Differenzial indempotenter Elemente [Aufgabe 16.1 David Eisenbud 1994]

Lemma 2. Sei S eine R-Algebra und $d: S \longrightarrow M$ ein beliebige Ableitung von S in ein S-Modul M. Sei weiter $a \in S$ ein indempotentes Element $(a^2 = a)$.

Dann gilt
$$d(a) = 0$$
.

Beweis. Nutze hierfür allein die Leibnizregel (DEFINITION):

Schritt 1:
$$d_S(a) = d_S(a^2) = ad_S(a) + ad_S(a)$$

Schritt 2: $ad_S(a) = ad_S(a^2) = a^2d_S(a) + a^2d_S(a) = ad_S(a) + ad_S(a)$
 $\Rightarrow d_S(a) = ad_S(a) = 0$

Differenzial des Produktes von Algebren [Proposition 16.10 David Eisenbud 1994]

Proposition 3. Seien S_1, \ldots, S_n R-Algebran. Sei dazu $S := \prod_{i \in \{1, \ldots, n\}} S_i$ die direkte Summe. Dann gilt:

$$\Omega_{S/R} = \prod_{i \in \{1, \dots, n\}} \Omega_{S_i/R}$$

Beweis. Sei für $i \in \{1, ..., n\}$ jeweils $e_i \in S$ die Einbettung es Einselement's von S_i in S, somit ist $p_i : e_i S \longrightarrow S_i$ ein Isomorphismus. Nutze weiter, dass e_i ein indempotentes Element $(e_i^2 = e_i)$ von S ist:

Nach lemma 2 gilt
$$d_S(e_i) = 0$$

$$\Rightarrow \forall s \in s : d_S(e_i s) = d_S(e_i^2 s) = e_i d_S(e_i s) + e_i s d_S(e_i) = e_i d_S(e_i s)$$

Mit diesem Wissen können wir einen Isomorphismus $\Phi:\Omega_{S/R}\longrightarrow\prod_{i\in\{1,...,n\}}\Omega_{S_i/R}$ definieren:

$$\Phi: \Omega_{S/R} \longrightarrow \prod_{i \in \{1, \dots, n\}} e_i d_S(e_i S) \longrightarrow \prod_{i \in \{1, \dots, n\}} \Omega_{S_i/R}$$

$$d_{S}(s) = \sum_{i \in \{1, \dots, n\}} d_{S}(e_{i}s) \longmapsto (e_{1}d_{S}(e_{1}s), \dots, e_{n}d_{S}(e_{n}s)) \longmapsto ((d_{S_{1}} \circ p_{1})(s), \dots, (d_{S_{n}} \circ p_{n})(s))$$

Da der Differenzialraum $\Omega_{S/R}$ bis auf eine eindeutige Isomophie eindeutig ist (PROPOSITION), definiere diesen ab jetzt als $\prod_{i \in \{1,...,n\}} \Omega_{S_i/R}$.

Differenzial algebraischer Algebren ist Null [Aufgabe 16.11 David Eisenbud 1994]

Beispiel 4. Sei K ein $K\"{o}rper$ mit char(K) = 0 und T eine noethersche K-Algebra. Dann gilt:

$$\Omega_{T/K} = 0$$

 $T = \prod_{i \in \{1,...,n\}} K(\alpha_i)$ ist ein endliches Produkt algebraischer Körpererweiterungen.

Beweis.

" \Rightarrow ": Da T noethersch ist, ist T als Algebra über K endlich erzeugt und es gilt:

$$T = \prod_{i \in \{1, \dots, n\}} K[\alpha_i] / I_i$$

Wobei $I_i \subseteq K[\alpha_i]$ ein Ideal ist. $(\forall i \in \{1, \dots, n\})$

Zur Vereinfachung definiere $T':=\prod_{i\in\{1,\dots,n\}}K[\alpha_i]$. Betrachte nun den Differentialraum von T genauer:

$$\Omega_{T/K} = d_{T'} \left(\prod_{i \in \{1, \dots, n\}} K[\alpha_i] / I_i \right)$$

$$= \prod_{i \in \{1, \dots, n\}} d_{K[\alpha]} \left(K[\alpha_i] / I_i \right) \quad (proposition 3)$$

Betrachte also jeweils für $i \in \{1, ..., n\}$ die K-Algebra $K[\alpha_i]/I_i$.

Sei $I_i \neq K[\alpha_i]$, da andernfalls $K[\alpha_i]/I_i = 0$ und somit α_i kein Erzeuger vor T wäre.

Unterscheide nun zwischen den zwei möglichen Fällen $\underline{I_i=0}$ und $\underline{I_i\neq 0}$:

Dies bedeutet
$$K[\alpha_i] \simeq K[x]$$

 $\Rightarrow \Omega_{K[\alpha_i]/K} \simeq K[x] \langle d_{K[x]}(x) \rangle \neq 0 \ (satz \ 1)$

Dies steht allerdings im Widerspruch zu $K[\alpha_i]=0$. Folglich war unsere Annahme falsch und α_i ist algebraisch über K.

Folglich ist $K[\alpha_i] = K(\alpha_i)$ eine algebraische Körpererweiterung.

2. $I_i \neq 0$: Zunächst sehen wir, dass α_i transzendent sein muss, da sonst $K[\alpha_i] = K(\alpha_i)$ ein Körper wäre und somit $I_i = K(\alpha_i)$ gelten würde.

Also ist α_i transzendent und es gilt:

$$K[\alpha_i] \simeq K[x]$$
 und $I \simeq (f(x))$ mit $f(x) \in K[x]$
 $\Rightarrow K[\alpha_i] \simeq K[\beta_1, \dots \beta_n] = K(\beta_1, \dots \beta_n)$, wobei $\beta_1, \dots \beta_n$ die Nullstellen von f sind.

Somit haben wir gezeigt, dass auch in diesem Fall $K[\alpha_i]/I_i$ eine Algebraische Körpererweiterung ist.

" — ": proposition 3 besagt, dass das direkte Produkt unter Bildung des Differenzials erhalten bleibt, also gilt in diesem Fall:

$$\Omega_{T/K} = \prod_{i \in \{1, \dots, n\}} \Omega_{K(\alpha_i)/K}$$

Nach Voraussetzung sind alle Körpererweiterungen $K\alpha_i \supset K$ algebraisch. Wir haben schon in BSP gesehen, dass somit deren Differentiale gleich 0 sind. Folglich ist auch das direkte Produkt der einzelnen Differenziale und somit $\Omega_{T/K}$ gleich 0.