МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)"

Физтех-школа радиотехники и компьютерных технологий

Отчёт по лабораторной работе № 2.3.1 "Современные способы получения вакуума"

> Выполнил: Студент гр. Б01-305 Миннахметов Артур

Содержание

1	Введение	3
	1.1 Экспериментальная установка	3
	1.2 Процесс откачки	5
2	Ход работы	6
3	Выводы	7

1 Введение

Цель работы: 1) измерение объемов форвакуумной и высоковакуумной частей установки; 2) определение скорости откачки системы в стационарном режиме, а также по ухудшению и по улучшению вакуума.

В работе используются: вакуумная установка с манометрами: масляным, термопарным и ионизационным.

1.1 Экспериментальная установка

По степени разрежения вакуумные установки принято делить на три класса: 1) низковакуумные – до 10^{-2} - 10^{-3} торр; 2) высоковакуумные – 10^{-4} - 10^{-7} торр; 3) установки сверхвысокого вакуума – 10^{-8} - 10^{-11} торр. В данной работе изучаются традиционные методы откачки механическим форвакуумным насосом до давления 10^{-2} торр и диффузионным масляным насосом до давления 10^{-5} торр, а также методы измерения вакуума в этом диапазоне.

Рис. 1: Схема эксперментальной установки

Установка изготовлена из стекла и состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров (М1 и М2), форвакуумного насоса (ФН) и соединительных кранов К1, К2, ..., К6 (рис. 1). Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

Все краны вакуумной установки стеклянные. Стенки кранов тонкие, пробки кранов полые

и составляют одно целое с рукоятками. Пробки кранов притерты к корпусам. Для герметизации используется вакуумная смазка.

Устройство и принцип действия форвакуумного насоса схематически, но довольно ясно изображены на рис 2. В положениях «а» и «б» пластина «А» засасывает разреженный воздух из откачиваемого объёма, а пластина «Б» вытесняет ранее захваченный воздух в атмосферу. В положениях «в» и «г» пластины поменялись ролями.

Рис. 2: Схема ротационного двухпластинчатого форвакуумного насоса

Устройство и принцип действия $\partial u \phi \phi y з u o n n o coca$ схематически изображены на рис. 2. Такой насос работает в тысячи раз быстрее форвакуумного. Его действие основано на диффузии. Масло, налитое в сосуд A, подогревается электрической печкой. Пары масла поднимаются по трубке Б и вырываются из сопла В. Струя паров увлекает молекулы газа, которые поступают из откачиваемого сосуда через трубку ВВ. В трубке Γ мало осаждается и стекает вниз. Оставшийся газ, выходя в трубку Φ B, откачивается форвакуумным насосом.

Диффузионный насос работает наиболее эффективно, когда длина свободного пробега молекул примерно равна ширине кольцевого зазора между соплом В и стенками трубки ВВ. Давление насыщенных паров масла при рабочей температуре, создаваемой обогревателем сосуда A, много больше $5\cdot 10^{-2}$ торр, поэтому пары масла создают плотную струю, увлекающую с собой молекулы газа.

Диффузионный насос, используемый в нашей установке (см. рис 1) имеет две ступени и соответственно два сопла. Одно сопло вертикальное (первая ступень), второе горизонтальное (вторая ступень). За второй ступенью имеется ещё одна печь, но пар из этой печи поступает не в сопло, а по тонкой трубке подводится ближе к печке первой ступени. Эта печь осуществляет фракционирование масла. Легколетучие фракции масла, испаряясь, поступают в первую ступень, обогащая её. По этой причине плотность струи первой ступени выше, и эта ступень начинает откачивать при более высоком давлении в форвакуумной части. Вторая ступень обогащается малолетучими фракциями масла. Плотность струи второй ступени меньше, но меньше и давление насыщенных паров. Соответственно, в откачиваемый объем поступает меньше паров масла, и его удаётся откачать до более высокого вакуума.

