CS 180 Discussion 1A/E

Week 4

Haoxin Zheng 10/27/2023

- Problem:
 - Directed/Undirected graph, with non-neg edges
 - Given node S, find shortest paths from S to all other nodes
- Algorithm: Dijkstra's algorithm
 - Initialization:
 - X:{s}
 - $d[u] = \begin{cases} l(s, u), & if(s, u) \in E \\ \infty, & otherwise \end{cases}$
 - For i=1, ... n-1
 - Select u s.t. d[u] is the min among V-X
 - $X = X + \{u\}$
 - For each v s.t. $(u, v) \in E$:
 - If d[u] + l(u, v) < d[v]:
 - d[v] = d[u] + l(u, v)
 - pre[v]=u

- Great instruction:
 - https://www.youtube.com/watch?v= CerlT7tTZfY

- Initialization:
 - X:{s}
 - $d[u] = \begin{cases} l(s, u), & if(s, u) \in E \\ \infty, & otherwise \end{cases}$
- For i=1, ... n-1
 - Select u s.t. d[u] is the min among V-X
 - $X = X + \{u\}$
 - For each v s.t. $(u, v) \in E$:
 - If d[u] + l(u, v) < d[v]:
 - d[v] = d[u] + l(u, v)
 - pre[v]=u
- Time complexity using Heap?
 - O((m+n)logn) -> O(mlogn)

- Initialization:
 - X:{s}
 - $d[u] = \begin{cases} l(s, u), & if(s, u) \in E \\ \infty, & otherwise \end{cases}$
- For i=1, ... n-1
 - Select u s.t. d[u] is the min among V-X
 - $X = X + \{u\}$
 - For each v s.t. $(u, v) \in E$:
 - If d[u] + I(u, v) < d[v]:
 - d[v] = d[u] + l(u, v)
 - pre[v]=u
- Time complexity using Heap?
 - O((m+n)logn) -> O(mlogn)

Initialization: C(4) D(inf) E(inf) F(inf)Then: White Board

Initial State

Α	-	Š	V
В			
С			
D			
F			
G			
Н			
J			

Check Loop Conditions

Α	-	=	V
В			
С			
D			
F			
G			
Н			
J			

Handle Min Item from Priority Queue

Handle Edge from C to A—No Action

Check Loop Conditions

Α	-	-	V
В			
С	Α	2	V
D			
F			
G			
Н			
J			

Handle Min Item from Priority Queue

Handle Edge from B to D

Handle Min Item from Priority Queue

Handle Edge from G to C—No Action

Α	-	-	V
В	А	4	✓
С	Α	2	V
D			
F			
G	С	5	✓
Н			
J			

Check Loop Conditions

Α	-	-	V
В	Α	4	V
С	Α	2	V
D			
F			
G	С	5	V
Н			
J			

Handle Min from Priority Queue

Handle Edge from D to B—No Action

Α	-	-	✓
В	Α	4	✓
С	Α	2	V
D	В	6	V
F			
G	С	5	V
Н			
J			

Check Loop Conditions

Α	-	-	/
В	Α	4	✓
С	Α	2	✓
D	В	6	V
F			
G	С	5	✓
Н			
J			

Handle Min from Priority Queue—No Action

Α	-		V
В	Α	4	V
С	Α	2	V
D	В	6	V
F			
G	С	5	V
Н			
J			

Handle Min from Priority Queue

Α	7-1	-	V
В	Α	4	V
С	Α	2	V
D	В	6	✓
F			
G	С	5	✓
Н			
J	G	9	V

Handle Min from Priority Queue

		200
-		V
Α	4	V
Α	2	V
В	6	V
С	10	V
С	5	V
J	11	V
G	9	V
	A B C J	A 2 B 6 C 10 C 5 J 11

Shortest path – Proof of the greedy algorithm

(4.14) Consider the set S at any point in the algorithm's execution. For each $u \in S$, the path P_u is a shortest s-u path.

