Do return series have power-law tails with the same index?

Thomas Mikosch, Casper de Vries, Xie Xiaolei

University of Copenhagen xie@math.ku.dk

June 29, 2017

Questions that we want to answer

We know

If assumed stationary, equity return series are often seen to be heavy-tailed – a stylized fact of econometrics.

But

- Given the wide confidence bands of estimated tail indices, are they actually the same?
- ► Are tail parameters of different equity return series in the same market related to each other?
- How are investors' preferences over an equity affected by tail parameters?

Motivation

- Curiosity
- Many multivariate GARCH processes have a stationary distribution with power-law tails:
 - 1. CCC-GARCH of Bollerslev [1] and Jeantheau [2].
 - 2. Orthogonal GARCH of Alexander and Chibumba [3],
 - 3. GO-GARCH by van der Weide [4] which generalizes Orthogonal GARCH.
 - 4. Full Factor GARCH of Vrontos et al. [5]
 - Generalized Orthogonal Factor GARCH of Lanne and Saikkonen [6]

CCC-GARCH, Kesten's theorem & power-law tail

A 2D CCC-GARCH model reads

$$\begin{pmatrix} \sigma_{1,t}^2 \\ \sigma_{2,t}^2 \end{pmatrix} = \begin{pmatrix} \alpha_{1,1} & \alpha_{1,2} \\ \alpha_{2,1} & \alpha_{2,2} \end{pmatrix} \begin{pmatrix} X_{1,t-1}^2 \\ X_{2,t-1}^2 \end{pmatrix} + \begin{pmatrix} \beta_{1,1} & \beta_{1,2} \\ \beta_{2,1} & \beta_{2,2} \end{pmatrix} \begin{pmatrix} \sigma_{1,t-1}^2 \\ \sigma_{2,t-1}^2 \end{pmatrix} + \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$$

$$= \underbrace{\begin{pmatrix} \alpha_{1,1} Z_{1,t-1}^2 + \beta_{1,1} & \alpha_{1,2} Z_{2,t-1}^2 + \beta_{1,2} \\ \alpha_{2,1} Z_{1,t-1}^2 + \beta_{2,1} & \alpha_{2,2} Z_{2,t-1}^2 + \beta_{2,2} \end{pmatrix}}_{A_t} \underbrace{\begin{pmatrix} \sigma_{1,t-1}^2 \\ \sigma_{2,t-1}^2 \end{pmatrix}}_{Y_{t-1}} + \underbrace{\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}}_{B}$$

where $X_{1,t}, X_{2,t}$ are return series, whose conditional variances are $\sigma_{1,t}^2, \sigma_{2,t}^2$. When $\forall i,j,\alpha_{i,j}>0,\beta_{i,j}>0$ and certain conditions are satisfied, Kesten's theory [7] gives

$$\lim_{u\to\infty}u^{\alpha}\mathbb{P}(\langle \mathbf{v},Y\rangle>u)=e_{\alpha}(\mathbf{v})$$

where $e_{\alpha}(\cdot): \mathbb{S}^1 \to \mathbb{R}_+$. Each component of Y_t shares the same tail index α .

Heavy-tailedness of equity returns

Figure: Hill estimates daily return series in sectors of the S&P 500 index. The data span from 1 January 2010 to 31 December 2014 and comprise n=1304 observations. The graphs from top to bottom correspond to the "Energy", "Consumer Staples" and "Information Technology" sectors.

Interesting observations

- ► Hill estimates of equity tail indices are often found between 2.5 ~ 4.5
- The estimates are contained within each other's confidence bands
- Different sectors have different levels of variability in the tail indices.

Test for equal tail index: using Hill estimator

- ► Two return series $X_1, X_2, ..., X_n$ and $Y_1, Y_2, ..., Y_n$, with lower-tail indices α_X and α_Y .
- We want to test the null hypothesis $H_0: \alpha_X = \alpha_Y$.

Under H_0 , we have

$$\sqrt{k}[\hat{\alpha}_X(k) - \hat{\alpha}_Y(k)] \stackrel{d}{\to} N(0, \alpha_X^2 + \alpha_Y^2)$$

 $\hat{\alpha}_X(k)$: Hill estimate of α_X using k upper order statistics.

