Многочлены над конечным полем и ТЧ

Во всём листике p — простое число.

- **1.** а) Докажите, что для любого $m \not p 1$ существует такое n, что (n,p) = 1, $n^m \not\equiv 1$.
- б) Пусть m натуральное число. Рассмотрим сумму

$$S = \sum_{x \in \mathbb{Z}_p} x^m.$$

Тогда либо $S \equiv -1$, если m : p-1, либо $S \equiv 0$ в противном случае. (Указание: домножьте всю сумму на n^m и посмотрите как она изменится.)

2. Пусть $F(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]$ и $\deg F < n(p-1)$. Тогда

$$\sum_{k_1,\dots,k_n\in\mathbb{Z}_p} F(k_1,\dots,k_n) \equiv 0.$$

(Указание: так как утверждение должно быть верно для любого многочлена с целыми коэффициентами, то оно должно быть верно и для монома.)

Теорема 1 (Теорема Варнинга). Если степень r многочлена $F(x_1, ..., x_n) \in \mathbb{Z}[x_1, ..., x_n]$ меньше n, то число решений сравнения $F(x_1, ..., x_n) \equiv 0$ кратно p.

 $(Указание: рассмотрие многочлен <math>1 - F^k$, чему надо взять равным параметр k нужно догадаться.)

Теорема 2 (Теорема Шевале). Пусть $F(x_1, ..., x_n) \in \mathbb{Z}[x_1, ..., x_n]$ многочлен с нулевым свободным членом $u \deg F(x_1, ..., x_n) < n$, то сравнение

$$F(x_1,\ldots,x_n) \equiv 0.$$

имеет ненулевое решение.

Определение 1. Пусть $a \in \mathbb{Z}_n$, (a, n) = 1, тогда показателем a называется наименьшее натуральное l такое, что $a^l \equiv 1$.

- **3.** а) Рассмотрим уравнение $x^l-1 \equiv 0$. Известно, что при l=p-1 это уравнение имеет ровно l корней в \mathbb{Z}_p . Докажите это утверждение для любого l, являющегося делителем p-1.
- б) Докажите, что решения уравнения $x^l 1 \equiv 0$, являются остатки, показатели которых делят l.
- в) Докажите, что $n = \sum_{l|n} \varphi(l)$. (Указание: например это можно сделать индукцией по кол-ву простых множетелей в разложении числа n.)
- г) Докажите, что число решений уранения $x^l-1\equiv 0$, где l|p-1 с показателем l равно $\varphi(l)$. (Указание:индукция всех спасёт.)
- д) Докажите, что первообразных корней по простому модулю $\varphi(p)$ штук.