PROJECT REPORT

A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM

Submitted by PNT2022TMID39323

 Vishnu priya S
 422619104049

 Vigneshwaran B
 422619104047

 Satheesh kumar S
 422619104301

 Mahalakshmi A
 422619104028

TABLE OF CONTENTS

1 INTRODUCTION

- 1.1 PROJECT OVERVIEW
- 1.2 PURPOSE

2 LITERATURE SURVEY

- 2.1 EXISTING PROBEM
- 2.2 REFERENCES
- 2.3 PROBEM STATEMENT DEFINITION

3 IDEATION AND PROPOSED SOLUTION

- 3.1 EMPATHY MAP CANVAS
- 3.2 IDEATION & BRAINSTROMING
- 3.3 PROPOSED SOLUTION
- 3.4 PROBLEM SOLUTION

4 REQUIREMENT ANALYSIS

- 4.1 FUNCTIONAL REQUIREMENTS
- 4.2 NONFUNCTIONAL REQUIREMENTS

5 PROJECT DESIGN

- 5.1 DATA FLOW DIAGRAM
- 5.2 SOLUTION & TECHNICAL ARCHITECTURE
- 5.3 USER STORIES

6 PROJECT PLANNING AND SCHEDULING

- 6.1 SPRINT PLANNING AND ESTIMATION
- 6.2 SPRINT DELIVERY SCHEDULE

7 CODING & SOLUTIONING

8 TESTING

- 8.1 TEST CASES
- 8.2 USER ACCEPTANCE TSETING
- 8.2.1 DEFECT ANALYSIS
- 8.2.2 TEST CASE ANALYSIS

9 RESULTS

9.1 PERFORMANCE METRICS

10 ADVANTAGES & DISADVANTAGES

10.1 ADVANTAGES
10.2 DISADVANTAGES

11 CONCLUSION

12 FUTURE SCOPE

APPENDIX

SOURCE CODE GITHUB PROJECT DEMO

CHAPTER 1 INTRODUCTION

1.1 PROJECT OVERWVIEW

Recognition is identifying or distinguishing a thing or an individual from the past experiences or learning. Similarly, Digit Recognition is nothing but recognizing or identifying the digits in any document. Digit recognition framework is simply the working of a machine to prepare itself or interpret the digits. Handwritten Digit Recognition is the manually written digits from various sources like messages, bank cheques, papers, pictures and so forth and in various situations for web based handwritting recognition on PC tablets, identifying number plates of vehicle,s handling bank cheques, digits entered in any forms etc.

Machine Learning provides various methods through which human efforts can be reduced in recognizing the manually written digits. Deep Learning is a machine learning method that trains computers to do what easily falls into place for people: learning through examples. With the utilization of deep learning methods, human attempts can be diminished in perceiving, learning, recognizing and in a lot more regions. Using deep learning, the computer learns to carry out classification works from pictures or contents from any document. Deep Learning models can accomplish state-of-art accuracy, beyond the human level performance. The digit recognition model uses large datasets in order to recognize digits from distinctive sources.

The task of handwritten digit recognition, using classifier, has extraordinary significance and use such as-online digit recognition on PC tablets, recognize zip codes on mail, processing bank check amounts, numeric sections in structures filled up by hand and so on. There are diverse challenges faced while attempting tob solve this problem. The handwritten digits are not always of the same size, thickness, or orientaion and position relative to the margins. The main objective was to actualize a pattern charecterization method to perceive the handwritten digits provided in the MINIST data set of images of handwritten digits (0-9).

1.2 PURPOSE

The aim of a handwritten digit recognition system is to convert handwritten digits into machine readable formats. The main objective of this work is to ensure effective and reliable approaches for recognition of handwritten digits and make banking opreations easier and error free. Handwritten charecter recognition is one of the practically important issue in pattern recognition applications. The applications of digit recognition includes in postal mail sorting, bank check processing, form data entry, etc.

CHAPTER 2

LITERATURE SURVEY

2.1 EXISTING PROBLEM

The fundamental problem with haandwritten digit reconition is that handwritten digits do not always have the same size, width, orientation, and margins since they vary from person to person. Additionally, there would be issues with identifying the numbers because of similarities between numerals like 1 and 7,5 and 6,3 and 8,2 and 5,2 and 7,etc. Finally, the individuality and variation of each individual's handwrting influence the structure and appearance of the digits.

2.2 REFERENCES

Handwritten Digit Recognition using Machine and Deep Learning Algorithms (2021)

Ritik Dixit, Rishika Kushwah, Samay Pashine

This paper provides a reasonable understanding of machine learning and deep learning algorithms like SVM, CNN, and MLP for handwritten digit recognition. It further more gives information about which algorithm is efficient in performing the task of digit recognition. In further sections of this paper, we will be discusing the related work that has been done in thuis field followed by the methodology and implementation of all the three algorithms for the fairer understanding of them. Next, it presents the conclusion and result bolstered by the work we have done in this paper. Moreover, it will also give you some potential future enhancements that can be done in this field.

Handwritten Digit Recognition using Convelutional Neural Networks (2022)

Sachin S Panchal

This paper think about the exhibition of Convolution Neural Network (CNN). Results demonstrate that CNN classifier beat over the Neural Network with critical improved computational effectiveness without relinquishing execution. Handwritten digit recognition can be performed using the convolutional neural network from machine learning. using the MNIST(Modified National Institute of Standards and Techonologies) database and compiling with the CNN gives the basic structure of my project development. this work is to provide realistic and robust approaches for confirming translated mathematics by examining several current plan models.

Hybrid CNN-SVM classifier for Handwritten Digit Recognition (2020)

Savitha Ahlawata, Amit Choudharyb

The aim of this paper is to develop a hybrid model of a powerful Convolutional Neural Network (CNN) and supports Vector Machine (SVM) for recognition of handwritten digits from MNIST dataset. The proposed hybrid model combines the key properties of both the classifiers. In the proposed hybrid model, CNN works as an automatic feature extractor and SVM works as a binary classifier. The MNIST dataset of handwritten digits used for training and testing the algorithm adopted in the proposed model.

Effective Handwritten Digit Recognition using Deep convolutoinal Neural Network (2020)

Yellapragada SS Bharadwaj, Rajaram P, Sriram V.P, Sudhakar S, Kolla Bhanu Prakash

A simple neural network approach towards handwritten digit recognition using convolutional. With machine learning algorithms like KNN, SVM/SOM, recognizing digits is considered as one of the unsolvable tasks due to its distinctiveness in the style of writting. In this peper, convolutional Neural Networks are implemented with an MNIST dataset of 70000 digits with 250 distinct forms of writtings.