Test for equal tail index: testing for a changed extreme quantile

Given a series X_1, X_2, \dots, X_n where $X_i \sim F_i$, Hoga [8] proposed a test for the hypothesis H_0 : $1 < \exists k < n$ such that

- $F_i^{-1}(1-p) = F_j^{-1}(1-p)$, for all $1 \le i < j < k$
- ▶ $F_{k-1}^{-1}(1-p) \neq F_k^{-1}(1-p)$ and $F_i^{-1}(1-p) = F_k^{-1}(1-p)$ for all $i \geq k$.

where $p = p_n \to 0$ as $n \to \infty$. The test statistic is

$$T_n = \sup_{s \in [t_0, 1 - t_0]} \frac{\left[s(1 - s) \log \left(\hat{x}_p(0, s) / \hat{x}_p(s, 1)\right)\right]^2}{\int_{t_0}^s \left[r \log \left(\hat{x}_p(0, r) / \hat{x}_p(0, s)\right)\right]^2 dr + \int_s^{1 - t_0} \left[(1 - r) \log \left(\hat{x}_p(r, 1) / \hat{x}_p(s, 1)\right)\right]^2 dr}$$

where

$$\hat{x}_p(s,t) = X_{k,s,t} \left(\frac{np}{k}\right)^{-1/\hat{\alpha}}$$

- ▶ $X_{k,s,t}$ is the k-th largest value among $X_{\lfloor ns \rfloor+1}, \ldots, X_{\lfloor nt \rfloor}$.
- ▶ The asymptotic distribution of T_n under H_0 is not available explicitly, but given as the distribution of a function of a standard Brownian motion Computed by simulation.

Results of the tests on S&P 500 sectors

Figure: Top row: Hill-based test. The green, blue and red points correspond to pairs of stock in a sector when the test statistic is outside the intervals $[q_0.075, q_0.925], [q_0.05, q_0.95], [q_0.025, q_0.975]$ Bottom row: Hoga's test. The green, blue and red points correspond to pairs of stock in a sector when the test statistic T_n exceeds the 85%-, 90%-, 95%-quantile of the limit distribution. The same number (50) of upper order statistics is used for both tests.

The scale parameter

Assume the equity return X_t is stationary and follows Pareto distribution when X < -K:

$$\mathbb{P}(X_t < -x) = \frac{K^{\alpha}}{x^{\alpha}}, \quad x > K$$

Hill's [9] maximum likelihood estimator for K is

$$\hat{K}_k = \left(\frac{k}{n}\right)^{1/\hat{\alpha}_k} X_{(k)}$$

where

- n is the sample size
- $\hat{\alpha}_k$ is Hill's estimator of the tail index of k upper order statistics.
- \triangleright $X_{(k)}$ is the k-th upper order statistic in the sample By asymptotic normality of upper order statistics,

$$\sqrt{k}(\hat{K}_k - K) \stackrel{d}{\rightarrow} N(0, K^2/\alpha^2)$$

Hill estimates of the scale parameter for S&P 500 sectors

S&P 500: Standard & Poor's stock index. A weighted average of prices of 500 or so stocks listed on NYSE and NASDAQ. Stocks are grouped into 10 sectors. The **Energy, Consumer Staples, IT** sectors are shown here.

Figure: Estimates of \hat{K}_k (top) and $\hat{K}_k^{\hat{\alpha}}$ (bottom) on \log_{10} -scale. The bars are the asymptotic 95%-confidence intervals.

- Estimated tail indices $(\hat{\alpha})$ and scale parameters \hat{K} are positively dependent.
- The positive dependence is stronger for energy and IT stocks than for consumer staple's stocks.
- The scale $\hat{K}^{\hat{\alpha}}$ varies much more across different equities than does the tail index α .

Model of the market & equity returns

The toy market consists of

- 1. A riskless bond that pays e^r ∈ annually for each ∈ invested, r is fixed.
- 2. A risky equity that pays e^X € annually for each € invested. X has Pareto tails

$$F_X(x) = \begin{cases} p\left(\frac{K}{K-x}\right)^{\alpha} & x \leq 0, \\ 1 - (1-p)\left(\frac{K'}{K'+x}\right)^{\beta} & x > 0, \end{cases}$$

Model of the investor

- 1. He has 1 unit of currency for investment
- 2. His happiness is proportional to a utility function u(C):

$$C = (1 - \phi)e^{r} + \phi e^{X}$$

$$u(C) = -C^{-\xi}/\xi, \quad \xi > 0$$

where

- C is his monetary amount of consumption
- lackbox ϕ is the portion of his asset allocated to the equity
- 3. His preference over the equity is given by *Generalized Disappointment Aversion*:

$$\tilde{u}(F_X, \phi) = \mathbb{E}u(C) - b\mathbb{E}[u(v) - u(C); C < v]$$

where

- v is the level of consumption below which the investor will be disappointed
- ▶ b captures how disappointed the investor will be in case his consumption falls below v.

