Air Quality Data Analytics using Spark and Esri's GIS Tools for Hadoop

Esri International User Conference – July 22, 2015 Session: Discovery and Analysis of Big Data using GIS

Brett Gaines

Senior Consultant, CGI Federal Geospatial and Data Analytics Lead Developer

Qi Dai

Senior Consultant, CGI Federal Technical Lead, National Geospatial Support

Overview

- Goal of Analysis
- Data Sources
- Hardware Cluster
- Data Processing Steps
 - Anomaly Detection Methods (Statistics)
 - GIS Analysis
- Data Analytics Results and Mapping

Purpose Overview

Data Science

- Apply an anomaly detection algorithm on spatiotemporal static air monitoring pollutant data
- Data is collected hourly by thousands of monitors and contains data for multiple pollutants

Target Architecture

- Hadoop ecosystem & Spark for batch analysis
- Visualization of spatio-temporal results in Tableau and Esri
- Export anomaly datasets to on premise GIS servers & AGOL

Deployment

- Hortonworks Data Platform (HDP) cluster
- Esri GIS Tools for Hadoop (extended)

Workflow

Analysis Overview

- Distributed spatial search with targeted vectors (wind speed and direction at hour and location of anomaly)
- Extending Esri's Geometry API and integration with Spark

Spatial Proximity search upwind of anomalies

Identify Anomalies

Locate Potential Cause

Data Sources

- USEPA Air Quality System (AQS)
 - Stores data from >10,000 monitors - Annual, Daily, Hourly, Minute
- 2008-2013 for 6 pollutants
 - Ozone, SO2, CO, NO2, PM25
 Non-FRM, PM10 Mass
 - Vary Seasonally and/or Daily
- Meteorological data and possible stationary emission sources

Hourly Data

Criteria Gases

Year	Ozone (44201)	502 (42401)	CO (42101)	NO2 (42602)
2014	hourly_44201_2014.zip	hourly_42401_2014.zip	hourly_42101_2014.zip	hourly_42602_2014.zip
	7,147,884 Rows	2,861,454 Rows	1,761,002 Rows	2,433,435 Rows
	52,900 KB	19,046 KB	11,998 KB	18,323 KB
	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02
2013	hourly_44201_2013.zip	hourly_42401_2013.zip	hourly_42101_2013.zip	hourly_42602_2013.zip
	9,096,192 Rows	3,797,758 Rows	2,498,904 Rows	3,188,575 Rows
	67,040 KB	25,191 KB	16,893 KB	23,803 KB
	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02
2012	hourly_44201_2012.zip	hourly_42401_2012.zip	hourly_42101_2012.zip	hourly_42602_2012.zip
	9,025,084 Rows	3,770,826 Rows	2,572,491 Rows	3,081,439 Rows
	66,896 KB	25,073 KB	17,258 KB	22,857 KB
	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02
2011	hourly_44201_2011.zip	hourly_42401_2011.zip	hourly_42101_2011.zip	hourly_42602_2011.zip
	8,878,649 Rows	3,676,396 Rows	2,612,976 Rows	3,017,114 Rows
	65,644 KB	24,565 KB	17,500 KB	22,321 KB
	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02
2010	hourly_44201_2010.zip	hourly_42401_2010.zip	hourly_42101_2010.zip	hourly_42602_2010.zip
	8,392,448 Rows	3,661,150 Rows	2,616,882 Rows	3,111,967 Rows
	62,172 KB	24,041 KB	16,937 KB	22,388 KB
	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02
2009	hourly_44201_2009.zip	hourly_42401_2009.zip	hourly_42101_2009.zip	hourly_42602_2009.zip
	8,201,693 Rows	3,732,540 Rows	2,753,380 Rows	3,084,877 Rows
	59,443 KB	24,115 KB	17,597 KB	21,618 KB
	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02
2008	hourly_44201_2008.zip	hourly_42401_2008.zip	hourly_42101_2008.zip	hourly_42602_2008.zip
	8,054,745 Rows	3,963,631 Rows	2,941,703 Rows	3,187,823 Rows
	58,634 KB	25,656 KB	18,759 KB	21,976 KB
	As of 2014-06-13	As of 2015-01-02	As of 2015-01-02	As of 2015-01-02
2007	hourly_44201_2007.zip	hourly_42401_2007.zip	hourly_42101_2007.zip	hourly_42602_2007.zip
	8,005,170 Rows	4,216,470 Rows	3,036,390 Rows	3,241,278 Rows
	58,479 KB	27,239 KB	19,309 KB	22,207 KB
	As of 2014-06-13	As of 2015-01-02	As of 2014-06-13	As of 2015-01-02
2006	hourly_44201_2006.zip	hourly_42401_2006.zip	hourly_42101_2006.zip	hourly_42602_2006.zip
	7,859,903 Rows	4,206,488 Rows	3,193,385 Rows	3,334,127 Rows
	57,396 KB	27,119 KB	20,324 KB	22,912 KB
	As of 2014-06-13	As of 2015-01-02	As of 2014-06-13	As of 2015-01-02
2005	hourly_44201_2005.zip	hourly_42401_2005.zip	hourly_42101_2005.zip	hourly_42602_2005.zip
	7,762,599 Rows	4,304,211 Rows	3,407,244 Rows	3,349,695 Rows
	56,660 KB	27,873 KB	21,699 KB	23,073 KB
	As of 2014-06-13	As of 2015-01-02	As of 2014-06-13	As of 2015-01-02

