DRAFT

Treatability Study in Support of Remediation by Natural Attenuation for Groundwater at Site LF-06

Columbus Air Force Base Columbus, Mississippi

Prepared For

Air Force Center for Environmental Excellence
Technology Transfer Division
Brooks Air Force Base
San Antonio, Texas

20000831 044

August 1997

Walton, Norman

From: Hansen, Jerry E, Mr, HQAFCEE [Jerry.Hansen@HQAFCEE.brooks.af.mil]

Sent: Tuesday, August 08, 2000 10:16 AM

To: 'nwalton@dtic.mil'

Subject: Distribution statement for AFCEE/ERT reports

Norman, This is a followup to our phone call. The eight boxes of reports you received from us are all for unlimited distribution. If you have any questions, you can contact me at DSN 240-4353.

DRAFT

TREATABILITY STUDY IN SUPPORT OF REMEDIATION BY NATURAL ATTENUATION FOR GROUNDWATER AT SITE LF-06

at

COLUMBUS AIR FORCE BASE COLUMBUS, MISSISSIPPI

AUGUST 1997

Prepared for:

AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE
TECHNOLOGY TRANSFER DIVISION
BROOKS AIR FORCE BASE
SAN ANTONIO, TEXAS

and

COLUMBUS AIR FORCE BASE COLUMBUS, MISSISSIPPI

Prepared by:

PARSONS ENGINEERING SCIENCE, INC. 1700 BROADWAY, SUITE 900 DENVER, COLORADO 80290

EXECUTIVE SUMMARY

This report presents the results of a treatability study (TS) performed by Parsons Engineering Science, Inc. (Parsons ES) at Site LF-06, Columbus Air Force Base, Mississippi, to evaluate remediation by natural attenuation (RNA) of dissolved fuel-hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs) in groundwater. The TS focused on the fate and transport of dissolved CAHs, particularly trichloroethene (TCE), chlorobenzene (CB), and vinyl chloride (VC); however, petroleum hydrocarbons [including benzene, toluene, ethylbenzene, and xylenes (BTEX)] also are present in site groundwater and were considered. The site history and the results of the soil and groundwater investigations conducted previously also are summarized in this report.

Comparison of CAH, BTEX, electron acceptor, and biodegradation byproduct isopleth maps for LF-06 provides strong qualitative evidence of biodegradation of dissolved CAHs. These geochemical data strongly suggest that reductive dehalogenation of dissolved CAHs is occurring at the site as microbes utilize natural organic carbon, BTEX, and other fuel hydrocarbons as substrates. Patterns observed in the distribution of CAHs, daughter products of CAHs, electron acceptors, and biodegradation byproducts also suggest that biotic and abiotic dehydrohalogenation may also be acting to reduce the concentration of CAHs dissolved in site groundwater. Field-scale first-order decay rates computed using data from LF-06 included a total BTEX biodegradation rate of 0.053 day⁻¹, a chlorobenzene biodegradation rate of 0.010 day⁻¹, and a total chlorinated ethene dechlorination rate of 0.0035 day⁻¹. The equivalent half-lives are 0.35 years, 0.19 years, and 0.54 years, respectively.

An important component of this study was an assessment of the potential for contamination in groundwater to migrate from the source areas to potential receptor exposure points (i.e., off-Base locations to the south and west of Site LF-06). An analytical model was used to evaluate the fate and transport of dissolved CAHs and

BTEX in the shallow groundwater under the influence of advection, dispersion, sorption, and biodegradation. Input parameters for the model were obtained from site data collected by Parsons ES. Model parameters that were not measured at the site were estimated using reasonable literature values.

The results of this demonstration suggest that RNA of dissolved CAHs and BTEX contamination is occurring at Site LF-06; furthermore, the estimated rates of biodegradation, when coupled with sorption, dispersion, and dilution, should be sufficient to reduce and maintain dissolved contamination concentrations to levels below current regulatory guidelines long before potential downgradient or off-site receptors could be adversely affected. Conservative modeling suggests that under current conditions, the concentrations of the groundwater contaminant plume will drop below MCLs within, at most, 1,000 feet downgradient from the edge of the landfill. Future site activities are not anticipated to change, and the risk to any Base personnel would be minimal, provided institutional controls for soil and groundwater are maintained. Institutional controls such as restrictions on shallow groundwater use at the site would prevent completion of receptor exposure pathways until RNA is complete. The Air Force therefore recommends implementation of RNA and long-term monitoring (LTM) with institutional controls.

To verify model predictions, and to ensure that the selected technologies are meeting objectives, the Air Force recommends using 10 LTM wells and 4 sentry wells to monitor the long-term migration and degradation of the dissolved hydrocarbon plume. In addition to analyses used to verify the effectiveness of RNA, the groundwater samples should be analyzed for CAH and BTEX compounds by US Environmental Protection Agency (USEPA) Method SW8260. If data collected under the LTM program indicate that the selected remedial system is not sufficient to reduce BTEX concentrations at downgradient well locations to levels considered protective of human health and the environment, additional corrective actions may be required to remediate groundwater at the site.

TABLE OF CONTENTS

	Pag	ge
EXEC	CUTIVE SUMMARY ES	-1
ACRO	NYMS AND ABBREVIATIONSv	⁄ii
SECT	ION 1 - INTRODUCTION1-	-1
1.1 1.2	Scope and Objectives	-2 -5
SECT	ION 2 - SITE CHARACTERIZATION ACTIVITIES2-	-1
2.1	Drilling, Soil Sampling, and Monitoring Point Installation	-2 -2 -5 -7 -7 -9
2.2	2.1.3 Monitoring Point Development2-Groundwater Sampling2-12.2.1 Preparation for Sampling2-12.2.2 Well/Point Purging and Sample Collection2-12.2.3 Onsite Chemical Parameter Measurement2-12.2.4 Sample Handling2-1	10 13 13
2.3	Aquifer Testing2-1	
2.4 SECTI	Surveying2-1 ON 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA 3-	
3.1	Surface Features 3-3.1.1 Topography 3-3.1.2 Surface Water Hydrology 3-	-1 -1
3.2 3.3	Regional Geology and Hydrogeology	·5 ·5 ·9

				Page
		3.3.2.2	Hydraulic Conductivity	3-12
		3.3.2.3	Effective Porosity	4-13
		3.3.2.4		4-13
			Preferential Flow Paths	4-13
	3 3 3	Groundy	vater Use	4-14
3.4	Clima	te		4-14
SEC	TION 4		MINANT DISTRIBUTION AND EVIDENCE FOR	
		BIODE	GRADATION	4-1
4.1	Conta	minant So	urces and Soil Chemistry	4-1
	4.1.1	Contami	nant Sources	4-1
	4.1.2	Total Or	ganic Carbon in Soil	4-2
4.2	Overv	iew of Hy	drocarbon Biodegradation	4-4
	4.2.1	Review of	of Biodegradation Processes	4-5
	4.2.2	Biodegra	dation of BTEX	4-7
	4.2.3	Biodegra	dation of Chlorinated Solvents	4-8
		4.2.3.1	Electron Acceptor Reactions (Reductive	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Dehalogenation)	4-9
		4.2.3.2	Electron Donor Reactions	4-12
			Cometabolism	
			Behavior of Chlorinated Solvent Plumes	
	4.2.4		Degradation of Chlorinated Solvents	
4.3		oution of I	Hydrocarbons and Daughter Products	4-19
•••	431	Fuel Hyd	drocarbons	4-20
			ted Ethenes	
			ted Ethanes	
			enzenes	
			nlorinated Compounds	
4.4			ence of Biodegradation	
•••	4.4.1		Donors, Native Electron Acceptors, and Byproducts	
		4.4.1.1	Organic Carbon in Groundwater	
		4.4.1.2	Inorganic Chemistry	
	4.4.2		al Geochemical Indicators	
		4.4.2.1	Oxidation/Reduction Potential	
		4.4.2.2		
		4.4.2.3	Ammonia/Ammonium	4-48
		4.4.2.4	рН	
			Temperature	

	Pa	ge
4.5	Approximation of Biodegradation Rates4-	52
4.6	Discussion4-	53
SECT	ION 5 - GROUNDWATER MODELING5	-1
5.1	General Overview5	-1
5.2	Conceptual Model Design and Assumptions5	-3
5.3	Initial Model Setup5	-4
	5.3.1 Groundwater Gradient	-4
	5.3.2 Dissolved Contaminant Concentrations	
	5.3.3 Degradation Rates	-5
5.4	Model Calibration5-	10
5.5	Model Results5-	11
5.6	Sensitivity Analysis5-	12
SECT	ION 6 - COMPARATIVE ANALYSIS OF REMEDIAL	
	ALTERNATIVES6	-1
6.1	Remedial Alternative Evaluation Criteria 6	
	6.1.1 Long-Term Effectiveness and Permanence	-2
	6.1.2 Implementability 6	
	6.1.3 Cost	
6.2	Factors Influencing Alternatives Development	
	6.2.1 Program Objectives	
	6.2.2 Contaminant Properties	
	6.2.3 Site-Specific Conditions	
	6.2.3.1 Physical Characteristics	
	6.2.3.2 Geochemical Characteristics6-	
	6.2.3.3 Potential Receptor Exposure Pathways6-	
	6.2.3.4 Remediation Goals for Shallow Groundwater6-	
	6.2.4 Summary of Remedial Option Screening6-1	13
6.3	Brief Description of Remedial Alternatives6-	14
	6.3.1 Alternative 1 - RNA and Institutional Controls with Long-Term	
	Groundwater Monitoring6-1	14
	6.3.2 Alternative 2 - Biosparging, RNA, and Institutional Controls	• ^
	with Long-Term Groundwater Monitoring6-1	19
	6.3.3 Alternative 3 - Groundwater Extraction and Treatment, RNA,	
	and Institutional Controls with Long-Term Groundwater	
	Monitoring6-2	21

			Page
6.4	Evalu	ation of Alternatives	6-22
•••	6.4.1		
		Groundwater Monitoring	6-22
		6.4.1.1 Effectiveness	
		6.4.1.2 Implementability	
		6.4.1.3 Cost	
	6.4.2	Alternative 2 - Biosparging, RNA, and Institutional Controls	
		with Long-Term Groundwater Monitoring	6-25
		6.4.2.1 Effectiveness	
		6.4.2.2 Implementability	
		6.4.2.3 Cost	
	6.4.3	Alternative 3 - Groundwater Extraction, RNA, and Institutional	
		Controls with Long-Term Groundwater Monitoring	6-26
		6.4.3.1 Effectiveness	
		6.4.3.2 Implementability	
		6.4.3.3 Cost	
6.5	Recon	nmended Remedial Approach	
SECT	TON 7 -	- LONG-TERM MONITORING PLAN	7-1
7.1	Overv	iew	7-1
7.2		oring Networks	
	7.2.1	Long-Term Monitoring Wells	7-2
		Sentry Wells	
7.3		dwater Sampling	
	7.3.1	Analytical Protocol	7-6
	7.3.2	Sampling Frequency	7-6
SECT	- 8 NOI	CONCLUSIONS AND RECOMMENDATIONS	8-1
ያ ፑ ርግ	ם מחד - - 10 מחד	REFERENCES	9-1

LIST OF TABLES

No.	Title	Page
2.1	Monitoring Point And Monitoring Well Completion Data	2-4
2.2	Analytical Protocols For Groundwater And Soil Samples	2-11
3.1	Summary of Groundwater Elevation Data November 1996	3-10
3.2	1996 Slug Test Results	
4.1	Soil Analytical Data	4-3
4.2	Groundwater Quality Data Summary for BTEX, TMBs, and TVH	4-21
4.3	Groundwater Quality Data Summary for Chlorinated VOCs	4-24
4.4	Groundwater Electron Acceptors/Byproducts	4-33
4.5	Groundwater Geochemical Indicators Analytical Data	4-37
4.6	Concentration Histories for Compounds Detected in Groundwater in	
	Concentrations Exceeding MCLs	4-55
5.1	First Order Rate Constant Calculation Using the Method of Buscheck	
	and Alcantar (1995)	5-7
5.2	First Order Rate Constant Calculation Using the Method of Buscheck	
	and Alcantar (1995)	5-8
5.3	First Order Rate Constant Calculation Using the Method of Buscheck	
	and Alcantar (1995)	5-9
6.1	Groundwater Quality Standards	6-13
6.2	Initial Technical Implementatbility Screening of Technologies and	
	Process Options for Groundwater Remediation	6-15
6.3	Alternative 1 - Cost Estimate	6-24
6.4	Alternative 2 - Cost Estimate	6-27
6.5	Alternative 3 - Cost Estimate	6-29
6.6	Summary of Remedial Alternatives Evaluation for Groundwater	
	Remediation	6-30
7.1	Long-Term Monitoring Analytical Protocol	7-7
7.2	Point-of-Compliance Monitoring Analytical Protocol	
	LIST OF FIGURES	
		D
No.	Title	Page
1.1	Location of Columbus AFB	1-6
1.2	Site Map	1-8
2.1	Groundwater and Soil Samling Locations	2-3
3.1	Topographic Map	3-2

LIST OF FIGURES (Continued)

No.	Title	Page
3.2	Locations of Hydrogeologic Cross-Sections	3-6
3.3	Hydrogeologic Cross-Section A-A'	3-7
3.4	Hydrogeologic Cross-Section B-B'	3-8
3.5	Water Table Elevations November 1996	3-11
4.1	Anaerobic Reductive Dechlorination	4-10
4.2	Aerobic Dechlorination	4-15
4.3	Areal Extent of Dissolved Total BTEX November	4-22
4.4	cis-1,2-DCE/1,1-DCE in Groundwater Isopleth Map November 1996	4-25
4.5	Vinyl Chloride in Groundwater Ispopleth Map November 1996	
4.6	Chlorinated Ethanes and 1,1-DCE in Groundwater Isopleth Map	
	November 1996	4-29
4.7	Chlorobenzenes in Groundwater Isopleth Map November 1996	
4.8	Chloride in Groundwater Isopleth Map November 1996	
4.9	Dissolved Oxygen in Groundwater Isopleth Map November 1996	
4.10	Nitrate & Nitrite (as N) in Groundwater Isopleth Map November 1996	
4.11	Ferrous Iron in Groundwater Isopleth Map November 1996	
4.12	Sulfate in Groundwater Isopleth Map November 1996	4-44
4.13	Methane in Groundwater Isopleth Map November 1996	4-45
4.14	Dissolved Carbon Dioxide in Groundwater Isopleth Map November	
	1996	4-49
4.15	Dissolved Ammonia/Ammonium in Groundwater Isopleth Map	
	November 1996	4-50
7.1	Proposed Long-Term Monitoring and Sentry Well Locations	7-3

ACRONYMS AND ABBREVIATIONS

μg/kg micrograms per kilogram

μg/L micrograms per liter

AETC Air Education and Training Command

AFB Air Force Base

AFCEE United States Air Force Center for Environmental Excellence

ASCII American Standard Code for Information Interchange

ATC Air Training Command

atm-m³/mol atmosphere-cubic meters per mole

bgs below ground surface

BRAC Base Realignment and Closure

BTEX benzene, toluene, ethylbenzene, and xylenes

°C degrees Centigrade
CaCO₃ calcium carbonate
CA chloroethane

CAH chlorinated aliphatic hydrocarbon

CB chlorobenzene
DCA dichloroethane
DCB dichlorobenzene
DCE dichloroethene
DCM dichloromethane
DO dissolved oxygen

ESE Environmental Science and Engineering, Inc.

ft/day feet per day ft/ft foot per foot

 $\Delta G^{\circ}r$ Gibbs free energy of the reaction

HDPE high density polyethylene

ID inside diameter

IRP Installation Restoration Program

LF-06 Landfill 6

LTM long-term monitoring

MCL maximum contaminant level

MDEQ Mississippi Department of Environmental Quality

mg/kg milligrams per kilogram
mg/L milligrams per liter
mm Hg millimeters of mercury

msl mean sea level

N nitrogen

NAPL nonaqueous-phase liquid

OH hydroxyl group

Parsons ES Parsons Engineering Science, Inc.
PA/SI preliminary assessment/site inspection

tetrachloroethane
tetrachloroethene
photoionization detector
polyvinyl chloride
quality control

RAO remedial action objective redox reduction/oxidation RI remedial investigation

RNA remediation by natural attenuation

SAC Strategic Air Command SAP Sampling and Analysis Plan

SS stainless steel

SVE soil vapor extraction

TCA trichloroethane
TCB trichlorobenzene
TCE trichloroethene
TeCB tetrachlorobenzene
TEMB tetramethylbenzene
TMB trimethylbenzene
TOC total organic carbon

TRPH total recoverable petroleum hydrocarbons

TS Treatability Study

TVH total volatile hydrocarbons USAF United States Air Force

USEPA United States Environmental Protection Agency

VC vinyl chloride

VOC volatile organic compound

SECTION 1

INTRODUCTION

This Treatability Study (TS) was conducted by Parsons Engineering Science, Inc. (Parsons ES) to evaluate remediation by natural attenuation (RNA) of fuel-hydrocarbon and chlorinated-solvent contaminated groundwater at Landfill 6 (LF-06) at Columbus Air Force Base (AFB), Mississippi. As used in this report, RNA refers to a management strategy that relies on natural attenuation mechanisms to remediate contaminants dissolved in groundwater and to control receptor exposure risks associated with contaminants in the subsurface. The United States Environmental Protection Agency (USEPA) defines natural attenuation as (Wilson, 1996):

The naturally-occurring processes in soil and groundwater environments that act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in those media. These in-situ processes include biodegradation, dispersion, dilution, adsorption, volatilization, and chemical or biological stabilization or destruction of contaminants.

As suggested by this definition, mechanisms for natural attenuation include both destructive and non-destructive processes. Non-destructive processes may reduce contaminant toxicity, mobility, volume, or concentration; however, mass is unaffected. Of these processes, biodegradation is the most common mechanism working to transform fuel hydrocarbons and chlorinated solvents into innocuous byproducts. Contaminant destruction occurs through biodegradation when indigenous microorganisms work to bring about a reduction in the total mass of contamination in the subsurface without artificial intervention (e.g., the addition of nutrients). Patterns and rates of natural attenuation can vary markedly from site to site, and within a single

contaminant plume at a given site, depending on governing physical and chemical processes.

1.1 SCOPE AND OBJECTIVES

Parsons ES was retained by the United States Air Force Center for Environmental Excellence (AFCEE) Technology Transfer Division to conduct site characterization and groundwater modeling to evaluate the scientific defensibility of RNA with long-term monitoring (LTM) as a component of remediation for contaminated groundwater at Columbus AFB. The primary objective of this project was to determine the degree to which natural attenuation processes for fuel hydrocarbons and chlorinated solvents are occurring in groundwater at the site. Performance of the following tasks was required to fulfill the project objectives:

- Reviewing previously reported hydrogeologic, soil, and groundwater data for the site;
- Conducting supplemental site characterization activities to more thoroughly characterize the nature and extent of soil and groundwater contamination;
- Collecting geochemical data in support of RNA;
- Developing a conceptual hydrogeologic model of the shallow saturated zone, including the current distribution of contaminants;
- Evaluating site-specific data to determine whether natural processes of contaminant attenuation and destruction are occurring in groundwater for dissolved concentrations of fuel hydrocarbon and chlorinated solvent compounds at the site;
- Calibrating an analytical flow and transport model to replicate observed site conditions;

- Simulating the fate and transport of benzene, toluene, ethylbenzene, and xylenes
 (BTEX) and chlorinated solvents in groundwater under the influence of
 biodegradation, advection, dispersion, and adsorption using the calibrated flow
 and transport model;
- Evaluating a range of model input parameters to determine the sensitivity of the model to those parameters and to consider several contaminant fate and transport scenarios;
- Determining if natural processes are sufficient to reduce dissolved hydrocarbon and chlorinated solvent plume expansion so that water quality standards can be met at a downgradient location;
- Simulating the effects of candidate remedial technologies and comparing results to preliminary remedial action objectives (RAOs);
- Using the results of modeling to recommend the most appropriate remedial option based on specific effectiveness, implementability, and cost criteria; and
- Providing a LTM plan that includes LTM and sentry well locations and a sampling and analysis plan.

The field work conducted under this program was oriented toward collecting supplementary hydrogeological and chemical data necessary to document and model natural attenuation mechanisms currently operating at the site. During November 1996, site characterization activities included use of the Geoprobe® direct-push technology for soil sample collection and temporary monitoring point installation; aquifer testing; and sampling and analysis of groundwater from temporary groundwater monitoring points and previously installed monitoring wells. Much of the hydrogeological and groundwater chemical data necessary to evaluate RNA were

available from previous investigations conducted at this site, at other sites with similar characteristics, or in technical literature.

Site-specific chemical evidence was first used to qualitatively evaluate destructive natural attenuation mechanisms, and to deduce the types of destructive mechanisms operating to reduce chlorinated solvents and fuel hydrocarbon mass at the site. Finally the chemical evidence was used to approximate destructive attenuation rates.

Following the chemical evaluation, site-specific hydrogeologic and chemical data were used to develop an analytical fate and transport model for the site to evaluate processes of natural attenuation. The modeling effort was used to simulate the movement of dissolved contaminants in the shallow saturated zone under the influence of biodegradation, advection, dispersion, and sorption. Results of the model were used to assess the potential for completion of exposure pathways involving groundwater and to determine whether RNA with LTM is an appropriate and defensible remedial option for contaminated groundwater. The results will be used to provide technical support for the RNA with LTM remedial option during regulatory negotiations, as appropriate.

This report contains nine sections, including this introduction, and five appendices. Section 2 summarizes site characterization activities. Section 3 summarizes the physical characteristics of the study area. Section 4 describes the nature and extent of soil and groundwater contamination and the geochemistry of soil and groundwater at the site. Section 5 describes the fate and transport model and design of the conceptual model for the site, lists model assumptions and input parameters, and describes sensitivity analyses. Section 6 presents a comparative analysis of remedial alternatives and predictive model results. Section 7 presents the LTM plan for the site. Section 8 presents the conclusions of this work and provides recommendations for further work at the site. Section 9 lists the references used to develop this document. Appendix A contains Geoprobe® borehole logs, monitoring point installation records, and slug test results. Appendix B presents soil and groundwater analytical results. Appendix C

contains calculations and model input parameters. Appendix D contains model input and output in American Standard Code for Information Interchange (ASCII) format on a diskette. Appendix E contains calculations for remedial option design and costing.

1.2 FACILITY BACKGROUND

Columbus AFB is in northeastern Mississippi, in the northwestern portion of Lowndes County (Figure 1.1). Columbus AFB covers approximately 4,411 acres in a lightly urbanized area 10 miles north of Columbus, Mississippi. Columbus AFB was initially activated on February 9, 1942 as a pilot training facility. It was closed in 1946 and remained inactive until 1951, when it was reopened as a contract flying school operated by California Eastern Airways, Inc. On April 1, 1955, the United States Air Force (USAF) Air Training Command (ATC) transferred the Base to the Second Air Force of the Strategic Air Command (SAC). An active building program was instituted by SAC to prepare the Base for its mission as the home of a B-52 squadron and a KC-135 tanker squadron, both of which arrived in 1959. ATC regained jurisdiction of the Base on July 1, 1969. The training missions at Columbus AFB require the use and maintenance of T-1, T-37, T-38, and AT-38 training aircraft. ATC became the Air Education and Training Command (AETC) on July 1, 1993. Base Realignment and Closure (BRAC) decisions in 1991, 1993, and 1995 continue to impact the mission and structure of the Base (Spencer, 1996b).

Site LF-06, Landfill Number 6, is located near the southeastern corner of the Base, directly south of the main runway and near the main gate. The landfill was operated as a disposal area for sanitary trash, ferrous metal debris, and concrete debris from 1964 through 1974. North-south trenches 8 to 10 feet deep were used for trash disposal. Initial trenches were created on the western side of the landfill, and subsequent filling activities proceeded in an easterly direction. No trenches on the east side of the landfill were used because of a near-surface water table (2 feet below the surface) (CH2M Hill, 1989). The landfill is covered by grass, with trees and thick vegetation covering the east and south portions of the landfill.

LOCATION OF COLUMBUS AFB

Site LF-06 RNA TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

In 1985, a preliminary assessment/site inspection (PA/SI) was conducted by Environmental Science and Engineering, Inc. (ESE) as part of the Installation Restoration Program (IRP). The PA/SI identified 15 potentially contaminated sites, including Site LF-06. In 1988 and 1989, a remedial investigation (RI) was conducted by CH2M Hill (1989) to investigate the 15 sites identified in the PA/SI. As part of the RI activities, a geophysical survey was conducted to delineate the landfill boundary (Figure 1.2). In April 1988, nine sediment samples and two surface water samples were collected along drainageways east and south of the site, and five monitoring wells were installed and sampled. The monitoring wells were sampled again in July 1988 and December 1988. In May 1989, three additional monitoring wells were installed to further evaluate the extent of vinyl chloride and mercury in groundwater in the vicinity of Site LF-06, and two downgradient monitoring wells were installed near the southern property boundary of the Base to determine if dissolved contamination had migrated beyond property boundaries (CH2M Hill, 1989). All site monitoring wells were sampled in August 1995 as part of the groundwater LTM program at Columbus AFB (Spencer, 1996a).

SECTION 2

SITE CHARACTERIZATION ACTIVITIES

This section presents the methods used by Parsons ES personnel to collect site-specific data at Site LF-06 at Columbus AFB, Mississippi. The site characterization was performed in November 1996, and consisted of monitoring point installation, soil and groundwater sampling, and aquifer testing to evaluate near-surface geology and geochemistry, aquifer properties, and the extent of soil and groundwater contamination for the area surrounding LF-06. Temporary groundwater monitoring point installation and soil sampling were accomplished using the Geoprobe® direct-push system. Groundwater sampling was accomplished using both temporary monitoring points and previously installed monitoring wells. Hydraulic conductivity (slug) tests were conducted at several of the site monitoring wells. Previously collected data were integrated with data collected under this program to develop the conceptual site model and to aid interpretation of the physical setting (Section 3) and contaminant distribution (Section 4).

The following sections describe the procedures that were followed when collecting site-specific data. Additional details regarding investigative activities are presented in the work plan (Parsons ES, 1996).

2.1 DRILLING, SOIL SAMPLING, AND MONITORING POINT INSTALLATION

Drilling-related field work occurred between November 8 and November 17, 1996, and consisted of soil sampling and temporary groundwater monitoring point installation. Twenty-one temporary groundwater monitoring points were installed at 17 locations to assist in the characterization of the shallow groundwater flow system at Site LF-06. These points were identified as MPA(s), MPA(d), MPB, MPC(s), MPC(d), MPD(s), MPD(d),

MPF(s), MPF(d), MPG, MPH, MPI, MPI, MPK, MPL, MPM, MPN, MPO, MPP, MPQ, and MPR. The new points were installed in the locations shown on Figure 2.1. Table 2.1 presents monitoring well completion details. Four sets of clustered points were installed, with one well (designated by the suffix "s") screened near the water table surface, and with the deeper well (designated by the suffix "d") screened at the base of the unconsolidated shallow aquifer immediately above the semi-impervious clay layer. The well locations were selected to provide the hydrogeologic data necessary for successful implementation of fate and transport modeling and to support the RNA demonstration. These activities were performed according to the procedures described in the work plan (Parsons ES, 1996) and in the following sections.

2.1.1 Geoprobe® Operation

The Geoprobe® system is a hydraulically powered percussion/probing machine used to advance sampling tools through unconsolidated soils. This system provides for the rapid collection of soil, soil gas, and groundwater samples at shallow depths while minimizing the generation of investigation-derived waste materials. For convenience, throughout this report, operation of the Geoprobe® is referred to as "drilling".

2.1.1.1 Pre-Drilling Activities

All subsurface utility lines or other man-made subsurface features were located, and proposed drilling locations were cleared and approved by the Base prior to any drilling activities. Water used in equipment cleaning or grouting was obtained from a potable water supply designated by the Base.

2.1.1.2 Equipment Decontamination Procedures

Prior to arriving at the site, and between each drilling location, all probe rods, tips, sleeves, pushrods, samplers, tools, and other downhole equipment were decontaminated using an Alconox® detergent and potable water solution followed by a potable water wash. Fittings, tips, and samplers also underwent an additional rinse with isopropyl alcohol

TABLE 2.1 MONITORING POINT AND MONITORING WELL COMPLETION DATA LF-06 RNA TS

COLUMBUS AFB, MISSISSIPPI

				CODOMEDO	S AID, MISSI	DUITI		
					. i		Elevation of	
		Well	Total Depth	Screened	Survey	Survey	Reference Point	
Well	Installation	Diameter	Measured	Interval	Northing (State Plane) ^{b'}	Easting	for Measurements	Elevation
Identification	Date	(inches)	(Feet toc)	(feet bgs)*/	(State Plane) ^b	(State Plane)	(feet msl) ^{e/}	Datum
Monitorin	ng Points							
MPA(s)	11/12/96	0.5		10.5-15.5	1439839.5921	621166.0172	216.7	Top of PVC Casing
MPA(d)	11/17/96	0.375		30.7-31.2	1439839.5921	621166.0172	217.7	Top of Tubing
MPB	11/9/96	0.5		7-12	1439643.0514	621168.3734	211.9	Top of PVC Casing
MPC(s)	11/16/96	0.5		20-23	1440002.2419	621620.4489	218.7	Top of PVC Casing
MPC(d)	11/16/96	0.375		31.1-31.6	1440002.2419	621620.4489	219.9	Top of Tubing
MPD(s)	11/16/96	0.5		15-18	1439880.2070	621404.3915	216.5	Top of PVC Casing
MPD(d)	11/16/96	0.375		31.1-31.6	1439880.2070	621404.3915	217.6	Top of Tubing
MPF(s)	11/15/96	0.5		11-14	1440040.7906	621987.1107	215.0	Top of PVC Casing
MPF(d)	11/15/96	0.375		30.5-31	1440040.7906	621987.1107	216.0	Top of Tubing
MPG	11/13/96	0.5		15-18	1440365.4145	622741.1228	219.3	Top of PVC Casing
МРН	11/13/96	0.5		9-14	1439306.1636	620642.9713	208.6	Top of PVC Casing
MPI	11/15/96	0.5		23-26	1439541.5590	620508.3941	206.7	Top of PVC Casing
МРЈ	11/12/96	0.375		18.5-19	1439669.5326	620792.4084	213.4	Top of PVC Casing
MPK	11/14/96	0.5		15-18	1439815.8194	620620.2490	209.3	Top of PVC Casing
MPL	11/14/96	0.5		12-17	1439848.2203	620429.6530	206.6	Top of PVC Casing
МРМ	11/13/97	0.5		15-18	1440089.8564	620650.4350	208.5	Top of PVC Casing
MPN	11/16/96	0.5		24-27	1440221.4005	621528.6319	219.1	Top of PVC Casing
MPO	11/13/96	0.5		9-14	1439452.8637	621222.0761	203.6	Top of PVC Casing
иРР	11/12/96	0.5		8-14	1439472.5487	621894.2265	204.9	Top of PVC Casing
MPQ	11/12/96	0.5		8-14	1439501.9037	622302.9421	204.3	Top of PVC Casing
MPR	11/14/96	0.5		13-16	1440344.4043	623216.8753	212.7	Top of PVC Casing
Monitorin			<u> </u>					
W18	2/29/88	2.0	.	21-31	1440056.0402	621169.7223	215.6	Top of PVC Casing
W19	3/1/88	2.0		20.5-30.5	1440413.5 ^{t/}	621948.89 ^{f/}	219.0 ^{d/}	Top of PVC Casing
W20	3/1/88	2.0		13-23	1439588.3460	622175.2869	205.6	Top of PVC Casing
W21	2/28/88	2.0		18-28	1439564.86 ^{f/}	621616.88 ^{f/}	207.2 ^{d/}	Top of PVC Casing
W22	3/1/88	2.0		11.5-21.5	1439427.1258	620992.4735	208.7	Top of PVC Casing
W78	5/25/89	2.0		10-20	1439168.24"	621658.51 ^f /	206.8 ^d	Top of PVC Casing
W79	5/26/89	2.0		10-20	1439177.54	621310.63 ^f /	208.0 ^{d/}	Top of PVC Casing
W81	11/4/94	2.0	-	17-27	1439155.87"	620830.78 ^{f'}	212.2°	Top of PVC Casing
W82	11/5/94	2.0		15-25	1439807.23"	620810.93 ^{f'}	207.2 ^{e/}	Top of PVC Casing
1,725	1110174	2.0	i	10 20		3200000		

^{a'} Feet bgs = feet below ground surface.

State Plane = State of Mississippi Plane Coordinate System.

Feet msl = feet above mean sea level.

d' Reference point elevation determined by adding 0.3 ft to survey data reported by CH2M Hill in 1989.

ef Reference point elevation obtained from well instalation records produced by CH2M Hill in November, 1994.

Fasting and northing supply coordinates obtained from PCM/Smith supply

^{ff} Easting and northing survey coordinates obtained from BCM/Smith survey, 1996

followed by a final rinse with deionized water. Precautions were taken to minimize impact to the areas surrounding decontamination operations. All decontamination activities were conducted in a manner so that the excess water was controlled and not allowed to flow into any open borehole.

All decontamination fluids were collected and contained in 55-gallon drums. The contents of the drums were inspected prior to release to the Base sanitary sewer. If the water had exhibited a sheen or odor of any kind, the water would have been transported to a temporary holding facility designated by the Base. None of the water exhibited signs of contamination, and therefore, Base Civil Engineering was notified and the water was released to the sanitary sewer.

2.1.1.3 Drilling and Soil Sampling

Drilling was accomplished using the Geoprobe® direct-push technology. The boreholes were sampled continuously to the total depth of the borehole. Where two points were installed adjacent to each other (i.e., nested), only the deeper point was logged and sampled. The Geoprobe -collected soil samples were obtained using 4 foot by 1.5 inch inside diameter (ID) and 2 foot by 1-1/16-inch ID sampling devices. The large sampler was used for the initial 10 feet of soil. The smaller sampler was then used for the remainder of the borehole in an attempt to minimize the smearing of surface contamination into deeper portions of the borehole. A probe-drive sampler attached to the leading end of the probe rods serves as both the driving point and the sample collection device. To collect a soil sample, the sampler was pushed or driven to the desired sampling depth, the drive point was retracted to open the sampling barrel, and the sampler was subsequently pushed into the undisturbed soils. The soil cores were retained within a clear acetate liner inside the sampling barrel. The probe rods were then retracted, bringing the sampling device to the surface. The soil sample was then extruded from the liners for visual lithologic logging, photoionization detector (PID) headspace screening, and collection for chemical testing at an analytical laboratory.

The Parsons ES field geologist observed drilling and monitoring point installation activities and maintained a detailed descriptive log of recovered subsurface materials. Final geologic borehole logs are presented in Appendix A. These logs contain:

- Sampled interval (top and bottom depth);
- Presence or absence of contamination based on odor, staining, and/or PID readings;
- Soil description, including color, major textural constituents, minor constituents, relative moisture content, plasticity of fines, cohesiveness, grain size, structure or stratification, and any other significant observations; and
- Lithologic contacts, with the depth to contacts and/or significant textural changes recorded to the nearest 0.1 foot.

Bags containing soil samples collected for the headspace screening procedure were quickly sealed and stored for 15 minutes or longer at the ambient temperature. Semiquantitative measurements were made by puncturing the bag seal with the PID probe and reading the concentration of the headspace gases. The PID relates the concentration of total volatile organic compounds (VOCs) in the sample to an isobutylene calibration standard. The PID also was used to monitor for VOCs in the worker breathing zone.

Soil samples were collected from boreholes MPF, MPJ, and MPL. At MPF and MPJ, samples submitted for laboratory analysis were from the intervals giving the highest PID headspace readings. Where no elevated PID headspace readings were encountered (MPL), a sample was collected from immediately above the water table. Analytical sample containers and appropriate container lids were provided by Envirotech, Inc. Personnel from Parsons ES performed the soil sampling.

The sample containers were filled completely to minimize headspace. The containers were sealed with Teflon® tape and lids were placed over the tape and tightly closed. A

sample label was attached to the container side, and the following information was legibly and indelibly written on the label:

- Sample identification;
- Requested analysis;
- Sample depth;
- Sampling date; and,
- Sample collector's initials.

After the sample containers were sealed and labeled, they were placed in a cooler with ice and held for transport to the laboratory.

2.1.2 Temporary Monitoring Point Installation

Temporary groundwater monitoring points were installed in 21 boreholes at 17 locations under this program (Figure 2.1). Detailed monitoring point installation procedures are described in the following paragraphs.

2.1.2.1 Monitoring Point Materials Decontamination

Monitoring point completion materials were inspected by the field geologist and determined to be clean and acceptable prior to use. All monitoring point completion materials were factory sealed in plastic wrap. Pre-packaged casing, sand, and bentonite were used in well construction, and were inspected for possible external contamination before use. Materials that could not be cleaned to the satisfaction of the field geologist were not used.

2.1.2.2 Monitoring Point Casing and Screen

Two designs were used to construct monitoring points. The majority of the shallow monitoring points were constructed of Schedule 40 polyvinyl chloride (PVC) riser pipe

connected to factory-slotted PVC screens having an ID of 0.5 inch. The PVC points were placed wherever formation soils did not collapse into the borehole after the Geoprobe® rods were extracted. In the event that collapsing soils prevented the placement of the PVC screen after the extraction of the soil probe the monitoring points were constructed using Teflon®-lined, high-density polyethylene (HDPE) tubing threaded through the center of the drive rods. The tubing was attached to a double-woven wire screen, which in turn was threaded into a dedicated stainless steel (SS) drive point/implant anchor that remained in place after the drive rods were removed. All PVC casing and screen sections on the shallow monitoring points were flush threaded, and glued joints were not used. The riser pipe at each PVC monitoring point was fitted with a PVC top cap, and an aluminum drive point was inserted into the bottoms of the PVC screens.

The majority of the deep monitoring points were constructed using the SS screens and Teflon -lined HDPE tubing described above. The riser tubing for deep monitoring points extended to the surface, and the bottom of the SS mesh screen was threaded to the dedicated SS drive point/implant anchor that remained in place after the drive rods were removed.

Monitoring point screens constructed of PVC were 3 to 6 feet long and factory slotted with 0.010-inch openings. Monitoring point screens constructed of SS were 0.5 foot in length with pore openings of 0.037 inch. Shallow points were screened near the water table. Well screen positions were selected by the field hydrogeologist after consideration was given to the geology and hydraulic characteristics of the stratum in which the wells were screened.

Monitoring point construction details were noted on a monitoring point installation record and are summarized in Table 2.1. This information became part of the permanent field record for the site. Monitoring point installation records for LF-06 are presented in Appendix A.

2.1.2.3 Sand Filter Pack and Annular Sealant

Placement of a filter pack around the monitoring point casing screens was not possible as a result of the collapse of the sand borehole walls. Therefore, the temporary monitoring points were naturally sand-packed with the formation materials. Due to the sandy nature of the formation materials, well development and purging activities were accomplished without difficulty. A filter pack seal of sodium bentonite chips or grout was placed in the portion of the hole which remained open following collapse of the sandy borehole walls. This was typically the top 2 to 3 feet of the borehole.

2.1.2.4 Protective Cover

For all temporary monitoring points, protective 8-inch-diameter flush-mount casings were set into a 2-foot-square concrete pad to a depth of 0.5 to 1.0 foot bgs. The casings were cemented in place with the bottom anchored in a 6-inch thick gravel pad in order to facilitate drainage of excess storm water penetrating the protective casing. The tops of the covers were placed approximately at ground surface. Well identifications were permanently inscribed on the well casing and protective cover.

2.1.3 Monitoring Point Development

Prior to sampling, temporary monitoring points were developed. Typically, development removes sediment from inside the well casing and flushes fines, cuttings, and drilling fluids from the sand pack and the portion of the formation adjacent to the well screen. Use of the Geoprobe® system to place monitoring points eliminates cuttings and drilling fluids. As a result, development of monitoring points is primarily intended to minimize the amount of fine sediment that might accumulate in the casing.

Monitoring point development was accomplished using a peristaltic pump with dedicated HDPE and silicon tubing. For monitoring points constructed from 0.5 inch PVC, HDPE tubing was inserted into the well. A length of silicon tubing was attached to the end of the HDPE tubing and directed through the peristaltic pump head. For monitoring points

constructed from Teflon® lined tubing, HDPE tubing was not required. Instead, the silicon tubing was attached to the Teflon®-lined tubing comprising the monitoring point casing, and directed through the peristaltic pump head. Development was continued until a minimum of 10 casing volumes of water were removed from the point and the groundwater pH, temperature, conductivity, and dissolved oxygen concentrations had stabilized.

2.2 GROUNDWATER SAMPLING

This section describes the procedures used for collecting groundwater samples. In order to maintain a high degree of quality control (QC) during this sampling event, the procedures described in the site work plan (Parsons ES, 1996) and summarized in this section were followed.

Groundwater sampling occurred between November 13 and 19, 1996, and consisted of collecting groundwater samples from 20 newly installed temporary monitoring points and 9 existing monitoring wells (Figure 2.1). A groundwater sample could not be obtained from the newly installed monitoring point MPD(s), because it was purged dry and never recovered. Groundwater sampling forms were used to document the specific details of the sampling event for each location. Groundwater samples were analyzed for the parameters listed in Table 2.2. Groundwater samples were analyzed by Parsons ES personnel in the field for alkalinity, ammonia, dissolved oxygen (DO), total and ferrous iron, conductivity, free carbon dioxide, pH, reduction/oxidation (redox) potential, salinity, soluble manganese, sulfide, sulfate, nitrite, nitrate, chloride, and temperature. Laboratory analyses for alkalinity, cnloride, methane, nitrate and nitrite, sulfate, purgeable aromatic hydrocarbons, total hydrocarbons, total organic carbon, and VOCs were performed by Evergreen Analytical, Inc.

2.2.1 Preparation for Sampling

All equipment used for sampling was assembled and properly cleaned and calibrated (if required) prior to arriving in the field. In addition, all record-keeping materials were

TABLE 2.2 ANALYTICAL PROTOCOLS FOR GROUNDWATER AND SOIL SAMPLES LF-06 RNA TS

COLUMBUS AFB, MISSISSIPPI

MATRIX Analyte	METHOD	FIELD (F) OR FIXED- BASE (L) ANALYTICAL LABORATORY
WATER		
Chloride	Colorimetric, Hach Method 1440-01 (or similar)	F
Total Iron	Colorimetric, Hach Method 8008 (or similar)	F
Ferrous Iron (Fe+2)	Colorimetric, Hach Method 8146 (or similar)	F
Ferric Iron (Fe+3)	Difference between total and ferrous iron	F
Manganese	Direct-reading meter	F
Salinity	Direct-reading meter	F
Sulfide	Colorimetric, Hach Method 8131 (or similar)	. F
Sulfate	Colorimetric, Hach Method 8051 (or similar)	F
Nitrate	Titrimetric, Hach Method 8039 (or similar)	F
Nitrite	Titrimetric, Hach Method 8507 (or similar)	F
Redox Potential	A2580B, direct-reading meter	F
Oxygen	Direct-reading meter	F
рН	E150.1/SW9040, direct-reading meter	F
Conductivity	E120.1/SW9050, direct-reading meter	F
Temperature	E170.1	F
Alkalinity (Carbonate [CO3-2] and Bicarbonate [HCO3-1])	Titrimetric, Hach Method 8221 (or similar)	F
Carbon Dioxide	CHEMetrics Method 4500	F
Nitrate	E300 or SW9056	Ĺ
Nitrite	E300 or SW9056	Ĺ
Chloride	E300 or SW9056	Ĺ
Sulfate	E300 or SW9056	Ĺ
Alkalinity	E150.1	Ĺ
Methane	EAL-SOP-GC404	Ĺ
Total Organic Carbon	SW9060	L
Aromatic Hydrocarbons	SW8020A	Ĺ
(Including Trimethylbenzenes and Tetramethylbenzene)	SW8020A	L
Total Hydrocarbons	SW8015	L
Volatile Organic Compounds	SW8240B	L L
	SW 0240B	L
SOIL		
Total Organic Carbon	SW9060	L
Moisture	ASTM D-2216	L
Aromatic Hydrocarbons	SW8020	, L
Total Hydrocarbons	SW8015	L
Volatile Organic Compounds	SW8240B	L

gathered prior to leaving the office. Special care was taken to prevent contamination of the groundwater and extracted samples through cross contamination from improperly cleaned equipment; therefore, water level indicators and sampling equipment were thoroughly cleaned before and after field use and between uses at different sampling locations. In addition, a clean pair of new, disposable gloves was worn each time a different well/point was sampled.

All portions of sampling and test equipment that contacted the sample were thoroughly cleaned before use. This equipment included the water level probe and cable, equipment for measuring onsite groundwater chemical parameters, and other equipment that contacted the samples. All peristaltic pump tubing was dedicated to each sampling location. The following cleaning protocol was used:

- Cleaned with potable water and phosphate-free laboratory detergent;
- · Rinsed with potable water;
- Rinsed with isopropyl alcohol;
- Rinsed with distilled or deionized water;
- Air dried prior to use.

Any deviations from these procedures were documented in the field scientist's field notebook and on the groundwater sampling form. Decontamination fluids were contained as described in Section 2.1.1.2.

As required, field analytical equipment was calibrated according to the manufacturers' specifications prior to field use. This requirement applied specifically to onsite chemical measurements of DO, conductivity, and pH.

Prior to removing any water from the existing monitoring wells, the static water level was measured. An electrical water level probe was used to measure the depth to

groundwater below the well datum to the nearest 0.01 foot. After measurement of the static water level, the water level probe was lowered to the bottom of the well for measurement of total well depth (recorded to the nearest 0.01 foot). Based on these measurements, the volume of water to be purged from the monitoring wells was calculated. For the temporary monitoring points, the volume of water to be purged was estimated from the total depth of the monitoring point as recorded in the field notes.

2.2.2 Well/Point Purging and Sample Collection

A peristaltic pump was used for well evacuation. For monitoring wells, both dedicated HDPE and silicon tubing were used. For monitoring points, the same dedicated tubing arrangement described for development (Section 2.1.3) was used. Purging consisted of removing at least three times the calculated casing volume prior to sample collection. Once three casing volumes were removed from the well, purging continued until the DO, temperature, and conductivity readings had stabilized. Purge waters generated during the site characterization event were placed in 5-gallon buckets and transported to the on-site 1,200-gallon waste water tank.

The same peristaltic pump and dedicated tubing arrangement was used to extract groundwater samples from each well or Geoprobe® point. The groundwater sample was transferred directly into the appropriate sample container. The water was carefully poured down the inner walls of the sample bottle to minimize aeration of the sample. Sample bottles for BTEX, total fuel carbon, and VOC analyses were filled so that there was no headspace or air bubbles within the container. Table 2.2 lists the analyses performed on collected groundwater samples.

2.2.3 Onsite Chemical Parameter Measurement

Measurement of DO, pH, specific conductance, redox potential, and temperature was performed at the sampling location at the time of sample collection. All other field

parameters were measured onsite by Parsons ES personnel at their temporary laboratory immediately following sample collection.

DO measurements were taken using a YSI-55 DO meter in a flow-through cell at the outlet of the peristaltic pump. DO concentrations were recorded after the readings stabilized, and in all cases represent the lowest DO concentration observed.

Because the specific conductance, pH, redox potential, and temperature of groundwater can change significantly within a short time following sample acquisition, parameters were measured in the same flow-through cell used for DO measurements. Conductivity and temperature were measured using an Extech® meter. Redox potential and pH were measured using an Orion® 250A meter.

An onsite laboratory staffed by Parsons ES personnel was used to analyze for several indicator parameters in groundwater samples collected from pre-existing monitoring wells and newly installed monitoring points (Table 2.1). A Hach® DR/700 colorimeter was used to measure ferrous iron (Fe⁺²), total iron (Fe), manganese (Mn⁺²), and sulfide (S²). Titrations using Hach® reagents were conducted to measure alkalinity [as milligrams per liter (mg/L) calcium carbonate (CaCO₃)] and chloride (CI); and CHEMtric® color tests were used to measure ammonia (NH₃) and carbon dioxide (CO₂). These analyses were completed for each groundwater sample after all sample containers had been filled. The sample to be analyzed was poured into a clean glass container, capped, and transported to the Parsons ES on-Base laboratory for analysis. Special care was taken to avoid aerating the sample in the sample container, which could influence the concentration of reduced species. The field holding time for each sample did not exceed 0.5 hour. Care was taken to minimize sample temperature changes and exposure to sunlight. Concentrations of these indicator parameters were not measured in soil samples.

2.2.4 Sample Handling

Evergreen Analytical, Inc. provided appropriate pre-preserved sample containers. Samples were delivered to the Parsons ES temporary laboratory within minutes of sample collection. Samples for those analyses not performed by the temporary laboratory were appropriately packaged and shipped with ice to Evergreen Analytical, Inc. in Wheat Ridge, Colorado for analysis. The associated chain-of-custody documentation for the fixed-base laboratory was the responsibility of the Parsons ES field personnel.

The sample containers were filled as described in Sections 2.2.3, and the container lids were tightly closed. The sample label was firmly attached to the container side, and the following information was legibly and indelibly written on the label:

- · Facility name;
- · Sample identification;
- · Requested analysis;
- Sample type (groundwater);
- Sampling date;
- Sampling time;
- · Preservatives added; and
- Sample collector's initials.

2.3 AQUIFER TESTING

Slug tests were performed in November 1996 in wells W18, W19, W22, W79, W81, and W82 (Figure 2.1) to provide estimates for the hydraulic conductivity of the shallow saturated zone in the vicinity of LF-06. Slug tests are single-well hydraulic tests used to estimate the hydraulic conductivity of an aquifer in the immediate vicinity of the tested

well. Slug testing can be performed using either a rising head or a falling head test. Both rising head and falling head tests were performed at this site. Detailed slug testing procedures are presented in the *Technical Protocol for Implementing Intrinsic Remediation* with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater (Wiedemeier et al., 1995).

Data obtained during slug testing were analyzed using the computer program AQTESOLV* (Geraghty & Miller, Inc., 1994) and the methods of Bouwer and Rice (1976) and Bouwer (1989) for unconfined conditions. The results of slug testing are presented in Section 3.3 and Appendix A.

2.4 SURVEYING

After completion of field work in November 1996, the locations and elevations of all new monitoring wells were surveyed by CH2M Hill, a company licensed to perform land surveying. The horizontal locations and elevations of the measurement datum (top of well casing or top of outer casing) were measured relative to existing control points referenced to the Mississippi State Plane coordinate system. Horizontal locations were surveyed to the nearest 0.5 foot. Measurement datum and ground surface elevations were surveyed to the nearest 0.1 foot and referenced to mean sea level (msl) elevation. Survey data are presented in Table 2.1 and Appendix A. The locations of Geoprobe® grab samples were estimated by measuring the distance between adjacent monitoring wells and surface references.

SECTION 3

PHYSICAL CHARACTERISTICS OF THE STUDY AREA

This section describes the physical characteristics of Site LF-06 as determined from data collected by Parsons ES in November 1996, in conjunction with data documented in previous reports on LF-06 and Columbus AFB (CH2M Hill, 1989 and 1995; Spencer, 1996a and 1996b). Investigative techniques used by Parsons ES to determine the physical characteristics of the site are discussed in Section 2.

3.1 SURFACE FEATURES

3.1.1 Topography

Columbus AFB is located in northeastern Mississippi and lies in the Tombigbee and Tennessee River Hills physiographic district of the Gulf Coastal Plain (CH2M Hill, 1989). This area is characterized by a low, relatively flat terrain. Land surface elevations in the vicinity of Columbus AFB range from 180 to 220 feet above msl. A topographic map of Columbus AFB is presented as Figure 3.1.

3.1.2 Surface Water Hydrology

Columbus AFB is bounded to the west and north by the Tombigbee River and the Buttahatchie River, respectively. Surface water runoff from the Base primarily drains into the Tombigbee River, with exception of the northeastern portion of the Base, which drains into the Buttahatchie River. The northwestern corner of the Base lies within the 100-year floodplain of both rivers and occasionally floods (CH2M Hill, 1995).

3.2 REGIONAL GEOLOGY AND HYDROGEOLOGY

The shallow subsurface geology in northeastern Mississippi consists of Cretaceous Gulf Coastal Plain sediments overlain by Quaternary alluvial sediments. The Cretaceous coastal plain sediments unconformably overlie an irregular surface of Paleozoic basement rocks (CH2M Hill, 1989).

Unconsolidated sediments comprise the upper 40 feet of subsurface geology at the Base. These sediments are alluvial and lower terrace deposits composed of sand and gravel overlying clay and sandy clay. Upper units of the Cretaceous Coastal Plain sediments consist of sand, silt, gravel, clay, and calcareous marine strata. Lower units of the Cretaceous Series comprise a southward-thickening wedge of sand, clay, shale, gravel, and calcareous strata of marine origin (CH2M Hill, 1989). The upper units of the Coastal Plain sediments that crop out in the vicinity of Columbus AFB lie on the eastern flank of the Mississippian Embayment, a southward-plunging structural syncline. The embayment is essentially a large trough that subsided as Cretaceous sediments were deposited in a shallow inland sea. Stratigraphic units in the vicinity of the Base slope toward the axis of the embayment syncline, though the southwest dip of strata is less than 20 feet per mile (CH2M Hill, 1989). This structural control has resulted in north-south trending outcrop belts in areas surrounding the Base. Paleozoic basement rocks crop out only in the northeast corner of the state as Devonian and Mississippian sedimentary units.

Sandy Cretaceous sediments are the most important source of groundwater in Lowndes County. Recharge to these aquifers occurs mainly by downward infiltration of rainwater in outcrop areas (CH2M Hill, 1989). Two major hydrogeologic units are present in Lowndes County: a surficial, unconfined alluvial aquifer and the deeper, confined to semi-confined Eutaw Aquifer.

The surficial aquifer is part of the Upper Eutaw Formation, and includes the Tombigbee sand member when present. The surficial aquifer averages less than 40 feet in thickness and consists of alluvial sand, silty clay, and gravel deposits. Previous studies show the

regional hydraulic conductivity of the surficial aquifer to vary between 3.8 and 570 feet per day (ft/day) (CH2M Hill, 1989).

The semi-confining layer that separates the upper, surficial aquifer and the deeper, confined to semi-confined Eutaw Aquifer is estimated to be approximately 5 to 90 feet thick across the Base (CH2M Hill, 1995). This layer primarily consists of low permeability silt and clay interlayered with sand and has a hydraulic conductivity which ranges from 1.9×10^{-2} ft/day to 1.7×10^{-4} ft/day (CH2M Hill, 1989). Eutaw sediments of the confining layer have been identified as greenish-gray, finely laminated clay in the vicinity of the Base (Spencer, 1996a).

The confined to semi-confined Eutaw Aquifer consists of both Eutaw Formation and Tuscaloosa Group sediments. The confined Eutaw Aquifer is about 150 feet thick in the vicinity of the Base and receives most of its recharge north of the Base at the formation outcrop (CH2M Hill, 1989). The regional groundwater flow direction within the Eutaw Aquifer in the vicinity of the Base is toward the west-southwest, coinciding with the regional dip of the Formation. The Eutaw Aquifer consists of tan to brown sand (called Tuscaloosa sand) with coarse gravel and lenses of clay (CH2M Hill, 1989) and is generally identified by the presence of glauconitic sediments (Spencer, 1996a). Previous studies show the hydraulic conductivity of the Eutaw Aquifer within the Base to vary between 2 ft/day and 30 ft/day, and to average 7 ft/day (Spencer, 1996a). Beneath the Eutaw Formation is the Tuscaloosa Group, which consists of coarse sand and gravel deposits and is also considered part of the Eutaw Aquifer. Columbus AFB operates three potable water supply wells completed in the Tuscaloosa Group, at depths of approximately 400 feet bgs (CH2M Hill, 1995).

Shallow groundwater in the vicinity of the Base is typically present within the surficial aquifer at approximately 15 feet bgs. However, it is reported that groundwater elevations in the surficial aquifer may vary seasonally by as much as 10 feet, depending on rainfall patterns (CH2M Hill, 1989). Aquifer recharge occurs by downward infiltration of

rainwater through the relatively permeable alluvial deposits. Shallow groundwater within the northern section of the Base generally flows to the northwest toward the Buttahatchie River, while groundwater within the southern half of the Base, generally flows to the west-southwest toward the Tombigbee River (CH2M Hill, 1995; Spencer, 1996b).

3.3 SITE GEOLOGY AND HYDROGEOLOGY

Characterization of the subsurface sediments has been the objective of several investigations; the site geology and hydrogeology descriptions presented below were principally derived from a previous Site Inspection Report (CH2M Hill, 1995) and the current investigation. There are currently nine groundwater monitoring wells associated with LF-06 (Figure 3.2). As part of the current investigation, twenty-one monitoring points were installed at seventeen locations using a Geoprobe[®].

3.3.1 Lithology and Stratigraphic Relationships

Surface sediments at the site primarily consist of the upper terrace Prentiss-Rosella-Steens Association, which is composed of sand, silt, and clay loams. The sediments range from 0 to 18 feet in thickness at the site, and overlie approximately 40 feet of lower terrace and alluvial deposits composed of alluvial sand and gravel. In turn, the lower terrace and alluvial deposits overlie coastal plain clay and sandy clay deposits.

To illustrate these stratigraphic relationships, hydrogeologic sections have been developed from subsurface data derived from logs of previously installed monitoring wells and from the November 1996 Geoprobe® investigation. Figure 3.2 shows the locations of these sections. Figure 3.3 presents the hydrogeologic section A-A', which is oriented approximately parallel to the direction of groundwater flow. Figure 3.4 presents the hydrogeologic section B-B', which is oriented approximately perpendicular to the direction of groundwater flow. In general, hydrogeologic sections A-A' and B-B' depict 0 to 18 feet

of silty and clayey soils overlying 1 to 10 feet of fine to medium sand, which in turn, overlie fine to coarse sand with gravel.

3.3.2 Groundwater Hydraulics

The water table at the site is located in both the silty and clayey soils and the sandy Ouaternary sediments of the unconfined surficial aquifer. Depth to groundwater is approximately 5 to 21 feet bgs across the site. However, perched water occurs in wells screened above the shallow potentiometric surface, possibly resulting from the presence of landfill trash. Perched water occurs in wells MPA(s), MPB, MPD(s), MPF(s), MPH, and These perched levels range from approximately 2.5 ft to 16.5 ft above the MPJ. groundwater surface measured by deeper wells (Figure 3.3). A summary of groundwater measurements from November 1996 is presented in Table 3.1. The reference point elevations measured in November 1996 for wells W-18, W-20, and W-22 were 0.3 feet higher than the elevations measured for these wells in 1989. Because reference point elevations for wells W-19, W-21, W-78, and W-79 were not surveyed during the November 1996 field effort, these elevations were estimated by adding a bias of 0.3 ft to top-of-casing elevations from a survey conducted by CH2M Hill in 1989 to align them with the reference points surveyed in 1996. Reference point elevations for wells W-81 and W-82 were obtained from a survey corresponding with their installation in 1994 by CH2M Construction details for temporary monitoring points and monitoring wells are Hill. presented in Appendix A.

3.3.2.1 Flow Direction and Gradient

Figure 3.5 shows groundwater elevations for LF-06 in November 1996. Due to perched groundwater levels, data from wells MPA(s), MPB, MPD(s), MPF(s), MPH, and MPJ were not used for contouring. Groundwater flows to the west with a nonuniform gradient ranging from 0.003 foot per foot (ft/ft) to 0.027 ft/ft, and averages 0.0055 ft/ft across the site. The gradient is consistent with values observed in December 1988 and May 1989 (CH2M Hill, 1989), and with values observed in February 1995 and December

TABLE 3.1 SUMMARY OF GROUNDWATER ELEVATION DATA NOVEMBER 1996

SITE LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

	Elevation of	Danish ta	Cd
	Reference Point	Depth to	Groundwater
Well	for Measurements	Groundwater	Elevation
Identification	(feet msl) ^{a/}	(feet)	(feet msl)
W-18	215.6	17.5	198.1
W-19	219.0 ^{b/}	19.0	200.0
W-20	205.6	5.4	200.2
W-21	207.2 ^{b/}	7.0	200.2
W-22	208.7	9.3	199.4
W-78	206.8 ^{b/}	6.3	200.5
W-79	208.0 ^{b/}	8.1	199.9
W-81	212.2°	15.9	196.3
W-82	207.2 ^{c/}	8.5	198.7
MPA (s)	216.7	2.6	214.1*
MPA (d)	217.7	20.1	197.6
MPB	211.9	4.3	207.6*
MPC (s)	218.7	19.8	199.0
MPC (d)	219.9	20.8	199.1
MPD (s)	216.5	15.6	200.9*
MPD (d)	217.6	18.8	198.8
MPF (s)	215.0	1.9	213.1*
MPF (d)	216.0	13.5	202.5
MPG	219.3	14.5	204.8
MPH	208.6	4.1	204.5*
MPI	206.7	12.1	194.6
MPJ	213.4	12.6	200.8*
MPK	209.3	13.2	196.2
MPL	206.6	10.8	195.8
MPM	208.5	12.3	196.3
MPN	219.1	20.1	199.0
MPO	203.6	3.7	199.9
MPP	204.9	4.1	200.8
MPQ	204.3	3.4	200.9
MPR	212.7	2.5	210.2

Feet msl = feet above mean sea level.

^{b/} Reference point elevation determined by adding 0.3 ft to survey data reported by CH2M Hill in 1989.

c/ Reference point elevation obtained from well installation records produced by CH2M Hill in November 1994.

^{*} Perched groundwater - not used for contouring.

1995 (Spencer, 1996a, 1996b). The heads from November 1996 are approximately 1 to 4 feet lower than during the previous sampling events. This variation may be due to seasonal fluctuations in recharge.

One groundwater monitoring point well pair installed for this investigation was used to evaluate vertical hydraulic gradients at LF-06. Because MPA(s), MPD(s), and MPF(s) were not screened below the potentiometric surface, groundwater elevations at these wells represent perched conditions and therefore could not be used to calculate a vertical gradient. Groundwater elevation data collected in November 1996 at monitoring point pair MPC(s)/MPC(d) indicated that a no vertical gradient was not present.

3.3.2.2 Hydraulic Conductivity

In November 1996, Parsons ES conducted falling- and rising-head slug tests at wells W18, W19, W22, W79, W81, and W82. Hydraulic conductivity was calculated using the method of Bower and Rice (1976), as described in Section 2. The average of the falling and rising head test results of these slug tests are summarized in Table 3.2. Hydraulic conductivities ranged from 16 ft/day to 238 ft/day, with an average hydraulic conductivity of 99 ft/day. The slug-test analyses are presented in Appendix A.

TABLE 3.2
1996 SLUG TEST RESULTS
SITE LF-06
RNA TS
COLUMBUS AFB, MISSISSIPPI

WELL	HYDRAULIC	HYDRAULIC
	CONDUCTIVIT	CONDUCTIVITY
	Y	
	(ft/min)	(ft/day)
W18	0.050	72
W19	0.021	30
W22	0.126	181
W79	0.011	16
W81	0.165	238
W82	0.040	58

3.3.2.3 Effective Porosity

Because of the difficulty involved in accurately determining effective porosity, published literature values for soil types comprising the shallow saturated zone were referenced (Walton, 1988; Domenico and Schwartz, 1990). Estimates of effective porosity for fine to medium sand with gravel range from 0.08 to 0.30. An average effective porosity of 0.25 was assumed for the shallow surficial aquifer at Site LF-06.

3.3.2.4 Advective Groundwater Velocity

The advective velocity of groundwater in the direction parallel to groundwater flow is given by:

$$\overline{v} = \frac{K}{n_{\star}} \frac{dH}{dL}$$

Where: \overline{v} = Average advective groundwater velocity (seepage velocity) [L/T]

K = Hydraulic conductivity [L/T] (99 ft/day) dH/dL = Gradient [L/L] (0.0055 ft/ft) n_e = Effective porosity (0.25).

Using this relationship in conjunction with site-specific data, the average advective groundwater velocity across the site in November 1996 was 2.2 ft/day, or approximately 795 feet per year (ft/yr).

3.3.2.5 Preferential Flow Paths

No preferential contaminant migration pathways were identified during the field work phase of this project. Parts of the sanitary sewer system, electrical distribution system, water supply system, and storm drainage system extend onto the site, but are not anticipated to influence migration pathways because of the high hydraulic conductivities associated with native surficial aquifer materials.

3.3.3 Groundwater Use

Groundwater in the shallow aquifer is not used as a local source of potable water within the vicinity of the site. There are five deep on-Base wells that provide potable water to Columbus AFB. The only downgradient well, at Building 363, is located approximately 3,000 feet west of the Site. This well is screened at a depth of 386 to 426 feet bgs within the Tuscaloosa Group of the Eutaw Aquifer. Wells at Buildings 604 and 865 are located 3,000 and 4,500 feet northwest of the Site, respectively. These wells are screened at depths of 396 to 443 feet bgs and 430 to 470 feet bgs within the Tuscaloosa Group of the Eutaw Aquifer, respectively. Columbus AFB plans to connect to the City of Columbus water system in 1997, and subsequently abandon these three wells (Stewart, 1997). Two other wells of unknown depth, at Buildings 1812 and 2052, supply drinking water at their respective locations. These wells are located approximately 11,000 feet to the northwest and 7,000 feet to the north of the site. The four closest private wells, Wells R-55, R-56, R-53, and R-57 are located 3,100 feet to the south, 3,500 feet to the southeast, 3,800 feet to the south, and 4,200 feet to the southeast of the Site, respectively. The closest private well downgradient of the Site, Well R-85, is located 10,000 feet from the site. Private wells R-55 and R-85 are screened in the Eutaw Aquifer. Private wells R-56, R-53, and R-57 are of unknown depth (CH2M Hill, 1989).

3.4 CLIMATE

The climate in northeastern Mississippi is typified by short, cool winters and hot, humid summers. Precipitation averages 56 inches per year, and is evenly distributed throughout the year.

SECTION 4

CONTAMINANT DISTRIBUTION AND EVIDENCE FOR BIODEGRADATION

Soil and groundwater have been contaminated as a result of disposal activities at LF-06. Work during the RI (CH2M Hill, 1989) focused on defining the nature and extent of contamination at the site, and additional monitoring has recently been conducted at the site (Spencer, 1996a). As needed, the data collected during those efforts is used to supplement the data collected during the field phase of this work, presented in the following subsections. In particular, this section focuses on data useful for evaluating and modeling natural attenuation of fuel hydrocarbons and chlorinated solvents dissolved in groundwater.

4.1 CONTAMINANT SOURCES AND SOIL CHEMISTRY

4.1.1 Contaminant Sources

Sources of dissolved groundwater contamination at LF-06 are not clearly defined. It is likely that material disposed in the trenches is the original source of groundwater contamination. However, the exact locations and nature of the releases is not clear from the available data. The low concentrations of dissolved contaminants discussed in Section 4.3 suggest that the presence of a mobile NAPL source is unlikely. In addition, residual NAPL bodies have not been identified or delineated during either previous or current subsurface investigations; therefore, the dissolved contaminant data must be used to infer sources, and as discussed in Section 4.3, these data also suggest that residual sources are relatively small and localized.

A total of 4 soil samples were collected from 3 Geoprobe® boreholes (MPF, MPJ, and MPL) in 1996. These samples were analyzed for fuel hydrocarbons and chlorinated

solvents. The results are summarized in Table 4.1. No contaminants were detected in the samples from MPJ and MPL. Fuel-related compounds were detected in two of the samples, both collected from MPF. In the sample from a depth of 4 to 8 feet bgs, the total BTEX concentration was 373 micrograms per kilogram ($\mu g/kg$) [0.373 milligrams per kilogram (mg/kg)], and the total recoverable petroleum hydrocarbons (TRPH) concentration was 760 mg/kg. The high proportion of TRPH relative to BTEX suggests that the residual soil contamination in this area consists partially of weathered motor fuel or jet fuel, if not motor oil or waste oil. These detections also suggests that a source of groundwater contamination is present in the vicinity of MPF, possibly related to the apparent burial trench just east of MPF (Figure 2.1). The sample from a depth of 8 to 10 feet bgs in MPF contained toluene at a concentration of 1.4 $\mu g/kg$.

Chlorinated compounds also were detected in both samples from MPF. In the shallow sample, chlorobenzene (CB) was detected at a concentration of 4,900 μ g/kg, while 1,2-dichlorobenzene (1,2-DCB) and 1,3-DCB were detected at concentrations of 7.7 μ g/kg and 12 μ g/kg, respectively, In the deeper sample, CB was detected at a concentration of 2J μ g/kg. Also, vinyl chloride (VC) and dichloromethane were detected at low concentrations (less than 2 μ g/kg) in the shallow sample, but the presence of these compounds could not be confirmed by the laboratory's mass spectrometer.

4.1.2 Total Organic Carbon in Soil

Total organic carbon (TOC) concentrations are used to estimate the amount of organic matter sorbed to soil particles or trapped in the interstitial passages of a soil matrix. The TOC concentration in the saturated zone is an important parameter used to estimate the amount of contaminant that could potentially be sorbed to the aquifer matrix. Sorption results in retardation of the contaminant plume relative to the average advective groundwater velocity. In addition, TOC can be used as a gross indicator of organic compounds that are available as a source of carbon and electron donors (or substrate) for a microbial population.

SOIL ANALYTICAL DATA
SITE LF-06 RNA TS
COLUMBUS AFB, MISSISSIPPI

	3-DCB	µg/kg)	12	N N	N Q	N ON
				N Q		
	_			$2J^{\ell\prime}$		
	TRPH	(mg/kg ^{c/})	092	QN	R	ND
1,2,3,4-	TEMB	(µg/kg)	190	N ON	NA	QN QN
1,2,3-	TMB	(µg/kg)	110	QN	NA	QN
1,2,4-	TMB	(µg/kg)	240	N Q	NA	R
1,3,5-	TMB	(µg/kg)	68	Q.	NA	QN
Total	BTEX	(µg/kg)	373	1.4	NA	QN
Total	Xylenes	(µg/kg)	210	ND	NA	QN
	Ethylbenzene	(µg/kg)	84	NO.	NA	ND
	Toluene	(µg/kg)	10	1.4	NA	QN
	Benzene	(μg/kg ^{b/})	69	ND,	NA ^{8/}	QN
	Depth	(feet bgs")	4-8	8-10	18	14-18
	Date	Sampled	11/15/96	11/15/96	11/8/96	11/9/96
	Sample	ID	MPF	$MPF^{d'}$	MPJ	MPL

a' bgs = below ground surface.

b/ μg/kg = micrograms per kilogram.

c/ mg/kg = milligrams per kilogram.

d Also detected in this sample were VC and dichloromethane; however,

the presence of these compounds could not be confirmed by mass spectrometer.

e' ND = Analyte not detected.

u J = Estimated value.

 $^{g'}$ NA = Not analyzed.

Note: BTEX = benzene, toluene, ethylbenzene, and xlyenes; TMB = trimethylbenzene; TEMB = tetramehtylbenzene;

CB = chlorobenzene; and DCB = dichlorobenzene.

Soil TOC concentrations were measured in 2 samples from 2 Geoprobe® locations in 1996. These samples were collected from a depth of 18 feet in the borehole for MPJ and from a depth of 14 to 18 feet in the borehole for MPL. Both samples were collected from below the water table or in the capillary fringe. In both samples, soil TOC concentrations were reported to be less than 0.06 percent.

Despite the fact that reported soil TOC concentrations are below 0.06 percent, sorption may play an important role in dissolved contaminant attenuation. For BTEX compounds and most of the chlorinated solvents detected at LF-06 (the notable exception being VC), retardation of contaminant migration is significant when TOC concentrations are on the order of 0.01 percent. The method detection limit was used as an approximation of TOC levels in site soils for modeling purposes. Even though it is unclear whether soil TOC levels are significantly less than 0.06 percent, it is expected that some sorption, and therefore some contaminant retardation with respect to groundwater velocity, is occurring.

4.2 OVERVIEW OF HYDROCARBON BIODEGRADATION

Mechanisms for natural attenuation of chlorinated solvents and BTEX include biodegradation, dispersion, dilution from recharge, sorption, and volatilization. Of these processes, biodegradation is the only mechanism working to transform contaminants into ultimately innocuous byproducts. Intrinsic bioremediation occurs when indigenous microorganisms work to bring about a reduction in the total mass of contamination in the subsurface without the addition of nutrients. In order to provide a foundation for interpreting site data, the following subsections review the major bioremediation processes that act upon chlorinated solvents and BTEX.

BTEX compounds and several chlorinated solvents are present in groundwater at LF-06. As a result, the following sections discuss the biodegradation of both BTEX and chlorinated solvents. Because the terminology describing biodegradation of both types of compounds is similar, a generalized review of the processes is presented first.

4.2.1 Review of Biodegradation Processes

Microorganisms obtain energy for cell production and maintenance by facilitating thermodynamically advantageous redox reactions involving the transfer of electrons from electron donors to available electron acceptors. This results in the oxidation of the electron donor and the reduction of the electron acceptor. Electron donors may be natural organic carbon, fuel hydrocarbon compounds, and less-chlorinated solvents [e.g., VC, dichloroethene (DCE), dichloroethane (DCA), or chlorinated benzenes ranging from CB to tetrachlorobenzene]. Fuel hydrocarbons or solvents are completely degraded or detoxified if they are utilized as the primary electron donor (i.e., as a primary substrate or carbon source) for microbial metabolism (Bouwer, 1992). Electron acceptors are elements or compounds that occur in relatively oxidized states, and include oxygen, nitrate, ferric iron, sulfate, manganese, carbon dioxide, and highly chlorinated solvents [e.g., tetrachloroethene (PCE), trichloroethene (TCE), tetrachloroethane (PCA), trichloroethane (TCA), and polychlorinated benzenes].

The driving force of biodegradation is electron transfer, which is quantified by the Gibbs free energy of the reaction (ΔG°_{r}) (Stumm and Morgan, 1981; Bouwer, 1994; Godsey, 1994). The value of ΔG°_{r} represents the quantity of free energy consumed ($\Delta G^{\circ}_{r} > 0$) or yielded ($\Delta G^{\circ}_{r} < 0$) to the system during the reaction. Although thermodynamically favorable, most of the reactions involved in biodegradation of fuel hydrocarbons or chlorinated hydrocarbons cannot proceed abiotically because of the lack of activation energy. Microorganisms are capable of providing the necessary activation energy; however, they will facilitate only those redox reactions that have a net yield of energy (i.e. $\Delta G^{\circ}_{r} < 0$). Most reactions involving biodegradation of contaminants do yield energy to the microbes; however, in many cases specific geochemical conditions are necessary for this reaction to be favorable and to allow the appropriate microbial population to develop and grow.

Microorganisms preferentially utilize electron acceptors while metabolizing hydrocarbons (Bouwer, 1992). DO is utilized first as the prime electron acceptor. It is under these conditions (i.e., aerobic conditions) that fuel hydrocarbons and the less chlorinated solvents are most commonly used as electron donors. After the DO is consumed, anaerobic microorganisms use native electron acceptors in the following order of preference: nitrate, manganese, ferric iron hydroxide, sulfate, and finally carbon dioxide. Under anaerobic conditions, BTEX compounds and other fuel hydrocarbons are still used as electron donors. Chlorinated solvents that are amenable to reductive dehalogenation are generally used as electron acceptors when aquifer conditions are such that sulfate or carbon dioxide is the preferred electron acceptor.

In addition to being controlled by the energy yield of the reaction, the expected sequence of redox processes is also a function of the oxidizing potential of the groundwater. This potential is a measure of the relative tendency of a solution or chemical reaction to accept or transfer electrons. As each subsequent electron acceptor is utilized, the groundwater becomes more reducing, and the redox potential of the water decreases. The main force driving this change in redox potential is microbially mediated redox reactions. Redox potential can be used as an indicator of which redox reactions may be operating at a site. Environmental conditions and microbial competition ultimately determine which processes will dominate.

Depending on the types and concentrations of electron acceptors present (e.g., nitrate, sulfate, carbon dioxide), pH conditions, and redox potential, anaerobic biodegradation can occur by denitrification, manganese reduction, ferric iron reduction, sulfate reduction, or methanogenesis. Other, less common anaerobic degradation mechanisms such as manganese or nitrate reduction may dominate if the physical and chemical conditions in the subsurface favor use of these electron acceptors. Vroblesky and Chapelle (1994) show that the dominant terminal electron accepting process can vary both temporally and spatially in an aquifer with fuel hydrocarbon contamination.

4.2.2 Biodegradation of BTEX

Numerous laboratory and field studies have shown that hydrocarbon-degrading bacteria can participate in the degradation of many of the chemical components of fuel hydrocarbons, including the BTEX compounds (e.g., Jamison et al., 1975; Atlas, 1981, 1984, 1988; Gibson and Subramanian, 1984; Reinhard et al., 1984; Young, 1984; Bartha, 1986; Wilson et al., 1986, 1987, and 1990; Barker et al., 1987; Baedecker et al., 1988; Lee, 1988; Chiang et al., 1989; Grbic-Galic, 1989 and 1990; Cozzarelli et al., 1990; Leahy and Colewell, 1990; Altenschmidt and Fuchs, 1991; Alvarez and Vogel, 1991; Baedecker and Cozzarelli, 1991; Ball et al., 1991; Bauman, 1991; Borden, 1991; Brown et al., 1991; Edwards et al., 1991 and 1992; Evans et al., 1991a and 1991b; Haag et al., 1991; Hutchins and Wilson, 1991; Hutchins et al., 1991a and 1991b; Beller et al., 1992; Bouwer, 1992; Edwards and Grbic-Galic, 1992; Thierrin et al., 1992; Malone et al., 1993; Davis et al., 1994). Fuel hydrocarbons biodegrade naturally when an indigenous population of hydrocarbon-degrading microorganisms is present in the aquifer and sufficient concentrations of electron acceptors and nutrients are available to these organisms.

During biodegradation of fuel hydrocarbons, the fuel compounds are used as electron donors. They are the primary substrate ("food") for the microbes, while the electron acceptors provide the oxidant used to reduce (metabolize) the substrate and produce energy. In most subsurface environments, both aerobic and anaerobic degradation of fuel hydrocarbons can occur, often simultaneously in different parts of the plume. The nearly ubiquitous nature of these processes is well documented (e.g., Rice et al., 1995; Wiedemeier et al., 1995; Kuehne and Busheck, 1996; and Mace et al., 1997). Aerobic destruction of BTEX compounds dissolved in groundwater results in the consumption (reduction) of DO and the formation of carbon dioxide. Anaerobic destruction of the BTEX compounds is associated with the accumulation of fatty acids, production of methane, solubilization of iron, and reduction of nitrate and sulfate (Cozzarelli et al., 1990; Wilson et al., 1990).

4.2.3 Biodegradation of Chlorinated Solvents

Chlorinated solvents can be transformed, directly or indirectly, by biological processes (e.g., Bouwer et al., 1981; Miller and Guengerich, 1982; Reineke and Knackmuss, 1984; Wilson and Wilson, 1985; de Bont et al., 1986; Nelson et al., 1986; Spain and Nishino, 1987; Bouwer and Wright, 1988; Little et al., 1988; Mayer et al., 1988; Arciero et al., 1989; Cline and Delfino, 1989; Freedman and Gossett, 1989; Folsom et al., 1990; Harker and Kim, 1990; Alvarez-Cohen and McCarty, 1991a, 1991b; DeStefano et al., 1991; Henry, 1991; Sander et al., 1991; McCarty et al., 1992; Hartmans and de Bont, 1992; Chapelle, 1993; McCarty and Semprini, 1994; Vogel, 1994; Suflita and Townsend, 1995; Bradley and Chapelle, 1996; Klier et al., 1996; Spain, 1996). Biodegradation of chlorinated solvents, also termed chlorinated aliphatic hydrocarbons (CAHs) and chlorinated benzenes results from the same general processes that bring about biodegradation of fuel hydrocarbons. However, a more complex series of processes often is involved, and CAHs and chlorinated benzenes may act as either substrates (electron donors) or electron acceptors depending upon what geochemical conditions prevail.

Whereas BTEX are biodegraded in essentially one step by acting as an electron donor/carbon source, CAHs and chlorinated benzenes may undergo several types of biodegradation involving several steps. Chlorinated solvents may undergo biodegradation through three different pathways: use as an electron acceptor, use as an electron donor, or cometabolism, which is degradation resulting from exposure to a catalytic enzyme fortuitously produced during an unrelated process. At a given site, one or all of these processes may be operating, although at many sites the use of CAHs as electron acceptors appears to be the most likely.

In a pristine aquifer, native organic carbon is utilized as an electron donor and DO is utilized first as the prime electron acceptor. Where anthropogenic carbon (e.g., fuel hydrocarbons, less-chlorinated CAHs, or chlorinated benzenes with four or fewer chlorines) is present, it also may be utilized as an electron donor. Most chlorinated

solvents that can act as electron donors have thus far only been demonstrated to do so under aerobic conditions, with the notable exception of VC (Bradley and Chapelle, 1996). After the DO is consumed, anaerobic microorganisms typically use native electron acceptors (as available) in the following order of preference: nitrate, ferric iron oxyhydroxide, sulfate, and finally carbon dioxide. Evaluation of the distribution of these electron acceptors can provide evidence of where and how biodegradation of chlorinated solvents is occurring. In addition, because solvents may be used as electron acceptors or electron donors (in competition with other acceptors or donors), isopleth maps showing the distribution of these compounds also will provide evidence of the types of biodegradation processes acting at a site. A more complete description of the main types of biodegradation reactions affecting chlorinated solvents dissolved in groundwater is presented in the following subsections.

4.2.3.1 Electron Acceptor Reactions (Reductive Dehalogenation)

Under anaerobic conditions, biodegradation of chlorinated solvents usually proceeds through a process called reductive dehalogenation. During this process, the halogenated hydrocarbon is used as an electron acceptor, not as a source of carbon, and a halogen atom is removed and replaced with a hydrogen atom. As an example, Figure 4.1 illustrates the transformation of chlorinated ethenes via reductive dehalogenation. In general, reductive dehalogenation of chlorinated ethenes occurs by sequential dehalogenation from PCE to TCE to DCE to VC to ethene. An analogous pattern for chlorinated ethanes might be PCA to TCA to DCA to CA, and for chlorinated benzenes the pattern might be tetrachlorobenzene (TeCB) to trichlorobenzene (TCB) to DCB to CB. Depending upon environmental conditions, these sequences may be interrupted, with other processes (e.g.,

FIGURE 4.1 ANAEROBIC REDUCTIVE DECHLORINATION

LF-06 RNA TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

Complete Mineralization

trans-1, 2-DCE

Denver, Colorado

Ethane

aerobic or abiotic degradation) then acting upon the products. Reductive dehalogenation of chlorinated solvent compounds is associated with the accumulation of daughter products and an increase in chloride.

Reductive dehalogenation affects chlorinated compounds differently. Of the ethenes, PCE is the most susceptible to reductive dehalogenation because it is the most oxidized. Conversely, VC is the least susceptible to reductive dehalogenation because it is the least oxidized of these compounds. Likewise, hexachlorobenzene is more susceptible to reductive dehalogenation than less-chlorinated benzenes. In general, the rate of reductive dehalogenation of chlorinated solvents has been observed to decrease as the degree of chlorination decreases (Vogel and McCarty, 1985; Bouwer, 1994). Murray and Richardson (1993) have postulated that this rate decrease may explain the accumulation of VC in PCE and TCE plumes that are undergoing reductive dehalogenation.

In addition to being affected by the degree of chlorination of the compound, reductive dehalogenation also can be controlled by the redox conditions of the site groundwater system. In general, reductive dehalogenation has been demonstrated under anaerobic nitrate- and sulfate-reducing conditions, but the most rapid biodegradation rates, affecting the widest range of compounds, occur under methanogenic conditions (Bouwer, 1994). Dehalogenation of PCE and TCE to DCE can proceed under mildly reducing conditions such as nitrate reduction or iron (III) reduction (Vogel et al., 1987), while the transformation of DCE to VC, or the transformation from VC to ethene requires more strongly reducing conditions (Freedman and Gossett, 1989; DeStefano et al., 1991; De Bruin et al., 1992).

Reductive dehalogenation of some compounds also has been shown to preferentially produce specific daughter compounds. For example, during reductive dehalogenation of TCE or PCE, all three isomers of DCE can theoretically be produced; however, Bouwer (1994) reports that under the influence of biodegradation, *cis*-1,2-DCE is a more common

intermediate than trans-1,2-DCE, and that 1,1-DCE is the least prevalent intermediate of the three DCE isomers.

When chlorinated compounds are used as electron acceptors, there must be an appropriate source of carbon for microbial growth in order for reductive dehalogenation to occur (Bouwer, 1994). Potential carbon sources/electron donors can include low-molecular-weight compounds (e.g., lactate, acetate, methanol, or glucose) present in natural organic matter, fuel hydrocarbons, or less-chlorinated solvents (as discussed below).

4.2.3.2 Electron Donor Reactions

Under aerobic conditions some chlorinated solvents can be utilized as the primary substrate (i.e., electron donor) in biologically mediated redox reactions (McCarty and Semprini, 1994). In this type of reaction, the facilitating microorganism obtains energy and organic carbon from the degraded compound. In contrast to reactions in which the chlorinated compound is used as an electron acceptor, only the least oxidized chlorinated solvents (e.g., VC, DCE, or chlorobenzene) may be utilized as electron donors in biologically mediated redox reactions. Also, chlorinated benzenes with up to four chlorines (i.e., CB, DCB isomers, TCB isomers, and TeCB isomers) have been shown to act as electron donors under aerobic conditions.

For example, while Murray and Richardson (1993) write that microorganisms are generally believed to be incapable of growth using TCE and PCE, other less chlorinated CAHs have been shown to be used as substrates. Davis and Carpenter (1990) describe the aerobic oxidation of VC in groundwater. McCarty and Semprini (1994) describe investigations in which VC and 1,2-DCA were shown to serve as primary substrates. These authors also document that dichloromethane has the potential to function as a primary substrate under either aerobic or anaerobic environments. Klier *et al.* (1996) describe aerobic mineralization of all three isomers of DCE. In addition, Bradley and

Chapelle (1996) show evidence of oxidation of VC under iron-reducing conditions so long as there is sufficient bioavailable iron (III). Aerobic metabolism of VC may be characterized by a loss of VC mass, a decreasing molar ratio of VC to other CAH compounds, and rarely, the presence of chloromethane.

CB and polychlorinated benzenes (up to and including TeCB) have been shown to be biodegradable under aerobic conditions. Several studies have shown that bacteria are able to utilize CB (Reineke and Knackmuss, 1984), 1,4-DCB (Reineke and Knackmuss, 1984; Schraa et al., 1986; Spain and Nishino, 1987), 1,3-DCB (de Bont et al., 1986), 1,2-DCB (Haigler et al., 1988), 1,2,4-TCB (van der Meer et al., 1987; Sander et al., 1991), and 1,2,4,5-TeCB (Sander et al., 1991) as primary growth substrates in aerobic systems. Nishino et al. (1994) note that aerobic bacteria able to grow on chlorobenzene have been detected at a variety of chlorobenzene-contaminated sites, but not at uncontaminated sites. Spain (1996) notes that this provides strong evidence that the bacteria are selected for their ability to derive carbon and energy from chlorobenzene degradation in situ. The pathways for all of these reactions are similar, and are also similar to that of benzene (Chapelle, The only significant difference between aerobic oxidation of 1993; Spain, 1996). chlorobenzenes and benzene is the required elimination of chlorine. Anaerobic oxidation of chlorobenzenes has not been conclusively documented, although little work has been done on the subject (Spain, 1997).

4.2.3.3 Cometabolism

When a chlorinated solvent is biodegraded through cometabolism, it serves as neither an electron acceptor nor a primary substrate in a biologically mediated redox reaction. Instead, the degradation of the compound is catalyzed by an enzyme or cofactor that is fortuitously produced by organisms for other purposes. The organism receives no known benefit from the degradation of the solvent; rather the cometabolic degradation of the solvent may in fact be harmful to the microorganism responsible for the production of the enzyme or cofactor (McCarty and Semprini, 1994).

Cometabolism is best documented for chlorinated ethenes in aerobic environments, although it potentially could occur with other chlorinated solvents or under anaerobic conditions. Aerobic degradation pathways for chlorinated ethenes are illustrated in Figure 4.2. It has been reported that under aerobic conditions chlorinated ethenes, with the exception of PCE, are susceptible to cometabolic degradation (Murray and Richardson, 1993; Vogel, 1994; McCarty and Semprini, 1994). Vogel (1994) further elaborates that the cometabolism rate increases as the degree of dehalogenation decreases.

In the cometabolic process, TCE is indirectly transformed by bacteria as they use BTEX or another substrate to meet their energy requirements. Therefore, TCE does not enhance the degradation of BTEX or other carbon sources, nor will its cometabolism interfere with the use of electron acceptors involved in the oxidation of those carbon sources. Given this relationship, it would follow that depletion of suitable substrates (BTEX or other organic carbon sources) likely limits cometabolism of CAHs.

4.2.3.4 Behavior of Chlorinated Solvent Plumes

Chlorinated solvent plumes can exhibit three types of behavior depending on the amount of solvent, the amount of organic (native and/or anthropogenic) carbon in the aquifer, the distribution and concentration of natural electron acceptors, and the types of electron acceptors being utilized. Individual plumes may exhibit all three types of behavior in different portions of the plume. The different types of plume behavior are summarized below.

4.2.3.4.1 Type 1 Behavior

Type 1 behavior occurs where the primary substrate is anthropogenic carbon (e.g., BTEX or landfill leachate), and this anthropogenic carbon drives reductive dechlorination. When evaluating natural attenuation of a plume exhibiting type 1 behavior the following questions must be answered:

FIGURE 4.2

AEROBIC DECHLORINATION

LF-06 RNA TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

Denver, Colorado

- 1) Is the electron donor supply adequate to allow microbial reduction of the chlorinated organic compounds? In other words, will the microorganisms "strangle" before they "starve" [i.e., will they run out of chlorinated aliphatic hydrocarbons (electron acceptors) before they run out of primary substrate (anthropogenic carbon)]?
- 2) What is the role of competing electron acceptors (e.g., DO, nitrate, iron (III) and sulfate)?
- 3) Are VC and other less-chlorinated solvents being oxidized, or are they being reduced?

Type 1 behavior results in the rapid and extensive degradation of the highly chlorinated solvents such as PCE, TCE, or polychlorinated benzenes.

4.2.3.4.2 Type 2 Behavior

Type 2 behavior dominates in areas that are characterized by relatively high concentrations of biologically available native organic carbon. This natural carbon source drives reductive dehalogenation (i.e., the primary substrate for microorganism growth is native organic carbon). When evaluating natural attenuation of a Type 2 chlorinated solvent plume, the same questions as those posed in the description of Type 1 behavior must be answered. Type 2 behavior generally results in slower biodegradation of the highly chlorinated solvents than Type 1 behavior, but under the right conditions (e.g., areas with high natural organic carbon contents), this type of behavior also can result in rapid degradation of these compounds.

4.2.3.4.3 Type 3 Behavior

Type 3 behavior dominates in areas that are characterized by low concentrations of native and/or anthropogenic carbon, and concentrations of DO that are greater than 1.0 mg/L. Under these aerobic conditions reductive dehalogenation will not occur. Thus there

is little or no removal of PCE and TCE. Biodegradation may proceed via the much slower process of cometabolism, but will be limited by the low concentrations of native or anthropogenic carbon. The most significant natural attenuation mechanisms for CAHs will be advection, dispersion, and sorption. However, VC can be rapidly oxidized under these conditions, DCE may be oxidized, CBs may be oxidized, and cometabolism also may occur.

4.2.3.4.4 Mixed Behavior

As mentioned above, a single chlorinated solvent plume can exhibit all three types of behavior in different portions of the plume. This can be beneficial for natural biodegradation of chlorinated solvent plumes. For example, Wiedemeier *et al.* (1996a) describe a CAH plume at Plattsburgh AFB, New York that exhibits Type 1 behavior in the source area and Type 3 behavior downgradient from the source. The best scenario involves a plume in which PCE, TCE, and DCE are reductively dehalogenated (Type 1 or Type 2 behavior), then VC is oxidized (Type 3 behavior), either aerobically or via iron reduction. VC is oxidized to carbon dioxide in this type of plume and does not accumulate. The following sequence of reactions occurs in a plume that exhibits this type of mixed behavior:

$$PCE \rightarrow TCE \rightarrow DCE \rightarrow VC \rightarrow Carbon Dioxide$$

In general, the TCE, DCE, and VC may attenuate at approximately the same rate, and thus these reactions may be confused with simple dilution. Note that no ethene is produced during this reaction. VC is removed from the system much faster under these conditions than it is under VC-reducing conditions.

A less desirable scenario, but one in which all contaminants may be entirely biodegraded, involves a plume in which all CAHs are reductively dehalogenated via Type 1 or Type 2 behavior. VC is reduced to ethene, which may be further reduced to ethane or methane. The following sequence of reactions occur in this type of plume:

$PCE \rightarrow TCE \rightarrow DCE \rightarrow VC \rightarrow Ethene or Ethane$

This sequence has been investigated by Freedman and Gossett (1989). In this type of plume, VC degrades more slowly than TCE, and thus tends to accumulate.

4.2.4 Abiotic Degradation of Chlorinated Solvents

Chlorinated solvents dissolved in groundwater may also be degraded by abiotic mechanisms, although the reactions may not be complete and often result in the formation of a toxic intermediate. The most common abiotic reactions affecting chlorinated solvents are hydrolysis and dehydrohalogenation. Hydrolysis is a substitution reaction in which a halogen substituent is replaced with a hydroxyl (OH) group from a water molecule. Dehydrohalogenation is an elimination reaction in which a halogen is removed from a carbon atom, followed by removal of a hydrogen atom from an adjacent carbon atom, with a double bond between the carbon atoms being produced. Other possible reactions include oxidation and reduction, although Butler and Barker (1996) note that no abiotic oxidation reactions involving common halogenated solvents have been reported in the literature. They also note that reduction reactions are most commonly microbially mediated.

Hydrolysis of chlorinated methanes and ethanes has been well-demonstrated in the literature (e.g., Vogel et al., 1987; Jeffers et al., 1989; Vogel, 1994; Butler and Barker, 1996). The likelihood that a solvent will hydrolyze is partly dependent upon the number of halogen substituents, typically with fewer halogens resulting in more rapid hydrolysis. Dehydrohalogenation, on the other hand, is more likely to take place as the number of halogen substituents increases. One common solvent for which abiotic degradation reactions have been well-documented is 1,1,1-TCA. 1,1,1-TCA may be transformed through a series of abiotic processes (including hydrolysis) to acetic acid. Vogel and McCarty (1987) demonstrated that 1,1,1-TCA can also dehydrohalogenate to 1,1-DCE, and Jeffers et al. (1989) demonstrated that 1,1,2-TCA also reacts in the same manner to form 1,1-DCE. Also, once TCA is reductively dehalogenated to chloroethane (CA), it can

then hydrolyze to ethanol (Vogel and McCarty, 1987) or dehydrohalogenate to VC (Jeffers et al., 1989).

Butler and Barker (1996) note that attributing changes in the presence, absence, or concentration of halogenated solvents to abiotic processes is usually difficult, particularly on the field scale. Solvents may undergo both biotic and abiotic degradation, and discerning the effects of each mechanism (on the field scale), if possible, would be very difficult. Also, as Butler and Barker (1996) note, the breakdown products of some reactions such as hydrolysis (e.g., acids and alcohols) may be more easily degraded (biotically or abiotically); these products also require additional analyses that may not be feasible for a field investigation. This makes collection of field evidence to demonstrate hydrolysis very difficult to collect and interpret, and Butler and Barker (1996) note that such evidence has not been successfully collected and presented. Evidence of dehydrohalogenation is also difficult to collect, although the presence of 1,1-DCE in conjunction with 1,1,1-TCA can provide a tentative indication that the process is ongoing, and strong evidence where it is known that no DCE has been released.

4.3 DISTRIBUTION OF HYDROCARBONS AND DAUGHTER PRODUCTS

The first step for evaluating the occurrence and methods of biodegradation of chlorinated hydrocarbons and fuel hydrocarbons is to look at the distribution of target compounds and the products of biodegradation of those compounds. At many sites such as LF-06, dissolved groundwater contamination consists of a mixture of compounds, some of which may be electron donors, some of which may be electron acceptors, and some of which may be either donors or acceptors. It is therefore important to evaluate the distribution of all relevant compounds and the spatial relationships between those plumes.

For example, it is useful to determine if a source of dissolved electron donors (e.g., BTEX) coincides with a plume of dissolved contaminants that are most likely to be used as electron acceptors. The donors are needed to fuel biodegradation reactions that will either use some contaminants as electron acceptors or that will produce geochemical conditions

that make the use of contaminants as electron acceptors more favorable. Also, because reductive dehalogenation is the most common biodegradation reaction involving chlorinated hydrocarbons, it is useful to look for the presence of compounds that are most likely the product of biodegradation reactions, such as *cis*-1,2-DCE or VC. These compounds are rarely released to groundwater, but are products of reductive dehalogenation. In addition, if *cis*-1,2-DCE is clearly the most common isomer of DCE, then the occurrence of reductive dehalogenation can be inferred.

The following sections present contaminant and daughter product distributions at LF-06, providing the initial evidence that dissolved fuels and chlorinated solvents are biodegrading. This evidence alone is not conclusive, but when combined with geochemical evidence presented in later sections, it is a significant indicator of biodegradation.

4.3.1 Fuel Hydrocarbons

Fuel hydrocarbons detected in groundwater at LF-06 include all of the BTEX compounds, as well as trimethylbenzene (TMB) isomers, 1,2,3,4-tetramethylbenzene (TEMB), and total volatile hydrocarbons (TVH) as gasoline. Results for fuel hydrocarbon analyses performed on samples collected in November 1996 are presented in Table 4.2, and the distribution of total BTEX is shown on Figure 4.3. Where detected, total BTEX concentrations ranged from 0.4 to 48 micrograms per liter (μ g/L). Detected benzene concentrations ranged from 0.4 to 12 μ g/L, with concentrations exceeding the USEPA maximum contaminant level (MCL) of 5 μ g/L at only one location. At that location, MPF(s), the benzene concentration was 12 μ g/L. At MPF(s), the monitoring point is screened in a perched zone above the water table. None of the detected toluene, ethylbenzene, or xylenes concentrations exceeded MCLs.