Analytic results: when α and β are independent

Figure: $\tilde{u}_{\rm max}$ as a function of α and K in the two-sided Pareto model with $K'=0.012,~\beta=1.4.~b=0.01$ in all cases.

- The investor's preference ũ increases with α and decreases with K.
- Moving along a curve of equal preference, if α increases then K also increases.
- At market equilibrium, all actively traded stocks should have nearly the same investor preference α and K values are expected to have positive dependence. consistent with empirical results shown in figure 3.

Analytic results: when $\alpha = \beta$

What's on the left?

- ▶ Top: $\hat{\phi}(\alpha, K) = \operatorname{argmax}_{\phi} \tilde{u}(\alpha, K, \phi)$: optimal portion of allocation to the equity.
- Bottom: $\tilde{u}_{\max}(\alpha, K) = \max_{\phi} \tilde{u}(\alpha, K, \phi)$: Investor preference with optimal equity allocation.
- utility function $u(x) = -\frac{2}{\sqrt{x}}$

What I see from the plots

- $ightharpoonup \hat{\phi}$ is not monotone w.r.t. α or K.
- ► For a fixed K, $\hat{\phi}$ is decreasing with α when α is in the range 2.5 \sim 4.5, typical for real equity return series.
- $\tilde{u}_{\max}(\alpha, K)$ decreases with α but is rather insensitive to K.

When equity returns have t-distribution & b = 0

The GDA preference reduces to *expected utility*. A few cases arise depending on

$$a = rac{(1-\phi)e^r}{\phi}, \quad y_{\pm} = rac{a^2 - \xi \pm \sqrt{(a^2-1)(a^2-\xi^2)}}{a(\xi-1)}$$

- 1. If $\max\{a,1\} < \xi$, \tilde{u}_{\max} is monotone increasing with α .
- 2. If $a < \xi < 1$ and $(a + y_-)/(ay_- + 1) < y_-^{(1-\xi)/(1+\xi)}$, \tilde{u}_{\max} is monotone increasing with α .
- 3. If $\xi < a < 1$, $\tilde{u}_{\rm max}$ is monotone decreasing with α .
- 4. If $1 < \xi < a$ and $(a+y_+)/(ay_++1) > y_+^{(1-\xi)/(1+\xi)}$, \tilde{u}_{\max} is monotone decreasing with α .
- 5. In other case, $\tilde{u}_{\rm max}$ is not monotone w.r.t. α .

When equity returns have t-distribution & b > 0

Figure: $\hat{\phi}$ (left) and $\frac{\partial \tilde{u}_{\max}}{\partial \alpha}$ (right). top: $\xi = 1/2$. bottom: $\xi = 4$.

The figure says:

- $\hat{\phi}$ is monotone increasing for all 4 values of b
- $\tilde{u}_{\max}(\alpha)$ is increasing with α when b is relatively large, but decreasing with α when b is small
- A sizable value of b indicates a conservative, risk-averse investor.

Summary

- The tail index varies to different extent in different sectors/markets.
- ▶ The scale parameter is positively dependent on the tail index.
- ▶ The scale K^{α} varies much more across different equities than does the tail index α .
- ightharpoonup An investor's preference over lpha is dependent on the riskless rate of return, his own utility function and how disappointed he will be if his investment falls below expectation.

Thank you!

Questions?

Modelling the coherence in short-run nominal exchange rates: a multivariate generalized arch model.

Review of Economics and Statistics, pages 498-505, 1990.

📑 T. Jeantheau.

Strong consistency of estimators for multivariate arch models. *Econometric theory*, pages 70–86, 1998.

C. Alexander and A. Chibumba.

Multivariate orthogonal factor GARCH.

Technical report, University of Sussex, 1996. Discussion Papers in Mathematics.

R. van der Weide.

GO-GARCH: a multivariate generalized orthogonal garch model.

Journal of Applied Econometrics, pages 549-564, 2002.

I. Vrontos, P. Dellaportas, and D. Politis.

A full-factor multivariate GARCH model.

Econometrics Journal, pages 312-334, 2003.

M. Lanne and S. Pentti.

Modelling conditional skewness in stock returns. *European Journal of Finance*, pages 691–704, 2007.

H. Kesten.

Random difference equations and renewal theory for products of random matrices.

Acta Mathematica, pages 207-248, 1973.

Y. Hoga.

Testing for changes in (extreme) VaR. *Econometrics Journal*, pages 1 – 30, 2017.

B. Hill et al.

A simple general approach to inference about the tail of a distribution.

Annals of Statistics, pages 1163-1174, 1975.