

Laboratorio 01

PARTE 1 - FLOWCHART E PSEUDOCODICE

Se start1 > start2

s = start1

Altrimenti

s = *start2*

Se end1 < end2

e = end1

Altrimenti

e = *e*nd2

Ses<e

Gli appuntamenti si sovrappongono

Altrimenti

Gli appuntamenti non si sovrappongono


```
Se mese è 1, 2 o 3
  stagione = "Winter"
Altrimenti se mese è 4, 5 o 6
  stagione = "Spring"
Altrimenti se mese è 7, 8 o 9
  stagione = "Summer"
Altrimenti se mese è 10, 11 o 12
  stagione = "Fall"
Se mese è divisibile per 3 e giorno >= 21
  Se stagione è "Winter"
    stagione = "Spring"
  Altrimenti se stagione è "Spring"
    stagione = "Summer"
  Altrimenti se stagione è "Summer"
    stagione = "Fall"
  Altrimenti
    stagione = "Winter"
```


Dati disponibili:

- Distanza casa-lavoro
- Numero giorni lavorativi
- Numero giorni totali per calcolare la %
- Valore iniziare contachilometri
- Valore finale contachilometri

Risultati da produrre:

- Percentuale di utilizzo dell'auto per uso personale
- Percentuale di utilizzo dell'auto per uso lavorativo

Calcolare:

- i giorni non lavorativi
- o i chilometri percorsi
- i chilometri percorsi per lavoro (andata e ritorno)
- o i chilometri percorsi per uso personale
- la percentuale di utilizzo dell'auto per lavoro e per uso personale

Istruzione di calcolo	Esempio di valori calcolati
giorni non lavorativi = giorni totali – giorni lavorativi	giorni non lavorativi = 21 – 15 = 6
km totali = valore finale contakm – valore iniziale contakm	km totali = 9980 – 9605 = 375
km lavoro = giorni lavorativi * (2 * distanza casa/lavoro)	km lavoro = 15 * (2 * 10) = 300
km uso personale = km totali – km lavoro	km uso personale = 375 – 300 = 75
% uso lavoro = (km lavoro / km totali) * 100	% uso lavoro = (300 / 375) * 100 = 80
% uso personale = (km uso personale / km totali) * 100	% uso personale = (75 / 375) * 100 = 20

- Posizionare una piastrella nera nell'angolo nord-ovest
- Finché l'area non è completamente tassellata, ripetere i passi:
 - Ripetere questo passo (larghezza/10)-1 volte:
 - Se la piastrella appena piazzata era bianca:
 - Scegliere una piastrella nera
 - Altrimenti:
 - Scegliere una piastrella bianca.
 - Piazzare la piastrella scelta ad est di quella precedente
 - Individuare la piastrella all'inizio della riga appena piazzata. Se c'è spazio a sud di quella, piazzare una piastrella di colore opposto lì.

- Quali sono i dati di partenza?
- Quali si possono calcolare?

• Mentre la percentuale occupazionale prevista a 5 anni è un dato riferibile ad uno standard oggettivo, i consigli ricevuti non lo sono affatto. Questo problema non è posto in un modo gestibile da un programma informatico.

- Calcolare π come 4*1
- Denominatore = 3
- Segno = '-'
- Fino a quando il numero che approssima π differisce dal valore precedente per meno di 10^{-7} :
 - Termine successivo = 4*(1/(denominatore))
 - Se segno = '+'
 - $\pi = \pi + \text{termine successivo}$
 - Segno = '-'
 - Altrimenti se segno = '-'
 - $\pi = \pi$ termine successivo
 - Segno = '+'
 - Denominatore = denominatore + 2

- α è il numero del quale calcolare la radice.
- \mathbf{x}_n è l'approssimazione della radice.
- n è il contatore del ciclo.
- La precisione è definita con una costante ε.
- L'approssimazione in questo caso si considera precisa dopo un numero L'uso di una costante EPSILON massimo di iterazioni:

$$n < n_{max}$$
 se $|x_n - \alpha/x_n| < \epsilon$

- Si può utilizzare una valore molto piccolo per verificare se la differenza tra due numeri floating-point è 'abbastanza piccola'
 - o Considero i due numeri uguali se la loro differenza è minore di un certo limite
- Cioè x e y sono «uguali» se:

$$|x-y|<\varepsilon$$