TMB isomers were detected in 6 wells/points, with concentrations ranging from 0.5 μ g/L to 10 μ g/L. Except at MPB (in a perched zone), samples containing TMB

L:\COLUMBUS\TABLES\GWBTEX.XLS

TABLE 4.2 GROUNDWATER QUALITY DATA SUMMARY FOR BTEX, TMBs, AND TVH SITE LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

				Ethyl-	Total	Total	135-	124-	123-	1234.	TVH.
	Date	Benzene	Toluene	Benzene	Xylenes	BTEX	TMB	TMB	TMB	TEMB	Gasoline
Sample ID	Sampled	$(\mu g/\Gamma^{u'})$	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(ug/L)	$(mg/L^{b'})$
W18	11/15/96	1.3	ND	£	Q	13	QN	QN	Į ⊋	Q	QN
W19	11/11/96	N	Q.	Ω	Q	N Q	Q	QN O	QN	QN	N
W20	11/14/96	Ş	Q.	Q	Ω	N Q	Q	S	Ω Q	Q	N Q
W21	11/14/96	3.6	S	R	Ω	3.6	Q	S	Ω	0.5	Q.
W22	11/13/96	Q	S	Q	Q	Q.	QN	Q.	N	S	ND
Mام	11/13/96	Q	Q	Ω	QN	S	Ω	Q	QN	QN	ND
W78	11/14/96	Q.	Q	Q	Q	S	Q.	S	Ω	Q	ND
W2 ^{e/}	11/14/96	NA	NA	NA	NA	NA	NA	NA	NA	Ä	ND
6LM	11/15/96	Q.	Q	S	ΩN	Q.	QN	N Q	QN	Q.	ND
W81	11/13/96	6.0	Q	R	Ω	6.0	Q	Q.	QN	1.3	QN
W82	11/15/96	S	Q.	Q	Q	S	Q	Q.	QN Q	S	ND
MPA(s)	11/11/96	Q	S	Ð	Q	N	QN	N Q	Ω	4.2	NO
MPA(d)	11/17/96	3.0	S	R	QN	٣	Q	Ð	Q	6.0	Q
MPB	11/18/96	Ð	Q	Ω	Q	S	QN	6.0	QN.	9.0	N
MPC(s)	11/17/96	1.8	Q	Q	Q	1.8	Q	S	S	R	S
MPC(d)	11/11/96	1.8	Q	R	Q	1.8	Q.	S	Q	R	Q
MPD(d)	11/11/96	2.2	QN Q	Ð	Ω	2.2	R	0.5	Q.	1.7	N
MPF(s)	11/18/96	12	Q	22	14	48	3.4	6.6	5.1	5.7	9.0
MPV	11/18/96	12	Ð	21	14	47	3.5	10	4.9	2.0	9'0
MPF(d)	11/12/96	2.1	3.2	0.5	1.3	7.1	ND	S	Q.	Q.	ND
MPG	11/18/96	Q	Ω	R	R	S	ND ND	S	QN	R	ND
MPH	11/15/96	ð	Q.	S	Ω	N Q	N	S	Q	S	NO
MPI	11/15/96	0.7	Ω	S	Q.	0.7	N N	S	Q.	Q	QN
MPJ	11/12/96	S	Q	Ð	Ω	S	Ð	S	S	2	ΩN
MPK	11/15/96	0.4	S	Ð	NO	9.4	R	S	Q	S	ND
MPL	11/15/96	Q.	Q.	g	Q	N N	QN	S	QN	R	QN
W3 [®]	11/18/96	15	1.2	2.7	3.5	22.4	S	0.4	8.4	27	0.3
MPM	11/13/96	2	S	£	Q Q	2	Q	Q	Q.	N N	QN
MPN	11/17/96	9.1	Q	g	S	1.6	QN	S	Q	Q	NO
MPO	11/14/96	2.0	S	R	9.0	2.6	Q	9.0	Q	S	NO
MPP	11/14/96	3.4	S	Q	Q	3.4	R	S	Q	S	Z
MPQ	11/14/96	Q	Q	S	2	Q	ΩN	S	Q	QN	ND
MPR	11/17/96	Ð	Ð	£	Q	Q	Q	QN	ND	QN	ND
μg/L = micrograms per liter	ams per liter.		w Wlisad	W1 is a duplicate sample of W22	ple of W22.		V MPV is a	WMPV is a duplicate sample of MPF(S)	mple of MP	F(S).	
^{b/} mg/L = milligrams per liter.	ms per liter.		www is a d	WW2 is a duplicate sample of W78	ple of W78.		WW3 is a duplicate sample of MPL	uplicate sam	ple of MPL.		
o' ND = Analyte not detected	not detected.		$^{I\prime}$ NA = Not analyzed	t analyzed.				•			

compounds also contained BTEX. 1,2,3,4-TEMB was detected in samples from 7 wells and points, with concentrations ranging from 0.5 μ g/L to 5.7 μ g/L. In general, TEMB was detected in wells in which BTEX were detected, but at 2 points [MPA(s) and MPB], TEMB was detected but BTEX were not. Both of these points are screened in perched zones. TVH were detected at one location. At MPF(s), the TVH concentration was 0.6 milligrams per liter (mg/L).

The fuel hydrocarbon data do not provide a clear indication of the source of contamination, but do suggest some possible source areas. The strongest indication of a source area is provided by the BTEX concentrations detected in MPF(s). That point was installed at the edge of a former disposal trench (see Figures 2.1 and 3.3, and the boring logs in Appendix A). Given the observed groundwater flow direction (roughly east to west), a source may also be present in the vicinity of MPP and W-21.

4.3.2 Chlorinated Ethenes

Chlorinated ethenes detected in groundwater at LF-06 include TCE, DCE, and VC. Data for chlorinated ethenes and other chlorinated compounds are presented in Table 4.3. Distributions of *cis*-1,2-DCE and 1,1-DCE are shown on Figure 4.4; the VC distribution is presented on Figure 4.5. TCE is not shown because it was detected in only 3 wells, and PCE was not detected in any samples.

As measured in November 1996, TCE concentrations detected in groundwater ranged from 0.68J µg/L at MPO to 7.4 µg/L at W-21 and 1.1 µg/L at MPM. Of these detections, the only one exceeding the MCL of 5 µg/L was the 7.4 µg/L detected at W-21. The detection of TCE at W-21 suggests that there may be a source of TCE associated with the apparent source of fuel hydrocarbons in that area. MPO is downgradient of W-21, so the detection of TCE at that point is likely related to the same source as the TCE detected at W21. The source of TCE at MPM is not clear, although other chlorinated compounds have been detected there (although BTEX have not).

TABLE 4.3 GROUNDWATER QUALITY DATA SUMMARY FOR CHLORINATED VOCs SITE LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

		Vinv	Chloro-	≐	Dichloro-	trans-	<u>-</u>	cis-	=		Chloro-	لي ا	1.2-
Sample	Date	Chloride	ethane	DCE	methane	1,2-DCE	DCA	1,2-DCE	1C .	TCE	benzene	DCB DCB	DCB DCB
<u>a</u>	Sampled	(µg/L°/)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	. (μg/L)	(µg/L)	(μg/L)
W18	11/15/96	4.9	NO.	Q	æ	N Q	QN	1.3	ND ON	QN ON	13	Ω	0.78 J ^{c/}
W19	11/11/96	Ð	Q	Š	Q	Q	Ð	£	Q	S	S	æ	Ą
W20	11/14/96	£	Ð	Q.	Ð	Q	Q	Ð	Æ	QN QN	£	£	QN QN
W2I	11/14/96	9	g	Ð	0.43 J	Ð	0.81 J	14.0	Q	7.4	13	ND	1.9
W22	11/13/96	£	Q	ΩŽ	Ð	S	Q	Ð	QN.	S	QX	Q	Q
MI	11/13/96	Ð	Q	Ę	£	æ	QX	S	Ð	Š	Æ	£	QX
W78	11/14/96	운	Ø	R	Ð	Ð	R	S	R	S	æ	S	R
W2 ^{e/}	11/14/96	£	Ð	Š	Ð	8	æ	£	Ð	ΩX	QX	S S	QN QN
6/M	11/15/96	£	Ð	Ω	Ð	S	Q	Q	N Q	Q	£	Ş	N Q
W81	11/13/96	4 .8	Ð	Ę	Ę	Ð	æ	£	S	S	6.5	QN	0.49 J
W82	11/15/96	문	Ð	1.4	Ð	S	Q	Ð	0.73 J	QZ	S	Q	æ
MPA(S)	11/11/96	Ð	Ð	ΩŽ	Q.	Ş	Ð	Q.	Q.	S	QX	QX	Ð
MPA(D)	11/11/96	9.9	Q	Q.	Ð	Ð	1.2	0.44 J X ^D	Ð	S	50	ΩN	0.88 J
MPB	11/18/96	Ð	Ð	£	Ð	Ş	Q	Q.	æ	Š	S	Š	N QX
MPC(S)	11/17/96	2.0 J ^d /	1.3 J	Ą	Ð	S	1.2	0.78 J	Q.	S	14	QN	0.87 J
MPC(D)	11/17/96	3.0	S	Q	£	Ş	Q.	2.3	QN QN	S	2.3	QN	QN
MPD(D)	11/17/96	4.2	Q	Q	Q	S	S	R	Ð	Ş	13	QN	0.8 J
MPF(S)	11/18/96	R	g	£	8	£	æ	Ø	R	S	200 E ^{8/}	2	QN
$MPV^{b'}$	11/18/96	Ð	Ø	R	Ð	문	£	Q.	Ð	£	190 E	4.5	5.2
MPF(D)	11/11/96	1.7.1	g	£	Ş	S	£	S	Q.	Ð	6.1	S	æ
MPG	11/18/96	£	£	Ę	S	Q.	<u>R</u>	Q.	S	Ş	Ą	£	æ
MPH	11/15/96	g	£	£	£	2	£	æ	S	Ş	S	e E	QN
MPI	11/15/96	3.4	Q Q	Q	Ð	Ş	Q	1.8	S S	£	QX	Ę	Ð
MPJ	11/17/96	2.1.3	2.1 J	£	£	S	Ð	Q.	Q.	£	S	£	Ð
MPK	11/15/96	3.0	Ş	Ž	Ð	£	Q	S	Q.	Š	6.1	ΩN	0.55 J
MPL	11/15/96	2.1 J	Ę	Ę	£	£	Q.	S	Q	ð	3.7	ΩN	ΩN
W3 ⁷	11/18/96	£	Ð	Q.	£	Ş	Q	Ð	QX	£	Q	QZ	Š
MPM	11/13/96	£	£	2.7	£	S	g	S	3.8	Ξ	Q.	Ą	S
MPN	11/11/96	2.4 J	£	Ę	욷	Ş	Ð	7.2	S	Ş	23	£	=
MPO	11/14/96	8.0	£	Æ	0.1	£	0.44 J	15.0	Ð	0.68 J	1.6 J	ΩŽ	ΩN
MPP	11/14/96	0.6	£	Ð	0.49 J	£	2	7.5	Ð	Ž	2.3	QN Q	0.74 J
MPQ	11/14/96	2	Ę	Ð	£	£	2	Q	ΩŽ	Ę	R	£	R
MPR	11/17/96	g	Ð	QV	Ð	£	QN Q	QN.	QN	Q.	£	£	QN
$\mu g/L = mi$	μg/L = micrograms per liter	¥.	w WI is a dup	WI is a duplicate sample of W22	of W22.		8/ E = Extrapolated value	lated value.					
$^{\text{M}}$ ND = Ana	W ND = Analyte not detected		" W2 is a dupl	W2 is a duplicate sample of W78	of W78.	_	™ MPV is a du	MPV is a duplicate sample of MPF(S)	of MPF(S).				
of I = Estimated value	aulen be		V X = Not con	framed by mas	= Not confirmed by mass spectrometer	-	Way is a dum	W3 is a dualizate same of MO	C LODE				
	ico vante.		100 TOLY U	mun od mann	es aprenomente es		W J IS & Cup	icate sample o	I MILL.				

4-24

cis-1,2-DCE was detected at several wells (Figure 4.4), but the highest detected concentration was 15 μ g/L at MPO. This does not exceed the MCL of 70 μ g/L. The two locations with the highest concentrations of cis-1,2-DCE coincide with the TCE detections at W-21 and MPO, and the third highest concentration (7.5 μ g/L) was detected at MPP (near the suspected W-21 source area). A concentration of 1.8 μ g/L was also detected well downgradient of MPO, at MPI. In addition, another apparent plume of cis-1,2-DCE was detected in MPN and downgradient at W-18. The concentration at MPN was 7.2 μ g/L, while the concentration at W-18 was 1.3 μ g/L, suggesting that a source area may be present in the vicinity of MPN. Also, concentrations of 0.78J and 2.3 μ g/L were detected in MPC(s) and MPC(d), respectively; these wells are downgradient of the possible source area near MPF.

At all wells/points sampled, no *trans*-1,2-DCE was detected. This trend is what would be expected if TCE is being degraded to DCE via reductive dehalogenation. As noted before, under the influence of biodegradation, *cis*-1,2-DCE is a more common daughter product than the other DCE isomers. Furthermore, the *trans* isomer is more common when DCE is used for commercial applications. The presence of *cis*-1,2-DCE is therefore a good indicator that the initial step of reductive dehalogenation of TCE is taking place in groundwater at LF-06.

1,1-DCE was detected in samples from 2 wells at LF-06. Concentrations of 1.4 μ g/L and 2.7 μ g/L were detected in samples from W-82 and MPM, respectively (Figure 4.4). These concentrations do not exceed the MCL of 7 μ g/L. Neither TCE nor any other isomer of DCE were detected in these wells. This suggests that while 1,1-DCE could have been produced by reductive dehalogenation of TCE, it is more likely it came from another source. However, as will be discussed in Section 4.3.4, 1,1,1-TCA was also detected in both of these wells. This suggests that 1,1-DCE may be produced abiotically via dehydrohalogenation of 1,1,1-TCA.

The distribution of VC in site groundwater is shown on Figure 4.5. The 15 VC concentrations detected at the site range from 1.7J to 10 μg/L (Table 4.3). Generally, where detected, VC concentrations exceeded the MCL of 2 μg/L. The VC plumes appear to emanate from similar sources as those indicated by the BTEX, TCE, and DCE data, and the extents of the VC plumes are also similar to those indicated by the other contaminant data. In fact, VC was detected at all 9 locations where *cis*-1,2-DCE was detected. The presence of VC in groundwater is also a good indicator of the occurrence of reductive dehalogenation, because VC is typically a gas at most working temperatures [the boiling point of VC is about 13.5°C/7°F (Montgomery, 1996)]. Because of this, VC is not commonly used as a solvent, and is instead used for plastic manufacturing. In addition, the low boiling point indicates that when liquid VC is spilled, most of the mass is likely to volatilize before reaching groundwater unless there is a large-volume release.

4.3.3 Chlorinated Ethanes

Chlorinated ethanes detected in groundwater at LF-06 include 1,1,1-TCA, 1,1-DCA, and CA (Table 4.3). The distribution of these compounds is shown on Figure 4.6. Relatively low concentrations of these compounds were detected, with the maximum concentration being 3.8 μ g/L of 1,1,1-TCA at MPM. 1,1,1-TCA and 1,1-DCA concentrations did not exceed their respective MCLs of 200 μ g/L and 3,500 μ g/L. In general, chlorinated ethanes were detected in the same wells as the chlorinated ethenes.

1,1,1-TCA was detected in only two wells/points (W-82 and MPM). As discussed in section 4.3.3, these are the only wells in which 1,1-DCE was detected. This suggests that 1,1,1-TCA is being dehydrohalogenated to 1,1-DCE in those locations. Also, the absence of 1,1,1-TCA and the presence of 1,1-DCA and CA in other wells that also contained BTEX and chlorinated ethenes suggests that reductive dechlorination is ongoing within the area of the BTEX plume. Additionally, 1,1-DCA is not commonly used as a solvent, whereas 1,2-DCA is; therefore, the presence of 1,1-DCA rather than 1,2-DCA further suggests that reductive dechlorination of 1,1,1-TCA is ongoing in the central portion of the

LF-06 contaminant plumes. Reductive dehalogenation could account for the absence of 1,1,1-TCA in the central plume area, while in the periphery wells (where conditions are likely less reducing), TCA is not reductively dechlorinated but instead reacts abiotically to form 1,1-DCE. The abiotic reaction is relatively slow compared to reductive dehalogenation, which could explain why some 1,1,1-TCA remains in the groundwater at the plume periphery.

4.3.4 Chlorobenzenes

Chlorobenzenes detected in groundwater at LF-06 include 1,2-DCB, 1,3-DCB, and CB (Table 4.3). These compounds generally were detected in the same wells as the other contaminants, and a CB plume appears to be originating from the vicinity of MPF(s) and migrating to the west (Figure 4.7). Detected CB concentrations ranged from 1.6J μ g/L to 200E μ g/L, with all but one concentration in the range of 1.6J to 23 μ g/L. The highest CB concentration (200 μ g/L) was detected in MPF(s), and this is the only one of the chlorobenzene compounds present in a concentration exceeding MCLs. The MCL for CB is 100 μ g/L, and the MCL for both 1,2-DCB and 1,3-DCB is 600 μ g/L. Of the DCBs, 1,2-DCB is the most commonly detected; 1,3-DCB was detected only in MPF(s), at a concentration of 4.2 μ g/L. 1,2-DCB was detected only in wells that also contained CB, and 1,2-DCB concentrations ranged from 0.49J μ g/L to 11 μ g/L.

It is possible that some DCB is being reductively dechlorinated to CB in the center of the plume area where conditions may be the most reducing. However, it is more likely that both CB and DCB are being utilized aerobically as electron donors/substrates in the same manner as the BTEX compounds. This activity is most likely taking place at the plume fringes where aerobic conditions are prevalent, but may also take place throughout the plume when precipitation events briefly introduce oxygenated recharge to the water table.

4.3.5 Other Chlorinated Compounds

One other chlorinated compound was detected in groundwater at LF-06. Dichloromethane (DCM, also known as methylene chloride) was detected at concentrations of 0.43J μ g/L in W-21, 1.0 μ g/L in MPO, and 0.49J μ g/L in MPP. These points are all along the southern boundary of the landfill area, and these detections may be indicative of a source of DCM in the vicinity of MPP. The detected concentrations do not exceed the MCL of 5 μ g/L.

DCM is used as a solvent, and is also an ingredient in paints and varnishes (Montgomery, 1996). It is commonly used as a laboratory solvent and is often present in samples due to laboratory contamination, and this might explain detections of DCM in site groundwater. However, given that the three wells/points in which DCM was detected lie roughly along a flowpath and coincide with locations where other chlorinated solvents were detected, it seems more likely that DCM is present in site groundwater due to a source in the vicinity of MPP and W-21.

4.3.6 Chloride

Chloride ions are removed from chlorinated solvents and enter solution during biodegradation, whether via reductive dehalogenation or aerobic oxidation. Therefore, chloride concentrations in groundwater should increase above background levels in areas where reductive dehalogenation or aerobic biodegradation are taking place. Chloride concentrations are presented in Table 4.4, and Figure 4.8 shows the distribution of chloride in shallow groundwater at the site. Background chloride concentrations (measured in wells without contamination in shallow site groundwater range from about 2.9 mg/L to about 20 mg/L, with one concentration (at MPR) of 322.5 mg/L. It is not clear what is responsible for this anomalous concentration. Most background chloride concentrations are less than 8.7 mg/L. Chloride concentrations within the boundaries of the chlorinated solvent plumes generally are elevated slightly above background, with a maximum concentration of 182.5

TABLE 4.4
GROUNDWATER ELECTRON ACCEPTORS/BYPRODUCTS

ANALYTICAL DATA SITE LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

)	LOWINGS.	Ar Dy Miles	11116616							
		Dissolved	Carbon	Lab	Field	Lab	Field	Lab	Field	Lab	Field	Ferrous			
Sample	Date	Oxygen	Dioxide	Chloride	Chloride	Sulfate	Sulfate	. NO ² .	NO ₂ .	NO3	NO3.	Iron	¥uW	NH,	Methane
01	Sampled	(mg/L*)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
W18	11/15/96	0.16	250	16.8	21	8.9	16.11	ND₽	Æ	Ð	0.2	4.77	1.7	2	0.11
W19	11/11/96	2.48	130	2.3	2.9	11.0	15.03	R	0.003	0.81	1.0	0.01	Ð	S	R
W20	11/14/96	0.64	8	6.7	7.9	0.41	0.49	R	0.001	2.5	2.0	Ð	0.1	S	R
W21	11/14/96	0.17	400	54.1	28	Ð	1.46	R	0.017	0.38	0.5	0.01	0.1	R	2.7
W22	11/13/96	0.56	130	3.8	8.	11.0	13.73	R	0.004	S	0.7	0.02	0.3	S	R
W1α	11/13/96	Ϋ́	Ϋ́	3.7	NA	11.6	Ν	Ð	NA	£	NA	NA	Ϋ́	Y Y	Q.
W78	11/14/96	0.29	180	17.5	19.5	9.05	48.97	R	0.002	Ð	9.4	0.35	£	R	0.021
W79	11/15/96	2.88	8	3.7	5.0	1.3	1.19	R	0.002	1.4	1.2	0.01	£	Ð	R
W81	11/13/96	0.20	200	14.4	22.5	3.8	12.43	R	R	Z	Ð	4.87	1.0	> 10	0.70
W82	11/15/96	2.03	160	5.5	6.5	1.5	2.22	R	0.001	1.9	2.2	0.01	0.1	£	R
MPA(s)	11/11/96	0.62	250	4.2	5.3	119	130.55	R	0.001	Ð	0.4	22.75	8.0	4	0.85
MPA(d)	11/11/96	96.0	350	18.4	18.8	1.3	2.12	R	0.002	£	0.4	1.29	8.0	£	0.31
MPB	11/18/96	1.12	250	2.8	3.2	48.9	51.7	R	0.019	3.2	1.3	1.77	9.4	-	4.7
MPC(s)	11/17/96	1.94	320	13.2	17.8	4.0	4.22	R	Ð	£	0.5	75.0	2.0	> 10	1.9
MPC(d)	11/17/96	0.63	320	36.6	46	£	1.41	Ð	0.002	0.39	0.5	96.0	1.3	R	0.35
MPD(d)	11/17/96	0.15	300	7.2	∞	4 .8	1.68	£	0.002	£	0.2	0.62	8.0	2	0.24
MPF(s)	11/18/96	0.22	200	6.4	8.5	13.4	6.51	£	£	2	3.5	22.15	0.7	V 10	6.5
MPF(d)	11/17/96	0.45	400	22.4	27.5	1.0	6.32	£	£	2	0.5	95.5	14.4	> 10	0.44
MPG	11/18/96	NA VA	40	3.3	9.8	œ œ	19.48	g	0.001	R	R	2.94	S	0.1	R
MPH	11/15/96	5.09	100	3.9	6.5	14.9	15.78	R	0.001	0.61	1.0	5.45	S	8.0	S
MPI	11/15/96	0.20	250	51.2	10.9	1.4	1.68	S	£	R	0.2	2.10	0.1	£	0.26
MPJ	11/17/96	2.82	120	23.4	7 6	0.36	1.51	R	0.002	R	0.7	7.0	Ð	0.1	0.017
MPK	11/15/96	0.18	200	18.9	27.5	3.7	2.87	S	0.001	Ð	8.0	71.75	5.4	01 <	0.22
MPL	11/15/96	0.28	250	11.3	12.8	9.6	2.43	Ð	£	g	6.7	6.40	9.1	_	0.21
MPM	11/13/96	4.88	20	6.5	9.6	0.27	1.73	2	R	1.3	1.5	2.01	0.1	0.3	Ð
MPN	11/17/96	0.32	200	23.1	132.5	2.3	3.95	Ę	£	R	0.4	94.25	7.4	> 10	0.059
MPO	11/14/96	0.26	300	177.0	182.5	0.9	2.97	S	£	0.35	8.0	0.71	£	S	1.8
MPP	11/14/96	0.27	300	44.2	8.7	2.2	0.59	S	0.001	0.073	0.1	2.10	S	£	2.7
MPQ	11/14/96	4.78	20	70.7	78.0	0.34	3.14	N	0.001	1.5	1:1	3.16	<u>R</u>	Ω	Ð
MPR	11/11/96	0.18	160	271.0	322.5	0.88	1.68	Ð	N ON	0.3	8.0	6.55	1.1	-	0.012
" mg/L = mill	mg/L = milligrams per liter	<u>;;</u>													

mg/L = milligrams per liter.

^{b'} ND = Analyte not detected.

^{c'} Duplicate sample of W22.

mg/L. Most chloride concentrations within the areas where biodegradation is indicated by chemical and geochemical data are greater than 20 mg/L.

In conjunction with the distributions of CAHs shown on Figures 4.4 through 4.6, the elevated chloride concentrations observed at LF-06 are a good indication that CAHs are undergoing microbially mediated degradation. Given the presence of daughter products such as cis-1,2-DCE, VC, 1,1-DCA, and CA, it is likely that some of the chloride is a product of reductive dehalogenation. However, because chloride is also released during consumption of solvents as substrates, some of the chloride plume may be related to these reactions. It is also possible that landfill materials may also be contributing chloride to the groundwater. However, the presence of daughter products strongly suggests that some of the chloride is indeed derived from solvent biodegradation.

4.4 ADDITIONAL EVIDENCE OF BIODEGRADATION

In addition to the distribution of contaminants and daughter products, other evidence can be used to support the interpretation that biodegradation of fuel hydrocarbons and chlorinated solvents is ongoing at LF-06. As noted in Section 4.2, comparing concentrations and distributions of electron donors, electron acceptors, and byproducts of microbially mediated reactions can help indicate what types of processes are operating at a site. In addition, other geochemical parameters, including redox potential, alkalinity, and other changes in groundwater chemistry can also provide supporting evidence. Other data, such as volatile fatty acid concentrations, also can be useful for interpreting and confirming biodegradation mechanisms.

4.4.1 Electron Donors, Native Electron Acceptors, and Byproducts

When investigating the biodegradation of hydrocarbons, it is also necessary to look at the distribution of other compounds that are used in the microbially mediated reactions that facilitate contaminant degradation. The distribution of other potential electron donors (besides contaminants), such as dissolved organic carbon (native or from leachate), is useful for evaluating the feasibility of reductive dehalogenation or cometabolism (i.e.,

biodegradation reactions involving another substrate). Moreover, electron acceptor and metabolic byproduct data will further indicate what processes may be facilitating contaminant degradation.

4.4.1.1 Organic Carbon in Groundwater

Dissolved organic carbon also can act as a source of electron donors during the reductive dehalogenation of CAHs. Dissolved TOC concentrations can be used as an indicator of the presence of such native carbon compounds in wells outside of the area containing dissolved contamination (anthropogenic organic compounds, such as CAHs, petroleum hydrocarbons, or landfill leachate also are measured by the TOC analytical method).

TOC dissolved in groundwater was measured in some of the groundwater samples collected in November 1996. These concentrations are presented in Table 4.5. Dissolved TOC concentrations detected in shallow groundwater at LF-06 range from 2.1 mg/L to 34.7 mg/L. The highest concentration was measured in MPO and may reflect the presence of contamination, including landfill leachate. Elsewhere, the TOC concentrations did not exceed 5.6 mg/L. Most of these other concentrations were measured in wells/points that are near the fringes of the contaminant plumes and thus are likely to represent background concentrations.

These background concentrations of dissolved TOC are noteworthy because they represent additional organic matter that is available for use as a substrate in biodegradation reactions. The background concentrations likely represent compounds dissolved from dispersed organic matter throughout the aquifer, and possibly some landfill leachate. In addition to the soil TOC, this carbon source should provide a continuing source of electron donors to be used in microbial redox reactions. As discussed in Section 4.4.1.2, other

TABLE 4.5 GROUNDWATER GEOCHEMICAL INDICATORS ANALYTICAL DATA

SITE LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

					Total	Total	Total	
					Field	Laboratory	Redox	
Sample	Date	Temp		Conductivity	Alkalinity	Alkalinity	Potential	TOC
ID	Sampled	(°C)	pН	(μS/cm ^{*/})	(mg/L ^{b/})	(mg/L)	(mV^{c})	(mg/L)
W18	11/15/96	19.3	5.6	245	68	NA ^{d∕}	100	NA
W19	11/17/96	19.6	5.2	85	21	NA	284	NA
W20	11/14/96	17.6	4.5	63	3	< 5	254	NA
W21	11/14/96	16.9	4.3	240	0	< 5	216	4.6
W22	11/13/96	20.2	4.6	62	0	< 5	175	NA
W1e/	11/13/96	NA	NA	NA	NA	< 5	NA	NA
W78	11/14/96	18.7	4.5	198	4	< 5	184	2.1
W79	11/15/96	16.9	4.7	44	7	NA	181	NA
W81	11/13/96	20.0	6.2	624	322	298	-65	NA
W82	11/15/96	20.8	4.4	58	6	NA	233	NA
MPA(s)	11/17/96	20.3	6.8	824	290	NA	-103	NA
MPA(d)	11/17/96	20.1	5.7	118	5	NA	-68	NA
MPB	11/18/96	19.8	5.0	493	352	NA	1	NA
MPC(s)	11/17/96	17.1	6.5	491	230	NA	-44	NA
MPC(d)	11/17/96	17.8	5.4	177	15	NA	-300	NA
MPD(d)	11/17/96	18.0	5.0	115	35	NA	96	NA
MPF(s)	11/18/96	17.5	6.3	820	425	NA	-122	NA
MPF(d)	11/17/96	18.4	6.5	620	255	NA	-15	NA
MPG	11/18/96	17.8	6.5	85	18	NA	-71	NA
MPH	11/15/96	18.3	5.4	78	10	NA	75	NA
MPI	11/15/96	20.8	5.1	230	11	NA	114	$\mathtt{ND}^{\mathfrak{U}}$
MPJ	11/17/96	19.9	5.7	129	13	NA	-60	NA
MPK	11/15/96	20.5	6.2	504	215	NA	-1	5.6
MPL	11/15/96	20.5	5.7	268	97	NA	46	NA
MPM	11/13/96	18.7	5.4	62	6	7.1	660	NA
MPN	11/17/96	18.3	6.8	599	245	NA	-55	NA
MPO	11/14/96	18.8	4.8	634	19	19.5	87	34.7
MPP	11/14/96	18.8	4.7	208	10	10	67	3.4
MPQ	11/14/96	17.5	6.0	410	19	21.1	158	NA
MPR	11/17/96	19.2	4.9	750	6	NA	56	NA

w/L = milligrams per liter.

w/mV = millivolts.

d' NA = Not analyzed.

e' Duplicate sample of W22.

^{f/} ND = Analyte not detected.

Note: TOC = total organic carbon.

geochemical evidence indicates that microbial consumption of the carbon is occurring within the contaminant plumes at LF-06.

4.4.1.2 Inorganic Chemistry

An interpretation of inorganic groundwater geochemistry, including isopleth maps for typical electron acceptors, can provide information regarding the relative importance of various biodegradation mechanisms and whether the conditions at the site are favorable for reductive dehalogenation of chlorinated compounds. Numerous geochemical parameters were evaluated in site groundwater samples. Analytical results for geochemical parameters measured in site samples are presented in Tables 4.4 and 4.5. The following paragraphs discuss those parameters that are most useful in the evaluation of site biodegradation processes.

4.4.1.2.1 Dissolved Oxygen

DO concentrations were measured at monitoring wells and points during the November 1996 sampling event. Concentrations ranged from 0.15 to 5.1 mg/L (Table 4.4), with the highest concentrations measured in wells/points outside of the area of the contaminant plumes. Within the plume area, concentrations were generally below 1.0 mg/L, except in some of the monitoring points screened in perched zones. Figure 4.9 illustrates DO concentrations at the site. The low concentrations of oxygen in the plume area relative to upgradient and crossgradient concentrations is a strong indication of biological activity in the plume area. Depletion of DO within the BTEX and chlorinated solvent plumes at LF-06 indicates that microbial activity stimulated by the presence of anthropogenic hydrocarbons (e.g., BTEX, chlorobenzenes, VC, DCA, DCE, or other components of landfill waste) is consuming DO and creating anaerobic conditions.

4.4.1.2.2 Nitrate/Nitrite

Concentrations of nitrate/nitrite [as nitrogen (N)] were measured in groundwater samples collected in November 1996. Table 4.4 summarizes measured nitrate/nitrite

(as N) concentrations, and Figure 4.10 shows the distribution of nitrate/nitrite (as N) concentrations in site groundwater. Background concentrations range from about 1 mg/L to 6.7 mg/L, with most below 2.2 mg/L. Within the plume, nitrate concentrations are generally less than 0.5 mg/L, with some higher concentrations detected in perched groundwater or at the fringes. The area of reduced nitrate concentrations also coincides with the area of reduced DO concentrations, indicating that as DO is removed, microbes are utilizing nitrate as an electron acceptor for degradation of organic material (such as BTEX or native organic carbon).

4.4.1.2.3 Ferrous Iron

Ferrous iron [iron (II)] concentrations were measured in groundwater samples collected in November 1996. Table 4.4 summarizes ferrous iron concentrations. Measured ferrous iron concentrations range from 0.01 mg/L to 95.5 mg/L. Figure 4.11 shows the areal extent of ferrous iron in groundwater. Elevated ferrous iron concentrations coincide with the solvent and BTEX plumes. This suggests that ferric iron [iron (III)] hydroxide is being reduced to ferrous iron during biodegradation of native organic carbon, BTEX compounds, and possibly less-chlorinated solvents. Background levels of ferrous iron appear to range from below detection limits (0.05 mg/L) to about 3.0 mg/L, as measured at upgradient and crossgradient wells.

Recent evidence suggests that the reduction of ferric iron to ferrous iron cannot proceed at all without microbial mediation (Lovley and Phillips, 1988; Lovley et al., 1991; Chapelle, 1993). None of the common organic compounds found in low-temperature (i.e., non-hydrothermal), neutral, reducing groundwater could reduce ferric oxyhydroxides to ferrous iron under sterile laboratory conditions (Lovley et al., 1991). This means that the reduction of ferric iron requires microbial mediation by microorganisms with the appropriate enzymatic capabilities. Because the reduction of ferric iron cannot proceed without microbial intervention, the elevated concentrations of ferrous iron that were

measured in the contaminated groundwater at the site are very strong indicators of microbial activity.

4.4.1.2.4 Sulfate

Sulfate concentrations were measured in groundwater samples collected in November 1996. Sulfate concentrations in shallow groundwater at the site ranged from 0.16 mg/L to 49 mg/L (Table 4.4). In general, the highest sulfate concentrations (ranging from about 15 mg/L to about 49 mg/L) were detected in wells outside of the area of the BTEX and chlorinated solvent plumes (Figure 4.12). Within the plume area, nearly all sulfate concentrations ranged from 0.16 mg/L to about 3 mg/L. Some sulfate concentrations within the plume area were as high as 26 mg/L, but these were typically for samples collected from perched wells/points.

The area of decreased sulfate concentrations correlates well with chlorinated solvent and BTEX concentrations. It is therefore likely that sulfate reduction is an ongoing anaerobic biodegradation process at LF-06. This is important because when a system is sufficiently reducing that sulfate reduction occurs, conditions become more favorable for reductive halogenation of solvents as BTEX or other electron donors are consumed.

4.4.1.2.5 Methane in Groundwater

Methane concentrations were measured in groundwater samples collected in November 1996. Table 4.4 lists methane concentrations, which ranged from less than 0.005 mg/L to 6.5 mg/L at the site. Figure 4.13 shows the distribution of methane in shallow site groundwater. The area of elevated methane concentrations correlates well with the chlorinated solvent and BTEX plumes. The presence of methane in the plume area indicates that conditions are sufficiently reducing that petroleum hydrocarbons and native organic matter are being used to support methanogenesis. Further, the fact that methanogenesis is ongoing indicates that conditions in the plume area are highly reducing and therefore favorable for reductive dehalogenation of chlorinated solvents.

As methanogenesis produces more carbon dioxide than it consumes, an unlimited supply of carbon dioxide is theoretically available once the process of methanogenesis has been initiated. Therefore, methanogenesis is limited by the rate of reaction rather than the source of electron acceptors.

4.4.2 Additional Geochemical Indicators

Other geochemical data collected for this evaluation can be used to further interpret and support the contaminant, electron donor, electron acceptor, and byproduct data previously discussed. These parameters provide additional qualitative indications of what processes may be operating at the site.

4.4.2.1 Oxidation/Reduction Potential

Redox potentials were measured at groundwater monitoring wells and points in November 1996. Redox potential is a measure of the relative tendency of a solution to accept or transfer electrons. The redox potential of a groundwater system depends on which electron acceptors are being reduced by microbes during oxidation of organic compounds. Redox potentials for shallow groundwater at the site range from 284 millivolts (mV) to -300 mV. Table 4.5 summarizes available redox potential data. In some locations, low redox potential coincide with areas of elevated BTEX and solvent concentrations, decreased DO, nitrate, and sulfate concentrations, and elevated ferrous iron and methane concentrations. However, this is not always the case and the correlation between redox potential and geochemical indicators is not strong.

Areas with low redox potentials tend to coincide with areas where there is evidence of ongoing reductive dehalogenation, except in the vicinity of W-21 and MPP. The redox potentials measured at those two locations were 216 mV and 67 mV, respectively. This apparent inconsistency may result from mismeasurement of redox potential due to sampling error or due to the fact that the instrument electrode has varying sensitivities to different redox couples, and thus does not always reflect the complete redox potential for a sample. This pattern may also indicate that concentrations of substrates have always been relatively

low and thus biodegradation reactions have not made significant and lasting changes in groundwater geochemistry in that area. In addition, it is also possible that the November 1996 data reflects that conditions that were formerly reducing changed to more oxidizing due to short-term or long-term changes in site conditions. Such a change may occur due to an influx of more oxidizing water (e.g., from a recharge event) or due to a long-term change in redox conditions due to decreasing substrate concentrations. Finally, the results may also be indicative of heterogeneity, such as a situation in which biodegradation is ongoing in one subunit of the shallow aquifer and the sampling of wells screened over multiple subunits results in mixing of waters from differing redox environments.

4.4.2.2 Alkalinity and Carbon Dioxide Evolution

Carbon dioxide is produced during the biodegradation of petroleum hydrocarbons and native organic carbon compounds. In aquifers that have carbonate minerals as part of the matrix, carbon dioxide forms carbonic acid, which dissolves these minerals, increasing the alkalinity of the groundwater. An increase in alkalinity (measured as CaCO₃) in an area with BTEX or chlorinated solvent (particularly less-chlorinated solvents) concentrations elevated above background conditions can be used to infer that petroleum hydrocarbons, less-chlorinated solvents, or native organic carbon has been destroyed through aerobic and anaerobic microbial respiration.

Total alkalinity (as CaCO₃) was measured in groundwater samples collected in November 1996. These measurements are summarized in Table 4.5. Alkalinity is a measure of the ability of groundwater to buffer changes in pH caused by the addition of biologically generated acids. Total alkalinity at the site varied from 0 mg/L to 425 mg/L, with the lowest concentrations generally measured in wells/points outside the contaminant plume. However, alkalinity within the plume area is variable, may not always be sufficient to buffer potential changes in pH caused by biologically mediated reactions. The pH data for site groundwater (Section 4.4.2.4) suggest that groundwater pH decreases slightly at some locations within the plume.

Free carbon dioxide concentrations also were measured in groundwater samples collected in November 1996 (Table 4.4). As shown on Figure 4.14, carbon dioxide concentrations within the full extent of the chlorinated solvent and BTEX plumes are elevated noticeably above background concentrations. Background concentrations are about 40 to 100 mg/L, while within the plume area, concentrations are in the range of 100 to 500 mg/L. Carbon dioxide concentrations above background result from both aerobic and anaerobic biodegradation processes as contaminants are ultimately converted to carbon dioxide and water.

4.4.2.3 Ammonia/Ammonium

The presence of ammonia/ammonium in groundwater can result from either nitrate reduction (facilitated by microbes) or fixing of atmospheric nitrogen (also a microbial process). Therefore, the presence of ammonia/ammonium in groundwater is a strong indication of microbial activity. Figure 4.15 shows the distribution of ammonia and ammonium (as N) concentrations measured in groundwater samples collected from LF-06. Ammonia/ammonium concentrations ranged from below detection limits to greater than 10 mg/L (Table 4.4), with the area of highest concentrations coinciding with the central portion of the contaminant plumes (i.e., centered along a line from MPF to MPA to W-81, and between W-18 and MPB).

Given that the highest nitrate concentration observed in site groundwater was 6.7 mg/L and that the highest ammonia/ammonium concentrations are greater than 10 mg/L, the nitrogen component of the ammonia process cannot entirely be derived from nitrate and may come from atmospheric nitrogen gas. This implies that groundwater conditions within the BTEX and solvent plumes are reducing enough to support nitrogen fixation. Stumm and Morgan (1981) note that nitrogen fixation will occur when conditions are at least

reducing enough to support iron reduction. This process can also occur when sulfate reduction or methanogenesis is favored. Therefore, this evidence of nitrogen fixation further confirms that conditions within the solvent and BTEX plumes are sufficiently reducing to allow reductive dehalogenation to proceed. This also further confirms that organic matter (anthropogenic or natural) is being biodegraded in the plume area.

It is possible that some nitrate could enter groundwater from the landfill material; however, significant concentrations of nitrate in groundwater generally come from sources such as fertilizer, animal waste, sewage, and septic systems (Freeze and Cherry, 1979; Domenico and Schwartz, 1990). Thus, while it is possible that some nitrate may enter groundwater from material in the disposal trenches, it is more likely that nitrogen fixation is a more significant source of nitrogen for production of ammonia/ammonium.

4.4.2.4 pH

pH was measured for groundwater samples collected from groundwater monitoring points and monitoring wells in November 1996. These measurements are summarized in Table 4.5. The pH of a solution is the negative logarithm of the hydrogen ion concentration [H⁺]. Groundwater pH measured at the site ranges from 4.3 to 6.8 standard units. This range of pH is slightly below the optimal range for BTEX-degrading microbes, although microbial activity can occur at a pH as low as 2 (Chapelle, 1993). The slightly acidic range of pHs also indicates that microbial reactions may have a noticeable effect on groundwater pH, likely due to the low background alkalinity of site groundwater (Section 4.4.2.2).

4.4.2.5 Temperature

Groundwater temperature was measured at groundwater monitoring points and monitoring wells in November 1996. Table 4.5 summarizes groundwater temperature readings. Temperature can affects the types and growth rates of bacteria that can be supported in the groundwater environment, with higher temperatures typically resulting in higher growth rates. Groundwater temperatures at LF-06 varied from 16.9°C to 20.8°C.

These are moderately warm temperatures for groundwater (but still within the optimal range), suggesting that bacterial growth rates should be high.

4.5 APPROXIMATION OF BIODEGRADATION RATES

Biodegradation rate constants are necessary to accurately simulate the fate and transport of contaminants dissolved in groundwater. In many cases, biodegradation of contaminants can be approximated using first-order kinetics. First-order biodegradation rate constants may be calculated on the basis of field-scale data, or by using a small sample of the aquifer material and groundwater for microcosm studies.

For reductive dehalogenation of chlorinated compounds, first-order rates are not necessarily an accurate representation because the degradation of CAHs depends on both the concentrations of electron donors (e.g., fuel hydrocarbons or native organic material) and the concentrations of electron acceptors (including inorganic acceptors and CAHs) (Moutoux et al., 1996). Second-order rates would therefore allow more accurate modeling, but at this time there are no readily available groundwater contaminant transport models that can utilize such rates. Therefore, first-order rates must be estimated for such an application.

Microcosm studies are used to show that the microorganisms necessary for biodegradation are present and to help quantify rates of biodegradation. Because microcosm studies are time consuming and expensive, they should be undertaken only at sites where there is considerable skepticism concerning the biodegradation of contaminants. The results of a microcosm study are strongly influenced by the nature of the geological material submitted for study, the physical properties of the microcosm, the sampling strategy, and the duration of the study. Biodegradation rate constants determined by microcosm studies often are much higher than those observed in the field. Microcosms are most appropriate as indicators of the potential for natural bioremediation, and to prove that losses are biological, but it may be inappropriate to use them to generate rate constants.

The preferable method of contaminant biodegradation rate-constant determination is by use of field data.

In order to calculate first-order biodegradation rate constants on the field scale, the apparent degradation rate must be normalized for the effects of dilution, dispersion, and sorption. Two methods for determining first-order rate constants for BTEX compounds are described by Wiedemeier et al. (1996b). One method involves the use of a biologically recalcitrant compound found in the dissolved contaminant plume that can be used as a conservative tracer. The other method, proposed by Buscheck and Alcantar (1995), involves interpretation of a steady-state contaminant plume and is based on the one-dimensional, steady-state analytical solution to the advection-dispersion equation presented by Bear (1979). Both methods can be adapted to estimate rate constants for CAHs. Another method for estimating dehalogenation rates of CAHs is described by Moutoux et al. (1996). This method provides a total dechlorination rate for all dechlorination steps. All rates (including the rapid TCE to DCE rate and the slow VC to ethene) are averaged together using the Moutoux et al. (1996) method.

The method of Buscheck and Alcantar (1995) was used to estimate first-order biodegradation rate constants for BTEX and chlorinated solvents at LF-06. This method and the related calculations are summarized in Section 5.3. The other methods discussed above were not used because the low contaminant concentrations at LF-06 prevented proper analysis. Decay rates computed using data from LF-06 included a total BTEX biodegradation rate of 0.0053 day⁻¹, a chlorobenzene biodegradation rate of 0.010 day⁻¹, and a total chlorinated ethene dechlorination rate of 0.0035 day⁻¹. The equivalent half-lives are 0.35 years, 0.19 years, and 0.54 years, respectively.

4.6 DISCUSSION

Compounds detected in groundwater at LF-06 include BTEX, TCE, cis-1,2-DCE, 1,1-DCE, VC, 1,1,1-TCA, 1,1-DCA, CA, 1,3-DCB, 1,4-DCB, and CB. Of these compounds, only benzene, CB, TCE, and VC were detected at concentrations exceeding

MCLs. At only one location was a benzene concentration exceeding the MCL of 5 μ g/L detected. At MPF(s), the benzene concentration was 12 μ g/L. MPF(s) is screened in a perched zone, and the benzene concentration in the point below it [MPF(d), actually screened in the (continuous) shallow aquifer], the benzene concentration was only 2.1 μ g/L.

CB was detected at a concentration of 200 μ g/L in MPF(s), exceeding the MCL of 100 μ g/L. In the sample from MPF(d), the CB concentration was only 6.1 μ g/L. Also, no other CB concentration was greater than 23 μ g/L (at MPN). TCE was detected in only 3 samples, and in only one (from W21) did the concentration (7.4 μ g/L) exceed the MCL of 5 μ g/L. VC was the most commonly detected compound exceeding standards, with concentrations exceeding the MCL of 2 μ g/L detected in samples from 14 wells and monitoring points. However, none of these concentrations were greater than 10 μ g/L.

Data have been collected from several wells at the site since 1988, and changes in concentrations of compounds present in concentrations exceeding MCLs over that time are shown in Table 4.6. Some concentrations have decreased slightly, but contaminant concentrations in single monitoring wells generally have fluctuated over time, with no clear overall trends of increasing or decreasing concentrations (i.e., some increase, some decrease, and some are relatively constant). This is likely a function of the low concentrations, mixing in wells during sampling, slight differences in sampling procedures, variations in plume concentrations due to water level/flow direction changes, and variable rates of desorption from aquifer solids.

TABLE 4.6

CONCENTRATION HISTORIES FOR COMPOUNDS DETECTED IN GROUNDWATER IN CONCENTRATIONS EXCEEDING MCLs

SITE LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

Contaminant				Con	Contaminant Concentration (µg/L)	centration (μ	g/L)			
(MCL)	Well	Mar-88	Apr-88	3nl-88	Dec-88	May-89	Nov-91	Nov-94	Aug/Sep 95	Nov-96
TCE	W-21	NA.	NΩ	ND	ND	N	4J ^{c/}	26	26	7.4
(5 µg/L)	W-22	NA	Q,	ND	QN	ND	14	ND	ND	ND
VC	W-18	NA	15	ND	NA	15	6J	∞	ND	4.9
(2 µg/L)	W-20	NA	ND	N ON	QN	8.6	NA	0.43	ND	ND
	W-21	NA	26	ND	21	22	10	33	91	10
	W-81	NA	NA	NA	NA	NA	NA	9	ND	4.8
CB	W-18	NA	19	21	NA	21	ND	24	25	13
$(100 \mu g/L)$	W-20	NA	ND	ND	7	4.8	NA	QN Q	NO	ΩN
	W-21	NA	12	5	6	17	9	10	19	13
	W-81	NA	NA	NA	NA	NA	NA	12	. 13	6.5
	MPF(s) ^{d'}	NS	SN	NS	NS	SN	SN	SN	NS	200
Benzene	W-18	NA	ND	ND	NA	ND	23	2	QN	1.3
(5 µg/L)	W-21	NA	QN	ND	N N	ND	23	3	ND	3.6
	W-22	NA	ND	ND	N Q	ND	20	ND	NO	ND
	W-81	NA	NA	NA	NA	NA	NA	2	QN	6.0
	MPF(s) ^{d/}	SN	NS	NS	SN	SN	SN	SN	NS	12
	W3 _d /	NS	NS	SN	SN	NS	NS	NS	NS	15

4-55

[&]quot; NA = not analyzed.

 $^{^{}b'}$ ND = not detected.

 $^{^{}c'}$ J = estimated concentration.

Unly location(s) where compound detected above MCL (in 1996).

e' NS = not sampled.

In the case of CB, the one concentration exceeding the MCL was not detected until 1996, and then it was detected in MPF(s), which is screened in a perched zone. In the case of benzene, only one concentration exceeding the MCL was detected in new monitoring points [specifically, MPF(s)] in 1996. Previously, only one sample at another location (W-22 in November 1991) had contained benzene at a concentration exceeding the MCL. At that time, the benzene concentration was 20 μ g/L, and was the only instance in which benzene was detected in that well. Of the other compounds detected in 1996 at concentrations that do not exceed standards (32 total detections), no single concentration exceeds 20 μ g/L, and all but three of the 32 detected concentrations are under 10 μ g/L.

The additional data collected for this effort also help to suggest three possible locations for sources of groundwater contamination in the LF-06 area. These locations include the apparent former trench in the vicinity of MPF, the area between MPP and W-21, and an area upgradient of MPN. The nature of these sources of fuel hydrocarbons and chlorinated solvents is not clear; however, the low dissolved concentrations do suggest that no mobile NAPL is present, and that the mass of each compound released to groundwater is not significant. The lack of information on the sources remains a problem because contaminant mass loading cannot be evaluated and the possibility of new releases cannot be discounted. However, the low concentrations of dissolved contaminants implies that existing sources are minor and that any future releases are likely to produce similar (low) concentrations.

Several lines of chemical and geochemical evidence indicate that the contaminants at LF-06 are being biodegraded, either as substrates or as electron acceptors. Geochemical data indicate that DO, nitrate, and sulfate are being consumed and iron (II) and methane are produced within that same area as the plume. This evidence suggests that microbial consumption of anthropogenic and natural organic matter (carbon compounds) is taking place at LF-06. Anthropogenic carbon compounds are present as petroleum hydrocarbons and less-chlorinated solvents (including, but not limited to, BTEX, chlorobenzene, VC,

DCE, and DCA) that are dissolved in groundwater, and probably as landfill leachate. Native carbon compounds include solid organic matter in the aquifer matrix and whatever portion of that matter that has dissolved into site groundwater. These compounds are electron donors in redox reactions that are also consuming electron acceptors (e.g., DO, ferric iron, carbon dioxide, and chlorinated hydrocarbons) and creating byproducts [e.g., methane, iron (II), and carbon dioxide]. Plots of contaminants, electron donors, electron acceptors, and byproducts of biodegradation reactions (Figures 4.3 through 4.15) provide strong qualitative evidence of these processes. Plots of additional indicators, such as carbon dioxide and ammonia concentrations, further indicate that biodegradation reactions are ongoing.

Microbial consumption of both native and anthropogenic organic carbon compounds destroys those compounds and creates conditions favorable for reductive dehalogenation. Site chemical data provide evidence of dehalogenation of TCE, DCE, TCA, and DCA. The presence of cis-1,2-DCE and VC in site groundwater coupled with evidence of sufficiently reducing conditions provides the primary line of chemical evidence for reductive dehalogenation of chlorinated ethenes. The presence of 1,1-DCA and CA also suggest that 1,1,1-TCA is being reductively dehalogenated in the central portion of the contaminant plume. The presence of dissolved methane further indicates that conditions are sufficiently reducing for the dehalogenation processes to proceed.

Elevated chloride concentrations within the solvent plumes also may indicate dehalogenation reactions, although chloride may also come from some of the wastes in the landfill and from oxidation of less-chlorinated compounds (i.e., utilization as a substrate). However, because of the other evidence of reductive dehalogenation, it is highly likely that some fraction of the excess chloride is a result of chlorinated solvent degradation. In addition, the fact that *cis*-1,2-DCE is detected instead of *trans*-1,2-DCE in wells/points where TCE or VC also are present is also indicative of biologically mediated reductive dehalogenation.

Evidence also suggests that 1,1,1-TCA is being abiotically dehydrohalogenated to 1,1-DCE at the margins of the contaminant plume. On the other hand, the absence of 1,1,1-TCA and the presence of 1,1-DCA and CA in wells that also contained BTEX and chlorinated ethenes suggests that reductive dechlorination of TCA is ongoing within the central area of the contaminant plume. It therefore appears that 1,1,1-TCA is reductively dehalogenated in the central plume area, while in the periphery wells (where conditions are less reducing), TCA is not reductively dechlorinated but instead reacts abiotically to form 1,1-DCE.

Given the available evidence, the dissolved CAH plume at LF-06 exhibits characteristics of both type 1 and type 3 behavior. Dissolved petroleum hydrocarbons and possibly some less-chlorinated solvents appear to act as carbon sources. It is likely that the introduction of petroleum hydrocarbons and solvents due to waste disposal activities stimulated additional microbial activity and made the groundwater system reducing enough to allow reductive dehalogenation of TCE, DCE, and TCA. VC has been created due to dehalogenation, but it is possible that it is being oxidized (as a substrate) once it enters aerobic groundwater. Likewise, it is possible that DCE and DCA are oxidized as well. However, conclusive evidence of these oxidation processes has not been gathered. It is possible that some microbial consumption of native organic matter is taking place outside the plume and within the plume, but the DO values measured outside of the contaminant plume suggest this process is minor. Type 2 behavior may therefore be limited in extent and is not discernible from consumption of contaminants.

As discussed in Section 4.5, rates of BTEX, chlorobenzene, and chlorinated ethene degradation estimated from data collected for this investigation were 0.010 day⁻¹, 0.018 day⁻¹, and 0.006 day⁻¹, respectively As petroleum hydrocarbons and native organic matter continue to be consumed, reductive dehalogenation of the chlorinated ethenes will continue; however, once BTEX compounds are completely degraded, the rate at which dehalogenation proceeds may slow as the microbes utilize less easily degradable fuel

hydrocarbons or other organic matter. It also is conceivable that the plume may eventually come to display only type 3 behavior, but this will depend on the concentrations and degradability of the remaining (non-BTEX) fuel hydrocarbon compounds relative to the native organic matter.

As the type of organic matter used during biodegradation changes, the redox conditions also may change and alter which reactions are favored. This could also affect the rates at which CAHs are reductively dehalogenated, and could also cause dehalogenation of some compounds to cease. If and how this will happen is difficult to predict; the relative "degradability" of the native organic matter (or non-BTEX fuel hydrocarbons) and the effect of a changing electron donor source is not yet well-understood. It can be stated that if conditions become more oxidizing (but not aerobic), the dehalogenation of DCE may also cease or slow. However, aerobic and/or anaerobic mineralization of VC and DCE may become more important (i.e., type 3 conditions may dominate).

SECTION 5

GROUNDWATER MODELING

5.1 GENERAL OVERVIEW

To help estimate degradation rates for dissolved BTEX compounds and chlorinated solvents at LF-06 and to help predict the future migration of these compounds, Parsons ES modeled the fate and transport of the compounds that exceeded Mississippi Department of Environmental Quality (MDEQ) groundwater quality standards. The modeling effort has three primary objectives: (1) to predict the future extent and concentration of the dissolved contaminant plume by modeling the combined effects of advection, dispersion, sorption, and biodegradation; (2) to assess the potential for exposure of downgradient receptors to contaminant concentrations that exceed regulatory standards intended to be protective of human health and the environment; and (3) to provide technical support for the natural attenuation option at post-modeling regulatory negotiations, as appropriate. The model was developed using site-specific data and conservative assumptions about governing physical and chemical processes. Because of the conservative nature of model input, the reduction in contaminant mass caused by natural attenuation may exceed model predictions. This analysis is not intended to represent a baseline assessment of potential risks posed by site contamination.

Partial differential equations that describe groundwater flow and/or solute transport can be solved analytically or numerically. The type of model selected to simulate site conditions depends on the complexity of the problem, the amount of available data, the importance of the decisions that will be based upon the model, and project scope. Analytical methods (models) provide exact, closed-form solutions, and numerical methods

(models) provide approximate solutions. Analytical models are the simplest to set up and solve, allowing the user to evaluate many scenarios in a relatively short time. Numerical methods are more efficient for those systems that are too complex for analytical methods. Analytical models are restricted in the nature of the problems for which they can be used, and for some transport problems they may become so complex and unwieldy that the use of numerical methods may be more efficient. Theoretically, there are no limits on the characteristics of the hydrogeological system and the properties of the solute(s) that can be simulated using a numerical model code. There are, however, practical limits on the ways in which the system and any reactions within it can be represented. The basic parameters for both types of models typically include groundwater seepage velocity, hydraulic conductivity, saturated thickness of the aquifer, porosity, source area configuration, source area contaminant concentrations, leakage rates, dispersion coefficients, retardation values, and decay rates.

If limited data are available, or the hydrogeologic conditions are simple, an analytical model can be selected to simulate contaminant fate and transport. Analytical solutions provide exact, closed-form solutions to the governing advection-dispersion equation by making significant simplifying assumptions. Analytical solutions are most accurate where these assumptions closely approximate the actual system. Because of the nature of the simplifying assumptions, analytical models may overestimate or underestimate the spread of contamination. By making assumptions that will ensure the model will overpredict contaminant concentrations and travel distances (or at least not underpredict them), the model predictions will be conservative. The more conservative a model is, the more confidence there should be that potential receptors will not be impacted by site contamination. Analytical solutions are generally limited to steady, uniform flow or radial flow, and should not be used for groundwater flow or solute transport problems in strongly anisotropic or heterogeneous media.

Numerical solutions provide approximate solutions to the advection-dispersion equation. Numerical models are less burdened by simplifying assumptions and are capable of addressing more complicated problems. Unlike analytical models, numerical models allow subsurface heterogenieties and varying aquifer parameters to be simulated, as well as transient simulations (i.e., one or more properties or conditions change over time), if the requisite data are available. Many of the assumptions required for the analytical solutions are not necessary when numerical techniques are used to solve the governing solute transport equation. However, a greater amount of site-specific data is needed to implement a numerical model, and the solutions are inexact numerical approximations. The added complexity of performing a numerical model typically is not warranted unless the spatial distribution of input parameters is well documented.

Analytical models were selected to evaluate contaminant fate and transport at LF-06. Analytical models are appropriate at this site because the spacial variability regarding hydrogeologic conditions, geochemical measurements, and contaminant concentration information is limited. The models used with LF-06 data provided first-order solute decay solutions for a semi-infinite system with a constant point source (van Genuchten and Alves, 1982). The models assume a homogeneous, isotropic aquifer; a uniform, constant-velocity flow field in the x-direction only; a constant longitudinal hydrodynamic dispersion; a first-order rate of decay for biodegradation; and a linear sorption rate.

5.2 CONCEPTUAL MODEL DESIGN AND ASSUMPTIONS

Before developing a groundwater model, it is important to develop a reasonable interpretation of aquifer conditions. On the basis of the data presented in Section 3, the shallow saturated zone was conceptualized and modeled as a shallow unconfined aquifer composed of fine to medium sand with some gravel (Figure 3.3). Water level data suggest a relatively uniform local groundwater flow system without a significant vertical component.

Geochemical data presented in Section 4 suggest that biodegradation of site contaminants is occurring. In particular, BTEX and chlorinated solvent compounds are being degraded by aerobic respiration and the anaerobic processes of denitrification, ferric iron reduction, manganese reduction, sulfate reduction, nitrogen fixation, and methanogenesis. In addition, the processes of reductive dehalogenation and dehydrohalogenation are currently reducing the dissolved chlorinated solvent mass. Current analytical data on dissolved BTEX and chlorinated solvent concentrations were used for model calibration and to support solute reduction assumptions; historical information was limited to the landfill periphery, and therefore, was of limited use for hot spot identification, plume definition, and model calibration.

5.3 INITIAL MODEL SETUP

Where possible, the initial setup for the models was based on site data. Where site-specific data were not available (e.g., for effective porosity), reasonable assumptions were made on the basis of widely accepted literature values. The analytical model solution is based on calculations for retarded flow with biodegradation and a decaying source (van Genuchten and Alves, 1982). However, because of the lack of historical site data and information, it was assumed that the source(s) present at LF-06 would remain constant over time (i.e., no decay). The following sections describe the basic model setup. The analytical model parameters that were varied during model runs are discussed in Section 5.6.

5.3.1 Groundwater Gradient

The November 1996 water table elevation map presented on Figure 3.5 was used to determine the hydraulic gradient. Groundwater flow in the vicinity of the site is to the west with an average gradient of approximately 0.006 ft/ft. Due to the lack of consistent historical groundwater elevation data, it was assumed that the November 1996 water levels and gradient are representative of steady-state conditions.

5.3.2 Dissolved Contaminant Concentrations

Models were constructed for compounds with dissolved concentrations exceeding MDEQ regulatory limits, including benzene, CB, TCE, and VC. Tables 4.2 and 4.3 present November 1996 dissolved BTEX and chlorinated solvent concentration data. Figures 4.3 through 4.7 show the areal distribution of selected dissolved contaminants in November 1996. The shape and distribution of the contaminant plumes are the result of advective-dispersive transport and biodegradation of dissolved contamination originating from the source areas at LF-06. The highest dissolved concentrations from the November 1996 site investigation were used in the models to project future downgradient concentrations.

5.3.3 Degradation Rates

Available data strongly suggest that aerobic and anaerobic degradation processes are occurring at the site. As with a large number of biological processes, biodegradation can generally be described using a first-order rate constant and the equation:

$$\frac{C}{C_0} = e^{-kt}$$

where:

C = Contaminant Concentration at Time t

 C_0 = Initial Contaminant Concentration

k = Coefficient of Decay (decay rate constant)

t = time

Two methods of calculating rate constants are currently available to quantify rates of biodegradation at the field scale. The first method involves the use of a biologically recalcitrant compound as a conservative tracer. The second method, proposed by Buscheck and Alcantar (1995), involves interpretation of a steady-state contaminant plume configuration and is based on the one-dimensional steady-state analytical solution to the advection-dispersion equation presented by Bear (1979). An acceptable tracer could not be found for any of the individual chlorinated and nonchlorinated compounds in groundwater;

therefore, only the Buscheck and Alcantar method for estimating biodegradation rates was used to calculate site and chemical specific decay rates.

Buscheck and Alcantar (1995) derive a relationship that allows calculation of first-order decay rate constants for steady-state plumes. This method involves coupling the regression of contaminant concentration (plotted on a logarithmic scale) versus distance downgradient (plotted on a linear scale) to an analytical solution for one-dimensional, steady-state, contaminant transport that includes advection, dispersion, sorption, and biodegradation. For a steady-state plume, the first-order decay rate is given by (Buscheck and Alcantar, 1995):

$$\lambda = \frac{v_c}{4\alpha_x} \left(\left[1 + 2\alpha_x \left(\frac{k}{v_x} \right) \right]^2 - 1 \right)$$

where: λ = first-order decay rate

 v_c = retarded contaminant velocity in the x-direction

 $\alpha_{\rm r}$ = dispersivity

 k/v_x = slope of line determined from a log-linear plot of contaminant concentration versus distance downgradient along flow path

The first-order decay rate includes biodegradation resulting from both aerobic and anaerobic processes; however, in the absence of oxygen, the first-order rate is equivalent to the anaerobic decay rate. Table 5.1 presents the data for a first-order rate constant calculation for BTEX using November 1996 data at LF-06 and the method proposed by Buscheck and Alcantar (1995). An exponential fit to the data estimates a log-linear slope of 0.0021. This value translates to a decay constant of 0.0053 day⁻¹ which was used in the BTEX and benzene models. Calculated decay constants for chlorobenzene (Table 5.2) and chlorinated ethenes (Table 5.3) were 0.010 day⁻¹ and 0.0035 day⁻¹, respectively. These rates were used in the analytical fate and transport models for chlorobenzene (0.010 day⁻¹) and TCE and VC (0.0035 day⁻¹).

A review of recent literature indicates that similar or higher rate constants generally have been observed in anaerobic plumes at other sites. For example, Chapelle (1994)

TABLE 5.1
FIRST-ORDER RATE CONSTANT CALCULATION
USING THE METHOD OF BUSCHECK AND ALCANTAR (1995)

LF-06

REMEDIATION BY NATURAL ATTENUATION TS COLUMBUS AFB, MISSISSIPPI

	Distance	
	Downgradient	Total BTEX (μg/L)
Point	from Source (ft)	Oct-96
MPF	0	7.1
MPD	500	2.2
W-81	1040	0.9

PLOT OF TOTAL BTEX CONCENTRATION VERSUS DISTANCE

$$\lambda = v_c/4\alpha_x([1+2\alpha_x(k/v_x)]^2-1)$$

where $v_c =$	2.2000	ft/day
$\alpha_{x} =$	100	ft
k/v =	0.002	ft-1
therefore $\lambda =$	0.0053	day-1

TABLE 5.2 FIRST-ORDER RATE CONSTANT CALCULATION USING THE METHOD OF BUSCHECK AND ALCANTAR (1995)

LF-06

REMEDIATION BY NATURAL ATTENUATION TS COLUMBUS AFB, MISSISSIPPI

	Distance	Chlorobenzene
	Downgradient	(μg/L)
Point	from Source (ft)	Oct-96
MPF	0	200
MPA	500	20
W-81	1040	6.5

PLOT OF TOTAL CHLOROBENZENE CONCENTRATION VERSUS DISTANCE

$$\lambda = v_c/4\alpha_x([1+2\alpha_x(k/v_x)]^2-1)$$

where $v_c =$	2.2000	ft/day
$\alpha_x =$	100	ft
k/v =	0.0033	ft-1
therefore $\lambda =$	0.010	day-1

TABLE 5.3
FIRST-ORDER RATE CONSTANT CALCULATION
USING THE METHOD OF BUSCHECK AND ALCANTAR (1995)

LF-06

REMEDIATION BY NATURAL ATTENUATION TS COLUMBUS AFB, MISSISSIPPI

	Distance	Total Chlorinated
	Downgradient	Ethenes (µg/L)
Point	from Source (ft)	Oct-96
MPN	0	9.6
W-18	350	6.2
MPK	810	3

PLOT OF TOTAL CHLORINATED ETHENE CONCENTRATION VERSUS DISTANCE

$$\lambda = v_c/4\alpha_x([1+2\alpha_x(k/v_x)]^2-1)$$

where $v_c =$	2.2000	ft/day
$\alpha_{x} =$	100	ft
k/v =	0.0014	ft-1
therefore $\lambda =$	0.0035	day-1

reported that at two different sites with anaerobic groundwater conditions the rate constants were both approximately 0.01 day⁻¹. Wilson *et al.* (1994) report first-order anaerobic biodegradation rates of 0.05 to 1.3 week⁻¹ (0.007 to 0.185 day⁻¹); Buscheck *et al.* (1993) report first-order attenuation rates in a range of 0.001 to 0.01 day⁻¹; and Stauffer *et al.* (1994) report rate constants of 0.01 and 0.017 day⁻¹ for benzene and *p*-xylene, respectively.

5.4 MODEL CALIBRATION

True model calibration was not performed due to the lack of source area and site information. However, using known site specific hydrogeological information, a site specific biodegradation rate for BTEX compounds, and a source concentration equal to the highest observed concentration, it was shown (Model-BTEX) that the current extent of the dissolved BTEX plume was accurately simulated at steady-state conditions. Furthermore, Model-BTEX predicted that the dissolved BTEX plume would reach steady state in just over 1 year with constant input terms. Knowing that Model-BTEX accurately predicted the extent of dissolved BTEX contamination, the remaining predictive models were also run using the same hydrogeologic parameters: a hydraulic gradient of 0.0055 ft/ft, hydraulic conductivity of 99 ft/day, effective porosity of 0.25, and TOC of 0.06 percent.

To model contaminant distribution for the contaminants of concern (benzene, CB, TCE, VC), it was also assumed that no annual source decay occurred. Assuming no annual source decay may not be an accurate representation of site conditions because it does not account for natural degradation of the source as well as dissolution of the source into groundwater; however, the assumption makes predictive models potentially conservative. The compound specific solute decay rates also were used in predictive models (Section 5.3.3). The highest observed concentrations of the compounds of concern were used as the source input terms for each respective model.

5.5 MODEL RESULTS

Four models were run to predict how far downgradient dissolved concentrations of contaminant of concern (benzene, TCE, CB, VC) exceeded state groundwater criteria (Section 6). Because source decay was not incorporated into the predictive models, time to remediation is not evaluated in this TS. However, assuming that contaminant concentrations exceeding state groundwater standards would persist throughout time (lack of historical site information makes this assumption valid), estimates of contaminant plume length were predicted. Model input and output are presented in Appendix C.

Model-BZ presents the predicted lateral extent of dissolved benzene concentrations at steady state conditions (approximately mid 1998). Using the November 1996 highest observed benzene concentration of 15 μ g/L (monitoring point MPF), Model-BZ predicted that dissolved benzene concentrations would exceed the 5 μ g/L state groundwater standard for approximately 360 feet west of (downgradient from) monitoring point MPF. At point MPC, the closest downgradient from MPF, the observed benzene concentration was less than 2 μ g/L. The fact that this point is approximately 300 feet downgradient suggests that the model is conservative.

Model-CB presents the predicted lateral extent of dissolved chlorobenzene concentrations at steady state conditions. Assuming a source area concentration of dissolved chlorobenzene of 200 μ g/L (observed at monitoring point MPF in November 1996), Model-CB predicts that CB concentrations will exceed the state groundwater standard of 100 μ g/L for approximately 100 feet downgradient from the point source MPF. This model slightly underpredicts observed downgradient concentrations; however, a concentration of CB in a perched groundwater zone at MPC suggests that observed concentrations may have been boosted by a minor secondary source.

Model-TCE presents the predicted lateral extent of dissolved TCE concentrations at steady state conditions. Assuming a source area concentration of dissolved TCE of 7.5 μ g/L (observed at W21 in November 1996), Model-TCE predicts that TCE concentrations

will exceed the state groundwater standard of 5 μ g/L for approximately 165 feet downgradient from the point source W21. This rate of decrease is slightly conservative.

Model-VC presents the predicted lateral extent of dissolved VC concentrations at steady state conditions. Assuming a source area concentration for dissolved VC of $10~\mu g/L$ (observed at W21 in November 1996), Model-VC predicts that VC concentrations will exceed the state groundwater standard of $2~\mu g/L$ for approximately 1,000 feet downgradient from the point source W21. The observed VC plume actually migrates approximately 500 feet downgradient from W21. The plume that originates at MPF stretches for approximately 1,500 feet; however, several minor sources may be contributing to the plume extent. Furthermore, this VC plume extends only about 500 feet downgradient from the edge of the landfill.

5.6 SENSITIVITY ANALYSIS

The purpose of the sensitivity analysis is to determine the effect of varying model input parameters on model output. The sensitivity analysis for model input parameters was conducted on Model-BTEX by varying hydraulic conductivity (±2 times), the organic carbon content (±2 times), effective porosity (±25%), dispersivity (±2 times), and the solute decay rate (±2 times). To perform the sensitivity analyses, the model was run with the same input as the original predictive model excepting the tested parameter. The models were run for a 2-year period so the effects could be compared to steady state conditions simulated by the predictive models, also using a 2-year period. Model output data from the sensitivity analysis are presented in Appendix C.

The results of the sensitivity analysis suggest that the models are most sensitive to hydraulic conductivity, total organic carbon, and solute decay, and less sensitive to effective porosity and dispersivity. Increasing hydraulic conductivity significantly increased the distance of plume migration and the downgradient concentrations of dissolved contaminants, because advective-dispersion mechanisms are more significant with the higher groundwater velocity that results from a higher hydraulic conductivity. Conversely,

decreasing the hydraulic conductivity to half the observed value decreases the distance of plume migration to less than the distance observed in November 1996. Increasing the total organic carbon content decreases the distance of plume migration to less than the distance observed in November 1996. A decrease in the organic carbon content had the opposite effects on the modeled BTEX plume. Changes to the modeled dissolved BTEX plume arising from varying the effective porosity are similar to the changes observed with varying TOC; however, over the evaluated ranges, effective porosity had a smaller effect on the predicted plume than TOC. Changes in the dispersivity value had a similar, but less pronounced, effect on the predicted contaminant plume as did changes to the hydraulic conductivity. Increasing the solute decay rate by two caused the model to produce a contaminant plume of lesser extent than observed in November 1996. Decreasing the solute decay rate made the predicted 1996 plume more than two times as large as the plume observed in November 1996.

The results of the sensitivity analysis indicate that the calibrated model is generally reasonable. Varying the model parameters within the prescribed ranges generally caused the extent and magnitude of the dissolved BTEX plume to differ noticeably from measured conditions.

SECTION 6

COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES

This section presents the development and comparative analysis of groundwater remedial alternatives for contaminated groundwater at Site LF-06. The intent of this evaluation is to determine if RNA of groundwater is an appropriate and cost-effective remedial approach to consider when developing final remedial strategies for the study area, especially when combined with other remedial technologies.

Section 6.1 presents the criteria used to evaluate groundwater remedial alternatives. Section 6.2 discusses the development of remedial alternatives considered as part of this demonstration project. Section 6.3 provides a brief description of each of these remedial alternatives. Section 6.4 provides a more detailed analysis of the remedial alternatives using the defined remedial alternative evaluation criteria. The results of this evaluation process are summarized in Section 6.5.

6.1 REMEDIAL ALTERNATIVE EVALUATION CRITERIA

The evaluation criteria used to identify appropriate remedial alternatives for shallow groundwater contamination at the site were evaluated on the basis of (1) long-term effectiveness and permanence, (2) technical and administrative implementability, and (3) relative cost. The following sections briefly describe the scope and purpose of each evaluation criterion. This report focuses on the potential use of RNA to reduce dissolved BTEX and chlorinated solvent concentrations in the shallow groundwater below MCLs. Source reduction is not considered because the sources at LF-06 have not been identified and are likely scattered throughout the burial area.

6.1.1 Long-Term Effectiveness and Permanence

Each remedial alternative (which can be a combination of remedial approaches such as RNA and institutional controls) was analyzed to determine how effectively it will minimize groundwater plume expansion so that groundwater and surface water quality standards can be achieved at a downgradient sentry well. The expected technical effectiveness based on case histories from other sites with similar conditions also is evaluated. The ability to minimize potential impacts on surrounding facilities and operations is considered. Also, the ability of each remedial alternative to protect both current and potential future receptors from potential risks associated with potentially completed exposure pathways is qualitatively assessed. This evaluation criterion also included permanence and the ability to reduce contaminant mass, toxicity, and volume. Time to implementation and time until protection is achieved are described. Long-term reliability for providing continued protection, including an assessment of potential for failure of the technology and the potential threats resulting from such a failure, also is evaluated.

6.1.2 Implementability

The technical implementability of each remedial technology or remedial alternative was evaluated in terms of technical feasibility and availability. Potential shortcomings and difficulties in construction, operations, and monitoring are presented and weighed against perceived benefits. Requirements for any post-implementation site controls such as LTM and land use restrictions are described. Details on administrative feasibility in terms of the likelihood of public acceptance and the ability to obtain necessary approvals are discussed.

6.1.3 Cost

The total cost (adjusted to present worth) of each remedial alternative was estimated for relative comparison. An estimate of capital costs, and operating and post-implementation costs for site monitoring and controls is included. An annual adjustment (discount) factor of 7 percent was assumed in present worth calculations. The annual adjustment factor is the difference between the rate of inflation and the cost of money (USEPA, 1993).

6.2 FACTORS INFLUENCING ALTERNATIVES DEVELOPMENT

Several factors were considered during the identification and screening of remedial technologies for addressing shallow groundwater contamination at the site. Factors considered included the objectives of the AFCEE natural attenuation demonstration program; contaminant, groundwater, and soil properties; current and future land uses; and potential receptors and exposure pathways. The following section briefly describes each of these factors and how they were used to narrow the list of potentially applicable remedial technologies to the final remedial alternatives considered for the study area.

6.2.1 Program Objectives

The intent of the RNA demonstration program sponsored by AFCEE is to develop a systematic process for scientifically investigating and documenting natural subsurface attenuation processes that can be factored into overall site remediation plans. The objective of this program and the specific demonstration at Columbus AFB is to provide solid evidence of RNA of dissolved fuel hydrocarbons and chlorinated solvents so that this information can be used to develop an effective groundwater remediation strategy. A secondary goal of this multi-site initiative is to provide a series of regional case studies that demonstrate that natural processes of contaminant degradation can often reduce contaminant concentrations in groundwater to below acceptable cleanup standards before completion of potential receptor exposure pathways.

Because the objective of this program is to study natural processes in the saturated zone rather than all contaminated media (e.g., soil, soil gas, etc.), technologies have been evaluated based primarily on their potential impact on shallow groundwater and phreatic soils. Technologies that can reduce vadose zone contamination and partitioning of contaminants into groundwater also have been evaluated. Many of the source removal technologies evaluated in this section also will reduce soil and soil gas contamination, but it is important to emphasize that the remedial alternatives developed in this document are not intended to remediate all contaminated media. Additional program objectives set forth by

AFCEE include cost effectiveness and minimization of waste. Technologies that may best meet these AFCEE criteria include institutional controls, soil vapor extraction (SVE), bioventing, bioslurping, passive drain collection, biosparging, and RNA. Under this program, slurry walls, sheet piling, carbon adsorption, and groundwater extraction with ex situ biological or chemical treatment of groundwater are not considered attractive technologies.

6.2.2 Contaminant Properties

The site-related contaminants considered as part of this demonstration in the study area are the BTEX compounds, TCE, DCE, VC, 1,1,1-TCA, 1,1-DCA, CB, and 1,2-DCB. Of these compounds, only benzene, TCE, VC, and CB are present in concentrations exceeding MCLs. The primary sources of contamination at LF-06 are likely containers of waste scattered throughout the burial trenches; however, the exact location and nature of these sources is unknown.

The physiochemical characteristics of the individual compounds will greatly influence the effectiveness and selection of a remedial technology. Important characteristics for each of the compounds noted above are presented in the following paragraphs. These characteristics are listed for the purpose of a general comparison and a preliminary selection of remedial alternatives.

The BTEX compounds are generally volatile, highly soluble in water, and adsorb less strongly to soil than other hydrocarbons in a petroleum mixture. These characteristics allow the BTEX compounds to leach more rapidly from contaminated soil into groundwater, and to migrate as dissolved contamination (Lyman *et al.*, 1992). All of the BTEX compounds are highly susceptible to *in situ* degradation by both biotic and abiotic mechanisms.

Benzene is very volatile, with a vapor pressure of 76 millimeters of mercury (mm Hg) at 20°C and a Henry's Law Constant of approximately 0.0054 atmosphere-cubic meters per

mole (atm-m³/mol) at 25°C (Hine and Mookerjee, 1975; Jury et al., 1984). The solubility of pure benzene in water at 20°C has been reported to be 1,780 mg/L (Verschueren, 1983). Benzene is normally biodegraded to carbon dioxide, with catechol as a short-lived intermediate (Hopper, 1978; Ribbons and Eaton, 1992).

Toluene is also volatile, with a vapor pressure of 22 mm Hg at 20°C and a Henry's Law Constant of about 0.0067 atm-m³/mol at 25°C (Pankow and Rosen, 1988; Hine and Mookerjee, 1975). Toluene sorbs more readily to soil media relative to benzene, but still is very mobile. The solubility of pure toluene in water at 20°C is approximately 515 mg/L at 20°C (Verschueren, 1983). Toluene has been shown to degrade to pyruvate, caetaldehyde, and completely to carbon dioxide via the intermediate catechol (Hopper, 1978; Wilson *et al.*, 1986; Ribbons and Eaton, 1992).

Ethylbenzene has a vapor pressure of 7 mm Hg at 20°C and a Henry's Law Constant of 0.0066 atm-m³/mol (Pankow and Rosen, 1988; Valsaraj, 1988). Ethylbenzene sorbs more strongly to soils than benzene and toluene (Kenaga and Goring, 1980; Means *et al.*, 1980; Hassett *et al.*, 1983; Fetter, 1993). Pure ethylbenzene is also less soluble than benzene and toluene in water at 152 mg/L at 20°C (Verschueren, 1983; Miller *et al.*, 1985). Ethylbenzene ultimately degrades to carbon dioxide via its intermediate 3-ethylcatechol (Hopper, 1978; Ribbons and Eaton, 1992).

The three isomers of xylene have vapor pressures ranging from 7 to 9 mm Hg at 20°C and Henry's Law Constants of between 0.005 and 0.007 atm-m³/mol at 25°C (Mackay and Wolkoff, 1973; Hine and Mookerjee, 1975; Pankow and Rosen, 1988). A compilation of literature values for sorption coefficients suggests that xylenes sorb to soil with approximately the same strength as ethylbenzene (Wiedemeier *et al.*, 1995). Pure xylenes have water solubilities of 152 to 160 mg/L at 20°C (Bohon and Claussen, 1951; Mackay and Shiu, 1981; Isnard and Lambert, 1988). Xylenes can degrade to carbon dioxide via pyruvate carbonyl intermediates (Hopper, 1978; Ribbons and Eaton, 1992).

The CAH compounds (e.g., TCE, DCE, VC, TCA, and DCA) are generally volatile, relatively soluble in water, and do not adsorb strongly to soil particles. These characteristics allow the CAHs to leach readily from NAPL and contaminated soil into groundwater, and to migrate as dissolved contamination (Lyman *et al.*, 1992). Many CAHs are amenable to *in situ* degradation by both biotic and abiotic mechanisms under certain geochemical conditions.

TCE is moderately volatile, with a vapor pressure ranging from 69 mm Hg to 74 mm Hg at 25°C (Mackay and Shiu, 1981; Klopffer et al., 1988; Howard, 1990). Henry's Law Constants reported for TCE range from 0.0086 to 0.0102 atm-m³/mol at 25°C (Ashworth et al., 1988; Dewulf et al., 1995). The solubility of pure TCE in water at 20°C has been reported to be 1,100 mg/L (Pearson and McConnell, 1975). TCE biodegradation products vary according to the prevailing groundwater geochemistry, and are described in Section 4.2.

cis-1,2-DCE is very volatile, with a vapor pressure of 200 mm Hg at 25°C and a Henry's Law Constant of about 0.0037 atm-m³/mol. (reported in Wiedemeier et al., 1996a). 1,1-DCE is also very volatile, with a vapor pressure of 591 mm of Hg at 25°C (Verschueren, 1983) and a Henry's Law Constant of 0.021 atm-m³/mol (Schwille, 1988). DCE tends to be slightly more mobile than TCE, with less of a tendency to adsorb to the aquifer matrix material. The solubility of cis-1,2-DCE in water at 25°C is approximately 3,500 mg/L (Howard, 1990). The solubility of 1,1-DCE is about 2,500 mg/L (Howard, 1989). The degradation of DCE is discussed in Section 4.2.

Vinyl chloride is extremely volatile, with a vapor pressure of 2,580 mm of Hg at 20°C (Lyman *et al.*, 1982) and a Henry's Law Constant of 0.056 atm-m³/mol at 25°C (Hine and Mookerjee, 1975). Vinyl chloride does not adsorb as well as either TCE or DCE (Karickhoff *et al.*, 1979). It is more mobile than TCE, DCE, and benzene in groundwater. The solubility of VC is about 1,100 mg/L at 25°C (Verschueren, 1983).

1,1,1-TCA is about as volatile as benzene, with a vapor pressure of 124 mm of Hg at 25°C and a Henry's Law Constant of about 0.008 atm-m³/mol. (reported in Wiedemeier *et al.*, 1996a). 1,1,1-TCA is slightly more prone to adsorption than TCE (Howard, 1990). The solubility of 1,1,1-TCA in water at 25°C is about 1,495 mg/L (Howard, 1990).

Similar to DCE, 1,1-DCA is very volatile, with a vapor pressure of 227 mm of Hg at 25°C and a Henry's Law Constant of about 0.006 atm-m³/mol (reported in Wiedemeier et al., 1996a). 1,1-DCA is more mobile than TCA and DCE, but not as mobile as VC. The solubility of 1,1-DCA in water at 25°C is about 5,000 mg/L (Howard, 1989).

CB and DCB are less volatile and less soluble than CAHs, and are generally more likely to adsorb to soils. Their properties are generally similar to BTEX compounds. Under aerobic conditions, CB and DCB biodegrade in the same manner as benzene. Biodegradation of these compounds as substrates under anaerobic conditions has not been studied enough to have been documented in the scientific literature. However, the more chlorinated benzene compounds have been shown to undergo reductive dehalogenation.

CB is moderately volatile, with a vapor pressure of about 1.5 mm of Hg at 25°C and a Henry's Law Constant of about 0.0035 atm-m³/mol (Howard, 1989). CB is relatively mobile, similar to the BTEX compounds. The solubility of CB in water at 25°C is about 472 mg/L (Howard, 1989).

1,2-DCB (also known as o-DCB) is slightly volatile, with a vapor pressure of 156 mm of Hg at 25°C and a Henry's Law Constant of about 0.0012 atm-m³/mol at 20°C (Howard, 1990). It sorbs more strongly than the other chlorinated compounds discussed herein, with behavior similar to ethylbenzene or xylenes. The solubility of 1,2-DCB in water at 25°C is about 156 mg/L (Howard, 1990).

With the exception of TCE and 1,1,1-TCA, all of these compounds have been shown to be primary substrates for microbial metabolism. Simultaneous biodegradation of aliphatic,

aromatic, and alicyclic hydrocarbons has been observed. In fact, mineralization rates of hydrocarbons in mixtures, such as gasoline, may be faster than mineralization of the individual constituents as a result of cometabolic pathways (Jamison *et al.*, 1975; Perry, 1984). Moreover, during reductive dehalogenation, some of the compounds may be used as substrates/electron donors while others are used as electron acceptors.

On the basis of these physiochemical characteristics, RNA, biosparging, and groundwater extraction and treatment could all be effective options for collecting, destroying, and/or treating dissolved BTEX and chlorinated solvents at Site LF-06. Some of these options are considered less desirable after considering site-specific conditions (Section 6.2.3) and program objectives (Section 6.2.1).

6.2.3 Site-Specific Conditions

Three general categories of site-specific characteristics were considered when identifying remedial approaches for comparative evaluation as part of this demonstration. The first category was physical characteristics such as groundwater depth, hydraulic conductivity, gradient, flow direction, and soil type. The second category was the site geochemistry, or how the site contaminants are interacting with electron acceptors, microorganisms, and other site contaminants. Both of these categories influence the types of remedial technologies most appropriate for the site. The third category involved assumptions about future land use and potential receptor exposure pathways. Each of these site-specific characteristics has influenced the development of remedial alternatives included in the comparative evaluation.

6.2.3.1 Physical Characteristics

Site geology and hydrogeology have a profound effect on the transport of contaminants and the effectiveness and scope of required remedial technologies at a given site. Hydraulic conductivity is perhaps the most important aquifer parameter governing groundwater flow and contaminant transport in the subsurface. The velocity of the groundwater and dissolved contamination is directly related to the hydraulic conductivity of

the saturated zone. The estimated average advective groundwater velocity at LF-06 is 2.2 ft/day (800 ft/yr) (Section 3.3.2.4).

Although the relatively high hydraulic conductivities of the study area can result in greater plume expansion and migration, this same characteristic also can enhance the effectiveness of other remedial technologies, such as groundwater extraction, biosparging, and intrinsic remediation. For example, it should be less expensive and time-consuming to capture and treat a contaminant plume using a network of extraction wells in an area of high hydraulic conductivity because each well could envelope a larger area of influence and sustain a higher flow rate. The effectiveness of biosparging also may be increased in highly conductive and/or homogeneous aquifers because of reduced entry pressures and short-circuiting, and increased mixing of sparge air and groundwater. In addition, greater hydraulic conductivity would increase the amount of contaminant mass traveling through a biosparging network. Given a moderately high groundwater velocity, the effectiveness of natural attenuation can increase as a result of enhanced dilution and dispersion of the contaminant mass. The movement of contaminant mass within the subsurface away from the source area also can bring contaminants into contact with a larger mass of electron donors and acceptors, thereby increasing rates of biodegradation.

Like hydraulic conductivity, the organic carbon content of native phreatic zone soils can influence the effectiveness of remedial alternatives. The soils across the phreatic surface in the study area have a low organic carbon content (less than 0.06 percent), and therefore, the soils have a correspondingly low sorptive potential. However, sorptive capacity where soil TOC is greater than 0.01 percent is typically sufficient to cause a difference in the groundwater and contaminant velocities. The difference between contaminant and groundwater velocity increases the effectiveness of biodegradation in the source area because there are fresh electron acceptors flowing past the slower moving dissolved contaminant mass.

6.2.3.2 Geochemical Characteristics

To satisfy the requirements of indigenous microbial activity and RNA, the aquifer also must provide an adequate and available carbon or energy source (e.g., fuel hydrocarbon contamination), electron acceptors, essential nutrients, and proper ranges of pH, temperature, and redox potential. Data collected as part of the field work phase of this demonstration project and described in Sections 3 and 4 of this TS indicate that this site is characterized by adequate and available carbon/energy sources and electron acceptors to support measurable biodegradation of fuel hydrocarbon contamination by indigenous microorganisms. DO, nitrate, ferric iron, sulfate, and carbon dioxide represent sources of significant electron acceptor capacity for the biodegradation of organic compounds at LF-06.

The average pH in shallow site groundwater ranged between 4.3 and 6.8 standard units in November 1996, which is within to slightly below the optimal range for biodegradation of 6 to 8 standard pH units (Wiedemeier et al., 1995). As pH values drop below 6 standard units, bacteria populations can be expected to decrease, which in turn may reduce the rate of hydrocarbon biodegradation. Redox potentials ranged from -300 to 284 mV in November 1996 (Figure 4.14), and suggest a groundwater environment that is both The redox potentials at the site suggest that aerobic oxidizing and reducing. reduction, nitrate reduction, iron (II) reduction, sulfate biodegradation, methanogenesis (consistent with observed geochemical indicator trends discussed in Section 4) would reduce contaminant concentrations in groundwater. Groundwater data presented in Section 4 strongly support the conclusion that aerobic and anaerobic processes are reducing BTEX contamination given the current geochemical conditions. These same processes also appear to be acting upon chlorinated solvents, both as electron donors and electron acceptors.

Microbe addition was not considered a viable remedial approach for this site on the basis of observed geochemical trends that suggest that significant microbial activity is

likely occurring. Hydrocarbon-degrading microorganisms are ubiquitous in the subsurface, and a large number of hydrocarbon-degrading isolates (bacteria and fungi) have been discovered in different soil environments (see Wiedemeier *et al.*, 1995 and 1996a for a partial listing). Indigenous microorganisms have a distinct advantage over microorganisms injected into the subsurface to enhance biodegradation because indigenous microorganisms are well adapted to the physical and chemical conditions of the subsurface in which they reside (Goldstein *et al.*, 1985).

6.2.3.3 Potential Receptor Exposure Pathways

A pathways analysis identifies the potential human and ecological receptors that could come into contact with site-related contamination and the pathways through which these receptors might be exposed. To have a completed exposure pathway, there must be a source of contamination, a potential mechanism(s) of release, a pathway of transport to an exposure point, an exposure point, and a receptor. If any of these elements do not exist, the exposure pathway is considered incomplete, and receptors will not come into contact with site-related contamination. Evaluation of the potential long-term effectiveness of any remedial technology or remedial alternative as part of this demonstration project includes determining the potential for pathway completion. If a completed exposure pathway exists (e.g., surface water contact), potential long-term remedial options may still be sufficient to maintain exposure concentrations below regulatory action levels. Establishing site-specific, risk-based cleanup levels is beyond the scope of this TS.

Assumptions about current and future land uses at a site form the basis for identifying potential receptors, potential exposure pathways, reasonable exposure scenarios, and appropriate remediation goals. USEPA (1991) advises that the land use associated with the highest (most conservative) potential level of exposure and risk that can reasonably be expected to occur should be used to guide the identification of potential exposure pathways and to determine the level to which a site must be remediated. Because the site is near recreational facilities for a secured military Base and covered by grass and trees, Base

workers and their families are the most probable potential receptors that could be exposed to any site-related contamination.

There are two Base water supply wells located approximately 1 mile west of Site LF-06, but both of these wells are screened nearly 400 feet bgs in the confined regional aquifer. The surface water drainage south of the landfill could be another potential exposure point for human and/or ecological receptors; however, groundwater elevation data and contaminant plume configurations suggest that site groundwater flow is predominantly to the west. Several residential wells lie within 0.5 mile of Site LF-06 to the south and southeast. One of the residential wells in the area was drilled to a depth of 165 feet, but the screen is at a depth of 54 feet. Depth and casing information is unavailable for the other residential wells in the area, but the residential wells could draw from the shallow aquifer. Given the groundwater flow direction, however, it is unlikely that residential wells would be impacted by groundwater contamination from LF-06.

6.2.3.4 Remediation Goals for Shallow Groundwater

The federal MCLs as listed in 40 CFR 141-61(a) for BTEX and other VOCs are adopted as the state water quality MCLs by the MDEQ (MDEQ Office of Pollution Control, Groundwater Division, Groundwater Quality Standards, Section 3, Numerical Groundwater Standards). MCLs for compounds of potential concern detected in LF-06 groundwater are presented in Table 6.1. Although it is unlikely that groundwater from Site LF-06 would be ingested by humans because there are no current downgradient water supplies in close proximity to the site and the Base is converting to a City supply system in the near future, the state MCLs will be used to evaluate the effectiveness, implementability, and cost of remedial alternatives in this TS.

For this TS, the primary remedial objective for evaluation of remediation technologies for shallow groundwater is to reduce contaminant concentrations in groundwater to below state regulatory criteria at a downgradient sentry well. To accomplish this, remedial alternatives focus on limiting migration of dissolved contaminant concentrations exceeding

MCLs away from Site LF-06 and (possibly) towards the Base boundary. Source remediation was not considered because the source areas are not well-defined.

TABLE 6.1
GROUNDWATER QUALITY STANDARDS
LF-06 RNA TS
COLUMBUS AFR MISSISSIPPI

Compound	State Maximum Contaminant Level (µg/L) ^{a/}
Benzene	5
Trichloroethylene	5
Vinyl Chloride	2
Chlorobenzene	100

Source: MDEQ Office of Pollution Control, Groundwater Division, Groundwater Quality Standards, Section 3, Numerical Groundwater Standards.

Available data suggest that there are no completed exposure pathways involving human and ecological receptors exposed to contaminated groundwater under current conditions. Site LF-06 is part of a secured military base, so institutional controls can be incorporated to limit any future intrusive activity at the site. The required period of any groundwater and soil institutional controls associated with the selected remedial alternative is likely to expire before any anticipated future land use changes. Off-base migration of dissolved contaminants in concentrations exceeding MCLs appears unlikely, given the groundwater flow direction and observed concentrations. Also, analytical model results suggest that the contaminant plumes have reached a steady-state configuration and that significant migration of contaminant concentrations exceeding MCLs beyond the observed plume extents is unlikely.

6.2.4 Summary of Remedial Option Screening

Several remedial options have been identified and screened for use in treating the shallow groundwater at the site. Table 6.2 identifies the initial remedial technologies and

approaches considered as part of this demonstration and those retained for detailed comparative analysis. Screening was conducted systematically by considering the program objectives of the AFCEE RNA demonstration, physiochemical properties of groundwater contaminants detected at LF-06, and other site-specific characteristics such as hydrogeology, geochemistry, land use assumptions, potential receptor exposure pathways, and appropriate remediation goals. All of these factors will influence the technical effectiveness, implementation, and relative cost of technologies for remediating shallow groundwater underlying and migrating from the site. The remedial options retained for development of remedial alternatives and comparative analysis include institutional controls, natural attenuation, LTM, biosparging, air sparging, groundwater extraction, and air stripping for treatment of extracted groundwater.

6.3 BRIEF DESCRIPTION OF REMEDIAL ALTERNATIVES

This section describes how remedial technologies retained from the screening process were combined into three remedial alternatives for the study area. Sufficient information on each remedial alternative is provided to facilitate a comparative analysis of effectiveness, implementability, and cost in Section 6.4.

6.3.1 Alternative 1 - RNA and Institutional Controls with Long-Term Groundwater Monitoring

RNA is achieved when natural attenuation mechanisms bring about a reduction in the total mass of a contaminant in the soil or dissolved in groundwater. RNA results from the integration of several subsurface attenuation mechanisms that are classified as either destructive or nondestructive. Destructive attenuation mechanisms include biodegradation, abiotic oxidation, and hydrolysis. Nondestructive attenuation mechanisms include sorption, dilution (caused by dispersion and infiltration), and volatilization. In some cases,

TABLE 6.2 INITIAL TECHNICAL IMPLEMENTABILITY SCREENING OF TECHNOLOGIES AND PROCESS OPTIONS FOR GROUNDWATER REMEDIATION

LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

Retain		Yes		Yes		Yes			No		å		Yes		S _Z	-	Yes		%			No			No		
Relative	Cost	Low		Low		Low			Low		Moderate		Low		Moderate		Moderate		High			High	1		High		
Effectiveness		Necessary for all remedia-	tion strategies	Necessary	•	Necessary			Not required	at this site	Low		Necessary		Moderate to	High	Moderate to	High	Low			Low			Moderate		
Implementability		Many wells and monitoring points are available to confirm the progress of remediation. Sufficient space exists for additional wells.		Sufficient distance exists between the plume and point-of-compliance to	locate several wells.	The plume lies within the base boundary, and land and groundwater use	are under base jurisdiction.		No production wells are known to exist in the current or predicted plume	area.	No shallow groundwater is extracted from the plume area for any use.		Base public relations and environmental management offices have many	information avenues to workers and residents.	No likely receptors immediately downgradient of site. Size of plume	and hydraulic conductivity of site soils favors pumping.	Would prevent downgradient migration of dissolved contaminants,	including off-site migration.	Although implementable, the technology would be costly and less	effective because of high groundwater velocity and consequently large	groundwater volume.	Although implementable, the technology would be costly and less	effective because of high groundwater velocity and consequently large	groundwater volume.	Degradation of contaminants can be stimulated by allowing groundwater	to flow through a nutrient-rich barrier. Although implementable, the	technology is new and relatively costly unless concentrations are high.
Process Option		Confirmation Wells		Point-of-	Compliance Wells	Land Use	Control/Regulate	well relilles	Seal/Abandon	Existing Wells	Point-of-Use	Treatment	Meetings/	Newsletters	Interceptor	Trench Collection	Groundwater	Extraction	Slurry	Walls/Grout	Curtains	Sheet Piling			Biologically	Active Zones	
Technology	Type	Periodic Groundwater	Monitoring			Groundwater	Use Control						Public Education		Hydraulic	Controls			Physical	Controls					Reactive/ Semi-	Permeable	Barriers
General	Response Action	Long-Term Monitoring				Institutional	Controls								Containment of	Plume											

TABLE 6.2 (continued) INITIAL TECHNICAL IMPLEMENTABILITY SCREENING OF TECHNOLOGIES AND PROCESS OPTIONS FOR GROUNDWATER REMEDIATION

LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

Retain		Yes	Yes	Yes	°Z	N _o	Yes	No No	N _o	No
Relative	Cost	Low	Low	Low	Moderate	High	Moderate	High (O&M)	Low	High
Effective-	ness	Moderate	High	Moderate	Moderate	Moderate	High	Moderate	High	Moderate
Implementability		Oxygen and/or nutrients are injected downgradient of plume to limit plume migration by enhancing biodegradation of BTEX, DCE, DCA, VC, CB, and/or DCB and reducing contaminant concentrations through volatilization. Implementable, and technology may enhance natural attenuation processes for most compounds. However, compounds such as TCE and 1,1,1-TCA do not biodegrade under aerobic conditions.	A combination of natural biological, chemical, and physical removal mechanisms which occur to varying degrees on every site. Groundwater sampling at LF-06 indicates that this is an ongoing remediation process.	Injection of air into contaminated aquifer creating a mass transfer of contamination into air bubbles and vadose zone. Similar to biosparging in effectiveness; however, more mass is transferred than destroyed.	Source area of groundwater plume is pumped by installing submersible pumps in source area wells. Limited by contaminant mass transfer rates into the groundwater; therefore, for steady-state or shrinking plumes it is comparably effective to RNA.	High flow rates require excessive retention times and large reactors. Volatile hydrocarbons are often volatilized in these systems.	Cost-effective technology for removing volatile hydrocarbons from groundwater at high flow rates. Potential permitting for air emissions.	Cost prohibitive for more concentrated hydrocarbons, and does not remove VC. Creates a carbon disposal problem.	Implementable option only when an IWWTP is readily available and capable of handling BTEX, TPH, chlorinated solvent, and hydraulic loading. IWWTP not available for this site.	High flow rates require lengthy retention times and large, costly reactors.
Process Option		Oxygen and/or Nutrient-Enhanced Biodegradation (Biosparging)	Natural Attenuation	Air Sparging (Volatilization)	Vertical Pumping Wells	Bioreactors	Air Stripping	Activated Carbon	Direct Discharge to Industrial Waste Water Treatment	VV/Ozone Reactors
Technology	Type	Biological	Chemical/ Physical		Groundwater Extraction	Biological	Chemical/ Physical			
General	Response Action	In Situ Groundwater Treatment			Source Removal/ Groundwater Remediation	Aboveground Groundwater Treatment				

TABLE 6.2 (concluded) INITIAL TECHNICAL IMPLEMENTABILITY SCREENING OF TECHNOLOGIES AND PROCESS OPTIONS FOR GROUNDWATER REMEDIATION

LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

E												
Retain		ν̈́	Yes	Š.	8 N	Yes	°Z	Š	%	ž	o Z	°Z
Relative	Cost	Low	Low	Moderate	Moderate	Low	Moderate	Moderate	High	Low	Low to Moderate	High
Effectiveness		High	High	Moderate	Moderate	High	Moderate	Moderate	Moderate	Moderate to High	High	Low
Implementability		Implementable option only when an IWWTP is available and capable of handling hydraulic loading. IWWTP is not available.	Implementable option only when access to a sanitary sewer exists and hydraulic loading is acceptable.	Injection wells subject to clogging, high maintenance, and permitting.	Requires large trenches and can be subject to injection well permitting.	Generally requires NPDES or other discharge permit	For reasons of risk and cost reduction, in-situ methods preferable when possible. Sources are widely distributed and locations are poorly defined.	For reasons of risk and cost reduction, in-situ methods preferable when possible. Sources are widely distributed and locations are poorly defined.	For reasons of risk and cost reduction, in-situ methods preferable when possible. Sources are widely distributed and locations are poorly defined.	Air injection/extraction to increase soil oxygen levels and stimulate biodegradation of fuel residuals. Sources are widely distributed and locations are poorly defined. Not a proven treatment for chlorinated solvents.	Vapor extraction has been successfully implemented at other sites. Highly implementable in sandy soils and effective for volatiles in unsaturated soils. May be subject to air permitting. Sources are widely distributed and locations are poorly defined.	Water and/or surfactant solution are forced through zones of residual contamination to enhance contaminant partitioning into the groundwater. Most effective in homogeneous sandy soils. Sources are widely distributed and locations are poorly defined.
Process Option		IWWTP	Sanitary Sewer	Vertical Injection Wells	Injection Trenches	Storm Drains	Landfilling	Biological Landfarming	Thermal Desorption	Bioventing	Soil Vapor Extraction	Soil Washing
Technology	Type	Discharge to IWWTP or	Sanitary Sewer	Treated Groundwater	Reinjection	Discharge to Surface Waters	Excavation/ Treatment			In Situ		
General	Response Action	Treated Groundwater	Disposal				Source Removal/Soil	Remediation				

RNA will reduce dissolved contaminant concentrations below numerical concentration goals intended to be protective of human health and the environment. As indicated by the evidence of RNA described in Section 4, these processes are occurring in the vicinity of LF-06 and will continue to reduce contaminant mass in the plume area. Moreover, most contaminant concentrations are below MCLs or only slightly above MCLs.

