Quadratic Programming

The general QP is

min 9(x) = 1 x 6x + x c S.t. $A_e x = b_e$

Ax ≥b

XER

almost a linear program

except for the gradiance term in the objective

or equivalently:

min $g(x) = \frac{1}{2}x^{2}6x + x^{2}c$ s.t. aix = bi if & aix Zbi iez XER"

We will consider convex problems (620) Which serve as subproblems for later methods.

Min
$$g(x) = \frac{1}{2}x^{T}6x + x^{T}c$$

S.t. $Ax = b$
 $x \in \mathbb{R}^{n}$

The KKT conditions:

$$6x + C - \overline{A}\lambda = 0$$

 $Ax = b$

[G -AT][X*] [-c] [A O][X*] = [b] (First order necessary conditions)

which can be written in matrix form:

Our assurptions:

(1) $6 \ge 0$

(2) A is full rank

(3) ZT6Z > 0

ZOZ -

Example

Min
$$x^2 + y^2$$

St. $3x + y = 3$

6

 $f(x) = x^2 + y^2 = \frac{1}{2} \left[x \ y \right] \left[\frac{2}{0} \ 2 \right] \left[\frac{x}{y} \right] + \left[x \ y \right] \left[\frac{3}{0} \right]$
 $3x + y = 3 \Rightarrow \left[\frac{3}{3} \ 1 \right] \left[\frac{x}{y} \right] = \frac{3}{3}$

VICT: $\begin{bmatrix} 2 & 0 & -3 \\ 0 & 2 & -1 \\ 3 & 1 & 0 \end{bmatrix} \left[\frac{x}{y} \right] = \frac{3}{3}$
 $x + y = 0.9 \quad x_2^* = 0.3 \quad x^* = 0.6$

A computational Variant

Suppose x not necessarily optimal. Find a step > so that x*= x+p.

 $(6(x+p)+C-A\lambda=0)$ A(X+P)=6

example: x=(0) 6x+c= (3), Ax-b=0

Example X = ((1) 6x+c=(2) Ax-b=

An important condition let Z be The matrix whose columns form a basis for Null A. (AZ=0). Lemma. Let A have full row rank and ZGZ>0. Then $K = \begin{bmatrix} 6 & A^T \\ A & O \end{bmatrix}$ is invertible.

Proof: Suppose w, v satisfying $\begin{bmatrix} G & A^T \end{bmatrix} \begin{bmatrix} \omega \\ V \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \quad \text{If we}$

Show that W=0, V=0 is the Mique Solution then K is invertible.

First notice that AW = 0. So, $0 = [W^T V^T] \begin{bmatrix} G & A^T & W \\ A & O & V \end{bmatrix}$ $= [W^T V^T] \begin{bmatrix} GW + A^TV \\ AW \end{bmatrix}$

 $= \omega^T G \omega$

 $= \omega^{\mathsf{T}} \mathsf{G} \omega + \omega^{\mathsf{T}} \mathsf{A}^{\mathsf{T}} \mathsf{V} + \mathsf{V}^{\mathsf{T}} \mathsf{A} \omega$

Now $W \in NUHA$ so $\exists u \ni W = \overline{z}u$, so, $O = W^{\dagger} GW = (\overline{z}u)^{\dagger} G(\overline{z}u) = U^{\dagger} \overline{z}^{\dagger} G \overline{z}u$

Recause $Z_{62} > 0$, u = 0 and also $w = Z_{u} = 0$.

Finally GOV +ATV =0 => V=0.

Theorem. let A have full row rank and assume ZGZ >0. Then x* satisfying $\begin{bmatrix} 6 & A^{T} \\ A & 0 \end{bmatrix} \begin{bmatrix} x^{*} \\ x^{*} \end{bmatrix} = \begin{bmatrix} c \\ -b \end{bmatrix} \text{ is the}$ unique slobal minimizer of the ECRP. Proof: let x + x* be a feasible point and p= x*-x. Using the facts that Ap = 0 and $p^TG x^* = p^T(-c+A^T\lambda^*) = -p^TC$ we have $g(x) = \frac{1}{2}(x^{+}-P)^{T}G(x^{+}-P) + C^{T}(x^{+}-P)$ = 9(x*) + 1PTGP-PTGx*-CTP $= g(x^{*}) + \frac{1}{2}P^{7}6P$ Thus x* is the mique global minimizer.

Geometric interpretation

Solving the KKT system

Let
$$X^* = Y \times_y + Z \times_z$$
 (c)

Then Use (a) to solve for X_z^* .

Then $A(Z \times_z) = (AZ) \times_z = 0$
 $A(Y \times_y) = b - AZ \times_z = b$

Then $A(X \times_y) = b - AZ \times_z = b$

Then $A(X \times_y) = b - AZ \times_z = b$

Then $A(X \times_y) = b - AZ \times_z = b$

Then $A(X \times_y) = b - AZ \times_z = b$

Then $A(X \times_y) = b - AZ \times_z = b$

Then $A(X \times_y) = b - AZ \times_z = b$

$$\Rightarrow Z^{T}6Z \times_{Z}^{*} = -(Z^{T}6Y \times_{Y}^{*} + Z^{T}C) \quad (a)$$

$$\neq AY \times_{Y}^{*} = b \quad (b)$$