

Data analysis and model classification Regression

Goal:

Decode arm movement direction from neural activity

Each implanted electrode records signals from several <u>unknown</u> neurons

Individual neurons are identified using Unsupervised learning

Summary: Unsupervised Learning

Unsupervised learning is used to process unlabelled data

Data can be characterized by a set of different clusters of data points: K-means algorithm

Data can alternatively described as a mixture of density functions (Gaussians)

Parameters of the mixture are obtained by maximizing the likelihood of the observed samples

They can be obtained iteratively using the EM algorithm

Summary: Supervised learning

A classifier system defines a function maps the inputs into one of several *discrete* classes.

This function is learned from training examples so as to minimize some error function (e.g. the number of miss-classifications)

Supervised learning can also be used to approximate a continuous function...

Other examples?

Linear Regression

• Given training data: pairs $(x^n, y^n=t^n)$, find a set of parameters (w_i) that minimizes some error measure

$$E = \frac{1}{2} \sum_{n=1}^{N} \{y(x^n, \mathbf{w}) - t^n\}^2$$

Linear Regression

Linear discriminant function: $y(x)=w_0+w_1x$

Polynomial Regression

$$y(x) = w_0 + w_1 x + ... + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Polynomial Regression

$$y(x) = w_0 + w_1 x + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Polynomial Regression

When to stop?

How to do it?

Examples (input, target)

Training set

Examples (input, target)

Training set

Examples (input, target)

Training set

Training set

Training the model

 Accuracy of model should be assessed on a separate unseen test dataset

 Cross-validation can be used when not enough data is available

Linear Regression

Linear discriminant function: $y(x) = w_0 + w_1 x$

How to compute **w**?

From the data!!

Linear Regression

Assume that the data (x^n, y^n) is given by $y^i = wx^i + \varepsilon^i$

where

- noise is independent
- noise has a normal distribution with mean 0 and unknown variance σ²

so p(y|w,x) has a normal distribution too

- mean wx
- variance σ^2

Bayesian Linear Regression

We want to infer w from the data (x^n, y^n)

$$p(w|x^1, x^2, ..., x^n, y^1, y^2, ..., y^n)$$

- Use Bayes rule to estimate a posterior distribution for w
- Use Maximum Likelihood Estimation

Maximum Likelihood estimation

For what w is

$$p(y^1, y^2, ..., y^n | x^1, x^2, ..., x^n, w)$$
 maximized?

Equivalently: for what w is independent samples $\Pi_i p(v^i|x^i,w)$ maximized?

Equivalently: for what w is normal distribution

 $\Pi_i \exp(-\frac{1}{2}(y^i - wx^i)^2/\sigma^2)$ maximized?

Equivalently: for what w is log transform

 Σ_i -1/2 $(y^i$ - wx^i)2/ σ^2 maximized?

Equivalently: for what w is

 $\Sigma_i (y^i - wx^i)^2$ minimized?

Maximum Likelihood estimation

The maximum likelihood of w minimizes the sum-of-squares error

$$E = 1/n \sum_{i} (y^{i} - wx^{i})^{2} =$$

$$= \sum_{i} y^{i2} - (2\sum_{i} y^{i}x^{i})w + (\sum_{i} x^{i2})w^{2}$$

w is then

$$w = \frac{\sum_{i} x^{i} y^{i}}{\sum_{i} x^{i^{2}}}$$

Multivariate Linear Regression

What about w_0 ?

What about multiple variables?

$$y(x) = wx + \varepsilon$$

Multivariate Linear Regression

$$y^{i} = w_{0} + w_{1}x_{1}^{i} + w_{2}x_{2}^{i} + \dots + w_{m}x_{m}^{i} + \varepsilon$$

In matrix form:

$$\begin{bmatrix} y^1 \\ y^2 \\ \vdots \\ y^n \end{bmatrix} = \begin{bmatrix} 1 & x_1^1 & x_2^1 & \cdots & x_m^1 \\ 1 & x_1^2 & x_2^2 & \cdots & x_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^n & x_2^n & \cdots & x_m^n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_m \end{bmatrix}$$

$$Y = \mathbf{X}W$$

$$W = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y$$
 pseudoinverse

pseudoinverse computable when **X**^T**X** is invertible or via gradient descent otherwise

$$\mathbf{y}(t) = \mathbf{b} + \sum_{u=-m}^{n} \mathbf{a}(u)\mathbf{x}(t-u) + \mathcal{E}(t) \qquad \mathbf{Y} = \mathbf{X}\mathbf{A}, \quad \mathbf{A} = inv(\mathbf{X}^T\mathbf{X})\mathbf{X}^T\mathbf{Y}$$

(Carmena et al., PLoS 2003)

Parameter selection

Prediction

(Carmena et al., PLoS 2003)

Data analysis and model classification Regression