Results of an analytical contaminant transport model suggest that the concentrations of the groundwater contaminant plume emanating from LF-06 will drop below MCLs within, at most, 305 meters (1,000 feet) downgradient from the edge of the landfill. VC and benzene are the most likely to migrate that far, as supported by both modeled and observed results showing widespread diffused concentrations. TCE and CB are likely to migrate less far before dropping below MCLs, largely due to greater sorption relative to benzene and VC. These results also suggest that the observed conditions represent a steady-state plume, because the distances from the wells with the highest concentrations of the modeled compounds to the downgradient plume extents is at most about 1,300 feet. The observed contaminant plumes are therefore unlikely to grow more than 100 feet longer. These results are conservative because they assume the source of contamination will maintain a constant strength over time, while the sources may decrease due to weathering (loss of mass to dissolution, volatilization, and biodegradation).

Implementation of Alternative 1 would require the use of institutional controls such as land use restrictions and LTM. Land use restrictions may include placing long-term restrictions on soil excavation within the source area and long-term restrictions on groundwater well installations within and downgradient from the plume area. The intent of these restrictions would be to reduce potential receptor exposure to contaminants by legally restricting activities within areas affected by site-related contamination.

Long-term monitoring would be performed at a regular frequency and would consist of sampling a set of wells, including upgradient, source area, plume extent, and sentry wells.

For this site, it is assumed that 10 years of annual monitoring would be needed to establish that the plume is stable or shrinking and that contaminant concentrations are decreasing. The site- and alternative-specific LTM strategy is provided in Section 7. On the basis of predictive contaminant fate and transport model results (Section 6.4), it is unlikely that contaminant concentrations exceeding MDEQ groundwater MCLs would approach a potential receptor exposure point. Nevertheless, LTM is the technical mechanism used to evaluate the progress of natural attenuation processes and to ensure that remedial objectives are being met. Detection of benzene, TCE, VC, or CB in excess of their individual MDEQ MCLs at any sentry well may require additional evaluation to assess contaminant migration and to determine the probable extent of migration, or to determine if additional corrective action is necessary. In either case, land use restrictions would require reevaluation.

Public education on the selected alternative would be developed to inform Base personnel and residents of the scientific principles underlying source reduction and RNA. This education could be accomplished through public meetings, presentations, press releases, and posting of signs where appropriate. Periodic site reviews also could be conducted every year using data collected from the long-term groundwater monitoring program. The purpose of these periodic reviews would be to evaluate the extent of contamination, assess contaminant migration and attenuation through time, document the effectiveness of source removal and/or institutional controls at the site, and reevaluate the need for additional remedial actions at the site.

6.3.2 Alternative 2 - Biosparging, RNA, and Institutional Controls with Long-Term Groundwater Monitoring

This alternative is identical to Alternative 1 except that a sparging system would be used to minimize downgradient migration of dissolved contamination by placing a line of sparging wells perpendicular to the observed groundwater flow direction near the downgradient end of the contaminant plume(s). Biosparging is used to enhance the biodegradation of organic contaminants in subsurface soils and groundwater by supplying

oxygen to indigenous microbes using low-flow air injection. Some volatilization of contaminants may occur, but the biosparging system is intended to be operated at a low rate of air injection that significantly reduces emissions into the atmosphere while maximizing *in situ* biodegradation. Air sparging uses higher air flow rates to volatilize contaminants, although some biodegradation also will occur.

If it is determined that the low flow rates for a biosparging system would not be sufficient and that removal of contaminant mass would be improved by substantially increasing the air injection rate, air sparging could be promoted by simply increasing air flow rates. In this case, a SVE system may be needed to recover and treat soil vapors prior to discharge to the atmosphere. However, regardless of which system is implemented, SVE is not likely to be needed due to the low dissolved contaminant concentrations. Because no source reduction is included, biosparging/air sparging will not appreciably reduce the time required for RNA to reduce contaminant concentrations upgradient from the sparging system.

On the basis of Parsons ES' experience in the application of biosparging technology, a line of 45 vertical air injection wells should be sufficient to prevent dissolved groundwater contamination from migrating further downgradient from LF-06. Approximately 5 shallow vapor monitoring points also would be installed for measurement of the injection wells effectiveness. The conceptual design assumes that biosparging points would be 30 feet deep with 5 feet of screen between about 15 and 20 feet beneath the water table. Biosparging wells also are assumed to have an approximate radius of influence of 10 feet. To estimate the cost of remediation, it was assumed that the biosparging system would be operated for 10 years because, as with Alternative 1, it may take that long to establish the long-term concentration trends in the area upgradient of the sparge line.

As with Alternative 1, institutional controls and LTM would be required. Sentry and LTM wells would be the same as described for Alternative 1. Annual monitoring would

be performed for a total of 10 years to verify that no contaminant concentrations exceeding MCLs migrate downgradient from the sparge line.

6.3.3 Alternative 3 - Groundwater Extraction and Treatment, RNA, and Institutional Controls with Long-Term Groundwater Monitoring

Groundwater extraction at Site LF-06 could be performed for contaminant plume containment rather than sparging. Eight 10-inch groundwater extraction wells would be placed near the downgradient margin of the contaminant plume, along a line perpendicular to the observed groundwater flow direction. The groundwater extraction system will prevent contaminated groundwater from migrating downgradient from LF-06 and prevent completion of any potential receptor pathways. Given the relatively high natural groundwater velocity at the site (which will be further increased by pumping), pumping should rapidly capture much of the water within the plume. It is therefore estimated that the pumping system would only need to operate for 5 years before it can be shut down and LTM can begin.

Because groundwater extraction is not proposed for source reduction it may not appreciably reduce the predicted length of time required for RNA to complete groundwater remediation upgradient of the extraction system. If contaminant concentrations drop rapidly, the system could be shut off, but monitoring would have to continue to see if concentrations rebound after pumping ceases. In addition, because groundwater extraction potentially generates a large volume of waste requiring treatment (via air stripping) and disposal, the alternative does not comply well with the objectives of this AFCEE initiative.

As with Alternative 1, institutional controls and LTM would be required. LTM wells would be the same as described for Alternative 1. LTM should continue for an additional 5 years after pumping ceases to verify that concentrations do not rebound above MCLs and to establish plume behavior patterns created by pumping.

6.4 EVALUATION OF ALTERNATIVES

This section provides a comparative analysis of each of the remedial alternatives based on the effectiveness, implementability, and cost criteria. A summary of this evaluation is presented in Section 6.5.

6.4.1 Alternative 1 - RNA and Institutional Controls with Long-Term Groundwater Monitoring

6.4.1.1 Effectiveness

Alternative 1 is based on the effectiveness of natural processes that minimize contaminant migration and reduce contaminant mass over time, and the effectiveness of institutional controls. The effectiveness of RNA was evaluated through the analytical modeling presented in Section 5. Model results suggest that natural attenuation mechanisms are limiting contaminant migration and analysis of chemical data suggests that those mechanisms are reducing contaminant mass and toxicity. Contaminant (i.e., benzene, TCE, VC, and CB) concentrations should not exceed state MCLs at the sentry wells. Groundwater monitoring at the LTM and sentry wells will allow for continued evaluation of contaminant migration and ensure the safety of this alternative. While this alternative would not cease to be protective if the contaminant concentrations exceeding MCLs were detected in the sentry wells, such an instance would indicate that site conditions should be reevaluated.

The effectiveness of this remedial alternative requires that future intrusive site activities or construction activities within the plume area be conducted only by properly protected site workers. Reasonable land use assumptions for the plume area indicate that exposure is unlikely unless excavation or drilling activities bring groundwater or saturated soil to the surface. Long-term land use restrictions would be required to ensure that shallow groundwater is not pumped or removed for potable use within about 500 feet from the margins of the existing contaminant plume. Existing health and safety plans should be

enforced to reduce worker exposures during additional excavation or installing and monitoring additional wells.

Compliance with program goals is one component of the long-term effectiveness evaluation criterion. Alternative 1 would satisfy program objectives designed to promote RNA as a component of site remediation and to scientifically document natural processes. In addition, the alternative satisfies waste minimization goals as only limited drill cuttings would be generated during construction of new monitoring wells. This alternative also satisfies the program goal for cost effectiveness.

Apart from the administrative concerns associated with the enforcement of long-term land use restrictions and long-term groundwater monitoring programs, this remedial alternative should provide reliable, continued protection. It is assumed that dissolved contaminant concentrations will exceed state and federal criteria throughout the plume for approximately 10 years under Alternative 1. Furthermore, it is assumed that sampling will be performed every year for 10 years to demonstrate that RNA is reducing dissolved contaminant concentrations to levels below regulatory criteria and limiting plume migration.

6.4.1.2 Implementability

Alternative 1 is not technically difficult to implement. Installation of any additional LTM wells and monitoring of groundwater are standard procedures. Long-term management efforts would be required to ensure proper sampling procedures are followed. Periodic site reviews should be conducted to confirm the adequacy and completeness of LTM data and verify the effectiveness of this remediation approach. There also may be administrative concerns associated with long-term enforcement of groundwater use restrictions. Future land use within the source area may be impacted by leaving contaminated soil and groundwater in place. However, with the exception of any subsurface work at the site, the risk for Base personnel of exposure to contaminants will be limited. If required, the public and the regulators would have to be informed of the

benefits and limitations of the RNA option. Educational programs are not difficult to implement. Where the effectiveness of this option has been supported, the initial regulatory reaction to this alternative has been positive.

6.4.1.3 Cost

The cost of Alternative 1 is summarized in Table 6.3. Capital costs are limited to the construction of 4 new LTM wells and 2 new sentry wells. Included in the \$182,635 total present worth cost estimate for Alternative 1 are the costs of maintaining institutional controls and long-term groundwater monitoring at 14 LTM and sentry wells for a total of 10 years. If the dissolved contaminant concentrations at the site decrease rapidly or drop below MCLs for consecutive sampling events, then monitoring may be reduced or eliminated. Conversely, significant increases for consecutive sampling events or a significant increase in plume extent could warrant an increase in sampling frequency or implementation of another remedial alternative.

TABLE 6.3
ALTERNATIVE 1 - COST ESTIMATE
SITE LF-06 RNA TS
COLUMBUS AFB. MISSISSIPPI

Capital Costs	Cost
Design/Construct 6 LTM/Sentry Wells	\$21,201
Monitoring Costs (per Sampling Event)	Cost per Event
Conduct Groundwater Sampling at 14 wells (annually for 10 years)	\$13,435
Maintain Institutional Controls/Public Education (10 years)	\$5,000
Project Management and Reporting (10 years)	\$4,747
Present Worth of Alternative 1 a/	\$182,635

^a/ Based on an annual adjustment (discount) factor of 7 percent (USEPA, 1993).

6.4.2 Alternative 2 - Biosparging, RNA, and Institutional Controls with Long-Term Groundwater Monitoring

6.4.2.1 Effectiveness

The effectiveness of RNA and institutional controls with LTM is discussed for Alternative 1 in Section 6.4.1.1. Biosparging and sparging are established technologies for reducing contaminant concentrations and controlling plume migration. The goal of sparging would be to prevent dissolved contaminant concentrations that exceed MCLs from moving downgradient of the site. Although it is not likely to be needed, an SVE could be coupled with sparging to prevent migration of contaminated vapors from the system. It should be noted that problems such as channeling, which consists of preferential migration of injected air along specific, more permeable, flow paths rather than uniform air dispersal in the zone surrounding the injection screen, have been cited. However, the potential for significant channeling in the sandy deposits of the unconfined surficial aquifer is reduced.

Alternative 2 should provide reliable, continuous protection with little risk from temporary system failures. This alternative also complies with AFCEE program goals because RNA remains the predominant remediation method for contaminants dissolved in groundwater at the site, with sparging serving to limit plume migration. This remedial alternative, however, will result in the generation of additional contaminated soil that may require treatment and/or disposal. Furthermore, if an SVE system is installed, off-gas from the SVE system may require expensive treatment prior to atmospheric release.

6.4.2.2 Implementability

Installing and operating a biosparging system to prevent downgradient contaminant migration is more complex than Alternative 1; however, major obstacles are not anticipated. Installation of the sparging system involves standard engineering design and construction, including the installation of air injection wells, a regenerative blower system (1 high-capacity blower), electrical supply, and system integration.

Installation and operation of a biosparging system would require an increased commitment of labor hours and other resources to maintain and monitor the system. Periodic maintenance would be required for the regenerative blowers. Weekly system checks are recommended, and operating data such as injection pressures and flow rates would be manually recorded. It is estimated that the biosparging system would be operational for 10 years. In addition, an air emissions permit may need to be obtained prior to system start-up. The technical and administrative implementability concerns associated with the natural attenuation and LTM components of this remedial alternative are similar to those discussed for Alternative 1.

6.4.2.3 Cost

The estimated capital and operating costs of Alternative 2 are shown in Table 6.4. The total present worth cost of Alternative 2 is \$814,505. The cost of Alternative 2 is increased from the costs of Alternative 1 by the addition of the biosparging system, including system design, construction, operation, and maintenance. It is assumed that the biosparging system would operate for 10 years after installation. LTM is assumed to occur every year for 10 years to ensure that natural attenuation is reducing contaminant concentrations to below regulatory criteria throughout the groundwater plume during and after sparging system operation. The capital expense and annual costs for LTM and institutional controls are assumed to be the same as for Alternative 1. Should SVE be necessary, the costs will increase due to the additional equipment and monitoring that would be required.

6.4.3 Alternative 3 -Groundwater Extraction, RNA, and Institutional Controls with Long-Term Groundwater Monitoring

6.4.3.1 Effectiveness

Groundwater extraction is an established technology for controlling plume migration. The extraction of contaminated groundwater will prevent plume migration away from LF-06, thereby preventing any completion of potential exposure pathways. Simulation of

TABLE 6.4 ALTERNATIVE 2 - COST ESTIMATE SITE LF-06 RNA TS COLUMBUS AFR MISSISSIPPI

Capital Costs	Cost
Design/Construct 6 LTM/Sentry Wells	\$21,201
Design/Construct Biosparging System	\$234,925
Operation, Maintenance, and Monitoring Costs	Cost per annum or event
Operate and Maintain Biosparging System (10 years)	\$50,840
Annual Sparge System Report (10 years)	\$5,676
Conduct Groundwater Sampling at 14 wells (annually for 10 years)	\$13,435
Maintain Institutional Controls/Public Education (10 years)	\$5,000
Project Management and Reporting (10 years)	\$4,747
Present Worth of Alternative 2 a/	\$814,505

^{a/} Based on an annual adjustment (discount) factor of 7 percent (USEPA, 1993).

the effect of groundwater extraction was not performed; however, the method of Javandel and Tsang (1986) was used to estimate the number of wells and the pumping rates needed to effect plume capture. Because source reduction is not occurring, remediation time is assumed to be the same as for the other remedial alternatives.

Alternative 3 should provide reliable, continuous protection for downgradient receptors. This alternative, however, does not comply well with all of the AFCEE program goals because of the generation of soil and water waste requiring treatment and disposal. This is especially true because the high hydraulic conductivity of site sediments requires relatively high pumping rates (totaling about 1,800 gallons per minute) to effect plume capture. The

high pumping rates result in a greater volume of water to treat and dispose. In addition, contaminants are not destroyed, but are instead transferred to another phase that may require further treatment. As with Alternatives 1 and 2, this alternative would rely on RNA with LTM and institutional controls to remediate the contaminated groundwater once the extraction system is shut down.

6.4.3.2 Implementability

Groundwater extraction would be labor intensive and expensive to implement. The option would require additional site investigation, design and engineering, installation, and a weekly commitment to operation and maintenance of the extraction and air stripper systems. An air emissions permit may need to be obtained for the air stripper prior to system start-up. A permit also may be needed for disposal of treated groundwater. The technical and administrative implementability concerns associated with the RNA, LTM, and institutional controls of this remedial alternative are similar to those discussed for Alternatives 1 and 2.

6.4.3.3 Cost

The estimated capital and operating costs of Alternative 3 are shown in Table 6.5. The total present-worth cost of Alternative 3 is \$849,348. Despite the shorter operating time frame, the cost of Alternative 3 is comparable to the costs of Alternative 2 because it is more costly to design, install, operate, and maintain the groundwater extraction system. However, the cost could be significantly higher if off-gas treatment for the air stripper is required, if the system has to run for more than 5 years, or if treated groundwater cannot be easily disposed (e.g., discharged to a storm sewer). The annual costs for LTM and institutional controls are assumed to be the same as for Alternatives 1 and/or 2. The resulting present-worth cost for LTM and institutional controls are the same as for Alternative 1 because it is assumed that the groundwater extraction system merely contains the contaminant plume without treating the source, and therefore, will operate for the same length of time.

TABLE 6.5 ALTERNATIVE 3 - COST ESTIMATE SITE LF-06 RNA TS

Capital Costs	Cost
Design/Construct 6 LTM/Sentry Wells	\$21,201
Design/Construct/Install Groundwater Extraction and Treatment System	\$424,507
Operation, Maintenance, and Monitoring Costs	Cost per annum or event
Conduct Groundwater Sampling at 14 wells (annually for 10 years)	\$13,435
Maintain Groundwater Extraction System (5 years)	\$58,340
Maintain Institutional Controls/Public Education (10 years)	\$5,000
Project Management and Reporting (10 years)	\$4,747
Present Worth of Alternative 3 at	\$849,348

^{a'} Based on an annual adjustment (discount) factor of 7 percent (USEPA, 1993).

6.5 RECOMMENDED REMEDIAL APPROACH

Three remedial alternatives have been evaluated for remediation of the shallow groundwater at the study area. Components of the alternatives evaluated include biosparging, groundwater extraction with *ex-situ* treatment, RNA with LTM of groundwater, and institutional controls. Table 6.6 summarizes the results of the evaluation based upon effectiveness, implementability, and cost criteria. Owing to the low contaminant concentrations and the high cost of engineered alternatives, the Air Force recommends Alternative 1 as the most cost-effective option for risk reduction at the study area.

All three alternatives make use of natural attenuation mechanisms to reduce plume migration and toxicity, although Alternative 3 relies more on capture of the plume with the

TABLE 6.6 SUMMARY OF REMEDIAL ALTERNATIVES EVALUATION FOR GROUNDWATER REMEDIATION SITE LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

Remedial Alternative	Effectiveness	Implementability	Present-Worth Cost Estimate
Alternative 1			
- Natural Attenuation - Long-Term Monitoring	Contaminant mass, volume, and toxicity will be significantly reduced	Readily implementable. Long-term management, groundwater use controls, and	\$179,516
- Institutional Controls	and plume is unlikely to spread. MCLs	monitoring required for an estimated 10 years.	
	are not likely to be exceeded at sentry wells.	II MCLS are exceeded at sentry wells, additional remedial work may be required.	
Alternative 2			
- Sparging	Similar to Alternative 1, with the	Readily implementable. Installation of	\$814,505
- Natural Attenuation	addition of biosparging system.	biosparging/SVE system should present no	
- Long-Term Monitoring	Contaminant mass, volume, and	problems. Biosparging estimated to continue	
- Institutional Controls	toxicity would not be reduced more	for 10 years. Long-term management,	
	rapidly than in Alternative 1. SVE	groundwater controls, and monitoring required	
	system may be needed to treat	for an estimated 10 years. If MCLs are	
	contaminated vapors forced into soil	exceeded at sentry wells, additional remedial	
	from sparging activities.	work may be required.	
Alternative 3			
- Groundwater Extraction	Similar to Alternative 1, with the	Readily implementable. Installation and	\$846,229
- Natural Attenuation	addition of a groundwater extraction	operation of groundwater extraction system will	
- Long-Term Monitoring	system. Contaminant mass, volume,	be costly and labor intensive. Groundwater	
- Institutional Controls	and toxicity will not be reduced more	extraction estimated to continue for 5 years.	
	rapidly than in Alternative 1; however,	Long-term management, groundwater controls,	
	migration of dissolved contaminants	and monitoring required for an estimated 10	
	downgradient from the site will be	years. If MCLs are exceeded at sentry wells,	
	prevented.	additional remedial work may be required.	

extraction system. In addition, Alternatives 2 and 3 would use active in situ and ex situ techniques to limit contaminant migration. Implementation of Alternatives 2 and 3 would not substantially decrease the time frame for remediation, but both alternatives would require greater capital expenditures. Alternatives 2 and 3 are considered less favorable because in part they simply transfer contamination to a different medium rather than reducing contaminants to innocuous byproducts.

All three remedial alternatives are implementable and effectively reduce potential contaminant migration and toxicity in the groundwater. All three alternatives should be acceptable to the public and regulatory agencies because they are protective of human health and the environment and reduce groundwater contamination; however, none of the three alternatives addresses soil contamination. Implementation of Alternative 1, or any of the three alternatives will require land and groundwater use controls to be enforced. Groundwater monitoring would be required for the respective projected cleanup periods.

The 10-year remediation time for Alternative 1 is considered to be conservative because the plume is likely to be stable and because many of the contaminant concentrations are only slightly above MCLs. Uncertainties about the nature and location of the contaminant sources means that site conditions could change during the LTM period, and that additional contaminant mass could unexpectedly enter groundwater. However, this potential drawback would apply to all alternatives and would require reevaluation in all cases. The proposed LTM period is consistent with federal recommendations that proposed or implemented remedial activities at a site should not exceed 30 years in duration (USEPA, 1988), and even if site conditions require a change in the remedial strategy it is unlikely that this time limit would be exceeded.

The final evaluation criterion used to compare each of the remedial alternatives was cost; the additional costs of Alternatives 2 and 3 do not justify the slightly reduced risk resulting from plume containment. Future exposure to potential receptors at the site will be minimized by land use restrictions and by the low contaminant concentrations. Access

to the Base (and hence the site) is controlled by Base security. Alternative 1 will reduce the level of contamination and maintain the necessary degree of protection to potential receptors at or downgradient from the site, and is the recommended remedial alternative for shallow groundwater at LF-06. A LTM plan for groundwater, including a generic SAP, is provided in Section 7.

SECTION 7

LONG-TERM MONITORING PLAN

7.1 OVERVIEW

In keeping with the requirements of the recommended remedial alternative for LF-06 at Columbus AFB (RNA with institutional controls and LTM), a long-term groundwater monitoring plan has been developed. The purpose of this component of the suggested remedial alternative for the site is to assess site conditions over time, confirm the effectiveness of natural processes at reducing contaminant mass and minimizing dissolved contaminant migration, assess compliance with regulatory cleanup goals, and evaluate the need for additional remediation.

The LTM plan consists of identifying the location of two separate groundwater monitoring networks and developing a groundwater sampling and analysis strategy to demonstrate attainment of site-specific remediation goals and to verify the predictions of the model developed for LF-06. The strategy described in this section is designed to monitor dissolved contaminant migration over time and to verify that RNA is occurring at rates sufficient to protect potential receptors. In the event that data collected under this LTM program indicate that natural processes are insufficient to protect human health and the environment, contingency controls to augment the beneficial effects of RNA would be necessary.

7.2 MONITORING NETWORKS

Two separate sets of wells will be utilized at the site as part of the LTM component of the remedial alternative. The first set will consist of ten LTM wells located in, upgradient from, and downgradient from the observed contaminant plume to verify that natural attenuation is occurring at rates sufficient to minimize plume expansion and reduce both dissolved benzene and chlorinated solvent concentrations. This network of wells will consist of monitoring wells screened across the water table (shallow wells) to provide short-term confirmation of the effectiveness of natural attenuation. The second set of wells will consist of four sentry wells: two at locations along a line perpendicular to the general direction of groundwater flow, approximately 1,500 feet west of monitoring points MPL and MPI, and the other two between the site and the southern base boundary. The purpose of the sentry wells is to verify that no benzene, chlorobenzene, TCE, or vinyl chloride concentrations migrate beyond the area under institutional control. Conservative model results suggest that the none of the contaminants of concern should reach the sentry wells at concentrations exceeding state criteria. The proposed LTM and sentry well locations are presented on Figure 7.1

7.2.1 Long-Term Monitoring Wells

At ten locations, groundwater wells within, upgradient from, and downgradient from the current BTEX plume will be used to monitor the effectiveness of RNA in reducing total contaminant mass and minimizing contaminant migration at LF-06. Of the ten wells proposed for the LTM network, six (W-18, W-19, W-20, W-21, W-22, and W-81) were installed during previous investigations. The remaining four wells would be installed upon implementation of this plan. Figure 7.1 identifies the proposed locations for wells to be used for LTM. This well network will supplement the four proposed sentry wells (see Section 7.2.2) to provide evidence of continuing RNA and to allow additional response time if site conditions change.

Existing well W-19 is proposed for monitoring the background groundwater quality in the shallow portion of the surficial aquifer. In addition, existing well W-20 is proposed to monitor background groundwater quality in the southern portion of the site. Monitoring wells are proposed to replace monitoring points MPF(s) and MPD(s) to monitor the shallow groundwater at the largest suspected source area and immediately downgradient

from this source area along the centerline of the contaminant plume, respectively. The two existing monitoring wells W-18 and W-21 are included in the LTM plan because both wells also are located in suspected source areas for groundwater contamination. Typically, downgradient wells are installed within both the anaerobic and aerobic treatment zones; however, because the aerobic treatment zone is difficult to define, monitoring will occur at the downgradient wells with observed contaminant concentrations that exceed state criteria. Therefore, existing monitoring wells W-22 and W-81 are proposed to be monitored along with a pair of wells that will replace monitoring points MPL and MPI. The remaining existing wells (W-20, W-78, and DW-92) would not be used for LTM because they are not in the direct flow path downgradient from the any of the suspected source areas.

The four new LTM monitoring wells will have 10-foot screened intervals. Shallow wells will be screened across the water table with approximately 8 feet of the 10-foot screen positioned below the water table. However, during the installation of new LTM wells it would be necessary to screen wells across the actual water table (15 to 20 feet bgs) rather than the perched water table [observed at monitoring point MPF(s) and MPD(s)]. Sampling frequency and analytical parameters to be monitored are discussed in Section 7.3.

7.2.2 Sentry Wells

Four sentry monitoring wells are proposed for monitoring at the site (Figure 7.1). Two are recommended for installation approximately 1,500 feet (i.e., two years of travel time at the estimated average groundwater velocity) downgradient from the current leading edge of the contaminant plume. The sentry wells are more than 2,500 feet from the western Base boundary. These locations, however, should be considered tentative because of numerous roads and underground utility corridors. The other two sentry locations will use existing wells W-82 and W-79. These locations have been selected to confirm that the direction of plume migration does not shift toward the base boundary. It is recommended that the sentry well locations be finalized upon implementation of this plan.

The purpose of sentry wells is to verify that no contaminated groundwater exceeding state criteria migrates beyond the area under institutional control. Although model results strongly suggest that the contaminant plume will not migrate beyond this area at concentrations exceeding chemical-specific state MCLs (Table 6.1), these sentry wells are the technical mechanisms used to demonstrate protection of human health and the environment and compliance with site-specific numerical RAOs. These wells will be installed and monitored to assure that the selected remedy is providing the anticipated level of risk reduction and remediation at the site. Sampling frequency and analytical parameters to be monitored are discussed in Section 7.3.

As with the LTM wells, the sentry wells will be screened in the same hydrogeologic units as the contaminant plume. Data presented in this report concerning the nature and extent of contamination at the site suggest that a 10-foot screen with approximately 8 feet of screen below the groundwater surface will be sufficient to intercept the dissolved contaminant plume in the shallow groundwater at this site.

7.3 GROUNDWATER SAMPLING

To ensure that sufficient contaminant removal is occurring at LF-06 to meet site RAOs, the long-term groundwater monitoring plan includes a sampling and analysis plan (SAP). Groundwater samples will be collected and analyzed from LTM and sentry wells to verify that natural processes are effectively reducing contaminant mass and mobility. Reductions in toxicity will be implied by mass reduction. The SAP also is aimed at assuring that RNA can achieve regulatory action levels for dissolved contaminants of concern.

7.3.1 Analytical Protocol

All LTM and sentry wells in the LTM program will be sampled and analyzed to determine compliance with chemical-specific remediation goals and to verify the effectiveness of RNA at the site. Water level measurements will be made during each sampling event. Groundwater samples from the LTM and sentry wells will be analyzed for the parameters listed in Tables 7.1 and 7.2, respectively. A site-specific groundwater SAP should be prepared prior to initiating the LTM program.

7.3.2 Sampling Frequency

Each of the 13 LTM and sentry wells will be sampled annually for 10 years. Thereafter, review meetings could be scheduled to determine future LTM frequency. For example, if LTM demonstrates the effectiveness of the proposed remedial alternative at this site, the sampling frequency could be reduced to once every two years or sampling could be eliminated. Conversely, if the data collected at any time during the monitoring period indicate the need for additional remedial activities at the site as a result of significant plume expansion or imminent pathway completion, the sampling frequency should be adjusted accordingly.

TABLE 7.1 LONG-TERM MONITORING ANALYTICAL PROTOCOL SITE LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

Field or Fixed-Base Laboratory	Field	Field	Field	Field	Field	Field	Fixed-base	Field
Sample Volume, Sample Container, Sample Preservation	Collect 100 mL of water in a glass container; acidify with hydrochloric acid per method	ect 100 mL of water in a container	N/A	Collect 300 mL of water in biochemical oxygen demand bottles; analyze immediately; alternately, measure dissolved oxygen in situ		Collect 100–250 mL of water in a glass or plastic container	Collect up to 40 mL of water in a glass or plastic container; cool to 4°C; analyze within 48 hours	Collect 100–250 mL of water in a Figlass or plastic container, analyze immediately
Recommended Frequency of Analysis	Annually for 10 Years	Annually for 10 Years	Annually for 10 Years	Annually for 10 Years	Annually for 10 Years	Annually for 10 Years	Annually for 10 Years	Annually for 10 Years
Data Use	Elevated ferrous iron concentrations may be indicative of the anaerobic biodegradation process of iron reduction	Same as above.	Metabolism rates for microorganisms depend on temperature	Concentrations less than 1 mg/L generally indicate an anaerobic pathway	Aerobic and anaerobic processes are pH-sensitive	General water quality parameter used as a marker to verify that site samples are obtained from the same groundwater system	Electron acceptor for microbial respiration if oxygen is depleted	Confirm nitrogen fixation and/or nitrate reduction
Comments	Field only	Alternate method; field only	Field only	Refer to Method A4500 for a comparable laboratory procedure	Protocols/Handbook methods*/	Protocols/Handbook methods	Method E300 is a Handbook method; method SW9056 is an equivalent USEPA procedure	Field only
Method/Reference	Colorimetric A3500-Fe D	Colorimetric HACH 25140-25	E170.1	Dissolved oxygen meter	E150.1/SW9040, direct reading meter	E120.1/SW9050, direct reading meter	IC method E300 or method SW9056; colorimetric, method E353.2	Colorimetric CHEMetrics K-1510
Analyte	Ferrous Iron (Fe ²⁺)	Ferrous.Iron (Fe ²⁺)	Temperature	Dissolved Oxygen	рН	Conductivity	Nitrate (NO ₃ -1)	Ammonium (NH ₄ *)

TABLE 7.1 (concluded) LONG-TERM MONITORING ANALYTICAL PROTOCOL SITE LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

				Recommended	Sample Volume, Sample	Field or
Analyte	Method/Reference	Comments	Data Use	Frequency of Analysis	Container, Sample Preservation	Fixed-Base Laboratory
Sulfate (SO ₄ ²⁻)	IC method E300 or	Method E300 is a	Electron acceptor for anaerobic	Annually for 10	Collect up to 40 mL of water in a	Fixed-base
	method SW9056 or	Handbook method;	microbial respiration	Years	glass or plastic container; cool to	or field (for
	Hach SulfaVer 4	method SW9056 is			4°C	Hach
	method	an equivalent				method)
		procedure. Hach				. 10
		method is				
Redov notential	A 2 5 8 0 B	Measurements	The redox notential of	Ammiolly, for 10	3- 1 030 001 1 01-0	
Redox potential	A2380 B	ivicasureineilis	The redox potential of	Annually Ior 10	Collect 100–250 mL of water in a	Field
		are made with	groundwater influences and is	Years	glass container, filling container	
		electrodes; results	influenced by biologically		from bottom; analyze immediately	
		are displayed on a	mediated reactions; the redox			
		meter; samples	potential of groundwater may			
		should be protected	range from more than 200 mV to			
		from exposure to	less than -400 mV			
-		atmospheric oxygen				
Methane,	RSKSOP-114 modified	Method published	The presence of methane	Annually for 10	Collect water samples in 40 mL	Fixed-base
Ethane, and	to analyze water	and used by the	suggests BTEX degradation via	Years	volatile organic analysis (VOA)	
Ethene	samples for methane by	USEPA Natural	an anaerobic pathway utilizing		vials with butyl gray/Teflon-lined	
	headspace sampling	Risk Management	carbon dioxide (carbonate) as		caps (zero headspace); cool to 4°C	
	with dual thermal	Research	the electron acceptor			
	conductivity and flame	Laboratory	(methanogenesis). The presence			
	ionization detection.		of ethane and ethene suggest that			
			reductive dehalogenation of vinyl chloride is occurring.			
Aromatic and	SW8260A	Handbook method;	Method of analysis for BTEX	Annually for 10	Collect water samples in a 40 mL	Fixed-base
chlorinated		analysis may be	and chlorinated solvents, which	Years	VOA vial with zero headspace;	
hydrocarbons		extended to higher	are the primary target analytes		cool to 4°C; add sulfuric acid to	
(BTEX, TMB		molecular weight	for monitoring natural		pH ≤2	
isomers, and		alkylbenzenes	attenuation; concentrations of			
chlorinated			benzene, chlorobenzene, TCE			
compounds)			and vinyl chloride must also be			
			measured for regulatory			
			compliance			

a/ Analytical methods from the Air Force protocol document and the AFCEE Handbook are presented by Wiedemeier et al. (1995).

TABLE 7.2 POINT-OF-COMPLIANCE MONITORING ANALYTICAL PROTOCOL SITE LF-06 RNA TS COLUMBUS AFB, MISSISSIPPI

				Recommended	Sample Volume, Sample	Field or
				Frequency of	Container, Sample Preservation	Fixed-Base
Analyte	Method/Reference	Comments	Data Use	Analysis		Laboratory
Temperature	E170.1	Field only	Well purging	Annually for 10	N/A	Field
				Years		
Dissolved	Dissolved oxygen	Refer to method A4500	Concentrations less than 1 mg/L	Annually for 10	Collect 300 mL of water in	Field
Oxygen	meter	for a comparable	generally indicate an anaerobic	Years	biochemical oxygen demand	
		laboratory procedure	pathway		bottles; analyze immediately;	
					alternately, measure dissolved	
					oxygen in situ	
Hd	E150.1/SW9040,	Protocols/Handbook	Aerobic and anaerobic processes	Annually for 10	Collect 100-250 mL of water in a	Field
	direct reading meter	methods*	are pH-sensitive	Years	glass or plastic container; analyze	
					immediately	
Conductivity	E120.1/SW9050,	Protocols/Handbook	General water quality parameter	Annually for 10	Collect 100-250 mL of water in a	Field
	direct reading meter	methods	used as a marker to verify that site	Years	glass or plastic container	
			samples are obtained from the			
			same groundwater system			
Aromatic and	SW8260A	Handbook method;	Method of analysis for BTEX and	Annually for 10	Collect water samples in a 40 mL	Fixed-base
chlorinated		analysis may be	chlorinated solvents, which are the	Years	VOA vial with zero headspace;	
hydrocarbons		extended to higher	primary target analytes for		cool to 4°C; add sulfuric acid to	
(BTEX, TMB		molecular weight	monitoring natural attenuation;		pH ≤2	
isomers, and		alkylbenzenes	concentrations of benzene,			
chlorinated			chlorobenzene, TCE and vinyl			
compounds)			chloride must also be measured			
			for regulatory compliance			

a/ Analytical methods from the Air Force protocol document and the AFCEE Handbook are presented by Wiedemeier et al. (1995).

SECTION 8

CONCLUSIONS AND RECOMMENDATIONS

This report presents the results of a TS conducted to evaluate RNA of groundwater contaminated with fuel hydrocarbons and chlorinated solvents at Site LF-06, Columbus AFB, Mississippi. Specifically, analytical models were used in conjunction with site-specific geologic, hydrologic, and laboratory analytical data to evaluate the migration and biodegradation of fuel compounds and solvents dissolved in groundwater. To obtain the data necessary for the RNA demonstration, Parsons ES collected and analyzed soil and groundwater samples from the site.

Numerous fuel hydrocarbon compounds and chlorinated solvents have been detected in site groundwater. However, only benzene, TCE, VC, and CB were present in concentrations exceeding MCLs in November 1996. Moreover, of these latter compounds, only CB was detected at a concentration greater than 23 μ g/L. In the case of CB, the highest concentration (200 μ g/L) was detected in a monitoring point that was screened in a perched zone of saturation immediately adjacent to a disposal trench. In a monitoring point screened in the aquifer beneath that zone, the CB concentration was well below the MCL of 100 μ g/L. These relatively low concentrations suggest that the sources of contamination are limited in dimension and mass. The low concentrations also make it difficult to pinpoint source areas, except in the case of CB discussed above.

Geochemical data provided one line of evidence used to document RNA at LF-06. Comparison of BTEX, chlorinated solvent, electron acceptor, and biodegradation byproduct isopleth maps for groundwater at Site LF-06 provides strong geochemical evidence of fuel and chlorinated solvent biodegradation. Geochemical data strongly

suggest that biodegradation of fuel hydrocarbons and other organic matter (e.g., native organic matter and landfill leachate) is occurring at the site via aerobic respiration and the anaerobic processes of denitrification, iron reduction, sulfate reduction, nitrogen fixation, and methanogenesis. Evidence also strongly suggests that some of the chlorinated solvents are being used as electron acceptors as the other compounds are consumed as electron donors/substrates. This process is known as reductive dehalogenation. Rates of biodegradation were estimated from observed contaminant concentrations and the method of Buscheck and Alcantar (1995).

Historical contaminant concentration data provide a second line of evidence for RNA. Specifically, these data suggest that contaminant concentrations have remained relatively stable over time, with minor fluctuations that are likely the result of varied sampling methods and analytical methods, as well as seasonal fluctuations due to changing hydrogeologic conditions. These data also suggest that the plume is relatively stable, as concentrations at some of the wells would have changed more noticeably over time if the plume were continuing to expand.

Site-specific geologic, hydrologic, and chemical data were then used in the analytical groundwater model to simulate the effects of advection, dispersion, sorption, and biodegradation on the fate and transport of the dissolved contaminants. Site-specific data were used for model implementation. Model parameters that could not be obtained from existing site data were estimated using widely accepted literature values for aquifer materials similar to those found at the site. Conservative aquifer parameters were used to construct the model for this site. Therefore, the model results presented herein represent conservative predictions of groundwater contaminant plume fate and transport. Results of compound-specific, one-dimensional analytical models suggest that the contaminant plumes will remain stable, even if sources persist at levels that produced the highest observed concentrations for each contaminant. This complements the historical contaminant data, which also suggest that the plumes are stable.

The results of this study suggest that RNA of dissolved hydrocarbons is occurring at Site LF-06. Given that the models predict no impact to known receptors, the recommended remedial alternative for site groundwater impacted by fuel hydrocarbons and chlorinated hydrocarbons includes RNA, institutional controls, and LTM. Active source area remediation is not practical because the source areas are not well defined and probably not very large (i.e., they are low-mass sources). In addition, the low concentrations of contaminants detected in site groundwater and the apparent stabilization of the plume make it unlikely that any downgradient receptors will be impacted. Engineered groundwater remedial alternatives will not be cost-effective because a relatively small mass of contaminants will be removed for a relatively high cost.

Because the site is located on an active, secured installation, all future site activities will occur under the direct supervision of the Air Force. The estimated rates of biodegradation, when coupled with sorption, dispersion, and dilution, should be more than sufficient to reduce and maintain dissolved contaminant concentrations at levels below current regulatory standards long before potential downgradient receptors could be adversely affected. Construction activities in the plume area, and groundwater use in and downgradient from the plume area, should be restricted until groundwater contaminant concentrations decrease below state MCLs for benzene, TCE, VC, and CB.

To verify the results of the modeling effort, and to ensure that RNA is occurring at rates sufficient to protect potential downgradient receptors, groundwater from ten LTM wells should be sampled and analyzed for the parameters listed in Table 7.1. In addition, four sentry wells downgradient from the BTEX plume should be sampled for the parameters listed in Table 7.2. Figure 7.1 shows suggested locations for the LTM and sentry wells. Each of the LTM and sentry wells will be sampled annually for 10 years. After this time, the results from LTM should be evaluated to determine whether sampling will cease, will decrease in frequency, or will continue on an annual basis. If dissolved contaminant concentrations in groundwater collected from the sentry wells exceed regulatory criteria, or

if monitoring data suggest that contaminant concentrations are increasing due to an as yet unidentified source, additional evaluation or corrective action may be necessary at this site. In addition, if contaminant concentrations remain relatively stable and show no decreasing trend, additional work could be needed as well.

SECTION 9

REFERENCES

- Altenschmidt, U. and Fuchs, G., 1991, Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: Indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate: Arch. Microbial., vol. 156, p. 152-158.
- Alvarez, P.J.J., and Vogel, T.M., 1991, Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries: Applied Environmental Microbiology, vol. 57, p. 2981-2985.
- Alvarez-Cohen, L.M. and McCarty, P.L., 1991a, Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture: Appl. Environ. Microbiol., vol. 57, no. 1, p. 228-235.
- Alvarez-Cohen, L.M., and McCarty, P.L., 1991b, Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells: Appl. Environ. Microbiol., vol. 57, no. 4, p. 1031-1037.
- Arciero, D., Vannelli, T., Logan, M., and Hooper, A.B., 1989, Degradation of trichloroethylene by the ammonia-oxidizing bacterium *Nitrosomonas europaea*: Biochem. Biophys. Res. Commun., vol. 159, p. 640-643.
- Ashworth, R.A., Howe, G.B., Mullins, M.E., and Rogers, T.N., 1988, Air-water partitioning coefficients of organics in dilute aqueous solutions. *Journal of Hazardous Materials*, 18:25-36.

- Atlas, R.M., 1981, Microbial degradation of petroleum hydrocarbons an environmental perspective: Microbiological Reviews, vol. 45, no. 1, p. 180-209.
- Atlas, R.M., 1984, Petroleum Microbiology: Macmillan Publishing Company, New York.
- Atlas, R.M., 1988, Microbiology Fundamentals and Applications: Macmillan Publishing Company, New York.
- Baedecker, M.J., Siegel, D.I., Bennett, P.C., Cozzarelli, I.M., 1988, The fate and effects of crude oil in a shallow aquifer: I. The distribution of chemical species and geochemical facies, In: G.E. Mallard, and S.E. Ragone, editors, U.S. Geological Survey Toxic Substances Hydrology Program, Proceedings of the Technical Meeting, Phoenix, Arizona, September 26-30, 1988: U.S. Geological Survey Water-Resources Investigations Report 88-42320, p. 29-22.
- Baedecker, M.J., and Cozzarelli, I.M., 1991, Geochemical modeling of organic degradation reactions in an Aquifer contaminated with Crude Oil: U.S. Geological Survey Water-Resources Investigations Report 91-4034. Reston, VA. p 627-632.
- Ball, H.A., Reinhard, M., and McCarty, P.L., 1991, Biotransformation of monoaromatic hydrocarbons under anoxic conditions, In: In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Eds. R.E. Hinchee and R.F. Olfenbuttel. Butterworth-Heinemann. Boston, MA. p. 458-463.
- Barker, J.F., Patrick, G.C., and Major, D., 1987, Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer: Ground Water Monitoring Review, Winter, 1987, p. 64-71.
- Bartha, R., 1986, Biotechnology of petroleum pollutant biodegradation: Microbial Ecology, vol. 12, p. 155-172.

- Bauman, B., 1991, Biodegradation research of the American Petroleum Institute.

 Presented at: In Situ Bioreclamation: Application and Investigation for Hydrocarbons and Contaminated Site Remediation. San Diego, CA. March 19-21, 1991.
- Bear, J., 1979, Hydraulics of Groundwater. McGraw-Hill, Inc., New York, New York, 569p.
- Beller, H.R. Reinhard, M., and Grbic-Galic, D., 1992, Metabolic byproducts of anaerobic toluene degradation by sulfate-reducing enrichment cultures: Appl. Environ. Microbiol., vol. 58, p. 3192-3195.
- Bohon, R.L., and Claussen, W.F., 1951, The solubility of aromatic hydrocarbons in water: Journal of American Chemical Society, vol. 73, no. 4, p.1571-1578.
- Borden, R.C., 1991, Simulation of enhanced in situ biorestoration of petroleum hydrocarbons. In: In Situ bioreclamation: Application and Investigation for Hydrocarbons and contaminated Site Remediation. Eds., R.E. Hinchee and R. F. Olfenbuttel. Butterworth-Heinemann. p. 529-534.
- Bouwer, E.J., 1992, Bioremediation of Subsurface Contaminants, In: Mitchell, R., ed.: Environmental Microbiology. Wiley-Liss, New York, New York.
- Bouwer, E.J., 1994, Bioremediation of chlorinated solvents using alternate electron acceptors: In: Handbook of Bioremediation. Lewis Publishers. Boca Raton, FL.
- Bouwer, E.J., Rittman, B.E., and McCarty, P.L., 1981, Anaerobic degradation of halogenated 1- and 2-carbon organic compounds: Environ. Sci. Technol., vol. 15, no. 5, p. 596-599.
- Bouwer, E.J. and Wright, J.P., 1988, Transformations of trace halogenated aliphatics in anoxic biofilm columns: J. Contam. Hydrol., vol. 2, p. 155-169.

- Bouwer, H., 1989, The Bouwer and Rice slug test an update: Ground Water, 27(3), p. 304-309.
- Bouwer, H., and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: Water Resources Research, 12(3), p. 423-428.
- Bradley, P.M., and Chapelle, F.H., 1996, Anaerobic mineralization of vinyl chloride in Fe(III)-reducing aquifer sediments: Environmental Science and Technology, vol. 40, p. 2084 2086.
- Brown, R.A., Dey, J.C. and McFarland, W.E., 1991, Integrated site remediation combining groundwater treatment, soil vapor extraction, and bioremediation, In: In Situ Bioreclamation: Application and Investigation for Hydrocarbons and Contaminated Site Remediation. Eds., R.E. Hinchee and R. F. Olfenbuttel. Butterworth-Heinemann. p. 444-449.
- Buscheck, T.E., O'Reilly, K.T., and Nelson, S.N., 1993, Evaluation of Intrinsic Bioremediation at Field Sites: Proceedings, Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Restoration, pp. 367-381. National Ground Water Association/API, Houston, TX.
- Buscheck, T. E., and Alcantar, C. M., 1995, Regression Techniques and Analytical Solutions to Demonstrate Intrinsic Bioremediation. In: Proceedings of the 1995 Battelle International Symposium on In Situ and On-Site Bioreclamation, April 1995.
- Butler, B.J., and Barker, J.F., 1996, Chemical and microbiological transformation and degradation of chlorinated solvent compounds, <u>In</u>, Pankow, J.F., and Cherry, J.A., eds., Dense Chlorinated Solvents and Other DNAPLs in Groundwater: History, Behavior, and Remediation: Waterloo Press, Waterloo, Ontario, p. 267-312.

- CH2M Hill, 1989, Air Force Installation Restoration Program Remedial Investigation Report, Columbus Air Force Base, Mississippi, prepared for Headquarters Air Training Command/DDEV, December.
- CH2M Hill, 1995, Air Force Installation Restoration Program Site Inspection Report, Final, Columbus Air Force Base, Mississippi, prepared for Headquarters Air Education and Training Command/CEVR, June 1995.
- Chapelle, F.H., 1993, Ground-water Microbiology and Geochemistry. John Wiley and Sons, Inc., New York, NY.
- Chapelle, F.H., 1994, Assessing the Efficiency of Intrinsic Bioremediation, in Proceedings of the Symposium on Intrinsic Bioremediation of Ground Water, August 30 September 1, 1994: US Environmental Protection Agency, p. 171.
- Chiang, C.Y., Salanitro, H.P., Chai, E.Y., Colthart, H.D., and Klein, C.L., 1989, Aerobic biodegradation of benzene, toluene, and xylene in a sandy aquifer data analysis and computer modeling: Ground Water, vol. 27, no. 6, p. 823-834.
- Cline, P.V., and Delfino, J.J., 1989, Transformation kinetics of 1,1,1-trichloroethane to the stable product 1,1-dichloroethene, In: Biohazards of Drinking Water Treatment. Lewis Publishers, Inc. Chelsea, MI. p. 47-56.
- Cozzarelli, I.M., Eganhouse, R.P., and Baedecker, M.J., 1990, Transformation of monoaromatic hydrocarbons to organic acids in anoxic ground water environment: Environmental and Geological Water Science, vol. 16.
- Davis, J.W., and Carpenter, C.L., 1990, Aerobic biodegradation of vinyl chloride in groundwater samples: Applied and Environmental Microbiology, vol. 56, p. 3878 3880.

- Davis, J.W., Klier, N.J., and Carpenter, 1994, Natural biological attenuation of benzene in ground water beneath a manufacturing facility: Ground Water, vol. 32, no. 2, p. 215-226.
- de Bont, J.A.M., Vorage, M.J.W., Hartmans, S., and van den Tweel, W.J.J., 1986, Microbial degradation of 1,3-dichlorobenzene: Applied and Environmental Microbiology, v. 52, p. 677-680.
- De Bruin, W.P., Kotterman, M.J.J., Posthumus, M.A., Schraa, G., and Zehnder, A.J.B., 1992, Complete biological reductive transformation of tetrachloroethene to ethane: Appl. Environ. Microbiol., vol. 58, no. 6, p. 1966 2000.
- DeStefano, T.D., Gossett, J.M., and Zinder, S.H., 1991, Reductive dehalogenation of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis: Appl. Environ. Microbiol., vol. 57, no. 8, p. 2287-2292.
- Dewulf, J., Drijvers, D., and Van Langenhove, H., 1995, Measurement of Henry's law constant as function of temperature and salinity for the low temperature range.

 Atmos. Environ., 29(3):323-331.
- Domenico, P.A., and Schwartz, F.W., 1990, Physical and Chemical Hydrogeology. John Wiley and Sons, New York, New York, 824p.
- Edwards, E., Wills, L.E., Grbic-Galic, D., and Reinhard, M., 1991, Anaerobic degradation of toluene and xylene--evidence for sulfate as the terminal electron acceptor, In: In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Eds. R.E. Hinchee and R.F. Olfenbuttel. Butterworth-Heinemann. Boston, MA. p. 463-471.

- Edwards, E.A., and Grbic-Galic, D., 1992, Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions: Appl. Environ. Microbiol., vol. 58, p. 2663-2666.
- Edwards, E.A., Wells, L.E., Reinhard, M., and Grbic-Galic, D., 1992, Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions: Appl. Environ. Microbiol., vol. 58, p. 794-800.
- Evans, P.J., Mang, D.T., and Young, L.Y., 1991a, Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures: Appl. Environ. Microbiol., vol. 57, p.450-454.
- Evans, P.J., Mang. D.T., Kim, K.S., and Young, L.Y., 1991b, Anaerobic degradation of toluene by a dentrifying bacterium: Appl. Environ. Microbiol., vol. 57, p. 1139-1145.
- Fetter, C.W., 1993, Contaminant Hydrogeology: MacMillan, New York, New York, 458p.
- Folsom, B.R., Chapman, P.J., and Pritchard, P.H., 1990, Phenol and trichloroethylene degradation by *Pseudomonsa cepacia* G4: Kinetics and interactions between substrates: Appl. Environ. Microbiol., vol. 56, no. 5, p. 1279-1285.
- Freedman, D.L., and Gossett, J.M., 1989, Biological reductive dehalogenation of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions: Appl. Environ. Microbiol., vol. 55, no. 4, p. 1009-1014.
- Freeze, R.A., and Cherry, J.A., 1979, Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Geraghty & Miller, Inc., 1994, AQTESOLV® Aquifer Test Solver, Version 2.0. Millersville, Maryland, October.

- Gibson, D.T., and Subramanian, V., 1984, Microbial degradation of aromatic hydrocarbons, In: Gibson, D.T., ed: Microbial Degradation of Organic Compounds, Marcel Dekker, Inc., p. 181-252.
- Godsey, E.M., 1994, Microbiological and geochemical degradation processes, In:

 Symposium on Intrinsic Bioremediation in Ground Water. Denver, CO. August 30

 September 1, 1994, p.35-40.
- Goldstein, R.M., Mallory, L.M., and Alexander, M., 1985, Reasons for Possible Failure of Inoculation to Enhance Biodegradation: Applied Environmental Microbiology, vol. 50, no. 4, p. 977-983.
- Grbic '-Galic', D., 1989, Microbial degradation of homocyclic and heterocyclic aromatic hydrocarbons under conditions: Dev. Ind. Microbiol., vol. 30, p. 237-253.
- Grbic '-Galic', D., 1990, Anaerobic microbial transformation of nonoxygenated aromatic and alicyclic compounds in soil, subsurface, and freshwater sediments, In: Bollag, J.M., and Stotzky, G., eds.: Soil Biochemistry: Marcel Dekker, Inc., New York, NY. p. 117-189.
- Haag, F., Reinhard, M., and McCarty, P.L., 1991, Degradation of toluene and p-xylene in an anaerobic microcosms: Evidence for sulfate as a terminal electron acceptor: Environ. Toxicol. Chem., vol. 10, p. 1379-1389.
- Haigler, B.E., Nishino, S.F., and Spain, J.C., 1988, Degradation of 1,2-dichlorobenzene by a *Pseudomonas sp.*: Applied and Environmental Microbiology, v. 54, p. 294-301.
- Harker, A.R., and Kim, Y., 1990, Trichloroethylene degradation by two independent aromatic-degrading pathways in *Alcaligenes eutrophus* JMP134: Appl. Environ. Microbiol., vol. 56, no. 4, p. 1179-1181.

- Hartmans, S., and de Bont, J.A.M., 1992, Aerobic vinyl chloride metabolism in *Mycobacterium aurum Li*: Appl. Environ. Microbiol., vol. 58, no. 4, p. 1220-1226.
- Hassett, J.J., Banwart, W.L., and Griffin, R.A., 1983, Correlation of compound properties with sorption characteristics of nonpolar compounds by soils and sediments; concepts and limitations, In, C.W. Francis and S.I. Auerbach, editors, Environment and Solid Wastes: Butterworths, Boston, p. 161-178.
- Henry, S.M., 1991, Transformation of Trichloroethylene by Methanotrophs from a Groundwater Aquifer. Ph.D. Thesis. Stanford University. Palo Alto, California.
- Hine, J., and Mookerjee, P.K., 1975, The Intrinsic Hydrophilic Character of Organic Compounds. Correlations in Terms of Structural Contributions: Journal or Organic Chemistry, 40(3):292-298.
- Hopper, D.J., 1978, Microbial Degradation of Aromatic Hydrocarbons, In: R.J. Watkinson (editor), Developments in Biodegradation of Hydrocarbons, I: Applied Science Publishers, Ltd., London.
- Howard, P.H., 1989, Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Volume I: Large Production and Priority Pollutants: Lewis Publishers, Inc, Chelsea, MI, 574 p.
- Howard, P.H., 1990, Handbook of Environmental Fate and Exposure Data For Organic Chemicals, Vol. II: Solvents: Lewis Publishers, Inc, Chelsea, Michigan, 546 p.
- Hutchins, S.R., and Wilson, J.T., 1991, Laboratory and field studies on BTEX biodegradation in a fuel-contaminated aquifer under denitrifying conditions, In: In Situ Bioreclamation, Applications and Investigations for Hydrocarbon and Contaminated Site Remediation. Eds. R.E. Hinchee and R.F. Olfenbuttel. Butterworth-Heinemann. Boston, MA. p. 157-172.

- Hutchins, S.R., Sewell, G.W., Sewell, D.A., Kovacs, D.A., and Smith, G.A., 1991a, Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor: Environ. Sci. Technol., vol. 25, no. 1, p. 68-76.
- Hutchins, S.R., Downs, W.C., Smith, G.B., Smith, J.T., Wilson, D.J., Hendrix, D.J.,
 Fine, D.D., Kovacs, D.A., Douglass, R.H., and Blaha, F.A., 1991b, Nitrate for
 Biorestoration of an Aquifer Contaminated with Jet Fuel. U.S. Environmental
 Protection Agency. Robert S. Kerr Environmental Research Laboratory. Ada,
 Oklahoma. EPA/600/2-91/009. April, 1991.
- Isnard, S., and Lambert, S., 1988, Estimating Bioconcentration Factors from Octanol-Water Partition Coefficient and Aqueous Solubility: Chemosphere, vol. 17, no. 1, p. 21-34.
- Jamison, V.W., Raymond, R.L., and Hudson, J.O. Jr., 1975, Biodegradation of high-octane gasoline in ground water: Developments in Industrial Microbiology, vol. 16.
- Javandel, I., and Tsang, C., 1986, Capture-zone curves: a tool for aquifer cleanup: Groundwater, vol 24, no. 5, p. 616-625.
- Jeffers, P.M., Ward, L.M., Woytowitch, L.M., and Wolfe, N.L., 1989, Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes: Environmental Science and Technology, v. 23, p. 965-969.
- Jury, W.A., Spencer, W.F., and Farmer, W.J., 1984, Behavior Assessment Model for Trace Organics in Soil: III, Application of Screening Model: Journal of Environmental Quality, 13(4):573-579.
- Karickhoff, S.W., Brown, D.S., and Scott, T.A., 1979, Sorption of hydrophobic pollutants on natural sediments: Water Resources Research, v. 13, p. 241-248.

- Kenaga, E.E., and Goring, C.A.I., 1980, ASTM Special Technical Publication 707: American Society for Testing Materials, Washington, D.C.
- Klier, N.J., West, R.J., and Donberg, P.A., 1996, Aerobic biodegradation of dichloroethylenes in surface and subsurface soils: Paper submitted to Chemosphere, May 1996.
- Klopffer, W., Haag, F., Kohl, E.G., and Frank, R., 1988, Testing of the abiotic degradation of chemicals in the atmosphere: the smog chamber approach. *Ecotoxicol. Environ.*, Saf., 15(3):298-319.
- Kuehne, D., and Buscheck, T., 1996, Survey of California marketing sites and analysis of monitoring well data: Chevron Research and Technology, unpublished report.
- Leahy, J.G., and Colewell, R.R., 1990, Microbial degradation of hydrocarbons in the environment: Microbiolgical Reviews, vol. 53, no. 3, p. 305-315.
- Lee, M.D., 1988, Biorestoration of Aquifers Contaminated with Organic Compounds: CRC Critical Reviews in Environmental Control. vol. 18. p. 29-89.
- Little, C.D., Palumbo, A.V., Herbes, S.E., Lidstrom, M.E., Tyndall, R.L., and Gilmer, P.J., 1988, Trichloroethylene biodegradation by a methane-oxidizing bacterium: Appl. Environ. Microbiol., vol. 54, no. 4, p. 951-956.
- Lovley, D.R., and Phillips, E.J.P., 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese: Applied and Environmental Microbiology, v. 54, no. 6, p. 1472 1480.
- Lovley, D.R., Phillips, E.J.P., and Lonergan, D.J., 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments: Environmental Science and Technology, v. 26, no. 6, p. 1062 1067.

- Lyman, W.J., Reidy, P.J., and Levy, B., 1992, Mobility and Degradation of Organic Contaminants in Subsurface Environments. C.K. Smoley, Inc., Chelsea, MI.
- Mackay, D., and Wolkoff, A.W., 1973, Rate of Evaporation of Low-Solubility Contaminants from Water Bodies to Atmosphere: Environmental Science and Technology, vol. 7, no. 7, p. 611-614.
- Mackay, D., and Shiu, W.Y., 1981, A Critical Review of Henry's Law Constants for Chemicals of Environmental Interest: Journal of Physical Chemistry Reference Data, vol. 10, no. 4, p. 1175-1199.
- Malone, D.R., Kao, C.M., and Borden, R.C., 1993, Dissolution and biorestoration of nonaqueous phase hydrocarbons models development and laboratory evaluation:
 Water Resources Research, vol. 29, no. 7, p. 2003-2213.
- Mayer, K.P., Grbic-Galic, D., Semprini, L., and McCarty, P.L., 1988, Degradation of trichloroethylene by methanotrophic bacteria in a laboratory column of saturated aquifer material: Wat. Sci. Tech. (Great Britain), vol. 20, no. 11/12, p. 175-178.
- McCarty, P.L., Roberts, P.V., Reinhard, M., and Hopkins, G., 1992, Movement and transformations of halogenated aliphatic compounds in natural systems, In: Fate of Pesticides and Chemicals in the Environment. Ed., J.L. Schnoor. John Wiley & Sons, Inc. New York, New York. p. 191-209.
- McCarty, P.L., and Semprini, L., 1994, Ground-Water Treatment for Chlorinated Solvents, In: Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL. 1994.
- Means, J.C., Wood, S.G., Hassett, J.J., and Banwart, W.L., 1980, Sorption of polynuclear aromatic hydrocarbons by sediments and soils: Environmental Science and Technology, v. 14, no., 12, p. 1524-1528.

- Miller, R.E., and Guengerich, F.P., 1982, Oxidation of trichloroethylene by liver microsomal cytochrome P-450: Evidence for chlorine migration in a transition state not involving trichloroethylene oxide: Biochemistry, vol. 21, p. 1090-1097.
- Miller, M.M., Wasik, S.P., Huang, G.L., Shiu, W.Y., and Mackay, D., 1985, Relationships Between Octanol-Water Partition Coefficient and Aqueous Solubility: Environmental Science and Technology, v. 19, no. 6, p. 522-529.
- Mississippi Department of Environmental Quality (MDEQ). 1991. Office of Pollution Control, Groundwater Division, Groundwater Quality Standards, Section 3, Numerical Groundwater Standards.
- Montgomery, J.J. 1996. Groundwater Chemicals Desk Reference. Lewis Publishers, Boca Raton.
- Moutoux, D.E., L.A. Benson, J. Lenhart, T.H. Wiedemeier, J.T. Wilson, and J.E. Hansen. 1996. Estimating the changing rate of anaerobic reductive dehalogenation of chlorinated aliphatic hydrocarbons in the presence of petroleum hydrocarbons. Proceedings of the 1996 Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection, and Remediation. Houston, TX, November 13 15, 1996.
- Murray, W.D. and Richardson, M., 1993, Progress toward the biological treatment of C₁ and C₂ halogenated hydrocarbons: Critical Reviews in Environmental Science and Technology, v. 23, no. 3, pp. 195-217.
- Nelson, M.J.K., Montgomery, S.O., O'Neille, E.J., and Pritchard, P.H., 1986, Aerobic metabolism of trichloroethylene by a bacterial isolate: Appl. Environ. Microbiol., vol. 52, no. 2, p. 949-954.
- Nishino, S.F., Spain, J.C., and Pettigrew, C.A., 1994, Biodegradation of chlorobenzene by indigeneous bacteria: Environ. Toxicol. Chem., v. 13, p. 871-877.

- Pankow, J.F., and Rosen, M.E., 1988, Determination of Volatile Compounds in Water by Purging Directly to a Capillary Column with Whole Column Cryotrapping: Environmental Science and Technology, vol. 22, no. 4, p. 398-405.
- Parsons Engineering Science (Parsons ES), 1996, Work Plan for a Treatibility Study for RNA at Sites ST-24 and LF-06, Columbus AFB, Mississippi, September.
- Pearson, C.R. and McConnell, G., 1975, Chlorinated C1 and C2 hydrocarbons in the marine environment. *Proc. R. Soc. London*, B189(1096):305-332.
- Perry, J.J., 1984, Microbial Metabolism of Cyclic Alkanes, In: Atlas, R.M. ed.: Petroleum Microbiology. Macmillan Publishing Co., New York, New York.
- Reineke, W., and Knackmuss, H.-J., 1984, Microbial metabolism of haloaromatics: Isolation and properties of a chlorobenzene-degrading bacterium: European Journal of Applied Microbiology and Biotechnology, v. 47, p. 395-402.
- Reinhard, M., Goodman, N.L., and Barker, J.F., 1984, Occurrence and distribution of organic chemicals in two landfill leachate plumes: Environ. Sci. Technol., vol. 18, no. 12, p. 953-961.
- Ribbons, D.W., and Eaton, R.W., 1992, Chemical Transformations of Aromatic Hydrocarbons that Support the Growth of Microorganisms, In: Mitchell, R., ed.: Environmental Microbiology. Wiley-Liss, New York, NY.
- Rice, D.W., Grose, R.D., Michaelsen, J.C., Dooher, B.P., MacQueen, D.H., Cullen, S.J., Kastenberg, W.E., Everett, L.G., and Marino, M.A., 1995, California Leaking Underground Fuel Tank (LUFT) Historical Case Analyses: Environmental Protection Department, Environmental Restoration Division, Lawrence Berkely laboratories, UCRL-122207, prepared for the California State Water Resources Control Board.

- Sander, P., Wittaich, R.-M., Fortnagel, P., Wilkes, H., and Francke, W., 1991, Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by *Pseudomonas* strains: Applied and Environmental Microbiology, v. 57, p. 1430-1440.
- Schraa, G., Boone, M.L., Jetten, M.S.M., van Neerven, A.R.W., Colberg, P.J., and Zehnder, A.J.B., 1986, Degradation of 1,2-dichlorobenzene by *Alcaligenes sp.* strain A175: Applied and Environmental Microbiology, v. 52, p. 1374-1381.
- Schwille, F., 1988, Dense Chlorinated Solvents. Lewis Publishers, Inc., Chelsea, MI, p. 146.
- Spain, J.C., 1996, Future vision: Compounds with potential for natural attenuation, In Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water: EPA /540/R-96/509, Dallas TX, September 11-13, 1996.
- Spain, J., 1997, Personal communication between Jim Spain of the US Air Force
 Armstrong Laboratory and Matt Swanson of Parsons ES regarding potential
 anaerobic utilization of chlorobenzenes as substrates. March 7, 1997.
- Spain, J.C., and Nishino, S.F., 1987, Degradation of 1,4-dichlorobenzene by a *Pseudomonas sp.*: Applied and Environmental Microbiology, v. 53, p. 1010-1019.
- Spencer, Robert H., 1996a, 1995 Initial Monoitoring Report for Long Term Monitoring Program, Columbus Air Force Base, Columbus, Mississippi, prepared for US Army Corps of Engineers Mobile District, March.
- Spencer, Robert H., 1996b, Well Assessment Report for Long Term Monitoring Program, Columbus Air Force Base, Columbus, Mississippi, prepared for US Army Corps of Engineers Mobile District, May.
- Stauffer, T.B., Antworth, T.B., Boggs, J.M., and MacIntyre, W.G., 1994, A Natural Gradient Tracer Experiment in a Heterogeneous Aquifer with Measured In Situ

- Biodegradation Rates: A Case for Natural Attenuation, in Proceedings of the Symposium on Intrinsic Bioremediation of Ground Water, August 30 September 1, 1994: US Environmental Protection Agency, p. 73 84.
- Stewart, Troy, 1997, Personal communication. Environmental Engineer, 14 CES/CEV, Columbus AFB. RE: Groundwater use near Site ST-24. April.
- Stumm, W. and Morgan, J.J., 1981, Aquatic Chemistry. John Wiley & Sons, New York, NY.
- Suflita, J.M., and Townsend, G.T., 1995, The microbial ecology and physiology of aryl dehalogenation reactions and implications for bioremediation, In Young, L.Y., and Cerniglia, C.E., eds., Microbial Transformation and Degradation of Toxic Organic Chemicals: Wiley-Liss, New York, 654 p.
- Thierrin, J., Davis, G.B., Barber, C., Patterson, B.M., Pribac, F., Power, T.R., and Lambert, M., 1992, Natural degradation rates of BTEX compounds and naphthalene in a sulfate-reducing ground water environment, In: In-Situ Bioremediation Symposium "92". Niagara-on-the-Lake, Ontario, Canada. September 20-24, 1992: In Press.
- US Environmental Protection Agency (USEPA), 1988, Guidance for Conducting Remedial Investigations and Feasibility Studies (RI/FS) Under CERCLA. OSWER Directive 9355.3-01.
- USEPA, 1991, Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals). Interim. Publication 9285.7-01B.
- USEPA, 1993, Revisions to the OMB Circular A-94 on Guidelines and Discount Rates for Benefit Cost Analysis, OSWER Directive 9355.3-20, June.

- US Geological Survey (USGS), 1987, 7.5 Minute Quadrangle Map of the Columbus North and Hamilton Quadrangles, Mississippi.
- Valsaraj, K.T., 1988, On the Physio-Chemical Aspects of Partitioning of Non-Polar Hydrophobic Organics at the Air-Water Interface: Chemosphere, vol. 17, no. 5, p. 875-887.
- van der Meer, J.R., Roelofsen, W., Schraa, G., and Zehnder, A.J.B., 1987, Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by *Pseudomonas* sp. strain P51 in nonsterile soil columns: FEMS Microbiology Letters, v. 45, p. 333-341.
- van Genuchten, M. T., and Alves, W. J., 1982, Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation: US Department of Agriculture, Technical Bulletin Number 1661, 151p.
- Verschueren, K., 1983, Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Co., New York, New York.
- Vogel, T.M., 1994, Natural Bioremediation of Chlorinated Solvents, In: Handbook of Bioremediation. Lewis Publishers, Boca Raton, FL. 1994.
- Vogel, T.M., and McCarty, P.L., 1985, Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions: Applied Environmental Microbiology, v. 49, no. 5, pp. 1080-1083.
- Vogel, T.M., Criddle, C.S., and McCarty, P.L., 1987, Transformations of halogenated aliphatic compounds: Environmental Science and Technology, vol. 21, no. 8, p. 722 736.

- Vroblesky, D.A., and Chapelle, F.H., 1994, Temporal and spatial changes of terminal electron-accepting processes in a petroleum hydrocarbon-contaminated aquifer and the significance for contaminant biodegradation: Water Resources Research, v. 30, no. 5, p. 1561-1570.
- Wiedemeier, T.H., Wilson, J.T., Kampbell, D.H., Miller, R.N., and Hansen, J.E., 1995, Technical Protocol for Implementing Intrinsic Remediation with Long-term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Ground Water. Prepared by the Air Force Center for Environmental Excellence.
- Wiedemeier, T.H., Swanson, M.A., Wilson, J.T., Kampbell, D.H., Miller, R.N., and Hansen, J.E., 1996b, Approximation of biodegradation rate constants for monoaromatic hydrocarbons in ground water: Ground Water Monitoring and Remediation, v. 16, no. 3, p. 186-194.
- Wiedemeier, T.H., Swanson, M.A., Moutoux, D.E., Gordon, E.K., Wilson, J.T., Wilson, B.H., Kampbell, D.H., Hansen, J.E., Haas, P., and Chapelle, F.H., 1996a, Technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater (Draft revision 0): prepared for the Air Force Center for Environmental Excellence, San Antonio, TX.
- Wiedemeier, T.H., Swanson, M.A., Wilson, J.T., Kampbell, D.H., Miller, R.N., and Hansen, J.E., 1996b, Approximation of biodegradation rate constants for monoaromatic hydrocarbons in ground water: Ground Water Monitoring and Remediation, v. 16, no. 3, p. 186-194.
- Wilson, J.T., and Wilson, B.H., 1985, Biotransformation of trichloroethylene in soil: Appl. Environ. Microbiol., vol. 49, no. 1, p. 242-243.
- Wilson, B.H., Smith, G.B., and Rees, J.F., 1986, Biotransformations of Selected Alkylbenzenes and Halogenated Aliphatic Hydrocarbons in Methanogenic Aquifer

- Material: A Microcosm Study: Environmental Science and Technology, 20(10):997-1002.
- Wilson, B.H., Bledsoe, B., and Kampbell, D., 1987, Biological processes occurring at an aviation gasoline spill site, In: R.C. Averett and D.M. McKnight editors, Chemical Quality of Water and the Hydrologic Cycle. Lewis Publishers, Chelsea, Michigan, p.125-137.
- Wilson, B.H., Wilson, J.T., Kampbell, D.H., Bledsoe, B.E., and Armstrong, J.M., 1990, Biotransformation of Monoaromatic and Chlorinated Hydrocarbons at an Aviation Gasoline Spill Site: Geomicrobiology Journal, 8:225-240.
- Wilson, B.H., Wilson, J.T., Kampbell, D.H., and Bledsoe, B.E., 1994, Traverse City: Geochemistry and Intrinsic Bioremediation of BTEX Compounds, In: Proceedings of the Symposium on Intrinsic Bioremediation of Ground Water. August 30 September 1, 1994. US Environmental Protection Agency, p. 94 102.
- Wilson, J.T., 1996, Personal communication between John Wilson of the USEPA NRMRL and Todd Wiedemeier of Parsons ES regarding USEPA definition of the term "natural attenuation", citing USEPA guidance undergoing internal review.
- Young, L.Y., 1984, Anaerobic degradation of aromatic compounds, In: Gibson, D.R., ed.: Microbial Degradation of Aromatic Compounds. Marcel-Dekker, New York.

APPENDIX A

APPENDIX A-1 GEOLOGIC BORING LOGS

Sheet 1 of 1 GEOLOGIC BORING LOG 1116196 PARSONS ES DATE SPUD: _CONTRACTOR: ___ BORING NO .: LFOG-MPC 1111640 Ocaniche DATE CMPL .: **AFCEE** _RIG TYPE: CLIENT: 65 DRLG METHOD: _____ (Drube ELEVATION: 729691 OB NO.: 50-55-60° F 2118" ___ TEMP: COLUMBUS AFB BORING DIA .: _ OCATION: Pt. Clary - Breazy NA _ WEATHER: B. Henry _DRLG FLUID: GEOLOGIST: COMENITS.

COMEN	COMENTS: C Sayder											
Elev	Depth	Pro-	US		Sc	ample	Sample	Penet		Ample	TOTAL	TPH
(ft)	(ft)	file	CS			Depth (ft)	Туре	Res	P10(ppm)	Heren)	ВТЕХ(ррт)	(ppm)
0-4 3'Rec 7590	-\- <u>-</u> '-		(4) ML	CLAY a SILT - reddick brown to you wown, soft - firm,		८९७७	D		78 ,	0.0		
4-8'		·	CL	gravel, no odor						7		
(2016)	7 3 -	- 1		turning brick red, soft- \$1 stiff, \$1 noist, massive, no oder			D		2,7	0.0		
1025)	-10-		24	8-12-SILTY CLAY- brickied, soft- 51 stiff, massive, trace gravel chumbs, SI Moist, grading to		م د ؟ ه	D		94	0,0		
12-16 4'Rec. (100°;)				crangish brown SILTat 11.5' 12-14 - CLAYEY SILT - SONDY-AA, Grading to SAND (14.16) - Orangish						ļ		
16-13 2.82.	15-	-	sm	brown, uf -f qv; silty, mod sated, loose, dense, w/ thin interseds			D		82	10.0		
18-20 2. Rac.		0.0	5c	of clayer matrix 16-18 SAND - crongish braun, uf-fgr, with time 6" grave!		ME	7)		66	10.0		
100%	20-	7/3/2		loose, v. moist to damp	٦	18'	D		92	10.0		
25 25 115 Puc.			54	AA, with thin intubeds of rounded grave fo 1", wet 23-25'- SAND+CRAVEL-AA-								
115"	25-	1 ~		Drue span to 341 - Drue			4		62	0.0	-	+-
		((In Sacre Coor								
	-30-	7		SAMPLE 34-36'- SANDEGROUEL.								
34 50 Per		7	56	brown, for every, wil grant to I", sub angular rouch, pourly system, loose, satural						+-	+	-
	35	10,	12		—							

TD=30'

Screen 20-23 (Pre Pach) 31-31.51 (Implant)

SAMPLE TYPE **NOTES**

bas - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

D - DRIVE

C - CORE

G - GRAB

Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

BORING NO.: LFOG-10 CLIENT: AFCEE JOB NO.: 729691 LOCATION: COLUMBU GEOLOGIST: BILLENY COMENTS: C. SNY	RIG TYPE: (100) DRLG METHOD: 2"17" DRLG FLUID: UA	CONTRACTOR: PARSONS ES [RIG TYPE: (see probe E DRLG METHOD: Geoprobe E B BORING DIA.: Z''9"] DRLG FLUID: NA					Sheet 1 of 1 11/16/196 11/16/196 150:65° F Clew-Pthy Cloudy			
Elev Depth Pro- US (ft) (ft) file CS	Geologic Description	1	mple Depth (ft)	Sample Type			Amo	TOTAL BTEX(ppm)	TPH (ppm)	
0-4' -1-0- Bech 5'erc -1-0- Fill .	C-3.51. BACKFICC - CLAYEY SAND CGRAVEL - brown, U. poerly scripci, VF - crs gr wl growl, clay mtv, from - hard, st. moist			Δ		115	00			
LAND LAND	3.5-40- LANDFILLTRASH - Plastic + 6146	1 1	{	∑ انتحاد	ı	/70	10.0			
8-11 3'Roc Fill	4-8 SILT L CLAY BACHILL WAS LANDERLY TRASH-FISH, WOOD, STRYNG			χz)	95	0.0			
11-14	8-1/2 SILTYCLAY- gray brown, firm-U. Stiff, silty, most, masser -> Water ~ 9-10'			D		90	6.0			
(100/4) CL	red, from - stiff, v. silty, gredy to 3-11 silty shall at Base,									
14-16.5 7 per 15-1-16 (6.6.0)	14-1600- SILTY-SANDY CLAY-			0		100	0.0			

SET 3' Pre Pak Sween (1/2" die) at 15+81 (Set 6" INSUH 31-31.5"

Dru 1 301

NOTES

-20-

25

30-

32 (SOL)

4

7

SAMPLE TYPE

bgs - Below Ground Surface

501

D - DRIVE

160 165- SAUDY OR AVEL- UT-CUSTY. growt to 3/4", parry sector wet, look

165-BS'-SANDY WANGEL-AA

Small Sample-Saple 30-721

Brown, ut er gr. graet to "!e",
pooly scaled loose, wet

GS - Ground Surface

C - CORE

TOC - Top of Casing

G - GRAB

NS - Not Sampled

SAA — Same As Above

▼ Water level drilled

1615 off Location

GEOLOGIC BORING LOG

FIGURE 3.4

106/5.0

1

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

GEOLOGIC BORING LOG Sheet 1 of 1 BORING NO .: LFOG - MPF PARSONS ES DATE SPUD: __CONTRACTOR: ___ 1115196 **AFCEE** CLIENT: _RIG TYPE: Comprehe DATE CMPL .: 11/15/96 729691 JOB NO.: DRLG METHOD: ___ Creenche ELEVATION: 65 COLUMBUS AFB 5/18 m OCATION: :60-65° F BORING DIA .: _ TEMP: B. Henry MA GEOLOGIST: _DRLG FLUID: clear - WEATHER: C. Snycler COMENTS: Elev Depth Pro-And US Sample Penet Sample TOTAL (ft) (ft) file CS Geologic Description No. Depth (ft) Type | Res | PID(ppm) | Research | BTEX(ppm) (ppm) 0-4 0-3' CLAY - reddich brown, CL 1 -2 Rec. teach. :500...) SOH, MOIST, backful material 3-4" 10.0 34' LANDFILL TRAGH- Plastic 4.8 1250 Sheting wil black decomposed , sec (25%) arganic matter 4-8 LANDFILL TRASIL - black gray, 13'-Walt FILL 210/6,0 decorposed organic mattral some clay material, wet 8-10-5 8-9 - CLAY- reddish brown, mothed 320/0.0 -10-راعضان CL gray, solt - stiff, v. silty, moist 50-12 2'Rec 75/b.0 10000 9-10 CLAYEY SAND & GRAVEL, SC reddish borown / wee - firm, 79 0/0 v. paris sorted, moist - wet, 15 slight odar 10-11-AM 11-12' SAND- orangish brow, NOTE: SC F-mgr, well sented, suthinguis WATERIN SAMPLED HAR 35 VOID loose, douse, wet 12-141- SAND- brown gray brown .`۵`, -20 SHEENION 50 F gr, well soved, some claimth. loope, dense, u. moist, but not 0 met, hydrocaba odu, Granel 18-20 Swarch to small smalle -25 18-20' SAND- reddish brown, SC 0 loose, fingr, mod souted, wilayers of pam. scrted gravel, met, no odar 2678 1695 ٠ 6 ر∹' we SC 26.281 - SAND ECRAVEC - WET 53-345 4154 0 33-34.51 SAND + GRAVEL-1530 O.S'Re crangish braum, Ut- CVS gr, gravel to 1", poorly sector, SIty clayer, loose, saturated NR (33%)

Couldn't go beyond 35' - did not encounter Confining Law. > Set 3'of Screen from 11-14 | Set 6" Insul at 30.5-31 SAMPLE TYPE

bgs — Below Ground Surface

D - DRIVE

GS - Ground Surface

C - CORE

TOC - Top of Casing

G - GRAB

NS - Not Sampled

RAA — Same As Above

▼ Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

Was		GEOLOGI	C BORIN	G LOG	Sheet 1 of 1
BORING NO.	: LFOG-MPG	CONTRACTOR:	Parsons	ES DATE SPUD:	11/13/96
CLIENT:	AFCEE	RIG TYPE:	Geopriche	DATE CMPL.:	1113196
NOB NO.:	729691	DRLG METHOD:	11	ELEVATION:	65
OCATION:	COLUMBUS AFB	BORING DIA.:	21/4/1	TEMP:	50°F
GEOLOGIST:	B. Henry	DRLG_FLUID:	<u> </u>	WEATHER:	Cloudy
COMENTS:	C. Snyder				<u> </u>
Fr 104-1	- 1				

Elev	Depth	Pro-	US		S	omple	Sample	Penet	l	I	TOTAL	TPH
(ft)	(ft)	file	cs	Geologic Description	1				PIO(ppm)	TLV(ppm)	BTEX(ppm)	
0-41	- 1 -	0-41	sω	Ciarly SAND- F-crsqrainely	1	0.4		_	21.2			
10'Re	<u> </u>	ंग ड़ र		granel to 1.5", poorly sorted,					0.0			
(25%)		· 'S		moist, silt-clay matrix,								
		<u> </u>		orange - brown, mod. donse,								
4-8'	- 5 -	4.8.	58/52				D		247	 		
21/2 R		07 5 5		SILTY SAND - Gray, interbooked will tech, silty - clayey matric,	2	4 5			34.7			
604	~~			mod well sorted, clense,					_0/0			-
	\subseteq			Moist, no stain or odor.								
	10			-> simplers Pachedolf.			D	10.12	52,0	00		
10.12	 	[0.12 0817	100	Drive 215 capses to 9.51-5 capse								
(75%)				10-121 SILTY CLAY - orangich						 		
				brown, method gray, silty,]							
(4-16	-15-	ا 14-16		derse, moist, mod plastic,								
(80%)	-13-	ा ५०		14-15' SILTYCLAY- reddish byn,		wa	2)	م نا-انه	44.6	100		
		,	30	very still, moist, nseo		e11	-12'					
18		15-18		15-16' SILTYSAND- 119 ht gray,			1		ļ			
1648				very five gramed, well sorted, lasse-								
1021	-20-	1018		Friable, very moist, dense, no			D	19.18	520	10.0		
7		2000	501							-		
			500	16-18' SAND- 6" /19 h+ gray,] .						
				AA, becoming neddish brown,								
	-25-			very time to time grained!								
				Mod-well souted, friable-look,	ļ	ŀ			<u> </u>			
				wi bottem 3" poorly sates		}						
1 [ul grove les 112". Salvation,								
	-30-			T. De 18', Drue 2'12"								
				Rad to TD, setuell								
											 	
				Screen @ 15-13'			1		 	-	 	
	7.5			(3/4" Pre-Pak PUC) W/ ZO' Been -> Cut bechtols'								

/10:15-Done/

<u>NOTES</u>

SAMPLE TYPE

bgs — Below Ground Surface

D - DRIVE

GS - Ground Surface

. C - CORE

TOC — Top of Casing

G - GRAB

NS - Not Sampled

SAA — Same As Above

▼ Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

GEOLOGIC BORING LOG Sheet 1 of 1 CONTRACTOR: PARSOUS ES DATE SPUD: BORING NO .: LFOG - MPH 11/13/96 11/13/96 AFCEE RIG TYPE: Geoprobe DATE CMPL .: CLIENT: DRLG METHOD: 6 coprohe ELEVATION: GS 729691 JOB NO.: 55-60° F 214" COLUMBUS AFB _BORING DIA.: _ __ TEMP: OCATION: Cloudy, Cool GEOLOGIST: B. Henry DRLG FLUID: NA ___ WEATHER: G. Snyder COMENTS:

COMENTS: 6. Singlew												
Elev	Depth	Pro-	US		S	ample	Sample	Penet		BKD	TOTAL	TPH
(ft)	(ft)	file	cs	Geologic Description					P I D(ppm)		BTEX(ppm)	(ppm)
75%	1 -	\$4.	IS	0-41-1-foot TOOSOIL, WI		0-4'	C		15.7	0.0		
(31)			CL			المص						
				or ougish brown, firm-mod stiff, sity, si-moist, nocion								
100%	5											
(41)			CL	4-6-SILTY CIAY-Gray,		4.6	۷		23,8,	0,0		
				very firm- hard, still, st moist, obnice		ا ما ا			111.1	4 -		
		0-		6-8' Granly CIAYUSILT - Gray, mothed orange, Silly-		6-8	C	,	41.4	0.0		
8-1012	10		اسو	and si moist firm hard,								
100%	10-			soudy si moist, firm-hard, with cross tolly " very poorly sorted, clear		8-10/2	-		54.0	0.0		
(Z.5')				poorly Sorried, clease					ļ			
			SC	8-10.5' SAND- reddish to		140.5			4619	0.0		
10/12/6	15	1		Grangish bram, silty-clayer, f- ufgrained, trace growel to 1/4"		1225	C		1014	0.0		
7540	-15-			loose, dense, very moist, nooder,	.							
(1.5')											ļ	
				10.5 - 12.5 . SAND- Orangish								
				Brown, loose, wet, fingr,				ĺ				
	20-			Silty in part, mod scarted, chance, no odou								
									<u> </u>	ļ	ļ	
				Torve 125-140						 		
				TD = 140' Set Screw 9:0-146				1				
	25-		1655									
				5 6 0 5 1 100 15 16 PUC								
				(MATER AT 10-10,51					ļ			
	<u> </u>			1700 - Decen + Rig Down	-	1				 		
	-30-			inco pecan a regiment								
										<u> </u>	ļ	
										 	 	ļ
L	⊥ ₃₅ _	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	.l	ــــــــــــــــــــــــــــــــــــــ	1	<u> </u>	<u> </u>	

NOTES

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

GEOLOGIC BORING LOG Sheet 1 of 1 BORING NO .: LFOG- MPI Presous ES DATE SPUD: _CONTRACTOR: _ 11/15/96 **AFCEE** GEODYLIN DATE CMPL .: CLIENT: _RIG TYPE: 11/15/96 729691 OB NO.: DRLG METHOD: _ Gensida _ ELEVATION: 65 OCATION: COLUMBUS AFB 248" 50° F BORING DIA .: __ TEMP: B. Henry **GEOLOGIST:** M _DRLG FLUID: Char & Sun - WEATHER: COMENTS: Snyder Elev Depth Pro-US Sample Penet Sample TOTAL **TPH** (ft) (ft) file CS Geologic Description No. Depth (ft) Type Res PID(ppm) (ppm) (ppm) (ppm) 0-41 SILTYCLAY- gray to reddish bicum. CL 546 80 - 1 -3: Rec soft-firm, uisilty, moist (590) Baggie 4-8' SILTY CLAY - gray, mothed crangish brown, soft - frieble, 60-70ppy 8.p 3'PK CL Stiff in part, u. silty, moist (759) non-plastic 805 102/ 0.0 \Diamond 8-115 SILTYCLAY AA 8-11.5 3, R (8000) 0 85/ 0.0 11:47 11.5-14- SILTY CLAY, Gray. C-819 mothled evaquish brown, soft. firm, u. stiff in part, moist. · Rec 21 (20) D ೪೭ 0,0 V. SILLY, No oder 14.17' 3. Rec 14-17'- SILTY CLAY-AP, (10070) become u. soucher at 16-171 0845 D 39 10.0 17-19.5' Interpedicted SILTY 17-19.5 CLI Z' Rec SM CLAY-AA, WI SILT -crongish brown, silt-uf gr w/ 57 10.c some clay matrix, soft, u, WHIER الحاج ر moist to wet 10·c G.5-22 40 19.5-21.5-SAND - arangish brown, 3 2 SP/ 0928 ut-f grained, silty, well sorted, (10090) 50 some clay Mtx, loose, dens, SP/ but, nooder, grading to gravelly /o.c <u>م22</u> SC. SAND at 21.5-12.5 - WI greately Drue ahead of small suppor to 251 SAMPLE 25-27 25-27' SAND - arangish brum, -30uf . f gr, c. 1 ty, 100se, dense, mod conted, wel, wi sme Clay - red sh 28'- TOP CONFINING ZONE ZG-ZG.S. CLAY- weathered

1130 Set Scram 29.5-31- CLAY - dangray, 3' Prepare 73-20 NOTES Firm-hard, blocky SAMPLE TYPE

bgs - Below Ground Surface

D - DRIVE

GS - Ground Surface

TOC - Top of Casing

C - CORE

G - GRAB

NS - Not Sampled SAA — Same As Above

gray weld sh oxidation,

Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

	GEOLOGIC BORIN	ie Loe	Sheet 1 of 1
BORING NO .: _ MP	GEOLOGIC BORIN	SPU	D: 11/8/96
CLIENT: AFCEE	RIG TYPE:	DATE CMP	Idiala.
OB NO.: 729691	DRLG METHOD: (1200 rols		: 700
COLUMBI		TEMP:	la seem as
GEOLOGIST: KON COMENTS:	DRLG FLUID:	WEATHER:	broery, shary
		SI- IC 1 ID 1	
Elev Depth Pro- US (ft) (ft) file CS	Geologic Description	Sample Sample Penet No. Depth (ft) Type Res	IOTAL IPH PIO(ppm) ILV(ppm) BTEX(ppm) (ppm)
100 - 1	no 2 man sculus SILT		
704	2-4.5 Brown + Orange Silty Str NI)	2.0	12
866	SILTY STONDS	4	33
785-5-	15 45 7		
4	600 Mes Brown, orange, at SLND		40
756	65-115 Brown, orange, and cray chayey SAND	हि	25
60%	Pal		
10- , sm	185-12 Brown orange	10	0 -
60° - 5M	silty SAND	12	10
95% 7 501	12-13.5 Orange-brown		
101	grove w/silty sand	- 14	0.0
806 -15-	195-12 Broom orange Silty SAND 12-13.5 Orange-brown growed w/silty sand 13.5-14.0 Yellow green Stightly Stown	16	83
703	authority SAND		
100		្រុខ ស	
Sinh	14.0-18 yellow towards	b	
20-	gravel w/ sing		
	·		
	. 0		
25-	Sampled		
	Sompled 1100 (16-18')		
30			
	·		

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA — Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

GEOLOGIC BORING LOG Sheet 1 of 1 BORING NO .: LFOG - MPK CONTRACTOR: PARESONS ES DATE SPUD: 11/14/96 11/14/96 **AFCEE** Ocopeulac DATE CMPL .: CLIENT: _RIG TYPE: DRLG METHOD: ______ ELEVATION: 6S 729691 JOB NO.: 2 '14 '1 TEMP: COLUMBUS AFB BORING DIA .: _ Clear-Othy Clary LOCATION: (D) F GEOLOGIST: 13.11em DRLG FLUID: ____ WEATHER: COMENTS:

COMEN	115.		<u>, , , , , , , , , , , , , , , , , , , </u>									
Elev	Depth	Pro-	US		S	omple	Sample	Penet		Ambie	4TOTAL	TPH
_(ft)	(ft)	file	CS	Geologic Description	No.	Depth (ft)	Туре	Res	PID(ppm)		81EX(ppr.)	(ppm)
0-3.5			CL	0-3.5 SICH CLAY- Recl-brown,								
(35%)	- 1 -		_	Firm, very silty-sandy, moist,	ŀ	045.7	D		87.0	0,0		
1,5551				no odar	1							
			CL	3.5-6.0'- Red Silly (LAY-AA						i		
3.5-65	_		-						ما ويا	0.0		
21/2 Rac	- 5 -		SW	6.0-6.5' - SAND GRAVEL - reddish		1000	٥					
(35%)		0		brown, ut - m gr, wiregreet							,	
6.5.90		٦ -		to I'l, silty- clayey matrix,					120	10.0	SAT 1	اسي د
S. Bec.		D .		loose, mad dense, moust parvivy your	1				,,,,,	-3.3		
(55%)	10		50/			i			-			
9-11	-10-	ده	300	6.5-9.0' GRAVELLY SAND-					45	10.0		
2 200	,			reddish brown, very fire-fine						<u> </u>		
1		11		grained, wi gravel to 1"(Ls).		1			142	10.0		
1100				self a clay matrix, loose, donse,		1			<u> </u>			
(10040	15	6		moist, very pourly souted		1037			95	10.0		
12-12	-15-		SC	90-11.0 SAND- orangin to		"				1		
16'Pec		.0.		redalsh brown, very f-f grainel,	İ	ŀ						
(50%)		Ö		Save gravel to 1", silt eday Mtx,		ł			113	10.0		
16-18 11 Bac-				thin 6" layers ist Clayer SAND,			1					
(50%	20			loose, deuse, mount								
	-20-				į							
			sc/	110-13.0 SAND- AA-INC.								
			έι	m-cus grand, orangish brun,	1	1 .						
.				Maist, wil thin intuleds (0")		····	hrema	(l		
<u></u>	-25-			64 Eilty reddish brown Cuty		Bach	Ra	297/		1		
	-25-				4	twelf		יכע				
			70	13.15' SAND-Orangish bream,		1 .		ļ		1		
				forces gr, ul grad to "2",	ŀ	12	100	DADA.		N.		
				poorly sorted, some sitt-clay	ł	1 5	Bach	rue	,	1		
	-30-			mty, loose, mod draw, wet	-							
				at bar WATERN 131/21	l			 				
			SC/		1	ļ	1					
			sω	10-13 SANDYCRAUEC - Or Mil		1114						
]		brown, AA, Wet.		['''				1		
	75	1		·			}			 	 	
												

(1120 Set 3' of Pripar Screen - (112' puc-10510t) at 15-18!