2.3 PROBLEM DEFINITION

The handwritten digits are not always of the same size, width, orientation and justified to margins as they differ from writing of person to preson, so the general problem would be while classifying the digits due to the similarity between digits such as 1 and 7, 5 and 6, 3 and 8,2 and 5,2 and 7,etc. This problem is faced more when many people write a single digit with a varity of different handwrittings. Lastly, the uniqueness and varity in the handwritingds of different individuals also influence the formation and appearance of the digits.

CHAPTER 3
IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

3.2 IDEATION & BRAINSTROMING

3.3 PROPOSED SOLUTION

PROBLEM STATEMENT

In this digital world, everything including documents, notes is kept in digital form. The requirement of converting these digital documents into processed information is in demand. Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort. Hence, there comes a need for handwritten digit recognition in many real-time applications.

SOLUTION DESCRIPTION

Convolutional Neural Networks (CNN) becomes one of the most appealing approaches and has been an ultimate factor in a variety of recent success and challenging machine learning applications such as challenge ImageNet object Detection image segmentation and face recognition. Therefore, we choose CNN for our challenging tasks of image classification. We can use it for handwriting digits recognition which is one of high academic and business transactions. There are many applications of handwriting digit recognition in our real life purposes. Precisely, we can use it in banks for reading checks, post offices for sorting letter, and many other related works.

MNIST database

The MNIST database (Modified National Institute of Standards and Technology database)is a handwritten digits dataset. We can use it for training various image processing systems[11]. The database is also widely used for training and testing in the field of machine learning. It has 60,000 training and 10,000 testing examples. Each image has fixed size. The images are of size 28*28 pixels. It is a database for people who want to try learningtechniques and patternrecognition methods on real-world data while spendingminimal efforts on pre-processing and formatting. We will use this database in our experimen

Convolutional Neural Networks

Convolutional neural networks are deep artificial neural networks. We can use it to classify images (e.g., name what they see), clusterthem by similarity (photo search) and perform object recognition within scenes. It can be used to identify faces, individuals, street signs, tumors, platypuses and many other aspectsof visual data. The convolutional layer is the core building block of a CNN. The layer's parameters consist of a set of learnable filters (or kernels) which have a small receptive field but extend through the full depth of the input volume. During the forward pass, each filter is convolved across the width and height of the input volume, computing the dot product, and producing a 2-dimensional activation map of that filter. As a result, the network learns when they see some specific type of feature at some spatial position in the input. Then the activation maps are fed into a downsampling layer, and like convolutions, this method is applied one patch at a time. CNN has also fully connected layer that classifies output withone label per node.

Methodology

Deep Learning has emergedas a central tool for self-perception problems like understanding images, a voice from humans,robots exploring the world. We aim to implement the concept of Convolutional Neural Network for digit recognition. Understanding CNN and applying it to the handwritten digit recognition system is the target of the proposedmodel. Convolutional Neural Network extracts the features maps from the 2D images. Then it can classify the images using the features maps. The convolutional neural network considers the mapping of image pixels with the neighbourhood space rather than having a fully connected layer of neurons. The convolutional neural network is a powerfultool in signal and image processing. Even in the fields of computer vision such as handwriting recognition, natural object classification, and segmentation, CNN has been much better tool compared to all other previously implemented tools. The broaderaim may betodevelop a machine learningmodel that could recognize people's handwriting.

Libraries Required

Make sure that the followinglibraries are installed on your workingmachine before proceeding

further

- Keras
- Tensorflow
- Numpy

NOVELTY

The handwritten digit recognition is the capability of computer applications to recognize the human handwritten digits. It is a hard task for the machine because handwritten digits are not perfect and can be made with many differentshapes and sizes. The handwritten digit recognition system is a way to tackle this problem which uses the image of a digit and recognizes the digit present in the image. Handwritten Digit Recognition is the capability of a computer to fete the mortal handwritten integers from different sources like images, papers, touch defenses, etc. And classify them into 10 predefined classes (0-9).

This is the existing method along with this we add some features to make our project unique among them. We create a model that recognize multiple-digits present in the image in a offline mode. The future scope of this method is, we can recognize number in License plate, bank cheques and postal mail sorting.

We get a predicted result in two mannerone is, the recognized digits is showned in the interface and the another manner is, we can get a predicted result through voice mode. This means the model tell the multiple-digit in voice mode. This feature helps the old age people they are difficult in understanding handwritten digits, blind people and who contain eye sight issues.

SOCIAL IMPACT

Digit recognition plays an role in the modern world. 'Digits'are a part of our everyday life, be it License plate on our cars or bike, the price of a product, speed limit plate on our cars or bike, the price of a product, speed limit on a road, or details associated with a bank

account. In the case of a text which is unclear, it is easier to guess the digits in comparison to the alphabets.

Machine Learning and Deep Learning are reducing human efforts in almost every field. Moreover, a solution achieved using ML and DL can power various applications at the same time, thereby reducing human effort and increasing the flexibility to use the solution. One such solution is a handwritten digit recognition system that can be used in postal mail sorting, bank check processing, form data entry, etc.

- It can solve more complex problems and makes humans job easier. This type of system can be widely use in the world to recognize zip code or postal code for mail sorting.
- In banking sector too where more handwritten numbers are involved like accountnumber, figure of cash and checks
- Inbanking system it is used to recognizing written digits on cash deposit/withdrawal/and other transaction which is also able to recognize the handwritten account number and amount on the cash deposit slip and thus automate the cash deposit process at the bank counter.
- Postal department and courier services can easily find the digitswritten.
- Old people who will have eye sight issues with handwritten digits.

BUSINESS MODEL

Digit recognition plays an important roles in many places. It is independent of environment, while using the recognizer we don't need the network. The benefits of hand written digit recognizer is high. In banking sector, it is very useful. It is used to recognize the account number, figure of cash and checks. It is also used to recognize the written digits on

cash, deposit /withdrawal. So, the requirement of manpower is less, because the machine done the work of bank employees. So, we can earn the profit by using the hand written digit recognizer.

The hand written digit recognizer is used in postal department it recognize the pincodes, zip codes. It reduce the required amount of man power. It gives more accuracy. By using this handwritten digit recognizer postal department earn the profit /revenue. Because of the required man power is less and it also gives the better accuracy. This recognizer is widely used in many places, such as mail sorting, form data entry etc... Whenever the demand arises for digital recognizer, on that place we can use it and earn the profit by this handwritten digit recognizer.

