

Rajarata University of Sri Lanka Faculty of Applied Sciences Department of Computing ICT 1407- Database System COM 1302 -Database Management System Practical 11

What Is a Join?

Use a join to query data from more than one table.

Supported Types of Joins in MySQL

- INNER JOIN: Returns records that have matching values in both tables
- LEFT JOIN: Returns all records from the left table, and the matched records from the right table
- RIGHT JOIN: Returns all records from the right table, and the matched records from the left table
- CROSS JOIN: Returns all records from both tables

Inner Join Syntax

SELECT columns

FROM table1

INNER JOIN table2

ON table1.column = table2.column;

Left Join Syntax

SELECT columns

FROM table1

Left JOIN table2

ON table1.column = table2.column;

Rajarata University of Sri Lanka Faculty of Applied Sciences Department of Computing ICT 1407- Database System COM 1302 -Database Management System Practical 11

Right Join Syntax

FROM table1
Right JOIN table2
ON table1.column = table2.column;

Exercises:

1. Create two tables "employees" and "Department", having the following data.

```
Drop database XYZ_Company;
Create database XYZ_Company;
USE XYZ_Company;

CREATE TABLE Department(
DeptCode int NOT NULL,
DeptName VARCHAR(15) NOT NULL,
DeptHead VARCHAR(15),
RegDate Date,
PRIMARY KEY (DeptCode)
);

Create Table employees(
EMPLOYEE_ID Char(3),
FIRST_NAME varchar(10),
LAST_NAME varchar(10),
```

HIRE_DATE date,

Rajarata University of Sri Lanka Faculty of Applied Sciences Department of Computing ICT 1407- Database System COM 1302 -Database Management System Practical 11

JOB_ID varchar(10),

SALARY DECIMAL(10,2),

Dept_ID int,

PRIMARY KEY (EMPLOYEE_ID),

FOREIGN KEY (Dept_ID) REFERENCES Department(DeptCode)
);

Department

DeptCode	DeptName	DeptHead	RegDate	
10	Accounting	King	1993-06-07	
20	Marketing	Kochchar	1994-06-20	
30	Production	Hunold	1993-06-10	
40	Sales	Ernst	2000-08-20	

employees

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	HIRE_DATE	JOB_ID	SALARY	Dept_ID
100	Steven	King	1993-06-07	Programmer	40000	10
101	Neena	Kochchar	1994-06-20	Salesman	60000	20
102	Lex	Hunold	1993-06-10	Manager	60000	
103	Alexander	Ernst	2000-08-20	Salesman	35000	20
104	Bruce	Austin	2000-10-07	Salesman	45000	
105	David	Patal	2000-10-08	Programmer	40000	30
106	Valli	Chen	1993-10-08	Manager	65000	40

- 2. Find the results using inner Join. Use the *Dept_ID* field in both tables as the relationship between the two tables.
- 3. Find the results using Left Join. Use the *Dept_ID* field in both tables as the relationship between the two tables.
- 4. Find the results using Right Join. Use the *Dept_ID* field in both tables as the relationship between the two tables.
- 5. Find all the EMPLOYEE_ID, FIRST_NAME, DeptName, and JOB_ID whose salary range between 30000 and 50000.