NOTES 1145 DONE MOK SAMPLE TYPE

bas — Below Ground Surface

D - DRIVE

GS - Ground Surface

C - CORE

TOC - Top of Casing

G - GRAB

NS - Not Sampled

SAA — Same As Above

Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

GEOLOGIC BORING LOG Sheet 1 of 1 BORING NO .: LFOG-MPL CONTRACTOR: PARSONSES DATE SPUD: 11/14/96 - 0700 AFCEE RIG TYPE: 11/14/96 -0430 _ Geworth DATE CMPL.: CLIENT: 65 729691 DRLG METHOD: (Securetic ELEVATION: JOB NO.: OCATION: COLUMBUS AFB BORING DIA .: Z'G' TEMP: · Clear - Pt. Clour GEOLOGIST: BILLIANY DRLG FLUID: WEATHER: 50-60° E

COMENTS:												
Elev	Depth	Pro-	US		S	ample	Sample	Penet		Anbini	-TOTAL	TPH
(ft)	(ft)	file	cs	Geologic Description	No.	Depth (ft)	Туре	Res			BTEX(ppm)	(ppm)
0.41	- 1 -		ځس	O-A - CAND + GOVER- BOG-			Δ	७७८०	465	0.0		
L.S'Re	۲. ۲.											
65°				brown, wf- cre gr wy grad								
4-7		. 6		to "ly", silly, clayry and lop, I med derse, loose, stimored								
3'Cec	5 -		Sw				Ь	0723	56.5	0.0]
(754)		C)		4-7' SANDIGERATE L- INC.] ,						
7-9				Greet in 1/2' AA								
Z'RE,		٥		7-9' SAND-GRAVEL-Reddish	l	ĺ	_	(7)3		ļ,		
100%		٥	3~			1	12	2170	59,	0.0		
9-10 21 Peca.	-10-			zisun, Fiere grained wi	-	1				ļ,—-		
(1000,0		. D.		gract to 1", loose, poursated, angular, st. moist, no oclar		ŀ	D	<i>C</i> 95252−	69	0.0		
11-13	 	1=	ടധ	9-11 SANDY GRAVEL- AA -				08.2	 	7		
2 Pec.	<u> </u>			The short Grant Land			D	0.5.	61	0.0		
				becoming very mont, no oder	1	1						
3' ?ec.	-15-	12	اجرے	11-13'- SANDY GRAVEL- Orangish								
(12%)		V 2		to recidish brown, ficrego			D		NR	A 10		
		1		wigreet to I'', very party			ر' ا	الماحي	10.0	1.010		
						1	1			 		
	20		ļ	scaled silly layers willay		1]		_		
	-20-			madrix angular, loose, bottom			1					
				6" sahrabed, water at 12.5"				1				
		1		Drue Small Rod to 15'		1 .		1				
				Sample 15-17'				1		<u> </u>		
	-25-					1		[<u></u>	<u> </u>		
1				15-17 SAND+GRAVEL-AM				1		ļ	ļ <u>.</u>	
	ļ	-	ļ	SATURATED			1		<u> </u>		ļ	
	ļ	ł		, in the second of the second						ļ	ļ <u>.</u>	
		1		TO at 17 bas			1	1		 	 	ļ
	-30-	1		-Tried to set 31 Prepar Sun,						 	 	
	ļ	1		well flower a sond partied						-		
		1		Scren in Pire, Reset 5'0+					-	 	 	
	 	1		1	1	1			-	 	 	
		1		10.5" PUL 105124 at 12-17'69	ķ .	1	1		 	 	 	
L	 35-		1	<u> </u>		<u> </u>	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	·	1	<u> </u>	

NOTES

COMENTS:

_ 6. 5 night

bas - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

.NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

GEOLOGIC BORING LOG Sheet 1 of 1 PARSONS ES DATE SPUD: 11/16/96 BORING NO .: LFOG - MPN CONTRACTOR: _ 11/16/96 GENDROLL DATE CMPL .: **AFCEE** _RIG TYPE: CLIENT: Geopytic ELEVATION: JOB NO.: 729691 _DRLG METHOD: __ 40-50°F 2118" COLUMBUS AFB BORING DIA.: ___ TEMP: LOCATION: NA (lear a Colm GEOLOGIST: B. Henry DRLG FLUID: _ WEATHER: C. Snycky

Elev	Depth	Pro-	US		S	ample	Sample	Penet		Ansiert	TOTAL	TPH
(ft)	(ft)	file	cs	Geologic Description	No.	Depth (ft)			P10(ppm)	HX(pyn)	BTEX(ppm)	(ppm)
0-4 5'lec.	- 1 -	-	Ċ۷	D-4 SILTY CLAY - brown, modelsh brown, U. Silly, soft - firm, Stiff in part most		ندتى	(زير		89	6,0		
4-7.5 3.5° Rec 100°	- 5 -		<u>ر</u> د	brick red, soft, al moist, frieble, will trace L.s frequents to 14"			た		<i>G</i> 9	0,0		
7.5-11.5 3.5'22. (80°E)		, l	SM	Drick red-AA - Inch sondy 10.5-115 SILTY SAND- OTENGISH			_					
11.5-(5,	-10-		< m	brown, uf - f gr, silty, mad sorted, soft - look, sl moiet, no oder 11.5-15.5 SILTY SAND - orangish			7		83/	0.0		
3'Rec.			3	to reddish brown, ut grained, silly, sme claymtx, ui loose, mod sorted, chan-noods			D		77	10.0		
15.5-14 3.5' Red (10292)	1			15.5-18.5' SILTY. SAND-AA		·	D					
19-21		υ ₁₀	sc.	orangish brown, Uf- f gr will gravel tulle" poorly scried.	278	P. AT			80	6.0		
100%)	-20-		SW	gravel tolla", poorly sorred. 1005c, clamp, classe, no oder W 19.0-21.0- SANDY GRAVEL- reddish brown, f-evs gr wi			D		66	0.0		
23-2502	25-	0	sw	grael to 1", u. poorly sorted, ongular, loose, donse, wet of bake Droe Small sapler - Sample 23-25'			D		79	0.0		
		TS		brown to gray, forces grad gravel to 1/2", poorly sourced.						10.0		
	30-		0820	loose, subangular - rounded, saturatess. Draw Rock to 27'-SET 3'of								
			0.20	PrePar 10 s/01 1/2"de PUC SOREN at 24-27'								
L	L ₃₅₋	<u> </u>	○8 %⊃	OFF LOCATION				<u> </u>	<u>.l</u>	1	<u> </u>	1

NOTES

COMENTS:

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

		GEOLOGI	C BORING	LOG	Sheet 1 of 1
BORING NO.	LFOG-MPO	CONTRACTOR:	Parsons ES	DATE SPUD:	11/13/96
CLIENT:	AFCEE	RIG TYPE:	Geograpie	DATE CMPL.:	11/13/96
JOB NO.:	729691	DRLG METHOD:	Geoprote	ELEVATION:	<u>65</u>
LOCATION:	COLUMBUS AFB	BORING DIA.:	2"4"	TEMP:	Souf, Calme
GEOLOGIST:	T3. Henry	DRLG FLUID:	N A	WEATHER:	Cloudy
COMENTS:	G. Snycher				

COMEN	15.			_								
Elev	Depth	Pro-	US		S	omple	Sample			Ambria		TPH
(ft)	(ft)	file	CS	Geologic Description	No.	Depth (ft)	Туре	Res	P10(ppm)	H illian)	BTEX(ppm)	(ppm)
90%R	1	, <u> </u>	4.	O.Y SILTYCLAY, gray, mothed		0-2	D		25,5	0,0		
(3.6')				orange, SIHY, stiff, moist,			10					
		٠ .		no stain a oder					17.8	0,0		
				7.0 3.14.11		2-4	0					
4-7'	- 5 -	- ·-	AL.	4-6' SILTYCLAY-AA, INCRESS		(1345)				<u> </u>		
1007ce		. `		silty orangish brown, stiff,		1			41.0			
(3.)									59.7	0,0		
7-10			a. 1	6-7' SIHY- Sandy CLAY- H.								
(66%)		~	CL1	6-7 Silty-Sandy CLAY- H.		ļ				/		
(6)	-10-			dray; triasis, within 11		4-7	2		31.0	0.0		
		· ·		ine entry some will silly layers		(401)	'		ļ			
				no oder			<u> </u>		 	 -		
			sm/	7-10- SILTY-CLAYEY SAND.	1	1_			25 (2	10.0		
		1	<u>-5e</u>	_		1-10	D		21.0	10.0		
	-15-			light gray, loose, silt-uf		' ' ' '						
				grained, well souled, moist,								
				Slight oda in Sandier				ŀ				
				sections, dona		11-13	D		32.0	100		
	-20-		101	10-11 611 6 1 1 1		1433						
	20		517	10-11-SIHY-Sond/CLAY-AA			1	İ	<u> </u>	<u> </u>		
			SP	11-13' SAND- orange,	1	Ì	ļ	/	5016		coean	
				mothed gray, loose, ut-+	l					1~	20-40	ppm
				grained, well sorted, wet,		1				ļ	 	
	-25-									 	<u> </u>	
		l		dense, na odar, some					-	 	 	
		1		intersected Clayey layers		1				 -	 	
		ł	ļ						-		 	
		1	1500	Set Screen 9-14'		1				1-	 	$\vdash \vdash \vdash$
	-30-	1		0.5" pw -> 5'ot 10 slot						1	1	
]		+ 2x 5' Risers								
		1			1					<u> </u>	ļ	
	<u> </u>	1				1	1		<u> </u>	ļ	ļ	
	L ₃₅₋	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	1	<u> </u>	1	

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA - Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

	22006		IC BORING L	<u>og</u>	Sheet 1 d	
BORING NO.	: MPP (LFOW)	CONTRACTOR:	Parsons 65	_ DATE SPUD:	11/12/96	1115
CLIENT:	AFCEE	_RIG TYPE:	Geopenha	_ DATE CMPL.:	11/12/96	1990
JOB NO.:	729691	_DRLG METHOD	: Geoprobe	_ ELEVATION:	<u> </u>	
LOCATION:	COLUMBUS AFB	BORING DIA.:	218	_ TEMP:	60	
GEOLOGIST:	<u> KDN</u>	_DRLG_FLUID:		_ WEATHER:	Cloudy	
COMENTS:						

COMENIS:		· · · · · · · · · · · · · · · · · · ·							<u>U</u>	
Elev Depth Pro-	US		S	ample	Sample	Penet	I ·		TOTAL	TPH
(ft) (ft) file	cs	Geologic Description						TLV(ppm)		
	CS	Geologic Description Ot 1 Brown wet sanky Sitt I-1.2 Thin layer of cruobled as phaset. very 1.2-3 Red sandy clayery SILT w/gravel y 3-4 Tan-brown, sandy Election Clayery Sitt marished w/gray sandy (10%: clayery Sitt) 8-12 Gray very sandy okay 12-16 Orange si'lty sand becoming more growelly w/depth	No.					IL V(ppm)	IOTAL BIEX(ppm)	IPH (ppm)
1	ı	1			1	4	L	1		

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled SAA - Same As Above G - GRAB

Water level drilled

SAMPLE TYPE

D - DRIVE

C - CORE .

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

	11 - 11 -1	GEOLOGI	C BORING LO	<u>)G</u>	Sheet 1 of 1
BORING NO.:	: MPQ/LF6	_CONTRACTOR:	Parsons ES	DATE SPUD:	11/12/40 400
CLIENT:	AFCEE /	_RIG TYPE:		DATE CMPL.:	
JOB NO.:	729691	_DRLG METHOD:	: (xoproble	ELEVATION:	
LOCATION:	COLUMBUS AFB	_BORING DIA.:	3.8	TEMP:	(b() 12
GEOLOGIST:		_DRLG FLUID:		WEATHER:	Cloudy-breez
COMENTS:					<u> </u>

Elev Depth (ft) (ft)	Pro- file	US CS	Geologic Description			Sample Type		PID(ppm)	ILV(ppm)	TOTAL BTEX(ppm)	TPH (ppm)
G - 1 -			02 Topsoil w/cobble		ð	750	1	48		3,000	<u>ar-n/</u>
95% 5 -			2-3 Gray silty sand 3-4 Gray silty Clay -brittle		4			<i>40</i> <i>38</i>			
_			4-8 Gray Sally Fight CLAY Becominguet at		8			31_			
000-10-					12			35			
20 ¹⁵			8-1\$ Gray sandy.	,	17			40			
-13-			8-15 Gray Sandy clay (sand increase) w/depth to a very Sandy clay at (21)	7	16			35			
-20-			of (21)								
			15-16 Gray Slightly sandy CLAM								
-25-			•								
-30-											
			•								-

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS — Not Sampled

SAA — Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

		GEOLOGI	C BORING	LOG	Sheet 1 of 1
BORING NO.:	LFOG-MPR	CONTRACTOR:	PARSONS ES	DATE SPUD:	11/14/20
CLIENT:	AFCEE	_RIG TYPE:	(seepresse	DATE CMPL.:	1114 196
JOB NO.:	729691	_DRLG METHOD:	George	ELEVATION:	<u>(9</u> 5
	COLUMBUS AFB				60-62°F
GEOLOGIST:	B. Henry	DRLG_FLUID:	N.N.	WEATHER:	Clear-Sumy
COMENTO.	C 5 - do				.

COMENTS: C. Smydur												
Elev-	Depth	Pro-	US		Sc	ample	Sample	Penet		Amb	TOTAL	TPH
(ft)	(ft)	file	cs	Geologic Description		Depth (ft)			PID(ppm)		BTEX(ppm)	
0.4' 3'R (75%)	- 1 -	1 1 1 1	CL	0-4' CLAY - gray, mothed red-brown, stiff to soft, silty in part, plastic, v. moist		1322	Δ		27 /	0,0		
7-10	- 5 -		C	0-7' CLAY-AA 7-10' SILTY CLAY- H. Gray,			D		20	0.0		
3'F (100%)		 		mothed arange-boom, stiff- firm, very silty ,- part, moist			P		30.4	0,0		
	-10-	i — -		incr silty - sondy, u. most			D		29,0	7		
		(Fa	SC	11-12.5 SAND - grading from f-crogr, to grad up to 1", u. pooly -mod souted, loose, silt,	w	ATER	2 P		10.0	/o.0		
	-15-		}	some clay n+x, v. most-wet	,							
		5/1	\$∠	grained, mod sorted, trace				:				
1				clay es. It matrix, wet,								
	-20-			SET 3' PrePach 1/2"PUC								
				10-510+ Screen c+ 13-16		1						
	-25-											
	-30-	,]			-					<u> </u>		
	-35-											

bgs - Below Ground Surface

GS - Ground Surface

TOC - Top of Casing

NS - Not Sampled

SAA — Same As Above

SAMPLE TYPE

D - DRIVE

C - CORE

G - GRAB

▼ Water level drilled

FIGURE 3.4

GEOLOGIC BORING LOG

Sites ST-24 and LF-06 Intrinsic Remediation TS Columbus AFB, Mississippi

PARSONS ENGINEERING SCIENCE, INC.

APPENDIX A-2 MONITORING POINT DEVELOPMENT FORMS

Job Number: <u>729691.32020</u>	Job Name: AFCEE-RNA
Location Columbus AFB/LF6	by RN/JH/CS/BL Date: 11/17, 1996
Well Number MP (\$)	Measurement Datum TOC /
Pre-Development Information	Time (Start): 237
Water Level: 3.(Total Depth of Well: 13.7
Water Characteristics	
Color	Temperature(°C)
Gallons Removed 0.75	Time 254
pH(0,89	
Temperature (°C) $\frac{20.3}{}$	
Specific Conductance(µS/cm)	832
Disolved Oxygen (mg/L) O	
Post-Development Information	Time (Finish): 3:30
Water Level:	Total Depth of Well:
Approximate Volume Removed:	
Water Characteristics	
Color None Any Films or Immiscible pH 6.77 Specific Conductance(µ Disolved Oxygen (mg/I	Temperature(°C) 20, 3
ried UX	
i. domisaevelop.doe	13.7 3.1 10.6/10=1.06 gallors
	10.6/10= 1.06 Jacob

	29691.32020 umbus AFB, LF6 LFG-MPACD)	Job Name: AFCEE-RNA by <u>RN/JH/CS/BL</u> Measurement Datum	_Date:1/171996
Pre-Developme	ent Information	Time (Start):	335
Water	Level: ac assum 3 f adjacent shall	for development	epth of Well: ~301
Interim Water (Gallon pH Tempe Specific	Color Brown Odor: None Weak Any Films or Immiscible Material pH Temper Specific Conductance(µS/cm) Disolved Oxygen (mg/L) 0.2	Clear Cloudy Moderate rature(°C) 20,9	Strong Time 347 Strong Time 406 water clear
Post-Developme		Time (Finish):	438
Water 1	Level:	_ Total Depth of W	'ell:
Approx	cimate Volume Removed:	8 Igallon	
Water (Characteristics	J	
Comments:	Color Odor: None Weak Any Films or Immiscible Material pH	Clear Cloudy Moderate Temperature(°C) 20	Strong
1:\forms\develop.doc	30 -3 -7/40= 0.67 gallow	30 =	3.75 Loo

Job Number: 729691,32020 Location Columbus AFB, LF6	Job Name: AFCEE-RNA by RN/JH/CS/BL Date: 11/17, 1996
Well Number LFG-MPB	by RN/JH/CS/BL Date: 11/17, 1996 Measurement Datum TO
Pre-Development Information	Time (Start): 150
Water Level: 9.4	Total Depth of Well: 11.4
Water Characteristics	
Color Dark brown Odor: None Weak Any Films or Immiscible Materia pH 5 100 Tempe Specific Conductance(µS/cm) 4 Disolved Oxygen (mg/L) 112 PLAOX 0.5 Interim Water Characteristics	Moderate Strong rature(°C) 19 - 8 f 9 1
Gallons Removed	V
pH	
Temperature (°C)	·
Specific Conductance(µS/cm)	
Disolved Oxygen (mg/L)	·
Post-Development Information	Time (Finish):
Water Level:	Total Depth of Well:
Approximate Volume Removed:	
Water Characteristics	
ColorOdor: None Weak Any Films or Immiscible Material pHSpecific Conductance(µS/cm) Disolved Oxygen (mg/L)	_Temperature(°C)
Comments: Redax	

Job Number: 729	<u>691.32020</u>	Job Name: AFCEE-RNA
Location Colum		by RN/JH/CS/BL Date: 11/17, 1996 Measurement Datum Toc
Well Number <u> ک</u>	F6-MPC(S)	Measurement Datum 180
Pre-Development	t Information	Time (Start): 754
Water L	evel:19.8	· Total Depth of Well: 22.2
Water C	haracteristics	
Vanadian Water Cl	Color Weak Any Films or Immiscible Material pH 7-22 Temper Specific Conductance(µS/cm) 5 Disolved Oxygen (mg/L) 3 PLOY OF	ature(°C) 1.7,4
Interim Water Ch	_	+ 810
	Removed 0.3	
pH	6.63	
Tempera	ature (°C) 17,3	
	Conductance(µS/cm) 512	•
Disolve Red	d Oxygen (mg/L) 2.56 cx -66	• · · · · · · · · · · · · · · · · · · ·
Post-Developme	nt Information	Time (Finish): 840
Water L	evel:	Total Depth of Well:
Approx	imate Volume Removed:	<u>.5</u>
Water C	Characteristics	
Comments:	Color_Odor: None Weak Any Films or Immiscible Material pH(0.48 Specific Conductance(\(\mu\)S/cm)_ Disolved Oxygen (mg/L)	Temperature(°C) 17.1
I:\forms\develop.doc	-19	1.2 .8 .4 /10 = 0.24 gallours

Job Number: 729	9691 <u>.32020</u>	Job Name: AFCEE-RNA
Location Colum	ibus AFB, LF6	by RN/JH/CS/BL Date: 11/17, 1996
Well Number	MPCED)	_Measurement Datum
Pre-Developmen	t Information	Time (Start): 915
Water L	.evel:	Total Depth of Well:
Water C	Characteristics	
Interim Water Ch	Odor: (None) Weak Any Films or Immiscible Material pH	ature(°C)_16.3 60
Gallons	Removed	Time 9:35
pH	2.32	
Tempera	ature (°C) 17.6	
Specific	Conductance(µS/cm) 84	
	d Oxygen (mg/L) 0.42 Lox -173	
Post-Developmen	nt Information	Time (Finish): 10//
Water L	evel:	Total Depth of Well:
Approx	imate Volume Removed:)
Water C	Characteristics	
. Comments:	Color_Odor: None Weak Any Films or Immiscible Material pH5,39 Specific Conductance(\(\mu S/cm\)_Disolved Oxygen (mg/L)_O.	Clear Cloudy Moderate Strong Temperature(°C) 17.8
	•	

Job Number: 729691.32020	Job Name: AFCEE-RNA
Location Columbus AFB, ST24	by RN/JH/CS/BL BMI+Date: 11/17, 1996
Well Number LFOG - MPD(S)	Measurement Datum Top chech Poc
Pre-Development Information	Time (Start): 1420
	Total Depth of Well: 15.77
Water Characteristics	AZOF POCKIFE
Color Weak Odor: None Weak Any Films or Immiscible Material pH No Tempera Specific Conductance(µS/cm)	Moderate Strong Nov ature(°C) N
Disolved Oxygen (mg/L)	NE
Interim Water Characteristics	vell pursed dry immediately, never recovered (waited 20 min.) NOT SAMPLED
Gallons Removed	
pH	NOT SAMPLED
Temperature (°C)	
Specific Conductance(µS/cm)	· · · · · · · · · · · · · · · · · · ·
Disolved Oxygen (mg/L)	· · · · · · · · · · · · · · · · · · ·
Past Davidonment Information	Time (Finish):
Post-Development Information	Time (Timon).
Water Level:	Total Depth of Well:
Approximate Volume Removed:	
Water Characteristics	
Color Odor: None Weak Any Films or Immiscible Material	Clear Cloudy Moderate Strong
pH	_Temperature(°C)
Specific Conductance(µS/cm)	
Disolved Oxygen (mg/L)Comments:	

Job Number: 729691.32020 Location Columbus AFB, ST24 Well Number LFOG - MPDB		Job Name: AFCEE-RNA by RN/JH/CS/BL BMH Date: 117 1996 Measurement Datum NA						
Pre-Development Information		ר	Γime (Start)	: 1340				
Water Level: NA			To	tal Depth of W	Vell: ~31.5' as	instalkel		
Water Characteristics								
Color Brown Odor: None Any Films or Immiscible pH Specific Conductance(µ Disolved Oxygen (mg/I	Weak e MaterialTemper S/cm)	<u></u>	Moderate	Strong	<u>-</u>			
Interim Water Characteristics	1342	1348	1352	1358				
Gallons Removed	0.1	0.5	1.0	2.0				
pH	5.12	5,11	5.09	5.05		<u>.</u>		
Temperature (°C)	0.81	18.0	18.0	18.0	\			
Specific Conductance(µS/cm)	130	165	150_	140	_			
Disolved Oxygen (mg/L)	0.5Z	0.34	0.26	0.18				
Redox (mu)	89	87.5	188.9	92.6				
Post-Development Information		Т	ime (Finish	ı):	28			
Water Level: NA		_ T	otal Depth	of Well:	~31.5°			
Approximate Volume Removed:	_ 2.0	s+ gai.						
Water Characteristics								
Color	S/cm)	None	lear Clou foderate	Strong	- -			

Job Number: 729691.32020 Location Columbus AFB, ST24 Well Number LFOCO - MPF (S)		Job Name: AFCEE-RNA by <u>RN/JH/CS/BL BMI+</u> Date: 山に 1996 Measurement Datum てみ Pは			
Pre-Development Information	T	ime (Start):	0850		
Water Level: Z.48' TPUC			Total D	epth of Well:_	12.9° TAK
Water Characteristics					
Color brance Odor: None Any Films or Immiscibl pH 6.20 Specific Conductance(µ	Weak e Material Tempe	M <u>New</u> rature(°C)	loderate	Strong	
Disolved Oxygen (mg/L	•				
Interim Water Characteristics	(090)	6908	0915		
Gallons Removed	1.0	2.ల	-3.c		
pH	6.19	6.21	6.24		
Temperature (°C)	17.8	17.6	17.6	-	
Specific Conductance(µS/cm)	810	790	800		
Disolved Oxygen (mg/L)	0.35 -115.c	0.35	-107-3		
Post-Development Information		Ti	ime (Finish):	09.5	
Water Level: Nig		To	otal Depth of W	Vell: 12.51	
Approximate Volume Removed:	3.0	gallas		_	
Water Characteristics					
Color Tinted Odor: None Any Films or Immiscible pH	Weak le Material	M <u> </u>	Ioderate	Strong	

Job Number: 729691.32020 Location Columbus AFB, ST24 Well Number LFow MPF-D		Job Name: AFCEE-RNA by RN/JH/CS/BL BM14 Date: 1117 1996 Measurement Datum NA		
Pre-Development Information		Time (Sta	art): 1610	
Water Level: NA			Total Depth of Well: NA (~30')	
Water Characteristics				
Color	Weak ble Material Tempera (μS/cm)	Moderate hture(°C) 18.7	Strong	
Interim Water Characteristics Time	انحح	1435	1650 -> Simple 1	(, <u>;</u> (,
Gallons Removed	0.3	0.0	1.0	
pH	C.37	6.49	(0.48)	
Temperature (°C)	ر8.د	18.4	18.4	
Specific Conductance(µS/cm)_	750	600	. loze	
Disolved Oxygen (mg/L) Reclox (mu)	0.45	2.55*	2,11 *	
		* Sulling		
Post-Development Information		Time (Fin	nish): 1650	
Water Level: ~~~	A	_ Total Dep	oth of Well: NA	
Approximate Volume Removed	i:	· () gal,	-	
Water Characteristics				
Color (Coroll) Odor: None Any Films or Immiscil pH (Correct Disolved Oxygen (mg) Comments:	Weak ble Material [µS/cm)	Moderate Comperature(°C)	Strong	

Job Number: <u>729691.32020</u>	Job Name: AFCEE-RNA
Location Columbus AFB, ST24	by RN/JH/CS/BLBMH Date: 1118 . 1996
Well Number LFOG - MPG	Measurement Datum Top Puc
Pre-Development Information	Time (Start): 0700
Water Level: 14.87.7	Total Depth of Well: 16.9' Tax
Water Characteristics	
Odor: None Any Films or Immiscible pH	Clear Cloud Weak Moderate Strong Material
Interim Water Characteristics	
Gallons Removed 0.3*	
pH	
Temperature (°C) 17.6	
Specific Conductance(µS/cm)	89
Disolved Oxygen (mg/L) 7.1	<u>D</u>
Post-Development Information	Time (Finish): 0740
Water Level: NR - But	ed dry Total Depth of Well: 16.9
Approximate Volume Removed:	0,6 991,
Water Characteristics	
Color Components: Color Conquestant Conductance (µ: Disolved Oxygen (mg/L)	
Comments:	

Job Number: <u>729691.32020</u>	Job Mange: AFCEE-RNA
Location Columbus AFB, LF6	by RNJH/CS/BL Date: 1115 1996
Well Number <u>LFG-MPH</u>	Measurement Datum TOC (still sticking up)
Pre-Development Information	Time (Start): 755
Water Level: 8,85	Total Depth of Well: 14.1
Water Characteristics	
Color From Weak	Clear Cloudy Moderate Strong
Any Films or Immiscible Material pH 5.41 Temper	
Specific Conductance(μS/cm)	<u>78</u>
Disolved Oxygen (mg/L) <u>S.ヴ</u>	
Interim Water Characteristics	allowed well to
Gallons Removed 0,5	allowed well to recharge from
рн6.35	
Temperature (°C) /9./	·
Specific Conductance(μS/cm) 8/	_
Disolved Oxygen (mg/L) 4.54	·
Redox D_SO	•
Post-Development Information	Time (Finish): 1044
Water Level:	Total Depth of Well: 14.1
Approximate Volume Removed:	5
Water Characteristics	
Color Odor: None Weak Any Films or Immiscible Material pHSpecific Conductance(µS/cm)	Clear Cloudy Moderate Strong Temperature(°C) 19,9
Disolved Oxygen (mg/L) 4.6 Comments:	2.3

1:\forms\develop.doc

14.1 - 8.8 5.3 × 0.1 = 0.53 gallons to develope

Job Number: <u>729691,32020</u>	Job Name: AFCEE-RNA
Location Columbus AFB, LF6 — Well Number LF (0 - MPL	by RN/JH/CS/BL Date: 1996
Well Number LF 100 MF25	Measurement Datum TDC (still stiking up
Pre-Development Information	Time (Start): 1527
Water Level: 13,2	Total Depth of Well: 23.7
Water Characteristics	
color brown	Clear Gloudy
Odor: None Weak	Moderate Strong
Any Films or Immiscible Material	~~~~
pH 5 85 Temper	ature(°C) 00.4
Specific Conductance(μS/cm)	
Disolved Oxygen (mg/L) <u> み.の</u> Redox 61	
Interim Water Characteristics	•
Gallons Removed 0.8 gal	los time 436
рн 5,43	
Temperature (°C) 20.9	
Specific Conductance(µS/cm)	
Disolved Oxygen (mg/L) 0,45	
Relox 104	
Post-Development Information	Time (Finish): 5:00
•	
Water Level:	Total Depth of Well:
Approximate Volume Removed:	S gallons
Water Characteristics	
Color S/5hty Odor: None Weak Any Films or Immiscible Material pH_5/10	Clear Cloudy Moderate Strong Temperature(°C) 20.3
Specific Conductance(µS/cm) Disolved Oxygen (mg/L)	9'30 D
Comments: Redox 114	

Job Number: 729691.32020 Location <u>Columbus AFB, LF6</u> Well Number <u>とんっMPJ</u>	Job Name: AFCEE-RNA by RN/JH/CS/BL Date: 1//17, 1996 _Measurement Datum
Pre-Development Information	Time (Start): Pumping 1000 / Measure 1109
Water Level:	
Water Characteristics	
Color <u>Prown-orange</u> Odor: Not Weak Any Films or Immiscible Material	<u> </u>
pH <u>6.45</u> Temper Specific Conductance(μS/cm)	ature(°C) 17.7
Disolved Oxygen (mg/L) 3.4	<u>6</u>
Gallons Removed Liter	1156
рн 5.97	
Temperature (°C) (8.8	
Specific Conductance(μS/cm) 1 (40)	
Disolved Oxygen (mg/L) 5.37 Polox -5	
Post-Development Information	Time (Finish):
Water Level:	Total Depth of Well:
Approximate Volume Removed:	8 Gallons
Water Characteristics	
Color Odor: None Weak Any Films or Immiscible Material pH	Clear Cloudy Moderate Strong Temperature(°C) 19.9

Job Number: 729	<u> 0691.32020</u>	Job Name: AFCEE-RNA
Location Colum	ibus AFB, LF6	by RN/JH/CS/BL Date: 11/15 , 1996
Well Number F	6 MFK	Measurement Datum TOC
Pre-Developmen		Time (Start): 318
Water L	evel: 14.0	Total Depth of Well: 16,5
Water C	Characteristics	
•	Color Odor: None Weak Any Films or Immiscible Material pH	ature(°C) 20,0
	Specific Conductance(µS/cm) 5 Disolved Oxygen (mg/L) 0.9 Rodov -0.7	
Interim Water Ch	naracteristics	•
Gallons	Removed 0.3	
-		1-
	ature (°C) 20.6	· ·
Specific	Conductance(µS/cm) 516	
	d Oxygen (mg/L) O.63	
Kedo	× -0.6	
Post-Developme	nt Information	Time (Finish): <u>3 45</u>
Water L	evel:	Total Depth of Well:
Approx	imate Volume Removed:	5 gallons
Water C	Characteristics	
Comments:	Color_Odor: None Weak Any Films or Immiscible Material pH_618 Specific Conductance(\(\mu S/cm\))	Clear Cloudy Moderate Strong Temperature(°C) 20.5

Job Number: 729691.32020 Location Columbus AFB, LF6 Well Number LF6-MPR	Job Name: AFCEE-RNA by RN/JH/CS/BL Date: 11/15 1996 Measurement Datum Toc Ticking up still
Pre-Development Information	Time (Start): 1140
Water Level: (1.75 (+0c) Water Characteristics (BLS)	Total Depth of Well: 17.10 (TOC)
Specific Conductance(µS/cm)	rature(°C) 20,5
Gallons Removed O.S. Gallons Removed D.S. Gallons Removed D.S. Gallons Ph. G. S.	lono Time = 11:54
Post-Development Information	Time (Finish): 120
Water Level:	Total Depth of Well: 17.10
Water Characteristics	
Color Style U(Odor: None) Weak Any Films or Immiscible Material pH_S(\omega) Specific Conductance(\(\mu\)S/cm) Disolved Oxygen (mg/L) Comments:	Temperature(°C) 20,5
	17.0

1:\forms\develop.doc

17.10 11.75 5.35 x.10 = 0.53 gellon

Job Number: <u>729691.32020</u>	Job Name: AFCEE-RNA
Location <u>Columbus AFB, LF6</u> Well Number <u>LFG-MPM</u>	by RN/JH/CS/BL Date: 11/13/ 1996
Well Number LF 6-1-(PM	Measurement Datum
Pre-Development Information	Time (Start): 335 ρη
Water Level: 12-5	Total Depth of Well: 18,5
Water Characteristics	
Color	rature(°C) 17.5
Interim Water Characteristics	,
Gallons Removed 8.5	1600 = time
_{pH} 5.53	
Temperature (°C) 18.7	<u>,</u>
Specific Conductance(µS/cm) & d	·
Disolved Oxygen (mg/L) 6,96	
Post-Development Information	Time (Finish): 1613
Water Level:	Total Depth of Well:
Approximate Volume Removed:	1.25 gallons
Water Characteristics	
Color	Clear Cloudy Moderate Strong Temperature(°C) 9 .

Job Number: 729691.32020 Location Columbus AFB, LF6. Well Number LFG-MPD Job Name: AFCEE-RNA by RN/JH/CS/BL Date: 1//7, 1996 Measurement Datum FOC
Pre-Development Information Time (Start): 655
Water Level: $\frac{\partial \mathcal{O}}{\partial \mathcal{O}}$ Total Depth of Well: $\frac{\partial \mathcal{O}}{\partial \mathcal{O}}$
Water Characteristics
Color Clear floudy Odor: None Weak Moderate Strong Any Films or Immiscible Material pH 6,60 Temperature(°C) 17-2 Specific Conductance(µS/cm) 3 Disolved Oxygen (mg/L) 1-35 Interim Water Characteristics
Gallons Removed 0.5 1 mc 106 pH_ 6.75
Temperature (°C) 8.0
Specific Conductance(µS/cm) 5 5 7
Disolved Oxygen (mg/L) 1-02 Ready -55
Post-Development Information Time (Finish):
Water Level: Total Depth of Well:
Approximate Volume Removed: 3/4 gells
Water Characteristics
Color None Weak Moderate Strong Any Films of Immiscible Material Temperature(°C) 18.3 Specific Conductance(µS/cm) 599 Disolved Oxygen (mg/L) 0.33 Comments:
1:\forms\develop.doc $-\frac{33.6}{3.4} / 10 = 0.34 \text{ callens}$

Job Number: <u>729691,32020</u>	Job Name: AFCEE-RNA
Location <u>Columbus AFB, LF6</u> Well Number <u>M ()</u>	by RNJH/CS/BL Date: 11/14, 1996 Measurement Datum Drown Surface
well Number 1110	
Pre-Development Information	Time (Start): 710
Water Level: DTW= 4.5	Total Depth of Well: 14.5
Water Characteristics	
Color_Slade Court Odor: None Weak Any Films or Immiscible Materia pH4,83Tempe Specific Conductance(\(\mu\)Scm) Disolved Oxygen (mg/L)	rature(°C)17.8
Interim Water Characteristics	•
Gallons Removed 1	Time 7:16
pH 4.75	
Temperature (°C) 18,5	
Specific Conductance(µS/cm) 86.4	
Disolved Oxygen (mg/L) 0.46	
Post-Development Information	Time (Finish): 725
•	, ,
Water Level: Ca at necoure	Who be Total Depth of Well: 14.5
Approximate Volume Removed:	8 gall
Water Characteristics	
Color Sightly gra Odor: None Weak Any Films or Immiscible Material pH 4.80 Specific Conductance(µS/cm) Disolved Oxygen (mg/L) 0 1.3	Clear Cloudy Moderate Strong Temperature(°C)

Job Number: 729691.32020 Location Columbus AFB, LF6 Well Number LF6 PP	Job Name: AFCEE-RNA by RN/JH/CS/BL Date: 1/14, 1996 Measurement Datum Ground Surface
Pre-Development Information Water Level: 5.3	Time (Start): 0850
Water Level: 5.5	Total Depth of Well: 13.
Water Characteristics	
Color None Weak Any Films or Immiscible Material pH 5.6 Temper Specific Conductance(µS/cm) Disolved Oxygen (mg/L)	ature(°C) (7.)
Interim Water Characteristics	
Gallons Removed 0.6	
pH5.13	
Temperature (°C) 18.3	
Specific Conductance(µS/cm) 239	
Disolved Oxygen (mg/L) 0.93	
Post-Development Information	Time (Finish): 0905
Water Level:	Total Depth of Well:
Approximate Volume Removed:	·
Water Characteristics	•
Color H. Susponded Solor Odor: None Weak Any Films or Immiscible Material pH Specific Conductance(µS/cm) Disolved Oxygen (mg/L)	Moderate Strong Temperature(°C) 18.6 2 18

Job Number: 729691,32020 Location Columbus AFB, LF6	Job Name: AFCEE-RNA by RNJH/CS/BL Date: 11/14, 1996 Measurement Datum TOC
Well Number MPQ (LF6)	
Pre-Development Information	Time (Start): 15 40
Water Level: 4.2	Total Depth of Well: 14.0
Water Characteristics	
Color Slightly Cloudy Odor: None Weak Any Films or Immiscible Material pH	
Interim Water Characteristics	Time = 1612
Gallons RemovedO, 75	<u> </u>
pH6.00	
Temperature (°C) (8.0	
Specific Conductance(µS/cm) 581	
Disolved Oxygen (mg/L) 431	 .
Post-Development Information	Time (Finish):
Water Level:	Total Depth of Well:
Approximate Volume Removed:	
Water Characteristics	
ColorOdor: None Weak Any Films or Immiscible Material pH	Clear Cloudy Moderate Strong
Specific Conductance(μS/cm)	- Composition (O)
Disolved Oxygen (mg/L)Comments:	

Job Number: 729691,32020 Location Columbus AFB, ST24 Well Number LFOG - MPR	·	by RN/JH	AFCEE-RNA I/CS/BL Bmi- ent Datum T	+ Date:	7 1996
Pre-Development Information		Ti	ime (Start):	1220	
Water Level: 4.42' TPuc			Total D	epth of Well:	14.7' TPUC
Water Characteristics					Div 70 = 10.28 ' Cusing Vis. = 0.105 gal.
Color Brown Odor: Mone Any Films or Immiscib pH 5.12	Weak le Material	None	oderate	Strong	10x CV = 1.05gal.
Specific Conductance(µ Disolved Oxygen (mg/I	<u>ے (</u> S/cm	50			·
Interim Water Characteristics	1225	1230	1255	1240	7
Gallons Removed	ω. ξ	1.0	1.5	2,0	-
pH	5.10	5.15	5.02	5.01	
Temperature (°C)	19.2	19.2	19.2	19.2	<u> </u>
Specific Conductance(µS/cm)	650	700	720	700	
Disolved Oxygen (mg/L)	٥٠٠٠	10.64	6.21	0.16	
Redox	133	76.4	60.8	64.3	
Post-Development Information		Ti	me (Finish):	OYSI	
Water Level: トル		_ To	otal Depth of W	Vell: ۱۲۱-7	Puc
Approximate Volume Removed:	_ 2.0	ogal.		_	
Water Characteristics					
ColorClear Odor: None Any Films or Immiscible pHSol Specific Conductance(µ Disolved Oxygen (mg/I	.S/cm)	M		Strong	•

APPENDIX A-3 GROUNDWATER SAMPLING FORMS

Sampling Location Columbus AFB (LF6)
Sampling Dates 11/04/96-11/24/96

GROUND V	vater sampling record - monitoring well $\underline{\mathcal{W}18}$
REASON FO	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING:
	OR WATER DEPTH MEASUREMENT (Describe): TOC 17.55
	65 urface 14.4
MONITOR	NG WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: 5000 INNER PVC CASING CONDITION IS: 5000 WATER DEPTH MEASUREMENT DATUM (IS) - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off	EQUIPMENT CLEANED BEFORE USE WITH 150 proponol and distilled with
2[.]	PRODUCT DEPTH
	Measured with: Selin st
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Cloudy -> 5/15/14 Cloudy Odor: Other Comments: Line Clozged 1/14 rally and water wo
4[]	WELL EVACUATION Method: Peristaltic pump Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:
	TO 37.0 DTω 14.5 22.5/2=11.25 - Josephone
L:\forms\gwsamp	- · · · ·

Groundwater Sampling Record

Monitoring Well No. 65 W18 (Cont'd)

SAMPLE EX	TRACTION	METHO	D:			
	[] Bailer n [] Pump, t [] Other, d	nade of:_ ype:Pe lescribe:	ristalti	L		
13	Sample obta	ined is [X] GRAB;	[] COM	POSITE SA	MPLE
ON-SITE ME	EASUREME	NTS:				
Time	1/302	1345	1425	1450	1515	Meausred with
Temp (°C)	19.7	19,0	19.4	19.3	19.3	45755
	5.50	Sile	5,59	557	5.57	Orion asoft
	252	263	258	249	245	Hack Helor
	0.71	20	019	017		457 55
Redox (mV)	- A -			997	100	Orian 250A
Salinity						
	0.8	4	<i>©</i>	ار ا	11	
SAMPLE CO	NTAINERS	(material,	number, si	ze):		
•	10 UD	AS				
-	1 101	7				
•		<u> </u>	******			
ON-SITE SA	MPLE TREA	TMENT:				
f 1	Filtration:	Meth	nod		Contai	nerc·
		Meth	ıod		Contai	ners:
L	Dracamiativa	addad:				
4-} ⊷	r iesei valives	auueu.				م دار ،
	2 · 1 · *			·	Contai	ners: WAS
		Meth	od			ners:
						ners:
		IVICU	iou	· · · · · · · · · · · · · · · · · · ·	Coman	11615
CONTAINER	R HANDLIN	G:				
CONTAINER	Contai	iner Sides iner Lids T		est		·
	Contai Contai	iner Sides iner Lids T iners Place	Caped ed in Ice Ch			
	Contai Contai	iner Sides iner Lids T iners Place	Caped ed in Ice Ch			
	Contai Contai	iner Sides iner Lids T iners Place	Caped ed in Ice Ch			
	ON-SITE ME Time Temp (°C) pH Cond (µS/cm) DO (mg/L) Redox (mV) Salinity Nitrate Sulfate Ferrous Iron SAMPLE CO ON-SITE SA	[] Bailer n [A] Pump, t [] Other, d [] Other, d [] Sample obta ON-SITE MEASUREME Time	Bailer made of: Pump, type: Per Pump, type: Per Per Pump, type: Per Per Pump, type: Per Per Pump, type: Per Pump, type: Per Per Pump, type: Per Per Pump, type: Per Per Pump, type: Per Per Pump, type: Per Per Pump, type: Per Per Pump, type:	Bailer made of: Pump, type:ferictalting Other, describe: Sample obtained is [X] GRAB; ON-SITE MEASUREMENTS: Time	Bailer made of: Pump, type:Peristaltic Other, describe:	

Sampling Location <u>Columbus AFB - LF6</u> Sampling Dates <u>11/04/96-11/24/96</u>

DATEAN	FOR SAMPLIN	VG: [X] Regu	lar Samplin	g; [V] Spec	ial Samplii	ig: PAIA	(number)
DATEAN	ND TIME OF SA	AMPLING: i	1117196	. 1996 te	>50 a	16, r 10 /4 10⊾/p.m.	
SHIMILTE	COLLECTED	BY: J H/BL/ (=S/	"RN of Pare	one FC			
DATUM F	FOR WATER D	EPTH MEASI	IREMENT	(Describe):	100 Cly K	COUC C	ಎಲ್.೯
				(Describe)	16.37	i Poc	
MONITOI		03.175.175.1					
MONTO	RING WELL CO [A]LOCK!				f 3 vn		
	WELL NU	MBER (IS) - IS	NOT) APP	ARFNT	[] UN	ILOCKED	
	STEEL CA	SING CONDIT	TION IS:	(2000)			
	INNER PV	C CASING CO	NOITION	IS: <u></u>	1		
	WATER D	EPTH MEASU	REMENT I	DATUM (IS	≥ IS NOT)	APPARENT	
	I DEFIC	IENCIES COR	RECTED B	SY SAMPLE	COLLEC	TOR	•
	[]	- SIGNIO WEDD		LU KETAIK			
O1 : -							
Check-off	EOLUDI (D)						
1[]	EQUIPMEN	VI CLEANED	BEFORE (JSE WITH_	Alcane	x DJ WATI	ER Instrume D.T
		items Cleaned	1 (List):	Wenter (part I.	circles - K	tot walling
2[]	PRODUCT	DEPTH	NA.				FT. BELOW DATUM
		Measured wit	h:				
	WATER DE	בארט וביים	. w.				
	WAILEDE	Measured wit	h. + >	<u> </u>	٠٠٠ ٢٠٠	2110	FT. BELOW DATUM
		Transaroa Wit				- 100C - 12	Suit from a love 1
						C	2 Sign 1
3 []	WATER-CO	ONDITION BE	FORE WEI	LL EVACUA	TION (De	ے :scribe):	sing volume = 2.00 gal. Purch Volume = (0.0001
3[]	WATER-CO	ONDITION BE Appearance:_	FORE WEI	LL EVACUA	TION (De	escribe):	sing vehicue : Leighel. Burger bless me : (1. esegrel
3 []	WATER-CO	ONDITION BE Appearance:_ Odor:	FORE WEI	LL EVACUA	ATION (De	escribe):	sing vehicus : Zergal. Duya barne : (1-cogal
3[]	WATER-CO	ONDITION BE Appearance:_ Odor:	FORE WEI	LL EVACUA	ATION (De	escribe):	sing vehicus : Zergal. Duya barne : (1-cogal
	WATER-CO	ONDITION BE Appearance: Odor: Other Comme	FORE WEI	LL EVACUA	ATION (De	escribe):	sing vehicus : Zergal. Duya barne : (1-cogal
3 [] 4 []		ONDITION BE Appearance:_ Odor: Other Comme CUATION: Method:	FORE WEI	L EVACUA	ATION (De	escribe):	sing vehicus : Zergal. Duya barne : (1-cogal
		ONDITION BE Appearance:_ Odor: Other Comme CUATION: Method: Volume Remo	FORE WEI	LL EVACUA	ATION (De	escribe):	sing vehicus : Zergal. Duya barne : (1-cogal
		ONDITION BE Appearance:_ Odor: Other Comme CUATION: Method:	rore WEI	LL EVACUA	TION (De	escribe):	sing vehicus : Zergal. Duya barne : (1-cogal
		ONDITION BE Appearance:_ Odor: Other Comme CUATION: Method: Volume Remo	rore WEI	Slightly - verevel (rose - f	y) cloudy	escribe):	sing vehicus : Zergal. Duya barne : (1-cogal
		ONDITION BE Appearance:_ Odor: Other Comme CUATION: Method: Volume Remo	rore WEI	LL EVACUA Slightly - verevel (rose - fodors:	y) cloudy	escribe):	sing vehicus : Zergal. Duya barne : (1-cogal
		ONDITION BE Appearance:_ Odor: Other Comme CUATION: Method: Volume Remo	rore WEI	Slightly - verevel (rose - f	y) cloudy	escribe):	sing vehicus : Zergal. Duya barne : (1-cogal
4[]	WELL EVA	Appearance:_ Odor: Other Comme CUATION: Method:_ Volume Remo Observations:	rots: Water (Water c	slightly - verevel (rose - foodors: Noomments:	y) cloudy	C.Acur ange) NR	Sing Vehicue : Leignil. Durje Venine : (n. eseguil
1[] Volume	WELL EVA	ONDITION BE Appearance:_ Odor:_ Other Comme CUATION: Method:_ Volume Remo Observations:	Property of the control of the contr	slightly - verevel (rose - foodors: Noomments:	y) cloudy ell - no cha	Chear Chear Chear Chear Chear Chear Chear	Sing Vehicue : Leignil. Durje Venine : (n. eseguil
Volume	WELL EVA	ONDITION BE Appearance:_ Odor:_ Other Comme CUATION: Method:_ Volume Remo Observations:	Port Wei	slightly - verevel (rose - fodors: Noomments: y) cloudy ell - no cha	Chear Chear Chear Chear Chear Chear Chear	Avalytonl	
Volume 1.0 2.0	WELL EVA	ONDITION BE Appearance:_ Odor: Other Comme CUATION: Method:_ Volume Remo Observations:	Property of the control of the contr	slightly - verevel (rose - fodors: Noomments: 1990 ? 1990 ? 1993 ?	y) cloudy ell - no cha	Coven +	Sing Vehicue : Leignil. Durje Venine : (n. eseguil
Volume 1.0 2.0 36	WELL EVA	ONDITION BE Appearance:_ Odor:_ Other Comme CUATION: Method:_ Volume Remo Observations:	Property of the control of the contr	slightly - verevel (rose - 1) odors: Noomments: 9907 1-37 286	y) cloudy ell - no cha	Chear Coment Coment	Avalytonl
10 2.0 36	WELL EVA	ONDITION BE Appearance:_ Odor:_ Other Comme CUATION: Method:_ Volume Remo Observations:	PORE WEI Character Water (Water (Water (Water of Other of 2.48. 2.35 2.26 2.26	Slightly - verevel (rose - fodors: Noomments: EC 90 ES & & & &	Cheur ange) NR Cowen + Clour Cowen +	Avalytonl	
Volume 1.0 2.0 36	WELL EVA	ONDITION BE Appearance:_ Odor:_ Other Comme CUATION: Method:_ Volume Remo Observations: 7.6.00 19.00 19.00 19.00	Pore Wei Class Cla	Slightly - verevel (rose - fodors: Noomments: EC 90 ES & & & &	Cheur ange) NR Cowen + Clour Cour	Analytical Voca PTEX TVH-C Analytical Analytical	
Volume 1.0 2.0 36 4.0	WELL EVA 5.10 5.05 5.16 5.18	ONDITION BE Appearance:_ Odor:_ Other Comme CUATION: Method:_ Volume Remo Observations:	PORE WEI Chance	Slightly - verevel (rose - fodors: Noomments: y) cloudy ell - no cha	Cheur ange) NR Cowen + Clour Cour	Avalytonl	

SAMPLE AT 1000

Groundwater Sampling Record

		Monit	oring Well	No. LFo	6-Wi9	(Cont'c	1)	•
5 [1	SAMPLE EXTRACTION METHOD:							
	[] Bailer made of							
	[] Bailer made of: [] Pump, type:							
		[] Other, d	lescribe:					
		Sample obtain	inad is [V]	CD A D	I I COM	DOSITE S	MDLE	
		Sample oota	incu is [A]	GRAD,	[] COM	1 03116 37	WIT LE	
611	ON-SITE ME	SITE MEASUREMENTS: See Page 1						
	Time	Jee	rase 1			T	Meausred with	ī
	Temp (°C)						Weadsted with	
	pH							
	Cond	1 1						
	(µS/cm)						1	
	DO (mg/L)		1					
	Redox (mV)							·
	Salinity							
	Nitrate							
	Sulfate							
	Ferrous Iron							
7 [}	SAMPLE CO	NTAINERS	(material r	umber si:	ze)· io	الديمير المراك	Ha	
' 1/ 1-	OTHER DE CO						Plastic	
							Pasan Jas	
	-							
8 [/	ON SITE CAN	ADI E TDE A	TE CENTE					
ه [۲]	ON-SITE SAMPLE TREATMENT: [] Filtration: A Method Containers:							
	. ,	MethodContainers:						
	Method Containers:							
	[]	Dragom intivid	.addade A		,	A -		
	Li	Preservatives	added. ,4	HI HCC	. except	Micus		
		•	Metho	od VOC>			ners:	
					7446	Contai	ners:	
					ae		ners:	
			Metho	0a_Ame	ند	Contai	ners:	
9 []	CONTAINER	HANDLIN	G:					
-								•
			ner Sides L					
			ner Lids Ta		ect			
	•	.M Contai	incid i idooc	i iii icc cii	CSL			
10[1	OTHER COM	IMENTS:	·····					
		·						
				·				
					·	· · · · · · · · · · · · · · · · · · ·		

Sampling Location Columbus AFB (LF6)
Sampling Dates 11/04/96-11/24/96

GROUND '	WATER SAMPLING RECORD - MONITORING WELL \bigcirc \bigcirc \bigcirc
DATE AND SAMPLE C WEATHER	(number) OR SAMPLING: [X] Regular Sampling; [] Special Sampling; OTIME OF SAMPLING: (1// 1996 15/5 a.m./p.m.) COLLECTED BY: JH/BL/CS/RN of Parsons E8 C: 6 C/26/ OR WATER DEPTH MEASUREMENT (Describe): TO C
MONITORI	NG WELL CONDITION:
·	WELL CONDITION: [] LOCKED: WELL NUMBER (IS IS NOT) APPARENT STEEL CASING CONDITION IS: INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
	[] Motorated website Quites Repair (describe).
Check-off	EQUIPMENT CLEANED BEFORE USE WITH 150propard + distilled water Items Cleaned (List): probes
2[]	PRODUCT DEPTH
	WATER DEPTH 5.3 (3.8 below grown) FT. BELOW DATUM Measured with: Solvano
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Clear Odor:One
4[]	WELL EVACUATION: Method: Peris fall fic pump Volume Removed: 10.5 gallow Observations: Water (slightly very) cloudy Water level (rose - fell - no change) Water odors: Other comments:
	$\frac{3.8}{19.2/2} = 9.6 \text{ gallons} \Rightarrow 10$

	Groundwater Sampling Record Monitoring Well No. W 20 (Cont'd)
5[]	SAMPLE EXTRACTION METHOD:
	[] Bailer made of: [] Pump, type: Peristaltic [] Other, describe: Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE
6[]	ON-SITE MEASUREMENTS: Begin purge 1400
	Time 706 1430 1440 1453 1506 Meausred with Temp (°C) 17.9 17.7 17.7 17.6 17.6 451 55 pH 4.60 4.57 4.47 4.48 4.48 Orio 350A Cond (μS/cm) 61 64 63 63 63 63 Hach Mear DO (mg/L) 0.99 0.95 0.66 0.63 0.64 451 55 Redox (mV) 234 251 302 248 254 Orio 250A Salinity 4.8 Nitrate Sulfate Ferrous Iron
7[]	SAMPLE CONTAINERS (material, number, size):
	10 VoAs 2 Poly
8[]	ON-SITE SAMPLE TREATMENT:
	[] Filtration: Method Containers:
	Preservatives added:
	Method HC Containers: VOAS Method Containers: Method Containers: Method Containers:
9[]	CONTAINER HANDLING:
	Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest
10[]	OTHER COMMENTS:

Sampling Location Columbus AFB LF6
Sampling Dates 11/04/96-11/24/96

GROUND	WATER SAMPLING RECORD - MONITORING WELL	
DATE AND	FOR SAMPLING: [X] Regular Sampling; [] Special Sampling; D TIME OF SAMPLING: 11/14 1996 1320 a.m./p.m. COLLECTED BY: JH/BL/CS/RN OF Parsons E8	(number)
	OR WATER DEPTH MEASUREMENT (Describe): TOC	
MONITORI	ING WELL CONDITION: LOCKED: WELL NUMBER (IS- IS NOT) APPARENT, STEEL CASING CONDITION IS: INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM IS IS NOT) APPARENT DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR MONITORING WELL REQUIRED REPAIR (describe):	
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH 150 prono and of terms Cleaned (List): Prohos	distilled water
2[]	PRODUCT DEPTH Measured with: WATER DEPTH	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: C/PC Odor: Monde Other Comments:	
4[]	WELL EVACUATION: Method: Perist It. Volume Removed: // 5	'
	28 TD -6 DTW (Ground surface 20/2 = 11 gallons	_)

Groundwater Sampling Record Monitoring Well No. W21 (Cont'd) SAMPLE EXTRACTION METHOD: 5[] [] Bailer made of:
[] Pump, type:__ fer | Stalt | c
[] Other, describe:____ Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE Began purger 11:55 6[] ON-SITE MEASUREMENTS: Time 1226 1250 1302 1315 Meausred with 1902 Temp (°C) pН Cond (µS/cm) DO (mg/L) Redox (mV) Salinity Nitrate Sulfate Ferrous Iron 9 Allons SAMPLE CONTAINERS (material, number, size):_ 7[] 8[] **ON-SITE SAMPLE TREATMENT:** _____ Containers: [] Filtration: Method_ Method_____ Containers:____ Method _ Containers:___ Preservatives added: HCI Containers: VOAS
Sulfuric Containers: Glass am har Method _____ Containers: Method _____ Containers:__ 9[] CONTAINER HANDLING: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest

10[]

OTHER COMMENTS:____

Sampling Location Columbus AFB (LF6)
Sampling Dates 11/04/96-11/24/96

GROUND V	VATER SAMPLING RECORD - MONITORING WELL
DATE AND SAMPLE CO WEATHER:	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 11/12/ , 1996 1750a.m.(p.m.) OLLECTED BY: JH/BL/CS/RN of Parsons ES S
MONITORI	WELL CONDITION: LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR MONITORING WELL REQUIRED REPAIR (describe):
Check-off I[]	EQUIPMENT CLEANED BEFORE USE WITH ISOROPANOL + distilled water
2[]	PRODUCT DEPTH
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Slighty gray Odor: Other Comments:
4[]	WELL EVACUATION: Method: Peristaltic pump Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments: DTW (Fraid) TD (fram ground) 7-5 21.5

L:\forms\gwsample.doc

Page 1 of 2

Groundwater Sampling Record

Monitoring Well No. D (Cont'd) SAMPLE EXTRACTION METHOD: 5[] Bailer made of:
Nump, type:_ Peristaltic [] Other, describe:__ Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE 6[] **ON-SITE MEASUREMENTS:** Time Meausred with Temp (°C) pН Cond 65 (µS/cm) DO (mg/L) Redox (mV) Salinity Nitrate Sulfate Ferrous Iron gollons SAMPLE CONTAINERS (material, number, size): 7[] 8[] ON-SITE SAMPLE TREATMENT: [] Filtration: Method_ Containers:_ Method_ Containers:___ Method_ Containers:_ [] Preservatives added: Containers:__ Method Method_ Containers:___ Method Containers:

9[] CONTAINER HANDLING:

Container Sides Labeled Container Lids Taped

Containers Placed in Ice Chest

Method_

10[] OTHER COMMENTS:_

_____ Containers:_

Sampling Location Columbus AFB (LF6)
Sampling Dates 11/04/96-11/24/96

GROUND V	vater sampling record - monitoring well <u>W 78</u>
DATE AND SAMPLE CO WEATHER:	(number) OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 1/1/4 1996 1/10 (a.m./p.m. OLLECTED BY: JH/BL/CS(RN) (Parsons ES) OR WATER DEPTH MEASUREMENT (Describe): TO C
MONITORI	WELL CONDITION: LOCKED: WELL NUMBER (IS IS NOT) APPARENT STEEL CASING CONDITION IS: STEEL CASING CONDITION IS: NUMBER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS IS NOT) APPARENT DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR MONITORING WELL REQUIRED REPAIR (describe):
Check-off	EQUIPMENT CLEANED BEFORE USE WITH Isopropanol and Distilled Water Items Cleaned (List): Propes
2[]	PRODUCT DEPTH
	WATER DEPTH 8.1 previous FT. BELOW DATUM Measured with: Solinst
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Clear Odor: 100000 Other Comments:
4[]	WELL EVACUATION: Method: Perisfalfic Volume Removed: Jallous Observations: Water sightly - very) cloudy Water level (rose - fell - no change) Water odors: Oo Other comments:

Groundwater Sampling Record
Monitoring Well No. ______(Cont'd) SAMPLE EXTRACTION METHOD: 5[] [] Bailer made of: Penstallic Other, describe: Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE ON-SITE MEASUREMENTS: BESIA PURSENT 1010 6[] Time 1035 Meausred with 450 40 Temp (°C) 18,4 pН 4,55 4.47 4.62 Cond 158 189 (µS/cm) DO (mg/L) Redox (mV) 139.3 163.0 Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): 7[] Polu 8[] ON-SITE SAMPLE TREATMENT: [] Filtration: Method _____ Containers: Method_ _____ Containers:__ Method_ Containers: [] Preservatives added: Method Containers: Containers: Method____ Containers:_ Method_ Containers:_ 9[] CONTAINER HANDLING: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest 10[] OTHER COMMENTS:

Sampling Location Columbus AFB - 1760
Sampling Dates 11/04/96-11/24/96

GROUND V	water sampling record - monitoring well $_{\it W79}$	
REASON F DATE AND SAMPLE C WEATHER	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; OTIME OF SAMPLING: 15 , 1996 745 a.m.yp.m. OLLECTED BY: JH/BL/CS/RN of arsons ES OR WATER DEPTH MEASUREMENT (Describe): TOC	(number)
-		
MONITORI	NG WELL CONDITION: LOCKED: WELL NUMBER (IS) IS NOT) APPARENT STEEL CASING CONDITION IS: NNER PVC CASING CONDITION IS: LOCKED [] UNLOCKED [] UNLOCKED	
	WATER DEPTH MEASUREMENT DATUM (IS) IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH 150 pand 4 Items Cleaned (List): Probes	
2[]	PRODUCT DEPTH Measured with:	FT. BELOW DATUM
	WATER DEPTH 8,9 (TOC) 5.9 (BLS) Measured with: Solvast	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Cloudy Drown Odor: re-e Other Comments:	
4[]	WELL EVACUATION: Method: Peristaltic Pump Volume Removed: Observations: Water slightly - very) cloudy Water level (rose - fell - no change) Water odors: None Other comments:	
	20 - 6 14/2 = 7 gallons	·

		Mon	Groundy itoring Wel	water Sai 1 No. <u>#</u>	mpling R	ecord (Cont'd))	
5[]	·							
		[] Bailer ★ Pump, [] Other,					<u> </u>	
		Sample obta	ained is [X] GRAB;	[] COMI	POSITE SA	MPLE	
6[]	ON-SITE M	EASUREMI	ENTS:			,		
	Time	650	707	713	725	735	Meausred with	
	Temp (°C)	17.3	17.4	17,3	16.9	16.9	45155	
	pH Cond	3	4.57	442	4.59	4.65	Orion 250A	
	(μS/cm)	47	45	45	44	144	Hach Meter	
	DO (mg/L)	3,25	3.33	2.91	3.05	2.88	45I 55	
	Redox (mV)	1487	156	166	170	181	Orio 250A	
	Salinity Nitrate							
•	Sulfate							
	Ferrous Iron							
7[]	SAMPLE CO	2 ONTAINER: 10 VO	← S (material, A ←	5 number, si	ze):			
		2 PC						
			0					
8[]	ON-SITE SA	AMPLE TRE	EATMENT:					
	[]	Filtration:	Meth	od		Contai	ners:	
							ners:	
			Meth	100		Contai	ners:	
	K j	Preservative	es added:				•	
	-		Meth	nod H	cI	Contai	ners: VOCS	
				od			ners:	
			Meth	nod		Contai	ners:	
			Meth	nod		Contai	ners:	
9 []	CONTAINE	R HANDI.II	NG:					

Container Sides Labeled

OTHER COMMENTS:_

Container Lids Taped Containers Placed in Ice Chest

Page 2 of 2

10[]

Sampling Location <u>Columbus AFB - LF6</u> Sampling Dates <u>11/04/96-11/24/96</u>

GROUND V	VATER SAMPLING RECORD - MONITORING WELL W81 (LFG)
REASON FO	OR SAMPLING: [X] Regular Sampling; [] Special Sampling;
SAMPLE CO	TIME OF SAMPLING: 11/13 , 1996 a.m./p.m. OLLECTED BY: JH/BL/CS(RN of Parsons ES
	60° Overcast
DATUM FO	R WATER DEPTH MEASUREMENT (Describe): TOC
MONITORI	NG WELL CONDITION:
MONTOR	[] LOCKED: X UNLOCKED
	WELL NUMBER (IS - IS NOT) APPARENT
	STEEL CASING CONDITION IS: 9 WW 1
	INNER PVC CASING CONDITION IS:
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT
•	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR
	[] MONITORING WELL REQUIRED REPAIR (describe):
Check-off	
1 []	EQUIPMENT CLEANED BEFORE USE WITH 150 proported and distilled water
. ,	Items Cleaned (List): Probes
251	
2[]	PRODUCT DEPTH
	WATER DEPTHFT. BELOW DATUM
	Measured with: Solinst water level indicator previously
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):
	Appearance: Cloudy brown
•	Odor: None-
	Other Comments:
4[]	WELL EVACUATION:
7[]	Method: Peristoltic
	Volume Removed: > Sollas
	Observations: Water (slightly-very) cloudy
	Water level (rose - fell - no change)
	Water odors: none
	Other comments:

Groundwater Sampling Record

Monitoring Well No. <u>W 8 (LFG)</u> (Cont'd)

5[]	SAMPLEEX	TRACTIC	ON METHO	D:				
		[] Bailer	r made of:					
		Pump						
		[] Other	, describe:_					
		Sample ob	tained is [X	[] GRAB;	[] COMPO	DSITE SAMPLE		
6[]	ON-SITE MEASUREMENTS:							
		1427	ı					
	Time 🐉	10007	1435	1440	1444	Meausred with		
	Temp (°C)	19.8	20.0	20.0	20.0	45I 55		
	pН	6.12	6.16	6.15	6.16	Orion 250A		
	Cond	1						
	(μS/cm)	653	624	620	624	Hack meter		
	DO (mg/L)	0,33	0,73	0.23	0.20	4SI 55		
	Redox (mV)	-48	-61.1	-63.0	-64.6	Orion 290A		
	Salinity							
	Nitrate							
	Sulfate							
gallous	Ferrous Iron	0.5	10	1.5	20			
8[]	ON-SITE SA	MPLE TR	Meti Meti	10d 10d		Containers: Containers: Containers:		
	[]	Preservativ				Containers.		
			Metl Metl	10d		Containers:		
9[]	CONTAINER	R HANDLI	NG:			•		
		Con	tainer Sides			•		
) 	[M Con	tainer Lids 7 tainers Place		nest			
10 []	OTHER COM	Con Con	tainers Place	ed in Ice Ch				
10[]	OTHER COM	Con Con	tainers Place	ed in Ice Ch				
10[]	OTHER COM	Con Con	tainers Place	ed in Ice Ch				

Sampling Location Columbus AFB (LF6)
Sampling Dates 11/04/96-11/24/96

GROUND W	ATER SAMPLING RECORD - MONITORING WELL
OROGIND W	(number)
DATE AND SAMPLE CO	R SAMPLING: [X] Regular Sampling; [] Special Sampling; IIME OF SAMPLING: 1996 1990 (a.m./p.m.) LLECTED BY: JH/BL/CSAN of Parsons ES WATER DEPTH MHASUREMENT (Describe):
	(WATER DELTITION CONTENT (COSCINO).
MONITORIN	IG WELL CONDITION:
	[] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS:
Check-off []	EQUIPMENT CLEANED BEFORE USE WITH ISOPROPERS (List): Proper
2[]	PRODUCT DEPTH
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Slightly Cloudy brown Odor: brown Other Comments:
4[]	WELL EVACUATION: Method: Per/staffic pump Volume Removed: Cross 8 gallono Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: no-c Other comments: 24.4 9.3 15.17 = M.5 gallono

SAMPLE EXTRACTION METHOD: 5[] Bailer made of:
Pump, type: Peristaltic Other, describe:__ Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE Began purge 820 6[] ON-SITE MEASUREMENTS: Meausred with Time Temp (°C) pН Cond (µS/cm) DO (mg/L) Redox (mV) Salinity Nitrate Sulfate Ferrous Iron 4 Callora SAMPLE CONTAINERS (material, number, size):_ .7[] ON-SITE SAMPLE TREATMENT: ... 8[] Containers:_____ Filtration: Method_ [] Method_____ Containers:___ Method_____ Containers:____ Preservatives added: Method HCI Containers: VOAs Containers: Method_____ Containers: Method_ Method_ Containers: CONTAINER HANDLING: 9[] Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest OTHER COMMENTS:__ 10[]

Groundwater Sampling Record

Monitoring Well No. (Cont'd)

GW SAMPLING RECORD MONITORING POINT DEVELOPMENT RECORD

Job Number: <u>729691.32020</u>	Job Name: AFCEE-RNA	
Location Columbus AFB, ST24	by RN/JH/CS/BL BMH Date	1996
Well Number LFOG - 4FTRNGL	Measurement Datum To	5 PUC
Pre-Development Information	Time (Start): 10	3~
Water Level: Z.73 '780c.	Total Depth o	f Well: 12.77 'TP 02
Water Characteristics		Ille" Daveter Well
Odor: <u>None</u> 、 V - Any Films or Immiscible Mi - pH <u>によって</u> T Specific Conductance(µS/cn Disolved Oxygen (mg/L)	emperature(°C) ZIII	(cusing Walane = 0950) 18 ×10 CV = 0.92 gal.
Interim Water Characteristics Time Is	040 1044	
· ن <u>ن</u>	10 (Dry) 0.	· Well Bailed Dry at 1.00 gallons.
pH(e	04	- Water Level = 12.70'TPX
Temperature (°C)	0.5	- water weel at
Specific Conductance(μS/cm)	45	10, min, = 12.70 7P.K
District Oxygen (mg/b)	08	Wester Not Rising -> Dry Well - Old not Super
Post-Development Information	Time (Finish):	
Water Level:	Total Depth of Well:	
Approximate Volume Removed: _	-	
Water Characteristics		
ColorOdor: None V Any Films or Immiscible M pH		
Specific Conductance(µS/cr Disolved Oxygen (mg/L)	n)	

Sampling Location <u>Columbus AFB - LF6</u> Sampling Dates <u>11/04/96-11/24/96</u>

GROUND	WATER SAMPLING RECORD - MONITORING WELL しださっと リテらにいいこ						
REASONE	(number)						
DATE ANI	OR SAMPLING: [X] Regular Sampling; [A] Special Sampling; PN A O TIME OF SAMPLING: 11/17/50. , 1996 Care not Sample						
SAMPLE C	COLLECTED BY: HH/BL/CS/RN of Parsons ES RIMA						
WEATHER	: 1 looky (as F						
DATUM FO	DR WATER DEPTH MEASUREMENT (Describe): TOP PIC - 14 chest Point of Cold						
	101 101 101 101 101 101 101 101 101 101						
MONITOR	ING WELL CONDITION:						
	[] LOCKED: UNLOCKED						
	WELL NUMBER (IS- IS NOT) APPARENT						
	STEEL CASING CONDITION IS: C. K.						
	INNER PVC CASING CONDITION IS: OK.						
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT						
•	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR						
	[] MONITORING WELL REQUIRED REPAIR (describe):						
Check-off							
1 [X]	EQUIPMENT CLEANED BEFORE USE WITH Control Alcone Jaconport DI Carlo						
• .	Items Cleaned (List): We have I and I without a some for the control of the contr						
	Probas + Flow Through Cell						
² [ɣ]	PRODUCT DEPTH NA FT. BELOW DATUM						
	Measured with:						
	WATER DEPOS						
	WATER DEPTH 7.35' TRUC / TD = 14.6' TRUC / 11/2" PUC FT. BELOW DATUM						
	Measured with: Sommet worker land with						
113	Casing Versile = 0.75 gal. Proge Value = 2.2 gal.						
3 [4]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):						
	Appearance: Clear Odor: New						
	Other Comments:						
	Other Comments.						
[v]	WELL EVACUATION:						
V -	Method: Peristalta Paro						
	Volume Removed: 3,0+ 581.						
	Observations: Water (slightly - very) cloudy Clause						
	Water level (rose fell- no change)						
	Water odors:						
	Other comments:						
	MOTE!						
	Bailed Dry, did not recover in 24 his, Not Scripted						

Groundwater Sampling Record

Monitoring Well No. LPOW-4FBRN- (Cont'd)

	[D]_Pump	· made of: , type: ♀ , describe:_	evistultic	-		
	Sample ob	tained is [X	() GRAB;	[] COMI	POSITE SAMPLE	
ON-SITE ME	EASUREM	ENTS: ->	Barled	dry at 1	·0 gal.	
Volue (gal	D. O.S	1.0	210	3.0	-	
Time	1135	1140			Meausred with	
Temp (°C)	20.8	20.7			45I SS	
pН	5.84	5.70			Oren 275.A	
Cond	60				YSI	
(μS/cm)		60				
DO (mg/L) Redox (mV)	5.50	5.6		/_ \	45I2Z	
Salinity	200	198	/	<u> </u>		
Nitrate			<u> </u>		·	
Sulfate	<u> </u>			-		
Ferrous Iron		 	 	-		
SITE SAN	MPLE TRE	ATMENT:				
[] NA F		Math	nod.		_ Containers:	
		Math	od		Containers: Containers: Containers:	
[] NA F	iltration:	Meth Meth Meth	nod nod nod	Ich exce	Containers: Containers: Anacs	
[] NA F	iltration:	Meth Meth Meth es added: — Meth	nod nod - A.\ _	ICL Exce	Containers: Containers: Containers:	
[] NA F	iltration:	Meth Meth Meth es added: — Meth Meth	nod nod nod nod	ICL Exce	Containers: Containers: Containers: Containers: Containers:	
[] NA F	iltration:	Meth Meth Meth es added: — Meth Meth Meth	aod	Ich exce	Containers: Containers: Containers: Containers: Containers: Containers:	
[] NA F	iltration:	Meth Meth Meth es added: — Meth Meth Meth Meth	aod	Ich exce	Containers: Containers: Containers: Containers: Containers:	
[] NA F	reservative HANDLIN Conta Conta	Meth Meth Meth es added: — Meth Meth Meth Meth	andandandandandandandandandandandand_and	ICL Exce	Containers: Containers: Containers: Containers: Containers: Containers:	
[] NA F	reservative HANDLIN Conta Conta	Meth Meth es added: — Meth Meth Meth Mig: siner Sides I siner Lids T	anodanodanodanodanodanodanodanodanodanodanodanodanodanodanodanodanodanod_anod	est	Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers:	,
[] NA F	reservative HANDLIN Conta Conta	Meth Meth es added: — Meth Meth Meth Mig: siner Sides I siner Lids T	anodanodanodanodanodanodanodanodanodanodanodanodanodanodanodanodanodanod_anod	est	Containers: Containers: Containers: Containers: Containers: Containers:	,
[] NA F	reservative HANDLIN Conta Conta	Meth Meth es added: — Meth Meth Meth Mig: siner Sides I siner Lids T	anodanodanodanodanodanodanodanodanodanodanodanodanodanodanodanodanodanod_anod	est	Containers: Containers: Containers: Containers: Containers: Containers: Containers: Containers:	,

Sampling Location Columbus AFB - LF6
Sampling Dates 11/04/96-11/24/96

GROUND W	ATER SAMPLING RECORD - MONITORING	WELL LFG-MP	A. (D)
REASON FO	R SAMPLING: [X] Regular Sampling; [] S TIME OF SAMPLING: 11/17/96, 1996	pecial Sampling;	(number)
WEATHER:_	LLECTED BY: JH/BL/CS/RTY OF LATSONS ES 65 O VERCES WATER DEPTH MEASUREMENT (Describ	e):	
MONITORIN	G WELL CONDITION:		
	[] LOCKED: WELL NUMBER (IS - NOT) APPARENT STEEL CASING CONDITION IS:	& UNLOCKED complete	
	INNER PVC CASING CONDITION IS:	(IS IS NOT) APPARENT	
	[] MONITORING WELL REQUIRED REPA		
Check-off	EQUIPMENT CLEANED BEFORE USE WITH		ter
		V	
2[]	PRODUCT DEPTH		FT. BELOW DATUM
	WATER DEPTH Measured with:		FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVA Appearance: Odor: Other Comments:		
4[]			

Groundwater Sampling Record
Monitoring Well No. LFG-MPA(D)(Cont'd)

5[]	SAMPLE	EXTRACTIO	N METHO	D:				
,		[] Bailer	made of:					
		[] Bailer W] Pump,	type: P	ærista	lt 10			
		Other,	describe:_					
		Sample obta	ained is [X	() GRAB;	[] COM	POSITE S.	AMPLE	
6[]	ON-SITE MEASUREMENTS: poured out silty contents of everneyer flack							contents
- ()	of evenneyer flack						lask	
	Time	350	406	1416	Ψςτ	438	Meausred with]'
	Temp (°C)	21.0	20.9	20.5	30,5	20,1	451.55]
	pH	3.67	5.77	5.76	5.06	5.67	Drion 250A	<u>.</u>
	Cond (µS/cm)	160	158	150	118	118	Hach Mote	<i>t</i>
	DO (mg/L)		0.36	0.35	1.38	0.96	451 <5	1
	Redox (m\	1) -297	-280	- 238	- 60	-67.5	OrumasoA]
	Salinity			ļ			ļ	
	Nitrate Sulfate							
	Ferrous Iro	n		<u> </u>		<u> </u>		+
			0.4	0.5	0.9	1.1		1
7[]	SAMPLE	CONTAINERS	JNIAINERS (material, number, size):					
		16 A	0A2 2		——————————————————————————————————————			
\		<u> </u>	07					
								
8[]	ON-SITE S	SAMPLE TRE	ATMENT	•				
	′[]	Filtration:	Met	hod		Contai	ners:	
	()	i naunon.					ners:	
			Met				ners:	
	V	Preservative	o addad					
	\triangle	FIESELVALIVE	s added.		,			
	•		Metl	nodbon	<u>u</u>	Contai	ners: VOA	•
			Meti				ners:	
						Contai		
			Meth	100		Contai	ners:	
9[]	CONTAIN	ER HANDLIN	1G:					
		\						
	•	Conta	iner Sides iner Lids	Labeled				
		Conta	iner Lius	ed in Ice Ch	est			
	·						• \	
10[]	OTHER CO	OMMENTS:_	Ver	cy s	low	pur	ring:	
				<u> </u>			-	

Sampling Location Columbus AFB - LF6
Sampling Dates 11/04/96-11/24/96

GROUND W.	ATER SAMPLING RECORD - MONITORING WELL LF6-MPBB
REASON FOO DATE AND T SAMPLE CO WEATHER:_	(number) R SAMPLING: [X] Regular Sampling; [] Special Sampling; IME OF SAMPLING: 1//1 , 1996 a.m./p.m. LLECTED BY: JH/BL/CS/RN of Parsons ES (60 (16:4) R WATER DEPTH MEASUREMENT (Describe): TOC
MONITORIN	G WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS) IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH Distilled worker Items Cleaned (List): Probas
2[]	PRODUCT DEPTH
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:

Groundwater Sampling Record

Monitoring Well No. L. C. - M&B (Cont'd) SAMPLE EXTRACTION METHOD: 5[] [] Bailer made of: X] Pump, type:_ Peristolic Other, describe:_ Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE **ON-SITE MEASUREMENTS:** 6[] Meausred with Time Temp (°C) 9.8 pН Cond (µS/cm) DO (mg/L) Redgx (mV) Salinity Natate Sulfate Herrous Iron 7[] ON-SITE SAMPLE TREATMENT: 8[] Containers:_ Method_ Filtration: [] Containers:____ Method Containers:___ Method_ Preservatives added: [] Containers: Method_ Containers:___ Method_ Method_ Containers:_ Containers:_ Method_ 9[] CONTAINER HANDLING: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest 10[]

Sampling Location <u>Columbus AFB - LF6</u> Sampling Dates <u>11/04/96-11/24/96</u>

GROUND '	WATER SAMPLING RECORD - MONITORING WELL L Foo - MI	PB
DATE AND SAMPLE C WEATHER	FOR SAMPLING: [X] Regular Sampling; [L] Special Sampling; PLA D TIME OF SAMPLING: 1116 , 1996 1130 am/p.m. COLLECTED BY: JH/BL/CS/RN of Parsons ES Bouth Cloudy - Paining (60°F DR WATER DEPTH MEASUREMENT (Describe): Top Puc	(number)
MONITOR	DIC UTL COMPATION	
MONITOR	ING WELL CONDITION: [] LOCKED: WELL NUMBER (S) IS NOT) APPARENT STEEL CASING CONDITION IS: OK	·
	INNER PVC CASING CONDITION IS: OK	
	WATER DEPTH MEASUREMENT DATUM (18 - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off		
1 [-]	EQUIPMENT CLEANED BEFORE USE WITH (Lactor / Accord De Items Cleaned (List): (Lactor Level Inches	I water
2 JT	PRODUCT DEPTH \ \ Measured with:	FT. BELOW DATUM
	WATER DEPTH 4.28' TPX Measured with:	FT. BELOW DATUM
3.[-]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: St. Classy Cleaned Wichy Odor: Other Comments:	
4 [4]	WELL EVACUATION: Method: Renstatic Purp Volume Removed: 1 Ot. > Lieu Developed By of Observations: Water (slightly-very) cloudy Water level (rose - GEP-no change) Water odors: Nove Other comments:	ley before

Groundwater Sampling Record

Monitoring Well No. LFa-MB (Cont'd)

S ON-SITE SAMPLE TREATMENT: ON-SITE SAMPLE TREATMENT: Filtration:	5[]	SAMPLE	EXTRACTION I	метнор:						
ON-SITE MEASUREMENTS: Date >			[] Bailer ma [Pump, ty [] Other, de	ade of: pe: Revisibility scribe:	4					
ON-SITE MEASUREMENTS: Date >			Sample obtain	ed is [X] GRA	B· [] CON	MPOSITE	SAMPLE			
Time Meausred with Temp (°C) pH			•							
Time Meausred with Temp (°C) pH	6[]	ON-SITE MEASUREMENTS: None -> Well Bailed Dry day before, Sample any								
PH Cond (µS/cm) DO (mg/L) Redox (mV) Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): IO UCAS µJ HCL /× 12K mt Plant Performance Nethod Containers: Method Containers: Method Containers: Method Containers: Method TUA-G Containers: Method TUA-G Containers: Method UCAS Containe		Time				1	Meausred with			
Cond (µS/cm) DO (ng/L) Redox (mV) Salinity Nitrate Sulfate Ferrous Iron 8 [] ON-SITE SAMPLE CONTAINERS (material, number, size):		Temp (°C)]		
Containers: Containers: Method Contai								_		
DO (mg/L) Redox (mV) Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): SAMPLE CONTAINERS (material, number, size): SAMPLE										
Redox (mV) Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): SAMPLE CONTAINERS (material, number, size): SAMPLE CONTAINERS								4		
Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): SAMPLE CONTAINERS (material, number, size): SAMPLE CONTAINERS (material, number, size): I						_		-		
Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size):		1			-			┨.		
Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): O UCAS, u.j HCL /x 12C m.j Mect. /x 12C								-		
Ferrous Iron SAMPLE CONTAINERS (material, number, size): 10 UCAS, us HCL /x 125 mt Plant /x Charge Measure Ter 8 [] ON-SITE SAMPLE TREATMENT: [] Filtration: Method								1		
SAMPLE CONTAINERS (material, number, size): 10 UCAS, w. HCL /x 125 m Plant. /x 125 m Plan			n			- 		1		
Secondarian Secondaria S										
8 [ON-SITE SAMPLE TREATMENT: [] Filtration: Method Containers:	7[4]	SAMPLE CONTAINERS (material, number, size): 10 UOAs wij HeL								
8 ON-SITE SAMPLE TREATMENT: [] Filtration: Method Containers:										
Filtration: Method Containers:						1x Class	Maen 1an	·		
Filtration: Method Containers:								W		
Filtration: Method Containers:	8 [1	ON-SITE S	SAMPLE TREA	TMENT:						
Method Containers: Method Containers: Method TSTEX Containers: Method TUH-G Containers: Method UCS Containers: Method VCS Containers: Method Yudia Containers: Method TUH-G Containers: Method UCS Containers: Method TUH-G Containers: Method UCS Containers: Method TUH-G Containers: Method UCS Containers: 9 [] Container Sides Labeled [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest								•		
Method Containers: Preservatives added: All UOAs Hace Method TSTEX Containers: Method TUH-G Containers: Method UCAS Containers: Method Method Method Method Containers: Method Method Method Containers: Method Method Method Containers: Method Method Method Containers: Method Method Method Method Containers: Method Method Method Method Method Containers: Method Meth		[]	Filtration:							
Method TSTEX Containers: Method TUH-G Containers: Method UCS Containers: Method Water Containers: Method Water Containers: Method Tuh-G Containers: Method Water Containers: 9 [] Container Sides Labeled [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest										
Method TSTEX Containers: Method TUH-G Containers: Method UXS Containers: Method water Containers: Method TuH-G Containers: Method Water Containers: 9 [] Container Sides Labeled [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest				Method		Conf	ainers:			
Method TSTEX Containers: Method TUH-G Containers: Method UXS Containers: Method water Containers: Method TuH-G Containers: Method Water Containers: 9 [] Container Sides Labeled [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest		Γì	Preservatives	added:		11-2		·		
Method TUH-G Containers: Method UCS Containers: Method rufus Containers: 9 [] CONTAINER HANDLING: [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest		l j	110301 vatives		tii nour	Hac				
Method TUH-G Containers: Method UCS Containers: Method rufus Containers: 9 [] CONTAINER HANDLING: [] Container Sides Labeled [] Container Lids Taped [] Containers Placed in Ice Chest			٠	Method	BTEX	Cont	ainers:			
Method rutue Containers: 9 [] CONTAINER HANDLING: [·	Method	TUH-6	Cont	ainers:			
CONTAINER HANDLING: [
Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest				Method	meture	Cont	ainers:			
Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest	012	CONTAIN	ED HANDI DIC	·						
Container Lids Taped Containers Placed in Ice Chest		CONTAIN	ERTANDLING	.				•		
Containers Placed in Ice Chest			[Contain	er Sides Labeled	i					
10[] OTHER COMMENTS:			[\ Contain	ers Placed in Ice	Chest					
TO[] OTHER COMMENTS:	10 []	OTT 1777 C	OM CENTE							
	10[]	OTHERC	OMMEN I S:							
										
							······································			

GROUND V	WATER SAMPLING RECORD - MONITORING WELL LFG-MPC (5)
DATE AND SAMPLE C WEATHER	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING:
MONITORI	WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH isopropanol + distilled water Items Cleaned (List): 100 pes
2[]	PRODUCT DEPTH
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Cloudy brown Odor: Nowl Other Comments:
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:

Groundwater Sampling Record
Monitoring Well No. LFG-MPC(s) (Cont'd)

5[]	SAMPLE EX	XTRACTIO	N METHO	D:		,		
,		[Pump	made of: , type: Po describe:	eristal	tic			
		Sample obt	tained is [X	GRAB;	[] COM	POSITE SA	AMPLE	
6[]	ON-SITE M	EASUREM	ENTS:					
	Time	807	810	820	8 30	840	Meausred with	1
	Temp (°C)	17.3	17.3	17.1	16.9	17,1	45I SS]
	pН	6.67	6.63	6.09	6.79	6.48	Orion 2504]
	Cond (µS/cm)	519	512	496	500	491	Hach Mde	<u>+</u>
	DO (mg/L)	1291	2,56			2.49	45E SS	.]
	Redox (mV)	-68	-66	-61	-53	-44	Orions 250	1
	Salinity Natrate		-	ļ	<u> </u>			-
	Sulfate	 	1		 	-		1
	Ferrous Iron			<u> </u>]
7[]	SAMPLE CO		S (material,	رص رط number, s	ize):			
		1 Pol						
			0	.,				
8[]	ON-SITE SA	AMPLE TRI	EATMENT	:				
•	[]	Filtration:	Metl	nod		Contai	ners:	
							ners:	
			Meth	nod		Contai	ners:	
	[]	Preservativ	es added:					
		•	Meth	hod HC	ار	Contai	ners: UDA	
			Meth			Contai		
			Meth			Contai		
		•	Meth	nod		Contai	ners:	
9[]	CONTAINE	R HANDLI	NG:					•
		[X] Con	tainer Sides tainer Lids ? tainers Place	Taped	hest	ſ.		
10[]	OTHER CQ	ммеңтѕ:_	SIGN	iticar	t aer	rotion c	Jue to 1	ittle
	ust	er in	mella	and 5	100 re	charge	Pump is	3
	_ perc	ers A	Aso	stim	00551101	res at	812 P	mping
		vola	ne of	wate	V DO	prom	bly overe	stmated
						1 - 1	7	

GROUND W	ATER SAMPLING RECORD - MONITORING WELL MPC(D) /LFC
REASON FO DATE AND SAMPLE CO WEATHER:	(number) OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING:
MONITORIN -	WELL CONDITION: [] LOCKED: WELL NUMBER (IS- IS NOT) APPARENT STEEL CASING CONDITION IS: INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS) IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off []	EQUIPMENT CLEANED BEFORE USE WITH Distilled water Items Cleaned (List): Lobe 5
2[]	PRODUCT DEPTH
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Confine to the control of the co
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:

	Groundwater Sampling Record Monitoring Well No. MPC(D) (Cont'd)
5[]	SAMPLE EXTRACTION METHOD:
	Bailer made of: Pump, type: Other, describe: Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE
6[]	ON-SITE MEASUREMENTS:
	Time 915 928 935 1000 1011 Meausred with Temp (°C) 16.3 17.4 17.6 17.8 17.8 45\$ 55 pH 1.16 5.35 5.22 5.48 5.39 0rb 256 Cond (μS/cm) 2-60 192 184 181 177 Hach Meter DO (mg/L) 177 0.00 0.42 1.06 0.63 451 35 Redox (mV) 60 135 -18 -222.5 -300 0rion 2506 Salinity Nitrate Sulfate
	Ferrous Iron
7[]	SAMPLE CONTAINERS (material, number, size): 10 VOAS 10 Poly
8[]	ON-SITE SAMPLE TREATMENT:
	[] Filtration: Method Containers:
	Preservatives added:
	Method Containers: VOAS Method Containers: Method Containers: Method Containers: Containers:
9[]	CONTAINER HANDLING:
	Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest
10[]	OTHER COMMENTS:

Sampling Location Columbus AFB - ST24
Sampling Dates 11/04/96-11/24/96

GROUND W	ATER SAMPLING RECORD - MONITORING WELL LECS - YO	(A) (B)
•		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; [] Special Sampling;	
DATE AND	TIME OF SAMPLING:, 1996a.m./pm	
SAMPLE CO	DLLECTED BY: JH/BL/CS/RN of Parsons ES	
WEATHER:	TBMA Cloudy	
DATUM FO	R WATER DEPTH MEASUREMENT (Describe): No - Implent	
MONITORII	NG WELL CONDITION:	
	[] LOCKED: [4_UNLOCKED	
	WELL NUMBER (D- IS NOT) APPARENT	
	STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS: Cond	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT A	₩
•	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	[] MONITORING WELL REQUIRED REPAIR (describe):	'
Charles 66		
Check-off	POLITIMENT OF PANED DEPONE FIGE WITH D. 1 - a. Etc. S	-h . 1 . 1 . 1
141	EQUIPMENT CLEANED BEFORE USE WITH Preses a Floris Items Cleaned (List): up DI woulder	1 mag n Co 11
	Items Cleaned (List):	- Havey
211	PRODUCT DEPTH WA	FT. BELOW DATUM
~ 3	Measured with:	
	•	
	WATER DEPTH	FT. BELOW DATUM
	Measured with:	
3 [WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
	Appearance: Shawty Clarry	
	Odor:	
	Other Comments:	
4[]	WELL EVACUATION:	
	Method: Renstaltie Puno	
	Volume Removed: 1.0 gallan	
	Observations: Water (steptly - very) cloudy	•
	Water level (rose - fell - no change)	
	Water odors: Var	
	Other comments:	

Groundwater Sampling Record

Monitoring Well No. LFCK-MPD (b) (Cont'd)

517	SAMPLE EX		i willing					
	-	Pump,	made of: type:_Qe^ describe:	ristablic				
	:	Sample obt	ained is [X] GRAB; []	СОМРО	SITE SA	MPLE	
5 FJ	ON-SITE ME	ASUREM	ENTS:					
	Voi-(gul-)	20	2.5	3.0				
	Time	1358	1400	1405			Meausred	with
	Temp (°C)	18.0	18.0	18.0				
	pН	5,05	5.04	5.03				
	Cond				ł			
	(μS/cm)	140	110	115				
	DO (mg/L)	0.18	0.16	0115				
	Redox (mV)	92.6	95.7	96.3				
	Salinity							
	Nitrate							
	Sulfate		-					
	Ferrous Iron	L	1	ł				
	-		<u> </u>	, number, size):	15	5 ml	Plasta	-
	- - -				15	5 ml	Plasta	Ja
	ON-SITE SAI				15	5 ml	Plasta	-
3[]	ON-SITE SAI	MPLE TRI	EATMENT			5 ml	Maser	Ja
	ON-SITE SAI	MPLE TRI	EATMENT:	: hod		Contain	Plasta Masen	Jav
	ON-SITE SAI	MPLE TRI	EATMENT: Metl Metl		(2	Contain Contain	Plasta Masen ners: ners:	Ja
	ON-SITE SAI	MPLE TRI	EATMENT: Metl Metl	: nod	(2	Contain Contain	Plasta Masen ners: ners:	Ja
	ON-SITE SAI	MPLE TRI	EATMENT: Metl Metl	: nod		Contain Contain	Plasta Masen ners: ners:	Ja
	ON-SITE SAI	MPLE TRI	EATMENT: Metl Metl Metl Metl	: hodhod	51 C	Contain Contain	Plasta Masen ners: ners:	Jar
	ON-SITE SAI	MPLE TRI	EATMENT: Metl Metl Metl es added:	: hodhod	51 C	Contain Contain	Plasta Masen ners: ners:	Jar
	ON-SITE SAI	MPLE TRI	EATMENT: Metl Metl des added: Metl Metl Metl Metl	hod_hod_ hod_ hod_ BTEX hod_TUH-C	SI CAC	Contain Contain Contain Contain Contain Contain	ners:	Ja
	ON-SITE SAI	MPLE TRI	EATMENT: Metl Metl des added: Metl Metl Metl Metl	hod_hod_ hod_ hod_ All Uc hod_BTEX hod_TUH-C	SI CAC	Contain Contain Contain Contain Contain Contain	ners:	Ja
	ON-SITE SAI	MPLE TRI	EATMENT: Metl Metl Metl es added: Metl Metl Metl Metl	hod_hod_ hod_ hod_ BTEX hod_TUH-C	SI CAC	Contain Contain Contain Contain Contain Contain	ners:	Ja
	ON-SITE SAI	MPLE TRE	EATMENT: Metl Metl Metl Metl Metl Metl Metl Met	hod_hod_ hod_ hod_ hod_BTEX hod_Tuff-c hod_Pesture hod_WX	SI CAC	Contain Contain Contain Contain Contain Contain	ners:	Ja
	ON-SITE SAI	MPLE TRE	EATMENT: Metl Metl Metl Metl Metl Metl Metl Met	hod_hod_ hod_ hod_ hod_BTEX hod_TUH-C hod_Perlum hod_VXX	SI CAC	Contain Contain Contain Contain Contain Contain	ners:	Ja
	ON-SITE SAI	MPLE TRE	EATMENT: Metl Metl Metl Metl Metl Metl Metl Met	hod hod hod BTEX hod Tulf chod VXX	SI CAC	Contain Contain Contain Contain Contain Contain	ners:	Ja
	ON-SITE SAI	MPLE TRE	EATMENT: Metl Metl Metl Metl Metl Metl Metl Met	hod_hod_ hod_ hod_BTEX hod_TUH-C hod_Perlum hod_VXX	SI CAC	Contain Contain Contain Contain Contain Contain	ners:	Ja
	ON-SITE SAI	MPLE TRE	EATMENT: Metl Metl Metl Metl Metl Metl Metl Met	hod hod BTEX hod Tull chod	SI CAC	Contain Contai	ners:	J& .
	ON-SITE SAI	MPLE TRE	EATMENT: Metl Metl Metl Metl Metl Metl Metl Met	hod hod hod BTEX hod Tulf chod VXX	SI CAC	Contain Contai	ners:	J& .
	ON-SITE SAI	MPLE TRE	EATMENT: Metl Metl Metl Metl Metl Metl Metl Met	hod hod BTEX hod Tull chod	SI CAC	Contain Contai	ners:	J& .