SCALABILITY OF SOLUTION

To make the path toward digitalization clearer by providing high accuracy and faster computational for recognizing the handwritten digits. The present Neural network as classifier, MNIST as dataset with suitable parameters for training and testing and frame work for hand writtendigit recognition. The aforementioned systemsuccessfully imparts accuracy up to 99.20% which is higher than formally proposed schemes. In addition, the proposed system reduces computational time significantly for training and testing due to which algorithm become efficient earning parameters in designing a CNN that leads us to reach a new absolute record in classifying MNIST handwrittenThus the CNN architecture is proposed in order to achieve accuracy even better than that of ensemblearchitectures, along with reduced operational complexity and cost. Moreover, we also present an appropriate combination of I digits. We carried out extensive experiments and achieved a recognition accuracy of 99.87% for a MNIST dataset.

3.4 PROBLEM SOLUTION FIT

CUSTOMER SEGMENTS

This projectis helpful for recognizing a numbers to license place,

This is used for Postal coal scruog or postal deservoirs.

Abo Used a Rack chaque processing

CUSTOMER LIMITATIONS

The challenge to bandwisse digst recognision is crosply caused by the writing style variations of every stogle individual.

Most of the bandwritten recognition is working to collected the bases controlled the work access to order to recognize a digs.

AVAILABLE SOLUTIONS

Mac of the bradwis up Peogotuan system working under chemicalmedia

And they recognize single dig a only.

PROBLEMS / PAINS

tura a difficult cask to recogniza the different bandworten of secole.

It can recognize a digit to blurred to age with less accuracy.

They and a sable reserve, concernor for bond written recognition system

PROBLEM ROOT / CAUSE

The challenge to bandwritten digit recognition is oracly caused by the writting style variation of every angle to dividual.

To ecurrent ecuve and reliable approached for recognition of band written digits and order, where the conditions of for band written recognition that place to cooke the operations ecure and error (res

BEHAVIOR

The exoting solution for bondwhiten recognition by such is board on colline model. Souther, the user peed good on, work

Sometime the model predict with less expiresy.

TRIGGERS TO ACT

Handwritten digit recognition of total to recognize the digits which are written by the band. Govern ally to bandwritten recognition by our recognition of the digital control of the conduction of the conduction of the conduction of the conduction of the digital control of th

EMOTIONS

This project is very belgful for Blind peoples

This project is helpful for old age people who smeal have eye scensous with bandwine digits.

YOUR SOLUTION

Wabasa building awabasa dauramga sa bandwa wa digua in dauplooded image

We create a model that recognize multipledigits present to the energy to politice mode.

Weige, a predicted routk to two oracoer coets, there cognized digital to showed to the tour face and the souther concerns, whose get a predicted routk through voice code.

is one widely used to the automatic processing of back chaques, Postal address, to mobile phones aut

CHANNELS OF BEHAVIOR

is sells the gradiesed nouts to voice forms. So is a verybelgful for blind peoples and old age gasplio who are all baveleyes is a suite.

is recognized using ledges to these constants to future for Back they us processing, Number placer ecognisms and Proced could active

CHAPTER 4 REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

FR.NO	FUNCTIONAL REQUIREMENTS(EPIC)	SUB REQUIREMENTS(STORY/SU B-TASK)
FR-1	User Registration	Registration through Form Registration through Gmail
FR-2	User confirmation	Confirmation via Email confirmation via OTP
FR-3	Input images	Handwritten digit recognition refers to a computers capacity to identify human handwritten digits in a form of input image and classify them into 10 predefined classes (0-9)
FR-4	Voice	We can hear a predicted results in a voice mode.
FR-5	Prediction	The output digit will be displayed in a user interface. Our model gives a good accuracy

NON-FUNCTIONAL REQUIREMENTS

FR NO.	NON-FUNCTIONAL	DESCRIPTION
	REQUIREMENTS	
NFR-1	Usability	Handwritten digit recognition is one of the practically important issues in pattern recognition applications. The applications of digit recognition include postal mail sorting, bank check processing, form data entry etc.
NFR-2	Security	In registering, security (or PC security) is the strategies for guaranteeing that information put away in a PC can't be perused or bargained by any people without approval. Most PC efforts to establish safety include information encryption and passwords. Information encryption is the interpretation of information into a structure that is indiscernible without a disentangling system. A watchword is a mystery word or expression that gives a client access to a specific project or framework.
NFR-3	Reliability	Unwavering quality is a property of any PC related part (programming, or equipment, or a system, for

		instance) that reliably performs as by its
		determinations. It has for
		some time been viewed as
		one of three related qualities
		·
		that should be considered
		when making, purchasing, or
		utilizing a
		PC item or part.
NFR-4	Performance	Execution relying upon the
		connection, high PC
		execution might include one
		or a greater amount ofthe
		accompanying: short reaction
		time for a given bit of work.
		Execution is described by the
		measure of valuable of work
		achieved by a PC framework
		orPC system contrasted with
		the time and assets
		utilized.
NFR-5	Availability	In PC framework and
		systems administration,
		accessibility is a general
		term that is utilized to
		depict the measure of time
		over a one-year periodthat
		the framework assets is
		accessible with its all
		assets are viewed as fruitful.
NFR-6	Scalability	Scalability is the measure
		of a system's ability to
		increase or decrease in
		performance and cost in
		response to changes in
		application and system
		processing demands.
		F

CHAPTER 5

PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

SOLUTION & TECNICAL ARCHITECTURE

ABSTRACT

In this digital world, everything including documents, notes is kept in digital form. The requirement of converting these digital documents into processed information is in demand. Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progressin the field of science and technology, everything is being digitalized to reduce human effort. Hence, there comes a need for handwritten digit recognition in many real-time applications. We create a model that recognize multiple-digits present in the image in offline mode. The future scope of this method is, we can recognize number in License plate, bank cheques and postal mail sorting. We get a predicted result in two manner one is, the recognized digits is showed in the interface and the anothermanner is, we can get a predicted result through voicemode. This means the model tell the multiple-digit in voice mode

TECHINICAL ARICHITECTURE

METHODOLOGY

Deep Learning has emergedas a central tool for self-perception problemslike understanding images, a voice from humans, robots exploring the world. We aim to implement the concept of Convolutional Neural Network for digit recognition. Understanding CNN and applying it to the handwritten digit recognition system is the target of the proposed model. Convolutional Neural Network extracts the features maps from the 2D images. Then it can

classify the images using the features maps. The convolutional neural network considers the mapping of image pixels with the neighbourhood space rather than having a fully connected layer of neurons. The convolutional neural network is a powerful tool in signal and image processing. Even in the fields of computer vision such as handwriting recognition, natural object classification, and segmentation, CNN has been much better tool compared to all other previously implemented tools. The broader aim may be to develop a machine learning model that could recognize people's handwriting.

