Devoir surveillé 5 a

Calculatrice autorisée Lundi 14 avril 2025

EXERCICE 1 (5 POINTS)

Simplifier les expressions suivantes en les réduisant sous la forme a^n avec a le plus petit possible.

Justifications attendues.

1.
$$(-7)^2 \times (-7)^3$$

2.
$$\frac{2^4}{2^2}$$

3.
$$(4^5)^2$$

4.
$$\frac{2 \times 2^7}{4 \times 4}$$

5.
$$\frac{3^7 \times 9}{3^6 \times 3^3}$$

CORRECTION

On simplifie.

1.
$$(-7)^2 \times (-7)^3 = (-7)^{2+3} = (-7)^5$$

$$2. \ \frac{2^4}{2^2} = 2^{4-2} = 2^2$$

3.
$$(4^5)^2 = 4^{5 \times 2} = 4^10 = (2^2)^10 = 2^{20}$$

4.
$$\frac{2 \times 2^7}{4 \times 4} = \frac{2^{1+7}}{2^2 \times 2^2} = \frac{2^8}{2^{2+2}} = \frac{2^8}{2^4} = 2^{8-4} = 2^4$$

5.
$$\frac{3^7 \times 9}{3^6 \times 3^3} = \frac{3^7 \times 3^2}{3^6 \times 3^3} = \frac{3^{7+2}}{3^{6+3}} = \frac{3^9}{3^9} = 3^{9-9} = 3^0$$

EXERCICE 2 (6 POINTS)

- 1. Donner la définition d'une suite géométrique.
- **2.** Donner la forme explicite d'une suite géométrique (u_n) de raison q.
- **3.** Soit (u_n) géométrique telle que $u_3 = 1,7$ et $u_5 = 15,3$. Déterminer la raison q.

CORRECTION

- 1. Voir cours.
- **2.** La forme explicite d'une suite géométrique (u_n) de raison q est :

$$u_n = u_0 \cdot q^n$$

3. On sait que $u_3 = 1.7$ et $u_5 = 15.3$. Comme la suite est géométrique :

$$u_5 = u_3 \cdot q^2$$
 donc 15,3 = 1,7 · q^2 donc $q^2 = \frac{15,3}{1.7} = 9$. Ainsi, $q = \sqrt{9}$ ou $-\sqrt{9} = 3$ ou -3

EXERCICE 3 (9 POINTS)

Un influenceur vérifie régulièrement son nombre d'abonnés sur les réseaux sociaux. Il estime que sur Instagram son nombre d'abonnés augmente en moyenne de 7% par mois. Il débute l'année 2025 avec 10 000 abonnés. Pour tout n, on note a_n le nombre estimé d'abonnés de cet influenceur au n-ième mois.

- 1. Donner a_0 , puis calculer a_1 et a_2 .
- **2.** Exprimer, pour tout n, a_{n+1} en fonction de a_n .
- **3.** En déduire la nature de la suite (a_n) . Préciser sa raison.
- **4.** Donner, pour tout n, une expression de a_n en fonction de n.
- **5.** Cet influenceur s'est fixé comme objectif d'atteindre les 25 000 abonnés d'ici la fin de l'année 2025. Devrait-il atteindre son objectif?
- **6.** Un autre influenceur commence avec 100 000 abonnés en 2025 et souhaite savoir au bout de combien de temps il atteindra le million d'abonnés. Sa croissance mensuelle est estimée à 20%.

Combien de temps doit-il attendre?

CORRECTION

1. $a_0 = 10000$

$$a_1 = a_0 \times 1,07 = 10\,000 \times 1,07 = 10\,700$$

 $a_2 = a_1 \times 1,07 = 10\,700 \times 1,07 = 11\,449$

- **2.** $a_{n+1} = a_n \times 1,07$
- **3.** La suite est **géométrique** de raison q = 1,07
- 4. Formule explicite:

$$a_n = a_0 \cdot q^n = 10000 \cdot 1,07^n$$

5. On souhaite avoir $a_{12} \ge 25\,000$.

Or, on a :
$$a_{12} = 10\,000 \times (1,07)^{12} \approx 22\,522$$
.

L'objectif n'est pas atteignable en 2025.

6. On souhaite avoir $b_n \geqslant 1\,000\,000$ où (b_n) est le nombre d'abonnées de cet autre influenceur.

 b_n) est géométrique de raison q=1,2 et de premier terme $b_0=100\,000$ et donc pour tout n:

$$b_n = b_0 \times q^n = 100\,000 \times 1,2^n.$$

Par calcul ou avec la calculatrice, on a :

- $b_{12} \approx 891610$
- $b_{13} \approx 1069932$.

Il faut donc attendre 13 mois pour voir un million d'abonnés.