HP 13220 POWER SUPPLY MODULE Manual Part No. 1322U-91019 REVISED SEP-10-79

HP 13220

POWER SUPPLY MODULE

Manual Part No. 13220-91019

REVISED.

SEP-10-79

NOTICE

The information contained in this document is subject to change without notice.

HEWLEIT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUI NOT LIMITED TO THE IMPLIED WARRANTIES UF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the turnishing, performance, or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied or reproduced without the prior written consent of Hewlett-Packard Company.

Copyright c 1979 by HEWLETT-PACKARD COMPANY

NOTE: This document is part of the 262XX DATA TERMINAL product series Technical Information Package (HP 13220).

Table 2.0 Reliability and Environmental Information

					•
# =	1555555555555555555				ŧ
					•
•					ı
1					i
:	e- :	х) нР Class В	() Oth	ner:	1
1	Environmental: (A 7 111 CC033 11			1
					•
•					ı
1			_		
i	Restrictions: Type te	sten at product le	vel		1
1	KERCLICTIONS. Type ce	3100 01 p. 11-1-1			- 1
4					
:					ı
1					- 1
	1				. '
١.					1
13	======================================				
1	1				
!		Rate: 2.277 (per	rent per 19	00() hours)	
1	, ranture r	rate. catif the	cent per		
•	•				: 1
= :		:========			

1.0 INTRODUCTION.

The Power Supply Module generates the following voltages: +16 volts at 8.0 amperes, +12 volts at 8.0 amperes, +5 volts at 8.0 amperes, and =12 volts at 0.5 amperes; constrained that the total output power shall not exceed 125 watts. The Power Supply Module also provides a TIL level signal indicating power-on and power-fail warning.

2.0 OPERATING PARAMETERS.

A summary of operating parameters for the Power Supply Module is contained in tables 1.0 through 3.0.

Table 1.6 Physical Parameters

Part Number	======================================	/ +/-0.100 Inches / ()	======================================
1	Power Supply PCA	14.20 x 7.10 x 3.10	4.10
***********		i	

5.0 FUNCTIONAL DESCRIPTION.

Refer to the block diagram (figure 1), schematic diagram (figure 2), timing diagram (figure 3), component location diagram (figure 4), and parts list (02620-60019) located in the appendix.

The Power Supply Module employs primary (off-line) switching to create + and - 16VnC sources. The -16V source is linearly regulated to create a -12V output, while the +16V source powers +12V and +5V switching regulators as well as being an output. Internal protection circuitry quards against under and over-voltage conditions. The logic signal interface consists of a Sync circuit which synchronizes the Power Supply Module switching rate to the video sweep rate, and a Power-On circuit which indicates that supply outputs are in regulation and warns of impending loss of regulation.

3.1 PRIMARY SWITCHER.

The Primary (Off-Line) Switcher section of the Power Supply Module consists of the Line Recifier, Primary Switcher, Secondary Rectifier, and the Primary Switching Regulator blocks shown in figure 1. log dether these blocks transform power taken from the AC line to isolated 4 and - 16VDC sources.

- 3.1.1 Line Mectifier
 The Line Mectifier connects to the power line via the Power Panel
 Assy., and rectifies and filters the incoming AC power. Line volt—
 age selection is determined by fuse location which configures the
 Line Rectifier as mither a voltage—doubler (115VAC operation) or as a
 full-wave bridge (230VAC operation). Output voltage is + and = 150VDC
 at nominal line.
- Primary Switcher
 The Primary Switcher plock uses a half-bridge topology to nower
 switching transformer T2. Two power transistors (41 and 42) are
 driven alternately by the Primary Switching Regulator via base-drive
 transformer T3. These transistors switch the primary of T2 between
 the + and 150V outputs of the Line Rectifier. Regulation is achieved through pulse-width modulation, as the average output voltage of
 transformer T2 is proportional to the duty cycle of 91 and 42. Diodes
 CR4 and CR5 clamp the primary of T2 to prevent voltage over-shoot.
- 3.1.3 Secondary Rectifier
 This block rectifies and filters the output of switching transformer
 T2, using inductor input LC filters. A bipolar output is produced
 by using a full-wave pridge rectifier with a center-tapped secondary
 winding. Resistor R38 produces a voltage proportional to load current for current-limit sensing. Diodes CR16 and CR17 together with
 resistors R41 and R42 form an OR gate, whose output voltage remains
 high whenever switching transistors G1 and G2 overlap in conduction.

Table 3.0 Connector Information - Power Supply PCA

Connector and Pin No.	Signal Name ====================================	Signal Description
J1, Pin 1 2 3 4	Ground Line Neutral 115VAC Reserved	Power connection) for fan
J2 Pin 1 2 3	Line In Line Neutral Ground)) Input power from) Power Panel Assy
J3 Pin 1,2 3,4	+16V Ground	Power connection) to TPM PCA
J4 Pin 1 2 3 4,5 6,7,8 9	+16V key +12V +5V Ground -12V))) Power connection) reserved for expansion)
J5 Pin 1,3 4 5,6 7 8	+5V Key +12V Keturn Power On/Fail -12V)))) Power connection to Processor PCA))
76 Pin 1 2 3 4 5	+5V Key H12V Return Sync)) Power connection to Sweep PCA)) Horizontal Drive from Sweep

3.2 SECONDARY REGULATION.

The Secondary Regulation section of the Power Supply Module consists of the -12 Volt Linear Regulator, +12 Volt Switching Regulator and +5 Volt Switching Regulator blocks shown in figure 1.

