Chapter 4 Functions

Discrete Structures for Computing on September 14, 2017

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto

Sequences and Summation

Recursion

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang Faculty of Computer Science and Engineering University of Technology - VNUHCM nakhuong@hcmut.edu.vn

Contents

1 Functions

2 One-to-one and Onto Functions

3 Sequences and Summation

Functions Functions

One-to-one and Onto

Sequences and

Summation

Recursion

Course outcomes

	Course learning outcomes
L.O.1	Understanding of logic and discrete structures
	L.O.1.1 – Describe definition of propositional and predicate logic
	L.O.1.2 – Define basic discrete structures: set, mapping, graphs
L.O.2	Represent and model practical problems with discrete structures
	L.O.2.1 – Logically describe some problems arising in Computing
	L.O.2.2 – Use proving methods: direct, contrapositive, induction
	L.O.2.3 - Explain problem modeling using discrete structures
L.O.3	Understanding of basic probability and random variables
	L.O.3.1 – Define basic probability theory
	L.O.3.2 – Explain discrete random variables
L.O.4	Compute quantities of discrete structures and probabilities
	L.O.4.1 – Operate (compute/ optimize) on discrete structures
	L.O.4.2 – Compute probabilities of various events, conditional
	ones, Bayes theorem

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

• Each student is assigned a grade from set $\{0,0.1,0.2,0.3,\ldots,9.9,10.0\}$ at the end of semester

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

unctions

One-to-one and Onto Functions

Sequences and Summation

- Each student is assigned a grade from set $\{0, 0.1, 0.2, 0.3, \dots, 9.9, 10.0\}$ at the end of semester
- · Function is extremely important in mathematics and computer science

Functions

Nguyen An Khuong, Tran Tuan Anh. Le Hong Trang

Contents

One-to-one and Onto Functions

Sequences and Summation

- Each student is assigned a grade from set $\{0, 0.1, 0.2, 0.3, \dots, 9.9, 10.0\}$ at the end of semester
- Function is extremely important in mathematics and computer science
 - linear, polynomial, exponential, logarithmic,...

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

unctions

One-to-one and Onto Functions

Sequences and Summation

- Each student is assigned a grade from set $\{0, 0.1, 0.2, 0.3, \dots, 9.9, 10.0\}$ at the end of semester
- Function is extremely important in mathematics and computer science
 - linear, polynomial, exponential, logarithmic,...
- Don't worry! For discrete mathematics, we need to understand functions at a basic set theoretic level

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

unctions

One-to-one and Onto Functions

Sequences and Summation

Definition

Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

unctions

One-to-one and Onto Functions

Sequences and Summation

Definition

Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

• $f:A\to B$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

unctions

One-to-one and Onto Functions

Sequences and Summation

Definition

Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

- $f:A\to B$
- A: domain (miền xác định) of f

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

unctions

One-to-one and Onto Functions

Sequences and

Definition

Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

- $f:A \rightarrow B$
- A: domain (miền xác định) of f
- B: codomain (miền giá tr \dot{i}) of f

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

unctions

One-to-one and Onto Functions

Sequences and Summation

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f:A\to B$
- A: domain (miền xác định) of f
- B: codomain (miền giá trị) of f
- For each $a \in A$, if f(a) = b

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f:A\to B$
- A: domain (miền xác định) of f
- B: codomain (miền giá trị) of f
- For each $a \in A$, if f(a) = b
 - b is an image (anh) of a

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f:A\to B$
- A: domain (miền xác định) of f
- B: codomain (miền giá trị) of f
- For each $a \in A$, if f(a) = b
 - b is an image (\emph{a} n \emph{h}) of a
 - a is pre-image (nghịch ảnh) of f(a)

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto

Sequences and Summation

Contents

One-to-one and Onto Functions

Sequences and

Summation

Recursion

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f:A\to B$
- A: domain (miền xác đinh) of f
- B: codomain (miền giá tri) of f
- For each $a \in A$, if f(a) = b
 - b is an image (anh) of a
 - a is pre-image (nghịch ảnh) of f(a)
- Range of f is the set of all images of elements of A

