$T_D n^o B 3$

Invariants plus complexes

```
let swap (t: int array) (i: int) (j: int): unit =
let tmp = t.(i) in
t.(i) <- t.(j);
t.(j) <- tmp

let range (t: int array) (idx: int): unit =
(* idx : endroit mal range, t[0, idx - 1] : trie *)
let curseur = ref idx in
while (!curseur > 0 && t.(!curseur - 1) > t.(!curseur)) do
swap t (!curseur) (!curseur - 1);
curseur := !curseur - 1
done

let tri_insertion (t: int array): unit =
let n = Array.length t in
for i = 0 to n - 1 do
range t i
done
```

Code 1 - Tri par insertion

Propriété: Spot t un tableau d'entiers de taille n. La fonction tri_insertion appelée sur t termine et produit un tableau t' tel que

- t' est trié,
- t' est une permutation de t.

Propriété: Soit t un tableau d'entiers de taille n. Soit $\mathrm{idx} \in [0, n-1]$. Si le sous-tableau $t[0, \mathrm{idx} - 1]$ est trié par ordre croissant, alors range t idx termine et produit un tableau t' tel que

- t' est trié par ordre croissant,
- t' est une permutation de t.

Preuve

Soit t_0 un tableau de taille n. Soit $\mathrm{idx} \in [\![0,n-1]\!]$ tel que $t_0[0,\mathrm{idx}-1]$ est trié. On considère (\mathcal{F}) le système suivant :

```
(\mathcal{I}): \begin{cases} \text{curseur} \geqslant 0 & (\mathcal{P}_1) \\ t[\text{curseur}, \text{idx}] \text{ est trié} & (\mathcal{P}_2) \\ t[0, \text{curseur} - 1] \text{ est trié} & (\mathcal{P}_3) \\ t \text{ est une permutation de } t_0 & (\mathcal{P}_4) \end{cases}
```

Montrons que (\mathcal{F}) est un invariant.

- Initialisation. Au début, $t = t_0$ et curseur = idx. Les propriétés de \mathcal{F} sont vérifiées.
- **Hérédité.** Soit \underline{t} , $\underline{\text{curseur}}$, et \overline{t} , $\underline{\text{curseur}}$ les valeurs de t et curseur avant (resp. après) une itération de boucle. Par hypothèse de récurrence, $\underline{\text{curseur}} \geqslant 0$, le sous-tableau $\underline{t}[\underline{\text{curseur}}, \mathrm{idx}]$ est trié, $\underline{t}[0, \mathrm{curseur}-1]$, \underline{t} est une permutation de t_0 . De plus, par condition de boucle, $\underline{\text{curseur}} > 0$ et $\underline{t}[\underline{\text{curseur}}-1]$ > $\underline{t}[\underline{\text{curseur}}]$. D'après le code, on a également $\overline{\text{curseur}} = \underline{\text{curseur}}-1$, et pour tout $i \in [0, n-1]$, où $i \not\in \{\underline{\text{curseur}}, \underline{\text{curseur}}-1\}$, $\overline{t}[i] = \underline{t}[i]$. Et, $\overline{t}[\underline{\text{curseur}}] = \underline{t}[\underline{\text{curseur}}-1]$, et $\overline{t}[\underline{\text{curseur}}-1] = \overline{t}[\underline{\text{curseur}}]$. On en déduit trivialement que \overline{t} est une permutation de \underline{t} , qui est une permutation de t_0 , d'où (\mathcal{P}_4) . De plus, $\overline{\text{curseur}} \geqslant 0$, d'où (\mathcal{P}_1) . Montrons (\mathcal{P}_2) , i.e. $\forall i \in [\overline{\text{curseur}}, \mathrm{idx}-1]$, $\overline{t}[i] \leqslant \overline{t}[i+1]$. Soit donc $i \in [\overline{\text{curseur}}, \mathrm{idx}-1]$.
 - Si $i = \overline{\text{curseur}}$, alors $\bar{t}[i] = \bar{t}[\overline{\text{curseur}}] = \bar{t}[\overline{\text{curseur}} 1] = \underline{t}[\overline{\text{curseur}}] < \underline{t}[\overline{\text{curseur}} 1] < \bar{t}[\overline{\text{curseur}} + 1] < \bar{t}[i + 1].$
 - Si $i \in [\overline{\text{curseur}} + 1, \text{idx} 1]$, alors $\overline{t}[i] = \underline{t}[i] \leqslant \underline{t}[i+1] \leqslant \overline{t}[i+1]$.

On en déduit (\mathcal{P}_2) . Montrons (\mathcal{P}_3) . Soit $i \in [\![0,\overline{\mathtt{curseur}}-2]\!]$. Alors, $\overline{t}[i] = \underline{t}[i] \leqslant \underline{t}[i+1] \leqslant \overline{t}[i+1]$, d'où (\mathcal{P}_3) .

On enrichit l'invariant en ajoutant la propriété (\mathcal{P}_5) : $\forall i \in [0, \text{curseur} - 1], \forall j \in [\text{curseur} + 1, \text{idx}], \underline{t}[i] \leq \underline{t}[j].$