Регулярные языки и конечные автоматы

Антон Володин, гр. А-05-19

Март 2022

1 Задание №1. Построить конечный автомат, распознающий язык

Ответом на данное задание является конечный автомат, распознающий описанный язык. Автомат должен быть детерминированным.

1.
$$L = \{w \in \{a, b, c\}^* | |w|_c = 1\}$$

2.
$$L = \{w \in \{a, b\}^* | |w|_a \le 2, |w|_b \ge 2\}$$

- 3. $L = \{w \in \{a,b\}^* | |w|_a \neq |w|_b\}$ Язык не является регулярным, поэтому невозможно построить ДКА.
- 4. $L = \{w \in \{a,b\}^* | ww = www\}$ Подходит только пустой язык.

2 Задание №2. Построить конечный автомат, используя прямое произведение

Ответом на данное задание является конечный автомат, распознающий описанный язык. Требуется, чтобы он был построен при помощи прямого произведения ДКА и его свойств.

1. $L_1=\{w\in\{a,b\}^*|\ |w|_a\geq 2\wedge |w|_b\geq 2\}$ ДКА, распознающий язык $L_{11}=\{w\in\{a,b\}^*|\ |w|_a\geq 2\}$

ДКА, распознающий язык $L_{12} = \{w \in \{a,b\}^* | |w|_b \ge 2\}$

$$L_1 = L_{11} \times L_{12}$$

$$\Sigma = \{a, b\}$$

$$Q = \{q1q4, q1q5, q1q6, q2q4, q2q5, q2q6, q3q4, q3q5, q3q6\}$$

$$S = \{q1q4\}$$

$$T = \{q3q6\}$$

$$\begin{array}{lll} \delta(q1q4,a) = q2q4 & \delta(q1q4,b) = q1q5 & \delta(q1q5,a) = q2q5 \\ \delta(q1q5,b) = q1q6 & \delta(q1q6,a) = q2q6 & \delta(q1q6,b) = q1q6 \\ \delta(q2q4,a) = q3q4 & \delta(q2q4,b) = q2q5 & \delta(q2q5,a) = q3q5 \\ \delta(q2q5,b) = q2q6 & \delta(q2q6,a) = q3q6 & \delta(q2q6,b) = q2q6 \\ \delta(q3q4,a) = q3q4 & \delta(q3q4,b) = q3q5 & \delta(q3q5,a) = q3q5 \\ \delta(q3q5,b) = q3q6 & \delta(q3q6,a) = q3q6 & \delta(q3q6,b) = q3q6 \end{array}$$

2. $L_2 = \{w \in \{a, b\}^* | |w| \ge 3 \land |w|$ нечётное $\}$

ДКА, распознающий язык $L_{21} = \{w \in \{a,b\}^* | |w| \geq 3\}$

ДКА, распознающий язык $L_{22} = \{w \in \{a,b\}^* | |w|$ нечётное $\}$

$$q5$$
 a,b $q6$

$$L_2 = L_{21} \times L_{22}$$

$$\Sigma = \{a, b\}$$

$$Q = \{q1q5, q1q6, q2q5, q2q6, q3q5, q3q6, q4q5, q4q6\}$$

$$S = \{q1q5\}$$

$$T = \{q4q6\}$$

$$\delta(q1q5, a) = q2q6 \quad \delta(q1q5, b) = q2q6 \quad \delta(q1q6, a) = q2q5$$

$$\delta(q1q6, b) = q2q5 \quad \delta(q2q5, a) = q3q6 \quad \delta(q2q5, b) = q3q6$$

$$\delta(q3q5, a) = q4q6 \quad \delta(q3q5, b) = q4q6 \quad \delta(q3q6, a) = q4q5$$

$$\delta(q3q6, b) = q4q5 \quad \delta(q4q5, a) = q4q6 \quad \delta(q4q6, b) = q4q6$$

