

Saturday, March 05, 2011 3:10 PM X = [3; 0; 0; 0; 0; 0; 0; -450; 115; .1; 0; 0; 0; 0; 0; 0; 0]; M_m = [0 0 -.084]; %(Nm) %Simulation properties drSteps = 10; %number of changes in beta and chord wrt r (1 = constant) h_r = .04; %Height of rotor cg below flyer cg (cg assumed axial) (meters) (positive is down) m_r = .05; %rotor mass in kg $Ir_r = [.00002,0,0;0,.00002,0;0,0,.0002];$ %Rotor inertia at rotor cg in flyer frame %Stator properties $h_s = -.02$; %Height of stator cg below flyer cg (cg assumed axial) (meters) (positive is down) m_s = .1; %stator mass in kg $ls_s = [.00001,0,0;0,.00001,0;0,0,.0001];$ %Stator inertia at stator cg in flyer frame %Propeller properties $h_p = .03$; %Height of propeller below ROTOR cg (meters) (positive is down) R_p = .1; %Single blade radius (meters) beta_p = 0.5*ones(1,drSteps); %Propeller twist (relative to zero lift)(assumed constant) (radians) %beta = [????] to be function of r chord_p = .02*ones(1,drSteps); %Chord lengh (assumed constant) (meters) %chord =[????] to be function of r H_p = R_p; %approx height above prop that air is moved (estimated to be radius of prop) %Drag plate properties $h_d = -.02$; %Height of center of drag plate below stator cg (meters) (positive is down) R_d1 = .1; %Single plate radius (meters) R_d2 = .1; %Single plate radius (meters) %TODO::there should be 2 R_ds if drag plates are different beta_d = pi/2*ones(1,drSteps); %Propeller twist (relative to zero lift)(assumed constant) (radians) %beta = [????] to be function of r chord_d = .15*ones(1,drSteps); %Chord lengh (assumed constant) (meters) %chord =[???] to be function of rH_d = 0; %approx height above prop that air is moved (estimated to be zero) %Environment rho = 1.225; %air density (sea level 1.225) (kg/m^3) g = 9.8; %gravity acceleration (m/s^2) Angle From World to Body Position in World frame 180 0.1 160 0.08 140 120 0.06 100 80 0.04 60 0.02 40 20 0 -20 -0.02 15 Velocity in Body Frame Angular Velocity in Body Frame 18 200 16 100 14 12 -100 10 8 -200 6 -300 -400 2 -500 -600 <u>|</u> 10 ⁵Orientation of Spin Axis¹⁰ Nu 18 1.2 16 14 0.8 12 0.6 10 0.4 8 0.2 -0.2 L 0 5 10 10