Pruebas Unitarias Ejercicio de Datos Bayesianos

#	Líneas de Código
1	import pandas as pd
2	Datos = pd.read_csv('Datos_Balegria.csv')
3	Datos.head(7)
4	features_train = Datos.iloc[0:7, 0:4]
5	target_train = Datos.iloc[0:7, 4]
6	from sklearn import preprocessing
7	le = preprocessing.LabelEncoder()
8	f0 = le.fit_transform(features_train.iloc[0:7, 0])
9	f1 = le.fit_transform(features_train.iloc[0:7, 1])
10	f2 = le.fit_transform(features_train.iloc[0:7, 2])
11	f3 = le.fit_transform(features_train.iloc[0:7, 3])
12	label = le.fit_transform(target_train)
13	features = list(zip(f0,f1,f2,f3))
14	print(features)
15	print(label)
16	from sklearn.naive_bayes import GaussianNB
17	model1 = GaussianNB()
18	model1.fit(features, label)
19	Predicted = model1.predict([[0,0,0,2]])
20	print(Predicted)
21	le.inverse_transform([2])
Pruebas Unitarias	
23	from sklearn.naive_bayes import GaussianNB
24	def bayesiano(num1, num2, num3, num4):

25	return
	model1.predict([[num1,num2,num3,num4]])
26	import unittest
27	class PruebasFunciones(unittest.TestCase):
28	def test_evaluar(self):
29	self.assertEqual(2,bayesiano(0,0,0,2))
30	unittest.main(argv =['ignored', '-v'], exit = False)

```
In [33]: from sklearn.naive bayes import GaussianNB
         model1 = GaussianNB()
         model1.fit(features, label)
         #Predicted = model1.predict([[1,1,0,2]])
         #Predicted = model1.predict([[0,1,2,1]])
         #Predicted = model1.predict([[0,0,2,1]])
         Predicted = model1.predict([[0,0,0,2]])
         print(Predicted)
         #EL sistema debe implementar eL algoritmo de Naive Bayes para mostrar Las
         #predicciones de campaña de los clientes con base a un perfil especifico equivalente al resto de los datos de la tabla
         [2]
In [35]: le.inverse_transform([2])
Out[35]: array(['Viajes'], dtype=object)
In [17]: from sklearn.naive_bayes import GaussianNB
         def bayesiano(num1, num2, num3, num4):
             #model1 = GaussianNB()
             #model1.fit(features, Label)
             return model1.predict([[num1,num2,num3,num4]])
         import unittest
         class PruebasFunciones(unittest.TestCase):
             def test evaluar(self):
                 self.assertEqual(2,bayesiano(0,0,0,2))
         unittest.main(argv=['ignored', '-v'], exit=False)
         test_evaluar (__main__.PruebasFunciones) ... ok
         Ran 1 test in 0.001s
Out[17]: <unittest.main.TestProgram at 0x26053162b38>
```