

GROUNDWATER RESOURCES OF THE JUNIATA RIVER BASIN, PENNSYLVANIA

Larry E. Taylor William H. Werkheiser Nancy S. duPont Mary Lou Kriz

COMMONWEALTH OF PENNSYLVANIA
DEPARTMENT OF ENVIRONMENTAL RESOURCES
OFFICE OF RESOURCES MANAGEMENT
BUREAU OF
TOPOGRAPHIC AND GEOLOGIC SURVEY
Arthur A. Socolow, State Geologist

PREPARED IN COOPERATION WITH
SUSQUEHANNA RIVER BASIN COMMISSION

GROUNDWATER RESOURCES OF THE JUNIATA RIVER BASIN, PENNSYLVANIA

by Larry E. Taylor

Pennsylvania Geological Survey

William H. Werkheiser, Nancy S. duPont, and Mary Lou Kriz

Susquehanna River Basin Commission

Prepared by the Pennsylvania Geological Survey in cooperation with the Susquehanna River Basin Commission

PENNSYLVANIA GEOLOGICAL SURVEY

FOURTH SERIES

HARRISBURG

1982

Copyright 1982 by the Commonwealth of Pennsylvania Quotations from this book may be published if credit is given to the Pennsylvania Geological Survey

This project has been financed on a cost-sharing basis with federal funds from the U. S. Water Resources Council

ADDITIONAL COPIES
OF THIS PUBLICATION MAY BE PURCHASED FROM
STATE BOOK STORE, P.O. BOX 1365
HARRISBURG, PENNSYLVANIA 17125

CONTENTS

	Page
Abstract	1
Introduction.	2
Purpose and scope	2
Location and description of the area	2
Acknowledgements	2
Water use	4
Hydrology	11
Water budgets.	11
Precipitation (P)	12
Streamflow $(R_g + R_s)$	17
Evapotranspiration (ET)	18
Estimate of areal availability of groundwater	19
Hydrogeology	20
Geologic setting	20
Occurrence and movement of groundwater	21
Factors that influence the yields of wells	23
Lithology	23
Topography	29
Geologic structure	29
Groundwater quality	30
Specific conductance and total dissolved solids	31
Hardness	31
Iron and manganese	41
Hydrogen sulfide	41
Nitrate	41
Trace metals	42
Water-quality problems	42
Groundwater quality in the Broad Top area	43
Stratigraphy and water-bearing properties of the rocks	43
Conemaugh Group through Pottsville Group	48
Mauch Chunk Formation	51
Pocono Formation, Burgoon Sandstone, and Rockwell Formation.	53
Catskill Formation	54
Foreknobs, Scherr, and Lock Haven Formations	56
Trimmers Rock, Brallier, and Harrell Formations	59
Hamilton Group	60
Onondaga and Old Port Formations	63
Keyser and Tonoloway Formations	64
Wills Creek Formation	66
Bloomsburg and Mifflintown Formations	67
Dioomsourg and minimitown i of mations	07

	Pag
Clinton Group	69 70 70
Coburn Formation through Loysburg Formation	71 72 73
Gatesburg Formation	74 75
Management of water supplies	76 76 77
Conclusions	77 79
References	80 82
ILLUSTRATIONS	
FIGURES	
Frontispiece. Aerial view looking southeast from the vicinity of Mexico, Pennsylvania	viii
Figure 1. Map showing the location of the Pennsylvania portion of the Susquehanna River basin, the Juniata River basin, and the three additional report areas	3
 Pie diagram showing percent land use by category, 1970. Pie diagram showing percent groundwater use by cate- 	4
gory, 1970	5
basin, 1976	8
budget for the Juniata River basin	11
7. Bar graph of annual precipitation at Mapleton Depot, Huntingdon County	16
8. Frequency plot of annual precipitation at Mapleton Depot, Huntingdon County, for the period 1941-1979	17
9. Frequency plot of annual runoff from the Juniata River at Newport for the period 1941-1979	19
10. Mean monthly temperature and precipitation at Kegg, and mean water level in well Bd-150 (1965-1979)	20

			Page
Figure	11. 12.	Hydrograph of well Ju-351 for the period 1968-1980 Graph of the percent frequency distribution of nondomes-	22
		tic well yields, grouped according to dominant rock type. Graph of the percent frequency distribution of nondomes-	28
		tic well yields, grouped according to topographic position	30
	14.	Graph showing the relationship of dissolved solids to field specific conductance	40
	15.	Geologic map of the Broad Top area, showing the locations of groundwater sampling points	44
	16.		
	17.	Stiff diagram of the median chemical character of ground-	48
	18.		52
	19.	well yields from the Catskill Formation Stiff diagram of the median chemical character of ground-	55
	20	water from the Catskill Formation	56
		water from the Scherr Formation	58
	21.	Stiff diagram of the median chemical character of ground-water from the Foreknobs Formation	58
	22.	Stiff diagram of the median chemical character of ground-water from the Brallier Formation	60
	23.		62
	24.	Stiff diagram of the median chemical character of ground-	
	25.	water from the Hamilton Group Stiff diagram of the median chemical character of ground- water from the Onondaga and Old Port Formations, un-	62
	26.	divided Stiff diagram of the median chemical character of ground-water from the Keyser and Tonoloway Formations, undi-	64
	27.	ε	65
	28.	water from the Wills Creek Formation	67
	29.	town Formations	68
		divided	73

		water from the Gatesburg through Warrior Formations, undivided	75
		PLATE	
		(in envelope)	
Plate	1.	Geologic map of the Juniata River basin, showing the locations of wells and springs.	
		TABLES	
			Pag
Table	1.	Population totals by county for the Juniata River basin	3
2 00 20	2.		5
	3.	Public water suppliers utilizing groundwater	6
	4.		
		groundwater	7
	5.	Active quarries and pits, Juniata River basin, 1976	9
	6.	Water budgets for major stream basins	13
	7.	Summary of data on water-bearing zones	24
	8.	Source and significance of selected dissolved constituents	
		and properties of groundwater	32
	_	Median chemical analyses of groundwater	36
	10.	1 ,	
		water from predominantly calcareous and noncalcareous	37
	1.1	rock units	38
		Summary of field water-quality measurements	30
	12.	Partial chemical analyses of groundwater from the Broad Top area	45
	13	Median and range of chemical analyses from the Broad	45
	13.	Top area	47
	14	Summary of well construction and yield data	49
		Chemical analyses of groundwater	84
		Record of wells	89
	17.	Record of springs	130

Figure 30. Stiff diagram of the median chemical character of ground-

Page

Aerial view looking southeast from the vicinity of Mexico, Pennsylvania. The Juniata River valley and Tuscarora Mountain are in the foreground, Wildcat and Raccoon Ridges cross the center of the photo, and Buffalo Mountain, Berry Mountain, Half Falls Mountain, Peters Mountain, and Blue Mountain lie beyond. The Great Valley is seen in the distance, and the rocks of the Triassic Lowlands form the horizon. The village of Thompsontown is in the foreground, and Millerstown and Newport are visible near the center of the photo. Photo is from Geology Illustrated, by John S. Shelton, courtesy of W. H. Freeman and Company, copyright © 1966. (Caption is from Faill and Wells, 1974.)

GROUNDWATER RESOURCES OF THE JUNIATA RIVER BASIN, PENNSYLVANIA

by

Larry E. Taylor, William H. Werkheiser, Nancy S. duPont, and Mary Lou Kriz

ABSTRACT

The Juniata River basin has abundant water resources resulting from an average annual precipitation of 37 inches. Streamflow represents about 40 to 46 percent of precipitation, or about 15 to 17 inches. Approximately 66 percent of streamflow is supplied by groundwater, either by flow from springs or by direct seepage to streambeds.

Groundwater use in the Juniata River basin was about 26 million gallons per day in 1970. By 1990, total water use is projected to increase by about 28 percent, most of which will come from groundwater. Even with this increase, only a small fraction of the available groundwater resource will be utilized.

The aquifers in the basin are a thick sequence of folded sedimentary rocks consisting chiefly of sandstone, siltstone, shale, and limestone. Sandstone generally forms the ridges because of its resistance to weathering, whereas nonresistant limestone and shale primarily underlie valleys.

Groundwater levels are at a median depth of 15 feet in valleys, 37 feet under hillsides, and 66 feet under hilltops. Bedrock units that consist primarily of shale have the shallowest median water levels: 10, 30, and 45 feet for valley, hillside, and hilltop locations, respectively.

Lithology, topography, and geologic structure influence the depth, size, and abundance of water-bearing zones and therefore influence the yields of wells that intercept these zones. Rock units that consist predominantly of limestone and dolomite have the highest well yields, followed by sandstone and shale in that order.

Yields of valley wells are two to three times higher than yields of wells located in other topographic settings. Geologic structures that have a significant influence on well yields include faults, folds, fractures, and attitude of bedding planes.

Groundwater quality is generally adequate for most uses. The most troublesome natural constituents in groundwater are iron and manganese. More than 35 percent of the analyzed samples from wells had objectionable amounts of one or both of these elements.

Major types of groundwater contamination in the basin are bacterial organisms from sewage, petroleum products from buried storage tanks, ni-

trates from agricultural activities and septic tanks, landfill leachate, and acid mine drainage.

INTRODUCTION

PURPOSE AND SCOPE

The investigation on which this report is based was performed as a part of the three-year Special Groundwater Study of the Susquehanna River Basin by the Susquehanna River Basin Commission in cooperation with the Pennsylvania and U. S. Geological Surveys. The Pennsylvania Survey will publish a series of four reports describing the groundwater resources of the Susquehanna River basin in Pennsylvania; this report on the Juniata River basin is the first of that series.

The intent of these studies is to provide up-to-date information on the quantity and quality of groundwater within the report areas to assist in the proper development and utilization of the resource. The study also provides baseline information necessary for basin-wide management of groundwater.

LOCATION AND DESCRIPTION OF THE AREA

The Juniata River drains an area of about 3,404 square miles in south-central Pennsylvania. All or most of Blair, Huntingdon, Juniata, and Mifflin Counties, along with parts of Bedford, Centre, Fulton, Perry, and Somerset Counties, are included in the drainage basin (Figure 1).

Much of the area is mountainous, consisting of a series of northeast-southwest-trending ridges and valleys. Farming, the predominant economic activity, is scattered throughout the valleys. Altoona and Lewistown are the only centers of population having more than 10,000 people, although many small towns dot the area. Table 1 lists the present and projected basin population by county of this primarily rural region. The preponderance of forest lands and agriculture over other land uses within the basin is clearly shown in Figure 2; approximately 91 percent of the land surface is in these use categories.

ACKNOWLEDGEMENTS

The writers are grateful to the many well owners who allowed their wells to be tested or sampled. The U.S. Geological Survey, the Susquehanna River Basin Commission, and the Bureau of Laboratories within the Pennsylvania Department of Environmental Resources provided valuable input and data to the project.

Figure 1. Map showing the location of the Pennsylvania portion of the Susquehanna River basin, the Juniata River basin, and the three additional report areas.

Table 1. Population Totals by County for the Juniata River Basin¹ (modified from Pennsylvania Department of Environmental Resources, 1979, 1980)

	Existing	Proj	ected
County	1970	1980	1990
Blair	135,492	135,295	143,691
Huntingdon	39,192	40,686	42,896
Bedford	42,447	42,223	45,182
Perry	28,681	29,660	31,864
Juniata	16,732	17,419	18,612
Mifflin	45,369	48,437	53,610
TOTALS	307,913	313,720	335,855

¹ Totals for Centre, Fulton, and Somerset Counties are not included because of the small land area that they occupy in this basin.

Water-quality information in the Broad Top area was provided by the Broad Top Study Group, Eric Groft, Coordinator. John Stephenson of the Department of Environmental Resources assisted in identifying groundwater contamination within the basin.

Figure 2. Percent land use by category, 1970.

WATER USE

Total water use in the Juniata River basin was estimated in the Pennsylvania Department of Environmental Resources State Water Plan (1979, 1980) to be about 175 mgd (million gallons per day) in 1970. Approximately 85 million gallons of this daily total, however, was used by power plants expected to be phased out by 1990.

About 28 percent of the remaining 90 mgd water use is from ground-water. Industry is the largest user of groundwater, followed by domestic and public supply in that order (Table 2). Figure 3 shows diagrammatically the relative proportions of groundwater use by category. The major users of groundwater have been listed in Table 3, *Public Water Suppliers Utilizing Groundwater*, and Table 4, *Industries Using More than 100,000 Gallons per Day of Groundwater*.

State Water Plan projections are for a 28 percent increase in public and domestic supplies by 1990; most of this increase will undoubtedly be supplied by groundwater. Smaller increases are projected for the other use

Table 2. Water Use in the Juniata River Basin

(modified from Pennsylvania Department of Environmental Resources (1979, 1980); quantities are in millions of gallons per day)

	Groundwater	Surface-water	Total	-	ected l use
Type of use	withdrawal	withdrawal	withdrawal	1980	1990
Public supply	4.1	20.5	24.6	25.9	31.3
Domestic supply	6.0	0.0	6.0	6.9	7.8
Industrial	10.7	27.0	37.7	28.3	27.3
Mineral	.3	10.0	10.3	13.1	15.9
Agricultural ¹	3.6	6.4	10.0	10.9	11.8
Golf course	.5	.5	1.0	1.1	1.2
Institutional	.4	0.0	.4	.4	.5
TOTALS	25.6	64.4	90.0	86.6	95.8

¹ Includes irrigation, which is difficult to estimate and varies considerably from year to year depending upon precipitation. Although the State Water Plan (Pennsylvania Department of Environmental Resources, 1979, 1980) projects more than a 500 percent increase in irrigation by 1990, the amount in this table is held constant because of the above-mentioned difficulty in making estimates and to accentuate changes in the other use categories.

Figure 3. Percent groundwater use by category, 1970.

Table 3. Public Water Suppliers Utilizing Groundwater

County	Water supplier	Sources
Bedford	Bedford Borough Water Authority Coaldale/Six Mile Run Water	Reservoirs; 1 spring
	Corporation	2 wells (Bd-457, -458)
	Defiance Water System	4 springs
	Everett Municipal Authority	2 wells (Bd-449, -450); 1 spring
	Fishertown Water Association	2 wells (Bd-466, -467); 1 spring
	New Enterprise Water Company	1 well (Bd-459)
	Osterburg Water Company	1 well (Bd-468)
	Pleasantville Water Authority	1 well (Bd-472)
	Rainsburg Water Authority	1 spring
	St. Clairsville Water Company	2 springs
	Salemville Water Association	2 springs
	Waterside-Loysburg Water System	3 springs; 1 well (Bd-463)
	Woodbury Borough Water Company	2 wells (Bd-464, -475); 3 springs
Blair	Curryville Water Authority	2 wells (Ba-338, -339)
	Duncansville Municipal Authority	1 well (Ba-340)
	East Sharpsburg Water Association	3 springs
	Fredricksburg Water Authority General Refractories	1 spring, unnamed mountain stream
	Company—Claysburg General Refractories	2 wells (Ba-346, -347); 1 spring
	Company—Sproul	2 wells (Ba-342, -343)
	Greenfield Park Water Company	1 spring (Indian Spring)
	Martinsburg Borough	7 wells (Ba-329, -330, -331, -332, -33 -336, -337)
	Roaring Spring Borough	1 spring (Roaring Spring); unnamed mountain stream
	Williamsburg Water Department R. C. Burket Water Company, Inc.	2 wells (Ba-344, -345); 3 reservoirs
	(Newry Borough)	l spring
Centre	Cedar Hill Water Company	2 wells (Ce-179, -180)
	Oak Ridge Authority	2 springs
	Rock Spring Water Company	1 well (Ce-213); Schalls Gap Run
	Upper Half Moon Water Company	2 wells (Ce-210, -211)
Fulton	Wells Tannery Water Supply	1 spring (Wells Tannery Spring)
Huntingdon	Alexandria Borough	2 wells (Hu-107, -108)
	Blairs Mills Water Works	1 spring
	Broad Top City Water Authority	1 well (Hu-260)
	Cassville Water Company	1 spring
	Dudley-Barnettstown Water	
	Association	1 well (Hu-342)
	Orbisonia Water Company	3 springs; 1 well (Hu-251)
	Petersburg Water Works	2 wells (Hu-9, -254)
	Saltillo Borough Water Works	4 springs; 1 well (Hu-237)
	Shirleysburg Municipal Authority Three Springs Borough Water	1 well (Hu-260)
	Commission Valley Rural Electric Cooperative,	4 springs
	Inc.	1 well (no data)

County	Water supplier	Sources
Huntingdon	Warriors Mark Water Company	1 well (Hu-256)
Juniata	McAlisterville Water Company	2 wells (Ju-22, -73); 2 springs
	Port Royal Municipality Authority	5 wells (Ju-74, -75, -76, -96, -97); Yocum Run
	Richfield Area Joint Authority	2 wells (outside basin); 3 springs
	Thompsontown Municipality Authority	2 wells (Ju-81, -82); Water Cress Spring
Mifflin	Allensville Municipal Authority	1 spring
	McVeytown Borough Authority	3 wells (Mf-267, -268, -271)
	Menno-O-Mutual Water Company	1 spring
	Municipal Authority of Union	
	Township	3 wells (Mf-149, -230, -232)
Perry	Millerstown Borough Water Works	4 springs; 2 wells (Pe-610, -663)
	Newport Borough Water Authority	1 well (Pe-37); Howes Run

Table 4. Industries Using More than 100,000 Gallons per Day of Groundwater

County	Company	Sources
Blair	Appleton Paper Div.—NCR, Roaring Spring	1 spring
	Small Tube Products, Inc.,	2 wells (Ba-377, -378)
	Altoona United States Envelope Co.,	1 spring
	Williamsburg	
	Westvaco Corp., Tyrone	3 springs
Juniata	Empire Kosher Poultry, Inc., Mifflintown	7 wells (Ju-361, -362, -363, -364, -365, -367, -369)
Mifflin	Abbotts Dairies, Belleville	2 wells (Mf-338, -339)

categories. However, a trend toward a higher percentage use of groundwater rather than surface water is expected in all categories because of limitations placed upon the use of surface water during low-flow periods.

Mineral extraction and processing sites are reported to utilize a relatively small fraction of the total groundwater withdrawn from the basin, although eight sites were identified that had surface and groundwater withdrawals in excess of 100,000 gallons per day. Figure 4 shows the locations of active quarries and pits as of 1976. Many of the excavations shown on the map do not intercept the water table and thus have minimal impact on the groundwater. Table 5 is a list of the active quarries and pits, keyed to the map numbers in Figure 4.

Table 5. Active Quarries and Pits, Juniata River Basin

	Map	c	Type or name	
County	no.	Producer	of operation	Product(s)
Bedford	-	Bedford County Stone and Lime Co.	New Paris quarry	Carbonate raw material for cement
	7	Feight Bros.	Open pit	Crushed and broken stone
	3	New Enterprise Stone and Lime	Ashcom quarry	Agricultural stone; carbonate
		Co., Inc.		aggregate; filter stone; lime; rock dust (carbonate) for coal mines
	4	New Enterprise Stone and Lime	Weymart quarry	Crushed and broken stone
		Co., Inc.		
Blair	5	Russell C. Burket	Open pit	Shale for fill and road building
	9	Chimney Rocks Lime and Stone Co.	Blair Township quarry	Carbonate aggregate
	7	Eldorado Stone Co.	Ellenberger quarry	Carbonate aggregate
	∞	Frankstown Sand Supply	Open pit	Sand
	6	Garfield Refractories Co.	Fire clay strip mine	Refractories
	10	Grannas Bros. Stone and Asphalt	Hollidaysburg quarry	Carbonate aggregate
		Co., Inc.		
	Ξ	J. L. Hartman	Sarah Furnace quarry	Crushed and broken stone
	12	Charles L. Lingenfelter	Open pit	Shale for fill and road building
	13	New Enterprise Stone and Lime Co., Inc.	Canoe Creek quarry	Carbonate aggregate; filter stone
	14	New Enterprise Stone and Lime Co., Inc	Roaring Springs quarry	Agricultural stone; carbonate
				aggregate; filter stone
	15	Sproul Lime and Stone Co.	Sproul quarry	Agricultural stone
Huntingdon	16	Harbison-Walker Refractories Co.	Mt. Union quarry	Crushed and broken stone
		Division of Dresser Industries, Inc.		
	17	Narehood Bros. Co., Inc.	Tyrone Forge quarry	Agricultural stone; carbonate
				aggregate
	18	New Enterprise Stone and Lime Co., Inc.	Hesston quarry	Agricultural stone; carbonate
				aggregate
	19	New Enterprise Stone and Lime Co., Inc.	McConnelstown quarry	Agricultural stone; carbonate
				aggregate

Table 5. (Continued)

(Map		Type or name	
County	no.	Producer	of operation	Product(s)
Huntingdon	20	New Enterprise Stone and Lime Co., Inc.	Orbisonia quarry	Agricultural stone; carbonate
	21 22 23	Parsons Stone and Lime Co. Pennsylvania Glass Sand Corp. Resco Products, Inc. (Alexandria Fire Clay Div.)	Shade Gap quarry and mill Keystone quarry Open pit	aggregate Carbonate aggregate Sand and gravel Refractories
Juniata	24	, ,	Fayette Township quarry	Agricultural stone; carbonate
Mifflin	25 26 27		Lewistown quarry McVeytown quarry Naginey quarry	aggregate Carbonate aggregate Carbonate aggregate
	28	Faylor-Middlecreek, Inc. General Paving and Construction, Inc.	Strodes Mills (pit and plant) Belltown quarry	Sand Carbonate aggregate
	30	Honey Creek Lime Co.	Shrader on arry and plant	-
Perry	31	H. T. Baughman Construction Co. Chester E. Bowser	Smadet quarry and plant Open pit Open pit	Lime Shale for fill and road building Crished or broken stone
	33	Russell J. Campbell	Open pit	Shale for fill and road building
	35	Four-Forty-One Corn	Open pit	Crushed or broken stone
	36	Fultz Bros., Inc.	Newport quarry Onen nit	Crushed or broken stone
	37	Harry B. Lesh	Open pit 1	Shale for fill or road building
	38	Harry B. Lesh	Open pit 2	Shale for fill and road building
	39	J. Harold Stydinger	Open pit	Crushed or broken stone
	40	G. R. Thebes	Open pits	Shale for fill and road building

HYDROLOGY

The groundwater resources of an area can be properly utilized and managed only when the occurrence and interrelationship of water in the atmosphere and on the land surface, in addition to the water in the subsurface, are described and quantified. This interrelationship is collectively called the hydrologic cycle and is shown diagrammatically in Figure 5.

The diagram shows that essentially all of the water in the Juniata River basin enters as precipitation, and leaves as either water vapor to the atmosphere (evapotranspiration), surface runoff, or groundwater discharge to streams. Average annual amounts shown in the diagram are approximations and are not intended for use in detailed planning. A detailed discussion of the amount and variation of the components in the cycle is given in the sections that follow.

WATER BUDGETS

A water budget is a quantitative expression of the major components of the hydrologic cycle. The water budget balances the water that enters the

Figure 5. The annual hydrologic cycle and water budget for the Juniata River basin.

basin as precipitation with the water that leaves the basin as evapotranspiration and streamflow. A simplified equation expressing this balance is:

 $P = R_g + R_s + ET + \Delta S$

where

P = precipitation

 R_g = groundwater discharge to streams

 $R_s = surface or direct runoff$

ET = water lost by evaporation and transpiration

 ΔS = change in amount of water in storage

 $(R_g + R_s = total streamflow)$

Water budgets were prepared for the entire river basin and four smaller basin areas for the water years 1945, 1947, 1949, 1953, and 1958 (Table 6). Recognizing the difficulty in obtaining uniform conditions throughout such a large basin, three of the years were selected to obtain information for near normal precipitation conditions (1949, 1953, and 1958). For years having much-above-normal precipitation and much-below-normal precipitation, information was obtained from 1945 and 1947, respectively. Two additional criteria were used to select the years analyzed: (1) streamflow at the beginning and at the end of the water year had to be nearly the same to minimize changes in storage, and (2) the years were prior to the regulation of low flows by the Raystown Dam.

For comparison purposes, long-term average values for precipitation, total runoff, and evapotranspiration are given for those basins having sufficient records.

PRECIPITATION (P)

Records of precipitation from the weather station that was either within or most representative of a particular basin were used in the water budget analysis. These data were also used to prepare a map showing average annual precipitation within the Juniata River basin (Figure 6). Average annual precipitation ranges from about 35 inches in the central part of the area to about 40 inches in the east and west; the weighted average for the whole basin is about 37 inches.

Use of average annual precipitation for water resource planning, however, can be somewhat misleading. Figure 7 is a bar graph showing annual precipitation totals at Mapleton Depot in Huntingdon County, which is centrally located within the basin. The number of years that had above or below normal precipitation are approximately evenly divided (20 above and 19 below), but less than half (15) are within 10 percent of the mean. Much of the precipitation that is in excess of normal is rapidly lost to overland runoff and streamflow and only a small amount can be stored for dry years. Thus the usable water resource approaches the mean for those years having precipitation that is near normal and above, which occur about 70 percent

Table 6. Water Budgets for Major Stream Basins

Water	Precipitation		Surface runoff		Groundwater discharge		Evapotranspiration
year	P (inches)	II	R _s (inches)	+	Rg (inches)	+	ET (inches)
			JUNIATA	JUNIATA RIVER AT NEWPORT	VEWPORT		
945	44.2	I1	7.2	+	10.0	+	27.0
947	32.0	Ш	4.6	+	8.4	+	19.0
1949	42.8	II	5.3	+	10.5	+	27.0
953	39.7	11	8.5	+	11.4	+	8.61
1958	43.4	11	5.7	+	6.6	+	27.8
Long-term Av.			Tota	Total runoff (inches)	.hes)		
(1941-1970)	36.3	II		15.5		+	20.8
			JUNIATA RI	VER AT HU	JUNIATA RIVER AT HUNTINGDON		
1945	44.2	Ш	7.7	+	11.7	+	24.8
1947	29.6	11	4.7	+	8.6	+	15.1
1949	38.8	П	4.7	+	11.7	+	22.4
1953	37.4	11	9.9	+	14.1	+	16.7
1958	36.7	11	5.1	+	10.7	+	20.9
ong-term Av.			Tota	Total runoff (inches)	shes)		
(1941-1970)	34.9	II		16.8		+	18.1
			RAYSTOWN BRANCI	H, JUNIAT	RAYSTOWN BRANCH, JUNIATA RIVER AT SAXTON		
945	42.0	II	7.2	+	9.0	+	25.8
1947	27.7	П	3.4	+	6.9	+	17.4
1949	42.2	11	5.2	+	11.2	+	25.8
1953	43.0	II	7.6	+	11.6	+	23.8
958	42.5	II	5.8	+	10.0	+	26.7
ong-term Av.			Tota	Total runoff (inches)	hes)		
(0701 101)	16.3			146		+	216

Table 6. (Continued)

Water year	Precipitation P (inches)	11	Surface runoff R _s (inches)	+	Groundwater discharge Rg (inches)	+	Evapotranspiration ET (inches)
	!		KISHACOQUILLAS CREEK AT REEDSVILLE	AS CREEK A	AT REEDSVILLE		
Ç <u>.</u>	45.9	11	4.2	+	13.2	+	28.5
1947	32.7	-	3.6	+	13.7	+	15.4
) iii	39.0	ll	4.7	+	12.0	+	23.1
, 00	11.1	11	S.3	+	16.4	+	17.8
ong-term Av	· I t	11	3.7	+		+	23.5
(1941-1970)	3.7 %	-	Iotal	Iotal runoff (inches)	ies)		
		I		16.9		+	20.9
v	(TUSCARORA CREEK AT PORT ROYAL	REEK AT F	PORTROYAL		
1947	45.9 7.08	li i	6.0	+	8.9	+	31.0
. 6	30.8	11 1	v.4 v. r	+	7.8	+	20.4
. 10	30.5	1 1		+	10.3	+	23.8
oc	41.1	11 1	8.1	+	12.4	+	19.0
	1.1.	11	0.0	+	9.1	+	26.0

Figure 6. Average annual precipitation in the Juniata River basin (based on data from U. S. Weather Bureau, 1941-1970).

7. Annual precipitation at Mapleton Depot, Huntingdon County. Figure

of the time. During the remaining years there is considerably less water available. This suggests that if water resource planning were based on mean precipitation, water shortages could be expected approximately 30 percent of the time.

A frequency plot of annual precipitation is a somewhat more useful tool for analyzing the availability of water (Figure 8). For example, about 20 percent of the time, precipitation at Mapleton Depot is equal to or less than 32 inches (the 1947 precipitation for the Juniata River at Newport). This is equivalent to a 5-year recurrence interval, which is the interval at which, on the average, a water budget of similar magnitude to that of 1947 might be expected to occur.

(percent of years that precipitation is equal to or less than the measured amount)

Figure 8. Frequency plot of annual precipitation at Mapleton Depot, Huntingdon County, for the period 1941-1979.

STREAMFLOW $(R_q + R_s)$

Streamflow was obtained from the records of the U. S. Geological Survey for the five gaging stations listed in Table 6. The gage at Newport was

selected because it measures streamflow from nearly all of the basin. Flow from the northwestern and southern parts of the basin is measured at Huntingdon and Saxton, respectively. The gages at Reedsville and Port Royal were selected because they measure flow from areas almost entirely underlain by carbonate and noncarbonate rocks, in that order. The groundwater and surface-water components of streamflow were separated on hydrographs.

On the average, total runoff accounts for about 40 to 48 percent of annual precipitation, or 14.6 to 16.9 inches (one inch of precipitation per year on one square mile is roughly equal to 17.4 million gallons). During the wet year analyzed (1945), baseflow averaged about 62 percent of total streamflow, and during the dry year (1947) the average was approximately 67 percent. The average for the normal years was 66 percent.

Groundwater constitutes a greater percentage of streamflow in carbonate rocks than in other rock types. This is demonstrated by data from Kishaco-quillas Creek, a substantial part of which is underlain by carbonate rocks, where baseflow averaged 76 percent of streamflow. This can be contrasted to Tuscarora Creek, which is underlain by very little carbonate rock and where baseflow averaged only 61 percent of streamflow.

Figure 9 is a frequency plot of annual runoff as measured at the Newport gage. Such a plot is useful in predicting the probability of occurrence of annual flows. For example, the plot shows that 10 percent of the years during the 39-year period of record had streamflows that were 10.5 inches or less. From this it can be predicted that streamflow will be 10.5 inches or less on the average of one of ten years. Obviously, a longer historical record would provide a more accurate prediction.

A frequency plot of annual baseflow was made by correlating the data in Table 6 and the total runoff plot. The small number of data points limits the utility of the graph. However, it appears that annual baseflows of less than 7.5 inches (approximately 250 (gal/min)/mi² [gallons per minute per square mile]) can be expected about 10 percent of the time.

EVAPOTRANSPIRATION (ET)

Evapotranspiration is a collective term for (1) evaporation from water bodies, wetted surfaces, and moist soil by direct evaporation, and (2) vapor that escapes from living plants by the process of transpiration. The amount of ET varies with the length of the growing season, average temperature, amount, intensity, and timing of precipitation events, and humidity. Consumptive losses to ET are at a minimum between the first killing frost in the fall and the active resumption of plant growth in the spring. Most of the recharge to the groundwater system occurs during this time period, as shown in Figure 10.

The amount of water lost to ET in the basin was estimated by computing the difference between precipitation and streamflow for the long-term

(percent of years that runoff is equal to or less than the measured amount)

Figure 9. Frequency plot of annual runoff from the Juniata River at Newport for the period 1941-1979.

budget periods. In the entire basin, ET averages 20.8 inches, or about 57 percent of precipitation. The computed average ET for smaller areas ranges between 18.1 and 20.9 inches.

ESTIMATE OF AREAL AVAILABILITY OF GROUNDWATER

Baseflow data can be used to calculate the average groundwater discharge per unit of land surface. This is a practical estimate of the limits of development for a basin or aquifer. Long-term groundwater withdrawals in excess of the average discharge can cause a progressive lowering of water levels and severely reduce the flow of streams.

Groundwater discharges from the entire basin ranged between 280 and 380 (gal/min)/mi², whereas discharges from the basin primarily underlain by carbonate rocks ranged between about 400 and 540 (gal/min)/mi². These values represent the range of discharges that would be expected to occur approximately 60 percent of the time; about half of the remaining years have either higher or lower discharges.

Figure 10. Mean monthly temperature and precipitation at Kegg, and mean water level in well Bd-150 (1965-1979).

HYDROGEOLOGY

GEOLOGIC SETTING

Most of the Juniata River basin lies within the Appalachian Mountain section of the Valley and Ridge physiographic province. The topography in this province is characterized by a northeast-southwest-trending succession of narrow, steep-sided ridges and valleys. A very small part of the basin is in the Appalachian Plateaus physiographic province, which consists of a flat upland area that is deeply dissected by many steep-walled, narrow valleys.

The basin is underlain by a thick sequence of sedimentary rocks consisting chiefly of sandstone, siltstone, shale, and limestone. Minor amounts of

coal are present in the Broad Top and Plateaus areas. The sequence consists chiefly of a lower calcareous unit overlain by three alternating noncalcareous and calcareous units that were deposited more or less continuously from the Cambrian ($520 \pm$ million years ago) through Pennsylvanian Periods ($300 \pm$ million years ago).

Near the end of the Paleozoic Era the long period of subsidence and sedimentation ended with the onset of regional tectonic (mountain-building) forces that caused the rock layers to be folded and in some places faulted. Erosion of these large folds produced the existing series of ridges and valleys. The ridges are predominantly underlain by sandstone, which is more resistant to weathering than the valley-forming limestone and shale.

OCCURRENCE AND MOVEMENT OF GROUNDWATER

The portion of precipitation that does not run off or is not lost through evapotranspiration infiltrates the soil and moves downward through the soil and rock until it reaches the water table, below which all the interconnected voids are filled with water. After reaching this saturated zone, the water moves slowly downward and laterally toward lower altitudes (or lower hydraulic potential) and eventually returns to the land surface, either from springs or from channel seepage, to provide the base flow to streams.

The water table fluctuates according to the relative amounts of recharge to and discharge from the groundwater system. Figure 10 shows the mean monthly temperature and precipitation measured at Kegg in Bedford County. The groundwater levels shown are from an observation well near Kegg. Although the mean precipitation is more or less uniformly distributed throughout the year, most recharge occurs after the spring thaw and before the onset of vigorous plant growth in May, and after the first killing frost in October and before the ground freezes in late December. During the summer there is normally a steady decline in groundwater levels because large evapotranspiration losses allow very little recharge to reach the saturated zone. Thus the seasonal variation in precipitation is more critical to the groundwater resource than the annual total. A dry spring or fall may have considerable effect, whereas a dry summer probably would have much less impact on the resource. A hydrograph of the Juniata County observation well for the period 1968 to 1980 (Figure 11) is included to show minor fluctuations in the annual pattern of water levels.

Most field data indicate that the water table forms a subdued replica of the land surface, so that water levels under hills are at higher altitudes than those in valleys. Water levels measured in the Juniata River basin have a median depth of 15 feet in valleys (333 wells), 37 feet under hillsides (547 wells), and 66 feet under hilltops (89 wells). Bedrock units that consist primarily of shale have the shallowest median water levels. For example, the combined Brallier and Harrell Formations have median water levels of 10,

Figure 11. Hydrograph of well Ju-351 for the period 1968-1980.

30, and 45 feet for valley, hillside, and hilltop locations, respectively. Highpermeability rock units such as limestone and some sandstone generally have the deepest water levels.

FACTORS THAT INFLUENCE THE YIELDS OF WELLS

The yield of a well depends largely on the size, number, distribution, and degree of interconnection of the water-filled openings penetrated by the well. These openings or water-bearing zones may be fractures, bedding-plane partings, or small voids between the grains that comprise the rock.

Table 7 summarizes data available on water-bearing zones for the report area. The deepest reported zone for each rock unit is also listed. In the table, the denominator of the fraction indicates the number of wells penetrating a particular depth range. The denominator of the shallowest range obviously indicates the total number of wells in that formation for which data on depth to water-bearing zones were obtained. Thus, data were obtained for 43 wells in the Mauch Chunk Formation. The value (or magnitude) of the fraction gives the relative abundance of zones with depth. In the Mauch Chunk, zones were most abundant in the 51- to 100-foot interval. The data given in the table for the shallowest interval (0 to 50 feet) are somewhat misleading because the casing length and static water level were not taken into account. However, the data do indicate the abundance of usable zones in that interval.

Geologic factors that control the type and distribution of water-bearing zones, and thus well yields, are described in the following three sections.

Lithology

Rock type is more important than any other factor in determining well yield, because the occurrence of both primary and secondary porosity and permeability varies according to lithology.

Lithologic factors that control development of secondary openings consist of rock susceptibility to solution, rock susceptibility to fracturing, and the presence and spacing of bedding-plane partings.

Different types of rock respond differently to the various natural stresses placed upon them. Layers of sandstone or dolomite most generally fail by brittle fracture when stressed, whereas limestone or shale layers tend to flow. Thus fractures are generally more abundant in the former two rock types.

Enlargement of primary and secondary openings by solution occurs mainly in the carbonate rocks—limestone and dolomite. In a few instances, however, the permeability of sandstones has been increased by the solution removal of calcite cement from the constituent grains. The Ridgeley Member of the Old Port Formation provides a good example of this type of solution.

