Manual Onix EtherNet/IP

1. Introdução

O documento a seguir detalha a instalação e utilização do Indicador de pesagem Onix Ethernet/IP. Cabe destacar que este comporta-se como um anexo ao manual do Indicador de Pesagem Onix.

2. Protocolo Ethernet/IP

O protocolo Ethernet/IP faz uso da tecnologia Ethernet, fornecendo interconexões para rede(s) local(is), efetuando a comunicação através do envio de pacotes(norma IEEE 802-2 e IEEE 802-3). É definido pelo Ethernet o tipo de cabeamento e sinais elétricos para a camada física além do formato dos pacotes e protocolos seguindo o modelo OSI. Ao abordar protocolos de comunicação, antes é necessário defini-los. Protocolos, em especial os de comunicação são um conjunto de regras e procedimentos que visam proporcionar a troca de dados entre máquinas e sistemas

Baseado no meio físico de comunicação Ethernet surgiram diversos protocolos de comunicação, servindo a diversas finalidades. Atualmente entre os diversos protocolos que trafegam sobre este meio físico como o FTP, HTTP, IP, TPC, UDP...

Além do uso em computadores em ambientes residenciais, comerciais e acadêmicos a tecnologia Ethernet é difundida também em ambientes industriais para interconexões de equipamentos e maquinários. Nesses surgiram diferentes protocolos de comunicação como Modbus TCP, Ethernet/IP e Profinet, todos utilizando o meio físico Ethernet.

3. Descrição da Interface

O equipamento indicador de pesagem Onix EtherNet/IP utiliza um conector RJ45 para ligação com a rede, e uma entrada serial para a configuração de parâmetros de comunicação.

Inserir imagem lateral do equipamento

3.1 Conectores

O equipamento Onix EtherNet/IP possui um conector RJ45 para ligação em rede, a pinagem do conector segue o padrão Fast Ethernet 100BASE-TX utilizando dois pares de cabos para transmissão e recepção de dados.

3.2 Leds Indicativos

O Equipamento Onix EtherNet/IP possui um LED de indicação na porta EtherNet/IP, além de outro led que possui as seguintes indicações.

Vista de um switch conectado ao Onix Ethernet (Inserir imagem)

LED	COR	FUNÇÃO
Link	Verde	Led de indicação de atividade
Module Status (MS)	Bicolor (Verde/Vermelho)	(verificar a existência destes LEDs)
Network Status (NS)	Bicolor (Verde/Vermelho)	(verificar a existência destes LEDs)

4 Instalação em Rede

As recomendações expressas neste capítulo devem ser observadas para o correto funcionamento do equipamento em rede.

4.1 Endereço IP

Todo equipamento em uma rede Ethernet independente do protocolo necessita de um endereço IP e máscara de sub-rede.

O endereço IP em uma rede deve ser único para cada equipamento. A mascara de sub-rede tem como função definir faixas válidas de endereço IP na rede

4.2 Taxa de Comunicação

O indicador de pesagem Onix EtherNet/IP se comunica utilizando taxas de **(VERIFICAR A TAXA DE COMUNICAÇÃO DO NETIC)**

4.3 Cabos

Abaixo segue as características recomendadas para o cabo utilizado na instalação:

- Cabo padrão Ethernet, 100Base-TX (FastEthernet), CAT 5e ou superior.
- Utilizar (preferencialmente) cabo blindado.
- Comprimento máximo: 100 m.

4.4 Topologia de Rede

A conexão do indicador Onix EtherNet/IP em rede Ethernet é feita geralmente em estrela com a utilização de um switch industrial.

Vista de um switch conectado ao Onix Ethernet (Inserir imagem)

4.5 Recomendações

O aterramento correto do equipamento diminui possíveis problemas causados por interferências oriundas de ambientes industrial. É recomendável seguir as seguintes recomendações:

- Utilizar cabos Ethernet com blindagem, bem como conectores que utilizem invólucro metálico;
- Efetuar a ligação do terra ao equipamento. Evitar a conexão do cabo em múltiplos pontos de aterramento, principalmente quando existir diferentes pontos de potenciais;
- Passar cabos de comunicação em vias dedicadas, evitando a passagem de cabos de alta potência próximos.

