

Plan de Test Système

Incrément 1 Responsable du document : Romain TROVALLET État du document : Version finale

AVERTISSEMENT:

Le présent document est un document à but pédagogique. Il a été réalisé sous la direction de Camille CONSTANT, en collaboration avec des enseignants et les étudiants de l'option SE, groupe A1 (Hugo BOUY, Bastien CASSAR, Paul CHIRON, Paul JURET, Laurent LETENNEUR, Mathis MOULIN, Romain TROVALLET) du groupe ESEO. Ce document est la propriété de Camille CONSTANT du groupe ESEO. En dehors des activités pédagogiques de l'ESEO, ce document ne peut être diffusé ou recopié sans l'autorisation écrite de ses propriétaires.

Date	Actions	Auteur	Version	Révision
17/03/2023	Correction mineur	TROVALLET	1.1	0
		Romain		
17/03/2023	Correction mineur et approbation	BOUY Hugo	1.0	0
16/03/2023	Relecture finale	TROVALLET	0.7	0
		Romain		
16/03/2023	Rédaction de différentes parties du do-	TROVALLET	0.6	0
	cument	Romain		
14/03/2023	Rédaction de l'environnement de test	BOUY Hugo	0.5	0
14/03/2023	Mise à jour des caractéristiques du pro-	BOUY Hugo	0.4	1
	jet			
13/03/2023	Rédaction du périmètre de test	TROVALLET	0.4	0
		Romain		
06/03/2023	Modifications pour mieux coller à la	C. Constant	0.3	1
	norme ISO 829-2008			
29/03/2022	Modification des critères d'acceptation	C. Constant	0.2	3
	et mention de la couverture fonction-			
	nelle			
03/03/2022	Mise à jour des logiciels utilisés	C. Constant	0.2	2
22/02/2021	Modification des critères d'acceptation,	C. Constant	0.2	1
	ajout des exemples de diagramme d'ac-			
	tivité, ajout de la section Validation du			
	document			
05/03/2019	Création de la trame du Plan de Test.	C. Constant	0.1	1

Table des matières

Ta	ıble o	des matières	3
1	Intr	roduction	5
	1.1	Contexte	5
	1.2	Objet	5
	1.3	Portée	5
	1.4	Présentation du système	5
	1.5	Références	6
		1.5.1 Documents de référence	6
		1.5.2 Documents de référence	6
	1.6	Glossaire et abréviations	6
		1.6.1 Abréviations	6
		1.6.2 Glossaire	7
	1.7	Conformité	7
_	D.		0
2		imètre de test	8
	2.1	Caractéristiques du projet	8
	2.2	Éléments à tester	8
		2.2.1 Éléments concernés par les tests	9
		2.2.2 Éléments non concernés par les tests	9
	2.3	Spécifications fonctionnelles ou techniques à tester	9
			10
		1 1	10
	2.4	1	10
	2.5		10
	2.6	1	11
		1 1 3	11
		1 1	12
	2.7	Effort de test	12
3	Pro	cessus et Stratégie de test	13
	3.1	Objectifs (actions de test)	13
	3.2		13
		3.2.1 Découpage en phase de tests / campagnes	13
			13
	3.3	Critères d'acceptation des tests	14
	3.4	Critères d'arrêt	14
	3.5	Activités de test	14
			14
		3.5.2 Conception	14
		•	14
			14
	3.6		15
1	r	inonnement de test	10
4			16
	4.1		16
	4.2	Outils de test	16

CS	00
CDANDE SOC	E DIAPONEI DE

GRANE	SCO	TABLE DES MATIÈRES	SPEC_A1
5	Rôles et responsabilités		17
6	Équipe de test		18
7	Planning prévisionnel		19
8	Validation du document		20

1 Introduction

1.1 Contexte

Produit à tester :	Prototype Sonnette Connectée (PSC) - version 1.0
Type de produit : Système embarqué commandé et supervisé par une application	
	droid
Commanditaire:	STMicroelectronics
Développeur :	Projet Prose A1
Testeur:	Projet Prose A1

1.2 Objet

Ce document décrit l'activité de test système qui sera menée par Projet Prose A1 durant le projet Prototype Sonnette Connectée (PSC) dans le but de valider le produit Prototype Sonnette Connectée (PSC). Il est rédigé sous la responsabilité du Responsable Qualité-Test (RQT), sous la direction du Chef de Projet (CdP), conformément au Plan d'Assurance Qualité Logicielle (PAQL) élaboré sous la responsabilité du RQT (cf. section 6, Équipe de test).

