

ROZ I. – CVIČENÍ V.

Morfologické operace v obraze – teorie & praxe

TEORIE

Morfologické operace v obraze

Zdroje (27. 4. 2011):

Wikipedia EN: http://en.wikipedia.org/wiki/Mathematical_morphology

CMP: http://cmp.felk.cvut.cz/~hlavac/

MATEMATICKÁ MORFOLOGIE

- Začátek v šedesátých letech
 - Francouzi Matheron a Serra
- Morfologie nauka o tvarech
- Matematická morfologie operace pro extrakci požadovaných částí obrazu
- Nelineární operace
- Binární / šedotónová
- o Použití:
 - předzpracování obrazu
 - segmentace s důrazem na tvar hledaných objektů
 - kvantitativní popis nalezených objektů
- Aplikace:
 - biologie, materiálový výzkum, geologie, rozpoznávání znaků a dokumentů, atd.

ZÁKLADNÍ MORFOLOGICKÉ POJMY

- o Binární obraz lze vyjádřit jako 2D **bodovou** množinu *X* s počátkem •
- ∘ *X* body objektů v obraze(hodnota 1)
 - $X = \{(1,1), (1,2), (1,3), (2,2), (2,3)\}$
- ${\color{blue} \circ}~X^{C}$ body doplňku popisující pozadí (hodnota 0)
 - $X = \{(0,0), (0,1), (0,2), (0,3), (0,4), (1,0), (1,4), (2,0), (2,1), (2,4), (3,0), (3,1), (3,2), (3,3), (3,4) \}$
- o Morfologická transformace (MT) ψ je dána relací mezi obrazem (X) a jinou bodovou množinou B
 - B − strukturní element s lokálním počátkem O (•), kterému říkáme aktuální (reprezentativní) bod
- - ψ^* je duální transformace

	0	1	2	3	4
0	•				
1					
2					
3					

ZÁKLADNÍ MORFOLOGICKÉ OPERACE

o Minkowského součet:

- $X \oplus B = \bigcup_{b \in B} X_b$
- Minkowského součet X a B posunuje, zvětšuje a deformuje množinu X
- (Hermann Minkowski 1864-1909, geometrie čísel 1889)

o Binární dilatace:

- $X \oplus B = \{ p \in \mathbb{E}^2 : p = x + b, x \in X \land b \in B \}$
- sjednocení posunutých bodových množin

	0	1	2	3	4	5
0	•					
1						
2						
3						
4						
5						

- o Zaplňuje díry a zálivy menší než strukturní element
- Zvětší původní velikost objektu

VLASTNOSTI DILATACE

- Komutativní: $X \oplus B = B \oplus X$
- Asociativní: $X \oplus (B \oplus D) = (X \oplus B) \oplus D$
- Invariantní vůči posunu: $X_h \oplus B = (X \oplus B)_h$
- o Rostoucí transformace:
 - Je-li $X \subseteq Y \land (0,0) \in B \rightarrow X \subseteq Y \oplus B$
 - o Co když počátek (0,0) ∉ B:

GRAFICKÁ INTERPRETACE DILATACE

ZÁKLADNÍ MORFOLOGICKÉ OPERACE

o Minkowského rozdíl:

- $X \ominus B = \bigcap_{b \in B} X_{-b}$
- (pojem zavedl až H. Hadwiger 1957)

o Binární eroze:

- $X \ominus B = \{x \in \mathbb{E}^2 : \forall b \in B \ \forall \ x + B \in X\}$
- Průnik \forall posunů obrazu X o vektory $-b \in B$

	0	1	2	3	4	5
0	•					
1						
2						
3						
4						
5						

o Objekty menší než strukturní element zmizí

VLASTNOSTI EROZE

- o Antiextenzivní:
 - Je-li počátek $(0,0) \in B \to X \ominus B \subseteq X$
- Invariantní vůči posunu:
 - $X_h \ominus B = (X \ominus B)_h$
- Zachovává inkluzi:
 - Je-li $X \subseteq Y \to X \ominus B \subseteq Y \ominus B$

GRAFICKÁ INTERPRETACE EROZE

$$O X \bigcirc B = \{ p \in \mathbb{E}^2 | B_p \subseteq A \}$$

OBRYS POMOCÍ EROZE

- \circ Obrys... ∂X
 - Hranice obrazu X, tloušťky 1

$$o \partial X = X \setminus X \ominus B$$

	0	1	2	3	4	5
0	•					
1						
2						
3						
4						
5						

	0	1	2	3	4	5
0	•					
1						
2						
3						
4						
5						

	0	1	2	3	4	5
0	•					
1						
2						
3						
4						
5						

	0	1	2	3	4	5
0	•					
1						
2						
3						
4						
5						

OPENING - OTEVŘENÍ

- Eroze následovaná dilatací:
 - $X \circ B = (X \ominus B) \oplus B$
- Zmizí výběžky menší než strukturní element
- o Je-li $X \equiv X \circ B \gg X$ je otevřený vzhledem k B

