Guilherme Bilbao Soares da Silva

Emissora FM em São Pedro de Alcâtara

Trabalho de conclusão de curso apresentado como parte das atividades para obtenção do título de tecnólogo em sistemas de telecomunicações do Instituto Federal de Santa Catarina - IFSC

Orientador

Prof. Jaci Destri

Trabalho de conclusão de curso sob o título " *Emissora Fm em São Pedro de Alcâtara*", defendida por Guilherme Bilbao Soares da Silva e aprovada 12 de fevereiro de 2008, em São José, Estado de Santa Catarina, pela banca examinadora constituída pelos professores:

Prof^a. Fulana de Tal Orientadora

Prof^a. Dr^a. Beltrana de Tal Nome da Instituição

Prof. Dr. Beltrano de Tal Universidade Imaginária

Agradecimentos

Ao término deste trabalho, deixo aqui meus sinceros agradecimentos:

- a Deus por tudo;
- ao Prof. Dr. NOME DO PROFESSOR ORIENTADOR, por toda dedicação, paciência e estímulo em sua orientação;
- a todos os professores do Departamento de NOME DO DEPARTAMENTO da NOME DA INSTITUIÇÃO;
- Aos professores NOME DOS PROFESSORES DA PRÉ-BANCA E/OU BANCA pelas valiosas sugestões;
- a minha família, pelo incentivo e segurança que me passaram durante todo esse período;
- aos amigos do curso de NOME DO CURSO QUE ESTÁ REALIZANDO pelo agradável convívio;
- a todos que direta ou indiretamente contribuíram para a realização deste trabalho;
- à NOME/SIGLA DA INSTITUIÇÃO DE FOMENTO pelo auxílio financeiro.

Resumo

Digite seu resumo aqui.

Sumário

Introdução

1		ANO BÁSICO DE DISTRIBUIÇÃO DE CANAIS DE RADIODIFUSÃO SORA EM FREQUÊNCIA MODULADA (PBMF)	12
	1.1	CANALIZAÇÃO	12
2	RES	SOLUÇÃO Nº 67, DE 12 DE NOVEMBRO DE 1998	14
	2.1	RECOMENDAÇÃO UIT-R P.1546	14
		2.1.1 Conceitos básicos	15
	2.2	ADAPTAÇÕES DA RECOMENDAÇÃO	16
		2.2.1 Nível médio do terreno	16
		2.2.2 Altura da antena transmissora	16
	2.3	PARÂMETROS NECESSÁRIOS PARA O CÁLCULO DE VIABILIDADE TÉCNICA	16
		2.3.1 Contorno Protegido	16
		2.3.2 Contornos Interferentes	17
3	CAN	NAL PROPOSTO	18
	3.1	CARACTERÍSTICAS BÁSICAS	18
	3.2	ENQUADRAMENTO NA CLASSE	18
	3.3	NÍVEL MÉDIO DO TERRENO E ALTURA ACIMA DO NÍVEL MÉDIO DO TERRENO	19
		3.3.1 Nivel Médio da Radial (NMR) e Nivel Médio do Terreno (NMT)	19
		3.3.2 Altura Acima do Nível Médio do Terrreno	22

Re	eferên	ıcias		33										
5	5 Considerações Finais													
		4.1.4	Ajustes de equipamentos	24										
		4.1.3	Transmissor	24										
		4.1.2	Guia de onda e conectores	24										
		4.1.1	Antena	24										
	4.1 SISTEMA IRRADIANTE													
4	CÁLCULO DE VIABILIDADE													
	3.4	CONT	ORNO PROTEGIDO	23										

Introdução

Estudo e compreensão das normas mais recentes em relação à transmissão de rádio FM, utilizando ferramentas livres oferecidas pela ANATEL

Realizar um estudo de viabilidade técnica de um canal de rádio em frequência modulada, baseando-se num cenário real. Colocar em prática os conhecimentos obtidos das recomendações, aplicando em situação real e possível. Com os resultados obtidos, será elaborada uma solução para cada eventual problema que surgir.

Este projeto tem como objetivo criar uma documentação técnica, que reuna todos os requisitos necessários para que uma emissora de rádio possa ser homologada pela ANATEL, (de acordo com a Resolução N° 67) e, assim, ser utilizada comercialmente.

O que definiu o local de São Pedro de Alcântara como o escolhido para desenvolver este projeto da emissora FM foi, principalmente, o fator "cenário real", proporcionado pela disponibilidade do canal 238,na frequência de XXX Mhz e enquadrado na classe C (classificação das emissoras), atráves do plano básico administrado pela ANATEl. A idéia de desenvolver um projeto que poderia ser realmente implantado, foi uma motivação a mais. Todos os cálculos, ítens e materiais, que foram definidos e documentados neste projeto, foram pensados e analisados com os cuidados de uma possível execução no futuro.

