FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E

TEST REPORT

For

Start phone

Model: I-SM1

Market name: Imcosys

Trade Name: Imcosys

Issued to

ImCoSys Ltd. ImCoSys AG Bundesstrasse 5 CH-6300 Zug

Issued by

COMPLIANCE CERTIFICATION SERVICES (KUNSHAN) INC.

10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone Kunshan city JiangSu, (215300) CHINA

> TEL: 86-512-57355888 FAX: 86-512-57370818

Lab. Code: 200581-0

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1.	TEST RESULT CERTIFICATION	3
2.	EUT DESCRIPTION	4
3.	TEST METHODOLOGY	5
3.	EUT CONFIGURATION	5
3.		
3.	GENERAL TEST PROCEDURES	5
3.	DESCRIPTION OF TEST MODES	5
4.	NSTRUMENT CALIBRATION	6
5.	FACILITIES AND ACCREDITATIONS	7
5.		
5.		
5.	C -	
5.		
6.	SETUP OF EQUIPMENT UNDER TEST	9
6.	SETUP CONFIGURATION OF EUT	9
6.		
7.	TCC PART 22 & 24 REQUIREMENTS	10
7.	PEAK POWER	10
7.	ERP & EIRP MEASUREMENT	12
7.	OCCUPIED BANDWIDTH MEASUREMENT	15
7.	OUT OF BAND EMISSION AT ANTENNA TERMINALS	20
7.		
7.	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	37
7.	FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT	39
7.	POWERLINE CONDUCTED EMISSIONS	41

1. TEST RESULT CERTIFICATION

Applicant: ImCoSys Ltd.

ImCoSys AG Bundesstrasse 5 CH-6300 Zug

Equipment Under Test: Smart phone

Trade Name: Imcosys
Model Number: I-SM1

Market name: Imcosys

Date of Test: September 12~30, 2006

APPLICABLE STANDARDS							
STANDARD	TEST RESULT						
FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E	No non-compliance noted						

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA/EIA-603-A-2001 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 22 Subpart H and PART 24 Subpart E.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Tony Houng

General Manager of Kunshan Laboratory Compliance Certification Services Inc. Reviewed by:

Miro Chueh

Section Manager of Kunshan Laboratory Compliance Certification Services Inc.

Page 3 Rev. 00

2. EUT DESCRIPTION

Product	Smart phone					
Trade Name	Imcosys					
Model Number	I-SM1					
Market name	Imcosys					
Model Discrepancy	N/A					
Power Supply	1. AC to DC charger Trade Name: DVE Model Number: DSA-5P-05 FUS Input: AC 100-240V, 50/60Hz, 0.2A Output: DC 5V,1A DC Power Cord: DC Power Cable 2m Non-shielding, Non-detachable, without Core 2. Battery: Imcosys/ ISM1B Lithium-Ion 3.7V/ 1240mAh					
Frequency Range	TX: 824 ~ 849 MHz / 1850 ~ 1910 MHz RX: 869 ~ 894 MHz / 1930 ~ 1990 MHz					
Transmit Power	31. 50 dBm GSM 850: 31.50dBm GSM 1900: 28.60dBm					
Cellular Phone Protocol	GSM (PCS)					
Type of Emission	249KGXW					
Antenna Type	Inner Antenna					

Remark: This submittal(s) (test report) is intended for FCC ID: <u>UIHI-SM1</u> filing to comply with Part 22 and Part 24 of the FCC 47 CFR Rules.

Page 4 Rev. 00

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4 and FCC CFR 47, 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

DESCRIPTION OF TEST MODES

The EUT (model: I-SM1) had been tested under operating condition.

EUT staying in continuous transmitting mode was programmed. Channel Low, Mid and High were chosen for full testing.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

The field strength of spurious emission was measured as EUT stand-up position (H mode) and lie-down position (E1, E2 mode) for both GSM and GPRS with all power adaptors. The worst emission was found in stand-up position (H mode) and the worst case was recorded.

Page 5 Rev. 00

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Page 6 Rev. 00

5. FACILITIES AND ACCREDITATIONS

FACILITIES

All measurement facilities used to collect the measurement data are located at CCS China Kunshan Lab at 10#, Weiye Rd, Innovation Park Eco. & Tec. Development Zone Kunshan city JiangSu, (215300)CHINA.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200581-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (Registration no: 93105 and 90471).

