ESCOLA TÈCNICA SUPERIOR D'ENGINYERIA DE TELECOMUNICACIO DEPARTAMENT DE TEORIA DEL SENYAL I COMUNICACIONS MICROONES, PRIMAVERA 2001-02

EXAMEN FINAL

PROFESSORS: A. COMERON

I. CORBELLA, N. DUFFO, LL. PRADELL

Barcelona, 21 de juny de 2002

Cal realitzar només tres dels quatre problemes proposats Temps: 3 hores. Comenci cada exercici en un full apart.

PROBLEMA 1

En el circuit de la figura els circuladors se suposen ideals i els paràmetres S del quadripol referits a Z_0 =50 Ω són els següents:

$$[S] = \begin{bmatrix} -0.7 & 0.4\angle -45^{\circ} \\ 1.25\angle 135^{\circ} & -j0.6 \end{bmatrix}$$

Es demana calcular:

- a) Les ones incidents, a1 i a2, al quadripol.
- b) Les ones que surten, b₁ i b₂, del quadripol
- c) Les tensions i els corrents presents a les dues càrregues R_{L1} i R_{L2}

Nota: les respostes només es consideren vàlides si són raonades conceptualment.

PROBLEMA 2

- a) Determineu la matriu [s] de l'híbrid de 3dB de la figura 1.
- b) Si el pla de referència de l'accès 3 s'allarga mitjançant un tram de línia d'impedància característica igual a la de referència Z_n i de longitud $\lambda/4$ (fig. 2), determineu la matriu [s] dèl circuit resultant.
- c) Si l'accés 2 del circuit modificat es carrega permanentment amb Z_{α} , determineu la matriu del circuit de 3 accessos resultant.
- d) Si a l'accès 1 del circuit de 3 accessos resultant es connecta un generador canònic amb una potència disponible de 10~dBm, determineu les potències absorbides per una càrrega amb coeficient de reflexió $\Gamma_{L^\pm}=1/2$ a l'accès 3 i una càrrega amb impedància normalitzada respecte de la referència $\vec{X}_{L^4}=j$ a l'accès 4.

Fig. 1

Fig. 2

PROBLEMA 3

El biport de la figura està format per una línia de transmissió de longitud ℓ desconeguda i dos stubs iguals acabats en circuit obert, de longitud ℓ_1 , també desconeguda. Totes les línies són microstrip, d'impedància característica Z_0 = 50 Ω , ϵ_{reff} = 4, i es consideren ideals (sense pèrdues).

- a) Indiqueu si el biport cumpleix (o no) les següents propietats, justificant la resposta:
 - Passivitat
 - Reciprocitat
 - Simetria
- b) Trobeu les expressions dels paràmetres [S] del biport, referits a Z_0 , en funció de $U\lambda$, i la susceptància d'entrada B_S , de cada stub.
- c) Trobeu les expressions del coeficient de reflexió Γ_{IN} a l'entrada del biport (porta 1) quan es carrega la porta 2 amb un curtcircuit i amb una càrrega adaptada (Γ_{IN}^{cc} i Γ_{IN}^{adapt} , respectivament).
- d) Si, a la freqüència de 10 GHz, es mesuren els següents valors per Γ^{cc}_{lN} i Γ^{adapt}_{lN} ,

$$\Gamma^{cc}_{lN}=\mathrm{j}$$
 , $\Gamma^{adapt}_{lN}=\frac{1}{1-j}$, calculeu ℓ i ℓ_1 , expressats en mm.

PROBLEMA 4

Es desitja fer un amplificador a 2GHz seguint l'esquema de la figura, on totes les línies són de ε_r =2.25, a partir del transistor d'Agilent Technologies ATF-10236. característiques referides a 50 Ω del transistor (paràmetres S i soroll mínim) es mostren a continuació.

Table 1 Scattering and Noise Parameters for the Agilent Technologies ATF-10236 GaAs FET. Vds = 2 volts and Ids = 25 mA Scattering Parameters: Common Source, Zo = 50 (2

I-req GHz	811		521		SIZ SIZ		S22			
	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.5	.97	-20	15.1	5,68	162	-32.8	.023	76	.47	-11
1.0	.93	-11 -81	14.9 13.6	5.58 4.76	143 107	-26.0 -21.3	.050 .086	71 51	.45 .36	-23 -38

Noise Parameters

Frequency GHz	Noise Figure dB	Gamma Mag	Optimum Ang	Rn/50 normalized	
0.5	0.45	0.93	18	0.75	
	0.5	0.87	36	0.63	
2,0	0.6	0.73	7.4	0.33	

- a) Si es connecta directament un generador canònic de potència disponible 5 dBm al transistor y aquest a una càrrega de 50 Ω , quina és la potència que es dissipa a la
- b) Si es fa un disseny per a mínim soroll a l'entrada, trobeu els valors de ℓ_1 y ℓ_2 .
- c) Si a la sortida es vol aconseguir màxim guany unilateral, trobar els valors de l'etapa de sortida que consisteix en dues línies en cascada d'impedàncies Z₀ y Z₀' tal com mostra la figura.
- d) Estudieu l'estabilitat del disseny anterior a partir de la Carta de Smith adjunta.
- e) Calculeu quina és la potència que es dissipa a la càrrega (aprox. Unilateral).

$$G_{T} = \frac{(1-\left|\Gamma_{s}\right|^{2})\left|s_{21}\right|^{2}(1-\left|\Gamma_{L}\right|^{2})}{\left|(1-s_{11}\Gamma_{s})(1-s_{22}\Gamma_{L})-s_{12}s_{21}\Gamma_{s}\Gamma_{L}\right|^{2}}$$

