Econometria I Lista 1

Profa. Lorena Hakak Entrega: 03/10/2022

1.

(a)

K\L	0	1	2	Prob(K)
-1	0,1	0,1	0,15	0,35
0	0,15	0,1	0,1	0,35
1	0,05	0,15	0,1	0,3
Prob(L)	0,3	0,35	0,35	1

P(K = -1) = P(K=-1|L = 0) + P(K=-1|L = 1) + P(K=-1|L = 2)

$$P(K = -1) = 0,1 + 0,1 + 0,15$$

$$P(K = -1) = 0,35$$

$$P(K = 0) = P(K=0|L = 0) + P(K=0|L = 1) + P(K=0|L = 2)$$

$$P(K = 0) = 0,15 + 0,1 + 0,1$$

$$P(K = 0) = 0,35$$

$$P(K = 1) = P(K=1|L = 0) + P(K=1|L = 1) + P(K=1|L = 2)$$

$$P(K = 1) = 0,05 + 0,15 + 0,1$$

$$P(K = 1) = 0,3$$

$$P(L = 0) = P(L=0|K = -1) + P(L = 0|K = 0) + P(L = 0|K = 1)$$

$$P(L = 0) = 0,1 + 0,15 + 0,05$$

$$P(L = 0) = 0,3$$

$$P(L = 1) = P(L=1|K = -1) + P(L = 1|K = 0) + P(L = 1|K = 1)$$

$$P(L = 1) = 0,35$$

$$P(L = 2) = P(L=2|K = -1) + P(L = 2|K = 0) + P(L = 2|K = 1)$$

$$P(L = 2) = 0,15 + 0,1 + 0,1$$

P(L = 2) = 0.35

(b)

$$E(K) = \sum_{i=1}^{3} k_i P[K = k_i]$$
$$E(K) = -1.(0,35) + 0.(0,35) + 1.(0,3)$$

$$E(K) = -0.05$$

$$E(L) = \sum_{i=1}^{3} l_i P[L = l_i]$$

$$E(L) = 0.(0,3) + 1.(0,35) + 2.(0,35)$$

$$E(L) = 1,05$$

(c)

K	L	K.L	Prob(K,L)	K.L.Prob(K,L)
-1	0	0	0,1	0
-1	1	-1	0,1	-0,1
-1	2	-2	0,15	-0,3
0	0	0	0,15	0
0	1	0	0,1	0
0	2	0	0,1	0
1	0	0	0,05	0
1	1	1	0,15	0,15
1	2	2	0,1	0,2

$$E(KL) = \sum_{i=1}^{3} k_i P[K = k_i] . l_i P[L = l_i] = -0,05$$
$$COV(K, L) = E[KL] - E[K]E[L]$$

$$COV(K, L) = -0.05 - (-0.05)(1.05)$$

$$COV(K, L) = 0,0025$$

(d)

K e L não são variáveis independentes, pois a covariância entre eles é diferente de zero:

$$COV(K, L) \neq 0.$$

Para P(K|L=1) nós temos:

$$P(K = -1|L = 1) = \frac{P(K = -1 \cap L = 1)}{P(L = 1)} = \frac{0,1}{0,35} = 0,28$$

$$P(K = 0|L = 1) = \frac{P(K = 0 \cap L = 1)}{P(L = 1)} = \frac{0,1}{0,35} = 0,28$$

$$P(K = 1|L = 1) = \frac{P(K = 1 \cap L = 1)}{P(L = 1)} = \frac{0,15}{0,35} = 0,43$$

Portanto, P(K|L=1) = -1.(0,28) + 0.(0,28) + 1.(0,43) = 0,15.

Para P(L|K=0) nós temos:

$$P(L=0|K=0) = \frac{P(L=0 \cap K=0)}{P(K=0)} = \frac{0.15}{0.35} = 0.43$$

$$P(L=1|K=0) = \frac{P(L=1 \cap K=0)}{P(K=0)} = \frac{0.15}{0.35} = 0.28$$

$$P(L=2|K=0) = \frac{P(L=2 \cap K=0)}{P(K=0)} = \frac{0.15}{0.35} = 0.28$$

Portanto, P(L|K=0) = 0.(0,43) + 1.(0,28) + 2.(0,28) = 0,84.

2.

