

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: C12N 15/864, A61K 48/00, C12N 7/01, C12N 15/866		A1	(11) International Publication Number: WO 00/73480 (43) International Publication Date: 07 December 2000 (07.12.2000)
(21) International Application Number: PCT/US00/14481 (22) International Filing Date: 25 May 2000 (25.05.2000) (30) Priority Data: 60/136,650 27 May 1999 (27.05.1999) US (60) Parent Application or Grant GENOVO, INCORPORATED [/]; O. RASTY, Siyamak [/]; O. GONDA, Matthew, A. [/]; O. CHEN, Haifeng [/]; O. RASTY, Siyamak [/]; O. GONDA, Matthew, A. [/]; O. CHEN, Haifeng [/]; O. HALEY, James, F., Jr. ; O.		Published	
<p>(54) Title: COMPOSITIONS AND METHODS FOR PRODUCTION OF RECOMBINANT VIRUS USING A CARRIER VECTOR DERIVED FROM A NONMAMMALIAN VIRUS (54) Titre: COMPOSITIONS ET METHODES DE PRODUCTION D'UN VIRUS RECOMBINE A L'AIDE D'UN VECTEUR PORTEUR DERIVE D'UN VIRUS NON MAMMIFERE</p> <p>(57) Abstract</p> <p>This invention relates to nonmammalian carrier vectors and viruses useful in the production of high titers of recombinant viruses which may contain foreign DNA inserts or which may be point-mutated or deleted viruses, and methods of producing those viruses. The nonmammalian carrier vector ("carrier vector") is a chimeric vector which includes those portions of a nonmammalian virus backbone which allow replication in a nonmammalian host cell. The carrier vector includes various nucleic acid cassettes, which may include an embedded recombinant viral genome containing a desired transgene, components necessary for production of a replication-defective recombinant virus containing the transgene, and domains that permit the carrier vector to bind to mammalian cells. The invention also provides methods of producing high concentrations of recombinant virus as a substantially homogeneous preparation, compositions to produce the recombinant virus, and recombinant viruses.</p> <p>(57) Abrégé</p> <p>Cette invention concerne des vecteurs porteurs non mammifères et des virus utiles dans la production de titres élevés de virus recombinés pouvant contenir des insérats d'ADN étrangers ou pouvant être des virus à mutation ou délétion ponctuelle, et des méthodes de production de ces virus. Le vecteur porteur non mammifère ("vecteur porteur") est un vecteur chimère lequel contient les parties d'un squelette de virus non mammifère permettant la réplication dans une cellule hôte non mammifère. Le vecteur porteur comprend diverses cassettes d'acide nucléique, lesquelles peuvent contenir un génome viral recombiné inclus contenant un transgène voulu, des constituants nécessaires à la production d'un virus recombiné à défaut de réplication contenant le transgène, ainsi que des domaines permettant au vecteur porteur de se fixer à des cellules mammifères. L'invention concerne également des méthodes de production de concentrations élevées de virus recombiné sous forme d'une préparation sensiblement homogène, des compositions destinées à produire le virus recombiné ainsi que des virus recombinés.</p>			

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 December 2000 (07.12.2000)

PCT

(10) International Publication Number
WO 00/73480 A1

(51) International Patent Classification: C12N 15/864. (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, 15/866, 7/01, A61K 48/00 AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US00/14481

(22) International Filing Date: 25 May 2000 (25.05.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/136,650 27 May 1999 (27.05.1999) US

(71) Applicant (*for all designated States except US*): GEN-OVO, INCORPORATED [US/US]; Elmwood Court Two, 512 Elmwood Avenue, Sharon Hill, PA 19079 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): RASTY, Siyamak [US/US]; 15 North Trail, Wilmington, DE 19801 (US). GONDA, Matthew, A. [US/US]; 920 Lake Colony Run, Vestavia Hills, AL 35242 (US). CHEN, Haifeng [CN/US]; 749 Iris Lane, Media, PA 19063 (US).

(74) Agents: HALEY, James, F., Jr. et al.; Fish & Neave, 1251 Avenue of the Americas, New York, NY 10020 (US).

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- *With international search report.*
- *Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOSITIONS AND METHODS FOR PRODUCTION OF RECOMBINANT VIRUS USING A CARRIER VECTOR DERIVED FROM A NONMAMMALIAN VIRUS

WO 00/73480 A1

(57) Abstract: This invention relates to nonmammalian carrier vectors and viruses useful in the production of high titers of recombinant viruses which may contain foreign DNA inserts or which may be point-mutated or deleted viruses, and methods of producing those viruses. The nonmammalian carrier vector ("carrier vector") is a chimeric vector which includes those portions of a nonmammalian virus backbone which allow replication in a nonmammalian host cell. The carrier vector includes various nucleic acid cassettes, which may include an embedded recombinant viral genome containing a desired transgene, components necessary for production of a replication-defective recombinant virus containing the transgene, and domains that permit the carrier vector to bind to mammalian cells. The invention also provides methods of producing high concentrations of recombinant virus as a substantially homogeneous preparation, compositions to produce the recombinant virus, and recombinant viruses.

Description

5

10

15

20

25

30

35

40

45

50

55

5

10

15

COMPOSITIONS AND METHODS FOR PRODUCTION OF RECOMBINANT VIRUS USING A CARRIER VECTOR DERIVED FROM A NONMAMMALIAN VIRUS

20

TECHNICAL FIELD OF THE INVENTION

This invention relates to novel nonmammalian carrier vectors and 25 viruses useful in the production of high titers of recombinant viruses which may contain foreign DNA inserts or which may be point-mutated or deleted viruses, and 30 methods of producing those viruses. The nonmammalian carrier vector ("carrier vector") is a chimeric vector which includes those portions of a nonmammalian virus backbone which allow replication in a nonmammalian host cell. The carrier 35 vector includes various nucleic acid cassettes, which may include an embedded recombinant viral genome containing a desired transgene, components necessary for 40 production of a replication-defective recombinant virus containing the transgene, and domains that permit the carrier vector to bind to mammalian cells. The invention also provides methods of producing high concentrations of recombinant 45 viruses as a substantially homogeneous preparation, compositions to produce the recombinant virus, and novel recombinant viruses.

50

55

5

- 2 -

BACKGROUND OF THE INVENTION

10

A recombinant virus carrying a foreign DNA insert may be used to

deliver genes to cells, where the gene may be expressed, if desired, to permit

15 production of recombinant proteins *in vitro* or *in vivo*, vaccination of human and

5 non-human mammals, or treatment or amelioration of diseases or genetic defects in

humans or non-human mammals. One may treat or ameliorate diseases or genetic

20

defects by providing normal gene products, increased levels of gene products or by

blocking endogenous production of a gene, whose expression would be deleterious

25 to the cell or organism.

25

10 Methods for delivering an exogenous gene to a mammalian cell

include the use of mammalian viral vectors, such as those which are derived from

30

retroviruses, adenoviruses, herpes viruses, vaccinia viruses, polio viruses, adeno-

associated viruses, hybrid viruses (e.g., hybrid adenovirus-AAV, see U.S. Pat. No.

35 5,856,152) and the like. Other methods include direct injection of DNA, biolistic

15 administration of DNA, electroporation, calcium phosphate precipitation, as well as

methods of administration which utilize ligand-DNA conjugates, liposome

40

conjugates of DNA, polycation-DNA complexes or adenovirus-ligand-DNA

conjugates.

A transgene is a nucleic acid encoding a protein of interest; it may be

45

20 a gene to allow for genetic or drug selection, e.g., a gene conferring resistance to

antibiotics, or a reporter gene allowing detection, e.g., by color in the case of the

50 use of green fluorescent protein. Alternatively, the transgene may be one that is

useful for corrective applications. For instance, a transgene may be a normal gene

55

5

- 3 -

10 that replaces or augments the function of a patient's defective gene. The transgene
may be one that counteracts the effects of a disease, such as introduction and
expression of a gene that is distinct from the one that it replaces or augments, but
15 which has the same function or compensates for the defective gene's function. The
20 5 transgene may be a gene which blocks or represses the expression of a
malfunctioning, mutated, or viral gene in the patient, thereby giving rise to a
corrective effect. A transgene may also be used for immunization against various
agents, by provoking an immunogenic response in an animal. Delivery of
25 therapeutic transgenes to a patient thus effects a correction of a defect or
10 prevention of disease. The transgene also may be one which is useful for
production of proteins *in vitro*, such as for large-scale production of therapeutic
30 proteins.

35 Appropriate genes for expression in the cell include, without
limitation, those genes which are normally expressed in cells but whose products are
15 produced in insufficient amounts. Alternatively, the appropriate gene for expression
is one which expresses a normal gene product which replaces a defective gene
product, encodes ribozymes or antisense molecules which repair or destroy mutant
40 cellular RNAs expressed from mutated genes, or modifies or destroys viral RNAs.
Transgenes used for production of proteins *in vitro* include proteins such as
45 20 secreted factors, including hormones, growth factors and enzymes.

50 Many gene therapy methods involve supplying an exogenous gene to
overcome a deficiency in the expression of a gene in a patient. Some of these
deficiencies are congenital and are due to a mutation in a particular gene in all the

55

10 cells of the patient. For instance, in cystic fibrosis, there are one or more mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) which prevents the CFTR protein from functioning properly. In other 15 cases, a deficiency in gene expression is due to an accident or disease that occurs 5 during the patient's life. For instance, in Type I diabetes mellitus, the β pancreatic islet cells, which produce insulin, are destroyed, such that patients with this disease 20 can no longer synthesize insulin. In other cases, the endogenous gene may be structurally normal but is not produced in high enough quantities due to disease, 25 medical treatment or other environmental conditions, or mutations in the regulatory 10 elements of the endogenous gene. For example, there are a number of blood disorders, such as anemia, in which there is insufficient production of red blood 30 cells, which may be treated with erythropoietin (EPO) or with a transgene encoding EPO. Transgenes may also be used for genetic immunization, i.e., to elicit an 35 immune response to a pathogen in an animal, including humans. For instance, a 15 transgene may include a sequence from a viral, bacterial or fungal pathogen, such as influenza virus, human immunodeficiency virus (HIV), or mycobacterium 40 tuberculosis.

45 Certain methods are amenable to targeted delivery of the exogenous 20 gene to specific tissues, such as liver tissue. One method of delivering genes to 40 specific cells relies upon the function of a cell-specific receptor. The 50 asialoglycoprotein receptor (ASGP-R), which is present on the surface of hepatocytes (Spiess et al., 1990, Biochem. 29:10009-10018), is a lectin which has affinity for the terminal galactose residues of glycoproteins, and has been used to

target gene delivery to liver hepatocytes. For example, a DNA complex is bound to
10 a ASGP-R on the cell surface, allowing subsequent endocytosis by the liver
hepatocyte.

15 Viruses that are commonly used in gene delivery applications are

5 modified by replacing viral nucleic acid with a desired transgene. Frequently, DNA removed from the virus encodes proteins necessary for viral replication or
20 encapsidation, in which case the recombinant virus containing a transgene is replication-deficient and will not replicate or encapsidate in the host. To permit replication and encapsidation, current methods recognize that those portions of
25 10 DNA which have been deleted must be supplied by wild-type or modified viruses or by plasmids containing DNA encoding the required gene products. Supplying wild-type or modified virus may result in recombinant virus stocks contaminated with
30 15 wild-type or modified virus. Supplying plasmids encoding the required gene products through cotransfection results in low efficiency of recombinant virus production, as well as recombination events which yield wild-type virus
35 20 contaminants.

40 A number of different viruses have been used to deliver a transgene to mammalian cells. These viruses include retrovirus, hepatitis B virus (HBV), adenovirus, adeno-associated virus (AAV) and herpesvirus. AAV possesses unique
45 20 features that make it attractive as a vector for delivering foreign DNA (i.e., a transgene) to cells, and various groups have studied the potential use of AAV in the treatment of disease states.

AAV is a parvovirus, the genome of which is about 4.7 kb in length,
10 including 145 nucleotide inverted terminal repeats (ITRs). The AAV genome
encodes two genes, *rep* and *cap*, each of which expresses a family of related
15 proteins from separate open reading frames and produced as a result of alternative
mRNA splicing. *Rep* polypeptides (*rep78*, *rep68*, *rep52*, and *rep40*) are involved in
20 replication, rescue and integration of the AAV genome. *Cap* proteins (VP1, VP2,
and VP3) form the virion capsid. Flanking the *rep* and *cap* open reading frames at
the 5' and 3' ends of the AAV genome are the 145 bp ITRs, the first 125 bp of
25 which are capable of forming Y- or T- shaped duplex structures. The entire nucleic
acid encoding *rep* and *cap* can be excised and replaced with a transgene [B. J.
30 Carter, in "Handbook of Parvoviruses", ed., P. Tijsser, CRC Press, pp.155-168
(1990)]. The ITRs represent the minimal sequence required for replication, rescue,
packaging, and integration of the AAV genome.

When this nonpathogenic human virus infects a human cell, the viral
35 genome integrates into chromosome 19 resulting in latent infection of the cell.
15 Production of infectious virus and replication of the virus does not occur unless the
cell is coinfecte with a lytic helper virus, such as adenovirus (Ad) or herpesvirus.
40 Upon infection with a helper virus, the AAV provirus is rescued and amplified, and
both AAV and helper virus are produced. The infecting parental ssDNA is
45 converted to duplex replicating form (RF) DNAs in a *rep* dependent manner. The
rescued AAV genomes are packaged into preformed protein capsids (icosahedral
50 symmetry approximately 20 nm in diameter) and released as infectious virions that
have packaged either + or - ss DNA genomes following cell lysis. However,

10 progress towards establishing AAV as a transducing vector for the delivery of DNA
in the form of a desired transgene has been slow for a variety of reasons.

15 Replacing the *rep* and *cap* sequences with a desired transgene yields
a recombinant virus capable of delivering the transgene to target host cells.

20 5 However, because AAV requires a particular genome packaging size, addition of a
transgene results in deletion of necessary gene functions for *rep* and *cap*. In current
methods, necessary gene functions replaced by the transgene are supplied by viruses
25 or additional plasmids. Furthermore, the requirement by AAV for helper virus
functions also requires the use of helper viruses (either wildtype or crippled viruses)
10 or plasmids containing the helper virus functions.

30 One method that has been used to produce recombinant AAV
(rAAV) vectors comprises co-transfected eukaryotic cells with a plasmid
containing rAAV (the *cis* plasmid) and a plasmid containing *rep* and *cap* (the *trans*
35 plasmid), and infecting the cells with a helper virus (e.g., adenovirus or herpes
15 virus). See U.S. Pat. No. 5,753,500. The disadvantage of this method is that the
rAAV vector stock is contaminated with helper virus, which is labor-intensive and
40 difficult to separate from the helper virus, and co-transfection of two plasmids along
with infection by a helper virus is inefficient and cannot be easily scaled up for
industrial production of rAAV.

45 20 A second method that has been used to produce rAAV involves a
triple plasmid transfection of eukaryotic cells. In this method, one plasmid carries
50 the transgene and ITRs (the *cis* plasmid), a second plasmid encodes the *rep* and *cap*
genes (the *trans* plasmid), and the third plasmid encodes the helper virus functions,

5

- 8 -

10

i.e. adenoviral genes such as E1a, E1b, E2a and E4 (the *helper* plasmid). The disadvantage of this method is that a triple transfection is also inefficient and is difficult to scale up.

15

20

25

30

35

40

45

50

A third method involves the use of a packaging cell line such as one including AAV functions *rep* and *cap*. See U.S. Pat. No. 5,658,785 and U.S. Serial No. PCT US98/19463. The packaging cell line may be transfected with a *cis* plasmid comprising the transgene and ITRs, and infected by wild-type adenovirus (Ad) helper. See U.S. Pat. No. 5,658,785. Alternatively, the packaging cell line may be co-infected by a hybrid Ad/AAV, in which a hybrid Ad vector carries the *cis* plasmid in the E1 locus (see U.S. Pat. No. 5,856,152), and by a wild-type or mutant Ad that supplies E1. The disadvantage of this method is that wild-type Ad may be produced, which must be separated from the rAAV vector before use in a patient.

Thus, current methods of producing recombinant AAV are incapable of yielding the high amounts of essentially homogeneous virus for pharmaceutical compositions needed for the treatment of a large number of patients in a easily scaled industrial production.

Nonmammalian viruses have been used to transiently express particular individual exogenous proteins in either mammalian or non-mammalian cells. For example, viruses of the family Baculoviridae, or "baculoviruses", which normally infect members of the order Lepidoptera, have been used to express exogenous genes in insect cells. Baculoviruses have also been reported to enter mammalian cells, and baculoviral DNA has been detected in nuclear extracts of mammalian cells (Volkman et al., 1983, *Appl. Environ. Microbiol.* 45:1085-1093).

55

5

- 9 -

10 While one report of baculovirus-mediated gene expression in mammalian cells has
appeared, the authors later attributed the apparent reporter gene activity to the
reporter gene product being carried into the cell after a prolonged incubation of the
15 cell with the virus (Carbonell et al., 1987, Appl. Environ. Microbiol. 53:1412-
1417). These authors reported that, when the exogenous gene gains access to the
20 cell as part of the baculovirus genome, the exogenous gene is not expressed *de*
novo. Subsequent studies have demonstrated baculovirus-mediated gene expression
of particular proteins in mammalian cells (Boyce et al., 1996, Proc. Natl. Acad. Sci.
25 USA, 93:2348-2352).

