Dynamic Programming

DP improvement

Dynamic Programming

A simpler guideline

- Find subproblems.
- Check whether we are in a DAG and find the topological order of this DAG. (Usually, by hand.)
- Solve & store the subproblems by the topological order.

Recap the three examples

- Longest Increasing Sequence
 - Subproblem LIS[i]: the longest increasing sequence ended by a_i .
- Edit Distance
 - Subproblem ED[i, j]: the edit distance for A[1..i] and B[1..j].
- Knapsack
 - Subproblem f[i, w]: the maximum value we can get by using first i items and w budget.

How to find these subproblems

- Think from a recursive method
- LIS:
 - We want to find the LIS.
 - It may be ended by every a_i .
 - Solve LIS ended by a_i need to know all LIS ended by $a_{j < i}$.

How to find these subproblems

- Think from a recursive method
- Edit Distance
 - We want to know the Edit Distance.
 - We think how we align the last two character.
 - Different case make us go into different subproblems.
 - We these subproblems can be merged to ED[i,j].

How to find these subproblems

- Think from a recursive method
- Knapsack
 - We want to know the maximum value.
 - We know that for each item, we have two choice: buy it or not.
 - Buy: we have $W-c_i$ budget for other items.
 - Not Buy: we have W budget for other items.
 - Consider we recursive from a_n .
 - Subproblems can be merged to f[i, w].

A Simple but Useful Data Structure.

Priority Queue

Largest Number in k Consecutive Numbers

- Input: A sequence of numbers $a_1, a_2, ..., a_n$, and a number k.
- Output: The largest number in every k consecutive numbers.

Subproblem Definitions

- large[i]: the largest number from a_{i-k+1} to a_i .
- Output: $large[k] \sim large[n]$.

Solving Subproblems

- large[i]: the largest number from a_{i-k+1} to a_i .
- Can you find a way to solve large[i] by other subproblems?
 - Brute-force: $large[i] = \max_{j=i-k+1}^{i} \{a_i\}.$

Solving Subproblems

- large[i]: the largest number from a_{i-k+1} to a_i .
- Can you find a way to solve large[i] by other subproblems?
 - Brute-force: $large[i] = \max_{j=i-k+1}^{i} \{a_i\}$.
 - Tips: from large[j], j < i.

Recall Knapsack

- What we always do before:
- f[i, w]: the maximum value we can get by using the first i items, and with w budget.
- Use g[i] to store how much budge f[i] uses.

How to solve f[i] by f[j < i]?

45.0			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			Service Statement	
f[i]	5	10	13	16	21	30	?
	9			ATTRICTOR OF THE PARTY OF THE P			

We know f[j] but we do not know how much budget it uses!

Key problem: Subproblem definition does not contain enough information!

What kind of information do we need now?

Observation

- Compare two large[i] and large[i-1].
- Difference
 - One entering number: 20
 - One outgoing number: 5
 - Question: how they affect the largest number?

How they affect the largest number

- Difference
 - One entering number: 20
 - One leaving number: 5
 - Question: how they affect the largest number?
 - Case 1: the entering number is the new largest!

How they affect the largest number

- Difference
 - One entering number: 20
 - One leaving number: 5
 - Question: how they affect the largest number?
 - Case 2: the leaving number is the previous largest!

Key problem: We should know what is the previous second largest number.

Ok, let us record it!

How they affect the largest number

Difference

- One entering number: 20
- One leaving number: 5
- Question: how they affect the largest number?
- Case 3: the leaving number is the previous second largest!
- What is the second largest now?

Key problem: We should know what is the previous third largest number.

Ok, let us record it.....

Summarize

- Difference
 - One entering number: 20
 - One leaving number: 5
 - Question: how they affect the largest number?

Let us think more!

- New Subproblem: Solving the Heap of $a_{i-k+1} \sim a_i$.
 - Delete (Update & PopMax)
 - Insert
 - FindMax
 - $O(n \log k)!$
- Is Heap too powerful for this problem?
 - We delete and insert only based on the index!

A new Subproblem!

- Think again: why we need the heap?
 - We need two know who is the largest.
 - We need to know who is the **potential largest**.
 - We need to update the potential largest list.
- Do we have a better way to maintain this potential largest list?
 - Heap views all k numbers as **potential largest**.

Observation

• Who can be the potential largest number?

5 13 9

Observation

• Who can be the potential largest number?

5 13 9

5 is not a potential largest number because 5 is older than 13 and 5 < 13.

9 is a potential largest number although 13 > 9 because 9 is younger.

0 16 4 5 13 9 20 18 3

Key Observation: the potential largest list can be smaller than k.

Potential Largest List

- Potential Largest List (PLL)
 - PLL[i]: the Potential Largest List for $a_{i-k+1} \sim a_i$.
 - At most k numbers.
 - Sorted by the index.
 - $-i-k+1 \le \text{Index} \le i$

- How to solve PLL[i = 21] by PLL[i 1 = 20]?
- First, kick the number if index < i k + 1 = 6.

- How to solve PLL[i = 21] by PLL[i 1 = 20]?
- First, kick the number if index < i k + 1 = 6.
- Second, kick numbers by $\overline{a_{i=21}}$.