Table 7. Summary of Data on Water-Bearing Zones

	Ratio	of number	of water-b	earing zon	les of speci	fied depth	range to nu	umber of w	'ells penetr	Ratio of number of water-bearing zones of specified depth range to number of wells penetrating this range	ange	
Group,										0	29	
formation, or member	0-50	51-100	101-150	151-200	Depth 201-250	Depth range (in feet) -250 251-300 301-	feet) 301-350	351-400	401-450	451-500	>500	Deepest
Conemaugh Group	8 8	C1 4	0 1	0 -	0 1							335
Allegheny Group	N N	w 4	- m	-								175
Mauch Chunk Formation	23	41	13	13	8 1	c1 Q	- 4					328
Pocono Formation	2 11	111	2 2	7 m	- -	0 1	- -					320
Rockwell Formation	2 1	0 -										70
Catskill Formation ¹	25	57	72	53	33	11 34	9 23	4 13	0 9	6 2	m v	260
Irish Valley Member of Catskill Formation	31	30	19	7 4								220
Lock Haven Formation	4 21	10	4 9	- 4	- 8	7						285
Foreknobs Formation	23	42	23	13	2 2	8 4	0					300

				HYD	ROGEO	LOGY				25
343	335	457	388	300	635	355	760	302	470	300
0 0		0 -								
0 -		- 60	0 -							
0 -		0 4	0 -		0 8	0 -	2 2			0 0
		- %			0 0	0 1	0 0	0 0	- ~	0 0
0 0	2 8	13	2 8		8 /	- -	0 0	0 4	2 2	0 0
- 4	2 8	9 21	1 9	2 2	5 16	2 6	w 4	6 10	8 6	~ %
0 1	6 14	6 25	8 11	7	8 23	4 9	6	4 21	10	6 11
5	15	40	14	2 4	19	4 6	6	10	26 40	10
114	15	23	38	12	30	8 12	8 20	9 24	43	36
31	32	84	62	9	48	12	6 24	33	45	89
15	35	95	47	20	43	8 22	7 26	35	35	95
Scherr Formation	Trimmers Rock Formation	Brallier and Harrell Forma- tions, undivided	Mahantango Formation	Marcellus Formation	Hamilton Group	Onondaga Formation	Old Port Formation	Onondaga and Old Port Forma- tions, undivided	Keyser and Tonoloway Forma- tions, undivided	Wills Creek Formation

Table 7. (Continued)

	Deepest 200 zone	240	190	385	335	240	160	315	350	240
angr	>500									
	451-500									
	401-450								0 0	
	351-400	0 1	0 1	- -					0 0	
,	feet) 301–350	0 1	0 -	0 0	3 8			- -	7 7	
	Depth range (in feet) -250 251-300 301-	0 1	0 -	4 \ \d	4 9			- -	0 6	0 -
	Deptl 201-250	6 8	0 -	8 7	3	- -		0 0	0 4	m m
	151-200	8 6	2 2	9	10	- -	- -	7 7	4 1	- E
	101-150	3	7 7	6	11 20	0 -	0 1	1 8	16	v 4
	51-100	20	8 8	13	12	0 0	0 1	_ E	23	1 2
	0-50	23	9	19	8 27	w w	0 0	2 6	16	2 2
	Group, formation, or member	Bloomsburg Formation	Mifflintown Formation	Bloomsburg and Mifflintown For- mations, undivided	Clinton Group	Tuscarora Formation	Juniata Formation	Bald Eagle Formation	Reedsville Formation	Coburn Formation through Nealmont Formation, undi-

				HYDROC	GEOLOG	GΥ			
390	365	118	433	280	177	436	317	85	86
						0 -			
			0 -			0 -			
			- -			4 4			
7 7	- -		0 -	0 -		7 9			
7 7	- -		_ 4	V 4		4 13	0 -		
3 0	v 4		- ~	9		7	7 1		
9	6 2		6	8 11		8 24	7 7		
9 6	3		r 11	8 12	- -	8 25	2 2		
12	- 8	7 7	13	19	0 -	13	4 9		0 1
10	1 6	0 1	8 16	10 28	7	34	0 1	- -	- -
14	4 11	0 1	18	30	0 0	34	1 6	0 0	0 1
Coburn Formation through Loysburg Formation, undivided	Bellefonte Formation	Axemann Formation	Bellefonte and Axemann Forma- tions, undivided	Nittany and Stonehenge/Larke Formations, undivided	Beekmantown Group	Gatesburg Formation	Warrior Formation	Pleasant Hill Formation	Waynesboro 0 1 0 98 Formation 1

Figure 12 is a graph showing the percent frequency distribution of non-domestic well yields that have been grouped according to dominant rock types. The importance of lithology is apparent; yields from the carbonate rock types are consistently higher than those from either the interbedded sandstone and shale or the comparatively low yielding shale.

Figure 12. Percent frequency distribution of nondomestic well yields, grouped according to dominant rock type.

Topography

Many studies (Meisler and Becher, 1971; Wood and others, 1972; Becher and Taylor, in press) have evaluated the relationship of topography and well yield. All have found a significant relationship between topographic position of the well and well yield, the wells in higher topographic positions (hilltops and hillsides) having smaller yields than those in lower topographic positions (valleys and gullies or draws).

Valleys or draws often form where the rocks are most susceptible to physical or chemical weathering, and hilltops are generally underlain by more resistant rocks. In addition to lithologic variations, zones of weakness in rocks such as bedding partings, joints, cleavage, and faults are often weathered to produce low areas in the topography.

Figure 13 is a graph showing the percent frequency distribution of non-domestic well yields that have been grouped according to topographic position. The graph shows that in the lower yield range (less than 20 gal/min), valley wells are about twice as productive as hillside and hilltop wells. In the higher yield range, valley wells are nearly three times as productive as in the other settings. The lack of graphical separation between wells in hillside and hilltop locations can probably be explained by the small number of wells in the hilltop category.

Geologic Structure

Geologic structure, which includes faults, folds, fractures, and orientation of the rock layers (bedrock dip), often has an important influence on the yield of wells. The locations of major structures are shown on Plate 1.

Faulting may create openings that yield substantial amounts of water. Occasionally, however, faults may be filled with clay, calcite, or quartz and may yield little or no water, especially faults in carbonate rocks.

In the vicinity of fold hinges, considerable secondary permeability may be developed because of a reported increase in fracture abundance, occasional well-developed cleavage, and the presence of horizontal or nearly horizontal bedding near the fold hinges.

Wells that penetrate fractured bedrock will yield more water than those that do not penetrate any fractures. Valleys and depressions are frequently localized along fractures or fracture zones; thus wells in these settings have a high probability of penetrating fractured bedrock. Other features that are reported to be good indicators of fractured bedrock are faults and fracture traces (natural linear features observed on aerial photographs that may be the surface expressions of fractured bedrock).

Well yields generally increase with decreasing dip of strata because more of the openings that normally occur along bedding (bedding-plane partings) are penetrated by a well in nearly horizontal strata than in steeply inclined strata.

Figure 13. Percent frequency distribution of nondomestic well yields, grouped according to topographic position.

GROUNDWATER QUALITY

The amount and type of dissolved mineral matter found in groundwater are determined largely by the composition of the soil and rock through which the water flows and the occurrence of the water within the groundwater flow system. Table 8 lists the source and significance of principal mineral constituents that were detected in the groundwater.

In order to evaluate the groundwater quality within the Juniata River basin, 164 water samples were collected from wells and springs and analyzed in the laboratory of the Department of Environmental Resources. The results of these analyses are listed in Table 15 and summarized by aquifer in Table 9.

The major observed differences in the chemistry of water from the various rock units occur between water from primarily calcareous units and water from primarily noncalcareous units. Table 10 summarizes the analyses according to dominant rock type.

The median hardness from units composed mainly of limestone and/or calcareous shale is 200 mg/L as compared to a median of only 89 mg/L for water from units composed predominantly of noncalcareous shale, silt-stone, and sandstone. The highest concentrations of iron generally occur in the noncalcareous units, as evidenced by their median iron concentration of 0.14 mg/L as compared to a median of 0.04 mg/L for calcareous units.

Additional information on hardness, specific conductance, and pH was obtained from the 874 field analyses summarized in Table 11. These and other common constituents in groundwater are described in the following sections. The overall chemical character of groundwater from individual aquifers is described in the section entitled "Stratigraphy and Water-Bearing Properties of the Rocks."

SPECIFIC CONDUCTANCE AND TOTAL DISSOLVED SOLIDS

The specific conductance of a water depends on the amount and nature of its dissolved solids. The relationship of laboratory measurements of dissolved solids to field measurements of specific conductance is shown in Figure 14. Although there appears to be considerable scatter in the data plotted on the graph, they correlate reasonably well, and the approximate dissolved-solids content of the groundwater can be obtained by multiplying the specific conductance by 0.65 and adding 8.3.

The maximum recommended limit for dissolved solids in drinking water is 500 mg/L (U. S. Environmental Protection Agency, 1975), which is equivalent to a specific conductance of about 780 micromhos. Slightly less than 5 percent of the water samples had a specific conductance of 780 or more, and most of these were from rocks composed mainly of limestone or calcareous shale.

HARDNESS

Hardness in water is a measure of its resistance to sudsing and is primarily caused by the presence of calcium and magnesium ions. The field measure-

Table 8. Source and Significance of Selected Dissolved Constituents and Properties of Groundwater

_
Q
Ę
ਲ
0
Ξ
ĕ
•
S
ಡ
pt
6
$\ddot{\circ}$
\times
e
<u></u>
\vdash
60
_
, = .
$\overline{}$
63
-
=
E.
be
15
\Box
a
gI
=
Ξ.
\equiv
.=
0
ar
ns
O
. =
at
12
-
H
ce
\equiv
0
Ŏ.
\subseteq

Constituent		
or property	Source or cause	Significance
Arsenic (As)	Widely distributed; generally occurs in compounds that have a low solubility in water. May be added to water supplies through waste disposal and is present in certain insecticides and herbicides.	Toxic to mammals and aquatic species; also reported to be carcinogenic. Maximum recommended limits for arsenic are 0.05 mg/L for domestic water supplies and 0.10 mg/L for irrigation water. ²
Aluminum (AI)	Abundant and widely distributed in rocks and soils.	Rarely occurs in natural water in concentrations greater than a few tenths of a milligram per liter. No reported detrimental effects.
Cadmium (Cd)	Relatively rare in rocks and soils. Metal plating, storage battery manufacture, and numerous other industrial processes have released cadmium into both surface and groundwaters.	Toxic to almost all body systems; can produce hypertension, kidney disease, pulmonary edema and osteomalacia. Maximum limit recommended for drinking water is 0.01 mg/L. ²
Chromium (Cr)	Abundant element in the earth but not generally present in high concentrations in natural waters. Presence of high concentrations is mostly related to industrial wastes.	The trivalent state is the most common found in nature, and is an essential trace element for mammals. The hexavalent state is the one found most commonly in industrial processes; this form is a systemic poison and is corrosive. Maximum limit recommended for drinking water is 0.05 mg/L. ²
Lead (Pb)	Lead has a low solubility, so it is generally not found in high concentrations in natural waters. The most common source is lead pipes in older plumbing systems, especially in waters that have a low pH. Also occurs in aragonite, replacing calcium, and in feldspar, replacing potassium.	Toxic to almost all body systems. Inhibits formation of hemoglobin and leads to symptoms of anemia. Accumulates in bones and soft tissues, causing kidney damage and neurological symptoms in advanced cases. Known to cause mental retardation, cerebral palsy, and optic nerve atrophy in children.
Magnesium (Mg)	Widely distributed in all rocks and soils, particularly in dolomite.	No reported detrimental effects.
Nickel (Ni)	Naturally occurring in all rocks, though in low concentrations.	Apparently nontoxic to humans.

Zinc (Zn)	Widely distributed in rocks and soils but in small quantities, except where concentrated in ore bodies. May also dissolve from galvanized pipes and may be present in industrial wastes.	Necessary trace element for human metabolism. Deficiency can result in stunted growth and poor healing of wounds. Can be toxic when ingested in large quantities; causes gastrointestinal distress. Maximum recommended limit for drinking water is 5.0 mg/L. ²
Silica (SiO ₂)	Dissolved from practically all rocks and soils (commonly less than 30 mg/L).	Forms hard scale in pipes and boilers. When carried over in steam of high-pressure boilers it forms deposits on blades of turbines.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment.	On exposure to air, iron in groundwater oxidizes to a reddishbrown precipitate. More than about 0.3 mg/L stains laundry, porcelain, and utensils reddish brown. Objectionable for food processing, textile processing, beverages, ice manufacturing, brewing, and other processes. Maximum limit recommended for drinking water is 0.3 mg/L. ²
Manganese (Mn)	Dissolved from many rocks and soils. Often found associated with iron in natural waters but is not as common as iron.	More than 0.2 mg/L precipitates upon oxidation. Manganese has the same undesirable characteristics as iron but is more difficult to remove. Maximum limit recommended for drinking water is 0.05 mg/L. ²
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all rocks and soils, especially from limestone, dolomite, and gypsum.	Cause of most of the hardness, and in combination with bicarbonate is the cause of scale formation in steam boilers, water heaters, and pipes (see hardness). Water low in calcium and magnesium is desired in electroplating, tanning, dyeing, and in textile manufacturing.
Sodium (Na) and potassium (K)	Dissolved from practically all rocks and soils. Sewage and industrial wastes are also major sources.	Concentrations of less than 50 mg/L have little effect on the usefulness of water for most purposes. More than 50 mg/L may cause foaming in steam boilers.
Bicarbonate (HCO ₃) and carbonate (CO ₃)	The bicarbonate ion may result from atmospheric carbon dioxide and the solution of carbon dioxide produced during the decomposition of organic matter in the soil. The major source, however, is from the solution of limestone.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hotwater facilities to form scale and release corrosive carbon dioxide gas (see hardness).

Table 8. (Continued)

Constituent		
or property	Source or cause	Significance
Sulfate (SO4)	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in some industrial wastes and sewage.	Sulfates in water containing calcium may form hard calcium sulfate scale in steam boilers. Maximum limit recommended for drinking water is 250mg/L .
Chloride (Cl)	Dissolved from rocks and soils in small quantities. Relatively large amounts are derived from sewage, industrial wastes, and highway salting practices.	In large quantities chloride increases the corrosiveness of water. Large amounts in combination with sodium will give a salty taste. Maximum limit recommended for drinking water is 250 mg/L. ²
Fluoride (F)	Dissolved in small to minute quantities from most rocks and soils.	About 1.0 mg/L of fluoride in drinking water is believed to be helpful in reducing the incidence of tooth decay in small children; larger concentrations cause mottling of enamel. It is recommended that fluoride not exceed 1.7 mg/L where the 5-year average of daily maximum air temperature is 53.0 to 53.7°F. ²
Nitrate (NO3)	Decaying organic matter, sewage, and fertilizers are principal sources.	Small concentrations have no effect on usefulness of water. Most groundwaters contain less than 10 mg/L. Waters containing more than 45 mg/L may cause methoglobinemia (a disease often fatal in infants) and, therefore, should not be used in infant feeding. Maximum limit recommended for drinking water is 45 mg/L. ²
Hardness (as CaCO ₃)	In most waters nearly all of the hardness is due to calcium and magnesium. All of the metallic cations other than the alkali metals also cause hardness. There are two classes of hardness—carbonate (temporary) and noncarbonate (permanent). Carbonate hardness refers to the hardness resulting from cations in association with carbonate and bicarbonate; it is called temporary because it may be removed by boiling the water. Noncarbonate hardness refers to that resulting from cations in association with other anions.	Hardness consumes soap before a lather will form and deposits soap curds on bathtubs. Carbonate hardness is the cause of scale formation in boilers, water heaters, radiators, and pipes, causing a decrease in heat transfer and restricted flow of water. Waters of hardness up to 60 mg/L are considered soft; 61 to 120 mg/L, moderately hard; 121 to 180 mg/L, hard; and more than 180 mg/L, very hard. Milligrams per liter divided by 17.1 yields the concentration in grains per gallon.

Dissolved solids—A measure of all the chemical constituents dissolved in 9 particular water. The maximum limit recommended for drinking water is Specific conductance (micromhos at 25°C)—A measure of the capacity of a water to conduct an electrical current. It varies with concentration and de-500 mg/L, but water containing up to 1,000 mg/L may be used where less mineralized supplies are not available. $^{
m l}$

gree of ionization of the constituents. May be used to obtain a rapid estimate of the approximate dissolved-solids content of water.

pH—The negative logarithm of the hydrogen-ion concentration. A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote alkaline solutions; values lower than 7.0 indicate acidic solutions. Corrosiveness of water generally increases with decreasing pH. The pH of most natural waters ranges between 6 and 8.

Temperature—The temperature of groundwater that occurs between the water table and about 60 feet below the water table is approximately the same as the average annual air temperature (Lovering and Goode, 1963, p. 5); below this point, groundwater temperatures increase with depth about 1°F for each 50 to 100 feet.

¹ After Lloyd and Growitz (1977), p. 51-54.

² U. S. Environmental Protection Agency (1976), Quality Criteria for Water.

Table 9. Median Chemical Analyses of Groundwater

(Results in milligrams per liter except where otherwise indicated)

Group or formation	Number of	(stinn) Hq	oinserA (&A)	Aluminum (Al) Alkalinity	(as CaCO3)	Cadmium (Cd) Calcium	(Ca)	Chloride (Cl) Chromium	(TD) Dissolved	sbilos sbiroul A	(F)	(as CaCO3)	(Fe) Lead	(Pb) Manganese	(nM) muisəngaM	(Mg) Nickel	(iV)	N-£HN	N-7ON	N-EON	Potassium (X)	muibo? (EV)	Sulfate (\$O2)	Total org. carbon	(nS) oniS
Conemaugh Gp.	7	6.0	<0.01	0.10	84	<0.003	79.2	1	0.025	1125 0.1			2 <0	.05 2.	1 1			0.58 0.00		0.02	7.61	95.6	658	1	1.12
Mauch Chunk Fm.	2	7.1	<.01	.04	102	<.003	29.9		.01	162 <.1				<.05				.02	.002			6.71	20	3.0	.02
Pocono Fm.	3	6.1	<.01	.05	24	<.003	2.9		.03	42 <.	*											4.07	5		80.
Catskill Fm.	27	7.3	<.01	.05	104	<.003	16.9		.01													<10	15	1.0	.03
Foreknobs Fm.	S	7.3	<.01	.02	124	<.003	22.8	1.0 <	<.01	216	.14	011	.23 <.	<.05	.11 10	. 01	.02	.02	.002	.04	1.16	8.47	20	1	.07
Scherr Fm.	9	7.4	<.01	.04	131	<.003	24.3		.02													8.74	20	I	10.
Trimmers Rock Fm.	2	6.7	<.01	.02	69	<.003	12.0		.03											\vee	-	<10	25	I	.02
Brallier and Harrell Fms., undiv.	91	7.4	<.01	.04	135	<.003	24.8		.01													21.2	20		.01
Hamilton Group	24	7.3	<.01	.04	112	<.003	35.2		.01								<.01	. 01.				<10	20		.02
Onondaga and Old Port Fms., undiv.	13	7.2	<.01	.03	108	<.003	57.7	3.0	.01													1.21	20		.02
Keyser and Tonoloway	1	7.6	<.01	.05	216	<.003	59.6	4.0	.01				.> 60.			٧	<.01	•	002			1.06	1.5		.02
Fms., undiv.																									
Wills Creek Fm.	12	7.7	<.01	.03	213	<.003		3.5	.01	1. 172	.13	193	.04 <.	<.05	.01 16	.> 6.91	<.01	41.	.002	.64	3.19	2.67	30	1	.01
Bloomsburg and Mifflintown	4	7.3	<.01	<.01	232	<.003	82.4	4.5					•					V			1.73	4.02	30	1	10:
Fms., undiv.																									
Clinton Gp.	3	8.0	<.01	.05	138	<.003	21.6		.01		.17		.15 <.			*		.21 .0	.004		2.08 2	24.8	15	I	.01
Reedsville Fm.	4	9.7	<.01	.04	85	<.003	8.91	2.0	.01	1. 271	.14 1	134	•	<.05	.04 5	5.1	.01			.04	86:	7.04	36		.03
Coburn Fm. through Loysburg	7	7.7	<.01	.04	202	<.003	46.2		.01				.12 <.		-			.845	003 1	٧.	<10*	19.8	25		90.
Fm., undiv.																									
Bellefonte and Axemann	6	7.4	<.01	.03	264	<.003	62.4	> 0.8	<.01	450 .1	.10 2	284 .(.02 <.	<.05	.01 32	32.3 <.1	<.01	.01	004 7	7.16	5.06	6.38	30	1	.02
Fms., undiv.																									
Nittany and Stonehenge/	S	7.4	<.01	.03	206	<.003	45.6	4.0 <	<.01	306 <	<.10 2	200	.03 <.	<.05 <.	<.01 26	26.1 <.	. 10.>	. 10.	.002 2	2.64 <	<10 <	<10	20		.28
Larke Fms., undiv.																									
Stonehenge/Larke Fm.	3	7.8	<.01	.01	180	<.003	40.7		.01				•								I	99.	10	I	.03
Gatesburg Fm.	9	7.6	<.01	.04	211	<.003	49		.01	254 < .10		208	.> 01.	<.05	.01 22	22.6	.01	.01	.002	1.5	1.1	6.05	15	1	.02
Combined Juniata River basin	164	7.4	<.01	9.	142	<.003	33.8	3.0 <	.01				•			*					1.23	8.47	20	2.0	.02

Table 10. Summary of Chemical-Quality Characteristics of Groundwater from Predominantly Calcareous and Noncalcareous Rock Units

Number of samples Concentration Maxim samples Minimum Median Maxim Maxim samples Concentration Maxim Maxim samples Minimum Median Maxim Maxim samples Minimum Median Maxim Maxim samples Minimum Median Maxim samples Minimum Median Maxim samples Maxim samples Action Signature Action Signatur		Pred	Predominantly noncalcareous units	calcareous u	nits	Pre	Predominantly calcareous units	lcareous uni	S
tituent (mg/L) samples Minimum Median Maximum samples Minimum Median Maximum Median Maximum Median Maximum Median Minimum Median Maximum Median		Number of		Concentratio	n ¹	Number of	Ŭ	Concentratio	n ¹
Ling 4.7 7.3 9.2 62 5.7 7.5 Ling <.01 <.01 .085 62 <.01 <.01 Ling <.01 <.01 .04 2.21 62 <.01 <.01 In <.01 <.03 <.03 <.03 <.03	Constituent (mg/L)	samples		Median		samples	Minimum	Median	Maximum
Ling C,01 C,01 0.04 2.21 62 C,01 C,01 Ling C,01 C,01 0.4 2.21 62 C,01 0.3 Ly (CaCO ₃) 102 C,003 C,003 0.04 62 C,003 C,003 In 102 C,003 C,003 0.04 62 C,003 C,003 In 102 O,1 22.9 109 62 C,00 3.0 is solids 101 C,01 C,01 C,01 C,01 C,01 A,0 is solids 102 C,01 C,02 C,02 C,01 C,02	Hu	102	4.7	7.3	9.2	62	5.7	7.5	8.0
mm 102 <.01 .04 2.21 62 <.01 .03 ty (CaCO3) 102 6 108 258 62 10 194 m 102 <.003 <.003 .004 62 <.003 <.003 n 102 <.003 <.003 109 62 <.003 <.003 um 101 <.011 <.011 <.011 .06 62 <.01 .01 ad solids 99 16 182 1926 62 <.01 .01 ad solids 99 16 182 1926 62 <.01 .01 ad solids 102 <.01 .01 .04 .05 <.01 .01 as (CaCO3) 102 <.01 .14 98.6 62 <.01 .01 ss (CaCO3) 102 <.03 4.58 62 <.01 .01 tese 102 <.01 .01	Arsenic	102	<.01	<.01	.085	62	<.01	<.01	<.01
(CaCO ₃) 102 6 108 258 62 10 194 102 < 0.03	Aluminum	102	<.01	.04	2.21	62	<.01	.03	.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Alkalinity (CaCO3)	102	9	108	258	62	10	194	360
102 0.1 22.9 109 62 3.6 52.1 102 0.4 3.0 84 62 (1.0 4.0 102 (0.4 3.0 1.0 6.2 (1.0 4.0 103 (2.01 (2.01 1.0 4.0 104 (2.01 (2.01 1.0 4.0 105 (2.01 (2.01 4.0 107 (2.01 (2.01 4.0 108 (2.01 (2.01 4.0 107 (2.01 (2.01 4.0 108 (2.01 (2.01 (2.01 (2.01 (2.01 (2.01 102 (2.01 (2.01 (2.01 (2.01 (2.01 (2.01 104 (2.01 (2.01 (2.01 (2.01 (2.01 105 (2.01 (2.01 (2.01 (2.01 (2.01 107 (2.01 (2.01 (2.01 (2.01 (2.01 (2.01 108 (2.01 (2.01 (2.01 (2.01 (2.01 108 (2.01 (2.01 (2.01 (2.01 (2.01 (2.01 101 (2.01 (2.01 (2.01 (2.01 (2.01 (2.01 101 (2.01 (2.01 (2.01 (2.01 (2.01 (2.01 101 (2.01 (2.01 (2.01 (2.01 (2.01 (2.01 101 (2.01 (2.01 (2.01 (2.01 (2.01 (2.01 (2.01 2.01 (2.01	Cadminm	102	<.003	<.003	.004	62	<.003	<.003	<.003
the field of the f	Calcium	102	0.1	22.9	109	62	3.6	52.1	418
ium 101 <.01 <.01 .06 62 <.01 .01 ed solids 99 16 182 1926 56 14 306 ed solids 99 16 182 1926 56 14 306 ess (CaCO ₃) 102 <.10	Chloride	102	0.4	3.0	84	62	<1.0	4.0	33
ed solids 99 16 182 1926 56 14 306 ed solids 102 <10 .14 .40 62 <10 .10 ess (CaCO3) 102 <20 89 792 62 <20 200 sss (CaCO3) 102 <.01 .14 98.6 62 <.01 .10 sss (CaCO3) 102 <.01 .14 98.6 62 <.01 .04 sium 102 <.01 .08 4.58 62 <.05 <.05 sium 94 <.01 .08 4.58 62 <.01 .01 sium 94 <.01 .07 .77 75 62 <.05 <.05 sium 94 <.01 .01 .96 62 <.01 <.01 102 <.01 .01 .04 .04 .05 <.01 <.01 <.01 102 <.02 .04	Chromium	101	<.01	<.01	90.	62	<.01	.01	.07
le	Dissolved solids	66	16	182	1926	56	14	306	3038
ss (CaCO ₃) 102 <20 89 792 62 <20 200 102 <.01 .14 98.6 62 <.01 .04 102 <.05 <.05 .054 62 <.01 .04 102 <.05 <.05 .054 62 <.05 .05 102 <.01 .08 4.58 62 <.05 <.05 103 <.01 .08 4.58 62 <.05 <.05 104 <.01 .08 4.58 62 <.01 .01 105 <.01 .01 .01 107 7.7 75 62 <.01 .01 108 <.01 .01 .96 62 <.01 .01 109 <.01 .01 .96 62 <.01 101 <.02 .048 62 <.01 102 <.002 .048 62 <.01 103 <.02 .048 62 <.002 104 10.1 62 <.002 105 <.02 1.77 14.1 57 .46 1.38 101 0.88 13.4 190 62 3 3.63 102 <.01 .02 9.18 62 <.01 .02 103 .02 .03 .03 104 .03 .03 .03 .03 105 <.01 .02 .03 .03 107 .03 .03 .03 108 .03 .03 .03 .03 109 .04 .05 .05 .05 .05 100 .05 .05 .05 .05 100 .05 .05 .05 .05 100 .05 .05 .05 .05 100 .05 .05 .05 100 .05 .05 .05 .05 100 .05 .05 .05 .05 100 .05 .05 .05	Fluoride	102	<.10	14.	.40	62	<.10	.10	1.5
lig	Hardness (CaCO ₃)	102	<20	68	792	62	<20	200	1764
nese 102 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05	Iron	102	<.01	1.	9.86	62	<.01	.04	1.85
sium 102 <.01 .08 4.58 62 <.01 .01 .01 102 1.0 7.7 75 62 <.01 .01 .01 102 1.0 7.7 75 62 <.0.5 26.2 103 <.01	Lead	102	<.05	<.05	.054	62	<.05	<.05	.054
sium 102 1.0 7.7 75 62 <0.5 26.2 sium 94 <0.01 <0.012 57 <0.01 <0.01 \\ 102 <0.01 <0.01 \\ 102 <0.02 \\ 102 <0.02 \\ 102 <0.02 \\ 102 <0.02 \\ 102 \\ 102 \\ 102 \\ 103 \\ 103 \\ 104 \\ 105 \\ 105 \\ 105 \\ 107 \\ 108 \\ 108 \\ 108 \\ 108 \\ 108 \\ 109 \\ 100 \\ 10	Manganese	102	<.01	80.	4.58	62	<.01	.01	.20
94 <.01	Magnesium	102	1.0	7.7	75	62	<0.5	26.2	165
ium 102 <.01	Nickel	94	<.01	<.01	.22	57	<.01	<.01	.04
um 93 0.22 0.77 14.1 57 .46 1.38 101 0.88 13.4 190 62 <.02	Z-2 HZ	102	<.01	.01	96.	62	<.01	.01	1.68
um 93 0.22 1.77 14.1 57 .46 1.52 101 0.88 13.4 190 62 .38 3.63 102 3 20 1200 62 3 20 102 <	Z	102	<.002	.002	.048	62	<.002	.002	.336
um 93 0.22 1.77 14.1 57 .46 1.38 101 0.88 13.4 190 62 .38 3.63 102 3 20 1200 62 3 20 102 <.01	Z- 0 Z	102	<.02	.04	10.1	62	<.02	1.52	10.1
Le 101 0.88 13.4 190 62 .38 3.63 102 3 20 1200 62 3 20 102 <.01 .02 9.18 62 <.01 .02	Potassium	93	0.22	1.77	14.1	57	.46	1.38	5.72
te 102 3 20 1200 62 3 20 120 120 62 3 20 102 $<.01$ $.02$ 9.18 62 $<.01$ $.02$	Sodium	101	0.88	13.4	190	62	.38	3.63	64.4
102 <.01 .02 9.18 62 <.01 .02	Sulfate	102	3	20	1200	62	3	20	1710
	Zinc	102	<.01	.02	9.18	62	<.01	.02	0.9

1 Concentrations in milligrams per liter, except pH (units).

Table 11. Summary of Field Water-Quality Measurements

(Values represent the quantity equaled or exceeded by the indicated percentage of wells)

				pH (units)				Hardness			Speci	Specific conductance	tance
Group,	19	No.		,		No.	3	(grains/gal)	(No.	п)	(micromhos)	()
formation,	dλ]	Jo	25%	50%	750%	of	250%	50%	750%	of	25%	50%	750%
or member	L	wells		(median)		wells		(median)		wells		(median)	
Conemaugh Gp.	D	-	1	6.7	1	ı							
	Z	_	1	7.3	I	7	1	10		7		395	I
Allegheny Gp.	Ω	I	1	I	1	-	I	4	I	_	1	185	
Mauch Chunk Fm.	D	7	7.7	7.0	6.3	23	7	8	2	23	270	205	107
	Z	-	I	7.1	I	4	I	∞	-	4	I	280	I
Pocono Fm.	О	7	7.8	9.7	7.5	9	4	33	7	9	215	105	06
Catskill Fm. ²	Ω	10	7.4	7.0	8.9	53	9	4	æ	54	263	200	155
	Z	_	I	0.9	I	S	7	9	3	4	270	170	50
Irish Valley Mbr.	D	1	I	I	I	17	2	4	7	15	255	180	147
of Catskill Fm.	Z	_	1	7.3		I		I	I			1	1
Foreknobs Fm.	О	7	7.4	7.39	7.37	17	9	S	4	18	325	245	160
	Z	_	İ	7.3	I	m	I	S	I	4	I	340	I
Lock Haven Fm.	D	I	I	I	1	2	9	2	4	5	240	210	185
Scherr Fm.	D	3	9.7	7.45	7.4	11	7	9	4	11	365	240	130
Trimmers Rock Fm.	D	2	7.3	7.1	7.0	18	4	4	7	17	218	165	118
Brallier and	Ω	10	7.2	7.2	8.9	48	7	2	4	50	355	245	210
Harrell Fms., undiv.	Z	I	I	1	I	_	I	e		_	1	200	I
Hamilton Gp.	Ω	25	7.3	6.9	9.9	105	∞	2	33	109	372	233	170
	Z	S	9.7	7.3	6.9	4	=	œ	S	9	452	390	340
Mahantango Fm.	Ω	18	7.3	8.9	6.3	62	7	4	т	65	300	200	140
	Z	4	9.7	7.2	6.9	-	I	10	I	7	370	314	257
Marcellus Fm.	Ω	4	9.7	7.4	6.9	10	11	∞	9	1	435	340	300
	Z	_	I	7.3	į	I	1	I	I	_	I	540	
Onondaga and	D	16	7.5	8.9	6.4	99	6	9	4	99	365	252	140
Old Port Fms., undiv.	Z	-	1	7.2	I	-	I	16	I	_	I	260	

		Ó	0	7 7	0 4	15	0	7	7	15	360	300	113
Onondaga Fm.	<u>a</u>	× ·	0.0	9 6	;		۱ ۱	16	ł		1	260	ì
	Z	- '	۱ ,	7:7	1 5	200	000	9	7	20	350	250	95
Old Port Fm.	Ω	ν ;	. t	0.7	7.0	2 6	× ×	14	6	29	650	430	340
Keyser and	Ω :	77	ر: ر د د	- L); 	ی د	8	16	13	4	829	288	350
Tonoloway Fms., undiv.	Z (4 ;	0, 1	0. L	7.7	92	17	12	∞	73	592	453	305
Wills Creek Fm.	<u>a</u> ;	44 5	/:/	. L	7:5	12	13	10	7	11	450	380	280
	Z (10	0.7		7 9	\$\$	œ	9	4	53	455	280	205
Bloomsburg and	a ;	ς,	0.7	7: 4		-	10	9	S	7	345	260	180
Mifflintown Fms., undiv.	Z I	7 9	J. J.	. r	2.0	× ×	· ∝	9	4	35	460	265	180
Bloomsburg Fm.	Ω	<u>×</u>	0./	1.,		, v	· 1	9	1	5	l	230	١
	Z	7	t	y. 0. 1	1 4) =	σ	7	m	12	425	318	215
Mifflintown Fm.	Ω	m (- '	ر. د د	0.0	18	0	· v	4	17	310	250	175
Clinton Gp.	Ω	m	0./	7:/) t	10	`	· •	1	_	١	185	١
	Z	7	7.6	0./	C./	۰, ۱	١	, (ì	ı,	١	90	1
Tucarora Em	Ω	١	1	1	١	າ ;	۱ ۱	1 -	~	, =	247	205	091
I uscarota i m.	D	3	7.5	7.0	7.0	=	0	4 ,	,	_ (105	160
Keedsville Fill.	Z	4	8.0	7.6	7.2	4	9	9	0	7 1	720	070	201
	ζ (۰ ,		7.2	1	7	1	01	l	7	1	3/0	1
Coburn Fm. through	٦)		!									
Loysburg Fm., undiv.	ſ			1	١	_	١	01	İ	1	١	280	
Beekmantown Gp.	ב ר	j '	,	,	7)	. 7	10	~	16	14	099	609	909
Bellefonte and	Ω	3	4./	c. /	1:	<u>+</u> (2	× ×	: 1	2	ì	989	1
Axemann Fms., undiv.	Z	1	1	1	1	7 0	1 9	12	10	, oc	655	555	265
Nittany and	Ω	-	1	/.1	1	ĸ	0	CI	2)			
Stonehenge/Larke Fms., undiv.						C	١	6	1	2	١	335	1
Stonehenge/Larke Fm.	Ω	١,	١,	1 ;	0 4	1 9	1	11	œ	16	467	431	247
Gatesburg Fm.	Ω	^ ·	4./	c. /	0.0	9 "	: 1	7	1	3	1	265	1
Warrior Fm.		-	1	6.9		9							

² Includes Catskill Formation, undivided (Dck on Plate 1), and Duncannon, Sherman Creek, and Irish Valley Members of Catskill Formation (Dcd, ¹ D, domestic use; N, nondomestic use (municipal, industrial, and commercial). Desc, and Deiv on Plate 1). Irish Valley Member is also listed separately.

Figure 14. Relationship of dissolved solids to field specific conductance.

ments of hardness are reported in grains per gallon rather than in milligrams per liter because the field method is only accurate to plus or minus one grain per gallon. To state the results in milligrams per liter would imply a false accuracy. The approximate milligrams per liter may be obtained by multiplying the number of grains per gallon by 17.1.

The inset map on Plate 1 shows the distribution of groundwater hardness in the Juniata River basin. In general, groundwater is hardest in the major valleys underlain by limestone and calcareous shale. Comparatively soft water occurs under ridges, hillsides, and other areas underlain by sandstone and shale.

IRON AND MANGANESE

Iron and manganese, which resemble each other in chemical behavior, are generally present in groundwater in small concentrations. If concentrations of one or both of these constituents combined exceed 0.3 mg/L (the U. S. Environmental Protection Agency recommended limit for iron), staining of plumbing fixtures and cooking utensils can occur.

Samples containing objectionable amounts of iron were collected from almost every rock unit, but were more frequent from wells located in noncalcareous shale and sandstone.

Of the 164 samples analyzed for iron and manganese, 43 (or about 26 percent) exceeded recommended limits for iron (0.3 mg/L) and 59 (or about 36 percent) exceeded recommended limits for manganese (0.05 mg/L). Thus iron and manganese constitute the most troublesome constituents in groundwater in the basin.

HYDROGEN SULFIDE

Many wells that penetrate shales of the Reedsville, Marcellus, and Mahantango Formations were reported to produce water having the "rotten egg" odor of hydrogen sulfide. No measurements were made for this constituent, but occurrences appear to be sporadic and unpredictable throughout the area, although they are most common in shales. Hydrogen sulfide is distasteful but harmless in drinking water.

NITRATE

Nitrate generally occurs in low concentrations in groundwater unaffected by human activities. The lower median concentration of 0.04 mg/L of nitrate in water from predominantly noncalcareous rock units is compared to the median of 1.52 mg/L for calcareous units. This higher median concentration of nitrate in water from calcareous rock units may be due in part to extensive fertilization of the intensively cultivated soils overlying these rock units.

Only two of 164 samples exceeded the U. S. Environmental Protection Agency (1975) mandatory limits for nitrate of 10 mg/L as N. This low number may be partly due to the attempt in this study to collect water samples that would reflect background (or uncontaminated) groundwater quality; thus wells with potentially high nitrate may have been missed.

TRACE METALS

Measurements were made for several potentially toxic trace constituents to determine their occurrence within the basin. The metals tested for were arsenic, cadmium, chromium, lead, and zinc. Table 8 lists the normal source and significance of these elements.

No areal patterns could be ascertained from the few samples that exceeded mandatory drinking-water limits for these constituents. Most samples had levels of these metals below detectable limits; however five had a chromium content above the required 50 micrograms per liter, two samples contained excessive zinc, and a single sample had lead and arsenic above the U. S. Environmental Protection Agency limit. Cadmium was detected in a single sample and the concentration was within drinking-water standards.