- 3.2.1 -12 Volt Linear kegulator
 This block is composed of a 7812 three-terminal -12 volt regulator
 IC and output hypass capacitor C29. The 7812 incorporates internal
 thermal and current-limit protection. Output voltage is fixed, and
 therefore independent of the "Voltage Control" R71.
- 3.2.2 +12 Volt Switching Regulator The +12 Volt Switching Pegulator is powered by the +16 volt output of the Secondary Rectifier. Switch timing and voltage reference are derived from the Primary Switching Regulator.

The main switching element is \$95, a hybrid circuit containing a darlington transistor and power diode. When the darlington transistor is turned on, current flows from the +16 volt supply through inductor L2 and into the output filter capacitors C46 and C47. When the darlington transistor is turned off, the current flowing through L2 and C46 and C47 continues to flow through the power diode in \$95. The output voltage is regulated by controlling the duty cycle of the darlington transistor in \$95.

Inductor £4 and diode CR29 limit the input current while Q5 is turning on, and rapacitor £40 with its associated resistor and diode hold off the output voltage while Q5 is turning off. Together these two circuits substantially reduce switching noise and power dissipation in Q5. Diode CR7 protects the darlington transfistor in Q5 from reverse bias breakdown should a short to ground occur on the +16 volt output.

Voltage regulation is accomplished by feeding back a fraction of the output voltage and comparing it to a 2.5V reference. The difference between the feedback voltage and the reference voltage is amplified by differential amplifier U7 to create a switching reference voltage. Comparator U6 compares the switching reference voltage to a linear ramp voltage. The comparator turns on current sink G7 until the ramp voltage exceeds the switching reference at which time it turns off G7. Current sink G7 provides base drive for the darlington transistor in G9, and therefore controls switching operation. In effect, the output of comparator U6 is pulsewidth modulated by the amplified error voltage. Capacitors C53, C54, and C46, and resistors R25 and R75 determine the transient response and stability of the +12 volt regulator. Diodes (R35-37 clamp the switching reference voltage (output of differential amplifier U7) to a maximum of 4.3 volts, preventing voltage overshoot at turn-on.

3.1.4 Primary Switching Regulator

This block controls the Primary Switcher section of the Power Supply Module. The heart of this block is U11, an SG3524 regulator 1C. The SG3524 is a fixed-frequency bulse-width modulation voltage regulator circuit. The operating frequency is programmed by timing resistor R44 and timing capacitor C/. R44 establishes a constant charging current for C7, producing a linear voltage ramp. Internally, the SG3524 compares this linear ramp to the output of a feedback error amplifier. The result of this comparison is a fixed-frequency pulse train whose duty cycle (ratio of on-to-off time) is linearly proportional to the error amplifier's output. The modulated pulse-train toggles an internal pulse steering flip-flop, which in turn alternately powers two open-collector outputs, C1 and C2. The C1 and C2 outputs of the SG3524 are buffered by Q3 and U4, respectively, which in turn power the primary of base-drive transformer

The SG3524 contains an internal 5 volt linear regulator which powers external C40S ICs, as well as acting as a voltage reference. Fotent-iometer R71 together with resistors R67 and R70 create a 2->V reference from the 5V output of the SG3524. Since this 2-5V reference is used by the +12V and +5V switching regulators as well, the +16V, 12V, and +5V outputs are all proportionally varied by adjusting potentiometer R71 (labeled "Voltage Control").

An internal current-limit circuit in the \$63524 inhibits switching operation when the secondary current of switching transformer I2 exceeds 11 amps.

The SG3524 provides an oscillator input/output which is high once each cycle during the discharge time of timing resistor C7. This oscillator output also serves as a planking pulse, inhibiting both C1 and C2 outputs.

During low-line conditions, the duty-cycle of the output pulses at C1 and C2 of the \$63524 will approach 50%. A 50% duty-cycle drive to switching transistors Q1 and Q2 will result in destructive conduction overlap, due to the storage-time of these transistors. To prevent this from occuring the overlap output from the Secondary Rectifier is used to force the \$63524's oscillator output high, thereby inhibiting both C1 and C2 outputs. After the transistor storage-time has elapsed, the overlap signal will return low allowing the oscillator output to go low.

Transistor w9 and OP amp U8 together with the related circuitry form a power-on soft-start circuit. This circuit ensures that switching operation is disabled at turn-on until the bootstrap supply voltage reaches approximately 4.5%. At this time the C1 and C2 outputs of U11 are allowed to increase from zero to full duty-cycle.

The Over-Voltage Shut Down circuit is manually reset by turning the AC line switch off and then back on. It is generally possible to engage the Over-Voltage Shut Down circuit by adjusting the Voltage Control, R71, fully CW.