- How to solve PLL[i = 21] by PLL[i 1 = 20]?
- First, kick the number if index < i k + 1 = 6.
- Second, kick numbers by $\overline{a_{i=21}}$.

- How to solve PLL[i = 21] by PLL[i 1 = 20]?
- First, kick the number if index < i k + 1 = 6.
- Second, kick numbers by $\overline{a_{i=21}}$.

- How to solve PLL[i = 21] by PLL[i 1 = 20]?
- First, kick the number if index < i k + 1 = 6.
- Second, kick numbers by $\overline{a_{i=21}}$.

- How to solve PLL[i = 21] by PLL[i 1 = 20]?
- First, kick the number if index < i k + 1 = 6.
- Second, kick numbers by $\overline{a_{i=21}}$.

 $\overline{a_i} = 21$

Program: updating priority queue

Updating Priority Queue

```
function updating(a[1..n], i, k, PLL)

If PLL. front.index \le i - k

PopFront(PLL)

while PLL. back.value \le a[i]

PopBack(PLL)

PushBack(PLL, (index = i, value = a[i]))
```

Largest Number in range k

```
function largest(a[1..n], k)
  PLL = NULL
  for i = 1 to n
        updating(a, i, k, PLL)
      output PPL. front.
```

Updating Priority Queue

function updating(a[1..n], i, k, PLL)

If PLL. front. $index \le i - k$

PopFront(PLL)

while PLL. back. $value \le a[i]$

PopBack(PLL)

PushBack(PLL, (index = i, value = a[i]))

Largest Number in range k

function largest(a[1..n], k)
 PLL = NULL
 for i = 1 to n
 updating(a, i, k, PLL)
 output PPL front.

 $a_i = 21$

Charge to a_5 .

$$a_{5}$$
=28 a_{6} =25 a_{8} =25 a_{12} =20 a_{13} =15 a_{15} =9 a_{16} =8 a_{19} =5 a_{20} =3

Updating Priority Queue

function updating(a[1..n], i, k, PLL)

If PLL. $front.index \leq i - k$

PopFront(PLL)

while PLL. back. $value \le a[i]$

PopBack(PLL)

PushBack(PLL,(index = i, value = a[i]))

Largest Number in range k

function largest(a[1..n], k)

PLL = NULL

for i = 1 to nupdating(a, i, k, PLL)

output PPL. front.

$$a_i = 21$$

 a_5 =28 a_6 =25 a_8 =25 a_{12} =20 a_{13} =15 a_{15} =9 a_{16} =8 a_{19} =5 a_{20} =3

Charge to a_{20} .

Updating Priority Queue

function updating(a[1..n], i, k, PLL)

If *PLL*. *front*. *index* $\leq i - k$

PopFront(PLL)

while *PLL*. back. value $\leq a[i]$

PovBack(PLL)

PushBack(PLL, (index = i, value = a[i]))

Largest Number in range k

function largest(a[1..n], k)

PLL = NULL

for i = 1 to nupdating(a, i, k, PLL)

output PPL. front.

 $a_i = 21$

 a_5 =28

 $a_6 = 25$

 $a_8 = 25$

 a_{21} =21

 a_{12} =20

*a*₁₃=15

*a*₁₅=9

 a_{16} =8

 $a_{19} = 5$

 $a_{20} = 3$

- The cost of n times updating has been charged to numbers!
- Each number
 - Charged **once** when it is **popped out**.
 - Charged **once** when it is **pushed in**.
- Totally: O(n).

Priority Queue Helps DP

Priority Queue

Longest Increasing Sequence Revisit

- Input: A sequence $a_1, a_2, ..., a_n$.
- Output: the Longest Increasing Subsequence (LIS)
 - $a_{i_1} < a_{i_2} < a_{i_3} \dots < a_{i_k}$
 - $-i_1 < i_2 < i_3 \dots < i_k$

 1
 5
 13
 2
 6
 24
 15
 23
 2
 16

Do you feel that we can improve?

Is there any monotone thing?

Previous Transfer

•
$$lis[i] = \max_{a_j < a_i, j < i} \{ lis[j] + 1 \}$$

- Definition: Potential Prefix
 - The set of a_j that is possible to be the best prefix of future numbers.

a[i]	1	5	13	2	6	5	15	23	2	16
lis[i] [1	2	3	2	3	- -		-		<u>-</u> *1

Who are the Potential Prefix?

Previous Transfer

•
$$lis[i] = \max_{a_j < a_i, j < i} \{ lis[j] + 1 \}$$

- Definition: Potential Prefix
 - The set of a_i that is possible to be the best prefix of future numbers.

It is not because a[i] > a[j] and lis[i] = lis[j]

Who are the Potential Prefixes?

New Potential List

- *Sm*[*len*]: the **smallest ended number** for an increasing subsequence with length *len*.
- Remark: it is enough to record all Potential Prefixes (length and number).

a[i]	1	5	13	2	6	5	15	23	2	16
lis[i]	1	2	3	2	3	-		-		-
	\ /									

New Potential List

• *Sm*[*len*]: the **smallest ended number** for an increasing subsequence with length *len*.

Remark: it is enough to record all Potential Prefixes (length and number).

