

Mecânica Celeste

Modelar problemas de mecânica celeste é uma boa oportunidade para trabalhar com vetores espaciais. Imagine uma estrela com massa m_1 em um ponto no espaço descrito pelo vetor P_1 , e um planeta com massa m_2 localizado no ponto P_2 . A magnitude do força gravitacional entre eles é¹

$$f_g = G \frac{m_1 m_2}{r^2}$$

Onde r é a distância entre eles e G é a constante gravitacional universal, que é $6.67 \times 10^{11} \, \mathrm{Nm}^2 \, / \, \mathrm{kg}^2$. Lembre-se que este é o valor apropriado de G somente se as massas estão em quilogramas, distâncias em metros, e as forças em Newtons.

A direção da força sobre a estrela em P_1 é na direção para P_2 . Podemos calcular direção subtraindo vetores; se calcular R = P2 - P1, a direção de R é de P_1 para P_2 .

A distância entre o planeta e a estrela é o comprimento de R: r = linalg.norm(R) #função que calcula a norma do vetor R

A direção da força sobre a estrela é \hat{r} :

 $r_{versor} = R / r$

Exercício 1. Faça uma sequência de instruções em Python que calcula F_{12} , um vetor que representa a força sobre a estrela devido ao planeta, e F_{21} , a força no planeta devido à estrela.

Exercício 2. Organize o código em uma função chamada *forca_gravitacional* que aceita como variáveis de entrada P_1 , m_1 , P_2 , e m_2 e retorna F_{12} .

Exercício 3 Faça uma simulação da órbita de Júpiter em torno do Sol. A massa do Sol é de cerca de 2,0x 10³⁰ kg. Você pode obter a massa de Júpiter, a sua distância do sol, e a velocidade orbital em http://en.wikipedia.org/wiki/Jupiter. Confirme que leva cerca de 4.332 dias para que Júpiter orbite em torno ao Sol.

_

¹ Veja http://en.wikipedia.org/wiki/Gravity