

ISO/IEC17025Accredited Lab.

FCC SAR Compliance Test Report For

Dongguan Mingtel Digital Technology Co.,Ltd

1# West District, Hongying industrial Zone, Fenggang Town, Dongguan City,

China

Model: A7XX(XX means 00~99)

Shenzhen Timeway Technology Consulting Co.,Ltd 5/F,Block 4,Anhua Industrial Zone.,No.8 TaiRan Rd.CheGongMiao,Futian District,Shenzhen,CHINA Prepared By: Tel(755)83448688 Fax(755)83442996 Report Number: TW1402007-SAR FCC ID: 2ABKRA727 Report Date: 2014-01-16 Check By: Reviewed By: World Standardization Certification & Testing CO., LTD. Building A, Baoshi Science & Technology Park, Baoshi Testing laboratory: Road, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-26996192 Fax: +86-755-26996253

Table of contents

1.2 Application details	(information5
1.3 Statement of Compliance. 1.4 EUT Information	.1	tes5
1.4 EUT Information	.2	olication details5
1.5 Test standard/s: 1.6 RF exposure limits	.3	tement of Compliance6
1.6 RF exposure limits	.4	T Information7
1.7 SAR Definition	.5	st standard/s:8
1.7 SAR Definition	.6	
Test Environment	.7	
Test Environment		
4 Applicant and Manufacturer		
5 SAR Measurement System		nt and Manufacturer10
5.1 The Measurement System 5.2 Robot		
5.2 Robot		•
5.3 Probe	5.2	bot12
5.5 Description of interpolation/extrapolation scheme	5.3	be12
5.6 Phantom	5.4	asurement procedure13
5.6 Phantom	5.5	scription of interpolation/extrapolation scheme13
5.8 Video Positioning System	5.6	antom14
5.9 Tissue simulating liquids: dielectric properties 5.10 Tissue simulating liquids: parameters 6 System Check 6.1 System check procedure 6.2 System check results 7 Measurement uncertainty evaluation 7.1 Measurement uncertainty evaluation for SAR test 7.2 Measurement uncertainty evaluation for system check	5.7	vice Holder15
5.10 Tissue simulating liquids: parameters 6 System Check 6.1 System check procedure 6.2 System check results 7 Measurement uncertainty evaluation 7.1 Measurement uncertainty evaluation for SAR test 7.2 Measurement uncertainty evaluation for system check	5.8	eo Positioning System16
6 System Check	5.9	sue simulating liquids: dielectric properties17
6.1 System check procedure	5.10	sue simulating liquids: parameters17
6.2 System check results	;	Check18
7 Measurement uncertainty evaluation	5.1	stem check procedure18
7.1 Measurement uncertainty evaluation for SAR test	5.2	stem check results18
7.2 Measurement uncertainty evaluation for system check	,	ement uncertainty evaluation19
7.2 Measurement uncertainty evaluation for system check	'.1	asurement uncertainty evaluation for SAR test19
8 SAR Test Test Configuration	'.2	asurement uncertainty evaluation for system check20
-	3 :	st Test Configuration21
8.1 WiFi Test Configuration	3.1	Fi Test Configuration21

Report No.:TW1402007-SAR

SAR Evaluation Report

9	Detaile	ed Test Results	22
9.1	Co	onducted Power measurements	22
9.1.	.1 Co	onducted Power of WiFi 2.4G	22
9.2	SA	AR test results	23
9.2.	.1 Re	esults overview of WiFi 2.4G	23
10	Mι	ultiple Transmitter Information	24
11	Te	st equipment and ancillaries used for tests	25
Anı	nex A:	System performance verification	26
Anı	nex B:	Measurement results	26
Anı	nex C:	Calibration reports	26
Anı	nex D:	Photo documentation	27

Report No.:TW1402007-SAR

Modified History

REV.	Modification Description	Issued Date	Remark
REV.1.0	Initial Test Report Relesse	2014-01-16	

1 General information

1.1 Notes

The test results of this test report relate exclusively to the test item specified in this test report. Shenzhen Timeway Testing Laboratories does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report is not to be reproduced or published in full without the prior written permission.

1.2 Application details

Date of receipt of test item: 2013-12-05
Start of test: 2013-12-30
End of test: 2013-12-30

1.3 Statement of Compliance

Report No.:TW1402007-SAR

The maximum results of Specific Absorption Rate (SAR) found during testing for Dongguan Mingtel Digital Technology Co.,Ltd,Model Name: A727 is as below:

Band	Position	MAX Reported SAR _{1g} (W/kg)
WiFi 2450	Body(0mm)	0.692

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontraolled exposure limits of 1.6 W/Kg as averaged over any 1g tissue according to the FCC rule §2.1093, the ANSI/IEEE C95.1:2005, the NCRP Report Number 86 for uncontrolled environment, according to the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2003 & IEEE Std 1528a-2005.

