| Theoretical Computer Science Cheat Sheet                                                                                               |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                        | Definitions                                                                                                                                                                          | Series                                                                                                                                                                                                                                                                                          |  |  |  |  |
| f(n) = O(g(n))                                                                                                                         | iff $\exists$ positive $c, n_0$ such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$ .                                                                                               | $\sum_{i=1}^{n} i = \frac{n(n+1)}{2},  \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6},  \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$                                                                                                                                                                |  |  |  |  |
| $f(n) = \Omega(g(n))$                                                                                                                  | iff $\exists$ positive $c, n_0$ such that $f(n) \geq cg(n) \geq 0 \ \forall n \geq n_0$ .                                                                                            | In general: $i=1$ $i=1$ $i=1$                                                                                                                                                                                                                                                                   |  |  |  |  |
| $f(n) = \Theta(g(n))$                                                                                                                  | iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$ .                                                                                                                                     | $\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[ (n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left( (i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$                                                                                                                                                        |  |  |  |  |
| f(n) = o(g(n))                                                                                                                         | iff $\lim_{n\to\infty} f(n)/g(n) = 0$ .                                                                                                                                              | $\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$                                                                                                                                                                                                               |  |  |  |  |
| $\lim_{n \to \infty} a_n = a$                                                                                                          | iff $\forall \epsilon > 0$ , $\exists n_0$ such that $ a_n - a  < \epsilon$ , $\forall n \ge n_0$ .                                                                                  | Geometric series:                                                                                                                                                                                                                                                                               |  |  |  |  |
| $\sup S$                                                                                                                               | least $b \in \mathbb{R}$ such that $b \ge s$ , $\forall s \in S$ .                                                                                                                   | $\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1},  c \neq 1,  \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c},  \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c},   c  < 1,$                                                                                                                            |  |  |  |  |
| $\inf S$                                                                                                                               | greatest $b \in \mathbb{R}$ such that $b \le s$ , $\forall s \in S$ .                                                                                                                | $\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}},  c \neq 1,  \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}},   c  < 1.$                                                                                                                                                |  |  |  |  |
| $\liminf_{n \to \infty} a_n$                                                                                                           | $\lim_{n\to\infty}\inf\{a_i\mid i\geq n, i\in\mathbb{N}\}.$                                                                                                                          | Harmonic series: $n 	 1 	 n(n+1) 	 n(n-1)$                                                                                                                                                                                                                                                      |  |  |  |  |
| $\limsup_{n \to \infty} a_n$                                                                                                           | $\lim_{n\to\infty}\sup\{a_i\mid i\geq n, i\in\mathbb{N}\}.$                                                                                                                          | $H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$                                                                                                                                                                                            |  |  |  |  |
| $\binom{n}{k}$                                                                                                                         | Combinations: Size $k$ subsets of a size $n$ set.                                                                                                                                    | $\sum_{i=1}^{n} H_i = (n+1)H_n - n,  \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left( H_{n+1} - \frac{1}{m+1} \right).$                                                                                                                                                              |  |  |  |  |
| $\left[ egin{array}{c} n \\ k \end{array}  ight]$                                                                                      | Stirling numbers (1st kind): Arrangements of an $n$ element set into $k$ cycles.                                                                                                     | $1. \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \sum_{k=0}^{n} \binom{n}{k} = 2^n, \qquad 3. \binom{n}{k} = \binom{n}{n-k},$                                                                                                                                                                  |  |  |  |  |
| $\left\{ egin{array}{l} n \\ k \end{array} \right\}$                                                                                   | Stirling numbers (2nd kind):<br>Partitions of an $n$ element<br>set into $k$ non-empty sets.                                                                                         | $4.  \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5.  \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6.  \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7.  \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$                                    |  |  |  |  |
| $\langle {n \atop k} \rangle$                                                                                                          | 1st order Eulerian numbers:<br>Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with $k$ ascents.                                                                      | $8. \ \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad \qquad 9. \ \sum_{k=0}^{n-1} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$                                                                                                                                                        |  |  |  |  |
| $\langle\!\langle {n\atop k} \rangle\!\rangle$                                                                                         | 2nd order Eulerian numbers.                                                                                                                                                          | <b>10.</b> $\binom{n}{k} = (-1)^k \binom{k-n-1}{k},$ <b>11.</b> $\binom{n}{1} = \binom{n}{n} = 1,$                                                                                                                                                                                              |  |  |  |  |
| $C_n$                                                                                                                                  | Catalan Numbers: Binary trees with $n+1$ vertices.                                                                                                                                   | $12. \begin{Bmatrix} n \\ 2 \end{Bmatrix} = 2^{n-1} - 1, \qquad 13. \begin{Bmatrix} n \\ k \end{Bmatrix} = k \begin{Bmatrix} n-1 \\ k \end{Bmatrix} + \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix},$                                                                                                |  |  |  |  |
| L -                                                                                                                                    | 1)!, 15. $\begin{bmatrix} n \\ 2 \end{bmatrix} = (n - 1)$                                                                                                                            | $16. \ {n \brack n} = 1, \qquad \qquad 17. \ {n \brack k} \geq {n \brack k},$                                                                                                                                                                                                                   |  |  |  |  |
| $18.  \begin{bmatrix} n \\ k \end{bmatrix} = (n-1)$                                                                                    | $(1)$ $\begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$ , <b>19.</b> $\begin{cases} n-1 \\ n-1 \end{cases}$                                        | $\left\{ egin{aligned} n \ -1 \end{aligned}  ight\} = \left[ egin{aligned} n \ n-1 \end{aligned}  ight] = \left( egin{aligned} n \ 2 \end{aligned}  ight),  & 20. \ \sum_{k=0}^n \left[ egin{aligned} n \ k \end{aligned} \right] = n!,  & 21. \ C_n = rac{1}{n+1} inom{2n}{n}, \end{aligned}$ |  |  |  |  |
| $22. \ \left\langle \begin{matrix} n \\ 0 \end{matrix} \right\rangle = \left\langle \begin{matrix} n \\ n \end{matrix} \right\rangle$  | $\begin{pmatrix} n \\ -1 \end{pmatrix} = 1,$ <b>23.</b> $\begin{pmatrix} n \\ k \end{pmatrix} = \langle$                                                                             | $\binom{n}{n-1-k}$ , $24. \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1}$ ,                                                                                                                                                                                                         |  |  |  |  |
| <b>25.</b> $\left\langle \begin{array}{c} 0 \\ k \end{array} \right\rangle = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right\}$     | if $k = 0$ , otherwise <b>26.</b> $\begin{cases} r \\ 1 \end{cases}$                                                                                                                 | $\binom{n}{1} = 2^n - n - 1,$ $27. \left\langle \binom{n}{2} \right\rangle = 3^n - (n+1)2^n + \binom{n+1}{2},$                                                                                                                                                                                  |  |  |  |  |
| $28. x^n = \sum_{k=0}^n \left\langle {n \atop k} \right.$                                                                              | $\left. \left\langle \left( egin{array}{c} x+k \\ n \end{array} \right) , \qquad \qquad {f 29.}  \left\langle \left( egin{array}{c} n \\ m \end{array} \right\rangle = \sum_{k=1}^m$ | $\sum_{k=0}^{n} \binom{n+1}{k} (m+1-k)^n (-1)^k, \qquad 30. \ m! \begin{Bmatrix} n \\ m \end{Bmatrix} = \sum_{k=0}^{n} \binom{n}{k} \binom{k}{n-m},$                                                                                                                                            |  |  |  |  |
| $31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n}$                                                                          | ${n \brace k} {n-k \brack m} (-1)^{n-k-m} k!,$                                                                                                                                       | <b>32.</b> $\left\langle \left\langle {n\atop 0} \right\rangle \right\rangle = 1,$ <b>33.</b> $\left\langle \left\langle {n\atop n} \right\rangle \right\rangle = 0$ for $n \neq 0,$                                                                                                            |  |  |  |  |
| <b>34.</b> $\left\langle \!\! \left\langle \!\! \begin{array}{c} n \\ k \end{array} \!\! \right\rangle \!\! \right\rangle = (k - 1)^n$ | $+1$ ) $\left\langle \left\langle {n-1\atop k}\right\rangle \right\rangle +(2n-1-k)\left\langle \left\langle {n\atop k}\right\rangle \right\rangle$                                  | $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ , $35. \sum_{k=0}^{n} \left\langle \!\! \begin{pmatrix} n \\ k \end{pmatrix} \!\! \right\rangle = \frac{(2n)^n}{2^n}$ ,                                                                                                                                |  |  |  |  |
| $36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{2}$                                                             | $\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left( x + n - 1 - k \right), $ $2n$                                                               | 37. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k}$                                                                                                                                                                                       |  |  |  |  |

