UJIAN AKHIR SEMESTER GASAL T.A. 2024/2025

MATA KULIAH : Pembelajaran Mesin dan Pembelajaran Mendalam

PRODI : Informatika

HARI, TANGGAL : xxxxx, xx Desember 2024

WAKTU :-

SIFAT UJIAN : Kumpul Tugas Daring

DOSEN PENGUJI : Aloysius Gonzaga Pradnya Sidhawara, S.T., M.Eng.

Yohanes Sigit Purnomo, S.T., M.Kom., Ph.D.

Projek UAS PMDPM – Klasifikasi Data Citra

CP Mata Kuliah

(CPMK2) Mahasiswa mampu melakukan identifikasi, formulasi, dan analisis masalah rekayasa pada bidang pembelajaran mendalam dengan benar dan terukur (CPL4).

Sub-CPMK

(Sub-CPMK2) Mahasiswa mampu melakukan identifikasi, formulasi, dan analisis untuk merancang solusi permasalahan klasifikasi atau sekuensial di bidang pembelajaran mendalam dengan benar dan terukur.

Penjelasan Tugas

- 1. Tugas dikerjakan secara berkelompok. Satu kelompok terdiri atas 4-5 orang.
- 2. Mahasiswa mengumpulkan dataset secara mandiri sesuai dengan tema yang ditentukan.
- 3. Mahasiswa membuat solusi dalam bentuk code dengan format Notebook (.ipynb), model (.h5), dan antarmuka Streamlit Python (.py). Tools menggunakan VS Code/Jupyter Notebook/Google Collaboratory.

Ketentuan Kasus

Buatlah dataset untuk studi kasus mandiri dengan tema "PERTANIAN". Kasus yang dapat digunakan seperti: prediksi tingkat kematangan buah/sayur, klasifikasi jenis sayur/buah, klasifikasi jenis ladang menggunakan citra satelit, klasifikasi hama/penyakit tanaman, dll.

Ketentuan Pengumpulan Dataset

- Upayakan untuk memiliki jumlah data yang cukup agar dapat melatih model dengan efektif. Untuk projek ini minimal 100 gambar per kelas dengan minimal 3 kelas yang akan diklasifikasikan.
 Dataset wajib mencari sendiri, tidak diperkenankan ambil dari dataset yang sudah ada dari Kaggle atau sejenisnya.
- Pastikan dataset gambar mencakup variasi yang mencukupi dari setiap kelas yang akan diidentifikasi. Variasi ini bisa dalam hal orientasi, ukuran, pencahayaan, latar belakang, dan kondisi lainnya agar model dapat mengenali objek dalam berbagai konteks.
- Pastikan kualitas gambar cukup tinggi dan representatif. Hindari gambar yang kabur, terpotong, atau terlalu kecil untuk diproses. Pastikan label atau kelas untuk setiap gambar akurat.
- Penting untuk memiliki label yang benar dan konsisten untuk setiap gambar. Label yang konsisten dan akurat akan membantu model belajar dengan lebih baik.
- Bagi dataset menjadi train, validation, dan test set dengan rasio 80%:10%:10%
- Siapkan 10 gambar dari masing-masing kelas (gambar baru, bukan bagian dari dataset) yang akan digunakan untuk pengujian prediksi model.
- Total terdapat 330 gambar dalam satu dataset (300 untuk training-validation-testing, 30 untuk prediksi)

Pembuatan dan Pengujian Model CNN

- Buatlah masing-masing satu (1) notebook untuk empat (4) arsitektur model CNN yang dilatih untuk klasifikasi citra:
 - AlexNet
 - o VGG-16
 - MobileNet
 - o GoogleNet
- Untuk susunan arsitektur yang dibuat diperbolehkan mengambil dari contoh atau library yang ada di internet tetapi tidak diperkenankan loading weights yang sudah pre-trained. Contoh penggunaan weights pretrained: MobileNet (weights='imagenet', include_top=False, input_shape=(img_size, img_size, 3))
- Evaluasi model berdasarkan Accuracy dan Loss pada Training dan Validation. Buatlah dataframe nilai akurasi Training dan Validation beserta grafiknya.

- Simpan keempat model yang sudah dilatih ke dalam file h5.
- Buatlah SATU (1) aplikasi Streamlit dengan untuk Prediksi menggunakan model terbaik yang sudah kalian peroleh. Pengujian model dilakukan dengan prediksi terhadap 10 gambar pada masing-masing kelas.
- ullet Dilarang menggunakan file h5 model weights pre-trained dari orang lain. Harap membuat arsitektur sesuai yang diminta dan weights yang dihasilkan murni dari dataset kalian sendiri. Jika menggunakan, nilai UAS = 0
- Deploy aplikasi menggunakan Streamlit Cloud dan akun GitHub.

Aspek Penilaian:

• Projek code: Kualitas code projek Klasifikasi data citra yang dibuat mahasiswa.

