

Local-Global Transformer Enhanced Unfolding Network for Pan-sharpening

*Mingsong Li*¹, Yikun Liu¹, Tao Xiao¹, Yuwen Huang², and Gongping Yang¹*

¹School of Software, Shandong University, Jinan, China ²School of Computer, Heze University, Heze, China

August 23, 2023

Codebase

https://github.com/lms-07/LGTEUN

Homepage of Presenter

https://lms-07.github.io/

Outline

- **□** Background
- Problem Analysis
- Method
- **□** Experiments
- □ Conclusion and Discussion

Background: Vital Resolutions in Remote Sensing Image

> Spatial resolution

High Spatial Resolution

Medium Spatial Resolution

Low Spatial Resolution

Spectral resolution

Panchromatic Image

Background: Characteristic, Applications, and Challenge

> Wider wavelength range

> Challenge

[&]quot;Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022.

Problem Analysis: Task Description and Literature Classification

□ Pan-sharpening

Model-based

> Categories

- Limited generalization ability
- Great model interpretability

Deep Learning (DL)-based

- Strong feature representation
- Weak model interpretability

Problem Analysis

SHAP TO ONG UNIVERSITY

1) Model Interpretability

Black box principle of DL-based methods

2) Local and Global Dependencies

[&]quot;PanNet: A Deep Network Architecture for Pan-Sharpening," in ICCV, 2017.

[&]quot;Mutual Information-driven Pan-sharpening," in CVPR, 2022.

[&]quot;Memory-Augmented Deep Conditional Unfolding Network for Pan-Sharpening," in CVPR, 2022.

[&]quot;Pan-Sharpening with Customized Transformer and Invertible Neural Network," in AAAI, 2022.

Method: Problems to Solutions

- 1) Model Interpretability
- Deep unfolding methods combine
- Great model interpretability

Model-based

Strong feature representation

Deep Learning (DL)-based

The degradation process of the HrMS image **Z**

$$\mathbb{R}^{hw \times HW} \cdot \mathbf{X} = \mathbf{SZ} + \mathbf{N}_x, \ \mathbf{Y} = \mathbf{ZR} + \mathbf{N}_y,$$

$$\mathbb{R}^{hw \times B} \cdot \mathbb{R}^{HW \times B} \mathbb{R}^{B \times 1} \mathbb{R}^{HW \times 1}$$
(1)

$$\bar{\mathbf{Z}} = \underset{\mathbf{Z}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{X} - \mathbf{SZ} \|^2 + \frac{1}{2} \| \mathbf{Y} - \mathbf{ZR} \|^2 + \lambda J(\mathbf{Z}),$$
(2)

Proximal Gradient Descent (PGD) Alg

$$\bar{\mathbf{Z}}_{k} = \underset{\mathbf{Z}}{argmin} \frac{1}{2} \| \mathbf{Z} - (\bar{\mathbf{Z}}_{k-1} - \eta \nabla_{f}(\bar{\mathbf{Z}}_{k-1}) \|^{2} + \lambda J(\mathbf{Z}),$$
(3)

$$\nabla_f(\bar{\mathbf{Z}}_{k-1}) = \mathbf{S}^T(\mathbf{S}\bar{\mathbf{Z}}_{k-1} - \mathbf{X}) + (\bar{\mathbf{Z}}_{k-1}\mathbf{R} - \mathbf{Y})\mathbf{R}^T. \quad (4)$$

Data Subproblem

$$\bar{\mathbf{Z}}_{k-\frac{1}{2}} = \bar{\mathbf{Z}}_{k-1} - \eta \nabla(\bar{\mathbf{Z}}_{k-1}), \tag{5}$$

$$\bar{\mathbf{Z}}_k = prox_{\eta, J}(\bar{\mathbf{Z}}_{k-\frac{1}{2}}), \tag{6}$$

Prior Subproblem

Do we need a powerful image denoiser for prior subproblem?

Efficiently model local and global feature dependencies in the same layer.

Method: Local-Global Transformer Enhanced Unfolding Network (LGTEUN)

Data Module D:

$$\bar{\mathbf{Z}}_{k-\frac{1}{2}} = \mathcal{D}(\bar{\mathbf{Z}}_{k-1}, \mathbf{X}, \mathbf{Y}, \eta_{k-1}).$$

> Prior Module P:

$$\bar{\mathbf{Z}}_k = \mathcal{P}(\bar{\mathbf{Z}}_{k-\frac{1}{2}}).$$

Figure 2: Illustration of the proposed LGTEUN. (a) The overall architecture of LGTEUN with K stages and details of the k-th stage. The lightweight CNN-based data module \mathcal{D} and the powerful transformer-based prior module \mathcal{P} in each stage correspond to the data and prior subproblems in an iteration of the PGD algorithm. (b) Components of an LGT block. (c) The adopted channel mixer. (d) The key LG Mixer is comprised of a *local branch* and a *global branch*.