Identities Cont.

$$\mathbf{38.} \ \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\frac{n-k}{2}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad \mathbf{39.} \ \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \!\! \begin{pmatrix} n \\ k \end{pmatrix} \!\! \right\rangle \binom{x+k}{2n},$$

**40.** 
$$\binom{n}{m} = \sum_{k=0}^{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$$

42. 
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

$$\mathbf{46.} \ \left\{ \begin{array}{c} n \\ n-m \end{array} \right\} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose n+k}.$$

**48.** 
$$\binom{n}{\ell+m} \binom{\ell+m}{\ell} = \sum_{k} \binom{k}{\ell} \binom{n-k}{m} \binom{n}{k},$$

43. 
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

**44.** 
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \textbf{45.} \ (n-m)! \binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

**46.** 
$${n \choose n-m}^k = \sum_k {m-n \choose m+k} {m+n \choose n+k} {m+k \choose n+k} {m+k \choose k}, \qquad \textbf{47.} \quad {n \choose n-m} = \sum_k {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$$

**49.** 
$$\begin{bmatrix} n \\ \ell + m \end{bmatrix} \binom{\ell + m}{\ell} = \sum_{k} \begin{bmatrix} k \\ \ell \end{bmatrix} \begin{bmatrix} n - k \\ m \end{bmatrix} \binom{n}{k}.$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are  $d_1, \ldots, d_n$ :

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

### Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If  $\exists \epsilon > 0$  such that  $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If 
$$f(n) = \Theta(n^{\log_b a})$$
 then  $T(n) = \Theta(n^{\log_b a} \log_2 n)$ .

