

自然言語処理プログラミング勉強会8-句構造解析

Graham Neubig 奈良先端科学技術大学院大学 (NAIST)

自然言語は曖昧性だらけ!

I saw a girl with a telescope

• 構文解析 (パージング) は構造的な曖昧性を解消

構文解析の種類

• 係り受け解析: 単語と単語のつながりを重視

• 句構造解析: 句とその再帰的な構造を重視

非終端記号、前終端記号、終端記号

非終端記号

前終端記号

終端記号

予測問題としての構文解析

文 X が与えられ、構文木 Y を予測

• 「構造予測」の問題(品詞推定、単語分割と同様)

構文解析の確率モデル

・文Xが与えられ、事後確率の最も高い構文木Yを予測

$$\underset{\boldsymbol{Y}}{\operatorname{argmax}} P\left(\boldsymbol{Y}|\boldsymbol{X}\right)$$

生成モデル

構文木Yと文Xが同時に確率モデルにより生成された とする

• Xを固定すると、同時確率が最も高い Y は事後確率も 最も高い

$$\underset{\mathbf{Y}}{\operatorname{argmax}} P(\mathbf{Y}|\mathbf{X}) = \underset{\mathbf{Y}}{\operatorname{argmax}} P(\mathbf{Y}, \mathbf{X})$$

確率的文脈自由文法 (PCFG)

• 構文木の同時確率をどう定義するか?

確率的文脈自由文法 (PCFG)

• PCFG:各ノードの確率を個別に定義

確率的文脈自由文法 (PCFG)

• PCFG:各ノードの確率を個別に定義

• 構文木の確率はノードの確率の積

```
P(S \rightarrow NP \ VP) \ * \ P(NP \rightarrow PRP) \ * \ P(PRP \rightarrow "I") \\ * \ P(VP \rightarrow VBD \ NP \ PP) \ * \ P(VBD \rightarrow "saw") \ * \ P(NP \rightarrow DT \ NN) \\ * \ P(DT \rightarrow "a") \ * \ P(NN \rightarrow "girl") \ * \ P(PP \rightarrow IN \ NP) \ * \ P(IN \rightarrow "with") \\ * \ P(NP \rightarrow DT \ NN) \ * \ P(DT \rightarrow "a") \ * \ P(NN \rightarrow "telescope")
```


確率的構文解析

• 構文解析は確率が最大の構文木を探索すること

$$\operatorname{argmax}_{\mathbf{Y}} P(\mathbf{Y}, \mathbf{X})$$

• ビタビアルゴリズムは利用可能か?

確率的構文解析

• 構文解析は確率が最大の構文木を探索すること

$$\operatorname{argmax}_{\mathbf{Y}} P(\mathbf{Y}, \mathbf{X})$$

- ビタビアルゴリズムは利用可能か?
 - 答え:いいえ!
 - 理由:構文木の候補はグラフで表せず超グラフとなる

両方に現れるエッジだけを残すと:

• 1番目の構文木のみに存在するエッジを追加:

• 2番目の構文木のみに存在するエッジを追加:

• 両方の構文木のみに存在するエッジを追加:

なぜ「超」グラフ?

エッジの「次数」は子の数

- 超グラフの次数はエッジの次数の最大値
- グラフは次数1の超グラフ!

重み付き超グラフ

- グラフと同じく:
 - 超グラフのエッジに重みを付与
 - 負の対数確率(ビタビアルゴリズムと同等の理由)

超グラフの探索法

• 構文解析=超グラフの最もスコアの小さい木を探索

超グラフの探索法

- 構文解析=超グラフの最もスコアの小さい木を探索
- グラフではビタビアルゴリズムを利用
 - 前向きステップ:各ノードまでの最短経路を計算
 - 後ろ向き: 最短経路を復元

超グラフの探索法

- 構文解析=超グラフの最もスコアの小さい木を探索
- グラフではビタビアルゴリズムを利用
 - 前向きステップ:各ノードまでの最短経路を計算
 - 後ろ向き: 最短経路を復元
- 超グラフもほとんど同等のアルゴリズム
 - 内ステップ:各ノードの最小部分木のスコアを計算
 - 外ステップ:スコア最小の木を復元

復習:ビタビアルゴリズム


```
best_score[0] = 0

for each node in the graph (昇順)

best_score[node] = ∞

for each incoming edge of node

score = best_score[edge.prev_node] + edge.score

if score < best_score[node]

best_score[node] = score

best_edge[node] = edge
```


例:

<u>初期化</u>:

 $best_score[0] = 0$

例:

初期化:

 $best_score[0] = 0$

e₁<u>を計算:</u>

score = $0 + 2.5 = 2.5 (< \infty)$ best_score[1] = 2.5best_edge[1] = e_1

例:

初期化:

 $best_score[0] = 0$

e, を計算:

score = $0 + 2.5 = 2.5 (< \infty)$ best_score[1] = 2.5best_edge[1] = e_1

<u>e</u> を計算:

score = $0 + 1.4 = 1.4 (< \infty)$ best_score[2] = 1.4best_edge[2] = e_3

例:

初期化:

 $best_score[0] = 0$

e₁を計算:

score = $0 + 2.5 = 2.5 (< \infty)$ best_score[1] = 2.5best_edge[1] = e_1

<u>e</u> を計算:

score = $0 + 1.4 = 1.4 (< \infty)$ best_score[2] = 1.4best_edge[2] = e_2

<u>e</u> を計算:

score = 2.5 + 4.0 = 6.5 (> 1.4) 変更なし!

