Numerical Analysis

Lecture 10: Numerical Differentiation

Instructor: Prof. Qiwei Zhan Zhejiang University

Outline

- Numerical Differentiation
- 2 General Derivative Approximation Formulas
- 3 Three-point Derivative Approximation Formulas
- 4 Numerical Approximations to Higher Derivatives
- Sound-Off Error Instability
- 6 Richardson's Extrapolation

Approximating a Derivative

• The derivative of the function f at x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

• This formula gives an obvious way to generate an approximation to $f'(x_0)$; simply compute

$$\frac{f(x_0+h)-f(x_0)}{h}$$

for small values of *h*. Although this may be obvious, it is not very successful, due to our old nemesis round-off error.

• But it is certainly a place to start.

Approximating a Derivative (cont'd)

- To approximate $f'(x_0)$, suppose first that $x_0 \in (a, b)$, where $f \in C^2[a, b]$, and that $x_1 = x_0 + h$ for some $h \neq 0$ that is sufficiently small to ensure that $x_1 \in [a, b]$.
- We construct the first Lagrange polynomial $P_{0,1}(x)$ for f determined by x_0 and x_1 , with its error term:

$$f(x) = P_{0,1}(x) + \frac{(x - x_0)(x - x_1)}{2!} f''(\xi(x))$$

$$= \frac{f(x_0)(x - x_0 - h)}{-h} + \frac{f(x_0 + h)(x - x_0)}{h} + \frac{(x - x_0)(x - x_0 - h)}{2!} f''(\xi(x))$$

for some $\xi(x)$ between x_0 and x_1 .

$$f(x) = \frac{f(x_0)(x - x_0 - h)}{-h} + \frac{f(x_0 + h)(x - x_0)}{h} + \frac{(x - x_0)(x - x_0 - h)}{2!}f''(\xi(x))$$

Differentiating gives

$$f'(x) = \frac{f(x_0 + h) - f(x_0)}{h} + D_x \left[\frac{(x - x_0)(x - x_0 - h)}{2!} f''(\xi(x)) \right]$$

$$= \frac{f(x_0 + h) - f(x_0)}{h} + \frac{2(x - x_0) - h}{2} f''(\xi(x))$$

$$+ \frac{(x - x_0)(x - x_0 - h)}{2} D_x(f''(\xi(x)))$$

Deleting the terms involving $\xi(x)$ gives

$$f'(x) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f'(x) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

Approximating a Derivative (cont'd)

- One difficulty with this formula is that we have no information about $D_x(f''(\xi(x)))$, so the truncation error cannot be estimated.
- When x is x_0 , however, the coefficient of $D_x(f''(\xi(x)))$ is 0, and the formula simplifies to

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

Forward-Difference and Backward-Difference Formulate

• For small values of h, the difference quotient

$$\frac{f(x_0+h)-f(x_0)}{h}$$

can be used to approximate $f'(x_0)$ with an error bounded by M|h|/2, where M is a bound on |f''(x)| for x between x_0 and $x_0 + h$.

• This formula is known as the forward-difference formula if h > 0 and the backward-difference formula if h < 0.

Example 1: $\overline{f(x)} = \ln x$

Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Example 1: $f(x) = \ln x$

Use the forward-difference formula to approximate the derivative of $f(x) = \ln x$ at $x_0 = 1.8$ using h = 0.1, h = 0.05, and h = 0.01, and determine bounds for the approximation errors.

Solution (1/3)

The forward-difference formula

$$\frac{f(1.8+h)-f(1.8)}{h}$$

with h = 0.1 gives

$$\frac{\ln 1.9 - \ln 1.8}{0.1} = \frac{0.64185389 - 0.58778667}{0.1} = 0.5406722$$

Solution (2/3)

Because $f''(x) = -1/x^2$ and $1.8 < \xi < 1.9$, a bound for this approximation error is

$$\frac{|hf''(\xi)|}{2} = \frac{|h|}{2\xi^2} < \frac{0.1}{2(1.8)^2} = 0.0154321$$

The approximation and error bounds when h = 0.05 and h = 0.01 are found in a similar manner and the results are shown in the following table.

