I sedici connettivi binari

		(1) congiunzione	(2) disgiunzione (inclusiva: vel)	(3) implicazione (condizionale)	(4) implicazione	(5) equivalenza (bicondizionale)	(6) prima	(7) seconda	(8) costante
		AND (∧)	$OR(\lor)$	$IF-THEN(\Rightarrow)$	$ \begin{array}{c} \text{opposta} \\ (\Leftarrow) \end{array} $	(⇔)	prinia proiezione	proiezione	FALSO
p	q	$(p \wedge q)$	$(p \lor q)$	$(p \Rightarrow q)$	$(p \Leftarrow q)$	$(p \Leftrightarrow q)$	(p)	(q)	(F)
F	F	F	F	V	V	V	F	F	F
F	V	F	V	V	F	F	F	V	F
V	F	F	V	F	V	F	V	F	F
V	V	V	V	V	V	V	V	V	F
		(1')	(2')	(3')	(4')	(5')	(6')	(7')	(8')
		operazione di	operazione di	, ,	, ,	disgiunzione	• •	, ,	, ,
		Sheffer	Pierce	inibizione della	inibizione della	esclusiva	negazione della	negazione della	costante
		NAND()	$NOR(\downarrow)$	seconda	prima	$\operatorname{AUT}(\dot{\lor})$	prima	seconda	VERO
p	q	$(p \mid q)$	$(p \downarrow q)$	$(\neg(p\Rightarrow q))$	$(\neg(p \Leftarrow q))$	$(p \lor q)$	$(\neg p)$	$(\neg q)$	(V)
F	F	V	V	F	F	F	V	V	V
F	V	V	F	F	V	V	V	F	V
V	F	V	F	V	F	V	F	V	V
V	V	F	F	F	F	F	F	F	V

Si nota che ciascuna coppia di connettivi (i), (i') costruisce due proposizioni ognuna equivalente alla negazione dell'altra.

Interdipendenza dei connettivi binari

Le seguenti tautologie:

$$(p \lor q) \iff \neg(\neg p \land \neg q) \qquad (p \Rightarrow q) \iff (\neg p \lor q) \qquad (p \Leftrightarrow q) \iff ((p \Rightarrow q) \land (p \Leftrightarrow q)) \land (p \Leftrightarrow q) \land (p \Leftrightarrow$$

 $(p\vee q)\iff \neg(\neg p\wedge \neg q) \qquad \qquad (p\Rightarrow q)\iff (\neg p\vee q) \qquad \qquad (p\Leftrightarrow q)\iff \big((p\Rightarrow q)\wedge (p\Leftarrow q)\big)$ mostrano come sia possibile definire ciascuno dei connettivi binari in termini dei soli "\"" e "\¬". Inoltre, dalle tautologie

$$(\neg p) \iff (p \mid p)$$
 e $(p \land q) \iff \neg(p \mid q)$

segue che è addirittura sufficiente il solo "|" (lo stroke di Sheffer).

In modo analogo, dalla tautologia $(p \land q) \iff \neg(\neg p \lor \neg q)$ segue che simile discorso si può fare per "\" e "¬" (in luogo di "\" e "¬") e quindi per il connettivo "\" di Pierce (in luogo di "\").