

## Systeme II

3. Die Datensicherungsschicht

Christian Schindelhauer
Technische Fakultät
Rechnernetze und Telematik
Albert-Ludwigs-Universität Freiburg
Version 15.05.2017



# Fehlererkennung: CRC

- Effiziente Fehlererkennung: Cyclic Redundancy Check (CRC)
- Praktisch häufig verwendeter Code
  - Hoher Fehlererkennungsrate
  - Effizient in Hardware umsetzbar
- Beruht auf Polynomarithmetik im Restklassenring Z<sub>2</sub>
  - Zeichenketten sind Polynome
  - Bits sind Koeffizienten des Polynoms

$$a+b=b+a$$
 $a+b$ 
 $a+b$ 

$$2_{1} = \{0, 1\}$$
 $2_{1} = \{0, 1\}$ 
 $0 = 0$ 





### Rechnen in Z<sub>2</sub>

$$|23 = 1.10^{2} + 2.10^{1} + 3.10^{0}$$

$$CXXIII \qquad .$$

Rechnen modulo 2:

- Addition modulo 2 = Xor = Subtraktion modulo 2
- Multiplikation modulo 2 = And

| Α | В | A + B |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 0     |

| Α | В | A - B |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 0     |

| Α | В | A <b>∮</b> B |
|---|---|--------------|
| 0 | 0 | 0            |
| 0 | 1 | 0            |
| 1 | 0 | 0            |
| 1 | 1 | 1            |

- Beispiel: 
$$0 + (1 \cdot 0) + 1 + (1 \cdot 1) = 0$$

# Polynomarithmetik modulo 2

- Betrachte Polynome über den Restklassenring Z<sub>2</sub>
  - $p(x) = a_n x^n + ... + a_1 x^1 + a_0$
  - Koeffizienten a<sub>i</sub> u<del>nd Variable x</del> sind aus **∌** {0,1}

- Berechnung erfolgt modulo 2
- Addition, Subtraktion, Multiplikation, Division von Polynomen wie gehabt

$$0 \times x^{2} + \Lambda \cdot x + 1 + 1 + 1 \times x^{3} + 1 \times x^{2} + 2 \times x + 1$$

$$= \Lambda \cdot x^{3} + \Lambda \cdot x^{2} + \Lambda x + 1 + 1 = x^{3} + x^{2} + x$$

$$(x+1) \cdot (x+1) = x^{2} + (1+1) \cdot x + 1 = x^{2} + 1$$

$$x^{2} + x + 1 = x + 1 = x + 1 = x + 1$$

$$x^{2} + x + 1 = x + 1 = x + 1 = x + 1$$



$$\begin{array}{c} x + x + \lambda \\ x + \lambda + \lambda \end{array} = \begin{array}{c} \lambda \\ -1 \\ -1 \end{array}$$

10 = x

$$\chi^2 + 1 = (\chi + 1)^2$$



### Zeichenketten und Polynomarithmetik

- Idee:
  - Betrachte Bitstring der Länge n als Variablen eines Polynoms
- Bit string:  $b_n b_{n-1} ... b_1 b_0$

Polynom: 
$$b_n x^n + ... + b_1 x^1 + b_0$$

- Bitstring mit (n+1) Bits entspricht Polynom des Grads n
- Beispiel

$$-A xor B = A(x) + B(x)$$

- Wenn man A um k Stellen nach links verschiebt, entspricht das

• 
$$B(x) = A(x) x^{k}$$

Mit diesem Isomorphismus kann man Bitstrings dividieren

$$A(x) \mod x^{5}$$

$$110100000 = (x^{3} + x^{2} + 1) \circ x^{5}$$

$$1101101 : 1000000 = 110 + \frac{111019}{100000}$$



$$\frac{101101111011}{1000000} = \frac{1}{2} \times 6$$



# Polynome zur Erzeugung von Redundanz: CRC

11010 011) Bluetout

- Definiere ein Generatorpolynom G(x) von Grad g
  - Dem Empfänger und Sender bekannt
  - Wir erzeugen g redundante Bits
- Gegeben:
  - Frame (Nachricht) M, als Polynom M(x)
- Sender
  - Berechne den Rest der Division $(r(x) = x^g M(x) \mod G(x))$
  - Übertrage  $T(x) = x^g M(x) + r(x)$ 
    - Beachte: x<sup>g</sup> M(x) + r(x) ist ein Vielfaches von G(x)

