Analysis2

siriehn_nx Tsinghua University siriehn_nx@outlook.com February 26, 2024

7多变量函数的连续性

7.1 ℝ 中的拓扑

Definition 7.1.1 $\mathbb{R}^n = \{x = (x^1, ...x^n) \mid x^i \in \mathbb{R}, i = 1, ..., n\}$, 称 x 为 n 元有序数组,为 \mathbb{R}^n 中的点, 通常的加法和数乘、 \mathbb{R}^n 为线性空间.

7.1.1 度量

Definition 7.1.1.2 映射
$$d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}(x,y) \mapsto d(x,y)$$
,其中 $d(x,y) = \left[\sum_{i=1}^n \left(x^i - y^i\right)^2\right]^{\frac{1}{2}}$.

则 d 满足:

- 1. 正定性, $\forall x, y \in \mathbb{R}^n, d(x, y) \geq 0$, " = " $\iff x = y$.
- 2. 对称性, d(x, y) = d(y, x).
- 3. 三角不等式, $\forall x, y, z \in \mathbb{R}^n, d(x, y) \leq d(x, z) + d(z, y)$

若 d 满足三条性质,称 d 为 \mathbb{R}^n 的度量.

Remark-

Definition 7.1.1.3

$$\begin{split} p &\geq 1, d_p: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+, (x,y) \mapsto d_p(x,y) = \left(\sum_{i=1}^n |x^i - y^i|^p\right)^p, \\ d_\infty: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+, (x,y) \mapsto d_\infty(x,y) = \max_{1 \leq i \leq n} |x^i - y^i| \end{split}$$

可以验证, d_p , d_∞ 均为 \mathbb{R}^n 上的度量.

Proposition 7.1.1.4 (Minkowski 不等式) $d_{\infty}(x,y) \leq d(x,y) \leq nd_{\infty}(x,y)$ $C_{p,1}d(x,y) \leq d_{p}(x,y) \leq C_{p,2}d(x,y)$,其中 $C_{p,1},C_{p,2}$ 均为依赖 p 的常数.

7.1.2 开集,闭集,拓扑空间

Definition 7.1.2.5 设 $a \in \mathbb{R}^n$, $\delta > 0$, $B(a; \delta) = \{x \in \mathbb{R}^n \mid d(a, x) < \delta\}$ 称为以 a 为中心, δ 为半径的球 / δ 邻域.

Definition 7.1.2.6 设 $U \subset \mathbb{R}^n, \forall a \in U, \exists \delta > 0, s,t.$ $B(a; \delta) \subset U,$ 则称 U 为开集.

Example 7.1.2.7 B(a;r) 为开集(r > 0).

Proposition 7.1.2.8

- 1. ℝⁿ, ∅ 为开集.
- 2. 无穷多个开集的并还是开集.

3. 有限多个开集的交还是开集.

Definition 7.1.2.9 \mathbb{R}^n 中的开集满足以上三条性质.那么称 \mathbb{R}^n 为拓扑空间.

 \mathbb{R}^n 中的拓扑空间是由 d 诱导的.

一般而言.有以下定义.

Definition 7.1.2.10 (拓扑空间) 设 X 为集合, τ 为 X 的子集簇,满足:

- 1. $\varphi, X \in \tau$

$$\begin{array}{ll} 2. \ \, \forall \tau_{\alpha}, \alpha \in \Lambda, \ \bigcup_{\{\alpha \in \Lambda\}} \tau_{\alpha} \in \tau \\ \\ 3. \ \,$$
 设 $\tau_{1}, ..., \tau_{m} \in \tau$ 则 $\bigcap_{\{i=1\}}^{m} \tau_{i} \in \tau \end{array}$

那么称 (X,τ) 为拓扑空间.

Definition 7.1.2.11 设 $A \subset \mathbb{R}^n$,若 $A^c = \mathbb{R}^n \setminus A$ 为开集,那么称 A 为闭集.