Page 7 Rev. 00

TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP	EN 55022, EN 61000-3-2, EN 61000-3-3, EN550024, EN 61000-4-2, EN 61000-4-3, EN61000-4-4, EN 61000-4-5, EN 61000-4-6, IEC 61000-4-8, EN 61000-4-11 ANSI C63.4, CISPR16-1, IEC61000-3-2, IEC61000-3-3, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	Lab. Code: 200581-0
USA	FCC	3/10 meter Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	3/10 meter Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-1600 C-1707
Norway	NEMKO	EN61000-6-1/2/3/4, EN 50082-1/2, IEC 61000-6-1/2/3/4, EN 50091-2, EN 55011, EN 55022, EN 55024, EN 61000-3-2/3, EN 61000-11, IEC 61000-4-2/3/4/5/6/8/11, CISPR16-1/2/3/4	N ELA 105

^{*} No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 8 Rev. 00

6. SETUP OF EQUIPMENT UNDER TEST

SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord
1	N/A						

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 9 Rev. 00

7. FCC PART 22 & 24 REQUIREMENTS

PEAK POWER

LIMIT

According to FCC §2.1046.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Peak and Avg Power Sensor	Agilent	E9327A	US40441788	07/30/2007
EPM-P Series Power Meter	Agilent	E4416A	QB41292714	07/30/2007
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2007
Wireless communication test set	Agilent	8960	QB44051695	10/06/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

Page 10 Rev. 00

TEST RESULTS

No non-compliance noted.

Test Data

Test Mode	СН	Frequency (MHz)	Power Meter Reading (dBm)	Factor (dB)	Peak Power (dBm)
	128	824.20	5.00		31. 50
GSM 850	190	836.60	4.93	26.50	31. 43
	251	848.80	4.74		31. 24

Remark: The value of factor includes both the loss of cable and external attenuator

Test Mode	СН	Frequency (MHz)	Power Meter Reading (dBm)	Factor (dB)	Peak Power (dBm)
	512	1850.20	3.95		28.45
GSM 1900	661	1880.00	4.01	24.50	28.51
	810	1910.00	4.10		28.60

Remark: The value of factor includes both the loss of cable and external attenuator

Page 11 Rev. 00

ERP & EIRP MEASUREMENT

LIMIT

According to FCC §2.1046

FCC 22.913(a): The Effective Radiated Power (ERP) of mobile transmitters must not exceed 7

Watts.

FCC 24.232(b): The equivalent Isotropic Radiated Power (EIRP) must not exceed 2 Watts.

MEASUREMENT EQUIPMENT USED

977 Chamber (3m)										
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2007						
EMI Test Receiver	R&S	ESPI3	101026	11/11/2006						
Pre-Amplfier	MINI-circuits	ZFL-1000VH2	d041703	12/13/2006						
Pre-Amplfier	Miteq	NSP4000-NF	870731	01/28/2007						
Bilog Antenna	Sunol	JB1	A110204-2	11/22/2006						
Horn-antenna	SCHWARZBECK	BBHA9120D	D:266	02/01/2007						
PSG Analog Signal Generator	Agilent	E8257C	MY43321570	12/19/2006						
Wireless communication test set	Agilent	8960	QB44051695	10/06/2007						
Turn Table	CT	CT123	4165	N.C.R						
Antenna Tower	CT	CTERG23	3256	N.C.R						
Controller	CT	CT100	95637	N.C.R						
Site NSA	CCS	N/A	N/A	04/06/2007						

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

Below 1 GHz

Page 12 Rev. 00

Report No: KS060911A02-RPG

Above 1 GHz

For Substituted Method Test Set-UP

TEST PROCEDURE

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement of the EUT, the resolution bandwidth was set to 3MHz and the average bandwidth was set to 3MHz. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824-849MHz, and EIRP in frequency band 1851.25 –1910MHz were measured using a substitution method. The EUT was replaced by half-wave dipole (824-849MHz) or horn antenna (1851.25-1910MHz) connected to a signal generator. The spectrum analyzer reading was recorded and ERP/EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

Page 13 Rev. 00

TEST RESULTS

No non-compliance noted.

