NCERT Exemplar Solutions

Class 12 – Mathematics

Chapter 2 – Inverse Trigonometric Functions

Objective Type Questions

Question 1.20:

Which of the following is the principal value branch of $\cos^{-1} x$?

(a)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

- (b) $(0, \pi)$
- (c) $[0, \pi]$

(d)
$$(0,\pi)$$
 $-\left\{\frac{\pi}{2}\right\}$

Solution 1.20: (c)

The principal value branch of $\cos^{-1} x$ is $[0, \pi]$.

Question 1.21:

Which of the following is the principal value branch of $\csc^{-1} x$?

(a)
$$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$

(b)
$$\left[0,\pi\right] - \left\{\frac{\pi}{2}\right\}$$

(c)
$$\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$$

(d)
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] - \left[0\right]$$

Solution 1.21: (d)

The principal value branch of $\csc^{-1}x\left[\frac{-\pi}{2},\frac{\pi}{2}\right]-0$.

Question 1.22:

If $3\tan^{-1} x + \cot^{-1} x = \pi$ then x equals to

- (a) 0
- (b) 1
- (c) -1 (d) $\frac{1}{2}$

Solution 1.22: (b)

We are given that, $3\tan^{-1} x + \cot^{-1} x = \pi$

$$\Rightarrow 2 \tan^{-1} x + \tan^{-1} x + \cot^{-1} x = 7$$

$$\Rightarrow 2 \tan^{-1} x = \pi - \frac{\pi}{2}$$

$$\left[\because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \right]$$

$$\Rightarrow 2 \tan^{-1} x = \frac{\pi}{2}$$

$$\Rightarrow \tan^{-1} x = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} x = \tan^{-1} 1$$

$$\Rightarrow x = 1$$

Question 1.23:

The value of $\sin^4 \left[\cos\left(\frac{33\pi}{5}\right)\right]$ is

a) $\frac{3\pi}{5}$ $\frac{-7\pi}{5}$ $\frac{\pi}{2}$

- (d) $\frac{-\pi}{10}$

Solution 1.23: (d)

We have, $\sin^{-1} \left| \cos \left(\frac{33\pi}{5} \right) \right|$

$$= \sin^{-1} \left[\cos \left(6\pi + \frac{3\pi}{5} \right) \right]$$

$$= \sin^{-1} \left[\cos \left(\frac{3\pi}{5} \right) \right] \quad [\because \cos(2n\pi + \theta) = \cos \theta]$$

$$= \sin^{-1} \left[\cos \left(\frac{\pi}{2} + \frac{\pi}{10} \right) \right]$$

$$= \sin^{-1} \left(-\sin \frac{\pi}{10} \right) \quad \left[\because \cos \left(\frac{\pi}{2} + \theta \right) = -\sin \theta \right]$$

$$= -\sin^{-1} \left(\sin \frac{\pi}{10} \right) \quad [\because \sin^{-1} (-x) = -\sin^{-1} x]$$

$$= -\frac{\pi}{10} \quad \left[\because \sin^{-1} (\sin x) = x, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \right]$$
Question 1.24:

The domain of the function $\cos^{-1}(2x - 1)$ is

(a) [0, 1]

Question 1.24:

The domain of the function $\cos^{-1}(2x-1)$ is

- (a) [0, 1]
- (b) [-1, 1]
- (c)(-1,1)
- (d) $[0, \pi]$

Solution 1.24: (a)

We have, $\cos^{-1}(2x - 1)$

Now, we know that the domain of $\cos^{-1}(x)$ is $-1 \le x \le 1$

$$\therefore -1 \le 2x - 1 \le 1$$

Adding 1 to all terms, we get

$$\Rightarrow 0 \le 2x \le 2$$

Dividing all terms by 2, we get

$$\Rightarrow 0 \le x \le 1$$

$$\therefore x \in [0, 1]$$

Question 1.25:

The domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$ is

- (a) [1,2]
- (b) [-1,1]
- (c)[0,1]
- (d) None of these

Solution 1.25: (a)

We are given that, $f(x) = \sin^{-1} \sqrt{x-1}$

Now, we know that the domain of $\sin^{-1}(x)$ is $-1 \le x \le 1$

$$\therefore -1 \le \sqrt{x-1} \le 1$$

Squaring all the terms, we get

$$0 \le x - 1 \le 1$$

Adding 1 to all terms, we get

$$\Rightarrow 1 \le x \le 2$$

$$\therefore x \in [1, 2]$$

Question 1.26:

