電磁場内の荷電粒子

番 氏名

139 質量 m[kg]、電荷 -e[C]、初速 0 の電子を電圧 $V_0[V]$ で加速し、間隔 d[m]、長さ l[m]、極板間電圧 V[V] の平行極板間を通過させる。電子の入射方向に x 軸をとり、極板の左端を原点 O とする。

極板は x 軸に平行で、電子は極板間の一様な電場(電界)から力を受け、蛍光面に到達する。y 軸は極板に垂直であり、蛍光面は x 軸に垂直で $x=L[\mathbf{m}]$ の位置にある。

- (1) 平行極板間に入射するときの電子の速さ v_0 はいくらか。
- (2) 極板間で電子が受ける力の大きさはいくらか。また、極板の右端 (x=l) における電子の y 座標 y_1 を求めよ。 v_0 を用いてよい(以下の問も同様)。
- (3) 蛍光面上に到達したときの電子の y 座標 y_2 を求めよ。
- (4) 平行極板間の領域に一様な磁場(磁界)を加えることによって電子の軌道を x 軸からそれないようにしたい。磁束密度 B および磁場の向きをどのように選べばよいか。

- (2) z 軸の正の方向 $(\theta=\frac{\pi}{2})$ に打ち出した場合、この荷電粒子はどのような運動をするか説明 せよ。
- (3) y 軸との角度 $\left(0<\theta<\frac{\pi}{2}\right)$ の方向に打ち出した場合について、
 - ア. 荷電粒子はどのような運動をするか、説明せよ。
 - **イ.** 原点 O から荷電粒子が打ち出されてから、次に初めて z 軸と交わるまでの時間を求めよ。また、この交点を P とするとき、OP 間の距離はいくらか。

141 次の (1)~(5) には式を、(a)~(e) には適当な語句を入れよ。

直方体の n 型半導体があり、x,y,z 方向の長さをそれぞれ a,b,c とする。また、半導体は単位体積あたり n 個の電子をもつ。図のように y 軸の正の向きに強さ I の一様な電流が流れている。電子の電荷の大きさを e、平均の速さを v とすると、電流 I は $\boxed{ (1) }$ と表される。

いま、z 軸の正の向きに磁束密度 B の一様な磁場を加えた。電子はやはり平均の速さ v で運動しているとすると、大きさ (2) の力を x 軸の (a) の向きに受ける。この力は

igl(b) とよばれる。その結果、電子が x 軸方向に移動するため、 $oxed{M}$ に対して $oxed{N}$ の電位は

 $\overline{(c)}$ なり、 MN 間には電場が発生する。やがて半導体内の電子に対して磁場による力と $_{j}$

電場による力がつりあうことになる。この状態での電場の強さは (3) と表される。し

たがって、 MN 間の電位差 V は $\boxed{ (4) }$ と表され、I を用いると $V = \boxed{ (5) }$ と表される。

次に、n 型半導体の代わりに p 型半導体で同様な実験を行った。p 型では \lfloor (d) \rfloor が電流の担い手となるので、M に対して N の電位は | (e) \rfloor なる。

電気量には最小の単位があり、全ての電気量はその整数倍になっている。この最小単位を電気素量といい、これは (P) のもっている電気量の大きさに等しい。ミ 霧吹きリカンの実験は、図1のような装置に霧吹きから油滴を吹き込み、間隔 d[m] の平行な極板 A,B の間を上下する油滴を顕微鏡で観察し、電気素量 e[C] を測定した。密度 $\rho[kg/m^3]$ 、半径 r[m] の球形の油滴の運動を考える。重力加速度を $g[m/s^2]$ とし、空気の浮力は無視する。

油滴は極板間に電場がないときは、重力と空気の抵抗力を受けて、鉛直下向きに一定の速さ(終端速度) v_1 [m/s] で落下する。空気の抵抗力は r と v_1 の積に比例するので、比例定数を k とすると、この抵抗力と重力のつり合いの式は (\intercal) と書ける。

油滴は一般に帯電している。その電気量を q[C] とする。A に対する B の電位を V[V](V>0) とすると、油滴は図 2 に示すように、鉛直上向きに一定の速さ v_2 [m/s] で上昇した。このときのつり合いの式は $\boxed{(\dot{p})}$ となる。

 (d) と (d) より q は v_1,v_2,d,r,k,V を用いて、 $q=\mid (\mathtt{L})\mid$ と表される。

問 1 密度 $855~{
m kg/m^3}$ のパラフィン油を用いて測定したところ, ある油滴の v_1 は $3.0 imes10^{-5}~{
m m/s}$ であった。 k は $3.41 imes10^{-4}~{
m kg/(m\cdot s)}$ なので, (イ) より