WATER-QUALITY PROBLEMS

The most commonly reported groundwater-quality problems in the Juniata River basin are, in order of prevalence, excessive iron and/or manganese, hydrogen sulfide, hardness, bacterial organisms from sewage, petroleum products from buried storage tanks, excessive nitrates, landfill leachate, and acid mine drainage. Most of these are local in extent and often confined to individual wells or a small area. The vast majority of problems could be eliminated by the use of deeper casing and insuring that the annular opening around the exterior of the casing is tightly sealed with cement grout.

Bacterial contamination is possible in any area where on-lot disposal systems are utilized. This is especially true in communities of closely spaced homes, where some wells must unavoidably be placed downslope from leach fields on adjacent lots. Also, the shallow groundwater around urban areas is often contaminated by leakage from sewer systems.

Hydrocarbon contamination of groundwater is generally caused by leakage of fuel oil or gasoline from buried storage tanks. Most known instances involved less than 10 acres and occurred most frequently where there was a high concentration of petroleum terminals and service stations such as in the vicinity of Altoona, Bellwood, and East Freedom.

Although a potential source of serious problems, few instances of landfill leachate contamination of wells have been reported. This may be due in part to the placement of landfill sites in sparsely populated localities.

Groundwater Quality in the Broad Top Area

The Broad Top coal field in Bedford, Fulton, and Huntingdon Counties contains the only significant section of coal-bearing rocks in the Juniata River basin. The first commercial development of coal there occurred in the mid-1800's and reached its peak about 1918. Historically, most of the coal was removed by underground mining, whereas today surface mining predominates.

As a result of this long history of development much of the land has been disturbed by either surface- or deep-mining operations, and groundwater quality has in some places been seriously degraded by acid mine water.

Sixty-two samples of groundwater were collected from the Bedford County part of the field in 1979 by the Bedford County Planning Commission in cooperation with the Department of Environmental Resources. These samples were collected in an effort to determine the degree and extent of the groundwater-quality problem. The results of these analyses are given in Table 12 and the sample locations are shown on Figure 15.

Eight samples, or about 13 percent, were found to be seriously contaminated by mine water (high iron, manganese, and sulfate; low pH). Another 13 samples, or 21 percent, appeared to be slightly contaminated.

Fourteen of the 18 samples collected from the Allegheny Group showed definite indications of mine water contamination. Only 6 of 22 samples from the Conemaugh Group were thought to be contaminated. Table 13 lists the median and range of analyses of groundwater from the rock units investigated.

STRATIGRAPHY AND WATER-BEARING PROPERTIES OF THE ROCKS

The stratigraphic discussion in this report is based on the work of several authors: Conlin and Hoskins (1962), Dyson (1963), Butts (1939, 1945), Faill and Wells (1974), Miller (1961), Knowles (1966), Flueckinger (1969), and Faill and others (in preparation). Figure 16 shows the areas covered by reports containing large-scale geologic maps and detailed stratigraphic descriptions within the Juniata River basin. The geology and stratigraphic nomenclature on Plate 1 are from the *Geologic Map of Pennsylvania* (Berg and others, 1980).

Descriptions of the water-bearing properties of the rocks are partly from data collected by Lohman (1938), Seaber and Hollyday (1966), and Johnson (1970). Additional physical information on wells and groundwater quality was collected by the authors.

Geologic formations within the basin are described in order of increasing geologic age. Table 14 summarizes well construction and yield data by

Figure 15. Geologic map of the Broad Top area, showing the locations of groundwater sampling points.

Table 12. Partial Chemical Analyses of Groundwater from the Broad Top Area

b	
ζ	
5	
3	
5	-
9	-
=	-
5	٠
5	
3	1
5	1
5	
5	-
b	
, , , , , , , , , , , , , , , , , , ,	
֭֭֡֝֝֝֟֝֟֝֝֓֓֓֓֓֓֓֓֓֟	-
5	
Ē	4
) =	
2	Ç
2	
de 12. Fai na Chemical Analyses of Organization me broom 100 Arec	

(siinu) Hq CaCO3) Acidity (as (as CaCO₃) Alkalinity (Results are in milligrams per liter except where otherwise indicated) CaCO3) Hardness (as (ξON) Nitrate (CI)Chloride (pOS)\$\frac{11}{5}\$ Sulfate (IA)munimul A (nM) 57.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 60.0 Manganese (Fe)uoJ Sample no.

Table 12. (Continued)

(stinu) Ho	1	7.0	8.9	6.4	5.9	6.2	6.7	6.5	6.7	8.9	8.9	6.3	6.4	6.4	5.8	6.4	7.8	7.6	7.5	7.9	7.9	7.1	8	7 1	7.7	4.7	۰۰٬ ۲ - ۲	7.9
sej (as GOOs))	0 0	0	2	- (10	0	0	0	0	0	2	10	4	10	0	0	0	0	0	0	0	0	0	0	o c) C	0
Alkalinity (as CaCO3)	25	134	7 4 5	∞ ∘	10	07	16	7/	9 7	86 i	74	56	48	26	20	84	118	78	12	104	96	28	40	112	92	156	99	134
Hardness (as CaCO3)	153	150	100	07>	07>	750	136	133	30	140	0/	<20	30	32	32	130	130	84	30	104	06	54	54	180	175	552	335	180
Vitrate (LOV3)	00	20.	2.06	2/.	1.20	1.10	26.1	50:		.56 .60	20.	.84	.02	2.86	.02	7.56	1.74	.64	.80	.42	.80	4.62	1.50	13.26	13.26	1.18	3.08	4.40
Chloride (Cl)	oc	· =	7 (*) (1 C	۱ ر	1 C) C	1 (۷ -	٦ ,	7 '	0	m	4	11	4	2	7	7	7	10	m	20	20	9	9	6
Sulfate (pO2)	20	125	37.	15	15	20	75	20	ŝ	15	01	01	01	70	1110	75	30	25	25	25	25	25	35	65	65	200	330	55
munimulA (IA)	.04	<.01	01.	90	80.	10	.04	16	00	- TO >	00	70.	ġ 3	.04	.10	.02	.02	<.01	.12	90.	90.	40. 40.	2.32	.04	.02	.04	.02	.04
Manganese (Mn)	.24	.02	.02	.02	.05	<.01	.48	.01	80.	1.43	2	80	200) · 6	.30	40. 40.	<.01 ô:	.01 .0	10.	10.	<.01 .03	\ 0.01	\o.	.01	.01	.02	<.01	.02
поп (Fe)	65.	3.69	.13	.14	.35	.07	6.75	.05	.52	1.46	.34	6.57	72:0	+ T - Y	5.13	2.32	/O:	21.	1.73	.0°	11.	.09		.0.	96.	90:	.09 •••	40.
Sample no.	Bd-132	133	135	136	137	140	141	147	149	151	153	154	166	168	172	173	177	175	771	178	280	283	28.0	700	707	280	/87	007

Sp-101	.14	.05	.14	10	10	4.40	<20	∞	2	5.6
Sp-111	.10	.01	80.	15	12	3.52	32	12	-	6.5
Sp-121	.10	.02	.10	20	æ	3.08	130	112	0	7.5
Sp-122	.15	.01	90.	20	7	1.30	88	9/	0	7.4
Sp-134	.33	.01	80.	135	7	1.26	158	30	0	6.5
Sp-138	.05	.02	90.	15	7	1.66	20	14	0	6.5
Sp-139	80.	.01	90.	15	7	96:	<20	14	0	6.7
Sp-142	.15	09.	.10	09	7	86.	82	24	0	7.1
Sp-148	.19	.04	.18	15	2	88.	<20	18	0	7.0
		Table 13. /	Median and	Table 13. Median and Range of Chemical Analyses from the Broad Top Area	hemical An	alyses fro	n the Broad	l Top Area		
			(Results are	(Results are in milligrams per liter except where otherwise indicated)	er liter except v	vhere otherw	ise indicated)			
	(94) norl	Manganese (Mn)	(IA) munimulA	Sulfate (SO4)	Chloride (Cl)	Vitrate (VO ₃)	Hardness (as CaCO3)	Alkalinity (as CaCO3)	Acidity (as CaCO3)	Hq
		300	700	CONEMAUGH GROUP (22 samples)	H GROUP (22	samples)	75	19	<u> </u>	ox C
Median Range	03-6.8	<.01-1.4	<.01-10.>	10-125	1-11	.02-3.5	<20-185	10-178	0-10	5.9-7.6
20:00	2	01	7	ALLEGHEN)	ALLEGHENY GROUP (18 samples)	samples)	4 8	13	m	8.
Range	.10	<.01-5.1	.01-12	15-1110	2-36	7.6-20.	<20-275	4-68	0-100	4.4-6.6
M. 64	90	5	M 20	MAUCH CHUNK FORMATION (13 samples)	FORMATION 6	V (13 samples		92	0	7.5
Range	.04-2.5	.01 <.0107	.01-2.3	25-500	2-20	.42-13	30-552	12-156	1	6.4-7.9

A - Atlas (Pennsylvania Geological Survey)

F-Folio (U.S. Geological Survey)

PR - Progress Report (Pennsylvania Geological Survey)

Figure 16. Areas of detailed geologic mapping in the Juniata River basin.

formation. Medians given for water-bearing properties and water-quality data approximate the most common values obtained from randomly located wells; ranges suggest the magnitude of potential values. Also given in the discussion are the number of wells having reported yields less than 5 gal/min and greater than 100 gal/min. These are good indicators of the potential for development of a successful domestic well and municipal supply well, respectively.

The recommended and mandatory limits, in addition to health effects, of the chemical constituents of groundwater described in the following sections are given in Table 8.

CONEMAUGH GROUP THROUGH POTTSVILLE GROUP Stratigraphy

The Pennsylvanian rocks in the Juniata River basin are, from youngest to oldest, the Conemaugh, Allegheny, and Pottsville Groups. These rock units underlie the Broad Top coal field in parts of Huntingdon, Bedford, and Fulton Counties and a small area along the Appalachian Front in Somerset and Blair Counties.

Table 14. Summary of Well Construction and Yield Data

(Values represent the quantity equaled or exceeded by the indicated percentage of wells)

			>	Well depth (feet)			Cas	Casing length (feet)	u		Del	Depth to water (feet)	ប្		yield	Keported well vield (gal/min)	ii.		eg))	([gal/min]ft)	2
Group	I ^{əc}	o N		(1221)		Š.				Š.				No.		9	ì		3	•	
or formation	ŢĶŢ	of wells	25 %	50% (median)	75%	of a	25% (r	50% (median)	75%	of wells	25%	50% (median)	750%	of wells	25%	50% (median)	75%	of wells	25 % (r	50% (median)	75%
Conemangh Gp.	Q	9	1	122	1	S	1	24		4		59	1	9	1	4	1	4	1	0.05	
•	Z	7	1	100	-1	7	1	24	-	7	1	35	1	2	1	26		7	1	.80	
Allegheny Gp.	Q	5		142	1	4		44	1	4	1	3.5	1	5	1	2		3	1	.01	ļ
Pottsville Gp.	Z	2	-	225	1	7	1	30	1	7	1	26		7	1	170		7	1	8.7	
Mauch Chunk Fm.	Q	39	210	115	96	39	42	38	22	32	45	25	18	37	24	12	9	12	.50	.16	90.
	Z	6	1	150	-	6	I	36	-	7	1	25		∞	1	19		3	1	76.	
Pocono Fm.	D	20	283	170	124	19	47	39	24	20	70	30	20	19	20	15	9	15	.35	.18	60.
	Z	U		202		И	1	29		-	I	55		7		49	1	-	I	.82	
Rockwell Fm.	Q	1	1	100	1	-	1	36	1	-	1	40		_	1	ο ο	-	-	I	.26	
Catskill Fm. ²	Q	132	273	204	148	122	45	34	21	108	100	09	21	127	15	10	2	55	.20	.10	0.
	Z	17	468	300	156	1.5	45	40	24	13	115	58	24	17	73	30	14	=	.54	.40	0.
Irish Valley Mbr. of Catskill Fm.	D	39	170	148	1117	37	42	40	36	35	48	28	20	39	20	15	10	5	88.	.25	.15
	Z	7		232	1	7	1	34		3		175		33	-	20		2		.16	
Foreknobs Fm.	Q	47	184	140	83	42	32	23	21	39	70	30	15	45	20	10	∞	35	.33	.18	.07
	Z	4		108	1	4	1	21	1	4	1	24		4	1	10	1	C1	1	80.	
Lock Haven Fm.	D	14	217	108	80	12	40	21	20	10	46	38	12	=	17	4	~1	9	.29	.16	.10
	Z	3		150		3	1	30	1	3		13	1	3		30		7	I	.50	
Scherr Fm.	Q	32	195	138	100	32	40	25	21	31	73	41	20	31	20	7	Ca.)	17	89.	.15	9.
Trimmers Rock Fm.	D	31	238	155	96	28	45	4	34	23	50	30	20	30	20	10	9			1	
	Z	4		285	1	33	1	25		4		35	1	4		80	1	-	1	1.0	
Brallier and Harrell Fms., undiv.	Ω	129	214	141	80	116	40	24	21	105	20	20	12	123	12	9	3	63	.26	.15	0.
Hamilton Gp. ³	Q	255	173	104	70	237	7	27	21	209	36	20	10	243	20	12	9	92	1.0	.51	.17
	Z	34	300	216	110	26	50	37	21	24	39	15	4	30	135	38	Ξ	20	2.2	68.	. 20
Mahantango Fm.	Q	133	152	100	65	123	42	25	20	111	40	23	Ξ	126	20	12	9	35	1.3	09.	.30
	Z	Ξ	220	120	96	∞	45	35	21	7	31	20	4	∞	190	26	Ξ	7	2.2	.56	.19
Marcellus Fm.	Q	47	120	82	70	43	40	31	22	38	38	20	6	46	20	1.5	5	10		∞.	.57
	Z	71	-	50	1	2		28					1	_		10	1	1	ļ		
Onondaga and Old Port Fms.,	Ω	144	223	141	06	133	110	56	30	119	65	40	18	135	20	10	7	09	1.3	.31	.10
undiv.4	Z	24	248	215	150	18	118	57	30	15	54	21	3	22	150	99	30	=	2.2	1.5	.60
Onondaga Fm.	Q	28	215	66	75	27	85	42	28	22	62	31	1.5	26	20	10	7	7	.80	.48	01.
	Z	3	1	80	1	2	1	34		7	1	16	1	_	-	23	I	-	1	2.5	
Old Port Fm.	Q	45	224	163	120	43	155	95	40	37	84	54	30	39	20	12	7	6	1.0	.50	124
	Z	5		219	1	5	I	42	ţ	4		22		5	-	09		3	1	1.7	
Keyser and Tonoloway Fms.,	Q	172	180	106	72	147	72	42	25	153	57	30	14	155	20	10	9	47	1.2	.48	.15
	,	0																			

Table 14. (Continued)

			>	Well depth			Cas	Casing length	4		De	Depth to water	10		Rep	Reported well	=		Speci	Specific capacity	ty
				(feet)				(feet)				(teet)			yield	yield (gal/min)	n)		(8)	([gal/min]ft)	
Group	I	No.				Š.				No.				No.				No.			
Or	λbo	Jo	25 0%	200%	750%	of	25 %	. 0%05	75 070	Jo	25 %	200%	750%	jo	25 %	50% 75%	5 %	of	25 070	50%	750%
formation	L	wells		(median)		wells	(1	(median)		wells		(median)		wells	u)	(median)		wells	<i>-</i>	(median)	
Wills Creek Fm.	D	165	4	100	74	149	53	39	26	145	43	26	15	152	20	15	∞	54	1.5	.55	91.
	Z	50	210	137	100	44	53	40	28	35	90	32	15	47	100	40	16	18	5.0	.90	.22
Bloomsburg and	D	116	145	95	70	105	45	28	20	95	35	20	12	102	15	10	9	36	.70	.26	.12
Mifflintown Fms., undiv.	Z	16	250	177	80	10	20	35	26	16	52	36	∞	16	18	1.5	∞	∞	1.3	89.	80.
Bloomsburg Fm.	О	54	120	96	70	53	46	36	23	46	28	20	10	49	15		∞	19	89.	:22	.17
	Z	00		128		7	1	31	1	∞		36		00		16	1	60		.80	1
Mifflintown Fm.	D	28	220	81	9	25	30	22	19	25	40	20	15	25	12	5	2	7	04	.15	.10
	Z	_		. 35						-		9		_		10	I		ł	1	1
Clinton Gp.	D	48	220	151	92	42	51	27	21	37	44	25	18	46	15	10	9	12	.28	.19	.12
	Z	12	290	192	163	10	40	34	24	6	44	20	6	12	30	20	10	9	.67	.50	.30
Tuscarora Fm.	D	7	1	70	1	7	I	38	I	5	1	38		7		5		_		.10	1
Juniata Fm.	D	1		. 165		_		40						П	1	20			1	1	I
Bald Eagle Fm.	D	4		252		3	I	24		7		30		3	1	30	1	7		.32	
Reedsville Fm.	D	30	190	130	110	27	52	33	21	17	55	33	∞	26	25	12	7	4	5.0	1.2	.24
	Z	12	300	130	99	10	40	34	27	00	24	16	S	12	42	20	10	∞	.59	.51	.25
Coburn Fm. through Loysburg	О	25	230	200	100	23	47	40	23	91	39	26	5	23	20	9	コ	9		.04	I
Fm., undiv.	Z	2		270		_		21		-		36		7	1	13	I	-	I	.10	I
Bellefonte and Axemann Fms.,	D	31	300	156	101	31	70	42	20	24	85	20	26	31	40	10	∞	6	.78	.50	.17
undiv.	Z	5	-	. 50		4	1	32	1	3		3	1	5		30	I	-		.07	1
Nittany and Stonehenge/Larke	D	30	261	173	120	29	123	99	22	20	113	46	59	78	25	15	10	6	.64	.40	90.
Fms., undiv.	Z	9	1	194		3		92		3	1	46	1	9	1	26	1	7		1.6	
Stonehenge/Larke Fm.	D	2	I	135		2		71	1	П	1	33		7	1	59	-	1	1		İ
Gatesburg Fm.	D	35	345	264	163	34	181	83	47	24	170	116	70	35	20	6	2	10	12:	80.	90.
	Z	4		452	1	4		204	I	4	1	214		4		300		3	1	13.0	
Warrior Fm.	D	9	1	182	1	9		79	1	5		74		2		30	1	4	I	.62	
Pleasant Hill Fm.	D	_		06		-		87	1				I	_		15		I	1		
Waynesboro Fm.	D	-		. 125	-	-		39		+			1	-	I	6			1		
The formation of the fo	riojuna, o.		o loiste	deionamaco bac	deica																

1 D, domestic use; N, nondomestic use (municipal, industrial, and commercial).

² Includes Catskill Formation, undivided (Dck on Plate I), and Duncannon, Sherman Creek, and Irish Valley Member sof Catskill Formation (Dcd, Dcsc, and Dciv on Plate I). Irish Valley Member is also listed separately.

³ Includes the wells listed for the Mahantango and Marcellus Formations.

⁴ Includes the wells listed for the Onondaga and Old Port Formations.

The rock units are primarily composed of gray and black shale and claystone, gray and brown sandstone, and coal. Sandstone becomes more abundant toward the bottom and constitutes nearly 80 percent of the Pottsville Group. The maximum thickness of Pennsylvanian rocks is between 1,000 and 1,500 feet in the Broad Top area, whereas no more than 200 feet of Pennsylvanian rocks is exposed along the Front.

Water-Bearing Properties

Reported yields of 15 wells ranged from 0 to 255 gal/min. The median yield of 11 domestic wells was about 3 gal/min. Two nondomestic wells in the Conemaugh Group averaged 26 gal/min and two in the Pottsville Group averaged 17 gal/min. Over half of the wells yielded less than 5 gal/min and one well had a reported yield greater than 100 gal/min.

Well depths ranged from 42 to 338 feet; six wells had depths of less than 100 feet and one well was greater than 300 feet deep.

Water Quality

Two groundwater samples from these rock groups were collected for analysis in the laboratory. Both were slightly acidic and high in iron, manganese, and sulfate.

Evaluation of the Aquifer

Large supplies of groundwater can often be obtained from the lower part of this sequence of rocks, and domestic supplies should be possible throughout. However, water quality is a persistent problem, iron and manganese being the most common problem constituents. Also, past mining has altered the hydrogeologic system, making site-specific studies necessary to locate potable groundwater supplies.

MAUCH CHUNK FORMATION

Stratigraphy

The Mauch Chunk Formation crops out along the edge of the Appalachian Plateau and in an irregular band around the Broad Top coal field. Along the plateau the unit consists primarily of gray sandstone and minor amounts of red and green siltstone and mudstone. Fine-grained rocks are more common in the upper part (about 50 percent) and coarse-grained rocks are dominant in the remainder. In the Broad Top area the unit is almost entirely red shale, but contains some thin red and green sandstone layers. The thickness varies from about 180 feet along the Appalachian Front to approximately 1,000 feet in Trough Creek valley.

Water-Bearing Properties

Reported yields of 45 wells ranged from 1 to 60 gal/min. The median yields of domestic and nondomestic wells were 12 gal/min and 32 gal/min, respectively. Six of the wells yielded less than 5 gal/min and none yielded more than 100 gal/min.

Reported depths of 48 wells ranged from 60 to 360 feet and the median was about 110 feet. Eighteen wells were less than 100 feet deep and only five were greater than 300 feet deep.

Depth to yielding zones was reported for 43 wells. On the average a well penetrated more than two zones, and the highest percentage of these zones was in the 50- to 100-foot depth range. The deepest reported zone was at 328 feet.

Water Quality

Five groundwater samples were collected for analysis in the laboratory. Three of these samples exceeded drinking-water standards for iron and one sample had excessive manganese. The median iron and manganese values were 0.33 mg/L and 0.02 mg/L, respectively. The water from the Mauch Chunk Formation is a calcium bicarbonate type, as shown in Figure 17.

Field analyses gave a median hardness value of about 5 grains per gallon (23 samples), a median specific conductance of 205 micromhos (23 samples), and a median pH of 7.0 (2 samples). These data indicate that water from the Mauch Chunk Formation is moderately soft and comparatively low in dissolved solids.

Figure 17. Stiff diagram of the median chemical character of groundwater from the Mauch Chunk Formation.

Evaluation of the Aquifer

The Mauch Chunk Formation will, in general, yield sufficient water of acceptable quality for domestic use and other uses requiring small to moderate supplies. High levels of iron and manganese are a frequent problem.

Large supplies (100 gal/min or more) will probably be difficult to obtain owing to the lithologic character (predominantly shale) of the unit in the central part of the basin. The abundance of sandstone in the formation along the Appalachian Front would suggest that high yields might be possible. However, the thinness and topographic position of the unit there would minimize that possibility.

POCONO FORMATION, BURGOON SANDSTONE, AND ROCKWELL FORMATION

Stratigraphy

The Middle Mississippian rocks mapped as the Pocono Formation around the Broad Top coal field and as the Burgoon and Rockwell Formations along the Appalachian Front range in thickness from about 550 feet in the west to about 1,400 feet at Terrace Mountain in Huntingdon County.

The Burgoon Sandstone consists predominantly of quartzitic sandstones, with conglomeratic quartzite near the base and impure sandstone in the medial portion. Argillaceous siltstones constitute a minor part of the formation, which has an overall thickness of about 250 feet.

The Rockwell Formation consists of 300 feet of impure sandstone and minor siltstone and shale. A 65-foot shale sequence separates a basal sandstone from the remainder of the formation.

The upper part of the Pocono, equivalent to the Burgoon Sandstone, consists of nearly continuous, thick-bedded sandstone having a thickness of 375 to 500 feet. The remaining two thirds is composed predominantly of gray sandy shale and includes beds of gray and red sandstone, red shale, and some layers of clay.

Water-Bearing Properties

Reported yields of 22 wells ranged from 2 to 118 gal/min. The median reported yield of 20 domestic wells was 15 gal/min, and two nondomestic wells yielded an average of 49 gal/min. Only three of the wells yielded less than 5 gal/min and two had reported yields greater than 100 gal/min.

Well depths ranged from 45 to 500 feet; four wells had depths of 100 feet or less and five wells were deeper than 300 feet. The median depth of domestic wells was 170 feet.

Data on depths to water-bearing zones were reported for only 12 wells. Every well that penetrated the 50- to 100-foot interval reported a yielding zone, and 70 percent of the wells that penetrated the 101- to 200-foot interval reported water-bearing zones. The deepest reported zone was at 320 feet.

Water Quality

Three groundwater samples were collected from the Pocono Formation for analysis in the laboratory. All of these samples exceeded drinking-water standards for iron and manganese. The median for iron was 5.29 mg/L and for manganese, 0.79 mg/L.

Six field analyses indicate that the water is moderately soft (median hardness of 3 grains per gallon) and low in dissolved solids (median specific conductance of 105 micromhos).

Evaluation of the Aquifer

The sandstones within the Middle Mississippian rocks are ridge formers throughout much of the area and as such have low aquifer potential. However, when these rocks are present below the water table they should provide moderate to large supplies of water to wells. Apparently, high levels of iron and manganese will be a constant problem.

CATSKILL FORMATION

Stratigraphy

The Catskill Formation varies in thickness from about 7,450 feet in the eastern part of the basin to about 2,500 feet near Altoona. Three members are shown on the accompanying geologic map, the Duncannon, Sherman Creek, and Irish Valley Members.

Approximately three fourths of the Catskill Formation is composed of shale and mudstone, and sandstone makes up the remainder. Few of the sandstone strata exceed 50 feet in thickness and most are between 5 and 20 feet thick. Eighty to 95 percent of the unit is red in color.

Water-Bearing Properties

Reported yields of 144 wells ranged from 1 to 100 gal/min. The median yields of domestic and nondomestic wells were 10 and 30 gal/min, respectively. About 15 percent of the wells yielded less than 5 gal/min and three were reported to yield 100 gal/min.

Figure 18 is a frequency plot of reported yields from the Catskill Formation and shows that the Irish Valley Member had somewhat higher yields

Figure 18. Percent frequency distribution of reported well yields from the Catskill Formation.

than the rest of the formation. The plot also shows that domestic wells consistently had reported yields about one third as high as those drilled for non-domestic uses.

Reported depths of 140 wells ranged from 12 to 580 feet. The median for domestic wells was 204 feet and for nondomestic wells was 300 feet. Nineteen wells obtained sufficient water at depths of less than 100 feet and 35 were deeper than 300 feet.

Depth to yielding zones was reported for 127 wells. An average of about one zone per 100-foot interval was reported to a depth of 300 feet. Over three fourths of the wells drilled deeper than 300 feet penetrated additional yielding zones. The deepest reported zone was at 560 feet.

Water Quality

Twenty-seven water samples were collected for complete chemical analysis. Two samples did not meet drinking-water standards—in one, arsenic was too high, and in the other, zinc. Fifteen and 40 percent of the samples contained excessive iron and manganese, respectively. The water is a calcium bicarbonate type, as shown in Figure 19.

The median hardness from 53 field analyses was 4 grains per gallon. The median specific conductance (54 samples) and pH (10 samples) were 200 micromhos and 7.4, respectively. These data indicate that water from the Catskill Formation is moderately soft and comparatively low in dissolved solids.

Figure 19. Stiff diagram of the median chemical character of groundwater from the Catskill Formation.

Evaluation of the Aquifer

The Catskill Formation will yield water of acceptable quality for domestic use and other uses requiring small to moderate supplies. Two of every five wells produce water that contains high levels of iron and manganese.

Because of the formation's high shale content, large supplies are difficult to obtain. It should be possible to develop comparatively high yielding wells (100 to 150 gal/min) in intervals containing mostly sandstone. The lower part of the Irish Valley Member is probably the best water-bearing interval in the Catskill Formation. Wells should be drilled to at least 350 feet and perhaps as deep as 600 feet if maximum yields are needed.

FOREKNOBS, SCHERR, AND LOCK HAVEN FORMATIONS

Stratigraphy

In the southwestern part of the basin the Upper Devonian rocks lying be-

the Foreknobs and Scherr Formations. To the north, beginning at approximately the southern boundary of the Altoona quadrangle, the equivalent stratigraphic section is mapped as the Lock Haven Formation. These units are not recognized in the eastern part of the basin, because the Catskill Formation there is underlain directly by the Brallier Formation and/or the Trimmers Rock Formation.

The Foreknobs Formation is about 1,500 to 1,600 feet thick and consists of gray conglomerate, sandstone, siltstone, mudstone, and shale. The unit is thin to very thick bedded in layers ranging from 0.5 inch to 10 feet.

The Scherr Formation is made up of siltstone, shale, mudstone, and some sandstone and is up to 1,900 feet thick. The siltstone and sandstone within the formation are olive gray to greenish gray and thin to thick bedded. Locally the mudstone is brownish gray, but it is primarily medium gray, as is the shale.

At Altoona, the Lock Haven is predominantly siltstone and argillaceous siltstone (approximately 60 percent), and contains lesser amounts of sandstone (20 percent), shale (15 percent), and conglomerate (less than 5 percent). The formation can be divided into three parts: a lower, fine-grained portion, a coarse-grained medial part, and a fine-grained upper sequence which has conglomerate at the top. The thickness is about 1,900 to 2,000 feet.

Water-Bearing Properties

Reported yields of 94 wells ranged from 1 to 60 gal/min. The median yields of domestic wells were 10, 7, and 4 gal/min for the Foreknobs, Scherr, and Lock Haven Formations, respectively. Four nondomestic wells in the Foreknobs had a median yield of 10 gal/min and three in the Lock Haven had a median of 30 gal/min. About one fourth of the wells inventoried in these formations had reported yields of less than 5 gal/min and none had yields greater than 100 gal/min.

Depths of 100 wells ranged from 33 to 583 feet. The medians for domestic wells ranged from 108 to 140 feet. Thirty wells were less than 100 feet deep and only six were greater than 300 feet.

As suggested by the depth data, shallow yielding zones are abundant in these formations. Nearly 90 percent of the wells that penetrated the 51- to 150-foot range had at least one yielding zone. The deepest reported zone was at 343 feet.

Water Quality

Five water samples were collected from the Foreknobs Formation and six from the Scherr Formation for laboratory analysis. The results were quite similar, as shown by the Stiff diagrams in Figures 20 and 21. Five of the 11 samples were high in iron and eight had high levels of manganese. A single

Figure 20. Stiff diagram of the median chemical character of groundwater from the Scherr Formation.

Figure 21. Stiff diagram of the median chemical character of ground-water from the Foreknobs Formation.

sample from the Foreknobs had a dissolved-solids content higher than the recommended limit. The water is a calcium bicarbonate type.

The results of 36 field analyses indicate that the water is moderately hard (median hardness of 5 grains per gallon). The median specific conductance of the three formations ranges from 210 to 245 micromhos.

Evaluation of the Aquifer

These rocks generally yield sufficient groundwater for small supplies; however, a large percentage of domestic supplies may be marginal for some uses (about 25 percent of the domestic wells produce less than 5 gal/min).

More than half of the wells produce water containing objectionable amounts of iron and manganese.

TRIMMERS ROCK, BRALLIER, AND HARRELL FORMATIONS

Stratigraphy

The Trimmers Rock Formation consists of 2,000 to 2,500 feet of lightolive-gray and medium-gray siltstone and silty shale and minor amounts of interbedded very fine grained sandstone in the upper part.

The characteristic Trimmers Rock lithologies are not recognized in the west, where this portion of the stratigraphic section is mapped as the Brallier Formation. The Brallier Formation consists of interbedded shale, silty shale, and siltstone. Shale and silty shale constitute 50 to 80 percent of the formation. The thickness is approximately 2,700 feet.

The Harrell Formation generally consists of two parts, a lower black shale, the Burket Member, and an upper unnamed gray shale. In some areas the Tully Member, which is composed of argillaceous limestone, is present at the base. Thicknesses for the Harrell range from 200 feet in the east to about 375 feet in the west.

Water-Bearing Properties

Reported yields of 153 wells ranged from 1 to 130 gal/min. The median yields of domestic wells for the Trimmers Rock Formation and the combined Brallier and Harrell Formations were 10 and 6 gal/min, respectively. Four nondomestic wells had a median yield of 80 gal/min. Approximately one third of the inventoried wells had yields less than 5 gal/min and only two had yields greater than 100 gal/min.

Well depths ranged from 33 to 620 feet. The medians for domestic wells were 141 and 155 for the Brallier-Harrell and the Trimmers Rock Formations, respectively. The four nondomestic wells had a median depth of 285 feet.

Data on water-bearing zones were reported for 127 wells. A typical pattern of a decrease in frequency of zones with depth can be observed from these data. Only two of nine wells drilled deeper than 350 feet penetrated zones below that depth. The deepest reported zone was at 457 feet.

Water Quality

Eighteen samples of groundwater were collected from these formations for analysis in the laboratory. Six samples exceeded recommended limits for iron and 12 for manganese. Calcium is the dominant cation, although the sodium-plus-potassium and the magnesium are nearly as abundant, as shown in Figure 22. Bicarbonate is the dominant anion.

Figure 22. Stiff diagram of the median chemical character of ground-water from the Brallier Formation.

The median hardness from 67 field analyses was about 5 grains per gallon. The median specific conductances were 165 micromhos for the Trimmers Rock and 245 micromhos for the combined Brallier and Harrell Formations. These data indicate that the water is moderately hard and comparatively low in dissolved solids.

Evaluation of the Aquifer

These rocks are among the poorest in yielding capability of all the rocks within the basin. Most attempts at obtaining domestic supplies will be successful, although over a third will have marginal yields for some uses (less than 5 gal/min). One of three wells produces water containing objectionable amounts of iron and two of three produce objectionable amounts of manganese. Excessive hydrogen sulfide is an occasional problem.

HAMILTON GROUP

Stratigraphy

The Hamilton Group consists of the Mahantango Formation, including the Sherman Ridge and Montebello Members, and the Marcellus Formation.

The Mahantango Formation is generally composed of interbedded shale, siltstone, and sandstone and varies in thickness from 1,200 to 1,700 feet. However, at Altoona the unit is predominantly shale and contains lesser amounts of silty shale and a few argillaceous siltstone beds; it is reported to be about 640 feet thick. The Sherman Ridge Member, where present, is a light-olive-gray silty claystone that is generally massive and displays an ellipsoidal or spheroidal exfoliation. The Montebello Member consists of

very fine to fine-grained siliceous sandstone and a small amount of conglomeratic sandstone which ranges up to 1,000 feet in thickness.

The Marcellus Formation consists of very dark gray to black, fissile shale that is generally thin bedded. Measured thicknesses range from slightly more than 100 feet to 330 feet.

Water-Bearing Properties

Reported yields of 243 wells ranged from 1 to 380 gal/min. A frequency plot of reported yields from domestic wells (Figure 23) suggests that there is no significant difference in frequency yields between the undivided Hamilton Group and the separate Mahantango and Marcellus Formations. Therefore the statistical values that follow are from the undivided unit unless otherwise stated. The median reported yields were 12 gal/min and 38 gal/min for domestic and nondomestic wells, respectively. Forty-nine wells, or about 18 percent, had yields less than 5 gal/min. Eleven wells, or about 4 percent, had yields greater than 100 gal/min.

Well depths ranged from 10 to 695 feet, and the medians were 173 and 300 feet for domestic and nondomestic wells, respectively. Nearly 45 percent of the wells were 100 feet or less in depth and 10 percent were greater than 300 feet.

Data on water-bearing zones for 198 wells indicate that zones are relatively common to a depth of about 350 feet but occur most frequently in the 50-to 150-foot range. The deepest reported zone was at 635 feet.

Water Quality

Twenty-four water samples were collected from the Hamilton Group for laboratory analysis. About 46 and 62 percent of the samples exceeded recommended limits for iron and manganese, respectively. One sample did not meet drinking-water standards for chromium, and another did not meet the standards for dissolved solids. The water is a calcium bicarbonate type (Figure 24).

The median hardness from 105 field analyses was 5 grains per gallon. Water from the Marcellus Formation is apparently somewhat harder than water from the remainder of this rock group, having a median of 8 grains per gallon from 10 wells. The median specific conductance was 233 micromhos.

Evaluation of the Aquifer

The Hamilton Group will, in general, yield sufficient water of acceptable quality for small to moderate supplies. Over half of the wells produce water containing objectionable amounts of iron and manganese, and many produce water containing hydrogen sulfide.

Figure 23. Percent frequency distribution of reported domestic-well yields from the Hamilton Group.

Figure 24. Stiff diagram of the median chemical character of groundwater from the Hamilton Group.

Large supplies of water can potentially be developed from parts of the Mahantango Formation, as 25 percent of the wells drilled for nondomestic use had yields of 190 gal/min or more.

ONONDAGA AND OLD PORT FORMATIONS

Stratigraphy

The Onondaga and Old Port Formations are mapped as a single unit throughout much of the study area. Where they are sufficiently thick and the necessary detailed mapping exists, they are shown as separate units. The Onondaga Formation consists primarily of interbedded dark-gray limestone, shaly limestone, and calcareous and noncalcareous shale. In many localities the lower part is mostly calcareous shale (almost 95 percent near Altoona), whereas the upper part is primarily limestone (about 75 percent in the vicinity of Altoona). Reported thicknesses for this unit range from about 50 to 175 feet.

The Old Port Formation is made up of two units: a lower unit consisting of chert, cherty limestone, and calcareous shale, and an upper calcareous quartz sandstone (the Ridgeley Member).

Water-Bearing Properties

Table 14 lists median well construction and yield data for the two formations separately as well as combined. The data do not indicate any significant difference between the two, at least for domestic wells; therefore the discussion that follows is for the combined units unless otherwise mentioned.

Reported yields of 228 wells ranged from 0 to 1,400 gal/min. The medians were 10 and 66 gal/min for domestic and nondomestic wells, respectively. Only 16 wells had reported yields of less than 5 gal/min (about 7 percent), and 13 had yields greater than 100 gal/min (about 6 percent).

Well depths ranged from 35 to 500 feet. The median depth for 144 domestic wells was 141 feet, and for 24 nondomestic wells the median was 215 feet. Fifty-three wells were less than 100 feet deep and 20 were deeper than 300 feet.

Water-bearing-zone data were reported for 88 wells. Zones appeared to be evenly distributed to a depth of 300 feet. Twenty-five percent of the wells drilled deeper than 300 feet penetrated water-bearing zones below that depth; the deepest reported zone was at 460 feet.

Water Quality

Thirteen samples were collected from these formations for analysis in the laboratory. A single sample each exceeded mandatory and recommended

limits for chromium and sulfate, respectively. About 23 percent of the samples had elevated amounts of iron, and a single sample had high manganese. The water is a calcium bicarbonate type, as shown in Figure 25.

