

RasPiも制御できるサーバーサイドSwift

#love_swift vol7 LIG inc. @n0bisuke

About Me

- @n0bisuke
- LIGinc. エンジニア / DevRel事業責任者

- ・ 最近の興味: IoT / JavaScript Robotics
- 89世代 (平成元年)
- Milkcocoaエバンジェリスト
- #IoTLT
- わんこそば

About Me

- @n0bisuke
- LIGinc. エンジニア / DevRel事業責任者

- ・ 最近の興味: IoT / JavaScript Robotics
- 89世代 (平成元年)
- Milkcocoaエバンジェリスト
- #IoTLT
- わんこそば

だいたいJS, Swift初心者勢

Webの人です(番宣)

本▼

カテゴリー・

詳細検索

Amazonポイント: 3,298 マイストア ギフト券

新刊・予約

タイムセール

Amazonランキング

Amazonで出品

コミック・ラノベ

ヘルブ

文庫・新書

Amazon Student

本のお買い

菅原 のびすけ

ジャンル一覧

1989年生まれ。岩手県立大学在籍時に ITベンチャー企業の役員を務める。

¥ 1,944 Kindle版

単行本(ソフトカバー)

左からWebデザイン/IoT/フロントエンドな書籍共著で書きました

最近の活動はもっぱらIoT周り

IoT縛りの勉強会

IoTなバックエンドサービス Milkcocoa

NodeBots

みなさんは

サーバーサイド Swift

やってますか?

僕は先月の #love_swift で粛々と書いてました。

http://qiita.com/n0bisuke/items/ed10deba4b9db2c1652b

サーバーサイドSwiftのFWたち もちらほらと増えてきてますね

A Web Framework for Swift

白ヤギコーポレーションさん

攻めてますね

白ヤギコーポレーションのエンジニアがカジュアルに語ります

目 白ヤギコーボレーションサイト 💜 求人をみる

サーバーサイドSwiftを実運用してみた

トップ、プログトップ、バックエンドの技術、サーバーサイドSwiftを実運用してみた

院了時間15分

こんにちは。リードアーキテクトのItoです。

前に予約していたNuAns NEOが届きました。かなりいい感じです。iPhoneと比べてしま 性能とアプリの少なさが気になりますが。

白ヤギコーポレーションのエンジニアがカジュアルに語ります

■ 白ヤギコーボレーションサイト ** 求人をみる

サーバーサイドをNodeからSwiftに移行する

トップ、プログトップ、バックエンドの技術、サーバーサイドをNodeからSwiftに移行する

こんにちは。リードアーキテクトのItoです。最近アナログオーディオをやっているのですが、つらい 事件が起きました。

話は少しづれるけど

速報 STUD/O ベンチャー人 製品動向 ネットの話題 社会とIT セキュリティ 企業・業界動向 ブログ

ITmedia ニュース > Rumors > Appleのオープンソース開発言語SwiftをAndroidに採...

うわさ

2016年04月09日 10時48分 更新

Appleのオープンソース開発言語SwiftをAndroidに採用?

OracleとのJava訴訟問題が関係してる?

[松尾公也, ITmedia]

- ビジネスを躍進させる新時代のITプラットフォーム最前線
- システム開発費用はいくら?ご要望にピッタリな会社を比較!

AppleのOS XおよびiOS向けアプリケーションの開発言語はNeXT時代から続く Objective-Cから2014年に発表された新言語Swiftに移行しつつあるが、AppleがSwiftをオ ープンソース化したことにより、IBMがクラウドサービスで利用可能にするなど多方面から 注目を浴びている。そこで意外な賛同者が現れたと米テクノロジーメディアのThe Next Webが伝えている。

STLID/O

話は少しづれるけど

ShiftJS

Annotated Source

Examples

Github

Try

ShiftJS

ShiftJS is an open source Swift to JavaScript transpiler written in JavaScript.

The project is in active early development.

Try it out

Examples

Github

サーバーサイドSwiftのパラダイムシフト

- ・WebエンジニアたちがSwiftを触る時代
- · Xcodeの呪縛 以外のエディタも
- Node.jsの流行りだしに似てる
 - SwiftでAndroidも?
 - Swiftでフロントエンドも?

サーバーサイドSwiftのパラダイムシフト

- ・WebエンジニアたちがSwiftを触る時代
- · Xcodeの呪縛 以外のエディタも
- Node.jsの流行りだしに似てる
 - SwiftでAndroidも?
 - Swiftでフロントエンドも?・

Webエンジニアの僕がここに立てる

そんなSwiftで

ハードウェアも制御できる?