5 Parametrização

Serão descritos neste capítulos parâmetros do indicador de Pesagem Onix EtherNet/IP, vínculo com a comunicação Ethernet

5.1 Símbolos para Descrição das propriedades

Símbolo	Descrição	
SL	Somente Leitura	
SE	Somente Escrita	
PM	Posição de Memória	

5.2 Parâmetros

5.2.1 Leitura de Peso

PM	Faixa de valores	Propriedade
2, 3	0x0000 ~ 0xFFFF	SL

Descrição:

Este parâmetro permite efetuar a leitura de peso obtida pelo equipamento. Esta informação é composta de dois valores de 16bits. Segue abaixo o descritivo do armazenamento da informação:

Bits	Informação	Descritivo (PM 2)
15 ~ 8	STS	Status de pesagem
7 ~ 0	PESO_A	Primeira fração mais significativa da pesagem

Bits	Informação	Descritivo (PM 3)	
15 ~ 8	PESO_B	Segunda fração mais significativa da pesagem	
7 ~ 0	PESO_C	Última fração da pesagem	

Descrição Bits STS:

BITS	INFORMAÇÃO	
7	1: Peso Bruto, 0: Peso Líquido	
6	1: Sobrecarga	
5	1: Saturação do AD	
4	1: Peso Estável, 0: Peso não estável	
3	1: Peso Negativo, 0: Peso Positivo	
2, 1, 0	Posição Ponto decimal (Descrição na tabela abaixo)	

Descrição Bits Posição Ponto Decimal:

BIT 2	BIT 1	BIT 0	INFORMAÇÃO
0	0	0	Sem Ponto Decimal
0	0	1	Formato 0,0
0	1	0	Formato 0,00
0	1	1	Formato 0,000
1	0	0	Formato 0,0000

Observação: Valores de bits não contemplados na tabela acima não possuem configuração válida

Calculo da Informação Peso:

A informação peso é obtida através do calculo utilizando os dados PESO A, PESO B, PESO C e STS. O valor bruto da informação peso pode ser descrito conforme a formula abaixo.

Após o calculo descrito acima as informações de sinal e casas decimais devem ser inseridas.

Segue abaixo dois exemplo do processamento das informações de peso em linguagem C e em linguagem Ladder.

Exemplo em Linguagem C:

```
* Valores atributos pesoA_ethernetIP , pesoB_ethernetIP,pesoB_ethernetIP
    * e sts_ethernetIP são aqueles recebidos pelo protocolo EtherNetIP
   */
   float PESO(uint16_t pesoA_ethernetIP, uint16_t pesoB_ethernetIP, uint16_t
 pesoC_ethernetIP, sts_ethernetIP)
    {
        uint16_t peso;
        uint16_t p_decimal;
        uint16_t sinal;
        float peso_decimal;
        peso = (pesoA_ethernetIP * 65536) + (pesoB_ethernetIP * 256) +
pesoC_ethernetIP
        //mascara de bits com lógica AND para obtenção da configuração de casas
decimais
        p_decimal = sts_ethernetIP & 0b00000000000111;
        switch(p_decimal):
            case 1:
               peso_decimal = peso / 10;
               break;
            case 2:
                peso_decimal = peso / 100;
               break;
            case 3:
                peso_decimal = peso / 1000;
                break;
            case 4:
                peso_decimal = peso / 10000;
               break;
        }
        //mascara de bits com lógica AND para obtenção da configuração de sinal
da pesagem
        sinal = sts_ethernetIP & 0b000000000001000;
        if(sinal != 0x0000)
            peso_decimal *= -1;
        }
        * Em virtude de como a linguagem armazena os valores do tipo float
        * para que as casas decimais sejam exatamente em quantidade àquelas
        * desejadas deve ser tratado as casas decimais retornadas do armaze-
        * namento em variável
        */
        return peso_decimal;
    }
```


Imagem do exemplo em linguagem ladder

5.2.2 Leitura de Tara

РМ	Faixa de valores	Propriedade
4, 5	0x0000 ~ 0xFFFF	SL

Descrição:

Este parâmetro permite efetuar a leitura de tara obtida pelo equipamento. Esta informação é composta de dois valores de 16bits. Segue abaixo o descritivo do armazenamento da informação:

Bits	Informação	Descritivo (PM 4)
15 ~ 8	CASAS	Status de tara
7 ~ 0	TARA_A	Primeira fração mais significativa da tara

Bits	Informação	Descritivo (PM 5)
15 ~ 8	TARA_B	Segunda fração mais significativa da tara
7 ~ 0	TARA_C	Última fração da tara

Descrição Bits CASAS:

BITS	INFORMAÇÃO
2, 1, 0	Posição Ponto decimal (Descrição na tabela abaixo)

Observação: Valores de bits não contemplados na tabela acima não possuem configuração válida

Descrição Bits Posição Ponto Decimal:

BIT 2	BIT 1	BIT 0	INFORMAÇÃO
0	0	0	Sem Ponto Decimal
0	0	1	Formato 0,0
0	1	0	Formato 0,00
0	1	1	Formato 0,000
1	0	0	Formato 0,0000

Observação: Valores de bits não contemplados na tabela acima não possuem configuração válida

Calculo da Informação Tara:

A informação peso é obtida através do calculo utilizando os dados CASAS, TARA_A, TARA_B e TARA_C. O valor bruto da informação tara pode ser descrito conforme a formula abaixo.

Após o calculo descrito acima as informação de casas decimais devem ser inseridas.

