

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12P 25/00, C12N 15/60, 15/31

(11) Internationale Veröffentlichungsnummer:

WO 97/03208

A1

DE

(43) Internationales Veröffentlichungsdatum:

30. Januar 1997 (30.01.97)

(21) Internationales Aktenzeichen:

PCT/EP96/03009

(22) Internationales Anmeldedatum:

10. Juli 1996 (10.07.96)

(81) Bestimmungsstaaten: CA, CN, JP, KR, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE).

(30) Prioritätsdaten:

195 25 281.0 195 45 468.5

13. Juli 1995 (13.07.95)

DE 6. December 1995 (06.12.95)

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen

eintreffen.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE). FORSCHUNGSZENTRUM JÜLICH GMBH [DE/DE]; D-52428 Jülich (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): KÄSLER, Bruno [DE/DE]; Magdeburger Strasse 72, D-67071 Ludwigshafen (DE). SAHM, Hermann [DE/DE]; Wendelinusstrasse 71, D-52428 Jülich (DE). STAHMANN, Klaus-Peter [DE/DE]; Wilhelmstrasse 11, D-52428 Jülich (DE). SCHMIDT, Georg [DE/DE]; Heerstrasse 10, D-52457 Aldenhoven (DE). BÖDDECKER, Theo [DE/DE]; Robert-Koch-Strasse 7, D-52428 Jülich (DE). SEULBERGER, Harald [DE/DE]; Adalbert-Strasse 4, D-69221 Dossenheim (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).
- (54) Title: RIBOFLAVIN-PRODUCTION PROCESS BY MEANS OF MICRO-ORGANISMS WITH MODIFIED ISOCITRATLYASE **ACTIVITY**
- HERSTELLUNG VON RIBOFLAVIN MITTELS MIKROORGANISMEN MIT (54) Bezeichnung: VERFAHREN ZUR VERÄNDERTER ISOCITRATLYASE-AKTIVITÄT
- (57) Abstract

A microbial riboflavin-production process is disclosed. Riboflavin-producing micro-organisms are cultivated in a culture medium and the thus produced riboflavin is then isolated. The process is characterised in that the endogenous isocitratlyase activity (ICL) of the micro-organisms used has been modified.

(57) Zusammenfassung

Verfahren zur mikrobiellen Herstellung von Riboflavin durch Kultivierung von Riboflavin produzierenden Mikroorganismen in einem Nährmedium und anschließender Isolierung des hergestellten Riboflavins, dadurch gekennzeichnet, daß Mikroorganismen verwendet werden, bei denen die endogene Isocitratlyase (ICL) Aktivität verändert wurde.

RNSDOCID: <WO 9703208A1>

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	мх	N 4 7
ΑT	Österreich	GE	Georgien	MX NE	Mexiko
ΑÜ	Australien	GN	Guinea	_	Niger
BB	Barbados	GR	Griechenland	NL	Niederlande
BE	Belgien	HU	Ungarn	NO	Norwegen
BF	Burkina Faso	IE	Irland	NZ	Neuseeland
BG	Bulgarien	IT	Italien	PL	Polen
BJ	Benin	JP	Japan	PT	Portugal
BR	Brasilien	KE	-	RO	Rumānien
BY	Belarus	KG	Kenya	RU	Russische Föderation
CA	Kanada	KP	Kirgisistan	SD	Sudan
CF	Zentrale Afrikanische Republik		Demokratische Volksrepublik Korea	SE	Schweden
CG	Kongo	KR	Republik Korea	SG	Singapur
CH	Schweiz	KZ	Kasachstan	SI	Slowenien
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slowakei
CM	Kamenin	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swasiland
CS	-	LK	Litauen	TD	Tschad
	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lenland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dānemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi	•••	· icuigii

WO 97/03208 PCT/EP96/03009

Verfahren zur Herstellung von Riboflavin mittels Mikroorganismen mit veränderter Isocitratlyase-Aktivität

5 Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Riboflavin mittels Mikroorganismen mit veränderter Isocitratlyase-Aktivität.

10

Das Vitamin B_2 , auch Riboflavin genannt, ist für Mensch und Tier essentiell. Bei Vitamin- B_2 -Mangel treten Entzündungen der Mundund Rachenschleimhäute, Risse in den Mundwinkeln, Juckreiz und Entzündungen in den Hautfalten u.ä. Hautschäden, Bindehautentzün-

- 15 dungen, verminderte Sehschärfe und Trübung der Hornhaut auf. Bei Säuglingen und Kindern können Wachstumsstillstand und Gewichtsabnahme eintreten. Das Vitamin $B_{\mathbb{S}}$ hat daher wirtschaftliche Bedeutung insbesondere als Vitaminpräparat bei Vitaminmangel sowie als Futtermittelzusatz. Daneben wird es auch als Lebensmittelfarb-
- 20 stoff, beispielsweise in Mayonnaise, Eiscreme, Pudding etc., eingesetzt.

Die Herstellung von Riboflavin erfolgt entweder chemisch oder mikrobiell. Bei den chemischen Herstellungsverfahren wird das 25 Riboflavin in der Regel in mehrstufigen Prozessen als reines Endprodukt gewonnen, wobei relativ kostspielige Ausgangsprodukte -

wie beispielsweise D-Ribose - eingesetzt werden müssen.

Eine Alternative zur chemischen Herstellung des Riboflavins bie30 tet die Herstellung dieses Stoffes durch Mikroorganismen. Als
Ausgangsprodukte für die mikrobielle Synthese können nachwachsende Rohstoffe, wie beispielsweise pflanzliche Öle, eingesetzt
werden.

- 35 Die Herstellung von Riboflavin durch Fermentation von Pilzen wie Ashbya gossypii oder Eremothecium ashbyii ist bekannt (The Merck Index, Windholz et al., eds. Merck & Co., Seite 1183, 1983); aber auch Hefen, wie z.B. Candida oder Saccharomyces, und Bakterien, wie Clostridium, sind zur Riboflavinproduktion geeignet. Ribofla-
- 40 vin-überproduzierende Bakterienstämme sind beispielsweise in der EP 405370 beschrieben, wobei die Stämme durch Transformation der Riboflavin-Biosynthese-Gene aus Bacillus subtilis erhalten wurden. Diese Prokaryonten-Gene sind aber für ein rekombinantes Riboflavin-Herstellungsverfahren mit Eukaryonten wie Saccharomy-
- 45 ces cerevisiae oder Ashbya gossypii ungeeignet.

In WO 93/03183 ist die Klonierung der für die Riboflavin-Biosynthese spezifischen Gene aus dem eukaryontischen Organismus Saccharomyces cerevisiae beschrieben. Mittels dieser Gene können rekombinante eukaryontische Mikroorganismen konstruiert werden, 5 die eine effiziente Riboflavinproduktion gestatten.