Вершины q1q6, q2q5, q3q6 можно удалить, поскольку они недостижимы

3.
$$L_3 = \{w \in \{a,b\}^* | |w|_a$$
 чётно $\wedge |w|_b$ кратно трём $\}$

ДКА, распознающий язык $L_{31} = \{w \in \{a,b\}^* | |w|_a$ чётно $\}$

ДКА, распознающий язык $L_{32} = \{w \in \{a,b\}^* | |w|_b$ кратно трём $\}$

$$L_3 = L_{31} \times L_{32}$$

$$\Sigma = \{a, b\}$$

$$Q = \{q1q3, q1q4, q1q5, q2q3, q2q4, q2q5\}$$

$$S = \{q1q3\}$$

$$T = \{q1q3\}$$

$$\delta(q1q3, a) = q2q3 \quad \delta(q1q3, b) = q1q4 \quad \delta(q1q4, a) = q2q4$$

$$\delta(q1q4, b) = q1q5 \quad \delta(q1q5, a) = q2q5 \quad \delta(q1q5, b) = q1q3$$

$$\delta(q2q3, a) = q1q3 \quad \delta(q2q3, b) = q2q4 \quad \delta(q2q4, a) = q1q4$$

$$\delta(q2q4, b) = q2q5 \quad \delta(q2q5, a) = q1q5 \quad \delta(q2q5, b) = q2q3$$

4.
$$L_4 = \overline{L_3}$$

$$\begin{split} \Sigma &= \{a,b\} \\ Q &= \{q1q3,q1q4,q1q5,q2q3,q2q4,q2q5\} \\ S &= \{q1q3\} \\ T &= \{q1q4,q1q5,q2q3,q2q4,q2q5\} \end{split}$$

5.
$$L_5 = L_2 \setminus L_3$$

 $L_5 = L_2 \setminus L_3 = L_2 \times L_4$

Перенумеруем вершины в графе L_2 и удалим лишние

Перенумеруем вершины в графе L_4

 $Q = \{q1q6, q1q7, q1q8, q1q9, q1q10, q1q11, q2q6, q2q7, q2q8, q2q9, q2q10, q2q11, q3q6, q3q7, q3q8, q3q9, q3q10, q3q11, q3q6, q4q7, q4q8, q4q9, q4q10, q4q11, q5q6, q5q7, q5q8, q5q9, q5q10, q5q11\}$

 $S = \{q1q6\}$

 $T = \{q4q7, q4q8, q4q9, q4q10, q4q11\}$

```
\delta(q1q6, a) = q2q7
                         \delta(q1q6, b) = q2q9
                                                     \delta(q1q7, a) = q2q6
\delta(q1q7, b) = q2q8
                         \delta(q1q8, a) = q2q9
                                                     \delta(q1q8, b) = q2q11
                         \delta(q1q9, b) = q2q10
                                                     \delta(q1q10, a) = q2q11
\delta(q1q9, a) = q2q8
\delta(q1q10, b) = q2q6
                         \delta(q1q11, a) = q2q10
                                                     \delta(q1q11, b) = q2q7
\delta(q2q6, a) = q3q7
                         \delta(q2q6, b) = q3q9
                                                     \delta(q2q7, a) = q3q6
                         \delta(q2q8, a) = q3q9
                                                     \delta(q2q8, b) = q3q11
\delta(q2q7, b) = q3q8
\delta(q2q9, a) = q3q8
                         \delta(q2q9, b) = q3q10
                                                     \delta(q2q10, a) = q3q11
\delta(q2q10, b) = q3q6
                         \delta(q2q11, a) = q3q10
                                                     \delta(q2q11, b) = q3q7
\delta(q3q6, a) = q4q7
                         \delta(q3q6, b) = q4q9
                                                     \delta(q3q7, a) = q4q6
                         \delta(q3q8, a) = q4q9
\delta(q3q7, b) = q4q8
                                                     \delta(q3q8, b) = q4q11
                         \delta(q3q9, b) = q4q10
\delta(q3q9, a) = q4q8
                                                     \delta(q3q10, a) = q4q11
                                                     \delta(q3q11, b) = q4q7
\delta(q3q10, b) = q4q6
                         \delta(q3q11, a) = q4q10
                         \delta(q4q6, b) = q5q9
                                                     \delta(q4q7, a) = q5q6
\delta(q4q6, a) = q5q7
\delta(q4q7, b) = q5q8
                         \delta(q4q8, a) = q5q9
                                                     \delta(q4q8, b) = q5q11
                         \delta(q4q9, b) = q5q10
                                                     \delta(q4q10, a) = q5q11
\delta(q4q9, a) = q5q8
\delta(q4q10, b) = q5q6
                         \delta(q4q11, a) = q5q10
                                                     \delta(q4q11, b) = q5q7
                                                     \delta(q5q7, a) = q4q6
\delta(q5q6, a) = q4q7
                         \delta(q5q6, b) = q4q9
                                                     \delta(q5q8, b) = q4q11
\delta(q5q7, b) = q4q8
                         \delta(q5q8, a) = q4q9
\delta(q5q9, a) = q4q8
                         \delta(q5q9, b) = q4q10
                                                     \delta(q5q10, a) = q4q11
\delta(q5q10, b) = q4q6
                         \delta(q5q11, a) = q4q10
                                                     \delta(q5q11, b) = q4q7
```


3 Задание №3. Построить минимальный ДКА по регулярному выражению

Ответом на данное задание является минимальный ДКA, который допускает тот же язык, что описывается регулярным выражением.

