Fully Automated Shape Analysis Based on Forest Automata[†]

Parosh A. Abdulla **Lukáš Holík** Bengt Jonsson **Ondřej Lengál** Cong Quy Trinh Adam Rogalewicz Jiří Šimáček **Tomáš Vojnar**

> Brno University of Technology, Czech Republic Uppsala University, Sweden

> > 5th WAVAS

[†]Published in *Proc. of CAV'11, CAV'13, ATVA'13*

Shape Analysis

Shape analysis:

- reasoning about programs with dynamic linked data structures
- notoriously difficult: infinite sets of complex graphs

- memory safety: invalid dereferences, double free, memory leakage
- error line reachability (assertions), shape invariance (testers), ...

Shape Analysis

Shape analysis:

- reasoning about programs with dynamic linked data structures
- notoriously difficult: infinite sets of complex graphs

- memory safety: invalid dereferences, double free, memory leakage
- error line reachability (assertions), shape invariance (testers), ...

Existing solutions:

- often specialized (lists)
- require human help (loop invariants, inductive predicates)
- low scalability

Inspiration

- Separation Logic
 - local reasoning: well scalable
 - fixed abstraction

Inspiration

- Separation Logic
 - local reasoning: well scalable
 - g fixed abstraction
- Abstract Regular Tree Model Checking (ARTMC)
 - (TA): flexible and refinable abstraction
 - monolithic encoding of the heap: limited scalability

Introduced at CAV'11.

- Introduced at CAV'11.
- Combines
 - flexibility of ARTMC

- Introduced at CAV'11.
- Combines
 - flexibility of ARTMCwith
 - scalability of SL

- Introduced at CAV'11.
- Combines
 - flexibility of ARTMC
 with
 - scalability of SL

by

splitting heaps into tree components

- Introduced at CAV'11.
- Combines
 - flexibility of ARTMC
 with
 - scalability of SL

by

- splitting heaps into tree components
 and
 - using tree automata to represent sets of tree components of heaps

■ Forest decomposition of a heap

- Forest decomposition of a heap
- nodes referenced:

 by variables, or
 multiple times
- Identify cut-points

- Forest decomposition of a heap
- nodes referenced:

 by variables, or
 multiple times Identify cut-points «
 - Split the heap into tree components

- Forest decomposition of a heap
- nodes referenced:

 by variables, or
 multiple times

- Identify cut-points
- Split the heap into tree components
- References are explicit

■ a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- \blacksquare a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references

$$(\bigstar_1,\bigstar_2,\ldots,\bigstar_n),(\bigstar_1',\bigstar_2',\ldots,\bigstar_n')$$

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order
 - i.e., with the same interconnection of tree components

- a heap $h \mapsto$ a forest $(\stackrel{\bigstar}{\uparrow}_1, \stackrel{\bigstar}{\uparrow}_2, \dots, \stackrel{\bigstar}{\uparrow}_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order

• i.e., with the same interconnection of tree components

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order
 - i.e., with the same interconnection of tree components
- Cartesian representation of classes of \mathcal{H} :

$$\{(\bigstar_1,\bigstar_2,\ldots,\bigstar_n),(\bigstar_1',\bigstar_2',\ldots,\bigstar_n'),\ldots\}$$

 $(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n)$

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order
 - i.e., with the same interconnection of tree components
- Cartesian representation of classes of H:

We assume working with rectangular classes, i.e., for a class C, $(, ,), (, ,) \in C \Rightarrow (, ,), (, ,) \in C$, otherwise C is

 $(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n)$

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_m), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order
 - i.e., with the same interconnection of tree components
- Cartesian representation of classes of H:

We assume working with rectangular classes, i.e., for a class C, $(\bigstar, \bigstar), (\bigstar, \bigstar) \in C \Rightarrow (\bigstar, \bigstar), (\bigstar, \bigstar) \in C$, otherwise C is

 $(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_n')$

- a heap $h \mapsto$ a forest $(\bigstar_1, \bigstar_2, \dots, \bigstar_n)$
- a set of heaps $\mathcal{H} \mapsto \{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_m'), \dots\}$
 - split H into classes of forests with:
 - 1 the same number of trees
 - 2 having the same references
 - 3 in the same order
 - i.e., with the same interconnection of tree components
- Cartesian representation of classes of \mathcal{H} :

$$\{(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar_1', \bigstar_2', \dots, \bigstar_n'), \dots\}$$
Forest Automaton
$$(\{\bigstar_1, \bigstar_1', \dots\}, \{\bigstar_2, \bigstar_2', \dots\}, \dots, \{\bigstar_n, \bigstar_n', \dots\})$$

$$(7A_1, 7A_2, \dots, 7A_n)$$

• We assume working with rectangular classes, i.e., for a class C, $(\bigstar, \bigstar), (\bigstar, \bigstar) \in C \Rightarrow (\bigstar, \bigstar), (\bigstar, \bigstar) \in C$, otherwise C is

 $(\bigstar_1, \bigstar_2, \dots, \bigstar_n), (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n)$

