ORDENAGAILUEN TEKNOLOGIAREN OINARRIAK LABORATEGIKO PRAKTIKA

5. Praktika: Fotoigorleak - Fototransistoreak

Hesi fotoelektriko baten muntaia egingo da, fotoigorle bat eta fototransistore (foto-hargailu) baten bidez, biak espektro infragorrian lan egingo dute. Praktika hau, *protoboard*ak muntatzeko maletan muntatuko da, osagai fisikoekin.

Osagai berria dugu, LM311a, seinale elektrikoen konparatzailea hain zuzen ere. Konparatzaile honek objektuak antzemango ditu, argi infragorria eteterakoan.

Tentsioen eta korronteen kalkulu teoriko eta praktikoak egingo dira. Horretarako, polimetroa erabiliko da.

Kalkulu eta neurketak:

- 1. D1 diodoan zehar doan korrontea kalkulatu eta neurtu.
- 2. Trt1 transistorearen igorlean dagoen tentsioa neurtu, hesia zabalik eta itxita dagoenean.
- **3.** R3 eta R4k sortzen duten korapiloan tentsioa neurtu eta kalkulatu.
- **4.** IC1eko irteerako tentsioa kalkulatu.
- 5. D2 diodoan zehar doan korrontea kalkulatu eta neurtu.

Osagaien zerrenda:

Erresistoreak	Osagaia
100 Ω	R1
10 ΚΩ	R2,R3,R4
270 Ω	R5
Fotodiodoak	
L53F3C (gardena)	D1
Fototransistoreak	
L53P3C (gardena)	Trt1
Led diodoak	
Gorria	D2
Zirkuitu Integratuak	
LM311	CI1

Fotoigorlea:

Infragorriko espektroko argia igortzen du kitzikatuta dagoenean. Igorritako argia hobeto fokalizatzeko lente bat dauka.

Fototransistorea:

Argi ikuskorreko eta argi infragorriko erradiazioetara sentikorra da. Bere fokua hobetzeko lentea dauka baita ere..

Konparatzailea:

Bi sarreren arteko konparaketa egiten du. (+) hankatxoko tentsioa, balio absolutuan (-) hankatxoko tentsioa baino handiagoa bada, irteera inpedantzia altuko egoeran jartzen da, kolektore irekia izanagatik. $V^- > V^+$ balio absolutuan, irteera, 0 da.

T-1 3/4 (5mm) INFRA-RED EMITTING DIODE

L-53F3C	L-53F3BT
L-53SF4C	L-53SF4BT
L-53SF6C	L-53SF6BT
L-53SF7C	L-53SF7BT

Features

- •MECHANICALLY AND SPECTRALLY MATCHED TO THE L-51P3C PHOTOTRANSISTOR.
- •BOTH WATER CLEAR LENS AND BLUE TRANSPARENT LENS AVAILABLE HIGH POWER OUTPUT.

Description

F3 Made with Gallium Arsenide Infrared Emitting diodes.

SF4 and SF6 and SF7 Made with Gallium Aluminum

Arsenide Infrared Emitting diodes.

Package Dimensions

- All dimensions are in millimeters (inches).
- 2. Tolerance is ±0.25(0.01*) unless otherwise noted.

 3. Lead spacing is measured where the lead emerge package.

 4. Specifications are subject to change without notice.

SPEC NO: KDA0438 APPROVED: J.LU

REV NO: V.1 CHECKED:

DATE: SEP/21/2001 DRAWN: J.X.FU

PAGE: 1 OF 5

Selection Guide

Part No.	Dice	Lens Type	Po (m @20	nW/sr) 0mA	Po (m @50	Viewing Angle	
			Min.	Тур.	Min.	Тур.	201/2
L-53F3C	GaAs	WATER CLEAR	8	20	12	30	30°
L-53F3BT	GaAs	BLUE TRANS.	5	20	8	30	30°
L-53SF4C	GaAlAs	WATER CLEAR	8	20	12	30	30°
L-53SF4BT	GaAlAs	BLUE TRANS.	5	20	8	30	30°
L-53SF6C	GaAlAs	WATER CLEAR	10	40	50	100	30°
L-53SF6BT	GaAlAs	BLUE TRANS.	10	40	50	100	30°
L-53SF7C	GaAlAs	WATER CLEAR	10	40	50	100	30°
L-53SF7BT	GaAlAs	BLUE TRANS.	10	40	50	100	30°

