

Vorlesung 6 - Relationen und Funktionen

Diskrete Strukturen (WS 2023-24)

Łukasz Grabowski

Mathematisches Institut

Diskrete Strukturen 1. Wiederholung 4. Injektivität, Surjektivität, Bijektivität 5. Komposition von Funktionen

- Seien M und N zwei Mengen (möglicherweise mit M=N). Eine Relation R von M nach N ist eine Teilmenge $R \subseteq M \times N$.
- Ist M=N, so heißt R auch Relation auf M.
- Statt $(m,n) \in R$ schreiben wir auch m R n oder R(m,n) oder $m \sim_R n$. Analog m R n.
- Beispiel: die Menge $\{(n, n') \in \mathbb{N} \times \mathbb{N} \mid n \leq n'\}$ ist eine Relation auf \mathbb{N} .
- Beispiel: die Freund-Relation auf der Menge F der Facebook-Nutzer
 - $\{(x,y) \in F \times F \mid x \text{ ist Facebook-Freund von } y\}$
- ist eine Relation.

Diskrete Strukturen | Wiederholung

Relation von M nach N

Relation auf $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Reflexivität: Alle Elemente haben Schleifen.

Symmetrie: Jeder Pfeil ist beidseitig.

Transitivität: Für jeden Weg existiert auch der direkte Weg.

Operation: Inversion R^{-1} von einer Relation R.

Diskrete Strukturen 1. Wiederholung 2. Äquivalenzrelationen und Zerlegungen 4. Injektivität, Surjektivität, Bijektivität

5. Komposition von Funktionen

- Eine Relation \equiv auf M ist eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist.
- Für $m \in M$, die Äquivalenzklasse von m ist die Menge:

$$[m]_{\equiv} := \{ x \in M \mid m \equiv x \}$$

· Wir definieren

$$(M/\equiv) := \{ [m]_{\equiv} \mid m \in M \}$$

- "Quotient von M durch \equiv ".
- Beispiel: $(\mathbb{N}/R_2) = \{\{0, 2, 4, 6, \ldots\}, \{1, 3, 5, 7, \ldots\}\}$

• In der letzter Vorlesung haben wir den folgenden Satz bewiesen.

Theorem

Sei M eine nicht leere Menge und sei \equiv eine Äquivalenzrelation auf M. Dann ist (M/\equiv) eine Zerlegung von M.

• Jetzt werden wir sehen, dass für jede Zerlegung kann man eine Äquivalenzrelation definieren, deren Äquivalenzklassen geben uns die ursprüngliche Zerlegung.

Theorem

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Anders geschrieben:

$$\equiv := \{(x,y) \in M \times M \colon \exists N \in \mathcal{K} \mathsf{mit} \ x, y \in N \}$$

Theorem

Sei M eine nicht leere Menge, und sei $\mathcal K$ eine Zerlegung von M. Dann die folgende Relation ist eine Äquivalenzrelation auf M:

$$x \equiv y \iff \exists N \in \mathcal{K} \colon x, y \in N$$

Beweis. Offensichtlich ist \equiv eine Relation auf M.

- Reflexivität: Sei $x \in M$. Da $M = \bigcup \mathcal{K}$ gibt es eine Menge $N \in \mathcal{N}$ mit $x \in N$. Also $x \equiv x$.
- Symmetrie: Sei $x \equiv y$. Dann existiert $N \in \mathcal{K}$ mit $\{x, y\} \subseteq N$. Folglich auch $y \equiv x$.
- Transitivität: Seien $x\equiv y$ und $y\equiv z$. Also existieren $N,N'\in\mathcal{K}$ mit $\{x,\,y\}\subseteq N$ und $\{y,\,z\}\subseteq N'$. Da $y\in N\cap N'$, sind N und N' nicht disjunkt, und so gilt N=N'.

Diskrete Strukturen | Äquivalenzrelationen und Zerlegungen

Folglich $\{x, z\} \subset N$ und damit $x \equiv z$.