1.4 EUT Information

Device Information:			
Product Type:	Tablet		
Model:	A727		
Device Type:	Portable device		
Exposure Category:	uncontrolled envir	onment / genera	al population
Production Unit or Identical Prototype:	Prototype		
Hardware version:	NA		
Software version :	NA		
Antenna Type :	PCB antenna		
Device Operating Configurations:			
Supporting Mode(s):	WiFi (tested)		
Modulation:	DSSS;OFDM		
Operating Frequency Range(s)	Band	TX(MHz)	RX(MHz)
- i	WIFI	2412~2462	2412~2462
Test Channels (low-mid-high):	1-6-11 (WiFi 2450)		
Power Source:	3.7 VDC/2800mAh Rechargeable Battery		

1.5 Test standard/s:

ANSI Std C95.1-2005	Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
IEEE Std 1528-2003	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
IEEE Std 1528a-2005	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques Amendment 1: CAD File for Human Head Model (SAM Phantom)
RSS-102	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands (Issue 4 of March 2010)
KDB447498 D01	General RF Exposure Guidance v05r01
KDB248227 D01	SAR meas for 802.11 a/b/g v01r02
KDB865664 D01	SAR Measurement 100 MHz to 6 GHz v01r02
KDB865664 D02	RF Exposure Reporting v01r01
KDB616217 D04	SAR for laptop and tablets v01r01

1.6 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain/Body/Arms/Legs)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

The limit applied in this test report is shown in bold letters

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.

1.7 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by(dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2 Testing laboratory

Test Site	World Standardization Certification & Testing CO., LTD.
Test Location	Building A, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China
Telephone	+86-755-26996192
Fax	+86-755-26996253
State of accreditation	The Test laboratory (area of testing) is accredited according to ISO/IEC 17025. CNAS Registration number:L3732

3 Test Environment

	Required	Actual
Ambient temperature:	18 – 25 °C	22 ± 2 °C
Tissue Simulating liquid:	22 ± 2 °C	22 ± 2 °C
Relative humidity content:	30 – 70 %	30 – 70 %

4 Applicant and Manufacturer

Applicant/Client Name Dongguan Mingtel Digital Technology Co.,Ltd	
Applicant Address 1# West District, Hongying industrial Zone, Fenggang Town, Dongguan City, China	
Manufacturer Name	Dongguan Mingtel Digital Technology Co.,Ltd
Manufacturer Address	1# West District, Hongying industrial Zone, Fenggang Town, Dongguan City, China

5 SAR Measurement System

5.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Device holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

5.2 Robot

The COMOSAR system uses the high precision robots KR 6 R900 sixx type out of the newer series from Satimo SA (France). For the 6-axis controller COMOSAR system, the KUKA robot controller version from Satimo is used. The KR 6 R900 sixx robot series have many features that are important for

our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

5.3 Probe

For the measurements the Specific Dosimetric E-Field Probe SSE 5 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 5 mm

- Distance between probe tip and sensor center: 2.5mm

- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)
- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.50 dB
- Calibration range: 835 to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line:less than 30°

5.4 Measurement procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface.
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors can not directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point,a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8
 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

5.5 Description of interpolation/extrapolation scheme

- The local SAR inside the phantom is measured using small dipole sensing elements inside a
 probe body. The probe tip must not be in contact with the phantom surface in order to minimise
 measurements errors, but the highest local SAR will occur at the surface of the phantom.
- An extrapolation is using to determinate this highest local SAR values.
 The extrapolation is based on afourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.
- The measurements have to be performed over a limited time(due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR average over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

5.6 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

5.7 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

Device holder

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

5.8 Video Positioning System

- The video positioning system is used in OpenSAR to check the probe. Which is composed of a camera, LED, mirror and mechanical parts. The camera is piloted by the main computer with firewire link.
- During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.
- The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

5.9 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials.

