Computer Science Department, College of Computer and Information Sciences, King Saud University.

CSC 311

The Second Semester, 2020/2021 Homework #1 Due on February 14, 2021.

Q1: Using the definition of Θ , give a formal proof for: $0.5n^3 - 4n^2 + 2 \in \Theta(n^3)$.

Q2: Give a formal proof for: $f(n) \in O(g_1(n))$ and $h(n) \in O(g_2(n)) \Rightarrow f(n) + h(n) \in O(MAX(g_1(n), g_2(n)))$.

Q3 (Q5, Section 2.3 in the Textbook): Order the following functions according to their order of growth (from the lowest to the highest): (n-2)!, $5 \lg(n+100)^{10}$, 2^{2n} , $0.001n^4$, $3n^3+1$, $\ln^2 n$, $\sqrt[3]{n}$, 3^n .

Q4: What is the time complexity of the following algorithm? Find the operation count as a function of the input size and a tight *O* estimate (you don't need to give a formal proof for the *O* estimate).

Algorithm 1: Y Algorithm

```
Y Algorithm(A[0..n-1])
for i:=0..\lfloor \frac{n}{2} \rfloor-1 do
for j:=i..n-1 do
A[j]:=A[j]+A[i];
end
end
```