Electrical / Optical Characteristics at T_A=25°C

Item	P/N	Symbol	Тур.	Max.	Unit	Condition
Forward Voltage	F3 SF4 SF6 SF7	V _F	1.2 1.3 1.35 1.4	1.5 1.7 1.6 1.8	٧	IF=20mA
Reverse Current	F3 SF4 SF6 SF7	I _R	-	10 10 10 10	uA	VR=5V
Junction Capacitance	F3 SF4 SF6 SF7	С	90 90 30 30	-	pF	V=0 f=1MHz
Peak Spectral Wavelength	F3 SF4 SF6 SF7	λP	940 880 860 850	-	nm	IF=20mA
Spectral Bandwidth	F3 SF4 SF6 SF7	Δλ	50 50 50 41	-	nm	IF=20mA

SPEC NO: KDA0438 APPROVED: J.LU

REV NO: V.1 CHECKED:

DATE: SEP/21/2001

PAGE: 2 OF 5

DRAWN: J.X.FU

Note: 1. θ 1/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.

Absolute Maximum Ratings at T_A=25°C

Item	Symbol	F3&SF4	SF6&SF7	Units
Power Dissipation	Pd	100	100	mW
Forward Current	l _F	50	50	mA
Peak Forward Current	l _P	1.2	1	Α
Reverse Voltage	V _R	5	5	V
Operating Temperature	Topr	-40~ +85	-40~ +85	°C
Storage Temperature	Tstg	-40~ +85	-40~ +85	°C

- Notes: 1. 1/10 Duty Cycle, 0.1ms Pulse Width.
- 2. 4mm below package base.

L-53F3C, L-53F3BT

SPEC NO: KDA0438 APPROVED: J.LU

REV NO: V.1 CHECKED:

DATE: SEP/21/2001

DRAWN: J.X.FU

PAGE: 3 OF 5

L-53SF4C, L-53SF4BT

L-53SF6C, L-53SF6BT

SPEC NO: KDA0438 APPROVED: J.LU REV NO: V.1 CHECKED: DATE: SEP/21/2001 DRAWN: J.X.FU PAGE: 4 OF 5

L-53SF7C, L-53SF7BT

0 1.0 1.4 1.8 2.2 2.6 3.

FORWARD VOLTAGE

O TO THE T

Ambient Temperature $T_{\mathbb{A}}(\mathfrak{C})$ LUMINOUS INTENSITY Vs. AMBIENT TEMPERATURE

10 20 30 40 50
IF—Forward Current (mA)
LUMINOUS INTENSITY Vs.
FORWARD CURRENT

SPATIAL DISTRIBUTION

PHOTOTRANSISTOR

L-53P3C

Features

- •MECHANICALLY AND SPECTRALLY MATCHED TO THE L-53 SERIES INFRARED EMITTING LED LAMP.
- •WATER CLEAR LENS.

Description

Made with NPN silicon phototransistor chips.

Package Dimensions

Notes:

- 1. All dimensions are in millimeters (inches).
 2. Tolerance is ±0.25(0.01") unless otherwise noted.
 3. Lead spacing is measured where the lead emerge package.
 4. Specifications are subject to change without notice.

SPEC NO: DSAA4158 APPROVED : J. Lu

REV NO: V.4

CHECKED : Allen Liu

DATE:MAR/06/2003 DRAWN: D.L.HUANG PAGE: 1 OF 2

Electrical / Optical Characteristics at T_A=25°C

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Condiction
VBR CEO	Collector-to-Emitter Breakdown Voltage	30	-	-	٧	Ic=100uA E _e =0mW/cm ²
VBR ECO	Emitter-to-Collector Breakdown Voltage	5	-	-	٧	I _E =100uA E _e =0mW/cm ²
VCE (SAT)	Collector-to-Emitter Saturation Voltage	-	-	0.8	٧	Ic=2mA E _e =20mW/cm ²
ICEO	Collector Dark Current	-	-	100	nA	VcE=10V E _e =0mW/cm ²
TR	Rise Time (10% to 90%)	-	3	-	us	VcE=5V lc=1mA
TF	Fall Time (90% to 10%)	-	3	-	us	RL=1000Ω
I (ON)	On State Collector Current	0.1	0.5	-	mA	V _{CE} =5V Ee=1mW/cm ² λ=940nm

Absolute Maximum Ratings at T_A=25°C

Parameter	Maximum Rating				
Collector-to-Emitter Breakdown Voltage	30V				
Emitter-to-Collector Breakdown Voltage	5V				
Power Dissipation at (or below) 25°C Free Air Temperature	100mW				
Operating Temperature Range	-40°C ~ +85°C				
Storage Temperature Range	-40°C ~ +85°C				
Lead soldering Temperature (>5mm for 5sec)	260°C				

