PDF Gaussiana e Propriedades

Guilherme de Alencar Barreto

gbarreto@ufc.br

Grupo de Aprendizado de Máquinas — GRAMA Programa de Pós-Graduação em Engenharia de Teleinformática Universidade Federal do Ceará — UFC http://www.researchgate.net/profile/Guilherme_Barreto2/

Conteúdo da Apresentação

- Objetivo Geral
- PDF Gaussiana
- Transformação de Box-Cox
- Transformação Z-score e sua inversa
- Operation of the property o
- Geração de Números Aleatórios
- Histograma de Frequência
- Exemplos no Matlab/Octave

Objetivo Geral

Objetivo Geral da Aula

Introduzir noções elementares sobre função densidade de probabilidade normal e algumas de suas propriedades.

Parte I

FDP Gaussiana e Propriedades

Importância da FDP Gaussiana

- A FDP gaussiana é uma das mais importantes em ETI e em Ciências de um modo geral, pois é usada como modelo das flutuações aleatórias (ruído) que distorcem valores medidos de um determinada variável.
- Outras aplicações da FDP gaussiana:
 - Ruídos em canais de comunicações.
 - 2 Robôs manipuladores (repetibilidade).
 - Modelos de ruído em imagens digitais.
 - Quídos de medida em instrumentação eletrônica.
 - O Detecção de anomalias em Monitoramento de Processos.

Definição

ullet Uma VA contínua é chamada de normal ou gaussiana se sua FDP é dada por

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$
 (1)

ou

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (2)

em que $\mu \in \mathbb{R}$ e $\sigma \in \mathbb{R}_{>0}$ são constantes.

• O domínio da variável X é a reta dos números reais, ou seja, $-\infty < X < +\infty.$

Probabilidade como a área sob a curva $f_X(x)$

• Pode-se mostrar que, para uma variável X contínua com FDP $f_X(x)$, probabilidades são dadas por

$$\Pr(a \le X \le b) = \int_{a}^{b} f_X(x) dx,\tag{3}$$

ou seja, a $\Pr(a \leq X \leq b)$ é dada pela área sob a curva no intervalo [a,b].

 Por isso, em um gráfico de PDF, não se lê probabilidades no eixo vertical, mas na área sob a curva.

Probabilidade como a área sob a curva $f_X(x)$

Dois resultados interessantes derivam da Equação 3.

 Probabilidade de uma variável contínua assumir um valor específico é zero.

Demonstração: Fazendo a=b na Equação (3), tem-se

$$\Pr(a \le X \le a) = \Pr(X = a) = \int_a^a f_X(x) dx = 0.$$
 (4)

2 Área total sob a curva de uma FDP é 1. **Demonstração**: Fazendo $a=-\infty$ e $b=+\infty$ na Equação (3), tem-se

$$\Pr(-\infty < X < +\infty) = \int_{-\infty}^{+\infty} f_X(x) dx = 1.$$
 (5)

Variáveis aleatórias

FDP Gaussiana ou Normal

Juntando as informações anteriores, pode-se esboçar o gráfico da FDP gaussiana para uma V.A. de média μ e variância σ^2 .

Gráfico da FDP Gaussiana

Definição (cont.-1)

A FDP gaussiana é especificada por dois parâmetros:

$$\mu = \text{m\'edia populacional}$$
 (6)

$$\sigma^2$$
 = variância populacional (7)

- O desvio padrão populacional é dado por $\sigma = \sqrt{\sigma^2}$.
- Que podem ser estimadas pelas seguintes fórmulas:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 (média amostral) (8)

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} \quad \text{(variância amostral)} \tag{9}$$

$$s = \sqrt{s^2}$$
 (desvio padrão amostral) (10)

Definição (cont.-2)

- É equivalente fazer uma das seguintes afirmações:
 - Uma variável X segue uma lei de probabilidade dada pela função gaussiana, cujos parâmetros são a média μ e a variância σ^2 .
 - ② Uma variável X está distribuída segundo uma FDP gaussiana de média μ e variância σ^2 .
 - **3** Notação simplificada: $X \sim N(\mu, \sigma^2)$