Outro ponto, é a relativa facilidade de acesso (São Pedro de Alcântara é um município vizinhho à São José), isto foi importante para verificação e definição do ponto onde ficaria o sistema emissor. Ao visitar o local, verificamos que já existia uma antena (moradores informaram que trata-se de uma antena de transmissão de TV analógica) em um terreno no centro do município.

Constatando que existe espaço para uma construção de uma nova torre, partimos do princípio que o local, no centro do município, é o mais indicado para instalar nossa estrutura. Assim, definimos o ponto de origem da emissora, exatamente nas coordenadas (informar latitude e longitude).

Encontrado o ponto de partida, deu-se início aos cálculos, para definições dos equipamentos e materiais que vão compor a emissora FM.

Nos próximos capítulos, todas os procedimentos, que são necessários para homologar uma

emissora junto a ANATEL, serão apresentados, de uma forma pratica e direta.

1 PLANO BÁSICO DE DISTRIBUIÇÃO DE CANAIS DE RADIODIFUSÃO SONORA EM FREQUÊNCIA MODULADA (PBMF)

O PBFM foi aprovado em 12 de novembro de 1998, através da Resolução nº67 (referencia), e nele constam os canais FM previstos para uso, em todo o território nacional. aixa de radiodifusão sonora em freqüência modulada estende-se de 87,8 a 107,9 MHz, e é dividida em 103 canais (os canais 198,199 e 200 são para uso exclusivo das estações de ROADCOM), cujas portadoras estão separadas de 200 kHz. Cada canal é identificado por sua frequência central, que é a freqüência da portadora da estação de FM. A cada canal é atribuído um número de 198 a 300.

1.1 CANALIZAÇÃO

A tabela de Canalização da Faixa de FM atual foi publicada na RESOLUÇÃO N°546, DE 1° DE SETEMBRO DE 2010, que altera o Regulamento Técnico para Emissoras de Rádiodifusão Sonora em Frequência Modulada. A tabela 1.1, que segue, foi retirada da RESOLUÇÃO e apresenta a faixa de frequência para cada canal FM definido pelo Plano Básico.

FREQUÊNCIA	CANAL	FREQUÊNCIA	CANAL	FREQUÊNCIA	CANAL
(MHz)		(MHz)		(MHz)	
87,5	198	94,5	233	101,5	268
87,7	199	94,7	234	101,7	269
87,9	200	94,9	235	101,9	270
88,1	201	95,1	236	102,1	271
88,3	202	95,3	237	102,3	272
88,5	203	95,5	238	102,5	273
88,7	204	95,7	239	102,7	274
88,9	205	95,9	240	102,9	275
89,1	206	96,1	241	103,1	276
89,3	207	96,3	242	103,3	277
89,5	208	96,5	243	103,5	278
89,7	209	96,7	244	103,7	279
89,9	210	96,9	245	103,9	280
90,1	211	97,1	246	104,1	281
90,3	212	97,3	247	104,3	282
90,5	213	97,5	248	104,5	283
90,7	214	97,7	249	104,7	284
90,9	215	97,9	250	104,9	285
91,1	216	98,1	251	105,1	286
91,3	217	98,3	252	105,3	287
91,5	218	98,5	253	105,5	288
91,7	219	98,7	254	105,7	289
91,9	220	98,9	255	105,9	290
92,1	221	99,1	256	106,1	291
92,3	222	99,3	257	106,3	292
92,5	223	99,5	258	106,5	293
92,7	224	99,7	259	106,7	294
92,9	225	99,9	260	106,9	295
93,1	226	100,1	261	107,1	296
93,3	227	100,3	262	107,3	297
93,5	228	100,5	263	107,5	298
93,7	229	100,7	264	107,7	299
93,9	230	100,9	265	107,9	300
94,1	231	101,1	266		
94,3	232	101,3	267		

Tabela 1.1: CANALIZAÇÃO DA FAIXA DE FM

2 RESOLUÇÃO Nº 67, DE 12 DE NOVEMBRO DE 1998

A Resolução $n^{\circ}67$ aprova o Regulamento Técnico para Emissoras de Radiodifusão Sonora em Frequencia Modulada. Tem por objetivo disciplinar a utilização da faixa de 87,8 a 108 MHz, no serviço de radiodifusão sonora em frequência modulada e em serviços nela executados, para oferecer um serviço de boa qualidade, evitar interferências sobre outros serviços de telecomunicações regularmente autorizados e reduzir possibilidades de danos físicos à população. Para isto, estabelece requisitos mínimos para os equipamentos utilizados em radiodifusão sonora em frequência modulada, afim de, além de atender o exposto anterior, racionalizar sua produção industrial.