Example 7.1.2.12

- $\forall x, y \in \mathbb{R}^n, A = \{x, y\}$ 闭集
- $\overline{B}(a;r) = \{x \in \mathbb{R}^n \mid d(a;x) \le r\}$ 闭集
- $S^{n-1}(a,r) = \{x \in \mathbb{R}^n \mid d(a;x) = r\}$ 为闭集

ਪੋਟੀ
$$\mathcal{S}^{n-1} = \mathcal{S}^{n-1}(0,1)$$

由 De Morgan 定理可知:

Proposition 7.1.2.13

- 1. ℝⁿ, Ø 是闭集
- 2. 无穷多个闭集的交仍然是闭集
- 3. 有限多个闭集的并仍然是闭集
- 7.1.3 邻域,内点,边界点,聚点

Definition 7.1.3.14 (邻域,内点,边界点)

- 1. 设 $x \in \mathbb{R}^n$,任一包含 x 的开集 U 称为 x 的邻域, $\mathring{U} = U \setminus \{x\}$ 称为 x 的去心邻域
- 2. 设 $D \subset \mathbb{R}^n$, 若 $x \in D$, $\exists x$ 的邻域 U, s.t. $U \subset D$, 称 $x \to D$ 的内点.对应的, 若 $x \not\in D^c$ 的内点,则 x为 D 的内点.
- 3. 设 $D \subset \mathbb{R}^n$, x 即非内点也非外点,则 x 为 D 的边界点. $\partial D = \{x \in \mathbb{R}^n \mid x \to D \text{ 的边界点}\}$,称 ∂D 为 D 的边界,也可定义为 $\partial D = \{x \in \mathbb{R}^n \mid x \text{ 的任} -$ 领域 $U, U \cap D \neq \emptyset, U \cap D^c \neq \emptyset\}$

Definition 7.1.3.15 (聚点) 设 $D \subset \mathbb{R}^n$,若 D 的任一邻域均含有 D 中的无穷多个点, 称 x 为 D 的一 个聚点. $\iff x$ 的任意邻域 $U, \mathring{U} \cup D \neq \emptyset$

 $D' = \{x \in \mathbb{R}^n \mid x \to D \ \mathbb{R} \}$,称其为 D 的导集

称 $\overline{D} = D \cup D'$ 为 D 的闭包.

Theorem 7.1.3.16 $D \subset \mathbb{R}^n$ 为闭集 \iff $D' \subset D$.

⊂ Proof =

"⇒" $\forall a \in D'$ 要证明 $a \in D$.

(反证法): 若 $a \notin D$ 则 $a \in D^c$, 由于 D 闭集,则 D^c 开集, $\exists \delta > 0$, $B(a; \delta) \subset D^c$, $B(a; \delta) \cap D = \emptyset$,这 与 a 为聚点矛盾,则 $a \in D$, i.e. $D' \subset D$.

" $= " D' \subset D$ 要证明 D^c 为开集.

 $\forall a \in D^c, a$ 不是聚点,则 $\exists \delta > 0, \text{s.t. } B(a; \delta) \cap D = \emptyset, 则 \ B(a; \delta) \subset D^c,$ 从而 D^c 为开集. \square

7.2 \mathbb{R}^n 中的紧(致)集

Definition 7.2.1 (紧集) 设 $A \subset \mathbb{R}^n$ 若 A 的任意开覆盖都有有限字符该,称 A 为 \mathbb{R}^n 的紧集(compet set).

由 Heine-Bored 定理可知 ℝ 中闭区间为紧集.

Definition 7.2.2 (长方体) 设

 $a,b \in \mathbb{R}^n, a = \left(a^1,...,a^n\right), b = \left(b^1,...,b^n\right), a^i \leq b^i, i = 1,...,n, I_{a,b} = \left\{x \in \mathbb{R}^n \ \middle|\ a^i \leq x^i \leq b^i\right\}$ 其为长方体.

Proposition 7.2.3 $I_{a,b}$ 为 \mathbb{R}^n 中的紧集.

