Домашняя работа 7 (на 14.04).

ALG 1. Пусть F — набор подмножеств n-элементного множества, удовлетворяющий следующим свойствам:

- 1. $\forall A \in F : |A| \equiv 1 \pmod{2}$.
- 2. $\forall A, B \in F : A \neq B \Rightarrow |A \cap B| \equiv 0 \pmod{2}$.

Доказать, что $|F| \leq n$.

ALG 2. Пусть p — простое целое число. Выясните когда оно просто в кольце целых чисел Эйзенштейна.

ALG 3. Пусть $u \in (\mathbb{Z}/2\mathbb{Z})^n$, найдите $\Pr_v[\langle u, v \rangle = 0]$ ($\langle u, v \rangle$ — скалярное произведение u и v в $(\mathbb{Z}/2\mathbb{Z})^n$).