Nome N^o

1. (2 valores) Determine a solução geral (ou seja, todas as soluções) da equação diferencial linear homogénea $\ddot{x} + 2\dot{x} + 5x = 0$.

A solução geral de $\ddot{x} + 2\dot{x} + 5x = 0$ é

$$x(t) = ae^{-t}\cos(2t) + be^{-t}\sin(2t)$$
, com $a, b \in \mathbb{R}$.

2. (2 valores) Determine a solução da equação diferencial linear homogénea $\ddot{x} + 2\dot{x} + 5x = 0$ com condições iniciais x(0) = 1 e $\dot{x}(0) = 1$.

A solução com condições iniciais x(0) = 1 e $\dot{x}(0) = 1$ é

$$x(t) = e^{-t} (\cos(2t) + \sin(2t))$$
.

3. (2 valores) Determine uma (ou seja, apenas uma) solução de $\ddot{x} + x = \sin(t)$.

Uma solução é

$$x(t) = -\frac{1}{2}t\cos(t).$$

4. (2 valores) Determine uma equação diferencial ordinária de segunda ordem que admita as soluções $x_1(t) = e^{-t}\cos(t)$ e $x_2(t) = e^{-t}\sin(t)$.

 x_1 e x_2 são soluções de

$$\ddot{x} + 2\dot{x} + 2x = 0.$$

5. (2 valores) Determine todos os possíveis valores reais de λ tais que a equação diferencial linear homogénea $f''(x) = \lambda f(x)$, no intervalo $x \in [0, \pi]$, admita soluções f(x) não trivias (ou seja, diferentes da solução nula f(x) = 0) satisfazendo as condições de fronteira f(0) = 0 $e f(\pi) = 0.$

Os valores possíveis são

$$\lambda = -n^2$$
 com $n = 1, 2, 3, \dots$

6. (2 valores) Considere o espaço euclidiano complexo \mathbb{C}^n munido do produto interno $\langle \mathbf{z}, \mathbf{z}' \rangle =$ $z_1\overline{z_1'}+\cdots+z_n\overline{z_n'}$. Seja $T:\mathbb{C}^n\to\mathbb{C}^n$ uma transformação linear hermítica, ou seja, tal que $\langle T\mathbf{z}, \mathbf{z}' \rangle = \langle \mathbf{z}, T\mathbf{z}' \rangle$ para todos os $\mathbf{z}, \mathbf{z}' \in \mathbb{C}^n$. Mostre que $\langle T\mathbf{z}, \mathbf{z} \rangle$ é real para todo o $\mathbf{z} \in \mathbb{C}^n$.

Pela simetria hermítica do produto interno, $\overline{\langle T\mathbf{z},\mathbf{z}\rangle} = \langle \mathbf{z},T\mathbf{z}\rangle$, mas, sendo T hermítica, $\langle \mathbf{z},T\mathbf{z}\rangle = \langle T\mathbf{z},\mathbf{z}\rangle$. Portanto, $\langle T\mathbf{z}, \mathbf{z} \rangle = \overline{\langle T\mathbf{z}, \mathbf{z} \rangle}$, ou seja, $\langle T\mathbf{z}, \mathbf{z} \rangle$ é real.

7. $(2 \underline{valores})$ Considere o espaço euclidiano complexo \mathbb{C}^2 munido do produto interno $\langle \mathbf{z}, \mathbf{z}' \rangle =$ $z_1\overline{z_1'}+z_2\overline{z_2'}$. Dê um exemplo de uma transformação linear hermítica $A:\mathbb{C}^2\to\mathbb{C}^2$ e um exemplo de uma transformação linear hemi-hermítica $B: \mathbb{C}^2 \to \mathbb{C}^2$.

 $A(\mathbf{z}) = \mathbf{z}$ é hermítica, e $B(\mathbf{z}) = i\mathbf{z}$ é anti-hermítica.

8. (2 valores) Considere o espaço euclidiano real \mathbb{R}^2 munido do produto interno canónico, e a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por T(x,y) = (2x+2y,2x+5y). Existe uma base ortonormada de \mathbb{R}^2 formada por vetores próprios de T? Justifique.

Sim, porque T é um operador simétrico. Os valores próprios são 1 e 6, e vetores próprios unitários são ${\bf v}_1 = (2,-1)/\sqrt{5} \ {\bf e} \ {\bf v}_6 = (1,2)/\sqrt{5}, \ {\bf respetivamente}.$

9. (2 valores) Diagonalize, se possível, a matriz real

$$A = \left(\begin{array}{cc} 2 & 2 \\ 2 & 5 \end{array}\right) \,,$$

ou seja, determine uma matriz diagonal Λ e uma matriz invertível U tais que $\Lambda=U^{-1}AU$. É possível escolher U ortogonal? Justifique.

