EQUAZIONI NUMERICHE

Nei numeri reali, un'equazione del tipo

$$ax = b$$
 dove $a, b \in \mathbb{R}$

ha:

- se $a \neq 0$: un'unica soluzione, $x = a^{-1}b$;
- se a = 0 e $b \neq 0$: nessuna soluzione;
- se a = 0 e b = 0: infinite soluzioni (perché ogni numero è soluzione di 0x = 0).

EQUAZIONI MATRICIALI

Se A è una matrice $n \times m$ e b è un vettore colonna di dimensione n, possiamo chiederci per quali vettori colonna v di dimensione m vale l'uguaglianza Av = b, ovvero cerchiamo le soluzioni dell'*equazione matriciale*

$$Ax = b$$

Come vedremo, questa equazione può avere

- un'unica soluzione, se la matrice A è invertibile: $x = A^{-1}b$;
- nessuna soluzione (ma non solo quando A = (0) e $b \neq (0)$);
- infinite soluzioni (ma non solo quando A = (0) e b = (0)).

Nota bene: come vedremo, non tutte le matrici diverse dalla matrice nulla sono invertibili, quindi la divisione nei tre casi è in generale più complessa che nel caso di equazioni numeriche.

PERCHÉ RISOLVERE EQUAZIONI MATRICIALI?

Una matrice A di dimensione $n \times m$, tramite la moltiplicazione, *trasforma* un vettore colonna x di dimensione m in un vettore colonna Ax di dimensione n.

Quindi *A* può essere vista come una funzione (o *trasormazione*) da \mathbb{R}^m a \mathbb{R}^n :

$$\mathbb{R}^m \to \mathbb{R}^n$$
 $x \mapsto Ax$

Risolvere equazioni matriciali del tipo Ax = b ci permette di capire meglio come si comporta la trasformazione definita da A.

Esempio

Ad esempio, usando la matrice

$$A = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix}$$

possiamo definire una trasformazione da \mathbb{R}^3 a \mathbb{R}^3 che trasforma un punto $x=(x_1,x_2,x_3)$ di \mathbb{R}^3 nel punto $y=(x_1/2+x_3/2,x_2,x_1/2+x_3/2)$:

$$Ax = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1/2 + x_3/2 \\ x_2 \\ x_1/2 + x_3/2 \end{bmatrix}$$

Risolvendo l'equazione Ax = b possiamo capire che non tutti i vettori di \mathbb{R}^3 appartengono all'immagine della trasformazione ed in particolare:

 $b \in \mathbb{R}^3$ appartiene all'immagine della trasformazione (ovvero Ax = b ha soluzione)

b appartiene ad un piano per l'origine di equazione $x_1 = x_3$

Esempio

Graficamente, la trasformazione definita dalla matrice A corrisponde alla proiezione su un piano.

PERCHÉ RISOLVERE EQUAZIONI MATRICIALI?

Saper risolvere equazioni matriciali ci permetterà, ad esempio, di ultilizzare le matrici per *proiettare insiemi di dati* in modo da diminuirne la "grandezza"

PERCHÉ RISOLVERE EQUAZIONI MATRICIALI?

Un'equazione matriciale

$$Ax = b$$

corrisponde ad un sistema lineare. Ad esempio, se

$$A\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ allora $A\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \end{bmatrix}$

e risolvere l'equazione

$$A\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

corrisponde a risolvere il sistema

$$\begin{cases} x_1 + x_2 = 1 \\ x_1 - x_2 = 1 \end{cases}$$

Questo sistema si risolve facilmente: dalla seconda equazione segue $x_1 = x_2 + 1$ e sostituendo nella prima equazione troviamo $2x_2 + 1 = 1$. Quindi l'unica soluzione è $x_2 = 0$ e $x_1 = 1$.

Se la matrice A ha molte righe e molte colonne risolvere il sistema che corrisponde ad Ax = b non è sempre così facile.

Notazione Matriciale per i Sistemi Lineari

Un sistema lineare

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,m}x_m = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,m}x_m = b_2 \\ \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \ldots + a_{n,m}x_m = b_n, \end{cases}$$

corrisponde all'equazione matriciale

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & \dots & a_{2,m} \\ \vdots & & & & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

A si dice matrice dei coefficienti del sistema x si dice vettore delle incognite b si dice termine noto

Risoluzione di sistemi lineari

• In questo corso svilupperemo dei metodi che ci permetteranno di capire quando un sistema lineare (ovvero un'equazione matriciale) con un numero qualsiasi di equazioni e di incognite ammette almeno una soluzione e svilupperemo delle tecniche per descrivere l'insieme di tutte le soluzioni e la sua "grandezza".

Risoluzione di sistemi lineari

• In questo corso svilupperemo dei metodi che ci permetteranno di capire quando un sistema lineare (ovvero un'equazione matriciale) con un numero qualsiasi di equazioni e di incognite ammette almeno una soluzione e svilupperemo delle tecniche per descrivere l'insieme di tutte le soluzioni e la sua "grandezza".

SOLUZIONI DI UN SISTEMA LINEARE

Risolvere un sistema lineare significa trovare una m-pla di numeri reali (s_1, \ldots, s_m) che soddisfa *contemporaneamente* tutte le equazioni del sistema:

SOLUZIONI DI UN SISTEMA LINEARE

Risolvere un sistema lineare significa trovare una m-pla di numeri reali (s_1, \ldots, s_m) che soddisfa *contemporaneamente* tutte le equazioni del sistema:

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,m}x_m = b_1, \\ a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,m}x_m = b_2, \\ \vdots \\ a_{n,1}x_1 + a_{n,2}x_2 + \ldots + a_{n,m}x_m = b_n, \end{cases}$$

$$a_{1,1}s_1 + a_{1,2}s_2 + \ldots + a_{1,m}s_m = b_1;$$

$$a_{2,1}s_1 + a_{2,2}s_2 + \ldots + a_{2,m}s_m = b_2;$$

$$\vdots$$

$$a_{n,1}s_1 + a_{n,2}s_2 + \ldots + a_{n,m}s_m = b_n.$$

equivalentemente, vogliamo trovare tutti i vettori $s = \begin{bmatrix} s_1 \\ \vdots \\ s_m \end{bmatrix}$ che risolvono l'equazione

matriciale

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & \dots & a_{2,m} \\ \vdots & & & & \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$$

dove A è la matrice dei coefficienti del sistema.