GROUND V	WATER SAMPLING RECORD - MONITORING WELL L - C x 2 - y	11,6 (21
		(number)
REASON F	OR SAMPLING: [X] Regular Sampling; [D] Special Sampling; $Q N A$	•
DATE AND	TIME OF SAMPLING: 11/18 , 1996 0430 mm/p.m.	
SAMPLE C	OLLECTED BY: JH/BL/CS/RN of Parsons ES	
	: BMH Cloudy-Rumy,	
DATUM FO	DR WATER DEPTH MEASUREMENT (Describe): つらっ アット	
MONITORI	ING WELL CONDITION:	
	[] UNLOCKED	
	WELL NUMBER (IS IS NOT) APPARENT	
	STEEL CASING CONDITION IS: Cox	
	INNER PVC CASING CONDITION IS: Coccd	
	WATER DEPTH MEASUREMENT DATUM(IS- IS NOT) APPARENT	
	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	[] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off		1 - 1
1 [/	EQUIPMENT CLEANED BEFORE USE WITH Alcowor Toopse	
	Items Cleaned (List): Water level - Tradicator	
	Probes a Flow Trays	.Ce.11
21.14	DRODUCT DEDTIL	
2 []	PRODUCT DEPTH NA	FT. BELOW DATUM
	Measured with:	v
	WATER DEPTH Z-45' TPUC	FT. BELOW DATUM
	Measured with: Solves	FI. BELOW DATOM
	Weasured with. Serves	
3 [/]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
<i>y</i> ,	Appearance: 51. Crooky	
	Odor: Nove	
	Other Comments:	
_		
4.1	WELL EVACUATION:	
	Method: Rengtaltic Purp	
	Volume Removed: 1.5 551	
	Observations: Water (stightly-very) cloudy	
	Water level (rose - fell - nochange)	
	Water odors:	
	Other comments:	**

Groundwater Sampling Record

Monitoring Well No. LFCX3-MPF(5)(Cont'd)

Bailer made of:	[7]	SAMPLE EX	TRACTIC	он метно	D:				
Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE ON-SITE MEASUREMENTS: Time									
ON-SITE MEASUREMENTS: Time									
ON-SITE MEASUREMENTS: Time			Comple ob	tained is fy	ZI CDAD.	[] (0) (1	OCITE CA	MOLE	······································
Time OS S OS S OS S OS S OS S OS S OS S OS			Sample ob	tailled is [A	ij GRAB;	[] COMP	OSHE SA	MPLE	
Temp (°C) 17 17. 5 17. 5 17. 5 pH	M	ON-SITE ME	EASUREM	ENTS:					
PH G. 2-1 G. 33 G. 32 Cond (µS/cm)			0915	0924	0930			Meausred with	
Cond (µS/cm) DO (mg/L) DO (mg/L) DO (mg/L) Containers: Redox (mV) Perservatives added: Method Metho			1	7.5	17.5				
(μS/cm) ΘοΟ Θ2Θ Θ2Θ Θ2Θ DO (mg/L) O.324 O.154 O.157. Solinity O			6.27	(0.33	(0.32				
DO (mg/L) 0.2-1 0.15 0.22 Redox (mV) -107.3 -130.3 -121.7 Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): 10 000 cm 1140 cm (x 125 cm) Plauling Wethod Containers: Method U005 Containers: Method U005 Containers: Method U005 Containers: Method U005 Containers: Method U005 Containers: Method Ana Containers: Method Ana Containers: Method U005 Containers: Method Tontainers: Method Tontainers: Method Tontainer Sides Labeled [1] Container Sides Labeled [2] Container Sides Labeled [3] Container Sides Labeled [4] Container Sides Labeled [4] Container Sides Labeled [4] Container Sides Labeled [5] Container Sides Labeled [6] Container Sides Labeled [7] Container Sides La		(6)	0	5.36	0.5				
Redox (mV) -107.3 -130.3 -121.7 Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): 10 UOAs will like to 1x 125 mill Plumber. Rethod Containers: Method Containers Placed in Ice Chest									
Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): 10 UOAs and 140 L (x (25 and Planting) Z (25 and Planting) Western Jory ON-SITE SAMPLE TREATMENT: [] Filtration: No Method Containers:				1	1				
Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): 10 000 cm 140 L (x (25 cm Plushic 2x (21cus Masser Jox) ON-SITE SAMPLE TREATMENT: [] Filtration: No Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Method Containers: Method Method Containers: Method U005 Containers: Method J005 Containers: Method J005 Containers: Containers: Method Avia Containers: Method Contain			101.3	13013	10117				
SAMPLE CONTAINERS (material, number, size): 10 00As well 140 L. (x 125 ml Plushic. 24 Colours Masca Joss ON-SITE SAMPLE TREATMENT: L] Filtration: NA Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Method Containers: Method Method Containers: Method Method Containers: Method UOCs Containers: Method UOCs Containers: Method Ana Containers: Method Ana Containers: Method Total Containers: Method Containers Method Total Containers Method Containers: Method Total Containers Method Containers Method Containers Method Total Containers Method Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Containers Method Total Co		Nitrate			1			<u> </u>	
SAMPLE CONTAINERS (material, number, size): 10 JOAs will like to 125 mile Plantic. 125 mile Plantic. 125 mile Plantic. 24 (215 mile Plantic.	,	·							
ON-SITE SAMPLE TREATMENT: Filtration: No		Ferrous Iron							
Method Containers: Method Containers: Method Tify Tun a Containers: Method Method Containers: Method Method Containers: Method Method Containers: Method Method Containers: Method Method Containers: Method Anas Containers: Container Sides Labeled Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest	7	ON-SITE SAI	MPLE TRI	EATMENT:	:				
Method Containers: Method Containers: Method Tify Tun a Containers: Method Method Containers: Method Method Containers: Method Method Containers: Method Method Containers: Method Method Containers: Method Anas Containers: Container Sides Labeled Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest		[]- 1	Filtration:	いへ Meti	nod		Contair	ners:	
Method Biex June Containers:		• •		Meth	nod		_ Contain	ners:	
Method BTEX 70H & Containers:				Meth	nod		_ Contair	iers:	
Method Containers: Method Containers: Method Ana Containers: Method Ana Containers: Containers: Containers: Containers: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest		H I	Preservativ	es added:	AIL U	H cAC	-c (
Method Method Containers: Method Nocs Containers: Method Ana Containers: Containers: Containers: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest				Meth	and Biev	Truitie	Contair	ierc.	
Method UOCS Containers: Method Anas Containers: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest									
CONTAINER HANDLING: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest				Meth	nodUO	<u>د بي</u>	_ Contair	ners:	
Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest				Meth	rod Ania	.5	Contair	iers:	
Container Lids Taped Containers Placed in Ice Chest	1	CONTAINER	. HANDLI	NG:					
		{ [] Cont	ainer Lids 7	Taped	est			
[] OTHER COMMENTS:	r 1	OTUED COM	_						
	l J	OTHER COM	IMEN IS:_						
				····					

WATER SAMPLING RECORD - MONITORING WELL LEGG - MPF	(0)
OLLECTED BY: HABL/CS/RN of Parsons ES TSMN	(number)
PR WATER DEPTH MEASUREMENT (Describe): NA - Indiant	
NG WELL CONDITION:	
[] LOCKED: LA UNLOCKED WELL NUMBER (18 - IS NOT) APPARENT STEEL CASING CONDITION IS: CX	
WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT (ID DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [ID MONITORING WELL REQUIRED REPAIR (describe):	JA
EQUIPMENT CLEANED BEFORE USE WITH Alcocy DI wo	elv Thugh Cell
PRODUCT DEPTH Measured with:	FT. BELOW DATUM
WATER DEPTH K_AP	FT. BELOW DATUM
WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: المجالع المعالع المعالم المعا	
WELL EVACUATION: Method:	,
	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 117, 1996 (

Groundwater Sampling Record

Monitoring Well No. LFas-mpf(b) (Cont'd)

	SAMI DE L	SATRACTIO	N METHOI	D:				
		[] Bailer	made of:		0 -			· · · · · · · · · · · · · · · · · · ·
		Pump,	type: <u>(</u> حصر describe:	istaltic	runo			
		-						
		Sample oot	tained is [X	J GRAB;	[] COMP	OSHE SA	MPLE	
6 FT		MEASUREM						
	<u>امری). اور</u> Time	1635	1.0	1			Meausred with	7
	Temp (°C)	18.4	1620					1
	pН	6.49	6.48					1
	Cond							NOTE:
	(μS/cm) DO (mg/L)	600	620	\ <u>.</u>	, 4	7 ((`	Insteal De
٦	Redox (mV		-150	ان کو د	ming A	<u>v- Du</u>	bury	Insteal De might beter
	Salinity	/ -13.7	1 30					1 ', 5 ~ ~ ~ ~
	Nitrate							1
	Sulfate		ļ					
	Ferrous Iron	1	<u> </u>	<u> </u>				_
							Plastic 5 Masen Jav	
8 []	ON-SITE S	AMPLE TRE	EATMENT:	:				
	[]	Filtration:	Meth	od		Contai	ners:	
	. ,		Meth	nodbor		_ Contai	ners:	
			Meth	10d		Contai	nerc.	
	#	Preservative	es added:	All U	OAs H			
·	#	Preservativ				u	ners:	
·	#	Preservativ	Meth	nod Bie	×	Contai Contai	ners:	
·	#	Preservativ	Meth Meth Meth	10d Bre 10d TUH 10d Mct	* -6 var_	Contai Contai Contai	ners: ners:	
·	#	Preservativ	Meth Meth	10d Bre 10d TUH 10d Mct	* ~	Contai Contai Contai	ners:	
9 []		Preservativ	Meth Meth Meth Meth	10d Bre 10d TUH 10d Mct	* -6 var_	Contai Contai Contai	ners: ners:	
9 <u>1</u> 7		ER HANDLII Cont Cont	Meth Meth Meth Meth	nod TUH nod MeH nod MeH nod MeH Labeled Taped	X ~G War Xx	Contai Contai Contai	ners: ners:	
•	CONTAINI	ER HANDLI Cont Cont	Meth Meth Meth NG: ainer Sides ainer Lids T	nod TUH nod Med nod VC Labeled Taped ed in Ice Ch	var var est	Contai Contai Contai Contai	ners: ners: ners:	
9 / 7	CONTAINI	ER HANDLI Cont Cont	Meth Meth Meth NG: ainer Sides ainer Lids T	nod TUH nod Med nod VC Labeled Taped ed in Ice Ch	var var est	Contai Contai Contai Contai	ners: ners:	
	CONTAINI	ER HANDLI Cont Cont	Meth Meth Meth NG: ainer Sides ainer Lids T	nod TUH nod Med nod VC Labeled Taped ed in Ice Ch	var var est	Contai Contai Contai Contai	ners: ners: ners:	

Sampling Location Columbus AFB - ST24
Sampling Dates 11/04/96-11/24/96

GROUND W	ATER SAMPLING RECORD - MONITORING WELL CFCo - MPG	
		(number)
REASON FO	OR SAMPLING: [X] Regular Sampling; A Special Sampling; PNA	
DATE AND	TIME OF SAMPLING: 1118, 1996 0800 a.m./p.m.	
SAMPLECO	OI LECTED BY: IH/ BL/CS/RN of Parsons ES	
WEATHER:	Bril Clary, Rainy,	±0°+F
DATUM FO	R WATER DEPTH MEASUREMENT (Describe): Top Pu	
MONITORI	NG WELL CONDITION:	
	[] LOCKED: [AUNLOCKED	
	WELL NUMBER (IS IS NOT) APPARENT	
	STEEL CASING CONDITION IS: Good	
	INNER PVC CASING CONDITION IS: Good	
	WATER DEPTH MEASUREMENT DATUM (ISLIS NOT) APPARENT	
	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	MONITORING WELL REQUIRED REPAIR (describe):	
Check-off		12712
1 🙀	EQUIPMENT CLEANED BEFORE USE WITH Acces Technology	באגאט בנו ווו
	Items Cleaned (List): Water Level Indicate	
	Probes + Flow Though	Q(1
216	PRODUCT DEPTH NA	FT BELOW DATUM
2 📉	Measured with:	
	Measured with.	
	WATER DEPTH (4.87 '	FT. BELOW DATUM
	Measured with: Sours+	
	Measured with.	
3 [4]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
2 E X	Appearance: Sh. Chouchy Odor: None	
	Odor: Nove	
	Other Comments:	
4 [4	WELL EVACUATION:	
- - 1 -	Method: Renstaltic Purp	<u> </u>
	Volume Removed: 0.4 501.	
	Observations: Water (slightly - very) clouds	
	Water level (rose - fell) no change) -> slo	w recheige
	Water odors: Nac	•
	Other comments:	

Groundwater Sampling Record

Monitoring Well No. LFOS-MPG (Cont'd)

[] Bailer made of: [[X] Fump, type: Rear halt [] Other, describe: Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE ON-SITE MEASUREMENTS: Uol.(3al) O.6 1.0 Time O740 0560 Meausred with Temp (C) 17.7 17.8 Meausred with Temp (C) 17.7 17.8 Meausred with DO (mg/L) 6.40 7.65 Medox (mV) -77.6 77.5 Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): 10 UDAs // IES mt. Pleashe. 2x Guss Answer Tes Wethod Containers: Method Containers: Method TV W Containers: Method TV W Containers: Method USAs Containers: Method USAs Containers: Method USAs Containers: Method USAs Containers: Method USAs Containers: Method USAs Containers: Method Containers: Method USAs Container	5 [PK	SAMPLE EX	CTRACTION	METHOD:								
Section Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE			f 1 Bailer m	ade of								
Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE ON-SITE MEASUREMENTS: Uol.(3nl) O.6 1.0 Time O740 O500 Meausred with Temp (°C) 17.7 7.2 Means of the first of			Pump. tv	De: Perista	المبد							
Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE ON-SITE MEASUREMENTS: UOL(3ai) O.6 1.0 Time O740 O500 Meausred with Temp (°C) 17.7 17.8 pH G. 48 C.30 Cond (uS/cm) 110 05 BO (mg/L) 6.90 7.05 Redox (mV) - 77.6 - 71.3 Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): IO VDAS IX 125 mt. Pleush: Zx Grass Masen tex ON-SITE SAMPLE TREATMENT: [] NA Filtration: Method Containers: Method Containers: Method TVH Containers: Method VCS Containers: Method VCS Containers: Method VCS Containers: Method VCS Containers: Method VCS Containers: Method Containers: Method VCS Containers: Method Containers:		Other, describe:										
ON-SITE MEASUREMENTS: Ucl.(34) C.6 1.0 Time O740 Oxec Measured with Temp (°C) 17.7 (7.8 pt												
Containers: Method Containers: Method			Sample obtain	ned is [X] GR	AB; [] CON	MPOSITE SA	MPLE					
Containers: Method Containers: Method												
Time O740 0500 Meausred with Temp (°C) 17.7 17.8 PH G.48 G.50 Wellow Good (µS/cm) Ph G.48 G.50 Wellow To GS To GS Wellow To GS GS GS Wellow To GS To GS Wellow To GS To GS Wellow To GS To	6 X		EASUREMEN	NTS:								
Temp (°C) 17.7 17.8 pH 6.48 C.50 Cond (µS/cm) 110 &S DO (mg/L) 6.90 7.05 PG DO (mg/L) 6.90 7.05 PG DO (mg/L) 77.6 77.3 PG DO (mg/L) 77.6 77.3 PG DO (mg/L) 77.6 77.3 PG DO (mg/L) 77.6 77.3 PG DO (mg/L) 77.6 77.3 PG DO (mg/L) 77.6 77.3 PG DO (mg/L) 77.6 77.3 PG DO (mg/L) 77.6 77.3 PG DO (mg/L) 77.6 77.3 PG DO (mg/L) 77.5 PG DO (mg/L) 77.6 77.3 PG DO (mg/L) 77.5 PG DO (mg/		Vol. (991.)	0.6	1.0								
PH G. 48 C. 30 Cond (LuS/cm) 110 BS DO (mg/L) 6.90 7.05 Redox (mV) - 77.6 - 77.3 Salinity Nitrate Sulfate Ferrous Iron SAMPLE CONTAINERS (material, number, size): 10 VDAs /x 125 ml. Pleake Zx Guss Masen tos Wethod Containers: Method Containers: Method Containers: Method Containers: Method TV14 Containers: Method UCCS CONTAINERS Method UCCS CONTAINERS Method UCCS CONTAINERS Method UCCS CONTAINERS Method UCC			0740	0100			Meausred with	·				
Cond (LS/Com) (LS/Com			17.7	17.8								
SAMPLE CONTAINERS (material, number, size): 10 UDAs X 125 ml. Please 2x Gless Masen teles ON-SITE SAMPLE TREATMENT:			6.48	6.50]				
SAMPLE CONTAINERS (material, number, size): 10 UDAs X 125 ml. Please 2x Gless Masen teles ON-SITE SAMPLE TREATMENT:		1				. 1		V Chy Pu				
SAMPLE CONTAINERS (material, number, size): 10 UDAs X 125 ml. Please 2x Gless Masen teles ON-SITE SAMPLE TREATMENT:	,		 _					June 1				
SAMPLE CONTAINERS (material, number, size): 10 UDAs X 125 ml. Please 2x Gless Masen teles ON-SITE SAMPLE TREATMENT:					-			Proposes				
SAMPLE CONTAINERS (material, number, size): 10 UDAs X 125 ml. Please 2x Gless Masen teles ON-SITE SAMPLE TREATMENT:			- 77.6 -	71.5				Flasi L				
SAMPLE CONTAINERS (material, number, size): 10 UDAs X 125 ml. Please 2x Gless Masen teles ON-SITE SAMPLE TREATMENT:			 	-		-		150 ro				
SAMPLE CONTAINERS (material, number, size): 10 UDAs X 125 ml. Please 2x Gless Masen teles ON-SITE SAMPLE TREATMENT:			 					~ 20 pre				
SAMPLE CONTAINERS (material, number, size): 10 UDAs /x 125 ml. Pleuse. 2x Gless Masen tels ON-SITE SAMPLE TREATMENT: [] NA Filtration: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Total Containers: Method Total Containers: Method UCCs Containers: Method UCCs Containers: Method Lock Containers: Method Lock Containers: Method Lock Containers: Method Lock Containers: Method Lock Containers: Method Lock Containers: Method Lock Containers: Method Lock Containers: Method Lock Containers Placed in Ice Chest			 -					' '				
ON-SITE SAMPLE TREATMENT: [] NA Filtration: Method Containers:		L	<u> </u>	L		_1	L	1				
ON-SITE SAMPLE TREATMENT: [] NA Filtration: Method Containers: Method Containers: Method STEX Containers: Method TOURS Method TOURS Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers:				material, materi								
Method Containers: Method Containers: Method Containers: Method Toth Containers: Method Toth Containers: Method UCCS Containers: Method UCCS Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers:												
Method Containers: Method Containers: Method Containers: Method Toth Containers: Method Toth Containers: Method UCCS Containers: Method UCCS Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers:		,			-							
Method Containers: Method Containers: Method Toth Containers: Method Toth Containers: Method UCS Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Containers:	8 <i>K</i> J	ON-SITE SAMPLE TREATMENT:										
Method Containers: Method Containers: Method Toth Containers: Method Toth Containers: Method UCS Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Containers:		[] NA Filtration: Method Co					Containers					
Method Containers:				Method			Containers:					
Method STEX Containers: Method TVI+ Containers: Method UCCS Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Method Containers: Containers: Container Flaced in Ice Chest												
Method Toth Containers: Method UCS Containers: Method UCS Containers: Method Containers: Method Containers: Container		•										
Method Toth Containers: Method UCS Containers: Method Containers: Method Containers: Method Containers: Containers:		Preservatives added: All WAS Itch										
Method Toth Containers: Method UCS Containers: Method Containers: C			•									
Method UCCS Containers: Method Containers: Containers: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest												
Method Containers: CONTAINER HANDLING: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest								···				
CONTAINER HANDLING: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest					natur							
Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest				Wicalou	1001	Contain	1015					
Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest	M	CONTAINER	HANDLING	} :								
Container Lids Taped Containers Placed in Ice Chest			٠									
Containers Placed in Ice Chest		Container Sides Labeled										
		(
OTHER COMMENTS:		(Contain	ers Placed in Ic	e Chest							
OTHER COMMENTS:	10 R 1	OTHER CON	(NATONITO)									
		OTHER COM	IMEN IS:		******	• • • • • • • • • • • • • • • • • • • •						
		-										
												

GROUND	WATER SAMPLING RECORD - MONITORING WELL <u>LF6-MP+</u>	1
REASON F DATE ANI SAMPLE C WEATHER	OR SAMPLING: [X] Regular, Sampling; [] Special Sampling; DTIME OF SAMPLING: 11/15/96 1996 (a.m.) p.m. COLLECTED BY: JH/BL/CS/RN 6 Parsons E8	(number)
MONITORI	ING WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - (S NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH 150 Properd at Items Cleaned (List): Property	nd distilled water
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	WATER DEPTH 5.85 Measured with: Solingt while Indicator	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Cloude brown Odor: Other Comments:	
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:	

Groundwater Sampling Record
Monitoring Well No. LFlomPH (Cont'd)

5[]	SAMPLE EX	TRACTIO	N METHO	D:					
			made of:					<u> </u>	0/2/0
		Sample obt	ained is [X	.] GRAB;	[] COM	POSITE SA	AMPLE	702	
6[]	ON-SITE MI	•	_					1 ve	yo topic
	Time	1000	1027	1037	1044	1052	Meausred with	Jin	アアアル
	Temp (°C)	18.3	19.1	199	19.9	19.7	451 55	$\frac{1}{1}$	Vio
	pH Cond	5.41	635	5.40	5,28	5,35	Drionasol	Yin H	!
	(μS/cm)	78	81	181	81	80	thack Meter	10	
	DO (mg/L)	5.09	4.55	2.96	4,63	54.2	45I55]	
	Redox (mV)	75	50	149	54	52	Grionass	<u>\</u>	
	Salinity Nitrate		-					-	
	Sulfate]	•
	Ferrous Iron								
7[]	SAMPLE CO	O.I ONTAINER 10	S (material.	, number, s					
			<u> </u>						
8[]	ON-SITE SA	MPLE TRI	EATMENT	:					
•	[]	Filtration:					iners:		
				hod hod			iners: iners:		
			, IVICE			Conta			
	X I	Preservativ	es added:						
			Met	hod H	<u>-1</u>	Conta	iners: VOA	<u> </u>	
			Met	hod		Conta	iners:		
			Met	••••			iners: iners:		
			Met	hod		Conta	mers.		
9[]	CONTAINE	R HANDL	NG:						
	•	Con	tainer Sides tainer Lids tainers Plac	Taped	hest			,	
10[]	OTHER CO	MMENTS:	at c well	1000 Lved	pui	noed :	turned o	ff 	

GROUND W	VATER SAMPLING RECORD - MONITORING WELL $P6-MP1$
REASON FO DATE AND SAMPLE CO WEATHER:	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 1/1 5 1996 5 6 a.m./p.m. OLLECTED BY: IH/BL/CSRN of Parsons PS
MONITORI	WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: INCOMPLEE INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS AS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off []	EQUIPMENT CLEANED BEFORE USE WITH 150 Proposed + distilled water Items Cleaned (List): Probes
2[]	PRODUCT DEPTH
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Toudy Brain Odor: None Other Comments: —
4[]	WELL EVACUATION: Method: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:

Groundwater Sampling Record
Monitoring Well No. <u>LFG-MPT</u> (Cont'd)

5[]	SAMPLE EXTRACTION METHOD:
	Bailer made of: Pump, type: Other, describe:
	Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE
6[]	ON-SITE MEASUREMENTS:
	Time 430 436 448 451 500 Meausred with
	Temp (°C) 20.7 20.9 25.9 20.9 20.8 45\$ 55 pH 5.40 5.43 5.10 5.02 510 Orion 356A
	(μS/cm) 252 24/ 234 23) 230 Hack Notes
	DO (mg/L) 1.20 0.45 0.25 0.21 0.20 451 55
	Redox (mV) 80 104 111 112 114 Orion 250A
	Nitrate
	Sulfate
	Ferrous Iron
7[]	SAMPLE CONTAINERS (material, number, size):
, ()	10 UOA
	1 Box Amber
	1 OBOS AMOOF
8[]	ON-SITE SAMPLE TREATMENT:
	[] Filtration: Method Containers: Method Containers:
	Method Containers:
	f 1
	[] Preservatives added:
	Method HC Containers: VOF
	Method Hospital Containers: 6 loss amber
	Method Containers: Containers:
	WichiodContainers
9[]	CONTAINER HANDLING:
	Container Sides Labeled
	[N Container Lids Taped
	Containers Placed in Ice Chest
10 ()	OTHER COMMENTS:
10[]	OTHER COMMENTS:
•	•

GROUND V	VATER SAMPLING RECORD - MONITORING WELL LF 6- MPT	
REASON FO DATE AND SAMPLE CO WEATHER:	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 1//17, 1996 [:0] a.m. o.m. OLLECTED BY: JH/BL/CSKN of Parsons ES Cloudy OR WATER DEPTH MEASUREMENT (Describe): Ground Surface	(number)
MONITORI	NG WELL CONDITION:	
-	[] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: 1 mplant	······································
	WATER DEPTH MEASUREMENT DATUM (IS 15 NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off	EQUIPMENT CLEANED BEFORE USE WITH distilled wat	ker
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	WATER DEPTH Measured with:	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Cloudy brown-orange Odor: how Other Comments:	
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:	

5[]	Groundwater Sampling Record Monitoring Well No. (Cont'd) SAMPLE EXTRACTION METHOD:								
	[] Bailer made of: [X] Pump, type:Peri 3 tall + 1C [] Other, describe:								
	Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE								
6[]	ON-SITE MEASUREMENTS:								
	Time //09 //48 20 205 24 24 Meausred with Temp (°C) /7.7 /8.8 20 2 20 4 17.9 45 55 pH 6.45 5.97 5.87 5.60 568 Orion 250 Cond (μS/cm) 203 60 146 138 29 HACH Meter DO (mg/L) 3.66 5.37 4.10 3.52 2.82 KI 55 Redox (mV) 24 -5 -48 -43 -60 Orion 250 Salinity Nitrate Sulfern								
	Sulfate Ferrous Iron								
7[]	SAMPLE CONTAINERS (material, number, size):								
	-7 Poly								
8[].	ON-SITE SAMPLE TREATMENT:								
	[] Filtration: Method Containers:								
	Preservatives added: Method Containers: UOAS Method Containers: Method Containers: Method Containers: Containers:								
9[]	CONTAINER HANDLING:								
	Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest								
10[]	other comments: Clearing up at about 12:00								
	510W!								

GROUND V	WATER SAMPLING RECORD - MONITORING WELL Crop KP K
DATE AND SAMPLE C WEATHER	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; O TIME OF SAMPLING: 1//15, 1996 3 45 a.m.fo.m. OLLECTED BY: JH/BL/CSKN of Parsons ES :65
DATUM FO	OR WATER DEPTH MEASUREMENT (Describe): TOC (Still sticking up)
MONITORI	NG WELL CONDITION:
	[] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: Not complete
	INNER PVC CASING CONDITION IS: 500 WATER DEPTH MEASUREMENT DATUM (IS - 15 NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH Iroproposal + Distilled Water Items Cleaned (List): Probes
2[]	PRODUCT DEPTH
	WATER DEPTH 14.0 FT. BELOW DATUM Measured with: Solinst water level indicator
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:
4[]	WELL EVACUATION: Method: Peristaltic pump Volume Removed: 3.5 94/10a3 Observations: Water slightly very) cloudy Water level (rose - fell - no change) Water odors: now Other comments:

Groundwater Sampling Record Monitoring Well No. LF 6-MFK (Cont'd) SAMPLE EXTRACTION METHOD: 5[] [] Bailer made of: M Pump, type: Peristaltic Other, describe:_ Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE 6[] **ON-SITE MEASUREMENTS:** Time Meausred with Temp (°C) pН Orion 250A Cond (µS/cm) DO (mg/L) Redox (mV) Salinity Nitrate Sulfate Ferrous Iron Na Sellen O.391 1.0 2.0 SAMPLE CONTAINERS (material, number, size): 2.3 7[] 10 UDAS 8[] ON-SITE SAMPLE TREATMENT: [] Filtration: Method Containers: Method_ Containers:___ Method_ Containers:___ Preservatives added: Containers: Method Method Containers:_ Method Containers: Method_ Containers:_ 9[] CONTAINER HANDLING: Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest

10[]

OTHER COMMENTS:____

GROUND V	WATER SAMPLING RECORD - MONITORING WELL LF6-MPL
DATE AND SAMPLE C WEATHER	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; OTIME OF SAMPLING: 11/15 1996 1330 a.m./p.m. OLLECTED BY: JH/BL/CS/KN of Parsons ES : 05 Supply Incomp. OR WATER DEPTHAMEASUREMENT (Describe): TOC (Still Sticking up)
MONITORI	MG WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH 15 oproposol and distilled wite Items Cleaned (List): Probes
2[]	PRODUCT DEPTH
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Cloudy red-brown Odor: none Other Comments:
4[]	WELL EVACUATION: Method: Volume Removed: Volume Remove

Groundwater Sampling Record
Monitoring Well No. <u>LFG-MPL</u> (Cont'd)

5[]	SAMPLE EXTRACTION METHOD:									
	Bailer made of: Pump, type: feristalt ic									
	Other, describe:									
	Sample obtained is [X] GRAB; [] COMPOSITE	SAMPLE								
6[]	ON-SITE MEASUREMENTS:									
	Time 11:47 115 4 1200 1203	Meausred with								
	Temp (°C) 20.5 20.4 20.5 20.5	पड़र् ८८								
*	pH 6,08 5,84 5,66 5,67	Orion 250A								
	Cond 2/1 2/0 2/08 2/08	Hack Meter								
	(μS/cm) 361 268 268 268 DO (mg/L) 0.63 0.71 0.39 0.28	45I 55								
	DO (mg/L) 0.63 0.11 0.39 0.28 Redox (mV) 71 41 45 46	Orion 25DA								
	Salinity	071010 33011								
	Nitrate									
	Sulfate									
	Ferrous Iron									
	SAMPLE CONTAINERS (material, number, size):									
7[]	SAMPLE CONTAINERS (material, number, size):									
	12 Upas									
8[]	ON-SITE SAMPLE TREATMENT:									
	[] Filtration: Method Co.	ntainers:								
	[] Filtration: Method Co. Method Co.									
		Containers:								
	1									
	Preservatives added:									
	Method HC/ Containers: VOAs									
		ntainers:								
	Method Containers:									
	Method Containers:									
	\									
9[]	CONTAINER HANDLING:									
	Charles and the Lebeled	· ·								
	[V] Container Sides Labeled [V Container Lids Taped									
	Container Placed in Ice Chest									
	Md									
10[]	OTHER COMMENTS:									

Sampling Location Columbus AFB - LF6
Sampling Dates 11/04/96-11/24/96

GROUND V	VATER SAMPLING RECORD - MONITORING WELL MY M
	(number)
	OR SAMPLING: [X] Regular Sampling; [] Special Sampling;
DATE AND	TIME OF SAMPLING: 11/13 1996 630 a.m./p.m.
SAMPLE CO	TIME OF SAMPLING: 1996 1630 a.m./p.m. OLLECTED BY: JH/BL/CS/RN of Parsons ES
WEATHER:	60° Overcast
DATUM FO	R WATER DEPTH MEASUREMENT (Describe): Ground surface
MONITORI	NG WELL CONDITION:
	[] LOCKED:
	WELL NUMBER (IS) IS NOT) APPARENT
	STEEL CASING CONDITION IS: Not do ~e
	INNER PVC CASING CONDITION IS: 9000
	WATER DEPTH MEASUREMENT DATUM (IS - (S NOT) APPARENT
	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR
	[] MONITORING WELL REQUIRED REPAIR (describe):
Check-off	
1[]	EQUIPMENT CLEANED BEFORE USE WITH Isopropanal + distilled water Items Cleaned (List): probes
- ()	Items Cleaned (I ist): Ovolbes
	nons cleated (bist).
2[]	PRODUCT DEPTHFT. BELOW DATUM
	Measured with:—
	WATER DEPTH 13.5 FTI BELOW DATUM
	Measured with: Soling water level indicator
	Measured Will. Software Track Track Track
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):
- ()	Appearance: Cloudy brown
	Odor: hove
	Other Comments:
4[]	WELL EVACUATION:
7[]	\sim 1 01
	Volume Removed: 1, 3 gallous
	Observations: Water (slightly - very) cloudy
	Water level (rose - fell - no change)
	Water odors: No ~ Q
	Other comments:

Groundwater Sampling Record
Monitoring Well No. MPM (L=6)(Cont'd)

5[]	SAMPLE EX	TRACTION	METHOD):				
	<u>;</u>	Bailer m Dump, ty Other, d	ade of: /pe:_//2// escribe:	istaltic	<u>:</u>			
		Sample obtai	ned is [X]	GRAB;	[] COMP	OSITE SA	MPLE	
6[]	ON-SITE ME						readings	
				ν				
	Time 2	<u> </u>	1600	1605	1615	1625		
	Temp (°C)	18.7	18,7	18.7	19.1	18.7	Orio-2504	
	pН	5,50	5753	5,58	5.48	5,43	OF10-173CH	
	Cond	68	62	62	61	63-	Hechmeter	
	(μS/cm)					4.88	4SI SS	
	DO (mg/L)	6.38	696 375	81.5	92.0		Orion 250A	-
	Redox (mV) Salinity		75.6	55,7	671	52.4	4STSS	
	Nitrate	1 12 14	77.0	3271				
	Sulfate							
	Ferrous Iron	+						
				<u> </u>				
7[]	SAMPLE CONTAINERS (material, number, size):							
		10 Vot			_			
		701	y-s					
8[]	ON-SITE SA	MPLE TRE	ATMENT	:		٠		
	f 7	Filmations	Mat	hod .		Conta	iners:	
	[]	Filtration:		hod		Conta	iners:	
				hod		Conta	iners:	
	•				-		•	
	Ø	Preservative	es added:					•
	C.			а	CI_	C	iners: VOAs	
				hod			iners:iners:	
				thod			iners:	
				thod			iners:	
			1110.				-	
9[]	CONTAINE	R HANDLI	NG:					
- (]								
			ainer Sides					
		V] Cont	ainer Lids	Taped	Th and			
		[M] Cont		ced in Ice (1			
10.5.3	OTHER CO	V \NANAENITC+	no	eded	to su	rsc 1	at besign	~
10[]	TO G	0 + + 12.) Lov	o Flow		0	r	<u>() </u>
	- ' ' ' '							<u> </u>

GROUND W	VATER SAMPLING RECORD - MONITORING WELL \$\frac{1}{2} LF6-MPN\$
DATE AND SAMPLE CO WEATHER:	(number) OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 1996 716 (a.m.) p.m. OLLECTED BY: JH/BL/CS/RN of Parsons ES (90 (Casty) R WATER DEPTH DEASUREMENT (Describe): TO
MONITORI	WELL CONDITION: [] LOCKED: WELL NUMBER (15 - IS NOT) APPARENT STEEL CASING CONDITION IS: INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS) IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off	EQUIPMENT CLEANED BEFORE USE WITH SOproper of + distilled water
2[]	PRODUCT DEPTH
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Cloudy brown Odor: Other Comments:
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:

Groundwater Sampling Record
Monitoring Well No. LF6-MPN (Cont'd)

5[]	SAMPLE EXTRACTION METHOD:
•	Pump, type:_ (Eristelt)
	[] Other, describe:
	Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE
6[]	ON-SITE MEASUREMENTS:
	Time 701 706 705 710 712 Meausred with
	Temp (°C) 17.3 18.0 18.2 18.3 451 55
	pH 6.72 6.75 6.75 6.75 6.77 000 250A
	(µS/cm) 585 599 599 599 599 Had Mobile
	DO (mg/L) 1.18 1.02 0.54 0.39 0.32 45t 55
	Redox (mV) -54 -55 -54 -55 0 rion 250A
	Salinity
	Nitrate Sulfate
	Ferrous Iron
•	
7[]	SAMPLE CONTAINERS (material, number, size):
	1 POL
0.5.3	
8[]	ON-SITE SAMPLE TREATMENT:
	[] Filtration: Method Containers:
	Method Containers:
	Method Containers:
	[] Preservatives added:
	20.Cl
	Method HCI Containers: VOAS Method Containers:
	Method Containers:
	Method Containers:
9[]	CONTAINER HANDLING:
. ,	\ .
	Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest
	Container Lids Taped Containers Placed in Ice Chest
10[]	OTHER COMMENTS:

GROUND W	VATER SAMPLING RECORD - MONITORING WELL MPO (LFG)
DATE AND SAMPLE CO WEATHER:	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 1) (14 1996 730 a.m.p.m. OLLECTED BY: JHABI CSAN of Parsons ES 50° () verces R WATER DEPTH MEASUREMENT (Describe): Grove Surface
MONITORIN	NG WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: NOT Complete INNER PVC CASING CONDITION IS: Good WATER DEPTH MEASUREMENT DAYUM (IS (IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH 150 proparol + distilled water Items Cleaned (List): Propes
2[]	PRODUCT DEPTH
	WATER DEPTH 4.5 FT. BELOW DATUM Measured with: 50 1/25 FT.
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: None Other Comments:
4[]	WELL EVACUATION: Method: Peristaltic purp Volume Removed: Observations: Water (slightly-very) cloudy Water level (rose - fell - no change) Water odors: None Other comments:

Groundwater Sampling Record

Monitoring Well No. MPO/LF@ (Cont'd)

CTION METHOD:

	SAMPLE EXTRACTION METHOD:					
	[] Bailer made of: [X] Pump, type: Peris Foltiz [] Other, describe:					
	Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE					
c r 3						
6[]	ON-SITE MEASUREMENTS:					
	Time 712 716 720 722 725 Meausred with					
	Temp (°C) 17.8 18.5 18.8 18.8 18.8 451 55					
	pH 4.77 4.75 4.79 4.79 4.80 Orion 250A					
	Cond (µS/cm) 642 629 630 631 634 Hack meter					
	DO (mg/L) 0.85 0.46 0.40 0.39 0.26 45±55					
	Redox (mV) 100.0 86.6 84.1 849 86.7 Orion 2504					
	Salinity (%) 6.2 4.6 4.4 4.0 2.7 45ISS					
	Nitrate Sulfate .					
	Ferrous Iron					
	500 m Ls Igallon 1.25 at 1.5 gall of O gallon					
7[]	SAMPLE CONTAINERS (material, number, size):					
	10 UBAS 2 Poly					
	- roly					
3[]	ON-SITE SAMPLE TREATMENT:					
	[] Filtration: Method Containers:					
	Method Containers:					
	Method Containers:					
	. Dracomisticae addada					
	[] Preservatives added:					
	Method HC Containers: VOAS					
	Method Containers:					
	Method Containers: Method Containers:					
	Method Containers.					
	CONTAINER HANDLING:					
P[]	CONTAINER HANDLING:					
P[]	Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest					
	Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest					
	Container Sides Labeled Container Lids Taped					
0[]	Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest					

GROUND V	WATER SAMPLING RECORD - MONITORING WELL LF6MP	P
DATE AND SAMPLE CO WEATHER:	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	(number)
MONITORE	NG WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: INNER PVC CASING CONDITION IS:	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe): COMPLE	7E-P
Check-off	EQUIPMENT CLEANED BEFORE USE WITH	
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	WATER DEPTH 5.3 Measured with: SOUNST	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Odor: Other Comments:	
4[]	WELL EVACUATION: Method: Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:	

Groundwater Sampling Record
Monitoring Well No. LEMPP (Cont'd)

5[]	SAMPLE EXTRACTION ME	THOD:	
	[] Bailer made [] Pump, type:	of:	
	Comple obtained	is [X] GRAB; [] COMP	OCCUTE CAMBLE
	Sample obtained	is [X] GRAB; [] COMP	OSITE SAMPLE
6[]	ON-SITE MEASUREMENTS	:	
	Time 0910 09		Meausred with
		.7 18.8	
	pH 4.89 4.	79 4.73	
	$(\mu S/cm)$ $\lambda 1\lambda \lambda 1$	1 208	
		33 027	
	Redox (mV) 59.4 62		
	Salinity		
	Nitrate Sulfate		
gallous	Ferrous Iron O. A O.	4 0.8	
galle		(10 · 0 1	1
7[]	SAMPLE CONTAINERS (ma	terial, number, size):	10 your slass
	• • • • • • • • • • • • • • • • • • • •		2 125 Plastic
			1 143 87-1136-11362
8[]	ON-SITE SAMPLE TREATM	ENT.	
0[]	OIWSITE SAME DE TREATM	ILINI.	•
	[] Filtration:		Containers:
			Containers:
		Method	Containers:
	[] Preservatives add	led:	
		Method	Containers:
		Method	Containers:
	,	Method	
		Method	Containers:
9[]	CONTAINER HANDLING:		
	[] Container	Sides Labeled	•
		Lids Taped S Placed in Ice Chest	
10 []	. ,		
10[]	OTHER COMMENTS:	1-W. J. J. W. I. L	

Sampling Location <u>Columbus AFB - LF6</u>
Sampling Dates <u>11/04/96-11/24/96</u>

GROUND V	WATER SAMPLING RECORD - MONITORING WELL <u>LF6 - MPQ</u>
DATE AND SAMPLE C WEATHER	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; OTIME OF SAMPLING: 1996 1645 a.m./p.m. OLLECTED BY: JH/BL/CS/RN of Parsons ES OR WATER DEPTH MEASUREMENT (Describe): 100
MONITORI	NG WELL CONDITION: [] LOCKED: WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: NOT COMPLETE INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):
Check-off []	EQUIPMENT CLEANED BEFORE USE WITH Sopropord and distilled water
2[]	PRODUCT DEPTH
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: Clear Odor:Older:Other Comments:
4[]	WELL EVACUATION: Method: Peristaltic pump Volume Removed: Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: Other comments:
	11 L = 3 gel $11 L = 3 gel$ $11 L = 3 gel$ $11 = 3 g$

16=0.27 g Man

Page 1 of 2

Groundwater Sampling Record
Monitoring Well No. <u>LFG-MPQ</u> (Cont'd)

5[]	SAMELL	EXTRACTION METHOD:	
		[] Bailer made of: K] Pump, type: Other, describe:	·-
		Sample obtained is [X] GRAB; []	COMPOSITE SAMPLE
6[]	ON-SITE N	MEASUREMENTS:	Turned Pump off to allow for recharge (1612-
	Time Temp (°C) pH	1545 1558 1606 161 18.0 18.1 18.0 18, 6.01 6.17 5.79 6.0	0 6.04 Orion 250A
	Cond (µS/cm) DO (mg/L) Redox (mV		1 4.78 457 55
	Salinity Nitrate Sulfate Ferrous Iron	n	
7[]	SAMPLE (O. 1 s O. 25 O. 5 g O. CONTAINERS (material, number, size):_ (O V O A s 2 Poly	75 g 1.00 g
8[]	ON-SITE S	SAMPLE TREATMENT:	
	[]	Filtration: Method Method Method	Containers:
	[]	Preservatives added:	
		Method Method Method Method	Containers: VOAs Containers: Containers: Containers:
9[]	CONTAIN	ER HANDLING:	
		Container Sides Labeled Container Lids Taped Containers Placed in Ice Chest	. 0
10[]	OTHER CO	omments: Sample aer	s hw as possible

GROUND V	WATER SAMPLING RECORD - MONITORING WELL LFCG - MPZ
	(number)
REASON F	OR SAMPLING: [X] Regular Sampling; [A Special Sampling; PNA
	TIME OF SAMPLING: معدر 1996 ما المالية a.m./pano
	OLLECTED BY: JH/BL/CS/RN of Parsons ES
	: BMH Clardy, Brossy, 60"F
DATUM FO	DR WATER DEPTH MEASUREMENT (Describe): Top Pox - Marked
MONITORI	NG WELL CONDITION:
	[] LOCKED: [d UNLOCKED
	WELL NUMBER (TS- IS NOT) APPARENT
	STEEL CASING CONDITION IS:
	INNER PVC CASING CONDITION IS:_<
	WATER DEPTH MEASUREMENT DATUM (IS)- IS NOT) APPARENT
	DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR
	[] MONITORING WELL REQUIRED REPAIR (describe):
Check-off	
1	EQUIPMENT CLEANED BEFORE USE WITH Accuse I sopre parcil DE Water
	Items Cleaned (List): Lower Level Inducat
	Probes a Flow though Call
2[]	PRODUCT DEPTHFT. BELOW DATUM
	Measured with:
	WATER DEPTH 4.42' Top DUC / TD = 14.7' Tophet. BELOW DATUM
	Measured with:
	Measured with.
317	WATER-CONDITION BEFORE WELL EVACUATION (Describe):
	Appearance: Classy Torcus
	Odor: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Other Comments:
4 F-Y	WELL EVACUATION:
	Method: Pens Hate Puns
	Volume Removed:
	Observations: Water (stigglely - very) cloudy
	Water level (rose - fell - nochange)
	Water odors: New York
	Other comments:

Groundwater Sampling Record

Monitoring Well No. LFOG MPR (Cont'd)

5/1	SAMPLE EX	XTRACTIO	N METHO	D:				
		[] Doiler	mada afi					
	[] Bailer made of: [D] Pump, type: Peristaltic Purp [] Other, describe:							
		Sample ob	tained is [X	() GRAB; [] COMPO	OSITE SAN	MPLE	
6 FT	ON-SITE M	FASUREM	FNTS:					
V 1	Vol. (39		Z-5	3.0				
	Time	1240	1245	1250			Meausred with	1
	Temp (°C)	19.2		19.2				-
	pН	5.01	4.44	4.43				1
	Cond							
	(μS/cm)	7000	750	750			· ·	.
	DO (mg/L)	0.16	017	81.0				-
	Redox (mV) Salinity	64.3	63.6	55.9				4
	Nitrate	 	 	 			 	1
	Sulfate	1						1
	Ferrous Iron		<u> </u>					
7+1	SAMPLE CO	ONTAINER	S (material,	, number, size):!		AS - ALL G	KL
							Plastic Masa Jan	· · · · · · · · · · · · · · · · · · ·
	•					Cierra	pasa va	>
				· · · · · · · · · · · · · · · · · · ·				
817	ON-SITE SA	MPLE TRE	EATMENT:	:			•	
	r ı	Filtention: 1	A Mad			Camtaina		
	[]	riluation: 1						
						•		
	[]	Preservative	es added:	Auc	XXAS HO	El		
			Math				•••	
	Method TUルー Containers: Containers:							
	Method Mehm Containers:							
			Meth	iodb	<u> </u>	Container	·s:	
9,5-7	CONTAINER) II ANIDI D	JC.					
2/E]	CONTAINER	CHANDLII	NO.					
		Conta	ainer Sides	Labeled				•
			ainer Lids T					
		Conta	ainers Place	ed in Ice Ches	t			
10[]	OTHER COM	MFNTS.						
								

APPENDIX A-4 SLUG TEST RESULTS

LOCATION: Columbus AFB, Mississippi Well 82 Rising Head Test 19. 10.	
Well 82 Rising Head	91,32050
10.	Test 1
	DATA SET: WB206R1.AQT 03/07/97
	Unconfined SOLUTION METHOD: Bouwer-Rice
; (3J)	TEST DATA: H0= 4.2 ft r _c = 0.083 ft r _w = 0.66 ft L = 10. ft b = 40. ft H = 10. ft
Displacement	PARAMETER ESTIMATES: K = 0.09108 ft/min y0 = 3.695 ft
0.01	
	AQTESOLU

CLIENT: AFCEE	COMPANY: Parsons E.S.	
LOCATION: Columbus AFB, Mississippi	риолест: 729691,32050	
Well 82 Falling	g Head Test 1	
	DATA SET: W820611.AQT 03/07/97	
10.	AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice	
; ;	TEST DATA: H0= 1.1 ft rc= 0.083 ft rw= 0.66 ft L = 10. ft b = 40. ft	
Displacement ()	3RAMETE = 0.0 0 = 1.1	
0.1	****	
0.01	5.6 7.	
		TESOLU

CLIENT: AFCEE	CEE		COMPANY: Parsons E.S.	3.
LOCATION:	Columbi	Locaтion: Columbus AFB, Mississippi	PROJECT: 729691,32050	20
		Well 82 Rising	y Head Test	t 2
				DATA SET: W8206R2.AQT 03/07/97
	10.			AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
			1 1	TEST DATA: H0= 1.133 ft r _C = 0.083 ft r = 0 66 ft
	. . (33)		- 1111	
	placement	gger for a super state of the su	 	PARAMETER ESTIMATES: K = 0.02021 ft/min y0 = 1.167 ft
	sia e E	,	11111	
			!	
	0.01	0. 0.8 1.6 2.4 3. Time (min)	3.2 4.	
				AGTESOLU

CLIENT: AFCEE	COMPANY: Parsons E.S.	δ,
Location: Columbus AFB, Mississippi	PROJECT: 729691,32050	50
Well 82 Falling Head	ng Head Test	it 2
		DATA SET: W820612.AQT 03/07/97
10.		AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
(13)		TEST DATA: H0= 1.04 ft r _c = 0.083 ft r _w = 0.66 ft L = 10. ft H = 10. ft
Displacement:	111111	PARAMETER ESTIMATES: K = 0.01866 ft/min y0 = 1.39 ft
0.1	2.4 3.	-
		AQTESOLU

CLIENT: AFCEE	COMPANY: Parsons E.S.	
LOCATION: Columbus AFB, Mississippi	PROJECT: 729691,32050	0)
Well 81 Rising	y Head Test	-
		DATA SET: W8106R1.AQT 03/07/97
0.1	- - - - -	AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
(13)		TEST DATA: H0= 0.439 ft r _c = 0.083 ft r _w = 0.66 ft L = 10. ft b = 40. ft H = 10. ft
Displacement .		PARAMETER ESTIMATES: K = 0.1841 ft/min y0 = 0.06415 ft
	T T	
0.001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.4 0.5	
		QTESOLU QTESOLU

LOCATION: Columbus AFB, Mississippi Well B1	Rising Head Test	
Well 81	Head	0
		7 7
		DATA SET: W8106R2.AQT 03/07/97
		AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
0.1		TEST DATA: H0= 0.7943 ft rc= 0.083 ft rw= 0.66 ft L = 10. ft b = 40. ft H = 10. ft
		PARAMETER ESTIMATES: K = 0.2195 ft/min y0 = 6.852 ft
0.01		
0.001	0.96 1.28 1.6	

CLIENT: AFCEE	COMPANY: Parsons E.S.	
сосяттом: Columbus AFB, Mississippi	PROJECT: 729691,32050	0
Well 81 Falling	ng Head Test	t 2
		DATA SET: W810612.AQT 03/07/97
1.		AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
(1J)	1 1 1	TEST DATA: H0= 0.169 ft r _c = 0.083 ft r _w = 0.66 ft L = 10. ft h = 10. ft
placement :		PARAMETER ESTIMATES: K = 0.1084 ft/min y0 = 0.2609 ft
zid		
	- - - -	
0.0 0.32 0.64 0.96 Time (min)	1.28 1.6	
		QTESOLU UTESOLU

CLIENT: AFCEE	COMPANY: Parsons E.S.	
LOCATION: Columbus AFB, Mississippi	PROJECT: 729691,32050	0
Well 81 Falling	ng Head Test	+ +
	13.0	DATA SET: W810611.AQT 03/07/97
10.		AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
(3.J.		TEST DATA: H0= 0.439 ft rc= 0.083 ft ru= 0.66 ft L = 10. ft b = 40. ft H = 10. ft
splacement (PARAMETER ESTIMATES: K = 0.1472 ft/min y0 = 18.23 ft
.; .; .; .;		
0.01 0.4 0.8 1.2 Time (min)	1.6 2.	
		TESOLU

		HOD: ft/min ft	QTESOLU
сомрему: Parsons E.S.	Head Test 2	DATA SET: WZZOGRZ.AQT 03.07.97 AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATA: H0= 0.05 ft r_= 0.06 ft L = 10. ft D = 40. ft H = 10. ft H = 10. ft D = 40. ft H = 10. ft D = 40. ft H = 10. ft D = 40. ft D = 40. ft H = 10. ft D = 40. ft D = 40. ft H = 10. ft D = 40. ft	
CLIENT: AFCEE COLUMBUS AFB, Mississippi	Well 22 Rising	0.001 0.001 0.001 0.001 0.001 0.0024 0.28 0.72 0.72 0.72	

Mell 22 Falling Head Test 2						
ell 22 Falling Head Tes ell 22 Falling Head Tes	3.	90		DATA SET: WZZOGFZ.AQT 03/07/97 AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice	TEST DATA: H0= 0.076 ft r_= 0.083 ft L = 10. ft b = 40. ft H = 10. ft PARAMETER ESTIMATES: K = 0.1249 ft/min y0 = 0.09306 ft	
e11 22	COMPANY: Parsons E.	PROJECT: 729691,3200	Head		1.6	•
		rocaтion: Columbus AFB, Mississippi	1 22	0.1	0.4 0.8 Time Cmin	

CLIENT: AFCEE	COMPANY: Parsons E.S.	•
Location: Columbus AFB, Mississippi	PROJECT: 729691,32050	0
Well 22 Rising	g Head Test	
		DATA SET: WZ206R1.AQT 03/07/97
1. 		AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
	1 1	TEST DATA: H0= 0.1 ft r _C = 0.083 ft
(14)	liiii	L = 10. ft b = 40. ft H = 10. ft
splacement.		PARAMETER ESTIMATES: K = 0.1155 ft/min y0 = 0.1167 ft
0.0 	1111111	
0.001	-	
0. 0.6 1.2 1.8 Time (min)	2.4 3.	
		AQTESOLU

			DATA SET: W220611.AQT 03/07/97 AQUIFER MODEL: Uncomfined SOLUTION METHOD: Bouwer-Rice TEST DATA: H0= 0.38 ft r_c= 0.083 ft L = 10. ft b = 40. ft H = 10. ft H = 10. ft N= 0.1243 ft/min y0 = 3.505 ft	NOTESOLU
COMPANY: Parsons E.S.	PROJECT: 729691,32050	ng Head Test 1	DATA SET: W220611.AQT 03.07.97 AQUIFER MODEL: Unconfined SOLUTION METHO BOUWER-Rice TEST DATA: H0= 0.38 ft r_= 0.083 ft r_= 0.66 ft L = 10. ft L = 10. ft N = 0.1243 ft W = 0.1243 ft V = 0.1243	
CLIENT: AFCEE	тосяттом: Columbus AFB, Mississippi	Well 22 Falling	Displacement (ft) 0.001 0.001 1.2 Time (min)	

	t 2	DATA SET: W7906R2.AQT 03_07_97 AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATA: H0= 1.555 ft r_= 0.083 ft L = 10. ft L = 10. ft H = 10. ft H = 10. ft PARAMETER ESTIMATES: K = 0.01059 ft/min y0 = 1.562 ft
COMPANY: Parsons E.S.	ng Head Test	
CLIENT: AFCEE	LOCATION: Columbus AFB, Mississippi Well 79 Rising	Displacement (ft) 0.001 0.001 1.4 2.8 4.2 Time (min)

CLIENT: AFCEE	COMPANY: Parsons E.S.	S,
LOCATION: Columbus AFB, Mississippi	рвојест: 729691,32050	50
Well 79 Falling	g Head Test	st 2
10.		DATA SET: W790612.AQT 03/07/97 AQUIFER MODEL: Unconfined
i	 	SULUTIUM MEIHUD: Bouwer-Rice TEST DATA: H0= 1.368 ft r_= 0.66 ft L = 10. ft
Displacement (ft)	TTT JIIITT	b = 40. ft H = 10. ft PARAMETER ESTIMATES: K = 0.01017 ft/min y0 = 1.343 ft
0.01		
0.001	5.6 7.	
		HQTESOLU

			DATA SET: W790611.AQT 03/07/97 AQUIFER MODEL: Unconfined SOLUTION METHOD: BOUWER-Rice TEST DATA: H0= 1.29 ft L= 10.ft L= 10.ft H = 10.ft H = 10.ft H = 0.0116 ft/min y0 = 1.332 ft	
COMPANY: Parsons E.S.	PROJECT: 729691,32050	Head Test		
CLIENT: AFCEE	LOCATION: Columbus AFB, Mississippi	Well 79 Falling	Displacement (ft) 0.01 0.01 1.4 2.8 Time (min)	

CLIENT: AFCEE	COMPANY: Parsons E.S.	
тосаттом: Columbus AFB, Mississippi	PROJECT: 729691,32050	
Well 79 Rising	y Head Test	1
	DAT W79 03/	DATA SET: W7906RZ.AQT 03/07/97
10.	Nos Properties of the Control of the	AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
-ti	TEST H = L L L L L L L L L L L L L L L L L L	TEST DATA: H0= 1.62 ft r _c = 0.083 ft r _w = 0.66 ft L = 10. ft b = 40. ft H = 10. ft
Displacement 0.1	Julian H	PARAMETER ESTIMATES: K = 0.009694 ft/min y0 = 1.562 ft
0.01	#: #:	
0.001	5.6 7.	
		AQTESOLU

CLIENT: AFCEE	COMPANY: Parsons E.S.	
rocaтioм: Columbus AFB, Mississippi	PROJECT: 729691,32050	0.1
Well 18 Rising	g Head Test	.
		DATA SET: W1806R1.AQT 03/07/97
10.		AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
1	1 1111111	TEST DATA: H0= 1.403 ft r _c = 0.083 ft r _w = 0.66 ft L = 10. ft b = 40. ft H = 10. ft
Displacement	T MILLI	PARAMETER ESTIMATES: K = 0.06733 ft/min y0 = 1.523 ft
	-	
0.001 0.006 1.2 1.8 Time (min)	2.4 3.	
		AQTESOLU

CLIENT: AFCEE	COMPANY: Parsons E.S.	
LOCATION: Columbus AFB, Mississippi	рнолест: 729691,32050	
Well 18 Falling	g Head Test 1	
	DATA SET: W180611.AQT 03/07/97	i.
1	AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice	IODEL: sd METHOD:
	TEST DATA: H0= 0.921 ft rc= 0.083 ft	7: ft ft
(3.3)	Tw = 10. ft = 10. ft = 10. ft = 10. ft	ft ft ft
sh Jacement	PARAMETER	PARAMETER ESTIMATES: K = 0.04757 ft∕min y0 = 0.8977 ft
0.01 		
0.001 0.6 1.2 1.8 Time (min)	2.4 3.	
		AQTESOLU

CLIENT: AFCEE	COMPANY: Parsons E.S.	
тосяттом: Columbus AFB, Mississippi	PROJECT: 729691,32050	0
Well 18 Risin	Rising Head Test	7 7
		DATA SET: W1806R2.AQT 03/07/97
10.		AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
-	i jiiiri i	TEST DATA: H0= 0.558 ft r _c = 0.083 ft r _w = 0.66 ft L = 10. ft b = 40. ft H = 10. ft
Displacement (.	NRAMETE = 0.0 = 0.5
0.01		
0.001	2.4 3.	
		HQTESOLU

CLIENT: AFCEE	COMPANY: Parsons E.S.	
LOCATION: Columbus AFB, Mississippi	рвојест: 729691,32050	
Well 18 Fallin	Falling Head Test 2	
	DATA SET: W180612.AQT 03/07/97	
- - - - - - - - - - - - - - - - - - -	AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice	
The state of the s	TEST DATA: H0= 0.592 ft r _c = 0.083 ft r _w = 0.66 ft	
) (1J)	L = 10. ft b = 40. ft H = 10. ft	
Displacement	PARAMETER ESTIMATES:	
0.01	3.2 4.	
		MITESOLU

		-	DATA SET: W1906R1.AQT 03.02/97 AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice TEST DATA: H0= 1.774 ft r_= 0.083 ft L = 10. ft H = 10. ft H = 10. ft H = 0.02357 ft/min y0 = 1.731 ft	
COMPANY: Parsons E.S.	PROJECT: 729691,32050	g Head Test	98. S01. S01. S01. S01. S01. S01. S01. S01	
		Well 19 Rising	1.6 2.4 Time (min)	
	LOCATION: Columbus AFB, Mississippi	3	0.001	
CLIENT: AFCEE	LOCATION: CO		Displacement (ft)	

CLIENT: AFCEE	COMPANY: Parsons E.S.	
тосаттом: Columbus AFB, Mississippi	рана 129691,32050	
Well 19 Falling	ng Head Test 1	
	DATA SET: W190611.AQT 03/07/97	
- - - - - - - - - - -	AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice	
	TEST DATA: H0= 1.191 ft rc= 0.083 ft ru= 0.66 ft L = 10. ft h = 10. ft	
Market and the second s	PARAMETER ESTIMATES:	
- - - - - - - - - -		
1.4 2.8 4.2 Time (min)	5.6 7.	
		TESOLO

CLIENT: AFCEE	COMPANY: Parsons E.S.	δ,
тосяттом: Columbus AFB, Mississippi	PROJECT: 729691,32050	20
Well 19 Fal	ling Head Test	st 2
		DATA SET: W1906IZ.AQT 03/07/97
10.		AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
1. ************************************	1111111	SST DA1 0= 1.15 0= 0.06 0= 0.66
0.1	ļiitri	!!!
Displaceme		K = 0.01891 ft/min y0 = 1.186 ft
0.001	· •	
0.0001	3.2 4.	
		QTESOLU

CLIENT: AFCEE	COMPANY: Parsons E.S.	, (
тосяттом: Columbus AFB, Mississippi	PROJECT: 729691,32050	95
Well 19 Rising	g Head Test	t 2
		DATA SET: W1906R2.AQT 03/07/97
10.		AQUIFER MODEL: Unconfined SOLUTION METHOD: Bouwer-Rice
1		TEST DATA: H0= 1.15 ft rc= 0.083 ft rw= 0.66 ft L = 10. ft H = 10 ft
splacement (**************************************
id	**	
0.01	5.6 7.	
		QTESOLU

APPENDIX B SOIL AND GROUNDWATER ANALYTICAL RESULTS

CASE NARRATIVE

Evergreen Analytical Laboratory (EAL) Projects: 96-3990, 96-3996, 96-4004, 96-4020, 96-4033, 96-4047, 96-4058, 96-4064 and 96-4081

Parsons Engineering Science, Inc. (PES) Project:

Columbus AFB 729691.32010

Sample Receipt

Soil and groundwater samples were received between November 9 and 19, 1996 from Columbus AFB for analysis under Subcontract 729691.00000. Refer to the check-in portion of the EAL Chain of Custody for specific information regarding the condition of samples upon receipt. Refer to the EAL Work Order Summary for log-in information and cross-reference of EAL and PES sample identifications.

Data Package

All data are reported in one comprehensive package that is segregated based upon EAL project number. Each EAL project represents a group of samples received on a given day. The EAL Work Order Summary lists the samples represented in each EAL project.

A separate invoice for each EAL project number will be generated.

Quality assurance data may overlap from one EAL project to another. All required matrix spike/matrix spike duplicate (MS/MSD) and laboratory control samples (LCS) were analyzed when required and also are included in the data package.

BTEX, Method SW8020/Total Volatile Petroleum Hydrocarbons TVPH, Method SW8015M All samples were analyzed for BTEX/TVPH within holding time.

Several samples were analyzed at dilutions ranging from a dilution factor of 5 to 200 due to elevated levels of contaminants. The reporting limits have been raised accordingly.

Case Narrative
Parsons Engineering Science, Inc.
Page Two

The 1,3,5-trimethylbenzene spike duplicate recovery on sample ST24-MPG was below the EAL acceptance criteria. Reanalysis confirmed matrix effect and non-homogeneous sample.

The 1,2,4-trichlorobenzene surrogate for TVPH analysis could not be separated from the hydrocarbon interference on samples ST24-MPE, ST24-MPD(D) and W3 MS/MSD.

Chlorinated Volatile Organic Compound, VOC's, Method SW8010 All samples were analyzed for chlorinated VOC's within holding time.

Samples LF06-MPF and LF6-MPV were analyzed at a dilution factor of 5 due to elevated levels of contaminants. The reporting limits were raised accordingly. Sample ST24-MPM was analyzed at a dilution factor of 10 to recover the 1-chloro-2-fluoro-benzene surrogate which could not be separated from the hydrocarbon interference at a dilution factor of one.

1,3-dichlorobenzene was indicated on the GC chromatogram for several samples. Mass spectrometer confirmation indicated the compound is 1,4-dichlorobenzene. The GC/MS Quant Reports have been included for your review.

Methane, Method RSKSOP-175M

All samples were analyzed for methane within holding time.

Several samples were analyzed at dilutions ranging from a dilution factor of 5 to 100 due to elevated levels of methane present. The reporting limits were raised accordingly.

Only 2.5 of the required 4 MLs headspace was created in sample W73 due to solids in the sample.

General Chemistry

There are no quality assurance anomalies to report for the following analyses: Anions by Method E300.0, Alkalinity by Method E310.1, Total Organic Carbon in water by Method E415.1 or Total Recoverable Petroleum Hydrocarbons by Method E418.1.

Case Narrative
Parsons Engineering Science, Inc.
Page Three

Total Organic Carbon in Soil

Total Organic Carbon (TOC) in soils was analyzed by Huffman Laboratories of Golden Colorado. TOC was determined by analyzing for total carbon (TC) and inorganic (carbonate) carbon (CC), then calculating the difference as TOC. The reports from Huffman are included.

Disk Deliverables

The disk deliverables are included with the hard copy data package. MS/MSD and LCS results are not included on the disk. Please note that blank spaces in the laboratory detection limit and/or practical quantitation limit (PQL) column indicate that there is no detection limit or PQL for that analyte.

Reporting limits have been adjusted to reflect percent moisture in all soil samples or increases due to dilutions.

A hard copy of each spreadsheet from the diskette is included. The name for each spreadsheet is located in the top left corner on the first page of each printout.

Patricia A. McClellan, Program Manager 12/6/96

EVERGREEN ANALYTICAL, INC. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF6-MPJ(18') Client Project No. : 729691.32010

Date Prepared : 11/20/96 Method Blank : RB112096

Date Analyzed : 11/20/96 Dilution Factor : 1.2

Percent Moisture : 15.30

i circili Moletine . 12.20	<i>,</i>		
Compound	CAS #	Concentration(ug/Kg)	RL(ug/Kg)
Vinyl Chloride	75-01-4	U	0.47
Chloroethane	75-00-3	U	0.47
1,1-Dichloroethene	75-35-4	U	0.47
Dichloromethane	75-09-2	U	0.47
trans-1,2-Dichloroethene	156-60-5	U	0.47
1,1-Dichloroethane	75-34-3	U	0.47
cis-1,2-Dichloroethene	156-59-4	U	0.47
1,1,1-Trichloroethane	71-55 -6	U	0.47
Carbon Tetrachloride	56-23-5	U	0.47
Trichloroethene	79-01-6	U	0.47
1,1,2-Trichloroethane	79-00-5	U	0.47
Tetrachloroethene	127-18-4	U	0.47
1,1,1,2-Tetrachloroethane	79-00-5	U	0.47
Chlorobenzene	108-90-7	U	0.5
1,1,2,2-Tetrachloroethane	79-34-5	U	0.64
2-Chlorotoluene	95-49-8	U	0.47
Chlorotoluene	106-49-8	U	0.47
,3-Dichlorobenzene	541-73-1	U	0.47
1,2-Dichlorobenzene	95-50-1	U	0.47

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 93% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW3990.XLS; 11/25/96

EVERGREEN ANALYTICAL, INC. 4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : LF6-MPL(14-18) Client Project Number : 729691.32010 Lab Sample Number : 96-3996-09 Lab Work Order : 96-3996

 Lab Sample Number
 : 96-3996-09
 Lab Work Order
 : 96-3996

 Date Sampled
 : 11/9/96
 Matrix
 : SOIL

 Date Received
 : 11/11/96
 Lab File Number(s)
 : TVB11113009

 Date Prepared
 : 11/13/96
 Method Blank
 : MB1111396

FID Dilution Factor : 1.0 Soil Extracted? : NO

PID Dilution Factor : 1.0 Soil Moisture : 14.09%

		Analysis	Sample*		
Compound Name	Cas Number	Date	Concentration	RL*	Units
TVH-Gasoline		NA	NA	NA	NA
Benzene	71-43-2	11/13/96	U	0.5	ug/kg
Toluene	108-88-3	11/13/96	U	0.5	ug/kg
Chlorobenzene	108-90-7	11/13/96	Ü	0.5	ug/kg
Ethyl Benzene	100-41-4	11/13/96	Ü	0.5	ug/kg
Total Xylenes (m,p,o)	1330-20-7	11/13/96	U	0.5	ug/kg
1,3,5-Trimethylbenzene	108-67-8	11/13/96	Ü	0.5	ug/kg
1,2,4-Trimethylbenzene	95-63-6	11/13/96	U	0.5	ug/kg
1,2,3-Trimethylbenzene	526-73-8	11/13/96	Ü	0.5	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	11/13/96	U	0.6	ug/kg
FID C					
FID Surrogate Recovery:	<u>N</u>	IA		50%-150%	(Lin
PID Surrogate Recovery:		94%		50%-150%	(Lii

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments: * = Dry Basis

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

t Appro

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: LF6-MPL(14-18)	Client Project No.	:	729691.32010
Lab Sample No.	: 96-3996-09	Lab Work Order	:	96-3996
Date Sampled	: 11/9/96	EPA Method No.	:	602/8020
Date Received	: 11/11/96	Matrix	:	WATER
Date Prepared	: 11/13/96	Lab File Number(s)	:	TVB11113010, 11
Date Analyzed	: 11/13/96	Method Blank	:	MB1111396
Instrument Name	: TVHBTEX1	Dilution Factor	:	1.0

Compound	Spike Added	Sample Concentration	1	Concentration (ug/L)	
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	20.6	21.2	
Toluene	20.0	0.0	19.6	20.3	
Chlorobenzene	20.0	0.0	19.2	19.8	
Ethylbenzene	20.0	0.0	19.7	20.4	
m,p-Xylene	20.0	0.0	19.8	21.3	
o-Xylene	20.0	0.0	19.8	22.1	
1,3,5-TMB	20.0	0.0	19.9	21.1	
1,2,4-TMB	20.0	0.0	19.4	21.5	
1,2,3-TMB	20.0	0.0	19.1	21.0	
1,2,3,4-TeMB	20.0	0.0	18.8	20.2	
Surrogate	100.0	94%	96%	99%	% RECOVERY

	MS	MSD			QC#
Compound	%	%			Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	103.0	106.0	2.9	18	62 - 129
Toluene	98.0	101.5	3.5	25	55 - 133
Chlorobenzene	96.0	99.0	3.1	9	66 - 122
Ethylbenzene	98.5	102.0	3.5	15	60 - 127
m,p-Xylene	99.0	106.5	7.3	20	44 - 146
o-Xylene	99.0	110.5	11.0	16	57 - 131
1,3,5-TMB	99.5	105.5	5.9	16	63 - 129
1,2,4-TMB	97.0	107.5	10.3	16	55 - 136
1,2,3-TMB	95.5	105.0	9.5	13	64 - 127
1,2,3,4-TeMB	94.0	101.0	7.2	23	53 - 132
Surrogate	96.0	99.0	NA	NA	82 - 115

#	Limita	extablishe	4 10/1	106	LIDRA
#=	1 imits	extanushe	ביוטור מי	/Yh	HIDIVI

RPD:	0	out of	(10)	outside limits.
Spike Recovery:	0	out of	(20)	outside limits.

Comments:	

Analyst Hulman

Approved

^{* =} Values outside of QC limits.

EVERGREEN ANALYTICAL, INC. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

Method 601/8010 Chlorinated VOC's Sample Report

Date Sampled : 11/09/96 Matrix : SOIL

Date Prepared : 11/20/96 Method Blank : RB112096

Date Analyzed : 11/20/96 Dilution Factor : 1.2

Percent Moisture : 14.09 Compound CAS# Concentration(ug/Kg) RL(ug/Kg) Vinyl Chloride 75-01-4 Ū 0.46 Chloroethane 75-00-3 U 0.46 1,1-Dichloroethene 75-35-4 U 0.46 Dichloromethane 75-09-2 U 0.46 trans-1,2-Dichloroethene 156-60-5 U 0.46 1,1-Dichloroethane 75-34-3 Ū 0.46 cis-1,2-Dichloroethene 156-59-4 U 0.46 1,1,1-Trichloroethane 71-55-6 U 0.46 Carbon Tetrachloride 56-23-5 U 0.46 Trichloroethene 79-01-6 U 0.46 1,1,2-Trichloroethane 79-00-5 U 0.46Tetrachloroethene 127-18-4 U 0.46 1.1.1.2-Tetrachloroethane 79-00-5 U 0.46 Chlorobenzene 108-90-7 U 0.49 1,1,2,2-Tetrachloroethane 79-34-5 U 0.63 2-Chlorotoluene 95-49-8 U 0.46 4-Chlorotoluene 106-49-8 U 0.46 1,3-Dichlorobenzene 541-73-1 U 0.46 1,2-Dichlorobenzene 95-50-1 U 0.46

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 90% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

Approved

HLW3996.XLS; 11/25/96

EVERGREEN ANALYTICAL, INC. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

Method 601/8010 Chlorinated VOC's Sample Report

 Lient Sample No.
 : LF6-MPL(14-18)MS
 Client Project No.
 : 729691-32010

 Lab Sample No.
 : 96-3996-09MS
 Lab Project No.
 : 96-3996

Date Sampled : 11/09/96 Matrix : SOIL

Date Analyzed : 11/20/96 Dilution Factor : 1.1

Percent Moisture : 14.09

reicent woisture .	14.03		
Compound	CAS #	Concentration(ug/Kg)	RL(ug/Kg)
Vinyl Chloride	75-01-4	21	0.46
Chloroethane	75-00-3	22	0.46
1,1-Dichloroethene	75-35-4	23	0.46
Dichloromethane	75-09-2	22	0.46
trans-1,2-Dichloroethene	156-60-5	26	0.46
1,1-Dichloroethane	75-34-3	25	0.46
cis-1,2-Dichloroethene	156-59-4	25	0.46
1,1,1-Trichloroethane	71-55-6	26	0.46
Carbon Tetrachloride	56-23-5	26	0.46
Trichloroethene	79-01-6	26	0.46
1,1,2-Trichloroethane	79-00-5	23	0.46
Tetrachloroethene	127-18-4	25	0.46
1,1,1,2-Tetrachloroethan	e 79-00-5	23	0.46
Chlorobenzene	108-90-7	25	0.48
1,1,2,2-Tetrachioroethan	e 79-34-5	19	0.62
2-Chlorotoluene	95-49-8	23	0.46
Chlorotoluene	106-49-8	22	0.46
3-Dichlorobenzene	541-73-1	24	0.46
1,2-Dichlorobenzene	95-50-1	22	0.46

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 107% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

HLW3996.XLS; 11/25/96

proved

EVERGREEN ANALYTICAL, INC. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF6-MPL(14-18)MSD Client Project No. : 729691-32010

 Lab Sample No.
 : 96-399609MSD
 Lab Project No.
 : 96-3996

 Date Sampled
 : 11/09/96
 Matrix
 : SOIL

 Date Received
 : 11/11/96
 Lab File No.
 : HALL1120\013F010

 Date Prepared
 : 11/20/96
 Method Blank
 : RB112096

Date Analyzed : 11/20/96 Dilution Factor : 1.2

Percent Moisture • 14.09

Percent Moisture : 14.0	9		
Compound	CAS#	Concentration(ug/Kg)	DI (/V)
Vinyl Chloride	75-01-4	22	RL(ug/Kg)
Chloroethane	75-00-3	22	0.47
1,1-Dichloroethene	75-35-4	23	0.47
Dichloromethane	75-09-2		0.47
trans-1,2-Dichloroethene	156-60-5	22	0.47
1,1-Dichloroethane	75-34-3	21	0.47
cis-1,2-Dichloroethene		25	0.47
1,1,1-Trichloroethane	156-59-4	25	0.47
Carbon Tetrachloride	71-55-6	25	0.47
Trichloroethene	56-23-5	25	0.47
	79-01-6	26	0.47
1,1,2-Trichloroethane	79-00-5	23	0.47
Tetrachloroethene	127-18-4	25	0.47
1,1,1,2-Tetrachloroethane	79-00-5	22	0.47
Chlorobenzene	108-90-7	· 24	0.49
1,1,2,2-Tetrachloroethane	79-34-5	20	0.64
2-Chlorotoluene	95-49-8	24	0.47
4-Chlorotoluene	106-49-8	22	0.47
1,3-Dichlorobenzene	541-73-1	21	0.47
1,2-Dichlorobenzene	95-50-1	20	0.47
		-	U.47

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 107% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analysis

Approved

HLW3996.XLS; 11/25/96

EVERGREEN ANALYTICAL, Inc.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Recoverable Petroleum Hydrocarbons

Date Sampled

: 11/9/96

Client Project ID.

: 729691-32010

Date Received

: 11/11/96

Lab Project Number: 96-3996

Date Prepared

: 11/13/96

Date Analyzed

: 11/13/96

Method

: EPA 418.1

Evergreen Sample #

Client

Sample ID.

Matrix

<u>TRPH</u>

Units

96-3996-09

LF6-MPL (14'-18')

Soil

< 3.9 mg/Kg

96-3996-09

LF6-MPL (14'-18')

Soil

<3.9 mg/Kg

Duplicate

Duplicate

Method Blank (11/13/96) subtracted

3.4

mg/Kg

Results reported on a dry weight basis.

Approved

HUFFMAN

CUSTOMER #: 02604

LABORATORIES, INC.

Quality Analytical Services Since 1936

4630 Indiana Street • Golden, CO 80403 Phone: (303) 278-4455 • FAX: (303) 278-7012 DATE 12/ IAB# 234 P.O. SEI RECD 11/

ANALYSIS REPORT

PATTY MC CLELLEN EVERGREEN ANALYTICAL, INC 4036 YOUNGFIELD STREET WHEAT RIDGE CO 80033

P.O. # 013549 & 013550/PROJ 96-3990 & 96-3996

SEQUENCE/ 01 02 03
SAMPLE ID LF6-MPJ (18') LF6-MPL (14-18) ST24-MPF(16-18)

CARBONATE C--% - - < 0.02 - - - - < 0.02 - - - - < 0.02
TOTAL CARBON-% - - < 0.05 - - - - < 0.05
ORGANIC C---% - - < 0.05 - - - - < 0.05

THE SAMPLES ARE NOT HOMOGENEOUS.

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

15-Nov-96

Client Project ID: 729691,32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Comments:

Sample ID	Client Sample ID	Analysis	#	Matrix	រុំ	Collection	Received	Due	HT
96-4033-01K	ST24-MPD(D)	Anions by IC CI,NO2,NO3,SO4		Groundwater	ጃ	13-Nov-96	14-Nov-96	28-Nov-96	15-Nov-96
96-4033-02K	ST24-MPH(S)	Anions by IC CI,NO2,NO3,SO4						28-Nov-96	15-Nov-96
96-4033-03K	W81	Anions by IC CI,NO2,NO3,SO4						28-Nov-96	15-Nov-96
96-4033-04K	LF6-MPM	Anions by IC CI,NO2,NO3,SO4						28-Nov-96	15-Nov-96
96-4033-05K	W22	Anions by IC CI,NO2,NO3,SO4						28-Nov-96 15-Nov-96	15-Nov-96
96-4033-06K	W1	Anions by IC CI,NO2,NO3,SO4						28-Nov-96	15-Nov-96
96-4033-01D	ST24-MPD(D)	BTEX (Parsons List)			2			28-Nov-96	27-Nov-96
96-4033-02D	ST24-MPH(S)	BTEX (Parsons List)						28-Nov-96	27-Nov-96
96-4033-03D	W81	BTEX (Parsons List)						28-Nov-96	27-Nov-96
96-4033-04D	LF6-MPM	BTEX (Parsons List)						28-Nov-96	27-Nov-96
96-4033-05D	W22	BTEX (Parsons List)						28-Nov-96	27-Nov-96
96-4033-06D	W1	BTEX (Parsons List)						28-Nov-96	27-Nov-96
96-4033-07A	Trip Blank	BTEX (Parsons List)		Water	6			28-Nov-96	
96-4033-01H	ST24-MPD(D)	Methane		Groundwater	7	13-Nov-96		28-Nov-96	27-Nov-96
96-4033-02H	ST24-MPH(S)	Methane						28-Nov-96	27-Nov-96
96-4033-03H	W81	Methane						28-Nov-96	27-Nov-96
96-4033-04H	LF6-MPM	Methane						28-Nov-96	27-Nov-96
96-4033-05H	W22	Methane						28-Nov-96	27-Nov-96

= Special list. See sample comments or test information. IIT = Holding Time expiration date.

Page 1 of 2

2/5// | ***

Evergreen Analytical, Inc.

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

Comments:

15-Nov-96

Client Project ID: 729691.32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Sample ID	Client Samule ID	Ameliati			I				
	T aidmin Tana	Alialysis	≉	Matrix I) V	Loc Collection	Received	Due	HT
96-4033-06H	WI	Methane		Groundwater 2		13. Moy 06	14 M. O.		
96-4033-01A	ST24-MPD(D)	Purgeable Halocarbons 8010				06-4047-61	14-1404-90	78-Nov-96	27-Nov-96
96-4033-02A	ST24-MPH(S)	Diversity II-1-1-1-1-10010		6				28-Nov-96	27-Nov-96
96-4033-03A	W81	i ugeavie natiocarbons 8010						28-Nov-96	27-Nov-96
	1011	Furgeable Halocarbons 8010						28-Nov. 96	27 Nov. 06
96-4033-04A	LF6-MPM	Purgeable Halocarbons 8010						06-101-07	06-101-17
96-4033-05A	W22	Purgeable Halocarbons 8010						28-Nov-96	27-Nov-96
96-4033-06A	WI	Paraeshle Halocochem 0010						28-Nov-96	27-Nov-96
96-4033-07A	Trin Blank	T mgcavic riaiocaibolis 6010						28-Nov-96	27-Nov-96
2110 2201 20	America di ta	rurgeable Halocarbons 8010		Water				28-Nov-96	
90-4033-01K	S124-MPD(D)	Total Alkalinity	0	Groundwater		13-Nov. 06		25-101-02	
96-4033-02K	ST24-MPH(S)	Total Alkalinity				OC-AONT-C		96-NoN-87	27-Nov-96
96-4033-03L	Wai	T-4-1 A11-11						28-Nov-96	27-Nov-96
02 4022 041	177.1	total Alkalinity						28-Nov-96	27-Nov-96
70-4033-04L	LF6-MPM	Total Alkalinity						20 20	2012
96-4033-05L	W22	Total Alkalinity						96-A0N-87	96-AON-/7
96-4033-06L	W	Total All-all-al-						28-Nov-96	27-Nov-96
96-4033-01D	CT24 MODULE	Total Auxallinty						28-Nov-96	27-Nov-96
210-001-00	(U)U IMI-4710	I VH (Gasoline)		2				28-Nov-96	27.Nov. 06
96-4033-02D	ST24-MPH(S)	TVH (Gasoline)						00-101-02	06-101-17
96-4033-03D	W81	TVH (Gasoline)						28-Nov-96	27-Nov-96
96-4033-04D	LF6-MPM	TVII (Constitution)						28-Nov-96	27-Nov-96
OS 4022 DED	1000	1 Vn (Gasoline)			i			28-Nov-96	27-Nov-96
70-102-02	77 M	TVH (Gasoline)							27 11 20
96-4033-06D	W1	TVH (Gasoline)						- 1	06-A0NI-77
96-4033-07A	Trip Blank	TVH (Gooding)						96-AON-87	7/-Nov-96
		1 VII (Cascille)		Water 9				28-Nov-96	

HATFEDER Date/Time P.O.# 24691, 32010 Seals Injact Y / N MA Coulty, 1970 Samples Pres (Y)N / NA 9 w.o. # 96-4033 For Laboratory ひして Headspace Y (N)(M) 729691-32010 Cooler Temp. °C_ TURNAROUND REQUIRED' 🗡 STD (2 wks) 🛘 UST Sef-1 してをい 0 40 ロカト S (0) S/2 C/S (1) 8 024-6 OZAL B.O.F. # 4 Other (Specify)* expedited turnaround subject to additional fee Date/Time | Received by: (Signature) ဗ္ဗ CLIENT CONTACT (print)_ **ALYTICAL SERVICES REQUEST** CLIENT PROJ. I.D. EAL. QUOTE #_ 1 X **ANALYSIS REQUESTED** 1.814 HQAT Oil & Grease 413.1 Total Metals-DW / NPDES / SW8. (circle & list metals below) Dissolved Metals - DW / SW846 (circle & list metals below) Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 Date/Time Relinquished by: (Signature) TEPH 8015mod. (Diesel) z halytical Inc. FAX RESULTS Y / (Gassoline) TVPH 8015mod. 90 336 Youngfield St. 火 602 (circle)/MTBE (circle) 9 Herbicides 8150/515 (circle) РСВ Ѕ^{сгөөл} Pest/PCBs 8080/608/508 (circle) CHAIN OF CUSTODY RECORD // 09:50 831-8708 Pesticides 808/608 (circle) Evergre 14900 mg BNA 8270/625 (circle) 710g sisteM\dreH\teqq\AN8\AOV (303) を存在 Oil \ Sludge \ Multi-phase MATRIX Sample Fraction Soil / Solid / Ait / Gas Water-Drinking/Discharge/Ground Container FAX# No. of Containers 20001 16301) の方 1272 ×××× TIME でのようなど 31-8100 18 Veg Sampler Name: ROB NACKCZ NAGIBET SAMPLED 2 K DATE Please PRIN all information: SOWS **STATE** Ž 回るが大さら ST2+-HP46 IDENTIFICATION 305 Blu 96-MP SAMPLE CLIENT 011+02 47 J Instructions: 80 Q COMPANY ADDRESS (signature) PHONE# <u>|-</u> CITY (print)_

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W81

Client Project Number

729691.32010

Lab Sample Number

: 96-4033-03

Lab Work Order

96-4033

Date Sampled

: 11/13/96

Matrix

WATER

Date Received

: 11/14/96

Lab File Number(s)

TVB31115012

Date Prepared

: 11/15/96

Method Blank

MB3111596

FID Dilution Factor

: 1.0

PID Dilution Factor : 1.0

Compound Name	Cas Number	Analysis Date	Sample Concentration	DI.	
TVH-Gasoline		11/15/96		RL	Units
Benzene	71-43-2	11/15/96	0.9	0.1	mg/L
Toluene	108-88-3	11/15/96		0.4	ug/L
Chlorobenzene	108-90-7	11/15/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/15/96	10	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/15/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/15/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/15/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/15/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/15/96	1.3	0.4	ug/L
			7.0	0.5	ug/L
FID Surrogate Recovery:		96%		70%-126%	<u>//:</u>
PID Surrogate Recovery:		93%		76%-127%	(Li

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

TVBXWS2P;TV24081P.XLS; 11/21/96; 4

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF6-MPM

Client Project Number

729691.32010

Lab Sample Number

: 96-4033-04

Lab Work Order

96-4033

Date Sampled

: 11/13/96

Matrix

WATER

Date Received

: 11/14/96

Lab File Number(s)

TVB31115017

Date Prepared

: 11/15/96

Method Blank

MB3111596

FID Dilution Factor

: 1.0

: 1.0 PID Dilution Factor

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/15/96	U	0.1	mg/L
Benzene	71-43-2	11/15/96	U	0.4	ug/L
Toluene	108-88-3	11/15/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/15/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/15/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/15/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/15/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/15/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/15/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/15/96	Ú	0.5	ug/L
Surrogate Recovery:		90%		70%-126%	(Limits)
Surrogate Recovery:		88%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		 	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

TVBXWS2P;TV24081P.XLS; 11/21/96; 5

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W22

Client Project Number

729691.32010

Lab Sample Number

: 96-4033-05

Lab Work Order

96-4033

Date Sampled

: 11/13/96

Matrix

WATER

Date Received Date Prepared

: 11/14/96

Lab File Number(s)

TVB31115018

FID Dilution Factor

: 11/15/96 : 1.0

Method Blank MB3111596

PID Dilution Factor

: 1.0

Compound Name	Cas Number	Analysis Date	Sample Concentration	RL	l lada
TVH-Gasoline		11/15/96	Concentiation		Units
Benzene			U	0.1	mg/L
	71-43-2	11/15/96	U	0.4	ug/L
Toluene	108-88-3	11/15/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/15/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/15/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/15/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/15/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/15/96	Ŭ	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/15/96	Ü	0.4	ug/L ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/15/96	U	0.5	ug/L ug/L
			<u>_</u>	0.5	ug/L
FID Surrogate Recovery:		88%		70%-126%	(Lir
PID Surrogate Recovery:		85%		76%-127%	(Lir

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	
	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

: W1 Client Sample Number

Client Project Number

729691.32010

Lab Sample Number

: 96-4033-06

Lab Work Order

96-4033

Date Sampled

: 11/13/96

Matrix

WATER TVB31115019

Date Received Date Prepared

: 11/14/96 : 11/15/96 Lab File Number(s) Method Blank

MB3111596

: 1.0 FID Dilution Factor PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/15/96	U	0.1	mg/L
Benzene	71-43-2	11/15/96	U	0.4	ug/L
Toluene	108-88-3	11/15/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/15/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	. 11/15/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/15/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/15/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/15/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/15/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/15/96	U	0.5	ug/L
Surrogate Recovery:		90%		70%-126%	(Limits)
Surrogate Recovery:		86%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

- **E** = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- **PID** = Photoionization detector.
- FID = Flame ionization detector.
- TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB3111596

Client Project Number

729691.32010

Date Prepared

: 11/15/96

Lab Work Order

96-4033

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB31115009

		Analysis	Sample		T
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/15/96	U	0.1	mg/L
Benzene	71-43-2	11/15/96	U	0.4	ug/L
Toluene	108-88-3	11/15/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/15/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/15/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/15/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/15/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/15/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/15/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/15/96	U	0.5	ug/L
FID Surrogate Recovery:		96%		70%-126%	
PID Surrogate Recovery:		93%		76%-126%	(Lir

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	,	·
Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

H. Hallman
Approved

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB3111696

Client Project Number

729691.32010

Date Prepared

: 11/16/96

Lab Work Order

96-4033

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB31115027

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/16/96	U	0.1	mg/L
Benzene	71-43-2	11/16/96	U	0.4	ug/L
Toluene	108-88-3	11/16/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/16/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/16/96	· U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/16/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/16/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/16/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/16/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/16/96	U	0.5	ug/L
Surrogate Recovery:		93%		70%-126%	(Limits)
Surrogate Recovery:		91%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			 	
	-		 	 _
		 , , , , , , , , , , , , , , , , , , , 	 	 _

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

M. Wleda Analyst

K. Hulman
Approved

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB2111896

Client Project Number

729691.32010

Date Prepared

: 11/18/96

Lab Work Order

96-4033

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB21118003

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/18/96	U	0.1	mg/L
Benzene	71-43-2	11/18/96	U	0.4	ug/L
Toluene	108-88-3	11/18/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/18/96		0.4	ug/L
Ethyl Benzene	100-41-4	11/18/96		0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/18/96		0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/18/96		0.4	ug/L ug/L
1,2,4-Trimethylbenzene	95-63-6	11/18/96	<u>.</u>	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/18/96		0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/18/96	Ü	0.5	ug/L
FID Surrogate Recovery:	<u> </u>	92%		700/ 4000/	
PID Surrogate Recovery:		97%	*************************************	70%-126% 76%-127%	(Li

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
	•		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

AnCallan

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: TRIP BLANK

Client Project Number

729691.32010

Lab Sample Number

: 96-4033-07

Lab Work Order

96-4033

Date Sampled

: N/A

Matrix

WATER

Date Received

: 11/14/96

Lab File Number(s)

TVB21118036

Date Prepared

: 11/18/96

MB2111896 Method Blank

FID Dilution Factor

: 1.0

: 1.0 PID Dilution Factor

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/18/96	U	0.1	mg/L
Benzene	71-43-2	11/18/96	U	0.4	ug/L
Toluene	108-88-3	11/18/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/18/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/18/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/18/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/18/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/18/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/18/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/18/96	U	0.5	ug/L
Surrogate Recovery:		94%		70%-126%	(Limits)
Surrogate Recovery:		94%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Compound	Spike Added (mg/L)	Sample Concentration (mg/L)	MS Concentration (mg/L)	MS %REC	QC (#) Limits %REC
Gasoline	2.00	0.00	1.80	89.9%	55 - 128
Surrogate **				97%	70 - 130

Compound	Web and the second seco		1	RPD	QC Limits	
(mg	(mg/L)	(mg/L) (mg/L)	%REC		RPD	%REC
Gasoline	2.00	1.72	86.2%	4.3	50	50 - 150
Surrogate **			94%	NA	NA	70 - 130

RPD:	O	out of	(1) outside limits
Spike Recovery:		, _	(2) outside limits.

Notes:

NA = Not analyzed/not applicable.

- * = Values outside of QC limits.
- ** = 1,2,4-Trichlorobenzene

Comments:	

M. Blaha
Analyst

Approved

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: W81	Client Project No.	:	729691.32010
Lab Sample No.	: 96-4033-03	Lab Work Order	:	96-4033
Date Sampled	: 11/13/96	EPA Method No.	:	602/8020
Date Received	: 11/14/96	Matrix	:	WATER
Date Prepared	: 11/15/96	Lab File Number(s)	:	TVB31115015,16
Date Analyzed	: 11/15/96	Method Blank	:	MB3111596
Instrument Name	: TVHBTEX3	Dilution Factor	:	1.0

Compound	Spike Added	Sample Concentration	Concentration (ug/L)			
•	(ug/L)	(ug/L)	MS	MSD	Comments	
Benzene	20.0	0.9	18.5	18.8		
Toluene	20.0	0.0	16.8	17.3		
Chlorobenzene	20.0	10.0	27.2	27.8		
Ethylbenzene	20.0	0.0	17.1	17.6		
m,p-Xylene	20.0	0.0	17.4	17.7		
o-Xylene	20.0	0.0	16.8	17.4		
1,3,5-TMB	20.0	0.0	17.8	19.5		
1,2,4-TMB	20.0	0.0	16.7	17.2		
1,2,3-TMB	20.0	0.0	17.7	18.5		
1,2,3,4-TeMB	20.0	1.3	17.3	18.3		
Surrogate	100.0	93%	93%	92%		

	MS	MSD		1	ОС
Compound	%	%			Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	88.0	89.5	1.7	25	39 - 150
Toluene	84.0	86.5	2.9	25	46 - 148
Chlorobenzene	86.0	89.0	3.4	25	55 - 135
Ethylbenzene	85.5	88.0	2.9	25	32 - 160
m,p-Xylene	87.0	88.5	1.7	25	25 - 150
o-Xylene	84.0	87.0	3.5	25	25 - 150
1,3,5-TMB	89.0	97.5	9.1	25	25 - 150
1,2,4-TMB	83.5	86.0	2.9	25	25 - 150
1,2,3-TMB	88.5	92.5	4.4	25	25 - 150
1,2,3,4-TeMB	80.0	85.0	6.1	25	25 - 150
Surrogate	93.0	92.0	NA	NA	70 - 130

RPD: Spike Recovery:	0	_ out of (10) outsid _ out of (20) outsid			
Comments:			.,		
M Blood	<i>[</i>			V Hellen	

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS3111596-GAS : 11/15/96 : 11/15/96 : TVB31115007	Matrix Method Numbers Instrument Name	: WATER : EPA 5030/8 : TVHBTEX3	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % Recovery	QC Limit % Recovery
Gasoline	2.00	1.98	99.2	50 - 150
Surrogate Recovery:		105%		70 - 130

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

LCS Number Date Extracted/Prepared : LCS3111596-BTEX

Dilution Factor

1.00

Spike Amount (ug/L)

: 11/15/96

Method

602/8020 Water

Date Analyzed

: 11/15/96 : 20.0

Matrix Lab File No.

TVB31115008

		LCS	LCS	
	Cas	Concentration	%	QC Limit
Compound Name	Number	(ug/L)	Recovery	% Recovery
Benzene	71-43-2	18.5	92.5	50 - 150
Toluene	108-88-3	18.2	91.0	50 - 150
Chlorobenzene	108-90-7	16.8	84.0	50 - 150
Ethyl Benzene	100-41-4	18.3	91.5	50 - 150
m,p-Xylene	108-38-3	36.0	90.0	50 - 150
	106-42-3			
ylene	95-47-6	18.2	91.0	50 - 150
	1634-04-4	18.6	93.0	50 - 150
1,3,5-Trimethylbenzene	108-67-8	18.9	94.5	50 - 150
1,2,4-Trimethylbenzene	95-63-6	17.5	87.5	50 - 150
1,2,3-Trimethylbenzene	526-73-8	21.1	105.5	50 - 150
1,2,3,4-Tetramethylbenzene	488-23-3	18.8	94.0	50 - 150
Surrogate Recovery:		96%		70 - 130

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS2111896-GAS : 11/18/96 : 11/18/96 : TVB21118013	Matrix Method Numbers Instrument Name	: WATER : EPA 5030/80 : TVHBTEX2	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % Recovery	QC Limit % Recovery
Gasoline	2.00	2.32	115.9	81 - 128
Surrogate Recovery:		125%		70 - 126

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 10/1/96 for TVHBTEX2. MAB

Analyst

K. Hollman
Approved

EPA 602/8020 Data Report **Laboratory Control Sample (LCS)**

20.0

LCS Number : LCS2111896-BTEX Date Extracted/Prepared : 11/18/96 Date Analyzed 11/18/96 Spike Amount (ug/L)

Dilution Factor Method

602/8020 Matrix Water

Lab File No. TVB221118014

1.00

Compound Name	Cas Number	LCS Concentration (ug/L)	LCS % Recovery	QC Limit** % Recovery
Benzene	71-43-2	20.6	103.0	75 - 116
Toluene	108-88-3	20.0	100.0	75 - 118
Chlorobenzene	108-90-7	18.2	91.0	73 - 115
Ethyl Benzene	100-41-4	19.7	98.5	80 - 122
m,p-Xylene	108-38-3	38.1	95.3	76 - 120
Yylene	106-42-3 95-47-6	20.0	100.0	76 - 118
	1634-04-4	20.5	102.5	75 - 115
1,3,5-Trimethylbenzene	108-67-8	19.6	98.0	64 - 118
1,2,4-Trimethylbenzene	95-63-6	18.1	90.5	75 - 111
1,2,3-Trimethylbenzene	526-73-8	22.6	113.0	82 - 127
1,2,3,4-Tetramethylbenzene	488-23-3	20.6	103.0	72 - 131
Surrogate Recovery:		100%		76 - 127

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

LCSBXWS2;LSB21118.XLS; 11/20/96

Method 8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB112196

Client Project No.

: 729691.32010

Date Prepared

: 11/21/96

Lab Project No.

: 96-4033

Date Analyzed

: 11/21/96

Lab File No.

: HALL1121\004F0101

Compound	CAS#	Concentration (ug/L)	DI (mall)
Vinyl Chloride	75-01-4	II	RL(ug/L)
Chloroethane	75-00-3	ii .	0.4
1,1-Dichloroethene	75-35-4	ii	0.4
Dichloromethane	75-09-2	11	0.4
trans-1,2-Dichloroethene	156-60-5	ŭ	0.4
1,1-Dichloroethane	75-34-3	u u	0.4
cis-1,2-Dichloroethene	156-59-4	ŭ	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	ŭ	0.4
Trichloroethene	79-01-6	บ บ	0.4
1,1,2-Trichloroethane	79-00-5		0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U 11	0.4
Chlorobenzene	108-90-7	U	0.4
1,1,2,2-Tetrachloroethane	79-34-5	U 11	0.42
2-Chlorotoluene	95-49-8	U	0.54
4-Chlorotoluene	106-49-8	U	6 .
1,3-Dichlorobenzene	541-73-1	U	
1,2-Dichlorobenzene		π	
	95-50-1	U U	

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

81%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

Method 601/8010 Chlorinated VOC's Method Blank Report

nethod Blank

: RB112596

Client Project No.

: 729691.32010

Date Prepared

: 11/25/96

Lab Project No.

: 96-4033

Date Analyzed

: 11/25/96

Lab File No.

: HALL1125\004F0101

Compound	CAS#	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	บ	0.54
2-Chlorotoluene	95-49-8	U	0.4
4-Chlorotoluene	106-49-8	· U	0.4
3-Dichlorobenzene	541 - 73-1	U	0.4
2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

85%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

peroved

Method 601/8010 Chlorinated VOC's Sample Report

 Lab Sample No.
 : 96-4033-03
 Lab Project No.
 : 96-4033

 Date Sampled
 : 11/13/96
 Matrix
 : Water

Date Prepared : 11/25/96 Method Blank : RB112596
Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	4.8	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	Ŭ	0.4
Trichloroethene	79-01-6	Ŭ	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	Ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ŭ	0.4
Chlorobenzene	108-90-7	6.5	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
4-Chlorotoluene	106-49-8	Ŭ	0.4
1,3-Dichlorobenzene	541-73-1	Ŭ	0.4
1,2-Dichlorobenzene	95-50-1	0.49 J	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 94% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

Method 601/8010 Chlorinated VOC's Sample Report

client Sample No.

: LF6-MPM

Client Project No.

: 729691.32010

Lab Sample No.

: 96-4033-04

Lab Project No.

: 96-4033

Date Sampled

: 11/13/96

Matrix

: Water

Date Received

: 11/14/96

Lab File No.

Date Prepared

Method Blank

: HALL1121\020F0101

: 11/21/96

: RB112196

Date Analyzed

: 11/21/96

Dilution Factor

: 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	2.7	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	3.8	0.4
Carbon Tetrachloride	56-23-5	U	. 0.4
Trichloroethene	79-01-6	1.1	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	U	0.4
3-Dichlorobenzene	541-73-1	`U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

82%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

proved

Method 601/8010 Chlorinated VOC's Sample Report

 Lab Sample No.
 : 96-4033-05
 Lab Project No.
 : 96-4033

 Date Sampled
 : 11/13/96
 Matrix
 : Water

Date Prepared : 11/21/96 Method Blank : RB112196

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	Pl (us/l)
Vinyl Chloride	75-01-4	11	RL (ug/L)
Chloroethane	75-00-3	บ	0.4
1,1-Dichloroethene	75-35-4	ŭ	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ŭ.	0.4
Carbon Tetrachloride	56-23-5	ŭ	0.4
Trichloroethene	79-01-6	ŭ	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ü	0.4
Chlorobenzene	108-90-7	ŭ.	0.4
1,1,2,2-Tetrachloroethane	79-34-5	ii	0.42
2-Chlorotoluene	95-49-8	ii .	
4-Chlorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	ĬĬ	
1,2-Dichlorobenzene	95-50-1	ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 79% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

LI WAGES

Method 601/8010 Chlorinated VOC's Sample Report

: W1 ment Sample No.

Client Project No.

: 729691.32010

Lab Sample No.

: 96-4033-06

Lab Project No.

: 96-4033

Date Sampled

: 11/13/96

Matrix

: Water

Date Received

: 11/14/96

Lab File No.

: HALL1121\022F0101

Date Prepared

: 11/21/96

Method Blank

: RB112196

Date Analyzed

: 11/21/96

Dilution Factor

: 1.0

Compound	CAS #	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chiorotoluene	95-49-8	U	0.4
hlorotoluene	106-49-8	U	0.4
Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

72%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : Trip Blank Client Project No. : 729691.32010
Lab Sample No. : 96-4033-07 Lab Project No. : 96-4033
Date Sampled : 11/13/96 Matrix Water

Date Prepared : 11/21/96 Method Blank : RB112196

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	DI (na/t)
Vinyl Chloride	75-01-4	11	RL (ug/L)
Chloroethane	75-00-3	Ŭ	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	ü	0.4
trans-1,2-Dichloroethene	156-60-5	ŭ	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	11	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5		0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	<u> </u>	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	Ü	0.4
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.42
2-Chlorotoluene	95-49-8	U U	 -
4-Chlorotoluene	106-49-8	ŭ	
1,3-Dichlorobenzene	541-73-1	Ü	
1,2-Dichlorobenzene	95-50-1	Ü	5.4
		U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 73% 70% - 130% (QC limits)
--

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

Date Performed: 11/21/96

Reference Standard: V832

		Method	Method Sample Sample	Sample	Spike	Control	Spike		์ ฮ	Spike Recoveries	eries	☐ QC Reco	QC Recovery Range
Analyte	Σ	Blank 6	Blank 46-4033-02. Spike	Spike	Dup.	Spike	Amt	RPD	Sample	# dnQ	Control #	- 1% - 1%	Low - High
Vinyl Chloride	*			13.283	14.878	15.321	20.0	11.3	%99	74%	%11	28 - 163	5.60 - 32.60
Chloroethane	•			16.436	17.331	17.177	20.0	5.3	85%	87%	86%	48 - 137	9.20 - 27.40
1,1-Dichloroethene	•			17.049	17.216	18.277	20.0	1.0	82%	86%	91%	28 - 167	5.60 - 33.40
Dichloromethane	٠			16.163	16.26	16.528	20.0	9.0	81%	81%	83%	25 - 162	5.00 - 32.40
trans-1,2-Dichloroethene	•			20.881	20.771	21.672	20.0	0.5	104%	104%	108%	38 - 155	7.60 - 31.00
1,1-Dichloroethane	•			18.409	18.937	18.878	20.0	2.8	85%	%56	84%	47 - 132	9.40 - 26.40
cis-1,2-Dichloroethene	4			18.726	18.512	19.425	20.0	1.1	84%	83%	81%	•	•
1,1,1-Trichloroethane	•			18.083	18.089	19.867	20.0	0.0	%06	%08	%66	41 - 138	8.20 - 27.60
Carbon Tetrachloride	•			18.54	18.589	19.370	20.0	0.3	83%	83%	%26	43 - 143	8.60 - 28.60
Trichloroethene	*			19.47	19.231	20.550	20.0	1.2	81%	%96	103%	35 - 146	7.00 - 29.20
1,1,2-Trichloroethane	3			19.725	19.42	19.498	20.0	1.6	%66	%/6	%26	39 - 136	7.80 - 27.20
Tetrachloroethene	٠			18.183	17.756	18.182	20.0	2.4	91%	%68	81%	26 - 162	5.20 - 32.40
1,1,1,2-Tetrachloroethane	۵.			16.532	15.92	17.703	20.0	3.8	83%	80%	%68	•	•
Chlorobenzene	•			17.691	18.375	19.048	20.0	3.8	88%	85%	%56	1 - 150	0.16 - 30.00
1,1,2,2-Tetrachloroethane	•			19.769	20.198	20.962	20.0	2.1	%66	101%	105%	8 - 184	1.60 - 36.80
2-Chlorotoluene				17.15	16.509	17.441	20.0	3.8	%98	83%	87%	•	•
4-Chlorotoluene	٠			16.472	16.38	16.153	20.0	9.0	85%	82%	81%	•	•
1,3-Dichlorobenzene	٠			16.387	16.588	16.877	20.0	1.2	82%	83%	84%	7 - 187	1.40 - 37.40
1,2-Dichlorobenzene	•			12.762	14.096	15.866	20.0	9.9	64%	%02	%62	0 - 208	0.00 - 41.60

M = Applicable matrices. (* = Soil and Water. w = Water only.)

