Lesson 22: Systems of differential equations: Numerical methods

Francisco Blanco-Silva

University of South Carolina

WHAT DO WE KNOW?

- The concepts of differential equation and initial value problem
- The concept of order of a differential equation.
- ► The concepts of general solution, particular solution and singular solution.
- ► Slope fields
- Approximations to solutions via Euler's Method and Improved Euler's Method

- ► First-Order Differential Equations
 - ► Separable equations
 - Homogeneous First-Order Equations
 - ► Linear First-Order Equations
 - Bernoulli Equations
 - ► General Substitution Methods
 - ► Exact Equations
- ► Second-Order Differential Equations
 - ► Reducible Equations
 - ► General Linear Equations (Intro)
 - Linear Equations with Constant Coefficients
 - ► Characteristic Equation
 - ► Variation of Parameters
 - Undetermined Coefficients

What do we know?

LAPLACE TRANSFORMS

000

f(x)	$\mathcal{L}{f} = \int_0^\infty e^{-sx} f(x) dx$		f(x)	$\mathcal{L}{f} = \int_0^\infty e^{-sx} f(x) dx$	
1	$\frac{1}{s}$	s > 0	$cf(x) \pm g(x)$	$cF(s) \pm G(s)$	s > max(a, b)
x^p	$\frac{\Gamma(p+1)}{s^{p+1}}$	<i>s</i> > 0	$x^n f(x)$	$(-1)^n F^{(n)}$	s > a
x^n	$\frac{n!}{s^{n+1}}$	s > 0	$e^{\alpha x}f(x)$	F(s-lpha)	$s > a + \alpha$
$e^{\alpha x}$	$\frac{1}{s-\alpha}$	$s > \alpha$	$\frac{f(x)}{x}$	$\int_{s}^{\infty} F(\sigma) d\sigma$	s > a
$\sin \beta x$	$\frac{\beta}{s^2 + \beta^2}$	s > 0	f * g	F(s)G(s)	$s > \max(a, b)$
$\cos \beta x$	$\frac{s}{s^2 + \beta^2}$	s > 0	f'(x)	sF(s) - f(0)	s > a

000

WHAT DO WE KNOW?

SYSTEMS OF DIFFERENTIAL EQUATIONS

$$\begin{cases} y_1^{(n)} = F_1(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \\ y_2^{(n)} = F_2(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \\ \dots \\ y_r^{(n)} = F_r(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \end{cases}$$

order n.r functions

- ► Transformation to First-Order systems
- Solution by elimination

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

$$y'' = x' - y'$$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

$$y'' = x' - y' = 3x - 5y - y'$$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

$$y'' = x' - y' = 3x - 5y - y' = 3(y' + y) - 5y - y'$$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

$$y'' = x' - y' = 3x - 5y - y' = 3(y' + y) - 5y - y' = 2y' - 2y$$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

We solve the system of differential equations first, by elimination. The *easier* equation is y' = x - y, which gives x = y' + y. It is then

$$y'' = x' - y' = 3x - 5y - y' = 3(y' + y) - 5y - y' = 2y' - 2y$$

We need to solve the homogeneous linear equation of second order with constant coefficients y'' - 2y' + 2y = 0

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

We solve the system of differential equations first, by elimination. The *easier* equation is y' = x - y, which gives x = y' + y. It is then

$$y'' = x' - y' = 3x - 5y - y' = 3(y' + y) - 5y - y' = 2y' - 2y$$

We need to solve the homogeneous linear equation of second order with constant coefficients y'' - 2y' + 2y = 0

$$r^{2} - 2r + 2 = 0$$
, $r = \frac{2 \pm \sqrt{4 - 4 \cdot 2}}{2} = 1 \pm i$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

We solve the system of differential equations first, by elimination. The *easier* equation is y' = x - y, which gives x = y' + y. It is then

$$y'' = x' - y' = 3x - 5y - y' = 3(y' + y) - 5y - y' = 2y' - 2y$$

We need to solve the homogeneous linear equation of second order with constant coefficients y'' - 2y' + 2y = 0

$$r^{2} - 2r + 2 = 0,$$
 $r = \frac{2 \pm \sqrt{4 - 4 \cdot 2}}{2} = 1 \pm i$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

We solve the system of differential equations first, by elimination. The *easier* equation is y' = x - y, which gives x = y' + y. It is then

$$y'' = x' - y' = 3x - 5y - y' = 3(y' + y) - 5y - y' = 2y' - 2y$$

We need to solve the homogeneous linear equation of second order with constant coefficients y'' - 2y' + 2y = 0

$$r^{2} - 2r + 2 = 0$$
, $r = \frac{2 \pm \sqrt{4 - 4 \cdot 2}}{2} = 1 \pm i$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