例:

初期化:

 $best_score[0] = 0$

e₁を計算:

score = $0 + 2.5 = 2.5 (< \infty)$ best_score[1] = 2.5best_edge[1] = e_1

<u>e</u> を計算:

score = $0 + 1.4 = 1.4 (< \infty)$ best_score[2] = 1.4best_edge[2] = e_3

<u>e</u> <u>を計算:</u>

score = 2.5 + 4.0 = 6.5 (> 1.4) 変更なし!

<u>e</u> を計算:

score = $2.5 + 2.1 = 4.6 (< \infty)$ best_score[3] = 4.6best_edge[3] = e_4

例:

初期化:

 $best_score[0] = 0$

e₁を計算:

score = $0 + 2.5 = 2.5 (< \infty)$ best_score[1] = 2.5best_edge[1] = e_1

<u>e</u> を計算:

score = $0 + 1.4 = 1.4 (< \infty)$ best_score[2] = 1.4best_edge[2] = e_2

<u>e¸を計算:</u>

score = 2.5 + 4.0 = 6.5 (> 1.4) 変更なし!

<u>e</u> を計算:

score = $2.5 + 2.1 = 4.6 (< \infty)$ best_score[3] = 4.6best_edge[3] = e

<u>e を計算:</u>

score = 1.4 + 2.3 = 3.7 (< 4.6)best_score[3] = 3.7best_edge[3] = e_{5}

前向きステップの結果:

best_score = (0.0, 2.5, 1.4, 3.7)
best_edge = (NULL,
$$e_1$$
, e_2 , e_5)

後ろ向きステップ

後ろ向きステップのアルゴリズム


```
best_path = []
next_edge = best_edge[best_edge.length - 1]
while next_edge != NULL
   add next_edge to best_path
   next_edge = best_edge[next_edge.prev_node]
reverse best_path
```


初期化:

best_path = [] next_edge = best_edge[3] = e_5

後ろ向きステップの例

初期化:

```
best_path = []
next_edge = best_edge[3] = e_5
```

<u>e</u>₅を計算:

```
best_path = [e_5]
next_edge = best_edge[2] = e_2
```


後ろ向きステップの例

初期化:

best_path = []
next_edge = best_edge[3] = e₅

<u>e</u>₅を計算:

best_path = $[e_5]$ next_edge = best_edge[2] = e_2

<u>e</u> を計算:

best_path = $[e_5, e_2]$ next_edge = best_edge[0] = NULL

後ろ向きステップの例

<u>初期化:</u>

best_path = [] next_edge = best_edge[3] = e₅

<u>e</u>₅を計算:

best_path = $[e_5]$ next_edge = best_edge[2] = e_2

<u>e</u>₅を計算:

best_path = $[e_5, e_2]$ next_edge = best_edge[0] = NULL

<u>逆順に並べ替え:</u>

best_path = $[e_2, e_5]$

• VP1,7 の最小スコアを計算

• VP1,7 の最小スコアを計算


```
score(e<sub>1</sub>) =
  -log(P(VP → VBD NP PP)) +
  best_score[VBD1,2] +
  best_score[NP2,4] +
  best_score[NP2,7]

score(e<sub>2</sub>) =
  -log(P(VP → VBD NP)) +
```

best score[VBD1,2] +

best score[VBD2,7]

• VP1,7 の最小スコアを計算


```
score(e<sub>1</sub>) =
  -log(P(VP → VBD NP PP)) +
  best_score[VBD1,2] +
  best_score[NP2,4] +
  best_score[NP2,7]
```

```
score(e₂) =
-log(P(VP → VBD NP)) +
best_score[VBD1,2] +
best_score[VBD2,7]
```

best_edge[VB1,7] = argmin_{e1,e2} score

• VP1,7 の最小スコアを計算

```
score(e_1) =
                                    -log(P(VP \rightarrow VBD NP PP)) +
                     NP
                                    best score[VBD1,2] +
                     2,7
                                    best score[NP2,4] +
    e<sub>1</sub>
                           PP
                                    best score[NP2,7]
                            4,7
              NP
                                   score(e_2) =
              2,4
                                    -log(P(VP \rightarrow VBD NP)) +
VBD
                                    best score[VBD1,2] +
1,2
                                    best score[VBD2,7]
                                   best_edge[VB1,7] = argmin<sub>e1.e2</sub> score
                                   best score[VB1,7] =
                                                                             50
                                       score(best edge[VB1,7])
```