SPEC NO: DSAA4158 REV NO: V.4 DATE: MAR/06/2003 PAGE: 2 OF 2
APPROVED: J. Lu CHECKED: Allen Liu DRAWN: D.L.HUANG

INTEGRATED CIRCUITS

DATA SHEET

LM111/211/311/311B

Voltage comparator

Product data Supersedes data of 1994 Aug 31 File under Integrated Circuits, IC11 Handbook 2001 Aug 03

Philips Semiconductors

Voltage comparator

LM111/211/311/311B

DESCRIPTION

The LM111 series are voltage comparators that have input currents approximately a hundred times lower than devices like the $\mu A710$. They are designed to operate over a wider range of supply voltages; from standard ± 15 V op amp supplies down to a single 3 V supply. Their output is compatible with RTL, DTL, and TTL as well as MOS circuits. Further, they can drive lamps or relays, switching voltages up to 50 V at currents as high as 50mA.

Both the inputs and the outputs of the LM111 series can be isolated from system ground, and the output can drive loads referred to ground, the positive supply, or the negative supply. Offset balancing and strobe capability are provided and outputs can be wire-ORed.

Although slower than the $\mu A710$ (200 ns response time versus 40 ns), the devices are also much less prone to spurious oscillations. The LM111 series has the same pin configuration as the $\mu A710$ series.

FEATURES

• Operates from single 3 V supply (LM311B)

• Maximum input bias current: 150 nA (LM311: 250 nA)

• Maximum offset current: 20 nA (LM311: 50 nA)

• Differential input voltage range: ±30 V

• Power consumption: 135 mW at ±15 V

• High sensitivity: 200 V/mV

Zero crossing detector

PIN CONFIGURATION

Figure 1. Pin Configuration

APPLICATIONS

- Precision squarer
- Positive/negative peak detector
- Low voltage adjustable reference supply
- Switching power amplifier

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG#
8-Pin Plastic Small Outline Package (SO)	−55 °C to +125 °C	LM111D	SOT96-1
8-Pin Plastic Dual In-Line Package (DIP)	−55 °C to +125 °C	LM111N	SOT97-1
8-Pin Plastic Small Outline Package (SO)	−25 °C to +85 °C	LM211D	SOT96-1
8-Pin Plastic Dual In-Line Package (DIP)	−25 °C to +85 °C	LM211N	SOT97-1
8-Pin Plastic Small Outline Package (SO)	0 °C to +70 °C	LM311D	SOT96-1
8-Pin Plastic Dual In-Line Package (DIP)	0 °C to +70 °C	LM311N	SOT97-1
8-Pin Plastic Small Outline Package (SO)	0 °C to +70 °C	LM311BD	SOT96-1
8-Pin Plastic Dual In-Line Package (DIP)	0 °C to +70 °C	LM311BN	SOT97-1

Voltage comparator

LM111/211/311/311B

EQUIVALENT SCHEMATIC

Figure 2. Equivalent Schematic

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _S	Total supply voltage	36	V
	Output to negative supply voltage: LM111/LM211 LM311/LM311B	50 40	V
	Ground to negative supply voltage	30	V
	Differential input voltage	±30	V
V _{IN}	Input voltage ¹	±15	V
P _{D MAX}	Maximum power dissipation, T _{amb} = 25 °C (still-air) ² N package D package	1190 780	mW mW
I	Output short-circuit duration	10	sec
T _{amb}	Operating ambient temperature range LM111 LM211 LM311/LM311B	-55 to +125 -25 to +85 0 to +70	°° °° °°
T _{stg}	Storage temperature range	-65 to +150	°C
T _{sld}	Lead soldering temperature (10 sec max)	230	°C

NOTES:

1. This rating applies for ±15 V supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.

2. Derate above 25 °C, at the following rates:

N package at 9.5 mW/°C

D package at 6.2 m/W°C

Voltage comparator

LM111/211/311/311B

DC ELECTRICAL CHARACTERISTICS^{1, 2, 3, 6}

Over temperature range unless otherwise specified.