= Marks a spike recovery out of limits.

If recovery is outside method limit, marked with "".

If recovery is outside a guideline, marked with "~".

If the sample spike recovery is outside the limit and the control spike is outside the limit also, the control is marked with "**" or "~~".

Notes on recovery limits:

All spiked analytes must be detected even if low limit is 0.

For analytes not listed in the method, recovery limits of 50-150% will be used as guidelines until limits can be established.

Corrective Actions:

Unacceptable sample spike recovery requires acceptable control spike recovery. If both recoveries are outside limits, corrective action must be taken. One recovery outside limits and the other acceptable, is a waming. Repeated failure requires corrective action. Recoveries outside guidelines should be compared to historical data available to determine if corrective action is required.

Methane Report Form Method Blank Report

Method Blank Number Date Extracted/Prepared

: GB112196

Client Project No.

: 729691.32010

Date Extracted/Preparation Date Analyzed

: 11/21/96 : 11/21/96

Lab Work Order Dilution Factor

: 96-4033

Method

: 1.00

Matrix

: RSKSOP-175M

Matrix

: Water

Lab File No.

: GAS1121002

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. Hollman

Annroyed

AF4033.XLS

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: W81 : 96-4033-03 : 11/13/96 : 11/14/96 : 11/21/96 : 11/21/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.		: 729691.32010 : 96-4033 : 50.00 : RSKSOP-175M : Water : GAS1121010
Compound Name	Cas Number	Sample Concentration mg/L		RL mg/L
Methane	74-82-8	0.7		0.1
rature	:		Meth	0.164163893
Total Volume of Sample Head space created	: 0.01 : 43 : 4		Meth	0.515304837
Methane Area	: 76.351	ug		

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

 $\lambda = \text{Not Available/Not Applicable.}$

We have

Hollman Approved

AF4033.XLS

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: LF6-MPM : 96-4033-04 : 11/13/96 : 11/14/96 : 11/21/96 : 11/21/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	: 729691.32010 : 96-4033 : 1.00 : RSKSOP-175M : Water : GAS1121011
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002
Temperature Amount Injected	74.2 F		Meth

43 ml

4 ml

0 ug

Concentration

in Head Space

Meth

Atomic weight(Methane)	:	16 g
------------------------	---	------

Qualifiers

E = Extrapolated value.

Total Volume of Sample

Head space created

Methane Area

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. Hollman Approved

Methane Report Form

Client Sample Number	: LF6-MPM	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4033-04Dup	Lab Work Order	: 96-4033
Date Sampled	: 11/13/96	Dilution Factor	: 1.00
Date Received	: 11/14/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/21/96	Matrix	: Water
Date Analyzed	: 11/21/96	Lab File No.	: GAS1121012

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

rature	:	74.2 F	Saturation	Meth	0
A nt Injected	:	0.5 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	0
Head space created		4 mi	in Head Space		
Methane Area	:	0 ug			

Atomic weight(Methane)

16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

 $\lambda = \text{Not Available/Not Applicable.}$

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: W22 : 96-4033-05 : 11/13/96 : 11/14/96 : 11/21/96 : 11/21/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	: 729691.32010 : 96-4033 : 1.00 : RSKSOP-175M : Water : GAS1121013
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002
Temperature	: 74.3 F	Saturation	Meth
Amount Injected Total Volume of Sample Head space created Methane Area	: 0.5 m : 43 m : 4 m : 0 ug	Concentration Concentration in Head Space	Meth

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. Hollman
Approved

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: W1 : 96-4033-06 : 11/13/96 : 11/14/96 : 11/21/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	: 729691.32010 : 96-4033 : 1.00 : RSKSOP-175M : Water : GAS1121014
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002
Methane	74-82-8		0.002

rature	:	74.7 F	Saturation	Meth	0
A Injected	:	0.5 ml	Concentration		
Total Volume of Sample	•	43 ml	Concentration	Meth	0
Head space created	:	4 ml	in Head Space		
Methane Area	:	<u>0</u> ug			

Atomic weight(Methane) : _____ g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

"A = Not Available/Not Applicable.

Whones K. Hilman
Approved

AF4033.XLS

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane Gas Matrix Spike / Matrix Spike Duplicate Report

Client Sample No.

: W22

Client Project No.

: 729691.32010

Lab Sample No.

: 96-4033-05

Lab Work Order

: 96-4033

Date Sampled

: 11/13/96

EPA Method No.

: RSKSOP-175M

Date Received

: 11/14/96

Matrix

: Water

Date Prepared

: 11/21/96

Method Blank

: GB112196

Date Analyzed

: 11/21/96

Lab File No's.

: GAS1121022,023

E.A. MS/MSD Spike Source No.

: 1886

Compound	Spike Added (ug)	Sample Concentration (ug)	MS Concentration (ug)	MS %REC	QC Limits %REC
Methane Gas	500	0	329	66	47-88

Compound	Spike Added (ug)	MSD Concentration (ug)	MSD %REC	RPD	Lir	C nits
Diff and the second					RPD	%REC
Methane Gas	500	341	68	3.5	0-16.4	47-88

RPD:

out of (1) outside limits.

Spike Recovery:

out of (2) outside limits.

Notes

* = Values outside of QC limits.

NA = Not analyzed/not available

Note: The Spike was made by taking the sample and displacing 4ml of headspace with a 1%methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

MS4033.XLS; 11/22/96

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane LCS Report Form

LCS No.

: LCS112196

EPA Method No.

: RSKSOP-175M

Date Prepared

: 11/21/96

Matrix

: Water

Date Analyzed

: 11/21/96

Method Blank

: GB112196

E.A. LCS Source No.

: 1886

Lab File No.

: GAS1121006

	Spike	Method Blank	LCS		αc
Compound	Added	Concentration	Concentration	LCS	Limits
	(ug)	(ug)	(ug)	%REC	%REC
Methane Gas	500	0	409	82	64-90

Spike Recovery:

\sim
U

out of (1) outside limits.

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

Notes

* = Values outside of QC limits.

NA = Not analyzed/not available.

Analyst

Approved

LCS1121.XLS; 11/22/96

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science

1700 Broadway Suite 900 Denver, CO 80290

Comments:

19-Nov-96

Client Project ID: 729691.32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

96-4047-01K LF6 MPC Anions by IC Water D4 14-Nov-96 15-Nov-96 16-Nov-96 96-4047-02K LF6 MPP Anions by IC CINOZNO3,SO4 0.2-Dec-96 16-Nov-96 96-4047-02K LF6 MPP Anions by IC CINOZNO3,SO4 0.2-Dec-96 16-Nov-96 96-4047-04K W 21 Anions by IC CINOZNO3,SO4 0.2-Dec-96 16-Nov-96 96-4047-04K W 21 Anions by IC CINOZNO3,SO4 0.2-Dec-96 16-Nov-96 96-4047-04K W 20 Anions by IC CINOZNO3,SO4 0.2-Dec-96 16-Nov-96 96-4047-07K LF6 MPP BIEX (Parsons List) 0 0.2-Dec-96 16-Nov-96 96-4047-03D LF6 MPP BIEX (Parsons List) 0 0.2-Dec-96 28-Nov-96 96-4047-03D W 78 BIEX (Parsons List) 0 0.2-Dec-96 28-Nov-96 96-4047-03D W 78 BIEX (Parsons List) 0 0.2-Dec-96 28-Nov-96 96-4047-03D LF6 MPP BIEX (Parsons List) 0 0.2-Dec-96 <	Sample ID	Client Sample ID	Analysis	*	Matrix]	Loc	Collection	Received	Due	HT
LF6 MPP Auions by IC 02-Dec-96 W 78 Auions by IC 02-Dec-96 W 21 Auions by IC 02-Dec-96 W 21 Auions by IC 02-Dec-96 W 20 Ci,NOZ,NOS,SO4 02-Dec-96 W 20 Ci,NOZ,NOS,SO4 02-Dec-96 LF6 MFQ Anions by IC 02-Dec-96 LF6 MFQ BTEX (Parsons List) 2 02-Dec-96 LF6 MFQ BTEX (Parsons List) 02-Dec-96 W 71 BTEX (Parsons List) 02-Dec-96 W 21 BTEX (Parsons List) 02-Dec-96 W 20 BTEX (Parsons List) 02-Dec-96 LF6 MFQ BTEX (Parsons List) 02-Dec-96 LF6 MFQ Methane 02-Dec-96 LF6 MFQ Methane 02-Dec-96 LF6 MFQ Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 21	96-4047-01K	LF6 MPO	Anions by IC CI,NO2,NO3,SO4			1	14-Nov-96	15-Nov-96	02-Dec-96	16-Nov-96
W 78 Anions by IC 02-Dec-96 W 21 Ci,NOZ,NO3,SO4 02-Dec-96 W 20 Ci,NOZ,NO3,SO4 02-Dec-96 W 20 Anions by IC 02-Dec-96 LF6 MPQ Anions by IC 02-Dec-96 LF6 MPQ Anions by IC 02-Dec-96 LF6 MPQ BTEX (Parsons List) 2 02-Dec-96 LF6 MPQ BTEX (Parsons List) 02-Dec-96 02-Dec-96 W 21 BTEX (Parsons List) 02-Dec-96 02-Dec-96 W 20 BTEX (Parsons List) 02-Dec-96 02-Dec-96 LF6 MPQ BTEX (Parsons List) 9 02-Dec-96 LF6 MPQ Methane 2 02-Dec-96 LF6 MPQ Methane 2 02-Dec-96 LF6 MPQ Methane 02-Dec-96 W 78 Methane 02-Dec-96	96-4047-02K	LF6 MPP	Anions by IC CI,NO2,NO3,SO4						02-Dec-96	16-Nov-96
W 21 Anions by IC 02-Dec-96 W 20 Anions by IC 02-Dec-96 LF6 MPQ Anions by IC 02-Dec-96 LF6 MPQ Anions by IC 02-Dec-96 LF6 MPQ BTEX (Parsons List) 2 02-Dec-96 LF6 MPP BTEX (Parsons List) 02-Dec-96 W 78 BTEX (Parsons List) 02-Dec-96 W 20 BTEX (Parsons List) 02-Dec-96 LW MPQ BTEX (Parsons List) 02-Dec-96 LF6 MPQ BTEX (Parsons List) 9 02-Dec-96 LF6 MPQ Methane 02-Dec-96 LF6 MPQ Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 79 Methane 02-Dec-96 W 70 Methane 02-Dec-96 W 70	96-4047-03K	W 78	Anions by IC CI,NO2,NO3,SO4						02-Dec-96	16-Nov-96
W 20 Anions by IC CI,NO2,NO3,SO4 02-Dec-96 LF6 MPQ Anions by IC CI,NO2,NO3,SO4 02-Dec-96 LF6 MPO BTEX (Parsons List) 02-Dec-96 LF6 MPP BTEX (Parsons List) 02-Dec-96 W 21 BTEX (Parsons List) 02-Dec-96 W 20 BTEX (Parsons List) 02-Dec-96 LF6 MPQ Methane 02-Dec-96 LF6 MPQ Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 20 Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 20 Methane 02-Dec-96 W 20	96-4047-04K	W 21	Anions by IC CI,NO2,NO3,SO4						02-Dec-96	16-Nov-96
LF6 MPQ Anions by IC classional controls of classional classical	96-4047-05K	W 20	Anions by IC Ci,NO2,NO3,SO4			ļ			02-Dec-96	16-Nov-96
LF6 MPO BTEX (Parsons List) 2 02-Dec-96 LF6 MPP BTEX (Parsons List) 0.0-Dec-96 W 78 BTEX (Parsons List) 0.0-Dec-96 W 20 BTEX (Parsons List) 0.0-Dec-96 W 20 BTEX (Parsons List) 0.0-Dec-96 LF6 MPQ BTEX (Parsons List) 0.0-Dec-96 LF6 MPQ Methane 0.0-Dec-96 LF6 MPP Methane 0.0-Dec-96 W 78 Methane 0.0-Dec-96 W 78 Methane 0.0-Dec-96 W 21 Methane 0.0-Dec-96 W 21 Methane 0.0-Dec-96 W 21 Methane 0.0-Dec-96	96-4047-07K	LF6 MPQ	Anions by IC CI,NO2,NO3,SO4						02-Dec-96	16-Nov-96
LF6 MPP BTEX (Parsons List) 02-Dec-96 W 78 BTEX (Parsons List) 02-Dec-96 W 21 BTEX (Parsons List) 02-Dec-96 W 20 BTEX (Parsons List) 02-Dec-96 LF6 MPQ BTEX (Parsons List) 9 02-Dec-96 LF6 MPQ Methane 2 02-Dec-96 LF6 MPQ Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 20 Methane 02-Dec-96	96-4047-01D	LF6 MPO	BTEX (Parsons List)			2			02-Dec-96	28-Nov-96
W 78 BTEX (Parsons List) 02-Dec-96 W 21 BTEX (Parsons List) 02-Dec-96 W 20 BTEX (Parsons List) 02-Dec-96 LF6 MPQ BTEX (Parsons List) 9 02-Dec-96 Trip Blank-5 BTEX (Parsons List) 9 02-Dec-96 LF6 MPO Methane 2 02-Dec-96 LF6 MPP Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 20 Methane 02-Dec-96	96-4047-02D	LF6 MPP	BTEX (Parsons List)						02-Dec-96	28-Nov-96
W 21 BTEX (Parsons List) 02-Dec-96 W 20 BTEX (Parsons List) 02-Dec-96 LF6 MPQ BTEX (Parsons List) 9 02-Dec-96 Trip Blank-5 BTEX (Parsons List) 9 02-Dec-96 LF6 MPO Methane 2 02-Dec-96 LF6 MPP Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 20 Methane 02-Dec-96 W 20 Methane 02-Dec-96	96-4047-03D	W 78	BTEX (Parsons List)						02-Dec-96	28-Nov-96
W 20 BTEX (Parsons List) 02-Dec-96 LF6 MPQ BTEX (Parsons List) 9 02-Dec-96 Trip Blank-5 BTEX (Parsons List) 9 02-Dec-96 LF6 MPO Methane 2 02-Dec-96 UF6 MPP Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 20 Methane 02-Dec-96 W 20 Methane 02-Dec-96	96-4047-04D	W 21	BTEX (Parsons List)						02-Dec-96	28-Nov-96
LF6 MPQ BTEX (Parsons List) 02-Dec-96 Trip Blank-5 BTEX (Parsons List) 9 02-Dec-96 LF6 MPO Methane 2 02-Dec-96 LF6 MPP Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 20 Methane 02-Dec-96 W 20 Methane 02-Dec-96	96-4047-05D	W 20	BTEX (Parsons List)						02-Dec-96	28-Nov-96
Trip Blank-5 BTEX (Parsons List) 9 02-Dec-96 LF6 MPO Methane 2 02-Dec-96 LF6 MPP Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 20 Methane 02-Dec-96 W 20 Methane 02-Dec-96	96-4047-07D	LF6 MPQ	BTEX (Parsons List)						02-Dec-96	28-Nov-96
LF6 MPO Methane 2 02-Dec-96 LF6 MPP Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 20 Methane 02-Dec-96	96-4047-08A	Trip Blank-5	BTEX (Parsons List)			۵			02-Dec-96	28-Nov-96
LF6 MPP Methane 02-Dec-96 W 78 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 20 Methane 02-Dec-96	96-4047-01H	LF6 MPO	Methane			7			02-Dec-96	28-Nov-96
W 78 Methane 02-Dec-96 W 21 Methane 02-Dec-96 W 20 Methane 02-Dec-96	96-4047-02H	LF6 MPP	Methane						02-Dec-96	28-Nov-96
W 21 Methane 02-Dec-96 W 20 Methane 02-Dec-96	96-4047-03H	W 78	Methane						02-Dec-96	28-Nov-96
W 20 Methane 02-Dec-96	96-4047-04H	W 21	Methane						02-Dec-96	28-Nov-96
	96-4047-05H	W 20	Methane						02-Dec-96	28-Nov-96

= Special list. See sample comments or test information. HT = Holding Time expiration date.

Page 1 of 3

9/0/0/0

Evergreen Analytical, Inc.

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

19-Nov-96

Client Project ID: 729691.32010

FAX: (303) 831-8208 Phone: (303) 831-8100

٠	•
2	
Ē	•
ā	
è	
Ξ	
Ε	•
2	
7	1
-	ø

Sample ID	Client Sample ID	Analysis	#	Matrix 1	işi Şi	Collection	Received	Due	HT
96-4047-07H	LF6 MPQ	Methane		Water	2	14-Nov-96	15-Nov-06	20 250 00	20 M 07
96-4047-01A	LF6 MPO	Purgeable Halocarbons 8010						06-20-20	06-1404-92
96-4047-02A	LF6 MPP	Purgeable Halocarbons 8010						07-Dec-96	96-AON-87
96-4047-03A	W 78	Purgable Holocorpone 8010						02-Dec-96	28-Nov-96
96-4047-04A	W 21	Purashla Unlocation 0010						02-Dec-96	28-Nov-96
96-4047-054	W 20	r ugcavic materationis 8010						02-Dec-96	28-Nov-96
06 4047 06 4	W 20	Furgeable Halocarbons 8010						02-Dec-96	28-Nov-96
30-4047-06A	7 M	Purgeable Halocarbons 8010						02-Dec-96	28-Nov-96
96-4047-07A	LF6 MPQ	Purgeable Halocarbons 8010						02-Dec-96	28-Nov-96
96-4047-08A	Trip Blank-5	Purgeable Halocarbons 8010						03-Dec 06	28 Now 96
96-4047-01L	LF6 MPO	Total Alkalinity			2			06-750-70	26-1001-02
96-4047-02L	LF6 MPP	Total Alkalinity						06-39G-70	06-NON-87
96-4047-03L	W 78	Total Alkalinity						07-Dec-96	78-Nov-96
1A0 7 A0A 7	10.71	Town consuminty						02-Dec-96	28-Nov-96
20 1047-041	17 M	Total Alkalinity						02-Dec-96	28-Nov-96
30-404/-03F	W 20	Total Alkalinity						02-Dec-96	28-Nov-96
96-4047-07L	LF6 MPQ	Total Alkalinity						02-Dec 96	28 Nov 96
96-4047-01M	LF6 MPO	Total Organic Carbon						02-04-20	12 Dec 05
96-4047-02M	LF6 MPP	Total Organic Carbon						02-Dec-30	12-Dec-30
96-4047-03M	W 78	Total Organic Carbon						02-Day	12-Dec-30
96-4047-04M	W 21	Total Organic Carbon						03 Dec 04	12 Dec 06
96-4047-01D	LF6 MPO	TVH (Gasoline)		,				06-001-70	12-Dec-30
96-4047-02D	LF6 MPP	TVH (Gasoline)		1				07-Dec-90	28-NOV-90
96-4047-03D	W 78	TVH (Gacolina)						02-Dec-96	28-Nov-96
06.4047.04D	11 M	TITI (Casoline)						02-Dec-96	28-Nov-96
	W 21	TVH (Gasoline)						02-Dec-96	Mov-96
# = Spe HT = Holumb 11	# = Spe sample comments or test information. HT = Hotem's time expiration date.	t information.						Page 2	11

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science

1700 Broadway Suite 900 Denver, CO 80290

Comments:

19-Nov-96

Client Project ID: 729691.32010

Phone: (303) 831-8100

FAX: (303) 831-8208

					I				
Sample ID	Client Sample ID	Analysis	*	Matrix	Ş	Matrix Loc Collection Received	Received	Due	HT
96-4047-05D W 20	W 20	TVH (Gasoline)		Water	7	14-Nov-96	14-Nov-96 15-Nov-96 02-Der-06 28-Nov-96	02_Dec_06	28-Nov-96
96-4047-06D W 2	W	TVT // 1.11.						2000	201102
700-1101-00	7	i vn (Gasonne)						02-Dec-96 28-Nov-96	28-Nov-96
96-4047-07D LF6 MPQ	LF6 MPQ	TVH (Gasoline)						02-Dec-96 28-Nov-96	28-Nov-96
96-4047-08A	96-4047-08A Trip Blank-5	TVH (Gasoline)			0			90 -1011 62 90 -202 -20	26 Mon 96
					•				

28-Nov-96 28-Nov-96 28-Nov-96

CHAIN OF CUSTODY RECORD / ANALYTICAL SERVICES REQUEST

77	Evergreen Analytical Inc.	Page
COMPANY ALSOND 7	4036 Youngfield St.	CLIENT CONTACT (print) JOHNS Haut
ADDRESS 1700 Blodenay Suit 900	Wheat Ridge, Colorado 80033	CLIENT PROJ. 1.D. 7469 34010
CITY DAWNER STATE (O ZIP SOAMO	(303) 423-5021 FAX (303) 425-6854	EAL. QUOTE #
PHONE# (303) 831-8100 FAX# (302)	(800) 845-7400 (83) - X COFFAX RESILITS V N	TURNAROUND REQUIRED* 🔲 STD (2 wks) 📋
Sampler Name, 000		☐ Other (Specify)*

1.32010

expedited turnaround subject to additional fee

ANALYSIS REQUESTED

wo. #___fG. tot

205 44

(o) S/O

່ <u>25Σ (l) ຮ/ວ</u> Cooler Temp. °C_

For Laboratory

Samples Pres 2003 / NA

Headspace Y MYMB

1.814 H9AT

Oil & Grease 413.1

Dissolved Metals - DW / SW846 (circle & list metals below)

9/602 (circle)/MTBE (circle)

Total Metals-DW / NPDES (circle & list metals below)

TEPH 8015mod. (Diesel) TVPH 8015mod. (Gasoline)

Herbicides 8150/515 (circle)

Pesticides 808/608 (circle)

Pest/PCBs 8080/608/508 (circle)

03 A.M OY A-M

X

70 ි ර

06 A·6

5

05 A - 1

Seals Intact (%) N / NA

MATRIX Oil / Sludge / Multi-phase Solid / Air / Gas iking/Discharge/Ground Sampler Name

(signature)_

Please PRINT

all information:

sienistr

וואס	16)	ьW.
Cor	ìo .	
		TIME
	DATE	SAMPLED TIME
CLIENT	SAMPLE	IDENTIFICATION

3/1	ioS	
-16J O)	Wa	
10 . 101 101 101 10	οN	_
	TIME	1
DATE	SAMPLED	11(111)
SAMPLE	IDENTIFICATION	1 FL 11D

УОл

"	-3			
əţe	M.			
. (Ŋ	~	5	(3
	TIME	0735	0720	1/10
ָ ב ב	SAMPLED	csc0 28/h1/11	11/14/76 0720	11/14/96
	IDENTIFICATION	LF6 MPO	LF6 MPP	W78

							-
1							
	5) 0//1	20 [3	5/3	50 3	645/12		-
	11 96	1/14/76 1320	15151 8	16 1130	1/16 16	75	
	1/14/96/1	<i>(ltd)</i>	1/14/16	1114/96	[[1]	<i>(/////)</i>	-
				. "		25	_
	8	(X	0		AR G	ILIP BLAME	
	81M	M	W 2,0	6 X	179-1	217 7	
ļ					77	一	

ner	2
Container	baker.
	received b
	392
	and
ctions:	*DZC and

Instructions:

Date/Time Received by: (Signature)

hed by: (Signature)

Date/Time | Received by: (Signature)

Date/Time

2, 11 D4

၁၀၂

TEAN NOT ITS TITLE

₹

ABA

Sample Fraction

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB2111896

Client Project Number

729691.32010

Date Prepared

: 11/18/96

Lab Work Order

96-4047

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB21118003

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/18/96	U	0.1	mg/L
Benzene	71-43-2	11/18/96	U	0.4	ug/L
Toluene	108-88-3	11/18/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/18/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/18/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/18/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/18/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/18/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/18/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/18/96	U	0.5	ug/L
Surrogate Recovery:		92%		70%-126%	(Limits
Surrogate Recovery:		97%		76%-127%	(Limits

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	 	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

M. Oliolia Analyst

Approved

TVPVMC2P.TV240472 M.C. 44400 GC 4

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB2111996

Client Project Number

729691.32010

Date Prepared

: 11/19/96

Lab Work Order

96-4047

Dilution Factor : 1.0

Matrix

WATER

Lab File Number

TVB21118037

Compound Name	Cas Number	Analysis	Sample		
TVH-Gasoline	Cas Number	Date	Concentration	RL	Units
		11/19/96	U	0.1	mg/L
Benzene	71-43-2	11/19/96	U	0.4	ug/L
Toluene	108-88-3	11/19/96	Ü	0.4	ug/L
Chlorobenzene	108-90-7	11/19/96	Ü	0.4	ug/L
Ethyl Benzene	100-41-4	11/19/96	U	0.4	
Total Xylenes (m,p,o)	1330-20-7	11/19/96	- Ŭ	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/19/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/19/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/19/96	<u>U</u>	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/19/96	<u>U</u>	0.4	ug/L
		11,15,55		0.5	ug/L
FID Surrogate Recovery:		96%		70%-126%	<u> </u>
PID Surrogate Recovery:		99%		76%-127%	(Lin

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF6 MPO

Client Project Number

729691.32010

Lab Sample Number

: 96-4047-01

Lab Work Order

96-4047

Date Sampled

: 11/14/96

Matrix

WATER

Date Received

: 11/15/96

Lab File Number(s)

TVB21118019

Date Prepared FID Dilution Factor

: 11/18/96 : 1.0 Method Blank

MB2111896

PID Dilution Factor

: 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/18/96	U	0.1	mg/L
Benzene	71-43-2	11/18/96	2.0	0.4	ug/L
Toluene	108-88-3	11/18/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/18/96	4.1	0.4	ug/L
Ethyl Benzene	100-41-4	11/18/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/18/96	0.6	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/18/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/18/96	0.6	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/18/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/18/96	U	0.5	ug/L
Surrogate Recovery:		97%		70%-126%	(Limits)
Surrogate Recovery:		97%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

= Total Volatile Hydrocarbons.

Analyst

K. HellMan Approved

Methods 602/8020 and 5030/8015 Modified Data Report

: LF6 MPP

Client Project Number

729691.32010

Lab Sample Number Date Sampled

: 96-4047-02

Lab Work Order

96-4047

Date Received

: 11/14/96

Matrix Lab File Number(s)

WATER

Date Prepared

: 11/15/96 : 11/18/96

Method Blank

TVB21118022 MB2111896

FID Dilution Factor

: 1.0

PID Dilution Factor : 1.0

Community I N		Analysis	Sample		T
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/18/96	U	0.1	mg/L
Benzene	71-43-2	11/18/96	3.4	0.4	
Toluene	108-88-3	11/18/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/18/96	5.9	0.4	ug/L
Ethyl Benzene	100-41-4	11/18/96	J.5		ug/L
Total Xylenes (m,p,o)	1330-20-7	11/18/96		0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/18/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/18/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8		U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/18/96	U	0.4	ug/L
	400-23-3	11/18/96	U	0.5	uŗ."
ID Surrogate Recovery:		99%			
PID Surrogate Recovery:		95%		70%-126%	(Ц
		35%		76%-127%	(Lin.

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W78

Client Project Number

729691.32010

Lab Sample Number

: 96-4047-03

Lab Work Order

96-4047

Date Sampled

: 11/14/96

Matrix

WATER

Date Received

: 11/15/96

Lab File Number(s)

TVB21118025

Date Prepared

: 11/18/96

Method Blank

MB2111896

FID Dilution Factor

: 1.0

PID Dilution Factor

: 1.0

1

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/18/96	U	0.1	mg/L
Benzene	71-43-2	11/18/96	U	0.4	ug/L
Toluene	108-88-3	11/18/96	· U	0.4	ug/L
Chlorobenzene	108-90-7	11/18/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/18/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/18/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/18/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/18/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/18/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/18/96	U	0.5	ug/L
Surrogate Recovery:		101%		70%-126%	(Limits)
Surrogate Recovery:		96%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	
	_
	_
	_

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

IVH = Total Volatile Hydrocarbons.

TVBXWS2P-TV24047P YI St 11/20/96: 4

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W21

Client Project Number

729691.32010

Lab Sample Number

: 96-4047-04

Lab Work Order

96-4047

Date Sampled

: 11/14/96

Matrix

Method Blank

WATER

Date Received

: 11/15/96

Lab File Number(s)

TVB21118026

Date Prepared

: 11/18/96

: MB2111896

FID Dilution Factor

: 1.0

PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/18/96	U	0.1	mg/L
Benzene	71-43-2	11/18/96	3.6	0.4	ug/L
Toluene	108-88-3	11/18/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/18/96	20	0.4	ug/L ug/L
Ethyl Benzene	100-41-4	11/18/96	U	0.4	
Total Xylenes (m,p,o)	1330-20-7	11/18/96	- U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/18/96	U U	0.4	ug/L
1,2,4-Trimethylbenzene •	95-63-6	11/18/96	Ü	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/18/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/18/96	0.5	0.4	ug/L ug '
FID Surrogate Recovery:		102%			
PID Surrogate Recovery:		96%		70%-126% 76%-127%	(Lin

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

X. Hollman

TVPYMCOPITYOUND VIC. 1110010C.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W20

Client Project Number

729691.32010

Lab Sample Number

: 96-4047-05

Lab Work Order

96-4047

Date Sampled

: 11/14/96

Matrix

WATER

Date Received

: 11/15/96

Lab File Number(s)

TVB21118027

Date Prepared

: 11/18/96

Method Blank

MB2111896

FID Dilution Factor

: 1.0

: 1.0 PID Dilution Factor

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/19/96	U	0.1	mg/L
Benzene	71-43-2	11/19/96	U	0.4	ug/L
Toluene	108-88-3	11/19/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/19/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/19/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/19/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/19/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/19/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/19/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/19/96	U	0.5	ug/L
Surrogate Recovery:		93%		70%-126%	(Limits)
Surrogate Recovery:		. 96%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		 	
	·		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

TVBXWS2P;TV24047P.XLS: 11/20/96: 6

Methods 602/8020 and 5030/8015 Modified Data Report

: W2

Client Project Number

729601.32010

Lab Sample Number

: 96-4047-06

Lab Work Order

96-4047

Date Sampled

: 11/14/96

Matrix

WATER

Date Received

: 11/15/96

Lab File Number(s)

TVB21118028

Date Prepared

: 11/18/96

Method Blank

MB2111896

FID Dilution Factor

: 1.0

PID Dilution Factor : NA

		Analysis	Sample		T T
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/19/96	U	0.1	mg/L
Benzene	71-43-2	NA	NA	NA NA	NA NA
Toluene	108-88-3	NA	NA	NA	NA.
Chlorobenzene	108-90-7	NA	NA	 	NA NA
Ethyl Benzene	100-41-4	NA	NA	NA	NA
Total Xylenes (m,p,o)	1330-20-7	NA	NA NA	NA.	NA NA
1,3,5-Trimethylbenzene	108-67-8	NA	NA NA	NA NA	NA NA
1,2,4-Trimethylbenzene	95-63-6	NA	NA NA	NA NA	NA NA
1,2,3-Trimethylbenzene	526-73-8	NA	NA NA	NA NA	NA NA
1,2,3,4-Tetramethylbenzene	488-23-3	NA	NA NA	NA NA	N'
FID Surrogate Recovery:		97%		70%-126%	
PID Surrogate Recovery:	N	A		76%-127%	(L)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF6 MPQ

Client Project Number

729691.32010

Lab Sample Number

: 96-4047-07

Lab Work Order

96-4047

Date Sampled

: 11/14/96

Matrix

WATER

Date Received

: 11/15/96

Lab File Number(s)

TVB21118031

Date Prepared FID Dilution Factor

: 11/18/96

Method Blank

MB2111896

PID Dilution Factor

: 1.0 : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/19/96	U	0.1	mg/L
Benzene	71-43-2	11/19/96	U	0.4	ug/L
Toluene	108-88-3	11/19/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/19/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/19/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/19/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/19/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/19/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/19/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/19/96	U	0.5	ug/L
Surrogate Recovery:		100%		70%-126%	(Limits)
Surrogate Recovery:		96%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

= Total Volatile Hydrocarbons.

Analyst

K. Willman

..___

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: TRIP BLANK-5

Client Project Number

729691.32010

Lab Sample Number

: 96-4047-08

Lab Work Order

96-4047

Date Sampled

: NA

Matrix

WATER

Date Received

: 11/15/96

Lab File Number(s)

TVB21118035

Date Prepared

: 11/18/96

Method Blank : M

MB2111896

FID Dilution Factor

: 1.0

PID Dilution Factor

: 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/19/96	U	0.1	mg/L
Benzene	71-43-2	11/19/96	U	0.4	ug/L
Toluene	108-88-3	11/19/96	U	0.4	ug/L ug/L
Chlorobenzene	108-90-7	11/19/96	l Ü	0.4	
Ethyl Benzene	100-41-4	11/19/96	Ü	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/19/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/19/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/19/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/19/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/19/96	U	0.5	ug/L uç
				0.0	- U.
FID Surrogate Recovery:		92%		70%-126%	(Li
PID Surrogate Recovery:		95%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K. Hollman Approved

Analyst

TVDVIVGOD TVG

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: LF6 MPO	Client Project No.	: 729691.32010
Lab Sample No.	: 96-4047-01	Lab Work Order	: 96-4047
Date Sampled	: 11/14/96	EPA Method No.	: 5030/8015 Modified
Date Received	: 11/15/96	Matrix	: WATER
Date Prepared	: 11/18/96	Lab File Number(s)	: TVB2118020,21
Date Analyzed	: 11/18/96	Method Blank	: MB211896
Instrument Name	: TVHBTEX2	Dilution Factor	: 1.0

Compound	Spike Added	Sample Concentration	MS Concentration	MS	QC (#) Limits
•	(mg/L)	(mg/L)	(mg/L)	%REC	%REC
Gasoline	2.00	0.00	2.16	107.8%	60 - 128
Surrogate **				118%	70 - 126

Compound	Spike Added	MSD Concentration	MSD	RPD		QC (#) Limits
	(mg/L)	(mg/L)	%REC		RPD	%REC
Gasoline	2.00	2.20	110.1%	2.1	44.1	60 - 128
Surrogate **		•••	117%	NA	NA	70 - 126

RPD:	0	out of	(1) outside limits.
Spike Recovery:	0	out of	(2) outside limits.

Notes:

NA = Not analyzed/not applicable.

- * = Values outside of QC limits.
- ** = 1,2,4-Trichlorobenzene
- # = Limits established 10/1/96, MAB

Comments:		
	 	 -

Analyst

Approved

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No. : W78 Client Project No. : 729691.32010 Lab Sample No. : 96-4047-03 Lab Work Order : 96-4047 **Date Sampled** : 11/14/96 EPA Method No. : 602/8020 **Date Received** : 11/15/96 Matrix : WATER **Date Prepared** : 11/19/96 Lab File Number(s) : TVB21118038,39 **Date Analyzed** : 11/19/96 Method Blank : MB2111996 Instrument Name TVHBTEX2 Dilution Factor : 1.0

Compound	Spike Added	Sample Concentration		Concentration (ug/L)	
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	20.1	21.4	
Toluene	20.0	0.0	19.6	20.9	
Chlorobenzene	20.0	0.0	19.6	20.8	
Ethylbenzene	20.0	0.0	19.6	20.9	
m,p-Xylene	20.0	0.0	19.6	20.9	
o-Xylene	20.0	0.0	19.6	20.7	
1,3,5-TMB	20.0	0.0	19.4	20.5	
1,2,4-TMB	20.0	0.0	19.1	20.2	
1,2,3-TMB	20.0	0.0	19.9	20.9	
1,2,3,4-TeMB	20.0	0.0	20.4	21.6	
Surrogate	100.0	96%	102%	105%	% RECOVERY

	MS	MSD			QC#
Compound	%	%			Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	100.5	107.0	6.3	17	61 - 129
Toluene	98.0	104.5	6.4	18	61 - 127
Chlorobenzene	98.0	104.0	5.9	16	68 - 122
Ethylbenzene	98.0	104.5	6.4	18	63 - 126
m,p-Xylene	98.0	104.5	6.4	18	60 - 130
o-Xylene	98.0	103.5	5.5	18	62 - 128
1,3,5-TMB	97.0	102.5	5.5	18	69 - 117
1,2,4-TMB	95.5	101.0	5.6	23	69 - 119
1,2,3-TMB	99.5	104.5	4.9	16	71 - 118
1,2,3,4-TeMB	102.0	108.0	5.7	27	67 - 125
Surrogate	102.0	105.0	NA NA	NA	76 - 127

#=	Limits	establis	hed 10	/15/96	KCH

RPD:	0	out of	(10)	outside limits.
Spike Recovery:	0	out of	(20)	outside limits.

Comments:	

Analyst Analyst

Approved

^{* =} Values outside of QC limits.

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number	: LCS2111896-GAS	Matrix	: WATER	
Date Prepared	: 11/18/96	Method Numbers	: EPA 5030/8	015 Modified
Date Analyzed	: 11/18/96	Instrument Name	: TVHBTEX2	
Lab File Number(s)	: TVB21118013			•
		•		
	Theoretical	LCS	LCS	
Compound	Concentration	Concentration	%	QC Limit
Name	(mg/L)	(mg/L)	Recovery	% Recovery
Gasoline	2.00	2.32	115.9	81 - 128
Surrogate Recovery:		125%		70 - 126

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 10/1/96 for TVHBTEX2. MAB

M. Bledla
Analyst

K. Wollman Approved

EPA 602/8020 Data Report Laboratory Control Sample (LCS)

LCS Number : LCS2111896-BTEX

Date Extracted/Prepared : 11/18/96

Date Analyzed : 11/18/96

Spike Amount (ug/L) : 20.0

Dilution Factor : Method :

1.00

Matrix

602/8020

Lab File No.

Water

: TVB221118014

Compound Name	Cas Number	LCS Concentration (ug/L)	LCS % Recovery	QC Limit**% Recovery
Benzene	71-43-2	20.6	103.0	75 - 116
Toluene	108-88-3	20.0	100.0	75 - 118
Chlorobenzene	108-90-7	18.2	91.0	73 - 115
Ethyl Benzene	100-41-4	19.7	98.5	80 - 122
m,p-Xylene	108-38-3 106-42-3	38.1	95.3	76 - 120
o-Xylene	95-47-6	20.0	100.0	76 - 1
MTBE	1634-04-4	20.5	102.5	75 - 115
1,3,5-Trimethylbenzene	108-67-8	19.6	98.0	64 - 118
1,2,4-Trimethylbenzene	95-63-6	18.1	90.5	75 - 111
1,2,3-Trimethylbenzene	526-73-8	22.6	113.0	82 - 127
1,2,3,4-Tetramethylbenzene	488-23-3	20.6	103.0	72 - 131
Surrogate Recovery:		100%		76 - 127

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

** = Limits established 10/1/96 for TVHBTEX2. MAB

Analyst Media

Approved

Method 8010 Chlorinated VOC's Method Blank Report

ethod Blank : RB112196 Client Project No.

. : 729691.32010

Date Prepared : 11/21/96 Lab Project No. : 96-4047

Compound	CAS#	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
4-Chlorotoluene	106-49-8	Ü	0.4
3-Dichlorobenzene	541-73-1	U	0.4
-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

81%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

poved

Method 601/8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB112596

Client Project No.

: 729691.32010

Date Prepared

: 11/25/96

Lab Project No.

: 96-4047

Date Analyzed

: 11/25/96

Lab File No.

: HALL1125\004F0101

Compound	CAS#	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	U	<u> </u>
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	Ŭ	0.4
Dichloromethane	75-09-2	Ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ŭ	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	ŭ	
1,1,1-Trichloroethane	71-55-6	ŭ ·	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	· ΰ	0.4
1,1,2-Trichloroethane	79-00-5	- U	0.4
Tetrachloroethene	127-18-4	ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	ŭ	0.4
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.42
2-Chlorotoluene	95-49-8	Ü	0.54
4-Chlorotoluene	106-49-8	Ŭ	0.4
1,3-Dichlorobenzene	541-73-1	Ŭ	0.4
1,2-Dichlorobenzene	95-50-1	Ü	0.4 0.4

S	Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):

85%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

Approved.

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF6 MPO Client Project No. : 729691.32010 Lab Sample No. : 96-4047-01 Lab Project No. : 96-4047

Date Sampled : 11/14/96 Matrix : Water

Date Prepared : 11/21/96 Method Blank : RB112196

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	8	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	1	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	0.44 J	0.4
cis-1,2-Dichloroethene	156-59-4	15	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	[∙] 0.68 J	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	1.6 J	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	U	0.4
,3-Dichlorobenzene	541-73-1	บ	0.4
1.2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	86%	70% - 130% (QC limits)	

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst Approved HLW4047.XLS; 11/26/96

Method 601/8010 Chlorinated VOC's Sample Report

Date Sampled : 11/14/96 Matrix : Water
Date Received : 11/15/96 Lab File No. : 144144

Date Analyzed : 11/22/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	Dt 4
Vinyl Chloride	75-01-4	Q	RL (ug/L)
Chloroethane	75-00-3	, ii	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	0.49 J	0.4
trans-1,2-Dichloroethene	156-60-5	0.49 3	0.4
1,1-Dichloroethane	75-34-3	<u> </u>	0.4
cis-1,2-Dichloroethene	156-59-4	7.5	0.4
1,1,1-Trichloroethane	71-55-6	7.5	0.4
Carbon Tetrachloride	56-23-5		0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U U	0.4
Tetrachloroethene	127-18-4	Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	2.3	0.4
1,1,2,2-Tetrachloroethane	79-34-5	U	0.42
2-Chiorotoluene	95-49-8	Ü	
4-Chlorotoluene	106-49-8	ŭ	
1,3-Dichlorobenzene	541-73-1	ŭ	
1,2-Dichlorobenzene	95-50-1	0.74 J	0 .4 0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 84% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

proved

Method 601/8010 Chlorinated VOC's Sample Report

Lab Sample No. : W78 Client Project No. : 729691.32010
Lab Sample No. : 96-4047-03 Lab Project No. : 96-4047

Date Sampled : 11/14/96 Matrix : Water

Date Prepared : 11/21/96 Method Blank : RB112196

Date Analyzed : 11/22/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachioroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	. U	0.4
Chlorotoluene	106-49-8	U	0.4
B-Dichlorobenzene	541-73-1	U	0.4
1.2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	81%	70% - 130% (QC limits)

QUALIFIERS:

Analyst

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

pproved

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W21 Client Project No. : 729691.32010 Lab Sample No. : 96-4047-04 Lab Project No. : 96-4047 Date Sampled : 11/14/96 Matrix

: Water **Date Received** : 11/15/96 Lab File No. : HALL1121\027F0101 Date Prepared

: 11/21/96 Method Blank : RB112196 Date Analyzed

: 11/22/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	D1 / m.
Vinyl Chloride	75-01-4	10	RL (ug/L)
Chloroethane	75-00-3	10 ,	0.4
1,1-Dichloroethene	75-35-4	0	0.4
Dichloromethane	75-09-2	0.43 1	0.4
trans-1,2-Dichloroethene	156-60-5	0.43 J	0.4
1,1-Dichloroethane	75-34-3	0.01.1	0.4
cis-1,2-Dichloroethene	156-59-4	0.81 J	0.4
1,1,1-Trichloroethane	71-55-6	14	0.4
Carbon Tetrachloride	-	U	0.4
Trichloroethene	56-23-5	U	0.4
1,1,2-Trichloroethane	79-01-6	7.4	0.4
Tetrachloroethene	79-00-5	U	0.4
1,1,1,2-Tetrachloroethane	127-18-4	U	0.4
Chlorobenzene	79-00-5	· U	0.4
1,1,2,2-Tetrachloroethane	108-90-7	13	0.42
2-Chlorotoluene	79-34-5	U	0 -
	95-49-8	U	
4-Chlorotoluene	106-49-8	U	
1,3-Dichlorobenzene	541-73-1	U	
1,2-Dichlorobenzene	95-50-1	1.9	0,4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 86% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W20

Client Project No.

: 729691.32010

Lab Sample No.

: 96-4047-05

Lab Project No. Matrix

: 96-4047

Date Sampled

: 11/14/96 : 11/15/96

Lab File No.

: Water : HALL1121\028F0101

Date Received Date Prepared

Method Blank

: 11/21/96

: RB112196

Date Analyzed

: 11/22/96

Dilution Factor

: 1.0

Compound	CAS#	Concentration (ug/L)	_RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	· U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
Chlorotoluene	95-49-8	U	0.4
hlorotoluene	106-49-8	U	0.4
-,3-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

77%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

Method 601/8010 Chlorinated VOC's Sample Report

Date Prepared : 11/25/96 Method Blank : RB112596
Date Analyzed : 11/25/96 Dilution Factor : 1.0

95-50-1

Compound CAS# Concentration (ug/L) RL (ug/L) Vinyl Chloride 75-01-4 0.4 Chloroethane 75-00-3 U 0.4 1.1-Dichloroethene 75-35-4 U 0.4 Dichloromethane 75-09-2 U 0.4 trans-1,2-Dichloroethene 156-60-5 U 0.4 1,1-Dichloroethane 75-34-3 U 0.4 cis-1,2-Dichloroethene 156-59-4 U 0.4 1,1,1-Trichloroethane 71-55-6 U 0.4 Carbon Tetrachloride 56-23-5 U 0.4 Trichloroethene 79-01-6 U 0.4 1,1,2-Trichloroethane 79-00-5 Ū 0.4 Tetrachloroethene 127-18-4 U 0.4 1,1,1,2-Tetrachloroethane 79-00-5 U 0.4 Chlorobenzene 108-90-7 U 0.42 1,1,2,2-Tetrachioroethane 79-34-5 U 0.54 2-Chlorotoluene 95-49-8 Ū 0.4 4-Chlorotoluene 106-49-8 U 0.4 1,3-Dichlorobenzene 541-73-1 U 0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 88% 70% - 130% (QC limits)

QUALIFIERS:

1,2-Dichlorobenzene

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

/ Approved

U

HLW4047.XLS; 11/26/96

0.4

Method 601/8010 Chlorinated VOC's Sample Report

Elient Sample No. : LF6 MPQ Client Project No. : 729691.32010

Date Prepared : 11/25/96 Method Blank : RB112596

Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound	CAS #	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	. U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	U	0.4
3-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 90% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

eu

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : Trip Blank-5 Client Project No. : 729691.32010

Date Prepared : 11/25/96 Method Blank : RB112596
Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4		0.4
Chloroethane	75-00-3	ii	0.4
1,1-Dichloroethene	75-35-4	ű	0.4
Dichloromethane	75-09-2	u	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ŭ	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	Ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	ŭ	0.42
1,1,2,2-Tetrachloroethane	79-34-5	ŭ	0.54
2-Chlorotoluene	95-49-8	<u> </u>	0.54
4-Chiorotoluene	106-49-8	ŭ	0.4
1,3-Dichlorobenzene	541-73-1	ű	0.4
1,2-Dichlorobenzene	95-50-1	ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 85% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

pproved

Date Performed: 11/21/96

Reference Standard: V832

	_	Method	Method Sample Sample	Sample	Spike	Control	Spike		Š	Spike Recoveries	veries	-	QC Recovery Range	very Rar	age .
Analyte	Σ	Blank 9	Blank 46-4047-05 Spike	Spike	Dup.	Spike	Amt	RPD	Sample	# dng	# Control	*	%L - %H	Low.	- High
Vinyl Chloride	*			16.242	16.939	18.000	20.0	4.2	81%	82%	%08		28 - 163	5.60	32.60
Chlomethane	*			18.077	18.149	18.375	20.0	0.4	%06	91%	92%		46 - 137	9.20	27.40
1,1-Dichloroethene	*			18.412	18.596	18.944	20.0	1.0	85%	83%	82%		28 - 167	5.60	. 33.40
Dichloromethane	*			16.549	17.379	17.787	20.0	4.9	83%	87%	88%		25 - 162	5.00	. 32.40
trans-1,2-Dichloroethene	*			22.27	22.808	22.588	20.0	2.4	111%	114%	113%		38 - 155	7.60	. 31.00
1,1-Dichloroethane	*			19.461	19.864	20.012	20.0	2.0	%/6	%68	100%		47 - 132	9.40	. 26.40
cis-1,2-Dichloroethene	*			19.861	20.366	20.448	20.0	2.5	%66	102%	102%		•		
1,1,1-Trichloroethane	*			19.811	20.244	20.085	20.0	2.2	%66	101%	100%		41 - 138	8.20	. 27.60
Carbon Tetrachloride				20.406	20.554	20.471	20.0	0.7	102%	103%	102%		43 - 143	8.60	. 28.60
Trichloroethene	≩			20.741	21.314	20.734	20.0	2.7	104%	407%	104%		35 - 146	7.00	- 29.20
1,1,2-Trichloroethane	*			19.987	18.21	19.862	20.0	7.7	100%	83%	%66		39 - 136	7.80	- 27.20
Tetrachloroethene	•			19.678	19.422	19.850	20.0	1.3	%86	%26	%68		26 - 162	5.20	. 32.40
1,1,1,2-Tetrachloroethane	*			18.214	18.494	18.133	20.0	1.5	81%	85%	91%		•		
Chlorobenzene	*			18.85	20.447	18.803	20.0	8.1	84%	102%	84%		1 - 150	0.18	- 30.00
1,1,2,2-Tetrachloroethane	*			18.777	17.532	21.414	20.0	6.9	84%	88%	107%		8 - 184	1.60	- 38.80
2-Chlorotoluene	•			18.101	18.118	19.399	20.0	0.1	91%	91%	81%		•		
4-Chlorotoluene	•			17.338	16.991	18.771	20.0	2.0	%28	82%	84%		•		
1,3-Dichlorobenzene	*			16.993	17.568	17.339	20.0	3.3	% 58	88%	87%		7 - 187	1.40	. 37.40
1,2-Dichlorobenzene	•			16.648	15.984	16.729	20.0	4.1	83%	80%	84%		0 - 208	0.00	- 41.60

M = Applicable matrices. (* = Soil and Water. w = Water only.)

= Marks a spike recovery out of limits.

If recovery is outside method limit, marked with "".

If recovery is outside a guideline, marked with "~".

If the sample spike recovery is outside the limit and the control spike is outside the limit also, the control is marked with "*** or "~~".

Notes on recovery limits:

All spiked analytes must be detected even if low limit is 0.

For analytes not listed in the method, recovery limits of 50-150% will be used as guidelines until limits can be established.

Corrective Actions:

Unacceptable sample spike recovery requires acceptable control spike recovery. If both recoveries are outside limits, corrective action must be taken. One recovery outside limits and the other acceptable, is a waming. Repeated failure requires corrective action. Recoveries outside guidelines should be compared to historical data available to determine if corrective action is required.

Methane Report Form Method Blank Report

Method Blank Number Date Extracted/Prepared

: GB112196

Client Project No.

: 729691.32010

Date Analyzed

: 11/21/96

Lab Work Order **Dilution Factor**

: 96-4047 : 1.00

: 11/21/96

Method

: RSKSOP-175M

Matrix

: Water

Lab File No.

: GAS1121002

Sample Compound Name Cas Number Concentration RL mg/L mg/L Methane 74-82-8 U 0.002

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

AF4047.XLS

Methane Report Form

Client Sample Number	: LF6 MPO	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4047-01	Lab Work Order	: 96-4047
Date Sampled	: 11/14/96	Dilution Factor	: 50.00
Date Received	: 11/15/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/21/96	Matrix	: Water
Date Analyzed	: 11/21/96	Lab File No.	: GAS1121016

Compound Name	Cas Number	Sample Concentration	RL
	- Contrained	mg/L	mg/L
Methane	74-82-8	1.8	0.1

remperature	: , ,	73.8 F	Saturation	Meth	0.443690383
nt Injected	:	0.01 ml	Concentration		
Volume of Sample	:	43 mi	Concentration	Meth	1.393251313
Head space created	:	4 ml	in Head Space		
Methane Area	:	206.356 ug			

Atomic weight(Methane) 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

'A = Not Available/Not Applicable.

Methane Report Form

Client Sample Number	: LF6 MPP	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4047-02	Lab Work Order	: 96-4047
Date Sampled	: 11/14/96	Dilution Factor	: 100.00
Date Received	: 11/15/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/21/96	Matrix	: Water
Date Analyzed	: 11/21/96	Lab File No.	: water : GAS1121017

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	2.7	0.2

Temperature Amount Injected Total Volume of Sample Head space created		74.4 F 0.005 ml 43 ml 4 ml	Saturation Concentration Concentration in Head Space	Meth Meth	2.0100-70
Methane Area	:	149.023 ug			

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. Hallman
Approved

AF4047.XLS

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: W78 : 96-4047-03 : 11/14/96 : 11/15/96 : 11/21/96 : 11/21/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	: 9 : 1 : R	29691.32010 6-4047 .00 SKSOP-175M Vater AS1121018
Compound Name	Cas Number	Sample Concentration mg/L	4 - 44-	RL mg/L
Methane	74-82-8	0.021		0.002
erature	: 74.1	F Saturation	Meth	0.004974606
Total Volume of Sample Head space created	: 0.5 : 43		Meth	0.015612191
Methane Area	: 115.682		1.45	

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

4 = Not Available/Not Applicable.

Malyst

K. Hollman

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: W21 : 96-4047-04 : 11/14/96 : 11/15/96 : 11/21/96	Client Project No. Lab Work Order Dilution Factor Method Matrix	: 729691.32010 : 96-4047 : 50.00 : RSKSOP-175M : Water
Date Analyzed	: 11/21/96	Lab File No.	· GAS1121019

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	2.7	0.1

Temperature Amount Injected Total Volume of Sample Head space created	74.3 F 0.01 ml 43 ml	Saturation Concentration Concentration in Head Space	Meth Meth	2.0665160
Methane Area	: 306.361 ug			

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K Allman Approved

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: W20 : 96-4047-05 : 11/14/96 : 11/15/96 : 11/21/96 : 11/21/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	: 729691.32010 : 96-4047 : 1.00 : RSKSOP-175M : Water : GAS1121020
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002
erature	: 75.2	F Saturation	Meth 0
nt Injected	: 0.5		
in injustica	: 43	ml Concentration	Meth 0

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

A = Not Available/Not Applicable.

Analyst

K. Helman Approved

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: LF6 MPQ : 96-4047-07 : 11/14/96 : 11/15/96 : 11/21/96 : 11/21/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	: 729691.32010 : 96-4047 : 1.00 : RSKSOP-175M : Water : GAS1121021
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002
Temperature Amount Injected Total Volume of Sample Head space created Methane Area	: 75.4 F : 0.5 m : 43 m : 4 m	Concentration Concentration in Head Space	Meth
wetnane Area	:0 ug		

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. M.M.M.
Approved

AF4047.XLS

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane LCS Report Form

LCS No.

: LCS112196

EPA Method No.

: RSKSOP-175M

Date Prepared

: 11/21/96

Matrix

: Water

Date Analyzed

: 11/21/96

Method Blank

: GB112196

E.A. LCS Source No.

: 1886

Lab File No.

: GAS1121006

	Spike	Method Blank	LCS		QC
Compound	Added	Concentration	Concentration	LCS	Limits
·	(ug)	(ug)	(ug)	%REC	%REC
Methane Gas	500	0	409	82	64-90

Spike Recovery: 0 out of (1) outside limits.

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

Notes

* = Values outside of QC limits.

NA = Not analyzed/not available.

Approved

LCS1121.XLS; 11/22/96

EVERGREEN ANALYTICAL, Inc.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled : 11/14/96 Date Received : 11/15/96 Date Prepared : 11/15/96 Date Analyzed : 11/15/96	Client Project ID. : 7296 Lab Project Number : 96-40 Method : EPA 3 Detection Limit : 0.25	047 300.0
--	--	--------------

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Chloride mg/L	Dilution <u>Factor</u>
96-4047-01	LF6 MPO	Water	177	10
96-4047-02	LF6 MPP	Water	44.2	10
96-4047-03	W78	Water	17.5	1
96-4047-03 Duplicate	W78 Duplicate	Water	17.0	1
96-4047-04	W21	Water	54.1	10
96-4047-05	W20	Water	6.7	1
96-4047-07	LF6 MPQ	Water	70.7	10

Method Blank

(11/15/96)

Water

< 0.25

1

Quality Assurance

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4047-03	W78 Matrix Spike	10.0	17.5	27.9	104
96-4047-03	W78 Matrix Spike Du	p 10.0	17.5	27.7	102

MS/MSD RPD

1.9

Analyst

Approved

EVERGREEN ANALYTICAL, Inc.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/14/96	Client Project ID.	:	72969.32010
Date Received		Lab Project Number	:	96-4047
Date Prepared	: 11/15/96	Method	:	EPA 300.0
Date Analyzed	: 11/15/96	Detection Limit	:	0.076 mg/L

Evergreen Sample # 96-4047-01 96-4047-02 96-4047-03	Client Sample ID. LF6 MPO LF6 MPP W78 W78	<u>Matrix</u> Water Water Water Water	Nitrite-N mg/L <0.76** <0.076 <0.076 <0.076	Dilution Factor 10 1 1
Duplicate 96-4047-04 96-4047-05	Duplicate W21 W20	Water Water	<0.076 <0.076	1
96-4047-07	LF6 MPQ	Water	<0.076	1

Method Blank (11/15/96) Water <0.076 1

Quality Assurance *

	<u>9</u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4047-03	W78 Matrix Spike	10.0	<0.25	9.7	97
96-4047-03	W78 Matrix Spike Dup	o 10.0	<0.25	9.5	95

* = Quality assurance results reported as Nitrite (NO₂).

MS/MSD RPD

** = Raised detection limit due to matrix interference.

Approved

1.5

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled Date Received Date Prepared Date Analyzed	: 11/14/96 : 11/15/96 : 11/15/96 : 11/15/96	Lab Project Number Method	:	EPA 300.0
Date Analyzed	: 11/15/96	Detection Limit	:	0.056 mg/L

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	Nitrate-N mg/L	Dilution <u>Factor</u>
96-4047-01	LF6 MPO	Water	0.35	1
96-4047-02	LF6 MPP	Water	0.073	1
96-4047-03	W78	Water	<0.056	1
96-4047-03 Duplicate	W78 Duplicate	Water	<0.056	1
96-4047-04	W21	Water	0.38	1
96-4047-05	W20	Water	2.5	1
96-4047-07	LF6 MPQ	Water	1.5	1

Method Blank

(11/15/96)

Water

< 0.056

1

Quality Assurance *

	<u> </u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4047-03	W78 Matrix Spike	10.0	<0.25	9.5	95
96-4047-03	W78 Matrix Spike Du	p 10.0	<0.25	9.4	94

MS/MSD RPD

1.7

MAnalyst Hol

Quality assurance results reported as Nitrate (NO₃).

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/14/96	Client Project ID.	:	72969.32010
Date Received	: 11/15/96	Lab Project Number	:	96-4047
Date Prepared	: 11/15/96	Method	:	EPA 300.0
Date Analyzed	: 11/15/96	Detection Limit	:	0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Sulfate</u> mg/L	Dilution <u>Factor</u>
96-4047-01	LF6 MPO	Water	6.0	1
96-4047-02	LF6 MPP	Water	2.2	1
96-4047-03	W78	Water	50.6	10
96-4047-03 Duplicate	W78 Duplicate	Water	50.7	10
96-4047-04	W21	Water	<0.25	, 1
96-4047-05	W20	Water	0.41	1
96-4047-07	LF6 MPQ	Water	0.34	1

Method Blank (11/15/96) Water <0.25 1

Quality Assurance*

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4047-03	W78 Matrix Spike	10.0	5.1	14.6	96
96-4047-03	W78 Matrix Spike Du	ip 10.0	5.1	14.5	94
MS/MSD RP	D				1.3

• = Quality assurance based on a sample dilution factor of 10.

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Organic Carbon

Date Sampled Date Received Date Prepared Date Analyzed	: 11/14/96 : 11/15/96 : 11/25/96 : 11/25/96	.•	Lab Project Number Method	: :	729691.32010 96-4047 EPA 415.1 1.0 mg C/L
---	--	----	------------------------------	--------	--

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	TOC	mg C/L	Dilution <u>Factor</u>
96-4047-01	LF6 MPO	Water	34.7		1
96-4047-01 Duplicate	LF6 MPO Duplicate	Water	34.6		1
96-4047-02	LF6 MPP	Water	3.4		1
96-4047-03	W 78	Water	2.1		1
96-4047-04	W 21	Water	4.6		1
Method Blank	(11/25/96)		<1.0		

Quality Assurance

		Spike Amount (mgC/L)	Sample Result (mgC/L)	Spike Result (mgC/L)	% Recovery
96-4047-01	LF6 MPO Matrix Spike	10.0	34.7	45.6	109
96-4047-01	LF6 MPO Matrix Spike Du	10.0 p	34.7	44.7	100
MS/MSD RP	D				8.5

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Analysis Report

Date Sampled : 11/14/96 **Date Received** : 11/15/96 : 11/18/96 Date Prepared

Date Analyzed

: 11/18/96

Client Project ID. Lab Project Number: 96-4047

: 72969.32010

Method

: EPA 310.1

Detection Limit

: 5.0 mg CaCO₃/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Total <u>Alkalinity</u> (mg CaCO ₃ /L)	Dilution <u>Factor</u>
96-4047-01	LF6 MPO	Water	19.5	1
96-4047-02	LF6 MPP	Water	10.0	1
96-4047-03	W78	Water	<5.0	1
96-4047-04	W21	Water	<5.0	1
96-4047-05	W20	Water	<5.0	1
96-4047-07	LF6 MPQ	Water	21.1	1
6-4047-07 Duplicate	LF6 MPQ Duplicate	Water	21.2	1

Method Blank (11/18/96) < 5.0

Quality Assurance

Reference	<u>True Value</u> (mgCaCO ₃ /L)	<u>Result</u> (mgCaCO ₃ /L)	% Recovery
ERA Minerals	120	114	95

Lot # 0725-96-11

Analyst

NDER Summary WORK

ave Moutoux Report

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

Comments:

Client Pro. D: 729691.32010

18-Nov-96

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Sample ID	Client Sample ID	Analysis	**	Matrix	ĮŠ	Collection	Received	Due	HT
96-4058-01A	LF06-MPF-(4'-8')	% Moisture for dry weight calculation		Soil	2	15-Nov-96	16-Nov-96	03-Dec-96	13-Dec-96
96-4058-02A	LF06-MPF-(8'-10')	% Moisture for dry weight calculation						03-Dec-96	13-Dec-96
96-4058-03H	6 <i>L</i> M	Anions by IC cl,NO2,NO3,SO4		Water	DŞ			03-Dec-96	17-Nov-96
96-4058-04H	W82	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	17-Nov-96
96-4058-05H	LF6-MPH	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	03-Dec-96 17-Nov-96
96-4058-06H	LF6-MPL	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	17-Nov-96
96-4058-07H	W18	Anions by IC						03-Dec-96	17-Nov-96
96-4058-08H	LF6-MPK	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	17-Nov-96
96-4058-09H	LF6-MPI	Anions by IC cl,No2,No3,SO4						03-Dec-96	17-Nov-96
96-4058-01A	LF06-MPF-(4'-8')	BTEX (Parsons List)		Soil	2			03-Dec-96	29-Nov-96
96-4058-02A	LF06-MPF-(8'-10')	BTEX (Parsons List)						03-Dec-96	1
96-4058-03A	W79	BTEX (Parsons List)		Water				03-Dec-96	29-Nov-96
96-4058-04A	W82	BTEX (Parsons List)						03-Dec-96	29-Nov-96
96-4058-05A	LF6-MPH	BTEX (Parsons List)						03-Dec-96	
96-4058-06A	LF6-MPL	BTEX (Parsons List)						03-Dec-96	
96-4058-07A	W18	BTEX (Parsons List)						03-Dec-96	29-Nov-96
96-4058-08A	LF6-MPK	BTEX (Parsons List)						03-Dec-96	29-Nov-96
96-4058-09A	LF6-MPI	BTEX (Parsons List)						03-Dec-96	29-Nov-96
# = Special list. HT = Holding T	# = Special list. See sample comments or test information. HT = Holding Time expiration date.	est information.						Page 1	10/3

= Special list. See sample comments or test information.
HT = Holding Time expiration date.

Page 2 of 3

Evergreen Analytical, Inc.

WORK ORDER Summary

18-Nov-96

Report To: Dave Moutoux

Client Project ID: 729691.32010

Parsons Engineering Science

1700 Broadway Suite 900 Denver, CO 80290

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Comments:

Sample ID	Client Sample ID	Analysis	*	Matrix	Š	Loc Collection	Received	Due	HT
96-4058-04A	W82	TVH (Gasoline)		Wester					
		t itt (Omsome)		waler	7	96-A0N-CI		16-Nov-96 03-Dec-96 29-Nov-96	29-Nov-96
96-4038-03A	LF6-MPH	TVH (Gasoline)						70 50	20 27-1-00
96-4058-06A	I FG.MPI	111177						03-Dec-30 73-N0V-90	06-A0NI-67
100-000-00	בו טייות ב	I VH (Gasoline)						03 Dec 96 20 May 96	20 Nov 06
96-4058-07A	W18	TVH (Gasoline)						02-77-00	06-4041-67
		(amount)						03-Dec-96 29-Nov-96	29-Nov-96
96-4058-08A	LF6-MPK	TVH (Gasoline)						20 254 50	20 11-11 00
96.4058.09A	I EK MOI							03-Dec-30 73-N0V-90	06-A0N-67
4000000	דין ס-זאדו ז	I VH (Gasoline)						02 Dec 06 20 Me.: 06	30 Me. 06
96-4058-10A	Trin Blank	11 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1						02-7277-50	06-1017-67
	winter divis	I VH (Gasoline)			0			03-Dec. 96 29-Nov. 96	29-Nov-96
								00-00-00	06-101-77

96.91.320]D P.O.# 724.91.320]D P.O.# 724.91.320]C D S STD (2 wks) □ UST □ Other (Specity)*	EAL use only Do not write	in shaded area w.o. # 76 - 40 52 B.o.F. # 75/ C/S (0) 2/ C/S (1) 2/ C/S (01A18 SplitA	182 A/B \ SA/ 182	, \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	018/9	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	09 A>L	K010	Loc D5 2, 9	Cont		by: (<i>Signature</i>) Date/Time 60
CLIENT CONTACT (print)	REQUESTED &	Circle & list metals below) Oil & Grease 413.1 TRPH 418.1 VOC 5 82.00 No. CO	X	X X	X	×× ××	X X X	X;	× × × × × × × × × × × × × × × × × × ×	0d - WX	A GALH IST	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	da 11/11/96	Date/Time Received by: (Signature)
## Ilytical Inc. 4036 Younglield St. Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 FAX RESULTS Y / N	ANALYSIS REQU	Pest/PCBs 8080/608 (circle) Pest/PCBs 8080/608/508 (circle) PCB Screen Herbicides 8150/515 (circle) TYPH 8015mod. (Gasoline) TYPH 8015mod. (Diesel) TOTAL 8015mod. (Diesel) TOTAL 8015mod. (Diesel) TOTAL 8015mod. (Diesel) TOTAL 8015mod. (Diesel) TOTAL 8015mod. (Diesel) TOTAL 8015mod. (Diesel) TOTAL 8015mod. (Diesel) TOTAL 8015mod. (Diesel) TOTAL 8015mod. (Diesel)	X	×	× ;	× × × ×	XX	X	× × × × × × × × × × × × × × × × × × ×	××			in per Jenny barter	Date/Time Relinquished by: (Signature) しくれよ リシン
Evergreen \$03-87 -8208	MATRIX	Soly Solid / Air / Gas Oil / Sludge / Multi-phase TCLP VOA/BNA/Pest/Herb/Metals VOA 8260/624/524.2 (circle) BNA 8270/625 (circle)	×	×							Fraction		8010, 8020/80SM	1111
ES 51000 CO 211 40296	M John Mag	SAMPLED TIME DATE (circle)	11/5/91 13cm 2	=	96/51/1	11/15/46 940 11 X	X 11 pce/ 96/21/1	1530	1/15/96/700 12/1	X 1 0021 96/51/11	/ Sample F	1 0 00	In Hank to	11/15/1/2 Januarime Received by: (Signature)
COMPANY (016560.5) ADDRESS 700 B. CITY B. A. V. E. STATE. PHONE# 703 - 813- Sampler Name:	(signature)	Please PRIN all information: CLIENT SAMPLE DA IDENTIFICATION SAMI	1. F (G. MP F. (4.8)	1201 - MPF. (8-10)		150-MPH	LFG-MPL	11/18	(FG-MPT)	Trip Black		Instructions:	(freelyse.	Telinquished by (Signature)

CHAIN OF CUSTODY RECORD / A LYTICAL SERVICES REQUEST

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB1111996

Client Project Number

729691.32010

Date Prepared

: 11/19/96

Lab Work Order

96-4058

Dilution Factor

: 1.0

Matrix

Water

Lab File Number

TVB11118036

		Analysis	Sample		1
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/19/96	11		
Benzene	71-43-2	11/19/96		0.1	l mg/L
Toluene	108-88-3	*********	U	0.4	ug/L
Chlorobenzene	****	11/19/96	U	0.4	ug/L
Ethyl Benzene	108-90-7	11/19/96	U	0.4	ug/L
	100-41-4	11/19/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/19/96	· U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/19/96		0.4	·
1,2,4-Trimethylbenzene	95-63-6	11/19/96		0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/19/96		***************************************	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/19/96		0.4	l ug/L

FID Surrogate Recovery:			1
	106%	50% 150%	/1
PID Surrogate Recovery:	***************************************	30 /0-130 /0	
	101%	50%-150%	U
		0070 13070	

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB1112096

Client Project Number

729691.32010

Date Prepared

: 11/20/96

Lab Work Order

96-4058

Dilution Factor

: 1.0

Matrix

Water

Lab File Number

TVB11120007

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	U	0.1	NA
Benzene	71-43-2	11/20/96	U	0.4	ug/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	U	0.5	ug/L
ID Surrogate Recovery:		<u> </u> 104%		50%-150%	(Limits)
Surrogate Recovery:		103%	***********************************	50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K. HHUMAN

Methods 602/8020 and 5030/8015 Modified Data Report **Method Blank Report**

Method Blank Number

: MB1112196

Client Project Number

729691.32010

Date Prepared

: 11/21/96

Lab Work Order

96-4058

Dilution Factor

: 1.0

Matrix

Water

Lab File Number

TVB11120035

Compound Name	Cas Number	Analysis Date	Sample Concentration	RL	Units
TVH-Gasoline		NA	NA	NA	NA
Benzene	71-43-2	11/21/96		0.4	ug/L
Toluene	108-88-3	11/21/96	T	0.4	ug/L
Chlorobenzene	108-90-7	11/21/96	11	0.4	ug/L
Ethyl Benzene	100-41-4	11/21/96		0.4	ug/L ug/L
Total Xylenes (m,p,o)	1330-20-7	11/21/96	······································	0.4	·······
1,3,5-Trimethylbenzene	108-67-8	11/21/96		0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/21/96		0.4	ug/L ug/L
1,2,3-Trimethylbenzene	526-73-8	11/21/96		0.4	ug/L ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/21/96	Ü	0.5	ug/L ug/L
FID Surrogate Recovery:	N	IA I		50%-150%	(Lin
PID Surrogate Recovery:	***************************************	100%		50%-150%	(Li

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	L	
		·

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

TVBXWS1P:TVRX4058 YIS- 11/22/06- 1

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MEB112096

Client Project Number

729691.32010

Date Prepared

: 11/20/96

Lab Work Order

96-4058

Dilution Factor

: 125

Matrix

Water

Lab File Number

TVB11120008

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		NA .	NA	NA	NA
Benzene	71-43-2	11/20/96	U	50	ug/L
Toluene	108-88-3	11/20/96	U	50	ug/L
Chlorobenzene	108-90-7	11/20/96	U	50	ug/L
Ethyl Benzene	100-41-4	11/20/96	U	50	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	U	50	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	U	50	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	U	50	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	U	50	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	U	63	ug/L
Surrogate Recovery:		NA I		50%-150%	(Limits)
urrogate Recovery:		104%		50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	·	

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- **PID** = Photoionization detector.
- FID = Flame ionization detector.
- TVH = Total Volatile Hydrocarbons.

K. Hollman

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : LF06-MPF-(4-8)' Client Project Number 729691.32010 Lab Sample Number : 96-4058-01 Lab Work Order 96-4058 Date Sampled : 11/15/96 Matrix : Soil

Date Received : 11/16/96 Lab File Number(s) TVB11118050+ Date Prepared : 11/19,20/96 Method Blank MB1111996+

FID Dilution Factor : 5.0 Soil Extracted? YES PID Dilution Factor : 5.0, 125 Soil Moisture 34.94%

		Analysis	Sample*		
Compound Name	Cas Number	Date	Concentration	RL*	Units
TVH-Gasoline		NA	NA	NA	NA
Benzene	71-43-2	11/19/96	69	3.1	†
Toluene	108-88-3	11/19/96	10	3.1	ug/kg
Chlorobenzene	108-90-7	11/20/96	4900	77	ug/kg
Ethyl Benzene	100-41-4	11/19/96	84	3.1	ug/kg
Total Xylenes (m,p,o)	1330-20-7	11/19/96	210	3.1	ug/kg
1,3,5-Trimethylbenzene	108-67-8	11/19/96	89	3.1	ug/kg
1,2,4-Trimethylbenzene	95-63-6	11/19/96	240	3.1	ug/kg
1,2,3-Trimethylbenzene	526-73-8	11/19/96	110	3.1	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	11/19/96	190	3.8	ug/kg ug/kg
		***************************************	***************************************		ug/kg
FID Surrogate Recovery:	N.A	4		50%-150%	(1)
PID Surrogate Recovery:		70%,109%	***************************************	50%-150%	

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	+ = TVB11120009 and MEB112096.
* = Dry Bas	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Approved

TVBXWS1P;TVBX4058.XLS; 11/22/96: 2

SAMPLE Number % WET SOIL Dilution Factor Lab File No. : 96-4058-01

: 34.94%

5

Lab File No.	: 🔾			μA
Compound Name	Cas Number	SAMPLE Concentration ug/Kg	SAMPLE Concentration x DILN	SAMPLE CONC X % DRY x <i>DILN</i>
TVH-Gasoline			0.0	0.0
Benzene	71-43-2	8.973	44.9	69.0
Toluene	108-88-3	1.324	6.6	10.2
Chlorobenzene	108-90-7	288.231	1441.2	2215.1
Ethyl Benzene	100-41-4	10.875	54.4	83.6
m,p-Xylene	108-38-3 106-42-3	24.151	120.8	185.6
Xylene	95-47-6	3.416	17.1	26.3
TOTAL XYLENE			137.8	137.8
1,3,5-Trimethylbenzene	108-67-8	11.582	57.9	89.0
1,2,4-Trimethylbenzene	95-63-6	31.249	156.2	240.2
1,2,3-Trimethylbenzene	526-73-8	13.921	69.6	107.0
1,2,3,4-Tetramethylbenzene	488-23-3	24.999	192.1	192.1

SAMPLE Number % WET SOIL Dilution Factor Lab File No.

: 96-4058-01 : 34.94% : 125

Compound Name	Cas Number	SAMPLE Concentration ug/Kg	SAMPLE CONC X % DRY
TVH-Gasoline			0.0
Benzene	71-43-2		0.0
Toluene	108-88-3		0.0
Chlorobenzene	108-90-7	3204.438	4925.4
Ethyl Benzene	100-41-4		0.0
m,p-Xylene	108-38-3 106-42-3		0.0
o-Xylene TOTAL XYLENE	95-47-6		0.0
1,3,5-Trimethylbenzene	108-67-8		0.0 0.0
1,2,4-Trimethylbenzene	95-63-6		0.0
1,2,3-Trimethylbenzene	526-73-8		0.0
1,2,3,4-Tetramethylbenzene	488-23-3		0.0

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : LF06-MPF-(8-10)' Client Project Number : 729691.32010

Lab Sample Number : 96-4058-02 Lab Work Order : 96-4058
Date Sampled : 11/15/96 Matrix : Soil

Date Received : 11/16/96 Lab File Number(s) : TVB11120058
Date Prepared : 11/21/96 Method Blank : MB1112196

FID Dilution Factor : 1.0 Soil Extracted? : NO

PID Dilution Factor : 1.0 Soil Moisture : 15.41%

		Analysis	Sample*		
Compound Name	Cas Number	Date	Concentration	RL*	Units
TVH-Gasoline	****	NA	NA	NA	NA
Benzene	71-43-2	11/21/96	U	0.5	ug/kg
Toluene	108-88-3	11/21/96	1.4	0.5	ug/kg
Chlorobenzene	108-90-7	11/21/96	0.7	0.5	ug/kg
Ethyl Benzene	100-41-4	11/21/96	U	0.5	ug/kg
Total Xylenes (m,p,o)	1330-20-7	11/21/96	U	0.5	ug/kg
1,3,5-Trimethylbenzene	108-67-8	11/21/96	U	0.5	ug/kg
1,2,4-Trimethylbenzene	95-63-6	11/21/96	U	0.5	ug/kg
1,2,3-Trimethylbenzene	526-73-8	11/21/96	U	0.5	ug/kg
1,2,3,4-Tetramethylbenzene	488-23-3	11/21/96	U	0.6	ug/kg
Surrogate Recovery:	<u> </u>	NA		50%-150%	(Limits)
Surrogate Recovery:		75%	***************************************	50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments: * = Dry Basis	•

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

X. All Min Analyst PmcCollo Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : W79 Client Project Number : 729691.32010
Lab Sample Number : 96-4058-03 Lab Work Order : 96-4058

Date Sampled : 11/15/96 Matrix : Water

Date Received : 11/16/96 Lab File Number(s)

 Date Received
 : 11/16/96
 Lab File Number(s)
 : TVB11120010

 Date Prepared
 : 11/20/96
 Method Blank
 : MB1112096

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	U	0.1	
Benzene	71-43-2	11/20/96	<u>U</u>	• • • • • • • • • • • • • • • • • • • •	mg/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96		0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96		0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96		0.4	ug/L
	******		U	0.5	ug/L
FID Surrogate Recovery:		103%		F09/ 1509/	"
PID Surrogate Recovery:	***************************************	107%	******************************	50%-150% 50%-150%	

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

K Akliman Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W82

Client Project Number

729691.32010

Lab Sample Number

: 96-4058-04

Lab Work Order

96-4058

Date Sampled

: 11/15/96

Matrix

Water

Date Received

: 11/16/96

Lab File Number(s)

TVB11120017

Date Prepared

: 11/20/96

Method Blank

MB1112096

FID Dilution Factor

: 1.0 PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	Ū	0.1	mg/L
Benzene	71-43-2	11/20/96	U	0.4	ug/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	U	0.5	ug/L
Surrogate Recovery:	I	<u> </u>		50%-150%	(Limits)
Surrogate Recovery:		97%	***************************************	50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

96-4058 Date Sampled : 11/15/96 Matrix Water Date Received : 11/16/96

Lab File Number(s) TVB11120018 Date Prepared : 11/20/96 Method Blank MB1112096

FID Dilution Factor : 1.0 PID Dilution Factor : 1.0

Compound Name	Cas Number	Analysis Date	Sample Concentration	RL	Units
TVH-Gasoline		11/20/96	11	0.1	
Benzene	71-43-2	11/20/96		•••••••	mg/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	<u>U</u>	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96	U	************************	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96		0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96		0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	<u>U</u>	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	Ü	0.5	ug/L ug/L
FID Surrogate Recovery:		99%	***************************************	50%-150%	(
PID Surrogate Recovery:	***************************************	101%	**************************************	50%-150%	-11

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

729691.32010

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : LF6-MPL Client Project Number

Lab Work Order 96-4058

729691.32010

: 96-4058-06 Lab Sample Number Date Sampled Matrix : 11/15/96 Water

Date Received : 11/16/96 Lab File Number(s) TVB11120019 Date Prepared : 11/20/96 Method Blank MB1112096

FID Dilution Factor : 1.0 PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	U	0.1	mg/L
Benzene	71-43-2	11/20/96	U	0.4	ug/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	8.5	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	U	0.5	ug/L
Surrogate Recovery:		102%		50%-150%	(Limits)
Surrogate Recovery:		102%		50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:				•

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

: W18

Client Project Number

729691.32010

Lab Sample Number Date Sampled

: 96-4058-07 : 11/15/96

Lab Work Order Matrix

96-4058 Water

Date Received

: 11/16/96

Lab File Number(s)

TVB11120020

Date Prepared

: 11/20/96

Method Blank

MB1112096

FID Dilution Factor

: 1.0

PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	IJ	0.1	mg/L
Benzene	71-43-2	11/20/96	1.3	0.4	ug/L
Toluene	108-88-3	11/20/96	11	0.4	†······
Chlorobenzene	108-90-7	11/20/96	22	0.4	ug/L ug/L
Ethyl Benzene	100-41-4	11/20/96		0.4	† ·····
Total Xylenes (m,p,o)	1330-20-7	11/20/96		0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96		0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96		0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	ļ	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	Ü	0.5	ug/L ug/L
		***************************************	***********************************		<u>ug</u> / L
FID Surrogate Recovery:	***************************************	100%		50%-150%	(Li
PID Surrogate Recovery:		101%	0 7 9 2 2 4 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50%-150%	(Li)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF6-MPK

Client Project Number

729691.32010

Lab Sample Number

: 96-4058-08

Lab Work Order

Method Blank

96-4058

Date Sampled

: 11/15/96

Matrix

Water

Date Received

: 11/16/96

Lab File Number(s)

TVB11120021

Date Prepared FID Dilution Factor : 11/20/96 : 1.0

MB1112096

PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	U	0.1	mg/L
Benzene	71-43-2	11/20/96	0.4	0.4	ug/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	11	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	U.	0.5	ug/L
Surrogate Recovery:		94%		50%-150%	(Limits)
Surrogate Recovery:		96%	***************************************	50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
	 	 	
· · · · · · · · · · · · · · · · · · ·	 	 	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

TVBXWS1P-TVPYADER VIC. 11/22/06. 0

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF6-MPI

Client Project Number

729691.32010

Lab Sample Number Date Sampled

: 96-4058-09 : 11/15/96

Lab Work Order Matrix

96-4058 Water

Date Received

: 11/16/96

Lab File Number(s)

TVB11120022

Date Prepared FID Dilution Factor

: 11/20/96 : 1.0

Method Blank

MB1112096

PID Dilution Factor

: 1.0

Compound Name	Cas Number	Analysis Date	Sample Concentration	RL	Units
TVH-Gasoline		11/20/96	11	0.1	
Benzene	71-43-2	11/20/96	0.7	0.1	mg/L
Toluene	108-88-3	11/20/96	11		ug/L
Chlorobenzene	108-90-7	11/20/96	2.7	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96		0.4	l ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	J	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	<u> </u>	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	J	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	U	0.4	ug/L
	······	11/20/30	<u></u>	0.5	uo"
FID Surrogate Recovery:		97%		F00/ 1500/	<u>"</u>
PID Surrogate Recovery:	***************************************	98%	***************************************	50%-150% 50%-150%	(L)(1)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: Trip Blank

Client Project Number

729691.32010

Lab Sample Number

: 96-4058-10

Lab Work Order

96-4058

Date Sampled

: NA

Matrix

Water

Date Received

: 11/16/96

Lab File Number(s)

TVB11120023

Date Prepared FID Dilution Factor

: 11/20/96 : 1.0 Method Blank

MB1112096

PID Dilution Factor

: 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	U	0.1	mg/L
Benzene	71-43-2	11/20/96	U	0.4	ug/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	U	0.5	ug/L
Surrogate Recovery:		98%		50%-150%	(Limits)
Surrogate Recovery:		100%	***************************************	50%-150%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: LF06-MPF-(8-10)'	Client Project No.	: 729691.32010
Lab Sample No.	: 96-4058-02	Lab Work Order	: 96-4058
Date Sampled	: 11/15/96	EPA Method No.	
Date Received	: 11/16/96	Matrix	: 602/8020
Date Prepared	: 11/19/96	Lab File Number(s)	: Soil
Date Analyzed	: 11/19/96	Method Blank	: TVB11118054,55
Instrument Name	: TVHBTEX1	Dilution Factor	: <u>MB1111996</u> : 1.0

Compound	Spike Added	Sample Concentration	Concentration (ug/kg)		
	(ug/kg)	(ug/kg)	MS	MSD	Comments
Benzene	20.0	0.0	18.5	16.6	
Toluene	20.0	1.1	18.2	16.4	
Chlorobenzene	20.0	0.6	18.4	16.4	
Ethylbenzene	20.0	0.0	17.7	16.0	
m,p-Xylene	20.0	0.0	17.1	15.4	
o-Xylene	20.0	0.0	17.2	15.5	
1,3,5-TMB	20.0	0.0	17.7	16.2	
1,2,4-TMB	20.0	0.0	17.1	15.9	
1,2,3-TMB	20.0	0.0	17.2	16.1	
1,2,3,4-TeMB	20.0	0.0	16.1	14.4	
Surrogate	100.0	75%	74%	76%	% RECOVERY

Compound	MS %	MSD %			QC# Limits	
	RECOVERY	RECOVERY	RPD	RPD	%REC	
Benzene	92.5	83.0	10.8	21	49 - 126	
Toluene	85.5	76.5	11.1	25	46 - 131	
Chlorobenzene	89.0	79.0	11.9	19	56 - 116	
Ethylbenzene	88.5	80.0	10.1	25	35 - 133	
m,p-Xylene	85.5	77.0	10.5	27	37 - 133	
o-Xylene	86.0	77.5	10.4	27	37 - 131	
1,3,5-TMB	88.5	81.0	8.8	24	48 - 123	
1,2,4-TMB	85.5	79.5	7.3	23		
1,2,3-TMB	86.0	80.5	6.6		43 - 125	
1,2,3,4-TeMB	80.5	72.0	11.1	23	44 - 123	
Surrogate	74.0	76.0	NA NA	23 NA	33 - 127 72 - 118	

#=	Limits extablished	10/1/96,HDM
* =	Values outside of	QC limits.

RPD:	0	out of	(10)	outside limits.
Spike Recovery:	0	-		outside limits

Comments:			
Comments.			
	 	:	

Analyst

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: W79	Client Project No.	: 729691.32010
Lab Sample No.	: 96-4058-03	Lab Work Order	: 96-4058
Date Sampled	: 11/15/96	EPA Method No.	: 602/8020
Date Received	: 11/16/96	Matrix	: Water
Date Prepared	: 11/20/96	Lab File Number(s)	: TVB11120013,14
Date Analyzed	: 11/20/96	Method Blank	: MB1112096
Instrument Name	: TVHBTEX1	Dilution Factor	: 1.0

Compound	Spike Added	Sample Concentration	Concentration (ug/L)		
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	19.4	19.9	
Toluene	20.0	0.0	18.8	19.3	
Chlorobenzene	20.0	0.0	18.6	19.4	
Ethylbenzene	20.0	0.0	18.8	19.5	
m,p-Xylene	20.0	0.0	18.5	19.0	
o-Xylene	20.0	0.0	18.9	19.2	
1,3,5-TMB	20.0	0.0	19.3	20.1	
1,2,4-TMB	20.0	0.0	19.0	19.4	
1,2,3-TMB	20.0	0.0	19.4	19.6	
1,2,3,4-TeMB	20.0	0.0	18.6	19.7	
Surrogate	100.0	107%	103%	103%	% RECOVERY

	MS	MSD			QC#
Compound	%	%			Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	97.0	99.5	2.5	18	62 - 129
Toluene	94.0	96.5	2.6	25	55 - 133
Chlorobenzene	93.0	97.0	4.2	9	66 - 122
Ethylbenzene	94.0	97.5	3.7	15	60 - 127
m,p-Xylene	92.5	95.0	2.7	20	44 - 146
o-Xylene	94.5	96.0	1.6	16	57 - 131
1,3,5-TMB	96.5	100.5	4.1	16	63 - 129
1,2,4-TMB	95.0	97.0	2.1	16	55 - 136
1,2,3-TMB	97.0	98.0	1.0	13	64 - 127
1,2,3,4-TeMB	93.0	98.5	5.7	23	53 - 132
Surrogate	103.0	103.0	NA	NA	82 - 115

#= Limits extablished 10/1/96,HDM

* = Values outside of QC limits.

RPD:	0	out of	(10)	outside limits.
Spike Recovery:	0	out of	(20)	outside limits.

Comments:	

Analyst

K. Hulman Approved

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Compound	Spike Added (mg/L)	Sample Concentration (mg/L)	MS Concentration (mg/L)	MS %REC	QC (#) Limits %REC
Gasoline	2.00	0.00	1.92	96.0%	62 - 126
Surrogate **				109%	70 - 121

Compound	Spike Added	MSD Concentration	MSD	RPD		QC (#)
	(mg/L)	(mg/L)	%REC		RPD	%RE
Gasoline	2.00	2.16	108.0%	11.8	42.3	62 - 126
Surrogate **			109%	NA	NA	70 - 121

RPD:	0	out of	(1) outside limits.
Spike Recovery:	0	•	(2) outside limits

Notes:

NA = Not analyzed/not applicable.

- * = Values outside of QC limits.
- ** = 1,2,4-Trichlorobenzene
- # = Limits established 10/2/96, KSH

Comments:	

Analyst J

K. Hillman

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number : LCS1111996 Date Prepared : 11/19/96 Date Analyzed : 11/19/96 Lab File Number(s) : TVB11118048		Matrix Method Numbers Instrument Name	: Water : EPA 5030/8015 Modified : TVHBTEX1		
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % _Recovery	QC Limit % Recovery	
Gasoline	2.00	2.12	106.0	83 - 120	
Surrogate Recovery:		105%		70 - 121	

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 9/24/96 for TVHBTEX1. HDM

1. Dune Muls

EPA 602/8020 Data Report Laboratory Control Sample (LCS)

LCS Number : LCS1111996 Date Extracted/Prepared 11/19/96 Date Analyzed : 11/19/96 Spike Amount (ug/L)

Dilution Factor Method

1.00

: 20.0

Matrix

602/8020

Water

Lab File No.

TVB11118049

QC Limit** % Recovery 75 - 110
<i>/</i> 5 - 110
75 - 110
69 - 110
74 - 110
73 - 110
74 -
59 - 129
70 - 110
73 - 110
84 - 122
07 - 122
<u>67 -</u> 116
82 - 115

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data. NA = Not available/Not analyzed.

** = Limits updated 10/02/96 for TVHBTEX1. SWT

EPA 602/8020 Data Report Laboratory Control Sample (LCS)

LCS Number
Date Extracted/Prepared

: LCS1112096

Dilution Factor

1.00

Date Analyzed

: 11/20/96

Method

602/8020

Date Analyzed

: 11/20/96

Matrix

Water

Spike Amount (ug/L)

: 20.0

Lab File No.

TVB11120006

		LCS	LCS	
	Cas	Concentration	%	QC Limit**
Compound Name	Number	(ug/L)	Recovery	% Recovery
Benzene	71-43-2	20.9	104.5	75 - 110
Toluene	108-88-3	19.7	98.5	75 - 110
Chlorobenzene	108-90-7	20.2	101.0	69 - 110
Ethyl Benzene	100-41-4	20.3	101.5	74 - 110
m,p-Xylene	108-38-3 106-42-3	38.5	96.3	73 - 110
(ylene	95-47-6	20.1	100.5	74 - 114
	1634-04-4	18.2	91.0	59 - 129
1,3,5-Trimethylbenzene	108-67-8	21.3	106.5	70 - 110
1,2,4-Trimethylbenzene	95-63-6	19.2	96.0	73 - 110
1,2,3-Trimethylbenzene	526-73-8	24.2	121.0	84 - 122
1,2,3,4-Tetramethylbenzene	488-23-3	22.1	110.5	67 - 116
Surrogate Recovery:		105%		82 - 115

NOTES:

m,p-xylene = 40.0 ppb spike.

QUALIFIERS:

E = Extrapolated value. Value exceeds that of the calibration range.

U = Compound analyzed for, but not detected.

B = Compound found in blank and sample. Compare blank and sample data.

NA = Not available/Not analyzed.

= Limits updated 10/02/96 for TVHBTEX1. SWT

Approved

To the state of th

000711/04.1.01

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS1112096 : 11/20/96 : 11/20/96 : TVB11120005	Matrix Method Numbers Instrument Name	: Water : EPA 5030/86 : TVHBTEX1	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % _ Recovery	QC Limit % Recovery
Gasoline	2.00	2.33	116.5	83 - 120
Surrogate Recovery:		110%		70 - 121

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 9/24/96 for TVHBTEX1. HDM

Method 601/8010 Chlorinated VOC's Method Blank Report

ethod Blank

: RB112096

Client Project No.

729691.32010

Date Prepared

: 11/20/96

Lab Project No.

: 96-4058

Date Analyzed

: 11/20/96

Lab File No.

: HALL1120\004F0101

Compound	CAS#	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
4-Chlorotoluene	106-49-8	U	0.4
3-Dichlorobenzene	541-73-1	U	0.4
2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

88%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW4058.XLS; 11/27/96

Method 8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB112196

Client Project No.

729691.32010

Date Prepared

: 11/21/96

Lab Project No.

96-4058

Date Analyzed

: 11/21/96

Lab File No.

: HALL1121\004F0101

Compound	CAS#	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	11	
Chloroethane	75-00-3	ŭ	0.4
1,1-Dichloroethene	75-35-4	11	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	
1,1,1-Trichloroethane	71-55-6	ii	0.4
Carbon Tetrachloride	56-23-5	ii	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ŭ .	0.4
Tetrachloroethene	127-18-4	ii ·	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ii	0.4
Chlorobenzene	108-90-7	Ŭ.	0.4
1,1,2,2-Tetrachloroethane	79-34-5	11	0.42
2-Chlorotoluene	95-49-8	Ü	0.54
4-Chlorotoluene	106-49-8	11	0 4
1,3-Dichlorobenzene	541-73-1	Ü	
1,2-Dichlorobenzene	95-50-1	Ü	

Surrogate	D	44 61 1 6 5
SHITTONIATO	MACANARI	/1-Chlore 2 Chiese Deserving
Cuilogala	LICCUAGIA	(1-Chloro-2-Fluoro-Benzene)

81%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW4058.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Method Blank Report

ethod Blank

: MB112696

Client Project No.

729691.32010

Date Prepared

: 11/26/96

Lab Project No.

: 96-4058

Date Analyzed

: 11/26/96

Lab File No.

: HALL1126\004F0101

Compound	CAS#	Concentration (ug/L)	RL(ug/L)	
Chlorobenzene	108-90-7	U	0.42	

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 70% - 130% (QC limits) 87%

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW4058.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

Date Sampled : 11/15/96 Matrix : Soil

Date Prepared : 11/20/96 Method Blank : RB112096

Date Analyzed : 11/20/96 Dilution Factor : 1.6

Percent Moisture : 34.94 Compound CAS# Concentration(ug/Kg) RL(ug/Kg) Vinyl Chloride 75-01-4 U 0.63 Chloroethane 75-00-3 U 0.63 1,1-Dichloroethene 75-35-4 U 0.63 Dichloromethane 75-09-2 U 0.63 trans-1,2-Dichloroethene 156-60-5 U 0.63 1,1-Dichloroethane 75-34-3 11 0.63 cis-1,2-Dichloroethene 156-59-4 U 0.63 1,1,1-Trichloroethane 71-55-6 U 0.63 Carbon Tetrachloride 56-23-5 U 0.63 Trichloroethene 79-01-6 U 0.63 1,1,2-Trichloroethane 79-00-5 U 0.63 Tetrachloroethene 127-18-4 U 0.63 1.1.1.2-Tetrachloroethane 79-00-5 U 0.63 Chlorobenzene 108-90-7 E 0.66 1,1,2,2-Tetrachloroethane 79-34-5 U 0.84 2-Chlorotoluene 95-49-8 U 0.63 4-Chlorotoluene 106-49-8 U 0.63 1.3-Dichlorobenzene 541-73-1 12 0.6 1,2-Dichlorobenzene 95-50-1 7.7 0.63

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 95% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW4058.XLS; 12/3/96

QUART FLYDKI

10.50

Weent to the location of the distribution for the last of the last remember 12:

761171 18528 911171 18528 978 1

	Soupound	Η.Τ.	Sci #	Great	112. 2	Maria de la companya della companya della companya della companya de la companya della companya	
9.09.09.09.09.09.09.09.09.09.09.09.09.09	**************************************	1097/2643/8/1 1097/2643/8/8/1 607/84-14/10/36 117/14/10/36	100 0 47.5 0 57.5 0 100 0 100 100 100 100 100 100 100 10	124 177 6177 1177 1177 1177 1177 1177 4497 4497 597 147 147 147 147	501400 101400 101800 10180 101814 101814 10181 1		

^{*} lempeend is (S)D

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF06-MPF-(4'-8') Client Project No. 729691.32010 Lab Sample No. : 96-4058-01 Lab Project No. 96-4058 Date Sampled : 11/15/96 Matrix Soil **Date Received** : 11/16/96 Lab File No. HALL1126\008F0101 **Date Prepared** : 11/26/96 Method Blank MB112696 Date Analyzed : 11/26/96 **Dilution Factor** : 191.2 Percent Moisture : 34.94 Compound CAS# Concentration(ug/Kg) RL(ug/Kg) Chlorobenzene 108-90-7 1300 80

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 96% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved
HLW4058.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

: LF06-MPF-(8'-10') Client Sample No. Client Project No. : 729691.32010 Lab Sample No. : 96-4058-02 Lab Project No. : 96-4058

Date Sampled : 11/15/96 Matrix : Soil

Date Received : 11/16/96 Lab File No. : HALL1120\015F0101

Date Prepared : 11/20/96 Method Blank : RB112096 : 11/20/96 Dilution Factor : 1.2

Date Analyzed ~

Percent Moisture : 15.41			
Compound	CAS #	Concentration(ug/Kg)	RL(ug/Kg)
Vinyl Chloride	75-01-4	1.7 J X	0.47
Chloroethane	75-00-3	U	0.47
1,1-Dichloroethene	75-35-4	U	0.47
Dichloromethane	75-09-2	0.89 J X	0.47
trans-1,2-Dichloroethene	156-60-5	U	0.47
1,1-Dichloroethane	75-34-3	U	0.47
cis-1,2-Dichloroethene	156-59-4	U	0.47
1,1,1-Trichloroethane	71-55-6	U	0.47
Carbon Tetrachloride	56-23-5	U	0.47
Trichloroethene	79-01-6	U	0.47
1,1,2-Trichloroethane	79-00-5	U	0.47
Tetrachloroethene	127-18-4	Ų	0.47
1,1,1,2-Tetrachloroethane	79-00-5	U	0.47
Chlorobenzene	108-90-7	. 2 J	0.49
1,1,2,2-Tetrachloroethane	79-34-5	U	0.63
2-Chlorotoluene	95-49-8	U	0.47
Chlorotoluene	106-49-8	U	0.47
3-Dichlorobenzene	541-73-1	U	0.47
1,2-Dichlorobenzene	95-50-1	U	0.47

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

97%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES: X = Not confirmed by MS (MDL = 1ug/Kg).