The median hardness from 57 field analyses was 6 grains per gallon and the median specific conductance was 252 micromhos. These data indicate that the water is moderately hard and comparatively low in dissolved solids.

Figure 25. Stiff diagram of the median chemical character of groundwater from the Onondaga and Old Port Formations, undivided.

Evaluation of the Aquifer

Only a very low percentage (about 7 percent) of the wells drilled for domestic use had marginal yields (less than 5 gal/min). Also, elevated amounts of iron and manganese were not as serious a problem as in groundwater from most of the rock units in the basin. Therefore, these units should be good for the development of small to moderate supplies of groundwater.

Large supplies of water may be developed from parts of these formations, as 25 percent of the wells drilled for nondomestic use had yields of 150 gal/min or more. Most of the larger yields will probably be from the Ridgeley Member of the Old Port Formation. Occasional problems occur when completing wells in the Ridgeley, however, because the sandstone is sometimes quite friable, requiring a screen to keep the well bore open.

KEYSER AND TONOLOWAY FORMATIONS

Stratigraphy

The Keyser Formation ranges in thickness from about 100 to 200 feet and consists of an upper, mainly laminated, sequence of limestones and a basal nodular limestone. The middle part is sometimes arenaceous and cherty.

The Tonoloway Formation is composed of medium-gray, very thin to thick-bedded, laminated limestone and argillaceous limestone. A small amount of shale sometimes occurs as interbeds. Reported thicknesses range from 430 to 820 feet.

Water-Bearing Properties

Reported yields of 184 wells ranged from 0 to 315 gal/min. The median yield for domestic wells was 10 gal/min and the median for nondomestic wells was 33 gal/min. Twenty-one wells had reported yields of less than 5 gal/min and 11 had yields of 100 gal/min or more.

Well depths ranged from 27 to 504 feet; 86 wells were 100 feet or less deep and 15 were 300 feet or more deep. The median depths for domestic and nondomestic wells were 180 and 225 feet, respectively.

Water-bearing zones appear to be abundant to a depth of 300 feet. Four of 9 wells drilled deeper than 300 feet reported zones below that depth, and the deepest occurred at 470 feet.

Water Quality

Eleven samples were collected from these formations for analysis in the laboratory. A single sample exceeded drinking-water standards for chromium. The water can be characterized as a calcium bicarbonate type, as shown in Figure 26.

The median hardness from 76 field analyses was 14 grains per gallon, which is considered to be very hard. The water is moderately high in dissolved solids, as indicated by the median specific conductance of 430 micromhos.

Figure 26. Stiff diagram of the median chemical character of groundwater from the Keyser and Tonoloway Formations, undivided.

Evaluation of the Aquifer

Sufficient quantities of groundwater may be developed from these formations for most uses, and some very large yields are possible. Failures should be infrequent, as only 11 percent of the reported yields were less than 5 gal/min.

The water is very hard and moderately high in dissolved solids and will require treatment for some uses.

WILLS CREEK FORMATION

Stratigraphy

The Wills Creek Formation consists of interbedded olive- and greenish-gray, calcareous and noncalcareous shale and argillaceous limestone. There are a few interbeds of grayish-red shale and gray, fine-grained sandstone. The upper part of the formation in the Altoona area consists of alternating layers of dolomite and noncalcareous siltstone. Reported thicknesses range from about 400 to 650 feet.

Water-Bearing Properties

Reported yields of 199 wells ranged from 1 to 360 gal/min. The median yields of domestic and nondomestic wells were 15 and 40 gal/min, respectively. Eighteen, or about 9 percent, of the wells had yields less than 5 gal/min and 21, or about 6 percent, had yields of 100 gal/min or more.

Well depths ranged from 18 to 495 feet. Slightly more than half were 100 feet or less, and 17 were deeper than 300 feet. The median depths for domestic and nondomestic wells were 100 and 137 feet, respectively.

As suggested by the depth data, water-bearing zones were most frequent from depths of 0 to 100 feet, averaging nearly one zone per 50-foot depth interval. The deepest reported zone was at 300 feet.

Water Quality

Eleven samples were collected for detailed analysis in the laboratory. One sample each exceeded recommended limits for dissolved solids and manganese and two samples exceeded the limit for iron. The water is predominantly a calcium-magnesium bicarbonate type, as shown in Figure 27.

The median hardness from 88 field analyses was about 12 grains per gallon and the median specific conductance was nearly 450 micromhos. These data indicate that the water is very hard and moderately high in dissolved solids.

Figure 27. Stiff diagram of the median chemical character of ground-water from the Wills Creek Formation.

Evaluation of the Aquifer

The Wills Creek Formation will generally yield sufficient groundwater of acceptable quality for small to moderate supplies; some larger supplies are also possible, as one of four wells drilled for nondomestic purposes yielded 100 gal/min or more. The water is hard to very hard and requires treatment for some uses.

BLOOMSBURG AND MIFFLINTOWN FORMATIONS Stratigraphy

The Bloomsburg Formation is predominantly grayish-red shale and mudstone with some interbeds of light-gray sandstone and limestone. Reported thicknesses range from 50 to 450 feet, and the units are generally thinnest in the west.

The Mifflintown Formation consists of dark-gray calcareous shale and many interbedded thin layers of limestone. Locally two contrasting lithologies can be recognized: a lower unit, which contains the characteristic Mifflintown lithology of interbedded shale and limestone; and an upper unit, which is predominantly thin- to medium-bedded limestone up to 225 feet thick. The formation ranges from 200 to 625 feet thick and is thinnest in the east.

Water-Bearing Properties

Figure 28 is a frequency plot of reported yields from domestic wells in the Bloomsburg and Mifflintown Formations. The Bloomsburg has somewhat

Figure 28. Percent frequency distribution of reported domestic-well yields from the Bloomsburg and Mifflintown Formations.

higher yields, as shown by the graphical separation of the data.

Reported yields of 118 wells ranged from 1 to 150 gal/min. The medians for domestic and nondomestic wells were 15 and 18 gal/min, respectively. Seventeen wells yielded less than 5 gal/min (about 14 percent), and a single well yielded more than 100 gal/min.

Reported depths of 132 wells ranged from 34 to 418 feet. Thirty-six wells were 100 feet or less deep and only one was deeper than 300 feet. The median depths for domestic and nondomestic wells were 145 and 250 feet, respectively.

Yielding-zone data from 60 wells indicated that most of the water-bearing openings are relatively shallow. However, zones appeared to be consistently abundant to a depth of 300 feet. The deepest reported zone was at 385 feet.

Water Quality

Four groundwater samples were collected from these formations. One sample had nitrates above mandatory limits for drinking water. In the remaining samples all of the constituents were at acceptable levels.

The median hardness from 62 field analyses was 6 grains per gallon and the median specific conductance was about 280 micromhos. This indicates that the water is moderately hard and comparatively low in dissolved solids.

Evaluation of the Aquifer

These rocks will generally yield sufficient groundwater for small to moderate supplies. Yields from the Bloomsburg Formation are slightly higher than those from the Mifflintown Formation. About 27 percent of the wells obtained an adequate amount of water for domestic use from depths of 100 feet or less, which suggests an abundance of shallow yielding zones. This, coupled with the ease of drilling in predominantly shale formations, should result in a relatively low cost for development of small water supplies in these formations.

CLINTON GROUP

Stratigraphy

The Clinton Group consists almost entirely of the Rose Hill Formation, which is light-gray and light-olive-gray shale containing some minor interbedded siltstone and sandstone. One or more grayish-red to reddish-black, hematitic sandstone and siltstone horizons are generally present. Hematitic sandstones form up to 45 percent of the Clinton Group in the east.

The Rose Hill Formation is overlain by the Keefer Formation, which is predominantly light- to dark-gray, locally hematitic sandstone. The Keefer attains a maximum thickness of about 38 feet in the Juniata River basin. Reported thicknesses for the Clinton Group range from about 575 to 950 feet.

Water-Bearing Properties

Reported yields of 58 wells ranged from 1 to 386 gal/min. The median yields for domestic and nondomestic wells were 10 and 20 gal/min, respectively. Eight wells yielded less than 5 gal/min and four had yields greater than 100 gal/min.

Well depths ranged from 50 to 555 feet. The median for 48 domestic wells was 151 feet and the median for 12 nondomestic wells was 192 feet. Fifteen wells were 100 feet or less deep and seven were deeper than 300 feet.

Water Quality

Three samples were collected from the Clinton Group for laboratory analysis. All of them exceeded recommended limits for manganese and a single sample had excessive iron.

The median hardness from 19 field analyses was 5 grains per gallon and the median specific conductance was 250 micromhos. These data indicate that the water is moderately hard and comparatively low in dissolved solids.

Evaluation of the Aquifer

The Clinton Group will, in general, yield sufficient water of acceptable quality for domestic and other uses requiring small to moderate supplies. High concentrations of iron and manganese are a frequent problem.

Large supplies (100 gal/min or more) are difficult to obtain owing to the lithologic character (predominantly shale) of the unit.

TUSCARORA, JUNIATA, AND BALD EAGLE FORMATIONS Stratigraphy

The Tuscarora, Juniata, and Bald Eagle Formations are prominent ridge and upland bench formers throughout much of the basin.

The Tuscarora Formation generally consists of light- to medium-gray sandstone and minor interbedded shale. Thicknesses of this unit range from slightly less than 400 feet to at least 700 feet in the northern part of the Mifflintown quadrangle.

The Juniata Formation consists of brownish- to grayish-red sandstone, some siltstone, and shale. The sandstone ranges from fine to medium grained and is often crossbedded. Reported thicknesses increase from 850 feet in the west to about 1,500 to 1,700 feet in the east.

The Bald Eagle Formation is composed of gray to olive-gray and grayish-red, fine- to coarse-grained sandstone and some conglomerate. The unit is about 600 to 900 feet thick.

Evaluation of the Aquifers

Because these units generally underlie wooded ridges, there has been little attempt to develop groundwater from them. The few data that were obtained indicate that small supplies of soft groundwater are possible.

REEDSVILLE FORMATION

Stratigraphy

The Reedsville Formation consists of dark-gray, greenish-gray, and olivegray shale with some siltstone and a few sandstone layers near the top. The shale is fissile to thick bedded. In the northwestern part of the basin the underlying Antes Formation, primarily black calcareous shale, is combined with the Reedsville. The thickness of the Reedsville Formation ranges from 1,000 to about 2,000 feet.

Water-Bearing Properties

Reported yields of 38 wells ranged from 1 to 50 gal/min. The median yields for domestic and nondomestic wells were 12 and 20 gal/min, respectively. Only three wells had reported yields of less than 5 gal/min.

Well depths ranged from 31 to 435 feet. The median for both domestic and nondomestic wells was 130 feet. Twenty-six percent of the wells obtained sufficient quantities of water at depths of 100 feet or less, and about 17 percent had to be drilled deeper than 300 feet.

A limited amount of yielding-zone data indicates abundant zones in the 50- to 150-foot depth range and few deeper than 200 feet. The deepest reported zone was at 350 feet.

Water Quality

Four water samples were collected from the Reedsville Formation for laboratory analysis. Two samples exceeded recommended limits for iron and a single sample each exceeded limits for manganese and sulfate.

The median hardness and specific conductance from field analyses was about 5 grains per gallon (15 analyses) and 200 micromhos (13 analyses), respectively. These data indicate that the water from the Reedsville is moderately hard and relatively low in dissolved solids.

Evaluation of the Aquifer

The Reedsville Formation generally yields sufficient quantities of water of acceptable quality for small to moderate supplies. Excessive iron and manganese are a common problem and occasionally the water contains objectionable amounts of hydrogen sulfide.

COBURN FORMATION THROUGH LOYSBURG FORMATION

Stratigraphy

The interval from the Coburn Formation through the Loysburg Formation is a sequence of Middle to Upper Ordovician carbonate rocks approximately 1,000 feet thick. In descending order, the formations and lithologies that make up this stratigraphic section are as follows: Coburn Formation—medium-gray limestone; Salona Formation—very dark gray to black shaly limestone and calcareous shale; Nealmont Formation—medium-gray

fossiliferous limestone; Benner Formation—light- to dark-gray, thick-bedded limestone; Snyder Formation—light- to medium-gray limestone; Hatter Formation—medium-gray, argillaceous limestone; and Loysburg Formation—light- to medium-gray, medium-bedded limestone overlying laminated, alternating limestone, dolomitic limestone, and dolomite.

Water-Bearing Properties

Reported yields of 25 wells ranged from 1 to 25 gal/min. The median yield for domestic wells was 6 gal/min, and eight wells (about one third) had yields of less than 5 gal/min.

Reported depths of 27 wells ranged from 28 to 400 feet. Domestic wells had a median depth of 200 feet; five were less than 100 feet and four greater than 300 feet deep.

Water Quality

The two samples that were collected from these units for laboratory analysis had all constituents within recommended limits. Seven field analyses indicate that the water is hard (median of 10 grains per gallon) and moderately high in dissolved solids (specific conductance of 370 micromhos).

Evaluation of the Aquifer

Insufficient data are available to evaluate the maximum potential of these units. However, data from domestic wells suggest that small supplies of hard water can be developed, but that approximately one third will have yields less than 5 gal/min.

BELLEFONTE AND AXEMANN FORMATIONS

Stratigraphy

The Bellefonte Formation is generally medium- to thick-bedded, gray dolomite having minor amounts of chert and sandstone. Reported thicknesses for this unit average about 1,000 feet.

The underlying Axemann Formation, where recognized, is mainly limestone but contains a few thin layers of dolomite; it ranges between 50 and 200 feet in thickness.

Water-Bearing Properties

Reported yields of 36 wells ranged between 1 and 250 gal/min. The medians for domestic and nondomestic wells were 10 and 30 gal/min, respectively. Only three wells had reported yields of less than 5 gal/min, and a single well had a yield greater than 100 gal/min.

Reported depths ranged between 42 and 500 feet. The median depth for domestic wells was 156 feet. Ten wells obtained the desired yield at depths of less than 100 feet and eight had to be drilled deeper than 300 feet.

Water Quality

Nine samples were collected from these formations for laboratory analysis. One sample each exceeded mandatory limits for chromium and nitrate. About 25 percent of the samples had dissolved solids above recommended levels. The water is a calcium-magnesium bicarbonate type, as shown in Figure 29.

The median hardness and specific conductance from 16 field analyses were 18 grains per gallon and about 610 micromhos, respectively. Groundwater from these formations is thus very hard and high in dissolved solids.

Figure 29. Stiff diagram of the median chemical character of groundwater from the Bellefonte and Axemann Formations, undivided.

Evaluation of the Aquifer

Comparatively large supplies of groundwater are obtainable from these formations, and there should be few failures when attempting to obtain domestic supplies. However, the water is very hard and high in dissolved solids and will require treatment for most uses.

NITTANY AND STONEHENGE/LARKE FORMATIONS Stratigraphy

The Nittany Formation is primarily medium- to dark-gray, thick-bedded dolomite containing chert and siliceous oolites. Reported thicknesses range from 850 to 1,000 feet.

The Stonehenge Formation consists of 200 to 250 feet of medium-gray, medium-bedded to laminated, onlitic limestone, and is laterally equivalent to the medium- to dark-gray, coarsely crystalline dolomite of the Larke Formation.

Water-Bearing Properties

Reported yields of 36 wells ranged from 3 to 150 gal/min. The median yields of domestic and nondomestic wells were 15 and 26 gal/min, respectively. Only one well yielded less than 5 gal/min and four yielded 100 gal/min or more.

The median well depths were 173 feet for domestic wells and 194 feet for nondomestic wells. Depths of 38 wells ranged from 37 to 456 feet; seven were less than 100 feet deep and six were greater than 300 feet deep.

Water Quality

Eight samples were collected from these formations for laboratory analysis. All results were within the recommended drinking-water limits for the measured constituents.

Data from ten field analyses indicate that the water is very hard (median of 13 grains per gallon) and moderately high in dissolved solids (median specific conductance of about 550 micromhos).

Evaluation of the Aquifer

These formations should yield small to moderate supplies of very hard groundwater. About 40 percent of the wells drilled for large supplies should yield 100 gal/min or more.

GATESBURG FORMATION

Stratigraphy

The Gatesburg Formation consists primarily of gray dolomite, limestone, and sandstone. Five members of this formation are recognized in the basin. They are, in descending order: Mines Member—gray dolomite and some chert; upper sandstone member—cyclic repetitions of sandstone and dolomite; Ore Hill Member—laminated to massive limestone and dolomite; lower sandstone member—cyclic repetitions of sandstone and dolomite; and Stacy Member—thick-bedded, crystalline dolomite. The Gatesburg is about 1,475 to 1,750 feet thick.

Water-Bearing Properties

Reported yields of 39 wells ranged from 1 to 300 gal/min. The median yield for 35 domestic wells was 9 gal/min, and eight wells produced less than 5 gal/min. Four nondomestic wells yielded more than 100 gal/min.

Well depths ranged from 100 to 571 feet and the median was 264 feet for domestic wells. The median for four nondomestic wells was 452 feet. Sixteen wells, or over 40 percent, had to be drilled 300 or more feet deep to attain the desired yield.

Water Quality

Six groundwater samples were collected from the Gatesburg Formation for laboratory analysis. Two samples exceeded drinking-water standards for iron, one sample had excessive amounts of chromium, and one sample exceeded standards for manganese. The water is a calcium-magnesium bicarbonate type, as shown in Figure 30.

The median hardness from 16 field analyses was 11 grains per gallon; the median specific conductance was 431 micromhos. Groundwater from the Gatesburg is very hard and relatively high in dissolved solids.

Figure 30. Stiff diagram of the median chemical character of ground-water from the Gatesburg through Warrior Formations, undivided.

Evaluation of the Aquifer

The Gatesburg Formation should yield sufficient quantities of very hard water for most uses. Wells will, on the average, be deeper, have more casing, and have a greater depth to water than wells from any other rock unit in the basin (see Table 14).

WARRIOR, PLEASANT HILL, AND WAYNESBORO FORMATIONS

Stratigraphy

These three Lower Cambrian rock units have a rather limited areal extent within the Juniata River basin and thus are combined in this discussion.

The Warrior Formation consists of gray, thin- to medium-bedded limestone interbedded with dolomite and some sandstone. The underlying Pleasant Hill Formation is gray, thin-bedded, argillaceous limestone interbedded with shale, siltstone, and sandstone. The basal Waynesboro Formation consists of greenish-gray and grayish-purple shale interbedded with greenish-gray sandstone and conglomerate.

Water-Bearing Properties and Evaluation of Aquifers

Only eight wells were inventoried and only limited water-quality data were obtained from these formations. The results are presented in Tables 14 and 15 but are insufficient to adequately characterize the water-bearing properties of these units.

Based upon lithologic considerations, these units will probably yield small to moderate supplies of hard water.

MANAGEMENT OF WATER SUPPLIES

GROUNDWATER QUANTITY MANAGEMENT

No sizable areas were identified in the Juniata River basin where groundwater levels are progressively declining as a result of excessive groundwater withdrawals. Only a small fraction of the total available groundwater is being used.

Most quantity problems involve localized overpumping of a single well or well field. These types of problems can be alleviated either by adding wells so that pumpage is spread over a larger area, by utilizing another source of supply to allow water levels to recover, or by reducing the water demand.

Seasonal water shortages occur in water systems that have not developed sufficient excess capacity to enable supplies to be maintained through droughts of short to moderate length.

The analysis of annual streamflow indicated that, on the average, a groundwater discharge of at least 250 (gal/min)/mi² could be expected to occur approximately 90 percent of the time. If only 25 percent of this discharge (a conservative amount) were developed by widely spaced wells, 306 mgd could be obtained without seriously affecting groundwater levels or reducing streamflow. This is almost 12 times the estimated groundwater use in the basin in 1970.

The Susquehanna River Basin Commission is the only governmental agency that presently has enabling legislation allowing it to regulate some groundwater withdrawals. In September of 1976 the Commission adopted a regulation requiring compensation for certain consumptive water uses during low-streamflow periods. The purposes of the regulation are protection of public health, stream-quality control, economic development, protection

of fisheries, recreation, dilution and abatement of pollution, the prevention of undue salinity, and protection of the Chesapeake Bay.

Withdrawals from surface or groundwater of 100,000 gallons per day or more, from which more than 20,000 gallons are used consumptively, are covered by this regulation.

In addition, in the fall of 1978 the Commission adopted a policy on water conservation which sets forth project-review criteria through which the Commission will evaluate any new or requested increase for the withdrawal of water from a surface or groundwater resource for public water supply utilities, industries, and irrigational usage.

GROUNDWATER QUALITY MANAGEMENT

The quality of groundwater in the Juniata River basin is generally acceptable for most uses. Most man-induced water-quality problems are local in extent and can be minimized by constructing wells in such a way to preclude the possibility of surface water entering the well. Such factors as adequate casing lengths, wall thickness, and material, in conjunction with adequate formation sealing material such as cement grout, must be considered when constructing a well.

Point sources of groundwater contamination must be identified and eliminated or their effects minimized through clean-up operations.

Nitrate contamination of groundwater as a result of heavy fertilization of crop lands appears to be a problem in some of the valleys underlain by carbonate rocks. Agricultural practices that will minimize this problem need to be developed in these areas.

CONCLUSIONS

Groundwater use in the Juniata River basin was about 26 mgd in 1970. State Water Plan projections are for a 28 percent increase in water use by 1990, and most of the increase will come from groundwater.

The basin has an abundant water resource resulting from an average of approximately 37 inches of precipitation. Total runoff accounts for about 40 to 46 percent of annual precipitation, or about 14.6 to 16.9 inches. Groundwater flow averages 66 percent of total runoff. Evapotranspiration averages about 20.8 inches, or 57 percent, of precipitation.

Groundwater levels are at a median depth of 15 feet in valleys, 37 feet under hillsides, and 66 feet under hilltops. Bedrock units that consist primarily of shale have the shallowest median water levels.

Lithology, topography, and geologic structure were found to influence the depth, size, and abundance of water-bearing zones and, thus, well yields. Rocks that consist primarily of limestone or dolomite have the highest well yields, followed by sandstone and shale in that order. Yields of valley wells are two to three times higher than yields of wells located in other topographic settings. Geologic structures that have an important influence on well yields are faults, folds, fractures, and bedrock dip.

Groundwater quality is generally adequate for most uses. Major differences in chemistry occur between water from primarily calcareous rock units and water from noncalcareous units.

Iron and manganese are the natural constituents in groundwater that most commonly exceed recommended limits; more than 35 percent of the inventoried wells have high amounts of one or both of them. The presence of these constituents can result in the staining of bathroom fixtures, impart a brownish color to laundered goods, and affect the taste of beverages such as tea and coffee. Addition of an oxidizing agent to the water, followed by filtration, is the most common method used to remove iron and manganese from water supplies.

Major sources of groundwater contamination are bacterial organisms from sewage, petroleum products from buried storage tanks, excessive nitrates from improper agricultural practices, landfill leachate, and acid mine drainage.

Large supplies of groundwater can be developed from the lower part of the Conemaugh Group through the Pottsville Group, and domestic supplies are possible throughout. High levels of iron and manganese create a persistent problem.

The Mauch Chunk Formation yields sufficient water of acceptable quality for domestic use and other uses requiring moderate supplies. Large supplies (100 gal/min or more) are difficult to obtain.

The sandstones within the Pocono Formation, Burgoon Sandstone, and Rockwell Formation are primarily ridge formers and as such have low aquifer potential.

Small to moderate supplies are possible from the Catskill Formation, but large supplies are difficult to obtain. Forty percent of the wells produce water having objectionable amounts of iron and manganese.

The Foreknobs, Scherr, and Lock Haven Formations generally yield sufficient water for small supplies; however, a large percentage of domestic supplies may be marginal for some uses (about 25 percent produce less than 5 gal/min).

The Trimmers Rock, Brallier, and Harrell Formations have the poorest yielding potential of all of the rocks in the basin. Although most attempts at obtaining domestic supplies can be successful, over a third have marginal yields (less than 5 gal/min) for some uses.

The Hamilton Group yields small to moderate supplies. Over half of the wells produce water containing objectionable amounts of iron and manganese, and many produce water containing hydrogen sulfide.

Small to large supplies of hard water are obtainable from the Onondaga

and Old Port Formations. Twenty-five percent of the wells drilled in these formations for nondomestic purposes had yields of 150 gal/min or more.

The Keyser and Tonoloway Formations yield sufficient quantities of water for most uses, and some very large yields are possible. The water is very hard and moderately high in dissolved solids.

The Wills Creek Formation generally yields sufficient groundwater of acceptable quality for small to moderate supplies; some larger supplies are also possible, as one of four wells drilled for nondomestic use yielded 100 gal/min or more.

Small to moderate yields from comparatively shallow depths are possible from the Bloomsburg and Mifflintown Formations. The water is moderately hard.

The Clinton Group yields sufficient water for domestic and other smallto moderate-quantity uses. High concentrations of iron and manganese are a frequent problem.

The Tuscarora, Juniata, and Bald Eagle Formations generally underlie wooded ridges, and there has been little attempt to develop groundwater from them. However, small supplies of soft groundwater should be possible.

Excessive iron and manganese and objectionable amounts of hydrogen sulfide are a frequent problem in water from the Reedsville Formation. Small to moderate supplies should be available.

The Coburn through Loysburg Formations yield small supplies of hard water. The maximum yielding potential of these units has not been tested.

The Bellefonte and Axemann Formations produce comparatively large supplies of groundwater; there should be few failures when attempts are made to obtain domestic supplies. The water is very hard and high in dissolved solids and thus requires treatment for most uses.

The Nittany and Stonehenge/Larke Formations yield small to moderate supplies of very hard groundwater. About 40 percent of the wells drilled for large supplies should yield 100 gal/min or more.

The Gatesburg Formation should yield sufficient quantities of very hard water for most uses.

Based primarily upon lithologic considerations, the Warrior, Pleasant Hill, and Waynesboro Formations can probably yield small to moderate supplies of hard water.

SOURCES OF INFORMATION ABOUT WATER

A variety of information on water supplies is available from the government agencies listed below. When requesting information it is important to give an accurate location of the site for which information is desired.

The Bureau of Topographic and Geologic Survey, Department of Environmental Resources, Harrisburg, has information on the geology of the Juniata River basin and has published reports that describe in detail the rocks that underlie the area. Well drillers' logs and reports on new wells that have been drilled are also available.

The Bureau of Community Environmental Control, Pennsylvania Department of Environmental Resources, Harrisburg, can supply information on well construction requirements, biological reports on well water, and data on the chemical quality of groundwater. The Bureau, through various regional offices, tests water samples for bacterial pollution, and can also advise on effective corrective measures when pollution is reported.

The Division of State Water Plan, Bureau of Water Resources Management, Pennsylvania Department of Environmental Resources, Harrisburg, has information on stream discharges, floods, reservoir requirements, and power plant discharges.

The Public Utility Commission, Bureau of Rates and Research, has information on some municipal water supplies, including source, average daily use, total annual use, and estimated future needs.

The U. S. Geological Survey, Federal Building, Harrisburg, has data on wells, springs, and streams, and on the chemical quality of water.

Local well drillers and pump installers can usually provide prices and suggest the type of equipment needed to develop a water supply. They can also suggest the proper well diameter for the necessary pumping equipment. Pump installers can supply information concerning the size of the pump, depth of the pump setting, and pressure-tank capacity.

If the chemical analysis of the well water indicates that treatment is necessary, commercial water-treatment companies can provide the necessary information and equipment. Equipment for water treatment can be purchased or rented, and it will generally be serviced by the supplier if desired.

REFERENCES

- Becher, A. E., and Taylor, L. E. (1982, in press), *Groundwater resources in the Cumberland and contiguous valleys of Franklin County, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 53.
- Berg, T. M., Edmunds, W. E., Geyer, A. R., and others (1980), *Geologic map of Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Map 1.
- Butts, Charles (1905), *Ebensburg folio, Pennsylvania*, U. S. Geological Survey Geologic Atlas of the U. S., Folio 133, 9 p.
- _____ (1939), *Tyrone quadrangle*, Pennsylvania Geological Survey, 4th ser., Atlas 96, 118 p.
- _____ (1945), *Hollidaysburg-Huntingdon folio*, *Pennsylvania*, U. S. Geological Survey Geologic Atlas of the U. S., Folio 227, 20 p.

- Conlin, R. R., and Hoskins, D. M. (1962), *Geology and mineral resources of the Mifflintown quadrangle*, Pennsylvania Geological Survey, 4th ser., Atlas 126, 46 p.
- Dyson, J. L. (1963), Geology and mineral resources of the northern half of the New Bloomfield quadrangle, Pennsylvania Geological Survey, 4th ser., Atlas 137ab, 63 p.
- Faill, R. T., and Wells, R. B. (1974), Geology and mineral resources of the Millerstown quadrangle, Perry, Juniata, and Snyder Counties, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Atlas 136, 276 p.
- Faill, R. T., Glover, A. D., and Way, J. H. (in preparation), *Geology and mineral resources of the Altoona quadrangle*, Pennsylvania Geological Survey, 4th ser., Atlas 86.
- Flueckinger, L. A. (1969), Geology of a portion of the Allensville quadrangle, Centre and Huntingdon Counties, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Progress Report 176.
- Johnston, H. E. (1970), Ground-water resources of the Loysville and Mifflintown quadrangles, south-central Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 27, 96 p.
- Knowles, R. R. (1966), Geology of a portion of the Everett 15-minute quadrangle, Bedford County, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Progress Report 170, 90 p.
- Lloyd, O. B., Jr., and Growitz, D. J. (1977), *Ground-water resources of central and southern York County, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 42, 93 p.
- Lohman, S. W. (1938), *Groundwater in south-central Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 5, 315 p.
- Lovering, T. S., and Goode, H. D. (1963), Measuring geothermal gradients in drill holes less than 60 feet deep, East Tintic district, Utah, U. S. Geological Survey Bulletin 1172, 48 p.
- Meiser, E. W., Jr. (1975), *Ground-water geology and a digital simulation of sustained yield potential of the Altoona area, Pennsylvania*, unpublished Ph.D. dissertation, Pennsylvania State University, 291 p.
- Meisler, Harold, and Becher, A. E. (1971), *Hydrogeology of the carbonate rocks of the Lan*caster 15-minute quadrangle, southeastern Pennsylvania, Pennsylvania Geological Survey, 4th ser., Water Resource Report 26, 149 p.
- Miller, J. T. (1961), Geology and mineral resources of the Loysville quadrangle, Pennsylvania, Pennsylvania Geological Survey, 4th ser., Atlas 127, 47 p.
- O'Neill, B. J., Jr. (1977), *Directory of the mineral industry in Pennsylvania*, 3rd ed., Pennsylvania Geological Survey, 4th ser., Information Circular 54, 140 p.
- Pennsylvania Department of Environmental Resources, Bureau of Resources Programming (1979), Subbasin 12 (Lower Juniata River), State Water Plan 13, 127 p.
- (1980), Subbasin 11 (Upper Juniata River), State Water Plan 12, 147 p.
- Seaber, P. R., and Hollyday, E. F. (1966), *An appraisal of the ground-water resources of the Juniata River basin*, U. S. Geological Survey Open-File Report, 58 p.
- Stiff, H. A., Jr. (1951), *The interpretation of chemical water analysis by means of patterns*, Journal of Petroleum Technology, v. 3, no. 10, p. 15-17.
- U. S. Environmental Protection Agency (1975), *National interim primary drinking water regulations*, Federal Register, v. 40, no. 248, December 24, 1975, p. 59566-59588.
- (1976), Quality criteria for water, U. S. Government Printing Office, 256 p.
- _____ (1977), National secondary drinking water regulations, Federal Register, v. 42, no. 62, March 31, 1977, p. 17143-17147.
- Wood, C. R., Flippo, H. N., Jr., Lescinsky, J. B., and Barker, J. L. (1972), *Water resources of Lehigh County*, *Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 31, 263 p.

GLOSSARY

- Aquifer. A formation that yields significant quantities of water to wells and springs.
- Arenaceous. Pertaining to rocks that have been derived from sand or that contain sand.
- Argillaceous. Pertaining to rocks composed of clay or having a notable proportion of clay in their composition.
- Base flow. Discharge entering stream channels as flow from the groundwater reservoir; the fair-weather flow of streams.
- Carbonate rocks. Rocks composed dominantly of carbonate minerals. Limestone and dolomite are the most common rocks of this type.
- Dip of beds. The angle at which the formation or bed is inclined from the horizontal, measured at a right angle to the strike or trend of the formation or bed.
- *Discharge, groundwater.* The process by which water is removed from the saturated zone; also the quantity of water removed.
- Drawdown. The lowering of the water level in a well caused by pumping.
- Evapotranspiration. Water withdrawn from a land area by direct evaporation from water surfaces and moist soil and by plant transpiration.
- Fault. A fracture or fracture zone along which there has been displacement of the two sides relative to each other. The displacement may be a few inches or many miles.
- Formation. A fundamental unit in rock stratigraphic classification. It is a body of rock characterized by lithologic homogeneity; it is prevailingly tabular and is mappable at the earth's surface or traceable in the subsurface.
- Fracture. A break in the rock.
- Groundwater reservoir. An aquifer or a group of related aquifers under a given area.
- Hardness. A chemical property of water, caused mostly by the presence of calcium and magnesium, which increases the amount of soap needed to produce a lather. Water that has a hardness, calculated as grains per gallon of calcium carbonate, less than 3.5 is soft; between 3.5 and 7.0 is moderately hard; between 7.1 and 10.5 is hard; and greater than 10.5 is very hard. Values may be converted to milligrams per liter by multiplying by 17. Hardness values used in this report were determined in the field by use of a Calgon Speedy kit for testing water hardness. (Use of a brand name is for identification purposes only and does not imply endorsement by the Pennsylvania Geological Survey.)
- Hematitic. Pertaining to rocks containing the mineral hematite, Fe₂O₃, the principal ore of iron.
- Igneous rock. A rock that solidified from molten material.

GLOSSARY 83

- *Metamorphic rock*. A rock derived from preexisting rocks by change in mineral composition or texture caused by heat and pressure.
- Overdraft. An excessive lowering of the water level or artesian head in an aquifer caused by excessive withdrawal.
- Permeability. The capacity of a material to transmit a fluid.
- pH. The negative logarithm of the hydrogen-ion concentration. A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote alkaline solutions; values lower than 7.0 indicate acidic solutions.
- *Porosity.* The ratio of the volume of interstices in a rock to its total volume, expressed as a percentage.
- *Primary openings*. Openings or voids existing when the rock was formed. In sedimentary rocks, openings result from the shape and nature of the original sediment and the way the particles are fitted together.
- *Recharge, groundwater.* The process by which water is added to the saturated zone; also the quantity of water added.
- Runoff. That part of the precipitation that appears in streams. It is the same as streamflow unaffected by diversions, dams, or other works of man.
- Saturated zone. The zone in which interconnected interstices are saturated with water.
- Secondary openings. Voids produced in rocks subsequent to their formation by solution, weathering, or breaks in the rock.
- *Specific capacity*. The yield of the well, in gallons per minute, divided by the drawdown of water level in the well, in feet.
- Specific conductance. A measure of the capacity of water to conduct an electrical current. It varies with concentration and degree of ionization of the constituents.
- Stiff diagram. A diagram used to show water composition differences or similarities. The width of the pattern is an approximate indication of the total ionic content.
- Stream-gaging station. A gaging station where a record of discharge of a stream is obtained. Within the U. S. Geological Survey this term is used only for those gaging stations where a continuous record of discharge is obtained.
- *Transpiration*. The process by which vapor escapes from the living plant, principally the leaves, and enters the atmosphere.
- Water table. The upper surface of the zone of saturation, or that zone in which openings in permeable rocks are filled with water.