• Un sistema lineare può anche non avere soluzioni, come il sistema

$$\begin{cases} x_1 + x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

perché non esiste nessuna coppia di numeri reali (s_1,s_2) per cui valga, contemporaneamente $s_1+s_2=1$ e $s_1+s_2=0$

Un sistema lineare può anche non avere soluzioni, come il sistema

$$\begin{cases} x_1 + x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

perché non esiste nessuna coppia di numeri reali (s_1, s_2) per cui valga, contemporaneamente $s_1 + s_2 = 1$ e $s_1 + s_2 = 0$

 Un sistema lineare può avere infinite soluzioni, come il sistema con una sola equazione e due incognite

$$\left\{x_1+x_2=1\right\}$$

dove le infinite coppie del tipo (s, 1 - s) (al variare di s fra i numeri reali) sono soluzione del sistema: infatti s + (1 - s) = 1.

Un sistema lineare può anche non avere soluzioni, come il sistema

$$\begin{cases} x_1 + x_2 = 1 \\ x_1 + x_2 = 0 \end{cases}$$

perché non esiste nessuna coppia di numeri reali (s_1, s_2) per cui valga, contemporaneamente $s_1 + s_2 = 1$ e $s_1 + s_2 = 0$

 Un sistema lineare può avere infinite soluzioni, come il sistema con una sola equazione e due incognite

$$\left\{x_1+x_2=1\right.$$

dove le infinite coppie del tipo (s, 1-s) (al variare di s fra i numeri reali) sono soluzione del sistema: infatti s+(1-s)=1.

 Come vedremo in seguito, non esiste invece nessun sistema lineare con esattamente due soluzioni, o con un numero finito di soluzioni diverso da uno. Nota bene: un sistema lineare può non avere direttamente la forma matriciale Ax = b ma possiamo sempre ricondurci a quella forma.

Ad esempio:

$$\begin{cases} x_1 = x_2 - 3 \\ x_2 + 5 = x_3 \end{cases}$$
 ha le stesse soluzioni di
$$\begin{cases} x_1 - x_2 = -3 \\ x_2 - x_3 = -5 \end{cases}$$

e il secondo sistema corrisponde a

$$\begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -3 \\ -5 \end{bmatrix}$$

SISTEMI RISOLTI

Alcuni sistemi hanno una forma molto semplice, che li rende di immediata soluzione: sono i SISTEMI RISOLTI che hanno la forma

$$egin{cases} x_{i_1} = \dots \ x_{i_2} = \dots \ dots \ x_{i_k} = \dots \end{cases}$$

dove le variabili x_{i_1}, \ldots, x_{i_k} che si trovano a sinistra delle uguaglianze sono tutte distinte e non compaiono a destra delle equazioni, mentre a destra possono comparire altre variabili (che non compaiono a sinistra) e termini noti.

SISTEMI RISOLTI

Alcuni sistemi hanno una forma molto semplice, che li rende di immediata soluzione: sono i SISTEMI RISOLTI che hanno la forma

$$\begin{cases} x_{i_1} = \dots \\ x_{i_2} = \dots \\ \vdots \\ x_{i_k} = \dots \end{cases}$$

dove le variabili x_{i_1}, \ldots, x_{i_k} che si trovano a sinistra delle uguaglianze sono tutte distinte e non compaiono a destra delle equazioni, mentre a destra possono comparire altre variabili (che non compaiono a sinistra) e termini noti. Ad esempio:

$$\begin{cases} x_1 = 2x_2 - x_3 \\ x_4 = x_5 + 2 \end{cases}$$

è un sistema risolto

In un sistema risolto, per ogni valore arbitrario che assegniamo alle variabili a destra, possiamo calcolare il valore delle variabili a sinistra in modo da ottenere una soluzione del sistema.

In un sistema risolto, per ogni valore arbitrario che assegniamo alle variabili a destra, possiamo calcolare il valore delle variabili a sinistra in modo da ottenere una soluzione del sistema. Ad esempio, se il sistema è

$$\begin{cases} x_1 = 2x_2 - x_3 \\ x_4 = x_5 + 2 \end{cases}$$

possiamo assegnare i valori $x_2 = 1, x_3 = 0, x_5 = -1$, ottenendo $x_1 = 2, x_4 = 1$;

In un sistema risolto, per ogni valore arbitrario che assegniamo alle variabili a destra, possiamo calcolare il valore delle variabili a sinistra in modo da ottenere una soluzione del sistema. Ad esempio, se il sistema è

$$\begin{cases} x_1 = 2x_2 - x_3 \\ x_4 = x_5 + 2 \end{cases}$$

possiamo assegnare i valori $x_2 = 1$, $x_3 = 0$, $x_5 = -1$, ottenendo $x_1 = 2$, $x_4 = 1$; ottenendo la soluzione

$$(x_1, x_2, x_3, x_4, x_5) = (2, 1, 0, 1, -1).$$

In un sistema risolto, per ogni valore arbitrario che assegniamo alle variabili a destra, possiamo calcolare il valore delle variabili a sinistra in modo da ottenere una soluzione del sistema. Ad esempio, se il sistema è

$$\begin{cases} x_1 = 2x_2 - x_3 \\ x_4 = x_5 + 2 \end{cases}$$

possiamo assegnare i valori $x_2 = 1, x_3 = 0, x_5 = -1$, ottenendo $x_1 = 2, x_4 = 1$; ottenendo la soluzione

$$(x_1, x_2, x_3, x_4, x_5) = (2, 1, 0, 1, -1).$$

Per ottenere la forma generale di una soluzione assegnamo un valore qualsiasi alle variabili di destra (parametri) $x_2 = h, x_3 = k, x_5 = m \operatorname{con} h, k, m \in \mathbb{R}$

In un sistema risolto, per ogni valore arbitrario che assegniamo alle variabili a destra, possiamo calcolare il valore delle variabili a sinistra in modo da ottenere una soluzione del sistema. Ad esempio, se il sistema è

$$\begin{cases} x_1 = 2x_2 - x_3 \\ x_4 = x_5 + 2 \end{cases}$$

possiamo assegnare i valori $x_2 = 1, x_3 = 0, x_5 = -1$, ottenendo $x_1 = 2, x_4 = 1$; ottenendo la soluzione

$$(x_1, x_2, x_3, x_4, x_5) = (2, 1, 0, 1, -1).$$

Per ottenere la forma generale di una soluzione assegnamo un valore qualsiasi alle variabili di destra (parametri) $x_2 = h$, $x_3 = k$, $x_5 = m \cos h$, k, $m \in \mathbb{R}$ e otteniamo una soluzione *calcolando* il corrispondente valore delle variabili a sinistra: $x_1 = 2h - k$, $x_4 = m + 2$.

