

RECORD COPY

PCT REQUEST

2990043PC/nu

Original (for SUBMISSION) - p	printed on 06.07.2000	01:51:22 PM
-------------------------------	-----------------------	-------------

0	For receiving Offic use only	
0-1	International Application No.	PCT/FI 0 0 / 0 0 6 2 4
0-2	International Filing Date	0 6 JUL 2000 (0 6 -07- 2000)
0-3	Name of receiving Office and "PCT International Application"	The Finnish Patent Office PCT International Application
0-4	Form - PCT/RO/101 PCT Request	
0-4-1	Prepared using	PCT-EASY Version 2.90 (updated 10.05.2000)
0-5	Petition The undersigned requests that the present international application be processed according to the Patent Cooperation Treaty	
0-6	Receiving Office (specified by the applicant)	National Board of Patents and Registration (Finland) (RO/FI)
0-7	Applicant's or agent's file reference	2990043PC/nu
Ī	Title of invention	METHOD OF PURIFYING WATER, SUITABLE BACTERIA FOR THE METHOD AND USE THEREOF
II .	Applicant	
II-1	This person is:	applicant only
II-2	Applicant for	all designated States except US
II-4	Name	JUVEGROUP OY
11-5	Address:	Pahtajakuja 7
	ļ	FIN-96400 Rovaniemi
		Finland
II-6	State of nationality	FI
11-7	State of residence	FI
III-1	Applicant and/or inventor	
III-1-1	This person is:	applicant and inventor
III-1-2	Applicant for	US only
III-1 -4	Name (LAST, First)	UOTILA, Jussi
III-1-5	Address:	Kuusamontie 1176
		FIN-96900 Saarenkylä
		Finland
III-1-6	State of nationality	FI
III-1-7	State of residence	FI

PCT REQUEST

2990043PC/nu

Original (for SUBMISSION) - printed on 06.07.2000 01:51:22 PM

III-2	Applicant and/or inventor	
III-2-1	This person is:	applicant and inventor
III-2-2	Applicant for	US only
III-2-4	Name (LAST, First)	ZAITSEV, Gennadi
111-2-5	Address:	Sudentie 27 B 14
		FIN-96500 Rovaniemi
		Finland
III-2-6	State of nationality	BY
111-2-7	State of residence	FI
IV-1	Agent or common representative; or address for correspondence The person identified below is hereby/has been appointed to act on behalf of the applicant(s) before the competent International Authorities as:	agent
IV-1-1	Name	KOLSTER OY AB
IV-1-2	Address:	Iso Roobertinkatu 23
		P.O. Box 148
		FIN-00121 Helsinki
		Finland
IV-1-3	Telephone No.	358 9 618 821
IV-1-4	Facsimile No.	358 9 602 244
IV-1-5	e-mail	kolster@kolster.fi
v	Designation of States	
V-1	Regional Patent (other kinds of protection or treatment, if any, are specified between parentheses after the designation(s) concerned)	AP: GH GM KE LS MW MZ SD SL SZ TZ UG ZW and any other State which is a Contracting State of the Harare Protocol and of the PCT EA: AM AZ BY KG KZ MD RU TJ TM and any other State which is a Contracting State of the Eurasian Patent Convention and of the PCT EP: AT BE CH&LI CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE and any other State which is a Contracting State of the European Patent Convention and of the PCT OA: BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG and any other State which is a member State of OAPI and a Contracting State of the PCT

PCT REQUEST

2990043PC/nu

Original (for SUBMISSION) - printed on 06.07.2000 01:51:22 PM

V-2	National Patent (other kinds of protection or treatment, if any, are specified between parentheses after the designation(s) concerned)	and utility model) D	G BR BY BZ CA CH&LI and utility model) ty model) DK (patent
		model) GB GD GE GH G	M HR HU ID IL IN IS
		JP KE KG KP KR (pate	
		model) KZ LC LK LR L	S LT LU LV MA MD MG
		MK MN MW MX MZ NO NZ	
		SG SI SK (patent and	
3.5 2=		TJ TM TR TT TZ UA UG	US UZ VN YU ZA ZW
V-5	Precautionary Designation Statement In addition to the designations made		
	under items V-1, V-2 and V-3, the		
	applicant also makes under Rule 4.9(b)		
	all designations which would be permitted under the PCT except any		
	designation(s) of the State(s) indicated		
	under item V-6 below. The applicant		
	declares that those additional designations are subject to confirmation		
	and that any designation which is not		
	confirmed before the expiration of 15		
	months from the priority date is to be regarded as withdrawn by the applicant at the expiration of that time limit.		
V-6	Exclusion(s) from precautionary designations	NONE	
VI-1	Priority claim of earlier national		
VI-1-1	application Filing date	12 July 1999 (12.07.	1000\
VI-1-2	Number	991595	1999)
VI-1-3	Country	FI	
VI-2	Priority document request		
	The receiving Office is requested to prepare and transmit to the International Bureau a certified copy of the earlier application(s) identified above as item(s):	VI-1	
VII-1	International Searching Authority Chosen	European Patent Offic	ce (EPO) (ISA/EP)
VIII	Check list	number of sheets	electronic file(s) attached
VIII-1	Request	4	-
VIII-2	Description	21	-
VIII-3	Claims	2	-
VIII-4	Abstract	1	2990043p.txt
VIII-5	Drawings	10	-
VIII-7	TOTAL	38	<u> </u>

PCT/FI 0 0 / 0 0 6 2 4

4/4

PCT REQUEST

2990043PC/nu

Original (for SUBMISSION) - printed on 06.07.2000 01:51:22 PM

	Accompanying items	paper document(s) attached	electronic file(s) attached
VIII-8	Fee calculation sheet	√	-
VIII-14	Separate indications concerning deposited microorganism or other biological material	V	-
VIII-16	PCT-EASY diskette	_	diskette
VIII-17	Other (specified):	Copy of Official Action	-
VIII-18	Figure of the drawings which should accompany the abstract	-	
VIII-19	application	Finnish	
IX-1	Signature of applicant or agent -	10/10 Tapio	Ākrās
IX-1-1	Name	KOLSTER OY AB	
	FOR F	RĘĆEIVING OFFICE USE ONL'	Y
10-1	FOR F		
	Date of actual receipt of the purported international application	Q 6 JUL 2000	
10-2	Date of actual receipt of the purported international application Drawings:		
10-2 10-2-1	Date of actual receipt of the purported international application Drawings:		
10-1 10-2 10-2-1 10-2-2	Date of actual receipt of the purported international application Drawings:		
10-2 10-2-1 10-2-2	Date of actual receipt of the purported international application Drawings:		
10-2 10-2-1 10-2-2 10-3	Date of actual receipt of the purported international application Drawings: Received Not received Corrected date of actual receipt due to later but timely received papers or drawings completing the purported international application Date of timely receipt of the required		
10-2 10-2-1 10-2-2 10-3	Date of actual receipt of the purported international application Drawings: Received Not received Corrected date of actual receipt due to later but timely received papers or drawings completing the purported international application	0 6 JUL 2000	
10-2 10-2-1 10-2-2 10-3	Date of actual receipt of the purported international application Drawings: Received Not received Corrected date of actual receipt due to later but timely received papers or drawings completing the purported international application Date of timely receipt of the required corrections under PCT Article 11(2)		
10-2 10-2-1 10-2-2 10-3	Date of actual receipt of the purported international application Drawings: Received Not received Corrected date of actual receipt due to later but timely received papers or drawings completing the purported international application Date of timely receipt of the required corrections under PCT Article 11(2) International Searching Authority Transmittal of search copy delayed until search fee is paid	0 6 JUL 2000	(0 6 -07- 2000
10-2 10-2-1	Date of actual receipt of the purported international application Drawings: Received Not received Corrected date of actual receipt due to later but timely received papers or drawings completing the purported international application Date of timely receipt of the required corrections under PCT Article 11(2) International Searching Authority Transmittal of search copy delayed until search fee is paid	0 6 JUL 2000	(0 6 -07- 2000)

Fig. 1

_		_		_
7	1	1	- 1	п
7	,	ı		v

K	Are	Ar/	gre.	ECL	Мате	# !	Comment	1	Comment	2
1.536 3	108581200	0.027	•	7,025	SOLVENT PEAK	•	< min rt			
1.847	17778	0.083	•	•		•		;		1
•	1440	0.028	-	ij	12:0 ISO	1.65	deviates	-0.001		0.003
•	909	0.031	1.069	•	12:0	0.69		-0.000		0.004
•	10566	0.030	_	12.612	13:0.ISO	11.73	ECL deviates	0.00		0.003
5.216	1182	0.033	1.044	•	13:0 ANTEISO	1.31		0.001		0.004
•	8064	0.033	1.01	13.618	14:0 ISO	89.8	ECL deviates	-0.000		0.002
6.849	3396	0.039	1.00	÷	14:0	3.61		-0.000	0	0.002
•	18384	0.037	0.98	-	15:0 ISO	19.23		0.001	0	.003
7,908	3624	0.038	0.984	÷.	15:0 ANTEISO	3.78	ECL deviates	0.001	Reference 0	.003
•	694	0.042	•	5.245		•		•		
8.964	1980	0.040		.388	16;1 W7c alcohol	2.03		0.002		
9.117	3660	0.038			Sum In Feature 3	.3.75	•	0.001	16:1 ISO 1/14:0	4:0 30
9.345	8022	0.044	0.96	.624	16:0 ISO	8.10		-0.002	Reference -U.Vu	_
•	582	0.039	0.9	5.750	16:1 wile	0.59		0.001		3/1
•	10494	0.040	0.95	5,857	Sum In Feature 4	10.65		0.010	×	
•	4800	0.040	0.9		16:0	4.86		-0.001	Reference	0.001
	1500	(C)	.95	16.218	15:0 20H	1.51		0.001		
10.609	4914	0.041	0.946	16.387	180 17:1 w10a · · ·	4.93		00000		
10.735	4188	0.043	•	16.462	_	4.20		0.001		
10.870	099	0.035	0.943	16.541	17:1 ANTELSO A	99.0		000.0		600
11.018	6588	0.040	*	16.629		6.58		-0.000		0.002
11.176	780	0.040	4	16.722	17:0 ANTEISO	0.78		0.000		0.002
13.379	624	0.044	0.918	10.001	18:0	0.61		0.001		0.003
* * *	3660	•	•	•	SUMMED FEATURE 3	3.75	_		own 10	.
******	•	•	•	•	• • • • • • • • • • • • • • • • • • • •	•			3011	1 150
*****	9	•	•	•	SUMMED FENTURE 4	10.65	16:1 W7c/15 1	180 20H	15:0 ISO 20H	2011/16:1W
Solvent A	Ar. Total	Area 1	Named Area	& Name	d Total Amnt Nbr Ref	ECL	Deviation Ref	f ECL shift	ft	
	1 1 1 1	1 1		i		1 1 1 1			1 T I	
3085812		67	O.	99.2	9 94302 1	13	0.002	0,003	03	1 1 1
No. 400 and 100 and 10	TSBA [Rev	3v 3.90]	Bacil B.	lus thurtnglens		• •	0.265	(Bacillus (Bacillus	r cereus group	
		. 1	B. careu	eua .	• • • • • • • • • • • • • • • • • • • •	•	001.0			

