Análise de dados: uma leitura crítica das informações

Análise de Dados: Apresentação e Ferramentas Básicas

Fundação Escola Nacional de Administração Pública

Diretoria de Desenvolvimento Profissional

Conteudista/s

Ricardo Alexandre Amaral (conteudista, 2022); Diretoria de Desenvolvimento Profissional.

Enap, 2022 Fundação Escola Nacional de Administração Pública Diretoria de Desenvolvimento Profissional SAIS - Área 2-A - 70610-900 — Brasília, DF

Sumário

Unidade 1: Noções básicas de análise de dados	5
1.1 Dados: definição, tipos e a tomada de decisão	5
1.2 Análise qualitativa, quantitativa e complementaridade	7
Referências	11
Unidade 2: Por Que Estatística?	12
2.1 O domínio de atuação da estatística	12
2.2 Aplicações do tratamento estatístico de informações	14
Referências	16
Unidade 3: O Poder das Lentes Estatísticas	17
3.1 A leitura de dados sociais com base na análise de dados	17
3.2 Exame de dados sociais brasileiros	21
Referências	23

Apresentação e Boas-vindas

Seja bem-vindo e bem-vinda ao curso Análise de Dados: uma Leitura Crítica das Informações.

Neste curso as noções de estatística serão as lentes fundamentais que nortearão o seu estudo. Mas não se preocupe, as ferramentas estatísticas necessárias para o entendimento do conteúdo serão definidas e retomadas ao longo de todo o curso para ajudar você a alcançar o objetivo geral desta capacitação. Ao final de seus estudos é esperado que você saiba utilizar os fundamentos estatísticos para ler os dados de maneira objetiva e crítica. Dessa forma, o objetivo central do curso se volta à necessidade de entender, na atual era da informação, o conceito de dados e de como tecer uma leitura crítica e objetiva destes.

A estatística é entendida como a ciência dos dados, visto que tem ligação direta com o tratamento desses dados em vários campos do saber. Especialmente neste curso, você poderá analisar o alinhamento da estatística com o desenvolvimento da sociedade, via produção de pesquisa social e por meio de indicadores que permitem mensurar desde características regionais de um país, até suas demandas de desenvolvimento socioeconômico.

O propósito é que este curso sirva para aprimorar um olhar crítico sobre o tema análise de dados e sobre outras áreas de atuação adjacentes ao tema como, por exemplo: gestão, mercado, políticas públicas e a cultura do cidadão pleno. Dessa forma, uma vez que o indivíduo estabeleça vínculo com as mídias informativas espera-se que ele esteja apto à leitura e interpretação de dados.

O conteúdo ao longo do curso está distribuído em três módulos. No primeiro módulo você irá reconhecer qual a importância da análise de dados, irá compreender a conexão entre estatística e tratamento de dados, além de examinar sistemas sob o prisma estatístico.

No segundo módulo você irá reconhecer os principais formatos de representação de dados, analisar correlações não-lineares, além de examinar os ajustes linear e quadrático.

Por fim, no terceiro módulo, irá identificar a contribuição computacional associada ao tratamento de dados, reconhecerá as conexões entre análise de dados e pensamento estratégico, além de reconhecer a importância da análise de dados para a leitura crítica das informações.

Então é hora de começar!

Módulo

Análise de Dados: Apresentação e Ferramentas Básicas

Unidade 1: Noções básicas de análise de dados

Objetivo de aprendizagem

Ao final desta unidade, você será capaz de reconhecer a relevância da análise de dados.

Por meio da construção de um contexto que exemplifique as definições básicas relativas à análise de dados e suas aplicações diretas você irá desenvolver um arcabouço teórico básico aplicado ao tema.

1.1 Dados: definição, tipos e a tomada de decisão

Para iniciar seus estudos sobre o tema "dados" você pode começar pensando sobre duas perguntas:

- Como é possível descrever um sistema complexo e intrincado como o de um grande país como o Brasil?
- Neste contexto, como é possível representar temas como renda, educação, trabalho, economia, em âmbito nacional, de uma forma mais simples?