If $\cos\left(\sin^{-1}\frac{2}{5} + \cos^{-1}x\right) = 0$, then x is equal to

- (a) $\frac{1}{5}$
- (b) $\frac{2}{5}$
- (c) 0
- (d) 1

Solution 1.26: (b)

We are given that, $\cos\left(\sin^{-1}\frac{2}{5} + \cos^{-1}x\right) = 0$

$$\Rightarrow \sin^{-1}\frac{2}{5} + \cos^{-1}x = \cos^{-1}0$$

$$\Rightarrow \sin^{-1}\frac{2}{5} + \cos^{-1}x = \cos^{-1}\left(\cos\frac{\pi}{2}\right)$$

$$\Rightarrow \sin^{-1}\frac{2}{5} + \cos^{-1}x = \frac{\pi}{2}$$

$$\Rightarrow \sin^{-1}\frac{2}{5} + \cos^{-1}x = \frac{\pi}{2} \qquad \left[\because \cos^{-1}(\cos x) = x, x \in [0, \pi]\right]$$

$$\Rightarrow \cos^4 x = \frac{\pi}{2} - \sin^4 \frac{2}{5}$$

$$\Rightarrow \cos^{-1} x = \cos^{-1} \frac{2}{5}$$

$$\begin{bmatrix} \because \cos^{-1} x + \sin^{-1} x = \frac{\pi}{2} \\ \Rightarrow \frac{\pi}{2} - \sin^{-1} x = \cos^{-1} x \end{bmatrix}$$

$$\Rightarrow x = \frac{2}{5}$$

Question 1.27:

The value of $\sin[2 \tan^{-1}(0.75)]$ is

- (a) 0.75
- (b) 1.5
- (c) 0.96
- (d) sin 1.5

Solution 1.27: (c)

We have,
$$\sin \left[2 \tan^{-1} (0.75) \right] = \sin \left(2 \tan^{-1} \frac{3}{4} \right)$$
 $\left[\because 0.75 = \frac{75}{100} = \frac{3}{4} \right]$

$$\left[\because 0.75 = \frac{75}{100} = \frac{3}{4} \right]$$

$$=\sin\left(\sin^{-1}\frac{2\cdot\frac{3}{4}}{1+\frac{9}{16}}\right)$$

$$= \sin \left[\sin^{-1} \frac{2 \cdot \frac{3}{4}}{1 + \frac{9}{1 + x^{2}}} \right] \qquad \left[\because 2 \tan^{-1} x = \sin^{-1} \frac{2x}{1 + x^{2}} \right]$$

$$=\sin\left[\sin^{-1}\frac{3/2}{25/16}\right]$$

$$= \sin \left[\sin^{-1} \left(\frac{48}{50} \right) \right]$$
$$= \sin \left[\sin^{-1} \left(\frac{24}{25} \right) \right]$$
$$= \frac{24}{25}$$
$$= 0.96$$

Question 1.28:

The value of $\cos^{-1}\left(\cos\frac{3\pi}{2}\right)$ is

(a)
$$\frac{\pi}{2}$$

(b)
$$\frac{3\pi}{2}$$

(c)
$$\frac{5\pi}{2}$$

(d)
$$\frac{7\pi}{2}$$

Solution 1.28: (a)

We have, $\cos^{-1}\left(\cos\frac{3\pi}{2}\right)$

$$=\cos^{-1}\cos\left(2\pi-\frac{\pi}{2}\right)$$

$$=\cos^{-1}\cos\left(\frac{\pi}{2}\right)$$

$$\left[\because \cos(2\pi - \theta) = \cos\theta\right]$$

$$=\frac{\pi}{2} \qquad \left[\because \cos^{-1}(\cos x) = x, x \in [0, \pi]\right]$$

Question 1.29:

The value of $2\sec^{-1} 2 + \sin^{-1} \left(\frac{1}{2}\right)$ is

- (a) $\frac{\pi}{6}$
- (b) $\frac{5\pi}{6}$
- (c) $\frac{7\pi}{6}$
- (d) 1

(d) 1

Solution 1.29: (b)

We have,
$$2\sec^{-1}2 + \sin^{-1}\frac{1}{2}$$
 $= 2\sec^{-1}\left(\sec\frac{\pi}{3}\right) + \sin^{-1}\sin\frac{\pi}{6}$ $\left[\because \sec\frac{\pi}{3} = 2 \text{ and } \sin\frac{\pi}{6} = \frac{1}{2}\right]$
 $= 2\cdot\frac{\pi}{3} + \frac{\pi}{6}$ $\left[\because \sec^{-1}(\sec)x = x \text{ and } \sin^{-1}(\sin x) = x\right]$
 $= \frac{4\pi + \pi}{6}$
 $= \frac{5\pi}{6}$

