# BROUILLON - EN FINIR AVEC LA FORME CANONIQUE DU TRINÔME... MANQUE DES DESSINS!

#### CHRISTOPHE BAL

## Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".



#### Table des matières

- 1. Critère pour la non existence d'une racine réelle
- 2. Quand au moins une racine réelle existe

2 3

Date: 19 Octobre 2020.

#### 1. Critère pour la non existence d'une racine réelle

Soient  $f(x) = a x^2 + b x + c$  où  $a \neq 0$  et  $\mathscr{C}_f$  la représentation graphique de f vue comme fonction de  $\mathbb{R}$  dans  $\mathbb{R}$ .

Graphiquement on constate vite que  $\mathscr{C}_f$  possède un axe de symétrique  $\mathscr{d}: x = m$  où m se calcule come suit où  $(\alpha; \beta) \in \mathbb{R}^2$ .

$$f(\alpha) = f(\beta) \iff a \alpha^2 + b \alpha + c = a \beta^2 + b \beta + c$$

$$\iff a(\alpha^2 - \beta^2) + b(\alpha - \beta) = 0$$

$$\iff (\alpha - \beta)(a(\alpha + \beta) + b) = 0$$

$$\iff \frac{\alpha + \beta}{2} = -\frac{b}{2a}$$

Nécessairement  $m = -\frac{b}{2a}$ . Il est aussi aisé de conjecturer que f(m) est un extremum de f vue comme fonction de  $\mathbb{R}$  dans  $\mathbb{R}$ . Ceci rend naturel le calcul suivant qui part de la factorisation  $\boxed{1}$  précédente.

$$f(x) - f(m) = (x - m)(ax + am + b)$$

$$= (x - m)(ax - am)$$

$$= a(x - m)^{2}$$

$$m = -\frac{b}{2a} \iff 2am = -b$$

$$\iff am + b = -am$$

Ce qui précède montre aussi que si a > 0 alors f(m) est un minimum et si a < 0 alors f(m) est un maximum. On peut maintenant savoir quand f n'admet aucun zéro réel.

#### (1) Cas 1: a > 0

f n'a pas de zéro si et seulement si f(m) > 0. Voyons ce que cela implique.

$$\begin{split} f(m) > 0 &\iff a \, m^2 + b \, m + c > 0 \\ &\iff a \cdot \frac{b^2}{4a^2} - b \cdot \frac{b}{2a} + c > 0 \\ &\iff -\frac{b^2}{4a} + c > 0 \\ &\iff -b^2 + 4ac > 0 \end{split} \right\}_{4a > 0}$$

### (2) Cas 2: a < 0

f n'a pas de zéro si et seulement si f(m) < 0. Cela implique ce qui suit.

$$f(m) < 0 \iff -\frac{b^2}{4a} + c < 0$$

$$\iff -b^2 + 4ac > 0$$

$$\downarrow^{4a < 0}$$

Nous retombons sur le critère classique suivant :  $a x^2 + b x + c$  n'a pas de zéro réel si et seulement si  $-b^2 + 4ac > 0$ , soit de façon équivalente si et seulement si  $b^2 - 4ac < 0$ .

Notons que notre mode de raisonnement ne permet pas de privilégier le  $2^{e}$  critère, ce dernier est en fait naturel uniquement si l'on passe via la forme canonique, ou bien lorsque l'on trouvera des formules calculant les zéros de f lorsque ces derniers existent (c'est ce que nous allons faire dans la section suivante).

<sup>1.</sup> Nous n'avons pas prouver la propriété de symétrie car nous n'en aurons pas besoin. Ceci se fait en montrant que  $\forall \delta \in \mathbb{R}$ ,  $f(m-\delta)=f(m+\delta)$ . Cette égalité est évidente dès lors que l'on a  $f(x)-f(m)=a(x-m)^2$ , une identité que nous allons prouver bientôt.

#### 2. Quand au moins une racine réelle existe

Soit  $f(x) = ax^2 + bx + c$  où  $a \neq 0$  tel qu'il existe  $\alpha \in \mathbb{R}$  annulant f. La section précédente implique que nécessairement  $b^2 - 4ac \geq 0$ .

La factorisation  $\boxed{1}$  de  $f(\alpha)-f(\beta)$  vue dans la section précédente nous donne ici sans effort :  $f(x)-f(\alpha)=(x-\alpha)(a(x+\alpha)+b)$ . On en déduit l'existence d'un autre zéro  $\beta\in\mathbb{R}$ , éventuellement égal à  $\alpha$ , tel que  $f(x)=a(x-\alpha)(x-\beta)$ . Ceci implique, après développement, que  $\alpha+\beta=-\frac{b}{a}$  et  $\alpha\cdot\beta=\frac{c}{a}$ .

Exploitons ici aussi l'usage de  $m=-\frac{b}{2a}$  de sorte que  $\frac{\alpha+\beta}{2}=m$  (ceci est aussi une conséquence de l'égalité  $f(\alpha)=f(\beta)$ ). On va paramétrer notre problème via une seule inconnue  $^2$  grâce à m. Pour cela posons  $\delta=\frac{\beta-\alpha}{2}$  de sorte que  $\alpha=m-\delta$  et  $\beta=m+\delta$ . Nous obtenons :

$$\alpha \cdot \beta = \frac{c}{a} \iff (m - \delta)(m + \delta) = \frac{c}{a}$$

$$\iff m^2 - \delta^2 = \frac{c}{a}$$

$$\iff \delta^2 = m^2 - \frac{c}{a}$$

$$\iff \delta^2 = \frac{b^2}{4a^2} - \frac{c}{a}$$

$$\iff \delta^2 = \frac{b^2 - 4ac}{4a^2}$$

$$\iff \delta = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$\implies \delta = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

Nous avons donc établi que si  $\alpha$  et  $\beta$  sont deux zéros, éventuellement confondus, de f alors  $b^2-4ac\geq 0$  et les zéros sont  $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ . La réciproque est immédiate.

<sup>2.</sup> Cette astuce permet en fait de diminuer par deux le nombre d'inconnues lorsque l'on cherche les racines d'un polynôme p, de degré pair forcément, tel que  $\mathscr{C}_p$  ait un axe de symétrie.