Applied Bioostatistics I - formulas

Axioms of Kolmogorov:

 $A(probability\ measure) \subset \Omega(sample\ space): P[A] \in [0,1]:$

- $0 \le P[A] \le 1$ for every event $A \subset \Omega$
- $P[\Omega] = 1$
- $P[A \cup B] = P[A] + P[B]$ for disjoint event A and B.

for A, B events

De Morgan's laws: $(A \cap B)^c = A^c \cup B^c$ and $(A \cup B)^c = A^c \cap B^c$

Probability of unions: $P[A \cup B] = P[A] + P[B] - P[A \cap B]$

General: A_1, A_2, \ldots, A_n events:

$$P\left[A_1 \cup A_2 \cup \ldots \cup A_n\right] = \sum_{i_1=1}^n P\left[A_{i_1}\right] - \sum_{i_1=1}^{n-1} \sum_{i_2=i_1+1}^n P\left[A_{i_1} \cap A_{i_2}\right] + \sum_{i_1=1}^{n-2} \sum_{i_2=i_1+1}^{n-1} \sum_{i_3=i_2+1}^n P\left[A_{i_1} \cap A_{i_2} \cap A_{i_3}\right] - \ldots$$

Discrete probability spaces

$$\begin{array}{l} A \subset \Omega : P[A] = \sum_{i\omega_i \in A} P\left[\left\{\omega_i\right\}\right] \\ P[\Omega] = \sum_{i \geq 1} P\left[\left\{\omega_i\right\}\right] \\ \Omega \text{ is finite often: } P\left[\left\{\omega_i\right\}\right] = 1/|\Omega| \end{array}$$

Independence if: $P[A \cap B] = P[A] \cdot P[B]$

Conditional probability: $P[A|B] = \frac{P[A \cap B]}{P[B]}$, given P[B] > 0

Law of total probability

for disjoint
$$B_1, B_2, \ldots, B_k$$
 and $B_1, B_2, \ldots, B_k = \Omega$:
$$P[A] = \sum_{i=1}^k P[A \cap B_i] = \sum_{i=1}^k P[A|B_i]P[B_i]$$

Bayes' theorem:

$$\begin{array}{l} P[B|A] = \frac{P[A \cap B]}{P[A]} = \frac{P[A|B]P[B]}{P[A]}, \ \text{given} \ P[A] > 0 \ \text{and} \ P[B] > 0 \\ \text{Total probability:} \ P\left[B_i|A\right] = \frac{P[A \cap B_i]}{P[A]} = \frac{P[A|B_i]P[B_i]}{\sum_{i=1}^k P[A|B_j]P[B_j]} \end{array}$$

Cumulative distribution function (CDF) of a random variable X: $F_X(x) := P[X \le x]$

continuous:
$$F(x) = \int_{-\infty}^{x} f(u) du$$

Discrete random variables

 $X: \Omega \to \{x_1, x_2, \ldots\}$; probability mass function $p(x_k) := P[X = x_k]$; $A \subset \{x_1, x_2, \ldots\}$:

- $P[X \in A] = \sum_{k:x_{\in} \in A} p(x_k)$ $\sum_{k} p(x_k) = 1$ $CDF: F_X(x) = P[X \le x] = \sum_{k:x_k \le x} p(x_k)$

Expectation value: $E[X] := \sum_{k} x_{k} p(x_{k})$

continuous: $E[X] = \int_{-\infty}^{\infty} x f(x) dx$

Variance: $Var(X) := \sum_{k} (x_k - E[X])^2 p(x_k) = SD^2(X)$: Standard Deviation ²

continuous: $Var(X) = \int_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$

Bernoulli distribution $X \in \{0,1\}$ $X \sim Bernoulli(\pi)$, $\pi := P[X = 1]$

BINOMial distribution $X \in \{0, 1, ..., n\}$ $X \sim \text{Bin}(n, \pi), n \in \mathbb{N}, \pi \in (0, 1)$