サーバーサイドSwiftでGPIO制御するやつ

github.com/uraimo/SwiftyGPIO

GPI057?

General Purpose Input/Output (汎用入出力)

- ・電子工作などで使うセンサーを接続するデジタル信号のポート
- ・入力にも出力にも使える便利なやつ

参考: https://www.renesas.com/ja-jp/support/technical-resources/engineer-school/mcu-programming-peripherals-01-gpio.html

GP1057?

General Purpose Input/Output (汎用入出力)

- ・電子工作などで使うセンサーを接続するデジタル信号のポート
- ・入力にも出力にも使える便利なやつ

参考: https://www.renesas.com/ja-jp/support/technical-resources/engineer-school/mcu-programming-peripherals-01-gpio.html

SwiftyGPIO 対応デバイスたち

CHIP

RasPi Zero

Beagle Bone Black

RasPi 2

SwiftyGPIO 対応デバイスたち

CHIP

RasPi Zero

Beagle Bone Black

あまってたRaspberry Pi 2を使ってみました

まずはRaspberry PiにSwiftを インストールする

Swift3.0-dev インストール

pi@raspberrypi ~ \$ sudo apt-get update pi@raspberrypi ~ \$ sudo apt-get install clang pi@raspberrypi ~ \$ wget https://www.dropbox.com/s/ smk3ek5lfa8ae09/swift-2016-02-15.tar.gz pi@raspberrypi ~ \$ tar xzf swift-2016-02-15.tar.gz

- ・最新Snapshotはまだやめたほうがいい
- Swiftenv オススメ

確認

pi@raspberrypi ~ \$./usr/bin/swift -v
Swift version 3.0-dev (LLVM b361b0fc05, Clang 11493b0f62, Swift 525f8ecbe1)
Target: armv6-unknown-linux-gnueabihf
/home/pi/usr/bin/swift -frontend -repl -target armv6-

unknown-linux-gnueabihf -disable-objc-interop -color-diagnostics -module-name REPL

LLVM ERROR: Compiler-internal integrated REPL

unimplemented for this platform; use the LLDB-enhanced REPL instead.

HELLO WORLD!

```
pi@raspberrypi ~ $ echo 'print("hello!!!!")' >> hello.swift
```

```
pi@raspberrypi ~ $ ./usr/bin/swiftc hello.swift
pi@raspberrypi ~ $ ./hello
hello!!!!
```


SwiftyGPIOをDL

pi@raspberrypi ~ \$ wget https://raw.githubusercontent.com/ uraimo/SwiftyGPIO/master/Sources/SwiftyGPIO.swift

main.swift

```
import Glibc
let gpios = SwiftyGPIO.getGPIOsForBoard(.RaspberryPi2)
var gp = gpios[.P3]!
gp.direction = .OUT
repeat{
   \overline{gp.value} = (gp.value == 0) ? 1 : 0
   usleep(150*1000)
}while(true)
```


ちなみにPythonのLチカサンプルコード

```
#!/usr/bin/env python
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BOARD)
GPIO.setup(3, GPIO.OUT)
while True:
  GPIO.output(3, True)
  time.sleep(2)
  GPIO.output(3, False)
  time.sleep(2)
```


main.swift

```
import Glibc
let gpios = SwiftyGPIO.getGPIOsForBoard(.RaspberryPi2)
var gp = gpios[.P3]!
gp.direction = .OUT
repeat{
   \overline{gp.value} = (gp.value == 0) ? 1 : 0
   usleep(150*1000)
}while(true)
```


RasPi側の準備

GPIO Numbers

Raspberry Pi B Rev 1 P1 GPIO Header

Pin No.

3.3V 1 2 5V
GPIO0 3 4 5V
GPIO1 5 6 GND
GPIO4 7 8 GPIO14
GND 9 10 GPIO15
GPIO21 13 14 GND
GPIO22 15 16 GPIO23
3.3V 17 18 GPIO24

GPIO10 19 20 **GND**

GPIO9 21 22 GPIO25

GND 25 26 GPIO7

GPIO11 23 24 GPIO8

Raspberry Pi A/B Rev 2 P1 GPIO Header

Pin No.

