Bài 9. Tích vô hướng của một vectơ với một số

A. Lý thuyết

1. Tích của một vectơ với một số

• Tích của một vector $\vec{a} \neq \vec{0}$ với một số thực k > 0 là một vector, kí hiệu là $k\vec{a}$, cùng hướng với vector \vec{a} và có độ dài bằng $k|\vec{a}|$.

Ví dụ: Cho hình vẽ sau:

- Vector
$$\frac{1}{2}\vec{a}$$
 cùng hướng với vector \vec{a} và $\left|\frac{1}{2}\vec{a}\right| = \frac{1}{2}|\vec{a}|$

- Vector
$$\frac{3}{2}\vec{a}$$
 cùng hướng với vector \vec{a} và $\left|\frac{3}{2}\vec{a}\right| = \frac{3}{2}|\vec{a}|$.

• Tích của một vector $\vec{a} \neq \vec{0}$ với một số thực k < 0 là một vector, kí hiệu là $k\vec{a}$, ngược hướng với vector \vec{a} và có độ dài bằng (-k) $|\vec{a}|$.

Ví dụ: Cho hình sau:

- Vecto $-2\vec{a}$ ngược hướng với vecto \vec{a} và $\left|-2\vec{a}\right| = 2|\vec{a}|$
- Vecto $-\frac{3}{2}\vec{a}$ ngược hướng với vecto \vec{a} và $\left|-\frac{3}{2}\vec{a}\right| = \frac{3}{2}|\vec{a}|$.

Chú ý: Ta quy ước $k\vec{a} = \vec{0}$ nếu $\vec{a} = \vec{0}$ hoặc k = 0.

Nhận xét: Vecto \vec{ka} có độ dài bằng $|\vec{k}| |\vec{a}|$ và cùng hướng với \vec{a} nếu $\vec{k} \ge 0$, ngược hướng với \vec{a} nếu $\vec{a} \ne \vec{0}$ và $\vec{k} < 0$.

Chú ý: Phép lấy tích của vectơ với một số gọi là phép nhân vectơ với một số (hay phép nhân một số với vectơ).

2. Các tính chất của phép nhân vectơ với một số

Với hai vecto \vec{a} , \vec{b} và hai số thực k, t, ta luôn có :

+)
$$k(t\vec{a}) = (kt) \vec{a}$$
;

+)
$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}; k(\vec{a} - \vec{b}) = k\vec{a} - k\vec{b};$$

+)
$$(k + t) \vec{a} = k\vec{a} + t\vec{a}$$
;

+)
$$1\vec{a} = \vec{a}$$
; (-1) $\vec{a} = -\vec{a}$.

Nhận xét:

Điểm I là trung điểm của đoạn thẳng AB khi và chỉ khi $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$.

Điểm G là trọng tâm của tam giác ABC khi và chỉ khi $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

Ví dụ:

- a) Cho đoạn thẳng CD có trung điểm I. Chứng minh với điểm O tùy ý, ta có $\overrightarrow{OC} + \overrightarrow{OD} = 2\overrightarrow{OI}$.
- b) Cho tam giác ABC có G là trọng tâm. Chứng minh rằng với điểm O tùy ý, ta có $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 3\overrightarrow{OG}$.

Hướng dẫn giải

a) Vì I là trung điểm của CD nên ta có $\overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{0}$.

Do đó
$$\overrightarrow{OC} + \overrightarrow{OD} = (\overrightarrow{OI} + \overrightarrow{IC}) + (\overrightarrow{OI} + \overrightarrow{ID}) = 2\overrightarrow{OI} + (\overrightarrow{IC} + \overrightarrow{ID}) = 2\overrightarrow{OI} + \vec{0} = 2\overrightarrow{OI}$$
.
Vậy, $\overrightarrow{OC} + \overrightarrow{OD} = 2\overrightarrow{OI}$.

b) Vì G là trọng tâm tam giác ABC nên: $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.

Ta có
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = (\overrightarrow{OG} + \overrightarrow{GA}) + (\overrightarrow{OG} + \overrightarrow{GB}) + (\overrightarrow{OG} + \overrightarrow{GC})$$

$$= 3\overrightarrow{OG} + (\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}) = 3\overrightarrow{OG} + \overrightarrow{0} = 3\overrightarrow{OG}$$
.

$$\overrightarrow{V}$$
ây $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 3\overrightarrow{OG}$.

Chú ý: Cho hai vecto không cùng phương \vec{a} và \vec{b} . Khi đó, mọi vecto \vec{u} đều biểu thị (phân tích) được một cách duy nhất theo hai vecto \vec{a} và \vec{b} , nghĩa là có duy nhất cặp số (x; y) sao cho $\vec{u} = x\,\vec{a} + y\,\vec{b}$.

Ví dụ: Cho tam giác ABC. Hãy xác định điểm M để $\overrightarrow{MA} + 3\overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$.

Hướng dẫn giải

Để xác định vị trí của M, trước hết ta biểu thị \overrightarrow{AM} (với gốc A đã biết) theo hai vecto đã biết $\overrightarrow{AB}, \overrightarrow{AC}$.

$$\overrightarrow{MA} + 3\overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{MA} + 3(\overrightarrow{MA} + \overrightarrow{AB}) + 2(\overrightarrow{MA} + \overrightarrow{AC}) = \overrightarrow{0}$$

$$\Leftrightarrow 6\overrightarrow{MA} + 3\overrightarrow{AB} + 2\overrightarrow{AC} = \overrightarrow{0}$$

$$\iff \overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}.$$

Lấy điểm E là trung điểm của AB và điểm F thuộc cạnh AC sao cho $AF = \frac{1}{3}AC$

.

