Les équations différentielles

Cours

Sommaire

- La notion d'équations différentielles
- Les équations différentielles du premier ordre à coefficients constants
- lacksquare Les équations différentielles du type $\,y'=ay+f\,$ où $\,f\,$ est une fonction

La notion d'équations différentielles

Les équations différentielles sont des équations portant sur des fonctions. Elles sont très utiles en modélisation, notamment lors de la modélisation de phénomènes physiques.

DÉFINITION

Équation différentielle

On appelle équation différentielle une égalité reliant une fonction dérivable et sa dérivée.

EXEMPLE

L'équation $\,y'(x)+2y(x)={
m e}^x\,$ est une équation différentielle d'inconnue $\,y\,$.

DÉFINITION

Solution d'une équation différentielle

Soit E une équation différentielle et soit un intervalle I .

On appelle solution de l'équation différentielle E sur I toute fonction dérivable sur I vérifiant l'égalité correspondant à l'équation.

EXEMPLE

Soit $\,E\,$ l'équation différentielle $\,y'=2y\,$.

Soit f la fonction définie sur $\mathbb R$ par $f(x)=\mathrm e^{2x}$.

f est dérivable sur ${\mathbb R}$ et pour tout réel x :

$$f'(x) = 2e^{2x}$$

La fonction f est donc solution sur $\mathbb R$ de l'équation différentielle E .

DÉFINITION

Ordre d'une équation différentielle

- On appelle **équation différentielle du premier ordre** une équation différentielle faisant intervenir une fonction et sa dérivée.
- On appelle **équation différentielle du second ordre** une équation différentielle faisant intervenir une fonction, sa dérivée et sa dérivée seconde.
- etc

EXEMPLE

L'équation y'' + 100y = 0 est une équation différentielle du second ordre.

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = \sin(-10x)$$

Alors f est dérivable sur $\mathbb R$ et, pour tout réel x :

$$f'(x) = -10\cos(-10x)$$

f' est dérivable sur $\mathbb R$ et, pour tout réel x :

$$f''(x) = -10 \times (-10) \times [-\sin(-10x)]$$

$$f''(x) = -100\sin(-10x)$$

Ainsi pour tout réel $\,x$, on obtient :

$$f''(x) + 100f(x) = -100\sin(-10x) + 100\sin(-10x)$$

$$f''(x) + 100f(x) = 0$$

La fonction $\,f\,$ est solution sur $\,\mathbb{R}\,$ de l'équation différentielle $\,y''+100y=0\,.$

Les équations différentielles du premier ordre à coefficients constants

Parmi les équations différentielles, les équations du type y'=ay+b avec a et b réels sont des équations faisant intervenir la fonction exponentielle dans l'expression des solutions sur $\mathbb R$.

PROPRIÉTÉ

Soit un réel a .

Les solutions sur $\mathbb R$ de l'équation différentielle y'=ay sont les fonctions du type

$$x\mapsto k\mathrm{e}^{ax}$$

où k est un réel quelconque.

Soient un réel $\,a\,$ et $\,E\,$ l'équation différentielle $\,y'=ay\,$ sur $\,\mathbb{R}\,$.

ETAPE 1

Montrer que les fonctions du type $\,x\mapsto k\mathrm{e}^{ax}\,$ sont solutions de $\,E\,$ sur $\,\mathbb{R}\,$

On va tout d'abord montrer que les fonctions du type $\,x\mapsto k\mathrm{e}^{ax}\,$ sont solutions de $\,E\,$ sur $\,\mathbb{R}\,$.

Soient un réel $\,k\,$ et $\,f\,$ la fonction définie sur $\,\mathbb{R}\,$ par :

$$f(x) = ke^{ax}$$

f est dérivable sur ${\mathbb R}$ et, pour tout réel x , on a :

$$f'(x) = k \times ae^{ax}$$

$$f'(x) = ake^{ax}$$

Donc f'(x) = af(x) pour tout réel x .

f est donc solution de l'équation différentielle $\,y'=ay\,.\,$

ETAPE 2

Montrer que les solutions de E sur $\mathbb R$ sont du type $x\mapsto k\mathrm{e}^{ax}$

On va maintenant montrer que les solutions de $\,E\,$ sur $\,\mathbb{R}\,$ sont du type $\,x\mapsto k\mathrm{e}^{ax}$.

Soit f la fonction définie sur $\mathbb R$ par $f(x)=\mathrm e^{ax}$.

D'après la 1^e étape, la fonction $\,f\,$ est une solution de $\,E\,$ sur $\,\mathbb{R}\,$.

Ainsi, $f^\prime=af$.

Soit g une fonction dérivable sur $\mathbb R$ et solution de E .

Soit h la fonction $\frac{g}{f}$.

Les fonctions f et g sont dérivables sur $\mathbb R$.

La fonction $\,f\,$ ne s'annule pas sur $\,\mathbb{R}\,$.

La fonction $\,h\,$ est donc dérivable sur $\,\mathbb{R}\,$ et $\,h'=rac{g'f-gf'}{f^2}\,.$

On en déduit :

$$h' = rac{ag imes f - g imes af}{f^2}$$

Donc h'=0 .

