COST-SENSITIVE LEARNING: IN A NUTSHELL

Classical learning: Change Learning Classical learning: data sets are balanced, and all errors have equal costs

- We now assume given, unequal cost
- And try to minimize them in expectation

Imhalanced Learning:

- Medicine Misdiagnosing as healthy vs. having a disease

 COS [Extreme] Wealther prediction Incorrectly predicting that no hurricane occurs
 - Credit granting Lending to a risky client vs. not lending to a trustworthy client.

	True class	Confusion ma		 In these examples, the costs of a false 		
$Pred.\hat{y} = 1$	y = 1 y = -1	_	Truth Lear	rnin negative is much higher than the		
classŷ = -1	FN TN	Default	Pays Back	costs of a false positive. -Cost matrix		
Pred.	Default	0	10			
	Pays Back	Cc1000 ¹	0 •	In some applications, the costs are		
Pred. $\hat{y} = 1$ class $\hat{y} = -1$		= -1 1,-1) -1,-1)	•	Optiunknown retineed to be specified by experts, or be learnt.		

COST-MATRIX VE LEARNING: IN A NUTSHELL

- Input:rcost matrix C
 - Classical learning: data sets are balanced, and all errors have equal costs
 - We now assume given, unequal cost

 True Class y

			2	 g
Classification/	to mi	nimize c(1 911) in ex	cpectalc(1, 2)	 C(1, g)
Applications:	2	C(2, 1)	C(2, 2)	 C(2, g)

- Medicine Misdiagnosing as healthy vs. having a disease
- (Extreme) Weather prediction Incorrectly predicting that no hurricane occurs
 Credit granting Leftling to a risky Clarity vs. not lending to a trust with y client.
- C(j, k) is the cost of classifying class k as j,
- ullet 0-1-loss would simply be: $C(j,k)={1 \over 10 \mu k}$ is much higher than the
- C designed by experts with domain knowledge
- Pred. Too low costs; not enough change in model, still costly errors
 - Too high costs: might never predict costly classes specified by

experts, or be learnt.

COST MATRIX FOR IMBALANCED LEARNING

- Common heuristic for imbalanced data sets:
 - $C(j,k) = \frac{n_j}{n_k}$ with $n_k \ll n_j$, True Class y

misclassifying a minority class k as a majority class i

- $C(j,k) \stackrel{?}{=} 1$ with $h_i \ll n_k$, C(2,2)misclassifying a majority class k as a minority class j
- 0 for a correct classification (g. 2).
- C(j, k) is the cost of classifying class k as j.

- $\begin{array}{l} \bullet \quad \text{0-1-loss would simply be: } C(j,k) = \mathbb{1}_{[j\neq k]} \\ \bullet \quad \text{Imbalanced binary classification:} \\ \bullet \quad \text{C designed by experts with domain knowledge } \\ \hline \text{Irue class} \\ \end{array}$
 - Too low costs: not enough ch nodel, still costly errors
 - Too high costs trings
 Pred. 9 class $\hat{y} = -1$
- So: much higher costs for FNs

MINIMUM EXPECTED COST PRINCIPLE NING

- Suppose wethave: for imbalanced data sets:
 - a cost)matrix Cth n_k « n_l
 - knowledge of the true posterior p(s | x) najority class j
- Predict class j with smallest expected costs when marginalizing over true classifying a majority class k as a minority class j
 - 0 for a correct classification

$$\mathbb{E}_{K \sim p(\cdot \mid \mathbf{x})}(C(j, K)) = \sum_{k=1}^{g} p(k \mid \mathbf{x})C(j, k)$$

- Imbalanced binary classification:
 If we trust we trust a probabilistic classifier, we can convert its frue class scores to labels:

Pred.
$$\hat{y} = 1$$
 $y = -1$

$$h(\mathbf{x}) = \underset{j=1,\dots,g}{\operatorname{pred}} \min_{k=1}^{g} \sum_{k=1}^{g} \pi_k(\mathbf{x}) C(j,k).$$

- So: much higher costs for FNs
- Can be better to take a less probable class (► Ekan et. al. 2001)