Statements

- \blacksquare x := new T()
- delete(x)
- x := null
- x := ∨
- x := y.next
- x.next := y
- if/while (x == y)

Statements

Abstract Transformers

- x := new T()
- delete(x)
- \blacksquare x := null
- x := y
- x := y.next
- x.next := y
- \blacksquare if/while (x == y)

Statements Abstract Transformers x := new T() delete(x) x := null x := y x := y.next x.next := y if/while (x == y)

Statements Abstract Transformers x := new T() delete(x) x := null remove a TA x := y x := y.next x.next := y if/while (x == y)

7/30

■ y:=x.next

■ y:=x.next

x.next:=z;

x.next:=z;

■ Abstraction on forest automata $(TA_1, ..., TA_n)$

- Abstraction on forest automata $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$

- **Abstraction** on forest automata $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

- Abstraction on forest automata $(TA_1, ..., TA_n)$
 - collapse states of component TAs \rightsquigarrow $(TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

TΑ

- **Abstraction** on forest automata $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

TΑ

- Abstraction on forest automata $(TA_1, ..., TA_n)$
 - collapse states of component TAs $\sim (TA_1^{\alpha}, \dots, TA_n^{\alpha})$
 - finite-height abstraction (from ARTMC)
 - collapse states with languages whose prefixes match up to height k

Nondeterministic Tree Automata

- For efficiency reasons, we never determinize TAs.
- All operations done on NTAs, including:
 - inclusion checking: based on antichains and simulations,
 - · discarding macro-states during an implicit subset construction,
 - inclusion on (normalized) FA can be checked component-wise

 —used for detecting the fixpoint
 - size reduction: based on simulation equivalences.
 - collapsing simulation-equivalent states.

Summary

The so-far-presented:

Summary

The so-far-presented:

works well for singly linked lists (SLLs), trees,SLLs with head/tail pointers, trees with root pointers, ...

Summary

The so-far-presented:

- $(\bigstar_1, \bigstar_2, \dots, \bigstar_n) \approx (\bigstar'_1, \bigstar'_2, \dots, \bigstar'_n)$
- works well for singly linked lists (SLLs), trees,
 SLLs with head/tail pointers, trees with root pointers, ...
- fails for more complex data structures
 - unbounded number of cut-points $\sim \infty$ classes of $\mathcal H$

- doubly linked lists (DLLs), circular lists, nested lists,
- · trees with parent pointers,
- skip lists

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

doubly linked segment

■ Example: a box DLS

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

doubly linked segment

Example: a box DLS: $\mathcal{L}(DLS) = \begin{cases} in & \text{next} \\ 1 & \text{prev} \end{cases}$

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

doubly linked segment

Example: a box DLS: $\mathcal{L}(DLS) = \begin{cases} in & next \\ 1 & prev \end{cases}$

- Hierarchical Forest Automata
 - FAs are symbols (boxes) of FAs of a higher level
 - a hierarchy of FAs
 - intuition: replace repeated subgraphs by a single symbol, hiding some cut-points

The Challenge

How to find the "right" boxes?

The Challenge

How to find the "right" boxes?

- CAV'11 database of boxes
- CAV'13 automatic discovery

compromise between

- compromise between

- compromise between
 - reusability: use on different heaps of the same kind

- compromise between
 - reusability: use on different heaps of the same kind

 \sim use small boxes

- compromise between
 - reusability: use on different heaps of the same kind

→ use small boxes

- compromise between
 - reusability: use on different heaps of the same kind

- compromise between
 - reusability: use on different heaps of the same kind

→ use small boxes

- compromise between

- compromise between
 - reusability: use on different heaps of the same kind
 - → use small boxes
 - ability to hide cut-points
 - → do not use too small boxes

- compromise between
 - reusability: use on different heaps of the same kind
 - → use small boxes
 - ability to hide cut-points
 - → do not use too small boxes

- compromise between
 - reusability: use on different heaps of the same kind
 - \sim use small boxes
 - ability to hide cut-points
 - → do not use too small boxes

- compromise between

 - ability to hide cut-points
 - → do not use too small boxes

- compromise between

 - ability to hide cut-points
 - → do not use too small boxes

- compromise between

 - ability to hide cut-points
 - → do not use too small boxes

- compromise between
 - reusability: use on different heaps of the same kind
 - → use small boxes
 - ability to hide cut-points
 - → do not use too small boxes

- compromise between

 - ability to hide cut-points
 - → do not use too small boxes

- compromise between
 - reusability: use on different heaps of the same kind
 - → use small boxes
 - ability to hide cut-points
 - → do not use too small boxes

- compromise between
 - reusability: use on different heaps of the same kind
 → use small boxes
 - ability to hide cut-points
 - → do not use too small boxes

1 Smallest subgraphs meaningful to be folded:

Smallest subgraphs meaningful to be folded:

2 Handle interface

Smallest subgraphs meaningful to be folded:

- 2 Handle interface
 - compose intersecting knots

prevent ∞ nesting

Smallest subgraphs meaningful to be folded:

3 Complexity: max number of cutpoints in basic knots

find basic knots with 1,2,... cut-points

Widening Revisited

learning and folding of boxes in the abstraction loop

Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal

Fold boxes that will, after abstraction, appear on cycles of automata.