We solve the system of differential equations first, by elimination. The *easier* equation is y' = x - y, which gives x = y' + y. It is then

$$y'' = x' - y' = 3x - 5y - y' = 3(y' + y) - 5y - y' = 2y' - 2y$$

We need to solve the homogeneous linear equation of second order with constant coefficients y'' - 2y' + 2y = 0

$$r^{2} - 2r + 2 = 0$$
, $r = \frac{2 \pm \sqrt{4 - 4 \cdot 2}}{2} = 1 \pm i$

$$x = y' + y$$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

We solve the system of differential equations first, by elimination. The *easier* equation is y' = x - y, which gives x = y' + y. It is then

$$y'' = x' - y' = 3x - 5y - y' = 3(y' + y) - 5y - y' = 2y' - 2y$$

We need to solve the homogeneous linear equation of second order with constant coefficients y'' - 2y' + 2y = 0

$$r^{2} - 2r + 2 = 0$$
, $r = \frac{2 \pm \sqrt{4 - 4 \cdot 2}}{2} = 1 \pm i$

$$x = y' + y = e^t (A\cos t + B\sin t) + e^t (B\cos t - A\sin t) + e^t (A\cos t + B\sin t)$$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem. x = x(t), y = y(t)

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

We solve the system of differential equations first, by elimination. The *easier* equation is y' = x - y, which gives x = y' + y. It is then

$$y'' = x' - y' = 3x - 5y - y' = 3(y' + y) - 5y - y' = 2y' - 2y$$

We need to solve the homogeneous linear equation of second order with constant coefficients y'' - 2y' + 2y = 0

$$r^{2} - 2r + 2 = 0$$
, $r = \frac{2 \pm \sqrt{4 - 4 \cdot 2}}{2} = 1 \pm i$

$$x = y' + y = e^{t} (A\cos t + B\sin t) + e^{t} (B\cos t - A\sin t) + e^{t} (A\cos t + B\sin t)$$

= $e^{t} ((2A + B)\cos t + (2B - A)\sin t)$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

$$x = e^{t} ((2A + B)\cos t + (2B - A)\sin t)$$

$$y = e^{t} (A\cos t + B\sin t)$$

We need to impose the initial conditions, to find the values of A and B that solve the initial value problem.

$$1 = x(0) = 2A + B$$
$$3 = y(0) = A$$

INITIAL VALUE PROBLEMS

Solve the Initial Value Problem

$$\begin{cases} x' = 3x - 5y \\ y' = x - y \end{cases} \begin{cases} x(0) = 1 \\ y(0) = 3 \end{cases}$$

$$x = e^{t} ((2A + B)\cos t + (2B - A)\sin t)$$

$$y = e^{t} (A\cos t + B\sin t)$$

We need to impose the initial conditions, to find the values of A and B that solve the initial value problem.

$$1 = x(0) = 2A + B$$
$$3 = y(0) = A$$

A quick computation gives A = 3, B = -5, and thus

$$x = e^{t} (\cos t - 13\sin t)$$

$$y = e^{t} (3\cos t - 5\sin t)$$

NUMERICAL METHODS

Euler's method for Systems of Differential Equations of First Order

Given an initial value problem consisting on a system of r differential equations of first order, with initial conditions

$$\begin{cases} y'_1 = F_1(x, y_1, y_2, \dots, y_r) \\ y'_2 = F_2(x, y_1, y_2, \dots, y_r) \\ \dots \\ y'_r = F_r(x, y_1, y_2, \dots, y_r) \end{cases} \begin{cases} y_1(a_1) = b_1 \\ y_2(a_2) = b_2 \\ \dots \\ y_r(a_r) = b_r \end{cases}$$

a set number of steps n, and a time-step h > 0, we compute an approximation to the solution $\{y_1, y_2, \dots, y_r\}$ with the formula

$$y_j(a_j + hk) = y_j(a_j + h(k-1)) + h \cdot y_j'(a_j + h(k-1))\Big|_{\substack{j=1,\dots,r\\k=1,\dots,n}}$$

NUMERICAL METHODS

Systems of Differential Equations

NUMERICAL METHODS

$$y_{1,1} = b_1$$
 $y_{2,1} = b_2$ \cdots $y_{r,1} = b_r$
 $y_{1,2}$ $y_{2,2}$ \cdots $y_{r,2}$
 $y_{1,3}$ $y_{2,3}$ \cdots $y_{r,3}$
 $y_{1,4}$ $y_{2,4}$ \cdots $y_{r,4}$
 \cdots \cdots \cdots
 $y_{1,n}$ $y_{2,n}$ \cdots $y_{r,n}$