Proof

(反证法): 设 $\{U_{\alpha}\}_{\alpha\in\Lambda}$ 为 $I_{a,b}$ 的开覆盖,不存在其的有限子覆盖,令 I_1 分成 2^n 个长方体,则至少有一个长方体没有有限子覆盖,记为 I_2 .继续其过程,记为 $I_3,...,I_n,...$ 满足 I_1 \supset I_2 \supset ... \supset I_k \supset

$$I_k = \{x \in \mathbb{R}^n \mid a_k^i \le x^i \le b_k^i, i = 1, ..., n\}$$

由 Cauchy-Cantor 闭区间套定理

$$\exists! x_0^i \in \bigcap_{\{k=1\}}^\infty [a_k^i, b_k^i], \diamondsuit \ x_0 = \left(x_0^1, ... x_0^n\right), \mathbb{M} \ \exists \alpha_0 \in \Lambda, \text{s.t.} \ x_0 \in U_{\alpha_0}, \diamondsuit \ \text{diam} \ I_k = \sup_{\{x,y \in I_k\}} d(x,y)$$

则 $\lim_{k \to \infty}$ diam $I_k = 0, \exists k \in \mathbb{N}^*, \text{s.t. } k \geq K, x_0 \in I_k \subset U_{\alpha_0}$,从而与构造矛盾! \square

Theorem 7.2.4 设 $A \subset \mathbb{R}^n$

- 1. A 是紧集,则一定为闭集.
- 2. A 是紧集,则 $D \subset A$ 是闭集,则 D 为紧集.

- Proof-

1. 只需证明 A 是开集即可,则 $\forall x_0 \in A^c$,对于 $x \in A, \delta(x) = \frac{1}{2}d(x,x_0)$,则 $A \subset \bigcup_{x \in A} B(x;\delta(x))$,由于 A 紧,则 \exists , $B(x_1;\delta(x_1))$,…, $B(x_m;\delta(x_m))$,s.t. $A \subset \bigcup_{i=1} B(x_i;\delta(x_i))$,定义 $V = \bigcap_{i=1}^m B(x_0;\delta(x_i))$,则 $V \cap A = \emptyset$, $V \subset A^c$,从而 A 是闭集.

Definition 7.2.5 (有界集) 设 $A \subset \mathbb{R}^n$,若 $\exists I_{a,b}$, s.t. $A \subset I_{a,b}$,则称 A 为有界集.

Theorem 7.2.6 设 $A \subset \mathbb{R}^n$,则 A 为紧集 \iff A 是有界闭集.

Proof

"⇒", √.

"←", A 有界, $\exists I_{a,b}$, s.t. $A \subset I_{a,b}$, 则 A 为闭集. \Box

7.3 \mathbb{R}^n 中的点列

Definition 7.3.1 (点列) 设 $\{x_k\} \subset \mathbb{R}^n, a \in \mathbb{R}^n, \forall \varepsilon > 0, \exists N \in \mathbb{N}^+, \text{s.t. } k > N, 有 x_k \in B(a; \varepsilon), 称$ $\{x_k\}$ 收敛于 a,记为 $\lim_{k \to \infty} x_k = a$.

即若 $A\subset \mathbb{R}^n, A\in A'\Longleftrightarrow \exists \{x_k\}\setminus \{a\}\subset A, \text{s.t.}\lim_{\{k\to\infty\}}x_k=a$

Remark

 $\lim_{k\to\infty}x_k=a\Longleftrightarrow\lim_{\{k\to\infty\}}x_k^i=a^i$

Definition 7.3.2 (列紧集) 设 $A \subset \mathbb{R}^n$, 若 A 中任何点列都收敛于 A 中的点.

Theorem 7.3.3 A 为紧集 \iff A 为列紧集.