CONVOLUTIONAL NEURAL NETWORK

Convolutional neural networks are deep artificial neural networks. We can use it to classify images (e.g., name what they see), cluster them by similarity (photo search) and perform object recognition within scenes. It can be used to identify faces, individuals, street signs, platypuses and many other aspects of visual data. The convolutional layer is the core buildingblock of a CNN. The layer's parameters consist of a set of learnable filters(or kernels) which have a small receptive fieldbut extend throughthe full depthof the input volume. Duringthe forward pass, each filter is convolved across the width and height of the input volume, computing the dot product, and producing a 2-dimensional activation map of that filter. As a result, the network learns when they see some specific type of feature at some spatial position in the input. Then the activation maps are fed into a down samplinglayer, and like convolutions, this method is applied one patch at a time. CNN has also fully connected layer that classifies output with one label per node. Convolutional neural networks are composed of multiple layers of artificial neurons. Artificial neurons, a rough imitation of their biological counterparts, are mathematical functions that calculate the weighted sum of multipleinputs and outputs an activation value. When you input an image in a Conv Net, each layer generates several activation functions that are passed on to the next layer.

The first layer usually extractsbasic features such ashorizontal or diagonal edges. This output is passed on to the next layer which detects more complex features such as corners or combinational edges. As we move deeper into the network it can identify even more complex

features such as objects, faces, etc.

STEPS TO IMPLEMENT HANDWRITTEN DIGIT RECOGNITION

Import the libraries and load the dataset

First, we are going to import all the modules that we are going to need for training our model. The Keras library already contains some datasets and MNIST is one of them. So we can easily import the dataset and start working with it. The **mnist.load_data()** method returns us the trainingdata, its labels and also the testing data and its labels

Pre-process the data

The image data cannot be fed directly into the model so we need to **perform some operations** and process the data to make it ready for our neural network. The dimension of the training data is (60000,28,28). The CNN model will require one more dimension so we reshape the matrix to shape (60000,28,28,1).

Create the model

Now we will **create our CNN model** in Python data science project. A CNN model generally consists of convolutional and pooling layers. It works better for data that are represented as grid structures, this is the reason why CNN works well for image classification problems. The dropout layer is used to deactivate some of the neurons and while training, it reduces offer fitting of the model. We will then compile model with the Adadelta optimizer.

Train the model

The **model.fit() function** of Keras will start the training of the model. It **takes thetraining data, validation data, epochs, and batch size.** It takes some time to train the model. After training, we save the weightsand model definition in the 'mnist.h5' file.

Evaluate the model

We have 10,000 images in our dataset which will be used to **evaluate how good our model works**. The testing data was not involved in the training of the data therefore, it is new data for our model. The MNIST dataset is well balanced so we can get around 99% accuracy.

Create GUI to predict digits

Now for the GUI, we have created a new file in whichwe **build an interactive window to draw digits on canvas** and with a button, we can recognize the digit. The Tkinter library comes in the Python standard library. We have created a function **predict_digit()** that takes the image as input and then uses the trained model to predict the digit. Then we **create the App class** which is responsible for building the GUI for our app. We create a canvas where we can draw by capturing the mouse event and with a button, we trigger the predict_digit() function and display the results.

DATASET

In this paper, we used the MNIST database consisting of offline handwritten digits ranging from 0-9. The database was constructed from Special Database 3 (SD-3) and Special Database1 (SD-1) that contain binary images of handwritten digits.SD-3 was collected among Census Bureau employees, while SD-1 was collected among highschool students. For the results to be independent of both datasets, MNIST dataset was built by mixing NIST SD SD-3. The total number of digit imagesamples (70,000), the total numberfor training (60,000) and testing (10,000), and the subtotal number for each digit are shown in table 1. Each digit is a gray-level fixed-size imagewith a size of 28 x 28 (or 784 pixels) in total as the features.

5.3 USER STORIES

USER TYPE FUNCT	ION USER	USER	ACCEPTAN	PRIORITY	RELEASE
AL	STORY	STORY/TA	CE		
REQUI	REM NUMBER	SK			

	ENTS					
Customer(mobile user)	Home	USN-1	As a user,I can access the instruction in the home page and read the instruction	I can access my instruction and registerati on page	Low	Sprint-1
	Registrati	USN-2	As a user, I can register for the website by entering my email, password, and confirming my password.	I can able to register as a new user	High	Sprint-1
	Login	USN-3	As a user, I can login into the application by entering email,& password	I can access my dashboard by login	High	Sprint-2
	Upload image	USN-4	As a user, I can upload a handwritt en digit image into the website	I can upload the handwritt en digit image	High	Sprint-3
	Prediction	USN-5	The inbuild model try to predict	I can get the result in two types	High	Sprint-3

	Result in a voice mode	USN-6	the digits present in the image As a user, If I want the result in the voice mode	either it a voice mode or text mode with good accuracy I can get the result in voice mode	Medium	Sprint-4
	Result in a view mode	USN-7	As a user, I can get the result in a text mode	I can see the predicted result in my interface	High	Sprint-4
Customer(web user)	Home	USN-8	As a user, I can access the instruction in the home page	I can access my istruction and registation page	Low	Sprint-1
	Registrati	USN-9	As a user, I can register for the wesite by entering my email, password, and confirming my password	I can able to register as a new user	High	Sprint-1
	Login	USN-10	As a user, I can login into the website by entering	I can access my website by login	High	Sprint-2

		the email & password			
Upload image	USN-11	As a user, I can upload handwritt en digit image in ton the website	I can upload the handwrityt en image	High	Sprint-3
Prediction	USN-12	The inbuild model try to predict the digit present in the image	I can get theresult in two types either it a voice mode or a text mode	High	Sprint-3
Result in voice mode	USN-13	As a user, If I want the result in the voice mode I can get the result voice mode	I can get the result in voice mode	Medium	Sprint-4
REsult in view mode	USN-14	As a user, I can get the result in a text mode	I can see the predicted result in my interface	High	Sprint-4