Häufig liegen jedoch die Ausgangsprodukte und Substrate der Riboflavinbiosynthese-Enzyme in dem Mikroorganimus in limitierter Menge vor, so daß trotz Erhöhung der Riboflavinbiosynthese -10 Aktivität keine Steigerung in der Riboflavinproduktion erreicht wird.

Es bestand daher die Aufgabe ein verbessertes mikrobielles Verfahren zur Produktion von Riboflavin bereitzustellen, das Mikro-15 organismen verwendet, die keine oder eine geringere Substratlimitierung besitzen und somit eine erhöhte Riboflavinproduktion erlauben.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß die verwen20 deten Mikroorganismen eine Veränderung in ihrer endogenen Isocitratlyaseaktivität besitzen. Die Veränderung ist gegenüber dem unveränderten Ausgangsstamm zu ermitteln. Es gibt eine Vielzahl von
Möglichkeiten, solche Mikroorganismen mit veränderter ICLAktivität zu erhalten.

25

Eine Möglichkeit besteht darin, das endogene ICL-Gen so zu verändern, daß es für ein Enzym mit gegenüber dem Ausgangsenzym erhöhter ICL-Aktivität codiert. Eine Erhöhung der Enzymaktivität kann beispielsweise erreicht werden, indem durch Veränderung des katalytischen Zentrums ein erhöhter Substratumsatz erfolgt oder indem die Wirkung von Enzyminhibitoren aufgehoben wird. Auch kann eine erhöhte Enzymaktivität durch Erhöhung der Enzymsynthese, beispielsweise durch Genamplifikation oder durch Ausschaltung von Faktoren, die die Enzymbiosynthese reprimieren, hervorgerufen werden. Die endogene ICL-Aktivität wird vorzugsweise durch Mutation des endogenen ICL-Gens erhöht. Derartige Mutationen können entweder nach klassischen Methoden ungerichtet erzeugt werden, wie beispielsweise durch UV-Bestrahlung oder mutationsauslösenden Chemikalien oder gezielt mittels gentechnischer Methoden wie

Die ICL-Genexpression wird durch Erhöhen der ICL-Genkopienzahl und / oder durch Verstärkung regulatorischer Faktoren , die die ICL-Genexpression positiv beeinflussen, erhöht. So kann eine Verstärkung regulatorischer Elemente vorzugsweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und Enhancer verwendet werden. Daneben ist aber auch

eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der m-RNA verbessert wird. Zur Erhöhung der Genkopienzahl wird das ICL-Gen in ein Genkonstrukt bzw. in einen Vektor eingebaut, der vorzugsweise das dem ICL-Gen zugeordnete fequlatorische Gensequenzen enthält, insbesondere solche, die die Genexpression verstärken. Anschließend wird ein Riboflavin-produzierenden Mikroorganismus mit dem das ICL-Gen enthaltende Genkonstrukt transformiert.

10 Das ICL-Gen wird vorzugsweise aus Mikroorganismen, insbesondere aus dem Pilz Ashbya gossypii, isoliert. Für die Isolierung des Gens kommen aber auch alle weiteren Organismen, deren Zellen die anaplerotische Sequenz des Glyoxylat-Cyclus und damit die Isocitratlyase enthalten, also auch Pflanzen, in Betracht. Die Isolie-15 rung des Gens kann durch homologe oder heterologe Komplementation einer im ICL-Gen defekten Mutante oder auch durch heterologes Probing oder PCR mit heterologen Primer: erfolgen. Zur Subklonierung kann das Insert des komplementierenden Plasmids anschließend durch geeignete Schnitte mit Restriktionsenzymen in 20 der Größe minimiert werden. Nach Sequenzierung und Identifizierung des putativen Gens erfolgt eine paßgenaue Subklonierung durch Fusions-PCR. Plasmide, die die so erhaltenen Fragmente als Insert tragen, werden in die ICL-Gen-defekte Mutante eingebracht, die auf Funktionalität des ICL-Gens getestet wird. Funktionelle 25 Konstrukte werden schließlich zur Transformation eines Ribofla-

Nach Isolierung und Sequenzierung sind Isocitratlyasegene mit Nukleotidsequenzen erhältlich, die für die im SEQ ID NO:2 angege30 bene Aminosäuresequenz oder deren Allelvariationen kodieren. Allelvariationen umfassen insbesondere funktionelle Derivate, die durch Deletion, Insertion oder Substitution von Nukleotiden aus der in SEQ ID NO:1 dargestellten Sequenz erhältlich sind, wobei die ICL-Aktivität aber erhalten bleibt.

35

vin-Produzenten eingesetzt.

Den Isocitratlyasegenen ist insbesondere ein Promotor der Nukleotidsequenz von Nukleotid 176 bis 550 gemäß SEQ ID NO:1 oder eine im wesentlichen gleichwirkende DNA-Sequenz vorgeschaltet. So kann beispielsweise dem Gen ein Promotor vorgeschaltet sein, der 40 sich von dem Promotor mit der angegebenen Nukleotidsequenz durch ein oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) unterscheidet, ohne daß aber die Funktionalität bzw. Wirksamkeit des Promotors beeinträchtigt ist. Des weiteren kann der Promotor auch durch Veränderung seiner Sequenz in seiner 45 Wirksamkeit erhöht oder komplett durch wirksamere Promotoren ausgetauscht werden.

Dem ICL-Gen können des weiteren regulatorische Gensequenzen bzw. Regulatorgene zugeordnet sein, die insbesondere die ICL-Gen-Aktivität erhöhen. So können dem ICL-Gen beispielsweise sog. "enhancer" zugeordnet sein, die über eine verbesserte Wechselwirskung zwischen RNA-Polymerase und DNA eine erhöhte ICL-Genexpression bewirken.

Dem Isocitratlyasegen mit oder ohne vorgeschaltetem Promotor bzw. mit oder ohne Regulatorgen können ein oder mehrere DNA-Sequenzen 10 vor- und/oder nachgeschaltet sein, so daß das Gen in einer Genstruktur enthalten ist.

