Разбиение ряда натуральных чисел

- 1. Множество целых чисел разбито в объединение непересекающихся бесконечных в обе стороны арифметических прогрессий с разностями d_i . Пусть $S = \sum \frac{1}{d_i}$.
 - (a) Докажите, что если множество прогрессий конечно, то S=1.
 - (б) Докажите, что если множество прогрессий бесконечно, то $S \leq 1$.
 - (в) Докажите, что существует такое разбиение на бесконечное число прогрессий, что S < 1.
- 2. Существуют ли 1000 непересекающихся возрастающих арифметических прогрессий натуральных чисел таких, что каждая из них содержит простое число, превосходящее 1000, и лишь конечное количество натуральных чисел в них не лежит?
- **3.** Пусть a_1, a_2, \ldots возрастающая последовательность натуральных чисел с таким свойством, что существует $\varepsilon > 0$, что в любом отрезке $1, 2, \ldots, n$ содержится не меньше $n\varepsilon$ членов последовательности. Докажите, что можно выделить из неё бесконечную подпоследовательность чисел, ни одно из которых не делит другое.
- **4.** Дан набор a_1, a_2, \ldots, a_k различных натуральных чисел, максимальное из которых равно n. Известно, что $\sum \frac{1}{a_i} \geqslant \frac{11}{10}$. Докажите, что среди чисел найдутся два, НОК которых не превосходит 10n.
- **5.** Будем говорить, что множество $S\subset \mathbb{N}$ обладает нулевой плотностью, если $\frac{1}{n}|S\cap \{1,2,\dots,n\}| \to 0$ при $n\to \infty$. Известно, что при любом $k\in \mathbb{N}$ множество $S\cap (S-k)$ имеет нулевую плотность. Следует ли из этого, что само множество S имеет нулевую плотность?