Теорема Муавра-Лапласа

Бросаем n раз правильную монету. Вероятность, что было k орлов:

$$\mathbb{P}(S_n = k) = \frac{C_n^k}{2^n}$$

Теорема 1. (Локальная теорема Муавра-Лапласа) Рассмотрим $x_k = \frac{k - \frac{n}{2}}{\sqrt{\frac{n}{4}}}$ и предположим, что эта величина находится в отрезке $a \le x_k \le b$. Тогда:

$$\mathbb{P}(S_n = k) \sim \frac{2}{\sqrt{n}} \cdot \varphi(x_k), \ \varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Рассмотрим следующую вероятность: $\mathbb{P}\left(a \leq \frac{S_n - \frac{n}{2}}{\sqrt{\frac{n}{4}}} \leq b\right)$. Она равна сумме всех вероятностей того, что $S_n = k, \ k \colon a \leq x_k \leq b$. Или по-другому:

$$\mathbb{P}\left(a \le \frac{S_n - \frac{n}{2}}{\sqrt{\frac{n}{4}}} \le b\right) = \sum_{k: a \le x_k \le b} \mathbb{P}(S_n = k) \sim \sum_{a \le x_k \le b} \frac{1}{\sqrt{\frac{n}{4}}} \varphi(x_k) = \sum_{a \le x_k \le b} (x_k - x_{k-1}) \cdot \varphi(x_k) \sim \int_a^b \varphi(x) dx$$

В прошлый раз мы использовали приблизительную оценку формулы Стирлинга: $n! \sim \sqrt{2\pi n} n^n e^{-n+\varepsilon_n}$, где рассматривали $\varepsilon_n = o(1)$, когда на самом деле $\varepsilon_n = O\left(\frac{1}{n}\right)$. Если использовать точную формулу, то можно найти оценку разности между вероятностью и её приближением и следовательно точно доказать сходимость вероятности к интегралу выше.

Теперь, если взять a и b равными $-\infty$ и ∞ , то можно угадать, чему будет равен интеграл от e^{-x^2} :

$$1 = \mathbb{P}\left(-\infty \le S_n \le +\infty\right) \to \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

Не знакопостоянные ряды

Мы уже рассматривали признак Лейбница ранее:

Теорема 2. (Признак Лейбница) Пусть a_n не возрастают и $a_n \to 0$, тогда ряд $\sum_{n=1}^{\infty} (-1)^n \cdot a_n$ сходится.

Пусть $\sum_{n=0}^{\infty} b_n$ - сходится, для любого ли a_n ряд $\sum_{n=0}^{\infty} a_n b_n$ также сходится? Конечно нет, например, если взять последовательность:

$$a_n = \frac{1}{b_n}$$

тогда ряд произведения будет расходиться. Если a_n будет ограниченной, то тоже нет, например, если мы возьмем последовательности:

$$b_n = \frac{(-1)^n}{n}, \ a_n = (-1)^n \Rightarrow a_n b_n = \frac{1}{n}$$

Но если $\sum_n |b_n| < \infty$ и $\{a_n\}$ - ограниченная, то $\sum_n a_n b_n$ - будет сходиться. Поэтому хотелось бы превратить "какие-то ряды" в абсолютно сходящиеся.

Преобразование Абеля

Будем рассматривать ряды произведений $\sum_n a_n b_n$. Пусть $c \in \mathbb{R}$, положим $B_N = c + b_1 + b_2 + \ldots + b_N$, $B_0 = c$. Если c = 0, то B_N будут частичными суммами ряда $\sum_n b_n$.

Утв. 1. (Преобразование Абеля) Для всяких $1 \le n \le m$ справедливо равенство:

$$\sum_{k=n}^{m} a_k b_k = a_m B_m - a_n B_{n-1} - \sum_{k=n}^{m-1} (a_{k+1} - a_k) B_k$$

 \square Рассмотрим ряд произведения последовательностей $\{a_n\}$ и $\{b_n\}$:

$$\sum_{k=n}^{m} a_k b_k = \sum_{k=n}^{m} a_k (B_k - B_{k-1}) = \sum_{k=n}^{m} a_k B_k - \sum_{k=n}^{m} a_k B_{k-1} = \sum_{k=n}^{m} a_k B_k - \sum_{k=n-1}^{m-1} a_{k+1} B_k = \sum_{k=n-1}^{m} a_k B_k - \sum_{k=n-1}^{m} a_k B_k = \sum_{k=n-1}^{m} a_$$

$$= a_m B_m - a_n B_{n-1} + \sum_{k=n}^{m-1} a_k B_k - \sum_{k=n}^{m-1} a_{k+1} B_k = a_m B_m - a_n B_{n-1} - \sum_{k=n}^{m-1} (a_{k+1} - a_k) B_k$$

Заметим, что $B_k - B_{k-1}$ и $a_{k+1} - a_k$ - это аналоги производных в дискретном случае. Вспомним формулу интегрирования по частям:

$$\int_{a}^{b} f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} g(x)f'(x)dx$$

Видим, что преобразование Абеля это дискретный аналог этой формулы, где a_n это аналог f, а B_n это аналог g и "производные" B_n это b_n .