Khi đó
$$\overrightarrow{AE} = \frac{1}{2} \overrightarrow{AB}$$
 và $\overrightarrow{AF} = \frac{1}{3} \overrightarrow{AC}$. Vì vậy $\overrightarrow{AM} = \overrightarrow{AE} + \overrightarrow{AF}$.

Suy ra M là đỉnh thứ tư của hình bình hành EAFM.

B. Bài tập tự luyện

B1. Bài tập trắc nghiệm

Câu 1: Cho vecto $\vec{a} \neq \vec{0}$ với số thực k như thế nào thì vecto \vec{ka} ngược hướng với vecto \vec{a} .

- A. k = 1;
- B. k = 0;
- C. k < 0;
- D. k > 0.

Hướng dẫn giải

Đáp án đúng là C

Tích của một vecto $\vec{a} \neq \vec{0}$ với số thực k < 0 là một vec tơ kí hiệu $k\vec{a}$ ngược hướng với vecto \vec{a} .

Câu 2: Cho vecto \vec{a} , \vec{b} và hai số thực k, t. Khẳng định nào sau đây là **sai**?

A.
$$k(t\vec{a}) = (kt)\vec{a}$$
;

B.
$$(k + t)\vec{a} = k\vec{a} + t\vec{b}$$
;

C.
$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$
;

D.
$$(-1)\vec{a} = -\vec{a}$$
.

Hướng dẫn giải

Đáp án đúng là B

Ta có $(k + t)\vec{a} = k\vec{a} + t\vec{a}$. Do đó B sai.

Câu 3: Cho ba điểm A, B, C phân biệt sao cho $\overrightarrow{AB} = k\overrightarrow{AC}$. Biết rằng C là trung điểm đoạn thẳng AB. Giá trị k thỏa mãn điều kiện nào sau đây?

A. k < 0

B.
$$k = 1$$

C.
$$0 < k < 1$$

D.
$$k > 1$$

Hướng dẫn giải

Đáp án đúng là D

Vì C là trung điểm của đoạn thẳng AB nên AC = 2AB.

Ta có \overrightarrow{AC} , \overrightarrow{AB} là hai vecto cùng hướng nên $\overrightarrow{AC} = 2\overrightarrow{AB}$. Suy ra k = 2 > 1.

Vây k thỏa mãn điều kiện k > 1.

B2. Bài tập tự luận

Câu 4. Cho \vec{a} và điểm O không thuộc giá của \vec{a} . Xác định hai điểm M và N sao cho $\overrightarrow{OM} = 3\vec{a}$, $\overrightarrow{ON} = -4\vec{a}$.

Hướng dẫn giải

Vẽ đường thẳng d đi qua O và song song với giá của \vec{a} .

Trên d lấy điểm M sao cho $\overrightarrow{OM} = 3|\vec{a}|$, \overrightarrow{OM} và \vec{a} cùng hướng khi đó $\overrightarrow{OM} = 3\vec{a}$.

Trên d lấy điểm N sao cho $ON = 4|\vec{a}|$, \overrightarrow{ON} và \vec{a} ngược hướng, khi đó $\overrightarrow{ON} = -4\vec{a}$.

Câu 5. Cho tam giác ABC. Điểm M trên cạnh BC sao cho MB = 2MC. Hãy phân tích vector \overrightarrow{AM} theo hai vector $\overrightarrow{u} = \overrightarrow{AB}$, $\overrightarrow{v} = \overrightarrow{AC}$.

Hướng dẫn giải

Ta có:
$$\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BM} = \overrightarrow{AB} + \frac{2}{3}\overrightarrow{BC}$$

$$= \overrightarrow{AB} + \frac{2}{3}(\overrightarrow{AC} - \overrightarrow{AB}) = \frac{1}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}.$$

$$V \hat{a} y \ \overrightarrow{AM} = \frac{1}{3} \vec{u} + \frac{2}{3} \vec{v}.$$

Câu 6. Cho tam giác ABC. Hai điểm M, N được xác định bởi các hệ thức: $\overrightarrow{BC} + \overrightarrow{MA} = \overrightarrow{0}$, $\overrightarrow{AB} - \overrightarrow{NA} - 3\overrightarrow{AC} = \overrightarrow{0}$. Chứng minh MN // AC.

Hướng dẫn giải

$$\overrightarrow{BC} + \overrightarrow{MA} = \overrightarrow{0}, \overrightarrow{AB} - \overrightarrow{NA} - 3\overrightarrow{AC} = \overrightarrow{0}$$

Do đó ta có :
$$\overrightarrow{BC} + \overrightarrow{MA} + \overrightarrow{AB} - \overrightarrow{NA} - 3\overrightarrow{AC} = \overrightarrow{0}$$

Hay
$$(\overrightarrow{AB} + \overrightarrow{BC}) + (\overrightarrow{MA} + \overrightarrow{AN}) - 3\overrightarrow{AC} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{AC} + \overrightarrow{MN} - 3\overrightarrow{AC} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{MN} = 2\overrightarrow{AC}$$
.

Vậy MN và AC cùng phương.

Từ giả thiết $\overrightarrow{BC} + \overrightarrow{MA} = \vec{0}$ suy ra $\overrightarrow{BC} = \overrightarrow{AM}$, mà A, B, C không thẳng hàng nên bốn điểm A, B, C, M là 4 đỉnh của một hình bình hành.

Suy ra M không thuộc đường thẳng AC, mà \overrightarrow{MN} và \overrightarrow{AC} cùng phương.

Vậy MN // AC.