- D_{1M} = fundamental mode maximum displacement at the center of rigidity of the roof level of the structure in the direction under consideration, Section 18.5.3.5
- D_{mD} = design displacement at the center of rigidity of the roof level of the structure due to the m^{th} mode of vibration in the direction under consideration, Section 18.4.3.2
- D_{mM} = maximum displacement at the center of rigidity of the roof level of the structure due to the m^{th} mode of vibration in the direction under consideration, Section 18.4.3.5
- D_{RD} = residual mode design displacement at the center of rigidity of the roof level of the structure in the direction under consideration, Section 18.5.3.2
- D_{RM} = residual mode maximum displacement at the center of rigidity of the roof level of the structure in the direction under consideration, Section 18.5.3.5
- D_Y = displacement at the center of rigidity of the roof level of the structure at the effective yield point of the seismic force-resisting system, Section 18.6.3
- f_i = lateral force at Level i of the structure distributed approximately in accordance with Section 12.8.3, Section 18.5.2.3
- F_{i1} = inertial force at Level i (or mass point i) in the fundamental mode of vibration of the structure in the direction of interest, Section 18.5.2.9
- F_{im} = inertial force at Level i (or mass point i) in the mth mode of vibration of the structure in the direction of interest, Section 18.4.2.7
- F_{iR} = inertial force at Level i (or mass point i) in the residual mode of vibration of the structure in the direction of interest, Section 18.5.2.9
- h_r = height of the structure above the base to the roof level, Section 18.5.2.3
- q_H = hysteresis loop adjustment factor as determined in Section 18.6.2.2.1
- Q_{DSD} = force in an element of the damping system required to resist design seismic forces of displacement-dependent damping devices, Section 18.7.2.5
- Q_{mDSV} = forces in an element of the damping system required to resist design seismic forces of velocity-dependent damping devices due to the m^{th} mode of vibration of the structure in the direction of interest, Section 18.7.2.5
- Q_{mSFRS} = force in an element of the damping system equal to the design seismic force of the m^{th}

- mode of vibration of the structure in the direction of interest, Section 18.7.2.5
- T_1 = the fundamental period of the structure in the direction under consideration
- T_{1D} = effective period, in seconds, of the fundamental mode of vibration of the structure at the design displacement in the direction under consideration, as prescribed by Section 18.4.2.5 or 18.5.2.5
- T_{1M} = effective period, in seconds, of the fundamental mode of vibration of the structure at the maximum displacement in the direction under consideration, as prescribed by Section 18.4.2.5 or 18.5.2.5
- T_R = period, in seconds, of the residual mode of vibration of the structure in the direction under consideration, Section 18.5.2.7
- V_m = design value of the seismic base shear of the m^{th} mode of vibration of the structure in the direction of interest, Section 18.4.2.2
- V_{\min} = minimum allowable value of base shear permitted for design of the seismic forceresisting system of the structure in the direction of interest, Section 18.2.2.1
- V_R = design value of the seismic base shear of the residual mode of vibration of the structure in a given direction, as determined in Section 18.5.2.6
- \overline{W}_1 = effective fundamental mode seismic weight determined in accordance with Eq. 18.4-2b for m=1
- \overline{W}_R = effective residual mode seismic weight determined in accordance with Eq. 18.5-13
- α = velocity exponent relating damping device force to damping device velocity
- β_{mD} = total effective damping of the m^{th} mode of vibration of the structure in the direction of interest at the design displacement, Section 18.6.2
- β_{mM} = total effective damping of the m^{th} mode of vibration of the structure in the direction of interest at the maximum displacement, Section 18.6.2
- β_{HD} = component of effective damping of the structure in the direction of interest due to post-yield hysteretic behavior of the seismic force-resisting system and elements of the damping system at effective ductility demand μ_D , Section 18.6.2.2
- β_{HM} = component of effective damping of the structure in the direction of interest due to post-yield hysteretic behavior of the seismic