Fig. 2b

B. thuringlensis B. cereus CLIN [Rev 3.90] * NO MATCH *

4/10

RT	Area	Ar/IIt	Respon	ECL	Hame		Conment	1	Comment	ant 2
1.489	150156	0.015	•	6.962	SOLVENT PEAK	•	< min rt			
.915		0.027	1.094	11.422	10:0 3011	2.95	ECI.		•	ı
4.411	6870	0.030	1.071	11.999	• 6	1.92	ECL		Reference	0.000
5.730	16770	0.032	1.028	14.091	12:0 20H	0.11.	. ECL deviates	-0.001		
	•	0.034	1.019	13,455		3.75	ECL			
995.9	558	0.035	•	13.818	•	•				
6.802	2136	0.034	1.002	13,999	1410	0.56	ECL	. •	Reference	1.
7.727	846	0.041	0.984	14.624	15:0 ISO	0.22			Reference	0.002
8.288	630	0.045	0.974	15.002	1510	0.16			Reference	0.005
9.603	86670	0.040	0.955	15.816	Sum In Feature 4	21.61		•.	16:1 w7c/15. 1so	15. 1so 2011
9.754	720	0.037	0.953	15,909	16:1 v5c	0.18	ECL			
9.897	82884	0.040	0.951	15.998		21.32			Reference	
e.	1596	9	0.938	16.629	1710 150	0.39			Reference	-0.001
11.236	186	0.043	0.935	16.791	17:1 w8a	0.24				
11.399	6552	0.044	0.933	16.887	17:0 CYCLO	. 1.60			Reference	-0.001
11.586	744	0.045	0.931	16.998	17:0	0.18	ECL deviates	-	Reference	-0.002
•	163326	0.045	0.918	17.824	Sum In Feature 7	39,1	ECL	ı	18:1 w9c/w12t/w7c	112t/w7a
•	570	0.054	0.916	17.919	18:1 wsc	0.14			•	
•	2106	0.042	0.915	10.01	18:0	0.50	ECL deviates		Reference	
14.873	2220	0.046	0.904	18,901	1910 CYCLO WBG .	0.52	ECL	0.001	Reference	0.000
*****	06670	•	•	•	SUMMED FEATURE 4	21.61	16:1	W7c/15 1so 20H	1510 180	15:0 ISO 20H/16:1W7a
#	163326	•		•	SUMMED FEATURE 7	39.14	18:1	:/w12t	18:1 w9c/v	w9c/w12t/w7c
****	•	•	•.	•	•	•	18:1 w12t/w9t/w7a)t/w]a		
Solvent A	Ar Total	Area N	Named Area	• Named	Total Amnt	Nbr Ref ECL	Deviation	Ref ECL Shift	ft	
274442400		404022	797607	90,86	A 382931	10	0.001	0.002	1 6	
	TSBA (Rev	v 3.90)	1	5 5			0.700			
			Flavimonas F. oryzil	Imonas oryzihabitans	ns	· · · · · · · · · · · · · · · · · · ·	0.477	(Pseudomonas (Pseudomonas		
			chrys c.	lecmonas			0.387	(Fseudomonas)	nas VEl) nas VEl)	
	CLIN (Rev	r 3.90]	Ps	eudomonas P. aeruginosa*			0.339			
			P. stutzer	stutzeri .		•	0.242	f"Deand"	"Deandomonag VE1"	
			C. Jut	luteola	• • • • • • • • • • • • • • • • • • • •	• •	0.322	("Pseudom	"Pseudomonas VE1")	
			Flavimonas .	Imonas	•	•	0.205	(Pseudomonas	nas VE2)	
			E + 0 + 3	77701177		•	•	~>>>>>		

Comment 2	T		16:1 w/d/15 iso 20H	Reference -0.001	Raference 0.002		18:1 w9c/w12t/w7a	Reference -0.001			15:0 ISO 208/16:1w7a	18:1 w9c/w12t/w7c	<u> </u>	0.001	2		x X medium)	Rhis I medium)	Rhiz X medium)	Pseudomonas mesophilica)	(48h, Pseudomonas mesophilica)	Pseudomonas radiora)				(Pseudomonas paucimobilis)	0.168 (Pseudomonas paucimobilis)
Comment 1	A BELL PIT	< min rt	MCL deviates -0.002	MCL deviates -0.001	ECL deviates 0.002		ECL deviates -0.000	MCL deviates -0.001			16:1 v7c/15 iso 20H	18:1 w7c/#9t/w12t	MCL Deviation Ref MCL Shift	0.00	7,11,11,11,11,11,11,11,11,11,11,11,11,11	0.338	0.313 (4D, Rhix	0.313 (4p, Rhi	0.313 (4D, Rhi	0.295 (48b, Рве	0.295 (48ћ, ра	0.248 (48h, Pse	0.186 (48h)	0.233	0.233	0.168 (Pseudomo	0.168 (Pseudomo
de		•	0.81	7.07	4.50	•	85.92	1.11	•	•	0.81	85.92				•	•	· ·	•	•	•	•	•	•		•	•
Маше	SOLVENT PEAK		Sum In Feature 4	16:0	17:0 ISO	•	Sum In Feature 7	18:0	•	•	STANKED FRATURE 4	SUMMED FRATURE 7	ed Total Amnt Mbr Ref	127054		sus	•	•	subgroup A	· · · · · · · · · · · · · · · · · · ·			•	•	•	•	14 · · · · · · · · · · · · · · · · · · ·
MCL	7.032	7.563	.15.813	15.999	16.631	17.606	17.825	17.999	18.081	18.147	•	•	es & Named	64 93.89	snoo	denitrificans	Bradyrhizobium	japoni cum	B. J. GC stu	Methylobacterium	mesophilicum*	radiotolerans	zatmenii	Ochrobactrum .	anthropi*	cmonas .	paucimobilia
Respon		•	0.950	0.946	0.934	•	0.916	0.914		•	•	•	Named Area	138264	Paracoccus	y. 4	Bradyr	a T	,	Methyl	K E	ŭ X	X.		ö	Sphingomonas	р. В
Ar/Ht	0.032	0.030	0.061	0.049	0.051	0.058	0.051	0.050	0.055	0.088	•	•	•	147736	. 3.90]									V 3.90			
Area	243677184	536	1080	9496	6130	3040	119192	2376	4160	2272	1080	119192	Ar Total Area	•	TSBA [Rev 3.90]									CLIN [Rev 3.90]			
##	599.1	1.946	0.502	0.814	1.924	1.653.	1.043	1.354	1.498	1.618	* * * *	* * * * *	lvent Ax	43677184													

Fig. 4

Fig. 5

RT	Area	Ar/Ht	Respon	ECL	Name	•	Comment 1	Comment 2
1.665	239780224	0.032		7.033	SOLVENT PEAK		. < min rt	
1.947				7.566	• • • • • • • •		. < min rt	
2.094	560	0.027		7.844	• • • • • • • •			
4.369	16792	0.034	1.095	11.420	10:0 3OH	4.1	4 ECL deviates -0.003	
4.870	2080	0.041		11.943				
4.925	5464	0.038	1.071	12.000	12:0	1.5	6 ECL deviates -0.000	Reference 0.000
5.235	1624	0.053		12.259	• • • • • • • •			-
6.370	23080	0.041	1.026	13.176			4 ECL deviates -0.002	
6.764	15360	0.041	1.016	13.455	12:0 3CH	3.5	2 ECL deviatés -0.000	•
7.535	3656	0.043	0.998	14.000			2 ECL deviates 0.000	
10.509	109552	0.048	0.950	15.819			6 ECL deviates 0.002	
10.817	102120	0.048	0.946	16.001			8 ECL deviates 0.001	
11.045	10608	0.053	0.943	16.130	15:0 ISO 30H	2.2	5 ECL deviates -0.005	
11.330	10112	0.049		16.292	• • • • • • • •			
12.376	6256	0.052	0.929				1 ECL deviates -0.000	
14.045	169864	0.051	0.916				7 ECL deviates 0.000	
14.355	1488	0.054	0.914	17.999	18:0	0.3	1 ECL deviates -0.001	Reference 0.000
14. 603	16104	0.057		18, 139	• • • • • • • •			
15.951	2192	0.061	0.906				5 ECL deviates 0.001	
****	- 109552						6 16:1 w7c/15 iso 201	
****	169864						7 18:1 w7c/w9t/w12t	18:1 w9c/w12t/w7c
*****					• • • • • • • •	• • • •	. 18:1 w12t/w9t/w7c	
J.lvent	Ar Total	Area	Named Ar	ea & Nam	ed Total Amnt N	br Ref E	L Deviation Ref ECL :	Bhirt
								1.001
39780	224 4	97352	4674			6	0.000	
	TSBA [R	e ⊽ 3.90						, .
	CLIN [R	e∨ 3.90						
				_	*			
					• • • • • • • • • • • • • • • • • • • •			
								•
							0.153 (*Pseud	domonas VEl")
							0.153 ("Pseud	
			c. 1	arects .				· · •