Recursion

Summation

4.5

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f:A\to B$
- A: domain (miền xác đinh) of f
- B: codomain (miền giá tri) of f
- For each $a \in A$, if f(a) = b
 - b is an image (anh) of a
 - a is pre-image (nghịch ảnh) of f(a)
- Range of f is the set of all images of elements of A
- f maps (ánh xa) A to B

Definition

Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

- $f: A \rightarrow B$
- A: domain (miền xác định) of f
- B: codomain (miền giá trị) of f
- For each $a \in A$, if f(a) = b
 - b is an image (anh) of a
 - a is pre-image (nghịch ảnh) of f(a)
- ullet Range of f is the set of all images of elements of A
- f maps (ánh xa) A to B

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

unctions

One-to-one and Onto Functions

Sequences and

Recursion

4.5

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Example:

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Example:

• y is an image of d

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

One-to-one and Onto Functions

Sequences and Summation

Example:

- y is an image of d
- c is a pre-image of z

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

One-to-one and Onto Functions

Sequences and Summation

Example

What are domain, codomain, and range of the function that assigns grades to students includes: student A: 5, B: 3.5, C: 9, D: 5.2, E: 4.9?

Example

Let $f: \mathbb{Z} \to \mathbb{Z}$ assign the the square of an integer to this integer. What is f(x)? Domain, codomain, range of f?

Functions

Nguyen An Khuong. Tran Tuan Anh. Le Hong Trang

Contents

One-to-one and Onto Functions

Sequences and Summation

Example

What are domain, codomain, and range of the function that assigns grades to students includes: student A: 5, B: 3.5, C: 9, D: 5.2, E: 4.9?

Example

Let $f: \mathbb{Z} \to \mathbb{Z}$ assign the the square of an integer to this integer. What is f(x)? Domain, codomain, range of f?

- $f(x) = x^2$
- Domain: set of all integers
- Codomain: Set of all integers
- Range of $f: \{0, 1, 4, 9, \ldots\}$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Function

One-to-one and Onto Functions

Sequences and Summation

Example

What are domain, codomain, and range of the function that assigns grades to students includes: student A: 5, B: 3.5, C: 9, D: 5.2, E: 4.9?

Example

Let $f: \mathbb{Z} \to \mathbb{Z}$ assign the the square of an integer to this integer. What is f(x)? Domain, codomain, range of f?

- $f(x) = x^2$
- Domain: set of all integers
- Codomain: Set of all integers
- Range of $f: \{0, 1, 4, 9, \ldots\}$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Function

One-to-one and Onto Functions

Sequences and Summation

Add and multiply real-valued functions

Definition

Let f_1 and f_2 be functions from A to \mathbb{R} . Then f_1+f_2 and f_1f_2 are also functions from A to \mathbb{R} defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$
$$(f_1 f_2)(x) = f_1(x) f_2(x)$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Add and multiply real-valued functions

Definition

Let f_1 and f_2 be functions from A to \mathbb{R} . Then f_1+f_2 and f_1f_2 are also functions from A to \mathbb{R} defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$
$$(f_1 f_2)(x) = f_1(x) f_2(x)$$

Example

Let $f_1(x) = x^2$ and $f_2(x) = x - x^2$. What are the functions $f_1 + f_2$ and $f_1 f_2$?

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = x^2 + x - x^2 = x$$
$$(f_1 f_2)(x) = f_1(x) f_2(x) = x^2 (x - x^2) = x^3 - x^4$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Function:

One-to-one and Onto Functions

Sequences and Summation

Image of a subset

Definition

Let $f:A\to B$ and $S\subseteq A$. The image of S:

$$f(S) = \{f(s) \mid s \in S\}$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Image of a subset

Definition

Let $f:A\to B$ and $S\subseteq A$. The image of S:

$$f(S) = \{f(s) \mid s \in S\}$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Image of a subset

