3.1 БУЛЕВІ ФУНКЦІЇ

Для зображення інформації в комп'ютерах використовується двійкова система числення. Таким чином, всі операції, які виконує комп'ютер, проводяться на множині {0,1}. Ці перетворення зручно формально зображати за допомогою апарата двійкової логіки, який був розроблений Джорджем Булем у середині XIX століття. Ця алгебраїчна структура є алгеброю і називається булевою.

Булева алгебра використовується при розв'язанні різних задач обробки інформації, при роботі з базами даних, в логічному програмуванні, при проектуванні інтелектуальних систем, для конструювання та аналізу роботи комп'ютерів та інших електронних пристроїв.

В даному розділі буде розглянуто основні властивості булевих функцій з аргументами з множини {0, 1} і способи зображення булевих функцій у вигляді виразів булевої алгебри. Булева функція може мати велику кількість змінних і знаків операцій, у той час, як може існувати інше, еквівалентне зображення даної функції, що має меншу кількість змінних і операцій. Буде описано методи одержання виразів з мінімальною кількістю змінних і знаків операцій.

3.1.1 Булеві змінні та функції

Розглянемо двохелементну множину B, елементи якої будемо позначати через 0 і 1: B={0,1}.

Змінні, які можуть приймати значення тільки з множини B, називаються *погічними* або *булевими змінними*. Самі значення 0 і 1 булевих змінних називаються *булевими константами*.

В мовах програмування для роботи з такими змінними, як правило, вводиться спеціальний логічний (булевий) тип (наприклад, у мовах Pascal i Java — boolean, у C++ — bool). Змінна цього типу приймає два значення: true i false.

Функція виду $y = f(x_1, x_2, ..., x_n)$, аргументи x_i і значення y якої належать множині B, називається **п-місною булевою функцією**. Такі функції також називають **логічними** або **перемикальними** функціями.

Кортеж $(x_1, x_2, ..., x_n)$ конкретних значень булевих змінних називається **двійковим словом (п-словом)** або **булевим набором** довжини n.

Отже, функція, що залежить від n аргументів, називається n-місною і є повністю визначеною, якщо задано її значення для всіх наборів (кортежів) значень аргументів.

Для булевої функції $y = f(x_1, x_2, ..., x_n)$ конкретне значення булевого набору $(x_1, x_2, ..., x_n)$ називається *інтерпретацією булевої функції* f.

3.1.2 Способи задання булевих функцій

Булеві функції можуть бути задані такими способами:

- 1) за допомогою таблиці істинності (значеннями на кожній з інтерпретацій);
- 2) порядковим номером, який має ця функція;
- 3) аналітично (у вигляді формули).

Розглянемо кожен із зазначених способів докладніше.

3.1.2.1 Таблиці істинності

Таблиці, в яких кожній інтерпретації (тобто набору елементів) функції поставлено у відповідність її значення, називаються *таблицями істинності* булевої функції.

В таблиці істинності кожній змінній та значенню самої функції відповідає по одному стовпчику, а кожній інтерпретації — по одному рядку. Кількість рядків у таблиці відповідає кількості різних інтерпретацій функції.

У таблиці 1 наведено приклад задання булевої функції від двох змінних. Перші два стовпці містять значення аргументів, а третій — значення функції при відповідних значеннях аргументів. Рядки містять всі можливі кортежі для двох булевих змінних.

Таблиця 1 – Приклад задання функції за допомогою таблиці істинності

х	У	f(x, y)
0	0	0
0	1	1
1	0	1
1	1	1

В загальному випадку для довільного n таблицю істинності можна представити у вигляді, представленому у таблиці 2.