(Liquids used for tests are marked with⊠):

Ingredients(% of weight)	Frequency (MHz)					
frequency band	<u> </u>	☐ 835	<u> </u>	<u> </u>	2450	
Tissue Type	Head	Head	Head	Head	Head	
Water	38.56	41.45	52.64	55.242	62.7	
Salt (NaCl)	3.95	1.45	0.36	0.306	0.5	
Sugar	56.32	56.0	0.0	0.0	0.0	
HEC	0.98	1.0	0.0	0.0	0.0	
Bactericide	0.19	0.1	0.0	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	36.8	
DGBE	0.0	0.0	47.0	44.542	0.0	
Ingredients(% of weight)			Frequency (I	MHz)		
frequency band	<u> </u>	□ 835	<u> </u>	<u> </u>	∑ 2450	
Tissue Type	Body	Body	Body	Body	Body	
Water	51.16	52.4	69.91	69.91	73.2	
Salt (NaCl)	1.49	1.40	0.13	0.13	0.04	
Sugar	46.78	45.0	0.0	0.0	0.0	
HEC	0.52	1.0	0.0	0.0	0.0	
Bactericide	0.05	0.1	0.0	0.0	0.0	
					0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, $16M\Omega$ + resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

5.10 Tissue simulating liquids: parameters

Used Target	Target	Target Tissue			Liquid		
Frequency	ε _r (+/-5%)	σ (S/m) (+/-5%)	٤r	σ (S/m)	Temp.	Test Date	
2410MHz Body	52.80 (50.16~55.44)	1.91 (1.81~2.01)	54.28	1.91	21.4°C	2013-12-30	
2435MHz Body	52.70 (50.07~55.34)	1.94 (1.84~2.04)	53.88	1.93	21.4°C	2013-12-30	
2450MHz Body	52.70 (50.07~55.34)	1.95 (1.85~2.05)	53.67	1.95	21.4°C	2013-12-30	
2460MHz Body	52.70 (50.07~55.34)	1.96 (1.86~2.06)	53.51	1.97	21.4°C	2013-12-30	
	ϵ_r = Relative permittivity, σ = Conductivity						

6 System Check

6.1 System check procedure

The System check is performed by using a System check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100 mW. To adjust this power a power meter is used. The power sensor is connected to the cable before the System check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

6.2 System check results

The system Check is performed for verifying the accuracy of the complete measurement system and performance of the software. The following table shows System check results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A).

		(1) - (-)	- /			
System Check	Target SAR (1W) (+/-10%)		ured SAR lized to 1W)	Liquid	Test Date
System Check	1-g (mW/g)	10-g (mW/g)	1-g (mW/g)	10-g (mW/g)	Temp.	rest Date
D2450V2 Body	51.89 (46.70~57.80)	23.96 (21.56~26.36)	51.29	23.49	21.4°C	2013-12-30
	Note: All SAR values are normalized to 1W forward power.					

7 Measurement uncertainty evaluation

7.1 Measurement uncertainty evaluation for SAR test

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Satimo. The breakdown of the individual uncertainties is as follows:

Measurement Uncertainty evaluation for SAR test								
Uncertainty Component	Tol. (±%)	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g U _i (±%)	10g U _i (±%)	Vi
measurement system					4			ı
Probe Calibration	5.8	N	1	1	1	5.8	5.8	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	$(1-C_p)^{1/2}$	1.43	1.43	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	$\sqrt{C_p}$	√Cp	2.41	2.41	∞
Boundary Effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
system Detection Limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	3	N	1	1	1	3.00	3.00	8
Readout Electronics	0.5	N	1	1	1	0.50	0.50	8
Response Time	0	R	$\sqrt{3}$	1	1	0.00	0.00	8
Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF Ambient Conditions-Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF Ambient Conditions- Reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe Positioner Mechanical Tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, interpolation and Integration Algorithms for Max.SAR Evaluation	2.3	R	√3	1	1	1.33	1.33	8
Test sample Related								
Test Sample Positioning	2.7	N	1	1	1	2.70	2.70	11
Device Holder Uncertainty	3	N	1	1	1	3.00	3.00	7
Output Power Variation-SAR drift measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	2	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and Tissue Parameters	ı	ı	T	T				
Phantom Uncertainty (shape and thickness tolerances)	4	R	$\sqrt{3}$	1	1	2.31	2.31	∞
Uncertainty in SAR correction for deviation (in permittivity and conductivity)	2	N	1	1	0.84	2.00	1.68	∞
Liquid conductivity (meas.)	2.5	N	1	0.64	0.43	1.60	1.08	5
Liquid conductivity (target.)	5	R	$\sqrt{3}$	0.64	0.43	1.85	1.24	5
Liquid Permittivity (meas.)	2.5	N	1	0.60	0.49	1.50	1.23	∞
Liquid Permittivity (target.)	5	R	$\sqrt{3}$	0.60	0.49	1.73	1.42	∞
Combined Standard Uncertainly		Rss				10.21	9.96	
Expanded Uncertainty{95% CONFIDENCE INTERRVAL}		k				20.42	19.92	

