Algebra II (ISIM), lista 4 (9.11.2021, deklaracje do godz. 9:00).

G oznacza grupę.

Teoria: Działanie grupy G na zbiorze X (lewo- i prawostronne). Działanie lewostronne jako homomorfizm $\varphi: G \to Sym(X)$. Działanie wierne, tranzytywne. Stabilizator G_x , orbita O(x) = Gx. Sprzężenie w grupie, automorfizmy wewnętrzne, C(X), Z(X), Inn(G) (patrz zad. 1). Lemat Burnside'a. Grupy permutacji.

- 1. Załóżmy, że $X \subseteq G$. Przez centralizator zbioru X w grupie G rozumiemy $C(X) = \{g \in G : (\forall x \in X)gx = xg\}$. Gdy X = G, C(X) zaposukemy też jako Z(G), tzw. centrum grupy G. Udowodnić, że:
 - (a)– C(X) < G,
 - (b)–Z(G) jest grupą abelową.
 - (c) $Z(G) \triangleleft G$ oraz dla $g \in G$, $|g^G| = [G : C(g)]$.
 - (d) $G/Z(G) \cong Inn(G)$
 - (e) $Inn(G) \triangleleft Aut(G)$. (wsk: w miarę możnosci unikać rachunków)
- 2. Ile różmych naszyjników można utworzyć z:
 - (a) 3 czarnych i 3 białych koralików?
 - (b) 4 czarnych, 3 białych i 1 czerwonego koralika?
- 3. Niech $\sigma \in S_n$ bedzie iloczynem cykli rozłącznych $\alpha_1, \ldots, \alpha_k$ takich, że α_i jest długości l_i . Udowodnić, że $ord(\sigma) = NWW(l_1, \ldots, l_k)$
 - (a) w przypadku, gdy k = 2,
 - (b)– ogólnie.
- 4. Udowodnić, że permutacje $\sigma, \tau \in S_n$ są sprzężone w grupie $S_n \iff$ ich rozkłady na iloczyny cykli rozłącznych są podobne, tzn. dla każdego k w rozkładach σ i τ jest tyle samo cykli długości k.
- 5. Gdy grupa G działa na zbiorze X, mówimy, że X jest G-zbiorem. Załóżmy, że X, Y są G-zbiorami. Bijekcję $f: X \to Y$ nazywamy izomorfizmem G-zbiorów X, Y, gdy dla każdego $g \in G$ poniższy diagram jest przemienny:

$$X \xrightarrow{f} Y$$

$$\downarrow g. \qquad \downarrow g.$$

$$X \xrightarrow{f} Y$$

tzn. $f(g \cdot x) = g \cdot f(x)$ dla wszystkich $x \in X$ i $g \in G$. W tym przypadku mówimy też, że G-zbiory X i Y są izomorficzne lub też, że działania G na X i Y są izomorficzne.

- (a) Załóżmy, że G działa tranzytywnie na zbiorze X oraz $a \in X$. Udowodnić, że działanie G na X jest izomorficzne z działaniem G na zbiorze G/G_a przez lewe przesuniecie.
- (b)
– Załóżmy, że G działa na zbiorach rozłącznych X
iY. Określamy wtedy

działanie G na zbiorze $Z=X\cup Y$ wzorem $g\cdot z=g\cdot_1 z$, gdy $z\in X$, oraz $g\cdot z=g\cdot_2 z$, gdy $z\in Y$. Tu \cdot_1,\cdot_2 ozmaczają działania G na X i Y odpowiednio. Sprawdzić poprawnośc tej definicji, opisac orbity działania G na Z w terminach orbit działania G na X i na Y.

- 6. Czy istnieje działanie grupy $G=(\mathbb{Z}_{10},+_{10})$ na zbiorze 10-elelemnotym X o n orbitach, gdzie:
 - (a) n=1, (b) n=2, (c) n=3, (d) n=4?
- 7. (a)– W grupie S_7 wyznaczyć rzędy elementów i ich klasy sprzężenia.
 - (b) Wyznaczyć klasy sprzężenia w grupie D_6