2 **5V** 3.3V 1 GPIO₂ 3 4 5V 6 GND GPIO₃ 5 8 **GPIO14** GPIO4 7 GND 9 10 **GPIO15** GPIO17 11 12 GPIO18 **GPIO27** 13 14 **GND** GPIO22 15 16 GPIO23 3.3V 17 18 GPIO24 **GPIO10** 19 20 **GND** GPIO9 21 22 GPIO25 GPIO11 23 24 GPIO8 GND 25 26 GPIO7

Raspberry Pi B+ B+ J8 GPIO Header

Pin No. 2 3.3V 5V 1 GPIO₂ 3 4 5V **GND GPIO3 GPIO14** GPIO4 7 GND 9 10 **GPIO15** GPIO17 12 **GPIO18** 11 14 GND **GPIO27** 13 **GPIO22** 15 16 **GPIO23** 3.3V 17 18 **GPIO24 20 GND GPIO10** 19 **GPIO9** 21 22 **GPIO25 GPIO11** 23 24 **GPIO8** GND 25 26 **GPIO7 DNC** 27 28 **DNC** 30 **GND GPIO5** 29 32 **GPIO12 GPIO6** 31 **34 GND GPIO13** 33 GPIO19 35 36 **GPIO16 GPIO26** 37 38 **GPIO20**

GND 39

40 **GPIO21**

Key

Power + UART
GND SPI
I²C GPIO

RasPi側の準備

GPIO Numbers

Raspberry Pi B Rev 1 P1 GPIO Header

Pin No.

2 **5V** 3.3V 1 GPIO0 3 4 **5V** 6 GND **GPIO1** 5

8 **GPIO14** GPIO4 7

GND 9 10 **GPIO15**

GPIO17 11 12 GPIO18

GPIO21 13 14 **GND**

GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24

GPIO10 19 20 **GND**

GPIO9 21 22 GPIO25

GPIO11 23 24 GPIO8

GND 25 26 GPIO7

Rastoerry Pi A/B Rev 2 P1 GPIO Heaver

Pin No.

2 **5V** 3.3V 1 GPIO₂ 3 4 **5V**

6 GND GPIO₃ 5

GPIO4 7 8 **GPIO14**

GND 9 10 **GPIO15**

GPIO17 11 12 GPIO18

GPIO27 13 14 **GND**

GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24

GPIO10 19 20 **GND**

GPIO9 21 22 GPIO25

GPIO11 23 24 GPIO8

GND 25 26 **GPIO**

Key

Power + **UART** GND SPI I²C **GPIO**

Raspberry Pi B+ B+ J8 GPIO Header

Pin No.

2 3.3V 5V 1 GPI02 4 5V GND **GPIO3 GPIO14** GPIO4 7 GND 9 10 **GPIO15** GPIO17 12 **GPIO18** 11 14 GND **GPIO27** 13

GPIO22 15 16 **GPIO23** 3.3V 17 18 **GPIO24**

20 GND GPIO10 19

GPIO9 21 22 **GPIO25**

GPIO11 23 24 **GPIO8** GND 25 26 **GPIO7**

> **DNC** 27 28 **DNC**

30 **GND GPIO5** 29

32 **GPIO12 GPIO6** 31

34 GND GPIO13 33

36 **GPIO16** GPIO19 35 **GPIO26** 37 38 **GPIO20**

> 40 **GPIO21 GND** 39

RasPi側の準備

実行結果

今日のネタは今朝に記事書きました

http://qiita.com/n0bisuke/items/9e06be9672373fa44f02

Qiita 🖸

キーワードを入力

Hot Markdownによる情報共有サービス、Qiita:Team

② 投稿する

ストック

ラズパイとサーバーサイドSwiftでLチカ!(Raspberry

Pi 2 + SwiftyGPIO)

RaspberryPi 1054

n0bisukeが2016/05/30にKobitoから投稿(2016/05/30に編集)・編集履歴(2)・問題がある投稿を報告する

今回の話は、 サーバーサイドSwiftでLチカです。Swiftで直接LEDを光らせることができるってすごい時代ですよ ね。

国内で事例記事がなさそうだったので書いてみました。

LチカはLEDをチカチカと点滅させる電子工作でいう ハローワールドです (Swiftやアプリ界隈だと伝わらないかも と思ったので念のため解説)

この間、VaporでサーバーサイドSwiftに入門してみる。 (swiftenv + Swift Package Manager利用)という記事を書き ましたが、最近、サーバーサイドSwiftで少し遊んでいました。

■ スト

n0bisuke 4497 Contrib

人気の投稿

- 3行のソースコードを2 できると噂のindicoをN 学習入門してみる
- 意外と知られていない。

まとめ

- Swiftのパラダイムシフト
 - そろそろアプリエンジニアだけのものじゃないかも
- SwiftからLEDを光らせることができた
 - SwiftでGPIOを触れるなんてかなり衝撃的
- ・サーバーサイドSwiftはまだまだ安定はしてないけど、IoTやHWへの活用はSwiftの可能性が広がる
 - みんなIoTやろう #iotlt

以上、ありがとうございました!