Segue abaixo dois exemplo do processamento das informações de peso em linguagem C e em linguagem Ladder.

Exemplo em Linguagem C:

```
/*
```

^{*} Valores atributos pesoA_ethernetIP , pesoB_ethernetIP,pesoB_ethernetIP

^{*} e sts_ethernetIP são aqueles recebidos pelo protocolo EtherNetIP

```
float TARA(uint16_t taraA_ethernetIP, uint16_t taraB_ethernetIP, uint16_t
taraC_ethernetIP, casas_ethernetIP)
   {
        uint16_t tara;
        uint16_t t_decimal;
        float tara_decimal;
        tara = (taraA_ethernetIP * 65536) + (taraB_ethernetIP * 256) +
taraC_ethernetIP
        //mascara de bits com lógica AND para obtenção da configuração de casas
decimais
        t_decimal = casas_ethernetIP & 0b000000000000111;
        switch(t_decimal):
        {
            case 1:
               tara_decimal = tara / 10;
               break;
            case 2:
                tara_decimal = tara / 100;
                break;
            case 3:
                tara_decimal = tara / 1000;
               break;
            case 4:
                tara_decimal = tara / 10000;
                break;
        }
        * Em virtude de como a linguagem armazena os valores do tipo float
       * para que as casas decimais sejam exatamente em quantidade
        * àquelas desejadas deve ser tratado as casas decimais retornadas
        * do armazenamento em variável
        */
        return peso_decimal;
   }
```

Exemplo em Linguagem Ladder:

Imagem do exemplo em linguagem ladder

5.2.3 Leitura de Filtro

РМ	Faixa de valores	Propriedade
6	0x0000 ~ 0x000B	SL

Descrição:

Este parâmetro permite efetuar a leitura da configuração da "Função Filtro Digital - FIL" feita no indicador de pesagem.

Bits	Informação	Descritivo (PM 5)
15 ~ 0	Configuração	Configuração de FIL

A tabela abaixo apresenta todos os valores possiveis para FIL. É importante destacar que quanto maior o valor do filtro maior será a estabilidade entregue pelo sistema, consequentemente o tempo de resposta aumenta.

Valores	Filtro DIGITAL
0	Desabilitado - sem atuação do filtro
1,2,3,4,5,6,7,8,9,10,11	Filtro ativo

Observação1: Configuração de filtro valor de 1 a 8 são indicados para processos gerais, destacando que conforme o valor do filtro maior será seu tempo de resposta.

Observação2: Filtros com valores maiores ou iguais a 9 são indicados para pesagem de caminhões em movimento, tanques com agitadores e aplicações como balança de gado, observando que o tempo de resposta terá um incremento de tempo.

5.2.4 Leitura do Fator de Sensibilidade

Este parâmetro permite efetuar a leitura da configuração da "Função Fator de Sensibilidade".

Bits	Informação	Descritivo (PM 7)
15 ~ 0	Configuração	Configuração de Fator de Sensibilidade

A tabela abaixo apresenta todos os valores possiveis para Fator de Sensibilidade.

Valores	Fator de Sensibilidade
1	Respostas rápidas (ideal para pesagem e carga viva - Balança de gado)
2	Para plataformas até 50 Kg
3	Para plataformas até 100 Kg
4	Para plataformas até 1000 Kg
5	Para plataformas acima de 1000 Kg

5.2.4 Leitura de Pesagem Rápida (PrAP)

Este parâmetro permite efetuar a leitura da configuração da "Função de Pesagem rápida PrAP". Em aplicações onde deseja-se obter apenas o valor final de leitura não se preocupando com os intermediários torna a leitura mais dinâmica (100 milissegundos). Quando PrAP se encontra em seu modo ativo conforme Portaria 236/94 do INMETRO a estabilização do valor de leitura se dá após (500 milissegundos).

Bits	Informação	Descritivo (PM 8)
0	Configuração	Configuração de PrAP

A tabela abaixo apresenta todos os valores possíveis PrAP. É essa configuração possui apenas dois valores possíveis conforme descrito abaixo.

Valores	Fator de Sensibilidade
0	PrAP desabilitado
1	PrAP habilitado

5.2.5 Leitura de Unidade de Leitura (UnL)

Este parâmetro permite efetuar a leitura da configuração da "Função de Unidade de Leitura UnL". Esta leitura informa a unidade de leitura adotada na pesagem, sendo possível quatro configurações.

Bits	Informação	Descritivo (PM 9)
7,6,5,4,3,2,1,0	Configuração	Configuração de UnL

A tabela abaixo apresenta todos os valores possíveis de UnL. É essa configuração possui quatro valores possíveis conforme descrito abaixo.

Valores	Fator de Sensibilidade
0	Sem Unidade de Leitura
2	Tonelada - T
4	Kilograma - Kg
8	Grama - g