STAT2371 Assignment

Ze Hong Zhou (46375058)

2022-08-25 (last edited 2022-08-26)

Question 1

Suppose that two independent binomial random variables X_1 and X_2 are observed where X_1 has a Binomial(n, p) distribution and X_2 has a Binomial(2n, p) distribution. You may assume that n is known, whereas p is an unknown parameter. Define two possible estimators of p

$$\hat{p}_1 = \frac{1}{3n}(X_1 + X_2)$$
 and $\hat{p}_2 = \frac{1}{2n}(X_1 + 0.5X_2)$.

(a) Show that both of the estimators \hat{p}_1 and \hat{p}_2 are unbiased estimators of p.

$$E(\hat{p}_1) = \frac{1}{3n}(E(X_1) + E(X_2)) \quad \text{applying expected value linearity}$$

$$= \frac{1}{3n}(n \cdot p + 2n \cdot p) \quad \text{applying the binomial expectation formula}$$

$$= p$$

$$\text{bias}(\hat{p}_1, p) = E(\hat{p}_1) - p = 0.$$

Similarly,

$$E(\hat{p}_2) = \frac{1}{2n} (E(X_1) + 0.5E(X_2))$$

$$= \frac{1}{2n} (n \cdot p + 0.5 \cdot 2n \cdot p)$$

$$= p$$

$$bias(\hat{p}_2, p) = E(\hat{p}_2) - p = 0.$$

Hence \hat{p}_1 and \hat{p}_2 are unbiased estimators of p.

(b) Find $Var(\hat{p}_1)$ and $Var(\hat{p}_2)$.

$$Var(\hat{p}_1) = \frac{1}{9n^2}(Var(X_1) + Var(X_2))$$
 applying the formula for independent case
$$= \frac{1}{9n^2}(np(1-p) + 2np(1-p))$$
 applying the binomial variance formula

Ze Hong Zhou 46375058

$$=\frac{p(1-p)}{3n}.$$

Similarly,

$$Var(\hat{p}_2) = \frac{1}{4n^2} (Var(X_1) + 0.5^2 Var(X_2))$$
$$= \frac{1}{4n^2} (np(1-p) + 0.25 \cdot 2np(1-p))$$
$$= \frac{3p(1-p)}{8n}.$$

(c) Show that both estimators are consistent estimators of p.

Let $\varepsilon > 0$.

$$\begin{split} \lim_{n \to \infty} P(|\hat{p}_1 - p| > \varepsilon) &\leq \lim_{n \to \infty} \frac{E\left((\hat{p}_1 - p)^2\right)}{\varepsilon^2} \quad \text{applying Markov's inequality} \\ &= \lim_{n \to \infty} \frac{Var(\hat{p}_1)}{\varepsilon^2} \quad \text{since } \hat{p}_1 \text{ is unbiased} \\ &= \lim_{n \to \infty} \frac{p(1 - p)}{3n\varepsilon^2} \\ &= 0 \quad \text{for all } p \in [0, 1]. \end{split}$$

Applying the squeeze theorem, $\lim_{n\to\infty} P(|\hat{p}_1 - p| > \varepsilon) = 0$. Similarly,

$$\lim_{n \to \infty} P(|\hat{p}_2 - p| > \varepsilon) \le \lim_{n \to \infty} \frac{E((\hat{p}_2 - p)^2)}{\varepsilon^2}$$

$$= \lim_{n \to \infty} \frac{Var(\hat{p}_2)}{\varepsilon^2}$$

$$= \lim_{n \to \infty} \frac{3p(1 - p)}{8n\varepsilon^2}$$

$$= 0 \text{ for all } p \in [0, 1].$$

So $\lim_{n\to\infty} P(|\hat{p}_2 - p| > \varepsilon) = 0$. Hence \hat{p}_1 and \hat{p}_2 are weakly consistent estimators of p.

(d) Show that \hat{p}_1 is the most efficient estimator among all unbiased estimators.

$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

$$f_{X}(x,p) = f_{X_1}(x_1,p) \cdot f_{X_2}(x_2,p) \quad \text{applying the r.v. independence definition}$$

$$= \begin{cases} \binom{n}{x_1} p^{x_1} (1-p)^{n-x_1} \cdot \binom{2n}{x_2} p^{x_2} (1-p)^{2n-x_2} & \text{if } x_1 \in [0,n] \cap \mathbb{N} \text{ and } x_2 \in [0,2n] \cap \mathbb{N} \\ 0 & \text{if otherwise} \end{cases}$$

Ze Hong Zhou 46375058

$$= \begin{cases} \binom{n}{x_1} \binom{2n}{x_2} p^{x_1 + x_2} (1 - p)^{3n - (x_1 + x_2)} & \text{if } x_1 \in [0, n] \cap \mathbb{N} \text{ and } x_2 \in [0, 2n] \cap \mathbb{N} \\ 0 & \text{if otherwise} \end{cases}$$

$$= \begin{cases} \binom{n}{x_1} \binom{2n}{x_2} exp \left(\begin{bmatrix} ln(p) \\ ln(1 - p) \end{bmatrix}^T \begin{bmatrix} x_1 + x_2 \\ 3n - (x_1 + x_2) \end{bmatrix} \right) & \text{if } x_1 \in [0, n] \cap \mathbb{N} \text{ and } x_2 \in [0, 2n] \cap \mathbb{N} \\ 0 & \text{if otherwise} \end{cases}$$

Since n is known and fixed, X has a pdf in the exponential family, and any sufficient static is also complete. $X_1 + X_2$ is thus sufficient and complete by the sufficient statistic factorisation theorem. By the Lehmann-Scheffé theorem, $E(\hat{p}_1 \mid X_1 + X_2) = \hat{p}_1$ is the unique MVUE, i.e. it is the most efficient estimator among all unbiased estimators.

(e) Derive the efficiency of the estimator \hat{p}_1 relative to \hat{p}_2 .

$$eff(\hat{p}_2, \hat{p}_1, p) = \frac{\text{MSE}(\hat{p}_2, p)}{\text{MSE}(\hat{p}_1, p)} = \frac{\text{Var}(\hat{p}_2) + (\text{bias}(\hat{p}_2, p))^2}{\text{Var}(\hat{p}_1) + (\text{bias}(\hat{p}_1, p))^2} = \frac{\frac{3p(1-p)}{8n}}{\frac{p(1-p)}{3n}}$$

$$= \frac{9}{8}$$

Question 2

The random variables X_1, X_2, \ldots, X_{2n} are independent and normally distributed with common variance σ^2 . However, X_1, X_2, \ldots, X_n have mean 00 while $X_{n+1}, X_{n+2}, \ldots, X_{2n}$ have mean μ .