Solution (3/3)

h	f(1.8 + h)	$\frac{f(1.8+h) - f(1.8)}{h}$	$\frac{ h }{2(1.8)^2}$
0.1	0.64185389	0.5406722	0.0154321
0.05	0.61518564	0.5479795	0.0077160
0.01	0.59332685	0.5540180	0.0015432

Outline

- Numerical Differentiation
- @ General Derivative Approximation Formulas
- 3 Three-point Derivative Approximation Formulas
- Mumerical Approximations to Higher Derivatives
- Second Second
- 6 Richardson's Extrapolation

Method of Construction

- To obtain general derivative approximation formulas, suppose that $\{x_0, x_1, \dots, x_n\}$ are (n+1) distinct numbers in some interval I and that $f \in C^{n+1}(I)$.
- From the interpolation error theorem, we have

$$f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi(x))$$

for some $\xi(x)$ in I, where L_k denotes the kth Lagrange coefficient polynomial for f at x_0, x_1, \dots, x_n .

$$f(x) = \sum_{k=0}^{n} f(x_k) L_k(x) + \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} f^{(n+1)}(\xi(x))$$

Method of Construction (Cont'd)

Differentiating this expression gives

$$f'(x) = \sum_{k=0}^{n} f(x_k) L'_k(x) + D_x \left[\frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} \right] f^{(n+1)}(\xi(x))$$
$$+ \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} D_x [f^{(n+1)}(\xi(x))]$$

$$f'(x) = \sum_{k=0}^{n} f(x_k) L'_k(x) + D_x \left[\frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} \right] f^{(n+1)}(\xi(x))$$
$$+ \frac{(x - x_0) \cdots (x - x_n)}{(n+1)!} D_x [f^{(n+1)}(\xi(x))]$$

Method of Construction (Cont'd)

We again have a problem estimating the truncation error unless x is one of the numbers x_j . In this case, the term multiplying $D_x[f^{(n+1)}(\xi(x))]$ is 0, and the formula becomes

$$f'(x_j) = \sum_{k=0}^{n} f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{k=0, k \neq j}^{n} (x_j - x_k)$$

which is called an (n+1)-point formula to approximate $f'(x_i)$.

$$f'(x_j) = \sum_{k=0}^{n} f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{k=0, k \neq j}^{n} (x_j - x_k)$$

Comment on the (n+1)-point Formula

- In general, using more evaluation points produces greater accuracy, although the number of functional evaluations and growth of round-off error discourages this somewhat.
- The most common formulas are those involving three and five evaluation points.

We first derive some useful three-point formulas and consider aspects of their errors.

Outline

- Numerical Differentiation
- 2 General Derivative Approximation Formulas
- 3 Three-point Derivative Approximation Formulas
- 4 Numerical Approximations to Higher Derivatives
- Sound-Off Error Instability
- 6 Richardson's Extrapolation

Important Building Blocks

Since

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

we obtain

$$L_0'(x) = \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)}$$

In a similar way, we find that

$$L'_1(x) = \frac{2x - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)}$$
$$L'_2(x) = \frac{2x - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)}$$

Important Building Blocks (Cont'd)

Using these expressions for $L'_j(x)$, $1 \le j \le 2$, the n + 1-point formula

$$f'(x_j) = \sum_{k=0}^{n} f(x_k) L'_k(x_j) + \frac{f^{(n+1)}(\xi(x_j))}{(n+1)!} \prod_{k=0, k \neq j}^{n} (x_j - x_k)$$

becomes for n = 2:

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi(x_j)) \prod_{k=0, k \neq j}^{2} (x_j - x_k)$$

for each j = 0, 1, 2, where $\xi_j = \xi_j(x)$.

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi(x_j)) \prod_{k=0, k \neq j}^{2} (x_j - x_k)$$

Assumption

The 3-point formulas become especially useful if the nodes are equally spaced, that is, when

$$x_1 = x_0 + h$$
 and $x_2 = x_0 + 2h$, for some $h \neq 0$

We will assume equally-spaced nodes throughout the remainder of this section.

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi(x_j)) \prod_{k=0, k \neq j}^{2} (x_j - x_k)$$

Three-Point Formulas (1/3)

With $x_j = x_0$, $x_1 = x_0 + h$, and $x_2 = x_0 + 2h$, the general 3-point formula becomes

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_1) - \frac{1}{2} f(x_2) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi(x_j)) \prod_{k=0, k \neq j}^{2} (x_j - x_k)$$

Three-Point Formulas (2/3)

Doing the same for $x_j = x_1$ gives

$$f'(x_1) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_2) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

$$f'(x_j) = f(x_0) \left[\frac{2x_j - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} \right] + f(x_1) \left[\frac{2x_j - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} \right]$$

$$+ f(x_2) \left[\frac{2x_j - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)} \right] + \frac{1}{6} f^{(3)}(\xi(x_j)) \prod_{k=0, k \neq j}^{2} (x_j - x_k)$$