L	.a	r	η6	er

len=o	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
0	1	2	6				<u> </u>		

sm[len]

- How to update sm[len] (Potential Prefixes)?
- Difference between i 1 and i?
 - a_i comes in.
 - It may become a potential prefixes and kick some potential prefixes.

len=o	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
0	1	2	6			-			-

How to update sm[len] (Potential Prefixes)?

i

a[i]	1	5	13	2	6	5	15	23	2	16
lis[i] [1	2	3	2	3				<u>-</u>	<u>.</u>

$$a_i = 5$$

sm[len]

len=o	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
0	1	2	6						

How to update sm[len] (Potential Prefixes)?

i

a[i]	1	5	13	2	6	5	15	23	2	16
lis[i] [1	2	3	2	3	7				2.2

Case 1:
$$a_i > sm[i-1, len]$$

Case 2: $a_i \leq sm[i-1, len]$

sm	[len]

len=0	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
0	1	2	6				Mangan	1	

• How to update sm[len] (Potential Prefixes)?

a[i]6 16 5 13 2 15 23 2 lis[i] 2 2 3

i

Case 1:
$$a_i > sm[len]$$

$$a_i = 5$$
Case 2: $a_i \le sm[len]$

- it can create a longer LIS.
- it can not update sm[len].
- It may update sm[len]
- it can not create a longer LIS.

len=9

	len=0	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8
sm[len]	0	1	2	6				Mangan	

How to update sm[len] (Potential Prefixes)?

i

a[i]	1	5	13	2	6	5	15	23	2	16
lis[i]	1	2	3	2	3				7	

Case 1:
$$a_i > sm[len]$$

$$a_i = 5$$
Case 2: $a_i \leq sm[len]$

- it can create a longer LIS.
- it can not update sm[len].
- It may update sm[len]
- it can not create a longer LIS.

sm	len
Sire	

len=o	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
0	1	2	6						

How to update sm[len] (Potential Prefixes)?

a[i] 1 5 13 2 6 5 15 23 2 16 lis[i] 1 2 3 2 3 - - - - -

Case 1: $a_i > sm[len]$ $a_i = 5$ Case 2: $a_i \leq sm[len]$

- it can create a longer LIS.
- it can not update sm[len].
- It may update sm[len]
- it can not create a longer LIS.

sm[len]		
	sm	[len]

len=o	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
0	1	2	6				-		

i

How to update sm[len] (Potential Prefixes)?

a[i] 1 5 13 2 6 5 15 23 2 16 lis[i] 1 2 3 2 3 - - - - -

Case 1:
$$a_i > sm[len]$$

$$a_i = 5$$
Case 2: $a_i \le sm[len]$

- it can create a longer LIS.
- it can not update sm[len].
- It may update sm[len]
- it can not create a longer LIS.

sm	[len]

len=o	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
0	1	2	6						

i

How to update sm[len] (Potential Prefixes)?

a[i] 1 5 13 2 6 5 15 23 2 16 lis[i] 1 2 3 2 3 - - - - -

i

Case 1: $a_i > sm[len]$ $a_i = 5$ Case 2: $a_i \le sm[len]$

- it can create a longer LIS.
- it can not update sm[len].
- It may update sm[len]
- it can not create a longer LIS.

sm	[len]

len=o	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
0	1	2	6						

sm[len]

How to update sm[len] (Potential Prefixes)?

a[i] 1 5 13 2 6 5 15 23 2 16 lis[i] 1 2 3 2 3 - - - - -

i

Case 1: $a_i > sm[len]$

Case 2: $a_i \leq sm[len]$

- it can create a longer L we move
- it can not update sm[len] to here.
- It <u>must</u> update sm[len].
- it can not create a longer LIS.

	len=o	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
ι	0	1	2	6				Alking Street		

• How to update sm[len] (Potential Prefixes)?

$$a[i]$$
 1 5 13 2 6 5 15 23 2 16 $lis[i]$ 1 2 3 2 3 - - - - -

i

Case 1: $a_i > sm[len]$

Case 2: $a_i \leq sm[len]$

- it can create a longer L we move
- it can not update sm[len] to here.
- It must update sm[len]
- it can not create a longer LIS.

	len=o	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
sm[len]	О	1	2	a_i =5						

sm|l

• How to update sm[len] (Potential Prefixes)?

a[i] 1 5 13 2 6 5 15 23 2 16 lis[i] 1 2 3 2 3 3 - - - -

i

Case 1: $a_i > sm[len]$ $a_i = 5$ Case 2: $a_i \le sm[len]$

- it can create a longer L we move
- it can not update sm[len] to here.
- It <u>must</u> update sm[len]
- it can not create a longer LIS.

	len=o	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
len]	0	1	2	a_i =5						

The DP Algorithm

- Initialize sm[0] = 0
- For i = 1 to n
 - Update sm[len] by a_i
 - It requires $O(\max\{len\} = i)!$
 - Remark: now we do not kick everything we pass.
- Output the largest len such that $sm[len] \neq "-"$.

Recap The Updating

- We need to find the largest len such that $a_i > sm[i-1, len]$.
- Then we update: $sm[i, len + 1] = a_i$.

Case 1:
$$a_i > sm[i-1,len]$$

$$a_i = 5$$
Case 1: $a_i \leq sm[i-1,len]$

- it can create a longer LIS.
- it can not update sm[i, len].
- It **must** update sm[i, len]
- it can not create a longer LIS.

	len=o	len=1	len=2	len=3	len=4	len=5	len=6	len=7	len=8	len=9
sm[i-1,len]	0	1	2	a_i =5	- 1		-	- 1	66 <u>-</u>	

How to do it efficiently?