10 While baculovirus has been used for expressing particular proteins in
a mammalian cell, see U.S. Pat. No. 5,731,182, baculovirus has not been used to
30 produce pharmaceutical compositions of replication-deficient recombinant virus
using an easily scaled industrial process. As disclosed in U.S. Pat. No. 5,731,182,
the genome of the baculovirus may be modified by insertion of ligand DNA, which
35 15 comprises a gene encoding a mammalian receptor specific protein that allows the
baculovirus to bind and enter mammalian cells. The nonmammalian virus infecting
the mammalian cells allows only for transient expression of the transgene within the
40 mammalian cell. In addition, the methods disclosed in U.S. Pat. No. 5,731,182 do
not result in production of an altogether distinct, essentially homogeneous
45 20 recombinant virus, at high titers.

50 The problem of generating recombinant replication-deficient virus
that is produced in the absence of helper viruses and by an efficient method that is
applicable to large-scale industrial production has not been solved until the present

55

5

- 10 -

invention. Current viral production methods include costly and time consuming
10 purification and concentration steps, and are incapable of producing sufficient
recombinant virus for pharmaceutic applications. In the case of AAV, for example,
15 current methods produce at most on the order of 10^4 - 10^5 genomic copies (gc) of
5 recombinant virus per producer cell. Similarly, current methods are suitable for
producing recombinant adenovirus in amounts on the order of 10^4 particles per
20 producer cell, and retroviruses in amounts on the order of 10^3 - 10^4 colony forming
units (cfu) per producer cell. Current production methods result in contaminating
25 helper virus which must be inactivated and/or removed from the final products prior
10 to pharmaceutical application. Thus, there exists an unfulfilled need for a method of
manufacturing recombinant mammalian virus at high titers free of other
30 contaminating virus in order to produce recombinant viruses capable of delivering a
desired transgene to mammalian cells, or immunizing cells against viral or bacterial
infection by the use of such recombinant viruses, in a stable fashion.
35

15 SUMMARY OF THE INVENTION

40 The invention exploits the properties of nonmammalian and
mammalian viruses to create novel chimeric vectors and viruses for the manufacture
of an essentially homogeneous recombinant virus preparation in the absence of
45 contaminating helper virus using a process that may be easily scaled for industrial
20 production. The essentially homogeneous recombinant virus may be used for
various purposes, including delivering a desired transgene to mammalian cells for
50 pharmaceutic applications including immunization and correction of genetic defects;

55

5

- 11 -

10 transient and stable gene transfer *in vivo*, *in vitro* and *ex vivo*; production of
proteins *in vivo* or *in vitro*; and other methods in which high levels of gene
15 transduction into a cell are required, e.g., in the production of expression libraries
for screening compounds or for introducing genes into cells that are not easily
15 transfected.

20 The carrier vector of the invention is a chimeric vector backbone
derived from the nucleic acid of a nonmammalian virus, and includes one or more of
the following elements: 1) an embedded recombinant viral genome; 2) nucleic acid
25 sequences which encode proteins required for replication and encapsidation of the
10 recombinant virus genome; 3) nucleic acid sequences encoding helper functions (if
the recombinant virus to be produced is helper-dependent, e.g., AAV); 4) nucleic
30 acid sequences encoding a ligand that can interact with a mammalian cell; and 5)
regulatory control sequences that regulate nucleic acid sequences in the
nonmammalian virus backbone or in a replication-deficient portion or modification
35 15 thereof. The carrier vector may also include any other nucleic acid sequences that
are required to produce a replication-deficient recombinant virus.

40 In one embodiment of the invention, one or more carrier vectors may
comprise all of the elements required to produce a replication-deficient recombinant
vector in a particular host cell or cell line. The number and type of elements that
45 20 are required will depend upon the particular host cell used and the type of
recombinant vector produced. For instance, if a recombinant AAV vector is desired
and the host cell line is one which has *rep* and *cap* stably integrated in its genome,
50 55 the carrier vector or vectors would comprise 1) an embedded recombinant viral

5

- 12 -

10 genome comprising the AAV ITRs and the transgene and 2) separate helper
functions, which may include any nucleic acid sequence required for replication and
15 encapsidation of the rAAV. For instance, these helper functions may include any
one or a combination of E1, E2a, E4ORF6 and VA1 from adenovirus (Ad). If a
20 recombinant AAV vector is to be produced in a host cell line that does not express
rep and *cap*, then the carrier vector or vectors may also include the DNA sequences
encoding *rep* and *cap*.

25 Alternatively, if a recombinant retrovirus is desired, the carrier
vector or vectors would comprise 1) an embedded recombinant viral genome
30 comprising the retroviral LTRs and the transgene of interest driven from the
retroviral LTRs or from a heterologous promoter, and 2) DNA sequences encoding
any one or a combination of *gag*, *pol* and *env* for the functions of replication and
35 encapsidation of the retrovirus not supplied in the host cell. In a preferred
embodiment, all of the required elements to produce a recombinant virus in a
40 particular host cell are contained on a single carrier vector because the use of a
single carrier vector having all functions not supplied by a host cell increases the
efficiency of transduction, and can be more easily scaled for industrial production of
the embedded recombinant virus.

45 In an alternative embodiment, the carrier vector comprises an
20 embedded recombinant viral genome, and any required replication, encapsidation
and/or helper functions are provided by a helper virus or a plasmid.

50 The embedded recombinant viral genome may comprise a transgene
and DNA elements required for replication of a mammalian virus. The transgene

55

10 comprises the gene of interest, regulatory elements to regulate its expression, and
15 an optional DNA spacer. The transgene is flanked by the DNA elements required
for replication of a mammalian virus, such as the ITRs of AAV, the LTRs of
retrovirus, or the ITRs of adenovirus. The recombinant viral genome is embedded
20 5 within the nonmammalian virus backbone, optionally along with one or more of the
other DNA sequences listed above, resulting in a chimeric carrier vector of the
present invention.

In an alternative embodiment, the embedded recombinant viral
25 genome does not contain a transgene but the recombinant viral genome itself
10 contains point mutations or deletions. In this embodiment, the point mutations or
deletions function to attenuate the replication of the subsequently-produced
30 recombinant virus. The attenuated recombinant virus may be any virus which could
be useful for vaccination, including, without limitation, picornaviruses such as
poliovirus; hepatitis viruses such as hepatitis B and hepatitis C; cold-adapted
35 15 respiratory syncytial virus (RSV); cold-adapted influenza virus; parainfluenza virus
types 1, 2 and 3; and rotavirus.

40 The carrier vector is replication-proficient in its native host cells.
For example, employing a baculovirus backbone results in a chimeric carrier vector
45 20 that is replication-proficient in insect cells. In contrast, the embedded recombinant
viral genome, optionally containing a transgene, is unable to excise, replicate, and
package into virions because its promoters are inactive in insect cells. However,
50 once the chimeric carrier vector infects a mammalian cell, the essential gene
products required for replication and packaging of the carrier vector in its

5

- 14 -

10

permissive native cell are no longer expressed. Thus, the carrier vector does not replicate in mammalian cells, and instead exists transiently within the mammalian cell.

15

In contrast, once the carrier vector has infected a mammalian cell,

20

5 the mammalian regulatory sequences within the carrier vector controlling the embedded recombinant viral genome and other mammalian DNA sequences are activated, such that the recombinant viral genome is capable of being excised from the carrier vector and replicated. The capsid proteins which form the capsid of the recombinant virus are expressed such that the recombinant viral genome is 10 encapsidated, which yields an infectious recombinant virus. The recombinant virus is essentially free of carrier vector because the carrier vector is not replicated in 25 mammalian cells.

30

In a preferred embodiment, the recombinant virus is replication-deficient because there are no replication or helper functions present in the newly 35 15 formed virions; i.e., the recombinant virus lacks part or all of the coding regions of the native virus genome. In embodiments of the invention in which the recombinant 40 virus is helper-dependent, such as rAAV, the recombinant virus lacks both functional replication and encapsidation functions. In embodiments of the invention 45 in which the recombinant virus is not helper-dependent, the recombinant virus lacks 20 functional replication coding regions or other essential genes.

50

In cases where helper functions are required for recombinant virus production, recombinant virus may be produced without the need for coinfection and subsequent production of helper virus if a carrier vector includes the necessary

55

5

- 15 -

10 helper functions. Thus, the invention yields lysates of substantially pure and essentially homogeneous preparations of the particular recombinant virus of interest in the absence of helper virus.

15 This invention thus has many advantages over current methods for

5 manufacturing recombinant viruses. These advantages include: (1) the nonmammalian virus backbone permits insertion of large DNA sequences without compromising the efficiency of recombinant virus production; (2) sequences normally toxic to mammalian cells (e.g., AAV *rep*, VSV-G, retroviral envelope proteins, eukaryotic regulatory proteins, etc.) are not expressed in substantial amounts from their mammalian regulatory sequences in the nonmammalian host cell of the nonmammalian carrier vector and thus can be tolerated by the nonmammalian carrier vector during the course of its replication in the nonmammalian host cell; (3) nonmammalian viruses do not replicate in mammalian cells, precluding contamination of the final eukaryotic vector stocks with the nonmammalian carrier vector; (4) in some embodiments no helper viruses are necessary, with the result that the final recombinant virus preparation is essentially free of helper virus; (5) frequency of wildtype virus production due to homologous or non-homologous recombination is minimized; and (6) the methods of the present invention are particularly suitable to large scale production of recombinant viruses which are themselves replication-deficient. Additionally, nonmammalian viruses are not normally pathogenic to mammalian cells, may be propagated in serum free media, and may be grown to a high titer. Other features and advantages of the invention

50

55

10 will be apparent from the following drawings, the description of the invention and its preferred embodiments, and the examples described herein.

15 In one embodiment, the present invention includes nonmammalian carrier vectors containing elements that are required to produce replication-deficient recombinant viral vectors. In a preferred embodiment, the nonmammalian carrier vector contains all the elements required to produce a replication-deficient recombinant viral vector. In an even more preferred embodiment, a single nonmammalian carrier vector contains all the required elements to produce a replication-deficient recombinant viral vector. In another preferred embodiment, 20 the nonmammalian carrier vector is a baculovirus.

25 10 the nonmammalian carrier vector is a baculovirus.

30 In another embodiment, the invention includes a method of producing replication-deficient recombinant viral vector lysates and stocks that are free of helper or other contaminating virus. In a preferred embodiment, the method is one which is easily scaled for industrial production of recombinant viral vectors.

35 15 In another preferred embodiment, the method is one in which a high titer of recombinant viral vector lysates and stocks is achieved.

40 In another embodiment, the invention includes attenuated, replication-competent recombinant viruses and a method of producing such viruses free of helper or other contaminating virus. In a preferred embodiment, these 45 20 attenuated, replication-competent viruses may be used for immunization.

5

- 17 -

BRIEF DESCRIPTION OF THE DRAWINGS

10

Figure 1 is a schematic diagram of recombinant baculoviruses with target genes inserted into the loci of either polyhedrin or p10 genes.

15

Figures 2A and 2B represent a genetic map of AAV type 2. Figure

5 2A is a schematic representation of the viral genome. *rep* encodes replication proteins (Rep78, Rep68, Rep52, and Rep40) and *cap* encodes encapsidation functions (VP1, VP2, and VP3). Right-angled arrows: the p5, p19, and p40 viral promoters; downward vertical arrow: common polyadenylation signal upstream of the 3'-ITR. Figure 2B represents the transcripts derived from each of the three
20
25
5 promoters. A_n: polyadenylation.

10 Figure 3 is a schematic diagram of constructed plasmids used in this invention.

30 Figure 4 shows the steps involved in rAAV production by traditional adenovirus infection/plasmid co-transfection method (Shenk et al., US patent
35
15 #5,436,146).

40 Figure 5 shows the steps required for rAAV production through the use of two recombinant baculoviruses (BV-EiOV-RC and BV-cisEFGFP).

45 Figure 6 shows the steps required for rAAV production through the use of stable cell line 293-CG3 together with one recombinant baculovirus (BV-EiOV-RC).

50 Figure 7 shows the steps required for rAAV production through the use of stable cell line expressing AAV rep and cap genes together with recombinant baculovirus (BV-EiOV-cisEFGFP-E1).

DETAILED DESCRIPTION OF THE INVENTION

10

Definitions and General Techniques

15

Unless otherwise defined, all technical and scientific terms used herein have the meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The practice of the present invention employs, unless otherwise indicated, conventional techniques of chemistry, molecular biology, microbiology, recombinant DNA, genetics, virology and immunology. See, e.g., Sambrook et al., 1989, Ausubel et al., 1992, Harlow et al. 1989 (which are incorporated herein by reference).

25

10 A "recombinant viral genome" comprises all or a part of a viral genome, wherein the viral genome may be wild type or may contain point mutations or deletions, and optionally comprises a transgene operably linked to expression control sequences. In one embodiment, the transgene is flanked by flanking elements. The recombinant viral genome of the invention is embedded in the 35 genome of the carrier vector, and is ultimately packaged into a recombinant virus.

40

15 A "recombinant virus" is a virus derived from the recombinant viral genome described above. The recombinant virus may comprise a transgene, may be an attenuated, replication-competent virus without a transgene, may be a replication-competent virus with one or more point mutation(s), or may be a 45 replication-deficient virus with one or more point mutations or genomic deletions, or combinations thereof. The recombinant virus comprising a transgene is capable 20 of transducing mammalian cells and delivering the transgene thereto.

50

55 A "flanking element" or "flanking nucleic acid" is a nucleic acid

5

- 19 -

10 sequence generally derived from a mammalian virus which, when located in positions flanking a transgene, permits the packaging of the transgene into a recombinant virus. Flanking elements may be the naturally-occurring flanking 15 elements from a mammalian virus which permit the packaging of the recombinant virus, or may be artificial nucleic acid elements, e.g. mutated sequences of flanking 20 elements, that have the same or similar packaging function. Flanking elements include, without limitation, the inverted terminal repeats (ITRs) of AAV or Ad, the long terminal repeats (LTRs) of retrovirus, the "a" or packaging sequence of herpes simplex virus (HSV), as well as any other sequences that are required for packaging 25 from other viruses known in the art.

30 A "transgene" is a nucleic acid sequence that is to be delivered or transferred to a mammalian cell. A transgene may encode a protein, peptide or polypeptide that is useful as a marker, reporter or therapeutic molecule. A 35 transgene may also encode a protein, polypeptide or peptide that is useful for protein production, diagnostic assays or for any transient or stable gene transfer *in* 40 *vitro* or *in vivo*. Alternatively, a transgene may not encode a protein but rather be used as an antisense molecule, ribozyme or other regulatory nucleic acid to inhibit replication, transcription or translation of a nucleic acid to which it is complementary or to target a complementary mRNA for degradation.

45 20 "Expression control sequences" are nucleic acid sequences that regulate the expression of a gene by being operably linked to the gene of interest. 50 "Operably linked" sequences include both expression control sequences that are contiguous with the gene of interest and expression control sequences that act in

55

5

- 20 -

10 *trans* or at a distance to control the gene of interest. Expression control sequences
15 include appropriate transcription initiation, termination, promoter and enhancer
5 sequences; efficient RNA processing signals such as splicing and polyadenylation
signals; sequences that stabilize cytoplasmic mRNA; sequences that enhance
translation efficiency (i.e., Kozak consensus sequence); sequences that enhance
protein stability; and when desired, sequences that enhance protein secretion.

20 As used herein, a "carrier vector" means a nucleic acid molecule
comprising a nonmammalian viral nucleic acid backbone and nucleic acid sequences
25 derived from mammalian sources, mammalian viral sources, nonmammalian sources,
10 and nonmammalian viral sources. The nonmammalian viral nucleic acid backbone
may be selected from a wide variety of sources, see, for example Table I of U.S.
30 Pat. No. 5,731,182, herein incorporated by reference. The nonmammalian viral
nucleic acid backbone, upon transfection of the carrier vector nucleic acid into non-
35 mammalian cells, is sufficient to produce packaged carrier virus comprising the
15 nucleic acid sequences inserted into the carrier vector.

- A “carrier virus” is an encapsidated carrier vector capable of binding to a mammalian cell and delivering the carrier vector’s genome to the cell’s nucleus.

As used herein, "ligand nucleic acid" means a nucleic acid which encodes a protein which allows the carrier virus of the invention to bind to and enter a mammalian cell. The nucleic acid encoding the protein may be operably linked to expression control sequences that regulate the expression of the nucleic acid encoding the ligand.

“Helper function nucleic acid” is one or more nucleic acid sequences

55

5

- 21 -

that encode one or more proteins, peptides or polypeptides, or that is transcribed to
10 an RNA, wherein the one or more proteins, peptides, polypeptides or RNAs are
required by certain viruses for production of recombinant viruses. The sequences
15 may be naturally-occurring helper functions or may be sequences that have been
5 mutated or altered but which retain their respective helper functions. The sequences
may be derived from helper viruses or may be naturally-occurring or artificial
20 nucleic acid sequences that encode non-viral proteins that act as helper functions for
production of recombinant viruses. The nucleic acid sequences that are transcribed
to RNA or which encode the proteins, polypeptides or peptides may be operably
25 linked to expression control sequences that regulate the expression of the nucleic
10 acid encoding the helper functions.

30 "Replication and/or encapsidation nucleic acid" is a nucleic acid
sequence or sequences which encode proteins or polypeptides that are required for
replication and encapsidation of the recombinant virus. The sequences may be
35 15 naturally-occurring replication or encapsidation sequences or may be sequences that
have been mutated or altered but which retain their respective functions of
40 replication or encapsidation. The nucleic acid sequences encoding the proteins may
be operably linked to expression control sequences that regulate the expression of
the nucleic acid encoding the replication and encapsidation sequences.

