Intro to Algebra 2 W1-1

fat

February 21, 2024

Important Dates

• Quiz 1: April 3, Wed.

• Midterm: April 12 Fri.

• Quiz 2: May 31, Fri.

• Final: June 7, Fri.

Grading

- Hw 20%, best out of 10 homeworks
- Quiz 10% each ,midterm, final 30% each.

Will Cover

Chap 9, 13, 14 (Skip 13.3) Section 10.1, 10.2, 10.3, 12.1

1 9.1 Polynomial Rings

Proposition 1. Assume that R is an ID,

1. $\forall p(x), q(x) \neq 0 \in R[x]$, we have

$$deg(pq) = deg(p) + deg(q)$$

- 2. $(R[x])^{\times} = R^{\times}$
- 3. R[x] is an ID.

Proof.

1. Say

$$p = a_n x^n + \ldots + a_0$$

$$q = b_m x^m + \ldots + b_0$$

With $a_n, b_m \neq 0$. We have

$$pq = a_n b_m x^{m+n} + \dots$$

Since R is an ID, $a_n b_m \neq 0$. Thus deg(pq) = m + n = deg(p) + deg(q).

- 2. Let $f(x) \neq 0 \in R[x]$. By 1., we have either $fg \neq 0$ if g = 0 or $deg(fg) = deg(f) + deg(g) \leq deg(f)$ if $g \neq 0$. Thus, if $deg(f) \leq 1$, then fg can never be equal to 1. Now if deg(f(x)) = 0, then f(x) = c for some $c \neq 0 \in R$. If fg = 1 for some $g \in R[x]$, then g is also a constant polynomial and the constant $d \neq 0 \in R$ satisfies $cd = 1 \Rightarrow c \in R^{\times}$. $\Rightarrow (R[x])^{\times} \subset R^{\times}$. Conversely, it's trivial that $R^{\times} \subset (R[x])^{\times} \Rightarrow (R[x])^{\times} = R^{\times}$.
- 3. If $f, g \neq 0 \in R[x]$, then by 1., $fg \neq 0$. $\Rightarrow R[x]$ is an ID.

Remark 1. We usually adopt the convention that $deg(0) = -\infty$. If we adopt this convention, then 1. holds for all polynomials. Also, $deg(f+g) \leq max(deg(f), deg(g))$, the reason we chose $deg(0) = -\infty$ instead of $+\infty$.

Proposition 2. Assume that $I \subseteq R$, then

$$R[x]/_{(I)} \simeq (R/_I)[x]$$

where (I) = I[x].

Proof.

Consider the ring homomorphism: (called the **reduction homomorphism modulo** I)

$$\phi: R[x] \to (R/I)[x]$$

Defined by

$$\phi(a_n x^n + \ldots + a_0) = \overline{a_n} x^n + \ldots + \overline{a_0}$$

where $\overline{a_j}$ denotes the coset containing a_j . It's clear that ϕ is surjective with $ker\phi = I[x]$.

$$\Rightarrow R[x]/(I) \simeq (R/I)[x]$$

Definition 1.1. A term of the form $x_1^{d_1} ldots x_m^{d_m}$ in $R[x_1, \ldots, x_m]$ is called a **monomial**. Its degree is defined by $d_1 + \ldots + d_m$. The **degree** of a polynomial $f \in R[x_1, \ldots, x_m]$ is defined to be the largest degree of any of the monomial terms in f with nonzero coefficient. A polynomial $f \in R[x_1, \ldots, x_m]$ is **homogeneous** if every monomial term in f has the same degree. Equivalently, if $f(x_1, \ldots, x_m)$ satisfies $f(\lambda x_1, \ldots, \lambda x_m) = \lambda^d f(x_1, \ldots, x_m) \forall \lambda \in R$, then we say f is homogeneous of degree d.

2 9.2 Polynomial over Fields

Theorem 1. Let F be a field. Then the degree function on F[x] is an Euclidean norm. i.e., $\forall a(x), b(x) \neq 0 \in F[x]$

 $\exists q(x), r(x) \in F[x] \text{ s.t.}$

- (i) a(x) = q(x)b(x) + r(x)
- (ii) r = 0 or deg(r) < deg(b)

Proof.

Let b(x) be a fixed nonzero polynomial in F[x]. We'll prove by induction on deg(a) that the theorem holds. If deg(x) < deg(b) (a(x) could be 0 where $deg(0) = -\infty$). We choose q(x) = 0 and r(x) = a(x), so the existence in the theorem holds. Assume the existence holds up to deg(a) = m-1, where $m \le deg(b)$. Let $a(x) = a_m x^m + \ldots + a_0$ bbe a polynomial of deg(m). Let $\tilde{a}(x) = a(x) - a(x) = a_m x^m + \ldots + a_0$

 $\frac{a_m}{b_n}x^{m-n}b(x)$. Then $deg(\tilde{a}(x)) \leq m-1$. By the induction hypothesis, $\exists \tilde{q}(x), \tilde{r}(x) \in F[x]$ s.t.