 $\mathbb R$ étant un intervalle, la fonction h est constante.

Il existe donc un réel $\,k\,$ tel que :

$$h(x)=k$$
 pour tout réel x , c'est-à-dire $\dfrac{g(x)}{f(x)}=k$.

On en déduit g(x) = kf(x) .

Autrement dit, il existe un réel $\,k\,$ tel que $\,g(x)=k{
m e}^{ax}$.

EXEMPLE

Soit E l'équation différentielle y'=3y .

D'après la propriété précédente, les solutions de $\,E\,$ sur $\,\mathbb{R}\,$ sont les fonctions du type :

$$x\mapsto k\mathrm{e}^{3x}$$

où $\,k\,$ est un réel quelconque.

PROPRIÉTÉ

Soient un réel $\,a\,$ et $\,E\,$ l'équation différentielle $\,y'=ay\,$.

- ullet Si f et g sont des solutions de E sur $\mathbb R$, alors f+g est une solution de E sur $\mathbb R$.
- Si f est une solution de E sur $\mathbb R$, alors kf est une solution de E sur $\mathbb R$ quel que soit le réel k .

EXEMPLE

Soit $\,E\,$ l'équation différentielle $\,y'=5y\,$.

La fonction f définie sur $\mathbb R$ par $f(x)=\mathrm e^{5x}$ est une solution de E sur $\mathbb R$.

Par conséquent, la fonction $\,g=10f\,$ est une autre solution de $\,E\,$ sur $\,\mathbb{R}\,$.

Autrement dit, la fonction $\,x\mapsto 10{
m e}^{5x}\,$ est une autre solution de $\,E\,$ sur $\,\mathbb{R}\,$.

PROPRIÉTÉ

Soient a et b deux réels, avec a
eq 0 .

Soit $\,E\,$ l'équation différentielle $\,y'=ay+b\,.$

Les solutions de E sur $\mathbb R$ sont les fonctions du type :

 $x\mapsto k\mathrm{e}^{ax}-rac{b}{a}$ où k est un réel quelconque.

EXEMPLE

Soit E l'équation différentielle $y^\prime=10y+2$.

Les solutions de E sur $\mathbb R$ sont les fonctions du type :

$$x\mapsto k\mathrm{e}^{10x}-rac{2}{10}\,$$
 où $\,k\,$ est un réel quelconque,

soit $x\mapsto k\mathrm{e}^{10x}-rac{1}{5}$ où k est un réel quelconque.

Soient a et b deux réels, avec a
eq 0 .

Soit E l'équation différentielle y'=ay+b .

La fonction constante f définie sur $\mathbb R$ par $f(x)=rac{-b}{a}$ est une solution sur $\mathbb R$ de l'équation E .

EXEMPLE

Soit E l'équation différentielle y'=-15y+10 .

La fonction f définie sur $\mathbb R$ par $f(x)=rac{-10}{-15}$, soit $f(x)=rac{2}{3}$, est une solution de E sur $\mathbb R$.

Les équations différentielles du type $\,y'=ay+f\,$ où $\,f\,$ est une fonction

Les équations différentielles du type $\,y'=ay+f\,$ permettent d'appréhender des méthodes de résolution plus générales des équations différentielles.

PROPRIÉTÉ

Soient un réel $\,a\,$ et une fonction $\,f\,$ définie sur un intervalle $\,I\,$.

Soit $\,E\,$ l'équation différentielle $\,y'=ay+f\,.$

Si g est une solution sur I de l'équation différentielle E , alors les solutions de E sur I sont les fonctions du type :

$$x\mapsto k\mathrm{e}^{ax}+g(x)$$

où $\,k\,$ est un réel quelconque.

Soit $\,E\,$ l'équation différentielle $\,y'=-y+x{\mathrm e}^{-x}\,.$

Soit la fonction $\,g\,$ définie sur $\,\mathbb{R}\,$ par $\,g(x)=rac{x^2}{2}{
m e}^{-x}\,.$

Comme produit de deux fonctions dérivables sur $\,\mathbb{R}\,$, la fonction $\,g\,$ est dérivable sur $\,\mathbb{R}\,$.

De plus, pour tout réel $\ x$, on a :

$$g'(x) = x \mathrm{e}^{-x} + rac{x^2}{2} imes (-\mathrm{e}^{-x}) \ g'(x) = x \mathrm{e}^{-x} - rac{x^2}{2} \mathrm{e}^{-x}$$

On a donc $\,g'(x)=-g(x)+x\mathrm{e}^{-x}\,.$

La fonction $\,g\,$ est une solution sur $\,\mathbb{R}\,$ de $\,E\,$.

Les solutions de E sur $\mathbb R$ sont donc les fonctions du type :

$$x\mapsto k\mathrm{e}^{-x}+g(x)$$

soit
$$x\mapsto k\mathrm{e}^{-x}+rac{x^2}{2}\mathrm{e}^{-x}$$
 .