演習問題 2.17

式(2.43)の多変量ガウス分布を考える。精度行列(逆共分散行列) Σ^{-1} を対称行列と反対対称行列(歪対称行列)の和の形で書くと、反対称行列の項がガウス分布の指数部分には現れなくなるため、一般性を失うことなく、精度行列は対称であるとして良いことを示せ。この結果から、対称行列の逆行列も対称(\Rightarrow **演習問題 2.22**)なので、一般性を失うことなく、共分散行列にも対称なものを選んで良いことになる。

[多変量ガウス分布]

$$N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$
... (2.43)

ただし、 μ は D 次元ベクトル、 Σ は $D \times D$ の共分散行列、 $|\Sigma|$ は Σ の行列式を表す。

[対称行列]

対称行列とは、 $\mathbf{A}={}^t\mathbf{A}$ を満たす正方行列 \mathbf{A} のことである。すなわち、 $A_{ij}=A_{ji}$ がすべての i,j について成り立つ。

[反対称行列]

反対称行列とは、 $\mathbf{A} = -{}^t\mathbf{A}$ を満たす正方行列 \mathbf{A} のことである。すなわち、 $A_{ij} = -A_{ji}$ がすべての i, j について成り立つ。反対称行列は、**交代行列**、または**歪対称行列**とも呼ぶ。

[解]

多変量ガウス分布において、精度行列 (逆共分散行列) Σ^{-1} を対称行列と反対対称行列 (歪対称行列) の和の形で書くと、反対称行列の項がガウス分布の指数部分には現れなく なるため、一般性を失うことなく、精度行列は対称であるとして良いことを示す。このために、まず、成分 Λ_{ij} で構成される D 次元の正方行列 Λ を考える。これを精度行列 (逆共分散行列) Σ^{-1} とすると、演習問題 1.14 より、 Λ_{ij} を成分とする D 次元の正方行列 Λ の成分は、

$$\Lambda_{ij}^{S} = \frac{1}{2} \left(\Lambda_{ij} + \Lambda_{ji} \right), \quad \Lambda_{ij}^{A} = \frac{1}{2} \left(\Lambda_{ij} - \Lambda_{ji} \right)$$

とおくことで、

$$\Lambda_{ij} = \Lambda_{ij}^{S} + \Lambda_{ij}^{A}$$

という形で書き表せる。ここで、 Λ^S_{ij} と Λ^A_{ij} は、それぞれ対称行列 Λ^S と反対称行列 Λ^A の成分であり、 $\Lambda^S_{ij} = \Lambda^S_{ji}$ および $\Lambda^A_{ij} = -\Lambda^A_{ji}$ がすべての i,j について成り立つ。演習問題 1.14 より、D 次元の多変量ガウス分布(2.43)中の指数部における二次形式は、

$$\frac{1}{2} (x - \mu)^{T} \Sigma^{-1} (x - \mu) = \frac{1}{2} (x - \mu)^{T} \Lambda (x - \mu)$$

$$= \frac{1}{2} \sum_{i=1}^{D} \sum_{j=1}^{D} (x_i - \mu_i) \Lambda_{ij} (x_j - \mu_j)$$

$$= \frac{1}{2} \sum_{i=1}^{D} \sum_{j=1}^{D} (x_i - \mu_i) \Lambda_{ij}^{S} (x_j - \mu_j)$$

と書き表せるので、上記の式から、 $\Lambda^S = \Lambda = \Sigma^{-1}$ となり、精度行列が対称となっていることがわかる。以上より、多変量ガウス分布において、精度行列 (逆共分散行列) Σ^{-1} を対称行列と反対対称行列 (歪対称行列) の和の形で書くと、精度行列は対称となることが示せた。

[演習問題 1.14]

 w_{ij} を成分とする任意の正方行列は、 $w_{ij}=w_{ij}^S+w_{ij}^A$ という形で書くことができる。ただし、 w_{ij}^S と w_{ij}^A は、それぞれ対称行列と反対称行列の成分であり、 $w_{ij}^S=w_{ji}^S$ および $w_{ij}^A=-w_{ji}^A$ がすべての i, j について成り立つ。ここで、D 次元における高次の多項式の 2 次の項

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j$$

... (1.131)

を考えると、

$$\sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j = \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij}^{S} x_i x_j$$

... (1.132)

となり、反対称行列の寄与が消えることを示せ。このことから、一般性を失うことなく、係数 w_{ij} は、対称に選んでよく、すべての D^2 の成分の選び方が独立ではないことがわかる。また、行列 w_{ij}^S の独立パラメータの数は、D(D+1)/2 で与えられる。