Lecture 3:

Recursion

Definition: See last slide......

Lecture Outline

- Recursion
 - Basic idea
 - Execution phases of recursion
 - Iteration versus Recursion
 - Examples on recursion
 - Factorial
 - Print Digits
 - Cumulative Sum
 - Fibonacci
 - Tower of Hanoi
 - N choose K

Recursion: The Basic Idea

- The process of solving a problem with a function that calls itself directly or indirectly
 - The solution can be derived from solution of smaller problem of the same type
- Example:
 - □ Factorial(4) = 4 * Factorial (3)
- This process can be repeated
 - E.g. Factorial (3) can be solved in term of Factorial (2)
- Eventually, the problem is so simple that it can solve immediately
 - \Box E.g. Factorial (0) = 1
- The solution to the larger problem can then be derived from this ...

Recursion: The Main Ingredients

- To formulate a recursive solution:
 - a. Identify the simplest instance (base case)
 - can solve the problem without recursion
 - Identify simpler instances of the same problem (recursive case)
 - →can make recursive calls to solve them
 - Identify how the solution from the simpler problem can help to construct the final result
 - Ensure we are able to reach base case
 - So that we will not get an infinite recursion

Example: Factorial

Lets write a recursive function factorial (k) that finds k!

Base Case:

- Return 1 when k = 0
- C code:

```
if( k == 0 )
  return 1;
```

Recursive Case:

```
Return k * (k-1)!
return k * factorial(k-1);
```

Example: Factorial (code)

Full code for factorial:

```
int factorial( int k )
{
    if ( k == 0 ) {
        return 1;
    } else {
        return k * factorial( k-1 );
    }
}
```

Base Case: factorial(0) = 1

Recursive Case: factorial(k) = k * factorial(k - 1)

Understanding Recursion

- A recursion always goes through two phases:
 - A wind-up phase:
 - When the base case is not satisfied i.e. the function calls itself
 - This phase carries on until we reach the base case

An unwind phase:

- The recursively called functions return their values to previous "instances" of the function call
- i.e. the last function returns to its parent (the 2nd last function), then the 2nd last function returns to the 3rd last function etc...
- Eventually reaches the very first function, which computes the final value.

The Factorial: Windup Phase

Lets trace the execution of factorial (3) (factorial abbreviated as fact)

The Factorial: Unwind Phase

Recursion vs. Loops

- Most recursions essentially accomplishes a loop (iterations)
 - + Recursions are usually much more elegant than its iterative equivalent
 - + Recursions are conceptually simpler and easier to implement
 - Iterative version using loops is usually faster

Common practice:

- Figure out the solution using recursion
- Convert to iterative version if possible

Recursive vs. Iterative Versions

```
int factorial( int k )
   int j, term;
   term = 1;
   for ( j=2; j<=k; j++ ){</pre>
       term *= j;
   return term;
                                                    Iterative
                                                    Version
int factorial( int k )
   if (k == 0) {
        return 1;
   } else {
        return k * factorial( k-1 );
                                                   Recursive
                                                    Version
_ [TIC1002 2021S2 L3]
```

Problem: Print Digits

- Given:
 - A positive integer N
- Your task:
 - Write a recursive function to print out the digits from right (less significant) to left (most significant)

```
Sample Run:
Enter N (positive integer): 12345
5
4
3
2
1
```

Problem: Print Digits (Reverse)

- Given:
 - A positive integer N
- Your task:
 - Write a recursive function to print out the digits from left (most significant) to right (less significant)

```
Sample Run:
Enter N (positive integer): 12345
1
2
3
4
5
```

Problem: Cumulative Sum (Again!)

- Write a recursive function to return the cumulative sum:
 - Result[i] = sum of A[i] to A[size-1]

void cumulative(int a[], int result[], int size);

- Apply the same principle:
 - a) Simplest case?
 - b) How to break it into smaller and simpler problem?
 - c) How does the answer from (b) form the larger answer?

More examples to convince your mind

EXAMPLES AND EXAMPLES

Example: Fibonacci Number

Rabbits give birth <u>monthly</u> once they are **3 months old** and they always conceive a **single male/female pair**.

