Chapter 5: Flip-Flops and Related Devices

Prof. Dr. Aloke Kumar Saha

Professor

Department of CSE

University of Asia Pacific (UAP)

Chapter 5 Objectives

Selected areas covered in this chapter.

- Basic structures of flip-flops.
- Constructing/analyzing operation of latch made from NAND or NOR gates.
- Differences of synchronous/asynchronous systems.
- Operation of edge-triggered flip-flops.
- Constructing/analyzing operation of clocked S-R flip-flop.
- Constructing/analyzing operation of clocked J-K flip-flop.
- Constructing/analyzing operation of clocked D flip-flop.
- Basic operation of asynchronous inputs J-K flip-flop.
- Counter and frequency division.
- MOD 8 Up Counter, Down Counter, Up/Down Counter
- MOD 16 Up Counter, Down Counter, Up/Down Counter

Chapter 5 Introduction

 The most important memory element is the flipflop (FF)—made up of an assembly of logic gates.

The flip-flop is known by other names, including *latch* and *bistable multivibrator*.

- **5-1 NAND**
 - The NAND gate latch or simply latch is a basic FF.
 - Inputs are SET and CLEAR (RESET).
 - Inputs are active-LOW—output will change when the input is pulsed LOW.
 - When the latch is set: $\mathbf{Q} = 1$ and $\mathbf{Q} = 0$
 - When the latch is clear or reset: $\mathbf{Q} = 0$ and $\overline{\mathbf{Q}} = 1$

5-1 NAND Gate Latch – Setting the Latch (FF)

- Pulsing the SET input to the 0 state...
 - (a) Q = 0 prior to SET pulse.
 - (b) Q = 1 prior to SET pulse.

In both cases, Q ends up HIGH.

5-1 NAND Gate Latch – Resetting the Latch (FF)

- Pulsing RESET LOW when...
 - (a) Q = 0 prior to the RESET pulse.
 - (b) Q = 1 prior to the RESET pulse.

In each case, Q ends up LOW.

5-1 NAND Gate Latch – Alternate Representations

NAND latch equivalent representations and simplified block diagram.

Set	Reset	Output(Q)
0	0	Invalid
0	1	1
1	0	0
1	1	No Change

5-1 NAND Gate Latch - Summary

- Summary of the NAND latch:
 - SET = 1, RESET = 1—Normal resting state, outputs remain in state they were in prior to input.
 - **SET = 0**, **RESET = 1**—Output will go to Q = 1 and remains there, even after SET returns HIGH.
 - Called setting the latch.
 - SET = 1, RESET = 0—Will produce Q = 0 LOW and remains there, even after RESET returns HIGH.
 - Called clearing or resetting the latch.
 - **SET = 0**, **RESET = 0**—Tries to set and clear the latch at the same time, and produces $Q = \overline{Q} = 1$.
 - Output is unpredictable, and this input condition should not be used.

Waveform diagram of NAND Latch

- Two cross-coupled NOR gates can be used as a NOR gate latch—similar to the NAND latch.
 - The \mathbf{Q} and $\overline{\mathbf{Q}}$ outputs are reversed.

The SET and RESET inputs are active-HIGH.

Output will change when the input is pulsed HIGH.

5-2 NOR Gate Latch - Summary

- Summary of the NOR latch:
 - SET = 0, RESET = 0—Normal resting state, No effect on output state.
 - **SET = 1, RESET = 0**—will always set Q = 1, where it remains even after SET returns to 0.
 - SET = 0, RESET = 1—will always clear Q = 0, where it remains even after RESET returns to 0.
 - **SET = 1, RESET = 1**—Tries to set and reset the latch at the same time, and produces $Q = \overline{Q} = 0$.
 - Output is unpredictable, and this input condition should not be used.

9

Waveform diagram of NOR Latch

- Digital systems can operate either asynchronously or synchronously.
 - Asynchronous system—outputs can change state at any time the input(s) change.
 - Synchronous system—output can change state only at a specific time in the clock cycle.

