

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

## «Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

#### ОТЧЕТ

по лабораторной работе № 2 по курсу «Моделирование» на тему: «Цепь Маркова» Вариант № 11

| Студент   | ИУ7-73Б<br>(Группа) | (Подпись, дата) | Марченко В.<br>(И. О. Фамилия)   |
|-----------|---------------------|-----------------|----------------------------------|
| Преподава | атель               | (Подпись, дата) | Рудаков И. В.<br>(И. О. Фамилия) |

### СОДЕРЖАНИЕ

| 1 | Теоретическая часть      | 3 |
|---|--------------------------|---|
| 2 | Примеры работы программы | 5 |

#### 1 Теоретическая часть

Случайный процесс, протекающий в системе S, называется марковским, если он обладает следующим свойством: для каждого момента времени  $t_0$  вероятность любого состояния системы в будущем (при  $t > t_0$ ) зависит только от ее состояния в настоящем (при  $t = t_0$ ) и не зависит от того, когда и каким образом система пришла в это состояние. Вероятностью i-го состояния называется вероятность  $p_i(t)$  того, что в момент t система будет находиться в состоянии  $S_i$ . Для любого момента t сумма вероятностей всех состояний равна единице.

Для решения поставленной задачи составляется система уравнений Колмогорова по следующему правилу: в левой части каждого уравнения стоит производная вероятности i-го состояния; в правой части — сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние), умноженная на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного (i-го состояния).

Для получения предельных вероятностей, то есть вероятностей в стационарном режиме работы при  $t \to \infty$ , необходимо приравнять производные вероятностей к нулю. Таким образом получается система линейных уравнений. Для решения полученной системы необходимо добавить условие нормировки  $p_0 + p_1 + ... + p_n = 1$ .

На рисунке 1.1 изображен граф переходов состояний.



Рисунок 1.1 – Граф переходов состояний

Здесь  $\lambda_0=\lambda_1=\lambda_2=\mu_1=1,\,\mu_2=2,\,\mu_3=3.$  Тогда составленная для

него система уравнений Колмогорова будет иметь вид:

$$\begin{cases}
\frac{dp_0(t)}{dt} = p_1(t) - p_0(t), \\
\frac{dp_1(t)}{dt} = 2p_2(t) - p_1(t), \\
\frac{dp_2(t)}{dt} = 3p_3(t) - 3p_2(t), \\
\frac{dp_3(t)}{dt} = p_1(t) + p_2(t) - 3p_3(t), \\
p_0(t) + p_1(t) + p_2(t) + p_3(t) = 1.
\end{cases}$$
(1.1)

Заменяем проивзодные на нули и решаем систему:

$$\begin{cases}
p_0 = \frac{1}{3}, \\
p_1 = \frac{1}{3}, \\
p_2 = \frac{1}{6}, \\
p_3 = \frac{1}{6}.
\end{cases} (1.2)$$

После того, как предельные вероятности будут найдены, нужно найти время пребывания системы в стационарном состоянии. Для этого необходимо с интервалом  $\Delta t$  находить вероятность в момент времени  $t+\Delta t$ . Когда найденная вероятность будет равна соответствующей предельной с точностью до заданной погрешности, можно завершить вычисления. Начальные значения для  $p_i$  задаются. Например,  $p_i=\frac{1}{n}$ , где n- количество состояний системы.

### 2 Примеры работы программы

На рисунках 2.1–2.3 показаны примеры работы программы при разном количестве состояний системы и при различных значениях интенсивностей.



Рисунок 2.1 – Пример работы программы при двух состояниях системы



Рисунок 2.2 – Пример работы программы при пяти состояниях системы

| Цепь Маркова                   |                                                              |                        |        |        |        |        |        |        |        | - 0    |   |
|--------------------------------|--------------------------------------------------------------|------------------------|--------|--------|--------|--------|--------|--------|--------|--------|---|
| Количество состояний           | Начальные вероятности состояний                              |                        |        |        |        |        |        |        |        |        |   |
|                                | 0.1000                                                       | 0.1000                 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 | ٦ |
| 10                             |                                                              | Матрица интенсивностей |        |        |        |        |        |        |        |        |   |
| Задать                         | 0                                                            | 0.3296                 | 0.6506 | 0.3706 | 0.7712 | 0.5472 | 0.3706 | 0.7049 | 0.4069 | 0.8978 |   |
| Tauran                         | 0.3526                                                       | 0                      | 0.4265 | 0.2009 | 0.0863 | 0.4093 | 0.8419 | 0.4875 | 0.7178 | 0.7561 |   |
| Точность                       | 0.4914                                                       | 0.3344                 | 0      | 0.5882 | 0.5442 | 0.5393 | 0.2460 | 0.0774 | 0.7714 | 0.7712 |   |
| 1e-7                           | 0.5924                                                       | 0.5094                 | 0.1778 | 0      | 0.9954 | 0.1112 | 0.6884 | 0.5020 | 0.0628 | 0.1759 |   |
| Шаг                            | 0.6273                                                       | 0.8282                 | 0.7241 | 0.0530 | 0      | 0.6980 | 0.5857 | 0.5776 | 0.5288 | 0.8602 |   |
| - Lui                          | 0.2104                                                       | 0.8661                 | 0.2575 | 0.3884 | 0.3220 | 0      | 0.6560 | 0.8337 | 0.6929 | 0.7064 |   |
| 1e-3                           | 0.6050                                                       | 0.0169                 | 0.2914 | 0.1467 | 0.1957 | 0.4941 | 0      | 0.9351 | 0.0619 | 0.0567 |   |
| Максимальное значение          | 0.9506                                                       | 0.0764                 | 0.4407 | 0.0752 | 0.9808 | 0.0752 | 0.3273 | 0      | 0.0895 | 0.8528 | _ |
| интенсивности                  | 0.2383                                                       | 0.8824                 | 0.4792 | 0.6425 | 0.5593 | 0.0124 | 0.5986 | 0.7274 | 0      | 0.8805 |   |
| 1.0                            | 0.6266                                                       | 0.9002                 | 0.3670 | 0.4067 | 0.1582 | 0.5996 | 0.2412 | 0.8088 | 0.1032 | 0      | Ī |
| Сгенерировать<br>интенсивности | Вероятности нахождения системы в заданных состояниях         |                        |        |        |        |        |        |        |        |        |   |
| Решить                         | 0.1010                                                       | 0.0982                 | 0.0880 | 0.0704 | 0.0830 | 0.0752 | 0.1445 | 0.1447 | 0.0628 | 0.1322 |   |
| Гешигр                         | Время пребывания системы в предельном стационарном состоянии |                        |        |        |        |        |        |        |        |        |   |
|                                | 3.0080                                                       | 3.1970                 | 2.9430 | 3.3230 | 2.5000 | 2.9060 | 2.7090 | 3.2430 | 2.8790 | 3.1350 |   |

Рисунок 2.3 – Пример работы программы при десяти состояниях системы