Durch Klonierung des ICL-Gens sind Plasmide bzw. Vektoren erhältlich, die das ICL-Gen enthalten und - wie bereits oben erwähnt
15 zur Transformation eines Riboflavin-Produzenten geeignet sind.
Die durch Transformation erhältlichen Zellen, bei denen es sich
vorzugsweise um transformierte Zellen von Ashbya gossypii handelt, enthalten das Gen in replizierbarer Form, d.h. in zusätzlichen Kopien auf dem Chromosom, wobei die Genkopien durch homologe

20 Rekombination an beliebigen Stellen des Genoms integriert werden,
und/oder auf einem Plasmid bzw. Vektor.

Eine weitere Möglichkeit, Mikroorganismen mit veränderter ICLAktivität zu erzeugen, besteht darin, Mikroorganismen mit einer

25 Resistenz gegennüber auf ICL hemmend wirkenden Substanzen zu erzeugen und diese zu selektionieren. Hemmstoffe der Isocitratlyase
(ICL) sind dem Fachmann bekannt und beispielsweise in Handbook of
Enzyme Inhibitors, Herausgeber: Hellmut Zollner, Verlag Chemie,
Weinheim, 1993, auf Seite 291 aufgeführt. Besonders geeignete

30 Hemmstoffe sind Phosphoenolpyruvat (PEP), 6-P-Gluconat, Maleat,
insbesondere aber Itaconat und Oxalat.

Werden nunmehr Riboflavin produzierende Mikroorganismen-Stämme in Gegenwart solcher Hemmstoffe kultiviert, zeigt sich überraschen35 derweise, daß die Riboflavinbildung gehemmt ist. Dies äußert sich auf Kulturplatten in der Ausbildung von Kolonien, die nicht gelb werden, sondern weiß bleiben. Mit diesem System sind daher Stämme leicht erkennbar, die gegen eine Isocitratlyase-Hemmung resistent sind, da solche Stämme auch in Gegenwart von Hemmstoff Riboflavin bilden und daher gelb gefärbte Kolonien ausbilden. Derartige Stämme können entweder durch Spontanmutation entstehen oder indem entsprechende Mutationen durch gängige Methoden, wie beispielsweise chemisch oder durch UV-Bestrahlung, induziert werden. Es können somit Mikroorganismen-Stämme gewonnen werden, die einen erhöhten Anteil an Riboflavin in das Kulturmedium ausscheiden. Als resistenter Stamm mit erhöhter Riboflavinbildung wurde ins-

besondere der bei der DSM unter der Nr. 10067 hinterlegte Ashbya gossypii-Stamm erhalten.

Als Mikroorganismus werden in dem erfindungsgemäßen Verfahren 5 bevorzugt Pilze eingesetzt. Geeignete Pilze sind beispielsweise solche, die in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) auf Seite 15, Tabelle 6 aufgeführt sind.

Insbesonders sind solche der Gattungen Pichia, Eremothetium und 10 Ashbya, besonders Ashbya gossypii geeignet.

Es können aber auch andere Mikroorganismen als Pilze, beispielsweise Bakterien, insbesondere die, die in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) auf Seite 16, Tabelle 6 aufge-15 führt sind, eingesetzt werden.

Beispiel 1:

Erstellung einer genomischen Genbank aus Ashbya gossypii

- 20 Zur Erstellung einer genomischen DNA-Bank wurde chromosomale DNA nach der Methode von Wright und Philippsen (1991, Gene 109: 99-105) isoliert. Die DNA wurde partiell mit Sau 3A verdaut und mit einem Saccharose-Dichtegradienten fraktioniert. Die größten Fragmente (Figur 4) wurden mit dem Bam HI geschnittenen
- 25 E.coli, S.cerevisiae Shuttlevektor YEp 352 (J.E. Hill et al.,1993, Yeast 2: 163-167) ligiert. Mit diesem Ligationsansatz wurde E.coli DH5 a transformiert Von Platten mit Ampicillin und X-Gal wurden 3600 Kolonien isoliert, die durch ihre weiße Farbe als Klone mit Insert tragendem Plasmid erkennbar waren. Die Untersu-
- 30 chung von dreißig solcher zufällig ausgewählter Klone ergab, daß tatsächlich alle ein Plasmid trugen, diese Inserts im Größenbereich 7-18 kb hattten und alle Inserts verschieden waren, was anhand der Restiktionsmuster erkennbar war. Aufgrund einer Genomgröße von 7×10^3 kb für Ashbya gossyii liegt die Wahrscheinlich-
- 35 keit, das jedes Gen in dieser Genbank enthalten ist, bei 97 % 99,99 %. Je 100 Klone wurden auf einer Agarplatte in großen Ausstrichen kultiviert und danach die Plasmide als Pool präpariert. Die Genbank bestand dementsprechend aus 36 Plasmidpools.

40 Beispiel 2:

Selektion des icll-tragenden Genbankfragments

Mit den Plasmidpräparationen der Genbank wurde die Hefe Saccharomyces cerevisiae ICLld ura3(fs) (E. Fernández et al., 1992, Eur.

45 J. Biochem. 204: 983-990) transformiert. Diese Mutante ist im ICL1-Gen disruptiert und besitzt im ura3-Gen eine Mutation im Leserahmen. Dieser Genotyp führt dazu, daß der Stamm nicht auf

Ethanol als Kohlenstoffquelle wachsen kann und eine Uracil-Auxotrophie zeigt. Im ersten Schritt wurden die mit der Genbank transformierten Hefezellen auf Minimalmedium mit Glucose als einziger Kohlenstoffquelle selektioniert. Aufgrund des auf dem

PCT/EP96/03009

- 5 Plasmid vorhandenen ura3-Gens konnten nur die Zellen wachsen, die ein Plasmid aufgenommen hatten, denn das Minimalmedium enthielt kein Uracil. In diesem Schritt wurden 1900 Klone erhalten. Diese wurden durch Replikaplattierung auf ein Minimalmedium mit Ethanol als einziger Kohlenstoffquelle übertragen. Da zum Wachstum auf
- 10 Ethanol unbedingt die Isocitratlyase als anaplerotisches Enzym nötig ist, konnten nur die Klone wachsen, die auf dem Plasmid das ICL-Gen trugen. Es konnten zwei Klone isoliert werden, die auf Ethanol wuchsen.

15 Beispiel 3:

Überprüfung der Funktionalität des isolierten Genbankfragments

Zur Überprüfung, ob die Komplementierung des chromosomalen ICL-Defekts plasmid-kodiert war, wurden die selektionierten Saccharo-20 myces-Klone zweimal auf Vollmedium mit Uracil kultiviert und die erhaltenen Zellen auf Platten vereinzelt. Von 16 bzw. 13 zufällig ausgewählten Klonen wuchsen 7 bzw. 5 nicht mehr auf Minimalmedium mit Glucose. Genau diese Klone wuchsen auch nicht mehr auf Minimalmedium mit Ethanol. Die Kurierung vom Plasmid war also mit dem 25 Verlust der ICL1d-Komplementation korreliert.

Aus einem der beiden Klone wurde das Plasmid wieder isoliert Es enthielt ein Insert von etwa 8 kb. Erneute Transformation der Saccharomyces. Mutante führte zur Komplementation aller gefunde-30 nen KIone. Das 8 kb - Fragment ließ sich durch Sph I auf 2,9 kb, die voll funktionell waren, verkürzen.

