BUNDESKEPUBLIK DEUTSCHLAND

DE 00/425

REC'D **0 1 MAY 2000**WIPO PCT

EV

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Bescheinigung

194913344

Das Forschungszentrum Jülich GmbH in Jülich/Deutschland hat eine Patentanmeldung unter der Bezeichnung

•

"Verfahren und Vorrichtung zur Freisetzung von Sauerstoffisotopen aus sauerstoffhaltigen Feststoffen"

am 18. Februar 1999 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig das Symbol B 01 D 59/00 der Internationalen Patentklassifikation erhalten.

Aktenzeichen: 199 06 732.5

München, den 28. März 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

ReA

The Off

Beschreibung

Verfahren und Vorrichtung zur Freisetzung von Sauerstoffisotopen aus sauerstoffhaltigen Feststoffen

Die Erfindung betrifft ein Verfahren zur Freisetzung von Sauerstoffisotopen aus sauerstoffhaltigen Feststoffen, insbesondere aus biogenen und abiogenen silikatischen Substanzen beziehungsweise Feststoffen sowie eine für die Durchführung des Verfahrens geeignete Vorrichtung.

In der Paläoklimatologie und der Paläothermometrie besteht Interesse an der Feststellung der in Feststoffproben vorhandenen Verhältnisse der Sauerstoffisotope ¹⁶O und ¹⁸O.

10

Aus dem Werk "Stable Isotope Geochemistry" von J.Hoefs 4th Completely Revised, Ubdated and Enlaged Edition; Springer Berlin, Heidelberg, New York, Barcelona, Budapest, Hong Kong 1997, sind verschiedene Methoden zur Freisetzung von Sauerstoff aus Proben bekannt. So werden nach dem Stand der Technik zu untersuchende silikatische Proben von Feststoffen durch Laserbestrahlung verdampft, wobei Sauerstoff freigesetzt und der Analyse zugänglich gemacht wird. Der Sauerstoff kann und wird vielfach direkt massenspektroskopisch auf seine Isotope untersucht. Alternativ kann der Sauerstoff in einer weiteren Reaktion mit Kohlenstoff in CO oder CO₂ überführt werden. Die Ermittlung des Isotopenverhältnisses erfolgt dann durch massenspektroskopische Untersuchung

25

15

20

25

30

2

Ein weiteres, bei Silikaten und Oxiden häufig zum Ein-

des durch Reaktion mit Graphit entstandenen CO oder CO_2 .

satz kommendes Verfahren, basiert auf der Fluorinierung der Substanzen, deren Sauerstoffisotope analysiert werden sollen. Dabei wird der Sauerstoff mittels F_2 oder BrF_5 in Nickelzylindern bei 500-600 °C freigesetzt. Der Sauerstoff wird danach im allgemeinen an heißem Graphit in CO_2 überführt und anschließend der massenspekroskopischen Messung zugeführt. Vielfach erfordern die zu untersuchenden Proben eine Vorreinigung, weil die Ana-

lyse störende Fremdmoleküle oder Gruppen in die Probe eingelagert sind. So enthalten z.B. biogene Silikate, wie Schalen von Diatomeen, vielfach Wasser oder OH-

Gruppen, die eine analytische Sauerstoffisotopenbestimmung stark erschweren. Soll daher eine Analyse betref-

fend der Isotopenzusammensetzung des Sauerstoffes vorgenommen werden, so muß die Probe zunächst vielfach in vorgeschalteten Reinigungsschritten von Fremdstoffen

beziehungsweise Molekülen befreit werden, welche das Analysenergebnis verfälschen können. Eine Methode zur

Freisetzung von Sauerstoff aus den zu untersuchenden Proben ist die Laserverdampfung partieller Bereiche von

Festkörpern. Bei dieser Methode ist eine, wenn auch geringe Fraktionierung, das heißt eine Verschiebung des

Sauerstoffisotopenverhältnisses der zu analysierenden Probe des Festkörpers, nicht zu vermeiden, die durch

die etwas anderen Bedingungen in den Randbereichen des Verdampfungsvorgangs begründet sind. Die Erhitzung der

Feststoffprobe durch Laser hat darüber hinaus im Hinblick auf die Reproduzierbarkeit beziehungsweise die

Repräsentativität des Ergebnisses von größeren Proben erhebliche Nachteile, denn mit dem Laserstrahl werden