Em resposta a estes questionamentos iniciais surge o campo de pesquisa da Estatística, que é definida como um conjunto de técnicas para o tratamento de dados.

Para exemplificar como a estatística trabalha com o tratamento de dados, a figura a seguir mostra um conjunto de índices relacionados ao Brasil. Nela estão associado resultados estatísticos construídos através da interpretação de dados que tentam traduzir, de forma resumida, como é o país em diferentes áreas de interesse. Neste caso os dados estão organizados nas categorias de escolarização, analfabetismo, fecundidade, mortalidade infantil, renda e desocupação.

Conjunto de índices relacionados ao Brasil.

Fonte: IBGE - Indicadores Brasileiros. Elaboração: CEPED/UFSC (2022).

É preciso ter em mente que a análise de dados utiliza fragmentos estatísticos para tratar e organizar dados com a intenção de desvendar informações e caracterizar sistemas que sem a utilização de recursos estatísticos seriam praticamente de impossível compreensão, devido à imensa quantidade de informação intrinsecamente atrelada a cada uma de suas esferas.

Órgãos governamentais, entidades e empresas como as Organizações das Nações Unidas (ONU) e a Google tem um pensamento fortemente calcado em dados. Isso pode ser percebido em seus relatórios ou em suas ferramentas de tecnologia como o Google Analytics, que é um serviço automatizado de fluxo de acesso a páginas da internet.

No cenário brasileiro, um exemplo típico da análise de dados são as pesquisas por amostragem da população. A Pesquisa Nacional por Amostra de Domicílios Contínua (PNAD Contínua), por exemplo, é realizada pelo Instituto Brasileiro de Geografia e Estatística (IBGE) e, ao invés de entrevistar cada brasileiro, constrói uma base de dados relativos a grupos de indivíduos e tece um panorama global das características da população brasileira sobre aspectos como renda, escolarização, moradia, constituição familiar etc.

Para saber mais sobre a Pesquisa Nacional por Amostra de Domicílios Contínua, clique aqui e acesse o site.

A análise de dados é vista hoje como uma ferramenta fundamental para tratar dados e extrair informações de modo hábil e dinâmico nas mais diversas áreas do conhecimento. Elementos da análise de dados são percebidos a todo momento no contato com veículos de informação, que mostram taxas, índices e gráficos nos mais diversos ramos do conhecimento.

1.2 Análise qualitativa, quantitativa e complementaridade

É interessante que no estudo sobre análise de dados haja o conhecimento de uma base mínima de termos estatísticos. Para isso, veja a definição de alguns conceitos básicos que serão norteadores ao longo deste conteúdo:

- **Elementos:** partes, objetos que tecem um conjunto. Exemplo: Distrito Federal, Acre, Alagoas, Sergipe e Tocantins, como elementos do conjunto de estados brasileiros.
- População: é um conjunto de elementos, é o rol a ser estudado.
 Exemplo: estados e Distrito Federal, compõem a população de "estados brasileiros".
- Amostra: é uma parte, um subconjunto da população.
 Exemplo: a seleção dos 5 estados com maior participação industrial no Brasil.

Deste modo, em estudos acerca de dados econômicos da indústria de tecnologia brasileira (população) é praticamente impossível analisar todas as informações (elementos), uma vez que se trata de uma população exaustivamente grande, ao invés disso são tecidos estudos em amostras para recriar o entendimento acerca de todo o sistema (população).

Da mesma forma, no exame quanto às características da constituição familiar brasileira é igualmente inviável entrevistar todos os brasileiros (população) sobre as particularidades de sua família (elementos), ao passo que a alternativa é tecer e analisar conjuntos de elementos, subconjuntos da população (amostras) formados por uma parcela de todas as famílias, cuja finalidade é retratar a população familiar brasileira inteira.

