2018 QUANTITATIVE STRATEGY CASE INTERVIEW

By: Traci Lim

Datasets Used

- HDB Resale Flat Transactions from year 1990 to 2018
- HDB Addresses with Geographical Coordinates
- HDB Addresses with Geographical Coordinates
- School Addresses and MRT data with Geographical Coordinates
- Certificate of Entitlement (COE) Bidding Results

A Peek

	block	flat_model	flat_type	floor_area_sqm	lease_commence_date	month	remaining_lease	resale_price	storey_range	street_name	town
0	309	IMPROVED	1 ROOM	31.0	1977	1990-01	NaN	9000.0	10 TO 12	ANG MO KIO AVE 1	ANG MO KIO

ADDRESS	BLK_NO	BUILDING	LATITUDE	LONGITUDE	LONGTITUDE	POSTAL	ROAD_NAME	SEARCHVAL	X	Y
0 216 ANG MO KIO AVENUE 1 ANG MO KIO 22 SINGAPOR	216	ANG MO KIO 22	1.36619678831055	103.841505011903	103.841505011903	560216	ANG MO KIO AVENUE 1	ANG MO KIO 22	28911.0522399386	38692.616790574

ADDRESS BLK_NO	BUILDING	LATITUDE	LONGITUDE	LONGTITUDE	POSTAL	ROAD_NAME	SEARCHVAL	x	Y
0 EUNOS MRT STATION EXIT C SINGAPORE	EUNOS MRT STATION EXIT C	1.31960866729867	103.903178612002	103.903178612002	NIL	NIL	EUNOS MRT STATION EXIT C	35774.7365172636	33541.2481965665

ADDRESS	BLK_NO	BUILDING	LATITUDE	LONGITUDE	LONGTITUDE	POSTAL	ROAD_NAME	SEARCHVAL	х	Y
0 37 HILLCREST ROAD NATIONAL JUNIOR COLLEGE SING	37	NATIONAL JUNIOR COLLEGE	1.33029291072176	103.804110905425	103.804110905425	288913	HILLCREST ROAD	NATIONAL JUNIOR COLLEGE	24749.4869699031	34722.567163026

Q1: Data Viz

Question 1A:

Show an overview of the number of property transactions, median price across the years.

Provide both a view at the national level, as well as by HDB towns.

Your dashboard should also provide functionality to filter based on Flat Type (e.g. look at only 5 Room flats).

Link to Tableau Dashboard

Trends on HDB Resale Prices

Yearly HDB Median Resale Price by Towns

Why 2x Jump?

					year			
Town	<u>=</u> +	2012	2013	2014	2015	2016	2017	2018
ANG MO KIO								
BEDOK								
BISHAN						610,000		
BUKIT BATOK								
BUKIT MERAH				519,000	518,888			
BUKIT PANJANG								
BUKIT TIMAH								
CENTRAL AREA		460,000	471,000	445,000	818,000	522,500	524,000	618,000
CHOA CHU KANG								
CLEMENTI								425,000

- But foreigners can't buy HDBs
- Could be due to a trickle-down effect

http://www.ap.jll.com/asia-pacific/en-gb/Research/SG-hotspots.pdf?587a0557-2140-49bc-b82c-46b7d96b1df2

				year			
Town	<u>+</u> 2012	2013	2014	2015	2016	2017	2018
ANG MO KIO							
BEDOK							
BISHAN					610,000		
BUKIT BATOK							
BUKIT MERAH			519,000	518,888			
BUKIT PANJANG							
BUKIT TIMAH	603,500		690,000	794,000			770,000
CENTRAL AREA	460,000	471,000	445,000	818,000	522,500	524,000	618,000
CHOA CHU KANG							
CLEMENTI							

- Pinnacle@duxton is the culprit.
- Out of **756** transactions in Central Area for year 2015, **472** are Pinnacle transactions priced above 800,000.
- If Pinnacle is car, it would be the Rolls-Royce of HDBs.

Up and Up and Up

Median Resale Price by Year

Although prices are not adjusted by inflation, median resale prices have increased by a factor of 4 since 1990.

Yearly Trend

Yearly trend on Median Resale Price across Towns

First wave of cooling measures amidst an overheated market

Number of Transactions by Year across Towns

In January 2011, four Singapore property cooling measures were introduced.