Yes! Binary Search!

Now it is better!

- Plan
 - Initialize sm[0,0] = 0
- Solve sm[i, len] from sm[i-1, len] by a_i .
 - It requires $O(\log(len)) = O(\log n)$.
- Output the largest len such that $sm[n, len] \neq "-"$.
- Totally $O(n \log n)$.

The DP Algorithm

- Initialize sm[0] = 0
- For i = 1 to n
 - Update sm[len] with a_i by binary search.
 - It requires $O(\max\{\max\{maxlen\} = i)$!
 - Remark: now we do not kick everything we pass.
 - It requires $O(\log(maxlen)) = O(\log n)$.
- Output the largest len such that $sm[len] \neq "-"$.

Priority Queue Can Be Stronger

Minimizing Manufacturing Cost

- **Input:** A sequence of items with cost $a_1, a_2, ..., a_n$.
- Need to Do:
 - Manufacture these items.
 - Operation man(l, r): manufacture the items from l to r.
 - $cost(l,r) = C + (\sum_{i=l}^{r} a_i)^2.$
- Output: The minimum cost to manufacture all items.

Discussion

- Cost function: $cost(l,r) = C + (\sum_{i=l}^{r} a_i)^2$.
- Cost function: $cost(l,r) = C + \sum_{i=l}^{r} a_i$.
- Cost function: $cost(l,r) = C + (\sum_{i=l}^{r} a_i)^2$, with C = 0.
- Only the first one need to optimize!

Define subproblems

- f[i]: the minimum cost for manufacturing item 1 to i.
- How to solve f[i]?

Solving f[i]

- f[i]: the minimum cost for manufacturing item 1 to i.
- How to solve f[i]?
- We can manufacture item *i* alone.

Solving f[i]

- f[i]: the minimum cost for manufacturing item 1 to i.
- How to solve f[i]?
- We can also manufacture *i* along with an interval.

•
$$f[i] = \min_{j < i} f[j] + C + \left(\sum_{k=j+1}^{i} a_k\right)^2$$

DP algorithm

- Define f[0] = 0.
- Solve f[i] from 1 to n, and output f[n].

•
$$f[i] = \min_{j < i} f[j] + C + \left(\sum_{k=j+1}^{i} a_k\right)^2$$
.

The Potential Idea Again!

• Question: Can every j be a potential prefix for the future?

The Potential Idea Again!

- Question: Can every j be a potential prefix for the future?
- Trade-off
 - Smaller *j* is better for paid cost.
 - Larger j is better for future cost.

Let us do some math!

General Question

•
$$f[i] = \min_{j < i} f[j] + C + \left(\sum_{k=j+1}^{i} a_k\right)^2$$
.

• When j = y is better than j = x when calculate f[i]?

Math Time!

•
$$f[i] = \min_{j < i} f[j] + C + \left(\sum_{k=j+1}^{i} a_k\right)^2$$
.

• When j = y is better than j = x when calculate f[i]?

•
$$f[x] + C + (\sum_{k=x+1}^{i} a_k)^2 > f[y] + C + (\sum_{k=y+1}^{i} a_k)^2$$

Math Time!

•
$$f[i] = \min_{j < i} f[j] + C + \left(\sum_{k=j+1}^{i} a_k\right)^2$$
.

- When j = y is better than j = x when calculate f[i]?
- Let $s(i) = \sum_{k=1}^{i} a_k$

$$f[x] + C + (s(i) - s(x))^{2} > f[y] + C + (s(i) - s(y))^{2}$$

$$f[x] - f[y] > (s(i) - s(y))^{2} - (s(i) - s(x))^{2}$$

$$= s(y)^{2} - s(x)^{2} - 2s(i)(s(y) - s(x))$$

$$\frac{(f[y] + s(y)^{2}) - (f[x] + s(x)^{2})}{2(s(y) - s(x))} < s(i)$$

Math Time!

$$\frac{(f[y]+s(y)^2)-(f[x]+s(x)^2)}{2(s(y)-s(x))} < s(i)$$

$$g(x,y) = \frac{(f[y]+s(y)^2)-(f[x]+s(x)^2)}{2(s(y)-s(x))}$$

View it as two points!

$$-x: (2s(x), f[x] + s(x)^2)$$

- y:
$$(2s(y), f[y] + s(y)^2)$$

 $f[x] + s(x)^2$

y is better than x for i means the gradient of x->y: smaller than s(i).

