95-791 DATA MINING FALL 2022 | 10/12/2022

Building Energy and Carbon Emissions Benchmarking Prediction

A Data Mining Study for Infrastructure Energy Management

Devashri Karve
Graduate Student
dkarve@andrew.cmu.edu
CEE Department
Carnegie Mellon University

Tanay Kulkarni
Graduate Student
tskulkar@andrew.cmu.edu
CEE Department
Carnegie Mellon University

Tian Li
Ph.D. Student
tili@cmu.edu
School of Architecture
Carnegie Mellon University

Mentor **Prof. Dr. Gabriela Gongora-Svartzman**

Data availability

year built

primary use

water use

hot water

property status

building area

water score rating

chilled water

carbon intensity

source energy use intensity monthly gas consumption

steam

site energy use intensity

natural gas

renewable energy

oil use

electricity grid monthly electricity consumption

energy star rating

carbon emission

The three challenges

- 1. Predict primary use of the building
 - 'Residential', 'Commercial', or 'Institutional'
- 2. Forecasting the building's EUI to describe the building energy use
 - Better prescribe predicted energy consumption.
 - Help the city authorities to plan the city's energy distribution for future scenarios.
- 3. Predict Carbon Intensity
 - Based on predicted primary use and EUI along with other features

Data mining process adopted:

Challenge 1: Predict 'primary use'

ML Models

KNN

Gaussian Naïve Bayes

Logistic Regression

Random Forest

Model	Accuracy (%)	Ranking
KNN	81.09	2
GNB	71.25	4
Logistic Reg	74.77	3
Random Forest	92.83	1

Hyper-parameters tuned, Refitted on best Model	Accuracy (%)
Random Forest	92.99

Key Insight:

The maximum accuracy was obtained following grid-search using the Random Forest model, which had a training accuracy of 92.99%, surpassing that of the Random Forest with default value!

Derive

Insights!

Select

Best Parameter &

Re-train

with Best Model

Challenge 2: Predict 'energy use intensity'

Derive

Insights!

Changed estimator number

Random Forest

R² (%, Test)

93.95

Challenge 3: Predict 'carbon intensity'

R² (%, Test)

97.28

Random Forest with default value!

Hyper-parameter tuned, Refitted on

best Model

Random Forest

Conclusions

- Random Forest classification predict building primary use type efficiently.
- Random Forest Regression performs the best compared to Linear, Ridge and Polynomial models to predict the source energy use intensity.
- Random Forest Regression with Grid-search can achieve the best result compared to Lasso, Ridge models to predict carbon intensity

Future work

- 'Repeatability' in other cities!
- Demographic and meteorological data can also be used in this study.

95-791 DATA MINING FALL 2022 | 10/12/2022

Building Energy and Carbon Emissions Benchmarking Prediction

A Data Mining Study for Infrastructure Management

Devashri Karve
Graduate Student
dkarve@andrew.cmu.edu
CEE Department
Carnegie Mellon University

Tanay Kulkarni
Graduate Student
tskulkar@andrew.cmu.edu
CEE Department
Carnegie Mellon University

Tian Li
Doctoral Student
tili@cmu.edu
School of Architecture
Carnegie Mellon University

Mentor **Prof. Dr. Gabriela Gongora-Svartzman**