EN2533 Robot Design & Competition

Introduction

Peshala Jayasekara, PhD

Dept. of Electronic and Telecommunication Engineering

Faculty of Engineering

University of Moratuwa

Outline

- Introduction
 - ➤ Course Details
- What is a Robot?
- Learning Outcomes
- Past Robot Competitions
- Task 2023

Introduction

Robotics and Automation Track

- Structure
 - ➤ Lectures: 1hr/week, Wednesday 8:15am ~ 9:15am, ENTC1
 - ➤ Laboratory and Interactive Sessions: 4hr/week

HOURS	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY
08.15-09.15	EN2031 Fundamentals of Computer Organisation and Design (L) [ENTC1]	EN2091 Laboratory Practice and Projects (P)	EN2533 Robot Design and Competition (L) [ENTC1]	MA2024 Calculus (L) [NA2]	EN2533 Robot Design and Competition (P)
09.15-10.15	-do-	-do-	EN2130 Communication Design Project (L) [ENTC1]	-do-	-do-
10.15-11.15	EN2014 Electronic Circuits and Analysis (L) [ENTC1]	EN2063 Signals and Systems (L) [ENTC1]	EN2130 Communication Design Project (P)	Research Seminar (Not to be used for other Academic Work)	EN2031 Fundamentals of Computer Organisation and Design (T/P) [ENTC 1]
11.15-12.15	-do-	-do-	-do-	Union Hour (Not to be used for Academic Work)	-do-
12.15-13.16	LUNCH				
13.15-14.15	EN2054 Communication Systems and Networks (L) [ENTC1]	EN2533 Robot Design and Competition (P)	EN2054 Communication Systems and Networks (L)* [ENTC1] / BM2210 Biomedical Device Design (L) [ENTC1]	EN2014 Electronic Circuits and Analysis (L)* [ENTC1] / EN2063 Signals and Systems (L)* [ENTC1]	MA2014 Differential Equations (L) [NA2]
14.15-15.15	-do-	-do-	-do-	-do-	-do-

Structure

- Lectures: 1hr/week, Wednesday 8:15am ~ 9:15am, ENTC1
- Laboratory and Interactive Sessions: 4hr/week
- Weekly Assignments: Group and individual
- Reviews
 - Proposal Review
 - Mid Review
 - Final Competition
- Weightage: 3.0 Credits
 - ➤ Final Examination: 30%
 - Labs: 15%, Assignments: 10%
 - ➤ Proposal Review: 5%, Mid Review: 10%
 - ➤ Robot Competition: 30%

- Continuous Assessments
 - Lab Sessions
 - Sensor Interfacing: IR Sensor, Ultrasound Sensor, Digital Compass
 - Motor Control: DC Motor, Servo Motor
 - Reviews
 - Proposal Review: Proposal to achieve the final task should be presented
 - Mid Review: Robot functionalities required for the final task
 - Final Competition
- Final Examination
 - ➤ 1 hr, 40 Multiple Choice Questions
- Group Forming
 - Max. 5 students per group (your choice)

- Robot Competition
 - > At the end of the semester
 - Organized by the students
 - Robots can be designed using any microcontroller board
 - Finalized task will be given around the 4th week
 - ➤ We will have a physical robot competition

- Webpage
 - ➤ Moodle EN2533

Pololu 34:1 Metal Gear Motors

- Resources by ENTC
 - ➤ Two 34:1 Metal Gear motors per group
 - 12V High power, 48 CPR Encoder
 - LiPo Batteries 11.1V 2200mAh 3S 40C
 - Voltage tester
 - Balanced charger
 - ➤ ENTC Custom Motor Driver

- Please use them with care
 - If damaged, the group must replace the component
- Financial Assistance
 - > No funding is provided by the department/university to build robots

Why Competition?

- Learning from others: beneficial peer comparison
 - ➤ Different solutions to same problem
- Face challenges
 - Managing deadlines
- Improve teamwork and collaboration
 - How to lead a group?
- To think out of the box: innovative thinking
 - New task every year
- Platform to be recognized: develop academic heroes
- Winning the competition is not the ultimate goal
 - ➤ Participation is important
 - Learning lessons for future challenges

What is a Robot?

