Variations

Dans tout le chapitre, on note f une fonction définie et dérivable sur un intervalle I et a un réel appartenant à I.

1. Signe de la dérivée et variation

Théorème

- Si f est croissante sur I, alors pour tout $x \in I$, $f'(x) \ge 0$.
- Si f est décroissante sur I, alors pour tout $x \in I$, $f'(x) \le 0$.
- Si f est constante sur I, alors pour tout $x \in I$, f'(x) = 0.

Exemple

Voici la courbe d'une fonction f, définie et dérivable sur [-5;3].

On en déduit le tableau de signe de f'	:
--	---

X	-5	-3		-1		1	3
f'(x)		- 0	+	0	_	0	+

Théorème

- Si pour tout $x \in I$, on a f'(x)=0, alors la fonction f est constante sur I.
- Si pour tout $x \in I$, on a $f'(x) \ge 0$, alors la fonction f est croissante sur I.
- Si pour tout $x \in I$, on a $f'(x) \le 0$, alors la fonction f est décroissante sur I.

Remarque

Il existe même un résultat plus précis. En effet, si, pour tout $x \in I$, f'(x) > 0 sauf éventuellement en un nombre fini de valeurs où f'(x) s'annule, alors la fonction f est strictement croissante sur I. Graphiquement, la courbe représentant f peut avoir quelques tangentes horizontales, mais malgré l'impression que l'on peut avoir visuellement, la fonction n'est constante sur aucun intervalle, aussi petit soit-il!

<u>Méthode</u>: Étudier les variations d'une fonction f

- 1) On détermine l'ensemble de dérivation de f
- 2) On calcule la fontion dérivée f'
- 3) On étudie le signe de f'(x)
- 4) On en déduit les variations de la fonction f

Application : Déterminer les variations de la fonction f définie par $f(x) = \frac{x^3}{6} - \frac{x^2}{4} - x$.

2. Extremum d'une fonction

<u>Définition</u>: Soit f une fonction définie sur un intervalle I.

- Le réel M est le **maximum** de f sur I s'il existe un réel $a \in I$ tel que f(a) = M et que pour tout $x \in I$, $f(x) \le M$.
 - On dit que le **maximum** de f sur I est **atteint** en a.
- Le réel m est le **minimum** de f sur I s'il existe un réel $a \in I$ tel que f(a) = m et que pour tout $x \in I$, $f(x) \ge m$.
 - On dit que le **minimum** de f sur I est **atteint** en a.
- Un **extremum** est une valeur extrême, c'est-à-dire un **minimum** ou un **maximum**.

Définition

f admet un \max imum local M sur I, atteint en c, s'il existe un intervalle ouvert J, contenu dans I et contenant c, tel que M soit un \max imum de f sur J.

Alors
$$f(x) \le f(c)$$
 pour tout $x \in J$.

Alors
$$f(x) \ge f(c)$$
 pour tout $x \in J$.

Ici, 1 est un maximum local de f . Il est atteint en -1 .

Ici, -2 et -1 sont des minima locaux de f. Ils sont atteints respectivement en -3 et en 1. Seul -2 est le minimum de f sur [-5;3].

<u>Théorème</u> (Condition nécessaire): Soit f une fonction définie sur I et a un réel de I qui ne soit pas une borne.

• Si f admet un extremum local en a, alors f'(a)=0.

ATTENTION! La réciproque de ce théorème n'est pas vraie. $f(x)=x^3$ est un contre-exemple lorsque x=0.

<u>Théorème</u> (Condition suffisante): Soit f une fonction définie sur I et a un réel de I qui ne soit pas une borne.

• Si la fonction dérivée s'annule en a et qu'elle change de signe de part et d'autre, alors f admet un extremum local en a.