O algoritmo de conversão de Autômato Finito Não-Determinístico - AFND para Expressão Regular - ER

Eduardo Couto Dinarte, Iago Gade Gusmao Carrazzoni, Lucca Maciel de Moraes

15 de Novembro de 2018

Resumo

Este artigo consiste na apresentação e explicação de um algoritmo para converter um autômato finito não determinístico num autômato finito determinístico e, por fim, converter este numa expressão regular. O método consiste em apresentar a teoria com imagens dos três estados da conversão seguida de um exemplo prático. O objetivo deste texto é fixar o conteúdo de conversão de autômatos e familiarizar os autores com a produção de artigos científicos utilizando a linguagem Latex.

1 Introdução aos Autômatos

Um autômato é uma máquina abstrata que deve operar entre estados previamente definidos. É um modelo matemático utilizado para representar programas ou circuitos lógicos. É bem definido por uma quíntupla, cujos elementos são:

- Conjunto de estados;
- alfabeto;
- estado inicial;
- conjunto de estados finais;
- função de transição (ou função delta).

A função de transição, por sua vez, é representada por uma tripla ordenada, onde os elementos são:

- Estado inicial;
- transição;
- estado final;

2 Introdução ao Autômato Finito Não-Determinístico- AFND

Autômato finito não determinístico é aquele em que, em algum momento, não se tem certeza de qual é o estado atual, ou seja, é aquele que tem a palavra vazia ligando algum de seus estados.

3 Introdução ao Autômato Finito Determinístico - AFD

Autômato finito determinístico é aquele em que se sabe exatamente qual o estado atual, ou seja, é aquele que não tem estados simultâneos (estados ligados por palavras vazias).

4 Introdução à Expressão Regular - ER

Expressão regular é uma cadeia de caracteres que engloba todas as palavras aceitas pelo autômato. Um autômato reduzido a expressão regular possui apenas um estado inicial e um estado final, ligados pela expressão regular.

No tipo citado, é comum a aparição do caractere \vee , assim como o parêntese. Este se aplica da mesma forma que na matemática. Aquele é o conectivo lógico 'ou', que se aplica da mesma forma que na lógica.

Também é comum a aparição do caractere '*' na expressão regular. Ele se chama estrela de Kleene, e denota zero ou mais repetições do caractere (ou cadeia de caracteres) ao qual foi aplicado.

No exemplo acima, a estrela de Kleene foi aplicada ao caractere 'a' e à expressão (b \vee c). Neste, quer dizer que zero ou mais repetições da cadeia denotada serão aceitas, enquanto naquele, zero ou mais repetições do caractere denotado serão aceitos.

5 Conversão de AFND para AFD

Para essa conversão, é utilizado o Algoritmo de Conversão de um Autômato Finito Não-determinístico (AFND) em um Autômato Finito Determinístico, que consiste em:

- Identificar os estados simultâneos do AFND;
- identificar o estado inicial P0, o qual seu conjunto possui apenas o estado inicial da AFND;
- aplicar em P0 a leitura de todo o alfabeto. O conjunto novo será composto pelo lugar da chegada;
- Identificar os estados resultantes;
- para cada estado resultante criado, aplica-se o alfabeto;
- repetir o procedimento até que não existam mais estados novos;
- identificar os estados finais, que serão aqueles estados que possuírem os estados finais da AFND;
- montar a quíntupla do AFD;
- por fim, esboçar o grafo.

Para exemplificar, será realizada a conversão do AFND a seguir: Quíntupla da AFND: K = 0, 1, 2, 3, 4, 5

A = a, b, c

S = 0, 1, 2

F = 3, 4

D =

Daqui em diante as seguintes notações serão usadas:

- E(x): denota o conjunto de estados simultâneos a x;
- P(x): denota um estado maior, que engloba vários outros;
- \bullet D(P(x), A): denota a função delta de P(x) aplicando o alfabeto.

Seguindo o algoritmo, o procedimento será o seguinte:

- Identificar os estados simultâneos do AFND: E(0) = 0, 1, 2
 - E(1) = 1
 - E(2) = 2
 - E(3) = 3
 - E(4) = 4
 - E(5) = 5
- identificar o estado inicial P0, o qual seu conjunto possui o estado inicial da AFND: P(0) = E(0) = 0, 1, 2
- aplicar em P0 a leitura de todo o alfabeto. O conjunto novo será composto pelo lugar da chegada: D(P(0), a) = (1, a, 5) U(2, a, 5) = E(5) = 5D(P(0), b) = (1, b, 3) = E(3) = 3D(P(0), c) = vazio
- Identificar os estados resultantes: P(1) = D(P(0), a) = 5P(2) = D(P(0), b) = 3
- \bullet para cada estado resultante criado, aplica-se o alfabeto: D(P(1), a) =vazio

$$D(P(1), b) = (5, b, 4) = E(4) = 4$$

$$D(P(1), c) = (5, c, 5) = E(5) = 5 D(P(2), a) = (3, a, 3) = E(3) = 3$$

D(P(2), b) = vazio

$$D(P(2), c) = (3, c, 4) = E(4) = 4$$

• repetir o procedimento até que não existam mais estados novos: D(P(1), (b) = P(3) = 4

$$D(D(1) = 0) D(1)$$

$$D(P(1), c) = P(1) = 1$$

$$D(P(2), a) = P(2) = 2$$

$$\begin{array}{l} D(P(2),\,c) = P(3) = 4 \\ D(P(3),\,a) = vazio \\ D(P(3),\,b) = vazio \\ D(P(3),\,c) = vazio \end{array}$$

- \bullet identificar os estados finais, que serão aqueles estados que possuírem os estados finais da AFND: F = P2, P3
- \bullet montar a quíntupla do AFD: K = P(0), P(1), P(2), P(3) A = a, b, c S = P(0) F = P(2), P(3) D =
- por fim, esboçar o grafo:

