aerofit_case_study

January 12, 2024

1 Aerofit Case Study

Analyzing the given Aerofit Treadmill dataset, I'd like to explicitly answer the following questions:

1101	yzing the given retont freadmin dataset, I'd like to explicitly answer	. one ronow	ing ques
1.	Import the dataset and do usual data analysis.		
	Find the data type of all columns.		
	Find the number of rows and columns in the given dataset.		
	Check for the missing values.		
2	Univariate Analysis and Outliers detection.		
۷.	Continuous variables.		
	Find the outliers for every continuous variable in the dataset.		
	Remove/clip the data between the 5 percentile and 95 percentile.		
	Categorical variables.		
3.	Check the effect of features on the product purchased (Bivariate and	alysis).	
	Find if there is any relationship between the categorical variables and in the data. $$	the output	variable
	Find if there is any relationship between the continuous variables and in the data. $$	the output	variable
4.	Representing the Probability.		
	Find the marginal probability (what percent of customers have KP481, or KP781).	purchased	KP281,
	Find the probability that the customer buys a product based on each	ch column.	
	Find the conditional probability that an event occurs given that occurred.	another ev	ent has

- 5. Multivariate Analysis.
- 6. Check the correlation among different factors.

Find the correlation between the given features in the table.

7. Customer profiling and recommendation.

Make customer profilings for each and every product.

Write a detailed recommendation from the analysis that you have done.

```
[1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
[2]: # get the dataset (csv file) from the link

[wget https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/125/
original/aerofit_treadmill.csv
```

2 General Analysis

```
[3]: df = pd.read_csv("aerofit_treadmill.csv") df.shape
```

[3]: (180, 9)

Insights/Conclusion: Dataset has 180 rows and 9 columns.

[4]: df.head()

```
[4]:
       Product
                Age
                     Gender Education MaritalStatus Usage Fitness
                                                                          Income
                                                                                  Miles
         KP281
                                                                           29562
     0
                  18
                        Male
                                      14
                                                Single
                                                             3
                                                                       4
                                                                                     112
         KP281
     1
                 19
                        Male
                                      15
                                                Single
                                                             2
                                                                       3
                                                                           31836
                                                                                     75
     2
         KP281
                 19
                     Female
                                      14
                                             Partnered
                                                             4
                                                                       3
                                                                           30699
                                                                                      66
     3
         KP281
                        Male
                                      12
                                                Single
                                                             3
                                                                       3
                                                                                      85
                  19
                                                                           32973
     4
         KP281
                  20
                        Male
                                      13
                                             Partnered
                                                             4
                                                                       2
                                                                           35247
                                                                                      47
[5]:
    df.columns
[5]: Index(['Product', 'Age', 'Gender', 'Education', 'MaritalStatus', 'Usage',
            'Fitness', 'Income', 'Miles'],
           dtype='object')
[6]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

Insights/Conclusion:

- String Datatypes: Product, Gender and MaritalStatus columns store categorical data.
- Integer Datatypes: Age, Education, Usage, Fitness, Income and Miles columns hold numerical values.

```
[7]: df.isna().sum()
```

[7]: Product 0 0 Age Gender 0 Education 0 MaritalStatus 0 Usage 0 Fitness 0 Income 0 Miles 0 dtype: int64

Insights/Conclusion: The dataset is complete, containing no null or missing values across all columns.

3 Univariate Analysis

3.1 Continuous variables

```
[8]: df.describe()
[8]:
                                          Usage
                   Age
                         Education
                                                     Fitness
                                                                     Income
            180.000000
                         180.000000
                                     180.000000
                                                 180.000000
                                                                 180.000000
     count
    mean
             28.788889
                          15.572222
                                       3.455556
                                                    3.311111
                                                               53719.577778
              6.943498
                          1.617055
                                       1.084797
                                                    0.958869
                                                               16506.684226
     std
    min
             18.000000
                         12.000000
                                       2.000000
                                                    1.000000
                                                               29562.000000
     25%
             24.000000
                         14.000000
                                       3.000000
                                                    3.000000
                                                               44058.750000
     50%
             26.000000
                         16.000000
                                       3.000000
                                                    3.000000
                                                               50596.500000
     75%
             33.000000
                         16.000000
                                       4.000000
                                                    4.000000
                                                               58668.000000
             50.000000
                         21.000000
                                       7.000000
                                                    5.000000
                                                              104581.000000
     max
                 Miles
            180.000000
     count
    mean
            103.194444
     std
             51.863605
             21.000000
    min
     25%
             66.000000
     50%
             94.000000
     75%
            114.750000
    max
            360.000000
[9]: continuous vars = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']
     # Create subplots
     fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(15, 8))
     # Flatten the axes for easier iteration
     axes = axes.flatten()
     # Plot histograms for each continuous variable
     for i, var in enumerate(continuous_vars):
         sns.histplot(df[var], ax=axes[i], bins=10, kde=True)
         axes[i].set_title(var)
         axes[i].set_xlabel(var)
         axes[i].set_ylabel('Frequency')
```