7.2 Measurement uncertainty evaluation for system check

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Satimo. The breakdown of the individual uncertainties is as follows:

Uncertainty For System Performance Check								
Uncertainty Component	Tol. (±%)	Prob. Dist.	Div.	C _i	C _i 10g	1g U _i (±%)	10g U _i (±%)	Vi
measurement system								
Probe Calibration	5.8	N	1	1	1	5.80	5.80	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	$(1-C_p)^{1/2}$	$(1-C_p)^{1/2}$	1.43	1.43	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	√C _p	√Cp	2.41	2.41	∞
Boundary Effect	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
system detection Limits	1	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	0	N	1	1	1	0.00	0.00	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	8
RF ambient Conditions - Noise	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient Conditions – Reflections	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioned Mechanical Tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	1.4	R	√3	1	1	0.81	0.81	∞
Extrapolation, interpolation and integration Algorithms for Max. SAR Evaluation	2.3	R	√3	1	1	1.33	1.33	∞
Dipole								
Deviation of experimental source from numerical source	4	N	1	1	1	4.00	4.00	∞
Input power and SAR drift measurement	5	R	$\sqrt{3}$	1	1	2.89	2.89	8
Dipole axis to liquid Distance	2	R	$\sqrt{3}$	1	1	1.16	1.16	8
Phantom and Tissue Parameters								
Phantom Uncertainty (shape and thickness tolerances)	4	R	√3	1	1	2.31	2.31	8
Uncertainty in SAR correction for deviation (in permittivity and conductivity)	2	N	1	1	0.84	2.00	1.68	8
Liquid conductivity (meas.)	2.5	N	1	0.64	0.43	1.60	1.08	5
Liquid conductivity (target.)	5	R	$\sqrt{3}$	0.64	0.43	1.85	1.24	5
Liquid Permittivity (meas.)	2.5	N	1	0.60	0.49	1.50	1.23	∞
Liquid Permittivity (target.)	5	R	√3	0.60	0.49	1.73	1.41	8
Combined Standard Uncertainty		Rss				9.74	9.48	
Expanded Uncertainty (95% Confidence interval)		k				19.49	18.96	

8 SAR Test Test Configuration

8.1 WiFi Test Configuration

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WiFi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1,6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g modes are tested on channel 1, 6, 11; however,if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

Mode	Mode Band	Band GHz		Channel	"Default Test Channels"		
oue				802.11b	802.11g		
		2412	1#	V	Δ		
802.11b/g	/g 2.4 GHz	2437	6	V	Δ		
		2462	11#	V	Δ		

Notes:

 $\sqrt{\ }$ = "default test channels"

 Δ = possible 802.11g channels with maximum average output ½ dB the "default test channels"

= when output power is reduced for channel 1 and /or 11 to meet restricted band requirements the highest output channels closest to each of these channels should be tested.

802.11 Test Channels per FCC Requirements

9 Detailed Test Results

9.1 Conducted Power measurements

The output power was measured using an integrated RF connector and attached RF cable.

9.1.1 Conducted Power of WiFi 2.4G

Wi-Fi 2450MHz	Channel	Output Power (dBm)		
	1	15.96		
802.11b	6	17.03		
	11	17.68		
	1	12.25		
802.11g	6	11.63		
	11	13.48		
802.11n	1	12.25		
(20M)	6	12.62		
(2011)	11	12.82		
802.11n	3	11.69		
(40M)	6	12.01		
(40101)	9	12.10		

Note:channel /Frequency: 1/2412, 3/2422,6/2437,9/2452,11/2462.

9.2 SAR test results

9.2.1 Results overview of WiFi 2.4G

Test Position of	Test channel	Test		Value 'kg)	Power Drift	Output Power	Tune- up	Scaled SAR _{1-q}	Liquid
Body With 0mm	/Freq.(MHz)	Mode	1-g	10-g	(%)	(dBm)	Limit (dBm)	(W/kg)	Temp.
Rear Side	6/2437	802.11b	0.478	0.184	-0.280	17.03	18.00	0.598	21.4°C
Rear Side	1/2412	802.11b	0.273	0.102	-0.491	15.96	18.00	0.437	21.4°C
Rear Side	11/2462	802.11b	0.643	0.248	0.040	17.68	18.00	0.692	21.4°C
Left Side	11/2462	802.11b	0.217	0.091	-4.810	17.68	18.00	0.234	21.4°C
Bottom Side	11/2462	802.11b	0.029	0.015	-0.320	17.68	18.00	0.031	21.4°C

