Electromagnetism Formula Sheet

Maxwell Equations:

$$\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \qquad \nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\nabla \cdot \vec{B} = 0 \qquad \nabla \times \vec{B} = \mu_0 \left(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$$

Gauss Law:

$$\iint_{\partial\Omega} \vec{E}(\vec{r}) \cdot d^2 \vec{r} = \frac{Q[\Omega]}{\epsilon_0}$$

Ampere Law:

$$\oint_{\partial \Sigma} \vec{B}(\vec{\mathbf{r}}) \cdot d\vec{\mathbf{r}} = \mu_0(I[\Sigma] + I_d[\Sigma])$$

Current Density: $I[\Sigma] = \iint_{\Sigma} \vec{J}(\vec{r}) \cdot d^2 \vec{r}$

Displacement Current: $\vec{J}_d = \epsilon_0 \frac{\partial \vec{E}}{\partial t}$

Faraday Flux Rule:

$$\mathcal{E} = \frac{1}{q} \oint_{\partial \Sigma(t)} \vec{F}(\vec{\mathbf{r}}) \cdot d\vec{\mathbf{r}} = -\frac{d\Phi_{\mathrm{B}}[\Sigma(t)]}{dt}$$

Lenz Law: The induced Eddy current creates a field as to oppose the change in magnetic flux $\Phi_B[\Sigma] = \iint_{\Sigma} \vec{B}(\vec{r}) \cdot d^2\vec{r}$

Continuity Equation: $\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$

Lorentz Force: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

Coulomb Law:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{V}} \frac{\vec{r} - \vec{\mathbf{r}}}{\|\vec{r} - \vec{\mathbf{r}}\|^3} \rho(\vec{\mathbf{r}}) \, d^3 \mathbf{r}$$

$$\phi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \iiint_{\mathcal{V}} \frac{\rho(\vec{r})}{\|\vec{r} - \vec{r}\|} d^3 \mathbf{r}$$

On statics: $\vec{E} = -\nabla \Phi$

$$\mathbf{\Phi}(\vec{r}) = \mathbf{\Phi}(\vec{r_0}) - \int_{\vec{r_0} \to \vec{r}} \vec{E} \cdot d\vec{r}$$

Biot-Savart Law:

$$\vec{\mathrm{B}}(\vec{r}) = \frac{\mu_0}{4\pi} \iiint_{\mathcal{V}} \vec{\mathrm{J}}(\vec{\mathrm{r}}) \times \frac{\vec{r} - \vec{\mathrm{r}}}{\|\vec{r} - \vec{\mathrm{r}}\|^3} \ d^3 \mathbf{r}$$

Remark:
$$\lim_{\vec{r} \to \infty} \vec{E}(\vec{r}) = \lim_{\vec{r} \to \infty} \vec{B}(\vec{r}) = \vec{0}$$

Table of Electric Fields

Charge Dist.	$ec{E}$	
Infinite Plane	$\frac{\sigma}{2\epsilon_0}\hat{z}$	
(z > 0)		
Spherical Shell	σR^2	
	$\frac{\partial K}{\epsilon_0 r^2} \hat{r}$ (outside)	
	$\vec{0}$ (inside)	
Solid Sphere	$\frac{\rho r}{3\epsilon_0} \hat{r}(\text{inside})$	
	$3\epsilon_0$	
	$\frac{\rho R^3}{3\epsilon_0 r^2} \hat{\mathbf{r}} \ (outside)$	
	$3\epsilon_0 r^2$	
Cylindrical	σR	
Shell	$\frac{\sigma R}{\epsilon_0 r} \hat{r}$ (outside)	
	$\vec{0}$ (inside)	
Infinite Wire	λ	
	$\frac{1}{2\pi\epsilon_0 r}r$	
Ring at Axis	λRz	
(z > 0)	$\frac{1}{\epsilon_0 (R^2 + z^2)^{3/2}} \hat{z}$	
Disk at Axis	0 / Z \	
(z > 0)	$\frac{1}{2\epsilon_0} \left(1 - \frac{1}{\sqrt{R^2 + z^2}} \right) \hat{z}$	

Table of Magnetic Fields

Current Distribution	\vec{B}
Infinite Wire	$\frac{\mu_0 I}{2\pi r}\hat{\varphi}$
Ring at Axis	$\frac{\mu_0 I R^2}{2(R^2 + z^2)^{3/2}} \hat{z}$
Solenoid	$\mu_0 n I \hat{z}$ (inside) $\vec{0}$ (outside)

Uniqueness Theorem: $\nabla^2 \varphi = -\frac{\rho}{\epsilon_0}$ given either $\varphi|_{\partial \mathcal{V}}$ or $E_n|_{\partial \mathcal{V}}$, the solution is unique. Further, φ is continuous over interfaces.

