Multinationals and Uncertainty: The Role of Internal Capital Markets*

Jianlin Wang University of California, Berkeley

October 30, 2022

WORK IN PROGRESS. PLEASE CHECK THE LATEST VERSION HERE: https://www.dropbox.com/s/lgt1bvzx3wbsa91/ICM.pdf?dl=0

Abstract

I study how external debt of multinational enterprises (MNEs) across capital markets respond to country-level uncertainty shocks via their internal capital markets (ICMs). When MNEs raise external debt to finance risky investments, a parent company can have an incentive to borrow for its foreign subsidiaries as their returns diversify the parent-level credit risk. In this case, a country-level uncertainty shock tends to generate a negative cross-border spillover by raising the parent-level risk premium, leading to a global contraction of the MNE. However, when MNEs use standalone subsidiary-level debt as local informed capital to address agency problems of their foreign subsidiaries, the uncertainty shock can enhance the local lender's incentive for monitoring. This allows MNEs to improve their debt structure by substituting cheaper parent-level debt for portions of the expensive local informed capital without destroying the local monitoring incentive. The improvement of the debt structure allows MNEs to activate their ICMs and counteract the uncertainty shock by substituting external debt across borders. I present a framework to formalize the role of the local informed capital as a stabilizing force when interacting with the ICMs and derive testable predictions. I test my predictions at both parent and subsidiary levels using the interregnum following the unexpected Brexit vote as a natural experiment to identify an exogenous rise of uncertainty in the UK. Consistent with my predictions, I find evidence that US parent companies with UK subsidiaries substituted parent-level debt for subsidiary-level debt significantly in their consolidated debt structure (a 1.8 percentage point or 9 percent increase in the ratio of parent-level debt to total assets, conditioning on leverage). Meanwhile, the UK subsidiaries of US MNEs substituted internal debt for external debt significantly in their unconsolidated debt structure (a 7 percentage point increase in the ratio of internal debt to total assets, conditioning on leverage).

Keywords: multinational enterprises; uncertainty shocks; internal capital market; debt structure; delegated monitoring; cross-border capital flows; Brexit

JEL Codes: D81, D86, E22, E44, F21, F23, F34, G30

^{*}I am ever grateful to Pierre-Olivier Gourinchas, Maurice Obstfeld, David Sraer, and Chen Lian for their patience and guidance. I thank Yuriy Gorodnichenko, Lee Seung Joo, Patrick Kline, Sarah Lein, Yueran Ma, Emi Nakamura, Ali Ozdagli, Benjamin Schoefer, Jón Steinsson, and seminar participants for feedback at various stages. All views and errors are my own. Contact for Jianlin Wang: Department of Economics, University of California at Berkeley, jianlinw@berkeley.edu

1 Introduction

Do multinational enterprises (MNEs) substitute external debt across capital markets internally in response to uncertainty shocks? MNEs, along with their vast network of foreign subsidiaries, are an influential economic force in today's world. They account for around 1/3 of output and value added, 50% of international trade, and 25% of employment in the global economy (OECD 2019). They also contribute significantly to the international comovements of investment, output, and employment growth. Recent evidence has further shown that business groups, including MNEs, actively use their internal capital markets (ICMs) to reallocate capital in response to shocks.² Though external capital markets across borders are interconnected by the ICMs of global banks through substitutions of external lending (Brauning and Ivashina 2020), little attention has been paid on the interconnection of external capital markets via the ICMs of MNEs. When there is a country-level increase in risk premia, will MNEs globally contract external borrowings because the country-level shock lifts the group-level risk premium through the ICMs? Can MNEs counteract by raising external debt from other capital markets to substitute the now more expensive local debt? Does a higher credit demand by MNEs in one country always imply a rise in their domestic investment? My paper makes the first attempt to answer these questions by providing evidence that MNEs perform significant cross-border debt substitutions via their ICMs to counteract the negative effect of country-level uncertainty shocks.

While other shocks are interesting, my study focuses on uncertainty shocks for three reasons. First, existing evidence suggests that uncertainty shocks can contribute to aggregate fluctuations and business cycles significantly (e.g., Arellano, Bai, and Kehoe 2019, Bloom et al. 2018, Basu and Bundick 2017, Christiano, Motto, and Rostagno 2014, Gilchrist, Sim, and Zakrajsek 2014, Julio and Yook 2012, Fernandez-Villaverde et al. 2011, Bloom 2009, etc.). At the same time, there has been limited attention on how MNEs interact with uncertainty shocks, especially from the perspective of external debt substitutions via their ICMs. Given the global

¹For instance, Bena, Dinc, and Erel (2021), Boehm, Flaaen, and Pandalai-Nayar (2019), Cravino and Levchenko (2017), Desai, Foley, and Hines (2009), etc.

²For example, Buchuk et al. (2020), Santioni, Schiantarelli, and Strahan (2020), Kim, Wilcox, and Yasuda (2020), Biermann and Huber (2020), Almeida, Kim, and Kim (2015), Gopalan, Nanda, and Seru (2007), etc.

³See Fernandez-Villaverde and Guerron-Quintana (2020) for a detailed literature review.

importance of MNEs, understanding their responses to uncertainty shocks can be valuable in understanding how MNEs propagate or ameliorate macroeconomic fluctuations internationally.

Secondly, the literature tends to emphasize the role of agency problems associated with financial intermediation in the transmission mechanism of uncertainty shocks (Fernandez-Villaverde and Guerron-Quintana 2020). Meanwhile, the same problems can be important in deciding the debt structure of MNEs and the coordination of their ICMs. The shared friction can make the ICMs of MNEs particularly suitable in transferring uncertainty shocks, either amplifying or mitigating their impact in the process.

Finally, uncertainty has been at the forefront of discussions among policymakers and investors for at least the last two decades. The Federal Open Market Committee (FOMC) minutes have repeatedly underlined uncertainty as a key factor in every US recession since 2000. The world has witnessed a rising number of major uncertainty shocks in recent years due to Brexit, the US-China trade war, and the US presidential campaigns, among others. The ongoing COVID-19 crisis, Russo-Ukrainian conflict, and COVID-related inflation risk have challenged policymakers and investors with an unprecedented amount of uncertainty.⁴ As today's world is characterized by a high level of globalization with an increasingly high level of uncertainty (De Bandt, Bricongne, and Fontagne 2021), insights on how MNEs interact with uncertainty shocks can yield valuable policy implications.

To examine how external borrowings of MNEs respond to uncertainty shocks via the ICMs, I first present a framework of a representative MNE and derive testable predictions. In the framework, a representative MNE operates in its home country through a parent company and in a foreign country through a foreign subsidiary owned by the parent company. The MNE faces uncertainty shocks to the return of its investments, consistent with Christiano, Motto, and Rostagno (2014), in the countries of its operations. A key point of my framework is that agency problems matter for the debt structure of the MNE, which affects the response of its external borrowings across capital markets to an uncertainty shock. In line with the existing evidence, I incorporate agency problems aiming to capture two features: 1) MNEs have costly

⁴As Christine Lagarde, President of the European Central Bank, mentioned in her speech on June 13, 2020 "There is no doubt that the economic situation we face today is characterised by profound uncertainty. Looking into the future has rarely been harder." https://www.ecb.europa.eu/press/key/date/2020/html/ecb.sp2 00613~890270bad1.en.html.

defaults and borrow with risk premia. 2) Business groups with complex operations, such as MNEs, face limited internal monitoring capacity and have operational risk (e.g., Jorion 2007, Chernobai, Jorion, and Yu 2011, Chernobai, Ozdagli, and Wang 2021, etc.).

When facing with a costly default, the parent company has an incentive to borrow for the foreign subsidiary to minimize the funding cost of the MNE. This is because the parent company can use the equity of the foreign subsidiary to serve its debt by ownership if needed, not vice versa. Thus, the parent company has a comparative advantage in raising external debt when it can use the return of the foreign subsidiary to diversify its credit risk.⁵

While the parent company enjoys a diversification benefit, the diversification can come with complex operations that limit the internal monitoring capacity of the parent company, especially over the foreign subsidiary. Such limited internal monitoring capacity is costly when there is subsidiary-level managerial misbehavior, which is in line with the principal-agent problem of Holmstrom and Tirole (1997), given that the parent company is the shareholder of the foreign subsidiary. The significance of the limited internal monitoring capacity and the associated losses have been witnessed by the growing literature of operational risk.⁶ It can also be reflected by the higher group-level risk premia charged to MNEs with complex intra-group transfers due to concerns over weak corporate governance and low managerial ability (e.g., Richardson, Taylor, and Obaydin 2020). The issue is further consistent with the studies that argues ICMs can destroy values due to internal agency problems (e.g., Villalonga 2004, Schoar 2002, Whited 2001, Lamont 1997, etc.).

To capture the critical role of monitoring in understanding financial intermediation following the seminal work of Holmstrom and Tirole (1997), my model allows the MNE to utilize subsidiary-level debt as informed capital for local monitoring. The argument is that local informed lenders, especially local banks, have a comparative advantage in accessing local private information and monitoring efficiency, which complements the MNE's limited internal monitoring capacity. With a sufficient incentive to protect their returns, foreign informed lenders can

⁵As will be clear in the model, the parent company can raise external debt directly in the home country, from the foreign country through the foreign subsidiary, or by guaranteeing the external debt of the foreign subsidiary.

⁶For instance, recent studies have pointed out the importance of operational losses due to managerial misbehavior among US bank holding companies as complex financial MNEs (e.g., Berger et al. 2022, Chernobai, Ozdagli, and Wang 2021, Cetorelli and Goldberg 2014, etc.).

⁷There is a rich literature on the comparative advantage of banks in accessing private information as insiders

be used to address the managerial misbehavior of the foreign subsidiary through local monitoring. This is valuable for the MNE since the return of the foreign subsidiary supports the parent-level debt. An improved performance of the foreign subsidiary, therefore, leads to a reduction in the funding cost at the group level.

How will the MNE's external borrowings respond to uncertainty shocks with the presence of the agency problems? When the MNE uses parent-level debt to internally finance the foreign subsidiary, a foreign uncertainty shock tend to generate a negative cross-border spillover by raising the parent-level risk premium, leading to a global contraction of the MNE. However, when local informed capital is also used in equilibrium for delegated monitoring, they can act as a counterbalancing force. This is because a surge of foreign uncertainty can enhance a local informed lender's incentives to monitor the foreign subsidiary to protect their own returns. As a result, the parent company can raise parent-level debt globally to substitute the more expensive local informed capital without destroying the local lender's incentives for monitoring. Such cross-border external debt substitution improves the debt structure of the MNE, offsetting the negative impact of the uncertainty shock at least partially. The usage of the local informed capital, especially local bank debt, can therefore help anchor foreign capital in an economy during periods of heightened uncertainty via the ICMs of MNEs.

Guided by the theoretical insights, I bring my predictions to the test using the Brexit interregnum (6/23/2016-2018), a period between the Brexit referendum and the first Brexit proposal made by the UK government, as a natural experiment. The Brexit interregnum is particularly suitable to identify a major country-level uncertainty shock for three reasons. First, it witnessed a large, broad, and persistent rise in uncertainty in the UK, following the mostly unexpected vote for Brexit, with little other change (Bloom et al. 2019). Importantly, the UK still remained in the EU during the this period, meaning no real change associated with the actual Brexit occurred. Though the vote caused a strong initial reaction, it was soon clear that there was a severe lack of clarity and progress on the Brexit negotiations. This leads to a large and dominating uncertainty shock in the country during the interregnum.⁸

and preventing moral hazard via monitoring. See, for instance, Stiglitz and Weiss (1983), Diamond (1984), Fama (1985), Rajan (1992), Hoshi et al. (1993), Park (2000), Focarelli, Pozzolo, and Casolaro (2008), Altman, Gande, and Saunders (2010), Mehran and Thakor (2011), Lin et al. (2013), Addoum and Murfin (2020), Branzoli and Fringuellotti (2020), Acharya, Almeida, Ippolito, and Perez-Orive (2021), etc.

⁸For instance, Bloom et al. (2019) report that firms within the UK in late 2017 and early 2018 on average put a more than 50% probability that the eventual Brexit would have a non-negative impact on their sales.

Secondly, the borrowing cost and credit supply in the UK has been stabilized by the BoE during this period (BoE 2017, BoE 2018). This differentiates my study with the existing literature as internal debt flows toward the UK during the interregnum cannot be explained by a capital reallocation via the ICMs of MNEs in response to local credit stress. The stabilized credit environment also helps create a clean estimation for the direct effect of an uncertainty shock to investment returns, which is important in driving aggregate fluctuations and business cycles (e.g., Christiano, Motto, and Rostagno 2014, etc.).

Lastly, the natural experiment itself is a significant event for not only the uncertainty shock literature, but also the activities of MNEs in general. The UK is one of the top 5 countries that hosts the largest inward production by majority-owned foreign subsidiaries. It is also one of the top 7 countries that control almost 70% of the global production by majority-owned foreign subsidiaries (Cadestin et al. 2018). The country has traditionally been the most important countries for majority-owned foreign subsidiaries of US MNEs in terms of output and value added (BEA 2021). Understanding how the ICMs of MNEs respond to a major country-level uncertainty shock in the UK itself, therefore, can provide valuable insights on how MNEs transmit shocks across borders, especially through external capital markets.

Based on the natural experiment, I test my predictions with empirical analyses at both parent and subsidiary levels. My parent-level analysis utilizes the consolidated financial statements of US public non-financial MNEs from Compustat and Capital IQ, combined with Orbis to track the MNEs' complete ownership structure. The advantage of the parent-level analysis is that public firms in the US are required to disclose their detailed debt structure in the consolidated financial statements. This allows me to test if the US parent companies with non-financial sub-

Meanwhile, with more than one year after the vote, they assigned an average 15% probability that the Brexit would never happen, reflecting the confusion about the Brexit negotiations. They also only allocated a below 30% probability on average that there would be a no deal Brexit, which turns out to be the correct outcome. The low expectation on a no deal Brexit is in line with the remarkably stable demand condition in the UK during the interregnum (Broadbent 2017, BoE 2017, BoE 2018). Similarly, the sterling exchange rate against the dollar appreciated consistently back to the pre-referendum level by 2018, after the immediate drop in the first two months following the referendum. I cut the natural experiment period at the end of 2018 to focus on a time when the uncertainty shock was dominating in the UK. The UK government, after much delay, made its first Brexit proposal at the end of 2018, which was rejected by the EU. The two parties subsequently reached another agreement, which was then rejected by the UK Parliament. These developments further postponed the Brexit and, in 2019, a negative Brexit outcome, such as a no-deal Brexit, started to become a real concern (Bloom et al. 2019).

⁹For studies that explore this mechanism, see Biermann and Huber (2020), Buchuk et al. (2020), Santioni, Schiantarelli, and Strahan (2020), Kim, Wilcox, and Yasuda (2020), Almeida, Kim, and Kim (2015), etc.

sidiaries in the UK substituted parent-level debt for subsidiary-level debt, conditioned on their book leverage (i.e., total debt over total assets), in response to the exogenous Brexit uncertainty shock. Using a Difference-in-Differences (DID) identification strategy, where the Brexit interregnum acts as the after period, I find that the uncertainty shock induced a significant external debt substitution, consistent with my model prediction. Specifically, I estimate that the US parent companies with UK subsidiaries raised the ratio of parent-level debt to total assets by 1.8 percentage points or 9 percent, conditioning on the book leverage, relative to the US parent companies without an UK subsidiary. In addition, the debt structure and book leverage of the two groups display no time-varying difference before the Brexit interregnum, when there was no persistent uncertainty shock in the UK.

My findings on the external debt substitution survives a battery of robustness tests. The results are robust after controlling for the characteristics of the parent companies, including measures of their size, growth opportunities, and liquidity. The substitution cannot be explained by time-varying trends at the industry level. It is not driven by changes in the US as there is no relative adjustment in the debt structure between the US MNEs without an UK subsidiary and US domestic business groups. It also cannot be explained by changes in the EU27 after using the US parent companies with non-financial subsidiaries in the EU27, but no subsidiaries in the UK, as a placebo treatment group. Furthermore, my results are robust to various matching exercises and are not driven by US MNEs' potential exposures to the quantitative easing by the BoE and European Central Bank (ECB). If anything, the last two robustness checks make my findings marginally stronger.

Given the parent-level external debt substitution indicated by the consolidated financial statements, I turn to subsidiary-level data to investigate if the UK subsidiaries of US MNEs adjusted their debt structure accordingly. My subsidiary-level analysis utilizes the regulatory data on the unconsolidated balance sheets of UK firms from the UK Companies House, together with the corporate ownership structure data from Orbis. The advantage of the subsidiary-level analysis is that UK firms are required to report their external and internal debt separately on the unconsolidated balance sheets, which enables a test for the substitution in the debt structure. Specifically, I perform a DID analysis using the subsidiaries of UK domestic business groups as the counterfactuals for the UK subsidiaries of US MNEs. The argument is that US MNEs use more non-UK assets to support their parent-level debt comparing with UK domestic

business groups, while the non-UK assets were less affected by the country-level uncertainty shock, if at all. Therefore, when facing with the uncertainty shock that induces an external debt substitution, the parent companies of US MNEs can better exploit the substitution by raising parent-level debt. The UK subsidiaries of US MNEs would experience a stronger substitution in their unconsolidated debt structure as a result.

In line with my prediction, I find a significant substitution in the subsidiary-level debt structure during the Brexit interregnum. The UK subsidiaries of US MNEs decreased the ratio of external debt to total assets by about 7 percentage points in exchange for an equivalent increase in the ratio of internal debt to total assets relative to the subsidiaries of UK domestic business groups. The substitution in the unconsolidated debt structure cannot be explained by changes associated with size and accounting leverage (i.e., total liabilities over total assets). It also cannot be explained by time-varying trends at the industry level. Furthermore, there has been no time-varying difference in the debt structure and accounting leverage of the two groups before the Brexit interregnum, when there was no persistent uncertainty shock in the UK. Consistent with the argument that the parent companies of foreign MNEs in general can better exploit the substitution by raising parent-level debt backed by non-UK assets, my results are not confined within the UK subsidiaries of US MNEs. In fact, my results are robust when comparing the UK subsidiaries of foreign MNEs in general with the subsidiaries of UK domestic business groups. In conclusion, the findings of my subsidiary- and parent-level analyses complement each other. They jointly provide evidence that MNEs perform significant external debt substitutions across capital markets via the ICMs in response to country-level uncertainty shocks.

The rest of my article is organized as follows. Section 2 performs the literature review. Section 3 presents the theoretical framework of how the ICMs of MNEs respond to uncertainty shocks with testable predictions. Section 4 provides evidence from the parent-level analysis, which is complemented by the subsidiary-level analysis described in Section 5. Section 6 concludes the study.

2 Literature Review

My paper contributes to several strands of the literature. First, it extends a growing literature examining the interplay between the ICMs of business groups and external capital markets.

My research is particularly connected with recent studies demonstrating that business groups actively use their ICMs to reallocate capital in response to shocks associated with external capital markets. For instance, Santioni, Schiantarelli, and Strahan (2020) show that Italian domestic business groups used internal debt to reduce the failure rate of their affiliated firms when facing with local credit stress. Buchuk et al. (2020) report that the internal lending and borrowing activities of Chilean domestic business groups intensified along the ownership links during the 2008 financial crisis. Kim, Wilcox, and Yasuda (2020) document that the internal funding support from Japanese parent companies softened the shocks to their subsidiaries during economic and financial crises in Japan. These recent findings are consistent with the equity reallocation of Korean business groups during the Asian financial crisis of the late 1990s (Almeida, Kim, and Kim 2015) and the cash reallocation of Indian business groups to negative cash-flow shocks (Gopalan, Nanda, and Seru 2007).

Though the existing evidence tends to focus on domestic business groups, a common conclusion is that business groups reallocate capital significantly via their ICMs as a response to shocks. An important, yet remaining, question is whether the response is funded entirely by a redistribution of equity capital, or it also comes with a reallocation of external debt. My research addresses this question from the perspective of MNEs, where a debt substitution can cause significant international spillovers across capital markets, considering the importance of MNEs and their ability to tap capital markets globally. To the best of my knowledge, my work provides the first evidence highlighting the role of external debt substitutions through the ICMs of MNEs across borders. Page 12

While my study focuses on non-financial MNEs, the substitution of external borrowings by

¹⁰In addition, Buchuk et al. (2020) point out that the capital allocation within ICMs is coordinated by ownership. Firms that are at the center of the corporate ownership structure, such as headquarters, act like intermediaries of their ICMs. Ownership also plays a key role in my theoretical framework since it provides diversification benefit to the parent company, which incentives the usage of the parent-level debt to internally finance the foreign subsidiary.

¹¹Biermann and Huber (2021) specifically analyze the capital allocation through the ICMs of MNEs during the 2008 financial crisis. They suggest that when a parent company faces a sharp decline in credit supply in an environment of a global credit stress, subsidiaries can provide capital to the parent company in exchange for a reduction in their short-term productive assets. Such asset reallocation is consistent with the results obtained by Bena, Dinc, and Erel (2021) on the contribution of MNEs to the international co-movements associated with economic downturns.

¹²A related literature investigates the significance of ICMs in reallocating capital across business divisions within domestic conglomerates (e.g., Cho 2015, Matvos and Seru 2014, Gopalan and Xie 2011, Ozbas and Scharfstein 2010, etc.). See Maksimovic and Phillips (2013) for a valuable survey of the literature.

MNEs can coexist with the substitution of external lending via the ICMs of global banks. Given that MNEs and global banks are counterparts in the international capital markets, whether their ICMs work in the same direction can affect the role of global banks in transmitting shocks across borders. For example, Brauning and Ivashina (2020) present evidence that global banks increase local lending with a lower domestic interest rate, at the expense of a reduction in foreign lending. My results suggest that a rise of local uncertainty incentives MNEs to substitute local, subsidiary-level debt with foreign, parent-level debt. If the local monetary authority lowers the domestic interest rate to combat the negative effect of a country-level uncertainty shock, my research implies that the ICMs of MNEs and global banks work together to channel capital into the domestic economy.

The second strand of the literature my paper affiliates with is the literature on uncertainty shocks. Many studies have shown that uncertainty shocks can contribute to aggregate fluctuations and business cycles. Arellano, Bai, and Kehoe (2019) build a model with financial constraints and report that uncertainty shocks experienced by firms can explain most of the aggregate decline in output and labor as well as the rise in credit spreads in the Great Recession. Bloom et al. (2018) apply detailed census micro data to analyze firm-level uncertainty shocks. They conclude that recessions are driven by a combination of negative first-moment and positive second-moment shocks. Christiano, Motto, and Rostagno (2014) introduce agency problems associated with financial intermediation from Bernanke, Gertler, and Gilchrist (1999) (henceforth, BGG) into a standard model business cycles. They document that the risk shock (uncertainty shock) faced by firms when investing is the most important shock accounting for US business cycles since the mid-1980s. Other research find a consistent role of increased uncertainty in depressing output, consumption, hours, and investment, generating countercyclical credit spreads and markups, and creating procyclical leverage (e.g., Basu and Bundick 2017, Gilchrist, Sim, and Zakrajsek 2014, Julio and Yook 2012, Fernandez-Villaverde et al. 2011, Bloom 2009, Dixit, Dixit, and Pindyck 1994, Bernanke 1983, etc.). My work contributes to the literature by providing evidence that MNEs can counteract the negative impact of uncertainty shocks with their ICMs. In particular, I highlight the ability of MNEs to stabilize the pro-

¹³Other research contributing to the understanding of how global banks transmit shocks internationally include Peek and Rosengren (1997, 2000), Acharya and Schnabl (2010), Chava and Purnanandam (2011), Giannetti and Laeven (2012), Schnabl (2012), Cetorelli and Goldberg (2011, 2012), Correa, Sapriza, and Zlate (2016), Acharya, Afonso, and Kovner (2017), Baskaya, Di Giovanni, Kalemi-Ozcan, and Ulu (2017), Morais et al. (2019), etc.

cyclical pressure in leverage from a country-level surge in uncertainty over investment returns through a cross-border external debt substitution. I also stress the role of agency problems associated with financial intermediation in deciding the debt structure of MNEs and, consequentially, the existence of the external debt substitution. This can facilitate understanding on the transmission of uncertainty shocks, especially considering that the literature tends to put agency problems and financial frictions at the center of the shock's transmission mechanism (Fernandez-Villaverde and Guerron-Quintana 2020).

Thirdly, my paper connects with the literature on the role of monitoring by informed lenders. The seminal work of Holmstrom and Tirole (1997) captures the critical role of monitoring by informed lenders in reducing moral hazard ex ante the realization of risky returns. A rich body of research has shown that external lenders, specifically banks, perform delegated monitoring as informed lenders due to their comparative advantage in accessing local private information and monitoring efficiency. ¹⁴ Meanwhile, a recent and growing literature reveals that business groups with complex operations face limited internal monitoring capacity and have operational risk (e.g., Berger et al. 2022, Chernobai, Ozdagli, and Wang 2021, Chernobai, Jorion, and Yu 2011, Jorion 2007, etc.). I bridge the two branches of the literature by pointing out the value of using subsidiary-level external debt as local informed capital for MNEs to complement their internal monitoring capacity, which is important for the generation of foreign direct investment (Antras, Desai, and Foley 2009). I also underscore the interaction between subsidiary- and parent-level external debt in the mechanism of the external debt substitution. Most of the studies on MNEs do not explicitly distinguish the two levels of external debt, though standalone, external debt at the subsidiary level is an important feature of business groups (Bychuk et al. 2017, Kolasinski $2009).^{15}$

More broadly, my paper speaks to the literature on how MNEs contribute to international comovements. Budd, Konings, and Slaughter (2005) show that the profitability of multina-

¹⁴For instance, Stiglitz and Weiss (1983), Diamond (1984), Fama (1985), Rajan (1992), Hoshi et al. (1993), Park (2000), Focarelli, Pozzolo, and Casolaro (2008), Altman, Gande, and Saunders (2010), Mehran and Thakor (2011), Lin et al. (2013), Addoum and Murfin (2020), Branzoli and Fringuellotti (2020), Acharya, Almeida, Ippolito, and Perez-Orive (2021), etc.

¹⁵Coincidentally, my results are in line with the latest evidence suggesting that bank debt can play a special role in stabilizing the effect of uncertainty shocks. For example, using the recent US-China trade war as a laboratory, Ozdagli and Wang (2022) document that bank debt, relative to non-bank debt, can stabilize the negative impact of uncertainty shocks on stock prices.

tional parent companies positively affect the wages of their foreign subsidiaries. Desai, Foley, and Hines (2009) document that US manufacturing parent companies increase their domestic investment by 2.6% when their foreign investment rises by 10%. Cravino and Levchenko (2017) estimate that an average 10% growth in the sales of multinational parent companies is associated with a 2% growth in the sales of their foreign subsidiaries. Boehm, Flaaen, and Pandalai-Nayar (2019) report that Japanese subsidiaries in the US experienced an almost one-to-one decline in output relative to their parent companies following the 2011 Tohoku Earthquake. Bena, Dinc, and Erel (2021) find that economic downturns experienced by mutational parent companies depress investment and employment growth of their foreign subsidiaries. My work adds to the literature by providing evidence that MNEs can also transmit shocks through financial markets across borders via their ICMs. Through the usage of the parent-level external debt, my framework is additional in line with the literature on the international connection along ownership links. 17

Finally, by using the Brexit process as a natural experiment, my paper is related to a nascent literature on Brexit. Most related to my work is that of Bloom et al. (2019), who document a large, broad, and persistent rise of uncertainty in the UK during the Brexit interregnum using the Decision Maker Panel. The authors also report that much of the uncertainty shock's impact is within firms. This makes it suitable to test for the between-firm differential caused by the ICMs of MNEs at the subsidiary level. Different studies have drawn different conclusions on the overall impact of the eventual Brexit on the UK economy. For examples, McGrattan and Waddle (2020), Steinberg (2019), etc. argue that Brexit is likely to reduce overall UK welfare. However, Whyman and Petresku (2017), Booth et al. (2015), etc. explain that Brexit can have a more positive effect on the UK economy. I contribute to this literature by pointing out that the ICMs of MNEs can stabilize the negative impact of the Brexit uncertainty shock in the UK via the external debt substitution.

¹⁶Similarly, Giroud and Mueller (2019) explain that local consumer demand shocks during the Great Recession impact employment decisions of firms that operate in multiple regions in the US.

¹⁷Other related studies focusing on shocks transmissions via production linkages include Di Giovanni, Levchenko, and Mejean (2018), Barrot and Sauvagnat (2016), Kleinert, Martin, and Toubal (2015), Acemoglu et al. (2012), Burstein et al. (2008), etc. Though my framework underlines the interaction between ICMs of MNEs and external capital markets, the productions of the foreign subsidiary and parent company share the capital raised by the parent-level external debt as a common input.

3 Theoretical Framework

3.1 Setup

Consider a world with two countries: Home and Foreign. There is a representative MNE consisting of a parent company in Home that owns a subsidiary by majority in Foreign. ¹⁸ The parent company and foreign subsidiary each manage a project in their country for the parent company to invest. All investments are made at time t, and returns are realized at t+1. At time t, the expected returns of the home and foreign projects are $E_t(\omega_{t+1})I_tR_t$ and $E_t(\omega_{t+1}^*)I_t^*R_t^*$, respectively. I_t and I_t^* are the parent company's home and foreign investments, denominated accordingly in each country's currency. R_t and R_t^* are country-specific technologies with constant returns to scale that are publicly known at t. At the beginning of t+1, the parent company and foreign subsidiary independently observe a private productivity draw, ω_{t+1} and ω_{t+1}^* . That is, ω_{t+1} is private to the parent company and ω_{t+1}^* is private to the foreign subsidiary. The productivity draws are the sources of uncertainty at time t as they will be embedded with the public components of the returns, I_tR_t and $I_t^*R_t^*$, to form the realized returns, $\omega_{t+1}I_tR_t$ and $\omega_{t+1}^*I_tR_t^*$, at the end of t+1. I assume ω_{t+1} and ω_{t+1}^* are independent draws from log-normal distributions with:

$$E_t(\omega_{t+1}) = e^{\mu_t + \frac{1}{2}\sigma_t^2} = 1 \tag{1}$$

and:

$$E_t(\omega_{t+1}^*) = e^{\mu_t^* + \frac{1}{2}\sigma_t^{*2}} = 1, \tag{2}$$

where μ_t , σ_t , μ_t^* , and σ_t^* are country-level parameters, publicly known at t. The distributions can be normalized to have a unit mean by the country-specific technologies R_t and R_t^* . The assumption that productivity draws are independent and log normally distributed is common in the literature (BGG 1999, Christiano, Motto, and Rostagno 2014, Akinci 2021, etc.).¹⁹

¹⁸The parent company can be empirically interpreted as either the ultimate parent or an intermediate holding company.

¹⁹I can generalize the log-normal distribution to any distribution with a continuous and once-differentiable cumulative distribution function (CDF) over a non-negative support. In this case, I would assume that ω_{t+1} and ω_{t+1}^* come from the same distribution with potentially different distribution parameters, and that the

Assuming the independence between ω_{t+1} and ω_{t+1}^* is also suitable to study the effect of an exogenous, country-level uncertainty shock. A foreign uncertainty shock at time t, which affects the MNE's investment decisions, can be described as an exogenous, mean-preserving shock to σ_t^* with $E_t(\omega_{t+1}^*) = 1$, following Dorofeenko, Lee, and Salyer (2008) and Akinci (2021).²⁰

With the home and foreign projects, the parent company maximizes its expected profits at time t, $E_t(\Phi_{t+1})$, by choosing its home and foreign investments, I_t and I_t^* , and debt structure, D_t and D_t^* . D_t is the external debt issued by the parent company. D_t^* denotes the stand-alone external debt of the foreign subsidiary. The parent company can use the foreign subsidiary's equity at t+1 to serve D_t by ownership. For simplicity and without loss of generality, I assume the parent company fully owns the foreign subsidiary in the model so that the parent company can claim the entirety of the foreign subsidiary's equity.²¹

Since the focus of this paper is leveraged MNEs, I assume that the parent company is capital constrained but can raise external funds from a home lender, who faces the risk-free interest rate in Home, $1 + r_t^{rf}$, as his/her opportunity cost. The MNE can also raise subsidiary-level debt from a foreign lender, who faces the risk-free interest rate in Foreign, $1 + r_t^{rf*}$, as his/her opportunity cost. I further assume a version of the CIP holds to prevent risk-free arbitrage:

$$(1 + r_t^{rf}) = \frac{F_{t+1}}{S_t} (1 + r_t^{rf*}). \tag{3}$$

 S_t is the spot exchange rate in units of Foreign's currency per unit of Home's currency. F_{t+1} is the (risk-adjusted) forward exchange rate quoted in the same manner. Equation 3 implies that the home and foreign lenders face equivalent opportunity costs in the same currency.²² As a result, when the parent company issues the parent-level debt through the foreign subsidiary, the lender can be effectively represented by the home lender in terms of both the opportunity cost and credit risk. Section 3.2.1 will expand this point with details.

distribution satisfies the regularity condition $\partial (\omega_{t+1}h(\omega_{t+1}))/\partial \omega_{t+1} > 0$ and $\partial (\omega_{t+1}^*h(\omega_{t+1}^*))/\partial \omega_{t+1}^* > 0$, where the hazard rate $h(\omega_{t+1}) \equiv f(\omega_{t+1})/(1 - F(\omega_{t+1}))$ and $h(\omega_{t+1}^*) \equiv f(\omega_{t+1}^*)/(1 - F(\omega_{t+1}^*))$, consistent with BGG (1999). $f(\omega_{t+1})$ and $f(\omega_{t+1}^*)$ denote the probability density functions (PDFs). $F(\omega_{t+1})$ and $F(\omega_{t+1}^*)$ denote the CDFs. I adopt the log-normal distribution for simplicity and by convention.

²⁰A mean-shifting shock to σ_t^* can represent a combination of two shocks: An uncertainty shock to σ_t^* with $E_t(\omega_{t+1}^*) = 1$ and a first moment shock that shifts R_t^* .

