Визуализация данных

Для вопросов по курсу: Иванов Дмитрий Владимирович, <u>dmitry.ivanov@moevm.info</u> Префикс в теме письма [CS_23XX]

Язык программирования Python. Основы

python™

Переменная хранит в себе некоторое значение. Это значение может быть любым: число, строка, список чисел,

Функция (в программировании) - это программный код, к которому можно обратиться по имени. Мы можем вызвать функцию с параметрами, тем самым изменив ее поведение.

Например, в Python есть функция вывода на экран **print()**. То, что мы передадим в качестве параметра, мы увидим на экране.

print(10) # Мы увидим 10
print(99) # Мы увидим 99

Язык программирования Python. Модули

Модуль представляем собой отдельный файл с кодом на Python. Модулями еще называют <u>библиотеки</u> (дополнительные инструменты).

Подключение модуля можут осущесвляться несколькими способами:

import имя_модуля
from имя_модуля import что-то_конкретное
from имя_модуля import *

Язык программирования Python. Модули (2)

Есть стандартная библиотека Python, в которую входят популярные модули: math, cmath, sys и другие. Чтобы начать их использовать, надо просто импортировать их в код (как на предыдущем слайде).

Ho есть и другие модули: pandas, matplotlib, folium, которые придется предварительно установить, чтобы можно было импортировать и использовать:

pip3 install имя_модуля

Библиотека pandas

Этапы работы с данными включают:

- обработка данных;
- анализ данных;
- наука о данных.

Pandas – библиотека языка Python для обработки данных, подготовки их к анализу.

Майкл Хейдт, Артем Груздев "Изучаем Pandas" Официальный сайт https://pandas.pydata.org/docs/

Библиотека pandas (2)

- 1. Анализа структурированных данных т.н. «panel data» («панельные данные»).
- 2. Данные исследований и наблюдений, представленные в виде таблиц.
- Группировка данные, сводные таблицы и выборка по определенным признакам.
- 4. Поддерживаются форматы csv, excel, sql, html, hdf и др.

import pandas as pd

Столбцы данных в pandas

Pandas Series (серия) — одномерные массивы (<u>столбцы</u>)
Индексы помогают обращаться к элементам серии и менять их значения.

Таблицы данных в pandas

```
python™
```


'third': [6, 6, 5]})

print(df.head())

Библиотека matplotlib

- 1. Библиотека для визуализации данных и их свойств.
- 2. Изначально была создана для ученых, не являющихся программистами.
- 3. Имеет множество встроенных пакетов (matplotlib.pyplot и др.)

import matplotlib.pyplot as plt

Официальный сайт: https://matplotlib.org/

Библиотека matplotlib. Основные методы

Вид графика	Методы import matplotlib.pyplot as plt
Линейные графики	plt.plot(x, y)
Площадная диаграмма (area graph)	plt.fill_between(x, y)
Линейчатая и столбчатая диаграммы	plt.bar(index, values)
Гистограмма	plt.hist(data, bins=20)
Круговая гистограмма	plt.pie(values)
Диаграмма размаха или «ящик с усами»	plt.boxplot(data)

Линейный график

- Линейный график показывает тенденцию.
- Допустим, у нас есть данные, которые показывают изменение цены на товар со течением времени.
- Если таких данных много, мы можем воспользоваться линейным графиком: он покажет, возрастает цена или падает за определенный период.
- Если у нас несколько товаров, мы можем сравнить их графики.

Линейный график. Примеры

plt.plot(x, y)

Площадная диаграмма (area graph)

- Представляет собой линейный график, но с заполненной цветом областью под линией.
- Сгруппированные начинаются с нулевой оси.
- <u>С накопленными областями</u> каждый следующий график начинается с линии, оставленной предыдущим графиком.