Put everything on the graph

f[1]	f[2]	f[3]	f[4]	<i>f</i> [5]				
c_1	c_2	<i>c</i> ₃	c_4	<i>C</i> ₅	<i>c</i> ₆	C ₇	<i>c</i> ₈	<i>C</i> 9

g(y,z) > g(z,u)! If z is better than y, then u is better than z. y is better than x for i means the gradient of x->y: g(x, y) smaller than s(i).

u v

f[1]	f[2]	f[3]	f[4]	f[5]	?	4.		
c_1	c_2	c_3	c_4	<i>c</i> ₅	<i>c</i> ₆	<i>C</i> ₇	<i>c</i> ₈	<i>C</i> ₉

f[1]	f[2]	f[3]	f[4]	f[5]	?	4.		
c_1	c_2	c_3	c_4	<i>c</i> ₅	<i>c</i> ₆	<i>C</i> ₇	<i>c</i> ₈	<i>C</i> ₉

f[1]	f[2]	f[3]	f[4]	f[5]	?	4.		
c_1	c_2	c_3	c_4	<i>c</i> ₅	<i>c</i> ₆	<i>C</i> ₇	<i>c</i> ₈	<i>C</i> ₉

f[1]	f[2]	f[3]	f[4]	f[5]	?	4.		
c_1	c_2	c_3	c_4	<i>c</i> ₅	<i>c</i> ₆	<i>C</i> ₇	<i>c</i> ₈	<i>C</i> ₉

f[1]	f[2]	f[3]	f[4]	f[5]	?	3.		
c_1	c_2	c_3	c_4	<i>c</i> ₅	c ₆	<i>c</i> ₇	<i>c</i> ₈	<i>C</i> 9

f[1]	f[2]	f[3]	f[4]	f[5]	?	4.		
c_1	c_2	c_3	c_4	<i>c</i> ₅	<i>c</i> ₆	<i>C</i> ₇	<i>c</i> ₈	<i>C</i> ₉

Which j is good for i = 6?

g(1,2) is larger than s(i) $\rightarrow j = 2$ is better than j = 1.

Will j = 1 be better again for larger i?

f[1]	f[2]	f[3]	f[4]	f[5]	?	4		
c_1	c_2	<i>c</i> ₃	c_4	<i>c</i> ₅	<i>c</i> ₆	<i>C</i> ₇	<i>c</i> ₈	C9

Which j is good for i = 6?

g(1,2) is larger than s(i) $\rightarrow j = 2$ is better than j = 1.

Will j = 1 be better again for larger i?

f[1]	f[2]	f[3]	f[4]	f[5]	?	4		
c_1	c_2	<i>c</i> ₃	c_4	<i>c</i> ₅	<i>c</i> ₆	<i>C</i> ₇	<i>c</i> ₈	C9

Algorithm for updating f[i].

- Let $j_1, j_2, ... j_m$ be the convex hull.
- Loop form k = 1
- While $g(j_k, j_{k+1}) \le s(i)$ then
 - kick j_k
 - k + +
- Until $g(j_k, j_{k+1}) > s(i)$
- j_k is the **best**!
- $f[i] = f[j] + C + \left(\sum_{k=j+1}^{i} a_k\right)^2 = f[j] + C + (s(i) s(j))^2$

- Let $j_1, j_2, ... j_m$ be the convex hull.
- Loop form k = m
- While $g(j_{k-1}, j_k) \ge g(j_k, i)$ then
 - kick j_k
 - -k--
- Until $g(j_k, j_{k+1}) < g(j_k, i)$
- $j_{k+1} \leftarrow i$

- Let $j_1, j_2, ... j_m$ be the convex hull.
- Loop form k = m
- While $g(j_{k-1}, j_k) \ge g(j_k, i)$ then
 - kick j_k
 - -k--
- Until $g(j_k, j_{k+1}) < g(j_k, i)$
- $j_{k+1} \leftarrow i$

- Let $j_1, j_2, ... j_m$ be the convex hull.
- Loop form k = m
- While $g(j_{k-1}, j_k) \ge g(j_k, i)$ then
 - kick j_k
 - -k--
- Until $g(j_k, j_{k+1}) < g(j_k, i)$
- $j_{k+1} \leftarrow i$

The DP Algorithm

- Complete the DP
 - f[0] = 0
 - For i = 1 to n
 - Calculate f[i] from the potential convex hull.
 - Insert i into the convex hull.

Running time?

- Complete the DP
 - -f[0]=0
 - For i = 1 to n
 - Calculate f[i] from the potential convex hull.
 - Insert *i* into the convex hull.

Algorithm for updating f[i].

- Let $j_1, j_2, ... j_m$ be the con Charge to i
- 1. Loop form k=1
- 2. While $g(j_k, j_{k+1}) \leq s(i)$ then
 - kick j_k
 - k + +

Charge to j_k

Charge to i

- 3. Until $g(j_k, j_{k+1}) > s(i)$
- 4. j_k is the **best**!

5.
$$f[i] = f[j] + C + \left(\sum_{k=j+1}^{i} a_k\right)^2 = f[j] + C + (s(i) - s(j))^2$$

• Let $j_1, j_2, ... j_m$ be the co

Charge to i

Charge to j_k

Loop form k = m

- 2. While $g(j_{k-1}, j_k) \ge g(j_k, i)$ then
 - kick j_k
 - -k--
- 3. Until $g(j_k, j_{k+1}) < g(j_k, i)$
- $4. j_{k+1} \leftarrow i$

Running time?

