Incentivization of correct behavior in a decentralized computing marketplace

Identified problem

Game Theory based model [4]

		Computing provider	
		S	F
et	S	(<u>U_c-(Price_a+Price_c)</u> , <u>Price_a</u> , <u>Price_c-Cost_c</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))
Asset	F	(<u>0</u> , 0, <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))

		Computing provider	
		S	F
set	S	(0 , <u>0</u> , <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost_+Slash_))
Asset	F	(<u>0</u> , <u>0</u> , <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))

Players:

- Requester
- Asset provider
- Computing provider

Strategies:

- S: Do the work correctly
- F: Do the work incorrectly

Payoffs:

• (Requester, Asset, Computing)

U_r: Utility from the result
Slash_c: Computing provider slash
Price_a: Asset price
Price_c: Computing price
Cost_c: Computing cost

Game Theory based model: example 1

		Computing provider	
		S	F
set	S	(<u>U_c-(Price_a+Price_c)</u> , <u>Price_a</u> , <u>Price_c-Cost_c</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))
Asset	F	(<u>0</u> , 0, <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))

Str	ate	gie	es:
O ti	alu	יישי	,0.

- Requester plays S
- Asset provider plays S
- Computing provider plays S

Result:

Task completed successfully

		Computing provider	
		s	F
set	S	(0 , <u>0</u> , <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))
Asset	F	(<u>0</u> , <u>0</u> , <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))

U_r: Utility from the result
Slash_c: Computing provider slash
Price_a: Asset price
Price_c: Computing price
Cost_c: Computing cost

Game Theory based model: example 2

		_		
		Computing provider		
		S	F	
set	S	(<u>U_r-(Price_a+Price_c)</u> , <u>Price_a</u> , <u>Price_c-Cost_c</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))	
Asset	F	(<u>0</u> , 0, <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost_+Slash_))	

\sim			
Str	ate	ווחי	⊃ δ.
O ti	att	ייפי	JU.

- Requester plays S
- Asset provider plays F
- Computing provider plays S

Result:

Task failed

		Computing provider	
		S	F
set	S	(0 , <u>0</u> , <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost_+Slash_))
Asset	F	(<u>0</u> , <u>0</u> , <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))

U_r: Utility from the result
Slash_c: Computing provider slash
Price_a: Asset price
Price_c: Computing price
Cost_c: Computing cost

		Computing provider	
		S	F
et	S	(<u>U_r-(Price_a+Price_c)</u> , <u>Price_a</u> , <u>Price_c-Cost_c</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))
Asset	F	(<u>0</u> , 0, <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost_+Slash_))

- Requester plays F
- Asset provider plays S
- Computing provider plays F

Result:

Task failed

		Computing provider	
		S	F
set	S	(0 , <u>0</u> , <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))
Asset	F	(<u>0</u> , <u>0</u> , <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))

U_r: Utility from the result
Slash_c: Computing provider slash
Price_a: Asset price
Price_c: Computing price
Cost_c: Computing cost

Game Theory based model

		Computing provider	
		S	F
set	S	(<u>U_c-(Price_a+Price_c)</u> , <u>Price_a</u> , <u>Price_c-Cost_c</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))
Asset	F	(<u>0</u> , 0, <u>-(Cost_c+Slash_c)</u>)	(<u>0, 0,</u> -(Cost_+Slash_)

		Computing provider	
		S	F
Asset	S	(0 , <u>0</u> , <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))
	F	(<u>0</u> , <u>0</u> , <u>-(Cost_c+Slash_c)</u>)	(<u>0</u> , <u>0</u> , -(Cost _e +Slash _e))

Strategies:

- S: Do the work correctly
- F: Do the work incorrectly

Results:

- Red Nash Equilibrium leads to failure but are unstable.
- Green Nash Equilibrium lead to success and is stable.

