Fixed-Budget Best-Arm Identification in Sparse Linear Bandits

Recep Can Yavas

June 28, 2023

Create Meeting

Joint work with Vincent Tan

Outline

- Introduction to multi-armed bandits framework
- Problem formulation
- Proposed algorithm
- Error probability bound and experiments

Multi-armed bandits

Motivation: A suitable mathematical model for applications such as drug design, online advertisement, and online recommendation systems

There are two main problems:

- Regret minimization: Maximize the total reward after T pulls (exploration and exploitation)
- Best arm identification: Find the arm with the largest mean (pure exploration)

Linear Best Arm Identification Problem

- K arms: each associated with a vector $a(k) \in \mathbb{R}^d$, $k \in [K]$, known to the agent
- ullet Let at time t, we pull arm $A(t) \in \{1,\ldots,K\}$ and observe random reward

$$Y_t = \langle a(A(t)), \theta^* \rangle + Z_t$$

where Z_t 's are independent 1-subgaussian and θ^* is unknown global feature vector of dimension d

- The agent must make decisions based on the previous selections $A_1, A_2, \ldots, A_{t-1}$ and the observed rewards so far Y_1, \ldots, Y_{t-1}
- This problem is a sequential decision problem
- Best arm is the arm with the largest mean

$$\mu_1 \triangleq \max_{k \in [K]} \langle a(k), \theta^* \rangle$$

• WLOG, $\mu_1 > \mu_2 \geq \cdots \geq \mu_K$

Two Common Objectives in BAI

 \mathcal{T} : agent estimates the "best" arm after \mathcal{T} arm pulls as $\hat{l} \in [K]$

Two different objectives:

- fixed confidence: Target $\mathbb{P}\left[\hat{I} \neq 1\right]$ is fixed. T is a random variable. Minimize $\mathbb{E}\left[T\right]$.
- ② fixed budget: T is fixed. Minimize $\mathbb{P}\left[\hat{I} \neq 1\right]$. Our focus is this setting

Sparse Linear Bandits

Global feature vector $\theta^* \in \mathbb{R}^d$

Motivation: Drug tests

 $d \approx 100$: the number of variables measured for blood samples s=5: only 5 out of 100 variables significantly affect the performance of the drug the rest is irrelevant to us

We model this phenomenon as

ullet Sparsity: $\| heta^*\|_0 = \sum_{i=1}^d \mathbb{1}\{ heta_i^*
eq 0\} = s$ where $s \ll d$

Example

• a(4) has the largest inner product with θ^* , therefore is the best arm.

Literature review

- Fixed confidence: For general bandits, [Garivier and Kaufmann (2016)] derive the asymptotically optimal algorithm
- Fixed confidence for linear bandits: [Soare et al. (2014)], [Xu et al. (2018)], [Xu et al. (2018)], ...
- Fixed budget for linear bandits: [Hoffman et al. (2014)], [Katz-Samuels et al. (2020)], [Yang and Tan (2022)]
- Sparsity in regret minimization: [Abbasi-Yadkori et al. (2012)], [Bastani and Bayati (2020)], [Hao et al. (2021)], [Ariu et al. (2022)]

Our algorithm: Lasso-OD

The high-level idea is

 \bullet First, explore the sparsity of θ^* by estimating its support

$$S(\theta^*) = \{i \in [d] \colon \theta_i^* \neq 0\}$$

With high probability, the estimated support captures the true support, i.e., $\hat{S} \supset S(\theta^*)$ and its size isn't too big, i.e., $|\hat{S}| - s \ll d$

• Then, we use the G-optimal design to decide on the arm pulls and to sequentially halve the remaining best arm candidates in each round (Non-sparse solution from [Yang and Tan, (2022)])

Phase 1: Estimate
$$S(\theta^*)$$
 Phase 2: G-Optimal design restricted to $S(\theta^*)$ T_1

Technique: Lasso (Tibshirani, 1996)

Let $Y = (Y_1, \dots, Y_{T_1}) \in \mathbb{R}^{T_1}$ be rewards. Let $A \in \mathbb{R}^{T_1 \times d}$ be the design matrix, each row being the arm vector we pull.

