Exercises

from Riehl, Category Theory in Context

1	Categories, Functors, Natural Transformations		
	1.1	Abstract and concrete categories	2
	1.2	Duality	3
	1.3	Functoriality	5
Ιa	m sel	lf-studying this alongside Aluffi, Algebra: Chapter θ , so there is a bit of mixed notation.	

Chapter 1

Categories, Functors, Natural Transformations

1.1 Abstract and concrete categories

Exercise 1.1.i.

- (i) Consider a morphism $f: x \to y$. Show that if there exists a pair of morphisms $g, h: y \rightrightarrows x$ so that $gf = 1_x$ and $fh = 1_y$, then g = h and f is an isomorphism.
- (ii) Show that a morphism can have at most one inverse isomorphism.
- (i) Proof. We can compose together $gfh = (gf)h = 1_X h = h$. But $gfh = g(fh) = g1_y = g$ by associativity. Therefore, g = h. Since $gf = 1_x$ and $fh = fg = 1_y$, f is an isomorphism. \square
- (ii) Proof. Suppose $f: x \to y$ has two inverses g and h. Then, as above, $g = g1_y = g(fh) = (gf)h = 1_x f = h$ by associativity. \square

Exercise 1.1.ii. Let C be a category. Show that the collection of isomorphisms in C defines a subcategory, the maximal groupoid inside C.

Proof. Let X, Y, and Z be objects in C . We must show identity and composition, since we get associativity for free from C .

The identity morphisms 1_X are isomorphisms, since they are their own inverses. Therefore, they are present in the maximal groupoid.

Now, if $f: X \to Y$ and $g: Y \to Z$ are isomorphisms, then the composition $gf: X \to Z$ is an isomorphism with inverse $f^{-1}g^{-1}$ since $gff^{-1}g^{-1} = gg^{-1} = 1_Z$ and $f^{-1}g^{-1}gf = f^{-1}f = 1_X$.

Therefore, the maximal groupoid is in fact a category.

Exercise 1.1.iii. For any category C and any object $c \in C$, show that:

(i) There is a category c/C whose objects are morphisms $f:c\to x$ with domain c and in which a morphism from $f:c\to x$ to $g:c\to y$ is a map $h:x\to y$ between the codomains so that the triangle

$$x \xrightarrow{f} y$$

commutes, i.e., so that g = hf.

(ii) There is a category C/c whose objects are morphisms $f:x\to c$ with codomain c and in which a morphism from $f:x\to c$ to $g:y\to c$ is a map $h:x\to y$ between the codomains so that the triangle

commutes, i.e., so that f = gh.

The categories c/C and C/c are called slice categories of C under and over c, respectively.

- (i) See Exercise I.3.7, Aluffi.
- (ii) See Example I.3.5, Aluffi.

1.2 Duality

 $\textbf{Exercise 1.2.i.} \ \ \text{Defining C}/c \ \text{to be } (c/(\mathsf{C^{op}}))^{\mathsf{op}}, \ \text{deduce Exercise 1.1.iii(ii) from Exercise 1.1.iii(i)}.$

Proof. We must establish that C/c is in fact $(c/(C^{op}))^{op}$. Then, everything (inverses, composition, associativity) follows immediately from duality.

First, notice that in $c/(C^{op})$, we have objects that are morphisms in C^{op} , i.e., the same that are in C but backwards:

$$x \xrightarrow{f^{\text{op}}} y$$

To get to the desired commutative diagram, we have to apply the opposite operation once more. \Box

Exercise 1.2.ii.

- (i) Show that a morphism $f: x \to y$ is a split epimorphism in a category C if and only if for all $c \in C$, the post-composition function $f_*: C(c, x) \to C(c, y)$ is surjective.
- (ii) Argue by duality that f is a split monomorphism if and only if for all $c \in C$, the precomposition function $f^* : C(y,c) \to C(x,c)$ is surjective.
- (i) $Proof. (\Rightarrow)$ Suppose f is a split epimorphism, i.e., it is a left inverse of some morphism $g: y \to x$. That is, $fg = 1_y$.

Let $h: c \to y$. We must show $f_*(j) = fj = h$ for some $j: c \to x$. Notice that $f(gh) = (fg)h = 1_y h = h$. Therefore, if we let j:=gh, we are done.