La generica soluzione è allora

$$(x_1, x_2, x_3, x_4, x_5) = (2h - k, h, k, m + 2, m),$$

In un sistema risolto, per ogni valore arbitrario che assegniamo alle variabili a destra, possiamo calcolare il valore delle variabili a sinistra in modo da ottenere una soluzione del sistema. Ad esempio, se il sistema è

$$\begin{cases} x_1 = 2x_2 - x_3 \\ x_4 = x_5 + 2 \end{cases}$$

possiamo assegnare i valori $x_2 = 1$, $x_3 = 0$, $x_5 = -1$, ottenendo $x_1 = 2$, $x_4 = 1$; ottenendo la soluzione

$$(x_1, x_2, x_3, x_4, x_5) = (2, 1, 0, 1, -1).$$

Per ottenere la forma generale di una soluzione assegnamo un valore qualsiasi alle variabili di destra (parametri) $x_2 = h$, $x_3 = k$, $x_5 = m \cos h$, k, $m \in \mathbb{R}$ e otteniamo una soluzione *calcolando* il corrispondente valore delle variabili a sinistra: $x_1 = 2h - k$, $x_4 = m + 2$.

La generica soluzione è allora

$$(x_1, x_2, x_3, x_4, x_5) = (2h - k, h, k, m + 2, m),$$

mentre l'insieme di tutte le possibili soluzioni del sistema è:

$$SOL = \{(2h-k, h, k, m+2, m) : h, k, m \in \mathbb{R}\}$$

Trovare tutte le soluzioni del seguente sistema risolto:

$$\begin{cases} x_3 = 2x_2 + x_5 + 1 \\ x_4 = x_1 + 2x_2 - 1 \end{cases}$$

RISPOSTA

Trovare tutte le soluzioni del seguente sistema risolto:

$$\begin{cases} x_3 = 2x_2 + x_5 + 1 \\ x_4 = x_1 + 2x_2 - 1 \end{cases}$$

$$SOL = \{(h, k, 2k + m + 1, h + 2k - 1, m) : h, k, m \in \mathbb{R}\}$$

Trovare tutte le soluzioni del seguente sistema risolto:

$$\begin{cases} x_3 = 2x_2 + x_5 + 1 \\ x_4 = x_1 + 2x_2 - 1 \end{cases}$$

$$SOL = \{(h, k, 2k + m + 1, h + 2k - 1, m) : h, k, m \in \mathbb{R}\}$$

Indicare almeno tre soluzioni differenti del sistema: RISPOSTA

Trovare tutte le soluzioni del seguente sistema risolto:

$$\begin{cases} x_3 = 2x_2 + x_5 + 1 \\ x_4 = x_1 + 2x_2 - 1 \end{cases}$$

$$SOL = \{(h, k, 2k + m + 1, h + 2k - 1, m) : h, k, m \in \mathbb{R}\}$$

Indicare almeno tre soluzioni differenti del sistema:

$$(1,0,1,0,0),(0,1,3,1,0),(0,0,2,-1,1)$$

• Alcuni sistemi possono essere trasformati facilmente in sistemi risolti.

 Alcuni sistemi possono essere trasformati facilmente in sistemi risolti. Questo è il caso dei sistemi che hanno come matrice dei coefficienti una matrice a scala.

- Alcuni sistemi possono essere trasformati facilmente in sistemi risolti. Questo è il caso dei sistemi che hanno come matrice dei coefficienti una matrice a scala.
- Per capire cosa è una matrice a scala, abbiamo bisogno della nozione di pivot.

DEFINIZIONE

Data una riga (d_1, \ldots, d_m) di numeri reali non tutti nulli, il primo elemento non nullo della riga si dice pivot della riga

Ad esempio, se $(d_1, d_2, d_3, d_4, d_5) = (0, 0, -2, 0, 1)$ allora $d_3 = -2$ è il pivot della riga.

DEFINIZIONE

Una matrice si dice a scala se, per ogni riga non nulla, il pivot della riga compare prima del pivot della riga successiva; si richiede inoltre che le eventuali righe nulle vengano per ultime, ovvero, dopo un a riga nulla possono esserci solo righe nulle.

Ad esempio, sono a scala le seguenti matrici:

DEFINIZIONE

Una matrice si dice a scala se, per ogni riga non nulla, il pivot della riga compare prima del pivot della riga successiva; si richiede inoltre che le eventuali righe nulle vengano per ultime, ovvero, dopo un a riga nulla possono esserci solo righe nulle.

Ad esempio, sono a scala le seguenti matrici:

mentre queste altre non sono a scala:

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

DEFINIZIONE

Una matrice si dice a scala se, per ogni riga non nulla, il pivot della riga compare prima del pivot della riga successiva; si richiede inoltre che le eventuali righe nulle vengano per ultime, ovvero, dopo un a riga nulla possono esserci solo righe nulle.

Ad esempio, sono a scala le seguenti matrici:

mentre queste altre non sono a scala:

$$\begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

(nella prima matrice il pivot della terza riga appare al terzo posto, prima di quello della seconda riga che appare al quarto posto;

nella terza matrice la seconda riga è nulla, ma la terza riga non è nulla).