Neste contexto, a estatística é a ciência responsável pela coleta, organização, tratamento, interpretação de dados e pela extrapolação dos resultados desses conceitos, lembrando que as definições estatísticas dependem da interpretação do problema concretamente estudado.

Existem muitas classificações de dados, dentre as quais é possível destacar:

- **Qualitativa:** subjetiva, não numérica, associada a qualidades. Exemplo: entre os estados brasileiros, São Paulo é o mais representativo com relação ao PIB nacional (IBGE, 2021);
- Quantitativa: é objetiva, numérica.
 Exemplo: o estado de São Paulo representa 31,8% da soma de todos os bens e serviços finais produzidos pelo Brasil (PIB) segundo o IBGE em 2021;
- Quali-Quantitativas:

 de uma análise qualitativa e quantitativa.
 Exemplo: Embora o PIB total do Brasil seja da ordem de R\$ 7,4 trilhões, distribuídos por 26 unidades, o que resulta em R\$ 270 milhões por estado (média), o valor médio exposto não caracteriza suficientemente bem o PIB de cada estado, uma vez que os dados são muito heterogêneos (análise feita com base nos dados do IBGE, 2021).

A seguir, um quadro relacionado ao PIB dos estados brasileiros ajuda a exemplificar como poderiam ser apresentadas as variáveis quantitativas do PIB de cada estado, ou seu percentual. O quadro mostra elementos do PIB de cada estado brasileiro, que por sua vez tecem uma população de dados quantitativos com relação a este indicador econômico.

PIB médio dos estados				
Estado	PIB (de milhões de R\$)	%		
Acre	15.331	0,22		
Alagoas	54.413	0,78		
Amapá	16.795	0,24		
Amazonas	100.109	1,73		
Bahia	286.240	4,09		
Ceará	155.904	2,23		
Distrito Federal	254.817	3,64		
Espírito Santo	137.020	1,96		
Goiás	195.682	2,79		
Maranhão	98.179	1,40		
Mato Grosso	137.443	1,96		
Mato Grosso do Sul	106.969	1,53		
Minas Gerais	614.876	8,78		
Paraná	440.029	6,28		
Paraíba	64.374	0,92		
Pará	161.350	2,30		
Pernambuco	186.352	2,66		
Piauí	50.378	0,72		
Rio de Janeiro	758.859	10,83		
Rio Grande do Norte	66.970	0,96		
Rio Grande do Sul	457.294	6,53		
Rondônia	44.914	0,64		
Roraima	13.370	0,19		
Santa Catarina	298.227	4,26		
Sergipe	42.018	0,60		
São Paulo	2.210.562	31,56		
Tocantins	35.666	0,51		
	7.004.141	100,00		
PIB Médio dos Estados (milhões de R\$)	269.390,04			

PIB médio dos estados.

Fonte: IBGE. Elaboração: CEPED/UFSC (2022).

Ao chegar até aqui você finalizou o estudo desta unidade! Parabéns! Caso surjam dúvidas, revisite o conteúdo para aprofundar seu entendimento sobre o que foi apresentado.			

Referências

ALVES, Isabel Fraga. Data Science, Big Data e um novo olhar sobre a Estatística. **Boletim SPE**: O Tema Central da Estatística - um novo olhar, Lisboa, v. 12, n. 2, p. 29-31, 2017. Semestral.

GIBBS, Graham. Análise de dados qualitativos. Porto Alegre, Artmed; 2009.

HURWITZ, Judith et al. Big Data para leigos. Rio de Janeiro, Alta Books Editora, 2016.

INSTITUTO BRASILEIRO DE GEOGRAFIA (IBGE). **O que é o PIB**. Rio de Janeiro, IBGE, 2021. Disponível em: https://www.ibge.gov.br/explica/pib.php. Acesso em: 12 nov. 2021.

PROVOST, Foster; FAWCETT, Tom. **Data Science for Business**: What you need to know about data mining and data-analytic thinking. Sebastopol (USA) O'Reilly Media, Inc., 2013.