CHAPTER 6 PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTAMATION

Sprint	Functional requiremen ts	User story number	User story/Task	Story points	Priority	Team members
Sprint-1	Data collection and pre- processing	USN-1	As a user, I can upload any kind image with the preprocessing step is involved in it	10	High	S Satheesh kumar, S Vishnu priya
		USN-2	As a user, I can upload the image in any resolution	10	High	A Mahalaksh mi, S Satheesh Kumar
Sprint-2	Building the machine learnin g model	USN-3	As a user, I will get a application with ML model whichn provides high accuracy of recognized handwritt en digit	10	Medium	A Mahalaksh mi, S Vishnu priya
		USN-4	As a user, I can pass the handwritt en digit image for recognize the digits	10	Medium	B Vigneshwa ran, S Vishnu priya
Sprint-3	Application	USN-5	As a user, I	5	High	Α

	building		access and			Mahalaksh
			read the			mi, B
			instruction			Vigneahwa
						ran
		USN-6	As a user, I	2	Medium	Α
			can use the			Mahalaksh
			next button			mi, S
			to navigate			Satheesh
			to the next			Kumar, S
			page			Vishnu
						priya
		USN-7	As a user, I	6	High	В
			can upload			Vigneshwa
			the			ran, S
			handwritt			Satheesh
			en digit			Kumar, A
			image in			Mahalaksh
			the website			mi
		USN-8	As a user, I	7	Medium	S Vishnu
			can see the			priya, B
			predicted /			Vigneshwa
			recognized			ran
			digits in the			
			application			
Sprint-4	Train and	USN-9	As a user, I	20	High	S Vishnu
	deployme		can access			priya, S
	nt of model		the web			Satheesh
	in IBM		application			Kumar, B
	cloud		and make			Vigneshwa
			the use of			ran
			the product			
			from			
			anywhere			

6.2 SPRINT DELIVARY SCHEDULE

SPRINT	TOTAL	DURATION	SPRINT	SPRINT	STORY	SPRINT
	STORY		START	END DATE	POINTS	RELEASE
	POINTS		DATE		COMPLET	DATE(DATE
					ED (AS ON	ACTUAL)
					PLANNED	
					DATE)	
Sprint-1	20	6 days	24 oct	29 oct	20	29 oct
			2022	2022		2022
Sprint-2	20	6 days	31 oct	05 Nov	20	05 Nov
			2022	2022		2022
Sprint-3	20	6 days	07 Nov	12 Nov	20	12 Nov
			2022	2022		2022
Sprint-4	20	6 days	14 Nov	19 Nov	20	19 Nov
			2022	2022		2022

CHAPTER 7 CODING AND SOLUTIONING

```
#import the packages
from flask import Flask, render_template,request
import tensorflow as tf
import numpy as np
from PIL import Image
from tensorflow.keras.models import load_model

app=Flask(_name__,template_folder='template')

#index page load
@app.route("/")
@app.route("/index")
def home():
    return render_template("index.html")

#load the main page
@app.route("/main",methods=['GET'])
def main():
    return render_template("main.html")

# get the image in app.py and predict the image
@app.route("/main",methods=['POST'])
def upload():

# already trained model as been save this code load the model here

| model = load_model('model/mnistCNN.h5')
```

```
#image is preprocessing and predicte the image
    imagefile = request.files['imagefile']
    if imagefile:
        img = lmage.open[request.files['imagefile'].stream].convert("L")
        img = image.open[request.files['imagefile'].stream].convert("L")
        img = imge.open[request.files['imagefile']].stream].convert("L")
        img = imge.open[request.files['imagefile']].stream].convert["L"]
        img = imge.open[request.files['imagefile']].stream].convert["L"]
        img = image.open[request.files['imagefile']].stream].convert["L"]
        imgerial = imagefile =
```

CHAPTER 8 TESTING

8.1 TEST CASES

Test case ID	Feature Type	Compon ent	Test scenario	Pre Requisi te	Steps to execute	Expected Result	Actual Result	status
HP_TC_O O1	UI	Home Page	Verify UI elements in the Home page	Need network access, need browser	1. Enter into the website A Novel Method For Handwrit ten Digit	The home page must be displayed properly	Working as expected	Pass

					Recogniti on System. 2. The instructi on will show about how to use this website.			
					3. The next button will show to navigate to the next page(Rec ognition)			
HP_TC_O O2	UI	Home page	Check if the UI elemen ts are display ed properly in different screen sizes	Need network access, need browser	1. Enter into the website A Novel Method For Handwrit ten Digit Recogniti on System. 2. The instructi on will show about how to use this website.	The home page must be displayed properly	Working as expected	Pass

					3. The			
					next			
					button			
					will show			
					to			
					navigate			
					to the			
					next			
					page(Rec			
					ognition)			
HP_TC_O	Function	Home	Check if	Need	1. Enter	The next	Working	Doos
03	al		the next	network	into the	button	as	Pass
03	al	page	button in	access,	website	will work	expected	
			the	need	A Novel	properly,	expected	
			Home	browser	Method	using		
			page is	חוסאאכו	For	this we		
			working		Handwrit	can		
			properly		ten Digit	navigate		
			property		Recogniti	to the		
					on	next		
					System.			
					Jystein.	page		
					2. The			
					instructi			
					on will			
					show			
					about			
					how to			
					use this			
					website.			
					3. By			
					clicking			
					next			
					button			
					we can			
					navigate			
					to the			
					next			
					page(Rec			
					ognition)			
115 = 5			.,					
HP_TC_O		Recogniti	Verify UI	Need	1. Using	The	Working	

O4	UI	on page	elements in the Home page	network access, need browser, handwrit ten digit image in the local desk.	next button in the home page navigate to the recogniti on page. 2. Using choose file option select a handwrit ten digit image in the local desktop. 3. Using predict image button we can submit our input it will navigate to the next page and shows the predict	choose file button and predict image button must display properly.	as expected	Pass
HP_TC_O O5	Function al	Recogniti on page	Verify the choose file	Need network access, need	ed result. 1. Using next button in the	Using choose file option	Working as expected	Pass
			option work	browser, handwrit	home page	we can select		

			properly	ten digit	navigate	input		
				image in	to the	image		
				the local	recogniti	from the		
				desk.	on page.	local		
					2. Using	desk.		
					choose			
					file			
					option			
					select a			
					handwrit			
					ten digit			
					image in			
					the local			
					desktop.			
					3. Using			
					predict			
					image			
					button			
					we can			
					submit			
					our input			
					it will			
					navigate			
					to the			
					next			
					page and			
					shows			
					the			
					predict			
					ed result.			
HP_TC_O	Function	Recogniti	Verify	Need	1. Using	Ву	Working	Pass
06	al	on page	the	network	next	clicking	as	
			predict	access,	button in	predict	expected	
			image	need	the	image		
			button	browser,	home	button		
			work	handwrit	page	we can		
			properly.	ten digit	navigate	navigate		
				image	to the	to the		
				must be	recogniti	predict		
				selected	on page.	ed result		
				from the				

local 2. Using page. system. choose file option select a handwrit ten digit image in the local	
file option select a handwrit ten digit image in	
select a handwrit ten digit image in	
select a handwrit ten digit image in	
ten digit image in	
image in	
image in	
desktop.	
3. Using	
predict	
image	
button	
we can	
submit	
our input	
it will	
navigate	
to the	
next	
page and	
shows	
the	
predict	
ed result.	
HP_TC_O UI Predict Verify Need 1. Click The Working P	Pass
O7 ed result. the network the predict as	
predict access, predict ed result expected	
ed result need image page	
image is browser, button in Must be	
shown handwrit the declared	
property ten digit recogniti	
in the image on page.	
graph. must be 2. It will	
selected	
If off the	
local predict	
system. system. ed result	
page	
Page	