Note:

- 1) The maximum SAR value of each test band is shown in **bold** letters.
- 2) Per KDB447498 D01v05,the SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the scaled SAR measured at mid-band channel for each test configuration is at least 3.0 dB lower than the SAR limit (< 0.8 W/kg), testing at the high and low channels is optional.
- 3)Per KDB865664 D01v01,for each frequency band,repeated SAR measurement is required only when the measured SAR is \geq 0.8W/kg;if the deviation among the repeated measurement is \leq 20%,and the measured SAR < 1.45W/kg;only one repeated measurement is required.
 - 4) All measurement SAR result is scaled-up to account for tune-up tolerance is compliant.
- 5) For the antenna-to-edge distance is greater than 5cm,so the Right and Top sides do not need to be tested.

10 Multiple Transmitter Information

The location of the antennas inside A727 is shown as below picture:

< Rear Side >

The SAR measurement positions of each side are as below:

Mode	Front Side	Rear Side	Left Side	Right Side	Top Side	Bottom Side
WiFi 2.4G	No	Yes	Yes	No	No	Yes

Note: 1) Per KDB616217 D04v01, SAR evaluation is required for the back surface and edges of the tablet when the diagonal dimension of the device is >20cm. When the antenna-to-edge distance is greater than 5 cm, the side does not need to be tested.

2) The Tablet has 2.4G WiFi only, so there is not Simultaneous transmission.

11 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

	Manufacturer	Device Type	Type(Model)	Serial number	Date of last calibration
\boxtimes	SATIMO	COMOSAR DOSIMETRIC E FIELD PROBE	SSE5	SN 09/13 EP170	2013-04-11
	SATIMO	835 MHz Dipole	SID835	SN 14/13 DIP0G835-235	2013-04-11
	SATIMO	COMOSAR 900 MHz REFERENCE DIPOLE	SID900	SN 14/13 DIP0G900-231	2013-04-11
	SATIMO	COMOSAR 1800 MHz REFERENCE DIPOLE	SID1800	SN 14/13 DIP1G800-232	2013-04-11
	SATIMO	COMOSAR 1900 MHz REFERENCE DIPOLE	SID1900	SN 14/13 DIP1G900-236	2013-04-11
	SATIMO	COMOSAR 2000 MHz REFERENCE DIPOLE	SID2000	SN 14/13 DIP2G000-237	2013-04-11
\boxtimes	SATIMO	COMOSAR 2450 MHz REFERENCE DIPOLE	SID2450	SN 14/13 DIP2G450-238	2013-04-11
\boxtimes	SATIMO	Software	OPENSAR	N/A	N/A
\boxtimes	SATIMO	Phantom	COMOSAR IEEE SAM PHANTOM	SN 14/13 SAM99	N/A
\boxtimes	R&S	Universal Radio Communication Tester	CMU 200	117528	2013-09-22
\boxtimes	HP	Network Analyser	8753D	3410A08889	2013-08-19
\boxtimes	HP	Signal Generator	E4421B	GB39340770	2013-08-28
\boxtimes	Keithley	Multimeter	Keithley 2000	4014539	2013-08-22
\boxtimes	SATIMO	Amplifier	Power Amplifier	MODU-023-A- 0004	2013-08-19
\boxtimes	Agilent	Power Meter	E4418B	GB43312909	2013-08-22
\boxtimes	Agilent	Power Meter Sensor	E4412A	MY41500046	2013-08-22

Note: All the test equipments are calibrated once a year, except the dipoles, which are calibrated every three years. Moreover, we have self-calibration every year to the dipoles

Annex A: System performance verification

(Please See the SAR Measurement Plots of annex A.)

Annex B: Measurement results

(Please See the SAR Measurement Plots of annex B.)

Annex C: Calibration reports

(Please See the Calibration reports of annex C.)