•
$$p(x) = P[X = x] = \binom{n}{x} \pi^x (1 - \pi)^{n-x}$$

• $E[X] = n\pi, Var(X) = n\pi(1-\pi)$

• Approx.: $(n\pi > 5 \& n(1-\pi) > 5)$? $X \approx \mathcal{N}(n\pi, n\pi(1-\pi))$ (only CDF); $(n \ge 100 \& \pi \le 0.01 \& n\pi \le 20)$? $X \approx \text{Pois}(n\pi)$

POISson distribution $X \in \mathbb{N}$ $X \sim \text{Pois}(\lambda), \lambda > 0$

•
$$p(x) = P[X = x] = \frac{e^{-\lambda} \lambda^x}{x!}$$

•
$$E[X] = \lambda$$
, $Var(X) = \lambda^{x}$

 $\begin{array}{l} \bullet \ \ p(x) = P[X = x] = \frac{e^{-\lambda}\lambda^x}{x!} \\ \bullet \ \ E[X] = \lambda, \mathrm{Var}(X) = \lambda \\ \bullet \ \ \mathrm{CDF} \colon F(x;\lambda) = \sum_{i=0}^x \frac{e^{-\lambda}\lambda^i}{i!} \\ \bullet \ \ X \sim \mathrm{Pois}\left(\lambda_1\right) \,, \, Y \sim \mathrm{Pois}\left(\lambda_2\right) \ \mathrm{independent} \colon \, X + Y \sim \mathrm{Pois}\left(\lambda_1 + \lambda_2\right) \end{array}$

UNIForm distribution $X \sim \mathcal{U}([a,b])$

•
$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & \text{otherwise} \end{cases}$$

• $E[X] = \frac{b+a}{2}, \text{Var}(X) = \frac{(b-a)^2}{12}$

•
$$E[X] = \frac{b+a}{2}, Var(X) = \frac{(b-a)^2}{12}$$

NORMal distribution $X \sim \mathcal{N}(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma^2 > 0$

•
$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}, x \in \mathbb{R}$$

Standard normal distribution $Z \sim \mathcal{N}(0,1)$

$$\begin{array}{l} \bullet \ \ \varphi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \quad \Phi(z) = \int_{-\infty}^z \varphi(t) dt \\ \bullet \ \ Z = aX + b \sim \mathcal{N} \left(a\mu + b, a^2\sigma^2\right) \end{array}$$

•
$$Z = aX + b \sim \mathcal{N} \left(a\mu + b, a^2\sigma^2\right)$$

•
$$Z = \frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$$

EXPonential distribution $X \sim \text{Exp}(\lambda), \lambda > 0$

•
$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

•
$$E[X] = \frac{1}{\lambda}, Var(X) = \frac{1}{\lambda^2}$$

• Haldane's model: (position of the first crossover) $X \sim \text{Exp}(1)$

discrete	continuous
$E[X] = \sum_{k>1} x_k p(x_k)$	$E[X] = \int_{-\infty}^{\infty} x f(x) dx$
$Var(X) = \sum_{k\geq 1} (x_k - E[X])^2 p(x_k) = E[X^2] - (E[X])^2$	$\operatorname{Var}(X) = \int_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$

R function naming

- p or "probability", the cumulative distribution function (c. d. f.)
- q for "quantile", the inverse c. d. f.
- d for "density", the density function (p. f. or p. d. f.)
- r for "random", a random variable having the specified distribution

Discrete multivariate distributions

Let $X: \Omega \to W_x$ and $Y: \Omega \to W_Y$ be discrete random variables

Joint Cumulative Distribution Function: $F_{X,Y}(x,y) := P[X \le x, Y \le y]$

Joint Probability Mass Function: $p_{X,Y}(x,y) := P[X = x, Y = y], x \in W_X, y \in W_Y$