					3. The predict ed digit is show in the graph like structur e. 4. In the Navbar there is two option Home and recogniti on using this button we will navigate to the respecti			
HP_TC_O O8	Function	Predict ed result.	Verify the navigati on button present in the page work properly	Need network access, need browser, handwrit ten digit image must be selected from the local system.	ve page . 1. The Home button present in the page can used to navigate to the Home page 2. The Recogniti on button present	Home and Recogniti on button present in the page must work properly.	Working as expected	Pass

			in the			
			page can			
			used to			
			navigate			
			to the			
			Recogniti			
			on page.			
					1	

8.2 USER ACCEPTANCE TESTING

8.2.1 DEFFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not					

Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1
won't Fix	1	0	1	0	2
Total	6	1	4	3	14

8.2.2 TEST CASE ANALYSIS

Section	Total Tested	Not Tested	Fail	Pass
Print Engine	0	0	0	0
Client Application	10	0	3	7
Security	2	0	1	1
Outsource shipping	0	0	0	0
Exception Reporting	2	0	0	2
Final report output	0	0	0	0
Version control	0	0	0	0

CHAPTER 9 9.1 PERFORMANCE METRICS

S.No.	Parameter	Values	Screenshot

1	Model summary		A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM HOME
			Choose file No file chosen Redict image
			A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM RECOGNITION HOME
			RECOGNIZED DIGIT - 3
			0 1 2 3 4 5 6 7 8 9
2	Accuracy	Training Accuracy - 95%	
		Validation Accuracy-88%	

CHAPTER 10 ADVANTAGES & DISADVANTAGES

ADVANTAGES

- Reduces manual work
- More accurate than average human
- Capable of handling a lot of data
- Can be used anywhere from any device

DISADVANTAGES

- Cannot handle complex data
- All the data must be in digital format
- Requires a high performance server for faster predictions.
- Prone to occasional errors

CHAPTER 11

CONCLUSION

This project demonstrated a web application that uses machine learning to recognize handwritten numbers. Flask, HTML, CSS and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposed project is scalable and can easily handle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely useful in real-world scenarios such as recognizing number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on. There is so much room for improvement, which can be implemented in subsequent versions.

CHAPTER 12
FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement. Some of the improvements that can be made to this project are as follows:

- Add support to detect from digits multiple images and save the results
- Add support to detect multiple digits
- Improve model to detect digits from complex images
- Add support to different languages to help users from all over the world

This project has endless potential and can always be enhanced to become better.

Implementing this concept in the real world will benefit several industries and reduce the workload on many workers, enhancing overall work efficiency.

APPENDIX

SOURCE CODE

HTML PAGE

Index.html

```
<div class ="con-body">
   <div class = "instruction">
       <h1>INSTRUCTION</h1>
           1.On the home page, you have a next button. You will click the next button to navigate to the recognition
              page.<br><br>>
               2.On the recognition page, you will have an upload option where you can upload the digit image in the
               3.After uploading the image, click the "recognition" button. Then you will get a predicted result.<br/>
               4.On this page you have an option that gives the result in voice mode.<br/>
<br/>br>
               5. You have another option to continue the recognition. If you click the continue button, it will
               redirect to the recognition page.
               <a href="{{ url_for('main') }}"><button type = "button">NEXT<img</pre>
                  src="{{url_for('static',filename='image/arrow.png')}}"></button></a>
   <div class="con-2i">
       <img src="{{url_for('static',filename='image/bodyimg.jpeg')}}" alt="number image" class="num_img">
       <div class="color-box"></div>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/js/bootstrap.bundle.min.js"</pre>
integrity="sha384-OERcA2EqjjCMA+/3y+gxIOqMEjwtxJY7qPCqsdltbNJuaOe923+mo//f6V8Qbsw3" crossorigin="anonymous"></script>
```

main.html

Zero.html

One.html

```
<!DOCTYPE html>
<!DOCTYPE html>
<html lang="en">
   <meta charset="UTF-8">
   <meta http-equiv="X-UA-Compatible" content="IE=edge">
   <meta name="viewport" content="width=device-width, initial-scale=1.0">
   <title>Predicted result</title>
   <!--Link external stylesheet styles.css present in static file-->
   <link rel="stylesheet" href="{{url_for('static',filename='css/styles.css')}}">
   <!-- Link CSS Bootstrap Stylesheet -->
   <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet">
       <label class="logo">A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM
          <!--Using this Home button in navbar we can return to home page-->
          <!--Using this Recognition button in navbar we can return to recognition page-->
          <!--This home function call index.html using app.py-->
          <a class="active" href="{\{ url_for('home') \}}">Home</a>
          <!--This main function call main.html using app.py-->
```

Two.html

```
<!DOCTYPE html>
<!DOCTYPE html>
<html lang="en">
<head>
   <meta charset="UTF-8">
   <meta http-equiv="X-UA-Compatible" content="IE=edge">
   <meta name="viewport" content="width=device-width, initial-scale=1.0">
   <title>Predicted result</title>
   <!--Link external stylesheet styles.css present in static file-->
   <link rel="stylesheet" href="{{url_for('static',filename='css/styles.css')}}">
   <!-- Link CSS Bootstrap Stylesheet -->
   <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
   (nav)
        <label class="logo">A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM</label>
           <!--Using this Home button in navbar we can return to home page-->
           <!--Using this Recognition button in navbar we can return to recognition page-->
           <!--This home function call index.html using app.py-->
           <a class="active" href="{\{ url_for('home') \}}">Home</a>
        <l
           <!--This main function call main.html using app.py-->
           <a class="active" href="{{ url_for('main') }}">Recognition</a>
```

Three.html

```
<!DOCTYPE html>
<!DOCTYPE html>
<html lang="en">
<head>
   <meta charset="UTF-8">
   <meta http-equiv="X-UA-Compatible" content="IE=edge">
   <meta name="viewport" content="width=device-width, initial-scale=1.0">
   <title>Predicted result</title>
   <!--Link external stylesheet styles.css present in static file-->
   k rel="stylesheet" href="{{url_for('static',filename='css/styles.css')}}">
   <!-- Link CSS Bootstrap Stylesheet -->
   <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
   (nav)
       <label class="logo">A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM
           <!--Using this Home button in navbar we can return to home page-->
           <!--Using this Recognition button in navbar we can return to recognition page-->
           <!--This home function call index.html using app.py-->
           <a class="active" href="{\{ url_for('home') \}}">Home</a>
       <l
           <!--This main function call main.html using app.py-->
           <a class="active" href="{{ url_for('main') }}">Recognition</a>
```

