习题课

- 1. 与圆 $x^2 + y^2 = 1$ 及圆 $x^2 + y^2 8x + 12 = 0$ 都外切的圆的圆心的轨迹是 ()
- (A) 一个椭圆上
- (B) 双曲线的一支上
- (C) 一条抛物线上
- (D) 一个圆上
- 【解】显然,所给二圆的圆心分别为(0,0),(4,0),半径分别为1和2,新圆的圆心到所给两圆的圆心距之差的绝对值为1(小于给定二圆的圆心距4),因此新圆圆心的轨迹是双曲线的一支。选B。

- 2. 在抛物线 $y^2 = 4x$ 上求一点 P ,使得点 P 到直线 y = x + 3 的距离最短。
- 【解】设 $P(x_0, y_0)$,则P到直线x-y+3=0的距离为 $d=\frac{|x_0-y_0+3|}{\sqrt{2}}$,

因 $|x_0-y_0+3|$ = $|\frac{y_0^2}{4}-y_0+3|$ = $\frac{1}{4}$ $|y_0^2-4y_0+12|$ = $\frac{1}{4}$ $|(y_0-2)^2+8|$ 在 $y_0=2$ 时取得最小值为 2,

故
$$d$$
 的最小值为 $\frac{2}{\sqrt{2}} = \sqrt{2}$,此时 $x_0 = \frac{y_0^2}{4} = 1$, $P(1,2)$

- 3. 已知点 P 是椭圆 $16x^2+25y^2=1600$ 上一点,且在 x 轴上方, F_1 , F_2 分别是椭圆的左、右焦点,直线 PF_2 的斜率为 $-4\sqrt{3}$, $\triangle PF_1F_2$ 的面积为____。
 - 【解】 易知椭圆方程为 $\frac{x^2}{100} + \frac{y^2}{64} = 1$, 故a = 10, b = 8, c = 6,

设 F_2P 的倾斜角为 α ,由 $\tan \alpha = -4\sqrt{3}$ 得 $\cos \alpha = -\frac{1}{7}$,

因此,
$$|F_2P| = \frac{b^2}{a + c\cos\alpha} = \frac{64}{10 - \frac{6}{7}} = 7$$

$$\Rightarrow P(x_0, y_0)$$
, $\text{My}_0 = |F_2P| \sin \alpha = 7 \times \frac{4\sqrt{3}}{7} = 4\sqrt{3}$,

故
$$S_{\triangle PF_1F_2} = \frac{1}{2} | F_1F_2 | \cdot y_0 = \frac{1}{2} \times 12 \times 4\sqrt{3} = 24\sqrt{3}$$

4. 直线 $\frac{x}{4} + \frac{y}{3} = 1$ 与椭圆 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ 交于 A, B 两点, P 在椭圆上,使得 $\triangle PAB$ 面积等于

3,这样的点P共有()

- (A) 1 个
- (B) 2 ↑
- (C) 3 个 (D) 4 个

【解】:如图,令P到AB的距离为h,易知AB=5,由 $S_{\triangle PAB}=3$ 知, $h=\frac{6}{5}$

考虑与AB平行的直线l,设其方程为3x+4y+C=0,

令其与直线
$$AB$$
: $3x+4y-12=0$ 间的距离 $d=\frac{|12+C|}{\sqrt{3^2+4^2}}=\frac{6}{5}$,

解得C = -6或C = -18,故l的方程为3x + 4y - 6 = 0或3x + 4y - 18 = 0

由
$$\Delta = (aA)^2 + (bB)^2 - C^2$$
 知 $\Delta = 224 > 0$ 或 $\Delta = -56 < 0$,

故3x+4y-6=0与椭圆有两个交点,选B。

【注意】:对于椭圆: $\Delta = 0$ 相切; $\Delta > 0$ 相交; $\Delta < 0$ 相离

【法二】 易知 AB = 5, 令 $P(4\cos\alpha, 3\sin\alpha)(\alpha \in [0, 2\pi])$,

P到 AB 的距离为d,由 $S_{\triangle PAB} = 3$ 知, $d = \frac{6}{5}$

又, AB的方程为3x+4y-12=0,故

$$d = \frac{|12\cos\alpha + 12\sin\alpha - 12|}{5} = \frac{6}{5} \Rightarrow |\sqrt{2}\sin(\alpha + \frac{\pi}{4}) - 1| = \frac{1}{2}$$

从丽
$$\sin(\alpha + \frac{\pi}{4}) = \frac{3\sqrt{2}}{4}$$
 或 $\sin(\alpha + \frac{\pi}{4}) = \frac{\sqrt{2}}{4}$,

前者显然无解,而后者有两解,故有两个P

- 5. 过抛物线 $y^2 = 8(x+2)$ 的焦点 F 作倾斜角为 60° 的直线, 若此直线与抛物线交于
- A、B两点, 弦 AB 的中垂线与x 轴交于点P, 则线段PF 的长等于(
- (A) $\frac{16}{3}$ (B) $\frac{8}{3}$ (C) $\frac{16}{3}\sqrt{3}$ (D) $8\sqrt{3}$

