Computer Organization and Architecture Laboratory Assignment 3

Group 22

Nikhil Saraswat (20CS10039)

Amit Kumar (20CS30003)

PART 1: RCA

Half adder

Half adder is the simplest of all adder circuits. Half adder is a combinational arithmetic circuit that adds two numbers and produces a sum bit (s) and carry bit (c) both as output. The addition of 2 bits is done using a combination circuit called a Half adder. The input variables are augend and addend bits and output variables are sum & carry bits. A and B are the two input bits.

Inputs		Outputs		
А	В	Sum	C_out	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

c_out = a & b
sum = a ^ b

Full adder

A full adder circuit is central to most digital circuits that perform addition or subtraction. It is so called because it adds together two binary digits, plus a carry-in digit to produce a sum and carry-out digit. It therefore has three inputs and two outputs.

Inputs			Outputs	
I 1	l 2	C_in	Sum	C_out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Boolean Logic:

RCA

A structure of multiple full adders is cascaded in a manner to gives the results of the addition of an n bit binary sequence. This adder includes cascaded full adders in its structure so, the carry will be generated at every full adder stage in a ripple-carry adder circuit. These carry output at each full adder stage is forwarded to its next full adder and there applied as a carry input to it. This process continues up to its last full adder stage. So, each carry output bit is rippled to the next stage of a full adder. By this reason, it is named as "RIPPLE CARRY ADDER". The most important feature of it is to add the input bit sequences whether the sequence is 4 bit or 5 bit or any.

8-bit RCA

16-bit adder

32-bit adder

64-bit adder

SYNTHESIS SUMMARY

Circuit	Delay (in ns)	Logic Levels	Number of Slice LUTs	Number of bonded IOBs
8-bit RCA	3.471	6	12 / 63400	26 / 210
16-bit RCA	6.167	10	24 / 63400	50 / 210
32-bit RCA	11.559	18	48 / 63400	98 / 210
64-bit RCA	22.343	34	96 / 63400	194 / 210

Post Route Simulation Screen Shots:

Type here to search

♠ 33°C Light rain ヘ ⓒ 팊 ⑷) ENG U3:48 PM 26-08-2022

Full adder

8 – bit RCA

16 – bit RCA

32 – bit RCA

64 - bit RCA

Q. How can you use the above circuit, to compute the difference between two n-bit numbers?

Ans: (a - b) can be written as (a + (-b)). We observe that (-b) is the 2's complement of b. So, (-b) can be written as (~b + 1). Now, ~b is 1's complement of b. so (a - b) is RCA(a, ~b, 1) where 1 is the carry in and a and ~b arethe two inputs.

In the circuit, we can connect a switch to the carry in of the adder, as well as XOR gates to each of b's input bits. When the switch is turned on, the carry in bit becomes 1 and all the bits of b are simultaneously flipped (XOR with 1 flips the bit value). In this manner, we shall obtain a-b as output. When the switch is turned off, nothing changes and we obtain a+b in output.

Post Route of Difference between two 64 bit numbers

