Imaging mass cytometry data analysis

Nils Eling

2020-10-23

Contents

1	Prerequisites	5
2	Introduction	7
3	Read the data	9
4	Image and cell-level quality control	11
5	Clustering approaches	13
	5.1 Rphenograph	13
	5.2 Shared nearest neighbour graph	13
	5.3 FlowSOM	13
6	Classification approaches	15
	6.1 Manual labelling of cells	15
	6.2 Training a classifier	15
	6.3 Classification of new data	15
7	Visualizing the images	17
8	Visualizing single-cell data	19
9	Performing spatial analysis	21
	9.1 Interaction analysis	21
	9.2 Spatial domains	21

4 CONTENTS

Prerequisites

Introduction

Introduction to imaging mass cytometry

Read the data

Overview on how to read in pre-processed data.

Image and cell-level quality control

Overview on possible quality indicators

Clustering approaches

- 5.1 Rphenograph
- 5.2 Shared nearest neighbour graph
- 5.3 FlowSOM

Classification approaches

- 6.1 Manual labelling of cells
- 6.2 Training a classifier
- 6.3 Classification of new data

Visualizing the images

Using the cytomapper package.

Visualizing single-cell data

Using the dittoSeq package.

Performing spatial analysis

9.1 Interaction analysis

Based on Denis' and Vitos work

9.2 Spatial domains

Based on Tobis work