On Logic Embeddings and Gödel's God

Christoph Benzmüller¹ Freie Universität Berlin

(jww Bruno Woltzenlogel Paleo, TU Wien)

November 14, 2014

LogInf 2014, Universität Kassel

This talk: two related topics

Embeddings of expressive logics in classical higher-order logic (HOL) (own research since about 2008)

Application in Philosophy: study of Gödel's ontological argument (jww with Bruno since 2013)

This talk: outline

Gödel's ontological argument — Introduction

Embeddings of expressive logics in HOL / Automation

Gödel's ontological argument — Results

Vision of Leibniz (1646-1716): Calculemus!

If controversies were to arise, there would be no more need of disputation between two philosophers than between two accountants. For it would suffice to take their pencils in their hands, to sit down to their slates, and to say to each other ...: Let us calculate.

(Translation by Russell)

Quo facto, quando orientur controversiae, non magis disputatione opus erit inter duos philosophos, quam inter duos Computistas. Sufficiet enim calamos in manus sumere sedereque ad abacos, et sibi mutuo ... dicere: calculemus. (Leibniz, 1684)

Required: characteristica universalis and calculus ratiocinator

Our Contribution: Towards a Computational Metaphysics

Ontological argument for the existence of God

We focused on Gödel's modern version in higher-order modal logic

Automation with provers for higher-order classical logic (HOL)

- confirmation of known results
- detection of some novel results
- systematic variation of the logic settings
- exploited HOL as a universal metalogic via logic embeddings (characteristica universalis?)

A Long History

pros and cons

Anselm's notion of God (Proslogion, 1078):

"God is that, than which nothing greater can be conceived."

Gödel's notion of God:

"A God-like being possesses all 'positive' properties."

To show by logical reasoning

"God exists."

 $\exists x G(x)$

Anselm's notion of God (Proslogion, 1078):

"God is that, than which nothing greater can be conceived."

Gödel's notion of God:

"A God-like being possesses all 'positive' properties."

To show by logical reasoning:

"God exists."

 $\exists x G(x)$

Anselm's notion of God (Proslogion, 1078):

"God is that, than which nothing greater can be conceived."

Gödel's notion of God:

"A God-like being possesses all 'positive' properties."

To show by logical reasoning:

"Necessarily God exists."

 $\Box \exists x G(x)$

Different Interests in Ontological Arguments:

- Philosophical: Boundaries of Metaphysics & Epistemology
 - We specify a metaphysical concept (God),
 - but we want to draw a conclusion for the real world.
- Theistic: Successful argument could convince atheists?
- Ours: Can computers (theorem provers) be used . . .
 - ...to formalize the definitions, axioms and theorems?
 - ...to verify the arguments step-by-step?
 - ...to fully automate (sub-)arguments?

The Ontological Proof Today

Gödel's Manuscript: 1930's, 1941, 1946-1955, 1970

	Ontologischer Bareis	Feb 70, 1970
P(0)	19 is positive (s	9 E P.)
At. 1.0	P(9) P(4) > P(9,41). Az	Party Party
1	(4) / P(4) > Q(X) 7	-3-03/6 · 1.1
P2	7 - (4) Ly (1) 3N(y)[q(y).	Y(y)] (Enlug of x
P DN9	= N(pog) Necon	Ky.
At 2		ecourse it follows in The mature of The person ky
TA.	G(x) > G EM. X	persporky 1
DP.	E(x) = 19[qEnx>N7x q(x)]	merchany Eristen
AX3	P(E)	
\mathcal{T}_{h} .	e(x) > N(31) e(1)	
hency	(3x) G(x) > N (2x) G(x)	
h	" > N(39) e(4)	M= ponthering
any two enemies of x are mer. equivalent,		
exclusive or and for any mumber of Armmanish		

```
M (3x) F(x) means all pos prope is com-
   patible This is the because of:
    A+4: P(4). 92, 4: > P(4) which imple
     the { x= x is possitive in regative
     Dut if a yetem 5 of por. projo, veic incom
      It would mean, that the Aum prop. A (which
     uporitive) would be x + x
    Positive means positive in the moral acide
  sense (in depanily of the accidental stynether of
  The avoild ). Oney then the at time.
  also mean! "attenduction at an opposed to privation
  (or contain y per vation) - This interpret for pla proof
   of a hundred (X) NABOX) CHANGE (X) 3 x+
      honce x + x positive por XEX of Techniq Ar-
X i.e. the formal forms in terms if eller plays " contains "
Member without negation.
```

Scott's Version of Gödel's Axioms. Definitions and Theorems

Axiom A1 Either a property or its negation is positive, but not both: $\forall \phi [P(\neg \phi) \leftrightarrow \neg P(\phi)]$

Axiom A2 A property necessarily implied by a positive property is positive:

$$\forall \phi \forall \psi [(P(\phi) \land \Box \forall x [\phi(x) \to \psi(x)]) \to P(\psi)]$$

Thm. T1 Positive properties are possibly exemplified: $\forall \phi [P(\phi) \rightarrow \Diamond \exists x \phi(x)]$

Def. D1 A *God-like* being possesses all positive properties: $G(x) \leftrightarrow \forall \phi [P(\phi) \to \phi(x)]$

Axiom A3 The property of being God-like is positive: P(G)

Cor. C Possibly, God exists: $\Diamond \exists x G(x)$

Axiom A4 Positive properties are necessarily positive: $\forall \phi [P(\phi) \rightarrow \Box P(\phi)]$

Def. D2 An essence of an individual is a property possessed by it and necessarily implying any of its properties: $\phi \ ess \ x \leftrightarrow \phi(x) \land \forall \psi(\psi(x) \rightarrow \Box \forall \psi(\psi(y) \rightarrow \psi(\psi)))$

Thm. T2 Being God-like is an essence of any God-like being: $\forall x[G(x) \rightarrow G \ ess \ x]$

Def. D3 Necessary existence of an individual is the necessary exemplification of all its $NE(x) \leftrightarrow \forall \phi [\phi \ ess \ x \rightarrow \Box \exists y \phi(y)]$ essences:

Axiom A5 Necessary existence is a positive property: P(NE)

Thm. T3 Necessarily, God exists: $\Box \exists x G(x)$

4 D > 4 D > 4 D > 4 D > 3 D

Scott's Version of Gödel's Axioms, Definitions and Theorems

Axiom A1 Either a property or its negation is positive, but not both: $\forall \phi [P(\neg \phi) \leftrightarrow \neg P(\phi)]$

Axiom A2 A property necessarily implied by a positive property is positive:

$$\forall \phi \forall \psi [(P(\phi) \land \Box \forall x [\phi(x) \to \psi(x)]) \to P(\psi)]$$

Thm. T1 Positive properties are possibly exemplified: $\forall \phi [P(\phi) \rightarrow \Diamond \exists x \phi(x)]$

Def. D1 A *God-like* being possesses all positive properties: $G(x) \leftrightarrow \forall \phi [P(\phi) \rightarrow \phi(x)]$

Axiom A3 The property of being God-like is positive:

 $\Diamond \exists x G(x)$

Cor. C Possibly, God exists:

Axiom A4 Positive properties are necessarily positive:

 $\forall \phi [P(\phi) \to \Box P(\phi)]$

Def. D2 An *essence* of an individual is a property possessed by it and necessarily implying any of its properties: $\phi \ ess \ x \leftrightarrow \phi(x) \ \land \ \forall \psi(\psi(x) \rightarrow \Box \forall y(\phi(y) \rightarrow \psi(y)))$

Thm. T2 Being God-like is an essence of any God-like being:

 $\forall x[G(x) \to G \ ess \ x]$

Def. D3 Necessary existence of an individual is the necessary exemplification of all its essences: $NE(x) \leftrightarrow \forall \phi [\phi \ ess \ x \rightarrow \Box \exists y \phi(y)]$

Axiom A5 Necessary existence is a positive property

P(NE)

P(G)

Thm. T3 Necessarily, God exists:

 $\Box \exists x G(x)$

Difference to Gödel (who omits this conjunct)

Scott's Version of Gödel's Axioms, Definitions and Theorems

- Axiom A1 Either a property or its negation is positive, but not both: $\forall \phi [P(\neg \phi) \leftrightarrow \neg P(\phi)]$
- Axiom A2 A property necessarily implied by a positive property is positive:

$$\forall \phi \forall \psi [(P(\phi) \land \Box \forall x [\phi(x) \to \psi(x)]) \to P(\psi)]$$

- Thm. T1 Positive properties are possibly exemplified:
- Def. D1 A God-like being possesses all positive properties: $\int G(x) \leftrightarrow \forall \phi [P(\phi) \to \phi(x)]$
- Axiom A3 The property of being God-like is positive:

$$\Diamond \exists x G(x)$$

P(G)

- Cor. C Possibly, God exists:
- Axiom A4 Positive properties are necessarily positive:

$$\forall \phi[P(\phi) \rightarrow \Box P(\phi)]$$

 $\forall \phi [P(\phi) \rightarrow \Diamond \exists x \phi(x)]$

- Def. D2 An essence of an individual is a property possessed by it and necessarily implying any of its properties: $\phi \ ess \ x \leftrightarrow \phi(k) \ \land \ \forall \psi(\psi(x) \rightarrow \Box \forall \phi(y) \rightarrow \psi(y)))$
- Thm. T2 Being God-like is an essence of any God-like being:

$$\forall x[G(x) \to G \ ess \ x]$$

- Def. D3 *Necessary existence* of an individual is the eccessary exemplification of all its essences: $\bigvee L(x) \leftrightarrow \forall \phi [\phi \ ess \ x \rightarrow \Box \exists \psi \phi(y)]$
- Axiom A5 Necessary existence is a positive property:

Thm. T3 Necessarily, God exists:

$$\Box \exists x G(x)$$

Modal operators are used

Scott's Version of Gödel's Axioms, Definitions and Theorems

```
Axiom A1 Either a property or its negation is positive, but not both: \forall \phi[P(\neg \phi) \leftrightarrow \neg P(\phi)]
Axiom A2 A property necessarily implied by a positive property is positive:
                                                                    \forall \phi \forall \psi | (P(\phi) \land \Box \forall x [\phi(x) \rightarrow \psi(x)]) \rightarrow P(\psi)]
 Thm. T1 Positive properties are possibly exemplified:
                                                                                                \forall \phi [P(\phi) \rightarrow \Diamond \exists x \phi(x)]
                                                                                           G(x) \leftrightarrow \forall \phi \ P(\phi) \rightarrow \phi(x)
  Def. D1 A God-like being possesses all positive properties:
Axiom A3 The property of being God-like is positive:
                                                                                                                      P(G)
  Cor. C Possibly, God exists:
                                                                                                                \Diamond \exists x G(x)
Axiom A4 Positive properties are necessarily dositive:
                                                                                                   \forall \phi [P(\phi) \rightarrow \Box P(\phi)]
  Def. D2 An essence of an individual is a property possessed by it and necessarily
              implying any of its properties:
                                                            \phi \ ess \ x \leftrightarrow \phi(x) \land \forall \psi(\phi(x) \rightarrow \Box \forall y(\phi(y) \rightarrow \psi(y)))
 Thm. T2 Being God-like is an essence of any God-like being:
                                                                                                   \forall x[G(x) \rightarrow G \ ess \ x]
  Def. D3 Necessary existence of an individual is the necessary exemplification of all its
                                                                                NE(x) \leftrightarrow \forall \phi [\phi \ ess \ x \rightarrow \Box \exists y \phi(y)]
              essences:
Axiom A5 Necessary existence is a positive property:
                                                                                                                    P(NE)
 Thm. T3 Necessarily, God exists:
                                                                                                                 \Box \exists x G(x)
                                                           second-order quantifiers
                                                                                  4 D > 4 D > 4 D > 4 D > -
                                                                                                                       900
```

Proof Overview

A3 P(G)

$$\mathbf{D1} \colon G(x) \equiv \forall \varphi. [P(\varphi) \to \varphi(x)]$$

$$\mathbf{D2} \colon \varphi \; ess \; x \equiv \varphi(x) \land \forall \psi. . (\psi(x) \to \Box \forall x. . (\varphi(x) \to \psi(x)))$$

$$\mathbf{D3} \colon NE(x) \equiv \forall \varphi. . [\varphi \; ess \; x \to \Box \exists y. \varphi(y)]$$

$$\frac{\mathbf{A2}}{P(G)} = \frac{\mathbf{A2}}{\nabla \varphi. . [\Psi(\varphi) \land \Box \forall x. . [\varphi(x) \to \psi(x)]) \to P(\psi)]} = \frac{\mathbf{A1a}}{\forall \varphi. . [P(\neg \varphi) \to \neg P(\varphi)]}$$

$$\mathbf{C1} \colon \forall \varphi. . [P(\varphi) \to \Diamond \exists x. \varphi(x)]$$

$$\mathbf{C2} \Rightarrow \exists z. G(z)$$

$$\mathbf{A1b} = \frac{\mathbf{A4}}{\forall \varphi. . [P(\varphi) \to \Box P(\varphi)]} = \mathbf{A5}$$

How to automate Higher-Order Modal Logic?

Challenge: No provers for Higher-order Modal Logic (HOML)

Our solution: Embedding in Higher-order Classical Logic (HOL)
Then use existing HOL theorem provers for reasoning in HOML
[BenzmüllerPaulson, Logica Universalis, 2013]

Previous empirical findings:

Embedding of First-order Modal Logic in HOL works well

[BenzmüllerOttenRaths, ECAI, 2012]

[Benzmüller, LPAR, 2013]

Simple Types

$$\alpha ::= o \mid \iota \mid \mu \mid \alpha_1 \rightarrow \alpha_2$$

HOL
$$s, t ::= C_{\alpha} \mid x_{\alpha} \mid (\lambda x_{\alpha} s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta} \mid (s_{\alpha \to \beta} s_{\alpha})_{\alpha} \mid (s_{\alpha \to \beta} s_{\alpha})_{\alpha}$$

(note: binder notation $\forall x_{\alpha}t_{o}$ as syntactic sugar for $\forall_{(\alpha \to o) \to o} \lambda x_{\alpha}t_{o}$)

HOL with Henkin semantics is (meanwhile) well understood

Origin [Church,JSymbLog,1940]

Henkin semantics [Henkin, JSymb.Log, 1950]

[Andrews, JSymbLog,1971,1972]

Extens./Intens. [BenzmüllerEtAl,JSymbLog,2004]

[Muskens,JSymbLog,2007]

Sound and complete provers do exists

interactive: Isabelle/HOL, HOL4, Hol Light, Coq/HOL, PVS, ...

$$\alpha ::= o \mid \iota \mid \mu \mid \alpha_1 \rightarrow \alpha_2$$

HOL
$$s,t ::= C_{\alpha} \mid x_{\alpha} \mid (\lambda x_{\alpha} s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta} \mid$$

$$(\neg_{o \to o} s_{o})_{o} \mid (s_{o} \lor_{o \to o \to o} t_{o})_{o} \mid (\forall_{(\alpha \to o) \to o} s_{\alpha \to o})_{o}$$

(note: binder notation $\forall x_{\alpha}t_{o}$ as syntactic sugar for $\forall_{(\alpha \to o) \to o}\lambda x_{\alpha}t_{o}$)

HOL with Henkin semantics is (meanwhile) well understood

Origin [Church,JSymbLog,1940]

Henkin semantics [Henkin,JSymb.Log,1950]

Andrews, JSymbLog,1971,1972]

Extens./Intens. [BenzmüllerEtAl,JSymbLog,2004

[Muskens,JSymbLog,2007]

Sound and complete provers do exists

interactive: Isabelle/HOL, HOL4, Hol Light, Coq/HOL, PVS, ...