Gráfico da FDP Gaussiana para diferentes médias e variâncias

Variáveis aleatórias

FDP Gaussiana ou Normal

Cálculo da Variância Amostral

X_1	$d_1 = x_1 - \bar{x}_1$	$d_1^2 = (x_1 - \bar{x}_1)^2$
	1 1 1	
480	-54=480-534	2916
500	-34=500-534	1156
380	-154=380-534	23716
1100	+566=1100-534	320356
1100	+566=1100-534	320356
230	-304=230-534	92416
490	-44=490-534	1936
250	-284=250-534	80656
300	-234=300-534	54756
510	-24=510-534	576
$\bar{x}_1 = 534$	$\sum (x_1 - \bar{x}_1) \approx 0$	$\sum (x_1 - \bar{x}_1)^2 = 898840$
$s^2 = \sum_{n=1}^{10} (x_1(n) - \bar{x}_1)^2 / (10 - 1) = 898840/9 = 99871, 11$		

 $s^2 = \sum_{n=1}^{10} (x_1(n) - \bar{x}_1)^2 / (10 - 1) = 898840/9 = 99871, 11$

Table: Tabela para cálculo passo-a-passo da variância amostral.

Variáveis aleatórias

FDP Gaussiana ou Normal

Entendendo a FDP Gaussiana

- Com base no gráfico anterior da FDP Gaussiana temos que:
 - **1** 68% dos valores de X estarão no intervalo $[\mu \sigma, \mu + \sigma]$.

$$\Pr(\mu - \sigma \le X \le \mu + \sigma) \approx 0.68$$

2 95% dos valores de X estarão no intervalo $[\mu-2\sigma,\mu+2\sigma]$.

$$\Pr(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.95$$

3 99% dos valores de X estarão no intervalo $[\mu - 3\sigma, \mu + 3\sigma]$.

$$\Pr(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.99$$

 Esta propriedade da FDP gaussiana é usada para detecção de observações atípicas ou anômalas.

Aplicação em Detecção de Anormalidades em Processos

- Suponha que estejamos monitorando (medindo e armazenando) uma grandeza física X que representa o estado de um processo industrial.
- Se há razões para assumir que $X \sim N(\mu, \sigma^2)$, então podemos usar a seguinte regra de decisão:

SE
$$X \notin [\mu - 3\sigma, \mu + 3\sigma],$$

ENTÃO X é um valor anômalo.

 No caso de detectar alguma anormalidade, o operador deve ser avisado (e.g. por meio de um alarme sonoro ou visual).

Variáveis aleatórias

FDP Gaussiana ou Normal

Aplicação em Controle de Processos

Zona A: Normal (zona de maior probabilidade de ocorrências).

Zona B: Normal? (ainda dentro do normal, mas exigindo atenção).

Zona C: Suspeita forte de anomalia.

Transformação de Box-Cox

- Muitas variáveis não seguem uma distribuição normal.
- Porém, normalidade é uma importante suposição para muitas técnicas e métodos estatísticos.
- Nestes casos, é possível realizar uma operação, conhecida como transformação de $Box\text{-}Cox^a$, sobre a variável x_i :

$$x_i^* = \begin{cases} \frac{x_i^{\lambda} - 1}{\lambda}, & \text{se } 0 < \lambda < 1.\\ \ln x_i, & \text{se } \lambda = 0. \end{cases}$$
 (11)

 Com isso, variáveis não gaussianas terão uma distribuição com uma forma mais simétrica, mais próxima da normal.

 $^{^{}a}\mbox{G.E.P.}$ Box and D.R. Cox, 'An Analysis of Transformations', Journal of the Royal Statistical Society B, 26:211-252 (1964).

