Lecture 25

- Sections 6.1.2, 6.2 (6.2.1, 6.2.2 and 6.2.3)
 and 6.3 (6.3.1 and 6.3.2)
 - Where is the link layer implemented
 - Error detection and correction techniques
 - Parity
 - · Checksum method
 - · Cyclic redundancy check
 - Multiple access protocols
 - · Channel partitioning protocols
 - · Random access protocols

Network Layer Control Plane 5-10

10

Where is the link layer implemented?

- in each and every host that connects to network
- link layer implemented in "adaptor" (aka network interface card NIC)
 - Ethernet card, 802.11 card (built in, USB, or PCMCIA card) implements link, physical layer
- attaches into host's system buses
- combination of hardware software, firmware

Adaptors Communicating

- sending side:
 - encapsulates datagram in frame
 - adds error checking bits, rdt, flow control, etc.
 - uses an access protocol to send protocol on medium
- * receiving side
 - looks for errors, rdt, flow control, etc
 - extracts datagram, passes to upper layer at receiving side

Data Link Layer 6-12

12

Link Layer

- 6.1 Introduction and services
- 6.2 Error detection and correction

Error Detection

D = Data protected by error checking, may include header fields EDC= Error Detection and Correction bits (redundancy)

Error detection not 100% reliable!

- protocol may miss some errors, but rarely
- · larger EDC field yields better detection and correction

Data Link Layer 6-14

14

Parity Checking

Single Bit Parity:

Parity bit = XNOR of all data bits (odd parity) even parity can be used

Detect single bit errors

Two Dimensional Bit Parity:

Detect & correct single bit errors

Use XOR - even parity

Data Link Layer 6-15

<u>Internet checksum</u> (review)

<u>Goal:</u> detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

Sender:

- treat segment contents as sequence of 16-bit integers
- checksum: addition (1's complement sum) of segment contents
- sender puts checksum value into segment checksum field

Receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected.
 But maybe errors
 nonetheless?

Data Link Layer 6-16

16

Checksumming: Cyclic Redundancy Check

- view data bits, D, as a binary number
- choose r+1 bit pattern (generator), 6
- goal: compute r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
 - can detect all burst errors less than r+1 bits
- widely used in practice (Ethernet, 802.11 WiFi)

CRC Rules

- ❖ G: r+1 bits
 - LSB and MSB must be 1
- ❖ Sender: divides D.2r by G (D.2r = $nG \oplus R$)
 - Quotient bit is 1 if MSB in partial dividend is 1; otherwise 0
 - Addition and subtraction is bit-wise XOR (no carry and no borrow)
 - Remainder, R, is r bits long (ignore quotient, n)
 - Sends $D.2^r \oplus R$ (bit-wise XOR) (which is nG)
- * Receiver: divides received data by G
 - 0: no error; otherwise, error

Data Link Layer 6-18

18

CRC Example

Want:

 $D.2^r$ XOR R = nG

equivalently:

 $D.2^r = nG XOR R$

 $\it equivalently:$

if we divide $D \cdot 2^r$ by G, want remainder R

R = remainder
$$\left[\frac{D \cdot 2^r}{G}\right]$$

Data Link Layer 6-19

Error & No Error

Data Link Layer 6-20

20

Link Layer

- 6.1 Introduction and services
- 6.2 Error detection and correction
- 6.3Multiple access protocols

Multiple Access Links and Protocols

Two types of "links":

- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch and host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet; Ethernet hub
 - upstream HFC
 - 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

Data Link Layer 6-22

22

Multiple Access protocols

- single shared broadcast channel
- * two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

Ideal Multiple Access Protocol

Broadcast channel of rate R bps

- 1. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

Does not exist in practice

Data Link Layer 6-24

24

MAC Protocols: a taxonomy

Three broad classes:

- Channel Partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- Random Access
 - channel not divided, allow collisions
 - "recover" from collisions
- "Taking turns"
 - nodes take turns (e.g., by passing tokens), but nodes with more to send can take longer turns

Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access

- * access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

Data Link Layer 6-26

26

Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- ♦ two or more transmitting nodes → "collision",
- random access MAC protocol specifies:
 - when to transmit (or try to avoid collisions)
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed and randomized retransmissions)
- Examples of random access MAC protocols:
 - slotted ALOHA
 - (pure) ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Data Link Layer 6-28

28

Slotted ALOHA

Assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

Operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if sollision: node retransmits frame in each subsequent slot with prob. p until success

30

Slotted Aloha efficiency Efficiency: long-run max efficiency: find p* fraction of successful slots that maximizes (many nodes, all with many $Np(1-p)^{N-1}$ frames to send) for many nodes, take limit of $Np*(1-p*)^{N-1}$ as N goes * suppose: N nodes with to infinity, gives: many frames to send, each Max efficiency = 1/e = .37transmits in slot with probability p prob that given node has At best: channel success in a slot = $p(1-p)^{N-1}$ used for useful prob that any node has a success = $Np(1-p)^{N-1}$ transmissions 37% of time! Data Link Layer 5-31

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- * when frame first arrives
 - transmit immediately
- collision probability increases:
 - frame sent at t_0 collides with other frames sent in $[t_0-1,t_0+1]$

32

Pure Aloha efficiency

P(success by given node) = P(node transmits).

P(no other node transmits in $[p_0\text{-}1,\!p_0]$.

P(no other node transmits in $[p_0-1,p_0]$

 $= p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$

 $= p \cdot (1-p)^{2(N-1)}$

... choosing optimum p and then letting n -> infty ...

= 1/(2e) = .18

even worse than slotted Aloha!

CSMA (Carrier Sense Multiple Access)

CSMA:

listen before transmit:

- * If channel sensed idle: transmit entire frame
- If channel sensed busy: defer transmission
- human analogy: don't interrupt others!

Can collisions still occur?

Data Link Layer 5-34

34

CSMA collisions

collisions can still occur:

propagation delay means two nodes may not hear each other's transmission

collision:

entire packet transmission time wasted

Data Link Layer 5-35

CSMA/CD (Collision Detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- listen after transmission for collisions:
 - if there is a collision:
 - collision detected within short time, and stop transmission (colliding transmissions aborted), hence reducing channel wastage
 - · reschedule collided transmission after some random time
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength

Data Link Layer 5-36

36

CSMA/CD collision detection

What is the maximum time to detect a collision, if any?

Data Link Layer 5-37