Nilai code dihitung dengan rubrik:

Kriteria	Deskripsi Kriteria Penilaian	Nilai
Penilaian		
Data Loading	Data loading meliputi proses membuat fungsi untuk (1) meload data dari	95
	file eksternal dengan parameter lokasi direktori, (2) ukuran gambar, dan	
	(3) ukuran batch, di mana (4) output dari fungsi adalah berupa dataset	
	yang berisi data gambar dan labelnya.	
	Data loading meliputi 3 dari 4 aspek yang disebutkan di kriteria	75
	sebelumnya	
	Data loading meliputi 2 dari 4 aspek yang disebutkan di kriteria	55
	sebelumnya	
	Data loading meliputi 1 dari 4 aspek yang disebutkan di kriteria	40
	sebelumnya	
Data	Data visualization meliputi proses membuat fungsi untuk (1)	95
Visualization	menampilkan data gambar dengan parameter jumlah gambar yang akan	
	ditampilkan, (2) ukuran gambar, dan (3) label gambar, di mana (4) output	
	dari fungsi adalah berupa visualisasi gambar sesuai dengan parameter	
	input yang ditentukan.	
	Data checking meliputi 3 dari 4 aspek yang disebutkan di kriteria	75
	sebelumnya.	
	Data checking meliputi 2 dari 4 aspek yang disebutkan di kriteria	55
	sebelumnya.	
	Data checking meliputi 1 dari 4 aspek yang disebutkan di kriteria	40
	sebelumnya.	

Data	Data preparation meliputi proses (1) normalisasi data gambar dengan	95	
Preparation	benar, (2) visualisasi sample data hasil normalisasi, (3) pembagian data		
	menjadi train, validation, dan test, serta (4) menampilkan ukuran dari		
	masing-masing train, validation and test data		
	Data preparation meliputi proses penanganan 3 dari 4 aspek yang	75	
	disebutkan di kriteria sebelumnya.		
	Data preparation meliputi proses penanganan 2 dari 4 aspek yang	55	
	disebutkan di kriteria sebelumnya.		
	Data preparation meliputi proses penanganan 1 dari 4 aspek yang	40	
	disebutkan di kriteria sebelumnya.		
Model	Model architecture meliputi proses (1) penentuan input, (2) penentuan	95	
Architecture	layer convolution, pooling, flatten, dan dense dengan tepat, (3) kompilasi		
	model, dan (4) menampilkan model summary.		
	Model architecture meliputi 3 dari 4 proses yang disebutkan di kriteria	75	
	sebelumnya.		
	Model architecture meliputi 2 dari 4 proses yang disebutkan di kriteria	55	
	sebelumnya.		
	Model architecture meliputi 1 dari 4 proses yang disebutkan di kriteria	40	
	sebelumnya.		
Model	Model training meliputi proses (1) training model menggunakan	95	
Training	sejumlah iterasi/epoch, (2) menampilkan visualisasi nilai akurasi train		
	dan validation setiap epoch, (3) menampilkan visualisasi loss train dan		
	validation setiap epoch, serta (4) menyimpan model yang dihasilkan		
	Model training and evaluation meliputi meliputi 3 dari 4 proses yang	75	
	disebutkan di kriteria sebelumnya.		
	Model training and evaluation meliputi meliputi 2 dari 4 proses yang	55	
	disebutkan di kriteria sebelumnya.		
	Model training and evaluation meliputi meliputi 1 dari 4 proses yang	40	
	disebutkan di kriteria sebelumnya.		
Model	Model evaluation meliputi proses (1) prediksi untuk setiap data yang ada	95	
Evaluation	di test set menggunakan model yang telah disimpan, (2) menampilkan		
	beberapa contoh hasil prediksi, (3) mengenerate confusion matrix, dan		
	(4) menampilkan visualisasi confusion matrix.		
	Model evaluation meliputi meliputi 3 dari 4 proses yang disebutkan di	75	
	kriteria sebelumnya.		

	Model evaluation meliputi meliputi 2 dari 4 proses yang disebutkan di	55
	kriteria sebelumnya.	
	Model evaluation meliputi meliputi 1 dari 4 proses yang disebutkan di	40
	kriteria sebelumnya.	
Model	Model deployment meliputi proses (1) dump model terbaik, (2)	95
Deployment	pembuatan antarmuka aplikasi dengan streamlit, (3) publikasi ke github,	
	dan (4) deployment aplikasi di streamlit cloud	
	Model deployment meliputi meliputi 3 dari 4 proses yang disebutkan di	80
	kriteria sebelumnya.	
	Model deployment meliputi meliputi 2 dari 4 proses yang disebutkan di	65
	kriteria sebelumnya.	
	Model deployment meliputi meliputi 1 dari 4 proses yang disebutkan di	40
	kriteria sebelumnya.	
Aspek	Bobot (%)	Skala
Penilaian		Penilaian
Data Loading	5	Mengikuti
Data	5	rubrik code
Visualization		
Data	10	
Preparation		
Model	20	
Architecture		
Model	15	
Training		
Model	15	
Evaluation		
Model	30	
Deployment		
TOTAL	100	