SILVESTRE, António. **Análise de dados e estatística descritiva**. Forte da Casa, Escolar Editora, 2007.

VUOLO, José Henrique. **Fundamentos da teoria de erros**. São Paulo, Editora Blucher, 1996.

Unidade 2: Por Que Estatística?

Objetivo de aprendizagem

Ao final da unidade você será capaz de reconhecer a conexão entre estatística e o tratamento de dados, tendo em vista a construção da informação.

2.1 O domínio de atuação da estatística

É muito difícil delimitar a difusão dos recursos estatísticos, visto que a construção de médias, a tabulação de dados, a utilização de uma planilha ou a leitura de um gráfico em um jornal é, essencialmente, praticar análise de dados. A diferença básica entre essas ações é o nível de proficiência exigida em áreas cuja estatística se torna uma verdadeira linguagem como, por exemplo, a Econometria, a Bioestatística, o Controle de Qualidade, a Teoria de Erros etc.

O fato é que a estatística trata dados e contribui de forma significativa para um processo de tomada de decisão. Em conformidade ao crescente volume de dados atualmente tratados, a utilização de recursos computacionais é franca e alavanca as potencialidades das ferramentas estatísticas, o que dá origem a métodos numérico-computacionais para tratamento de informação.

Tais métodos numérico-computacionais utilizam técnicas quantitativas que são tratadas de modo não-manual, sendo executadas por dispositivos eletrônicos como computadores, celulares, entre outros, que se diferenciam, basicamente, pelos diferentes níveis de automação que apresentam.

Um exemplo deste método pode ser observado quando é executada uma soma em uma planilha. A soma e outras operações são feitas de modo automático (ou sem a intervenção humana). Esse é um exemplo típico de um método numérico que possui algum nível de automação.

Automação das tabelas.

Fonte: Freepik. Elaboração: CEPED/UFSC (2022).

Amarrado aos métodos numéricos, um termo que está se tornando usual nos dias atuais é o *big data*, que em suma é a enorme capacidade de captação, armazenamento e processamento de informações alavancadas pelos avanços computacionais disponíveis.

Big data trata-se da aplicação de sistemas e técnicas de tratamento de dados ajustados para lidar com um grande volume de dados, na maioria das vezes impraticáveis por meio de computadores domésticos.

Logo, o *big data* é uma extensão dos métodos numéricos de análise de dados que visa tratar de gigantescas quantidades de dados e é comumente caracterizado por um tratamento de dados massivamente automatizado a altura do volume de dados que examina. Um exemplo são as ferramentas que estudam as preferências, interesses e comportamento dos usuários da internet e assim recomendam entretenimento e compras específicas ao perfil do usuário.

2.2 Aplicações do tratamento estatístico de informações

Em conformidade com a estatística, as aplicações derivadas dos métodos estatísticos também se mostram incomensuráveis e estão atreladas desde a sugestão de uma música pelo seu serviço de *streaming* de áudio à tomada de decisão em âmbito empresarial.

Ao contrário de uma demarcação precisa, o propósito deste tópico é elencar as principais aplicações estatísticas de modo contextual e, assim, sustentar o entendimento dos conceitos basilares acerca da análise de dados e a criticidade que emerge dela.

Na sociedade atual, há um bombardeio de emaranhados de dados de natureza estatística que buscam quantificar e traduzir comportamentos sobre diversos campos de atividades, tais como esportes, política, economia, costumes regionais e sociais. São tabelas, gráficos, índices e muitas outras representações com as quais os indivíduos se deparam em uma simples pesquisa de preços no uso cotidiano de um celular.

Deste modo a análise de dados tem contribuído de forma significativa para o processo de tomada de decisão em diversos ramos, tanto na iniciativa privada como na pública, visto que grande parte do que se executa ou planeja é baseado em métodos quantitativos que extraem resultados a partir de dados brutos.

