Константы

Число Авогадро, N_A	$6.022 imes 10^{23}$ моль $^{-1}$
Элементарный заряд, e	$1.602 \times 10^{-19} \text{K}$ л
Универсальная газовая постоянная, R	$8.314\mathrm{Дж}\mathrm{моль}^{-1}\mathrm{K}^{-1}$
Постоянная Фарадея, F	$96485\mathrm{K}$ л моль $^{-1}$
Постоянная Планка, <i>h</i>	6.626×10^{-34} Дж с
Температура в Кельвинах (К)	$T_{\rm K} = T_{\rm ^{\circ}C} + 273.15$
Ангстрем, Å	$1 \times 10^{-10} \mathrm{m}$
пико, п	$1 \text{mm} = 1 \times 10^{-12} \text{m}$
нано, н	$1 \text{ HM} = 1 \times 10^{-9} \text{ M}$
микро, мк	$1 \text{мкм} = 1 \times 10^{-6} \text{м}$

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.003
3 Li 6.94	4 Be 9.01											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.63	33 As 74.92	34 Se 78.97	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.95	43 Tc -	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57- 71	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 Os 190.2	77 lr 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po -	85 At -	86 Rn -
87 Fr -	88 Ra -	89- 103	104 Rf -	105 Db -	106 Sg -	107 Bh -	108 Hs -	109 Mt -	110 Ds -	111 Rg -	112 Cn -	113 Nh -	114 Fl -	115 Mc -	116 Lv -	117 Ts -	118 Og -

57 La	⁵⁸ Ce	59 Pr	60 Nd	61 Pm	Sm	⁶³ Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 E r	69 Tm	⁷⁰ Yb	71 Lu
138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89 Ac -	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np -	94 Pu -	95 Am -	96 Cm -	97 Bk -	98 Cf -	99 Es -	100 Fm -	101 Md -	102 No -	103 Lr -

Официальный комплект заданий 10-класса.

Задача №1. Название крутой задачи

1.1	1.2	1.3	1.4	Всего	Bec(%)
1	2	3	3	9	11

- 1. Нарисуйте структуру вещества C_2H_6O если известно, что в нем присутствует OH-группа.
- 2. При какой температуре атомы гелия будут иметь среднеквадратичную скорость 3.5×10^6 м с $^{-1}$?
- 3. Сколько грамм сахара было растворено в 100 г воды, если ее температура замерзания опустилась до $-1.3\,^{\circ}$ С?

Фосген образуется из угарного газа и хлора в соответствии со следующим уравнением:

$$CO + Cl_2 \longrightarrow COCl_2$$

4. Увеличение концентрации угарного газа в 2 раза приводит к увеличению начальной скорости образования фосгена в 2 раза. Определите порядок данной реакции по угарному газу.

Задача №2. Название крутой задачи

Автор: Авторов А.

2.1	2.2	2.3	2.4	Всего	Bec(%)
1	2	3	3	9	11

2.1 (1 балл)

Есть два органических вещества с молекулярной формулой C_2H_6O — этанол и диметиловый эфир. Из них только в первом есть гидроксо-группа, поэтому ответ — H_3C-CH_2-OH (1 балл).

2.2 (2 балла)

Используем формулу:

$$Mv_{rms}^2 = 3RT$$

Выразим T:

$$T = \frac{Mv_{rms}^2}{3R}$$

Подставим значения, и получим ответ:

$$T = \frac{4 \times 10^{-3} \,\mathrm{Kr} \,\mathrm{моль}^{-1} \times (3.5 \times 10^6 \,\mathrm{m} \,\mathrm{c}^{-1})^2}{3 \times 8.314 \,\mathrm{Лж} \,\mathrm{моль}^{-1} \,\mathrm{K}^{-1}} = 561 \,\mathrm{K} \;(2 \,\mathrm{балла})$$

2.3 (3 балла)

Используем формулу, которая связывает изменение в температуре замерзания растворителя и моляльность растворенного вещества:

$$\Delta T_f = -ik_f m$$

Сахар имеет формулу $C_{12}H_{22}O_{11}$ и для него фактор Вант-Гоффа, i, равен единице. k_f равна $1.86~\rm kr\,^{\circ}C$ моль $^{-1}$ для воды.

$$m = \frac{-1.3\,^{\circ}\mathrm{C}}{-1.86\,\mathrm{kr}\,^{\circ}\mathrm{C}\,\mathrm{moj}^{-1}} = 0.70\,\mathrm{moj}\,\mathrm{kr}^{-1}$$

Отсюда можно найти количество сахара в граммах:

$$m_{
m caxap} = 0.70$$
 моль кг $^{-1} imes 0.100$ кг $imes 486$ г моль $^{-1} = 34$ г (3 балла)

2.4 (3 балла)

$$r_0 = k \cdot [\text{CO}]_0^m \cdot [\text{Cl}_2]_0^n$$

$$r_1 = k \cdot [\text{CO}]_1^m \cdot [\text{Cl}_2]_0^n$$

$$\frac{r_0}{r_1} = \left(\frac{[\text{CO}]_0}{[\text{CO}]_1}\right)^m = \left(\frac{1}{2}\right)^m = \frac{1}{2}$$

$$m = 1$$

Ответ: Порядок реакции по угарному газу равен одному (3 балла).

Задача №3. Название крутой задачи

3.1	3.2	3.3	3.4	Всего	Bec(%)
1	2	3	3	9	11

3.1		
3.2		
3.3		

3.4			
3.5			
	I	II	III
	A	В	
	A	В	
	A	В	
	A	В	
	A	В	
	A	В	
3.19	A	B	