92	STANDARD PROBAI	STANDARD PROBABILITY DISTRIBUTIONS
Table A.1 Co	Continuous distributions	
Distribution	Notation	Parameters
Uniform	$egin{aligned} & heta \sim \mathrm{U}(lpha,eta) \ & p(heta) = \mathrm{U}(heta lpha,eta) \end{aligned}$	boundaries α, β with $\beta > \alpha$
Normal	$egin{aligned} & heta \sim \mathrm{N}(\mu, \sigma^2) \ & p(heta) = \mathrm{N}(heta \mu, \sigma^2) \end{aligned}$	location μ scale $\sigma > 0$
Lognormal	$\theta \sim \text{lognormal}(\mu, \sigma^2)$ $p(\theta) = \text{lognormal}(\theta \mu, \sigma^2)$	location μ log-scale $\sigma > 0$
Multivariate normal	$\theta \sim N(\mu, \Sigma)$ $p(\theta) = N(\theta \mu, \Sigma)$ (implicit dimension d)	symmetric, pos. definite, $d \times d$ variance matrix Σ
Gamma	$\theta \sim \operatorname{Gamma}(\alpha, \beta)$ $p(\theta) = \operatorname{Gamma}(\theta \alpha, \beta)$	shape $\alpha > 0$ inverse scale $\beta > 0$
Inverse-gamma	$\theta \sim \text{Inv-gamma}(\alpha, \beta)$ $p(\theta) = \text{Inv-gamma}(\theta \alpha, \beta)$	shape $\alpha > 0$ scale $\beta > 0$
Chi-square	$\theta \sim \chi_{\nu}^{2}$ $p(\theta) = \chi_{\nu}^{2}(\theta)$	degrees of freedom $\nu > 0$
Inverse-chi-square	$\theta \sim \text{Inv-}\chi_{\nu}^{2}$ $p(\theta) = \text{Inv-}\chi_{\nu}^{2}(\theta)$	degrees of freedom $\nu > 0$
Scaled inverse-chi-square	$\theta \sim \text{Inv-}\chi^2(\nu, s^2)$ $p(\theta) = \text{Inv-}\chi^2(\theta \nu, s^2)$	degrees of freedom $\nu > 0$ scale $s > 0$
Exponential	$\theta \sim \operatorname{Expon}(\beta)$ $p(\theta) = \operatorname{Expon}(\theta \beta)$	inverse scale $\beta > 0$
Laplace (double-exponential)	$ heta \sim \mathrm{Laplace}(\mu, \sigma) \ p(heta) = \mathrm{Laplace}(heta \mu, \sigma)$	location μ scale $\sigma > 0$
Weibull	$\theta \sim \text{Weibull}(\alpha, \beta)$ $p(\theta) = \text{Weibull}(\theta \alpha, \beta)$	shape $\alpha > 0$ scale $\beta > 0$
Wishart	$W \sim \text{Wishart}_{\nu}(S)$ $p(W) = \text{Wishart}_{\nu}(W S)$ (implicit dimension $k \times k$)	degrees of freedom ν symmetric, pos. definite $k \times k$ scale matrix S
Inverse-Wishart	$\begin{aligned} W \sim \text{Inv-Wishart}_{\nu}(S^{-1}) \\ p(W) = \text{Inv-Wishart}_{\nu}(W S^{-1}) \\ \text{(implicit dimension } k \times k) \end{aligned}$	degrees of freedom ν symmetric, pos. definite $k \times k$ scale matrix S
LKJ correlation	$\Sigma \sim \text{LkjCorr}(\eta)$ $p(\Sigma) = \text{LkjCorr}(\Sigma \eta)$ (implicit dimension $k \times k$)	shape $\eta > 0$

CONTINUOUS DISTRIBUTIONS

Density function	Mean, variance, and mode
$p(\theta) = \frac{1}{\beta - \alpha}, \ \theta \in [\alpha, \beta]$	$E(\theta) = \frac{\alpha + \beta}{2}$ $var(\theta) = \frac{(\beta - \alpha)^2}{12}$ no mode
$p(\theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2\sigma^2}(\theta - \mu)^2\right)$	$E(\theta) = \mu$ $var(\theta) = \sigma^{2}$ $mode(\theta) = \mu$
$p(\theta) = (\sqrt{2\pi}\sigma\theta)^{-1} \exp(-\frac{1}{2\sigma^2}(\log\theta - \mu)^2)$	$E(\theta) = \exp(\mu + \frac{1}{2}\sigma^2),$ $var(\theta) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$ $mode(\theta) = \exp(\mu - \sigma^2)$
