Capital Asset Pricing Model

Wang Wei Mun

Lee Kong Chian School of Business Singapore Management University

August 18, 2022

Efficient Frontier with Riskless Asset – Part 1

- Financial market consists of $n \ge 2$ risky assets (with normal returns) and riskless asset with risk-free rate of R_f
- Let \mathbf{R} be $n \times 1$ vector of expected returns for risky assets
- Let **V** be $n \times n$ is covariance matrix of returns for risky assets
- Let **w** be $n \times 1$ vector of portfolio weights for risky assets
- Frontier portfolio weights for expected return of R_p :

$$\mathbf{w} = \lambda \mathbf{V}^{-1} \left(\mathbf{R} - R_f \mathbf{e} \right);$$
 $\lambda = \frac{R_p - R_f}{\zeta - 2\alpha R_f + \delta R_f^2};$ $\alpha = \mathbf{R}' \mathbf{V}^{-1} \mathbf{e};$ $\zeta = \mathbf{R}' \mathbf{V}^{-1} \mathbf{R};$ $\delta = \mathbf{e}' \mathbf{V}^{-1} \mathbf{e}$ $\delta = \mathbf{e}' \mathbf$

如他CML: 高東元风恒农

Efficient Frontier with Riskless Asset – Part 2

• Efficient frontier is tangent to top half of risky-asset-only frontier when $R_f < R_{mv} = \frac{\alpha}{\delta}$, so efficient frontier is given by capital allocation line for tangency portfolio:

$$R_{p} = R_{f} + \left(\zeta - 2\alpha R_{f} + \delta R_{f}^{2}\right)^{\frac{1}{2}} \sigma_{p}$$

• Tangency portfolio has no investment in riskless asset, so let $\mathbf{e}'\mathbf{w}_m = 1$ to get portfolio weights for tangency portfolio:

$$\mathbf{w}_m = \lambda_m \mathbf{V}^{-1} \left(\mathbf{R} - R_f \mathbf{e} \right); \qquad \lambda_m = \frac{1}{\alpha - \delta R_f}$$

Efficient frontier is also known as capital market line (CML)

Capital Asset Pricing Model

- Previously, assumed that all investors are "price takers", in sense that allocation choices have no effect on asset prices
- Now assume that asset prices adjust to produce market equilibrium, where supply of risky assets equals demand
- Also assume that all investors hold mean-variance efficient portfolios, agree on $\bf R$ and $\bf V$, and can borrow and lend (without limit) at risk-free rate
- Hence market portfolio must have highest possible Sharpe ratio in this capital asset pricing model (CAPM)

CAPM Pricing Formula

• Let R_m be expected market return, and let $\vec{\sigma}_m$ be $n \times 1$ vector of covariances between asset returns and market return:

$$\vec{\sigma}_{m} = \mathbf{V}\mathbf{w}_{m} = \lambda_{m} (\mathbf{R} - R_{f}\mathbf{e}); \quad |\mathbf{x}| \text{ vetor}$$

$$\frac{\vec{\sigma}_{m}}{\vec{\sigma}_{m}^{2}} = \frac{\vec{R} - R_{f}\vec{e}}{R_{m} - R_{f}} \qquad \sigma_{m}^{2} = \mathbf{w}_{m}' \mathbf{V} \mathbf{w}_{m} = \lambda_{m} (R_{m} - R_{f}) \quad \text{Scale (Posttive)}$$

$$\vec{R} - R_{f}\vec{e} = \frac{\vec{\sigma}_{m}}{\vec{\sigma}_{m}^{2}} \cdot (R_{m} - R_{f}) \qquad \text{Wm } R$$

• Divide and rearrange to get relationship between asset risk premiums and market risk premium:

$$\begin{array}{c}
\left(\begin{array}{c}
R_{1}-R_{f}\\
R_{n}-R_{f}
\end{array}\right) = \left(\begin{array}{c}
\overrightarrow{R}_{1}-R_{f}\\
R_{n}-R_{f}
\end{array}\right) = \left(\begin{array}{c}
\overrightarrow{R}_{1}-R_{f}
\end{array}\right$$

Asset Beta 系统性风险

Bil發在risk

- Here $\vec{\beta}$ is $n \times 1$ vector with $\beta_i = \sigma_{im}/\sigma_m^2$, where σ_{im} is covariance of return between *i*'th asset and market portfolio
- By definition, market portfolio has unit beta: $\beta_m = 1$
- Hence CAPM pricing formula for individual risky asset:

if
$$\beta < 0$$
: mean return $R_i < R_f$.
$$R_i - R_f = \beta_i (R_m - R_f)$$

$$= \frac{G_{im}}{G_{m}^2}$$

- As explained later, β_i measures amount of exposure to systematic "market" risk, when investing in i'th asset
- Market risk premium represents appropriate economic compensation for taking on average amount of exposure to market risk (i.e., corresponding to unit beta)