GSM 850 Test Data

EUT Pol.	Channel	Frequency (MHz)	Reading level (dBuV)		S.G. (dBm)		Ant.Gain (dBi)	IEVEL	Limit (dBm)	0
	128	824.20	130.54	V	27.71	2.87	6.20	31.04	38.5	-7.46
	128	824.20	119.42	Н	23.56	2.87	6.20	26.89	38.5	-11.61
Н	190	836.60	129.61	V	27.49	2.88	6.40	31.01	38.5	-7.49
П		836.60	118.77	Н	22.98	2.88	6.40	26.50	38.5	-12.00
	251	848.80	128.90	V	27.37	2.94	6.50	30.93	38.5	-7.57
	231	848.80	117.83	Н	22.54	2.94	6.50	26.10	38.5	-12.40

GSM 1900 Test Data

EUT Pol.	Channel	Frequency (MHz)	Reading level (dBuV)		S.G. (dBm)		Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	0
	512	1850.20	120.52	V	24.01	4.31	8.45	28.15	33	-4.85
	312	1850.20	119.58	Н	19.52	4.31	8.45	23.66	33	-9.34
Н	661	1880.00	120.98	V	24.33	4.53	8.48	28.28	33	-4.72
п		1880.00	119.92	Н	19.87	4.53	8.48	23.82	33	-9.18
	810	1909.80	121.33	V	24.62	4.55	8.52	28.59	33	-4.41
	610	1909.80	120.46	Н	20.44	4.55	8.52	24.41	33	-8.59

Page 14 Rev. 00

OCCUPIED BANDWIDTH MEASUREMENT

LIMIT

According to §FCC 2.1049.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2007
Wireless communication test set	Agilent	8960	QB44051695	10/06/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW was set to about 1% of emission BW, VBW is set to 3 times the RBW, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

The spectrum analyzer is set to: RBW = 3 kHz, VBW = 10 kHz, Span = 1 MHz, Sweep = auto

Page 15 Rev. 00

TEST RESULTS

No non-compliance noted

Test Data

Test Mode	Test Mode CH		Bandwidth (kHz)		
GSM 850	128	824.20	246.48		
	190	836.60	244.80		
	251	848.80	245.28		

Test Mode	СН	Frequency (MHz)	Bandwidth (kHz)		
	512	1850.20	246. 39		
GSM 1900	661	1880.00	248. 54		
	810	1909.80	245. 66		

Page 16 Rev. 00

Test Plot

GSM 850 (CH Low)

GSM 850 (CH Mid)

Page 17 Rev. 00

Date of Issue: September 30, 2006

GSM 850 (CH High)

GSM 1900 (CH Low)

Page 18 Rev. 00

FCC ID: UIHI-SM1

Date of Issue: September 30, 2006

GSM 1900 (CH Mid)

GSM 1900 (CH High)

Page 19 Rev. 00

OUT OF BAND EMISSION AT ANTENNA TERMINALS

LIMIT

According to FCC §2.1051, FCC §22.917(e), FCC §22.917(f), FCC §24.238(a).

Out of Band Emissions: The mean power of emission must be attenuated below the mean power of the non-modulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at lease 43 + 10 log P dB.

Mobile Emissions in Base Frequency Range: The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitters operated must be attenuated to a level not exceed –80 dBm at the transmit antenna connector.

Band Edge Requirements: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at lease 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the Out of band Emission

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2007
Wireless communication test set	Agilent	8960	QB44051695	10/06/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

Out of band emission at antenna terminals:

TEST PROCEDURE

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10 th harmonic. Limit = -13dBm

Band Edge Requirements (824 MHz and 849 MHz /1850MHz and 1910MHz): In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13dBm.

For the Band Edge: The spectrum analyzer is set to: RBW = 3 kHz, VBW = 10 kHz, Span = 1 MHz, Sweep = auto

Page 20 Rev. 00

TEST RESULTS

No non-compliance noted.