Marginal Probability Mass Function: $p_X(x) = P[X = x] = \sum_{y \in W_Y} p_{X,Y}(x,y)$

Independence IF: $p_{X,Y}(x,y) = p_X(x)p_Y(y)$

Conditional Probability Mass function: $p_{X|Y=y}(x) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$

Continuous multivariate distributions

Let $X \to \mathbb{R}$ and $Y \to \mathbb{R}$ be continuous random variables

Joint cumulative distribution function: $F_{X,Y}(x,y) := P[X \le x, Y \le y]$

Joint probability density: $f_{X,Y}(x,y) := \frac{\partial}{\partial x} \frac{\partial}{\partial y} F_{X,Y}(x,y)$

 $P[a \leq X \leq b, c \leq Y \leq d] = \int_a^b \int_c^d f_{X,Y}(x,y) dy dx \ (a < b, c < d)$ Marginal probability density: $f_X(x) := \int_{-\infty}^\infty f_{X,Y}(x,y) dy$

Independence IF: $f_{X,Y}(x,y) = f_X(x)f_Y(y)$

Conditional probability density: $f_{X|Y=y}(x) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$

Covariance	Correlation
Cov(X,Y) := E[(X - E[X])(Y - E[Y])]	$\rho_{XY} := \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$

- if X, Y independent => Cov(X,Y) = 0, $\rho_{XY} = 0$, $E[XY] = E[X] \cdot E[Y]$ and Cov(X,Y) = 0 (the other direction is not true!)
- $-1 \le \rho_{XY} \le 1$
- $\rho_{XY} = 1$ if Y = a + bX for some b > 0
- $\rho xy = -1$ if Y = a + bX for some b < 0
- E[X + Y] = E[X] + E[Y]
- E[aX] = aE[X]
- $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$
- $Var(aX) = a^2 Var(X)$

Descriptive Statistics: Model: $X_1, X_2, \dots, X_n \overset{i.i.d.}{\sim} F_X(\cdot)$, Sample: x_1, x_2, \dots, x_n

Sample MEAN: $\overline{x} = \frac{x_1 + \ldots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i = S_n/n \to \mu = E[X]$ if $n \to \infty$ (consistent/unbiased estimator for the true mean) Sample VARiance: $s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$ (s_x : sample Standard Deviation) $s_x^2 \to \sigma^2 = \text{Var}(X)$ if $n \to \infty$

 $E\left[s_{x}^{2}\right]=\sigma^{2}$ (consistent/unbiased estimator for the true variance)

MEDIAN: $(x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)})$: $m = \begin{cases} x_{(}(n+1)/2), & n \text{ is odd}, \\ \frac{1}{2} \left(x_{(n/2)} + x_{(n/2+1)} \right), & otherwise \end{cases}$ Empirical α QUANTILE: $q_{\alpha} = x_{(\alpha(n-1)+1)}$ if $\alpha \cdot (n-1)$ is an integer; otherwise $(x_{(\lfloor \alpha(n-1)\rfloor+1)} + x_{(\lceil \alpha(n-1)\rceil+1)})/2$ random variable X: value m such that $P[X \le m] \ge \alpha$ and $P[X \ge m] \ge 1 - \alpha$

Histogram: bins $h_k := \#\{i | x_i \in (c_{k-1}, c_k]\}$ density $\frac{h_k}{n(c_k - c_{k-1})}$, Box plot IQR ("interquartile range"): $q_{0.75} - q_{0.25}$

Kernel density estimation

Given a set of points x_1, x_2, \ldots, x_n , the kernel density estimator for the generating distribution is $\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x-x_i}{h}\right)$ (kernel function:arbitrary positive symmetric, h: bandwidth)

- * Uniform/rectangular kernel: $K \sim \mathcal{U}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$ (same weight for all points)
- * Gaussian kernel: $K \sim \mathcal{N}(0,1)$ (less weight to far apart points)