$p(\theta) = (2\pi)^{-d/2} \Sigma ^{-1/2} \times \exp\left(-\frac{1}{2}(\theta - \mu)^T \Sigma^{-1}(\theta - \mu)\right)$	$E(\theta) = \mu$ $var(\theta) = \Sigma$ $mode(\theta) = \mu$
$p(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha - 1} e^{-\beta^{\theta}}, \ \theta > 0$	$E(\theta) = \frac{\alpha}{\beta}$ $var(\theta) = \frac{\alpha}{\beta}$ $mode(\theta) = \frac{\alpha}{\alpha-1}, \text{ for } \alpha \ge 1$
$p(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha+1)} e^{-\beta/\theta}, \ \theta > 0$	$E(\theta) = \frac{\beta}{\alpha - 1}, \text{ for } \alpha > 1$ $var(\theta) = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)}, \alpha > 2$ $mode(\theta) = \frac{\alpha}{\alpha + 1}$
$p(\theta) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} \theta^{\nu/2 - 1} e^{-\theta/2}, \ \theta > 0$ same as Gamma($\alpha = \frac{\nu}{2}, \beta = \frac{1}{2}$)	$\begin{aligned} \mathrm{E}(\theta) &= \nu \\ \mathrm{var}(\theta) &= 2\nu \\ \mathrm{mode}(\theta) &= \nu - 2, \text{ for } \nu \geq 2 \end{aligned}$
$p(\theta) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} \theta^{-(\nu/2+1)} e^{-1/(2\theta)}, \ \theta > 0$ same as Inv-gamma $(\alpha = \frac{\nu}{2}, \beta = \frac{1}{2})$	$E(\theta) = \frac{1}{\nu - 2}, \text{ for } \nu > 2$ $\operatorname{var}(\theta) = \frac{2}{(\nu - 2)^2(\nu - 4)}, \nu > 4$ $\operatorname{mode}(\theta) = \frac{2}{\nu + 2}$
$p(\theta) = \frac{(\nu/2)^{\nu/2}}{\Gamma(\nu/2)} s^{\nu} \theta^{-(\nu/2+1)} e^{-\nu s^2/(2\theta)}, \ \theta > 0$ same as Inv-gamma($\alpha = \frac{\nu}{2}, \beta = \frac{\nu}{2} s^2$)	$E(\theta) = \frac{\nu - 2}{\nu - 2} s^2$ $\operatorname{var}(\theta) = \frac{2\nu^2}{(\nu - 2)^2(\nu - 4)} s^4$ $\operatorname{mode}(\theta) = \frac{\nu - 2}{\nu - 2} s^2$
$p(\theta) = \beta e^{-\beta \theta}, \ \theta > 0$ same as Gamma $(\alpha = 1, \beta)$	$E(\theta) = \frac{1}{\beta}$ $var(\theta) = \frac{\beta}{\beta^2}$ $mode(\theta) = 0$
$p(\theta) = \frac{1}{2\sigma} \exp\left(-\frac{ x-\mu }{\sigma}\right)$	$E(\theta) = \mu$ $var(\theta) = 2\sigma^{2}$ $mode(\theta) = \mu$
$p(\theta) = \frac{\alpha}{\beta^{\alpha}} \theta^{\alpha - 1} \exp(-(\theta/\beta)^{\alpha}), \ \theta > 0$	$\begin{split} \mathrm{E}(\theta) &= \beta \Gamma(1+\frac{\alpha}{\alpha}) \\ \mathrm{var}(\theta) &= \beta^2 \left[\Gamma(1+\frac{\alpha}{\alpha}) - (\Gamma(1+\frac{1}{\alpha}))^2 \right] \\ \mathrm{mode}(\theta) &= \beta(1-\frac{\alpha}{\alpha})^{1/\alpha} \end{split}$
$p(W) = \left(2^{\nu k/2} \pi^{k(k-1)/4} \prod_{i=1}^{k} \Gamma\left(\frac{\nu + 1 - i}{2}\right)\right)^{-1} \times S ^{-\nu/2} W ^{(\nu - k - 1)/2} \times \exp\left(-\frac{1}{2} \text{tr}(S^{-1}W)\right), W \text{ pos. definite}$	$\mathrm{E}(W) = \nu S$
$p(W) = \left(2^{\nu k/2} \pi^{k(k-1)/4} \prod_{i=1}^{k} \Gamma\left(\frac{\nu + 1 - i}{2}\right)\right)^{-1} \times S ^{\nu/2} W ^{-(\nu + k + 1)/2} \times \exp\left(-\frac{1}{2} \text{tr}(SW^{-1})\right), W \text{ pos. definite}$	$E(W) = (\nu - k - 1)^{-1}S$