F:\Penners\Winword\Beschreibungen\KATSCHER\1657dpma - 160299 - Verfahren und Vorrichtung zur Freisetzung von Sauerstoffisotopen.doc

lediglich punktuelle Bereiche der gesamten Feststoffprobe erhitzt und damit der Isotopenanalyse zugänglich
gemacht. Bei Inhomogenitäten einer Probe ist somit das
Ergebnis der zugehörigen Messung des Verhältnisses der
Sauerstoffisotope nicht unbedingt repräsentativ für die
gesamte Probe. Um repräsentative Ergebnisse zu erlangen
sind daher mehrere Messungen notwendig, deren Ergebnisse gemittelt werden müssen.

5

Es ist daher die Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung zu schaffen, mit denen Feststoffproben, vor allem biogene Silikate bzw. biogenes Siliziumdioxid, in einem Arbeitsgang ohne Vorbehandlung, etwa zur Freisetzung an der Probe anhaftender $H_2O\text{-Moleküle}$ oder OH-Gruppen, analysiert werden können, auch ohne Mittelwertbildung der Ergebnisse vornehmen zumüssen.

20

15

Ausgehend vom Oberbegriff des Anspruchs 1 wird die Aufgabe erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmalen.

Mit dem erfindungsgemäßen Verfahren ist es nunmehr möglich, Ergebnisse für die Verhältnisse der Isotopenzusammensetzung des Sauerstoffes in Feststoffproben von so problematischem Material, wie biogene Silikate, in einem experimentellen, sequentiell aufgebauten Arbeitsschritt zusammenzufassen. Für die Probenvorpräparation ist damit kein gesonderter experimenteller Schritt mehr notwendig. Damit ist eine erhebliche Reduzierung des Arbeits- und Zeitaufwandes möglich. Weiterhin ermög-

30

Δ

licht das erfindungsgemäße Verfahren die Analyse des Sauerstoffisotopenverhältnisses von Proben, ohne daß sich Inhomogenitäten der Probe auf die Qualität des Meßergebnisses im Hinblick auf die Gesamtprobe auswirken. Neben Mengen, die massensprektroskopisch problemlos meßbar sind, kann zum Beispiel für Silikate die Probenmenge im Flowmode (Fließmodus) auf 50 μ g SiO₂ reduziert werden. Möglich sind aber auch geringere Einwaagen, wie 25 μ g SiO₂, die mit chemischen Methoden des Aufschlusses so gut wie nicht handhabbar sind. Bei sehr heterogenen Proben werden jedoch größere Proben von wenigstens 100 μ g SiO₂ oder mehr bevorzugt, um einen verläßlichen Mittelwert zu erlangen.

5

10

15

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

Die Zeichnung zeigt eine Darstellung der erfindungsgemäßen Vorrichtung in schematischer Form.

20

Es zeigt:

Fig.1: Eine erfindungsgemäße Vorrichtung.

Die in Figur 1 dargestellte erfindungsgemäße Vorrichtung beinhaltet eine Graphitküvette 1, welche längsförmig ausgebildet ist, wobei sich am oberen Ende eine Aushöhlung 2 zur Aufnahme eines Feststoffes befindet, und am entgegengesetzten Ende eine Bohrung 3 vorhanden ist, welche einen Stab 4 aufnehmen kann, mit dem die Graphitküvette 1 in ein Gehäuse 5 eingebracht werden

10

15

20

Ì

kann, welches aus Quarzglas besteht. Das Gehäuse 5 ist über ein Verbindungsteil 6 vakuumdicht an eine Pumpe anschließbar, welche in der Figur 1 nicht dargestellt ist. Für spezielle Untersuchungen ist eine Kühlfalle 7 integriert, in der etwa thermisch aus der Probe ausgetriebenes Wasser aufgefangen werden kann. Das Gehäuse 5, welches die Graphitküvette 1 beinhaltet, ist von einem Kühlmantel 8 umschlossen, welcher einen Kühlmitteleingang 9 und einen Kühlmittelausgang 10 aufweist. Die Graphitküvette 1 besitzt Bohrungen 11a, b, welche bezüglich der Längsachse der Graphitküvette 1 radial verlaufen und eine Verbindung zwischen der Bohrung 3 und der Umgebung der Graphitküvette 1 herstellen. Das Gehäuse 5 ist in der Höhe der Aushöhlung 2 der Graphitküvette 1 von einer Induktionsspule 12 umgeben, welche mit einem Mittelfrequenz-Generator (MF-Generator) in Verbindung steht. In den Kühlmantel 8 sind an der Außenseite im Winkel von 180° zwei Heliumleitungen 13 integriert, durch die das Trägergas Helium in das Gehäuse 5 einströmen kann, welches als Trägermaterial für CO oder CO2 dient, das einem Massenspektrometer zugeführt wird. Im Verbindungsteil 6 befindet sich ein Palladiumring 14.