- (\Leftarrow) Suppose f_* is surjective, i.e., for all $g:c\to y$ there exists an $h:c\to x$ such that $f_*(h)=fh=g$. In particular, for $g'=1_y$, there exists $h':y\to x$ such that $fh'=1_y$. That is, f is a split epimorphism, the retraction of h'.
- (ii) *Proof.* Apply part (i) to the category C^{op}:

 $f^{\mathsf{op}} \in \mathsf{C^{\mathsf{op}}}(x,y)$ is a split epimorphism if and only if for all $c \in \mathsf{C^{\mathsf{op}}}$, the post-composition function $f_*^{\mathsf{op}} : \mathsf{C^{\mathsf{op}}}(c,x) \to \mathsf{C^{\mathsf{op}}}(c,y)$ is surjective.

But this is exactly the same as saying

 $f \in \mathsf{C}(y,x)$ is a split monomorphism if and only if for all $c \in \mathsf{C}$, the pre-composition function $f^* : \mathsf{C}^{\mathsf{op}}(x,c) \to \mathsf{C}^{\mathsf{op}}(y,c)$ is surjective.

because $\mathsf{C}^\mathsf{op}(x,y) = \mathsf{C}(y,x)$ and a split epimorphism $f^\mathsf{op} g^\mathsf{op} = 1_y$ becomes a split monomorphism $gf = 1_y$.

Exercise 1.2.iii. Prove Lemma 1.2.11 by proving either (i) and (ii), then arguing by duality. Conclude that the monomorphisms in any category define a subcategory of that category and dually that the epimorphisms also define a subcategory.

Proof. (i) Let $f: x \mapsto y$ and $g: y \mapsto z$. We must show that gf is monic, i.e., $gfh = gfk \implies h = k$ for all $h, k: c \rightrightarrows x$. Suppose gfh = gfk. Since g is monic, we know that $g(fh) = g(fk) \implies fh = fk$. But then, since f is monic, $fh = fk \implies h = k$.

(ii) Let $f: x \to y$ and $g: y \to z$ such that $gf: x \mapsto z$. We must show f is monic, i.e., $fh = fk \implies h = k$ for all $h, k: c \rightrightarrows x$. Suppose fh = fk. Then, by pre-composing g, (gf)h = (gf)k. Since gf is monic, h = k.

Now, we can show that the subcategory C_{Monic} of the same objects as C and with only its monomorphisms is a category. First, since for all $h, k \in C(c, x)$, $1_x h = 1_x k \implies h = k$, we have the identities in C_{Monic} . Then, due to (i), the compositions of all morphisms are in the subcategory. Since the objects are unchanged, we can conclude C_{Monic} is a subcategory.

Dually, the opposite monomorphism f^{op} in C^{op} such that $f^{\mathsf{op}}h^{\mathsf{op}} = f^{\mathsf{op}}k^{\mathsf{op}} \implies h^{\mathsf{op}} = k^{\mathsf{op}}$ is the epimorphism f in C such that $hf = kf \implies h = k$. Therefore, the dual of (i) is (i') and the dual of (ii) is (ii'). Finally, the dual of the existence of the subcategory $\mathsf{C}_{\mathsf{Monic}}$ is a subcategory $\mathsf{C}_{\mathsf{Epic}}$ of epimorphisms.

Exercise 1.2.vi. Prove that a morphism that is both a monomorphism and a split epimorphism is necessarily an isomorphism. Argue by duality that a split monomorphism that is an epimorphism is also an isomorphism.

Proof. Suppose $f: x \mapsto y$ is also a split epimorphism such that $fg = 1_y$ for some $g: y \to x$. Then, since f is monic, $f(gf) = (fg)f = (1_y)f = f = f(1_x) \implies gf = 1_x$. That is, f is an isomorphism.

By duality, a split epimorphism $f^{op}g^{op} = 1_y$ is a split homomorphism $gf = 1_y$. Therefore, a split homomorphism that is an epimorphism is an isomorphism too.

Exercise 1.2.vii. Regarding a poset (P, \leq) as a category, define the supremum of a subcollection of objects $a \in P$ in such a way that the dual statement defines the infimum. Prove that the supremum of a subset of objects is unique, whenever it exists, in such a way that the dual proof demonstrates the uniqueness of the infimum.