Atualmente o volume de dados produzidos pelo mundo moderno é muito grande, de modo que a automatização dos processos, como a utilização de recursos computacionais, é notória, todavia as bases matemáticas são comumente mantidas. Em outras palavras, a consistência da análise de dados é a mesma, apenas os algoritmos de cálculo são executados por máquinas para conseguir cumprir demandas cada vez maiores, o que significa que um cálculo de média que antes era tecido manualmente, agora é computacional.

Volume de dados produzidos pelo mundo moderno.

Fonte: Freepik. Elaboração: CEPED/UFSC (2022).

É difícil perceber uma área do conhecimento humano alheia às técnicas de análise de dados, muito comuns e que tangem ao planejamento, coleta, análise, organização e interpretação de dados de pesquisas envolvendo censos ou estudos por amostragem, associados a um estudo de toda a população ou elementos aleatórios desta.

Assim é notório frisar que as estratégias de tratamento de dados não se limitam a nichos específicos ou órgãos estatais como o IBGE. Essas estratégias fazem parte de diversas áreas e podem ser empregadas, por exemplo, para gerir uma empresa que precise determinar a associação entre a renda média e o perfil de produtos demandado pelo público que quer atingir. Para isso, essa empresa poderia utilizar a análise de informações e resultados que são fruto das estratégias de tratamento de dados.

De uma forma cada vez mais cotidiana, o contato com jornais, sites de notícias, ou mesmo uma procura de preços via internet, requer uma frequente leitura de tabelas de dados, gráficos, médias, tendências etc. Atualmente, praticamente toda a informação que é fornecida ao público utiliza ferramentas de análise de dados.

Ao chegar até aqui você finalizou o estudo desta unidade! Caso surjam dúvidas, reveja o conteúdo. Bons estudos!

Referências

ALVES, Isabel Fraga. Data Science, Big Data e um novo olhar sobre a Estatística. **Boletim SPE**: O Tema Central da Estatística - um novo olhar, Lisboa, v. 12, n. 2, p. 29-31, 2017. Semestral.

CARVALHO, Marilia Sá; SOUZA-SANTOS, Reinaldo. Análise de dados espaciais em saúde pública: métodos, problemas, perspectivas. **Cadernos de Saúde Pública**, Rio de Janeiro, v. 21, p. 361-378, 2005.

COMARELA, Giovanni et al. Introdução à Ciência de Dados: Uma Visão Pragmática utilizando Python, Aplicações e Oportunidades em Redes de Computadores. SCHAEFFER FILHO, Alberto Egon; CORDEIRO, Weverton Luis da Costa; CAMPISTA, Miguel Elias Mitre (ed.). **Minicursos do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos**, Porto Alegre, Sociedade Brasileira de Computação, p. 246-295, 2019.

GIBBS, Graham. **Análise de dados qualitativos**. Porto Alegre, Artmed; 2009.

HURWITZ, Judith et al. **Big Data para leigos**. Rio de Janeiro, Alta Books Editora, 2016.

INSTITUTO BRASILEIRO DE GEOGRAFIA (IBGE). **O que é o PIB**. Rio de Janeiro, IBGE, 2021. Disponível em: https://www.ibge.gov.br/explica/pib.php. Acesso em: 12 nov. 2021.

PROVOST, Foster; FAWCETT, Tom. **Data Science for Business**: What you need to know about data mining and data-analytic thinking. Sebastopol (USA) O'Reilly Media, Inc., 2013.

SILVESTRE, António. **Análise de dados e estatística descritiva**. Forte da Casa, Escolar Editora, 2007.

SOUZA, Emanuel Fernando Maia de; PETERNELLI, Luiz Alexandre; MELLO, Márcio Pupin de. **Software Livre R**: aplicação estatística. 2014. Universidade Federal da Paraíba.

VITALI, Marieli Mezari. Estatística sem matemática para psicologia. **Revista Brasileira de Psicodrama**, São Paulo, v. 27, n. 1, p. 139-144, 2019.