Approved

HLW4058.XLS: 12/5/96

QUANT REPORT

Page 1

Quant Rev: 7

961127 10:59 961127 10:34 1.00000

Uperator ID: KIM
Output File: ^V2947::Q1
Data File: >V2947::V2
Name: RE112796 ;;;KL
Misc: 5;W;0;1;W;0;11/27/96;0

Instrument ID:

VOA 1

1D File: ID_824::QT Title: ID FILE FOR APPENDIX NINE UOAs METHOD 8260A(8240) Last Calibration: 961125 12:35 Last Qcal Time: <none>

Compound	R.T.	Scan#	Area	Conc	Units	9
1) *BROMOCHLOROMETHANE(INT STD) 4) BROMOMETHANE 23) 1,2 DICHLOROETHANE-D4(SUR STD) 24) *1,4 DIFLUOROBENZENE(INT STD) 46) *CHLOROBENZENE-D5(INTERNAL STD) 53) TOLUENE-D8(SURROGATE STD) 58) BROMUFLUOROBENZENE(SURR STD)	6.14 1.29 7.45 8.60 14.42 11.50	584 94 716 832 1419 1124 1683	37231M 1518 874587 174566 144891 182569 95316	50.16 50.49 50.00 500.38 49.23	UG/L UG/L UG/L UG/L UG/L	76 100 100 100 100 100

^{*} Compound is ISTD

QUANT REPORT

Page

Quant Rev: 7

Quant Time:

961127 16:04 961127 19:39 1.00000 VOA 1

Uperator ID: KIM Uutput File: ^U2958::Q1 Data File: >U2958::U2 Hame: 96-4058-02 ;;KL Misc: 5;S;5.01;1;S;0;11/27/96;0

Injected at:
Dilution Factor:
Instrument 1D:

1D File: 10_824::0)
Title: 1D FILE FUR APPENDIX NINE VUAs METHOD 8260A(8240)
Last Calibration: 961125 12:35 Last Qcal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	ć
1) 1434 2463 2463 5584 64	*BROMOCHLOROMETHANE(INT STD) PROMOMETHANE 1,2 DICHLOROETHANE-D4(SUR STD) *1,4 DIFLUOROBENZENE(INT STD) *CHLOROBENZENE-D5(INTERNAL STD) TOLUENE-D8(SURROGATE STD) CHLOROBENZENE BRUMOFLUOROBENZENE(SURR STD) 1,4-DICHLOROBENZENE	8 58	579 92 714 830 1418 1122 1424 1683 1942	31481 875 75078 170251 139638 180579 4147 91009	1.47 51.47 50.00 50.00 50.68 1.44	UG/L UG/L UG/L UG/L UG/L	10: 10: 10: 10: 10: 10: 10: 10: 20:

^{*} Compound is ISTO

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W79 Client Project No. : 729691.32010

 Lab Sample No.
 : 96-4058-03
 Lab Project No.
 : 96-4058

 Date Sampled
 : 11/15/96
 Matrix
 : Water

Date Prepared : 11/20/96 Method Blank : RB112096

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	· U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U ·	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
Chlorotoluene	95-49-8	U	0.4
hlorotoluene	106-49-8	บ	0.4
3-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	81%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:	\mathcal{A}
Aleifst	Approved HLW4058.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W82 Client Project No. : 729691.32010 Lab Sample No. : 96-4058-04 Lab Project No. : 96-4058

Date Sampled : 11/15/96 Matrix : Water **Date Received** : 11/16/96

Lab File No. : HALL1121\006F0101 **Date Prepared** : 11/21/96 Method Blank : RB112196

Date Analyzed : 11/21/96 **Dilution Factor** : 1.0

Compound	CAS#	Concentration (ug/L)	51 / "
Vinyl Chloride	75-01-4	II	RL (ug/L)
Chloroethane	75-00-3	ii	0.4
1,1-Dichloroethene	75-35-4	1.4	0.4
Dichloromethane	75-09-2	11	0.4
trans-1,2-Dichloroethene	156-60-5	ŭ	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	11	0.4
1,1,1-Trichloroethane	71-55-6	0.73 J	0.4
Carbon Tetrachloride	56-23-5	. U	0.4
Trichloroethene	79-01-6	. U	0.4
1,1,2-Trichloroethane	79-00-5	<u> </u>	0.4
Tetrachloroethene	127-18-4	Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	ij	0.4
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.42
2-Chlorotoluene	95-49-8	Ü	<u>o</u>
4-Chlorotoluene	106-49-8	ŭ	
1,3-Dichlorobenzene	541-73-1	ŭ	
1,2-Dichlorobenzene	95-50-1	Ŭ	0.4
		•	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):	84%	70% - 130% (QC limits)
---	-----	------------------------

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

TES:	- detection innit).
M	
Aydiyst	Approved
	HLW4058.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF6-MPH Client Project No. : 729691.32010 Lab Sample No. : 96-4058-05 Lab Project No. : 96-4058

Date Prepared : 11/21/96 Method Blank : RB112196

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS #	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	U	0.4
3-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

	·			
Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	80%	70% - 130% (QC I	imits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:	
Agalyst	Approved HLW4058.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF6-MPL Client Project No. : 729691.32010 Lab Sample No. : 96-4058-06 Lab Project No. : 96-4058

Date Sampled : 11/15/96 Matrix : Water Date Received : 11/16/96

Lab File No. : HALL1121\008F0101 Date Prepared : 11/21/96 Method Blank : RB112196

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	2.1 J	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	ŭ	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	ii	0.4
Carbon Tetrachloride	56-23-5	ŭ	
Trichloroethene	79-01-6	ŭ	0.4 0.4
1,1,2-Trichloroethane	79-00-5	Ŭ	0.4
Tetrachloroethene	127-18-4	Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	0.4
Chlorobenzene	108-90-7	3.7	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U U	0.42
2-Chlorotoluene	95-49-8	U	
4-Chlorotoluene	106-49-8	· ŭ	
1,3-Dichlorobenzene	541-73-1	ŭ	
,2-Dichlorobenzene	95-50-1	ű	0.4

		44		
Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):		79%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

TES:	
0/	
///	
A Mayst	
	Approved HLW4058.XLS; 12/5/

UUANI REPURT

Hage: 1

ator ID: KIM
bu put File: ^U2885::Q1
Data File: >U2885::E1
Name: 96-4058-06 ;;;KL
Misc: 5;K;0;1;W;0;11/21/96;0

Woent Rev: / - Upant lime:

961121 17:51 961121 17:27 1.09000 Injected at:

Dilution Factor: Instrument ID: VUA 1

TD File: ID_824::Q: Tifle: ID FILE FOR APPENDIX NINE VOAs METHOD 8269A(8240 Last Calibration: 961120 10:86 Last Ocal Time: Knone)

	Compound:	€.T.	Scar#	Araa	Lone	Units	€,
5: 231 24) 46) 5:)	*SHUTUC HLURUMETHANE (INT SID) UTAYL CHLURIDE 1,2 DICHLURUETHANE-D4 (SUR SID) *1,4 DIFLUUKUBENZENE (IN) STD) *CHLURUBENZENE-D5 (INTERNAL STD) TUUENE-D8 (SURRUGATE SID) UHURUBENZENE EMUMUFLUURUBENZENE (SURR STD) 1,4-DICHLURUBENZEME	6.98 7.50 8.64 14.45 11.52 14.50 17.06	587 637 721 836 1422 1126 1427 1685 1941	35283 4911 47655 175557 146181 184089 27233 100846 31161	50.90 3.52 46.50 50.00 48.26 49.24 10.60	06/E 06/E 06/E 06/E 06/E 06/E 06/E	100 100 100 100 100 100 100 190 72

^{*} Compound is 1510

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W18 Client Project No. : 729691.32010
Lab Sample No. : 96-4058-07 Lab Project No. : 96-4058

Lab Sample No. : 96-4058-07 Lab Project No. : 96-4058 Date Sampled : 11/15/96 Matrix : Water

Date Prepared : 1./21/96 Method Blank : RB112196
Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	DI 1
Vinyl Chloride	75-01-4	4.9	RL (ug/L)
Chloroethane	75-00-3	11	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ŭ	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	1.3	0.4
1,1,1-Trichloroethane	71-55-6	1.5	0.4
Carbon Tetrachloride	56-23-5		0.4
Trichlorgethene	79-01-6		0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	0.4
Chlorobenzene	108-90-7	13	0.4
1,1,2,2-Tetrachloroethane	79-34-5	U	0.42 0 = 1
2-Chlorotoluene	95-49-8	Ü	
4-Chiorotoluene	106-49-8	ŭ	
1,3-Dichlorobenzene	541-73-1	ŭ	
1,2-Dichlorobenzene	95-50-1	0.78 J	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	90%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:	
alyst	Approved HLW4058.XLS; 11/27/96

QUANT REPORT

Page 1

Lior ID: WIM
Liput File: ^U2888::Q1
Data File: >U2888::S1
Mame: 96-4058-0/ ;;;KL
Misc: b;W;0;1;W;U;11/21/96;0

/ Quant line: Injected at: Dilution Factor: Quant Mav: ノ

961122 04:30 961121 19:02 1.00000 UUA 1

Instrument ID:

Compound	H.T.	Scan#	Area	Conc	Units	Ę
1) 18KUMOURLÜRUMETHANE(INT SID) 4) BEUMUME:HAME 5) VINYL CHLORIDE 1/) 1,1 DICHLÜRÜETHANE 1// CIS 1,2-DICHLÜRÜETHANE 2// 1,2 DICHLÜRÜETHAME-D4(SUR SID) 2// *1,4 DIFLÜÜRÜENZENE(INT SID) 4// *1,4 DIFLÜÜRÜBENZENE(INT SID) 5// CHLÜRÜENZENE-D9(INTERNAL SID) 5// CHLÜRÜENZENE 5// CHLÜRÜENZENE 5// CHLÜRÜENZENE 5// CHLÜRÜENZENE 5// CHLÜRÜENZENE 5// CHLÜRÜENZENE 5// CHLÜRÜBENZENE		5943538382331314223311 14223311 14223311 14214811	35466 1572 11576 3230M 2834M 28348 122245 143288 12228 129520 95922 36364	1.40 2.15 46.75 50.00 50.85 47.85 24.21 47.64	067E 067E 067E 067E 067E 067E 067E 067E	1000 1000 1000 1000 1000 1000 1000 100

^{*} tempound is ISID

Method 601/8010 Chlorinated VOC's Sample Report

 Lab Sample No.
 : 96-4058-08
 Lab Project No.
 : 96-4058

 Date Sampled
 : 11/15/96
 Matrix
 : Water

 Date Received
 : 11/16/96
 Lab File No.
 : HALL112

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	3	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ŭ	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ŭ	0.4
1,1,1-Trichloroethane	71-55-6	Ŭ	0.4
Carbon Tetrachloride	56-23-5	ŭ	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	0.4
Chlorobenzene	108-90-7	6.1	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.42
2-Chlorotoluene	95-49-8	Ü	<u>U</u> .
4-Chlorotoluene	106-49-8	ŭ	
1,3-Dichlorobenzene	541-73-1	ŭ	
1,2-Dichlorobenzene	95-50-1	0.55 J	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 85% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW4058.XLS; 11/27/96

QUANT REPORT

Page 1

Quant Time: Injected at: Wuant Hev: /

Dilution Factor: Instrument ID:

961122 (4:3) 961121 19:36 1.03000

VUA 1

	. Compound	R.T.	Scan#	Area	Conc	Units	i,
46) 53) 55)	*SHUMUCHLURUMETHANE(INT SID) ORUMUMETHANE VINYL CHLORIDE 1,2 DICHLORUSE(HANE-D4(SUM SID) 1,4 DIFLUGRUSENZENE(INT SID) *CHLURUSENZENE-D%(INTERNAL SID) CHLURUSENZENE SID) CHLURUSENZENE	6.12 1.29 .97 7.45 8.61 14.44 11.50	582 94 62 716 833 1421 1124 1426	37784 723 7686 91270 186166 195768 38454	50.00 .999 5.23 42.38 50.00 48.04 11.71	UGZE UGZE UGZE UGZE UGZE UGZE UGZE UGZE	100 100 100 100 100 100 100
58) 53) 64)	SKUMUFLUÜRUBENZENE(SURR STD) 1,I-DICHLÜRUBENZENE 1,4-DICHLÜRÜBENZENE	17.06 20.38 19.61	1685 2020 1942	108572 2592 36981	49.62 .905 11.28	ÜBZE	180 94

^{*} Lompound is 1970

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF6-MPI Client Project No. : 729691.32010 Lab Sample No. : 96-4058-09 Lab Project No. : 96-4058

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	3.4	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	11	
trans-1,2-Dichloroethene	156-60-5	~ Ŭ	0.4 0.4
1,1-Dichloroethane	75-34-3	Ŭ	0.4
cis-1,2-Dichloroethene	156-59-4	1.8	
1,1,1-Trichloroethane	71-55-6	11	0.4
Carbon Tetrachloride	56-23-5	ŭ	0.4
Trichloroethene	79-01-6	Ŭ.	0.4
1,1,2-Trichloroethane	79-00-5	<u> </u>	0.4
Tetrachloroethene	127-18-4	ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	11	0.4
1,1,2,2-Tetrachloroethane	79-34-5	ŭ	0.42
2-Chlorotoluene	95-49-8	Ü	0.54
4-Chlorotoluene	106-49-8	ŭ	
1,3-Dichlorobenzene	541-73-1	ŭ	
1,2-Dichlorobenzene	95-50-1	บั	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	78%	70% - 130% (QC limits)
-	The state of the s	70 %	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:	
Analyst	Approved HLW4058.XLS; 11/27/96

QUANT REPURT

Fage 1

Quant Rev: 2

Quant lime:

761122 04:31 961121 20:03 1.09000 UUA 1

Ator ID: KIM
UBtput File: ^U2890::U1
Data File: >U2890::S1
Name: 96-4058-09 ;;;KL
Misc: 5;W;U;1;W;U;11/21/96;U

Injected at: Dilution Factor: Instrument ID:

ID Filet ID_824::07
Title: ID FILE FUR APPENDIX NINE COAs METHOD 8260A(8240: Last Calibration: 961120 10:56 Last Qual Time: <none>

	Lompound	к.т.	Scan#	Area	Conc	Units	Ċ
1) 5)	*BRUMUCHLURUMETHANE(INT STD) VINYL CHLURIDE	6.15	585 63	36383 8448M	50.00 5.97	UGZL UGZL	170 170
$\frac{11)}{1/)}$	METHYLENE CHLORIDE 1,1 DICHLORUETHANE	2.91 4.16	258 384	1863 1 240M		UGZE UGZE	4.1 100
19) 23)	- CÍS 1,2-DICHLORGETHENE - 1,2 DICHLORGETHANE-D4(SUR STD)	5.62 7.42	531 218	4014M 86695	2.97 46.74		フタ 100
24) 46)	*1,4 D1FLUURUBENZENE(1NT SID) *CHLURUBENZENE-D9(1NTERNAL SID)	8.62 14.43	834 1420	184480 154115	50.00 50.00		$\frac{100}{100}$
53) 55)	TULDENE-D8(SURROGATE STD) CHLORUBENZENE	11.50 14.48	1124 1425	191515 5258	47.62 1.78	UGZE UGZE	$\frac{100}{100}$
53) 64)	BRUMOFLUURUBENZENE(SURR STD) 1,4-DICHLURUBENZENE	17.84 19.62	1683 1943	101581 3904	47.84 1.26		100 81

^{*} Compound is ISTD

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : Trip Blank Client Project No. : 729691.32010 Lab Sample No.

: 96-4058-10 Lab Project No. : 96-4058 Date Sampled : 11/15/96 Matrix : Water

Date Received : 11/16/96 Lab File No. : HALL1121\012F0101 **Date Prepared** : 11/21/96

Method Blank : RB112196

Date Analyzed : 11/21/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	DI (/1)
Vinyl Chloride	75-01-4	11	RL (ug/L)
Chloroethane	75-00-3	ü	0.4
1,1-Dichloroethene	75-35-4	. 11	0.4
Dichloromethane	75-09-2	ű	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	11	0.4
1,1,1-Trichloroethane	71-55-6		0.4
Carbon Tetrachloride	56-23-5		0.4
Trichloroethene	79-01-6	11	0.4
1,1,2-Trichloroethane	79-00-5	<u> </u>	0.4
Tetrachloroethene	127-18-4	ŭ ·	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	0.4
Chlorobenzene	108-90-7	ĬI	0.4
1,1,2,2-Tetrachloroethane	79-34-5	ŭ	0.42 0 - •
2-Chlorotoluene	95-49-8	Ŭ	
4-Chlorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	Ŭ	
1,2-Dichlorobenzene	95-50-1	Ŭ	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	79%	70% - 130% (QC limits)
•	. Since Distance Dollactice	1370	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:	
Anakkat	Approved HLW4058.XLS; 11/27/96

Method 8010

Date Performed: 11/25/96

Reference Standard: V832

		Method	Sample	Sample	Spike	Control	Spike		รั	Spike Recoveries	veries		_	OC R	ecove	OC Recovery Range	
Analyte	M	Blank	96-4058-03	Spike	Dup.	Spike	Amt	RPD	Sample	Dup #	# Control		*	%- 1%	_ _	Low - High	<u>۔</u>
Vinyl Chloride	×			13.191	15.032	12.340	20.0	13.0	%99	75%	9	62%	<u> </u>	28 - 163	65	5.60 - 32.60	8
Chloroethane	٠			16.194	17.032	15.169	20.0	5.0	81%	85%	7	%9/		46 - 137	12	9.20 - 27.40	9
1,1-Dichloroethene	•			16.112	16.76	14.989	20.0	3.9	81%	84%	7	75%	<u> </u>	28 - 167		5.60 - 33.40	9
Dichloromethane	4			16.801	17.482	15.865	20.0	4.0	84%	87%	7	79%	<u> </u>	25 - 162	22	5.00 - 32.40	6
trans-1,2-Dichloroethene	•			20.911	20.811	19.097	20.0	0.5	105%	104%	6	82%		38 - 155	55	7.60 - 31.00	8
1,1-Dichloroethane	*			18.785	18.88	17.713	20.0	0.5	94%	84%	8	89%		47 - 132	2	9.40 - 26.40	40
cis-1,2-Dichlomethene	*			19.488	20.232	18.452	20.0	3.7	%26	101%	6	95%	_	•	_	•	
1,1,1-Trichloroethane	•			18.376	18.544	16.660	20.0	0.9	85%	83%	8	83%		41 - 138	 ∞	8.20 - 27.60	00
Carbon Tetrachloride	*			17.987	18.527	16.088	20.0	3.0	%06	83%	8	80%		43 - 143	5	8.60 - 28.60	99
Trichloroethene	≩			19.481	19.07	17.880	20.0	2.1	828	82%	8	89%	<u> </u>	35 - 148	<u>ω</u>	7.00 - 29.20	20
1,1,2-Trichloroethane	≩			19.915	19.583	20.053	20.0	1.7	100%	%86	우	100%		39 - 136	ထ္ထ	7.80 - 27.20	2
Tetrachloroethene	*			17.637	18.829	16.415	20.0	6.5	88%	84%	8	82%		26 - 162		5.20 - 32.40	40
1,1,1,2-Tetrachloroethane	•			18.314	17.533	16.920	20.0	4.4	85%	%88	8	85%		•	_		
Chlorobenzene	*			19.02	20.754	17.551	20.0	8.7	%56	104%	8	88%		1 - 150	0	0.16 - 30.00	8
1,1,2,2-Tetrachloroethane	*			22.817	22.364	22.618	20.0	2.0	114%	112%	=	113%	_	8 - 184	4	1.60 - 36.80	8
2-Chlorotofuene	•			18.084	17.97	15.986	20.0	9.0	%06	%06	8	80%	<u> </u>				
4-Chlorotoluene	٠			16.707	16.978	16.326	20.0	1.6	84%	85%	80	82%				•	
1,3-Dichlorobenzene	٠			17.433	17.065	16.047	20.0	2.1	81%	82%	8	80%		7 - 187	72	1.40 - 37.40	9
1,2-Dichlorobenzene	•			16.638	15.715	14.815	20.0	5.7	83%	%62	7	74%		0 - 208	80	0.00 - 41.60	99

M = Applicable matrices. (* = Soil and Water. w = Water only.)

= Marks a spike recovery out of limits.

If recovery is outside method limit, marked with """.

if recovery is outside a guideline, marked with "~".

If the sample spike recovery is outside the limit and the control spike is outside the limit also, the control is marked with "*** or "~~".

Notes on recovery limits:

All spiked analytes must be detected even if low limit is 0.

For analytes not listed in the method, recovery limits of 50-150% will be used as guidelines until limits can be established.

Corrective Actions:

Unacceptable sample spike recovery requires acceptable control spike recovery. If both recoveries are outside limits, corrective action must be taken. One recovery outside limits and the other acceptable, is a waming. Repeated failure requires corrective action. Recoveries outside guidelines should be compared to historical data available to determine if corrective action is required.

HLW4058.XLS; 11/27/96

Method 8010 Quality Control Samples

Date Performed: 11/26/96

Reference Standard: V832

		Method	Method Sample	Samole	Spike	Control	Spike			College Description		=		•	-
Analyte	Σ			Spike		Snike	Amt	טפא	Samula	Mike Recov	1004	6	LC Keco	UC Kecovery Kange	0
Vinyl Chloride	3			18.934	18.194	15.379	20.0	7	0594	13	776	ㅗ	• [•	ugu
Chloroethane	•			15.887	16.059	17 891	20.02	2 -	70%	2008	0 / P	1	•	•	32.00
1,1-Dichloroethene	•			17.573	17.773	17.127	200	: -	88%	808	200	<u> </u>	•	•	27.40
Dichloromethane	•			18.685	18.774	17.583	2002	. 0	92%	0780	200	1	101 - 07	• [33.40
trans-1,2-Dichloroethene	•			17.578	20.624	1,,	200	15.9	88%	103%	406%	1	20 - 62	•	32.40
1,1-Dichloroethane	٠			19.601	18.302	1	20.0	6.9	%86 8	92%	92%	1	• •	00.7	30.10
cis-1,2-Dichloroethene	•			20.569	18.868	18.995	20.0	8.8	103%	876	9650	<u> </u>	• •	•	70.40
1,1,1-Trichloroethane	٠			19.451	19.065	18.147	20.0	2.0	828	95%	91%	1	41 - 128	, UC 8	27.60
Carbon Tetrachloride	٠			19.807	19.25	18.101	20.0	2.9	%66	%96	81%		١.	• •	28.60
Trichloroethene	*			22.269	21.621	19.084	20.0	3.0	111%	108%	95%	1	۱	• •	20.00
1,1,2-Trichloroethane	3			22.311	23.451	20.830	20.0	5.0	112%	117%	104%	1	۱ ۱	•	07.00
Tetrachloroethene	٠			19.595	19.624	18.384	20.0	6	%86	%86	808	1,	1 4	•	32.40
1,1,1,2-Tetrachloroethane	•			18.985	18.834	18.317	20.0	0.8	95%	87%	92%	1	۱ ۱	• •	32.40
Chlorobenzene	•		6.614	32.611	31.901	18.708	20.0	2.8	130%	126%	376	1	1 - 150	0 48	0000
1,1,2,2-Tetrachloroethane	•			22.215	22.98	21.958	20.0	3.4	111%	115%	110%	+	187	• •	30.00
2-Chlorotoluene				17.424	17.669	17.857	20.0	1.4	87%	88%	%68	1	•	• •	90.00
4-Chlorotoluene	*			17.104	16.936	17.091	20.0	10	86%	85%	85%	1	, ,	•	
1,3-Dichlorobenzene	•		0.063	17.327	16.541	16.205	20.0	4.7	86%	82%	81%	\perp	7 - 187	1 40 - 2	27.40
1,2-Dichlorobenzene	٠		0.082	14.577	14.405	16.967	20.0	1.2	72%	72%	85%	1	0 - 208	٠ ١	41 60
												1	į)	-

M = Applicable matrices. (* = Soil and Water. w = Water only.)

= Marks a spike recovery out of limits.

If recovery is outside method limit, marked with "".

if recovery is outside a guideline, marked with "~".

If the sample spike recovery is outside the limit and the control spike is outside the limit also, the control is marked with "*** or "~~".

Notes on recovery limits:

All spiked analytes must be detected even if low limit is 0.

For analytes not listed in the method, recovery limits of 50-150% will be used as guidelines until limits can be established.

Corrective Actions:

Unacceptable sample spike recovery requires acceptable control spike recovery utside guidelines should be compared to historical data avail n. One recovery outside limits and the other acceptable, is Recov must 1

If both recoveries are outside limits, corrective action

1. Repeated failure requires corrective action.

Jetermine if corrective action is required.

HLW4058.XLS;711/27/96

Methane Report Form Method Blank Report

Method Blank Number Date Extracted/Prepared : GB112296 : 11/22/96

Client Project No.

: 729691.32010

Date Analyzed

: 11/22/96

Lab Work Order Dilution Factor

: 96-4058 : 1.00

Method

: RSKSOP-175M

Matrix

: Water

Lab File No.

: GAS1122002

Sample Compound Name Cas Number Concentration RL mg/L mg/L U Methane 74-82-8 0.002

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

Not Available/Not Applicable.

Approved

AF4058 YES

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: W79 : 96-4058-03 : 11/15/96 : 11/16/96 : 11/22/96 : 11/22/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	: 729691.32010 : 96-4058 : 1.00 : RSKSOP-175M : Water : GAS1122011
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002
Temperature Amount Injected Total Volume of Sample Head space created Methane Area	: 76.3 F : 0.5 m : 43 m : 4 m : 0 ug	I Concentration I Concentration I I in Head Space	Meth

<u>16</u> g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

L. H. Man Approved

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: W82 : 96-4058-04 : 11/15/96 : 11/16/96 : 11/22/96 : 11/22/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	: 729691.32010 : 96-4058 : 1.00 : RSKSOP-175M : Water : GAS1122012
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002
erature Int Injected	: 75.9 : 0.5		Meth 0
Total Volume of Sample Head space created	: 43 : 4	ml Concentration ml in Head Space	Meth 0
Methane Area	:0	ug	

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

'A = Not Available/Not Applicable.

K. Hollman

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: LF6-MPH : 96-4058-05 : 11/15/96 : 11/16/96 : 11/22/96	Client Project No. Lab Work Order Dilution Factor Method Matrix	: 729691.32010 : 96-4058 : 1.00 : RSKSOP-175M : Water
Date Analyzed	: 11/22/96	Lab File No.	: GAS1122013

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	. 0.002

Temperature Amount Injected Total Volume of Sample Head space created	:	Saturation Concentration Concentration in Head Space	Meth Meth	
Methane Area	:0 ug			

Atomic weight(Methane) : ______ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. Hellman Approved

Client Sample Number	: LF6-MPL	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4058-06	Lab Work Order	: 96-4058
Date Sampled	: 11/15/96	Dilution Factor	: 10.00
Date Received	: 11/16/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/22/96	Matrix	: Water

: 11/22/96

•			
Compound Name	Cas Number	Concentration	RL
******		mg/L	mg/L
Methane	74-82-8	0.21	0.02

Lab File No.

erature	:	75.8 F	Saturation	Meth	0.050843483
nt Injected	:	0.05 ml	Concentration	. —	
Total Volume of Sample	:	43 ml	Concentration	Meth	0.159059193
Head space created	:	4 ml	in Head Space		
Methane Area	:	118.234 ug			

Atomic weight(Methane) : _____ 16 g

Qualifiers

Date Analyzed

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

'A = Not Available/Not Applicable.

Roll Muhanon Analyst

K. Hollman

: GAS1122014

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared	: LF6-MPL : 96-4058-06Dup : 11/15/96 : 11/22/96	Client Project No. Lab Work Order Dilution Factor Method Matrix	: 729691.32010 : 96-4058 : 10.00 : RSKSOP-175M : Water
Date Analyzed	: 11/22/96	Lab File No.	: vvater : GAS1122015

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.21	0.02

Temperature Amount Injected Total Volume of Sample Head space created Methane Area	: 75.8 F : 0.05 ml : 43 ml : 4 ml : 117.254 ug	Saturation Concentration Concentration in Head Space	Meth Meth	0.050
--	--	--	--------------	-------

Atomic weight(Methane) : ______ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. H. Man Approved

Methane Report Form

Client Sample Number	: W18	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4058-07	Lab Work Order	: 96-4058
Date Sampled	: 11/15/96	Dilution Factor	: 1.00
Date Received	: 11/16/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/22/96	Matrix	: Water
Date Analyzed	: 11/22/96	Lab File No.	: GAS1122016

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.110	0.002

rature	:	75.7 F	Saturation	Meth	0.02669457
A nt Injected	:	0.5 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	0.083527131
Head space created	:	4 ml	in Head Space		
Methane Area	:	620.769 ug			

Atomic weight(Methane) : _____ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

 $\Lambda = Not Available/Not Applicable.$

K. Hollman

Methane Report Form

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.22	0.02

Temperature Amount Injected Total Volume of Sample Head space created Methane Area		75.8 F 0.05 ml 43 ml 4 ml 121.6 ug	Saturation Concentration Concentration in Head Space	Meth Meth	0.052
--	--	------------------------------------	---	--------------	-------

Atomic weight(Methane) : ______ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. Hollman
Approved

Methane Report Form

Client Sample Number : LF6-MPI Client Project No. : 729691.32010 Lab Sample Number : 96-4058-09 Lab Work Order : 96-4058 Date Sampled : 11/15/96 Dilution Factor : 10.00 **Date Received** : 11/16/96 Method : RSKSOP-175M Date Extracted/Prepared : 11/22/96 Matrix : Water Date Analyzed : 11/22/96 Lab File No. : GAS1122019

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L	
Methane	74-82-8	0.26	0.02	

erature	:	76.3 F	Saturation	Meth	0.062608945
nt Injected	:	0.05 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	0.195683554
Head space created	:	4 ml	in Head Space		
Methane Area	•	145.594 ug			,

Atomic weight(Methane) : _____ g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved Approved

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane Gas Matrix Spike / Matrix Spike Duplicate Report

Client Sample No.

: LF6-MPH

Client Project No.

: 729691.32010

Lab Sample No.

: 96-4058-05

Lab Work Order EPA Method No. : 96-4058

Date Sampled **Date Received**

: 11/15/96 : 11/16/96

Matrix

: RSKSOP-175M : Water

Date Prepared

: 11/22/96

Method Blank

: GB112296

Date Analyzed

: 11/22/96

Lab File No's.

: GAS1122020,021

E.A. MS/MSD Spike Source No.

: 1886

Compound	Spike Added (ug)	Sample Concentration (ug)	MS Concentration (ug)	MS %REC	QC Limits %REC
Methane Gas	500	0	426	85	47-88

Compound	Spike Added	MSD Concentration	MSD	RPD	QC Limits		
	(ug)	(ug)	%REC		RPD	%REC	
Methane Gas	500	430	86	0.9	0-16.4	47-88	

RPD:

Notes

out of (1) outside limits. out of (2) outside limits.

Spike Recovery:

* = Values outside of QC limits.

NA = Not analyzed/not available

Note: The Spike was made by taking the sample and displacing 4ml of headspace with a $1\,\%$ methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

MS4058.XLS: 11/25/96

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane LCS Report Form

LCS No.

: LCS112296

EPA Method No.

: RSKSOP-175M

Date Prepared

: 11/22/96

Matrix

: Water

Date Analyzed

: 11/22/96

Method Blank

: GB112296

E.A. LCS Source No.

: 1886

Lab File No.

: GAS1122009

	Spike	Method Blank	LCS		QC
Compound	Added	Concentration	Concentration	LCS	Limits
	(ug)	(ug)	(ug)	%REC	%REC
Methane Gas	500	0	417	83	64-90

Spike Recovery: 0 out of (1) outside limits.

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

Notes

* = Values outside of QC limits.

NA = Not analyzed/not available.

Approved

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/15/96	Client Project ID.	:	729691.32010
Date Received	: 11/16/96	Lab Project Number		
Date Prepared	: 11/16/96			EPA 300.0
Date Analyzed	: 11/16/96	Detection Limit	:	0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Chloride</u> mg/L	Dilution <u>Factor</u>
96-4058-03	W79	Water	3.7	1
96-4058-03 Duplicate	W79 Duplicate	Water	3.7	1
96-4058-04	W82	Water	5.5	1
96-4058-05	LF6-MPH	Water	3.9	1
96-4058-06	LF6-MPL	Water	11.3	1
96-4058-07	W18	Water	16.8	1
96-4058-08	LF6-MPK	Water	18.9	1
96-4058-09	LF6-MPI	Water	51.2	10

Method Blank

(11/16/96)

Water

< 0.25

1

Quality Assurance

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4058-03	W79 Matrix Spike	10.0	3.7	14.1	103
96-4058-03	W79 Matrix Spike Du	ıp 10.0	3.7	14.4	106

MS/MSD RPD

2.9

Manalyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/15/96	Client Project ID.	:	729691.32010
Date Received	: 11/16/96	Lab Project Number	:	96-4058
Date Prepared	: 11/16/96	Method	:	EPA 300.0
Date Analyzed	: 11/16/96	Detection Limit	:	0.076 mg/L

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	<u>Nitrite-N</u> mg/L	Dilution <u>Factor</u>
96-4058-03	W79	Water	<0.076	1
96-4058-03	W79	Water	<0.076	1
Duplicate 96-4058-04	Duplicate W82	Water	<0.076	1
96-4058-05	LF6-MPH	Water	<0.076	1
96-4058-06	LF6-MPL	Water	<0.076	1
96-4058-07	W18	Water	<0.076	1
96-4058-08	LF6-MPK	Water	<0.076	1
96-4058-09	LF6-MPI	Water	<0.076	1

Method Blank

(11/16/96)

Water

< 0.076

1

Quality Assurance *

	<u> </u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4058	W79 Matrix Spike	10.0	<0.25	9.7	97
96-4058	W79 Matrix Spike Du	p 10.0	<0.25	9.6	96

MS/MSD RPD

0.7

Quality assurance results reported as Nitrite (NO₂).

My Halman

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Analyzed : 11/16/96 Detection Limit : 0.056 mg/L	Date Sampled Date Received Date Prepared Date Analyzed	: 11/16/96	Lab Project Number Method	:	EPA 300.0
Detection Limit : 0.096 mg/L	-210 / 11101/200	. 11/10/00	Detection Limit	٠	0.056 mg/L

Evergreen <u>Sample</u> #	Client <u>Sample ID.</u>	<u>Matrix</u>	<u>Nitrate-N</u> mg/L	Dilution <u>Factor</u>
96-4058-03	W79	Water	1.4	1
96-4058-03 Duplicate	W79 Duplicate	Water	1.4	1
96-4058-04	W82	Water	1.9	1
96-4058-05	LF6-MPH	Water	0.61	1
96-4058-06	LF6-MPL	Water	<0.056	1
96-4058-07	W18	Water	<0.056	1
96-4058-08	LF6-MPK	Water	<0.056	1
96-4058-09	LF6-MPI	Water	<0.056	1

Method Blank

(11/16/96)

Water

< 0.056

1

Quality Assurance *

		Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4058-03	W79 Matrix Spike	10.0	6.2	16.0	98
96-4058-03	W79 Matrix Spike Du	p 10.0	6.2	16.0	98

MS/MSD RPD

D ...

Quality assurance results reported as Nitrate (NO₃).

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/15/96	Client Project ID.	:	729691.32010
Date Received	: 11/16/96	Lab Project Number	:	96-4058
Date Prepared	: 11/16/96	Method	:	EPA 300.0
Date Analyzed	: 11/16/96	Detection Limit	:	0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Sulfate</u> mg/L	Dilution <u>Factor</u>
96-4058-03	W79	Water	1.3	1
96-4058-03	W79	Water	1.3	1
Duplicate 96-4058-04	Duplicate W82	Water	1.5	1
96-4058-05	LF6-MPH	Water	14.9	1
96-4058-06	LF6-MPL	Water	5.6	1
96-4058-07	W18	Water	8.9	1
96-4058-08	LF6-MPK	Water	3.7	1
96-4058-09	LF6-MPI	Water	1.4	1

Method Blank

(11/16/96)

Water

< 0.25

1

Quality Assurance

	<u>s</u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4058-03	W79 Matrix Spike	10.0	1.3	10.5	92
96-4058-03	W79 Matrix Spike Dup	o 10.0	1.3	10.4	91

MS/MSD RPD

1.4

Analyst

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Recoverable Petroleum Hydrocarbons

Date Sampled : 11/15/96 Client Project ID. **Date Received** : 11/16/96 Lab Project Number: 96-4058 Date Prepared : 11/19/96 Method

: EPA 418.1 Date Analyzed : 11/19/96

Evergreen Client Sample # Sample ID. **Matrix** <u>TRPH</u> <u>Units</u> 96-4058-01 LF-06-MPF-(4-8)' Soil 760 mg/Kg 96-4058-02 LF06-MPF-(8-10)' Soil < 3.9 mg/Kg 96-4058-02 LF06-MPF-(8-10)' Soil <3.9 mg/Kg **Duplicate Duplicate**

Method Blank (11/19/96) Subtracted 4.9 mg/Kg

Results calculated on a dry weight basis.

: 729691.32010

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Total Organic Carbon

Date Sampled	: 11/15/96	Client Project ID.	:	729691.32010
Date Received	: 11/16/96	Lab Project Number	:	96-4058
Date Prepared	: 11/25/96	Method	:	EPA 415.1
Date Analyzed	: 11/25/96	Detection Limit	:	1.0 mg C/L

Client <u>Sample ID.</u>	<u>Matrix</u>	TOC mg C/	Dilution L <u>Factor</u>
LF6-MPK	Water	5.6	1
LF6-MPK Duplicate	Water	5.9	1
	Sample ID. LF6-MPK LF6-MPK	Sample ID. Matrix LF6-MPK Water LF6-MPK Water Duplicate	Sample ID. Matrix TOC mg C/ LF6-MPK Water 5.6 LF6-MPK Water 5.9 Duplicate

Method Blank (11/

(11/25/96)

< 1.0

Quality Assurance

		Spike Amount (mgC/L)	Sample Result (mgC/L)	Spike Result (mgC/L)	% Recovery
96-4058-08	LF6-MPK Matrix Spike	10.0	5.6	16.6	110
96-4058	LF6-MPK Matrix Spike Du	10.0 up	5.6 ,	16.2	105
MS/MSD RP	D				3.8

Analyst

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science

1700 Broadway Suite 900 Denver, CO 80290

Comments:

20-Nov-96

Client Project ID: 729691.32010

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Sample ID	Client Sample D	Analysis	#	Matrix	ន្ត	Collection	Received	Due	HT
96-4064-01K	LF6-MPN	Anions by IC CI,NOZ,NO3,SO4		Water	CR3	17-Nov-96	18-Nov-96	03-Dec-96 19-Nov-96	19-Nov-96
96-4064-02K	LF6-MPC(S)	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	19-Nov-96
96-4064-03K	LF6-MPC(D)	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	19-Nov-96
96-4064-04K	LF6-MPJ	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	19-Nov-96
96-4064-05K	LF6-MPA(S)	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	19-Nov-96
96-4064-06K	LF6-MPA(D)	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	19-Nov-96
96-4064-07K	LF06-MW19	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	19-Nov-96
96-4064-08K	LF06-MPR	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	19-Nov-96
96-4064-09K	LF06-MPD(D)	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	19-Nov-96
96-4064-10K	LF06-MPF(D)	Anions by IC CI,NO2,NO3,SO4						03-Dec-96	19-Nov-96
96-4064-01D	LF6-MPN	BTEX Parsons			7			03-Dec-96	01-Dec-96
96-4064-02D	LF6-MPC(S)	BTEX Parsons						03-Dec-96	01-Dec-96
96-4064-03D	LF6-MPC(D)	BTEX Parsons						03-Dec-96	01-Dec-96
96-4064-04D	LF6-MPJ	BTEX Parsons						03-Dec-96	01-Dec-96
96-4064-05D	LF6-MPA(S)	BTEX Parsons						03-Dec-96	01-Dec-96
96-4064-06D	LF6-MPA(D)	BTEX Parsons						03-Dec-96	01-Dec-96
# = Special list. HT = Holding Ti	# = Special list. See sample comments or test information. HT = Holding Time expiration date.	st information.						Page 1	10/3 CM

= Special 11st. See sample comme HT = Holding Time expiration date.

Evergreen Analytical, Inc.

WORK ORDER Summary

Report To: Dave Moutoux

Client Project ID: 729691.32010

20-Nov-96

Parsons Engineering Science 1700 Broadway Suite 900 Denver, CO 80290

Phone: (303) 831-8100 **FAX:** (303) 831-8208

Comments:

Sample ID	Client Sample ID	Analysis	#	Matrix	Loc	Collection	Received	Due	HT
96-4064-07D	LF06-MW19	BTEX Parsons		Water	7	17-Nov-96	18-Nov-96	03-Dec-06	01-Dec-06
96-4064-08D	LF06-MPR	BTEX Parsons						03-Dec. 96	01-Dec-06
96-4064-09D	LF06-MPD(D)	BTEX Parsons						03-Dec-06	01-Dec-06
96-4064-10D	LF06-MPF(D)	BTEX Parsons						03-Dec 06	01-Dec-06
96-4064-01H	LF6-MPN	Methane						03-Dec-06	01-Dec-06
96-4064-02H	LF6-MPC(S)	Methane						03-Dec-96	01-Dec-96
96-4064-03H	LF6-MPC(D)	Methane						03-Dec-96	01-Dec-96
96-4064-04H	LF6-MPJ	Methane						03-Dec-96	01-Dec-96
96-4064-05H	LF6-MPA(S)	Methane						03-Dec-96	01-Dec-96
96-4064-06H	LF6-MPA(D)	Methane						03-Dec-96	01-Dec-96
96-4064-07H	LF06-MW19	Methane						03-Dec-96	01-Dec-96
96-4064-08H	LF06-MPR	Methane						03-Dec-96	01-Dec-96
96-4064-09H	LF06-MPD(D)	Methane						03-Dec-96	01-Dec-96
96-4064-10H	LF06-MPF(D)	Methane						03-Dec-96	01-Dec-96
96-4064-01A	LF6-MPN	Purgeable Halocarbons 8010			6			03-Dec-96	01-Dec-96
96-4064-02A	LF6-MPC(S)	Purgeable Halocarbons 8010						03-Dec-96	01-Dec-96
96-4064-03A	LF6-MPC(D)	Purgeable Halocarbons 8010						03-Dec-96	01-Dec-96
96-4064-04A	LF6-MPJ	Purgeable Halocarbons 8010						03-Dec-96	01-Dec-96
96-4064-05A	LF6-MPA(S)	Purgeable Halocarbons 8010						03-Dec-96	01-Dec-96
96-4064-06A	LF6-MPA(D)	Purgeable Halocarbons 8010						03-Dec-96	01-Dec-96
96-4064-07A	LF06-MW19	Purgeable Halocarbons 8010						03-Dec-96	01-Dec-96
96-4064-08A	LF06-MPR	Purgeable Halocarbons 8010						03-Dec-96	01-Dec-96
96-4064-09A	LF06-MPD(D)	Purgeable Halocarbons 8010						03-Dec-96	01-Dec-96

See sample comments or test information. Time expiration date,

= Sp HT = 1

Pa

WORK ORDER Summary

Report To: Dave Moutoux

Parsons Engineering Science

1700 Broadway Suite 900 Denver, CO 80290

21-Nov-96

Client Project ID: 729691.32010

FAX: (303) 831-8208 Phone: (303) 831-8100

Comments:

Sample ID	Client Sample ID	Analysis	*	Matrix	Loc	Loc Collection	Received	Due	нт
96-4064-10A	LF06-MPF(D)	Purgeable Halocarbons 8010		Water	6	17-Nov-96	18-Nov-96	03-Dec-96 01-Dec-96	01-Dec-96
96-4064-11A	Trip Blank #7	Purgeable Halocarbons 8010						03-Dec-96	01-Dec-96
96-4064-01D	LF6-MPN	TVH (Gasoline)			2			03-Dec-96	03-Dec-96 01-Dec-96
96-4064-02D	LF6-MPC(S)	TVH (Gasoline)						03-Dec-96	03-Dec-96 01-Dec-96
96-4064-03D	LF6-MPC(D)	TVH (Gasoline)						03-Dec-96 01-Dec-96	01-Dec-96
96-4064-04D	LF6-MPJ	TVH (Gasoline)						03-Dec-96	03-Dec-96 01-Dec-96
96-4064-05D	LF6-MPA(S)	TVH (Gasoline)						03-Dec-96	03-Dec-96 01-Dec-96
96-4064-06D	LF6-MPA(D)	TVH (Gasoline)	5					03-Dec-96	03-Dec-96 01-Dec-96
96-4064-07D	LF06-MW19	TVH (Gasoline)						03-Dec-96	03-Dec-96 01-Dec-96
96-4064-08D	LF06-MPR	TVH (Gasoline)						03-Dec-96	03-Dec-96 01-Dec-96
96-4064-09D	LF06-MPD(D)	TVH (Gasoline)						03-Dec-96	03-Dec-96 01-Dec-96
96-4064-10D	LF06-MPF(D)	TVH (Gasoline)						03-Dec-96	03-Dec-96 01-Dec-96

CHAIN OF CUSTODY RECORD / ANALYTICAL SERVICES REQUEST

COMPANY Parsons ES ADDRESS 1700 TS meduren, Ste 900 CITY Denner STATE (CS ZIP BORRO) PHONE# (303) BS1-B100 FAX#(303) Sampler Name:) 303) 881-	85	Evergreen Analytical Inc. 4036 Youngfield St. Wheat Ridge, Colorado 80 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 SA FAX RESULTS Y / N	n Analytical 4036 Younglield St. Wheat Ridge, Colon (303) 425-6021 FAX (303) 425-685- (800) 845-7400 FAX RESULTS	n Analytical 4036 Youngfield St. Wheat Ridge, Colors (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 FAX RESULTS Y	Naalytical Inc. 4036 Youngfield St. Wheat Ridge, Colorado 80033 (303) 425-6021 FAX (303) 425-6854 (800) 845-7400 FAX RESULTS Y / N	ਹਰ ਨੂ ₽ €	CLIENT CONTY CLIENT PROJ. EAL. QUOTE #, TURNAROUND	CLIENT CONTACT (print) Tenny CLIENT PROJ. I.D.7 2516年1・3 CLIENT PROJ. I.D.7 2516年1・3 EAL. QUOTE #	TI. 338 TI. 338 A STD (In other I to addition	Page 1 of 2. Hartelder 210 P.O.# 729691.32010 (2 wks) □ UST (Specify)*
6 Nage Of Bruce Henry	MATRIX		md	∢	ANALYSIS		REQUESTED	۹	(A)	/ EAL	EAL use only Do not write
· · · · · · · · · · · · · · · · · · ·	sas	sls/Meth/Netals	(9)2	15 (circle)	'cle)/MTBE (circle)	Diesel)	JANNS / WO	111175	15 to 100 100 100 100 100 100 100 100 100 10	in sh WO #	in shaded area # 9/6 : 402 4 # 5/15
ainers	/ Air / (CS/\$Z	9/0808	3/0618	nod (cil	.bom \ bom	metals	de	73	<u>が。(() 乙分()</u> Cooler Temo・2	316/2
CLIENT SAMPLE DATE DENTIFICATION SAMPLED TIME S S S S S S S S S S S S S S S S S S S	Water-Drink (circle) Soil / Solid ,	3/0070	Pesticides 8	Herbicides 8	1VPH 8015	Total Metals (circle & sircle)	Circle & list Oil & Grease TRPH 418.1	Me. 2	TO/UN	Seals Intact© N / NA Samples Pres. (**) (**)	Seals Intact N / NA Samples Pres. OW NA Headspace Y N M
LF6-MPN (11/17/96/715/11/1X		×			×			$\stackrel{\frown}{\succeq}$		0. A.) \
LFG-MPC(S) 11/17/96/845 11 X		X			X			X	>	70	
(0)		X			X X			8		03	
11/11/		×			XX			X		7.0	
(5)11/14/6/153011		×			X X			XX	7	500	
-F6-19PACD) 11/H/96 1645 11 X		X			X Se				8	ಌ	
11 0501 apicijii piwm - 0071		Х			×			× بد		100	
LFOG- MPR 1111196 1300 11 X		×			×			火火		98	
LFOG-MPD(D) 1111196 1410 11 X		×		_	X			メ	,	60	
LFOG. MPF (D) 11119 (D) 900 - DECOL		メ			メ			× ×		> °:	
Sample Fraction	raction	₹		2)EF6			西人		10h 4	1259
nstructions:										Cont* 11, Z	CR3

Date/

CHAIN OF CUSTODY RECORD / A LYTICAL SERVICES REQUEST	L SERVICES REQUEST
Evergree alytical Inc.	J. W. T. CONTROL OF TANK OF
COMPANY COSOMS ES	
ADDRESS 17co America, S. F. Go.	30033 CLIENT PROJ. I.D. 19-16
	EAL. QUOTE #
)	TIBNABOIIND BEOLIBED*
PHONE# (303) 851-8000 FAX# (303) B51-8208 FAX RESULTS Y / N	

Sampler Name:

2012	nny Herrelder	11.32010	01068.19996T #.O.A
	CLIENT CONTACT (print) JENNY	CLIENT PROJ. I.D. 739691, 33010	EAL. QUOTE #

X STD (2 wks) 🗀 UST

Other (Specify)*_

*expedited turnaround subject to additional fee

EAL use only Do not write	W.O. # B.O.F. # C/S (O) C/S (T) C/S (I) C/S (I) C/S (II) C/S (III	11.40					Loc WDV	Cont
ANALYSIS REQUESTED	Total Metals-DW / WPDES / SW846 (circle & list metals below) Dissolved Metals - DW / SW846 (circle & list metals below) Oil & Grease 413.1 Oil & Grease 413.1							
ANALYSIS	Herbicides 8150/515 (circle) BTEX 8020/602 (circle)/MTBE (circle) TVPH 8015mod. (Gasoline)							
	TCLP VOA/BNA/Pest/Herb/Metals Ccircle) BNA 8270/625 (circle) Pesticides 8080/608 (circle) Pesticides 8080/608 (circle) Pesticides 8080/608 (circle)							
MATRIX	Water-Drinking/Discharge/Ground (circle) Soil / Solid / Air / Gas Oil / Sludge / Multi-phase						Sample Fraction	
	H S ⊞ No. of Containers	-					Sampl	
Bree Henry	. <u>.</u>	25/11/11						
(signature) Z (print) Reb Noce B	Please PRINT all information: CLIENT SAMPLE IDENTIFICATION SAMPLE	TRIP BLANK#7						Instructions:

Relinquished by: (Signature)

11/18/96 5:30AM-

Date/Time Received by: (Signature)

Date/Time Relinquished by: (Signature)

Date/Time | Received by: (Signature)

Date/Time

ATLANTIC SOUTHEAST AIRLINES, INC.

SHIPPERS DECLARATION OF NON-INFECTIOUS SUBSTANCES

The United States Department of Transportation (DOT) has adopted by reference the IATA/ICAO (49 CFR) Dangerous Goods Regulations.

These regulations address infectious substances as follows:

Infectious Substances (Division 6.2)

3.6.6 "Infectious substances" are defined as those substances containing viable micro-organisms or their toxins which are known, or suspected, to cause disease in animals or humans.

NOTE 1: "Biological products" and "Diagnostic specimens" are not considered to be dangerous goods provided they do not contain, or are reasonably believed not to contain, an infectious substance, or do not contain any other dangerous substance.

NOTE 2: Any substance containing acquired immune deficiency syndrome virus (AIDS), suspected of containing AIDS, or being transported for diagnostic analysis for AIDS is considered as an infectious substance for the purposes of these Regulations.

"Diagnostic specimens" are any human or animal material including, but not limited to, excreta, secreta, blood and its components, tissue and tissue fluids, being shipped for purposes of diagnosis, but excluding live infected animals.

4 J 0108
I certify that this shipment is not of an infectious nature nor is it being transported for the testing of infectious substances as defined in this declaration.
DATE
NAME Rob Nagel
(Please Print)
COMPANY NAME Parsons Engineering Science
SIGNATURE SIGNATURE
AIR WAYBILL NUMBER S62 CATR 6297 3945

DISTRIBUTION: ORIGINAL - Origin Station copy of Air Waybill

COPY 2 - Attached to Delivery Receipt

COPY 3 - Shipper.

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB2112196

Client Project Number

729691.32010

Date Prepared

: 11/21/96

Lab Work Order

96-4064

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB21120028

		Analysis	Sample		T
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/21/96	U	0.1	mg/L
Benzene	71-43-2	11/21/96	U	0.4	ug/L
Toluene	108-88-3	11/21/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/21/96	Ü	0.4	ug/L
Ethyl Benzene	100-41-4	11/21/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/21/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/21/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/21/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/21/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/21/96	U	0.5	ug/L
EID Surrogate Recovery:		81%		70%-126%	(Limits)
Surrogate Recovery:		91%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Du Ma Analyst

Approved

TVBXWS2P;TV24064P.XLS; 11/25/96; 1

Methods 602/8020 and 5030/8015 Modified Data Report Method Blank Report

Method Blank Number

: MB211,2296

Client Project Number

729691.32010

Date Prepared

: 11/22/96

Lab Work Order

96-4064

Dilution Factor

: 1.0

Matrix

WATER

Lab File Number

TVB21120061

Compound Name	Cas Number	Analysis Date	Sample Concentration	RL	Units
TVH-Gasoline		11/22/96	U	0.1	mg/L
Benzene	71-43-2	11/22/96	Ü	0.4	ug/L
Toluene	108-88-3	11/22/96	Ü	0.4	ug/L
Chlorobenzene	108-90-7	11/22/96	Ü	0.4	ug/L
Ethyl Benzene	100-41-4	11/22/96	U	0.4	ug/L ug/L
Total Xylenes (m,p,o)	1330-20-7	11/22/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/22/96	Ü	0.4	ug/L ug/L
1,2,4-Trimethylbenzene	95-63-6	11/22/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/22/96	Ü	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/22/96	U	0.5	ug/L
FID Surrogate Recovery:		87%		70%-126%	(Lip
PID Surrogate Recovery:		94%		76%-127%	(L

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analýst

KHAllman

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF6-MPN

Client Project Number

729691.32010

Lab Sample Number

: 96-4064-01

Lab Work Order

96-4064

Date Sampled

: 11/17/96

Matrix

WATER

Date Received Date Prepared : 11/18/96

Lab File Number(s)

TVB21120036

: 11/21/96

Method Blank MB2112196

FID Dilution Factor : 1.0 PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/21/96	U	0.1	mg/L
Benzene	71-43-2	11/21/96	1.6	0.4	ug/L
Toluene	108-88-3	11/21/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/21/96	35	0.4	ug/L
Ethyl Benzene	100-41-4	11/21/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/21/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/21/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/21/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/21/96	. U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/21/96	U	0.5	ug/L
Surrogate Recovery:		107%	<u> </u>	70%-126%	(Limits)
Surrogate Recovery:	,	106%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TYH = Total Volatile Hydrocarbons.

TVBXWS2P;TV24064P.XLS; 11/25/96; 2

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF6-MPC(S)

Client Project Number

729691.32010

Lab Sample Number Date Sampled

: 96-4064-02 : 11/17/96

Lab Work Order

96-4064

Date Received

Matrix

WATER

Date Prepared

: 11/18/96 : 11/21/96

Lab File Number(s)

TVB21120037

FID Dilution Factor

: 1.0

Method Blank

MB2112196

PID Dilution Factor : 1.0

Compound Name	Cas Number	Analysis Date	Sample Concentration	RL	Units
TVH-Gasoline	·	11/21/96	U	0.1	mg/L
Benzene	71-43-2	11/21/96	1.8	0.4	ug/L
Toluene	108-88-3	11/21/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/21/96	21	0.4	ug/L
Ethyl Benzene	100-41-4	11/21/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/21/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/21/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/21/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/21/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/21/96	U	0.5	ug/l
FID Surrogate Recovery:		95%		70%-126%	(Li
PID Surrogate Recovery:		105%		76%-127%	(Linux

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF6-MPC(D)

Client Project Number

729691.32010

Lab Sample Number

: 96-4064-03

Lab Work Order

96-4064

Date Sampled

: 11/17/96

Matrix

WATER

Date Received

: 11/18/96

Lab File Number(s)

TVB21120062

Date Prepared

: 11/22/96

Method Blank MB2112296

FID Dilution Factor

: 1.0

PID Dilution Factor

: 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/22/96	U	0.1	mg/L
Benzene	71-43-2	11/22/96	1.8	0.4	ug/L
Toluene	108-88-3	11/22/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/22/96	5.0	0.4	ug/L
Ethyl Benzene	100-41-4	11/22/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/22/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/22/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/22/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/22/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/22/96	U	0.5	ug/L
Surrogate Recovery:		96%		70%-126%	(Limits)
Surrogate Recovery:		98%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			
		···	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

= Total Volatile Hydrocarbons.

TVBXWS2P:TV24064P.XLS: 11/25/96- 4

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF6-MPJ

Client Project Number

729691.32010

Lab Sample Number

: 96-4064-04

Lab Work Order

96-4064

Date Sampled Date Received

: 11/17/96

Matrix

WATER

Date Prepared

: 11/18/96

Lab File Number(s)

TVB21120039

FID Dilution Factor

: 11/21/96

Method Blank

MB2112196

: 1.0

PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/21/96	U	0.1	mg/L
Benzene	71-43-2	11/21/96	U	0.4	ug/L
Toluene	108-88-3	11/21/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/21/96	1.1	0.4	
Ethyl Benzene	100-41-4	11/21/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/21/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/21/96	Ü	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/21/96	Ü	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/21/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/21/96	Ŭ	0.4	ug/L ug″
FID Surrogate Recovery:		93%			
PID Surrogate Recovery:		102%		70%-126% 76%-127%	(Linnsi)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

TVBXWS2P:TV24064P XIS- 11/25/96- 5

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF6-MPA(S)

Client Project Number

729691.32010

Lab Sample Number

: 96-4064-05

Lab Work Order

96-4064

Date Sampled

: 11/17/96

Matrix

WATER

Date Received

Date Prepared

: 11/18/96

Lab File Number(s)

TVB21120063

FID Dilution Factor

: 11/22/96 : 1.0 Method Blank : MB2112296

PID Dilution Factor

: 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/22/96	U	0.1	mg/L
Benzene	71-43-2	11/22/96	U	0.4	ug/L
Toluene	108-88-3	11/22/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/22/96	0.9	0.4	ug/L
Ethyl Benzene	100-41-4	11/22/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/22/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/22/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/22/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/22/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/22/96	4.2	0.5	ug/L
Surrogate Recovery:		86%		70%-126%	(Limits)
Surrogate Recovery:		95%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TH = Total Volatile Hydrocarbons.

Analyst

Approved

TVBXWS2P;TV24064P.XLS: 11/25/96: 6

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF6-MPA(D)

Client Project Number

729691.32010

Lab Sample Number

: 96-4064-06

Lab Work Order

96-4064

Date Sampled

: 11/17/96

Matrix

WATER

Date Received

: 11/18/96

Lab File Number(s)

TVB21120070

Date Prepared **FID Dilution Factor** : 11/22/96

Method Blank

MB2112296

: 1.0

	•	
PID Dilution Factor	:	1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/22/96	U	0.1	mg/L
Benzene	71-43-2	11/22/96	3.0	0.4	ug/L
Toluene	108-88-3	11/22/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/22/96	32	0.4	ug/L
Ethyl Benzene	100-41-4	11/22/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/22/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/22/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/22/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/22/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/22/96	0.9	0.5	ug/L
FID Surrogate Recovery:		99%		70%-126%	U
PID Surrogate Recovery:		101%		76%-127%	(100)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

TVBXWS2P;TV24064P.XLS; 11/25/96; 7

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number : LF06-MW19 Client Project Number : 729691.32010

Lab Sample Number : 96-4064-07 Lab Work Order : 96-4064

Date Sampled : 11/17/96 Matrix : WATER

Date Received : 11/18/96 Lab File Number(s) : TVB21120043
Date Prepared : 11/21/96 Method Blank : MB2112196

FID Dilution Factor : 1.0
PID Dilution Factor : 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/21/96	U	0.1	mg/L
Benzene	71-43-2	11/21/96	U	0.4	ug/L
Toluene	108-88-3	11/21/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/21/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/21/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/21/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/21/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/21/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/21/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/21/96	U	0.5	ug/L
Surrogate Recovery:		96%		70%-126%	(Limits)
Surrogate Recovery:		100%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

= Total Volatile Hydrocarbons.

Mulia

K. HUMIÚN.
Approved

TV/DV/I+/COC TV/D+CC+C V// C ++ -CC-CC C

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF06-MPR

Client Project Number

729691.32010

Lab Sample Number

: 96-4064-08

Lab Work Order

96-4064

Date Sampled Date Received

: 11/17/96

Matrix

WATER

Date Prepared

: 11/18/96

Lab File Number(s)

TVB21120067

FID Dilution Factor

: 11/22/96 : 1.0 Method Blank : MB2112296

PID Dilution Factor

: 1.0

·		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/22/96	U	0.1	mg/L
Benzene	71-43-2	11/22/96	U	0.4	ug/L
Toluene	108-88-3	11/22/96	U	0.4	ug/L ug/L
Chlorobenzene	108-90-7	11/22/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/22/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/22/96	Ü	0.4	ug/L ug/L
1,3,5-Trimethylbenzene	108-67-8	11/22/96	Ü	0.4	
1,2,4-Trimethylbenzene	95-63-6	11/22/96	Ü	0.4	ug/L ug/L
1,2,3-Trimethylbenzene	526-73-8	11/22/96	U	0.4	ug/L ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/22/96	U	0.5	ug/L ug
FID Surrogate Recovery:		020/			
PID Surrogate Recovery:		93% 98%		70%-126% 76%-127%	(L) (Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Approved Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF06-MPD(D)

Client Project Number

729691.32010

Lab Sample Number

: 96-4064-09

Lab Work Order

96-4064

Date Sampled

: 11/17/96

Matrix

WATER

Date Received

: 11/18/96

Lab File Number(s)

TVB21120045

Date Prepared

: 11/21/96

Method Blank

MB2112196

FID Dilution Factor

: 1.0

PID Dilution Factor

: 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline	,	11/21/96	U	0.1	mg/L
Benzene	71-43-2	11/21/96	2.2	0.4	ug/L
Toluene	108-88-3	11/21/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/21/96	22	0.4	ug/L
Ethyl Benzene	100-41-4	11/21/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/21/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/21/96	U	0.4	'ug/L
1,2,4-Trimethylbenzene	95-63-6	11/21/96	0.5	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/21/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/21/96	1.7	0.5	ug/L
Surrogate Recovery:		92%		70%-126%	(Limits)
PID Surrogate Recovery:		98%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

= Total Volatile Hydrocarbons.

Analyst

K. Hollman

TVRYMC20-TV210640 VI C- 11 126 120- 10

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF06-MPF(D)

Client Project Number

729691.32010

Lab Sample Number

: 96-4064-10

Lab Work Order

96-4064

Date Sampled

: 11/17/96

Matrix

WATER

Date Received Date Prepared

: 11/18/96

Lab File Number(s)

TVB21120053

: 11/21/96

Method Blank

MB2112196

FID Dilution Factor

: 1.0

PID Dilution Factor : 1.0

•		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/22/96	U	0.1	mg/L
Benzene	71-43-2	11/22/96	2.1	0.4	ug/L
Toluene	108-88-3	11/22/96	3.2	0.4	ug/L
Chlorobenzene	108-90-7	11/22/96	7.9	0.4	ug/L
Ethyl Benzene	100-41-4	11/22/96	0.5	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/22/96	1.3	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/22/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/22/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/22/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/22/96	U	0.5	ug/L
FID Surrogate Recovery:		96%		70%-126%	(Li
PID Surrogate Recovery:		97%	···	76%-127%	(Lic

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

TVBXWS2P;TV24064P.XLS; 11/25/96; 11

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

Client Sample No.	: LF6-MPN	Client Project No.	: 72691.32010
Lab Sample No.	: 96-4064-01	Lab Work Order	: 96-4064
Date Sampled	: 11/17/96	EPA Method No.	: 5030/8015 Modified
Date Received	: 11/18/96	Matrix	: WATER
Date Prepared	: 11/21/96	Lab File Number(s)	: TVB21120054,55
Date Analyzed	: 11/22/96	Method Blank	: MB2112196
Instrument Name	: TVHBTEX2	Dilution Factor	: 1.0

Compound	Spike Added (mg/L)	Sample Concentration (mg/L)	MS Concentration (mg/L)	MS %REC	QC (#) Limits %REC
Gasoline	2.00	0.00	1.60	80.1%	60 - 128
Surrogate **				107%	70 - 126

Compound	Spike Added	MSD Concentration	MSD	RPD	l .	C (#) Limits
Compound	(mg/L)	(mg/L)	%REC	RFD	RPD	%REC
Gasoline	2.00	2.04	102.2%	24.3	44.1	60 - 128
Surrogate **			115%	NA	NA	70 - 126

RPD:	0	out of (1) outside limits.
Snike Recovery:	0	out of (2) outside limits

Notes:

NA = Not analyzed/not applicable.

- * = Values outside of QC limits.
- ** = 1,2,4-Trichlorobenzene
- # = Limits established 10/1/96, MAB

Comments:	 		

Analyst Bullia

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: LF6-MPC(S)	Client Project No.	: 729691.32010
Lab Sample No.	: 96-4064-02	Lab Work Order	: 96-4064
Date Sampled	: 11/17/96	EPA Method No.	: 602/8020
Date Received	: 11/18/96	Matrix	
Date Prepared	: 11/21/96	Lab File Number(s)	: WATER
Date Analyzed	: 11/22/96	Method Blank	: TVB21120056,57
Instrument Name	: TVHBTEX2	Dilution Factor	: MB2112196
		Pilation Factor	: 1.0

Compound	Spike Added	Sample Concentration	Concentration (ug/L)		
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	1.8	23.5	23,4	Comments
Toluene	20.0	0.0	20.9	20.8	
Chlorobenzene	20.0	21.0	41.1	41.0	
Ethylbenzene	20.0	0.0	21.7	21.7	
m,p-Xylene	20.0	0.0	21.4	21.7	
o-Xylene	20.0	0.0	20.8	20.8	
1,3,5-TMB	20.0	0.0	20.1	20.0	
1,2,4-TMB	20.0	0.0	19.1	19.0	
1,2,3-TMB	20.0	0.0	21.4	21.4	
1,2,3,4-TeMB	20.0	0.0	21.3	21.2	
Surrogate	100.0	105%	101%	100%	% RECOVERY

%	MSD %			QC# Limits
· · · · · · · · · · · · · · · · · · ·		RPD	RPD	%REC
	108.0	0.5	17	61 - 129
104.5	104.0	0.5	18	61 - 12
100.5	100.0	0.5	 	68 - 12
108.5	108.5			
107.0				63 - 126
				60 - 130
		 		62 - 128
			18	69 - 117
	95.0	0.5	23	69 - 119
107.0	107.0	0.0	16	71 - 118
106.5	106.0			
				67 - 125 76 - 127
	RECOVERY 108.5 104.5 100.5 108.5 107.0 104.0 100.5 95.5 107.0	% % RECOVERY RECOVERY 108.5 108.0 104.5 104.0 100.5 100.0 108.5 108.5 107.0 106.5 104.0 104.0 100.5 100.0 95.5 95.0 107.0 107.0 106.5 106.0	% % RECOVERY RPD 108.5 108.0 0.5 104.5 104.0 0.5 100.5 100.0 0.5 108.5 108.5 0.0 107.0 106.5 0.5 104.0 104.0 0.0 100.5 100.0 0.5 95.5 95.0 0.5 107.0 107.0 0.0 106.5 106.0 0.5	% % RECOVERY RPD RPD 108.5 108.0 0.5 17 104.5 104.0 0.5 18 100.5 100.0 0.5 16 108.5 108.5 0.0 18 107.0 106.5 0.5 18 104.0 104.0 0.0 18 100.5 100.0 0.5 18 95.5 95.0 0.5 23 107.0 107.0 0.0 16 106.5 106.0 0.5 27

KSI	SI	ŝ
ŀ	(5	(

·· =	values	outside	of	ас	limits.

Spike Recovery:	out of (10) outside limits. out of (20) outside limits.	
Commenter		

M Blogha V She

Analyst

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) Laboratory Control Sample (LCS)

LCS Number Date Prepared Date Analyzed Lab File Number(s)	: LCS2112196-GAS : 11/21/96 : 11/21/96 : TVB21120049	Matrix Method Numbers Instrument Name	: WATER : EPA 5030/8 : TVHBTEX2	015 Modified
Compound Name	Theoretical Concentration (mg/L)	LCS Concentration (mg/L)	LCS % Recovery	QC Limit _% Recovery
Gasoline	2.00	2.25	112.7	81 - 128
Surrogate Recovery:		112%		70 - 126

QUALIFIERS

B = TVH as Gasoline found in blank also.

E = Extrapolated value. Value exceeds calibration range.

NA = Not Available/Not Applicable.

** = Limits established 10/1/96 for TVHBTEX2. MAB

Analyst Millian

K. Hollman

Method 8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB112596

Client Project No.

729691.32010

Date Prepared

: 11/25/96

Lab Project No.

: 96-4064

Date Analyzed

: 11/25/96

Lab File No.

: HALL1125\004F0101

Compound	CAS #	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	11	0.4
Chloroethane	75-00-3	ii	0.4
1,1-Dichloroethene	75-35-4	· ii	0.4
Dichloromethane	75-09-2	Ü	
trans-1,2-Dichloroethene	156-60-5	ŭ	0.4 0.4
1,1-Dichloroethane	75-34-3	<u> </u>	
cis-1,2-Dichloroethene	156-59-4	ii	0.4
1,1,1-Trichloroethane	71-55-6	ii	0.4
Carbon Tetrachloride	56-23-5	11	0.4
Trichloroethene	79-01-6	0	0.4
1,1,2-Trichloroethane	79-00-5		0.4
Tetrachloroethene	127-18-4	0	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U 11	0.4
1,1,2,2-Tetrachloroethane	79-34-5	U	0.42
2-Chlorotoluene	95-49-8	U	0.54
4-Chlorotoluene	106-49-8	U	ስ ላ
1,3-Dichlorobenzene	541-73-1	11	
1,2-Dichlorobenzene	95-50-1	Ü	

Surrogate	Recovery	(1-Chloro-2-Fluoro-Benzene)
	· ICCOVCI Y	\

85%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

Apploved

PAR8010W.XLS; 12/2/96

Method 601/8010 Chlorinated VOC's Method Blank Report

Method Blank

: RB112696

Client Project No.

: 729691.32010

Date Prepared

: 11/26/96

Lab Project No.

: 96-4064

Date Analyzed

: 11/26/96

Lab File No.

: HALL1126\005F0101

Compound	CAS#	Concentration (ug/L)	RL(ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
4-Chlorotoluene	106-49-8	U	0.4
3-Dichlorobenzene	541-73-1	U	0.4
2-Dichlorobenzene	95-50-1	U	0.4

Sunuale	Recovery	1 1 -1 -1 111 11 1 1 1 -	2-Fluoro-Benzene) :

84%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

proved

PAR8010W.XLS; 12/2/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF6-MPN Client Project No. : 729691.32010 Lab Sample No. : 96-4064-01 Lab Project No. : 96-4064

Date Received : 11/18/96 Lab File No. : HALL1125\009F0101
Date Prepared : 11/25/96 Method Blank : RB112596

Date Prepared : 11/25/96 Method Blank : RB112596
Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound CAS# Concentration (ug/L) RL (ug/L) Vinyl Chloride 75-01-4 2.4 J 0.4 Chloroethane 75-00-3 U 0.4 1.1-Dichloroethene 75-35-4 U 0.4 Dichloromethane 75-09-2 U 0.4 trans-1,2-Dichloroethene 156-60-5 U 0.4 1.1-Dichloroethane 75-34-3 0.4 cis-1,2-Dichloroethene 156-59-4 7.2 0.4 1,1,1-Trichloroethane 71-55-6 U 0.4 Carbon Tetrachloride 56-23-5 U 0.4 Trichloroethene 79-01-6 0.4 1,1,2-Trichloroethane 79-00-5 0.4 Tetrachloroethene 127-18-4 U 0.4 1,1,1,2-Tetrachloroethane 79-00-5 U 0.4 Chlorobenzene 108-90-7 23 0.42 1,1,2,2-Tetrachloroethane 79-34-5 U 0.54 2-Chlorotoluene 95-49-8 U 4-Chlorotoluene 106-49-8 U 1.3-Dichlorobenzene 541-73-1 U

11

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 100% 70% - 130% (QC limits)

QUALIFIERS:

1,2-Dichlorobenzene

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

95-50-1

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

HLW4064.XLS: 12/5/96

Method 601/8010 Chlorinated VOC's Sample Report

lient Sample No. : LF6-MPC(S) Client Project No. : 729691.32010

Lab Sample No. : 96-4064-02 Lab Project No. : 96-4064

Date Sampled : 11/17/96 Matrix : Water

Date Prepared : 11/25/96 Method Blank : RB112596

Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	2 J	0.4
Chloroethane	75-00-3	1.3 J	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	1.2	0.4
cis-1,2-Dichloroethene	156-59-4	0.78 J	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	บ	0.4
Chlorobenzene	108-90-7	14	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	U	0.4
8-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	0.87 J	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 95%

% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

HLW4064.XLS; 12/5/96

QUANT REPORT

Page 1

Operator ID: KIM

Quant Rev: 7 Quant Time: 961127 16:58

Output File: ^V2960::Q1

Injected at: 961127 16:33

Data File: >V2960::V2

1.00000

Dilution Factor:

Misc: 5;W;0;1;W;0;11/27/96;0

Instrument ID: VOA 1

ID File: ID_824::QT

Title: ID FILE FOR APPENDIX NINE VOAs METHOD 8260A(8240)

Last Calibration: 961125 12:35 Last Qcal Date: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	q
1)	*BROMOCHLOROMETHANE(INT STD)	5.14	584	35312	50.00	UG/L	82
4)	BROMOMETHANE	1.30	95	926		U6/L	100
5)	VINYL CHLORIDE	1.01	88	2722		UG/L	100
6)	CHLOROETHANE	1.37	103	1096M		UG/L	100
17)	1,1 DICHLOROETHANE	4.14	382	6910	2.49		100
19)	CIS 1,2-DICHLOROETHENE	5.61	530	1740M		UG/L	37
23)	1,2 DICHLOROETHANE-D4(SUR STD)	7.44	715	85889	52.50		100
24)	+1,4 DIFLUOROBENZENE(INT STD)	8.60	832	173223	50.00		100
46)	*CHLOROBENZENE-D5(INTERNAL STD)	14.41	1418	146366	50.00		100
53)	TOLUENE-D8(SURROGATE STD)	11.50	1124	184330	49.35		100
55)	CHLOROBENZENE	14.46	1423	65641	21.81		100
58)	BROMOFLUOROBENZENE(SURR STD)	17.02	1681	100170	49.13		100
63)	1,2-DICHLOROBENZENE	20.33	2015	3486	1.43		69
64)	1,4-DICHLOROBENZENE	19.56	1937	26122	9.79		99

^{*} Compound is ISTD

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF6-MPC(D) Client Project No. : 729691.32010

Date Prepared : 11/25/96 Method Blank : RB112596

Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	3	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	2.3	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	2.3	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U .	0.54
2-Chlorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	U	0.4
3-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

88%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

Approved

PAR8010W.XLS; 12/2/96

QUANT REPORT

Page 1

Operator ID: KIM

Quant Rev: 7

Quant Time: 961127 17:25

Output File: ^V2961::Q1

Injected at: 961127 17:00

Data File: >V2961::V2

Dilution Factor:

1.00000

Name: 96-4064-03 ;;;KL

Instrument ID: VOA 1

Misc: 5; W; 0; 1; W; 0; 11/27/96; 0

ID File: ID_824::QT

Title: ID FILE FOR APPENDIX NINE VOAs METHOD 8260A(8240)

Last Calibration: 961125 12:35

Last Qcal Date: (none)

Compound	R.T.	Scan#	Area	Conc	Units	q
1) *BROMOCHLOROMETHANE(INT STD) 4) BROMOMETHANE 5) VINYL CHLORIDE 17) 1,1 DICHLOROETHANE 19) CIS 1,2-DICHLOROETHENE 23) 1,2 DICHLOROETHANE-D4(SUR STD) 24) *1,4 DIFLUOROBENZENE(INT STD) 46) *CHLOROBENZENE-D5(INTERNAL STD) 53) TOLUENE-D8(SURROGATE STD) 55) CHLOROBENZENE 58) BROMOFLUOROBENZENE(SURR STD) 64) 1,4-DICHLOROBENZENE	6.12 1.30 .99 4.13 5.63 7.45 8.59 14.38 11.45 14.43 17.01	582 95 64 381 532 716 831 1415 1119 1420 1680	29917M 911 3691 4262 3194M 72236 146335 124411 155753 13653 84559 19287	3.30 1.81	U6/L U6/L U6/L U6/L U6/L U6/L U6/L U6/L	77 100 100 100 76 100 100 100 100

^{*} Compound is ISTD

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF6-MPJ Client Project No. 729691.32010

Lab Sample No. : 96-4064-04 Lab Project No. : 96-4064 : Water Date Sampled : 11/17/96 Matrix

Lab File No. : HALL1125\012F0101 Date Received : 11/18/96

Method Blank : RB112596 Date Prepared : 11/25/96

Date Analyzed Dilution Factor : 1.0 : 11/25/96

Compound	CAS #	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	2.1 J	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	· U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	U	0.4
3-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 86% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

poroved

HLW4064.XLS; 12/5/96

Method 601/8010 Chlorinated VOC's Sample Report

Lab Sample No. : 96-4064-05 Lab Project No. : 96-4064 Date Sampled : 11/17/96 Matrix : Water

Date Prepared : 11/25/96 Method Blank : RB112596
Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	DI ((I.)
Vinyl Chloride	75-01-4	U	RL (ug/L)
Chloroethane	75-00-3	Ü	0.4 0.4
1,1-Dichloroethene	75-35-4	. Ü	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	- ŭ	0.4
cis-1,2-Dichloroethene	156-59-4	ŭ	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	ŭ	0.4
Trichloroethene	79-01-6	Ŭ	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	Ū	0.4
1,1,1,2 Tetrachloroethane	79-00-5	Ū	0.4
Chlorobenzene	108-90-7	Ü	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ū	0.54
2-Chlorotoluene	95-49-8	U	
4-Chlorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	Ü	
1,2-Dichlorobenzene	95-50-1	Ü	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 83% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst Approved

PAR8010W.XLS; 12/2/96

QUANT REPORT

Page 1

Quant Rev: 7

961127 18:24 961127 17:54 1.00000

Operator ID: KIM Output File: ^UT963::Q1 Data File: >U2963::V2 Name: 96-4064-05 ;;;KL Misc: t;W;0;1;W;0;11/22/96;0

7 Quant Time: Injected at: Dilution Factor: Instrument ID:

VÚA 1

TO File: ID_824::Q? Title: ID FILE FUR APPENDIX NINE VUAs METHOD 8269A(8240) Last Lalibration: 961125 12:35 Last Qcal Time: <none>

Compound	R.T.	Scan#	Area	Conc	Units	Ċ
1) *BROMOCHLOROMETHANE(INT STD) 23) 1,2 DICHLORUETHANE-D4(SUR STD) 24) *1,4 DIFLUOROBENZENE(INT STD) 44) *CHLORUBENZENE-D5(INTERNAL STD) 53) TULUENE-D8(SURROGATE STD) 55) CHLOROBENZENE 58) BROMOFLUOROBENZENE(SURR STD) 63) 1,2-DICHLOROBENZENE	6.10 7.41 8.57 14.42 11.47 14.49 17.05 20.37	580 7129 829 1419 1121 1426 1684 2019	34600 85398 166354 140659 181121 2291 96503 963	49.26	UG/L UG/L UG/L UG/L UG/L	100 100 100 100 100 100 100
64) 1,4-DICHLOROBENZENE	19.60	1942	7957	3.10	ŪG/L	94

Compound is ISTD

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF6-MPA(D) Client Project No. 729691.32010 Lab Sample No. : 96-4064-06

Lab Project No. 96-4064 Date Sampled : 11/17/96 Matrix : Water

Date Received : 11/18/96 Lab File No. : HALL1125\014F0101 **Date Prepared**

: 11/25/96 Method Blank : RB112596

Date Analyzed : 11/25/96 **Dilution Factor** : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	6.6	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	1.2	0.4
cis-1,2-Dichloroethene	156-59-4	0.44 J X	0.4
1,1,1-Trichloroethane	71-55-6	Ü	0.4
Carbon Tetrachloride	56-23-5	Ŭ	0.4
Trichloroethene	79-01-6	Ŭ	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	Ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ū	0.4
Chlorobenzene	108-90-7	20	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	
4-Chlorotoluene	106-49-8	Ū	
1,3-Dichlorobenzene	541-73-1	Ü	
1,2-Dichlorobenzene	95-50-1	0.88 J	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 93% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES: X = Not confirmed by MS (MDL 1ug/L).

Analyst

HLW4064.XLS: 12/2/96

QUANT REPORT

Page 1

Quant Rev: 7

961127 18:52 961127 18:28 1.00000 006 1

2 Quant Time: Injected at: Dilution Factor:

Operator ID: KIM Output File: ^V2964::Q1 Oata File: >V2964::V2 Name: 96-4064-06 ;;;KL Misc: 5;W;O;1;W;O;11/22/96;O

Instrument ID:

10 File: ID_824::QT Titlo: ID FTLE FOR APPENDIX NINE VOAs METHOD 8260A(8240) Last Calibration: 961125 12:35 Last Qcal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	q
4) BRUMUMETHAM 5) VINYL CHLOR 11) METHYLENE (17) 1,1 DICHLOR 23) 1,2 DICHLOR 24) *1,4 DIFLUOR 46) *CHLOROBENZE 53) TOLUENE-D80 55) CHLOROBEMZE	RIDE CHLORIDE ROETHANE ROETHANE - D4 (SUR STD) ROBENZENE (INT STD) ENE - D9 (INTERNAL STD) ENE STD) ENE OBENZENE (SURR STD) ROBENZENE	6.14 1.398 2.995 7.462 14.454 14.5407 147.031		35279 11930M 11930M 9942 87257 176110 145633 185761 946035 96035 49536	9.06 .759 2.438 50.00 50.98 49.61 47.34	06/L 06/L 06/L 06/L 06/L 06/L 06/L 06/L	10070000000000000000000000000000000000

^{*} Compound is ISTD

Method 601/8010 Chlorinated VOC's Sample Report

Date Prepared : 11/25/96 Method Blank : RB112596
Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound		•	
	CAS #	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ŭ	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ū	0.4
Carbon Tetrachloride	56-23-5	Ŭ	
Trichloroethene	79-01-6	Ü	0.4 0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	ŭ	
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	0.4
Chlorobenzene	108-90-7	ŭ	0.4
1,1,2,2-Tetrachloroethane	79-34-5	ŭ	0.42
2-Chlorotoluene	95-49-8	- U	0 - 1
4-Chlorotoluene	106-49-8	ű	
1,3-Dichlorobenzene	541-73-1	ŭ	
1,2-Dichlorobenzene	95-50-1	ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 88% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

PAR8010W.XLS; 12/2/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF06-MPR Client Project No. : 729691.32010 Lab Sample No. : 96-4064-08 Lab Project No. : 96-4064

Date Prepared : 11/26/96 Method Blank : RB112696

Date Analyzed : 11/26/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ប	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
Chlorotoluene	106-49-8	U	0.4
3-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	89%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:	
11	
Analyst	Approved

PAR8010W.XLS; 12/2/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF06-MPD(D) Client Project No. : 729691.32010
Lab Sample No. : 96-4064-09 Lab Project No. : 96-4064

Date Prepared : 11/25/96 Method Blank : RB112596
Date Analyzed : 11/25/96 Dilution Factor : 1.0

95-49-8

106-49-8

541-73-1

95-50-1

Compound CAS# Concentration (ug/L) RL (ug/L) Vinyl Chloride 75-01-4 4.2 0.4 Chloroethane 75-00-3 U 0.4 1,1-Dichloroethene 75-35-4 U 0.4 Dichloromethane 75-09-2 U 0.4 trans-1,2-Dichloroethene 156-60-5 U 0.4 1,1-Dichloroethane 75-34-3 Ū 0.4 cis-1,2-Dichloroethene 156-59-4 U 0.4 1,1,1-Trichloroethane 71-55-6 U 0.4 Carbon Tetrachloride 56-23-5 U 0.4 Trichloroethene 79-01-6 U 0.4 1.1,2-Trichloroethane 79-00-5 Ū 0.4 Tetrachloroethene 127-18-4 U 0.4 1.1,1.2-Tetrachloroethane 79-00-5 U 0.4 Chlorobenzene 108-90-7 13 0.42 1,1,2,2-Tetrachloroethane 79-34-5

U

U

u

0.8 J

			,
Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	87%	70% - 130% (QC limits)

QUALIFIERS:

2-Chlorotoluene

4-Chiorotoluene

1,3-Dichlorobenzene

1,2-Dichlorobenzene

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

PAR8010W.XLS; 12/2/96

0.4

QUANT REPORT

Page 1

Operator ID: KIM Output File: ^U2965::Q1 Data File: >U2965::U2 Name: 96-4064-09 ;;;KL Misc: 5;W;O;1;W;O;11/22/96;O

Quant Rev: 7

961127 19:19 961127 18:55 1.00000

Instrument ID: UCA 1

1D File: ID_824::Q:
Title: ID FILE FUR APPENDIX NINE VUAs METHOD 8260A(8240:
Last Calibration: 961125 12:35 Last Qcal Time: <none>

Compound	R.T.	Scan#	Area	Conc	Units	ς
1) *BROMOCHLOROMETHANE(INT STD) 4) BROMOMETHANE 5) VINYL CHLORIDE 17) 1,1 DICHLOROMETHANE 22) 1,2 DICHLOROMETHANE-D4(SUR STD) 24) *1,4 DIFLOROMEMANE-D4(SUR STD) 46) *CHLOROMENZENETINT STD) 46) *CHLOROMENZENE-U5(INTERNAL OTD) 53) TOLUMEN-D8(SURROGATE STD) 95) CHLOROMENZENE 93) BROMOFLOUROMENZENE(SURR STD) 64) 1,2-DICHLOROMENZENE 64) 1,4-DICHLOROMENZENE	4299850107359 47.844.9359 147.0359 147.0359	59688444298441429888414491888	37771M 27773 27773 28692 79881 1654410 1654947 63965 64055 69048	1.36 51.11 50.00 50.00 48.49 23.19 46.28	06/L 06/L 06/L 06/L 06/L 06/L 06/L 06/L	10000000000000000000000000000000000000

^{*} Compound is ISID

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF06-MPF(D) Client Project No. : 729691.32010 Lab Sample No. : 96-4064-10 Lab Project No. : 96-4064

 Lab Sample No.
 : 96-4064-10
 Lab Project No.
 : 96-4064

 Date Sampled
 : 11/17/96
 Matrix
 : Water

Date Prepared : 11/25/96 Method Blank : RB112596

Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	_RL (ug/L)
Vinyl Chloride	75-01-4	1.7 J	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	ŭ	0.4
1,1,1-Trichloroethane	71-55-6	ŭ	
Carbon Tetrachloride	56-23-5	ŭ	0.4
Trichloroethene	79-01-6	ŭ	0.4
1,1,2-Trichloroethane	79-00-5	i i	0.4
Tetrachloroethene	127-18-4	ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ü	0.4
Chlorobenzene	108-90-7	6.1	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.42 0.54
2-Chlorotoluene	95-49-8	Ü	
4-Chlorotoluene	106-49-8	Ŭ	
1,3-Dichlorobenzene	541-73-1	Ŭ	
1,2-Dichlorobenzene	95-50-1	Ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 81% 70% - 130% (QC limits)

QUALIFIERS:

Analyst

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Abdroved H

HLW4064.XLS; 12/5/96

QUANT REPORT

Page 1

Operator ID: KIM Quant Rev: 7 Quant Time: 961127 19:46

Data File: >V2966::V2 Dilution Factor: 1.00000

Name: 96-4064-10 ;;;KL Instrument ID: VOA 1 Misc: 5;W;0;1;W;0;11/27/96;0

ID File: ID_824::QT

Title: ID FILE FOR APPENDIX NINE VOAs METHOD 8260A(8240)

Last Calibration: 961125 12:35 Last Qcal Date: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	q
1)	*BROMOCHLOROMETHANE(INT STD)	6.14	584	34237	50.00	UG/L	79
4)	BROMOMETHANE	1.31	96	810		UG/L	100
5)	VINYL CHLORIDE	.99	64	1849	1.45	UG/L	100
23)	1,2 DICHLOROETHANE-D4(SUR STD)	7.46	717	80532	50.77	UG/L	100
24)	*1,4 DIFLUOROBENZENE(INT STD)	8.51	833	158480	50.00	UG/L	100
46)	*CHLOROBENZENE-D5(INTERNAL STD)	14.41	1418	138860	50.00	UG/L	100
53)	TOLUENE-D8(SURROGATE STD)	11.48	1122	172848	48.78	UG/L	100
55)	CHLOROBENZENE	14.47	1424	35637	12.48	UG/L	100
58)	BROMOFLUOROBENZENE(SURR STD)	17.04	1683	89320	46.18	UG/L	100
64)	1,4-DICHLOROBENZENE	19.58	1939	25976	10.27	UG/L	94

^{*} Compound is ISTD

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : Trip Blank #7 Client Project No. : 729691.32010
Lab Sample No. : 96-4064-11 Lab Project No. : 96-4064

Date Sampled : 11/17/96 Matrix : Water

Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	_RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ü	0.4
1,1-Dichloroethene	75-35-4	Ŭ	0.4
Dichloromethane	75-09-2	Ŭ	
trans-1,2-Dichloroethene	156-60-5	ŭ	0.4 0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	11	0.4
1,1,1-Trichloroethane	71-55-6	Ü	
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	ŭ	0.4
1,1,2-Trichloroethane	79-00-5	- ŭ	0.4
Tetrachloroethene	127-18-4	ŭ	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ŭ	0.4
Chlorobenzene	108-90-7	Ü	0.4
1,1,2,2-Tetrachloroethane	79-34-5	ŭ	0.42
2-Chlorotoluene	95-49-8	Ü	0.54
4-Chlorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	U	
1,2-Dichlorobenzene	95-50-1	Ü	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	83%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Analyst

PAR8010W.XLS; 12/2/96

Method 8010 mality Control Samples

Date Performed: 11/25/96

Reference Standard: V832

		Method	Method Sample Sample		Spike	Control	Spike		3	Spike Recoveries	eries	_	00 Re	OC Recovery Range	9	-
Analyte	Σ	Blank	Blank 96-4064-06		Dup.	Spike	Amt	RPD	Sample	# dnQ	itrol	*	1% - 1%	Low	- High	
Vinyl Chloride	3		6.641	23.331	25.293	16.886	20.0	11.1	83%	83%	84%		28 - 163	5.60	- 32.60	_
Chloroethane	•			18.504	19.768	19.268	20.0	6.6	83%	%66	%96		46 - 137	9.20	- 27.40	
1,1-Dichlomethene	•			18.334	18.644	19.713	20.0	1.7	85%	83%	%66		28 - 167	5.60	- 33.40	
Dichloromethane	٠		0.105	16.867	18.358	18.624	20.0	8.5	84%	91%	83%	<u>L</u>	25 - 162	5.00	- 32.40	-
trans-1,2-Dichloroethene	•			21.68	22.698	23.188	20.0	4.6	108%	113%	116%		38 - 155	7.60	- 31.00	_
1,1-Dichloroethane	•		1.168	21.339	22.832	21.399	20.0	7.1	101%	108%	107%		47 - 132	9.40	- 26.40	т -
cis-1,2-Dichloroethene	•		0.438	21.454	22.411	21.414	20.0	4.5	105%	110%	107%	<u></u>				_
1,1,1-Trichlomethane	*			20.253	20.633	21.329	20.0	1.9	101%	103%	107%		41 - 138	8.20	- 27.60	1
Carbon Tetrachloride	٠			20.29	21.154	21.504	20.0	4.2	101%	106%	108%		43 - 143	8.60	- 28.60	_
Trichloroethene	≩			23.016	21.14	22.011	20.0	8.5	115%	106%	110%		35 - 146	7.00	- 29.20	_
1,1,2-Trichlomethane	≩			20.375	20.758	22.008	20.0	1.9	102%	104%	110%	<u></u>	39 - 136	7.80	- 27.20	1
Tetrachloroethene	•		0.115	22.404	21.707	21.617	20.0	3.2	111%	108%	108%	<u> </u>	26 - 162	5.20	- 32.40	_
1,1,1,2-Tetrachloroethane	٠			19.447	18.92	19.287	20.0	2.7	826	82%	%96					1
Chlorobenzene	٠		20.161	43.358	46.282	21.459	20.0	11.9	116%	131%	107%	<u> </u>	1 - 150	0.16	- 30.00	_
1,1,2,2-Tetrachloroethane	٠			18.977	19.794	22.404	20.0	4.2	82%	%66	112%	<u> </u>	8 - 184	1.60	- 36.80	_
2-Chlorotoluene	٠			17.9	19.701	19.169	20.0	9.6	%08	%66	%96					1
4-Chlorotoluene	٠			17.787	18.487	19.732	20.0	3.9	88%	95%	%66	<u> </u>	•			_
1,3-Dichlorobenzene	•			17.124	18.499	18.886	20.0	7.7	%98	85%	94%		7 - 187	1.40	- 37.40	7
1,2-Dichlorobenzene	三		0.875	17.34	17.97	17.990	20.0	3.8	82%	85%	%06	<u> </u>	0 - 208	0.00	- 41.60	1
																7

M = Applicable matrices. (* = Soil and Water. w = Water only.)

= Marks a spike recovery out of limits.

If recovery is outside method limit, marked with "".

If recovery is outside a guideline, marked with "~".

If the sample spike recovery is outside the limit and the control spike is outside the limit also, the control is marked with "**" or "~~".

Notes on recovery limits:

All spiked analytes must be detected even if low limit is 0.

For analytes not listed in the method, recovery limits of 50-150% will be used as guidelines until limits can be established.

Corrective Actions:

Unacceptable sample spike recovery requires acceptable control spike recovery. If both recoveries are outside limits, corrective action must be taken. One recovery outside limits and the other acceptable, is a waming. Repeated failure requires corrective action. Recoveries outside guidelines should be compared to historical data available to determine if corrective action is required.

PAR8010W.XLS; 12/2/96

Methane Report Form Method Blank Report

Method Blank Number

: GB112696

Client Project No.

: 729691.32010

Date Extracted/Prepared Date Analyzed

: 11/26/96 : 11/26/96

Lab Work Order

: 96-4064

Dilution Factor

Method

: 1.00 : RSKSOP-175M

Matrix

: Water

Lab File No.

: GAS1126002

Sample Compound Name Cas Number Concentration RL mg/L mg/L

Methane

74-82-8

U

0.002

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Methane Report Form

Client Sample Number	: LF6-MPN	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4064-01	Lab Work Order	: 96-4064
Date Sampled	: 11/17/96	Dilution Factor	: 1.00
Date Received	: 11/18/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/26/96	Matrix	: Water
Date Analyzed	: 11/26/96	Lab File No.	: GAS1126008

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.059	0.002

erature	:	70.6 F	Saturation	Meth	0.014083379
nt Injected	:	0.5 ml	Concentration	-	
Total Volume of Sample	:	• 43 ml	Concentration	Meth	0.044490838
Head space created	:	4 ml	in Head Space		
Methane Area	:	327.502 ug			

Atomic weight(Methane) : _____ g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst Analyst

K. H. Man Approved

Methane Report Form

Client Sample Number	: LF6-MPC(S)	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4064-02	Lab Work Order	: 96-4064
Date Sampled	: 11/17/96	Dilution Factor	: 50.00
Date Received	: 11/18/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/26/96	Matrix	: Water
Date Analyzed	: 11/26/96	Lab File No.	: GAS1126009

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	1.9	0.1

Temperature	:	70.7 F	Saturation	Meth	0.4515
Amount Injected	:	0.01 ml	Concentration	-	
Total Volume of Sample	:	43 ml	Concentration	Meth	1.42620713
Head space created	:	4 ml	in Head Space		
Methane Area	:	210.009 ug			

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. Hellman
Approved

Methane Report Form

Client Sample Number	: LF6-MPC(D)	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4064-03	Lab Work Order	: 96-4064
Date Sampled	: 11/17/96	Dilution Factor	: 10.00
Date Received	: 11/18/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/26/96	Matrix	: Water
Date Analyzed	: 11/26/96	Lab File No.	: GAS1126010
		Sample	
Compound Name	Cas Number	Concentration	RL
		mg/L	mg/L
Methane	74-82-8	0.35	0.02

erature	:	71 F	Saturation	Meth	0.083457379
nt Injected	:	0.05 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	0.263451584
Head space created	:	4 ml	in Head Space		
Methane Area	:	194.076 ug			
Head space created		4 mi		weth	0.26345

16 g

Atomic weight(Methane)

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Methane Report Form

Client Sample Number	: LF6-MPJ	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4064-04	Lab Work Order	: 96-4064
Date Sampled	: 11/17/96	Dilution Factor	: 1.00
Date Received	: 11/18/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/26/96	Matrix	: Water
Date Analyzed	: 11/26/96	Lab File No	: GAS1126011

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.017	0.002

Temperature Amount Injected Total Volume of Sample Head space created Methane Area		70.4 F 0.5 ml 43 ml 4 ml 93.023 ug	Saturation Concentration Concentration in Head Space	Meth Meth	0.0046 1
Atomic weight(Methane)	:	16 g			

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K Hillman
Approved

Methane Report Form

: 11/26/96 : 11/26/96	Method Matrix Lab File No.	: 10.00 : RSKSOP-175M : Water : GAS1126012
Cas Number	Sample Concentration mg/L	RL mg/L
74-82-8	0.85	0.02
		Meth 0.204831283
	: 11/26/96 Cas Number 74-82-8	: 11/26/96

43 ml

476.325 ug

4 ml

Concentration

in Head Space

Meth

Atomic weight(Methane) : ______ 16 g

Qualifiers

E = Extrapolated value.

Total Volume of Sample

Head space created

Methane Area

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

''A = Not Available/Not Applicable.