	0	1	2	3	4	5
0	•					
1						
2						
3						
4						
5						

	0	1	2	3	4	5
0	•					
1						
2						
3						
4						
5						

	U	1	Z	3	4	Э		
)	•							
1								
2								
3								
1								
,]	

CLOSING - UZAVŘENÍ

- o Dilatace následovaná erozí:
 - $X \bullet B = (X \oplus B) \ominus B$
- Zaplnění děr menších než strukturní element
- o Je-li $X \equiv X \cdot B \gg X$ je uzavřený vzhledem k B

	0	1	2	3	4	5
0	•					
1						
2						
3						
4						
5						

—
_

		-	_	•	-	•
0	•					
1						
2						
3						
4						
5						
6						

0 1 2 3 4 5

	0	1	2	3	4	5
0	•					
1						
2						
3						
4						
5						
6						

o Idempotence ∘ •:

- $X \cdot B = (X \cdot B) \cdot B$
- $X \circ B = (X \circ B) \circ B$

o Dualita operací:

- Eroze Dilatace
- Opening Closing
- Pro středově symetrické $B \approx B^S$

• Jinak:

- $X \oplus B = (X^C \ominus B^S)^C$
- $X \cdot B = (X^C \circ B^S)^C$

Porovnání operací \oplus \ominus \circ \bullet

PRAXE

Morfologické operace v obraze

Morfologické operace – úloha I.

o Naprogramujte erozi:

- function F = erosion(I, B)
 - I ... image
 - o B ... strukturní element

Morfologické operace – úloha I. – řešení

```
function R = erosion(I,B)
%I= binarni obrazek
%B=strukturni element

I = double(I > 0);
B = double(B > 0);
R = double(filter2(B, 1-I, 'same') == 0);
end
```


Morfologické operace – úloha II.

- o Použití eroze: obr1, kruh
 - Opakovaně erodovat
 - Pozorovat co se děje

Morfologické operace – úloha II. – řešení

o zmenšovaní obvodu a zvětšování díry

Před erozí

Po erozi

Morfologické operace – úloha III.

- Počítání objektů: obr2
 - Spočítat kolik je tam velkých a kolik malých

Morfologické operace – úloha III. – řešení

obr2.pgm

eroze kruhem

50 100 150 200 250 300 350 400 450 500 oprahované

eroze čtvercem

Morfologické operace – úloha III. – řešení

```
function F=pocet(I)
I=I<90;
K=kruh(33,66);
I=erosion(I,K);
zobr(I);
[CS, F] = label(I,1);</pre>
```


Morfologické operace – úloha iv.

- o detekce hran: obr1
 - odečíst erodovaný obrázek
 - vyzkoušet na různé velikosti elementů
 - o čtverec, 3x3, 9x9
 - o kruhy podobných velikosti, porovnat

Morfologické operace – úloha IV. – řešení

Morfologické operace – úloha v.

- Naprogramujte dilataci:
 - function F = dilation(I, B)
 - I ... image
 - o B ... strukturní element
- Vyzkoušet dilataci obr1 a porovnat s erozí několikrát po sobě, třeba kruh(11,5)

Morfologické operace – úloha v. – řešení

```
function R=dilation(I,B)
%I= binarni obrazek
%B=strukturni element

I = double(I > 0);
B = double(B > 0);
R = double(conv2(I, B, 'same') > 0);
end
```


Morfologické operace – úloha v. – řešení

Morfologické operace – úloha vi.

o porovnat detekci hran erozí a dilatací - obr1

Morfologické operace – úloha vi. – řešení

Detekce hran dilatací

Detekce hran erozí

Morfologické operace – úloha vii.

- Naprogramujte opening a closing
- Separujte kruhy obr3

Morfologické operace – úloha vii. – řešení

Opening s kruhem(11,5)

Morfologické operace – úloha viii.

Zobrazte pouze vodorovné/svislé čáry – obr4

Morfologické operace – úloha viii. – řešení

(Jak eliminovat zbytky ve výsledku?)

Morfologické operace – úloha ix.

o Zaplnit díry - obr5

Morfologické operace – úloha ix. – řešení

closing s operátorem odpovídající velikosti

Morfologické operace – úloha x.

- Notová osnova noty
 - odstranit notovou osnovu pomocí operací, které se dnes probírali

Morfologické operace – úloha XI.

Pro rychlíky: skeletonizace –
 viz příklad ze zkoušky 2004