• Proof: (Induction)

- |S| == 1 works, we assume |S|==k also works.
- Now we want to expand $|S| \rightarrow k+1$ by adding v using the Dijkstra Algorithm.
- We assign (u, v) as the final edge on our shortest path from s to v, pointing out from s to v s
- Assume $s \to v$ isn't the shortest path to v, then there has to be another path P.
- In the path P, we assign y as the first node pointed by edge from S to V-S, using edge (x,y)
- We then have l(P) = l(s,x) + l(x,y) + l(y,v)
- Define d(x): the length of the shortest path P_x from s to node x. Therefore, we have $l(s,x) \ge d(x)$
- Define $d'(y) = \min_{e=(u,y):u \in S} d(u) + l_e$ for given y.
- $l(P) \ge l(s,x) + l(x,y) \ge d(x) + l(x,y) \ge \min_{e=(u,y):u \in S} d(u) + l_e = d'(y)$
- By Dijkstra algorithm, $d'(v) = \min_{a \in V S} (\min_{e = (u,a): u \in S} d(u) + l_e)$
- Therefore, $d'(v) \le d'(y) \# : \text{ both } v \& y \text{ } are \in V S, v \text{ is the one we choose.}$
- Therefore, $l(P) \ge d'(y) \ge d'(v)$. d'(v) is the shortest path starts from s.

- Algorithm: Dijkstra's algorithm
 - Initialization:
 - X:{s}
 - $d[u] = \begin{cases} l(s, u), & if(s, u) \in E \\ \infty, & otherwise \end{cases}$
 - For i=1, ... n-1
 - Select u s.t. d[u] is the min among V-X
 - $X = X + \{u\}$
 - For each v s.t. $(u, v) \in E$:
 - If d[u] + l(u, v) < d[v]:
 - d[v] = d[u] + l(u, v)
 - pre[v]=u

```
Dijkstra's Algorithm (G,\ell)

Let S be the set of explored nodes

For each u \in S, we store a distance d(u)

Initially S = \{s\} and d(s) = 0

While S \neq V

Select a node v \notin S with at least one edge from S for which d'(v) = \min_{e=(u,v):u \in S} d(u) + \ell_e is as small as possible Add v to S and define d(v) = d'(v)

EndWhile
```

Tree

- Definitions:
 - An undirected graph that
 - 1) connected
 - 2) Don't have any cycles

- Properties:
 - 1) Adding an edge to the tree will create a cycle
 - 2) If the original tree has a cycle by adding an edge, then by removing any one of the edges in that cycle will result in another tree

Spanning Tree

- Definitions:
 - A *spanning tree* is a subset of graph that
 - 1) Spans to every vertex ('connected' in undirected G, 'reachable' in directed G)
 - 2) Don't have any cycles

- How to find a spanning tree?
 - Run BFS / DFS

Minimum Spanning Tree (MST)

- Definitions:
 - A minimum spanning tree is the tree with minimum total weight among all trees given a positive weighted graph G.

- How to find a MST?
 - Run Prim's/Kruskal's algorithm

Minimum Spanning Tree - Prim

- Given: A connected undirected graph, G=(V, E), with edge length I(e)>0
- Goal: Find a set of edges $T^* \subseteq E$, s. t.
 - 1) G' = (V, T*) is connected
 - 2) Minimize total cost $\sum_{e \in T^*} l(e)$

	X=\i3	X11.2}	X-21,43	1,213,	1,2,3,4,5
(ا) ه					
982)	(2)				
9(3)	ر ا	(3)			
9(4)	W -	>3 -	(53)		
0(5)	W -	٠4 -	24-	(2)	
U (6)	V	w .	+, ∞-	23-	(B)

Prim's algorithm:

