SimuLTE-MEC: extending SimuLTE for Multi-access Edge Computing

Giovanni Nardini, Antonio Virdis, Giovanni Stea, Angelo Buono

Department of Information Engineering, University of Pisa, Italy

OMNeT++ Community Summit 2018, Pisa, Italy

Outline

- Road towards 5G
- LTE/LTE-A & Multi-access Edge Computing (MEC) technologies
- Simulating LTE networks with OMNeT++: SimuLTE
- Modeling MEC within SimuLTE
- Use case: alerts in a vehicular network scenario
- Conclusions

The LTE/LTE-Advanced technology

Introducing MEC

Multi-access Edge Computing

ETSI MEC Framework

[1] ETSI GS MEC 003, "Mobile Edge Computing (MEC); Framework and reference architecture"

Simulating LTE+MEC

Simulating cellular networks with OMNeT++

System-level simulations of LTE/LTE-Advanced networks

http://simulte.com

- Developed at the University of Pisa
- Full protocol stack implementation of the LTE Network
 Interface Card (LTE NIC)
- Extends the INET's *INetworkInterface* module
- Interoperability with INET's higher-layer protocol modules

SimuLTE basics

[2] G. Nardini, A. Virdis, G. Stea, "Simulating cellular communications in Vehicular Networks: making SimuLTE interoperable with Veins", OMNeT++ Comm. Summit 2017

SimuLTE basics

The core network

- Data-plane only
- GTP tunneling between the eNodeB and the PGW

Modeling the MEC architecture

GTP tunneling between the eNodeB and the ME Host

Modeling the MEC architecture

MePlatform

VirtualisationManager ResourceManager

UDP

IP

PPP

Virtualisation Infrastructure

Modeling the MEC architecture

Data flow

Definition of *MeAppPacket*

- START_MEAPP
- STOP_MEAPP
- ACK_START_MEAPP
- ACK_STOP_MEAPP
- INFO_UEAPP
- INFO_MEAPP

```
packet MEAppPacket {
    unsigned int sno;
    simtime t timestamp;
    //type of message
    string type;
    //communication information
    string sourceAddress;
    string destinationAddress;
    //instantiation information
    string MEModuleType;
    string MEModuleName;
    //identification information
    int ueAppID;
    //required resources
    unsigned int requiredDisk;
    unsigned int requiredRam;
    double requiredCpu;
    //required service
    string requiredService;
```

Data flow

Definition of *MeAppPacket*

- START_MEAPP
- STOP_MEAPP
- ACK_START_MEAPP
- ACK_STOP_MEAPP
- INFO_UEAPP
- INFO_MEAPP

A use case for MEC

Car alert service

The car is approaching a black ice area:

- On-board sensors
- Vehicle-to-vehicle communications (VANETs)
- Vehicle-to-infrastructure communications (Wi-Fi access to Road-side units)
- Communication with a remote server

A use case for MEC

Car alert service

Using MEC

A use case for MEC

Implementing a MEC-based car alert service

• **UEWarningAlertApp** – periodically sends position updates to the ME Host

```
simple UEWarningAlertApp like IUDPApp
```

• **MEWarningAlertApp** – receives position updates from UEs

```
simple MEWarningAlertApp like IMEApp
```

MEWarningAlertService – keeps the map of danger zones
 simple MEWarningAlertService like IMEService

WarningAlertPacket – includes position information
 packet WarningAlertPacket extends MEAppPacket

Configuring the simulation

```
resources available
                                                                              *.meHost.maxMEApps = 100
                                                                              *.meHost.maxRam = 32GB
                                                                              *.meHost.maxDisk = 100TB
                                                                              *.meHost.maxCpu = 1
                                                                                  MEServices available
                                                                                .meHost.mePlatform.numServices = 1
                                                            channelControl
                                                                                 -----MEWarningAlertService:-----
                                                                              *.meHost.mePlatform.udpService[0].typename = "MEWarningAlertService"
                      व्ह्या)
                                                                 4
                       car[0]
                                             meHost
                                                           routingRecorder
                                                                Figurator
                                                                                           (.car[*].numUdpApps = 1)
                                                                                                      --UEWarningAlertApp-----
                                                                                          *.car[*].udpApp[0].typename = "UEWarningAlertApp"
                                                                                           *.car[*].udpApp[0].startTime = 0s
                                                                                          *.car[*].udpApp[0].period = 0.1s
*.car[*].udpApp[0].stopTime = 25s
    eNodeB1
                                                                                           *.car[*].udpApp[0].destAddress = "meHost.virtualisationInfrastructure"
                                                                                           *.car[*].udpApp[0].requiredRam = 10MB
 *.car[*].udpApp[0].requiredDisk = 10MB
car[2]
                                                                                           *.car[*].udpApp[0].requiredCpu = 0.01
```


Conclusions

- Multi-access Edge Computing and cellular networks
- Modeling MEC within SimuLTE
 - Compliance with ETSI specifications
 - Pluggable interface to allow researchers evaluating new apps and services
- Use case: car alert service
 - Implementation
 - Simulation configuration

Future work

- Additional services as per ETSI specifications, e.g. Location Manager
- Support for migrating ME Applications between ME Hosts
- Detailed modeling of ME Applications lifecycle and resource utilization
- Evaluation of new use cases and scenarios (suggestions are welcome!)

Thank You!

Giovanni Nardini – University of Pisa g.nardini@ing.unipi.it