Definition

Let $f: A \to B$ and $S \subseteq A$. The image of S:

$$f(S) = \{ f(s) \mid s \in S \}$$

$$f(\{a, b, c, d\}) = \{x, y, z\}$$

Functions

Nguyen An Khuong, Tran Tuan Anh. Le Hong Trang

Contents

One-to-one and Onto Functions

Sequences and Summation

One-to-one

Definition

A function f is one-to-one or injective ($don \ anh$) if and only if

$$\forall a \forall b \ (f(a) = f(b) \to a = b)$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Definition

A function f is one-to-one or injective ($don \ anh$) if and only if

$$\forall a \forall b \ (f(a) = f(b) \rightarrow a = b)$$

- Is $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x+1$ one-to-one?
- Is $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$ one-to-one?

Onto

Functions

Nguyen An Khuong, Tran Tuan Anh. Le Hong Trang

Contents

Functions

Summation

Sequences and

Recursion

Definition

 $f: A \to B$ is onto or surjective (toàn ánh) if and only if

 $\forall b \in B, \exists a \in A: f(a) = b$

- Is $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 1onto?
- Is $f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$ onto?

One-to-one and onto (bijection)

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Definition

 $f:A\to B$ is bijective (one-to-one correspondence) (song ánh) if and only if f is injective and surjective

• Let f be the function from $\{a,bc,d\}$ to $\{1,2,3,4\}$ with f(a)=4, f(b)=2, f(c)=1, f(d)=3. Is f a bijection?

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto

Sequences and Summation

Inverse function (Hàm ngược)

Definition

Let $f:A\to B$ be a bijection then the inverse of f is the function $f^{-1}:B\to A$ defined by

if
$$f(a) = b$$
 then $f^{-1}(b) = a$

A one-to-one correspondence is call invertible (khả nghịch) because we can define the inverse of this function.

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto

Sequences and Summation

Example

$$A = \{a, b, c\}$$
 and $B = \{1, 2, 3\}$ with

$$f(a) = 2$$
 $f(b) = 3$ $f(c) = 1$

f is invertible and its inverse is

$$f^{-1}(1) = c$$
 $f^{-1}(2) = a$ $f^{-1}(3) = b$

Functions

Nguyen An Khuong, Tran Tuan Anh. Le Hong Trang

Contents

Functions

Sequences and Summation

Functions

Nguyen An Khuong. Tran Tuan Anh. Le Hong Trang

Example

$$A = \{a, b, c\}$$
 and $B = \{1, 2, 3\}$ with

$$f(a) = 2$$
 $f(b) = 3$ $f(c) = 1$

f is invertible and its inverse is

$$f^{-1}(1) = c$$
 $f^{-1}(2) = a$ $f^{-1}(3) = b$

Example

Let $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$. If f invertible?

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = 2x + 1$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto

Sequences and Summation

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = 2x + 1$$

$$f^{-1}: \mathbb{R} \to \mathbb{R}$$

$$f^{-1}(x) = \frac{x-1}{2}$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto

Sequences and Summation

Function Composition

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Definition

Given a pair of functions $g:A\to B$ and $f:B\to C$. Then the composition ($h \not\circ p$ thành) of f and g, denoted $f\circ g$ is defined by

$$f\circ g:A\to C$$

$$f\circ g(a)=f(g(a))$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto

Sequences and Summation

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Graphs of Functions

Example

The graph of $f(x) = x^2$ from \mathbb{Z} to \mathbb{Z} .

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto

Sequences and Summation

Graphs of Functions

Example

The graph of $f(x) = x^2$ from \mathbb{Z} to \mathbb{Z} .

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Graphs of Functions

Example

The graph of $f(x) = x^2$ from \mathbb{Z} to \mathbb{Z} .