Proof. Let a be the object such that $f_x: x \to a$ exists for all other x in the subcollection. That is, for every object $x, y \le a$. Then, the dual definition is the object $a^{\sf op}$ in ${\sf P}^{\sf op}$ such that $f_X^{\sf op}: x \to a$ always exists, i.e., the object a' in ${\sf P}$ such that $f_x: a \to x$ always exists.

Suppose there are two suprema a and a'. Then, by the definition for a, we just have a morphism $a \to a'$. But if a' is a supremum, there must also be a morphism $a' \to a$. Therefore, $a \le a' \le a$, which means a = a' since P is a poset (and not a pre-ordered set).

1.3 Functoriality

Exercise 1.3.i. What is a functor between groups, regarded as one-object categories?

Solution. A functor $F: \mathsf{G} \to \mathsf{H}$ maps the single object FG = H and each morphism (i.e., group element) such that for all $a, b: G \rightrightarrows G$, F(ab) = (Fa)(Fb) and $Fe_G = e_H$.

That is, in the language of groups, a functor is a group homomorphism.

Exercise 1.3.ii. What is a functor between preorders, regarded as categories?

Solution. A functor $F:(\mathsf{P},\leq)\to(\mathsf{Q},\preccurlyeq)$ sends the objects of P to objects in Q such that if $a\leq b$, then $Fa\preccurlyeq Fb$. That is, we can regard F as a set function $P\to Q$ that is increasing with respect to the respective preorders.

Exercise 1.3.iii. Find an example to show that the objects and morphisms in the image of a functor $F: C \to D$ do not necessarily define a subcategory of D.

Solution. Let C be a groupoid with two groups generated by two elements $A = \langle a \rangle$ and $B = \langle b \rangle$:

Let D be a groupoid with one group $G = \langle \alpha, \beta \rangle$. Now, let $F : \mathsf{C} \to \mathsf{D}$ with FA = FB = G, $Fa = \alpha$, and $Fb = \beta$.

The image of F is not a category. Both α and β are in the image, but their composition $\beta\alpha$ is not since there was no ba composition in C.

Exercise 1.3.iv. Verify that the constructions introduced in Definition 1.3.11 (functors C(c, -) and C(-, c) represented by c) are functorial.

Proof. Recall that $C(c, -): C \to \mathsf{Set}$ sends x to the set C(c, x) and $f: x \to y$ to the post-composition function $f_*: C(c, x) \to C(c, y): h \mapsto fh$. Verify the functoriality axioms:

Let $f: x \to y$ and $g: y \to z$ be composable morphisms where $gf: x \to z$. Then, $(gf)_*: \mathsf{C}(c,x) \to \mathsf{C}(c,z)$. We can verify that $(gf)_*(h) = (gf)h = g(f(h)) = g(f_*h) = g_*f_*h$ for all $h: c \to z$. That is, $(gf)_* = g_*f_*$.

Consider an identity $1_x: x \to x$. Then, the post-composition function $(1_x)_*: \mathsf{C}(c,x) \to \mathsf{C}(c,x)$ sends morphisms to themselves because $h1_x = h$ and $1_x g = g$ by definition, i.e., it is $1_{\mathsf{C}(c,x)}$.

Exercise 1.3.v. What is the difference between a functor $C^{op} \to D$ and a functor $C \to D^{op}$? What is the difference between a functor $C \to D$ and a functor $C^{op} \to D^{op}$?

Solution. If a contravariant functor $F: \mathsf{C^{op}} \to \mathsf{D}$ sends $a \mapsto x$ and $f^{\mathsf{op}}: b \to a$ to $g: x \to y$, then the "same" functor $F': \mathsf{C} \to \mathsf{D^{op}}$ sends $a \mapsto x$ and $f: a \to b$ to $g^{\mathsf{op}}: y \to x$. For the functoriality axioms to hold, we must have that $F'f = Ff^{\mathsf{op}}$ for all morphisms. That is, we can consider F' as the "opposite functor" to F (in some sense, a composition of the opposite functor $\mathsf{D} \to \mathsf{D^{op}}$ and F).

Likewise, any functor $G: \mathsf{C} \to \mathsf{D}$ must also act as a contravariant functor $\mathsf{C}^\mathsf{op} \to \mathsf{D}^\mathsf{op}$. If GfGg = G(fg), then can apply the "same" mapping between objects and morphisms to get $Gg^\mathsf{op}Gf^\mathsf{op} = G(g^\mathsf{op}f^\mathsf{op}) = G(gf)^\mathsf{op}$.