```
# Adjust layout
plt.tight_layout(rect=[0, 0, 1, 0.96])
plt.show()
```


- The dataset includes individuals aged 18-50, with an average age of 28.79 years. The majority are below 33 years old.
- Education levels range from 12 to 21, with the majority at 16 years.
- Usage values range from 2 to 7, with the 25th and 75th percentiles at 3 and 4.
- Most individuals have moderate fitness.
- Income ranges from \$29,562 to \$104,581, with the 25th and 75th percentiles at \$44,058.75 and \$58,668, respectively.

3.2 Outliers detection using box plot

```
[10]: # Selecting continuous variables for outlier detection
    continuous_vars = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']

# Creating subplots
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(15, 8))

# Iterating through each variable and plotting boxplots in subplots
for idx, var in enumerate(continuous_vars):
    row = idx // 3  # Calculate row index
    col = idx % 3  # Calculate column index
```

```
sns.boxplot(data=df[var], ax=axes[row, col], orient='h', linewidth=2.5)
axes[row, col].set_title(f'Boxplot of {var}')

# Adjusting layout and displaying the plots
plt.tight_layout()
plt.show()
```


- Education, Usage, Fitness: Show minimal outliers, indicating a relatively stable distribution within expected ranges.
- Age: Contains a moderate number of outliers, suggesting some deviation from the typical range.
- Income, Miles: Exhibit a substantial number of outliers, signifying significant deviations from the expected distribution.

```
[11]: # Selecting continuous variables for clipping
    continuous_vars = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']

# Clipping data between 5th and 95th percentiles for each variable
    for var in continuous_vars:
        lower_bound = np.percentile(df[var], 5) # Calculate the 5th percentile
        upper_bound = np.percentile(df[var], 95) # Calculate the 95th percentile

# Clip the data between the calculated percentiles
        df[var] = np.clip(df[var], lower_bound, upper_bound)
```

```
[12]: # Selecting continuous variables for outlier detection
    continuous_vars = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']

# Creating subplots
    fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(15, 8))

# Iterating through each variable and plotting boxplots in subplots
    for idx, var in enumerate(continuous_vars):
        row = idx // 3  # Calculate row index
        col = idx % 3  # Calculate column index

        sns.boxplot(data=df[var], ax=axes[row, col], orient='h', linewidth=2.5)
        axes[row, col].set_title(f'Boxplot of {var}')

# Adjusting layout and displaying the plots
    plt.tight_layout()
    plt.show()
```


- Age, Education, Usage, Fitness: Outliers have been successfully clipped, ensuring a more normalized distribution within expected ranges.
- Income, Miles: Although some outliers were clipped, these variables still contain remaining outliers, suggesting persistent deviations beyond the 5th and 95th percentiles.

3.3 Categorical variables

```
[13]: df[['Product', 'Gender', 'MaritalStatus']].apply(lambda x: x.value_counts()).T.
       →stack()
[13]: Product
                     KP281
                                    80.0
                     KP481
                                    60.0
                     KP781
                                    40.0
      Gender
                     Female
                                   76.0
                     Male
                                   104.0
                                   107.0
      MaritalStatus
                     Partnered
                     Single
                                   73.0
      dtype: float64
[14]: categorical_vars = ['Product', 'Gender', 'MaritalStatus']
      # Create subplots for count plots of categorical variables
      fig, axes = plt.subplots(nrows=1, ncols=len(categorical_vars), figsize=(10, 4))
      for i, var in enumerate(categorical_vars):
          ax=sns.countplot(x=var,data=df, ax=axes[i])
          ax.bar_label(ax.containers[0], fontsize=10)
          axes[i].set_title(f'{var} Distribution')
          axes[i].set_xlabel(var)
          axes[i].set_ylabel('Count')
      plt.tight_layout()
      plt.show()
```


Insights/Conclusion:

• KP281: Most popular (80 units) due to affordability (\$1,500).

- KP481: Attracts mid-level runners (\$1,750) with 60 units.
- KP781: Lower (40 units) due to higher cost (\$2,500) and specialized features.
- Males are more likely to purchase product as compared to females, with a ratio of around 4:3.
- A Partnered customer is more likely to purchase the product.

4 Bivariate Analysis

4.1 Categorical variables vs Product