²¹US MNEs wholly own more than 80% of their subsidiaries according to the BEA annual survey (Desai, Foley, and Forbes 2008).

²²The CIP assumption is consistent with the literature of the ICMs of global banks (e.g., Brauning and Ivashina 2020).

Let $A_t > 0$ be the limited capital endowment of the MNE. The budget constraint of the parent company is:

$$D_t + A_t \ge I_t + T_t. \tag{4}$$

The budget constraint of the foreign subsidiary is:

$$D_t^* + \frac{T_t}{S_t} \ge I_t^*. \tag{5}$$

 T_t represents an intra-firm transfer through the ICM of the MNE. When $T_t > 0$, the parent company is providing internal funds for I_t^* .²³ Though my framework includes the possibility of $T_t \leq 0$, it will be optimal for the parent company to have $T_t > 0$ when both the home and foreign projects are productive enough. The main intuition lies in the parent company's ability to lower its risk premium by internationally diversifying its investments, while the subsidiary-level debt carries a standalone default risk. The following sections expand this point in details.²⁴

3.2 Agency Problems and Debt Contracts

Based on the setup, I now introduce agency problems that characterize the MNE's debt contracts. The agency problems aim to capture two realistic features: 1) MNEs have costly defaults and borrow with risk premia. 2) Business groups with complex operations, such as MNEs, face limited internal monitoring capacity and have operational risk (e.g., Jorion 2007,

 $^{^{23}}T_t > 0$ can be interpreted as an equity transfer or an intra-firm loan given that the parent company is the shareholder of the foreign subsidiary. In the absence of any corporate income tax differential between Home and Foreign, which will be discussed later, the two concepts are equivalent (Chowdhry and Nanda 1994, Chowdhry and Coval 1998, Eiteman, Stonehill, and Moffet 2016, Shapiro and Hanouna 2019, etc.). $T_t > 0$ can also represent the external debt of the foreign subsidiary guaranteed by the parent company since external debt guaranteed by the parent company is tantamount to intra-firm debt from the parent company (Chowdhry and Coval 1998). One way to see this in my framework is that the parent company can guarantee T_t/S_t units of external debt for the foreign subsidiary by issuing $D_t/S_t = T_t/S_t$ units of parent-level debt through the foreign subsidiary at time t and transferring the funds to the balance sheet of the foreign subsidiary simultaneously via the ICM.

 $^{^{24}}$ I endow the initial capital, $A_t > 0$, to the parent company for convenience and exposition purposes. Writing the initial capital of the parent company and foreign subsidiary separately yields the same results. In fact, the parent company can receive the initial capital of the foreign subsidiary at time t via either an equity transfer or an intra-firm loan, bypassing concerns associated with a cross-border corporate income tax differential. A tax differential at time t+1 will change the relative size of home and foreign projects in equilibrium as it may discount the foreign return received by the parent company. Yet, the discount can be incorporated in R_t^* without changing the main conclusions of the paper. How cross-border tax differentials affect the equilibrium capital allocation of MNEs is an important topic. It is, however, beyond the scope of this paper given that my focus is how the ICMs of MNEs respond to country-level uncertainty shocks from non-tax-related origins.

Chernobai, Jorion, and Yu 2011, Chernobai, Ozdagli, and Wang 2021, etc.). Before discussing the limited internal monitoring capacity MNEs, it is useful to explain the structure of the debt contracts without any agency problem between the parent company and foreign subsidiary.

3.2.1 Costly Defaults and Parent-Level Debt

To generate financial frictions associated with costly defaults that make external funds more expensive than internal funds, I introduce moral hazard between the MNE and its external lenders ex-post the realization of ω_{t+1} and ω_{t+1}^* . The moral hazard takes a form similar to the costly state verification (CSV) problem proposed by Townsend (1979), following Bernanke and Gertler (1989), BGG (1999), Christiano, Motto, and Rostagno (2014), etc.²⁵ The difference is the MNE's ability to transfer the foreign subsidiary's return to the parent company ex-post the realization of ω_{t+1}^* . Since the parent company seeks to maximize profits from its own balance sheet, a standard Townsend CSV formulation can be applied at the parent level.

Let $\bar{\omega}_{t+1}^*$ be a contractual threshold enforceable by the foreign lender. Without any agency problem between the parent company and foreign subsidiary, the foreign subsidiary will send $\left(\omega_{t+1}^* - \bar{\omega}_{t+1}^*\right) \mathbf{1}\left(\omega_{t+1}^* \geq \bar{\omega}_{t+1}^*\right) I_t^* R_t^*$ to the parent company at the end of t+1. The parent company may choose to untruthfully report the total return it has received at the end of t+1 to the home lender. In response, the home lender may choose to audit the balance sheet of the parent company at the end of t+1, but ν portion of the return would be lost during the audit process, consistent with the canonical financial accelerator model (BGG 1999). The audit cost can be interpreted as the cost of default.

Given the ownership structure of the MNE, the optimal contract for the parent company is a two-dimensional debt contract involving a combination of $(\omega_{t+1}, \omega_{t+1}^*)$. Appendix A.1 details the proof of the optimal contract. The structure of the optimal contract can be described as follows.

Let r_{t+1} be the risky interest rate, a non-default threshold $\hat{\omega}_{t+1}$ for ω_{t+1} can be decided at

²⁵Other related work with a similar implementation includes Gale and Hellwig (1985), Williamson (1987), Carlstrom and Fuerst (1997), Fisher (1999), Christiano, Motto, and Rostagno (2003), Arellano, Bai, and Kehoe (2012), and Jermann and Quadrini (2012), among others.

time t such that:

$$\hat{\omega}_{t+1}I_tR_t = D_t(1+r_t). \tag{6}$$

When $\omega_{t+1} \geq \hat{\omega}_{t+1}$, the return from the home project is enough to serve D_t , regardless ω_{t+1}^* .

Similarly, a non-default threshold $\hat{\omega}_{t+1}^*$ for ω_{t+1}^* can be decided at time t such that:

$$F_{t+1} \left(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^* \right) I_t^* R_t^* = D_t (1 + r_t). \tag{7}$$

When $\omega_{t+1}^* \geq \hat{\omega}_{t+1}^*$, the return from the foreign project is enough to serve D_t , regardless ω_{t+1} .

To convert the foreign return to Home's currency, I assume the MNE can use foreign exchange (FX) swaps to cover $(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*) I_t^* R_t^*$. The parent company then uses the spot exchange rate, S_{t+1} , to receive the surplus from the foreign subsidiary if $\omega_{t+1}^* > \hat{\omega}_{t+1}^*$ with $E_t(S_{t+1}) = F_{t+1}$. The assumption that the MNE uses FX swaps to serve D_t is consistent with the heavy usage of the FX or cross-currency (XCCY) swaps by non-financial MNEs in debt issuance.²⁶ The purpose of this assumption is for convenience. It simplifies the contract so that the contractual thresholds are not contingent on the realization of S_{t+1} . The key mechanism of the model and my empirical predictions do not depend on this assumption, as will be clear in Section 3.4.

In addition to the non-default thresholds, a default threshold $\bar{\omega}_{t+1}$ for ω_{t+1} , contingent on the realization of ω_{t+1}^* , can be decided at time t such that:

$$\bar{\omega}_{t+1}I_tR_t + F_{t+1}\left(\omega_{t+1}^* - \bar{\omega}_{t+1}^*\right)\mathbf{1}(\omega_{t+1}^* \ge \bar{\omega}_{t+1}^*)I_t^*R_t^* = D_t(1+r_t), \forall \omega_{t+1}^* < \hat{\omega}_{t+1}^*$$
 (8)

$$\iff \bar{\omega}_{t+1} = \hat{\omega}_{t+1} \left[1 - \frac{(\omega_{t+1}^* - \bar{\omega}_{t+1}^*)}{(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*)} \mathbf{1}(\omega_{t+1}^* \ge \bar{\omega}_{t+1}^*) \right], \forall \omega_{t+1}^* < \hat{\omega}_{t+1}^*.$$
 (9)

When $\omega_{t+1}^* \in (0, \hat{\omega}_{t+1}^*)$ and $\omega_{t+1} \in [\bar{\omega}_{t+1}, \hat{\omega}_{t+1})$, the total return is enough to serve D_t . When $\omega_{t+1}^* \in (0, \hat{\omega}_{t+1}^*)$ and $\omega_{t+1} \in (0, \bar{\omega}_{t+1})$, the parent company will default and the home lender receives $(1-\nu) \left[\omega_{t+1} I_t R_t + F_{t+1} \left(\omega_{t+1}^* - \bar{\omega}_{t+1}^* \right) \mathbf{1}(\omega_{t+1}^* \geq \bar{\omega}_{t+1}^*) I_t^* R_t^* \right]$ after auditing or taking over

²⁶For instance, the BNP Paribas 2014 FX/XCCY Swap Market Overview shows that non-financial corporates are as important as banks in the market of FX/XCCY swaps for debt issuance with 2 year and above maturities. Both non-financial corporates and banks are dominant players in the FX/XCCY market for debt issuance. Other important players include hedge funds and supra-nationals and agencies (BNP Paribas 2014).

the parent company's balance sheet.²⁷

Figure 1 provides a visual representation of the parent-level debt contract. The blue dashed lines mark the non-default thresholds, $\hat{\omega}_{t+1}$ and $\hat{\omega}_{t+1}^*$. The red solid line describes the state-contingent default threshold, $\bar{\omega}_{t+1}$. ND and D depict the non-default and default regions of the parent company for any combination of $(\omega_{t+1}, \omega_{t+1}^*)$ when $I_t > 0$ and $I_t^* > 0$. The black dashed line shows the contractual threshold of the foreign lender, $\bar{\omega}_{t+1}^*$. When $\bar{\omega}_{t+1}^* > 0$, the MNE faces a "double debt curve," where the parent-level debt is stacked upon subsidiary-level debt. Section 3.2.2 explains when it can be optimal for the MNE to use subsidiary-level debt.

The existence of the state-contingent default threshold, along with the two non-default thresholds, indicates a cross-border cash-flow diversification benefit: The parent company can use the equity of the foreign subsidiary to serve its debt by ownership if needed, not vice versa. Because of the diversification benefit, the parent-level debt will always be used when the MNE can also have subsidiary-level debt under a standard contract supported by the return of the foreign project, ceteris paribus. I defer the discussion on the potential differences in default cost and tax environment in Section 3.2.2 when the usage of subsidiary-level debt is introduced. Appendix A.2 explains the proof.

Let $\Omega_t^h = \Omega^h(\hat{\omega}_{t+1}, \hat{\omega}_{t+1}^*, \bar{\omega}_{t+1}^*)$ and $\Omega_t^f = \Omega^f(\hat{\omega}_{t+1}, \hat{\omega}_{t+1}^*, \bar{\omega}_{t+1}^*)$ denote the expected share of $I_t R_t$ and $F_{t+1} I_t^* R_t^*$ respectively for the home lender. The home lender's participation constraint in equilibrium is:

$$D_t(1 + r_t^{rf}) = \Omega_t^h I_t R_t + \Omega_t^f F_{t+1} I_t^* R_t^*.$$
(10)

The detailed expressions of Ω_t^h and Ω_t^f with associated explanations are shown in Appendix A.3.

For the moral hazard between the foreign subsidiary and foreign lender, an implicit assumption of the CSV technology is that the lender does not need additional technologies to prevent the borrower from shrinking its balance sheet before a potential audit. In other words, there is

²⁷Writing the default threshold for ω_{t+1}^* contingent on the realization of ω_{t+1} is equivalent to writing the default threshold according to Equation 9. The two ways of writing the same state-contingent default threshold describes the identical set of $(\omega_{t+1}, \omega_{t+1}^*)$ where the parent company will default, as can be seen in Figure 1.

²⁸The optimal debt contract converges to a standard debt contract when $I_t = 0$ or $I_t^* = 0$.

no other agency problems except for the untruthful reporting from the borrower. If this is true, the CSV problem between the foreign subsidiary and foreign lender is equivalent to the CSV setup in BGG (1999). The optimal contract for the subsidiary-level debt is therefore a standard debt contract. However, the foreign subsidiary may shrink its balance sheet by transferring its return to the parent company in general. The foreign lender thus need additional technologies to ensure their seniority on the foreign return over both the parent company and home lender.²⁹ Without additional assumptions, I take the stance that the foreign lender would not participate in a debt contract unless they can audit the parent company and effectively become a home lender.³⁰

Although subsidiaries of MNEs rely heavily on debt and equity from parent companies for financing needs, especially when faced with adverse conditions in local capital markets, subsidiaries do have external debt (e.g., Chowdhry and Coval 1998, Desai, Foley, and Forbes 2008, etc.). Existing evidence from domestic business groups suggests that operating subsidiaries tend to use bank debt and rarely issue bonds (e.g., Santioni, Schiantarelli, and Strahan 2020, Kim, Wilcox, and Yasuda 2020, etc.). While external debt of subsidiaries can still be parent-level debt in my framework through parent-level guarantees, and there is a general lack of data to observe how much of the external debt of subsidiaries is guaranteed by their parent companies, it is normal for MNEs to have subsidiary-level defaults due to underperformance, suggesting the usage of stand-alone debt at the subsidiary level.³¹

A popular explanation on why MNEs use subsidiary-level debt is the exploitation of cross-border corporate income tax differentials when foreign subsidiaries are located in high tax regimes (e.g., Chowdhry and Nanda 1994, Desai, Foley, and Hines 2004, etc.). Though local tax rates are clearly important for the choice of capital structure, it is more difficult to apply

²⁹In the case of a parent company default, the home lender will become the shareholder of the parent company and foreign subsidiary by their debt contract.

³⁰If lenders with different per-unit audit cost are willing to participate the parent-level debt contract, the home lender is the one with the lowest per-unit audit cost.

³¹Some recent examples include the bankruptcy of the US subsidiary of Italy's cosmetics chain Kiko SpA due to "extremely high operating costs and continually depressed profits in recent years": https://www.reuters.com/article/bankruptcy-kiko/cosmetics-chain-kiko-files-for-bankruptcy-to-close-most-stores-iduSL1N1P7284, the recent bankruptcy of Talen Energy Supply, a subsidiary of Talen Energy owned by the US's Riverstone Holdings, due to exposures to market price volatility: https://www.datacenterdynamics.com/en/news/talen-energy-subsidiary-files-for-bankruptcy-company-still-plans-nuclear-data-center/, and the bankruptcy of US and Canada subsidiaries of UK's IWG group due to "Covid-19-adjusted market realities": https://www.bloomberg.com/graphics/2020-us-bankruptcies-coronavirus/.

this rationality to MNEs with foreign subsidiaries in low tax regimes, such as the European subsidiaries of US MNEs, or to domestic business groups. Without imposing restrictions on a cross-border tax differential, the next section offers explanations on why MNEs can find it optimal to use subsidiary-level debt due to agency problems. The usage of the subsidiary-level debt can yield important implications when interacting with the parent-level debt in the presence of a country-level uncertainty shock.

3.2.2 Limited Internal Monitoring Capacity and Subsidiary-Level Debt

While parent companies of MNEs enjoy the benefit of a cross-border cash-flow diversification, the diversification usually comes with complex operations that limit the internal monitoring capacity of a parent company. The complexity faced by MNEs includes at least three dimensions. First, MNEs have organizational complexity. A parent company usually has multiple layers of subsidiaries. The records of subsidiary-level activities can be complicated by intermediate holding companies that own a network of subsidiaries, which can own other subsidiaries at a lower level. The accounting of subsidiary-level activities can be further clouded by the usage of tax heavens and special purpose vehicles. When there are agency problems between a parent company and its subsidiaries, it can be difficult for the parent company to judge if the underperformance of a front-line operation is due to local managerial misbehavior or bad luck. Secondly, a MNE faces geographical complexity, where each country of its operations can have a different set of rules and regulations. The best practice of a proprietary technology in the parent company's country may violate regulations in another country and thus need to be adjusted in a way foreign to the parent company. Without detailed local knowledge, a parent company may not be able to monitor its foreign subsidiaries effectively. Thirdly, MNEs can be confronted with business complexity. As a MNE expands across industries, the parent company will inevitably need to manage subsidiaries from less familiar business lines. This can further reduce the power of monitoring from the parent company. When the three dimensions of complexity compound, parent companies can have a limited internal monitoring capacity and suffer losses from subsidiary-level managerial misbehavior, including frauds, the materialization of other operational risk, bad business decisions, or a lack of due diligence.

The significance of the limited internal monitoring capacity, together with the associated losses, has been documented by the growing literature of operational risk. For instance, recent

studies have pointed out the importance of operational losses due to managerial misbehavior among US bank holding companies as complex financial MNEs (e.g., Berger et al. 2022, Chernobai, Ozdagli, and Wang 2021, Cetorelli and Goldberg 2014, etc.). MNEs with complex intra-group transfers also face a higher group-level risk premium due to concerns over weak corporate governance and low managerial ability (e.g., Richardson, Taylor, and Obaydin 2020). The limited internal monitoring capacity is further consistent with studies that argue internal agency problems related with ICMs can destroy values (e.g., Villalonga 2004, Schoar 2002, Whited 2001, Lamont 1997).

I model the agency problem between the parent company and foreign subsidiary as moral hazard ex-ante the realization of ω_{t+1}^* . While the parent company maximizes its expected profits at time t by choosing the investments and debt structure, the objective of the foreign subsidiary, as the manager of the foreign project, is to maximize its private benefit at the end of t+1. Concretely, the foreign subsidiary can privately choose to behave or not after observing the private productivity draw ω_{t+1}^* at the beginning of t+1. If the foreign subsidiary behaves, it will receive a private benefit of 0 and its return will be fully realized as $\omega_{t+1}^*I_t^*R_t^*$. If the foreign subsidiary does not behave, it can shrink the productivity draw to $(1-\psi^*)\omega_{t+1}^*I_t^*R_t^*$ for a private benefit of $\psi^*\omega_{t+1}^*I_t^*R_t^*$ with $\psi^* \in [0,1]$. In this case, the foreign subsidiary's return will only be partially realized as $(1-\psi^*)\omega_{t+1}^*I_t^*R_t^*$. Finally, I make the tie-breaking assumption that the foreign subsidiary always behaves with a 0 private benefit.

The private benefit can be interpreted as the opportunity cost for the foreign subsidiary to be diligent. Broadly speaking, it can reflect any loss of the foreign return that won't be received by the parent company due to its limited internal monitoring capacity. Examples of such loss include losses from the materialization of operational risk (e.g., frauds and embezzlement), tunneling activities by managers or shareholders, consequences of poor business decisions (e.g., overborrowing), or additional compensations the parent company has to offer to the foreign subsidiary to prevent a larger shrinkage.³² I assume the private benefit equals $\psi^*\omega^*_{t+1}I^*_tR^*_t$ for simplicity. In general, it can take any form that rises with ψ^* to induce the shrinkage of the productivity draw to $(1 - \psi^*)\omega^*_{t+1}$. I also assume only a fraction of foreign productivity draw can be lost with $\psi^* \in [0,1]$ by limited liability.³³ The magnitude of ψ^* reflects the

 $^{^{32}}$ "Regular" compensations for managing I_t^* , such as wages, are included in the technology R_t^* .

³³If $\psi^* > 1$, it is possible for the parent company to experience a net loss as a result of the foreign subsidiary's

internal monitoring capacity of the parent company. When the parent company has a perfect internal monitoring capacity, it can eliminate the private benefit with $\psi^* \to 0$. When the parent company has no internal monitoring capacity, it will lose the foreign return entirely with $\psi^* \to 1$, in which case the parent company behaves as if it only has the home project at time t.

With a limited internal monitoring capacity, $\psi^* > 0$ and the parent company can find it optimal to reduce ψ^* with additional resources. Consistent with the seminal work of Holmstrom and Tirole (1997), which captures the critical role of monitoring in understanding financial intermediation, I assume that the parent company can use subsidiary-level debt as local informed capital for delegated monitoring. Specifically, both the home and foreign lenders can provide lending as uninformed capital with only the CSV technology. They can also provide lending as informed capital with monitoring in an attempt to reduce the shrinkage of a firm's productivity draw by lowering the firm's private benefit. When lending informed capital to the foreign subsidiary, the foreign lender has a comparative advantage in accessing local private information and monitoring efficiency, making him/her the cheapest and most effective informed capital supplier. The comparative advantage also enables the foreign lender to complement the limited internal monitoring capacity of the parent company by further decreasing ψ^* via local monitoring.

For simplicity and without loss of generality, I assume the parent company always behaves when managing the home project. Since an informed lender monitors the firm they will take over in default by the debt contract, the parent company will only demand informed capital at the subsidiary level. The difference between a lender providing uninformed and informed capital can be interpreted as a bank investing corporate bonds (uninformed capital) vs. granting bank loans with detailed collateral and covenant requirements (informed capital). This interpretation is consistent with the literature on the comparative advantage of banks in accessing private information as insiders and preventing moral hazard via monitoring.³⁴

To formalize the monitoring incentive of the foreign lender as an informed lender, I propose that the foreign lender can take two actions at time t + 1 after signing a subsidiary-level debt

actions, such as legal expenses of a subsidiary-level fraud.

³⁴See, for instance, Stiglitz and Weiss (1983), Diamond (1984), Fama (1985), Rajan (1992), Hoshi et al. (1993), Park (2000), Focarelli, Pozzolo, and Casolaro (2008), Altman, Gande, and Saunders (2010), Mehran and Thakor (2011), Lin et al. (2013), Addoum and Murfin (2020), Branzoli and Fringuellotti (2020), Acharya, Almeida, Ippolito, and Perez-Orive (2021), etc.

contract at t: Monitoring the foreign subsidiary properly or only securing its share of the return without lowering the private benefit of the foreign subsidiary. To begin with, the foreign lender can reduce the private benefit of the foreign subsidiary through proper monitoring with a per-unit monitoring cost $c^* + s^* > 0$. The per-unit monitoring cost captures the idea that monitoring is privately costly in the same way of Holmstrom and Tirole (1997). The total monitoring cost is therefore $(c^* + s^*) I_t^*$. When the foreign lender properly monitors, I assume that ψ^* can be diminished to 0 so that the foreign subsidiary will behave.

Instead of proper monitoring, the foreign lender can shirk themselves to only secure their share of the return from the debt contract with a per-unit cost $s^* \geq 0$ without lowering the private benefit of the foreign subsidiary. In this case, the foreign subsidiary will misbehave and the productivity draw will shrink to $(1-\psi^*)\omega_{t+1}^*$. The per-unit cost $s^* \geq 0$ is paid to ensure the foreign lender's seniority on the foreign return due to the moral hazard between the MNE and its lenders in the case of a subsidiary-level default, which allows a transfer of the foreign return to the parent company before the CSV. After paying the per-unit cost $s^* \geq 0$, the optimal contract for the foreign subsidiary is the standard debt contract, as explained in Section 3.2.1.

Let $\bar{\omega}_{t+1}^*$ be the default threshold of the standard debt contract. The participation constraint for the foreign lender with proper monitoring in equilibrium is:

$$D_t^*(1+r_t^{m*}) = \left(\int_{\bar{\omega}_{t+1}^*}^{+\infty} \bar{\omega}_{t+1}^* F(\omega_{t+1}^*) + \int_0^{\bar{\omega}_{t+1}^*} (1-\nu^*) \omega_{t+1}^* F(\omega_{t+1}^*) \right) I_t^* R_t^*, \tag{11}$$

where ν^* is the per-unit default cost of the foreign lender and $1 + r_t^{m*}$ is the required rate of return of the informed capital D_t^* with:

$$D_t^*(1+r_t^{m*}) = D_t^*(1+r_t^{rf*}) + (c^*+s^*)I_t^* > D_t^*(1+r_t^{rf*}).$$
(12)

To sustain proper monitoring, the incentive constraint for the foreign lender satisfies:

$$\left(\int_{\bar{\omega}_{t+1}^{*}}^{+\infty} \bar{\omega}_{t+1}^{*} F(\omega_{t+1}^{*}) + \int_{0}^{\bar{\omega}_{t+1}^{*}} (1 - \nu^{*}) \omega_{t+1}^{*} F(\omega_{t+1}^{*}) \right) I_{t}^{*} R_{t}^{*}$$

$$\geq \left(\int_{\frac{\bar{\omega}_{t+1}^{*}}{1 - \psi^{*}}}^{+\infty} \bar{\omega}_{t+1}^{*} F(\omega_{t+1}^{*}) + \int_{0}^{\frac{\bar{\omega}_{t+1}^{*}}{1 - \psi^{*}}} (1 - \nu^{*}) (1 - \psi^{*}) \omega_{t+1}^{*} F(\omega_{t+1}^{*}) \right) I_{t}^{*} R_{t}^{*} + c^{*} I_{t}^{*}. \tag{13}$$

Note that the productivity draw must be $\omega_{t+1}^* = \bar{\omega}_{t+1}^* / (1 - \psi^*)$ for the realized productivity to meet $\bar{\omega}_{t+1}^*$ when the foreign subsidiary misbehaves.

Because proper monitoring is expensive, it follows that the foreign lender requires a minimum share of R_t^* in expectation to sustain the incentive constraint.³⁵ The optimal way to use the informed capital with proper monitoring is thus to borrow just enough so that the incentive constraint binds and finance the rest of I_t^* via funds with a cheaper required rate of return. Whether the leverage for the rest of I_t^* is made of the parent-level debt depends on the frictions associated with the subsidiary-level debt, notably s^* . When s^* is sufficiently high, only the parent-level debt will be used to externally fund I_t^* , conditioning on the usage of the informed capital with proper monitoring. When s^* and other frictions are low, the parent company might even use the subsidiary-level informed capital without proper monitoring to further decrease the risk-premium of the parent-level debt by making it more state contingent.³⁶ This gives the parent company another incentive to raise uninformed debt and internally finance the foreign subsidiary with $T_t > 0$.

Since the usage of the informed capital without proper monitoring reinforces the parent company's incentives to active the ICM with $T_t > 0$, while it does not affect the private benefit of the foreign subsidiary, the additional informed capital helps form the mechanism of the model associated with $T_t > 0$, but is not required for this cause. To underline the full mechanism of the model in a simple setup, I make the simplifying assumption that the frictions associated with the subsidiary-level debt is large enough so that the local informed capital will be used with proper monitoring (i.e., s^* is large enough). The simplifying assumption is convenient without giving up generality for my purpose because adding the additional informed capital leads to the same empirical predictions, as will be explained in Section 3.4. The simplifying assumption is also consistent with the literature on informed capital that emphasizes the role of monitoring in reducing the private benefit associated with managerial misbehavior (e.g., Holmstrom and

³⁵Appendix B.1 details the proof.

 $^{^{36}}$ The subtle reason for this improvement is that the expected default loss of the parent-level debt could be reduced by allowing the possibility of a parent-level default after the subsidiary-level lender getting paid in full, where the home lender can know from the informed subsidiary-level lender that the realized foreign productivity draw is at least above $\bar{\omega}_{t+1}^*$. When the reduction of the expected default loss from the greater state contingency is larger than the additional stand-alone default risk of the subsidiary-level debt, it is optimal to use the additional informed capital to reduce the risk-premium of the parent-level debt. See Appendix B.2 for details.

Tirole 1997, Antras, Desai, and Foley 2009, Mehran and Thakor 2011, etc.). The details of the simplifying assumption, along with the usage of the additional informed capital, are described in Appendix B.2.

Given the international setup of the model, it is also helpful to discuss the potential differences between the home and foreign default costs, ν and ν^* , and the two countries' tax environments. To start with, the empirical focus of this paper is US MNEs with subsidiaries in developed economies, especially the UK, where the financial industries share a similar degree of development. I therefore assume that $\nu = \nu^*$ to reflect the similar institutional background.³⁷ For US MNEs in general with subsidiaries that face a less developed financial industry, one can assume there is $\nu \leq \nu^*$ (e.g., Desai, Foley, and Forbes, 2008). Such setup will additionally enhance a parent company's incentives to borrow for their subsidiaries due to the lower default cost.

As the focus of this paper is how the ICMs of MNEs respond to country-level uncertainty shocks from non-tax-related origins, I abstract any cross-border corporate income tax differential from my framework and assume that the tax environment remains stable during time t and t+1, when a foreign uncertainty shock occurs at time t. For my empirical analysis that examines the UK subsidiaries of US MNE before and after the Brexit referendum, the corporate income tax is higher in the US. This can provide the US parents with further incentives to borrow for their UK subsidiaries as interest expenses are tax deductible.

3.3 Equilibrium

At time t, the objective of the parent company is to maximize its expected profits, $E_t(\Phi_{t+1})$, by choosing its home and foreign investments, I_t and I_t^* , and debt structure, D_t and D_t^* , given the endogenously decided lending rates, r_t and r_t^* . Let $\Upsilon_t^h = \Upsilon^h(\hat{\omega}_{t+1}, \hat{\omega}_{t+1}^*, \bar{\omega}_{t+1}^*)$ and $\Upsilon_t^f = \Upsilon^f(\hat{\omega}_{t+1}, \hat{\omega}_{t+1}^*, \bar{\omega}_{t+1}^*)$ denote the parent company's expected share of $I_t R_t$ and $F_{t+1} I_t^* R_t^*$, respectively, from the optimal contract.³⁸ The optimization problem is:

$$\max_{\{I_t, T_t, I_t^*, r_t, r_t^*\}} E_t(\Phi_{t+1}) = \max_{\{I_t, T_t, I_t^*, r_t, r_t^*\}} \Upsilon_t^h I_t R_t + \Upsilon_t^f F_{t+1} I_t^* R_t^*,$$

³⁷The frictions associated with the nature of a subsidiary-level debt is captured by the per-unit cost s^* .

 $^{^{38} \}mathrm{See}$ Appendix A.3 for details on Υ^h_t and $\Upsilon^f_t.$

subjecting to:

$$\bar{\omega}_{t+1}^* = \frac{D_t^* (1 + r_t^*)}{I_t^* R_t^*},\tag{14}$$

$$\hat{\omega}_{t+1} = \frac{D_t(1+r_t)}{I_t R_t},\tag{15}$$

$$\hat{\omega}_{t+1}^* = \frac{D_t(1+r_t)}{F_{t+1}I_t^*R_t^*} + \bar{\omega}_{t+1}^*,\tag{16}$$

$$\bar{\omega}_{t+1} = \hat{\omega}_{t+1} \left[1 - \frac{(\omega_{t+1}^* - \bar{\omega}_{t+1}^*)}{(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*)} \mathbf{1} (\omega_{t+1}^* \ge \bar{\omega}_{t+1}^*) \right], \forall \omega_{t+1}^* < \hat{\omega}_{t+1}^*, \tag{17}$$

$$\int_{\bar{\omega}_{t+1}^*}^{\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}} \left[\bar{\omega}_{t+1}^* - (1-\nu^*)(1-\psi^*)\omega_{t+1}^* \right] dF(\omega_{t+1}^*) + \int_0^{\bar{\omega}_{t+1}^*} (1-\nu^*)\psi^*\omega_{t+1}^* dF(\omega_{t+1}^*) = \frac{c^*}{R_t^*}, \tag{18}$$

$$D_t^*(1+r_t^{m*}) = \left(\int_{\bar{\omega}_{t+1}^*}^{+\infty} \bar{\omega}_{t+1}^* F(\omega_{t+1}^*) + \int_0^{\bar{\omega}_{t+1}^*} (1-\nu^*) \omega_{t+1}^* F(\omega_{t+1}^*) \right) I_t^* R_t^*, \tag{19}$$

$$D_t(1 + r_t^{rf}) = \Omega_t^h I_t R_t + \Omega_t^f F_{t+1} I_t^* R_t^*.$$
(20)

Condition 14 describes the default threshold of the subsidiary-level debt contract. Conditions 15-17 define the contractual thresholds of the parent-level debt contract. Condition 18 is the binding incentive constraint for the foreign lender to reduce the private benefit of the foreign subsidiary via local monitoring when providing informed capital. Conditions 19 and 20 are the participation constraints for the foreign and home lenders, correspondingly, to break even with their cost of funds.

To decide whether the subsidiary-level deb, D_t^* , should be used as local informed capital in equilibrium, the parent company solves the optimization problem with and without D_t^* before choosing the equilibrium debt structure that yields the highest expected profits, $E_t(\Phi_{t+1})$. Without D_t^* in equilibrium, $\bar{\omega}_{t+1}^* = 0$. Conditions 14, 18, and 19 are dropped from the optimization, while the foreign productivity draw, ω_{t+1}^* , shrinks to $(1 - \psi^*)\omega_{t+1}^*$ as the foreign subsidiary pursues its private benefit.

