15CSE302 Database Management Systems Lecture 21 Functional Dependency session 3

B.Tech /III Year CSE/V Semester

LTPC 2023

DBMS Team
Dr G Jeyakumar
Bindu K R
Dr Priyanka Kumar
R. Manjusha
Department of CSE
Amrita School of Engineering

Slides Courtesy: Carlos Alvarado, San Jose State University

Syllabus

Brief Recap of Previous Lecture

- Transitive Dependency
- Third Normal Form

Today we'll discuss

Closure of FDs

Closure of a Set of Functional Dependencies

- Given a set F set of functional dependencies, there are certain other functional dependencies that are logically implied by F.
 - If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$ etc.
- The set of **all** functional dependencies logically implied by *F* is the **closure** of *F*.
- \blacksquare We denote the *closure* of *F* by \mathbf{F}^{+} .

Closure of a Set of Functional Dependencies

- \blacksquare R = (A, B, C, G, H, I) $F = \{A \rightarrow B \quad A \rightarrow C \quad CG \rightarrow H \quad CG \rightarrow I \quad B \rightarrow H\}$
- Some members of F⁺
 - \circ $A \rightarrow H$ by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - \circ $AG \rightarrow I$ by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $\mathcal{CG} \rightarrow I$
 - \circ $\mathcal{CG} \rightarrow H$ by augmenting $\mathcal{CG} \rightarrow$ /to infer $\mathcal{CG} \rightarrow G$

and augmenting of $\mathcal{CG} \rightarrow H$ to infer $\mathcal{CG} \rightarrow H$,

and then transitivity

Closure of a Set of Functional Dependencies

To compute the closure of a set of functional dependencies F: $F^+ = F$ repeat **for each** functional dependency f in fapply reflexivity and augmentation rules on fadd the resulting functional dependencies to F^+ **for each** pair of functional dependencies f_1 and f_2 in F^+ if f_1 and f_2 can be combined using transitivity

then add the resulting functional dependency to F^+ **until** F^+ does not change any further

NOTE: We shall see an alternative procedure for this task later

Given a set of attributes α , define the **closure** of α under F (denoted by α^+) as the set of attributes that are functionally determined by α under FAlgorithm to compute α^+ , the closure of α under F*result* := α ; while (changes to *result*) do for each $\beta \rightarrow \gamma$ in Fdo begin if $\beta \subseteq \textit{result}$ then $\textit{result} := \textit{result} \cup \gamma$ end

- R = (A, B, C, G, H, I)
- $F = \{A \rightarrow B \ A \rightarrow C \ CG \rightarrow H \ CG \rightarrow I \ B \rightarrow H\}$
- (AG)+
 - result = AG
 - result = ABCG

 $(A \rightarrow C \text{ and } A \rightarrow B)$

result = ABCGH

 $(CG \rightarrow H \text{ and } CG \subset AGBC)$

 $(CG \rightarrow I \text{ and } CG \subset AGBCH)$

- result = ABCGHI
- Is AG a candidate key?

- Is AG a super key?
 - Does AG \rightarrow R? == Is R \supset (AG)+
- Is any subset of AG a superkey?
 - Does A \rightarrow R? == Is R \supset (A)+
 - 2. Does $G \rightarrow R$? == Is $R \supset (G)$ +

In general: check for each subset of size n-1

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
 - To test if α is a superkey, we compute α^{+} , and check if α^{+} contains all attributes of R.
- Testing functional dependencies
 - To check if a functional dependency $\alpha \to \beta$ holds (or, in other words, is in F), just check if $\beta \subseteq \alpha^*$.
 - That is, we compute α^+ by using attribute closure, and then check if it contains β .
 - Is a simple and cheap test, and very useful
- Computing closure of F
 - For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

- Consider a relation R (A, B, C, D, E, F, G) with the functional dependencies-
- $A \rightarrow BC$
- $BC \rightarrow DE$
- $\blacksquare \quad D \to F$
- $\mathsf{CF} \to \mathsf{G}$

Closure of attribute A-

```
\begin{array}{lll} \textbf{A}^+ &= \{\,\textbf{A}\,\,\} \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,\,\} \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,,\,\textbf{D}\,,\,\textbf{E}\,\,\} \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,,\,\textbf{D}\,,\,\textbf{E}\,,\,\textbf{F}\,\,\} \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,,\,\textbf{D}\,,\,\textbf{E}\,,\,\textbf{F}\,,\,\textbf{G}\,\,\} \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,,\,\textbf{D}\,,\,\textbf{E}\,,\,\textbf{F}\,,\,\textbf{G}\,\,\} \\ &\text{Thus,} \\ &\textbf{A}^+ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,,\,\textbf{D}\,,\,\textbf{E}\,,\,\textbf{F}\,,\,\textbf{G}\,\,\} \end{array}
```