3.3.2 Under-voltage Shut Down
The Under-Voltage Shut Down circuit monitors the voltage of the +16V output. If the +16V output voltage drops below +13V, Resistor x4o will begin charging capacitor C25. If the +16V output remains below +13V for more then approximately two seconds, capacitor C25 will charge above 5.1V and comparator U5 will pull the compensation input of the switching regulator U11 to ground. This shuts down the Primary Switching Regulator, and hence the entire supply. Resistor R47 and capacitor C19 reduce the sensitivity of the under-Voltage Shut Down circuit to switching noise present on the +16V output.

The Under-Voltage Shut Down circuit is manually reset by turning the AC line switch off and then back on-

3.4 LUGIC SIGNAL INTERFACE.

The logic signal interface consists of a sync circuit which synchronizes the Power Supply Hodule's switching rate to the video sweep rate, and a Power-On circuit which indicates that supply outputs are in regulation and warms of impending loss of regulation.

3.4.1 Sync Circuit
The Sync Circuit is a gigital phase-locked-loop which synchronizes
the power supply switching rate to twice the video sweep rate. Lockinc range is restricted to input sync signals in the range of 20 to
30kHz, corresponding to power supply switching rates of 40 to oukHz.
Synchronizing the power supply switching rate to the video sweep prevents switching noise from appearing on the terminal's CHT display.

Toggle flip-flop U9 divides the "QSC" output frequency of switching regulator U11 by two to create a feedback signal for digital phase comparator U10. U10 compares this feedback signal to the input sync signal and produces an output voltage proportional to the phase error between these two signals. Resistor x50 and capacitor C21 form a single pole low pass filter, which getermines the transient response and stability of the Sync Circuit. Operational amplifier U8 and resistor R43 form a non-inverting voltage-to-current puffer. The output current of this buffer varies the operating frequency of switching regulator U1 by varing the current flowing through timing resistor R44. The frequency lock range of the Sync Circuit is limited by the output voltage range of buffer amplifier U%.

Output current is sensed by comparator U2 across R72. The point of current limit is set by resistors R13 and R17 (8 amps). A foldback current reference, and as it decreases due to current limit the current limit reference also decreases. The latch formed by U3 is set from supplying current until the "OSC" output of the SG3524 switching regulator (U11) resets the latch. This prevents the current limit circuit from oscillating.

Comparator U2 disables the ± 12 volt switching regulator in the event of a short to ground on the ± 12 volt output.

- 45 Volt Switching Regulator
 The operation of the +5 Volt Switching Regulator is identical to that
 of the +12 Volt Switching Regulator with the following exceptions.
 Output voltage of the +5V supply is limited to 6.19V by zener dinge
 damage the load before the output voltage from rising high enough to
 the Primary Switching Regulator. Operation of the +5 Volt Switching
 Regulator is inhibited by comparator U2 whenever the +12V output
- 5.3 PROTECTION CIRCUITRY.

Active circuitry is employed to quard against over and under-voltage conditions on the Power Supply Module's +16V, +12V, and +5V outputs.

3.3.1 Over-Voltage Shut Down
The Over-Voltage Shut Down circuit monitors the +16V, +12V, and +5V outputs for abnormally high voltage. The over-voltage thresholds are set at +17.2V, +13.4V, and +5.6V respectively.

Resistors R28 and R29 form a voltage divider from the +16V output. The output of this divider is compared by U6 to a 5-1v reference provided by the Bootstrap Supply. If the +10V output should rise above +17.2V, the output of comparator U6 will be pulled up by R11, which in turn nulls up, through CR24, the non-inverting input of comparator U5. This will cause the output of comparator U5 to go high and be latched high by CR22. With the output of U5 latched high, the shuthown input of the SG3524 switching regulator (U11) will be held high, and the Primary Switcher disabled.

The +12v and +5v outputs are monitored in a similar manner to that of the +16v output. The +5v output monitor uses a diode forward voltage drop above the 5.1v reference to establish the over-voltage threshold. Capacitors C27, C30, and C31 reduce the sensitivity of the Over-Voltage Shut Down circuit to switching noise and electrostatic discharge.