Este é o documento principal que será usado para a realização deste projeto, pois informa todas as especificações mínimas necessárias para que uma emissora de rádio FM possa ser instalada e liberada para iniciar seus serviços. Um fator importante é ficar atento as novas resoluções que atualizam este regulamento, para que o projeto possa atender as novas exigências.

A última resolução, que altera o regulamento aprovado na resolução nº 67, foi a de nº 546. Esta altera alguns aspectos importantes para o desenvolvimento do projeto. Como exemplo posso citar a classificação das emissoras em função de seus requisitos máximos e as curvas de intensidade de compo (E (50,10) e E (50,10)),vindos da Recomedação UIT-R P.1546.

As resoluções podem ser consultadas através do portal da ANATEL, através do link http://legislacao.anatel.gov.br/resolucoes/

2.1 RECOMENDAÇÃO UIT-R P.1546

*** veririfcar se este topico se enquadra neste trabalho realmente *** *** verificar a tabela de intensidade de campo na ultima resolução e bater com as encontradas nos mesus calculos ***

2.1.1 Conceitos básicos

A seguir serão descritos parâmetros básicos muitos utilizados nos cálculos.

Altura acima do nível médio do terreno

A altura acima do nível médio do terreno (HNMT) é um valor que representa o nível do terreno ao redor da base transmissora.

Para encontrar o seu valor, deve-se obter cotas entre as distâncias de 3 e 15Km da antena e fazer uma média aritmética dos pontos obtidos. As alturas podem variar de 10 a 1200m, conforme a recomendação, porém o documento tembém descreve um método para, caso seja necessário, extrapolar esses valores.

Curvas E(L,T)

São gráficos que representam a intensidade de campo excedida em L% das localidades e T% do tempo. O método é válido apenas para distâncias de 1 a 1000km da antena transmissora. Os valores tabulados pela recomendação foram obtidos com freqüências de valores nominais iguais a 100, 600 e 2000MHz; HNMT de 10, 20, 37,5, 75, 150, 300, 600 e 1200m; porcentagem de tempo de 1, 10 e 50%. Uma curva é traçada para cada tipo de percurso e freqüência. Os percursos considerados são: terrestre, sobre o mar morno e sobre o mar frio.

Novamente são descritos métodos para obter intensidade de campo quando esses valores não forem exatamente iguais aos tabulados.

As curvas utilizadas neste estudo são a E(50,50) e E(50,10) que podem ser encontradas na referência [2].

***Indicar a referência do TCC

Implementação computacional da recomendação

Verificar sobre a utilização do MATLAB (se sobrar tempo...)

2.2 ADAPTAÇÕES DA RECOMENDAÇÃO

2.2.1 Nível médio do terreno

Para efeitos de cálculo, no Brasil o nível médio do terreno (NMT) é calculado obtendo-se 12 valores de nível médio da radial (NMR). O NMR por sua vez é obtido calculando a média aritmética de pelo menos 50 cotas igualmente espaçadas, compreendidas entre as distâncias de 3 a 15km da antena transmissora.

As 12 radiais devem ser também igualmente espaçadas de 30 em 30 graus, e deve incluir a radial do norte verdadeiro. O NMT é então obtido, fazendo-se também uma média aritmética, dos NMR.

***Indicar a referência do TCC

2.2.2 Altura da antena transmissora

Apesar de ser possível calcular a intensidade de campo para valores fora da faixa de 10 a 1200m para altura da antena transmissora, a resolução considera esses os valores máximos. Ou seja, quando a HNMT da antena for interior a 10m, deve ser tomado o valor de 10m, e quando exceder os 1200m, este valor que deve ser considerado.

***Indicar a referência do TCC

2.3 PARÂMETROS NECESSÁRIOS PARA O CÁLCULO DE VIABILIDADE TÉCNICA

Utilizando os métodos mencionados, vamos calcular os valores necessários para que um canal de rádio FM possa ser viabilizado.

2.3.1 Contorno Protegido

O contorno protegido é a distância entre a antena transmissora até o local geométrico onde a intensidade de campo E(50,50) apresenta o valor de 66 $dB\mu V/m$, para um canal de rádio FM. A resolução define, através da ultima alteração (resolução nº 546), que , para a classe C, a distância máxima ao contorno protegido é de 7,5 KM, a partir da base da antena transmissora.

2.3.2 Contornos Interferentes

*** Verificar ***

3 CANAL PROPOSTO

Para que possa ser autorizado pela ANATEL a utilização de um canal de rádio FM, além da documentação solicitada conforme a resolução, deve ser considerada as características básicas do canal.

3.1 CARACTERÍSTICAS BÁSICAS

Ao analizar os canais disponíveis no Plano Básico de Distribuição de Canais de Radiodifusão Sonora em Frequencia Modulada, observou-se a existência de um canal 238 disponível para a região do município de São Pedro de Alcântara.