Diskrete Strukturen 1. Wiederholung 3. Funktionen - Definition 4. Injektivität, Surjektivität, Bijektivität 5. Komposition von Funktionen

- Seien M und N Mengen. Eine Funktion (oder eine Abbildung) ist eine Relation $R \subseteq M \times N$ mit der Eigenschaft dass für jedes $m \in M$ genau ein $n \in N$ existiert, so dass $(m,n) \in R$.
- Anders gesagt: Für jedes $m \in M$ gibt es mindestens ein $n \in N$ (Totalität) und höchstens ein $n \in N$ mit $m \ R \ n$ (Eindeutigkeit)
 - ► Totalität:

$$\forall m \in M \, \exists n \in N \, R(m, n)$$

► Eindeutigkeit:

$$\forall m \in M, x, y \in N \colon R(m, x) \land R(m, y) \rightarrow x = y$$

- Sei ${\cal B}$ die Menge der Bundesbürger. Wir haben die Relation

$$\big\{(p,n)\in B\times \mathbb{N}\mid p \text{ hat Identifikationsnummer } n\big\}$$

von B nach \mathbb{N} . Das ist eine Funktion.

• Keine Funktion: die Freund-Relation

Beispiele.

$$\big\{(x,y)\in F imes F\mid x \text{ ist Facebook-Freund von }y\big\}$$

auf der Menge der Facebook-Nutzer ${\cal F}$. Es wäre eine Funktion nur wenn jeder Facebook-Benutzer genau einen Freund hätte.

- Die Relation $R = \{(n, n') \mid n \in \mathbb{N}, n' = 2n\}$ ist eine Funktion. f(x) = 2x.
- Die Identität id_M ist eine Funktion.

Notation/Wortschatz.

- $f \subseteq M \times N$ eine Funktion, dann schreiben wir $f: M \to N$.
- Für $(m,n) \in f$ schreiben wir entweder n = f(m) oder $m \stackrel{f}{\mapsto} n$.
 - ightharpoonup n ist dann das Bild von m
 - ightharpoonup m ist ein Urbild von n.
- Die Menge M heißt Definitionsbereich und die Menge N Bildbereich oder Wertebereich von f.

• Für eine Teilmenge $M' \subset M$ definieren wir

$$f(M') := \{ f(m) \mid m \in M' \}.$$

Das ist die Menge aller Bilder von Elementen aus M', Bild von M' unter f.

• Für eine Teilmenge $N' \subset N$ definieren wir

$$f^{-1}(N') := \{ m \in M \mid f(m) \in N' \}$$

die Menge aller Urbilder von Elementen aus N', Urbild von N' unter f.

Beispiele.

• Betrachten wir $id_M : M \to M$. Diese Funktion könnte man auch so definieren:

$$id_M(m) := m.$$

Für alle
$$M' \subseteq M$$
 gilt $id_M(M') = M'$ und $id_M^{-1}(M') = M'$

• Sei verdoppeln: $\mathbb{N} \to \mathbb{N}$ die Funktion

$$verdoppeln(n) := 2n$$

für alle $n \in \mathbb{N}$. Es gilt verdoppeln $(\mathbb{N}) = \{2x \mid x \in \mathbb{N}\}$ und verdoppeln $^{-1}(\{2k+1 \mid k \in \mathbb{N}\}) = \emptyset$.

• Sei $M:=\{1,\,2,\,3,\,4,\,5,\,6\}$. Wir definieren $f\colon M\to M$ durch $m\mapsto \lceil \sqrt{m}\rceil$ für alle $m\in M$.

Es gilt $f(M) = \{1, 2, 3\}$ $f(\{1, 2\}) = \{1, 2\}$, $f^{-1}(2) = f^{-1}(\{2\}) = \{2, 3, 4\}$,

Diskrete Strukturen 1. Wiederholung 4. Injektivität, Surjektivität, Bijektivität 5. Komposition von Funktionen

• $f \colon M \to N$ heißt injektiv gdw. alle verschiedenen Elemente von M auch verschiedene Bilder unter f haben.

$$\forall x, y \in M \colon \ x \neq y \to f(x) \neq f(y)$$

Manchmal schreibt man $f: M \hookrightarrow N$.

• f heißt surjektiv gdw. f(M) = N. (Jedes Element von N ist ein Bild eines Elements von M).

$$\forall n \in N \exists m \in M : f(m) = n$$

Manchman schreibt man $f: M \rightarrow N$.