=
$$2 \cdot \frac{\pi}{3} + \frac{\pi}{6}$$
 [: sec⁻¹ (sec) $x = x$ and $\sin^{-1} (\sin x) = x$]

$$=\frac{4\pi+\pi}{6}$$

$$=\frac{5\pi}{6}$$

Question 1.30:

If $\tan^{-1} x + \tan^{-1} y = \frac{4\pi}{5}$, then $\cot^{-1} x + \cot^{-1} y$ equals to

- (d) π

Solution 1.30: (a)

We have, $\tan^4 x + \tan^4 y = \frac{4\pi}{5}$

$$\Rightarrow \frac{\pi}{2} - \cot^{-1} x + \frac{\pi}{2} - \cot^{-1} y = \frac{4\pi}{5}$$

$$\Rightarrow \frac{\pi}{2} - \cot^{-1} x + \frac{\pi}{2} - \cot^{-1} y = \frac{4\pi}{5}$$

$$\begin{bmatrix} \because \tan^{-1} x + \cot^{-1} x = \frac{\pi}{2} \\ \Rightarrow \tan^{-1} x = \frac{\pi}{2} - \cot^{-1} x \end{bmatrix}$$

$$\Rightarrow \pi - (\cot^{-1} x + \cot^{-1} y) = \frac{4\pi}{5}$$

$$\Rightarrow \pi - \frac{4\pi}{5} = \cot^{-1} x + \cot^{-1} y$$

$$\Rightarrow \cot^{-1} x + \cot^{-1} y = \frac{\pi}{5}$$

Question 1.31:

If $\sin^{-1}\left(\frac{2a}{1+a^2}\right) + \cos^{-1}\left(\frac{1-a^2}{1+a^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, where $a, x \in [0, 1[$, then the value of x is

- (a) 0
- (b) $\frac{a}{2}$
- (c) a

(d)
$$\frac{2a}{1-a^2}$$

Solution 1.31: (d)

We have,
$$\sin^{-1} \left(\frac{2a}{1+a^2} \right) + \cos^{-1} \left(\frac{1-a^2}{1+a^2} \right) = \tan^{-1} \left(\frac{2x}{1-x^2} \right)$$

$$\Rightarrow 2 \tan^{-1} a + 2 \tan^{-1} a = \tan^{-1} \left(\frac{2x}{1 - x^2} \right) \qquad \left[\because 2 \tan^{-1} a = \sin^{-1} \left(\frac{2a}{1 + a^2} \right) = \cos^{-1} \left(\frac{1 - a^2}{1 + a^2} \right) \right]$$

$$\Rightarrow 4 \tan^{-1} a = 2 \tan^{-1} x \quad \left[\because 2 \tan^{-1} x = \tan^{-1} \left(\frac{2x}{1 - x^2} \right) \right]$$

$$\Rightarrow 2 \tan^{-1} a = \tan^{-1} x \quad \left[\because 2 \tan^{-1} x = \tan^{-1} \left(\frac{2x}{1 - x^2} \right) \right]$$

$$\Rightarrow \tan^{-1}\left(\frac{2a}{1-a^2}\right) = \tan^{-1}x \quad \left[\because 2\tan^{-1}a = \tan^{-1}\left(\frac{2a}{1-a^2}\right)\right]$$
$$\Rightarrow x = \frac{2a}{1-a^2}$$

Question 1.32:

The value of $\cot \left[\cos^{-1} \left(\frac{7}{25} \right) \right]$ is

- (a) $\frac{25}{24}$
- (b) $\frac{25}{7}$
- (c) $\frac{24}{25}$
- (d) $\frac{7}{24}$

Solution 1.32: (d)