If  $\exists \epsilon > 0$  such that  $f(n) = \Omega(n^{\log_b a + \epsilon})$ , and  $\exists c < 1$  such that  $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that  $T_i$  is always a power of two. Let  $t_i = \log_2 T_i$ . Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let  $u_i = t_i/2^i$ . Dividing both sides of the previous equation by  $2^{i+1}$  we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}.$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply  $u_i = i/2$ . So we find that  $T_i$  has the closed form  $T_i = 2^{i2^{i-1}}$ . Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n, \quad T(1) = 1.$$

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
  
 $3(T(n/2) - 3T(n/4) = n/2)$   
: : :

$$3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$$

Let  $m = \log_2 n$ . Summing the left side we get  $T(n) - 3^m T(1) = T(n) - 3^m =$  $T(n) - n^k$  where  $k = \log_2 3 \approx 1.58496$ . Summing the right side we get

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let  $c = \frac{3}{2}$ . Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left( \frac{c^m - 1}{c - 1} \right)$$

$$= 2n(c^{\log_2 n} - 1)$$

$$= 2n(c^{(k-1)\log_c n} - 1)$$

$$= 2n^k - 2n.$$

and so  $T(n) = 3n^k - 2n$ . Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$
  
=  $T_i$ .

And so 
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by  $x^i$ .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually  $G(x) = \sum_{i=0}^{\infty} x^i g_i$ .
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of  $x^i$  in G(x) is  $q_i$ . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

$$\sum_{i \geq 0}^{\text{Multiply and sum:}} g_{i+1} x^i = \sum_{i \geq 0}^{} 2g_i x^i + \sum_{i \geq 0}^{} x^i.$$

We choose  $G(x) = \sum_{i>0} x^i g_i$ . Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for 
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:

$$G(x) = x \left(\frac{2}{1 - 2x} - \frac{1}{1 - x}\right)$$

$$= x \left(2\sum_{i \ge 0} 2^i x^i - \sum_{i \ge 0} x^i\right)$$

$$= \sum_{i \ge 0} (2^{i+1} - 1)x^{i+1}.$$

So 
$$g_i = 2^i - 1$$
.

