More on Permutation tests

Stat 250

Click here for PDF version

Questions?

What questions do you have from last class, including the extra examples?

R Implementation

Data overview

Data frame with 47 rows and two columns

1. Calculate the observed difference in means

```
group_means <- mosaic::mean(~Score | Treatment, data = motivation)
group_means</pre>
```

Extrinsic Intrinsic 15.73913 19.88333

```
observed <- group_means["Intrinsic"] - group_means["Extrinsic"]
observed</pre>
```

Intrinsic 4.144203

2. Use a for loop to run the permutations

```
1 y <- motivation$Score # vector with response variable
2 n <- nrow(motivation) # total sample size
                     # sample size for group 1
  ngrp1 <- 24
4 N \leftarrow 10^4 - 1 # number of resamples
5 result <- numeric(N) # place to store results</pre>
   for(i in 1:N) {
     index <- sample(n, size = ngrp1, replace = FALSE)</pre>
     result[i] <- mean(y[index]) - mean(y[-index])</pre>
10 }
```

result is a vector

```
head(result)
[1] -2.2331522 -3.5614130 -2.7780797 -1.6626812
0.1849638 -2.6503623
```

3. Plot the permutation (null) distribution

Permutation distribution 1250 -1000 -750 count 250 -Difference in means

4. Calculate the p-value

A Be sure to **look at the alternative hypothesis** to select the inequality (tail)

```
(sum(result >= observed) + 1) / (N + 1)
[1] 0.0025
```

To get a two-sided p-value, multiple by 2

```
2 * (sum(result >= observed) + 1) / (N + 1)
[1] 0.005
```

Permutation test for difference in proportions

Example: Hearing loss in U.S. teens, 1988-1994 vs. 2005-06

```
glimpse(hearing_loss)

Rows: 4,699
Columns: 2
$ year <chr> "2005-2006", "2005-2006", "2005-2006",
"2005-2006", "2005-2006",...
$ hloss <chr> "yes", "ye
```

1. Calculate the observed difference in means

-0.02409494

2. Use a for loop to run the permutations

```
1 y <- hearing_loss$hloss  # vector with response variable
2 n <- nrow(hearing_loss)  # total sample size
3 ngrp1 <- 2928  # sample size for group 1
4 N <- 10^4 - 1  # number of resamples
5 result <- numeric(N)  # place to store results
6
7 for(i in 1:N) {
8  index <- sample(n, size = ngrp1, replace = FALSE)
9  result[i] <- mean(y[index] == "yes") - mean(y[-index] == 10 }</pre>
```

result is a vector

```
head(result)
[1] 0.004902914 -0.013220742 -0.023188753 0.007621462
0.013964742
[6] -0.025001119
```

3. Plot the permutation (null) distribution

4. Calculate the p-value

A Be sure to **look at the alternative hypothesis** to select the inequality (tail)

```
(sum(result <= observed) + 1) / (N + 1)
[1] 0.0184
```

To get a two-sided p-value, multiple by 2

```
2 * (sum(result <= observed) + 1) / (N + 1)
[1] 0.0368</pre>
```

Reproducibility

Every time you run sampling code you will received a different random sample **unless** you set the seed (random number generator state).

Add set.seed() to the code chunk where you sample (or at the top of an .Rmd file)

set.seed(1234) # Choose some large integer

Your turn

Work through the R examples.

Matched pairs

Data are **paired** if the groups being compared are clearly *linked*

- Two measurements on each case
- Twin studies
- Each case is matched with a similar case, and one case in each pair is given each treatment
- Other situations where the data are naturally paired

Your turn

Which of the following scenarios should be analyzed as paired data?

- 1. Students take an MCAT prep course. Their before and after scores are compared.
- 2. 20 first-year and 20 second-year students in class take a midterm. We compare their scores.
- 3. A group of freshman are asked about the quality of food on campus. A year later, the same students are asked this question again. Do student's opinions change over time?

Is it safe to look at social media while driving?

- Previous research on smart phone use while driving has primarily focused on phone calls and texting.
- Study looked at the effects of different smart phone tasks on car-following performance in a driving simulator.
- Drivers performed driving only baseline simulation
- Drivers performed other phone tasks: texting, reading Facebook posts, exchanging photos on Snapchat, viewing updates on Instagram
- Brake reaction times (in seconds) recorded

Your turn

- Is it safe to look at social media while driving?
- What are logical null and alternative hypotheses for this research question?

Test statistic

Subject	Baseline	SnapChat	Diff
1	0.863	0.865	0.002
2	0.847	0.783	-0.063
3	0.836	0.808	-0.028
4	0.655	1.010	0.354
5	0.900	0.837	-0.063
6	0.957	1.175	0.218
7	0.780	0.817	0.037
8	0.954	0.861	-0.094
9	0.970	0.717	-0.253
10	1.102	1.141	0.039
11	0.925	0.583	-0.342
12	0.833	0.883	0.050
13	0.833	0.995	0.161
14	0.773	0.837	0.064
15	0.914	1.008	0.095
16	0.858	1.137	0.278
17	0.822	1.733	0.911
18	0.963	0.883	-0.079

- For a matched pairs experiment, look at the differences between responses for each unit (pair)
- Compute a new variable for differences
- We use the mean difference as our test statistic

EDA

mean	sd	n
0.072	0.27	18

min	Q1	median
-0.342	-0.063	0.038

Generating the null distribution

Subject	Baseline	SnapChat	Diff
1	0.863	0.865	0.002
2	0.847	0.783	-0.063
3	0.836	0.808	-0.028
4	0.655	1.010	0.354
5	0.900	0.837	-0.063
6	0.957	1.175	0.218
7	0.780	0.817	0.037
8	0.954	0.861	-0.094
9	0.970	0.717	-0.253
10	1.102	1.141	0.039
11	0.925	0.583	-0.342
12	0.833	0.883	0.050
13	0.833	0.995	0.161
14	0.773	0.837	0.064
15	0.914	1.008	0.095
16	0.858	1.137	0.278
17	0.822	1.733	0.911
18	0.963	0.883	-0.079

- Can't permute one of the columns and recalculate the difference
- Instead, randomly select a sign (+/-) for each difference
- Use the mean difference as the test statistic

Permutation distribution

Assuming no difference, based on 9,999 trials

Strength of evidence

- 1481 simulated test statistics exceed the observed
- 9999 total statistics are in the null distribution
- What's the p-value?
- Is there a statistical discernible difference in braking time?

R Implementation

Data frame with 18 rows and 6 columns

Add a Diff column

```
brake <- mutate(brake, Diff = Baseline - SnapChat)</pre>
```

R Implementation

```
1 Diff <- brake$Diff # vector of differences</pre>
2 observed <- mean(Diff) # observed test stat</pre>
3 n <- length(Diff) # sample size</pre>
                # no. of permutation resamples
4 N < -10^4 - 1
 6 set.seed(120) # set seed for reproducibility
   result <- numeric(N) # place to store the results</pre>
   for (i in 1:N){
swap <- sample(c(-1,1), n, replace = TRUE)
11 result[i] <- mean(swap * Diff)</pre>
12 }
```