With D_t^* in equilibrium, all foreign variables except for I_t^* are solved through Conditions 14, 18, and 19. Let $M(\bar{\omega}_{t+1}^*)$ denote the expected payoff to the foreign lender per unit of I_t^* from reducing the private benefit of the foreign subsidiary through monitoring (the left hand

side of Condition 18):

$$M(\bar{\omega}_{t+1}^*) = \int_{\bar{\omega}_{t+1}^*}^{\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}} \left[\bar{\omega}_{t+1}^* - (1-\nu^*)(1-\psi^*)\omega_{t+1}^* \right] dF(\omega_{t+1}^*) + \int_0^{\bar{\omega}_{t+1}^*} (1-\nu^*)\psi^*\omega_{t+1}^* dF(\omega_{t+1}^*). \tag{21}$$

The incentive constraint (Condition 18) determines the minimum $\bar{\omega}_{t+1}^*$ in equilibrium given the distribution of ω_{t+1}^* :

$$M(\bar{\omega}_{t+1}^*) = \frac{c^*}{R_t^*}. (22)$$

The foreign contractual threshold, $\bar{\omega}_{t+1}^*$, regulates the minimum portion of I_t^* that needs to be funded by D_t^* in equilibrium, D_t^*/I_t^* , to sustain the incentive constraint for monitoring through Condition 19. By deciding D_t^*/I_t^* , $\bar{\omega}_{t+1}^*$ also solves the foreign lending rate r_t^* through the optimal contract, Condition 14. Substituting Condition 14 to the budget constraint in equilibrium:

$$D_t^* + \frac{T_t}{S_t} = I_t^*, (23)$$

 I_t^* becomes a function of the internal transfer T_t with:

$$I_t^* = \frac{T_t}{S_t \Lambda\left(\bar{\omega}_{t+1}^*\right)} \Longleftrightarrow T_t = S_t I_t^* \Lambda\left(\bar{\omega}_{t+1}^*\right), \tag{24}$$

where $\Lambda\left(\bar{\omega}_{t+1}^*\right)$ denotes the share of I_t^* that can be financed by funds cheaper than the local informed capital, D_t^* , with:

$$\Lambda\left(\bar{\omega}_{t+1}^{*}\right) = 1 - \frac{\bar{\omega}_{t+1}^{*} R_{t}^{*}}{1 + r_{t}^{*} \left(\bar{\omega}_{t+1}^{*}\right)}.$$
(25)

Conditions 22 and 24 illustrate an important interaction between the local capital market in Foreign and the international capital market in Home. Each unit of the internal funding, T_t , which is leveraged by the parent-level debt, D_t , needs to be blended with a minimum share of the local informed capital, D_t^* , to sustain the incentive constraint for monitoring. This mixture exists as long as the parent company wants to complement its limited internal monitoring capacity with local monitoring from the foreign lender to reduce the private benefit of the foreign subsidiary. If a rise in foreign uncertainty improves the incentive of the foreign lender to monitor the foreign subsidiary, the minimum share of D_t^*/I_t^* can be reduced for each unit of I_t^* without destroying the foreign lender's incentive constraint for monitoring. As a result, the parent company can effectively lower the cost of funds by financing the same level of I_t^*

with additional parent-level debt, which is cheaper since the parent-level debt is backed by a diversified cash flow. In this way, the existence of D_t^* in the equilibrium debt structure can induce an inflow of capital, or external debt, from Home to Foreign when the uncertainty in Foreign becomes higher. The inflow of international capital through the ICM can offset at least some of the negative effect from the rise in foreign uncertainty. Intuitively, while the parent company experiences an increase in the cost of funds because the foreign subsidiary becomes riskier, the parent company can also decrease the cost of funds by improving its debt structure with a smaller minimum share of D_t^*/I_t^* for each unit of I_t^* . The intuition that the existence of D_t^* in the equilibrium debt structure can act as stabilizer for foreign uncertainty shocks via a change in the debt structure forms a keystone for my empirical results, which will be elaborated in the next section.

With the equilibrium conditions of the foreign variables, the lending rate of the parent-level debt, r_t , together with the parent company's decision rules on I_t and T_t , are determined by the following three equations:

$$\lambda = -\frac{\Upsilon_{\hat{\omega}_{t+1}}^h + \Upsilon_{\hat{\omega}_{t+1}^h}^h \frac{I_t R_t}{F_{t+1} I_t^* R_t^*} + \Upsilon_{\hat{\omega}_{t+1}}^f \frac{F_{t+1} I_t^* R_t^*}{I_t R_t} + \Upsilon_{\hat{\omega}_{t+1}}^f}{\Omega_{\hat{\omega}_{t+1}}^h + \Omega_{\hat{\omega}_{t+1}^h}^h \frac{I_t R_t}{F_{t+1} I_t^* R_t^*} + \Omega_{\hat{\omega}_{t+1}}^f \frac{F_{t+1} I_t^* R_t^*}{I_t R_t} + \Omega_{\hat{\omega}_{t+1}^h}^f} > 1,$$
(26)

$$\Upsilon_t^h R_t + \delta_t^I = \lambda \left[(1 + r_t^{rf}) - \Omega_t^h R_t \right], \tag{27}$$

$$\Upsilon_t^f \frac{F_{t+1}}{S_t \Lambda\left(\bar{\omega}_{t+1}^*\right)} R_t^* + \delta_t^T = \lambda \left[(1 + r_t^{rf}) - \Omega_t^f \frac{F_{t+1}}{S_t \Lambda\left(\bar{\omega}_{t+1}^*\right)} R_t^* \right]. \tag{28}$$

Appendix C.1 provides the details of their derivations.

 λ is the Lagrange multiplier associated with r_t . Consistent with BGG (1999), λ reflects the risk premium generated by the costly default with $\nu > 0$. It prescribes the additional shares of the returns the parent company needs to compensate the home lender in the optimal contract to cover their expected default loss. Appendix C.1 demonstrates this point in details.

Conditions 27 and 28 are the equilibrium conditions for I_t and T_t , where δ_t^I and δ_t^T capture a diversification effect from a marginal increase in I_t and T_t , respectively. Though a marginal increase in I_t or T_t affects the expected default loss through both changing the relative size of the projects (the diversification effect) and lifting the leverage, Appendix C.2 shows that the marginal impact of any diversification benefit diminishes as the parent company's leverage

rises. Thus, by keeping building up the leverage, a marginal increase in I_t or T_t eventually raises the cost of funds because of the costly default. Appendix C.2 documents the details on how a marginal increase in I_t or T_t affects the expected default loss.

When $T_t \to 0$, the equilibrium converges to an one-project equilibrium similar to that of BGG (1999) with:

$$\lambda = -\frac{\Upsilon_{\hat{\omega}_{t+1}}^h}{\Omega_{\hat{\omega}_{t+1}}^h} = -\frac{\Upsilon_{\bar{\omega}_{t+1}}^h}{\Omega_{\bar{\omega}_{t+1}}^h} = \frac{1 - F(\bar{\omega}_{t+1})}{1 - F(\bar{\omega}_{t+1}) - \nu \bar{\omega}_{t+1} f(\bar{\omega}_{t+1})},\tag{29}$$

$$\Upsilon_t^h R_t = \lambda \left[(1 + r_t^{rf}) - \Omega_t^h R_t \right]. \tag{30}$$

In this case, Appendix C.3 proves that it is optimal for the parent company to have $T_t > 0$ when the foreign project has a large enough R_t^* :

$$\int_{\bar{\omega}_{t+1}^*}^{+\infty} (\omega_{t+1}^* - \bar{\omega}_{t+1}^*) dF(\omega_{t+1}^*) \frac{F_{t+1}}{S_t \Lambda\left(\bar{\omega}_{t+1}^*\right)} R_t^* > \frac{(1 + r_t^{rf})}{1 - \nu F(\hat{\omega}_{t+1}) - \nu \hat{\omega}_{t+1} f(\hat{\omega}_{t+1})}.$$
 (31)

Similarly, when $I_t \to 0$, the equilibrium converges to an one-project equilibrium close to that of BGG (1999), conditioning on the potential usage of the local informed capital, with:

$$\lambda = -\frac{\Upsilon_{\hat{\omega}_{t+1}^*}^f}{\Omega_{\hat{\omega}_{t+1}^*}^f} = \frac{1 - F(\hat{\omega}_{t+1}^*)}{1 - F(\hat{\omega}_{t+1}^*) - \nu\left(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*\right) f(\hat{\omega}_{t+1}^*)},\tag{32}$$

$$\Upsilon_t^f \frac{F_{t+1}}{S_t \Lambda\left(\bar{\omega}_{t+1}^*\right)} R_t^* = \lambda \left[(1 + r_t^{rf}) - \Omega_t^f \frac{F_{t+1}}{S_t \Lambda\left(\bar{\omega}_{t+1}^*\right)} R_t^* \right]. \tag{33}$$

In this case, Appendix C.3 proves that it is optimal for the parent company to have $I_t > 0$ when the home project has a large enough R_t :

$$R_t > \frac{(1 + r_t^{rf})}{1 - \nu F(\hat{\omega}_{t+1}^*) - \nu(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*) f(\hat{\omega}_{t+1}^*)}.$$
 (34)

3.4 Local Uncertainty Shocks and International Debt Substitution

The theoretical framework has so far characterized how the MNE utilizes the ICM in equilibrium with two main features: 1) The parent company has a comparative advantage in raising

uninformed debt due to the benefit of a cross-border cash-flow diversification by the virtue of ownership. 2) The local informed capital can be used at the foreign subsidiary for delegated monitoring. The local informed capital can complement the parent company's internal monitoring capacity due to the local lender's comparative advantage in addressing agency problems locally. Such comparative advantage can be especially helpful when the parent company faces a limited capacity in preventing the managerial misbehavior of the foreign subsidiary because of the MNE's operational, geographical, or business complexity.

Based on the framework, this section discusses how a foreign uncertainty shock affects the MNE's borrowing decisions globally by interacting with the ICM. Admittedly, a surge of uncertainty in Foreign can yield negative spillovers through the ICM as the uncertainty shock can raise the risk premium of any debt supported by the foreign return. However, the debt structure of the MNE matters during periods of heightened uncertainty. A key mechanism of my framework is that local informed capital, such as local bank debt, can play a special role in stabilizing uncertainty shocks through monitoring. A surge of foreign uncertainty can enhance the local lender's incentives for proper monitoring to protect their own returns from the foreign project. As a result, when the local informed capital is used in equilibrium, the parent company can raise additional parent-level debt globally to substitute the more expensive local informed capital without destroying the incentive constraint for monitoring. Such cross-border external debt substitution improves the debt structure of the MNE, which offsets the negative impact of the uncertainty shock at least partially. The usage of the local informed capital can therefore help anchor foreign capital in an economy during periods of heightened uncertainty via the ICMs of MNEs. I now explain these mechanisms in details with testable predictions.

3.4.1 The Impact of a Foreign Uncertainty Shock on $\bar{\omega}_{t+1}^*$

To highlight the role of the debt structure in response to local uncertainty shocks, I start by examining the impact of a foreign uncertainty shock on the foreign contractual threshold, $\bar{\omega}_{t+1}^*$. $\bar{\omega}_{t+1}^*$ plays a central role in the debt structure of the MNE since it regulates the usage of the local informed capital in equilibrium. As established in Section 3.1, a foreign uncertainty shock at time t, which affects the MNE's investment decisions, can be described as an exogenous, mean-preserving shock to σ_t^* , consistent with Dorofeenko, Lee, and Salyer (2008) and Akinci

(2021).³⁹ Because the incentive constraint for monitoring (Condition 22) determines $\bar{\omega}_{t+1}^*$ in equilibrium, a starting point to investigate the effect of the uncertainty shock is:

$$\frac{dM\left(\bar{\omega}_{t+1}^*, \sigma_t^*\right)}{d\sigma_t^*} = 0 \tag{35}$$

following Condition 22.

Equation 35 holds because the per-unit expected payoff to the home lender from proper monitoring, $M(\bar{\omega}_{t+1}^*)$, is pinned down by the cost of the monitoring technology, c^* , and the country-specific technology, R_t^* . Both c^* and R_t^* are independent with the foreign uncertainty shock. I write $M\left(\bar{\omega}_{t+1}^*\right) = M\left(\bar{\omega}_{t+1}^*, \sigma_t^*\right)$ to indicate that the distribution of the foreign productivity draw, ω_{t+1}^* , depends on the parameter σ_t^* . Applying the definition of $M(\bar{\omega}_{t+1}^*)$ according to Equation 21, Equation 35 implies:

$$\frac{\partial M(\bar{\omega}_{t+1}^*, \sigma_t^*)}{\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)} \frac{\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)}{\partial \sigma_t^*} + \frac{\partial M(\bar{\omega}_{t+1}^*, \sigma_t^*)}{\partial \left(F(\frac{\bar{\omega}_{t+1}^*}{1 - \psi^*}, \sigma_t^*) - F(\bar{\omega}_{t+1}^*, \sigma_t^*)\right)} \frac{\partial \left(F(\frac{\bar{\omega}_{t+1}^*}{1 - \psi^*}, \sigma_t^*) - F(\bar{\omega}_{t+1}^*, \sigma_t^*)\right)}{\partial \sigma_t^*} \\
= -\frac{\partial M(\bar{\omega}_{t+1}^*, \sigma_t^*)}{\partial \bar{\omega}_{t+1}^*} \frac{\partial \bar{\omega}_{t+1}^*}{\partial \sigma_t^*}.$$
(36)

Consider an exogenous, mean-preserving shock to σ_t^* that raises the default probability of the foreign subsidiary with $\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* > 0$, and that the due diligence of the foreign subsidiary will not worsen the increase, $\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* \leq \partial F(\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}, \sigma_t^*)/\partial \sigma_t^*$. There will be:

$$\frac{\partial M(\bar{\omega}_{t+1}^*, \sigma_t^*)}{\partial \bar{\omega}_{t+1}^*} \frac{\partial \bar{\omega}_{t+1}^*}{\partial \sigma_t^*} < 0 \tag{37}$$

since $\partial M(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*) > 0$ and $\partial M(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \left(F(\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}, \sigma_t^*) - F(\bar{\omega}_{t+1}^*, \sigma_t^*)\right) > 0$ following Equation 21. The impact of the foreign uncertainty shock on $\bar{\omega}_{t+1}^*$ can then be signed as:

$$\frac{\partial \bar{\omega}_{t+1}^*}{\partial \sigma_t^*} < 0 \tag{38}$$

due to $\partial M(\bar{\omega}_{t+1}^*)/\partial \bar{\omega}_{t+1}^* > 0$, as proved by Appendix B.1.

³⁹A mean-shifting shock to σ_t^* can represent a combination of two shocks: An uncertainty shock to σ_t^* with $E_t(\omega_{t+1}^*) = 1$ and a first moment shock that shifts R_t^* .

The condition $\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* > 0$ implies the foreign uncertainty shock is contractionary. It is consistent with the theoretical and empirical evidence from Bloom et al. (2018), Christiano, Motto, and Rostagno (2014), Julio and Yook (2012), Fernandez-Villaverde et al. (2011), Bloom (2009), etc. It is true in my model when R_t^* is not extremely low so that $\bar{\omega}_{t+1}^*$ is not extremely high. The fact that $\bar{\omega}_{t+1}^*$ decreases in R_t^* can be seen from Condition 22 in the equilibrium with $\partial M(\bar{\omega}_{t+1}^*)/\partial \bar{\omega}_{t+1}^* > 0$. It should also be noted that $\bar{\omega}_{t+1}^*$ cannot be extraordinarily high. This is because if R_t^* is too low, a $\bar{\omega}_{t+1}^*$ does not exist in the equilibrium as the foreign lender cannot meet their participation constraint. Appendix B.1 explains the concavity of the expected payoff to the foreign lender with respect to $\bar{\omega}_{t+1}^*$ in details, which tracks the framework of BGG (1999).

Though it is reasonable to assume that the increase in the default probability rises with the managerial misbehavior, whether, and to what extend, $\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* \leq \partial F(\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}, \sigma_t^*)/\partial \sigma_t^*$ is an empirical question since the answer depends on the value of ψ^* for a given R_t^* . If there is somehow $\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* > F(\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}, \sigma_t^*)/\partial \sigma_t^*$, the value of $\partial \bar{\omega}_{t+1}^*/\partial \sigma_t^*$ will grow toward being positive based on Equation 36. This will work against me in finding any empirical result associated with $\partial \bar{\omega}_{t+1}^*/\partial \sigma_t^* < 0$. The same argument goes if the exogenous shock to σ_t^* has a mean-shifting component that depresses R_t^* , which will make the value of $\partial M(\bar{\omega}_{t+1}^*)/\partial \bar{\omega}_{t+1}^*$ grow toward being negative following Condition 22.

Condition 38 reveals that the usage of the local informed capital, D_t^* , in the equilibrium debt structure can act as a stabilizer during periods of heightened uncertainty. Intuitively, the foreign lender is incentivized to reduce the private benefit of the foreign subsidiary via local monitoring in order to avoid the default state, in which the foreign subsidiary misbehaves. When a rise in foreign uncertainty makes it easier for the foreign subsidiary to default with the managerial misbehavior, the foreign lender's incentive to monitor becomes stronger, which

⁴⁰Empirically speaking, however, $\partial F(\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}, \sigma_t^*)/\partial \sigma_t^* \geq \partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* > 0$ is almost always true even if R_t^* is low and ψ^* is substantially large. Using the sample period of 2016-2018 of my Brexit natural experiment as an example for back-of-the-envelope calculations. The subsidiary-level debt ratio in the UK, D_t^*/I_t^* , can be estimated as around 0.3 according to Table 1. Approximating the local risky lending rate, r_t^* , using the effective interest rate of bank loans with a fixed rate to UK private non-financial corporations according to the BoE, $1+r_t^*=1.045$ (https://www.bankofengland.co.uk/statistics/visual-summaries/effective-interest-rates). $1+r_t^*$ is around 1.03 for the bank loans with a floating rate or 1.04 based on the yield of the UK non-investment-grade corporate bonds from Capital IQ. Approximating the MNE's country-specific technology R_t^* using the UK GDP growth, $R_t^*=1.015$. The value is likely to be an underestimation if the UK subsidiaries of non-UK, non-financial MNEs tend to be more productive. With $\bar{\omega}_{t+1}^*=0.31$, $\partial F(\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}, \sigma_t^*)/\partial \sigma_t^* \geq \partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* > 0$ is true even if ψ^* is as large as 0.5, meaning half of ω_{t+1}^* would be lost due to managerial misbehavior. See Figure 2 for a demonstration of this example.

relaxes their incentive constraint for monitoring with $\partial \bar{\omega}_{t+1}^*/\partial \sigma_t^* < 0$. As explained in Section 3.3, the foreign contractual threshold, $\bar{\omega}_{t+1}^*$, regulates the minimum share of D_t^*/I_t^* to sustain the incentive constraint for monitoring. The relaxed incentive constraint thus allows the parent company to improve its debt structure by funding each unit of I_t^* with additional parent-level debt, which is cheaper due to the diversification benefit, without losing the local monitoring of the foreign lender. As a result, while the rise in foreign uncertainty can increase the cost of funds since the foreign subsidiary is riskier, the substitution of parent-level debt for subsidiary-level debt as local informed capital can also decrease the cost of funds via improving the debt structure.

The external debt substitution between the parent company and foreign subsidiary and the associated stabilization effect can be summarized by the following empirical predictions:

Prediction 1: Given a higher country-level uncertainty, if MNEs with foreign subsidiaries operating in the country respond with a substitution of external debt between the foreign subsidiaries and their parent companies, there should be an increase in the ratio of parent-level debt to total assets, conditioning on the ratio of total debt to total assets, in the consolidated financial statements of the MNEs.

Prediction 2: If the improvement of the debt structure through the external debt substitution can substantially offset the contractionary impact of the uncertainty shock, there should not be a significant decrease in the ratio of total debt to total assets in the consolidated financial statements of the MNEs.

With the predictions about the external debt substitution between the parent company and foreign subsidiary based on the consolidated financial statements, the next section discusses the detailed effects of the country-level uncertainty shock on the unconsolidated balance sheet of the foreign subsidiary.

3.4.2 The Impact of a Foreign Uncertainty Shock on D_t^*/I_t^*

Because $\partial \bar{\omega}_{t+1}^*/\partial \sigma_t^* < 0$, the foreign uncertainty shock will decrease the ratio of subsidiary-level debt to total assets, D_t^*/I_t^* , through two forces that affect I_t^* in the opposite directions. Combining the participation constraint for the foreign lender (Condition 19) with the foreign

contractual threshold (Condition 14), D_t^*/I_t^* in equilibrium is:

$$\frac{D_t^*}{I_t^*} = \frac{\Omega^*(\bar{\omega}_{t+1}^*)R_t^*}{1 + r_t^{rf*}} - \frac{c^* + s^*}{1 + r_t^{rf*}},\tag{39}$$

where $\Omega^*(\bar{\omega}_{t+1}^*) = \Omega^*(\bar{\omega}_{t+1}^*, \sigma_t^*)$ denotes the expected share of $I_t^* R_t^*$ for the foreign lender from the subsidiary-level debt contract.

For the mean-preserving shock to σ_t^* , there is:

$$\frac{d(D_t^*/I_t^*)}{d\sigma_t^*} = \frac{R_t^*}{1 + r_t^{rf*}} \left[\frac{\partial \Omega^*(\bar{\omega}_{t+1}^*, \sigma_t^*)}{\partial \bar{\omega}_{t+1}^*} \frac{\partial \bar{\omega}_{t+1}^*}{\partial \sigma_t^*} + \frac{\partial \Omega^*(\bar{\omega}_{t+1}^*, \sigma_t^*)}{\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)} \frac{\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)}{\partial \sigma_t^*} \right]. \tag{40}$$

The first term in the squared brackets, $\left(\partial\Omega^*(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial\bar{\omega}_{t+1}^*\right)\left(\partial\bar{\omega}_{t+1}^*/\partial\sigma_t^*\right) < 0$, represents the expansionary impact from the relaxation of the incentive constraint for monitoring. It enables the MNE to improve its debt structure via the external debt substitution, as explained in the previous section. The term is negative since $\partial \bar{\omega}_{t+1}^*/\partial \sigma_t^* < 0$ and $\partial \Omega^*(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \bar{\omega}_{t+1}^* > 0$. Appendix B.1 provides the details on $\partial \Omega^*(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \bar{\omega}_{t+1}^* > 0$.

The second term in the squared brackets, $\left(\partial\Omega^*(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)\right)\left(\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^*\right)$ < 0, represents the contractionary impact from the higher default probability of the foreign subsidiary. It creates an upward pressure in the risk premium of the MNE and, consequently, a downward pressure in I_t^* through deleveraging (i.e., a fall in the debt-to-equity ratio, conditioning on the debt structure, of the MNE). The term is negative since $\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* > 0$ and $\partial \Omega^*(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*) < 0.41$

Without the relaxation of the incentive constraint for monitoring, the foreign uncertainty shock would only be contractionary for any subsidiary-level debt used in equilibrium due to the higher default probability.⁴² With the relaxation of the incentive constraint, however, the

 $^{^{41}\}partial\Omega^*(\bar{\omega}_{t+1}^*)/\partial F(\bar{\omega}_{t+1}^*)<0 \text{ due to } \Omega^*(\bar{\omega}_{t+1}^*)=\bar{\omega}_{t+1}^*\left(1-F(\bar{\omega}_{t+1}^*)\right)+\int_0^{\bar{\omega}_{t+1}^*}(1-\nu^*)\omega_{t+1}^*dF(\omega_{t+1}^*) \text{ and } (1-\mu^*)\omega_{t+1}^*(1-\mu^*)\omega_{t+1}^*dF(\omega_{t+1}^*)$

 $[\]nu^*)\omega_{t+1}^* < \bar{\omega}_{t+1}^* \forall \omega_{t+1}^* \in [0, \bar{\omega}_{t+1}^*].$ ⁴²I have assumed that the exogenous foreign uncertainty shock does not affect the local risk-free interest rate, r_t^{rf*} . If the uncertainty shock additionally raises r_t^{rf*} , the contractionary impact will be amplified due to a larger opportunity cost of the foreign lender. The rise in r_t^{rf*} , along with the contractionary impact from the higher default probability of the foreign subsidiary, can be answered by the foreign central bank, at least partially, via lowering r_t^{rf*} . The movements in the risk-free interest rate do not affect my empirical predictions about the external debt substitution originated from $\partial \bar{\omega}_{t+1}^*/\partial \sigma_t^* < 0$. This is because $\bar{\omega}_{t+1}^*$ is determined by the incentive constraint for monitoring, which is independent with r_t^{rf*} , as shown by Condition 22. As a result, $\partial \bar{\omega}_{t+1}^*/\partial \sigma_t^*$ does not rely on r_t^{rf*} , following Equation 36.

external debt substitution can lower the subsidiary-level debt ratio, D_t^*/I_t^* , without decreasing I_t^* as the substitution reduces the cost of funds for the MNE by improving its debt structure. When the expansionary impact of the external debt substitution substantially offsets the contractionary impact of the foreign uncertainty shock, it is possible for D_t^*/I_t^* to decline, while I_t^* remains relatively stable. As a result, the effect of the external debt substitution on the subsidiary-level unconsolidated balance sheet can be summarized by the following empirical predictions:

Prediction 3: Given a higher country-level uncertainty, if MNEs with foreign subsidiaries operating in the country respond with a substitution of external debt between the foreign subsidiaries and their parent companies, there should be a decrease in the ratio of external debt to total assets in exchange for an increase in the ratio of internal debt to total assets, conditioning on I_t^* , on the unconsolidated balance sheet of the foreign subsidiaries.

Prediction 4: If the expansionary impact of the external debt substitution can substantially offset the contractionary impact of the uncertainty shock, the ratio of total debt to total assets should remain relatively stable on the unconsolidated balance sheet of the foreign subsidiaries.

3.4.3 The Impact of a Foreign Uncertainty Shock on the Parent Company

Consistent with the contractionary impact on I_t^* through the subsidiary-level debt, the foreign uncertainty shock would yield a downward pressure on the parent company's global investments, I_t and T_t , via $\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* > 0$. The downward pressure exists because the higher default probability of the foreign subsidiary reduces the expected payoff to the home lender from the parent-level debt contract, ceteris paribus. Specifically, the higher default probability decreases the expected return of the home lender from the foreign project, $\Omega_t^f F_t I_t^* R_t^*$, as $\Omega_t^f = 0 \ \forall \omega_{t+1}^* \leq \bar{\omega}_{t+1}^*$. It also lowers the home lender's expected return from the home project, $\Omega_t^h I_t R_t$, by increasing the probability density of the states $\int_0^{\bar{\omega}_{t+1}^*} 0 dF(\omega_{t+1}^*) I_t R_t$ and $\int_0^{\bar{\omega}_{t+1}^*} \int_0^{\hat{\omega}_{t+1}} (1-\nu)\omega_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^*) I_t R_t$. See Equations A.15 and A.12 for the definitions of Ω_t^f and Ω_t^h , respectively, from Appendix A.3. Overall, the reduced expected payoff to the home lender from the parent-level debt contract raises the risk premium of the parent-level

debt. This creates a downward pressure in the leverage of the parent company, $D_t/(I_t + T_t)$, given the minimum share of D_t^*/I_t^* determined by the foreign contractual threshold, $\bar{\omega}_{t+1}^*$.

It is worth noting that the deleverage pressure exists whenever the subsidiary-level debt is used in equilibrium to support the parent-level debt. When the subsidiary-level debt is used without the incentive constraint for monitoring, the uncertainty shock only generates deleverage pressures through the subsidiary- and parent-level debt. When the local informed capital is used with the incentive constraint for monitoring, the expansionary impact from the external debt substitution can offset the deleverage pressures at least partially. Whether, and to what extent, MNEs perform the external debt substitution to stabilize a country-level uncertainty shock so that Predictions 2 and 4 hold is an empirical question explored in Sections 4 and ??.

In the equilibrium where only the parent-level debt is used, $\bar{\omega}_{t+1}^* = 0$. The foreign uncertainty shock would operate entirely through the leverage of the parent company without triggering adjustments in the debt structure by construction. Similar to the case of $\partial F(\bar{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* > 0$, the uncertainty shock will still contract the parent company's global investments, I_t and T_t , via deleveraging with $\partial F(\hat{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* > 0$. The conclusions associated with $\bar{\omega}_{t+1}^* = 0$ cannot be supported by my empirical findings, however, as will be clear in Sections 4 and ??. The lack of subsidiary-level debt in equilibrium is also not consistent with the existing evidence that subsidiaries have external debt (e.g., Desai, Foley, and Forbes 2008, Santioni, Schiantarelli, and Strahan 2020, Kim, Wilcox, and Yasuda 2020, etc.), and that it is normal for MNEs to have subsidiary-level defaults (e.g., Chowdhry and Coval 1998). Section 3.2.1 provides more recent examples on subsidiary-level defaults due to underperformance.⁴³

⁴³Though not the focus of this project, my framework incorporates the possibility that the parent company funds the foreign subsidiary internally without primarily using it for the diversification benefit. An example can be the parent company establishes the foreign subsidiary for risky R&D activities. The foreign non-default threshold, $\hat{\omega}_{t+1}^*$, can be high under such circumstance as the foreign return is not meant to serve the parent-level debt in the first place. With $\bar{\omega}_{t+1}^* = 0$, it is then possible that a mean-preserving increase in σ_t^* benefits the parent company via an improved upside potential, $\partial F(\hat{\omega}_{t+1}^*, \sigma_t^*)/\partial \sigma_t^* < 0$. This will lead to an expansion of the parent company's global investments with a rise in its leverage, $D_t/(I_t + T_t)$. Such conclusion cannot be supported by my empirical findings either. The scenario is also more applicable for activities of individual subsidiaries, but less so for activities of MNEs at the country level, especially when the country hosts significant non-financial subsidiaries' activities for the MNEs. The latter case is the focus of my theoretical framework with the representative MNE.

3.4.4 The Role of the Exchange Rate

Though my framework highlights the interaction between the local informed capital and parent-level debt in response to a foreign uncertainty shock per se, it is useful to understand how the uncertainty shock may affect the MNE via the spot and forward exchange rates. To begin with, the key mechanism of my framework does not depend on the exchange rate. Specifically, the impact of the foreign uncertainty shock on the incentive constraint for monitoring and subsidiary-level debt ratio, D_t^*/I_t^* , does not depend on the exchange rate. This is because the incentive constraint for monitoring is decided entirely by the local parameters in Foreign, as shown by Condition 22. Since the incentive constraint pins down the foreign contractual threshold, $\bar{\omega}_{t+1}^*$, while $\bar{\omega}_{t+1}^*$ regulates D_t^*/I_t^* in the equilibrium, the responses of both $\bar{\omega}_{t+1}^*$ and D_t^*/I_t^* to the foreign uncertainty shock are independent with the exchange rate without additional assumptions, following Equations 36 and 40.

Furthermore, the ratio of parent-level debt to total assets on the consolidated balance sheet, $D_t/(I_t + S_t I_t^*)$, is not affected by the spot exchange rate per se in equilibrium because:

$$S_t I_t^* = \frac{T_t}{\Lambda \left(\bar{\omega}_{t+1}^*\right)} \tag{41}$$

by Condition 24. This theoretical outcome is consistent with my empirical findings in Section 4, where I observe a persistently higher $D_t/(I_t + S_t I_t^*)$ during periods of heightened foreign uncertainty, even when there is a depreciation of the Home's currency (i.e., S_t rises).

The parent company's investments, I_t and T_t , are connected with the forward premium $F_{t+1}/S_t = (1 + r_t^{rf})/(1 + r_t^{rf*})$ through Condition 28 and the CIP in equilibrium, where F_{t+1} is the risk-adjusted forward exchange rate. Therefore, movements in the risk-free interest rates can amplify or dampen the impact of the foreign uncertainty shock on the leverage of the parent company, $D_t/(I_t + T_t)$, via F_{t+1}/S_t . However, movements in the risk-free interest rates do not affect my empirical predictions about the external debt substitution originated from $\partial \bar{\omega}_{t+1}^*/\partial \sigma_t^* < 0$, which improves the MNE's debt structure by lowering the minimum share of D_t^*/I_t^* , as explained in Section 3.4.2. If the forward exchange rate is not risk adjusted, while the country-level uncertainty shock in Foreign induces a CIP deviation with a foreign risk premium, the contractionary impact of the uncertainty shock on the leverage of the parent company will

be amplified through a decline in F_{t+1}/S_t . This will increase the challenge in finding empirical evidence consistent with Prediction 2.⁴⁴

4 Empirical Analysis: Parent-Level Evidence

My theoretical framework predicts that the usage of subsidiary-level debt can allow MNEs to improve their debt structure by substituting subsidiary-level debt with parent-level debt in response to a rise in country-level uncertainty. Whether, and to what extent, the external debt substitution takes place is ultimately an empirical question. The following sections empirically test my predictions based on the parent-level consolidated financial statements (Predictions 1 and 2) and subsidiary-level unconsolidated balance sheet (Predictions 3 and 4) using the Brexit interregnum as a natural experiment.

4.1 The Brexit Interregnum as a Natural Experiment

My empirical analysis starts with the identification of exogenous uncertainty shocks that can affect the debt structure of MNEs by a substitution of external debt through their ICMs. Such identification is challenging because major uncertainty shocks tend to concur with other shocks driving business cycles (e.g., Bloom et al. 2019, Christiano, Motto, and Rostagno 2014, etc.). To address this challenge, I take advantage of the Brexit interregnum (6/23/2016-12/31/2018) as a natural experiment. To be precise, I define the interregnum as the period between the vote for Brexit on June 23, 2016 and the first Brexit proposal made by the UK government at the end of 2018 signaling a "soft" Brexit, in which Britain could maintain most its existing relationships with the EU.

The Brexit interregnum is a suitable natural experiment for my purpose due to three reasons. To begin with, the vote for Brexit was mostly unexpected. Meanwhile, it generated a large, broad, and persistent rise in uncertainty within the UK regarding the Brexit process and its consequences, accompanied by little other change (Bloom et al. 2019). In specific, the UK remained inside the EU during the interregnum, meaning the supply side condition of the

⁴⁴When the parent company optimizes in period t with $E_t(S_{t+1})$, instead of using the forward contract, its investments are similarly connected with the exchange rate. In this case, movements in the risk-free interest rates can interact with the impact of the foreign uncertainty shock on the leverage of the parent company in an equivalent manner via the UIP, $E_t(S_{t+1})/S_t = (1 + r_t^{rf})/(1 + r_t^{rf*})$. The contractionary impact of the foreign uncertainty shock on the leverage of the parent company will also be amplified through a decline in $E_t(S_{t+1})/S_t$ when the country-level uncertainty shock induces an UIP deviation with a foreign risk premium.

country remained largely unchanged. The stable supply side condition was paired with a remarkably stable demand in the UK during the interregnum, as suggested by numerous reports from the Bank of England (e.g., Broadbent 2017, BoE 2017, BoE 2018, etc.). Although the vote had caused a strong reaction consistent with a negative first moment shock in the first few months, the response was soon replaced by a lack of clarity on the Brexit process and its consequences, together with a general hope for a "soft" Brexit. For instance, an average UK firm in late 2017 and early 2018 reported a more than 50% probability that the eventual Brexit outcome would have a non-negative impact on their sales. At the same time, an average UK firm in late 2017 and early 2018 assigned a 15% probability that Brexit would never be materialized and a more than 70% probability that the eventual Brexit would take a form of "soft" Brexit (Bloom et al. 2019). 45 I define the interregnum with a stop at the end of 2018 to focus on the period when there was a high uncertainty and a relatively high hope for a "soft" Brexit within the UK. 46 Admittedly, assuming a zero first moment shock in the UK during the interregnum is unrealistic. However, existing evidence supports the argument that the uncertainty shock was large and dominating in the country during the interregnum. In addition, a negative first moment shock will work against me in finding an external debt substitution through the ICMs of MNEs without a significant decline in leverage (i.e., total debt over total assets) at both the parent and subsidiary level, as explained in Section 3.4.