Annex D: Photo documentation

Photo 5: Left side(0mm)

Photo 6: Bottom side(0mm)

Annex A: System performance verification

Project name :A727

Report number: TW1402007-SAR

I. RESULTS

<u>TYPE</u>	BAND	<u>PARAMETERS</u>
Validation	CW2450	Measurement 1: Validation Plane with Dipole device position on Middle Channel in CW mode

MEASUREMENT 1

Type: Validation measurement (Complete)

Date of measurement: 30/12/2013

Measurement duration: 27 minutes 12 seconds

A. Experimental conditions.

<u>Area Scan</u>	dx=12mm dy=12mm
<u>ZoomScan</u>	7x7x12,dx=4mm dy=4mm dz=2mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Dipole</u>
<u>Band</u>	<u>CW2450</u>
<u>Channels</u>	<u>Middle</u>
<u>Signal</u>	CW (Crest factor: 1.0)

B. SAR Measurement Results

Middle Band SAR (Channel -1):

Frequency (MHz)	2450.000000
Relative permittivity (real part)	53.674500
Relative permittivity (imaginary part)	14.324300
Conductivity (S/m)	1.949696
Variation (%)	-0.430000
ConvF	5.50

Maximum location: X=0.00, Y=0.00

SAR Peak: 9.43 W/kg

SAR 10g (W/Kg)	2.348553
SAR 1g (W/Kg)	5.129197

Annex B: Measurement results

Project name : A727

Report number: TW1402007-SAR

I. RESULTS

TYPE	BAND	<u>PARAMETERS</u>
Phone	IEEE 802.11b ISM	Measurement 1: Validation Plane with Body device position on Low Channel in mode
Phone	IEEE 802.11b ISM	Measurement 2: Validation Plane with Body device position on Middle Channel in mode
Phone	IEEE 802.11b ISM	Measurement 3: Validation Plane with Body device position on High Channel in mode
Phone	IEEE 802.11b ISM	Measurement 4: Validation Plane with Body device position on High Channel in mode
Phone	IEEE 802.11b ISM	Measurement 5: Validation Plane with Body device position on High Channel in mode

MEASUREMENT 1

Rear_Side_low_0mm

Type: Phone measurement (Complete)

Date of measurement: 30/12/2013

MEASUREMENT duration: 13 minutes 40 seconds

A. Experimental conditions.

<u>Area Scan</u>	dx=12mm dy=12mm
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm,Complete
<u>Phantom</u>	<u>Validation plane</u>
<u>Device Position</u>	<u>Body</u>
<u>Band</u>	<u>IEEE 802.11b ISM</u>
<u>Channels</u>	<u>Low</u>
<u>Signal</u>	IEEE802.b (Crest factor: 1.0)

B. SAR Measurement Results

Lower Band SAR (Channel 1):

Frequency (MHz)	2412.000000
Relative permittivity (real part)	54.284500
Relative permittivity (imaginary part)	14.223600
Conductivity (S/m)	1.905962
Variation (%)	-4.910000
ConvF	5.50

Maximum location: X=-16.00, Y=36.00

SAR Peak: 0.59 W/kg

SAR 10g (W/Kg)	0.102218
SAR 1g (W/Kg)	0.272980

MEASUREMENT 2

Rear_Side_middle_0mm

Type: Phone measurement (Complete)

Date of measurement: 30/12/2013

MEASUREMENT duration: 13 minutes 20 seconds

A. Experimental conditions.

<u>Area Scan</u>	dx=12mm dy=12mm	
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm,Complete	
<u>Phantom</u>	<u>Validation plane</u>	
<u>Device Position</u>	Body	
<u>Band</u>	IEEE 802.11b ISM	
<u>Channels</u>	<u>Middle</u>	
<u>Signal</u>	IEEE802.b (Crest factor: 1.0)	

B. SAR Measurement Results

Middle Band SAR (Channel 6):

Frequency (MHz)	2437.000000
Relative permittivity (real part)	53.882351
Relative permittivity (imaginary part)	14.260150
Conductivity (S/m)	1.930666
Variation (%)	-0.280000
ConvF	5.50

Maximum location: X=-16.00, Y=36.00

SAR Peak: 0.99 W/kg

SAR 10g (W/Kg)	0.183986
SAR 1g (W/Kg)	0.478382

MEASUREMENT 3

Bottom_Side_high_0mm

Type: Phone measurement (Complete)

Date of measurement: 30/12/2013

MEASUREMENT duration: 17 minutes 46 seconds

A. Experimental conditions.

<u>Area Scan</u>	dx=12mm dy=12mm	
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm,Complete	
<u>Phantom</u>	<u>Validation plane</u>	
Device Position	<u>Body</u>	
<u>Band</u>	<u>IEEE 802.11b ISM</u>	
<u>Channels</u>	<u>High</u>	
<u>Signal</u>	IEEE802.b (Crest factor: 1.0)	

B. SAR Measurement Results

Higher Band SAR (Channel 11):

Frequency (MHz)	2462.000000
Relative permittivity (real part)	53.508499
Relative permittivity (imaginary part)	14.390500
Conductivity (S/m)	1.968301
Variation (%)	-0.320000
ConvF	5.50