Three-Point Formulas (3/3)

... and for $x_j = x_2$, we obtain

$$f'(x_2) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_1) + \frac{3}{2} f(x_2) \right] + \frac{h^2}{6} f^{(3)}(\xi_2)$$

Three-point Formulas: Further Simplification

Since $x_1 = x_0 + h$, and $x_2 = x_0 + 2h$, these formulas can also be expressed as

$$f'(x_0) = \frac{1}{h} \left[-\frac{3}{2} f(x_0) + 2f(x_0 + h) - \frac{1}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_0 + h) = \frac{1}{h} \left[-\frac{1}{2} f(x_0) + \frac{1}{2} f(x_0 + 2h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

$$f'(x_0 + 2h) = \frac{1}{h} \left[\frac{1}{2} f(x_0) - 2f(x_0 + h) + \frac{3}{2} f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$

As a matter of convenience, the variable substitution x_0 for $x_0 + h$ is used in the middle equation to change this formula to an approximation for $f'(x_0)$. A similar change, x_0 for $x_0 + 2h$, is used in the last equation.

Three-point Formulas: Further Simplification (Cont'd)

This gives three formulas for approximating $f'(x_0)$:

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$f'(x_0) = \frac{1}{2h} \left[-f(x_0 - h) + f(x_0 + h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 - 2h) - 4f(x_0 - h) + 3f(x_0) \right] + \frac{h^2}{3} f^{(3)}(\xi_2)$$

Finally, note that the last of these equations can be obtained from the first by simply replacing h with -h, so there are actually only two formulas.

Three-Point Endpoint Formula

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

where ξ_0 lies between x_0 and $x_0 + 2h$.

Three-Point Midpoint Formula

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

where ξ_1 lies between $x_0 - h$ and $x_0 + h$.

$$(1) f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(\xi_0)$$

$$(2) f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

Comments

- Although the errors in both equations are $O(h^2)$, the error in (2) is approximately half the error in (1).
- This is because (2) uses data on both sides of x_0 and (1) uses data on only one side.
- Note also that f needs to be evaluated at only two points in (2), whereas in (1) three evaluations are needed.

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

where ξ_1 lies between $x_0 - h$ and $x_0 + h$.

Five-Point Formulas

Five-Point Endpoint Formula

$$f'(x_0) = \frac{1}{12h} \left[-25f(x_0) + 48f(x_0 + h) - 36f(x_0 + 2h) + 16f(x_0 + 3h) - 3f(x_0 + 4h) \right] + \frac{h^4}{5} f^{(5)}(\xi)$$

where ξ lies between x_0 and $x_0 + 4h$.

Five-Point Midpoint Formula

$$f'(x_0) = \frac{1}{12h} \left[f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^4}{30} f^{(5)}(\xi)$$

where ξ lies between $x_0 - 2h$ and $x_0 + 2h$.

Three-Point vs. Five-Point

Example

Three-Point and Five-Point formulas to approximate $f(x) = xe^x$ at x = 2.0.

- Three-point endpoint with h = 0.1: 1.35×10^{-1}
- Three-point endpoint with h = -0.1: 1.13×10^{-1}
- Three-point midpoint with h = 0.1: -6.16×10^{-2}
- Three-point midpoint with h = 0.2: -2.47×10^{-1}
- Five-point midpoint with h = 0.1: 1.69×10^{-4}

Outline

- Numerical Differentiation
- 2 General Derivative Approximation Formulas
- 3 Three-point Derivative Approximation Formulas
- 4 Numerical Approximations to Higher Derivatives
- Second Second
- 6 Richardson's Extrapolation

Illustrative Method of Construction

Expand a function f in a third Taylor polynomial about a point x_0 and evaluate at $x_0 + h$ and $x_0 - h$. Then

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{1}{2}f''(x_0)h^2 + \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_1)h^4$$

and

$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{1}{2}f''(x_0)h^2 - \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_{-1})h^4$$
where $x_0 - h < \xi_{-1} < x_0 < \xi_1 < x_0 + h$

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{1}{2}f''(x_0)h^2 + \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_1)h^4$$

$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{1}{2}f''(x_0)h^2 - \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(\xi_{-1})h^4$$

Illustrative Method of Construction (Cont'd)