The second reason the Brexit interregnum is a suitable natural experiment is that the BoE stabilized the UK credit environment during this period (BoE 2017, BoE 2018). The stabilized credit environment allows me to disentangle the response of ICMs to uncertainty shocks from the response to credit supply shocks, which often accompany with uncertainty shocks during financial crises. In fact, it is difficult to explain internal capital flows toward the UK during the interregnum as a reallocation of equity capital or cash flows via the ICMs of MNEs in response to credit stress, which has been the focus of the existing literature.⁴⁷

⁴⁵Perhaps as another example, the sterling exchange rate against the US dollar steadily recovered back to the pre-referendum level by 2018 after crashing in the first two months following the Brexit vote.

⁴⁶At the end of 2018, the UK government made its first Brexit proposal that signaled its wish for a "soft" Brexit. However, the proposal was rejected by the EU and, after a revision, by the UK Parliament. These developments further complicated the Brexit process and started to make a no-deal Brexit a real concern in 2019 (Bloom et al. 2019).

⁴⁷For studies that explore this mechanism, see Biermann and Huber (2020), Buchuk et al. (2020), Santioni, Schiantarelli, and Strahan (2020), Kim, Wilcox, and Yasuda (2020), Almeida, Kim, and Kim (2015), etc. Desai, Foley, and Forbes (2008) additionally point out that foreign subsidiaries of MNEs are less likely to become financially constrained when facing with credit stress or during crises. They report that foreign subsidiaries of

The third reason why the Brexit interregnum is a desirable natural experiment is that the uncertainty shock within the UK during the period of around 2.5 years is impactful enough to affect the consolidated debt structure of MNEs. To start with, the UK is one of the top 5 countries that host the largest production of majority-owned foreign subsidiaries (Cadestin et al. 2018). The country has also traditionally been the most important country for US MNEs in terms of output and value added of majority-owned foreign subsidiaries (BEA 2021). Thus, if an uncertainty shock can cause a substitution of external debt through the ICMs of MNEs, a substantial and persistent rise in uncertainty within the UK can bring sizable enough changes in the consolidated debt structure of MNEs, especially for US MNEs. Such sizeable changes are useful for me to detect the external debt substitution using the consolidated financial statements of US MNEs, which will be explained in the next section.

4.2 Measuring the Substitution: Data and Estimation at the Parent Level

Based on the identification of uncertainty shocks, I now address the measurement issue of the external debt substitution. To begin with, measuring a substitution of external debt within the ICMs of MNEs directly is challenging. One practical reason is that cross-border transactionlevel data within the ICMs of MNEs is typically not available on a systematic scale. Even if the data is available, measuring a substitution of external debt by tracking transactions directly can be problematic since one actual transaction can be divided into numerous transactions among related parties. For instance, consider a US parent company (e.g., General Electric) that owns a manufacturing subsidiary in the UK (e.g., GE Aviation UK) and a US financial subsidiary (e.g., GE Capital Global Holdings). If General Electric would like to substitute a subsidiary-level bank loan of GE Aviation UK with a parent-level bond backed by the diversified cash flows of General Electric, the actual transaction can start with GE Capital Global Holdings and ends with GE Aviation UK with General Electric, the parent company, in the middle as a related party. Specifically, General Electric can issue a bond through GE Capital Global Holdings with a parent guarantee. After receiving the proceeds from the bond sale, GE Capital Global Holdings can transfer the proceeds to General Electric as an equity transfer. General Electric can then transfer the "equity capital" to GE Aviation UK as an intra-group loan. By directly

US MNEs in emerging markets expand sales, assets, and investment significantly more than local firms during currency crises.

examining the firm-to-firm transactions, one may conclude that the intra-group loan between GE Aviation UK and General Electric is financed by equity, which masks the substitution of external debt by missing the other half of the transaction between General Electric and GE Capital Global Holdings.

To address the challenge of tracing related internal transactions directly, I instead examine whether an uncertainty shock can cause a substitution of external debt at both ends of the corporate ownership structure. Using the same example as an illustration, I first ask if the UK uncertainty shock made General Electric increase the usage of parent-level debt (e.g., the parent-level bond) in exchange for a decrease in subsidiary-level debt (e.g., the subsidiary-level bank loan) in its consolidated financial statements, without significantly reducing the ratio of total debt to total assets, as described by my Predictions 1 and 2. I then complete the analysis by examining the unconsolidated balance sheet of GE Aviation UK to see if the UK uncertainty shock made GE Aviation UK increase the usage of internal debt in exchange for a decrease in its external debt, without significantly reducing the ratio of total debt to total assets, as described by my Predictions 3 and 4. The combination of the parent-level analysis based on the consolidated financial statements with the subsidiary-level analysis based on the unconsolidated balance sheet forms my empirical evidence on whether, and to what extend, MNEs respond to a rise in country-level uncertainty by substituting their subsidiary-level debt in the country with parent-level debt to improve their debt structure. The rest of Section 4 describes my parent-level analysis. Section ?? presents my subsidiary-level analysis.

In order to examine changes in the components of the parent-level consolidated debt structure, I take advantage of the detailed disclosure requirements on US public firms by studying the consolidated financial statements of US MNEs exposed to the UK uncertainty shock. Specifically, the Regulations S-X and S-K of the Securities Act of 1933 require all US public firms to disclose detailed information on their capital and debt structure. Such information has been systematically compiled by Capital IQ after reviewing various regulatory filings, including financial footnotes, with scrutiny. From 2002 onward, the coverage by Capital IQ is comprehensive (Rauh and Sufi 2010, Colla, Ippolito, and Li 2013, Gurkaynak, Karasoy-Can, and Lee 2021).

Given the data of the consolidated debt structure, I start my parent-level analysis with a quarterly sample of US parent companies after merging Capital IQ with Compustat. While

Capital IQ enables me to decompose the parent-level consolidated debt structure by detailed types of debt instruments, Compustat provides rich parent-level characteristics from the consolidated balance sheet and income statements. To ensure data quality, I drop the observations where the discrepancy in total debt between Capital IQ and Compustat is greater than 10% of the total debt from Compustat, following the practice of Colla, Ippolito, and Li (2013).

With the data from Capital IQ and Compustat, I merge my sample with Orbis to map out the complete ownership structure of the US parent companies with up to 10 levels of subsidiaries. The ownership mapping allows me to identify the US parent companies that are exposed to the UK uncertainty shock through non-financial subsidiaries in the UK. To ensure a parent company's control over the equity capital of its subsidiaries, I define subsidiaries by the majority ownership throughout my empirical analysis, where a majority ownership can be established through a direct ownership, indirect ownership, or a combination both. In addition, I require that all US parent companies in my sample owned at least one non-financial subsidiary in the US within the first three levels of the ownership structure below the parent company during the Brexit interregnum. 48 Based on such setup, I define a US parent company as having an UK exposure through its ICM if it owned at least one non-financial subsidiary in the UK within the first three levels of the ownership structure below the parent company during the Brexit interregnum. Furthermore, I define a US parent company without such exposure if it did not own any subsidiary in the UK during the same period. In the end, I make two sample restrictions. First, I focus on non-financial business groups via excluding the US parent companies in the financial and utility sectors by convention. Secondly, I focus on leveraged US parent companies that issued senior bonds in my sample for reasons that will be shortly explained. My final sample for the parent-level analysis includes a balanced sample of 1008 US non-financial business groups.

Though I am able to decompose the parent-level consolidated debt structure by detailed types of debt instruments, I face a problem common in the literature that it is difficult to comprehensively observe all debt instruments with a parent guarantee. However, we do know that bond debt, especially senior bond debt, is specialized as parent-level debt. In fact, around

⁴⁸Around 90% of the subsidiaries are within the first three levels of the ownership structure below the parent company in my sample. I include the level restriction to make sure that the classification of a subsidiary exposure is not driven by a minor subsidiary that is irrelevant to the business group.

90% of the US non-financial bond debt has been issued at the parent level over the past two decades according to SDC, FISD, and TRACE (Kolasinski 2009, Altieri, Manconi, and Massa 2019). The remaining 10% includes bonds issued by intermediate holding companies, which, in my model, still count as parent companies since their debt can be backed the diversified cash flows of their subsidiaries. In addition, recent empirical evidence reveals that non-financial subsidiaries primarily use bank loans, instead of bonds (e.g., Santioni, Schiantarelli, and Strahan 2020, Kim, Wilcox, and Yasuda 2020, etc.). ⁴⁹ Therefore, to capture an increase in parent-level debt in exchange for subsidiary-level debt in the consolidated debt structure, I check if there is a rise in the ratio of senior bonds to total assets, conditioning on the ratio of total debt to total assets (i.e., book leverage). The underlying assumption is that a substitution of parent-level debt for subsidiary-level debt will be at least partially reflected by a higher senior-bond-toasset ratio. In the case that some of the substitution cannot be covered by the senior-bondto-asset ratio, my empirical analysis would underestimate the intensity of the external debt substitution. An example of such case is that a parent company uses parent-level syndicated loans to substitute for subsidiary-level term loans. To further confirm if a higher senior-bondto-asset ratio leads to a substitution of parent-level debt for subsidiary-level debt, I also check if there is a corresponding substitution of internal debt for external debt on the subsidiarylevel unconsolidated balance sheet. With the parent-level sample and the senior-bond-to-asset ratio, the following section explains my identification strategy to estimate the effect of the UK uncertainty shock on the parent-level consolidated debt structure.

4.3 Identification Strategy: Difference-in-Differences Estimator

My parent-level sample allows me to compare changes in the consolidated debt structure between two groups of US non-financial parent companies: Those with the UK exposure through their ICMs and those that have active ICMs but without the UK exposure. In addition, both groups of the parent companies issued senior bonds in my sample, making both groups among the largest non-financial firms in the US stock market (Colla, Ippolito, and Li 2013). Given such data structure, I take advantage of the DID estimator to estimate the effect of the UK uncertainty shock on the parent-level consolidated debt structure, using the US parent compa-

⁴⁹As additional evidence, Colla, Ippolito, and Li (2013) report that only the largest US public firms issue senior bonds, which further reduces the likelihood that smaller non-financial subsidiaries use senior bonds as standalone debt to finance their own operations.

nies with the UK exposure as the treatment group and the US parent companies without such exposure as the control group. The after period for my DID analysis is the Brexit interregnum (2016Q3-2018Q4), while I define the before period as a period of equal length before the interregnum (2014Q1-2016Q2).⁵⁰ The identification assumption is that the book leverage and senior-bond-to-asset ratio of the two groups would evolve along the same time-varying path in the absence of the UK uncertainty shock during the Brexit interregnum.

Figure 3 and 4 provide suggestive evidence for my identification assumption. To begin with, Figure 3, Panels A and B show that the book leverage and senior-bond-to-asset ratio of the two groups indeed track each other closely before the Brexit interregnum, which starts at the end of 2016Q2. While the book leverage of the two groups still follow each other relatively closely during the interregnum, as shown by Figure 4, Panel A, the senior-bond-to-asset ratio of the treatment group becomes noticeably higher relative to that of the control group, as suggested by Figure 4, Panel B. Interestingly, Figure 4, Panel A also reveals that the US parent companies with the UK exposure do not experience a significant deleverage, comparing with the US parent companies in the control group. These patterns are in line with my Predictions 1 and 2 that the UK uncertainty shock made the US parent companies in the treatment group increase their parent-level debt in exchange for a decrease in the subsidiary-level debt in the consolidated financial statements, without significantly reducing the ratio of total debt to total assets (i.e., book leverage).

To formally test the impact of the UK uncertainty shock, I specify my econometric model with the DID estimator as follows:

$$Y_{i,t} = \alpha_i + \beta A f ter_t + \gamma A f ter_t \times U K_i + \sum_{k=1}^K \varphi_k X_{k,i,t} + \epsilon_{i,t}, \tag{42}$$

where $After_t$ is a dummy variable equaling 1 during the Brexit interregnum, UK_i is a dummy variable equaling 1 if a US parent company has the UK exposure through its ICM, and $\epsilon_{i,t}$ represents the error term. The subscripts i and t denote the US parent companies and time periods, respectively. In addition, the model does not include a stand-alone UK_i dummy variable because it is subsumed by the parent company fixed effects, α_i .

⁵⁰My results are robust to the definition of the before period, including using alternative start dates of the before period and including 2016Q2 into the after period.

My parent-level analysis includes two dependent variables. First, I use the book leverage as a dependent variable to test if the UK uncertainty shock has caused a significant deleverage for the US parent companies in the treatment group relative to those in the control group. I define the book leverage in my sample as the ratio of the total debt (i.e., short-term debt + long-term debt) to total assets from Compustat. Secondly, I use the senior-bond-to-asset ratio as a dependent variable to test if the UK uncertainty shock has caused the US parent companies in the treatment group to raise parent-level debt significantly in the consolidated debt structure relative to those in the control group. The senior-bond-to-asset ratio in my analysis is defined as the ratio of senior bonds and notes from Capital IQ over total assets from Compustat.

Of course, the relative increase in the senior-bond-to-asset ratio itself does not necessarily reflect a substitution of external debt within the debt structure, ceteris paribus. This because the uncertainty shock can have both a controlled direct effect and indirect effect on the senior-bond-to-asset ratio. Specifically, the uncertainty shock can directly affect the senior-bond-to-asset ratio via the external debt substitution, conditioning on the book leverage, which is in line with my Prediction 1. Meanwhile, the uncertainty shock may indirectly affect the senior-bond-to-asset ratio through the book leverage by changing the capital structure between debt and equity, instead of altering the debt structure with the external debt substitution. Therefore, to confirm the controlled direct effect, I further check if the DID coefficient is still significant after controlling for the book leverage when using the senior-bond-to-asset ratio as a dependent variable.⁵¹ The remaining variables of $\{X_{k,i,t}\}_{k=1}^K$ in Equation 42 are additional controls for robustness checks. They include measures of size, growth opportunities, and liquidity as well as time-varying trends at the industry level, which are known to be relevant to changes in the capital and debt structure of business groups through their ICMs (e.g., Buchuk et al. 2020).⁵² In the end, to address any bias in standard errors when performing DID estimations over

⁵¹Adding the book leverage as a control variable is appropriate if one is interested in establishing the controlled direct effect (see, for instance, Cinelli, Forney, and Pearl 2022 and references therein). Also, controlling for the book leverage will not introduce additional bias under the DID identification assumption since the UK uncertainty shock is the only time-varying factor that can cause a relative difference in the senior-bond-to-asset ratio between the treatment and control groups. One should not use the book leverage as a control when estimating the total effect of the uncertainty shock on the senior-bond-to-asset ratio since this will block parts of the very treatment effect we would like to estimate and create an "overcontrol bias."

⁵²I use the logarithm of total assets from Compustat as a measure for size, Tobin's Q as a measure for growth opportunities, and the quick ratio as a measure for liquidity. The Tobin's Q is computed as the sum of market value of equity and book value of debt over total assets based on Compustat. The quick ratio is defined as cash and short-term investments over total assets from Compustat.

potentially serially correlated data, I follow Bertrand et al. (2004) and average the observations for each parent company in my sample over the before (2014Q1-2016Q2) and after periods (2016Q2-2018Q4).⁵³

Table 1, Panel A provides summary statistics for my parent-level analysis. The US parent companies in the full sample has an average logarithm of total assets in millions of USD of 7.28 (\$1.45 billion) with a standard deviation of 2.42. The averages (standard deviations) of the book leverage and senior-bond-to-asset ratio are 0.34 (0.2) and 0.18 (0.17), respectively. Additionally, the averages (standard deviations) of the Tobin's Q and quick ratio are 1.73 (1.15) and 0.77 (1.29), respectively. Table 1, Panel B compares the summary statistics between the treatment and control groups during the before period. The panel shows that the two groups in fact share very similar characteristics in terms of the book leverage, senior-bond-to-asset ratio, Tobin's Q, and quick ratio, although the parent companies in the treatment group tend to be larger. To ensure that my DID estimates are not affected by the size difference, I address the issue in various ways, including directly controlling for size and performing matching analyses to form balanced samples where the treatment and control groups are comparable in size.

4.4 Evidence on the External Debt Substitution

Table 2 presents the main results of my parent-level DID analysis. I begin my analysis by using the book leverage as a dependent variable to test if the UK uncertainty shock has caused a significant deleverage for the US parent companies in the treatment group relative to those in the control group. As Table 2, Column 1 suggests, the treatment group does not experience any relative deleverage. In fact, the DID estimate on the book leverage is statistically insignificantly positive.

Based on the result on the book leverage, I then use the senior-bond-to-asset ratio as a dependent variable to test if the UK uncertainty shock has caused the US parent companies in the treatment group to raise parent-level debt significantly in the consolidated debt structure relative to those in the control group. As Table 2, Column 2 suggests, the treatment group experiences a 2.5 percentage points relative increase in the senior-bond-to-asset ratio. Comparing with the DID estimate on the book leverage (Column 1), the rise in the senior-bond-to-asset

⁵³Bertrand et al. (2004) present this approach as the most robust of the alternatives, including bootstrapping and asymptotic approximation of the variance-covariance matrix.

ratio is large with a strong statistical significance.

Although the relative rise in the senior-bond-to-asset ratio is significantly larger, one still needs to confirm the magnitude of the controlled direct effect of the uncertainty shock behind such increase. Table 2, Column 3 shows that a substantial portion of the increase indeed comes from the direct effect after controlling for the book leverage. In specific, Column 3 indicates that parts of the relative rise in the senior-bond-to-asset ratio can be accounted for by the indirect effect. However, even conditioning on the book leverage, the UK uncertainty shock still significantly raises the senior-bond-to-asset ratio of the treatment group by 1.6 percentage point relative to that of the control group, reflecting a substitution of external debt within the consolidated debt structure. The substitution effect remains stable after controlling for size (Table 2, Column 4). The substitution effect is also consistent after additionally controlling for the Tobin's Q and quick ratio as measures for growth opportunities and liquidity, respectively, as well as time-varying trends at the industry level (Table 2, Column 5). Together, Table 2, Columns 1-5 provide evidence that the UK uncertainty shock did not cause the US parent companies in the treatment group to deleverage. While the uncertainty shock caused the US parent companies in the treatment group to increase their parent-level debt in the consolidated debt structure, conditioning on the book leverage. These results are consistent with my theoretical predictions (Predictions 1 and 2). The magnitude of the substitution effect is also economically meaningful as the around 1.6-1.8 percentage point relative rise in the senior-bond-to-asset ratio, conditioning on the book leverage, corresponds to an around 9 percent growth in the senior-bond-to-asset ratio of the treatment group.

Given the substitution effect from the main analysis, I perform a robustness check by using the parent companies of MNEs in the control group as a placebo treatment group.⁵⁴ As Table 2, Column 6 indicates, the DID estimate for the treatment group $(After \times UK)$ remains stable, while the DID estimate for the placebo treatment group $(After \times MNE)$ is close to zero and statistically insignificant.⁵⁵ Thus, Column 6 shows that my main results are not driven by time-varying factors that may have disproportionately affected the US MNEs relative to the

⁵⁴Consistent with the definition of the treatment group, the placebo treatment group includes US parent companies in the control group that owned at least one non-financial subsidiary outside of the US within the first three levels of the ownership structure below the parent company during the Brexit interregnum. The remaining parent companies in the control group did not own any foreign subsidiary.

⁵⁵The difference between the two coefficients are statistically significant with a P-value of 0.01.

US domestic business groups.

Although the control group of my main DID analysis can already account for time-varying changes shared by the treatment and control groups, I explicitly test if European factors that could be correlated with the UK uncertainty shock may affect my DID estimates. I do so by using the parent companies in the control group with an EU27 exposure through their ICMs as a placebo treatment group.⁵⁶ As Table 2, Column 7 indicates, the DID estimate for the treatment group $(After \times UK)$ remains stable, while the DID estimate for the placebo treatment group $(After \times EU27)$ is close to zero and statistically insignificant.⁵⁷ Therefore, Column 7 provides evidence that my main results are not driven by potential confounding factors from Europe.

Finally, my DID estimates on the book leverage and senior-bond-to-asset ratio without conditioning on the book leverage are also robust across the specifications in Table 2, as shown by Tables D1 and D2 in the appendix. In particular, Table D1, Column 4 reveals that the UK uncertainty shock almost causes no movement in the book leverage of the treatment group relative to the parent companies of US MNEs in the control group. With the existing findings from the parent-level analysis, the next section offers additional robustness checks to further confirm the impact of the uncertainty shock on the consolidated debt structure.

4.5 Additional Robustness Checks

My analysis so far has provided empirical evidence for a significant substitution of external debt within the parent-level consolidated debt structure, in line with my theoretical predictions (Predictions 1 and 2). I now perform additional robustness checks to confirm the substitution effect is not driven by pre-trends, is robust in balanced samples based on matching analyses, and is not affected by the policy intervention of the BoE or European Central Bank (ECB) during the Brexit interregnum.

⁵⁶Consistent with the definition of the treatment group, the placebo treatment group includes US parent companies in the control group that owned non-financial subsidiaries in the EU27 countries within the first three levels of the ownership structure below the parent company during the Brexit interregnum. My results are robust if the placebo treatment group includes US parent companies in the control group that owned any subsidiary in the EU27 countries during the Brexit interregnum. My results are also robust when using alternative definitions of the EU27 countries, such as the EU27 countries plus Switzerland or the members of the European single market.

⁵⁷The difference between the two coefficients are statistically significant with a P-value of 0.06. The lower statistical significance is likely caused by the relatively smaller number of parent companies in the treatment and placebo treatment groups.

4.5.1 Pre-Trend Analysis

The identification assumption of my parent-level DID analysis is that the book leverage and senior-bond-to-asset ratio of the treatment and control groups would evolve along the same time-varying path in the absence of the UK uncertainty shock during the Brexit interregnum. To test that the relative increase in the senior-bond-to-asset ratio is not driven by any existing trend before the UK uncertainty shock, I conduct a placebo DID analysis by shifting the before and after periods to 2011Q1-2013Q2 and 2013Q3-2015Q4, respectively, so that both periods are equal in length with their counterparts in the main analysis, while there was no major and persistent uncertainty shock in the UK during 2011Q1-2015Q4.⁵⁸ Table 3 displays the results of my pre-trend analysis. As the table demonstrates, I pick up no treatment effect from the placebo DID analysis. All of the DID estimates for the treatment group are close to zero and statistically insignificant. If anything, the DID estimates for the treatment group on the senior-bond-to-asset ratio are negative.⁵⁹

4.5.2 Mahalanobis Score Matching and Coarsened Exact Matching

Given the placebo DID analysis that relives the concern of pre-trends, I now investigate if the results of my main analysis could be affected by the imbalance between the treatment and control groups. Table 4, Panel A compares the summary statistics between the treatment and control groups during the before period (2014Q1-2016Q2) in the main DID analysis. As the panel suggests, the two groups display no significant difference across the control variables, except for size. It should be noted that any time invariant difference in size between the two groups and parallel trends associated with the size difference shared by the two groups can already be accounted for by the DID estimator. In addition, non-parallel trends associated with the size difference that generate pre-trends should have been detected by my pre-trend analysis. To further address the issue of imbalance, I perform additional matching analyses in this section.

⁵⁸I can only shift the before period up to 2011Q1 since it is the starting point of my data on the corporate ownership structure, though the results of my pre-trend analysis are robust when using alternative cutoff points in defining the placebo before and after periods. I also choose to not conduct any "placebo" test using the period after 2018Q4 due to the effects of the no-deal Brexit and COVID-19 pandemic.

⁵⁹Tables D3 and D4 display the results of my pre-trend analysis for the book leverage and senior-bond-to-asset ratio without conditioning on the book leverage across all specifications of Table 3. Similar to Table 3, I pick up no treatment effect from the placebo DID analysis. If anything, the US parent companies in the treatment group appear to decrease the relative importance of parent-level debt in the consolidated debt structure.

My matching analyses begin with the Mahalanobis matching, which is a popular matching method belonging to the class of equal percent bias reducing (EPBR) matching. Despite its popularity, I acknowledge that an EPBR matching method has shortcomings in achieving balance between the treatment and control groups (e.g. Mielke and Berry 2007). In fact, an EPBR matching method does not guarantee a reduction in imbalance (Iacus, King, and Porro 2012). I therefore complement the Mahalanobis matching with the coarsened exact matching (CEM), the details of which will be shortly explained.

To implement the Mahalanobis matching to address the size difference, I calculate the Mahalanobis distance between each parent company in the treatment and control groups based on size and match each parent company in the treatment group with the top three parent companies in the control group based on the Mahalanobis distance. To improve the matching quality, I perform the matching with replacements so that the selection of parent companies in the control group for each parent company in the treatment group is independent of each other. The results of my Mahalanobis matching are robust when I calculate the Mahalanobis distance using all of the control variables or when I match each parent company in the treatment group with different numbers of parent companies in the control group. The matching based on size and the top three parent companies in the control group produces the best matching outcome that reduces the size difference with a relatively large matched sample.

Table 4, Panel B describes the summary statistics for the matched sample. The panel shows that, although the difference in size between the treatment and control groups becomes smaller, it still remains statistically significant. Meanwhile, the Mahalanobis matching tends to raise the imbalance in the other control variables in exchange for the smaller size difference. Because of the shortcomings, I use the CEM as a second matching analysis to improve the Mahalanobis matching and as an additional robustness check.

Different with the Mahalanobis matching, the CEM is popular matching method belongs to the class of monotonic imbalance bounding matching, which bounds the maximum level of imbalance in the data ex ante and guarantees to eliminate all imbalances beyond the chosen bound. The basic idea of the CEM is to coarsen each variable of interest into bins, before exactly matching the coarsened data by the bins to prune unmatched observations. After pruning the unmatched observations, the bins are discarded and the original values of the data

are retained to form the matched sample. Asides from a guaranteed reduction in the imbalance, the CEM can improve the Mahalanobis matching along two general dimensions. First, under the CEM, the coarsening choice for any given variable has no effect on the imbalance bound for other variables. In comparison, the Mahalanobis matching can reduce the imbalance for some variables ex post, while worsen the imbalance for some other variables. Secondly, the CEM can provide more robust inferences as it satisfies the congruence between the data space and analysis space, or the congruence principle (Mielke and Berry 2007). In comparison, the Mahalanobis matching can violate the congruence principle by projecting covariates from the natural n-dimensional data space to a different space defined by the Mahalanobis distance. As a consequence, the Mahalanobis matching can lead to less robust inferences with sub-optimal properties. Overall, the CEM can improve other commonly used matching methods in its ability to reduce imbalance, model dependence, estimation error, bias, and other criteria (Iacus, King, and Porro 2009, 2011).

To implement the CEM, I coarsen the variables that tend to display a significant difference between the treatment and control groups after the Mahalanobis matching with more bins to improve the balance for the matched sample. At the same time, I coarsen the remaining variables with less bins to maintain a relatively large sample size. In specific, I coarsen the logarithm of total assets and Tobin's Q by their 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles in the main sample during the before period (Table 1, Panel A). Meanwhile, I coarsen the book leverage and quick ratio only by their 50th percentile in the same sample as the difference between the treatment and control groups in the two variables tend to be small. To adjust for the different number of parent companies from the treatment and control groups inside each stratum formed by the bins, I weigh my matched sample following Iacus, King, and Porro (2012). Table 4, Panel C describes the summary statistics for the matched sample. As the panel indicates, my matched sample based on the CEM is decently balanced where there is no significant difference between the treatment and control groups in all of the controls, especially in size.

Table 5 presents the regression results of my matching analyses. To begin with, Table 5,

⁶⁰My results are robust to alternative ways of coarsening, including coarsening using different sets of the controls and different numbers of bins, though more bins are generally required on the logarithm of total assets and Tobin's Q to produce a balanced matched sample.

Columns 1 and 2 review the results from my main DID analysis on the book leverage and senior-bond-to-asset ratio.⁶¹ Table 5, Columns 3-6 document the regression outcomes based on the matched samples, where Columns 3 and 4 report the results based on the Mahalanobis matching and Columns 5 and 6 report the results based on the CEM. Despite the differences between the matching methods, Table 5 demonstrates that my DID estimates are robust across all of the specifications.

To complement the matching analyses between the treatment and control groups, I preform another set of matching exercises by implementing the Mahalanobis matching and CEM between the treatment group and the multinational parent companies in the control group (i.e., the parent companies of US MNEs without the UK exposure through their ICMs). Table 6 describes the summary statistics for the additional matching exercises in the same manner of Table 4. Consistent with the matching analyses between the treatment and control groups, I can achieve a decently balanced matched sample based on the CEM with equivalent criteria when matching between the treatment group and multinational parent companies in the control group. Specifically, Table 6, Panel C shows that there is no significant difference between the two groups of parent companies in all of the controls, especially in size, within the matched sample based on the CEM.

Table 7 presents the regression results of the additional matching exercises in the same manner of Table 5. As Table 7 demonstrates, despite the differences in the regression sample and between the matching methods, my DID estimates are robust across all of the specifications. As a conclusion, my matching analyses can directly alleviate the concern that the main results of my parent-level analysis are affected by the imbalance between the treatment and control groups, particularly in size.

4.5.3 The Effect of Policy Interventions

So far I have documented two robust findings from the parent-level analysis: There has been a significant substitution of external debt within the consolidated debt structure, conditioning on the book leverage. Meanwhile, the parent companies in the treatment group experienced no significant change in the book leverage relative to the parent companies in the control group.

⁶¹Table 5, Column 2 is identical to Table 2, Column 5. Table 5, Column 1 displays the DID estimate on the book leverage based on the same specification and is identical to Table D1, Column 3 in the appendix.

Although policy interventions that typically affect the usage of debt relative to equity can be captured through changes in the book leverage, the BoE and ECB launched unconventional monetary policies during the Brexit interregnum, partially as a response to the UK uncertainty shock. Specifically, the BoE and ECB implemented corporate bond purchase programs to stabilize the credit market, which could impact the debt structure of the US parent companies in my sample, conditioning on the book leverage.

To investigate the effect of the corporate bond purchase programs, I review the historical records of the BoE and ECB by manually going through every corporate debt instrument that was eligible to be purchased by the BoE or ECB during the Brexit interregnum. For each issuer of a given debt instrument, I check whether the issuer can be linked to the US parent companies in my sample either directly or directly by examining the historical corporate ownership structure in Orbis.⁶² In the end, I drop the US parent companies in my sample if any of their debt instruments behind the consolidated financial statements was eligible to be purchased by the BoE or ECB.

Table 8 presents the results of the robustness check, which leads to two conclusions. First, perhaps as expected, only 13 out of the 1008 US parent companies in the sample of my main analysis were potentially exposed to the corporate bond purchase programs. Secondly, my DID estimates remain robust after dropping the potentially exposed parent companies from the sample.⁶³ As a result, my robustness check provides evidence that the external debt substitution within the parent-level consolidated debt structure is unlikely to be driven by the unconventional policy interventions accompanied by the UK uncertainty shock.

⁶²Consistent with the argument that bond debt is specialized at the parent level, nearly all the corporate bonds that were eligible to be purchased by the BoE or ECB were issued by the ultimate parent companies, effective corporate headquarters, or their financial subsidiaries among all non-financial issuers that were parts of a business group.

⁶³Table 8 displays the main results on the external debt substitution. Tables D5 and D6 in the appendix show that my DID estimates on the book leverage and senior-bond-to-asset ratio without conditioning on the book leverage are also robust.

References

Acemoglu, Daron, Vasco M. Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. 2012. "The Network Origins of Aggregate Fluctuations." *Econometrica* 80 (5): 1977-2016.

Acharya, Viral V., Gara Afonso, and Anna Kovner. 2017. "How Do Global Banks Scramble for Liquidity? Evidence from the Asset-Backed Commercial Paper Freeze of 2007." *Journal of Financial Intermediation* 30: 1-34.

Acharya, Viral V., Heitor Almeida, Filippo Ippolito, and Ander Perez-Orive. 2021. "Credit Lines and the Liquidity Insurance Channel." *Journal of Money, Credit and Banking* 53 (5): 901-938.

Acharya, Viral V., and Philipp Schnabl. 2010. "Do Global Banks Spread Global Imbalances? Asset-Backed Commercial Paper during the Financial Crisis of 2007–09." *IMF Economic Review* 58 (1): 37-73.

Addoum, Jawad M., and Justin R. Murfin. 2020. "Equity Price Discovery with Informed Private Debt." *Review of Financial Studies* 33 (8): 3766-3803.

Akinci, Ozge. 2021. "Financial Frictions and Macro-Economic Fluctuations in Emerging Economies." *Journal of Money, Credit and Banking* 53 (6): 1267-1312.

Almeida, Heitor, Chang-Soo Kim, and Hwanki Brian Kim. 2015. "Internal Capital Markets in Business Groups: Evidence from the Asian Financial Crisis." *Journal of Finance* 70 (6): 2539-2586.

Altieri, Michela, Alberto Manconi, and Massimo Massa. 2019. "Why Do Parent Companies Guarantee Their Subsidiaries' Bonds? The Dark Side of Separate Legal Liability." INSEAD Working Paper No. 2016/72/FIN.

Altman, Edward I., Amar Gande, and Anthony Saunders. 2010. "Bank Debt versus Bond Debt: Evidence from Secondary Market Prices." *Journal of Money, Credit and Banking* 42 (4): 755-767.

Arellano, Cristina, Yan Bai, and Patrick J. Kehoe. 2019. "Financial Frictions and Fluctuations in Volatility." *Journal of Political Economy* 127 (5): 2049-2103.

Barrot, Jean-Noel, and Julien Sauvagnat. 2016. "Input Specificity and the Propagation of Idiosyncratic Shocks in Production Networks." *Quarterly Journal of Economics* 131 (3): 1543-1592.

Baskaya, Yusuf Soner, Julian Di Giovanni, Sebnem Kalemli-Ozcan, Jose-Luis Peydro, and Mehmet Fatih Ulu. 2017. "Capital Flows and the International Credit Channel." *Journal of International Economics* 108: S15-S22.