Given a pair of male/female rabbits, assuming rabbits never die, how many pairs of rabbits are there after n months?

The Fibonacci Series

- Rabit(N) = # pairs of rabbit at Nth month
 - Equal to the total number of rabbit pairs in the previous month (N - 1)th month
 - Rabbits never die
 - 2. Additionally, new rabbit pairs = the total rabbit pairs two months ago (N 2)th month
 - Rabbits give birth from the 3rd month onwards
- \rightarrow Rabbit(N) = Rabbit(N 1) + Rabbit(N 2)
- Special cases:
 - Rabbit (1) = 1
 One pair in the 1st month
 - Rabbit (2) = 1 Still one pair in the 2nd month
- Rabbit (N) is the famous Fibonacci (N)

Fibonacci Number: Implementation

```
int fibo(int n)
                                             Base Cases:
                                             fibo(1) = 1
  if (n \le 2)
                                             fibo(2) = 1
     return 1;
  else
     return fibo(n-1) + fibo(n-2);
                                  Recursive Case:
                                  fibo(n)
                                  = fibo(n-1) + fibo(n-2)
```

Execution Trace: Fibonacci

- Many duplicated calls:
 - The same computations are done over and over again!

Fibonacci Number: Iterative Solution

```
int fibo( int n )
  int cur, prev1 = 1, prev2 = 1, j;
  if( n<=2 )
       return 1:
  else
       for ( j=3; j<=n; j++ ) {
           cur = prev1 + prev2;
           prev2 = prev1;
          prev1 = cur;
  return cur;
                                                 Iterative
                                                 Version
```

How many time do we calculate a particular fibonacci number?

Observation: Excessive Recursion

- The Fibonacci example highlight the following:
 - Recursive solution may looks very simple but can cause a huge amount of function calls
 - Should be mindful of such possibilities:
 - When the recursive case makes more than one recursive calls
 - Find out an iterative equivalent if possible

Problem: Greatest Common Divisor

Given:

 Two integers X and Y, find the largest divisor that divides both of them with no remainder

Your task:

Write a recursive version

Remember the *Euclid Algorithm*:

- If Y can divide X evenly, then answer is Y
- If not, the answer is to find GCD of Y and (X % Y)

A bit tough, but really interesting

ADVANCED EXAMPLE

Example: Tower of Hanoi

- How do we move all the disks from pole "A" to pole "B", using pole "C" as temporary storage
 - One disk at a time
 - Disk must rest on top of larger disk

Tower of Hanoi: Recursive Solution

Tower of Hanoi: Solution

```
void tower(int N, char A, char B, char C)
  if (N == 1)
      move( A, B);
  else {
      tower ( N-1 , A, C, B);
      move(A, B);
                                       Perform the "move"
      tower ( N-1 , C, B, A);
                                      Many implementations
                                          Below is one
                                           possibility
void move(char s, char d)
    printf( "move from %d to %d\n", s, d );
```

Number of moves needed?

Num of discs, n	Num of moves, f(n)		Time (1 sec per move)
1		1	1 sec
2		3	3 sec
3	3+1+3 =	7	7 sec
4	7+1+7 =	15	15 sec
5	15+1+15 =	31	31 sec
6	31+1+31 =	63	1 min
16	65,536		18 hours
32	4.295 billion		136 years
64	1.8 * 10^10 billion		584 billion years

Note the pattern

$$f(n) = 2^n - 1$$

Slightly more than required for this course [For Exploration]

ADDITIONAL EXAMPLE

Example: Combinatorial

How many ways can we choose k items out of n items?

Execution Trace: Choose(2, 4)

The final answer is the sum of those base cases

Summary

- Recursive Function
 - Definition
 - How-to
 - Examples
 - Factorial
 - Fibonacci Numbers
 - Print Digits (and in Reverse!)
 - Cumulative Sum
 - Greatest Common Divisor
 - Tower of Hanoi
 - Choose k out of n things

Recursion Definition: See first slide