Таблиця 2 — Таблиця істинності булевої функції $y = f(x_1, x_2, ..., x_n)$

x_1	 x_{n-1}	χ_n	$f(x_1, \ldots, x_{n-1}, x_n)$
0	 0	0	f(0,,0,0)
0	 0	1	f(0,,0,1)
0	 1	0	f(0,,1,0)
0	 1	1	f(0,,1,1)
	 		•••
1	 1	1	f(1,,1,1)

Множину наборів у таблиці істинності прийнято записувати у лексикографічному порядку, так що кожний набір являє двійкове число. Відповідне йому десяткове число будемо називати *номером набору* (кортежу). Так, номер набору 101 дорівнює 5, номер набору 110-6.

<u>Лема 1.</u> Кількість наборів булевої функції $f(x_1,...,x_n)$ від n змінних дорівнює 2^n . Кількість булевих функцій від n змінних дорівнює 2^{2^n} .

Доведення. Дійсно, множина всіх наборів булевої функції від n змінних утворена декартовим добутком $\{0,1\}^n$, потужність якого дорівнює 2^n . Множина всіх булевих функцій від n змінних є множина відображень $\{0,1\}^n \to \{0,1\}$, потужність якого дорівнює 2^{2^n} .

Таким чином, булева функція від двох змінних повністю визначена, якщо задано її значення в кожному із чотирьох можливих наборів ($2^2 = 4$); булева функція трьох аргументів — в кожному з восьми наборів ($2^3 = 8$). Кількість різних можливих булевих функцій від двох аргументів дорівнює 16, від трьох — 256.

Функції двох змінних відіграють важливу роль, тому що з них може бути побудована будь-яка булева функція.

Часто для спрощення запису булевої функції замість повного переліку змінних наборів використовують двійкові значення наборів, для яких функція набуває одиничних значень. Наприклад, запис

$$f(x_1, x_2, x_3) = \bigvee_{1}^{3} F(1, 4, 7)$$

означає, що функція набуває одиничних значень на наборах 1, 4 і 7. Таку форму запису називають *числовою*. Відповідна таблиця істинності має вигляд:

x_1	x_2	χ_3	$f(x_1,x_2,x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Булеві функції $\varphi(x)$, які залежать від однієї змінної, наведено в таблиці 3. Таблиця 3 — Таблиця булевих функцій від однієї змінної

х	φ_0	φ_1	φ_2	φ_3
0	0	0	1	1
1	0	1	0	1

Кожній функції відповідно до значень, що вона приймає, можна привласнити такі назви:

 $\varphi_0 = 0$ — функція константа 0,

 $\varphi_1 = x$ — функція повторення аргументу,

 $\varphi_2 = \overline{x}$ — функція інверсії або заперечення аргументу,

 $\varphi_3 = 1$ — функція константа 1.

Різні булеві функції двох змінних f(x, y) зображено в таблиці 4, їх кількість дорівнює 16.

Таблиця 4 – Таблиця булевих функцій від двох змінних

x	у	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Більшість із шістнадцяти булевих функцій f(x, y) часто застосовуються на практиці. Оскільки дані функції використовуються як у математиці, так і в програмуванні, вони можуть мати різне позначення. Позначення та назви булевих функцій від двох змінних зображено в таблиці 5.

Таблиця 5 – Позначення та назви булевих функцій від двох змінних

Функція Позначення		Назва	Булева формула	Інші
		Пазва	Булева формула	позначення
$f_0(x, y)$	0	Константа нуль	0	
$f_1(x, y)$	$x \wedge y = x \& y = $ Кон'юнкція = xy (логічне «і»)		$x \wedge y$	-, &, &&, *, AND, I, ×, min
$f_2(x, y)$	$x y = $ $= x \leftarrow y$	Заперечення (інверсія) імплікації	$x \wedge \overline{y}$	\
$f_3(x, y)$	x	Повторення х	x	
$f_4(x, y)$	$x \leftarrow y = $ $= y \leftarrow x$	Заперечення (інверсія) оберненої імплікації	$\overline{x} \wedge y$	\
$f_5(x, y)$	У	Повторення у	У	