Im Rohextrakt der auf Ethanol gewachsenen Transformande war die Isocitratlyase mit einer spezifischen Aktivität von 0,3 U/mg Pro-35 tein meßbar. Zudem zeigte der Westernblott mit polyklonalen Antikörpern gegen die Ashbya-ICL ein deutliches Signal.

PCR mit von tryptischen Peptiden der ICL abgeleiteten Primern ergab starke Signale der erwarteten Größe. Aus einem zweidimensio-40 nalen Elektrophoresegel wurde ein Protein isoliert, mit Trypsin in Peptide zerlegt und durch Edmannabbau ansequenziert. Der Vergleich der Peptidsequenzen mit Datenbanken ergab eine Identität von über 70 % mit der Isocitratlyase aus Saccharomyces cerevisiae. Davon abgeleitete Primer wurden zur PCR eingesetzt.

45 Von dem ca. 8 kb großen komplementierenden Genbankfragement wurden 3,3 kb sequenziert (Sanger et al. Proc. Natl. Acad. Sci. USA 74 (1977) 5463-5467). Auf der ermittelten Sequenz konnten durch

Datenbankvergleich zwei kodierende Bereiche gefunden werden. Ein Leserahmen von 1680 Basen (SEQ ID NO:1) zeigt eine 65 %ige Identität zum ICL1-Gen von Saccharomyces cerevisiae. Das ICL-Gen liegt 375 Basen upstream von einer Sequenz die 84 % Identität zu 5 einer Ser-tRNA von Saccharomyces cerevisiae zeigt (SEQ ID NO:1).

Beispiel 4:

Funktionalität subklonierter ICL in einem E.coli/Hefe/Ashbya - Shuttlevektor

10

Zwei durch Restriktionsverdau erhaltene Fragmente und ein PCR-Produkt des isolierten Genbankfragments (Figur 5) wurden in das von Steiner und Philippsen (1994, Mol. Gen. Genet 242: 263-271) konstruierte Plasmid pAG 100 (Figur 6) kloniert. Bei den Fragmen-

- 15 ten handelte es sich um ein 2.9 kb Sph I- Fragment (pAG 100 icl.4) und um ein 2.2 kb Bgl 1 / Eco RV Fragment (pAG 100 icl.6). Beide Fragment enthielten die Ser-tRNA. Deshalb wurde zusätzlich eine PCR-Amplifikation des putativen Gens mit daran fusionierten Bam HI Schnittstellen (pAG 100 icl.8) durchgeführt.
- 20 Alle drei DNAs wurden in die Bam HI site des Plasmids pAG 100 kloniert. Mit den erhaltenen Plasmiden wurde die Hefemutante Saccharomyces cerevisiae ICLld ura3 (fs) transformiert. Alle drei Konstrukte führten zur vollständigen Komplementation der ICLld-Disruption d.h. trugen funktionelle Gene.

25

Beispiel 5:

Wirkung der ICL tragenden Plasmide auf die Riboflavinbildung von Ashbya gossypii

- 30 Die Transformation von Ashbya gossypii (Methode: Wright und Philippsen, 1991, Gene 109: 99-105) mit den oben erklärten Plasmiden führte zu signifikanten Erhöhungen der Riboflavinbildung. Kultiviert wurde in 500 ml Schüttelkolben mit zwei Schikanen, das 50 ml Medium aus 10 g/I Sojaöl, 10 g/I Hefeextrakt und 200 µg/ml
- 35 Geneticin enthielt. Der Kontrollstamm A.gossypii pAG 100, der ein Plasmid ohne Insert enthielt, produzierte in zwei Tagen 18,7 \pm 0,1 mg/l Riboflavin. Die Stämme A. gossypii pAG 100.4 und Agossypii pAG 100.6 produzierten 31,2 \pm 6,1 mg/l bzw. 31,0 \pm 2,0 mg(I Riboflavin (Figur 7). Eine signifikante Änderung der spezifischen
- 40 Aktivität der Isocitratlyase war aufgrund der starken Streuung nicht messbar. Der Stamm A. gossypii pAG 100.8 produzierte in einem Medium, das noch durch 3 g/I Glycin supplementiert wurde, innerhalb von drei Tagen 65 ± 5,6 mg/I Riboflavin. Der Kontrollstamm A.gossypii pAG 100 bildete dagegen im direkten Vergleich
- 45 nur 29,9 ± 1,8 mg/l Riboflavin (Figur 8). Weder in der spezifi-

schen Aktivität der Isocitratlyase noch im Myzeltrockengewicht waren signifikante Unterschiede meßbar.

Beispiel 6:

5 Reinigung einer Isocitratlyase (ICL)

Zur Identifizierung von auf ICL hemmend wirkenden Substanzen wurde zunächst die ICL aus Ashbya gossypii gereinigt. Die Isolierung und Reinigung des Enzyms erfolgte 10nach Wachstum des Pilz-

- 10 mycels auf Pflanzenöl. Die einzelnen Reinigungsschritte sind in der Tabelle 1 zusammengefaßt: Demgemäß enthält ein typischer, aus ca. 25 g Mycel hergestellter Rohextrakt, der durch Zellaufschluß mit einer French-Press gewonnen wurde, 220 Einheiten ICL-Aktivität. Etwa 78% davon sind nach Zentrifugation bei 40.000 g
- 15 gelöst im Überstand wiederzufinden. Eine anschließende fraktionierte Ammoniumsulfatfällung führt zu einer dreifachen Anreicherung des Enzyms. Nach einer Gelfiltration mit einer Sephacryl S-300 Säule wird die TCL an den Kationenaustauscher Mono S-Sepharose gebunden und mit NaCl eluiert. Das so erhaltene Präparat ist
- 20 homogen in der SDS-Polyacrylamidgelelektrophorese und hat eine spezifische Aktivität von 18,4 U/mg.

Beispiel 7:

Identifizierung von ICL-Hemmstoffen

25

Mit dem gereinigten Enzym lassen sich in einem colorimetrischen Test (Dixon, H. und Kornberg, H.L. (1959), Biochem. J. 72, 3: Assay methods for key enzymes of the glyoxylate cycle) Einflüsse von Substanzen auf die Aktivität messen. In Tabelle 2 und Figur 1

- 30 sind die Effekte der getesteten Substanzen auf das Enzym zusammengefaßt bzw. dargestellt. Untersucht wurden zum einen Substanzen, die als Metaboliten in der Pilzzelle einen hemmenden Effekt auf das Enzym haben könnten. Darunter zeigten 6-P-Gluconat und Phosphoenolpyruvat die deutlichsten Hemmwirkungen mit über
- 35 50% bei einer Konzentration von 10 mM. Erheblich besser wirkten jedoch Itakonat und Oxalat, die vermutlich nicht im Stoffwechsel des Pilzes vorkommen. Bereits eine Konzentration von 1 mmol führte zu 78% bzw. 95% Hemmung.

