群同态基本定理

陶先平, 赵建华南京大学计算机系

内容

- 正规子群
- ●商群
- 同态核
- 自然同态
- 群同态基本定理
- 同态基本定理的应用

正规子群的概念

- 定义: 群G的子群H是G的正规子群, 当且仅当: 对任 意a∈G, Ha=aH。(记法: H□G)
- 平凡子群是正规子群。
- 阿贝尔群与正规子群
 - 阿贝尔群的任何子群一定是正规子群。
- Ha=aH的充分必要条件是:

对任意 $h_i \in H$, $a \in G$, 一定存在某个 $h_j \in H$, 使得 $h_i a = a h_i,$

(**不是**: 对任意 $h_i \in H$, $a \in G$, 一定有 $h_i a = ah_i \circ$

正规子群的例子

• S₃, 即{1,2,3}上所有——对应的函数构成的 群:

$$e = \begin{pmatrix} 123 \\ 123 \end{pmatrix} \qquad \alpha = \begin{pmatrix} 123 \\ 213 \end{pmatrix} \qquad \beta = \begin{pmatrix} 123 \\ 321 \end{pmatrix}$$

$$\gamma = \begin{pmatrix} 123 \\ 132 \end{pmatrix} \qquad \delta = \begin{pmatrix} 123 \\ 231 \end{pmatrix} \qquad \varepsilon = \begin{pmatrix} 123 \\ 312 \end{pmatrix}$$

- $\{e,\delta,\epsilon\}$ 构成正规子群。
 - -注意: $H=\{e,\alpha\}$ 构成子群, 但不是正规子群:
 - $\beta H = \{\beta, \epsilon\}, \pi H \beta = \{\beta, \delta\}$

又一个正规子群的例子

- 群的中心[一定是正规子群。
 - C非空(显然单位元素e∈C)

封闭性: $a_1b=ba_1$, $a_2b=ba_2 \Rightarrow (a_1a_2)b=b(a_1a_2)$

子群: 对任意的 $a \in C, ab = ba \Rightarrow a^{-1}b = a^{-1}baa^{-1} = ba^{-1} \Rightarrow a^{-1} \in C.$

正规子群: ab=ba (a∈H) ⇒ Hb=bH

设G是群,定义G的子集H={a|a∈G,对任意
 b∈G: ab=ba},则H是正规子群。

正规子群的判定(1)

- 设N是群G的子群,N是群G的正规子群当且仅当:对任意 $g \in G, n \in N,$ 有 $gng^{-1} \in N$ 。
 - $-\Rightarrow$ 任取 $g\in G,\,n\in N,\,$ 有 $n_I\in N,\,$ 使得: $gn=n_Ig,\,$ 因此: $gng^{-I}=n_I\in N$;
 - \Leftarrow 先证明 $gN \subseteq Ng$: 任取 $gn \in gN$,已知 $gng^{-1} \in N$, 可令 $gng^{-1} = n_1$,则 $gn = n_1g \in Ng$;类似可证: $Ng \subseteq gN_\circ$
- 设N是群G的子群,N是群G的正规子群当且仅当:对任意 $g \in G$,有 $gNg^{-1}=N$ 。

正规子群的判定(2)

- 设N是群G的子群,若G的其它子群都不与 N等势,则N是G的正规子群。
 - 只需证明: $gNg^{-1}=N_{\circ}$

首先证明: gNg-1是子群。

封闭性: $(gn_1g^{-1})(gn_2g^{-1})=g\mathbf{n}g^{-1}$

子群判定条件2: $(gn_1g^{-1})(gn_2g^{-1})^{-1} = (gn_1g^{-1})(gn_2^{-1}g^{-1}) = g\mathbf{n}g^{-1}$

其次, 因为其它子群都不与N等势, 因此只需

证明: *gNg-¹ ≈N*。

由消去率可得.

正规子群的判定(3)

- 设N是群G的子群,且[G:N]=2,则N是正规子群。
 - 注意:若g∈N,则由子群满足封闭性和消去 律可知:gN=Ng=N

若 $g \notin N$,则gN和Ng均不可能与N有公共元素,因此: gN=Ng=G-N。

右陪集关系

- 设H是群G的子群。定义G上的关系R如下:
 对任意a,b∈G, aRb iff. ab⁻¹∈H
 - 实际上:aRb 即:a与b在同一个右陪集中。
 - $aRb \Rightarrow ab^{-1} \in H \Rightarrow ab^{-1} = h_i, h_i \in H \Rightarrow a \in Hb$
 - 右陪集关系是等价关系

同余关系

- 狭义的同余关系:
 - 例: 对3同余: a≡b (mod 3) iff. |a-b|/3是整数。
 - 等价类: $\pi_1 = \{...-3,0,3,6,9,...\}$ $\pi_2 = \{...-2,1,4,7,10,...\}$ $\pi_3 = \{...-1,2,5,8,11,...\}$
- ●"运算按照等价类保持。"
 - $-aRb, cRd \Rightarrow ac R bd$
- 同余关系