Definition

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Important Functions

Definition

Floor function (hàm sàn) of x ($\lfloor x \rfloor$): the largest integer $\leq x$ $\lfloor \frac{1}{2} \rfloor = 0, \lfloor 3.1 \rfloor = 3, \lfloor 7 \rfloor = 7$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Important Functions

Definition

Floor function (hàm sàn) of x ($\lfloor x \rfloor$): the largest integer $\leq x$ $\lfloor \frac{1}{2} \rfloor = 0, \lfloor 3.1 \rfloor = 3, \lfloor 7 \rfloor = 7$

Ceiling function (hàm trần) of x ($\lceil x \rceil$): the smallest integer $\geq x$ $\lceil \frac{1}{2} \rceil = 1, \lceil 3.1 \rceil = 4, \lceil 7 \rceil = 7$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Definition

Floor function (hàm sàn) of x ($\lfloor x \rfloor$): the largest integer $\leq x$ $\lfloor \frac{1}{2} \rfloor = 0, \lfloor 3.1 \rfloor = 3, \lfloor 7 \rfloor = 7$

Ceiling function (hàm trần) of x ($\lceil x \rceil$): the smallest integer $\geq x$ $\lceil \frac{1}{2} \rceil = 1, \lceil 3.1 \rceil = 4, \lceil 7 \rceil = 7$

Bång: Properties (n is an integer, x is a real number)

(1a)	$\lfloor x \rfloor = n \text{ iff } n \le x < n+1$
(1b)	$\lceil x \rceil = n \text{ iff } n - 1 < x \le n$
(1c)	$\lfloor x \rfloor = n \text{ iff } x - 1 < n \le x$
(1d)	$\lceil x \rceil = n \text{ iff } x \le n < x + 1$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Definition

Floor function (hàm sàn) of x ($\lfloor x \rfloor$): the largest integer $\leq x$ $\lfloor \frac{1}{2} \rfloor = 0, \lfloor 3.1 \rfloor = 3, \lfloor 7 \rfloor = 7$

Ceiling function (hàm trần) of x ($\lceil x \rceil$): the smallest integer $\geq x$ $\lceil \frac{1}{2} \rceil = 1, \lceil 3.1 \rceil = 4, \lceil 7 \rceil = 7$

Bảng: Properties (n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n \text{ iff } n \le x < n+1$$

(1b) $\lceil x \rceil = n \text{ iff } n-1 < x \le n$
(1c) $\lfloor x \rfloor = n \text{ iff } x-1 < n \le x$
(1d) $\lceil x \rceil = n \text{ iff } x \le n < x+1$
(2) $x-1 < |x| \le \lceil x \rceil < x+1$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Important Functions

Definition

Floor function (hàm sàn) of x ($\lfloor x \rfloor$): the largest integer $\leq x$ $\lfloor \frac{1}{2} \rfloor = 0, \lfloor 3.1 \rfloor = 3, \lfloor 7 \rfloor = 7$

Ceiling function (hàm trần) of x ($\lceil x \rceil$): the smallest integer $\geq x$ $\lceil \frac{1}{2} \rceil = 1, \lceil 3.1 \rceil = 4, \lceil 7 \rceil = 7$

Bảng: Properties (n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n \text{ iff } n \le x < n+1$$

(1b)
$$\lceil x \rceil = n \text{ iff } n - 1 < x \le n$$

(1c)
$$\lfloor x \rfloor = n \text{ iff } x - 1 < n \le x$$

(1d)
$$\lceil x \rceil = n \text{ iff } x \le n < x + 1$$

(2)
$$x-1 < \lfloor x \rfloor \le \lceil x \rceil < x+1$$

$$(3a) \quad \lfloor -x \rfloor = -\lceil x \rceil$$

$$(3b) \quad \lceil -x \rceil = -\lfloor x \rfloor$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Floor function (
$$h \grave{a} m s \grave{a} n$$
) of x ($\lfloor x \rfloor$): the largest integer $\leq x$

 $\left|\frac{1}{2}\right| = 0, \left|3.1\right| = 3, \left|7\right| = 7$ Ceiling function (hàm trần) of x ($\lceil x \rceil$): the smallest integer $\geq x$ $\lceil \frac{1}{2} \rceil = 1, \lceil 3.1 \rceil = 4, \lceil 7 \rceil = 7$

Bảng: Properties (n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n \text{ iff } n \le x < n+1$$