【解】易知,题中抛物线由 $y^2 = 8x$ 向左平移 2 个单位而得,故其焦点为原点(0,0),令 $A(x_1, y_1), B(x_2, y_2)$ 因 AB 的方程为 $y = \sqrt{3}x$,将其带入 $y^2 = 8(x+2)$,化简得 $3x^2 - 8x - 16 = 0$, 故 $x_1 + x_2 = \frac{8}{2}$

令
$$AB$$
 中点为 $Q(x_0, y_0)$,则 $x_0 = \frac{x_1 + x_2}{2} = \frac{4}{3}$,

故
$$QF = 2x_0 = \frac{8}{3}$$
, $PF = 2QF = \frac{16}{3}$. 选 A .

【巧解】本题等价于 $y^2 = 8x$ 的情况,令 AB 中点为 $Q(x_0, y_0)$,则 $y_0 k_{AB} = p$,即 $y_0 = \frac{4}{\sqrt{3}}$,

因此
$$QF = \frac{y_0}{\sin 60^\circ} = \frac{8}{3}$$
,故 $PF = 2QF = \frac{16}{3}$.选 A .

6. 已知 $M = \{(x, y) | x^2 + 2y^2 = 3\}, N = \{(x, y) | y = mx + b\}$. 若对于所有的 $m \in R$, 均 有 $M \cap N \neq \emptyset$,则b的取值范围是(

A.
$$\left[-\frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}\right]$$

A. $\left[-\frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}\right]$ B. $\left(-\frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2}\right)$ C. $\left(-\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}\right]$ D. $\left[-\frac{2\sqrt{3}}{3}, \frac{2\sqrt{3}}{3}\right]$

【巧解】直线 y = mx + b 过定点 (0,b) , 故只需 (0,b) 在椭圆内或椭圆上,即 $2b^2 \le 3$,解得 $b \in [-\frac{\sqrt{6}}{2}, +\frac{\sqrt{6}}{2}]$. 选A.

【解法二】椭圆方程为
$$\frac{x^2}{3} + \frac{y^2}{\frac{3}{2}} = 1$$
, 直线方程 $mx - y + b = 0$

$$\Delta = (aA)^2 + (bB)^2 - C^2 = 3m^2 + \frac{3}{2} - b^2 \ge 0 \Rightarrow b^2 \le 3m^2 + \frac{3}{2} \le \frac{3}{2}$$

解得
$$b \in [-\frac{\sqrt{6}}{2}, +\frac{\sqrt{6}}{2}]$$
, 选A。

7. 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点为F(c, 0),若存在过F的直线l与双 曲线的右支交于不同的两点,与双曲线的一条渐近线交于第一象限内的点A,且|AF|=c,则 双曲线C的离心率的取值范围是(

A.
$$(1, \sqrt{3})$$

B.
$$(1,2)$$
 C. $[\sqrt{2},2)$ D. $(2,+\infty)$

D.
$$(2,+\infty)$$

【解】令渐近线 $y = \frac{b}{a}x$ 的倾斜角为 α ,则 FA 的倾斜角为 2α ,则当 $2\alpha > 90$ ° 时,需

$$\tan 2\alpha < -\frac{b}{a}$$
,

此时
$$\frac{2\tan\alpha}{1-\tan^2\alpha} < -\frac{b}{a} \Rightarrow \frac{2\times\frac{b}{a}}{1-(\frac{b}{a})^2} < -\frac{b}{a} \Rightarrow \frac{2}{2-e^2} < -1$$
,得 $\sqrt{2} < e < 2$ 。

当
$$2\alpha \le 90^{\circ}$$
时,需 $\frac{bc}{a} \le c$,即 $\frac{b^2}{a^2} \le 1$,故 $1 < e \le \sqrt{2}$

综上, e 的取值范围为(1,2),选B。

8. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左焦点为F(-c,0),上顶点为A,离心率为

$$\frac{\sqrt{3}}{2}$$
, 直线 FA 与抛物线 $E: y^2 = 4cx$ 交于 M, N 两点,则 $|MA| + |NA| = ($)

C.
$$4\sqrt{3}a$$

【解】易知 $c = \frac{\sqrt{3}}{2}a$,故 $b = \frac{1}{2}a$,故 $k_{FA} = \frac{\sqrt{3}}{3}$,令MN的中点为 $P(x_0.y_0)$,则由抛物线

的性质知: $k_{MN} \cdot y_0 = p \Rightarrow \frac{\sqrt{3}}{3} y_0 = 2c \Rightarrow y_0 = 2\sqrt{3}c$,

易知直线 FA 的方程为: $y = \frac{\sqrt{3}}{3}(x+c)$, 故 $x_0 = \sqrt{3}y_0 - c = 5c$

故|MA|+|NA|= $\frac{1}{\cos 30^{\circ}}(x_M + x_N) = \frac{2x_0}{\cos 30^{\circ}} = \frac{2 \times 10c}{\sqrt{3}} = \frac{2 \times 10}{\sqrt{3}} \times \frac{\sqrt{3}}{2} a = 10a$, 选Do