```
[15]: # Categorical variables: MaritalStatus, Gender
      categorical_vars = ['MaritalStatus', 'Gender']
      \# Create subplots for count plots of categorical variables against the output
       \neg variable
      fig, axes = plt.subplots(nrows=1, ncols=len(categorical_vars), figsize=(12, 4))
      for i, var in enumerate(categorical_vars):
          ax=sns.countplot(x=var, hue='Product', data=df, ax=axes[i])
          # Add count labels for all containers (bars)
          for container in ax.containers:
              ax.bar_label(container, fontsize=10, fmt='%d')
          axes[i].set_title(f'{var} vs Product')
          axes[i].set_xlabel(var)
          axes[i].set_ylabel('Count')
          axes[i].legend(title='Product', loc='upper right')
      plt.tight_layout()
      plt.show()
```


Insights/Conclusion:

• The majority of both partnered and single individuals opt for KP281, followed by KP481, while KP781 has a comparatively lower distribution in both groups.

• Both genders prefer KP281, while there's a notable difference in the choice of KP781, with more males opting for it compared to females. KP481 shows a relatively balanced distribution between genders.

4.2 Continuous variables vs Product

```
[16]: continuous_vars = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']
      for var in continuous_vars:
        df_new = df.groupby('Product')[var].describe().reset_index()
        print(f"Product wise {var} description")
        print(df_new,end="\n\n")
     Product wise Age description
                 count
                                                       25%
                                                             50%
                                                                    75%
       Product
                                         std
                                               min
                                                                            max
                  80.0
                                              20.0
                                                    23.00
                                                            26.0
         KP281
                        28.427500
                                   6.678313
                                                                  33.00
                                                                         43.05
     1
         KP481
                  60.0
                        28.801667
                                    6.327830
                                              20.0
                                                    24.00
                                                            26.0
                                                                  33.25
                                                                          43.05
         KP781
                  40.0
                        28.828750
                                   6.296182
                                              22.0
                                                    24.75
                                                            27.0
                                                                  30.25
                                                                         43.05
     Product wise Education description
                                                      25%
                                                            50%
                                                                  75%
       Product
                 count
                             mean
                                         std
                                               min
                                                                        max
                                   1.071790
                                                           16.0
     0
         KP281
                  80.0
                        15.125000
                                              14.0
                                                    14.0
                                                                 16.0
                                                                       18.0
     1
         KP481
                  60.0
                        15.183333
                                   1.112208
                                              14.0
                                                    14.0
                                                           16.0
                                                                 16.0
                                                                       18.0
     2
                  40.0 17.050000
         KP781
                                   1.197219
                                              14.0
                                                    16.0
                                                           18.0
     Product wise Usage description
                 count
                                                  25%
                                                        50%
                                                              75%
       Product
                            mean
                                        std
                                             min
                                                                    max
         KP281
                  80.0
                        3.087500
                                  0.782624
                                             2.0
                                                  3.0
                                                        3.0
                                                             4.00
                                                                   5.00
     0
                  60.0
                        3.066667
                                  0.799717
                                             2.0
                                                  3.0
                                                        3.0
                                                             3.25
                                                                   5.00
     1
         KP481
     2
         KP781
                        4.511250
                                             3.0
                                                       5.0
                                                             5.00
                  40.0
                                  0.565401
                                                  4.0
                                                                   5.05
     Product wise Fitness description
       Product
                count
                                                  25%
                                                       50%
                                                             75%
                            mean
                                        std
                                             min
                                                                  max
     0
         KP281
                  80.0
                        2.975000
                                  0.635948
                                             2.0
                                                  3.0
                                                        3.0
                                                             3.0
                                                                  5.0
                        2.916667
                                  0.590652
     1
         KP481
                  60.0
                                             2.0
                                                  3.0
                                                       3.0
                                                             3.0
                                                                  4.0
     2
         KP781
                  40.0
                        4.625000
                                  0.667467
                                             3.0
                                                  4.0
                                                       5.0
                                                             5.0
                                                                  5.0
     Product wise Income description
       Product
                count
                               mean
                                               std
                                                          min
                                                                    25%
                                                                              50%
         KP281
                  80.0
                        46584.31125
                                       8813.246103
                                                    34053.15
                                                               38658.00
                                                                          46617.0
         KP481
                  60.0
                        49046.60750
                                       8517.583361
                                                    34053.15
                                                               44911.50
                                                                          49459.5
     1
     2
         KP781
                        73908.28125 16572.164368
                                                    48556.00
                                                               58204.75
                  40.0
                                                                         76568.5
             75%
                       max
        53439.0
                 68220.00
        53439.0
                 67083.00
        90886.0 90948.25
```