Interface Equation:

$$\vec{E}_{\uparrow} - \vec{E}_{\downarrow} = \frac{\sigma}{\epsilon_0} \; \hat{n} \qquad \vec{B}_{\uparrow} - \vec{B}_{\downarrow} = \mu_0 \vec{K} \times \hat{n}$$

Dielectrics: For $\epsilon(\vec{r}) = \kappa(\vec{r}) \cdot \epsilon_0$

$$\vec{E}(\vec{r}) = \frac{1}{\kappa(\vec{r})} \cdot \vec{E}_{\text{vacc}}(\vec{r})$$

and
$$\rho_f = \nabla \cdot \left(\epsilon \cdot \vec{E}\right)$$

Interface Dielectric: $\epsilon_{\uparrow}\cdot \vec{E}_{\uparrow} - \epsilon_{\downarrow}\cdot \vec{E}_{\downarrow} = \sigma_{f}\hat{n}$

Energy stored:

$$U_E = \iiint_{\mathcal{V}} \frac{1}{2} \epsilon(\vec{\mathbf{r}}) \cdot \left\| \vec{E}(\vec{\mathbf{r}}) \right\|^2 d^3 \mathbf{r}$$

$$U_B = \iiint_{\mathcal{V}} \frac{\|\vec{B}(\vec{r})\|^2}{2\mu(\vec{r})} d^3 \mathbf{r}$$

Work:
$$W = \frac{1}{2} \sum_{i=1}^{n} q_i \phi_i(\vec{r_i})$$

Conductors: $\vec{E} = \vec{0}$ inside and all charges are on the surface.

Ohm's Law: $\vec{E}(\vec{r}) = \varrho(\vec{r}) \cdot \vec{J}(\vec{r})$

Capacitor: $Q_f = CV \Rightarrow U_E = \frac{Q^2}{2C} = \frac{1}{2}CV^2$

Resistor: V = RI

Table of Capacitance and Resistances

Geometry	С	R
Two Plates	$\frac{\epsilon_0 A}{d}$	$\frac{\varrho d}{A}$
Spherical Shell	$\frac{4\pi\epsilon_0}{\frac{1}{a} - \frac{1}{b}}$	$\frac{\varrho}{4\pi} \left(\frac{1}{a} - \frac{1}{b} \right)$
Cylindrical Shell	$\frac{2\pi\epsilon_0 L}{\ln\left(\frac{b}{a}\right)}$	$\frac{\varrho}{2\pi L} \ln\left(\frac{b}{a}\right)$

Inductor: $\Phi_B = LI \Rightarrow U_B = \frac{LI^2}{2}$

Dipoles: $\vec{p} = \iiint_{\mathcal{V}} \vec{\mathbb{r}} \; \rho(\vec{\mathbb{r}}) \; d^3 \mathbb{r} = q \vec{d}$

$$\phi_{\rm dip}(\vec{r}) = \frac{\vec{p} \cdot \hat{r}}{4\pi\epsilon_0 |\vec{r}|^2}; \ \vec{E}_{\rm dip}(\vec{r}) = \frac{3(\vec{p} \cdot \hat{r})\,\hat{r} - \vec{p}}{4\pi\epsilon_0 |\vec{r}|^3}$$

Force: $\vec{F} = (\vec{p} \cdot \nabla)\vec{E}$; Torque: $\vec{\tau} = \vec{p} \times \vec{E}$;

Energy: $U = -\vec{p} \cdot \vec{E}$

Dipole Moment: $\vec{\mu} = \frac{1}{2} \iiint_{\mathcal{V}} \vec{r} \times \vec{J}(\vec{r}) d^3 r = I \vec{S}$

$$\vec{B}_{\text{dip}}(\vec{r}) = \frac{\mu_0}{4\pi} \frac{3(\vec{\mu} \cdot \hat{r})\,\hat{r} - \vec{\mu}}{|\vec{r}|^3}$$

Force: $\vec{F} = \nabla(\vec{\mu} \cdot \vec{B})$; Torque: $\vec{\tau} = \vec{\mu} \times \vec{B}$;

Energy: $U = -\vec{\mu} \cdot \vec{\mathrm{B}}$

Wave:
$$\vec{E} = \vec{E}_0 \, \psi(\vec{r} \cdot \hat{k} - ct)$$

$$\Rightarrow \vec{\mathbf{B}} = \frac{\hat{k} \times \vec{E}_0}{c} \ \psi (\vec{r} \cdot \hat{k} - ct)$$

Poynting Vector:
$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$

Poynting Theorem:

$$\frac{dW}{dt} + \frac{dU}{dt} = - \iint_{\partial V} \vec{S} \cdot d^2 \vec{\mathbf{r}}$$

Lorentz Transformations:

$$\vec{E}'_{\parallel} = \vec{E}_{\parallel} \qquad \vec{B}'_{\perp} = \gamma \left(\vec{B}_{\perp} - \frac{1}{c^2} \vec{v} \times \vec{E} \right)$$

$$\vec{E}'_{\perp} = \gamma (\vec{E}_{\perp} + \vec{v} \times \vec{B}) \qquad \vec{B}'_{\parallel} = \vec{B}_{\parallel}$$