O canal é enquadrado na classe C, sendo assim, deve seguir os requisitos máximos que caracterizam os canais autorizados para esta classe.

3.2 ENQUADRAMENTO NA CLASSE

O canal que será usado para esta emissora FM está enquadrado na classe C, conforme apresentado no plano básico (ANEXO I), e para que o projeto fique enquadrado nesta classe, deve ser respeitado seus requisitos máximos, que podem ser verificados na tabela 3.1.

Porém, a resolução aceita algumas diferenças aos requisitos apresentados, desde que, ainda assim, respeite algumas condições. Segue estas observações, que são informadas na resolução $N^{\circ}546$:

a)Poderão ser utilizadas alturas de antena ou ERP superiores às especificadas na tabela 3.1, desde que não seja ultrapassada, em qualquer direção, a distância máxima ao contorno protegido.

b)Apenas para as emissoras de classe C poderá ser permitida a utilização de transmissor com potência nominal inferior a 50 W.

		-								
			REQUISITOS MÁXIMO	S						
	POT	ÊNCIA	DISTÂNCIA MÁXIMA AO	ALTURA DE						
CLASSES	(E	ERP)	CONTORNO PROTEGIDO	REFERÊNCIA SOBRE						
	1-337	JD1-		O NÍVEL MÉDIO DA						
	kW	dBk	(66dBµ) (km)	RADIAL (m)						
E1	100	20,0	78,5	600						
E2	75	18,8	67,5	450						
E3	60	17,8	54,5	300						
A1	50	17,0	38,5	150						
A2	30	14,8	35,0	150						
A3	15	11,8	30,0	150						
A4	5	7,0	24,0	150						
B1	3	4,8	16,5	90						
B2	1	0	12,5	90						
C	0,3	-5,2	7,5	60						

Figura 3.1: CLASSIFICAÇÃO DAS EMISSORAS EM FUNÇÃO DE SEUS REQUISITOS MÁXIMOS

c)As distâncias apresentadas na TABELA I foram obtidas para o canal 201 e servem como referência para elaboração de estudos sem o uso de ferramentas computacionais.

3.3 NÍVEL MÉDIO DO TERRENO E ALTURA ACIMA DO NÍVEL MÉDIO DO TERRENO

A seguir vamos apresentar o método usado para o reconhecimento geométrico do local onde será instalado a emissora. Estes dados são de extrema importância para o sucesso do projeto.

3.3.1 Nivel Médio da Radial (NMR) e Nivel Médio do Terreno (NMT)

A resolução exige que sejam traçadas ao menos 12 radias com espaçamento angular de 30° e com pelo menos 50 cotas, igualmente espaçadas. O ponto previamente definido, como sendo o local onde a antena será fixada, será a origem das radias. Para traçar estas radias, usei os mapas disponíveis no site do IBGE (citar fonte)(edição de 08-10-2007), na escala 1 : 50.000. Através destas radiais vamos conseguir obter as altitudes do relevo ao redor da base da antena. Esses valores servirão de base para definir todas as características do nosso sistema. As radiais foram traçadas a partir do ponto (coordenadas)(local da antena) e deve, obrigatóriamente, incluir a direção do norte Verdadeiro.

Após os 12 raios traçados, calcula-se o Nível Médio da Radial (NMR) para cada uma delas. O NMR é definido pela média aritimética de todas as cotas da radial, que, de acordo com a

norma, devem ser compreendidas no trecho entre 3 e 15 quilômetros. Para obter esses valores das cotas, no caso os 50 valores correspondentes a alturas do terreno dentro da cada radial, existe uma ferramenta díponível no portal online da ANATEL, o SIGANATEL (citar fonte).

*** Indicar como faz para usar a ferramenta online (cadastro, links, até chegar aos gráficos.)

*** Esta é uma ferramenta que apresenta um gráfico com a projeção geográfica desejada. Para usar esta recurso basta apenas inserir as coordenadas dos pontos inicial e final de cada radial (3kM e 15kM) e o passo, em metros, desejado para a construção da curva (12/quantidade de passos)

Como exemplo, demostro um dos gráficos (Figura 3.2) que usei para este estudo. Note que usei um passo de 240 metros para cada medição, este é o valor mínimo exigido pela resolução. A partir deste gráfico, retirei os valores para descobrir o NMR de cada radial.

Figura 3.2: Gráfico NMR usando o recurso da SIGANATEL (Radial 1)

De posse dos resultados dos NMR's, podemos agora encontrar o nível medio do terreno (NMT), que é a média aritmética das 12 NMRs, tornando o terreno simbolicamente plano e de altura conhecida.

