

Predicting Airline Delay using Machine Learning

By: Naufal Fadhilah

Data Understanding

2

Exploratory Data Analysis & Data Pre processing 3

Machine Learning Model

4

Conclusion and Recommendation

Data Understanding

Obtained through Kaggle, this dataset is about predicting whether the airline will be delayed or not. Where it contains 539.382 data with 8 columns

- Flight = Flight number
- Time = Departure time (in minutes from 00:00)
- Length = Total flight time (in minutes)
- · Airline = Name of the airlines
- AirportFrom = The departing airport
- AirportTo = The destination airport
- · DayOfWeek = Day of departure
- Class = Whether they are delayed or not

		Flight	Time	Length	Airline	AirportFrom	AirportTo	Day0fWeek	Class
0		2313.0	1296.0	141.0	DL	ATL	HOU	1	0
1		6948.0	360.0	146.0	00	cos	ORD	4	0
2		1247.0	1170.0	143.0	В6	BOS	CLT	3	0
3		31.0	1410.0	344.0	US	ogg	PHX	6	0
4		563.0	692.0	98.0	FL	ВМІ	ATL	4	0
5393	377	6973.0	530.0	72.0	00	GEG	SEA	5	1
5393	378	1264.0	560.0	115.0	WN	LAS	DEN	4	1
5393	379	5209.0	827.0	74.0	EV	CAE	ATL	2	1
5393	380	607.0	715.0	65.0	WN	BWI	BUF	4	1
5393	381	6377.0	770.0	55.0	00	CPR	DEN	2	1
539382 rows × 8 columns									

Flight	0				
Time	0				
Length	0				
Airline	0				
AirportFrom	0				
AirportTo	0				
Day0fWeek	0				
Class	0				
dtype: int64					
There are no missing values!					

```
16.0
          420
5.0
          407
9.0
          401
8.0
          396
62.0
          364
7814.0
4544.0
5131.0
6969.0
3518.0
Name: Flight, Length: 6585, dtype: int64
```

It is found that there are 216618 duplicated data, they all are coming from the Flight column.

```
<class 'pandas.core.frame.DataFrame'>
    Int64Index: 322764 entries, 0 to 539379
    Data columns (total 8 columns):
        Column
                    Non-Null Count
                                    Dtype
       Flight 322764 non-null float64
        Time 322764 non-null float64
        Length 322764 non-null float64
        Airline 322764 non-null object
        AirportFrom 322764 non-null object
        AirportTo 322764 non-null object
        DayOfWeek 322764 non-null int64
        Class 322764 non-null int64
    dtypes: float64(3), int64(2), object(3)
    memory usage: 22.2+ MB
After cleaning the data from duplicates and missing values, we are left with 322764 datas.
```

0 2313.0 21:36 141.0 DL ATL HOU 1 0 1 6948.0 06:00 146.0 OO COS ORD 4 0 2 1247.0 19:30 143.0 B6 BOS CLT 3 0	Evening
2 1247.0 19:30 143.0 B6 BOS CLT 3 0	Morning
	Evening
3 31.0 23:30 344.0 US OGG PHX 6 0	Evening
4 563.0 11:32 98.0 FL BMI ATL 4 0	Morning

Here Time format from minutes have been turned into HH:MM format. Also a new column called "TimeCategory" has been added.

0 168162 1 154602

Name: Class, dtype: int64

	Airline	Count
0	WN	58593
1	DL	39806
2	00	35207
3	XE	20961
4	UA	19155
5	EV	19135
6	AA	18896
7	US	17868
8	MQ	16825
9	9E	13944
10	со	13845
11	FL	13419
12	В6	8468
13	ОН	8174
14	YV	7424
15	AS	5849
16	F9	2981
17	HA	2214

- 5 7847 3 5957 4 5870 2 5768 1 5424 7 4998 6 2966 Name: DayOfWeek, dtype: int64
- Flight happens mostly during day 5 and least at day 3
- Delay also happens the most at day 5

Most flights happens during morning time, however, the most delayed are in the Afternoon.

WN is the airline with the most delay, coming in second is DL and the least delay airline being HA.

- WN mostly delayed from MDW airport
- Delay occurs mainly on day 5 in the Afternoon while the least being in the Evening.

	Flight	Length	Day0fWeek	Class	TimeCategory	Airline_encoded	AirportFrom_encoded	AirportTo_encoded	Time_encoded
0	2313.0	141.0	1	0	Evening	5	16	129	1006
1	6948.0	146.0	4	0	Morning	12	65	208	70
2	1247.0	143.0	3	0	Evening	3	35	60	880
3	31.0	344.0	6	0	Evening	14	203	217	1112
4	563.0	98.0	4	0	Morning	8	32	16	402

Encoding the classification column (Airline, AirportFrom, AirportTo and Time

Machine Learning Modelling

Feature Targe

Drop = Class, Flight, TimeCategory Target Class

Machine Learning Modelling

	Model	Train	Test
0	KNN	67.22%	46.85%
1	Logistic Regression	54.98%	55.16%
2	Decision Tree	75.80%	32.85%
3	Random Forest	75.80%	35.34%
4	Naive Bayes	55.13%	55.45%
5	Gradient Boosted Tree	59.57%	59.54%
6	XGBoost	61.84%	58.79%

- Random Forest and Decision Tree is overfitted
- Knn appears to be underfitted
- The best model to be used is the Gradient Boosted Tree with 59.54% accuracy and appears to be well fitted.

Conclusion and Recommendations

With this dataset, I ran through numerous different model, thus the results are in. Gradient Boosted Tree has the highest accuracy score of 59.54% to predict delay, while the lowest being Decision Tree with only 32.85% accuracy. However, the recall for 1 is only 39.97% is is very low, this suggests that the model struggles to correctly identify the positive cases. For example in 100 delay it will only identify as 39 delays.

- It is highly recommended for WN airline to increase their aircraft
- WN needs to add its flights on the evening more
- Airline need to prepare and compensate the delayed passenger in advance to keep customer satisfaction

