METAMODELISATION PAR PROCESSUS GAUSSIEN - TP

EXERCICE 1 : Simulation des trajectoires d'un processus gaussien de moyenne et covariance données

- 1.a) Soit $Z(t)_{t \in \mathbb{R}}$ un processus gaussien centré stationnaire de covariance $C(t,t') = \sigma^2 R(t-t')$.
 - <u>covariance gaussienne</u>: simuler des réalisations de Z(t) de N = 200 points sur [0;1] avec $\sigma^2 = 0.5$ et $R(h) = e^{-\frac{h}{\theta}}$. Prendre $\theta = 0.05$ puis $\theta = 0.2$.
 - covariance exponentielle: simuler des réalisations de Z(t) de N=200 points sur [0;1] avec $\sigma^2=0.5$ et $R(h)=e^{\frac{-|h|}{\theta}}$. Prendre $\theta=0.05$ puis $\theta=0.2$.
 - <u>covariance gaussienne avec effet de pépite</u>: simuler des réalisations de Z(t) de N = 200 points sur [0;1] avec $\sigma^2 = 0.5$ et $R(h) = e^{-\left(\frac{h}{\theta}\right)^2} + \lambda \delta$. Prendre $\lambda = 0.2$ et $\theta = 0.05$ puis $\theta = 0.2$.
- 1.b) Soit $Z(x)_{x \in \mathbb{R}^2}$ un processus gaussien centré stationnaire de covariance $C(x,x') = \sigma^2 R(x-x')$.
 - <u>covariance gaussienne isotrope</u>: simuler des réalisations de N = 50×50 points sur $[0;1]\times[0;1]$ avec $\sigma^2=0.5$ et $R(h)=e^{-\left|\frac{h}{\theta}\right|^2}$. Prendre $\theta=0.1$.
 - <u>covariance gaussienne anisotrope</u>: simuler des réalisations de N = 50×50 points sur $[0;1] \times [0;1]$ avec $\sigma^2 = 0.5$ et $R(h) = e^{-\sum_{i=1}^{2} \left(\frac{h_i}{\theta_i}\right)^2}$. Prendre $\theta_1 = 0.1$ et $\theta_2 = 0.03$.
 - <u>covariance exponentielle anisotrope</u>: simuler des réalisations de N = 50×50 points sur $[0;1]\times[0;1]$ avec $\sigma^2=0.5$ et $R(h)=e^{-\sum_{i=1}^{2}\frac{|h_i|}{\theta_i}}$. Prendre $\theta_I=0.1$ et $\theta_2=0.03$.

EXERCICE 2: Construction d'un métamodèle PG à partir d'une base d'apprentissage en dimension 1

On considère la fonction analytique 1D sur [0;1]:

$$f(x) = \sin(30(x-0.9)^4)\cos(2(x-0.9)) + \frac{x-0.9}{2}$$

Appliquer la méthodologie suivante :

- Etape 0 : Représentation de la fonction sur [0;1] => constitution de la base de test
 - o Evaluer f sur 100 points équirépartis et tracé de f
- Etape 1: Construction d'un plan d'expériences et évaluation de f sur ce plan => constitution de la base d'apprentissage
 - \circ Faire varier la taille du plan de la base de N = 10 à 30 points
 - o Faire varier le type de plan : points équirépartis sur [0;1], tirage aléatoire uniforme
- Etape 2 : Estimation des paramètres du métamodèle PG

Soit $Z(x)_{x \in [0;1]}$ un processus gaussien de moyenne constante et de covariance stationnaire de type Matern5/2.

Construire le métamodèle basé sur Z conditionnellement aux points de la base d'apprentissage

- Estimation des paramètres du métamodèle
- Calcul et tracé du prédicteur sur la base de test
- Calcul et tracé du MSE sur la base de test
- Calcul du Q² sur la base de test

_

• Etape 3 (optionnelle) : Estimation des paramètres du métamodèle PG

Estimation des hyperparamètres par maximum de vraisemblance :

tracer $\varphi(\theta) = \left| \sum_{s,\theta} \right|^{\frac{1}{N}} \sigma^{2^*}(\theta)$ et retrouver la valeur optimale de θ .

• Etape 4 (optionnelle): planification adaptative

Trouver le point x où le MSE est maximal et l'ajouter à la base d'apprentissage. Mettre à jour le métamodèle (estimation des hyperparamètres, construction du prédicteur et du MSE). Tracé du prédicteur et du MSE comme à l'étape 2.

EXERCICE 3: Construction d'un métamodèle PG à partir d'une base d'apprentissage en dimension 2

On considère la fonction analytique schwefel2D sur [-200;200]²:

$$f(x_1, x_2) = -x_1 \sin\left(\sqrt{|x_1|}\right) - x_2 \sin\left(\sqrt{|x_2|}\right)$$

Appliquer la méthodologie suivante :

- Etape 0 : Représentation de la fonction sur [-200 ;200]² => constitution de la base de test
 - o Evaluer f sur une grille de 70x70 points équirépartis et tracé de f
- Etape 1: Construction d'un plan d'expériences et évaluation de f sur ce plan => constitution de la base d'apprentissage
 - \circ Faire varier la taille du plan de la base de N = 70 à 100 points
 - o Faire varier le type de plan : tirage aléatoire uniforme, plan hypercubes latins
- Etape 2 : Estimation des paramètres du métamodèle PG

Soit $Z(x)_{x \in [0:1]}$ un processus gaussien centré stationnaire de covariance Matern3/2.

Construire le métamodèle basé sur Z conditionnellement aux points de la base d'apprentissage.

- Calcul et tracé du prédicteur sur la base de test
- Tracé de l'erreur (valeur absolue) sur la base de test
- Calcul du Q² sur la base de test

EXERCICE 4 : Utilisation d'un métamodèle PG pour l'analyse de sensibilité

On considère la fonction analytique Ishigami:

$$f(X_1, X_2, X_3) = \sin X_1 + 7(\sin X_2)^2 + 0.1X_3^4 \sin X_1$$

Avec X_i uniforme sur $[-\pi; \pi]$, pour i = 1,...,3.

- Etape 0 : Calcul analytique des indices de sensibilité
 - O Calculer les indices de Sobol du 1^{er} et du 2nd ordre théoriques.
 - Calculer les indices de Sobol totaux
- Etape 1: Construction d'un plan d'expériences et évaluation de f sur ce plan => constitution de la base d'apprentissage
 - O Construire un plan LHS de N = 70 à 100 points
- Etape 2 : Construction du métamodèle PG et contrôle de sa qualité de prédiction

Construire le métamodèle basé sur Z conditionnellement aux points de la base d'apprentissage.

- Calcul du Q² sur une base de test
- Calcul du Q² par validation croisée sur la base d'apprentissage
- Etape 3 : Calcul des indices de sensibilité

Estimer les indices de Sobol du 1^{er} ordre et totaux en utilisant le métamodèle Comparer les valeurs estimées avec le métamodèle et les valeurs théoriques