Термопарный манометр. Чувствительным элементом манометра является платиново-родиевая термопара, спаянная с никелевой нитью накала и заключённая в стеклянный баллон. По нити накала НН пропускается ток постоянной величины. Для установки тока служит потенциометр R, расположенный на передней панели вакуумметра. Термопара ТТ присоединяется к милливольтметру, показания которого определяются температурой нити накала и зависят от отдачи тепла в окружающее пространство.

Потери тепла определяются теплопроводностью нити и термопары, теплопроводностью газа, переносом тепла конвективными потоками газа внутри лампы, и теплоизлучением нити (инфракрасное тепловое излучение). В обычном режиме лампы основную роль играет теплопроводность газа. При давлениях, не меньших 1 торр, теплопроводность газа, а вместе с ней

и ЭДС термопары практически не зависят от давления газа, и прибор не работает.

При улучшении вакуума средний свободный пробег молекул становится сравнимым с диаметром нити, теплоотвод падает, и температура спая возрастает. При вакууме порядка 10^{-3} торр теплоотвод, осуществляемый газом, становится сравнимым с другими потерями тепла, и температура становится практически постоянной.

Ионизационный манометр. Схема ионизационного манометра изображения на рис. 3. Он представляет собой трехэлектродную лампу. Электроны испускаются раскалённым катодом и увлекаются электрическим полем к аноду, имеющему вид редкой спирали. Проскакивая за её витки, электроны замедляются полем коллектора и возвращаются к аноду. Прежде чем осесть на аноде, они успевают много раз пересечь пространство между катодом и коллектором. На своём пути электроны ионизуют молекулы газа. Ионы, образовавшиеся между анодом и коллектором, притягиваются полем коллектора и определяют его ток. Накалённый катод ионизационного манометра перегорает, если давление в системе превышает 10^{-3} торр, поэтому перед его включением необходимо проверить давление термопарным манометром.

1.2 Процесс откачки

Рис. 3: Схема ионизационной лампы ЛТ-2

Опишем процесс откачки математически: Пусть W — объем газа, удаляемого из сосуда при данном давлении за единицу времени, Q_i для различных значений і обозначим различные притоки газа в сосуд (в единицах PV), такие как течи извне $Q_{\mathbf{u}}$, десорбция с поверхностей внутри со-

суда $Q_{\rm д}$, обратный ток через насос $Q_{\rm H}$. Тогда, приравнивая убыль газа из сосуда (с точностью до RT/μ) в единицу времени -VdP и сумму перечисленных токов? имеем:

$$-VdP = (PW - \sum_{i} Q_{i})dt \tag{1}$$

При достижении предельного вакуума устанавливается давление $P_{\rm np}$, и dP=0. Тогда

$$W = (\sum_{i} Q_i)/P_{\rm mp} \tag{2}$$

Поскольку обычно $Q_{\rm u}$ постоянно, а $Q_{\rm h}$ и $Q_{\rm g}$ слабо зависят от времени, также считая постоянной W, можем проинтегрировать (1) и получить:

$$P - P_{\text{np}} = (P_0 - P_{\text{np}}) \exp(-\frac{W}{V}t)$$
(3)

Полная скорость откачки W, собственная скорость откачки насоса $W_{\rm H}$ и проводимости элементов системы C_1, C_2, \dots соотносятся согласно формуле (4), и это учтено в конструкции установки.

$$\frac{1}{W} = \frac{1}{W} + \frac{1}{C_1} + \frac{1}{C_2} + \dots \tag{4}$$

Характер течения газа существенно зависит от соотношения между размерами системы и длиной свободного пробега молекул. При атмосферном и форвакуумном давлениях длина

свободного пробега меньше диаметра трубок, и течение газа определяется его вязкостью, т.е. взаимодействием молекул. При высоком вакууме течение существеннее определяется взаимодействием со стенками