The s-sparse θ^* can be estimated by the convex program

$$\hat{ heta}_{ ext{init}} = rg \max_{ heta} rac{1}{T_1} \left\| Y - \mathsf{A} heta
ight\|_2^2 + \lambda_{ ext{init}} \left\| heta
ight\|_1^2$$

 $\lambda_{\rm init}$: a free parameter to be optimized according to performance criteria

Thresholding [Ariu et al. (2022)]: We estimate the support after thresholding $\hat{\theta}_{\mathrm{init}}$

$$\hat{S} = \{ j \in [d] \colon |(\hat{\theta}_{\text{init}})_j| \ge \lambda_{\text{thres}} \}$$

Then, we run the algorithm only on the variables in \hat{S}

Main Result

Theorem

$$\mathbb{P}\left[\hat{I} \neq 1\right] \leq \left(K + \log_2 d + 2d\right) \exp\left\{-\frac{T}{16\lfloor \log_2(s+s^2)\rfloor(1+\epsilon)H_{2,\mathrm{lin}}(s+s^2)(1+c_0)}\right\}$$

$$H_{2,\text{lin}}(s) = \max_{i \in \{2,...,s\}} \frac{i}{(\mu_1 - \mu_i)^2}$$

 c_0 is a constant and $\epsilon \to 0$ as $T \to \infty$.

Main message: Error probability scales as

$$\exp\left\{-\Omega\left(rac{T}{\log_2(s)H_{2,\mathrm{lin}}(s+s^2)}
ight)
ight\}$$

which is independent of d!

Experiments

Arm vectors are drawn i.i.d. Gaussian.

Experiments

Robustness test

Non-zero coordinates in θ^* are replaced with $\pm \epsilon$.

Alternative to Thresholded Lasso (Jang et al. (2023))

Algorithm 1 POPART (POPulation covariance regression with hARd Thresholding)

- 1: **Input:** Samples $\{(X_t, Y_t)\}_{t=1}^n$, the population covariance matrix $Q \in \mathbb{R}^{d \times d}$, pilot estimator $\theta_0 \in \mathbb{R}^d$, an upper bound R_0 of $\max_{a \in A} |\langle a, \theta^* \theta_0 \rangle|$, failure rate δ .
- 2: **Output:** estimator $\hat{\theta}$
- 3: **for** $\bar{t} = 1, ..., n$ **do**
- 4: $\tilde{\theta}_t = Q^{-1}X_t(Y_t \langle X_t, \theta_0 \rangle) + \theta_0$
- 5: end for

6:
$$\forall i \in [d], \theta'_i = \mathsf{Catoni}(\{\tilde{\theta}_{ti} \coloneqq \{\tilde{\theta}_t, e_i\}\}_{t=1}^n, \alpha_i, \frac{\delta}{2d}) \text{ where } \alpha_i \coloneqq \sqrt{\frac{2\log\frac{2d}{\delta}}{n(R_0^2 + \sigma^2)(Q^{-1})_{ii}(1 + \frac{2\log\frac{2d}{\delta}}{n - 2\log\frac{2d}{\delta}})}}$$

- 7: $\hat{\theta} \leftarrow \text{clip}_{\lambda}(\theta') := [\theta'_i \mathbb{1}(|\theta'_i| > \lambda_i)]_{i=1}^d$ where λ_i is defined in Proposition 1.
- 8: **return** $\hat{ heta}$

Catoni mean estimator of (Z_1, \ldots, Z_n) are defined as the unique solution to

$$\sum_{i=1}^n \phi(\alpha(Z_i-y)\hat{\mu})=0,$$

where $\phi(x) = \text{sign}(x) \log(1 + |x| + x^2)$