已知椭圆与双曲线有公共焦点 F_1 , F_2 , F_1 为左焦点, F_2 为右焦点,P点为它们在第一 象限的一个交点,且 $\angle F_1 P F_2 = \frac{\pi}{4}$,设 e_1, e_2 分别为椭圆和双曲线的离心率,则 $\frac{1}{e_1} + \frac{1}{e_2}$ 的最大值

- B. $2\sqrt{2}$
- C. $3\sqrt{2}$ D. $4\sqrt{2}$

【解】 \Leftrightarrow $|F_1P|=m, |F_2P|=n, m+n=2a_1, m-n=2a_2$,则 $m=a_1+a_2, n=a_1-a_2$ 。 设 $|F_1F_2| = 2c$, $\mathbb{N} \frac{1}{e_1} + \frac{1}{e_2} = \frac{a_1}{c} + \frac{a_2}{c} = \frac{m}{c}$,

又因为余弦定理得 $4c^2 = m^2 + n^2 - 2mn\cos\frac{\pi}{4}$,

∴ $n^2 - \sqrt{2}mn + m^2 - 4c^2 = 0$, $\exists \Delta \ge 0 \Leftrightarrow 2m^2 - 4m^2 + 16c^2 \ge 0$,

即 $m^2 \le 8c^2$, $: m \le 2\sqrt{2}c$, $: \frac{m}{c} \le 2\sqrt{2}$ 。故选 B

10. 当 α 从 0° 到 180° 变化时,方程 $x^2 + y^2 \cos \alpha = 1$ 表示的曲线的形状为_____。

【解】(1) $\alpha \in (0^{\circ}, 90^{\circ})$ 时表示椭圆,且焦点在 y 轴上。

- (2) $\alpha = 90^{\circ}$ 时,曲线方程变为 $x^2 = 1$,为两条直线。
- (3) $\alpha \in (90^\circ, 180^\circ)$ 时,因 $\cos \alpha < 0$,故曲线为双曲线,焦点在x轴上。
- **11.** 已知等边三角形的一个顶点位于抛物线 $y^2 = 2px(p > 0)$ 的焦点,另两个顶点在抛物线上,则这个等边三角形的边长为____。

【解】设等边三角形的边长为a,另两个顶点分别为A,B,根据对称性: AB 一定与x 轴垂直,因此,有如图所示的两种情况,对应的边长分别为

(1)
$$a = |FA| = \frac{p}{1 - \cos 150^{\circ}} = 2p(2 - \sqrt{3})$$

(2)
$$a = |FA| = \frac{p}{1 - \cos 30^{\circ}} = 2p(2 + \sqrt{3})$$

因此,等边三角形的边长为 $2p(2-\sqrt{3})$ 或 $2p(2+\sqrt{3})$

12. 斜率为 2 的直线 l 与双曲线 $\frac{x^2}{3} - \frac{y^2}{2} = 1$ 交于 A, B 两点, 且 |AB| = 4,则直线 l 的方程为____。

【解】设 $A(x_1, y_1)$, $B(x_2, y_2)$,直线方程为 y = 2x + m ,将其代入双曲线的方程,化简得: $10x^2 + 12mx + 3m^2 + 6 = 0$,

由题意知: $\Delta = 24m^2 - 240 > 0$, 解得 $m > \sqrt{10}$ 或 $m < -\sqrt{10}$, 此时

由韦达定理得
$$x_1 + x_2 = -\frac{6}{5}m$$
, $x_1 x_2 = \frac{3m^2 + 6}{10}$

由公式 $|AB|^2 = (1+k^2)[(x_1+x_2)^2 - 4x_1x_2]$ (k 为l的斜率),得

$$16 = (1+2^2)[(-\frac{6m}{5})^2 - 4 \times \frac{3m^2 + 6}{10}], \quad \text{##} = \pm \frac{\sqrt{210}}{3},$$

故,*l*的方程为: $y = 2x \pm \frac{\sqrt{210}}{3}$ 。

13. 经过点M(2,1)作直线l 交双曲线 $x^2 - \frac{y^2}{2} = 1$ 于A, B 两点,且M 为AB 的中点,则直线l 的方程为____。

【解】显然,设 $k_{om}=\frac{1}{2}$,由斜率积定理知 $k_l\cdot k_{om}=\frac{b^2}{a^2}$,即 $k_l imes\frac{1}{2}=2$,故 $k_l=4$

因此, l的方程为: y-1=4(x-2), 即 y=4x-7

【法二】设
$$A(x_1, y_1), B(x_2, y_2)$$
,则 $x_1^2 - \frac{{y_1}^2}{2} = 1, x_2^2 - \frac{{y_2}^2}{2} = 1$,

两式相减(点差法),得 $(x_1^2 - x_2^2) - \frac{1}{2}(y_1^2 - y_2^2) = 0$,

$$\exists \mathbb{P}(x_1 + x_2)(x_1 - x_2) = \frac{1}{2}(y_1 + y_2)(y_1 - y_2) ,$$