Adding these equations, the terms involving $f'(x_0)$ cancel

Adding these equations, the terms involving
$$f'(x_0)$$
 cancel
$$f(x_0+h)+f(x_0-h)=2f(x_0)+f''(x_0)h^2+\frac{1}{24}\left[f^{(4)}(\xi_1)+f^{(4)}(\xi_{-1})\right]h^4$$
 Solving this equation for $f''(x_0)$ gives

 $f''(x_0) = \frac{1}{h^2} \left[f(x_0 - h) - 2f(x_0) + f(x_0 + h) \right] - \frac{h^2}{24} \left[f^{(4)}(\xi_1) + f^{(4)}(\xi_{-1}) \right]$

$$f''(x_0) = \frac{1}{h^2} \left[f(x_0 - h) - 2f(x_0) + f(x_0 + h) \right] - \frac{h^2}{24} \left[f^{(4)}(\xi_1) + f^{(4)}(\xi_{-1}) \right]$$

Illustrative Method of Construction (Cont'd)

Suppose $f^{(4)}$ is continuous on $[x_0-h,x_0+h]$. Since $\frac{1}{2}\left[f^{(4)}(\xi_1)+f^{(4)}(\xi_{-1})\right]$ is between $f^{(4)}(\xi_1)$ and $f^{(4)}(\xi_{-1})$, the Intermediate Value Theorem implies that a number ξ exists between ξ_1 and ξ_{-1} , and hence in (x_0-h,x_0+h) , with

$$f^{(4)}(\xi) = \frac{1}{2} \left[f^{(4)}(\xi_1) + f^{(4)}(\xi_{-1}) \right]$$

This permits us to rewrite the formula in its final form:

$$f''(x_0) = \frac{1}{h^2} \left[f(x_0 - h) - 2f(x_0) + f(x_0 + h) \right] - \frac{h^2}{24} \left[f^{(4)}(\xi_1) + f^{(4)}(\xi_{-1}) \right]$$

Second Derivative Midpoint Formula

$$f''(x_0) = \frac{1}{h^2} \left[f(x_0 - h) - 2f(x_0) + f(x_0 + h) \right] - \frac{h^2}{12} f^{(4)}(\xi)$$

for some $\xi \in [x_0 - h, x_0 + h]$.

Note: If $f^{(4)}$ is continuous on $[x_0 - h, x_0 + h]$, then it is also bounded, and the approximation is $O(h^2)$.

Numerical Approximations to Higher Derivatives

Example

Values for $f(x) = xe^x$ are given in the following table:

X	1.8	1.9	2.0	2.1	2.2
f(x)	10.889365	12.703199	14.778112	17.148957	19.855030

Use the second derivative midpoint formula approximate f''(2.0).

Numerical Approximations to Higher Derivatives

Example

The data permits us to determine two approximations for f''(2.0). Using the formula with h = 0.1 gives

$$\frac{1}{0.01} [f(1.9) - 2f(2.0) + f(2.1)] =$$

100[12.703199 - 2(14.778112) + 17.148957] = 29.593200and using the formula with h = 0.2 gives

$$\frac{1}{0.04} [f(1.8) - 2f(2.0) + f(2.2)] =$$

$$25[10.889365 - 2(14.778112) + 19.855030] = 29.704275$$

The exact value is f''(2.0) = 29.556224. Hence the actual errors are -3.70×10^{-2} and -1.48×10^{-1} , respectively.

Outline

- Numerical Differentiation
- 2 General Derivative Approximation Formulas
- 3 Three-point Derivative Approximation Formulas
- 4 Numerical Approximations to Higher Derivatives
- S Round-Off Error Instability
- 6 Richardson's Extrapolation

Concept of Total Error

- It is particularly important to pay attention to round-off error when approximating derivatives.
- To illustrate the situation, let us examine the three-point midpoint formula:

$$f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6} f^{(3)}(\xi_1)$$

more closely.

• Suppose that in evaluating $f(x_0 + h)$ and $f(x_0 - h)$, we encounter round-off errors $e(x_0 + h)$ and $e(x_0 - h)$.

