测地线的理论与针算

山东大学 辛士庆 2018年8月26号 桂林

测地线的定义

- 是政氏空向中直线概念的推广
- 微分几何给出的定义
 - 测他曲率为零
 - locally length-minimizing
- 基本功能
 - 定义度量

测地线有很多版本

- 不同的问题用到的版本是不一样的
- 输入的是什么类型的曲面?对于输出,只要距离?还要测地钱?
- 两点之向?
- •一点到任何其它点?
- 任意两点之尚?
- •一个小范围的测地圆盘?

计算测地线有什么考量?

- 速度
- 精度
- 内存各用
- 对称性,三角不等式
- 光滑性
- 善适性

主流的测地线算法

- Single-source geodesic problem
 - Mitchell et al., 1987, SIAM Journal on Computing
 - Chen & Han, 1990, SOCG
 - Surazhsky et al., 2005, ACM TOG
 - Xin & Wang, 2009, ACM TOG
 - Xu et al, 2015, TVCG
 - Qin et al., 2016, ACM TOG

主流算法的思想脉络

All-pair geodesic distance query

Motivation

- <u>Fast and accurate</u> query of distance map is central to many computer graphics applications, especially for intrinsic geometry processing
 - ➤ Shape signature
 - **►** Sampling on surface
 - Exponential mapping

Motivation

- All-pair geodesic distance problem
 - Popular technique: precomputation + fast distance query
 - Key #1: How to precompute necessary information in a small time/space cost?
 - Key #2: How to develop a fast query algorithm based on the precomputed info?
 - Key #3: Is it possible to support such a query style: Given a tolerance, we report a geodesic with an error less than the given tolerance.
 - Key #4: It seems more useful if we use the relative error instead of the absolute error. How to guarantee this?

Related Research Works

- All-pair geodesic problem
 - Saddle Vertex Graph (SVG): Ying et al. 2013, ACM TOG
 - Geodesic Triangle Unfolding (GTU): Xin et al, 2012, ACM I3D

Algorithm Overview

(a-b): Building geodesic proximity graph

Proximity Graph

- Farthest point sampling
 - Maintain a geodesic distance field
 - Always locate the farthest point (maybe an interior)

Proximity Graph

- Sampling density
 - Empty circle radius r
- Influence range
 - Pink circle radius R

Theorem 4.2. Let $L riangleq d_g(s,t)$ be the length of the exact geodesic path between two points s,t, and $\widetilde{L} = \widetilde{d}_g(s,t)$ be our estimate. We have

Proximity Graph

```
# The number of sample points
  3800
# The coordinates of sample points
 1.2 1.1 0.8
 1.7 0.1 0.6
  1.4\ 2.3\ 0.7
# ID1
           ID2
                            End_direction
                  Distance
              0.5534 0.15 0.83 0.5372
                   0.6625 0.37 0.51 0.7765
 3800
        3792
                             0.64 \quad 0.77 \quad 0.3761
                 0.7293
```

Geodesic distance query

$$\max_{p_i \in \widetilde{\Pi}_g(s,t)} (\widetilde{d}_g(s,p_i), \widetilde{d}_g(p_i,t)) \leq \frac{\widetilde{d}_g(s,t) + R}{2}.$$

Geodesic distance query

Backtracking a shortest path

• We can trace different curved segments independently

Error Analysis

- Alternative error control variables
 - np: The total number of samples on a surface
 - mp: How many nearest samples to define the influence range (or proximity)?

Error Analysis

Error Analysis

• Recommended parameter configuration

• $n\varphi$ btw 3K to 6K

• *mp* btw 14 to 28

(a) Timing

(b) Precomputed file size

Quantitative comparison for computing a distance field

(a) Exact (b) Approximate (c) Difference

Metho	d Domain	Space	Pre-computing	Computing SSAD/MSAD	Geodesic path	Info. reuse	Error control	Metric
FMM	meshes	O(n)	-	$O(n \log n)$	gradient	no	no	no
	& grids				tracing			
Heat	meshes	storing the upper/lower	factoring the	solving a Poisson equation	gradient	yes	no	no
	& points	triangular matrices	Laplacian matrix	with pre-factored matrix	tracing			
GTU	meshes	$O(m^2+n)$	$O(mn^2 \log n)$	O(n)	gradient	yes	yes	no
					tracing			
AMM	meshes	empirical $O(n)$ for large ϵ	-	empirical $O(n \log n)$ for large ϵ	unfolding	no	yes	no
		empirical $O(n^2)$ for small ϵ		empirical $O(n^{1.5} \log n)$ for small ϵ	triangles			
SVG	meshes	O(Dn)	worst-case $O(nK^2 \log K/N)$	$O(Dn \log n)$	unfolding	yes	yes	yes
			empirical $O(nK^{1.5}\log K/N)$		triangles			
Ours	Mesh	O(n)	Empirical O(n)	O(n log n)	Gradient	yes	yes	yes
	es				tracing			

Application #1

(a) Exact (b) Ours (c) Dijkstra (d) FMM

(e) Texture decals

(f) Moai character

Application #2

(a) Horse, 40K faces

(b) Face, 31K faces (c) Camel, 18K faces (d) Moai, 6K faces

Application #3. 机器人的纸取

Application #3. 机器人的纸取

• 既能算表面上的测地线,也能算空向中的测地线

• 约束"在表面上/外"

Application #4. CNC加工路程

Application #4. CNC加工路程

- 目标:
 - 比较直 (光顺)
- 引力
 - 覆盖表面
- 斤力
 - 保持向距

Q & A

铆锁大家!

个人信息: xinshiqing@sdu.edu.cn