45 20 A "replicon" is an episomal replication origin and those necessary
proteins (or DNA encoding these proteins) to initiate nucleic acid replication.

50

55

5

- 22 -

The Carrier Vector

10

The carrier vector of the invention is a chimeric vector backbone derived from the nucleic acid of a nonmammalian virus. The carrier vector comprises sufficient vector sequences to be able to replicate and encapsidate within the appropriate nonmammalian host cell. The carrier vector also includes one or more of the following inserts: an embedded recombinant viral genome; a ligand nucleic acid providing for expression of a protein which can interact with a mammalian cell; replication and/or encapsidation nucleic acid required to replicate and encapsidate a recombinant virus; and helper virus functions nucleic acids.

25

10 In a preferred embodiment, the carrier vector comprises an embedded recombinant viral genome within its nonmammalian virus genomic backbone. The recombinant viral genome may comprise a transgene with associated expression regulatory sequences, wherein the transgene and regulatory sequences are bordered by flanking elements of a mammalian virus. Alternatively, 15 the recombinant viral genome does not contain a transgene but rather contains deletions or point mutations in its sequence such that it produces an attenuated, replication-proficient recombinant virus, or other deletions or point mutations that 20 produce a replication-deficient recombinant virus.

45

In a more preferred embodiment, the carrier vector comprises the 20 embedded recombinant viral genome and either or both of 1) nucleic acid sequences encoding replication and/or encapsidation and 2) nucleic acid sequences encoding helper functions. In an even more preferred embodiment of this invention, the 25 carrier vector additionally comprises a ligand nucleic acid providing for expression

55

10 of a protein which can interact with a mammalian cell. In another preferred embodiment, the ligand nucleic acid encodes a protein which can bind to a specific mammalian cell receptor.

15 In the most preferred embodiment, the carrier vector comprises the embedded recombinant viral genome and all of those nucleic acid inserts required for production of a recombinant virus in a mammalian cell. For instance, if the 20 carrier virus comprising the carrier vector is to be used to infect a cell line which expresses replication and encapsidation proteins for a recombinant AAV virus (e.g., the A64 cell line described in U.S. Pat. No. 5,658,785 and the B50 cell line 25 described in PCT US98/19463), then the carrier vector would comprise the embedded recombinant viral genome and the helper functions, and optionally the 30 ligand nucleic acid. Alternatively, if carrier virus is to be used to infect a cell line which expresses a helper function for a recombinant AAV virus (e.g., the 293 cell line which expresses E1), then the carrier vector would comprise the embedded 35 recombinant viral genome, the replication and encapsidation nucleic acids for AAV (40 *rep* and *cap*), and the helper functions required in addition to E1 (e.g., E2a, E4ORF6 and VAI RNA), and optionally the ligand nucleic acid.

45 If the carrier virus is to be used to produce a recombinant retrovirus, which does not require helper functions, the carrier vector would comprise the 50 embedded recombinant retroviral viral genome and the nucleic acids required for its replication and encapsidation (e.g., *gag*, *pol* and *env*) and optionally, in cases where the retrovirus is a lentivirus, one or more of the nucleic acids encoding regulatory or auxilliary proteins (e.g., *tat*, *rev*, *nef*, *vpr*, *vpu*). If the carrier virus is to be used to

5

- 24 -

produce a recombinant retrovirus in a cell line that expresses *gag*, *pol* and *env* or
10 the other functions described above in the case of lentiviruses, then the carrier virus
would need only comprise the embedded recombinant retroviral genome and
15 optionally the ligand nucleic acid. Similarly, if the carrier virus is to be used to
20 5 produce a recombinant adenovirus, the carrier vector would comprise the embedded
recombinant adenoviral genome and the nucleic acid sequences required for its
replication and encapsidation. The type of nucleic acid sequences required for
25 replication and encapsidation of the recombinant adenoviral genome depends upon
which adenoviral genes are deleted from the recombinant adenoviral genome and
30 10 whether the mammalian cell line that the carrier virus infects expresses any
adenoviral genes (e.g., 293 cells express E1). Any carrier vector genome may
optionally comprise a ligand nucleic acid to increase infection by the carrier virus of
a mammalian cell.

35 The embedded recombinant viral genome and other nucleic acid
35 15 inserts may be carried on separate carrier vectors, but in the most preferred
embodiment, the embedded recombinant viral genome and all other desired nucleic
40 acid inserts are carried on a single carrier vector. The advantage of a single carrier
vector is that only a single infection by the carrier virus of the mammalian host cell
is required in order to produce a recombinant virus.

45 20 In another embodiment of the invention, the inability of the carrier
vector to replicate in mammalian cells is overcome by supplying a mammalian
50 replicon to the carrier vector. The provision of a replicon assures that mammalian
cells infected by the carrier vector maintain a sufficient copy number of the carrier

55

5

- 25 -

10

vector extrachromosomally throughout a population of proliferating and dividing
mammalian cells.

15

Based on this description, other embodiments of the carrier vector
will be readily apparent to those of ordinary skill in the art.

20

5 Nonmammalian Virus Backbone

25

The chimeric carrier vector is constructed from a backbone of a
nonmammalian virus. The backbone need not be the entire genome of the
nonmammalian virus, but may be only that portion of the genome necessary for
replication in a nonmammalian host. Preferably, the vector backbone is derived
10 from an invertebrate virus. Table 1 of U.S. Pat. No. 5,731,182 lists several
examples of viruses that may be used to form the backbone of the chimeric vector,
the sequences of which are available from various sources, such as Genbank. In a
preferred embodiment, the invertebrate DNA virus is a baculovirus. In a more
35 preferred embodiment, the baculovirus is a Granulovirus or Nucleopolyhedrovirus.
15 In an even more preferred embodiment, the nonmammalian viral backbone is
derived from the baculovirus *Autographa californica* nuclear polyhedrosis virus
40 (AcNPV). See, e.g., GenBank Accession No. L22858.

45

In a preferred embodiment, the nonmammalian virus backbone must
be capable of replication in its ordinary host cell, but incapable of replication in a
20 mammalian cell. For example, the baculovirus virus backbone exemplified herein
replicates only in insect cells.

50

55

5

- 26 -

The Embedded Recombinant Viral Genome

10

The methods of the present invention allow for large scale production of high titers of recombinant virus, i.e., one that has a transgene inserted therein to be delivered to target mammalian cells, or one that does not have a transgene but rather has a mutation or deletion in a viral gene and is to be used as a vaccine, e.g., an attenuated and replication-proficient recombinant virus or a replication-deficient mutant virus. The recombinant virus may be any virus of interest for use to deliver transgenes to mammalian cells or for use as a vaccine.

15

5

20

replication-deficient mutant virus. The recombinant virus may be any virus of interest for use to deliver transgenes to mammalian cells or for use as a vaccine.

25

Preferred recombinant viruses for delivery of a transgene include adenoviruses, retroviruses, adeno-associated viruses, herpesvirus amplicons and hepatitis B viruses.

30

In order to manufacture a recombinant virus containing a transgene, the method of the present invention begins with a desired transgene, then associates the transgene with appropriate expression regulatory sequences (ERS), e.g., 35
15 promoter, enhancer, polyadenylation site, then inserts this ERS-transgene construct between the packaging elements of the virus to be manufactured, in place of the genes normally found therein. Where the length of the replacement is shorter than 40
45 that being replaced, and that shorter length would pose an obstacle to proper packaging, an optional spacer or "stuffer" sequence may be inserted in order to maintain the proper length for packaging. The entire construct of the ERS-transgene constructed bordered by the flanking elements is the genome of the recombinant virus of the present invention, which is then embedded in the carrier 50
55 vector's genome, at which point it subsists as an embedded recombinant viral

55

5

- 27 -

10 genome. Each of these elements is described in detail below:

15 *The Transgene*

20 The composition of the transgene sequence depends upon the intended use for the resulting recombinant virus. For example, one type of

25 transgene sequence comprises a reporter or marker sequence, which upon expression produces a detectable signal. Such reporter or marker sequences include, without limitation, DNA sequences encoding *E. coli* β -lactamase, β -galactosidase (*LacZ*), alkaline phosphatase, HSV thymidine kinase, green

30 fluorescent protein (GFP), bacterial chloramphenicol acetyltransferase (CAT), firefly luciferase, eukaryotic membrane bound proteins including, for example, CD2, CD4, CD8, the influenza hemagglutinin protein, and others well known in the art, to

35 which high affinity antibodies directed to them exist or can be made routinely, and fusion proteins comprising a membrane bound protein appropriately fused to an antigen tag domain from, among others, hemagglutinin or *myc*.

40 15 These sequences, when associated with regulatory elements which drive their expression, provide signals detectable by conventional means, including enzymatic, radiographic, colorimetric, fluorescence or other spectroscopic assays,

45 fluorescent activated cell sorting assay and immunological assays, including ELISA, RIA and immunohistochemistry. For example, where the transgene is the *LacZ* gene, the presence of a recombinant virus is detected by assays for β -galactosidase

50 20 activity. Similarly, where the transgene is luciferase, the recombinant virus gene expression may be measured by light production in a luminometer.

55

10 However, desirably, the transgene is a non-marker gene which can be delivered to a cell or an animal via the recombinant virus produced by this method. The transgene may be selected from a wide variety of gene products useful in biology and medicine, such as proteins, antisense nucleic acids (e.g., RNAs), or 15 catalytic RNAs. The invention may be used to correct or ameliorate gene deficiencies, wherein normal genes are expressed but at less than normal levels, and may also be used to correct or ameliorate genetic defects wherein a functional gene 20 product is not expressed. A preferred type of transgene sequence is a therapeutic gene which expresses a desired corrective gene product in a host cell. These 25 10 therapeutic nucleic acid sequences typically encode products which, upon expression, are able to correct, complement or compensate an inherited or non-inherited genetic defect, or treat an epigenetic disorder or disease. However, the 30 selected transgene may encode any product desirable for study. The selection of the transgene sequence is not a limitation of this invention. Choice of a transgene 35 15 sequence is within the skill of the artisan in accordance with the teachings of this application.

5

- 29 -

each of the different subunits.

10

Alternatively and more preferably, different subunits of a protein

may be encoded by the same transgene. In this case, a single transgene would

15 include the DNA encoding each of the subunits, with the DNA for each subunit

5 separated by an internal ribosome entry site (IRES). The use of IRES permits the creation of multigene or polycistronic mRNAs. IRES elements are able to bypass

20

the ribosome scanning model of 5' methylated cap-dependent translation and begin translation at internal sites (Pelletier and Sonenberg, 1988). IRES elements from two members of the picornavirus family (polio and encephalomyocarditis) have

25

10 been described (Pelletier and Sonenberg, 1988), as well an IRES from a mammalian mRNA (Macejak and Sarnow, 1991). IRES elements can be linked to heterologous open reading frames. By virtue of the IRES element, each open reading frame is accessible to ribosomes for efficient translation. Thus, multiple genes can be efficiently expressed using a single promoter/enhancer to transcribe a single

35

15 message. This is preferred when the size of the DNA encoding each of the subunits is sufficiently small that the total of the DNA encoding the subunits and the IRES is no greater than the maximum size of the DNA insert that the virus can encompass.

40

For instance, for rAAV, the insert size can be no greater than approximately 4.8 kilobases; however, for an adenovirus which lacks all of its helper functions, the

45

20 insert size is approximately 28 kilobases.

Useful gene products include hormones and growth and

50 differentiation factors including, without limitation, insulin, glucagon, growth

hormone (GH), parathyroid hormone (PTH), calcitonin, growth hormone releasing

55

5

- 30 -

factor (GRF), thyroid stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), prolactin, melatonin, vasopressin, β -endorphin, met-enkephalin, leu-enkephalin, prolactin-releasing factor, prolactin-inhibiting factor, corticotropin-releasing hormone, thyrotropin-releasing hormone (TRH), follicle stimulating hormone (FSH), luteinizing hormone (LH), chorionic gonadotropin (CG), vascular endothelial growth factor (VEGF), angiopoietins, angiostatin, endostatin, granulocytic colony stimulating factor (GCSF), erythropoietin (EPO), connective tissue growth factor (CTGF), basic fibroblast growth factor (bFGF), bFGF2, acidic fibroblast growth factor (aFGF), epidermal growth factor (EGF), transforming growth factor α (TGF α), platelet-derived growth factor (PDGF), insulin-like growth factors I and II (IGF-I and IGF-II), any one of the transforming growth factor β (TGF β) superfamily comprising TGF β , activins, inhibins, or any of the bone morphogenic proteins (BMP) BMPs 1-15, any one of the heregulin/neuregulin/ARIA/neu differentiation factor (NDF) family of growth factors, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophins NT-3, NT-4/5 and NT-6, ciliary neurotrophic factor (CNTF), glial cell line derived neurotrophic factor (GDNF), neurtuin, persephin, agrin, any one of the family of semaphorins/collapsins, netrin-1 and netrin-2, hepatocyte growth factor (HGF), ephrins, noggin, sonic hedgehog and tyrosine hydroxylase.

Other useful gene products include proteins that regulate the immune system including, without limitation, cytokines and lymphokines such as thrombopoietin (TPO), interleukins (IL) IL-1 α , IL-1 β , IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, and IL-17,

55

monocyte chemoattractant protein (MCP-1), leukemia inhibitory factor (LIF),
10 granulocyte-macrophage colony stimulating factor (GM-CSF), granulocyte colony
stimulating factor (G-CSF), monocyte colony stimulating factor (M-CSF), Fas
15 ligand, tumor necrosis factors α and β (TNF α and TNF β), interferons (IFN) IFN- α ,
IFN- β and IFN- γ , stem cell factor, flk-2/flt3 ligand. Gene products produced by
20 the immune system are also encompassed by this invention. These include, without
limitations, immunoglobulins IgG, IgM, IgA, IgD and IgE, chimeric
immunoglobulins, humanized antibodies, single chain antibodies, T cell receptors,
25 chimeric T cell receptors, single chain T cell receptors, class I and class II MHC
molecules, as well as engineered MHC molecules including single chain MHC
30 molecules. Useful gene products also include complement regulatory proteins such
as membrane cofactor protein (MCP), decay accelerating factor (DAF), CR1, CR2
and CD59.

Still other useful gene products include any one of the receptors for
35 the hormones, growth factors, cytokines, lymphokines, regulatory proteins and
15 immune system proteins. Examples of such receptors include *flt-1*, *flk-1*, TIE-2;
the *irk* family of receptors such as *TrkA*, MuSK, Eph, PDGF receptor, EGF
40 receptor, HER2, insulin receptor, IGF-1 receptor, the FGF family of receptors, the
TGF β receptors, the interleukin receptors, the interferon receptors, serotonin
45 receptors, α -adrenergic receptors, β -adrenergic receptors, the GDNF receptor, p75
neurotrophin receptor, among others. The invention encompasses receptors for
50 extracellular matrix proteins, such as integrins, counter-receptors for
transmembrane-bound proteins, such as intercellular adhesion molecules (ICAM-1,

5

- 32 -

ICAM-2, ICAM-3 and ICAM-4), vascular cell adhesion molecules (VCAM), and
10 selectins E-selectin, P-selectin and L-selectin. The invention encompasses receptors
for cholesterol regulation, including the LDL receptor, HDL receptor, VLDL
15 receptor, and the scavenger receptor. The inventions encompasses the
5 apolipoprotein ligands for these receptors, including ApoAI, ApoAIV and ApoE.
The invention also encompasses gene products such as steroid hormone receptor
20 superfamily including glucocorticoid receptors and estrogen receptors. Vitamin D
receptors and other nuclear receptors. In addition, useful gene products include
25 antimicrobial peptides such as defensins and magainins, transcription factors such as
5 *jun*, *fos*, *max*, *mad*, serum response factor (SRF), AP-1, AP-2, *myb*, MRG1,
CREM, A₁x4, FREAC1, NF- κ B, members of the leucine zipper family, C2H4 zinc
30 finger proteins, including Zif268, EGR1, EGR2, C6 zinc finger proteins, including
the glucocorticoid and estrogen receptors, POU domain proteins, exemplified by
35 Pit1, homeodomain proteins, including HOX-1, basic helix-loop-helix proteins,
15 including *myc*, MyoD and myogenin, ETS-box containing proteins, TFE3, E2F,
ATF1, ATF2, ATF3, ATF4, ZF5, NFAT, CREB, HNF-4, C/EBP, SP1, CCAAT-
40 box binding proteins, interferon regulation factor 1 (IRF-1), Wilms tumor protein,
ETS-binding protein, STAT, GATA-box binding proteins, e.g., GATA-3, and the
forkhead family of winged helix proteins.
45 20 Other useful gene products include carbamoyl synthetase I, ornithine
transcarbamylase, arginosuccinate synthetase, arginosuccinate lyase, arginase,
50 fumarylacetoacetate hydrolase, phenylalanine hydroxylase, alpha-1 antitrypsin,
glucose-6-phosphatase, porphobilinogen deaminase, factor VII, factor VIII, factor

55

5

- 33 -

10 IX, factor II, factor V, factor X, factor XII, factor XI, von Willebrand factor, superoxide dismutase, glutathione peroxidase and reductase, heme oxygenase, angiotensin converting enzyme, endothelin-1, atrial natriuetic peptide, pro-
15 urokinase, urokinase, plasminogen activator, heparin cofactor II, activated protein C (Factor V Leiden), Protein C, antithrombin, cystathione beta-synthase, branched chain ketoacid decarboxylase, albumin, isovaleryl-CoA dehydrogenase, propionyl-CoA carboxylase, methyl malonyl CoA mutase, glutaryl CoA dehydrogenase, insulin, beta-glucosidase, pyruvate carboxylase, hepatic phosphorylase, phosphorylase kinase, glycine decarboxylase (also referred to as P-protein), H-
20 25 10 protein, T-protein, Menkes disease protein, tumor suppressors (e.g., p53), cystic fibrosis transmembrane regulator (CFTR), the product of Wilson's disease gene PWD, Cu/Zn superoxide dismutase, aromatic aminoacid decarboxylase, tyrosine hydroxylase, acetylcholine synthetase, prohormone convertases, protease inhibitors, lactase, lipase, trypsin, gastrointestinal enzymes including chyromotrypsin, and
30 35 15 pepsin, adenosine deaminase, α 1 anti-trypsin, tissue inhibitor of metalloproteinases (TIMP), GLUT-1, GLUT-2, trehalose phosphate synthase, hexokinases I, II and III, glucokinase, any one or more of the individual chains or types of collagen, elastin, fibronectin, thrombospondin, vitronectin and tenascin, and suicide genes such as thymidine kinase and cytosine deaminase.
40 45 20 Other useful transgenes include non-naturally occurring polypeptides, such as chimeric or hybrid polypeptides or polypeptides having a non-naturally occurring amino acid sequence containing insertions, deletions or amino acid substitutions. For example, single-chain engineered immunoglobulins could be
50

55

useful in certain immunocompromised patients. Other useful proteins include
10 truncated receptors which lack their transmembrane and cytoplasmic domain. These truncated receptors can be used to antagonize the function of their respective
15 ligands by binding to them without concomitant signaling by the receptor. Other
5 types of non-naturally occurring gene sequences include antisense molecules and
catalytic nucleic acids, such as ribozymes, which could be used to reduce
20 overexpression of a gene.