Empirical cumulative distribution function (ECDF): $\hat{F}(x) = \frac{\#\{k | x_k \le x\}}{n}$ Empirical CORrelation: $r = \frac{s_{xy}}{s_x s_y} \in [-1, 1]$, empirical COVariance: $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$

Linear dependence between 2 samples $\{x_i\}$ and $\{y_i\}$ * r=+1 if $y_i=a+bx_i$ for some b>0 * r=-1 if $y_i=a+bx_i$ for some b<0

Standard error of the mean (SEM) = Standard Deviation of the mean

Natural estimator for $\sigma(\overline{X}_n)$: $\operatorname{se}_{\overline{x}} = \frac{s_x}{\sqrt{n}}$; s_x is the empirical standard deviation

Law of large numbers: X random variable and $E[X] = \mu$, and X_1, X_2, \dots, X_n i.i.d. from $X_n = \sum \overline{X}_n \to \mu$ as $n \to \infty$

ECDF \rightarrow CDF as $n \rightarrow \infty$

Central Limit Theorem

Let X be random variable with expectation value μ and variance σ^2 , and X_1, X_2, \ldots, X_n i.i.d. from X.

Then $\overline{X}_n \approx \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$ for large n: $E\left[\overline{X}_n\right] = \mu, \sigma\left(\overline{X}_n\right) = \frac{\sigma}{\sqrt{n}} \to 0$ as $n \to \infty$

 $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \approx \mathcal{N}(0, 1) \text{ for large } n$ $X \sim \mathcal{N}(\mu, \sigma^2) \text{ and } Y = a + bX \colon Y \sim \mathcal{N}(a + b\mu, b^2\sigma^2)$

Confidence interval with confidence level $1-\alpha, \frac{1}{2} < \alpha < 1$

$$\left[\overline{X}_n - \Phi^{-1}(1 - \alpha/2) \cdot \frac{s_x}{\sqrt{n}}, \overline{X}_n + \Phi^{-1}(1 - \alpha/2) \cdot \frac{s_x}{\sqrt{n}}\right]$$

Maximum likelihood estimation (MLE) for discrete distributions with measurements X_1, X_2, \dots, X_n : i.i.ds

probability mass function $p(x; \theta)$: parameterized by θ

Likelihood $L(\theta) := \prod_{i=1}^{n} p(x_i; \theta)$

Log-likelihood $\ell(\theta) := \log(L(\theta)) = \sum_{i=1}^{n} \log(p(x_i; \theta))$

Maxiumum likelihood estimator (MLE) for θ : $\hat{\theta}$ = value of θ for which ℓ attains its maximum; suitable for large samples

MLE for continuous distributions with probability density $f(x;\theta)$: parameterized by θ

$$\begin{split} L(\theta) &:= \prod_{i=1}^n f\left(x_i; \theta\right) \\ \ell(\theta) &:= \log(L(\theta)) = \sum_{i=1}^n \log\left(f\left(x_i; \theta\right)\right) \end{split}$$

MLE for Poisson distribution

$$\begin{split} L(\lambda) &= \prod_{i=1}^n e^{-\lambda} \frac{\lambda^{x_i}}{x_i!} \\ \ell(\lambda) &= \sum_{i=1}^n \left[x_i \log(\lambda) - \lambda - \log\left(x_i!\right) \right] \\ \hat{\lambda} &= \frac{1}{n} \sum_{i=1}^n x_i = \overline{x} \\ \text{confidence intervals: } \left[\hat{\lambda} - \Phi^{-1}(0.975) \frac{s_x}{\sqrt{n}}, \hat{\lambda} + \Phi^{-1}(0.975) \frac{s_x}{\sqrt{n}} \right] \end{split}$$

MLE for Normal distribution $\mathcal{N}(\mu, \sigma^2)$

$$\hat{\mu} = \overline{X}, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

MLE for Exponential distribution $E \times p(\lambda)$

$$\begin{split} \hat{\lambda} &= \frac{1}{\overline{x}} \\ \text{confidence interval: } \left[\hat{\lambda} \left(1 - \frac{\Phi^{-1}(0.975)}{\sqrt{n}} \right), \hat{\lambda} \left(1 + \frac{\Phi^{-1}(0.975)}{\sqrt{n}} \right) \right] \end{split}$$