- Initialization:
 - X = {s} # nodes connected to s
 - pre[u] = $\begin{cases} s, & if(s, u) \in E \\ \infty, & otherwise \end{cases}$ # previous node of u
 - $a[u] = \begin{cases} l(s, u), & if(s, u) \in E \\ \infty, & otherwise \end{cases}$ # cost of adding u to X
- For i = 1,2, ..., n-1:
 - Find u, which is the node in V-X with min a[u]
 - Add u to X
 - For each v s.t. (u, v)∈E:
 - If I(u, v)<a[v]:
 - a[v] = I(u, v)
 - Pre[v] = u

Dijkstra & Prim Differences

- 1. Any Graph vs Undirected Graph
- 2. Find the shortest path vs Find the minimum spanning tree.
- 3. Calculate the accumulated min distance vs the current min weighted edge
- Prim's algorithm:
- Initialization:
 - ...
- For i = 1,2, ..., n-1:
 - Find u, which is the node in V-X with min A[u]
 - Add u to X
 - For each v s.t. $(u, v) \in E$:
 - If I(u, v)<A[v]:
 - A[v] = I(u, v)
 - Pre[v] = u

Dijkstra's algorithm:

- Initialization:

-

- For i=1, ... n-1

- Select u s.t. d[u] is the min among V-X

 $- X = X + \{u\}$

- For each v s.t. $(u, v) \in E$:

- If d[u] + I(u, v) < d[v]:

- d[v] = d[u] + l(u, v)

- Pre[v]=u

Proof of correctness for the Prim's algorithm

- Define "cut" of two node sets cut(A, B): All (u, v) \in E s.t. u \in A, v \in B
- Then the Prim's algorithm adds the min-cost edge in cut (X, V-X) in each iteration
- **Cut Property:** if edge e is the min-cost edge in cut(X, V-X) for any node set X, then e must be in the MST.
- **Proof:** Proof by contradiction.
 - Assume MST T^* , e(=(u, v)) is the min-cost edge of cut (X, V-X) but e \notin MST T^*
 - In T^* , u, v are connected by another path. Then we know u ----> p -> q ----> v.
 - p: final node of X, q: first node of V-X of this u---->v path
 - Define another tree $T'=T^*-(p, q)+(u, v)$
 - T' is still a connected graph since we have u ----> p -> q ----> v
 - Since I(e) = I(u, v) < I(p, q), we know $I(T') < I(T^*)$.
 - Contradictive to the statement T^* is a MST
 - Proved.

1448. Count Good Nodes in Binary Tree

Exercises

Medium **1**693 **√** 59 Add to List ☐ Share

Given a binary tree root, a node X in the tree is named **good** if in the path from root to X there are no nodes with a value greater than X.

Return the number of **good** nodes in the binary tree.

Example 1:

Example 2:

Input: root = [3,1,4,3,null,1,5]

Output: 4

Explanation: Nodes in blue are good.

Root Node (3) is always a good node.

Node $4 \rightarrow (3,4)$ is the maximum value in the path starting from the root.

Node $5 \rightarrow (3,4,5)$ is the maximum value in the path

Node $3 \rightarrow (3,1,3)$ is the maximum value in the path.

Input: root = [3,3,null,4,2]

Output: 3

Explanation: Node 2 -> (3, 3, 2) is not good, because "3" is higher than it.

Exercises - BFS

```
# Definition for a binary tree node.
     # class TreeNode:
           def __init__(self, val=0, left=None, right=None):
               self.val = val
               self.left = left
               self.right = right
    class Solution:
        def goodNodes(self, root: TreeNode) -> int:
            num good nodes = 0
            # Use collections.deque for efficient popping
            queue = deque([(root, float("-inf"))])
            while queue:
                 node, max_so_far = queue.popleft()
 8
                 if max_so_far <= node.val:</pre>
 9
10
                     num good nodes += 1
11
                if node.right:
12
                     queue.append((node.right, max(node.val, max so far)))
13
                 if node.left:
14
                     queue.append((node.left, max(node.val, max so far)))
15
16
             return num_good_nodes
```