Other useful transgenes include those that encode antigenic peptides
25 capable of generating an immune response. Recombinant vectors comprising these
10 transgenes can be used for genetic immunization. Useful transgenes include those
that encode peptides specific for Epstein Barr virus; HIV; simian immunodeficiency
30 virus (SIV); human T-cell leukemia viruses I and II (HTLV-I and HTLV-II);
hepatitis A, B, C, D and E; pseudorabies virus; rabies virus; cytomegalovirus;
35 respiratory syncytial virus; parainfluenza virus types 1-4; mumps virus; rubella virus;
15 polio virus; rubeola virus; influenza virus types A, B and C; rotavirus; herpes
simplex viruses types 1 and 2; varicella-zoster virus; human herpes virus type 6;
40 hantavirus; adenoviruses; chlamydia pneumoniae; chlamydia trachomatis;
mycoplasma pneumoniae; mycobacterium tuberculosis; atypical mycobacteria; feline
leukemia virus; feline immunodeficiency virus; bovine immunodeficiency virus;
45 20 equine infectious anemia virus; caprine arthritis encephalitis virus; visna virus;
Staphylococcus species and *Streptococcus* species. The transgenes may also be
50 directed against peptides from tumor antigens to provide immunization for tumors
and cancers.

Expression Control Sequences

10

A great number of expression control sequences -- native,

constitutive, inducible and/or tissue-specific -- are known in the art and may be

15

utilized to drive expression of the transgene and the nucleic acid sequences

5 encoding the replication and encapsidation functions of the recombinant virus, the

helper functions and the ligand. The choice of expression control sequence depends

20

upon the type of expression desired. For eukaryotic cells, expression control

sequences typically include a promoter, an enhancer, such as one derived from an

25

immunoglobulin gene, SV40, cytomegalovirus, etc., and a polyadenylation sequence

10 which may include splice donor and acceptor sites. The polyadenylation sequence

generally is inserted following the transgene sequences and before the 3' flanking

30

sequence of the transgene. A transgene-carrying molecule useful in the present

invention may also contain an intron, desirably located between the

35 promoter/enhancer sequence and the transgene. One possible intron sequence is

15 also derived from SV-40, and is referred to as the SV-40 T intron sequence.

Another vector element that may be used is an internal ribosome entry site (IRES),

40

as described above. An IRES sequence is used to produce more than one

polypeptide from a single gene transcript. An IRES sequence can be used for the

transgene or for any of the other nucleic acid sequences encoding the replication

45

20 and encapsidation polypeptides, the helper functions or the ligand. Selection of

these and other common vector elements are conventional and many such

50 sequences are available [see, e.g., Sambrook et al, and references cited therein at,

for example, pages 3.18-3.26 and 16.17-16.27 and Ausubel et al., Current

5

- 36 -

Protocols in Molecular Biology, John Wiley & Sons, New York, 1989].

10

In one embodiment, high-level constitutive expression will be desired. Examples of such promoters include, without limitation, the retroviral Rous sarcoma virus (RSV) LTR promoter/enhancer, the cytomegalovirus (CMV) immediate early promoter/enhancer [see, e.g., Boshart et al, Cell, 41:521-530 (1985)], the SV40 promoter, the dihydrofolate reductase promoter, the cytoplasmic β -actin promoter and the phosphoglycerol kinase (PGK) promoter.

20

In another embodiment, inducible promoters may be desired.

25

Inducible promoters are those which are regulated by exogenously supplied compounds, either in *cis* or in *trans*, including without limitation, the zinc-inducible sheep metallothioneine (MT) promoter; the dexamethasone (Dex)-inducible mouse mammary tumor virus (MMTV) promoter; the T7 polymerase promoter system [WO 98/10088]; the ecdysone insect promoter [No et al, Proc. Natl. Acad. Sci. USA, 93:3346-3351 (1996)]; the tetracycline-repressible system [Gossen et al, Proc. Natl. Acad. Sci. USA, 89:5547-5551 (1992)]; the tetracycline-inducible system [Gossen et al., Science, 268:1766-1769 (1995); see also Harvey et al., Curr. Opin. Chem. Biol., 2:512-518 (1998)]; the RU486-inducible system [Wang et al., Nat. Biotech., 15:239-243 (1997) and Wang et al., Gene Ther., 4:432-441 (1997)]; and the rapamycin-inducible system [Magari et al., J. Clin. Invest., 100:2865-2872 (1997); Rivera et al., Nat. Medicine, 2:1028-1032 (1996)]. Other types of inducible promoters which may be useful in this context are those which are regulated by a specific physiological state, e.g., temperature, acute phase, or in replicating cells only. In a preferred embodiment, the transgene is under the control of the native p5

55

promoter of AAV.

10

In another embodiment, the native promoter for the transgene or nucleic acid sequence of interest will be used. The native promoter may be preferred when it is desired that expression of the transgene or the nucleic acid sequence should mimic the native expression. The native promoter may be used when expression of the transgene or other nucleic acid sequence must be regulated temporally or developmentally, or in a tissue-specific manner, or in response to specific transcriptional stimuli. In a further embodiment, other native expression control elements, such as enhancer elements, polyadenylation sites or Kozak consensus sequences may also be used to mimic the native expression.

25

In one embodiment, the recombinant viral genome comprises a transgene operably linked to a tissue-specific promoter. For instance, if expression in skeletal muscle is desired, a promoter active in muscle may be used. These include the promoters from genes encoding skeletal α -actin, myosin light chain 2A, dystrophin, muscle creatine kinase, as well as synthetic muscle promoters with activities higher than naturally-occurring promoters [see Li et al., Nat. Biotech., 17:241-245 (1999)]. Examples of promoters that are tissue-specific are known for liver [albumin, Miyatake et al., J. Virol., 71:5124-32 (1997); hepatitis B virus core promoter, Sandig et al., Gene Ther., 3:1002-9 (1996); alpha-fetoprotein (AFP), Arbuthnot et al., Hum. Gene Ther., 7:1503-14 (1996)], bone [osteocalcin, Stein et al., Mol. Biol. Rep., 24:185-96 (1997); bone sialoprotein, Chen et al., J. Bone Miner. Res., 11:654-64 (1996)], lymphocytes [CD2, Hansal et al., J. Immunol., 161:1063-8 (1998); immunoglobulin heavy chain; T cell receptor α chain], neuronal

45

50

55

5

- 38 -

10 [neuron-specific enolase (NSE) promoter, Andersen et al. Cell, Mol. Neurobiol.,
13:503-15 (1993); neurofilament light-chain gene, Piccioli et al., Proc. Natl. Acad.
Sci. USA, 88:5611-5 (1991); the neuron-specific vgf gene, Piccioli et al., Neuron,
15:373-84 (1995)]; among others.

15

5 Of course, not all vectors and expression control sequences will
function equally well to express all of the transgenes or other nucleic acid sequences
20 of this invention. However, one of skill in the art may make a selection among
these expression control sequences without departing from the scope of this
invention. Suitable promoter/enhancer sequences which function in the appropriate
25

25

10 host cell of choice may be selected by one of skill in the art using the guidance
provided by this application. Such selection is a routine matter and is not a
30 limitation of the molecule or construct.

35

In one method of identifying a suitable expression control sequence
for a desired nucleic acid sequence, one may select one or more expression control
35 15 sequences and operably link the expression control sequence to the nucleic acid
sequence to be regulated. Then, one may insert these operably linked sequences
40 comprising the expression control sequence and regulated sequence into the
genome of the carrier vector. In one embodiment, one may insert a recombinant
viral genome comprising the expression control sequence and the transgene into a
45 20 nonmammalian vector of the instant invention. After following one of the methods
for producing and packaging the recombinant vector as taught in this specification
one may infect suitable cells *in vitro* or *in vivo*. The number of copies of the
50 transgene in the cell may be monitored by Southern blotting or quantitative PCR;

55

5

- 39 -

10 the level of RNA expression may be monitored by Northern blotting or quantitative
RT-PCR; and the level of protein expression may be monitored by Western blotting,
immunohistochemistry, ELISA, RIA, tests of the transgene's gene product's
15 biological activity, either *in vitro* or *in vivo*, or tests for correction or amelioration
5 of a genetic defect.

20 In a similar fashion, one may select one or more expression control
sequences and operably link it to a nucleic acid sequence encoding replication and
encapsidation proteins, helper functions or a ligand, and insert the resultant desired
nucleic acid molecule into a vector of the instant invention. One may also select
25 10 one or more vector replication sequences and insert them into a vector of the instant
invention. After packaging and infecting nonmammalian cells, one may measure the
30 particular effects, e.g., on expression of the ligand or on replication of the vector,
by one of the methods described above. One may also use a functional test to
determine if one or more particular expression control sequences operably linked to
35 15 a nucleic acid sequence encoding a ligand produces a carrier virus which is able to
infect mammalian cells efficiently. One may assay a number of different expression
control sequences to determine which one is most effective for mammalian cell
40 40 infection. The same may be done using a variety of vector replication sequences.

45 Furthermore, after infecting mammalian host cells and obtaining
20 recombinant virus, one may infect mammalian cells with the recombinant virus, then
measure the expression of the replication and encapsidation proteins and/or helper
functions by one of the methods described above. One may also use a functional
50 50 test to determine if one or more particular expression control sequences operably

55

10 linked to one or more helper functions or replication or encapsidation functions is
capable of supporting production of a infectious recombinant virus. One may
determine which of many expression control sequences are most effective in
15 producing a high titer of infectious recombinant virus.

20 5 *Flanking Elements*

25 Flanking elements are required for replication, excision and
packaging of many viruses, and each type of virus has its own type of flanking
elements. In a wild-type virus, these elements flank the viral genes when the viral
DNA integrates into a host cell chromosome. In the case of integrating viruses,
30 10 when the wild-type virus is rescued from the host chromosome, the flanking
elements excise along with the viral DNA and remain in flanking positions
surrounding the rescued viral DNA, in a form suitable for packaging into virions.
35 For non-integrating, extrachromosomal viruses (e.g. HSV), flanking sequences
serve functions in DNA replication and packaging. In recombinant viruses, much or
40 15 all of the viral nucleic acid sequences between the flanking elements are removed
from the virus and are replaced with a transgene and its associated expression
regulatory sequences.

45 In one embodiment of the invention, the recombinant virus is a
recombinant adenovirus, and comprises a selected transgene operably linked to
20 20 expression regulatory sequences and the adenoviral flanking elements. Adenoviral
flanking elements are ITRs and are 100-200 bp in length. A large number of
50 25 adenoviral flanking elements are known, such as those from human adenoviruses

10 types 1-46, chimpanzee adenoviruses, canine adenoviruses, bovine adenoviruses [all
available from the American Type Culture Collection (ATCC), 10801 University
Boulevard, Manassas, VA 20110-2209].

15 In another embodiment, the recombinant virus is a recombinant
5 retrovirus, and comprises a selected transgene operably linked to expression
regulatory sequences and retroviral flanking elements. The flanking elements are
20 long terminal repeat (LTR) sequences that are present at the 5' and 3' ends of the
retroviral genome. These LTRs contain strong promoter and enhancer sequences
25 and are also required for integration in the host cell genome (Coffin, 1990). A large
10 number of retroviral LTRs are known. See, for instance, U.S. Pat. No. 5,672,510.

30 In yet another embodiment of the invention, the recombinant virus is
a recombinant AAV, and comprises a selected transgene operably linked to
35 expression regulatory sequences and AAV flanking elements. The naturally-
occurring AAV ITRs consist of approximately 145 bp at the 5' and 3' ends of the
15 AAV genome. The AAV ITRs are required for replication, excision and
encapsidation of both wild type and recombinant AAV virions.

40 In another embodiment, the recombinant virus is either a herpesvirus
derivative containing one or more mutations or deletions of viral genes, or is a
45 herpesvirus amplicon. In either case, the flanking elements would be the viral
20 terminal repeats (e.g., the "a" sequence if the virus is HSV). HSV amplicons are
defective HSV genomes containing the packaging sequence (*a*), viral origin of DNA
50 replication (*ori*) and the transgene cassette of interest operably linked to the desired
expression regulatory sequences. In the presence of helper herpesvirus or substitute

5

- 42 -

10

helper functions, the amplicon is replicated and packaged as head-to-tail
concatemers to form wild-type size genomes.

15

In another embodiment, the recombinant virus is a recombinant
defective hepatitis B virus (HBV) and comprises a selected transgene operably
linked to expression regulatory sequences and inserted into the HBV genome. *In*
vitro studies have shown that the recombinant hepatitis B virus retains the ability for
helper-dependent packaging and reverse transcription despite the deletion of up to
80% of its genome (Horwitz et al., 1990). This suggests that large portions of the
genome may be replaced with foreign genetic material. The hepatotropism and
persistence (integration) were particularly attractive properties for liver-directed
gene transfer.

20

25

Ligand DNA

30

35

Most nonmammalian viruses are not infectious to mammalian cells;
however, it has been reported that in some cases, nonmammalian viruses will infect
certain particularly infection-susceptible mammalian cell lines. [Barsoum et al.,
Human Gene Therapy 8:2011-2018 (Nov. 20, 1997)]. Where the host cell to be
used for manufacturing the recombinant virus is not susceptible to infection by the
nonmammalian virus, the nonmammalian virus may be modified by incorporating
ligand DNA in the nonmammalian backbone. The nonmammalian backbone may
also be modified by incorporation of ligand DNA to increase infection of
mammalian host cell by the nonmammalian virus. The expression of the ligand
DNA by the subsequently produced nonmammalian virus will permit infection or

40

45

50

55

10

increase infection of mammalian cells. The backbone of the carrier vector of the present invention is modified by addition of DNA encoding components needed to produce a ligand which is recognized by a desired mammalian cell.

15

The ligand DNA is selected from genes which, when expressed, yield

20

5 a gene product that will be present on the surface of the encapsidated carrier vector, thus presenting the ligand to the mammalian cell target receptors and allowing the carrier vector to bind to and enter mammalian cells. [Barsoum et al., Human Gene Therapy 8:2011-2018 (Nov. 20, 1997).] The ligand DNA is placed under the regulatory control of expression regulatory sequences that insure that the ligand

25

10 gene product is expressed coordinately with the replicated DNA of the carrier vector to allow efficient chimeric carrier vector production in nonmammalian host cells. The nonmammalian expression regulatory sequence may be identical, similar, or distinct from the backbone's native regulatory sequences, so long as it is capable of regulatory functions in the nonmammalian host cell. In a preferred embodiment,

30

35 15 the expression regulatory sequences comprise a promoter derived from the native nonmammalian virus from which the nonmammalian vector backbone is derived. In a more preferred embodiment, the promoter is polyhedrin early promoter (polH) and the nonmammalian vector backbone is derived from baculovirus.

40

In general, if a ligand DNA is regulated by nonmammalian

45

20 expression regulatory sequences, the ligand DNA will not be expressed when the chimeric vector infects the mammalian host cell. The absence of expression of the ligand encoded by the DNA may be useful to prevent incorporation of ligand into 50 the recombinant virus coat encoded from the carrier nonmammalian vector, which

55

5

- 44 -

10 could disrupt its structural integrity or cause adverse immunogenic reactions in an animal. However, if ligand expression is desired in the mammalian host cell, then alternative or additional expression regulatory sequences may be operably linked to the sequences encoding the ligand to permits its expression in mammalian and

15 5 nonmammalian host cells. Alternatively, there may be some instances in which the ligand DNA is expressed because the nonmammalian expression regulatory

20 sequences are also activated in the mammalian cells.

