

# **EE2211 Pre-Tutorial 11**

Dr Feng LIN feng\_lin@nus.edu.sg

# Agenda

- Recap
- Self-learning
- Tutorial 11

# Recap

- Introduction of unsupervised learning
- K-means Clustering
  - -The most popular clustering technique
- Fuzzy Clustering

# Unsupervised Learning

### Introduction

Motivation: we do not always have labeled data.

In **unsupervised learning**, the dataset is a collection of **unlabeled examples**  $\{\mathbf{x}_i\}_{i=1}^{M}$ .

Evaluation of unsupervised learning is hard:

 The absence of labels representing the desired behavior for your model means the absence of a solid reference point to judge the quality of your model.

# **Unsupervised Learning**

### Main Tasks/Approaches

### Clustering

✓ Groups a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters).

### Density Estimation

✓ Models the probability density function (pdf) of the unknown probability distribution from which the dataset has been drawn.

### Component Analysis

✓ Breaks down the data from the perspective of signal analysis.

### Unsupervised Neural Networks

✓ Autoencoder

### Distance based grouping method

Feature vectors that are closed to each other

#### K-means

- K = number of clusters
- Means = average or centroid is the average of feature vectors

#### Basic/Naïve K-means Clustering

Looping between
Assignment and Centroid Update

- 1. First, we choose K the number of clusters. Then we randomly select K feature vectors, called **centroids**, to the feature space.
- Next, compute the distance from each example x to each centroid c using some metric, like the Euclidean distance. Then we assign the closest centroid to each example (like if we labeled each example with a centroid id as the label).
- For each centroid, we calculate the average feature vector of the examples labeled with it. These average feature vectors become the new locations of the centroids.
- 4. We recompute the distance from each example to each centroid, modify the assignment and repeat the procedure until the assignments don't change after the centroid locations are recomputed.
- 5. Finally, we conclude the clustering with a list of assignments of centroids IDs to the examples.



### Optimization Objective Function (within-cluster variance)

Minimize J

m:# of samples; i: index of samples
K: # of clusters; k: index of clusters

$$J = \sum_{i=1}^{m} \sum_{k=1}^{K} w_{ik} ||\mathbf{x}_i - \mathbf{c}_k||^2$$
 (1)

The term  $w_{ik}$  is equal to 1 for data point  $\mathbf{x}_i$  if the data point belongs to cluster  $S_k$ , else  $w_{ik} = 0$ .

Note: The optimization objective function was called  $C(\mathbf{w})$  in Lecture 8. Here, we use J (with parameters  $w_{ik}$  and  $\mathbf{c}_k$ ) so that it is differentiated from the centroids  $\mathbf{c}_k$ .

### Naïve K-means Algorithm

Computing distances to all centroids

1. Assignment Step (fix c and update w):

$$\mathbf{x}_{i} \in S_{k} \ (w_{ik} = 1) \text{ if } \|\mathbf{x}_{i} - \mathbf{c}_{k}\|^{2} < \|\mathbf{x}_{i} - \mathbf{c}_{j}\|^{2} \text{ (else } w_{ik} = 0),$$
  $i = 1, \dots, m; \ j, k = 1, \dots, K.$ 

2. Update Step (fix w and update c):

$$\frac{\partial J}{\partial \mathbf{c}_k} = -2\sum_{i=1}^m w_{ik} (\mathbf{x}_i - \mathbf{c}_k) = 0 \quad \Rightarrow \quad \mathbf{c}_k = \frac{\sum_{i=1}^m w_{ik} \mathbf{x}_i}{\sum_{i=1}^m w_{ik}}$$

Solving an optimization, i.e., setting derivative to 0

Note: 
$$\|\mathbf{x} - \mathbf{c}\| = \sqrt{\sum_{d=1}^{D} (x_d - c_d)^2}$$
 is called the Euclidean distance.  
where  $\mathbf{x} = (x_1, x_2, ..., x_D)$ ,  $\mathbf{c} = (c_1, c_2, ..., c_D)$ 

1. Assignment Step (fix c and update w):

$$\mathbf{x}_i \in S_k \ (w_{ik} = 1) \text{ if } \|\mathbf{x}_i - \mathbf{c}_k\|^2 < \|\mathbf{x}_i - \mathbf{c}_j\|^2 \text{ (else } w_{ik} = 0),$$
  
 $i = 1, \dots, m; \ j, k = 1, \dots, K.$ 

2. Update Step (fix w and update c):

$$\frac{\partial J}{\partial \mathbf{c}_k} = -2\sum_{i=1}^m w_{ik}(\mathbf{x}_i - \mathbf{c}_k) = 0 \quad \Rightarrow \quad \mathbf{c}_k = \frac{\sum_{i=1}^m w_{ik} \mathbf{x}_i}{\sum_{i=1}^m w_{ik}}$$

By repeating this two steps, the total loss  $J = \sum_{i=1}^{m} \sum_{k=1}^{K} w_{ik} ||\mathbf{x}_i - \mathbf{c}_k||^2$ , is **guaranteed to** *NOT increase (i.e., remain the same or decrease)* **until convergence.** 

At Step 2: we compute the new mean, by solving an optimization, i.e., Why? compute the derivative and set to zero, and solve  $\mathbf{c}_k$ . This means that, the new  $\mathbf{c}_k$  is guaranteed to give a smaller I value.