Closure of attribute A-

```
\begin{array}{lll} \textbf{A}^+ &= \{\,\textbf{A}\,\,\} \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,\,\} \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,,\,\textbf{D}\,,\,\textbf{E}\,\,\} \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,,\,\textbf{D}\,,\,\textbf{E}\,,\,\textbf{F}\,\,\} \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,,\,\textbf{D}\,,\,\textbf{E}\,,\,\textbf{F}\,,\,\textbf{G}\,\,\} \end{array} \qquad \begin{array}{ll} (\,\textbf{Using}\,\,\textbf{A} \longrightarrow \,\textbf{BC}\,\,) \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,,\,\textbf{D}\,,\,\textbf{E}\,,\,\textbf{F}\,,\,\textbf{G}\,\,\} \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,,\,\textbf{D}\,,\,\textbf{E}\,,\,\textbf{F}\,,\,\textbf{G}\,\,\} \end{array} \qquad \begin{array}{ll} (\,\textbf{Using}\,\,\textbf{D} \longrightarrow \,\textbf{F}\,\,) \\ &= \{\,\textbf{A}\,,\,\textbf{B}\,,\,\textbf{C}\,,\,\textbf{D}\,,\,\textbf{E}\,,\,\textbf{F}\,,\,\textbf{G}\,\,\} \end{array}
```

Closure of attribute D-

```
D^+ = \{D\}
= \{D, F\} (Using D \to F)
We can not determine any other attribute using attributes D and F contained in the result set.
Thus,
D^+ = \{D, F\}
```

Example

TABLE_BOOK_DETAIL							
Book ID	Genre ID	Genre Type	Price				
1	1	Gardening	25.99				
2	2	Sports	14.99				
3	1	Gardening	10.00				
4	3	Travel	12.99				
5	2	Sports	17.99				

Example

т,	ABLE_BOO	К	TABLE_GENRE		
Book ID	Genre ID	Price	Genre ID	Genre Type	
1	1	25.99	1	Gardening	
2	2	14.99	2	Sports	
3	1	10.00	3	Travel	
4	3	12.99	\$35		
5	2	17.99			

Example

Project Code	Project Title	Project Manager	Project Budget	Employee No.	Employee Name	Department No.	Department Name	Hourly Rate
PC010	Pensions System	M Phillips	24500	S10001	A Smith	L004	IT	22.00
PC010	Pensions System	M Phillips	24500	S10030	L Jones	L023	Pensions	18.50
PC010	Pensions System	M Phillips	24500	S21010	P Lewis	L004	IT	21.00
PC045	Salaries System	H Martin	17400	S10010	B Jones	L004	IT	21.75
PC045	Salaries System	H Martin	17400	S10001	A Smith	L004	IT	18.00
PC045	Salaries System	H Martin	17400	S31002	T Gilbert	L028	Database	25.50
PC045	Salaries System	H Martin	17400	513210	W Richards	L008	Salary	17.00
PC064	HR System	KLewis	12250	S31002	T Gilbert	L028	Database	23.25
PC064	HR System	KLewis	12250	S21010	P Lewis	L004	IT	17.50
PC064	HR System	KLewis	12250	S10034	B James	L009	HR	16.50

Boyce and Codd Normal Form (BCNF)

"A relation is in BCNF, if and only if, every determinant is a candidate key."

Boyce and Codd Normal Form (BCNF)

For a table to satisfy the **Boyce-Codd Normal Form**, it should satisfy the following **two conditions**:

- It should be in the Third Normal Form.
- \rightarrow for any dependency A \rightarrow B, A should be a **super key**.

In simple words, it means, that for a dependency

 $A \rightarrow B$

A cannot be a **non-prime attribute**, if B is a **prime attribute**.

Boyce and Codd Normal Form (BCNF)

- **Boyce and Codd Normal Form** is a higher version of the Third Normal form.
- This form deals with certain type of anomaly that is not handled by 3NF.
- **A 3NF table which does not have multiple overlapping candidate keys is said to be in BCNF.**

References

- Hillyer Mike, MySQL AB. <u>An Introduction to Database Normalization</u>, http://dev.mysql.com/tech-resources/articles/intro-to-normalization.html, accessed October 17, 2006.
- Microsoft. <u>Description of the database normalization basics</u>, http://support.microsoft.com/kb/283878, accessed October 17, 2006.
- Wikipedia. <u>Database Normalization.</u>
 http://en.wikipedia.org/wiki/Database_normalization.html, accessed October 17, 2006.
 https://www.db-book.com/db6/index.html
- https://www.youtube.com/watch?v=mfVCesoMaGA&list=PLroEs25KGvwzmvlxYHRhoGTz9w8 LeXek0&index=22

Summary

- Normalization basics
- Anomalies

Next Lecture

Functional dependency

Thank You

Happy to answer any questions!!!