Figure 3
Power Supply PCA Component Location Diagram SEP-10-79
13220-91019

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
	02020-00019	,	1	PONER BUPPLY, PCA DATE CODE: D-1917-42	20400	62620-00019
61 62 63 64 65	0180-2940 0180-2940 0160-3456 0160-3456 0160-4242	3	2 2 1	CAPACITOR-PXD TBOUF+50-10% 200VDC AL CAPACITOR-PXD TBOUF+50-10% 200VDC AL CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-FXD 1000PF +-10% 1KVDC CER CAPACITOR-PXD OUF +-10% 200VDC MET-PDLYC	28480 28480 28480 28480	0180-2940 0160-3456 0160-3456 0160-8242
E6 C7 C8 C9 C18	0100-0102 0100-0102 0100-0161 0100-1335 0100-4554	5 4 0 7	2 1 14	CAPACITOR-PXD .022UF +-101 200VDC PDLYE CAPACITOR-FXD .022UF +-102 200VDC PDLYE CAPACITOR-FXD .01UF +-102 200VDC PDLYE CAPACITOR-FXD 400PF +-102 200VDC CER CAPACITOR-FXD .01UF +-201 200VDC CER	28480 28480 28480 28480 28480	0;00-0102 0;00-0102 0;00-0101 0;00-03335 0;00-0334
C11 C12 C13 C14 C14	0100-4554 0100-3335 0100-4554 0100-2913 0100-4554	7 0 7	1	CAPACITOR-FXD .01UF +-201 SOVDC CER CAPACITOR-FXD 470PF +-103 100VDC CER CAPACITOR-FXD .01UF +-203 SOVDC CER CAPACITOR-FXD 470UF-50-10X 50VDC AL CAPACITOR-FXD .01UF +-203 SOVDC CER	28480 28480 28480 28480 28480	8160-4556 8160-3335 8160-4556 8180-2913 8180-4856
C17 C19 C19 C20 C21	0180-2879 0160-0157 0160-4557 0160-4557	7 8 0 0 0		CAPACITOR-FXD 22UF-S0-103 25VDC AL CAPACITOR-FXD 4700PF101 200VDC POLYE CAPACITOR-FXD .1UF201 30VDC CER CAPACITOR-FXD .1UF201 50VDC CER CAPACITOR-FXD .1UF201 50VDC CER	26480 26480 16299 16299 16299	0180-2879 0180-0197 CACORYPRIGAMOSOA CACORYPRIGAMOSOA CACORYPRIGAMOSOA
C22 C23 C24 C26	0160-4554 0160-4554 0160-4557 0180-2879 0160-4554	7 7 0 7 7		CAPACITOR-FND .01UF +-20% 50VDC CER CAPACITOR-FND .01UF +-20% 50VDC CER CAPACITOR-FND .1UF +-20% 50VDC CER CAPACITOR-FND .22UF-50-10% 23VDC AL CAPACITOR-FND .01UF +-20% 50VDC CER	26480 26480 16299 26480 26480	0160-4554 0160-4554 0160-4554 0160-4554
C27 C28 C29 C30 C31	0140-4554 0180-2879 0180-2879 0160-4554 0160-4557	77770		CAPACITOR-FND .01UF +-20% SOVDC CER CAPACITOR-FND 22UF+50-10% 25VDC AL CAPACITOR-FND 22UF+50-10% 25VDC AL CAPACITOR-FND .01UF +-20% 50VDC CER CAPACITOR-FND .1UF +-20% 50VDC CER	26480 26480 16299	0100-0554 0180-2879 0180-2879 0180-0554 CACO4X7R104M050A
£32 £33 £34 £35 £36	0100-4554 0100-3335 0160-4557 0180-2679 0160-4554	7 0 0 7 7		CAPACITOR-FRD .elufZer Sevde CER CAPACITOR-FRD 470FF101 100VDC CER CAPACITOR-FRD .lufZer Sovde CER CAPACITOR-FRD 22Uf-50-101 25VDC AL CAPACITOR-FRD .elufZer Sovde CER	28480 28480 16299 28480 28480	0160-0554 0160-3335 CACGETR106M050A 0180-2079 0160-4554
C37 C38 C39 C40 C41	0160-3335 0160-0557 0160-0554 0160-0380 0160-0380	0 0 7 9 9		CAPACITOR-FXD 479FF +-10X 100VDC CER CAPACITOR-FXD .1UF +-20X 50VDC CER CAPACITOR-FXD .01UF +-20X 50VDC CER CAPACITOR-FXD .22UF +-10X 200VDC POLYE CAPACITOR-FXD .22UF +-10X 200VDC POLYE	28480 16299 28480 28480 28480	0160-3335 CACOAX7R104M050A 0160-4554 0160-6360 0160-0360
C42 C43 C44 C45 C45	0100-2441 0100-2866 0100-2860 0100-2854 0100-2860	4000		CAPACITOR-FXD .012F+-20% 20VDC &L CAPACITOR-FXD 2200UF+50-10% 10VDC AL CAPACITOR-FXD 2200UF+50-10% 10VDC AL CAPACITOR-FXD 2200UF+50-10% 10VDC AL CAPACITOR-FXD 2200UF+50-10% 10VDC AL	28480 28480 28480 28480 28480	#180-5880 #180-5880 #180-5880 #180-5881
C47 C40	9190-2089 9190-4554		;	CAPACITOR-FXD 2208UF+50-10% 16VDC AL CAPACITOR-FXD .01UF +-20% 50VDC CER	\$8480 \$8480	0100-2880 0160-4854
CR1 CR2 CR3 CR6 CR6	1904-0080 1901-0848 1901-0848 1901-1965 1901-1965		3	DIODE-Pm BRDS 660V 10A BIODE-PmR RECT 184036 400V 1A 200NS DIODE-pmR RECT 184036 400V 1A 200NS	26480 26480 26480 14736 14736	1 M4430 1 M4430 1 M4430 1 M4430 1 M4430
CRA CR7 CR8 CR9 CR10	1906-9067 1901-1065 1901-0050 1901-0050 1901-0050		22	BIODE-CT-RECT 1887 384 DIODE-PHR RECT 188736 4887 14 28885 DIODE-SHITCHING 887 28884 288 D0-35 DIODE-SHITCHING 887 28884 288 D0-35 DIODE-SHITCHING 887 28884 288 D0-35	27777 14936 26460 26460 26460	0754 1M4930 1901-0950 1901-0950 1901-0950
CA11 CA12 CA13 CA14 CA15	1901-0050 1902-3094 1901-0731 1901-1905		3 1 1	DIODE-SHITCHIMS SOV 289MA 2MS DD-35 DIODE-THR 5.11V 22 DD-7 PDB.4D TCB0092 DIODE-PHR RECT 400V 1A DIODE-PHR RECT 1M4036 400V 1A 200MS DIODE-PHR RECT 1M4036 400V 1A 200MS	20480 20400 20400 14936 14936	1901-9990 1902-3094 1901-9731 184936
CRIO CRIT CRIA CRIO CREO	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050		3 3 3 3 3	DIDDE-SHITCHING SOV BOOMA 248 DO-35 DIDDE-SHITCHING SOV BOOMA 248 DO-35 DIDDE-SHITCHING SOV BOOMA 248 DO-35 DIDDE-SHITCHING SOV BOOMA 248 DO-35 DIDDE-SHITCHING SOV BOOMA 248 DO-35	28480 28480 28480 28480	1901-0050
CA21 CA23 CA24 CA24 CA24	1901-0050 1901-0050 1901-0731 1901-0050		3 7 3 3	DIDDE-BHITCHING BOY ROOMA 248 DO-35 DIDDE-BHITCHING BOY ROOMA 248 DO-35 DIDDE-BHITCHING BOY ROOMA 248 DO-35 DIDDE-BHITCHING BOY ROOMA 248 DO-35 DIDDE-BHITCHING BOY ROOMA 248 DO-35	26460 26460 26460 26460	1981-0050 1981-0731 1981-0050

