Nuclear and Radiation Physics (PHY2005) Lecture 8

D. Margarone

2021-2022

Recap & Learning Goals

$$_{Z}^{A}X_{N} \rightarrow _{Z-2}^{A-4}X_{N-2}^{\prime} + \alpha$$

Summary of Lecture 7 (Chap.4)

- Alpha Decay
 - ✓ Properties (e.g. Geiger-Nuttal rule)
 - ✓ Key equations (Q-value, T_{α})
 - ✓ Theory (Gamow-Gurney model, tunnelling)

$$T_{\alpha} = Q(1 - \frac{4}{A})$$

$$Q = (m_X - m_{X'} - m_\alpha)c^2$$

Learning goals of Lecture 8 (Chap.4)

- Knowing the basic theory of beta decay
- Understanding physical reasoning behind beta decay
- Understanding physical reasoning behind gamma decay

4. Nuclear Decays 4.3 Beta Decay I

Beta Decay (general properties)

- β decay: proton \rightarrow neutron, or neutron \rightarrow proton $A = Z + N = constant (Z <math>\rightarrow$ Z \pm 1, or N \mp 1)
- n \rightarrow p + e⁻ negative beta decay (β -) p \rightarrow n + e⁺ positive beta decay (β +) p + e \rightarrow n orbital electron capture (ε)
- β decay → "creating" an electron from available decay energy
 (electron immediately rejected from the nucleus)
- β⁺ and ε decays occur only for protons bound in nuclei
- additional particle must be involved in β decay processes (?)

4. Nuclear Decays 4.3 Beta Decay II

Beta Decay (general properties) cont.

- β decay electron energy distribution ⇒ continuous from zero up to an <u>endpoint energy</u> (!)
- β decay is not a two-body process → neutrino (carries missing energy)
- conservation of electric charge → electrically neutral
- conservation of angular momentum → spin ½
- β^+ decay \rightarrow neutrino (ν)
- β^- decay \rightarrow antineutrino $(\bar{\nu})$

typical β -decay processes

Decay	Турс	Q (MeV)	$t_{1/2}$
23 Ne $\rightarrow ^{23}$ Na + e ⁻ + $\bar{\nu}$	β-	4.38	38 s
$^{99}\text{Tc} \rightarrow ^{99}\text{Ru} + e^- + \overline{\nu}$	$oldsymbol{eta}^-$	0.29	$2.1 \times 10^{5} \text{ y}$
$^{25}Al \rightarrow ^{25}Mg + e^+ + \nu$	β+	3.26	7.2 s
$^{124}I \rightarrow ^{124}Te + e^+ + \nu$	β^+	2.14	4.2 d
$^{15}O + e^- \rightarrow ^{15}N + \nu$	ε	2.75	1.22 s
$^{41}\text{Ca} + e^- \rightarrow ^{41}\text{K} + \nu$	ε	0.43	$1.0 \times 10^5 \text{ y}$

4. Nuclear Decays 4.3 Beta Decay III

Beta Decay Energetics (free-neutron decay)

$$n \rightarrow p + e^{-} + \bar{v}$$
 $Q = (m_n - m_p - m_e - m_{\bar{v}}) C^2$
 $Q = T_p + T_e - + T_{\bar{v}} \simeq T_e + T_{\bar{v}} \pmod{p}$
 $Q = m_n C^2 - m_p C^2 - m_e C^2 - m_{\bar{v}} C^2 = 239.573 \text{ MW} - 938.280 \text{ MW} - 0.511 \text{ MW} - m_c^2 = 25.782 \text{ MW} - 238.280 \text{ MW} - 0.511 \text{ MW} - m_c^2 = 20.782 \text{ MW} - 20.511 \text{$

4. Nuclear Decays 4.3 Beta Decay IV

Beta Decay Energetics (
$$\beta$$
- in a nucleus)

$$Q_{\beta} = \left[m_{N} \begin{pmatrix} A \\ Z \end{pmatrix} - m_{N} \begin{pmatrix} A \\ Z + 1 \end{pmatrix} - m_{L} \right] C^{2}$$

otomic moss!