Simple Types

$$\alpha ::= o \mid \iota \mid \mu \mid \alpha_1 \rightarrow \alpha_2$$

$$s, t ::= C_{\alpha} \mid x_{\alpha} \mid (\lambda x_{\alpha} s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta} \mid (\neg_{o \to o} s_{o})_{o} \mid (s_{o} \lor_{o \to o \to o} t_{o})_{o} \mid (\forall_{(\alpha \to o) \to o} s_{\alpha \to o})_{o}$$

(note: binder notation $\forall x_{\alpha}t_{o}$ as syntactic sugar for $\forall_{(\alpha \to o) \to o} \lambda x_{\alpha}t_{o}$)

HOL with Henkin semantics is (meanwhile) well understood

Origin [Church,JSymbLog,1940]

Henkin semantics [Henkin, JSymb.Log, 1950]

[Andrews, JSymbLog,1971,1972]

Extens./Intens. [BenzmüllerEtAl,JSymbLog,2004]

[Muskens,JSymbLog,2007]

Sound and complete provers do exists

interactive: Isabelle/HOL, HOL4, Hol Light, Coq/HOL, PVS, ...

Simple Types

$$\alpha ::= o \mid \iota \mid \mu \mid \alpha_1 \rightarrow \alpha_2$$

$$s, t ::= C_{\alpha} \mid x_{\alpha} \mid (\lambda x_{\alpha} s_{\beta})_{\alpha \to \beta} \mid (s_{\alpha \to \beta} t_{\alpha})_{\beta} \mid (\neg_{o \to o} s_{o})_{o} \mid (s_{o} \lor_{o \to o \to o} t_{o})_{o} \mid (\forall_{(\alpha \to o) \to o} s_{\alpha \to o})_{o}$$

(note: binder notation $\forall x_{\alpha}t_{o}$ as syntactic sugar for $\forall_{(\alpha \to o) \to o}\lambda x_{\alpha}t_{o}$)

HOL with Henkin semantics is (meanwhile) well understood

Origin [Church,JSymbLog,1940]

Henkin semantics [Henkin, JSymb.Log, 1950]

[Andrews, JSymbLog,1971,1972]

Extens./Intens. [BenzmüllerEtAl,JSymbLog,2004]

[Muskens,JSymbLog,2007]

Sound and complete provers do exists

interactive: Isabelle/HOL, HOL4, Hol Light, Coq/HOL, PVS, ...

HOML
$$\varphi, \psi ::= \ldots | \neg \varphi | \varphi \land \psi | \varphi \rightarrow \psi | \Box \varphi | \diamond \varphi | \forall x_{\gamma} \varphi | \exists x_{\gamma} \varphi$$

Kripke style semantics (possible world semantics)

$$\begin{array}{ll} M,g,s \vDash \neg \varphi & \text{iff} & \text{not } M,g,s \vDash \varphi \\ M,g,s \vDash \varphi \land \psi & \text{iff} & M,g,s \vDash \varphi \text{ and } M,g,s \vDash \psi \\ \dots & \\ M,g,s \vDash \Box \varphi & \text{iff} & M,g,u \vDash \varphi \text{ for all } u \text{ with } \textbf{\textit{r}}(s,u) \\ \dots & \\ M,g,s \vDash \forall x_{\gamma} \varphi & \text{iff} & M,[d/x]g,s \vDash \varphi \text{ for all } d \in D_{\gamma} \\ \dots & \\ \end{array}$$

[BenzmüllerWoltzenlogelPaleo, ECAI, 2014] [Muskens, HandbookOfModalLogic, 2006]

HOML
$$\varphi, \psi ::= \ldots | \neg \varphi | \varphi \land \psi | \varphi \rightarrow \psi | \Box \varphi | \diamond \varphi | \forall x_{\gamma} \varphi | \exists x_{\gamma} \varphi$$
HOL $s, t ::= C | x | \lambda xs | st | \neg s | s \lor t | \forall xt$

HOML
$$\varphi, \psi ::= \ldots | \neg \varphi | \varphi \land \psi | \varphi \rightarrow \psi | \Box \varphi | \diamond \varphi | \forall x_{\gamma} \varphi | \exists x_{\gamma} \varphi$$
HOL $s, t ::= C | x | \lambda xs | st | \neg s | s \lor t | \forall x t$

HOML in HOL: HOML formulas φ are mapped to HOL predicates $\varphi_{\mu\to o}$

HOML
$$\varphi, \psi ::= \ldots | \neg \varphi | \varphi \wedge \psi | \varphi \rightarrow \psi | \Box \varphi | \diamond \varphi | \forall x_y \varphi | \exists x_y \varphi$$

$$s, t ::= C | x | \lambda xs | st | \neg s | s \lor t | \forall x t$$

HOML in HOL: **HOML** formulas φ are mapped to **HOL** predicates $\varphi_{\mu \to 0}$

ML in HOL: HOML formulas
$$\varphi$$
 are mapped to φ are mapped to φ and φ are mapped to φ are mapped to φ and φ are mapped to φ are mapped to φ and φ are mapped to φ are mapped to φ are mapped to φ are mapped to φ and φ are mapped to φ are mapped to φ are mapped to φ are mapped to φ and φ are mapped to φ are mapped to φ and φ are mapped to φ are mapped to φ are mapped to φ and φ are mapped to φ and φ are mapped to φ are mapped to φ and φ are mapped to φ

Ax (polymorphic over y)

The equations in Ax are given as axioms to the HOL provers!

HOML
$$\varphi, \psi ::= \dots | \neg \varphi | \varphi \wedge \psi | \varphi \rightarrow \psi | \square \varphi | \diamond \varphi | \forall x_{\gamma} \varphi | \exists x_{\gamma} \varphi$$
HOL $s, t ::= C | x | \lambda xs | st | \neg s | s \lor t | \forall x t$

HOML in HOL: HOML formulas φ are mapped to HOL predicates $\varphi_{\mu \to 0}$

$$\begin{array}{lll} \neg & = & \lambda \varphi_{\mu \to o} \lambda w_{\mu} \neg \varphi w \\ \wedge & = & \lambda \varphi_{\mu \to o} \lambda \psi_{\mu \to o} \lambda w_{\mu} (\varphi w \wedge \psi w) \\ \rightarrow & = & \lambda \varphi_{\mu \to o} \lambda \psi_{\mu \to o} \lambda w_{\mu} (\neg \varphi w \vee \psi w) \\ \forall & = & \lambda h_{\gamma \to (\mu \to o)} \lambda w_{\mu} \forall d_{\gamma} h dw \\ \exists & = & \lambda h_{\gamma \to (\mu \to o)} \lambda w_{\mu} \exists d_{\gamma} h dw \\ \Rightarrow & \lambda h_{\gamma \to (\mu \to o)} \lambda w_{\mu} \exists d_{\gamma} h dw \end{array}$$

$$\forall \varphi_{\mu \to o} \forall w_{\mu} [\ (\Box \varphi) w \ \equiv \ \forall u_{\mu} (\neg rwu \vee \varphi u) \]$$

$$\Diamond \qquad \qquad = \lambda \varphi_{\mu \to o} \lambda w_{\mu} \exists u_{\mu} (rwu \wedge \varphi u)$$

$$\forall \text{valid} \qquad \qquad = \lambda \varphi_{\mu \to o} \forall w_{\mu^*} \varphi w$$

The equations in Ax are given as axioms to the HOL provers!

Example

HOML formula

HOML formula in HOL expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion

$\Diamond \exists x G(x)$

 $\begin{array}{c} \operatorname{valid}\left(\lozenge \exists x G(x)\right)_{\mu \to \sigma} \\ \forall w_{\mu}(\lozenge \exists x G(x))_{\mu \to \sigma} w \\ \forall w_{\mu} \exists u_{\mu}(rwu \land (\exists x G(x))_{\mu \to \sigma} u) \\ \forall w_{\mu} \exists u_{\mu}(rwu \land \exists x Gxu) \end{array}$

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, —> we instead prove that valid $\varphi_{\mu \to \sigma}$ can be derived from Ax in HOL

This can be done with interactive or automated HOL theorem provers.

Example

HOML formula in HOL

expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML,

–> we instead prove that valid $arphi_{\mu
ightarrow\sigma}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

```
HOML formula HOML formula in HOL expansion, \beta\eta-conversion expansion, \beta\eta-conversion expansion, \beta\eta-conversion
```

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, —> we instead prove that valid $\varphi_{\mu \to o}$ can be derived from Ax in HOL

This can be done with interactive or automated HOL theorem provers.

Example

HOML formula HOML formula in HOL expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, —> we instead prove that valid $\varphi_{\mu o \sigma}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

HOML formula HOML formula in HOL expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion expansion, $\beta\eta$ -conversion

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, —> we instead prove that valid $\varphi_{\mu \to o}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

```
HOML formula HOML formula in HOL expansion, \beta\eta-conversion expansion, \beta\eta-conversion expansion, \beta\eta-conversion
```

Expansion: user or prover may flexibly choose expansion depth

```
What are we doing?
```

In order to prove that φ is valid in HOML, —> we instead prove that valid $\varphi_{\mu \to o}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

```
HOML formula HOML formula in HOL expansion, \beta\eta-conversion expansion, \beta\eta-conversion expansion, \beta\eta-conversion
```

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, -> we instead prove that valid $\varphi_{\mu \to o}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

```
HOML formula HOML formula in HOL expansion, \beta\eta-conversion expansion, \beta\eta-conversion expansion, \beta\eta-conversion
```

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, -> we instead prove that valid $\varphi_{\mu \to o}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Example

```
HOML formula HOML formula in HOL expansion, \beta\eta-conversion expansion, \beta\eta-conversion expansion, \beta\eta-conversion
```

Expansion: user or prover may flexibly choose expansion depth

What are we doing?

In order to prove that φ is valid in HOML, -> we instead prove that valid $\varphi_{\mu \to o}$ can be derived from Ax in HOL.

This can be done with interactive or automated HOL theorem provers.

Propositional Quantification [Fitting, J.Symb.Log., 2002]

$$M, g, s \models \forall p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$

Embedding in HOL

$$\forall \quad = \quad \lambda h_{(\mu \to 0) \to (\mu \to 0)^{\bullet}} \lambda s_{\mu^{\bullet}} \forall v_{(\mu \to 0)} hvs$$

Modal logic axioms valid $\forall \varphi (\Box \varphi \supset \Diamond \varphi)$

Bridge rules valid $\forall \varphi (\Box_r \varphi \supset \Box_s \varphi)$

Semantical Condition $\forall x \exists y (rxy)$

Gemantical Condition $\forall x \forall y (rxy \supset sxy)$

We get a wide range of modal logics and combinations for free!

[BenzmüllerPaulson, LogicaUniversalis, 2013]

Propositional Quantification [Fitting, J.Symb.Log., 2002]

$$M, g, s \models \forall p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$

Embedding in HOL

$$\forall \quad = \quad \lambda h_{(\mu \to o) \to (\mu \to o)^{\bullet}} \lambda s_{\mu^{\bullet}} \forall v_{(\mu \to o)} hvs$$

Modal logic axioms valid $\forall \omega (\Box \omega \supset \Diamond \omega)$

Semantical Condition $\forall x \exists y (rxy)$

Bridge rules valid $\forall \varphi(\Box_r \varphi \supset \Box_s \varphi)$

Gemantical Condition $\forall x \forall y (rxy \supset sxy)$

We get a wide range of modal logics and combinations for free!

[BenzmüllerPaulson, LogicaUniversalis, 2013]

Propositional Quantification [Fitting, J.Symb.Log., 2002]

. . .

$$M, g, s \models \forall p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$

Embedding in HOL

$$\forall = \lambda h_{(\mu \to 0) \to (\mu \to 0)} \lambda s_{\mu} \forall v_{(\mu \to 0)} hvs$$

Modal logic axioms valid $\forall \varphi (\Box \varphi \supset \Diamond \varphi)$

Bridge rules valid ∀ø(□•ø ⊃ □•ø Semantical Condition $\forall x \exists y (rxy)$

Semantical Condition $\forall x \forall y (rxy \supset sxy)$

We get a wide range of modal logics and combinations for free!

BenzmüllerPaulson, LogicaUniversalis, 2013]

Propositional Quantification [Fitting, J.Symb.Log., 2002]

$$M, g, s \models \forall p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$

Embedding in HOL

$$\forall = \lambda h_{(\mu \to o) \to (\mu \to o)^{\blacksquare}} \lambda s_{\mu^{\blacksquare}} \forall v_{(\mu \to o)} hvs$$

Modal logic axioms

valid $\forall \varphi (\Box \varphi \supset \Diamond \varphi)$

Bridge rules

valid
$$\forall \varphi (\Box_r \varphi \supset \Box_s \varphi)$$

Semantical Condition

 $\forall x \exists y (rxy)$

Semantical Condition

 $\forall x \forall y (rxy \supset sxy)$

We get a wide range of modal logics and combinations for free!

BenzmüllerPaulson, LogicaUniversalis, 2013]

Propositional Quantification [Fitting, J.Symb.Log., 2002]

. . .

$$M, g, s \models \forall p \varphi$$
 iff $M, [v/p]g, s \models \varphi$ for all $v \in P$

Embedding in HOL

$$\forall = \lambda h_{(\mu \to 0) \to (\mu \to 0)} \lambda s_{\mu} \forall v_{(\mu \to 0)} hvs$$

Modal logic axioms

valid $\forall \varphi (\Box \varphi \supset \Diamond \varphi)$

Bridge rules valid $\forall \varphi(\Box_r \varphi \supset \Box_s \varphi)$

Semantical Condition $\forall x \exists y (rxy)$

Semantical Condition

 $\forall x \forall y (rxy \supset sxy)$

We get a wide range of modal logics and combinations for free!

[BenzmüllerPaulson, LogicaUniversalis, 2013]

Embeddings in HOL — Theoretical Results

Soundness and Completeness

$$\models^L \varphi$$
 iff $\mathsf{Ax} \models^{HOL}_{\mathsf{Henkin}} valid \varphi_{\mu \to o}$

Logic L:

- Higher-order Modal Logics
- First-order Multimodal Logics
- Propositional Multimodal Logics
- Quantified Conditional Logics
- Propositional Conditional Logics
- Intuitionistic Logics
- Access Control Logics
- Logic Combinations
- ...more is on the way ...