(1b)
$$\lceil x \rceil = n \text{ iff } n-1 < x \le n$$

(1c)
$$\lfloor x \rfloor = n \text{ iff } x - 1 < n \le x$$

(1d) $\lceil x \rceil = n \text{ iff } x \le n < x + 1$

$$(2) \qquad 1 \leq |x| \leq |x| \leq |x|$$

$$(2) x-1 < \lfloor x \rfloor \le \lceil x \rceil < x+1$$

$$(3a) \quad \lfloor -x \rfloor = -\lceil x \rceil$$

$$(3b) \quad \lceil -x \rceil = -\lfloor x \rfloor$$

$$\begin{array}{ll} \text{(4a)} & \lfloor x+n \rfloor = \lfloor x \rfloor + n \\ \text{(4b)} & \lceil x+n \rceil = \lceil x \rceil + n \end{array}$$

Nguyen An Khuong. Tran Tuan Anh. Le Hong Trang

Contents

Functions

One-to-one and Onto

Sequences and Summation

What are the rule of these sequences $(d\tilde{a}y)$?

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

What are the rule of these sequences $(d\tilde{a}y)$?

Example

 $1, 3, 5, 7, 9, \dots$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

What are the rule of these sequences $(d\tilde{a}y)$?

Example

$$1, 3, 5, 7, 9, \dots$$
 $a_n = 2n - 1$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Example

$$1, 3, 5, 7, 9, \dots$$
 $a_n = 2n - 1$

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

Example

$$1, 3, 5, 7, 9, \dots$$
 $a_n = 2n - 1$

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

$$a_n = \frac{1}{2^{n-1}}$$

Example

$$1,3,5,7,9,\ldots$$
 $a_n=2n-1$ Arithmetic sequence (cấp số cộng)

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$
 $a_n = \frac{1}{2^{n-1}}$

Example

$$1, 3, 5, 7, 9, \dots$$
 $a_n = 2n - 1$
Arithmetic sequence (cấp số cộng)

$$1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\ldots$$
 $a_n=\frac{1}{2^{n-1}}$ Geometric sequence (cấp số nhân)

 $\{a_n\}$ 5, 11, 17, 23, 29, 35, 41, 47, ...

- **Example**
- $1, 3, 5, 7, 9, \dots$ $a_n = 2n 1$ Arithmetic sequence (cấp số công)

What are the rule of these sequences $(d\tilde{a}y)$?

Example

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$
 $a_n = \frac{1}{2^{n-1}}$

$$a_n = \frac{1}{2^{n-1}}$$

Geometric sequence (cấp số nhân)

Example

 $\{a_n\}$ 5, 11, 17, 23, 29, 35, 41, 47, ... $a_n = 6n - 1$

What are the rule of these sequences $(d\tilde{a}y)$?

 $1, 3, 5, 7, 9, \dots$ $a_n = 2n - 1$ Arithmetic sequence (cấp số cộng)

 $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$ $a_n = \frac{1}{2^{n-1}}$

Geometric sequence (cấp số nhân)

What are the rule of these sequences $(d\tilde{a}y)$?

Example

$$1,3,5,7,9,\ldots$$
 $a_n=2n-1$ Arithmetic sequence (cấp số cộng)

Example

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$
 $a_n = \frac{1}{2^{n-1}}$

Geometric sequence (cấp số nhân)

Example

$$\{a_n\}$$
 5, 11, 17, 23, 29, 35, 41, 47, ... $a_n = 6n-1$
 $\{b_n\}$ 1, 7, 25, 79, 241, 727, 2185, ...

Functions

Nguyen An Khuong. Tran Tuan Anh. Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

quences and

What are the rule of these sequences $(d\tilde{a}y)$?

Example

$$1, 3, 5, 7, 9, \dots$$
 $a_n = 2n - 1$
Arithmetic sequence (cấp số cộng)

Example

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$
 $a_n = \frac{1}{2^{n-1}}$

Geometric sequence (cấp số nhân)

Example

$$\{a_n\}$$
 5, 11, 17, 23, 29, 35, 41, 47, ... $a_n = 6n - 1$
 $\{b_n\}$ 1, 7, 25, 79, 241, 727, 2185, ... $b_n = 3^n - 2$

Nguyen An Khuong. Tran Tuan Anh. Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

quences and

Recurrence Relations

Example

 $\{a_n\}$ 5, 11, 17, 23, 29, 35, 41, 47, ...