文法からの超グラフ構築

• 超グラフは解けるが、構文解析で与えられるのは

```
文法
                                                          文
P(S \rightarrow NP VP) = 0.8
P(S \rightarrow PRP VP) = 0.2
P(VP \rightarrow VBD NP PP) = 0.6
P(VP \rightarrow VBD NP) = 0.4
                                         I saw a girl with a telescope
P(NP \rightarrow DT NN) = 0.5
P(NP \rightarrow NN) = 0.5
P(PRP \rightarrow "I") = 0.4
P(VBD \rightarrow "saw") = 0.05
P(DT \rightarrow "a") = 0.6
```

解くための超グラフをどうやって構築するか?

- CKY(Cocke-Kasami-Younger) アルゴリズムは文法に 基づいてハイパーグラフを構築して解く
- 文法はチョムスキー標準形 (CNF)
 - ルールの右側は非終端記号2つもしくは終端記号1つ

<u>OK</u>	<u>OK</u>	Not OK!
$S \rightarrow NP VP$ $S \rightarrow PRP VP$ $VP \rightarrow VBD NP$	PRP → "I" VBD → "saw" DT → "a"	$VP \rightarrow VBD NP PP$ $NP \rightarrow NN$ $NP \rightarrow PRP$

• この条件を満たさないルールは変更可能

• まずは終端記号のルールをスコア付きで展開

• 0,2 のノードを全て展開

• 1,3 のノードを全て展開

• 0,3 のノードを全て展開

文を全てカバーする「S」ノードを見つけて、エッジを展開

構文木の出力

構文木の出力:「Penn Treebank 形式」(S式)

構文木の出力

• 再帰を使うと簡単に出力できる:

擬似コード

CKY 擬似コード: 文法の読み込み

```
# "lhs \t rhs \t prob \n" 形式の文法を読み込む
make list nonterm # (左,右1,右2,確率)の非終端記号
make map preterm # pre[右] = [(左,確率)…] 形式のマップ
for rule in grammar_file
    split rule into lhs, rhs, prob (with "\t") # P(左→右)=確率
    split rhs into rhs_symbols (with " ")
    if length(rhs) == 1: # 前終端記号
        add (lhs, log(prob)) to preterm[rhs]
    else: # 非終端記号
    add (lhs, rhs[0], rhs[1], log(prob)) to nonterm
```


CKY 擬似コード: 前終端記号を追加

```
split line into words
make map best_score # 引数 =sym<sub>i,j</sub> 値 = 最大対数確率
make map best_edge # 引数 =sym<sub>i,j</sub> 値 =(lsym<sub>i,k</sub>, rsym<sub>k,j</sub>)
# 前終端記号を追加
for i in 0 .. length(words)-1:
  for lhs, log_prob in preterm where P(lhs → words[i]) > 0:
    best_score[lhs<sub>i,i+1</sub>] = [log_prob]
```


CKY 擬似コード: 非終端記号の組み合わせ

```
for j in 2 .. length(words): # j はスパンの右側
                #iはスパンの左側(右から左へ処理!)
  for i in j-2 .. 0:
  for k in i+1 .. j-1: # k は rsym の開始点
  # 各文法ルールを展開 :log(P(sym → lsym rsym)) = logprob
   for sym, Isym, rsym, logprob in nonterm:
     # 両方の子供の確率が 0 より大きい
     if best\_score[lsym_{|_k}] > -\infty and best\_score[rsym_{|_k}] > -\infty:
     # このノード・辺の対数確率を計算
     my\_lp = best\_score[lsym_{ik}] + best\_score[rsym_{ki}] + logprob
     # この辺が確率最大のものなら更新
     if my_lp > best_score[sym;;]:
        best\_score[sym_{i.i}] = my\_lp
        best\_edge[sym_{ij}] = (lsym_{ik}, rsym_{ki})
```


CKY 擬似コード: 木を出力

PRINT(S_{0,length(words)}) # 文全体を覆う「S」を出力

```
subroutine PRINT(Sym<sub>i,j</sub>):

if sym<sub>i,j</sub> exists in best_edge: # 非終端記号

return "("+sym+""

+ PRINT(best_edge[0]) + "" +

+ PRINT(best_edge[1]) + ")"

else: # 終端記号

return "("+sym+""+words[i]+")"
```


演習課題

演習課題

- 実装 cky.py
- テスト
 - 入力:test/08-input.txt
 - 文法:test/08-grammar.txt
 - 出力:test/08-output.txt
- 実際のデータに対して動かす
 - data/wiki-en-test.grammar, data/wiki-en-short.tok
- 木を可視化
 - 08-parsing/print-trees.py < wiki-en-test.trees
 - (NLTK をインストールする必要あり : http://nltk.org/)
- チャレンジ 未知語に対処できるように改良

Thank You!