1.5

BASES AND DIMENSION

DEFINITION: A finite set of vectors $\{\overrightarrow{v_1}, \dots, \overrightarrow{v_m}\}$ is called a basis for a vector space V, if the set spans V and is linearly independent.

Intuitively, a basis is an efficient set for characterizing a vector space, in that any vector can be expressed as a linear combination of the basis vectors, and the basis vectors are independent of one another.

Example: The set of 'n' vectors $\{(1,0,...,0), (0,1,0,...,0),..., (0,...,0,1)\}$ is a basis for \mathbb{R}^n . This basis is called the standard basis for \mathbb{R}^n .

THEOREM: Let $\{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}\}$ be a basis be a basis for a vector space V. If $\{\overrightarrow{\omega_1}, \overrightarrow{\omega_2}, ..., \overrightarrow{\omega_m}\}$ is a set of more than n vectors in V, then this set is linearly dependent.

Proof: We examine the identity $c_1 \overrightarrow{\omega_1} + \cdots + c_m \overrightarrow{\omega_m} = 0$ (1)

We will show that values of c_1, \ldots, c_m , not all zono, exist, satisfying this identity and proving that the vectors are linearly dependent.

Since the set $\{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}\}$ is a basis for V, each of the vectors $\{\overrightarrow{\omega_1}, \overrightarrow{\omega_2}, ..., \overrightarrow{\omega_m}\}$ can be expressed as a linear combination of $\overrightarrow{v_1}, \overrightarrow{v_2},, \overrightarrow{v_n}$

Let
$$\omega_1 = a_{11} \vec{v_1} + a_{12} \vec{v_2} + \dots + a_{1n} \vec{v_n}$$

$$\omega_2 = a_{21}\overrightarrow{v_1} + a_{22}\overrightarrow{v_2} + \cdots + a_{2n}\overrightarrow{v_n}$$

•

•

$$\omega_m = a_{m1} \overrightarrow{v_1} + a_{m2} \overrightarrow{v_2} + \cdots + a_{mn} \overrightarrow{v_n}$$

Substituting these values in (1) we get

$$c_1(a_{11}\overrightarrow{v_1} + a_{12}\overrightarrow{v_2} + \dots + a_{1n}\overrightarrow{v_n}) + \dots + c_m(a_{m1}\overrightarrow{v_1} + a_{m2}\overrightarrow{v_2} + \dots + a_{mn}\overrightarrow{v_n}) = 0$$

Rearranging, we get

$$(c_1 a_{11} + c_2 a_{21} + \dots + c_m a_{m1}) \overrightarrow{v_1} + \dots + (c_1 a_{1n} + c_2 a_{2n} + \dots + c_m a_{mn}) \overrightarrow{v_n} = 0$$

Since $\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}$ are linearly independent, we get

$$a_{11}c_1 + a_{21}c_2 + \cdots + a_{m1}c_m = 0$$

•

.

$$a_{1n}c_1 + a_{2n}c_2 + \dots + a_{mn}c_m = 0$$

Thus finding c's that satisfy equation (1) reduces to finding solutions to this system of n' equations in m' variables. Since m > n, the number of variables is greater than the number of equations. We know that such a system of homogeneous equations has many solutions.

Therefore, there are non-zero values of c's that satisfy equation(1). Thus the set $\{\overrightarrow{\omega_1}, \overrightarrow{\omega_2}, ..., \overrightarrow{\omega_m}\}$ is linearly dependent.

THEOREM: Any two bases for a vector space *V* consist of the same number of vectors.

Proof: Let $\{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}\}$ and $\{\overrightarrow{\omega_1}, \overrightarrow{\omega_2}, ..., \overrightarrow{\omega_m}\}$ be two bases for V. If we interpret $\{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}\}$ as a basis for V and $\{\overrightarrow{\omega_1}, \overrightarrow{\omega_2}, ..., \overrightarrow{\omega_m}\}$ as a set of linearly independent vectors in V, than the previous theorem tells us that $m \leq n$. conversely, if we interpret $\{\overrightarrow{\omega_1}, \overrightarrow{\omega_2}, ..., \overrightarrow{\omega_m}\}$ as a basis for V and $\{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}\}$ as a set of linearly independent vectors in V, then $n \leq m$. Thus n = m, proving that both the bases consists of same number of vectors.

