## Chapter 4

Data Preprocessing: Practical Issues

July 10, 2016

#### Splitting data into train and test

- Download wine dataset
  - Three classes which map to different types of grapes in Italy
- Cannot train and test on the same data
- So allocate some portion for testing and use the rest for training
  - 70-30 or 80-20 split
- Splitting three ways is a better idea to allocate some dev data
- N-fold cross-validation
- Scikit-learn helper methods (e.g. train\_test\_split())
- Chapter 4 iPython notebook

### Wine dataset

|   | Class | Alcohol | Malic<br>acid | Ash  | Alcalinity of ash | Magnesium | Total<br>phenols | Flavanoids | Nonflavanoid phenols | Proanthocyanins | Color<br>intensity | Hue  | OD280/OD315<br>of diluted<br>wines | Proline |
|---|-------|---------|---------------|------|-------------------|-----------|------------------|------------|----------------------|-----------------|--------------------|------|------------------------------------|---------|
| 0 | 1     | 14.23   | 1.71          | 2.43 | 15.6              | 127       | 2.80             | 3.06       | 0.28                 | 2.29            | 5.64               | 1.04 | 3.92                               | 1065    |
| 1 | 1     | 13.20   | 1.78          | 2.14 | 11.2              | 100       | 2.65             | 2.76       | 0.26                 | 1.28            | 4.38               | 1.05 | 3.40                               | 1050    |
| 2 | 1     | 13.16   | 2.36          | 2.67 | 18.6              | 101       | 2.80             | 3.24       | 0.30                 | 2.81            | 5.68               | 1.03 | 3.17                               | 1185    |
| 3 | 1     | 14.37   | 1.95          | 2.50 | 16.8              | 113       | 3.85             | 3.49       | 0.24                 | 2.18            | 7.80               | 0.86 | 3.45                               | 1480    |
| 4 | 1     | 13.24   | 2.59          | 2.87 | 21.0              | 118       | 2.80             | 2.69       | 0.39                 | 1.82            | 4.32               | 1.04 | 2.93                               | 735     |

## Feature scaling

- Imagine we have two features
  - $1 < x_1 < 10$
  - $1 < x_2 < 100000$
- Algorithm will likely focus on optimizing w2
- As this will produce the largest changes in perceptron error
- KNN based on Euclidean distance will be dominated by  $x_2$
- Two common approaches
  - Normalization
  - Standartization

#### Normalization

Normalization refers to the rescaling of the features to a range of [0, 1]. To normalize the data, we apply the min-max scaling to each feature column, where the new value  $x_{norm}^{(i)}$  of a sample  $x^{(i)}$  is calculated as follows:

$$x_{norm}^{(i)} = \frac{x^{(i)} - \mathbf{x}_{min}}{\mathbf{x}_{max} - \mathbf{x}_{min}}$$

Here,  $x^{(i)}$  is a particular sample,  $x_{min}$  is the smallest value in a feature column, and  $x_{max}$  the largest value, respectively.

#### Standartization

- Normalization gives us values in a bounded interval
- Standartization can be more practical:
- Many ML algorithms initialize the weights to zero
- Standartization centers the columns at mean = 0 and std = 1
- So feature columns take the form of a normal distribution
- This makes it easer to learn the weights
- Standartization encodes useful info about outliers
- Vs. normalization which scales the data to a fixed range

The procedure of standardization can be expressed by the following equation:

$$x_{std}^{(i)} = \frac{x^{(i)} - \mu_x}{\sigma_x}$$

Here,  $\mu_X$  is the sample mean of a particular feature column and  $\sigma_X$  the corresponding standard deviation, respectively.

• Example of using normalization and standardization

## L1 regularization

Recall L2 regularization - one approach to reduce model complexity

$$L2: \|\mathbf{w}\|_2^2 = \sum_{j=1}^m w_j^2$$

An alternative approach is *L1 regularization*:

$$L1: \|\mathbf{w}\|_1 = \sum_{j=1}^m |w_j|$$

# L1 regularization

- L1 yields sparse solutions
- Most feature weights will be zero
- Useful for high-dimensional datasets with irrelevant features
- It can be viewed as a technique for feature selection
- Some intuition as to why this is the case will follow

# L2 regularization



# L1 regularization



### Sparcity

- Regularization penalty and cost pull in opposite directions
- Regularization wants the weight to be at (0, 0)
- I.e. regularization prefers a simpler model
- And decreases the dependence of the model on the training data
- L1 in scikit-learn