Площадная диаграмма (area graph). Пример

plt.fill_between(x, y)

Линейчатая и столбчатая диаграммы

- В вертикальных столбчатых диаграммах ось X используется для маркировки, а длина столбцов на оси Y соответствует величине измеряемой переменной.
- Здесь величина также может накапливаться

Линейчатая и столбчатая диаграммы. Пример

plt.bar(index, values)

Гистограмма

- Отображает распределение непрерывных данных.
- Непрерывные данные это данные, которые могут принимать любые значения в некотором интервале.
 Например, средняя продолжительность жизни/температура/вес.
- В противоположность непрерывным данным выделяют дискретные данные они могут принимать некоторые значения: количество человек в аудитории/количество машин на стоянке.

Гистограмма (2)

- В отличие от линейчатой и столбчатой диаграмм, ось X
 не делится на взаимоисключающие категории, это
 сплошная шкала, которая делится на равные
 интервалы, а по оси Y откладывается количество
 данных, попадающих в этот интервал.
- Здесь величина по оси Y также может накапливаться

18

Гистограмма. Пример

plt.hist(data, bins=20)

Круговая диаграмма

- Представляет собой круговой статистический график,
 который разделен на части.
- Длина дуги каждой части (и, следовательно, ее центральный угол и площадь) пропорциональна величине, которую эта часть представляет.

Круговая диаграмма. Пример

plt.pie(values)

Траты на продукты за полгода

21

Диаграмма размаха или ящик с усами

Такой вид диаграммы показывает медиану, нижний и верхний квартили, минимальное и максимальное значение выборки и выбросы.

- Пусть наши данные отсортированы по возрастанию.
- Нижний квартиль показывает значение, перед которым расположены 25% выборки.
- Верхний квартиль показывает значение, после которого расположены 25% выборки.
- Медиана значение, которое расположено ровно посередине выборки.

Диаграмма размаха или ящик с усами. Пример

plt.boxplot(data)

ССЫЛОК

Немного практики и полезных

Ноутбуки для работы с Python без установки

- альтернатива РуСһаrm и другим IDE, которые надо устанавливать на ПК
- часто применяется в анализе данных, статистике и пр.

- Jupiter Notebook
- Google Colab
- Kaggle
- ...

Практика 1. Основные преобразования и графики

Переходим по ссылке

http://bit.ly/3UiqDzo

Переходим к редактированию ноутбука

pythor

кликаем кнопку "Copy & Edit"

Запуск блока с кодом

28

Практика 2. Площадная диаграмма

Переходим по ссылке

python[™] kaggle

http://bit.ly/3AVtS9a

29

Кликаем кнопку "Copy & Edit"

Практика 3. Гистограмма диаграмма

Переходим по ссылке

http://bit.ly/3XJPeQp

Кликаем кнопку "Copy & Edit"

30

Работа с геоданными. Библиотека Folium

python™

 Библиотека Folium позволяет создавать интерактивные карты и добавлять различную информацию на эти карты.

 Например, мы можем добавить на карту маркеры, которые точно соответствуют расположению на карте университетов, если у нас есть информация вида:

Университет_1 Расположение_университета_1

Университет_2 Расположение_университета_2

• • •

Folium. Фоновая картограмма

- Вид картограммы, на которой штриховкой различной густоты или краской разной степени насыщенности изображают интенсивность какого-либо показателя в пределах территориальной единицы.
- Удобно использовать, если данные соотносятся с географическими координатами.

Практика 4. Библиотека с геоданным

Переходим по ссылке

http://bit.ly/3VV6UHp

Кликаем кнопку "Copy & Edit"

Практика 5. Кластеризация

Переходим по ссылке

http://bit.ly/3VIxLWM

Кликаем кнопку "Copy & Edit"

Еще немного подсказок по работе с

данными

Работа с dataframe в pandas

```
Извлечение данных («срезы»):
     print(df['target'].unique())
       # [0. 1. 2.], ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
     print(df[['target', 'sepal width (cm)', 'petal width (cm)']])
     print(df.loc[[54, 55, 56], 'target']) # извлечение по
     метке
     print(df.iloc[0:10]) # извлечение по позиции
     setosa = df[df]'target'] == 0.0] # извлечение с условием
     versicolor = df[df['target'] == 1.0]
     virginica = df[df['target'] == 2.0]
```