Exercise 1.3.vi. Given functors $F: \mathsf{D} \to \mathsf{C}$, and $G: \mathsf{E} \to \mathsf{C}$, show that there is a comma category $F \downarrow G$ which has

- as objects, triples $(d \in D, e \in E, f : Fd \to Ge \in C)$, and
- as morphisms $(d, e, f) \to (d', e', f')$, a pair of morphisms $(h : d \to d', k : e \to e')$

so that

$$\begin{array}{ccc} Fd & \stackrel{f}{\longrightarrow} Ge \\ \downarrow^{Fh} & & \downarrow^{Gk} \\ Fd' & \stackrel{f'}{\longrightarrow} Ge' \end{array}$$

commutes in C, i.e., f'(Fh) = (Gk)f. Define a pair of projection functors dom $: F \downarrow G \to \mathsf{D}$ and $\operatorname{cod} : F \downarrow G \to \mathsf{E}$.

Exercise 1.3.vii. Define functors to construct the slice categories c/C and C/c of exercise 1.1.iii as special cases of comma categories constructed in exercise 1.3.vi. What are the projection functors?

Solution. For c/\mathbb{C} , let D be the category containing only c and its identity id_c . Then, let $F: \mathbb{D} \to \mathbb{C}$ be the "identity" such that Fc = c. Define $G: \mathbb{C} \to \mathbb{C}$ to also be the identity functor such that Gx = x and Gf = f.

Then, objects in $F \downarrow G$ are triples $(c, x \in \mathsf{C}, f : c \to x \in \mathsf{C})$ and morphisms $(c, x, f) \to (c, y, g)$ are pairs $(\mathrm{id}_c : c \to c, h : x \to y)$ such that the diagram

commutes. This is almost exactly the definition of c/C . The domain functor sends every object (c,x,f) to c and morphism to id_c . The codomain functor sends every object (c,x,f) to x and morphism to (id_c,h) to h, which recovers the exact definition of c/C .

For C/c , consider $G \downarrow F$, whose objects are triples $(x \in \mathsf{C}, c, f : x \to c \in \mathsf{C})$ and morphisms $(x, c, f) \to (y, c, g)$ are pairs $(h : x \to y, \mathrm{id}_c : c \to c)$ such that

commutes. This is almost exactly the definition of C/c . This time, the domain functor sends $(x,c,f)\mapsto x$ and $(h,\mathrm{id}_c)\mapsto h$, which gives us exactly the definition of C/c . The codomain functor sends $(x,c,f)\mapsto c$ and $(h,\mathrm{id}_c)\to\mathrm{id}_c$.

Exercise 1.3.viii. Lemma 1.3.8 shows that functors preserve isomorphisms. Find an example to demonstrate that functors need not reflect isomorphisms: that is, find a functor $F: C \to D$ and a morphism f in C so that Ff is an isomorphism in D but f is not an isomorphism in C.

Solution. Imagine the two categories C ($x \xrightarrow{f} y$) and D ($a \xrightarrow{g} b$) such that $g^{-1} = h$.

Define $F: C \to D$ such that Fx = a, Fb = b, and Ff = g.

Then, Ff = q is an isomorphism but f is not.

Exercise 1.3.ix. For any group G, we may define other groups:

- the center $Z(G) = \{h \in G \mid \forall g \in G, hg = gh\},\$
- the commutator subgroup C(G), the subgroup generated by elements $ghg^{-1}h^{-1}$, and 1
- the automorphism group $\operatorname{Aut}(G)$, the group of isomorphisms $\phi:G\to G$ in Group.

Trivially, all three constructions define a functor from the discrete category of groups (with only identity morphisms) to Group. Are these constructions functorial in

- the isomorphisms of groups? That is, do they extend to functors $\mathsf{Group}_\mathsf{iso} \to \mathsf{Group}$?
- the epimorphisms of groups? That is, do they extend to functors $\mathsf{Group}_{\mathsf{epi}} \to \mathsf{Group}$?
- all homomorphisms of groups? That is, do they extend to functors $\mathsf{Group} \to \mathsf{Group}$?

Exercise 1.3.x. Show that the construction of the set of conjugacy classes of elements of a group is functorial, defining a functor Conj : $\mathsf{Group} \to \mathsf{Set}$. Conclude that any pair of groups whose sets of conjugacy classes of elements have differing cardinalities cannot be isomorphic.