也即
$$2 = \frac{y_1 + y_2}{x_1 + x_2} \times \frac{y_1 - y_2}{x_1 - x_2}$$
,即 $2 = \frac{2 \times 1}{2 \times 2} \times k_l$,

得 k_l =4,利用点斜式方法,得直线l的方程为y=4x-7

14. 已知 $\triangle ABC$ 的两个顶点 A,B 的坐标分别为 (-5,0),(5,0) ,且 AC,BC 所在直线的斜率 之积等于 $m(m \neq 0)$,则顶点 C 的轨迹为____。

【解】 令
$$C(x, y)$$
 ,由题意得 $\frac{y}{x+5} \times \frac{y}{x-5} = m(x \neq \pm 5)$,即 $\frac{x^2}{25} - \frac{y^2}{25m} = 1 \ (x \neq \pm 5)$,因此,

- (1) m > 0时, 轨迹为双曲线, 点(-5,0)和(5,0)除外
- (2) m < 0时,C的轨迹为圆(m = -1)或椭圆($m \neq -1$),点(-5,0)和(5,0)除外。

15. 圆锥曲线
$$\sqrt{x^2+y^2+6x-2y+10}-|x-y+3|=0$$
 的离心率为_____。

【解】
$$\sqrt{x^2 + y^2 + 6x - 2y + 10} - |x - y + 3| = 0 \Rightarrow \frac{\sqrt{(x+3)^2 + (y-1)^2}}{\frac{|x - y + 3|}{\sqrt{2}}} = \sqrt{2}$$

 $\sqrt{(x+3)^2+(y-1)^2}$ 表示动点 P(x,y) 到点 (-3,1) 的距离, $\frac{|x-y+3|}{\sqrt{2}}$ 表示动点 P(x,y) 到直

线x-y+3=0的距离,

根据圆锥曲线的第二定义,题设中的曲线为双曲线,其离心率为 $\sqrt{2}$ 。

16. 已知定点 A(2,1) , F 是椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 的左焦点,点 P 为椭圆上的动点,当 3|PA|+5|PF| 取最小值时,点 P 的坐标为 。

【解】由题意知 $e=\frac{3}{5}$.令椭圆左准线为l,因 $\frac{4}{25}+\frac{1}{16}<1$,故点A在椭圆内。过P作 $PQ\perp l$ 于 Q ,过 A 作 $AM\perp l$ 于 M 。

由定义知
$$\frac{|PF|}{|PQ|} = e = \frac{3}{5}$$
,则 $\frac{5}{3}|PF| = |PQ|$ 。

所以 $3|PA|+5|PF|=3(|PA|+\frac{5}{3}|PF|)=3(|PA|+|PQ|)\geq 3|AQ|\geq 3|AM|$

所以当且仅当P为AM与椭圆的交点时取等号,

把
$$y = 1$$
 代入椭圆方程得 $x = \pm \frac{5\sqrt{15}}{4}$,

又
$$x < 0$$
, 所以点 P 坐标为 $\left(-\frac{5\sqrt{15}}{4},1\right)$

17. 设 A,B 是椭圆 $x^2+3y^2=1$ 上的两个动点,且 $OA\perp OB$ (O 为原点), AB 的最大值与最小值分别为

【解】由题设
$$a=1,b=\frac{\sqrt{3}}{3}$$
,记 $OA=r_1,OB=r_2,\frac{r_1}{r_2}=t$,则 $\frac{1}{r_2^2}+\frac{1}{r_2^2}=4$,故

$$AB^2 = r_1^2 + r_2^2 = \frac{1}{4}(r_1^2 + r_2^2)(\frac{1}{r_1^2} + \frac{1}{r_2^2}) = \frac{1}{4}(2 + t^2 + \frac{1}{t^2})$$

易知:
$$r_1, r_2 \in [b, a]$$
, 故 $\frac{b^2}{a^2} \le t^2 \le \frac{a^2}{b^2}$

又函数
$$f(x) = x + \frac{1}{x}$$
 在 $\left[\frac{b^2}{a^2}, 1\right]$ 上单调递减,在 $\left[1, \frac{a^2}{b^2}\right]$ 上单调递增,

所以当 $t^2 = 1$ 即OA = OB时,AB取最小值 1;

当
$$t^2 = \frac{b^2}{a^2}$$
或 $\frac{a^2}{b^2}$ 时, AB 取最大值 $\frac{2\sqrt{3}}{3}$ 。

18. (高联赛) 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) 上任意两点 P , Q ,若 $OP \perp OQ$,则乘积 $|OP| \cdot |OQ|$ 的最小值为_____.

