

Network Preliminaries

Héctor Corrada Bravo

University of Maryland, College Park, USA CMSC828O 2018-09-01

Genetic Interaction Network

- Yeast high-throuput doubleknockdown assay
- ~5000 genes
- ~800k interactions

http://www.geneticinteractions.org/

Costanzo et al. (2016) Science. DOI: 10.1126/science.aaf1420

Genetic Interaction Network

- Yeast high-throuput doubleknockdown assay
- ~5000 genes
- ~800k interactions

http://www.geneticinteractions.org/

Costanzo et al. (2016) Science. DOI: 10.1126/science.aaf1420

Genetic Interaction Network

• Number of vertices: 2803

• Number of edges: 67,268

Preliminaries

Network: abstraction of *entities* and their interactions

Graph: mathematical representation

vertices: nodes

edges: links

Unirected graph

Preliminaries

Network: abstraction of entities and their interactions
Graph: mathematical representation

vertices: nodes

edges: links

Directed graph

Number of vertices: n

In our example: *number of genes*

Number of vertices: n

In our example: *number of genes*

Number of edges: *m*

In our example: *number of genetic interactions*

Number of vertices: n

In our example: *number of genes*

Number of edges: *m*

In our example: *number of genetic interactions*

Degree of vertex i: k_i

Number of genetic interactions for gene i

On the board:

- Calculate number of edges m using degrees k_i (for both directed and undirected networks)
- Calculate *average degree c*
- Calculate *density* ρ

On the board:

• Calculate number of edges m using degrees k_i (for both directed and undirected networks)

• Calculate *average degree c*

Calculate density ρ

In our example:

Average degree: 47.9971459

Density: 0.0171296

Degree distribution

Fundamental analytical tool to characterize networks

 p_k : probability randomly chosen vertex has degree k

On the board: how to calculate p_k and how to calculate average degree c using degree distribution.

Degree Distribution

log/log degree distribution

Paths and Distances

Distance d_{ij} : length of shortest path between vertices i and j.

Paths and Distances

Distance d_{ij} : length of shortest path between vertices i and j.

Diameter. longest shortest path $\max_{ij} d_{ij}$

Paths and Distances

Distance d_{ij} : length of shortest path between vertices i and j.

On the board: average path length

Distance Distribution

By convention: if there is no path between vertices i and j then $d_{ij} = \infty$

By convention: if there is no path between vertices i and j then $d_{ij} = \infty$

Vertices i and j are *connected* if $d_{ij} < \infty$

By convention: if there is no path between vertices i and j then $d_{ij} = \infty$

Vertices i and j are *connected* if $d_{ij} < \infty$

Graph is connected if $d_{ij} < \infty$ for all i, j

By convention: if there is no path between vertices i and j then $d_{ij} = \infty$

Vertices i and j are *connected* if $d_{ij} < \infty$

Graph is connected if $d_{ij} < \infty$ for all i, j

Components maximal subset of connected components

Components

Clustering Coefficient

One last quantity of interest: how dense is the neighborhood around vertex *i*?

Do the genes that interact with me also interact with each other?

Definition on the board

Clustering coefficient

Adjacency Matrix

Adjacency Matrix

On the board:

- Definition
- Computing degree with adj.
 matrix
- Computing num. edges *m* with adj. matrix
- Computing paths with adj. matrix