SOLUZIONI PER SISTEMI A SCALA

Consideriamo un sistema lineare in cui la matrice dei coefficienti è a scala, come ad esempio:

$$\begin{cases} x_1 + x_3 + x_4 = 1 \\ x_2 + x_4 = 0 \\ 2x_4 - x_5 = 2 \end{cases}$$
 dove la matrice dei coefficenti è
$$\begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & -1 \end{pmatrix}$$

SOLUZIONI PER SISTEMI A SCALA

Consideriamo un sistema lineare in cui la matrice dei coefficienti è a scala, come ad esempio:

$$\begin{cases} x_1 + x_3 + x_4 = 1 \\ x_2 + x_4 = 0 \\ 2x_4 - x_5 = 2 \end{cases}$$
 dove la matrice dei coefficenti è
$$\begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & -1 \end{pmatrix}$$

Poiché abbiamo tante colonne nella matrice dei coefficienti quante sono le variabili del sistema, possiamo far corrispondere alla prima colonna la variabile x_1 , alla seconda la variabile x_2 eccetera. In questa corrispondenza, il pivot della prima riga si trova nella colonna che corrisponde ad x_1 , quello della seconda riga ad x_2 , quello della terza riga ad x_4 :

$$\begin{pmatrix} x_1 & x_2 & x_4 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & -1 \end{pmatrix}$$

Consideriamo un sistema lineare in cui la matrice dei coefficienti è a scala, come ad esempio:

$$\begin{cases} x_1 + x_3 + x_4 = 1 \\ x_2 + x_4 = 0 \\ 2x_4 - x_5 = 2 \end{cases}$$
 dove la matrice dei coefficenti è
$$\begin{pmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & -1 \end{pmatrix}$$

Poiché abbiamo tante colonne nella matrice dei coefficienti quante sono le variabili del sistema, possiamo far corrispondere alla prima colonna la variabile x_1 , alla seconda la variabile x_2 eccetera. In questa corrispondenza, il pivot della prima riga si trova nella colonna che corrisponde ad x_1 , quello della seconda riga ad x_2 , quello della terza riga ad x_4 :

$$\begin{pmatrix} x_1 & x_2 & x_4 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 & -1 \end{pmatrix}$$

Trasformiamo ora il sistema risolvendo ogni equazione rispetto alla variabile che corrisponde al pivot della riga, ovvero spostiamo le altre variabili (cambiando di segno!) a destra del simbolo = e dividiamo se necessario per un opportuno coefficiente.

Nell'esempio in considerazione otteniamo:

$$\begin{cases} x_1 = -x_3 - x_4 + 1 \\ x_2 = -x_4 \\ x_4 = 1 + x_5/2 \end{cases}$$

Nell'esempio in considerazione otteniamo:

$$\begin{cases} x_1 = -x_3 - x_4 + 1 \\ x_2 = -x_4 \\ x_4 = 1 + x_5/2 \end{cases}.$$

Il sistema non è ancora risolto, perché a destra delle uguaglianze compare ancora la variabile x_4 che compare anche a sinistra.

Nell'esempio in considerazione otteniamo:

$$\begin{cases} x_1 = -x_3 - x_4 + 1 \\ x_2 = -x_4 \\ x_4 = 1 + x_5/2 \end{cases}$$

Il sistema non è ancora risolto, perché a destra delle uguaglianze compare ancora la variabile x_4 che compare anche a sinistra. L'ultima equazione, però, ci permette di sostituire tutte le occorrenze della variabile x_4 a destra delle equazioni con $1 + x_5/2$, ottenendo:

$$\begin{cases} x_1 = -x_3 - 1 - x_5/2 + 1 \\ x_2 = -1 - x_5/2 \\ x_4 = 1 + x_5/2 \end{cases} \text{ ovvero } \begin{cases} x_1 = -x_3 - x_5/2 \\ x_2 = -1 - x_5/2 \\ x_4 = 1 + x_5/2 \end{cases}$$

Nell'esempio in considerazione otteniamo:

$$\begin{cases} x_1 = -x_3 - x_4 + 1 \\ x_2 = -x_4 \\ x_4 = 1 + x_5/2 \end{cases}$$

Il sistema non è ancora risolto, perché a destra delle uguaglianze compare ancora la variabile x_4 che compare anche a sinistra. L'ultima equazione, però, ci permette di sostituire tutte le occorrenze della variabile x_4 a destra delle equazioni con $1 + x_5/2$, ottenendo:

$$\begin{cases} x_1 = -x_3 - 1 - x_5/2 + 1 \\ x_2 = -1 - x_5/2 \\ x_4 = 1 + x_5/2 \end{cases} \text{ ovvero } \begin{cases} x_1 = -x_3 - x_5/2 \\ x_2 = -1 - x_5/2 \\ x_4 = 1 + x_5/2 \end{cases}$$

Ora il sistema è risolto perché abbiamo eliminato le variabili a destra che erano ripetute anche a sinistra.

Nell'esempio in considerazione otteniamo:

$$\begin{cases} x_1 = -x_3 - x_4 + 1 \\ x_2 = -x_4 \\ x_4 = 1 + x_5/2 \end{cases}.$$

Il sistema non è ancora risolto, perché a destra delle uguaglianze compare ancora la variabile x_4 che compare anche a sinistra. L'ultima equazione, però, ci permette di sostituire tutte le occorrenze della variabile x_4 a destra delle equazioni con $1 + x_5/2$, ottenendo:

$$\begin{cases} x_1 = -x_3 - 1 - x_5/2 + 1 \\ x_2 = -1 - x_5/2 \\ x_4 = 1 + x_5/2 \end{cases} \text{ ovvero } \begin{cases} x_1 = -x_3 - x_5/2 \\ x_2 = -1 - x_5/2 \\ x_4 = 1 + x_5/2 \end{cases}$$

Ora il sistema è risolto perché abbiamo eliminato le variabili a destra che erano ripetute anche a sinistra. Possiamo allora calcolare facilmente l'insieme delle soluzioni utilizzando i parametri h, k per dare valore alle variabili x_3, x_5 a destra delle equazioni. L'insieme delle soluzioni del sistema sarà quindi:

$$SOL = \{(-h - k/2, -1 - k/2, h, 1 + k/2, k) : h, k \in \mathbb{R}\}.$$

Più in generale, se un sistema ha per matrice dei coefficienti una matrice a scala senza righe nulle, possiamo trasformare il sistema in un sistema risolto e trovare tutte le sue soluzioni operando come nell'esempio precedente. Il procedimento da seguire è il seguente:

 in ogni equazione risolviamo rispetto alla variabile che corrisponde al pivot della riga, spostando a destra tutte le altre variabili ed eventualmente dividendo per un coefficiente opportuno.

- in ogni equazione risolviamo rispetto alla variabile che corrisponde al pivot della riga, spostando a destra tutte le altre variabili ed eventualmente dividendo per un coefficiente opportuno.
- utilizziamo l'ultima equazione per eliminare la variabile pivot dell'ultima riga in tutte le altre equazioni;

- in ogni equazione risolviamo rispetto alla variabile che corrisponde al pivot della riga, spostando a destra tutte le altre variabili ed eventualmente dividendo per un coefficiente opportuno.
- utilizziamo l'ultima equazione per eliminare la variabile pivot dell'ultima riga in tutte le altre equazioni;
- 3 se abbiamo raggiunto un sistema risolto, ci fermiamo. Altrimenti ci dimentichiamo dell'ultima riga e ricominciamo dal punto 2), in modo da eliminare la variabile pivot della penultima riga dalla destra delle equazioni, e così via.