- The clock signal is a rectangular pulse train or square wave.
 - Positive going transition (PGT)—clock pulse goes from 0 to 1.
 - Negative going transition (NGT)—clock pulse goes from 1 to 0.

Transitions are also called *edges*.

- Clocked FFs change state on one or the other clock transitions.
 - Clock inputs are labeled CLK, CK, or CP.

A small triangle at the CLK input indicates that the input is activated with a PGT.

A bubble and a triangle indicates that the CLK input is activated with a NGT.

- Control inputs have an effect on the output only at the active clock transition (NGT or PGT)—also called synchronous control inputs.
 - The control inputs get the outputs ready to change,
 but the change is not triggered until the CLK edge.

5-4 Clocked S-R Flip-Flop

- The S and R inputs are synchronous control inputs, which control the state the FF will go to when the clock pulse occurs.
 - The CLK input is the trigger input that causes the
 FF to change states according to the S and R inputs.
- SET-RESET (or SET-CLEAR) FF will change states at positive- or negative-going clock edges.

A clocked S-R flip-flop triggered by the positive-going edge of the clock signal.

inputs		S	Output
S	R	CLK	Q
0	0	1	Q ₀ (no change)
1	0	 	1
0	1		0
1	1	1	Ambiguous

Outnut

Innuta

Q₀ is output level prior to ↑ of CLK. ↓ of CLK produces no change in Q.

The S and R inputs control the state of the FF in the same manner as described earlier for the NOR gate latch, but the FF does *not* respond to these inputs *until* the occurrence of the PGT of the clock signal.

5-4 Clocked S-R Flip-Flop

Waveforms of the operation of a clocked S-R flip-flop triggered by the positivegoing edge of a clock pulse.

A clocked S-R flip-flop triggered by the negative-going edge of the clock signal.

	Inputs		Output	
S	R	CLK	Q	
0	0	1	Q ₀ (no change)	
1	0	↓	1	
0	1	↓	0	
1	1	1	Ambiguous	

Both positive-edge and negative-edge triggering FFs are used in digital systems.

5-4 Clocked S-R Flip-Flop – Internal Circuitry

- An edge-triggered S-R flip-flop circuit features:
 - A basic NAND gate latch formed by NAND-3 and NAND-4.
 - A pulse-steering circuit formed by NAND-1 and NAND-2.
 - An edge-detector circuit.

5-4 Clocked S-R Flip-Flop – Internal Circuitry

- Implementation of edge-detector circuits used in edge-triggered flip-flops:
 - (a) PGT; (b) NGT.

The duration of the *CLK** pulses is typically 2–5 ns.

5-5 Clocked J-K Flip-Flop

- Operates like the S-R FF.
 - J is SET, K is CLEAR.
- When J and K are both HIGH, output is toggled to the opposite state.
 - May be positive going or negative going clock trigger.
- Much more versatile than the S-R flip-flop, as it has no ambiguous states.
 - Has the ability to do everything the S-R FF does, plus operates in toggle mode.

5-5 Clocked J-K Flip-Flop – Internal Circuitry

Internal Circuit of Clocked J-K Flip-Flop

Block Diagram Clocked J-K Flip-Flop

5-5 Clocked J-K Flip-Flop – Internal Circuitry

 The internal circuitry of an edge-triggered J-K flip-flop contains the same three sections as the edge-triggered S-R flip-flop.

G

Clocked J-K flip-flop that responds only to the positive edge of the clock.

J	K	CLK	Q
0	0	1	Q ₀ (no change)
1	0	<u> </u>	1
0	1	<u> </u>	0
1	1	↑	Q ₀ (toggles)

C

Clocked J-K flip-flop that responds only to the negative edge of the clock.

J	K	CLK	Q
0	0	\	Q ₀ (no change)
1	0	↓	1
0	1	1	0
1	1	1	Q ₀ (toggles)

5-6 Clocked D Flip-Flop

- One data input—output changes to the value of the input at either the positive- or negative-going clock trigger.
- May be implemented with a J-K FF by tying the J input to the K input through an inverter.
- Useful for parallel data transfer.