										8/10)											
Comment 2	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			16:1 ISO I/14:0 30H	16:1 w7a/15 1so 20H	Reference -0.003		18:1 w7d/w9t/w12t		unknown 10.928	14:0 30H/16:1 ISO I	15:0 ISO 20H/16:1w7a	1811 w9a/w12t/w7a		# F			***************************************				
Comment 1	<pre>< min xt</pre>	< min rt	< min rt	KCL deviates 0.004	ECL deviates -0.001	ECL deviates -0.001	ECL deviates0.003	ECL deviates0.001	ECL deviates 0.001	12:0 ALDE .?	16:1 ISO I/14:0 30H	16:1 w7a/15 4so 20H	18:1 w7c/w9t/w12t	18:1 w12t/w9t/w7a		0.003	JN.	7	0.786	0.786	0.599	0.590
æ	1 •	•	•	4.89	13.00	6.81	4.35	65.69	5.26	4.89	•	13.00	68.69	•		; ; ;	ID RB-R(1 1 1 1	•	•	•	•
Name	BOLVENT PHAK	•	•	Sum In Feature 3	Sum In Feature 4	1610	16:0 30н	Sum In Feature 7	18:1 20н	BUMMED FEATURE 3	•	SUMMED FEATURE 4	SUMMED FRATURE 7	•	Total Amnt Mbr	30 23797 1	50000. CONCENTRATE AND RE-RUN			•	•	
HCL	7.034	7.407	7.562	15.486	15.816	15.999	17.517	17.821	19.089	•	•	•	•	•	sa & Named	100.00	ESS THAN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.111um .	A. brasilense	nag , .	faurlae**
Ar/Ht Respon	: . : . : .	•	•	0.957	0.950	0.947	0.924	0.920	0.910	•	•	•	•	•	Named Area	25664	L ARKA I	1	Azospir	A. br	Ковестопан	R. Le
Ar/Ht	0.031	0.025	0.029	0.049	0.048	0.051	0.058	0.050	0.065	•	•	•	•	•		23664	S: TOTA	1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	v 3.90]		v 3.90]	
Акев	248210304	920	1296	1216	3256	1712	1120	16984	1376	1216	•	3256	16984	•	Ar Total Area		QUESTION ANALYSIS: TOTAL AREA LESS	# # # # # # # # # # # # # # # # # # #	TSBA [Rev 3.90] Azospirillum	•	CLIN [Rev 3.90]	
RT	1.660 2	1.857	1.939	9.919	10.480	10.789	13.469	14.009	16.249	****	****	****	****	*****	solvent Ar	248210304	QUESTIC	1 1 1 1				

RT	Area	Ar/Ht	Ar/Ht Respon	RCL		Name		జా	Comment	ન	Comment 2	
1	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :	3 1 1 1	3 3 3 3 1	1 5 1 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1 1 1	***************************************	; ; ; ;		
1.664	1.664 241080192	0.032	•	7.031	BOLVENT PEAK	PRAK .	•	•	< min rt			
10.814	8176	0.048	0.946	16.000	16:0 .	•	•	6.88	KCL deviates	0.000	Reference -0.001	
14.041	102160	0.052	0.916	17.824	Bum In	Sum In Feature	7	83.22	MCL deviates -0.001	-0.001	18:1 w9a/w12t/w7a	
14.352	2552	0.054	0.914	17.999	18:0	•	. •	2.07	MCL deviates -0.001	-0.001	Reference -0.001	
14.608	1544	0.077	•	18.143	•	•	•	•				
18.949	9720	0.033	906.0	18.901	1910 C	19:0 CYCLO WBG	•	7.83	MCL deviates 0.001	0.001	Reference 0.001	
	102160	•	•	•	SUMMED	BUMMED FEATURE	7	83.22	18:1 W/0/W9t/W12t	/w12t	18:1 w9a/w12t/w7a	
****	•	•	•	•	•	•	•	•	18:1 v12t/w9t/w7d	t:/w7a		
Bolvent Ar		Arga N	Total Area Named Area	r t Named		Total Amt	Nbr Réf	MCI D	RCL Daylation Re	Ref BCL Bhift		9/10
241080192	1 1		122608	98.7	76	112432	1 (7)		100.0	0.001	: 10	
		3.901	rans (nev 3.901 Cobrobativum	•	\$ \$ \$ \$ \$	1 3 3 9 9		\$ \$ \$ \$	0.620	(Achromob	(Achtomohanter Vd. CDC or up Vd)	
			O. anthropi		• •	• •	• •	•		(Achromobacter Vd,	CDC group	
			Bradyrhizobium .	[xob1um	•	•	•	•	0.587	(4D, Rhiz	_	
			B. Jar	B. japonicum.	•	•	•	•	0.587	(4D, Rhiz	Rhir X medium)	
			B.	B. J. GC subgroup	bgroup A	•	•	•	0.587	(4D, Rhiz	X medium)	
			Xanthobacter	icter	•	•	•	•	0.500			
			X. agilia	uta .		•	•	•	005.0			
			X. flavus	. gnai	•	•	•	•	0.254			
	CLIN (Re	v 3.90]	CLIN [Rev 3.90] Ochrobactrum	trum .	•	•		•	0.548			
			O. ant	O. anthroph*	•	•	•	•	0.548			

10/10

Fig. 8

RT Area	a Ar/Ht Respon	ECL	Name	*5	Comment 1	Comment 2

1.664 248735	360 0.031	7.031 SC	LVENT PEAK		< min rt	
1.770 60	364 0.024	7.231 .			< min rt	
1.862 2	552 0.027	7.405 .			< min rt	
1.945 10	96 0.034	7.562 .			< min rt	
10.815 27	752 0.046 0.94 6	15.999 16	:0	. 2.81	ECL deviates -0.001	Reference -0.001
11.327	448 0.054	16.291 .			•	
12.575 17	712 0.058 0.927	17.002 17	:0	. 1.72	ECL deviates 0.002	Reference 0.001
13.500	968 0.059 0.920	17.521 16	:0 30#	. 0.96	ECL deviates 0.001	
14.041 904	456 0.051 0.916				ECL deviates -0.000	
14.352 39	920 0.049 0.914	17.999 18	:0	3.87	ECL deviates -0.001	Reference -0.002
14.499	760 0.044	18.082 .	• • • • • • • •			
14.613 49	552 0.055	18.147 .	• • • • • • • •		•	
17.575	96 0.057 0.902				ECL deviates 0.001	•
• •	156	_			18:1 w7c/w9t/w12t	18:1 w9c/w12t/w7c
*****			• • • • • • • •		18:1 w12t/w9t/w7c	
	tal Area Named A	rea % Named			Deviation Ref ECL Sh	
248735360	152664 100	904 66.10	92494	3	0.001 0.	001
QUESTION ANAL	LYSIS: PERCENT AR	BA NAMED IS I	ESS THAN 85. CH	ECK FOR CO	NTAMINATION.	
TSBA	[Rev 3.90] Methy	lobacterium .			0.782 (48h, Ps	eudomonas radiora)
	M.	radiotolerans			0.782 (48h, Ps	eudomonas radiora)
	M.	mesophilicum*			0.708 (48h, Ps	eudomonas mesophilica)
	_ M.	zatmanii			0-674 (48b)	
	Rhodo	bacter	• • • • • • • •		0.657	
	R.	sphaeroides .			0.657	
	R.	capsulatus .			0.454	• •
	Xanth	obacter			0.647	
	x.	flavus	• • • • • • • •		0.647	
CLIN	[Rev 3.90] Methy	lobacterium .	• • • • • • • • •		0.512	
		-	· · · · · · · ·			
	Ochro	bactrum	• • • • • • • •		0.403	
	0.	anthropi*			0.403	

Vedenpuhdistusmenetelmä, siihen soveltuvia bakteereja ja niiden käyttö

Keksinnön ala

Keksintö kohdistuu menetelmään jäteveden puhdistamiseksi biologisesti sekä menetelmään soveltuviin bakteereihin ja bakteerisekapopulaation sekä niiden käyttöön. Keksintö koskee edelleen bioreaktoria, joka sisältää mainittuja bakteereja tai sekapopulaatiota.

Keksinnön tausta

10

15

20

25

30

35

Vettä voidaan perinteisesti puhdistaa sekä fysikaalisin että kemiallisin keinoin, esimerkiksi sedimentaatiolla, suodatuksella tai flokkauksella WO94/5866 ja WO88/5334. Orgaanisten yhdisteiden ja muiden vaikeasti puhdistettavien yhdisteiden poistamiseksi on lisäksi edullista käyttää ns. biologista puhdistusta, jossa puhdistettava vesi saatetaan kosketuksiin saasteita hajottavien mikro-organismien kanssa. Biologiset vedenpuhdistusmenetelmät soveltuvat käytettäviksi sekä tavanomaisissa vedenpuhdistuslaitoksissa että teollisuusjätevesien puhdistuslaitoksissa. Biologista veden puhdistusta on myös kokeiltu järjestelmissä, joissa vesi kierrätetään (Fl 964141). Biologista veden puhdistusta kaivataan myös esimerkiksi kaatopaikan suotoveden puhdistamiseksi, ennenkuin suotovesi lasketaan luontoon.