25

30

Bei Betrieb der erfindungsgemäßen Vorrichtung wird die Graphitküvette 1 mit der Feststoffprobe, die bei diesem Beispiel ein Silikat ist, zunächst mit dem Stab 4 in das Gehäuse 5 manuell oder automatisch eingebracht. An einem Adapter, welcher an das Verbindungsteil 6 angeschlossen ist, wird die Pumpe zugeschaltet. Das Gehäuse 5 besteht bevorzugt aus Quarzglas, da dieses für die experimentellen Bedingungen inert ist und kein Austausch bei den hohen Temperaturen der Sauerstoffatome

des Quarzglases mit dem im Experiment entstehenden Sauerstoff stattfindet. Der Kühlmantel 8 wird über den Kühlmitteleingang 9 von Wasser durchströmt, welches durch den Kühlmittelausgang 10 abgeführt wird. Die Wasserkühlung liegt im Beipaß des MF-Generatorkühlkreislaufs, durch den über einen weiteren Beipaß auch die Induktionnsspule gekühlt wird. Die Induktionsspule wird über den MF-Generator eingeschaltet, so daß sich die Graphitküvette 1 induktiv erhitzt. Die Aufheizzeit ist frei wählbar und stufenlos bis 2200°C regelbar. Die Aufheizung kann jedoch, wenn erforderlich, in Stufen erfolgen. Die gewünschten Temperaturen lassen sich entweder manuell oder über eine im Netzteil integrierte Schnittstelle programmierbar einstellen. Erfindungsgemäß kann die Silikatprobe ohne vorherige Aufreinigung, das heißt zum Beispiel durch Desorption von Wasser oder OH--Gruppen in der Graphitküvette 1 der Induktionsheizung ausgesetzt werden. Hierbei erhitzt sich die Graphitküvette 1, was zu einer gleichzeitigen Aufheizung der Silikatprobe führt. Die Temperatur kann nun langsam gesteigert werden, wobei die Aufheizung manuell oder programmierbar erfolgen kann. Bei einer Temperatur von ca. 100-120 °C kann Wasser desorbiert werden, welches durch die Pumpe abgesaugt wird. Durch weitere Temperatursteigerung können weitere Verunreinigungen fraktioniert abdampfen. So werden bei einer Temperatur von ca. 1000°C alle eingelagerten OH--Gruppen abgetrennt. Weiterhin können stickstoffhaltige Verbindungen ausgetrieben werden, welche die spätere Analyse aufgrund des Molekulargewichtes von N_2 quantitativ beeinträchtigen und verfälschen können. Bei Temperaturen von ca. 1300-1400°C sind die Verunreinigungen quantitativ abgetrennt und eine weitere Steigerung der Temperatur führt