Exemplo da Transformação de Box-Cox

- Seja uma variável aleatória X que segue uma FDP exponencial de parâmetro $\gamma=3$.
- No Octave, 5000 observações de X são geradas pelo seguinte comando: >> x=exprnd(3,5000,1)
- O histograma de X, com uma gaussiana ajustada às observações de X, é visualizada pelo seguinte comando:
 - >> histfit(x)
- Aplica-se a transformação de Box-Cox às observações de X, para um expoente $\lambda=0.2$, pela seguinte operação:
 - >> lamb=0.2;
 - >> xstar=(x.^lamb 1)/lamb;
 - >> figure; histfit(xstar)

Resultado da aplicação da transformação de Box-Cox

Exemplo da Transformação de Box-Cox

- Uma questão interessante que surge com a aplicação da transformação de Box-Cox é como saber se a distribuição resultante é similar o suficiente de uma gaussiana.
- Para isso, podemos usar 2 métodos. O primeiro deles é qualitativo, e se baseia numa comparação visual das curvas da função distribuição acumulada (FDA) da distribuição transformada e da gaussiana de mesma média e variância.
- O segundo é métodos é quantitativo, e se baseia na aplicação do teste de hipótese de Kolmogorov-Smirnov (HS).
- Iremos detalhar os procedimentos a seguir.

Avaliação Qualitativa da Transformação de Box-Cox

- Este procedimento compara a FDA da amostra transformada por Box-Cox e a FDA de uma amostra normalmente distribuída com mesma média e mesma variância que a amostra Box-Cox.
- A comparação das FDAs resulta mais acurada do que pela comparação dos histogramas das duas amostras.
- Em muitas aplicações, este procedimento é suficiente, uma vez que se busca uma boa aproximação e não uma confirmação da gaussianidade entre as amostras.

Avaliação Qualitativa da Transformação de Box-Cox

- Usando o vetor xstar com as medidas transformadas por Box-Cox, realizar as seguintes operações no Octave/Matlab:
 - >> mxstar=mean(xstar); % media das medidas em xstar
 - >> dpxstar=std(xstar); % desvio padrao das medidas em xstar
 - >> xnorm=normrnd(mxstar,dpxstar,5000,1); % N(mxstar,dpstar)
 - >> h1=cdfplot(xstar); % FDA empirica de xstar
 - >> hold on; % mantem figura para proximo plot
 - >> h2=cdfplot(xnorm); % FDA empirica de N(mxstar,dpstar)

Verificando se distribuição resultante é gaussiana comprando a sua FDA com a Normal de mesma média e variância.

Avaliação Quantitativa da Transformação de Box-Cox

- Este procedimento também compara as FDAs da amostra transformada por Box-Cox e a de uma amostra normalmente distribuída de mesma média e variância.
- Trata-se, porém, de um procedimento mais formal por ser um teste de hipóteses. Para isso, calcula-se uma estatística de teste baseada na maior distância vertical entre as duas FDAs comparando-a com o valor-p, para um certo nível de significância α.
- Este procedimento é mais rigoroso que a simples inspeção visual, uma vez que busca confirmar (H=0) ou não (H=1) a gaussianidade entre as amostras.
- Em Python: scipy.stats.kstest

Avaliação Quantitativa da Transformação de Box-Cox

- Usando o vetor xstar com as medidas transformadas por Box-Cox, realizar as seguintes operações no Octave/Matlab:
 - >> mxstar=mean(xstar); % media das medidas em xstar
 - >> dpxstar=std(xstar); % desvio padrao das medidas em xstar
 - >> xnorm=normrnd(mxstar,dpxstar,5000,1); % N(mxstar,dpstar)
 - >> H=kstest2(xstar,xnorm); % Teste Kolmogorov-Smirnov
 H=1

Comentário: Pelo resultado acima a distribuição da amostra transformada por Box-Cox não pode ser considerada como sendo compatível com uma gaussiana.

FDP Gaussiana Padronizada

- Após a aplicação da transformação de Box-Cox, é usual fazer com que o conjunto de medidas possua $\mu=0$ e $\sigma^2=1$.
- Esta propriedade pode ser imposta a qualquer conjunto de medidas, através da seguinte transformação:

$$z_i = \frac{x_i - \mu}{\sigma}, \qquad i = 1, 2, \dots, N.$$
 (12)

 Para voltar para aos valores originais, aplica-se a seguinte transformação inversa:

$$x_i = \sigma z_i + \mu, \qquad i = 1, 2, \dots, N.$$
 (13)

• Para o caso de variáveis gaussianas, a nova FDP é chamada de gaussiana padronizada, sendo denotada por $Z \sim N(0,1)$.