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recurrence Relations

Example

$$\{a_n\}$$
 5, 11, 17, 23, 29, 35, 41, 47, ... $a_n=a_{n-1}+6$ for $n=2,3,4,\ldots$ and $a_1=5$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recurrence Relations

Example

$$\{a_n\}$$
 5, 11, 17, 23, 29, 35, 41, 47, ...

$$a_n = a_{n-1} + 6$$
 for $n = 2, 3, 4, \dots$ and $a_1 = 5$

Recurrence relations: công thức truy hồi

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recurrence Relations

Example

$$\{a_n\}$$
 5, 11, 17, 23, 29, 35, 41, 47, ...

$$a_n = a_{n-1} + 6$$
 for $n = 2, 3, 4, \dots$ and $a_1 = 5$

Recurrence relations: công thức truy hồi

Definition (Fibonacci Sequence)

Initial condition:
$$f_0 = 0$$
 and $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for $n = 2, 3, 4, ...$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

equences and

Recurrence Relations

Example

$$\{a_n\}$$
 5, 11, 17, 23, 29, 35, 41, 47, ... $a_n=a_{n-1}+6$ for $n=2,3,4,\ldots$ and $a_1=5$

Recurrence relations: công thức truy hồi

Definition (Fibonacci Sequence)

Initial condition:
$$f_0 = 0$$
 and $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for $n = 2, 3, 4, ...$

Example

Find the Fibonacci numbers f_2, f_3, f_4, f_5 and f_6

Functions

Nguyen An Khuong. Tran Tuan Anh. Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

quences and

Example

$$\{a_n\}$$
 5, 11, 17, 23, 29, 35, 41, 47, ...

 $a_n = a_{n-1} + 6$ for $n = 2, 3, 4, \dots$ and $a_1 = 5$ Recurrence relations: công thức truy hồi

Definition (Fibonacci Sequence)

Initial condition: $f_0 = 0$ and $f_1 = 1$ $f_n = f_{n-1} + f_{n-2}$ for $n = 2, 3, 4, \dots$

Contents

Functions

One-to-one and Onto Functions

Recursion

Example

Find the Fibonacci numbers f_2 , f_3 , f_4 , f_5 and f_6

$$f_2 = f_1 + f_0 = 1 + 0 = 1$$

$$f_3 = f_2 + f_1 = 1 + 1 = 2$$

$$f_4 = f_3 + f_2 = 2 + 1 = 3$$

$$f_5 = f_4 + f_3 = 3 + 2 = 5$$

$$f_6 = f_5 + f_4 = 5 + 3 = 8$$

Initial deposit: \$10,000

Interest: 11%/year, compounded annually (*lãi suất kép*)

After 30 years, how much do you have in your account?

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Initial deposit: \$10,000

Interest: 11%/year, compounded annually (lãi suất kép)

After 30 years, how much do you have in your account?

Solution:

Let P_n be the amount in the account after n years. The sequence $\{P_n\}$ satisfies the recurrence relation

$$P_n = P_{n-1} + 0.11P_{n-1} = (1.11)P_{n-1}.$$

The initial condition is $P_0 = 10,000$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

equences and

Initial deposit: \$10,000

Interest: 11%/year, compounded annually (lãi suất kép)

After 30 years, how much do you have in your account?

Solution:

Let P_n be the amount in the account after n years. The sequence $\{P_n\}$ satisfies the recurrence relation

$$P_n = P_{n-1} + 0.11P_{n-1} = (1.11)P_{n-1}.$$

The initial condition is $P_0 = 10,000$

Step 1. Solve the recurrence relation (iteration technique)

$$P_1 = (1.11)P_0$$

$$P_2 = (1.11)P_1 = (1.11)^2 P_0$$

$$P_3 = (1.11)P_2 = (1.11)^3 P_0$$

:

$$P_n = (1.11)P_{n-1} = (1.11)^n P_0.$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

quences and immation

Recursion

Initial deposit: \$10,000

Interest: 11%/year, compounded annually (lãi suất kép)

After 30 years, how much do you have in your account?

