

QUESTION 01

```
(a)
      function [I] = CompositeTrapezoidalRule(a,b,n)
      h = (b-a)./n;
      sum = 0;
      i = 1;
      while i < n
         sum = sum + q(a + i*h);
          i = i + 1;
      end
      I = (h/2)*(g(a) + 2*sum + g(b));
      display(I);
      p = g1(b) - g1(a);
      q = g2(b) - g2(a);
      r = g3(b) - g3(a);
      s = g4(b) - g4(a);
      anlt = p - q - 4*r + 2*s;
      error = ((anlt - I)./anlt)*100;
      display(error);
function t = g(x)
t = 1 - x - 4*(x.^3) + 2*(x.^5);
function t = g1(x)
t = x;
function t = g2(x)
t = (x.^2)./2;
function t = g3(x)
t = (x.^4)./4;
function t = g4(x)
t = (x.^6)./6;
```

(b)

Segment	Integral	Percent Relative Error
2	1852	-67.5513
3	1447.7	-30.9759
4	1300	-17.6116

```
(c)
     function [I] = mulAplicSimpson13rdRule(a,b,n)
      h = (b-a)/n;
      sumE = 0;
      sumO = 0;
      i = 1;
      j = 2;
      while i < n
         sumO = sumO + g(a + i*h);
          i = i + 2;
      end
      while j < n
          sumE = sumE + g(a + j*h);
          j = j + 2;
      end
      I = (h/3)*(g(a) + 4*sumO + 2*sumE + g(b));
      display(I);
      p = g1(b) - g1(a);
      q = g2(b) - g2(a);
      r = g3(b) - g3(a);
      s = g4(b) - g4(a);
      anlt = p - q - 4*r + 2*s;
      error = ((anlt - I)./anlt)*100;
      display(error);
function t = g(x)
t = 1 - x - 4*(x.^3) + 2*(x.^5);
function t = g1(x)
t = x;
function t = g2(x)
t = (x.^2)./2;
function t = g3(x)
t = (x.^4)./4;
function t = g4(x)
t = (x.^6)./6;
```

(d)

Segments	Integration	Percent Relative Error
2	1276	-15.4403%
4	1116	-0.9650%
6	1107.4	-0.1906%

(e)

Segments	Error in Composite Trapezoidal	Error in Multiplication	
	Rule	Application of Simpson's Rule	
2	-67.5513%	-15.4403%	
3	-30.9759%	-6.8624%	
4	-17.6116%	-0.9650%	

Since we cannot apply multiple application of Simpson's $1/3^{rd}$ rule for 3 segments we apply Simpson's $3/8^{th}$ rule.

```
function [I] = Simpsons38thRule(a,b)
h = (b-a)/3;
I = (3/8)*(g(a) + 3*g(a+h) + 3*g(a + 2*h) + g(b));

display(I);

p = g1(b) - g1(a);
q = g2(b) - g2(a);
r = g3(b) - g3(a);
s = g4(b) - g4(a);

anlt = p - q - 4*r + 2*s;

error = ((anlt - I)./anlt)*100;

display(error);
```

As you can see in the table percent relative error of multiple application of Simpson's rule has the highest convergence rate. It is because although the Simpson's rule has 3rd accuracy, it has a 4th order polynomial. So at a high convergence rate Simpson's rule will be converged to zero.

QUESTION 02

(a) (i) – Composite Trapezoidal Rule

(ii) – Multiple Application of Simpson's 1/3rd rule

	Segments	(i)	(ii)
β(1,2)	2	0.5000	0.5000
	3	0.5000	0.5000
	4	0.5000	0.5000
β(1.5,2.5)	2	0.1250	0.1667
	3	0.1571	0.1768
	4	0.1708	0.1860
β(2,3)	2	0.0625	0.0833
	3	0.0741	0.0833
	4	0.0781	0.0833

```
syms x
f = x*((1 -x).^2);
anlt = int(f,[0,1]);

syms x
f = (x.^0.5)*((1-x).^1.5);
anlt = int(f,[0,1]);

syms x
f = 1 - x;
anlt = int(f,[0,1]);
```

Analytical integration was done by these code segments

(b)