 $r=5.4\times 10^{-7}$ [m] であることがわかる。 この油滴は極板 A,B の間隔 d が 5.0×10^{-3} m, 電位 V が 320 V のとき, 8.0×10^{-5} m/s で上昇した。 油滴の電気量を求めよ。

問 2 いろいろな油滴の電気量 q[C] を測定したところ, 6.4,4.8,11.3,8.1 (単位は $\times 10^{-19}$ C) を得た。 問 1 の結果も合わせて電気素量の値を求めよ。

 $^{\uparrow}B$

- $oxed{143}$ ナトリウム m Na を陰極とする光電管を用いて図 m 1 の回路を作り,波長 $m 3.0 imes 10^{-7}$ m の紫外線を当てて光電効果の実験を行った。光速度 $m c=3.0 imes 10^{8}$ m/s,電気素量 $m e=1.6 imes 10^{-19}$ C,プランク定数 $m h=6.6 imes 10^{-34}$ [J·s] とする。
 - (1) AB 間に十分な電圧をかけたところ,回路に 1.6×10^{-6} A の電流が流れた。陰極 A から陽極 B に達する電子の数 N は毎秒何個か。
 - (2) AB 間の電圧を変えながら光電流 I を測定すると、図 2 のようなグラフが得られた。 陰極から飛び出す光電子の最大運動エネルギー K [J] はいくらか。
 - (3) 光子のエネルギー [J] と Na の仕事関数 W [J] を求めよ。また,W を $[\mathrm{eV}]$ で表せ。そして Na に対する限界振動数 ν_0 [Hz] を求めよ。
 - (4) 光の波長を変えずに光の明るさを半分にすると,図 2 の曲線はどう変わるか。図に概形を書き込め。
 - (5) 当てる光の波長を変えながら (2) と同様の実験を行う。横軸を光の振動数 ν [Hz], 縦軸を K [J] とする時,得られるグラフを文字 ν_0 と W を用いて定性的に示せ。また,h はグラフの何と対応しているか。

図Ⅰ

 $oxed{144}$ X 線の粒子性は,コンプトン効果の実験からわかる。静止している質量 m の電子に波長 λ の X 線光子をあて,電子を角度 ϕ の方向に速さ v ではね飛ばす。散乱 X 線は波長が λ' となり,角度 θ の方向に進む。光速を c,プランク定数を h とする。

- (1) 衝突前後のエネルギー保存則を表す式を示せ。
- (2) 入射方向 (x 方向) およびそれと垂直な方向 (y 方向) の運動量保存則を表す式を示せ。
- (3) 以上の結果から次の関係式を導け。ただし, $\lambda' = \lambda$ であり, $\frac{\lambda'}{\lambda} + \frac{\lambda}{\lambda'} = 2$ と近似できる。

$$\lambda' - \lambda = \frac{h}{mc} (1 - \cos \theta)$$

(4) $\theta = 90^{\circ}$ の場合の $\tan \phi$ を λ, λ' を用いて表せ。

145 結晶に入射した電子線(電子波)は,規則正しく並んだ原子によって散乱され,互いに(1) して特定の方向に強く反射することがある。結晶中の原子は格子面(原子面)上に並んでおり,入射した電子線は各格子面で鏡面のように反射すると考えられる。格子面に対して角度 θ で電子線が入射するとき,隣り合う 2 つの電子線の単道のりの差(経路差)は,格子面間隔 d と角度 θ で表すと(2) である。そして反射電子線が互いに強め合う条件は,電子線の波長を λ とし,自然数 n を用いると

 $oxed{(3)}$ と表される。電気素量 $e=1.6 imes 10^{-19}$ C,電子の質量 $m=9.1 imes 10^{-31}$ kg,プランク定数 $h=6.6 imes 10^{-34}$ J·s とする。静止している電子を $2.9 imes 10^2$ V の電圧で加速したとき,電子の速さ $v=oxed{(4)}$ m/s となり,その波長は $\lambda=oxed{(5)}$ m となる。この電子線を角度 $\theta=50^\circ$ で入射させ,そのあと θ を増加させると,強い反射が起こる角度がいくつかある。その最初の角度を θ_1 とすると, $\sin\theta_1=oxed{(6)}$ である。ただし, $d=3.5 imes 10^{-10}$ m であり, $\sin 50^\circ=0.77$ とする。 θ を $50^\circ\leq\theta<90^\circ$ の範囲で変化させると (7) 回強い反射が起こる。