SYMBOL	DADAMETED	TEAT COMPLETIONS	LM	1111/LM	211		LM311			LM311B	3	
SYMBOL	PARAMETER	TEST CONDITIONS	Min	in Typ Max		Min Typ N		Max	Min	Тур	Max	UNIT
V _{OS}	Input offset voltage ³	T _{amb} = 25 °C; R _S ≤ 50 kΩ		0.7	3.0		2.0	7.5		2.0	7.5	m∨
Ios	Input offset current ³	T _{amb} = 25 °C		4.0	10		6.0	50		6	25	nA
I _{BIAS}	Input bias current	T _{amb} = 25 °C		60	100		100	250		100	200	nA
A _V	Voltage gain	T _{amb} = 25 °C		200			200			200		V/mV
	Response time ⁴	T _{amb} = 25 °C		200			200			500		ns
V_{SAT}	Saturation voltage	LM111/211 $V_{IN} \le -5mV$; $I_{OUT} = 50 \text{ mA}$		0.75	1.5		0.75	1.5		0.75	1.5	V
I _{BAL/STR}	Strobe on current	T _{amb} = 25 °C		3.0			3.0			3.0		mA
I _{LEAKAGE}	Output leakage current ⁶	$\begin{split} & LM111/211 \ V_{IN} \ge 5 \ mV; \\ & V_{OUT} = 35 \ V \\ & LM311/B \ V_{IN} \ge 10 \ mV; \\ & V_{OUT} = 35 \ V \\ & T_{amb} = 25 \ ^{\circ}C, \\ & _{STROBE} = 3 \ mA \\ & (V = V_{GND} = -5 \ V) \end{split}$		0.2	10		0.2	50		0.2	50	nA
Vos	Input offset voltage ³	$R_S \le 50 \text{ k}\Omega$			4.0			10			10	mV
Ios	Input offset current3				20			70			50	nA
I _{BIAS}	Input bias current				150			300			250	nA
V _{IN}	Input voltage range	V = ±15 V (Pin 7 may go to 5 V)	-14.5	13.8 to –14.7	13.0	-14.5	13.8 to –14.7	13.0	V- +0.5		V+ -1.5	٧
V _{OL}	Saturation voltage ⁶	$\begin{array}{c} \text{V+} \geq 4.5 \text{ V, V-} = 0 \text{ V} \\ \text{LM111/211 V}_{\text{IN}} \leq -6 \text{ mV;} \\ \text{I}_{\text{SINK}} \leq 8 \text{ mA} \\ \text{LM311/B V}_{\text{IN}} \leq -10 \text{ mV;} \\ \text{I}_{\text{SINK}} \leq 8 \text{ mA} \end{array}$		0.23	0.4		0.23	0.4		0.23	0.4	٧
Іон	Output leakage current	V _{IN} ≥ 5 mV; V _{OUT} = 35 V		0.1	0.5							μА
Icc	Positive supply current	T _{amb} = 25 °C		5.1	6.0		5.1	7.5		1.6	3.5	mA
I _{EE}	Negative supply voltage	T _{amb} = 25 °C		4.1	5.0		4.1	5.0				mA

- NOTES:

 1. This rating applies for ±15 V supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less.

 2. These specifications apply for V_S = ±15 V and 0 °C < T_{amb} < 70 °C unless otherwise specified. With the LM211, however, all temperature specifications are limited to -25 °C < T_{amb} ≤ +85 °C, and for the LM111 is limited to -55 °C < T_{amb} < +125 °C. The offset voltage, offset current, and bias current specifications apply for any supply voltage from a single 5 V supply up to ±15 V supplies.

 3. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

 4. The recognest line specified is for a 100 mV input stop with 5 mV over drive.
- 4. The response time specified is for a 100 mV input step with 5 mV over-drive.
- Do not short the strobe pin to ground; it should be current driven at 3 mA to 5 mA.
 LM311B, all parameters are at V+ = 3 V ±10%; V- = GND = 0 V.

Voltage comparator

LM111/211/311/311B

TYPICAL APPLICATIONS

Figure 3. Typical Applications

2001 Aug 03 5

Voltage comparator

LM111/211/311/311B

DIP8: plastic dual in-line package; 8 leads (300 mil)

SOT97-1

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT97-1	050G01	MO-001	SC-504-8		95-02-04 99-12-27	

Voltage comparator

LM111/211/311/311B

SO8: plastic small outline package; 8 leads; body width 3.9 mm

SOT96-1

UNIT	A max.	Α1	A ₂	A ₃	bp	c	D ⁽¹⁾	E ⁽²⁾	e	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	5.0 4.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.20 0.19	0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Notes

- Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ		PROJECTION	DOUE DATE
SOT96-1	076E03	MS-012				97-05-22 99-12-27

Voltage comparator

LM111/211/311/311B

Data sheet status

Data sheet status [1] Product status [2]		Definitions		
Objective data	Development	nt This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without		
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.		
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.		

^[1] Please consult the most recently issued data sheet before initiating or completing a design.

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com.

Fax: +31 40 27 24825

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com. © Koninklijke Philips Electronics N.V. 2001 All rights reserved. Printed in U.S.A.

Date of release: 12-01

Document order number:

9397 750 09216

Let's make things better.

Philips Semiconductors

^[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.