【解】 由椭圆的性质知
$$\frac{1}{|OP|^2} + \frac{1}{|OQ|^2} = \frac{1}{a^2} + \frac{1}{b^2} \ge \frac{2}{|OP||OQ|} \Rightarrow |OP||OQ| \ge \frac{2a^2b^2}{a^2 + b^2}$$
,

当且仅当|OP|=|OQ|时取等号

故
$$|OP||OQ|$$
的最小值为 $\frac{2a^2b^2}{a^2+b^2}$

- 19. (高联赛) 抛物线 $y^2=2px(p>0)$ 的焦点为 F ,准线为 l , A,B 是抛物线上的两个动点,且满足 $\angle AFB=\frac{\pi}{3}$. 设线段 AB 的中点 M 在 l 上的投影为 N ,则 $\frac{|MN|}{|AB|}$ 的最大值是______
 - 【解】由抛物线的定义及梯形的中位线定理得 $|MN| = \frac{|AF| + |BF|}{2}$.

在 $\triangle AFB$ 中,由余弦定理得

$$|AB|^2 = |AF|^2 + |BF|^2 - 2|AF| \cdot |BF| \cos \frac{\pi}{3} = (|AF| + |BF|)^2 - 3|AF| \cdot |BF|$$

$$\geq (|AF| + |BF|)^2 - 3(\frac{|AF| + |BF|}{2})^2 = (\frac{|AF| + |BF|}{2})^2 = |MN|^2,$$

即
$$\frac{|MN|}{|AB|} \le 1$$
,当且仅当 $|AF| = |BF|$ 时等号成立。故 $\frac{|MN|}{|AB|}$ 的最大值为1.

20. 如图,已知直线与抛物线 $y^2=2px(p>0)$ 交于 A,B 两点,且 $OA\perp OB,OD\perp AB$ 交 AB 于点 D ,点 D 的坐标为(2,1) , p=____。

【解】因 $k_{OD} = \frac{1}{2}$,故 $k_{AB} = -2$,因此,AB的方程为y-1 = -2(x-2),即

y = -2x + 5,将其代入抛物线方程,化简得

$$4x^2 - (20+2p)x + 25 = 0 \tag{*}$$

$$y_1 y_2 = (-2x_1 + 5)(-2x_2 + 5) = 4x_1 x_2 - 10(x_1 + x_2) + 25 = -5p$$
,

由题意知:
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = 0 \Rightarrow x_1 x_2 + y_1 y_2 = 0$$
,

即
$$\frac{25}{4} - 5p = 0$$
,解得 $p = \frac{5}{4}$ 。

另一方面, $p = \frac{5}{4}$ 时, 易验证方程 (*) 的判别式 $\Delta > 0$,

故,
$$p=\frac{5}{4}$$
。

21. 就 m 的不同取值,指出方程 $(m-1)x^2 + (3-m)y^2 = (m-1)(3-m)$ 所表示的曲线的形状分别为____。

【解】(1) m=1时,原方程变为 $2y^2=0$,故y=0,此表示x轴;

(2) m=3时,原方程变为 $2x^2=0$,故x=0,此表示y轴;

(3) 当
$$m \neq 1$$
且 $m \neq 3$ 时,原方程变形为 $\frac{x^2}{3-m} + \frac{y^2}{m-1} = 1$

- ① m=2 时,方程表示圆
- (2) 1 < m < 3, 但m ≠ 2时, 方程表示椭圆
- (3) m < 1或m > 3时,方程表示双曲线。

22. 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(b > a > 0)$ 的右焦点为F,O为坐标原点,若存在直线l过点F交双曲线C的右支于A,B两点,使 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$,则双曲线离心率的取值范围是

【解】当l斜率不存在时,AB为通径,此时,由 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$ 知 $\frac{b^2}{a} = c$,

从而
$$ac = c^2 - a^2 \Rightarrow e = \frac{\sqrt{5} + 1}{2}$$
;

当l斜率存在时,令 $A(x_1,y_1)$, $B(x_2,y_2)$,AB 斜率为k,则AB 方程为: y=k(x-c),将 其带入双曲线方程,化简得 $(b^2-a^2k^2)x^2+2a^2k^2cx-a^2k^2c^2-a^2b^2=0$

易知上述方程的判别式 $\Delta > 0$,

$$y_1 y_2 = k^2 (x_1 - c)(x_2 - c) = k^2 [x_1 x_2 - c(x_1 + x_2) + c^2]$$

故,由 $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0 \Rightarrow x_1 x_2 + y_1 y_2 = 0 \Rightarrow (1 + k^2) x_1 x_2 - k^2 c (x_1 + x_2) + k^2 c^2 = 0$

$$\Rightarrow k^2 = \frac{a^2b^2}{b^4 - a^2c^2}$$

由题意知:
$$|k| > \frac{b}{a}$$
, 故 $k^2 = \frac{a^2b^2}{b^4 - a^2c^2} > \frac{b^2}{a^2} \Rightarrow e < \sqrt{3}$,

综上,双曲线离心率的取值范围是
$$\left[\frac{\sqrt{5}+1}{2},\sqrt{3}\right]$$

23. 过抛物线 $y^2 = 2px(p > 0)$ 的焦点 F 作直线与抛物线交于 A, B 两点,以 AB 为直径画圆,观察它与抛物线准线 l 的关系,你能得到什么结论?相应于椭圆,双曲线又如何?你能证明你的结论吗?

