Schedule Power And Reduce Carbon

CS 329s | Kun Guo, Nina Prakash, Griffin Tarpenning | March 9, 2022

Input Features
Generation mix
+
Weather
(time series)

ML Model

Skforecast + XGBoost Regressor (re-train /hour)

Outputs next 24hr prediction

MAPE: +/- 8%*

*certain energy sources (eg. wind) tend to have higher prediction error than others

Skforecast + XGBoost Regressor

SPARC | LIVE DEMO

https://share.streamlit.io/ninaprakash1/sparc-forecasting/main/frontend.py

BACKUP SLIDES

Select an activity

Charge an EV (Level 1) ▼

Select a time in the next 24 hours

1:00pm

Select a duration

1 hour

To charge an EV (Level 1) at 1:00pm for 1 hour, you will produce:

6.9 lb CO2

Historical and Predicted Generation Mix

Based on the forecast results, it is recommended that you begin charging an EV (Level 1) at 06:00PM on Mar 07