1.
$$(ab + aba)^*a$$

Приведем НКА к ДКА.

	a	b
q1	q2q3	
q2q3		q1q4
q1q4	q1q2q3	
q1q2q3	q2q3	q1q4

 $k_0: (q1, q1q4), (q2q3, q1q2q3)$ $k_1: (q1, q1q4), (q2q3), (q1q2q3)$ $k_2: (q1), (q1q4), (q2q3), (q1q2q3)$

Автомат минимален

2. $a(a(ab)^*b)^*(ab)^*$

Приведем НКА к ДКА.

	a	b
q1	q2	
q2	q3q4	
q3q4	q5	q2
q5		q4
q4	q5	q2

 $k_0: (q1, q3q4, q4, q5), (q2)$ $k_1: (q1), (q3q4, q4), (q5), (q2)$ $k_2: (q1), (q3q4, q4), (q5), (q2)$

Перестроим автомат с учётом минимальности.

3.
$$(a + (a+b)(a+b)b)^*$$

Приведем НКА к ДКА.

	a	b
q1	q1q2	q2
q2	q3	q3
q1q2	q1q2q3	q2q3
q3		q1
q2q3	q3	q1q3
q1q3	q1q2	q1q2
q1q2q3	q1q2q3	q1q2q3

 $k_0: (q2,q3,q2q3,q1q3), (q1,q1q2,q1q3,q1q2q3) \\$

 $k_1:(q2,q2q3),(q3),(q1q3),(q1,q1q2),(q1q3,q1q2q3)$ $k_2:(q2),(q2q3),(q3),(q1q3),(q1),(q1q2),(q1q3),(q1q2q3)$ Автомат минимален

4. $(b+c)((ab)^*c+(ba)^*)^*$

 $k_0: (q1, q3, q4, q6), (q2, q5, q7)$

 $k_1: (q1), (q3), (q4), (q6), (q2, q5, q7)$

 $k_2: (q1), (q3), (q4), (q6), (q2, q5, q7)$

Перестроим автомат с учётом минимальности.

5.
$$(a+b)^+(aa+bb+abab+baba)(a+b)^+$$

Приведём НКА к ДКА.

приведем пка	х дил.	
	a	b
q1	q2	q2
q2	q2q3	q2q8
q2q3	q2q3q6	q2q4q8
q2q8	q2q3q9	q2q6q8
q2q3q6	q2q3q6q7	q2q4q7
q2q4q8	q2q3q5q9	q2q6q8
q2q3q5q9	q2q3q6	q2q4q6q8q10
q2q4q6q8q10	q2q3q5q6q7q9	q2q6q7q8
q2q3q9	q2q3q6	q2q4q8q10
q2q4q8q10	q2q3q5q6q9	q2q6q8
q2q3q5q6q9	q2q3q6q7	q2q4q6q7q8q10
q2q6q8	q2q3q7q9	q2q6q7q8
q2q3q6q7	q2q3q6q7	q2q4q7q8
q2q4q7	q2q3q5q7	q2q7q8
q2q3q7q9	q2q3q6q7	q2q4q7q8q10
q2q6q7q8	q2q3q7q9	q2q6q7q8
q2q4q7q8	q2q3q5q7q9	q2q6q7q8
q2q3q5q7	q2q3q6q7	q2q4q6q7q8
q2q7q8	q2q3q7q9	q2q6q7q8
q2q4q7q8q10	q2q3q5q6q7q9	q2q6q7q8
q2q3q5q7q9	q2q3q6q7	q2q4q6q7q8q10
q2q4q6q7q8	q2q3q5q7q9	q2q6q7q8
q2q3q5q6q7q9	q2q3q6q7	q2q4q6q7q8q10
q2q4q6q7q8q10	q2q3q5q6q7q9	q2q7q8q9
q2q7q8q9	q2q3q7q9	q2q7q8q9

