WYZNACZANIE CZĘSTOTLIWOŚCI PODSTAWOWEJ GŁOSU

Karol Działowski

Zachodniopomorski Uniwersytet Technologiczny

19 października 2020

1 Wstęp

Celem zadania było wyznaczenie częstotliwości podstawowej głosu. Częstotliwość podstawowa głosu (ang. $fundamental\ frequency$) jest utożsamiana z wrażeniem wysokości dźwięku odbieranym przez nasz mózg. W publikacjach częstotliwość podstawową często oznacza się jako F_0 .

Wyznaczenie częstotliwości podstawowej można przeprowadzić przy zastosowaniu metody autokorelacji. Szacowanie wykonano na dostarczonych próbkach głosu (oznaczanych jako *a_C3_ep44.wab* oraz *a_C4_ugp44.wav*), dwóch własnych próbkach (*karol_a_1.wav* oraz *karol_a_2.wav*) a także próbkach syntetycznych 220.wav, 440.wav, 440cut.wav, 774.wav.

2 Wyznaczanie F_0 metodą autokorelacji

Wyznaczanie częstotliwości podstawowej za pomocą autokorelacji przy użyciu wbudowanych funkcji przedstawiono na listingu 1. Użyto tam funkcji xcorr do obliczenia autokorelacji oraz funkcji findpeaks do wyznaczenia lokalnych maksimów.

Efekty dla wszystkich wejściowych sygnałów dźwiękowych przedstawiono na wykresie 1.

Porównanie wyników przedstawiono w tabeli 1.

```
[s,Fs] = audioread(name);

len = min(1000, length(s));

scut = s(1:len);

xc = xcorr(scut);

xccut=xc(length(scut):end);

[pks, locs]=findpeaks(xccut);

[peak_value, pi] = max(pks);

peak_index = locs(pi);

10 = Fs/peak_index
```

Listing 1: Wyznaczanie F0.

Rysunek 1: Sygnały wejściowe. Porównanie wycinka sygnału z autokorelacją wraz z zaznaczonymi maksymami lokalnymi oraz wybranym punktem maksymalnym.

Nazwa pliku	Wyznaczona częstotliwość F_0	Rzeczywista częstotliwość	Błąd
220.wav	219.4030	220	0.5970
440.wav	436.6337	440	3.3663
440cut.wav	436.6337	440	3.3663
774.wav	760.3448	774	13.6552
a_C3_ep44.wav	137.8125	130.81	7.0025
a_C4_ugp44.wav	282.6923	261.64	21.0523
karol_a_1.wav	116.0526		
karol_a_2.wav	386.8421		

Tablica 1: Porównanie wyników otrzymanych w wyniku działania metody bazującej na autokorelacji z wynikami referencyjnymi.

2.1 Podsumowanie

Metoda autokorelacji przybliża częstotliwość podstawową w sposób zadowalający w przypadku analizowania wysokości dźwięku śpiewanego przez osobę – błędy wynoszą odpowiednio 7 i 21 Hz.

Zaobserwowano zwiększanie się błędu metody wraz z zwiększaniem częstotliwości.

3 Autokorelacja w dziedzinie częstotliwości

Częstotliwość podstawową można też wyznaczyć w dziedzinie częstotliwości za pomocą metody ACOLS. W tym celu należy zrealizować następujące kroki:

- 1. Pobranie fragmentu nagrania
- 2. Wyznaczenie widma pobranego fragmentu (fft)
- 3. Obliczenie wartości bezwzględnej widma
- 4. Logarytmowanie widma bezwzględnego
- 5. Autokorelacja
- 6. Oszacowanie położenia piku
- 7. Obliczenie częstotliwości F_0 jako f/T.

Działanie algorytmu przedstawiono na listingu 2.

```
[s,Fs] = audioread('220.wav');

ACOLS = xcorr(log(abs(fft(s))));

[pks, locs]=findpeaks(ACOLS);
[peak_value, pi] = max(pks);

peak_index = locs(pi);

f0 = Fs/peak_index
```

Listing 2: Wyznaczanie F0 w dziedzinie częstotliwościowej.

Algorytm jednak nie działa prawidłowo. Autokorelacja logarytmu widma bezwzględnego przyjmuje kształt dzwonu, którego maksimum nie przekłada się na częstotliwość fundamentalną. Z tego powodu nie porównano wyników obu metod wyznaczania częstotliwości podstawowej. Działanie metody przedstawiono na rysunku 2.

Rysunek 2: Wyznaczanie F_0 w dziedzinie częstotliwości dla dźwięku 220 Hz.