DEFINITION: If a vector space V has a basis consisting of n vectors, than the dimension of V is said to be n. we write $\dim(v)$ for dimension of V.

EXAMPLE: The set of n' vectors $\{(1,0,...,0),...,(0,...0,1)\}$ forms a basis (the stranded basis) for \mathbb{R}^n . Thus the dimension of \mathbb{R}^n is n'.

Note that we have defined a basis for a vector space to be a finite set of vectors that spans the space and is linearly independent. Such a set does not exist for all vector spaces. When such a finite set exists, we say that the vector space is finite dimensional. If such a finite set does not exist, we say that the vector space is infinite dimensional.

THEOREM: Let $\{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}\}$ be a basis for a vector space V. Then each vector in V can be expressed uniquely as a linear combination of these vectors.

Proof: Let v' be a vector in V. Since $\{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}\}$ is a basis, we can express v as a linear combination of these vectors.

Suppose we can write

$$v = a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2} + \dots + a_n \overrightarrow{v_n} \text{ and}$$

$$v = b_1 \overrightarrow{v_1} + b_2 \overrightarrow{v_2} + \dots + b_n \overrightarrow{v_n} \text{ then}$$

$$a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2} + \dots + a_n \overrightarrow{v_n} = b_1 \overrightarrow{v_1} + b_2 \overrightarrow{v_2} + \dots + b_n \overrightarrow{v_n}$$

$$\Rightarrow (a_1 - b_1) \overrightarrow{v_1} + (a_2 - b_2) \overrightarrow{v_2} + \dots + (a_n - b_n) \overrightarrow{v_n} = 0$$

Since $\{\overrightarrow{v_1},\overrightarrow{v_2},...,\overrightarrow{v_n}\}$ is a basis, the vectors $\overrightarrow{v_1},\overrightarrow{v_2},...,\overrightarrow{v_n}$ are linearly independent. Thus $(a_1-b_1)=0,...,(a_n-b_n)=0$ implying that $a_1=b_1,...,a_n=b_n$

Therefore there is only one way of expressing v as a linear combination of the basis.

Lemma. Let S be a linearly independent subset of a vector space V. Suppose β is a vector in V which is not in the subspace spanned by S. Then the set obtained by adjoining β to S is linearly independent.

Proof: Suppose $\alpha_1, ..., \alpha_m$ are distinct vectors in S and that $c_1\alpha_1 + \cdots + c_m\alpha_m + b\beta = 0$.

Then b = 0; for otherwise,

$$\beta = \left(-\frac{c_1}{b}\right)\alpha_1 + \dots + \left(-\frac{c_m}{b}\right)\alpha_m$$

and β is in the subspace spanned by S. Thus $c_1\alpha_1 + \cdots + c_m\alpha_m = 0$, and since S is a linearly independent set each $c_i = 0$.

Theorem: If W is a subspace of finite-dimensional vector space V, every linearly independent subset of W is finite and is part of a basis for W.

Proof: Suppose S_0 is a linearly independent subset of W. If S is a linearly independent subset of W containing S_0 , then S is also a linearly independent subset of V; since V is finite-dimensional, S contains no more than dim V elements.

We extend S_0 , to a basis for W, as follows. If S_0 spans W, then S_0 is basis for W and we are done. If S_0 does not span W, we use the preceding lemma to find a vector β_1 in W such that the set $S_1 = S_0 \cup \{\beta_1\}$ is independent. If S_1 spans W, fine. If not, apply the lemma to obtain a vector β_2 in W such that $S_2 = S_1 \cup \{\beta_2\}$ is independent. If we continue in this way, then (in not more than dim V steps) we reach a set

$$S_m = S_0 \cup \{\beta_1, \dots, \beta_m\}$$

Which is a basis for W.

Suppose that a vector space is known to be a dimension n. The following theorem tells us that we do not have to check both linear independence and spanning conditions to see if a given set is a basis.

THEROM: Let V be a vector space of dimension n.

a) If $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}\}$ is a set of n linearly independent vectors in V, then S is a basis for V.

b) If $S = \{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}\}$ is a set of n vectors that spans V, then S is a basis for V.

Proof: (a) part is clear from the above theorem and the fact that every basis of V contains n number of elements.

(b) It is enough to show that S is linearly independent.