Функція	Позначення	Назва	Булева формула	Інші позначення
$f_6(x, y)$	$x \oplus y$	Сума за модулем 2	$(\overline{x} \wedge y) \vee (x \wedge \overline{y})$	*, <>, ><, !=, XOR
$f_7(x, y)$	$x \vee y = x + y$	Диз'юнкція (логічне «або»)	$x \vee y$	OR, Abo, +, max
$f_8(x, y)$	$x \downarrow y$	Стрілка Пірса-Вебба (стрілка Пірса)	$\overline{x \vee y} = \overline{x} \wedge \overline{y}$	$x \overline{\vee} y, x \circ y$
$f_9(x, y)$	$x \sim y = $ $= x \equiv y$	Еквівалентність	$\overline{x \oplus y} =$ $= (x \to y) \land (y \to x) =$ $= (\overline{x} \lor y) \land (x \lor \overline{y}) =$ $= xy \lor \overline{x} \overline{y}$	⇔, ≡, Eqv, =
$f_{10}(x,y)$	$\overline{y} = \neg y$	Заперечення (інверсія) у	\overline{y}	$\neg y$
$f_{11}(x, y)$	$x \leftarrow y = \\ = y \rightarrow x$	Обернена імплікація	$x \vee \overline{y}$	N
$f_{12}(x, y)$	$\overline{x} = -x$	Заперечення (інверсія) <i>х</i>	\overline{x}	$\neg x$
$f_{13}(x, y)$	$x \to y$	Імплікація	$\overline{x} \vee y$	\supset , \Rightarrow , Imp
$f_{14}(x, y)$	$x \mid y$	Штрих Шеффера	$\overline{x \wedge y} = \overline{x} \vee \overline{y}$	$x \overline{\wedge} y$
$f_{15}(x,y)$	1	Константа одиниця	1	

Позначення Not, And, Or, Xor, Imp, Eqv внкористовуються у мові програмування Basic; позначення !, &, != використовуються у мові C; позначення \neg , \wedge , \vee використовуються в системі Mathcad. Для стислості у прикладах та викладеннях будемо опускати знак кон'юнкції і писати xy замість $x \wedge y$.

3.1.2.2 Номери булевих функцій та інтерпретацій

Кожній функції привласнюється порядковий номер у вигляді натурального числа, двійковий код якого зображує стовпчик значень функції у таблиці істинності. Молодшим розрядом вважається самий нижчий рядок (значення функції на інтерпретації (1, 1, ..., 1)), а старшим — самий верхній (значення функції на інтерпретації (0, 0, ..., 0)). Вказаний порядковий номер функції, як двійковий, так і десятковий, повністю визначає булеву функцію.

Кожній інтерпретації булевої функції також привласнюється свій номер — значення двійкового коду, який зображує інтерпретація. Інтерпретації, що записана у верхньому рядку таблиці істинності, привласнюється номер 0, потім йде інтерпретація номер 1 тощо. В самому нижчому рядку розташована інтерпретація за номером $2^n - 1$, де n — кількість змінних, від яких залежить булева функція.

Приклад. Знайдемо порядковий номер функції f(x, y), що приймає такі значення: f(0,0)=1, f(0,1)=1, f(1,0)=0, f(1,1)=1. Побудуємо таблицю істинності для цієї функції.

х	у	f(x, y)
0	0	1
0	1	1
1	0	0
1	1	1

Двійковий код, що відповідає значенням цієї функції, — 1101. Переведемо двійкове число 1101_2 у десяткову систему числення. Для цього кожному розряду двійкового числа привласнимо ваговий коефіцієнт, що кратний відповідному степеню числа 2, починаючи з нижчого рядку: 2^0 , 2^1 , 2^2 тощо. Помноживши ваговий коефіцієнт на відповідну двійкову цифру і додавши одержані значення, знайдемо порядковий номер функції:

$$1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 8 + 4 + 0 + 1 = 13_{10}$$
.