Solution:

Let P_n be the amount in the account after n years. The sequence $\{P_n\}$ satisfies the recurrence relation

$$P_n = P_{n-1} + 0.11P_{n-1} = (1.11)P_{n-1}.$$

The initial condition is $P_0 = 10,000$

Step 1. Solve the recurrence relation (iteration technique)

$$P_1 = (1.11)P_0$$

$$P_2 = (1.11)P_1 = (1.11)^2 P_0$$

$$P_3 = (1.11)P_2 = (1.11)^3 P_0$$

$$P_n = (1.11)P_{n-1} = (1.11)^n P_0.$$

Step 2. Calculate

$$P_{30} = (1.11)^{30}10,000 = $228,922.97.$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

quences and

What is the 2012th number in the sequence $\{x_n\}$: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, . . .

Functions

Nguyen An Khuong, Tran Tuan Anh. Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Contents

Functions

One-to-one and Onto Functions

Exercise (2)

What is the 2012th number in the sequence $\{x_n\}$: 1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6,...

Solution:

In this sequence, integer 1 appears once, the integer 2 appears twice, the integer 3 appears three times, and so on. Therefore integer n appears n times in the sequence.

We can prove that (try it!)

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

and can easily calculate that

$$\sum_{i=1}^{62} i = 1953$$

so the next 63 numbers (until 2016) is 63.

Therefore, 2012th number in the sequence is 63.

Theorem

If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1} - a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1. \end{cases}$$

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

equences and ummation

$$\sum_{j=0}^{n} ar^j = \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1. \end{cases}$$

Chứng minh.

Let
$$S_n = \sum_{j=0}^n ar^j$$
.

$$rS_n = r \sum_{j=0}^n ar^j$$

$$= \sum_{j=0}^n ar^{j+1}$$

$$= \sum_{k=1}^{n+1} ar^k$$

$$= \left(\sum_{k=0}^n ar^k\right) + (ar^{n+1} - a)$$

$$= S_n + (ar^{n+1} - a)$$

Solving for S_n shows that if $r \neq 1$, then $S_n = \frac{ar^{n+1}-a}{r-1}$ If r=1, then $S_n = \sum_{j=0}^n a = (n+1)a$

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

quences and

Recursion

Definition (Recurrence Relation)

An equation that recursively defines a sequence.

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Definition (Recurrence Relation)

An equation that recursively defines a sequence.

Definition (Recursion (đệ quy))

The act of defining an object (usually a function) in terms of that object itself.

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

Definition (Recurrence Relation)

An equation that recursively defines a sequence.

Definition (Recursion (đệ quy))

The act of defining an object (usually a function) in terms of that object itself.

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Definition

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input.

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Definition

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input.

Example

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and

Definition

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input.

Example

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

Solution. We base on the recursive definition of n!: $n! = n \cdot (n-1)!$ and 0! = 1.

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Definition

An algorithm is called **recursive** if it solves a problem by reducing it to an instance of the same problem with smaller input.

Example

Give a recursive algorithm for computing n!, where n is a nonnegative integer.

Solution. We base on the recursive definition of n!: $n! = n \cdot (n-1)!$ and 0! = 1.

procedure factorial (n: nonnegative integer) if n=0 then return 1 else return n· factorial (n - 1) {output is n!}

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Algorithms for Fibonacci Numbers

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Algorithms for Fibonacci Numbers

Recursive Algorithm

```
procedure fibonacci(n: nonnegative integer) if n=0 then return 0 else if n=1 then return 1 else return fibonacci(n-1) + fibonacci(n-2) {output is fibonacci(n)}
```

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Iterative Algorithm

```
if n=0 then return 0
else
    r := 0
    y := 1
    for i := 1 to n - 1
         z := x + y
         x := y
         y := z
    return y
```

4 28

procedure *fibonacci*(*n*: nonnegative integer) if n=0 then return 0

else if n=1 then return 1

else return fibonacci(n-1) + fibonacci(n-2){output is fibonacci(n)}

procedure *iterative fibonacci*(*n*: nonnegative integer)

{output is the *nth* Fibonacci number}

There is a tower in Hanoi that has three pegs mounted on a board together with 64 gold disks of different sizes.