- in ogni equazione risolviamo rispetto alla variabile che corrisponde al pivot della riga, spostando a destra tutte le altre variabili ed eventualmente dividendo per un coefficiente opportuno.
- utilizziamo l'ultima equazione per eliminare la variabile pivot dell'ultima riga in tutte le altre equazioni;
- 3 se abbiamo raggiunto un sistema risolto, ci fermiamo. Altrimenti ci dimentichiamo dell'ultima riga e ricominciamo dal punto 2), in modo da eliminare la variabile pivot della penultima riga dalla destra delle equazioni, e così via.

Più in generale, se un sistema ha per matrice dei coefficienti una matrice a scala senza righe nulle, possiamo trasformare il sistema in un sistema risolto e trovare tutte le sue soluzioni operando come nell'esempio precedente. Il procedimento da seguire è il seguente:

- in ogni equazione risolviamo rispetto alla variabile che corrisponde al pivot della riga, spostando a destra tutte le altre variabili ed eventualmente dividendo per un coefficiente opportuno.
- utilizziamo l'ultima equazione per eliminare la variabile pivot dell'ultima riga in tutte le altre equazioni;
- se abbiamo raggiunto un sistema risolto, ci fermiamo. Altrimenti ci dimentichiamo dell'ultima riga e ricominciamo dal punto 2), in modo da eliminare la variabile pivot della penultima riga dalla destra delle equazioni, e così via.

Se invece un sistema ha una matrice di coefficienti a scala con qualche riga nulla, allora l'esistenza di soluzioni dipenderà anche dalla colonna dei termini noti del sistema. Il sistema avrà soluzioni se e solo se i termini noti che corrispondono alle righe nulle sono nulli.

$$\begin{cases} x+y+z+2w=+1\\ y+z-w=-2\\ 2w=4 \end{cases}$$

$$\begin{cases} x+y+z+2w=+1\\ y+z-w=-2\\ 2w=4 \end{cases}$$

La matrice dei coefficienti del sistema (con i pivots in rosso) è

$$\begin{pmatrix} x & y & & w \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix};$$

$$\begin{cases} x+y+z+2w=+1\\ y+z-w=-2\\ 2w=4 \end{cases}$$

La matrice dei coefficienti del sistema (con i pivots in rosso) è

$$\begin{pmatrix} x & y & w \\ 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix};$$

la matrice è a scala e le variabili x, y, w corrispondono a pivots (ripettivamente della prima, seconda e terza riga); risolvendo rispetto alle variabili pivots in ogni riga otteniamo il sistema

$$\begin{cases} x = -y - z - 2w + 1 \\ y = -z + w - 2 \\ w = 2 \end{cases}$$

Ora usiamo l'ultima equazione per eliminare la variabile pivot w quando compare a destra, ottenendo il sistema:

$$\begin{cases} x = -y - z - 2 \cdot 2 + 1 \\ y = -z + 2 - 2 \\ w = 2 \end{cases} \quad \text{ovvero} \quad \begin{cases} x = -y - z - 3 \\ y = -z \\ w = 2 \end{cases}$$

Ora usiamo l'ultima equazione per eliminare la variabile pivot w quando compare a destra, ottenendo il sistema:

$$\begin{cases} x = -y - z - 2 \cdot 2 + 1 \\ y = -z + 2 - 2 \\ w = 2 \end{cases} \quad \text{ovvero} \quad \begin{cases} x = -y - z - 3 \\ y = -z \\ w = 2 \end{cases}$$

A questo punto, se consideriamo il sistema ottenuto cancellando l'ultima equazione, ci accorgiamo che non è ancora risolto, perché la variabile che corrisponde al pivot della seconda riga, ovvero y, compare a destra nella prima equazione. Usiamo allora la seconda equazione per eliminare le occorrenze di y a destra, ottenendo un sistema risolto:

Ora usiamo l'ultima equazione per eliminare la variabile pivot w quando compare a destra, ottenendo il sistema:

$$\begin{cases} x = -y - z - 2 \cdot 2 + 1 \\ y = -z + 2 - 2 \\ w = 2 \end{cases} \text{ ovvero } \begin{cases} x = -y - z - 3 \\ y = -z \\ w = 2 \end{cases}$$

A questo punto, se consideriamo il sistema ottenuto cancellando l'ultima equazione, ci accorgiamo che non è ancora risolto, perché la variabile che corrisponde al pivot della seconda riga, ovvero y, compare a destra nella prima equazione. Usiamo allora la seconda equazione per eliminare le occorrenze di y a destra, ottenendo un sistema risolto:

$$\begin{cases} x = z - z - 3 \\ y = -z \\ w = 2 \end{cases} \quad \text{ovvero} \quad \begin{cases} x = -3 \\ y = -z \\ w = 2 \end{cases}$$

Ora usiamo l'ultima equazione per eliminare la variabile pivot w quando compare a destra, ottenendo il sistema:

$$\begin{cases} x = -y - z - 2 \cdot 2 + 1 \\ y = -z + 2 - 2 \\ w = 2 \end{cases} \quad \text{ovvero} \quad \begin{cases} x = -y - z - 3 \\ y = -z \\ w = 2 \end{cases}$$

A questo punto, se consideriamo il sistema ottenuto cancellando l'ultima equazione, ci accorgiamo che non è ancora risolto, perché la variabile che corrisponde al pivot della seconda riga, ovvero y, compare a destra nella prima equazione. Usiamo allora la seconda equazione per eliminare le occorrenze di y a destra, ottenendo un sistema risolto:

$$\begin{cases} x = z - z - 3 \\ y = -z \\ w = 2 \end{cases} \quad \text{ovvero} \quad \begin{cases} x = -3 \\ y = -z \\ w = 2 \end{cases}$$