We have, $\cot \left[\cos^{-1} \left(\frac{7}{25} \right) \right]$

Let us suppose, $\cos^{-1} \frac{7}{25} = x$

$$\Rightarrow \cos x = \frac{7}{25}$$

Now, $\sin x = \sqrt{1 - \cos^2 x}$

$$=\sqrt{1-\left(\frac{7}{25}\right)^2}$$

$$=\sqrt{\frac{625-49}{625}}$$
$$=\frac{24}{25}$$

Also,
$$\cot x = \frac{\cos x}{\sin x}$$

$$\Rightarrow \cot x = \frac{\frac{7}{25}}{\frac{24}{25}} \qquad \left[\because \cos x = \frac{7}{25} \text{ and } \sin x = \frac{24}{25}\right]$$

$$\Rightarrow \cot x = \frac{7}{24}$$

$$\Rightarrow x = \cot^{-1} \frac{7}{24}$$

$$\Rightarrow \cot^{-1}\frac{7}{24} = \cos^{-1}\frac{7}{25} \qquad \left[\because \cos^{-1}\frac{7}{25} = x\right]$$

$$\Rightarrow x = \cot^{-1} \frac{7}{24}$$

$$\Rightarrow \cot^{-1} \frac{7}{24} = \cos^{-1} \frac{7}{25} \qquad \left[\because \cos^{-1} \frac{7}{25} = x \right]$$

$$\therefore \cot \left(\cos^{-1} \frac{7}{25} \right) = \cot \left(\cot^{-1} \frac{7}{24} \right) \qquad \left[\because \cot^{-1} \frac{7}{24} = \cos^{-1} \frac{7}{25} \right]$$

$$= \frac{7}{24}$$
Question 1.33:

$$=\frac{7}{24}$$

Question 1.33:

The value of $\tan\left(\frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}\right)$ is

(a)
$$2+\sqrt{5}$$

(b)
$$\sqrt{5} - 2$$

$$(c) \ \frac{\sqrt{5}+2}{2}$$

(d)
$$5+\sqrt{2}$$

Solution 1.33 (b)

We have,
$$\tan\left(\frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}\right)$$

Let us suppose,
$$\frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}} = \theta$$

$$\Rightarrow \cos^{-1}\frac{2}{\sqrt{5}} = 2\theta$$

$$\Rightarrow \cos 2\theta = \frac{2}{\sqrt{5}}$$

$$\Rightarrow 1 - 2\sin^2\theta = \frac{2}{\sqrt{5}} \qquad \left[\because \cos 2\theta = 1 - 2\sin^2\theta\right]$$

$$\left[\because \cos 2\theta = 1 - 2\sin^2 \theta\right]$$

$$\Rightarrow 2\sin^2\theta = 1 - \frac{2}{\sqrt{5}}$$

$$\Rightarrow \sin^2 \theta = \frac{1}{2} \frac{1}{\sqrt{5}}$$

$$\Rightarrow \sin \theta = \sqrt{\frac{1}{2} \cdot \frac{1}{\sqrt{5}}}$$

Now, $\cos^2 \theta = 1 - \sin^2 \theta$

$$\Rightarrow$$
 cos² $\theta = 1 - \frac{1}{2} + \frac{1}{\sqrt{5}}$

$$\Rightarrow \cos^2 \theta = \frac{1}{2} + \frac{1}{\sqrt{5}}$$

$$\Rightarrow \cos \theta = \sqrt{\frac{1}{2} + \frac{1}{\sqrt{5}}}$$

We know that, $\tan \theta = \frac{\sin \theta}{\cos \theta}$

$$\Rightarrow \tan \theta = \sqrt{\frac{\frac{1}{2} - \frac{1}{\sqrt{5}}}{\frac{1}{2} + \frac{1}{\sqrt{5}}}}$$

$$\Rightarrow \tan \theta = \sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2}}$$

$$\Rightarrow \tan \theta = \sqrt{\frac{\sqrt{5} - 2}{\sqrt{5} + 2}} \cdot \frac{\sqrt{5} - 2}{\sqrt{5} - 2}$$

$$\Rightarrow \tan \theta = \sqrt{\frac{\left(\sqrt{5} - 2\right)^2}{5 - 4}}$$

$$\Rightarrow \tan \theta = \sqrt{5} - 2$$

$$\Rightarrow \theta = \tan^{-1}(\sqrt{5} - 2)$$

Staniosh. comicose

comidose.

$$\Rightarrow \theta = \tan^{-1}(\sqrt{5} - 2)$$

$$\Rightarrow \tan^{-1}\left(\sqrt{5}-2\right) = \frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}$$

$$\therefore \tan\left(\frac{1}{2}\cos^{-1}\frac{2}{\sqrt{5}}\right) = \tan\left[\tan^{-1}\left(\sqrt{5}-2\right)\right] = \sqrt{5}-2$$

Question 1.34:

