Лекция I

1 Вещественные числа

Мы будем называть некоторое множество *множеством вещественных* или *действительных чисел* и обозначать его \mathbb{R} , если для него выполняются следующие аксиомы.

І. Аксиомы сложения. Определено отображение¹

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, +: (x, y) \mapsto x + y,$$

называемое операцией сложения. При этом выполняются

- I.1 Существует нейтральный элемент 0 такой, что x+0=0+x=x для любого $x\in\mathbb{R}$.
- I.2 Для любого $x \in \mathbb{R}$ существует *противоположный* к x элемент $-x \in \mathbb{R}$ такой, что x + (-x) = (-x) + x = 0.
- I.3 Ассоциативность сложения: для всех x, y и $z \in \mathbb{R}$ выполняется равенство

$$x + (y + z) = (x + y) + z.$$

I.4 *Коммутативность сложения:* для всех x и $y \in \mathbb{R}$ выполняется равенство

$$x + y = y + x$$
.

II. Аксиомы умножения. Определено отображение

$$\cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \ \cdot: (x, y) \mapsto x \cdot y,$$

называемое операцией умножения. При этом выполняются

- II.1 Существует нейтральный элемент $1 \in \mathbb{R} \setminus 0$ такой, что $1 \cdot x = x \cdot 1 = x$ для любого $x \in \mathbb{R}$.
- II.2 Для любого $x \in \mathbb{R} \setminus 0$ существует *обратный* к x элемент $x^{-1} \in \mathbb{R}$ такой, что $x \cdot x^{-1} = x^{-1} \cdot x = 1$.

$$X \times Y := \{(x, y) : (x \in X) \land (y \in Y)\}.$$

 $^{^{1}}$ Множество $X \times Y$ называется *прямым* или *декартовым произведением* множества X на множество Y. Оно состоит из всевозможных упорядоченных пар (x,y) элементов $x \in X$ и $y \in Y$, то есть

II.3 Ассоциативность умножения: для всех x, y и $z \in \mathbb{R}$ выполняется равенство

$$x \cdot (y \cdot z) = (x \cdot y) \cdot z.$$

II.4 Коммутативность сложения: для всех x и $y \in \mathbb{R}$ выполняется равенство

$$x \cdot y = y \cdot x$$
.

III. Связь сложения и умножения. Дистрибутивность: для всех x, y и $z \in \mathbb{R}$ выполняется равенство

$$(x+y)z = xz + yz.$$

- **IV. Аксиомы порядка.** Между элементами $\mathbb R$ имеется отношение линейного порядка \leq , то есть бинарное отношение на $\mathbb R$, для которого выполнены следующие условия:
- IV.1 Для всех $x \in \mathbb{R}$ справедливо $x \le x$.
- IV.2 Если $x \le y$ и $y \le x$, то x = y.
- IV.3 Если $x \le y$ и $y \le z$, то x = z.
- IV.4 Для всех $x \in \mathbb{R}$ и $y \in \mathbb{R}$ либо $x \le y$, либо $y \le x$.
 - **V.** Связь сложения и порядка. Для x, y и $z \in \mathbb{R}$, если $x \le y$, то

$$x + z \le y + z$$
.

VI. Связь сложения и умножения. Для $x, y \in \mathbb{R}$ таких, что $x \le 0$ и $y \le 0$, выполняется

$$0 \le x \cdot y$$
.

VII. Аксиома полноты. Пусть X и Y — непустые подмножества \mathbb{R} , такие, что для всех $x \in X$ и $y \in Y$ выполнено $x \le y$. Тогда существует $c \in \mathbb{R}$ такое, что $x \le c \le y$ для всех $x \in X$ и $y \in Y$.

2 Принцип верхней грани

Определение 1. Множество $X \subset \mathbb{R}$ – *ограничено сверху* тогда и только тогда, когда существует такое $c \in \mathbb{R}$, что для всех $x \in X$ выполнено $x \le c$. Число c называется при этом *мажорантой* множества X.

Аналогично определяются ограниченное снизу множество и его миноранта.

Определение 2. Множество – *ограничено*, если оно ограничено сверху и снизу.

Определение 3. Пусть $X \subset \mathbb{R}$. Элемент $a \in X$ называется *максимальным* элементом множества X, если для всех $x \in X$ выполнено $x \le a$. Обозначения: $\max X$ или $\max_{x \in X} x$. Короткая запись

$$a = \max X \Leftrightarrow (a \in X) \land \forall x \in X(x \le a)$$

Предположим, что a_1 , a_2 — два максимальных элемента множества X. Из определения максимума следует, что $a_1 \le a_2$ и $a_2 \le a_1$. Поэтому по аксиоме IV.2 $a_1 = a_2$. Мы доказали, что максимальный элемент является единственным.