$p(\Sigma) = \det(\Sigma)^{\eta - 1} \\ \times_2 \sum_{i=1}^k (2\eta - 2 + k - i)(k - i) \\ \times \prod_{i=1}^k \left(B\left(\frac{i+1}{2}, \frac{i+1}{2}\right) \right)^k$	$\mathrm{E}(\Sigma) = \mathrm{I}_k,$

~	STANDARD PROBA	STANDARD PROBABILITY DISTRIBUTIONS
Table A.1	Continuous distributions continued	
Distribution	Notation	Parameters
+ 2	$\theta \sim t_{\nu}(\mu, \sigma^2)$ $p(\theta) = t_{\nu}(\theta \mu, \sigma^2)$ t_{ν} is short for $t_{\nu}(0, 1)$	degrees of freedom $\nu > 0$ location μ scale $\sigma > 0$
Multivariate t	$\theta \sim t_{\nu}(\mu, \Sigma)$ $p(\theta) = t_{\nu}(\theta \mu, \Sigma)$ (implicit dimension d)	degrees of freedom $\nu > 0$ location $\mu = (\mu_1,, \mu_d)$ symmetric, pos. definite $d \times d$ scale matrix Σ
Beta	$ heta \sim \operatorname{Beta}(lpha,eta) \ p(heta) = \operatorname{Beta}(eta(eta,eta)$	'prior sample sizes' $\alpha > 0, \beta > 0$
Dirichlet	$\theta \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_k)$ $p(\theta) = \text{Dirichlet}(\theta \alpha_1, \dots, \alpha_k)$	'prior sample sizes' $lpha_j > 0; lpha_0 \equiv \sum_{j=1}^k lpha_j.$
Logistic	$ heta \sim \operatorname{Logistic}(\mu, \sigma)$ $p(\theta) = \operatorname{Logistic}(\theta \mu, \sigma)$	location μ scale $\sigma > 0$
Log-logistic	$\theta \sim \text{Log-logistic}(\alpha,\beta)$ $p(\theta) = \text{Log-logistic}(\theta \alpha,\beta)$	scale $\alpha > 0$ shape $\beta > 0$

	Parameters	'rate' $\lambda > 0$	'sample size' $n \text{ (positive integer)}$ 'probability' $p \in [0, 1]$	'sample size' $n \text{ (positive integer)}$ 'probabilities' $p_j \in [0,1]$: $\sum_{j=1}^{k} p_j = 1$	shape $\alpha > 0$ inverse scale $\beta > 0$	'sample size' n (positive integer) 'prior sample sizes' $\alpha > 0, \beta > 0$
Discrete distributions	Notation	$\theta \sim \text{Poisson}(\lambda)$ $p(\theta) = \text{Poisson}(\theta \lambda)$	$\theta \sim \operatorname{Bin}(n, p)$ $p(\theta) = \operatorname{Bin}(\theta n, p)$	$\theta \sim \text{Multin}(n; p_1, \dots, p_k)$ $p(\theta) = \text{Multin}(\theta n; p_1, \dots, p_k)$	$\theta \sim \text{Neg-bin}(\alpha, \beta)$ $p(\theta) = \text{Neg-bin}(\theta \alpha, \beta)$	$\theta \sim \text{Beta-bin}(n, \alpha, \beta)$ $p(\theta) = \text{Beta-bin}(\theta n, \alpha, \beta)$
Table A.2	Distribution	Poisson	Binomial	Multinomial	Negative binomial	Beta- binomial

Density function	Mean, variance, and mode
$p(\theta) = \frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)\sqrt{\nu\pi\sigma}} (1 + \frac{1}{\nu} (\frac{\theta - \mu}{\sigma})^2)^{-(\nu+1)/2}$	$E(\theta) = \mu, \text{ for } \nu > 1$ $\operatorname{var}(\theta) = \frac{\nu}{\nu - 2} \sigma^2, \text{ for } \nu > 2$ $\operatorname{mode}(\theta) = \mu$
$p(\theta) = \frac{\Gamma((\nu + d)/2)}{\Gamma(\nu/2)\nu^{d/2}x_d^{d/2}} \Sigma ^{-1/2} \times (1 + \frac{\nu}{\nu}(\theta - \mu)^T \Sigma^{-1}(\theta - \mu))^{-(\nu + d)/2}$	$E(\theta) = \mu, \text{ for } \nu > 1$ $\operatorname{var}(\theta) = \frac{\nu}{\nu - 2} \Sigma, \text{ for } \nu > 2$ $\operatorname{mode}(\theta) = \mu$