Internal Circuit of Clocked D Flip-Flop

D flip-flop that triggers only on positive-going transitions.

5-7 Clocked J-K to D Flip-Flop - Implementation

- A clocked D flip-flop is implemented by adding a single INVERTER to the clocked J-K flip-flop.
 - The same can be done to convert a S-R flip-flop to a D flip-flop.

Edge-triggered D flip-flop implementation from a J-K flip-flop.

5-8 Asynchronous Inputs

- Inputs that depend on the clock are synchronous.
- Most clocked FFs have asynchronous inputs that do not depend on the clock.
 - Labels PRE & CLR are used for asynchronous inputs.
- Active-LOW asynchronous inputs will have a bar over the labels and inversion bubbles.
- If the asynchronous inputs are not used they will be tied to their inactive state.

9

Clocked J-K flip-flop with asynchronous inputs.

J	K	Clk	PRE	CLR	Q
0	0	+	1	1	Q (no change)
0	1	+	1	1	0 (Synch reset)
1	0	+	1	1	1 (Synch set)
1	1	+	1	1	Q (Synch toggle)
х	х	х	1	1	Q (no change)
х	х	х	1	0	0 (asynch clear)
х	х	х	0	1	1 (asynch preset)
х	x	х	0	0	(Invalid)

5-8 Asynchronous Inputs - Designations

- IC manufacturers do not agree on nomenclature for asynchronous inputs.
 - The most common designations are PRE (PRESET) and CLR (CLEAR).
 - Clearly distinguished from synchronous SET & RESET.
 - Labels such as S-D (direct SET) and R-D (direct RESET) are also used.

•

A J-K FF that responds to a NGT on its clock input and has active-LOW asynchronous inputs.

Point	Operation		
а	Synchronous toggle on NGT of CLK		
b	Asynchronous set on PRE = 0		
С	Synchronous toggle		
d	Synchronous toggle		
e	Asynchronous clear on CLR = 0		
f	CLR overrides the NGT of CLK		
g	Synchronous toggle		

5-9 Flip-Flop Timing Considerations - Parameters

- Important timing parameters:
 - Setup and hold times
 - Propagation delay—time for a signal at the input to be shown at the output. (t_{PLH} and t_{PHL})
 - Maximum clocking frequency—Highest clock frequency that will give a reliable output. (f_{MAX})
 - Clock pulse HIGH and LOW times—minimum clocktime between HIGH/LOW changes.($t_W(L)$; $t_W(H)$)
 - Asynchronous Active Pulse Width—time the clock must HIGH before going LOW, and LOW before going HIGH.
 - Clock transition times—maximum time for clock transitions,
 - Less than 50 ns for TTL; 200 ns for CMOS

5-10 Flip-Flop Applications

- Frequency Division
- Counting

J-K flip-flops wired as a three-bit binary counter (MOD-8).

Each FF divides the input frequency by 2.

Output frequency is 1/8 of the input (clock) frequency.

A fourth FF would make the frequency 1/16 of the clock.

J-K flip-flops wired as a three-bit binary counter (MOD-8).

This circuit also acts as a binary counter.

Outputs will count from 000 to 111 or 0 to 7.

The number of states possible in a counter is the modulus or MOD number.

A MOD-8 (2³) counter.

If another FF is added it would become a MOD-16 (24) counter.

22	21	20	
Q_2	Q_1	Qo	
0	0	0	Before applying clock pulses
0	0	1	After pulse #1
0	1	0	After pulse #2
0	1	1	After pulse #3
1	0	0	After pulse #4
1	0	1	After pulse #5
1	1	0	After pulse #6
1	1	1	After pulse #7
0	0	0	After pulse #8 recycles to 000
0	0	1	After pulse #9
0	1	0	After pulse #10
0	1	1	After pulse #11
	(*)		E2 1961 H:
		•	
39	(*)		80 J965 #I

Internal Circuit of MOD 8 Up Counter

Internal Circuit of MOD 16 Up Counter

State Transition diagram of MOD 16 Up Counter

Internal Circuit of MOD 8 Down Counter

Outputs will count from 111 to 000 or 7 to 0.

