1

We see that $n + 16 = 62773929 = 7923^2$ is a square integer. This gives us $n + 4^2 = 7923^2$, so

$$n = 7923^{2} - 4^{2}$$

$$= (7923 + 4)(7923 - 4)$$

$$= 7919 \cdot 7927$$

This insecurity might be avoided by ensuring p and q do not differ by a square. If they do, then it is straightforward to try the above technique with all numbers around \sqrt{n} , eventually finding the correct factorization.

 $\mathbf{2}$

2.a

It's clear to see that gcd(22,5) = 1, so 5 is a primitive 22nd root of unity, and thus generates \mathbb{F}_{23}^{\times} .

 $|\langle 5 \rangle| = 22$, so we know $5^{22} = 1$. Thus $(5^2)^{11} = 1$, so $|\langle 5^2 \rangle| = |\langle 2 \rangle| \le 11$, so 2 is not a generator of \mathbb{F}_{23}^{\times} .

2.b

We know the polynomial $x^{23}-x$ in $\mathbb{F}_{23}[x]$ contains all the elements of \mathbb{F}_{23} as roots, so if $x^2+x+1=0$ has a root in \mathbb{F}_{23} , then $\gcd(x^{23}-x,x^2+x+1)\neq 1$. Some straightforward calculations give us $\gcd(x^{23}-x,x^2+x+1)=18$. The gcd in a field is only defined up to multiplication by a constant, so this means 1 is also a gcd. Thus it must be the case that x^2+x+1 has no roots in \mathbb{F}_{23} .

3

3.a

If q=2, then $\sum_{a\in\mathbb{F}_q^+}=1$. If $q=2^k$, k>1, then $\mathbb{F}_q^+\cong\bigoplus_{i=1}^k\mathbb{Z}_2$.

Thus if we label the elements of \mathbb{F}_q^+ as (r_1, \ldots, r_k) , then for any r_i , there are exactly 2^{k-1} elements in which it is 0, and 2^{k-1} in which it is 1. So adding together all elements leaves us with $(0, \ldots, 0)$, since each spot in the tuple is the sum of an even number of 1s (and an even number of 0s).

Otherwise, if $q = p^k$, $p \neq 2$ a prime, $k \geq 1$, then $\mathbb{F}_q^+ \cong \bigoplus_{i=1}^k \mathbb{Z}_p$. Then the sum in each slot is

$$1 + \dots + p - 1 = (1 + p - 1) + (2 + p - 2) + \dots + \left(\left\lfloor \frac{p}{2} \right\rfloor + \left\lceil \frac{p}{2} \right\rceil \right)$$
$$= 0 + 0 + \dots + 0$$
$$= 0$$

since p is odd, and so we end up with $(0, \ldots, 0)$.

3.b

We know that \mathbb{F}_q^{\times} is cyclic is order q-1, so let $\langle g \rangle = \mathbb{F}_q^{\times}$. Then $\prod_{a \in \mathbb{F}_q^{\times}} = g^1 \cdot g^2 \cdot \ldots \cdot g^{q-1} = g^{\frac{(q-1)(q-1+1)}{2}} = g^{\frac{q^2-q}{2}}$. If $q \neq 2$, then q-1 is even. This means $\frac{q^2-q}{2} = q^{\frac{q-1}{2}} = qk$ for $k = \frac{q-1}{2}$. Notice that k is an integer. So $g^1 \cdot g^2 \cdot \ldots \cdot g^{q-1} = g^{qk} = (g^q)^k = g^k$. Thus

$$\prod_{a\in\mathbb{F}_q^\times}=g^k=g^{\frac{q-1}{2}}=g^{\frac{\left|\mathbb{F}_q\right|}{2}}=-1=q-1.$$

4

4.a

Suppose not. Then there are some non-units $g(x), h(x) \in \mathbb{F}_2[x]$, with $g(x)h(x) = x^5 + x^3 + 1$. $x^5 + x^3 + 1$ clearly has no degree one factors, so WLOG g(x) and h(x) must have degree two and three, respectively. That is, $g(x) = ax^2 + bx + c$, and $h(x) = qx^3 + rx^2 + sx + t$. Then

$$g(x)h(x) = aqx^5 + (ar + bq)x^4 + (as + br + cq)x^3 + (at + bs + cr)x^2 + (bt + cs)x + ct.$$

So we have:

$$aq = 1 \tag{1}$$

$$ar + bq = 0 (2)$$

$$as + br + cq = 1 (3)$$

$$at + bs + cr = 0 (4)$$

$$bt + cs = 0 (5)$$

$$ct = 1 (6)$$

By (1), a=q=1. Then (2) gives ar+bq=r+b=0, so b=r. (3) gives us as+br+cq=s+br+c=0. By (6), t=1, so (4) gives us at+bs+cr=at+bs+cb=at+b(s+c)=0. a=t=1, so at=1. Thus b(s+c)=1. Then s+c=1. b=r, so r=1, but this means s+br+c=br+(s+c)=0, a contradiction, since by (3), as+br+cq=s+br+c=1. So no such g(x), h(x) exist, and thus x^5+x^3+1 is irreducible in $\mathbb{F}_2[x]$.

4.b

No. It would always have a root at x = 1, and would thus factor into the monomial (x+1) and some other polynomial.

5

5.a

Let $\alpha^2 + \alpha + 7 = 0$. Then $\langle \alpha \rangle = \mathbb{F}_{121}^{\times}$. So $|\alpha| = 120$. Consider α^k . $\langle \alpha \rangle = \{1, \alpha^k, \dots, \alpha^{\frac{120}{\gcd(120,k)}}\}$, so $|\alpha^k| = 120$ when $\gcd(120, k) = 1$. Thus our generators are all a^k with $\gcd(120, k) = 1$, so \mathbb{F}_{121} has $\varphi(120)$ generators.

5.b

 α^{30}

5.c

 α^{24}

6

In order for \mathbb{F}_{p^m} to be a subfield of \mathbb{F}_{p^n} , it must be the case that $m \mid n$. So the subfields of $\mathbb{F}_{p^{p^2}}$ are all the \mathbb{F}_{p^m} such that $m \mid p^2$. Thus m = 1, p. So all the subfields of $\mathbb{F}_{p^{p^2}}$ are \mathbb{F}_p and \mathbb{F}_{p^p} . The containment is as follows: $\mathbb{F}_p \subsetneq \mathbb{F}_{p^p} \subsetneq \mathbb{F}_{p^{p^2}}$

7

7.a

Let $l \in \mathbb{L}$. We know that $\{a_1, \ldots, a_m\}$ is a basis of \mathbb{L} over \mathbb{K} , so

$$l = a_1 k_1 + \ldots + a_m k_m$$

where $k_i \in \mathbb{K}$. Similarly, $\{b_1, \ldots, b_n\}$ is a basis of \mathbb{K} over \mathbb{F} , so for each k_i ,

$$k_i = b_1 f_{i1} + \ldots + b_n f_{in}$$

where $f_{ij} \in \mathbb{F}$. This means our arbitrarily chosen l can be rewritten as

$$l = a_1(b_1f_{11} + \dots + b_nf_{1n}) + \dots + a_m(b_1f_{m1} + \dots + b_nf_{mn})$$

= $a_1b_1f_{11} + a_1b_2f_{12} + \dots + a_mb_nf_{mn} \in \text{Span}\{a_ib_j \mid 1 \le i \le m, 1 \le j \le n\},$

so the above is indeed a basis of \mathbb{L} over \mathbb{F} , as desired.

7.b

 $\{1, \sqrt[3]{2}, i\}$