Figure 2
Power Supply PCA Schemetic Biogram
SEP-10-79
13220-91019

3.4.2 Power-cn

The Power-On circuit serves two functions. It senses the output voltage of the +5 volt Switching Regulator and indicates, by going high, when the +5v output is in regulation. It also senses the voltage on the +16v output and goes low to indicate a power fail condition short-ly before the +5 volt Switching Regulator begins to lose regulation (the +5 volt Switching Regulator is powered by the +10v output). Comparator U5 monitors the +16v output voltage. When this voltage

drops helow +13v, U5 pulls the Power-On/Fail output low. Comparator U6 monitors the +5v output voltage through a voltage divider formed

by resistors R52, R55, and R57. The Power-un/Fail output is pulled low by U6 when the +5V output drops out of regulation. Resistor R56 provides approximately ().2V of hysteresis to prevent the Power-

On/Fail output from oscillating. Capacitor C35 furnishes a delay at turn on to reset logic circuitry within the terminal.

3.5 BOOTSIPAP SUPPLY.

The Bootstran Supply operates off the AC power line through transformer T1. It provides the power necessary to start the operation of the Primary Switcher. Once the Primary Switcher is in operation diode CR13 furnishes power to the Bootstrap Supply from the +16V

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
R42 R43 R44 R45	0083-4725 0098-3159 0098-0085 0083-4725 0083-4715	2 1 0 2 0	1 3	RESISTOR A.7% SE .25% FC TCs-400/+700 RESISTOR A.64% IX .125% F TCs0+-100 RESISTOR 2.61% IX .125% F TCs0+-100 RESISTOR A.7% SE .25% FC TCs-400/+000 RESISTOR 470 SE .25% FC TCs-400/+000	01121 24546 24546 01121 01121	C84725 C4-1/8-78-4641-F C4-1/8-78-2611-F C84725 C84715
R47 R48 R49 R50 R51	0003-4725 0003-1045 0003-1045 0003-1045 0003-4705	3 2 3		REBISTOR 4.7K SE .25m PC TCS-4804/+700 REBISTOR 180K SE .25m PC TCS-4804/+800 REBISTOR 4.7K SE .25m PC TCS-4804/+700 REBISTOR 100K SE .25m PC TCS-4804/+800 REBISTOR 47 SE .25m PC TCS-4804/+590	01121 01121 01121 01121 01121	CB4725 CB1045 CB4725 CB1045 CB4705
RS2 RS3 RS4 RS6 RS6	0757-0442 0646-3609 0683-4725 0757-0442 0683-1945	9 0 2		RESISTOR 10K 1% ,125# F TC=0+-100 RESISTOR 22 5% 2# MD TC=0+-200 RESISTOR 27K 5% 25# FC TC=-400/+700 RESISTOR 10K 1% ,125# F TC=0+-100 RESISTOR 10K 5% ,25# FC TC=-400/+800	24546 27167 01121 24546 01121	Ca=1/8-T0-1002-F FP42-2-T00-22R0-J C84725 Ca-1/4-T0-1002-F C81045
R57 R58 R59 R60 R61	0046-0085 0048-3001 0083-4725 0083-1025 0086-3315	0 4 8 8 0	1 2	RESISTOR 2,614 12 .125H F TCHO*-100 RESISTOR 10 5% 20 MC TCHO+200 RESISTOR 274 5% 325H FC TCH-400/+700 RESISTOR 14 5% 25H FC TCH-400/+600 RESISTOR 330 5% 5H CC TCH0+529	24546 27167 01121 01121	Ca-1/0-T0-2011-F FPAZ-Z-T00-10R0-J CA4725 CB1025 RB3315