Bayesian estimation approach: parameter θ as random

Likelihood as conditional probability:
$$L(\theta) = p_{X|\Theta=\theta}(x) = P[X=x|\Theta=\theta]$$
 $P[\Theta=\theta|X=x] = \frac{P[X=x|\Theta=\theta] \cdot P[\Theta=\theta]}{P[X=x]}$: $posterior = \frac{likelihood \cdot prior}{evidence}$

Maximum a posteriori (MAP) estimator: $\hat{\theta}$ that maximizes the posterior $P[\Theta = \theta | X = x]$, suitable for small samples

Bayesian estimation of continuous parameter with density $f_{\ominus}(\theta)$

$$f_{\Theta|X=x}(\theta) = \frac{f_{X|\Theta=\theta}(x) \cdot f_{\Theta}(\theta)}{f_{X}(x)}$$

In large sample limit, $n \to \infty$: MAP (Bayesian) estimate converges to ML (frequentist) estimate

Statistical Hypothesis Testing

- 1) Model: choose distribution describing your data. Formulate claim you want to prove.
- 2) Null hypothesis: choose the $H_0(null\ hypothesis)$, $H_A(alternative\ hypothesis)$ and their distribution parameters
- 3) Test statistic: based on your sample data
- 4) Choose significance level: e.g. $\alpha = 5\%$
- 5) Range of rejection K such that $P[X \in K] \leq \alpha$ under H_0 reject H_0 if $X \in K$
- 6) Test decision: reject H_0 if $X \in K$ otherwise fail to reject.

		Decision	
		Decision	
		H_0	H_A
Truth	H_0	true negative (TN)	type I error (FP)
	H_A	type II error (FN)	true positive (TP)

- Significance level $\alpha : \alpha = P[FP|H_0]$
- Power $1 \beta : \beta = P[FN|H_A]$; higher Significance(smaller α) => lower Power; bigger α or larger sample => higher Power

P-value

(Def.) The p-value is the smallest significance level α for which we reject a null hypothesis for the given data set.

(Alt.) The p-value is the probability under the null hypothesis to find the actual outcome or a more extreme one.

Test using the normal approximation $X \approx \mathcal{N}(n\pi_0, n\pi_0(1-\pi_0))$

Test statistic: $Z = \frac{X - n\pi_0}{\sqrt{n\pi_0(1-\pi_0)}}$ Distribution of Z under $H_0: Z \approx \mathcal{N}(0,1)$

Paired-samples (or one-sample) t test with model $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}\left(\mu, \sigma^2\right)$

 $H_0: \mu=\mu_0=0$; $H_{\rm A}: \mu\neq\mu_0$ Test statistic: $T=\frac{\sqrt{n}(\overline{X}-\mu_0)}{s_x}$ with T distribution | H_0 with (n - 1) degrees of freedom

Student's T distribution $T \sim t_m$ with m "degrees of freedom", symetry $t_{m,\alpha} = -t_{m,1-\alpha}$

Range of rejection: $K = \left(-\infty, -t_{n-1,1-\frac{\alpha}{2}}\right] \cup \left[t_{n-1,1-\frac{\alpha}{2}}, \infty\right)$