[BenzmüllerWoltezenlogelPaleo, ECAI, 2014]

[BenzmüllerPaulson, LogicaUniversalis, 2013] [BenzmüllerPaulson, Log.J.IGPL, 2010]

[Benzmüller, IJCAI, 2013]

[BenzmüllerEtAl., AMAI, 2012]

[BenzmüllerPaulson, Log.J.IGPL, 2010]

[Benzmüller, IFIP SEC, 2009]

[Benzmüller, AMAI, 2011]

4 D > 4 A > 4 B > 4 B > ...

Embeddings in HOL — Theoretical Results

Soundness and Completeness (and Cut-elimination)

$$\models^{L} \varphi$$
 iff $Ax \models^{HOL}_{Henkin} valid \varphi_{\mu \to o}$ (iff $Ax \vdash^{seq}_{cut\text{-free}} valid \varphi_{\mu \to o}$)

Logic L:

- Higher-order Modal Logics
- First-order Multimodal Logics
- Propositional Multimodal Logics
- Quantified Conditional Logics
- Propositional Conditional Logics
- Intuitionistic Logics
- Access Control Logics
- Logic Combinations
- ... more is on the way ...

[BenzmüllerWoltezenlogelPaleo, ECAI, 2014]

[BenzmüllerPaulson, LogicaUniversalis, 2013]

[BenzmüllerPaulson, Log.J.IGPL, 2010]

[Benzmüller, IJCAI, 2013]

[BenzmüllerEtAl., AMAI, 2012]

[BenzmüllerPaulson, Log.J.IGPL, 2010]

[Benzmüller, IFIP SEC, 2009]

[Benzmüller, AMAI, 2011]

4日 → 4周 → 4 三 → 4 三 → 9 Q C

Cut-free Calculi for HOL: History

- Takeuti (1953): defined GLC (generalized logical calculus) by extending Gentzen's LK; conjectured cut-elimination for GLC
- Schütte (1960): simplified verion GLC; gave a semantic characterization Takeuti's conjecture.
- Tait (1966): proved Schütte's conjecture.
- Takahashi (1967), Prawitz (1968): proved higher-order versions of the conjecture.
- Girard (1971): Takeuti's conjecture as a consequence of strong normalization for System F.
- Andrews (1971): Completeness of resolution in elementary type theory with abstract consistency technique.
- Takeuti (1975): Henkin complete cut-free sequent calculus with extensionality.
- Benzmüller et al. (2004, 2009), Brown (2004), and Brown and Smolka (2010): Various complete cut-free calculi with/without extensionality, use of abstract consistency technique

Cut-free sequent calculus for HOL

One-sided sequent calculus $\mathcal{G}_{\beta\beta}$ [BenzmüllerBrownKohlhase, LMCS, 2009] (Δ : finite sets of β -normal closed formulas, $\Delta*\mathbf{A}$ stands for $\Delta\cup\{\mathbf{A}\}$, cwff_{α} : set of closed terms of type α , \doteq abbreviates Leibniz equality):

$$\frac{\text{Base Rules}}{\Delta * \mathbf{A} * \neg \mathbf{A}} \quad \frac{\mathbf{A} \text{ atomic } (\& \beta \text{-nor|mal})}{\Delta * \mathbf{A} * \neg \mathbf{A}} \mathcal{G}(init) \quad \frac{\Delta * \mathbf{A}}{\Delta * \neg \neg \mathbf{A}} \mathcal{G}(\neg) \quad \frac{\Delta * \neg \mathbf{A} \quad \Delta * \neg \mathbf{B}}{\Delta * \neg (\mathbf{A} \vee \mathbf{B})} \mathcal{G}(\vee_{-})$$

$$\frac{\Delta * \mathbf{A} * \mathbf{B}}{\Delta * (\mathbf{A} \vee \mathbf{B})} \, \mathcal{G}(\vee_{+}) \qquad \frac{\Delta * \neg \, (\mathbf{AC}) \!\! \downarrow_{\beta} \quad \mathbf{C} \in \mathit{cwff}_{\alpha}}{\Delta * \neg \Pi^{\alpha} \mathbf{A}} \, \mathcal{G}(\Pi_{-}^{\mathbf{C}}) \qquad \frac{\Delta * \, (\mathbf{A}c) \!\! \downarrow_{\beta} \quad \mathit{c}_{\alpha} \mathit{new}}{\Delta * \, \Pi^{\alpha} \mathbf{A}} \, \mathcal{G}(\Pi_{+}^{c})$$

$$\frac{\mathsf{Full \; Extensionality}}{\Delta * (\mathsf{A} \overset{\dot{=}^{\beta}}{=} \mathsf{B} X) \big|_{\beta}} \, \mathcal{G}(\mathfrak{f}) \qquad \frac{\Delta * \neg \mathsf{A} * \mathsf{B} \quad \Delta * \neg \mathsf{B} * \mathsf{A}}{\Delta * (\mathsf{A} \overset{\dot{=}^{\alpha}}{=} \mathsf{B})} \, \mathcal{G}(\mathfrak{b})$$

Initial. and Decomp. of Leibniz Equality

$$\frac{\Delta*(\mathbf{A}\stackrel{{}_{=}}{\circ}\mathbf{B})\quad \mathbf{A},\mathbf{B} \text{ atomic}}{\Delta*\neg\mathbf{A}*\mathbf{B}}\mathcal{G}(\mathit{Init}^{\stackrel{{}_{=}}{=}})$$

$$\frac{\Delta * (\mathbf{A}^1 \stackrel{\dot{=}}{=}^{\alpha_1} \mathbf{B}^1) \cdots \Delta * (\mathbf{A}^n \stackrel{\dot{=}}{=}^{\alpha_n} \mathbf{B}^n) \quad n \geq 1, \beta \in \{o, \iota\}, h_{\overline{\alpha^n} \to \beta} \in \Sigma}{\Delta * (h\overline{\mathbf{A}^n} \stackrel{\dot{=}}{=}^{\beta} h\overline{\mathbf{B}^n})} \mathcal{G}(d)$$

Automated Proof Search and Consistency Check

Automated Theorem Provers and Model Finders for HOL

- all accept TPTP THF Syntax [SutcliffeBenzmüller, J.Form.Reas, 2009]
 - can be called remotely via SystemOnTPTP at Miami
 - they significantly gained in strength over the last years
 - they can be bundled into a combined prover HOL-P

Exploit HOL with Henkin semantics as metalogic

Automate other logics (& combinations) via semantic embeddings

— HOL-P becomes a Universal Reasoner —

Proof Automation and Consistency Checking with HOL-P

```
MacBook-Chris %
MacBook-Chris %
MacBook-Chris % ./call_tptp.sh T3.p
Asking various HOL-ATPs in Miami remotely (thanks to Geoff Sutcliffe)
MacBook-Chris % agsyHOL---1.0 : T3.p ++++++ RESULT: SOT_7L4x_Y - agsyHOL---1.0 says Unknown - CPU = 0.00 WC = 0.02
LEO-II---1.6.0 : T3.p ++++++ RESULT: SOT_E4SCha - LEO-II---1.6.0 says Theorem - CPU = 0.03 WC = 0.09
Satallax---2.7 : T3.p ++++++ RESULT: SOT_kVZ1cB - Satallax---2.7 says Theorem - CPU = 0.00 WC = 0.14
Isabelle---2013 : T3.p ++++++ RESULT: SOT_xa0aEp - Isabelle---2013 says Theorem - CPU = 14.06 WC = 17.73 SolvedBy = auto
TPS---3,120601S1b : T3.p ++++++ RESULT: S0T R0Easa - TPS---3,120601S1b says Unknown - CPU = 33.56 WC = 41.57
Nitrox---2013 : T3.p ++++++ RESULT: S0T WGY1Tx - Nitrox---2013 says Unknown - CPU = 75.55 WC = 49.24
MacBook-Chris %
MacBook-Chris % ./call toto.sh Consistency.p
Asking various HOL-ATPs in Miami remotely (thanks to Geoff Sutcliffe)
MacBook-Chris % agsyHOL---1.0 : Consistency.p ++++++ RESULT: SOT_ZtY_7o - agsyHOL---1.0 says Unknown - CPU = 0.00 WC = 0.00
Nitrox---2013 : Consistency.p ++++++ RESULT: SOT_HUZ10C - Nitrox---2013 says Satisfiable - CPU = 6.56 WC = 8.50
TPS---3.120601S1b : Consistency.p ++++++ RESULT: SOT_fpJxTM - TPS---3.120601S1b says Unknown - CPU = 43.00 WC = 49.42
Isabelle---2013 : Consistency,p ++++++ RESULT: SOT_6Tpp9i - Isabelle---2013 says Unknown - CPU = 69.96 WC = 72.62
LEO-II---1.6.0 : Consistency,p ++++++ RESULT: SOT_dY10si - LEO-II---1.6.0 says Timeout - CPU = 90 WC = 89.86
Satallax---2.7 : Consistency.p ++++++ RESULT: SOT_09WSLf - Satallax---2.7 says Timeout - CPU = 90 WC = 90.50
MacBook-Chris %
```

Provers are called remotely in Miami — no local installation needed!

Download our experiments from https://github.com/ FormalTheology/GoedelGod/tree/master/Formalizations/THF

Automation and Verification in Isabelle/HOL Interactive Verification in Coo

Download for Linux - Download for Windows

Some highlights:

Combridge (Luk)

- Improvements of Isabelle/Scala and Isabelle/iEdit Prover IDE.
- · Advanced build tool based on Isabelle/Scala.
- Updated manuals: isar-ref, implementation, system.
- . Pure: improved support for block-structured specification contexts.
- HOL tool enhancements: Sledgehammer, Lifting, Quickcheck.
- HOL library enhancements: HOL-Library, HOL-Probability, HOL-Cardinals.
- HOL: New BNF-based (co)datatype package.
- Improved performance thanks to Poly/ML 5.5.0.

See also the cumulative NEWS.

Distribution & Support

Isabelle is distributed for free under the BSD license. It includes source and binary packages and documentation, see the detailed installation instructions. A vast collection of Isabelle examples and applications is available from the Archive of Formal Proofs.

Support is available by ample documentation, the Isabelle community Wiki, and the following mailing lists:

- isabelle-users@cl.cam.ac.uk provides a forum for Isabelle users to discuss problems, exchange information, and make announcements. Users of official Isabelle users to discuss problems, exchange information, and make announcements. Users of official Isabelle users to discuss problems, exchange information, and make announcements. Users of official Isabelle users to discuss problems, exchange information, and make announcements. Users of official Isabelle users to discuss problems, exchange information, and make announcements. Users of official Isabelle users to discuss problems, exchange information, and make announcements. Users of official Isabelle users to discuss problems, exchange information, and make announcements. Users of official Isabelle users to discuss problems, exchange information, and make announcements.

 | Only | Onl
- Isabelle releases should subscribe or see the archive (also available via Google groups and Narkive).

 isabelle-dev@In.tum.de covers the Isabelle development process, including intermediate repository versions, and administrative issues concerning the

website or testing infrastructure. Early adopters of repository versions should subscribe or see the archive (also available at mail-archive.com or gmane.org).

Last updated: 2013-03-09 12:21:39

Interaction and Automation in Proof Assistant Isabelle/HOL

See verifiable Isabelle/HOL document (Archive of Formal Proofs) at: http://afp.sourceforge.net/entries/GoedelGod.shtml

Interaction in Proof Assistant Coo

See verifiable Coq document at: https://github.com/ FormalTheology/GoedelGod/tree/master/Formalizations/Coq

	HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1	$[\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu^*}\dot{\neg}(\phi X)) \stackrel{.}{\equiv} \dot{\neg}(p\phi)]$						
A2	$[\dot{\forall}\phi_{\mu\to\sigma^*}\dot{\forall}\psi_{\mu\to\sigma^*}(p_{(\mu\to\sigma)\to\sigma}\phi\dot{\wedge}\dot{\Box}\dot{\forall}X_{\mu^*}(\phi X)]$	$\supset \psi X)) \supset p\psi$					
T1	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \dot{\Diamond} \exists X_{\mu^*} \phi X]$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	—/—
	Ε τμπο Ε μπο)πο τ = τ = -μ τ = 3	A1, A2	K	THM	0.1/0.1	0.0/5.2	—/— —/—
D1	$g_{u \to \sigma} = \lambda X_u \cdot \dot{\nabla} \phi_{u \to \sigma} \cdot p_{(u \to \sigma) \to \sigma} \phi \supset \phi X$	•					•
A3	$[p_{(\mu o \sigma) o \sigma}g_{\mu o \sigma}]$						
C	$[\dot{\Diamond} \exists X_{\mu} \cdot g_{\mu \to \sigma} X]$	T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—
	2. 4.04.0 1	A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	<u> </u>
A4	$[\dot{\forall} \phi_{u \to \sigma^*} p_{(u \to \sigma) \to \sigma} \phi \supset \Box p \phi]$						-
D2	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma^*} \lambda X_{\mu^*} \phi X \dot{\wedge} \dot{\vee} \psi_{\mu \to \sigma}$	$\bullet(\psi X \supset \dot{\Box}\dot{\forall} Y_{,,\bullet}(\phi Y \supset \psi Y))$					
T2	$[\forall X_{\mu}. g_{\mu \to \sigma} X \supset (\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} gX)]$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	—/—
	L·μ-8μ-σ (μ-σ)-μ-σ-8/3	A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0	0.0/0.0	_/_
D3	$NE_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{\forall} \phi_{\mu \to \sigma^*} (ess \phi X \supset \dot{\Box} \dot{\exists} Y_{\mu^*} \phi$,		•
A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$	•					
T3	$[\dot{\Box}\dot{\exists}X_{\mu^*}g_{\mu\to\sigma}X]$	D1, C, T2, D3, A5	K	CSA	—/—	—/—	3.8/6.2
	, , , , ,	A1, A2, D1, A3, A4, D2, D3, A5	K	CSA	_/_	<u> </u>	8.2/7.5
		D1, C, T2, D3, A5	KB	THM	0.0/0.1	0.1/5.3	—/—
		A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	_/_	_/_	_/_
MC	$[s_{\sigma} \supset \dot{\Box} s_{\sigma}]$	D2, T2, T3	KB	THM	17.9/—	3.3/3.2	—/—
1110		A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	_/_	—/—	_/_
FG	$[\dot{\forall}\phi_{\mu\to\sigma^*}\dot{\forall}X_{\mu^*}(g_{\mu\to\sigma}X\dot{\supset}(\dot{\neg}(p_{(\mu\to\sigma)\to\sigma}\phi)\dot{\supset}$		KB	THM	16.5/—	0.0/0.0	_/_
	$(P(\mu \to \sigma) \to P(\mu \to \rho) \to P(\mu \to \rho)$	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	12.8/15.1	0.0/5.4	_/_
MT	$[\dot{\forall} X_{\mu^*} \dot{\forall} Y_{\mu^*} (g_{\mu \to \sigma} X \supset (g_{\mu \to \sigma} Y \supset X \doteq Y))]$	D1.FG	KB	THM	_/_	0.0/3.3	_/_
	$[\cdot 12\mu \cdot 1\mu \cdot (8\mu \rightarrow \sigma 12)(8\mu \rightarrow \sigma 12)1 = 1))]$	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	_/_	_/_	_/_
		,,,,,,,,			,	,	,
CO	0 (no goal, check for consistency)	A1, A2, D1, A3, A4, D2, D3, A5	KB	SAT	—/—	—/—	7.3/7.4
D2'	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma^*} \lambda X_{\mu^*} \forall \psi_{\mu \to \sigma^*} (\psi X)$	$\dot{\supset} \dot{\Box} \dot{\forall} Y_{\mu^*} (\phi Y \dot{\supset} \psi Y))$					
CO'	Ø (no goal, check for consistency)	A1(⊃), A2, D2', D3, A5	KB	UNS	7.5/7.8	—/—	—/—
	•	A1, A2, D1, A3, A4, D2', D3, A5	KB	UNS	<u> </u>	_/_	—/—

	HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1	$[\dot{\forall} \phi_{\mu \to \sigma} \cdot p_{(\mu \to \sigma) \to \sigma} (\lambda X_{\mu} \cdot \dot{\neg} (\phi X)) \stackrel{.}{=} \dot{\neg} (p\phi)]$						
A2	$[\forall \phi_{\mu \to \sigma^*} \forall \psi_{\mu \to \sigma^*} (p_{(\mu \to \sigma) \to \sigma} \phi \land \Box \forall X_{\mu^*} (\phi X \to \phi X))] = (\neg \phi \land \neg $	$(\Rightarrow \psi X)) \Rightarrow p\psi]$					
T1	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \dot{\Diamond} \exists X_{\mu^*} \phi X]$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	—/—
	2 / 4 10 / 10 / 10 / 10	A1, A2	K	THM	0.1/0.1	0.0/5.2	_/_
D1	$g_{u \to \sigma} = \lambda X_u \dot{\forall} \phi_{u \to \sigma} p_{(u \to \sigma) \to \sigma} \phi \supset \phi X$						
A3	$[p_{(\mu o \sigma) o \sigma} g_{\mu o \sigma}]$						
C	$[\dot{\Diamond} \exists X_{\mu}, g_{\mu \to \sigma} X]$	T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—
	F 07 12 1	A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	_/_
A4	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \dot{\Box} p \phi]$					-	-
D2	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \cdot \lambda X_{\mu} \cdot \phi X \dot{\wedge} \dot{\forall} \psi_{\mu \to \sigma}$	$_{r*}(\psi X \supset \dot{\Box}\dot{\forall} Y_{u*}(\phi Y \supset \psi Y))$					
T2	$[\dot{V} X_{\mu} \cdot g_{\mu \to \sigma} X \supset (ess_{(\mu \to \sigma) \to \mu \to \sigma} g X)]$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	—/—
	2 4 64 10 - ((4 10) 14 10 72	A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0	0.0/0.0	_/_
D3	$NE_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\forall} \phi_{\mu \to \sigma} \cdot (ess \phi X \supset \dot{\Box} \dot{\exists} Y_{\mu} \cdot \phi)$						•
A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$	•					
T3	$[\dot{\Box}\dot{\exists}X_{\mu^*}g_{\mu\to\sigma}X]$	D1, C, T2, D3, A5	K	CSA	—/—	—/—	3.8/6.2
	2 4 54 5	A1, A2, D1, A3, A4, D2, D3, A5	K	CSA	<u> </u>	<u> </u>	8.2/7.5
		D1, C, T2, D3, A5	KB	THM	0.0/0.1	0.1/5.3	— <i>j</i> —
		A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	_/_	<u> </u>	_/_
MC	$[s_{\sigma} \supset \Box s_{\sigma}]$	D2, T2, T3	KB	THM	17.9/—	3.3/3.2	—/—
	2-001	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	_/_	_/_	_/_
FG	$[\dot{\forall} \phi_{\mu \to \sigma^*} \dot{\forall} X_{\mu^*} (g_{\mu \to \sigma} X \dot{\supset} (\dot{\neg} (p_{(\mu \to \sigma) \to \sigma} \phi) \dot{\supset}$		KB	THM	16.5/—	0.0/0.0	_/_
	Σ γ μ το γ το μ το μ το γ το γ το γ το γ	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	12.8/15.1	0.0/5.4	_/_
MT	$[\dot{\forall} X_{\mu^*} \dot{\forall} Y_{\mu^*} (g_{\mu \to \sigma} X \supset (g_{\mu \to \sigma} Y \supset X = Y))]$		KB	THM	_/_	0.0/3.3	_/_
	Σ μ μ - (8μ - υ	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	_/_	_/_	_/_
		, , , ,				•	•
CO	0 (no goal, check for consistency)	A1, A2, D1, A3, A4, D2, D3, A5	KB	SAT	—/—	—/ —	7.3/7.4
D2'	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda X_{\mu} \dot{\forall} \psi_{\mu \to \sigma} (\psi X)$	$\dot{\supset} \dot{\Box} \dot{\forall} Y_{\mu^*} (\phi Y \dot{\supset} \psi Y))$					
CO'	Ø (no goal, check for consistency)	A1(⊃), A2, D2', D3, A5	KB	UNS	7.5/7.8	—/—	—/—
		A1, A2, D1, A3, A4, D2', D3, A5	KB	UNS	—/—	—/—	

	HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1	$[\forall \phi_{\mu \to \sigma^{-}} p_{(\mu \to \sigma) \to \sigma} (\lambda X_{\mu^{-}} \dot{\neg} (\phi))$	(X)) $\stackrel{.}{=} \dot{\neg}(p\phi)$]					
Δ2	$\nabla A = \nabla A = A$	À □ŸY_(A Y ¬ \(\psi \Y)) ¬ \(\psi \psi \psi \psi \qu					
T1	$[\forall \phi_{\mu \to \sigma} \cdot p_{(\mu \to \sigma) \to \sigma} \phi \supset \Diamond \exists X_{\mu}$	$\bullet \phi X$] A1(\(\times\), A2	K	THM	0.1/0.1	0.0/0.0	—/—
		A1, A2	K	THM	0.1/0.1	0.0/5.2	—/—
Di	$g_{u \to \sigma} = \lambda \Lambda_{u} \cdot \nabla \varphi_{u \to \sigma} \cdot p_{(u \to \sigma)}$	$\rightarrow \sigma \psi \rightarrow \psi \overline{\lambda}$					
A3	$[p_{(\mu o \sigma) o \sigma} g_{\mu o \sigma}]$						
C	$[\dot{\diamondsuit}\exists X_{\mu}\ g_{\mu\to\sigma}X]$	T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—
	7 07 12	A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	—/—
A4	$[\dot{\mathbf{V}}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}\phi \supset \Box p\phi]$					•	
D2		$_{\iota^*}\phi X \stackrel{.}{\wedge} \dot{\forall} \psi_{\mu \to \sigma^*} (\psi X \stackrel{.}{\supset} \dot{\Box} \dot{\forall} Y_{\mu^*} (\phi Y \stackrel{.}{\supset} \psi Y))$					
T2	$[\dot{V} X_{\mu}, g_{\mu \to \sigma} X \dot{\supset} (ess_{(\mu \to \sigma) \to \mu})$		K	THM	19.1/18.3	0.0/0.0	_/_
V	2 4 64 10 - ((4 10) 14	A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0	0.0/0.0	—/—
D3		A1, A2, D1, A3, A4, D2	K		12.9/14.0	0.0/0.0	<u> </u>
D3 5	$NE_{\mu\to\sigma} = \lambda X_{\mu^*} \dot{\forall} \phi_{\mu\to\sigma^*} (e$		K		12.9/14.0	0.0/0.0	<u>—</u> —
D3 5 T3	$ NE_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{V} \phi_{\mu \to \sigma^*} (e [p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}] $	A1, A2, D1, A3, A4, D2	K		12.9/14.0	0.0/0.0	_/_
D3 A5 T3	$NE_{\mu\to\sigma} = \lambda X_{\mu^*} \dot{\forall} \phi_{\mu\to\sigma^*} (e$	Automating Scott's pro	oof scri	pt			<u> </u>
D3 5 T3	$ NE_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{V} \phi_{\mu \to \sigma^*} (e [p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}] $	Automating Scott's pro	oof scri	pt			_/_ ified"
D3 A5 T3	$ NE_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{V} \phi_{\mu \to \sigma^*} (e [p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}] $	Automating Scott's pro T1: "Positive propert	oof scri	pt pos			ified"
D3 A5 T3	$ NE_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{V} \phi_{\mu \to \sigma^*} (e [p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}] $	Automating Scott's pro	oof scri	pt pos			ified"
D3 A5 T3	$ NE_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{V} \phi_{\mu \to \sigma^*} (e [p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}] $	Automating Scott's pro T1: "Positive propert proved by LEO-II and S	oof scri	pt pos			_/_ ified"
D3 A5 T3	$\begin{array}{l} \mathrm{NE}_{\mu \rightarrow \sigma} = \lambda X_{\mu^*} \dot{\forall} \phi_{\mu \rightarrow \sigma^*} (\mathbf{e} \\ [p_{(\mu \rightarrow \sigma) \rightarrow \sigma} \mathrm{NE}_{\mu \rightarrow \sigma}] \\ [\dot{\Box} \exists X_{\mu^*} g_{\mu \rightarrow \sigma} X] \end{array}$	Automating Scott's pro T1: "Positive propert proved by LEO-II and S in logic: K	oof scri	pt pos			ified"
D3 A5 T3 MC FG	$\begin{array}{l} \mathrm{NE}_{\mu \rightarrow \sigma} = \lambda X_{\mu^*} \dot{\forall} \phi_{\mu \rightarrow \sigma^*} (\mathbf{e} \\ [p_{(\mu \rightarrow \sigma) \rightarrow \sigma} \mathrm{NE}_{\mu \rightarrow \sigma}] \\ [\dot{\Box} \exists X_{\mu^*} g_{\mu \rightarrow \sigma} X] \end{array}$	Automating Scott's pro T1: "Positive propert proved by LEO-II and S in logic: K	oof scri	pt pos			ified"
	$\begin{split} & \text{NE}_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma^*} (\mathbf{c} \\ & [p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma}] \\ & [\dot{\mathbf{d}} \dot{\mathbf{J}} X_{\mu^*} g_{\mu \to \sigma} X] \end{split}$	Al.A2.Dl.A3.A4.D2 Automating Scott's pro T1: "Positive propert proved by LEO-II and S in logic: K from axioms:	oof scri	pt pos			ified"
	$\begin{split} & \text{NE}_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma^*} (\mathbf{c} \\ & [p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma}] \\ & [\dot{\mathbf{d}} \dot{\mathbf{J}} X_{\mu^*} g_{\mu \to \sigma} X] \end{split}$	Automating Scott's pro T1: "Positive propert proved by LEO-II and S in logic: K	oof scri	pt pos			ified"
FG	$\begin{array}{c} \operatorname{NE}_{\mu \to \sigma} = \lambda X_{\mu} \cdot \mathbf{\dot{v}} \phi_{\mu \to \sigma^*} (\mathbf{c} \\ [p_{(\mu \to \sigma) \to \sigma} \operatorname{NE}_{\mu \to \sigma}] \\ [\dot{\Box} \dot{\exists} X_{\mu}, g_{\mu \to \sigma} X] \\ \\ [s_{\sigma} \to \mathbf{i} s_{\sigma}] \end{array}$	Al.A2.Dl.A3.A4.D2 Automating Scott's pro T1: "Positive propert proved by LEO-II and S in logic: K from axioms:	oof scri	pt pos			ified"
FG	$\begin{split} & \text{NE}_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma^*} (\mathbf{c} \\ & [p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma}] \\ & [\dot{\mathbf{d}} \dot{\mathbf{J}} X_{\mu^*} g_{\mu \to \sigma} X] \end{split}$	Al.A2.Dl.A3.A4.D2 Automating Scott's pro T1: "Positive propert proved by LEO-II and S in logic: K from axioms: A1 and A2	k pof scri ies are Satallax	pt pos			ified"
FG	$\begin{split} & \text{NE}_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma^*} (\mathbf{c} \\ & [p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma}] \\ & [\dot{\mathbf{d}} \dot{\mathbf{J}} X_{\mu^*} g_{\mu \to \sigma} X] \end{split}$	Al.A2.Dl.A3.A4.D2 Automating Scott's pro T1: "Positive propert proved by LEO-II and S in logic: K from axioms:	k pof scri ies are Satallax	pt pos			ified"
FG MT	$\begin{split} & \text{NE}_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \to \sigma^*} (\mathbf{c} \\ & [p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma}] \\ & [\dot{\mathbf{d}} \dot{\mathbf{J}} X_{\mu^*} g_{\mu \to \sigma} X] \\ \\ & [s_{\sigma} \supset \mathbf{c} s_{\sigma}] \\ & [\dot{\mathbf{v}} \phi_{\mu \to \sigma^*} \dot{\mathbf{v}} \dot{X}_{\mu^*} (\mathbf{c} s_{\mu \to \sigma} X \dot{\supset} (\mathbf{g}_{\mu} \mathbf{c})) \\ & [\dot{\mathbf{v}} \dot{\mathbf{J}} \dot{\mathbf{J}} \dot{\mathbf{v}} \dot{\mathbf{J}} \dot{\mathbf{J}} (\mathbf{g}_{\mu \to \sigma} X \dot{\supset} (\mathbf{g}_{\mu} \mathbf{c})) \\ \\ & [\dot{\mathbf{v}} \dot{\mathbf{J}} \dot{\mathbf{J}} \dot{\mathbf{v}} \dot{\mathbf{J}} \dot{\mathbf{J}} (\mathbf{g}_{\mu \to \sigma} X \dot{\supset} (\mathbf{g}_{\mu} \mathbf{c})) \\ \end{split}$	Al.A2.Dl.A3.A4.D2 Automating Scott's pro T1: "Positive propert proved by LEO-II and S in logic: K from axioms: A1 and A2	ies are Satallax	pt pos			ified"

	HOL encoding		dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1	$[\forall \phi_{\mu \to \sigma}, p_{(\mu \to \sigma) \to \sigma}(\lambda X_{\mu}, \neg ($	$(\phi X)) \stackrel{.}{=} \neg (p\phi)]$						
Δ2		ΑΙ ΒΥΥ (Α)	<i>X</i> → <i>μX</i>)) → <i>μ</i> / ₂ [
T1	$[\dot{Y}\phi_{\mu o\sigma^*}p_{(\mu o\sigma) o\sigma}\phi\dot{\supset}\dot{\Diamond}\dot{\exists}.$	$X_{\mu} \cdot \phi X$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	—/—
1			A1, A2	K	THM	0.1/0.1	0.0/5.2	—/—
Di	$g_{\mu \to \sigma} = \lambda \Lambda_{\mu} \cdot \nabla \varphi_{\mu \to \sigma} \cdot p_{(\mu \to \sigma)}$	$(\sigma) \rightarrow \sigma \varphi \rightarrow \varphi X$						
A3	$[p_{(\mu \to \sigma) \to \sigma} g_{\mu \to \sigma}]$							
C	$[\dot{\phi}\exists X_{\mu} g_{\mu \to \sigma} X]$		T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—
			A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	—/—
A4	$[\forall \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \Box p \phi$							
D2	$ess_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda$	<i>Χ_μ₌φΧ</i> λ Ϋψ _{μ→}	$_{\sigma^{\bullet}}(\psi X \supset \dot{\Box}\dot{\forall} Y_{\mu^{\bullet}}(\phi Y \supset \psi Y))$					
T2	$[\dot{V}X_{\mu} \cdot g_{\mu \to \sigma}X \dot{\supset} (ess_{(\mu \to \sigma)})$	$\mu \rightarrow \sigma gX$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	—/—
\			A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0	0.0/0.0	<u> </u>
D 3	$NE_{\mu\to\sigma} = \lambda X_{\mu^*} \dot{\forall} \phi_{\mu\to\sigma^*} (e$	Autor	nating Scott's pro	of ecri	nt			
A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$	Autor	nating Scott's pro-	UI SCII	<u>pı</u>			
T3	$[\dot{\Box}\dot{\exists}X_{\mu^*}g_{\mu o\sigma}X]$							
'	\	T1. '	'Positive propertie	oc ara	no	scibly (ovomnl	ifiod"
	\					saibly (exempl	iiieu
	•	prove	d by LEO-II and Sa	atallax				
MC	$[s_{\sigma} \supset s_{\sigma}]$							
MC	$[s_{\sigma} \supset s_{\sigma}]$	• ir	ո logic։ K					
FG	$[\dot{\forall}\phi_{\mu\to\sigma}.\dot{\forall}X_{\mu}.(g_{-\iota\sigma}X\dot{\supset})]$	a fi	om axioms:					
1.0	$[\cdot \varphi_{\mu \to \sigma} \cdot \cdot \Pi_{\mu} \cdot (S_{\mu \to \sigma} \Pi_{\sigma})]$	9 11	om axioms.					
MT	$[\dot{\forall} X_{\mu^*}\dot{\forall} Y_{\mu^*}(g_{\mu\to\sigma}X\dot{\supset}(g_{\mu}))]$		A1 and A2					
1111	$[VM\mu^{\bullet}VT\mu^{\bullet}(g\mu\rightarrow\sigma M)](g\mu$		a A1(¬) and A2					
			 A1(⊃) and A2 					
co	0 (no goal, check for cons	a fo	or domain condition	ne.				
D2'	$\operatorname{ess}_{(u \to \sigma) \to u \to \sigma} = \lambda \phi_{u \to \sigma} \cdot \lambda$, I		_				
CO,	\emptyset (no goal, check for cons		constant domain	IS				
100	5 (me Bonn, blicck for coll.							