	Segments	(i)-percent relative	(ii)-percent relative
		error	error
	2	0%	0%
β(1,2)	3	0%	0%
	4	0%	0%
	2	36.3380%	15.1004%
β(1.5,2.5)	3	19.9896%	9.9565%
	4	13.0122%	5.2709%

	2	25.0000%	0%
β(2,3)	3	11.1111%	0%
	4	6.2500%	0%

$$\beta(1,2) = 1 - x$$

$$\beta(2,3) = x(1-x)^2$$

$$\beta(1.5,2.5) = \int_0^1 x^{0.5} (1-x)^{1.5} dx$$

$$\sqrt{1-x}=t$$

$$\sqrt{1-x} = t \qquad x \to 0 \qquad t \to 1$$

$$1 - x = t^2$$

$$1 - x = t^2 \qquad x \to 1 \qquad t \to 0$$

$$-1 = 2t \frac{dt}{dx}$$

$$dx = -2tdt$$

$$x = 1 - t^2$$

$$\beta(1.5,2.5) = \int_{1}^{0} (1-t^2)^{0.5} t^3(-2t) dt$$

$$\beta(1.5,2.5) = -2 \int_{1}^{0} t^{4} (1-t^{2})^{0.5} dt$$

$$sin\theta = t$$

$$t \to 1 \quad \theta \to \frac{\pi}{2}$$

$$d\theta = \frac{dt}{\cos\theta}$$

$$d\theta = \frac{dt}{\cos\theta} \qquad \qquad t \to 0 \qquad \theta \to 0$$

$$\beta(1.5,2.5) = -2 \int_{\frac{\pi}{2}}^{0} \sin^{4}\theta \sqrt{1 - \sin^{2}\theta} dt$$

$$\beta(1.5,2.5) = -2 \int_{\frac{\pi}{2}}^{0} \sin^{4}\theta \cos\theta \cos\theta d\theta$$

$$\beta(1.5,2.5) = -2 \int_{\frac{\pi}{2}}^{0} \sin^{4}\theta \cos\theta \cos\theta d\theta$$

$$\beta(1.5, 2.5) = -2 \int_{\frac{\pi}{2}}^{0} \sin^4 \theta (1 - \sin^2 \theta) d\theta$$

$$\beta(1.5,2.5) = -2 \int_{\frac{\pi}{2}}^{0} \sin^{4}\theta d\theta + 2 \int_{\frac{\pi}{2}}^{0} \sin^{6}\theta d\theta$$

$$\beta(1.5,2.5) = \frac{3\pi}{8} - \frac{5\pi}{16}$$

$$\beta(1.5, 2.5) = \frac{\pi}{16}$$

Here I have used Simpson's 3/8th rule for the calculations of 3 segments.

As you can see in the table percent relative error of multiple application of Simpson's rule has the highest convergence rate. It is because although the Simpson's rule has 3rd accuracy, it has a 4th order polynomial. So at a high convergence rate Simpson's rule will be converged to zero.

QUESTION 03

$$\operatorname{erf}(1.5) = \frac{2}{\sqrt{\pi}} \int_0^{1.5} e^{-x^2} dx$$

$$x = a_0 + a_1 t$$

$$x \to 0$$
 $t \to -1$

$$x \rightarrow 1.5$$
 $t \rightarrow 1$

$$0 = a_0 - a_1$$

$$1.5 = a_0 + a_1$$

$$a_0 = 0.75$$
 $a_1 = 0.75$

$$x = 0.75 + 0.75t$$

$$dx = 0.75dt$$

$$\operatorname{erf}(1.5) = \int_{-1}^{1} \frac{2}{\sqrt{\pi}} e^{-(0.75 + 0.75t)^{2}} 0.75 dt$$

$$g(t) = \frac{2}{\sqrt{\pi}}e^{-(0.75 + 0.75t)^2}0.75$$

$$I = g\left(\frac{1}{-\sqrt{3}}\right) + g\left(\frac{1}{\sqrt{3}}\right)$$

$$g\left(\frac{1}{-\sqrt{3}}\right) = 0.76538$$

$$g\left(\frac{1}{\sqrt{3}}\right) = 0.20879$$

$$I = 0.76538 + 0.20879 = 0.97417$$

Exact solution is = 0.966105

Percent relative is =
$$\frac{0.966105 - 0.97417}{0.966105} \times 100\% = -0.8348\%$$