A tabela 3.1 apresenta os valores encontrados nas 12 radiais. Esta tabela indica as altidudes encontradas dos 50 pontos ao longo de cada radial, possibilitando obter a média para encontrar o NMR e, consequentemente, o NMT de 288,33*m*, como pode ser observado.

Tabela 3.1: Mapeamento das altitudes de cada radial

	_							_		_	_		_	_	_	_			Г	_	_						_	a	_	_	_		_					_	_	_		_						_	_	_
NMT Alt. Média (m)		300,91	289.58	20,702	270.00	249.25	243.33	249,55	232.50	232,30	2005	200,28	16,777	222,33	218,75	240,50	262,00	268,33	2/8,16	275,75	279,16	295,00	272,08	271,00	5,072	278,33	290.83	302,50	294,58	306,25	306,25	292,08	294,16	310,42/	334 58	334.83	344,00	310,42	307,25	300,000	344,00	348,75	338,42	325.00	335.58	330.16	324,92	306,25	14416,66	288,33
Radial 12 Altitude(m)	()	9 9	6 4	2 4	6 4	949	140	130	25	5.5	, ,	35	82	120	150	190	310	230	130	104	190	190	212	300	310	405	410	440	480	530	580	089	089	730	830	840	810	800	750	800	780	720	730	017	069	650	675	069	20266	405,32
Radial 11 Altitude(m)	140	0.5	140	150	250	300	350	345	050	200	150	051	011	SII	150	270	300	300	320	340	797	300	300	380	370	380	470	500	450	460	530	590	730	840	750	730	730	009	510	515	550	200	410	005	550	009	605	200	20605	412,1
Radial 10 Altitude(m)	000	990	340	350	270	210	270	350	730	255	350	300	370	450	9440	490	200	550	2/0	590	280	640	280	009	000	740	710	720	765	750	700	009	625	050	000	695	700	625	570	575	650	720	770	0//	750	730	760	800	28980	579,6
Radial 09 Altitude(m)		300	290	340	335	310	310	340	370	330	050	3/0	420	400	350	350	375	470	530	570	655	020	020	900	200	525	510	260	550	470	480	520	200	200	540	260	580	009	610	089	999	750	740	640	009	280	570	580	25105	502,1
Radial 08 Altitude(m)	215	320	355	908	475	430	370	380	330	280	700	270	370	3/0	375	425	200	535	240	460	480	200	450	430	375	340	310	230	210	230	280	250	250	280	350	310	390	370	390	430	470	450	480	540	240	550	520	490	19740	394,8
Radial 07 Altitude(m)	400	900	435	30	280	350	325	250	200	2007	2.5	100	Ç (8 :	22	53	51	70	8	130	57	115	115	130	115	110	195	150	100	130	150	00	130	001	150	105	40	50	70	100	150	170	150	135	120	200	70	55	7579	196,86
Radial 06 Altitude(m)	020	245	080	300	300	305	260	270	320	320	9 6	430	6/4	8/4	0 440	430	004	380	320	230	150	001	08	90	0°	25	30	40	09	50	25	25	50	140	150	150	100	06	110	180	170	150	130	200	220	200	180	100	9843	158,38
Radial 05 Altitude(m)	470	530	550	540	470	450	350	355	310	350	200	200	250	245	255	253	285	285	250	275	270	720	220	700	150	130	130	170	200	250	220	160	210	240	340	380	410	350	300	200	180	175	130	35	£ 5	30	35	10	12523	250,46
Radial 04 Altitude(m)	000	340	260	022	057	220	250	250	190	230	240	240	250	235	061	195	225	215	230	215	240	320	330	220	200	205	250	315	300	340	300	200	09	2 52	200	23	23	20	17	20	23	25	23	20	27	17	19	25	8310	166,2
Radial 03 Altitude(m)	320	325	350	360	325	275	180	200	135	133	, 20	/6	CII	45	40	\$	43	40	20	00 ;	150	190	180	130	220	180	160	195	195	250	190	160	80	20	30	20	25	09	140	300	350	370	365	021	200	220	150	130	8457	169,14
Radial 02 Altitude(m)	200	290	081	183	80	45	2 8	90	201	001	000	30	0 1	c :	30	000	30	25	30	30	30	30	30	30	175	155	130	100	09	50	70	09	100	20	90.	808	50	09	35	50	09	80	35	5 6	2 2	5 2	15	15	3673	73,46
Radial 01 Altitude(m)	050	325	225	001	125	30	25	25	70	6	90	671	140	ç :	150	501	125	120	238	265	2/0	057	000	0 00	125	145	185	210	165	165	150	160	115	30	125	125	270	100	185	150	08	75	86	200	240	270	300	280	7919	158,38
-/- Distancia.(m)	2040	3240	3720	3060	4200	4440	94680	4620	0764	5100	700	2640	2880	6120	6360	0099	0840	7080	/320	7560	7800	8040	8280	0250	0006	9240	0480	9720	0966	10200	10440	10680	10920	11160	11640	11880	12120	12360	12600	12840	13080	13320	13560	14040	14280	14520	14760	15000	Soma	NMR(m)

Os NMR's encontrados neste processo serão usados para obter todos os valores de intensidade de sinal para cada uma das radias, como informaremos mais à frente.