Timing Diagram of a 3bit Down Counter

Internal Circuit of MOD 8 Up/Down Counter

- If S=0 then clock of 2nd FF is Q0 and clock of 3rd FF is Q1, So it is Mod 8 Up counter.
- If S=1 then clock of 2nd FF is Q`0 and clock of 3rd FF is Q`1, So it is Mod 8 Down counter.

Question 1

Consider a counter circuit that contains six FFs wired in the arrangement Q5Q4Q3Q2Q1Q0

- (a) Determine the counter's MOD number.
- (b) Determine the output frequency in KHz when the input clock frequency is 1 MHz.
- (c) What is the range of counting states for this counter?
- (d) Assume a starting state (count) of 001001. What will be the counter's state after 129 pulses?

Question 2

A 20-kHz clock signal is applied to a J-K flip-flop with J=K=1. What is the frequency of the FF output waveform?

Question 3

- a) How many FFs are required for a counter that will count 0 to 255?
- b) What is the MOD number of the counter?

Question 4

- a) What is the frequency of the output of the eighth FF when the input clock frequency is 512 kHz?
- b) If this counter starts at 00011001, what will be its state after 520 pulses?

Question 5

A binary counter is being pulsed by a 256-kHz clock signal. The output frequency is 2 kHz.

- (a) Determine the MOD number.
- (b) Determine the counting range.

Question 6

- (a) How many FFs are required to build a binary counter that counts from 0 to 1023?
- (b) Determine the output frequency in Hz of this counter for an input clock frequency of 2 MHz.
- (c) What is the counter's MOD number?
- (d) If the counter is initially at zero, what count will it hold after 2060 pulses?

Question 7

Consider a MOD 16 up counter for the following questions:

- If the counter is initially at 1011 state, determine the output state after 83 pulses.
- If the input frequency of the clock signal is 10 MHz, what is the output frequency in KHz.
- Draw the state transition diagram of the counter.

Question 8

A photo detector circuit is being used to generate a pulse each time a customer walks into a certain establishment. The pulses are fed to an eight-bit counter. The counter is used to count these pulses as a means for determining how many customers have entered the store. After closing the store, the proprietor checks the counter and finds that it shows a count of 00001001=9. He knows that this is incorrect because there were many more than nine people in his store. Assuming that the counter circuit is working properly.

- a) What could be the reason for the discrepancy?
- b) How can you overcome from the discrepancy?

Question 9: Draw the internal circuit of clocked JK flip-flop. Briefly describe the operation of the flip-flop.

Question 10: Draw the internal circuit of clocked D flip-flop. Briefly describe the operation of the flip-flop.

Question 11: Convert JK to D flip-flop. Briefly explain.

Question 12: Define Mod number of counter.

Question 13: What are PGT and NGT?

Question 14: What are up and down counter?

Question 15: Draw the internal circuit of clocked S-C flip-flop. Briefly describe the operation of the flip-flop.

Question 16: Draw the internal circuit of NAND Latch. Briefly describe the operation of the Latch.

Question 17: Draw the internal circuit of NOR Latch. Briefly describe the operation of the Latch.

Question 18: Draw the internal circuit of MOD 8 up counter using J-K flip-flops. Briefly describe the operation of the counter.

- Question 19: Draw the internal circuit of MOD 16 up counter using J-K flip-flops. Briefly describe the operation of the counter.
- Question 20: Draw the internal circuit of MOD 8 down counter using J-K flip-flops. Briefly describe the operation of the counter.
- Question 21: Draw the internal circuit of MOD 16 down counter using J-K flip-flops. Briefly describe the operation of the counter.
- Question 22: Draw the internal circuit of MOD 8 up/down counter using J-K flip-flops & logic gates.
 Briefly describe the operation of the counter.