Для количества газа, протекающего через трубу длины l и радиуса r в условиях высокого вакуума, справедлива формула:

$$\frac{d(PV)}{dt} = \frac{4}{3}r^3\sqrt{\frac{2\pi RT}{\mu}}\frac{P_2 - P_1}{l} \tag{5}$$

Если труба соединяет насос установку, то давлением P_1 у насоса можно пренебречь. Давление в сосуде $P=P_2$. Тогда имеем:

$$C_{\rm Tp} = \left(\frac{dV}{dt}\right)_{\rm Tp} = \frac{4r^3}{3l}\sqrt{\frac{2\pi RT}{\mu}} \tag{6}$$

Для пропускной способности отверстий имеется формула

$$C_{\text{OTB}} = \left(\frac{dV}{dt}\right)_{\text{OTB}} = S\frac{\bar{v}}{4} \tag{7}$$

2 Ход работы

1. Измерены температура в помещении и внешнее давление. Так как погрешности приборов даны не были, будем считать, что их не было.

$$T = 27.8^{\circ}C,$$

$$p_{\rm atm} = 100.17 \; \mbox{к}\Pi \mbox{a}.$$

2. Измерены объем запертого между кранами K_5 и K_6 воздуха, давление откачано до p_1 , измерено давление после открытия крана K_6 .

$$V_{\rm K_5~ H~K_6} = 50~{\rm cm}^3,$$

$$p_1 = 1.4 \cdot 10^{-2}~{\rm topp},$$

$$p = \rho g \Delta h = 885 \frac{{\rm K}\Gamma}{{\rm m}^3} \cdot 9.81 \frac{{\rm M}}{c^2} \cdot (257 \pm 1)~{\rm mm} = (2231 \pm 8)~{\rm \Pi a}.$$

3. Пользуясь законом Бойля-Мариотта можно найти объем форвакуумной части:

$$p_{
m atm}V_{
m K_5}$$
 и $_{
m K_6}=p\cdot (V_{
m K_5}$ и $_{
m K_6}+V_{
m eta_B})$, $V_{
m eta_B}=V_{
m K_5}$ и $_{
m K_6}\cdot \left(rac{p_{
m atm}}{p}-1
ight)=(2195\pm 8)~{
m cm}^3.$

4. Аналогично рассчитан объем всей установки и высоковакуумной части:

$$V_{
m BCR}$$
 установка = $(3475 \pm 22)~{
m cm}^3,$ $V_{
m BR} = (1230 \pm 23)~{
m cm}^3.$

5. Измерено предельное давление в системе $p_{\rm np} = 0.62 \cdot 10^{-4}$ торр.

- 6. Измерена зависимость давления при ухудшении и улучшении ваккума, данные представлены в табл. 1. По этой зависимости построен график с уравнением $p-p_{\rm np}=0,0474t+0,1176$.
- 7. Построена зависимость для случая улучшения в табл.2. По этой зависимости построен график с уравнением $\ln(p-p_{\rm np})=-0.1786t+1.9051$.
 - 8. Получим скорость откачки диффузионного насоса (q наклон графика):

$$W = -q \cdot V = (22 \pm 2) \cdot 10^{-2} \text{ n/c}.$$

9. Получим значение $Q_{\rm H}$, уравнение принимает вид:

$$V_{\rm BB}dP = (Q_{\rm J} + Q_{\rm H}) dt.$$

Так в этом случае $Q_{\rm д}$ имеет порядок $10^{-8},\ Q_{\rm д}+Q_{\rm H}\approx Q_{\rm H}.$ Таким образом,

$$Q_{\scriptscriptstyle \mathrm{H}} = \frac{dp}{dt} V_{\scriptscriptstyle \mathrm{BB}} = (58 \pm 5) \; \mathrm{торp} \cdot \mathrm{л}/c$$