VUOLO, José Henrique. **Fundamentos da teoria de erros**. São Paulo, Editora Blucher, 1996.

Unidade 3: O Poder das Lentes Estatísticas

Objetivo de aprendizagem

Ao final desta unidade você será capaz de examinar sistemas sob o prisma estatístico.

3.1 A leitura de dados sociais com base na análise de dados

Um campo notório da análise de dados é a construção e compreensão de parâmetros estatísticos para ilustrar características de um grande volume de dados. A partir da análise de dados é possível compreender, por exemplo, sistemas complexos como a sociedade brasileira e aspectos de seus indicadores sociais. Neste tipo de tarefa são utilizados métodos estatísticos, frequentemente quantitativos, para ilustrar e comunicar um conjunto de fenômenos complexos de uma forma simples.

Durante este tópico será utilizado o exemplo da sociedade brasileira e seus indicadores para que seja mais fácil compreender alguns conceitos complexos que serão apresentados.

Para iniciar essa discussão é preciso que você compreenda o significado do conceito de média. O mecanismo de cálculo de média é comum e aparece cedo nos conteúdos escolares, sendo atrelado ao valor que busca melhor representar um conjunto de medidas.

Veja sua definição:

O algoritmo de cálculo da média (ou média simples) determina que sejam somados todos os termos e divididos pela quantidade de dados envolvidos, e o resultado tem a função de representar os dados que lhe originaram. **Exemplo:** pense que um conjunto de notas foi atribuído por um professor e são elas as seguintes: 8, 7 e 10. Você poderia determinar uma média utilizando o cálculo abaixo:

Média =
$$(7 + 8 + 10)/3 = 25/3 = 8,33$$

Veja que o resultado é igual a 8,33. Esse fator é o que tende a melhor representar o conjunto de notas analisadas.

Transpondo para o cenário nacional, uma média atrelada a regiões pode recriar indicadores sociais simples, diretos e altamente compactos quanto a informações importantes como escolarização, renda etc. Esses fatores servem, estrategicamente, para identificação de bolsões de vulnerabilidade e pobreza, e a implantação de políticas específicas para sanar essas desigualdades, por exemplo.

A seguir, uma tabela que contextualiza essa discussão com relação à média e sua compacta representação de informações, visto que nela são exibidos, resultados acerca do rendimento médio dos brasileiros no período de 2012 a 2021 com base no IBGE (2021):

Período	Valores (R\$)	Desvio
nov-dez-jan 2021	2.651	75
dez-jan-fev 2021	2.627	51
jan-fev-mar 2021	2.635	59
fev-mar-abr 2021	2.604	28
mar-abr-mai 2021	2.602	26
abr-mai-jun 2021	2.562	-14
mai-jun-jul 2021	2.539	-37
jun-jul-ago 2021	2.503	-73
jul-ago-set 2021	2.459	-117
Média	2.576	

Dados do rendimento médio dos brasileiros no nos trimestres do ano de 2021 apresentados em tabela.

Fonte: IBGE (2021). Elaboração: CEPED/UFSC (2022).

Agora que você já observou os dados da tabela, atente a alguns detalhes:

 Os valores médios em cada período, ou seja, cada linha, recriam de modo compacto um gigantesco número de dados com relação à renda dos brasileiros;

- A tabela em discussão é um recorte, uma vez que o rol completo de tais resultados é muito extenso;
- A última linha da tabela exibe uma média, calculada em relação a todo o período, ou seja, somando todos os fatores da coluna de valores e dividindo pela quantidade de termos e, assim, obtendo o resultado;
- A terceira coluna da tabela, denominada desvio, mostra o quanto os valores se posicionam acima ou abaixo deste valor médio global. Veja o exemplo (primeira linha e terceira coluna), nele o primeiro valor é determinado como a diferença entre o valor no período e a média, assim 2651-2576= 75. Ou seja, o resultado está 75 acima da média.