1.3 Portée

Sont concernés par ce document :

- les testeurs : afin que ceux-ci connaissent le périmètre des tests (ce qu'ils vont tester), l'environnement de test (comment les tests seront mis en œuvre) et le processus de test (comment s'y prendre et rendre compte des résultats lors de l'exécution des tests);
- les développeurs : à titre informatif, afin que ceux-ci sachent comment va être validée leur production; à titre indicatif afin qu'ils sachent, par la description de la gestion des anomalies, comment ils s'interfaceront avec l'équipe de test;
- le client : ce plan de test fait l'objet d'une contractualisation avec le client pour déterminer le périmètre des tests menés pour valider le produit livré et les niveaux d'acceptation de cette validation ;
- les auditeurs : ce plan de test, ainsi que son implication, feront l'objet d'audits par la société Formato.

1.4 Présentation du système

Le projet dénommé Prototype Sonnette Connectée (PSC), consiste à mettre en place les logiciels AOP (application Android), SoftSonnette et SoftPorte (applications C). L'objectif du projet est de concevoir un prototype pour une démonstration des capacités de la STM32MP15. Le prototype est capable de reconnaître le visage de testeurs à l'aide de reconnaissance faciale, de simuler l'ouverture de la porte en fonction de leurs horaires et de permettre au démonstrateur de lire le flux vidéo sur l'application Android.

1.5 Références

1.5.1 Documents de référence

Ref.	Nom et auteur	Version	Source
[SPEC_A1]	Dossier de spécifications - Projet Prose A1	1.0	pdf sur le
			dépôt
[PAQL_A1]	Plan d'Assurance Qualité Logiciel - TROVALLET	1.0	pdf sur le
	Romain		dépôt

1.5.2 Documents de référence

Ref.	Nom
[ISO-829-	Documentation de test logiciel
2008]	

1.6 Glossaire et abréviations

Ce sont les termes et abréviations nécessaires à la compréhension de l'activité de test (les termes techniques propres au projet seront indiqués dans le dossier de spécification).

1.6.1 Abréviations

IHM	Interface Homme-Machine			
SoftSonnette	voir [SPEC_A1]			
SoftPorte	voir [SPEC_A1]			
AOP	voir [SPEC_A1]			
Prototype Sonnette	voir [SPEC_A1]			
Connectée (PSC)				
TI	Tests d'intégration			
TV	Tests de validation			
TU	Tests unitaires			
PdT	Plan de Test : Document qui a pour but de piloter l'activité de test			
RDP	Référentiel Document Projet : Dépôt de tous les artefacts numériques			
	du projet. Ce dépôt est mis à la disposition de l'équipe Projet Prose			
	A1, ainsi qu'à l'équipe de consultant FORMATO.			

1.6.2 Glossaire

Campagne de test	Activité qui consiste à dérouler un ensemble de jeux de test. Un
	dossier de test est produit à l'issue d'une campagne.
Cas de test	Déclinaison d'un test précisant les valeurs utilisées pour les variables
	du test ainsi que les résultats attendus.
Dossier de test	Ensemble documentaire qui contient la description des scénarios et
	des cas de tests, ainsi que l'exécution des jeux de test. Le dossier de
	test est le reflet d'une campagne de test.
Jeux de test	Ensemble des scénarios et cas de tests permettant de tester un pro-
	duit logiciel. L'enchaînement des cas et scénarios de tests est relatif
	à une stratégie de test précisée dans le plan de test.
Plan de test	Document décrivant le déroulement d'un jeu de test : stratégie de
	test, critères d'arrêt, planification.
Scénarios de test	Ensemble de cas de tests cohérents permettant de traiter un objectif
	fonctionnel.
Test fonctionnel	Test (vu de l'utilisateur) du bon fonctionnement d'un produit logi-
	ciel, d'une fonctionnalité ou d'une fonction de base. Vérification par
	rapport aux spécifications.
Test de non régres-	Vérification qu'une nouvelle version du produit fonctionne sans dé-
sion	gradation (technique, fonctionnelle, performance) par rapport à la
	version précédente.
Test de validation	Vérification que le produit est cohérent et complet par rapport aux
	spécifications fonctionnelles.
Test système	Vérification que le système dans son ensemble est cohérent et complet
	par rapport aux spécifications fonctionnelles et techniques.
Test d'intégration	Vérification des interfaces et des interactions entre les composants
	intégrés.
Test unitaire	Vérification de composants logiciels individuels.