Работа с dataframe в pandas (2)

```
Группировка по столбцу "target":
     print(df.groupby('target').size()) # 0.0 50 \n 1.0 50 \n
     2.0 50
     print(df.groupby("target")["sepal width (cm)"].mean())
     print(df.groupby("target")["sepal width (cm)"].min())
 Склеивание таблиц – обязательно использовать те же
                           столбцы:
df = pd.DataFrame({'first': [1, 2, 3],
                                              df1 = pd.DataFrame({'first': [-7, 0, 1],
         'second': [7, 7, 8],
                                                             'second': [2, -8, 4],
         'third': [6, 6, 5]))
                                                             'third': [5, 1, 9]})
df_res = df.append(df1, ignore_index=True)
```

Работа с dataframe в pandas (3)

```
Добавление новых данных (столбцов) в таблицу:
     df1 = pd.DataFrame()
     df1['random'] = pd.Series([random.randint(-100, 100)
              for _ in range(10)])
     df1['ones'] = pd.Series([1] * 10)
     df1['new_column'] = (df1['random'] + 3) * df1['ones']
     print(df1.head())
Добавление новой строки:
     df.loc[len(df.index)] = [i for i in range(len(df.columns))]
```

Использование своих данных на

Kaggle

Создание аккаунта со своей почтой

Чтобы загрузить локальные данные потребуется создать аккаунт со своей почтой

Explore and run machine learning code with Kaggle Notebooks.	Logged out sessions end after 15 minutes Sign in or	Register
notebookc1983eb5 File Edit View Run Help	Eugged dat sessions and arch to minutes a sign in	>I
+ 🔟 🛠 🔲 🗂 ▷ ▶ Run All Code - ● Draft Session off (run a cell to start) U 🗘	Data	^

Создание аккаунта со своей почтой (2)

Чтобы загрузить локальные данные потребуется создать аккаунт со своей почтой

Подключение датасетов, которые уже есть на Kaggle

1. На панели инструментов справа жмем кнопку "Add data"

Если панель не видна, найдите справа кнопку: нажмите на нее и панель откроется

Подключение датасетов, которые уже есть на Kaggle

- 1. В появившемся поле по очереди вводим названия датасетов и жмем "плюсик"
- 2. Ждем, когда Kaggle добавит датасет

Meteorite Landings

NASA · Updated 6y ago 197 Upvotes · 1 File (CSV) · 701 kB

500 Person Gender-Height-Wei...

Yasin Ersever · Updated 4y ago 213 Upvotes · 1 File (CSV) · 2 kB

Heights and Weights Dataset

Smit Patel · Updated 3y ago 78 Upvotes · 1 File (CSV) · 250 kB

world_countries.json

Natalya Shevskaya · Updated 1h ago 0 Upvotes · JSON · 102 kB

Загрузка локальных датасетов на Kaggle

Файлы доступны по этой ссылке

https://bit.ly/43igh7E

Файлы надо скачать.

Затем на Kaggle жмем кнопочку Upload:

Далее смотрим на открывшееся окошко

Загрузка локальных датасетов на Kaggle (2)

- 1. Локальные файлы можно перетащить левой кнопкой мыши в поле "Drag and drop"
- 2. Либо файлы можно выбрать через кнопку "Browse File"

Загрузка локальных датасетов на Kaggle (3)

- После выбора файла надо напечатать название датасета (выделено красным)
- Для простоты -- давайте использовать название самого файла
- Печатать название файла следует в поле "Enter Dataset Title"

Загрузка локальных датасетов на Kaggle (4)

 Как только имя файла напечатано, можно жать "Create"

Загрузка локальных датасетов на Kaggle (5)

- Немного подождав, можно увидеть датасет в списке датасетов (в том же, где и Kaggl' овские)
- Нажав на название датасета, в выпадающем списке можно увидеть сам файлик csv, который и загружался в систему

Вопросы по курсу можно задавать:

Иванов Дмитрий Владимирович dmitry.ivanov@moevm.info