R62 R63 R64 R65 R66	063-2235 063-1025 063-2225 066-3315	3 9 3 0 5		RESISTOR 2.2% St .25m FC TCR-400/+700 RESISTOR 1K SI .25m FC TCR-400/+700 RESISTOR 22K SI .25m FC TCR-400/+700 RESISTOR 330 SI .5m CC TCR-400/+800 RESISTOR 22K SI .25m FC TCR-400/+800	01121 01121 01121 01121	C05533 C05532 C01053 C01053
R67 R68 R64 R70 R71	0757-0280 0883-4705 0848-4123 0757-0280 2109-3212	3 6 5 3	1 1	RESISTOR 1K 18 .125m F TC00+-100 RESISTOR 47 58 .25m FC TC0-400/+500 RESISTOR 409 18 .125m F TC00+-100 RESISTOR 1K 18 .125m F TC00+-100 RESISTOR-TRME 200 108 C TOP-ADJ 1-TRM	24546 01121 24546 26546 26480	CA-1/8-T0-1001-F CBA-705 CA-1/8-T0-499N-F CA-1/8-T0-1001-F 2100-3212
R72 R73 R74 R75 R76	0811-3526 0811-3526 0757-0442 0683-4725 0698-085	5 6 5 6		RESISTOR .018 3% SW PW TC00+=40 RESISTOR .018 3% SW PW TC00+=40 RESISTOR 15% 1% 12% F TC00+=100 RESISTOR 4.7% 5% 2.2% F T TC==400/+700 RESISTOR 2.61% 1% .12% F TC=0+=100	28480 28480 28546 61121 24546	08:1-3520 08:1-3520 C4-1/8-T0-1802-F C84725 C4-1/8-T0-2011-F
#77 #76 #76 #80 #81	0683-4725 0757-0847 0698-3158 0683-1045 0683-4725	2 4 4 3 2		REBISTOR 4.7K SX .2SH FC TC=-400/+700 REBISTOR 16.2K 1X .125H F TC=+-100 REBISTOR 23.7K 1X .125H F TC=+-100 REBISTOR 100K SX .25H FC TC=-400/+800 REBISTOR 4.7K SX .25H FC TC=-400/+700	01121 24546 24546 01121 01121	CB4725 Ca=1/8-T0-1422-F C4=1/8-T0-2372-F CB1045 CB4725
T1 T2 T3	9100-4120 9100-4119 9100-4121	3 7		TRANSFORMER-POMER, 12V TRANSFORMER-SHITCHENS TRANSFORMER-DUAL PULSE	28480 28480 28480	9180-6121 9180-6121
TP1 TP2 TP3 TP4 TP5	0300-0124 0300-0124 0300-0124 0300-0124 0300-0124	3 3 3 3		CONNECTOR-SEL CONT PIN .04-IN-88C-82 RND CONNECTOR-88L CONT PIN .04-IN-88C-82 RND	28480 28480 28480 28480 28480	0360-0154 0360-0154 0360-0154
TP6 TP7 TP8	0300-0124 0300-0124 0300-0124	3 3	1	COMMECTOR-88. COMP PIN .88-NO-88-NO- COMMECTOR-86. COMP PIN .88-NO-88-NO- COMMECTOR-88. COMP PIN .88-NO-88-NO-	59490 59490 59490	0360-0124 0360-0124
U1 U2 U3 U4 U5	1826-0221 1826-0138 1820-0946 1820-1886 1826-0138			IC Y ROLTR TO-220 IC COMPARATOR BP GUAD 14-DIP-P IC BATE CMOB AND BUAD 2-INP IC CATE CMOB AND BUAD 2-INP IC COMPARATOR SP BUAD 14-DIP-P	04713 04713 01928 01928 04713	MC7912C7 MLW330P CD4001AF CD40018F MLW330P
U6 U7 U8 U9 U10	1826-0138 1826-0340 1026-0340 1020-1188				04713 27014 27014 01920	MLM339P LM358h C040134P C040404P
USS	1824-4428	•	•	IC 3524 MODULATOR 16-DIP-C MISCELLANEOUS PARTS	01295	8635243
	0300-1945 0515-0055 0515-0007 0515-000			SCREMMACH M3 X 8.5 SMMOLG PANOND SCREMMACH M3.5 X 8.6 10MMOLG PANOND SCREMMACH M3.5 X 8.6 10MMOLG PANOND	28480 28480 28480 28480	9369-1945 9315-0955 9315-0967 9315-0968 DMDER BY DESCRIPTION
	0535-007 0024-0411 0070-0732 1200-0077 1200-0105			SCRENTRE 6-19 ,313-IN-LE PAN-MD-POZI TUBING-MB ,863-D/,831-RCVD ,817-MALL	0000 0000 0000 0000 0000 0000	1240-0777

