Questio n Number	Answer		Mark
14(a)	Maximum value of weight/force for which weight/force is proportional to extension Or		
	Point beyond which Hooke's Law no longer applies Or		
	Point beyond which graph line ceases to be straight		
	Or Point beyond which weight/force is no longer proportional to extension	(1)	1
14(b)(i)	Use of large triangle to determine gradient	(1)	
	Gradient = $18500(\text{N m}^{-1})$ (sf range $18-19$, no ue)	(1)	2
	Example of calculation gradient = 37 N ÷ $(2 \times 10^{-3} \text{ m}) = 18500 \text{ (N m}^{-1})$		
14(b)(ii)	Rearranges $E = \text{stress} / \text{strain to get } E = \text{gradient} \times \frac{x}{4}$		
	Or Rearranges E = stress / strain to get gradient = $\frac{A^A}{x}E$	(1)	3
	Use of $A = \pi r^2$	(4)	
	Young modulus = $2 \times 10^{11} \text{ Pa}$	(1) (1)	
	(allow ecf from (b)(i))	(-)	
	Example of calculation		
	$A = \pi \times (2.8 \times 10^{-4})^2 = 2.46 \times 10^{-7} \text{ m}^2$ $E = 1.85 \times 10^4 \text{ N m}^{-1} \times 2.6 \text{ m} \div 2.46 \times 10^{-7} \text{ m}^2 = 1.95 \times 10^{11} \text{ Pa}$		
14(c)	Use of $\sigma = \frac{r}{A}$	(4)	
	Determines maying um safe lead	(1)	
	Determines maximum safe load Or		
	Determines maximum stress		
	Or Determines minimum cross section	(1)	
	Valid conclusion by comparison with student's calculation	(1)	3
	Example of calculation		
	$\sigma_{max} = \frac{w^{max}}{A}$ $4.80 \times 10^{8} \text{ Pa} = \frac{w_{max}}{2.46 \times 10^{-7} \text{m}^{2}}$		
	$W_{\text{max}} = 480 \times 10^{6} \text{ Pa} = \frac{W \text{ max}}{2.46 \times 10^{-7} \text{ m}^{2}}$ $W_{\text{max}} = 480 \times 10^{6} \text{ Pa} \times 2.46 \times 10^{-7} \text{ m}^{2} = 118 \text{ N} > 100 \text{ N so yes}$		
	Total for question 14		9