【解】 令
$$A(x_1, y_1), B(x_2, y_2)$$
 ,则 $\odot M$ 的半径 $r = \frac{1}{2} |AB| = \frac{1}{2} (x_1 + x_2 + p)$

又,圆心
$$M(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$$
,

故
$$M$$
到准线的距离为 $d = \frac{x_1 + x_2}{2} - (-\frac{p}{2}) = \frac{1}{2}(x_1 + x_2 + p)$,

显然, d=r, 故 $\odot M$ 与准线相切。

注意: 也可用抛物线的定义证明结论

类似地,以椭圆的焦点弦 AB 为直径的圆与准线相离,以双曲线的焦点弦 AB 为直径的圆与准线相交,我们用圆锥曲线的第二定义证明如下:

(1) 椭圆情况: 不妨设 AB 过椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的右焦点 F ,椭圆离心率为 e , A, B 到右准线的距离分别为 d_1, d_2 ,则| $FA \models ed_1$,| $FB \models ed_2$,且圆心 M 到准线的距离为

$$\frac{d_1+d_2}{2}$$
 (如图,梯形的中位线)

另外,半径 $r=\frac{1}{2}|AB|=\frac{1}{2}(|FA|+|FB|)=\frac{d_1+d_2}{2}e<\frac{d_1+d_2}{2}$,即圆心到准线的距离大于半径,因此,以 AB 为直径的圆与准线相离。

(2) 双曲线的情况,参考椭圆的情况,我们有

$$r = \frac{d_1 + d_2}{2} e > \frac{d_1 + d_2}{2} \quad (\boxtimes \ni e > 1),$$

即,圆心到准线的距离小于半径,

因此,以AB为直径的圆与准线相交。

24. 设椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0), F_1, F_2$ 分别为椭圆的左、右焦点, $P(x_0, y_0)$ 在椭圆 C

求证: (1) 直线
$$l: \frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1$$
 是椭圆在 P 处的切线

(2) 从 F_2 发出的光线 F_2P 经直线l反射后经过 F_1 。

证明: (1) 因为 $P(x_0, y_0)$ 在椭圆上,所以 $\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$,所以P也在直线, $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$

上, 联立直线和椭圆方程

上

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \\ \frac{x_0 x}{a^2} + \frac{y_0 y}{b^2} = 1 \end{cases} \Rightarrow \begin{cases} y = \frac{a^2 b^2 - b^2 x_0 x}{a^2 y_0} \\ b^2 x^2 + a^2 y^2 = a^2 b^2 \end{cases} \Rightarrow \left(a^2 y_0^2 + b^2 x_0^2\right) - 2a^2 b^2 x_0 x + b^2 a^4 - a^4 y_0^2 = 0$$

因为P在椭圆上,

所以 $a^2y_0^2+b^2x_0^2=a^2b^2\Rightarrow a^2b^2x^2-2a^2b^2x_0x+a^2b^2x_0^2=0\Rightarrow \Delta=0\Rightarrow$ 直线l与椭圆相切,又因为 $l\cap C=P$,所以直线l是椭圆在点P处的切线。

(2) 设 F_2 关于直线l的对称点为 $F_2'\left(x_1,y_1\right)$,则 F_2,F_2' 的中点在直线l上,直线 F_2F_2' 与l垂直,

$$\begin{split} & \lim \left\{ \frac{y_1}{2} = \frac{a^2b^2 - b^2x_0}{a^2y_0} \xrightarrow{\frac{x+c}{2}} \right. \\ & \left\{ \frac{y_1}{x_1 - c} \times \frac{-b^2x_0}{a^2y_0} = -1 \right. \\ & \left\{ \frac{z_1^2 - b^2x_0}{z_1^2 - b^2x_0} = -1 \right. \\ & \left\{ \frac{z_1^2 - b^2x_0}{z_1^2 - b^2x_0} = -1 \right. \\ & \left\{ \frac{z_1^2 - b^2x_0}{z_1^2 - b^2x_0} = \frac{z_1^2 - b^2x_0}{z_1^2 - b^2x_0^2} \right. \\ & \left\{ \frac{z_1^2 - b^2x_0}{z_1^2 - b^2x_0^2} = -1 \right. \\ & \left\{ \frac{z_1^2 - b^2x_0}{z_1^2 - b^2x_0^2} = \frac{z_1^2 - b^2x_0^2 - b^2x_0^2}{z_1^2 - b^2x_0^2} \right. \\ & \left\{ \frac{z_1^2 - z_1^2 - b^2x_0^2 - b^2x_0^2}{z_1^2 - b^2x_0^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - b^2x_0^2}{z_1^2 - b^2x_0^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - b^2x_0^2}{z_1^2 - b^2x_0^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - b^2x_0^2}{z_1^2 - b^2x_0^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - b^2x_0^2}{z_1^2 - b^2x_0^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - b^2x_0^2}{z_1^2 - b^2x_0^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - b^2x_0^2}{z_1^2 - b^2x_0^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - b^2x_0^2}{z_1^2 - b^2x_0^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - b^2x_0^2}{z_1^2 - b^2x_0^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - b^2x_0^2}{z_1^2 - b^2x_0^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2}{z_1^2 - z_1^2 - z_1^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2}{z_1^2 - z_1^2 - z_1^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2}{z_1^2 - z_1^2 - z_1^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2}{z_1^2 - z_1^2 - z_1^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2}{z_1^2 - z_1^2 - z_1^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2}{z_1^2 - z_1^2 - z_1^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2}{z_1^2 - z_1^2 - z_1^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2}{z_1^2 - z_1^2 - z_1^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2}{z_1^2 - z_1^2 - z_1^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2}{z_1^2 - z_1^2 - z_1^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2 - z_1^2}{z_1^2 - z_1^2 - z_1^2} \right. \\ & \left. \frac{z_1^2 - z_1^2 - z_1^2 - z_1^2$$

