To Do List

December 4, 2023

This chapter contains some material about relations and constructions with them. Notably, we discuss and explore:

Contents

1	es to Self		
	1.1	Things To Ask On MO/Zulip]
	1.2	Things To Explore]
	1.3	Omitted Proofs To Add	2
A	Other Chapters		3
1	N	otes to Self	

1.1 Things To Ask On MO/Zulip

Remark 1.1.1.1. Here is a list of things to be asked on MO/Zulip.

- 1. What are
 - (a) Cartesian bicategories
 - (b) Double categories of relations (https://arxiv.org/abs/2107.07621)
 - (c) Categories of relations
 - (d) Allegories
 - (e) 1-Category equipped with relations (https://ncatlab.org/nlab/show/1-category+equipped+with+relations)

good for? What have these notions been developed for, why are they important, and what have they lead to?

1.2 Things To Explore

Remark 1.2.1.1. Here is a list of things to be explored.

- 1. internal adjunctions in Mod as in [JY21, Section 6.3]; see [JY21, Example 6.2.6].
- 2. write the "profunctors" equivalent of the relations chapter
- 3. change χ_B notation throughout the notes
- 4. maybe note that skew monoidal structures on $\mathbf{Rel}(A, B)$ satisfy coherence trivially since the 2-morphisms are inclusions
- 5. reconsider notation FreeAlg $_{\mathcal{D}}$ in Relations
- 6. Constructions With Sets: Isbell duality for powersets
- 7. Categories: comma category notation as in https://mathoverflow.net/questions/455630
- 8. Universal property of the bicategory of spans, https://ncatlab.org/nlab/show/span
- 9. Codensity monad $Ran_J(J)$ of a relation (What about $Rift_J(J)$?)
- 10. Relative comonads in Rel.
- 11. Write proper sections on straightening for lax functors from sets to Rel or Span (displayed sets) when I study the corresponding notions for categories
- 12. Write about cospans.
- 13. CoCartesian fibration classifying Fun(F,G), https://mathoverflow.net/questions/457533/cocartesian-fibration-classifying-mathrmfunf-g

1.3 Omitted Proofs To Add

He так благотворна истина, как зловредна ее видимость.

Даниил Данковский

Truth does not do as much good in the world as the appearance of truth does evil.

Daniil Dankovsky

Remark 1.3.1.1. Here is a list of omitted proofs that I want to eventually write up or add a reference to.

- Relations, Item 1 of Proposition 2.5.1.1
- Relations, Item 2 of Proposition 2.5.1.1
- Relations, Item 9 of Proposition 2.5.1.1
- Relations, Item 10 of Proposition 2.5.1.1

Appendices

A Other Chapters

Set Theory	7. Spans	
1. Sets	8. Posets	
2. Constructions With Sets	Category Theory	
3. Pointed Sets	9. Categories	
4. Tensor Products of Pointed Sets	10. Constructions With Categories	
5. Indexed and Fibred Sets	11. Kan Extensions	
6. Relations	Bicategories	

- 12. Bicategories
- 13. Internal Adjunctions

Internal Category Theory

14. Internal Categories

Cyclic Stuff

15. The Cycle Category

Cubical Stuff

16. The Cube Category

Globular Stuff

17. The Globe Category

Cellular Stuff

18. The Cell Category

Monoids

- 19. Monoids
- 20. Constructions With Monoids

Monoids With Zero

- 21. Monoids With Zero
- 22. Constructions With Monoids With Zero

Groups

- 23. Groups
- 24. Constructions With Groups

Hyper Algebra

25. Hypermonoids

- 26. Hypergroups
- 27. Hypersemirings and Hyperrings
- 28. Quantales

Near-Rings

- 29. Near-Semirings
- 30. Near-Rings

Real Analysis

- 31. Real Analysis in One Variable
- 32. Real Analysis in Several Variables

Measure Theory

- 33. Measurable Spaces
- 34. Measures and Integration

Probability Theory

34. Probability Theory

Stochastic Analysis

- 35. Stochastic Processes, Martingales, and Brownian Motion
- 36. Itô Calculus
- 37. Stochastic Differential Equations

Differential Geometry

38. Topological and Smooth Manifolds

Schemes

39. Schemes