|                                                  | Theoretical Computer Science Cheat Sheet  |                 |                                                                                                                                          |                                                                                                    |  |  |  |
|--------------------------------------------------|-------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|
|                                                  | $\pi \approx 3.14159,$                    | $e \approx 2.7$ | 1828, $\gamma \approx 0.57721$ , $\phi = \frac{1+\sqrt{5}}{2} \approx$                                                                   | 1.61803, $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$                                          |  |  |  |
| i                                                | $2^i$                                     | $p_i$           | General                                                                                                                                  | Probability                                                                                        |  |  |  |
| 1                                                | 2                                         | 2               | Bernoulli Numbers ( $B_i = 0$ , odd $i \neq 1$ ):                                                                                        | Continuous distributions: If                                                                       |  |  |  |
| 2                                                | 4                                         | 3               | $B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$                                                                   | $\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$                                                           |  |  |  |
| 3                                                | 8                                         | 5               | $B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$                                                                        | $J_a$ then $p$ is the probability density function of                                              |  |  |  |
| 4                                                | 16                                        | 7               | Change of base, quadratic formula:                                                                                                       | X. If                                                                                              |  |  |  |
| 5                                                | 32                                        | 11              | $\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$                                                       | $\Pr[X < a] = P(a),$                                                                               |  |  |  |
| $\begin{array}{ c c } \hline 6 \\ 7 \end{array}$ | 64                                        | 13<br>17        | Euler's number $e$ :                                                                                                                     | then $P$ is the distribution function of $X$ . If                                                  |  |  |  |
| 8                                                | $\begin{array}{c} 128 \\ 256 \end{array}$ | 19              | $e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$                                                              | $P \text{ and } p \text{ both exist then}$ $\int_{a}^{a}$                                          |  |  |  |
|                                                  | 512                                       | 23              | $\lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n = e^x.$                                                                            | $P(a) = \int_{-a}^{a} p(x)  dx.$                                                                   |  |  |  |
| 10                                               | 1,024                                     | 29              | 10 / 00 ( 10 /                                                                                                                           | Expectation: If $X$ is discrete                                                                    |  |  |  |
| 11                                               | 2,048                                     | 31              | $\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$ .                                                              | $\mathrm{E}[g(X)] = \sum g(x) \Pr[X = x].$                                                         |  |  |  |
| 12                                               | 4,096                                     | 37              | $\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$                                   | $\overline{x}$                                                                                     |  |  |  |
| 13                                               | 8,192                                     | 41              |                                                                                                                                          | If X continuous then $f^{\infty}$                                                                  |  |  |  |
| 14                                               | 16,384                                    | 43              | Harmonic numbers: 1 3 11 25 137 49 363 761 7129                                                                                          | $E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$              |  |  |  |
| 15                                               | 32,768                                    | 47              | $1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$ | Variance, standard deviation:                                                                      |  |  |  |
| 16                                               | 65,536                                    | 53              | $ \ln n < H_n < \ln n + 1, $                                                                                                             | $VAR[X] = E[X^2] - E[X]^2,$                                                                        |  |  |  |
| 17                                               | 131,072                                   | 59              | $H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$                                                                                      | $\sigma = \sqrt{\text{VAR}[X]}.$                                                                   |  |  |  |
| 18                                               | 262,144                                   | 61              | (10)                                                                                                                                     | For events $A$ and $B$ :                                                                           |  |  |  |
| 19                                               | 524,288                                   | 67              | Factorial, Stirling's approximation:                                                                                                     | $\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]$                                                |  |  |  |
| 20                                               | 1,048,576                                 | 71              | $1, 2, 6, 24, 120, 720, 5040, 40320, 362880, \dots$                                                                                      | $\Pr[A \land B] = \Pr[A] \cdot \Pr[B],$                                                            |  |  |  |
| 21                                               | 2,097,152                                 | 73              | $(n)^n (1 + o(1))$                                                                                                                       | iff $A$ and $B$ are independent.                                                                   |  |  |  |
| 22                                               | 4,194,304                                 | 79              | $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$                                         | $\Pr[A B] = rac{\Pr[A \wedge B]}{\Pr[B]}$                                                         |  |  |  |
| 23                                               | 8,388,608                                 | 83              | Ackermann's function and inverse:                                                                                                        | For random variables $X$ and $Y$ :                                                                 |  |  |  |
| $egin{array}{c} 24 \ 25 \end{array}$             | $16,777,216 \\ 33,554,432$                | 89<br>97        | $a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$                                        | $E[X \cdot Y] = E[X] \cdot E[Y],$                                                                  |  |  |  |
| $\frac{25}{26}$                                  | 67,108,864                                | 101             | $a(i,j) = \begin{cases} a(i-1,2) & j=1 \\ a(i-1,a(i,j-1)) & i,j \geq 2 \end{cases}$                                                      | if $X$ and $Y$ are independent.                                                                    |  |  |  |
| $\frac{20}{27}$                                  | 134,217,728                               | 103             | $\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$                                                                                               | E[X+Y] = E[X] + E[Y],                                                                              |  |  |  |
| 28                                               | 268,435,456                               | 107             | Binomial distribution:                                                                                                                   | E[cX] = c E[X].                                                                                    |  |  |  |
| 29                                               | 536,870,912                               | 109             | $\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$                                                                                 | Bayes' theorem:                                                                                    |  |  |  |
| 30                                               | 1,073,741,824                             | 113             |                                                                                                                                          | $\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_j]\Pr[B A_j]}.$                         |  |  |  |
| 31                                               | 2,147,483,648                             | 127             | $\operatorname{E}[X] = \sum_{k=1}^n k \binom{n}{k} p^k q^{n-k} = np.$                                                                    | $\sum_{j=1}^{j-1} \operatorname{Ir}[A_j] \operatorname{Ir}[B A_j]$ Inclusion-exclusion:            |  |  |  |
| 32                                               | 4,294,967,296                             | 131             | $\sum_{k=1}^{n} \binom{k}{k}^{r}$                                                                                                        | n n                                                                                                |  |  |  |
|                                                  | Pascal's Triangle                         |                 | Poisson distribution: $-\lambda \lambda k$                                                                                               | $\Pr\left[\bigvee_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \Pr[X_i] +$                                |  |  |  |
|                                                  | 1                                         |                 | $\Pr[X=k] = rac{e^{-\lambda}\lambda^k}{k!},  \mathrm{E}[X] = \lambda.$                                                                  | n h                                                                                                |  |  |  |
| 1 1                                              |                                           |                 | Normal (Gaussian) distribution:                                                                                                          | $\sum^{n} (-1)^{k+1} \sum \Pr\left[\bigwedge^{n} X_{i_{j}}\right].$                                |  |  |  |
| 1 2 1                                            |                                           |                 | $p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2},  E[X] = \mu.$                                                              | $k=2$ $i_i < \cdots < i_k$ $j=1$ Moment inequalities:                                              |  |  |  |
|                                                  | 1 3 3 1                                   |                 | V 2 N O                                                                                                                                  | 1                                                                                                  |  |  |  |
| 1 4 6 4 1                                        |                                           |                 | The "coupon collector": We are given a random coupon each day, and there are $n$                                                         | $\Pr[ X  \ge \lambda \operatorname{E}[X]] \le \frac{1}{\lambda},$                                  |  |  |  |
| 1 5 10 10 5 1                                    |                                           | ı               | different types of coupons. The distribu-                                                                                                | $\Pr\left[\left X - \mathrm{E}[X]\right  \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$ |  |  |  |
| 1 6 15 20 15 6 1<br>1 7 21 35 35 21 7 1          |                                           |                 | tion of coupons is uniform. The expected                                                                                                 | Geometric distribution: $\lambda^2$                                                                |  |  |  |
| 1 8 28 56 70 56 28 8 1                           |                                           |                 | number of days to pass before we to collect all $n$ types is                                                                             | $\Pr[X = k] = pq^{k-1}, \qquad q = 1 - p,$                                                         |  |  |  |
| 1 9 36 84 126 126 84 36 9 1                      |                                           |                 | $nH_n$ .                                                                                                                                 | $\mathbb{E}[Y] = \sum_{k=0}^{\infty} k^{-1} = 1$                                                   |  |  |  |
| 1 10 45 120 210 252 210 120 45 10 1              |                                           |                 | 16                                                                                                                                       | $E[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$                                              |  |  |  |
| (                                                |                                           | 0 10 1          |                                                                                                                                          |                                                                                                    |  |  |  |