Пример интервала (0, 1) показывает, что минимальных и максимальных элементов может и не существовать.

Определение 4. Число $s \in \mathbb{R}$ называется *точной верхней гранью* множества $X \subset \mathbb{R}$ или *супремумом* множества X, если выполнены условия

- і. Для всех $x \in X$ выполнено $x \le s$.
- іі. Если s' < s, то существует такой $x' \in X$, что s' < x'.

Обозначения: $\sup X$ и $\sup_{x \in X} x$.

Условия определения эквивалентны тому, что

$$\sup X := \min\{c \in \mathbb{R} : \forall x \in X \ (x \le c)\}.$$

Лемма 1. Пусть X – непустое ограниченное подмножество \mathbb{R} . Тогда существует и единственна точная верхняя грань s множества X.

Доказательство. Поскольку точная верхняя грань является минимумом множества мажорант, она единственна. От нас требуется доказать лишь ее существование.

Рассмотрим $Y = \{y \in \mathbb{R} : \forall x \in X(x \le y)\}$ – множество мажорант множества X. Оно является непустым, в силу ограниченности множества X. В силу аксиомы полноты существует такое $s \in \mathbb{R}$, что $s \le s \le y$ для всех $s \in X$ и всех $s \in Y$. Из левого неравенства следует, что s лежит в s, что вместе с правым неравенством дает $s = \min Y$.

$$И$$
так, $s = \min Y := \sup X$.

3 Множество натуральных чисел и принцип математической индукции

Определение 5. Множество $X \subset \mathbb{R}$ называется *индуктивным*, если для всех $x \in X$ выполнено, что $x + 1 \in X$.

Например, ℝ является индуктивным множеством.

Предложение 1. Пусть $\{X_{\alpha}\}_{\alpha \in A}$ – семейство индуктивных множеств. Тогда их пересечение $X = \bigcap_{\alpha \in A} X_{\alpha}$ тоже является индуктивным множеством.

Доказательство. По определению пересечения² и индуктивного множества

$$x \in X = \bigcap_{\alpha \in A} X_{\alpha} \Longrightarrow \forall \alpha \in A(x \in X_{\alpha}) \Longrightarrow \forall \alpha \in A((x+1) \in X_{\alpha}) \Longrightarrow (x+1) \in \bigcap_{\alpha \in A} X_{\alpha} = X.$$

Определение 6. Множеством *натуральных чисел* $\mathbb N$ называется пересечение всех индуктивных множеств, содержащих 1.

²Напомним, что $A \cap B := \{a : (a \in A) \land (a \in B)\}.$

Принцип математической индукции. Пусть $E \subset \mathbb{N}$ такое, что $1 \in E$ и вместе с каждым элементом $x \in E$ во множестве E лежит и x + 1. Тогда $E = \mathbb{N}$.

Пример 1. Докажем, что для всех $n \in \mathbb{N}$ справедлива формула

$$1 + ... + n = \frac{n(n+1)}{2}$$
.

Пусть E – множество таких натуральных чисел n, для которых выполняется это равенство.

Легко видеть, что $1 \in E$. Действительно, при n = 1 левая и правая части указанной формулы равны 1.

Предположим, что какое-то натуральное $k \in E$, то есть для него выполняется

$$1 + \dots + k = \frac{k(k+1)}{2}$$
.

В силу этого предложения выполняется цепочка равенств

$$(1+\ldots+k)+k+1=\frac{k(k+1)}{2}+k+1=\frac{(k+1)(k+2)}{2}.$$

Из которой мы заключаем, что $k+1 \in E$, а значит по принципу математической индукции множество $E=\mathbb{N}$, и доказываемая формула справедлива для всех $n \in \mathbb{N}$.

4 Принцип Архимеда

Положение 1. Пусть h > 0. Тогда для всякого $x \in \mathbb{R}$ существует единственное $k \in \mathbb{Z}$ такое, что

$$(k-1)h \le x < kh.$$

Доказательство. Рассмотрим непустое (так как множество \mathbb{Z} не является ограниченным сверху) и ограниченное снизу множество

$$S := \{ n \in \mathbb{Z} : \frac{x}{h} < n \} \subset \mathbb{Z}.$$

По лемме о нижней грани существует точная нижняя грань $i=\inf S$. По определению которой найдется целое $k\in S$ такое, что $i\leq k< i+1$. Откуда легко видно, что $k-1< i\leq k$, а значит $k=\min S$.

Поскольку k является минимальным элементом множества S, то справедливо неравенство $k-1 \le \frac{x}{h} < k$, эквивалентное искомому

$$(k-1)h \le x < kh.$$

Единственность следует из единственности минимума.