O gráfico a seguir está atrelado às informações de rendimento médio dos brasileiros no período de 2012-2021 descritas na tabela anterior, e apenas organiza os dados de outra forma. Dentre as nuances deste novo modelo de exposição dos dados é interessante observar que o gráfico é global e compacto, pois consegue acomodar mais facilmente todas as informações, não sendo necessário suprimir linhas como comumente é feito para tabelas extensas, além de explicitar tendências, máximos e mínimos.

Dados do rendimento médio dos brasileiros no período nos trimestres do ano 2021 apresentados em gráfico.

Fonte: IBGE. Elaboração: CEPED/UFSC (2022).

No gráfico é possível visualizar as mesmas informações sobre o rendimento médio dos brasileiros que foram vistas na tabela anterior. É importante observar que:

- a linha vermelha mostrada no gráfico está sugestivamente por volta de 2500, indicando que é a média global;
- a renda média em cada período, representada por pontos azuis, é comumente estável ao longo de todo o período de trimestres de 2021, uma vez que se mantém sem grandes aumentos e quedas ao longo de todo o período estudado;
- a renda média em cada período exibe um máximo para o trimestre dos meses de novembro, dezembro e janeiro de 2021 e um mínimo durante o trimestre dos meses de julho, agosto e setembro de 2021.

Outra demonstração da utilidade da análise de dados é a construção de índices que, assim como as médias, auxiliam na construção de medidas estatísticas com capacidade de representar grandes sistemas.

A rigor, um índice apresenta a evolução de um número ao longo do tempo, como uma razão em formato percentual, ou seja, uma divisão direta do novo preço pelo preço antigo, escrita na forma de porcentagem.

Exemplo: se o litro de combustível em uma dada semana custa R\$5,00 e, na seguinte, seu valor é R\$5,50, então se divide 5,5/5, o que resulta em 1,1 e é lido em valor percentual como 110%. Portanto, entende-se como uma alta de 10% para o produto no período exemplificado.

O índice de preços ao consumidor (IPC) é um indicador da inflação do país e é determinado com base no preço médio necessário para comprar um conjunto de bens de consumo e serviços, também em comparação a um período anterior.

Deste modo, o IPC pode ser relacionado de maneira análoga ao exemplo anterior, exceto que não faz jus a um único produto mas a uma grande lista de produtos e serviços.

O método de cálculo do IPC é uma comparação direta do preço da cesta de produtos

e serviços entre dois períodos e, assim, é determinado pela razão do preço antigo (PA) e subsequente ou corrente (PC) da mesma cesta. Isso significa dividir tais custos e interpretá-los como percentuais, o que justifica a multiplicação por 100 na fórmula de cálculo. A fórmula do cálculo IPC se organiza como está apresentado a seguir.

$$IPC = (PC)/(PA).100$$

Índices análogos ao IPC são frequentemente encontrados, um dos exemplos são os indicativos de emprego associados à população em idade ativa, que basicamente executam uma razão entre a população ocupada (PO) e a população desocupada (PD), ou seja, taxa de emprego é (PO)/(PD).

Praticamente todos os países, organismos internacionais e empresas líderes de mercado se mostram interessadas em investir na análise de dados, pela qual é possível não só caracterizar o presente, como também estimar e fazer projeções futuras.

3.2 Exame de dados sociais brasileiros

O Instituto Brasileiro de Geografia e Estatística (IBGE) é um instituto público da administração federal brasileira, criado em 1934, e cujas atribuições estão intimamente ligadas às geociências e estatísticas sociais, demográficas e econômicas. Caracterizase pela realização de censos e tratamento das informações obtidas nessas pesquisas para suprir órgãos governamentais e o público em geral.

Como um todo, os dados coletados e tratados pelo IBGE são instrumentos de caracterização da população brasileira. Um exemplo é o censo de 1970, um marco com relação à organização, à riqueza de detalhes e à confiabilidade dos resultados.

Instituto Brasileiro de Geografia e Estatística.