正规子群的陪集关系是同余关系

• 设N是群G的正规子群, 可以证明:

若
$$ap^{-1} \in \mathbb{N}, bq^{-1} \in \mathbb{N}, \text{ 见J}(ab)(pq)^{-1} \in \mathbb{N}$$

$$- \Rightarrow ap^{-1}=n_1, bq^{-1}=n_2 (n_1, n_2 \in N)$$

ኦሀ:
$$(ab)(pq)^{-1} = abq^{-1}p^{-1} = an_2p^{-1}$$

mN是正规子群, $an_2=n_3a$ $(n_3 \in N)$

所以:
$$(ab)(pq)^{-1} = n_3 ap^{-1} = n_3 n_1 \in \mathbb{N}$$

陪集的运算

- 设H是群G的正规子群。
- 在H的右陪集构成的集合上定义如下运算:
 Ha*Hb = H(ab) 这里ab是指G中的运算。
- 关于上述定义的合法性:
 - 运算结果是以右陪集的代表元素之间的运算表示的, 运算结果必须与代表元素的选择无关。
 - 这一点由"H是正规子群"来保证。
 - 同余关系!

商群

- 设N是群G的正规子群, (G/N,*)是群
 - 封闭性: *的定义保证。
 - 结合律: G的运算满足结合律。
 - 单位元素: N本身(注意: G的单位元素e∈N)
 - -逆元素: Na的逆元素是 Na^{-1} 。

• (G/N, *)称为G的*商群*。

自然同态

- 任意的群G总与其商群满同态, 称为自然同态
 - 假设N是G的正规子群
 - G/N是由N所确定的商群
 - (G/N的元素是N的(右)陪集)
 - 定义g:G→G/N, 对任意a∈G, g(a)=Na, 显然:g是 满射。
 - g是满同态映射:
 - 对任意a,b∈G: g(a b)=N(a b) =Na*Nb= g(a)*g(b)

自然同态的几个例子

- 例: 群G本身也是G的正规子群。自然同 $\delta g:G \rightarrow G/G$ 是零同 δo
 - 注意: G/G = {G}, 对任意x∈G, g(a)=G。
- 例:设 e_1 是群G的单位元, $\{e_1\}$ 是G的正规子群,定义函数 $g:G\to G/\{e1\}$ 如下:

对任意
$$x \in G$$
, $g(x) = \{x\}$

则g是G到 $G/\{e_1\}$ 的自然同态,这也是同构。

- 注意: G/{e₁} = { {x} | x∈G}
- 设 G_1 , G_2 是群, 其单位元分别是 e_1 , e_2 。 定义:
 - $-f:G_1\times G_2\to G_1:$ 对任意< $a,b>\in G_1\times G_2, f(< a,b>)=a$

易证: f是满同态映射, $\ker f = \{e_1\} \times G_2$

同态核

• 假设 G_1 , G_2 是群, $f: G_1 \rightarrow G_2$ 是同态映射,定义集合 $\ker f = \{x | x \in G_1, \mathbb{L}f(x) = e_2\}$, 其中 e_2 是 G_2 的单位元素, $\ker f$ 称为*同态核*。

同态核是正规子群

- kerf是G₁的正规子群。
 - -非空: G_1 的单位元必在ker f中。
 - 子群: 任取 $a,b \in \ker f$, 则: $f(a)=f(b)=e_2$; 因此: $f(a b^{-1}) = f(a)*[f(b)]^{-1}=e_2 \circ$
 - 一 正 规 子 群 : 任 取 $a \in \ker f, x \in G_1, \mathcal{M} : f(a) = e_2;$ 因 此 : $f(x \ a \ x^{-1}) = f(x) * f(a) * [f(x)]^{-1} = e_2$ 。
 - $g*a*g^{-1} \in \ker f$

同态基本定理

• 假设G, G'是群,f: $G \rightarrow G$ '是满同态映射,则 $G/\ker f \cong G$ '。

同态基本定理的证明

- $\phi \ker f = K$, 即K是关于f的同态核
- 对任意a,b∈G, Ka=Kb当且仅当f(a)=f(b)
 - 注意: Ka=Kb ⇔ a,b在同一右陪集中 ⇔
 ab⁻¹∈K ⇔ f(ab⁻¹)=e' ⇔ f(a) *f(b⁻¹)=e' ⇔
 f(a)与[f(b)]⁻¹互为逆元素 ⇔ f(a)=f(b)
- 定义 $h:G/K \rightarrow G': h(Ka)=f(a)_{\circ}$
 - 由上述讨论可知:h是一对一的;由于f是满射,显然h也是满射,∴ h是从G/K到G'的双射。对任意Ka,Kb ∈ G/K,h(Ka⊗Kb)=h(K(ab))=f(ab)=f(a)*f(b)=h(Ka)*h(Kb)
- 所以: G/K≅G'