Basu, Susanto, and Brent Bundick. 2017. "Uncertainty Shocks in a Model of Effective Demand." *Econometrica* 85 (3): 937-958.

Bena, Jan, Serdar Dinc, and Isil Erel. 2020. "The International Propagation of Economic Downturns through Multinational Companies: The Real Economy Channel." *Journal of Financial Economics* 146 (1): 277-304.

Bernanke, Ben S. 1983. "Irreversibility, Uncertainty, and Cyclical Investment." Quarterly Journal of Economics 98 (1): 85-106.

Bernanke, Ben S., and Mark Gertler. 1986. "Agency Costs, Collateral, and Business Fluctuations." *American Economic Review* 79 (1): 14–31.

Bernanke, Ben S., Mark Gertler, and Simon Gilchrist. 1999. "The Financial Accelerator in a Quantitative Business Cycle Framework." *Handbook of Macroeconomics* 1: 1341-1393.

Berger, Allen N., Filippo Curti, Atanas Mihov, and John Sedunov. 2022. "Operational Risk Is More Systemic Than You Think: Evidence from US Bank Holding Companies." *Journal of Banking and Finance* Forthcoming.

Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. 2004. "How Much should We Trust Differences-in-Differences Estimates?." Quarterly Journal of Economics 119 (1): 249-275.

Biermann, Marcus, and Kilian Huber. 2021. "Tracing the International Transmission of a Crisis through Multinational Firms." Unpublished Manuscript, University of Chicago.

Bloom, Nicholas. 2009. "The Impact of Uncertainty Shocks." Econometrica 77 (3): 623-685.

Bloom, Nicholas, Philip Bunn, Scarlet Chen, Paul Mizen, Pawel Smietanka, and Gregory Thwaites. 2019. "The Impact of Brexit on UK Firms." NBER Working Paper No. 26218.

Bloom, Nicholas, Max Floetotto, Nir Jaimovich, Itay Saporta-Eksten, and Stephen J. Terry. 2018. "Really Uncertain Business Cycles." *Econometrica* 86 (3): 1031-1065.

Boehm, Christoph E., Aaron Flaaen, and Nitya Pandalai-Nayar. 2019. "Input Linkages and the Transmission of Shocks: Firm-Level Evidence from the 2011 Tohoku Earthquake." *Review of Economics and Statistics* 101 (1): 60-75.

Booth, Stephen, Christopher Howarth, Raoul Ruparel, and Pawel Swidlicki. 2015. "What If...?: The Consequences, Challenges & Opportunities Facing Britain Outside EU." Open Europe Report 03/2015.

Branzoli, Nicola, and Fulvia Fringuellotti. 2022. "The Effect of Bank Monitoring on Loan Repayment." FRB of New York Staff Report 923.

Brauning, Falk, and Victoria Ivashina. 2020. "Monetary Policy and Global Banking." *Journal of Finance* 75 (6): 3055-3095.

Budd, John W., Jozef Konings, and Matthew J. Slaughter. 2005. "Wages and International Rent Sharing in Multinational Firms." *Review of Economics and Statistics*: 73-84.

Buchuk, David, Borja Larrain, Francisco Munoz, and Francisco Urzua. 2014. "The Internal Capital Markets of Business Groups: Evidence from Intra-group Loans." *Journal of Financial Economics* 112 (2): 190-212.

Buchuk, David, Borja Larrain, Mounu Prem, and Francisco Urzua Infante. 2020. "How Do Internal Capital Markets Work? Evidence from the Great Recession." *Review of Finance* 24 (4): 847-889.

Bureau of Economic Analysis. 2021. "Activities of U.S. Multinational Enterprises, 2019."

Burstein, Ariel, Christopher Kurz, and Linda Tesar. 2008. "Trade, Production Sharing, and the International Transmission of Business Cycles." *Journal of Monetary Economics* 55 (4): 775-795.

Cadestin, Charles, Koen De Backer, Isabelle Desnoyers-James, Sebastien Miroudot, Ming Ye, and Davide Rigo. 2018. "Multinational Enterprises and Global Value Chains: New Insights on the Trade-Investment Nexus." OECD Science, Technology and Industry Working Papers, 2018/05, OECD Publishing, Paris.

Cinelli, Carlos, Andrew Forney, and Judea Pearl. 2021. "A Crash Course in Good and Bad Controls." Sociological Methods & Research: 00491241221099552.

Cetorelli, Nicola, and Linda S. Goldberg. 2011. "Global Banks and International Shock Transmission: Evidence from the Crisis." *IMF Economic Review* 59 (1): 41-76.

Cetorelli, Nicola, and Linda S. Goldberg. 2012. "Banking Globalization and Monetary Transmission." *Journal of Finance* 67 (5): 1811-1843.

Cetorelli, Nicola, and Linda S. Goldberg. 2014. "Measures of Global Bank Complexity." FRBNY Economic Policy Review 20 (2): 107-126.

Chava, Sudheer, and Amiyatosh Purnanandam. 2011. "The Effect of Banking Crisis on Bank-Dependent Borrowers." *Journal of Financial Economics* 99 (1): 116-135.

Chernobai, Anna, Philippe Jorion, and Fan Yu. 2011. "The Determinants of Operational Risk in US Financial Institutions." *Journal of Financial and Quantitative Analysis* 46 (6): 1683-1725.

Chernobai, Anna, Ali Ozdagli, and Jianlin Wang. 2021. "Business Complexity and Risk Management: Evidence from Operational Risk Events in US Bank Holding Companies." *Journal of Monetary Economics* 117: 418-440.

Cho, Young Jun. 2015. "Segment Disclosure Transparency and Internal Capital Market Efficiency: Evidence from SFAS No. 131." *Journal of Accounting Research* 53 (4): 669-723.

Chowdhry, Bhagwan, and Joshua D. Coval. 1998. "Internal Financing of Multinational Subsidiaries: Debt vs. Equity." *Journal of Corporate Finance* 4 (1): 87-106.

Chowdhry, Bhagwan, and Vikram Nanda. 1994. "Financing of Multinational Subsidiaries: Parent Debt vs. External Debt." *Journal of Corporate Finance* 1 (2): 259-281.

Christiano, Lawrence J., Roberto Motto, and Massimo Rostagno. 2014. "Risk Shocks." American Economic Review 104 (1): 27-65.

Colla, Paolo, Filippo Ippolito, and Kai Li. 2013. "Debt Specialization." *Journal of Finance* 68 (5): 2117-2141.

Correa, Ricardo, Horacio Sapriza, and Andrei Zlate. 2016. "Liquidity Shocks, Dollar Funding Costs, and the Bank Lending Channel during the European Sovereign Crisis." FRB Boston Risk and Policy Analysis Unit Paper No. 16-4.

Cravino, Javier, and Andrei A. Levchenko. 2017. "Multinational Firms and International Business Cycle Transmission." *Quarterly Journal of Economics* 132 (2): 921-962.

Desai, Mihir A., C. Fritz Foley, and Kristin J. Forbes. 2008. "Financial Constraints and Growth: Multinational and Local Firm Responses to Currency Depreciations." *Review of Financial Studies* 21 (6): 2857-2888.

Desai, Mihir A., C. Fritz Foley, and James R. Hines. 2009. "Domestic Effects of the Foreign Activities of US Multinationals." *American Economic Journal: Economic Policy* 1 (1): 181-203.

De Bandt, Olivier, Jean-Charles Bricongne, and Lionel Fontagne. 2021. "Globalisation and Uncertainty." Eco Notepad, Post No. 205, Banque de France. February 23, 2021. https://blocnotesdeleco.banque-france.fr/en/blog-entry/globalisation-and-uncertainty.

Di Giovanni, Julian, Andrei A. Levchenko, and Isabelle Mejean. 2018. "The Micro Origins of International Business-Cycle Comovement." *American Economic Review* 108 (1): 82-108.

Diamond, Douglas W. 1984. "Financial Intermediation and Delegated Monitoring." *Review of Economic Studies* 51 (3): 393-414.

Dixit, Robert K., Avinash K. Dixit, and Robert S. Pindyck. 1994. "Investment under Uncertainty." Princeton University Press.

Dorofeenko, Victor, Gabriel S. Lee, and Kevin D. Salyer. 2008. "Time-Varying Uncertainty and the Credit Channel." *Bulletin of Economic Research* 60 (4): 375-403.

Eiteman, David K., Arthur I. Stonehill, and Michael H. Moffett. 2016. "Multinational Business Finance." 14th ed., Pearson.

Fama, Eugene F. 1985. "What's Different about Banks?" Journal of Monetary Economics 15 (1): 29-39.

Fernandez-Villaverde, Jesus, and Pablo A. Guerron-Quintana. 2020. "Uncertainty Shocks and Business Cycle Research." *Review of Economic Dynamics* 37: S118-S146.

Fernandez-Villaverde, Jesus, Pablo Guerron-Quintana, Juan F. Rubio-Ramirez, and Martin Uribe. 2011. "Risk Matters: The Real Effects of Volatility Shocks." *American Economic Review* 101 (6): 2530-2561.

Focarelli, Dario, Alberto Franco Pozzolo, and Luca Casolaro. 2008. "The Pricing Effect of Certification on Syndicated Loans." *Journal of Monetary Economics* 55 (2): 335-349.

Gale, Douglas, and Martin Hellwig. 1985. "Incentive-Compatible Debt Contracts: The One-period Problem." Review of Economic Studies 52 (4): 647-663.

Giannetti, Mariassunta, and Luc Laeven. 2012. "The Flight Home Effect: Evidence from the Syndicated Loan Market during Financial Crises." *Journal of Financial Economics* 104 (1): 23-43.

Gilchrist, Simon, Jae W. Sim, and Egon Zakrajšek. 2014. "Uncertainty, Financial Frictions, and Investment Dynamics." NBER Working Paper No. 20038.

Giroud, Xavier, and Holger M. Mueller. 2019. "Firms' Internal Networks and Local Economic Shocks." *American Economic Review* 109 (10): 3617-49.

Gopalan, Radhakrishnan, Vikram Nanda, and Amit Seru. 2007. "Affiliated Firms and Financial Support: Evidence from Indian Business Groups." *Journal of Financial Economics* 86 (3): 759-795.

Gopalan, Radhakrishnan, and Kangzhen Xie. 2011. "Conglomerates and Industry Distress." Review of Financial Studies 24 (11): 3642-3687.

Holmstrom, Bengt, and Jean Tirole. 1997. "Financial Intermediation, Loanable Funds, and the Real Sector." Quarterly Journal of Economics 112 (3): 663-691.

Hoshi, Takeo, Anil K. Kashyap, and David S. Scharfstein. 1993. "The Choice between Public and Private Debt: An Analysis of Post-deregulation Corporate Financing in Japan." NBER Working Paper No. 4421.

Julio, Brandon, and Youngsuk Yook. 2012. "Political Uncertainty and Corporate Investment Cycles." *Journal of Finance* 67 (1): 45-83.

Khanna, Tarun, and Yishay Yafeh. 2007. "Business Groups in Emerging Markets: Paragons or Parasites?." *Journal of Economic Literature* 45 (2): 331-372.

Kleinert, Jorn, Julien Martin, and Farid Toubal. 2015. "The Few Leading the Many: Foreign Affiliates and Business Cycle Comovement." *American Economic Journal: Macroeconomics* 7 (4): 134-59.

Kim, Hyonok, James A. Wilcox, and Yukihiro Yasuda. 2020. "Internal and External Lending by Nonfinancial Businesses." Working Paper Series G-1-23, Hitotsubashi University Center for Financial Research.

Kolasinski, Adam C. 2009. "Subsidiary Debt, Capital Structure and Internal Capital Markets." *Journal of Financial Economics* 94 (2): 327-343.

Lamont, Owen. 1997. "Cash Flow and Investment: Evidence from Internal Capital Markets." Journal of Finance 52 (1): 83-109.

Lin, Chen, Yue Ma, Paul Malatesta, and Yuhai Xuan. 2013. "Corporate Ownership Structure and the Choice between Bank Debt and Public Debt." *Journal of Financial Economics* 109 (2): 517-534.

Maksimovic, Vojislav, and Gordon M. Phillips. 2013. "Conglomerate Firms, Internal Capital Markets and the Theory of the Firm." *Annual Review of Financial Economics* 5:225–244

Matvos, Gregor, and Amit Seru. 2014. "Resource Allocation within Firms and Financial Market Dislocation: Evidence from Diversified Conglomerates." Review of Financial Studies 27 (4): 1143-1189.

McGrattan, Ellen R., and Andrea Waddle. 2020. "The Impact of Brexit on Foreign Investment and Production." *American Economic Journal: Macroeconomics* 12 (1): 76-103.

Mehran, Hamid, and Anjan Thakor. 2011. "Bank Capital and Value in the Cross-section." Review of Financial Studies 24 (4): 1019-1067.

Morais, Bernardo, Jose-Luis Peydro, Jessica Roldan-Pena, and Claudia Ruiz-Ortega. 2019. "The International Bank Lending Channel of Monetary Policy Rates and QE: Credit Supply, Reach-for-Yield, and Real Effects." *Journal of Finance* 74 (1): 55-90.

Myerson, Roger B. 1979. "Incentive Compatibility and The Bargaining Problem." *Econometrica: Journal of the Econometric Society*: 61-73.

Ozbas, Oguzhan, and David S. Scharfstein. 2010. "Evidence on the Dark Side of Internal Capital Markets." Review of Financial Studies 23 (2): 581-599.

Ozdagli, Ali K., and Jianlin Wang. 2022. "Uncertainty, Shock Prices and Debt Structure: Evidence from the US-China Trade War." Federal Reserve Bank of Dallas Working Paper No. 2212.

Park, Cheol. 2000. "Monitoring and Structure of Debt Contracts." *Journal of Finance* 55 (5): 2157-2195.

Peek, Joe, and Eric S. Rosengren. 1997. "The International Transmission of Financial Shocks: The Case of Japan." *American Economic Review*: 495-505.

Peek, Joe, and Eric S. Rosengren. 2000. "Collateral Damage: Effects of the Japanese Bank Crisis on Real Activity in the United States." *American Economic Review* 90 (1): 30-45.

Philippe, Jorion. 2007. "Value at Risk: The New Benchmark for Managing Financial Risk." McGraw-Hill, New York

Rajan, Raghuram G. 1992. "Insiders and Outsiders: The Choice between Informed and Arm's-length Debt." *Journal of Finance* 47 (4): 1367-1400.

Richardson, Grant, Grantley Taylor, and Ivan Obaydin. 2020. "Does the Use of Tax Haven Subsidiaries by US Multinational Corporations Affect the Cost of Bank Loans?." *Journal of Corporate Finance* 64: 101663.

Santioni, Raffaele, Fabio Schiantarelli, and Philip E. Strahan. 2020. "Internal Capital Markets in Times of Crisis: The Benefit of Group Affiliation." *Review of Finance* 24 (4): 773-811.

Schnabl, Philipp. 2012. "The International Transmission of Bank Liquidity Shocks: Evidence from an Emerging Market." *Journal of Finance* 67 (3): 897-932.

Schoar, Antoinette. 2002. "Effects of Corporate Diversification on Productivity." *Journal of Finance* 57 (6): 2379-2403.

Shapiro, Alan C., and Paul Hanouna. 2019. "Multinational Financial Management." 11th ed., John Wiley & Sons.

Steinberg, Joseph B. 2019. "Brexit and the Macroeconomic Impact of Trade Policy Uncertainty." *Journal of International Economics* 117: 175-195.

Stiglitz, Joseph E., and Andrew Weiss. 1983. "Incentive Effects of Terminations: Applications to the Credit and Labor markets." *American Economic Review* 73 (5): 912-927.

Townsend, Robert M. 1979. "Optimal Contracts and Competitive Markets with Costly State Verification." *Journal of Economic theory* 21 (2): 265-293.

Villalonga, Belen. 2004. "Does Diversification Cause the "Diversification Discount"?." Financial Management 33: 5-27.

Whited, Toni M. 2001. "Is It Inefficient Investment That Causes the Diversification Discount?" *Journal of Finance* 56 (5): 1667-1691.

Whyman, Philip B., and Alina I. Petrescu. 2017. "The Economics of Brexit: A Cost-Benefit Analysis of the UK's Economic Relationship with the EU." Springer.

Appendices

A Optimal Contract for the Parent Company

A.1 The Proof of the Optimal Contract

This appendix derives the optimal contract for the parent company based on the setup from Section 3.1 and the CSV problem described in Section 3.2.1. Since the derivation of the optimal contract takes the return available to the parent company at the end of t+1 as given, I make the following assumptions to simplify notations without loss of generality. First, I assume that all returns are denominated in the same currency. Secondly, I assume that $\bar{\omega}_{t+1}^* = 0$ so that the total return available to the parent company at the end of t+1 before paying the home lender is $\omega_{t+1}I_tR_t + \omega_{t+1}^*I_t^*R_t^*$ (i.e., there is no enforceable contractual threshold by the foreign lender). The same argument applies when $\bar{\omega}_{t+1}^* > 0$ with the adjustment that the total return available to the parent company becomes $\omega_{t+1}I_tR_t + (\omega_{t+1}^* - \bar{\omega}_{t+1}^*) \mathbf{1}(\omega_{t+1}^* \geq \bar{\omega}_{t+1}^*)I_t^*R_t^*$.

Following the CSV problem, the parent company can freely observe the total return available on its balance sheet at the end of t+1, $\omega_{t+1}I_tR_t+\omega_{t+1}^*I_t^*R_t^*$, and report $\tilde{\omega}_{t+1}I_tR_t+\tilde{\omega}_{t+1}^*I_t^*R_t^*$ to the investor. Given the reported return, the investor can decide whether to audit the parent company or not. If the investor does not audit, the parent company obtains a payoff of $R_0^p(\tilde{\omega}_{t+1},\tilde{\omega}_{t+1}^*)$ and the investor collects a payoff of $R_0^I(\tilde{\omega}_{t+1},\tilde{\omega}_{t+1}^*)$. Alternatively, the investor can verify the parent company's balance sheet through an audit after paying $\nu(\omega_{t+1}I_tR_t+\omega_{t+1}^*I_t^*R_t^*)$ as the audit cost. Consistent with Section 3.2.1, the audit cost can be interpreted as the cost of default. In the case of an audit, the parent company obtains a payoff of $R_1^p(\omega_{t+1},\omega_{t+1}^*)$ and the investor collects a payoff of $R_1^I(\omega_{t+1},\omega_{t+1}^*)$ before paying the audit cost.

By the revelation principle (Myerson 1979), the optimal contract for the parent company induces truthful reporting, meaning there are $\tilde{\omega}_{t+1} = \omega_{t+1}$ and $\tilde{\omega}_{t+1}^* = \omega_{t+1}^*$ under the optimal contract. Let $y(\tilde{\omega}_{t+1}, \tilde{\omega}_{t+1}^*) = \{1, 0\}$ indicate whether there is an audit, where $y(\tilde{\omega}_{t+1}, \tilde{\omega}_{t+1}^*) = 1$ represents the action that the investor audits, the parent company's payoff under the optimal contract can be written as:

$$R^{p}(\omega_{t+1}, \omega_{t+1}^{*}) = R_{1}^{p}(\omega_{t+1}, \omega_{t+1}^{*}) y(\omega_{t+1}, \omega_{t+1}^{*}) + R_{0}^{p}(\omega_{t+1}, \omega_{t+1}^{*}) \left(1 - y(\omega_{t+1}, \omega_{t+1}^{*})\right). \tag{A.1}$$

Similarly, the payoff to the investor can be written as:

$$R^{I}(\omega_{t+1}, \omega_{t+1}^{*}) = R_{1}^{I}(\omega_{t+1}, \omega_{t+1}^{*})y(\omega_{t+1}, \omega_{t+1}^{*}) + R_{0}^{I}(\omega_{t+1}, \omega_{t+1}^{*}) \left(1 - y(\omega_{t+1}, \omega_{t+1}^{*})\right)$$
(A.2)

with
$$R^p(\omega_{t+1}, \omega_{t+1}^*) + R^I(\omega_{t+1}, \omega_{t+1}^*) = \omega_{t+1}I_tR_t + \omega_{t+1}^*I_t^*R_t^*$$
 and $R^p(\omega_{t+1}, \omega_{t+1}^*) \ge 0$.

Let D_t be the amount of external funds the parent company seeks to raise from the investor. The optimal contract solves for a schedule of $\{y(\omega_{t+1}, \omega_{t+1}^*), R^p(\omega_{t+1}, \omega_{t+1}^*)\}$ that maximizes the expected payoff to the parent company, subject to the incentive constraint of truthful reporting (IC) and the individual rationality constraint of the investor (IR). The IR requires that the contract's expected payoff to the investor must at least equals their opportunity cost. The optimization problem can be written as:

$$\max_{y(\omega_{t+1},\omega_{t+1}^*),R^p(\omega_{t+1},\omega_{t+1}^*)} \int_0^{+\infty} \int_0^{+\infty} R^p(\omega_{t+1},\omega_{t+1}^*) dF(\omega_{t+1}) dF(\omega_{t+1}^*)$$
(A.3)

such that:

$$\int_{0}^{+\infty} \int_{0}^{+\infty} \left(1 - y(\omega_{t+1}, \omega_{t+1}^{*})\nu\right) \left(\omega_{t+1}I_{t}R_{t} + \omega_{t+1}^{*}I_{t}^{*}R_{t}^{*}\right) dF(\omega_{t+1}) dF(\omega_{t+1}^{*})$$

$$-\int_{0}^{+\infty} \int_{0}^{+\infty} R^{p}(\omega_{t+1}, \omega_{t+1}^{*}) dF(\omega_{t+1}) dF(\omega_{t+1}^{*}) \ge D_{t}(1 + r_{t}^{rf}).$$
(A.4)

The focus of this paper is leveraged MNEs. Thus, I focus on cases the where the IR holds in equilibrium with $R^p(\omega_{t+1}, \omega_{t+1}^*) \geq 0$. Otherwise, the parent company is "rationed" from the external capital market under limited liability.

Since the IR binds by the optimal contract, there is:

$$\int_{0}^{+\infty} \int_{0}^{+\infty} R^{p}(\omega_{t+1}, \omega_{t+1}^{*}) dF(\omega_{t+1}) dF(\omega_{t+1}^{*}) =$$

$$\int_{0}^{+\infty} \int_{0}^{+\infty} \left(1 - y(\omega_{t+1}, \omega_{t+1}^{*})\nu\right) \left(\omega_{t+1} I_{t} R_{t} + \omega_{t+1}^{*} I_{t}^{*} R_{t}^{*}\right) dF(\omega_{t+1}) dF(\omega_{t+1}^{*}) - D_{t}(1 + r_{t}^{rf}). \quad (A.5)$$

Substituting Equation A.5 to Condition A.3 shows that the optimal contract minimizes the expected audit cost:

$$\min_{y(\omega_{t+1},\omega_{t+1}^*),R^p(\omega_{t+1},\omega_{t+1}^*)} \int_0^{+\infty} \int_0^{+\infty} \nu y(\omega_{t+1},\omega_{t+1}^*) \left(\omega_{t+1}I_tR_t + \omega_{t+1}^*I_t^*R_t^*\right) dF(\omega_{t+1}) dF(\omega_{t+1}^*). \quad (A.6)$$

The proposed optimal contract for the parent company is described as follows:

1. For any given $D_t > 0$ such that the IR can hold with $R^p(\omega_{t+1}, \omega_{t+1}^*) \geq 0$, the optimal contract is a debt contract with a fixed income, $D_t(1+r_t)$, for the investor.

2.
$$y(\omega_{t+1}, \omega_{t+1}^*) = 0$$
 if $\omega_{t+1}I_tR_t + \omega_t^*I^*R_t^* \ge D_t(1+r_t)$.

3.
$$y(\omega_{t+1}, \omega_{t+1}^*) = 1$$
 if $\omega_{t+1}I_tR_t + \omega_t^*I^*R_t^* < D_t(1+r_t)$.

4.
$$R^p(\omega_{t+1}, \omega_{t+1}^*) = \max \{ \omega_{t+1} I_t R_t + \omega_t^* I^* R_t^* - D_t (1 + r_t), 0 \}.$$

5.
$$R^{I}(\omega_{t+1}, \omega_{t+1}^{*}) = \min\{D_{t}(1+r_{t}), \omega_{t+1}I_{t}R_{t} + \omega_{t}^{*}I^{*}R_{t}^{*}\}.$$

To prove that the proposed debt contract is the optimal contract, I start by proving the following two lemmas.

Lemma A.1. For any $(\omega_{t+1}, \omega_{t+1}^*)$, where $y(\omega_{t+1}, \omega_{t+1}^*) = 0$, $R^I(\omega_{t+1}, \omega_{t+1}^*) = c$ must be a constant in the optimal contract.

Proof. Let $(\omega_{t+1}, \omega_{t+1}^*)$ and $(\omega'_{t+1}, \omega_{t+1}^{*'})$ be any two pairs of realized productivity draws, where $y(\omega_{t+1}, \omega_{t+1}^*) = y(\omega'_{t+1}, \omega_{t+1}^{*'}) = 0$ in an arbitrary contract. If there is $R^I(\omega_{t+1}, \omega_{t+1}^*) > R^I(\omega'_{t+1}, \omega_{t+1}^{*'})$, then with $(\omega_{t+1}, \omega_{t+1}^*)$, the parent company can be strictly better off by reporting $(\tilde{\omega}_{t+1}, \tilde{\omega}_{t+1}^*) = (\omega'_{t+1}, \omega_{t+1}^{*'})$, which breaks the IC. Thus, for a contract to be optimal, A.1 must hold.

Lemma A.2. For any $(\omega_{t+1}, \omega_{t+1}^*)$, where $y(\omega_{t+1}, \omega_{t+1}^*) = 1$, there must be $R^I(\omega_{t+1}, \omega_{t+1}^*) \leq c$ in the optimal contract, where c is the constant payoff from A.1.

Proof. Let $(\omega_{t+1}, \omega_{t+1}^*)$ and $(\omega'_{t+1}, \omega_{t+1}^{*\prime})$ be any two pairs of realized productivity draws. If there are $y(\omega_{t+1}, \omega_{t+1}^*) = 1$ and $y(\omega'_{t+1}, \omega_{t+1}^{*\prime}) = 0$ in an arbitrary contract with $R^I(\omega_{t+1}, \omega_{t+1}^*) > c$, but $R^I(\omega'_{t+1}, \omega_{t+1}^{*\prime}) = c$, then with $(\omega_{t+1}, \omega_{t+1}^*)$, the parent company can be strictly better off by reporting $(\tilde{\omega}_{t+1}, \tilde{\omega}_{t+1}^*) = (\omega'_{t+1}, \omega_{t+1}^{*\prime})$, which breaks the IC. Thus, for a contract to be optimal, A.2 must hold.

For any contract satisfying the payoff rules described by Lemmata A.1 and A.2 such that the IC holds and the IR binds, one can show that a debt contract with the following structure dominates the arbitrary contract in minimizing the expected audit cost:

- 1. For any realized $(\omega_{t+1}, \omega_{t+1}^*)$ such that $\omega_{t+1}I_tR_t + \omega_{t+1}^*I_t^*R_t^* \ge c$: $y(\omega_{t+1}, \omega_{t+1}^*) = 0$ and $R^I(\omega_{t+1}, \omega_{t+1}^*) = c$.
- 2. For any realized $(\omega_{t+1}, \omega_{t+1}^*)$ such that $\omega_{t+1}I_tR_t + \omega_{t+1}^*I_t^*R_t^* < c$: $y(\omega_{t+1}, \omega_{t+1}^*) = 1$ and $R^I(\omega_{t+1}, \omega_{t+1}^*) = \omega_{t+1}I_tR_t + \omega_{t+1}^*I_t^*R_t^*$.

To see this, define set $S_1 = \{(\omega_{t+1}, \omega_{t+1}^*)\}$ such that $\omega_{t+1}I_tR_t + \omega_{t+1}^*I_t^*R_t^* \geq c$ and $S_2 = \{(\omega_{t+1}, \omega_{t+1}^*)\}$ such that $\omega_{t+1}(h)I_t(h)R_{t+1} + \omega_{t+1}^*(j)I_t^*(j)R_{t+1}^* < c$. There are $S_1 \cap S_2 = \emptyset$ and $S_1 \cup S_2 = \{(\omega_{t+1}, \omega_{t+1}^*)\}$ $\forall \omega_{t+1}, \omega_{t+1}^* \in (0, +\infty)$. For any $(\omega_{t+1}, \omega_{t+1}^*) \in S_1$, switching from the arbitrary contract to the debt contract will minimize the expected audit cost since, under the debt contract, there will be no audit. The switch also maximizes the investor's payoff because $R^I(\omega_{t+1}, \omega_{t+1}^*) \leq c$ by A.1 and A.2, meaning the debt contract sustains the IR. Similarly, for any $(\omega_{t+1}, \omega_{t+1}^*) \in S_2$, switching from the arbitrary contract to the debt contract minimizes the expected audit cost and maximizes the investor's payoff as $R^p(\omega_{t+1}, \omega_{t+1}^*) \geq 0$. Therefore, the debt contract dominates the arbitrary contract in minimizing the expected audit cost, while sustaining the IC and IR. To find the optimal contract, one needs to find the debt contract that binds the IR.

Since the expected surplus payoff to the investor under the debt contract with the constant c is:

$$\int_{\omega_{t+1} \in S_1} \int_{\omega_{t+1}^* \in S_1} cdF(\omega_{t+1}) dF(\omega_{t+1}^*) + \int_{\omega_{t+1} \in S_2} \int_{\omega_{t+1}^* \in S_2} (1 - \nu) \left(\omega_{t+1} I_t R_t + \omega_{t+1}^* I_t^* R_t^* \right) dF(\omega_{t+1}) dF(\omega_{t+1}^*) - D_t (1 + r_t^{rf}) \ge 0, \quad (A.7)$$

the expected surplus payoff is continuous in c. Because when c = 0, the surplus payoff is:

$$-D_t(1+r_t^{rf}) < 0, (A.8)$$

there exists $c \ge c' > 0$ such that the IR binds.¹ As a result, setting the fixed income $D_t(1+r_t) = c'$, the proposed debt contract is the optimal contract.

¹It is implicit that c > 0 in the optimal contract when the investor faces a positive opportunity cost. Since $R^I\left(\omega_{t+1},\omega_{t+1}^*\right) \leq c$ in the optimal contract by A.1 and A.2, the IR can never be sustained with $c \leq 0$ and $D_t(1+r_t^{rf})>0$.

A.2 Parent-Level Debt in Equilibrium

This section proves the parent-level debt will always be used in equilibrium when the MNE can also have subsidiary-level debt under a standard contract supported by the return of the foreign project, ceteris paribus. To prove this, one can show that the parent-level debt is always preferred when only one type of debt is used.

Proof. Let D_t^* be a subsidiary-level debt that funds a portfolio of (I_t, I_t^*) and r_t^* be the risky return. The default threshold of the standard debt contract can be written in Home's currency as:

$$\bar{\omega}_{t+1}^* = \frac{F_{t+1}D_t^*(1+r_t^*)}{F_{t+1}I_t^*R_t^*}.$$
(A.9)

Switching the lender to the parent-level debt contract with the same D_t^* and r_t^* , the original default threshold is identical to a non-default threshold of the parent-level debt contract:

$$\hat{\omega}_{t+1}^* = \bar{\omega}_{t+1}^* = \frac{F_{t+1}D_t^*(1+r_t^*)}{F_{t+1}I_t^*R_t^*}.$$
(A.10)

When $I_t = 0$, the parent-level debt contract is the original standard debt contract. The lender's expected return from both contracts are equivalent in Home's currency by the CIP Condition 3:

$$F_{t+1}D_t^*(1+r_t^{rf*}) = S_tD_t^*(1+r_t^{rf}). \tag{A.11}$$

When $I_t > 0$, the lender becomes strictly better off under the parent-level debt contract due to the existence of the additional non-default regions, as shown by Figure 1 with $\bar{\omega}_{t+1}^* = 0$. Therefore, when only the subsidiary-level debt is used, the subsidiary-level debt can always be switched to the parent-level debt with a potential improvement. When only the parent-level debt is used, the subsidiary-level standard debt contract will not be preferred since the parent-level debt contract is the optimal contract for the parent company. As a result, the parent-level debt will always be used in equilibrium because of the diversification benefit.

A.3 The Expected Returns of the Home Lender and Parent Company

Based on the parent-level debt contract described in Section 3.2.1, the expected share of $I_t R_t$ for the home lender, $\Omega_t^h = \Omega^h(\hat{\omega}_{t+1}, \hat{\omega}_{t+1}^*, \bar{\omega}_{t+1}^*)$, can be written as:

$$\Omega_{t}^{h} = \int_{\hat{\omega}_{t+1}}^{+\infty} \hat{\omega}_{t+1} dF(\omega_{t+1})
+ \int_{0}^{\hat{\omega}_{t+1}^{*}} \int_{\bar{\omega}_{t+1}}^{\hat{\omega}_{t+1}} \bar{\omega}_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^{*})
+ \int_{0}^{\hat{\omega}_{t+1}^{*}} \int_{0}^{\bar{\omega}_{t+1}} (1 - \nu) \omega_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^{*}),$$
(A.12)

where:

$$\int_{\hat{\omega}_{t+1}}^{+\infty} \hat{\omega}_{t+1} dF(\omega_{t+1}) = \int_{\hat{\omega}_{t+1}^*}^{+\infty} \int_{\hat{\omega}_{t+1}}^{+\infty} \hat{\omega}_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^*) + \int_0^{\hat{\omega}_{t+1}^*} \int_{\hat{\omega}_{t+1}}^{+\infty} \hat{\omega}_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^*)$$

as $\hat{\omega}_{t+1}$ is independent with the realization of the foreign productivity draw.