Method: Local-Global Mixer

Local Branch Calculating local window based self-attention in spatial domain

$$\mathbf{F}_{a}^{i} = Softmax(\frac{\mathbf{Q}^{i}\mathbf{K}^{i}^{T}}{\sqrt{d}} + \mathbf{P}^{i})\mathbf{V}^{i}, \quad i = 1, ..., h, \qquad (9)$$

> Global Branch Extracting global contextual feature representation in frequency domain

$$\mathcal{F}(\mathbf{X}_g)(u,v) = \frac{1}{\sqrt{HW}} \sum_{h=0}^{H-1} \sum_{w=0}^{W-1} \mathbf{X}_g(h,w) e^{-j2\pi(\frac{h}{H}u + \frac{w}{W}v)},$$
(10)

$$\mathcal{A}(\mathbf{X}_g)(u,v) = \sqrt{R^2(\mathbf{X}_g)(u,v) + I^2(\mathbf{X}_g)(u,v)}, \quad (11)$$

$$\mathcal{P}(\mathbf{X}_g)(u,v) = \arctan\left[\frac{I(\mathbf{X}_g)(u,v)}{R(\mathbf{X}_g)(u,v)}\right]. \tag{12}$$

$$\mathbf{F}_g = \mathcal{F}^{-1}(DConv(\mathcal{A}(\mathbf{X}_g)), DConv(\mathcal{P}(\mathbf{X}_g))), \quad (13)$$

Experiments:

SE TOOMS UNIVERSITY

☐ Three satellite data sets:

- ➤ An 8-band MS data set (WorldView-3)
- > Two 4-band MS data set (WorldView-2 and GaoFen-2)

□ Image quality assessment:

- Five reference metrics:
 PSNR, SSIM, Q-index, SAM, and ERGAS
- Three non-reference metrics: D_{λ} , D_{S} , and QNR

Data set displaying

A pair of samples

Data Set	Metric	Stage 1	Stage 2	Stage 3	Stage 4	
	PSNR↑	32.0339	32.2188	32.068	32.0042	
	SSIM↑	0.9532	0.9545	0.9535	0.9527	
	Q8↑	0.9481	0.9494	0.9487	0.9480	
WorldView-3	SAM↓	0.0605	0.0605	0.0603	0.0612	
World view-3	ERGAS↓	2.6765	2.6286	2.6678	2.6898	
	Time (s/img)	0.0070	0.0133	0.0205	0.0262	
	Params (KB)	270.2	540.0	809.9	1079.7	
	FLOPs (GB)	9.52	19.04	28.56	38.08	
	PSNR↑	42.600	42.6837	42.4771	42.1634	
	SSIM↑	0.9784	0.9786	0.9781	0.9767	
	Q4↑	0.8398	0.8415	0.8383	0.8329	
WorldView-2	SAM↓	0.0209	0.0208	0.0213	0.0222	
world view-2	ERGAS↓	0.9358	0.928	0.9573	0.9787	
	Time (s/img)	0.0065	0.0137	0.0204	0.0254	
	Params (KB)	101.2	202.2	303.2	404.2	
	FLOPs (GB)	2.57	5.14	7.71	10.28	

Table 1: Performance and efficiency of LGTEUN with different numbers of stages K on WorldView-3 and WorldView-2 satellite data sets.

Experiments: Quantitative and Qualitative Comparisons

Method		WorldView-3					WorldView-2				GaoFen-2				
	PSNR↑	SSIM↑	Q8↑	SAM↓	ERGAS↓	PSNR↑	SSIM↑	Q4↑	SAM↓	ERGAS↓	PSNR↑	SSIM↑	Q4↑	SAM↓	ERGAS↓
GSA	22.5164	0.6343	0.5742	0.1106	7.8267	33.5975	0.8899	0.5681	0.0573	2.5402	36.0557	0.8838	0.5517	0.0641	3.5758
SFIM	21.4154	0.5415	0.4525	0.1147	8.8553	32.6334	0.8728	0.5159	0.0597	3.1919	34.7715	0.8572	0.4584	0.0657	4.2073
Wavelet	21.4464	0.5656	0.5271	0.1503	9.1545	32.1992	0.8500	0.4577	0.0638	3.3799	33.9208	0.8197	0.4033	0.0695	4.6445
PanFormer	30.4772	0.9368	0.9316	0.0672	3.1830	41.3581	0.9731	0.8236	0.0241	1.0617	44.8540	0.9805	0.8865	0.0271	1.3334
CTINN	31.8564	0.9518	0.9460	0.0660	2.7421	41.2015	0.9735	0.8149	0.0246	1.0880	44.2942	0.9784	0.8716	0.0293	1.4148
LightNet	32.0018	0.9525	0.9472	0.0639	2.6853	41.5589	0.9739	0.8220	0.0237	1.0382	44.6876	0.9787	0.8741	0.0279	1.3510
SFIIN	31.6587	0.9492	0.9435	0.0652	2.8016	41.9489	0.9752	0.8108	0.0229	1.0084	44.7248	0.9802	0.8721	0.0280	1.3361
MutInf	31.8298	0.9523	0.9469	0.0636	2.7526	41.9522	0.9760	0.8258	0.0227	1.0153	44.8305	0.9800	0.8836	0.0277	1.3394
MDCUN	31.2978	0.9429	0.9363	0.0661	2.9295	42.3351	0.9772	0.8370	0.0216	0.9638	45.5677	0.9825	0.8915	0.0252	1.2249
LGTEUN	32.2188	0.9545	0.9494	0.0605	2.6286	42.6837	0.9786	0.8415	0.0208	0.9280	45.8364	0.9840	0.8973	0.0247	1.1824