- Sind beide Eigenschaften erfüllt, so heißt f bijektiv.
- Man sagt auch dass f eine Injektion, Surjektion, oder Bijektion ist. Eine Bijektion auf einer Menge M wird auch Permutation von M genannt.
- Beispiele:
 - ightharpoonup id $_M \colon M o M$ ist eine Bijektion.
 - lacktriangle Die Funktion verdoppeln: $\mathbb{N} \to \mathbb{N}$ ist injektiv, aber nicht surjektiv.
 - ▶ Die Funktion $f: \mathbb{N} \to \mathbb{N}$ mit $f(n) = \lceil \sqrt{n} \rceil$ ist surjektiv, aber nicht injektiv, denn es gilt f(2) = f(3).
 - $lackbox{ }$ Die Funktion $q\colon\mathbb{R}\to\mathbb{R}$, mit $q(x):=x^2$ definiert, ist weder injektiv noch surjektiv.

Diskrete Strukturen 1. Wiederholung 4. Injektivität, Surjektivität, Bijektivität 5. Komposition von Funktionen

Funktionen sind Relationen, also können wir Funktionen komponieren. Wir schreiben auch $g\circ f(m)$ oder g(f(m)) statt f;g(m).

Theorem

Die Komposition zweier Funktionen ist wieder eine Funktion.

Beweis. Seien $f: M \to N$ und $g: N \to P$.

- Eindeutigkeit. Falls $(a,b) \in f$; g und $(a,c) \in f$; g dann $\exists x,y \in N$ mit $(a,x) \in f$, $(x,b) \in g$, $(a,y) \in f$, $(y,c) \in g$. Da f ist eindeutig, haben wir x=y. Aber da g ist auch eindeutig, haben wir b=c.
- Totalität. Sei $a \in M$. Da f ist total, existiert $b \in N$ mit $(a,b) \in f$. Da g ist total, existiert $c \in P$ mit $(b,c) \in g$. Es folgt dass $(a,c) \in f$; g.

Komposition ist assoziativ (auch gilt für dir Komposition von Relationen)

Theorem

Für Abbildungen $f \colon M \to N$, $g \colon N \to P$ und $h \colon P \to Q$ gilt

- Sei y := (f; q); h(x). Zu zeigen ist dass y = f; (q; h)(x).
- Dann existiert a mit $(a,y) \in h$, $(x,a) \in f; g$. Deswegen existiert auch b mit $(x,b) \in f$ und $(b,a) \in g$.

(f;q): h = f: (q:h)

• Es folgf $(b, y) \in g$; h, und deswegen auch $(x, y) \in f$; (g; h).

Theorem

Seien $f: M \to N$ und $g: N \to P$.

- Wenn f und g injektiv sind, dann ist f; g injektiv.
- Wenn f und g surjektiv sind, dann ist f; g surjektiv.
- Wenn f und g bijektiv sind, dann ist f; g bijektiv.

Beweis.

• Seien $m, m' \in M$ mit $m \neq m'$. Da f injektiv ist, gilt $f(m) \neq f(m')$. Da auch g injektiv ist, gilt weiterhin $g(f(m)) \neq g(f(m'))$. Also ist f; g injektiv.

• (Surjektivität) Sei $p \in P$ beliebig. Da q surjektiv ist, existiert $n \in N$, so dass q(n) = p. Weiterhin ist auch f surjektiv, wodurch $m \in M$ existiert, so dass f(m) = n. Also ist

$$(f;q)(m) = q(f(m)) = q(n) = p.$$

Also ist f: a auch surjektiv.

• (Bijektivität) Das ist eine Folgerung aus den zwei ersten Punkte.

Diskrete Strukturen 1. Wiederholung 4. Injektivität, Surjektivität, Bijektivität 5. Komposition von Funktionen 6. Invertierung von Funktionen

• Manchmal möchte man eine Funktionsanwendung rückgängig machen können, zum Beispiel bei der Verschlüsselung und Kompression von Daten.

• Eine Funktion $f \colon M \to N$ ist invertierbar gdw. eine Funktion $g \colon N \to M$ existiert, so dass

$$f; g = \mathrm{id}_M$$

und

$$g; f = \mathrm{id}_N.$$

• Äquivalent gesagt: für alle $m \in M$ gilt g(f(m)) = m und für alle $n \in N$ gilt f(g(n)) = n.

31 / 32

Beispiele

- Die Identität id_M ist offensichtlich invertierbar. id_M ; $id_M = id_M$.
- Die Funktion verdoppeln ist nicht invertierbar. Welchen Wert soll die inverse Funktion der Zahl 3 zuweisen?
- Die Funktion f mit $f(n) = \lceil \sqrt{n} \rceil$ ist nicht invertierbar. Welchen Wert soll die inverse Funktion, der Zahl 2 zuweisen?

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de