Seja X uma variável aleatória de média populacional μ e média amostral $\frac{\sum_{i=1}^n X_i}{n} = \overline{X}$. Logo:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$E[\overline{X}] = E\left[\frac{\sum_{i=1}^{n} X_i}{n}\right]$$

$$E[\overline{X}] = \frac{1}{n} E\left[\sum_{i=1}^{n} X_i\right]$$

$$E[\overline{X}] = \frac{1}{n} \sum_{i=1}^{n} E[X_i]$$

$$E[\overline{X}] = \frac{1}{n} \sum_{i=1}^{n} \mu$$

$$E[\overline{X}] = \frac{1}{n} n.\mu$$

$$E[\overline{X}] = \mu.$$

4.

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(X_i - \overline{X})$$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i^2 - X_i \overline{X} - \overline{X}X_i + \overline{X}^2)$$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i)^2 - \frac{1}{n} \sum_{i=1}^{n} X_i \overline{X} - \frac{1}{n} \sum_{i=1}^{n} X_i \overline{X} + \frac{1}{n} \sum_{i=1}^{n} \overline{X}^2$$

 $\begin{aligned} \operatorname{Como} \frac{\sum_{i=1}^n X_i}{n} &= \overline{X} \text{ e } \frac{\sum_{i=1}^n \overline{X}^2}{n} = \overline{X}^2, \text{ ent} \widetilde{\operatorname{ao}} : \\ & \frac{1}{n} \sum_{i=1}^n (X_i)^2 - \overline{X} \overline{X} - \overline{X} \overline{X} + \overline{X}^2 \\ & \frac{1}{n} \sum_{i=1}^n (X_i)^2 - \overline{X} \overline{X} - \overline{X} \overline{X} + \overline{X}^2 \\ & \frac{1}{n} \sum_{i=1}^n (X_i)^2 - \overline{X}^2 \end{aligned}$ Portanto, $\frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n} \sum_{i=1}^n (X_i)^2 - \overline{X}^2.$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

$$\frac{1}{n} \sum_{i=1}^{n} (X_i Y_i - X_i \overline{Y} - Y_i \overline{X} + \overline{X} \overline{Y})$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i Y_i - \frac{1}{n} \sum_{i=1}^{n} X_i \overline{Y} - \frac{1}{n} \sum_{i=1}^{n} Y_i \overline{X} + \frac{1}{n} \sum_{i=1}^{n} \overline{X} \overline{Y}$$

$$\mathsf{Como}\ \tfrac{\sum_{i=1}^n X_i}{n} = \overline{X}, \ \tfrac{\sum_{i=1}^n Y_i}{n} = \overline{Y}\ \mathsf{e}\ \tfrac{\sum_{i=1}^n \overline{XY}}{n} = \overline{XY}\ \mathsf{, ent\~ao:}$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i Y_i - \overline{XY} - \overline{YX} + \overline{XY}$$
$$\frac{1}{n} \sum_{i=1}^{n} X_i Y_i - \overline{XY}$$

Portanto,
$$\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y}) = \frac{1}{n}\sum_{i=1}^n X_iY_i - \overline{XY}$$
.

6.

Para entendermos o que é o erro quadrático médio, precisamos entender o conceito de erro. O erro amostral, nesse caso, seria o erro que cometemos ao estimar o parâmetro θ de uma variável qualquer pelo seu estimador T. Portanto, o erro quadrático médio seria:

$$EOM(T; \theta) = E(e^2) = E(T - \theta)^2$$

Fazendo as manipulações corretas¹ chegamos na expressão:

$$EQM(T; \theta) = Var(T) + V^2,$$

onde Var(T) é a variância do estimador T e V é o viés.

Vamos agora entender sua relação com a eficiência de um estimador. Para ser eficiente, o estimador tem que ser não viesado, e ter uma variância pequena. Portanto, como o EQM é a soma desses dois parâmetros, quanto menor o EQM, mais eficiente o estimador é.

¹Explicação completa no livro Morettin and Bussab (2017) nas páginas 306 e 307.

7.