- Complete the DP
 - f[0] = 0
 - For i = 1 to n
 - Calculate f[i] from the potential convex hull.
 - Insert *i* into the convex hull.
- Total Charged Cost for Each i
 - When it is kicked → once
 - When it is calculated → once
 - When it is inserted → once

Product of Sets

- Input: n sets $L_1, L_2, ..., L_n$.
- Output: The minimum number of operations to calculate $L_1 \times L_2 \dots \times L_n$.
- What is $L_1 \times L_2$?
- $L_1 = \{a, b, c\}, L_2 = \{x, y\}$
- $L_1 \times L_2 = \{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)\}$
- General Form: $L_1 \times L_2 = \{(a, b) \mid a \in L_1, b \in L_2\}$

- We want $L_1 \times L_2 \times L_3$
- Two different calculations
 - $(L_1 \times L_2) \times L_3$ $L_1 \times (L_2 \times L_3)$
- Two different costs
 - $-m_1m_2+m_1m_2m_3$
 - $-m_1m_2m_3+m_2m_3$
- $m_1, m_2, m_3, ..., m_n$ are crucial!

What is the cost of different calculation?

- We want $L_1 \times L_2 \times L_3$
- Two different calculations
 - $-(L_1 \times L_2) \times L_3$
 - $L_1 \times (L_2 \times L_3)$
- Two different costs
 - $-m_1m_2+m_1m_2m_3$
 - $-m_1m_2m_3+m_2m_3$
- $m_1, m_2, m_3, ..., m_n$ are crucial!

Can you design a DP for it?

A simple DP

- Subproblem: c(i,j) is the cost for calculating $L_i \times L_2 ... \times L_j$.
- How to update c(i,j)?
 - Case 1: $c(i,j) = c(i+1,j) + m_i m_{i+1} \dots m_j$
 - Case 2: $c(i,j) = c(i,i+1) + c(i+2,j) + m_i m_{i+1} \dots m_j$
 - ...
 - Case ?: $c(i,j) = c(i,j-1) + m_i m_{i+1} \dots m_j$
 - Case $k: c(i,j) = c(i,k) + c(k+1,j) + m_i m_{i+1} \dots m_j$
- Transfer: $c(i,j) = m_i m_{i+1} \dots m_j + \min_{i \le k < j} \{c(i,k) + c(k+1,j)\}$
- Remark: we use w(i,j) to denote $m_i m_{i+1} \dots m_j$.

Running Time

- What about the running time?
- n^2 subproblems, we use n iterations to calculate each.
- $O(n^3)$
- The topological order.

c(i,j)	j = 1	j = 2	j=3	j=4	<i>j</i> = 5
i = 1					
i = 2					
i = 3					
i = 4					
i = 5					

Improvement!

F. Frances Yao STOC 1980

Key Property We Observe

DP formula

$$- c(i,j) = w(i,j) + \min_{i \le k < j} \{c(i,k) + c(k+1,j)\}$$

Weight function

- $w(i,j) = m_i m_{i+1} \dots m_j$
- Quadrangle Inequality (QI)
 - $\forall i \le i' \le j \le j'$, $w(i,j) + w(i',j') \le w(i',j) + w(i,j')$
- Monotonicity
 - $\forall i \leq i' \leq j \leq j', \ w(i',j) \leq w(i,j')$

Understand QI and Monotonicity

Monotonicity

- $\forall i \leq i' \leq j \leq j', \ w(i',j) \leq w(i,j')$
- The weight function is increasing.

Quadrangle Inequality (QI)

- $\forall i \le i' \le j \le j', \ w(i,j) + w(i',j') \le w(i',j) + w(i,j')$
- $w(i,j') w(i,j) \ge w(i',j') w(i',j)$
- Larger size w increase larger.

Check w(i,j)

Monotonicity

$$- \forall i \le i' \le j \le j', \ w(i',j) \le w(i,j')$$

Quadrangle Inequality (QI)

$$- \forall i \le i' \le j \le j', \ w(i,j) + w(i',j') \le w(i',j) + w(i,j')$$

Prove QI

$$-AB + BC \le B + ABC$$

$$-AB(C-1) \ge B(C-1)$$

QI for w implies QI for c

- It implies.....
- Quadrangle Inequality (QI) for c(i,j) $\forall i \leq i' \leq j \leq j', \quad c(i,j) + c(i',j') \leq c(i',j) + c(i,j')$

c(i,j)	j = 1	j = 2	j = 3	j = 4	j = 5
i = 1			c(i,j) —		$\rightarrow c(i,j')$
i = 2			1		1
i = 3			c(i',j) —		$\rightarrow c(i',j')$
i = 4					
i = 5					

Hold on

Quadrangle Inequality (QI): $w(i,j) + w(i',j') \le w(i',j) + w(i,j')$. Monotonicity: $w(i',j) \le w(i,j')$

Quadrangle Inequality (QI) for c(i,j) $\forall i \leq i' \leq j \leq j', \quad c(i,j) + c(i',j') \leq c(i',j) + c(i,j')$

Assume we have it!

- Quadrangle Inequality (QI) for c(i,j)
 - $\forall i \le i' \le j \le j', \ c(i,j) + c(i',j') \le c(i',j) + c(i,j')$
- How to design a better DP?

c(i,j)	j = 1	j = 2	j = 3	j=4	j = 5
i = 1			c(i,j) —		$\rightarrow c(i,j')$
i = 2					1
i = 3			c(i',j) —		$\rightarrow c(i',j')$
i = 4					
i = 5					

Go back to the potential idea.

What is the best k for c(i, j)?