Analyst Analyst

K. Hillman

0.647205133

Methane Report Form

Client Sample Number	: LF6-MPA(D)	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4064-06	Lab Work Order	: 96-4064
Date Sampled	: 11/17/96	Dilution Factor	: 10.00
Date Received	: 11/18/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/26/96	Matrix	: Water
Date Analyzed	: 11/26/96	Lab File No.	: GAS1126013

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.31	0.02

Temperature Amount Injected	:	70.8 F 0.05 ml	Saturation Concentration	Meth	0.074
Total Volume of Sample		43 ml	Concentration	Meth	0.23561
Head space created	:	4 ml	in Head Space		
Methane Area	•	173.395 ug			

Atomic weight(Methane) : ______ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K Hellman Approved

Methane Report Form

Client Sample Number	: LF06-MW19	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4064-07	Lab Work Order	: 96-4064
Date Sampled	: 11/17/96	Dilution Factor	: 1.00
Date Received	: 11/18/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/26/96	Matrix	: Water
Date Analyzed	: 11/26/96	Lab File No.	: GAS1126014

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

erature	:	70.3 F	Saturation	Meth	0
nt Injected	:	0.5 ml	Concentration		
Total Volume of Sample	•	43 ml	Concentration	Meth	0
Head space created	:	4 ml	in Head Space		
Methane Area	:	0 ug			

Atomic weight(Methane) : _____ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

K. William

Methane Report Form

Client Sample Number	: LF06-MPR	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4064-08	Lab Work Order	: 96-4064
Date Sampled	: 11/17/96	Dilution Factor	: 1.00
Date Received	: 11/18/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/26/96	Matrix	: Water
Date Analyzed	: 11/26/96	Lab File No.	: GAS1126016

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.012	0.002

Temperature	:	70.6 F	Saturation	Meth	0.002
Amount Injected	:	0.5 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	0.00950584
Head space created	:	4 ml	in Head Space		
Methane Area	:	68.943 ug			

Atomic weight(Methane) : _____ g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. Hellman
Approved

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: LF06-MPR : 96-4064-08Dup : 11/17/96 : 11/18/96 : 11/26/96 : 11/26/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	:	: 729691.32010 : 96-4064 : 1.00 : RSKSOP-175M : Water : GAS1126017
Compound Name	Cas Number	Sample Concentration mg/L		RL mg/L
Methane	74-82-8	0.012		0.002
erature	: 70.7	•	Meth	0.002767593
ht Injected	: 0.5	•	84-45	0.00074140
Total Volume of Sample Head space created	: 43	ml Concentration ml in Head Space	Meth	0.00874146
	. 4	iii iicau opace		

16 g

Qualifiers

E = Extrapolated value.

Atomic weight(Methane)

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

*IA = Not Available/Not Applicable.

Mulanomer

K. Hellman

Methane Report Form

Client Sample Number	: LF06-MPD(D)	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4064-09	Lab Work Order	: 96-4064
Date Sampled	: 11/17/96	Dilution Factor	: 10.00
Date Received	: 11/18/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/26/96	Matrix	: Water
Date Analyzed	: 11/26/96	Lab File No.	: GAS1126018

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	0.24	0.02

Temperature	:	70.6 F	Saturation	Meth	0.0571
Amount Injected	:	0.05 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	0.18055524
Head space created	:	4 ml	in Head Space		
Methane Area	:	132.894 ug	· · · · · · · · · · · · · · · · · · ·		

Atomic weight(Methane) : _____ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. Hollman Approved

., . .

Methane Report Form

Client Sample Number	: LF06-MPF(D)	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4064-10	Lab Work Order	: 96-4064
Date Sampled	: 11/17/96	Dilution Factor	: 10.00
Date Received	: 11/18/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/26/96	Matrix	: Water
Date Analyzed	: 11/26/96	Lab File No.	: GAS1126019
	, ,		

		Sample	
Compound Name	Cas Number	Concentration	RL
		mg/L	mg/L
Methane	74-82-8	0.44	0.02

erature	:	70.9 F	Saturation	Meth	0.104705306
nt Injected	:	0.05 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	0.330587667
Head space created	:	4 ml	in Head Space		
Methane Area	:	243.487 ug			

Atomic weight(Methane) : _____ 16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K. William Approved

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane Gas Matrix Spike / Matrix Spike Duplicate Report

Client Sample No.

: LF6-MPJ

Client Project No.

: 729691.32010

Lab Sample No.

: 96-4064-04

Lab Work Order

: 96-4064

Date Sampled

: 11/17/96

EPA Method No.

: RSKSOP-175M

Date Received

: 11/18/96

Matrix

: Water

Date Prepared

11/26/96

Method Blank

: GB112696

Date Analyzed

: 11/26/96

Lab File No's.

: GAS1126020,021

E.A. MS/MSD Spike Source No.

: 1886

Compound	Spike Added (ug)	Sample Concentration (ug)	MS Concentration	MS %REC	QC Limits
Methane Gas	500	93	(ug) 429	67	%REC 47-88

Compound	Spike Added	MSD Concentration	MSD	RPD		QC mits
	(ug)	(ug)	%REC		RPD	%REC
Methane Gas	500	427	67	0.5	0-16.4	47-88

RPD:

out of (1) outside limits.

Spike Recovery:

out of (2) outside limits.

Notes

* = Values outside of QC limits.

NA = Not analyzed/not available

Note: The Spike was made by taking the sample and displacing 4ml of headspace with a 1%methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

MS4064.XLS; 11/26/96

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

RSKSOP-175M Gas Method Methane LCS Report Form

LCS No.

: LCS112696

EPA Method No.

: RSKSOP-175M

Date Prepared

: 11/26/96

Matrix

: Water

Date Analyzed

: 11/26/96

Method Blank

: GB112696

E.A. LCS Source No.

: 1886

Lab File No.

: GAS1126006

Spike		Method Blank	LCS		αc
Compound	Added	Concentration	Concentration	LCS	Limits
	(ug)	(ug)	(ug)	%REC	%REC
Methane Gas	500	0	436	87	64-90

Spike Recovery:

0 out of (1) outside limits.

Note: The LCS was made by taking the sample and displacing 4ml of headspace with a 1% methane gas and shaking the VOA for 5 minutes. Then injecting 50 ul from the headspace into the GC resulting in a theoretical concentration of 500 ug.

Notes

* = Values outside of QC limits.

NA = Not analyzed/not available.

LCS1126.XLS; 11/26/96

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

 Date Sampled
 : 11/17/96
 Client Project ID.
 : 729691.32010

 Date Received
 : 11/18/96
 Lab Project Number
 : 96-4064

 Date Prepared
 : 11/18/96
 Method
 : EPA 300.0

 Date Analyzed
 : 11/18/96
 Detection Limit
 : 0.25 mg/L

Evergreen	Client			Dilution
Sample #	Sample ID.	<u>Matrix</u>	Chloride (mg/L)	<u>Factor</u>
96-4064-01	LF6-MPN	Water	23.1	10
96-4064-02	LF6-MPC(S)	Water	13.2	1
96-4064-03	LF6-MPC(D)	Water	36.6	10
96-4064-04	LF6-MPJ	Water	23.4	1
96-4064-05	LF6-MPA(S)	Water	4.2	1
96-4064-06	LF6-MPA(D)	Water	18.4	1
96-4064-07	LF06-MW19	Water	2.3	1
96-4064-08	LF06-MPR	Water	271	10
96-4064-09	LF06-MPD(D)	Water	7.2	1
96-4064-10	LF06-MPF(D)	Water	22.4	1
Method Blank	(11/18/96)	Water	<0.25	1

Quality Assurance*

<u>Reference</u>	True Value (mg/L)	Result (mg/L)	% Recovery
Alltech Anion Mixtue A Lot # 728550	20.0	19.6	98

^{* =} Laboratory control sample results reported for quality assurance due to spike values exceeding calibration range. No duplicate of diluted sample analyzed.

JA Hole

Approved

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/17/96	Client Project ID.	•	729691.32010
Date Received	: 11/18/96	Lab Project Number		96-4064
Date Prepared Date Analyzed	: 11/18/96 : 11/18/96		•	EPA 300.0 0.076 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	<u>Nitrite-N</u> (mg/L)	Dilution <u>Factor</u>
96-4064-01	LF6-MPN	Water	<0.076	1
96-4064-01 Duplicate	LF6-MPN Duplicate	Water	<0.076	. 1
96-4064-02	LF6-MPC(S)	Water	<0.076	1
96-4064-03	LF6-MPC(D)	Water	<0.076	1
96-4064-04	LF6-MPJ	Water	<0.076	1
96-4064-05	LF6-MPA(S)	Water	<0.076	1
96-4064-06	LF6-MPA(D)	Water	<0.076	1
96-4064-07	LF06-MW19	Water	<0.076	1
96-4064-08	LF06-MPR	Water	<0.76 **	10
96-4064-09	LF06-MPD(D)	Water	<0.076	1
96-4064-10	LF06-MPF(D)	Water	<0.076	1
Method Blank	(11/18/96)	Water	<0.076	1

Quality Assurance *

	<u>S</u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4064-01	LF6-MPN Matrix Spike	10.0	<0.25	9.6	96
96-4064-01	LF6-MPN Matrix Spike Du	p 10.0	<0.25	9.2	92

MS/MSD RPD

4.0

Quality assurance results reported as Nitrite (NO₂).
 Raised detection limit due to matrix interference.

My Hol

Approved

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Received : 11/18/96 La Date Prepared : 11/18/96 M	ab Project Number: Method:	729691.32010 96-4064 EPA 300.0 0.056 mg/L
--	----------------------------	--

Evergreen Sample #	Client <u>Sample ID.</u>	<u>Matrix</u>	Nitrate-N (mg/L)	Dilution <u>Factor</u>
96-4064-01	LF6-MPN	Water	<0.056	1
96-4064-01 Duplicate	LF6-MPN Duplicate	Water	<0.056	1
96-4064-02	LF6-MPC(S)	Water	<0.056	1
96-4064-03	LF6-MPC(D)	Water	0.39	1
96-4064-04	LF6-MPJ	Water	<0.056	1
96-4064-05	LF6-MPA(S)	Water	<0.056	1
96-4064-06	LF6-MPA(D)	Water	<0.056	1
96-4064-07	LF06-MW19	Water	0.81	1
96-4064-08	LF06-MPR	Water	0.30	1
96-4064-09	LF06-MPD(D)	Water	<0.056	1
96-4064-10	LF06-MPF(D)	Water	<0.056	1
Method Blank	(11/18/96)	Water	<0.056	1

Quality Assurance *

	:	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4064-01	LF6-MPN Matrix Spike	10.0	<0.25	9.3	93
96-4064-01	LF6-MPN Matrix Spike Du	p 10.0	<0.25	9.1	91
MS/MSD RP	D			·	2.0

* = Quality assurance results reported as Nitrate (NO₃).

Analyst

Approved

2.0

4036 Youngfield St. Wheat Ridge, CO 80033 (303) 425-6021

Anion Report

Date Sampled	: 11/17/96	Client Project ID. :	729691.32010
Date Received	: 11/18/96	Lab Project Number :	96-4064 ·
Date Prepared	: 11/18/96	Method :	EPA 300.0
Date Analyzed	: 11/18/96	Detection Limit :	0.25 mg/L

Evergreen Sample #	Client Sample ID.	<u>Matrix</u>	Sulfate (mg/L)	Dilution <u>Factor</u>
96-4064-01	LF6-MPN	Water	2.3	1
96-4064-01 Duplicate	LF6-MPN Duplicate	Water	2.2	1
96-4064-02	LF6-MPC(S)	Water	4.0	1
96-4064-03	LF6-MPC(D)	Water	<0.25	1
96-4064-04	LF6-MPJ	Water	0.36	1
96-4064-05	LF6-MPA(S)	Water	119	10
96-4064-06	LF6-MPA(D)	Water	1.3	1
96-4064-07	LF06-MW19	Water	11.0	1
96-4064-08	LF06-MPR	Water	0.88	1
96-4064-09	LF06-MPD(D)	Water	4.8	1
96-4064-10	LF06-MPF(D)	Water	1.0	1
Method Blank	(11/18/96)	Water	<0.25	1

Quality Assurance

	<u>\$</u>	Spike Amount (mg/L)	Sample Result (mg/L)	Spike Result (mg/L)	% Recovery
96-4064-01	LF6-MPN Matrix Spike	10.0	2.3 ·	11.5	93
96-4064-01	LF6-MPN Matrix Spike Du	o 10.0	2.3	11.2	90
MS/MSD RP	D .			\bigcap	3.2

MS/MSD RPD

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF06-MPG

Client Project Number

729691.32010

Lab Sample Number

: 96-4081-02

Lab Work Order

96-4081

Date Sampled

: 11/18/96

Matrix

WATER

Date Received

: 11/19/96

Lab File Number(s) Method Blank

TVB21120008

Date Prepared

: 11/20/96

MB2112096

: 1.0

FID Dilution Factor : 1.0 PID Dilution Factor

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	U	0.1	mg/L
Benzene	71-43-2	11/20/96	U	0.4	ug/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	· U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	U	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	U	0.5	ug/L
_					
Surrogate Recovery:		96%		70%-126%	(Limits)
Surrogate Recovery:		99%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:			

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

IVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: W3

Client Project Number

729691.32010

Lab Sample Number

: 96-4081-04

Lab Work Order

96-4081

Date Sampled

: 11/18/96

Matrix

WATER

Date Received

: 11/19/96

Lab File Number(s)

TVB21120010

Date Prepared

: 11/20/96

Method Blank

MB2112096

76%-127%

(Lir

FID Dilution Factor PID Dilution Factor

: 1.0 : 1.0

	1	Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Unit
TVH-Gasoline		11/20/96	0.3	0.1	mg/
Benzene	71-43-2	11/20/96	15	0.4	ug/i
Toluene	108-88-3	11/20/96	1.2	0.4	ug/l
Chlorobenzene	108-90-7	11/20/96	 	U 0.4	ug/l
thyl Benzene	100-41-4	11/20/96	2.7	0.4	ug/l
Total Xylenes (m,p,o)	1330-20-7	11/20/96	3.5	0.4	ug/L
,3,5-Trimethylbenzene	108-67-8	11/20/96		U 0.4	ug/L
,2,4-Trimethylbenzene	95-63-6	11/20/96	0.4	0.4	ug/L
,2,3-Trimethylbenzene	526-73-8	11/20/96	8.4	0.4	ug/L
,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	27	0.5	ug/L
ID Surrogate Recovery:		123%		70%-126%	(Lin
PID Surrogate Recovery:		121%		76%-120%	(Lif

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

- E = Extrapolated value. Value exceeds calibration range.
- U = Compound analyzed for, but not detected.
- B = Compound also found in the blank.
- J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.
- RL = Reporting Limit.
- NA = Not Available/Not Applicable.
- PID = Photoionization detector.
- FID = Flame ionization detector.
- TVH = Total Volatile Hydrocarbons.

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF06-MPF(S)

Client Project Number

729691.32010

Lab Sample Number

: 96-4081-05

Lab Work Order

96-4081

Date Sampled

: 11/18/96

Matrix

WATER

Date Received

: 11/19/96

Lab File Number(s)

TVB21120011*

Date Prepared

: 11/20,25/96

Method Blanks

MB2112096*

FID Dilution Factor

: 1.0

PID Dilution Factor

: 1.0; 20

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	0.6	0.1	mg/L
Benzene	71-43-2	11/20/96	12	0.4	ug/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/25/96	300	8.0	ug/L
Ethyl Benzene	100-41-4	11/20/96	22	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	14	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	3.4	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	9.9	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	5.1	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	5.7	0.5	ug/L
Surrogate Recovery:		112%		70%-126%	(Limits)
Surrogate Recovery:		114%; 91%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments: 1	*T\	/B21	1250	10	and	MB21	12596
-------------	-----	------	------	----	-----	-------------	-------

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

<u>Mulia</u> Analyst

K Hollman Approved

TVBXWS2P;TV24081P.XLS; 11/25/96; 6

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF06-MPV

Client Project Number

729691.32010

Lab Sample Number

: 96-4081-06

Lab Work Order

96-4081

Date Sampled

: 11/18/96

Matrix

WATER

Date Received

: 11/19/96

Lab File Number(s)

TVB21120029,59

Date Prepared

: 11/21,22/96

Method Blanks

MB2112196

FID Dilution Factor

: 1.0

PID Dilution Factor

: 1.0; 20

:		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Unit
TVH-Gasoline		11/21/96	0.6	0.1	mg/
Benzene	71-43-2	11/21/96	12	0.4	ug/L
Toluene	108-88-3	11/21/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/22/96	280	8.0	ug/L
Ethyl Benzene	100-41-4	11/21/96	21	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/21/96	14	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/21/96	3.5	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/21/96	10	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/21/96	4.9	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/21/96	5.0	0.5	ug/!
FID Surrogate Recovery:		106%		70%-126%	
PID Surrogate Recovery:		105%;96%		76%-127%	his

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:	•	

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Decola______

Amclell_

Approved

Methods 602/8020 and 5030/8015 Modified Data Report

Client Sample Number

: LF06-MPB

Client Project Number

729691.32010

Lab Sample Number

: 96-4081-08

Lab Work Order

96-4081

Date Sampled

: 11/18/96

Matrix

WATER

Date Received
Date Prepared

: 11/19/96

Lab File Number(s)

TVB21120013

Date Prepared

: 11/20/96

Method Blank

MB2112096

FID Dilution Factor

: 1.0

PID Dilution Factor

: 1.0

		Analysis	Sample		
Compound Name	Cas Number	Date	Concentration	RL	Units
TVH-Gasoline		11/20/96	U	0.1	mg/L
Benzene	71-43-2	11/20/96	U	0.4	ug/L
Toluene	108-88-3	11/20/96	U	0.4	ug/L
Chlorobenzene	108-90-7	11/20/96	U	0.4	ug/L
Ethyl Benzene	100-41-4	11/20/96.	U	0.4	ug/L
Total Xylenes (m,p,o)	1330-20-7	11/20/96	U	0.4	ug/L
1,3,5-Trimethylbenzene	108-67-8	11/20/96	U	0.4	ug/L
1,2,4-Trimethylbenzene	95-63-6	11/20/96	0.9	0.4	ug/L
1,2,3-Trimethylbenzene	526-73-8	11/20/96	U	0.4	ug/L
1,2,3,4-Tetramethylbenzene	488-23-3	11/20/96	0.6	0.5	ug/L
Surrogate Recovery:	1	111%		70%-126%	(Limits)
Surrogate Recovery:		104%		76%-127%	(Limits)

Notes: Total Xylenes consist of three isomers, two of which co-elute. The Xylene RL is for a single peak.

Comments:		

QUALIFIERS and DEFINITIONS:

E = Extrapolated value. Value exceeds calibration range.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

J = Indicates an estimated value when the compound is detected, but is below the Reporting Limit.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

PID = Photoionization detector.

FID = Flame ionization detector.

TVH = Total Volatile Hydrocarbons.

Analyst

Approved

TVBXWS2P;TV24081P.XLS; 11/25/96; 9

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

TOTAL VOLATILE HYDROCARBONS (TVH as Gasoline) TVH Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No.	: W3	Client Project No.	: 72691.32010
Lab Sample No.	: 96-4081-04	Lab Work Order	: 96-4081
Date Sampled	: 11/18/96	EPA Method No.	: 5030/8015 Modified
Date Received	: 11/19/96	Matrix	: WATER
Date Prepared	: 11/20/96	Lab File Number(s)	: TVB21120023,24
Date Analyzed	: 11/21/96	Method Blank	: MB2112096
Instrument Name	: TVHBTEX2	Dilution Factor	: 1.0

Compound	Spike Added (mg/L)	Sample Concentration (mg/L)	MS Concentration (mg/L)	MS %REC	QC (#)	
Gasoline	2.00	0.34	2.49	107.7%	%REC 60 - 128	
Surrogate **				136% *	70 - 126	

Compound	Spike Added (mg/L)	MSD Concentration	MSD	1 ''' - 1	į.	DC (#)
	·	(mg/L)	%REC		RPD	%hr=¢
Gasoline	2.00	2.49	107.5%	0.1	44.1	60 - 128
Surrogate **			133% *	NA	NA	70 - 126

RPD:	o	out of	(1) outside limits.
Spike Recovery:		•	(2) outside limits.

Notes:

NA = Not analyzed/not applicable.

- * = Values outside of QC limits.
- ** = 1.2.4-Trichlorobenzene

	ablished 10/1/96, MAB	
Comments:	* = High Surrogate Recovery due to hydrocarbon interference.	

M. Deela

Approved

Evergreen Analytical, Inc. 4036 Youngfield, Wheat Ridge, CO 80033 (303) 425-6021

EPA 602/8020 Matrix Spike/Matrix Spike Duplicate Data Report

Client Sample No. : LF06-MPG Client Project No. : 729691.32010 : 96-4081 : 96-4081-02 Lab Work Order Lab Sample No. : 11/18/96 EPA Method No. : 602/8020 **Date Sampled** : WATER **Date Received** : 11/19/96 Matrix : 11/20/96 Lab File Number(s) : TVB21120021,22 **Date Prepared** Date Analyzed : 11/20/96 Method Blank : MB2112096 Instrument Name TVHBTEX2 **Dilution Factor** : 1.0

Compound	Spike Added	Sample Concentration	l.	Concentration (ug/L)	
	(ug/L)	(ug/L)	MS	MSD	Comments
Benzene	20.0	0.0	21.9	22.1	
Toluene	20.0	0.0	21.2	21.6	
Chlorobenzene	20.0	0.0	21.0	21.3	
Ethylbenzene	20.0	0.0	21.1	21.5	
m,p-Xylene	20.0	0.0	21.1	21.5	
o-Xylene	20.0	0.0	21.0	21.3	
1,3,5-TMB	20.0	0.0	20.7	21.0	
1,2,4-TMB	20.0	0.0	20.4	20.8	
1,2,3-TMB	20.0	0.0	21.0	21.3	
1,2,3,4-TeMB	20.0	0.0	21.2	21.3	
Surrogate	100.0	99%	106%	103%	% RECOVERY

	MS	MSD			QC#
Compound	%	%			Limits
	RECOVERY	RECOVERY	RPD	RPD	%REC
Benzene	109.5	110.5	0.9	17	61 - 129
Toluene	106.0	108.0	1.9	18	61 - 127
Chlorobenzene	105.0	106.5	1.4	16	68 - 122
Ethylbenzene	105.5	107.5	1.9	18	63 - 126
m,p-Xylene	105.5	107.5	1.9	18	60 - 130
o-Xylene	105.0	106.5	1.4	18	62 - 128
1,3,5-TMB	103.5	105.0	1.4	18	69 - 117
1,2,4-TMB	102.0	104.0	1.9	23	69 - 119
1,2,3-TMB	105.0	106.5	1.4	16	71 - 118
1,2,3,4-TeMB	106.0	106.5	0.5	27	67 - 125
Surrogate	106.0	103.0	NA	NA	76 - 127

# = Limits established 10/15/96.	15/96. KS	10/1!	established	Limits	#=
----------------------------------	-----------	-------	-------------	--------	----

RPD:	0	out of	(10)	outside limits.
Spike Recovery:	0	out of	(20)	outside limits.

Comments:			
	4		

M Blecha K. Hole

Approved

^{* =} Values outside of QC limits.

Method 601/8010 Chlorinated VOC's Sample Report

Date Sampled : 11/18/96 Matrix : Water
Date Received : 11/19/96 Lab File No. HALL 113

Date Analyzed : 11/25/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	Di tonilla
Vinyl Chloride	75-01-4	11	RL (ug/L)
Chloroethane	75-00-3	ű	0.4
1,1-Dichloroethene	75-35-4	ii	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	- U	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6		0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	Ü	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	ii	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ii	0.4
Chlorobenzene	108-90-7	Ŭ	0.4
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.42 0.=4
2-Chlorotoluene	95-49-8	U	
4-Chlorotoluene	106-49-8	Ü	
1,3-Dichlorobenzene	541-73-1	Ü	
1,2-Dichlorobenzene	95-50-1	Ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):	71%	70% - 130% (QC limits)
---	-----	------------------------

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:	
Analyst	Approved HLW4081.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W3

/3 Client Project No.

: 729691.32010

Lab Sample No.

: 96-4081-04

Lab Project No.

: 96-4081

Date Sampled

: 11/18/96

Matrix

: Water

Date Received

11/10/90

Lab File No.

: HALL1125\027F0101

Date Received

: 11/19/96

Lau File No.

. IIALLI125(02)

Date Prepared

: 11/25/96

Method Blank

: RB112596

Date Analyzed

: 11/25/96

Dilution Factor

: 1.0

Compound	CAS #	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2 Chlorotoluene	95-49-8	U	0.4
nlorotoluene	106-49-8	U	0.4
-Dichlorobenzene	541-73-1	U	0.4
1.2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

76%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : W3 DUP

: 96-4081-04 DUP

Client Project No. Lab Project No.

: 729691.32010

Lab Sample No. Date Sampled

: 11/18/96

Matrix

: 96-4081 Water

Date Received

: 11/19/96

Lab File No.

: HALL1126\025F0101

Date Prepared

: 11/26/96

Method Blank

: RB112696

Date Analyzed

: 11/27/96

Dilution Factor

: 1.0

Compound	CAS #	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	[]	0.4
Chloroethane	75-00-3	H	
1,1-Dichloroethene	75-35-4	ii	0.4
Dichloromethane	75-09-2	ii	0.4
trans-1,2-Dichloroethene	156-60-5	ii -	0.4 0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ü.	0.4
Carbon Tetrachloride	56-23-5	11	
Trichloroethene	79-01-6	ü	0.4
1,1,2-Trichloroethane	79-00-5	ii -	0.4
Tetrachloroethene	127-18-4	Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	ii .	0.4
Chlorobenzene	108-90-7	ŭ	0.4
1,1,2,2-Tetrachloroethane	79-34-5	Ŭ	0.42 0.54
2-Chlorotoluene	95-49-8	Ŭ	0.54
4-Chlorotoluene	106-49-8	Ŭ	
1,3-Dichlorobenzene	541-73-1	ŭ .	
1,2-Dichlorobenzene	95-50-1	ŭ	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

85%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF06-MPF(S) Client Project No.

: 729691.32010

Lab Sample No.

: 96-4081-05

Lab Project No.

: 96-4081

Date Sampled

: 11/18/96

Matrix

: Water

Date Received

: 11/19/96

Lab File No.

: HALL1125\026F0101

Date Prepared

: 11/25/96

Method Blank

: RB112596

Date Analyzed

: 11/25/96

Dilution Factor

: 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	Ε	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
Chlorotoluene	95-49-8	U	0.4
hlorotoluene	106-49-8	U	0.4
J-Dichlorobenzene	541-73-1	4.2	0.4
1,2-Dichlorobenzene	95-50-1	4.9	0.4

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene):

105%

70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. Lab Sample No. Date Sampled Date Received Date Prepared	: LF06-MPF(S) : 96-4081-05 : 11/18/96 : 11/19/96 : 11/26/96	Client Project No. Lab Project No. Matrix Lab File No. Method Blank	:	96-4081 Water HALL1126\024F010
Date Analyzed	: 11/26/96	Method Blank Dilution Factor	:	RB112696 5.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Chlorobenzene	108-90-7	200	2.

Surrogate Recovery (1-0	Chloro-2-Fluoro-Benzene):	95%	70% - 130% (QC limits)
QUALIFIERS:			
U = Compound analyzed	for, but not detected above the	e Reporting Limi	t.
B = Compound in blank a	and sample. Compare blank and	sample data	
E = Extrapolated value. R! = Reporting Limit (at	Concentration exceeds the upp	er limit of the ca	llibration.
RL = Reporting Limit (at	Concentration exceeds the upp or above method detection limi	er limit of the cat).	llibration.
RL = Reporting Limit (at NOTES:	Concentration exceeds the upp or above method detection limit	er limit of the cat).	llibration.
KL = Reporting Limit (at	Concentration exceeds the upp or above method detection limit	er limit of the cat).	llibration.
KL = Reporting Limit (at	Concentration exceeds the upp or above method detection limit	er limit of the ca	libration.

QUANT REPURT

Page 1

Operator ID: KIM Output File: ^V2767::U1 Data File: >V2967::V2 Name: 96-4081-05 ;;;KL Misc: 5;W;U;1;W;U;11/22/96;O

Quant Rev: 7 Quant Time:

961127 20:18 961127 19:49 1.00000 Injected at: Dilution Factor: Instrument ID:

V09 1

1D File: ID_824::01 Title: ID FTLE FUR APPENDIX NINE VUAs METHOD 8260A(9240) Last Calibration: 96:125 12:35 Last Ocs! Time: <none>

Compound	R.T.	Scan#	Area	Conc	Units	 G
1) *BHOMOCHLOROMETHANE (INT STD) 4) BHOMOMETHANE 23) 1,2 DICHLOROETHANE-D4(SUR STD) 24) *1,4 DIFLOGROBENZENE(INT STD) 46) *CHLOROBENZENE-D5(INTERNAL STD) 5) TOLUENE-D8(SURRUGATE STD) 65) CHLOROBENZENE 68) BHOMOFLOURDBENZENE 63) 1,3-DICHLOROBENZENE 63) 1,2-DICHLOROBENZENE 64) 1,4-DICHLOROBENZENE	1315 1346139 12.44449 1414.0335 1414.190.335 190.335	73663 73703447 787140 1412247 146914 190140	2771 27739 82452 1524617 1624617 1645288 91333 9133591 133591	54.30 50.00 50.00 51.90 357.12 52.26 6.20	06/L 06/L 06/L 06/L 06/L 06/L 06/L 06/L	1000 1000 1000 1000 1000 1000 1000 100

^{*} Compound is 1910

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF06-MPV Client Project No. : 729691.32010 Lab Sample No. : 96-4058-06 Lab Project No. : 96-4081

Date Sampled : 11/18/96 Matrix : Water

Date Analyzed : 11/26/96 Dilution Factor : 1.0

Compound	CAS #	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ū·	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ü	0.4
trans-1,2-Dichloroethene	156-60-5	Ŭ	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	Ü	0.4
1,1,1-Trichloroethane	71-55-6	Ŭ	0.4
Carbon Tetrachloride	56-23-5	Ü	
Trichloroethene	79-01-6	ŭ	0.4
1,1,2-Trichloroethane	79-00-5	Ü	0.4
Tetrachloroethene	127-18-4	Ü	
1,1,1,2-Tetrachloroethane	79-00-5	ŭ ·	0.4 0.4
Chlorobenzene	108-90-7	F	0.42
1,1,2,2-Tetrachloroethane	79-34-5	11	0.42 0 = 4
2-Chlorotoluene	95-49-8	Ü	
4-Chlorotoluene	106-49-8	บั	
1,3-Dichlorobenzene	541-73-1	4.5	
1,2-Dichlorobenzene	95-50-1	5.2	0.4

Surrogete Because	/1 OLL - 0 EL			
Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	109%	70% - 130% (QC limits)	

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

The state of above inclined a	etection many.
NOTES:	
0//	
Attalyst	Approved
	V HLW4081.XLS; 11/27/96

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF06-MPV Client Project No. : 729691.32010 Lab Sample No. : 96-4058-06 Lab Project No. : 96-4081

Date Prepared : 11/26/96 Method Blank : RB112696

Date Analyzed : 11/26/96 Dilution Factor : 5.0

 Compound
 CAS #
 Concentration (ug/L)
 RL (ug/L)

 Chlorobenzene
 108-90-7
 190
 2.1

Surrogate Recovery (1-Chloro-2-Fluoro-Benzene): 91% 70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

E = Extrapolated value. Concentration exceeds the upper limit of the calibration.

RL = Reporting Limit (at or above method detection limit).

NOTES:

Approved

HLW4081.XLS; 11/27/96

QUAITI REPURT

Page

Operator ID: KIM Output File: ^V2968::Q1 Data File: >V2968::V2 Name: 96-4081-06 ;;;KL Misc: 5;W;U;1;W;U;11/27/96;0

Quant Rev: 7

Duant Time:
 Injected at:
Dilution Factor:
 Instrument ID:

961127 20:52 961127 20:23 1.00000

70A 1

ID File: ID_824::QT Title: ID FILE FOR APPENDIX NINE UOAs METHOD 826UA(8240) Last Lalibration: 961129 12:35 Last Qcal Ti Last Ocal Time: <none>

	Compound	R.T.	Scan#	Area	Conc	Units	3
14346358234 2245556234	*BROMOCHLOROMETHANE(INT STD) BRUMOMETHANE 1,2 D1CHLOROETHANE-D4(SUR STD) *1,4 D1FLUDRUBENZENE(IN) STD) *CHLOROBENZENE-D5(INTERNAL STD) TOLUENE-D8(SURROGATE STD) CHLOMOBENZENE BRUMOFLUOROBENZENE(SURR STD) 1,3-D1CHLOROBENZENE 1,2-D1CHLOROBENZENE 1,4-D1CHLOROBENZENE	6.1318 17.483 14.65 14.550 14.79 13.36 19.689 19.689	599526759 78926759 1412819 141481 1914 1914	33660 825 82820 164914 136608 126060 990999 94543 14389 14683 66086	50.00 13.11 50.00 50.50 50.53 49.10 352.69 6.10 26.55	067L 067L 067L 067L 067L 067L 067L	10000000000000000000000000000000000000

^{*} Compound is 1910

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF06-MPB Client Project No. : 729691.32010 Lab Project No. : 96-4081 Lab Sample No. : 96-4081-08

Date Sampled : 11/18/96 Matrix : Water

Lab File No. : HALL1126\011F0101 Date Received : 11/19/96

: 11/26/96 : RB112696 Date Prepared Method Blank

Dilution Factor Date Analyzed : 11/26/96 : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	U	0.4
1,1-Dichloroethene	75-35-4	U	0.4
Dichloromethane	75-09-2	U	0.4
trans-1,2-Dichloroethene	156-60-5	U	0.4
1,1-Dichloroethane	75-34-3	U	0.4
cis-1,2-Dichloroethene	156-59-4	U	0.4
1,1,1-Trichloroethane	71-55-6	U	0.4
Carbon Tetrachloride	56-23-5	U	0.4
Trichloroethene	79-01-6	U	0.4
1,1,2-Trichloroethane	79-00-5	U	0.4
Tetrachloroethene	127-18-4	U	0.4
1,1,1,2-Tetrachloroethane	79-00-5	U	0.4
Chlorobenzene	108-90-7	U	0.42
1,1,2,2-Tetrachloroethane	79-34-5	U	0.54
2-Chlorotoluene	95-49-8	U	0.4
plorotoluene	106-49-8	U	0.4
-Dichlorobenzene	541-73-1	U	0.4
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	81%	70% - 130% (QC limits)	

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

B = Compound in blank and sample. Compare blank and sample data.

-	ting Limit (at or above method de	etection limit).			
NOTES:					
	/)				
/	Affalyst	Approved HLW4081,XLS: 11/27/96			

Method 601/8010 Chlorinated VOC's Sample Report

Client Sample No. : LF06 Field Blank Client Project No. : 729691.32010 Lab Sample No. : 96-4081-10 Lab Project No. : 96-4081

Date Sampled : 11/18/96 Matrix : Water

Lab File No. **Date Received** : 11/19/96 : HALL1126\023F0101 Date Prepared : 11/26/96 Method Blank : RB112696

Date Analyzed : 11/27/96 Dilution Factor : 1.0

Compound	CAS#	Concentration (ug/L)	RL (ug/L)
Vinyl Chloride	75-01-4	U	0.4
Chloroethane	75-00-3	Ŭ	0.4
1,1-Dichloroethene	75-35-4	Ü	0.4
Dichloromethane	75-09-2	Ū.	0.4
trans-1,2-Dichloroethene	156-60-5	Ü	0.4
1,1-Dichloroethane	75-34-3	Ü	0.4
cis-1,2-Dichloroethene	156-59-4	Ü.	0.4
1,1,1-Trichloroethane	71-55-6	ü	0.4
Carbon Tetrachloride	56-23-5	Ü	0.4
Trichloroethene	79-01-6	ıı .	0.4
1,1,2-Trichloroethane	79-00-5	ii — —	0.4
Tetrachloroethene	127-18-4	· Ü	0.4
1,1,1,2-Tetrachloroethane	79-00-5	Ü	0.4
Chlorobenzene	108-90-7	Ü	0.42
1,1,2,2-Tetrachloroethane	79-34-5	Ü	0.42
2-Chlorotoluene	95-49-8	U	
4-Chlorotoluene	106-49-8	Ū	
1,3-Dichlorobenzene	541-73-1	U	
1,2-Dichlorobenzene	95-50-1	U	0.4

Surrogate Recovery	(1-Chloro-2-Fluoro-Benzene):	85%	70% - 130% (QC limits)

QUALIFIERS:

U = Compound analyzed for, but not detected above the Reporting Limit.

E = Compound in blank and sample. Compare blank and sample data. E = Extrapolated value. Concentration exceeds the upper limit of the calibration. RL = Reporting Limit (at or above method detection limit).						
NOTES:						
Analyst	Approved					
	HLW4081.XLS; 11/27/96					

Methane Report Form

Client Sample Number	: LF06-MPG	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4081-02	Lab Work Order	: 96-4081
Date Sampled	: 11/18/96	Dilution Factor	: 1.00
Date Received	: 11/19/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/22/96	Matrix	: Water
Date Analyzed	: 11/22/96	Lab File No.	: GAS1122023

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	U	0.002

moerature .	:	68.8 F	Saturation	Meth	0
A Injected	: _	0.5 ml	Concentration		
To Volume of Sample	: _	43 ml	Concentration	Meth	0
Head space created	: _	4 ml	in Head Space		
Methane Area	: _	0 ug			

Atomic weight(Methane) : _____ g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Analyst

K. Hallman Approved

Methane Report Form

Client Sample Number	: LF06-MPF(S)	Client Project No.	: 729691.32010
Lab Sample Number	: 96-4081-05	Lab Work Order	: 96-4081
Date Sampled	: 11/18/96	Dilution Factor	: 50.00
Date Received	: 11/19/96	Method	: RSKSOP-175M
Date Extracted/Prepared	: 11/22/96	Matrix	: Water
Date Analyzed	: 11/22/96	Lab File No.	: GAS1122025

Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	6.5	0.1

Temperature Amount Injected Total Volume of Sample	:	69.1 F 0.01 ml 43 ml	Saturation Concentration Concentration	Meth	1.548 4.90690558
Head space created Methane Area	:	4 ml 720.361 ug	in Head Space	· · · · · · · · · · · · · · · · · · ·	
Atomic weight(Methane)	:	16 g			

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

K Akllman
Approved

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: LF06-MPF(S) : 96-4081-05Dup : 11/18/96 : 11/19/96 : 11/22/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	: 729691.32010 : 96-4081 : 50.00 : RSKSOP-175M : Water : GAS1122026
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	6.6	0.1

rature	:	69 F	Saturation	Meth	1.590635913
A Injected	:	0.01 ml	Concentration		
Total Volume of Sample	:	43 ml	Concentration	Meth	5.040197578
Head space created	:	4 ml	in Head Space		
Methane Area	:	739.789 ug			

Atomic weight(Methane)

16 g

Qualifiers

E = Extrapolated value.

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

*'A = Not Available/Not Applicable.

AF4081.XLS

Methane Report Form

Client Sample Number Lab Sample Number Date Sampled Date Received Date Extracted/Prepared Date Analyzed	: LF06-MPB : 96-4081-08 : 11/18/96 : 11/19/96 : 11/22/96 : 11/22/96	Client Project No. Lab Work Order Dilution Factor Method Matrix Lab File No.	: 729691.32010 : 96-4081 : 50.00 : RSKSOP-175M : Water : GAS1122028
Compound Name	Cas Number	Sample Concentration mg/L	RL mg/L
Methane	74-82-8	4.7	0.1
Temperature Amount Injected	: 70.8 F : 0.01 m	Saturation	Meth 1.124{ E
Total Volume of Sample	: 0.01 m		Meth 3.552

4 ml

523.143 ug

in Head Space

Atomic weight(Methane)	:	1 <u>6</u> g
------------------------	---	--------------

Qualifiers

E = Extrapolated value.

Head space created

Methane Area

U = Compound analyzed for, but not detected.

B = Compound also found in the blank.

RL = Reporting Limit.

NA = Not Available/Not Applicable.

Approved

APPENDIX C ANALYTICAL MODEL OUTPUT

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (0.048 mg/L source no decay, with a 0.0053 day-1 anaerobic decay coefficent, Constant Time, Variable Location)

Aydrogeologic Data

ydraulic conductivtiy

$$K := 30.18 \cdot \frac{m}{day}$$

Hydraulic gradient

$$I := 0.0055 \cdot \frac{ft}{ft}$$

Effective porosity

$$n_e := 0.25$$

Total porosity

$$n := 0.3$$

Longitudinal dispersivity

$$\alpha_x := 30 \cdot m$$

Concentration of Injected Contaminant

$$C_s = 0.048 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_0 := 0.\frac{mg}{liter}$$

Retardation Coefficient Calculation

$$\lambda := 0.0053 \cdot \frac{1}{day}$$

$$\gamma := 0.00000 \cdot \frac{1}{day}$$

$$K_{oc} := 79.\frac{mL}{gm}$$

Bulk density (Freeze and Cherry, 1979)

$$\rho_b := 1.65 \cdot \frac{gm}{cm^3}$$

Organic carbon content

Retardation coefficient

$$R := 1 + \frac{\rho_b \cdot K_{oc} \cdot f_{oc}}{n}$$

$$R = 1.261$$

Groundwater Hydraulics Calculations

$$\mathbf{v}_{\mathbf{X}} := \frac{\mathbf{K} \cdot \mathbf{I}}{\mathbf{n}_{\mathbf{e}}}$$

$$v_X = \frac{K \cdot I}{n_e}$$
 $v_X = 0.664 \cdot \frac{m}{day}$

$$v_c := \frac{v_x}{R}$$

$$v_c := \frac{v_x}{R}$$
 $v_c = 0.527 \cdot \frac{m}{day}$

$$D_{x} = \alpha_{y} v_{x}$$

$$D_{x} = \alpha_{x} \cdot v_{x}$$
 $D_{x} = 214.404 \cdot \frac{ft^{2}}{day}$

1998 - Total BTEX Concentrations at Steady State

Initial Plume Distribution Calculation

$$j = 0..3000$$

$$\Delta x = 1 \cdot m$$

$$x_{j} = \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) - \left(\frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R}\right) \cdot exp\left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t\right)^{2}}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R}\right) \cdot exp\left(\frac{v_{x} \cdot x_{j}}{D_{x}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{D_{x} \cdot R}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} - t}{D_{x} \cdot R}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} - t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2}}\right) \cdot \left(\lambda - \gamma \right) \right) \right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} - t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2}}\right) \cdot \left(\lambda - \gamma \right) \cdot t \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2}}\right) \cdot \left(\lambda - \gamma \right) \cdot t \right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) \right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2$$

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (0.048 mg/L source with no decay, a 0.0053 day-1 anaerobic decay coefficient, Constant Location, Variable Time)

Hydrogeologic Data

lydraulic conductivtiy

$$K = 30.18 \cdot \frac{m}{day}$$

Hydraulic gradient

$$_{I}:=0.0055\cdot \frac{ft}{ft}$$

Effective porosity

Total porosity

$$n := 0.3$$

Longitudinal dispersivity (EPRI, 1985)

$$\alpha_x := 30 \cdot m$$

Concentration of Injected Contaminant

$$C_s := 0.048 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_0 := 0 \cdot \frac{mg}{liter}$$

Retardation Coefficient Calculation

Solute Decay Rate

$$\lambda := 0.0053 \cdot \frac{1}{\text{day}}$$

Source Decay Rate

$$\gamma := 0.00000 \cdot \frac{1}{\text{day}}$$

oil sorption coefficient (EPA, 1990)

$$K_{oc} = 79.\frac{mL}{gm}$$

Bulk density (Freeze and Cherry, 1979)

$$\rho_b := 1.65 \cdot \frac{gm}{cm^3}$$

Organic carbon content

$$f_{oc} = 0.06.\%$$

Retardation coefficient

$$R := 1 + \frac{\rho_b \cdot K_{oc} \cdot f_{oc}}{n}$$

$$R = 1.261$$

Groundwater Hydraulics Calculations

Groundwater velocity (pore-water)

$$v_{\mathbf{x}} := \frac{K \cdot \mathbf{I}}{n_{\mathbf{e}}}$$

$$v_x = \frac{K \cdot I}{n_e}$$
 $v_x = 0.664 \cdot \frac{m}{day}$

Contaminant velocity

$$v_c := \frac{v_2}{R}$$

$$v_c := \frac{v_x}{R}$$
 $v_c = 0.527 \cdot \frac{m}{day}$

ngitudinal dispersion coefficient

$$D_{x} = \alpha_{x} \cdot v_{x}$$

$$D_{x} = \alpha_{x} \cdot v_{x}$$
 $D_{x} = 214.404 \cdot \frac{ft^{2}}{day}$

250 Meters Downgradient from Highest Total BTEX Concentration

'nitial Plume Distribution Calculation

year = 365-day
$$i = 1...100$$
 $x = 250 \cdot m$

$$\Delta t = 1 \cdot year$$

$$t_i = \Delta t \cdot i$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} &C_{i} = &C_{o} \cdot exp(-\lambda \cdot t_{i}) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right) - \left(\frac{v_{x}^{2} \cdot t_{i}}{\pi \cdot D_{x} \cdot R}\right) \cdot exp\left[\frac{-\left(R \cdot x - v_{x} \cdot t_{i}\right)^{2}}{4 \cdot D_{x} \cdot R \cdot t_{i}}\right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x}{D_{x}} + \frac{v_{x}^{2} \cdot t_{i}}{D_{x}}\right) \cdot exp\left(\frac{v_{x} \cdot x}{D_{x}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right)\right] \\ &+ C_{s} \cdot exp\left(-\gamma \cdot t_{i}\right) \cdot \left[1 - erf\left(\frac{v_{x}}{2 \cdot D_{x} \cdot R \cdot t_{i}}\right) - \left(\frac{v_{x}}{2 \cdot D_{x} \cdot R \cdot t_{i}}\right)\right] \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot x\right] \cdot \left[1 - erf\left(\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right) - \left(\frac{v_{x}}{2 \cdot D_{x} \cdot R \cdot t_{i}}\right)\right] \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot x\right] \cdot \left[1 - erf\left(\frac{R \cdot x - t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right) - \left(\lambda - \gamma\right) \cdot x\right] \cdot \left[1 - erf\left(\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x + t_{i} \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot exp\left(\frac{v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right) - \left(\lambda - \gamma\right) \cdot t_{i}\right] \cdot \left[1 - erf\left(\frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot \left[1 - erf\left(\frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot \left[1 - erf\left(\frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot \left[1 - erf\left(\frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right)\right] \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot \left[1 - erf\left(\frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right)\right] \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left(\lambda - \gamma\right)\right) \cdot exp\left(\frac{v_{x}}{2 \cdot D_{x}} \cdot \left$$

Concentration of BTEX (mg/L) versus Time (years)

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (0.015 mg/L benzene source, no source decay, with a 0.0053 day-1 anaerobic decay coefficent, Constant Time, Variable Location)

Lydrogeologic Data

ydraulic conductivtiy

$$K = 30.18 \cdot \frac{m}{day}$$

Hydraulic gradient

$$I := 0.0055 \cdot \frac{ft}{ft}$$

Effective porosity

Total porosity

$$n := 0.3$$

Longitudinal dispersivity

$$\alpha_x := 30 \cdot m$$

Concentration of Injected Contaminant

$$C_s := 0.015 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_0 := 0.\frac{mg}{liter}$$

Retardation Coefficient Calculation

$$\lambda := 0.0053 \cdot \frac{1}{\text{day}}$$

$$\gamma := 0.00000 \cdot \frac{1}{day}$$

$$K_{oc} := 79 \cdot \frac{mL}{gm}$$

$$\rho_b := 1.65 \cdot \frac{gm}{cm^3}$$

$$f_{oc} = 0.06.\%$$

$$R := 1 + \frac{\rho_b \cdot K_{oc} \cdot f_{oc}}{n}$$

$$R = 1.261$$

Groundwater Hydraulics Calculations

$$v_{X} := \frac{K \cdot I}{n_{e}}$$

$$v_X = \frac{K \cdot l}{n_e}$$
 $v_X = 0.664 \cdot \frac{m}{day}$

$$v_c := \frac{v_b}{R}$$

$$v_c = \frac{v_x}{R}$$
 $v_c = 0.527 \cdot \frac{m}{day}$

$$D_{v} = \alpha_{v} v_{v}$$

$$D_{x} = \alpha_{x} v_{x}$$
 $D_{x} = 214.404 \cdot \frac{ft^{2}}{day}$

1998 - Dissolved Benzene Concentrations at Steady State

Initial Plume Distribution Calculation

$$j = 0..3000$$

$$\Delta x = 1.m$$

$$x_j = \Delta x.j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} &C_{j} = &C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(\frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R}\right) \cdot exp\left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t\right)^{2}}{4 \cdot D_{x} \cdot R \cdot t}\right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R}\right) \cdot exp\left(\frac{v_{x} \cdot x_{j}}{D_{x}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}$$

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (0.015 mg/L benzene source with no decay, a 0.0053 day-1 anaerobic decay coefficient, Constant Location, Variable Time)

Hydrogeologic Data

Hydraulic conductivity

$$K = 30.18 \cdot \frac{m}{day}$$

Hydraulic gradient

$$_{I}:=0.0055\cdot \frac{ft}{ft}$$

Effective porosity

$$n_e := 0.25$$

Total porosity

$$n = 0.3$$

Longitudinal dispersivity (EPRI, 1985)

$$\alpha_x := 30 \cdot m$$

Concentration of Injected Contaminant

$$C_s = 0.015 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_0 = 0.\frac{mg}{liter}$$

Retardation Coefficient Calculation

Solute Decay Rate

$$\lambda := 0.0053 \cdot \frac{1}{\text{day}}$$

Source Decay Rate

$$\gamma := 0.00000 \cdot \frac{1}{\text{day}}$$

Soil sorption coefficient (EPA, 1990)

$$K_{oc} := 79.\frac{mL}{gm}$$

Bulk density (Freeze and Cherry, 1979)

$$\rho_b := 1.65 \cdot \frac{gm}{cm^3}$$

Organic carbon content

$$f_{oc} = 0.06.\%$$

Retardation coefficient

$$R := 1 + \frac{\rho_b \cdot K_{oc} \cdot f_{oc}}{n}$$

$$R = 1.261$$

Groundwater Hydraulics Calculations

Groundwater velocity (pore-water)

$$v_x = \frac{K \cdot I}{n_e}$$

$$v_X = \frac{K \cdot I}{n_e}$$
 $v_X = 0.664 \cdot \frac{m}{day}$

Contaminant velocity

$$v_c = \frac{v_3}{R}$$

$$v_c = \frac{v_x}{R}$$
 $v_c = 0.527 \cdot \frac{m}{day}$

ongitudinal dispersion coefficient

$$D_{\mathbf{x}} = \alpha_{\mathbf{x}} \cdot \mathbf{v}_{\mathbf{x}}$$

$$D_{x} = \alpha_{x} \cdot v_{x}$$
 $D_{x} = 214.404 \cdot \frac{ft^{2}}{day}$

110 Meters Downgradient from the Highest Observed Benzene Concentration

nitial Plume Distribution Calculation

$$year = 365 \cdot day \quad i := 1 ... 120 \qquad \qquad x := 110 \cdot m$$

$$\Delta t := 1 \cdot year$$

$$t_i := \Delta t \cdot i$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} &C_{i} = &C_{o} \cdot exp\left(-\lambda \cdot t_{i}\right) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(\frac{v_{X}^{2} \cdot t_{i}}{\pi \cdot D_{X} \cdot R}\right) \cdot exp\left[- \frac{\left(R \cdot x - v_{X} \cdot t_{i}\right)^{2}}{4 \cdot D_{X} \cdot R \cdot t_{i}}\right] + \frac{1}{2} \cdot \left(1 + \frac{v_{X} \cdot x}{D_{X}} + \frac{v_{X}^{2} \cdot t_{i}}{D_{X} \cdot R}\right) \cdot exp\left(\frac{v_{X} \cdot x}{D_{X}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x + v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{X} \cdot t_{i}}{2 \cdot \sqrt{D_{X} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x$$

Concentration of Benzene (mg/L) versus Time (years)

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (0.200 mg/L chlorobenzene source with no decay, with a 0.010 day-1 anaerobic decay coefficent, Constant Time, Variable Location)

lydraulic conductivtiy

$$K = 30.18 \frac{m}{day}$$

Hydraulic gradient

$$I := 0.0055 \cdot \frac{ft}{ft}$$

Effective porosity

$$n_e := 0.25$$

Total porosity

$$n := 0.3$$

Longitudinal dispersivity

$$\alpha_x$$
 =30·m

Concentration of Injected Contaminant

$$C_s := 0.200 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_0 := 0.\frac{mg}{liter}$$

Retardation Coefficient Calculation

$$\lambda := 0.010 \cdot \frac{1}{\text{day}}$$

$$\gamma := 0.00000 \cdot \frac{1}{day}$$

$$K_{oc} = 79 \cdot \frac{mL}{gm}$$

$$\rho_b := 1.65 \cdot \frac{gm}{cm^3}$$

$$f_{oc} = 0.06.\%$$

$$R := 1 + \frac{\rho_b \cdot K_{oc} \cdot f_{oc}}{n}$$

$$R = 1.261$$

Groundwater Hydraulics Calculations

$$\mathbf{v}_{\mathbf{X}} = \frac{\mathbf{K} \cdot \mathbf{I}}{\mathbf{n}_{\mathbf{e}}}$$

$$v_x = \frac{K \cdot I}{n_e}$$
 $v_x = 0.664 \cdot \frac{m}{day}$

$$v_c := \frac{v_x}{R}$$

$$v_c := \frac{v_x}{R}$$
 $v_c = 0.527 \cdot \frac{m}{day}$

$$D_{\mathbf{x}} = \alpha_{\mathbf{x}} \cdot \mathbf{v}_{\mathbf{x}}$$

$$D_{x} = \alpha_{x} \cdot v_{x}$$
 $D_{x} = 214.404 \cdot \frac{ft^{2}}{day}$

1998 - Dissolved Chlorobenzene Concentrations at Steady State

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

ssolved Chlorobenzene (mg/L) Concentration versus Distance (m)

Dissolved Chlorobenzene (mg/L) Concentration versus Distanc

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (0.200 mg/L chlorobenzene source with no decay, a 0.010 day-1 anaerobic decay coefficient, Constant Location, Variable Time)

drogeologic Data

Hydraulic conductivtiy

$$K := 30.18 \cdot \frac{m}{day}$$

Hydraulic gradient

$$I := 0.0055 \cdot \frac{ft}{ft}$$

Effective porosity

$$n_e := 0.25$$

Total porosity

$$n := 0.3$$

Longitudinal dispersivity (EPRI, 1985)

$$\alpha_x = 30 \text{ m}$$

Concentration of Injected Contaminant

$$C_s := 0.200 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_o := 0.\frac{mg}{liter}$$

Retardation Coefficient Calculation

Solute Decay Rate

$$\lambda := 0.01 \cdot \frac{1}{\text{day}}$$

Source Decay Rate

$$\gamma := 0.00000 \cdot \frac{1}{day}$$

pil sorption coefficient (EPA, 1990)

$$K_{oc} = 79 \cdot \frac{mL}{gm}$$

Bulk density (Freeze and Cherry, 1979)

$$\rho_b = 1.65 \cdot \frac{gm}{cm^3}$$

Organic carbon content

$$f_{oc} = 0.06.\%$$

Retardation coefficient

$$R := 1 + \frac{\rho_b \cdot K_{oc} \cdot f_{oc}}{p_c}$$

$$R = 1.261$$

Groundwater Hydraulics Calculations

Groundwater velocity (pore-water)

$$v_{X} := \frac{K \cdot I}{n_{e}}$$

$$v_X = \frac{K \cdot I}{n_e}$$
 $v_X = 0.664 \cdot \frac{m}{day}$

Contaminant velocity

$$v_c = \frac{v_2}{R}$$

$$v_c = \frac{v_x}{R}$$
 $v_c = 0.527 \cdot \frac{m}{day}$

ngitudinal dispersion coefficient

$$D_{X} = \alpha_{X} v_{X}$$

$$D_{x} = \alpha_{x} \cdot v_{x}$$
 $D_{x} = 214.404 \cdot \frac{ft^{2}}{day}$

30 Meters Downgradient from Highest Observed Chlorobenzne Concentration

Initial Plume Distribution Calculation

year = 365-day i := 1...120
$$\mathbf{x}$$
 := 30-m Δt = 1-year t_i := $\Delta t \cdot i$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} &C_{i} = &C_{o} \cdot exp\left(-\lambda \cdot t_{i}\right) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right) - \left(\frac{v_{x}^{2} \cdot t_{i}}{\pi \cdot D_{x} \cdot R}\right) \cdot exp\left[\cdot \frac{\left(R \cdot x - v_{x} \cdot t_{i}\right)^{2}}{4 \cdot D_{x} \cdot R \cdot t_{i}}\right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x}{D_{x}} + \frac{v_{x}^{2} \cdot t_{i}}{D_{x} \cdot R}\right) \cdot exp\left(\frac{v_{x} \cdot x}{D_{x}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right) + C_{s} \cdot exp\left(-\gamma \cdot t_{i}\right) \cdot \left[1 - erf\left(\frac{v_{x} \cdot x}{D_{x} \cdot R \cdot t_{i}}\right) - exp\left(\frac{v_{x} \cdot x}{D_{x} \cdot R \cdot t_{i}}\right)\right] \cdot exp\left(\frac{v_{x} \cdot x}{2 \cdot D_{x}} \cdot (\lambda - \gamma)\right) \cdot x \cdot \left[1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda - \gamma)\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x - t_{i}}{v_{x}^{2}} \cdot (\lambda$$

Concentration of Chlorobenzene (mg/L) versus Time (years)

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (0.0075 mg/L TCE source with no decay, with a 0.0035 day-1 reductive dehaslogenation coefficent, Constant Time, Variable Location)

Hydrogeologic Data

Hydraulic conductivtiy

$$K = 30.18 \frac{m}{day}$$

Hydraulic gradient

$$I := 0.0055 \cdot \frac{ft}{ft}$$

Effective porosity

$$n_e := 0.25$$

Total porosity

Longitudinal dispersivity

$$\alpha_x := 30 \cdot m$$

Concentration of Injected Contaminant

$$C_s := 0.0075 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_0 = 0.\frac{mg}{liter}$$

Retardation Coefficient Calculation

$$\lambda := 0.0035 \cdot \frac{1}{day}$$

$$\gamma := 0.00000 \cdot \frac{1}{day}$$

$$K_{oc} = 72.\frac{mL}{gm}$$

$$\rho_b := 1.65 \cdot \frac{gm}{cm^3}$$

$$f_{oc} = 0.06.\%$$

$$R := 1 + \frac{\rho_b \cdot K_{oc} \cdot f_{oc}}{n}$$

$$R = 1.238$$

Groundwater Hydraulics Calculations

$$v_{X} = \frac{K \cdot I}{n_{e}}$$

$$v_x = \frac{K \cdot I}{n_e}$$
 $v_x = 0.664 \cdot \frac{m}{day}$

$$v_c := \frac{v_x}{R}$$

$$v_c = \frac{v_x}{R}$$
 $v_c = 0.536 \cdot \frac{m}{day}$

$$D_{x} = \alpha_{x} \cdot v_{x}$$

$$D_{x} = \alpha_{x} \cdot v_{x}$$
 $D_{x} = 214.404 \cdot \frac{ft^{2}}{day}$

1998 - Dissolved TCE Concetrations at Steady State

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - \left(\frac{v_{x}^{2} \cdot t}{4 \cdot D_{x} \cdot R} \right) \cdot exp \left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t \right)^{2}}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \right) \cdot exp \left(\frac{v_{x} \cdot x_{j}}{D_{x}} \right) \cdot \left(1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right) \right] \cdots \right]$$

$$+ C_{s} \cdot exp(-\gamma \cdot t) \cdot \left[\left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \right] \cdot exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left(\frac{R \cdot x_{j} - t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \cdot \left(1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2}} \cdot (\lambda - \gamma) \right) \right] \right] \cdots \right]$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \left(1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma) \right) \cdot exp \left[\frac{v_{x} + v_{x}}{2 \cdot D_{x}} \cdot \left(1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma) \right) \cdot x_{j}}{2 \cdot D_{x}} \right] \left[1 - erf \left(\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdots \right]$$

$$+ \left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \left(1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma) \right) \cdot x_{j}}{2 \cdot D_{x}} \right] \left[1 - erf \left(\frac{R \cdot x_{j} + t \cdot v_{x}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdots \right]$$

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (0.0075 mg/L TCE source with no decay, a 0.0035 day-1 reductive dehalogenation decay coefficient, Constant Location, Variable Time)

Lydrogeologic Data

ydraulic conductivtiy

$$K = 30.18 \cdot \frac{m}{day}$$

Hydraulic gradient

$$I := 0.0055 \cdot \frac{ft}{ft}$$

Effective porosity

$$n_e = 0.25$$

Total porosity

$$n := 0.3$$

Longitudinal dispersivity (EPRI, 1985)

$$\alpha_x = 30 \text{ m}$$

Concentration of Injected Contaminant

$$C_s := 0.0075 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_0 := 0.\frac{mg}{liter}$$

Retardation Coefficient Calculation

$$\lambda = 0.0035 \cdot \frac{1}{\text{day}}$$

$$\gamma := 0.00000 \cdot \frac{1}{day}$$

il sorption coefficient (EPA, 1990)

$$K_{oc} := 72.\frac{mL}{gm}$$

Bulk density (Freeze and Cherry, 1979)

$$\rho_b = 1.65 \cdot \frac{gm}{cm^3}$$

Organic carbon content

$$f_{oc} = 0.06.\%$$

Retardation coefficient

$$R := 1 + \frac{\rho_{b} \cdot K_{oc} \cdot f_{oc}}{n}$$
 $R = 1.238$

$$R = 1.238$$

Groundwater Hydraulics Calculations

$$\mathbf{v}_{\mathbf{X}} := \frac{\mathbf{K} \cdot \mathbf{I}}{\mathbf{n}_{\mathbf{e}}}$$

$$v_X = \frac{K \cdot I}{n_e}$$
 $v_X = 0.664 \cdot \frac{m}{day}$

$$v_c = \frac{v_c}{R}$$

$$v_c = \frac{v_x}{R}$$
 $v_c = 0.536 \cdot \frac{m}{day}$

$$D_{\mathbf{X}} = \alpha_{\mathbf{X}} \cdot \mathbf{v}_{\mathbf{X}}$$

$$D_{x} = \alpha_{x} \cdot v_{x}$$
 $D_{x} = 214.404 \cdot \frac{ft^{2}}{day}$

65 Meters Downgradient from Highest Observed TCE Concentration

nitial Plume Distribution Calculation

year =
$$365 \cdot \text{day}$$
 i = 1..120 x = $50 \cdot \text{m}$
 $\Delta t = 1 \cdot \text{year}$
 $t_i = \Delta t \cdot i$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} &C_{i} &= &C_{o} \cdot exp\left(-\lambda \cdot t_{i}\right) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right) - \left(\frac{v_{x}^{2} \cdot t_{i}}{\pi \cdot D_{x} \cdot R}\right) \cdot exp\left[\frac{-\left(R \cdot x - v_{x} \cdot t_{i}\right)^{2}}{4 \cdot D_{x} \cdot R \cdot t_{i}}\right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x}{D_{x}} + \frac{v_{x}^{2} \cdot t_{i}}{D_{x} \cdot R}\right) \cdot exp\left(\frac{v_{x} \cdot x}{D_{x}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right)\right] \cdot \cdot \cdot \cdot + C_{s} \cdot exp\left(-\gamma \cdot t_{i}\right) \cdot \left[1 - erf\left(\frac{v_{x} \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right) - \left(\frac{v_{x} \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right) - \left(\frac{v_{x} \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right) - \left(1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right) - \left(1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \cdot \left[1 - erf\left(\frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t_{i}}}\right)\right] \cdot \cdot \cdot \cdot \cdot \left[1 - erf$$

Concentration of TCE (mg/L) versus Time (years)

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (0.010 mg/L VC source with no decay, with a 0.0035 day-1 reductive dehalogenation decay coefficent, Constant Time, Variable Location)

rogeologic Data

Hydraulic conductivtiy

$$K := 30.18 \cdot \frac{m}{day}$$

Hydraulic gradient

$$I := 0.0055 \cdot \frac{ft}{ft}$$

Effective porosity

$$n_e := 0.25$$

Total porosity

$$n := 0.3$$

Longitudinal dispersivity

$$\alpha_x := 30 \cdot m$$

Concentration of Injected Contaminant

$$C_s := 0.010 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_o := 0 \cdot \frac{mg}{liter}$$

Retardation Coefficient Calculation

Solute Decay Rate

$$\lambda := 0.0035 \cdot \frac{1}{\text{day}}$$

Source Decay Rate

$$\gamma := 0.00000 \cdot \frac{1}{\text{day}}$$

pil sorption coefficient (EPA, 1990)

$$K_{oc} := 2.45 \cdot \frac{mL}{gm}$$

Bulk density (Freeze and Cherry, 1979)

$$\rho_b = 1.65 \cdot \frac{gm}{cm^3}$$

Organic carbon content

Retardation coefficient

$$R := 1 + \frac{\rho_b \cdot K_{oc} \cdot f_{oc}}{n}$$

$$R = 1.008$$

Groundwater Hydraulics Calculations

Groundwater velocity (pore-water)

$$\mathbf{v}_{\mathbf{x}} = \frac{\mathbf{K} \cdot \mathbf{I}}{\mathbf{n}_{\mathbf{e}}}$$

$$v_X = \frac{K \cdot I}{n_e}$$
 $v_X = 0.664 \cdot \frac{m}{day}$

Contaminant velocity

$$\mathbf{v}_{\mathbf{C}} = \frac{\mathbf{v}_{\mathbf{C}}}{\mathbf{R}}$$

$$v_c = \frac{v_x}{R}$$
 $v_c = 0.659 \cdot \frac{m}{day}$

Longitudinal dispersion coefficient

$$D_{x} = \alpha_{x} \cdot v_{x}$$

$$D_{x} = \alpha_{x} \cdot v_{x}$$
 $D_{x} = 214.404 \cdot \frac{ft^{2}}{day}$

1998 - Disssolved VC Concentrations at Steady State

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \cdot \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - \text{erf} \frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} - \frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \cdot \exp\left[- \frac{R \cdot x_{j} - v_{x} \cdot t}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \cdot \exp\left[\frac{v_{x} \cdot x_{j}}{D_{x}} \cdot 1 - \text{erf} \frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdots \right] + C_{s} \cdot \exp(-\gamma \cdot t) \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \cdot \exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \cdot \exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} - t \cdot \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \cdots \right] + \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \exp\left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \cdots \right] \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \cdots \right] \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[1 - \text{erf} \left[\frac{R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} \cdot R \cdot t}}} \right] \right] \cdots \right] \right] \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} \right] \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} \right] \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} \right] \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} \right] \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}} \right] \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot \left[\frac{v_{x}}{v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{$$

Dissolved VC (mg/L) Concentration versus Distance (m)

Transient Solution to the Advective-Dispersive Equation for One-Dimensional Flow, Type Three Boundary Condition (0.010 mg/L VC source with no decay, a 0.0035 day-1 reductive dehalogenation decay coefficient, Constant Location, Variable Time)

ogeologic Data

Hydraulic conductivtiy

$$K := 30.18 \cdot \frac{m}{day}$$

Hydraulic gradient

$$I := 0.0055 \cdot \frac{ft}{ft}$$

Effective porosity

$$n_{e} = 0.25$$

Total porosity

$$n := 0.3$$

Longitudinal dispersivity (EPRI, 1985)

$$\alpha_x := 30 \cdot m$$

Concentration of Injected Contaminant

$$C_s := 0.010 \cdot \frac{mg}{liter}$$

Initial Dissolved Contaminant Concentration

$$C_0 := 0.\frac{mg}{liter}$$

Retardation Coefficient Calculation

Solute Decay Rate

$$\lambda := 0.0035 \cdot \frac{1}{day}$$

Source Decay Rate

$$\gamma := 0.00000 \cdot \frac{1}{day}$$

l sorption coefficient (EPA, 1990)

$$K_{oc} := 2.45 \cdot \frac{mL}{gm}$$

Bulk density (Freeze and Cherry, 1979)

$$\rho_b := 1.65 \cdot \frac{gm}{cm^3}$$

Organic carbon content

$$f_{oc} := 0.06 \%$$

Retardation coefficient

$$R := 1 + \frac{\rho_b \cdot K_{oc} \cdot f_{oc}}{r}$$

$$R = 1.008$$

Groundwater Hydraulics Calculations

$$v_X := \frac{K \cdot I}{n_e}$$

$$v_X = \frac{K \cdot I}{n_e}$$
 $v_X = 0.664 \cdot \frac{m}{day}$

$$v_c = \frac{v_b}{R}$$

$$v_c = \frac{v_x}{R}$$
 $v_c = 0.659 \cdot \frac{m}{day}$

$$D_x = \alpha_x v$$

$$D_x = \alpha_{x} v_x$$
 $D_x = 214.404 \cdot \frac{ft^2}{day}$

310 meter downgradient from the source area

initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{i} = C_{0} \exp{-\lambda \cdot t_{i}} \left[1 - \frac{1}{2} \cdot 1 - erf \frac{R \cdot x - v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} - \frac{v_{x}^{2} \cdot t_{i}}{\pi \cdot D_{x} R} \cdot exp \left[- \frac{R \cdot x - v_{x} \cdot t_{i}^{2}}{4 \cdot D_{x} R \cdot t_{i}} \right] + \frac{1}{2} \cdot 1 + \frac{v_{x} x}{D_{x}} + \frac{v_{x}^{2} \cdot t_{i}}{D_{x} R} \cdot exp \frac{v_{x} x}{D_{x}} \cdot 1 - erf \frac{R \cdot x + v_{x} \cdot t_{i}}{2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] + C_{s} \cdot exp - \gamma \cdot t_{i} \left[\frac{v_{x}}{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x}} \right] \cdot exp \left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x}} \right] \left[1 - erf \left[\frac{R \cdot x - t_{i}}{v_{x}} \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)} \right] \right] \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x}} \right] \left[1 - erf \left[\frac{R \cdot x + t_{i} \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot \sqrt{D_{x} R \cdot t_{i}}} \right] \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} {2 \cdot D_{x} R \cdot t_{i}} \right] - exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4$$

Concentration of BTEX (mg/L) versus Time (years)

Sensitivity Analysis of Hydrualic Conductivity (2 times less than observed value)

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} &C_{j} &= &C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(\frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x}^{2} \cdot R}\right) \cdot exp\left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t\right)^{2}}{4 \cdot D_{x} \cdot R \cdot t}\right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x}^{2} \cdot R}\right) \cdot exp\left[\frac{v_{x} \cdot x_{j}}{D_{x}} \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right)\right] \cdot exp\left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t\right)^{2}}{4 \cdot D_{x} \cdot R \cdot t}\right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}^{2} \cdot R}\right) \cdot exp\left[\frac{v_{x} \cdot x_{j}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right] \right] \cdot exp\left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t\right)^{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}^{2} \cdot R}\right) \cdot exp\left[\frac{v_{x} \cdot x_{j}}{2 \cdot D_{x}} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{2 \cdot D_{x}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right)\right] \cdot exp\left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t\right)^{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{2 \cdot D_{x}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right] \cdot exp\left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t\right)^{2} \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}^{2} \cdot R \cdot t}\right)\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Hydrualic Conductivity (2 times greater than observed value)

Initial Plume Distribution Calculation

$$i = 0..3000$$

$$t = 730 \text{ day}$$

$$\Delta x = 1 \cdot m$$

$$x_i = \Delta x \cdot j$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right) - \left(\frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \right) \exp \left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t \right)^{2}}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \right) \cdot \exp \left[\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] + C_{s} \exp(-\gamma \cdot t) \cdot \left[\left[\frac{v_{x}}{v_{x} + v_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) - \left(\frac{v_{x}}{v_{x}^{2}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) \right] \right] - \left[\frac{v_{x}}{v_{x} + v_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) - \left(\frac{1 - erf}{v_{x}^{2}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \right] - \left[\frac{v_{x}}{v_{x} + v_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot D_{x}} \right) - \left(\frac{1 - erf}{v_{x}^{2}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] - \left[\frac{v_{x}}{v_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - \left(\frac{1 - erf}{v_{x}^{2}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] - \left[\frac{v_{x}}{v_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - \left(\frac{1 - erf}{v_{x}^{2}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] - \left[\frac{v_{x}}{v_{x}} \cdot \left(\frac{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - \left(\frac{1 - erf}{v_{x}^{2}} \cdot \left(\frac{1 - erf}{v_{x$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Effective Porosity (25 percent more than observed value)

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right) - \left(\frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \right) \cdot exp \left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t \right)^{2}}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \right) \cdot exp \left(\frac{v_{x} \cdot x_{j}}{D_{x}} \right) \cdot \left(1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{v_{x} \cdot x_{j}}{v_{x}} \right) \cdot \left(1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{v_{x} \cdot x_{j}}{v_{x}} \right) \cdot \left(1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{v_{x} \cdot x_{j}}{v_{x}} \right) \cdot \left(1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{v_{x} \cdot x_{j}}{v_{x}} \right) \cdot \left(1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{v_{x} \cdot x_{j}}{v_{x}} \right) \cdot \left(1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right] \cdot \cdot \cdot \left[1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right] \cdot \cdot \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{v_{x}} \right) \right] \cdot \cdot \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x} \cdot t}{v_{x}} \right] \cdot \left[\frac{v_{x}$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Effective Porosity (25 percent less than observed value)

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right) - \left(\frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R} \right) \cdot exp \left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t \right)^{2}}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \right) \cdot exp \left(\frac{v_{x} \cdot x_{j}}{D_{x}} \right) \cdot \left(1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right) \right] \cdot \cdot \cdot \left[- \frac{v_{x}}{v_{x} + v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}} \right] \cdot exp \left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}} \right] \cdot \left(1 - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right) \cdot \cdot \cdot \left[- erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \cdot \cdot \left(1 - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right) \cdot \cdot \cdot \left[- erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \cdot \cdot \left[- erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \cdot \cdot \left[- erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \cdot \cdot \left[- erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \cdot \cdot \left[- erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \cdot \cdot \left[- erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right] \cdot \cdot \cdot \left[- erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Solute Decay (2 times greater than calcaulated value)

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} &C_{j} = C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf\left(\frac{R \cdot x_{j} - v \cdot x \cdot t}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right) - \left(\frac{v \cdot x^{2} \cdot t}{\pi \cdot D_{X} \cdot R}\right) \cdot exp\left[- \frac{\left(R \cdot x_{j} - v \cdot x \cdot t\right)^{2}}{4 \cdot D_{X} \cdot R \cdot t}\right] + \frac{1}{2} \cdot \left(1 + \frac{v \cdot x \cdot x_{j}}{D_{X} \cdot R}\right) \cdot exp\left(\frac{v \cdot x \cdot x_{j}}{D_{X} \cdot R}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot t}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right)\right] \\ &+ C_{0} \cdot exp(-\gamma \cdot t) \cdot \left[\left[\frac{v \cdot x_{j}}{v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)} \right] \cdot exp\left[\frac{v \cdot x - v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot D_{X}} \right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} - t \cdot \left[v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right] \right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} - t \cdot \left[v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2 \cdot \sqrt{D_{X} \cdot R \cdot t}}\right)\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v \cdot x \cdot \sqrt{1 + \frac{4 \cdot D_{X} \cdot R}{v \cdot x^{2}}} \cdot (\lambda - \gamma)}{2$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Solute Decay (2 times less than calcaulated value)

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$C_{j} = C_{0} \exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) - \left(\frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R}\right) \cdot exp\left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t\right)^{2}}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R}\right) \cdot exp\left(\frac{v_{x} \cdot x_{j}}{D_{x}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) \right] + C_{s} \cdot exp\left(-\gamma \cdot t \right) \cdot \left[\left[\frac{v_{x}}{v_{x}} - \frac{v_{x}^{2} \cdot t}{v_{x}^{2} \cdot (\lambda - \gamma)} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot D_{x}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \cdot exp\left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Total Organic Carbon Content (2 times more than observed value)

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} &C_{j} = &C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot 1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right) - \left(\frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R}\right) \cdot exp\left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t\right)^{2}}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R}\right) \cdot exp\left(\frac{v_{x} \cdot x_{j}}{D_{x}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) \right] \\ &+ C_{s} \cdot exp(-\gamma \cdot t) \cdot \left[\left[\frac{v_{x}}{v_{x} - v_{x}} \cdot \left(1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)\right) \right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot D_{x}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot D_{x}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot D_{x}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot D_{x}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot D_{x}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot D_{x}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot D_{x}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot D_{x}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot D_{x}}\right)\right] \cdot exp\left[\frac{v_{x} - v_{x}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Total Organic Carbon Content (2 times less than observed value)

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} &C_{j} \cdot = C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(\frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R}\right) \cdot exp\left(- \frac{(R \cdot x_{j} - v_{x} \cdot t)^{2}}{4 \cdot D_{x} \cdot R \cdot t}\right) + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R}\right) \cdot exp\left(\frac{v_{x} \cdot x_{j}}{D_{x}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2$$

Sensitivity Analysis of Dispersivity (2 times greater than observed value)

Initial Plume Distribution Calculation

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} &C_{j} = &C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf \left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right) - \left(\frac{v_{x}^{2} \cdot t}{\alpha \cdot D_{x} \cdot R} \right) \cdot exp \left[- \frac{\left(R \cdot x_{j} - v_{x} \cdot t \right)^{2}}{4 \cdot D_{x} \cdot R \cdot t} \right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R} \right) \cdot exp \left(\frac{v_{x} \cdot x_{j}}{D_{x}} \right) \cdot \left(1 - erf \left(\frac{R \cdot x_{j} + v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right) \right) \right] \\ &+ &C_{S} \cdot exp(-\gamma \cdot t) \cdot \left[\left[- \frac{v_{x}}{v_{x}} - \frac{v_{x}^{2} \cdot t}{v_{x}^{2}} \cdot \left(\lambda - \gamma \right) \right] \cdot exp \left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot \left(\lambda - \gamma \right)}}{2 \cdot D_{x}} \right] \cdot exp \left[\frac{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot \left(\lambda - \gamma \right)}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} - t \cdot \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot \left(\lambda - \gamma \right)} \right]}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \cdots \right] \\ &+ &\left[\frac{v_{x}}{v_{x}} - \frac{1 \cdot A \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot \left(\lambda - \gamma \right)}{v_{x}^{2}} \right] \cdot exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot \left(\lambda - \gamma \right)}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot \left(\lambda - \gamma \right)}}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}} \right] \right] \cdots \right] \\ &+ &\left[\frac{v_{x}}{v_{x}} - \frac{1 \cdot A \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot \left(\lambda - \gamma \right)}{v_{x}^{2}} \cdot \left(\lambda - \gamma \right)} \right] \cdot exp \left[\frac{v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot \left(\lambda - \gamma \right)}}}{2 \cdot D_{x}} \right] \cdot \left[1 - erf \left[\frac{R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot \left(\lambda - \gamma \right)}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}} \right] \right] \cdots \right] \right] \right]$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

Sensitivity Analysis of Dispersivity (2 times greater than observed value)

Initial Plume Distribution Calculation

t = 730 -day

$$\Delta x = 1 \cdot m$$

For Retarded Flow with Biodegradation and a Decaying Source (van Genuchten and Alves, 1982)

$$\begin{aligned} &C_{j} = &C_{0} \cdot exp(-\lambda \cdot t) \cdot \left[1 - \frac{1}{2} \cdot \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right) - \left(\frac{v_{x}^{2} \cdot t}{\pi \cdot D_{x} \cdot R}\right) \cdot exp\left[-\frac{\left(R \cdot x_{j} - v_{x} \cdot t\right)^{2}}{4 \cdot D_{x} \cdot R \cdot t}\right] + \frac{1}{2} \cdot \left(1 + \frac{v_{x} \cdot x_{j}}{D_{x}} + \frac{v_{x}^{2} \cdot t}{D_{x} \cdot R}\right) \cdot exp\left(\frac{v_{x} \cdot x_{j}}{D_{x}}\right) \cdot \left(1 - erf\left(\frac{R \cdot x_{j} - v_{x} \cdot t}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right)\right] \\ &+ C_{s} \cdot exp(-\gamma \cdot t) \cdot \left[\left[\frac{v_{x}}{v_{x} + v_{x}} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}\right] \cdot exp\left(\frac{\left[v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}\right] \cdot x_{j}}{2 \cdot D_{x}}\right] \cdot \left[1 - erf\left(\frac{R \cdot x_{j} - t \cdot \left[v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}\right]}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right] \cdots \\ &+ \left[\frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}\right] \cdot exp\left(\frac{\left[v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}\right] \cdot x_{j}}{2 \cdot D_{x}}\right) \cdot \left[1 - erf\left(\frac{R \cdot x_{j} + t \cdot v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}{2 \cdot \sqrt{D_{x} \cdot R \cdot t}}\right)\right] \cdots \\ &+ \left[\frac{v_{x}}{v_{x} - v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}}\right] \cdot exp\left(\frac{\left[v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}\right] \cdot x_{j}}{2 \cdot D_{x} \cdot R \cdot t}}\right)\right] - exp\left(\frac{\left[v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}\right] \cdot x_{j}}{2 \cdot D_{x} \cdot R \cdot t}}\right)\right) - exp\left(\frac{\left[v_{x} + v_{x} \cdot \sqrt{1 + \frac{4 \cdot D_{x} \cdot R}{v_{x}^{2}} \cdot (\lambda - \gamma)}\right] \cdot x_{j}}{2 \cdot D_{x} \cdot R \cdot t}}\right)\right)$$

Dissolved BTEX (mg/L) Concentration versus Distance (m)

APPENDIX D COST ESTIMATE CALCULATIONS

Annual Adjustment Factor = 7% Present Worth Analysis Present Alternative 1: Natural Attenuation Institutional Controls and -Term Groundwater Monitoring Worth Cost (\$) at Year Indicated years (\$) Year: 1 10 Maintain Institutional Controls 10 \$35,118 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 \$5,000 Long-term Monitoring \$21,201 Install New Wells \$19,814 \$0 \$0 **\$**0 \$0 \$0 \$0 **\$**0 **\$**0 50 10 \$94,362 \$13,435 \$13,435 \$13,435 \$13,435 \$13,435 \$13,435 \$13,435 \$13,435 \$13,435 \$13,435 Groundwater Sampling (annual) \$0 \$0 \$0 \$0 \$0 \$0 \$0 **\$**0 \$0 \$0 \$0 Groundwater Sampling (every other year) 0 \$4,747 \$4,747 \$4,747 \$4,747 \$4,747 10 \$33,341 \$4,747 \$4,747 \$4,747 \$4,747 \$4,747 Reporting/Project Mgmt (annual) Subtotal Present Worth (\$) \$182,635

Total Present Worth Cost (\$):

\$182,635

Present Worth Analysis			Annual Adju	stment Fact	or = 7%							
Alternative 2: Natural Attenuation and												
Sparging System with Institutional		Present										
Controls and Long-Term Monitoring		Worth			Cost (\$) at Y	ear Indicate	d					
	years	(\$)	Year: 1	2	3	4	5	6	7	8	9	10
Sparging System												
System Installation	1	\$234,925	\$251,370	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
System Maintenance	10	\$357,079	\$50,840	\$50,840	\$50,840	\$50,840	\$50,840	\$50,840	\$50,840	\$50,840	\$50,840	\$50,840
Annual Report	10	\$ 39,866	\$5,676	\$5,676	\$5,676	\$5,676	\$5,676	\$5,676	\$5,676	\$5,676	\$5,676	\$5,676
Subtotal Present Worth (\$)		\$ 631,870										
Maintain Institutional Controls	10	\$ 35,118	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000
Long-term Monitoring												
Install New Wells	1	\$ 19,814	\$21,201	\$0	\$0	\$ 0	\$0	\$0	\$0	\$0	\$0	\$0
Groundwater Sampling (annual)	10	\$94,362	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435
roundwater Sampling (every other year)	0	\$ 0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
eporting/Project Mgmt (annual)	10	\$33,341	\$4,747	\$ 4,747	\$4,747	\$4,747	\$4,747	\$4,747	\$4,747	\$4,747	\$4,747	\$4,747
Subtotal Present Worth (\$)		\$182,635										

Total Present Worth Cost (\$):

\$814,505

Present Worth Analysis			Annual Adju	stment Fact	or = 7%							
Alternative 3: Natural Attenuation and												
Groundwater Extraction and Treatment with Institu	tional	Present										
Controls and Long-Term Monitoring	i	Worth			Cost (\$) at Y	ear Indicate	d					
	years	(\$)	Year: 1	2	3	4	5	6	7	8	9	10
Groundwater Pump and Treat System												
System Installation	1	\$396,735	\$ 424,507	\$0	\$0	\$ 0	\$0	\$0	\$0	\$0	\$0	\$0
System Maintenance	5	\$239,206	\$58,340	\$58,340	\$58,340	\$58,340	\$58,340	\$0	\$0	- \$0	\$0	\$0
Annual Report	5	\$30,772	\$7,505	\$7,505	\$7,505	\$7,505	\$7,505	\$0	\$0	\$ 0	\$0	\$0
Subtotal Present Worth (\$)		\$666,713								· · · · · · · · · · · · · · · · · · ·		
Maintain Institutional Controls	10	\$ 35,118	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000
Long-term Monitoring												
Install New Wells	1	\$19,814	\$21,201	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Groundwater Sampling (annual)	10	\$94,362	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435	\$13,435
Groundwater Sampling (every other year)	0	\$0	\$ 0	\$0	\$0	\$0	\$0	\$0	\$0	\$ 0	\$0	\$0
Reporting/Project Mgmt (annual)	10	\$33,341	\$4,747	\$4,747	\$ 4,747	\$4,747	\$4,747	\$4,747	\$4,747	\$4,747	\$4,747	\$4,747
Subtotal Present Worth (\$)		\$182,635										

Total Present Worth Cost (\$):

\$849,348

Alternatives 1, 2, and 3: Long-Term Monitoring and Institutional Controls Standard Rate Schedule

ling	Billing		Install New					
egory		Task 1	LTM/POC	Task 2	Sampling	Task 3	Reporting	
Cost Code/(Billing Category)	Rate	(hrs)	Wells (\$)	(hrs)	(\$)	(hrs)	& PM (\$)	
Word Processor 88/(15)	\$30	0	\$0	0	\$0	8	\$240	
CADD Operator 58/(25)	\$47	4	\$188	0	\$0	16	\$752	
Technician 42/(50)	\$40	10	\$400	30	\$1,200	10	\$400	
Staff Level 16/(65)	\$57	80	\$4,560	30	\$1,710	20	\$1,140	
Project Level 12/(70)	\$65	4	\$260	4	\$260	10	\$650	
Senior Level 10/(80)	\$85	1	\$85	0	\$0	3	\$255	
Principal 02/(85)	\$97	0	\$0	0	\$0	0	\$0	
Total Labor (hrs \$)		99	\$5,493	64	\$3,170	67	\$3,437	
ODCs								
Phone			\$30		\$0		\$50	
Photocopy		\$20			\$0		\$150	
Mail		\$100			\$400	\$60		
Computer			\$150	II .		\$400		
CAD			\$0		\$0		\$450	
WP			\$0		\$0	\$200		
Travel			\$1,000		\$2,000		\$0	
Per Diem			\$1,358		\$780		\$ 0	
Eqpt. & Supplies			\$400		\$200	-	\$0	
ıl ODCs			\$3,058		\$3,380		\$1,310	
Outside Services								
11	TM/POC Well Installation Costs a		\$12,650		\$0	\$0		
Laboratory Fees b/			\$0	14 LTM, 3 qa/qc	\$6,885	\$0		
Other: Maintain Institutional Co	ntrols		\$0		\$0		\$5,000	
Total Outside Services			\$12,650		\$6,885		\$5,000	

Proposal Estimate	Task 1	Task 2	Task 3
Labor	\$5,493	\$3,170	\$3,437
ODC's	\$3,058	\$3,380	\$1,310
Outside Services	\$12,650	\$6,885	\$5,000
Total by Task	\$21,201	\$13,435	\$9,747
Total Labor	\$12,100		
Total ODCs	\$7,748		
Total Outside Services	\$24,535		
Total Project	\$44,383		

Task 1: Install New LTM/POC Wells

Tosk 2: Sampling per Event

3: Reporting and PM per Sampling Event

Alternative 3: Groundwater Extraction and Treatment System

Standard Rate Schedule

Standard Rate Schedule		,				,	
Billing	Billing		Design & Install		ystem Monitoring/	EI .	Completion
Category		Task	Recovery System	Task 2	Maintenance	11	Report
Cost Code/(Billing Category)	Rate	(hrs)	(\$)	(hrs)	(weekly/1 yr.)(\$)	(hrs)	(\$)
Word Processor 88/(15)	\$30	40	\$1,200	0	\$0	8	\$240
CADD Operator 58/(25)	\$47	140	\$6,580	0	\$0	16	\$752
Technician 42/(50)	\$40	450	\$18,000	400	\$16,000	16	\$640
Staff Level 16/(65)	\$57	450	\$25,650	100	\$5,700	64	\$3,648
Project Level 12/(70)	\$65	150	\$9,750	40	\$2,600	24	\$1,560
Senior Level 10/(80)	\$85	12	\$1,020	0	\$0	5	\$425
Principal 02/(85)	\$97	2	\$194	0	\$0	0	\$0
Total Labor (hrs \$)		1244	\$62,394	540	\$24,300	133	\$7,265
ODCs							
Phone			\$200		\$60		\$10
Photocopy			\$100		\$0		\$50
Mail			\$100		\$120		\$40
Computer			\$200		\$0		\$40
CAD		Į	\$240		\$0		\$ 60
WP		į	\$100		\$0		\$40
Air fare/Travel (per trip) (two pers. one trip)	\$500	2	\$1,000	12	\$6,000		\$0
Vehicle (per day) (16 field, drill and install)	\$55	16	\$880	24	\$1,320		\$0
Per Diem (per day)	\$85	32	\$2,720	24	\$2,040		\$0
Eqpt. & Supplies	\$1,000	1	\$1,000		\$500		\$0
Total ODCs			\$6,540	<u> </u>	\$10,040		\$240
Outside Services							
Well Installation		į	\$74,850	1	\$0		\$0
Soil Disposal]	I	\$1,500		\$0		\$0
Equipment Costs]	1	\$189,000		\$0		\$0
System Installation		1	\$57,080		\$0		\$0
Contingency (10 % of above services)		1 _	\$32,243		\$0		\$0
Analytical (initial 3 samp., 3 per mnth plus QC)	\$300	3	\$900	40	\$12,000		\$0
Local Subcontractor (maintenance)	\$1,000		\$0	12	\$12,000		\$0
					004.000		# A
Total Outside Services	<u> </u>		\$355,573		\$24,000		\$0
		1					

Estimate	Task 1	Task 2	Task 3
Labor	\$62,394	\$24,300	\$7,265
ODC's	\$6,540	\$10,040	\$240
Outside Services	\$355,573	\$24,000	\$0
Total by Task	\$424,507	\$58,340	\$7,505
Total Labor	\$93,959		
Total ODCs	\$16,820		
Total Outside Services	\$379,573		
Total Project	\$490,352		

Task 1: Groundwater pump and treat system design and installation and report
Task 2: Monthly Site Time and Travel Costs (per year)

Task 3: Report Preparation

Alternative 2: Sparging

Standard Rate Schedule

		1				1	
Billing	Billing	H	Design & Install		stem Monitoring/		Completion
Category	_	Task 1	Sparge System		Maintenance		Repor
Cost Code/(Billing Category)	Rate	(hrs)		(hrs)	(monthly / 1 yr)	(hrs)	(\$)
Word Processor 88/(15)	\$30	40	\$1,200	0	\$0	8	\$240
CADD Operator 58/(25)	\$47	150	\$7,050	0	\$0	8	\$376
Technician 42/(50)	\$40	300	\$12,000	400	\$16,000	16	\$640
Staff Level 16/(65)	\$57	300	\$17,100	100	\$5,700	40	\$2,280
Project Level 12/(70)	\$65	120	\$7,800	40	\$2,600	24	\$1,560
Senior Level 10/(80)	\$85	20	\$1,700	0	\$0	4	\$340
Principal 02/(85)	\$97	2	\$194	0	\$0	0	\$0
Total Labor (hrs \$)		932	\$47,044	540	\$24,300	100	\$5,436
ODCs							
Phone			\$200		\$60		\$10
Photocopy			\$100		\$0		\$ 50
Mail			\$100		\$120		\$40
Computer			\$200		\$0		\$40
CAD			\$240		\$0	İ	\$ 60
WP			\$100		\$0		\$40
Air fare/Travel (per trip) (2 per., pilot & install)	\$500	4	\$2,000	12	\$6,000		\$0
Vehicle (per day) (22 days, pilot and install)	\$55	22	\$1,210	24	\$1,320		\$0
Per Diem (per day)	\$85	44	\$3,740	24	\$2,040	•	\$0
Eqpt. & Supplies	\$500	1	\$500	1	\$500		\$0
Total ODCs			\$8,390		\$10,040		\$240
Outside Services							
Well Installation			\$110,750		\$0		\$0
Disposal			\$2,000		\$0		\$0
Equipment Costs			\$10,500		\$0		\$0
System Installation			\$52,146		\$0		\$0
Contingency (10 % of above services)			\$17,540		\$0		\$0
Analytical (pilot test 5, 5 bimonthly plus QC)	\$300	10	\$3,000	35	\$10,500		\$0
Local Subcontractor (maintenance)	\$500	0	\$0	12	\$6,000		\$0
Carbon	\$500	0	\$0	0	\$0		\$0
Total Outside Services			\$195,936		\$16,500		\$0

Estimate	Task 1	Task 2	Task 3
Labor	\$47,044	\$24,300	\$5,436
ODC's	\$8,390	\$10,040	\$240
Outside Services	\$195,936	\$16,500	\$0
Total by Task	\$251,370	\$50,840	\$5,676
Total Labor	\$76,780		
Total ODCs	\$18,670		
Total Outside Services	\$212,436		
Total Project	\$307,886		

Task 1: SVE/Sparge system deisgn and installation and report

Task 2: Monthly Site Time and Travel Costs (per year)

Task 3: Report Preparation

Columbus AFB Backup Calculations

		Cost calculations									
fisc calculations		Description	Unit	Qty.	Ur	nit Price		Subtotal		Total	Source (If applicable)
New LTM wells:		Well Installation							s	11,500	
Number of wells:	6	Mobilization	ea	1	S	2,000	S	2,000			
Depth each:	25 ft	Well Installation	ln ft	150	\$	50	S	7,500			
		Soil Disposal	drum	20	S	100	\$	2,000			
		Subtotal			_				\$	11,500	
		Contingency	ls	10%	S	11,500	S	1,150	\$	1,150	
		TOTAL							s	12,650	

Columbus AFB Backup Calculations

			Cost calculations									
isc calculations			Description	Unit	Qty.	Ū	nit Price	Ī	Subtotal	T -	Total	Source (If applicable)
Number of vent/sparge wells: Number of sparge wells: Number of SVE wells:		ft ft	Well Installation Mobilization Well Installation Vapor mon. pts. PID and misc equi	ea In ft ea day	2 1,350 5 12	\$ \$ \$ \$	1,500 75 1,000 125	ı	3,000 101,250 5,000 1,500	s	110,750	Assuming 2 xmobe, one for pilot test Assumes no surface completion Estimate Estimate
Disposal Fees										s	2,000	
Soil Disposal			Soil Disposal	drum	20	\$	100	s	2,000	ľ	2,000	Assuming non-hazadous
Equipment Costs Trench Volume/Area												
Width:	1	1	Equipment Costs							S	10,500	
Depth:		ft	SVE blower/syste	ea	-	\$	10,000		-			
Length:	950	ft	Sparge blower	ea	1	S	4,500		4,500			Skid-mounted
Volume:	3,325	cf	Electronics & PLC		2	S	2,500		5,000			Estimate
			Valves, gauges, ho		1	S	-,	\$	1,000			Estimate
	123		Carbon	ea	•	s	1,000	\$	•			Assume 2 x 55 gallon drums in series
Surface Area:	950	- 11									52.146	
	106	sy	System Installation			l	£1. 600		1.600	\$	52,146	Fating at a
		- 1	Mob/Demob	ea	1 123	ĺ	\$1,500 \$5.05	S	1,500			Estimate Means 022 254 0050
		I	Trenching Pipe laying	cy In ft	950			S	622 12,398			Means 151 701 0550/026 686 2800
			Backfill		123			S	2,118			Means 022 204 0600
		ı	Compaction	cy cy	123			S	628			Means 022 204 0600
		- 1	Pavement Base	sy	106		\$5.25	•	_ 020			Means 022 308 0100
		- 1	Reseeding	sy		s		s	202			Means 029 304 0310
		ı	Piping	1f	950	•	- 1	Š	8,835			Means 151 551 1880
		ŀ	Mechanical	man hr	40	s	39	Š	1,553			Means O-1 crew
		i I	Electrical	ls	1	S	4,000	S	4,000			Estimate for electrician
			Electrical supply	ls	1	S		S	10,000			Estimate to provide power supply
				су	3			S	291			Means 033 130 4700
				ls	1		\$10,000	\$	10,000			Estimate, (residential area)
			611							_	475.000	
			Subtotal Contingency	- Is	10%	s	175,396	s	17,540	\$ \$	175,396 17,540	
			TOTAL						,	<u> </u>	·	
		1	IUIAL							\$	192,936	

COSTING1.XLS\Backup 8/21/97\5:18 PM

Columbus AFB Backup Calculations

		Cost calculations			`					
fisc calculations		Description	Unit	Qty.	Unit Pric	e	Subtotal	Τ	Total	Source (If applicable)
Number of recovery wells 10-inch recovery wells	8 x 55 ft	Well Installation Mobilization Well Installation	ea In ft	1 440	\$ 2,00 \$ 14	0 :	\$ 2,000 \$ 61,600	s	74,850	Assuming 2 xmobe, one for pilot test Includes well devel., screen, steel case.
		Add. monitor, pts. PID and misc equi	ea day	5 10	\$ 2,00 \$ 12	5				Estimate Estimate
Disposal								\$	1,500	
Soil Disposal		Soil Disposal	drum	15	S 10	0 9	\$ 1,500	ļ		Assuming non-hazadous
Trench Volume/Area										•
Width:	1 ft	Equipment Costs		اما		١.		S	189,000	
Depth:	3.5 ft 550 ft	Submersible pump	ea	8	\$ 2,50					Estimate 1800
Length: Volume:	1,925 cf	Air Stripper Electronics & PLC	ea ea	1	\$ 160,00 \$ 7,50					Estimate, 1800 gpm Estimate
Volume.	71 cy	Valves, gauges, ho		1	\$ 1,50					Estimate
Surface Area:	550 sf									
	61 sy	System Installation	ı			1		s	57,080	
		Mob/Demob	ea	1	\$1,50) 5	1,500	1	,	Estimate
		Trenching	су	71	\$5.0	5 \$	360			Means 022 254 0050
		Pipe laying	In ft	550	\$13.0	5 5	7,178			Means 151 701 0550/026 686 2800
· ·		Well vault boxes	ea	8	\$1,20) \$	•			Estimate, concrete with spring cover
		Backfill	сy	71	\$17.2		-,			Means 022 204 0600
		Compaction	су	71	\$5.1		364			Means 022 204 0600
		Pavement Base	sy	61	\$5.2	- 1	-			Means 022 308 0100
		Reseeding	sy	61		2 \$				Means 029 304 0310
		Piping	lf	550	\$9.3		, .			Means 151 551 1880
		Mechanical	man hr	60	\$ 3	1 -	-,			Means Q-1 crew
		Electrical	ls	1	\$ 4,00 \$ 10,00		.,			Estimate for electrician
		Electrical supply Slab	ls	1	\$ 10,000 \$97.00		,			Estimate to provide power supply Means 033 130 4700
		Building	cy Is	3	\$15,00	1 -			4	Estimate, (needed for residen.area)
		Dunding	13		313,00		15,000			Estimate, (needed for residentatea)
	:	Subtotal	-		•	ŀ		\$	322,430	
		Contingency	ls	10%	\$ 322,43	S	32,243	\$	32,243	
		TOTAL				İ		\$	354,673	

COSTING1.XLS\Backup 8/21/97\5:18 PM