Confidence Interval for μ with confidence level $1-\alpha$

 $I = \{\mu_0 | \text{ null hypothesis } H_0 : \mu = \mu_0 \text{ is not rejected } \}$

$$H_{\rm A}: \mu \neq \mu_0 \Rightarrow I = \left[\overline{x} - t_{n-1,1-\alpha/2} \frac{s_x}{\sqrt{n}}, \overline{x} + t_{n-1,1-\alpha/2} \frac{s_x}{\sqrt{n}} \right]$$

$$H_{\rm A}: \mu < \mu_0 \Rightarrow I = \left(-\infty, \overline{x} + t_{n-1, 1-\alpha} \frac{s_x}{\sqrt{n}}\right)$$

$$H_{\rm A}: \mu > \mu_0 \Rightarrow I = \left[\overline{x} - t_{n-1,1-\alpha} \frac{s_x}{\sqrt{n}}, \infty \right)$$

Sign Test: consider differences $X_i = Z_i - Y_i$ i. i. d. with median m

 $H_0: m = m_0 = 0$, $H_A: m \neq m_0$

Test statistic: $V = \#\{i|X_i > m_0\}, V \text{ under } H_0: V \sim \text{Bin}(n, 0.5)$

Range of rejection: $K = [0, c] \cup [n - c, n]$ such that $P_{H_0}[V \in K] \le \alpha$ (significance level)

c determined by binomial distribution: $P_{H_0}[V \in K] = 2P_{H_0}[V \le c]$

Wilcoxon Signed-Rank Test (wilcox.test): concider differences $X_i = Z_i - Y_i$ i. i. d. with median m

 $H_0: m=0$, $H_{\rm A}: m\neq 0$ Test statistic: $W=\sum_{i=1}^n {\rm sign}\left(X_i\right) R_i$, where R_i : rank of X_i order by absolute value $|X_i|$ Range of rejection: $K=(-\infty,0.5-c]\cup [0.5+c,\infty)$ such that $P_{H_0}[W\in K]\leqslant \alpha$

T-Test

$$X_1,\dots,X_n \overset{\text{i.i.d.}}{\cdot} \mathcal{N}\left(\mu_X,\sigma^2\right), Y_1,\dots,Y_m \overset{\text{i.i.d.}}{\sim} \mathcal{N}\left(\mu_Y,\sigma^2\right), H_0: \mu_X = \mu_Y, H_A: \mu_X \neq \mu_Y$$
 Test statistic:
$$T = \frac{\overline{X} - \overline{Y}}{s \text{ pool } \sqrt{1/n + 1/m}}, \ s_{\text{pool}}^2 = \frac{1}{n + m - 2}\left((n - 1)s_x^2 + (m - 1)s_y^2\right), T \text{ distribution under } H_0: T \sim t_{n + m - 2}$$

Permutation Test: nonparametric test

$$X_1, \dots, X_n \overset{\text{i.d.d.}}{\sim} F_X(\cdot) , Y_1, \dots, Y_m \overset{\text{i.i.d.}}{\sim} F_Y(\cdot)$$

$$H_0: F_X = F_Y , H_A: F_x \neq F_Y$$
Test statistic: $D = \overline{X} - \overline{Y}$

Resampling: choose number of repetitions N > 1000

Randomly assign n values of $\{X_i\} \cup \{Y_i\}$ to "type I" and the rest m values to "type II"

Repeat N times

Range of rejection: $K = (-\infty, c_l] \cup [c_u, \infty)$, c_l : empirical $\alpha/2$ -quantile of resampling distribution, c_u : empirical $1 - \alpha/2$ -quantile of resampling distribution

Effect size Two samples: Experimental group $\{X_i\}_i$, control group $\{Y_i\}_i$, effect size $=\frac{\overline{X}-\overline{Y}}{s_{\text{pool}}}$

False Positive Rate: $FPR = E\left[\frac{FP}{FP+TN}\right] = E\left[\frac{V}{m_0}\right]$ controlled by significance level $\alpha = FPR$

		Decision		Total
Truth	H_0 H_A	H_0 True Negative U type II error (FN)	H_A type I error (FP): V True Tositive: S	m_0 $m-m_0$
Total		m-R	R	m

Family-Wise Error Rate: FWER = $P[1 \text{ or more type} \mid \text{errors}] = P[V \ge 1]$: n:20-50, errors are critical