25 The ligand DNA can be essentially any nucleic acid that encodes a protein, polypeptide or peptide that modifies the mature nonmammalian virus to enable it to bind to and enter mammalian cells. The ligand can be naturally-occurring protein, a fragment of a naturally-occurring protein that has a desired binding capability, or an artificial or mutated polypeptide or peptide that has a desired binding capability. The ligand can be one of general specificity, which would allow binding to a wide variety of mammalian cells (e.g., vesicular stomatitis

30 35 10 virus glycoprotein G (VSV-G) gene, bovine syncytial virus (BSV) envelope glycoprotein gene, or amphotropic envelope gene as illustrated below), or it may be 15 more specific, allowing binding to targeted specific cell types. For instance, the ligand may cause the virus to bind via electrostatic interactions or other general mechanism of interacting the mammalian cell, or it may be a specific ligand-receptor

40 45 20 interaction.

50 Useful ligand nucleic acids may be any nucleic acid which encodes a ligand that permits the nonmammalian virus to interact with the mammalian cell. For instance, the ligand may be one which increases the electrostatic interaction

55

between the virus and the mammalian cell for a receptor found on the mammalian host cells that are to be infected by the carrier virus. Other useful ligand nucleic acids include, without limitation, nucleic acids encoding peptide hormones, growth factors, or other normally secreted factors for which the mammalian host cell of interest expresses a receptor. The nucleic acids useful as a ligand include all those secreted factors, peptide hormones and growth factors which have a normal cellular receptor and which are disclosed above for transgenes. For instance, the ligand nucleic acid may encode PDGF, EGF, bFGF, aFGF, insulin, IGF-I, IGF-II, apoE, apoA1, apoA4, EPO, PTH, GH or GRF. The ligand nucleic acid may encode a native or genetically engineered immunoglobulin (e.g., ScFv, chimeric immunoglobulin, humanized immunoglobulin, etc.) or MHC molecule that specifically binds to a particular cell surface protein on the mammalian cell. Other ligand nucleic acids of interest encode a member of the extracellular matrix such as a collagen, elastin, thrombospondin, tenascin or vitronectin, which bind to integrins and other cellular transmembrane receptors. The nucleic acid sequence encoding a ligand which is normally secreted may be modified by incorporating a nucleic acid sequence encoding an "anchoring domain" at either the 5' or 3' end of the coding sequence for the ligand. The anchoring domain is a region that secures the ligand in the viral coat. In a preferred embodiment, the anchoring domain is at the 3' end of the coding sequence for the ligand. In a further preferred embodiment, the anchoring domain is derived from a viral coat protein, such as HIV gp41 (which anchors gp120 coat protein to the viral envelope). Other examples include E protein of dengue virus or the 14 kDa protein of vaccinia virus.

10 The ligand nucleic acid also may encode a protein that is normally anchored in the cell membrane of a mammalian cell which binds to a particular cell surface protein or counter-receptor on a mammalian host cell. Examples of this 15 type of ligand nucleic acid include a number of the CD antigens, such as the T cell 20 receptor (TCR), CTLA-4 receptor and B-7, integrins such as Mac-1, LFA-1, and p150,95, intercellular adhesion molecules such as ICAM-1, ICAM-2, ICAM-3 and ICAM-4, and selectins, such as E-selectin, P-selectin and L-selectin. The ligand may also be an artificial or mutated counter-receptor, such as a cell-surface anchored or hybrid immunoglobulin or TCR.

10 In one embodiment, the ligand is one that is normally present on a
virus and which mediates binding to a mammalian cell, for example, gp120 of HIV
30 or HA from influenza. In another embodiment, the ligand is one that is normally
present on a bacterial cell and which mediates binding to a mammalian cell, for
example, Protein A from *Staphylococcus aureus* is known to bind to
35 immunoglobulins.

In another embodiment, the mammalian host cell is genetically
40 . engineered to express a receptor which specifically binds to a ligand. Thus, one can
design mammalian host cell-carrier virus systems that promote highly specific
binding of the carrier virus to the mammalian host cell. For example, one may
45 20 engineer a mammalian host cell line to express a growth factor receptor, such as the
EPO receptor, and design the carrier vector to comprise a ligand nucleic acid
comprising the EPO gene. One of skill in the art, in light of the instant
50 specification, would be able to identify a large number of mammalian host cell-

10 carrier virus interactive receptor-ligand systems.

15 In one embodiment the ligand DNA is the VSV-G gene. This gene
may be placed under the control of the baculovirus polyhedrin (pPH) early
20 promoter. The VSV-G protein, when expressed, modifies the mature carrier virus
such that it may bind to mammalian host cells and thereby infect them. [Barsoum,
25 *supra*]. In another embodiment of the present invention, the ligand DNA is the
BSV *cnv* gene, which functions in the context of the invention in a similar manner.

25 In another preferred embodiment, the present invention exploits the
fact that nonmammalian viruses normally do not terminate glycoproteins with sialic
30 acid. Thus, the ligand DNA is a gene which expresses an asialoglycoprotein, which
would then facilitate entry into the mammalian cell.

35 Replication and Encapsidation Nucleic Acids

40 The replication and encapsidation functions are required for
45 replication, excision and encapsidation of the recombinant viral genome into an
infectious recombinant virion or virus. Each type of recombinant virus will require
a different type of replication and encapsidation function. For instance, if the
recombinant virus is a retrovirus, then the replication and encapsidation functions
50 include the retroviral *gag*, *pol* and *env* genes (and in the case of lentiviruses will also
20 include regulatory or accessory genes such as HIV *tat*, *rev*, *nef*, *vpu* or *vpr*), while
if the recombinant virus is an AAV, then the replication and encapsidation functions
include the *rep* and *cap* genes from an AAV.

As discussed above, either the carrier vector or the mammalian host
10 cell may comprise nucleic acids encoding those replication and encapsidation
functions required for a particular recombinant virus. Mammalian host cells such as
15 A64 cell line described in U.S. Pat. No. 5,658,785 and the B50 cell line described in
5 PCT US98/19463) express AAV *rep* and *cap* genes for replication and packaging
of recombinant AAV. Similarly, mammalian host cells expressing adenoviral genes
20 required for replication and packaging of recombinant adenovirus are known [see,
e.g., U.S. Pat. No. 5,851,806 and Amalfitano et al., *Proc. Natl. Acad. Sci. USA*
25 93:3352-6 (1996)] or may be constructed, and a number of mammalian host cells
10 expressing retroviral genes required for replication and packaging of recombinant
retroviruses have been constructed [see, e.g., Cone et al., *Proc. Natl. Acad. Sci.*
30 USA 81:6349-6353 (1984); Miller et al., *Mol. Cell. Biol.* 6:2895-2902 (1986);
Miller et al., *Mol. Cell. Biol.* 5:431-437 (1985); and Sorge et al., *Mol. Cell. Biol.*
35 4:1730-1737 (1984)]. Cell lines comprising genes required for packaging of
15 herpesviruses (see, e.g., U.S. Pat. No. 5,851,826) are also known.

If a cell line comprises all the necessary replication and encapsidation
40 functions to replicate, excise and package a particular recombinant viral genome,
then the carrier vector need not comprise any replication and/or encapsidation
functions. The cell line may comprise the necessary replication and
45 20 encapsidation functions either by being transiently or stably transduced with the
nucleic acid encoding the appropriate proteins. In a preferred embodiment, the cell
line stably comprises the replication and encapsidation functions. Furthermore, the
50 cell line may express the replication and encapsidation functions constitutively or

10 inducibly. Constitutive or inducible expression may be controlled by using any of
the expression regulatory sequences known in the art or as discussed above under
"Expression Regulatory Sequences." In a preferred embodiment, the expression of
15 the replication and encapsidation functions is inducible. In a more preferred
5 embodiment, the replication and encapsidation functions are stably transfected or
infected and are inducibly expressed. In an even more preferred embodiment, the
20 expression of the replication and encapsidation functions is regulated by their native
promoters.

25 A mammalian cell line used in the instant invention may comprise
10 none of the functions required for replication or encapsidation, or may comprise
only a part of the functions required for replication or encapsidation. If a
30 mammalian cell line comprises none of the functions required for replication or
encapsidation, these functions must be introduced into the cell by a vector for
production of the recombinant virus. In a preferred embodiment, one or more
35 15 carrier viruses of the instant invention are used to transduce the mammalian cell line
with the nucleic acids encoding the replication and encapsidation functions. In a
40 more preferred embodiment, a single carrier virus comprising the replication and
encapsidation functions are used to transduce the mammalian cell line. In an even
more preferred embodiment, a single carrier virus comprising the replication and
45 20 encapsidation functions, the embedded recombinant viral genome, and any other
nucleic acid sequences required for recombinant virus production are used to
transduce the mammalian cell line.

50 If the mammalian cell line comprises some of the replication or

5

- 50 -

10 encapsidation functions, these functions must be introduced into the cell by a vector
for production of the recombinant virus. In a preferred embodiment, one or more
carrier viruses are used to transduce the mammalian cell line with the nucleic acids
15 encoding the missing replication and encapsidation functions. In a more preferred
5 embodiment, a single carrier virus comprising the missing replication and
encapsidation functions are used to transduce the mammalian cell line. In an even
20 more preferred embodiment, a single carrier virus comprising the missing replication
and encapsidation functions, the embedded recombinant viral genome, and any
25 other nucleic acid sequences required for recombinant virus production are used to
5 transduce the mammalian cell line.

10 The replication and encapsidation functions required for a
30 recombinant virus differ depending upon the type of recombinant virus. In general,
the required replication and encapsidation functions are known in the art for the
various recombinant viruses. In preferred embodiment of recombinant vectors,
35 15 recombinant AAV requires *rep* and *cap* for replication and encapsidation,
recombinant retroviruses require *gag*, *pol* and *env* (and *tat*, *rev* and *nef* for
40 lentiviruses), recombinant adenoviruses require all of part of the functions encoded
by E1, E2, E4, L1-L5, pIX and IVa2 genes, alone or in combination, and
recombinant herpesviruses require a large number of genes, which may be provided
45 20 by a helper herpesvirus or by a carrier vector comprising the required herpesvirus
genes. Together the host mammalian cell and the carrier virus must contribute the
necessary replication and encapsidation functions for the particular recombinant
50 virus in order to obtain infectious recombinant virus from the mammalian host cells.

55

5

- 51 -

10 In one embodiment, the replication and encapsidation functions are
encoded by nucleic acids encoding the naturally-occurring proteins having the
replication and encapsidation functions. In another embodiment, the replication and
15 encapsidation functions are encoded by nucleic acids encoding fragments or muteins
of the naturally-occurring proteins but which retain their respective replication and
5 encapsidation functions. In another embodiment of the invention, other
recombinant viruses may be produced using nucleic acids encoding the appropriate
20 replication and encapsidation functions for the particular recombinant virus desired.
Other types of recombinant viruses and the replication and encapsidation functions
25 they require are known in the art.

30 In a preferred embodiment, when production of a recombinant AAV
is desired, the *rep* and *cap* sequences are regulated by a native AAV p5 promoter.
In another preferred embodiment, when production of a recombinant adenovirus is
35 desired, the nucleic acid sequences encoding the replication and encapsidation
functions for adenovirus are regulated by their native adenovirus promoters. Native
40 promoters may also be used for regulating the expression of replication and
encapsidation functions of other recombinant viruses, including, without limitation,
herpesvirus and HBV.

45 In a more preferred embodiment, the replication and encapsidation
50 functions are encoded by nucleic acid sequences inserted in the carrier vector. The
advantage of having these sequences on the carrier vector is that no cell line has to
be constructed before infection by the carrier virus. It is often difficult to create and
maintain cell lines expressing replication and encapsidation functions because many

55

of the proteins that provide these functions are toxic to mammalian cells. Thus,
10 another advantage of inserting the replication and encapsidation sequences on the
carrier vector is that the replication and encapsidation functions are only expressed
15 in the mammalian cells when the cells are infected with the carrier virus when the
5 production of a recombinant virus is desired. In a more preferred embodiment, the
carrier virus has an embedded recombinant viral genome comprising a transgene
20 and the ITRs from AAV and further has *rep* and *cap* gene sequences for replication
and encapsidation of the embedded recombinant AAV genome. In an even more
25 preferred embodiment, the expression of the *rep* and *cap* genes is regulated by their
5 native promoters or *rep/cap* is separated from the promoter to decrease or eliminate
10 homologous or non-homologous recombination to form wt AAV. Similarly, in a
30 preferred embodiment of carrier viruses that produce recombinant retrovirus,
adenovirus, herpesvirus and HBV, the carrier viruses contain nucleic acid sequences
35 that encode replication and encapsidation functions. In a more preferred
15 embodiment, the nucleic acid sequences encoding the replication and encapsidation
functions are regulated by their native promoters.

Helper Functions

45 A number of viruses are unable to replicate, excise and package on
their own, and require helper functions to do so. Helper functions may also be
20 required for the production of recombinant viruses which have had a large amount
50 of their genome deleted for insertion of the transgene. The nature of the helper
function may differ depending upon the type of recombinant virus and/or the

amount of genome that has been deleted. Helper functions include viral proteins,
10 non-viral proteins, as well as physical and/or chemical agents. One may identify
which helper functions are required from what is known in the art. For instance, it
15 is known that AAV requires helper functions from adenovirus or herpesvirus or
5 from different chemical or physical agents. Alternatively, one of skill in the art may
determine what helper functions are required by producing recombinant viruses
20 using the composition and methods disclosed in the instant specification.

To identify which helper functions are required for high levels of
25 recombinant virus production, one may infect mammalian host cells with the carrier
10 virus in the absence of helper functions and measure the titer of infectious
recombinant virus. One may then transduce the mammalian host cells with various
30 nucleic acids encoding potential helper functions. Such helper functions may be any
nucleic acid that is known or thought to encode a helper function. In a preferred
35 embodiment, the helper function is one or more viral proteins. In a more preferred
embodiment, the helper virus proteins are insufficient to produce a mature helper
40 virus. After transducing the mammalian host cell with the nucleic acid encoding the
potential helper function, one may then measure the titer of the recombinant virus.

If the carrier virus comprises a recombinant AAV genome, helper
functions are required for production of infectious recombinant AAV. In a
45 20 preferred embodiment, the helper functions are nucleic acids derived from a virus.
In a more preferred embodiment, the helper functions are derived from adenovirus,
50 herpes simplex virus (HSV) HSV-1, HSV-2, cytomegalovirus (CMV) or
pseudorabies virus (PRV). In an even more preferred embodiment, the helper

functions are at least E1a, E1b and E2a from adenovirus, and may also include
10 E4ORF6 and VAI. In another preferred embodiment, the nucleic acid encodes the
helper functions from the helicase-primase complex of HSV (UL5, UL8 and UL52)
15 and the major single-stranded DNA binding protein of HSV (UL29). The helper
functions may also include all 7 HSV DNA replication genes (UL5, 8, 52, 29, 30, 9
20 and 42). Alternatively, helper functions for recombinant AAV may be provided by
chemical or physical agents, including ultraviolet light, cycloheximide, hydroxyurea
25 and various carcinogens.

25 The required helper functions for production of a recombinant virus
10 may be delivered to the mammalian host cell by any method known in art. The
helper functions may be delivered by transfection with a vector, such as a plasmid,
30 by infection with a viral vector comprising the helper functions, or by any other
method known in the art, including those discussed above (e.g., biolistic injection of
35 DNA, use of DNA conjugates, etc.). The transfection or infection may be stable or
15 transient. Alternatively, the mammalian cell line may stably express (either on an
extrachromosomal episome or through integration in the cell's genome) the helper
40 functions. In addition, some of the helper functions may be expressed by the
mammalian cell line while other helper functions are introduced by a vector. For
example, 293 cells (ATCC CRL-1573) constitutively produce adenoviral E1a and
45 E1b proteins. Thus, for production of recombinant AAV, the helper functions
20 required for the production of infectious recombinant AAV, such as E2A, E4ORF6
and VAI, are introduced into the host cell by transfection or infection of a vector.

50 In a preferred embodiment, the helper functions are transduced into

the mammalian cells by a carrier virus. In a more preferred embodiment, some or
10 all of the helper functions are transduced into the mammalian cell by a carrier virus
comprising the embedded recombinant viral genome. In an even more preferred
15 embodiment, all of the helper functions are transduced into the mammalian cell by a
carrier virus comprising the embedded recombinant viral genome, any required
5 replication and encapsidation functions, and, optionally, a ligand DNA. In the most
20 preferred embodiment, the carrier vector has a baculovirus backbone. An internal
ribosome entry site (IRES) sequence may be placed between E2A and E4orf6 if
25 only a single promoter is to be used for these two proteins. Alternatively, each
10 helper function gene may be supplied with its own promoter. These genes may be
under the regulatory control of a variety of promoters, constitutive or inducible,
30 such as the CMV immediate-early promoter/enhancer or the MMTV LTR,
respectively. Whether the helper functions are provided on the carrier vector itself
or are provided by the host cells, the promoters regulating those genes may be
35
15 constitutive or inducible.

The expression of the helper functions may be regulated by any of
40 the expression regulatory sequences known in the art or as described above,
including *cis* or *trans* regulation. The expression regulatory sequences may provide
for constitutive expression, inducible expression, tissue-, cell type- or differentiation
45
20 state-specific expression, or expression from the helper function protein's native
promoter. In a preferred embodiment, the native promoter of the helper function
protein is used. In another preferred embodiment, an inducible promoter of a helper
50 function protein is used. In another preferred embodiment, a constitutive promoter

10 of a helper function protein is used. In a further preferred embodiment, the
10 constitutive promoter is the CMV promoter. In another preferred embodiment, one
or more constitutive promoters are used for certain helper function proteins, and
15 one or more native promoters are used for other helper function proteins.