```
Product wise Miles description
  Product
                                                 25%
                                                         50%
                                                                75%
           count
                      mean
                                   std
                                         min
                                                                        max
0
    KP281
            80.0
                    83.125
                             28.391198
                                        47.0
                                                66.0
                                                       85.0
                                                               94.0
                                                                      188.0
1
    KP481
            60.0
                    88.500
                             31.322543
                                        47.0
                                                64.0
                                                       85.0
                                                              106.0
                                                                     200.0
2
    KP781
            40.0 155.900
                             39.073763
                                        80.0
                                               120.0
                                                      160.0
                                                              200.0
                                                                     200.0
```



```
[18]: continuous_vars = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']

# Create a subplot grid for box plots of continuous variables against 'Product'
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(15, 6))

# Flatten the 2D subplot array for easy iteration
```

```
axes = axes.flatten()

# Plotting box plots for each continuous variable against 'Product'
for i, var in enumerate(continuous_vars):
    sns.boxplot(x=var, y='Product', data=df, ax=axes[i])
    axes[i].set_title(f'{var} vs Product')
    axes[i].set_xlabel(var)
    axes[i].set_ylabel('Product')

plt.tight_layout()
plt.show()
```


Product vs Age:

- Customers purchasing KP281 and KP481 have same median ages.
- The age group of 25-30 is associated with a higher chances of purchasing KP781.

Product vs Education:

- Customers with education levels greater than 16 are more likely to purchase KP781.
- Those with education levels below 16 have an equal chances of choosing KP281 or KP481.

Product vs Usage:

Customers planning to use the treadmill more than four times a week are more likely to purchase KP781, while others are more likely to buy KP281 or KP481.

Product vs Fitness:

Higher fitness levels (fitness ≥ 3) increase the chances of purchasing KP781.

Product vs Income:

• Higher income (Income >= \$60,000) corresponds to a higher chances of choosing KP781.

• The median income for KP281 and KP481 demonstrates similar central tendencies, with KP481 slightly higher.

Product vs Miles:

Customers expecting to cover more than 120 miles per week are more likely to buy KP781.

Probability Computation

5.1 Marginal Probability

```
[19]: # Using crosstab()
      pd.crosstab(df.Product, columns='count', normalize = True)
[19]: col_0
                  count
      Product
               0.44444
      KP281
     KP481
               0.333333
               0.22222
      KP781
[20]: # Using value counts()
      df['Product'].value_counts(normalize=True)
[20]: KP281
               0.44444
      KP481
               0.333333
      KP781
               0.22222
      Name: Product, dtype: float64
[21]: df['Gender'].value_counts(normalize=True)
[21]: Male
                0.577778
      Female
                0.422222
      Name: Gender, dtype: float64
[22]: df['MaritalStatus'].value_counts(normalize=True)
[22]: Partnered
                   0.594444
      Single
                   0.405556
     Name: MaritalStatus, dtype: float64
```

Insights/Conclusion:

Product:

- 44.44% of the customers have purchased KP281 treadmill.
- 33.33% of the customers have purchased KP481 treadmill.
- 22.22% of the customers have purchased KP781 treadmill.

Gender:

57.78% of the customers are Males and 42.22% are Females.

MaritalStatus:

59.44% of the customers are Partnered and rest are Single.

5.2 Conditional Probability