Ponendo l'unica variabile z che non corrisponde ad alcun pivots uguale ad un parametro reale h e otteniamo tutte le soluzioni del sistema:

$$SOL = \{(-3, -h, h, 2) : h \in \mathbb{R}\}.$$

Mostriamo un altro esempio di risoluzione di un sistema a scala, nel caso particolare in cui tutte le variabili corrispondono a pivots di qualche riga. Supponiamo che un sistema abbia la seguente matrice di coefficienti:

$$A = \begin{pmatrix} \frac{1}{0} & -1 & 0\\ 0 & \frac{2}{2} & 1\\ 0 & 0 & \underline{1} \end{pmatrix}$$

(in cui abbiamo sottolineato i pivots di ogni riga). Se $A\vec{x}=\vec{b}$ è un sistema che utilizza A come matrice dei coefficienti, allora seguendo la procedura descritta sopra per trasformare il sistema in un sistema ridotto non avremo alcuna variabile sulla destra e nella soluzione non appariranno parametri; in questo caso avremo quindi un'unica soluzione. Ad esempio, seguendo il procedimento descritto risolvendo il sistema che segue rispetto alle variabili pivots abbiamo:

$$\begin{cases} x - y = 1 \\ 2y + z = 3 \\ z = 0 \end{cases} \begin{cases} x = y + 1 \\ y = z/2 + 3/2 \\ z = 0; \end{cases}$$

l'ultima equazione z=0, ci fornisce già il valore di z; risalendo e sostituendo troviamo e y=3/2, x=5/2. Quindi l'unica soluzione del sistema è (5/2,3/2,0).

Supponiamo adesso che la matrice dei coefficienti abbia qualche riga nulla:

$$A = \begin{pmatrix} \frac{1}{0} & -1 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

allora un sistema del tipo $A\vec{x}=\vec{b}$ avrà soluzione se e solo se $b_2=b_3=0$. In particolare, il sistema

$$\begin{cases} x - y + 0z = 3 \\ 0x + 0y + 0z = 1 \\ 0x + 0y + 0z = 0 \end{cases}$$

non ha soluzione, mentre il sistema

$$\begin{cases} x - y + 0z = 3\\ 0x + 0y + 0z = 0\\ 0x + 0y + 0z = 0 \end{cases}$$

ha soluzione (basta cancellare le righe nulle e procedere come per una matrice a scala senza righe nulle; in particolare, solo la variabile x corrisponde ad un pivot (quello della prima riga) e l'insieme delle soluzioni è $\{(3+h,h,k):h,k\in\mathbb{R}\}$).

 Nelle slides precedenti abbiamo visto un procedimento per trovare la soluzione di un sistema a scala.

- Nelle slides precedenti abbiamo visto un procedimento per trovare la soluzione di un sistema a scala.
- Mostreremo ora come sia possibile trasformare un sistema lineare qualsiasi in un sistema con le stesse soluzioni ma in cui la matrice dei coefficienti è a scala.

- Nelle slides precedenti abbiamo visto un procedimento per trovare la soluzione di un sistema a scala.
- Mostreremo ora come sia possibile trasformare un sistema lineare qualsiasi in un sistema con le stesse soluzioni ma in cui la matrice dei coefficienti è a scala.
- Possiamo quindi trovare le soluzioni del sistema originario trovando le soluzioni del sistema trasformato a scala.

Quali trasformazioni possiamo operare sulle equazioni di un sistema senza variare l'insieme delle soluzioni trasformando nel contempo la matrice dei coefficienti in una matrice a scala?

Come vedremo, sono sufficienti tre tipi di trasformazioni, che descriviamo nel seguito.

scambiare due equazioni;

scambiare due equazioni;

$$\begin{cases} -z = 2 \\ x - y = 7 \\ x + 2y + z = 1 \end{cases} \Leftrightarrow \begin{cases} x + 2y + z = 1 \\ x - y = 7 \\ -z = 2 \end{cases}$$
 scambiando e_1 e e_3

scambiare due equazioni;

$$\begin{cases} -z = 2 \\ x - y = 7 \\ x + 2y + z = 1 \end{cases} \Leftrightarrow \begin{cases} x + 2y + z = 1 \\ x - y = 7 \\ -z = 2 \end{cases}$$
 scambiando e_1 e e_3

2 moltiplicare un'equazione per un numero non nullo:

scambiare due equazioni;

$$\begin{cases} -z = 2 \\ x - y = 7 \\ x + 2y + z = 1 \end{cases} \Leftrightarrow \begin{cases} x + 2y + z = 1 \\ x - y = 7 \\ -z = 2 \end{cases}$$
 scambiando e_1 e e_3

moltiplicare un'equazione per un numero non nullo:

$$\begin{cases}
-z = 2 \\
x - y = 7 \\
x + 2y + z = 1
\end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases}
x + 2y + z = 1 \\
2x - 2y = 14 \\
-z = 2
\end{cases}$$
la seconda riga e_2 diventa e_2

scambiare due equazioni;

$$\begin{cases} -z = 2 \\ x - y = 7 \\ x + 2y + z = 1 \end{cases} \Leftrightarrow \begin{cases} x + 2y + z = 1 \\ x - y = 7 \\ -z = 2 \end{cases}$$
 scambiando e_1 e e_3

moltiplicare un'equazione per un numero non nullo:

$$\begin{cases}
-z = 2 \\
x - y = 7 \\
x + 2y + z = 1
\end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases}
x + 2y + z = 1 \\
2x - 2y = 14 \\
-z = 2
\end{cases}$$
 la seconda riga e_2 diventa e_2

3 sommare ad un'equazione un'altra equazione moltiplicata per un numero reale.

scambiare due equazioni;

$$\begin{cases} -z = 2 \\ x - y = 7 \\ x + 2y + z = 1 \end{cases} \Leftrightarrow \begin{cases} x + 2y + z = 1 \\ x - y = 7 \\ -z = 2 \end{cases}$$
 scambiando e_1 e e_3

moltiplicare un'equazione per un numero non nullo:

$$\begin{cases}
-z = 2 \\
x - y = 7 \\
x + 2y + z = 1
\end{cases}$$

$$\Leftrightarrow$$

$$\begin{cases}
x + 2y + z = 1 \\
2x - 2y = 14 \\
-z = 2
\end{cases}$$
la seconda riga e_2 diventa e_2

3 sommare ad un'equazione un'altra equazione moltiplicata per un numero reale.

$$\begin{cases} x + 2y + z = 1 \\ x - y = 7 \\ -z = 2 \end{cases} \Leftrightarrow \begin{cases} x + 2y + z = 1 \\ -3y - z = 6 \\ -z = 2 \end{cases}$$
 sommando ad e_2 la riga $-e_1$

Ogni operazione a scala che operiamo su un sistema si riflette sulla matrice completa.