3.3.2 Altura Acima do Nível Médio do Terrreno

No momento que já temos definidos os níveis médios do terreno para cada uma das 12 radiais, devemos encontrar o valores de HNMT (Altura do nível médio do terreno) também para cada radial. Estes valores serão usados para definir os valores de intensidade do campo, que formarah o contorno protegido de $66dB\mu$ Os valores de HNTM serão utilizado as Curvas de Intensidade de Campo, que será posteriormente abordada com maiores detalhes.

O HNTM é definido pela expressão:

$$HNMT = HBT + (HT + CFSI) - NMT$$

, onde:

HBT = Altura da base da torre (Altura do terreno onde será instalada a base da emissora);

HT = Altura da torre;

CFSI = Centro de Fase do Sistema Irradiante,(normalmente este valor já vem pré determinado e varia conforme o número de elementos);

NMT = Nível Médio do Terreno.

Levando em consideração as observações apresentadas no enquadramento de classe, vamos começar a definir a nossa HNTM.

Utilizando o SIGANATEL, informando as coordenadas tal e tal, buscamos a altura do terreno da nossa base, que resultou em 285m acima do nível do mar. Assim, já temos nosso primeiro parâmetro definido. (mostrar imagem do siganatel ou google maps)

$$HBT = 285m$$

Mais um fato curioso, e compreensível, é que o HBT tem um valor muito próximo do já encontrado NMT (288,33*m*), demostrando que o relevo, nas redondezas, tende à manter a mesma altura da nossa base. Porém, devemos tomar cuidado com este valor, pois trata-se de uma média das 12 radias.

Se analisarmos os valores de NMR apresentados na tabela tal, notaremos que a região

voltada ao Oeste (Sudoeste - Noroeste) da base emissora, apresenta níveis de altura do terreno maiores que a base, enquanto as outras regiões são todas mais baixas. Os obstáculos atrapalham na propagação do sinal, então teremos que fazer um esforço maior nos locais onde os terrenos são mais elevados que a antena, e, ao mesmo tempo, cuidar para que o contorno protegido seja respeitado.

Embora a vida útil de uma torre de estrutura metálica (a mais utilizada) e a de um transmissor, sejam ambas de cerca de 20 anos, o transmissor apresenta, além de um custo de manutenção muito superior ao da torre, alto gasto de energia elétrica, fazendo com que, normalmente, seja mais recomendável o aumento da altura da torre, em vez da potência do transmissor.

3.4 CONTORNO PROTEGIDO

4 CÁLCULO DE VIABILIDADE

4.1 SISTEMA IRRADIANTE

- **4.1.1** Antena
- 4.1.2 Guia de onda e conectores
- 4.1.3 Transmissor
- 4.1.4 Ajustes de equipamentos

Potência efetiva irradiada máxima (ERPmax)

Conforme a determinação publicada na RESOLUÇÃO N° 546, DE 1º DE SETEMBRO DE 2010, que Altera o Regulamento Técnico para Emissoras de Radiodifusão Sonora em Freqüência Modulada, segue os cálculos:

Para determinar a intensidade de campo de uma emissora a uma dada distância,utilizam-se as Tabelas 4.1 e 4.2 da seguinte forma:

a) selecionar a coluna correspondente à altura do centro geométrico da antena h1 sobre o NMR da Radial 0;

$$h1 = hbt - NMT + ha$$

*h*1 é a altura da antena transmissora em m;

hbt é a altura do terreno da antena em relação ao nível do mar em m;

NMT é o nível médio do terreno em m;

ha é a altura da antena acima do solo em m.

h1 = 285m - 158,38 + 20m

h1 = 146,62m

b) selecionar a linha correspondente à distância de interesse;

A tabela 4.1 não mostra com precisão o valor de intensidade de campo. Para os valores de *h*1 que não estiverem muito bem próximos a uma curva definida na Tabela, deve-se usar a seguinte fórmula 2 (*marcar fórmulas) para encontrar os valores de *E* para cada Radial:

$$E = Einf + (Esup - Einf)log(h1/hinf)/log(hsup/hinf) - > dB(\mu V/m)$$

Onde:

E é o valor de intensidade de campo em $dB(\mu V/m)$, em função de h1,para a distância d desejada;

Einf é o valor de intensidade de campo em $dB(\mu V/m)$ para uma altura hinf, extraída das curvas;

Esup é o valor de intensidade de campo em $dB(\mu V/m)$, para uma altura hsup extraída das curvas;

hin f é a altura nominal da antena em m, com valor imediatamente inferior a h1;

hsup é a altura nominal da antena em m, com valor imediatamente superior h1.