Let $\{\overrightarrow{u}, \overrightarrow{u_2}, ..., \overrightarrow{u_n}\}$ be a basis of V. If we give a proof similar to the first theorem of this material and by using the fact that a homogeneous system of linear equations with equal number of variables and equations will have unique solution, we can prove that $\{\overrightarrow{v_1}, \overrightarrow{v_2}, ..., \overrightarrow{v_n}\}$ is linearly independent.

THEOREM: If W_1 and W_2 are finite-dimensional subspaces of a vector space V, then $W_1 + W_2$ is finite-dimensional and

$$\dim W_1 + \dim W_2 = \dim (W_1 \cap W_2) + \dim (W_1 + W_2)$$

Proof. By Theorem 5 and its corollaries, $W_1 \cap W_2$ has a finite basis $\{\alpha_1, ..., \alpha_k\}$ which is part of a basis

$$\{\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_m\}$$
 for W_1

and part of basis

$$\{\alpha_1,\ldots,\alpha_k,\ \gamma_1,\ldots,\gamma_n\}$$
 for \mathbb{W}_2 .

The subspace $W_1 + W_2$ is spanned by the vectors

 $\alpha_1, ..., \alpha_k$, $\beta_1, ..., \beta_m$, $\gamma_1, ..., \gamma_n$ and these vectors form an independent set. For suppose

$$\sum x_i \alpha_i + \sum y_i \beta_i + \sum z_r \gamma_r = 0.$$

Then

$$-\sum z_r \, \gamma_r = \sum x_i \, \alpha_i + \sum y_i \, \beta_i$$

which shows that $\sum z_r \gamma_r$ belongs to W_1 . As $\sum z_r \gamma_r$ Also belongs to W_2 it follows that

$$\sum z_r \, \gamma_r = \sum c_i \, \alpha_i$$

for certain scalars c_1, \dots, c_k . Because the set

$$\{\alpha_1, \ldots, \alpha_k, \gamma_1, \ldots, \gamma_n\}$$

is independent, each of the scalars $z_r = 0$. Thus,

$$\sum x_i \, \alpha_i + \sum y_j \, \beta_j = 0$$

and since

$$\{\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_m\}$$

is also an independent set, each $x_i=0$ and each $y_j=0$. Thus $\{\alpha_1,\ldots,\alpha_k,\ \beta_1,\ldots,\beta_m,\ \gamma_1,\ldots,\gamma_n\}$

is a basis for $W_1 + W_2$. Finally

$$\dim W_1 + \dim W_2 = (k+m) + (k+n)$$
$$= k + (m+k+n)$$
$$= \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$$

Problem 1: Show that the set $\{(1,0,-1),(1,1,1),(1,2,4)\}$ is a basis for \mathbb{R}^3 .

Solution: Let us first show that the set spans \mathbb{R}^3 .

Let (x_1, x_2, x_3) be an arbitrary element of \mathbb{R}^3 .

We try to find scalars a_1, a_2, a_3 such that $(x_1, x_2, x_3) = a_1(1,0,-1) + a_2(1,1,1) + a_3(1,2,4)$. This identity leads to the system of equations.

$$a_1 + a_2 + a_3 = x_1$$

 $a_2 + 2a_3 = x_2$
 $-a_1 + a_2 + 4a_3 = x_3$

This system of equations has the solution

$$a_1 = 2x_1 - 3x_2 + x_3$$

$$a_2 = -2x_1 + 5x_2 - 2x_3$$

$$a_3 = x_1 - 2x_2 + x_3$$

Thus the set spans the space. We now show that the set is linearly independent.

Consider the identity

$$b_1(1,0,-1) + b_2(1,1,1) + b_3(1,2,4) = (0,0,0)$$

This identity leads to the system of equations.

$$b_1 + b_2 + b_3 = 0$$

 $b_2 + 2b_3 = 0$
 $-b_1 + b_2 + 4b_3 = 0$

This system has the unique solution $b_1 = 0$, $b_2 = 0$, and $b_3 = 0$. Thus the set is linearly independent.

Therefore $\{(1,0,-1),(1,1,1),(1,2,4)\}$ forms a basis for \mathbb{R}^3 .

Problem 2: Prove that the set $\{(1,3,-1),(2,1,0),(4,2,1)\}$ is a basis for \mathbb{R}^3

Solution: The dimension of \mathbb{R}^3 is three. Thus a basis of \mathbb{R}^3 consists of three vectors. We have the correct number of vectors for a basis.