Distributed Cluster Environment

- Hortonworks Data Platform (HDP) 2.2
 - RHEL 6.6 OS's
 - 16 CPUs Total
 - 40GB RAM Total
 - 2.5TB Disk Total

Data Analysis – High Level Processing Steps

- Download raw data from Public AQS Data Mart
- Exploratory analysis in R
- Pre-process raw data with Python and 'sed'
- Import to HDFS
- Create Hive schema-on-read HQL scripts
- Process Hive tables
- Spark jobs with Esri Geometry API (GIS Tools for Hadoop)
- Output from analysis into ArcGIS ecosystem

Data Analysis – Anomaly Detection and QC

- Detect anomalies at scale and quickly identifiable
- Flag records with identical samples >3 hours in succession
- Check specifically for evening monitor QC samples
- Compare each site only to itself (distinctive "normals")
- Using anomaly outputs, detect spatial autocorrelation of nearby monitors

Hive – Schema on Read

- Hive can either store a copy of the data or store reference to the data (EXTERNAL command)
- Esri GIS Tools for Hadoop provides Hive UDFs
 - \${env:HOME}/esri-git/gis-tools-forhadoop/samples/lib/esri-geometry-api.jar
 - \${env:HOME}/esri-git/gis-tools-forhadoop/samples/lib/spatial-sdk-hadoop.jar;
 - Function ST_Point as 'com.esri.Hadoop.hive.ST_Point';

```
DROP TABLE IF EXISTS hourly0813co;

CREATE TABLE IF NOT EXISTS hourly0813co (State_Code STRING, County_Code STRING, Site_Num STRING, Parameter_Code string, POC int, Latitude DOUBLE, Longitude DOUBLE, Datum string, Parameter_Name STRING, Date_Local STRING, Time_Local STRING, Date_GMT STRING, Time_GMT STRING, Sample_Measurement DOUBLE, Units_of_Measure STRING, MDL DOUBLE, Uncertainty STRING, Qualifier STRING, MethodType STRING, Method_Name STRING, State_Name STRING, County_Name STRING, Date_of_Last_Change STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ",";

LOAD DATA LOCAL INPATH '/home/bg20/hourly0813no2.csv' OVERWRITE INTO TABLE hourly0813no2;
```


Anomaly Detection Methods

- Global and local maximas
- Mean, variance, standard deviation
- Support Vector Machines, Density-based (KNN), Neural Nets, Fuzzy Logic

- Median Absolute Deviation (ModZScore)
 - Implemented in PySpark
 - By site, by month, by hour
 - Threshold determined by ModZScore

Anomaly Results in HDFS – Now what?

 Transfer output and perform spatial analysis on anomaly data

http://blogs.esri.com/esri/arcgis/2013/08/09/vehicle-trip-discovery-with-gis-tools-for-hadoop/

Time-series spatial correlation

- Checking if anomalies occur at same exact time for nearby monitors over 6 years
 - These monitors can be possible candidates for 'buddy sites'
 - Time-series filtered buffer/intersect
 - Esri Geometry API in Spark Job:
 - Proximity2DResult.getCoordinate()
 - Returns the closest coordinate

Directed Proximity Search on Anomalies

- Using wind speed/direction search upwind of anomaly via targeted vector
 - Wildfires, oil spills, airports, industrial, road network, dust events, agriculture, etc. (mix of temporal and non-temporal datasets)
 - USCG NRC, USGS Fed. fires, EPA FRS, Esri Streets, EPA AQS (Wind), US Census Bureau, FAA NFDC
- One-to-Many with possible sources per anomaly time/location

Visualizing the Results

- ArcGIS Server Map Services
- ArcGIS Online Webmaps and Web App Builder
- Tableau Desktop and Server

Web App Builder w/Time Slider Widget and Quantitative Z Scores

Several other GIS products produced to visualize the analysis results as well

Tableau Workbook and Dashboard Anomalies Per Month, Per Pollutant

Tableau - Comparing states to national mean

Conclusion

- Esri's open source GIS Tools for Hadoop allows large-scale distributed computing on spatial data
 - Utilize via Spark, Hive, Traditional MR
 - Esri Geometry API for Java is easily customized and extensible for particular use-cases
- https://github.com/Esri/geometry-api-java

Questions?

Esri International User Conference – July 22, 2015 Session: Discovery and Analysis of Big Data using GIS

Brett Gaines

Senior Consultant, CGI Federal

brett.gaines@cgi.com