The term $\int_0^{\hat{\omega}_{t+1}^*} \int_{\bar{\omega}_{t+1}}^{\hat{\omega}_{t+1}} \bar{\omega}_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^*)$ in Equation A.12 can be expanded as:

$$\int_{0}^{\hat{\omega}_{t+1}^{*}} \int_{\bar{\omega}_{t+1}}^{\hat{\omega}_{t+1}} \bar{\omega}_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^{*}) = \int_{\bar{\omega}_{t+1}^{*}}^{\hat{\omega}_{t+1}^{*}} \int_{\bar{\omega}_{t+1}}^{\hat{\omega}_{t+1}} \bar{\omega}_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^{*}) + \int_{0}^{\bar{\omega}_{t+1}^{*}} 0 dF(\omega_{t+1}^{*}), \tag{A.13}$$

given $\bar{\omega}_{t+1} = \hat{\omega}_{t+1} \ \forall \omega_{t+1}^* \leq \bar{\omega}_{t+1}^*$.

The term $\int_0^{\hat{\omega}_{t+1}^*} \int_0^{\bar{\omega}_{t+1}} (1-\nu)\omega_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^*)$ in Equation A.12 can be expanded as:

$$\int_{0}^{\hat{\omega}_{t+1}^{*}} \int_{0}^{\bar{\omega}_{t+1}} (1-\nu)\omega_{t+1}dF(\omega_{t+1})dF(\omega_{t+1}^{*}) = \int_{\bar{\omega}_{t+1}^{*}}^{\hat{\omega}_{t+1}^{*}} \int_{0}^{\bar{\omega}_{t+1}} (1-\nu)\omega_{t+1}dF(\omega_{t+1})dF(\omega_{t+1}^{*}) + \int_{0}^{\bar{\omega}_{t+1}^{*}} \int_{0}^{\hat{\omega}_{t+1}} (1-\nu)\omega_{t+1}dF(\omega_{t+1})dF(\omega_{t+1}^{*}) \qquad (A.14)$$

for the same reason.

The expected share of $F_{t+1}I_t^*R_t^*$ for the home lender, $\Omega_t^f = \Omega^f(\hat{\omega}_{t+1}, \hat{\omega}_{t+1}^*, \bar{\omega}_{t+1}^*)$, can be

written as:

$$\Omega_{t}^{f} = \int_{\hat{\omega}_{t+1}^{*}}^{+\infty} \int_{0}^{\hat{\omega}_{t+1}} \left(\hat{\omega}_{t+1}^{*} - \bar{\omega}_{t+1}^{*} \right) dF(\omega_{t+1}) dF(\omega_{t+1}^{*})
+ \int_{\bar{\omega}_{t+1}^{*}}^{\hat{\omega}_{t+1}^{*}} \int_{\bar{\omega}_{t+1}}^{\hat{\omega}_{t+1}} \left(\omega_{t+1}^{*} - \bar{\omega}_{t+1}^{*} \right) dF(\omega_{t+1}) dF(\omega_{t+1}^{*})
+ \int_{\bar{\omega}_{t+1}^{*}}^{\hat{\omega}_{t+1}^{*}} \int_{0}^{\bar{\omega}_{t+1}} (1 - \nu) \left(\omega_{t+1}^{*} - \bar{\omega}_{t+1}^{*} \right) dF(\omega_{t+1}) dF(\omega_{t+1}^{*}).$$
(A.15)

In both Equations A.12 and A.15, the first integral describes the expected share when either ω_{t+1} or ω_{t+1}^* is above the corresponding non-default threshold. The second integral describes the expected share when both ω_{t+1} and ω_{t+1}^* are below the non-default thresholds, but the combination of the productivity draws, $(\omega_{t+1}, \omega_{t+1}^*)$, is in the non-default region. The third integral describes the expected share when $(\omega_{t+1}, \omega_{t+1}^*)$ is in the default region.

Following the same logic for the home lender's shares, the expected share of $I_t R_t$ for the parent company, $\Upsilon_t^h = \Upsilon^h(\hat{\omega}_{t+1}, \hat{\omega}_{t+1}^*, \bar{\omega}_{t+1}^*)$, can be written as:

$$\Upsilon_{t}^{h} = \int_{\hat{\omega}_{t+1}}^{+\infty} (\omega_{t+1} - \hat{\omega}_{t+1}) dF(\omega_{t+1})
+ \int_{\hat{\omega}_{t+1}^{*}}^{+\infty} \int_{0}^{\hat{\omega}_{t+1}} \omega_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^{*})
+ \int_{0}^{\hat{\omega}_{t+1}^{*}} \int_{\bar{\omega}_{t+1}}^{\hat{\omega}_{t+1}} (\omega_{t+1} - \bar{\omega}_{t+1}) dF(\omega_{t+1}) dF(\omega_{t+1}^{*}).$$
(A.16)

The expected share of $F_{t+1}I_t^*R_t^*$ for the parent company, $\Upsilon_t^f = \Upsilon^f(\hat{\omega}_{t+1}, \hat{\omega}_{t+1}^*, \bar{\omega}_{t+1}^*)$, can be written as:

$$\Upsilon_{t}^{f} = \int_{\bar{\omega}_{t+1}^{*}}^{+\infty} \int_{\hat{\omega}_{t+1}}^{+\infty} \left(\omega_{t+1}^{*} - \bar{\omega}_{t+1}^{*}\right) dF(\omega_{t+1}) dF(\omega_{t+1}^{*})
+ \int_{\hat{\omega}_{t+1}^{*}}^{+\infty} \int_{0}^{\hat{\omega}_{t+1}} \left(\omega_{t+1}^{*} - \hat{\omega}_{t+1}^{*}\right) dF(\omega_{t+1}) dF(\omega_{t+1}^{*}) \tag{A.17}$$

In both Equations A.16 and A.17, the first two integrals describe the expected share when either ω_{t+1} or ω_{t+1}^* is above the corresponding non-default threshold. The third integral of Equation A.16 describes the expected share when both ω_{t+1} and ω_{t+1}^* are below the non-default

thresholds, but the combination of the productivity draws, $(\omega_{t+1}, \omega_{t+1}^*)$, is in the non-default region. In this case, the parent company will pay the equity received from the foreign subsidiary to the home lender according to the debt contract.

B Subsidiary-Level Debt Contract

B.1 The Binding Incentive Constraint

This appendix shows that, when the local informed capital with proper monitoring is used in equilibrium, the expected payoff to the foreign lender from monitoring increases in the foreign contractual threshold, $\bar{\omega}_{t+1}^*$. As a result, there is a minimum $\bar{\omega}_{t+1}^*$ to bind the incentive constraint for monitoring (Condition 13). The argument largely follows the framework of BGG (1999).

From Condition 13, let:

$$M(\bar{\omega}_{t+1}^*) = \Omega^*(\bar{\omega}_{t+1}^*) - \widetilde{\Omega}^*(\bar{\omega}_{t+1}^*)$$
(B.1)

be the expected payoff to the foreign lender from proper monitoring per unit of I_t^* with:

$$\Omega^*(\bar{\omega}_{t+1}^*) = \int_{\bar{\omega}_{t+1}^*}^{+\infty} \bar{\omega}_{t+1}^* dF(\omega_{t+1}^*) + \int_0^{\bar{\omega}_{t+1}^*} (1 - \nu^*) \omega_{t+1}^* dF(\omega_{t+1}^*), \tag{B.2}$$

$$\widetilde{\Omega}^*(\bar{\omega}_{t+1}^*) = \int_{\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}}^{+\infty} \bar{\omega}_{t+1}^* dF(\omega_{t+1}^*) + \int_0^{\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}} (1-\nu^*)(1-\psi^*) \omega_{t+1}^* dF(\omega_{t+1}^*).$$
(B.3)

There is:

$$\frac{\partial M(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} = \frac{\partial \Omega^*(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} - \frac{\partial \widetilde{\Omega}^*(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} \\
= \nu^* \frac{\bar{\omega}_{t+1}^*}{1 - \psi^*} f(\frac{\bar{\omega}_{t+1}^*}{1 - \psi^*}) - \nu^* \bar{\omega}_{t+1}^* f(\bar{\omega}_{t+1}^*) + F(\frac{\bar{\omega}_{t+1}^*}{1 - \psi^*}) - F(\bar{\omega}_{t+1}^*) \tag{B.4}$$

with:

$$\frac{\partial \Omega^*(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} = 1 - F(\bar{\omega}_{t+1}^*) - \nu^* \bar{\omega}_{t+1}^* f(\bar{\omega}_{t+1}^*), \tag{B.5}$$

$$\frac{\partial \widetilde{\Omega}^*(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} = \frac{\partial \Omega^*\left(\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}\right)}{\partial \left(\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}\right)} = 1 - F\left(\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}\right) - \nu^* \frac{\bar{\omega}_{t+1}^*}{1-\psi^*} f\left(\frac{\bar{\omega}_{t+1}^*}{1-\psi^*}\right). \tag{B.6}$$

Equation B.5 implies that a rise in $\bar{\omega}_{t+1}^*$ has two opposite effects on the lender's expected return. A higher $\bar{\omega}_{t+1}^*$ increases the lender's payoff when the foreign subsidiary does not default, as reflected by the term $1 - F(\bar{\omega}_{t+1}^*) > 0$. Meanwhile, a higher $\bar{\omega}_{t+1}^*$ raises the probability of default, which reduces the lender's expected payoff due to the default loss, as reflected by the term $-\nu^*\bar{\omega}_{t+1}^*f(\bar{\omega}_{t+1}^*) < 0$. To discuss when $\partial\Omega^*(\bar{\omega}_{t+1}^*)/\partial\bar{\omega}_{t+1}^* > 0$, one can rewrite Equation B.5 as:

$$\frac{\partial \Omega^*(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} = \left(1 - F(\bar{\omega}_{t+1}^*)\right) \left[1 - \nu^* \bar{\omega}_{t+1}^* h(\bar{\omega}_{t+1}^*)\right],\tag{B.7}$$

where the hazard rate $h(\bar{\omega}_{t+1}^*) \equiv f(\bar{\omega}_{t+1}^*) / (1 - F(\bar{\omega}_{t+1}^*))$.

Because the log-normally distributed productivity draw satisfies the regularity condition:

$$\frac{\partial \left(\bar{\omega}_{t+1}^* h(\bar{\omega}_{t+1}^*)\right)}{\partial \bar{\omega}_{t+1}^*} > 0, \tag{B.8}$$

there exists a $\bar{\omega}_{t+1}^{* \max}$ such that:

$$(1 - F(\bar{\omega}_{t+1}^*)) \left[1 - \nu^* \bar{\omega}_{t+1}^* h(\bar{\omega}_{t+1}^*) \right] \stackrel{\geq}{=} 0 \text{ for } \bar{\omega}_{t+1}^* \stackrel{\leq}{=} \bar{\omega}_{t+1}^{* \max}.$$
 (B.9)

Condition B.9 indicates that $\Omega^*(\bar{\omega}_{t+1}^*)$ reaches a global maximum at an unique, interior value of $\bar{\omega}_{t+1}^*$.² If the foreign project has an insufficient R_t^* , with which no $\bar{\omega}_{t+1}^*$ exists to meet the foreign lender's required rate of return, the foreign subsidiary is rationed from the capital market and there will be $D_t^* = 0$ in the equilibrium. To allow a possible usage of the informed capital with proper monitoring, I focus on the case where the foreign project is productive enough so that there is $\bar{\omega}_{t+1}^* < \bar{\omega}_{t+1}^{*\,\text{max}}$ in the equilibrium, consistent with BGG (1999).

²The regularity condition is generally applicable to any monotonically increasing transformation of the normal distribution.

Taking the derivative of Equation B.7 yields:

$$\frac{\partial^2 \Omega^*(\bar{\omega}_{t+1}^*)}{\left(\partial \bar{\omega}_{t+1}^*\right)^2} = -f(\bar{\omega}_{t+1}^*) \left(1 - \nu^* \bar{\omega}_{t+1}^* h(\bar{\omega}_{t+1}^*)\right) - \left(1 - F(\bar{\omega}_{t+1}^*)\right) \nu^* \frac{\partial \left(\bar{\omega}_{t+1}^* h(\bar{\omega}_{t+1}^*)\right)}{\partial \bar{\omega}_{t+1}^*}.$$
(B.10)

It follows that $\Omega^*(\bar{\omega}_{t+1}^*)$ is increasing and strictly concave for $\bar{\omega}_{t+1}^* \leq \bar{\omega}_{t+1}^{*\max}$. Therefore, when $\bar{\omega}_{t+1}^* < \frac{\bar{\omega}_{t+1}^*}{1-\psi^*} \leq \bar{\omega}_{t+1}^{*\max}$, there is:

$$\frac{\partial \Omega^*(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} > \frac{\partial \Omega^*(\frac{\bar{\omega}_{t+1}^*}{1 - \psi^*})}{\partial \frac{\bar{\omega}_{t+1}^*}{1 - \psi^*}} = \frac{\partial \widetilde{\Omega}^*(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*}$$
(B.11)

by the strict concavity. When $\bar{\omega}_{t+1}^* \leq \bar{\omega}_{t+1}^{* \max} < \frac{\bar{\omega}_{t+1}^*}{1-\psi^*}$, there is:

$$\frac{\partial \Omega^*(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} > 0 > \frac{\partial \Omega^*(\frac{\bar{\omega}_{t+1}^*}{1 - \psi^*})}{\partial \frac{\bar{\omega}_{t+1}^*}{1 - \psi^*}} = \frac{\partial \widetilde{\Omega}^*(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*}$$
(B.12)

by the global maximum. In conclusion, when the local informed capital with proper monitoring is used in equilibrium:

$$\frac{\partial M(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} = \frac{\partial \Omega^*(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} - \frac{\partial \widetilde{\Omega}^*(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} > 0.$$
 (B.13)

There is a minimum $\bar{\omega}_{t+1}^*$ required by the foreign lender to satisfy the incentive constraint so that it binds.

B.2 Informed Capital without Proper Monitoring

This appendix explains the potential optimal usage of the subsidiary-level informed capital without proper monitoring, and how it can enhance the incentives to use the parent-level debt with $T_t > 0$. To start with, consider any case where the home and foreign projects are productive enough so that the parent company would like to use the parent-level debt to fund $I_t > 0$ and $I_t^* > 0$. The question is whether it could be optimal for the parent company to substitute some parent-level debt with the subsidiary-level debt to fund the same I_t and I_t^* . Since the substitution will not affect the private benefit of the foreign subsidiary, we can simplify the

³Appendix A.2 explains that if the parent company uses only the parent-level debt or the subsidiary-level informed capital without proper monitoring to fund I_t and I_t^* , the parent-level debt is always preferred.

notations by assuming $\psi^* = 0$. This can save us from carrying the additional default threshold of the informed capital with proper monitoring when applying the same argument.

Let $\hat{\omega}_{t+1}$, $\hat{\omega}_{t+1}^*$, and $\bar{\omega}_{t+1}$ be the contractual thresholds of the original parent-level debt contract. A substitution is optimal when the joint expected payoff to the parent company and home lender experience a net increase after substituting the subsidiary-level debt for D_t^{u*} units of the parent-level debt in Foreign's currency without changing the original parent-level debt contract offered to the home lender to fund the same I_t and I_t^* . Define the net gain from this substitution as $G(\bar{\omega}_{t+1}^*)$, we have:

$$G(\bar{\omega}_{t+1}^*) = D_{t+1}^{u*}(1 + r_{t+1}^{rf*}) - L(\bar{\omega}_{t+1}^*).$$
(B.14)

 $\bar{\omega}_{t+1}^*$ is the default threshold of the newly added subsidiary-level debt. $L(\bar{\omega}_{t+1}^*)$ denotes the loss of the expected payoff from the original parent-level debt contract after adding the subsidiary-level debt. $D_{t+1}^{u*}(1+r_{t+1}^{rf*})$ is the gain for the home lender from lending D_t^{u*} units less but being offered the same contract. Note that $\hat{\omega}_{t+1}$, $\hat{\omega}_{t+1}^*$, and $\bar{\omega}_{t+1}$ are the contractual thresholds of the original parent-level debt contract contract. They are independent with the default threshold of the newly added subsidiary-level debt, $\bar{\omega}_{t+1}^*$.

The newly added subsidiary-level debt will be priced according to the participation constraint for the foreign lender in equilibrium as:

$$\left(\int_{0}^{\bar{\omega}_{t+1}^{*}} (1-\nu^{*}) \omega_{t+1}^{*} dF(\omega_{t+1}^{*}) + \int_{\bar{\omega}_{t+1}^{*}}^{+\infty} \bar{\omega}_{t+1}^{*} dF(\omega_{t+1}^{*})\right) I_{t}^{*} R_{t}^{*} = D_{t}^{u*} (1+r_{t+1}^{rf*}) + s^{*} I_{t}^{*}. \quad (B.15)$$

When substituting the subsidiary-level debt for D_t^{u*} units of the parent-level debt so that $\bar{\omega}_{t+1}^* \leq \hat{\omega}_{t+1}^*$, the loss of the expected payoff from the original parent-level debt contract is:

$$L(\bar{\omega}_{t+1}^*) = \left[\int_0^{\bar{\omega}_{t+1}^*} \int_{\bar{\omega}_{t+1}}^{+\infty} \omega_{t+1}^* dF(\omega_{t+1}) dF(\omega_{t+1}^*) + \int_0^{\bar{\omega}_{t+1}^*} \int_0^{\bar{\omega}_{t+1}} (1-\nu) \omega_{t+1}^* dF(\omega_{t+1}) dF(\omega_{t+1}^*) \right] I_t^* R_t^* + \left[\int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} \int_{\bar{\omega}_{t+1}}^{+\infty} \bar{\omega}_{t+1}^* dF(\omega_{t+1}) dF(\omega_{t+1}^*) + \int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} \int_0^{\bar{\omega}_{t+1}} (1-\nu) \bar{\omega}_{t+1}^* dF(\omega_{t+1}) dF(\omega_{t+1}^*) \right] I_t^* R_t^* + \int_{\hat{\omega}_{t+1}^*}^{+\infty} \bar{\omega}_{t+1}^* dF(\omega_{t+1}^*) I_t^* R_t^*.$$
(B.16)

By Equation B.15, there is:

$$L(\bar{\omega}_{t+1}^*) = \left[\int_0^{\bar{\omega}_{t+1}^*} \nu^* \omega_{t+1}^* dF(\omega_{t+1}^*) - \int_0^{\bar{\omega}_{t+1}^*} \int_0^{\bar{\omega}_{t+1}} \nu \omega_{t+1}^* dF(\omega_{t+1}) dF(\omega_{t+1}^*) \right] I_t^* R_t^*$$

$$+ D_t^{u*} (1 + r_{t+1}^{rf*}) + s^* I_{t+1}^* - \int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} \int_0^{\bar{\omega}_{t+1}} \nu \bar{\omega}_{t+1}^* dF(\omega_{t+1}) dF(\omega_{t+1}^*) I_t^* R_t^*.$$
(B.17)

The net gain from the substitution is therefore:

$$G(\bar{\omega}_{t+1}^*) = \int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} \int_0^{\bar{\omega}_{t+1}} \nu \bar{\omega}_{t+1}^* dF(\omega_{t+1}) dF(\omega_{t+1}^*) I_t^* R_t^* - s^* I_t^*$$

$$- \left[\int_0^{\bar{\omega}_{t+1}^*} \nu^* \omega_{t+1}^* dF(\omega_{t+1}^*) - \int_0^{\bar{\omega}_{t+1}^*} \int_0^{\bar{\omega}_{t+1}} \nu \omega_{t+1}^* dF(\omega_{t+1}) dF(\omega_{t+1}^*) \right] I_t^* R_t^*. \tag{B.18}$$

The first term of Equation B.18 reflects a subtle benefit from the substitution. In the case of a parent-level default based on the original contract after the foreign lender getting paid in full, the default loss of the home lender can be reduced because they can know from the informed foreign lender that the realized productivity draw ω_{t+1}^* is at least above $\bar{\omega}_{t+1}^*$. Without this informational benefit, it would never be optimal to substitute the parent-level debt due to its diversification benefit. The remaining terms in Equation B.18 describe the frictions associated with the subsidiary-level debt. Specifically, the second line captures the negative tradeoff in credit risk from substituting the subsidiary-level debt with a standalone default risk for the parent-level debt with a diversification benefit. With $\nu \leq \nu^*$, there is:

$$\left[\int_{0}^{\bar{\omega}_{t+1}^{*}} \nu^{*} \omega_{t+1}^{*} dF(\omega_{t+1}^{*}) - \int_{0}^{\bar{\omega}_{t+1}^{*}} \int_{0}^{\bar{\omega}_{t+1}} \nu \omega_{t+1}^{*} dF(\omega_{t+1}) dF(\omega_{t+1}^{*}) \right] I_{t}^{*} R_{t}^{*} > 0.$$
 (B.19)

As Section 3.2.2 explains, the empirical focus of this paper is US MNEs with subsidiaries in developed economies, especially the UK, where the financial industries share a similar degree of development. I therefore assume that $\nu = \nu^*$ to reflect the similar institutional background. For US MNEs in general with subsidiaries that face a less developed financial industry, one can assume there is $\nu \leq \nu^*$ (e.g., Desai, Foley, and Forbes, 2008).

Equation B.18 suggests that it is not always optimal to substitute the subsidiary-level debt for the parent-level debt, even when the foreign lender can freely prevent a balance sheet shrinkage due to the moral hazard between the MNE and its lenders (i.e., $s^* = 0$). In fact, a substitution will not be optimal if the additional cost from taking on the standalone default

risk is larger than the informational benefit drawn from the state of a parent-level default after the foreign lender getting paid in full. When the MNE has a strong diversification benefit so that a parent-level default is much less likely, which is already reasonable in reality, the usage of the additional subsidiary-level debt is not optimal. With additional frictions due to the moral hazard between the MNE and its lenders, it is clear that the MNE will not use the additional subsidiary-level debt when s^* is sufficiently high.

When the frictions associated with the subsidiary-level debt are low, the optimal level of substitution can be decided as the net gain function is strictly concave in $\bar{\omega}_{t+1}^*$. To see this, the first derivative of net gain function is:

$$\frac{\partial G(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} = \left[\int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} \int_0^{\bar{\omega}_{t+1}} \nu dF(\omega_{t+1}) dF(\omega_{t+1}^*) - \nu^* \bar{\omega}_{t+1}^* f(\bar{\omega}_{t+1}^*) \right] I_t^* R_t^*. \tag{B.20}$$

When $\bar{\omega}_{t+1}^* \to 0$, $\partial G(\bar{\omega}_{t+1}^*)/\partial \bar{\omega}_{t+1}^* > 0$. When $\bar{\omega}_{t+1}^* \to \hat{\omega}_{t+1}^*$, $\partial G(\bar{\omega}_{t+1}^*)/\partial \bar{\omega}_{t+1}^* < 0$.

The second derivative of the net gain function is:

$$\frac{\partial^2 G(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^{*2}} = \left[-\int_0^{\bar{\omega}_{t+1}} \nu f(\bar{\omega}_{t+1}^*) dF(\omega) - \nu^* \frac{\partial \left[\bar{\omega}_{t+1}^* f(\bar{\omega}_{t+1}^*) \right]}{\partial \bar{\omega}_{t+1}^*} \right] I_t^* R_t^* < 0.$$
 (B.21)

Therefore, $G(\bar{\omega}_{t+1}^*)$ is strictly concave in $\bar{\omega}_{t+1}^*$ when $\bar{\omega}_{t+1}^* \leq \hat{\omega}_{t+1}^*$. For any given I_t and I_t^* funded by the parent-level debt, it is optimal to substitute the subsidiary-level debt for D_t^{u*} units of the parent-level debt so that:

$$\int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} \int_0^{\bar{\omega}_{t+1}} \nu dF(\omega_{t+1}) dF(\omega_{t+1}^*) = \nu^* \bar{\omega}_{t+1}^* f(\bar{\omega}_{t+1}^*)$$
(B.22)

with:

$$\bar{\omega}_{t+1}^* I_t^* R_t^* = D_t^{u*} (1 + r_t^{u*}) \tag{B.23}$$

and $G(\bar{\omega}_{t+1}^*) > 0$. $1 + r_t^{u*}$ denotes the risky return for the subsidiary-level informed capital without proper monitoring.

It can also be shown that it is not optimal to substitute the subsidiary-level debt for the

parent-level debt till $\bar{\omega}_{t+1}^* > \hat{\omega}_{t+1}^*$. In this case, the net gain from the substitution is:

$$G(\bar{\omega}_{t+1}^*) = -\left[\int_0^{\bar{\omega}_{t+1}^*} \nu^* \omega_{t+1}^* dF(\omega_{t+1}^*) - \int_0^{\hat{\omega}_{t+1}^*} \int_0^{\bar{\omega}_{t+1}} \nu \omega_{t+1}^* dF(\omega_{t+1}) dF(\omega_{t+1}^*)\right] I_t^* R_t^*$$

$$-s^* I_t^* < 0. \tag{B.24}$$

So far I have discussed the optimal usage of the subsidiary-level debt. I now explain its impact on the parent company's incentives to utilize the ICM. When it is optimal to substitute the subsidiary-level debt for the parent-level debt, the risk premium of the parent-level debt can be further reduced due to the informational benefit from the greater state contingency. Such benefit gives the parent company another incentive to active the ICM and internally finance the foreign subsidiary.

To best demonstrate this point, consider the case where the parent company only has the foreign project (i.e., $I_t^* > 0$ and $I_t = 0$) and is funding it with the parent-level debt. Since there is no diversification benefit, the parent- and subsidiary-level debt are equivalent except for the additional friction $s^* \geq 0$ and default costs. In this case, the net gain from the substitution becomes:

$$G(\bar{\omega}_{t+1}^*) = \left[\int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} \nu \bar{\omega}_{t+1}^* dF(\omega_{t+1}^*) - \int_0^{\bar{\omega}_{t+1}^*} (\nu^* - \nu) \, \omega_{t+1}^* dF(\omega_{t+1}^*) \right] I_t^* R_t^* - s^* I_t^*$$
 (B.25)

with $\bar{\omega}_{t+1}^* \leq \hat{\omega}_{t+1}^*$.

Assuming for the moment that the parent- and subsidiary-level debt are identical with $s^* = 0$ and $\nu = \nu^*$, funding $I_t^* > 0$ using the parent-level debt is the same with using only the

$$G(\bar{\omega}_{t+1}^*) = -\left[\int_0^{\bar{\omega}_{t+1}^*} \nu^* \omega_{t+1}^* dF(\omega_{t+1}^*) - \int_0^{\hat{\omega}_{t+1}^*} \nu \omega_{t+1}^* dF(\omega_{t+1}^*)\right] I_t^* R_t^* - s^* I_t^* < 0$$

with $\bar{\omega}_{t+1}^* > \hat{\omega}_{t+1}^*$.

⁴Given that there is only the foreign project, the default threshold $\hat{\omega}_{t+1}^*$ of the parent-level debt contract is the default threshold of a standard debt contract. By offering the home lender the original parent-level debt contract after substituting the subsidiary-level debt for D_t^{u*} units of the parent-level debt, the joint expected payoff to the parent company and home lender cannot experience an increase if the default threshold of the newly added subsidiary-level debt, $\bar{\omega}_{t+1}^*$, is already above $\hat{\omega}_{t+1}^*$, provided $\nu \leq \nu^*$. The net gain from the substitution in this case is:

subsidiary-level debt without activating the ICM.⁵ However, now there is:

$$G(\bar{\omega}_{t+1}^*) = \int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} \nu \bar{\omega}_{t+1}^* dF(\omega_{t+1}^*) I_t^* R_t^* > 0.$$
 (B.26)

It is therefore better to active the ICM with $T_t > 0$ and use the additional subsidiary-level debt to obtain the informational benefit for the parent-level debt by making it more state contingent.

In general, the first derivative of net gain function with only the foreign project takes a similar form:

$$\frac{\partial G(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^*} = \left[\int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} \nu dF(\omega_{t+1}^*) - \nu^* \bar{\omega}_{t+1}^* f(\bar{\omega}_{t+1}^*) \right] I_t^* R_t^*.$$
 (B.27)

When $\bar{\omega}_{t+1}^* \to 0$, $\partial G(\bar{\omega}_{t+1}^*)/\partial \bar{\omega}_{t+1}^* > 0$. When $\bar{\omega}_{t+1}^* \to \hat{\omega}_{t+1}^*$, $\partial G(\bar{\omega}_{t+1}^*)/\partial \bar{\omega}_{t+1}^* < 0$.

The second derivative of net gain function is:

$$\frac{\partial^2 G(\bar{\omega}_{t+1}^*)}{\partial \bar{\omega}_{t+1}^{*2}} = \left[-\nu f(\bar{\omega}_{t+1}^*) - \nu^* \frac{\partial \left[\bar{\omega}_{t+1}^* f(\bar{\omega}_{t+1}^*) \right]}{\partial \bar{\omega}_{t+1}^*} \right] I_t^* R_t^* < 0.$$
 (B.28)

For any given $I_t^* > 0$ with $I_t = 0$ funded by the parent-level debt, it is optimal to substitute the subsidiary-level debt for D_t^{u*} units of the parent-level debt so that:

$$\int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} \nu dF(\omega_{t+1}^*) = \nu^* \bar{\omega}_{t+1}^* f(\bar{\omega}_{t+1}^*)$$
(B.29)

and $G(\bar{\omega}_{t+1}^*) > 0$.

Fixing the same $I_t^* > 0$, for any given $I_t^* > 0$ and $I_t > 0$ funded by the parent-level debt, D_t^{u*} still satisfies the participation constraint by Equation B.15. But now there is $\partial G(\bar{\omega}_{t+1}^*)/\partial \bar{\omega}_{t+1}^* < 0$, instead of $\partial G(\bar{\omega}_{t+1}^*)/\partial \bar{\omega}_{t+1}^* = 0$, since $\partial G(\bar{\omega}_{t+1}^*)/\partial \bar{\omega}_{t+1}^*$ is reduced because of the diversification benefit from the home project by Equation B.20. Therefore, D_t^{u*} will become lower comparing to the case with only $I_t^* > 0$. In other words, the existence of a diversification benefit will reduce the incentive to substitute the subsidiary-level debt for the parent-level debt due to the negative tradeoff associated with the standalone default risk, maintaining the point that there

⁵Recall that the opportunity costs of the parent- and subsidiary-level debt are equivalent in the same currency under the CIP condition (Condition 3).

is $T_t > 0$ in equilibrium. In conclusion, the parent company has incentives to active the ICM with $T_t > 0$ when there is a diversification benefit or an informational benefit by making the parent-level debt more state contingent.

C Equilibrium Conditions

This section derives the equilibrium conditions for the lending rate of the parent-level debt, r_t , and the parent company's choices on I_t and T_t . The section also examines the impact of a marginal increase in I_t or T_t on the expected default loss and the conditions for the parent company to have a two-project equilibrium.