Portfolio Beta

CAPM pricing formula for portfolio of risky assets:

$$R_p - R_f = \mathbf{w}' (\mathbf{R} - R_f \mathbf{e})$$

= $\mathbf{w}' \vec{\beta} (R_m - R_f) = \beta_p (R_m - R_f)$

- Overall beta for portfolio is weighted average of individual component asset betas: $\beta_p = \mathbf{w}' \vec{\beta}$
- In summary, appropriate risk premium for any investment is given by market risk premium scaled up (or down) by beta

Negative Beta

- Asset will have negative beta when asset return has negative correlation with market return \Longrightarrow "counter-cyclical" assets that usually perform well in bear market
- Create negative-beta asset by short-selling positive-beta asset
- Negative-beta assets can be used to reduce beta of portfolio and provide insurance against unexpected market downturn
- Hence investors are willing to pay premium and accept negative risk premium to invest in negative-beta assets
- Frontier portfolios with negative risk premium (i.e., mean return less than risk-free rate) must have negative beta

Security Market Line

- Security market line (SML) is graphical representation of CAPM pricing formula
- Slope of SML represents ratio of risk premium to beta, or
 Treynor ratio

 all risky assets (and portfolios) must have same Treynor ratio, in equilibrium
- Asset that lies above SML is underpriced, so investors will buy asset, causing price to rise (and expected return to fall)
- Price will continue to rise until asset is back on SML
- Conversely, asset that lies below SML is overpriced, so all investors will sell asset, causing price to fall (and expected return to rise) until asset is back on SML

Risk Factors - Part 1

• Let $\tilde{\nu}_i$ be unexpected component of (random) return for i'th asset, and apply result for CAPM:

$$\tilde{R}_{i} = R_{i} + \tilde{\nu}_{i}$$

$$= R_{f} + \beta_{i} (R_{m} - R_{f}) + \tilde{\nu}_{i}$$
Risk Tree

• Also let $\tilde{\nu}_m$ be unexpected component of market return:

$$\tilde{R}_{m} = R_{m} + \tilde{\nu}_{m} \Longrightarrow$$

$$\tilde{R}_{i} = R_{f} + \beta_{i} \left(\tilde{R}_{m} - \tilde{\nu}_{m} - R_{f} \right) + \tilde{\nu}_{i}$$

• By definition, $\tilde{\nu}_i$ and $\tilde{\nu}_m$ must have zero mean

Risk Factors – Part 2

• Let $\tilde{\epsilon}_i = \tilde{\nu}_i - \beta_i \tilde{\nu}_m$, which also has zero mean, and must be uncorrelated with \tilde{R}_m :

$$Cov(\tilde{R}_{m}, \tilde{\epsilon}_{i}) = Cov(\tilde{R}_{m}, \tilde{\nu}_{i}) - \beta_{i}Cov(\tilde{R}_{m}, \tilde{\nu}_{m})$$

$$= Cov(\tilde{R}_{m}, \tilde{R}_{i}) - \beta_{i}Cov(\tilde{R}_{m}, \tilde{R}_{m}) = 0$$

• Now substitute $\tilde{\epsilon}_i$ into previous result for asset return:

$$\begin{array}{l} \mathcal{R}_{i}\text{-Rf} = \beta_{i}\left(\mathcal{R}_{m}\text{-Rf}\right) \\ \mathcal{R}_{i}\text{-Rf} = \beta_{i}\left(\tilde{R}_{m} - R_{f} - \tilde{\nu}_{m}\right) + \tilde{\nu}_{i} \\ = \beta_{i}\left(\tilde{R}_{m} - R_{f}\right) + \tilde{\epsilon}_{i} \end{array}$$

Risk Factors – Part 3

- CAPM defines relationship between asset risk premium and market risk premium
- Hence there must be corresponding relationship between (excess) asset return, and (excess) market return, where (random) excess return is measured relative to risk-free rate
- Interpret \tilde{R}_m as risk factor for market risk, which captures effect of (random) market return on (random) asset return
- Market risk is systematic risk that affects all tradable assets, and β_i represents amount of exposure to market risk
- Then interpret $\tilde{\epsilon}_i$ as risk factor for idiosyncratic risk, which is specific to investing in i'th asset