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
CR26 CR27 CR20 CR20 CR30	1901-0050 1901-1005 1901-1005 1901-1005	32227		DIODE-BHR RECT IMAGE GOOV IN SOONS DIODE-PHR RECT IMAGE GOOV IN SOONS DIODE-PHR RECT IMAGE GOOV IN SOONS	26400 14936 14936 14936	18039 18039 18039
CR31 CR32 CR33 CR34 CR35	1902-0551 1901-0050 1901-0050 1901-0050 1901-0050	3333	1	DIODE-ZNR 6.19V 5% DO-15 PDB1R TCR+.022% DIODE-SWITCHING SOV Z00MA ZNS DO-35	28480 28480 28480 28480 28480 28480	1901-0048 1902-0551 1901-0050 1901-0050
6R36 6R37 6R38 6R39 6R40	1901-0030 1901-0050 1901-0731 1901-0030 1901-0050	3 7 3 3		DIDDE-SWITCHING SOV 200MA 2NS DO-35 DIDDE-SWITCHING SOV 200MA 2NS DO-35 DIDDE-SWITCHING SOV 200MA 2NS DO-35 DIDDE-SWITCHING SOV 200MA 2NS DO-35 DIDDE-SWITCHING SOV 200MA 2NS DO-35	28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0731 1901-0050
J1 J2 J3 J4 J9	1251-3837 1251-4781 1251-3195 1251-5522 1251-9520	1 4 5 3	1 1 1 1	CONNECTOR G-PIN M UTILITY CONNECTOR G-PIN M UTILITY CONNECTOR G-PIN M POST TYPE CONNECTOR T-PIN M POST TYPE CONNECTOR T-PIN M POST TYPE	28480 00779 28480 28480 28480	1251=3837 350749+1 1251=3195 1251=5522 1251=5520
Je Li	1251-5519	•	1	CONNECTOR 4-PIN M POST TYPE	28480	1251-5514
L2 L3 L4 L5	9140-0344 9140-0314 9140-0341 9140-0341	***	5	COIL SEGUM COIL 186UM COIL 186UM COIL 586NM .3DX.SL8-NDM COIL 586NM .3DX.SL8-NDM	28480 28480 28480 28480 28480	9140-0346 9140-0314 9140-0314 9140-0341 9140-0341
01 01 02 02	9140-0340 1894-0467 1894-0024 1894-0467	5 6 5	3	CDIL 1880M TRANSISTOR NPN ZN440; SI TD-92 PDB310MM TRANSISTOR NPN ZN440; SI TD-92 PDB310MM TRANSISTOR NPN ZN440; SI TD-92 PDB310MM	20480 04713 04713	9140-0340 2M4*01 2M4308
65 60 67	1854-0624 1813-0114 1813-0114	3	\$	IC-LINEAR 1C-LINEAR	04713 04713 12969	2N0401 2N0300 PIC005
06 07 010	1854-0040 1854-0040 1855-0406 1854-0467	3	1	TRANSISTOR NPW SI TD-30 PD=1W FTm10eHm1 TRANSISTOR NPW SI TD-30 PD=1W FTm10eHm2 TRANSISTOR NPW FT P-CHAN D-MODE TRANSISTOR NPW PW6601 SI TD-92 PDm31eHm	12069 20480 20480 32293 00713	PIC 645 1854-0070 1854-0070 17110 201401
R1 R2 R3 R4 R5	0764-0045	33777	2 2	REDISTOR ATO SE 20 MO TEMO-200 REDISTOR 22K SE 20 MO TEMO-200 REDISTOR 22K SE 20 MO TEMO-200 THERMISTOR DISC S-OMM TEM-3.5E/C-DEG THERMISTOR DISC S-OMM TEM-3.5E/C-DEG	28480 28480 28480 15454 15454	0698-3034 876-0045 876-0045 SDASR8-228-811-2
Ro R7 R0 R10 R11	0063-1015	77.0	3	RESISTOR 100 SX .25m FC TC==000/-500 RESISTOR 100 SS .25m FC TC==00/-500 RESISTOR IX SS .25m FC TC==400/-500 RESISTOR 100 12 .125m F TC=00-100 RESISTOR 10.2X 1Z .125m F TC=00-100	01121 01121 01121 24506 24546	\$DA\$R0=820=81L=2 C81019 C81015 C81025 C4-178-T8-101=F C4-178-T8-1022-F
#12 #13 #14 #15	9787-0447 9787-0461			RESISTOR 10K 13 ,125K F TC00100 RESISTOR 16.2K 1% ,125K F TC00100 RESISTOR 10E 1% ,125K F TC00100 RESISTOR 10K 5% ,25K FC TC00-009/-700 RESISTOR 10K 5% ,25K FC TC00-009/-700	24544 24544 01121 01121	C4-1/0-T0-1002-F C4-1/0-T0-1002-F C4-1/0-T0-101-F C81035
817 818 819 829 821	0083-2225		1 1	RESISTOR 18K SE .25m FC TC=-400/-700 RESISTOR 19K SE .25m FC TC=-400/-700 RESISTOR 2.5 K IE .125m F TC=-400/-700 RESISTOR 2.2K SE .25m FC TC=-400/-700 RESISTOR 22K SE .25m FC TC=-400/-000	01121 01121 01121	C01035 C01035 C0-1/0-70-2071-F C02885
122 123 124 125 126 127 126	0757-0447 0603-4725 0663-1045		:	RESISTOR 18% 12% F TC=0+-100 RESISTOR 16,2% 12% F TC=0+-100 RESISTOR 40,7% 5% 25% FC TC=0+0+0+0+0 RESISTOR 40% 5% 25% FC TC=0+0+0+0+0 RESISTOR 20% 5% 25% FC TC=0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+	24546 24546 61121 01121	C02235 C4-1/0-70-1002-7 C4-1/0-70-1022-7 C010-5
127 126 129 130 131	0443-4725 0757-0442 0446-3150 0448-3765 0403-4715		273	RESISTOR 4,7K SS .25m FC TCD=406/-744 PESISTOR 15K 12 .125m F TC00100 RESISTOR 23.7K 12 .125m F TC00100 RESISTOR 47 SZ .25m FC TCD=400/-500 RESISTOR 47 SZ .25m FC TCD=400/-500 RESISTOR 676 SZ .25m FC TCD=400/-500	01121 24546 24546 01121	C02239 C04725 C4-1/4-70-1042-F C4-1/4-70-2372-F C04765
	0063-4725 0063-1065 0063-2235 0757-0042 0063-4725			##51870# 4.7K St .2S# FC TC#=000/070# ##51870# 180K St .2S# FC TC#=00/080# ##51870# 2K St .2S# FC TC#=000/080# ##51870# 19K IX .12S# FC TC#=000/080# ##51870# 4.7K St .2S# FC TC#=000/070#	01121 01121 20540	C00715 C01005 C01005 C02235 C4-1/0-70-1002-F
30	0757-0442 0011-3524 0040-3600 0040-3600 0003-4725		3	REBISTON 18K 12 .125m F TC00100 REBISTON .010 3% 5m Pm TC00000 REBISTON 22 5% 20 MO TC00200 REBISTON 22 5% 20 MO TC00200 REBISTON 4.7K 8% .25m FC TC0-400/-700	24546 26466 27167	CB47g5 C8-1/8-10-1002-F 0611-3520 FP42-2-100-22R0-J FP42-2-100-22R0-J

