty] \models \psi \text{ for all } j \ge 0$$

This is the truth condition of $G\psi$ and so $G\psi$ can be expressed as $\pm R\psi$.

Question 2

```
(M,q) \models EF\phi \text{ iff } (M,q) \models E(trueU\phi)
iff for some path \lambda starting from q, (M,\lambda) \models trueU\phi
iff for some path \lambda starting from q, for some j \ge 0, (M,\lambda[j]) \models \phi
```

```
and (M, \lambda[i]) \models true for all 0 \le i < j
                         iff for some path \lambda starting from q, for some j \geq 0, (M, \lambda[j]) \models \phi
    (M,q) \models EF\phi \text{ iff } (M,q) \models E(trueU\phi)
                         iff for every path \lambda starting from q, (M, \lambda) \models trueU\phi
                        iff for every path \lambda starting from q, for some j \geq 0, (M, \lambda[j]) \models \phi
                         and (M, \lambda[i]) \models true for all 0 \le i < j
                        iff for every path \lambda starting from q, for some j \geq 0, (M, \lambda[j]) \models \phi
(M,q) \models EG\phi \text{ iff } (M,q) \models \neg AF \neg \phi
                    iif (M,q) \not\models AF \neg \phi
                    iff for some path \lambda starting from q, for all j \geq 0, (M, \lambda[j]) \not\models \neg \phi
                    (this is the negation of the truth condition of AF \neg \phi according to the previous result)
                    iff for some path \lambda starting from q, for all j \geq 0, (M, \lambda[j]) \models \phi
(M,q) \models AG\phi \text{ iff } (M,q) \models \neg EF \neg \phi
                    iif (M,q) \not\models EF \neg \phi
                    iff for every path \lambda starting from q, for all j \geq 0, (M, \lambda[j]) \not\models \neg \phi
                     (this is the negation of the truth condition of EF \neg \phi according to the first result)
                    iff for every path \lambda starting from q, for all j \geq 0, (M, \lambda[j]) \models \phi
```

Question 3

- (a) Let ψ be a path formula of CTL and ϕ be a formula of CTL. We prove by mutual induction on their structure that ψ is a path formula of CTL* and ϕ is a state formula of CTL*:
 - $\psi = X\phi$ with ϕ a path CTL* formula: by Def. 1., ψ is a CTL* path formula.
 - $\psi = \varphi U \phi$ with φ and ϕ path CTL* formulas: by Def. 1., ψ is a CTL* path formula.
 - $\phi = a \in AP$: by Def. 1., ϕ is a CTL* formula.
 - $\phi = \neg \psi$ with ψ a CTL* formula: by Def. 1., ϕ is a CTL* formula.
 - $\phi = \varphi \wedge \psi$ with φ and ψ CTL* formulas: by Def. 1., ϕ is a CTL* formula.
 - $\phi = E\psi$ with ψ a CTL* path formula: by Def. 1., ϕ is a CTL* formula.
 - $\phi = A\psi$ with ψ a CTL* path formula: by Def. 1., ϕ is a CTL* formula.

So every formula of CTL is a formula of CTL*.

(b) We consider the formula $\phi = AXXp$ with p an atom. Then, by Def. 1., ϕ is CTL* formula but not a CTL formula (the X operator is followed by a path formula).

Question 4

The 5 state formulas of CTL* exactly correspond to the 5 state formulas of CTL.

Concerning the path formulas, if we restrict these formulas to CTL, then we can't have path formulas of the form ϕ (with ϕ a state formula), $\neg \psi$ and $\psi \land \psi'$ (with ψ and ψ' path formula), so we can't apply the rules $(M,\pi) \models \phi$, $(M,\pi) \models \neg \psi$ and $(M,\pi) \models \psi \land \psi'$.

Then it remains the path formulas $(M,\pi) \models X\psi$ and $(M,\pi) \models \psi U\psi'$ which correspond exactly to the path formulas of CTL.

So if we restrict these formulas to CTL, we obtain the same truth conditions as in CTL.