40 Beispiel 8:

Charakterisierung einer mit Itakonat selektionierten Mutante

Durch UV-Bestrahlung von isolierten Sporen des Pilzes lassen sich Mutationen im Erbmaterial erzeugen. Mit einer Strahlendosis, bei

45 der 10-20% der eingesetzten Sporen überleben, erhält man Mutanten, die gegen eine Hemmung der Riboflavinbildung durch Itakonat resistent sind. Eine so isolierte Mutante zeigt bei Wachstum auf

WO 97/03208 PCT/EP96/03009

9

Sojaöl eine 25-fache Riboflavinbildung im Vergleich zum Ausgangsstamm (Figur 2). Die spezifische ICL-Aktivität ist während der Ribof lavinbildungsphase um bis zu 15% erhöht (Figur 2). Mit Antikörpern läßt sich zeigen, daß die Proteinmenge erhöht ist. Die ICL aus der Mutante zeigt das gleiche Hemmverhalten durch Itakonat wie der Ausgangsstamm.

Beispiel 9:

Korrelation von Riboflavinbildung und spezifischer ICL-Aktivität

10

Einen überraschenden Hinweis auf einen kausalen Zusammenhang zwischen ICL und Riboflavinbildung liefert die Beobachtung, daß der Pilz, wenn Glucose als Substrat angeboten wird, erst nach Verbrauch der Glucose mit der Produktion beginnt. Genau dann wird auch die ICL, die zuvor durch Glucose reprimiert ist, im Rohextrakt meßbar und steigt bis zu Aktivitäten, wie sie bei Wachstum auf Öl gefunden werden, an (Figur 3).

20

25

30

35

40

SEQUENZ PROTOKOLL

(1) ALGEMEINE INFORMATION:

- (i) ANMELDER:
 - (A) NAME: BASF Aktiengesellschaft
 - (B) STRASSE: Carl-Bosch-Strasse 38
 - (C) ORT: Ludwigshafen
 - (E) LAND: Bundesrepublik Deutschland
 - (F) POSTLEITZAHL: D-67056
 - (G) TELEPHON: 0621/6048526
 - (H) TELEFAX: 0621/6043123
 - (I) TELEX: 1762175170
 - (A) NAME: Forschungszentrum Juelich GmbH
 - (B) STRASSE: Leo-Brandt-Strasse
 - (C) ORT: Juelich
 - (E) LAND: Germany
 - (F) POSTLEITZAHL: D-52425
 - (G) TELEPHON: 02461-61 3004
- (ii) ANMELDETITEL: Verfahren zur Herstellung von Riboflavin mittels Mikroorgaismen mit veraenderter Isocitratlyase Aktivitaet
- (iii) ANZAHL DER SEQUENZEN: 2
- (iv) COMPUTER-LESBARE FORM:
 - (A) DATENTRÄGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)
- (2) INFORMATION ZU SEO ID NO: 1:
 - (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 2364 Basenpaare
 - (B) ART: Nukleins "ure
 - (C) STRANGFORM: Doppel
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÄLS: cDNS zu mRNS
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTISENSE: NEIN
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: 5'UTR
 - (B) LAGE: 1..550
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 551..2233

WO 97/03208 PCT/EP96/03009

11

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: 3'UTR

(B) LAGE: 2234..2364

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

CGAAAGCGCC AAATACCGGA AACGGCACAG GCGCAGCTCT AATAGCCGTT CCACGATAAC	60
TTTGGAAGTT ATGGCACTAT GGCCGAGTGG TTAAGGCGAC AGACTTGAAA TCTGTTGGGC	120
TCTGCCCGCG CTGGTTCAAA TCCTGCTGGT GTCGTTATTT TTGCCGTTTC TTTTTAGATG	180
AAACTCAGGG GCCTTTAGTC CGCCCTTTTG CCCGCTGATT CATCGCCCGC CAGCAACACC	240
GGTTGAGCCG ATCAGCGCAA GAACGCGCAA AGTCACGTAT GGCCCCTAAG AGTTGAGCTC	300
TCCCCCTCGG CTCCTTCCGG GCGCGGAAAA GCCTGCGTCA CCCCATTAAG TCCGAAACCG	360
CGTTCAAGTG TACTTGGTCC GGGCCAATGT GGTTGCCTCA TCCGAGTCAC CGATACGCAG	420
GTGCGCCCGT CGAGTCACCA TTAGGAGTAG AGCATCTGAT TATATATAGG CCTAGTTACA	480
GCGGTAACAT AGACTGATAG CTCCAGCTCC AGCACTAGCT TGTAGGACAT CTGCGCGACA	540
CCCAGTGAAC ATG TCC CCT TCC GTC AGA GAC GCC CGC AAC GAC CTT GCC	589
Met Ser Pro Ser Val Arg Asp Ala Arg Asp Leu Ala	303
1 5 10	C 2.7
AGC CTG CAA CAG CAG GCA GCC GCC GAA GCC GAG GAT ATT AGG AGA TGG Ser Leu Gln Gln Ala Ala Ala Glu Ala Glu Asp Ile Arg Arg Trp	637
15 20 25	
TGG AGC CAG CCA CGG TGG GCG GGC ACC AAG CGC GTG TAC ACG GCC GAG Trp Ser Gln Pro Arg Trp Ala Gly Thr Lys Arg Val Tyr Thr Ala Glu	685
30 35 40 45	
GAC ATC GTC AAG CGC CGC GGC ACG TTC CCT GTC GTC GAA TAC CCA TCT Asp Ile Val Lys Arg Arg Gly Thr Phe Pro Val Val Glu Tyr Pro Ser	733
so so so so the values are are the provative of the prova	
TCC GTA ATG GCG GAC AAG CTC GTG GAG ACA TTG GCG CGG CAC TCG CGC	781
Ser Val Met Ala Asp Lys Leu Val Glu Thr Leu Ala Arg His Ser Arg 65 70 75	
AAC GGC ACG GTT TCA CAG ACG TTC GGA GTG CTC GAC CCA GTG CAA ATG	829
Asn Gly Thr Val Ser Gln Thr Phe Gly Val Leu Asp Pro Val Gln Met 80 85 90	
ACG CAA ATG GTG AAG TAT CTG GAC ACG ATT TAC GTG TCT GGC TGG CAA	877
Thr Gln Met Val Lys Tyr Leu Asp Thr Ile Tyr Val Ser Gly Trp Gln	•
95 100 105	025
TGC AGC GCC ACG GCT TCG ACC TCG AAC GAG CCT GGG CCC GAT CTC GCG Cys Ser Ala Thr Ala Ser Thr Ser Asn Glu Pro Gly Pro Asp Leu Ala	925
110 115 120 125	
GAC TAT CCG ATG GAC ACC GTG CCA AAC AAG GTC GAG CAC CTG TTC ATG Asp Tyr Pro Met Asp Thr Val Pro Asn Lys Val Glu His Leu Phe Met	973
ASP TYL FLO MEC ASP THE VAL TTO ASH BYS VAL STA HE BEATTHE MEC	

