

K. Wiegand, T. Stalljohann, T. Witt Sommersemester 2025 Heidelberg, 13. Mai 2025

Grundlagen der Geometrie und Topologie

ÜBUNGSBLATT 5

Stichworte: Vektorfelder, Flüsse und Lie-Ableitung

Für Aufgabe 1 benötigen Sie das Konzept der Partition der Eins, welches wir nun einführen.

Proposition (Partition der Eins). Gegeben sei eine glatte Mannigfaltigkeit M und eine beliebige offene Überdeckung $(U_i)_{i\in I}$ von M. Dann existiert eine Partition der Eins $(\rho_i)_{i\in I}$ zur Überdeckung $(U_i)_{i\in I}$, d.h. $(\rho_i)_{i\in I}$ erfüllt die folgenden Eigenschaften:

- (i) Für jedes $i \in I$ ist $\rho_i : M \to \mathbb{R}$ glatt mit $0 \le \rho_i \le 1$.
- (ii) $\operatorname{supp}(\rho_i) := \overline{\{p \in M \mid \rho_i(p) \neq 0\}} \subseteq U_i \text{ für jedes } i \in I.$
- (iii) Für jedes $p \in M$ existiert eine offene Umgebung $U \subseteq M$ von p sodass

$$\{i \in I \mid U \cap \operatorname{supp}(\rho_i) \neq \emptyset \}$$

eine endliche Menge ist.

(iv) $\sum_{i \in I} \rho_i = 1$ auf M.

Man bemerke, dass wegen Eigenschaft (iii) für jedes $p \in M$ eine Umgebung U um p existiert, sodass auf U nur endlich viele ρ_i nicht verschwinden. Insbesondere sind an jedem Punkt in M in der Summe in (iv) nur endlich viele Terme ungleich Null.

Sie dürfen die obige Proposition im Folgenden ohne Beweis annehmen.

Aufgabe 1 Schnitte von Vektorbündeln (3+1 Punkte)

Sei $\pi: E \to M$ ein glattes Vektorbündel über der Mannigfaltigkeit M.

a) Gegeben seien Teilmengen $A\subseteq U\subseteq M$ mit A abgeschlossen in M und U offen in M. Zeigen Sie, dass für jeden glatten¹ Schnitt $\sigma:A\to E$ ein glatter Schnitt $\widetilde{\sigma}:M\to E$ existiert mit $\widetilde{\sigma}|_A=\sigma$ und

$$\operatorname{supp}(\widetilde{\sigma}) := \overline{\{ p \in M \mid \widetilde{\sigma}(p) \neq 0 \}} \subseteq U$$

Hinweis: Man behandle zunächst den Fall, in dem $E \cong M \times \mathbb{R}^n$ ein triviales Vektorbündel ist. Wähle für jedes $p \in A$ eine Umgebung $U_p \subseteq U$ von p und einen glatten Schnitt

¹Glattheit bedeutet hier: Für jedes $p \in A$ existiert eine offene Umgebung $U_p \subseteq M$ um p und ein glatter Schnitt $\sigma_p : U_p \to E$ mit $\sigma_p|_{U_p \cap A} = \sigma|_{U_p \cap A}$.

 $\sigma_p: U_p \to E$, der σ lokal fortsetzt, sowie eine Partition der Eins $(\rho_p)_{p \in A} \cup (\rho_{M-A})$ zur offenen Überdeckung $(U_p)_{p \in A} \cup (M-A)$ von M. Definiere nun

$$\widetilde{\sigma} := \sum_{p \in A} \rho_p \, \sigma_p \ .$$

Man zeige, dass dies wohldefiniert ist und $\tilde{\sigma}$ eine glatte Fortsetzung von σ ist. Nun behandle man den allgemeinen Fall mittels Trivialisierungen und noch einer Partition der Eins.

b) Benutzen Sie a) um zu folgern, dass für $p \in M$ und eine beliebige offene Umgebung $U \subseteq M$ von p für jedes $e \in E_p = \pi^{-1}(p)$ ein glatter Schnitt $\sigma : M \to E$ mit $\sigma(p) = e$ und $\operatorname{supp}(\sigma) \subseteq U$ existiert.

