Tutorial 6 EE1100 Resonance

Problem 1

In the circuit shown, find the amplitude of the sinusoidal voltage across the capacitor when the circuit is at resonance condition.

Figure 1: Circuit 1

Problem 2

For the given circuit 2, find the cut-off frequencies Ans: $\Delta f1 = 1.256$ MHz; $\Delta f2 = 1.244$ MHz

Figure 2: Circuit 2

Problem 3

For the network shown in figure 3, Find input impedance $(Z_{in}(j\omega))$ and the resonant frequency.

Figure 3: Circuit 3

Ans: $\omega = 100 \ rad/sec$

Problem 4

Consider a parallel RLC circuit such that L=2 mH, Q=5, and C=10 nF. Determine the value of R and the magnitude of the steady-state admittance at $0.1\omega_0$, ω_0 , and $1.1\omega_0$, where ω_0 is the resonant frequency in rad/sec, and Q is the quality factor.

Ans: $|Y(0.9\omega_0)| = 6.504 * 10^{-4} S$, $|Y(\omega_0)| = 4.472 * 10^{-4} S$, $|Y(1.1\omega_0)| = 6.182 * 10^{-4} S$

Problem 5

A certain series resonant circuit has fo=500Hz, Qo=10 and XL= 500 ohm at resonance.

- a). Find R, L, C
- b). If a source Vs=1v is connected in series with the circuit, find —Vc— at f=450Hz.

Ans:- R=50ohm, L= 0.159H, C= $0.6372\mu F$ Vc=4.755V

Problem 6

The voltmeter in the circuit 4 is reading zero volts. Find the value of R_x and L_x .

Figure 4: Circuit 4

Answer: 375 Ω , 75 μ H