Biologinen puhdistusmenetelmä on kuitenkin vaikeammin hallittavissa kuin kemialliset tai fysikaaliset puhdistusmenetelmät. Ensinnäkin pitää löytää sellaiset mikro-organismit, jotka hajottavat kyseiset saasteet. Lisäksi mikro-organismien pitää olla sellaiset, jotka pysyvät hyvin hengissä ja pystyvät lisääntymään vedenpuhdistuksessa vallitsevissa olosuhteissa. Toisin sanoen vedenpuhdistukseen käytettävien mikro-organismien pitää olla kilpailukykyisiä, niin etteivät vedessä olevat muut organismit pääse vallalle. Lisäksi veden puhdistukseen käytettävät mikro-organismit eivät saa olla herkkiä ympäristön muutoksille, jotka usein esiintyvät vedenpuhdistusprosesseissa, kun kuormitus vaihtelee.

Vedenpuhdistukseen on käytetty hyvin monenlaisia mikroorganismeja, joista tässä mainittakoon esim. bakteerit ja alkueläimet, kuten ripsieläimet. Bakteereista on käytetty paljon *Pseudomas*-sukuun kuuluvia lajeja, mutta myös esim. *Alcaligenes, Acinetobacter*- tai *Rhodococcus*-suvun jäseniä. Yleensä käytetään runsaasti eri mikro-organismeja sisältäviä sekapopulaatioita, joista osa on tunnistettu ja osa ei. Aerobiset tai fakultatiiviset mik-

ro-organismit soveltuvat parhaiten veden puhdistukseen, jolloin puhdistettavaan veteen on tarkoituksenmukaista pumpata ilmaa biologisen puhdistuksen tehostamiseksi.

Viljeltäessä mikro-organismeja viljelyalusta täytyy normaalisti steriloida, jotta viljelmä ei kontaminoituisi ulkopuolisilla organismeilla. Koska jäteveden puhdistuksessa yleensä käsitellään suuria tilavuuksia vettä, niin biologiseen puhdistukseen tarvittava biomassan määrä on myös suuri. Tällaisen biomassan tuottaminen steriileissä olosuhteissa on sekä vaivalloista että kallista ja siksi olisi erittäin toivottavaa, jos biomassaa voitaisiin tuottaa eisteriileissä olosuhteissa ilman kontaminaatiovaaraa. Esillä oleva keksintö tarjoaa nyt uuden fermentointiteknologian, jossa ei tarvitse steriloida. Tämä on mahdollista, kun käyttää menetelmään erityisen sopivia mikro-organismeja, joille syötetään niille sopivia ravinteita.

Yhteenveto keksinnöstä

10

15

20

25

30

35

Esillä oleva keksintö kohdistuu mikro-organismeihin, jotka soveltuvat yllättävän hyvin jäteveden biologiseen puhdistukseen. Nämä mikro-organismit täyttävät erityisen hyvin edellä mainitut veden biologiseen puhdistukseen soveltuville mikro-organismeille asetetut vaatimukset. Keksinnön mukaiset mikro-organismit ovat lisäksi niin spesifisiä, että niiden biomassaa voidaan tuottaa ei-steriilisti käyttämällä kasvualustaa, jossa muut mikro-organismit eivät pysty kilpailemaan. Tämä mahdollistaa huomattavia säästöjä biologisen vedenpuhdistusprosessin kustannuksissa ja energiankulutuksessa ja saavutetut puhdistustulokset ovat erinomaiset. Keksinnön mukaisesti puhdistetut vedet kelpaavat jopa kierrätykseen.

Keksinnön kohteena ovat näin ollen bakteerit *Bacillus* sp. DT-1, jolla on talletusnumero DSM 12560 ja sen jälkeläiset, *Pseudomonas* sp. DT-2, sittemmin tunnistettu *Pseudomonas azelaica*:ksi, jolla on talletusnumero DSM 12561 ja sen jälkeläiset sekä entinen *Pseudomonas* sp. nykyinen *Rhizobium* sp. DT-5, jolla on talletusnumero DSM 12562 ja sen jälkeläiset. Myöhemmät 16S rDNA analyysit ovat osoittaneet, että tämä bakteeri muistuttaa eniten *Rhizobium*-suvun jäseniä, mistä syystä se tästä lähtien lasketaan niihin. Keksintö koskee myös seuraavia vedenpuhdistusta edesauttavia bakteerikantoja: *Pseudomonas azelaica* DT-6, jolla on talletusnumero DSM 13516, *Azospirillium* sp. DT-10, jolla on talletusnumero DSM 13517, *Ancylobacter aquaticus* DT-12, jolla on talletusnumero DSM 13518 ja *Xanthobacter* sp. DT-13, jolla on

talletusnumero DSM 13519 ja niiden jälkeläisiä. DSM 12560 - 12562 on talletettu talletuslaitokseen Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH 1.12.1998 ja DSM 13516 - 13519 on talletettu 29.5. 2000.

Keksinnön kohteena on edelleen bakteerisekapopulaatio, jolle on tunnusomaista, että se sisältää bakteerin *Bacillus* sp. DT-1, jolla on talletusnumero DSM 12560, *Pseudomonas azelaica* DT-2, jolla on talletusnumero DSM 12561 ja/tai *Rhizobium* sp. DT-5, jolla on talletusnumero DSM 12562 ja niiden jälkeläiset.

Lisäksi keksintö kohdistuu edellä mainittujen bakteerien tai bakteerisekapopulaatioiden käyttöön jäteveden puhdistuksessa sekä menetelmään jäteveden puhdistamiseksi, jolle on tunnusomaista, että vesi puhdistetaan biologisesti mikro-organismeilla, jotka kuuluvat ryhmään *Bacillus* sp. DT-1, jolla on talletusnumero DSM 12560, *Pseudomonas azelaica* DT-2, jolla on talletusnumero DSM 12561 ja *Rhizobium* sp. DT-5, jolla on talletusnumero DSM 12562 ja niiden jälkeläiset.

Keksinnön kohteena on edelleen bioreaktori, jolle on tunnusomaista, että se sisältää mikro-organismeja, jotka kuuluvat ryhmään *Bacillus* sp. DT-1, jolla on talletusnumero DSM 12560, *Pseudomonas azelaica* DT-2, jolla on talletusnumero DSM 12561 ja *Rhizobium* sp. DT-5, jolla on talletusnumero DSM 12562 ja niiden jälkeläiset. Bioreaktori on reaktori, jossa biologinen puhdistusreaktio suoritetaan.

Piirustukset

Kuviossa 1 on esitetty kaavakuvio suotoveden puhdistusjärjestelmästä.

Kuviossa 2a on esitetty bakteerikannan DT-1 rasvahappoprofiili. Kuviossa 2b on bakteerikannan DT-1 rasvahappoanalyysin tuloste. Kuviossa 3a on esitetty bakteerikannan DT-2 rasvahappoprofiili. Kuviossa 3b on bakteerikannan DT-2 rasvahappoanalyysin tuloste. Kuviossa 4 on bakteerikannan DT-5 rasvahappoanalyysin tuloste. Kuviossa 5 on bakteerikannan DT-6 rasvahappoanalyysin tuloste. Kuviossa 6 on bakteerikannan DT-10 rasvahappoanalyysin tuloste. Kuviossa 7 on bakteerikannan DT-12 rasvahappoanalyysin tuloste. Kuviossa 8 on bakteerikannan DT-13 rasvahappoanalyysin tuloste.

30

15

20

25

Keksinnön yksityiskohtainen kuvaus

15

20

25

30

35

Teollisuuslaitoksen jätevedestä rikastettiin saippuaseoksella kasvavia mikro-organismeja, jotka sitten adaptoitiin viljelemällä niitä bioreaktorissa, joka sisälsi kaatopaikan jätevettä. Näin saatiin eristettyä kolme bakteerikantaa, jotka olivat ylivoimaiset muihin nähden. Mainitut bakteerikannat ovat *Bacillus* sp. DT-1, jolla on talletusnumero DSM 12560, *Pseudomonas azelaica* DT-2, jolla on talletusnumero DSM 12561 ja *Rhizobium* sp. DT-5, jolla on talletusnumero DSM 12562. Nämä bakteerit voidaan kasvattaa kraanavedellä, joka sisältää noin 1 - 4 g/l saippuaa. Hyvin harva mikro-organismi pystyy aktiivisesti kasvamaan tällaisissa olosuhteissa, ja siksi tätä alustaa ei tarvitse steriloida, kun tuotetaan mainitun kolmen bakteerin biomassaa. Kannat kestävät jopa noin 40 g/l saippuaa. Parhaiten ne kasvavat saippuapitoisuudessa noin 0,3 - 0,5 g/l.

Sen lisäksi, että kyseiset bakteerikannat pystyvät kasvamaan alustalla, jolla useimmat muut bakteerit eivät pysty lisääntymään, niin ne ovat erityisen tehokkaita poistamaan jäteveden orgaanista kuormaa. Tämä mitataan yleensä kokonais-COD:na, mikä tarkoittaa kokonaiskemiallista hapenkulutusta (mg O₂/I). Eristetyt bakteerikannat pystyvät erityisesti hajottamaan vaikeasti hajoavia yhdisteitä, kuten kloorifenoleja, polysyklisiä aromaattisia hiilivetyjä (PAH-yhdisteitä) ja öljyjä. Ne poistavat myös raskasmetalleja. Keksinnön suojapiiriin sisältyvät myös mainittujen kantojen jälkeläiset, joilla tarkoitetaan mainittujen kantojen jälkeläiset, joilla on oleellisesti sama jäteveden puhdistuskapasiteetti kuin talletetuilla kannoilla.

Bakteereilla *Bacillus* sp. DT-1, *Pseudomonas azelaica* DT-2 ja *Rhizobium* sp. DT-5 on edelleen taipumusta flokkaantua, jolloin ne muodostavat ns. bioverkon, joka sisältää mikro-organismeista ja muista partikkeleita koostuvia kokkareita, ja joka edesauttaa puhdistusta.

