

AONZ66412

40V Dual Asymmetric N-Channel AlphaSGT TM

General Description

- Bottom source technology
- Very Low R_{DS(ON)} at Vgs 4.5V
- Low Gate Charge
- High Current Capability
- RoHS 2.0 and Halogen-Free Compliant

Applications

- DC/DC Buck Boost Converters
- POL Synchronous Dual

Product Summary

 $\begin{array}{ccc} & & \underline{Q1} & \underline{Q2} \\ V_{DS} & 40V & 40V \\ I_D \ (at \ V_{GS} = 10V) & 182A & 182A \\ R_{DS(ON)} \ (at \ V_{GS} = 10V) & < 2.4 m\Omega < 2.4 m\Omega \\ R_{DS(ON)} \ (at \ V_{GS} = 4.5V) & < 3.8 m\Omega < 3.8 m\Omega \end{array}$

100% UIS Tested 100% Rg Tested

Orderable Part Number	Package Type	Form	Minimum Order Quantity
AONZ66412	DFN 5x6F	Tape & Reel	3000

Parameter	Symbol	Max Q1	Max Q2	Units		
Drain-Source Voltag	Orain-Source Voltage		40	40	V	
Gate-Source Voltage)	V_{GS}	±20	±20	V	
Continuous Drain	T _C =25°C	I_	182	182		
Current	T _C =100°C	I _D	115	115	Α	
Pulsed Drain Current C		I _{DM}	380	380	1	
Continuous Drain	T _A =25°C		32	32	А	
Current	T _A =70°C	DSM	26	26		
Avalanche Current ^C		I _{AS}	45	45	Α	
Avalanche energy L=0.1mH ^C		E _{AS}	101	101	mJ	
	T _C =25°C	P _D	147	147	W	
Power Dissipation ^B	T _C =100°C	L D	58	58	VV	
	T _A =25°C	P _{DSM}	5	5	W	
Power Dissipation ^A	T _A =70°C	DSM	3.2	3.2	VV	
Junction and Storage Temperature Range		T_J, T_{STG}	-55 to	o 150	°C	

Thermal Characteristics								
Parameter		Symbol	Typ Q1	Typ Q2	Max Q1	Max Q2	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	Ь	20	20	25	25	°C/W	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	40	40	50	50	°C/W	
Maximum Junction-to-Case	Steady-State	$R_{\theta JC}$	0.65	0.65	0.85	0.85	°C/W	

Q1 Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		40			V	
ı	Zero Gate Voltage Drain Current	V_{DS} =40V, V_{GS} =0V				1	μA	
I _{DSS}	Zero Gate Voltage Brain Gurrent		T _J =55°C			5	μΛ	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		1.3	1.8	2.3	V	
		V_{GS} =10V, I_D =20A			2	2.4	mΩ	
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125°C		3	3.6	11122	
		V_{GS} =4.5V, I_D =20A			2.9	3.8	mΩ	
g_{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=20A$			110		S	
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.7	1	V		
I _S	Maximum Body-Diode Continuous Current					160	Α	
DYNAMIC PARAMETERS								
C _{iss}	Input Capacitance				3100		рF	
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =20V, f=		560		pF		
C _{rss}	Reverse Transfer Capacitance			45		pF		
R_g	Gate resistance	f=1MHz	0.5	1	1.5	Ω		
SWITCHI	NG PARAMETERS							
$Q_g(10V)$	Total Gate Charge				40	56	nC	
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =20V, I		18	26	nC		
Q_{gs}	Gate Source Charge			8		nC		
Q_{gd}	Gate Drain Charge			2.8		nC		
$t_{D(on)}$	Turn-On DelayTime	V_{GS} =10V, V_{DS} =20V, R_L =1 Ω , R_{GEN} =3 Ω			9.5		ns	
t _r	Turn-On Rise Time				5		ns	
$t_{D(off)}$	Turn-Off DelayTime				38		ns	
t _f	Turn-Off Fall Time				3		ns	
t _{rr}	Body Diode Reverse Recovery Time	I_F =20A, di/dt=500A/ μ		•	17		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I_F =20A, di/dt=500A/ μ	S		50		nC	

A. The value of R_{BJA} is measured with the device mounted on $1 in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R_{BJA} t≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

Rev.1.0: July 2023 **www.aosmd.com** Page 2 of 10

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =150° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

G. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C.