Systematic Risk vs Idiosyncratic Risk

 Use variance of return to measure total amount of risk when investing in i'th asset:

Total risk of investment
$$\sigma_{i}^{2} = \text{Var}(\tilde{R}_{i}) = \text{Var}(\beta_{i}\tilde{R}_{m} + \tilde{\epsilon}_{i})$$

$$= \text{Var}(\beta_{i}\tilde{R}_{m}) + \text{Var}(\tilde{\epsilon}_{i}) = \beta_{i}^{2}\sigma_{m}^{2} + \sigma_{\epsilon_{i}}^{2}$$

- $\beta_i^2 \sigma_m^2$ represents amount of systematic (market) risk, while $\sigma_{\epsilon_i}^2$ represents amount of idiosyncratic (asset-specific) risk
- In reality, will have many different types of systematic risk
- CAPM assumes that different types of systematic risk can be combined into aggregate pool of "market" risk

Effect of Diversification - Part 1

• Consider return for two-asset portfolio with weight of $w \in (0,1)$ on first asset and remainder on second asset:

$$\tilde{R}_p - R_f = w \left(\tilde{R}_1 - R_f \right) + (1 - w) \left(\tilde{R}_2 - R_f \right)$$

$$= \beta_p \left(\tilde{R}_m - R_f \right) + \tilde{\epsilon}_p$$

 Portfolio beta is weighted average of individual asset betas, and portfolio idiosyncratic risk factor is also weighted average of individual asset-specific idiosyncratic risk factors:

$$eta_p = w eta_1 + (1 - w) eta_2$$
 $ilde{\epsilon}_p = w ilde{\epsilon}_1 + (1 - w) ilde{\epsilon}_2$

Effect of Diversification – Part 2

- Suppose that both assets have same amount of market risk: $\beta_1 = \beta_2 = \beta_p \implies$ market risk is undiversifiable since portfolio also has same amount of market risk
- Suppose that both assets have same amount of idiosyncratic risk: $\sigma_{\epsilon_1} = \sigma_{\epsilon_2} = \sigma_{\epsilon}$, and also that idiosyncratic risk factors are uncorrelated: $Corr(\tilde{\epsilon}_1, \tilde{\epsilon}_2) = 0$
- Idiosyncratic risk is diversifiable since portfolio has less idiosyncratic risk than either asset:

$$\sigma_{\epsilon_p}^2 = \mathsf{Var}[w\tilde{\epsilon}_1 + (1-w)\tilde{\epsilon}_2] = (1-2w+2w^2)\,\sigma_{\epsilon}^2 < \sigma_{\epsilon}^2$$

• In fact, diversification applies as long as $Corr(\tilde{\epsilon}_1, \tilde{\epsilon}_2) < 1$

Effect of Diversification – Part 3

- Now consider equal-weighted portfolio of n different assets with same amount of idiosyncratic risk: $w_i = 1/n$
- Assuming idiosyncratic risk factors are uncorrelated:

$$\frac{\widetilde{\mathcal{E}}_{p} = n \cdot \widetilde{\mathcal{E}}_{i}}{\operatorname{Var}(\widetilde{\mathcal{E}}_{p}) = n \cdot \operatorname{Var}(\widetilde{\mathcal{E}}_{i})} \sigma_{\epsilon_{p}}^{2} = \operatorname{Var}\left[\sum_{i=1}^{n} w_{i}\widetilde{\epsilon}_{i}\right] = \frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}(\widetilde{\epsilon}_{i}) = \frac{\sigma_{\epsilon}^{2}}{n}$$

- Hence portfolio will have 99% less idiosyncratic risk (by variance) than any individual asset for n=100
- Optimal for risk-averse investor to hold "well-diversified" portfolio with $\sigma_{\epsilon_p} \approx 0$, such as market portfolio
- $\hat{\mu}_{\mu}$ No economic compensation for bearing idiosyncratic risk

Market Model

 Market model is one-factor linear regression model with (excess) asset return as dependent variable and (excess) market return as explanatory variable:

$$\tilde{R}_i - R_f = \alpha_i + \beta_i \left(\tilde{R}_m - R_f \right) + \tilde{\epsilon}_i$$

- Use well-diversified value-weighted stock index to represent market portfolio, such as S&P 500 index for U.S. market
- Slope coefficient provides estimate of asset beta