Four.html

```
<!DOCTYPE html>
<!DOCTYPE html>
<html lang="en">
<head>
   <meta charset="UTF-8">
   <meta http-equiv="X-UA-Compatible" content="IE=edge">
   <meta name="viewport" content="width=device-width, initial-scale=1.0">
   <title>Predicted result</title>
   <!--Link external stylesheet styles.css present in static file-->
   k rel="stylesheet" href="{{url_for('static',filename='css/styles.css')}}">
   <!-- Link CSS Bootstrap Stylesheet -->
   <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
   (nav)
       <label class="logo">A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM/label>
          <!--Using this Home button in navbar we can return to home page-->
           <!--Using this Recognition button in navbar we can return to recognition page-->
          <!--This home function call index.html using app.py-->
          <a class="active" href="{{ url_for('home') }}">Home</a>
       <l
           <!--This main function call main.html using app.py-->
```

Five.html

```
<!DOCTYPE html>
<!DOCTYPE html>
<html lang="en">
<head>
   <meta charset="UTF-8">
   <meta http-equiv="X-UA-Compatible" content="IE=edge">
   <meta name="viewport" content="width=device-width, initial-scale=1.0">
   <title>Predicted result</title>
   <!--Link external stylesheet styles.css present in static file-->
   <link rel="stylesheet" href="{{url_for('static',filename='css/styles.css')}}">
   <!-- Link CSS Bootstrap Stylesheet -->
   <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
   <nav>
        <label class="logo">A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM</label>
           <!--Using this Home button in navbar we can return to home page-->
           <!--Using this Recognition button in navbar we can return to recognition page-->
           <!--This home function call index.html using app.py-->
           <a class="active" href="{{ url_for('home') }}">Home</a>
        <l
           <!--This main function call main.html using app.py-->
           <a class="active" href="{{ url_for('main') }}">Recognition</a>
```

Six.html

```
<!DOCTYPE html>
<!DOCTYPE html>
<html lang="en">
<head>
   <meta charset="UTF-8">
   <meta http-equiv="X-UA-Compatible" content="IE=edge">
   <meta name="viewport" content="width=device-width, initial-scale=1.0">
   <title>Predicted result</title>
   <!--Link external stylesheet styles.css present in static file-->
   k rel="stylesheet" href="{{url_for('static',filename='css/styles.css')}}">
   <!-- Link CSS Bootstrap Stylesheet -->
   <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
   <nav>
       <label class="logo">A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM</label>
       <l
          <!--Using this Home button in navbar we can return to home page-->
           <!--Using this Recognition button in navbar we can return to recognition page-->
          <!--This home function call index.html using app.py-->
          <a class="active" href="{{ url_for('home') }}">Home</a>
       <l
           <!--This main function call main.html using app.py-->
```

Seven.html

```
<!DOCTYPE html>
<!DOCTYPE html>
<html lang="en">
<head>
   <meta charset="UTF-8">
   <meta http-equiv="X-UA-Compatible" content="IE=edge">
   <meta name="viewport" content="width=device-width, initial-scale=1.0">
   <title>Predicted result</title>
   <!--Link external stylesheet styles.css present in static file-->
   k rel="stylesheet" href="{{url_for('static',filename='css/styles.css')}}">
   <!-- Link CSS Bootstrap Stylesheet -->
   <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
   <nav>
       <label class="logo">A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM</label>
       <l
          <!--Using this Home button in navbar we can return to home page-->
           <!--Using this Recognition button in navbar we can return to recognition page-->
           <!--This home function call index.html using app.py-->
          <a class="active" href="{{ url_for('home') }}">Home</a>
       <l
           <!--This main function call main.html using app.py-->
```

```
</head>
<body>

clabel class="logo">A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM:/label>

clabel class="logo">A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM:/label>

cul>

cl--Using this Home button in navbar we can return to home page-->
 cl--This home function call index.html using app.py-->
 cli><a class="active" href="{{ url_for('home') }}">Home</a>
cl--This main function call main.html using app.py-->
 cli><a class="active" href="{{ url_for('main') }}">Recognition</a>
class="image">
 cl--This seven result is show if the predicted value is seven-->
 cimg src="{{url_for('static',filename='image/SEVEN.png')}}" alt="number image" class="num_img">
 c/div>
 c/div>
 c/body>
 c/html>
```

Eight.html

```
<!DOCTYPE html>
<!DOCTYPE html>
<html lang="en">
<head>
   <meta charset="UTF-8">
   <meta http-equiv="X-UA-Compatible" content="IE=edge">
   <meta name="viewport" content="width=device-width, initial-scale=1.0">
   <title>Predicted result</title>
   <!--Link external stylesheet styles.css present in static file-->
   k rel="stylesheet" href="{{url_for('static',filename='css/styles.css')}}">
   <!-- Link CSS Bootstrap Stylesheet -->
   <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
   <nav>
       <label class="logo">A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM</label>
           <!--Using this Home button in navbar we can return to home page-->
           <!--Using this Recognition button in navbar we can return to recognition page-->
           <!--This home function call index.html using app.py-->
           <a class="active" href="{{ url_for('home') }}">Home</a>
       <l
           <!--This main function call main.html using app.py-->
           <a class="active" href="{{ url_for('main') }}">Recognition</a>
```

```
<
```

Nine.html

```
<!DOCTYPE html>
<!DOCTYPE html>
<html lang="en">
<head>
   <meta charset="UTF-8">
   <meta http-equiv="X-UA-Compatible" content="IE=edge">
   <meta name="viewport" content="width=device-width, initial-scale=1.0">
   <title>Predicted result</title>
   <!--Link external stylesheet styles.css present in static file-->
   k rel="stylesheet" href="{{url_for('static',filename='css/styles.css')}}">
   <!-- Link CSS Bootstrap Stylesheet -->
   <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet">
</head>
<body>
   <nav>
       <label class="logo">A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSTEM</label>
       <l
           <!--Using this Home button in navbar we can return to home page-->
           <!--Using this Recognition button in navbar we can return to recognition page-->
           <!--This home function call index.html using app.py-->
           <a class="active" href="{{ url_for('home') }}">Home</a>
       <l
           <!--This main function call main.html using app.py-->
           <a class="active" href="{{ url_for('main') }}">Recognition</a>
```