V_{DS} (Volts) Figure 1: On-Region Characteristics (Note E)

V_{GS} (Volts) Figure 2: Transfer Characteristics (Note E)

 ${
m I_D}$ (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction
Temperature (Note E)

V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

 C_{iss}

3500

 ${\bf Q_g}$ (nC) Figure 7: Gate-Charge Characteristics

Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

 T_{CASE} (° C) Figure 12: Power De-rating (Note F)

T_{CASE} (° C)
Figure 13: Current De-rating (Note F)

Pulse Width (s) Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note G)

Figure 15: Normalized Maximum Transient Thermal Impedance (Note G)

Q2 Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units				
STATIC PARAMETERS										
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu A, V_{GS}=0V$		40			V			
l	Zero Gate Voltage Drain Current	V_{DS} =40V, V_{GS} =0V				1	μA			
I _{DSS}	Zero Gate Voltage Brain Gurrent		T _J =55°C			5	μΛ			
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$		1.3	1.8	2.3	V			
		V_{GS} =10V, I_D =20A			2	2.4	mΩ			
$R_{DS(ON)}$	Static Drain-Source On-Resistance		T _J =125°C		3	3.6	11122			
		V_{GS} =4.5V, I_D =20A			2.9	3.8	mΩ			
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=20A$		110		S				
V_{SD}	Diode Forward Voltage	I _S =1A, V _{GS} =0V		0.7	1	V				
Is	Maximum Body-Diode Continuous Current					160	Α			
DYNAMIC	DYNAMIC PARAMETERS									
C _{iss}	Input Capacitance				3100		pF			
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =20V, f=		560		рF				
C _{rss}	Reverse Transfer Capacitance]		45		pF				
R_g	Gate resistance	f=1MHz	0.5	1	1.5	Ω				
SWITCHI	NG PARAMETERS									
Q _g (10V)	Total Gate Charge				40	56	nC			
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =20V, I		18	26	nC				
Q_{gs}	Gate Source Charge	V _{GS} =10V, V _{DS} =20V, 1		8		nC				
Q_{gd}	Gate Drain Charge			2.8		nC				
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =20V, R_L =1 Ω , R_{GEN} =3 Ω			9.5		ns			
t _r	Turn-On Rise Time				5		ns			
$t_{D(off)}$	Turn-Off DelayTime				38		ns			
t _f	Turn-Off Fall Time			3		ns				
t _{rr}	Body Diode Reverse Recovery Time	I_F =20A, di/dt=500A/ μ			17		ns			
Q_{rr}	Body Diode Reverse Recovery Charge	I_F =20A, di/dt=500A/ μ	S		50		nC			

A. The value of R_{0,JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R _{0,JA} ≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

Rev.1.0: July 2023 www.aosmd.com Page 6 of 10

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J_{(MAX)}}\!\!=\!\!150^\circ\,$ C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating. G. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C.

V_{DS} (Volts)
Figure 1: On-Region Characteristics (Note E)

V_{GS} (Volts)
Figure 2: Transfer Characteristics (Note E)

 ${
m I_D}$ (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Temperature (°C)
Figure 4: On-Resistance vs. Junction
Temperature (Note E)

V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

Safe Operating Area (Note F)

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

 T_{CASE} (° C) Figure 12: Power De-rating (Note F)

T_{CASE} (° C)
Figure 13: Current De-rating (Note F)

Pulse Width (s) Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note G)

Figure 15: Normalized Maximum Transient Thermal Impedance (Note G)

Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms

Rev.1.0: July 2023 **www.aosmd.com** Page 10 of 10