所以 F_2', P, F_2 三点共线,

所以从 F_2 发出的光线 F_2P 经直线l反射后经过 F_1 。

- 25. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左、右顶点分别为 $A_1(-\sqrt{2},0), A_2(\sqrt{2},0), P$ 是椭圆 C 上异于 A_1, A_2 的任意一点,记直线 PA_1, PA_2 的斜率分别为 k_1, k_2 ,满足 $k_1 \cdot k_2 = -\frac{1}{2}$ 。
 - (1) 求椭圆C的标准方程;
- (2)过椭圆C的右焦点 F_2 作斜率为正的直线 l_1 ,分别与椭圆C交于A,B两点(A点在第一象限),线段AB的中点为Q,过点Q作直线 l_1 的垂线,分别交x,y轴于M,N两点。记 ΔOAB 的面积为 $S_{\Delta OAB}$ (O为坐标原点)。问是否存在实数 λ ,使得 $S_{\Delta OAB}$ = λ | MN |,若存在,求出 λ 的值;若不存在,请说明理由。

【解】(1) 因为
$$a = \sqrt{2}$$
,设 $P(x_0, y_0)$,则 $k_1 = \frac{y_0}{x_0 + \sqrt{2}}, k_2 = \frac{y_0}{x_0 - \sqrt{2}}$,

则
$$k_1 k_2 = \frac{y_0^2}{x_0^2 - 2} = -\frac{1}{2}$$
 ,

又因为
$$\frac{x_0^2}{a^2} + \frac{y_0^2}{b^2} = 1$$
,且 $a^2 = 2$ 代入得 $b^2 = 1$

所以椭圆 C 的标准方程为 $\frac{x^2}{2} + y^2 = 1$ 。

(2) 设AB的直线方程为x = my + 1(m > 0), $A(x_1, y_1), B(x_2, y_2), Q(x_0, y_0)$, 直线与椭圆联

立得
$$\begin{cases} \frac{x^2}{2} + y^2 = 1 \\ x = my + 1 \end{cases}$$
, 消去 x 得 $(my + 1)^2 + 2y^2 - 2 = 0$, 整理得 $(m^2 + 2)y^2 + 2my - 1 = 0$,

$$\text{If } y_1+y_2=\frac{-2m}{m^2+2}, y_1y_2=\frac{-1}{m^2+2} \ , \ \text{If } y_0=-\frac{m}{m^2+2}$$

所以
$$x_0 = \frac{-m^2}{m^2 + 2} + 1 = \frac{2}{m^2 + 2}$$
,即 $Q\left(\frac{2}{m^2 + 2}, \frac{-m}{m^2 + 2}\right)$

因为 $AB \perp MN$,则 $k_{MN} = -m$,

则
$$MN$$
 的直线方程为 $y + \frac{m}{m^2 + 2} = -m\left(x - \frac{2}{m^2 + 2}\right)$,

整理得
$$mx + y - \frac{m}{m^2 + 2} = 0$$
,

则
$$M\left(\frac{1}{m^2+2},0\right), N\left(0,\frac{m}{m^2+2}\right), MN = \frac{\sqrt{m^2+1}}{m^2+2}$$
 ,

则原点 O 到直线 AB 的距离 $d = \frac{1}{\sqrt{m^2 + 1}}$

$$\mathbb{X}$$
, $|AB| = \sqrt{1 + m^2} |y_1 - y_2| = \sqrt{1 + m^2} \times \sqrt{(y_1 + y_2)^2 - 4y_1y_2} = \frac{2\sqrt{2}(1 + m^2)}{m^2 + 2}$

故,
$$S_{\triangle OAB} = \frac{1}{2} |AB| d = \frac{\sqrt{2}\sqrt{m^2 + 1}}{m^2 + 2} = \sqrt{2} |MN|$$

故,存在实数 $\lambda = \sqrt{2}$,使得 $S_{OAB} = \lambda |MN|$ 。

26. **(2024 年新课标 II 卷)** 已知双曲线 $C: x^2 - y^2 = m(m > 0)$,点 $P_1(5,4)$ 在C上,k为 常数,0 < k < 1。按照如下方式依次构造点 $P_n(n = 2,3,\cdots)$,过点 P_{n-1} 且斜率为k的直线与C的 左支交于点 Q_{n-1} ,令 P_n 为 Q_{n-1} 关于y轴的对称点,记 P_n 的坐标为 (x_n,y_n) 。