```
[23]: pd.crosstab(df.Product, df.Gender, normalize = 'columns', margins=True, using margins_name='Total')
```

```
[23]: Gender Female Male Total Product

KP281 0.526316 0.384615 0.444444 KP481 0.381579 0.298077 0.333333 KP781 0.092105 0.317308 0.222222
```

Insights/Conclusion:

```
P(KP281 \mid Female) = 0.53
P(KP481 \mid Female) = 0.38
P(KP781 \mid Female) = 0.09
```

```
P(KP281 \mid Male) = 0.38

P(KP481 \mid Male) = 0.30

P(KP781 \mid Male) = 0.31
```

```
P(KP481 \mid Single) = 0.33
     P(KP781 \mid Single) = 0.23
[25]: df.head()
[25]:
        Product
                        Gender Education MaritalStatus Usage Fitness
                                                                              Income \
                  Age
                                                             3.0
          KP281
                 20.0
                          Male
                                                                           34053.15
                                        14
                                                  Single
                 20.0
      1
          KP281
                          Male
                                        15
                                                  Single
                                                             2.0
                                                                        3
                                                                           34053.15
      2
          KP281
                 20.0 Female
                                        14
                                               Partnered
                                                             4.0
                                                                        3 34053.15
          KP281
                 20.0
                                        14
                                                             3.0
                                                                        3
                                                                           34053.15
      3
                          Male
                                                  Single
          KP281
                 20.0
                          Male
                                        14
                                               Partnered
                                                             4.0
                                                                           35247.00
         Miles
      0
           112
            75
      1
      2
            66
      3
            85
      4
            47
[26]: # Creating categorical columns for Age, Income and Miles.
      age_bins = [0, 10, 20, 30, 40, 50]
      df['AgeBin'] = pd.cut(df['Age'], bins = age_bins)
      income_bins = [0, 20000, 30000, 40000, 50000, 70000, 100000]
      df['IncomeBin'] = pd.cut(df['Income'], bins = income_bins)
      miles_bins = [0, 40, 60, 80, 100, 120, 200]
      df['MilesBin'] = pd.cut(df['Miles'], bins = miles_bins)
[27]: df.head()
                                Education MaritalStatus
[27]:
        Product
                  Age
                        Gender
                                                          Usage
                                                                  Fitness
                                                                              Income \
                 20.0
                                                                           34053.15
          KP281
                          Male
                                        14
                                                  Single
                                                             3.0
                 20.0
          KP281
                          Male
                                        15
                                                  Single
                                                             2.0
                                                                        3
                                                                           34053.15
      1
      2
          KP281
                 20.0 Female
                                        14
                                               Partnered
                                                             4.0
                                                                        3
                                                                           34053.15
          KP281
                 20.0
                                        14
                                                             3.0
                                                                        3 34053.15
      3
                          Male
                                                  Single
          KP281
                 20.0
                          Male
                                        14
                                               Partnered
                                                             4.0
                                                                        2 35247.00
                                              MilesBin
         Miles
                  AgeBin
                                IncomeBin
      0
                 (10, 20]
                           (30000, 40000]
                                            (100, 120]
           112
      1
            75
                 (10, 20]
                           (30000, 40000]
                                              (60, 80]
      2
            66
                 (10, 20]
                           (30000, 40000]
                                              (60, 80]
      3
            85
                 (10, 20]
                           (30000, 40000]
                                             (80, 100]
      4
                 (10, 20]
                           (30000, 40000]
                                              (40, 60]
            47
[28]: pd.crosstab(df.Product, df['AgeBin'], normalize = 'columns')
```

```
[28]: AgeBin
                (10, 20]
                          (20, 30]
                                     (30, 40]
                                                (40, 50]
      Product
      KP281
                          0.445455
                                               0.500000
                     0.6
                                     0.395833
      KP481
                     0.4
                          0.281818
                                     0.479167
                                               0.166667
      KP781
                     0.0 0.272727
                                     0.125000
                                               0.333333
```

- For 10 to 20 years old people, KP281 is most likely followed by KP481.
- For 20 to 30 years old people, KP281 is most likely followed by KP481 and KP781 with around equal probability.
- For 30 to 40 years old people, KP481 is most likely followed by KP281.
- For 40 to 50 years old people, KP281 is most likely followed by KP781.