Normally, we would have to show that this set is linearly independent and that it spans \mathbb{R}^3

Since \mathbb{R}^3 is finite dimensional vector space, we need to check only one of these two conditions. Let us check for linear independence. We get $c_1(1,3,-1)+c_2(2,1,0)+c_3(4,2,1)=(0,0,0)$. This identity leads to the system of equations.

$$c_1 + 2c_2 + 4c_3 = 0$$
$$3c_1 + c_2 + 2c_3 = 0$$
$$-c_1 + 4c_3 = 0$$

This system has unique solution $c_1 = 0$, $c_2 = 0$, $c_3 = 0$

Thus the vectors are linearly independent. The set $\{(1,3,-1),(2,1,0),(4,2,1)\}$ is therefore a basis for \mathbb{R}^3 .

Problem 3: State (with a brief explanation) whether the following statements are true or false.

- (a) The vectors (1, 2), (-1, 3), (5, 2) are linearly dependent in \mathbb{R}^2 .
- (b) The vectors (1, 0, 0), (0, 2, 0), (1, 2, 0) span \mathbb{R}^3 .
- (c) $\{(1, 0, 2), (0, 1, -3)\}$ is a basis for the subspace of \mathbb{R}^3 consisting of vectors of the form (a, b, 2a-3b).
- (d) Any set of two vectors can be used to generate a two-dimensional subspace of \mathbb{R}^3 .

Solution:

- (a) True: The dimension of \mathbb{R}^2 is two. Thus any three vectors are linearly dependent.
- (b) False: The three vectors are linearly dependent. Thus they cannot span a three-dimensional space.
- (c) True: The vectors span the subspace since

$$(a, b, 2a-3b) = a(1, 0, 2) + b(0, 1, -3)$$

The vectors are also linearly independent since they are not collinear.

(d) False: The two vectors must be linearly independent.

Exercise

- 1. Prove that the subspace of \mathbb{R}^3 generated by the vectors (-1,2,1),(2,-1,0), and (1,4,3) is a two dimensional subspace of \mathbb{R}^3 and give a basis for this subspace.
- 2. Find a basis for \mathbb{R}^3 that includes the vectors (1,1,1) and (1,0,-2).
- 3. Determine a basis for each of the following subspaces of \mathbb{R}^3 . Give the dimension of each subspace.
- a) The set of vectors of the form (a, a, b).
- b) The set of vectors of the form (a, b, a + b)
- c) The set of vectors of the form (a, b, c), where a + b + c = 0.
- 4. Which of the following sets of vectors are bases for \mathbb{R}^2 ?
 - (a) $\{(3,1),(2,1)\}$ (b) $\{(1,-3),(-2,6)\}$
- 5. Which of the following sets are bases for \mathbb{R}^3 ?
 - (a) $\{(1, -1, 2), (2, 0, 1), (3, 0, 0)\}$
 - (b) $\{(2,1,0),(-1,1,1),(3,3,1)\}$
- 6. Prove that the vector (1, 2, -1) lies in the two dimensional subspace of \mathbb{R}^3 generated by the vectors (1, 3, 1) and (1, 4, 3).
- 7. Let $\{v_1, v_2\}$ be a basis for a vector space V. Show that the set of vectors $\{u_1, u_2\}$, where $u_1 = v_1 + v_2, u_2 = v_1 v_2$, is also a basis for V.
- 8. Let V be a vector space of dimension n. Prove that no set of n 1 vectors can span V.
- 9. Let V be a vector space, and let W be a subspace of V. If dim (V) = n and dim (W) = m, prove that $m \le n$.

Answers

- 1. $\{(-1,2,1), (2,-1,0)\}$ is a basis.
- $2.\{(1,1,1),(1,0,-2),(1,0,0)\}.$
- 3. a) Basis = $\{(1,1,0), (0,0,1)\}$, dimension = 2.
 - b) Basis = $\{(1,0,1), (0,1,1)\}$, dimension = 2.
 - c) Basis = $\{(1,0,-1), (0,1,-1)\}$, dimension = 2.
- 4. (a) Basis
- (b) Not a basis
- 5. (a) Basis
- (b) Not a basis
- 6. (1,2,-1) = 2(1,3,1) (1,4,3).