10

15

5

20

25

10

15

sukzessive dazu, daß Silikat Sauerstoff abspaltet, welcher mit dem Graphit der Graphitküvette 1 zu CO reagiert. Die Aufheizung kann problemlos bis zu einer Temperatur von 2200 °C durchgeführt werden. Bei diesen experimentellen Bedingungen liegt ein Bouduard-Gleichgewicht zwischen CO und CO2 vor, welches ganz auf der Seite des CO liegt. Das Vorliegen von CO hat gegenüber CO2 den Vorteil, daß das CO, als zu analysierender Stoff, zu einer doppelt so hohen Empfindlichkeit bezüglich der Massenspektrometrie führt als CO2. Weiterhin ist das Experiment mit CO kürzer, so daß Arbeitszeit gespart wird. Daher wird bevorzugt eine induktive Erhitzung auf hohe Temperaturen vorgenommen, bei denen das Bouduard-Gleichgewicht auf der Seite des CO liegt. Alternativ kann das durch die Reaktion des Sauerstoffes mit dem Graphit entstehende CO auch durch Temperaturabsenkung in der Graphitküvette 1 aufgrund des Bouduard-Gleichgewichtes in CO2 überführt werden. Liegt das Gleichgewicht auf der Seite des CO2, so kann dieses in der Kühlfalle 7 auskondensiert werden. Im allgemeinen, vor allem im Routinebetrieb, wird das CO2 jedoch im Helium-Trägergasstrom, welcher durch die Heliumleitung 13 eingeführt wird, zum Massenspekrometer transportiert. Aufgrund der verschiedenen Atomgewichte der beiden Sauerstoffisotope kann das entstehende CO ein Molekulargewicht von 28 oder 30 und das damit im Gleichgewicht stehende CO2 ein Molekulargewicht von 44 oder 46 haben. Daher kann es auch vorteilhaft sein, bei einer Temperatur zu arbeiten, bei der das Bouduard-Gleichgewicht auf der Seite des CO2 liegt, da dessen Molekulargewicht nicht mit dem von N2 zu Überlagerungen in den entsprechenden Faraday Auffängern bei massen-

20

20

30

spektroskopischen Messungen führen kann.

Das Verfahren ist bei allen Sauerstoff enthaltenden Feststoffen anwendbar, unabhängig davon, ob sie in Pulverform, amorpher Masse, als Kristall oder sonstiger fester Form vorliegen.

Die Möglichkeit der kontinuierlichen Aufheizung von Probenmaterial gestattet die Vorreinigung der Substanzen von unerwünschten Fremdstoffen bzw. Molekülen durch fraktionierte Desorption oder Abspaltung. Hierbei wird eine Verfälschung des Ausgangsverhältnisses der Sauerstoffisotope weitgehend verhindert, da im Gegensatz zur chemischen Aufarbeitung kein Austausch- der Sauerstoffatome der Feststoffprobe mit Sauerstoffatomen von Reagenzien stattfindet.

Bei Gemischen, die unterschiedliche Zersetzungstemperaturen bzw. Schmelz- oder Verdampfungstemperaturen besitzen, kann eine sequentielle Sauerstoffisotopenbestimmung der unterschiedlichen Komponenten des Gemisches durchgeführt werden.

In einer alternativen Ausführungsform des erfindungsgemäßen Verfahrens wird die zu analysierende bzw. freizusetzende Probe an zu untersuchendem Feststoff mit Graphitpulver vermischt und dieses Gemisch induktiv erhitzt. Das Gemisch kann gegebenenfalls festgepreßt werden.

Die in der erfindungsgemäßen Vorrichtung eingesetzte Graphitküvette 1 kann Bohrungen 11a,b besitzen, welche eine Verbindung zwischen der Bohrung 3 zur Aufnahme des Stabes 4 zum Einbringen der Graphitküvette 1 in das Gehäuse 5 und dem Innenraum des Gehäuses 5 herstellen. Dies ist dann von Vorteil, wenn sich in der Bohrung 3 Verunreinigungspartikel abgesetzt haben, welche die Analyse stören können. Die Bohrungen 11a,b begünstigen

5

15

20

25

15

20

25

eine Ablösung von Fremdpartikeln, weil diese einen leichteren Ausgang aus der Bohrung 3 finden.

Grundsätzlich kann die Graphitküvette 1 auch jede andere Geometrie besitzen, so daß die Ausbildung der Graphitküvette 1 nicht auf die in Figur 1 dargestellte Ausgestaltung beschränkt ist. Ein kreisrunder Ouerschnitt ist jedoch für die induktive Einkopplung, die Küvettenmanipulation und die Küvettenherstellung am günstigsten.

Der Graphit soll für die analytischen Zwecke hochrein sein, so daß keine Verfälschung der Analysenergebnisse durch Verunreinigungen stattfinden kann. Bevorzugt ist die Verwendung von Spektralgraphit, der Zusatzbestandteile lediglich in einer Konzentration von unter 20 ppm mit Si <2ppm, Ca <1ppm, B <1ppm, Fe <0,5ppm, Ti <0,5ppm aufweist. Je nach den nachgeschalteten Analysenverfahren, welche nicht auf Massenspekrometrie beschränkt sind, kann die geforderte Reinheit jedoch auch nach unteren Werten abweichen.