(a)

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{X} = \frac{1.000 + 2.000 + 1.500 + 800 + 700}{5}$$

$$\overline{X} = R\$1.200,00$$

(b)

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{X})^{2}$$

$$S^2 = \frac{(1.000 - 1.200)^2 + (2.000 - 1.200)^2 + (1.500 - 1.200)^2 + (800 - 1.200)^2 + (700 - 1.200)^2}{5 - 1}$$

$$S^2 = \frac{40.000 + 640.000 + 90.000 + 160.000 + 250.000}{4}$$

$$S^2 = R$295.000, 00.$$

(c)

$$Var(\overline{X}_n) = Var\left(\frac{x_1 + \dots + x_n}{n}\right) = \frac{1}{n^2}Var(x_1 + \dots + x_n)$$

Como a amostragem é aleatória, as variáveis $\{x_1+\cdots+x_n\}$ são independentes, de modo que:

$$Var(\overline{X}_n) = \frac{1}{n^2} Var(x_1 + \dots + x_n) = \frac{1}{n^2} [Var(x_1) + \dots + Var(x_n)]$$

Sendo a variância constante em cada variável, nós temos:

$$Var(\overline{X}_n) = \frac{1}{n^2}[\sigma^2 + \dots + \sigma^2] = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

Portanto, $Var(\overline{X}_n) = \frac{\sigma^2}{n} = \frac{295000}{5} = R$59.000, 00.$

8.

$$E(X) = 9$$
 e $\sigma = 2$. Logo, $Var(X) = \sigma^2 = 4$.

$$E(W) = E\left[\frac{\sum_{i=1}^{5} ix_i}{\sum_{i=1}^{5} i}\right]$$
$$E(W) = E\left[\frac{1X_1 + 2X_2 + 3X_3 + 4X_4 + 5X_5}{1 + 2 + 3 + 4 + 5}\right]$$

$$E(W) = \frac{1E(X_1) + E(2X_2) + 3E(X_3) + 4E(X_4) + 5E(X_5)}{15}$$

$$E(W) = \frac{(1+2+3+4+5)E(X)}{15}$$

$$E(W) = \frac{15.9}{15}$$

$$E(W) = 9.$$

$$Var(W) = Var \left[\frac{\sum_{i=1}^{5} ix_i}{\sum_{i=1}^{5} i} \right]$$

$$Var(W) = \frac{Var[\sum_{i=1}^{5} ix_i]}{15^2}$$

$$Var(W) = \frac{\sum_{i=1}^{5} i^2 Var[x_i]}{15^2}$$

$$Var(W) = \frac{\sum_{i=1}^{5} i^2 4}{15^2}$$

$$Var(W) = \frac{4(1+4+9+16+25)}{255}$$

$$Var(W) = \frac{4(55)}{255}$$

$$Var(W) = 0,98.$$

9.

(a)

Dado que $\overline{X} = 110, 3$, temos:

X_i	$(X_i - \overline{X})$	$(X_i - \overline{X})^2$
114	3,7	13,69
112	1,7	2,89
109	-1,3	1,69
123	12,7	161,29
111	0,7	0,49
99	-11,3	127,69
121	10,7	114,49
113	2,7	7,29
98	-12,3	151,29
103	-7,3	53,29

$$\sum_{1}^{10} (X_i - \overline{X})^2 = 634, 1.$$

$$\mathrm{VAR}(X) = \frac{\sum_{1}^{10}(X_i - \overline{X})^2}{n-1}$$

$$\mathrm{VAR}(X) = \frac{634, 1}{9}$$

$$VAR(X) = 70, 46.$$

(b)

Dado que $\overline{Y} = 76, 4$, temos:

Y_i	$(Y_i - \overline{Y})$	$(Y_i - \overline{Y})^2$
55	-21,4	457,96
61	-15,4	237,16
77	0,6	0,36
66	-10,4	108,16
81	4,6	21,16
95	18,6	345,96
75	-1,4	1,96
77	-1,4	1,96
90	13,6	184,96
87	10,6	112,36

$$\sum_{1}^{10} (Y_i - \overline{Y})^2 = 1470, 4.$$

$$VAR(Y) = \frac{\sum_{1}^{10} (Y_i - \overline{Y})^2}{n - 1}$$

$$\mathrm{VAR}(Y) = \frac{1470, 4}{9}$$

$$VAR(Y) = 163, 38.$$

(c)

$(X_i - \overline{X})$	$(Y_i - \overline{Y})$	$(X_i - \overline{X})(Y_i - \overline{Y})$
3,7	-21,4	-79,18
1,7	-15,4	-26,18
-1,3	0,6	-0,78
12,7	-10,4	-132,08
0,7	4,6	3,22
-11,3	18,6	-210,18
10,7	-1,4	-14,98
2,7	-1,4	1,62
-12,3	13,6	-167,28
-7,3	10,6	-77,38

$$\begin{split} \sum_1^{10}(X_i-\overline{X})(Y_i-\overline{Y}) &= -703,2\\ \mathrm{COVAR}(X,Y) &= \frac{\sum_1^{10}(X_i-\overline{X})(Y_i-\overline{Y})}{n-1}\\ \mathrm{COVAR}(X,Y) &= \frac{-703,2}{9}\\ \mathrm{COVAR}(X,Y) &= -78,13. \end{split}$$