1.7 Conformité

Ce plan de test est conforme aux normes :

- IEEE Std. 1012-1986
- IEEE Std. 829-1983
- IEEE Std. 1008-1987

2 Périmètre de test

Cette section a pour objet l'élaboration d'un tableau des fonctionnalités et/ou composants / traitements / données du système mentionnant pour chacun l'effort de test à mener. Cet effort est fonction de la pondération des exigences, risques et criticité retenus.

2.1 Caractéristiques du projet

Le produit Prototype Sonnette Connectée (PSC) permet au client STMicroelectronics d'étudier la faisabilité d'un système utilisant la reconnaissance faciale afin de l'utiliser lors de démonstrations à destination de ses différents clients. L'objectif est de montrer les capacités de la STM32MP15 et de prouver qu'une telle application est possible.

Il se décompose en 2 lots/incréments :

- lot 1:
 - § L'application AOP doit établir une connexion avec SoftSonnette, afficher le flux vidéo provenant de la webcam et pouvoir consulter le calendrier d'un employé.
 - § L'application SoftSonnette doit pouvoir reconnaître un visage à l'aide d'une photo, envoyer le flux vidéo à AOP et l'afficher sur son écran.
 - § L'application SoftPorte doit allumer un voyant signalant son bon démarrage.
- En plus des fonctionnalités du lot 1, dans le lot 2 :
 - § L'application AOP doit gérer la liste des employés qu'elle synchronise avec l'application SoftSonnette, afficher l'état de la porte et pouvoir se connecter à l'application SoftSonnette de manière sécurisée avec un mot de passe.
 - § L'application SoftSonnette doit pouvoir stocker la base de données des employés et communiquer avec SoftPorte.
 - § L'application SoftPorte doit communiquer avec SoftSonnette et contrôler le moteur simulant l'ouverture de la porte.

STMicroelectronics souhaite connaître la qualité globale de Prototype Sonnette Connectée (PSC) après chaque lot afin d'éventuellement redéfinir chacun des lots.

Ce plan de test concerne le niveau de test système pour l'incrément 1. Pour information, des tests d'intégration (lots 1 et 2) et des tests unitaires (lot 2) auront été réalisés par Projet Prose A1.

2.2 Éléments à tester

Cette partie s'appuie sur la section 2.2.1 Architecture matérielle et logicielle du document de spécifications [SPEC_A1].

Logiciels développés:

- Applications C : SoftSonnette et SoftPorte

- Application Java : AOP

Support d'exécution:

- OpenSTLinux (OSTL) version 4.1 : STM32MP15

- Android version 9 : Samsung Galaxy A20e

Support de communication:

- Communication WiFi (Pile TCP/IP)

2.2.1 Éléments concernés par les tests

Cette section désigne ce qui est testé (composant, logiciel, sous-système).

Seront concernés par l'activité de test les composants logiciels développés durant le projet Prototype Sonnette Connectée (PSC) :

- SoftSonnette
- SoftPorte
- AOP
- Communication entre AOP et SoftSonnette

2.2.2 Éléments non concernés par les tests

Cette section désigne ce qui ne va pas être testé (composant, logiciel, sous-système).

Ne seront pas concernés par les tests :

- Les supports d'exécution logiciels (Linux, Android, BDD logicielle)
- Le Programme IA Python (dont il est convenu avec le client qu'aucune garanties ne peut être apportée sur son fonctionnement)
- Les supports d'exécution matériels (carte STM32MP15, Samsung Galaxy A20e, Webcam)
- Les supports de communication matériels (Borne WiFi, etc.)
- Les supports de communication logiciels (Pile TCP/IP)

2.3 Spécifications fonctionnelles ou techniques à tester

Cette section s'appuie sur la section 2.3 Fonctions principales développées du document de spécifications [SPEC_A1]. Toutes les fonctionnalités ne seront pas testées car ce document se limite à l'incrément 1.