STYLESHEETS

style.css

```
/*This is the stylesheet for index.html*/
/*import google font poppins*/
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300&display=swap');

*{
    margin: 0;
    padding: 0;
    box-sizing: border-box;
    font-family: 'Poppins', sans-serif;
}
.instruction{
    /* It is used to style content in the container. */
    flex-basis: 50%;
    position: relative;
    margin-left: 10%;
}
.con-body{
    /* It used to style container in the body portion*/
display: flex;
    justify-content: space-between;
align-items: center;
margin: 90px 0;
}
```

```
.instruction h1{
    /*It is used to style the word "instruction." */
    font-size: 54px;
.instruction p{
    /*It styles the paragraph content present on the page.*/
    font-size: 20px;
    color:□black;
    font-weight: 100;
    margin: 30px;
button{

/* Style the next button */
    height: 40px;
    width: 140px;
    border: 0;
    padding: none;
    color: □#fff;
    background: linear-gradient(to right, ■#fb5283, ■#ff3527);
    border-radius: 6px;
   transition: width 0.5s;
```

```
button img{
    /*set the image for button*/
    width: 40px;
    display: none;
}

button:hover img{
    display: block;
}

button:hover{
    /*while clicking, set hover for the next button */
    width: 160px;
    display: flex;
    align-items: center;
    justify-content: space-between;
}
.instruction::after{
    /*Style for the leftmost vertical line*/
    content: ';
    width: 10px;
    height: 80%;
    background: linear-gradient( #fb5283, #ff3527);
```

```
.instruction::after{
    /*Style for the leftmost vertical line*/
    content: '';
    width: 10px;
    height: 80%;
    background: linear-gradient( #fb5283, #ff3527);
    position: absolute;
    left: -40px;
    top: 20px;
}
.con-2i{
    position: relative;
    flex-basis: 40%;
    display: flex;
    align-items:flex-end;
    margin: 40px;
}
.con-2i .num_img{
    height: 60%;
    width: 80%;
```

```
.color-box{

/*This code is used to create a green-colored box like structure.*/
position: absolute;
right: 45%;
top: 10px;
background: linear-gradient(■#ldc280,■#3b9cb7);
border-radius: 10px 10px 10px 10px;
height: 300px;
width: 80%;
z-index: -1;
transform: translateX(200px);
}

#home{

/*Style for the background image
Set the width,height, background-size, and background-position of the image.
*/
width: 100%;
min-height: 100%;
display: flex;
justify-content: center;
align-items: center;
/*linear-gradient-progressive transition between two or more colours in a straight line*/
background: linear-gradient(□rgba(82, 208, 240, 0.1),□rgba(151, 16, 128, 0.1)),url('/static/image/background_im
```

```
width: 100%;
min-height: 100wh;
display: flex;
justify-content: center;
align-items: center;
/*linear-gradient-progressive transition between two or more colours in a straight line*/
background: linear-gradient(□rgba(82, 208, 240, 0.1),□rgba(151, 16, 128, 0.1)),url('/static/image/background_im
background-size: cover;
background-position: center;

}

#home h1{

/* Style the title of the project
Set the font size of the text as 70px.
Align the text to the center.
Set the text colour as white.
Set the spacing between letters to 2px.
Set the text shadow as white up to 6px.
*/
font-size: 70px;
text-align: center;
color: ■white;
```

```
#home h1{
/* Style the title of the project
Set the font size of the text as 70px.
Align the text to the center.
Set the text colour as white.
Set the spacing between letters to 2px.
Set the text shadow as white up to 6px.
font-size: 70px;
text-align: center;
color: ■white;
letter-spacing: 2px;
font-family: Cambria, Cochin, Georgia, Times, 'Times New Roman', serif;
text-shadow: 0px 1px 0px ■#FFFFFF,
            0px 5px 0px ■#FFFFFF,
            0px 6px 0px ■#FFFFFF;
```

styles.css

```
/*This is the stylesheet for main.html*/
/*import google font poppins*/
@import url('https://fonts.googleapis.com/css?family=Poppins:400,500,600,700&display=swap');
 margin: 0;
 padding: 0;
 box-sizing: border-box;
 font-family: 'Poppins', sans-serif;
font-family: montserrat;
   background: ■#fb5283;
   height: 80px;
   width: 100%;
label.logo{
   color: ■white;
   font-size: 25px;
   line-height: 80px;
   padding: 0 100px;
   font-weight: bold;
```

```
/*This three section nav ul,ul li, ul li a style the navigation button*/
nav ul{
    float:right;
    margin-right: 20px;
nav ul li{
    display: inline-block;
    line-height: 80px;
    margin: 0 5px;
nav ul li a{
| color: ■white;
| font-size: 17px;
    border-radius: 3px;
    text-transform: uppercase;
    font-weight: bold;
/*This portion style the choose file button*/
#choose_file{
 width: 300px;
background: ■white;
  border: none;
  outline: none;
  box-shadow: 2px 5px 2px ■#fb5283;
  border-radius: 50px;
  position: relative;
```

```
outline: none;
box-shadow: 2px 5px 2px  #fb5283;
border-radius: 50px;
position: relative;
top: 100px;
left:530px;
}

/*This style the pedict image button*/
#new{
background:  #fb5283;
border: none;
top: 100px;
position: relative;
left: 600px;
}

::-webkit-file-upload-button{
border: none;
background:  #fb5283;
}
::-webkit-file-upload-button{
border: none;
background:  #fb5283;
}
:-webkit-file-upload-button{
border: none;
background:  #fb5283;
}
```

PYTHON PAGE

app.py

```
#import the packages
from flask import Flask, render_template, request
import tensorflow as tf
import numpy as np
from PIL import Image
from tensorflow.keras.models import load_model

app=Flask(_name__,template_folder='template')

#index page load
@app.route("/")
@app.route("/index")
def home():
    return render_template("index.html")

#load the main page
@app.route("/main",methods=['GET'])
def main():
    return render_template("main.html")

# get the image in app.py and predict the image
@app.route("/main",methods=['POST'])
def upload():

# already trained model as been save this code load the model here

| model = load_model('model/mnistCNN.h5')
```

```
image is preprocessing and predicte the image
imagefile = request.files['imagefile']
if imagefile:
img = Image.open(request.files['imagefile'].stream).convert('L')
img = Image.open(request.files['imagefile'].stream).convert('L')
img = img.resize((182,8))
image = np.array(img)
if image = np.array(img)
if (int(prid.exi=1))
if (int(prid.
```

GITHUB

https://github.com/IBM-EPBL/IBM-Project-31507-1660201335

PROJECT DEMO

https://www.mediafire.com/file/t94k3fru305xlv3/VID-20221116-WA0040.mp4/file