Test Data

Mode	СН	Location	Description				
	128	Figure 7-1	Conducted spurious emissions, 30MHz - 2.5GHz				
	128	Figure 7-2	Conducted spurious emissions, 2.5GHz - 20GHz				
GSM 850	190	Figure 7-3	Conducted spurious emissions, 30MHz - 2.5GHz				
GSW 650		190	Figure 7-4	Conducted spurious emissions, 2.5GHz - 20GHz			
		Figure 7-5	Conducted spurious emissions, 30MHz - 2.5GHz				
		251	251	251	251	251	Figure 7-6

Mode	СН	Location	Description
	512	Figure 8-1	Conducted spurious emissions, 30MHz - 2.5GHz
		Figure 8-2	Conducted spurious emissions, 2.5GHz - 20GHz
GSM 1900	661	Figure 8-3	Conducted spurious emissions, 30MHz - 2.5GHz
GSM 1900		Figure 8-4	Conducted spurious emissions, 2.5GHz - 20GHz
	810	Figure 8-5	Conducted spurious emissions, 30MHz - 2.5GHz
	810	Figure 8-6	Conducted spurious emissions, 2.5GHz - 20GHz

Mode	CH Location		Description
GSM 850	128	Figure 9-1	Band Edge emissions
USIVI 650	251	Figure 9-2	Band Edge emissions

Mode	СН	Location	Description
GSM 1900	512	Figure 10-1	Band Edge emissions
OSM 1900	810	Figure 10-2	Band Edge emissions

Page 21 Rev. 00

Test Plot

GSM 850

Figure 7-1: Out of Band emission at antenna terminals – GSM CH Low

Figure 7-2: Out of Band emission at antenna terminals – GSM CH Low

Page 22 Rev. 00

Figure 7-3: Out of Band emission at antenna terminals – GSM CH Mid

Figure 7-4: Out of Band emission at antenna terminals – GSM CH Mid

Page 23 Rev. 00

Figure 7-5: Out of Band emission at antenna terminals – GSM CH High

Figure 7-6: Out of Band emission at antenna terminals – GSM CH High

Page 24 Rev. 00

Report No: KS060911A02-RPG

GSM 1900

Figure 8-1: Out of Band emission at antenna terminals – GSM CH Low

Figure 8-2: Out of Band emission at antenna terminals – GSM CH Low

Page 25 Rev. 00

Figure 8-3: Out of Band emission at antenna terminals – GSM CH Mid

Figure 8-4: Out of Band emission at antenna terminals – GSM CH Mid

Page 26 Rev. 00

Figure 8-5: Out of Band emission at antenna terminals – GSM CH High

Figure 8-6: Out of Band emission at antenna terminals – GSM CH High

Page 27 Rev. 00

GSM 850

Figure 9-1: Band Edge emissions – GSM CH Low

Figure 9-2: Band Edge emissions – GSM CH High

Page 28 Rev. 00

GSM 1900

Figure 10-1: Band Edge emissions – GSM CH Low

Figure 10-2: Band Edge emissions – GSM CH High

Page 29 Rev. 00

FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

LIMIT

According to FCC §2.1053

MEASUREMENT EQUIPMENT USED

977 Chamber (3m)								
Name of Equipment	Manufacturer Model		Serial Number	Calibration Due				
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2007				
EMI Test Receiver	R&S	ESPI3	101026	11/11/2006				
Pre-Amplfier	MINI-circuits	ZFL-1000VH2	d041703	12/13/2006				
Pre-Amplfier	Miteq	NSP4000-NF	870731	01/28/2007				
Bilog Antenna	Sunol	JB1	A110204-2	11/22/2006				
Horn-antenna	SCHWARZBECK	BBHA9120D	D:266	02/01/2007				
PSG Analog Signal Generator	Agilent	E8257C	MY43321570	12/19/2006				
Wireless communication test set	Agilent	8960	QB44051695	10/06/2007				
Turn Table	CT	CT123	4165	N.C.R				
Antenna Tower	CT	CTERG23	3256	N.C.R				
Controller	CT	CT100	95637	N.C.R				
Site NSA	CCS	N/A	N/A	04/06/2007				

Remark: Each piece of equipment is scheduled for calibration once a year.

Page 30 Rev. 00

Report No: KS060911A02-RPG

Test Configuration

Below 1 GHz

Above 1 GHz

Substituted Method Test Set-up

TEST PROCEDURE

The EUT was placed on a non-conductive, the measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain <math>(dBi) - Cable (dB)

TEST RESULTS

Refer to the attached tabular data sheets.

