Cryptography: Homework 6

(Deadline: 10am, 2021/11/19)

- 1. (20 points) Let F be a length-preserving PRF. Show that the following MACs are not EUF-CMA secure. (Let $\langle i \rangle$ denote the n/2-bit encoding of an integer i.)
 - (a) A fixed-length MAC that authenticates messages of 3n/2 bits.
 - Gen(1ⁿ): choose $k \leftarrow \{0,1\}^n$ uniformly as the secret key.
 - $\mathsf{Mac}(k,m)$: To authenticate a message $m=m_1m_2m_3$, where $m_i\in\{0,1\}^{n/2}$ for every $i\in\{1,2,3\}$, compute and output the tag

$$t = F_k(\langle 1 \rangle || m_1) \oplus F_k(\langle 2 \rangle || m_2) \oplus F_k(\langle 3 \rangle || m_3).$$

- Vrfy(k, m, t): for a message $m = m_1 m_2 m_3 \in \{0, 1\}^{3n/2}$ and a tag $t \in \{0, 1\}^n$, output 1 if and only if $t = F_k(\langle 1 \rangle || m_1) \oplus F_k(\langle 2 \rangle || m_2) \oplus F_k(\langle 3 \rangle || m_3)$.
- (b) A fixed-length MAC that authenticates messages of n/2 bits.
 - $Gen(1^n)$: choose $k \leftarrow \{0,1\}^n$ uniformly as the secret key.
 - $\mathsf{Mac}(k,m)$: To authenticate a message $m \in \{0,1\}^{n/2}$, choose $r \leftarrow \{0,1\}^n$ uniformly, compute $s = F_k(r) \oplus F_k(\langle 1 \rangle || m)$, output the tag t = (r,s).
 - Vrfy(k, m, t): for a message $m \in \{0, 1\}^{n/2}$ and a tag t = (r, s), output 1 if and only if $s = F_k(r) \oplus F_k(\langle 1 \rangle || m)$.
- 2. (30 points) Let F be a length-preserving PRF. Define a MAC $\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})$ for messages of n bits as below:
 - $Gen(1^n)$: choose $k \leftarrow \{0,1\}^n$;
 - Mac(k, m): for $m \in \{0, 1\}^n$, output $t = F_k(m) \in \{0, 1\}^n$.
 - Vrfy(k, m, t): output 1 if $t = F_k(m)$ or $t = F_k(m) \oplus 1^n$.

Determine if Π is EUF-CMA secure or sEUF-CMA secure. Prove your answers.