1st Bangladesh National Girls' Mathematics Olympiad 2023

১ম বাংলাদেশ জাতীয় গণিতকন্যা উৎসব ২০২৩

Category: Higher Secondary, Time: 2 hour 30 minutes

Name: (In English) Reg No.:

নাম: (বাংলায়)

No.	Problem	Answer
1	The product of two coprime integers is 2023. Find all the possible values of their	
	sum.	
	দুটি সহমৌলিক সংখ্যার গুণফল 2023 । তাদের যোগফল এর সম্ভাব্য সকল মান বের করো।	
2	Let \mathbb{Z} be the set of integers. Suppose that a function $f: \mathbb{Z} \to \mathbb{Z}$ satisfies the	
	following property:	
	f(x) + 2f(12 - x) = x.	
	Find the value of $f(2023)$.	
	$\mathbb Z$ হলো সকল পূর্ণসংখ্যার সেট। একটি ফাংশন $f:\mathbb Z o\mathbb Z$ নিম্নে প্রদত্ত শর্ত মেনে চলে	
	f(x) + 2f(12 - x) = x.	
	f(x) + 2f(12 - x) = x.	
	f(2023) এর মান নির্ণয় কর।	
3	Let x and y be two positive real numbers such that	
	$x^4 + y^4 + 8 = 8xy$.	
	The sum of all possible values of $x + y$ can be written as $p\sqrt{p}$. Find the value of	
	p^2 .	
	মনে করো, x এবং y দুইটি ধনাত্মক বাস্তব সংখ্যা যেন-	
	$x^4 + y^4 + 8 = 8xy$.	
	এমন সকল সম্ভাব্য $x+y$ এর মানের যোগফলকে $p\sqrt{p}$ আকারে লেখা যায়। p^2 এর মান বের করো।	
4	Let M and N be two points on the side BC of an equillitarel triangle ABC such	
	that M is strictly between B and N with $\angle MAN = 30^{\circ}$. The circumcircles of	
	triangle AMC and ANB intersect again at point P. Given that $\angle PBC = 20^{\circ}$,	
	"can" you find the value of $\angle CAN$?	
	একটি সমবাহু ত্রিভুজ ABC -এর BC বাহুর উপর দুটি বিন্দু M ও N যেন M বিন্দুটি B এবং N	
	বিন্দুর মাঝে থাকে যেখানে $\angle MAN = 30^\circ$ । AMC এবং ANB -এর পরিবৃত্ত আবার P বিন্দুতে ছেদ্	
	করে। দেওয়া আছে, $\angle PBC=20^\circ$ । তুমি কি $\angle CAN$ কোণের মান বের করতে পারবে?	

No.	Problem	Answer
5	Find the sum of all possible values of abc where a , b and c are positive integers	
	satisfying	
	$a = \gcd(b, c) + 3,$	
	$b = \gcd(c, a) + 3,$	
	$c = \gcd(a, b) + 3.$	
	$a,\ b,\ c$ হলো এমন ধনাত্মক পূর্ণসংখ্যা, যেন	
	$a = \gcd(b, c) + 3,$	
	$b = \gcd(c, a) + 3,$	
	$c = \gcd(a, b) + 3.$	
	abc এর সকল সম্ভাব্য মানের যোগফল বের করো।	
6	We will call a 8-digit number <i>interesting</i> if it contains only the digit 1, 2 and 3. How many 8-digit <i>interesting</i> numbers are there such that it doesn't contain consecutive 1, 2 or consecutive 2, 2? For example: 11323323 satisfies our condition. But 33123323 does not satisfy our condition, since it has consecutive 1,2. Similarly, 31332231 also doesn't satisfy our condition, since it has consecutive 2,2.	
	যে সকল 8 অঙ্কের সংখ্যায় কেবলমাত্র $1, 2$ এবং 3 এই তিনটি অঙ্ক রয়েছে সেগুলোকে আমরা বলি মজাদার সংখ্যা। এরকম কতগুলো 8 অঙ্কের মজাদার সংখ্যা আছে যেখানে পাশাপাশি $1,2$ অথবা পাশাপাশি $2,2$ নেই? যেমন: 11323323 সংখ্যাটি আমাদের শর্ত মেনে চলে। কিন্তু 33123323 আমাদের শর্ত মেনে চলে না কারণ সেখানে $1,2$ পাশাপাশি আছে। একইভাবে 31332231 সংখ্যাটিও আমাদের এই শর্ত মেনে চলে না, কারণ সেটিতে $2,2$ পাশাপাশি আছে।	
7	Let ABC be a triangle with incenter I . The line BI meets AC at D . Let P be a point on CI such that $DI = DP$ $(P \neq I)$, E the second intersection point of segment BC with the circumcircle of ABD and Q the second intersection point of line EP with the circumcircle of AEC . Find the value of angle $\angle PDQ$. ABC একটি ত্রিভুজ, যার অন্তঃকেন্দ্র $I : BI$ রেখা AC -কে D বিন্দুতে ছেদ করে P হলো CI এর উপর এমন একটি বিন্দু যেন $DI = DP$ হয় (এবং $P \neq I$) P P রেখাংশ P P ত্রিভুজের পরিবৃত্তকে P বিন্দুতে ছেদ করে P	
8	Ipshita and Urmi are playing a game on a 2023×1 board. Initially, there are 2023 balls at the center cell. A move consists of picking two balls from a cell and putting one ball in each of its adjacent cells. A player wins if the other player has no possible moves. If Ipshita moves first, and both players play optimally, who is going to win this game? ঈশ্ধিতা ও উর্মি একটি 2023×1 আকারের বোর্ডে খেলছে। খেলার শুরুতে ঠিক মাঝের ঘরে 2023 টি বল আছে। প্রত্যেক চালে একজন খেলোয়াড় কোনো ঘর থেকে দুইটি বল তুলে ওই ঘর সংলগ্ন বাকি দুই ঘরে একটি করে বল রাখতে পারে। একজন খেলোয়াড় তখনই জিতবে যখন আরেকজনের পক্ষে আর কোনো চাল দেওয়া সম্ভব হবে না। যদি ঈশ্ধিতা প্রথম চাল দেয়, তবে কে এই খেলায় জিতবে?	