Apresentarei o cálculo utilizando a fórmula para encontrar o valor de intensidade do campo, para a Radial 0:

$$E = Einf + (Esup - Einf)log(h1/hinf)/log(hsup/hinf) -> dB(\mu V/m)$$

$$E = 72dB\mu + (77dB\mu - 72dB\mu)log(146,62m/75m)/log(150m/75m)$$

$$E = 72dB\mu + (5dB\mu)log(1,955)/log(2)$$

$$E = 72dB\mu + (5dB\mu) + 2,9dB\mu - 3dB\mu$$

$$E = 72dB\mu + (5dB\mu) + 2,9dB\mu - 3dB\mu$$

$$E = 76,9 dB\mu$$

c) a interseção de a) com b), contém o valor da intensidade de campo na distância desejada, em $dB\mu$, para uma ERPde 1kW;

Neste caso, como foi usada a fórmula 2, esta etapa ja foi concluída no item *b*).

d) adiciona-se ao valor (em $dB\mu$) obtido, o valor da ERP na direção de interesse (em dBk); este resultado é o valor da intensidade de campo, em $dB\mu$, no ponto considerado.

Minha ERP calculada ficou:

Após verificar várias maneiras de aumentar a potência do transmissor, de maneira que não desrespeite o contorno protegido de $66dB\mu$, segue minhas deduções para a potência do transmissor:

- Utilizando 4 antenas dipolo na torre de transmissão, podemos usar um transmissor de 150W (0,150 KW). Isso foi possível pois as antenas são conectadas em série, distribuindo em partes iguais a potência para cada uma delas (37,5 W para cada dipolo da torre), ou seja, 14,25dBk.
- Está definido que a antena (colocar o nome tecnico da antena) proporciona um ganho de 1,5dB para o sistema.
- Eficiência da linha, basicamente atenua a transmissão em -2dB de acordo com os seguintes cálculos:

$$Pl = (LxAl)/100$$

, onde:

L = comp. do guia de onda em metros = c/f = 300000/91500 = 3,278m (c = vel.luz f = frequencia transmissão)

Al =é a atenuação do guia a cada 100 metros de comp. Em dB = 1,13dB p/ o cabo LCF78 - 50JA - A8. (cabo homologado)

Entao Pl = (3,278x1,13)/100 = 0.037dB, então temos a perda total somando 0.037dB com 2dB das perdas dos conectores média estabelecida (2,037db).

- Logo, o intensidade do sinal irradiado, Radial 0, para o contorno 2 será definida por:

$$ERP = -14,25dBk + 1,5dB - 2,037dB$$

$$ERP = -14,78dBk$$
 (valor de ERP base)

- Para a Radial 0, de acordo com a antena usada, o valor de $(E/Emax)^2$ é 1.00, então o valor de ERP não sofre alterações para esta direção.

Para definir o valor do contorno para a Radial 0, temos que somar a intensidade do campo ($E = 76,9dB\mu$) com o valor de ERP (ERP = -14,78dBk), que totaliza :

$$ContornoR0 = 76,9dB\mu + (-14,78dBk) = 62,11dB\mu$$

, à 7,5 Km da base.

Assim, esta radial está respeitando a norma que exige, conforme a tabela, que para a classe C, a distância máxima ao contorno protegido é de 7,5km com a potencia de irradiação de 66dBm, no máximo, para esta distância.

Porém, devemos ter uma atenção especial para a radial que apresente a NMR mais baixo em relação a base da antena. No nosso caso, a radial que apresenta este valor é a Radial 1 com o valor de NMR = 73,46 m. Então vamos repetir os cálculos para esta radial e verificar os resultados.

a) selecionar a coluna correspondente à altura do centro geométrico da antena *h*1 sobre o NMR da Radial 1;

$$h1 = hbt - NMT + ha$$

$$h1 = 285 \text{m} - 73,46 + 20 \text{m}$$

$$h1 = 231,54$$

b) selecionar a linha correspondente à distância de interesse;

Aplicando a fórmula 2 para encontrar o valor:

$$E = Einf + (Esup - Einf)log(h1/hinf)/log(hsup/hinf) -> dB(\mu V/m)$$

$$E = 77dB\mu + (82dB\mu - 77dB\mu)log(231,54/150)/log(300/150)$$

$$E = 77dB\mu + (5dB\mu)log(1,5436)/log(2)$$

$$E = 77dB\mu + 5dB\mu + 1,88dB - 3dB$$

$$E = 80,88dB\mu$$

c) a interseção de a) com b), contém o valor da intensidade de campo na distância desejada, em $dB\mu$, para uma ERPde 1kW;

Temos que pular essa etapa pois já temos o valor encontrado pelo cálculo ($80,88dB\mu$).

d) adiciona-se ao valor (em $dB\mu$) obtido, o valor da ERP na direção de interesse (em dBk); este resultado é o valor da intensidade de campo, em $dB\mu$, no ponto considerado.