```
[29]: pd.crosstab(df.Product, df['IncomeBin'], normalize = 'columns')
[29]: IncomeBin
                  (30000, 40000]
                                   (40000, 50000]
                                                    (50000, 70000]
                                                                     (70000, 100000]
      Product
      KP281
                         0.71875
                                         0.490196
                                                          0.432432
                                                                                  0.0
      KP481
                         0.28125
                                         0.411765
                                                          0.405405
                                                                                  0.0
      KP781
                         0.00000
                                         0.098039
                                                          0.162162
                                                                                  1.0
```

Insights/Conclusion:

- People with a salary above \$70000 will definitely purchase KP781, while those with a salary below \$30000 are more likely to purchase KP281.
- People having salary between \$40000 to \$70000 are more likely to purchase KP281 or KP481.

```
pd.crosstab(df.Product, df['MilesBin'], normalize = 'columns')
[30]:
                                      (80, 100]
[30]: MilesBin
                 (40, 60]
                           (60, 80]
                                                 (100, 120]
                                                              (120, 200]
      Product
      KP281
                                                    0.500000
                      0.6
                           0.666667
                                       0.44444
                                                                0.142857
                      0.4
                           0.300000
                                       0.425926
                                                    0.333333
      KP481
                                                                0.190476
      KP781
                      0.0 0.033333
                                       0.129630
                                                    0.166667
                                                                0.666667
```

Insights/Conclusion:

Users running over 120 miles a week are most likely to buy KP781, while rest all are likely to buy KP281 or KP481.

```
[31]: pd.crosstab(df.Product, df.Usage, normalize = 'columns')
[31]: Usage
                   2.00
                              3.00
                                        4.00
                                                   5.00
                                                         5.05
      Product
                         0.536232
                                    0.423077
      KP281
               0.575758
                                              0.117647
                                                          0.0
      KP481
               0.424242
                         0.449275
                                    0.230769
                                              0.176471
                                                          0.0
      KP781
               0.000000 0.014493
                                    0.346154
                                              0.705882
                                                          1.0
```

- Users over 4 times a week are most likely to buy KP781.
- Users twice/thrice a week are most likely to buy KP281 or KP481.
- Users 4 times weekly have nearly equal distribution.

```
[32]: pd.crosstab(df.Product, df.Fitness, normalize = 'columns')

[32]: Fitness 2 3 4 5

Product

KP281 0.535714 0.556701 0.375000 0.064516

KP481 0.464286 0.402062 0.333333 0.000000

KP781 0.000000 0.041237 0.291667 0.935484
```

Insights/Conclusion:

- Users with fitness scale 5 are most likely to buy KP781.
- Users with fitness scale 2/3 are most likely to buy KP281 or KP481.
- Users with fitness scale 4 have nearly equal distribution.

```
[33]: pd.crosstab(df.Product, df.Education, normalize = 'columns')
[33]: Education
                                      16
                                               18
                      14
                           15
     Product
     KP281
                0.555556
                          0.8 0.458824 0.074074
                0.412698
                          0.2 0.364706 0.074074
     KP481
     KP781
                0.031746
                          0.0 0.176471 0.851852
```

Insights/Conclusion:

Users with education over 16 years are most likely to buy KP781, while rest are likely to buy KP281 or KP481.

6 Multivariate Analysis

```
[34]: continuous_vars = ['Age', 'Education', 'Usage', 'Fitness', 'Income', 'Miles']

# Create a subplot grid for box plots of 'Gender' against continuous variables
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(10, 9))

# Flatten the 2D subplot array for easy iteration
axes = axes.flatten()

# Plotting box plots for each 'Gender' against continuous variables
for i, var in enumerate(continuous_vars):
    sns.boxplot(data=df, x='Gender', y=var, hue='Product', ax=axes[i])
    axes[i].set_title(f'Product wise Gender vs {var}')
```

```
axes[i].set_xlabel('Gender')
axes[i].set_ylabel(var)

plt.tight_layout()
plt.show()
```


- The KP781 product is primarily purchased by individuals under 30 due to health concerns or atheletes. Males beyond 40 buy it for income, while no female over 35 buys it.
- KP481 is primarily purchased by those with good income and around 30 years of age, while KP281 is primarily purchased by those under 27 years old.
- KP781 is a popular product among males with high salaries, while those with lower salaries are more likely to purchase KP281.
- The boxplot shows that fitness enthusiasts and health conscious individuals are purchasing

KP781, regardless of gender.

• KP281 is primarily purchased by females running less miles and looking to stay in shape. Male customers, running less than 100 miles a week, tend to purchase KP281, while those running below 150 miles and above 100 miles will purchase KP481.