- Consider again when k_2 is better than k_1 .
- $c(i, k_1) + c(k_1 + 1, j) > c(i, k_2) + c(k_2 + 1, j)$
- $c(k_1 + 1, j) c(k_2 + 1, j) > c(i, k_2) c(i, k_1)$
- Fix *i*, which one is better depends on $-c(k_1+1,j)-c(k_2+1,j)>c(i,k_2)-c(i,k_1)$
- Fix j, which one is better depends on $-c(i,k_2)-c(i,k_1) < c(k_1+1,j)-c(k_2+1,j)$

The Monotonicity when Comparing k_1, k_2

- The condition of k_2 is better than k_1 - $c(k_1 + 1, j) - c(k_2 + 1, j) > c(i, k_2) - c(i, k_1)$
- Fix *i*, consider what happens for different *j*. - $c(k_1 + 1, j) - c(k_2 + 1, j)$ is non-decreasing on *j*!

The Monotonicity when Comparing k_1, k_2

c(i,j)	<i>j</i> = 1	j=2	j = 3	j = 4	<i>j</i> = 5
i = 1			k_1, k_2	k_1, k_2	
i = 2					
i = 3					
i = 4					
i = 5					

- $c(k_1+1,j)-c(k_2+1,j)$ is non-decreasing on j!
- If k_2 is better than k_1 at j=3, it is also better at j=4.
- $c(i, k_2) c(i, k_1) < c(k_1 + 1, j) c(k_2 + 1, j) \le c(k_1 + 1, j') c(k_2 + 1, j')$

What does it mean

- The best k have some monotonicity w.r.t. j.
- Let k(i,j) be the best k c(i,j) selected.

Monotonicity for k(i, j).

k(i,j)	<i>j</i> = 1	j = 2	j = 3	j=4	<i>j</i> = 5
i = 1		No	n-decreasing		
i=2					
i = 3					
i = 4					
i = 5					

•
$$c(i,j) = w(i,j) + \min_{k(i,j-1) \le k < j} \{c(i,k) + c(k+1,j)\}$$

Is that enough?

Is that enough?

•
$$c(i,j) = w(i,j) + \min_{k(i,j-1) \le k < j} \{c(i,k) + c(k+1,j)\}$$

- No!
- The cost maybe $1+2+3+4+\cdots+n-1+n$ for each row.
- Still $O(n^3)!$

Monotonicity for k(i, j).

k(i, j)	j=1	j = 2	j=3	j=4	<i>j</i> = 5
i = 1					
i = 2					
i = 3			k'	k	
i = 4				$k^{\prime\prime}$	
i = 5					

Non-decreasing

- $c(i, k_2) c(i, k_1)$ is non–increasing on i.
- k_2 is better? $c(i, k_2) c(i, k_1) < c(k_1 + 1, j) c(k_2 + 1, j)$

Monotonicity for k(i, j).

Non-decreasing

k(i,j)	j = 1	j = 2	j=3	j=4	j = 5
i = 1					
i = 2					
i = 3			k'	k	
i = 4				$k^{\prime\prime}$	
i = 5					10.000

Non-decreasing

- $c(i, k_2) c(i, k_1)$ is non–increasing on i.
- k_2 is better? $c(i, k_2) c(i, k_1) < c(k_1 + 1, j) c(k_2 + 1, j)$
- If k_2 is better at i, then it is still better at i' > i.

A new DP approach

<i>k</i> (<i>i</i> , <i>j</i>)	j = 1	j = 2	j=3	j=4	<i>j</i> = 5
i = 1					
i = 2					
i = 3			k_1	$k_1 \le k \le k_2$	
i = 4				k_2	
<i>i</i> = 5					

•
$$c(i,j) = w(i,j) + \min_{k(i,j-1) \le k < k(i+1,j)} \{c(i,k) + c(k+1,j)\}$$

What is a good order for this approach?

A new DP approach

<i>k</i> (<i>i</i> , <i>j</i>)	j = 1	j = 2	j=3	j=4	<i>j</i> = 5
i = 1					
i = 2					
i = 3			k_1	$k_1 \le k \le k_2$	
i = 4				k_2	
<i>i</i> = 5					

•
$$c(i,j) = w(i,j) + \min_{k(i,j-1) \le k < k(i+1,j)} \{c(i,k) + c(k+1,j)\}$$

• We know k_1 and k_2 in the topological order!

DP algorithm

- Intialize c[i, i] = 0 for all i
- For $\Delta = 1$ to n-1
 - For i = 1 to $n \Delta$
 - $j = i + \Delta$
 - $c[i,j] = w(i,j) + \min\{c(i,k) + c(k+1,j)\}.$
 - Searching range k from k(i, j 1) to k(i + 1, j)
 - $k(i,j) \leftarrow \text{the best } k$

Running Time

- Intialize c[i, i] = 0 for all i
- For $\Delta = 1$ to n-1
 - For i = 1 to $n \Delta$
 - $j = i + \Delta$
 - $c[i,j] = w(i,j) + \min\{c(i,k) + c(k+1,j)\}.$
 - Searching range k from k(i, j 1) to k(i + 1, j)
 - $k(i,j) \leftarrow \text{the best } k$
- $Time = \sum_{i=1}^{n-\Delta} k(i+1, i+\Delta) k(i, i+\Delta-1)$ = $k(n-\Delta+1, n) - k(1, \Delta) \le n$

Don't forget to check why QI is correct for c.