Variáveis aleatórias

FDP Gaussiana Padronizada

Gráfico da FDP Gaussiana de Média=0 e Variância=1

Entendendo a FDP Gaussiana Padronizada

- Com base no gráfico anterior da FDP gaussiana padronizada temos que:
 - **1** 68% dos valores de Z estarão no intervalo [-1, +1].

$$\Pr(-1 \le Z \le +1) \approx 0.68$$

2 95% dos valores de Z estarão no intervalo [-2, +2].

$$\Pr(-2 \le Z \le +2) \approx 0.95$$

3 99% dos valores de Z estarão no intervalo [-3, +3].

$$\Pr(-3 \le Z \le +3) \approx 0.99$$

• Esta propriedade da FDP gaussiana padronizada é usada para detecção de observações atípicas ou anômalas.

Aplicação em Detecção de Anormalidades em Processos

- Suponha que estejamos monitorando (medindo e armazenando) uma grandeza física X que representa o estado de um processo industrial.
- Se há razões para assumir que $X \sim N(\mu, \sigma^2)$, então podemos usar a seguinte regra de decisão:

SE
$$Z = \frac{X - \mu}{\sigma} \notin [-3, +3],$$
 ENTÃO X é um estado anormal.

 No caso de detectar alguma anormalidade, o operador deve ser avisado.

Calculando Probabilidades a Partir das Amostras - Parte 1

- Vamos agora abordar o problema de calcular probabilidades $P(a \le x \le b)$ a partir de um conjunto de observações de uma certa variável aleatória X.
- \bullet Suponha que temos um conjunto de N medidas de uma certa variável X, ou seja,

$$\mathcal{X} = \{X(1), X(2), X(3), \dots, X(N)\}.$$

- Vamos gerar artificialmente N=5000 medidas de uma variável aleatória $X \sim N(100,4)$.
- Matlab/Octave: >> X=normrnd(100,sqrt(4),5000,1);
- Scilab: --> X=grand(5000,1,'nor',100,sqrt(4));

Calculando Probabilidades a Partir das Amostras - Parte 2

- De posse do conjuntos de medidas \mathcal{X} , vamos determinar $P(X \leq 104)$ da seguinte maneira.
- O método consiste simplemente em contar quantos elementos do conjunto ${\mathcal X}$ são menores que ou iguais a 104.
- No Matlab/Octave/Scilab, usamos os seguintes comandos:

>> P=length(find(X<=104))/5000;

Gerando e Visualizando VAs Gaussianas no Octave/Matlab

- Os comandos abaixo geram e visualizam um conjunto de observações de uma variável contínua gaussiana de média $\mu=10$ e variância $\sigma^2=2$.
 - >> mi=10; vari=2; % parametros da distribuicao
 - >> N=5000; % No. de observacoes desejadas
 - >> X=normrnd(mi,sqrt(vari),N,1); % VAs gaussianas
 - >> mi=mean(X); % media amostral
 - mi = 9.9907
 - >> s2=var(X,1); % variancia amostral s2 = 1.9932
 - >> histfit(X,20); % histograma de X

Entendendo o Histograma

- Passo 1 Calcular a média (\bar{x}) e a desvio padrão (s) amostrais de X.
- Passo 2 Definir o domínio de X: $[\bar{x}-k\cdot s,\bar{x}+k\cdot s]$ (e.g. k=5).
- Passo 3 Discretizar o domínio de X em M+1 pontos x_i , $i=0,1,\ldots,M$.
- Passo 4 Para cada intervalo $\Delta x_i = x_i x_{i-1}$, $i = 1, \dots, M$, determinar:

$$C(\Delta x_i)=$$
 No. de observações de $X_i\in \Delta x_i$

Passo 5 - Desenhar o gráfico de barras $C(\Delta x_i) \times \Delta x_i$.

Variáveis aleatórias

FDP/FDA Gaussianas no Matlab

Gráfico da FDP Empírica (Histograma)