(2) 证明: 数列
$$\{x_n - y_n\}$$
是公比为 $\frac{1+k}{1-k}$ 的等比数列;

(3) 设
$$S_n$$
为 $\Delta P_n P_{n+1} P_{n+2}$ 的面积,证明:对任意的正整数 n , $S_n = S_{n+1}$ 。

【解】(1) 由点
$$(5,4)$$
在双曲线 C 上得 $5^2-4^2=m$,即 $m=9$,

当
$$k = \frac{1}{2}$$
 时,直线 P_1Q_1 的方程为 $y = \frac{1}{2}(x-5)+4=\frac{1}{2}x+\frac{3}{2}$,

联立
$$\begin{cases} y = \frac{1}{2}x + \frac{3}{2}, & \text{if } y \notin x^2 - 2x - 15 = 0, & \text{mean} x = -3 \text{ or } x = 5, \\ x^2 - y^2 = 9 & \text{otherwise} \end{cases}$$

所以
$$Q_1(-3,0)$$
,则 $P_2(3,0)$,所以 $x_2=3,y_2=0$ 。

(2) 由题意得
$$Q_n(-x_{n+1}, y_{n+1})$$
, 直线 P_nQ_n 的方程为 $y = k(x-x_n) + y_n$,

联立
$$\begin{cases} y = k(x - x_n) + y_n \\ x^2 - y^2 = 9 \end{cases}, \quad \text{if } y \in (1 - k^2) x^2 - 2k(y_n - kx_n) x - (y_n - kx_n)^2 - 9 = 0,$$

所以
$$x_n + (-x_{n+1}) = \frac{2k(y_n - kx_n)}{1 - k^2}$$
,即 $x_{n+1} = x_n - \frac{2k(y_n - kx_n)}{1 - k^2}$

$$\mathbb{X} y_{n+1} = k \left(-x_{n+1} - x_n \right) + y_n = k \left[\frac{2k \left(y_n - kx_n \right)}{1 - k^2} - 2x_n \right] + y_n = \frac{2k \left(ky_n - x_n \right)}{1 - k^2} + y_n ,$$

所以
$$x_{n+1} - y_{n+1} = x_n - y_n - \frac{2k(y_n - kx_n)}{1 - k^2} - \frac{2k(ky_n - x_n)}{1 - k^2} = x_n - y_n - 2k\frac{(1+k)(y_n - x_n)}{1 - k^2}$$
$$= (x_n - y_n)\frac{1+k}{1-k},$$

又易得
$$x_1 - y_1 \neq 0$$
, $\frac{1+k}{1-k} \neq 0$, 所以数列 $\{x_n - y_n\}$ 是公比为 $\frac{1+k}{1-k}$ 的等比数列。

(3) 要证 $S_n = S_{n+1}$,即要证 $S_{{}_{\Delta P_n P_{n+1} P_{n+2}}} = S_{{}_{\Delta P_{n+1} P_{n+2} P_{n+3}}}$,则只需证 $P_{n+1} P_{n+2} / / P_n P_{n+3}$,即只需证

$$k_{P_{n+1}P_{n+2}} = k_{P_nP_{n+3}} \; , \quad \text{in the } \frac{y_{n+2} - y_{n+1}}{x_{n+2} - x_{n+1}} = \frac{y_{n+3} - y_n}{x_{n+3} - x_n} \; ,$$

所以
$$\begin{cases} x_n - y_n = t^{n-1} \\ x_n + y_n = \frac{9}{t^{n-1}} \end{cases}, \quad 解得 \begin{cases} x_n = \frac{1}{2} \left(\frac{9}{t^{n-1}} + t^{n-1} \right) \\ y_n = \frac{1}{2} \left(\frac{9}{t^{n-1}} - t^{n-1} \right) \end{cases}$$

$$\text{FFUX} \frac{y_{n+3} - y_n}{x_{n+3} - x_n} = \frac{\frac{9}{t^{n+2}} - t^{n+2} - \frac{9}{t^{n-1}} + t^{n-1}}{\frac{9}{t^{n+2}} + t^{n+2} - \frac{9}{t^{n-1}} - t^{n-1}} = \frac{9 + t^{2n+1}}{9 - t^{2n+1}},$$

$$\frac{y_{n+2} - y_{n+1}}{x_{n+2} - x_{n+1}} = \frac{\frac{9}{t^{n+1}} - t^{n+1} - \frac{9}{t^n} + t^n}{\frac{9}{t^{n+1}} + t^{n+1} - \frac{9}{t^n} - t^n} = \frac{9 + t^{2n+1}}{9 - t^{2n+1}},$$

所以,
$$\frac{y_{n+2}-y_{n+1}}{x_{n+2}-x_{n+1}}=\frac{y_{n+3}-y_n}{x_{n+3}-x_n}$$
,所以 $S_n=S_{n+1}$,证毕。