

TRANSMISIÓN DE DATOS Y REDES DE COMPUTADORES II

Examen de Teoría¹ Septiembre de 2011

APELLIDOS, NOMBRE:

GRUPO:

1. (2.5 puntos) La siguiente figura muestra la topología de red de una empresa, que tiene contratado con su ISP el rango de direcciones 15.16.17.0/24. El número de ordenadores conectados a las redes A, B y C están indicados en la figura entre paréntesis.

- a) Realice la asignación de direcciones IP tanto de equipos como de routers (incluyendo las redes entre los routers), utilizando direcciones públicas siempre que sea posible.
- b) Indique las tablas de encaminamiento de todos los routers de forma que, para el tráfico entre las redes A, B y C, se encamine de acuerdo a las flechas en la figura). Debe haber conectividad completa entre estas redes y hacia Internet.
- c) Suponga que el router R_{A} tiene funcionalidad de servidor DNS. Describa el intercambio de

tramas si un ordenador de la red A quiere enviar un *ping* a un ordenador de la red C a través de su nombre de dominio (petición y respuesta con tamaño inferior a 1000 bytes). Tanto el mensaje de petición como el de respuesta del *ping* tienen un tamaño de 2000 bytes (incluyendo las cabeceras del nivel de red). Indique (si procede): direcciones físicas de origen y destino, direcciones IP de origen y destino, protocolo, puertos de origen y destino, flags, números de secuencia y acuse, y el tipo de mensaje.

- **2.** (2 puntos) Explique las diferencias en objetivos y funcionamiento entre el control de flujo y el control de congestión en TCP. ¿Cómo ayudan los routers en el control de congestión de TCP? ¿Y en el control de flujo?
- **3.** (2.5 puntos) La figura y mensajes siguientes describen un protocolo utilizado para permitir el acceso de un cliente a Internet a través de un Servidor de Acceso a Red (NAS). El Servidor de Autenticación (AS) guarda en una base de datos las claves secretas que se solicita a los usuarios para poder acceder a Internet.

PC → **NAS**: Kpub_{NAS} (peticion_acceso + usuario)

NAS → PC: desafio

PC → **NAS**: Kpub_{NAS}(MD5(usuario:K_{PC-AS}:desafio))

NAS → AS: peticion_autenticacion + usuario + desafio + MD5(usuario:K_{AS-PC}:desafio))

AS → NAS: peticion_aceptada + Ksesion_{PC-NAS+} K_{PC-AS}(Ksesion_{PC-NAS})

(ó peticion_rechazada)

NAS \rightarrow **PC**: Kpriv_{NAS} (peticion_aceptada + K_{PC-AS}(Ksesion_{PC-NAS}))

(ó Kpriv_{NAS} (peticion_rechazada))

PC → NAS: Ksesion_{PC-NAS} (datos_a_enviar)
NAS → hacia Internet: datos_a_enviar
Desde Internet → NAS: datos_de_respuesta
NAS → PC: Ksesion_{PC-NAS} (datos_de_respuesta)

Siendo:

- Kpub_X cifrado con la clave pública de X
- Kpriv_x cifrado con la clave privada de X
- K_{x-Y} la clave secreta entre X e Y
- MD5 es una función hash

Suponiendo que las claves públicas corresponden a certificados digitales emitidos por una autoridad reconocida,

- a) ¿Qué servicios de seguridad se proporcionan en el protocolo descrito?
- b) ¿Qué debilidades presenta el esquema propuesto? En su caso, ¿cómo podrían evitarse?

_

¹ Esta prueba supone el 70% de la calificación final de la asignatura.