0

Euler's equation:

 $e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$ 

v2.01 ©1994 by Steve Seiden

sseiden@acm.org http://www.csc.lsu.edu/~seiden stand things, you

just get used to

– J. von Neumann

them.

 $\sqrt{3}$ 

 $\cos x = \cosh ix$ 

 $\tan x = \frac{\tanh ix}{i}.$ 

| Theoretical Computer Science Cheat Sheet                                                                                                                                                                      |                                                                        |                                                           |                                                                                                    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|
| Number Theory                                                                                                                                                                                                 | Graph Theory                                                           |                                                           |                                                                                                    |  |  |  |
| The Chinese remainder theorem: There ex-                                                                                                                                                                      | Definitions:                                                           |                                                           | Notation:                                                                                          |  |  |  |
| ists a number $C$ such that:                                                                                                                                                                                  | $\overline{Loop}$                                                      | An edge connecting a ver-                                 | E(G) Edge set                                                                                      |  |  |  |
| $C \equiv r_1 \mod m_1$                                                                                                                                                                                       |                                                                        | tex to itself.                                            | V(G) Vertex set                                                                                    |  |  |  |
| $C \equiv I_1 \mod m_1$                                                                                                                                                                                       | Directed                                                               | Each edge has a direction.                                | c(G) Number of components                                                                          |  |  |  |
| i i i                                                                                                                                                                                                         | Simple                                                                 | Graph with no loops or                                    | $G[S]$ Induced subgraph $\deg(v)$ Degree of $v$                                                    |  |  |  |
| $C \equiv r_n \mod m_n$                                                                                                                                                                                       | Walk                                                                   | multi-edges. A sequence $v_0e_1v_1 \dots e_\ell v_\ell$ . | $\Delta(G)$ Maximum degree                                                                         |  |  |  |
| if $m_i$ and $m_j$ are relatively prime for $i \neq j$ .                                                                                                                                                      | Trail                                                                  | A walk with distinct edges.                               | $\delta(G)$ Minimum degree                                                                         |  |  |  |
| Euler's function: $\phi(x)$ is the number of                                                                                                                                                                  | Path                                                                   | A trail with distinct                                     | $\chi(G)$ Chromatic number                                                                         |  |  |  |
| positive integers less than $x$ relatively                                                                                                                                                                    |                                                                        | vertices.                                                 | $\chi_E(G)$ Edge chromatic number                                                                  |  |  |  |
| prime to $x$ . If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime fac-                                                                                                                                               | Connected                                                              | A graph where there exists                                | $G^c$ Complement graph                                                                             |  |  |  |
| torization of $x$ then                                                                                                                                                                                        |                                                                        | a path between any two                                    | $K_n$ Complete graph $K_{n_1,n_2}$ Complete bipartite graph                                        |  |  |  |
| $\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1}(p_i - 1).$                                                                                                                                                           | <i>a</i> .                                                             | vertices.                                                 | $r(k,\ell)$ Ramsey number                                                                          |  |  |  |
| i=1                                                                                                                                                                                                           | Component                                                              | A maximal connected subgraph.                             |                                                                                                    |  |  |  |
| Euler's theorem: If $a$ and $b$ are relatively                                                                                                                                                                | Tree                                                                   | A connected acyclic graph.                                | Geometry                                                                                           |  |  |  |
| prime then                                                                                                                                                                                                    | Free tree                                                              | A tree with no root.                                      | Projective coordinates: triples                                                                    |  |  |  |
| $1 \equiv a^{\phi(b)} \bmod b.$                                                                                                                                                                               | DAG                                                                    | Directed acyclic graph.                                   | (x, y, z), not all $x, y$ and $z$ zero.                                                            |  |  |  |
| Fermat's theorem:                                                                                                                                                                                             | Eulerian                                                               | Graph with a trail visiting                               | $(x, y, z) = (cx, cy, cz)  \forall c \neq 0.$                                                      |  |  |  |
| $1 \equiv a^{p-1} \bmod p.$                                                                                                                                                                                   |                                                                        | each edge exactly once.                                   | Cartesian Projective                                                                               |  |  |  |
| The Fuelideen election if a > h are in                                                                                                                                                                        | Hamiltonian                                                            | Graph with a cycle visiting                               | (x,y) $(x,y,1)$                                                                                    |  |  |  |
| The Euclidean algorithm: if $a > b$ are integers then                                                                                                                                                         | Cut                                                                    | each vertex exactly once.  A set of edges whose re-       | y = mx + b $(m, -1, b)$                                                                            |  |  |  |
| $gcd(a, b) = gcd(a \mod b, b).$                                                                                                                                                                               | $Cu\iota$                                                              | moval increases the num-                                  | x = c $(1, 0, -c)Distance formula, L_p and L_{\infty}$                                             |  |  |  |
|                                                                                                                                                                                                               |                                                                        | ber of components.                                        | metric: $D_p$ and $D_{\infty}$                                                                     |  |  |  |