At Step 1: we only change the assignment, if the distance to the new centroid is smaller! In other words, we either remain in the old group, or change to a new group that is closer (i.e., gives a smaller *J*)

# An Example of K-means

Consider the following unlabelled one-dimensional dataset (so that the samples are all scalar)

$$x_1 = -2$$
,  $x_2 = 0$ ,  $x_3 = x_4 = 2$ .

Consider the first initialization

$$c_1^{(1)} = -3, \quad c_2^{(1)} = 3.5$$

Then, once we run the Assignment step, we see that

$$k_1 = k_2 = 1$$
,  $k_3 = k_4 = 2$ .

This means that samples 1 and 2 are in group one and samples 3 and 4 are in group two. Thus,

$$c_1^{(2)} = -1, \quad c_2^{(2)} = 2.$$

The total cost function is

$$J = 1^2 + 1^2 + 0^2 + 0^2 = 2,$$

which turns out to be the optimum partitioning.

# An Example of K-means

Now, instead consider the second initialization

$$c_1^{(1)} = -3, \quad c_2^{(1)} = 2.5$$

Then, once we run the Assignment step, we see that

$$k_1 = 1$$
,  $k_2 = k_3 = k_4 = 2$ .

Thus,

$$c_1^{(2)} = -2, \quad c_2^{(2)} = 4/3$$

The total cost function is

$$J' = 0^2 + (4/3)^2 + 2(2 - 4/3)^2 = 24/9$$

which is suboptimal and there is no way of improving the cost anymore, i.e., we are stuck. The moral of the story is that initialization is important.

- Unfortunately, k-means is not guaranteed to find a global minimum, it finds only local minimum.
- Example:



- Finding the optimal J is NP-hard\*
- In practice, k-means clustering usually performs well
- It can be very efficient, and its solution can be used as a starting point for other clustering algorithms

Initialization

Initialization by centroid

#### Forgy method:

 Randomly chooses k observations from the dataset and uses these as the initial means.



#### Random partition:

First randomly assigns a cluster
 to each observation and then proceeds to the update step,
 thus computing the initial mean
 to be the centroid of the cluster's randomly assigned points



# Hard vs Soft Clustering

### Hard clustering:

Each data point can belong only one cluster, e.g. K-means

For example, an apple can be red OR green (hard clustering)

### Soft clustering (also known as Fuzzy clustering):

Each data point can belong to more than one cluster.

- For example, an apple can be red AND green (fuzzy clustering)
- Here, the apple can be red to a certain degree as well as green to a certain degree.
- Instead of the apple belonging to green [green = 1] and not red [red = 0], the apple can belong to green [green = 0.3] and red [red = 0.5]. These value are normalized between 0 and 1; however, they do not represent probabilities, so the two values do not need to add up to 1.

# Hard vs Soft Clustering

### **Objective Function for Fuzzy C-means**

Minimize 
$$J$$

$$J = \sum_{i=1}^{m} \sum_{k=1}^{C} (w_{ik})^r ||\mathbf{x}_i - \mathbf{c}_k||^2$$

where 
$$w_{ik} = \frac{1}{\sum_{j=1}^{c} \left(\frac{\|\mathbf{x}_i - \mathbf{c}_k\|}{\|\mathbf{x}_i - \mathbf{c}_i\|}\right)^{\frac{2}{r-1}}}$$
 No need to method the equation!

No need to memorize

Each element,  $w_{ik} \in [0,1]$ , tells the degree to which element,  $\mathbf{x}_i$ , belongs to cluster  $\mathbf{c}_k$ .

The fuzzifier r > 1 determines the level of cluster fuzziness; usually  $1.25 \le r \le 2$ .

### **THANK YOU**

How many clusters?

Initialize cluster's centroid

For each *i*<sup>th</sup> feature vector

For each  $k^{th}$ cluster

Check if result

converged



Assign the feature vector to the  $k^{th}$  cluster with closet distance

Compute and store the distance between  $k^{th}$  cluster and  $i^{th}$ feature vector