

Этикетка

КСНЛ.431271.024 ЭТ

Микросхема интегральная 1564ЛА4УЭП Функциональное назначение: Три логических элемента «ЗИ-НЕ»

Схема расположения выводов Номера выводов показаны условно

Условное графическое обозначение

Таблица назначения выводов

No	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
1	X1	Вход ячейки 1	9	Y3	Выход ячейки 3
2	NC	Не подключен	10	NC	Не подключён
3	X2	Вход ячейки 1	11	X9	Вход ячейки 3
4	X4	Вход ячейки 2	12	X7	Вход ячейки 3
5	X5	Вход ячейки 2	13	X8	Вход ячейки 3
6	X6	Вход ячейки 2	14	Y1	Выход ячейки 1
7	Y2	Выход ячейки 2	15	X3	Вход ячейки 1
8	0V	Общий	16	$V_{\rm CC}$	Питание

Логическая функция одной ячейки ИС: $Y = \overline{X1^*\!X2^*\!X3}$

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	$U_{ m OL\; max}$	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 MKA		=	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		=	0,10
при:			
$U_{CC} = 4,5 \text{ B}, U_{IL} = 0,9 \text{ B}, U_{IH} = 3,15 \text{ B}, I_{O} = 4,0 \text{ MA}$		-	0,26
$U_{CC} = 6.0 \text{ B}, U_{IL} = 1.2 \text{ B}, U_{IH} = 4.2 \text{ B}, I_{O} = 5.2 \text{ mA}$		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
U_{CC} =2,0 B, U_{IL} =0,3 B, U_{IH} =1,5 B, I_{O} = 20 мкА	U_{OHmin}	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B U_{IH} =3,15 B, I_{O} = 20 мкА		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B U_{IH} = 4,2 B, I_{O} = 20 MKA		5,9	=
при:			
$U_{CC} = 4,5 \text{ B}, U_{IL} = 0,9 \text{ B}, U_{IH} = 3,15 \text{ B}, I_{O} = 4,0 \text{ MA}$		3,98	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} = 4,2 B, I_{O} = 5,2 mA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}	-	/-0,1/

4. Входной ток высокого уровня, мкА, при: $U_{CC}\!=\!6,\!0\;B,U_{IL}\!=\!0\;B,U_{IH}\!=\!U_{CC}$	I_{IH}	-	0,1
5. Ток потребления, мкА, при: $U_{CC}\!\!=\!6,\!0$ B, $U_{IL}\!\!=\!0$ B, $U_{IH}\!\!=\!U_{CC}$	I_{CC}	-	2,0
6. Динамический ток потребления, мА, при: $U_{CC} = 5,0 \; B, \; f = 1,0 \; M\Gamma \chi$	I _{occ}	-	1,0
7. Время задержки распространения при	t _{PHL} ,		
включении и выключении, нс, при:	$t_{\rm PLH}$		0.0
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	90
$U_{CC} = 4,5 B, C_L = 50 п\Phi$		-	23
$U_{CC} = 6,0 \text{ B}, C_L = 50 \text{ п}\Phi$		-	19
8. Входная емкость, пФ	$C_{\rm I}$	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) °C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯР.431200.424-32ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛА4УЭП соответствуют техническим условиям АЕЯР.431200.424-32ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.)	(дата)	
Место для штампа ОТК		Место для штампа ПЗ
Место для штампа « Перепроверка п	роизведена	у (дата)
Приняты по	от(дата)	
Место для штампа ОТК		Место для штампа П
Цена договорная		

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала не более 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): выход – общий, вход-выход.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.