ICAC – Pêndulo Invertido por lógica fuzzy

Pedro Henrique Silva Domingues

R.A.: 11.115.253-4

Maio 2020

1. Descrição do problema

Realizar o controle de um pêndulo invertido de forma a manter a haste equilibrada, ao mesmo tempo que se realiza o controle de posição do carro, enviando este para uma posição desejada no espaço bidimensional.

2. Resolução

Para desenvolver o controlador, primeiro foi necessário determinar as variáveis de entrada e saída. Todas as variáveis foram consideradas positivas quando possuem variação para a direita ou no sentido horário e estão descritas nas Figuras a seguir. Os valores de intervalo destas variáveis foram extraídos com auxilio de um controlador PID LQR previamente implementado no modelo de simulação utilizado.

Para melhor entendimento do problema e consequente construção das regras utilizadas no controlador fuzzy, foi utilizado como base o artigo "Fuzzy Logic Control vs. Conventional PID Control of an Inverted Pendulum robot".

As regras implementadas seguem a seguinte lógica:

Erro / Velocidade	N/N	N/P	P/N	P/P
Angulo				
Angulo / Vel. angular				
N/N	N1	N2	N3	N4
N/P	N5	N6	N7	N8
P/N	P1	P2	P3	P4
P/P	P5	P6	P7	P8

Com o projeto do controlador fuzzy pronto, foi projetado o sistema via simulink, utilizando como base a biblioteca penddemo, conforme a Figura abaixo.

3. Resultados

Observando os valores de erro de posição e ângulo da haste no osciloscópio, é possível perceber que o controle foi realizado com sucesso.

Percebe-se que o erro converge a zero com um tempo de acomodação relativamente alto, porém com baixa alteração no ângulo da haste durante este período.

Bibliografia:

M. I. H. Nour, J. Ooi and K. Y. Chan, "Fuzzy logic control vs. conventional PID control of an inverted pendulum robot," *2007 International Conference on Intelligent and Advanced Systems*, Kuala Lumpur, 2007, pp. 209-214, doi: 10.1109/ICIAS.2007.4658376.