 $k_0: (q1,q2,q2q3,q2q8,q2q3q6,q2q4q8,q2q3q5q9,q2q4q6q8q10,q2q3q9,q2q4q8q10,q2q3q5q6q9,q2q6q8),\\ (q2q3q6q7,q2q4q7,q2q3q7q9,q2q6q7q8,q2q4q7q8,q2q3q5q7,q2q7q8,q2q4q7q8q10,q2q3q5q7q9,q2q4q6q7q8,q2q3q5q6q7q9,q2q4q6q7q8q10,q2q7q8q9)$

 $k_1: (q1,q2), (q2q3), (q2q3q5q9, q2q3q9, q2q3q9, q2q4q8), (q2q3q6, q2q3q5q6q9, q2q6q8, q2q4q6q8q10), (q2q3q6q7, q2q4q7, q2q3q7q9, q2q6q7q8, q2q4q7q8, q2q3q5q7, q2q7q8, q2q4q7q8q10, q2q3q5q7q9, q2q4q6q7q8, q2q3q5q6q7q9, q2q4q6q7q8q10, q2q7q8q9)$

 $k_2: (q1), (q2), (q2q3q5q9, q2q3q9, q2q3q9, q2q4q8,), (q2q3q6, q2q3q5q6q9, q2q6q8, q2q4q6q8q10), \\ (q2q3q6q7, q2q4q7, q2q3q7q9, q2q6q7q8, q2q4q7q8, q2q3q5q7, q2q7q8, q2q4q7q8q10, q2q3q5q7q9, q2q4q6q7q8, q2q3q5q6q7q9, q2q4q6q7q8q10, q2q7q8q9)$

4 Задание №4. Определить является ли язык регулярным или нет

Ответом на данное задание является конечный автомат, если язык регулярный, либо доказательство нерегулярности языка при помощи леммы о разрастании.

1. $L = \{(aab)^n b (aba)^m \mid n \ge 0, m \ge 0\}$ Язык регулярный

$$2. \ L = \{uaav \mid u \in \{a,b\}^*, v \in \{a,b\}^*, |u|_b \geq |v|_a\}$$
 $w = b^n aaa^n$ $x = b^i$ $y = b^j, \ i+j < n, \ j > 0$ $z = b^{n-i-j}aaa^n$ $w = xy^kz$ При $l = 0$ $w = b^{n-j}aaa^n \notin L \Rightarrow$ язык нерегулярный

3.
$$L=\{a^m w\mid w\in \{a,b\}^*, 1\leq |w|_b\leq m\}$$
 $w=a^nb^n,\ |w|\geq n$ $x=a^i,\ |xy|\leq n,\ i\geq 0,\ j>0$ $y=a^j$ $z=a^{n-i-j}b^n$ При $l=0$ $w=a^{n-j}b^n\notin L\Rightarrow$ язык нерегулярный

```
4. \ L=\{a^kb^ma^n\mid k=n\vee m>0\} w=a^nba^n,\ |w|\geq n x=a^i,\ |xy|\leq n=>i+j\leq n,\ j>0 y=a^j z=a^{n-i-j}ba^n При k=2 xy^2z=a^ia^{2j}a^{n-i-j}ba^n=a^{n+j}ba^n\notin L\Rightarrow язык нерегулярный
```

5.
$$L = \{ucv \mid u \in \{a,b\}^*, v \in \{a,b\}^*, u \neq v^R\}$$
 $w = (ab)^n c(ab)^n, \ |w| \geq n$ $x = \alpha_1 \alpha_2 ... \alpha_i, \ |xy| \leq n, \ i+j \leq n, \ j \neq 0$ $y = \alpha_{i+1} \alpha_{i+2} ... \alpha_{i+j}$ $z = \alpha_{i+j+1} \alpha_{i+j+2} ... \alpha_{2n} c(ab)^n$ При $k = 2$ $xy^2 z (\alpha_1 \alpha_2 ... \alpha_i) (\alpha_{i+1} \alpha_{i+2} ... \alpha_{i+j})^2 (\alpha_{i+j+1} \alpha_{i+j+2} ... \alpha_{2n} c(ab)^n) \notin L \Rightarrow$ язык нерегулярный

5 Задание №5. Реализовать алгоритмы

Ответом на данное задание является работающая программа на выбранном языке программирования, покрытая юнит-тестами.

В рамках своего выполнения программма должна генерировать текстовый документ с картинками, показывающий процесс построения автомата (к примеру Markdown с графиками на Graphiz).

- 1. Построение ДКА по НКА с λ -переходами.
- 2. Прямое произведение языков, с возможностью построить пересечение, объединение и разность.