2.3.1 Fonctionnalités à tester

Les fonctionnalités suivantes sont à tester :

Fonctionnalité	Priorité (P0 : priorité	Commentaire
	max)	
Initialisation de la sonnette	P0	RaS
Établir la connexion entre AOP et	P0	AOP vers SoftSonnette et inverse-
SoftSonnette		ment
Reconnaissance d'un visage	P0	La reconnaissance se fait sur une
		photo préchargée dans une base de
		données interne lors d'un appui sur
		le bouton Sonner
Mise à jour de l'état de la porte	P1	RaS
Transmission et affichage du flux vi-	P0	RaS
déo de SoftSonnette à AOP		
Consultation du calendrier employé	P1	L'affichage doit se faire suivant l'em-
		ployé sélectionné
Fermeture AOP et SoftSonnette	P0	RaS

Pour plus de détails, voici la matrice de conformité de l'incrément 1 : ici

2.3.2 Caractéristiques techniques à tester

Le cahier des charges de STMicroelectronics ne contient aucune caractéristique technique à tester dans l'incrément 1.

2.4 Spécifications fonctionnelles ou techniques non testées

L'ergonomie ainsi que la conformité de l'emplacement des éléments de l'IHM aux spécifications ne sera pas testée. L'IHM ne sera validée qu'au travers des tests fonctionnels.

2.5 Criticité

Les éléments suivants sont critiques :

- L'envoi de données entre SoftSonnette et AOP.
- La reconnaissance faciale du Testeur

2.6 Risques

Id : identifiant du risque

Description : description du risque

Effet : effet du risque

P: probabilité (3 – très probable, 2 – probable, 1 – peu probable) I: impact (3 – impact fort, 2 – impact moyen, 1 – impact faible)

EI (élément impacté) : coût / qualité / délai

Action : description de l'action pour maîtriser le risque

2.6.1 Risques projet

Id	Intitulé	Effet	P	Ι	EI	Action
RPRJ1	Pas de test uni-	Instabilité de l'ap-	3	2	C/Q/D	Faire une phase de
	taire	plication lors des				smoke tests sur l'ap-
		tests système				plication avant de
						réaliser les tests sys-
						tème.
RPRJ2	Pas de test d'inté-	Instabilité de l'ap-	1	2	C/Q/D	Faire une phase de
	gration	plication lors des				smoke tests sur l'ap-
		tests système				plication avant de
						réaliser les tests sys-
						tème.
RPRJ3	Pas de test uni-	Instabilité de	2	2	C/Q/D	Réaliser des tests
	taire ou de test	l'application				système sur toutes
	d'intégration	lors de tests				les fonctionnalités
		d'acceptation				système
RPRJ4	Problème de dis-	Dérive dans le	1	1	D	Planifier au plus tôt
	ponibilité des in-	planning des tests				les actions des diffé-
	tervenants					rents intervenants
RPRJ5	Spécifications	Déviations entre	2	2	Q	Analyse des spécifi-
	du produit	les spécifications				cations pour identi-
	Prototype Son-	et le système				fier des écarts. Po-
	nette Connectée	d'où une difficulté				ser toutes les ques-
	(PSC) non à jour	pour concevoir				tions nécessaires à
		des tests perti-				une bonne compré-
		nents				hension des spécifica-
						tions.

2.6.2 Risques produit

Id	Intitulé	Effet	P	Ι	EI	Action
RPRD1	Mauvaise implé-	Système non fonc-	2	3	C/Q/D	Tester la communi-
	mentation de la	tionnel				cation en priorité par
	communication					des tests d'intégra-
						tion (voir unitaires)
						avant de faire les
						tests système.
RPRD2	Reconnaissance	Système non fonc-	1	3	C/Q/D	Si le script IA ne
	faciale échoue	tionnel				fonctionne pas,
						l'équipe Projet Prose
						A1 peut demander
						l'API de reconnais-
						sance faciale dont
						dispose STMicroe-
						lectronics.