NUMERICAL METHODS

NUMERICAL METHODS

NUMERICAL METHODS

$$y_{1,1}$$
 $y_{2,1}$ \cdots $y_{r,1}$
 $y_{1,2}$ $y_{2,2}$ \cdots $y_{r,2}$
 $y_{1,3}$ $y_{2,4} = y_{2,3} + h \cdot y_1'(a_1 + 2h)$ $y_{2,4} = y_{2,3} + h \cdot y_2'(a_2 + 2h)$ \cdots $y_{r,4} = y_{r,3} + h \cdot y_r'(a_r + 2h)$
 \cdots $y_{1,n}$ $y_{2,n}$ \cdots $y_{r,n}$

NUMERICAL METHODS

Systems of Differential Equations

NUMERICAL METHODS

NUMERICAL METHODS

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

$$y_{1,1}$$
 $y_{2,1}$

$$y_{1,2}$$
 $y_{2,2}$

$$y_{1,3}$$
 $y_{2,3}$

$$y_{1,4}$$
 $y_{2,4}$

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	x	y_1	<i>y</i> ₂	y_1'	y_2'
1	0	1	3		
2					
3					
4					

NUMERICAL METHODS

Use four steps of Euler's method with time-step h=0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	\boldsymbol{x}	y_1	y_2	y_1'	y_2'
1	0	1	3	$3 \cdot 1 - 5 \cdot 3$	1 - 3
2					
3					
4					

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	X	y_1	y_2	y_1'	y_2'
1	0	1	3	-12	-2
2	0.5				
3					
4					

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	x	y_1	y_2	y_1'	y_2'
1	0	1	3	-12	-2
2	0.5	$1 + 0.5 \cdot (-12)$	$3 + 0.5 \cdot (-2)$		
3					
4					

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	x	y_1	y_2	y_1'	y_2'
1	0	1	3	-12	-2
2	0.5	-5	2		
3					
4					

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	x	y_1	y_2	y_1'	y_2'
1	0	1	3	-12	-2
2	0.5	-5	2	$3 \cdot (-5) - 5 \cdot (2)$	-5 - 2
3					
4					

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	x	y_1	y_2	y_1'	y_2'
1	0	1	3	-12	-2
2	0.5	-5	2	-25	-7
3	1				
4					

NUMERICAL METHODS

Use four steps of Euler's method with time-step h=0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	x	y_1	y_2	y_1'	y_2'
1	0	1	3	-12	-2
2	0.5	-5	2	-25	-7
3	1	$-5 + 0.5 \cdot (-25)$	$2 + 0.5 \cdot (-7)$		
4					

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	x	y_1	y_2	y_1'	y_2'
1	0	1	3	-12	-2
2	0.5	-5	2	-25	-7
3	1	-17.5	-1.5		
4					

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	X	y_1	y_2	y_1'	y_2'
1	0	1	3	-12	-2
2	0.5	-5	2	-25	-7
3	1	-17.5	-1.5	$3 \cdot (-17.5) - 5 \cdot (-1.5)$	-17.5 + 1.5
4					

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	x	y_1	y_2	y_1'	y_2'
1	0	1	3	-12	-2
2	0.5	-5	2	-25	-7
3	1	-17.5	-1.5	-45	-16
4	1.5				

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	x	y_1	y_2	y_1'	y_2'
1	0	1	3	-12	-2
2	0.5	-5	2	-25	-7
3	1	-17.5	-1.5	-45	-16
4	1.5	$-17.5 + 0.5 \cdot (-45)$	$-1.5 + 0.5 \cdot (-16)$		

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

n	x	y_1	y_2	y_1'	y_2'
1	0	1	3	-12	-2
2	0.5	-5	2	-25	-7
3	1	-17.5	-1.5	-45	-16
4	1.5	-40	-9.5		

NUMERICAL METHODS

Use four steps of Euler's method with time-step h = 0.5 to solve numerically the following IVP:

$$\begin{cases} y_1' = 3y_1 - 5y_2 \\ y_2' = y_1 - y_2 \end{cases} \begin{cases} y_1(0) = 1 \\ y_2(0) = 3 \end{cases}$$

Actual solution $y(x) = (y_1(x), y_2(x))$

— Numerical Solution with Euler's Method