

OCTAL TRANSPARENT LATCH WITH 3-STATE OUTPUTS

DESCRIPTION

The T54LS373/T74LS373 consists of eight latches with 3-state outputs for bus organized system applications. The flip-flops appear transparent to the data (data changes asyncronously) when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the set-up times is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH the bus outputs is in the high impedance state.

- EIGHT LATCHES IN A SINGLE PACKAGE
- 3-STATE OUTPUTS FOR BUS INTERFACING
- HYSTERESIS ON LATCH ENABLE
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY TTL AND CMOS COMPATIBLE

PIN CONNECTION (top view) **DUAL IN LINE** □ ŌĒ ₫% 3 0₀ ر D₁ 5 01 o₆ 16 6 O2 □ D₂ D5 🔽 8 D₃ D, 13 9 O3 0, GND **CHIP CARRIER** ឧខដ > ្ខ 2 1 20 19 а Б 4 о 2 Б 6 17 D₆ 02 | 7 15 Г 05 14 🗖 D₃ □ 8 £ 8 3 o d NC = No Internal Connection

PIN NAMES

D ₀ -D ₇	Data Inputs
LE	Latch Enable (Active HIGH) Input
ŌĒ	Output Enable (Active LOW) Input
O ₀ -O ₇	Outputs

LOGIC SYMBOL AND LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to 7	V
VI	Input Voltage, Applied to Input	-0.5 to 15	V
Vo	Output Voltage, Applied to Output	- 0.5 to 10	V
I _I Input Current, Into Inputs		-30 to 5	mA
I _O Output Current, Into Outputs		50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGES

Part Numbers		T			
Part Numbers	Min Typ		Max	Temperature	
T54L\$373D2	4.5 V	5.0 V	5.5 V	-55°C to +125°C	
T74LS373XX	4.75 V	5.0 V	5.25 V	0°C to +70°C	

XX = package type.

496

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

O	Parameter		Limits			Test Conditions	
Symbol			Min.	Тур.	Max.	(Note 1)	Units
VIH	Input HIGH Voltage		2.0			Guaranteed input HIGH Voltage for all Inputs	٧
V _{IL}	Input LOW Voltage	54			0.7	Guaranteed input LOW Voltage	V
		74			0.8	for all Inputs	
V _{CD}	Input Clamp Diode Vo	Itage		-0.65	- 1.5	V _{CC} = MIN,I _{IN} = - 18mA	٧
V _{OH}	Output HIGH Voltage 54 2.4 3.		3.4		$I_{OH} = -1.0 \text{mA}$ $V_{CC} = \text{MIN}, V_{IN} = V_{IH} \text{ or}$		
		74	2.4	3.1		I _{OH} = -2.6mA V _{IL} per truth table	V
V _{OL}	Output LOW Voltage	54,74		0.25	0.4	$I_{OL} = 12mA$ $V_{CC} = MIN, V_{IN} = V_{IH}$ or	
ŀ	*	74		0.35	0.5	I _{OL} = 24mA V _{IL} per truth table	V
lozн	Output Off Current HIGH				20	$V_{CC} = MAX, V_{OUT} = 2.7V, V_{E} = 2.0V$	μА
lozL	Output Off Current LOW				- 20	$V_{CC} = MAX, V_{OUT} = 0.4V, V_{E} = 2.0V$	μΑ
I _{IH}	Input HIGH Current				20	V _{CC} = MAX, V _{IN} = 2.7V	μА
	Input HIGH Current at MAX Input Voltage				0.1	V _{CC} = MAX, V _{IN} = 7.0V	mA
∤IL	Input LOW Current				-0.4	V _{CC} = MAX, V _{IN} = 0.4V	mA
los	Output Short Circuit Current (Note 2)		- 30		- 130	V _{CC} = MAX, V _{OUT} = 0V	mA
lcc	Power Supply Current Outputs Off			24	40	$V_{CC} = MAX$, $V_{IN} = 0V$, $V_E = 4.5V$	mA

AC CHARACTERISTICS: (T_A = 25°C)

Symbol	Parameter	Limits			Total Completions		
		Min.	Тур.	Max.	Test Conditions		Units
t _{PLH}	Propagation Delay, Data to Output		12 12	18 18	Fig. 1		ns
t _{PLH}	Propagation Delay, Clock or LE to Output		20 18	30 30	Fig. 1	$V_{CC} = 5.0V$ $C_L = 45pF$ $R_L = 667\Omega$	ns
t _{PZH}	Output Enable Time to HIGH Level		15	28	Figs. 3,4		ns
^t PZL	Output Enable Time to LOW Level		25	36	Figs. 2,4		ns
t _{PLZ}	Output Disable Time from LOW Level		15	25	Figs. 2,4	V _{CC} = 5.0V C _L = 5pF	ns
t _{PHZ}	Output Disable Time from HIGH Level		12	20	Figs. 3,4	$R_L = 667\Omega$	ns

Notes:

¹⁾ Conditions for testing, not shown in the Table, are chosen to guarantee operation under "wrost case" conditions.

²⁾ Not more than one output should be shorted at a time.

³⁾ Typical values are at $V_{CC} = 5.0V$, $T_A = 25$ °C

AC SET-UP REQUIREMENTS: TA = 25°C

C	Parameter	Limits			Took Conditions		Heite
Symbol	Parameter	Min.	Min. Typ. Max.		Test Conditions		Units
t _s D	Set-up Time Data to Negative Going LE	5	,		Fig. 1		ns
t _h D	Hold Time Data to Negative Going LE	20				V _{CC} = 5.0V	ns
t _W LE	Minimum LE Pulse Width HIGH to LOW	15					ns

DEFINITION OF TERMS:

SET-UP TIME (t_s) - is defined as the minimum time required for the correct logic level to be present at the logic input to LE transition from HIGH to LOW in order to be recognized and transferred to the outputs.

HOLD TIME (t_h) - is defined as the minimum time following LE transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition.

AC WAVEFORMS

AC LOAD CIRCUIT

Fig. 4

SWITCHING POSITIONS

0	014/4	011/0		
Symbol	SW1	SW2		
tpzH	Open	Closed		
tpZL	Closed	Open		
tpLZ	Closed	Closed		
t _{PHZ}	Closed	Closed		