考研数学笔记 以姜晓千强化课讲义为底本

Weary Bird

2025年7月29日

相见欢·林花谢了春红

林花谢了春红,太匆匆。无奈朝来寒雨晚来风。胭脂泪,相留醉,几时重。自是人生长恨水长东。

2025年7月29日

目录

第一章	多元函数积分学	1
1.1	三重积分的计算	5
1.2	第一类曲线积分的计算	8
1.3	第二类曲线积分的计算	10
1.4	第一类曲面积分的计算	12
1.5	第二类曲面积分的计算	13

第一章 多元函数积分学

三维向量

$$\vec{a} = (a_x, a_y, a_z), \vec{b} = (b_x, b_y, b_z)$$

数量积
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = a_x b_x + a_y b_y + a_z b_z$$

性质 1 判断空间向量垂直 $\vec{a} \cdot \vec{b} = 0 \iff a \perp b$

性质 2 求空间两直线的夹角 $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$

向量积
$$a \times b = |a||b|\sin\theta = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

性质 1 判断空间直线平行 $\vec{a} \times \vec{b} = 0 \iff a \parallel b$

性质 2 求平面四边形的面积 $S = \left| \vec{a} \times \vec{b} \right|$

混合积
$$(\vec{a}\vec{b}\vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c} = \begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} \cdot |\vec{c}| = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

性质 1 判断三个向量是否共面 共面 \iff $(\vec{a}\vec{b}\vec{c}) = 0$

性质 2 平行六面体的体积 $V = \left| (\vec{a}\vec{b}\vec{c}) \right|$

直线与平面

(一)平面

平面的点法式 假设平面过点 (x_0,y_0,z_0) 且该平面的法向量为 $\vec{n}=\{A,B,C\}$ 则平面方程为

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

平面的一般式 将点法式展开

$$Ax + By + Cz + D = 0$$

平面的截距式

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

其中a,b,c分别是该平面与x,y,z轴的截距

点到平面的距离公式 假设平面外一点 (x_0, y_0, z_0) 到平面的距离

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

(直线)

直线的点向式 假设直线过点 (x_0, y_0, z_0) 且该直线的方向向量为 $\vec{s} = \{l, m, n\}$ 则该直线的直线方程为

$$\frac{x_0 - x}{l} = \frac{y_0 - y}{m} = \frac{z - z_0}{n}$$

直线的参数式

$$\begin{cases} x = x_0 + lt \\ y = y_0 + mt \\ z = z_0 + nt \end{cases}$$

直线的一般式(两平面的交线)

$$\begin{cases} A_1x + B_1y + C_1z + D = 0 \\ A_2x + B_2y + C_2z + D = 0 \end{cases}$$

平面束方程 过某一直线的所有平面的方程 $\lambda(A_1x+B_1y+C_1z+D)+\mu(A_2x+B_2y+C_2z+D_2)=0$ 其中 λ,μ 不同时为 0,(...) 即该直线一般式的两平面方程

曲面与曲线

假设直线外一点 (x_0, y_0, z_0) 其到直线的距离为

$$d = \frac{|(x_1 - x_0, y_1 - y_0, z_1 - z_0) \times (l, m, n)|}{\sqrt{l^2 + m^2 + n^2}}$$

平面与直线的关系基本只需要考察 市和 或的关系即可

旋转曲面

假设曲线
$$L = \begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases} \implies \begin{cases} x = x(z) \\ y = y(z) \end{cases}$$
 则曲线 L 绕 z 轴旋转而来的旋转曲

面方程为

$$x^2 + y^2 = x^2(z) + y^2(z)$$

求旋转曲面的问题, 捉住旋转过程中的不变量进行处理, 例如绕 z 轴旋转, 则旋转曲面上的点到 z 轴的距离和 z 坐标都与原来曲线的点一致即

$$P_0 = \begin{cases} x_0 = x(z_0) \\ y_0 = y(z_0) \end{cases} ; P = \begin{cases} x^2 + y^2 = x_0^2 + y_0^2 \\ z = z_0 \end{cases}$$

消去 z₀ 即可得到答案

常见曲面的类型

曲面与曲线

与线代考点的综合题 二次型的特征值的正负对应图像的情况

投影曲线, 往 xoy 面的投影曲线只需要消去 z 即可

$$\begin{cases} F(x,y,z) = 0 & \xrightarrow{\text{ji.s. z}} \begin{cases} H(x,y) = 0 \\ z = 0 \end{cases}$$