Erityisen hyvät jäteveden puhdistustulokset saadaan, kun veden biologiseen puhdistukseen käytetään bakteerisekapopulaatiota, joka sisältää yhtä tai useampaa bakteeria, jotka valitaan ryhmästä, joka koostuu bakteereista *Bacillus* sp. DT-1, *Pseudomonas azelaica* DT-2 ja *Rhizobium* sp. DT-5, ja niiden jälkeläisistä. Parhaimpiin puhdistustuloksiin päästään kun käytetään sekapopulaatiota, joka käsittää kaikki kolme bakteerikantaa ja/tai niiden jälkeläisiä. Näiden kolmen kannan lisäksi bakteerisekapopulaatio voi vielä sisältää muita mikro-organismikantoja, jotka ovat hyödyllisiä vedenpuhdistuksessa, ja joilla on myönteinen yhteisvaikutus puhdistustehoon.

Parhaimmat puhdistustulokset saadaan kun mikro-organismikantoja DT-1, DT-2 ja/tai DT-5 käytetään yhdessä yhden tai useamman bakteerikannan kanssa ryhmästä *Pseudomonas azelaica* DT-6, jolla on talletusnumero DSM 13516, *Azospirillium* sp. DT-10, jolla on talletusnumero DSM 13517, *Ancylobacter aquaticus* DT-12, jolla on talletusnumero DSM 13518 ja *Xanthobacter* sp. DT-13, jolla on talletusnumero DSM 13519 ja niiden jälkeläiset. Mainitut neljä kantaa eristettiin saippuaseosta sisältävän veden käsittelyyn tarkoitetun neljän kaskadin bioreaktorin viimeisestä yksiköstä saadusta biofilmistä. Niitä voidaan kasvattaa samalla kasvatusalustalla ja samoissa olosuhteissa kuin kantoja DT-1, DT-2 ja DT-5. DT-6, DT-10, DT-12 ja DT-13 parantavat biofilmin immobilisoitumisominaisuuksia tukimatriiseihin, kun niitä sekoitetaan kantoihin DT-1, DT-2 ja DT-5. Kantojen yhdistäminen parantaa myös jäteveden käsittelyprosessia muodostuneen biofilmin lisääntyneen sietokyvyn johdosta myrkyllisiä aineita vastaan.

10

15

Bacillus sp. DT-1 on noin 1,0-1,2 μm leveä ja 3,0-6,0 μm pitkä sauva. 16S rDNA:n osittainen sekvensointi osoittaa 99,3-%:ista samankaltaisuutta *B. cereuksen* ja 100-%:sta samankaltaisuutta *B. thuringiensisin kanssa.* Identifiointikokeissa DT-1 reagoi alla kuvatulla tavalla:

	1
Anaerobinen kasvu	+
VP-reaktio	+
pH VP-liemessä	4,8
Kasvu väliaineen pH:ssa 5,7	+
2% NaCl	+
5%	+
7%	-
10%	-
Lysotsyyliliemi	+
Muodostaa happoa	
L-arabinoosi	-
D-ksyloosi	-
D-mannitoli	-
D-fruktoosi	+
Lesitinaasi	+
Hydrolysoi:	
Kaseiinia	+
Tween 80:tä	heikko
Eskuliinia	+
Propionaatin käyttö	-
Indolireaktio	
Fenyylialaniinideaminaasi	+
Hemolyysi	+
Kasvu penisilliinissä 900U/ml	+

Pseudomonas azelaica DT-2 on 0,5-0,7 μm leveä ja 1,5-3,0 μm pit-5 kä sauva, jolla on 1-3 polaarista flagellaa ja jolta puuttuu fluoresoivat pigmentit. 16S rDNA:n osittainen sekvensointi on 99,8-%:isesti samankaltainen kuin Ps. azelaican. Se reagoi seuraavasti:

Lyysi 3-%:isella KOH:lla	+
Aminopeptidaasi (Cerny)	+
Lesitinaasi	-
Käyttää:	
Arabinoosia	-
Adipaattia	+
Mannitolia	-
Glukonaattia	+
Kapraattia	+

Rhizobium sp. DT-5 on 0,5-0,7 µm leveä ja 1,5-3,0 µm pitkä sauva.

Osittainen 16S rDNA:n sekvensointi osoittaa 98,6-%:isen samankaltaisuuden R. giardiniin ja 98,6-%:isen samankaltaisuuden Phyllobacterium myrisinacearumin kanssa. Fysiologiset koetulokset esitetään jäljempänä. Ne eivät varmista yhtäkään näistä suvuista.

Lyysi 3-%:isella KOH:lla	+
Aminopeptidaasi (Cerny)	+
Anaerobinen kasvu	-
Simmons-sitraatti	+
Käyttää:	
Arabinoosia	+
Mannoosia	+
Mannitolia ·	+
Adipaattia	-

10

Bakteerikantojen DT-1, DT-2 ja DT-5 muut morfologiset, fysiologiset ja biokemialliset ominaisuudet on esitetty taulukossa 1.

Ominaisuus	Kannan reaktio			
	DT-1	DT-1 DT-2		
Solumorfologia	Suora tai hieman	Suora sauva	Sauva	
	käyrä sauva			
Liikkuvuus	+	+	+	
Endospoorien muodostus	+		-	
Itiömuoto	E	<u>-</u>	-	
Itiön sijainti	Т	-	-	
Paisunut sporangium	-	<u>-</u>	_	
Gram-värjäys	Р	N	N	
Katalaasi	+	+	+	
Oksidaasi	+	+	+	
Nitraatin pelkistys nitriitik-	+	+	-	
si				
Denitrifikaatio	-	+	-	
Arginiinidihydrolaasi	+	+	-	
Hydrolyysi:				
- tärkkelys	+		-	
- gelatiini	+	-	-	
- asetamidi	-	-	+	
Ureaasi	-	-	+	
Aromaattisen renkaan	-	Orto	-	
pilkkominen				
Kasvu lämpötilassa:				
35 ℃	+	+	+	
39 ℃	+	+	-	
40 °C	+	•	-	
41 °C	+	-	-	
43 °C	-		-	

Käyttää:			
Asetaattia	+	+	+
D-alaniinia	-	+	-
L-alaniinia	-	+	+
ß-alaniinia	-	+	-
L-arginiinia	+	· +	+
L-asparagiinia	±	+	±
L-aspartaattia	±	+	-
Sitraattia	+	+	-
L-kysteiiniä		-	+
L-kystiiniä	-	-	-
Etanolia	-	+	-
D-glukoosia	+	+	+
Glutamaattia	+	+	±
Glyserolia	+	-	-
Glysiiniä	_	-	-
L-histidiiniä	-	+	+
p-hydroksibensoaattia	-	+	-
meso-inositolia	-	-	+
Laktoosia	-	-	-
L-leusiinia	±	+	+
L-lysiinia	±	+	_
Malaattia	+	+	-
Malonaattia	+	-	-
Metanolia	-	-	-
L-metioniinia	-	-	-
L-proliinia	-	+	+
DL-seriiniä	+		-
Sukkinaattia	+	+	+
Sakkaroosia	±	-	+
DL-treoniinia	-	-	-
D-trehaloosia	+	-	+
DL-tryptofaania	±	-	-
L-tyrosiinia	-	+	±

P = positiivinen

N = negatiivinen

E = soikionmuotoinen

T = terminaalinen

5

10

15

20

Lisäksi bakteerikantojen DT-1, DT-2 ja DT-5 rasvahappoprofiilit määritettiin ja ne on esitetty kuvioissa 2 - 4. Bakteereja kasvatettiin 24 h, 28 °C:ssa tryptisellä soijaliemiagarilla ja tehtiin metyyliestereitä koko solun rasvahappoanalyysiä varten, kuten on kuvattu julkaisussa Väisänen, O.M., E-L Nurmiaho-Lassila, S.A. Marmo ja M.S: Salkinoja-Salonen. 1994. Structure and composition of biological slimes on paper and board machines. Appl. Environ. Micorbiol. 60:641-653. Käytettiin aerobista TSBA-kirjastoa versio 3.9 (MIDI Inc., Newark, DE, USA). Kuvioiden 2a ja 3a x-akselilla on retentioaika (minuuteissa) ja y-akselilla on piikin intensiteetti. Rasvahappoanalyysien vastaavat tulosteet on esitetty kuvioissa 2b, 3b ja 4. DT-1:n rasvahappoprofiili on tyypillinen *B. cereus* -ryhmälle. DT-2:n profiili on tyypillinen pseudomonaksien RNA ryhmä I:lle ja DT-5:n profiili viittaa *Rhizobium*- ryhmään.

Pseudomonas azelaica DT-6 on 0,5-0,7 μm leveä ja 1,5-3,0 μm pitkä gram-negatiivinen, liikkuva sauva, jolla on 1-3 polaarista flagellaa ja jolta puuttuvat fluoresoivat pigmentit. Sen rasvahappoanalyysikuvio (kuvio 5) on tyypillinen pseudomonaksien RNA ryhmä l:lle. 16S rDNA:n osittainen sekvensointi osoittaa 99,8-%:ista samankaltaisuutta *Ps. azelaican* kanssa. DT-6:llä on seuraavat fysiologiset reaktiot:

Lyysi 3-%:isella KOH:lla	+
Aminopeptidaasi (Cerny)	+
Oksidaasi	+
Katalaasi	+
ADH	+
NO ₂ :ta NO ₃ :sta	+
Denitrifikaatio	weak
Ureaasi	
Gelatiinin hydrolyysi	
Lesitinaasi	_
Käyttää (API 20NE):	
Glukoosia	+
Arabinoosia	-
Adipaattia	+
Malaattia	+
Mannitolia	-
Glukonaattia	+
Kapraattia	+

Azospirillum sp. DT-10 on 0,8-1,2 μm leveä ja 2,0-4,0 μm pitkä gram-negatiivinen sauva. Sen rasvahappoanalyysikuvio (kuvio 6) on tyypillinen proteobakteerien α-alaryhmälle ja viittaa Azospirillum-sukuun. 16S rDNA:n osittainen sekvensointi osoittaa 92 - 97,4-%:isia samankaltaisuuksia Azospirillum-suvun eri jäsenten kanssa. Korkein samankaltaisuus 97,4% havaittiin Azospirillum lipoferumin kanssa. DT-10:n fysiologiset reaktiot on esitetty jäljempänä. Ne viittaavat Azospirillum-sukuun mutteivät ole tyypillisiä A. lipoferumille. DT-10 on mahdollisesti tämän suvun uusi kanta.

