

Adrien Riguet, Selma mazouni

Projet FAO

Sommaire:

Introduction

Partie 1 : Analyse descriptive

Partie 2 : Questions

Introduction

L'Organisation pour l'alimentation et l'agriculture (FAO) est l'agence spécialisée des Nations Unies qui mène les efforts internationaux vers l'élimination de la faim. Notre objectif sur ce projet est d'analyser les données mondiales de production agricole, d'alimentation et de nutrition.

Partie 1

Population par pays (en milliers d'habitants)

Sous alimentation par pays (en millions d'habitants)

Densité de population (en milliers d'habitants par milliers d'hectare)

Partie 2

Exercice 1: Nombre d'humains sur la planète


```
Valeur
                               Pays
       30552
                       Afghanistan
                           Albania
        3173
                           Algeria
       39208
                            Angola
       21472
               Antigua and Barbuda
         . . .
170
       91680
                          Viet Nam
171
       24407
                              Yemen
172
       14539
                            Zambia
173
       14150
                          Zimbabwe
                             China
    1416667
[175 rows x 2 columns]
```

```
Entrée [14]: df_pop['Valeur'].sum()
Out[14]: 8413993
```

```
table to the second sec
```

```
Entrée [23]: df_pop['Valeur'].sum()
Out[23]: 6997326
```

Exercice 2: Redondances

Les équations	Résultat
Production + Importations - Exportations + Variation de stock	20298
Disponibilité intérieure	20298
Aliments + Semences + Pertes + Traitement + Autres Utilisations + Nourriture	20298

Exercice 3: Disponibilité alimentaire (calories, protéines)

Pays	Produit	Origine	kcal/pers/an	kg prot/pers/an	population
Angola	Haricots	Végétale	29565.0	1.90895	21472000
Panama	Poissons Pelagiques	Animale	9490.0	1.29210	3864000
Madagascar	Pommes	Végétale	0.0	0.00000	22925000
Iraq	Sucre, canne	Végétale	0.0	0.00000	33765000
Nicaragua	Racines, Nda	Végétale	4380.0	0.07665	6080000
France	Citrons & Limes	Végétale	365.0	0.00730	64291000
France	Racines, Nda	Végétale	0.0	0.00000	64291000
Kenya	Boissons Alcooliques	Végétale	1825.0	0.00000	44354000
Timor-Leste	Cephalopodes	Animale	0.0	0.00365	1133000
Congo	Poivre	Végétale	0.0	0.00000	4448000

```
# Renommer les colonnes
aliments.rename(columns={
    'Disponibilité alimentaire (Kcal/personne/jour)' : 'kcal/pers/an',
    'Disponibilité de protéines en quantité (g/personne/jour)' : 'kg prot/pers/an',
    'Disponibilité alimentaire en quantité (kg/personne/an)' : 'kg/pers/an',
    'Valeur' : 'population'
}, inplace=True)

# On fait les calculs pour correspondre aux unités
aliments['population'] *= 1000
aliments['kcal/pers/an'] *= 365
aliments['kg prot/pers/an'] /= 1000
```

Exercice 4: Ratio énergie/poids

aliments['énergie/poids'] = aliments['kcal/pers/an'] / aliments['kg/pers/an']

Pays	Produit	Origine	énergie/poids
Djibouti	Lait - Excl Beurre	Animale	640.779134
Paraguay	Maïs	Végétale	3390.340526
Myanmar	Fruits, Autres	Végétale	470.765262
Togo	Huile de Palmistes	Végétale	8791.970803
Eswatini	Noix	Végétale	2577.683616
Botswana	Aliments pour enfants	Végétale	4562.500000
Mali	Céréales, Autres	Végétale	3041.666667
Afghanistan	Huile d'Arachide	Végétale	0.000000
Mali	Légumineuses Autres	Végétale	3503.524946
Botswana	Huiles de Poissons	Animale	0.000000

orint(np.mean(aliments.query("Pro	oduit == 'Oeufs'")['énergie/poids']))
Moyenne du rapport énergie 1362.3173838894493	/poids des oeufs (kcal/kg) :
Œuf / Valeur énergétique	
1 430 calories	
Туре	Quantité
Oeuf poché	1 kg (1 000 g)