循环群与群同态

- G和G'分别是阶为m,n的循环群, G与G'满 同态当且仅当 n整除m
 - $-\Rightarrow$ 设f是G到G'的同态映射。则G'≅G/ker f,因此,G/ker f的阶为n,ker f是G的子群,根据拉格郎日定理。n能整除m。
 - \leftarrow 定义f: G→G', 对任意 $a^k \in G$, $f(a^k)=b^k$ 。 其中 a,b分别是G和G'的生成元素。
 - 若 $a^j=a^k$,则j,k对m同余,也对n同余,所以: $b^j=b^k$,因此f是函数。
 - $f(a^j a^k) = f(a^{j+k}) = b^{j+k} = b^j * b^k = f(a^j) * f(a^k)$

同态基本定理的应用

- G是群, H和K都是G的正规子群, 且
 H⊆K, 证明: G/K ≅ (G/H)/(K/H)
 - 比较同态基本定理, $G/\ker f \cong G'$
 - 定义f: G/H→G/K, 对任意Ha∈G/H, f(Ha)=Ka
 - 注意: Ha=Hb ⇔ ab⁻¹∈H ⇔ ab⁻¹∈K ⇔ Ka=K b
 - 易证f 是满同态映射,且同态核是K/H
 - $-: G/K \cong (G/H)/(K/H)$

同态群的商群的关系

- 设f是群G到G'的满同态, H'是G'的不变子群, H={a|a∈G, f(a)∈H'},则H也是G的不变子群, 并且: G/H≅G'/H'
 - 证明思路:
 - 建立从G到(G'/H')的满同态h
 - 证明h的同态核即为H
 - 立即由同态基本定理得到结论
 - 令G'到商群G'/H'的自然同态为g,则h=f g
 - **−** H=ker *h*
 - H \subseteq ker h: 对任意 $a \in H$, $f(a) \in H'$, h(a) = g(f(a)) = H', $\therefore a \in \ker h$
 - $\ker h \subseteq H$: 对任意 $a \in \ker h$, 则h(a) = H', 即g(f(a)) = H', 所以 $f(a) \in H'$, 即 $a \in H$

单同态

代数系统(G₁,)与(G₂,*)单同态当且仅当:
 存在一对一的函数f: G₁→G₂, 满足:
 对任意x,y∈G₁, f(x y) = f(x) * f(y)

- 假设 G_1 , G_2 是群, $f: G_1 \rightarrow G_2$ 是同态映射。f是单同态映射 当且仅当 $\ker f = \{e_1\}, e_1$ 是 G_1 的单位元
 - ⇒ 设 $a \in \ker f$, 且 $a \neq e_1$, 但 $f(a) = f(e_1) = e_2$, f不是单射。
 - (本 假设有 $a,b \in G_1$, 満足f(a) = f(b), 则 $f(a) * [f(b)]^{-1} = f(a b^{-1}) = e_2$, ∴ $a b^{-1} \in \ker f = \{e_1\}$, ∴ $a b^{-1} = e_1$, 由逆元素唯一:a = b, 所以f是単同态。

作业

- 假设f从群G到G'的映射, H是G的一个子集, 证明:
 - (1) H ⊆ f⁻¹(f(H)), 但是H = f⁻¹(f(H))不一定成立。
 这里: 对任意S'⊆G', f⁻¹(S') = {x|x∈G, 且f(x)∈S'}
 - -(2) 若H包含ker f,则 $f^{-1}(f(H))=H$

 设H, K是群G的两个正规子群,则HK, H○K均是G的正规子群, 且: HK/K≅H/H○K

这里: HK = {ab | a∈A, b∈B}

同态群的子群的对应

- 设f是群G到G'的满同态。A={H|H⊆G, 且ker f⊆H}, A'是G'的幂集。
 定义g: A→A': 对任意H ∈ A, g(H)=f(H)。则g是双射。
 - g是映射: 对任意 $H \in A, f(H)$ 是G'的子集
 - *g*是满射: 对任意H'∈A', 令H={a|a∈G, f(a)∈H'}, 则a,b∈H⇒f(a), f(b)∈H'⇒f(a)f(b)∈H'⇒f(ab)∈H'⇒ab∈H (封闭性); 又: a∈H'⇒f(a)∈H'⇒f(a)]-¹∈H'⇒f(a-¹)∈H'⇒a-¹∈H (逆元素); 所以H是子群。 任给x∈ker f, f(x)=e'∈H', 即x∈H, 所以: ker f⊆H。
 - g是单射:注意:若H包含 $\ker f$,则 $f^{-1}(f(H))=H($ 这里的 f^{-1} 不是反函数,表示集合的完全原象集);

因此: $f(H_1) = f(H_2) \Rightarrow f^{-1}(f(H_1)) = f^{-1}(f(H_2)) \Rightarrow H_1 = H_2$ 。

• 注意:H是G的不变子群 当且仅当f(H)是G'的不变子群。