Таким чином, десятковий номер даної функції — 13, тобто розглянута функція імплікації $f_{13}(x,y) = x \rightarrow y$ (див. $f_{13}(x,y)$ в таблиці 4). Таким чином, функцію $f_{13}(x,y)$ можна задати за допомогою двійкового коду, що відповідає її двійковому номеру: $f_{13}(x,y)$ відповідає двійковому числу (1101)₂.

3.1.2.3 Властивості функцій алгебри логіки

Функція $f(x_1, x_2, ..., x_n)$ **суттєво залежить** від змінної x_i , якщо існує такий набір значень $a_1, ..., a_{i-1}, a_{i+1}, ..., a_n$, що

$$f(a_1,...,a_{i-1},0,a_{i+1},...,a_n) \neq f(a_1,...,a_{i-1},1,a_{i+1},...,a_n).$$

В цьому випадку змінна x_i називається **суттєвою** змінною, інакше x_i називають **несуттєвою** (фіктивною) змінною.

Наприклад, нехай булеві функції $f_1(x_1, x_2)$ та $f_2(x_1, x_2)$ задані таблицею істинності:

x_1	x_2	$f_1(x_1,x_2)$	$f_2(x_1,x_2)$
0	0	0	1
0	1	0	1
1	0	1	0
1	1	1	0

Для цих функцій змінна x_1 — суттєва, а x_2 — несуттєва.

Функції f_1 та f_2 називаються **рівними**, якщо функцію f_2 можна одержати з f_1 додаванням і/або вилученням фіктивних аргументів.

Можна вважати, що коли задано функцію f_1 , то задано також функцію f_2 .

Існують два типи функцій, які не мають суттєвих змінних:

- функція, тотожна 0 (константа 0);
- функція, тотожна 1 (константа 1).

Константи 1 і 0 можна розглядати як функції порожньої множини змінних.

3.1.2.4 Булева алгебра

Булева алгебра (загальна) — це алгебраїчна структура

$$\langle A, \{ \land, \lor, \neg, 0, 1 \} \rangle$$

з бінарними операціями \wedge , \vee : $A^2 \rightarrow A$, унарною операцією «¬»: $A \rightarrow A$ і виділеними елементами 0, 1 в носії A, операції якої задовольняють властивості комутативності, асоціативності, дистрибутивності.

Якщо носій алгебраїчної структури $B = \{0, 1\}$ складається з двох елементів, то така структура $\langle B, \{ \land, \lor, \lnot \} \rangle$ називається **двохелементною булевою** алгеброю.

Алгеброю логіки називається двохелементна булева алгебра

$$< B, \{ \land, \lor, \neg, \rightarrow, \sim \} >, B = \{0, 1\},$$

в якій множину операцій доповнено двома бінарними операціями: імплікацією та еквівалентністю.

3.1.2.5 Булеві функції та пріоритет операцій

Булеві функції можуть бути задані аналітично, тобто формулами.

Формула — це вираз, що містить булеві функції та їхні суперпозиції.

Суперпозицією називається спосіб одержання нових функцій шляхом підстановки значень одних функцій замість значень аргументів інших функцій, при цьому деякі з функцій можуть тотожно співпадати з однією із змінних.

Якщо у формулі відсутні дужки, то **операції виконуються у такій послідовності**: заперечення, кон'юнкція, диз'юнкція, імплікація та еквівалентність: \neg , \wedge , \vee , \rightarrow , \sim .

Необхідно відзначити, що знак операції заперечення може розміщатися не тільки над окремими змінними, але й над формулами або їхніми частинами. В цьому випадку операції виконуються так, як наче б то вираз, що знаходиться під знаком заперечення, було вкладено в дужки.

Приклад.
$$x \to \overline{z \wedge y \vee x} \vee z = x \to \left(\left(\overline{(z \wedge y) \vee x} \right) \vee z \right)$$
.