Следствие 1. Пусть $\exists \lim_{n\to\infty} a_n B_n$, тогда ряды $\sum_{n=1}^{\infty} a_n b_n$ и $\sum_{n=1}^{\infty} (a_{n+1} - a_n) B_n$ сходятся и расходятся одновременно.

 \square Возьмем частичную сумму ряда $\sum_n a_n b_n$ и применим преобразование Абеля:

$$\sum_{k=1}^{n} a_k b_k = B_n a_n - a_1 B_0 - \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k$$

Поскольку $\exists \lim_{n\to\infty} a_n B_n = T$, то:

$$\sum_{n=1}^{\infty} a_n b_n = T - a_1 B_0 - \sum_{n=1}^{\infty} (a_{n+1} - a_n) B_n$$

Следовательно, сходимость ряда $\sum_{n=1}^{\infty} a_n b_n$ будет совпадать со сходимостью ряда $\sum_{n=1}^{\infty} (a_{n+1} - a_n) B_n$.

Теорема 3. (Признак Дирихле-Абеля)

- I. Пусть последовательность $\{a_n\}$ монотонна и $\lim_{n\to\infty} a_n = 0$, а последовательность B_n ограничена;
- II. Пусть последовательность $\{a_n\}$ монотонна и ограничена, а ряд $\sum_n b_n$ сходится;

Тогда ряд $\sum_{n} a_n b_n$ - сходится;

I. Поскольку B_n ограничена, то $\lim_{n\to\infty} a_n B_n = 0$. Проверим сходимость ряда $\sum_n (a_{n+1} - a_n) B_n$. Поскольку B_n ограничена, надо проверить абсолютную сходимость ряда $\sum_n (a_{n+1} - a_n)$. Без потери общности предположим, что $\{a_n\}$ - убывает. Тогда:

$$\sum_{n=1}^{N} |a_n - a_{n+1}| = \sum_{n=1}^{N} a_n - a_{n+1} = a_1 - a_{N+1} \Rightarrow$$

$$\Rightarrow \lim_{N \to \infty} \sum_{n=1}^{N} |a_n - a_{n+1}| = \lim_{N \to \infty} (a_1 - a_{N+1}) = a_1 < \infty$$

Следовательно ряд абсолютно сходится и сходится ряд $\sum_{n} (a_{n+1} - a_n) B_n$, применяем следствие и получаем требуемое;

II. Поскольку $\{a_n\}$ - монотонна и ограничена, то $\exists \lim_{n \to \infty} a_n = a \Rightarrow \{a_n - a\}$ - монотонна, ограничена и её предел $\lim_{n \to \infty} (a_n - a) = 0$. Ряд $\sum_n b_n$ - сходится $\Rightarrow B_n$, как частичные суммы плюс константа,

ограничены \Rightarrow по I ряд $\sum_{n} (a_n - a)b_n$ - сходится. Поскольку верно, что

$$\sum_{n} (a_n - a)b_n = \sum_{n} a_n b_n + a \sum_{n} b_n$$

то ряд $\sum_{n} a_n b_n$ - сходится;

Следствие 2. (Признак Лейбница) Пусть a_n не возрастают и $a_n \to 0$, тогда ряд $\sum_{n=1}^{\infty} (-1)^n \cdot a_n$ сходится.

 \square В рамках первой части признакак Дирихле-Абеля, мы имеем $b_n = (-1)^n$, тогда: $\left|\sum_{n=1}^N b_n\right| \le 1$ и таким образом B_n - ограничена \Rightarrow требуемый ряд сходится.

Пример: $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$, $x \neq 2\pi k$. $a_n = \frac{1}{n}$ - монотонно стремится к нулю, значит $b_n = \sin nx$. Докажем, что частичные суммы синусов $\sum_{n=1}^{N} \sin nx$ - ограничены.

$$\left(\sum_{n=1}^{N} \sin nx\right) \sin \frac{x}{2} = \frac{1}{2} \sum_{n=1}^{N} \left(\cos \left(n - \frac{1}{2}\right)x - \cos \left(n + \frac{1}{2}\right)x\right) = \frac{1}{2} \left(\cos \frac{x}{2} - \cos \left(N + \frac{1}{2}\right)x\right)$$

Поскольку $x \neq 2\pi k$, то:

$$\left| \left(\sum_{n=1}^{N} \sin nx \right) \sin \frac{x}{2} \right| \le \frac{1}{2} (1+1) = 1 \Rightarrow \left| \sum_{n=1}^{N} \sin nx \right| \le \frac{1}{\left| \sin \frac{x}{2} \right|}$$

Таким образом, B_n - ограничена и по признаку (I) Дирихле-Абеля - сходится. С косинусами - аналогично.