Question 5

- (a) We show in **Question 3** that every CTL formula is also a CTL* formula. Since every formula is equivalent to itself, then every formula of CTL has an equivalent formula (itself) in CTL* so CTL* is more expressive than CTL.
- **(b)** Let's consider the formula $\phi = F(a \wedge Xa)$ with a an atom and F is defined as in CTL $(F\psi = trueU\psi)$.

By Def. 1., ϕ is a state formula of CTL* but ϕ is not a CTL formula.

We show in the lecture that ϕ is also a LTL formula and that there is no CTL formula ϕ' equivalent to ϕ .

Then CTL* is strictly more expressive than CTL.

Question 6

We prove this result by mutual induction on ϕ and ψ (p is an atom, φ and φ' are state formulas, θ and θ' are path formulas):

- $\phi = p : (M, t) \models \phi \Leftrightarrow t \in V(p) \Leftrightarrow t' \in V'(p) \Leftrightarrow (M', t') \models \phi$
- $\phi = \neg \varphi : (M, t) \models \phi \Leftrightarrow (M, t) \nvDash \varphi \Leftrightarrow (M', t') \nvDash \varphi \Leftrightarrow (M', t') \models \phi$
- $\phi = \varphi \wedge \varphi' : (M,t) \models \varphi \Leftrightarrow (M,t) \models \varphi \text{ and } (M,t) \models \varphi' \Leftrightarrow (M',t') \models \varphi \text{ and } (M',t') \models \varphi' \Leftrightarrow (M',t') \models \varphi$
- $\psi = \varphi$: Since, by definition $(M, \pi[0])$ and $(M', \pi'[0])$ are bisimilar, we have : $(M, \pi) \models \psi \Leftrightarrow (M, \pi[0]) \models \varphi \Leftrightarrow (M', \pi'[0]) \models \varphi \Leftrightarrow (M', \pi') \models \varphi$
- $\psi = \neg \theta : (M, \pi) \models \psi \Leftrightarrow (M, \pi) \not\models \theta \Leftrightarrow (M', \pi') \not\models \theta \Leftrightarrow (M', \pi') \models \psi$
- $\psi = \theta \wedge \theta' : (M, \pi) \models \psi \Leftrightarrow (M, \pi) \models \theta \text{ and } (M, \pi) \models \theta' \Leftrightarrow (M', \pi') \models \theta \text{ and } (M', \pi') \models \theta' \Leftrightarrow (M', \pi') \models \psi$

• $\psi = X\theta$: By definition of bisimularity between path, for every $i \ge 0$, $(M, \pi[i])$ and $(M', \pi'[i])$ are bisimilar, so for every $i \ge 0$, $(M, \pi[i+1])$ and $(M', \pi'[i+1])$ are bisimilar, so $(M, \pi[1...\infty])$ and $(M', \pi'[1...\infty])$ are also bisimilar, then:

$$(M,\pi) \models \psi \Leftrightarrow (M,\pi[1\dots\infty]) \models \theta \Leftrightarrow (M',\pi'[1\dots\infty]) \models \theta \Leftrightarrow (M',\pi') \models \psi$$

• $\psi = \theta U \theta'$: By definition of bisimularity between path, for every $i \ge 0$, $(M, \pi[i])$ and $(M', \pi'[i])$ are bisimilar, so for every k $(M, \pi[k...\infty])$ and $(M', \pi'[k...\infty])$ are also bisimilar, then:

```
(M,\pi) \models \psi \Leftrightarrow (M,\pi[i\dots\infty]) \models \theta' for some i \geq 0 and (M,\pi[j\dots\infty]) \models \theta for every 0 \leq j < i \Leftrightarrow (M',\pi'[i\dots\infty]) \models \theta' and (M,\pi[j\dots\infty]) \models \theta for every 0 \leq j < i \Leftrightarrow (M',\pi') \models \psi
```