C.1 First Order Conditions

Given the equilibrium conditions for the foreign variables, the Lagrangian of the optimization problem from Section 3.3 is:

$$\boldsymbol{L} = \Upsilon_t^h I_t R_t + \Upsilon_t^f F_{t+1} I_t^* R_t^* + \lambda \left[\Omega_t^h I_t R_t + \Omega_t^f F_{t+1} I_t^* R_t^* - D_t (1 + r_t^{rf}) \right].$$

Appendix A.3 provides details on $\Upsilon^h_t = \Upsilon^h(\hat{\omega}_{t+1}, \hat{\omega}^*_{t+1}, \bar{\omega}^*_{t+1}), \ \Upsilon^f_t = \Upsilon^f(\hat{\omega}_{t+1}, \hat{\omega}^*_{t+1}, \bar{\omega}^*_{t+1}), \ \Omega^h_t = \Omega^h(\hat{\omega}_{t+1}, \hat{\omega}^*_{t+1}, \bar{\omega}^*_{t+1}), \ \text{and} \ \Omega^f_t = \Omega^f(\hat{\omega}_{t+1}, \hat{\omega}^*_{t+1}, \bar{\omega}^*_{t+1}).$

The first order condition (FOC) for r_t is:

$$\frac{\partial \mathbf{L}}{\partial r_{t}} = \Upsilon_{\hat{\omega}_{t+1}}^{h} + \Upsilon_{\hat{\omega}_{t+1}^{*}}^{h} \frac{I_{t}R_{t}}{F_{t+1}I_{t}^{*}R_{t}^{*}} + \Upsilon_{\hat{\omega}_{t+1}}^{f} \frac{F_{t+1}I_{t}^{*}R_{t}^{*}}{I_{t}R_{t}} + \Upsilon_{\hat{\omega}_{t+1}^{*}}^{f}
+ \lambda \left(\Omega_{\hat{\omega}_{t+1}}^{h} + \Omega_{\hat{\omega}_{t+1}^{*}}^{h} \frac{I_{t}R_{t}}{F_{t+1}I_{t}^{*}R_{t}^{*}} + \Omega_{\hat{\omega}_{t+1}}^{f} \frac{F_{t+1}I_{t}^{*}R_{t}^{*}}{I_{t}R_{t}} + \Omega_{\hat{\omega}_{t+1}^{*}}^{f} \right) = 0.$$
(C.1)

Consistent with BGG (1999), λ reflects the increase of the cost of funds due to the expected default loss. It prescribes the additional shares of the returns the parent company needs to compensate the home lender due to the existence of the default cost ν :

$$\lambda = -\frac{\Upsilon_{\hat{\omega}_{t+1}}^h + \Upsilon_{\hat{\omega}_{t+1}^h}^h \frac{I_t R_t}{F_{t+1} I_t^* R_t^*} + \Upsilon_{\hat{\omega}_{t+1}}^f \frac{F_{t+1} I_t^* R_t^*}{I_t R_t} + \Upsilon_{\hat{\omega}_{t+1}}^f}{\Omega_{\hat{\omega}_{t+1}}^h + \Omega_{\hat{\omega}_{t+1}^h}^h \frac{I_t R_t}{F_{t+1} I_t^* R_t^*} + \Omega_{\hat{\omega}_{t+1}}^f \frac{F_{t+1} I_t^* R_t^*}{I_t R_t} + \Omega_{\hat{\omega}_{t+1}}^f} > 1.$$
(C.2)

with:

$$\Upsilon_{\hat{\omega}_{t+1}}^{h} + \Omega_{\hat{\omega}_{t+1}}^{h} = -\nu \int_{0}^{\hat{\omega}_{t+1}^{*}} \bar{\omega}_{t+1} f(\bar{\omega}_{t+1}) \frac{\partial \bar{\omega}_{t+1}}{\partial \hat{\omega}_{t+1}} dF(\omega_{t+1}^{*}) < 0, \tag{C.3}$$

$$\Upsilon_{\hat{\omega}_{t+1}^*}^h + \Omega_{\hat{\omega}_{t+1}^*}^h = -\nu f(\hat{\omega}_{t+1}^*) \int_0^{\bar{\omega}_{t+1}} \omega_{t+1} dF(\omega_{t+1})$$

$$-\nu \int_0^{\hat{\omega}_{t+1}^*} \bar{\omega}_{t+1} f(\bar{\omega}_{t+1}) \frac{\partial \bar{\omega}_{t+1}}{\partial \hat{\omega}_{t+1}^*} dF(\omega_{t+1}^*) < 0, \tag{C.4}$$

$$\Upsilon_{\hat{\omega}_{t+1}}^f + \Omega_{\hat{\omega}_{t+1}}^f = -\nu \int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} (\omega_{t+1}^* - \bar{\omega}_{t+1}^*) f(\bar{\omega}_{t+1}) \frac{\partial \bar{\omega}_{t+1}}{\partial \hat{\omega}_{t+1}} dF(\omega_{t+1}^*) < 0, \tag{C.5}$$

$$\Upsilon_{\hat{\omega}_{t+1}^*}^f + \Omega_{\hat{\omega}_{t+1}^*}^f = -\nu \int_0^{\bar{\omega}_{t+1}} (\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*) f(\hat{\omega}_{t+1}^*) dF(\omega_{t+1}) < 0$$

$$-\nu \int_{\bar{\omega}_{t+1}^*}^{\hat{\omega}_{t+1}^*} (\omega_{t+1}^* - \bar{\omega}_{t+1}^*) f(\bar{\omega}_{t+1}) \frac{\partial \bar{\omega}_{t+1}}{\partial \hat{\omega}_{t+1}^*} dF(\omega_{t+1}^*) < 0, \tag{C.6}$$

where:

$$\frac{\partial \bar{\omega}_{t+1}}{\partial \hat{\omega}_{t+1}} = 1 - \frac{(\omega_{t+1}^* - \bar{\omega}_{t+1}^*)}{(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*)} \mathbf{1}(\omega_{t+1}^* \ge \bar{\omega}_{t+1}^*) > 0, \forall \omega_{t+1}^* < \hat{\omega}_{t+1}^*, \tag{C.7}$$

$$\frac{\partial \bar{\omega}_{t+1}}{\partial \hat{\omega}_{t+1}^*} = \frac{\hat{\omega}_{t+1}(\omega_{t+1}^* - \bar{\omega}_{t+1}^*)}{(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*)^2} \mathbf{1}(\omega_{t+1}^* \ge \bar{\omega}_{t+1}^*) \ge 0, \forall \omega_{t+1}^* < \hat{\omega}_{t+1}^*. \tag{C.8}$$

When $\nu = 0$:

$$-\left(\Upsilon_{\hat{\omega}_{t+1}}^{h} + \Upsilon_{\hat{\omega}_{t+1}^{*}}^{h} \frac{I_{t}R_{t}}{F_{t+1}I_{t}^{*}R_{t}^{*}} + \Upsilon_{\hat{\omega}_{t+1}}^{f} \frac{F_{t+1}I_{t}^{*}R_{t}^{*}}{I_{t}R_{t}} + \Upsilon_{\hat{\omega}_{t+1}^{*}}^{f}\right)$$

$$= \left(\Omega_{\hat{\omega}_{t+1}}^{h} + \Omega_{\hat{\omega}_{t+1}^{*}}^{h} \frac{I_{t}R_{t}}{F_{t+1}I_{t}^{*}R_{t}^{*}} + \Omega_{\hat{\omega}_{t+1}}^{f} \frac{F_{t+1}I_{t}^{*}R_{t}^{*}}{I_{t}R_{t}} + \Omega_{\hat{\omega}_{t+1}^{*}}^{f}\right) > 0. \tag{C.9}$$

The FOC for I_t is:

$$\frac{\partial \mathbf{L}}{\partial I_t} = \Upsilon_t^h R_t + \delta_t^I - \lambda \left[(1 + r_t^{rf}) - \Omega_t^h R_t \right] = 0. \tag{C.10}$$

 δ_t^I captures the diversification effect from a marginal increase in I_t with:

$$\delta_{t}^{I} = \left[(\Upsilon_{\hat{\omega}_{t+1}}^{h} + \lambda \Omega_{\hat{\omega}_{t+1}}^{h}) \frac{\partial \hat{\omega}_{t+1}}{\partial I_{t}} + (\Upsilon_{\hat{\omega}_{t+1}^{*}}^{h} + \lambda \Omega_{\hat{\omega}_{t+1}^{*}}^{h}) \frac{\partial \hat{\omega}_{t+1}^{*}}{\partial I_{t}} \right] I_{t} R_{t}$$

$$+ \left[(\Upsilon_{\hat{\omega}_{t+1}}^{f} + \lambda \Omega_{\hat{\omega}_{t+1}}^{f}) \frac{\partial \hat{\omega}_{t+1}}{\partial I_{t}} + (\Upsilon_{\hat{\omega}_{t+1}^{*}}^{f} + \lambda \Omega_{\hat{\omega}_{t+1}^{*}}^{f}) \frac{\partial \hat{\omega}_{t+1}^{*}}{\partial I_{t}} \right] F_{t+1} I_{t}^{*} R_{t}^{*}, \qquad (C.11)$$

where:

$$\frac{\partial \hat{\omega}_{t+1}}{\partial I_t} = -\frac{(T_t - A_t)(1 + r_t)}{I_t^2 R_t},\tag{C.12}$$

$$\frac{\partial \hat{\omega}_{t+1}^*}{\partial I_t} = \frac{(1+r_t)}{F_{t+1}I_t^*R_t^*}.$$
 (C.13)

Similarly, the FOC for T_t is:

$$\frac{\partial \mathbf{L}}{\partial T_t} = \Upsilon_t^f \frac{F_{t+1}}{S_t \Lambda \left(\bar{\omega}_{t+1}^*\right)} R_t^* + \delta_t^T - \lambda \left[(1 + r_t^{rf}) - \Omega_t^f \frac{F_{t+1}}{S_t \Lambda \left(\bar{\omega}_{t+1}^*\right)} R_t^* \right] = 0. \tag{C.14}$$

 δ_t^T captures the diversification effect from a marginal increase in T_t with:

$$\delta_{t}^{T} = \left[(\Upsilon_{\hat{\omega}_{t+1}}^{h} + \lambda \Omega_{\hat{\omega}_{t+1}}^{h}) \frac{\partial \hat{\omega}_{t+1}}{\partial T_{t}} + (\Upsilon_{\hat{\omega}_{t+1}^{*}}^{h} + \lambda \Omega_{\hat{\omega}_{t+1}^{*}}^{h}) \frac{\partial \hat{\omega}_{t+1}^{*}}{\partial T_{t}} \right] I_{t} R_{t}$$

$$+ \left[(\Upsilon_{\hat{\omega}_{t+1}}^{f} + \lambda \Omega_{\hat{\omega}_{t+1}}^{f}) \frac{\partial \hat{\omega}_{t+1}}{\partial T_{t}} + (\Upsilon_{\hat{\omega}_{t+1}^{*}}^{f} + \lambda \Omega_{\hat{\omega}_{t+1}^{*}}^{f}) \frac{\partial \hat{\omega}_{t+1}^{*}}{\partial T_{t}} \right] F_{t+1} I_{t}^{*} R_{t}^{*}.$$
(C.15)

where:

$$\frac{\partial \hat{\omega}_{t+1}}{\partial T_t} = \frac{(1+r_t)}{I_t R_t},\tag{C.16}$$

$$\frac{\partial \hat{\omega}_{t+1}^*}{\partial T_t} = -\frac{(I_t - A_t)(1 + r_t)S_t \Lambda \left(\bar{\omega}_{t+1}^*\right)}{F_{t+1}T_t^2 R_t^*}.$$
 (C.17)

C.2 Investments and the Expected Default Loss

Conditions C.10 and C.14 suggest that a marginal increase in I_t or T_t affects the expected default loss through both changing the relative size of the projects (the diversification effect) and lifting the leverage. Let η_t denote the expected default loss of the home lender:

$$\eta_{t} = \int_{\bar{\omega}_{t+1}^{*}}^{\hat{\omega}_{t+1}^{*}} \int_{0}^{\bar{\omega}_{t+1}} \nu\left(\omega_{t+1}^{*} - \bar{\omega}_{t+1}^{*}\right) dF(\omega_{t+1}) dF(\omega_{t+1}^{*}) F_{t+1} I_{t}^{*} R_{t}^{*}
+ \int_{0}^{\hat{\omega}_{t+1}^{*}} \int_{0}^{\bar{\omega}_{t+1}} \nu \omega_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^{*}) I_{t} R_{t}.$$
(C.18)

The impact of a marginal increase in I_t on η_t is:

$$\frac{d\eta_t}{dI_t} = \frac{\partial \eta_t}{\partial \hat{\omega}_{t+1}} \frac{\partial \hat{\omega}_{t+1}}{\partial I_t} + \frac{\partial \eta_t}{\partial \hat{\omega}_{t+1}^*} \frac{\partial \hat{\omega}_{t+1}^*}{\partial I_t} + \frac{\partial \eta_t}{\partial I_t R_t} \frac{\partial I_t R_t}{\partial I_t}$$
(C.19)

with:

$$\frac{\partial \eta_t}{\partial \hat{\omega}_{t+1}} = -\left(\Upsilon^f_{\hat{\omega}_{t+1}} + \Omega^f_{\hat{\omega}_{t+1}}\right) F_{t+1} I_t^* R_t^* - \left(\Upsilon^h_{\hat{\omega}_{t+1}} + \Omega^h_{\hat{\omega}_{t+1}}\right) I_t R_t > 0, \tag{C.20}$$

$$\frac{\partial \eta_t}{\partial \hat{\omega}_{t+1}^*} = -\left(\Upsilon_{\hat{\omega}_{t+1}^*}^f + \Omega_{\hat{\omega}_{t+1}^*}^f\right) F_{t+1} I_t^* R_t^* - \left(\Upsilon_{\hat{\omega}_{t+1}^*}^h + \Omega_{\hat{\omega}_{t+1}^*}^h\right) I_t R_t > 0, \tag{C.21}$$

$$\frac{\partial \eta_t}{\partial I_t R_t} \frac{\partial I_t R_t}{\partial I_t} = \int_0^{\hat{\omega}_{t+1}^*} \int_0^{\bar{\omega}_{t+1}} \nu \omega_{t+1} dF(\omega_{t+1}) dF(\omega_{t+1}^*) R_t > 0. \tag{C.22}$$

The first term in Equation C.19, $(\partial \eta_t/\partial \hat{\omega}_{t+1})$ $(\partial \hat{\omega}_{t+1}/\partial I_t)$, can reflect a diversification benefit. The diversification benefit exists when $\partial \hat{\omega}_{t+1}/\partial I_t < 0$ following Equation C.12, assuming the foreign project is productive enough so that $T_t - A_t > 0$ in equilibrium for the capital constrained MNE. Equation C.12 also shows that the diversification benefit from expanding I_t is large when the home project is relatively small comparing with the foreign project (i.e., $(T_t - A_t)/I_t$ is large). More importantly, Equation C.12 demonstrates that the diversification benefit diminishes in I_t , conditioning on $(T_t - A_t)/I_t$.

The rest of the terms in Equation C.19 contribute to a rise in η_t . The second term $(\partial \eta_t/\partial \hat{\omega}_{t+1}^*)$ $(\partial \hat{\omega}_{t+1}^*/\partial I_t) > 0$ as $\partial \hat{\omega}_{t+1}^*/\partial I_t > 0$ from Equation C.13. It captures the effect that a larger I_t makes it more difficult to use the foreign return to serve D_t . The last term $(\partial \eta_t/\partial I_t R_t)$ $(\partial I_t R_t/\partial I_t) > 0$ reflects the impact of enlarging I_t from lifting the leverage. Since the diversification benefit diminishes in I_t , conditioning on $(T_t - A_t)/I_t$, a marginal increase in I_t eventually raises the cost of funds via $d\eta_t/dI_t > 0$.

The impact of a marginal increase in T_t on η_t can also be examined as:

$$\frac{d\eta_t}{dT_t} = \frac{\partial \eta_t}{\partial \hat{\omega}_{t+1}} \frac{\partial \hat{\omega}_{t+1}}{\partial T_t} + \frac{\partial \eta_t}{\partial \hat{\omega}_{t+1}^*} \frac{\partial \hat{\omega}_{t+1}^*}{\partial T_t} + \frac{\partial \eta_t}{\partial F_{t+1} I_t^* R_t^*} \frac{\partial F_{t+1} I_t^* R_t^*}{\partial T_t}$$
(C.23)

with $\partial \eta_t / \partial \hat{\omega}_{t+1} > 0$ and $\partial \eta_t / \partial \hat{\omega}_{t+1}^* > 0$ by Equations C.20 and C.21, and:

$$\frac{\partial \eta_{t}}{\partial F_{t+1} I_{t}^{*} R_{t}^{*}} \frac{\partial F_{t+1} I_{t}^{*} R_{t}^{*}}{\partial T_{t}} = \int_{\bar{\omega}_{t+1}^{*}}^{\hat{\omega}_{t+1}^{*}} \int_{0}^{\bar{\omega}_{t+1}} \nu \left(\omega_{t+1}^{*} - \bar{\omega}_{t+1}^{*}\right) dF(\omega_{t+1}) dF(\omega_{t+1}^{*})$$

$$\frac{F_{t+1} R_{t}^{*}}{S_{t} \Lambda \left(\bar{\omega}_{t+1}^{*}\right)} > 0. \tag{C.24}$$

Similar to the case of I_t , the second term in Equation C.23, $(\partial \eta_t/\partial \hat{\omega}_{t+1}^*)$ $(\partial \hat{\omega}_{t+1}^*/\partial T_t)$, can reflect a diversification benefit. The diversification benefit exists when $\partial \hat{\omega}_{t+1}^*/\partial T_t < 0$ following Equation C.17, assuming the home project is productive enough so that $I_t - A_t > 0$ in equilibrium for the capital constrained MNE. Like the previous case, the diversification benefit from expanding T_t is large when the foreign project is relatively small comparing with the home project. The diversification benefit also diminishes in T_t , conditioning on the relative size of the projects.

The first term in Equation C.23 captures the effect that a larger T_t makes it more difficult to use the home return to serve D_t with $\partial \hat{\omega}_{t+1}/\partial T_t > 0$ from Equation C.16. The last term in Equation C.23 reflects the impact of enlarging T_t with a higher leverage. Since the diversification benefit diminishes in T_t , conditioning on the relative size of the projects, a marginal increase in T_t eventually raises the cost of funds via $d\eta_t/dT_t > 0$.

C.3 Conditions for a Two-Project Equilibrium

Based on the equilibrium conditions, I now study when it is optimal for the parent company to have $I_t > 0$ and $T_t > 0$ in equilibrium. To begin with, when $T_t \to 0$ for a given $I_t > 0$, there are $\hat{\omega}_{t+1}^* \to +\infty$ and $\hat{\omega}_{t+1} = \bar{\omega}_{t+1}$ by the parent-level debt contract. Appendix A.3 provides the definitions of Υ_t^h , Υ_t^f , Ω_t^h , and Ω_t^f , from which one can derive:

$$\Upsilon^{h}_{\hat{\omega}_{t+1}} \to F(\hat{\omega}_{t+1}) - 1, \quad \Omega^{h}_{\hat{\omega}_{t+1}} \to 1 - F(\hat{\omega}_{t+1}) - \nu \hat{\omega}_{t+1} f(\hat{\omega}_{t+1}),$$
 (C.25)

$$\Upsilon^h_{\hat{\omega}^*_{t+1}} \to 0, \quad \Omega^h_{\hat{\omega}^*_{t+1}} \to 0,$$
 (C.26)

$$\Upsilon^f_{\hat{\omega}^*_{t+1}} \to 0, \quad \Omega^f_{\hat{\omega}^*_{t+1}} \to 0.$$
 (C.27)

Conditions C.26 and C.27, combined with $T_t \to 0$, imply that the Lagrangian multiplier, λ , becomes:

$$\lambda = -\frac{\Upsilon_{\hat{\omega}_{t+1}}^h}{\Omega_{\hat{\omega}_{t+1}}^h} = -\frac{\Upsilon_{\bar{\omega}_{t+1}}^h}{\Omega_{\bar{\omega}_{t+1}}^h} = \frac{1 - F(\hat{\omega}_{t+1})}{1 - F(\hat{\omega}_{t+1}) - \nu \hat{\omega}_{t+1} f(\hat{\omega}_{t+1})} > 1, \tag{C.28}$$

which is equivalent to that of BGG (1999) with only one project in the equilibrium.⁶

Applying the changes to Equations C.11 and C.15, it follows that $\delta_t^I \to 0$ and $\delta_t^T \to 0$ when the equilibrium converges to a one-project equilibrium. The FOC for I_t becomes:

$$\Upsilon_t^h R_t = \lambda \left[(1 + r_t^{rf}) - \Omega_t^h R_t \right]. \tag{C.29}$$

The FOC for T_t becomes:

$$\Upsilon_{t}^{f} \frac{F_{t+1}}{S_{t} \Lambda\left(\bar{\omega}_{t+1}^{*}\right)} R_{t}^{*} = \lambda \left[(1 + r_{t}^{rf}) - \Omega_{t}^{f} \frac{F_{t+1}}{S_{t} \Lambda\left(\bar{\omega}_{t+1}^{*}\right)} R_{t}^{*} \right], \tag{C.30}$$

where the expected shares of the return for any $T_t > 0$ converges to:

$$\Upsilon_t^f = \Upsilon^f(\hat{\omega}_{t+1}, \bar{\omega}_{t+1}^*) = \int_{\bar{\omega}_{t+1}^*}^{+\infty} \left(\omega_{t+1}^* - \bar{\omega}_{t+1}^*\right) dF(\omega_{t+1}^*) (1 - F(\hat{\omega}_{t+1})), \tag{C.31}$$

$$\Omega_t^f = \Omega^f(\hat{\omega}_{t+1}, \bar{\omega}_{t+1}^*) = \int_{\bar{\omega}_{t+1}^*}^{+\infty} (1 - \nu) \left(\omega_{t+1}^* - \bar{\omega}_{t+1}^*\right) dF(\omega_{t+1}^*) F(\hat{\omega}_{t+1}). \tag{C.32}$$

Substituting Equations C.31 and C.32 to Equation C.30, it is thus optimal for the parent company to have $T_t > 0$ in this case when the foreign project has a large enough R_t^* :

$$\int_{\bar{\omega}_{t+1}^*}^{+\infty} \left(\omega_{t+1}^* - \bar{\omega}_{t+1}^*\right) dF(\omega_{t+1}^*) \frac{F_{t+1} R_t^*}{S_t \Lambda\left(\bar{\omega}_{t+1}^*\right)} > \frac{(1 + r_t^{rf})}{1 - \nu F(\hat{\omega}_{t+1}) - \nu \hat{\omega}_{t+1} f(\hat{\omega}_{t+1})}.$$
 (C.33)

The analysis when $I_t \to 0$ for a given $T_t > 0$ is similar. As $I_t \to 0$, $\hat{\omega}_{t+1} \to +\infty$ by the

⁶I focus on the case where the home project won't be individually rationed from the capital market, which entails that $\Omega^h_{\hat{\omega}_{t+1}} = 1 - F(\hat{\omega}_{t+1}) - \nu \hat{\omega}_{t+1} f(\hat{\omega}_{t+1}) > 0$, as explained by BGG (1999).

The specifically, as $T_t \to 0$, $I_t^* \to 0$ by Condition 24, $\Upsilon^h_{\hat{\omega}_{t+1}} + \lambda \Omega^h_{\hat{\omega}_{t+1}} \to 0$, $\Upsilon^h_{\hat{\omega}_{t+1}^*} \to 0$, and $\Omega^h_{\hat{\omega}_{t+1}^*} \to 0$.

parent-level debt contract. It can be derived from the definitions of Υ_t^h , Υ_t^f , Ω_t^h , and Ω_t^f that:

$$\Upsilon^f_{\hat{\omega}_{t+1}^*} \to -1 + F(\hat{\omega}_{t+1}^*), \quad \Omega^f_{\hat{\omega}_{t+1}^*} \to 1 - F(\hat{\omega}_{t+1}^*) - \nu \left(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*\right) f(\hat{\omega}_{t+1}^*),$$
 (C.34)

$$\Upsilon^h_{\hat{\omega}_{t+1}} \to 0, \quad \Omega^h_{\hat{\omega}_{t+1}} \to 0,$$
 (C.35)

$$\Upsilon^f_{\hat{\omega}_{t+1}} \to 0, \quad \Omega^f_{\hat{\omega}_{t+1}} \to 0.$$
 (C.36)

Conditions C.35 and C.36, combined with $I_t \to 0$, imply that the Lagrangian multiplier, λ , becomes:

$$\lambda = -\frac{\Upsilon_{\hat{\omega}_{t+1}^*}^f}{\Omega_{\hat{\omega}_{t+1}^*}^f} = \frac{1 - F(\hat{\omega}_{t+1}^*)}{1 - F(\hat{\omega}_{t+1}^*) - \nu\left(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*\right) f(\hat{\omega}_{t+1}^*)} > 1, \tag{C.37}$$

which is consistent to that of BGG (1999) with only one project in the equilibrium, conditioning on the potential usage of the local informed capital.⁸

Applying the changes to Equations C.11 and C.15, it also follows that $\delta_t^I \to 0$ and $\delta_t^T \to 0$ when the equilibrium converges to a one-project equilibrium. As a result, The FOC for T_t becomes Condition C.30. The FOC for I_t becomes Condition C.29, where the expected shares of the return for any $I_t > 0$ converges to:

$$\Upsilon_t^h = \Upsilon^h \left(\hat{\omega}_{t+1}^* (\bar{\omega}_{t+1}^*) \right) = 1 - F(\hat{\omega}_{t+1}^*),$$
(C.38)

$$\Omega_t^h = \Omega^h \left(\hat{\omega}_{t+1}^* (\bar{\omega}_{t+1}^*) \right) = (1 - \nu) F(\hat{\omega}_{t+1}^*). \tag{C.39}$$

Substituting Equations C.38 and C.39 to Equation C.29, it is thus optimal for the parent company to have $I_t > 0$ in this case when the home project has a large enough R_t :

$$R_t > \frac{1 + r_t^{rf}}{1 - \nu F(\hat{\omega}_{t+1}^*) - \nu \left(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*\right) f(\hat{\omega}_{t+1}^*)}.$$
 (C.40)

In conclusion, this appendix has shown that it would be optimal for the parent company to have $I_t > 0$ and $T_t > 0$ in equilibrium when both the home and foreign projects are productive

⁸Consistent with the previous analysis, I focus on the case where the foreign project won't be individually rationed from the capital market, which entails that $1 - F(\hat{\omega}_{t+1}^*) - \nu \hat{\omega}_{t+1}^* f(\hat{\omega}_{t+1}^*) > 0$ following BGG (1999). This, of course, implies that $1 - F(\hat{\omega}_{t+1}^*) - \nu\left(\hat{\omega}_{t+1}^* - \bar{\omega}_{t+1}^*\right) f(\hat{\omega}_{t+1}^{t+1}) > 0$.

⁹Specifically, as $I_t \to 0$, $\Upsilon_{\hat{\omega}_{t+1}^*}^f + \lambda \Omega_{\hat{\omega}_{t+1}^*}^f \to 0$, $\Upsilon_{\hat{\omega}_{t+1}}^f \to 0$, and $\Omega_{\hat{\omega}_{t+1}}^f \to 0$.

enough (i.e., R_t and R_t^* are large enough).

Figure 2: The Log-Normal CDF of the Productivity Draw

This figure demonstrates the change in the CDF of the productivity draw in response to an uncertainty shock. The productivity draw, labelled as Omega, is log-normally distributed with a unit mean. The uncertainty shock is a mean-preserving shock to the standard deviation of the productivity draw's natural logarithm. The standard deviation is labelled as sigma and can be set to around 0.28 as a point of reference. Sigma is estimated to be around 0.28 for the US with a standard deviation of around 0.2 (see, e.g., Carlstrom and Fuerst 1997, BGG 1999, Dorofeenko, Gabriel, and Salyer 2008, etc.).

Figure 3: Consolidated Senior-Bond-to-Asset Ratio and Book Leverage, Pre-Trend

This figure plots the quarterly averages of the consolidated book leverage and senior-bond-to-asset ratio for the US parent companies in the treatment and control groups during 2011Q1-2015Q4. The book leverage is defined as the ratio of total debt (i.e., short-term debt + long-term debt) over total assets from Compustat. The senior-bond-to-asset ratio is defined as the ratio of senior bonds and notes from Capital IQ over total assets from Compustat. All variables are normalized with their values in 2012Q1 equals 1 to facilitate comparability.

Panel A: Book Leverage, Normalized

Panel B: Senior-Bond-to-Asset Ratio, Normalized

Figure 4: Consolidated Senior-Bond-to-Asset Ratio and Book Leverage

This figure plots the quarterly averages of the consolidated book leverage and senior-bond-to-asset ratio for the US parent companies in the treatment and control groups during 2014Q1-2018Q4. The book leverage is defined as the ratio of total debt (i.e., short-term debt + long-term debt) over total assets from Compustat. The senior-bond-to-asset ratio is defined as the ratio of senior bonds and notes from Capital IQ over total assets from Compustat. All variables are normalized with their values in 2015Q1 equals 1 to facilitate comparability.

Panel A: Book Leverage, Normalized

Panel B: Senior-Bond-to-Asset Ratio, Normalized

Table 1: Summary Statistics of Parent-Level Analysis

This table presents the summary statistics for the balanced sample of my parent-level DID analysis. Each observation in the sample is the average of the before (2014Q1-2016Q2) or after (2016Q2-2018Q4) period for a given US parent company. SeniorBondLeverage is the senior-bond-to-asset ratio defined as the ratio of senior bonds and notes from Capital IQ over total assets from Compustat. BookLeverage is defined as the ratio of total debt (i.e., short-term debt + long-term debt) over total assets from Compustat. LnTA is the logarithm of total assets in millions of US dollars from Compustat. Tobin'sQ is computed as the sum of market value of equity and book value of debt over total assets based on Compustat. Quick is the quick ratio defined as cash and short-term investments over total assets from Compustat.

Panel A: Full Sample

		The Be	fore Period	(2014	Q1-2016	6Q2)	Full Period (2014Q1-2016Q2 vs. 2016Q3-2018Q4)					
	Mean	SD	Median	P1	P99	Num Obs	Mean	SD	Median	P1	P99	Num Obs
SeniorBondLeverage	.18	.17	.15	0	.79	1,008	.18	.17	.16	0	.74	2,016
BookLeverage	.33	.20	.30	.01	.91	1,008	.34	.20	.31	.009	.93	2,016
LnTA	7.21	2.42	7.63	.79	11.79	1,008	7.28	2.42	7.69	0.84	11.93	2,016
Tobin'sQ	1.76	1.19	1.40	.52	5.96	1,008	1.73	1.15	1.37	.51	5.96	2,016
Quick	.81	1.38	.41	.01	6.82	1,008	.77	1.29	.39	.01	5.94	2,016

Panel B: US Parent Companies with and without the UK Exposure during the Before Period (2014Q1-2016Q2)

	US	US Parent Companies with the UK Exposure						US Parent Companies without the UK Exposure				
	Mean	SD	Median	P1	P99	Num Obs	Mean	SD	Median	P1	P99	Num Obs
SeniorBondLeverage	.19	.16	.17	0	.71	539	.16	.18	.10	0	.81	469
BookLeverage	.32	.18	.29	.01	.88	539	.33	.22	.31	.004	0.91	469
LnTA	8.26	1.76	8.32	2.91	12.22	539	6.01	2.53	6.62	11	10.42	469
Tobin'sQ	1.81	1.10	1.49	.60	5.96	539	1.71	1.28	1.28	.51	5.96	469
Quick	.79	1.11	.47	.04	4.66	539	.83	1.64	.34	.005	7.28	469

Table 2: Parent-Level DID Analysis

This table presents the results of my parent-level DID analysis. The dependent variables are the book leverage (the ratio of total debt to total assets) in Column (1) and the ratio of senior bonds to total assets from Columns (2) to (7). Each observation in the sample is the average of the before (2014Q1-2016Q2) or after (2016Q3-2018Q4) period for a given US parent company. All models include parent-level fixed effects, which subsume the effect of the standalone treatment group dummy. t-statistics reported in parentheses are based on robust standard errors clustered at the parent company level. Superscripts ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	BookLev	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA
After	0.017**	-0.003	-0.014***	-0.015***	-0.022*	-0.021	-0.022*
	(2.463)	(-0.411)	(-2.936)	(-2.998)	(-1.755)	(-1.554)	(-1.756)
$After \times UK$	0.013	0.025^{***}	0.016^{***}	0.016^{***}	0.018^{***}	0.017^{**}	0.018^{***}
	(1.572)	(3.063)	(2.727)	(2.698)	(2.913)	(2.094)	(2.636)
$After \times MNE$						-0.002	
						(-0.184)	
After \times EU27							0.001
							(0.144)
BookLeverage			0.709^{***}	0.710^{***}	0.719^{***}	0.719^{***}	0.719^{***}
			(14.902)	(14.920)	(15.040)	(15.019)	(15.046)
LnTA				0.003	0.003	0.003	0.003
				(0.307)	(0.240)	(0.236)	(0.243)
Tobin'sQ					0.003	0.003	0.003
					(0.473)	(0.473)	(0.471)
Quick					0.002	0.002	0.002
					(0.663)	(0.665)	(0.670)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
After×Industry	No	No	No	No	Yes	Yes	Yes
Observations	2016	2016	2016	2016	2016	2016	2016
R-squared	0.035	0.016	0.502	0.502	0.527	0.527	0.527

Table 3: Parent-Level DID Analysis for Pre-Trends

This table presents the results of my parent-level DID analysis. The dependent variables are the book leverage (the ratio of total debt to total assets) in Column (1) and the ratio of senior bonds to total assets from Columns (2) to (7). Each observation in the sample is the average of the before (2011Q1-2013Q2) or after (2013Q3-2015Q4) period for a given US parent company. All models include parent-level fixed effects, which subsume the effect of the standalone treatment group dummy. t-statistics reported in parentheses are based on robust standard errors clustered at the parent company level. Superscripts ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	BookLev	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA
After	0.031***	0.034***	0.014**	0.009^{*}	-0.018	-0.020	-0.020
	(4.194)	(5.050)	(2.567)	(1.731)	(-0.670)	(-0.755)	(-0.792)
After \times UK	0.002	-0.007	-0.009	-0.008	-0.004	-0.002	-0.002
	(0.246)	(-0.915)	(-1.507)	(-1.384)	(-0.534)	(-0.176)	(-0.244)
$After \times MNE$						0.004	
						(0.381)	
After \times EU27							0.008
							(0.729)
BookLeverage			0.656***	0.655***	0.646^{***}	0.646^{***}	0.646***
			(14.049)	(14.827)	(14.221)	(14.210)	(14.207)
LnTA				0.021**	0.021^{*}	0.021^{*}	0.021^{*}
				(2.022)	(1.873)	(1.871)	(1.870)
Tobin'sQ					-0.006	-0.006	-0.006
					(-0.963)	(-0.977)	(-0.978)
Quick					0.001	0.001	0.001
					(1.047)	(1.036)	(1.047)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
After × Industry	No	No	No	No	Yes	Yes	Yes
Observations	1964	1964	1964	1964	1964	1964	1964
R-squared	0.060	0.060	0.509	0.515	0.544	0.544	0.544

Table 4: Summary Statistics for US Parent Companies with and without the UK Exposure

This table presents the summary statistics for my matching analyses between the US parent companies with and without the UK exposure through their internal capital markets (i.e., the treatment and control groups). Each observation in the table is the average of the before (2014Q1-2016Q2) period for a given US parent company. BookLeverage is defined as the ratio of total debt (i.e., short-term debt + long-term debt) over total assets from Compustat. LnTA is the logarithm of total assets in millions of US dollars from Compustat. Tobin'sQ is computed as the sum of market value of equity and book value of debt over total assets based on Compustat. Quick is the quick ratio defined as cash and short-term investments over total assets from Compustat.

Panel A: Original Sample

	US Pa	rent Com	panies with th	ne UK Exp	osure	US Parent Companies without the UK Exposure					T-Test
			(N = 539)			(N = 469)					
	Mean	SD	Median	P1	P99	Mean	SD	Median	P1	P99	P-Value
BookLeverage	.32						.22	.31	.004	.91	0.244
LnTA	8.26	1.76	8.32	2.91	12.22	6.01	2.53	6.62	11	10.42	0.000
Tobin'sQ	1.81	1.10	1.49	.60	5.96	1.71	1.28	1.28	.51	5.96	0.337
Quick	.79	1.11	.47	.04	4.66	.83	1.64	.34	.005	7.28	0.584

Panel B: Mahalanobis Matching on Size, Top 3 Matches with Replacements

	US Pa	arent Com	panies with th	he UK Exp	posure	US Parent Companies without the UK Exposure					T-Test	
			(N = 539)			(N = 336)						
	Mean	SD	Median	P1	P99	Mean	SD	Median	P1	P99	P-Value	
BookLeverage	.32	.18	.29	.01	.88	.35	.20	.34	.03	.88	0.013	
LnTA	8.26	1.76	8.32	2.91	12.22	7.00	2.00	7.36	1.26	10.46	0.000	
Tobin'sQ	1.81	1.10	1.49	.60	5.96	1.46	.90	1.25	.52	4.78	0.000	
Quick	.79	1.11	.47	.04	4.66	.69	1.35	.35	.69 1.35 .35 .005 5.67			

Panel C: Coarsened Exact Matching

	US Pa	rent Com	panies with th	ne UK Exp	osure	US Parent Companies without the UK Exposure					T-Test
			(N = 432)			(N = 352)					
	Mean	SD	Median	P1	P99	Mean	SD	Median	P1	P99	P-Value
BookLeverage	.32	.18	.29	.01	.88	.34 .21 .30 .03 .82					0.380
LnTA	7.87	1.54	7.98	2.49	10.96	7.82	1.62	7.94	2.12	10.86	0.704
Tobin'sQ	1.65	.86	1.43	.60	5.16	1.65	.90	1.46	.58	5.96	0.995
Quick	.78	1.04	.48	.04	4.53	.76	1.16	.48	.005	4.59	0.846

Table 5: Matching Analyses – US Parent Companies with and without the UK Exposure

This table presents the results of my matching analyses between the US parent companies with and without the UK exposure through their internal capital markets (i.e., the treatment and control groups). The dependent variables are the book leverage (the ratio of total debt to total assets) in Columns (1), (3), and (5) and the ratio of senior bonds to total assets in Columns (2), (4), and (6). Each observation in the sample is the average of the before (2014Q1-2016Q2) or after (2016Q3-2018Q4) period for a given US parent company. All models include parent-level fixed effects, which subsume the effect of the standalone treatment group dummy. t-statistics reported in parentheses are based on robust standard errors clustered at the parent company level. Superscripts ***, ***, and * indicate statistical significance at 1%, 5%, and 10% levels.

