General Relativity (I)

solutions for week 11-13

Week 11:

1(a): one way to see why there are conserved quantities is to check the Euler-Lagrage equation.

1(b): We already have $u^t = -g^{tt}E$ and $u^{\phi} = g^{\phi\phi}L$. Without loss of generality, we can consider the motion on the equatorial plane and therefore $d\phi = 0$. By $g_{\alpha\beta}u^{\alpha}u_{\beta} = 1$ we can represent $(u^r)^2 = (\frac{dr}{d\tau})^2$ as function of g_{tt} , E, and E.

1(c): At a stable circular orbit, $\frac{dV_{\rm eff}^2}{dr}=0$ leads to $r=\frac{L^2+L\sqrt{L^2-12M^2}}{2M}$. Invert the relation, then we can express L as function of r. By $E^2=V_{\rm eff}^2$ we can have E^2 as a function of r.

1(d): from 1(c), when the square root equals zero, we have $L^2 = 12M^2$, and therefore r = 6M. The corresponding $E^2 = \sqrt{8/9}$.

2(a): With L=0 and $dr/d\tau=0$, $E^2=V_{\rm eff}^2=1-\frac{2M}{r}$. At rest at infinity $(r\to\infty)$ implies $E^2=1$. At rest at r=2M implies $E^2=0$.

2(b): For a radial in falling observer at rest at infinity E=1, as shown in 2(a). We then have $d\tau=\frac{2M}{r}dr$. Finally, $\int_{2M}^{0}\frac{2M}{r}dr=\frac{4M}{3}$.

2(c): The cgs unit expression for the answer of 2(b) is $t = \frac{4M}{3} \frac{G}{c^3}$. For t=1 year, $M = 5 \times 10^{12}$ solar mass.

3(a):
$$d\tau^2 = -ds^2 = -g_{tt}dt^2$$
 implies $u^t = dt/d\tau = (-g_{tt})^{-\frac{1}{2}} = (-g^{tt})^{\frac{1}{2}} = 1/\sqrt{1 - \frac{2M}{r}}$ ($u^r = u^\theta = u^\phi = 0$)

3(b):
$$g_{\alpha\beta}u^{\alpha}u^{\beta} = g_{tt}(u^t)^2 = g_{tt}(-g^{tt}) = -1$$

3(c): If hovering, $u^r = u^\theta = u^\phi = 0$. When $g_{tt} > 0$, $u^\alpha u_\alpha = g_{tt}(u^t)^2 > 0$ which conflicts with the requirement $u^\alpha u_\alpha < 0$.

4(a):
$$u^{\alpha} = (1 - \frac{3M}{r})^{-1/2} (1, 0, 0, \sqrt{\frac{M}{r^3}})$$
.

4(b): From 4(a), we have $d\tau = (1 - \frac{3M}{r})^{1/2} dt$.

From 4(a) we also have $\frac{d\phi}{dt} = \frac{u^{\phi}}{u^t} = \sqrt{\frac{M}{r^3}}$. For one orbit, $d\phi = 2\pi = \sqrt{\frac{M}{r^3}}dt$.

Finally, we get $d\tau = 2\pi \left[\frac{r^3}{M}(1-\frac{3M}{r})\right]^{1/2}dt$.

4(c): $\frac{d\phi}{dt} = \frac{u^{\phi}}{u^t} = \sqrt{\frac{M}{r^3}}$. Note that there is a typo in the homework, the correct form should be $\triangle t = 2\pi\sqrt{\frac{r^3}{M}}$

4(d): The relation can be obtained from of results 3(a) and 4(b).

Week 12:

1(a): See 2(c) of week 11

1(b): The relation can be helpful:

$$\begin{pmatrix} g^{tt} & g^{t\phi} \\ g^{t\phi} & g^{\phi\phi} \end{pmatrix} = \frac{1}{D} \begin{pmatrix} g_{\phi\phi} & -g_{t\phi} \\ -g_{t\phi} & g_{tt} \end{pmatrix}$$

where $D = g_{tt}g_{\phi\phi} - g_{t\phi}^2$

$$1(c): (u^{t})^{2} = \frac{-1}{g_{tt} + 2g_{t\phi}\omega + g_{\phi\phi}^{2}\omega^{2}} = \frac{-1}{g_{tt} - \omega^{2}g_{\phi\phi}} = -\frac{g_{\phi\phi}}{g_{tt}g_{\phi\phi} - g_{t\phi}^{2}} = \frac{-g_{\phi\phi}}{\Delta \sin^{2}\theta}$$

1(d): As can be inffered from 1(b)

2(a): Even for fixed *M*, $A|_{a>0} < A|_{a=0}$.

2(b): The energy release is related to the mass difference $dM = M_{\rm after} - M_{\rm before}$ before and after the collision, where $M_{\rm before} = 2 \times M$. We would like to maximize dM, while the area theorem asks $dA \ge 0$ should be satisfied. The maximum dM take place if (1)dA = 0 and $(2) M_{\rm final}$ is as small as possible. From (1), we have $2 \times 16\pi M^2 = 8\pi M_{\rm after} [M_{\rm after} + \sqrt{M_{\rm after}^2 - a_{\rm after}^2}]$. From (2) we have $a_{\rm after}^2 = 0$. As a result, $M_{\rm after} = \sqrt{2}M$ and the energy release is $dM = (2 - \sqrt{2})M$.

Week13

1(a): just verify that $g_{\alpha\beta}g^{\alpha\gamma}\approx\delta^{\gamma}_{\beta}$ is satisfied up to $\mathcal{O}(h)$

1(b): Lorentz gauge and transverse-traceless gauge

2(a): Note we are using geometrized unit and $r \approx 10 \mathrm{Mpc} \approx 10^{21} M_{\odot}$. Therefore, $h \approx \mathcal{O}(0.1 \frac{M_{\odot}}{10^{21} M_{\odot}}) = \mathcal{O}(10^{-22})$

2(b): In geometrized unit, the energy density has dimension $[M^{-2}]$. While h is dimensionless, one should expect $\epsilon \propto h^2 \Omega^2$ or $\epsilon \propto h^2 / R^2$ or $\epsilon \propto h^2 \Omega / R$, which one should be pick? From the analogue of a wave described by $y \propto \cos(\omega t + kx)$, its kinetic energy $dy^2/d^2t \propto \omega^2$, indicating we should take $\epsilon \propto h^2 \Omega^2$.

2(c): $F(\text{energy per unit time per area}) = \epsilon(\text{energy per volumn}) \times c$, the speed of light c = 1 is dimensionless in geometrized unit.

2(d): $L(\text{energy per unit time}) = \int F r^2 \sin^2\theta d\theta d\phi$. From the dimension point of view, one should expect $L \propto Fr^2$

3(a):
$$M_{xx} = m1 \left(\frac{m2R\cos(\Omega t)}{m1 + m2} \right)^2 + m2 \left(\frac{m1R\cos(\Omega t)}{m1 + m2} \right)^2 = \mu R^2 \cos^2(\Omega t)$$

3(b): $M_{xx} = \mu R^2 \cos^2(\Omega t) = \mu R^2 \frac{1 + \cos(2\Omega t)}{2}$, and we can drop the time-independent term since gravitational wave is only related to the time varying term of the quadrupole ($h \sim \ddot{M}/r$)

3(c)-3(f): should be straightforward