Concept of Total Error (Cont'd)

• Then our computations actually use the values $\tilde{f}(x_0 + h)$ and $\tilde{f}(x_0 - h)$, which are related to the true values $f(x_0 + h)$ and $f(x_0 - h)$ by

$$f(x_0+h) = \tilde{f}(x_0+h) + e(x_0+h), \quad f(x_0-h) = \tilde{f}(x_0-h) + e(x_0-h)$$

• The total error in the approximation,

$$f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} = \frac{e(x_0 + h) - e(x_0 - h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi_1)$$

is due both to round-off error, the first part, and to truncation error.

$$f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} = \frac{e(x_0 + h) - e(x_0 - h)}{2h} - \frac{h^2}{6}f^{(3)}(\xi_1)$$

Concept of Total Error (Cont'd)

If we assume that the round-off error $e(x_0 \pm h)$ are bounded by some number $\epsilon > 0$ and that the third derivative of f is bounded by a number M > 0, then

$$\left| f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} \right| \le \frac{\epsilon}{h} + \frac{h^2}{6}M$$

$$\left| f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} \right| \le \frac{\epsilon}{h} + \frac{h^2}{6}M$$

Concept of Total Error (Cont'd)

- To reduce the truncation error, $h^2M/6$, we need to reduce h.
- But as h is reduced, the round-off error ϵ/h grows.
- In practice, then, it is seldom advantageous to let *h* be too small because, in that case, the round-off error will dominate the calculations.

Example

Consider using the values in the following table

X	$\sin x$	X	$\sin x$
0.800	0.71736	0.901	0.78395
0.850	0.75128	0.902	0.78457
0.880	0.77074	0.905	0.78643
0.890	0.77707	0.910	0.78950
0.895	0.78021	0.920	0.79560
0.898	0.78208	0.950	0.81342
0.899	0.78270	1.000	0.84147
-			

to approximate f'(0.900), where $f(x) = \sin x$. The true value is $\cos 0.900 = 0.62161$.

$$\left| f'(x_0) - \frac{\tilde{f}(x_0 + h) - \tilde{f}(x_0 - h)}{2h} \right| \le \frac{\epsilon}{h} + \frac{h^2}{6}M$$

Solution (1/4)

The formula

$$f'(0.900) \approx \frac{f(0.900 + h) - f(0.900 - h)}{2h}$$

with different values of h, gives the approximations in the following table.

Solution (3/4)

	Approximation	
h	to f'(0.900)	Error
0.001	0.62500	0.00339
0.002	0.62250	0.00089
0.005	0.62200	0.00039
0.010	0.62150	-0.00011
0.020	0.62150	-0.00011
0.050	0.62140	-0.00021
0.100	0.62055	-0.00106

The optimal choice for h appears to lie between 0.005 and 0.05.

Solution (3/4)

We can use calculus to verify that a minimum for

$$e(h) = \frac{\epsilon}{h} + \frac{h^2}{6}M,$$

occurs at $h = \sqrt[3]{3\epsilon/M}$, where

$$M = \max_{x \in [0.800, 1.000]} |f'''(x)| = \max_{x \in [0.800, 1.000]} |\cos x| = \cos 0.8 \approx 0.69671.$$

Because values of f are given to five decimal places, we will assume that the round-off error is bounded by $\epsilon = 5 \times 10^{-6}$.

Solution (4/4)

Therefore, the optimal choice of h is approximately

$$h = \sqrt[3]{3\epsilon/M} = \sqrt[3]{\frac{3(0.000005)}{0.69671}} \approx 0.028,$$

which is consistent with the results in the earlier table.

- In practice, we cannot compute an optimal *h* to use in approximating the derivative, since we have no knowledge of the third derivative of the function.
- But we must remain aware that reducing the step size will not always improve the approximation.

Concluding Remarks

- We have considered only the round-off error problems that are presented by the three-point midpoint formula, but similar difficulties occur with all the differentiation formulas.
- The reason can be traced to the need to divide by a power of h.
- Division by small numbers tends to exaggerate round-off error, and this operation should be avoided if possible.
- In the case of numerical differentiation, we cannot avoid the problem entirely, although the higher-order methods reduce the difficulty.

Concluding Remarks

- As approximation methods, numerical differentiation is unstable, since the small values of *h* needed to reduce truncation error also cause the round-off error to grow.
- This is the first class of unstable methods we have encountered, and these techniques would be avoided if it were possible.
- However, in addition to being used for computational purposes, the formulas are needed for approximating the solutions of ordinary and partial-differential equations.

