HN462532, HN462532G, HN462532P

4096-word × 8-bit U. V. Erasable and Programmable Read Only Memory

The HN462532 is a 4096 word by 8 bit erasable and electrically programmable ROM. This device is packaged in a 24-pin, dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern, whereby a new pattern can then be written into the device.

The HN462532P is a 4096 word by 8 bit, one time programmable ROM. This device is packaged in a 24-pin, dual-in-line plastic package.

FEATURES

- Single Power Supply +5V ±5%
- Simple Programming Program Voltage: +25V D.C.

Program with One 50ms Pulse

- Static No Clocks Required
- Inputs and Outputs TTL Compatible During Both Read and Program Modes
- Fully Decoded On-Chip Address Decode
- Access Time 450ns (max.)
- Low Power Dissipation 858mW (max) Active Power

201mW (max) Standby Power

- Three Stste Output OR-Tie Capability
- Compatible with TMS2532

BLOCK DIAGRAM

■ MODE SELECTION

Pins	(20)	V _{PP} (21)	V _{cc} (24)	Outputs (9 to 11, 13 to 17)
Read	VIL	+5	+5	Dout
Stand by	VIH	+5	+5	High Z
Program	Pulsed VIH to VIL	+25	+5	Din
Program Inhibit	VIH	+25	+5	High Z

■ PIN ARRANGEMENT

■ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit	
All Input and Output Voltages*	V_T	-0.3 to +7	v	
V _{PP} Voltage*	V_{PP}	-0.3 to +28	v	
Operating Temperature Range	Topr	0 to +70	°C	
Storage Temperature Range	Tate	-65 to +125	°C	

^{*} With respect to GND.

READ OPERATION

• DC AND OPERATING CHARACTERISTICS (Ta=0 to $+70^{\circ}$ C, $V_{cc}=5V\pm5\%$, $V_{PP}=V_{cc}\pm0.6V$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Leakage Current	Iμ	V., -5.25 V	_	-	10	μA
Output Leakage Current	ILO	Vout -5.25 V /0.4 V	_	_	10	μA
V _{PP} Current	I_{PP1}	$V_{PP} = 5.85 \mathrm{V}$	_	_	12	m A
Vcc Current (Standby)	Icc1	$\overline{\text{CE}} - V_{IH}$	_	_	25	m A
Vcc Current (Active)	Icc 2	$\overline{\text{CE}} - V_{IL}$	_	-	150	m A
Input Low Voltage	VIL		-0.1		0.8	v
Input High Voltage	V_{IH}		2.0		$V_{cc}+1$	V
Output Low Voltage	Vol	Iot = 2.1 m A	_		0.4	v
Output High Voltage	V_{OH}	I _{0H} — — 400 µ̀ А	2.4		_	V

Note: $V_{\ell\ell}$ must be applied simultaneously or before $V_{\ell\ell}$ and removed simultaneously or after $V_{\ell\ell}$.

• AC CHARACTERISTICS (Ta=0 to $+70^{\circ}$ C, $V_{cc}=5V\pm5\%$, $V_{PP}=V_{cc}\pm0.6V$)

Parameter	Symbol	Test Condition	min	typ	max	Uhit
Address to Output Delay	tacc	$\overline{\text{CE}} = V_{IL}$		_	450	ns
CE to Output Delay	t _{CE}		_		450	ns
CE High to Output Float *	t _{DF}		0	-	100	ns
Address to Output Hold	toн	$\overline{CE} = V_{IL}$	0	_		ns

^{* :} tor defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

• SWITCHING CHARACTERISTICS

Test Conditions

Input Pulse Levels:

0.8V to 2.2V

Input Rise and Fall Times:

< 20 ns

Output Load:

1TTL Gate + 100pF

Reference Level for Measuring Timing:

Inputs; 1V and 2V, Outputs; 0.8V and 2V

• CAPACITANCE $(Ta=25^{\circ}\text{C}, f=1\text{MHz})$

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Capacitance	Cin.	V., -0 V	-	_	6	pF
Output Capacitance	Cour	Vout - 0 V	_	_	12	pF

■ PROGRAMMING OPERATION

• DC PROGRAMMING CHARACTERISTICS ($T_a=25^{\circ}C\pm5^{\circ}C$, $V_{cc}=5V\pm5\%$, $V_{PP}=25V\pm1V$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Input Leakage Current	I_{Ll}	$V_{in} = 5.25 \text{V} / 0.4 \text{V}$	_	_	10	μA
V _{PP} Supply Current During Programming	I _{PP2}	$\overline{\text{CE}} = V_{IL}$	_	_	30	m A
Vcc Supply Current	Icc		_	_	150	m A
Input Low Level	V_{IL}		-0.1	_	0.8	v
Input High Level	V_{IH}		2.0	_	$V_{cc}+1$	v

• AC PROGRAMMING CHARACTERISTICS ($T_a=25^{\circ}C\pm5^{\circ}C$, $V_{cc}=5V\pm5\%$, $V_{PP}=25V\pm1V$)

Parameter	Symbol	Test Condition	min	typ	max	Unit
Address Setup Time	tas		2	_	_	μs
Data Setup Time	tos		2	_	_	μs
Address Hold Time	t _{AH}		2	_	_	μs
Data Hold Time	t _{DH}		2	_	_	μs
Setup Time from VPP	tvpps		0	_	_	ns
Program Pulse Hold Time	t PRH		0	_	_	ns
V _{PP} Hold Time	t vpph		0	_	_	ns
Program Pulse Width	t pw		45	50	55	ms
Program Pulse Time	t _{PRT}		5	_	_	ns
Program Pulse Time	tpft		5	_	_	ns

Note: Vcc must be applied simultaneously or before Vpp and removed simultaneously or after Vpp.

• SWITCHING CHARACTERISTICS

Test Conditions

Input Pulse Level:

Reference Level for Measuring Timing:

Input Rise and Fall Times:

Output Load:

0.8V to 2.2V ≤ 20 ns

1TTL Gate + 100pF Inputs; 1V and 2V,

Inputs; 1V and 2V, Outputs; 0.8V and 2V

● ERASE

Erasure of HN462532 is performed by exposure to ultraviolet light with a wavelength of 2537Å, and all the output data are changed to "1" after this erasure procedure. The minimum integrated close (i.e., UV intensity x exposure time) for erasure is $15W \cdot sec/cm^2$.

NOTE THAT THE HN462543P CANNOT BE ERASED.

ACCESS TIME vs. SUPPLY VOLTAGE

ACCESS TIME vs. AMBIENT TEMPERATURE

SUPPLY CURRENT vs. SUPPLY VOLTAGE

SUPPLY CURRENT VS. AMBIENT TEMPERATURE