Maximum location: X=0.00, Y=0.00

SAR Peak: 0.06 W/kg

SAR 10g (W/Kg)	0.014511
SAR 1g (W/Kg)	0.028663

MEASUREMENT 4

Left_Side_high_0mm

Type: Phone measurement (Complete)

Date of measurement: 30/12/2013

MEASUREMENT duration: 16 minutes 15 seconds

A. Experimental conditions.

<u>Area Scan</u>	dx=12mm dy=12mm	
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm,Complete	
<u>Phantom</u>	<u>Validation plane</u>	
Device Position	<u>Body</u>	
<u>Band</u>	<u>IEEE 802.11b ISM</u>	
<u>Channels</u>	<u>High</u>	
<u>Signal</u>	IEEE802.b (Crest factor: 1.0)	

B. SAR Measurement Results

Higher Band SAR (Channel 11):

Frequency (MHz)	2462.000000
Relative permittivity (real part)	53.508499
Relative permittivity (imaginary part)	14.390500
Conductivity (S/m)	1.968301
Variation (%)	-4.810000
ConvF	5.50

Maximum location: X=-5.00, Y=24.00

SAR Peak: 0.44 W/kg

SAR 10g (W/Kg)	0.090527
SAR 1g (W/Kg)	0.216753

MEASUREMENT 5

Rear_Side_high_0mm

Type: Phone measurement (Complete)

Date of measurement: 30/12/2013

MEASUREMENT duration: 13 minutes 1 seconds

A. Experimental conditions.

Area Scan	dx=12mm dy=12mm	
<u>ZoomScan</u>	7x7x7,dx=5mm dy=5mm dz=5mm,Complete	
<u>Phantom</u>	<u>Validation plane</u>	
<u>Device Position</u>	Body	
<u>Band</u>	<u>IEEE 802.11b ISM</u>	
<u>Channels</u>	<u>High</u>	
<u>Signal</u>	IEEE802.b (Crest factor: 1.0)	

B. SAR Measurement Results

Higher Band SAR (Channel 11):

Frequency (MHz)	2462.000000
Relative permittivity (real part)	53.508499
Relative permittivity (imaginary part)	14.390500
Conductivity (S/m)	1.968301
Variation (%)	0.040000
ConvF	5.50

Maximum location: X=-18.00, Y=36.00

SAR Peak: 1.33 W/kg

SAR 10g (W/Kg)	0.248397
SAR 1g (W/Kg)	0.643325

Annex C: Calibration reports

Project name : A727

Report Number:

TW1402007-SAR

COMOSAR E-Field Probe Calibration Report

Ref: ACR.115.1.13.SATU.A

WORLD STANDARDIZATION CERTIFICATION & TESTING CO .,LTD

BLOCK A, BAO SHI SCIENCE PARK,BAO SHI ROAD, BAO'AN DISTRICT

SHENZHEN 518108,P.R. CHINA

SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 09/13 EP170

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

04/11/2013

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	4/25/2013	Jes
Checked by:	Jérôme LUC	Product Manager	4/25/2013	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	4/25/2013	thim Puthowshi

	Customer Name
Distribution :	World Standardization Certification & Testing Co .,Ltd

Issue	Date	Modifications
A	4/25/2013	Initial release
-		
		<u> </u>

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty5	
5	Calil	oration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	List	of Equipment10	

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	Satimo		
Model	SSE5		
Serial Number	SN 09/13 EP170		
Product Condition (new / used)	new		
Frequency Range of Probe	0.7 GHz-3GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.216 MΩ		
	Dipole 2: R2=0.224 MΩ		
	Dipole 3: R3=0.215 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 **LINEARITY**

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/10

Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2			12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

5.1 <u>SENSITIVITY IN AIR</u>

Normx dipole	Normy dipole	Normz dipole
$1 \left(\mu V / (V/m)^2 \right)$	$2 \left(\mu V / (V/m)^2 \right)$	$3 (\mu V/(V/m)^2)$
5.64	5.76	5.87

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
93	91	90

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Calibration curves

Dipole 1 Dipole 2 Dipole 3

Page: 6/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

5.2 <u>LINEARITY</u>

Linearity: I+/-1.89% (+/-0.08dB)