Reversal in trend from 2013 to 2014

More cooling measures?

Yearly HDB Resale Transactions

10 cooling measures were implemented from Sep 2009 to Dec 2013.

- Seller's Stamp Duty (SSD)
- Lowered loan-to-value (LTV) ratio limits
- Additional Buyers' Stamp Duty (ABSD)
- Mortgage service ratio (MSR)
- Some other stuff...

Q1: Data Viz

Question 1B**:

Some buyers would want to get the largest flat possible within a given budget. Create a dashboard to allow potential buyers to input their budget, and then suggest towns where such flats exist based on historical transactions.

Question 1C***:

There are buyers who would like to optimise given the proximity of a flat to important locations in the neighbourhood, such as the nearest MRT station.

Create a dashboard that allows buyers to: i) input their budget; and ii) optimise flat selection given distance to important locations around the neighbourhood.

Question 1B, 1C

HDB Resale Flat Suggestion Tool

Estimated Budget (in \$) 304934 416250 In the right panel, please input the following preferences to optimize the suggestions given to you. Distance To Nearest MRT Station's Exit (in kilometres) \bigcirc 0.0200 1) Estimated budget range. 0.4520 2) Distance to the nearest MRT station. 3) Distance to the nearest school. Distance To Nearest School (in kilometres) 0.0000 0.3040

Flat Types Available to you:

- (AII)
- O 2 ROOM
- 3 ROOM
- 4 ROOM
- 5 ROOM

Suggested <u>towns</u> and <u>flat types</u> based on historical resale transactions

Flat Type

2 ROOM	3 ROOM	4 ROOM	5 ROOM	
	350,000	402,500		^
	315,000	390,000		
	374,000			
	308,000	354,400	391,500	
	345,000			
	329,000	350,000	400,000	
	385,000			
	376,000			
	2 ROOM	350,000 315,000 374,000 308,000 345,000 329,000 385,000	350,000 402,500 315,000 390,000 374,000 308,000 354,400 345,000 329,000 350,000 385,000	350,000 402,500 315,000 390,000 374,000 308,000 354,400 391,500 345,000 329,000 350,000 400,000 385,000

Q2: Data Modeling

HDB wants to know if a resale flat transaction fits market expectations. Your task is to create statistical models to answer the following questions.

Question 2A*: Predict a resale flat transaction price in 2014. Use the following characteristics: flat type, flat age and town. Propose and implement a minimum of three models, select the best model, and explain the reasons for your choice.

Predicting Resale Price with 3 Features

In [526]: train.iloc[:,:-1].head()

Out[526]:

	flat_type	town	flat_age	resale_price
1519039	3 ROOM	ANG MO KIO	42	375000.0
1519040	4 ROOM	ANG MO KIO	41	520000.0
1519041	5 ROOM	ANG MO KIO	41	560000.0
1519042	3 ROOM	ANG MO KIO	37	350000.0
1519043	4 ROOM	ANG MO KIO	36	480000.0

In [525]: test.iloc[:,:-2].head()

Out[525]:

		flat_type	town	flat_age
2	928291	2 ROOM	ANG MO KIO	38
2	928292	3 ROOM	ANG MO KIO	38
2	928293	3 ROOM	ANG MO KIO	39
2	928294	3 ROOM	ANG MO KIO	38
2	928295	3 ROOM	ANG MO KIO	38

Models used

- Linear Regression with Regularization (Elastic Net)
 - Simple
 - Easy to understand
- Decision Trees (Regression)
 - Simple
 - Good when there are lots of categorical variables
 - Can capture non-linear relationships
- LightGBM (Microsoft's Gradient Boosting Algorithm)
 - Fast
 - Cutting Edge
 - Mega-improved version of decision trees

What is LightGBM?

LightGBM architecture

- LightGBM (Microsoft's Gradient Boosting Algorithm)
 - Fast (took 3 seconds)
 - Cutting Edge
 - Mega-improved version of decision trees

Every prediction is \$33,000 off on average

```
In [637]: mean_absolute_error(y_test, model_lgb.predict(X_test))
Out[637]: 32821.64796678499
```

 This is one of the cases where Tree models > Linear models.

 MAE tells us <u>how big of an</u> <u>error</u> we can expect from the predicted value on average.