На відміну від табличного завдання, зображення функції формулою не єдине. Наприклад, функцію штрих Шеффера можна зобразити за допомогою основних операцій булевої алгебри формулами:

$$f_{14} = \overline{x}_1 \vee \overline{x}_2$$
 as $f_{14} = \overline{x_1 x_2}$,

а функцію стрілка Пірса таким чином:

$$f_8 = \overline{x}_1 \ \overline{x}_2$$
 afo $f_8 = \overline{x_1 \vee x_2}$,

Формули, що зображують одну й ту ж функцію, називаються еквівалентними або рівносильними.

Еквівалентність формул позначається знаком рівності. Один із способів встановити еквівалентність формул складається з такого: для кожної формули будується таблиця істинності, а потім одержані таблиці порівнюються, тобто фактично для кожного набору змінних перевіряється, чи дорівнюють на ньому значення функцій.

Приклад. Побудуємо таблицю істинності для функції, що задана такою формулою: $f(x,y,z) = xy \vee \overline{z}$.

Функція залежить від трьох змінних і, отже, для неї ϵ $2^3 = 8$ інтерпретацій. Для побудови таблиці істинності необхідно визначити значення функції на всіх інтерпретаціях:

$$f(0, 0, 0) = 0 \land 0 \lor \overline{0} = 0 \lor 1 = 1,$$

$$f(0, 0, 1) = 0 \land 0 \lor \overline{1} = 0 \lor 0 = 0,$$

$$f(0, 1, 0) = 0 \land 1 \lor \overline{0} = 0 \lor 1 = 1,$$

$$f(0, 1, 1) = 0 \land 1 \lor \overline{1} = 0 \lor 0 = 0,$$

$$f(1, 0, 0) = 1 \land 0 \lor \overline{0} = 0 \lor 1 = 1,$$

$$f(1, 0, 1) = 1 \land 0 \lor \overline{1} = 0 \lor 0 = 0,$$

$$f(1, 1, 0) = 1 \land 1 \lor \overline{0} = 1 \lor 1 = 1,$$

$$f(1, 1, 1) = 1 \land 1 \lor \overline{1} = 1 \lor 0 = 1.$$

Розмістимо в таблиці істинності інтерпретації в порядку збільшення відповідних їм двійкових номерів і запишемо одержане значення функції на кожній інтерпретації.

x	у	z	f(x, y, z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Існують й інші способи перевірки еквівалентності формул, які буде розглянуто далі.

3.1.3 Двоїстість

В основі булевої алгебри, як і в деяких інших алгебраїчних структурах, лежить принцип двоїстості.

Функція
$$f^*(x_1, ..., x_n)$$
 називається **двоїстою** до функції $f(x_1, ..., x_n)$, якщо
$$f^*(x_1, ..., x_n) = \overline{f}(\overline{x}_1, ..., \overline{x}_n). \tag{1}$$

Доведемо, що $\left(f^*\right)^*=f$. Для цього за формулою (1) знайдемо функцію, що двоїста f^* і, використовуючи закон подвійного заперечення $f=\overline{f}$, одержимо:

$$\left(f^*\left(x_1,...,x_n\right)\right)^* = \left(\overline{f}\left(\overline{x}_1,...,\overline{x}_n\right)\right)^* = \left(\overline{\overline{f}}\left(\overline{\overline{x}}_1,...,\overline{\overline{x}}_n\right)\right) = f\left(x_1,...,x_n\right).$$

Таким чином, відношення двоїстості між функціями симетрично. Із визначення двоїстості маємо, що для будь-якої функції двоїста їй визначається однозначно: $(f^*)^* = f$.

Функція, двоїста сама собі, тобто $f = f^*$, називається *самодвоїствою*.

Щоб побудувати таблицю істинності функції, що двоїста даній, необхідно побудувати таблицю істинності заданої функції, кожне значення булевої функції замінити на протилежне і записати одержаний стовпчик у зворотній послідовності.