ERP já encontrado anteriormente é -14,78dBk, mas ainda temos que multiplicar com o valor de $(E/Emax)^2$ (valor pré informado na tabela do sistema irradiante).

Valor para Radial
$$1 = (E/Emax)^2 = 0,9025$$

Para multiplicar, temos que converter para potencia(W):

$$ERP(W) = 10^x, ondex = ERP(dBk)/10$$

$$ERP(W) = 33,26W$$

Multiplicando fica:

$$ERPradial1(W) = 33,26(0,9025); ERPradial1(W) = 30,01W$$
, em dBk fica:

$$ERPradial1(dBk) = -15,22dBk.$$

Logo, o intensidade do sinal na distância final é:

$$ContornoR1 = 80,88dB\mu + (-15,22dBk) = 65,66dB\mu$$

, para a Radial 1

De acordo com a norma, o contorno protegido deve apresentar, no seu limite máximo, a potencia máxima de $66dB\mu$, o resultado mostra que estamos logo abaixo deste valor. Como esta é a Radial em que o sinal consegue se propagar mais livremente, devido ao NMR ser o mais baixo da lista, consequentemente também será o que terá o sinal mais forte, entre as radiais, no limite do contorno protegido.

Tabela 24.1: Contorno das diversas áreas de serviço segundo cada radial

	_		_										_		_	
		C3 (Km)	21	24	18	18,5	12	17	21	8,9	6,9	7	6,9	8,9		
Contorno 3		54 dbu	62,29	63,35	64,14	64,28	64,14	63,35	62,29	61,24	60,57	60,13	60,57	61,24		
		C2 (Km)	10,3	12,5	10	6	∞	10	11	3,2	3,4	3,5	3,4	3,2		
Contorno 2		nqp 99	74,29	75,35	76,14	76,28	76,14	75,35	74,29	73,24	72,57	72,13	72,57	73,24		
		C1 (Km)	5,5	6,2	5	5	3,6	5	5,8	1,8	1,9	2	1,9	1,8		
Contorno 1		74 dbu	82,29	83,35	84,14	84,28	84,14	83,35	82,29	81,24	80,57	80,13	80,57	81,24		
Potência	Proposta	Perp(dBk)	-8,29	-9,35	-10,14	-10,28	-10,14	-9,35	-8,29	-7,24	-6,57	-6,13	-6,57	-7,24		
Potência	Proposta	Perp(KW)	0,1482	0,1159	9960,0	0,0936	9960,0	0,1159	0,1482	0,1886	0,2198	0,2436	0,2198	0,1886		
HSMNT (E/Emax) Potência	for square		0,6084	0,4761	0,3969	0,3844	0,3969	0,4761	0,6084	0,7744	0,9025	1,00	0,9025	0,7744		
HSMNT	(m)		189,19	274,11	178,46	181,37	97,57	150,71	195,99	-47,23	-154,53	-231,53	-64,53	-57,75		
NMT	(m)		158,38	73,46	169,14	166,2	250,46	196,86	151,58	394,8	502,1	579,1	412,1	405,32		288,29
Radiais	Azimutes	(Graus)	0	30	09	06	120	150	180	210	240	270	300	330	Valores	Médios

Figura 4.1: Curvas E(50,50)

Potência efetiva irradiada por azimute (ERP)

Orientação da antena

Figura 4.2: Curvas E(50,10)

5 Considerações Finais

Digitar as conclusões do trabalho.

Referências

AUTOR, N. Título: Subtítudo, que vem depois de dois pontos. São Paulo: Editora, 1995.

AUTOR, N. Título do artigo. A Folha de S. Paulo, São Paulo, p. 11-23, 7 set. 1995.

CONCEITOS criados como exemplo. 2003. Disponível em: http://nomedodominio.com.br. Acesso em: 8 mar. 1999.

EVANS, X. Y. Z. et al. Exemplo de citação no texto. [S.l.: s.n.], 1987.

NOME do artigo. A Folha de S. Paulo, São Paulo, p. 4, 2 abr. 1995.

NOME, O. Algum nome. [S.l.: s.n.], 1978. 101-114 p.

SILVA, X. Y. *Título de exemplo*. [S.l.], 2003. Disponível em: http://nomedodominio.com.br>. Acesso em: 8 mar. 1999.

TÍTULO do Artigo. *Nome da revista*, Rio de Janeiro, n. 35, p. 51–60, jan. 1987.