Mit dem erfindungsgemäßen Verfahren können größere Feststoffmengen von beispielsweise 500 µg in einem Experiment aufgeschlossen und analysiert werden. Somit wird das Ergebnis repräsentativer und unterliegt keinen Fehlern, die aus der Heterogenität der Probe resultieren, da bei der Messung die gesamte Probe verwertet wird. Es können daher zeitaufwendige Wiederholungsmessungen gespart werden.

Ausführungsbeispiel:

30 Der Aufschluß von Silikaten oder opalem Silizium, wie es in den Schalen von bestimmten Organismen, wie

Diatomeen, abgelegt wird, ist von besonderem Interesse. Das darin enthaltene Isotopenverhältnis des Sauerstoffes gestattet Hinweise auf die Umgebungstemperatur zur Zeit der Bildung dieser Siliziumverbindungen zu ziehen. Dabei ist allerdings eine Vorbehandlung des Materials zur Entfernung von angelagerten Wassermolukülen und eingeschlossenen OH-Gruppen notwendig.

In dem beispielhaft dargestellten Verfahren wird die Vorbehandlung in einem Arbeitsgang mit der Freisetzung des Sauerstoffes und dessen Umwandlung in CO oder CO2 durchgeführt. Das zu untersuchende Material wird in die

Graphitküvette eingebracht und in das Gehäuse 5, das

kuierung dieser Hochtemperaturzelle auf p $\approx 10^{-6}$ bar,

als Hochtemperaturzelle fungiert, eingesetzt. Nach Eva-

erfolgt die langsame induktive Aufheizung der Graphit-

küvette 1. Dabei wird zunächst das adsorbierte Wasser

desorbiert und abgepumpt (T ≤ 120°C). Mit steigenden Temperaturen werden die eingelagerten OH-Gruppen entfernt. Nach Beendigung dieses Vorgangs erfolgt die Aufheizung des Materials auf 2000 bis 2200°C, wodurch sich

das SiO2 zersetzt und der Sauerstoff mit dem Graphit der Graphitküvette 1 zu CO2 und oder CO reagiert. Aufgrund des Bouduard-Gleichgewichts liegt bei Temperaturen um 2000°C praktisch nur CO im Gasraum vor. Dieses kann nach Heizungsende online mittels Helium als Trä-

15

5

20

25

30

gergas in den Analysator eines Isotopen-Massenspektrometers überführt werden. Alternativ kann statt CO auch CO2 massensprektrometrisch analysiert werden. Dazu wird nach Ende der Aufschlußzeit die Graphitküvette 1 langsam abgekühlt, wodurch sich das Bouduard-Gleichgewicht sukzessive auf

die Seite des CO_2 verschiebt. Nach Beendigung des Abkühlvorgangs kann CO_2 analog zu CO mit Hilfe von Helium als Trägergas online zur Bestimmung des Sauerstoffisotopenverhältnisses gemessen werden (Flowmode).

10

5

15

20

Um eine Vorstellung über das Sauerstoffisotopenverhältnis der angelagerten Wassermoleküle zu erhalten, kann das desorbierte Wasser auch in Kühlfinger 7 einkondensiert werden. Dies kann nach Beendigung des eigentlichen Experiments, oder im Fall von Wasser, direkt nach Verdampfen aus dem Kühlfinger 7 heraus bei gelbglühender Graphitkküvette 1 (ca. 1100°C) in CO und H umgesetzt werden. Der Wasserstoff wird in dem Palladiumring 14 gelöst, bzw. von diesem aufgenommen und das CO kann anschließend online massenspektroskopisch auf seine Sauerstoffisotope hin analysiert werden. OH-Gruppen lassen sich ebenfalls an heißem Graphit spalten, wobei CO und Wasserstoff entsteht. Das Vorgehen ist analog dem Prozeß zu Wasser. Die Hochtemperaturzelle ist so konzipiert, daß über einen speziellen Probenteller automatisch eine größere Anzahl von Proben abgearbeitet werden kann. Massenspektrometer und Hochtemperaturzelleneinheit sind so zusammenfaßbar, daß on-line im Flow-Mode gemessen werden kann.