Fonte: IBGE. Elaboração: CEPED/UFSC (2022).

É interessante constatar que o IBGE faz e promove pesquisa de cunho fortemente social, visto que é o maior provedor de informações do país, as quais planificam inúmeras ações, sobretudo no campo de políticas públicas. Isso inclui ações de distribuição de renda, ou a implantação de escolas técnicas federais em um município que detém baixos indicadores socioeconômicos com vista no desenvolvimento regional, por exemplo.

É relevante deixar claro que a representação promovida pela análise de dados, embora importante na caracterização de um sistema ou da dinâmica social de um país, é uma abstração, um esboço estatístico, o qual não é perfeito. É o análogo da organização de um rol de pistas, em um processo de investigação.

Dentre as alternativas para minimizar as imperfeições inerentes à análise de dados é interessante utilizar diferentes métodos de investigação, como métodos qualitativos, quantitativos e híbridos (ambos em conjunto), visto que tais vieses não são hierarquizados, mas complementares.

A Pesquisa Nacional por Amostra de Domicílios (PNAD) e suas reformulações como a PNAD Contínua, é um estudo aplicado desde 1967 pelo IBGE que se utiliza desses métodos. Esse estudo capta informações para produzir resultados estatísticos estratégicos para o Brasil e ao longo do tempo foi aperfeiçoando fatores como periodicidade, métodos de cálculo, captação de amostras etc. Sua ideia central gira em torno de apurar resultados e mapear características gerais sobre população, educação, trabalho, rendimento e habitação.

Assim são captados dados com relação à posse e uso de utensílios, escolaridade, renda, naturalidade, formas de obtenção de informação, etc.

Referências

ALVES, Isabel Fraga. Data Science, Big Data e um novo olhar sobre a Estatística. **Boletim SPE**: O Tema Central da Estatística - um novo olhar, Lisboa, v. 12, n. 2, p. 29-31, 2017. Semestral.

CARVALHO, Marilia Sá; SOUZA-SANTOS, Reinaldo. Análise de dados espaciais em saúde pública: métodos, problemas, perspectivas. **Cadernos de Saúde Pública**, Rio de Janeiro, v. 21, p. 361-378, 2005.

COMARELA, Giovanni et al. Introdução à Ciência de Dados: Uma Visão Pragmática utilizando Python, Aplicações e Oportunidades em Redes de Computadores. SCHAEFFER FILHO, Alberto Egon; CORDEIRO, Weverton Luis da Costa; CAMPISTA, Miguel Elias Mitre (ed.). **Minicursos do XXXVII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos**, Porto Alegre, Sociedade Brasileira de Computação, p. 246-295, 2019.

GIBBS, Graham. **Análise de dados qualitativos**. Porto Alegre, Artmed; 2009.

HURWITZ, Judith et al. Big Data para leigos. Rio de Janeiro, Alta Books Editora, 2016.

INSTITUTO BRASILEIRO DE GEOGRAFIA (IBGE). **O que é o PIB**. Rio de Janeiro, IBGE, 2021. Disponível em: https://www.ibge.gov.br/explica/pib.php. Acesso em: 12 nov. 2021.

PROVOST, Foster; FAWCETT, Tom. **Data Science for Business**: What you need to know about data mining and data-analytic thinking. Sebastopol (USA) O'Reilly Media, Inc., 2013.

SILVESTRE, António. **Análise de dados e estatística descritiva**. Forte da Casa, Escolar Editora, 2007.

SOUZA, Emanuel Fernando Maia de; PETERNELLI, Luiz Alexandre; MELLO, Márcio Pupin de. Software Livre R: aplicação estatística. 2014. Universidade Federal da Paraíba.

VITALI, Marieli Mezari. Estatística sem matemática para psicologia. **Revista Brasileira de Psicodrama**, São Paulo, v. 27, n. 1, p. 139-144, 2019.

VUOLO, José Henrique. **Fundamentos da teoria de erros**. São Paulo, Editora Blucher, 1996.