```
In [3]:
    from sol_3a1 import *
    import matplotlib.pyplot as plt
```

dataset1 result

	loss = NLL	alpha_hat	sigma_hat	Z_hat
mode11	80.94710727457094	1e-06	2742.907868619646	None
model2	80.34049376533933	54.674196526383206	2542.715511207578	[302.39512784 299.98729093]
model3	80.40741481452056	1e-06	2651.8960431941096	None

dataset2 result

	loss = NLL	alpha_hat	sigma_hat	Z_hat
mode11	533435.0080889168	22.274354563080006	2515.1732607200665	None
mode12	533488.2228744307	298.5601754764213	2519.525066776425	[300.13923787 299.94610773]
mode13	533218.2923134756	11.81695054460237	2505.7351321647266	None

Dataset 1


```
In [22]:
    data = [evidence1, evidence2, evidence3]
    label = ["model1", "model2", "model3"]
    plt.bar(range(len(data)), data, tick_label=label)
    plt.title('dataset1 evidence')
    plt.show()
```


Dataset 2

-677589.2313579913 0.0

```
In [16]:
    data = [log_evidence1, log_evidence2, log_evidence3]
    label = ["model1", "model2", "model3"]
    plt.bar(range(len(data)), data, tick_label=label)
    plt.title('dataset2 logevidence')
    plt.show()
```



```
In [17]:
    data = [evidence1, evidence2, evidence3]
    label = ["model1", "model2", "model3"]
    plt.bar(range(len(data)), data, tick_label=label)
    plt.title('dataset2 evidence')
    plt.show()
```


Posterior

```
In [33]:
    phi = phi2
    alpha_hat = 298.5601754764213
    sigma_hat = 2519.525066776425
    z_hat = [300.13923787,299.94610773]
    param_shape = 2
```

```
In [29]:
          y=np.array([float(xi) for xi in scio.loadmat('./hw2files/occam2.mat')['y']], dty
In [28]:
          phi_x = phi(x, z_{hat})
In [26]:
          m_0 = np.zeros(2)
          print(m_0)
          [0.0.]
In [34]:
          S_N = (1 / alpha_hat) * np.identity(param_shape) + (1 / sigma_hat) * phi_x.T @ p
          m_N = np.linalg.inv(S_N) @ ((1 / alpha_hat) * np.identity(param_shape) @ m_0 + (
         refer to bishop, we have the posterior update equation
         we get posterior
         mean = [-1.05609318 \ 3.05200373]
         variance = [[39.67203114 39.67567358] [39.67567358 39.68601867]]
In [35]:
          print(m_N,S_N)
          [-1.05609318 3.05200373] [[39.67203114 39.67567358]
           [39.67567358 39.68601867]]
 In [ ]:
```