Market Price of Risk – Part 1

tet Price of Risk – Part 1
$$\frac{\mathbb{P}_{i}(\mathbb{R}_{m} - \mathbb{R}_{i}) = \mathbb{P}_{im} \mathcal{O}_{i}(\frac{\mathbb{R}_{m} - \mathbb{R}_{i}}{\mathbb{S}_{m}})}{\mathbb{P}_{im} \mathcal{O}_{i}(\frac{\mathbb{R}_{m} - \mathbb{R}_{i}}{\mathbb{S}_{m}})} = \frac{\mathbb{P}_{im} \mathcal{O}_{i} \mathcal{O}_{m}}{\mathbb{P}_{im} \mathcal{O}_{i} \mathcal{O}_{m}}$$
• Let $\rho_{im} = \sigma_{im}/\sigma_{i}\sigma_{m}$ be correlation of return between asset i

and market portfolio, so that $\beta_i = \rho_{im}\sigma_i/\sigma_m$:

$$R_i - R_f = \rho_{im}\sigma_i \left(\frac{R_m - R_f}{\sigma_m}\right) = \rho_{im}\sigma_i S_m$$

- Here $S_m = (R_m R_f) / \sigma_m$ is Sharpe ratio of market portfolio, which represents market price of systematic risk
- Let w_{mi} be i'th element of \mathbf{w}_m and let \mathbf{v}_i be i'th row of \mathbf{V} :

$$\frac{\partial \sigma_m^2}{\partial w_{mi}} = \frac{\partial \mathbf{w}_m' \mathbf{V} \mathbf{w}_m}{\partial w_{mi}} = 2 \mathbf{v}_i \mathbf{w}_m = 2 \sum_{j=1}^n w_{mj} \sigma_{ij}$$

Market Price of Risk - Part 2

• Use $\tilde{R}_m = \sum_{j=1}^n w_{mj} \tilde{R}_j$ to determine covariance of returns:

$$\sigma_{im} = \operatorname{Cov}\left(\tilde{R}_i, \tilde{R}_m\right) = \operatorname{Cov}\left(\tilde{R}_i, \sum_{j=1}^n w_{mj}\tilde{R}_j\right) = \sum_{j=1}^n w_{mj}\sigma_{ij}$$

• Hence $\rho_{im}\sigma_i$ represents marginal increase in (systematic) market risk from marginal increase in weight on asset i:

$$\frac{\partial \sigma_m}{\partial w_{mi}} = \frac{1}{2\sigma_m} \frac{\partial \sigma_m^2}{\partial w_{mi}} = \frac{1}{\sigma_m} \sum_{i=1}^n w_{mj} \sigma_{ij} = \frac{\sigma_{im}}{\sigma_m} = \rho_{im} \sigma_i$$

Zero-Beta CAPM

- Original version of CAPM developed by William Sharpe and John Lintner (and others) assumes existence of riskless asset
- Later, Fischer Black developed "zero-beta CAPM" that doesn't require existence of riskless asset
- Zero-beta portfolio should have same expected return as riskless asset, so can use in place of risk-free rate
- But how to find expected return for zero-beta portfolio?
- Zero-beta portfolio is orthogonal to market portfolio
- Hence expected return of zero-beta portfolio is given by y-intercept for line that is tangent to efficient frontier (for risky assets) at market portfolio

Pricing Anomalies

- ullet Some types of assets consistently deliver higher risk premiums than predicted by CAPM \Longrightarrow consistently lies above SML
- Most likely explanation is that investing in these assets classes brings exposure to other types of systematic risk that are separate from market risk (and hence not reflected in beta)
- Investing in "small-cap" stocks (with low market capitalisation) consistently delivers higher Treynor ratio (but not Sharpe ratio) compared to investing in "big-cap" stocks
- Investing in "value" stocks (with low price-to-book ratio) consistently delivers higher Treynor ratio compared to investing in "growth" stocks (with high price-to-book ratio)

Size Effect – Part 1

 Comparison of reward-to-risk ratios for well-diversified portfolios of small-cap and big-cap stocks:

	Small-Cap	Big-Cap
Risk Premium	13.2%	8.6%
Std Dev of Ret	32%	20%
Beta	1.3	1.0
Sharpe Ratio	0.41	0.43
Treynor Ratio	10.2%	8.6%

 Based on arithmetic mean of annual returns in US financial markets from 1926 to 2016

Size Effect – Part 2

- Small-cap stocks are more risky than big-cap stocks, based on comparison of standard deviation of return and beta
- Small-cap stocks have about 60% more systematic risk than big-cap stocks, based on comparison of std dev of return
- Small-cap stocks have about 30% more exposure to market risk than big-cap stocks, based on comparison of beta
- Small-cap stocks are affected by systematic "size risk", which is separate from market risk (and doesn't affect big-caps)
- Hence CAPM doesn't provide accurate prediction of risk premium for small-cap stocks