IETF Hackathon

Vector Commitment based Proof of Transit

IETF 118
4-5 November 2023
Prague, Czech Republic

Hackathon Plan

- We designed and implemented a new Proof-of-Transit mechanism
 - What is Proof-of-Transit: Proving that a packet has traversed a series of physical or virtual nodes, in a specific order.
 - Drafts involved: draft-ietf-sfc-proof-of-transit-08
 - What we achieved: Providing a working alternative, but more efficiency and security.

What got done

- Result: A working Proof-of-Transit solution
 - **New ideas:** It can help audit or monitor routing path.
 - New code (demo inside): https://github.com/liuchunchi/vcpot-demo
 - **New design:** Built on a newer cryptographic primitive:
 - **KZG polynomial commitment** (a construction to vector commitment)
 - As compared to: Shamir Secret Sharing in draft-ietf-sfc-proof-of-transit-08
 - New results:
 - Constant size of transit proof regardless of routing path length (24Byte)
 - Constant computation time of transit proof regardless of path length (1-2ms)

What we learned

• **Vector Commitment** is a interesting primitive to commit a routing path and verify actual execution result afterwards.

To OPSEC WG:

- Proof of Non Transit is hard, and we cannot do that.
- We re-distilled better use cases to be presented in SECDISPATCH
- To the concluded SFC WG:
 - We developed a SFC proof of processing solution after you closed, sorry

Wrap Up

Team members:

Peter (Chunchi) Liu

First timers @ IETF/Hackathon:

Peter (Chunchi) Liu

Contacts:

liuchunchi@huawei.com