TABLE 15. CHEMICAL ANALYSES OF GROUNDWATER (Results are in milligrams per liter unless otherwise indicated)

(nZ) oniZ
nodres sinsgro [sto]
(pO2) staffu2
(sN) muibo2
(K) Potassium
N ≥s , ε ^{ON}
N ss , S ^{ON}
N 25 , EHN
Nickel (Ni)
(pM) muizanp&M
(uW) əsənaganaM
(Pb)
Iron (Fe)
Hardness (CaCO ₃)
(F) abinoufF
sbifos bavfossid
(ฯ၁) mwimoฯฝว
(F3) ebinof43
(s) muis[s]
(bJ) muimbsJ
Alkalinity (CaCO ₃)
(fA) munimufA
(sA) singsmA
Нq
[və]iupA
Date of collection
Well number

	<.01	.02	.05	.07	.31	.01	.01	4.95	.02	.02	.01	.01	.01	.04	.47	.02	.01	.01	4.68	.02	.01	.27	.01	.01	×.01	.02	.01	0.	.01	.01	2.05	.01	.62	.01	.07	.36	.31
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	l	1	!	-	1 2	1	
	140	30	20	20	15	15	25	09	25	45	15	2	15	< 5	۷2	<5	<5	30	52	25	۷	< 5	15	15	10	15	35	20	20	30	1200	9	30	15	180	25	1710
														_			_																				11.1 6.38
																																					1.18
	.02	.08	.02	90.	.16	.02	.92	1.12	2.2	. 50	.08	.04	.57	.10	.14	1.92	6.82	0.1	1.98	7.92	.84	.19	7.16	2.2	.02	.74	.12	. 68	1.5	.32	.02	1.3	1.54	.40	.04	.10	.02
																																					.002
	.29	.29	80.	.02	.02	.01	.01	.02	.02	90°	.03	. 28	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01	.01	.18	.01	.19	.01	.01	.01	96.	.01	.01	.01	.03	.01	.17
																																					.02
																																					165
																																					.39
	< .05	< .05	< .05	< .05	< .05	< .05	<.05	< .05	<.05	< .05	< .05	< .05	<.05	< .05	< .05	<.05	< 0.05	< .05	< .05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	.054	<.05	<.05	<.05	×.05	<.05 <.05
COUNTY	1.49	90.	.73	.23	.07	.04	.03	.03	.17	.09	.02	. 28	.02	. 22	.03	.02	1.85	.03	.05	.02	60.	.12	.02	60.	1.06	.01	.55	.04	.04	.04	98.6	.04	.02	.09	.10	.07	1.95
-0R0 C	175	130	88	110	82	100	190	484	484	150	114	152	102	25	78	62	254	384	354	284	182	46	254	242	188	09	264	8	44	8	792	278	200	66	246	< 20	1764
BEO																																					1.2
	388	532	208	216	190	180	306	552	486	308	216	236	220	82	146	136	276	570	476	450	300	124	370	302	334	16	414	166	128	176	1926	400	248	146	526	142	3038 116
	<.01	90°	<.01	<.01	<.01	<.01	<.01	.01	90"	.01	<.01	<.01	<.01	<.01	<.01	<.01	.07	.05	.04	.04	.05	<.01	<.01	<.01	<.01	.01	.01	<.01	<.01	.03	.04	.01	<.01	.01	.01	.01	.02 •.01
	3.0	3.0	0.9	1.0	1.0	1.0	13	14	12	0.9	3.0	<1.0	18	<1.0	1.0	3.0	7.0	18	33	33	20	<1.0	8.0	4.0	46	1.0	20	3.0	8.0	0.9	2.0	0.6	4.0	2.0	26	3.0	0.0
	34.3	38.3	20	22.8	14.3	25.7	41.2	103	901	33.4	29.5	40.5	24	2.5	19.2	16.9	42.4	96.4	60.5	70.4	38.2	14.5	56.5	80.8	51.3	27.8	73.8	17	8.7	24	109	55.3	39.9	40.2	0.86	5.6	227 6.5
																																					<.003 <.003
	116	198	100	124	104	108	186	320	310	142	142	180	95	28	110	88	204	360	250	290	170	99	244	224	150	82	244	104	34	86	16	280	192	104	144	116	108 6 4
	.02	.02	.01	.02	.05	.05	.02	.05	.13	.02	.08	.05	.04	.16	90.	.05	.92	.04	.03	.04	.03	60.	.04	.02	.19	<.01	.01	.01	.02	.05	.14	.05	.03	60.	.02	.04	.04
	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	.04	<.01	<.01	<.01	<.01	<.01	<.01	×.01	<.01	<.01	<.01	<.01	<.01	×.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01	<.01 <.01
	7.3	7.8	7.2	7.3	7.5	7.5	7.8	7.4	7.6	7.3	7.5	7.9	7.8	9.9	7.7	7.9	7.8	7.4	7.5	7.4	7.4	7.6	8.0	7.6	7.4	7.1	7.6	7.6	6.5	7.1	5.6	7.7	7.6	7.7	7.8	8.7	6.8
	0bh	Oh	0 f	0f	0ck	000	SWC	SWC	0Skt	0bh	0.5	Swc	0ck	0 f	0ck	0ck	69	0ba	0ns	0ba	6W	0r	0ba	OSkt	0Ph	000	0h	0ck	0ck	0.5	Pc	69	69	0Skt	0£	0ck	000 0s
	3/12/80	3/13/80	8/13/80	8/13/80	8/13/80	8/14/80	8/14/80	8/12/80	8/13/80	8/13/80	8/14/80	8/19/80	8/20/80	8/20/80	8/20/80	8/20/80	8/19/80	8/50/80	8/20/80	8/20/80	8/21/80	8/19/80	8/20/80	8/20/80	8/21/80	8/56/80	8/56/80	8/56/80	8/27/80	8/28/80	9/16/80	8/27/80	8/27/80	8/27/80	8/27/80	8/27/80	9/17/80
																																					425

m C - 1 0 - 1 0 1		6011157128#401188180101081819117771401		1		m
.33 .20 .01 .01 .02				.03		.01014
		0.71 0.00		50		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 115 45 25 65 10		1130 330 331 331 330 330 330 330 330 330		10		10 25 22 2
6.6 1.28 13.4 .86 1.22		<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>		99.		.88 16.3 4.07 1.26 6.93
.96 1.12 1.36 .92 1.38		100 100		1 1		.46 1.08 .64 3.14 .74
. 22 . 02 . 04 2.42 . 10		22. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.		3.96		.02 .02 .02 .06 .50
.002 .002 .002 .002 .002		004 007 008 009 009 009 009 009 009 009		.002		.002
.01		10111111111111111111111111111111111111		.02		.01 .01 .01 .007
				1 10		.01 .02 .02 .01 .01
7.1 12.9 12.6 18.6 37.7 28.1		26.99 22.05.29 22.05.29 22.05.39 20.04 20.04 20.05 20.		9.6		2.2 2.3 3.8 7.5 1.0
01 05 .01 .01		00100000000000000000000000000000000000		<.01 <.01		1.12 .33 .87 .22 .49
						

	c	7
	ñ	i
	Ξ	Š
	Ξ	5
	Ē	
	Г	
	Ξ	Ξ
	4	
	C	2
1	_	٥
	-	-
		٠
	L	
1	1	177
1	_	75
	4	100
	_	100

(nZ) oniZ		, , , , , , , , , , , , , , , , , , ,
Total organic carbon		10.00 10
Sulfate (SO ₄)		100 100 100 100 100 100 100 100 100 100
(sN) muibo2		~10 3.74 13.6 8.2 17.8 2.38 2.38 2.38 2.38 2.38 2.38 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39
(K) muissato		010 010 010 010 010 013 013 013
N 26 , E ^{ON}		1.020 1.
N 25 , 20N		0.000000000000000000000000000000000000
N 25 .EHN		
Nickel (Ni)		
(PM) muîsəngsM		7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
(uM) esenegneM		
(dq) besl		\$\tau_{\\tau_{\tau_{\tau_{\tau_{\tau_{\tau_{\tau_{\tau_{\tau_{\tau_{\tau_{\\tau_{\tau_{\\tun_{\tau_{\\tun_{\tau_{\\tun_{\tau_{\\tun_{\tau_{\\tun_{\tau_{\\tunk_\\ \tu}\\ \tau_{\tau_{\\tun_{\tau_{\\ \tun_{\tau_{\\ \tun_\\ \tun_\\ \tum_\\ \\ \tum_\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
(94) novi	COUNTY	3.66
Hardness (CaCO ₃)	HUNT I NGOON	1111 69 108 83 83 83 83 83 83 81 172 172 172 88 81 172 173 174 175 175 175 175 176 177 177 177 177 177 177 177 177 177
(F) (F)	HUNT	\(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \
sbifos bavfossiO		146 176 176 176 176 176 176 176 176 176 17
(та) muimorda		
(I) sbirofd)		17.0 17.0 13.0 13.0 10.0
(s) muis[s)		26.9 26.9 27.9 28.16 28.16 28.17 28.18 28.18 28.18 28.18 28.18 29.18 20.18
(b) muimbs)		
Alkalinity (CaCO ₃)		110 1
(IA) munimulA		200333325252535353555555555555555555555
(zA) ɔiməzʏA		
Hq		874450841170448888628088878888784999441084
[[] rəfiupA		99 99 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
noitselfos to etson		5/13/80 5/13/80 7/15/80 7/15/80 7/15/80 7/15/80 7/16/80 7/16/80 7/10/80 7/1
Well number		1170 1170 1170 1170 1170 1170 1170 1170

02 01 01		.01		0.01 0.02 0.08 0.08 0.01 0.01 0.01 0.02 0.02 0.03		0.0000000000000000000000000000000000000
12		<1.0 <1.0 1.0 8.0		8 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		000000000000000000000000000000000000000
55 25 32 17		15 35 15 20 20 20		35 20 20 20 20 20 20 20 20 20 20 20 20 20		20000000000000000000000000000000000000
64.4 .99 56.7 11.9		<pre></pre>		6.38 6.38 1.10 6.27 6.27 6.27 6.10 7.48 7.48 7.48 7.48 7.10 6.10 6.10 6.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7		010 010 010 010 010 010 010 010 010 010
3.54 1.0 .34 .62		<pre><10 <10 <10 <10 <10 <10 <10 <10 <10 <10</pre>		1.14 -10 -10 -10 -10 -10 -10 -10 -10		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.76		.86 3.96 .20 .04		.00 .00 .00 .00 .00 .00 .00 .00 .00 .00		3.29 3.29 3.29 .02 .02 .02 .02 .04
<.002 .002 .002		.002		002 002 002 002 002 002 002 002		
~.01 .10 .19		.01		18 10 10 10 10 10 10 10 10 10 10 10 10 10		003333333333333333333333333333333333333
 		.01 .01 .01				0.0000000000000000000000000000000000000
16.4 6.4 1.8 4.7		5.8 10.9 15.3 2.3		28.3 28.3 11.3 6.2 13.2 13.3 13.3 14.7 13.3 16.1 16.1 17.8 17.9 17.9 17.9 17.9		11.8 17.6 17.6 4.5 5.0 5.0 9.1 12.7 5.43 8.5
		.01 .01 .06 .06		0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.03		
×.05 ×.05 ×.05				00 00 00 00 00 00 00 00 00 00 00 00 00		00 00 00 00 00 00 00 00 00 00 00 00 00
.03	COUNTY	.03 04 05 04 05 04 05	OUNTY	002 002 002 012 013 023 002 002 002 003 003 004 005 005 005 005 005 005 005 005 005	UNTY	.03 .36 .01 .01 .77 .77 .86 .114
246 <20 64	_	157 256 135 138 43	LINC	151 232 66 66 88 88 200 110 175 70 70 70 155 195 58 300 58 200 76 132	RY CO	92 85 196 40 40 50 50 50 60 60 60 76
.10	JUNIATA	.10 .12 .10 .10	MIFF	1.1.2.2.1.1.1.2.2.1.2.2.2.2.2.2.2.2.2.2	PER	
360 342 176 130		272 404 222 188 76		236 236 292 292 316 268 268 1172 1174 474 474 1174 1174		150 132 250 60 86 98 130 137 152
.02 .02 .01 .01		.00. .00. .005				, v v v 01 001 001 001 001 001 001
3.0		29 6.0 6.0 1.0		25.0 11.0		10 3.0 6.0 6.0 11.0 6.0 14.0 8.0
30.4 83.2 6.6 20.4		42.8 99.2 33.3 31.8		38.8 58.3 32.3 32.3 32.3 46.3 146.3 16.6 75.6 9.6 9.6 10.9 41.7		20.5 18.5 42.5 6.2 111.5 21.2 111.3 60.4 0.1
		003003003003003		00333337 000333337 0003333333 0003333333 000333333 00033333 00033333 00033333 00033333 00033333 00033333 00033333 00033333 00033333 0003333 0003333 0003333 0003333 0003333 000333 000333 000333 000333 000333 000333 000333 0003 0003 00		00333333333333333333333333333333333333
232 232 142 98		100 234 110 140 44		152 80 80 98 98 1152 114 168 168 154 154 114 188 138 138 138 138 138 138 138 138 138		108 112 172 56 60 60 124 68 222 222 148 126
90.00.00.00		.01 .03 .05 .05				.002 .002 .007 .007 .001
01 085 01				\(\frac{1}{2}\)\(\frac{1}\2\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac		0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
7.3		7.1 7.0 7.5 7.6 7.0		7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.		7.4 7.7 7.7 6.8 6.9 6.9 7.1 7.1
Sbm Ock Oh		Oh Swc Sc Oh		0h 0bf 000 000 000 000 00h 00h 00h 00k 00skt 00skt 00skt 00skt		00000000000000000000000000000000000000
7/30/80 7/30/80 7/31/80 8/01/80		5/15/80 5/15/80 5/20/80 5/29/80 5/29/80		7/16/80 7/23/80 7/24/80 7/24/80 5/22/80 5/22/80 5/22/80 5/28/80 5/28/80 5/28/80 5/22/80 5/22/80 5/22/80 8/06/80 8/06/80 8/06/80		5/07/80 5/08/80 5/08/80 5/08/80 5/13/80 5/14/80 5/14/80 5/20/80 5/20/80
Hu-320 324 327 332		Ju-310 331 340 355		Mf-236 245 245 245 245 261 261 262 263 277 277 277 277 277 277 278 300 300 300 300 300 300 300 300 300 30		Pe-559 565 565 567 567 570 627 630 641

Ppc, Conemaugh Group; Mmc, Mauch Chunk Formation; Mp, Pocono Formation; Ock, Catskill Formation; Of, Foreknobs Formation; Os, Scherr Formation; Olh, Lock Haven Formation; Oth Trimmers Rock Formation; Obh, Brallier and Harrell Formations, undivided; Osc. Onondaga and Old Port Formations. Undivided; Osc. Wills Creek Formation; Spn, Bloomsburg and Mifflintown Formations, undivided; Sc. Clinton Group; Or, Reedsville Formation; Oct. Coburn Formation through Loysburg Formation, undivided; Obf, Belleforme Formation; Obs. Belleforme Formation; Obs. Belleforme Formation; Oss. Wittany and Stonehenge/Larke Formation; Eg, Gatesburg Formation; Ew, Warrior Formation.

TABLE 16. RECORD OF WELLS

Well location: The number that is assigned to identify the well. It is prefixed by a two-letter abbreviation of the county.

The latitude and longitude (lat-long) are the coordinates in degrees and minutes of the southeast corner of

a 1-minute quadrangle within which the well is located.

Use: A, air conditioning; C, commercial; D, dewatering; H, household; I, irrigation; N, industrial; P, public; R, recreation; S, stock; T, institutional; U, unused; Z, other.

Topographic setting: F, flat; H, hilltop; S, hillside; T, terrace; U, undulating; V, valley; W, draw.

Aquifer: Pc, Conemaugh Group; Pa, Allegheny Group; Pp, Pottsville Group; Mmc, Mauch Chunk Formation; Mp, Pocono Formation; MOr, Rockwell Formation; Dck, Catskill Formation; Dcsc, Sherman Creek Member of Catskill Formation; Ociv, Irish Valley Member of Catskill Formation; Df, Foreknobs Formation; Ds, Scherr Formation; Olh, Lock Haven Formation; Otr, Trimmers Rock Formation; Obh, Brallier and Harrell Formations, undivided; Dha, Harrell Formation; Ohb, Burket Member of Harrell Formation; Dh, Hamilton Group; Dmh, Mahantango Formation; Omsr, Sherman Ridge Member of Mahantango Formation; Dmo, Montebello Member of Mahantango Formation; Om, Marcellus Formation; Doo, Onondaga and Old Port Formations, undivided; Don, Onondaga Formation; Oop, Old Port Formation; DSkm, Keyser Formation through Mifflintown Formation, undivided; DSkt, Keyser and Tonoloway Formations, undivided; DSk, Keyser Formation; Sto, Tonoloway Formation; Swc, Wills Creek Formation; Sbm, Bloomsburg and Mifflintown Formations, undivided; Sb, Bloomsburg Formation; Sm, Mifflintown Formation; Sc, Clinton Group; St, Tuscarora Formation; Oj, Juniata Formation; Obe, Bald Eagle Formation; Or, Reedsville Formation; Ocl, Coburn Formation through Loysburg Formation, undivided; Ocn, Coburn Formation through Nealmont Formation, undivided; Obl, Benner Formation through Loysburg Formation, undivided; Ob, Beekmantown Group; Oba, Bellefonte and Axemann Formations, undivided; Obf, Bellefonte Formation; Oa, Axemann Formation; Dns, Nittany and Stonehenge/Larke Formations, undivided; On, Nittany Formation; Osl, Stonehenge/Larke Formation; Cg, Gatesburg Formation; Cgm, Mines Member of Gatesburg Formation; Cw, Warrior Formation; Cph, Pleasant Hill Formation; Cwb, Waynesboro Formation.

Lithology: cash, calcareous shale; dol, dolomite; ls, limestone; sh, shale; ss, sandstone.

Static water level: Depth--F, flows but head is not known. Date--month/last two digits of year.

Reported yield: gal/min, gallons per minute.

Specific capacity: (gal/min)/ft, gallons per minute per foot of drawdown.

Specific conductance: Micromhos at 25 degrees Celsius (°C).

TABLE 16.

								TADLE 10,
We11 1	location			Date		Alti- tude of land surface	Topo- graphic	Aquifer/
Number	Lat-Long	Dwner	Driller	completed	Use	(feet)	setting	lithology
								8EDFDRD
Bd- 5 14 15 19 60 65 97 106 107	40DD-7822 3958-7821 3958-7819 40DD-7817 40D9-7815 4001-7840 4001-7831 4001-7830	Everett Bor. Water Co. Frank O'Neil W. C. Slonacher George Gibney W. Carberry Yellow Creek Ice Plant Leon Falk Bedford Bor. Suplee-Wills-Jones Milk Co.	Hess D. M. Hall George Walters		U H H H D N H P N	1D6D 1D22 128D 118D 9DD 95D 1380 125D 1D7D	V S H S V S V	DSkt/ls Df/sh Df/sh Dck/ss Mmc/sh Sb/sh Dop/ss Sc/sh Swc/ls
108 118 150 151 152 153 154 155 156 167 168	4001-7830 4002-7845 4002-7828 4002-7827 3959-7814 4002-7828 4017-7833 4002-7328 4004-7842 4002-7837	McLaughlin Handle Factory Herbert Paulsen T. Burnett Weaver Fetter Breezewood Methodist Ch. T. Burtnett 8lue Knob State Park Burtnett Leroy Grine Pa. Dept. of Environ- mental Resources	Gerald W. Clark do. do. do.	1965 1967 1963	U H Z H H P	1D 9D 244D 114D 116D 122D 134D 112D 312D 112D 1550 121D	S S S S V H V S S	Swc/1s Mp/ss Don/ Dop/ Dop/ Dck/ Dop/ss Mp/ Dh/ Dck/
169 170 171 172	4001-7838 4001-7841 4001-7841 4002-7838	Shawnee State Park Norah Hilligas Roy Hillegas	Thomas Coyle	1955	Н Н Н Р	118D 1260 1280 1170	V V S	Dmh/ Dmh/ Dmh/ Dm/
173 174 175 176 177 183	40D1-7848 40D1-7838 4002-7837 40D2-7837 40D1-7838 3955-7835	Shawnee State Park do. do. do. do.	do. do. do. do. do. Layne-New York Co., Inc.	1954 1954 1952	R R R P	1160 1260 118D 118D 110D 137D	V S V V V	Dmh/ Omh/ Df/ Df/ Dmh/ DSkt/
187 188 193 194 195	4016-7835 4016-7835 4001-7829 4001-7829 4001-7829	8lue Knob State Park do. Kennametal Inc. do. Humble Dil & Refining Co.	S. G. Spicher H. A. Stormer & Son Harrisburg's Kohl Bros. do. do.	1939 1940 1951 1951 1947	Н К И И	1901 1901 1D80 1D8D 12DD	S V V S	Dck/ Dck/ Dop/ Dop/
196 197 198 199 200 201 202 203 204 206 211 212 213 214 215 216	4001-7829 4001-7829 3959-7814 3959-7814 3959-7814 4010-7829 4010-7831 4003-7321 4010-7833 4008-7832 4008-7834 4009-7834 4009-7834 4008-7834	do. do. do. do. do. do. do. do. Sterior Loysburd Dsterburg Water Co. Everett Munic. Authority D. G. Miller C. Wise O. Stiffler O. Knisely R. Rager R. Tiffany Chestnut Ridge Sch. Dist.	Gerald W. Clark Jeff C. Pyle Milford Frazier Gerald W. Clark Milford Frazier do. Gerald W. Clark	1947 1947 1953 1956 1962 1964 1966 1980 1979 1979 1979 1978 1978	C C C C C P P H H H H H H H T T	12DD 12DD 12DD 12DD 131D 131D 131D 131D	S S S S S S V V V S S V H H S S	Doo/ Doo/ Doo/ Dock/ss Dck/ss Dck/ss Dck/ss Dr/ Dop/ Dskt/ Dh/ Dbh/ Dbh/sh Dh/ Doo/1s
218	4007-7834	Chestnut Ridge Ind. Fellowship Ch.	do.	198D	T	115D	S	Dh/sh
219 22D 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238	4009-7831 4009-7832 4009-7834 4007-7834 4011-7835 4012-7831 4012-7832 4001-7820 4001-7820 4001-7819 4001-7819 4001-7819 4001-7819 4001-7819 4001-7819 4001-7819 4001-7819 4001-7815 4001-7815 4001-7815 4001-7815 4001-7815	St. Clairsville Lutheran Parish 8. Earnst R. Phelps R. Evans E. Dldham R. Christ H. Claycomb F. R. Mearkle R. Crawford K. Grace Randy Bauchman J. W. Swope R. Henry Jerry Lewis D. Woy Derl Beck E. Cloude D. R. Hess T. Reyan E. Laidig	do. Jeff C. Pyle Gerald W. Clark Milford Frazier Gerald W. Clark do. do. do. do. do. do. do. do. do. do.	1979 1979 1979 1979 1979 1930 1978 1978 1978 1979 1979 1979 1979 1979		1155 117D 1180 129D 1220 1215 1315 1D60 142D 132D 1380 1180 1180 1190 1300 1260 1140 1280 1140 1280 112D	F V H S V S S H H S V S S H F F V S S S S	Dh/sh Dh/ Dh/sh Dbh/sh Dbh/sh Dbh/sh Df/sh Df/sh Df/sh Df/sh Dck/sh Dck/sh Dck/sh Dck/ Dck/ Dck/ Ds/sh
239 24D 241	40D2-7816 4D01-7819 40D3-7821	8. Winck C. Feight R. Greenawalt	do. do. do.	1978 1978 1979	H H H	136D 106D 11DD	H F V	Df/sh Dck/sh DSkt/ls

RECORD OF WELLS

					c water evel						
Total depth below land surface (feet)	Casi Oepth ((feet) (Diameter	Oepth(s) - to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9p9)	Specific conduc- tance (micro- mhos at 25°C)	рН	Well number
COUNTY											
500 60 110 192 90 34 194 240	18 20 20 20 50 27 15	6 6 6 6 6 6 8 8		1 10 40 92 50 8 100		30 4 1 9 5 10 25 5	.12				8d- 5 14 15 19 60 65 97 106 107
100 400 150 130 155 298 183 500 418 12	20 40 47 130 155 185 103	6 8 6 6 6 6	58;88	14 365 28 93 31 298 33 2	4/68	8 35 6 	.17	5	270		108 118 150 151 152 153 154 155 156 167 168
140 10 107 48	20	6 6				3 10			540	7.3	169 170 171 172
50 120 207 76 150 95	18 21 21	6 6 6 6		4 20 18		15 5 2 32	.09 2.8		335 257 443 304 		173 174 175 176 177 183
200 115 236 219 267	100 52 28 42	6 6 8 6	115;170 59;68;81;110 	70 48 23 21	10/40 10/40 10/51 10/51	34 20 200 200 200 0	3.4 .4 1.5 2.2 .01				187 188 193 194 195
335 220 680 140 176 200 457 300 235 500 244 300 67 138 73 55 223	255 102 26 28 42 40 150 66 20 25 27 20 38 22 50	666666666666666666666666666666666666666	90;290 15;130;160 170 23;35 30 60 48 15;110;208;210	90 75 235 58 184 6 4 48 8 48 8	6/47 6/47 6/56 11/66 8/80 4/79 8/80 4/79 8/80 4/78 5/80	35 45 72 10 20 12 15 42 17 84 1 2 2 5 10 20	.35 .6 .69 .56 .81 .01	6	260 240 360	8.0	196 197 198 199 200 201 202 203 204 206 211 212 213 214 215 216
460	20	6	18;160;240	F	8/80	1	.01				218
200 245 100 50 223 182 620 83 183 303 274 82 253 143 203 405 420 346 102 223	20 30 12 21 22 34 22 52 52 30 30 28 73 32 22 52 52 34 42 42	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	40;165 220 50;70;75 25;35 80 96;141;153 400 40;57;67 61;90;158 151;221 270 39;60;66 165;186;225 70;114 133;163;174 200;380 240 140;203;305 50;76;95 120;138;160;203 385;98	12 31 47 80 10 300 3 80 80 160 26 100 70 100 200 174 4 100 300 300 300 300 300 300 300	8/80 8/80 8/80 5/80 12/78 6/78 4/79 8/80 5/80 7/78 5/79 8/80 4/80 6/79 4/79 1/78 8/78 8/78 8/78 8/78	3 25 20 1 16 16 1 17 25 3 3 20 15 10 8 20 4 2 4 25 4 25 4		10 3 13 5 6 3 5 3	275 380 420 165 255 140 200 120		219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
103 63	30 20	6	53;67;78 13;33	32 20	7/78 2/79	11 20	.15				240 241

TABLE 16.

								TABLE 16.
Well	location Lat-Long	Owner	Driller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/ lithology
Bd-242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 267 258 269 260 261 262 263	4005-7820 4004-7820 4004-7820 4004-7820 4005-7820 4005-7820 4007-7818 3939-7821 4004-7830 4003-7832 4003-7832 4003-7831 4004-7830 4007-7831 4004-7830 4007-7831 4006-7833 4005-7833 4005-7833 4005-7833 4005-7833 4005-7833 4005-7833 4005-7833	J. Norris 1. McKinney Charles Croyle G. Blackstone D. Ritchey G. Brown B. Zellers J. Stewart T. Layman M. Walper C. Zimmerman do. Feathers P. Beamer V. Shaw B. Anderson H. Doerschuk J. Smith C. Corle R. Lewis D. Morris J. Lewis	Gerald W. Clark do. do. do. do. do. do. do. do. do. do.	1979 1977 1977 1979 1978 1979 1978 1979 1979		1020 1220 1260 1180 1080 1090 940 1380 1305 1200 1295 1291 1245 1160 1300 1180 1420 1240 1235 1200	V S S S S S S S S S S S S S S S S S S S	Swc/ls Dh/sh Doo/sh Doo/sh Doo/ Swc/ls Swc/ls Dh/ls Df/sh Df/ Swc/ DSkt/ DSkt/ St/ St/ St/ Dh/ Dbh/sh Doo/ Doo/ Doh/
264 265 266 267 268 269 270 271 272 273 274 275 276 277	3959-7832 4003-7834 4003-7835 4002-7836 4001-7835 4000-7836 3958-7833 3957-7833 3957-7833 3956-7834 3956-7834 3959-7821 3958-7831	Clapper Wholesale Florist M. E. Ferguson J. W. Mallory R. Whetstone S. Suters H. Smith R. Shaffer B. Hill R. Phillips Ted Brown J. E. Eckard J. W. Lockard J. Chamberlain J. Felton	do. do. do. Jeff C. Pyle do. do. do. do. do. do. do. do. do. do.	1979 1978 1978 1979 1979 1979 1979 1978 1979 1977 1979 1979	C H H H H H H H H	1260 1390 1625 1450 1185 1145 1330 1395 1260 1255 1255 1460 1380 1340	S H S S S V V V S S H H	Swc/ Ds/ Ds/ Ds/ Ds/ Doo/ Ds/ Swc/ Shm/ Dskt/ Dh/ Doo/ Df/sh Dck/sh
278 279 280 281 282 283	3959-7819 3959-7819 3959-7821 4000-7820 4000-7819 4000-7819	R. Clingerman Kenton Foor C. E. Decker B. Baughman R. Calhoun B. Foor, Jr.	do. do. do. do. do.	1978 1978 1978 1978 1979 1979	H H H H	1260 1260 1180 1290 1220 1140	H H S H H	Dck/ Dck/sh Df/sh Df/ Dck/ Dck/sh
284	3958-7816	B. Husick	do.	1979	Н	1290	Н	Dck/sh
285 286	3957-7817 3956-7821	D. R. Foor R. Greenawalt	do. do.	1978 1978	Н	1280 1350	H V	Dck/ Dck/
287	3956-7822	J. Stanton	do.	1979	Н	1340	Н	Dck/sh
288	3955-7817	J. Snyder	do.	1978	Н	1460	S	Ds/sh
289 290 291 292 294 295 296	3955-7817 3955-7817 3955-7817 3957-7821 3955-7819 3956-7819 3956-7820	D. Weiger I. Smith, Jr. I. Smith, Sr. M. Williams C. and L. Shaw L. Stevey D. Pepple	do. do. do. do. do. do.	1980 1979 1978 1978 1978 1979	H H H S H S	1440 1485 1420 1320 1360 1360 1400	S V S S H	Ds/sh Ds/sh Df/sh Df/sh Df/sh Df/sh Df/sh Df/sh
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318	3956-7822 3954-7821 3954-7821 3954-7821 4012-7833 4010-7824 4011-7825 4011-7825 4011-7825 4011-7824 4012-7824 4010-7824 4010-7824 4009-7823 4009-7823 4009-7823 4009-7823 4009-7823 4009-7823 4009-7823 4009-7823 4009-7823	R. Hott G. Clark do. A. Clark, Jr. T. P. Benton D. Clark O. Baker J. Teeter J. Teeter J. Frederick F. Imler F. Slagerweit S. L. Dively F. Gates Manges Constr. G. Batzel R. C. Hull R. Ebersole H & F Welding C. Leach Dr. Barker C. Nycum	do. do. do. do. do. do. do. Jeff C. Pyle Gerald W. Clark do. do. do. James R. Miller do. Clark James R. Miller Gerald W. Clark do. do. do. do. do. do. do. do. do.	1980 1980 1980 1979 1978 1978 1979 1979 1980 1978 1977 1979 1978 1979 1978 1979 1979		1320 1400 1340 1340 1210 1460 1255 1520 1560 1520 1390 1420 1220 1290 1310 1170 1170 1190 1600 1145	\$ 5 H H F F F H S F F H F S S S S S S S S S	Dck/sh Ds/sh Ds/sh Ds/sh Ds/sh Ds/sh Db/sh Ocl/ Ons/ls Ocl/ls Cg/ls Cg/ls Cg/ls Cg/ls Cg/ls Cg/ls Oba/ls Ons/ls Ons/ls Ons/ls Ons/ls Oba/ls Ocl/ls Cd/ls Occ/ls Occ/ls Occ/ls Occ/ls Occ/ls Occ/ls Occ/ls Occ/ls Occ/ls
319	4000-7827	J. Fleming	Jeff C. Pyle	1979	Н	1090	S	Cw/1s

(CONTINUED)

					ic water evel						
Total depth			Oepth(s)	Oepth					Specific conduc-		
below land surface	Casi Depth (ing Diameter	water- bearing zone(s)	below land surface	Oate measured	Reported yield	Specific capacity	Hard- ness	tance (micro- mhos at		Well
(feet)		(inches)	(feet)	(feet)	(mo/yr)	(gal/min)	([gal/min]/ft)	(9p9)	25 °C)	рН	number
78 83 218 142 101 120 43 81 140 305 178 223	21 20 48 23 40 21 29 24 21	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	20;60 43;56 73;197 115 23;38;90 28;55;78 28;32 55;70 60;130 90;120	10 26 50 60 10 20 5 31 10 74 	7/79 8/80 12/77 7/79 8/80 10/79 10/78 8/80 11/79 8/80 5/79 8/80	15 30 20 10 15 8 30 25 8 5 0	.22 .52 .16 .17 .13 .94 .40 .07	5 10 5 4 20	190 410 170 195 778 678	7.10	8d-242 243 244 245 246 247 248 249 250 251 252 253
438 63 78 205 302 42 153 105 56 123	38 31 56 11 30 30 20 53	6666 6666	190 45;50 50 115 79;145;241 15;35 140 75 23;50 100;108	27 20 30 100 80 28 25 9	8/80 7/79 4/79 11/78 4/78 9/79 8/80 8/80 8/80 8/80 8/80	2 80 5 1 6 2 15 50 2 22	.05	9 5	703 385 230 295	7.00	254 255 256 257 258 259 260 261 262 263 264
162 284 105 65 225 225 245 165 121 238 180 83 203	22 30 20 34 26 39 9 21 20 24 132 21 22	6 6 6 6 6 6 6	100;144 145;162 60 40 200 45;140 35;85 130 105 118;168 160 3;42;68 105;155;165;	50 103 26 18 20 16 4 4 0 50 25 58	7/78 8/80 8/80 8/80 10/79 4/79 8/80 8/80 11/77 8/79 8/80 8/80	8 4 20 10 20 3 2 20 15 2 20 6	.09 .06 .01 .33 .07	7 10 18 3 3 5	285 315 375 620 125 140 200	7.45	265 266 267 268 269 270 271 272 273 274 275 276 277
386 223	21 23	6 6	185 145 93;102;112;	130 89	8/80 8/80	1 12	.02 0.1	6 6	255 200		278 279
325 168 285 243 381	26 21 20 21 21	6 6 6 6	198 140;200;300 80;147 178;265 170;229 100;216;280;	75 70 142 150 100	7/78 8/80 8/80 5/79 12/79	4 6 5 45 15	.02 .05 .03 .48 .05	2 4	65 195		280 281 282 283 284
200	50	6	370 69;90;138; 197	32	8/80	15	.12	5	215		285
223	20	6	100;140;190; 195	58	8/80	12	.05	4	195		286
222	30	6	102;118;155; 172	80	8/79	5	.04				287
143 141	53 54	6 6	59;98;125 51;77;95; 132	4.5 30	8/78 4/80	12 15	.16				288 289
122 123 203 163 182 223	41 21 25 21 84	6 6 6 6	82;100 78;85;117 46;95;191 60;82;130 72;85;141 148;186;210;	52 20 10 25 7 0 60	8/80 11/78 11/78 9/78 8/79 8/80	12 50 6 10 4 60	.30 .47 .03 .07 .04	4	160		290 291 292 294 295 296
168 343 163 162 120 105 79 80 441 366 163 450 366 101 140 158 326 103 162 138 182 325	80 25 40 45 22 47 21 25 256 181 73 110 47 97 110 141 20 21 21 23 47	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	216 58;147;155 120;180 75;145 80;120 17;24;98 80;127 70;73 355;430;436 301;357 144;153 253 260;320;335 98 98;18 139;148 140;280 41;95 30;65;120 139;165;304:317	F 50 57 80 6 5 10 5 311 200 116 100 36 80 75 113 65 36 120 120 78	2/80 5/80 8/80 7/79 6/78 8/80 10/78 8/80 12/79 1/80 5/78 11/77 8/80 5/78 8/80 8/80 8/80 8/80 8/79 7/79 8/80	18 1 8 6 6 15 20 20 5 30 18 1 5 5 5 20 20 5 5 30 18 1 5 5 5 5 5 5 5 5 5 7 7 8 7 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	.17 .003 .11 .15 .11 .63 .34 .06 .21 .01 .65 .21 .01 .02 .24 .02 .20 .10 .39	10 12 10 12 10 13 16 13 16 	240 265 420 320 565 615 600 265	7.4	297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
145	51		110;140	70	8/80	30					319

TABLE 16

								TABLE 16
Well Number	liation - Lat-L II	Jwner	Driller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/
8d-320 321 322 323 324 325	4000-7827 4000-7827 4001-7825 4001-7825 4001-7825 4003-7823	R. J. Elbin P. E. Mills Ross Smith R. Smith Ch. of the Brethren of Snake Spring Valley	Gerald W. Clark do. do. do. do. do.	1978 1978 1978 1978 1978 1978	Н Н Н Н Н	1150 1090 1205 1240 1240 1150	\$ \$ \$ \$ \$	Cw/ss Cw/ls Cg/ls Cg/ls Cg/ Obf/ls
326 327 328 329 330 331 332 333	3957-7833 3957-7833 3959-7828 3957-7830 3956-7830 3954-7831 3955-7830	Fred Feight W. Feight	Milford Frazier do. Gerald W. Clark do. Jeff C. Pyle Larry G. Walters Jeff C. Pyle Gerald W. Clark	1978 1978 1979 1976 1978 1978 1980 1978	H H H H H	1240 1260 1240 1550 1390 1305 1300 1300	V S S V H S V	Doo/ Doo/ Cg/ls Or/ Ocl/ls Obf/ls Obf/ls Ocn/ls
334 135 36 337 338 339 340 341 342 343 344 345 346	3953-7830 3953-7830 3953-7830 3957-7832 3959-7836 4000-7841 4000-7841 4001-7840 4001-7840 4001-7840 4002-7840	L. Cessna W. Cessna do. E. Studebaker G. Wilkins D. Crissey J. Beckner do. T. Beckner Falklands Farm W. J. Gray H. Miller Shawnee Valley Fire Co.	do. do. do. do. Jeff C. Pyle William C. Hall Jeff C. Pyle do. do. Gerald W. Clark do. do.	1979 1978 1978 1979 1979 1977 1977 1979 1978 1978	H U H H H H H S H H H H S H H H	1405 1405 1305 1260 1230 1510 1210 1200 1380 1250 1298 1325 1210	S S S S V V S S S H V	Ocn/ Dcn/ Ocn/ls Doo/ls Doo/ls Dskt/ls Or/ Dbh/ Dbh/ Dh/sh Dh/sh Doo/
347 349 349 350 351 352 353	4004-7837 4004-7838 4005-7839 4007-7841 4006-7839 4007-7838 4005-7842	A. Taranto W. Caldwell J. Stultz G. L. Miller E. Deremer R. Anderson R. Fox	do. do. do. Jeff C. Pyle Gerald W. Clark do.	1978 1978 1979 1979 1979 1978 1978	Н Н Н Н Н	1430 1520 1425 1560 1420 1235 1810	S S H S V S	Doo/ Doo/ Dh/ Dck/ Dh/ Dh/ Dh/
154 155 156 157 158 160 163 164 165 166 167 175 176 177 178 179 180 111 111 111 111 111 111 111	4003-7843 4002-7842 3959-7843 3959-7843 3959-7843 3956-7837 3956-7839 3957-7839 3957-7839 3959-7837 3959-7837 4009-7811 3955-7824 3954-7822 3954-7822 3954-7822 3955-7823 3959-7827 3959-7827 3959-7827 3959-7827 3959-7827	R. Reed A. Fletcher B. Dillnes S. Householder L. Geotz Millingan Cove Ch. J. Suder A. D. Diehl D. Replogle D. Resnick M. Nelson J. Harmon do. D. Wentz F. Crocker A. Black K. Grimes G. Miller R. Mallow C. J. Morse S. Morral J. Morral C. J. Furlong Kingdom Hall Jack Otehl Paul Deasy H. Turner D. Long L. Albright Fred Hagenbuch D. Hunt G. Feathers Ash F. Clingerman	Jeff C. Pyle Joseph R. Meinert Jeff C. Pyle Gerald W. Clark Jeff C. Pyle Thomas Coyle Gerald W. Clark Thomas Coyle Gerald W. Clark Jeff C. Pyle Thomas Coyle do. do. do. do. do. do. do. do. do. do.	1979 1978 1978 1978 1978 1980 1978 1977 1977 1977 1977 1977 1977 1977	ннин пининининининин пининининининининин	1605 1582 1430 1482 1485 1440 1510 1390 1610 1595 1595 1595 1640 1440 1420 1420 1420 1420 1180 1180 1180 1180 1180 1180 1180 11	V S H S V V H	Ock/ Os/ Obh/sh Obh/ Or/sh Os/Is Ob/Is Os/Is
394 395 96 .97 398 399 400 401 402 403	3958-7824 3958-7823 3954-7826 3954-7827 3955-7826 3959-7823 3951-7824 4003-7823 4005-7823	Dean Grubb J. Burget R. L. Barthelow J. Williams Ronald Cogan E. B. Robinson J. Davis and R. Morse D. Miller H. C. Cottle J. Egolf	do. do. do. do. do. do. do. do. do. do.	1977 1978 1978 1978 1978 1978 1978 1978	H H H H H H H H H H H H	1220 1140 1340 1380 1300 1080 1540 1145 1480 1220	\$ \$ \$ F \$	Swc/ls Dh/sh DSkt/sh DSkt/sh DSkt/ DSkt/ls DS/sh Obf/ls Or/sh Dh/sh
404 405 406	4008-7838 4009-7840 4012-7839	T. Eichler L. Heidorn Ronald Gohn	do. do. do.	1979 1979 1976	H H H	1290 1520 1970	S	Obh/sh Of/ Ock/

(CONTINUED)

								_
	263 82 182 320 240 108 83 79 120 202	225 195 205 300 305 60 38 121 225 583 125 583 125 145 100 125 338 142 223 143 183 183 183 182 202 223 245 326 245 326 245 326 327 320 180 321 321 321 321 322 323 324 325 326 327 327 327 327 327 327 327 327 327 327	203 325 182 140 205 230 244	200 43 202 141 165 95 145 85 305 361 223 103 360	53 80 100 223 225 125 125 285	182 182 102 264 571 243	Total depth below land surface (feet)	
	58 21 41 30 90 44 20 52 28	20 20 21 21 21 35 20 20 20 21 21 21 22 20 25 113 42 20 21 20 21 20 21 20 25 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	61 163 22 20 20 21 29	67 61 20 51 25 20 22 20 21 73 22	41 22 20 50 28 20 30 35	164 21 44 61 21 21		
	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6	6 6 6 6 6 6 6 6	6 6 6 6 6	6 6 6 6 6	ng Jameter Jinches)	
185	300 60;134;23 42;63 156;167 210;258;3(256) 62;95 60;70 60;71 75;85 35;78;11	228 25:50;170 180 100;170 60;240 75 55 30 29 90;140 80;95;115 105;140 92 95;120 315;335 90 60;136 144;158;16: 181;205 30;42;112 53;65 40;100 34;120;16 78 198;215 74;285 120;190 245 130 240;304 177 130;148;24	341 90;120;150 241;291;302 78;105 125 80 60;215 60;180;198	237 71 191 60;120 60;135 65;90 80;115;130 40;55 -5 30 72;88 63;242;293	45 65 68;77 45;55;180 45 40;115 80 32;80;182;	163 60;176 80 140;194 115;184 98;108;209	Oepth(s) - to water- bearing zone(s) (feet)	T
	34 40 20 100 00 80 109 0 23 30	41 73 85 268 19 9 9 4 57 80 60 32 42 2 552 55 55 1800 108 170 1200 1200	150 27 40 15 20	55 39 F 29 36 99 20 30 78 5	18 40 59 25 20 40 30	70 20 70 100 150 50	Oepth below land surface (feet)	
	11/77 10/78 11/78 11/78 10/78 8/80 10/78 8/80 10/78 8/80 10/78 8/80 10/78	5/80 8/80 8/80 8/80 1/79 5/79	7/78 7/78 8/80 11/79 10/79 11/78 5/79	8/80 10/78 8/80 10/79 8/80 12/79 8/77 11/79 8/80 8/78 6/78 8/79 5/76	6/78 8/80 10/79 8/80 10/78 5/78 8/80 3/78	8/78 5/78 8/80 9/78 10/78	Oate measured (mo/yr)	c water
) 3	8 8 7 15 20 5 40 9 10 8	2 15 20 15 20	8 10 8 10 2 32 25	4 0 4 20 30 12 10 50 1 4 3 15	5 5 10 5 2 5 30 5	16 150 8 6 2 10	Reported yield (gal/min)	
,04	.04 .13 .10 .07 .15 .05 .83 .5 .25	.01 .01 .02 .02 .04 .01 .06 .30 .12 .18 .83 .07 .201.2502	.08 .09 .07 .17	.03	0.4	.23 1.1 .13 .07 .07	Specifi capacity {[gal/min]/ft)	
	665	3 8 8 6 6 - 9 9	5 7 15 9 6	10 13 5 11 21 6 6 13	16 4 19 18 11	16	Hard- ness (9p9)	
	185 235 220 165 140	280 4 50 26 5	185 245 540 365 245	365 515 175 470 2090 703 385 228 460	453 145 613 595 365	555 	Specificonductance micromhos at 25°C)	
	6.9	6.9	6.96 7.1 6.8	7.2	7.4		рН	
- 404	395 396 397 398 399 400 401 402 403	389 390 391	347 348 349 350 351 352 353	334 335 336 337 338 339 340 341 342 343 344 345 346	326 327 328 329 330 331 332 333	8d-320 321 322 323 324 325	Well number	

TABLE 16.