5.3 <u>SENSITIVITY IN LIQUID</u>

Liquid	Frequency	Permittivity	Epsilon (S/m)	ConvF
_	MHz +/-	-		
	<u>100MHz)</u>			
HL300	300	44.49	0.84	6.22
BL300	300	59.34	0.90	6.40
HL450	450	42.47	0.86	6.45
BL450	450	57.64	0.98	6.69
HL850	835	42.56	0.88	5.94
BL850	835	55.26	0.96	6.17
HL900	900	41.79	0.96	5.64
BL900	900	55.98	1.04	5.82
HL1800	1750	40.17	1.38	5.43
BL1800	1750	52.05	1.48	5.54
HL1900	1880	39.80	1.43	6.08
BL1900	1880	52.55	1.50	6.25
HL2000	1950	38.93	1.44	5.50
BL2000	1950	53.12	1.51	5.72
HL2450	2450	38.64	1.82	5.32
BL2450	2450	52.02	1.94	5.50

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/10

5.4 <u>ISOTROPY</u>

HL900 MHz

- Axial isotropy: 0.04 dB- Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.05 dB- Hemispherical isotropy: 0.07 dB

HL2450 MHz

- Axial isotropy: 0.10 dB- Hemispherical isotropy: 0.06 dB

6 LIST OF EQUIPMENT

Equipment Summary Sheet								
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date				
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.				
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.				
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016				
Reference Probe	Satimo	EP 94 SN 37/08	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Multimeter	Keithley 2000	1188656	11/2010	11/2013				
Signal Generator	Agilent E4438C	MY49070581	12/2010	12/2013				
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Power Meter	HP E4418A	US38261498	11/2010 11/2013					
Power Sensor	HP ECP-E26A	US37181460	11/2010	11/2013				
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.				
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.				
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal validated. No cal required.					
Temperature / Humidity Sensor	Control Company	11-661-9	3/2012 3/2014					

SAR Reference Dipole Calibration Report

Ref: ACR.115.9.13.SATU.A

WORLD STANDARDIZATION CERTIFICATION & TESTING CO.,LTD

BLOCK A, BAO SHI SCIENCE PARK,BAO SHI ROAD,
BAO'AN DISTRICT
SHENZHEN 518108,P.R. CHINA
SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ SERIAL NO.: SN 14/13 DIP2G450-238

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

04/11/2013

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	4/25/2013	Jes
Checked by:	Jérôme LUC	Product Manager	4/25/2013	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	4/25/2013	thim thuthowski

	Customer Name
Distribution :	World Standardization Certification & Testing Co .,Ltd

Date	Modifications		
4/25/2013	Initial release		

TABLE OF CONTENTS

1	Intro	duction4	
2	Devi	ce Under Test4	
3	Prod	uct Description4	
	3.1	General Information	4
4	Meas	surement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Meas	surement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	5
6	Calib	oration Measurement Results6	
	6.1	Return Loss	6
	6.2	Mechanical Dimensions	6
7	Valid	dation measurement7	
	7.1	Measurement Condition	7
	7.2	Head Liquid Measurement	7
	7.3	Measurement Result	8
	7.4	Body Measurement Result	9
8	List	of Equipment10	

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID2450			
Serial Number	SN 14/13 DIP2G450-238			
Product Condition (new / used)	new			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – *Satimo COMOSAR Validation Dipole*

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/10

6 CALIBRATION MEASUREMENT RESULTS

6.1 <u>RETURN LOSS</u>

Frequency (MHz)	Return Loss (dB)	Requirement (dB)
2450	-31.23	-20

6.2 <u>MECHANICAL DIMENSIONS</u>

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	

Page: 6/10

2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PASS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 MEASUREMENT CONDITION

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 38.6 sigma: 1.82
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

7.2 <u>HEAD LIQUID MEASUREMENT</u>

Frequency MHz	Relative permittivity (ϵ_{r} ')		Conductivity (σ) S/m	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	

Page: 7/10

2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %		1.49 ±5 %	
2300	39.5 ±5 %		1.67 ±5 %	
2450	39.2 ±5 %	PASS	1.80 ±5 %	PASS
2600	39.0 ±5 %		1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.3 <u>MEASUREMENT RESULT</u>

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	52.25 (5.22)	24	23.67 (2.37)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	

7.4 BODY MEASUREMENT RESULT

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 52.0 sigma: 1.94
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	51.89 (5.19)	23.96 (2.40)

Page: 9/10

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

8 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71		Validated. No cal required.
COMOSAR Test Bench	Version 3	NA		Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2010	12/2013
Reference Probe	Satimo	EPG122 SN 18/11	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Multimeter	Keithley 2000	1188656	11/2010	11/2013
Signal Generator	Agilent E4438C	MY49070581	12/2010	12/2013
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	11/2010	11/2013
Power Sensor	HP ECP-E26A	US37181460	11/2010	11/2013
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	3/2012	3/2014