Приклад. Знайти функцію, яка двоїста функції f(x, y, z), якщо відомо, що f(x, y, z) = 1 тільки на інтерпретаціях (001), (011), (111).

Для стовпця значень f генеруємо набір протилежних (інверсних) значень (10101110). Записавши його у зворотній послідовності, одержимо таким чином стовпчик значення двоїстої функції f:

x	у	Z	f(x, y, z)	$f^*(x, y, z)$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	1
1	1	0	0	0
1	1	1	1	1

Приклад. Самодвоїста функція $f = f^*$.

х	у	Z	f(x, y, z)	$f^*(x, y, z)$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Нехай функція F задана як суперпозиція функцій f_0 і функцій $f_1, ..., f_n$: $F = f_0 \ (f_1, ..., f_n)$. Функцію F^* , що двоїста F, можна одержати, замінивши в формулі F функції $f_0; \ f_1, ..., \ f_n$ на двоїсті до них $f_0^*; \ f_1^*, ..., \ f_n^*$.

$$F^* = f_0^* (f_1^*, ..., f_n^*)$$

Вкажемо функції, що двоїсті до «елементарних» функцій логіки $\land, \lor, \lnot,$ константа 0, константа 1:

$$f(x, y) = x \wedge y; \qquad f^*(x, y) = \overline{x} \wedge \overline{y} = x \vee y;$$

$$f(x) = \overline{x}; \qquad f^*(x) = \overline{\overline{x}} = \overline{x} = f(x);$$

$$f(x) = 0; \qquad f^*(x) = \overline{0} = 1 = f(x).$$

Оскільки відношення двоїстості симетрично, можна сказати, що кон'юнкція двоїста диз'юнкції, диз'юнкція двоїста кон'юнкції, функція «0» двоїста функції «1», і навпаки, а заперечення — самодвоїста функція.

<u>Правило</u> одержання двоїстих формул у булевій алгебрі: «Для того щоб одержати двоїсту формулу булевої алгебри, необхідно замінити в ній всі кон'юнкції

на диз'юнкції, диз'юнкції на кон'юнкції, 0 на 1, 1 на 0 і використовувати дужки, де необхідно, щоб порядок використання операцій залишився попереднім».

Приклад. Знайти функцію, двоїсту функції $f = x \vee \overline{y}z \vee 0$.

$$f^* = (x \vee (\overline{y}z) \vee 0)^* = x \wedge (\overline{y} \vee z) \wedge 1.$$

3.1.4 Закони булевої алгебри

1. Комутативність кон'юнкції та диз'юнкції

$$x \lor y = y \lor x$$
; $x \land y = y \land x$.

х	у	$x \vee y$	$y \vee x$
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

Сумістимо таблиці істинності для обох частин першої рівності. Стовпці $x \lor y$ і $y \lor x$ у таблицях істинності містять однакові значення, що доводить комутативність операції диз'юнкції. Знайдемо тотожність, двоїсту даній, для чого замінимо всі функції на двоїсті їм:

$$(x \lor y)^* = (y \lor x)^*$$
 $x \land y = y \land x.$

2. Асоціативність кон'юнкції та диз'юнкції

$$x \lor (y \lor z) = (x \lor y) \lor z;$$
 $x \land (y \land z) = (x \land y) \land z.$

Створимо таблиці істинності для лівої та правої частин другої рівності.

х	у	Z	$y \wedge z$	$x \wedge (y \wedge z)$	$x \wedge y$	$(x \wedge y) \wedge z$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	0	0	1	0
1	1	1	1	1	1	1

Стовпчики, що відповідають лівій та правій частинам другої рівності, містять однакові значення, що доводить справедливість тотожності $x \land (y \land z) = (x \land y) \land \land z$. Тотожність, що виражає асоціативність диз'юнкції, двоїста доведеній, оскільки може бути одержана з неї шляхом заміни всіх функцій на двоїсті їм, і, отже, вона теж правильна.