| If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of $x$ then                                                                                                                                         | $Cut	ext{-}set$                                                        | A minimal cut.                                            | $\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$                                                                   |  |  |  |
|                                                                                                                                                                                                               | $Cut\ edge$                                                            | A size 1 cut.                                             | • • • • • • • • • • • • • • • • • • • •                                                            |  |  |  |
| $S(x) = \sum_{d x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$                                                                                                                                      | k- $Connected$                                                         | A graph connected with                                    | $[ x_1-x_0 ^p+ y_1-y_0 ^p]^{1/p},$                                                                 |  |  |  |
| '                                                                                                                                                                                                             |                                                                        | the removal of any $k-1$ vertices.                        | $\lim_{p \to \infty} \left[  x_1 - x_0 ^p +  y_1 - y_0 ^p \right]^{1/p}.$                          |  |  |  |
| Perfect Numbers: $x$ is an even perfect num-                                                                                                                                                                  | k- Tough                                                               | $\forall S \subseteq V, S \neq \emptyset$ we have         | Area of triangle $(x_0, y_0), (x_1, y_1)$                                                          |  |  |  |
| ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime.<br>Wilson's theorem: $n$ is a prime iff                                                                                                                | n 10agn                                                                | $k \cdot c(G - S) \le  S $ .                              | and $(x_2, y_2)$ :                                                                                 |  |  |  |
| which is theorem. $n$ is a prime in $(n-1)! \equiv -1 \mod n$ .                                                                                                                                               | k- $Regular$                                                           | A graph where all vertices                                |                                                                                                    |  |  |  |
| 3.601                                                                                                                                                                                                         |                                                                        | have degree $k$ .                                         | $\frac{1}{2}$ abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$ . |  |  |  |
| Möbius inversion: $(1)^{i}$ if $i = 1$ .                                                                                                                                                                      | $k	ext{-}Factor$                                                       | $oldsymbol{\mathrm{A}} = k	ext{-regular}  	ext{spanning}$ | Angle formed by three points:                                                                      |  |  |  |
| $u(i) = \begin{cases} 0 & \text{if } i \text{ is not square-free.} \end{cases}$                                                                                                                               | 3.5 . 1 .                                                              | subgraph.                                                 | م                                                                                                  |  |  |  |
| $\mu^{(i)} = \begin{pmatrix} (-1)^r & \text{if } i \text{ is the product of} \end{pmatrix}$                                                                                                                   | Matching                                                               | A set of edges, no two of                                 | $/(x_2,y_2)$                                                                                       |  |  |  |
| Mobius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1.\\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$ | Clique                                                                 | which are adjacent.  A set of vertices, all of            | $(x_2,y_2)$ $\ell_2$ $(0,0)$ $\ell_1$ $(x_1,y_1)$                                                  |  |  |  |
| If                                                                                                                                                                                                            | Ciique                                                                 | which are adjacent.                                       | $\mathcal{A}\theta$                                                                                |  |  |  |
| $G(a) = \sum_{d a} F(d),$                                                                                                                                                                                     | $Ind. \ set$                                                           | A set of vertices, none of                                | $(0,0)\qquad \ell_1 \qquad (x_1,y_1)$                                                              |  |  |  |
| · ·                                                                                                                                                                                                           |                                                                        | which are adjacent.                                       | $\cos \theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$                                 |  |  |  |
| then $\Gamma(x) = \sum_{a} \rho(x) G(a)$                                                                                                                                                                      | Vertex cover                                                           | A set of vertices which                                   | v1 v2                                                                                              |  |  |  |
| $F(a) = \sum_{d \mid a} \mu(d) G\left(\frac{a}{d}\right).$                                                                                                                                                    | 701 1                                                                  | cover all edges.                                          | Line through two points $(x_0, y_0)$                                                               |  |  |  |
| w   w                                                                                                                                                                                                         | Planar graph                                                           | A graph which can be em-                                  | and $(x_1, y_1)$ :                                                                                 |  |  |  |
| Prime numbers: $\ln \ln n$                                                                                                                                                                                    | Plane aranh                                                            | beded in the plane.  An embedding of a planar             | $\begin{bmatrix} x & y & 1 \\ x_2 & y_2 & 1 \end{bmatrix} = 0$                                     |  |  |  |
| $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$                                                                                                                                                 | 1 tane graph                                                           | graph.                                                    | $egin{bmatrix} x & y & 1 \ x_0 & y_0 & 1 \ x_1 & y_1 & 1 \ \end{bmatrix} = 0.$                     |  |  |  |
| $+O\left(\frac{n}{\ln n}\right),$                                                                                                                                                                             |                                                                        |                                                           | Area of circle, volume of sphere:                                                                  |  |  |  |
| $	o \left(\frac{\ln n}{\ln n}\right)$                                                                                                                                                                         | $\sum_{v \in V} \deg(v) = 2m.$                                         |                                                           | $A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$                                                      |  |  |  |
| $\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$                                                                                                                                      | $v \in V$                                                              |                                                           | 3                                                                                                  |  |  |  |
| $\ln n - \ln n - (\ln n)^2 + (\ln n)^3$                                                                                                                                                                       | If G is planar then $n - m + f = 2$ , so $f < 2n - 4$ , $m < 3n - 6$ . |                                                           | If I have seen farther than others,                                                                |  |  |  |
| $+O\left(\frac{n}{(\ln n)^4}\right).$                                                                                                                                                                         | • =                                                                    | , =                                                       | it is because I have stood on the                                                                  |  |  |  |
| $((\ln n)^4)$                                                                                                                                                                                                 | $Any planar g$ gree $\leq 5$ .                                         | graph has a vertex with de-                               | shoulders of giants.  – Issac Newton                                                               |  |  |  |