 $\acute{\mathrm{E}}$ possível escolher U ortogonal porque os vetores próprios formam uma base ortonormada.

$$\Lambda = \left(\begin{array}{cc} 1 & 0 \\ 0 & 6 \end{array} \right) \qquad \mathrm{e} \qquad U = \frac{1}{\sqrt{5}} \left(\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array} \right)$$

10. (2 valores) Determine quais das seguintes matrizes são unitárias ou ortogonais:

$$A = \left(\begin{array}{cc} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{array} \right) \qquad B = \left(\begin{array}{cc} 0 & i \\ -i & 0 \end{array} \right) \qquad C = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) \,.$$

A é ortogonal, B é unitária, C não é nem ortogonal nem unitária.

1. (2 valores) Identifique a matriz simétrica da forma quadrática

$$Q(x,y) = 5x^2 + 6xy + 5y^2,$$

determine os seus valores próprios e uma matriz ortogonal diagonalizadora.

A forma quadrática é definida pela matriz simétrica

$$S = \left(\begin{array}{cc} 5 & 3 \\ 3 & 5 \end{array} \right) = U \left(\begin{array}{cc} 8 & 0 \\ 0 & 2 \end{array} \right) U^{-1} \,,$$

com valores próprios 8 e 2, onde a matriz ortogonal diagonalizadora é

$$U = \begin{pmatrix} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{pmatrix}.$$

2. (2 valores) Identifique e esboce a cónica definida pela equação cartesiana

$$5x^2 + 6xy + 5y^2 - 10\sqrt{2}x - 6\sqrt{2}y + 2 = 0.$$

A equação define a elipse

$$(x'')^2 + \frac{(y'')^2}{4} = 1,$$

nas variáveis

$$\left(\begin{array}{c} x^{\prime\prime} \\ y^{\prime\prime} \end{array} \right) = U^{-1} \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \, .$$

3. (2 valores) Determine a matriz $B \in \mathbf{GL}(2,\mathbb{R})$ sabendo que

$$AB = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 se $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

$$B = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) .$$

4. (2 valores) Determine uma matriz $C \in SO(2, \mathbb{R})$ tal que

$$C^2 = \begin{pmatrix} \cos(\pi/2) & -\sin(\pi/2) \\ \sin(\pi/2) & \cos(\pi/2) \end{pmatrix}.$$

$$C = \left(\begin{array}{cc} \cos(\pi/4) & -\sin(\pi/4) \\ \sin(\pi/4) & \cos(\pi/4) \end{array} \right) \, .$$

5. (2 valores) Seja i, j, k a base canónica do espaço euclidiano \mathbb{R}^3 . Determine a matriz $R \in SO(3,\mathbb{R})$ de uma rotação de um ângulo $\pi/2$ em torno do eixo $\mathbb{R}\mathbf{k}$.

$$R = \left(\begin{array}{ccc} \cos(\pi/2) & -\sin(\pi/2) & 0\\ \sin(\pi/2) & \cos(\pi/2) & 0\\ 0 & 0 & 1 \end{array} \right) \,.$$

6. (2 valores) Se uma matriz quadrada $M \in \mathrm{Mat}_{n \times n}(\mathbb{R})$ é diagonalizável, então o exponencial e^M também é diagonalizável? Justifique.

Sim, se $M=U^{-1}\Lambda U$ com Λ diagonal e $U\in\mathbf{GL}(n,\mathbb{R})$, então $e^M=U^{-1}e^\Lambda U$, e e^Λ é diagonal.

7. (2 valores) Calcule o exponencial e^D da matriz

$$D = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \, .$$

$$e^D = eD$$
.

8. (2 valores) Calcule o grupo a um parâmetro das matrizes $G(t) = e^{tE}$ gerado pela matriz

$$E = \left(\begin{array}{cc} -2 & 1 \\ -1 & -2 \end{array} \right) .$$

$$e^{tE} = e^{-2t} \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix}$$
.

9. (2 valores) Determine e esboce a solução do sistema de EDOs

$$\dot{x} = -2x + y
\dot{y} = -x - 2y$$

com condição inicial x(0) = 0 e y(0) = 1.

$$\left(\begin{array}{c} x(t) \\ y(t) \end{array}\right) = e^{tE} \left(\begin{array}{c} 0 \\ 1 \end{array}\right) = e^{-2t} \left(\begin{array}{c} \sin(t) \\ \cos(t) \end{array}\right).$$

10. (2 valores) Determine a solução geral da EDO linear homogénea

$$\ddot{x} + 2\ddot{x} + \dot{x} = 0.$$

$$x(t) = a + (b + ct) e^{-t}$$
 com $a, b, c \in \mathbb{R}$.