Table 2: Quantitative comparison of different methods on WorldView-3, WorldView-2, and GaoFen-2 satellite data sets.

Figure 3: Qualitative comparison of different methods on the WorldView-2 satellite data set.

Method	Full-resolution Test						
Method	$D_{\lambda} \downarrow$	$D_S \downarrow$	QNR↑				
GSA	0.0094	0.1076	0.8839				
SFIM	0.0094	0.1061	0.8854				
Wavelet	0.0552	0.1330	0.8193				
PanFormer	0.0191	0.0416	0.9400				
CTINN	0.0123	0.0442	0.9440				
LightNet	0.0185	0.0282	0.9539				
SFIIN	0.0198	0.0352	0.9457				
MutInf	0.0163	0.0420	0.9423				
MDCUN	0.0747	0.1673	0.7708				
LGTEUN	0.0162	0.0310	0.9532				

Table 3: Full-resolution test of different methods on the WorldView-3 satellite data set.

Figure 1: PSNR-Params-FLOPs comparisons between six SOTA DL-based pan-sharpening methods and our LGTEUN on the WorldView-2 satellite data set. The vertical axis is PSNR (model performance), the horizontal axis is FLOPs (computational cost), and the circle radius is Params (model complexity).

Data Set	Metric	GSA	SFIM	Wavelet	PanFormer	CTINN	LightNet	SFIIN	MutInf	MDCUN	LGTEUN
WorldView-3	Time (s/img)	0.0482	0.0591	0.0562	0.0160	0.0426	0.0019	0.0529	0.1083	0.1747	0.0133
	Params (KB)	_	_	_	1532.8	38.3	16.3	85.8	185.8	140.9	540.0
	FLOPs (GB)	_	-	_	11.92	2.68	2.02	5.25	9.87	479.54	19.04
	Time (s/img)	0.0216	0.0301	0.0271	0.0257	0.0431	0.0017	0.0528	0.1141	0.1017	0.0129
GaoFen-2	Params (KB)	_	_	_	1530.3	37.8	15.8	85.3	185.5	98.3	202.2
	FLOPs (GB)	_	_	_	11.77	2.65	1.95	5.22	9.85	473.19	5.14

Table 4: Efficiency comparison of different methods on WorldView-3 and GaoFen-2 satellite data sets.

Set	Reduced-resolution Test						Full-resolution Test		
Local Branch	al Branch Global Branch		SSIM↑	Q8↑	SAM↓	ERGAS↓	$D_{\lambda} \downarrow$	$D_S \downarrow$	QNR↑
×	√	31.9309	0.9519	0.9468	0.0636	2.7102	0.0177	0.0364	0.9465
\checkmark	×	31.9742	0.9525	0.9468	0.0618	2.7029	0.0170	0.0349	0.9486
✓	\checkmark	32.2188	0.9545	0.9494	0.0605	2.6286	0.0162	0.0310	0.9532

Table 5: Ablation study on the WorldView-3 satellite data set.

Figure 4: Stage-wise visualization on the GaoFen-2 satellite scene.

Conclusion and Discussion

Conclusion:

For the MS pan-sharpening, to address two longstanding issues, i.e., *model interpretability* and *local and global dependencies*, we unfold the iterative PGD algorithm into a stage-wise unfolding network, LGTEUN.

- > The first transformer-based deep unfolding network.
- > The first transformer module to perform spatial and frequency dual-domain learning.

Limitations:

- > Further performance boosting on full-resolution scene.
- Further enhancements on model efficiency.

Thanks

Contact: msli@mail.sdu.edu.cn

