Complejidad Computacional Tarea 2.1

Karla Adriana Esquivel Guzmán Andrea Itzel González Vargas Luis Pablo Mayo Vega Carlos Gerardo Acosta Hernández

Entrega: 04/04/17 Facultad de Ciencias UNAM

Ejercicios

1. Demuestra que el lenguaje $\Sigma_i SAT$ es completo para Σ_i^P bajo reducciones polinomiales temporales. Recuerda que SAT es NP-completo.

Demostración: Primero, definimos

$$\Sigma_i SAT = \{ \langle \varphi \rangle : \exists u_1 \forall u_2 \exists \dots Q_i u_i \varphi(u_1, u_2, \dots, u_i) = 1 \}$$

donde Q_i es un cuantificador (\exists o \forall dependiendo de la paridad de i), φ es una fórmula booleana, y cada u_k es un vector de variables booleanas.

Para $\Sigma_1 SAT$, observemos que

1.
$$\Sigma_1 SAT = \{ \langle \varphi \rangle : \exists u_1 \varphi(u_1) = 1 \}$$

2.
$$\Sigma_1^P = NP$$

Así que $\Sigma_1 SAT = SAT$ y ya sabemos que SAT es NP-completo. Entonces, en este caso, $\Sigma_1 SAT$ es $\Sigma_1^P-completo$.

Ahora queremos demostrar que $\Sigma_i SAT$ es $\Sigma_i^P-completo$, para i>1.

Recordemos que podemos definir a las clases Σ_i con Máquinas de Turing con Oráculo de la siguiente manera:

$$\Sigma_i = N P^{\Sigma_{i-1}}$$

Observemos que en el caso i=2 tenemos

$$\Sigma_2 = NP^{NP} = NP^{SAT} = NP^{\Sigma_1 SAT}$$

Probemos que $\Sigma_i = NP^{\Sigma_{i-1}SAT}$ usando cuantificadores, a partir del caso i=2.

 \subseteq Tomemos $L \in \Sigma_2$ así que $\exists p$ un polinomio y $M \in TM$ polinomial tal que

$$x \in L \iff \exists v_1 \in \{0, 1\}^{p(|x|)} \forall v_2 \in \{0, 1\}^{p(|x|)} M(x, u_1, u_2) = 1$$

Sea \bar{L} el complemento de L, se tiene que $\bar{L} \in \Pi_2$ así que

$$y \in \bar{L} \iff \forall w_1 \in \{0, 1\}^{q(|y|)} \exists w_2 \in \{0, 1\}^{q(|y|)} \bar{M}(y, w_1, w_2) = 1$$

Definimos L' de la siguiente manera

$$\langle y, w_1 \rangle \in L' \iff \exists w_2 \in \{0, 1\}^{q(|y|)} M(y, w_1, w_2) = 1$$

Así que $L' \in \Sigma_1$. Luego $\exists f$ una reducción polinomial tal que $\langle y, w_1 \rangle \in L' \iff f(y, w_1) \in \Sigma_1 SAT$, es decir, $f(y, w_1)$ ($\varphi(z)$) es una fórmula en $\Sigma_1 SAT$, así $\exists w_2$ tal que $\varphi(w_2) = 1$. Construyamos $m \in TM$ de la siguiente forma:

 $m = "Con\ entrada\ \langle x \rangle$

- 1. Construyamos (no deterministamente) a w_1 .
- 2. Usemos f para construir $\varphi(x, w_1)(z)$.
- 3. Consultemos a $\Sigma_1 SAT$ si $\varphi(x, w_1)(z)$.
- 4. Si $\Sigma_1 SAT$ rechaza, acepto.
- 5. Rechazo en cualquier otro caso.

 \square Ahora probemos que $NP^{SAT} \in \Sigma_2$.

Sea $L \in NP^{SAT}$, intuitivamente, si L puede ser decidido en tiempo polinomial por una Máquina de Turing con Oráculo M entonces podríamos decir que existen elecciones no deterministas y, consultas al oráculo q_1, \ldots, q_k y respuestas del oráculo a_1, \ldots, a_k tales que M acepta una entrada x en tiempo polinomial, lo que implicaría que NP = coNP. La falla de este razonamiento está en que debemos incluir una condición que requiera que las respuestas del oráculo (a_1, \ldots, a_k) sean válidas para las consultas q_1, \ldots, q_k sii $q_j \in SAT$. Así, podemos describir a L si observamos que $x \in L \iff \exists y, q_1, \ldots, q_k, a_1, \ldots, a_k$ tales que M acepta x y $a_j = 1 \iff q_j \in SAT$. Sin embargo, decidir la relación "M acepta x $a_j = 1 \iff q_j \in SAT$ " requiere decidir SAT, así que nos gustaría reescribir esta relación en términos de una relación de tiempo polinomial. Podemos hacer esto si observamos que $q_j \in SAT \iff \exists x_j^Y$ tal que $q_j(x_j^Y) = 1$ y $q_j \notin SAT \iff \forall x_j^N, q_j(x_j^N) = 0$. De este modo, reescribimos la caracterización de L del modo siguiente

$$x \in L \iff \exists y, q_1, \dots, q_k, a_1, \dots, a_k, x_1^Y, \dots, x_k^Y \text{ tales que } \forall x_1^N, \dots, x_k^N$$

- M acepta x.
- $a_j = 1 \implies q_j(x_j^Y) = 1$.
- $a_i = 0 \implies q_i(x_i^N) = 0.$

2. Demuestra que si 3SAT es temporalmente reductible polinomialmente a $\overline{3SAT}$ entonces PH=NP.

Sabemos que 3SAT es NP-completo, entonces $\overline{3SAT} \in coNP$.

