Programming Assignment Questions

15CSE363 Principles of Digital Image Processing

Image Databases: https://www.imageprocessingplace.com/root_files_V3/image_databases.htm
https://www.cse.unr.edu/~bebis/CS474/images.html

Image Reading & Displaying

Read one color image and convert into gray level and display the same.

Image Enhancement

Read one color image and change its brightness and contrast.

Image Sampling

Write a program to change the spatial resolution from 256 x 256 to 128 x 128, 64 x 64, and 32 x 32 pixels using sub-sampling by a factor of 2, 4, and 8 correspondingly. For comparison purposes, resize the sub-sampled images back to the original size 256 x 256. Show your results using the "lenna" and "peppers" images from the image gallery. The example below shows how to sub-sample and resize an image assuming a factor of 2. Use the same idea for factors 4 and 8.

Image Quantization

Write a program to reduce the number of gray levels L in an image from L=256 to: (i) L=128, (ii) L=32, (iii) L=8, and (iv) L=2. Show your results using the "lenna" and "peppers" images. For visualization purposes, you can still use the gray level values in [0, 255].

Histogram Equalization

- (a) Perform histogram equalization on the "boat" and "f_16" images.
- (b) Show all images and their histograms before and after equalization and analyze your results.

Image Smoothing

Smooth the images using the following filters

- (a) Guassian (apply different sigma values)
- (b) Median filter
- (c) Average filter

Image Sharpening

- (a) Perform image sharpening by developing different types of Laplacian masks.
- (b) Implement unsharp masking and high-boost filtering.