 \Rightarrow hide unboundedly many cut-points

Widening Revisited

learning and folding of boxes in the abstraction loop

The Goal

Fold boxes that will, after abstraction, appear on cycles of automata.

⇒ hide unboundedly many cut-points

- 1 Algorithm: Abstraction Loop
- 2 Unfold solo_boxes
- repeat
- Abstract
 - -not on a cycle
- Fold 5
- 6 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- 4 Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- **Abstract**
- 4 Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- з Abstract
- Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- . Fold
- 5 until fixpoint

- Unfold solo boxes
- 2 repeat
- 3 Abstract
- Fold
- 5 until fixpoint

circular-DLL-of -trees-rootptr

- 1 Unfold solo boxes
- 2 repeat
- 3 Abstract
- Fold
- 5 until fixpoint

Learning, Folding, and Abstraction on FA

Experimental Results

■ implemented in the Forester tool

Experimental Results

- implemented in the Forester tool
- comparison with Predator (a state-of-the-art tool for lists)
 - winner of HeapManipulation and MemorySafety of SV-COMP'13

Experimental Results

(Holík, Lengál, Vojnar-Brno UT, Uppsala)

- implemented in the Forester tool
- comparison with Predator (a state-of-the-art tool for lists)
 - winner of HeapManipulation and MemorySafety of SV-COMP'13

Table: Results of the experiments [s]

Example	FA	Predator	Example	FA	Predator
SLL (delete)	0.04	0.04	DLL (reverse)	0.06	0.03
SLL (bubblesort)	0.04	0.03	DLL (insert)	0.07	0.05
SLL (mergesort)	0.15	0.10	DLL (insertsort ₁)	0.40	0.11
SLL (insertsort)	0.05	0.04	DLL (insertsort ₂)	0.12	0.05
SLL (reverse)	0.03	0.03	DLL of CDLLs	1.25	0.22
SLL+head	0.05	0.03	DLL+subdata	0.09	Т
SLL of 0/1 SLLs	0.03	0.11	CDLL	0.03	0.03
SLL _{Linux}	0.03	0.03	tree	0.14	Err
SLL of CSLLs	0.73	0.12	tree+parents	0.21	Т
SLL of 2CDLLs _{Linux}	0.17	0.25	tree+stack	0.08	Err
skip list ₂	0.42	Т	tree (DSW) Deutsch- Schorr-Waite	0.40	Err
skip list ₃	9.14	Т	tree of CSLLs	0.42	Err

timeout

false positive

Tracking Relations Over Data Values

- Verify data-related properties such as sortedness.
- Verify memory safety even if it depends on relations over data.

Motivation

Forest Automata with Data Constraints

$$q1 \xrightarrow{r,l} (q2,q3) : \{0 <_{ra} 1, 0 <_{rr} 2, 0 <_{ra} TA2, 0 >_{rr} TA3\}$$

Examples of Encoded Structures

Sorted list

Search tree

Update

More Complex Update

An intermediate state of a traversal of a search tree

Needed Machinery

- FA machinery must be extended with handling data constraints.
- Particularly, we need to be able to do:
 - Language Inclusion Check
 - Simulation Reduction
 - Abstraction
- This is done with a help of
 - Saturation which infers valid data constraints from existing ones.
 - Translation to ordinary FA and subsetquent use of ordinary FA algorithms.

Translation to Plain FA

Experimental Resutts

Example	time	me Example		time
SLL insert	0.06	DLL insert		0.14
SLL delete	0.08	DLL delete		0.38
SLL reverse	0.07	DLL reverse		0.16
SLL bubblesort	0.13	DLL bubblesort		0.39
SLL insertsort	0.10	DLL insertsort		0.43
Example tim		ie	Example	time
BST insert	6.8	37	SL ₂ insert	9.65
BST delete	114.0	00	SL ₂ delete	10.14
BST left rotate	7.3	85	SL ₃ insert	56.99
BST right rotate	6.2	25	SL ₃ delete	57.35

Conclusion

Shape analysis with forest automata:

■ fully automated, very flexible

Conclusion

Shape analysis with forest automata:

- fully automated, very flexible
- the Forester tool
 - http://www.fit.vutbr.cz/research/groups/verifit/tools/forester

Conclusion

Shape analysis with forest automata:

- fully automated, very flexible
- the Forester tool
 - http://www.fit.vutbr.cz/research/groups/verifit/tools/forester
- successfully verified:
 - (singly/doubly linked (circular)) lists (of (...) lists)
 - trees (with additional pointers)
 - skip lists
 - tracking ordering relations
- not covered here:
 - support for pointer arithmetic

Future Work

- CEGAR loop
 - red-black trees, . . .
- concurrent data structures
 - ▶ lockless skip lists, ...
- recursive boxes
 - ▶ B+ trees, . . .