Q2: Data Modeling

Question 2B:** A flat was sold in Nov 2017 with the following characteristics:

Flat type: 4 ROOM

Town: Yishun

Flat Model: New Generation

Storey Range: 10 to 12

Floor Area (sqm): 91

Lease Commence Date: 1984

Resale Price: 550,800

Was this a reasonable price for the transaction? How confident are you in your assessment?

Boxplot on Specified Flat

- Highly overpriced transaction
- The word 'reasonable' is highly subjective, since the transaction consists of a willing buyer and seller
- Must be good fengshui

- Highly overpriced transaction
- The word 'reasonable' is highly subjective, since the transaction consists of a willing buyer and seller
- Must be good fengshui

Predicting Flat Types

 Question 2C***: Someone mistakenly deleted the column containing data on Flat Type in the database from 2015 onwards. While backups exist, these data are critical to HDB's daily operations, and time would be needed to restore these data from the backup. Senior management would like you to create a model to predict flat type given a transaction's other characteristics. Explain the reasons for choosing this model.

Model correctly predicts flat type 98% of the time

	precision	recall	f1-score	support
1RM	1.00	1.00	1.00	96
2RM	0.51	0.98	0.67	2308
3RM	0.99	0.96	0.98	62824
4RM	0.99	0.99	0.99	104760
5RM	1.00	0.98	0.99	60992
6EX	0.99	1.00	1.00	20652
7MG	0.06	0.82	0.10	44
avg / total	0.99	0.98	0.99	251676

Accuracy Score is: 0.983550278930053

Confusion Matrix

Q3: Policy Analysis

Question 3A*:

Yishun has received a negative reputation as "Crazy Town", and property prices might have been impacted. Are Yishun flats the cheapest in the country?

Can't Beat Yishun Cheap Prices

Boxplots of Resale Prices from 2008 to 2018

Q3: Policy Analysis

Question 3B*:

Some members of public have been saying that <u>flat sizes have gotten</u> <u>smaller</u> over the years. Is there any truth in this statement?

Nearly Parallel lines

Average Floor Area among HDB Resale Flats

Near-constant trend

Q3: Policy Analysis

Question 3C**:

The Downtown Line Stage 2 connects the Bukit Panjang heartland to the city. Have prices increased for resale flats in the towns served by this Line? You might want to use a difference-in-differences model for this task.

Difference-in-Differences Model

- Used to estimate causal effects of the opening of Singapore's Downtown
 Line
- Two groups: Control and Treatment

- Control group: Flats outside 1km radius of any DTL station
- Treatment group: Flats within 1km radius of any DTL station

Did Opening of DTL affect Average Price per Sqm of HDB Resale Flats?

Temporal Changes of Price per Square Metre in Treatment and Control Groups

Estimating the DiD estimator


```
didreg 1 = lm(log avg price per sqm ~ treated + time + did, data = df)
summary(didreg 1)
Call:
lm(formula = log avg price per sqm ~ treated + time + did, data = df)
Residuals:
      Min
                      Median
-0.187719 -0.022983 -0.007261 0.052923 0.149679
Coefficients:
             Estimate Std. Error t value Pr(>|t|
(Intercept) 8.3901195 0.0001393 60214.24
           0.0105795 0.0003263
treated
           0.0278074 - 0.0092050
                                  135.63
time
           0.0388501 0.0004766
                                   81.52
                                           <2e-16 ***
did
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.07642 on 685640 degrees of freedom
Multiple R-squared: 0.07719, Adjusted R-squared: 0.07718
F-statistic: 1.912e+04 on 3 and 685640 DF, p-value: < 2.2e-16
```

- Helped to increase average price per sqm of flats near a DTL station by 3.9%.
- But the average price per sqm of flats was experiencing a 2.8% growth after the opening of DTL, regardless of its proximity to a DTL station.

Q3: Policy Analysis

Question 3D***:

There have been comments online that people are buying flats in towns further from the city so that the cost savings can be used for a car.

Are resale prices in HDB estates in areas further away from the city (i.e. Sengkang and Punggol) impacted by Certificate of Entitlement (COE) prices for cars?

About COE Prices

• COE prices are determined by the interaction of demand and supply.

Q3D: Looking at Resale Prices and

Sengkang and Punggol fall in the 12 to 16 km mark.

Price trend of flats that are 8 to 20 km away from the city actually follows a similar pattern with COE prices.

End.