Homework 1 Foundations of Computational Math 1 Fall 2012

Problem 1.1

This problem considers three basic vector norms: $\|.\|_1, \|.\|_2, \|.\|_{\infty}$.

- **1.1.a**. Prove that $||.||_1$ is a vector norm.
- **1.1.b.** Prove that $\|.\|_{\infty}$ is a vector norm.
- **1.1.c.** Consider $||.||_2$.
 - (i) Show that $\|.\|_2$ is definite.
 - (ii) Show that $\|.\|_2$ is homogeneous.
- (iii) Show that for $||.||_2$ the triangle inequality follows from the Cauchy inequality $|x^H y| \le ||x||_2 ||y||_2$.
- (iv) Assume you have two vectors x and y such that $||x||_2 = ||y||_2 = 1$ and $x^H y = |x^H y|$, prove the Cauchy inequality holds for x and y.
- (v) Assume you have two arbitrary vectors \tilde{x} and \tilde{y} . Show that there exists x and y that satisfy the conditions of part (iv) and $\tilde{x} = \alpha x$ and $\tilde{y} = \beta y$ where α and β are scalars.
- (vi) Show the Cauchy inequality holds for two arbitrary vectors \tilde{x} and \tilde{y} .

Problem 1.2

What is the unit ball in \mathbb{R}^2 for each of the vector norms: $\|.\|_1, \|.\|_2, \|.\|_\infty$?

Problem 1.3

Consider the matrices

$$B_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 1 \end{pmatrix} \quad B_2 = \begin{pmatrix} 0 & 2 \\ 0 & 2 \\ -1 & 1 \end{pmatrix}$$

1

- **1.3.a**. Show that they have the same range space.
- **1.3.b.** We have $x = B_1c_1 = B_2c_2$ for all x in the range space. Determine the relationship between c_1 and c_2 and express it as a linear transformation.

Problem 1.4

Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a linear function, i.e.,

$$F(\alpha x + \beta y) = \alpha F(x) + \beta F(y)$$

.

- **1.4.a.** Suppose you are given a routine that returns F(x) given any $x \in \mathbb{R}^n$. How would you use this routine to determine a matrix $A \in \mathbb{R}^{m \times n}$ such that F(x) = Ax for all $x \in \mathbb{R}^n$?
- **1.4.b**. Show A is unique.

Problem 1.5

Consider the matrix

$$L = \begin{pmatrix} \lambda_{11} & 0 & 0 & 0 \\ \lambda_{21} & \lambda_{22} & 0 & 0 \\ \lambda_{31} & \lambda_{32} & \lambda_{33} & 0 \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & \lambda_{44} \end{pmatrix}$$

Suppose that $\lambda_{11} \neq 0$, $\lambda_{33} \neq 0$, $\lambda_{44} \neq 0$ but $\lambda_{22} = 0$.

- **1.5.a**. Show that L is singular.
- **1.5.b.** Determine a basis for the nullspace $\mathcal{N}(L)$.

Problem 1.6

- **1.6.a.** Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ be nonsingular matrices. Show $(AB)^{-1} = B^{-1}A^{-1}$.
- **1.6.b.** Suppose $A \in \mathbb{R}^{m \times n}$ with m > n and let $M \in \mathbb{R}^{n \times n}$ be a nonsingular square matrix. Show that $\mathcal{R}(A) = \mathcal{R}(AM)$ where $\mathcal{R}()$ denotes the range of a matrix.

Problem 1.7

Let $y \in \mathbb{R}^m$ and ||y|| be any vector norm defined on \mathbb{R}^m . Let $x \in \mathbb{R}^n$ and A be an $m \times n$ matrix with m > n.

- **1.7.a.** Show that the function f(x) = ||Ax|| is a vector norm on \mathbb{R}^n if and only if A has full column rank, i.e., rank(A) = n.
- **1.7.b.** Suppose we choose f(x) from part (1.7.a) to be $f(x) = ||Ax||_2$. What condition on A guarantees that $f(x) = ||x||_2$ for any vector $x \in \mathbb{R}^n$?