10. Рассчитаем W другим способом:

$$P_{\text{np}}W = Q_1, \ P_{\text{ycr}}W = Q_1 + \frac{d(PV)}{dt}.$$

Из (6):

$$W = \frac{\frac{4}{3}(d/2)^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_{\Phi^{\text{B}}}}{L}}{p_{\text{VCT}} - p_{\text{IID}}} = 21 \cdot 10^{-2} \text{ n/c}.$$

3 Выводы

В ходе данной работы было проверено несколько методик по измерению производительности высоковакуумного насоса. Значения в эксперементах не противоречат друг другу, поэтому измерения с хорошей точностью можно считать правильными. Скорость откачки диффузионного насоса получилась $W=(22\pm2)\cdot 10^{-2}~{\rm n/c}$.

Рис. 4: Ухудшение вакуума

Рис. 5: Улучшение вакуума

t, c	$p, 10^{-4} \text{ Topp}$	t, c	р, 10 ⁻⁴ торр	t, c	р, 10 ⁻⁴ торр	t, c	$p, 10^{-4} \text{ Topp}$
0	0,05	1	0,05	2	0,09	3	0,12
4	0,17	5	0,17	6	0,29	7	0,35
8	0,38	9	0,38	10	0,48	11	0,58
12	0,68	13	0,68	14	0,78	15	0,78
16	0,88	17	0,88	18	0,98	19	0,98
20	1,08	21	1,08	22	1,18	23	1,18
24	1,28	25	1,28	26	1,38	27	1,38
28	1,48	29	1,48	30	1,58	31	1,58
32	1,68	33	1,68	34	1,78	35	1,78
36	1,88	37	1,88	38	1,98	39	1,98
40	2,08	41	2,08	42	2,18	43	2,18
44	2,28	45	2,28	46	2,38	47	2,38
48	2,38	49	2,38	50	2,48	51	2,58
52	2,58	53	2,58	54	2,68	55	2,78
56	2,78	57	2,78	58	2,88	59	2,98
60	2,98	61	2,98	62	3,08	63	3,18
64	3,18	65	3,18	66	3,28	67	3,38
68	3,38	69	3,38	70	3,48	71	3,58
72	3,58	73	3,58	74	3,68	75	3,78
76	3,78	77	3,78	78	3,88	79	3,88
80	3,98	81	3,98	82	4,08	83	4,08
84	4,18	85	4,18	86	4,28	87	4,28
88	4,28	89	4,28	90	4,38	91	4,48
92	4,48	93	4,48	94	4,58	95	4,68
96	4,68	97	4,68	98	4,78	99	4,78
100	4,88	101	4,88	102	4,98	103	4,98
104	5,08	105	5,08	106	5,18	107	5,18
108	5,18	109	5,18	110	5,28	111	5,38
112	5,38	113	5,38	114	5,48	115	5,58
116	5,58	117	5,58	118	5,68	119	5,68
120	5,78	121	5,78	122	5,88	123	5,88
124	5,98	125	5,98	126	5,98	127	6,08
128	6,08	129	6,08	130	6,18	131	6,28
132	6,28	133	6,28	134	6,38	135	6,38

Таблица 1: Зависимость давления от времени при ухудшении вакуума

t, c	$\ln(p-p_{\mathrm{np}})$
0	1,83736998048011
1	1,8213182714696
2	1,73695123273306
3	1,58514521986506
4	1,38128181929635
5	1,12492959698548
6	0,867100487683383
7	0,631271776841858
8	0,392042087776024
9	0,165514438477573
10	-0,0202027073175195
11	-0,2484613592985
12	-0,385662480811985
13	-0,544727175441672
14	-0,7339691750802
15	-0,967584026261706
16	-1,10866262452161
17	-1,27296567581289
18	-1,38629436111989
19	-1,51412773262978
20	-1,6094379124341
21	-1,71479842809193
22	-1,77195684193188
23	-1,83258146374831

Таблица 2: Зависимость давления от времени при ухудшении вакуума