$$\begin{cases} \tilde{a}(x) = \tilde{q}(x)b(x) + \tilde{r}(x) \\ \tilde{r}(x) = 0 \text{ or } deg(\tilde{r}(x)) < deg(b) \end{cases}$$

Let $q = \tilde{q} + \frac{a_m}{b_n} x^{m-n}$, $r(x) = \tilde{r}(x)$, then

$$a(x) = \tilde{a}(x) + \frac{a_m}{b_n} x^{m-n} b(x)$$

$$= \tilde{q}(x)b(x) + \tilde{r}(x) + \frac{a_m}{b_n}x^{m-n}b(x) = q(x)b(x) + r(x)$$

and the existence in the theorem holds for a(x). \Rightarrow the existence in the theorem holds for all a(x). We now prove the uniqueness. Assue that $a(x) = q_1(x)b(x) + r_1(x) = q_2(x) + b(x) + r_2(x)$ with $r_j(x) = 0$ or $deg(r_j(x)) < deg(b)$.

$$\Rightarrow (q_1(x) - q_2(x))b(x) = r_2(x) - r_1(x)$$

If $r_2(x) - r_1(x) \neq 0$, by Prop. 1,

$$deg(\text{L.H.S.}) = deg(q_1(x) - q_2(x)) + deg(b(x)) \le deg(b)$$

but deg(R.H.S.) < deg(b), a contradiction. Thus $r_2(x) = r_1(x)$, $q_2(x) = q_1(x)$.

Corollary 1. F[x] is a PID and a UFD.

Remark 2. From the proof of ED \Rightarrow PID, we see that if $I \neq 0 \leq F[x]$, then I = (f) where $deg(f) = \min_{h(x) \in I, h(x) \neq 0} deg(h(x))$.

3 9.3 Polynomial rings that are UFDs

3.1 Summary

Let R be an ID. Then R[x] is a UFD $\Leftrightarrow R$ is a UFD. (Thus if F is a field, then $F[x_1, \ldots, x_n]$ is a UFD for all n). Note that \Rightarrow is easy. From $(R[x])^{\times} = R^{\times}$, we see that a nonzero constant polynomial is an irreducible in R[x] \Leftrightarrow the constant is an irreducible in R. From this, we see that \Rightarrow holds.

Proposition 3 (Gauss lemma). Let R be a UFD (think of R as \mathbb{Z}) and K be its field of fractions (see localization mentioned in lectures before). Let $f(x) \in R[x]$. If f(x) is reducible in K[x], then f(x) is reducible in R[x]. To be more precise, if f(x) = A(x)B(x) for some $A(x), B(x) \in K[x]$, then $\exists r(x), s(x) \in K^{\times}$ s.t. $r(x)A(x) \equiv a(x), s(x)B(x) \equiv b(x) \in R[x]$ and f(x) = a(x)b(x) (note that r(x)s(x) = 1).

Proof.

Let

 $d_1 = LCM$ (denominators of coefficients of A(x))

 $d_2 = LCM$ (denominators of coefficients of B(x))

Let

$$a_0(x) = d_1 A(x)$$

$$b_0(x) = d_2 B(x)$$

Then $a_0(x), b_0(x) \in R[x]$. Let $d = d_1d_2$, then

$$df(x) = (d_1A(x))(d_2B(x)) = a_0(x)b_0(x)$$

Let $d=p_1p_2\dots p_k$ be the factorization of d into irreducibles in R. Consider the reduction homomorphism modulo (p_1) . The reduction of L.H.S. mod (p_1) is 0. Let $\overline{a_0(x)}$ and $\overline{b_0(x)}$ be the reduction of $a_0(x)$ and $b_0(x)$ modulo (p_1) . So $\overline{a_0(x)b_0(x)}=0$ in $(R/(p_1))[x]$. Since p_1 is an irreducible in R and R is a UFD, p_1 is a prime in $R\Rightarrow (p_1)$ is a prime ideal of $R\Rightarrow R/(p_1)$ is an ID $\Rightarrow (R/(p_1))[x]$ is an ID. Thus $\overline{a_0}=0$ or $\overline{b_0}=0$ in $R/(p_1)[x]$. W.L.O.G. we assume $\overline{a_0}=0\Rightarrow$ Every coefficient of a_0 is a multiple of p_1 . i.e. $a_0(x)=p_1a_1(x)$ for some $a_1(x)\in R[x]$. Let $b_1(x)=b_0(x)$. Then we have

$$df(x) = a_0(x)b_0(x)$$

$$\Rightarrow p_1 \dots p_k f(x) = p_1 a_1(x)b_1(x)$$

$$p_2 \dots p_k = a_1 b_1$$

Repeat the process with p_2 in place of p_1 , we see that $\exists a_2, b_2 \in R[x]$ s.t.

$$p_2 \dots p_k f(x) = p_2 a_2(x) b_2(x)$$

$$\Rightarrow p_3 \dots p_k f(x) = a_2(x)b_2(x)$$

Cotinuing this way we get f(x) = a(x)b(x) for some $a(x), b(x) \in R[x]$.