Fraud Detection Using an Autoencoder and Variational Autoencoder

Importing Data:

1. We used pandas for reading the card transaction csv file

Pre-processing data:

- 1. We have transformed Time and Amount using logarithmic transformation and named it as log_time and log_amount.
- 2. We dropped the original Time and Amount.
- 3. We normalized all the remaining features excluding 'Class' using Min-Max scaling and scaled data in range between 0 and 1.
- 4. We create fraud data and non fraud data based on 'Class' values.
- 5. We split the X_test and X_train data set for test and train purposes.

Defining the Autoencoder

- 1. Set Random Seed
 - a. We fix the random seed to 42.
- 2. Define Model Architecture
 - a. We initialize the autoencoders as sequential models.
 - b. We define 2 dense layers with ReLU activation function.
 - The first dense layer has 14 nodes.
 - The second dense layer has 7 nodes.
 - c. We add 2 more dense layer to reconstruct the input.
 - The third dense layer, with 14 nodes and ReLU activation, acts as a part of the decoder.
 - The last dense layer has the same number of nodes as input features and uses sigmoid activation, ensuring output values between 0 and 1.
- 3. Compile the Model
 - a. We configure the model for training.
 - We use Adam optimizer for training.
 - We use Mean Squared Error (MSE) for the loss function.

Defining the Variational - Autoencoder

- 2. Define Model Architecture
 - a. We initialize the autoencoders as sequential models. Encoder Architecture:
 - d. We define 2 dense layers with ReLU activation function.
 - The first layer reduces the input size from 30 to 20.
 - The second layer further reduces it from 20 to 16.

Decoder Architecture:

Two linear layers are used to upscale the input.

- For the first size from 8 to 16
- For next layer to 20,
- And then finally back to 30.
- 3. Compile the Model
 - a. We configure the model for training.
 - We use Adam optimizer for training.
 - We use Mean Squared Error (MSE) for the loss function.

Plotting the Results : We plot F1 score using autoencoders and variational autoencoders.