曲面的法向量与切平面

若曲面是显示给出的即 F(x,y,z) = 0 则其法向量为

$$\vec{n} = \{F_x', F_y', F_z'\}$$

若曲面的是隐式给出的即 z = z(x, y) 则其法向量为

$$\vec{n} = \{-z_x', -z_y', 1\}$$

切平面方程为

$$F_x'(x - x_0) + F_y'(y - y_0) + F'z(z - z_0) = 0$$

曲线的切向量

若曲线是以参数式给出即 $\begin{cases} x = x(t) \\ y = y(t) \end{cases} \quad 则其切向量为$ z = z(t)

$$\tau = (x'(t), y'(t), z'(t))$$

若以两曲面的交线形式给出,即 $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 此时切向量为

 $\tau = \vec{n_1} \times \vec{n_2}$,其中 n_1, n_2 分别为两曲面的法向量

方向导数与三度

方向导数

$$\frac{\partial f}{\partial \vec{l}}\big|_{x_0,y_0} = \lim_{t\to 0^+} \frac{f(x_0+t\cos\alpha,y_0+t\cos\beta) - f(x_0,y_0)}{t}$$

其中 α 为与 x 轴正方向的夹角, β 为与 y 轴正方向的夹角 t 是趋于 0^+ 若 f(x,y) 可微分,则

$$\frac{\partial f}{\partial \vec{l}} = f'_x \cos \alpha + f'y \cos \beta = gr\vec{ad} \ f \cdot \vec{l_0}$$

梯度,散度,旋度

$$grad f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \cdot (\vec{i}, \vec{j}, \vec{k})$$
$$div\vec{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$
$$rot \vec{A} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

方向导数沿梯度方向取得最大值,沿梯度反方向取得最小值,值为

$$\pm \left| \vec{grad} \ f \right| = \pm \left| (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) \right|$$

三度之间的关系,要求二阶偏导连续

$$\begin{aligned} & \textit{div grad } f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \\ & \vec{rot} \textit{grad } f = \vec{0} \\ & \textit{divrot} = 0 \end{aligned}$$

1.1 三重积分的计算

- 1. (2013, 数一) 设直线 L 过 A(1,0,0), B(0,1,1) 两点, 将 L 绕 z 轴旋转一周得到曲面 Σ , Σ 与 平面 z=0, z=2 所围成的立体为 Ω .
 - (I) 求曲面 Σ 的方程;
 - (II) 求 Ω 的形心坐标.

2. (2019, 数一) 设 Ω 是由锥面 $x^2 + (y-z)^2 = (1-z)^2 (0 \le z \le 1)$ 与平面 z=0 围成的锥体,求 Ω 的形心坐标.

1.2 第一类曲线积分的计算

3. (2018, 数一) 设 L 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线,则 $\oint_L xyds =$ *Solution*.

4. 设连续函数 f(x,y) 满足 $f(x,y)=(x+3y)^2+\int_L f(x,y)ds$,其中 L 为曲线 $y=\sqrt{1-x^2}$,求曲线积分 $\int_L f(x,y)ds$.

1.3 第二类曲线积分的计算

- 5. (2021, 数一) 设 $D \subset \mathbb{R}^2$ 是有界单连通闭区域, $I(D) = \iint_D (4 x^2 y^2) dx dy$ 取得最大值的积分域记为 D_1 .
 - (I) 求 $I(D_1)$ 的值;
 - (II) 计算 $\int_{\partial D_1} \frac{(xe^{x^2+4y^2}+y)dx+(4ye^{x^2+4y^2}-x)dy}{x^2+4y^2}$, 其中 ∂D_1 是 D_1 的正向边界.

6. (2011, 数一) 设 L 是柱面 $x^2+y^2=1$ 与平面 z=x+y 的交线,从 z 轴正向往 z 轴负向 看去为逆时针方向,则曲线积分 $\oint_L xzdx+xdy+\frac{y^2}{2}dz=$

1.4 第一类曲面积分的计算

7. (2010, 数一) 设 P 为椭球面 $S: x^2 + y^2 + z^2 - yz = 1$ 上的动点,若 S 在点 P 的切平面与 xOy 面垂直,求 P 点的轨迹 C,并计算曲面积分

$$I = \iint_{\Sigma} \frac{(x + \sqrt{3})|y - 2z|}{\sqrt{4 + y^2 + z^2 - 4yz}} dS,$$

其中 Σ 是椭球面S位于曲线C上方的部分.

1.5 第二类曲面积分的计算

8. (2009, 数一) 计算曲面积分

$$I = \iint_{\Sigma} \frac{xdydz + ydzdx + zdxdy}{(x^2 + y^2 + z^2)^{\frac{3}{2}}},$$

其中 Σ 是曲面 $2x^2 + 2y^2 + z^2 = 4$ 的外侧.

9. 计算

$$\iint_{\Sigma} \frac{axdydz + (z+a)^2 dxdy}{(x^2 + y^2 + z^2)^2},$$

其中 Σ 为下半球面 $z=-\sqrt{a^2-x^2-y^2}$ 的上侧,a 为大于零的常数.

10. (2020, 数一) 设 Σ 为曲面 $z=\sqrt{x^2+y^2}(1\leq x^2+y^2\leq 4)$ 的下侧, f(x) 为连续函数, 计算

$$I = \iint_{\Sigma} [xf(xy) + 2x - y] \mathrm{d}y \mathrm{d}z + [yf(xy) + 2y + x] \mathrm{d}z \mathrm{d}x + [zf(xy) + z] \mathrm{d}x \mathrm{d}y.$$