Rm: 1. Отметим, что сходимость здесь только условная.

Проверим абсолютную сходимость этого же ряда: $\sum_{n=1}^{\infty} \left| \frac{\sin nx}{n} \right|$, $x \neq 2\pi k$. В данном случае, нам хочется как-то оценить $|\sin nx|$:

$$|\sin nx| \ge \sin^2 nx \Rightarrow \sum_{n=1}^N \left| \frac{\sin nx}{n} \right| \ge \sum_{n=1}^N \frac{\sin^2 nx}{n} = \sum_{n=1}^N \frac{1 - \cos 2nx}{n} = \sum_{n=1}^N \frac{1}{n} - \sum_{n=1}^N \frac{\cos 2nx}{n}$$

где мы воспользовались формулой двойного угла. Второй ряд сходится по рассуждениям аналогичным для синуса, а первый ряд - расходится. Значит и исходный ряд сходится не может ⇒ нет абсолютной сходимости.

Перестановки рядов

Опр: 1. Пусть у нас есть ряд $\sum_{n=1}^{\infty} a_n$ и биекция $\varphi \colon \mathbb{N} \to \mathbb{N}$, тогда ряд $\sum_{n=1}^{\infty} a_{\varphi(n)}$ называется перестановкой исходного ряда.

Очевидно, что если переставлять слагаемые в конечной сумме, то значения суммы не изменятся. Но будет ли то же самое в бесконечной сумме?

Оказывается, если ряд не сходится абсолютно, то можно добиться любого значения.

Теорема 4. (**Римана**) Если ряд $\sum_{n=1}^{\infty} a_n$ условно сходящийся (абсолютно не сходится), то:

$$\forall a \in [-\infty, +\infty], \ \exists \varphi \colon \sum_{n=1}^{\infty} a_{\varphi(n)} = a$$

где бесконечность берется включительно.

Пусть $\{p_n\}$ - все положительные члены $\{a_n\}$, а $\{q_n\}$ - все отрицательные члены $\{a_n\}$. Тогда если хотя бы один из рядов $\sum_{n=1}^{\infty} p_n$, $\sum_{n=1}^{\infty} q_n$ сходится к конечному числу (а значит ряд сходится абсолютно), то зная, что исходный ряд сходится и верно:

$$\sum_{n=1}^{N} a_n = S_N^a = S_{N_1}^p + S_{N_2}^q = \sum_{n=1}^{N_1} p_n + \sum_{n=1}^{N_2} q_n$$

Тогда второй ряд тоже будет сходится к конечному числу, и следовательно мы получим абсолютную сходимость исходного ряда, что противоречит условию. Таким образом:

$$\sum_{n=1}^{\infty} p_n = +\infty, \ \sum_{n=1}^{\infty} q_n = -\infty$$

По необходимому условию сходимости исходного ряда верно, что:

$$\lim_{n\to\infty} p_n = 0, \lim_{n\to\infty} q_n = 0$$

Зафиксируем число a > 0. На первом шаге возьмем n_1 положительных членов таких, что верно:

$$p_1 + \ldots + p_{n_1} > a$$

$$p_1 + \ldots + p_{n_1-1} < a$$

то есть сумма n_1 -ых членов больше a, но сумма (n_1-1) -ых членов - меньше, либо равна. На следующем шаге возьмем m_1 отрицательных членов таких, что:

$$p_1 + \ldots + p_{n_1} + q_1 + \ldots + q_{m_1} < a$$

$$p_1 + \ldots + p_{n_1} + q_1 + \ldots + q_{m_1 - 1} \ge a$$

Далее снова берем n_2 положительных членов так, чтобы было верно:

$$p_1 + \ldots + p_{n_1} + q_1 + \ldots + q_{m_1} + p_{n_1+1} + \ldots + p_{n_1+n_2} > a$$

 $p_1 + \ldots + p_{n_1} + q_1 + \ldots + q_{m_1} + p_{n_1+1} + \ldots + p_{n_1+n_2-1} \le a$

И так далее. Таким образом, все члены ряда задействованы, так как на каждом шаге мы берём хотя бы одно слагаемое. Осталось понять, почему предел это a.