Initially, these disks are placed on the first peg in order of size, with the largest on the borrom.

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

There is a tower in Hanoi that has three pegs mounted on a board together with 64 gold disks of different sizes.

Initially, these disks are placed on the first peg in order of size, with the largest on the borrom.

The rules:

- 1 Move one at a time from one peg to another
- 2 A disk is never placed on top of a smaller disk

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto

Sequences and Summation

There is a tower in Hanoi that has three pegs mounted on a board together with 64 gold disks of different sizes.

Initially, these disks are placed on the first peg in order of size, with the largest on the borrom.

The rules:

- 1 Move one at a time from one peg to another
- 2 A disk is never placed on top of a smaller disk

Goals: all the disks on the third peg in order of size.

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Nguyen An Khuong, Tran Tuan Anh. Le Hong Trang

Functions

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

There is a tower in Hanoi that has three pegs mounted on a board together with 64 gold disks of different sizes.

Initially, these disks are placed on the first peg in order of size, with the largest on the borrom.

The rules:

- 1 Move one at a time from one peg to another
- 2 A disk is never placed on top of a smaller disk

Goals: all the disks on the third peg in order of size.

The myth says that the world will end when they finish the puzzle.

Tower of Hanoi - 64 Discs

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Sequences and Summation

Moved disc from peg 1 to peg 3.

Tower of Hanoi – 1 Disc

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

_

4.33

Tower of Hanoi – 2 Discs

2

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Moved disc from peg 1 to peg 2.

Moved disc from peg 1 to peg 3.

Moved disc from peg 2 to peg 3.

2

Tower of Hanoi – 2 Discs

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

2

Tower of Hanoi – 3 Discs

2

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Moved disc from peg 1 to peg 3.

Tower of Hanoi – 3 Discs

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Tower of Hanoi – 4 Discs

3

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Tower of Hanoi – 4 Discs Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang Contents Functions One-to-one and Onto Functions

Moved disc from peg 1 to peg 3.

Sequences and Summation

Tower of Hanoi – 4 Discs Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang Contents Functions One-to-one and Onto Functions

Moved disc from peg 2 to peg 3.

Sequences and Summation

Tower of Hanoi – 4 Discs Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang Contents Functions One-to-one and Onto Functions

Moved disc from peg 3 to peg 1.

Sequences and Summation

Moved disc from peg 1 to peg 3.

Moved disc from peg 2 to peg 3.

Moved disc from peg 2 to peg 1.

Moved disc from peg 2 to peg 3.

Moved disc from peg 1 to peg 2.

Moved disc from peg 1 to peg 3.

Moved disc from peg 2 to peg 3.

Tower of Hanoi – 4 Discs

Functions

Nguyen An Khuong, Tran Tuan Anh, Le Hong Trang

One-to-one and Onto Functions

Sequences and Summation

3 4

ВК

Functions

One-to-one and Onto Functions

Sequences and

Recursion

Algorithm

procedure hanoi(n, A, B, C) **if** n = 1 **then** move the disk from A to C

else call hanoi(n-1, A, C, B)

move disk n from A to C call hanoi(n-1, B, A, C)

Recurrence Relation

$$H(n) = \left\{ \begin{array}{ll} 1 & \text{if } n=1 \\ 2H(n-1)+1 & \text{if } n>1. \end{array} \right.$$

Recurrence Solving

$$H(n) = 2^n - 1$$

If one move takes 1 second, for $n=64\,$

$$\begin{array}{ll} 2^{64}-1 & \approx 2\times 10^{19} \text{ sec} \\ & \approx 500 \text{ billion years!}. \end{array}$$