Proof

"⇒",设 $\{x_k\}$ 是 A 的点列,由 A 是 紧集,则有界,则 $\{x_k^i\}$, $i=1,...n(|x_k^i|\leq d(x_k,0))$,由 Bolzno-Weierstrass 定理,则 $\{x_k^i\}$ 存在收敛子列 $x_{k_n}^i$ 设 $\lim_{k_n\to\infty}x_{k_n}^i=x_0^i$,在这个收敛子列里面找接下来的 x_1 如此反复,令 $x_0=(x_0^1,...,x_0^n)$,故 $\lim_{k\to\infty}x_{k_n}=x_0\in A'\subset A$,则 A 是列紧集.

" \leftarrow ", 只需证明 A 是有界闭集即可.

- 1. A 有界(反证法),若 A 无界,则 $\forall R \in \mathbb{N}, \exists x_k \in A, d(0, x_k) > k, \{x_k\} \subset A, A$ 为列紧集. $\{x_k\}$ 有收敛子列 $\{x_{k_n}\}$ 且 $\lim_{k_n \to \infty} x_{k_n} = b \in A,$ 有 $k < d(0, x_{k_n}) \leq d(0, b) + d(b, x_{k_n}),$ 矛盾,则 A 有界.
- 2. A 为闭集,只需证明 $A' \subset A$,设 $a \in A'$,存在一个子列是 A 的子列,他们极限是 a,则 A 是闭集.

Definition 7.3.4 设 $\{x_k\} \subset \mathbb{R}^n, \forall \varepsilon > 0, \exists N \in \mathbb{N}^+, \text{s.t. } k, l > N \text{ f } d(x_k, x_l) < \varepsilon, \text{则称 } \{x_k\} \text{ 为 Cauchy 列.}$

Theorem 7.3.5 设 $\{x_k\} \subset \mathbb{R}^n, \{x_k\}$ 为 Cauchy 列 $\iff \{x_k\}$ 是收敛点列.

此时称 \mathbb{R}^n 是完备度量空间.

7.4 \mathbb{R}^n 中的连通集

Definition 7.4.1 (连通集) 设 $D \subset \mathbb{R}^n$,若 $\exists A, B \neq \emptyset, D = A \cup B$,则有 $\overline{A} \cap B \neq \emptyset$ 或 $A \cap \overline{B} \neq \emptyset$,则 D 为连通集.

Theorem 7.4.2 设 $D \subset \mathbb{R}$, D 为连通集 $\iff D$ 为 \mathbb{R} 的区间.

Proof

"⇒", 设 $[a,b] \subset D$,若 $\exists c \in [a,b]$, s.t. $c \notin D$,令 $A = D \cap (-\infty,C)$, $B = D \cap (C,+\infty)$,此时与 D 为连通集矛盾,则 D 是区间.

" \leftarrow " 设 $D = A \cup B, A, B \neq \emptyset$,要证 $\overline{A} \cap B \neq \emptyset$ 或 $A \cap \overline{B} \neq \emptyset$,设 $a \in A, b \in B, \exists a < b, \diamondsuit$ $V(x) = \{x \in A, | a \le x < b\}, c = \sup V$ (7.4.1)

- 1. $\exists c \in A, A \cap B = \emptyset, c < b, (c, b) \subset B \uparrow A \cap \overline{B} \neq \emptyset.$
- 2. 若 $c \notin A$, $D = A \cup B$, $c \in B$, 有 $\overline{A} \cap B \neq \emptyset$.

Definition 7.4.3 (道路连通) 设 $D \subset \mathbb{R}^n$, 若 $\forall p, q \in D, \exists$ 一条道路 $\gamma : [0,1] \to D, t \mapsto \gamma(t)$,其中 $\gamma(t) = (\gamma^1(t), ..., \gamma^n(t)), \gamma^i(t)$ 为连续函数, $i = 1, ..., n, \gamma(0) = p, \gamma(1) = q, 则 D$ 为道路连通集合.

Definition 7.4.4 (凸集) 设 $A \subset \mathbb{R}^n$, 若 A 中任何两点连接的线段在 A 中,则 A 为凸集.

Example 7.4.5

- 1. $B(a;\delta)$ 是道路连通的,凸的.
- 2. $S^{n-1}(a,\delta)$ 是道路连通的.