Supongamos que 3SAT es reductible a $\overline{3SAT}$, esto implica que NP = coNP. Como $\sum_{1}^{p} = NP$ y $\prod_{1}^{p} = coNP$, entonces $\sum_{1}^{p} = \prod_{1}^{p}$. Como vimos en clase, para toda $i \geq 1$ si $\sum_{i}^{p} = \prod_{i}^{p}$ entonces $PH = \sum_{i}^{p}$, o sea que la jerarquía se colapsa al nivel i. Como $\sum_{1}^{p} = \prod_{1}^{p}$ entonces $PH = \sum_{1}^{p} = NP$. Por lo tanto si 3SAT es reductible a $\overline{3SAT}$ (o sea NP = coNP), entonces PH = NP.

3. Demuestra que si $P^A = NP^A$ (para algún lenguaje A), entonces $PH^A \subseteq P^A$.

Tenemos que si $P^A = NP^A$ entonces P^A es cerrado bajo el complemento $=> P^A = coNP$, ahora de manera concisa tenemos que $P^A = \Sigma_1$ $P^A = \Gamma_1$ P^A .

Ahora Demostremos por Inducción que si $P^A=\Sigma_1$ $P^A=\square_1$ $P^A=\Sigma_{i+1}$ $P^A=\square_{i+1}$ $P^A=\square_{i+1}$ $P^A=\square_i$

- Consideremos una Σ_{i+1} P^A M \in TM, que consiste en una serie de ramificaciones seguidas por una serie de ramificaciones universales.
- Consideremos ahora los subarboles de la trayectoria de un calculo cuyas raices son el primer paso universal a lo largo del camino para cada uno de estos subarboles, M esta realizando un calculo \Box_i .

Por Hipotesis $\sqcap_1 P^A = P^A$ así podemos reemplazar cada uno de estos subarboles de calculo por un método determinista en calculo de tiempo polinomial para formar una nueva Maquina S.

- Si dejamos que a(n) sea el máximo número de pasos dados por la Maquina alterna antes de que comiencen las ramas universales y P(n) sea el numero de pasos dados por cualquiera de las maquinas P^A deterministas, que hemos sustituido por los calculos para \sqcap_i , entonces el tiempo en que corre S esta limitado por a(n) + P^A (a(n)).

Observemos que $P^A(\mathbf{a}(\mathbf{n}))$ es una composición de funciones, porque los subprocedimientos en P^A estan calculando entradas que pueden ser mas grandes que n (Pero deberían ser mas pequeñas o igual a $\mathbf{a}(\mathbf{n})$ ya que solo se han ejecutado $\mathbf{a}(\mathbf{n})$ pasos en el tiempo que se usan los subprocedimientos. -Como a y p son polinomiales también lo es su composicion, Por lo tanto S esta en NP^A , por Hipotesis $P^A = NP^A =>$ S esta en P^A

-De forma similar puede ser usado para reducir una maquina $\sqcap_{i+1} P^A$ a una coNP M∈MT y Como $P^A = \Sigma_i P^A$, poniendolo asi en P^A también completamos el colapso de la jerarquía. Por lo tanto $PH^A \subset PH^A$

4. Demuestra que si $EXP \subseteq P/poli$, entonces $EXP = \Sigma_2^p$.

Dem.

Sea $L \in EXP$, entonces existe una máquina de Turing $time-oblivious\ M$ que decide L en tiempo $2^{p(n)}\ p.a$. polinomio p. Sea $s \in \{0,1\}^n$ una cadena de entrada para M. Sabemos por la definición de M que para cada $i \in [2^{p(n)}]$ denotamos con z_i la codificación de la i-ésima "instantánea" de la ejecución de M con la entrada s. Como $EXP \subseteq P/poli$, entonces existe un circuito C de tamaño q(n) (p.a. polinomio q), tal que calcula z_i a partir de una i. La correctud de lo que calcula este circuito mencionado puede ser expresado como un predicado coNP. Así,

$$s \in L \iff \exists C \in \{0, 1\}^{q(n)} \ \forall i, i1, ..., ik \in \{0, 1\}^{p(n)} \ T(s, C(i), C(i_1), ..., C(i_k)) = 1$$
 (1)

donde T es una TM que verifica esas condiciones en tiempo polinomial. Se puede entonces concluir que $L \in \Sigma_2^P$, que es lo que queremos. Para probar esto, consideremos $p(n) = 2^{n^k}$. Consideremos cada entrada (i,t) en la tabla de M, codifica una cadena $z_{i,t}$, i.e., el contenido de la celda i, al momento t, siempre que la cabeza lectora esté en la entrada i al momento t, y de ser así, z almacena el estado interno de M. Ahora consideremos

$$L_M = \{ \langle s, i, t, z \rangle \mid con \ la \ entrada \ s \ tenemos \ z_{i,t} = z \ para \ M \}$$
 (2)

Simulando M tendremos que $L_M \in EXP \subseteq P/poli$. Utilizando circuitos de tamaño polinomial para L_M , podemos construir un circuito de tamaño polinomial C de múltiple salida, tal que $C(\langle s,i,t\rangle)=z$. Como buscábamos en (1), decimos entonces que:

$$s \in L \iff \exists C \ \forall i, t \ t.q. \ C(\langle s, i, t \rangle) \ acepta \ si$$

 $C(\langle s, i-t, t-1 \rangle), \ C(\langle s, i, t-1 \rangle), \ C(\langle s, i+1, t-t1 \rangle) \ y \ C(\langle s, 1, 2^{n^k} \rangle) \ aceptan.$

Por lo tanto si $EXP \subseteq P/poli$, entonces $EXP = \Sigma_2^p$.