Exercice 5: Aliments les plus caloriques et protéiques

	Produit	énergie/poids
0	Huile de Palme	8712.998046
1	Huile de Soja	8671.981316
2	Graisses Animales Crue	7714.200488
3	Huil Plantes Oleif Autr	7497.492849
4	Huile de Tournesol	7264.736416
5	Beurre, Ghee	6607.422927
6	Huile de Son de Riz	6208.686869
7	Huile d'Olive	6134.059095
8	Huile de Coco	6066.931493
9	Huile Graines de Coton	5844.819214
10	Arachides Decortiquees	5502.020083
11	Huile d'Arachide	5337.400818
12	Huile de Germe de Maïs	4485.518488
13	Huile de Palmistes	4309.529629
14	Huile de Colza&Moutarde	4053.486240
15	Feve de Cacao	3965.700906
16	Sucre Eq Brut	3606.946601
17	Riz (Eq Blanchi)	3582.221996
18	Sésame	3567.154936
19	Huile de Sésame	3481.243239

	Produit	kg prot/poids
0	Arachides Decortiquees	0.245061
1	Soja	0.230789
2	Haricots	0.202210
3	Légumineuses Autres	0.197367
4	Pois	0.192526
5	Abats Comestible	0.176632
6	Viande, Autre	0.160918
7	Viande de Bovins	0.146130
8	Viande d'Ovins/Caprins	0.137785
9	Aliments pour enfants	0.136075
10	Sésame	0.126217
11	Viande de Volailles	0.122032
12	Poissons Pelagiques	0.115732
13	Épices, Autres	0.109497
14	Poissons Marins, Autres	0.107253
15	Oeufs	0.105350
16	Poissons Eau Douce	0.104513
17	Viande de Suides	0.095022
18	Thé	0.093154
19	Cephalopodes	0.084007

Exercice 6: Dispo. intérieure mondiale des végétaux


```
# On fait les calculs pour correspondre aux unités
df['poids (kg)'] *= 1000000

df['énergie (kcal)'] = df['poids (kg)'] * df['kcal/kg']
```

	poids (kg)	kcal/kg	énergie (kcal)
Produit			
Agrumes, Autres	1.217700e+10	73.585330	8.960486e+11
Aliments pour enfants	8.600000e+07	2619.335821	2.252629e+11
Ananas	2.328200e+10	301.483372	7.019136e+12
Arachides Decortiquees	2.969400e+10	5502.020083	1.633770e+14
Avoine	2.340700e+10	1319.777192	3.089202e+13

Exercice 7: Potentiel alimentaire des végétaux

Consommation de calorie : 2400 kcal

Consommation de protéine : 0.8 g/kg, soit 48 g pour une personne de 60 kg

```
Calorie (kcal)
Energie total : 1.1745547706429438e+16 kcal
Energie consommé par un humain en un an : 876000 kcal
Nombre d'humain nourris en calorie : 13408159482.225386
Soit 191.62 % de la population mondiale

Protéine (kg)
Protéine total : 295597673820.1998 kg
Protéine consommé par un humain en un an : 17.52 kg
Nombre d'humain nourris en protéine: 16872013345.901817
Soit 241.12 % de la population mondiale
```

Question 8 : Potentiel alimentaire des végétaux (destinés aux animaux pertes)

Consommation de calorie : 2400 kcal

Consommation de protéine : 0.8 g/kg, soit 48 g pour une personne de 60 kg

Calorie (kcal) Energie total : 8715601111363210.0 kcal Energie consommé par un humain en un an : 876000 kcal Nombre d'humain nourris en calorie : 9949316337.172615 Soit 142.19 % de la population mondiale

```
Protéine (kg)
Protéine total : 199644249472.8996 kg
Protéine consommé par un humain en un an : 17.52 kg
Nombre d'humain nourris en protéine: 11395219718.772808
Soit 162.85 % de la population mondiale
```


A vos questions!