Theorem 7.4.6 若 *D* 为道路连通集.则 *D* 为连通集.

Proof-

设 $D = A \cup B, A, B \neq \emptyset, A \cap B = \emptyset$,要证 $\overline{A} \cap B \neq \emptyset$ 或 $A \cap \overline{B} \neq \emptyset$.

取 $p \in A, q \in B$, 由 D 道路联通,则 \exists 道路 $\gamma : [0,1] \to D$, s.t. $\gamma(0) = p, \gamma(1) = q$.

故 $[0,1] = U \cup V$ 且 $U \cap V = \emptyset$.

由 [0,1] 为区间,则 $U' \cap V \neq \emptyset$ 或者 $U \cap V' \neq \emptyset$.

不妨设 $U\cap V'\neq\emptyset$,令 $t_0\in U\cap V',\exists\{t_k\}\subset V,\text{s.t.}\lim_{k\to+\infty}t_k=t_0,$ 由 $\gamma^k(t)$ 为连续函数,则 $A\ni\gamma(t_0)=\lim_{\{k\to\infty\}}\gamma(t_k)\in B',$ 此时有 $A\cap B'\neq\emptyset$,则 D 为连通集.

Example 7.4.7 $B(x_0; \delta), \mathcal{S}^{n-1}(x_0; \delta)$ 都是连通的.

Theorem 7.4.8 \mathbb{R}^n 中的连通开集是道路连通的.

Proof

设 D 为连通开集,设 $\forall x \in D$,构造 $A(x) = \{y \in D \mid \exists \gamma : [0,1] \to D$, s.t. $\gamma(0) = x, \gamma(1) = y\}$ (我们希望 A(x) 是开的.) 由于 D 是开的,则

定义
$$\gamma:[0,1]\to D, \gamma(t)= \begin{cases} \gamma_1(2t) & \text{if } 0\leq t\leq \frac{1}{2}\\ \gamma_2(2t-1) & \text{if } \frac{1}{2}\leq t\leq 1 \end{cases}$$

从而 $\gamma(t)$ 为连接,x,z 之间的道路, $z\in A(x)$,则 A(x) 为开集,则 $\forall z\in D\setminus A(x)$, A(z) 也是开集,且 $A(x)\cap A(z)=\emptyset$,令 $B(x)=D\setminus A(x)=\bigcup_{z\in D\setminus A(x)}A(z)$, $D=A(x)\cup B(x)$, $A(x)\cup B(x)=\emptyset$,由于 A(x),b(x) 开可知 (D 连通), $\overline{A(x)}\cap B(x)=\emptyset$, $A(x)\cap \overline{B(x)}\neq\emptyset$,则 $B(x)=\emptyset$, i.e D=A(x),从而 D 为道路连通集. \square

Definition 7.4.9 \mathbb{R}^n 的连通开集是(开区域), \overline{A} 为闭区域.

Remark

连通集未必道路连通.

Example 7.4.10 (topologist's sine curve)
$$D = \left\{ \left(x, \sin \frac{1}{x} \right) \in \mathbb{R}^2 \,\middle|\, x \in (0, 1] \right\}$$

证明:

- 1. D 是道路连通的.
- $2. \overline{D}$ 为连通的.
- 3. \overline{D} 非道路连通.

- Proof-

2. 设 $\overline{D}=A\cup B, A, B\neq\emptyset, A\cap B=\emptyset$ 要证明 $A'\cap B\neq\emptyset$ 或者 $A\cap B'\neq\emptyset$. 从而令 $A_1=D\cap A, B_1=D\cap B$, 从而 $D=A_1\cup B_1, A_1, B_1\neq\emptyset$, 由于 D 连通可以知道, $A'_1\cap B_1\neq\emptyset$ 或 $A_1\cap B'_1\neq\emptyset$, 由于 $A_1\subset A, B_1\subset B$, 从而 $A'\cap B\neq\emptyset$ 或 $A\cap B'\neq\emptyset$.