							12	2								
				130)				139	5				14	0	
GCG Ala	CAG Gln	CTO Leu	TTC Phe 145	His	GAC Asp	CGG Arg	AAA Lys	CAC Glr 150	n Arg	GA(G GCG	C CGG a Arg	C CTG G Let 15!	u Se	G TGC r Cys	1021
ACT Thr	ACC Thr	CAG Gln 160	a Arg	GAG Glu	CTC Leu	GAC Asp	CAA Gln 165	Leu	G GGC	G CC:	r GAG	G AT 114 170	e Ası	TA Ty	C TTG r Leu	1069
AGG Arg	CCG Pro 175	Ile	GTC Val	GCT Ala	GAC Asp	GCA Ala 180	Asp	ACC Thr	GGC Gly	CAC His	GGG Gly 185	/ Gl	G CTA / Let	A AC	A GCC r Ala	1117
GTC Val 190	TTT Phe	AAA Lys	CTC Leu	ACG Thr	AAG Lys 195	Met	TTC Phe	ATC	GAG Glu	CGC Arg 200	g Gly	r GCA ⁄ Ala	A GCC a Ala	GG' Gly	r ATC / Ile 205	1165
CAC His	ATG Met	GAG Glu	GAC Asp	CAG Gln 210	TCC Ser	TCC Ser	AGC Ser	AAC Asn	AAA Lys 215	AAG Lys	TGC Cys	GGG Gly	G CAC	ATO Met 220	G GCG Ala	1213
GGC Gly	CGC Arg	ŤGC Cys	GTG Val 225	ATC Ile	CCT Pro	GTT Val	CAG Gln	GAG Glu 230	CAC His	ATT Ile	'AGT Ser	CGT Arg	TTA Leu 235	Val	ACT Thr	1261
GTG Val	CGC Arg	ATG Met 240	TGT Cys	GCG Ala	GAC Asp	GTG Val	ATG Met 245	CAC His	TCG Ser	AAC Asn	CTG Leu	GTG Val 250	CTT Leu	GTC Val	GCG Ala	1309
AGA Arg	ACA Thr 255	GAC Asp	TCG Ser	GAG Glu	GCC Ala	GCC Ala 260	ACC Thr	TTA Leu	CTT Leu	AGC Ser	TCG Ser 265	AAC Asn	ATT Ile	GAC Asp	GCG Ala	1357
CGC Arg 270	GAT Asp	CAT His	TAC Tyr	TAC Tyr	ATT Ile 275	GTC Val	GGG Gly	GCC Ala	TCG Ser	AAC Asn 280	CCT Pro	GAG Glu	GTA Val	ACT Thr	GTA Val 285	1405
CCG Pro	CTG Leu	ATC Ile	GAA Glu	GTT Val 290	TTG Leu	GAC Asp	GCC Ala	GCG Ala	CAG Gln 295	CAG Gln	GCC Ala	GGC Gly	GCC Ala	TCA Ser 300	GGT Gly	1453
GAC Asp	AGA Arg	TTG Leu	GCT Ala 305	CAG Gln	CTA Leu	GAG Glu	Glu	GAC Asp 310	TGG Trp	TGC Cys	AAG Lys	AAG Lys	GCC Ala 315	AAG Lys	TTG Leu	1501
AGG Arg	CTC Leu	TTC Phe 320	CAC His	GAG Glu	GCA Ala	TTT Phe	GCC Ala 325	GAC Asp	CAG Gln	GTG Val	AAT Asn	GCC Ala 330	AGC Ser	CCT Pro	TCG Ser	1549
ATC Ile	AAA Lys 335	GAC Asp	AAG Lys	GCG Ala	Gly	GTT Val 340	ATT Ile	GCC Ala	AAA Lys	TTT Phe	AAC Asn 345	TCA Ser	CAG Gln	ATC Ile	GGG Gly	1597
CCA Pro 350	CAG Gln	ACA Thr	GGC (Ala	TCG Ser 355	ATC . Ile .	AGA (GAG Glu	Met	CGC Arg 360	ÀAA Lys	CTG Leu	GGC Gly	CGC Arg	GAG Glu 365	1645

							13									
CTG Leu	CTC Leu	GGG Gly	CAG Gln	GAC Asp 370	GTC Val	TAC Tyr	TTC Phe	GAC Asp	TGG Trp 375	GAC Asp	CTG Leu	CCT Pro	CGC Arg	GCT Ala 380	AGA Arg	1693
												GCG Ala				1741
												TTC Phe 410				1789
												GGC Gly				1837
												CCC Pro				1885
												TAC Tyr				1933
												CTA Leu				1981
												GAA Glu 490				2029
												AGG Arg				2077
					Leu		His	Gln	Lys	Trp	Ala	GGC Gly	Ala	Glu		2125
GTT Val			Ile										Ser			2173
												TCC Ser				2221
GCC Ala	Lys		TGAT	'ATCA	TC T	CTGA	GTCA	TT T	CTCI	'CGAC	: AAG	ATCC	TCG			2270
GCCA	GACT.	тс т	'GGAA	TATA	TA T	'AACA	TCGG	GTA	.cccc	GAC	ATCC	CTGC	СТ Т	CCGC	AACGT	2330
GCGA	AGCA	GC T	GATA	CGTA	T AC	TTTA	AACG	CAC	ΞA							2364

(2) INFORMATION ZU SEQ ID NO: 2:

14

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 560 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) 'ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met Ser Pro Ser Val Arg Asp Ala Arg Asp Leu Ala Ser Leu Gln
1 5 10 15

