Robustness of tissue growth to cell mechanics

Charles N. de Santana, Institute of Evolutionary Biology and Environmental Studies, UZH.

Robustness of tissue growth to cell mechanics, 22 October 2015, IEU/UZH, Switzerland.

Tissue growth: cells as polygons, tissues as networks

Different kind of tissues

 Different cells shapes distributions are related to different kind of tissues¹.

Developmental stages of tissues

 Different cells shapes distributions are related to different developmental stages of a same tissue².

Tissue as a network of cells.

- Tissue as a network of cells.
- 2 Cells as polygons.

- Tissue as a network of cells.
- Cells as polygons.
- Each 2 Cells share 1 Edge.

farhadifar2007influence

- Tissue as a network of cells.
- Cells as polygons.
- Each 2 Cells share 1 Edge.
- Each Edge is composed by 2 Vertices.

Edge's Line Tension

Include figure of a cell from Farhadifar Edge's Line tension (Λ) is associated to Edge's length.

Cell's Contractility

Include figure of a cell from Farhadifar Cell's Contractility (Γ) is associated to Cell's Perimeter.

Cell's Elasticity

Include figure of a cell from Farhadifar Cell's Elasticity (K) is associated to Cell's Area.

Force Balance Energy Function

$$F = \sum_{\alpha} \frac{K_{\alpha}}{2} (A_{\alpha} - A_{\alpha}^{(0)})^2 + \sum_{(i,j)} \Lambda_{ij} L_{ij} + \sum_{\alpha} \frac{\Gamma_{\alpha}}{2} L_{\alpha}^2$$

Force Balance Energy Function

$$F = \sum_{\alpha} \frac{K_{\alpha}}{2} (A_{\alpha} - A_{\alpha}^{(0)})^2 + \sum_{(i,j)} \Lambda_{ij} L_{ij} + \sum_{\alpha} \frac{\Gamma_{\alpha}}{2} L_{\alpha}^2$$

We keep the physical properties of the cells fixed during the simulation. So, in order to satisfy the **Minimal Energy's Assumption** theh positions of the vertices need to change.

Preferred Cell's Area $A_{\alpha}^{(0)}$

$$F = \sum_{\alpha} \frac{K_{\alpha}}{2} (A_{\alpha} - A_{\alpha}^{(0)})^2 + \sum_{(i,j)} \Lambda_{ij} L_{ij} + \sum_{\alpha} \frac{\Gamma_{\alpha}}{2} L_{\alpha}^2$$

 $A_{\alpha}^{(0)}$ is the preferred area of cell α which is related to the volume, V_{α} and height, h_{α} of the cell: $A_{\alpha}^{(0)} = \frac{V_{\alpha}}{h_{\alpha}}$

Sequence of Events

• Relaxation (Vertices change their position to guarantee the force balance equal to zero).

Sequence of Events

- Relaxation (Vertices change their position to guarantee the force balance equal to zero).
- Cell Proliferation (cells growth and cells division).

 Vertices change their position to guarantee the force balance equal to zero.

The position of the vertices is defined by a Verlet Function[?] in which the accelleration is defined by the total force on the junctions of the tissue $(r(t + \Delta t) = 2r(t) - r(t - \Delta t) +$ $a(t)\Delta t^2$).

$$(r(t + \Delta t) = 2r(t) - r(t - \Delta t) + a(t)\Delta t^2).$$

• Once the force is zero, the accelleration of the *Verlet Function* is also zero, and so the position of the vertices don't change from time step t to $t + \Delta t$.

• Relaxation is finished once the length of the tissue remains *steady* (the position of its vertices don't change) along 100 time steps $\left(\frac{sd(\sum_{\alpha}L_{\alpha})}{\sum_{\alpha}L_{\alpha}} \approxeq 0\right)$.

Regularness of the tissue

We define *regularness* as a dimensionless measure to say how regular the cells of a tissue are.

• Regularness is defined as: $Reg = \frac{sd(L_{ij})}{L_{ij}}$ over all the edges.

Thank you!

- SystemsX Initiative.
- EpiphysX members: Andreas Wagner (UZH), Aziza Merzouki, Orestis Malaspinas, Bastien Chopard, Aurélien Roux, Michel Milinkovitch, Marcos Gonzalez-Gaitan (UNIGE)
- Chopard's Group members (UNIGE).
- Wagner's Group members (UZH).
- You, for the attention and patience.