									TABLE 16.
	Well location						Alti- tude of		
	Number Lat-Long		Owner	Driller	Date		land surface	Topo- graphic	Aquifer/
L	8d-407	4011-7839			completed	Use	(feet)	setting	litholog
	408	4011-7839	W. Osman	Gerald W. Clark do.	1979 1979	H	1850 1 SOO	S V	Dck/ Dck/
	409 410	4013-7838 4013-7821	A. Tessari Woodbury Mennonite Ch.	do. James R. Miller	1978	Н	1950	S	0ck/
	411	4013-7821	P. D. Steele	Gerald W. Clark	1978 1979	H	1345 1400	H S	Oba/ls
	412 413	4013-7820 4013-7820		do.	1979	Н	1485	S	Oba/ls Or/sh
	414	4008-7820	Northern Bedford Sch.	do. do.	1979 1979	H T	1420 970	F F	0c1/1s
	415	4008-7819	L. Mc11nay	do.	1978	H	960	S	Swc/ls Sc/sh
	416 417	4009-7820	E. C. Burkett	do.	1978	Н	1040	S	Sc/sh
	418	4008-7816 4007-7815	J. 8rannock V. Colledge	do. do.	1979	Н	930	S	MOr/
	419	4009-7815	Tri County Petroleum,	do.	1978 1976	H N	980 870	S F	Pa/ss Mmc/
	420	4009-7813	Inc. Oennis Orenning	Oonald W. Graham					
	421	4009-7815	W. Hastings	Gerald W. Clark	1975 1979	H	1120 880	S V	Pc/sh Mmc/sh
	422 423	4013-7816 4013-7816	F. Kormanski Ralph Steel	Glenn E. Houp	1979	Н	980	S	0h/
	424	4013-7816	Chadwicks Esso	do. do.	1979 1979	H C	980	V	Dh/
	425	4009-7835	R. Kring	Gerald W. Clark	1978	Н	980 1350	S S	Oh/ Doo/1s
	426 427	3951-7824 3951-7823	M. Barkman J. Oavis	do. Jeff C. Pyle	1979	Н	1490	S	Ds/sh
	428	3951-7824	H. Oean	do.	1978 1978	H H	1420 1320	S H	Df/ Df/
	4 30	3951-7824	R. Dickens	Gerald W. Clark	1979	Н	1600	H	Df/sh
	435	4001-7813	P. Millin	do.	1979	Н	1300	Н	Ock/
	436 437	4000-7813 4003-7814	Paul Peck K. Karns	do.	1977	Н	1340	Н	Ock/sh
	438	3959-7814	J. Howsare	do. do.	1978 1979	H	1370	S	Df/sh
	439 440	3959-7814	O. Felton	do.	1979	H	13S0 13S0	F H	Ock/
	441	3959-7814 3959-7814	P. Whitfield Wiltshire Motel	do.	1979	Н	1350	Н	Ock/
	442	3959-7814		do. Paul N. Wright	1980 1978	C H	1340 1355	F H	0ck/
	443 444	3959-7814 3959-7814	John Nebel	Gerald W. Clark	1978	H	1300	S	Ock/
	445	4000-7822	H. Nave O. H. Clark	do. do.	1978	H	1 34 0	S	Ock/
	446	4000-7822	W. Pupo	do.	1978 1978	H	1060 1120	S S	Dbh/sh
	447 448	4001-7822 3959-7814	C. Stone	do.	1979	H	1100	S	Dh/sh Dh/sh
	449	4003-7821	J. I. Foor Everett Munic. Authority	do. Harrisburg's Kohl Bros.	1 980 1 96 6	H U	1360	Н	Dck/sh
	451	4009-7812	A. 8lack	Gerald W. Clark	1978	U	1140 160S	S S	Swc/ Pa/
	452 453	4008-7811 4008-7813	E. Putt G. Sheeder	do. do.	1978	Н	1665	V	Pa/
	454	4008-7813	do.	do.	1978 1978	H	1390 1390	S S	Pc/
	455 456	4008-7813 4012-7814	do. D. O. Long	do.	1979	H	1390	S	Pc/
	457	4011-7812	Coaldale Water Co.	do. do.	1979 1978	H P	930	V	Ock/
	458	4011-7812	do.	do.	1978	P	1415 1415	A A	Pc/
	4\$9	4009-782\$	New Enterprise Water Assoc.		1967	Р	1331		Ons/
	460	4001-7822	New Enterprise Stone and Lime	Gerald W. Clark	1978	C	1230	S	Swc/
	461	3959-7814	Holiday Inn-Breezewood	do,	1973	С	1320	S	0ck/
	462	4000-7814	Penn Aire Motel		1980	С	1300	S	0ck/
	463	4011-7821	Waterside-Loysburg		1961	Р	1460	W	Or/
	464	4013-7820	Bor. of Woodbury		1966	Р	1520	W	Or/
	465 466	4010-7813 4007-783S	Stony Hollow Water Works			Ü			Pc/
	467	4007-7835	Fishertown Water Assoc.		1966	P P	1360	W	Doo/
	468	4009-7830	Osterburg Water Co.		1966	P	13S5 1141		Doo/ Dh/
	469 470	3959-7814 3959-7814	Breezewood Bonanza Breezewood Motel	Gerald W. Clark	1978	C	1330	S	Dck/
	471	4001-7829	Hedstrom Company	do. do.	1978 1978	C N	1310 1070		Ock/ OSkt/
	472	4009-7835	Pleasantville Water		1972	Р	1245		000/
	473	4002-7822	Authority West Providence Two.	= 44 -	1965	N	1370		
			Ind. Oevelopment Authority		1303	11	13/0		Sbm/
	474	4000-7831	Bedford Munic. Water Authority		1969	U	1215	S	Sc/
	475 476	4013-7819 4009-783S	Bor. of Woodbury G. Radford	Gerald W. Clark	1965	ρ	1720)j/
	477	4013-7836	O. Allison	do.	1978 1978	Н	132S 1550		Doo/ Dck/sh
	478 479	4014-7831 4014-7831	R. Fickes	do.	1979	Н	1330	S (Obh/sh
	480	4014-7831 4017-782S	J. Feathers D. Hoover	do. James R. Miller	1978 1978	H H	1290	V (Obh/sh
	481 482	4017-7825	M. Hoover	do.	1978	H	1480 1470		0r/ 0r/sh
	483	4015-7824 4005-7825	B. Foor S. Dibert	Fred D. Albright Gerald W. Clark	1978	H S	1550	F (g/ls
	484	4006-7828	C. Hershberger	do.	1978 1979	H	1210 1370		Swc/ls Skt/ls

(CONTINUED)

				c water						
Total depth	Carina	Depth(s) to water-	Oepth below					Specific conduc- tance		
below land surface	Casing Oepth Diamet	bearing zone(s)	land surface	Oate measured	Reported yield	Specific capacity	Hard- ness	(micro- mhos at		Well
(feet)	(feet) (inche	223	(feet) 180	(mo/yr) 11/79	(gal/min)	([gal/min]/ft) .03	(9p9)	25 C)	pН	number Bd-407
30.5 40 530	20 6 20 6 20 6	23;30 242;500	15 280	8/80 8/80	20 10	.57	3	120 230	6.8 7.1	408 409
150 346	135 6 20 6	136 90;109;244 30;39	117 50 15	8/80 9/79 8/80	30 5 50	.03	16 4	420 165	7.5	410 411 412
58 120 100	20 6 21 6 40 6	52;58;100 23;32;53	40 8	3/79 8/79	12 30	.30 1.0				413 414 415
100 120	25 6 86 6	20;31;85; 98 78;95	30	10/78 7/78	15 10	.25				416
100 42	36 6 21 6	57;70 30	40 4	8/79 5/78	8 25	.26 1.3				417 418 419
103 47	25 6 25 6	80;88;93 35;45	25 10	11/76 8/75	60 20	1.0 2.0				420
90 110	30 6 21 6	23;58;73 45;70;90	20	8/80 8/80	25 12	.83	7 16	315 565		421 422 423
50 270 421	21 6 21 6 102 6	90;165;195	6 55 140	8/80 9/79 9/80	11 4 2	.01	65	1400	7.5	424 425
93 165	47 6 21		23	8/80 7/78	15 15	-20	4	115	7.6	426 427
125 163	47 58 6	65;90 78;101;120 140	; 84	8/78 8/80	10 10	.11				428 430
408	20 6			12/79	6	.03	4	180	7.6	435
163 140	20 6 45 6	98;112;125	80 23 180	9/80 9/80 5/79	10 20 8	.12 .27 .13	3 2 6	140 105 155		436 437 438
260 240 198	27 6 36 6	155;165;218		5/79 6/79	30 5	.43	-	155		439 440
560 475	33 6 6	525;560	200 160	9/80 5/78	30 5	.09		265 250		441 442 443
264 400	26 6 21 6	305;340;380		9/80 11/78 11/78	7 6 4	.05	5	250		443 444 445
425 102 400	31 6 46 6	60;85	20 150	7/78 4/79	15	.24				446 447
203 400	40 6 36 8	170 150;330	152 0	6/80 9/66	30 10	.97 .05				448 449 451
162 182 121	6 66 6 21 6	135;175	40	7/78 9/80 3/78	1 2 0	.01	4	185		452 453
123 80	19 6 24 6	123	103 15	4/78 1/79	4 4	0.2				454 455
280 99	43 6 23 6	19;28	52 20	9/80 11/78	2 7 45	.01 0.8 .8	10 11 9	370 430 360	7.3	456 457 458
100 165	25 6 92 6	98	50 70	11/78	150					459
123	82 6		50	11/78	6	.08				460
303	44 6	133;145;196 238	; 130	8/73	100					461
580	40 6		; 100	2/80	80	.17				462
300	40 6	5			42					463 464
320 139	(50;120;300 5 5) 		45 4 10					465 466
140 154 235		5			16 17					467 468
360 480	42 (40 (5 240;335 6 358;480	100 100	6/78 3/78	100 100 100	.42 .67 1.7				469 470 471
141 332	24 8 136	120	20	10/78	200					472
270		6 170	76	10/77	31	.78				473
200	20	8	20		55	.39				474
262		6	- 80	 9/78	25 3	.01				475 476
380 223 228	20	6 141;280 6 21;45;107 6	28 50	9/80 12/79	3 4	.01	8	400	7.1	477 478
263 110	20 20	6 22;78 6 50;85	6	8/78 6/78	3 6	.01				480
130 295	161	6 110;120 6 290 6 42;82;128	270 30	10/78 4/78 12/78	40 15 25	.22				482
143 264		6 233	227	1/79	8		16	410	7.3	

TABLE 16.

								TABLE 16.
Well 1	ocation Lat-Long	Owner	Driller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/
8d-485 486 487 488 489 490 491 492	4006-7829 4003-7827 4004-7829 4004-7829 4016-7822 4016-7823 4018-7834 4015-7835	B. Hinson J. Mellott M. Salz D. May R. Eicher G. Poet G. Giles Mt. Zion United Ch. of Christ	Gerald W. Clark do. do. do. do. James R. Miller Gerald W. Clark	1979 1978 1978 1979 1979 1978 1978	H H H H H H T	1255 1105 1220 1185 1375 1420 2345 1480	S S S S S S	Swc/ls Dh/sh Doo/sh Dh/ss Cg/ls Cg/ls Dck/
493 494 495 496	4016-7837 4016-7830 4009-7831 4010-7831	Brown B. Turner S. Corle B. Brown	Jeff C. Pyle Gerald W. Clark Jeff C. Pyle Gerald W. Clark	1978 1977 1979 1978	H H H	1900 1615 1155 11 70	\$ \$ F \$	Dck/ Ds/sh Dbh/ Doo/ss
_								BLAIR
da- 1 5 9 17 18 19 25 33 37 38 40 41 42 43 44 45	4019-7819 4016-7820 4018-7822 4027-7825 4026-7823 4025-7824 4025-7818 4034-7857 4031-7824 4031-7824 4031-7823 4030-7823 4030-7823 4030-7823	Irvin Stoner Abbots Darry Howard Burket Altoona Packing Co. J. C. Lang Thermic Coal & Coke Co. H. D. Winter Altoona Northern R.R. West Altoona Ice Co. Penn Alto Hotel East End Ice Co. Caums Ice Cream Harshburger Dairy Co. F. R. McMahon Dairy Co. Blair Ice & Cold Storage	Albright & Hillard do. Wissinger Albright & Hillard Wissinger Albright & Hillard Albright & Hillard Wissinger Albright & Hillard Wissinger Albright & Hillard Wissinger Albright & Hillard Wissinger Albright & Hillard Wissinger Albright & Hillard Wissinger Albright & Hillard	1933 1933 1932 1932 1918 1922 1931 1908 1928 1932	H N H U 1 Z H U N A N N N N N	1420 1440 1410 1060 990 970 960 2480 1300 1230 1210 1200 1140 1150 1140	2	Oba/dol Ons/dol Ons/dol Oba/dol Dh/ Sc/ls Sc/ss Dbh/sh Mp/ss Olh/sh Olh/ OSkt/ls Oh/ls Sc/sh OSkt/sh
46 60	4028-7825 4040-7814	Co. R. A. Book West Virginia Pulp &	Wissinger Albright & Hillard	1933	I U	1090 910	V	Doo/sh DSkt/ls
61 52 53 64 57	4040-7814 4040-7814 4040-7814 4040-7814 4040-7814 4018-7833	Paper Co. do. do. Waple Dairy Shaffer Meat Plant Blue Knob Development Corp.	L. E. Gladfelter do. Albright & Hillard H. A. Stormer & Son	1924 1932 1953	N U A A	920 910 900 890 2038	M A A A	Dh/1s Swc/sh DSkm/sh Sc/sh Dck/
68 71 72 73 74 75 76 76 77 78 85 86 87 88 89 90 91	4018-7833 4040-7814 4040-7814 4040-7814 4024-7827 4017-7827 4017-7827 4017-7827 4030-7822 4030-7822 4030-7822 4031-7821 4033-7821 4033-7821 4033-7821 4033-7821 4033-7821 4031-7821 4031-7821	do. Bor. of Tyrone do. do. do. U. S. Geol. Survey Blairmont Country Club Claysburg Ind. Park #1 Altoona Enterprises Inc. Claysburg ind. Park #1 U. S. Dept. of Interior Thomas Hufford kaufman Clair Storrs Hunt's Farm Market Yen Worley Fred Bush John Blatt Russell Bigelow H. D. Berry John Robinson Greenwood United Methodist Ch.	Donald E. Foor Moody Drilling Co., Inc. do. do. Melvin R. Sensebaugh Moody Drilling Co., Inc. do. do	1967 1967 1969		1060 930 935 930 1130 960 1180 1160 1200 1230 1121 1120 1121 1120 1175 1135 1170 1210	W V V V V V V V V V V V V V V V V V V V	Dck/ Doo/Is Doo/ Doo/ Doo/ Dh/sh Swc/Is Dh/ Dh/ss Dh/ Dsh/ Dskt/ Dskt/ Doo/ Doo/ Dskt/ Dskt/ Dskt/ Doo/ Dskt/ Dskt/ Dskt/ Dskt/ Dskt/ Dskt/ Dskt/ Dskt/
36 97 99 100 101 102 103 104 105 106 107 108 109 111 112 114 115 116 117 118 119 120 121	4032-7821 4033-7821 4033-7821 4032-7820 4032-7821 4032-7821 4031-7821 4031-7821 4031-7821 4032-7825 4032-7821 4029-7825 4032-7821 4029-7825 4032-7821 4032-7821 4033-7821 4033-7821 4036-7821 4036-7821	Ken Pine W. R. Yindling Robert Cross Ross Trailer Park do. Gene Pine Howard McIntire M. C. Ainsworth Jean High Don Stiver David Vipond William Ajay Ken Beck Jes Kensinger Ralph Brubaker Dale O'Shell McCloskey John Naugle Curt Parshall Phillip Dracup John Miller Fred Lambert			***************************************	1217 1265 1170 1215 1225 1165 1255 1255 1255 1235 1210 1150 1175 1145 1219 1345 1350 1280 1280 1223 1115 1285	2	Swc/ Olh/ Sbm/ Sbm/ Sbm/ Sbm/ Sbm/ Sbm/ Sbm/ Oskt/ Dsh/ Dsh/ Dbh/

					c water			Γ -	-	T	7
Total depth below land surface (feet)	Cas Oepth ((feet))iameter	Oepth(s) to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (gpg)	Specific conductance (micro- mhos at 25°C)	рН	Well number
160 284 223 150 244 168 325 143	46 20 150 108 20 168 20 41	6 6 6 6 6 6	120;140 18;77 160 60;150 120;151 95;168 160;225 50;130	81 30 75 20 117 135	9/80 2/78 6/78 6/79 9/80 10/78 6/78 5/78	8 1 3 7 3 3 30 1 8	.40 .02 .03 .11 .10	19 14 	530 455 	7.8	8d-485 486 487 488 489 490 491 492
225 218 165 81	21 21 40 79	6 6	45 49;62 60 60;78	10 15 52	9/78 11/77 8/80 8/80	2 5 2 30	.09	10 5	405 165	7.22	493 494 495 496
COUNTY											
180 147 89 300 184 496 198 200 150 260 129 212 235 555 225 504	12 125 12 30 15 40 28 30 30 42 25 35 24 20	6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		50 40 12 12 48 18 50 12 13 40 40 30 20 40		9 32 9 3 30 386 6 20 30 22 60 300 125 10 125 75	.90 3.2 .6421157350 2.1				Ba- 1 5 9 17 18 19 25 33 37 38 40 41 42 43 44 45
180 356	175	8 8		3 6		30 315	1.5				46 60
313 330 155 150 240	70 100 20 28 40	6 10 6 8	 	28 15 16 6 99	 7/66	380 20 50 30 10	3.3 .60				61 62 63 64 67
500 397 382 370 150 350 483 361 695 55 96 120 92 90 39 110 124 75 25 186	48 23 29 14 47 203 21 250 34 	6 6 6 6 6 8 9 8 8 1 6 6 6 6 6 6 6 6 6 6 6	220;270;476	110 23 111 20 32 0 0 51 100 74 41 51 14 15 30 6 9 95 86	1967 1967 9/67 6/59 10/68 8/75 8/75 4/73 10/72 9/73 9/73 8/72 9/73 8/72 9/73 9/73 9/73 9/73	10 555 400 100 2 555 350 20 150 20 32 100 1 1 1 2 5 5 17 1 29 2	.37 7.4 5.0 .08 .89 1.1 	8 21	390	7.3	68 71 72 73 74 75 76 77 78 79 85 86 87 88 89 90 91 92 93 94 95
68 57 118 145 250 210 85 65 50 90 75 95 70 80 35 65 74 100 110 94 206 87 168	60	666666666666666666666666666666666666666		25 6 49 48 52 3 34 26 13 43 3 45 16 13 10 19 11 10 45 37 171 25 61	9/73 9/73 9/73 9/73 9/73 9/73 9/73 5/73 5/73 9/73 9/73 9/73 9/73 9/73 9/73 8/73 8/73 8/73	13 4 1 4 8 8 8 2 20 	.76 .19 .04 .09 .08 .08 .19 1.4 .73 1.5 .07 1.2 .19 6.6 .12 .33 .25 .12 .29 .10 2.1				96 97 99 100 101 102 103 104 105 106 107 108 109 111 112 114 115 116 117 118 119 120 121

TABLE 16.

								IMPEL 101
						Alti-		
Mall :	location	,				tude of	Tono	
	location	0	0-:11	Oate		land surface	Topo- graphic	Aquifer/
Number	Lat-Long	Owner	Oriller	completed	Use	(feet)	setting	lithology
8a-122 123	4033-7820 4033-7820	William Ward John Howard			H	1080 1145	V S	Swc/ Sbm/
12S 126	4031-7822 4029-7825	Ted Long Azzarello			H	1260 1155	S V	Swc/ Obh/
127	4032-7820	Jim Lantz			H	1110 1100	S V	Sbm/
128 129	4033-7820 4028-7826	do. Richard Adams			H	1165	S	Swc/ Obh/
130 131	4028-7826 4029-7825	Gilbert Cornelius Joseph Knab			H	1095 116 1	V.	Obh/ Obh/
132 133	4033-7820 4034-7821	Dominick Claude Barr			H	1110 1158	S H	Swc/ Obh/
135 136	4034-7821 4035-7820	Chester Parshall Thomas Balkavich			H	1090 1080	V V	Dbh/ 000/
137	4028-7823	Paul Walker			Н	1180	S	Sc/
138 139	4028-7823 4033-7819	G. W. Delozier Mary Crain			H	1120 1140	S S	Sc/ Sbm/
142 143	4035-7820 4035-7819	Joseph Caroselli Randall Miller			H	1078 1040	V	0oo/ DSkt/
144 145	4035-7820	Nancy McCloskey			H	1075 1080	V V	DSkt/ OSkt/
146	4034-7820 4033-7821	A. J. Servello Russell Bigelow			H	1166	W	Doo/
147 148	4032-7822 4030-7811	Clark 8rubaker Farms	James R. Miller	1975	H S	118S 1048	S S	DSkt/ Ons/
149 150	4031-7811 4032-7810	R. Smith J. McCullough	Donald W. Graham James R. Miller	1978 1976	H	1032 950	H H	Ons/ Cgm/
151	4031-7811	Michael Fay	do.	1975	Н	1000	S	Ons/
152 153	4031-7810 4030-7810	J. Oavis T. Fisher	do.	1979 1978	H	790 830	V V	Ons/ Oba/
154 15S	4032-7821 4032-7821	C. Goon, Jr. Pete Russo	Harold E. Ritchey do.	1978 1978	H H	126S 1270	S S	000/
156 157	4032-7821 4031-7811	C. Johnson William Love	do. James R. Miller	1978 1975	H	1265 1060	S S	000/ Cgm/ls
158	4032-7820	The Cheeze Shoppe	Fred O. Albright	1977	Н	1118	S	OSkt/
159 160	4032-7820 4034-7822	T. Madigan J. Manbeck	Harold E. Ritchey do.	1978 1978	H	1195 1145	S S	Sbm/ Dbh/
161 162	4035-7821 4035-7821	G. Garman D. McCaulley	Roy F. Keefer James R. Miller	1979 1979	H	1165 1160	S S	Obh/
163 164	4041-781S 4042-7815	T. Hostler C. Golden	do.	1979 1979	H	1200 1440	S S S	01h/ 0ck/
165	4042-7814	Oillin	do. Oavid R. Erickson	1979	U	1445	S	Dck/
166 167	4040-7816 4041-7814	Oebra Romano J. Lego	Harold E. Ritchey James R. Miller	1978 1978	H	1065 1260	S S	Obh/
168 170	4042-781S 4027-7822	Hoy 8arry Ickes	Harold E. Ritchey Fred O. Albright	1978 1975	Н Н	1440 1420	S S	Ock/sh Sc/
171	4027-7821	Or. William Saad	do.	1979 1979	H	1310 1290	S	Sc/ Sc/
172 173	4027-7821 4027-7822	N. S. Kerns Ronald Shuler	do. do.	1978	H	1320	S	Sc/
174 175	4027-7822 4028-7820	Giller E. Crist	do. do.	1980 1979	H	1300 1105	S S S	Sc/ DSkt/
176 177	4034-7824 4034-7824	Cherry S. Graham	Harold E. Ritchey do.	1978 197 9	H	1690 1720	S S	Ock/ss Dck/sh
178	4031-7826	R. Kuntz	do.	1977	Н	1620	S	Dck/ss
179 180	4034-7824 4028-7826	Gerald Phelan 8ernard Black	do. William R. Parks, Jr.	197S 1977	H	1650 1160	S V	Dck/ss Obh/
181 182	4028-7826 4027-7826	J. Eberhardt R. W. McKinney	do. Melvin R. Sensebaugh	1978 1976	H	1120 1260	۷ S	Obh/ Obh/sh
183 184	4027-7826 4027-7827	C. LeCrone Clajr LeCrone	William R. Parks, Jr. d o.	1978 1977	H	1460 1440	S S	0s/ 0s/
185	4027-7826	Nicholas Lynch	Fred D. Albright	1976	H	1240	S	Obh/
186 187	4027-7826 4027-7826	L. 8aird R. Brubaker	William R. Parks, Jr. do.	1978 1979	H	1260 1180	\$ \$ \$	Ds/ Obh/
188 189	4027-7826 4027-7826	do. do.	do. do.	1979 1979	H	1140 1140	S S	Obh/ Dbh/
190 1 91	4027-7826 4027-7827	R. Forgas C. Helsel	James R. Miller William R. Parks, Jr.	1978 1975	H	1120 1240	S S	Dbh/sh Of/
192	4027-7828	do.	do.	1975	Н	1260	Š	Of/
193 194	4027-7828 4027 - 7829	Howard Clark C. Aikens	Fred O. Albright do.	1977 1978	H	1760 1670	S S S	Dck/ss Dck/ss
19S 196	4027-7829 4027-7825	J. Wilt G. Hiergeist	William R. Parks, Jr. James R. Miller	1978 1978	H	1760 1040	S V	Ock/ss Dh/sh
197 198	4027-7826 4026-7828	Charles Ray T. L. Stacey	Fred O. Albright James R. Miller	1977 1975	H	1160 1400	S S	Obh/ Df/
199	4025-7827	Curry Excavating	William R. Parks, Jr.	1979	C	1220	٧	Obh/
200 201	402S-7B26 4022-7B2S	Luther Wilt Paul Benson	Fred O. Albright Harold E. Ritchey	1977 1978	H	1120 100S	V	Obh/ Dmh/
203 204	4022-7825 4021-7825	T. Flaugh S. Helsel	William R. Parks, Jr. Harold E. Ritchey	1979 1978	H	990 1010	V	Omh/ Dmh/
205	4022-7825 4021-7826	T. Lloyd Carl Hazenstab	William R. Parks, Jr.	1979	H	990 1185	v S	Omh/ Dbh/sh
206 207	4020-7826	J. Strayer	Melvin R. Sensebaugh James R. Miller	197S 1979	Н	1170	S	Obh/sh
208 209	4019-7827 4018-7827	R. Scott L. Miller	William R. Parks, Jr. Bradie Glass	1978 1977	H	1250 1140	V	Obh/ Obh/
210 211	4020-7828 4020-7828	Robert Leedy H. Musselman	William R. Parks, Jr. Harold E. Ritchey	1977 1978	H	1680 1575	S S	Df/ Of/ss
212	4018-7826	Pat Hooper	8radie Glass	1975	H	1090	v V	Omh/
213 214	4017-7827 4018-7827	8. Clinich Leonard Tompson	William R. Parks, Jr. do.	1978 1976	C	1150 1125	V	Dmh/

55 85 85 90 170 76 90 238 200 50 77 88 66 75 90 94 85 60 130 27 107 110 212 223 3185 37 160 225 300 225 300 225 300 225 3185 90 217 185 90 217 185 190 217 185 190 217 185 190 218 219 219 219 219 219 219 219 219 219 219	Total depth below land surface (feet)
6 6 6 6 6 6 6 6 150 6 26 6 6 25 6 21 6	Casing Depth Diameter (feet) (inches)
	Oepth(s) to water-bearing zone(s) (feet)
25 45 97 59 15 7 40 78 88 161 30 155 14 155 15 15 15 16 17 18 18 18 18 18 18 18 18 18 18	Oepth below land surface (feet)
8/73 8/73 8/73 8/73 8/73 8/73 8/73 8/73	(mo/yr)
77 33 13 4 6 9 4 7 7 3 1 10 1 1 42 100 18 1 1 22 10 40 10 1 15 5 5 10 10 10 11 15 5 10 10 10 10 11 15 10 10 10 10 10 10 10 10 10 10 10 10 10	Reported yield (gal/min)
1.3 1.2 .08 .04 .25 .07 .12 .05 .35 .36 .25 .20 .32 .05 .28 .08 1.9 100 .51 .04 .51 .70	Specific capacity ([gal/min]/ft)
15 14 16 17	Hard- ness (gpg)
380 425	Specific conduc- tance (micro- mhos at 25°C)
	рН
185 186 187 188 189 190 191 192 193 194 195 196 197 198 200 201 203 204 205 206 207 208 209 209 209 209 209 209 209 209 209 209	Well

TABLE 16

								I ABLE 16
Well Number	location Lat-Long	Owner	Driller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer litholo
Ba-215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 244 245 246 247 248 249	4017-7828 40117-7827 4016-7828 4019-7823 40117-7824 4017-7824 4018-7825 4019-7822 4019-7822 4019-7822 4019-7822 4024-7829 4024	Charles Hileman M. Ake Alan Finnegan Paris D. Ormsby, Jr. P. Snowberger R. J. Wakefield W. H. Mock B. Mock Raymond Snyder G. Kensinger Joseph Wilt P. Smith W. Rose D. Hazenstab Thomas Miller Ansley & Lewis Inc. W. 5. Lee G. Aurandt Ronald Hoover R. Egen J. Lanzendorfer D. Hazenstab R. Ritchey Richard Roorabaugh Thomas Mattas D. Smychynsky T. L. Gibbon L. Ickes Doris Miller John Yardis Lavern Gabella C. Walter Randy McGraw Gary Speck	Harold E. Ritchey William R. Parks, Jr. Fred D. Albright Delbert and Joseph Schw Gerald W. Clark do. do. do. James R. Miller do. do. William R. Parks, Jr. do. do. James R. Miller Harold E. Ritchey William R. Parks, Jr. Melvin R. Sensebaugh Harold E. Ritchey William R. Parks, Jr. Mo. do. James R. Miller do. James R. Miller Harold E. Ritchey William R. Parks, Jr. Molvin R. Sensebaugh James R. Miller do. James R. Miller Delbert and Joseph 5chw William R. Parks, Jr. do. James R. Miller Delbert and Joseph 5chw Milliam R. Parks, Jr. do. James R. Miller do. James R. Miller do. James R. Miller do. James R. Miller do. James R. Miller do. James R. Miller do. James R. Miller do. James R. Miller do. James R. Miller do. James R. Miller	1979 1978 1979 1979 1979 1978 1978 1978	H H H H H H H H H H P H H H H H Z C N H H H H H H H H H H H H H H H H H H	120S 1180 1190 1295 1430 1330 1315 1390 1360 1510 1120 1540 1080 1080 1080 1080 1080 1080 1080 10	S V V S S F 5 5 H S 5 V S V S H V V V V V V V V V S S V S S 5 S S S S S	Dmh/ Dbh/ Dsh/sh Ons/ Ons/1s Ons/ Ons/1s Ons/ Ons/1s Ons/ Oba/1s Ons/ Oba/1s Or/ Dbh/sb Dck/ss Dck/ss Df/ Dbh/sh Dh/ Df/sb Df/ Dbh/sh Dbh/ Dbh/sh Dbh/ Dbh/sh Dbh/ Dbh/sh Dbh/ Dbh/sh Dbh/ Dbh/sh Dbh/ Dbh/sh Dbh/ Dbh/sh Dbh/ Dbh/sh
2S1 252 253 254 255 256 257	4017-7819 4017-7819 4015-7819 4015-7818 4016-7818 4018-7817 4020-7819	D. L. Legg L. W. Jones Harry Miller E. Bridenbaugh R. Smouse J. Byler David Dunn	do. do. do. James R. Miller do. do. Gerald W. Clark	1977 1976 1977 1977 1979 1978 1978	H H H H H	1495 1475 1470 1470 1425 1385 1475	S F S S S	Ons/ls Ons/ls Oba/ls Cgm/ls Cwb/ls Oba/ls Or/sh
258 259 260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277 288 281 282 283 284 285 286 287 289 290 291	4019-7820 4018-7821 4018-7822 4019-7822 4021-7833 4022-7834 4020-7833 4020-7833 4020-7833 4021-7832 4019-7822 4019-7822 4018-7823 4017-7822 4018-7823 4027-7820 4026-7819 4026-7819 4026-7819 4026-7819 4026-7819 4027-7820 4027-7820 4027-7820 4027-7820 4027-7820 4027-7820 4027-7820 4027-7820 4027-7820 4027-7820 4027-7820 4028-7819 4028-7819 4028-7816 4029-7816	L. Blattenberger P. Glunt W. Decker G. Dennis D. Wronski Charles Salyards Daryl Black Rick Ritchey J. Jackson D. Long Ray Berkheimer Glenn Glass J. Destefan Gerald Pasta Donald Imes Robert Riling Ralph Cherry Robert Husband D. Kerr Robert Husband D. Kerr Robert Husband E. Kerr Robert Husband D. Kerr Serian Steak C. White T. Burkholder George Miller Dixie Barroner William Werts D. Creuzberger David Burke P. Good F. Saltsgiver J. Beck M. Stultz Canoe Creek State Park do. do.	James R. Miller do. do. do. do. do. do. larold E. Ritchey Melvin R. Sensebaugh William R. Parks, Jr. Harold E. Ritchey do. Melvin R. Sensebaugh James R. Miller Fred D. Albright do. Gerald W. Clark James R. Miller do. do. Fred D. Albright do. do. Fred D. Albright do. do. Albright do. do. James R. Miller Melvin R. Sensebaugh James R. Miller do. do. Melvin R. Sensebaugh James R. Miller do. do. Melvin R. Sensebaugh James R. Miller do. do. Lichelberger Well Drilling, Inc.	1977 1978 1978 1978 1979 1975 1976 1976 1976 1978 1978 1977 1977 1977 1977 1977 1977		1570 1485 1415 1420 1990 2345 2305 2340 2348 2200 2440 1275 1420 1455 1320 1090 1175 1100 1078 980 1010 965 918 930 945 1220 1295 1290 1180 1190 910 935	5 S F F 5 S S H H S S 5 5 F F S 5 V S 5 S S H V 5 5 S S S S 5 5 V S	Or/sh Oba/ls Oba/ls Oba/ls Doba/ls Dck/ss Dck/ss Dck/ss Dck/sh Dck/ Ock/sh Oba/ls Oba/ls Oba/ls Oba/ls Oba/ls Oba/ls Oba/ls Obh/sh Dlh/sh Dlh/sh Dlh/ Dbh/ Dbh/ Dbh/ Dbh/ Dbh/ Dbh/ Dbh/ Dh/
292 293 294 295 296 297 298 299	4041-7816 4040-7815 4039-7817 4026-7813 4026-7813 4029-7811 4029-7810 4027-7811	8arbara Conway William Mallory B. Hunninger J. Verbonitz J. Traxler F. England Louis Heller W. England	Harold E. Ritchey James R. Miller Melvin R. Sensebaugh James R. Miller do. do. do. do.	1974 1977 1972 1978 1979 1979 1976 1979	H H H H H H H	1230 935 1080 1180 1253 938 985 1065	S S S S S S S S S S S	Dck/ Dh/ Dbh/ Cw/ Ons/ Oba/ Ons/