Outline

- Numerical Differentiation
- 2 General Derivative Approximation Formulas
- 3 Three-point Derivative Approximation Formulas
- 4 Numerical Approximations to Higher Derivatives
- 5 Round-Off Error Instability
- 6 Richardson's Extrapolation

Generating the Extrapolation Formula

• To see specifically how we can generate the extrapolation formulas, consider the O(h) formula for approximating M

$$M = N_1(h) + K_1h + K_2h^2 + K_3h^3 + \cdots$$

- The formula is assumed to hold for all positive *h*, so we replace the parameter *h* by half its value.
- Then we have a second O(h) approximation formula

$$M = N_1(\frac{h}{2}) + K_1\frac{h}{2} + K_2\frac{h^2}{4} + K_3\frac{h^3}{8} + \cdots$$

$$M = N_1(h) + K_1h + K_2h^2 + K_3h^3 + \cdots$$
$$M = N_1(\frac{h}{2}) + K_1\frac{h}{2} + K_2\frac{h^2}{4} + K_3\frac{h^3}{8} + \cdots$$

Generating the Extrapolation Formula (Cont'd)

Subtracting the first from twice the second eliminates the term involving K_1 and gives

$$M = N_1 \left(\frac{h}{2}\right) + \left[N_1 \left(\frac{h}{2}\right) - N_1(h)\right] - \frac{K_2}{2}h^2 - \frac{3K_3}{4}h^3 - \cdots$$

$$M = N_1 \left(\frac{h}{2}\right) + \left[N_1 \left(\frac{h}{2}\right) - N_1(h)\right] - \frac{K_2}{2}h^2 - \frac{3K_3}{4}h^3 - \cdots$$

Generating the Extrapolation Formula (Cont'd)

Define

$$N_2(h) = N_1\left(\frac{h}{2}\right) + \left[N_1\left(\frac{h}{2}\right) - N_1(h)\right]$$

• Then the above equation is an $O(h^2)$ approximation formula for M:

$$M = N_2(h) - \frac{K_2}{2}h^2 - \frac{3K_3}{4}h^3 - \cdots$$

Example: $f(x) = \ln x$

• In an earlier example, we used the forward-difference method

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{h}{2}f''(\xi)$$

with h = 0.1 and h = 0.05 to find approximations to f'(1.8) for $f(x) = \ln x$.

• Assume that this formula has truncation error O(h) and use extrapolation on these values to see if this results in a better approximation.

Solution

Using the forward-difference method

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h}$$

we find that

with
$$h = 0.1$$
: $f'(1.8) \approx 0.5406722$
with $h = 0.05$: $f'(1.8) \approx 0.5479795$

This implies that

$$N_1(0.1) = 0.5406722$$
 and $N_1(0.05) = 0.5479795$

$$N_2(h) = N_1\left(rac{h}{2}
ight) + \left[N_1\left(rac{h}{2}
ight) - N_1(h)
ight]$$

Solution

• Extrapolating these results gives the new approximation

$$N_2(0.1) = N_1(0.05) + (N_1(0.05) - N_1(0.1))$$

= 0.5479795 + (0.5479795 - 0.5406722)
= 0.555287

- The h = 0.1 and h = 0.05 results were found to be accurate to within 1.5×10^{-2} and 7.7×10^{-3} , respectively.
- Because $f'(1.8) = 1/1.8 = 0.\overline{5}$, the extrapolated value is accurate to within 2.7×10^{-4} .

When can be extrapolation applied?

Extrapolation can be applied whenever the truncation error for a formula has the form

$$\sum_{j=1}^{m-1} K_j h^{\alpha_j} + O(h^{\alpha_m})$$

for a collection of constants K_j and when $\alpha_1 < \alpha_2 < \cdots < \alpha_m$.

More accuracy

$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$
1: $N_1(h)$			
2: $N_1(\frac{h}{2})$	3: $N_2(h)$		
4: $N_1(\frac{\bar{h}}{4})$	5: $N_2(\frac{h}{2})$	6: $N_3(h)$	
7: $N_1(\frac{h}{8})$	8: $N_2(\frac{h}{4})$	9: $N_3(\frac{h}{2})$	10: $N_4(h)$

Ensuring accuracy

- Each column beyond the first in the extrapolation table is obtained by a simple averaging process, so the technique can produce high-order approximations with minimal computational cost.
- However, as k increases, the round-off error in $N_1(h/2^k)$ will generally increase because the instability of numerical differentiation is related to the step size of $h/2^k$.
- Also, the higher-order formulas depending increasingly on the entry to their immediate left in the table, which is the reason we recommend comparing the final diagonal entries to ensure accuracy.

Assignment

Assignment

• Reading assignment: Chap 4.1-4.2