If $|x| \le 1$, then $2 \tan^{-1} x + \sin^{-1} \left(\frac{2x}{1 + x^2} \right)$ is equal to

- (a) $4 \tan^{-1} x$
- (b) 0
- (c) $\frac{\pi}{2}$
- (d) π

Solution 1.34: (a)

We have, $2 \tan^{-1} x + \sin^{-1} \left(\frac{2x}{1 + x^2} \right)$

$$= 2 \tan^{-1} x + 2 \tan^{-1} x$$

$$\left[\because 2\tan^{-1}x = \sin^{-1}\frac{2x}{1+x^2}\right]$$

$$=4\tan^{-1}x$$

Question 1.35:

If $\cos^{-1} \alpha + \cos^{-1} \beta + \cos^{-1} \gamma = 3\pi$, then $\alpha(\beta + \gamma) + \beta(\gamma + \alpha) + \gamma(\alpha + \beta)$ equals to

- (a) 0
- (b) 1
- (c) 6
- (d) 12

Solution 1.35: (c)

The domain of $\cos^{-1} x$ is $[0, \pi]$

We are given that, $\cos^{-1} \alpha + \cos^{-1} \beta + \cos^{-1} \gamma = 3\pi$

Which is possible only when $\alpha = \beta = \gamma = \cos \pi \text{ or } -1$

Now,
$$\alpha(\beta + \gamma) + \beta (\gamma + \alpha) + \gamma(\alpha + \beta)$$

$$=-1(-1-1)-1(-1-1)-1(-1-1)$$

$$=2+2+2$$

= 6

Question 1.36:

The number of real solutions of the equation

real solutions of the equation
$$\sqrt{1+\cos 2x} = \sqrt{2}\cos^{-1}(\cos x) \text{ in } \left[\frac{\pi}{2}, \pi\right] \text{ is}$$

- (a) 0
- (b) 1
- (c) 2
- $(d) \infty$

Solution 1.36: (a)

We are given that, $\sqrt{1+\cos 2x} = \sqrt{2}\cos^4(\cos x)$, $\frac{\pi}{2}$, π

$$\Rightarrow \sqrt{2\cos^2 x} = \sqrt{2}\cos^{-1}(\cos x) \qquad [-1 + \cos 2x = 2\cos^2 x]$$

$$\Rightarrow \sqrt{2}\cos x = \sqrt{2}\cos^{-1}(\cos x)$$

$$\Rightarrow \cos x = \cos^{-1}(\cos x)$$

$$\Rightarrow \cos x = x$$
 [: $\cos^{-1}(\cos x) = x$]

which is not true for any real value of x.

Hence, there is no solution possible for the given equation.

Question 1.37:

If $\cos^{-1} x > \sin^{-1} x$, then

(a)
$$\frac{1}{\sqrt{2}} < x \le 1$$

(b)
$$0 \le x < \frac{1}{\sqrt{2}}$$

(c)
$$-1 \le x < \frac{1}{\sqrt{2}}$$

(d)
$$x > 0$$

Solution 1.37: (c)

We have, $\cos^{-1} x > \sin^{-1} x$

$$\Rightarrow \frac{\pi}{2} - \sin^{-1} x > \sin^{-1} x$$

Solution 1.37: (c)

We have,
$$\cos^{-1} x > \sin^{-1} x$$

$$\Rightarrow \frac{\pi}{2} - \sin^{-1} x > \sin^{-1} x$$

$$\Rightarrow \frac{\pi}{2} > 2\sin^{-1} x$$

$$\Rightarrow \frac{\pi}{4} > \sin^{-1} x$$

$$\Rightarrow \sin\left(\frac{\pi}{4}\right) > x$$

$$\Rightarrow \frac{1}{12} > x$$

$$\Rightarrow \frac{\pi}{2} > 2\sin^{-1} x$$

$$\Rightarrow \frac{\pi}{4} > \sin^{-1} x$$

$$\Rightarrow \sin\left(\frac{\pi}{4}\right) > x$$

$$\Rightarrow \frac{1}{\sqrt{2}} > x$$

$$\Rightarrow -1 \le x < \frac{1}{\sqrt{2}} \qquad \left[\because \sin^{-1} x \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right] \right]$$

Copyright ©Jagranjosh.com

All rights reserved. No part or the whole of this eBook may be copied, reproduced, stored in retrieval system or transmitted and/or cited anywhere in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the written permission of the copyright owner. If any misconduct comes in knowledge or brought in notice, strict action will be taken.