Prove QI for c

Given

- $w(i,j) = m_i m_{i+1} \dots m_j$
- Quadrangle Inequality (QI)
 - $\forall i \leq i' \leq j \leq j', \ w(i,j) + w(i',j') \leq w(i',j) + w(i,j')$
- Monotonicity
 - $\forall i \leq i' \leq j \leq j', \ w(i',j) \leq w(i,j')$

To prove

- $c(i,j) = w(i,j) + \min_{i \le k < j} \{c(i,k) + c(k+1,j)\}$
- Quadrangle Inequality (QI)
 - $\forall i \le i' \le j \le j'$, $c(i,j) + c(i',j') \le c(i',j) + c(i,j')$

Prove by Induction

- Prove by Induction with (j'-i)
- Base case: (i = j'): easy to check.
- Inductive: $j' i = \Delta$
 - Hypothesis
 - $\forall j' i < \Delta$, $i \le i' \le j \le j'$, $c(i,j) + c(i',j') \le c(i',j) + c(i,j')$
 - To prove
 - $\forall j' i = \Delta$, $i \le i' \le j \le j'$, $c(i,j) + c(i',j') \le c(i',j) + c(i,j')$

A special case: i' = j

- Quadrangle Inequality (QI) for c(i,j) $\forall i \leq i' \leq j \leq j', \quad c(i,j) + c(i',j') \leq c(i',j) + c(i,j')$
- To prove $c(i,j) + c(j,j') \le c(i,j')$
- c(i,j') is minimized at a point in [i,j'].
- c(i,j') = c(i,z) + c(z+1,j') + w(i,j') $\geq c(i,z) + c(z+1,j) + c(j,j') + w(i,j')$

A special case: i' = j

- Quadrangle Inequality (QI) for c(i,j) $\forall i \leq i' \leq j \leq j', \quad c(i,j) + c(i',j') \leq c(i',j) + c(i,j')$
- To prove $c(i,j) + c(j,j') \le c(i,j')$
- c(i,j') is minimized at a point in [i,j'].
- c(i,j') = c(i,z) + c(z+1,j') + w(i,j')

$$\geq c(i,z) + c(z+1,j) + c(j,j') + w(i,j') \geq c(i,j) + c(j,j')$$

- Quadrangle Inequality (QI) for c(i,j) $\forall i \leq i' \leq j \leq j', \quad c(i,j) + c(i',j') \leq c(i',j) + c(i,j')$
- c(i,j') = c(i,z) + c(z+1,j') + w(i,j')
- c(i',j) = c(i',y) + c(y+1,j) + w(i',j)
- c(i,j') + c(i',j) = c(i,z) + c(z+1,j') + w(i,j') + c(i',y) + c(y+1,j) + w(i',j)

•
$$c(i,j') + c(i',j) = c(i,z) + c(z+1,j') + w(i,j')$$

+ $c(i',y) + c(y+1,j) + w(i',j)$

•
$$c(i,j') + c(i',j) = c(i,z) + c(z+1,j') + w(i,j') + c(i',y) + c(y+1,j) + w(i',j)$$

•
$$c(i,j') + c(i',j) = c(i,z) + c(z+1,j') + w(i,j') + c(i',y) + c(y+1,j) + w(i',j)$$

Inductive Hypothesis

$$-c(z+1,j')+c(y+1,j) \ge c(z+1,j)+c(y+1,j')$$

•
$$c(i,j') + c(i',j) \ge c(i,z) + c(z+1,j) + w(i,j')$$

+ $c(i',y) + c(y+1,j') + w(i',j)$

Inductive Hypothesis

$$-c(z+1,j')+c(y+1,j) \ge c(z+1,j)+c(y+1,j')$$

•
$$c(i,j') + c(i',j) \ge c(i,z) + c(z+1,j) + w(i,j')$$

+ $c(i',y) + c(y+1,j') + w(i',j)$

Inductive Hypothesis

$$-c(z+1,j')+c(y+1,j) \ge c(z+1,j)+c(y+1,j')$$

QI of w

$$- w(i,j') + w(i',j) \ge w(i,j) + w(i',j')$$

•
$$c(i,j') + c(i',j) \ge c(i,z) + c(z+1,j) + w(i,j)$$

+ $c(i',y) + c(y+1,j') + w(i',j')$

Inductive Hypothesis

$$-c(z+1,j')+c(y+1,j) \ge c(z+1,j)+c(y+1,j')$$

• QI of w

$$- w(i,j') + w(i',j) \ge w(i,j) + w(i',j')$$

•
$$c(i,j') + c(i',j) \ge c(i,z) + c(z+1,j) + w(i,j) \ge c(i,j)$$

+ $c(i',y) + c(y+1,j') + w(i',j') \ge c(i',j')$

Inductive Hypothesis

$$-c(z+1,j')+c(y+1,j) \ge c(z+1,j)+c(y+1,j')$$

QI of w

$$- w(i,j') + w(i',j) \ge w(i,j) + w(i',j')$$

Today's goal

- Recap the Guideline of DP! (Most Important)
- Learn how to improve DP by Priority Queue!
- Learn the tool: Priority Queue.
- Example
 - Largest Number in k Consecutive Numbers
 - Longest Increasing Sequence
 - Minimizing Printing Cost