第六节 函数图形的描绘

习题 3-6

- 1. 描绘函数 $y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ 的图形.
- 解 函数的定义域为 $(-\infty, +\infty)$,为偶函数,只需考虑它在 $[0, +\infty)$ 上的图形.

$$y' = \frac{1}{\sqrt{2\pi}}(-x)e^{-\frac{x^2}{2}}, \ y'' = \frac{1}{\sqrt{2\pi}}(x^2 - 1)e^{-\frac{x^2}{2}}.$$

令 y'=0, 可得驻点为 x=0; 令 y''=0, 可得 $x=\pm 1$. 这些关键点将 $[0,+\infty)$ 分为两个子区间,每个子区间上 y' 和 y'' 的符号及曲线的变化性态可列表如下:

X	0	(0,1)	1	(1,+∞)
y'	0	_	_	
y"	_	_	0	+
$y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ 的图形	极大值 $f(0) = \frac{1}{\sqrt{2\pi}}$	→ 凸	拐点 $(1, \frac{1}{\sqrt{2\pi e}})$	y 凹

因为 $\lim_{x\to\infty} y=0$,所以曲线有水平渐近线 y=0.添加辅助点 $(\pm 2, \frac{1}{\sqrt{2\pi}e^2})$,于是可绘出函数的图形如图 3.1 所示.

2. 描绘函数 $y = 1 + x^2 - \frac{x^4}{2}$ 的图形.

解 函数的定义域为 $(-\infty, +\infty)$,为偶函数,只需考虑它在 $[0, +\infty)$ 上的图形.

$$y' = 2x - 2x^3 = 2x(1 - x^2), \quad y'' = 2(1 - 3x^2).$$

令 y'=0,可得驻点为 x=0, $x=\pm 1$;令 y''=0,可得 $x=\pm \frac{1}{\sqrt{3}}$.这些关键点将 $[0,+\infty)$ 分为三个子区间,每个子区间上 y' 和 y'' 的符号及曲线的变化性态可列表如下:

x	0	$(0,\frac{1}{\sqrt{3}})$	$\frac{1}{\sqrt{3}}$	$(\frac{1}{\sqrt{3}},1)$	1	$(\frac{1}{\sqrt{3}},+\infty)$
y'	0	+	+	+	0	_
y"	+	+	0	_	_	_
$y = 1 + x^2 - \frac{x^4}{2}$ 的图形	极小值 f(0)=1	≯ 凹	拐点 $(\frac{1}{\sqrt{3}}, \frac{23}{18})$	1 凸	极大值 $f(1) = \frac{3}{2}$	√ 凸

曲线无渐近线. 添加辅助点 $(\pm\sqrt{1+\sqrt{3}},0)$,于是可绘出函数的图形如图 3.2 所示.

- 3. 描绘函数 $y = 1 + \frac{36x}{(x+3)^2}$ 的图形.
- 解 函数的定义域为 $(-\infty, -3)$ \cup $(-3, +\infty)$.

$$y' = \frac{36(3-x)}{(x+3)^3}, \quad y'' = \frac{72(x-6)}{(x+3)^4}.$$

令 y'=0, 可得驻点为 x=3; 令 y''=0, 可得 x=6. 这些关键点将定义域分为四个子区间,每个子区间上 y' 和 y'' 的符号及曲线的变化性态可列表如下:

x	$(-\infty, -3)$	-3	(-3,3)	3	(3,6)	6	(6,+∞)
y'	_	无定义	+	0	_	_	_
y"		无定义	1	1	1	0	+
$y = 1 + \frac{36x}{(x+3)^2}$ 的图形	凸	无定义	1 🖰	极大值 f(3)=4	√ √	拐点 (6, 11)	√ □

因为 $\lim_{x\to\infty} y=1$,所以曲线有水平渐近线 y=1.又因为 $\lim_{x\to -3} y=-\infty$,所以曲线有铅直渐近线 x=-3.添加辅助点 (0,1),于是可绘出函数的图形如图 3.3 所示.

4. 描绘函数 $y = \frac{\cos x}{\cos 2x}$ 的图形.