5 In one embodiment, each protein or polypeptide required for helper
function is encoded by a nucleic acid whose expression is regulated by its own
20 promoter and polyadenylation signal, as well as optional sequences such as
enhancers. In another embodiment, a nucleic acid is transcribed to a single
25 transcript that encodes more than one protein or polypeptide required for helper
function. In this case, an IRES may be placed between the coding sequences of
10 each of the individual proteins or polypeptide to permit subsequent translation of
30 the polycistronic mRNA. If only a single polycistronic transcript is produced, only
a single promoter, optional enhancer, and polyadenylation signal are required for
35 regulation of the transcription of the nucleic acid encoding the helper function. One
35 may also encode the helper function by using both monocistronic mRNAs that
15 encode single proteins and polycistronic mRNAs encoding multiple proteins.

40 In a preferred embodiment of the instant invention, the carrier vector
comprises a embedded recombinant AAV genome and helper functions. In a
further preferred embodiment, the helper functions comprise adenovirus E1a, E1b
45 and E2a, and more preferably include E4ORF6 and VAI. In an even more preferred
20 embodiment, the helper functions are encoded by a single polycistronic transcript,
embodiment, the helper functions are encoded by a single polycistronic transcript,
50 and the promoter for the helper functions is a constitutive promoter, preferably the
CMV promoter.

5

- 57 -

10 Other recombinant viruses would require different helper functions
or none at all, but in all cases those helper functions may be provided on the carrier
vector that carries the embedded recombinant viral genome, on a separate carrier
virus, on a different type of vector capable of transducing a mammalian host cell, or
15 5 is endogenously expressed in the mammalian host cell itself.

20

Mammalian Host Cells

25

35

40

45

50

Any type of mammalian host cell which can be adapted to cell
culture may be used to produce the recombinant viral genome. In general, a
mammalian host cell used in this invention is one that may be infected by a
10 nonmammalian carrier virus. The mammalian host cell may be one that may be
infected by a nonmammalian carrier virus that does not express a ligand encoded by
a ligand nucleic acid, may be one that may be infected by a nonmammalian carrier
virus that expresses a ligand encoded by a ligand nucleic acid, or may be a cell that
is infected by a carrier vector that either expresses or does not express a ligand
15 nucleic acid. Alternatively, the mammalian host cell may be one that is not usually
infected by a carrier virus, but which can be transduced with a cellular receptor such
that it may bind to a nonmammalian host cell. For instance, a mammalian host cell
may be transduced with a growth factor receptor such that it can be infected by a
carrier virus that expresses the particular growth factor as its ligand.

20 In addition to the ability to be infected by the carrier virus, another
preferred characteristic of the mammalian host cell is that it is able to uncoat the
nonmammalian carrier virus. A third preferred characteristic of the mammalian host

55

10 cell is its ability to replicate the recombinant virus at high levels. In a preferred embodiment, the mammalian host cell is one that takes up the nonmammalian carrier virus at high levels, uncoats the carrier virus efficiently, and replicates the recombinant virus at high levels.

35 15 In addition to the mammalian host cells listed above, other
mammalian host cells may be used. One may determine whether a cell line would
40 be suited for use as a mammalian host cell by infecting the cell line with a carrier
virus containing all the required components to produce a recombinant virus,
45 20 culturing the cells under conditions in which recombinant virus is produced, and
then measuring the titer of infectious recombinant virus that is produced. One may
then compare the titer of infectious virus produced in the potential host cell with the
50 titers produced by other host cells to determine whether the cell line is good for
recombinant virus production.

10 Although the receptor(s) for nonmammalian carrier virus such as
baculovirus on both insect and mammalian cell is/are unknown, it is thought that the
baculovirus may bind to the cell, at least in part, via heparan sulfate expressed on
15 the cell surface. Without wishing to be bound by any theory, cells which express
5 high levels of heparan sulfate on their cell surface may be more easily infected by
carrier viruses, especially baculovirus, than cells which express low levels of
20 heparan sulfate on their cell surface. Thus, one method of identifying whether a
particular cell line is a potential mammalian host cell is to measure the level of
25 heparan sulfate on the cell surface.

10

Method of Making and Producing Carrier Viruses

30 The present invention includes methods of constructing the novel
carrier vectors described above and producing large quantities of the carrier vector.
This method comprises the steps of:

35

15 1. Modifying a nonmammalian virus backbone DNA, or a
replication-proficient portion thereof, by inserting one or more nucleic acid inserts
40 comprising 1) a recombinant viral genome comprising a transgene operably linked
to expression regulatory sequences and flanked by flanking elements; 2) nucleic acid
sequences encoding helper functions operably linked to expression regulatory
45 sequences; 3) nucleic acid sequences encoding replication and/or encapsidation
functions for the recombinant virus; 4) a ligand DNA operably linked to expression
regulatory sequences that are active in nonmammalian cells; and 5) regulatory
50 control sequences that regulate sequences in the nonmammalian virus backbone, a

55

5

- 60 -

10

modified nonmammalian virus backbone or a replication-proficient portion of the
backbone or modified backbone;

15

2. transducing the resulting carrier vector into nonmammalian host
cells;
3. growing the nonmammalian host cells under conditions in which
carrier virus is produced; and
4. collecting the carrier virus from the nonmammalian host cells.

20

In a preferred embodiment, the carrier vector will be modified such

25

that it comprises the recombinant viral genome. In a more preferred embodiment,

30

- 10 the carrier vector will be modified such that it comprises the recombinant viral
genome and either or both of the nucleic acid inserts encoding the replication and/or
encapsidation functions and the helper functions required for production of a
recombinant virus. In an even more preferred embodiment, the carrier vector will
be modified such that it comprises the recombinant viral genome, all of the nucleic
35 acid inserts encoding the replication and/or encapsidation functions and the helper
functions required for production of a recombinant virus, and the nucleic acid insert
encoding the ligand.

40

The nonmammalian host cell may be any host cell known in the art

or described in Table 1 of U.S. Pat. No. 5,731,182. The nonmammalian virus

45

- 20 backbone DNA may be derived from any virus that infects nonmammalian species,
including those known in the art or described in Table 1 of U.S. Pat. No. 5,731,182.

50

In a preferred embodiment, the nonmammalian backbone of the carrier vector is
derived from a baculovirus and the nonmammalian host cells are insect cells. In a

55

5

- 61 -

more preferred embodiment, the carrier virus produced by the baculoviral carrier
10 virus in the insect cells is produced at a high titer. Preferably, when baculovirus is used, the titers of the carrier baculovirus produced in any embodiment are greater
15 than 10^8 pfu/ml in insect cells or 10^9 pfu/ml; more preferably, the titers are greater
5 than 10^{10} pfu/ml or 10^{11} pfu/ml; and even more preferably, the titers are greater than
10¹² pfu/ml. The instant invention also encompasses lysates and supernatants of
20 nonmammalian host cells comprising baculoviral carrier viruses having similar titers.

25

30

35

40

45

50

55

The nonmammalian host cells comprising the carrier vector may be grown by any method known in the art or as described herein. Methods for
10 producing large amounts of nonmammalian viruses are well known in the art and are described in U.S. Pat. No. 5,871,986. The nonmammalian carrier virus may be purified from the supernatant produced by the nonmammalian host cells or from lysed cells by any method known in the art or as described herein. Methods for
30 collecting and purifying nonmammalian viruses are well known in the art and are described in U.S. Pat. No. 5,871,986. A method of collecting and purifying the
35 nonmammalian viruses is described in Example 6.

The carrier virus produced when the carrier vector is encapsidated has the normal wild-type capsid optionally modified by addition of the ligand. In general, the expression of the ligand nucleic acid is regulated by expression
40 regulatory sequences which promote transcription and translation in the nonmammalian host cells. Such expression regulatory sequences may include a nonmammalian promoter active in the nonmammalian host cells of interest, and may
45 optionally include enhancer sequences, polyadenylation signals, or any other

10 expression regulatory sequences known in the art or described above. In a
preferred embodiment, the other nucleic acid inserts in the nonmammalian backbone
may not be expressed or may be expressed at lower levels because their promoters
15 are inactive or less active in nonmammalian cells. Because potentially toxic viral
5 components, such as helper functions or replication/encapsidation functions, are
either not expressed or expressed at lower levels, a high titer of carrier virus may be
20 produced in nonmammalian cells.

25

Methods of Producing Recombinant Virus from the Carrier Vector

30

Another aspect of the instant invention is a method of producing
10 recombinant virus by using a carrier virus, produced by the method described
above, to infect mammalian cells and subsequently collecting and purifying the
recombinant virus from the mammalian cells. The method comprises the steps of:

35

1. Infecting mammalian host cells with a carrier virus, wherein the
carrier virus optionally expresses a ligand on the surface of the carrier virus;
- 15 2. growing the infected mammalian host cells under conditions in
which the embedded recombinant viral genome is replicated, excised and
encapsidated; and
- 40 3. collecting the recombinant virus from the mammalian host cells.

45

The mammalian host cells may be any mammalian host cell known in
20 the art, described in the specification above under "Mammalian Host Cells," or
identified by the method described under "Mammalian Host Cells" as an appropriate
50 host cell. The mammalian host cell, prior to infection, may be one that expresses

55

10 one or more of the following: 1) replication and/or encapsidation functions (e.g., B-
50 cells or one of the retroviral cell lines described previously); 2) some or all
necessary helper functions (e.g., 293 cells); and/or 3) an embedded recombinant
15 viral genome stably integrated in the mammalian host cell genome. Alternatively,
5 the mammalian host cell comprises none of these other elements before infection by
the carrier virus.

20 The mammalian host cells may be infected and grown by any method
known in the art or as described herein. Methods for infecting mammalian host
25 cells with nonmammalian viruses are described herein and in Barsoum et al., *supra*.

10 Once the mammalian host cell has been infected, the expression regulatory
sequences that are operably linked to any required replication and/or encapsidation
30 functions and helper functions are activated. Expression of the replication and/or
encapsidation functions and helper functions, along with the mammalian host cell's
native transcriptional and translational components, permits replication, excision
35 and encapsidation of the embedded recombinant viral genome, thereby causing the
manufacture of the recombinant virus.

40 In general, the nonmammalian carrier virus is capable of infecting a
mammalian cell, but the carrier virus will not replicate in the mammalian cell
45 because the components required for replication of the nonmammalian carrier virus
20 are not present in the mammalian cell. If the carrier virus comprises a ligand nucleic
acid, the expression regulatory sequences controlling ligand expression generally
will not function in mammalian cells, such that ligand expression does not occur in
50 the mammalian host cell. However, if replication of the carrier virus or if

5

- 64 -

10 expression of the ligand is desired in the mammalian host cell, then additional expression regulatory sequences may be operably linked to the sequences required for replication, excision and/or packaging of the nonmammalian carrier virus and/or expression of the ligand.

15

5 The recombinant virus may be purified from the supernatant produced by the mammalian host cells or from lysed cells by any method known in 20 the art or as described herein. Methods for collecting and purifying various types of recombinant viruses from mammalian host cells are well known in the art and are described in PCT US97/15716. A method of collecting and purifying the 25 recombinant viruses is also described in Example 6.

30 As discussed above, in a preferred embodiment, one or more carrier viruses comprises all those nucleic acid inserts required for production of recombinant virus in a particular mammalian host cell. Thus, if the host cell comprises replication and encapsidation functions, then the carrier viruses comprise

35 15 the embedded recombinant viral genome and any necessary helper functions. Similarly, if the host cell comprises the embedded recombinant viral genome, then 40 one or more carrier viruses will comprise the required replication and encapsidation functions and any necessary helper functions, while if the host cell comprises the necessary helper functions, then one or more carrier viruses will comprise the 45 required replication and encapsidation functions and the embedded recombinant viral genome.

50 In a preferred embodiment, a single carrier virus comprises all of the nucleic acid inserts required for production of a recombinant virus in a particular

55

5

- 65 -

10 mammalian host cell. For example, if a recombinant AAV is to be produced in B-
50 cells, the carrier virus will comprise the embedded recombinant viral genome and
those helper functions required for AAV production. Similarly, if a recombinant
15 AAV is to be produced in a mammalian host cell that does not express any of the
5 required functions for AAV production, the carrier virus will comprise the
embedded recombinant viral genome, the replication and encapsidation functions
20 and the helper functions required for AAV production.

The method of producing recombinant virus described is useful
25 because it produces an essentially homogeneous recombinant virus that is free from
10 helper virus and wild-type virus without purification. The recombinant virus is free
from helper virus because there are insufficient helper virus genes to produce a
30 mature helper virus. The recombinant virus is free of wild-type virus because
homologous recombination is avoided by a variety of techniques. For instance,
35 wild-type AAV produced through homologous recombination may be avoided using
15 several strategies. The *rep/cap* sequences and the embedded recombinant viral
genome may be positioned at separate loci on the carrier vector, minimizing the
40 likelihood of a recombination event. The *rep/cap* sequences and the embedded
recombinant viral genome also may be designed so that they have no regions of
homology. Additionally, because AAV is intolerant of packaging greater than 5.0
45 kb, one may incorporate a "stuffer" nucleic acid sequence to be inserted between a
required sequence, such as *rep* or *cap* and its promoter. Thus, even if
50 recombination took place, the resulting AAV genome would be too large to
package and no wtAAV would be produced. In order to maintain the integrity of

55

5

- 66 -

10 translation of *rep*, the stuffer sequence may be constructed using splice donor and acceptor sites, such that the resulting mRNA and ultimately the *rep* protein produced would be unaffected. Similar methods may be employed for other types 15 of recombinant viruses to avoid recombination and production of wild-type virus.

5 The method is also easily scaled to industrial production because it may require only a single infection of mammalian host cells by a carrier virus that 20 can be produced in large amounts at high titers. In a preferred embodiment, the recombinant virus produced by the instantly described method is produced at a high 25 titer. For recombinant AAV, the titer is preferably greater than 10^4 particles per 10 producing cell, more preferably, greater than 10^5 to 10^6 particles per producing cell, and even more preferably, greater than 10^7 particles per producing cell. For 30 recombinant adenovirus, the titer is preferably greater than 10^4 particles per producing cell, more preferably, greater than 10^5 particles per producing cell, and even more preferably, greater than 10^6 particles per producing cell. For 35 recombinant herpesvirus, the titer preferably is greater than 10^{10} pfu per ml, more preferably, greater than 10^{11} pfu per ml and even more preferably, greater than 10^{13} pfu per ml. For retroviruses, the titer preferably is greater than 10^6 to 10^7 colony 40 forming units (cfu) per ml, more preferably, 10^8 cfu per ml, and even more preferably, 10^9 cfu per ml. The instant invention also encompasses lysates and 45 supernatants of mammalian host cells comprising recombinant viruses. These lysates and supernatants differ from those produced by prior art methods because 50 they do not contain wild-type virus or helper virus.

In a preferred embodiment, the method is used to manufacture

55

10 recombinant AAV at high titers and in the absence of helper virus or wild-type
AAV. The desired transgene, with appropriate expression regulatory sequences
operably linked thereto, is placed between the AAV ITRs, by means known in the
15 art. In order to maintain the length of the insert at a length compatible with
5 eventual packaging, spacer DNA may optionally be inserted therein. This
recombinant viral genome is then embedded in a baculovirus, in a non-essential
20 locus, by means known in the art. The required helper functions, replication and
encapsidation functions, and/or embedded recombinant viral genome may be placed
25 in the polyhedrin gene site, the p10 gene site, or one could be placed at the
10 polyhedrin gene site and the other may be placed at the p10 gene site (see Figure 1).
The baculovirus backbone also may be modified to comprise a ligand nucleic acid,
30 such as the VSV-G gene. The baculovirus may also be modified to comprise *rep*
and *cap* sequences and helper functions from adenovirus, comprising E1a, E1b,
35 E2a, E4ORF6 and VAI, or HSV genes UL5, UL8, UL52 and UL29. The carrier
15 vector is transduced into insect cells, such as Sf9 cells, the cells are grown under
conditions in which baculovirus is produced, and the baculovirus is collected and
40 purified. The baculovirus is then used to infect mammalian cells, the mammalian
cells are grown under conditions in which the recombinant virus is replicated,
excised and encapsidated, and the recombinant AAV is collected and, optionally,
45 purified.

50 In another preferred embodiment, the method is used to manufacture
recombinant "gutless" adenovirus deleted of all adenoviral genes at high titers and
in the absence of helper virus or wild-type adenovirus. Previously, one would make

10 a "gutted" adenovirus plasmid from the adenovirus genome in which all of the adenovirus genes were removed except for the ITRs and the cis-acting packaging signal. Foreign DNA containing the transgene of interest, transcriptional regulatory sequences, and, optionally, stuffer DNA would be added to obtain an insert of 15 approximately 36 kb. The plasmid is designed such that a DNA cassette contains the packaging signal upstream of the transgene and stuffer DNA, and the Ad ITRs 20 flank such DNA cassette. The plasmid was transfected into cells, such as 293 cells. A helper adenovirus lacking the adenoviral E1 and E3 genes, as well as sequences 25 within the adenoviral packaging signal was used to infect the 293 cells transfected 10 with the gutted Ad plasmid to provide replication and encapsidation functions in trans. Using this method, low levels of homologous recombination would rescue 30 the deletion in the helper Ad's packaging signal, thus both helper and "gutless" adenovirus would be produced. CsCl gradients would have to be performed to 35 separate the helper adenovirus from the recombinant "gutless" adenovirus vector. 15 In addition, other disadvantages included high levels of contaminating helper virus and low yields of the gutless Ad vector.