Robot

- What does a Robot mean to You?
 - ➤ What do you expect a robot to be?

Automatically controlled, reprogrammable, multipurpose machine

Robotics

Robotics among the 4 driving world technologies for the future

GRIN technologies* (Genetics-Robotics-IT-Nanotechnology)

Imperative to pay a serious commitment to develop robotics

technology

Robotics is multidisciplinary

Mathematics

Physics

Mechanical Engineering

Electronics Engineering Electrical Engineering Computer Science

Control Engineering Materials Engineering Communication Engineering

www.robotics.org

A 50 Year Journey ...

Robotics in New Millennium

- With the maturity of the field and advances in related fields, Robotics' main focus has started to change from industrial robotics to service robotics
 - Coexistence with humans in homes, workplaces and other communities was the new trend
 - Service robots were required to support services, entertainment, education, healthcare and assistance
- Robotics in the new millennium is more interdisciplinary
 - Biomechanics

Haptics

Neurosciences

- Virtual simulation
 Animation

Surgery

Sensor networks etc.

The Journey Continues ...

Module Aim

➤ To provide a starting point and immediate knowledge needed to design and implement a basic robot using suitable sensors and actuators to perform a simple task

Learning outcomes

- Identify the composition of a basic robot system and explain the functionality of each component
- Select suitable sensors, actuators, mechanisms, and a power source for a simple robot design to perform a given task
- Design and build a small robot and its control system for the required functionality
- Tune, test and troubleshoot the robot to achieve best performance
- Demonstrate teamwork and collaborative efforts to achieve a common goal and complete a task in the given time frame

- Syllabus
 - ➤ Introduction to Robotics
 - ➤ Robot Mechanical Design
 - Robot Behavior
 - Robot Sensors
 - ➤ Robot Motion
 - Robot Power
 - Robot Communication
 - ➤ Building Robots

- Engineering Skill Development
 - > Hands-on robotics, state-of-the-art mechatronic design
 - Multidisciplinary experience
 - Electronics
 - Mechanics
 - Software and algorithms
 - Power distribution
 - Data communication
 - Materials
 - Problem solving using machines
 - Machine design capability
 - simplicity

robustness

cost effectiveness

Plan to Win

- Create a winning robot design
 - Customized design to perform the given task in minimum time

- Build the robot considering
 - Weight, Accuracy, and Speed
- Tune, Test, and debug the robot properly

Training and modifications to achieve best performance

time to spend

Past Robot Competitions

1st Competition (05 Batch)

Treasure Hunting (2006)

Robot Competition (06 Batch)

GPS based Autonomous Navigation

Robot Competition (07 Batch)

Fire-fighting (2009)

[shortest time 146s, no collisions]

Robot Competition (08 Batch)

- Warehouse Robots (2010)
 - ➤ Cube delivery robot

Robot Competition (08 Batch)

- Warehouse Robots (2010)
 - ➤ Cube delivery robot

Robot Competition (08 Batch)

- Warehouse Robots (2010)
 - ➤ Cube delivery robot

Ring Collector

http://www.youtube.com/watch?v=ucuk-kEFnuw

Cube Collector

- GPS based Autonomous Navigation
 - ➤ Ring collector

snapshots of the competition

Coin collector

Water transfer

3D sketch of the arena

First-ever virtual competition

Virtual competition

What's Out There

EN2533 Robot Competition

SLIIT Robofest

Sri Lanka Robotics Challenge

International ABU RoboCon

ABU RoboCon

UoM Team got selected to represent Sri Lanka

ABU RoboCon, Japan, 2017

ABU RoboCon, Mongolia, 2019

Task 2023

Sub-Tasks

- Line following: regular and dotted
- Wall following
- Color detection
- Box manipulation
- Distance measurement
- Navigation on slopes
- Example Special Tasks
 - Navigating through automated gates
 - Water transfer etc.

Summary

Summary

- Course Details
 - Does not teach a great deal of theory but sets up a competitive learning environment to develop hands-on skills on robotics
- Robot
 - Automatically controlled, reprogrammable, multipurpose machine
- Learning Outcomes
 - Hands-on experience on multidisciplinary fields
- Robot Competition
 - ➤ 1st competition in 2006
 - Task got difficult each time