2.7 Effort de test

L'effort de test sera priorisé de la façon suivante :

- phase de « Smoke test » pour vérifier la stabilité de l'application avant de réaliser la campagne de tests fonctionnels système ;
- campagne de tests fonctionnels système selon les priorités;
- campagne de tests non fonctionnels système par priorité.

3 Processus et Stratégie de test

3.1 Objectifs (actions de test)

Exigence : Exigence concernée

Risque : Risque concerné (cf. section 2.6)

Niveau : Niveau de test (S : Système, I : Intégration, U : Unitaire)

Technique: Technique de test (AP: Analyse Partitionnelle ou Classes d'équivalence, AL: Analyse

aux limites, CU: Cas d'Utilisation, PC: Protocole de Communication)

N°	Énoncé de	Exigence	Risque	Niveau	Technique	Conditions de me-
	l'objectif					sure / niveau d'at-
						teinte prévu
1	Tester la com-	Fonct. P0	RPRD1	I, S	AP, PC,	Fonctionnalités P0 /
	munication				CU	100% des fonctionna-
						lités testées en utili-
						sant les classes d'équi-
						valence, le protocole de
						communication et les
						cas d'utilisation
2	Smoke test	Toutes	RPRJ1,	S	Test par	Nombre d'anomalies
			RPRJ2,		expérience	bloquantes / pas
			RPRJ4			d'anomalie bloquante
3	Tester 100% des	Fonct. P0	RPRJ3,	S	AP, CU	Fonctionnalités P0 /
	fonctionnalités		RPRD1			100% des fonctionna-
	P0					lités testées en utili-
						sant les classes d'équi-
						valence et les cas d'uti-
						lisation
4	Tester 100% des	Fonct.	RPRJ3,	S	AP, CU	Nombre de cas d'uti-
	fonctionnalités	non P0	RPRD1			lisation / tous les cas
	non P0					d'utilisation testés

3.2 Organisation

3.2.1 Découpage en phase de tests / campagnes

Deux campagnes de tests système sont prévues dans le projet pour chaque lot/incrément :

- Campagne de tests système comprenant les tests fonctionnels pour atteindre les différents objectifs de tests ci-dessus;
- Campagne de retest (vérification de la correction des anomalies détectées et de non-régression).

3.2.2 Gestion des rapports d'anomalie

Les anomalies sont gérées dans Redmine sous forme de tâche. Dès l'observation d'une défaillance dans le produit, un rapport d'anomalie est rédigé dans Redmine.

3.3 Critères d'acceptation des tests

Pour le passage en test de validation système, la phase de smoke test ne doit pas détecter d'anomalie bloquante.

Pour la mise en production, aucune anomalie bloquante ni majeure n'est acceptée.

Anomalie blo-	La fonctionnalité n'est pas utilisable.		
quante			
Anomalie majeure	La fonctionnalité ne répond pas à ses exigences mais une solution de		
	contournement existe pour utiliser la fonctionnalité, ou la fonction-		
	nalité est utilisable en l'état (par exemple, anomalie dans une règle		
	de calcul).		
Anomalie mineure	La fonctionnalité est utilisable mais pas de façon optimale (par		
	exemple, problème d'ergonomie ou de charte graphique).		

3.4 Critères d'arrêt

Les tests d'une fonctionnalité s'arrêteront si une anomalie bloquante est découverte ne permettant pas de poursuivre les tests de cette fonctionnalité.

3.5 Activités de test

L'activité de test sera faite par Projet Prose A1 tout au long du cycle de développement, via notamment :

- des tests de validation sur le comportement nominal du système;
- des tests d'intégration sur le comportement nominal de SoftSonnette et SoftPorte.

3.5.1 Planification

La planification des tests système est réalisée par Projet Prose A1.

3.5.2 Conception

La conception des tests système est réalisée par Projet Prose A1. La conception des jeux de données de test est réalisée par Projet Prose A1.

3.5.3 Exécution

L'exécution des tests système est réalisée par Projet Prose A1. L'exécution des tests d'acceptation est réalisée par STMicroelectronics.

3.5.4 Bilan

Projet Prose A1 rédige un bilan de test en fin de campagne de test système.