Page 32 Rev. 00

Radiated Spurious Emission Measurement Result

Below 1GHz

No emissions to be recorded. (Since no specific emission noted beyond the background noise floor)

Above 1GHz

Operation Mode: GSM 850 / TX / CH 128 Test Date: September 16, 2006

Temperature: 25°C **Tested by:** Jeff

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1648.40	34.89	V	-75.88	4.01	7.86	-72.03	-13.00	-59.03
1648.42	35.47	Н	-76.37	4.01	7.86	-72. 52	-13.00	-59.52

Operation Mode: GSM 850 / TX / CH 190 **Test Date:** September 16, 2006

Temperature: 25°C **Tested by:** Jeff

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1673.22	33.71	V	-76.71	4.21	7.95	-72.97	-13.00	-59.97
1673.18	34.60	Н	-77.03	4.21	7.95	-73.29	-13.00	-60.29

Operation Mode: GSM 850 / TX / CH 251 Test Date: September 16, 2006

Temperature: 25°C **Tested by:** Jeff

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1697.58	33. 54	V	-77.94	4.53	8.12	-74.35	-13.00	-61.35
1697.62	34.07	Н	-78.16	4.53	8.12	-74.57	-13.00	-61.57

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above shown only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 33 Rev. 00

- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 5. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 34 Rev. 00

Below 1GHz

No emissions to be recorded.

(Since no specific emission noted beyond the background noise floor)

Above 1GHz

Operation Mode: GSM 1900 / TX / CH 512 Test Date: September 16, 2006

Temperature: 25°C **Tested by:** Jeff

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3700.40	27.25	V	-73.89	6.65	13.40	-67. 14	-13.00	-54.14
3700.42	26.32	Н	-71.51	6.65	13.40	-64. 76	-13.00	-51.76

Operation Mode: GSM 1900 / TX / CH 661 Test Date: September 16, 2006

Temperature: 25°C **Tested by:** Jeff

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3760.02	27.61	V	-73.44	6.75	13.56	-66. 63	-13.00	-5 3 . 63
3760.06	26.73	Н	-71.07	6.75	13.56	-64. 26	-13.00	-51. 26

Operation Mode: GSM 1900 / TX / CH 810 Test Date: September 16, 2006

Temperature: 25°C **Tested by:** Jeff

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3819.59	28.01	V	-72.99	6.84	14. 25	-65. 58	-13.00	-52. 58
3819.61	26.96	Н	-71.23	6.84	14. 25	-63. 82	-13.00	-50. 82

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above shown only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible

Page 35 Rev. 00

limits or the field strength is too small to be measured.

- 4. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 5. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 36 Rev. 00

FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235.

Frequency Tolerance: 2.5 ppm

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
DC POWER SUPPLY	GW instek	GPS-3303C	E903131	04/15/2007
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2007
Wireless communication test set	Agilent	8960	QB44051695	10/06/2007
Temp. / Humidity Chamber	Kingson	THS-M1	242	05/26/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Temperature Chamber

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector

Page 37 Rev. 00

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST RESULTS

No non-compliance noted.

Reference Frequency: GSM Mid Channel 836.6 MHz @ 20°C								
Limit: $\pm 2.5 \text{ ppm} = 2091.5 \text{ Hz}$								
Power Supply Vdc	Environment Frequency Temperature (°C) (Hz)		Delta (Hz)	Limit (Hz)				
	50	836600024	34.00					
	40	836600036	47.00					
	30	836600027	37.00					
	20	836599990	0.00					
3.7	10	836600041	51.00	2091.5				
	0	836600034	44.00					
	-10	836600032	42.00					
	-20	836600039	49.00					
	-30	836600042	52.00					

Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C								
Limit: $\pm 2.5 \text{ ppm} = 4700 \text{ Hz}$								
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)				
	50	1879999982	-36.00					
	40	1879999985	-33.00					
	30	1879999984	-34.00					
	20	1880000018	0.00					
3.7	10	1879999988	-30.00	4700				
	0	1879999976	-42.00					
	-10	1879999978	-40.00					
	-20	1879999977	-41.00					
	-30	1879999972	-46.00					

Page 38 Rev. 00

FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235,

Frequency Tolerance: 2.5 ppm.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
DC POWER SUPPLY	GW instek	GPS-3303C	E903131	04/15/2007
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2007
Wireless communication test set	Agilent	8960	QB44051695	10/06/2007
Temp. / Humidity Chamber	Kingson	THS-M1	242	05/26/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Temperature Chamber

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector.

Page 39 Rev. 00

TEST PROCEDURE

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

No non-compliance noted.