	Orig	inal	Mahala	anobis	CE	EM
	(1)	(2)	(3)	(4)	(5)	(6)
	BookLev	SnrBond/TA	BookLev	SnrBond/TA	BookLev	SnrBond/TA
After	0.015	-0.022*	-0.008	-0.019	0.003	-0.007
	(0.789)	(-1.755)	(-0.384)	(-1.125)	(0.171)	(-0.777)
$After \times UK$	0.011	0.018***	-0.005	0.020***	-0.001	0.022^{**}
	(1.177)	(2.913)	(-0.525)	(2.750)	(-0.093)	(2.331)
BookLeverage		0.719***		0.710^{***}		0.636***
_		(15.040)		(12.091)		(11.761)
LnTA	-0.019	0.003	0.021	0.026^{*}	-0.006	0.021*
	(-0.958)	(0.240)	(0.956)	(1.871)	(-0.290)	(1.715)
Tobin'sQ	0.001	0.003	-0.011	0.002	-0.022**	0.005
	(0.071)	(0.473)	(-0.844)	(0.188)	(-1.979)	(0.562)
Quick	-0.019***	0.002	-0.015**	0.001	-0.018**	0.007
	(-3.025)	(0.663)	(-2.014)	(0.302)	(-2.354)	(1.492)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes	Yes
After×Industry	Yes	Yes	Yes	Yes	Yes	Yes
Observations	2016	2016	1750	1750	1568	1568
R-squared	0.113	0.527	0.149	0.507	0.194	0.461

Table 6: Summary Statistics for US Multinational Parent Companies with and without the UK Exposure

This table presents the summary statistics for my matching analyses between the US multinational parent companies with and without the UK exposure through their internal capital markets (i.e., the treatment group and the parent companies of US MNEs in the control group). Each observation in the table is the average of the before (2014Q1-2016Q2) period for a given US parent company. BookLeverage is defined as the ratio of total debt (i.e., short-term debt + long-term debt) over total assets from Compustat. LnTA is the logarithm of total assets in millions of US dollars from Compustat. Tobin'sQ is computed as the sum of market value of equity and book value of debt over total assets based on Compustat. Quick is the quick ratio defined as cash and short-term investments over total assets from Compustat.

Panel A: Original Sample

	US Pa	rent Com	panies with th	ne UK Exp	osure	US Multinational Parents without the UK Exposure					T-Test
			(N = 539)				(N = 231)				
	Mean	SD	Median	P1	P99	Mean	SD	Median	P1	P99	P-Value
BookLeverage	.32						.19	.31	.001	.82	0.904
LnTA	8.26	1.76	8.32	2.91	12.22	6.68	2.31	7.09	04	10.46	0.000
Tobin'sQ	1.81	1.10	1.49	.60	5.96	1.61	1.12	1.28	.52	5.96	0.023
Quick	.79	1.11	.47	.04	4.66	.79	1.32	.35	.008	6.66	0.938

Panel B: Mahalanobis Matching on Size, Top 3 Matches with Replacements

	US Pa	arent Com	panies with th	ne UK Exp	osure	US Multinational Parents without the UK Exposure					T-Test
			(N = 539)			(N = 207)					
	Mean	SD	Median	P1	P99	Mean	SD	Median	P1	P99	P-Value
BookLeverage	.32							.32	.01	.77	0.601
LnTA	8.26	1.76	8.32	2.91	12.22	7.06	2.04	7.33	1.92	10.46	0.000
Tobin'sQ	1.81	1.10	1.49	.60	5.96	1.49	.90	1.27	.52	4.66	0.000
Quick	.79	1.11	.47	.04	4.66	.69	1.17	.34	.008	6.20	0.292

Panel C: Coarsened Exact Matching

	US Pa	arent Com	panies with th	ne UK Exp	osure	US Multinational Parents without the UK Exposure					T-Test
			(N = 429)				_				
	Mean							Median	P1	P99	P-Value
BookLeverage	.33							.34	.03	.81	0.324
LnTA	7.99	1.51	8.08	2.91	10.66	7.93	1.56	8.11	2.77	10.59	0.650
Tobin'sQ	1.60	.77	1.41	.60	4.98	1.60	.79	1.40	.60	4.56	0.993
Quick	.73	.98	.46	.03	4.11	.72	.97	.46	.01	5.19	0.895

Table 7: Matching Analyses – US Multinational Parent Companies with and without the UK Exposure

This table presents the results of my matching analyses between the US multinational parent companies with and without the UK exposure through their internal capital markets (i.e., the treatment group and the parent companies of US MNEs in the control group). The dependent variables are the book leverage (the ratio of total debt to total assets) in Columns (1), (3), and (5) and the ratio of senior bonds to total assets in Columns (2), (4), and (6). Each observation in the sample is the average of the before (2014Q1-2016Q2) or after (2016Q3-2018Q4) period for a given US parent company. All models include parent-level fixed effects, which subsume the effect of the standalone treatment group dummy. t-statistics reported in parentheses are based on robust standard errors clustered at the parent company level. Superscripts ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels.

	Orig	inal	Mahala	anobis	CE	ČM
	(1)	(2)	(3)	(4)	(5)	(6)
	BookLev	SnrBond/TA	BookLev	SnrBond/TA	BookLev	SnrBond/TA
After	-0.023***	-0.007	-0.030***	-0.011	-0.028***	-0.007
	(-3.769)	(-0.352)	(-4.311)	(-0.556)	(-4.703)	(-0.676)
$After \times UK$	0.004	0.020^{***}	-0.008	0.021***	-0.005	0.017^{**}
	(0.352)	(2.699)	(-0.793)	(2.699)	(-0.433)	(2.134)
BookLeverage		0.749^{***}		0.729^{***}		0.708^{***}
		(12.118)		(10.713)		(9.690)
LnTA	-0.005	-0.006	0.019	0.005	0.028	0.017
	(-0.198)	(-0.487)	(0.724)	(0.364)	(1.088)	(1.290)
Tobin'sQ	-0.001	-0.004	0.000	-0.004	0.015	0.002
	(-0.057)	(-0.486)	(0.007)	(-0.567)	(0.785)	(0.234)
Quick	-0.018**	0.004	-0.020**	0.003	-0.012	0.011^{*}
	(-2.170)	(0.948)	(-2.059)	(0.688)	(-1.469)	(1.958)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes	Yes
$After \times Industry$	Yes	Yes	Yes	Yes	Yes	Yes
Observations	1540	1540	1492	1492	1280	1280
R-squared	0.140	0.543	0.168	0.522	0.132	0.545

Table 8: Robustness Checks on QEs

		Original		N	To BoE and ECB Q	Es
	(1)	(3)	(4)	(5)	(7)	(8)
	Main	MNE	EU27	Main	MNE	EU27
After	-0.022*	-0.021	-0.022*	-0.022*	-0.021	-0.022*
	(-1.755)	(-1.554)	(-1.754)	(-1.741)	(-1.565)	(-1.742)
$After \times UK$	0.018^{***}	0.017^{**}	0.018^{***}	0.019^{***}	0.018^{**}	0.019^{***}
	(2.913)	(2.094)	(2.624)	(3.043)	(2.229)	(2.751)
$After \times MNE$		-0.002			-0.001	
		(-0.184)			(-0.137)	
After×EU27			-0.001			0.002
			(-0.078)			(0.155)
BookLeverage	0.719^{***}	0.719^{***}	0.719^{***}	0.724***	0.724^{***}	0.723***
	(15.040)	(15.019)	(15.020)	(15.253)	(15.231)	(15.260)
LnTA	0.003	0.003	0.003	0.003	0.003	0.003
	(0.240)	(0.236)	(0.240)	(0.282)	(0.278)	(0.285)
Tobin'sQ	0.003	0.003	0.003	0.004	0.004	0.004
	(0.473)	(0.473)	(0.475)	(0.630)	(0.629)	(0.628)
Quick	0.002	0.002	0.002	0.002	0.002	0.002
	(0.663)	(0.665)	(0.655)	(0.615)	(0.617)	(0.623)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes	Yes
After×Industry	Yes	Yes	Yes	Yes	Yes	Yes
Observations	2016	2016	2016	1990	1990	1990
R-squared	0.527	0.527	0.527	0.533	0.533	0.533

t-statistics reported in parentheses are based on robust standard errors clustered at the firm level. * p<0.10, ** p<0.05, *** p<0.01.

All models include firm-level fixed effects, which subsume the effect of the stand-alone treatment and control group dummies.

Table 9: Summary Statistics: Subsidiary-Level Analysis, Balanced DID Sample

Panel A: Full Sample, Averages of the Before and After Periods

		Th	ne Before Pe	riod (20	14-2015)			Full Sa	ample (2014-	-2015 vs.	2017-2018	3)
	Mean	SD	Median	P1	P99	Num Obs	Mean	SD	Median	P1	P99	Num Obs
InternalRatio	.35	.42	.22	0	1.99	8763	.31	.41	.17	0	2.07	17526
ExternalRatio	.26	.29	.16	0	1.12	8763	.29	.30	.21	0	1.12	17526
LnTA	7.85	2.18	7.99	1.81	13.27	8763	7.90	2.20	8.05	1.70	13.30	17526
Leverage	.64	.51	.56	.009	2.93	8763	.63	.52	.55	.007	3.03	17526
ProvisionRatio	.02	.06	.005	0	.18	7738	.02	.07	.005	0	.19	15476

Panel B: UK Subs of US MNEs vs. UK Subs of UK Business Groups, Averages of the Before Period (2014-2015)

			UK Subs	of US M	NEs	-		UK	Subs of UK	Busines	s Groups	
	Mean	SD	Median	P1	P99	Num Obs	Mean	SD	Median	P1	P99	Num Obs
InternalRatio	.19	.30	.11	0	1.55	1349	.38	.43	.25	0	2.02	7414
ExternalRatio	.34	.30	.26	0	1.12	1349	.25	.29	.14	0	1.12	7414
LnTA	9.50	1.98	9.51	4.16	14.18	1349	7.55	2.08	7.73	1.61	12.69	7414
Leverage	.56	.51	.44	.002	2.96	1349	.65	.50	.58	.02	2.89	7414
ProvisionRatio	.02	.06	.002	0	.25	1226	.02	.06	.006	0	.17	6512

Table 10: Subsidiary-Level DD Analysis (2014-2015 vs. 2017-2018) – Subs of US MNEs vs. Subs of UK Business Groups in the UK (2) (10)(1) (3) (4) (5) (6) (7) (8) (9) (11)IL/TA IL/TA IL/TA IL/TA EL/TA EL/TA EL/TA EL/TA Leverage Leverage Leverage -0.101*** -0.090*** -0.098*** 0.080*** 0.078*** After -0.104*** 0.100*** 0.096*** -0.010** 0.004 0.015 (1.434)(-23.744)(-19.679)(-7.294)(-8.490)(27.208)(25.645)(8.702)(8.626)(-2.179)(0.755)0.066*** 0.066*** 0.063*** 0.070*** -0.083*** -0.083*** -0.078*** -0.075*** -0.019 -0.019 -0.016 After×ForeignAff (-1.313)(7.887)(8.299)(7.848)(8.816)(-11.049)(-11.059)(-10.154)(-11.401)(-1.517)(-1.546)LnTA -0.108*** -0.107*** -0.050*** 0.014** 0.014** 0.044*** -0.133*** -0.133*** (-6.696)(-6.696)(-5.382)(2.159)(2.119)(5.875)(-7.218)(-7.194)0.428*** 0.228*** Leverage (14.383)(17.177)Firm-Level FE Yes No No Yes Yes No No Yes No No Yes After × Industry Yes Observations 17526 17526 17526 17526 17526 17526 17526 17526 17526 17526 17526 R-squared 0.066 0.110 0.116 0.332 0.078 0.079 0.084 0.202 0.001 0.054 0.059

t-statistics reported in parentheses are based on robust standard errors clustered at the firm level.

^{*} p<0.10, ** p<0.05, *** p<0.01.

All models include firm-level fixed effects, which subsume the effect of the stand-alone treatment and control group dummies.

Table 11: Subsidiary-Level DD Analysis (2014-2015 vs. 2017-2018) - The Internal Liability Ratio with/without Provisions

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	IL/TA	IL/TA	IL/TA	IL/TA	No Provisions	No Provisions	No Provisions	No Provisions
After	-0.095***	-0.084***	-0.110***	-0.112***	-0.092***	-0.082***	-0.106***	-0.108***
	(-22.989)	(-18.759)	(-8.053)	(-8.972)	(-23.100)	(-19.404)	(-7.802)	(-8.539)
After×ForeignAff	0.062^{***}	0.062^{***}	0.059^{***}	0.069^{***}	0.062^{***}	0.062^{***}	0.057^{***}	0.065^{***}
	(7.909)	(8.357)	(7.628)	(8.979)	(8.185)	(8.587)	(7.653)	(8.932)
LnTA		-0.101***	-0.100***	-0.051***		-0.096***	-0.095***	-0.053***
		(-5.873)	(-5.880)	(-4.980)		(-6.208)	(-6.211)	(-5.431)
Leverage				0.377^{***}				0.322^{***}
				(11.807)				(10.863)
Firm-Level FE	Yes							
$After \times Industry$	No	No	Yes	Yes	No	No	Yes	Yes
Observations	15476	15476	15476	15476	15476	15476	15476	15476
R-squared	0.071	0.117	0.124	0.321	0.071	0.116	0.123	0.277

t-statistics reported in parentheses are based on robust standard errors clustered at the firm level. p<0.10, ** p<0.05, *** p<0.01.

All models include firm-level fixed effects, which subsume the effect of the stand-alone treatment and control group dummies.

Table 12: Sub	sidiary-Lev	<u>vel DD Ana</u>	lysis (2012-	2013 vs. 20	<u> </u>	Subs of US	MNEs vs.	Subs of Ul	K Business (Groups in t	he UK
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
	IL/TA	IL/TA	IL/TA	IL/TA	EL/TA	EL/TA	EL/TA	EL/TA	Leverage	Leverage	Leverage
After	-0.000	0.009**	0.016	0.010	-0.021***	-0.023***	-0.018**	-0.020**	-0.020***	-0.006	0.013
	(-0.127)	(2.169)	(1.430)	(0.995)	(-10.075)	(-10.448)	(-2.043)	(-2.435)	(-4.494)	(-1.105)	(1.267)
After×ForeignAff	-0.003	-0.004	-0.002	-0.005	0.002	0.003	0.002	0.001	0.008	0.006	0.006
	(-0.449)	(-0.664)	(-0.359)	(-0.784)	(0.496)	(0.540)	(0.299)	(0.125)	(0.827)	(0.639)	(0.562)
LnTA		-0.094***	-0.093***	-0.027**		0.017***	0.017***	0.042***		-0.148***	-0.147***
		(-6.087)	(-6.015)	(-2.357)		(2.706)	(2.679)	(6.286)		(-6.365)	(-6.393)
Leverage				0.454***				0.175***			
				(12.669)				(13.957)			
Firm-Level FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
After \times Industry	No	No	Yes	Yes	No	No	Yes	Yes	No	No	Yes
Observations	14902	14902	14902	14902	14902	14902	14902	14902	14902	14902	14902
R-squared	0.000	0.032	0.038	0.351	0.016	0.018	0.024	0.145	0.003	0.051	0.062

t-statistics reported in parentheses are based on robust standard errors clustered at the firm level. * p<0.10 , ** p<0.05 , *** p<0.01.

All models include firm-level fixed effects, which subsume the effect of the stand-alone treatment and control group dummies.

Table 13: Subsidiary-Level DD Analysis (2012-2013 vs. 2014-2015) – The Internal Liability Ratio with/without Provisions

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	IL/TA	IL/TA	IL/TA	IL/TA	No Provisions	No Provisions	No Provisions	No Provisions
After	-0.001	0.007^{*}	0.010	0.007	-0.003	0.003	0.008	0.005
	(-0.230)	(1.766)	(0.958)	(0.684)	(-1.026)	(0.954)	(0.765)	(0.519)
After × ForeignAff	-0.001	-0.003	-0.001	-0.002	-0.001	-0.003	-0.001	-0.002
	(-0.247)	(-0.520)	(-0.173)	(-0.332)	(-0.271)	(-0.528)	(-0.176)	(-0.318)
LnTA		-0.081***	-0.080***	-0.024**		-0.071***	-0.070***	-0.023**
		(-4.943)	(-4.848)	(-1.974)		(-4.939)	(-4.868)	(-1.989)
Leverage				0.406^{***}				0.344^{***}
				(10.294)				(9.430)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
$After \times Industry$	No	No	Yes	Yes	No	No	Yes	Yes
Observations	13368	13368	13368	13368	13368	13368	13368	13368
R-squared	0.000	0.029	0.036	0.318	0.000	0.025	0.033	0.260

t-statistics reported in parentheses are based on robust standard errors clustered at the firm level.

* p<0.10, ** p<0.05, *** p<0.01.

All models include firm-level fixed effects, which subsume the effect of the stand-alone treatment and control group dummies.

Table 14: Subsidiary-Level DD Analysis (2014-2015 vs. 2017-2018) – Subs of Foreign MNEs vs. Subs of UK Business Groups in the UK (10)(1) (2) (3) (4) (5) (6) (7) (8) (9) (11)IL/TA IL/TA IL/TA IL/TA EL/TA EL/TA EL/TA EL/TA Leverage Leverage Leverage -0.101*** -0.090*** -0.097*** 0.080*** 0.078*** After -0.107*** 0.103*** 0.098*** -0.010** 0.004 0.022** (-23.745)(-20.227)(-7.825)(-9.383)(27.209)(25.916)(9.723)(9.499)(-2.179)(0.848)(2.145)0.061*** 0.062*** 0.059*** 0.056*** -0.061*** -0.061*** -0.057*** -0.058*** 0.004 0.005 0.005 After×ForeignAff (9.919)(10.364)(9.272)(10.210)(-13.037)(-13.079)(-11.692)(-13.168)(0.470)(0.660)(0.664)LnTA -0.107*** -0.106*** -0.050*** 0.015*** 0.014** 0.047*** -0.137*** -0.136*** (-8.041)(-7.959)(-6.324)(2.655)(2.542)(7.540)(-8.799)(-8.743)0.413*** 0.242*** Leverage (17.098)(20.959)Firm-Level FE Yes No No Yes No Yes Yes After × Industry Yes No Yes No No Observations 24536 24536 24536 24536 24536 24536 24536 24536 24536 24536 24536 0.066 R-squared 0.054 0.099 0.103 0.320 0.059 0.061 0.205 0.000 0.054 0.058

t-statistics reported in parentheses are based on robust standard errors clustered at the firm level.

^{*} p<0.10, ** p<0.05, *** p<0.01.

All models include firm-level fixed effects, which subsume the effect of the stand-alone treatment and control group dummies.

Table 15: Subsidiary-Level DD Analysis (2014-2015 vs. 2017-2018) – The Internal Liability Ratio with/without Provisions

		<i>u</i>						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	IL/TA	IL/TA	IL/TA	IL/TA	No Provisions	No Provisions	No Provisions	No Provisions
After	-0.095***	-0.085***	-0.110***	-0.114***	-0.092***	-0.083***	-0.106***	-0.109***
	(-22.990)	(-19.441)	(-8.844)	(-9.940)	(-23.101)	(-20.072)	(-8.577)	(-9.504)
After×ForeignAff	0.055^{***}	0.056^{***}	0.051^{***}	0.052^{***}	0.055^{***}	0.055^{***}	0.051***	0.052^{***}
	(9.454)	(9.824)	(8.471)	(9.812)	(9.803)	(10.149)	(8.852)	(9.967)
LnTA		-0.098***	-0.097***	-0.050***		-0.091***	-0.090***	-0.050***
		(-6.910)	(-6.855)	(-5.723)		(-7.387)	(-7.338)	(-6.390)
Leverage				0.360^{***}				0.308^{***}
				(13.709)				(12.133)
Firm-Level FE	Yes							
$After \times Industry$	No	No	Yes	Yes	No	No	Yes	Yes
Observations	21712	21712	21712	21712	21712	21712	21712	21712
R-squared	0.059	0.106	0.110	0.306	0.060	0.103	0.108	0.262

t-statistics reported in parentheses are based on robust standard errors clustered at the firm level.

* p<0.10, ** p<0.05, *** p<0.01.

All models include firm-level fixed effects, which subsume the effect of the stand-alone treatment and control group dummies.

Table 16: Subsidiary-Level DD Analysis (2012-2013 vs. 2014-2015) – Subs of Foreign MNEs vs. Subs of UK Business Groups in the UK (5) (10)(1) (2) (3) (4) (6) (7) (8) (9) (11)IL/TA IL/TA IL/TA IL/TA EL/TA EL/TA EL/TA EL/TA Leverage Leverage Leverage -0.021*** -0.023*** After -0.0000.009** 0.008 0.007 -0.018** -0.018** -0.020*** -0.006 0.000 (0.025)(-0.127)(2.364)(0.710)(0.782)(-10.076)(-10.825)(-2.265)(-2.427)(-4.494)(-1.352)-0.001 -0.003 -0.004 -0.005 0.004 0.005 0.005 0.005 0.006 0.003 0.003 After × ForeignAff (-0.121)(1.258)(-0.532)(-0.738)(-1.156)(1.398)(1.417)(1.383)(0.891)(0.470)(0.392)LnTA -0.099*** -0.099*** -0.039*** 0.023*** 0.023*** 0.051*** -0.138*** -0.138*** (-7.496)(-7.408)(-4.090)(4.195)(4.189)(8.583)(-7.182)(-7.271)0.436*** 0.202*** Leverage (14.902)(17.952)Firm-Level FE Yes No Yes Yes No No Yes No No Yes After × Industry No Yes Observations 21238 21238 21238 21238 21238 21238 21238 21238 21238 21238 21238 R-squared 0.000 0.035 0.040 0.338 0.013 0.017 0.021 0.170 0.003 0.043 0.051

t-statistics reported in parentheses are based on robust standard errors clustered at the firm level.

^{*} p<0.10, ** p<0.05, *** p<0.01.

All models include firm-level fixed effects, which subsume the effect of the stand-alone treatment and control group dummies.

Table 17: Subsidiary-Level DD Analysis (2012-2013 vs. 2014-2015) – The Internal Liability Ratio with/without Provisions

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	IL/TA	IL/TA	IL/TA	IL/TA	No Provisions	No Provisions	No Provisions	No Provisions
After	-0.001	0.007^{*}	0.000	0.003	-0.003	0.004	0.004	0.006
	(-0.230)	(1.908)	(0.038)	(0.286)	(-1.026)	(1.030)	(0.446)	(0.695)
After×ForeignAff	-0.001	-0.003	-0.003	-0.003	-0.002	-0.004	-0.003	-0.003
	(-0.171)	(-0.566)	(-0.522)	(-0.668)	(-0.514)	(-0.866)	(-0.610)	(-0.735)
LnTA		-0.083***	-0.083***	-0.035***		-0.073***	-0.073***	-0.031***
		(-6.412)	(-6.312)	(-3.581)		(-6.175)	(-6.138)	(-3.328)
Leverage				0.379^{***}				0.330^{***}
				(12.100)				(10.651)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
$After \times Industry$	No	No	Yes	Yes	No	No	Yes	Yes
Observations	18986	18986	18986	18986	18986	18986	18986	18986
R-squared	0.000	0.031	0.036	0.301	0.000	0.025	0.030	0.242

t-statistics reported in parentheses are based on robust standard errors clustered at the firm level.

* p<0.10, ** p<0.05, *** p<0.01.

All models include firm-level fixed effects, which subsume the effect of the stand-alone treatment and control group dummies.

Table D1: Parent-Level DID Analysis, Book Leverage

This table presents the results of my parent-level DID analysis with the book leverage (the ratio of total debt to total assets) as the dependent variable in all columns. Each observation in the sample is the average of the before (2014Q1-2016Q2) or after (2016Q3-2018Q4) period for a given US parent company. All models include parent-level fixed effects, which subsume the effect of the standalone treatment group dummy. The t-statistics reported in parentheses are based on robust standard errors clustered at the parent company level. Superscripts ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels.

	(1)	(2)	(3)	(4)	(5)
	BookLev	BookLev	BookLev	BookLev	BookLev
After	0.017**	0.019***	0.015	0.009	0.015
	(2.463)	(2.793)	(0.789)	(0.393)	(0.785)
$After \times UK$	0.013	0.013	0.011	0.017	0.013
	(1.572)	(1.635)	(1.177)	(1.397)	(1.304)
$After \times MNE$				0.012	
				(0.868)	
After×EU27					0.009
					(0.544)
LnTA		-0.020	-0.019	-0.018	-0.019
		(-1.112)	(-0.958)	(-0.942)	(-0.950)
Tobin'sQ			0.001	0.001	0.001
			(0.071)	(0.072)	(0.062)
Quick			-0.019***	-0.019***	-0.019***
			(-3.025)	(-3.052)	(-3.030)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes
After×Industry	No	No	Yes	Yes	Yes
Observations	2016	2016	2016	2016	2016
R-squared	0.035	0.040	0.113	0.114	0.114

Table D2: Parent-Level DID Analysis, Senior-Bond-to-Asset Ratio

This table presents the results of my parent-level DID analysis with the ratio of senior bonds to total assets as the dependent variable in all columns. Each observation in the sample is the average of the before (2014Q1-2016Q2) or after (2016Q3-2018Q4) period for a given US parent company. All models include parent-level fixed effects, which subsume the effect of the standalone treatment group dummy. The t-statistics reported in parentheses are based on robust standard errors clustered at the parent company level. Superscripts ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels.

	(1)	(2)	(3)	(4)	(5)
	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA
After	-0.003	-0.001	-0.012	-0.015	-0.012
	(-0.411)	(-0.189)	(-0.915)	(-1.012)	(-0.922)
$After \times UK$	0.025^{***}	0.025***	0.026^{***}	0.029^{**}	0.028^{***}
	(3.063)	(3.077)	(2.870)	(2.524)	(2.830)
$After \times MNE$				0.007	
				(0.507)	
After \times EU27					0.008
					(0.569)
LnTA		-0.011	-0.011	-0.011	-0.011
		(-0.576)	(-0.522)	(-0.515)	(-0.517)
Tobin'sQ			0.004	0.004	0.003
			(0.357)	(0.358)	(0.349)
Quick			-0.012**	-0.012**	-0.012**
			(-2.324)	(-2.334)	(-2.333)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes
After×Industry	No	No	Yes	Yes	Yes
Observations	2016	2016	2016	2016	2016
R-squared	0.016	0.018	0.070	0.070	0.070

Table D3: Parent-Level DID Analysis for Pre-Trends, Book Leverage

This table presents the results of my parent-level DID analysis with the book leverage (the ratio of total debt to total assets) as the dependent variable in all columns. Each observation in the sample is the average of the before (2011Q1-2013Q2) or after (2013Q3-2015Q4) period for a given US parent company. All models include parent-level fixed effects, which subsume the effect of the standalone treatment group dummy. The t-statistics reported in parentheses are based on robust standard errors clustered at the parent company level. Superscripts ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels.

	(1)	(2)	(3)	(4)	(5)
	BookLev	BookLev	BookLev	BookLev	BookLev
After	0.031***	0.030***	0.119***	0.117***	0.120***
	(4.194)	(3.774)	(4.556)	(4.462)	(4.436)
$After \times UK$	0.002	0.002	0.014	0.016	0.013
	(0.246)	(0.266)	(1.320)	(1.183)	(1.134)
$After \times MNE$				0.005	
				(0.323)	
After×EU27					-0.004
					(-0.197)
LnTA		0.004	0.006	0.006	0.006
		(0.175)	(0.238)	(0.237)	(0.238)
Tobin'sQ			-0.007	-0.007	-0.007
			(-0.552)	(-0.563)	(-0.551)
Quick			-0.002	-0.002	-0.002
			(-0.643)	(-0.647)	(-0.643)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes
After×Industry	No	No	Yes	Yes	Yes
Observations	1964	1964	1964	1964	1964
R-squared	0.060	0.061	0.130	0.130	0.130

Table D4: Parent-Level DID Analysis for Pre-Trends, Senior-Bond-to-Asset Ratio

This table presents the results of my parent-level DID analysis with the ratio of senior bonds to total assets as the dependent variable in all columns. Each observation in the sample is the average of the before (2011Q1-2013Q2) or after (2013Q3-2015Q4) period for a given US parent company. All models include parent-level fixed effects, which subsume the effect of the standalone treatment group dummy. The t-statistics reported in parentheses are based on robust standard errors clustered at the parent company level. Superscripts ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels.

	(1)	(2)	(3)	(4)	(5)
	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA
After	0.034***	0.029***	0.059	0.055	0.057
	(5.050)	(3.853)	(1.423)	(1.376)	(1.428)
After \times UK	-0.007	-0.006	0.005	0.009	0.006
	(-0.915)	(-0.811)	(0.546)	(0.652)	(0.597)
$After \times MNE$				0.007	
				(0.510)	
After \times EU27					0.006
					(0.390)
LnTA		0.024	0.025	0.025	0.025
		(1.058)	(1.079)	(1.077)	(1.077)
Tobin'sQ			-0.011	-0.011	-0.011
			(-0.952)	(-0.971)	(-0.959)
Quick			-0.000	-0.000	-0.000
			(-0.114)	(-0.122)	(-0.113)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes
After×Industry	No	No	Yes	Yes	Yes
Observations	1964	1964	1964	1964	1964
R-squared	0.060	0.067	0.140	0.140	0.140

Table D5: The Effect of the Corporate Bond Purchase Programs, Book Leverage

This table presents the results of my robustness check on the corporate bond purchase programs implemented by the BoE and ECB during the Brexit interregnum. The dependent variable is the book leverage (the ratio of total debt to total assets) in all columns. Each observation in the sample is the average of the before (2014Q1-2016Q2) or after (2016Q3-2018Q4) period for a given US parent company. All models include parent-level fixed effects, which subsume the effect of the standalone treatment group dummy. The t-statistics reported in parentheses are based on robust standard errors clustered at the parent company level. Superscripts ***, **, and * indicate statistical significance at 1%, 5%, and 10% levels.

	(1)	(2)	(3)	(4)	(5)
	BookLev	BookLev	BookLev	BookLev	BookLev
After	0.017**	0.019***	0.015	0.009	0.014
	(2.463)	(2.787)	(0.785)	(0.399)	(0.780)
After \times UK	0.012	0.013	0.010	0.016	0.012
	(1.466)	(1.532)	(1.068)	(1.294)	(1.198)
After \times MNE				0.011	
				(0.838)	
After×EU27					0.009
					(0.540)
LnTA		-0.020	-0.019	-0.019	-0.019
		(-1.097)	(-0.973)	(-0.957)	(-0.965)
Tobin'sQ			0.000	0.000	-0.000
			(0.001)	(0.003)	(-0.009)
Quick			-0.019***	-0.019***	-0.019***
			(-3.007)	(-3.033)	(-3.013)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes
After × Industry	No	No	Yes	Yes	Yes
Observations	1990	1990	1990	1990	1990
R-squared	0.033	0.038	0.110	0.111	0.110

Table D6: The Effect of the Corporate Bond Purchase Programs, Senior-Bond-to-Asset Ratio

This table presents the results of my robustness check on the corporate bond purchase programs implemented by the BoE and ECB during the Brexit interregnum. The dependent variable is the ratio of senior bonds to total assets in all columns. Each observation in the sample is the average of the before (2014Q1-2016Q2) or after (2016Q3-2018Q4) period for a given US parent company. All models include parent-level fixed effects, which subsume the effect of the standalone treatment group dummy. The t-statistics reported in parentheses are based on robust standard errors clustered at the parent company level. Superscripts ***, ***, and * indicate statistical significance at 1%, 5%, and 10% levels.

	(1)	(2)	(3)	(4)	(5)
	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA	SnrBond/TA
After	-0.003	-0.001	-0.011	-0.015	-0.011
	(-0.411)	(-0.186)	(-0.905)	(-1.009)	(-0.912)
$After \times UK$	0.025***	0.025***	0.026^{***}	0.030^{**}	0.028^{***}
	(3.031)	(3.046)	(2.856)	(2.529)	(2.819)
After × MNE				0.007	
				(0.523)	
After×EU27					0.008
					(0.577)
LnTA		-0.011	-0.011	-0.010	-0.010
		(-0.583)	(-0.515)	(-0.507)	(-0.510)
Tobin'sQ			0.004	0.004	0.004
			(0.403)	(0.404)	(0.395)
Quick			-0.012**	-0.012**	-0.012**
			(-2.342)	(-2.352)	(-2.350)
Firm-Level FE	Yes	Yes	Yes	Yes	Yes
After×Industry	No	No	Yes	Yes	Yes
Observations	1990	1990	1990	1990	1990
R-squared	0.016	0.017	0.070	0.071	0.070