解 函数的定义域为 $D = \{x | x \in \mathbb{R}, x \neq \frac{k}{2}\pi + \frac{\pi}{4}, k \in \mathbb{Z}\}$, 是周期为 2π 的周期函数, 且为偶函数, 只需考虑它在半个周期, 如 $[0,\pi]$ 上的图形.

$$y' = \frac{-\sin x \cos 2x + 2\cos x \sin 2x}{\cos^2 2x} = \frac{\sin x (3 + \tan^2 x)}{\cos 2x (1 - \tan^2 x)},$$

$$y'' = \frac{3\cos x \cos^2 2x - 4\sin x \sin 2x \cos 2x + 8\cos x \sin^2 2x}{\cos^3 2x}$$

$$= \frac{\cos x (3 - 4\tan x \tan 2x + 8\tan^2 2x)}{\cos 2x} = \frac{\cos x (3 + 18\tan^2 x + 11\tan^4 x)}{\cos 2x (1 - \tan^2 x)^2}.$$

令 y'=0,可得驻点为 x=0, π ; 令 y''=0,可得 $x=\frac{\pi}{2}$. 当 $x=\frac{\pi}{4}$, $\frac{3}{4}\pi$ 时, y, y' 及 y'' 不存在. 这些关键点将区间[0, π]分为四个子区间,每个子区间上 y' 和 y'' 的符号及曲线的变化性态可列表如下:

x	0	$(0,\frac{\pi}{4})$	$\frac{\pi}{4}$	$(\frac{\pi}{4},\frac{\pi}{2})$	$\frac{\pi}{2}$	$(\frac{\pi}{2},\frac{3\pi}{4})$	$\frac{3\pi}{4}$	$(\frac{3\pi}{4},\pi)$	π
y'	0	+	无 定 义	+	+	+	无 定 义	+	0
у"	+	+	无 定 义	_	0	+	无 定 义	_	_
$y = \frac{\cos x}{\cos 2x}$ 的图形	极小值	1 凹	无 定义	≯ 凸	拐点 (<mark>π</mark> ,0)	1 凹	无 定 义	1 🖰	极大值

因为 $\lim_{x \to \frac{\pi^-}{4}} y = +\infty$, $\lim_{x \to \frac{\pi^+}{4}} y = -\infty$, $\lim_{x \to \frac{3\pi^-}{4}} y = +\infty$, $\lim_{x \to \frac{3\pi^+}{4}} y = -\infty$, 所以曲线有铅直渐

近线 $x = \frac{\pi}{4}$ 及 $x = \frac{3\pi}{4}$,于是可绘出函数的图形如图 3.4 所示.

*5. 描绘函数 $y = \frac{x^2}{1+x}$ 的图形.

解 函数的定义域为 (-∞,-1) ∪ (-1,+∞).

$$y' = \frac{x^2 + 2x}{(1+x)^2} = \frac{x(x+2)}{(1+x)^2}, \quad y'' = \frac{2}{(1+x)^3}.$$

令 y'=0,可得驻点为 x=-2,x=0;且 $y''\neq 0$. 当 x=-1 时,y,y' 及 y'' 不存在. 这些关键点将定义域分为四个子区间,每个子区间上 y' 和 y'' 的符号及曲线的变化性态可列表如下:

х	$(-\infty, -2)$	-2	(-2,-1)	-1	(-1,0)	0	(0,+∞)
y'	_	0	1	无定义		0	+
y "	_	_	_	无定义	+	+	+
$y = \frac{x^2}{1+x}$ 的图形	1凸	极 大 值 f(-2) =-4	/ 凸	无定义	> 🗉	极小 值 f(0) = 0	1 凹

因为 $\lim_{x\to -1} y = \infty$,所以曲线有铅直渐近线 x = -1.又因为 $\lim_{x\to \infty} \frac{y}{x} = \lim_{x\to \infty} \frac{x}{1+x} = 1$,且 $\lim_{x\to \infty} (y-x) = \lim_{x\to \infty} (\frac{x^2}{1+x}-x) \lim_{x\to \infty} \frac{-x}{1+x} = -1$,所以曲线有斜渐近线 y = x-1.添加辅助点 $(-\frac{1}{2},\frac{1}{2})$,于是可绘出函数的图形如图 3.5 所示.

*6.
$$\exists \lim_{x \to \infty} \left[\frac{x^3}{x^2 + x - 1} - (ax + b) \right] = 0,$$

(1) 求常数 a 和 b;

(2) 说明曲线
$$y = \frac{x^3}{x^2 + x - 1}$$
 与直线 $y = ax + b$ 有何关系.

解 (1) 依题有

$$\lim_{x \to \infty} \frac{x^3 - (ax+b)(x^2 + x - 1)}{x^2 + x - 1} = \lim_{x \to \infty} \frac{(1-a)x^3 - (a+b)x^2 + ax + b}{x^2 + x - 1} = 0,$$

故应有
$$\begin{cases} 1-a=0, & \text{即} \\ a+b=0, \end{cases}$$
 $\begin{cases} a=1, \\ b=-1. \end{cases}$

(2) 直线
$$y = x - 1$$
 是曲线 $y = \frac{x^3}{x^2 + x - 1}$ 的斜渐近线.