Reference Frequency: GSM Mid Channel 836.6 MHz @ 20°C							
	Limit: $\pm 2.5 \text{ ppm} = 2091.5 \text{Hz}$						
Power Supply Vdc			Delta (Hz)	Limit (Hz)			
4.2		836599978	-6				
3.7	20	836599984	0	2091.5			
3.2 (End Point)		836599974	-10				

Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C							
Limit: $\pm 2.5 \text{ ppm} = 4700 \text{ Hz}$							
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)			
4.2		1880000028	6				
3.7	20	1880000022	0	4700			
3.2 (End Point)		1880000030	8				

Page 40 Rev. 00

POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBµV)				
Trequency Range (MIIZ)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESI26	100068	02/11/2007
EMC Analyzer Agilent		E7402A US41160329		02/11/2007
LISN	FCC	FCC-LISN-50-50-2-M	01067	07/29/2007
LISN (EUT)	FCC	FCC-LISN-50-50-2-M	01068	07/29/2007
TRANSIENT LIMITER	SCHAFFNER	CFL9206	1710	03/15/2007
EMI Monitor control box	FCC	0-SVDC	N/A	N.C.R

Remark: Each piece of equipment is scheduled for calibration once a year.

Page 41 Rev. 00

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete..

DECISION OF FINAL TEST MODE

- 1. The following test mode(s) were scanned during the preliminary test:
 - 1. AC to DC charger: Trade Name: DVE; Model Number: DSA-5P-05 FUS
- 2. After the preliminary scan, the following test mode was found to produce the highest emission level.
 - 1. AC to DC charger: Trade Name: DVE; Model Number: DSA-5P-05 FUS

Page 42 Rev. 00

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Link mode

AC TO DC CHARGER September 11, 2006

Operation Mode: (DVE) **Test Date:**

Temperature: 24°C **Tested by:** Jeff

Humidity: 54% RH

Freq.	PEAK.	Q.P.	AVG	Q.P.	AVG	Margin	Factor	
(MHz)	Raw	Raw	Raw	Limit	Limit	(dB)	(dB)	Remark
(1/1112)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)			
0.191	63.70	34.51	36.24	64.81	54.81	-18.57	10.36	L1
0.256	57.77	28.22	28.76	62.97	52.97	-24.21	10.38	L1
0.309	54.42	25.40	27.53	61.45	51.45	-23.92	10.40	L1
1.214	50.69	26.93	28.18	56.00	46.00	-17.82	10.45	L1
2.432	58.27	38.60	37.38	56.00	46.00	-8.62	10.54	L1
4.173	50.91	29.98	28.83	56.00	46.00	-17.17	10.65	L1
	1							
0.195	59.75	27.69	28.14	64.71	54.71	-26.57	10.39	L2
0.243	53.23	22.20	24.64	63.34	53.34	-28.70	10.39	L2
0.302	51.17	19.90	18.99	61.65	51.65	-32.66	10.40	L2
1.310	49.74	27.15	27.07	56.00	46.00	-18.93	10.44	L2
2.422	58.45	35.35	33.22	56.00	46.00	-12.78	10.53	L2
4.037	49.24	27.66	27.12	56.00	46.00	-18.88	10.65	L2

Remark:

- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.
- 4. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz
- 5. $L1 = Line \ One \ (Live \ Line) / L2 = Line \ Two \ (Neutral \ Line)$

Note:

Freq. = Emission frequency in KHz

Page 43 Rev. 00

 $Factor(dB) = cable\ loss + Insertion\ loss\ of\ LISN+\ Insertion\ loss\ of\ TRANSIENT\ LIMITER\ (The\ TRANSIENT\ LIMITER\ included\ 10\ dB\ ATTENUATION)$

 $Amptd\ dBuV = Uncorrected\ Analyzer/Receiver\ reading\ +\ cable\ loss\ +\ Insertion\ loss\ of\ LISN +\ Insertion\ loss\ of\ TRANSIENT\ LIMITER,$

if it > 0.5 dB

Limit dBuV = Limit stated in standard

Margin dB = Reading in reference to limit

Calculation Formula

Margin(dB) = Amptd(dBuV) - Limit(dBuV)

Test Plots AC TO DC CHARGER

Conducted emissions (Line 1)

Conducted emissions (Line 2)

Page 44 Rev. 00

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Radiated Emission Set up Photos

Front of view

Back of view

Page 45 Rev. 00

Page 46 Rev. 00