

Scaling your Database

Presented by:
Cory Isaacson, CEO
CodeFutures Corporation
http://www.dbshards.com

In partnership with: UnGeo(安久科技) www.ungeo.com

- □ Who I am
 - Cory Isaacson, CEO of CodeFutures
 - Providers of dbShards
 - Author of Software Pipelines
- Partnerships:

UnGeo(安久科技)

- Provider of cloud computing in China
- Leaders in scalability, performance, high-availability and database solutions...
 - ...based on real-world experience with dozens of high-performance applications
 - ...social networking, gaming, data collection, mobile, analytics
- Objective is to provide useful experience you can apply to scaling (and managing) your database tier...
 - ...especially for high volume applications

Challenges of high-volume applications 11

- □ Need to scale
 - Must handle large growth in users, transaction volume
- Hardware failures
 - Partial network outages
 - Server failures
 - Disk failures
- Resources are limited
 - CPU
 - □ I/O Rates

Scaling your application

- Scaling Load Balancers is easy
 - Stateless routing to app server
 - Can add redundant Load Balancers if needed
 - Round-robin or intelligent routing for larger sites
 - If one goes down...
 - ...failover to another
- Scaling Application Servers is easy
 - Stateless
 - Add or remove servers as need dictates
 - □ If one goes down...
 - ...failover to another

Scaling your application

- Scaling the Database tier is hard
 - "Stateful" by definition (and necessity...)
 - Large, integrated data sets...
 - 10s of Gigabytes to Terabytes (or more...)
 - Difficult to move, reload
 - I/O dependent...
 - ...disk speeds are limited
 - If one goes down...
 - ...ouch!
- Databases form the "last mile" of true application scalability
 - Initially simple optimization produces the best result
 - Implement a follow-on scalability strategy for long-term performance goals...
 - ...plus a high-availability strategy is a must

More Database scalability chalence 2011

- Databases have many other challenges that limit scalability
 - ACID transaction compliance...
 - ...especially Consistency
 - ...user contention
 - Operational challenges
 - Failover
 - Planned, unplanned
 - Maintenance
 - Index rebuild
 - Restore
 - Space reclamation
 - Lifecycle
 - Reliable Backup/Restore
 - Monitoring
 - Application Updates
 - Management

Database slowdown is not line to C2011

GB	Load Time (Min)
.9	1
1.3	2.5
3.5	11.7
39.0	10 days

Challenges apply to all types of DTCC2011 databases

- Traditional RDBMS (MySQL, Postgres, Oracle...)
 - I/O bound
 - Multi-user, lock contention
 - High-availability
 - Lifecycle management
- In-memory Databases (NoSQL, Caching, Specialty...)
 - Reliability
 - Limits of a single server
 - ...and a single thread
 - Data dumps to disk
 - High-availability
 - Lifecycle Management
- No matter what the technology, big databases are hard to manage...
 - ...scaling is a real challenge
 - ...degradation from growth in size and volume is a certainty

The Laws of Databases

- Law #1: Small Databases are fast...
- □ Law #2: Big Databases are slow...
- Law #3: Keep databases small

- Database sharding is the only effective method for achieving scale, elasticity, reliability and easy management...
 - ...regardless of your database technology

What is Database Sharding DTCC2011

"Horizontal partitioning is a database design principle whereby rows of a database table are held separately... Each partition forms part of a shard, which may in turn be located on a separate database server or physical location." Wikipedia

The key to Database Sharding CC2011

Share Nothing.

Database Sharding... the reput CC 2011

Why does Database Sharding pod@2011

- Maximize CPU/Memory per database instance...
 - ...as compared to database size
- No contention between servers
 - Locking, disk, memory, CPU
- Allows for intelligent parallel processing...
 - ...Go Fish queries across shards
- Keep CPUs busy and productive

Black box vs. Relational Sharpting 2011

- □ Both utilize sharding on a data key...
 - ...typically modulus on a value or consistent hash
- Black box sharding is automatic...
 - ...attempts to evenly shard across all available servers
 - ...no developer visibility or control
 - ...can work acceptably for simple, non-indexed NoSQL data stores
 - ...easily supports single-row/object results
- Relational sharding is defined by the developer...
 - ...selective sharding of large data
 - ...data from related tables remain together
 - ...explicit developer control and visibility
 - ...tunable as the database grows and matures
 - ...more efficient for result sets and searchable queries

How Relational Sharding worksCC2011

How Relathional Sharding worksC2011

More on Cross-Shard result sptscc2011

- Black Box approach requires "scatter gather" for multi-row/object result set...
 - ...common with NoSQL engines
 - ...forces use of denormalized lists
 - ...must be maintained by developer/application code
 - ...Map Reduce processing helps with this (non-realtime)
- Relational Sharding provides access to meaningful result sets of related data...
 - ...aggregation, sort easier to perform
 - ...logical search operations more natural

What about High-Availabilitpacc2011

- Can you afford to take your databases offline:
 - ...for scheduled maintenance?
 - ...for unplanned failure?
 - ...can you accept some lost transactions?
- By definition Database Sharding adds failure points to the data tier
- □ A proven High-Availability strategy is a must...
 - ...system outages
 - ...planned maintenance

Database Sharding...elastic 19 th a cod 1911

- Expand the number of shards...
 - ...divide a single shard into N new shards
- Contract the number of shards...
 - ...consolidate N shards into a single shard
- Due to large data sizes, this takes time...
 - ...regardless of data architecture
- Requires High-Availability to ensure no downtime...
 - ...perform scaling on live replica

Database Sharding...the future C2011

- Ability to leverage proven database engines...
 - ...SQL
 - ...NoSQL
 - ...Caching
- Allow developers to select the best database engine for a given set of application requirements...
 - ...seamless context-switching within the application
 - ...use the API of choice
- Improved management...
 - ...monitoring
 - ...configuration "on-the-fly"
 - ...dynamic elastic shards based on demand

Database Sharding summaryDTCC2011

- Database Sharding is the most effective tool for scaling your database tier...
 - ...spread your database across many servers
- Relational Sharding is strongest approach...
 - ...keep related data together
 - ...developer controlled, can be optimized over time
- Ensure your High-Availability is proven and bulletproof...
 - ...must support failure and maintenance

Questions/Answers

DTCC2011

Cory Isaacson
CodeFutures Corporation

cory.isaacson@codefutures.com
http://www.dbshards.com

Gary Jia UnGeo(安久科技) gary@ungeo.net http://www.ungeo.net