FWER controlled by experiment-wise type I error rate $\overline{\alpha}$

Test procedure that guarantees a FWER of (at most) $\overline{\alpha}$:

- 1. for each test case (e.g. gene), calculate p-value
- 2. adjust p-value
- 3. reject null hypotheses whose adjusted p-value is smaller than $\bar{\alpha}$; accept others

Controlling FWER

order p-values: $P_{(1)} \le P_{(2)} \le P_{(3)} \le \ldots \le P_{(m)}$

	Bonferroni method	Holm method
adjust p-values	$P_{\mathrm{adj},i} = \min\left\{m \cdot P_i, 1\right\}$	$P_{\text{adj},(i)} = \max \left\{ \min \left\{ (m-i+1) \cdot P_{(i)}, 1 \right\}, P_{\text{adj},(i-1)} \right\}$

reject null hypotheses whose adjusted p-value is smaller than $\overline{\alpha}$; accept others: guaranteed FWER $< \overline{\alpha}$

Adjusted p-value

The adjusted p-value of a certain null hypothesis is the smallest experiment-wise type I error rate $\overline{\alpha}$ for which we reject this hypothesis for the given data set.

False discovery rate: $FDR = E\left[\frac{FP}{FP+TP}\right] = E\left[\frac{V}{R}\right]$: n > 500; looking for discovery

- 1. for each test case, calculate p-value
- 2. adjust p-values to get corresponding q-values
- 3. reject null hypotheses whose q-value is smaller than \overline{q} ; accept others

Controlling FDR: Benjamini-Hochberg method

order p-values:
$$P_{(1)} \leq P_{(2)} \leq P_{(3)} \leq \ldots \leq P_{(m)}$$
 adjust p-values to get q-values: $Q_{(i)} = \max \left\{ \min \left\{ \frac{m}{i} \cdot P_{(i)}, 1 \right\}, Q_{(i-1)} \right\}$ reject null hypotheses whose q-value is smaller than \overline{q} ; accept others Procedure quarantees $FDR \leq \overline{q}$

Simple linear regression: $Y_i = \beta_0 + \beta_1 x_i + E_i$, $E_1, \dots, E_n \stackrel{\text{i.i.d}}{\sim} \mathcal{N}\left(0, \sigma^2\right)$, $i = 1, \dots, n$

 Y_i : response variable; x_i : explanatory variable; E_i : error or noise variables

Residuals: $R_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$

Residual Sum of Squares: RSS = $\sum_{i=1}^{n} R_i^2$ Minimizers $\hat{\beta}_0$ and $\hat{\beta}_1$ of RSS: unbiased estimators for the true β_0 and β_1 Estimate $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} R_i^2$

Significance of explanatory variable: t-test

$$H_0: \beta_1 = 0; \ H_{\mathcal{A}}: \beta_1 \neq 0 \ ; \ T = \frac{\hat{\beta}_1 - 0}{\widehat{\operatorname{se}}(\hat{\beta}_1)} \ ; \ H_0: T \sim t_{n-2} \ ; \ K = \left(-\infty, -t_{n-2,1-\frac{\alpha}{2}} \right] \cup \left[t_{n-2,1-\frac{\alpha}{2}}, \infty \right) \ , \ |T| > t_{n-2,1-\frac{\alpha}{2}} : reject$$

Coefficient of determination $R^2 = \left(\frac{s_{\hat{y}y}}{s_{\hat{y}}s_y}\right)^2$

$$\hat{\beta}_1 = \frac{s_{xy}}{s_x^2} = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(Y)} = \operatorname{Cor}(Y,X) \frac{\operatorname{Sd}(Y)}{\operatorname{Sd}(X)} , s_{xy} = \frac{1}{n-1} \sum_{i=1}^n \left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right) ; \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

Fitting linear model to transformed data: $\log(Y_i) = \hat{\beta}_0 + \hat{\beta}_1 \log(X_i) + E_i$