Ogni operazione a scala che operiamo su un sistema si riflette sulla matrice completa. Ad esempio, la matrice completa del sistema

$$\begin{cases} x + 2y + z = 1 \\ x - y = 7 \\ -z = 2 \end{cases} \quad \dot{e} \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & -1 & 0 & 7 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$

Ogni operazione a scala che operiamo su un sistema si riflette sulla matrice completa. Ad esempio, la matrice completa del sistema

$$\begin{cases} x + 2y + z = 1 \\ x - y = 7 \\ -z = 2 \end{cases} \quad \dot{e} \quad \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & -1 & 0 & 7 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$

Sottrarre la prima alla seconda equazione equivale a considerare la matrice:

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -3 & -1 & 6 \\ 0 & 0 & -1 & 2 \end{pmatrix} \text{ che corrisponde al sistema a scala } \begin{cases} x + 2y + z = 1 \\ -3y - z = 6 \\ -z = 2 \end{cases}$$

Ogni operazione a scala che operiamo su un sistema si riflette sulla matrice completa. Ad esempio, la matrice completa del sistema

$$\begin{cases} x + 2y + z = 1 \\ x - y = 7 \\ -z = 2 \end{cases} \quad \dot{e} \quad \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & -1 & 0 & 7 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$

Sottrarre la prima alla seconda equazione equivale a considerare la matrice:

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -3 & -1 & 6 \\ 0 & 0 & -1 & 2 \end{pmatrix} \text{ che corrisponde al sistema a scala } \begin{cases} x + 2y + z = 1 \\ -3y - z = 6 \\ -z = 2 \end{cases}$$

Se invece di operare le trasformazioni di Gauss su un sistema lo facciamo sulla matrice completa riuscendo a trasformarla in modo che la sua parte incompleta sia a scala, allora il corrispondente sistema sarà a scala e potremo risolverlo come descritto nel paragrafo precedente.

RICETTARIO PER METODO DI GAUSS

L'algoritmo di Gauss per risolvere un sistema lineare consiste nei seguenti passi che esemplificheremo sul sistema

$$\begin{cases}
-y + z = 7 \\
x + 2y + z = 1 \\
3x + y - z = 2
\end{cases}$$

onsiderare la matrice completa del sistema;

RICETTARIO PER METODO DI GAUSS

L'algoritmo di Gauss per risolvere un sistema lineare consiste nei seguenti passi che esemplificheremo sul sistema

$$\begin{cases}
-y + z = 7 \\
x + 2y + z = 1 \\
3x + y - z = 2
\end{cases}$$

considerare la matrice completa del sistema;

$$\begin{pmatrix} 0 & -1 & 1 & 7 \\ 1 & 2 & 1 & 1 \\ 3 & 1 & -1 & 2 \end{pmatrix}$$

RICETTARIO PER METODO DI GAUSS

L'algoritmo di Gauss per risolvere un sistema lineare consiste nei seguenti passi che esemplificheremo sul sistema

$$\begin{cases}
-y + z = 7 \\
x + 2y + z = 1 \\
3x + y - z = 2
\end{cases}$$

onsiderare la matrice completa del sistema;

$$\begin{pmatrix} 0 & -1 & 1 & 7 \\ 1 & 2 & 1 & 1 \\ 3 & 1 & -1 & 2 \end{pmatrix}$$

2 trovare una riga della matrice che ha il pivot più a sinistra (se tutte le righe sono nulle, la matrice è già a scala) e scambiarla con la prima riga;

RICETTARIO PER METODO DI GAUSS

L'algoritmo di Gauss per risolvere un sistema lineare consiste nei seguenti passi che esemplificheremo sul sistema

$$\begin{cases}
-y + z = 7 \\
x + 2y + z = 1 \\
3x + y - z = 2
\end{cases}$$

onsiderare la matrice completa del sistema;

$$\begin{pmatrix} 0 & -1 & 1 & 7 \\ 1 & 2 & 1 & 1 \\ 3 & 1 & -1 & 2 \end{pmatrix}$$

2 trovare una riga della matrice che ha il pivot più a sinistra (se tutte le righe sono nulle, la matrice è già a scala) e scambiarla con la prima riga;

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 1 & 7 \\ 3 & 1 & -1 & 2 \end{pmatrix}$$

utilizzando il pivot di quella che è ora la prima riga, annullare tutti i coefficienti che sono sulla colonna sotto questo pivot;

utilizzando il pivot di quella che è ora la prima riga, annullare tutti i coefficienti che sono sulla colonna sotto questo pivot;

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 1 & 7 \\ 0 & -5 & -4 & -1 \end{pmatrix}$$

utilizzando il pivot di quella che è ora la prima riga, annullare tutti i coefficienti che sono sulla colonna sotto questo pivot;

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 1 & 7 \\ 0 & -5 & -4 & -1 \end{pmatrix}$$

ricominciare le operazioni descritte dalla seconda riga, non considerando più la prima riga.

utilizzando il pivot di quella che è ora la prima riga, annullare tutti i coefficienti che sono sulla colonna sotto questo pivot;

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 1 & 7 \\ 0 & -5 & -4 & -1 \end{pmatrix}$$

ricominciare le operazioni descritte dalla seconda riga, non considerando più la prima riga.

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 1 & 7 \\ 0 & 0 & -9 & -36 \end{pmatrix}$$

Seguendo queste operazioni, dopo un numero finito di passi si raggiunge una matrice a scala che corrisponde ad un sistema a scala, che possiamo risolvere come già visto.

utilizzando il pivot di quella che è ora la prima riga, annullare tutti i coefficienti che sono sulla colonna sotto questo pivot;

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 1 & 7 \\ 0 & -5 & -4 & -1 \end{pmatrix}$$

ricominciare le operazioni descritte dalla seconda riga, non considerando più la prima riga.

$$\begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 1 & 7 \\ 0 & 0 & -9 & -36 \end{pmatrix}$$

Seguendo queste operazioni, dopo un numero finito di passi si raggiunge una matrice a scala che corrisponde ad un sistema a scala, che possiamo risolvere come già visto.

$$\begin{cases} x + 2y + z = 1 \\ -y + z = 7 \\ -9z = -36 \end{cases} \begin{cases} x = -2y - z + 1 \\ y = z - 7 \\ z = 4 \end{cases} \begin{cases} x = 6 - 4 + 1 = 3 \\ y = -3 \\ z = 4 \end{cases}$$

