

Supervised Hebbian Learning

Hebb's Postulate

"When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the cells firing B, is increased."

D. O. Hebb, 1949

Linear Associator

$$\mathbf{a} = \mathbf{W}\mathbf{p} \qquad a_i = \sum_{j=1}^R w_{ij} p_j$$

Training Set:

$$\left\{ p_{1},t_{1}\right\} ,\left\{ p_{2},t_{2}\right\} ,\ldots ,\left\{ p_{Q},t_{Q}\right\}$$

Hebb Rule

Simplified Form:

$$w_{ij}^{new} = w_{ij}^{old} + \alpha a_{iq} p_{jq}$$

Supervised Form:

$$w_{ij}^{new} = w_{ij}^{old} + t_{iq} p_{jq}$$

Matrix Form:

$$\mathbf{W}^{new} = \mathbf{W}^{old} + \mathbf{t}_q \mathbf{p}_q^T$$

Batch Operation

$$\mathbf{W} = \mathbf{t}_1 \mathbf{p}_1^T + \mathbf{t}_2 \mathbf{p}_2^T + \dots + \mathbf{t}_Q \mathbf{p}_Q^T = \sum_{q=1}^{Q} \mathbf{t}_q \mathbf{p}_q^T$$
 (Zero Initial Weights)

Matrix Form:

$$\mathbf{W} = \begin{bmatrix} \mathbf{t}_1 & \mathbf{t}_2 & \dots & \mathbf{t}_Q \end{bmatrix} \begin{bmatrix} \mathbf{p}_1^T \\ \mathbf{p}_2^T \\ \vdots \\ \mathbf{p}_Q^T \end{bmatrix} = \mathbf{T} \mathbf{P}^T$$

$$\mathbf{T} = \begin{bmatrix} \mathbf{t}_1 & \mathbf{t}_2 & \dots & \mathbf{t}_Q \end{bmatrix}$$

Performance Analysis

$$\mathbf{a} = \mathbf{W}\mathbf{p}_k = \left(\sum_{q=1}^{Q} \mathbf{t}_q \mathbf{p}_q^T\right) \mathbf{p}_k = \sum_{q=1}^{Q} \mathbf{t}_q (\mathbf{p}_q^T \mathbf{p}_k)$$

Case I, input patterns are orthogonal.

$$(\mathbf{p}_q^T \mathbf{p}_k) = 1 \qquad q = k$$
$$= 0 \qquad q \neq k$$

Therefore the network output equals the target:

$$\mathbf{a} = \mathbf{W}\mathbf{p}_k = \mathbf{t}_k$$

Case II, input patterns are normalized, but not orthogonal.

$$\mathbf{a} = \mathbf{W}\mathbf{p}_k = \mathbf{t}_k + \left[\sum_{q \neq k} \mathbf{t}_q(\mathbf{p}_q^T \mathbf{p}_k)\right]$$

Error

Example

Banana

$$\mathbf{p}_1 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

$$\mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

$$\begin{cases} \mathbf{p}_1 = \begin{bmatrix} -0.5774 \\ 0.5774 \\ -0.5774 \end{bmatrix}, \, \mathbf{t}_1 = \begin{bmatrix} -1 \end{bmatrix} \end{cases}$$

$$\mathbf{p}_{1} = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} \quad \mathbf{p}_{2} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \quad \left\{ \mathbf{p}_{1} = \begin{bmatrix} -0.5774 \\ 0.5774 \\ -0.5774 \end{bmatrix}, \mathbf{t}_{1} = \begin{bmatrix} -1 \end{bmatrix} \right\} \quad \left\{ \mathbf{p}_{2} = \begin{bmatrix} 0.5774 \\ 0.5774 \\ -0.5774 \end{bmatrix}, \mathbf{t}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

Weight Matrix (Hebb Rule):

$$\mathbf{W} = \mathbf{TP}^{T} = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} -0.5774 & 0.5774 & -0.5774 \\ 0.5774 & 0.5774 & -0.5774 \end{bmatrix} = \begin{bmatrix} 1.1548 & 0 & 0 \end{bmatrix}$$

Tests:

Banana
$$\mathbf{W}\mathbf{p}_1 = \begin{bmatrix} 1.1548 & 0 & 0 \end{bmatrix} \begin{bmatrix} -0.5774 \\ 0.5774 \\ -0.5774 \end{bmatrix} = \begin{bmatrix} -0.6668 \end{bmatrix}$$

Apple
$$\mathbf{W}\mathbf{p}_2 = \begin{bmatrix} 1.1548 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.5774 \\ 0.5774 \\ -0.5774 \end{bmatrix} = \begin{bmatrix} 0.6668 \end{bmatrix}$$

Pseudoinverse Rule - (1)