1				c water evel						
Total depth below land surface (feet)	Casing Oepth Oiameter (feet) (inches)	Oepth(s) to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9p9)	Specific conduc- tance (micro- mhos at 25°C)	рH	Well number
230 60 100 97 220 162 326 264 182 130 468 56 260 55 200 140 270 280 60 60 60 58 80 90 80 200 495 115 150 85 250 275 200 275 275 275 275 275 275 275 275 275 275	23 6 22 6 37 6 27 6 187 6 193 6 54 6 20 6 102 5 22 6 42 6 22 6 42 6 24 6 25 6 22 6 40 6 21 6 21 6 21 6 21 6 21 6 21 6 21 6 21	45;57 100 86 197 141;158 200;280;315 58;223;264 137;150 60;125 390;415;430 24;52 175;250 104;140;190 45;70;120 110;190;245 140;200 26;48;60 30;70 60;74 45 45;71;26 145;66 50 26;48;60 30;70 60;74 45;51;60 60;74 60;74 60;80;115 135 60;80;115 190;203 142;235;250;258	12 2 27 160 100 80 100 121 5 150 30 68 32 194 42 20 42 21 17 58 9 9 5	7/75 6/79 	3 5 15 10 15 15 15 6 9 4 15 6 8 10 51 4 15 6 20 9 20 5 3 3 10 2 1 1 1 6 6 2 2 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	.1375 .5 .5 .07 .0614 .26 1.0 .04 .04 0.308 .05 .2901 .0513 .0303	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	215 650 605 470 340 380 320 520		8a-215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 241 242 244 245 246 247 248 249 250
152 261 123 285 125 181 70	6 107 6 19 6 175 6 39 6 84 6 34 6	133 122;230 113 240;275 98 160 31;40;50;	120 100 83 170 85 15	3/77 3/76 3/77 6/80 7/79 6/80 3/73	8 6 6 60 9 10	.3	8 16 4	305 650		251 252 253 254 255 256 257
110 325 156 195 140 205 60 130 125 260 195 105 360 143 212 250 70 160 180 150 221 50 85 70 47 245 290 381 385 105 300 300 375	21 6 28 6 70 6 45 6 22 6 35 6 109 6 42 6 21 6 22 6 46 6 21 6 22 6 24 6 26 21 6 20 6 21 6 20 6 21 6 20 6 21 6 20 6 21 6 20 6 21 6 20 6 21 6 21 6 20 6 21 6 21 6 21 6 21 6 21 6 21 6 21 6 21	55 70;95 163 75;151 145;190 80;130 54 120;128 110 240 145;180 85;97 320;140 120;126;130 40;190 33 40;190 140;150 170 145;25 30;44 40;65 40 40 170;278 180;240 170;278 125;350 152 65;90;103 55;270 99;106;207	95 57 26 69 119 110 91 57 36 3 3 24 30 8 8 175 56 34 6 9 39	12/77 6/80 4/78 11/78 3/79 6/80 6/80 6/80 6/80 12/78 8/78 6/80 10/75 7/80 4/77 7/80 7/77 11/73 6/80 6/80 11/78 6/80 8/75 6/80 8/75 10/76 6/80 8/75 10/76 6/80 6/80 6/80 6/80 6/80 6/80 6/80 6/8	13 1 90 60 8 10 20 5 8 6 5 40 15 60 12 4 3 6 12 10 12 20 12 12 12 12 12 12 12 12 13 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	1.0 .08 .12 .40 1.4	18 5 2 4 4 5 5 17 18 10 8 8 4 4 5 5 11	860 165 58 175 190 605 200 470 485 1100 260 345 247 410	7,4	258 259 260 261 262 263 264 265 267 268 270 271 272 273 275 276 277 280 281 282 283 284 285 286 287 288 289 290
210 300 55 232 262 247 500 340	47 6 21 6 30 6 23 6 234 6 57 6 21 6 20 6	50 34;50 210 250 222;230 105;215;433 85;197;325	14 15 184	6/74 7/80 6/72 3/78 7/80 10/79 5/76 3/79	1 8 10 25 8 55		7 12 18 18	515 230 195 427 605 655	7.1 7.3	292 293 294 295 296 297 298 299

TABLE 16

								THELL TO
Well Number	location Lat-Long	Owner	Driller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/
8a - 300 301 302 303 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 332 333 334 335 336 337 337 338 337 338 338 339 339 330 331 331 332 332 333 334 335 336 337 337 338 338 339 339 339 339 339 339 339 339	4028-7810 4023-7826 4023-7827 4023-7827 4023-7827 4023-7826 4024-7823 4026-7825 4026-7825 4036-7826 4032-7826 4034-7822 4035-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7826 4032-7821 4033-7822 4033-7822 4033-7822 4033-7822 4033-7822 4033-7822 4032-7824 4029-7824 4029-7824 4029-7824 4018-7819 4018-7819 4018-7819 4018-7820 4020-7821	Gary Crownover G. Brumbaugh J. Koontz K. Smith T. Smith H. Johnson 8em L. Snowberger A. Ingham J. Ratzesberger Tom Conrad Tom Kies R. Frederick Rıchard Nelson T. Stultz G. Reid Jim Bodnar James Trexler McCormick C. Arnsparger Phil Pearchy John Skelly J. Chilcote Bob Sipes S. Crider Phil Pearch Go. do. do. do. do. do. do. do. do. do. d	James R. Miller Melvin R. Sensebaugh Harold E. Ritchey Fred D. Albright William R. Parks, Jr. Fred D. Albright do. Daul Rossi Fred D. Albright do. William R. Parks, Jr. Fred D. Albright do. George A. Lynch, Jr. Fred D. Albright do. George A. Lynch, Jr. Fred D. Albright do. James R. Miller Aberland W. Graham William R. Parks, Jr. Fred D. Albright James R. Miller Donald W. Graham William R. Parks, Jr. Fred D. Albright James R. Miller James R. Miller Aberland E. Ritchey James R. Miller Fred D. Albright Moody Drilling Co., Inc. do. do. do. do. do. do.	1978 1976 1977 1979 1979 1979 1979 1979 1979		840 1240 1100 1160 1160 990 1030 1310 1650 1740 2480 1630 1210 1440 1740 1760 1790 1720 1480 1310 1310 1210 1210 1210 1210 1210 121	S S V V S S S H S S S S S S S V S S S V V V P F F S S S W S V V S S S V V S S S V V V P F F S S S W S V V S S S V V S S S V V V S S S V V V S S S V V S S S V V V S S S V V V S S S V V V S S S V V V S S S V V V S S S V V V S S S V V V S S S V V V S S S V V S S S V V V S S S V V S S S V V V S S S V V V S S S V V V S S S V V V S S S V V V S S S V V S S S V V V S S V V V V S S V V V V S S V V V V V S S V V V V S V V V V V V S V V V V V S V	0c1/ Dbh/sh Dbh/ Doh/ Doo/ Doo/ Ds/ Dck/sh Mmc/sh Dck/ Dck/ss Dck/ss Dck/ss Dck/ss Dck/ss Dck/ss Dck/ss Dck/ Dbh/ Dbh/sh Dbh/sh Dbh/sh Dbh/sh Doo/ Cgm/ Cgm/ Or/ Or/ Or/ Or/
339 340 341 342	4D16-7820 4026-7825 4025-7825 4016-7827	Authority do. Duncansville 8or. do. General Refractories	Moody Drilling Co., Inc.	1968	P P U P	1425 980 970 1185	H V V	Ons/ DSkt/ DSkt/
343 344	4016 - 7827 4027 - 7812	CoSproul do. Williamsburg Munic.	Moody Drilling Co., Inc.	1964 1969	P P	1200 1055	V W	Doo/ Cgm/
345 346	4027 - 7812 4017-7826	Authority do. General Refractories	do.	1969	P P	107D 1145	W V	Cgm/ Doo/
348 349 350 351 352 363 354 355 359 360	4034-7823 4034-7823 4036-7822 4032-7824 4031-7826 4031-7826 4031-7825 4031-7826 4026-7811	CoClaysburg K. Wilson D. Oswald D. Mills David Swanger K. Johnson Paul Hollern N. Lafferty Cory Pellas Stanley and Fred England Williamsburg Bible		1977 1977 1978 1970 1977 1970 1971 1976 1979	H H H H H H H H H H H H H H H H H H H	136D 1340 1400 1440 1680 1710 1230 1640 1141 1090	S S S S S S S S S S S S S S S S S S S	Olh/ Dbh/ Dck/ss Dlh/sh Dlh/ Dlh/sh Dck/sh Ons/ Oba/
361 362 363 364 370 371 372 373 374 375 376 377 378	4026-7810 4024-7813 4023-7814 4025-7811 4042-7813 4042-7814 4042-7814 4042-7814 4042-7814 4042-7814 4041-7813 4042-7815 4041-7813 4042-7825	Baptist Ch. R. Keene Ell Smith Raymond Caruso K. Bush C. McClellan Fred Snyder Oavid Miller Jerry Deluca Tim Jackson Charles Hostler Robert Anders Small Tube Products do.	do. do. do. do. do. William R. Parks, Jr. do. James R. Miller William R. Parks, Jr. Moody and Associates, In do.	1979 1978 1976 1979 1976 1973 1975 1975 1976 1974	H H H H H H H H	1090 1140 1218 1128 1010 1095 1115 1160 1040 1010 1185 982	S S S S S S S S S S S S S S S S S S S	Oc1/ Cgm/ Cgm/s Oba/ Dmh/sh Dmh/sh Dbh/ Dbh/ Dmh/ss Omm/ Dbh/ DSkt/ CENTRE
C- 10	4040 3350	0 (10) (1)	511/	1016		1700		
Ce- 12 94 118 119 132 133 141 142 153	4049-7759 4042-7756 4045-7757 4046-7757 4045-7754 4049-7757 4047-7756 4047-7756	P. C. and O. J. Shivery The Pa. State University U. S. Geol. Survey Pa. Game Comm. Kenneth Bennet Centre Association Inc. Pa. Game Comm. do. State College Bor.	Elliot	196D 1958 1894 1894	H U R H P U U	1720 1226 1150 1215 1225 1320 1360 1351 1341	S V V V S S S	0j/sh 0cl/ls Cg/dol Cg/dol Cgm/dol 0bf/ls Cg/dol Cg/dol Cg/dol

					c water evel					_	-
Total depth below land surface (feet)	Cas Depth (feet)	Oiameter	0epth(s) to water- bearing zone(s) (feet)	Depth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (gpg)	Specific conduc- tance (micro- mhos at 25°C)	рН	Well number
160 200 210 200 210 200 200 200 165 55 280 225 260 94 330 120 70 300 350 273 187 63 150 240 110 163 178 98 80 549 625 545 296 350 456 100 378 177 199 200 200 396	22 16 21 44 22 27 21 21 21 54 40 30 24 40 30 23 34 40 26 130 22 42 22 26 81 88 223 145 	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30;35;60 85;130 60 85;130 40;100;155 40;100;155 40;100;250;260 150;190;220;250 180;220;250 100;110 50;66 190;250;285 40;256 84;182 35;60 141 35;250 50;100 50;80 78 40;75 140 162 150;100 162 	40 30 43 26 26 10 52 11 8 45 94 18 45 94 49	9/78 4/76 7/77 10/79 3/79 8/79 1/79 9/79 1/80 9/79 5/76 5/76 5/76 5/76 5/76 5/76 5/76 5/76	9 2 1 1 7 7 100 100 3 3 5 5 5 24 4 2 110 4 4 4 5 5 112 110 5 5 2 7 7 3 3 3 8 8 12 1350 1400 230 120 220 210 12	.17	10 6 	370 340 390 300 280 50 170 100 270 70 220 220 210		Ba-300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
223 341 340 154	45 79 48	6 8 6 8	95	0 1	7/67 6/67	150 300 100	100				339 340 341 342
216 487	75 116	8		210		200 300	7.1				343 344
417 65	264	8		219		300 80	30				345 346
275 335 181 107 140 293 75 225 400 217	21 22 20 20 40 42 35 66 20	6 6 6 6 6 6 6 6	100 170 80 122;131 135;235;285 38;61;70 220 68;175;300 95;200	40 61 50 49 95 12 40	8/77 7/80 9/78 7/80 7/80 9/70 10/71 9/76 8/79	2 1 6 12 3 1 12 12 10	.01	4 5 8 12 22 23	440 220 260 470 743 813		348 349 350 351 352 353 354 355 359 360
400 125 215 303 70 62 70 50 110 105 68 218 217	111 47 211 44 37 21 22 24 101 84 44 52 46	6 6 6 6 6 6 6 6 10	350;390 98 190;212 180;285 40 37 30;56 35;45 60;105 85 48;67	10 11 15 4 4	10/79 6/78 5/76 5/79 10/76 2/73 10/75 7/75 3/76 9/74 10/75 5/79	3 18 90 5 18 2 3 6 36 20 10 575 675	.18	9 14 5	335 467 165 	7.2	361 362 363 364 370 371 372 373 374 375 376 377 378
COUNTY 110	23	6		+1		45	4.5				Ce- 12
200 130 506 250 219 368 366 458	135 40 179 40 37 284 361	6 6 8 6 6 8 10	105;205	150 82 152 78 105 340 322 349	1961 1/67 4/70 10/60	25 510 310 6 1000 140	4.5 .14 110 146 9.4 79	17 4	725	8.0	94 118 119 132 133 141 142

TABLE 16.

Well location	Owner	Oriller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/ lithology
Ce-1S4 4047-77S6 155 4047-77S6 156 4047-77S7 157 4047-77S7 179 4043-77S4 180 4043-77S4 189 4047-77S5 205 4046-77S5 210 4047-7801 211 4047-7801 212 4047-7846 213 4044-77S7 214 4043-77S3	State College Bor. do. do. do. Cedar Hills Water Co. do. Pa. Game Comm. L. W. Nixon Upper Halfmoon Water Co. do. do. Rockspring Water Co. Ferguson Twp. Water Authority	Layne-New York Co., Inc Harrisburg's Kohl Bros. do. Oscar Dearmit do. Harrisburg's Kohl Bros. Oscar Dearmit	. 1964 1967 1966 1967 1966 1966 1984 1966 1976 1964 	U U U P P U I P P	1351 1360 1308 1333 1390 1285 1350 1215 1430 1415 1310 1120 1460	S S V V S S S V V V V	Cg/dol Cg/dol Cg/dol Cg/dol Or/ls Oc1/ls Oc1/ls Or/sh Or/sh Or/sh Obf/dol Cg/dol Obe/ss
215 4043-77S3 216 4043-77S3 217 4043-77S3 235 4043-77S9 236 4044-7800 237 4044-7800 238 4044-7800 240 4044-7800 241 4044-77S9 310 4045-7807 322 4044-7801	do. do. do. L. Johnstonbaugh Fred Herman D. Dolbin M. Frysinger Countryside Nursery do. D. Moore Mary Gee B. Hamilton	8rooks & Kline do Oscar Dearmit do. do. do. do. do. do. do. do. do. do.	1967 1967 1979 1977 1980 1976 1977 1979 1978 1976	P P U H H H H H H H H H H H	1460 1480 1420 1125 1220 1305 1205 1245 1245 1290 1150	V V S S S S S S V V S S S S S S S S S S	Obe/ss Obe/ss Or/sh Cg/ls Cg/ls Cg/ss Cgm/ss Osl/ls Osl/ls Osl/ls Osl/ls Cgm/ Olh/sh Cg/ls
							FULTON
Fu- 87 4DD3-77S7 88 4003-77S7 93 4003-7809	Lester Widel Pa. Dept. of Environ-	Mr. Powell Joseph Epley	196S	H T U	840 1150	S S V	Sbm/ Swc/ Mp/
126 4005-7810 127 4005-7810 128 4005-7807 129 4006-7808 130 4001-7810 131 4000-7810 132 4000-7810 133 4000-7810	mental Resources R. Wright V. Wright G. Mellott 8. Sweger J. Travers S. Kuralowicz John Wheeler J. Crevoiserat	do. do. Charles Springer do. Joseph Epley do. do. do.	1978 1979 1979 1978 1978 1977 1977	H H H H H H	138D 1390 1130 1080 1710 1450 1520 1420	S S S S S S	Mmc/ Mmc/sh Mmc/sh Mmc/ Mp/ Mp/ Mp/ Mp/sh
134 4000-7810 135 4001-7810 136 4001-7811 137 3958-7812 138 3958-7812 139 4000-7810 140 3957-7813 141 3956-7813 151 4002-7801 152 4002-7802 153 4004-7803 162 3958-7756 164 4007-7803 165 4006-7759 166 4004-7759 167 4005-7759 168 4003-7757 170 4005-7759 171 4005-7759 171 4002-7757 173 4004-7803 174 4004-7804 175 4002-7757 178 4002-7757 179 4001-7758 186 4000-7806 187 4007-7803	C. J. Cooke Claire Christ G. Hunt D. Barber Richard Hixson Howard Elmore R. Fischer P. Johnson H. Berkstresser J. Clark R. G. Barnett R. Stawsbaugh T. Newman W. Hess Cecil Fraker Wayne Fleming W. Peck H. Taylor R. Henry A. Cromwell B. Parson G. Miller Ernest Ooney Belvy Shoop Wells Valley Ch. Oonald Strait S. Gordon R. Parsons N. Foor	do. do. do. do. do. do. do. do. do. do.	1978 1977 1978 1978 1978 1976 1979 1979 1979 1979 1978 1978 1978 1978	H H H H H H H H H H H H H H H H H H H	1520 1560 1805 1230 1230 1250 1160 1145 1140 1200 1325 840 980 965 1080 778 860 1035 780 980 980 945 860 1130 1155	S S S H H S S S S S H H S S S S S V S S H H S	Mp/ Mp/ Mp/ss Mmc/sh Mp/ss Mmc/sh Mp/ Mmc/ Dck/sh Dck/ Dciv/sh Of/sh DSkt/ Df/ OSkf/ls Db/ Ock/sh Db/ Ock/sh Ds/ Ock/sh Ds/ Ock/sh Ds/ Dciv/sh Ds/ Dciv/sh Ds/ Dciv/sh Db/ Dciv/sh Db/ Dciv/sh Db/ Dciv/sh
Hu- 1 4021-78D8	H. G. Stauffer			U	7 20	V	Df/
6 4029-7800	Clifton Theatre	Artesian Well Drilling		A	630	V	Dh/sh
7 4029-7801 8 4029-7803 9 4036-7803 12 4026-7806 33 4040-7811 34 4040-7812 47 4034-7807	Supplee-Wills-Jones Milk Co. D. A. Olds Petersburg Water Comm. H. Shaffer G. Guyer Tyrone Lime and Stone Co. Stowe-Fuller Refractories Co.	L. Stell G. Nox Kegg Sprague & Henwood, Inc. Willi n Houser	1921 1960 1931 1933	N H P H H N	1020 870 780 1000 970	A 2 8 8 A 8	Oh/ Doo/1s Sc/ Swc/1s Oba/1s Oba/1s Sc/

						c water evel						
	Total depth below land surface (feet)		ing Diameter (inches)	Depth(s) to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9p9)	Specific conduc- tance (micro- mhos at 25°C)	рН	Well number
	453 450 500 505 185 248 429 325 220 165 83 322 29	286 297 359 434 22 22 217 20 28 60 60 23	8 10 10 16 6 6 6 6 6 6 6 6 6 6	340;362 379;400 19;103;175 145;185;212 24;30;54;75	362 404 350 369 40 52 329 111 17 11 25 13	1/68 11/66 9/66 9/76 11/64	350 7 725 495 10 50 146 56 32 42 100 10	136 .13 192 24 .07 1.3 .51 .37			8.3	Ce-154 155 156 157 179 180 189 205 210 211 212 213 214
	75 75 350 85 185 321 125 180 210 270 60 65	30 42 70 65 318 100 155 174 195 20 53	6666666666666	35;68 48;69 75 180 311 120 175 205 255 60 60	7 5 30 7 119 116 19	5/67 5/67 2/68 7/79 3/77 1/80 7/80 7/80 9/78 10/80 12/78	15 25 0 30 12 12 10 20 40 10 8	.24 1.2	1 1 8 8 10 4	290 385 420 215	6.0 6.3 7.70 7.75 8.2	215 216 217 235 236 237 238 239 240 241 310 322
Į.	COUNTY											
	66 183 191	12 20 45	6 6 6		34 35 300	 7/65	7 18	. 30	17	250		Fu- 87 88 93
l	325 360 280 60 163 128 178 100	24 22 40 40 20 21 26 24	6 6 6 6 6 6	132 200;328 190;275 55 70;108;144 98;113 71;78;94;	100 100 40 40 70 30 20 8	10/78 5/79 8/79 7/78 4/79 10/77 1977 9/80	2 3 30 60 15 15 2	.06 .01 .75 .13 .09	5 6 1 4	205 215 95 215	7.5	126 127 128 129 130 131 132 133
The second of th	102 80 223 360 283 123 260 162 292 244 140 100 250 45 180 122 125 104 103 145 99 205 238 163 160 206 149	20 32 27 21 21 33 39 74 20 40 40 34 40 34 40 34 40 21 22 40 34 40 40 40 40 40 40 40 40 40 4	666666666666666666666666666666666666666	100 60;80;90 139;195;205 42 100;260 70;104;110 237 34;105 80;100;138 223;242 150;221 85;130 60;90 180;195 40 180 70;98;115 120 85 60;95 60;135 99 80;195 125;218 93;130 80;150 78;197 95;128	24 8 100 30 25 25 25 30 100 68 20 10 30 105 8 40 77 40 20 19 50 F	9/80 9/80 9/80 11/78 6/78 7/77 4/76 9/80 9/80 9/80 9/80 4/75 7/78 8/80 9/80 11/79 9/80 9/80 9/80 9/80 9/80 9/80 9/80 9/8	20 12 5 3 12 40 8 33 15 15 15 15 15 15 15 20 30 20 20 25 5 6 18 20 10	.35 .18 .05 .01 .04 .39 .08 .94 .3 .12 .13 .75 0.3 .06 .22 .75 	2 4 4 5 18 5 5 5 5	60 115 200 245 180 1550 130 250 280 192 185	7.8	134 135 136 137 138 139 140 141 151 152 163 164 165 166 167 170 171 172 173 174 175 178 179 186
ŀ	COUNTY											
	33 197		6 6		25 1	10/61	90	22				Hu- 1 6
	186		8		8		300					7
	94 163 31 99 50	45 41 10 8 42	6 8 6 6		65 0 3 17	10/31	5 40 12 4 250	.7				8 9 12 33 34
The second	206		6		40	9/33	17					47

TABLE 16

								TABLE 16
	-					Alti-		1
We11 1	location					tude of land	Topo-	
Number	Lat-Long	Owner	Driller	Date completed	Use	surface (feet)	graphic setting	Aquifer/
Hu~ 51	4029-7800	Benson Bros. Ice	Clifford Mansfield	1933	A	660	٧	Dh/sh
54	4026-7757	Cream Co. Wright's Farm Market	Hoover		Н	620	٧	Ock/ss
57 66	4017-7752 4023-7752	Charles Terizzy Mt. Union Ice Co.	Artesian Well		C	600 580	\$ V	Dm/sh Swc/sh
79	4014-7754	East 8road Top R.R.	Orilling Co. R. R. Hornberger	1933	Н	750	S	Oh/
96 98	4031-7759 4029-7801	& Coal Co. Edgar Lindsay Boyle Ice Co.	R. R. Hornberger Kohl Bros., Inc. Clifford Mansfield	1933 1933	H	780 620	S	Oon/ss Oh/ls
99 102	4029-7801 4010-7806	Steel Ice Co. Rockhill Coal & Iron Co.	Muirhead	1883 1916	N D	640 1800	V S	0h/ Mmc/
107 108	4030-7808 4030-7808	Alexandria Water Co.				1010 1042	M	Sbm/
115 116	4018-7807 4017-7743	Commonwealth of Pa. Mrs. Mowry		1962 1978	T H	1040 735	S V	Mp/ss Dmh/
117 118	4017-7743 4017-7744	O. Robertson M. Plank	Theodore F. Rothrock Larry G. Walters	1978 1979	H	740 1015	V S	Dmh/ Dtr/sh
119 120	4036-7807 4033-7810	P. L. 8lair Clapper Farm Equipment		1974 1978	H	778 1060	A A	Ons/
121 122	4037-7807 4037-7807	Jerry Woodring R. Brown	do.	1973 1979	H	845 820	V S	C9/ Ons/
123 124	4037-7808 4034-7808 4033-7810	Christ Lutheran Ch.	do. Donald W. Graham	1978 1978	T H	880 1060	٧	Oba/ C9/
125	4037-7807	Clapper Farm Equipment L. Sottile	James R. Miller do.	1979	H	785	S V	Oba/
126 127	4036-7807 4036-7808	Ernest Anderson Jerome Wilson	do. Oscar Oearmit	1974 1970	H	890 810	S V	Ons/
128 129	4036-7808 4023-781D	H. Espy 8. Garner	do. David R. Eriksen	1978 1979	H N	765 1080	S S	Oba/ Sbm/
130 131	4024-7809 4026-78D8	C. Bush T. L. Fox	Martin W. Shatzer James R. Miller	1978 1975	H	945 985	S	Sbm/ Sc/ss
132 133	4021-7810 4021-7811	Bryce Saylor W. McCavitt	do. Martin W. Shatzer	1975 1979	H	1120 1020	S	Obh/ Swc/sh
134 135	4019-7812 4020-7810	George Forshey Richard Inett	James R. Miller do.	1972 1972	H	918 9 90	S S	0h/ 0bh/
136 137	4018-7808 4017-7807	William Burk C. Rhoads, Jr.	Glenn E. Houp	1979 1 975	H	1100 1100	S S	Mp/ss Mmc/
138 139	4016 - 7808 4016 - 7810	Jim Kling Robert Gates	Donald W. Graham do.	1975 1975	H	1400 1255	S S	Mmc/ Mp/
140 141	4015-7811 4016-7811	J. Hess U. S. Army Corps of Engineers	do. Gerald W. Clark	1978 1978	P	1435 795	S V	Mmc/ Dck/
142 143	4018-7810 4017-7813	do.	do. Glenn E. Houp	1978 1979	P U	810 840	S S	Ock/ Dh/
144 145	4016-7814 4013-7812	H. F. Higgins Bible Oeliverance	Gerald W. Clark James R. Miller	1973 1978	H	1040 980	S	Dbh/ Mmc/sh
146	4013-7813	Center Ch. C. 81ack	Donald W. Graham	1978	Н	863	٧	Dck/
147 148	4012-7811 4018-7814	J. Chamberlain Martin Low	Gerald W. Clark Glenn E. Houp	1973 1978	H	1095 980	۷ S	Mmc / Swc /
149	4014-7813	U. S. Army Corps of Engineers	Gerald W. Clark	1978	Р	790	\$	Df/
150 151	4012-7810 4028 - 78 0 1	J. Morgan R. Wetherite	David R. Eriksen Martin W. Shatzer	1979 1979	H	1570 910	S S	Pa/ Dbh/sh
152 153	4027-7801 4028-7801	S. Grove W. Welsh	Oonald W. Graham Martin W. Shatzer	1979 1978	H	995 1000	S S	Obh/ls Obh/sh
154 155	4027-7801 4027-78 0 2	8. Kelly Fred Grove	do. do.	1978 1979	H	1040 1050	H S	Dbh/sh Dbh/sh
156 157	4027-7802 4028-7803	R. Eckley M. Muller	do. do.	1979 1979	H	1140 705	S V	Dbh/sh Dh/sh
158 159	4027 - 780 5 4026 - 7806	H. Bupp M. Henry	do. James R. Miller	1978 1978	H	700 800	۷ S	DSkt/1s DSkt/1s
160 161	4027-7804 4027-7803	C. Rowe V. Miller	David R. Eriksen James R. Miller	1979 1979	H	720 720	S V	Dh/ls Dh/sh
162 163	4027-7805 4029-7801	Wilma Gallagher R. Cunningham	David R. Eriksen	1977 1979	H	750 760	S S	Oop/ss Dh/sh
164 165	4026-7802 4024-7856	A. Toth S. Steel	James R. Miller Martin W. Shatzer	1978 1979	H	1060 640	H V	Dbh/sh Dbh/sh
166 167	4028-7801 4028-7801	John Grove E. Leffard	James R. Miller Oonald W. Graham	1973 1978	H	1020 1020	S S	Dbh/sh Dbh/
168 169	4020-7801 4020-7800	D. Kyler T. Heims	Larry G. Walters do.	1978 1978	H	1160 1220	V	Mmc/ Mmc/sh
170 171	4019-7802 4019-7802	R. Pollock D. Wright	do. Glenn E. Houp	1978 1977	H	1240 1305	V S	Mmc/ss Mmc/
172 173	4017-7802 4028-7801	B. 8rown Thomas Royer	Martin W. Shatzer	1978 1980	H	1295 1110	S S	Mmc/sh Dbh/sh
174	4027-7804	Trinity United Ch. of Christ	James R. Miller	1979	T	710	٧	Oh/sh
175 176	4029-7803 4020-7811	M. Christy R. Fouse	Martin W. Shatzer Glenn E. Houp	1979 1977	H	975 880	\$ \$	Dop/ss Dh/
177 178	4015-7813 4015-7813	Carl Pryer Eric Martin	Donald J. Fisher do.	1976 1976	H	1290 1325	S	0s/ 0s/
179 180	4015-7814 4017-7813	Robert Collins W. Collins	do. Glen E. Houp	1977	H	1 320 88 5	S S	0s/ Dbh/
181 182	4021-7811 4021-7810	Clapoer Rightenour Enterprises	Martin W. Shatzer James R. Miller	1979 1979	H	935 870	S V	DSkt/ls Dh/sh
183	4021-7830	R. Greenleaf	do.	1978	Н	1120	S	Dbh/

					c water						
Total depth below	Cas	ina	Oepth(s) to water-	Oepth below					Specific conduc- tance		
land surface (feet)	0epth	Oiameter (inches)	bearing zone(s) (feet)	land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (gpg)	(micro- mhos at 25°C)	рН	Well number
136		4		7	9/33	30					Hu- 51
150 55	23 37	6 6		20 1		5 40					54 57
106	38	6		8		80	13				66
465	33	6		35	11/33	35					79
120 184	35	6 8		75 	9/33 9/33	7 120	6				96 98
385 293	293	8 6		30		40	2				99 102
173 124	45 30	6 6				150 75					107 108
300 71	40 21	8 6		 6	5/62 5/80	55 30	.82		285		115 116
96 238	22 40	6	120;230		8/78 11/79	12		4	200		117 118
45 247	20 54	6	25;30 85;175	9 42	6/80 6/80	40 4		10 9	422		119 120
130 45	110	6	115;120	12	9/73 6/80	30 70		12	440		121 122
45	19	6	40 150	3	6/80	30		14	560		123 124
407 60	21 42	6		4	10/78 6/80	1 10					125 126
185 82	67 64	6	142 80		10/74 11/70	30					127
45 100	20 21	6 6	40 50;80	25	1/78 8/79	20 7		10	345		128 129
82 12 5	40 21	6 6	85,110	10	8/78 6/75	60 20	3.0	17	578	7.1	130 131
405 142	20 41	6 6	85 100;135	20	4/75 4/79	2 20	0.5	8	285		132 133
70 335	20 300	6 5	30;60 80;290	80	10/72 12/72	15 2			307	6.3	134 135
160 60	3 9 20	6 6	70;140 20	25 45	6/79 12/75	6 1					136 137
165 45	35 40	6 6	80;160 42	99 5	7/80 8/75	7 7	.17	7	255 90	6.28	138 139
60 162	62 21	6 6	20;40 50;120;155	25 28	2/78 9/78	10 7	0.5 .06	2	53 75		140 141
150 320	22 42	6	50;92 90;205;275	20 3 5	9/78 6/79	4	.06	4 11	50 533	6.02	143
183 90	21 20	6 6	50 50;76;83	50 	9/73 3/78	3 40		5 8	260 325	6.8	144 145
100 63 105	20 29 28	6 6 6	60;80 6;20;50 48;88	5 49	7/78 8/73 9/78	20 11		9 7 15	330 225 480	5.49	146 147 148
140	47	6	40;75;128	27	9/78	8	.08	12	375	7.30	149
95 200	22 42	6	45;80 95;195	30 48	3/79 7/80	6 18	. 26	4	140 210		150 151 152
355 180	20 63	6	45;340 85;170	173 111	7/80 7/80	3 30	. 60	4	210		153
400 280	42 42	6	280 165;280	106 113	7/80 7/80	3 12	.02	5	270 225		154 155
300 45	38 21	6	190;285 35	141 6	7/80 6/79	12 40	.15 6.7		245		156 157
45 165	31 127	6	35;40 130	9	7/80 7/78	15 6	1.2				158 159
175 200	21 20	6	50;125 120	20	11/79 6/79	3 2		7	280		160 161
168 200	168 21	6 6	163 180		8/77 1/79	25 4		7 14	305 595		162 163
283 100	22 50	6 6	120;275 60;95	92 20	7/80 6/79	15 40	4.0				164 165
383 290	20 25	6 6	70;310 200;280	30	3/73 3/78	4 6		5	245		166 167
105 210	21 36	6 6	45;90 110;200	13 14	7/80 7/80	25 25		8	350 		168 169
285 115	26 34	6 6	65;140 60:88	2 55	7/80 7/77	3 12		2	105		170 171
182 260	63 42	6 6	165 240	47 60	7/80 7/80	6 12	.08	5	195		172 173 174
63 280	21 63	6	40;49 2 7 0	140	11/79 3/ 7 9	18 15	.37				175
105 135	22 24	6	40;78;95 35;80	6 14	12/77 6/80	9	.24	4	115		176 177
100 62	24 20	6 6	40 40	15 8	6/76	3 20					178 179
92 90	28 72	6	38;55;80 70;85	38	11/77 5/79	9 20	.23				180 181
185 386	20 20	6 6	85;135 285		6/79 6/78	4 3					182 183

TABLE 16.