ESEMPI

Risolvere i seguenti sistemi, trasformandoli in sistemi a scala.

$$\begin{cases} y + z = 0 \\ x + y + w = 1 \\ x - w = 3 \end{cases} \begin{cases} 2x + y + z = 1 \\ z = 2 \\ x + y = 3 \end{cases}$$
$$\begin{cases} 2x + y + z = 1 \\ z = 2 \end{cases} \begin{cases} 2x + y + z = 1 \\ 2x + y + z = 2 \end{cases}$$
$$\begin{cases} x + y + z + w = 0 \\ x - y + z + w = 0 \end{cases}$$

SOLUZIONI

$$\begin{cases} y + z = 0 \\ x + y + w = 1 \end{cases} \quad SOL = \{(3 + k, -2 - 2k, 2 + 2k, k) : k \in \mathbb{R}\}$$

$$\begin{cases} 2x + y + z = 1 \\ z = 2 \end{cases} \quad SOL = \{(-4, 7, 2)\}$$

$$\begin{cases} 2x + y + z = 1 \\ z = 2 \end{cases} \quad SOL = \{((-1 - k)/2, k, 2) : k \in \mathbb{R}\}$$

$$\begin{cases} 2x + y + z = 1 \\ z = 2 \end{cases} \quad SOL = \emptyset$$

$$\begin{cases} 2x + y + z = 1 \\ 2x + y + z = 2 \end{cases} \quad SOL = \emptyset$$

$$\begin{cases} x + y + z + w = 0 \\ x - y + z + w = 0 \end{cases} \quad SOL = \{(-h - k, 0, h, k) : h, k \in \mathbb{R}\}$$

CORRETTEZZA DEL METODO DI GAUSS

Dobbiamo ancora dimostrare che le operazioni sulle righe del sistema previste dal metodo di Gauss non cambiano l'insieme delle soluzioni del sistema.

CORRETTEZZA DEL METODO DI GAUSS

Dobbiamo ancora dimostrare che le operazioni sulle righe del sistema previste dal metodo di Gauss non cambiano l'insieme delle soluzioni del sistema. Questo è ovvio quando scambiamo due righe o quando moltiplichiamo una riga per una costante non nulla.

CORRETTEZZA DEL METODO DI GAUSS

Dobbiamo ancora dimostrare che le operazioni sulle righe del sistema previste dal metodo di Gauss non cambiano l'insieme delle soluzioni del sistema. Questo è ovvio quando scambiamo due righe o quando moltiplichiamo una riga per una costante non nulla. Per quanto riguarda il secondo tipo di trasformazione abbiamo:

TEOREMA

Se in un sistema aggiungiamo alla i-esima riga k volte la j-esima riga (per $i \neq j$), le soluzioni del sistema trasformato sono le stesse del sistema originario.

Per dimostrare questo teorema usiamo la notazione matriciale

$$A\vec{x} = \vec{b}$$

per il sistema, dove A è la matrice dei coefficienti, \vec{x} è la colonna delle incognite e \vec{b} è la colonna dei termini noti.

Nel sistema originale $A\vec{x}=\vec{b}$, le singole equazioni del sistema sono date dalle equazioni

$$A_{(1)}\vec{x} = b_1, \dots, A_{(n)}\vec{x} = b_n,$$

dove $A_{(1)}, \ldots, A_{(n)}$ sono le righe di A.

Nel sistema originale $A\vec{x}=\vec{b}$, le singole equazioni del sistema sono date dalle equazioni

$$A_{(1)}\vec{x} = b_1, \ldots, A_{(n)}\vec{x} = b_n,$$

dove $A_{(1)}, \ldots, A_{(n)}$ sono le righe di A. Per esempio, nel sistema

$$\begin{cases} -y+z=7\\ x+2y+z=1\\ 3x+y-z=2 \end{cases}$$
 la matrice dei coefficienti del sistema è
$$\begin{pmatrix} 0 & -1 & 1\\ 1 & 2 & 1\\ 3 & 1 & -1 \end{pmatrix}$$

la prima riga della matrice dei coefficienti è $A_{(1)}=(0,-1,1)$ e la prima equazione del sistema è $A_{(1)}\vec{x}=7$. Infatti

$$A_{(1)}\vec{x} = A_{(1)} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = (0, -1, 1) \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -y + z$$

CORRETTEZZA DEL METODO DI GAUSS, continua

Consideriamo ora il sistema trasformato, in cui alla i-esima equazione aggiungiamo k volte la j-esima equazione. Le equazioni diverse dalla i-esima non cambiano, mentre la i-esima equazione diventa

$$A_{(i)}\vec{x} + kA_{(j)}\vec{x} = b_i + kb_j$$

Supponiamo ora che $\vec{s}=(s_1,\ldots,s_m)$ sia una soluzione del sistema originario. Avremo allora che

$$A_{(i)} \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix} = b_i, \quad A_{(j)} \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix} = b_j,$$

quindi:

$$A_{(i)} \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix} + kA_{(j)} \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix} = b_i + kb_j$$

quindi \vec{s} è anche soluzione dell'*i*-esima equazione del sistema trasformato (e delle altre equazioni, che non sono cambiate).

CORRETTEZZA DEL METODO DI GAUSS, continua

Viceversa, se $\vec{s} = (s_1, \dots, s_m)$ è una soluzione del sistema trasformato, l''*i*-esima e la *j*-esima equazione impongono che

$$A_{(i)}\begin{pmatrix} s_1\\s_2\\\vdots\\s_m \end{pmatrix} + kA_{(j)}\begin{pmatrix} s_1\\s_2\\\vdots\\s_m \end{pmatrix} = b_i + kb_j, \qquad A_{(j)}\begin{pmatrix} s_1\\s_2\\\vdots\\s_m \end{pmatrix} = b_j.$$

Spostando a destra un addendo nella prima equazione qui sopra si ottiene:

$$A_{(i)}\begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix} = b_i + kb_j - kA_{(j)}\begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix} \quad \text{da cui: } A_{(i)}\begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_m \end{pmatrix} = b_i + kb_j - kb_j = b_i$$

Quindi \vec{s} è anche soluzione dell'*i*-esima equazione del sistema originario (e delle altre equazioni, che non sono cambiate).