		HOL encoding		dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary	
_	A1	$[\forall \phi_{\mu \to \sigma}, p_{(\mu \to \sigma) \to \sigma}(\lambda X_{\mu}, \neg (x_{\mu}))] = [\forall \phi_{\mu \to \sigma}, p_{(\mu \to \sigma) \to \sigma}(\lambda X_{\mu}, \neg (x_{\mu}))]$	$(\phi X)) \stackrel{.}{=} \neg (p\phi)$	$(\dot{\neg}_{ab}(X))\dot{\neg}_{abb}$						
J	T1	$[\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}\phi\dot{\supset}\dot{\Diamond}\dot{\exists}\lambda$		A1(⊃), A2 A1, A2	K K	THM THM	0.1/0.1 0.1/0.1	0.0/0.0 0.0/5.2	_/_ _/_]
(A3 C	$g_{\mu \to \sigma} = \lambda \lambda_{\mu} \cdot \nabla \varphi_{\mu \to \sigma} \cdot p_{(\mu \to \sigma)} \\ [p_{(\mu \to \sigma) \to \sigma} g_{\mu \to \sigma}] \\ [\dot{\diamondsuit} \exists X_{\mu} \cdot g_{\mu \to \sigma} X]$	σ)→σ Ψ ⊃ ΨΛ	T1, D1, A3 A1, A2, D1, A3	K K	THM THM	0.0/0.0 0.0/0.0	0.0/0.0 5.2/31.3	-/- -/-	-
\	A4 D2 T2	$ \begin{array}{l} [\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}\phi\dot{\supset}\dot{\Box}p\phi\\ \mathrm{ess}_{(\mu\to\sigma)\to\mu\to\sigma}=\lambda\phi_{\mu\to\sigma^*}\lambda\dot{\Box}\\ [\dot{\forall}X_{\mu^*}g_{\mu\to\sigma}X\dot{\supset}(\mathrm{ess}_{(\mu\to\sigma)\to\sigma}) \end{array} $	X_{μ} • ϕX $\dot{\wedge}$ $\dot{\forall} \psi_{\mu ightarrow 0}$	$\varphi_*(\psi X \supset \dot{\Box}\dot{\forall}Y_{\mu^*}(\phi Y \supset \psi Y))$ A1, D1, A4, D2 A1, A2, D1, A3, A4, D2	K	THM	19.1/18.3 12.9/14.0	0.0/0.0	, _/_	
	D3 A5 T3	$ \mathbf{NE}_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{\mathbf{V}} \boldsymbol{\phi}_{\mu \to \sigma^*} (\mathbf{e} \\ [\mathbf{p}_{(\mu \to \sigma) \to \sigma} \mathbf{NE}_{\mu \to \sigma}] \\ [\dot{\mathbf{D}} \dot{\mathbf{J}} X_{\mu^*} \mathbf{g}_{\mu \to \sigma} X] $	Auton	nating Scott's pr	oof scri		12:2711.0	0.070.0		
	,		prove	Positive proper d by LEO-II and			ssibly (exempl	ified"	
	MC FG	$[s_{\sigma} \supset \dot{s} s_{\sigma}]$ $[\dot{V}\phi_{\mu \to \sigma}, \dot{V}X_{\mu}, s_{\sigma} \to \sigma X \supset 0]$		ı logic: K om axioms:						ı
	МТ	$[\dot{\forall} X_{\mu^*}\dot{\forall} Y_{\mu^*}(g_{\mu o\sigma} X\dot\supset(g_\mu$		 A1 and A2 A1(⊃) and A2 						

for domain conditions:

constant domains

varying domains (individuals)

0 (no goal, check for cons

 $ess_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda$ ∅ (no goal, check for constant)

CO D2'

CO'

	HOL encoding	//m ! // m	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1 A2 T1	$ \begin{array}{l} [\dot{\forall} \phi_{\mu \to \sigma} \ p_{(\mu \to \sigma) \to \sigma} (\lambda X_{\mu} \ \dot{\neg} \\ [\dot{\forall} \phi_{\mu \to \sigma} \ \dot{\forall} \psi_{\mu \to \sigma} \ (p_{(\mu \to \sigma) \to \sigma} \\ [\dot{\forall} \phi_{\mu \to \sigma} \ p_{(\mu \to \sigma) \to \sigma} \phi \ \dot{\supset} \ \dot{\Diamond} \ \dot{\exists} \end{array} $	_σ φ Λ ἀΫ <i>Χ</i> μ• (φ <i>X</i>	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	-/-
D1	$g_{\mu\to\sigma} = \lambda X_{\mu} \cdot \dot{\forall} \phi_{\mu\to\sigma} \cdot p_{(\mu\to\sigma)}$	$\phi \circ \sigma \to \sigma \phi \Rightarrow \phi X$	A1, A2	K	THM	0.1/0.1	0.0/5.2	—/—
С	$[\diamondsuit \exists X_{\mu} \ g_{\mu o \sigma} X]$		T1, D1, A3 A1, A2, D1, A3	K K	THM THM	0.0/0.0 0.0/0.0	0.0/0.0 5.2/31.3	_/_ _/_
D2 T2	$\begin{array}{l} \exp_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda \\ \exp_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda \\ [\dot{V} X_{\mu^*} g_{\mu \to \sigma} X \supset (ess_{(\mu \to \sigma)} \lambda) \end{array}$	X_{μ} • ϕX $\dot{\land}$ $\dot{\lor} \psi_{\mu o \phi}$	$(\psi X \supset \dot{\Box}\dot{\forall}Y_{\mu^*}(\phi Y \supset \psi Y))$ A1, D1, A4, D2 A1, A2, D1, A3, A4, D2	K K	THM THM	19.1/18.3 12.9/14.0	0.0/0.0	-/-
D3 A5 T3	$ \mathbf{NE}_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{\forall} \phi_{\mu \to \sigma^*} (\mathbf{e}) $ $ [\mathbf{p}_{(\mu \to \sigma) \to \sigma} \mathbf{NE}_{\mu \to \sigma}] $ $ [\dot{\Box} \dot{\exists} X_{\mu^*} \mathbf{g}_{\mu \to \sigma} X] $	Autom	nating Scott's p	- "		12.9/14.0	0.0/0.0	
MC	$[s_{\sigma} : \dot{\mathfrak{Q}}s_{\sigma}]$	prove	ssibly, God exi d by LEO-II and logic: K					
FG	$[\dot{V}\phi_{\mu o\sigma},\dot{V}X_{\mu},(\sigma_{u o\sigma}X\dot{\supset})]$		om assumption	s:				
MT	$[\dot{\forall} X_{\mu^*} \dot{\forall} Y_{\mu^*} (g_{\mu \to \sigma} X \stackrel{.}{\supset} (g_{\mu}$		T1, D1, A3A1, A2, D1, A3					
CO D2' CO'	\emptyset (no goal, check for consess _($\mu \to \sigma$) $\rightarrow \mu \to \sigma$ = $\lambda \phi_{\mu \to \sigma}$. λ \emptyset (no goal, check for cons		r domain condi					

		HOL encoding		dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
	A 1	$[\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu^*}\dot{\neg}($	$(\phi X)) \doteq \dot{\neg} (p\phi)$, , , , , ,		,
	A2	$[\forall \phi_{\mu o \sigma}, \forall \psi_{\mu o \sigma}, (p_{(\mu o \sigma) o \sigma})]$,φ Λ ἀΫ <i>Χ_μ</i> • (φ.	$(X \supset \psi X)) \supset p\psi$					
	T1	$[\dot{\mathbf{Y}}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}\phi\dot{\supset}\dot{\mathbf{Q}}\dot{\mathbf{Z}}]$	$Y_{\mu} \cdot \phi X$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	—/ <u> </u>
	DI	$\mathbf{g}_{\mu o \sigma} = \lambda X_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu o \sigma} \cdot p_{(\mu o \sigma) o \sigma} \phi \supset \phi X$ $\mathbf{p}_{(\mu o \sigma) o \sigma} \mathbf{g}_{\mu o \sigma} \mathbf{j}$		A1, A2	K	THM	0.1/0.1	0.0/5.2	—/—
	D1 A3								
	C	$[\dot{\phi} \exists X_{\mu} \ g_{\mu \to \sigma} X]$		T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—
	•	[4 → 1 + 1		A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	_/_
	A4	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \dot{\Box} p \phi$	5]						
Н	DΣ	- 253(μ-υ)-μ-υ - λ/μ-υ-λ							
Н	T2	$[\dot{V} X_{\mu^{\bullet}} g_{\mu \to \sigma} X \dot{\supset} (ess_{(\mu \to \sigma) \to \sigma})$	$(\mu \to \sigma gX)$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	—/ <u> </u>
Ц	D3	$NE_{u\to\sigma} = \lambda X_{u*} \dot{\Psi} \phi_{u\to\sigma*} (e$		A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0	0.0/0.0	_/_
	A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$	Autor	nating Scott's pro	of scri	pt			
	T3	$[\Box \exists X_{\mu} \cdot g_{\mu \to \sigma} X]$		-		_			
٧		, -,	TO. "	Daing Cad like is a		-6-	Caa	l lika ba	ina"
	\			Being God-like is a			illy Goc	i-like be	anig
	-		prove	ed by LEO-II and Sa	atallax				
	MC	$\supset \Box s_{\sigma}]$	i	n logic: K					
	FG	$[\forall \phi_{\mu \to \sigma}. \forall X_{\mu} (\sigma_{\mu \to \sigma} X \supset ($	● f	rom assumptions:					
) err	Dir ir (- r÷(-		• A1, D1, A4, D2					
	MT	$[\dot{\forall} X_{\mu^*}\dot{\forall} Y_{\mu^*}(g_{\mu\to\sigma}X\dot{\supset}(g_{\mu}$			4 D2				
				A1, A2, D1, A3, A	14, DZ				
	CO	0 (no goal, check for cons	● fe	or domain condition	ons:				
	D2'	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda$	• f						
		, ,	• fo	or domain condition constant domain varying domains	ıs	-11-	. \		

	HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1	$[\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu^*}\dot{\neg}(\phi X)) \stackrel{.}{=} \dot{\neg}(p\phi)]$						
A2	$ [\dot{\forall} \phi_{\mu \to \sigma^{\bullet}} p_{(\mu \to \sigma) \to \sigma} (\lambda X_{\mu} \dot{\neg} (\phi X)) \stackrel{.}{=} \dot{\neg} (p\phi)] $ $[\dot{\forall} \phi_{\mu \to \sigma^{\bullet}} \dot{\forall} \psi_{\mu \to \sigma^{\bullet}} (p_{(\mu \to \sigma) \to \sigma} \phi \dot{\wedge} \dot{\Box} \dot{\forall} X_{\mu^{\bullet}} (\phi X)) $	$(\Rightarrow \psi X)) \Rightarrow p\psi]$					
T1	$[\forall \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \Diamond \exists X_{\mu^*} \phi X]$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	—/—
		A1, A2	K	THM	0.1/0.1	0.0/5.2	—/—
D1	$g_{u \to \sigma} = \lambda X_u \cdot \dot{V} \phi_{u \to \sigma} \cdot p_{(u \to \sigma) \to \sigma} \phi \supset \phi X$						
A3	$[p_{(\mu \to \sigma) \to \sigma} g_{\mu \to \sigma}]$						
C	$[\dot{\Diamond}\exists X_{\mu},g_{\mu\to\sigma}X]$	T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—
		A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	—/—
A4	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \Box p \phi]$						
D2	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda X_{\mu} \phi X \dot{\wedge} \dot{\forall} \psi_{\mu \to}$	$_{\sigma^{\bullet}}(\psi X \supset \Box \dot{\forall} Y_{\mu^{\bullet}}(\phi Y \supset \psi Y))$					
T2	$[\forall X_{\mu}, g_{\mu \to \sigma} X \supset (ess_{(\mu \to \sigma) \to \mu \to \sigma} gX)]$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	—/—
	, -, - , -, -, -, -, -, -, -, -, -, -, -	A1 A2 D1 A3 A4 D2	K	THM	12 9/14 0	0.0/0.0	_/_

D3
$$NE_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{\nabla} \phi_{\mu \to \sigma^*} (e$$
A5 $[n_{\ell_{\mu} \to \sigma}] = NE_{\mu \to \sigma}$
T3 $[\dot{\Box} \dot{\exists} X_{\mu^*} g_{\mu \to \sigma} X]$

Automating Scott's proof script

T3: "Necessarily, God exists" proved by LEO-II and Satallax

- in logic: KB
- from assumptions:
 - D1, C, T2, D3, A5
- for domain conditions:
 - constant domains
 - varying domains (individuals)

For logic K we got a countermodel by Nitpick

FG
$$[V\phi_{\mu\to\sigma}, V, (g_{\mu\to\sigma}X)]$$

$$MT \quad [\dot{\forall} X_{\mu^*} \dot{\forall} Y_{\mu^*} (g_{\mu \to \sigma} X \supset (g_{\mu}))]$$

- CO 0 (no goal, check for cons
- D2' $ess_{(u \to \sigma) \to u \to \sigma} = \lambda \phi_{u \to \sigma}$.
- CO' 0 (no goal, check for cons

		HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
Г	A1	$[\forall \phi_{\mu \to \sigma} \cdot p_{(\mu \to \sigma) \to \sigma}(\lambda X_{\mu} \cdot \neg (\phi X)) \stackrel{.}{=} \neg (p\phi)]$						
ı	A2	$[\forall \phi_{\mu \to \sigma^*} \forall \psi_{\mu \to \sigma^*} (p_{(\mu \to \sigma) \to \sigma} \phi \land \Box \forall X_{\mu^*} (\phi X)]$	$(\neg \psi X)) \supset p\psi$					
ı	T1	$[\dot{\forall}\phi_{\mu o \sigma^*}p_{(\mu o \sigma) o \sigma}\phi \ \dot{\supset} \ \dot{\Diamond} \exists X_{\mu^*}\phi X]$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	—/—
ı			A1, A2	K	THM	0.1/0.1	0.0/5.2	—/—
ı	D1 A3	$g_{\mu \to \sigma} = \lambda X_{\mu^*} \dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \phi X$						
ı	A3	$[p_{(\mu \to \sigma) \to \sigma} g_{\mu \to \sigma}]$						
ı	C	$[\dot{\phi} \exists X_{\mu} \cdot g_{\mu \to \sigma} X]$	T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	-/-
ı			A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	—/—
ı	A4	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \Box p \phi]$						
1	D2	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma} \lambda X_{\mu} \phi X \dot{\lambda} \dot{\forall} \psi_{\mu \to \sigma}$	$\bullet(\psi X \stackrel{.}{\supset} \dot{\Box} \dot{\forall} Y_{\mu^*} (\phi Y \stackrel{.}{\supset} \psi Y))$					
ı	T2	$[\dot{\forall} X_{\mu} \cdot g_{\mu \to \sigma} X \dot{\supset} (ess_{(\mu \to \sigma) \to \mu \to \sigma} gX)]$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	-/-
ı			A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0	0.0/0.0	—/—
1	D3	$NE_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\forall} \phi_{\mu \to \sigma} \cdot (ess \phi X \supset \dot{\Box} \dot{\exists} Y_{\mu} \cdot \phi)$	Y)					
V	A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$						

	•			
MC	[a]	Ė	1	

FG	$[\dot{V}\phi_{\mu o\sigma},V_{A\mu}(e_{\mu o\sigma}X\dot{\supset})]$
MT	$[\dot{\forall} X_{\mu^*}\dot{\forall} Y_{\mu^*}(g_{\mu\to\sigma}X\dot{\supset}(g_{\mu}))]$

 $[\Box \exists X_{\mu}, g_{\mu \to \sigma} X]$

- CO \emptyset (no goal, check for cons
- CO' \emptyset (no goal, check for cons

Automating Scott's proof script

Summary

- proof verified and automated
- KB is sufficient (critisized logic S5 not needed!)
- proof works for constant and varying domains
- exact dependencies determined experimentally
- ATPs have found alternative proofs (shorter)

A1	HOL encoding $[\dot{\mathbf{y}}\phi_{\mu\to\sigma},p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu},\dot{\neg}(\lambda X_{\mu},\dot{\neg}(\lambda X_{\mu},\dot{\neg}(\lambda X_{\mu},\dot{\neg}(\lambda X_{\mu},\dot{\neg}(\lambda X_{\mu},\dot{\neg}(\lambda X_{\mu},\dot{\neg}(\lambda X_{\mu},\dot{\rightarrow}(\lambda X_{\mu},\dot{\rightarrow}(\lambda$		logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A2 T1	$[\forall \phi_{\mu \to \sigma^*} \forall \psi_{\mu \to \sigma^*} (p_{(\mu \to \sigma) \to \sigma})$ $[\forall \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \dot{\varphi}]$.φ λ ἀΫ <i>X_{μ*} (φX ὰ ψX)) ὰ pψ</i>] ζ _{(**} φ <i>X</i>] Α1(⊃), Α2	K	THM	0.1/0.1	0.0/0.0	_/_
D1 A3 C A4 D2 T2 D3 A5 T3	$\begin{array}{l} g_{\mu \rightarrow \sigma} = \lambda X_{\mu} \cdot \dot{\mathbf{v}} \phi_{\mu \rightarrow \sigma} \cdot P_{(\mu -} \\ [P_{(\mu \rightarrow \sigma) \rightarrow \sigma} g_{\mu \rightarrow \sigma}] \\ [\dot{\mathbf{v}} \dot{\exists} X_{\mu} \cdot \mathbf{g}_{\mu \rightarrow \sigma} X] \\ [\dot{\mathbf{v}} \phi_{\mu \rightarrow \sigma} \cdot P_{(\mu \rightarrow \sigma) \rightarrow \sigma} \phi \Rightarrow \dot{\mathbf{v}} \\ [\dot{\mathbf{v}} \chi_{\mu} \cdot \mathbf{g}_{\mu \rightarrow \sigma}] \\ [\dot{\mathbf{v}} \chi_{\mu} \cdot \mathbf{g}_{\mu}] \\$	Consistency check: G Scott's assumptic shown by Nitpick Gödel's assumpti shown by LEO-II	ons are	cons	— istent; nsister		
/		D1, C, T2, D3, A5 A1, A2, D1, A3, A4, D2, D3	KB	THM THM	0.0/0.1 —/—	0.1/5.3	—/— —/—
MC FG	$[s_{\sigma} \supset \Box s_{\sigma}]$ $[\dot{\forall} \phi_{\mu \to \sigma^*} \dot{\forall} X_{\mu^*} (g_{\mu \to \sigma} X \supset (-1))$	D2, T2, T3 A1, A2, D1, A3, A4, D2, D3 $\neg (p_{(\mu \to \sigma) \to \sigma} \phi) \supset \neg (\phi X)))]$ A1, D1 A1, D2	KB	THM THM THM	17.9/— —/— 16.5/— 12.8/15.1	3.3/3.2 —/— 0.0/0.0 0.0/5.4	-/- -/- -/-
MT	$[\dot{\forall} X_{\mu^*}\dot{\forall} Y_{\mu^*}(g_{\mu o \sigma} X \stackrel{.}{\supset} (g_{\mu o}$	A1, A2, D1, A3, A4, D2, D3 A3, A4, D2, D3 A3, A4, D2, D3 A3, A4, D2, D3	KB	THM THM THM	12.8/15.1 —/— —/—	0.0/3.4 0.0/3.3 —/—	_/_ _/_ _/_
CO D2' CO'	\emptyset (no goal, check for considers $(\mu \to \sigma) \to \mu \to \sigma = \lambda \phi_{\mu \to \sigma} \to \lambda \lambda$ (no goal, check for consider δ)	$(Y_{\mu^*}\dot{\vee}\psi_{\mu\to\sigma^*}(\psi X \supset \Box\dot{\vee}Y_{\mu^*}(\phi Y \supset \psi Y)))$	KB	SAT UNS UNS	/ 7.5/7.8 /	-/- -/- -/-	7.3/7.4

	HOL encoding		dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary	
A1	$[\dot{\mathbf{V}}\phi_{\mu\to\sigma}, p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu}, \dot{\neg})]$	$(\phi X)) \doteq \dot{\neg} (p\phi)$,	,	,,	
A2	$[\dot{\mathbf{V}}\phi_{\mu\to\sigma^*}\dot{\mathbf{V}}\psi_{\mu\to\sigma^*}(p_{(\mu\to\sigma)\to\sigma})]$	αλ □ ∀ Υ - (α)	$(X \rightarrow u(X)) \rightarrow m(x)$						
T1	$[\dot{\mathbf{V}}\phi_{\mu\to\sigma^*}\mathbf{p}_{(\mu\to\sigma)\to\sigma}\phi\dot{\mathbf{J}}\dot{\mathbf{J}}]$		A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	_/_	
11	$(\mathbf{V} \boldsymbol{\varphi} \boldsymbol{\mu} \rightarrow \boldsymbol{\sigma}^* \boldsymbol{P} (\boldsymbol{\mu} \rightarrow \boldsymbol{\sigma}) \rightarrow \boldsymbol{\sigma} \boldsymbol{\varphi} \supset \mathbf{V} \supset \mathbf{V}$	1. φ2.]	A1, A2	K	THM	0.1/0.1	0.0/5.2	_/_	
D1	$g_{u \to \sigma} = \lambda X_u \cdot \dot{\forall} \phi_{u \to \sigma} \cdot p_{(u \to \sigma)}$	4 ÷ 4 Y	711,712		111141	0.1/0.1	0.0/3.2		
A3	$[p_{(\mu \to \sigma) \to \sigma} g_{\mu \to \sigma}]$	$(\sigma) \rightarrow \sigma \psi \rightarrow \psi \Lambda$							
C	$[\dot{\mathbf{Q}} \exists X_{\mu} \ \mathbf{g}_{\mu \to \sigma} X]$		T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/—	
	$[\nabla \exists \mathbf{X} \mu \cdot \mathbf{g} \mu \rightarrow \sigma \mathbf{X}]$		A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	_/_	
A4	$[\dot{\forall} \phi_{\mu o \sigma^*} p_{(\mu o \sigma) o \sigma} \phi \ \dot{\supset} \ \dot{\Box} p \phi$	41	A1,A2,D1,A3	IX.	111141	0.0/0.0	3.2/31.3	—/—	
D2			(4V 3 5 4V (4V 3 4V))						
T2			$\sigma^{\bullet}(\psi X \supset \dot{\Box}\dot{\forall} Y_{\mu^{\bullet}}(\phi Y \supset \psi Y))$	K	TIDA	10 1 /10 2	0.0/0.0	,	
12	$[\dot{\forall} X_{\mu} \cdot g_{\mu \to \sigma} X \dot{\supset} (ess_{(\mu \to \sigma) \to \sigma})$	$\mu \to \sigma g A$)]	A1, D1, A4, D2 A1, A2, D1, A3, A4, D2	K	THM THM	19.1/18.3 12.9/14.0	0.0/0.0 0.0/0.0	—/— —/—	
			A1, A2, D1, A3, A4, D2	N.	I HIVI	12.9/14.0	0.0/0.0	—/—	
	$NE_{\mu\to\sigma} = \lambda \underline{X}_{\mu^*} \dot{V} \phi_{\mu\to\sigma^*} (\operatorname{ess} \phi X \supset \dot{\Box} \dot{\Xi} Y_{\mu^*} \phi Y)$								
D3		ss ϕX $\dot{\supset}$ $\dot{\Box}\dot{\exists}Y_{\mu}$. $\dot{\Diamond}$							
A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$		φΥ)						
				ency (1	rom	LEO-II	s proof)	
A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$		φΥ)	ency (irom	LEO-II	s proof	<u>)</u>	
A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$	Argun	φΥ) ment for inconsist				•	<u>^</u>	
A5 T3	$egin{align*} & [p_{(\mu-\sigma) o\sigma}\mathrm{NE}_{\mu o\sigma}] \ & [\dot{ exttt{d}} \ddot{ exttt{J}} \chi_{\mu^*} g_{\mu o\sigma} X] \ \end{aligned}$	Argun	φΥ)				s proof λγλw⊥	<u>^</u>	
A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$	Argur	nent for inconsist is essence of any				•	<u>^</u>	
A5 T3	$\begin{bmatrix} p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma} \end{bmatrix}$ $\begin{bmatrix} \dot{\Box} \dot{\exists} X_{\mu}, g_{\mu \to \sigma} X \end{bmatrix}$ $[s_{\sigma} \dot{\supset} \dot{\Box} s_{\sigma}]$	Argur	φΥ) ment for inconsist				•	<u>^</u>	
A5 T3	$egin{align*} & [p_{(\mu-\sigma) o\sigma}\mathrm{NE}_{\mu o\sigma}] \ & [\dot{ exttt{d}}\ddot{ exttt{J}}X_{\mu^*}g_{\mu o\sigma}X] \ \end{aligned}$	Argur L1 Ø B	ment for inconsist is essence of any by D2 (ess):	entity			- 'λ <i>yλ</i> w⊥	ess x]	
A5 T3 MC FG	$\begin{aligned} & [p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma}] \\ & [\dot{\alpha} \dot{\exists} X_{\mu}, g_{\mu \to \sigma} X] \end{aligned}$ $[s_{\sigma} \dot{\Rightarrow} \dot{\alpha} s_{\sigma}]$ $[\dot{\forall} \phi_{\mu \to \sigma}, \dot{\forall} X_{\mu}, (g_{\mu \to \sigma} X \dot{\Rightarrow} 0)$	Argur L1 Ø B	nent for inconsist is essence of any	entity			- 'λ <i>yλ</i> w⊥	<u>^</u>	
A5 T3	$\begin{bmatrix} p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma} \end{bmatrix}$ $\begin{bmatrix} \dot{\Box} \dot{\exists} X_{\mu}, g_{\mu \to \sigma} X \end{bmatrix}$ $[s_{\sigma} \dot{\supset} \dot{\Box} s_{\sigma}]$	Argur L1 Ø B L2 N	ment for inconsist is essence of any by D2 (ess): IE is not exemplifi	entity	:	∀ x[- 'λ <i>yλ</i> w⊥	ess x]	
A5 T3 MC FG	$\begin{aligned} & [p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma}] \\ & [\dot{\alpha} \dot{\exists} X_{\mu}, g_{\mu \to \sigma} X] \end{aligned}$ $[s_{\sigma} \dot{\Rightarrow} \dot{\alpha} s_{\sigma}]$ $[\dot{\forall} \phi_{\mu \to \sigma}, \dot{\forall} X_{\mu}, (g_{\mu \to \sigma} X \dot{\Rightarrow} 0)$	Argur L1 Ø B L2 N	ment for inconsist is essence of any by D2 (ess):	entity	:	∀ x[- 'λ <i>yλ</i> w⊥	ess x]	
MC FG MT	$\begin{aligned} & [p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma}] \\ & [\dot{\Box} \dot{\exists} X_{\mu}, g_{\mu \to \sigma} X] \end{aligned}$ $[s_{\sigma} \dot{\supset} \dot{\Box} s_{\sigma}]$ $[\dot{\forall} \phi_{\mu \to \sigma}, \dot{\forall} X_{\mu}, (g_{\mu \to \sigma} X \dot{\supset} (g_{\mu \to \sigma} X \dot{)} (g_{\mu \to \sigma} X \dot{)})]$	L1 Ø B L2 N	ment for inconsist is essence of any by D2 (ess): IE is not exemplifi by A1a, A2, A5, L1	entity	:	∀ x[- 'λ <i>yλ</i> w⊥	ess x] NE(x)	
MC FG MT CO	$[p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma}]$ $[\dot{\Box} \dot{\exists} X_{\mu}, g_{\mu \to \sigma} X]$ $[s_{\sigma} \ni \dot{\Box} s_{\sigma}]$ $[\dot{\forall} \phi_{\mu \to \sigma}, \dot{\forall} X_{\mu}, (g_{\mu \to \sigma} X \ni (g_{\mu}))$ $\emptyset \text{(no goal, check for constant)}$	Argur L1 ∅ B L2 N B ⇒ Ir	is essence of any D2 (ess): WE is not exemplified A1a, A2, A5, L1 inconsistency:	entity	:	∀ x[- 'λ <i>yλ</i> w⊥	ess x]	
MC FG MT CO D2'	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$ $[\dot{\Box} \dot{\exists} X_{\mu}, g_{\mu \to \sigma} X]$ $[s_{\sigma} \dot{\supset} \dot{\Box} s_{\sigma}]$ $[\dot{\forall} \phi_{\mu \to \sigma}, \dot{\forall} X_{\mu}, (g_{\mu \to \sigma} X \dot{\supset} (g_{\mu}))$ $\emptyset \text{ (no goal, check for consess}_{(\mu \to \sigma) \to (\mu \to \sigma)} \Rightarrow \lambda \phi_{\mu \to \sigma} \lambda \phi_{\mu \to \sigma} X$	Argur L1 ∅ B L2 N B ⇒ Ir	ment for inconsist is essence of any by D2 (ess): IE is not exemplifi by A1a, A2, A5, L1	entity	:	∀ x[- 'λ <i>yλ</i> w⊥	ess x] NE(x)	
MC FG MT CO	$[p_{(\mu \to \sigma) \to \sigma} \text{NE}_{\mu \to \sigma}]$ $[\dot{\Box} \dot{\exists} X_{\mu}, g_{\mu \to \sigma} X]$ $[s_{\sigma} \ni \dot{\Box} s_{\sigma}]$ $[\dot{\forall} \phi_{\mu \to \sigma}, \dot{\forall} X_{\mu}, (g_{\mu \to \sigma} X \ni (g_{\mu}))$ $\emptyset \text{(no goal, check for constant)}$	Argur L1 ∅ B L2 N B ⇒ Ir	is essence of any D2 (ess): WE is not exemplified A1a, A2, A5, L1 inconsistency:	entity	:	∀ x[- 'λ <i>yλ</i> w⊥	ess x] NE(x)	

	HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1 A2 T1	$ \begin{array}{l} [\dot{\forall}\phi_{\mu\rightarrow\sigma^*}p_{(\mu\rightarrow\sigma)\rightarrow\sigma}(\lambda X_{\mu^*}\dot{\neg}(\phi_{\mu\rightarrow\sigma^*}\dot{\forall}\psi_{\mu\rightarrow\sigma^*}(p_{(\mu\rightarrow\sigma)\rightarrow\sigma}(\phi_{\mu\rightarrow\sigma)\rightarrow\sigma}(\phi_{\mu\rightarrow\sigma^*}p_{(\mu\rightarrow\sigma)\rightarrow\sigma}\phi_{\sigma}\dot{\phi}_{\sigma})] \end{array} $	$b \land \Box \dot{\forall} X_{\mu^*}(\phi X \supset \psi X)) \supset p\psi$	K	THM	0.1/0.1	0.0/0.0	—/ <u>—</u>
D1 A3 C	$egin{align*} oldsymbol{g}_{\mu o \sigma} &= \lambda X_{\mu} \cdot \dot{f V} oldsymbol{\phi}_{\mu o \sigma} \cdot p_{(\mu ext{-})} \ [p_{(\mu o \sigma) o \sigma} oldsymbol{g}_{\mu o \sigma}] \ [\dot{f Q} \stackrel{\perp}{\exists} X_{\mu} \cdot oldsymbol{g}_{\mu o \sigma} X] \end{aligned}$	Further Results					
A4 D2 T2	$ \begin{array}{l} [\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}\phi\supset\dot{\Box}p\\ \mathrm{ess}_{(\mu\to\sigma)\to\mu\to\sigma} & \lambda\psi_{\mu\to\sigma^*}\lambda\\ [\dot{\forall}X_{\mu^*}g_{-\sigma}X\supset(\mathrm{ess}_{(\mu\to\sigma)}. \end{array} $	Monotheism holdsGod is flawless					
D3 $\mathbf{x}_{\mu \to \sigma} = \lambda X_{\mu} \dot{\mathbf{v}} \phi_{\mu \to \sigma} \cdot (\mathbf{c})$ A5 $[\mathbf{p}_{(\mu \to \sigma) \to \sigma} \mathbf{N} \mathbf{E}_{\mu \to \sigma}]$ $[\mathbf{p}_{(\mu \to \sigma) \to \sigma} \mathbf{N} \mathbf{E}_{(\mu \to \sigma)}]$ $[\mathbf{p}_{(\mu \to \sigma) \to \sigma} \mathbf{N}]$							
	μ-σμ-ιν3	A1, A2, D1, A3, A4, D2, D3, A D1, C, T2, D3, A5 A1, A2, D1, A3, A4, D2, D3, A	KB	CSA THM THM	/_ 0.0/0.1 /_	/ 0.1/5.3 /_	8.2/7.5 —/— —/—
MC	$[s_{\sigma} \stackrel{.}{\supset} \stackrel{.}{\Box} s_{\sigma}]$	D2, T2, T3	KB 5 KB	THM	17.9/—	3.3/3.2	_/_
FG MT	$[\dot{\forall}\phi_{\mu o \sigma^*}\dot{\forall}X_{\mu^*}(g_{\mu o \sigma}X o (\dot{\neg})]$ $[\dot{\forall}X_{\mu^*}\dot{\forall}Y_{\mu^*}(g_{\mu o \sigma}X o (g_{\mu o \sigma}X))]$	$ \begin{array}{cccc} (p_{(\mu \to \sigma) \to \sigma} \phi) \ \dot{\supset} \ \dot{\neg} (\phi X)))] & \text{A1, D1} \\ & \text{A1, A2, D1, A3, A4, D2, D3, A} \\ p_{x} \ \dot{\supset} \ X \ \dot{=} \ Y))] & \text{D1, FG} \\ & \text{A1, A2, D1, A3, A4, D2, D3, A} \end{array} $	KB	THM THM THM THM	16.5/— 12.8/15.1 —/— —/—	0.0/0.0 0.0/5.4 0.0/3.3 —/—	_/_ _/_ _/_ _/_
CO D2' CO'	\emptyset (no goal, check for consises $\mathbf{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma^*} \lambda X$ \emptyset (no goal, check for consis	$_{\mu^{\bullet}}\dot{\forall}\psi_{\mu\rightarrow\sigma^{\bullet}}(\psi X \supset \dot{\Box}\dot{\forall}Y_{\mu^{\bullet}}(\phi Y \supset \psi Y))$	KB	SAT UNS UNS	/ 7.5/7.8 /	-/- -/-	7.3/7.4

Modal Collapse

$$\forall \varphi (\varphi \supset \Box \varphi)$$

- proved by LEO-II and Satallax
- for constant and varying domains

Main critique on Gödel's ontological proof:

- there are no contingent truths
- everything is determined / no free will
- why using modal logic in the first place?

_								
ł	MC	$[s_{\sigma} \supset \Box s_{\sigma}]$	D2, T2, T3 A1, A2, D1, A3, A4, D2, D3, A5	KB KB	THM THM	17.9/— —/—	3.3/3.2 —/—	_/_ _/_
-	FU	$[\forall \varphi_{\mu \to \sigma^*} \forall A_{\mu^*} (g_{\mu \to \sigma} A \supset (\neg (p_{(\mu \to \sigma) \to \sigma} \varphi) \supset$	¬(\varphi A))) A1,D1	KB	I HIVI	10.5/—	0.0/0.0	_/_
		7 7 7 10 7 10 7 10 7 10 7 10 7 10 7 10	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	12.8/15.1	0.0/5.4	—/—
	MT	$[\dot{\forall} X_{\mu^*} \dot{\forall} Y_{\mu^*} (g_{\mu \to \sigma} X \dot{\supset} (g_{\mu \to \sigma} Y \dot{\supset} X \dot{=} Y))]$	D1.FG	KB	THM	—/—	0.0/3.3	—/—
		Σ·μ- · - μ- · Θμυ · · · · · · · · · · · · · · · ·	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	_/_	_/_	_/_
	CO D2'	∅ (no goal, check for consistency)	A1, A2, D1, A3, A4, D2, D3, A5	KB	SAT	_/_	-/-	7.3/7.4
	CO,	$\begin{array}{l} \operatorname{ess}_{(\mu-\sigma)\to\mu\to\sigma} = \lambda \phi_{\mu\to\sigma^*} \lambda X_{\mu} \dot{\forall} \psi_{\mu\to\sigma^*} (\psi X \\ \emptyset \text{ (no goal, check for consistency)} \end{array}$	$A1(\supset), A2, D2', D3, A5$ A1, A2, D1, A3, A4, D2', D3, A5	KB KB	UNS UNS	7.5/7.8 —/—	_/_ _/_	_/_ _/_

	HOL encoding	dependencies	logic	status	LEO-II const/vary	Satallax const/vary	Nitpick const/vary
A1	$[\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}(\lambda X_{\mu^*}\dot{\neg}(\phi X)) \stackrel{.}{=} \dot{\neg}(p\phi)]$						
A2	$[\dot{\forall}\phi_{\mu\to\sigma^*}\dot{\forall}\psi_{\mu\to\sigma^*}(p_{(\mu\to\sigma)\to\sigma}\phi\dot{\wedge}\dot{\Box}\dot{\forall}X_{\mu^*}(\phi X)]$	$(\neg \psi X)$					
T1	$[\dot{\forall} \phi_{\mu \to \sigma^*} p_{(\mu \to \sigma) \to \sigma} \phi \supset \dot{\Diamond} \exists X_{\mu^*} \phi X]$	A1(⊃), A2	K	THM	0.1/0.1	0.0/0.0	—/—
		A1, A2	K	THM	0.1/0.1	0.0/5.2	—/— —/—
D1	$g_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\forall} \phi_{\mu \to \sigma} \cdot p_{(\mu \to \sigma) \to \sigma} \phi \supset \phi X$						
A3	$[p_{(\mu o \sigma) o \sigma} g_{\mu o \sigma}]$						
C	$[\dot{\phi} \exists X_{\mu} \cdot g_{\mu \to \sigma} X]$	T1, D1, A3	K	THM	0.0/0.0	0.0/0.0	—/— —/—
		A1, A2, D1, A3	K	THM	0.0/0.0	5.2/31.3	—/—
A4	$[\dot{\forall}\phi_{\mu\to\sigma^*}p_{(\mu\to\sigma)\to\sigma}\phi\dot{\supset}\dot{\Box}p\phi]$						
D2	$\operatorname{ess}_{(\mu \to \sigma) \to \mu \to \sigma} = \lambda \phi_{\mu \to \sigma^*} \lambda X_{\mu^*} \phi X \dot{\lambda} \dot{\forall} \psi_{\mu \to \sigma^*}$	$\bullet(\psi X \mathrel{\dot{\supset}} \dot{\Box} \dot{\forall} Y_{\mu^*} (\phi Y \mathrel{\dot{\supset}} \psi Y))$					
T2	$[\dot{\forall} X_{\mu^*} g_{\mu \to \sigma} X \dot{\supset} (ess_{(\mu \to \sigma) \to \mu \to \sigma} gX)]$	A1, D1, A4, D2	K	THM	19.1/18.3	0.0/0.0	—/— —/—
		A1, A2, D1, A3, A4, D2	K	THM	12.9/14.0	0.0/0.0	—/—
D3	$NE_{\mu \to \sigma} = \lambda X_{\mu} \cdot \dot{\forall} \phi_{\mu \to \sigma} \cdot (ess \phi X \supset \dot{\Box} \dot{\exists} Y_{\mu} \cdot \dot{\phi})$	Y)					
A5	$[p_{(\mu \to \sigma) \to \sigma} NE_{\mu \to \sigma}]$						
T3	$[\dot{\Box}\dot{\exists}X_{\mu^*}g_{\mu\to\sigma}X]$	D1, C, T2, D3, A5	K	CSA	—/—	—/—	3.8/6.2
		A1, A2, D1, A3, A4, D2, D3, A5	K	CSA	<u> </u>	_/_	8.2/7.5
		D1, C, T2, D3, A5	KB	THM	0.0/0.1	0.1/5.3	—/ <u> </u>
		A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	—/—	—/—	—/—
MC	$[s_{\sigma} \stackrel{.}{\supset} \stackrel{.}{\Box} s_{\sigma}]$	D2, T2, T3	KB	THM	17.9/—	3.3/3.2	—/—
1110	[56 2 256]	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	_/_	_/_	_/_
FG	$[\dot{\forall}\phi_{\mu\to\sigma},\dot{\forall}X_{\mu},(g_{\mu\to\sigma}X\dot{\supset}(\dot{\neg}(p_{(\mu\to\sigma)\to\sigma}\phi)\dot{\supset})]$		KB	THM	16.5/—	0.0/0.0	_/_
	L·γμ-σ··-μ·(σμ-σ· ((γ·μ-σ)-σ·γ) -	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	12.8/15.1	0.0/5.4	_/_
MT	$[\dot{\forall} X_{\mu^*} \dot{\forall} Y_{\mu^*} (g_{\mu \to \sigma} X \dot{\supset} (g_{\mu \to \sigma} Y \dot{\supset} X \dot{=} Y))]$	D1.FG	KB	THM	_/_	0.0/3.3	_/ <u>_</u>
	Εμμ (Βμυ (Βμυ	A1, A2, D1, A3, A4, D2, D3, A5	KB	THM	<u>-</u> /—	_/_	_/_
СО	∅ (no goal, check for consistency)	A1, A2, D1, A3, A4, D2, D3, A5	KB	SAT	—/—	—/—	7.3/7.4
D2'	$\operatorname{ess}_{(u \to \sigma) \to u \to \sigma} = \lambda \phi_{u \to \sigma^*} \lambda X_{u^*} \forall \psi_{u \to \sigma^*} (\psi X)$	$\cup \Psi I_{\mu} (\varphi I \cup \Psi I))$					
D2' CO'	ess _{(μ→σ)→μ→σ} = $\lambda \phi_{μ→σ}$ • $\lambda X_{μ}$ • $\dot{\forall} \psi_{μ→σ}$ • (ψX : 0 (no goal, check for consistency)	$A1(\supset), A2, D2', D3, A5$	KB	UNS	7.5/7.8	—/—	—/—

Avoiding the Modal Collapse: Very recent work (not yet published)

Variants of Gödel's argument that avoid the modal collapse

- [A. Anderson, Some emendations of Gödel's ontological proof, 1990]
- [A. Anderson and M. Gettings, Gödel's Ontological Proof Revisited, 1996]
- [P. Hajek, Magari and others on Gödel's ontological proof, 1996]
- [P. Hajek, Der Mathematiker und die Frage der Existenz Gottes, 2001]
- [P. Hajek, A New Small Emendation of Gödel's Ontological Proof, 2002]
- [F. Bjordal, Understanding Gödel's Ontological Argument, 1998]

Recent achievements:

- Formalization, Automation, Logic Variations
- Confirmation of Claims, Detection of Mistakes, Alternative Proofs

Ongoing and future work

- [M. Fitting, Types, Tableaux and Gödel's God, 2002]
- ...
- See https://github.com/FormalTheology/GoedelGod/Literature

Conclusion

Overall Achievements

- significant contribution towards a Computational Metaphysics
- HOL very fruitfully exploited as a universal metalogic
- systematic study of a prominent philosophical argument
- even some novel results were found by HOL-ATPs
- infrastructure can be adapted for other logics and logic combinations

Relevance (wrt foundations and applications)

Theoretical Philosophy, Artificial Intelligence, Computer Science, Maths

Little related work: only for Anselm's simpler argument

first-order ATP PROVER9

[OppenheimerZalta, 2011]

interactive proof assistant PVS

[Rushby, 2013]

Future work

- continuation of systematic study of the ontological argument
- further studies in Computational Metaphysics

Germany

- Telepolis & Heise
- Spiegel Online
- FA7

- . . .

