

planetmath.org

Math for the people, by the people.

equivalent machines

Canonical name EquivalentMachines
Date of creation 2013-03-22 19:02:39
Last modified on 2013-03-22 19:02:39

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771) Entry type Definition Classification msc 03D05msc 68Q45Classification Related topic MealyMachine Related topic Moore MachineDefines equivalent Defines similar

Defines reduced machine

Let $M_1 = (S_1, \Sigma, \Delta, \sigma_1, \lambda_1)$ and $M_2 = (S_2, \Sigma, \Delta, \sigma_2, \lambda_2)$ be two Mealy machines.

Definition. A state s_1 of M_1 is said to be *equivalent* to a state s_2 of M_2 iff

$$\lambda_1(s_1, u) = \lambda_2(s_2, u)$$
 for all non-empty input words u over Σ .

We write \approx for the equivalence.

In the same way, \approx can be defined on two Moore machines. However, where as u is restricted to be non-empty in the Mealy case, input words in Moore case are arbitrary, that is: $s_1 \approx s_2$ iff

$$\beta_1(s_1, u) = \beta_2(s_2, u)$$
 for all input words u over Σ .

Here, β_i is the modifications of the original output function λ_i .

Suppose now that $M = M_1 = M_2$. Then \approx is an equivalence relation on the state alphabet S of M. Given M, form a new machine $M' = (S', \Sigma, \Delta, \sigma', \lambda')$ such that

- 1. $S' := S/\approx = \{[s] \mid s \in S\}$ is the set of equivalence classes of \approx on S,
- $2. \ \sigma'([s], a) = [\sigma(s, a)],$
- 3. $\lambda'([s], a) = \lambda(s, a)$.

It is easy to verify that M' is indeed a well-defined machine. Furthermore, if M is Moore, so is M'.

Call a machine (Mealy or Moore) reduced if $s_1 \approx s_2$ implies $s_1 = s_2$. Then the machine M' constructed from M above is a reduced machine.

Suppose M_1 and M_2 are both Mealy machines such that they have the same input and output alphabets.

Definition. M_1 is said to be *equivalent* to M_2 if every state of M_1 is equivalent to a state of M_2 , and vice versa. When M_1 is equivalent to M_2 , we write $M_1 \approx M_2$.

Equivalence between two Moore machines is similarly defined. It is clear that \approx is an equivalence relation on the class of Mealy machines (or Moore machines) over the same input and output alphabets.

In addition, it is also possible to define "equivalence" between machines of different types. However, in the literature, the word "similar" is used instead of "equivalent":

Definition. Let M_1 be a Mealy machine and M_2 a Moore machine. M_1 is said to be *similar* to M_2 if every state s_1 of M_1 , there is a state s_2 of M_2 such that

$$\lambda(s_1, u) = \beta(s_2, u)$$
 for all non-empty input words u over Σ .

The definition of a Moore machine similar to a Mealy machine is analogous. Note that in the definition of similarity, input words are restricted to non-empty words only.

Two machines of different types are similar if one is similar to another, and vice versa. We write $M_1 \sim M_2$ if M_1 and M_2 are similar.

The concept of similarity may be broadened to machines of the same type. In the Mealy case, similarity is the same as equivalence. In the Moore case, the two notions are different. Equivalence is more restrictive in that the empty word is required in the definition. Two Moore machines may be similar without being equivalent. In fact, we have the following facts:

Proposition 1. Two Mealy machines similar to a Moore machine are equivalent. There exist two inequivalent Moore machines similar to a Mealy machine.