Gln Gln Ala Ala Glu Ala Glu Asp Ile Arg Arg Trp Trp Ser Gln 20 25 30

Pro Arg Trp Ala Gly Thr Lys Arg Val Tyr Thr Ala Glu Asp Ile Val
35 40 45

Lys Arg Arg Gly Thr Phe Pro Val Val Glu Tyr Pro Ser Ser Val Met 50 55 60

Ala Asp Lys Leu Val Glu Thr Leu Ala Arg His Ser Arg Asn Gly Thr 65 70 75 80

Val Ser Gln Thr Phe Gly Val Leu Asp Pro Val Gln Met Thr Gln Met 85 90 95

Val Lys Tyr Leu Asp Thr Ile Tyr Val Ser Gly Trp Gln Cys Ser Ala 100 105 110

Thr Ala Ser Thr Ser Asn Glu Pro Gly Pro Asp Leu Ala Asp Tyr Pro 115 120 125

Met Asp Thr Val Pro Asn Lys Val Glu His Leu Phe Met Ala Gln Leu 130 135 140

Phe His Asp Arg Lys Gln Arg Glu Ala Arg Leu Ser Cys Thr Thr Gln 145 150 155 160

Arg Glu Leu Asp Gln Leu Gly Pro Glu Ile Asp Tyr Leu Arg Pro Ile 165 170 175

Val Ala Asp Ala Asp Thr Gly His Gly Gly Leu Thr Ala Val Phe Lys
180 185 190

Leu Thr Lys Met Phe Ile Glu Arg Gly Ala Ala Gly Ile His Met Glu 195 200 205

Asp Gln Ser Ser Ser Asn Lys Lys Cys Gly His Met Ala Gly Arg Cys 210 215 220

Val Ile Pro Val Gln Glu His Ile Ser Arg Leu Val Thr Val Arg Met 225 230 235 240

Cys Ala Asp Val Met His Ser Asn Leu Val Leu Val Ala Arg Thr Asp 245 250 255

Ser Glu Ala Ala Thr Leu Leu Ser Ser Asn.Ile Asp Ala Arg Asp His 260 265 270

WO 97/03208

							10								
Tyr	Tyr	Ile 275	Val	Gly	Ala	Ser	Asn 280	Pro	Glu	Val	Thr	Val 285	Pro	Leu	Ile
Glu	Val 290	Leu	Asp	Ala	Ala	Gln 295	Gln	Ala	Gly	Ala	Ser 300	Gly	Asp	Arg	Leu
Ala 305	Gln	Leu	Glu	Glu	Asp 310	Trp	Cys	Lys	Lys	Ala 315	Lys	Leu	Arg	Leu	Phe 320
His	Glu	Ala	Phe	Ala 325	Asp	Gln	Val	Asn	Ala 330	Ser	Pro	Ser	Ile	Lys 335	Asp
Lys	Ala	Gly	Val 340	Ile	Ala	Lys	Phe	Asn 345	Ser	Gln	Ile	Gly	Pro 350	Gln	Thr
Gly	Ala	Ser 355	Ile	Arg	Glu	Met	Arg 360	Lys	Leu	Gly	Arg	Glu 365	Leu	Leu	Gly
Gln	Asp 370	Val	Tyr	Phe	Asp	Trp 375	Asp	Leu	Pro	Arg	Ala 380	Arg	Glu	Gly	Leu
Tyr 385	Arg	Tyr	Lys	Gly	Gly 390	Thr	Gln	Cys	Ala	Ile 395	Met	Arg	Ala	Arg	Ala 400
Phe	Ala	Pro	Tyr	Ala 405	Asp	Leu	Val	Trp	Phe 410	Glu	Ser	Asn	Phe	Pro 415	Asp
Phe	Gln	Gln	Ala 420	Lys	Glu	Phe	Ala	Gln 425	Gly	Val	Arg	Glu	Lys 430	Phe	Pro
Asn	Lys	Trp 435	Met	Ala	Tyr	Asn	Leu 440	Ser	Pro	Ser	Phe	Asn 445	Trp	Pro	Lys
Ala	Met 450	Pro	Pro	Lys	Glu	Gln 455	Glu	Asn	Tyr	Il∈	Gin 460	Arg	Leu	Gly	Glu
Ile 465		Tyr	Val	Trp	Gln 470	Phe	Ile	Thr	Leu	Ala 475	Gly	Leu	His	Thr	Asn 480
Ala	Leu	Ala	Ile	Asp 485		Phe	Ser	Arg	Glu 490		Ser	Arg	Phe	Gly 495	Met
Arg	Ala	Tyr	Ala 500		Gly	Ile	Gln	Gln 505	Arg	Glu	Met	Asp	Glu 510	Gly	Val
Asp	Val	Leu 515		His	Gln	Lys	Trp 520	Ala	Gly	Ala	Glu	Tyr 525	Val	Asp	Ser
Ile	Leu 530		. Leu	Ala	Gln	Gly 535	Gly	Val	Ser	Ser	Thr 540	Ala	Ser	Met	Gly
Lys 545		· Val	Thr	Glu	550		Phe	e Gly	Ser	Ser 555	Asn	Gly	Ala	Lys	Leu 560

Patentansprüche

 Verfahren zur mikrobiellen Herstellung von Riboflavin durch
 Kultivierung von Riboflavin produzierenden Mikroorganismen in einem Nährmedium und anschließender Isolierung des hergestellten Riboflavins, dadurch gekennzeichnet, daß Mikroorganismen verwendet werden, bei denen die endogene Isocitratlyase (ICL) Aktivität verändert wurde.

10

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Mikroorganismen durch Mutation des endogenen ICL-Gens ein Enzym mit höherer ICL-Aktivität aufweisen.
- 15 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Mikroorganismen durch eine Erhöhung der ICL-Genkopienzahl eine höhere ICL-Genexpression besitzen.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das
 ICL-Gen mit regulatorischen DNA-Sequenzen funktionell verknüpft wurde, die eine verstärkte Genexpression des ICL-Gens erlauben.
- 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Mikroorganismen mit Resistenz gegenüber auf ICL hemmend wirkenden
 Substanzen verwendet werden.
- Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Mikroorganismen resistent gegenüber den Stoffen Itakonat oder Oxalat sind.
 - 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß als Mikroorganismus ein Pilz verwendet wird.
- 35 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der Pilz aus der Gattung Ashbya verwendet wird.
 - 9. ICL-Gen codierend für die in SEQ ID NO: 2 dargestellte Aminosäuresequenz.

- 10. Genkonstrukt enthaltend ein ICL-Gen gemäß Anspruch 9.
- Genkonstrukt nach Anspruch 10, dadurch gekennzeichnet, daß das ICL-Gen funktionell mit einem oder mehreren Regulations-signalen zur Erhöhung der Genexpression funktionell verknüpft wurde.

Fraktion	Gesamtaktivität Gesamtprotein	Gesamtprotein	spez. Aktivität	Reinigungsfaktor	Ausbeute
	(Units)	(mg)	(U/mg protein)	(-fach)	(%)
Rohextrakt	220	1310	0.17	1.0	100
40,000 g Überstand	170	730	0.23	1.3	78
35% (NH4)2SO4 Üherstand	160	630	0.25	1.5	72
60% (NII ₄) ₂ SO ₄ Pellet	160	300	0.53	3.1	72
Sephacryl S-300 Eluat	52	\$	10.8	63	23
Mono S Eluat	35	0.5	18.4	108	16

Tabelle 1.

