

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/51
Paper 5 Mechanic	s 2 (M2)		May/June 2019
			1 hour 15 minutes
Candidates answer	on the Question Paper.		
Additional Materials	s: List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value for the acceleration due to gravity is needed, use 10 m s⁻².

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

This document consists of 13 printed pages and 3 blank pages.

BLANK PAGE

A particle P of mass 0.3 kg is attached to a fixed point A by a light inextensible string of length 0.8 m. The fixed point O is 0.15 m vertically below A. The particle P moves with constant speed v m s⁻¹ in a horizontal circle with centre O (see diagram).

(i)	Show that the tension in the string is 16 N.	[2]
(ii)	Find the value of v .	[3]

	V and θ	•										
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •
•••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••	••••••		•••••
										• • • • • • • • • • • • • • • • • • • •		
•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
										•••••		•••••
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••
			•••••			•••••				•••••		
•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
						•••••				•••••		•••••
•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•	• • • • • • • • • • • • • • • • • • • •
			•••••			•••••				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
•••••										•••••		
•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••		•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •

The diagram shows the cross-section through the centre of mass of a uniform solid object. The object is a cylinder of radius $0.2 \,\mathrm{m}$ and length $0.7 \,\mathrm{m}$, from which a hemisphere of radius $0.2 \,\mathrm{m}$ has been removed at one end. The point A is the centre of the plane face at the other end of the object. Find the distance of the centre of mass of the object from A.

[The volume of a hemisphere is $\frac{2}{3}\pi r^3$.]

A small ball is projected with speed $25\,\mathrm{m\,s^{-1}}$ at an angle of 30° above the horizontal from a point O

]	Express x and y in terms of t and hence find the equation of the trajectory of the ball.
•	
•	
•	
•	
•	

••••••	••••••		••••••	•••••	••••••	••••••		.
•••••				•••••		•••••		· • •
							•••••	· • •
••••••	••••••	••••••	•	••••••	••••••	••••••	••••••	•••
••••••	••••••	•••••		•••••		••••••	•••••••••••	•••
								· • •
								· • •
•••••••	••••••	••••••	•	••••••	••••••	••••••	••••••	•••
••••••	••••••	•••••		•••••		••••••	•••••••••••	•••
								· • •
				•••••				.
••••••	••••••	••••••	•	•••••	•••••••	••••••	••••••	•••
•••••	••••••	•••••					••••••	· • •
				•••••	••••••	••••••		· • •
				•••••		•••••		· • •
						•		•••
••••••	••••••	••••••	••••••	•••••	••••••	••••••	••••••	•••
••••••				•••••	•••••	••••••		· • •
				•••••		•••••		· • •

(i)	Find x .	
		•••••
(ii)	Find the greatest speed of P .	
		•••••
		•

•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
 ••••••
 ••••••
 •••••
 ••••••
 •••••
 ••••••
 •••••
 •••••

ABC is a uniform lamina in the form of a triangle with AB = 0.3 m, BC = 0.6 m and a right angle at B (see diagram).

(i)	State the distances of the centre of mass of the lamina from AB and from BC .	[2]
	Distance from AB	
	Distance from BC	
The	lamina is freely suspended at B and hangs in equilibrium.	
(ii)	Find the angle between AB and the horizontal.	[2]

A force of magnitude $12 \,\mathrm{N}$ is applied along the edge AC of the lamina in the direction from A towards C. The lamina, still suspended at B, is now in equilibrium with AB vertical.

1 m 6 m s	article P of mass 0.5 kg is attached to a fixed point O by a light elastic string of natural and modulus of elasticity 16 N. The particle P is projected vertically upwards from O w s ⁻¹ . A resisting force of magnitude $0.1x^2$ N acts on P when P has displacement x m for projection the upwards velocity of P is v m s ⁻¹ .	ith speed
(i)	Show that, before the string becomes taut, $v \frac{dv}{dx} = -10 - 0.2x^2$.	[2
		•••••
		•••••
		•••••
(ii)	Find the velocity of P at the instant the string becomes taut.	[4
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

9709/51/M/J/19 © UCLES 2019

(iii)	Find an expression for the acceleration of P while it is moving upwards after the string becomes taut. [2]
(iv)	Verify that P comes to instantaneous rest before the extension of the string is 0.5 m. [4]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.