		AS OF	10/04/79
	MANUFACTURERS CORE LI		S16
MFR NO. 00000 00779 01121 01225 01225 01215 11701 1200 1200 24500 27010 27107	MANUFACTURER NAME ANY SATISFACTORY SUPPLIER AMP INC ALLEN-BRADLEY CO TEXAS INSTR INC SEMICOND CMPNT DIV RCA CORP SOLID STATE DIV MOTOROLA SEMICUNDUCTOR PRODUCTS SEMICON INC UNITRODE CORP THERMALLOY CO GENERAL INSTR CORP SEMIDUN PROD GP RODAN INDUSTRIES INC CORNING GLASS MORES (SRADFIRED) NATIONAL SEMICONDUCTOR CORP CORNING GLASS MORES (FILMINGTON) VARO SEMICONDUCTOR INC MEMILETT-PACKARD CO CORPORATE MO AMERICAN MICRO SYSTEMS INC INTERSIL INC MOSTER CORP	ADDRESS MARMISSUMG WILMAUREE DALLAS SOMEOVILLE PHUENIX SUMLINGTON MATERIAMN OALLAS MICRSWILLE ANAMEIM BALFIGM BAADFOAD SANTA CLARA RILMINGTON GAMLANO PALO ALTO SANTA CLARA CUMPETINO CARROLLYON NOMEO	
27777 29480 31471 32243	INTERSIL INC HEMLETT-PACKARD CO CORPORATE MD VARO SEMICONDUCTOR INC	PALD ALTO BANTA CLARA CUPERTIND CARROLLYON	

AS OF 10/09/79

.

neplaceanic Fai C								
Reference Designation	HP Part Number	00	Qty	Description	Mfr Code	Mfr Part Number		
	1203-0289 1205-0349 1390-0104 1390-0201 1400-0249	47370	1 4	MEAT BINK TO-3-CS MEAT BINK BOL PLOTC-PHR-CS FABTURER-BNAP-IN ORD PANEL THKNS FABTURER-BNAP-IN PLOR PANEL THKNS CABLE TIE .0000.0000000000000000000000000000000	28480 13103 26480 26480 26480	1205-0200 60250-77 1300-0104 1300-0261		
	2110-0591 2190-003 2190-007 2190-0011 2000-0129	9 5 8	3 1 15 6	FUBEROLDER-CLIP TYPE 154 250 V .250-FUBE WABHEROLK MLCL NO. 8 .118-IN-ID WABHEROLK INTL T NO. 6 .141-IN-ID WABHEROLK INTL T NO. 10 .195-IN-ID SCREN-MACH 18-32 .312-IN-LE PAN-MO-POZI	28480 28480 28480 28480	2119-655; 2190-6663 2190-661; 2190-661; ORDER BY DESCRIPTION		
	3950-0247 5001-2008 02020-20001 02020-40007	3	1 1	WASHER-PL Nº NO. 6 LIGI-IN-ID .375-IN-OD HEAT BINK MEAT BINK COVER, SCREW	20400 20400 20400 20400	3050-0247 5001-2008 02620-20001 02620-40007		
						•		
				-				