7.5 多变元函数的极限

Definition 7.5.1 设 $D \subset \mathbb{R}^n$,称映射 $f: D \to \mathbb{R}$ 为多变量函数.

 $\forall x \in D, \text{s.t. } \exists y = f(x)$

- x 为 f 的自变量.
- *D* 为 *f* 的定义域.
- *f*(*D*) 为 *f* 的值域.

Definition 7.5.2 (极限) 设 $D \subset \mathbb{R}^n, x_0 \in D', A \in \mathbb{R}, f : D \to \mathbb{R}$ 多变量函数,若 $\forall A$ 的邻域, $V \subset \mathbb{R}, \exists x_0$ 的邻域 U, s.t. $f(\mathring{U} \cap D) \subset V$, 称 $A \ \ \, b \ f \ \ \, c \ \, x \to x_0$ 时的极限,记为 $\lim_{D\ni x \to x_0} f(x) = A$.

如果使用 $\varepsilon - \delta$ 语言描述的话:

 $\forall \varepsilon > 0, \exists \delta > 0, \text{s.t.} \stackrel{.}{=} 0 < d(x_0, x) < \delta \perp x \in D, \uparrow a \mid f(x) - A \mid < \varepsilon.$

Example 7.5.3 设 f(x) = x + 2y,则 $\lim_{(x,y) \to (0,0)} = 0$

Proof
$$|f(x,y)| = |x+2y|$$
 $\leq 2d(x,y) < \varepsilon$ 取 $\delta = \frac{\varepsilon}{2\sqrt{2}}$ 即可.

Theorem 7.5.4 设 $D \subset \mathbb{R}^n, f: D \to \mathbb{R}, x_0 \in D', 则$

 $\lim_{x\to x_0} = A \Longleftrightarrow \forall \{x_k\} \subset D \setminus \{x_0\}, \lim_{k\to\infty} x_k = x_0, \lim(k\to\infty) f(x_k) = A.$

Proof

"⇒" $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in \mathring{B}(x; \delta) \subset D, \text{s.t. } |f(x) - A| < \varepsilon, \lim_{k \to \infty} x_k = x_0, \exists N \in \mathbb{N}^* \ \ \dot{\exists} \ \ k > N$ 时,有 $x_k \in \mathring{B}(x_0; \delta) \cap D$,故 $|f(x_k) - A| < \varepsilon$.

"⇒" 设
$$\lim_{k \to \infty} f(x) \neq A$$
 或 不 存 在 ,则 $\exists \varepsilon > 0, \forall k \in \mathbb{N}^*, \exists x_k \in B\left(x_0, \frac{1}{k}\right) \cap D, \text{s.t. } |f(x_k) - A| > \varepsilon, \lim_{k \to \infty} x_k = x_0,$ 这与假设矛盾. \Box

Remark

极限的性质

- 1. 唯一性
- 2. 四则运算
- 3. 局部有界性

Definition 7.5.5 (复合函数的极限)

1. 设
$$f:D\subset R^n\to R, g:Y\subset R\to R$$

$$2. \ x_0 \in D', y_0 \in Y', f(D) \subset Y$$

3.
$$\lim_{x\to x_0}f(x)=y_0, \lim_{y\to y_0}g(x)=A$$

4.
$$\forall y \in U_D(x_0, \delta) = B(x_0; \delta) \cap D, f(x) \neq y_0$$

$$\mathop{|\!|\!|\!|} \lim_{x\to x_0}g\circ f(x_0)=\lim_{y\to y_0}g(y)=A$$

equation

7.5.1 二元函数的累次极限

设
$$D\subset\mathbb{R}^2, f:D\to\mathbb{R}, D=D_1\times D_2, D_i\subset\mathbb{R}, i=1,2.$$

设 $y \neq y_0$ 若

$$\lim_{D_1 \ni x \to x_0} f(x, y) \tag{7.5.2}$$

存在,且

$$\lim_{D_2\ni y\to y_0}\lim_{D_1\ni x\to x_0}f(x,y) \tag{7.5.3}$$

存在,称 Equation (7.5.2) 为 f 先 x 后 y 的累次极限.类似可定义先 y 后 x 的累次极限.