40 Using the method of the instant invention, homologous recombination resulting in generation of contaminating helper Ad can be avoided. Rather than using helper adenovirus, one may construct a carrier vector comprising 45 20 the adenoviral functions necessary for replication and packaging of the gutted Ad genome. In one embodiment, the carrier vector contains the complete genome of adenovirus without the ITR's, E1, the packaging signal, and, optionally, without 50 E3. Then, one may infect mammalian cells with the carrier virus and transfet the

10 cells with the plasmid described above containing the transgene, ITRs and
10 packaging signal. In another embodiment, one may construct two separate carrier
15 vectors, one comprising helper adenoviral functions described above and the other
comprising the gutted Ad construct containing the Ad ITR's, packaging signal and
15 the transgene cassette. Alternatively, one may construct a single carrier vector
5 comprising both the helper adenoviral functions and the transgene cassette
20 comprising the ITRs, packaging signal and transgene/stuffer DNA. The adenoviral
functions and transgene cassette may be placed in the polyhedrin gene locus, the
25 p10 gene locus, or one could be placed at the polyhedrin gene locus and the other
25 10 may be placed at the p10 gene locus (see Figure 1).

30 In another preferred embodiment, the method is used to manufacture
30 recombinant herpesvirus amplicon vectors. As discussed above, herpesvirus
amplicons require the "a" sequence for packaging, and the HSV origin of
35 replication. Either the ori_S or ori_L origin of replication may be used, but the ori_S
35 15 origin is preferred. One may construct a carrier vector comprising a herpesvirus
amplicon. In one embodiment, the cassette would contain, in the 5' to 3' direction,
40 the "a" sequence, followed by the transgene of interest, followed by the HSV origin
of replication, followed by an optional spacer, and followed by another "a"
45 sequence. This may be inserted into either the polyhedrin or the p10 gene loci in
45 20 baculovirus, for instance. The carrier virus that is subsequently produced may be
used to infect mammalian cells that have been coinfecte with helper herpesvirus.
50 Alternatively, the helper herpesvirus functions may be placed on the same or a
50 separate carrier vector and used to infect the mammalian cells. Recombinant

5

- 70 -

10 herpesvirus amplicon vectors may then be isolated and purified from the mammalian cells.

15 Recombinant Virus Compositions

5 Another embodiment of the present invention is the recombinant
10 virus produced by the methods of the invention. Unlike other preparations of
15 recombinant virus, the preparations produced by the methods of this invention yield
20 high titers of essentially homogeneous recombinant virus which is helper-free and
25 wild-type virus free. The recombinant virus may be formulated as a
30 1 C pharmacological composition for use for any form of transient and stable gene
35 transfer *in vivo* and *in vitro*. The recombinant virus may be used for *in vivo* and *ex*
40 *vivo* gene therapy, genetic immunization, *in vitro* protein production and diagnostic
45 assays.

35 For gene therapy, the recombinant virus may be introduced into cells

15 *ex vivo* or *in vivo*. Where the virus is introduced into a cell *ex vivo*, the recombinant virus may be used to infect a cell *in vitro*, and then the cell may

40 subsequently be introduced into a mammal (e.g., into the portal vein or into the spleen), if desired. Alternatively, the recombinant virus may be administered to a mammal directly, e.g., intravenously or intraperitoneally. A slow-release device,

45 20 such as an implantable pump, may be used to facilitate delivery of the virus to a cell.

Where the virus is administered to a mammal, the specific cells to be infected may

50 be targeted by controlling the method of delivery. For example, intravascular administration of the recombinant virus to the portal vein or to the hepatic artery

55

may be used to facilitate targeting the recombinant virus to a liver cell.

10

The recombinant virus produced by the above-described method

may be administered to a patient, preferably suspended in a biologically compatible solution or pharmaceutically acceptable delivery vehicle. A suitable vehicle includes

15

sterile saline. Other aqueous and non-aqueous sterile suspensions known to be pharmaceutically acceptable carrier and well known to those of skill in the art may 5 be employed for this purpose.

20

The recombinant virus is administered in sufficient amounts to infect the desired cells and provide sufficient levels of transduction and expression of the

25

selected transgene (or viral gene products in the case of a vaccine) to provide a corrective effect without undue adverse or with medically acceptable physiological effects, which can be determined by those skilled in the medical arts. Conventional and pharmaceutically acceptable routes of administration include direct administration to the target organ, tissue or site; intranasal; intravenous;

30

intramuscular; subcutaneous; intradermal; oral and other parenteral routes of 35 administration. Routes of administration may be combined, if desired.

40

Dosages of the recombinant virus will depend primarily on factors such as the type of recombinant virus (i.e., whether the virus is AAV, adenovirus, retrovirus, etc.), the condition being treated and the selected gene. The dosage may 45 also vary depending upon the age, weight and health of the patient. For example, an effective human dosage of a recombinant adenovirus is generally in the range of from about 0.5 ml to 50 ml of saline solution containing adenovirus at 50 concentrations of 1×10^7 or 1×10^8 or 1×10^9 or 1×10^{10} or 1×10^{11} or 1×10^{12} or

55

5

- 72 -

10 1×10^{13} or 1×10^{14} or 1×10^{15} particles per dose administered. The dosage will be
adjusted to balance the corrective benefits against any adverse side effects. The
levels of expression of the selected gene may be monitored to determine the type
15 and frequency of dosage administration.

20 5 The following examples of the present inventions are illustrative
only, and are not intended to limit the scope of the invention.

20

25 EXAMPLE 1
Cell Line Maintenance and Virus Propagation

30 The human embryonic kidney cell line 293 (ATCC CRL 1573) was
10 maintained in Dulbecco's Modification of Eagle's Medium (DMEM; GIBCO BRL)
supplemented with 10% FBS (Hyclone) and 50 μ g of penicillin, 50 μ g of
35 streptomycin, and 10 μ g of neomycin/ml (GIBCO BRL). Insect cell line IPLB-Sf21
(CLONTECH Laboratories, Inc.) was maintained in SF900-II medium (GIBCO
BRL) supplemented with 10% FBS and 50 μ g of penicillin, 50 μ g of streptomycin,
40 15 and 10 μ g of neomycin/ml. Human adenovirus type 5 (ATCC VR-5) was
propagated on 293 cells and purified through CsCl gradient centrifugation (Jones
and Shenk, 1978).

45

20 EXAMPLE 2
Recombinant Plasmid Construction

50 20 Standard DNA recombinant techniques were employed to create
recombinant plasmids (Sambrook et al, 1989). The Rep and Cap sequence of pAV2

55

5

- 73 -

(ATCC 37216) between the DraIII site upstream of the p5 promoter and the NcoI site downstream of the polyadenylation signal was removed. The Rep and Cap sequence was replaced through multiple cloning steps with a cassette containing GFP under the control of elongation factor 1 alpha (EF1 α) promoter to create 10 pAV2cisEFGFP (Fig. 2). The entire cassette containing both AAV ITRs and the GFP gene was then cloned into the SpeI and BglII sites of BV-CZPG (baculovirus 15 shuttle plasmid with VSV-G gene under control of polyhedrin promoter; kindly provided by Dr. Jim Barsoum of Biogen, Inc.) through multiple cloning steps to 20 obtain pBV-cisEFGFP (Fig. 3). 25

10 Adenovirus helper genes E2A, E4ORF6, and VAI were subcloned from Ad5 DNA. Briefly, E4ORF6 was first inserted into the SmaI and XbaI sites of 30 pIRES1neo (CLONTECH Laboratories, Inc.) to obtain pIRESORF6. Next, a Sau3AI-BsrGI fragment containing E2A coding sequences was inserted into the 35 BamHI/BstXI sites of the plasmid pIRESORF6 through multiple cloning steps to 15 obtain the plasmid pE2AiORF6. In this construct, E2A and E4ORF6 genes are separated by an encephalomyocarditis virus (ECMV)-derived IRES, and both genes 40 are under the transcriptional control of a single human cytomegalovirus (CMV) promoter upstream of the E2A gene. Next, a NcoI-BamHI fragment of Ad5 DNA containing the VAI gene was inserted into the Xhol site of pE2AiORF6 through 45 20 blunt-end cloning to obtain pE2AiORF6-VAI. The entire cassette containing CMV-E2AiORF6-VAI was cloned into the HpaI and SpeI sites of the baculovirus 50 shuttle plasmid BV-CZPG to obtain pBV-EiOV (Fig. 2).

AAV-2 rep and cap genes located between a Dra III site, which is

55

10 upstream of the AAV-2 p5 promoter and a BsaI site, which is downstream of the polyadenylation signal (Fig. 2), were cloned into the SpeI and PacI sites of pBV-
15 EiOV through multiple cloning steps to obtain pBV-EiOV-RC (Fig. 3). Ad5 E1 and cisEFGFP were cloned into pBV-EiOV through multiple steps to obtain the
5 pBV-EiOV-cisEFGFP-E1 plasmid (Fig. 3). Plasmid pAc-cisEFGFP was
20 constructed by inserting a cassette containing the GFP gene flanked by AAV-2 ITRs into pAcUW1 (Pharmingen) through several cloning steps. The XbaI-SspI
25 fragment of EBVori from pEBVHisA (Invitrogen) was inserted into pBV-
cisEFGFP and pBV-EiOV-RC to create pBV-cisEFGFP-EBVori (Fig. 3) and
30 10 pBV-EiOV-RC-EBVori (Fig. 3). AAV-2 rep and cap genes were cloned into
pAdΔF6 (plasmid carrying Ad helper genes E2A, the entire E4, and VAI; kindly
provided by Dr. Guangping Gao of the University of Pennsylvania) to obtain
35 30 pAdΔF6-RC (Fig. 3).

35 Reference to a construct preceded by a "p" refers to a plasmid, while
15 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999

EXAMPLE 3

Transfection of 293 Cells and Selection for 293-CG3 Stable Cell Line

5

- 75 -

10 1989). Cells were fed with fresh medium containing 10% FBS and cultured for 24 hours. Following trypsinization, cells were seeded at a 1:20 dilution in fresh medium containing 10% FBS. After incubation for another 24 hours, fresh medium containing 1,250 µg/ml of G418 (GIBCO BRL) was added to the cell monolayer to

15 5 select for G418-resistant cells. The medium containing G418 was replaced every 3-4 days until most of the original G418-resistant cell colonies had formed. A total of

20 20 fifty colonies were picked, six of which demonstrated constitutive GFP expression.

25 These six clones were expanded in the presence of G418 and tested for their ability to rescue functional rAAV by transfection with plasmid pBV-EiOV-RC. Normally,

30 10 when a clone was established, it was maintained in G418-containing medium for 3 to 5 passages to ensure that all nonresistant cells had been killed. Then, the cells were maintained in G418-free medium. One cell clone, 293-CG3, showed high efficiency of rAAV rescue and was expanded and used for further experiments.

35

40 15 **EXAMPLE 4**
Functional Test of 293-CG3 for rAAV Production

45 Several plasmids were used to test the efficiency of 293-CG3 cells for rAAV production. The cells were first seeded on 6-well plates at a density of 1 X 10⁶ cells/well at 2 to 4 hours before transfection. The cells in each well received 5 µg of plasmid DNA in a final volume of 167 µl of CaPO₄ (Sambrook et al., 1989).

50 20 After incubation for 16 hours, cells were fed with fresh medium. Three days later, cells were harvested and rAAV titers (transducing units) were determined. The results are presented in Table 1 as an average of values determined from two

55

5

• 76 •

separate experiments. They indicate that the 293-CG3 cell line is very efficient for rAAV production, producing approximately 30 to 170 transducing units of rAAV per cell depending on the configuration of helper plasmid used.

15

Table 1.

Transfection	Plasmid (5 μ g)	Cell line	rAAV titer (TU/10 ⁶ cells)
1	pBV-EiOV-RC	293-CG3	3.1 X 10 ⁷
2.	pAdAF6-RC	293-CG3	1.7 X 10 ⁸
3.	pBV-EiOV	293-CG3	0
4	pBV-RC	293-CG3	0

26

10 **EXAMPLE 5**
Generation of Recombinant Baculoviruses

To create VSV-G pseudotyped recombinant baculoviruses, the BacPAK baculovirus expression system (CLONTECH Laboratories, Inc.) was used. Plasmid DNA, one of pBV-EiOV-RC, pBV-cisEFGFP, or pBV-EiOV-15 cisEFGFP-E1, was cotransfected with Bsu36I-digested BacPAK6 DNA into Sf21 cells according to the manufacturer's protocol. The medium was harvested 3 days after transfection and recombinant baculoviruses were screened on 96-well plates by limited dilution assay. Briefly, the medium harvested from transfection was diluted to 10^2 , 10^3 , 10^4 , and 10^5 each in 10 ml of insect medium containing Sf21 cells at 20 $X 10^5$ cells/ml. The mixture was then plated on 96-well plates at 100 μ l/well.

45

After infection for 5-7 days, cells were examined for signs of viral infection (cell fusion mediated by VSV-G expression; see Eidelman et al., 1984). The wells that showed viral infection in the lowest dilution were marked and the virus harvested (Chen et al., 1994). The cells were lysed and used for DNA

55

5

- 77 -

hybridization to verify the presence of recombinant DNA. Positive clones were
10 amplified into 10 ml, and 1 ml of each clone was used to transduce 293 cells grown
in 6-well plates. The 293 cells were transfected with a plasmid carrying the
15 elements not provided by the recombinant baculovirus for rAAV rescue. After
5 transduction for 3 days, cells were lysed and the lysates were used to transduce 84-
31 cells (E1/E4 double complementing cell lines derived from 293 cells; see Fischer
20 et al., *J. Virol.*, 70:8934-8943, 1996). The expression of a marker gene indicated
the rescuing of rAAV. The cloned that could best support rAAV rescue was
25 screened for 3 to 4 more rounds in order to obtain pure recombinant baculovirus.
30 10 and tested for their support of rAAV rescue Functional clones were further
screened on 96-well plates for 3 to 4 rounds to obtain pure recombinant
baculoviruses.

35 To create non-VSV-G pseudotyped recombinant baculoviruses, a
Baculovirus Expression Vector System (Pharmingen) was used. Plasmid DNA was
15 co-transfected with baculoviral DNA into Sf21 cells according to manufacturer's
protocol. Recombinant baculovirus was screened on 96-well plates the same as
40 described for the VSV-G pseudotyped baculoviruses above except that X-gal
staining was used to distinguish recombinant baculovirus from wild type
baculovirus.

45

50

55

5

- 78 -

EXAMPLE 6

10

Production of rAAV by Using the Methods of this Invention*Method to Transduce Cells*

For transduction, recombinant baculoviruses were first pelleted by

15

5 centrifugation at 4°C at 20,000 rpm for 30 minutes. The pellets were then resuspended in serum-free DMEM. The medium was removed from the cell monolayer and baculovirus was added to the cells. After incubating for 8-16 hours, 20 cells were fed with fresh medium containing 10% FBS. Cells were harvested 72 hours after transduction. Baculovirus-transduced cells were harvested and lysed in 25 10 DOC lysis buffer (50 mM Tris-HCl, pH 7.4, 1 mM MgCl₂, 0.5% sodium deoxycholate) by sonication on ice water (three sonication pulses for 1 minute each). Cell debris was removed by centrifugation at 13,000 rpm for 5 minutes at 30 4°C and the supernatant was collected. The supernatant was used for rAAV titration as described in Example 7.

35

15 15 *Transduction of 293 cells by Baculoviruses BV-EiOV-RC and BV-cisEFGFP*

40

BV-EiOV-RC provides Ad helper genes E2A, E4ORF6, and VAI as well as AAV rep and cap genes. BV-cisEFGFP provides the AAV vector sequence with both AAV ITRs flanking the marker gene GFP. 293 cells express E1a and E1b. Thus, transduction of 293 cells with both BV-EiOV-RC and BV-cisEFGFP 45 20 provides to the cells the embedded AAV viral genome comprising the GFP transgene operably linked to the EF1 α promoter and flanked by the AAV ITRs; a 50 VSV-G ligand; helper functions comprising E1a, E1b, E2a, E4ORF6, and VAI; and

55

5

- 79 -

10

the replication and encapsidation functions, *rep* and *cap*. These functions allow the cells to produce recombinant AAV.

15

Transduction of 293-CG3 Cells by Baculovirus BV-EiOV-RC

20

Because the AAV vector was stably integrated in the 293-CG3 cells, only BV-EiOV-RC was needed to provide a ligand nucleic acid, helper functions and replication and encapsidation functions to produce recombinant AAV.

25

Transduction of Rep-Cap Expressing Cells by Baculovirus BV-EiOV-cisEFGFP-E1

30

The baculovirus BV-EiOV-cisEFGFP-E1 provides the Ad helper genes E1, E2A, E4ORF6, and VAI, as well as the AAV vector with both AAV-ITRS flanking the marker gene GFP. The AAV rep-cap genes are provided by stable rep-cap cell lines such as B50 (Gao et al. 1998).