- Die Welt
- Berliner Morgenpost
- Hamburger Abendpost

Austria

- Die Presse
- Wiener Zeitung
- ORF

Italy

- Repubblica
- Ilsussidario
- . . .

India

- DNA India
- Delhi Daily News
- India Today
- . . .

US

- ABC News

- . .

- . . .

International

- Spiegel International
- Yahoo Finance
- United Press Intl.

4 □ ト 4 同 ト 4 豆 ト 4 豆 ト 9 Q ○

Germany

- Telepolis & Heise
- Spiegel Online
- FA7
- Die Welt
- Berliner Morgenpost
- Hamburger Abendpost

_

Austria

- Die Presse
- Wiener Zeitung
- ORF - . . .

Italy

- Repubblica
- Ilsussidario
- . . .

India

- DNA India
- Delhi Daily News
- India Today
 - . . .

US

- ABC News

- . .

International

- Spiegel International
- Yahoo Finance
- United Press Intl.

- . . .

Austria

- Die Presse
- Wiener Zeitung
- ORF
-

Italy

- Repubblica
- Ilsussidario
- . . .

India

- DNA India
- Delhi Daily News
- India Today
 - . . .

US

- ABC News
- . . .

International

- Spiegel International
- Yahoo Finance
- United Press Intl.
- . . .

SCIENCE NEWS

HOME / SCIENCE NEWS / RESEARCHERS SAY THEY USED MACBOOK TO PROVE GOEDEL'S GOD THEOREM

Researchers say they used MacBook to prove Goedel's God theorem

Oct. 23, 2013 | 8:14 PM | 1 comments

See more serious and funny news links at https://github.com/FormalTheology/GoedelGod/tree/master/Press

```
1
    %----Additional base type mu (for worlds)
    %----(already inbuilt: $i for individuals and $o for Booleans)
2
    thf(mu type, type, (mu:$tType)).
3
    %----Reserved constant r for accessibility relation
4
    thf(r,type,(r:$i>$i>$o)).
    %----Modal operators not, or, box
    thf(mnot type,type,(mnot:($i>$o)>$i>$o)).
7
    thf (mnot, definition, (mnot = (^[A:\$i>\$o,W:\$i]:~(A@W)))).
8
9
    thf(mor_type,type,(mor:($i>$0)>($i>$0)>$i>$0)).
    thf(mor,definition,(mor = (^[A:$i>$o,Psi:$i>$o,W:$i]:((A@W)|(Psi@W))))).
10
    thf(mbox type, type, (mbox: ($i>$i>$o)>($i>$o)>$i>$o)).
11
    thf(mbox, definition, (mbox = (^[A:\$i>\$o,W:\$i]:![V:\$i]:(^(r@W@V)|(A@V))))).
12
    %----Quantifier (constant domains) for individuals and propositions
13
    thf(mall_ind_type,type,(mall_ind:(mu>$i>$o)>$i>$o)).
14
    thf(mall ind, definition, (mall_ind = (^[A:mu>$i>$o,W:$i]:![X:mu]:(A@X@W)))).
15
    thf(mall indset type, type, (mall indset:((mu>$i>$o)>$i>$o)>$i>$o)).
16
17
    thf(mall indset, definition, (
        mall_indset = (^[A:(mu>$i>$o)>$i>$o,W:$i]:![X:mu>$i>$o]:(A@X@W)))).
18
    %----Definition of validity
19
    thf(v_type, type, (v: ($i>$o)>$o)).
20
    thf (mvalid, definition, (v = (^[A:\$i>\$o]:![W:\$i]:(A@W)))).
21
    %----Properties of accessibility relations
22
    thf(msymmetric_type,type,(msymmetric:($i>$i>$o)>$o)).
23
        msymmetric = (^[R:\$i>\$i>\$o]:![S:\$i,T:\$i]:((R@S@T)=>(R@T@S)))))
24
25
    %----Here we work with logic KB
    thf(svm,axiom,(msvmmetric@r)).
26
```

C: $\Diamond \exists z. G(z)$

 $\mathbf{C}: \Diamond \exists z. G(z) \qquad \mathbf{L2}: \Diamond \exists z. G(z) \to \Box \exists x. G(x)$

L2:
$$\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$$

 $\mathbf{C}: \Diamond \exists z. G(z) \qquad \mathbf{L2}: \Diamond \exists z. G(z) \to \Box \exists x. G(x)$

C: $\Diamond \exists z. G(z)$ L2: $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$

T3: $\square \exists x. G(x)$

$$\frac{S5}{\forall \xi..[\Diamond \Box \xi \rightarrow \Box \xi]}$$

$$L2: \Diamond \exists z.G(z) \rightarrow \Box \exists x.G(x)$$

$$L2: \Diamond \exists z.G(z) \rightarrow \Box \exists x.G(x)$$

$$L3: \Diamond \exists z.G(z) \rightarrow \Box \exists x.G(x)$$

C: $\Diamond \exists z. G(z)$ L2: $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$

4□ > 4□ > 4 = > 4 = > = 90

$$\begin{array}{c|c} \textbf{L1:} \ \exists z.G(z) \to \Box \exists x.G(x) \\ \hline \Diamond \exists z.G(z) \to \Diamond \Box \exists x.G(x) \\ \hline \\ \textbf{L2:} \ \Diamond \exists z.G(z) \to \Box \exists x.G(x) \\ \end{array}$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

$$\begin{array}{c|c} \textbf{L1:} \ \exists z.G(z) \rightarrow \Box \exists x.G(x) \\ \hline \Diamond \exists z.G(z) \rightarrow \Diamond \Box \exists x.G(x) \\ \hline \textbf{L2:} \ \Diamond \exists z.G(z) \rightarrow \Box \exists x.G(x) \\ \end{array}$$

 $\mathbf{C}: \Diamond \exists z. G(z) \qquad \mathbf{L2}: \Diamond \exists z. G(z) \to \Box \exists x. G(x)$

T3: $\square \exists x. G(x)$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$

L2: $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$

T3: $\Box \exists x. G(x)$

C: $\Diamond \exists z. G(z)$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 (cheating!)

$$P(NE)$$

$$L1: \exists z.G(z) \to \Box \exists x.G(x)$$

$$\Diamond \exists z.G(z) \to \Diamond \Box \exists x.G(x)$$

$$V\xi_{\bullet}.[\Diamond \Box \xi \to \Box \xi]$$

$$L2: \Diamond \exists z.G(z) \to \Box \exists x.G(x)$$

C: $\Diamond \exists z. G(z)$ **L2**: $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi . [\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

$$\begin{array}{c|c}
\mathbf{T2:} \ \forall y_{\bullet}.[G(y) \to G \ ess \ y] & P(NE) \\
\underline{ \begin{array}{c|c}
\mathbf{L1:} \ \exists z.G(z) \to \Box \exists x.G(x) \\
 \hline
 & \Diamond \exists z.G(z) \to \Diamond \Box \exists x.G(x) \\
\hline
 & \mathbf{L2:} \ \Diamond \exists z.G(z) \to \Box \exists x.G(x) \\
\end{array}$$

$$\begin{array}{c|c}
\mathbf{C:} \ \Diamond \exists z.G(z) & \mathbf{L2:} \ \Diamond \exists z.G(z) \to \Box \exists x.G(x) \\
\end{array}$$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi . [\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi . [\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

D1:
$$G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$$

D2:
$$\varphi$$
 ess $x \equiv \varphi(x) \land \forall \psi_{\bullet}.(\psi(x) \rightarrow \Box \forall x_{\bullet}.(\varphi(x) \rightarrow \psi(x)))$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi_{\bullet}.[\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

$$\frac{A1b}{\forall \varphi_{\bullet}.[\neg P(\varphi) \rightarrow P(\neg \varphi)]} \qquad \frac{A4}{\forall \varphi_{\bullet}.[P(\varphi) \rightarrow \Box P(\varphi)]} \qquad \frac{A5}{\triangle 5}$$

$$\frac{T2: \forall y_{\bullet}.[G(y) \rightarrow G ess y]}{E1: \exists z.G(z) \rightarrow \Box \exists x.G(x)} \qquad \frac{S5}{\triangle 5}$$

$$\frac{\Delta 5}{\triangle 5}$$

$$\frac{L1: \exists z.G(z) \rightarrow \Box \exists x.G(x)}{\triangle 5}$$

$$\frac{\Delta 5}{\triangle 5}$$

$$\frac{L2: \Diamond \exists z.G(z) \rightarrow \Box \exists x.G(z)}{\triangle 5}$$

$$\frac{L2: \Diamond \exists z.G(z) \rightarrow \Box \exists x.G(z)}{\triangle 5}$$

$$\frac{L2: \Diamond \exists z.G(z) \rightarrow \Box \exists x.G(z)}{\triangle 5}$$

D1:
$$G(x) \equiv \forall \varphi. [P(\varphi) \to \varphi(x)]$$

D2: $\varphi \ ess \ x \equiv \varphi(x) \land \forall \psi_{\bullet}. (\psi(x) \to \Box \forall x_{\bullet}. (\varphi(x) \to \psi(x)))$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi_{\bullet}.[\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

C:
$$\Diamond \exists z. G(z)$$

T3: $\Box \exists x.G(x)$

L2: $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$

4 D > 4 B > 4 E > 4 E > 9 Q @

C: $\Diamond \exists z. G(z)$

D1:
$$G(x) \equiv \forall \varphi.[P(\varphi) \to \varphi(x)]$$

D2: φ ess $x \equiv \varphi(x) \land \forall \psi_{\bullet}.(\psi(x) \to \Box \forall x_{\bullet}.(\varphi(x) \to \psi(x)))$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi \cdot .[\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

Α3

$$\mathbf{D1:}\ G(x) \equiv \forall \varphi.[P(\varphi) \to \varphi(x)]$$

$$\mathbf{D2:}\ \varphi\ ess\ x \equiv \varphi(x) \land \forall \psi_{\blacksquare}.(\psi(x) \to \Box \forall x_{\blacksquare}.(\varphi(x) \to \psi(x)))$$

$$\mathbf{D3^*:}\ NE(x) \equiv \Box \exists y.G(y)$$

$$\mathbf{D3:}\ NE(x) \equiv \forall \varphi_{\blacksquare}.[\varphi\ ess\ x \to \Box \exists y.\varphi(y)]$$

D1:
$$G(x) \equiv \forall \varphi. [P(\varphi) \to \varphi(x)]$$

D2: $\varphi \ ess \ x \equiv \varphi(x) \land \forall \psi_{\bullet}. (\psi(x) \to \Box \forall x_{\bullet}. (\varphi(x) \to \psi(x)))$

D3*:
$$NE(x) \equiv \Box \exists y.G(y)$$
 D3: $NE(x) \equiv \forall \varphi . [\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

T3: $\Box \exists x. G(x)$

C: $\Diamond \exists z. G(z)$

L2: $\Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x)$

D3*: $NE(x) \equiv \Box \exists y. G(y)$

$$\begin{array}{c} \mathbf{A3} \\ P(G) \\ \hline \\ \mathbf{A3} \\ P(G) \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. G(z) \\ \hline \\ \mathbf{A4} \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. G(z) \\ \hline \\ \mathbf{A5} \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. G(z) \\ \hline \\ \mathbf{A1b} \\ \hline \\ \mathbf{A4} \\ \hline \\ \mathbf{A4} \\ \hline \\ \mathbf{V}\varphi \bullet . [\neg P(\varphi) \to P(\neg \varphi)] \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. G(z) \\ \hline \\ \mathbf{A4} \\ \hline \\ \mathbf{A4} \\ \hline \\ \mathbf{V}\varphi \bullet . [\neg P(\varphi) \to P(\neg \varphi)] \\ \hline \\ \mathbf{A5} \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. G(z) \to \square \exists x. G(x) \\ \hline \\ \mathbf{A5} \\ \hline \\ \mathbf{P(NE)} \\ \hline \\ \mathbf{L1:} \exists z. G(z) \to \square \exists x. G(x) \\ \hline \\ \mathbf{A5} \\ \hline \\ \mathbf{P(NE)} \\ \hline \\ \mathbf{L2:} \diamondsuit \exists z. G(z) \to \square \exists x. G(x) \\ \hline \\ \mathbf{L2:} \diamondsuit \exists z. G(z) \to \square \exists x. G(x) \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. G(z) \\ \hline \\ \mathbf{L3:} \square \exists x. G(z) \to \square \exists x. G(x) \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. G(z) \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. \varnothing (z) \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. \varnothing (z) \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. G(z) \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. \varnothing (z) \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. G(z) \\ \hline \\ \mathbf{C:} \diamondsuit \exists z. (z) \\ \hline \\$$

D3: $NE(x) \equiv \forall \varphi_{\bullet}. [\varphi \ ess \ x \rightarrow \Box \exists y. \varphi(y)]$

D1: $G(x) \equiv \forall \varphi . [P(\varphi) \rightarrow \varphi(x)]$

D2: φ ess $x \equiv \varphi(x) \land \forall \psi_{\bullet}.(\psi(x) \to \Box \forall x_{\bullet}.(\varphi(x) \to \psi(x)))$

D1:
$$G(x) \equiv \forall \varphi.[P(\varphi) \rightarrow \varphi(x)]$$

D2: $\varphi \ ess \ x \equiv \varphi(x) \land \forall \psi..(\psi(x) \rightarrow \Box \forall x..(\varphi(x) \rightarrow \psi(x)))$
D3: $NE(x) \equiv \forall \varphi..[\varphi \ ess \ x \rightarrow \Box \exists y.\varphi(y)]$

$$\begin{array}{c} \mathbf{A3} \\ P(G) \\ \hline \\ P(G) \\ \hline \\ \hline \\ \hline \\ P(G) \\ \hline \\ \hline \\ \hline \\ \mathbf{P}(G) \\ \hline \\ \hline \\ \mathbf{T1} : \forall \varphi . . [P(\varphi) \rightarrow \Diamond \exists x. \varphi(x)] \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \\ \hline \\ \hline \\ \mathbf{A4} \\ \hline \\ \hline \\ \hline \\ \mathbf{A5} \\ \hline \\ \hline \\ \hline \\ \mathbf{P}(NE) \\ \hline \\ \hline \\ \hline \\ \mathbf{E1} : \exists z. G(z) \rightarrow \Box \exists x. G(x) \\ \hline \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(x) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \hline \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists x. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists z. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists z. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists z. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists z. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists z. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists z. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists z. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists z. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists z. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G(z) \rightarrow \Box \exists z. G(z) \\ \hline \\ \\ \mathbf{C} : \Diamond \exists z. G($$

T3: □3x.G(x)