Wallis' identity: 
$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

Newton's series:

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series:

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left( 1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \dots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

### **Partial Fractions**

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

where

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

where

$$A_k = \frac{1}{k!} \left[ \frac{d^k}{dx^k} \left( \frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:

1. 
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2.  $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ ,

4. 
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$
, 5.  $\frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}$ , 6.  $\frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$ 

5. 
$$\frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}$$

Calculus

$$3. \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx},$$

$$\frac{dx}{dx} = \frac{dx}{dx}$$
8. 
$$\frac{d(\ln u)}{dx} = \frac{1}{u}\frac{du}{dx}$$

9. 
$$\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx}$$

7.  $\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$ 

$$\frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$
 10.  $\frac{d(\sin u)}{dx}$ 

11. 
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$$

13. 
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

15. 
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

$$17. \ \frac{d(\arctan u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

19. 
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

$$21. \ \frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx},$$

$$23. \frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx}$$

**25.** 
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \, \tanh u \frac{du}{dx},$$

$$27. \frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

$$29. \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

31. 
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx}$$

Integrals:

1. 
$$\int cu\,dx = c\int u\,dx,$$

**3.** 
$$\int x^n dx = \frac{1}{n+1} x^{n+1}$$
,  $n \neq -1$ , **4.**  $\int \frac{1}{x} dx = \ln x$ , **5.**  $\int e^x dx = e^x$ ,

6. 
$$\int \frac{dx}{1+x^2} = \arctan x,$$

8. 
$$\int \sin x \, dx = -\cos x,$$

$$10. \int \tan x \, dx = -\ln|\cos x|,$$

$$12. \int \sec x \, dx = \ln|\sec x + \tan x|,$$

14. 
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

$$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$$

$$12. \ \frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$$

14. 
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx},$$

$$16. \ \frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

18. 
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1 - u^2} \frac{du}{dx},$$

$$20. \frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

$$22. \ \frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx},$$

$$24. \ \frac{d(\coth u)}{dx} = -\operatorname{csch}^2 u \frac{du}{dx},$$

**26.** 
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx},$$

28. 
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$30. \frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx},$$

32. 
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

4. 
$$\int \frac{1}{-} dx = \ln x$$
, 5.  $\int e^x dx = e^x$ 

7. 
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

$$9. \int \cos x \, dx = \sin x,$$

11. 
$$\int \cot x \, dx = \ln|\cos x|,$$

12. 
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, 13.  $\int \csc x \, dx = \ln|\csc x + \cot x|$ ,

Calculus Cont.

15. 
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

**16.** 
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17. 
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax) \cos(ax)),$$

**18.** 
$$\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

$$\mathbf{20.} \int \csc^2 x \, dx = -\cot x,$$

**21.** 
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$
 **22.** 
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

**22.** 
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

**23.** 
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1$$

**23.** 
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$
 **24.** 
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

**25.** 
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

**26.** 
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1,$$
 **27.**  $\int \sinh x \, dx = \cosh x,$  **28.**  $\int \cosh x \, dx = \sinh x,$ 

**29.** 
$$\int \tanh x \, dx = \ln|\cosh x|, \ \mathbf{30.} \ \int \coth x \, dx = \ln|\sinh x|, \ \mathbf{31.} \ \int \operatorname{sech} x \, dx = \arctan \sinh x, \ \mathbf{32.} \ \int \operatorname{csch} x \, dx = \ln|\tanh \frac{x}{2}|,$$