Lyysi 3-%:isella KOH:lla	heikko
Aminopeptidaasi (Cerny)	+
Oksidaasi	+
Katalaasi	+
NO₂:ta NO₃:sta	+
Ureaasi	+
ADH	-
Hydrolysoi:	
Gelatiinia	-
Eskuliinia	-
Käyttää (ainoana hiililähteenä):	
Glukoosia	-
Arabinoosia	-
Adipaattia	-
Malaattia	+
Mannitolia	-
Fenyyliasetaattia	-
Sitraattia	-
Kapraattia	-
Glukonaattia	-
Maltoosia	-
N-asetyyliglukosamiinia	-
α-ketoglutaraattia	+
Sakkaroosia	-
m-inositolia	-
D-fruktoosia	+
Ramnoosia	-
Arabitolia	-
Riboosia	-
Kasvu 41 °C:ssa	-
3 % NaCl:a läsnä]-

Ancylobacter aquaticus DT-12 on gram-negatiivinen käyrä sauva, 5 joka on 0,5-0,7 μm leveä ja 1,5-2,0 μm pitkä. 16S rDNA:n osittainen sekvenssi osoittaa 98,8-%:ista samankaltaisuutta *Ancylobacter aquaticuksen* kanssa. *Thiobacillus novellus* osoittaa 97,8-%:ista samankaltaisuutta. Rasvahapot (kuvio 7) viittaa α -proteobakteereihin. Alla esitetyt fysiologiset kokeet identifioivat selvästi *Ancylobacter aquaticus* -lajin.

5

10

Lyysi 3-%:isella KOH:lla	heikko
Aminopeptidaasi (Cerny)	+
Oksidaasi	+
Katalaasi	+
ADH	-
Ureaasi	-
Hydrolysoi:	
Gelatiinia	-
Eskuliinia	+
NO₂:ta NO₃:sta	-
Denitrifikaatio (24 h)	-
Käyttää:	
Glukoosia	+ (heikko)
Sitraattia	+
Arabinoosia	+
Mannoosia	-
Mannitolia	+
Maltoosia	-
N-asetyyliglukosamiinia	-
Glukonaattia	-
Malaattia	+
Fenyyliasetaattia	-
Metanolia	+
Formaattia	heikko

Xanthobacter sp. DT-13 on epäsäännöllinen, liikkuva gramnegatiivinen sauva, jonka leveys on 0,8-1,0 μm ja pituus 1,5-3,0 μm. 16S rDNA:n osittainen sekvensointi osoittaa 98,5 - 99,3-%:isia samankaltaisuuksia Xanthobacter-suvun eri jäsenten kanssa. X. falvus osoittaa suurinta samankaltaisuutta (99,3%). Rasvahappoprofiili on tyypillinen α -proteobakteerien alaluokalle. Fysiologiset kokeet eivät kykene luotettavasti erottamaan tämän su-

vun lajien välillä (ts. pigmentin muodostusta ei havaita, ei liman muodostusta jne.). Fysiologiset tiedot ovat seuraavat:

Lyysi 3-%:isella KOH:lla	+
Aminopeptidaasi (Cerny)	+
Oksidaasi	+
Katalaasi	+
ADH	-
Ureaasi (24 h)	-
Hydrolysoi:	
Gelatiinia	-
Eskuliinia	-
NO₃:n käyttö	_
Käyttää:	
Fenyyliasetaattia	-
Sitraattia	-
Malaattia	+
Arabinoosia	-
Mannoosia	-
Mannitolia	-
Kapraattia	-
Maltoosia	-
Adipaattia	+
Malonaattia	+
Metanolia	-
m-inositolia	-
m-tartraattia	+
D-glukonaattia	+
Fenyylialaniinia	-

5

10

Edellä kuvatut bakteerit soveltuvat käytettäviksi jäteveden puhdistamiseen. Tällöin bakteerit voidaan ensin kasvattaa esim. minimaalisuolaalustassa (KSN) ravistelijassa. Soijapeptonia (0,5 g/l), tryptonia (0,1 g/l), glukoosia (0,2 g/l) ja kaliumasetaattia (0,3 g/l) voidaan haluttessa lisätä. Bakteerien kasvatuslämpötila on noin 20 - 30 °C. Tästä kasvatuksesta siirrytään sitten

suurempaan mittakaavaan vedenpuhdistukseen tarvittavan biomassan tuottamiseksi. Tämä vaihe voidaan jo suorittaa steriloimattomissa olosuhteissa, jolloin kasvualustana voidaan käyttää kraanavettä, johon on lisätty noin 0,5 - 4 g/l saippuaa. Käytetty saippua on edullisesti seos, joka sisältää anionisia, kationisia, amfoteerisiä ja non-ionisia tensidejä. On suositeltavaa käyttää eri saippuoiden, kuten astianpesu-, huuhtelu-, pyykinpesu- ja yleispuhdistusaineiden, seosta. Bakteerit kasvatetaan pinnanalaisena viljelynä, johon pumpataan ilmaa. Biomassaa voidaan tuottaa panosviljelmänä, mutta edullisesti sitä tuotetaan jatkuvana viljelynä eli kemostaattiviljelynä. Biomassan tuottamisessa on edullista käyttää kantajaa. Tähän sopii mikä tahansa tavanomainen esimerkiksi muovinen kantaja. Saatua biomassaa siirretään sitten vedenpuhdistusreaktoriin, johon tuodaan puhdistettava vesi. Reaktorissakin käytetään bakteereille kantajaa ja mieluummin samaa kantajaa kuin biomassan tuotossa. Kantaja on edullisesti sellainen, jonka ominaistiheys on pienempi kuin 1 g/cm³. Yleensä kantaja pidetään paikoillaan säiliössä esimerkiksi verkon avulla ns. 'kiinnitetty kantaja', mutta joskus annetaan kantajan uida vapaasti säiliössä ns. 'uiva kantaja'.

Keksinnön mukainen menetelmä soveltuu erityisesti kaatopaikan suotoveden puhdistamiseksi, jota tässä kuvataan tarkemmin kuvioon 1 viitaten. Kaatopaikan ympärille on yleensä kaivettu oja, johon suotovesi kerätään. Suotovedellä tarkoitetaan sateen ja pohjaveden seurauksena kaatopaikalta suotautuvaa vettä. Tämä sekä pinta- että kolovettä sisältävä suotovesi johdetaan yleensä ensin säiliöön, josta se viedään puhdistusprosessin läpi ennenkuin se lasketaan ympäristöön. Edullisesti sekä syvältä että matalalta saatu suotovesi kerätään ensin tasausaltaaseen, josta se suodatetaan tuloputken 1 kautta suodoskaivoon 2, ja sieltä siirtoputken 8 kautta bioreaktoriin 3, joka sisältää kyseiset bakteerit ja kantajan 5. Bakteerit muodostavat ns. biofilmin kantajan ympärille. Kantaja bakteereineen pidetään yleensä vesipinnan alla verkon avulla. Edullisesti bioreaktorissa on yksi tai useampia väliseiniä 6, jotka on asetettu siten, että vesi pakotetaan kiertämään reaktorissa. Väliseinät voidaan esimerkiksi asentaa vastakkaisille seinille kuten kuviossa 1 on esitetty. Reaktoriin kuuluu yleensä lisäksi ilmastuslaite 9 ilman viemiseksi reaktoriin ilmastusputken 4 kautta. Lisäksi bioreaktoriin kuuluu lähtöputki 7, josta käsitelty vesi poistetaan reaktorista.

25

35

Paitsi suotoveden puhdistukseen esillä oleva keksintö sopii erinomaisesti myös esim. kotitalouksien ja teollisuuslaitosten harmaaveden puhdistukseen. Harmaavedellä tarkoitetaan muita kuin WC:stä tulevia jätevesiä, kuten suihkuvedet, käsipesualtaiden ja pesuammeiden vedet ja pyykinpesuvedet. Keksinnön mukainen puhdistusmenetelmä sopii myös WC:n jäteveden puhdistukseen, jota kutsutaan mustaksi vedeksi. Lisäksi keksinnön mukaisella menetelmällä voidaan puhdistaa pesulan ja teollisuuden jätevesiä, jotka usein sisältävät runsaasti orgaanisia jätteitä kuten öljyä, polysyklisiä aromaattisia hiilivetyjä (PAH-yhdisteitä) ja/tai raskasmetalleja. Menetelmä soveltuu myös esim. elintarviketeollisuuden jätevesien puhdistukseen ja uima-altaan veden puhdistukseen.

10

15

20

25

30

35

Esimerkki 1

Biomassan tuotto ja bioreaktorin käynnistys

Bacillus sp. DT-1, *Pseudomonas azelaica* DT-2 ja *Rhizobium* sp. DT-5 siirrostettiin kukin 200 ml:aan steriloitua minimaalisuola-alustaa (KSN), jonka koostumus oli seuraava (g/l tislattua vettä): K₂HPO₄×3H₂O - 1,0, NaH₂PO₄×2H₂O - 0,25, (NH₄)₂SO₄ - 0,1, MgSO₄×7H₂O - 0,04, Ca(NO₃)₂×4H₂O - 0,01, hiivauutetta - 0,05, pH 7,0 - 7,3, ja saippuaseosta noin 1 g/l. Saippuaseos sisälsi noin yhtä suuria määriä seuraavia pesuaineita: pyykkisuopaa, Comfort, Cleani Family -huuhteluainetta, Cleani Color, Serto Ultra, Bio Luvil, Ariel Futur, Omo Color, Tend Color, Tend Mega, Tend Total ja Eko Kompakt (yhteensä noin 1g/l). Bakteerit viljeltiin ravistelijassa (150-200 rpm), 28 °C:ssa.