OPTIMAL THRESHOLD FOR BINARY CASE

- Optimal decisions do not change if
 - C is multiplied by positive constant
 - Chis/added with constant/shifter p(+ | x)
- Scale and shift C to get simple C ted costs when marginalizing

over true classes: True class
$$y = \underbrace{1}_{G} \quad y = -1$$

$$\mathbb{E}_{K \overset{\mathsf{P} \text{red.}}{C} \overset{\hat{\mathcal{Y}}}{D}(-)} \overset{\hat{\mathcal{Y}}}{X} \overset{\hat{\mathcal{T}}}{C} \overset{\hat{\mathcal{T}}}{D}(-)} \overset{\hat{\mathcal{Y}}}{X} \overset{\hat{\mathcal{T}}}{C} \overset{\hat{\mathcal{T}}}{C} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D}} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D}} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D}} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D}} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{\mathcal{T}}}{D}} \overset{\hat{\mathcal{T}}}{D} \overset{\hat{$$

lassifier, we can convert its

•
$$C'(1,1) = \frac{C(1,1)-C(-1,-1)}{C(1,-1)-C(-1,-1)}$$

• We predict **x** as class: $1 = f_{arg min} \sum \pi_k(\mathbf{x}) C(j, k)$.

$$\mathbb{E}_{K \sim p(\cdot + \mathbf{x})}(C'(1, K)) \leq \mathbb{E}_{K \sim p(\cdot + \mathbf{x})}(C'(-1, K))$$

 $\mathbb{E}_{K\sim p(\cdot\mid \mathbf{x})}(C'(1,K)) \leq \mathbb{E}_{K\sim p(\cdot\mid \mathbf{x})}(C'(-1,K))$ • Can be better to take a less probable class (• Ekonow a 2001))

OPTIMAL THRESHOLD FOR BINARY CASE /2

Let's unroll the expected value and use C':

• $\operatorname{Scal}(1 \operatorname{and}) \leq \operatorname{hift} C \text{ to get simpler } C'$: C'(-1,1) - C'(1,1) + 1

$$\Rightarrow \rho(1 \mid \mathbf{x}) \ge \frac{C(1, -1) - C(-1, -1)}{C(-1, 1) - C(1, 1) + C(1, -1) - C(-1, -1)} = c$$
Pred. $\hat{\mathbf{y}} = 1$

• If even C(1,1) = C(-1,-1) = 0, we get: 1 1

where
$$p(1 \mid \mathbf{x}) \ge \frac{C(1,-1)}{C(-1,1) + C(1,-1)} = c^*$$

• $C'(-1,1) = \frac{C(-1,1) - C(-1,1)}{C(1,-1) - C(-1,-1)}$

- Optimal threshold c^* for probabilistic classifier $C(1,-1) = \frac{1}{C(1,-1)-C(-1,-1)}$
- We predict x as class ¹h(x) := 2 ⋅ 1_[π(x)>c*] 1

$$\mathbb{E}_{K \sim p(\cdot + \mathbf{x})}(C'(1, K)) \leq \mathbb{E}_{K \sim p(\cdot + \mathbf{x})}(C'(-1, K))$$

OPTIMAL THRESHOLD FOR BINARY CASE

Let's unroll the expected value and use C':

$$p(-1 \mid \mathbf{x})C'(1,-1) + p(1 \mid \mathbf{x})C'(1,1) \le p(-1 \mid \mathbf{x})C'(-1,-1) + p(1 \mid \mathbf{x})C'(-1,1)$$

$$\Rightarrow [1 - p(1 \mid \mathbf{x})] \cdot 1 + p(1 \mid \mathbf{x})C'(1,1) \le p(1 \mid \mathbf{x})C'(-1,1)$$

$$\Rightarrow p(1 \mid \mathbf{x}) \ge \frac{1}{C'(-1,1) - C'(1,1) + 1}$$

$$\Rightarrow p(1 \mid \mathbf{x}) \ge \frac{C(1,-1) - C(-1,-1)}{C(-1,1) - C(1,1) + C(1,-1) - C(-1,-1)} = c^*$$

$$p(1 \mid \mathbf{x}) \ge \frac{C(1,-1)}{C(-1,1) + C(1,-1)} = c^*$$

Optimal threshold c* for probabilistic classifier

$$h(\mathbf{x}) := 2 \cdot \mathbb{1}_{[\pi(\mathbf{x}) \geq c^*]} - 1$$

