Table 1Chemical and He-C-N isotopic compositions of hydrothermal volatiles from Lhasa terrane, southern Tibet

Sample No.	Locality	T	N_2	O_2	Ar	CO_2	CH ₄	Не	- ⁴ He/ ²⁰ Ne	³ He/ ⁴ He	R _M /R _A	Error	R _C /R _A	$\delta^{13}C$	CO ₂ / ³ He	$\delta^{15}N$
		(°C)	(%)	(%)	(%)	(%)	(%)	(ppm)				(1σ)		(‰)	(×10 ⁹)	(‰)
20CW01	Cawu	64	38.90	0.8	0.44	59.7	0.1	6615	1132	3.3E-08	0.024	0.004	0.024	-7.1	2.7	1.5
20CW01-R	Cawu	64	_	_	_	_	_	6904	1867	3.2E-08	0.023	0.003	0.023	_	_	_
20DSC01	Dongsong Co	18	86.10	0.15	0.63	13.1	0.01	848	1100	2.3E-08	0.016	0.002	0.016	-7.4	6.8	1.5
20BD01	Buduo	51	2.10	0.38	0.03	97.5	0	15	41	3.4E-08	0.025	0.004	0.018	-6.6	1894.8	-0.1
20BL01	Biela	60	13.90	2.62	0.19	83.3	0.01	103	53	9.6E-07	0.687	0.069	0.685	-3.3	8.5	-1.1
20BL01-R	Biela	60	_	_	_	_	_	126	51	8.0E-07	0.576	0.058	0.573	_	_	_
20CZ01	Chazi	73	27.20	3.86	0.34	68.6	0.07	2166	1027	2.8E-08	0.020	0.003	0.020	-4.3	11.3	3.1
20WB01	Wenbu	54	5.50	1.46	0.08	93	0.03	4	6	1.3E-06	0.899	0.09	0.895	-2.6	201.0	-0.2
20ZBQK01	Zhongbaquku	58	21.20	2	0.3	76.5	0.02	2092	692	2.1E-08	0.015	0.002	0.015	-5.7	17.2	0.0
20ZBQK01-R	Zhongbaquku	58	_	_	_	_	_	2146	666	2.7E-08	0.019	0.003	0.019	_	_	_
20DMX01	Damuxia	33	10.70	3.11	0.14	86	0	23	43	7.5E-08	0.054	0.008	0.048	-4.9	500.1	-0.3
20QD01	Qingdu	72	6.90	1.65	0.09	91.4	0	116	150	1.2E-07	0.085	0.009	0.083	-4.0	66.7	-0.7
20QD01-R	Qingdu	58	_	_	_	_	_	113	94	1.4E-07	0.099	0.01	0.097	_	_	_
20CDQZ01	Chaduoquzeng	39	4.90	0.28	0.05	94.7	0.01	726	823	1.3E-07	0.094	0.009	0.093	-1.8	10.0	0.3
20MSL01	Musile	59	7.00	2.28	0.11	90.7	0	6	7	3.4E-07	0.243	0.024	0.215	-2.6	470.6	0.0
20MD01	Mudi	77	25.10	6.65	0.34	67.9	0.04	20	14	3.7E-07	0.265	0.027	0.251	-3.7	92.2	1.3
20PD01	Pudui	59	16.00	4.16	0.19	79.7	0	34	17	9.0E-08	0.065	0.01	0.050	-2.5	261.0	0.0
20LZ01	Luozha	68	_	-	_	_	_	993	532	2.2E-07	0.155	0.016	0.155	-3.1	3.6	0.1
20LZ02	Luozha	68	18.30	4.86	0.22	76.7	0	7	8	2.7E-07	0.191	0.019	0.163	-3.8	411.7	_

Table 2. Summary of input parameters and output results for Monte Carlo simulations

Volcanic fields	Chazi	1σ	Mibale	1σ	Yaqian	1σ	Garwa	1σ				
Input parameters												
$(R_A)_{initial}$		8 ± 1										
$(^{4}\text{He})_{\text{initial}} (\text{cm}^{3}/\text{g})$	$3 (\pm 2) \times 10^{-6}$											
Age (Ma) ^a	10.9	2.19	15.3	3.35	13.5	0.41	21.2	2.33				
Degree (BPM) ^a	0.1	0.02	0.08	0.016	0.02	0.004	0.01	0.002				
Th (Rock, ppm) ^a	189.8	63.1	124.3	26.7	173.9	2.1	238.7	48.8				
U (Rock, ppm) ^a	23.9	10.5	17.3	5.3	16.5	0.9	22.1	5.2				
Output Parameters 1												
Th ₀ (Mantle, ppm) ^b	19.0	7.5	10.0	2.9	3.6	0.7	2.5	0.71				
U ₀ (Mantle, ppm) ^b	2.4	1.2	1.4	0.52	0.35	0.07	0.24	0.07				
J_{4He} (Mantle, cm ³ /g/yr) ^b	8.4E-13	2.6E-13	4.6E-13	1.0E-3	1.5E-13	2.2E-14	1.0E-13	2.2E-14				
Output Parameters 2												
$(R_A)_{final}$ c	2.0	1.4	2.4	0.9	4.6	1.2	4.5	1.3				

Note. **a.** Average values and 1 standard deviation (1σ) of eruptive age, Th and U contents of ultrapotassic rocks are calculated from Guo et al (2013) and references therein, the batch partial melting (BPM) degree in different volcanic fields are from the trace element simulations in Guo et al (2013), and 20% uncertainties are assumed. **b.** Calculated results (Ave. and 1σ) from Monte Carlo simulations with the number of realizations and random generator seeds of 10^5 and 38, respectively. **c.** Calculated the theoretical highest 3 He/ 4 He (R_A)_{final} with the average eruptive age of different volcanic fields, respectively, when assuming the systems are closed. Data source:

Guo, Z., Wilson, M., Zhang, M., Cheng, Z., & Zhang, L. (2013). Post-collisional, K-rich mafic magmatism in South Tibet: constraints on Indian slab-to-wedge transport processes and plateau uplift. *Contribions to Mineralogy and Petrology*, *165*, 1311–1340.