**33.** 
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 **34.**  $\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$  **35.**  $\int \operatorname{sech}^2 x \, dx = \tanh x,$ 

**34.** 
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$$

$$35. \int \operatorname{sech}^2 x \, dx = \tanh x$$

**36.** 
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37. 
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

$$\mathbf{38.} \ \int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

**39.** 
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

**40.** 
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

**41.** 
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

**42.** 
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

**43.** 
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 **44.** 
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$$
 **45.** 
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$$

**44.** 
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

**45.** 
$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$$

**46.** 
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

**47.** 
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

48. 
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

**49.** 
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

**50.** 
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51. 
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

**52.** 
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

**53.** 
$$\int x\sqrt{a^2-x^2}\,dx = -\frac{1}{3}(a^2-x^2)^{3/2},$$

**54.** 
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

**55.** 
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

**56.** 
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57. 
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

**58.** 
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

**59.** 
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

**60.** 
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

**61.** 
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

**62.** 
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

**64.** 
$$\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2},$$
 **65.** 
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} \, dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

**66.** 
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

**67.** 
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

**68.** 
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

**69.** 
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

70. 
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71. 
$$\int x^3 \sqrt{x^2 + a^2} \, dx = (\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2},$$

**72.** 
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

**73.** 
$$\int x^n \cos(ax) \, dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) \, dx,$$

**74.** 
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

**75.** 
$$\int x^n \ln(ax) \, dx = x^{n+1} \left( \frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

**76.** 
$$\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$
  
 
$$E f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum_{i} f(x)\delta x = F(x) + C.$$
  
$$\sum_{i} f(x)\delta x = \sum_{i} f(i).$$

Differences:

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \mathbf{E}\,v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1}.$$

$$\Delta(H_x) = x^{-1}, \qquad \Delta(2^x) = 2^x.$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

Sums:

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v) \, \delta x = \sum u \, \delta x + \sum v \, \delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum E \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{\underline{n+1}}, \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

$$x^{\underline{0}} = 1,$$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{\overline{0}} = 1$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}} (x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^{n}(-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$= 1/(x + 1)^{-\overline{n}},$$

$$x^{\overline{n}} = (-1)^{n}(-x)^{\underline{n}} = (x + n - 1)^{\underline{n}}$$

$$= 1/(x - 1)^{-\overline{n}},$$

$$x^{n} = \sum_{k=1}^{n} {n \brace k} x^{\underline{k}} = \sum_{k=1}^{n} {n \brack k} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{i=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x - a)^i}{i!}f^{(i)}(a).$$

Expansions:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2x^2 + c^2x^3 + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^nx^2 + 3^nx^3 + 4^nx^4 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i+1}\frac{x^i}{i},$$

$$\ln\frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$\sin x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i}\frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (n_i)^{x^i},$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{2x}(1 - \sqrt{1-4x}) = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$= 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{1-x}\ln\frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}n^i,$$

$$\frac{1}{1-x}\ln\frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{12}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{1}{2}\left(\ln\frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{x}{1-x} - x^2 = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{i}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i+1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If  $b_i = \sum_{j=0}^i a_j$  then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left( \sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$$

God made the natural numbers; all the rest is the work of man.

- Leopold Kronecker

Series

Expansions:

$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{\frac{-n}{n}} = \sum_{i=0}^{\infty} \binom{i}{n} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \binom{i}{n} \frac{n!x^i}{i!} \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)!}$$

$$\tan x = \sum_{i=1}^{\infty} (-1)^{i-1} \frac{2^{2i}(2^{2i} - 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{4^i i!}{i!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x}, \qquad \zeta(x) = \sum_{i=1}^{\infty}$$

$$\left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^{i},$$

$$(e^{x} - 1)^{n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^{i}}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i}B_{2i}x^{2i}}{(2i)!},$$

$$\zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}},$$

$$\frac{\zeta(x - 1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^{x}},$$



# Stieltjes Integration

If G is continuous in the interval [a,b] and F is nondecreasing then

$$\int_{a}^{b} G(x) \, dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

If the integrals involved exist

$$\int_{a}^{b} (G(x) + H(x)) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d(F(x) + H(x)) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d(c \cdot F(x)) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x) F'(x) dx.$$

#### Cramer's Rule

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let  $A = (a_{i,j})$  and B be the column matrix  $(b_i)$ . Then there is a unique solution iff  $\det A \neq 0$ . Let  $A_i$  be A with column i replaced by B. Then  $x_i = \frac{\det A_i}{\det A}$ .

$$x_i = \frac{\det A_i}{\det A}.$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

- William Blake (The Marriage of Heaven and Hell)

00 47 18 76 29 93 85 34 61 52 86 11 57 28 70 39 94 45 02 63 59 96 81 33 07 48 72 60 24 15 73 69 90 82 44 17 58 01 35 26 68 74 09 91 83 55 27 12 46 30 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

 $n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$ where  $k_i \geq k_{i+1} + 2$  for all i,  $1 \leq i < m \text{ and } k_m \geq 2.$ 

## Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (-1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{5}} \left( \phi^{i} - \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i$$
.

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$
  

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$