Aufgabe 2 Integralkurven auf dem Torus (4 Punkte)

Auf dem 2-Torus $\mathbb{T}^2:=\mathbb{R}^2/\mathbb{Z}^2$ sei für $\alpha\in(0,+\infty)$ das konstante Vektorfeld X_α gegeben durch

$$X_{\alpha}([x,y]) := \partial_x + \alpha \, \partial_y \qquad , (x,y) \in \mathbb{R}^2 .$$

Zeigen Sie, dass (maximale) Integralkurven von X_{α} genau dann periodisch sind, wenn α rational ist. Zeigen Sie, dass das Bild $\gamma(\mathbb{R})$ von (maximalen) Integralkurven γ für irrationales α dicht in \mathbb{T}^2 liegt und folgern Sie, dass $\gamma(\mathbb{R})$ keine Untermannigfaltigkeit von \mathbb{T}^2 ist. Hinweis: Für die Dichtheit kann es nützlich sein, folgendes Zwischenresultat zu zeigen: Sei $\alpha \in \mathbb{R} - \mathbb{Q}$ und $\pi_{\alpha} : \mathbb{R} \to \mathbb{R}/\mathbb{Z}$, $x \mapsto [\alpha x] = \alpha x + \mathbb{Z}$. Dann ist $\pi_{\alpha}(\mathbb{Z})$ dicht in \mathbb{R}/\mathbb{Z} .

Aufgabe 3 Gradientenflusslinien (2+2 Punkte)

Sei $f \in C^{\infty}(\mathbb{R}^n)$ eine glatte Funktion auf \mathbb{R}^n und bezeichne mit $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$, $\nabla f(x) := (\frac{\partial f}{\partial x_1}(x), \ldots, \frac{\partial f}{\partial x_n}(x))$, das Gradientenvektorfeld von f. Integralkurven von ∇f heißen auch Gradientenflusslinien (von f). Zeigen Sie

- a) Ist $\gamma: I=(a,b)\to \mathbb{R}^n$, $-\infty \le a < b \le +\infty$, eine nicht-konstante Gradientenflusslinie von f, so ist $f\circ \gamma$ streng monoton steigend. Folgern Sie, dass γ nicht periodisch ist.
- b) Sei $x_0 \in \mathbb{R}^n$ und $\gamma : \mathbb{R} \to \mathbb{R}^n$ eine Gradientenflusslinie von f mit $\lim_{t \to +\infty} \gamma(t) = x_0$. Folgern Sie, dass x_0 ein kritischer Punkt von f ist.

Aufgabe 4 Lie-Ableitungen (4 Punkte)

Seien X,Y Vektorfelder auf der glatten Mannigfaltigkeit M. Bezeichne mit $\phi_X: \mathbb{R} \times M \to M$, den (nach Annahme vollständigen) Fluss von X und sei $\mathcal{L}_XY = [X,Y]$ die Lie-Ableitung von Y in Richtung X. Sei $(t_0,p) \in \mathbb{R} \times M$ beliebig. Zeigen Sie

$$\left. \frac{d}{dt} \right|_{t=t_0} \left((\phi_X^t)^* Y \right)_p = \left((\phi_X^{t_0})^* \mathcal{L}_X Y \right)_p \in T_p M .$$

Hinweis: Der Fluss ϕ_X ist eine glatte Funktion auf $\mathbb{R} \times M$. Folgern Sie daraus, dass $t \mapsto ((\phi_X^t)^*Y)_p$ eine glatte Kurve im endlich-dimensionalen Vektorraum T_pM ist. Also ist die linke Seite in der obigen Gleichung wohldefiniert.

Abgabe bis Dienstag, 20. Mai 2025, 13:00 Uhr im MaMpf in Zweiergruppen. Abgabe zu dritt ist erlaubt.