Problem

极限和累次极限的关系?

Example 7.5.1.6

1.
$$f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}, \lim_{(x,y) \to (0,0)} f(x,y) = 0, \checkmark. \text{ $\square \neq \lim_{x \to 0} \lim_{y \to 0} f(x,y)$ $\overline{\wedge}$}$$

存在. 极限存在,累次极限不存在.

2. 设
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases} f(x,y)$$
 不存在. 但是 $\lim_{x \to 0} \lim_{y \to 0} f(x,y) = 0, \checkmark$. 极限存在 累次极限不存在。 $\phi_{x,y} = \frac{k}{x^2 + y^2}$

限存在,累次极限不存在. 令 y = kx, $f(x, kx) = \frac{k}{1 + k^2}$.

3.
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在!

但是

- $\lim_{x\to 0} \lim_{y\to 0} f(x,y) = 1, \checkmark$. 极限存在
- $\lim \lim f(x,y) = -1, \checkmark$. 极限存在

- 1. 若 $y \neq y_0$, $\lim_{x \to x_0} f(x, y) = \varphi(y)$, 則 $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = \lim_{y \to y_0} \varphi(y) = A$ 2. 若 $x \neq x_0$, $\lim_{y \to y_0} f(x, y) = \varphi(x)$, 則 $\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lim_{x \to x_0} \varphi(x) = A$

Proof-

曲
$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A, \forall \varepsilon > 0 \,\exists \delta > 0, \text{s.t.} \, \stackrel{\text{.}}{=} (x,y) \in \mathring{B}\left(\frac{x_0,y_0}{;}\delta\right) \cap D \, \bar{\eta} \, |f(x,y)-A| < \frac{\varepsilon}{2},$$
 曲 $\lim_{x\to x_0} f(x,y) = \varphi(y), \exists 0 < \delta_1 < \delta, \text{s.t.} \, |f(x,y)-\varphi(y)| < \frac{\varepsilon}{2}, 0 < d(x_0,x) < \delta_1$ $|\varphi(y)-A| \leq \varphi|\varphi(y)-f(x,y)| + |f(x,y)-A|$ $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

7.6 连续函数函数

Definition 7.6.1 设 $D \subset \mathbb{R}^n$, $f: D \to \mathbb{R}$, $x_0 \in D$, 若 $\forall f(x_0)$ 的邻域 V, $\exists x_0$ 的邻域 U, s.t., $f(U \cap D) \subset V$, 称 f 在 x_0 点上连续,或者 $x \to x_0$, $f(x) \to f(x_0)$, x_0 为 f 的连续点,否则称为间 断点.

若 \forall ∈ D, f(x) 连续称 f 在 D 上连续,称 C(D) 为 D 上连续函数的集合.

Remark

若 $x_0 \in D \cap D', f$ 在 x_0 上连续 $\iff \lim_{x \to x_0} f(x) = f(x_0)$

Example 7.6.2

- 1. 常值函数为连续函数.
- 2. $f(x) = x ^ i$
- 3. 四则运算
- 4. 复合函数

- Remark -

 $f \in C(D)$ 则 $\forall V \subset f(D)$ 开集,则存在 $\exists U \subset \mathbb{R}^n$ 为开集, $s.t.f^{-1}(V) = U \cap D$

Definition 7.6.3 设

 $f:D\subset\mathbb{R}^n\to R,, \forall \varepsilon>0, \exists \delta>0, \text{s.t. } \forall x_1,x_2,\in D, d(x_1,x_2)<\delta, |f(x_1)-f(x_2)|<\varepsilon \text{ 称 } f\text{ 为 } D\text{ } \bot$ 一致连续函数.

Theorem 7.6.4 设 $D \subset \mathbb{R}^n$ 为紧集, $f \in C(D)$,则 f 为 D 上一致连续函数.