Practical ML for Engineers

Mathematical Foundations of Supervised Learning

Learning Objectives

- 1. Master the notation used in ML
- 2. Know the different **ingredients** of supervised learning
- 3. Understand supervised learning as an optimization problem

ML = Model space + Loss function (+ regularization) + optimization

Supervised Learning Setup

We have a (labelled) dataset of input-output examples

$$\mathcal{D} = \{ (\mathbf{x}^{(i)}, y^{(i)}) | i = 1, \dots, n \}$$

and we want to find a model f that, given an unseen data pair (x, y), performs well at predicting y:

$$f(x) \approx y$$

Problems

- 1. We have **no idea what** f **should look like** (modelization)
- 2. We **only have examples** (from the past), but no idea about future x we might see (generalization)

Model Space and Parameters

- To solve problem nr. 1, and make the model search tractable, we restrict our search to a given model space \mathcal{M} .
- The learning task is then to find the best f in \mathcal{M} .

• In most cases, our models are parametrized by a finite set of parameters

$$\theta = (\theta_1, \ldots, \theta_p) \in \Theta,$$

that belong to a parameter space Θ .

Example: Linear Regression Models

1D Linear regression model

Model space is the set of all linear functions of x:

$$\mathcal{M} = \{ f(x) = a \cdot x + b \mid a, b \in \mathbb{R} \}.$$

Since the model is completely parametrized by the slope a and the intercept b, we can bundle these parameters in a 2d vector, so the parameter space is \mathbb{R}^2 :

$$(a, b) =: \theta \in \Theta := \mathbb{R}^2.$$

For a given paremeter $\theta = (a, b)$, the corresponding model is

$$f_{\theta}(x) = a \cdot x + b$$

1D Polynomial Regression Model

Model space is the set of all polynomial functions of x, up to degree d:

$$\mathcal{M} = \{ f(x) = a_1 \cdot x + a_2 \cdot x^2 + \ldots + a_d \cdot x^d + b \mid a_1, \ldots, a_d, b \in \mathbb{R} \}.$$

The model is fully parametrize by the (d + 1)-dimensional vector:

$$(b, a_1, \ldots, a_d) =: \theta \in \Theta := \mathbb{R}^{d+1}.$$

Model Space: Why bother?

Important

The choice of a **model space** $\mathcal M$ affects subsequent learning in several major ways:

- by restricting the search space, it makes the learning tractable
- restricting the search space means that we are also restricting the class of data that we are allowed to fit (bias)
- this can, in turn, allow us to incorporate **prior knowledge**
- dimension of the parameter space (complexity) governs the **speed of the learning process** (curse of dimensionality)

Examples

Model	Functional Form	Parameters	Dimension
Linear	$f_{\theta}(x) = ax + b$	$\theta \in \mathbb{R}^2$	2
Polynomial (degree <i>p</i>)	$f_{\theta}(x) = \sum_{j=0}^{p} \theta_{j} x^{j}$	$\theta \in \mathbb{R}^{p+1}$	<i>p</i> + 1
Neural Network	• • •	Weights W_i	• • •

7

Model Space: Influence of complexity

A complex enough model can fit anything.

Example: Polynomial regression

$$f_{\theta}(x) = \theta_1 \cdot x + \theta_2 x^2 + \ldots + \theta_n x^n + \theta_{n+1}$$

Bias-Variance Trade-off

- Simple models (small \mathcal{M}): High bias (has difficulty fitting the data), low variance (low sensitivity to noise)
- Complex models (large \mathcal{M}): Low bias (can fit any data), high variance (too sensitive to data noise)

Will learn later how to tune model complexity.

ML = Model space + Loss function (+ regularization) + optimization

Loss Functions

Idea: Quantify how "wrong" our predictions are

- For each example (x, y) in the training dataset, we want to know how good our prediction $\hat{y} = f(x)$ is.
- Then pick the model f that gives the best predictions.

Features x				
People in Office (Feature 1) x_1	Salary (Feature 2) x_2			
4	4300€			
12	2700€			
5	3100€			

Target y		
Worked Minutes Week (Target Variable)		
2220		
1800		
1920		
	J	

Prediction \hat{y}			
Worked Minutes Week (Target Variable)			
2588			
1644			
1870			

• For a parametrized model f_{θ} , corresponds to choosing the θ that minimizes an "aggregated" loss **on the training dataset**.

Loss Functions

- Tells us, for a given prediction \hat{y} how far we are from the true value y. - Provides a single number to optimize - Different cost functions emphasize different aspects

L2 Loss

$$L(y, \hat{y}) = (y - \hat{y})^2$$

- Penalizes large errors more than small ones
- Influenced by outliers
- Most common loss function for regression

L1 Loss

$$L(y, \hat{y}) = |y - \hat{y}|$$

- More robust to outliers
- Less statistically well-behaved

Loss Functions for Learning

Learning = Finding the best point in parameter space

! Central Idea: Empirical Risk Minimization

- can sum all losses $L(y^{(i)},\,\hat{y}^{(i)})$ over the training dataset
- for each possible value of the parameter heta this give a measure of the "quality" of the model $f_{ heta}$

$$\mathcal{J}(\boldsymbol{\theta}) = \sum_{i=1}^{n} L(y^{(i)}, f_{\boldsymbol{\theta}}(\boldsymbol{x})^{(i)})$$

- ullet tells us how well the model $f_{m{ heta}}$ fits the data for a given $m{ heta}$
- best model is the one with the smallest loss (smallest risk)

$$\theta^* = \arg\min_{\theta \in \Theta} J(\theta)$$

Empirical Risk Minimization: Worked Example

1D Linear regression

- Model space: All linear functions of the form $a \cdot x + b$
- Parameters: $\theta = (a, b)$
- Each $(a, b) = (\theta_1, \theta_2)$ pair defines one specific line

Loss Surface in Parameter Space

Interactive Linear Regression & Loss Surface

Empirical Risk Minimization: Summary

- (modelization) Choose a (parametrized) model class $f_{\theta} \in \mathcal{M}$
- Choose a loss function $L(\cdot)$ (L1-loss, L2-loss, ...)
- ullet For each given $oldsymbol{ heta}$, can compute the empirical risk $\mathcal{J}(oldsymbol{ heta})$
- ullet (model fitting) Pick the model $f_{ heta}^*$ that has the minimal risk
- (prediction) Use the fitted model $f_{ heta}^*$ to make predictions at unseen points ${m x}$

Question: How can we find the optimal parameter $heta^*$ that minimizes the risk?

! Empirical Risk Minimization

• for each possible value of the parameter heta define the **empirical risk**:

$$\mathcal{J}(\boldsymbol{\theta}) = \sum_{i=1}^{n} L(y^{(i)}, f_{\boldsymbol{\theta}}(\boldsymbol{x})^{(i)})$$

• best model is the one with the smallest loss (smallest risk)

$$\theta^* = \arg\min_{\theta \in \Theta} J(\theta)$$

How can we find the optimal parameter θ^* ?

• Some models have an **analytical solution** (e.g. linear regression)

```
1 ```{python}
2 from sklearn.linear_model import LinearRegression
3 reg = LinearRegression().fit(X, y)
4 y_new = reg.predict(np.array(X_new)
5 ```
```

• In general, perform iterative minimization (next chapter). scipy provides iterative minimization routine:

How can we choose the Loss function?

L2 vs L1 Loss Behavior with Outliers

MSE fit: y = 1.44x + 2.89MAE fit: y = 1.91x + 1.25

Notice how MSE fit is more influenced by outliers This is an instance of overfitting (more on this in the next chapter).