35

EXAMPLE 7

Titration of rAAV Produced by Baculovirus Transduction

40

An rAAV lysate from baculovirus-transduced cells prepared as described in Example 6, was diluted at 10⁻², 10⁻³ and 10⁻⁴ with DMEM containing 10% FBS and used for the titration assay. 24-well plates were first coated with 0.1% gelatin for 30 minutes and then plated with 2 X 10⁵ cells/well of 293-based 45 84-31 cells (Fischer, et al., 1996). After 3 to 4 hours of incubation, the cells were infected with adenovirus at 100 particles/cell for 30 minutes (adenovirus helps the 50 conversion of single stranded AAV into double stranded AAV and is widely used

55

5

- 80 -

10 for AAV titration), and then the diluted rAAV lysate was added. After transduction by the rAAV for 24 hours, the cells were fixed with 4% paraformaldehyde in PBS for 30 minutes. The paraformaldehyde was replaced with PBS, and GFP-expressing cells were counted under by fluorescent microscopy.

15

20 5

EXAMPLE 8
Production of rAAV Using VSV-G Pseudotyped Baculovirus

25 Recombinant baculovirus BV-EiOV-RC was used to transduce 293-CG3 cells for rAAV production. The cells were first plated on 6-well plates at a density of 1 X 10⁶ cells/well at 2 to 4 hours prior to transduction. Baculovirus BV-30 10 EiOV-RC was concentrated by centrifugation at 20,000 rpm at 4°C for 30 minutes, resuspended in serum-containing DMEM, and then added to the cells at the indicated amounts as shown in Table 2. After incubation for 16 hours, cells were 35 fed with fresh medium. Following transduction for a total of 3 days, cells were harvested and rAAV titers (transducing units) determined. The results are 40 15 presented in Table 2 as an average of values determined from two separate experiments. They results indicate that recombinant baculovirus carrying Ad helper and AAV rcp-cap genes can successfully transduce 293-CG3 cells and produce rAAV. By increasing the multiplicity of infection (moi) of input baculovirus, higher 45 titers of rAAV were produced.

50

55

5

- 81 -

Table 2

Transduction	BV-EiOV-RC-H6 (pfu/cell)	Cell line	rAAV titers (TU/10 ⁶ cells)
1.	0	293-CG3	0
2.	6.25	293-CG3	1 X 10 ²
3.	12.5	293-CG3	4.9 X 10 ³
4.	25	293-CG3	2.6 X 10 ⁴
5.	50	293-CG3	2.7 X 10 ⁵
6.	100	293-CG3	1.8 X 10 ⁶

EXAMPLE 9

Transduction Efficiency of Different Mammalian Cell Lines
by VSV-G Pseudotyped and Non-Pseudotyped Baculoviruses

20

25

30

35

40

45

50

55

In order to identify a suitable cell line that is efficiently transduced by baculovirus, a number of cell lines were tested. Cells were seeded on 6-well plates and grown to ~80% confluence. Baculoviruses were added to the cells at the indicated moi's in serum-free DMEM, incubated with the cells overnight, and replaced with fresh medium 12-15 hours later. GFP-expressing cells were scored as a percentage of all cells in the monolayer at 48 hours post-transduction by the recombinant baculovirus.

The results presented in Table 3 indicate that, in general, VSV-G pseudotyped baculovirus (BV-cisEFGFP) transduce mammalian cells much more efficiently than the non-pseudotyped baculovirus (Ac-cisEFGFP). However, HepG2 and Saos-2 cell lines were found to be more transducible than HeLa and 293 cell lines by baculovirus. Insertion of Ad E1 genes into the chromosome of these cell, similar to the scenario in 293 cells, should further facilitate production of rAAV from these cells using the recombinant baculoviruses cited in previous examples. It is noteworthy that Saos-2 cells are highly permissive for infection by baculovirus

5

- 82 -

10

irrespective of the presence or absence of the VSV-G glycoprotein on the
baculoviral coat. The use of this cell line could provide an advantage for rAAV
production using non-pseudotyped baculovirus.

15

All documents cited above are incorporated by reference herein.

20

5 Numerous modifications and variations of the present invention are included in
the above-identified specification and are expected to be obvious to one of skill
in the art. Such modifications and alterations to the processes of the present
invention are believed to be encompassed in the scope of the claims appended
hereto.

25

30

35

40

45

50

55

5

- 83 -

Table 3

Transduction	Cell line	Baculovirus		Results
		BV-cisEFGFP	Ac-cisEFGFP	
5	1. HepG2	10 pfu/cell		60
	2. HepG2	50 pfu/cell		90
	3. HepG2	100 pfu/cell		90
	4. HepG2		10 pfu/cell	10-20
	5. HepG2		50 pfu/cell	60
	6. HepG2		100 pfu/cell	70
10	7. Saos-2	10 pfu/cell		70
	8. Saos-2	50 pfu/cell		100
	9. Saos-2	100 pfu/cell		100
	10. Saos-2		10 pfu/cell	70
	11. Saos-2		50 pfu/cell	100
	12. Saos-2		100 pfu/cell	100
15	13. Hela	10 pfu/cell		~5
	14. Hela	50 pfu/cell		~15
	15. Hela	100 pfu/cell		~15
	16. Hela		10 pfu/cell	-
	17. Hela		50 pfu/cell	-
	18. Hela		100 pfu/cell	~5
20	19. 293	10 pfu/cell		10
	20. 293	50 pfu/cell		50
	21. 293	100 pfu/cell		50
	22. 293		10 pfu/cell	~5
	23. 293		50 pfu/cell	20
	24. 293		100 pfu/cell	20

40

45

50

55

5

- 84 -

References

10

1. Jones N, Shenk T. Isolation of deletion and substitution mutants of adenovirus type 5. *Cell* 1978 Jan;13(1):181-8
2. Sambrook, J., Fritsch, E.F., and Maniatis, T. "Molecular Cloning—A Laboratory Manual". Cold Spring Harbor Laboratory Press. 1989.
3. Gao GP, Qu G, Faust LZ, Engdahl RK, Xiao W, Hughes JV, Zoltick PW, Wilson JM. High-titer adeno-associated viral vectors from a Rep/Cap cell line and hybrid shuttle virus. *Hum Gene Ther* 1998 Nov 1;9(16):2353-62.
4. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. *J Virol* 1996 Jan;70(1):520-32.
5. Eidelman, O., Schlegel, R., Tralka, T.S., and Blumenthal, R. *J. Biol. Chem.* 1996, 259:4622-4628.
6. Chen, H. and Padmanabhan, R. *Biotechniques* 1994, 17:40-42.

25

30

35

40

45

50

55

Claims

5

10

15

20

25

30

35

40

45

50

55

5

- 85 -

CLAIMS

10

15 1. A carrier vector for the manufacture of a recombinant virus,
wherein the carrier vector comprises a nonmammalian virus backbone, or a portion
or a modification thereof which is capable of replication in a nonmammalian cell.

20

5 2. The carrier vector of claim 1 further comprising one or more of
the following elements: 1) an embedded recombinant viral genome; 2) nucleic acid
sequences which encode proteins required for replication and encapsidation of the
recombinant viral genome, 3) nucleic acid sequences encoding helper functions, 4)
nucleic acid sequences that encode a ligand that can interact with a mammalian cell,
10 and 5) regulatory control sequences that regulate sequences in the nonmammalian
virus backbone or in a replication-proficient portion or modification thereof.

35

3. The carrier vector according to claim 2 which comprises nucleic
acid sequences that encode a ligand that can bind to a mammalian cell receptor.

40

4. The carrier vector according to either of claims 1, 2 or 3 which
15 further comprises an embedded recombinant viral genome.

45

5. The carrier vector according to either of claims 1, 2 or 3 which
further comprises nucleic acid sequences which encode proteins required for
50 replication and encapsidation of the recombinant viral genome.

55

5

- 86 -

10

6. The carrier vector according to either of claims 1, 2 or 3 which
further comprises nucleic acid sequences encoding helper functions.

15

7. The carrier vector according to either of claims 1, 2 or 3 which
further comprises regulatory control sequences that regulate expression of nucleic
acid sequences in the nonmammalian virus backbone or in a replication-proficient
portion or modification thereof.

25

8. The carrier vector according to either of claims 1, 2 or 3 which
further comprises nucleic acid sequences which encode proteins required for
replication and encapsidation of the recombinant viral genome and nucleic acid
sequences encoding helper functions.

35

9. The carrier vector according to either of claims 1, 2 or 3 which
further comprises an embedded recombinant viral genome and nucleic acid
sequences which encode proteins required for replication and encapsidation of the
recombinant viral genome and/or nucleic acid sequences encoding helper functions.

40

15 10. The carrier vector according to either of claims 1, 2 or 3 which
45 comprises all those elements which are required by a mammalian host cell to
produce an infectious recombinant virus.

50

11. The carrier vector according to claim 2 or 3, wherein the nucleic

55

5

- 87 -

10

acid sequences that encode a ligand that can interact with a mammalian cell are
under the regulatory control of a non-mammalian promoter.

15

12. The carrier vector according to claim 11, wherein the ligand can
bind to a mammalian cell receptor.

20

5 13. The carrier vector according to claim 2 or 3, wherein the
embedded recombinant viral genome comprises flanking sequences derived from an
adeno-associated virus (AAV), an adenovirus, a retrovirus or a herpesvirus.

25

30

14. The carrier vector according to claim 13, wherein the embedded
recombinant viral genome comprises flanking sequences derived from AAV and the
carrier vector further comprises helper sequences encoding a protein providing a
helper function required for replication of AAV.

35

40

15. The carrier vector according to claim 14, wherein said helper
sequences are derived from adenovirus (Ad) DNA, herpes simplex virus (HSV)
type I or type II DNA, pseudorabies virus (PRV), cytomegalovirus (CMV) or
vaccinia virus.

45

50

16. The carrier vector according to claim 15, wherein said helper
sequences encode at least one gene product selected from the group consisting of
adenoviral genes E1A, E1B, E2A, E4orf6 and VAI, or at least one gene product

55

5

- 88 -

10

selected from the group consisting of HSV type 1 genes UL5, UL8, UL52, and
UL29.

15

17. The carrier vector according to claim 14, further comprising a
nucleic acid sequence encoding the AAV *rep* and *cap* proteins.

20

5 18. The carrier vector according to claim 13, wherein the embedded
recombinant viral genome comprises flanking sequences and packaging signals
derived from adenovirus.

25

19. The carrier vector according to claim 13, wherein the embedded
30 recombinant viral genome comprises a herpesvirus "a" packaging sequence and a
10 herpesvirus origin of replication.

35

20. The carrier vector according to claim 2 or 3, wherein the
embedded recombinant viral genome comprises a transgene whose expression is
40 regulated by expression regulatory sequences operably linked to said transgene.

45

21. A method for producing a carrier virus, comprising the steps of:
15 a) modifying a nonmammalian virus backbone DNA, or a
replication-proficient portion or modification thereof, by inserting one or more
50 nucleic acid inserts comprising
i) a recombinant viral genome comprising a transgene

55

10

operably linked to expression regulatory sequences and flanked by flanking elements.

15

ii) nucleic acid sequences encoding helper functions operably linked to expression regulatory sequences,

5

iii) nucleic acid sequences encoding replication and/or encapsidation functions for the recombinant virus,

20

iv) a ligand DNA operably linked to expression regulatory sequences that are active in nonmammalian cells, and

25

v) regulatory control sequences that regulate sequences in 10 the nonmammalian virus backbone, a modified nonmammalian virus backbone or a replication-proficient portion of the backbone or modified backbone;

30

b) transducing the resulting carrier vector into nonmammalian host cells;

35

c) growing the nonmammalian host cells under conditions in which 15 carrier virus is produced; and

d) collecting the carrier virus from the nonmammalian host cells.

40

22. The method according to claim 21, wherein the nonmammalian

virus backbone is derived from baculovirus and the nonmammalian host cells are 45 insect cells.

50

20 23. A lysate or supernatant comprising the carrier virus produced by the method according to either of claims 21 or 22.

55

5

- 90 -

10 24. The method according to either of claims 21 or 22, further comprising the step of purifying the carrier virus.

15 25. A purified preparation of carrier virus produced by the method according to any one of claims 21, 22 or 24.

20 5 26. A method for producing a recombinant virus, comprising the

steps of:

25 a) infecting mammalian host cells with a carrier virus, wherein the carrier virus optionally expresses a ligand on its surface;

b) growing the infected mammalian host cells under conditions in

30 10 which the embedded recombinant viral genome is replicated, excised and encapsidated; and

c) collecting the recombinant virus from the mammalian host cells.

35 27. The method according to claim 26, wherein the mammalian host cells are selected from CHO, BHK, MDCK, 10T1/2, WEHI cells, COS, BSC 1, BSC 40, BMT 10, VERO, WI38, MRC5, A549, HT1080, 293, B-50, 3T3, NIH3T3, HepG2, Saos-2, Huh7 or HeLa cells.

45

28. A lysate or supernatant comprising the recombinant virus produced by the method according to either of claims 26 or 27.

50

55

5

- 91 -

10 29. The method according to either of claims 26 or 27 further comprising the step of purifying the recombinant virus from the mammalian host cells.

15 5 30. A purified recombinant virus produced by the method according to any one of claims 26, 27 or 29.

20 25 31. A pharmaceutical composition comprising the carrier virus according to claim 25 or the recombinant virus according to claim 30 and further comprising a pharmaceutically acceptable carrier.

30 10 32. A method for transient or stable gene transfer of a desired transgene to a mammalian cell, comprising the step of infecting the mammalian cell with the recombinant virus according to claim 30.

35 33. The method according to claim 32, wherein said transient or stable gene transfer is for genetic immunization, correction of genetic defects or 40 15 production of proteins *in vitro*, *in vivo*, or *ex vivo*.

45 34. A method of using a recombinant virus comprising a point mutation or deletion as a vaccine, comprising the steps of producing an attenuated 50 replication-proficient recombinant virus or a replication-deficient recombinant virus by the method of claim 26 and administering the recombinant virus to a patient in a

55

5

- 92 -

10

15 the carrier virus further comprises adenoviral sequences required for replication and
encapsidation of the recombinant adenovirus.

20

25

30

35

40

45

50

55

FIGURE 1

FIGURE 2

A.**B.**

FIGURE 3

FIGURE 3 (cont.)

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

INTERNATIONAL SEARCH REPORT

Int'l. Search Application No
PCT/US 00/14481

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/864 C12N15/866 C12N7/01 A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C12N A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 98 45462 A (ANGELETTI P IST RICERCHE BIO ;CILIBERTO GENNARO (IT); RIZZUTO GAB) 15 October 1998 (1998-10-15) the whole document	1,2,4,7, 13,18-20
Y	-----	3,5-12, 21-34
X	FR 2 756 297 A (CENTRE NAT RECH SCIENT) 29 May 1998 (1998-05-29)	1,2,4, 13,18,20
Y	the whole document	5-10, 21-34
	-----	-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "T" document published prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"S" document member of the same patent family

Date of the actual completion of the international search

27 September 2000

Date of mailing of the international search report

04/10/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Mandl, B

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 00/14481

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	BARSOUM J. ET AL.: "Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein" HUMAN GENE THERAPY, vol. 8, no. 17, 20 November 1997 (1997-11-20), pages 2011-2018, XP002089846 ISSN: 1043-0342 cited in the application the whole document ---	3,11,12
X	PALOMBO F. ET AL.: "SITE-SPECIFIC INTEGRATION IN MAMMALIAN CELLS MEDIATED BY A NEW HYBRID BACULOVIRUS-ADENO-ASSOCIATED VIRUS VECTOR" JOURNAL OF VIROLOGY, vol. 72, no. 6, 1 June 1998 (1998-06-01), pages 5025-5034, XP002072663 ISSN: 0022-538X the whole document ---	1,2,4,7, 13,18-20
A	US 5 731 182 A (BOYCE FREDERICK M) 24 March 1998 (1998-03-24) the whole document, especially from column 13, line 66 to column 14, line 13 ---	3,11,12
A	HOFMANN C. ET AL.: "EFFICIENT GENE TRANSFER INTO HUMAN HEPATOCYTES BY BACULOVIRUS VECTORS" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 92, 1 October 1995 (1995-10-01), pages 10099-10103, XP002072661 ISSN: 0027-8424 the whole document ---	1-35
A	BILBAO G. ET AL.: "ADENOVIRAL/RETROVIRAL VECTOR CHIMERAS: A NOVEL STRATEGY TO ACHIEVE HIGH-EFFICIENCY STABLE TRANSDUCTION IN VIVO" FASEB JOURNAL, vol. 11, no. 8, July 1997 (1997-07), pages 624-634, XP000857999 ISSN: 0892-6638 the whole document ---	1-35
A	XIAO X. ET AL.: "Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus" JOURNAL OF VIROLOGY, vol. 72, no. 3, March 1998 (1998-03), pages 2224-2232, XP002098258 ISSN: 0022-538X the whole document ---	14-16,35

INTERNATIONAL SEARCH REPORT

Information on patent family members				Int'l. Serial Application No PCT/US 00/14481
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9845462 A	15-10-1998	IT RM970200 A AU 7077898 A	08-10-1998 30-10-1998	
FR 2756297 A	29-05-1998	AU 5226198 A BR 9713388 A CZ 9901822 A EP 0946741 A WO 9822607 A NO 992464 A SK 66699 A	10-06-1998 21-03-2000 11-08-1999 06-10-1999 28-05-1998 23-06-1999 14-02-2000	
US 5731182 A	24-03-1998	US 5871986 A AU 702830 B AU 3675095 A CA 2200835 A CN 1172435 A EP 0785803 A JP 10506530 T WO 9609074 A ZA 9507797 A	16-02-1999 04-03-1999 09-04-1996 28-03-1996 04-02-1998 30-07-1997 30-06-1998 28-03-1996 08-07-1996	