T(x) mod 6(x)

- Empfänger
  - Empfängt m(x)
  - Berechnet den Rest: m(x) mod G(x)

$$= M(x) \cdot x^{\delta} + r(x) \mod G(x)$$

$$= r(x) + v(x) \mod G(x)$$

$$= r(x) + v(x) \mod G(x)$$

$$= 0 \mod G(x)$$



RFID

M 00000 : 101001= [110111 Rost: (11) T(Y) =1 101001 OO OU G 

# CoNe **Freiburg**

# CRC Übertragung und Empfang

#### Keine Fehler:

- T(x) wird korrekt empfangen
- Bitfehler: T(x) hat veränderte Bits
  - Äquivalent zur Addition eines Fehlerpolynoms E(x)
  - Beim Empfänger kommt T(x) + E(x) an
- Empfänger
  - Empfangen: m(x)
  - Berechnet Rest m(x) mod G(x)
  - Kein Fehler: m(x) = T(x),
    - dann ist der Rest 0
  - Bit errors:  $m(x) \mod G(x) = (\underline{T}(x) + \underline{E}(x)) \mod G(x)$  $= T(x) \mod G(x) + E(x) \mod G(x)$

Fehlerindikator





$$E(x) = |0|00|000 = G(x) \cdot x^{3}$$

$$G(x) \cdot (1+x)$$

$$G(x) \cdot P(x)$$

$$\frac{1}{2^{5}} = \frac{1}{2^{5}} = \frac{1}{2^$$

# CoNe Freiburg

#### CRC – Überblick





### Der Generator bestimmt die CRC-Eigenschaften

- Bit-Fehler werden nur übersehen, falls E(x) ein Vielfaches von G(x) ist
- Die Wahl von G(x) ist trickreich:
- Einzel-Bit-Fehler: E(x) = x<sup>i</sup> für Fehler an Position i
  - G(x) hat mindestens zwei Summenterme, dann ist E(x) kein Vielfaches von G(x) ist
- Zwei-Bit-Fehler:  $E(x) = x^i + x^j = x^j (x^{i-j} + 1)$  für i > j
  - G(x) darf nicht (x<sup>k</sup> + 1) teilen für alle k bis zur maximalen Frame-Länge
- Ungerade Anzahl von Fehlern:
  - E(x) hat nicht (x+1) als Faktor
  - Gute Idee (?): Wähle (x+1) als Faktor von G(x)
    - Dann ist E(x) kein Vielfaches von G(x)
- Bei guter Wahl von G(x):
  - kann jede Folge von r Fehlern erfolgreich erkannt werden
- Häufig:
  - G(x) wird als irreduzibles Polynom gewählt, dass heißt es ist kein Vielfache eines anderen (kleineren) Polynoms



#### CRC in der Praxis



- Verwendetes irreduzibles Polynom gemäß IEEE 802:
  - $x^{32} + x^{23} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$
- Achtung:
  - Fehler sind immer noch möglich
  - Insbesondere wenn der Bitfehler ein Vielfaches von G(x) ist.
- Implementation:
  - Für jedes Polynom x<sup>i</sup> wird r(x,i)= x<sup>i</sup> mod G(x) berechnet
  - Ergebnis von B(x) mod G(x) ergibt sich aus
  - $b_0 r(x,0) + b_1 r(x,1) + b_2 r(x,2) + ... + b_{k-1} r(x,k-1)$
  - Einfache Xor-Operation
- Oder rückgekoppelte Schieberegister



#### Fehlerkontrolle

- Zumeist gefordert von der Vermittlungsschicht
  - Mit Hilfe der Frames
- Fehlererkennung
  - Gibt es fehlerhaft übertragene Bits?
- Fehlerkorrektur
  - Behebung von Bitfehlern
  - Vorwärtsfehlerkorrektur (Forward Error Correction)
    - Verwendung von redundanter Kodierung, die es ermöglicht Fehler ohne zusätzliche Übertragungen zu beheben
  - Rückwärtsfehlerkorretur (Backward Error Correction)
    - Nach Erkennen eines Fehlers, wird durch weitere Kommunikation der Fehler behoben

Fehlerkontrolle

Fehlererkennung

Fehlerkorrektur

Vorwärtsfehlerkorrektur Rückwärtsfehlerkorrektur 5