Aturan pengumpulan projek

- Batas akhir pengumpulan projek adalah hari Jumat, 20 Desember 2024 pukul 23.59 WIB
- File yang dikumpulkan meliputi:
 - o Projek UTS dalam bentuk EMPAT (4) Notebook Python (.ipynb), SATU (1) model terbaik untuk klasifikasi (.h5), SATU (1) file Python aplikasi Streamlit (.py), SATU (1)

- file PDF berisi semua code yang dikerjakan (.pdf), dan file requirements (.txt) yang diunggah ke repository GitHub. Pastikan GitHub dapat diakses secara PUBLIK.
- Format penamaan Notebook: Notebook_Nama arsitektur CNN_Kelas_ NamaSB _NamaPanggilan.ipynb di mana Notebook dibedakan berdasarkan nama arsitektur CNN, Kelas diisi kode kelas (A/B/C), NamaSB diisi nama kelompok Study Buddy, dan nama panggilan dari anggota tim yang bertanggungjawab mengerjakan notebook tersebut.
- Format penamaan model: BestModel_Nama arsitektur CNN_NamaSB.h5 di mana model yang diupload adalah satu model terbaik dari empat arsitektur CNN yang dikerjakan, dan NamaSB diisi nama kelompok Study Buddy.
- o Format penamaan file Python Streamlit: **MainStreamlit_Kelas_NamaSB.py** di mana kelas diisi kode kelas (A/B/C), NamaSB diisi nama kelompok Study Buddy.
- Seluruh Code Projek UTS dalam bentuk SATU (1) PDF utuh berisi code EMPAT (4)
 NOTEBOOK DAN SATU (1) FILE APLIKASI STREAMLIT. Format penamaan:
 Projek UAS_Kelas_NamaSB.pdf di mana Kelas diisi kode kelas (A/B/C) dan NamaSB diisi nama kelompok Study Buddy.
- Semua file diunggah ke SATU (1) repository GitHub. Format penamaan repository:
 Projek UAS PMDPM_Kelas_NamaSB di mana Kelas diisi kode kelas (A/B/C) dan NamaSB diisi nama kelompok Study Buddy.
- Link GitHub dan link Streamlit Cloud diunggah dalam bentuk file notepad (.txt) ke situs kuliah. Format penamaan file notepad: Projek UAS PMDPM_Kelas_NamaSB.txt di mana Kelas diisi kode kelas (A/B/C) dan NamaSB diisi nama kelompok Study Buddy.
- Semua anggota kelompok wajib berbagi tugas dan mengunggah semua file projek.
- Jika ada code yang terindikasi mencontek/copy paste full Notebook dari internet ataupun orang lain, nilai UTS=0.

Peer Review

- 1. Peer review dilakukan sebagai acuan penilaian kinerja individu dalam kerja kelompok.
- 2. Penilaian ini digunakan untuk PT 7 (Projek Tengah Semester) dan PT 15 (Projek Akhir Semester).
- 3. Mahasiswa **WAJIB** memberikan penilaian terhadap rekan satu kelompok yang lain, **kecuali dirinya sendiri**.
- 4. Jika ada mahasiswa yang tidak mengisi maka penilaian terhadap mahasiswa tersebut sama dengan 1 atau 60% nilai kelompok.

dengan skor penilaian kinerja sebagai berikut:

Grade	Skor	Kriteria Penilaian	
Aktif Berkontribusi	3	Rekan kerja aktif terlibat dalam:	
		koordinasi diskusi analisis studi kasus,	

		dan membuat projek code sesuai pembagian yang sudah ditentukan dalam kelompok serta membantu kesulitan rekan kerja yang lain
Cukup Berkontribusi		Rekan kerja terlibat dalam koordinasi diskusi membuat projek code sesuai pembagian yang sudah ditentukan dalam kelompok
Kurang Berkontribusi		Rekan kerja tidak memenuhi pembagian yang sudah ditentukan dalam kelompok
Tidak Berkontribusi	0	Rekan kerja sama sekali tidak terlibat dalam semua tugas

5. Skor penilaian per individu dihitung reratanya. Rerata skor sebagai acuan untuk menghitung nilai individu dengan grade sebagai berikut:

Grade	Rerata Skor	Persentase Nilai Individu
Aktif Berkontribusi	>=2,67	100% nilai kelompok
Cukup Berkontribusi	>=2	80% nilai kelompok
Kurang Berkontribusi	>=1	60% nilai kelompok
Tidak Berkontribusi	0	0

Good luck!