Hemmstoff	Konzentration	Hemmung	Hemmtyp
	(mM)	(%)	
Glucose-6-P	10	<5	
Citrat	10	22	
Fumarat	10	25	
Succinat	10	34	noncompetitive; Kj:15.8 mM
Malat	10	36	
РЕР	10	55	hyperbolic mixed-type
6-P-Gluconat	10	09	
Glycin	10	\$>	
Aspartat	10	13	
Glutamat	91	-15	
Phenylphosphat	10	7	
Maleat	10	68	
Itaconat	-	78	linear mixed-type; K _i :0.17 mM
Oxalat		95	noncompetitive; K _j :0.004 mM

Callada 2

Figur 1

Riboflavin (mg/l)

Figur 2

Fraktionen des Sau 3A - Verdaus nach Ultrazentrifugation

8/10

BNSDOCID: <WO 9703208A1>

BNSDOCID: <WO 9703208A1>

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12P25/00 C12N15/60

C12N15/31

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12P C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCU	MENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,P	MICROBIOLOGY, vol. 142, no. 2, 1996, READING U.K., pages 411-417, XP002020315 SCHMIDT, G. ET AL.: "Inhibition of purified isocitrate lyase identified itaconate and oxalate as potentioal antimetabolites for the riboflavin overproducer Ashbya gossypii" see the whole document	1-11
Х,Р	MICROBIOLOGY, vol. 142, no. 2, 1996, READING, U.K., pages 419-426, XP002020316 SCHNMIDT, G. ET AL.: "Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii" see the whole document	1-11
	-/	

Patent family members are listed in annex.
'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of mailing of the international search report
1 8. 12. 96
Douschan, K

Form PCT/ISA/210 (second sheet) (July 1992)

n. July Application No PCT/EP 96/03009

C.(Continu	Then) DOCUMENTS CONSIDERED TO DE TOTAL	PCT/EP 96/03009
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	- Francisco de la constante passages	Relevant to claim No.
A	MOL. GEN. GENET., vol. 241, 1993, pages 422-430, XP002020317 BARTH, G. UND SCHEUBER, T.: "Cloning of the isocitrate lyase gene (ICL1) from Yarrowia lipolytica and characterization of the deduced protein" see the whole document	1-11
4	EP,A,0 405 370 (F. HOFFMANN-LA ROCHE AG) 2 January 1991 cited in the application see the whole document	1-11
1	WO,A,93 03183 (TRANSKARYOTIC THERAPIES INC.) 18 February 1993 cited in the application see the whole document	1-11
	•	

information on patent family members

Into nal Application No
PCT/EP 96/03009

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0405370	02-01-91	CN-A- JP-A-	1049185 3117489	13-02-91 20-05-91
WO-A-9303183	18-02-93	AU-A- EP-A- JP-T- NZ-A-	1278192 0596885 6508983 240749	02-03-93 18-05-94 13-10-94 27-04-94

Form PCT/ISA/210 (patent family annex) (July 1992)

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C12P25/00 C12N15/60 C12 C12N15/31

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 C12P C12N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

X,P MICROBIOLOGY, Bd. 142, Nr. 2, 1996, READING U.K., Seiten 411-417, XP002020315 SCHMIDT, G. ET AL.: "Inhibition of purified isocitrate lyase identified itaconate and oxalate as potentioal antimetabolites for the riboflavin overproducer Ashbya gossypii" siehe das ganze Dokument X,P MICROBIOLOGY, Bd. 142, Nr. 2, 1996, READING, U.K., Seiten 419-426, XP002020316 SCHNMIDT, G. ET AL.: "Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii"	ALS WESI	SENTLICH ANGESEHENE UNTERLAGEN	
Bd. 142, Nr. 2, 1996, READING U.K., Seiten 411-417, XP002020315 SCHMIDT, G. ET AL.: "Inhibition of purified isocitrate lyase identified itaconate and oxalate as potentioal antimetabolites for the riboflavin overproducer Ashbya gossypii" siehe das ganze Dokument X,P MICROBIOLOGY, Bd. 142, Nr. 2, 1996, READING, U.K., Seiten 419-426, XP002020316 SCHNMIDT, G. ET AL.: "Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii"			Betr. Anspruch Nr.
Bd. 142, Nr. 2, 1996, READING, U.K., Seiten 419-426, XP002020316 SCHNMIDT, G. ET AL.: "Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii"	, P	Bd. 142, Nr. 2, 1996, READING U.K., Seiten 411-417, XP002020315 SCHMIDT, G. ET AL.: "Inhibition of purified isocitrate lyase identified itaconate and oxalate as potentioal antimetabolites for the riboflavin overproducer Ashbya gossypii"	1-11
-/	, P	Bd. 142, Nr. 2, 1996, READING, U.K., Seiten 419-426, XP002020316 SCHNMIDT, G. ET AL.: "Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii" siehe das ganze Dokument	1-11

Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen Veröffentlichung, die den allgemeinen Stand der Technik definiert,
- aber nicht als besonders bedeutsam anzusehen ist 'E' älteres Dokument, das jedoch erst am oder nach dem internationalen
- Anmeldedatum veröffentlicht worden ist Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweiselhast erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie

- Spätere Veröffentlichung, die nach dem internationalen Anmetdedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung Zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
 - Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

5.Dezember 1996

1 8, 12, 96

Name und Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2

NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Douschan, K

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

		PCT/EP 96/03009				
	ortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN					
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.				
A	MOL. GEN. GENET., Bd. 241, 1993, Seiten 422-430, XP002020317 BARTH, G. UND SCHEUBER, T.: "Cloning of the isocitrate lyase gene (ICL1) from Yarrowia lipolytica and characterization of the deduced protein" siehe das ganze Dokument	1-11				
Α	EP,A,O 405 370 (F. HOFFMANN-LA ROCHE AG) 2.Januar 1991 in der Anmeldung erwähnt siehe das ganze Dokument	1-11				
A	WO,A,93 03183 (TRANSKARYOTIC THERAPIES INC.) 18.Februar 1993 in der Anmeldung erwähnt siehe das ganze Dokument	1-11				
6						

INTERNATIONAR RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

nales Aktenzeichen
PCT/EP 96/03009

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffendichung 02-01-91	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung 13-02-91 20-05-91
EP-A-0405370		CN-A- 1049185 JP-A- 3117489		
WO-A-9303183	18-02-93	AU-A- EP-A- JP-T- NZ-A-	1278192 0596885 6508983 240749	02-03-93 18-05-94 13-10-94 27-04-94

Formblatt PCT/ISA/210 (Anhang Patentfamilie)(Juli 1992)