Performance Index: $\mathbf{W}\mathbf{p}_q = \mathbf{t}_q$ q = 1, 2, ..., Q

$$F(\mathbf{W}) = \sum_{q=1}^{Q} ||\mathbf{t}_{q} - \mathbf{W}\mathbf{p}_{q}||^{2}$$

Matrix Form:

$$\mathbf{WP} = \mathbf{T}$$

$$\mathbf{T} = \begin{bmatrix} \mathbf{t}_1 & \mathbf{t}_2 & \cdots & \mathbf{t}_{\mathcal{Q}} \end{bmatrix} \quad \mathbf{P} = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_{\mathcal{Q}} \end{bmatrix}$$

$$F(\mathbf{W}) = \|\mathbf{T} - \mathbf{W}\mathbf{P}\|^2 = \|\mathbf{E}\|^2$$

$$\|\mathbf{E}\|^2 = \sum_{i} \sum_{j} e_{ij}^2$$

Pseudoinverse Rule - (2)

$$\mathbf{WP} = \mathbf{T}$$

Minimize:

$$F(\mathbf{W}) = \|\mathbf{T} - \mathbf{W}\mathbf{P}\|^2 = \|\mathbf{E}\|^2$$

If an inverse exists for P, F(W) can be made zero:

$$\mathbf{W} = \mathbf{T}\mathbf{P}^{-1}$$

When an inverse does not exist $F(\mathbf{W})$ can be minimized using the pseudoinverse:

$$W = TP^{+}$$

$$\mathbf{P}^+ = (\mathbf{P}^T \mathbf{P})^{-1} \mathbf{P}^T$$

Relationship to the Hebb Rule

Hebb Rule

$$\mathbf{W} = \mathbf{T}\mathbf{P}^T$$

Pseudoinverse Rule

$$\mathbf{W} = \mathbf{TP}^+$$

$$\mathbf{P}^+ = (\mathbf{P}^T \mathbf{P})^{-1} \mathbf{P}^T$$

If the prototype patterns are orthonormal:

$$\mathbf{P}^T\mathbf{P} = \mathbf{I}$$

$$\mathbf{P}^+ = (\mathbf{P}^T \mathbf{P})^{-1} \mathbf{P}^T = \mathbf{P}^T$$

Example

$$\left\{\mathbf{p}_{1} = \begin{bmatrix} -1\\1\\-1 \end{bmatrix}, \mathbf{t}_{1} = \begin{bmatrix} -1\\1\\-1 \end{bmatrix}, \mathbf{t}_{2} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \mathbf{t}_{2} = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}\right\} \qquad \mathbf{W} = \mathbf{T}\mathbf{P}^{+} = \begin{bmatrix} -1\\1\\-1\\-1 \end{bmatrix} \begin{bmatrix} \begin{bmatrix} -1\\1\\1\\-1\\-1 \end{bmatrix} \end{bmatrix}^{+}$$

$$\mathbf{P}^{+} = (\mathbf{P}^{T}\mathbf{P})^{-1}\mathbf{P}^{T} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}^{-1} \begin{bmatrix} -1 & 1 & -1 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} -0.5 & 0.25 & -0.25 \\ 0.5 & 0.25 & -0.25 \end{bmatrix}$$

$$\mathbf{W} = \mathbf{TP}^{+} = \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{bmatrix} -0.5 & 0.25 & -0.25 \\ 0.5 & 0.25 & -0.25 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{W}\mathbf{p}_{1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \end{bmatrix} \qquad \qquad \mathbf{W}\mathbf{p}_{2} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$$

Autoassociative Memory

$$p_1,t_1$$
 p_2,t_2 p_3,t_3

Inputs Sym. Hard Limit Layer

$$\mathbf{W} = \mathbf{p}_1 \mathbf{p}_1^T + \mathbf{p}_2 \mathbf{p}_2^T + \mathbf{p}_3 \mathbf{p}_3^T$$

Tests

50% Occluded

67% Occluded

Noisy Patterns (7 pixels)

7

Variations of Hebbian Learning

Basic Rule:
$$\mathbf{W}^{new} = \mathbf{W}^{old} + \mathbf{t}_q \mathbf{p}_q^T$$

Learning Rate:
$$\mathbf{W}^{new} = \mathbf{W}^{old} + \alpha \mathbf{t}_q \mathbf{p}_q^T$$

Smoothing:
$$\mathbf{W}^{new} = \mathbf{W}^{old} + \alpha \mathbf{t}_q \mathbf{p}_q^T - \gamma \mathbf{W}^{old} = (1 - \gamma) \mathbf{W}^{old} + \alpha \mathbf{t}_q \mathbf{p}_q^T$$

Delta Rule:
$$\mathbf{W}^{new} = \mathbf{W}^{old} + \alpha(\mathbf{t}_q - \mathbf{a}_q)\mathbf{p}_q^T$$

Unsupervised:
$$\mathbf{W}^{new} = \mathbf{W}^{old} + \alpha \mathbf{a}_q \mathbf{p}_q^T$$