```
[35]: plt.figure(figsize = (8, 4))
    sns.scatterplot(data = df, x = 'Income', y = 'Miles', hue = 'Product')
    plt.title(f'Product wise Miles vs Income')
    plt.show()
```


Insights/Conclusion:

KP781 buyers have high incomes and run more miles, while KP281 and KP481 buyers have incomes less than \$700,000 and are mostly running for good health.

7 Correlation among different factors

plt.show()

Insights/Conclusion:

- Positive correlations exist between age and income (0.51) and education and income (0.63).
- Strong positive correlations between usage and fitness (0.66) and usage and miles (0.77) indicate exercise-related patterns.
- Miles and fitness exhibit a strong positive correlation (0.83).

8 Customer profiling and recommendation

8.1 Customer profiling

KP281:

Demographics: Predominantly purchased by individuals under 30.

Gender: No distinct gender bias; popular among both males and females.

Income: Attracts individuals with incomes below \$70,000.

Education: No specific education bias; preferred across various education levels.

Fitness & Health: Attracts individuals running less than 100 miles per week, focusing on health and moderate fitness.

Usage: Customers planning to use the treadmill 2-4 times a week.

20

KP481:

Demographics: Attracts individuals around 30 years old.

Gender: No distinct gender bias; balanced distribution between males and females.

Income: Appeals to those with moderate to high incomes (\$40,000 to \$70,000).

Education: No specific education bias; preferred across various education levels.

Fitness & Health: Preferred by individuals with moderate fitness.

Usage: Balanced distribution among customers planning to use the treadmill 2-4 times a week.

KP781:

Demographics: Primarily purchased by males, especially those beyond 40.

Gender: Skewed towards males; fewer females choose this product.

Income: Attracts individuals with higher incomes (above \$70,000).

Education: More popular among individuals with education levels above 16 years.

Fitness & Health: Attracts fitness enthusiasts, individuals running over 120 miles per week.

Usage: Preferred by customers planning to use the treadmill more than 4 times a week.

8.2 Recommendations

Product Strategy:

- Focus on promoting KP281 as an affordable and versatile option for a wide age group.
- Emphasize the mid-level running features of KP481 to attract customers in their 30s.
- Position KP781 as a premium product with specialized features, targeting fitness enthusiasts and higher-income individuals.

Income-Based Strategies:

Develop targeted strategies for income groups:

- For high-income individuals (> \$70,000), emphasize the advanced features and benefits of KP781.
- For those with lower incomes (< \$30,000), highlight the affordability and basic features of KP281.

Educational Marketing:

- Tailor marketing messages to individuals with education levels above 16, focusing on the advanced features of KP781.
- For those with education levels below 16, emphasize the versatility and affordability of KP281 and KP481.

Usage Patterns:

- Consider promoting KP781 to customers planning to use the treadmill more than four times a week, emphasizing its durability and advanced features.
- For customers using the treadmill two to three times a week, highlight the affordability and basic features of KP281 or mid-level features of KP481.

Fitness Enthusiasts:

- Leverage the positive correlation between fitness level and KP781 purchases by targeting fitness enthusiasts.
- Promote KP781 as the choice for individuals seeking an advanced workout experience.

Miles and Usage Correlation:

Capitalize on the strong correlation between miles covered and fitness levels to market KP781 to individuals running over 120 miles per week.

Partnered vs. Single Preferences:

Consider different marketing strategies for partnered and single individuals:

- Partnered individuals tend to prefer KP281, so emphasize its family-friendly features.
- Single individuals show a more balanced preference; highlight the unique features of KP781.

Continuous Monitoring:

Regularly monitor sales data and customer feedback to adapt marketing strategies based on evolving preferences and market trends.

In-Store Experience:

Enhance the in-store experience for customers by providing product demonstrations, allowing them to experience the unique features of KP781.

Diversity in Product Line:

- Consider introducing more products with different price points to cater to a broader audience.
- Conduct market research to identify potential gaps in the product line and consumer preferences.