$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\theta^{\alpha - 1}(1 - \theta)^{\beta - 1}$ $\theta \in [0, 1]$	$E(\theta) = \frac{\alpha}{\alpha + \beta}$ $var(\theta) = \frac{\alpha}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$ $mode(\theta) = \frac{\alpha}{\alpha + \beta - 2}$
$p(\theta) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} \theta^{\alpha_1 - 1} \dots \theta^{\alpha_k - 1}$ $\theta_1, \dots, \theta_k \ge 0, \sum_{j=1}^k \theta_j = 1$	$E(\theta_j) = \frac{\alpha_j}{\alpha_0}$ $var(\theta_j) = \frac{\alpha_j(\alpha_0 - \alpha_j)}{\alpha_0^2(\alpha_0 + 1)}$ $cov(\theta_i, \theta_j) = -\frac{\alpha_0^2(\alpha_0 + 1)}{\alpha_0 - 1}$ $mode(\theta_j) = \frac{\alpha_0}{\alpha_0 - k}$
$p(\theta) = \frac{\exp\left(-\frac{x-\mu}{\sigma}\right)}{\sigma\left(1 + \exp\left(-\frac{x-\mu}{\sigma}\right)\right)}$	$E(\theta) = \mu var(\theta) = \frac{\mu}{3}\sigma^2\pi^2 mode(\theta) = \mu$
$p(\theta) = \frac{\frac{\beta}{\alpha} \left(\frac{\pi}{\alpha}\right)^{\beta-1}}{\left[1 + \left(\frac{\alpha}{\alpha}\right)^{\beta}\right]^2}, \ \ \theta > 0$	$\begin{split} \mathrm{E}(\theta) &= \frac{1}{1 + (\frac{\beta}{a})^{-\beta}} \\ \mathrm{var}(\theta) &= \alpha^2 \frac{2\pi \beta}{\sin(2\pi/\beta)}, \ \beta > 2 \\ \mathrm{mode}(\theta) &= \alpha \left(\frac{\beta - 1}{\beta + 1} \right)^{\frac{\beta}{\beta}}, \ \beta > 1 \end{split}$
Density function	Mean, variance, and mode
$p(\theta) = \frac{1}{a!} \lambda^{\theta} \exp(-\lambda)$	$E(\theta) = \lambda, var(\theta) = \lambda$

Density function	Mean, variance, and mode
$p(\theta) = \frac{1}{\theta!} \lambda^{\theta} \exp(-\lambda)$ $\theta = 0, 1, 2, \dots$	$\overline{\mathrm{E}(\theta)} = \lambda, \mathrm{var}(\theta) = \lambda$ $\mathrm{mode}(\theta) = \lfloor \lambda \rfloor$
$p(\theta) = \binom{n}{\theta} p^{\theta} (1 - p)^{n - \theta}$ $\theta = 0, 1, 2, \dots, n$	$\begin{aligned} \mathbf{E}(\theta) &= np \\ \text{var}(\theta) &= np(1-p) \\ \text{mode}(\theta) &= \lfloor (n+1)p \rfloor \end{aligned}$
$p(\theta) = \left(a_1 a_2^n \dots a_k \right) p_1^{\theta_1} \dots p_k^{\theta_k}$ $\theta_j = 0, 1, 2, \dots, n; \sum_{j=1}^k \theta_j = n$	$\begin{split} \mathbf{E}(\theta_j) &= np_j \\ \mathrm{var}(\theta_j) &= np_j(1-p_j) \\ \mathrm{cov}(\theta_i,\theta_j) &= -np_ip_j \end{split}$
$p(\theta) = \begin{pmatrix} \theta + \alpha - 1 \\ \alpha - 1 \end{pmatrix} \begin{pmatrix} \frac{\beta}{\beta + 1} \end{pmatrix}^{\alpha} \begin{pmatrix} \frac{1}{\beta + 1} \end{pmatrix}^{\theta}$ $\theta = 0, 1, 2, \dots$	$E(\theta) = \frac{\alpha}{\beta}$ $var(\theta) = \frac{\alpha}{\beta^2}(\beta + 1)$
$p(\theta) = \frac{\Gamma(n+1)}{\Gamma(\theta+1)\Gamma(n-\theta+1)} \frac{\Gamma(\alpha+\theta)\Gamma(n+\beta-\theta)}{\Gamma(\alpha+\beta+n)} \times \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}, \theta = 0, 1, 2, \dots, n$	$\mathrm{E}(\theta) = n \frac{\alpha}{\alpha + \beta}$ $\mathrm{var}(\theta) = n \frac{\alpha}{(\alpha + \beta)^2(\alpha + \beta + n)}$