3.6 Documents de test et livrables

	Livrable à transmettre
Documentation	
Plan de test	X
Dossier de test	X
Rapport de test	X
Matrice de conformité exigences et tests	X
Rapport d'anomalies	
Données	
Documents d'analyses partitionnelles et aux limites	
Jeux de données de tests	X
Automatisation des tests	
Code de test	

4 Environnement de test

4.1 Environnement matériel et logiciel de test

Afin de réaliser les différents tests de validation système, d'intégration et unitaires, l'environnement matériel suivant est mis en place :

- La STM32MP15 (Board) est alimentée et connectée en USB à un PC disposant d'un OS Linux permettant d'accéder à distance à cette dernière.
- La STM32MP15 déploie sur son Microprocesseur l'OS OpenSTLinux (OSTL, appelé Linux dans la suite du document) (version 4.1)
- Est installé sur le Linux de la Board le logiciel SoftSonnette.
- Est déployé sur le Microcontrôleur de la Board le logiciel SoftPorte et les libraries provenant de Cube FW Package (version 1.6).
- Est mis à disposition du testeur un smartphone Samsung Galaxy A20e avec Android (version 9.0).
- Est installé sur le smartphone l'application AOP.

4.2 Outils de test

Les tests seront au maximum automatisés grâce aux outils suivants :

- tests unitaires : Framework de test Android (basé sur JUnit), bouchonnage Mockito, CMocka;
- tests d'intégration : JMeter;
- tests de validation : automatisation avec Robot Framework, sinon tests manuels;
- dossier de test : Squash TM avec intégration de la gestion d'anomalies via Redmine.

5 Rôles et responsabilités

Projet Prose A1:

- Gestionnaire de tests
 - Rédaction du plan de tests
 - Rédaction du bilan de tests
 - Suivi de la réalisation des tests système
 - Reporting auprès de STMicroelectronics
- Analyste de tests
 - Conception des tests
 - Conception des jeux de données
 - Exécution des tests
 - Gestion des rapports d'anomalies (création et clôture)

${\bf STMicroelectronics}:$

• Validation des documents produits

Projet Prose A1 ne peut être tenu responsable des répercussions d'une défaillance d'une fonctionnalité non validée.

6 Équipe de test

NOM Prénom	Rôle	Implication
BOUY Hugo	Chef de Projet	Se porte garant des moyens mis à dis-
		position pour mener à bien l'activité
		de test en plus de rédiger, implémenter
		et exécuter les tests de SoftSonnette et
		SoftPorte
TROVALLET Romain	Responsable	Organise le déroulement de l'activité
	Qualité Test	de test en plus de rédiger, implémenter
		et exécuter les tests de SoftSonnette et
		SoftPorte
JURET Paul	Responsable C	Se porte garant de la bonne conduite
		des tests en plus de rédiger, implémen-
		ter et exécuter les tests de SoftSon-
		nette et SoftPorte
CHIRON Paul	Développeur C	Rédige, implémente et exécute les tests
		de SoftSonnette et SoftPorte
LETENNEUR Laurent	Développeur C	Rédige, implémente et exécute les tests
		de SoftSonnette et SoftPorte
CASSAR Bastien	Responsable	Se porte garant de la bonne conduite
	Android	des tests en plus de rédiger, implémen-
		ter et exécuter les tests de AOP
MOULIN Mathis	Développeur	Rédige, implémente et exécute les tests
	Android	de AOP

Févr. 2023

7 Planning prévisionnel

Ci-dessous le planning prévisionnel indiquant les phases de réalisations et de test.

Févr. 2023 **Mars 2023** Mai 2023 Juin 2023 Avr. 2023 10 11 13 15 17 18 20 22 23 24 - Phases de réalisation Specs R Specs C Conception C Conception R Code R+C - Phases de test -PdT R Validation R Validation R+C+E

Planning prévisionnel

R: Rédaction; C: Correction; E: Exécution Made by Paul RICHARD – Updated by Eliot COULON

Avr. 2023

Unitaires R+E+C

Mai 2023

Juin 2023

Intégration R+E

Mars 2023

8 Validation du document

Document fait à Angers

Pour la société STMicroelectronics Mention "Lu et approuvé" :

Signature(s):

, le 21/03/2023

Pour la société Projet Prose A1 Mention "Lu et approuvé" :

Signature(s):

Lu et approuvé