Patentansprüche

1. Verfahren zur Freisetzung von Sauerstoffisotopen aus sauerstoffhaltigen Feststoffen, bei dem der Feststoff erhitzt wird, dadurch gekennzeichnet, daß die sauerstoffenthaltenden Feststoffe mit Graphit in Kontakt gebracht und mittels Induktion aufgeheizt werden, wobei CO und/oder CO₂ entsteht.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Aufheizung des Feststoffes im Vakuum erfolgt.
- 3. Verfahren nach Anspruch 1 oder 2,
 dadurch gekennzeichnet,
 daß das bei der Aufheizung des Feststoffes entstehende CO oder CO, isoliert wird.
- 4. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das CO oder CO₂ einem Analysenverfahren zugeführt wird.
- 5. Verfahren nach Anspruch 4,
 dadurch gekennzeichnet,
 daß das Analysenverfahren ein massenspektroskopisches Verfahren ist.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Feststoff ein Silikat ist.

5

15-

25

30

7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß eine Aufheizung auf 1600 bis 2200 °C vorgenommen wird.

5

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Aufheizung sequentiell unter Austreibung von Verunreinigungen wie Wasser durchgeführt wird.

10

9. Vorrichtung zur Freisetzung von Sauerstoffisotopen aus Sauerstoff enthaltenden Feststoffen, dadurch gekennzeichnet, daß sie eine Graphitküvette (1) und eine Induktionsquelle umfaßt.

15

10. Vorrichtung nach Anspruch 9,
 dadurch gekennzeichnet,
 daß sich die Graphitküvette (1) in einem vakuum dichten Gehäuse (5) aus Quarzglas befindet, an wel chem eine Pumpe angeschlossen ist.

20

11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß sie Mittel (7) zum Auffangen von durch die Induktion entstandenem gasförmigem CO oder CO₂ besitzt.

- 12. Vorrichtung nach Anspruch 10 oder 11,
 30 dadurch gekennzeichnet,
 daß das Gehäuse (5) aus Quarzglas mit Mitteln zum
 Kühlen (8) versehen ist.
- 13. Vorrichtung nach einem der Ansprüche 10 bis 12, da-35 durch gekennzeichnet, daß das Gehäuse (5) aus Quarzglas bodenseitig zu

öffnen ist, damit der Feststoff mit der Graphitküvette gewechselt werden kann.

- 14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Graphitküvette (1) längsförmig ausgebildet ist, wobei sich am oberen Ende eine Aushöhlung (2) für die Aufnahme des Feststoffes befindet und am entgegengesetzten Ende eine axiale Bohrung (3) vorhanden ist, welche einen Stab aufnehmen kann, mit dem die Graphitküvette in das Gehäuse (5) eingeführt werden kann.
- 15. Küvette,
 dadurch gekennzeichnet,
 daß sie aus Graphit besteht.
- 16. Küvette nach Anspruch 15,
 dadurch gekennzeichnet,
 daß sie längsförmig ausgebildet ist, wobei sich am
 oberen Ende eine Aushöhlung (2) für die Aufnahme
 des Feststoffes befindet und am entgegengesetzten
 Ende eine axiale Bohrung (3) vorhanden ist, welche
 einen Stab aufnehmen kann, mit dem die Küvette (1)
 in das Gehäuse (5) eingeführt werden kann.
- 17. Küvette nach Anspruch 16,
 dadurch gekennzeichnet,
 daß sie Bohrungen (11a,b) besitzt, welche in radialer Richtung von der Bohrung (3) ausgehen.

5

20

30

Zusammenfassung

Verfahren und Vorrichtung zur Freisetzung von Sauerstoffisotopen aus sauerstoffhaltigen Feststoffen.

Die Erfindung betrifft ein Verfahren und eine Vorrich-

tung zur Freisetzung von Sauerstoffisotopen aus sauerstoffhaltigen Feststoffen wobei die Sauerstoff enthaltenden Feststoffe erfindungsgemäß mit Graphit in Kontakt gebracht und mittels Induktion erhitzt werden, wodurch CO und/oder CO₂ entsteht. Erfindungsgemäß entste-

hen Probenaufschluß und Reaktion zum Isotopenmeßgas (CO) dadurch, daß der Feststoff in Gegenwart von Graphit, der gleichzeitig als Küvette (1) zur Probenaufnahme dient, aufgeheizt wird indem eine induktive Aufheizung des Graphits erfolgt. Bei Bedarf kann CO auch

5

10

15

(Fig.1)

in CO₂ überführt werden.

Fig. 1

THIS PAGE BLANK (USPTO)