В зависимости от того, на каком шаге мы остановимся, возможно два типа частичных сумм: когда не хватает членов p_n в конце суммы и когда не хватает членов q_n . Рассмотрим первый тип:

$$S_n^+ = p_1 + \ldots + p_{n_1} + q_1 + \ldots + q_{m_1} + \ldots + q_{m_1 + \ldots + m_{k+1}} + \ldots + q_{m_1 + \ldots + m_{k+1} - 1} + q_{m_1 + \ldots + m_{k+1}} + p_{n_1 + \ldots + n_{k+1} + 1} + \ldots + p_{n_1 + \ldots + n_{k+1} + j}, j \in [1, n_{k+2})$$

Очевидно, что $S_n^+ \le a$ и $p_1 + \ldots + p_{n_1} + q_1 + \ldots + q_{m_1} + \ldots + q_{m_1 + \ldots + m_k + 1} + \ldots + q_{m_1 + \ldots + m_{k+1} - 1} \ge a$. Тогда:

$$a + q_{m_1 + \dots + m_{k+1}} \le S_n^+ \le a \Rightarrow |S_n^+ - a| < q_{m_1 + \dots + m_{k+1}} = q_k$$

Аналогичным образом, для второго типа также получим:

$$a \le S_n^- \le a + p_j \Rightarrow |S_n^- - a| < p_j$$

Поскольку $p_j \to 0, q_k \to 0$, то мы получаем, что:

$$\forall \varepsilon > 0, \ \exists \ N : \forall n > N, \ |S_n^+ - a| < \varepsilon, \ |S_n^- - a| < \varepsilon$$

И таким образом:

$$\sum_{n=1}^{\infty} a_{\varphi(n)} = a$$

В случае, если $a = +\infty$, то возьмем n_1 положительных членов и один отрицательный член так, чтобы:

$$p_1 + \ldots + p_{n_1} > 1$$

$$p_1+\ldots+p_{n_1}+q_1$$

Далее, возьмем n_2 положительных членов и один отрицательный так, чтобы:

$$p_1 + \ldots + p_{n_1} + q_1 + p_{n_1+1} + \ldots + p_{n_1+n_2} > 2$$

$$p_1 + \ldots + p_{n_1} + q_1 + p_{n_1+1} + \ldots + p_{n_1+n_2} + q_2$$

И так далее. Тогда будет верно:

$$\forall k \in \mathbb{N}, \ S_{n_1 + \dots + n_k} \ge S_{n_1 + \dots + n_k} + q_k = S_{n_1 + \dots + n_k + 1} > k + q_k$$

Поскольку $q_k \to 0$, то пусть $\varepsilon < 1$, тогда:

$$\exists N \in \mathbb{N} : \forall p \geq N, S_{n_1 + \dots + n_p} + q_p > p - \varepsilon > p - 1$$

Таким образом, будет верно следующее:

$$\forall A > 0, \ \exists \ N \in \mathbb{N}, N > A+1 \colon \forall p \geq N, \ S_{n_1 + \ldots + n_p} > p + q_p > A+1 - 1 > A$$

И таким образом:

$$\sum_{n=1}^{\infty} a_{\varphi(n)} = +\infty$$

Аналогичные рассуждения используются для $-\infty$.

Теорема 5. (**Коши**) Пусть $\sum_{n=1}^{\infty} a_n$ - абсолютно сходящийся ряд, тогда ряд $\sum_{n=1}^{\infty} a_{\varphi(n)}$ - также абсолютно сходится и их суммы равны:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\varphi(n)}$$

□ Докажем абсолютную сходимость:

$$\sum_{n=1}^{N} |a_{\varphi(n)}| \le \sum_{k=1}^{\max\{\varphi(1), \dots, \varphi(N)\}} |a_k| < \sum_{k=1}^{\infty} |a_k|$$

Получаем, что частичные суммы ограничены \Rightarrow ряд сходится абсолютно. Рассмотрим следующую разность сумм:

$$\left| \sum_{k=1}^{\infty} a_k - \sum_{n=1}^{N} a_{\varphi(n)} \right|$$

Используя абсолютную сходимость ряда, выберем J так, чтобы:

$$\forall \varepsilon > 0, \ \exists J : \sum_{k=J+1}^{\infty} |a_k| < \varepsilon$$

Выберем N_1 таким большим, чтобы:

$$\{1,\ldots,J\}\subset\{\varphi(1),\ldots,\varphi(N_1)\}$$

тогда $\forall N>N_1$ это же включение будет также верно:

$$\{1,\ldots,J\}\subset\{\varphi(1),\ldots,\varphi(N)\}$$

Следовательно, мы получим оценку разности сумм сверху:

$$\left| \sum_{k=1}^{\infty} a_k - \sum_{n=1}^{N} a_{\varphi(n)} \right| \le \sum_{k=J+1}^{\infty} |a_k| < \varepsilon$$