Kun kasvusto oli runsasta kaikki kolme viljelmää vietiin samaan 500 litran fermenttoriin tarvittavan biomassan tuottamiseksi. Fermenttori sisälsi steriloimatonta kraanavettä ja yhteensä 4 g/l edellä mainittua saippuaseosta sekä polyeteeniä sisältävän muovisen kantoaineen, jonka ominaistiheys oli noin 0,8 g/cm³. Kantaja pidettiin nesteen pinnan alla verkon avulla. Viljelyä jatkettiin nyt epästeriileissä olosuhteissa turbiditeettiin noin 2 (600 nm) ja jatkettiin sitten kemostaattiviljelynä. Tästä fermenttorista saatu alkusiirros vietiin sitten kuvion 1 mukaiseen bioreaktoriin (6 m³) laimentaen 1:10. Bioreaktori sisälsi kunnallisen kaatopaikan suotovettä, jota oli ensin kerätty säiliöön, josta se sitten vietiin tasausaltaaseen kiintoaineksen poistamiseksi ja sitten suodoskaivoon, josta se pumpattiin bioreaktoriin. Järjestelmä toimii periaatteessa gravitaation avulla ja ainoa tarvittava pumppu on suodoskaivossa oleva uppopumppu. Bioreaktori sisälsi samaa kantajaa kuin biomassan tuottoon käytetty fermenttori. Kantaja pidettiin nestepinnan alapuolella verkon avulla. Bioreaktorin loppupäässä bakteerit flokkaantuivat Puhdistusprosessi oli jatkuva ja se toimi kapasiteetilla

noin 100 m³/vrk. Ilmaa pumpattiin niin, että käsiteltävän veden happipitoisuus oli > 7 mg/l.

Esimerkki 2

5 Suotoveden puhdistus

Esimerkin 1 mukaisesti järjestettyä bioreaktoria käytettiin kunnallisen kaatopaikan suotoveden puhdistukseen. Puhdistettavan jäteveden keskimääräinen COD oli noin 800 mg - 6 g O₂/l. Jätevesi sisälsi mm. kloorifenoleja, PAH-yhdisteitä ja öljyä. Näiden aineiden poistoa jätevedestä seurattiin. Yhdisteet määritettiin Nordtestin teknisen raportin nro 329 (hyväksytty 9603) mukaisesti kaasukromatografilla, joka oli varustettu massaselektiivisellä ilmaisimella. Tulokset on esitetty taulukossa 2.

Taulukko 2

15

20

25

30

10

Määritys	Ennen bioreaktoria	Bioreaktorin jälkeen
COD	0,8 - 6 g/l	100-200 mg/l
kloorifenolit	> 1 mg/l	< 1 μg/l
PAH	1 mg/l	< 1 μg/l
öljy	0,2 - 1 mg/l	200 μg/l

Esimerkki 3

Kunnan jäteveden puhdistus (täydessä mittakaavassa)

Kunnallisen jätevesilaitoksen jätevettä puhdistettiin sekä laitoksen tavanomaisella tavalla että keksinnön mukaisella menetelmällä. Tavanomainen jäteveden puhdistus suoritettiin siten, että jätevesi ensin johdettiin esiselkeytysaltaaseen kiinteiden aineiden saostamiseksi pohjaan. Esiselkeytetty vesi johdettiin sitten aerobiseen käsittelyaltaaseen, johon lisättiin ferrosulfaattia fosfaatin saostamiseksi ja polyamiinia biolietteen saostamiseksi, ja tästä vesi johdettiin vielä jälkiselkeytysaltaaseen. Keksinnön mukainen puhdistusjärjestelmä koostui viidestä säiliöstä, joiden yhteinen tilavuus oli 7,5 m³ ja jotka oli kytketty toisiinsa seuraavassa järjestyksessä: kaksi anaerobista säiliötä, johon lisättiin bakteerit DT-1, DT-2 ja DT-5 ilman kantajaa, yksi aerobinen säiliö, johon oli (verkkojen avulla) kiinnitetty kantaja, johon oli immobilisoitu bakteerit DT-1, DT-2 ja DT-5, ja kaksi saostussäiliötä. Lämpötila oli 8 - 15 °C. Virtaus-

nopeus oli 7,5 m³ jätevettä vuorokaudessa. Ilmastus tapahtui kierrättämällä vesi kantajan läpi. Tulokset on esitetty taulukossa 3.

Taulukko 3

5

10

15

20

Parametri	Ennen	Tavanomaisen puh-	Keksinnön mukaisen
	käsittelyä	distuksen jälkeen	puhdistuksen jälkeen
BOD7 mg O ₂ /l	200-300	10-15	10-15
COD _{cr} mg O₂/I	250-500	60-75	40-50
Kok. typpi mg N/l	35-55	15-25	15-25
Kok. fosfori mg P/I	5-10	0,6-1,8	0,5-1,8
Fek. Streptokokit	10 ⁸	2x10 ⁴ -3x10 ⁴	2x10⁴-3x10⁴
pmy/100 ml			
Termotolerantit koli-	3x10 ⁸	2x10 ⁴ -4x10 ⁴	2x10⁴-4x10⁴
formit pmy/100 ml			

Puhdistustulokset keksinnön mukaisella järjestelmällä olivat joko yhtä hyvät tai paremmat kuin tavanomaisella menetelmällä ja energian kulutus oli huomattavasti pienempi. Energian kulutus yhden kuutiometrin veden käsittelemiseksi oli kunnallisessa jätevesilaitoksessa 0,23 kWh ja keksinnön mukaisella menetelmällä 0,05-0,1 kWh.

Esimerkki 4

Kotitalouksien mustan veden puhdistus (täydessä mittakaavassa)

Järjestelmä koostui viidestä säiliöstä, joiden yhteinen tilavuus oli 6,5 m³ ja jotka oli kytketty toisiinsa seuraavassa järjestyksessä: kaksi anaerobista säiliötä ilman kantajaa, johon lisättiin DT-1, DT-2 ja DT-5, yksi aerobinen säiliö, johon oli kiinnitetty kantaja, johon bakteerit DT-1, DT-2 ja DT-5 oli immobilisoitu, ja kaksi saostussäiliötä. Lämpötila oli 8 - 15 °C. Virtausnopeus oli 0,5 - 5 m³ jätevettä vuorokaudessa. Ilmastus tapahtui kierrättämällä vettä kantajan läpi. Energian kulutus oli 0,05 - 0,5 kWh. Tulokset on esitetty taulukossa 4.

Parametri	Ennen käsittelyä	Käsittelyn jälkeen
BOD7 mg O ₂ /l	400-5500	3-20
COD _{cr} mg O ₂ /l	400-6000	40-70
Kokonaistyppi mg N/l	100-300	1-5
Kokonaisfosfori mg P/I	10-25	0,2-2
Fek. Streptokokit	10 ⁸ -10 ⁹	<20
pmy/100 ml		
Termotolerantit koli-	108-109	<20
formit pmy/100 ml		
рН	7-8	6,5-7

5

Esimerkki 5

Saippuaa ja raskasmetalleja sisältävän teollisuusjäteveden puhdistus (laboratoriomittakaavassa)

10

15

Pinnoittavan metalliteollisuuslaitoksen jätevettä puhdistettiin järjestelmällä, jonka tehokas käsittelyosa sisälsi 6 anaerobista säiliötä ja 12 aerobista säiliötä. Kaikkiin anaerobisiin ja aerobisiin säiliöihin lisättiin bakteerit DT-1, DT-2 ja DT-5, jotka oli immobilisoitu kantajaan, joka on kiinnitetty verkkojen avulla. Kukin säiliö oli 2 l. Koko järjestelmä koostui 23 säiliöstä, joiden kokonaistilavuus oli 70 l, ja jotka oli kytketty seuraavassa järjestyksessä: 6 anaerobista säiliötä (tehokas käsittelytilavuus), 1 saostussäiliö, 6 aerobista säiliötä, (tehokas käsittelytilavuus), yksi saostussäiliö, 6 aerobista säiliötä, (tehokas käsittelytilavuus) ja 2 säiliötä kalsiumkloridi- ja natriumhydroksidikäsittelyä varten biomassan ja raskasmetallien saostamiseksi. Ennen käsittelyä alkuperäinen jätevesi laimennettiin viisinkertaisesti harmaavedellä. Laimennuksen jälkeen lisättiin mineraalisuoloja seuraavasti: NH⁴⁺ 2-10 mg/l, NO³⁻ 5-20 mg/l, Mg²⁺ 2-10 mg/l, Ca²⁺ 0,5-2 mg/l, SO₄²⁻ 1-10 mg/l ja PO₄³⁻ 2-20 mg/l. Lämpötila oli 20 - 35 °C ja virtausnopeus 12 l vettä vuorokaudessa. Tulokset on esitetty taulukossa 5.

