Project 3D data onto a 2D subspace

6/6 points (100.00%)

Practice Quiz, 3 questions

Congratulations! You passed!

Next Item

For a vector
$$\mathbf{x}=\begin{bmatrix} 6\\0\\0\end{bmatrix}$$
 and the subspace U spanned by the basis vectors $\mathbf{b}_1=\begin{bmatrix} 1\\1\\1\end{bmatrix}$ and $\mathbf{b}_2=\begin{bmatrix} 0\\1\\2\end{bmatrix}$, which of the following statements are true?

$$\mathbf{b}_1=egin{bmatrix}1\\1\\1\end{bmatrix}$$
 and $\mathbf{b}_2=egin{bmatrix}0\\1\\2\end{bmatrix}$, which of the following statements are true?

You can use the formula slide that comes with the corresponding lecture.

	The projection matrix is	Γ0	0	0
		0	1	2
		0	2	4

Un-selected is correct

Γ		The rank of the projection matrix is 1
	_	The rank of the projection matrix is i

Un-selected is correct

The coordinates of the projected point with respect to
$${f b}_1, {f b}_2$$
 are ${f 5} \\ {-3}$.

Correct

Excellent job!

The coordinates of the projected point with respect to
$${f b}_1, {f b}_2$$
 are $egin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Un-selected is correct

Project 3D data onto a 2D subspace $\begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$

6/6 points (100.00%)

Practice Quiz, 3 questions

Correct

Well done.

The projection matrix is not symmetric.

Un-selected is correct

The projection matrix is symmetric.

Correct

Projection matrices are always symmetric.

The projection matrix is $\frac{1}{6}$ $\begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$

Correct

Well done!

The projection of ${f x}$ onto U is $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Un-selected is correct

1/1 points

2.

Project $\begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$ onto the subspace spanned by $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$.

You can use the formula slide that comes with the corresponding lecture.

 $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$

6/6 points (100.00%)

Practice Quiz, 3 questions

Correct

Absolutely! The original vector is already in the subspace, so the projection has no effect.

1/1 points

3.

1. Project $\begin{bmatrix} 12\\0\\0 \end{bmatrix}$ onto the subspace U_1 spanned by $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\2 \end{bmatrix}$.

2. Project the result from 1. onto the subspace spanned by

 $\begin{bmatrix} -10\sqrt{6} \\ -4\sqrt{6} \end{bmatrix}$. What $2\sqrt{6}$

is the final projection?

Hint: For step 2. you do not necessarily need to compute anything.

You can use the formula slide that comes with the corresponding lecture.

$$\begin{vmatrix} 5\\2\sqrt{6}\\-1\sqrt{6}\end{vmatrix}$$

0

$$\begin{bmatrix} 10 \\ 4 \\ -2 \end{bmatrix}$$

https://www.coursera.org/learn/pca-machine-learning/quiz/YF9xR/project-3d-data-onto-a-2d-subspace

Correct

Good job! The first projection already lies in the second subspace.

Therefore, the second projection does not do anything.

Project 3D data on to $\sqrt{6+1}$ subspace 6/6 points (100.00%)

0 5 5

Practice Quiz, 3 questions