• $\phi = E\theta$: By definition of the forth property of a bisimulation, for every path $\pi = (t = t_0, t_1, t_2, ...)$ starting from t and for every $i \ge 0$, since $t_i \to t_{i+1}$, there is t_i' and t_{i+1}' such that $B(t_i, t_i')$, $B(t_{i+1}, t_{i+1}')$ and $t_i' \to t_{i+1}'$. So there exists a path $\pi' = (t' = t_0', t_1', t_2', ...)$ starting from t' such that for every $i \ge 0$, (M, t_i) and (M', t_i') are bisimilar. By definition, π and π' are bisimilar. This is also true in the other way with the back property. Then:

 $(M,t) \models \phi \Leftrightarrow$ For some path π starting from t, $(M,\pi) \models \theta \Leftrightarrow$ For some path π' (bisimilar to π) starting from t', $(M',\pi') \models \theta \Leftrightarrow (M',t') \models \theta$

• $\phi = A\theta$: With the previous result we can show that for every path π starting from t' there exists exactly one path π' starting from t' such that π and π' are bisimilar and viceversa. Then:

 $(M,t) \models \phi \Leftrightarrow \text{For every path } \pi \text{ starting from } t, (M,\pi) \models \theta \Leftrightarrow \text{For every path } \pi' \text{ starting from } t', (M',\pi') \models \theta \Leftrightarrow (M',t') \models \phi$

Hence,

$$(M,t) \models \phi \Leftrightarrow (M',t') \models \phi$$

$$(M,\pi) \models \psi \Leftrightarrow (M',\pi') \models \psi$$

This means that CTL* formulas are invariant by bisimulation, so the truth of CTL* formulas is preserved by bisimulation.

Question 7

We consider the relation B such that for every $w, w' \in St \times St'$, B(w, w') iff w and w' avec CTL-equivalent (then we have B(t, t')).

Let's show that B is a bisimulation. We consider two states $w, w' \in St \times St'$ such that B(w, w').

• Since w and w' satisfy the same formulas, in particular they satisfy the same atomic formulas, so for all atoms p, $w \in V(p)$ iff $w' \in V'(p)$.

• To prove the Forth property, we consider $v \in St$ such that $w \to v$. Let's assume that there is no $v' \in M'$ such that $w' \to v'$ and B(v,v'). We define $S' = \{u' \in M' | w' \to u'\}$. Since we suppose that St and St' are finite, then $S' = u'_1, u'_2, \ldots, u'_k$ is finite. By assumption, for every $u'_i \in S'$ there is a CTL formula ψ_i such that $(M,v) \models \psi_i$ and $(M',u'_i) \not\models \psi_i$.

Then, we have $(M, w) \models AX(\psi_1 \land \psi_2 \land \cdots \land \psi_k)$ (we can just consider the paths of the form (w, v, \ldots)) but $(M', w') \nvDash AX(\psi_1 \land \psi_2 \land \cdots \land \psi_k)$ since none of the succesor states (items of S') of w' satisfies $\psi_1 \land \psi_2 \land \cdots \land \psi_k$.

This result contracticts the equivalence of w and w', so there exists $v' \in M'$ such that $w' \to' v'$ and B(v, v').

• In the same way, we can prove the Back property.

Hence, B is a bisimulation between M and M' and B(t,t') so (M,t) and (M',t') are bisimilar.

Question 8

We suppose that (M,t) and (M',t') satisfy the same formulas in CTL*.

Then, since every CTL formula is equivalent to a CTL* formula according to **Question 5**, every CTL formula ψ that (M,t) satisfies is equivalent to a CTL* formula ψ' , and (M,t) also satisfies ψ' , so (M',t') also satisfies ψ' . Since ψ and ψ' are equivalent, (M',t') also satisfies ψ .

Then, (M,t) and (M',t') satisfy the same formulas in CTL.

We suppose that (M,t) and (M',t') satisfy the same formulas in CTL, so (M,t) and (M',t') are CTL-equivalent.

Then, according to **Question 7**, (M, t) and (M', t') are bisimilar.

According to **Question 6**, the truth of CTL* are preserved by bisimulation, which means that (M, t) and (M', t') satisfy the same formulas in CTL*.