Taulukko 5

Parametri	Ennen käsittelyä	Käsittelyn jälkeen
COD _{cr} mg O ₂ /I	19000-21000	100-400
Kokonaisfosfori mg P/l	19-25	0,3-0,7
Alumiini	5-6	0,01-0,02
Kromi	1,3-1,5	0,01-0,02
Kupari	35-40	0,03-0,1
Rauta	1-2	0,02-0,07
Lyijy	23-25	0,02-0,09
Nikkeli	2-3	0,05-0,09
Sinkki	30-60	0,003-0,007
pH	8-9	7-7,5

5 Esimerkki 6

10

Kotitalouksien harmaaveden puhdistus kierrätyskelpoiseksi (piloottimittakaava)

Järjestelmän tehokas osa sisälsi 3 aerobista säiliötä, joiden yksittäinen tilavuus oli 0,2 m³. Koko järjestelmä koostui 6 säiliöstä, joiden kokonaistilavuus oli 2,8 m³, ja jotka oli kytketty seuraavassa järjestyksessä: yksi säiliö harmaaveden keräämiseksi, kolme aerobista säiliötä, joissa oli kiinteä kantaja, johon oli immobilisoitu bakteerit DT-1, DT-2 ja DT-5 (tehokas käsittelytilavuus), yksi aerobinen säiliö ilman kantajaa ja yksi saostussäiliö, ja sen jälkeen suodatusjärjestelmä ja UV-valokäsittelyjärjestelmä. Lämpötila oli 20 - 35 °C. Virtausnopeus oli noin 1 m³ harmaavettä vuorokaudessa. Tulokset on esitetty taulukossa 6.

Taulukko 6

Parametri	Ennen käsittelyä	Käsittelyn jälkeen
COD _{cr} mg O ₂ /I	150-400	15-35
Kokonaistyppi mg N/l	10-15	<0,5
Kokonaisfosfori mg P/I	5-10	<0,1
Koliformit pmy/100 ml	1,4-2 x 10 ⁶	0
pH	7,5-8,5	6,5-7

Esimerkki 7

Pesulan harmaaveden puhdistus kierrätyskelpoiseksi (piloottimittakaavassa)

Järjestelmän tehokas käsittelyosa sisältää 2 aerobista säiliötä tilavuudeltaan 1 m³, joissa on uiva kantaja, johon on immobilisoitu DT-1, DT-2 ja DT-5 ja 3 aerobista säiliötä tilavuudeltaan 0,2 m³, joihin on kiinnitetty kantaja, johon bakteerit DT-1, DT-2 ja DT-5 oli immobilisoitu. Koko järjestelmä koostuu 10 säiliöstä, joiden kokonaistilavuus on 23 m³, ja jotka on kytketty seuraavasti: yksi säiliö harmaaveden keräämiseksi, kaksi aerobista säiliötä, joissa on kelluva kantaja (tehokas käsittelytilavuus), yksi saostussäiliö, kolme aerobista säiliötä, joissa on kiinteä kantaja bakteereineen (tehokas käsittelytilavuus), yksi aerobinen säiliö ilman kantajaa ja kaksi saostussäiliötä. Veden lämpötila oli 20 - 35 °C, ja virtausnopeus noin 1 m³ jätevettä vuorokaudessa. Tulokset on esitetty taulukossa 7.

15

30

Taulukko 7

Parametri	Ennen käsittelyä	Käsittelyn jälkeen
COD _{cr} mg O ₂ /I	200-450	25-35
Kokonaisfosfori mg P/I	1-2	<0,1
pH	8,5-9	7-8

20 Esimerkki 8

Immobilisoidun biomassa lisääntyminen

Kantojen DT-1, DT-2, DT-5, DT-6, DT-10, DT-12 ja DT-13 biomassa tuotettiin ja immobilisoitiin kantajalle esimerkissä 1 kuvatulla tavalla, ja biomassan määrä kantajalla punnittiin. Yhden kantajakiekon paino oli 72 \pm 1 g. Kun DT-1, DT-2 ja DT-5 immobilisoitiin kantajalle, yhden kantajakiekon paino oli 119 \pm 13 g, ts. biomassan märkäpaino oli 47 \pm 11 g kiekkoa kohti. Kun kaikki seitsemän bakteerikantaa immobilisoitiin kantajalle, yhden kantajakiekon paino oli 172 \pm 16 g, ts. biomassan märkäpaino oli 91 \pm 16 g. Tulokset osoittavat, että DT-6, DT-10, DT-12 ja DT-13 lisäsivät immobilisoituneen biomassan noin kaksinkertaiseksi.

Patenttivaatimukset

10

15

20

25

30

- Menetelmä jäteveden puhdistamiseksi, t u n n e t t u siitä, että vesi puhdistetaan biologisesti mikro-organismeilla, jotka kuuluvat ryhmään Bacillus sp. DT-1, jolla on talletusnumero DSM 12560, Pseudomonas azelaica DT-2, jolla on talletusnumero DSM 12561 ja Rhizobium sp. DT-5, jolla on talletusnumero DSM 12562 ja niiden jälkeläiset.
 - 2. Patenttivaatimuksen 1 mukainen menetelmä, t u n n e t t u siitä, että puhdistetaan suotovettä, harmaavettä, mustaa vettä, teollisuusjätevettä tai pesulan jätevettä.
 - 3. Patenttivaatimuksen 1 tai 2 mukainen menetelmä, t u n n e t t u siitä, että puhdistukseen tarvittava biomassa tuotetaan steriloimattomassa kasvualustassa, joka sisältää kraanavettä ja noin 0,5 4 g/l saippuaa.
 - 4. Jonkin patenttivaatimuksista 1 3 mukainen menetelmä, t u n n e t t u siitä, että käytetään sekapopulaatiota, joka sisältää kaikki kolme mainittua bakteerikantaa.
 - 5. Patenttivaatimuksen 1 mukainen menetelmä, t u n n e t t u siitä, että vesi puhdistetaan myös yhdellä tai useammalla mikro-organismilla ryhmästä *Pseudomonas azelaica* DT-6, jolla on talletusnumero DSM 13516, *Azospirillium* sp. DT-10, jolla on talletusnumero DSM 13517, *Ancylobacter aquaticus* DT-12, jolla on talletusnumero DSM 13518 ja *Xanthobacter* sp. DT-13, jolla on talletusnumero DSM 13519 ja niiden jälkeläiset.
 - **6**. *Bacillus* sp. DT-1, jolla on talletusnumero DSM 12560 ja sen jälkeläiset.
 - 7. Pseudomonas azelaica DT-2, jolla on talletusnumero DSM 12561 ja sen jälkeläiset.
 - 8. *Rhizobium* sp. DT-5, jolla on talletusnumero DSM 12562 ja sen jälkeläiset.
 - 9. Pseudomonas azelaica DT-6, jolla on talletusnumero DSM 13516 ja sen jälkeläiset.
 - 10. Azospirillium sp. DT-10, jolla on talletusnumero DSM 13517 ja sen jälkeläiset.
 - 11. Ancylobacter aquaticus DT-12, jolla on talletusnumero DSM 13518 ja sen jälkeläiset.
- 35 12. Xanthobacter sp. DT-13, jolla on talletusnumero DSM 13519 ja sen jälkeläiset.

13. Bakteerisekapopulaatio, t u n n e t t u siitä, että se sisältää bakteerin *Bacillus* sp. DT-1, jolla on talletusnumero DSM 12560, *Pseudomonas azelaica* DT-2, jolla on talletusnumero DSM 12561 ja/tai *Rhizobium* sp. DT-5, jolla on talletusnumero DSM 12562 ja niiden jälkeläiset.

5

10

15

20

25

30

- 14. Patenttivaatimuksen 13 mukainen bakteerisekapopulaatio, tun net tu siitä, että se lisäksi sisältää bakteerin *Pseudomonas azelaica* DT-6, jolla on talletusnumero DSM 13516, *Azospirillium* sp. DT-10, jolla on talletusnumero DSM 13517, *Ancylobacter aquaticus* DT-12, jolla on talletusnumero DSM 13518 ja/tai *Xanthobacter* sp. DT-13, jolla on talletusnumero DSM 13519 ja niiden jälkeläiset.
- 15. Jonkin patenttivaatimuksen 6 14 mukaisen bakteerin tai bakteerisekapopulaation käyttö jäteveden puhdistuksessa.
- 16. Bioreaktori, tunnettu siitä, että se sisältää mikroorganismeja, jotka kuuluvat ryhmään *Bacillus* sp. DT-1, jolla on talletusnumero DSM 12560, *Pseudomonas azelaica* DT-2, jolla on talletusnumero DSM 12561 ja *Rhizobium* sp. DT-5, jolla on talletusnumero DSM 12562 ja niiden jälkeläiset.
- 17. Patenttivaatimuksen 16 mukainen bioreaktori, tunnettu siitä, että se sisältää kaikki kolme mainittua bakteerikantaa.
- 18. Patenttivaatimuksen 16 mukainen bioreaktori, tunnettu siitä, että se lisäksi sisältää yhden tai useamman mikro-organismin ryhmästä *Pseudomonas azelaica* DT-6, jolla on talletusnumero DSM 13516, *Azospirillium* sp. DT-10, jolla on talletusnumero DSM 13517, *Ancylobacter aquaticus* DT-12, jolla on talletusnumero DSM 13518 ja *Xanthobacter* sp. DT-13, jolla on talletusnumero DSM 13519 ja niiden jälkeläiset.
- 19. Patenttivaatimuksen 18 mukainen bioreaktori, tunnettu siitä, että se sisältää kaikki seitsemän mainittua bakteerikantaa.
- 20. Patenttivaatimuksen 16 mukainen bioreaktori, tunnettu siitä, että siinä on yksi tai useampia väliseiniä, jotka on asetettu siten, että vesi pakotetaan kiertämään reaktorissa.
- 21. Patenttivaatimuksen 20 mukainen bioreaktori, tunnettu siitä, että bakteerit on immobilisoitu muoviselle kantoaineelle, jonka ominaistiheys on noin 0,8 g/cm³.

(57) Tiivistelmä

Keksinnön kohteena on menetelmä jäteveden puhdistamiseksi biologisesti käyttäen kolme erityisen sopivaa bakteeria: *Bacillus* sp. DT-1, *Pseudomonas azelaica*, DT-2, ja/tai *Rhizobus* sp. DT-5 tai niiden sekapopulaatioita. Keksinnön kohteena ovat edelleen kyseiset bakteerit ja niiden sekapopulaatiot ja näiden käyttö jäteveden puhdistuksessa. Keksintö koskee myös bioreaktoria, joka sisältää kyseiset bakteerit.