 $A = \left[m_{N} \begin{pmatrix} A \\ Z \end{pmatrix} - m_{N} \begin{pmatrix} A \\ Z \end{pmatrix} + 2 m_{L} C^{2} - \sum_{i=1}^{2} B_{i} \right] C^{2}$

$$A = \left[m_{N} \begin{pmatrix} A \\ X \end{pmatrix} - 2 m_{L} \right] - \left[m_{N} \begin{pmatrix} A \\ X \end{pmatrix} - (2+1) m_{L} \right] - m_{L} C^{2} + 2 m_{L} C^{$$

Q B= [m(210B) - m(210P)] C2 = 1. 161 TeV / e- energy distr.

$${}_{Z}^{A}X_{N} \rightarrow {}_{Z+1}^{A}X_{N-1}' + e^{-} + \bar{\nu}$$

$$Q_{\beta^{-}} = \left[m(^{A}X) - m(^{A}X') \right] c^{2}$$

$$(T_e)_{max} = (E_{\overline{\nu}})_{max} = Q_{\beta}$$

electrons from β decay of ²¹⁰Bi

4. Nuclear Decays 4.3 Beta Decay V

Beta Decay (β + and ε in a nucleus)

- β⁺ decay (<u>positron decay</u>):
 - continuous distribution of neutrino energies up to $Q_{\beta+}$

$${}_{Z}^{A}X_{N} \rightarrow {}_{Z-1}^{A}X_{N+1}' + e^{+} + \nu$$

$$Q_{\beta^+} = \left[m(^{A}X) - m(^{A}X') - 2m_e \right] c^2$$

 ${}_{Z}^{A}X_{N} + e^{-} \rightarrow {}_{Z-1}^{A}X_{N+1}' + \nu$

- ε decay (<u>electron capture</u>):
 - capture from inner atomic shell (K or L)
 - electron vacancy → electron filling → X-ray(s)
 - X-ray(s) energy = <u>atomic binding energy</u> of captured electron
 - atomic mass of X' (after decay) → greater than in its ground state by B_n (binding energy of the captured n-shell electron)
 - two-body final state \rightarrow monoenergetic neutrino ($Q_{\mathcal{E}}$)

$$Q_{\varepsilon} = \left[m(^{A}X) - m(^{A}X') \right] c^{2} - B_{n}$$

4. Nuclear Decays 4.4 Gamma Decay I

Gamma Decay (general properties)

- γ decay: transitions from excited (nuclear) states to lower energy states
- typical energy range: keV MeV
- can be preceded by β decay (excited daughter nuclei)
- ... or by other reactions, e.g. neutron capture
- γ-ray energy measurement → electron energy after
 Compton/photoelectric effect, or pair production
- measured γ -ray spectrum \rightarrow energy of nuclear excited states

EXAMPLE

5 MeV protons \rightarrow ²⁷Al target \rightarrow ²⁷Al* \rightarrow characteristic γ -ray spectrum

Energy levels for 27 Al and γ -ray spectrum after bombardment with 5-MeV protons

4. Nuclear Decays 4.4 Gamma Decay II

Gamma Decay (energetics)

- often γ-rays are accompanied by monoenergetic electrons
- Electron energy, ε, related to the decay energy, Ε:
- W: binding energy of a K-shell (or L-, M-shell)
- internal conversion → direct transfer of energy between a nucleus and an electron of its atom through electromagnetic interaction
- nucleus decays to a lower state without producing a γ -ray (!)
- internal conversion coefficient, α_{κ}
- total transition rate (initial to final nuclear state), R_t
- $R: \gamma$ -ray emission rate
- R_{ic}: internal conversion rate

$$R_t = R + \alpha_t R = R(1 + \alpha_t)$$

$$\bullet \quad \alpha_t = \alpha_K + \alpha_L + \alpha_M + \dots$$

$$T = \frac{1}{R_t} = \frac{1}{R(1 + \alpha_t)}$$

4. Nuclear Decays Example 4.7

Calculate the binding energy of the captured electron in the following β -decay:

$$Q_{\varepsilon} = [m(^{A}X) - m(^{A}X')]c^{2} - B_{n}$$

$$[m(^{41}Ca) = 40.962278 \ u \ ; m(^{41}K) = 40.961825 \ u \ ; Q = 0.4216 \ \text{MeV}]$$

$$M(^{41}Ca) - M(^{41}K) = 0.000453 \ M = 0.000453 \times 931.5 = 0.4220 \ \text{TeV}$$

$$B_{M} = Q - (M(^{41}Ca) - M(^{41}K)) = 0.4216 - 0.4216 - 0.4270 = 0.4216 \ \text{MeV}$$