U_r: Utility from the result
Slash_c: Computing provider slash
Price_a: Asset price
Price_c: Computing price
Cost_c: Computing cost

Game Theory based model, with dynamic cost

		Computing provider	
		S	F
Asset	S	(<u>U(Price_+Price_)</u> , <u>PriceCost_a</u> , <u>PriceCost_a</u>)	(<u>0</u> , -Cost _a , -Slash _c)
	F	(<u>0</u> , 0, -(Cost _c +Slash _c))	(<u>0</u> , <u>0</u> , <u>-Slash</u> _e)

		Computing provider	
		S	F
Asset	S	(0, -Cost _a , -(Cost _c +Slash _c))	(<u>0</u> , -Cost _a , <u>-Slash</u> _e)
	F	(<u>0</u> , <u>0</u> , -(Cost _c +Slash _c))	(<u>0</u> , <u>0</u> , <u>-Slash</u> _c)

Strategies:

- S: Do the work correctly
- F: Do the work incorrectly

Results:

- Red Nash Equilibrium leads to failure but are unstable.
- Green Nash Equilibrium lead to success and is stable.

U_.: Utility from the result Slash : Computing provider slash Price : Asset price Price Computing price Cost : Computing cost

Game Theory based model with blind slashing

		Computing provider	
		S	F
Asset	S	$(\underline{U_r}-(\underline{Price_a}+\underline{Price_c}), \underline{Price_a}, \underline{Price_c}-\underline{Cost_c})$	(<u>-Slash</u> , <u>-Slash</u> , -(Cost _c +Slash _c))
	F	(<u>-Slash_r,</u> -Slash _a , <u>-(Cost_c+Slash_c)</u>)	(<u>-Slash</u> , <u>-Slash</u> , <u>-(Cost +Slash</u>))

Results:

- Same result as before
- Incentive to switch more quickly to the stable Nash Equilibrium
- Possibility for repeatedly failing actors to get ruined

		Computing provider	
		s	F
Asset	S	(-Slash _r , <u>-Slash_a, -(Cost_c+Slash_c)</u>)	(<u>-Slash</u> _r , <u>-Slash</u> _a , <u>-(Cost_+Slash_)</u>)
	F	(<u>-Slash</u> , <u>-Slash</u> , <u>-(Cost</u> +Slash))	(<u>-Slash</u> _e , <u>-Slash</u> _a , <u>-(Cost</u> _e +Slash _e))

U_r: Utility from the result

Price_a: Asset price

Price_c: Computing price

Cost_c: Computing cost

Slash_r: Requester slash

Slash_a: Asset provider slash

Slash_c: Computing provider slash

Not possible to get rid of all Nash Equilibriums

- If more than one player is failing the task, other players are blocked in a suboptimal outcome. Then changing their strategy will not change the game outcome ⇒ non desirable Nash Equilibria.
 - a. Build trust between players so that they believe the other will switch strategies as agreed ⇒ reputation system encourages belief in other players right choice and coordination.
 - b. A punition (slashing) mechanism align individual incentives with collective outcomes ⇒ encourage the players to coordinate on a better strategy.
- ⇒ Ruin theory?

Can we access worker logs?

- I explored <u>thegraph from bellecour</u>.
- 2. I found information about tasks (We can see the difference between transactions reaching or not a consensus).
- 3. I did not find a way to check worker logs and errors during computation.
- 4. I could however retrieve task status, requester, dApp provider, dataset provider and workerpool owner. Should we try looking for pattern on failed tasks?

Bibliography

- [1] Ethereum Foundation. "Ethereum Whitepaper: A Next-Generation Smart Contract and Decentralized Application Platform." Ethereum, 2014. Accessed July 8, 2024. https://ethereum.org/en/whitepaper/.
- [2] Fedak, Gilles, Wassim Bendella, Eduardo Alves, Haiwu He, and Mircea Moca. "Blockchain-Based Decentralized Cloud Computing Whitepaper. Version 3.0, 2017-2018." April 24, 2018. Accessed July 2, 2024. https://github.com/iExecBlockchainComputing/whitepaper/blob/master/V3/iExec-WPv3.0-English.pdf.
- [3] iExec. "Proof of Contribution." iExec Documentation. Accessed July 8, 2024. https://protocol.docs.iex.ec/key-concepts/proof-of-contribution.
- [4] Binmore, K. G. Game Theory: A Very Short Introduction. New York: Oxford University Press, 2007. http://archive.org/details/gametheoryverysh0000binm.
- [5] Hasan, Omar, Lionel Brunie, and Elisa Bertino. "Privacy-Preserving Reputation Systems Based on Blockchain and Other Cryptographic Building Blocks: A Survey." ACM Computing Surveys 55, no. 2 (January 18, 2022): 32:1-32:37. https://doi.org/10.1145/3490236.