3. Дистрибутивність кон'юнкції та диз'юнкції відносно одна одній

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z);$$

 $x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z).$

Доведемо дистрибутивність кон'юнкції щодо диз'юнкції, використовуючи таблицю істинності.

х	у	Z	$y \vee z$	$x \wedge (y \vee z)$	$x \wedge y$	$x \wedge z$	$(x \wedge y) \vee (x \wedge z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Стовпчики, які відповідають лівій та правій частинам першої рівності, містять однакові значення, що і доводить справедливість рівності $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$. Двоїста тотожність виражає дистрибутивність диз'юнкції відносно кон'юнкції.

4. Ідемпотентність кон'юнкції та диз'юнкції

$$x \lor x = x$$
; $x \land x = x$.

Побудуємо таблиці істинності функцій з лівих частин рівності.

х	$x \vee x$	$x \wedge x$
0	0	0
1	1	1

В таблиці значення всіх стовпців однакові і співпадають із значенням змінної x, що і доводить обидві тотожності. Дані тотожності так, як і розглянуті вище, є двоїстими одна одній.

5. Закон виключеного третього

$$x \vee \overline{x} = 1$$
.

Доведемо цей закон, використовуючи таблицю істинності.

x	\overline{x}	$x \vee \overline{x}$
0	1	1
1	0	1

Стовпчик таблиці істинності, який зображує ліву частину тотожності, що доводиться, дорівнює константі одиниці, що і треба було довести.

6. Закон протиріччя

$$x \wedge \overline{x} = 0$$
.

Цей закон ϵ двоїстим до доведеного вище закону виключеного третього.

7. Тотожності з константами

$$x \lor 0 = x$$
; $x \land 1 = x$; $x \lor 1 = 1$; $x \land 0 = 0$.

Побудуємо таблиці істинності для лівих частин тотожностей.

x	$x \vee 0$	$x \wedge 1$	$x \vee 1$	$x \wedge 0$
0	0	0	1	0
1	1	1	1	0

Одержана таблиця доводить справедливість даних тотожностей.

8. Закони елімінації

$$x \wedge (x \vee y) = x$$
; $x \vee (x \wedge y) = x$.

Доведемо цей закон аналітично, використовуючи тотожності з константами і дистрибутивний закон:

$$x \wedge (x \vee y) = (x \vee 0) \wedge (x \vee y) = x \vee (0 \wedge y) = x \vee 0 = x;$$

 $x \vee (x \wedge y) = (x \wedge 1) \vee (x \wedge y) = x \wedge (1 \vee y) = x \wedge 1 = x.$

9. Закон подвійного заперечення

$$\overline{\overline{x}} = x$$
.

Побудуємо відповідну таблицю істинності. Одержана таблиця істинності доводить справедливість тотожності.

х	\overline{x}	$\overline{\overline{x}}$
0	1	0
1	0	1

Hacnidok. Якщо до деякої частини A формули F булевої алгебри операція заперечення застосована більше одного разу, то можна видалити будь-яке парне число даних операцій і значення формули F не зміниться.

10. Закони де Моргана

$$\frac{\overline{x}}{x \vee y} = \overline{x} \wedge \overline{y}; \qquad \overline{x \wedge y} = \overline{x} \vee \overline{y}.$$

Доведемо першу з наведених тотожностей за допомогою таблиці істинності.

x	у	$x \vee y$	$\overline{x \vee y}$	\bar{x}	\overline{y}	$\frac{-}{x} \wedge \frac{-}{y}$
---	---	------------	-----------------------	-----------	----------------	----------------------------------

0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Побудована таблиця істинності доводить справедливість тотожності. Другий закон де Моргана ϵ двоїстим першому і, отже, також ϵ правильним.