(d)

Sendo $VAR(X) = \sigma_x^2$ e $VAR(Y) = \sigma_y^2$, o desvio-padrão das variáveis são:

$$\sigma_x = \sqrt{\sigma_x^2}$$

$$\sigma_x = \sqrt{70, 46}$$

$$\sigma_x = 8, 39.$$

Para Y:

$$\sigma_y = \sqrt{\sigma_y^2}$$

$$\sigma_y = \sqrt{163,38}$$

$$\sigma_x = 12,78.$$

Com o desvio-padrão de cada variável calculado, podemos encontrar a correlação entre elas. Partindo da fórmula:

$$\operatorname{correl}(X,Y) = \frac{\operatorname{COVAR}(X,Y)}{\sigma_x \sigma_y}$$

$$\operatorname{correl}(X,Y) = \frac{-78,13}{(8,39).(12,78)}$$

$$\operatorname{correl}(X,Y) = -0,73.$$

10.

$$P(19.000 \le X \le 25.000) = P(19.000 - 20.000 \le X - 20.000 \le 25.000 - 20.000)$$

$$P(19.000 \le X \le 25.000) = P\left(\frac{19.000 - 20.000}{4.000} \le \frac{X - 20.000}{4.000} \le \frac{25.000 - 20.000}{4.000}\right)$$
$$P(19.000 \le X \le 25.000) = P[-0, 25 \le z \le 1, 25]$$

Sendo P(-0, 25) = P(0, 25), então:

$$P(19.000 \le X \le 25.000) = P[z \ge 0, 25] + P(z \le 1, 25)$$

$$P(19.000 \le X \le 25.000) = 0,0987 + 0,3944$$

$$P(19.000 \le X \le 25.000) = 0,4931.$$

A probabilidade do faturamento estar entre R\$19.000,00 e R\$25.000,00 é de 49,31%.

11.

(a)

Dado que $n=49, \overline{X}=820,00$ e $\sigma_x=140,00$, a variância da média seria:

$$\sigma_{\overline{X}} = \frac{\sigma_x}{\sqrt{49}} = \frac{140}{7} = 20.$$

Como a distribuição normal padrão é simétrica em relação à média zero, 80% de confiança significa 40% para cada lado. Assim, vem, que:

$$z_{40\%} = 1,28$$

$$IC(\mu; 80) = 820 \pm 1,28.20 = 820 \pm 25,60.$$

(b)

$$z_{45\%} = 1,64$$

$$IC(\mu; 90) = 820 \pm 1,64.20 = 820 \pm 32,80.$$

(c)

Ao aumentarmos o intervalo de confiança, aumenta-se consequentemente a margem de erro. Isso porque teremos que ter mais certeza que os eventos irão ocorrer naquele intervalo.

(d)

Para satisfazer as condições de margem de erro no máximo 20 e confiança de 90%, é necessário que:

$$1,64.\frac{140}{\sqrt{n}} \le 20$$

$$1,64.\frac{140}{20} \le \sqrt{n}$$

$$11,48 \le \sqrt{n}$$

Para que o erro seja de no máximo 20 com confiança de 90% é necessário no mínimo 132 observações.

Tabela A6.2 Distribuição pormal – valores de P(0 \leq Z \leq z₀)

Z ₀	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2703	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
				0.4700	0.4702	0.4700	0,4803	0,4808	0,4812	0,4817
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798 0,4842	0,4846	0,4850	0,4854	0,4857
2,1	0,4821	0,4826	0,4830	0,4834	0,4838 0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,2	0,4861	0,4864	0,4868 0,4898	0,4871 0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,3	0.4893	0,4896 0,4920	0,4922	0,4901	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,4	0,4918	0,4920	0,4322	0,4323	0,7327	0,1323	0,1331	0,1332	0,1551	0,1000
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4967	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
-,-	,,,,,,,,,	-,	,	,		-				
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998
							0.4005	0.4000	0.4000	0.4000
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000

Figure 1

Bibliography

Morettin, P. A. and Bussab, W. O. (2017). Estatística básica. Saraiva Educação SA.