								ADLE 10.
Well	location Lat-Long	Owner	Driller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/
Hu=184		Clyde Lane	James R. Miller	1975	Н		ς .	
Hu-184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 223 224 225 226 227	4033-7758 4034-7753 4034-7753 4034-7753 4034-7753 4034-7753 4034-7753 4031-7759 4031-7759 4031-7759 4031-7759 4031-7759 4031-7750 4037-7756 4037-7756 4037-7756 4020-7802 4027-7802 4027-7802 4027-7802 4027-7804 4017-7807 4034-7751 4035-7752 4037-7758 4012-7805	Clyde Lane Dale Sandt J. Pierolli Griffin T. Gustafson Don Hollabaugh Lee Crile Ronald Gore H. Wakefield R. Bargiel 8. Lidston Marqaret Lightner R. Peters P. Hickes J. Claar Edward Ewing Roy Wheland Pen Mar Development do. do. Raymond Crownover R. Carson R. Kessler J. Gumbert R. Mirley Michael Mansberger Dale Horton Martha Roland C. David W. Lefever L. Harshman T. Barnhart D. Lutz Todd Twp. 8. Myers E. Yohn D. L. Smith T. Zirobile Robert Worthy B. Kreidler J. Jackson Paul Mondo A. Bolinger Miles Brenna	James R. Miller do. do. do. do. do. do. Donald W. Graham James R. Miller Glenn E. Houp Martin W. Shatzer James R. Miller do. do. do. do. do. do. do. do. do. do.	1978 1978 1978 1978 1978 1978 1978 1978		810 750 765 740 840 1140 740 695 790 725 1000 1105 880 870 735 1135 1140 1140 1160 1040 1180 810 800 1160 1190 1190 1290 1285 1360 1290 1285 1360 1280 1600 1700 18	2 2 2 2 2 3 4 2 4 4 4 4 4 5 5 5 6 6 6 7 4 4 4 4 5 6 7 6 7 4 4 4 4 6 7 6 7 6 7 7 7 7 7 7 7	Dop/ss Dmh/sh Dmh/sh Dmh/sh Dmh/sh Don/ss Dbh/ Don/ss Dmh/sh Don/ss Dmh/sh Don/ss Dmh/sh Don/ss Dmh/sh Don/ss Dmh/sh Don/ss Dmh/sh Don/ss Sbm/sh Swc/sh Dbh/ls Dbh/sh Dh/sh Dh/sh Dh/sh Dh/ss Mmc/ss Mmc/ss Mp/ss
228 229 230	4012-7805 4013-7802 4011-7803	Guy Territo H. Miller Pa. Game Comm.	Martin W. Shatzer Larry G. Walters Gerald W. Clark	1975 1979 1978	H H P	1545 995 1117	S S S	Mmc/sh Dck/ Mmc/
231 232 233 234 235 236 237 238 249 241 242 243 244 245 246 247 248 249 250 251	4013-7805 4010-7802 4009-7800 4010-7800 4010-7800 4010-7800 4012-7800 4013-7801 4013-7801 4013-7801 4013-7802 4014-7800 4006-7759 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7756 4007-7757 4007-7756 4007-7756 4007-7757 4007-7757 4007-7757 4007-7757 4007-7757 4007-7757 4007-7757 4007-7757 4007-7757 4007-7757 4007-7757 4007-7757 4007-7757	Thomas Runk E. Burnett E. Kough H. Greenland 8. Heffelfinger C. Cramer Saltillo Water Co. D. Watkins D. Thomas Richard Hamilton M. Fleming J. Rourke H. McCoy D. Long P. Maceno W. Nearhoff R. Lutz M. Lear G. Nearhoff E. Newlin Orbisonia-Rock Hill Joint Authority	Glenn E. Houp Larry G. Walters do. do. do. do. do. Evan W. Grissinger Martin W. Shatzer do. Larry G. Walters R. Galen Martin Larry G. Walters do. Oscar Dearmit do. do. do. James R. Miller Robert N. Eriksen	1975 1977 1978 1978 1979 1978 1977 1978 1974 1978 1977 1978 1977 1978 1977 1978 1978		1560 1040 1010 1045 1090 935 885 825 830 1065 965 1010 720 920 1130 1305 1305 1265 1575 990 640	2	Mmc/ Dck/ Dbh/ Dh/ Ds/ Sbm/ Dh/ Dh/ Dck/ Dbh/ Dck/ Dbh/ Cg/ Cg/ Cg/ Cg/ Cg/ Doo/
253 254 255 256 257	4012-7759 4036-7803 4039-7811 4042-7808 4017-7752	Three Springs Bor. Petersburg Water Comm. 8irmingham Water Works Warriors Mark Water Co. Shirleysburg Munic.	 Oscar Dearmit Robert N. Eriksen	1963 1966 1965 1968	U U P P	890 865 1040 1380 670	S W S W	Sbm/ Sc/ Cg/ Or/ Doo/ls
260	4012-7807	Authority Broad Top City Water	Harrisburg's Kohl 8ros.	1968	Р	965	Н	Pp/
261 262 263 264 265 266 267 268	4037-7806 4040-7806 4043-7809 4032-7806 4033-7806 4032-7803 4031-7800 4030-7800	Authority Harris Layton G. Lake W. 8uck I. Clark J. Tennis G. Phillips E. Hurley	Oscar Dearmit do. do. James R. Miller Oscar Oearmit Donald W. Graham Martin W. Shatzer James R. Miller	1976 1979 1979 1978 1979 1978 1978	H H H H H H H H H	875 1020 1230 670 760 940 830 810	S S S V S S S	Ocl/sh Cph/ls Ocl/ls Sbm/sh Sbm/sh Dop/ls Dop/ss Oop/ss

				c water						
Total depth	0	Depth(s) to	Depth					Specific conduc-		
below land surface	Casing Depth Oiameter	water- bearing zone(s)	below land surface	Date measured	Reported yield	Specific capacity	Hard- ness	tance (micro- mhos at		Well !
(feet)	(feet) (inches)	(feet)	(feet)	(mo/yr)	(gal/min)	([9al/min]/ft)	(9pg)	25°C)	рН	number
90 162 150 325 200 205 102 65 65 62 217 225 344 80 96 105 145 290 400 440 70 320 161 142 102 100 115 121 335 120 121 121 122 120 120 121 121 121 121	20 6 20 6 21 6 21 6 21 6 21 6 21 6 22 6 48 6 42 6 38 6 20 6 23 6 25 6 20 6 20 6 20 6 21 6 21 6 21 6 21 6 21 6 21 6 21 6 21	63;75 40;92;150 70;100 140;315 180 140;200 65;90 43;53 28;55 55 203;210 100;175;210 150;335 60 60;90 75;90 100;120 45;65 180;310 80;140 80;140 80;140 60;95 38;60;90 40;80 55;105 96;101 320 140;210 110;165 115;190 75;120 50;100 146 40;45	37 	3/75 7/80 12/78 12/78 12/78 7/80 4/75 11/72 11/77 5/78 8/79 11/76 4/79 8/78 6/78 7/75 10/75 9/78 7/80 7/80 7/80 8/78 4/79 7/80 6/79 7/80 11/79 7/80 5/79 7/80 11/78 7/80 5/79	18 25 7 4 12 6 30 20 20 20 20 20 4 7 15 20 30 18 15 -6 2 20 10 6 14 12 14 15 60 12 14 10 15 5 18 10 10 15 5 14 20	2.5 2.0	3 16 17 10 7 8 8 6 2 1 1	75 185 500 85 625 320 300 375 250 125 50 150 210	6.8	Hu-184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
200 65 96 123	42 6 31 6 20 6 26 6	60;105;180 33;55 40;80;90;	F 43	7/80 9/74 7/78 7/80	20 10 20 12	1.0		 212		225 226 227
88 100 202	42 6 23 6 36 6	40,80,90, 110 65;80 70;90 40;93;172;	12 6 30	7/80 7/80 7/80 7/80	32 20 15	.15	 7	 275	7.08	228 229
105 124 165 120 250 150 305 83 140 108 125 196 90 104 125 370 330 270 165 142 215	21 6 6 42 50 6 40 6 92 6 29 6 27 6 27 6 20 6 21 6 20 6 21 6 50 6 112 6 318 5 322 6 40 6 93 6 30 8	184 65;95 60;120 110;155 55;110 125;230 140;260;290 70 85;135 80;104 65;95 40;83 95 120 365 325 265 160 94;120 213	25 F 40 31 40 F 90 5 10 60 25 7 30 80 254 50 0	7/75 7/80 9/78 7/80 4/79 7/80 11/77 7/80 4/74 4/78 11/77 7/80 3/78 7/80 6/78 2/78 8/80 8/73	16 30 10 15 15 15 22 28 15 20 7 2 30 18 20 50 9 20 30	 	7 6 3 5 7 6 6 6 18 15 8 6 6	270 220 110 175 233 220 215 613 577 247 210 445		231 232 233 234 235 236 237 238 240 241 242 243 245 246 247 248 249 250 251
290 249 145 435 290	18 6 21 6 39 23 6 26 8	45;140 105;278	18 40 1 10	8/80 7/65 10/68	30 30 8 20 44	.13 .21 .37				253 254 255 256 257
280	33 8		8	8/68	85	.45				260
135 90 210 77 390 260 182 163	40 6 87 6 20 6 21 6 40 6 252 4 68 6 120 5	130 85 200 65 385 65;155;250 140;180	10 60 80 76	9/76 3/79 7/80 5/78 3/79 3/78 9/78 7/80	1 15 3 12 5 13 40 9	1.2	9 9	420 395 	8.92 7.58	264 265

TABLE 16.

						Alti- tude of		
Well l Number	Lat-Long	Owner	Oriller	Oate completed	Use	land surface (feet)	Topo- graphic setting	Aquifer/ lithology
Hu-269 270 271 272 273 274 275 276 278 279 280 281	4031-7800 4031-7800 4039-7804 4039-7806 4042-7800 4042-7800 4042-7753 4014-7758 4011-7758 4010-7801 4012-7755	F. Gump J. Kerestan W. Harpster do. J. Young 8allfield O. Campbell William Copenhaver L. Grover O. Whitsel L. Hoffman South Huntingdon County Sch.	Oonald W. Graham Glenn E. Houp Oscarmit do. do. do. Martin W. Shatzer Larry G. Walters do. Martin W. Shatzer Larry G. Walters	1978 1977 1978 1978 1979 1977 1979 1978 1978	H H H H H H H	835 750 1100 1100 830 1165 1115 725 810 730 880 650	S 5 5 V H 5 5 V	Dop/ss Oon/ss Obf/ls Obf/ls Or/sh Cg/ss Osl/ls Oh/sh Dh/ Obh/ Obh/ Obh/sh
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 307 308 309 301 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 327 328 329 329 320 321 321 321 322 323 324 325 326 327 327 328 329 329 329 329 329 329 329 329 329 329	4012-7755 4012-7756 4013-7754 4013-7754 4013-7754 4013-7754 4009-7755 4007-7757 4008-7758 4012-7754 4013-7754 4010-7751 4008-7753 4011-7752 4008-7753 4011-7752 4008-7753 4011-7752 4008-7753 4011-7752 4008-7753 4011-7752 4011-7751	Rodger Winters Heritage Baptist Ch. R. Wilson O. Hearn G. Hanncock K. Long R. Brown T. Ramsey G. Locke T. Ramsey G. Locke T. Ramsey G. Locke Jerry Sample O. Phalem H. Parson O. Grove E. Verner S. Glunt J. Lake R. Baker U. S. Geol. Survey Church parsonage William Peters E. McGreary A. R. Kutz O. Kline John Colbert Clair Brindle Oaniel Oietz B. Couch R. Lynch, Jr. P. Ourner, Jr. do. H. Z. Heritage Homes Charles Porter Helen Moore Donald Gibbony A. Varner Robert Horner G. Ewing T. Vallance Ralph Rudy Raymond Giles Michael Miller A. Cisney E. Bonnema C. Lake D. Kappe W. Kneebel Earl Parson R. Goshorn E. Reames J. Cowan R. Longwell C. Williams A. Crouse R. Laird J. Biles J. Parson Oudley-Barnettstown	Martin W. Shatzer Larry G. Walters Martin W. Shatzer do. Larry G. Walters do. do. do. do. do. do. do. do. do. do.	1977 1978 1978 1978 1978 1978 1978 1978	H T H H H H H H H H H H H H H H H H H H	660 760 680 670 680 670 680 670 820 820 820 820 820 1020 670 831 120 1095 1120 1125 970 1670 835 760 760 750 1160 875 880 765 810 860 900 1155 820 940 660 900 1558	V V V V V V S V S S S S S S V S H 5 5 S 5 5 V S V S V S S S 5 5 5 5 5 5 5	01h/sh 01h/sh 01h/sh 01h/sh 00h/ 0h/ 0h/ 0h/sh 00h/ 0h/sh 00k/sh 0civ/sh 0civ/sh 05kt/ls 0cn/ls 00h/sh 05kt/ls 0ch/sh 5wc/sh 5wc/ 5wc/sh
		Water Assoc.				•		JUNIATA
Ju- 3 4 5 6 7 8 13 14 15	4036-7719 4038-7717 4038-7717 4038-7716 4038-7716 4038-7719 4036-7719 4032-7728 4030-7725	Mrs. Shirk Frank Writter Wilson Benner 1. G. Headings C. E. Kaufman James Long J. 8. Wilson Oavid Crawford Ralph Gilson	 Hubler Mell Drilling Co.	1932	H H H H H H	570 650 650 640 650 680 580 540 520	V 5 V V V V V H	5bm/ 5wc/ 05kt/ls 05kt/sh 05kt/ls 05kt/ls 05kt/ 5bm/sh 05kt/ls

(CONTINU	ED)										
					water vel	2			Specific		
Total depth below land surface (feet)	Casi Oepth O	iameter	Oepth(s) to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9p9)	conduc- tance (micro- mhos at 25°C)	рН	Well number
140 96 370 310 31 244 125 99 346 170 102 225	140 78 43 72 24 144 52 40 36 40 42 20	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	120 82 365 305 21 239 115 70;90 315 105;160 70;95 203	120 45 83 16 134 33 25 110 9 30 127	2/78 11/77 7/80 7/80 9/79 7/80 7/80 8/78 11/78 7/80 9/79 7/80	8 5 8 2 12 7 100 40 2 15 20 15	.53 .11 1.6 .67	2 8 8 8 3	220 350 210 200		270 271 272 273 274 275 276 278 279 280 281
125 80 100 170 42 105 164 133 285 165 165 286 66 224 155 208 170 460 30 325 105 105 150 300 160 165 165 165 165 166 170 160 165 165 170 160 165 165 165 165 165 165 165 165 165 165	22 38 42 29 21 32 22 348 40 40 46 40 40 40 40 40 40 40 40 40 20 20 20 20 20 20 20 20 20 21 20 22 23 23 41 20 3 30 3 40 40 40 40	66666666666666666666666666666666666666	80;120 55;75 60;95 40;160 25;35 90 110;155 70;120;150 60 55;150 170;275 105;215 90;143 115;202 125;170 44;95;120 125;230 65;85 110;160 30;45;50 115;275;31 40;95 110;205 1	15	7/80 4/79 7/80 2/77 7/81 1971 7/81 5/71 7/81 5/71 7/81 1/7 7/87 81 11/7 67 87 88 97 68 87 88 88 88 88 88 88 88 87 87 87 87 87	6 4 4 9 3 1 1 8 8 6 6 1 10 0 7 36 6 1 2 30 0 2 9 50 0 12 5 5 9 9 5 5 40 0 12 5 5 9 10 12 5 6 6 10 12 5 7 7 20 7 9 50 0 15 7 7 20 7 9 50 0 15 7 9 50 0 15 7 9 50 0 15 7 9 50 0 15 7 9 50 0 15 7 9 50 50 7 9 50 50 7 9 50 50 7 9 50 50 7 9 50 50 7 9 50 50 7 9 50 50 7 9 50 50 7 9 50 50 50 50 50 50 50 50 50 50 50 50 50			200 1500 495 420 325 2 450 1 545 1 545 2 450 1 545 2 450 1 545 2 450 2 450 		283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 301 301 302 2 303 304 305 1 306 307 308 55 309 55 310 311 315 311 314 317 311 317 311 317 311 311 311 311 311
COU	YTY										Ju- 3
1	92 52 46 75 58 68	10 6 16 6 16 6 16 6 16 6 20 6 20 6 10 6 12 8 20 6			30 36 18 14 35 10 18 42						4 5 6 7 8 13 14 15

TABLE 16 MI

							TABLE 1€	
Well location	ig Owner	Driller	Oate completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer,	
Ju- 16 4030-7	25 Margaret and M. 8.			Н	520	Н	Dop/	
17 4032-7	Groninger '23	R. R. Hornberger	1934	С	440	٧	0Skt/	
18 4032-7	-	Alvin R. Stewart		С	440	٧	DSkt/	
19 4032-7 20 4033-7 22 4031-7	24 William Icenburg 2S Guy Stuart 2O Supplee-Wills-Jones			H H N	440 480 440	V V V	Sc/ DSkt/ Swc/	
23 4031-7 25 4033-7 26 4033-7 27 4032-7 28 4032-7 32 4032-7 32 4032-7 57 4020-7 58 4019-7 60 4021-7 61 4021-7 63 4024-7 65 4029-7 71 4038-7 72 4038-7 73 4038-7 74 4038-7	Milk Co. Co. W. Leister Maynard Fenicle Gerald Wert Joseph Dreese J. E. Oavis Earl Hack Henderson Lowry McClure Watson Newman Charles Devin Samuel Burdne Lo. Vaughn State Game Turkey Farm David Hackenberry Thomas Hockenberry McAlisterville Water Co. do. do.	J. R. Freed J. R. Freed Harrisburg's Kohl 8ros. Hubler Well Orilling Co. Harrisburg's Kohl 8ros.	1917 1917 1953 1947 1910	H	460 475 \$60 510 490 540 430 51D 560 720 700 800 920 860 650 530 680 660 672	V V S V V S V V S S V	DSkt/ DSkt/ DSkt/ DSkt/ Swc/ Swc/sh Swc/ DSkt/ DSkt/ DSkt/ Swc/ DSkt/ Swc/ Skt/ Skt/ Skt/ Swc/ Swc/ Swc/ Swc/ Swc/ Swc/	
75 4D30-7	Authority 22 Port Royal 8or.	===	1910	P P	672	S	Swc/cash	
76 4030-7 80 4034-7	Authority		1955	P	677 640	S V	Swc/ Dmh/	
81 4034-7	Authority			Р	660	v	Dmh/	
82 4034-7 83 4032-7 84 4032-7 85 4032-7 87 4037-7 88 4032-7 90 4032-7 91 4032-7 94 4033-7 95 4036-7	21 Earl Hack 21 W. E. Taylor 21 Dick's Auto 8odyshop 22 P. C. Willard 21 S. F. Metz 21 George Groninger 19 Kepler 19 Kepler's Esso Station 20 Walker Twp. Sch. 15 Thompsontown Holding Co.	Gilbert R. Zechman Hubler Well Orilling Co. do. do. do. do. do. Hubler Well Orilling Co. Hubler Well Orilling Co.	1963 1964 1950 1939 	P H H C H H H H C T N C	620 430 450 440 450 440 420 555 530 510 560	V V V V V V V S S S V	Dmh/ Dm/ Don/ Oon/ Dm/ Dm/ DSkt/ DSkt/ Oskt/ Sbm/	
96 4D29-7 97 4029-7 98 4033-7	22 Port Royal 8or. 22 Port Royal Water Co.	Hubler Well Drilling Co. Gilbert R. Zechman	1963 1940 1959	P P T	741 745 580	S S S	Sbm/sh Sbm/ Dm/	
100 4033-7		Hubler Well Orilling Co.	1958	T	530	S	Swc/	
101 4033-7 102 4033-7 104 4032-7 108 4032-7 110 4039-7 118 4035-7 130 4033-7 131 4033-7 134 4033-7 135 4033-7 136 4033-7 137 4034-7 138 4034-7 139 4034-7 139 4034-7 140 4029-7 141 4030-7 142 4032-7 143 4032-7 144 4030-7 145 4029-7 147 4032-7 148 4032-7 148 4032-7 149 4032-7 150 4032-7 151 4037-7 152 4037-7 153 4033-7 153 4033-7	23 C. O. Zimmerman do. 24 do. 25 do. 26 WJUN Radio Station Lloyd Harding 26 Arthur Eard 27 D. E. Smith 28 W. F. Piper 28 Max Manbeck 29 Cannet Bardell 29 John Tetwiler 20 Max Manbeck 21 Larve Moist 22 Max Manbeck 23 Larve Moist 24 John Tetwiler 26 Graham Robinson 27 Frank Fleisher 28 C. L. Goodman 29 George Landis 29 John Bashore 20 Gerald Clark 20 Charles Telfer 21 John Wall 22 Earl Messimer 20 C. O. Smith 21 Pine Grove Ch. 21 O. Q. Adams	do. do. do. do. do. do. Freed and 8ell Milton H. Romig Gilbert R. Zechman Hubler Well Drilling Co. do. do. do. do. do. do. do. do. do. d	1959 1955 1964 1958 1964 1991 1996 1991 1996 1997 1996 1997 1995 1990 1991 1992 1990 1990 1990 1990 1990	C C C H H H H H S H C H U H U H H C H H H H H H H H H H H	570 580 480 800 790 76S 518 590 670 670 470 670 470 670 490 510 560 68S SSS S75 570 440 4 SS 570 670 490 560 68S 570 570 570 570 58S 58S 58S 58S 58S 58S 58S 58S 58S 58S	S S S S S S H H S S S V S H V S S S S S	Sbm/ Sbm/ Swc/sh Sbm/sh Sbm/sh Sbm/ Sbm/ Sbm/ Sbm/ Sbm/ Sbm/ Sbm/ Sbk/ Skt/ Skt/ Skt/ Skt/ Skt/ Skt/ Skt/ Skt/ Shm/sh	

(C(ONTINUE	ED)		_								
						water vel				Specific		
t 1	Total depth below land urface	Casing Oepth Oi (feet) (i	ameter	Oepth(s) - to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9pg)	conduc- tance (micro- mhos at 25°C)	рН	Well number
-(1	feet)	30	6		55		5		25	1050		Ju- 16 17
		57	8	75;120;200;	29		85	1.1				
	263	18	8	263	33		15	.12	50 		7.1	18 19
	210 94	15	6		26 38		3					20 22
	96 85	28 43	6 8		39		80					23
	75	14	6		35 3		3					25 26
	60 70	40	6 6		20 45		3 6	.24				27 28
	95 100	72 20	6 6		70		3					29 32
	137	 19	6 6		79 3		4					33
	47 100	42	6		52 69		5 1					. 57
	121 65	21 22	6 6		21 40		3 5					
	60 70	57 12	6 6		20		6 3					- 60
1	76	18 20	6		5 3		3	.32				- 63
	55 172	15	6		20 15		16 3					- 68
П	61 52	8 12	6		10 70	7/65	3 12	.11	7 	260	7. 7.	
	472 210	200	8 8	200	11	7/53	80 75	1.25			7.	8 73
	504	357 28	8 6		14 18	12/64	30					7.5
	122 92 75	60 50	6		18 17	12/64 12/64					6.	2 76
			6								6.	
	110		6				 95				7. 7	.6 82
	105 220	21	8		20 38		3					84
	50 65	22 28	6	52;65	18							85 .5 86
ш	80 110	30	6 6	30;80;11	0 21			.23				87 88
	45 76	20 34	5 5		26	12/3					-	89 90
	110 175	25	6 6				12				-	91
	205		6 6		40	5/5	3 14	.7				94 95
	135 55	62	6		6					6 180		96
	248 225		6		3	5 6/6		.57		5 260		7.3 97 98
	53 303		6 5		7		58 20		-			100
1	120					0 7/				8 265 6 230	ĺ	102 104
1	137	40	8		2	7 4/	55 8		-	8 290)	108
	114 120	58	. 6	70;85;1 60		30 9/ 27 7/	58			9 32! 5 16!		118
1	29	7 202	. 6	288		8 3/ 15	64 8			16 59		130 131
т	213	7 34 3 40) 5		1:	33 3/	56 14	7	-		-	132 134
1	20!	5 22				12 12/	48	3		2 8	5	135
Ш	11	5 53	3 5			55 2, 21		š			-	137
	8 31	5 18	3 5		1	65 6, 21 -		5		27 84 		138 139
	8 37		16	190	-		- /65 1	1		28 82		140 141
	16	0 1	0 5			60 10	/40	5			-	142
	10 22	5 1	7 5			42 9		8		2 1	25 00	144
	ċ		2 5			27 9	/65 1	5		8 3	00 90	145 146
	5	55 3	18 6			80 7	/54	8	7	24 8	60	147 148
-	!	52 3	37 6	- - -		30 9	/50	5		20 40 30 10	00	149
	1	10 2	27	5 6	-	45 10	/40	9			60	150 151
		55	23	5	-	8	3/41	20 1.3			 880	6.9 153
		62		5				8				
		80 1		5 6		100	9/50 3/56	22 4.4	1		520 120	6.8 155

TABLE 16.

								IABLE 16.
					:	Alti- tude of		
Well	location			Date		land	Topo-	Novi ford
Number	Lat-Long	Owner	Oriller	Date completed	Use	surface (feet)	graphic setting	Aquifer/ lithology
Ju-157	4033-7723	Pa. Outch Farms Inc.	Hubler Well Orilling Co	. 1953	С	4 90	S	Swc/sh
158	4033-7723	do.	do. do.	1955 1955	C	490 490	S S	Swc/sh Swc/sh
159 160	40 33-7723 40 34 - 7724	do. R. F. Miller	do.	1957	Н	518	v	Sbm/
161 162	4036-7719 4037-7718	Merrill Gingrich Juniata Saddle Horse	do. do.	1965	H C	570 605	V	Sbm/sh Swc/sh
		Assoc.						
163 164	4036-7719 4036-7719	Raymond Oiffenderfer H. Shellenberger	do. do.	1950 1957	H H	570 570	V	Sbm/sh Sbm/
165	4031-7729	John Foltz	do.	1949	H	598	V	OSkt/
166 168	4031-7729 4033-7726	C. G. Smith 81aır Lauver	do. do.	1947 1950	H H	658 560	S S	Swc/sh Swc/sh
169	4031-7729	Stoey Lyter	do.	1940	H	590	V	DSkt/
171 172	4032-7727 4031-7729	Ernest Lauver Paul Arnold	do. do.	1941 1963	H H	560 590	S V	OSkt/ls OSkt/ls
1 74	4029-7729	Miles 1mes	do.	1951	H	540	W	OSkt/
175 176	4029-7728 4029-7729	Floyd Ciccolini Mrs. Mary Cooper	do. do.	1955 1950	H H	475 590	۷ S	Om/sh Sbm/
177	4029-7729	C. M. Mark	do.	1961	H	720	S	Sbm/sh
179 180	4028-7726 4028-7729	Walter Eichenberger Russell Boyer	do. do.	1939 1939	H	620 615	S S	Swc/ Omh/sh
181	4028-7728	E. C. Cooper	do.	1950	Н	515	S	DSkt/sh
182 183	4029-7726 4034-7717	William Stimmel Amish Sch.	do. do.	1951 1963	U T	620 630	S S	DSkt/sh Dop/sh
184	4033-7718	Wilbur Ranck	do.	1950	Н	705	S	Dmh/sh
185 186	4033-7717 4033-7717	Joe Hackenberger Ben Wagner	do. do.	1949 1 9 57	H H	600 610	S S	Dmh/ Dmh/
187	4033-7717	O. R. Yorks	do.	1963	H	650	V	Dmh/
188 189	4038-7720 4038-7721	O. H. Hower Charles Hower	do. do.	1955 1955	H H	740 730	۷ S	Sbm/ls Sbm/sh
190	4033-7719	R. A. Rowe	do.	1940	H	580	S	Om/
191 192	4032-7718 4033-7718	Centre Lutheran Ch. Minnie Leonard	do. do.	1940 1960	T H	490 655	۷ S	OSkt/ Dm/
193	4032-7718	Ken Leach	do.	1963	H	500	V	OSkt/sh
194 195	4033-7718 4032-7717	Charles Colyer 8lair Oetra	do. do.	1964 1950	H H	655 485	S V	Omh/ DSkt/
196	4032-7721	Walter Smith	do.	1939	H	450	٧	Swc/
197 198	4032-7721 4031-7719	J. M. Rhine Charles Rowe	do. do.	1952 1950	H H	480 430	S V	Oop/ DSkt/
200	4032-7721	James Gill	do.	1944	H	430	S	Oon/
201 203	4032-7721 4032-7721	Ronald 8ell Park Haubert	do. do.	1947 1942	H H	440 450	V	DSkt/ DSkt/sh
204 205	4032-7719 4033-7721	Oonald Hower	do.	1956	H H	560 440	S V	DSkt/
205	4032-7721	Ken Leach Donald 8ook	do. do.	1964 1947	H	440	V	Sbm/sh DSkt/
207 208	4032-7721 4033-7720	Thomas Cassett William Oavis	do. do.	1947 1955	H H	455 460	S V	Om/ OSkt/
209	4032-7721	Charles Ouncan	do.	1954	Н	490	S	0Skt/
210 212	4032-7721 4032-7721	P. S. Wagner J. N. Orwig	do. do.	1942 1964	H	440 490	۷ S	0op/ 0Skt/
213	4032-7720	Jerand Zook	do.	1963	Н	430	S	Oon/
214 215	4032-7721 4032-7721	Mary Arnold J. R. McBurney	do. do.	1947 1959	H H	425 430	V	Om/ Dm/
216	4032-7721	Robert Haubert		1963	Н	440	V	OSkt/1s
217 218	4038-7715 4038-7717	E. C. Schell Robert Navlor	Hubler Well Drilling Co do.	. 1955 1963	H	710 725	V V	DSkt/ Sc/
219	4037-7714	Juniata Limestone Co.	do.	1961	N	755	Š	OSkt/ls
220 221	4038-7717 4038-7715	W. C. Colegrove Norman Master	do. do.	1951 1964	H H	660 680	V	Sbm/ OSkt/
222	4038-7717	Keith Naylor	do.	1959	Н	660	V	Swc /
223 224	4034-7717 4037-7717	J. S. Thompson	do. do.	1952 1965	H H	565 640	V V	Swc/
225	4037-7717	do.			Н	940	V	Swc/
229 230	4035-7716 4033-7715	Noah Peachy M. R. Leach	Hubler Well Drilling Co do.	. 1961 1960	H H	660 490	S V	Swc/ OSkt/
231	4030-7728	J. 8. Groninger	do.	1964	H	600	Н	Swc /
232 236	4031-7726 4034-7724	1da Smith Paul Rickenbaugh	do. do.	1956 1950	H H	610 530	S W	Sbm/
237 239	4034-7727	H. B. Frye	do.	1939	H	510	V V	0Skt/
240	4036-7725 4036-7724	J. E. Singer James Notestine	do. do.	1939 1960	H	500 560	W	Sbm/
241 242	4036-7724 4035-7725	Stewart Singley J. F. Miller	do. do.	1951 1950	H H	500 625	W S	Sbm/sh Sbm/sh
243	4027-7729	Frank Gray	do. do.	1940	Н	555	S	Swc/1s
244 245	4030-7724 4030-7724	Paul Towsey		1959	H S	662 585	S W	Omh/
246	4033-7725	do. Russell Henderson	Hubler Well Orilling Co	. 1965	H	505	S	Sbm/
247 248	4031-7725 4032-7722	Robert Yohn Earl Messimer	Hubler Well Drilling Co	1965	U U	470 470	S S	Sbm/ DSkt/
249	4033-7722	C. O. Zimmerman		1965	H	695	S	Sbm/
250 251	4034-7722 4032-7724	C. L. Adams Franklin Campbell	Gilbert R. Zechman	1964	H H	545 455	H V	DSkt/ Sc/
253	4034-7723	Earl Mahlin, Jr.	John Thran	1965	H	465	V	Sbm/
254 255	4031-7724 4033-7726	James Wert Roy Whitesel		1965 1960	H H	490 635	S S	Sbm/ Sc/
256	4033-7727	R. 1. Richmond		1963	H	700	S	St/
257	4035-7724	John Mann		1960	H	455	V	DSkt/

(()	ONT I NU								,			
		*		0 11(1)		ic water evel				5pecific		
d	otal lepth	Casin	0	0epth(s) - to water-	Oepth below					conduc- tance		
1	elow and rface	Oepth Oi	ameter	bearing zone(s)	land surface	Oate measured	Reported yield	Specific capacity	Hard- ness	(micro- mhos at 25°C)	Hq	Well number
(f	eet)	(feet) (i	nches)	(feet)	(feet)	(mo/yr) 12/53	(9a1/min) 45	([gal/min]/ft)	(9pg)	25 0)		Ju-157
	133 200 195	12 42 21	8		50 45	12/55 11/55	45 45			406		158 159 160
	350 75	25 26	8 5		0 17	9/57	3 15	.08	11	425 		161 162
	48	23 27	6 5		20 15	1/65 6/50	4					163
	60 69 66	32 66	5		19 31	10/57 4/49	15 5		17	495 340		164 165 166
	65 82	26 16	5 5		10 25 37	3/47 5/50 10/40	21 10		10			168 169
	102 127 87	20 83	5 5 6		27 32	5/41 5/63	10 16		14	470		171 172 174
	68 47	21 9	6 5		15 10	1/51 5/55 5/50	9 1 13	.43	32	800		175 176
	75 130 77	29 46 43	5 6 5		15 50 26	7/61 12/39	10					177 179
	101 89	35 26	5		23 25	10/39 12/50	30 5	.15	19	685		180 181 182
	57 89	27 32	6 6 5		12 54 20	1/51 7/63 10/50	10 2 3					183 184
	80 40 62	17 22 22	5		10 20	5/49 7/57	10 9			225	6.9	185 186 187
	65 55	20	6 5		15 10 12	5/63 8/55 8/55	10 10 10	. 34	7 7 11	215 460		188 189
	57 54 61	20 25 56	5 5 5		14 51	6/40 11/40	2		13			190 191 192
	70 68	22 24	6		20 24	10/60 4/63 5/64	20 20 10		6 8	300 340	7.4	193
	86 91 60	5 63 36	6 5 5		26 46 19	12/50 12/39	8 10					195 196
	128 77	34 64	5 5		28 37	8/52 8/53	7 6 8		 9	360		197 198 200
	65 72 70	24 36	5 6 5		15 19 14	2/44 8/65 2/42	5 15					201 203
	161 70	41	5 6		61 10	9/56 4/64	1 10 10	 .4				205
	59 70 45	26 28 42	6 5 5		18 12 17	8/65 2/47 9/55	10 10 12					208
	92 43	77 34	5 5		57 13	4/54 9/42	12 5		1 	55 	5.6	210
	124 72	70 19 30	6 6 5		64 7 26	3/64 7/63 8/65	11 2		9	310 360	6.9	213
	60 85 57	31 23	6		20 12	9/59 11/63	5 10		8	280		- 216
	64 79	23	5 6 6	150;190;215	18 19 65	8/55 8/66 3/61	25 10 5		5	200	7.3	218 219
	215 82 76	64 15 25	5		6 21	10/51 6/64	12 15		7 9	240 380	7.2	221
	85 51	18 20	6 5		20 8 25	6/59 8/65 7/65	15 12 50	2.4 6.1	12 16	330 750	7.0	5 223 3 224
	73 25 90	25 53	6 36 6		23	7/65 5/61	3 15		22	710	7.1 6.	- 229
	70 160	50 19	6 5		35 80	3/60 4/64 9/56	10 5 30		8 12 8			- 231
	74 82 101	23 6 27	6 5 5		39 10 6	9/50 9/39	14	.7	18	640		- 236 - 237
	70 80	52 21	6 6		15 20	10/39 5/60	10	- - .67	 6 8	280		- 240
	50 128 61	25 16 30	5 6 6	 35	8 70 18	3/51 6/60 1/40	10 20 30		3	115	6.	0 242 - 243
	84 75	20	6 6		31 F	1959 8/65	20 3		7 7 14	310		- 245
	70 310	17 0	6 6		20 38 49	8/65 8/65	6 1 	.1	8	380		- 247 - 248
	78 268 197	30 44	6 6		103 50	8/65	1 7	.15	14	4 30		- 250
	135 81	15 22	6 6		20 2	6/64 9/65	1		12			- 253 - 254
	90 75 50	30 17 35	6 6 6		40 12	3/60	5 1	.12	5	165 220		- 255 - 256
	75	38	6	69	14		15		15	500		- 257

TABLE 16.

						Alti-		
No.11	location					tude of land	Topo-	
	1		0./11	Date		surface	graphic	Aquifer/
Number	Lat-Long	Owner	Driller	completed	Use	(feet)	setting	lithology
Ju-258	4033-7717 4033-7720	R. E. Saner	Hubler Well Drilling Co.	1965	H H	S20 460	S V	DSkt/1s
2S9 26D	4D34-7719	Howard Zendt C. L. Duncan		. 19S0 1964	H	58 S	Й	Sbm/ Swc/ls
261	4D3S-771S	C. O. Dimm	Gilbert R. Zechman	1961	Н	73\$	S	DSkt/ls
262 263	4D34-7721 4035-771S	R. 1. Longacre C. R. Dimm	Gilbert R. Zechman	193S 1961	H	S30 695	۷ S	DSkt/ DSkt/ls
264	4037-7720	Jay Sanger		1964	Н	S60	S	Sbm/
26 S 26 G	4037-7718 4D37-7718	Lloyd Fogelman R. L. Seaber	Milton H. Romia	1961	H H	610 630	V	Swc/
267	403S-7724	W. N. Quigley		1964	I	\$70	S	DSkt/
268 269	4037-7724 4036-7728	Miles Gray J. D. Pecht		196S 196S	H C	64 S 46 S	V V	Swc/ Sc/
270	4034-7723	Eastern Milk Producers	Hubler Well Drilling Co.		N	450	V	DSkt/
278 279	4033-7719 4037-7714	Grant Klase Dean Yeater	Gilbert R. Zechman	196S 1966	H H	\$35 8\$0	V H	Dm/ Dop/1s
280	4037-7718	Juniata Recreation	do.	1966	H	5B0	V	Swc/
20.1	4032-7721	Center		1966	Н	49S	Н	DSkt/
281 282	4032-7721	Wayne Stuber James Portzline		1966	H	495	S	DSkt/
283	4031-7723	U. S. Geol. Survey	Joe Cekovich	1966	U	423	V	DSkt/cash
284 288	4038-7717 4038-7715	Paul Gingrich Dora Dressler	Gilbert R. Zechman	1966 1963	H H	71 S 960	V H	Sbm/ Dop/
289	403S-7721	R. J. Richardson	Hubler Well Drilling Co.	. 1988	Н	61S	S	Sbm/sh
29S 299	403S-7716 4034-7716	Oscar Baney Charles Bender	Gilbert R. Zechman	1964	U H	780 74D	W	Dm/ Dm/
304	4036-7705	J. Hahn	Gary L. Stone	1977	H	640	S	Dmh/sh
30 S 30 7	4036-770S 4036-7711	M. Hahn	do. Hubler Well Drilling Co	1977 . 1978	H T	640	S	Dmh/sh
		Whiteland United Methodist Ch.	nubler well brilling co	. 1970		6S0	S	Dtr/
308 309	403S-7709 4036-7714	Paul Hood	Gary L. Stone	1976 . 1978	H H	S20 620	V V	Omh/ Omh/
310	4036-7714	E. Schlegel W. Schlegel	Hubler Well Drilling Co.	1978	H	620	v	Dmh/ls
311	4038-7713	Charles Dowling	Gilbert R. Zechman	1977	H	780	S	Dop/ss
313 314	4039-7714 4039-7711	P. Saner Leroy Stroup	Hubler Well Drilling Co.	. 1978 1973	H	700 700	V	DSkt/1s DSkt/sh
316	4040-7715	David Varner	do.	197S	Н	840	S	Sbm/
317	4038-7714	R. Varner	Hubler Drilling & Pump Service	1979	Н	910	Н	Dm/ls
318	4037-7706	R. Engle	Hubler Well Drilling Co.		Н	780	Н	Dbh/1s
326 327	4038-7713 403S-7718	Rodney Hart A. Troyer	Gilbert R. Zechman Hubler Well Drilling Co.	1978 . 1979	H H	92D 680	S S	Dmh/ Don/
328	4D33-7718	D. Sauerman	Richard A. Earnest	1978	Н	685	S	Dmh/sh
329	403S-7719	Dressler	Hubler Drilling & Pump Service	1978	Н	72\$	S	Dop/
33D 331	4034-771S 403S-7722	H. Brown Haubert Builders		1979 1978	H H	810 640	H S	Dm/ Sbm/
221	4033-7722	naubert outliders	Hubler Drilling & Pump Service	1978	п	640		2011/
332 333	4020-7741 4032-7724	T. Winward	Martin W. Shatzer	1979	Н	915	S	Dciv/sh
334	4031-7729	Lions Park K. Van Bortel	Hubler Well Drilling Co. Hubler Drilling	. 1978 1978	H H	460 610	S V	Sbm/ DSkt/1s
335	4034-7729	0 010000011	& Pump Service	1070	Н	000	S	Sbm/
336	4034-7729 403S-7726	R. O'Donnell M. Schelegal	do. do.	1979 1978	Н	880 S00	٧	DSkt/ls
337	4036-7724	R. Myers	do.	1978	Н	64 S	S	Sbm/
338 339	4036-7724 4033-7723	D. Sweitzer W. Manbeck	Hubler Well Drilling Co.	. 1978 1978	H	58 S S0 S	S S	DSkt/ls Swc/
341	4038-771S	B. Campbell	Hubler Drilling	1978	H	775	Š	DSkt/
34 S	4039-7716	W. Nale	& Pump Service Hubler Well Drilling Co.	. 1979	Н	1085	Н	Sc/
351	4024-7737	U. S. Geol. Survey	do.	1968	U	63S	V	Dmh/sh
3\$2	4041-7517	Lost Creek Rod & Gun Club		1964	U	1531	S	Obe/
3\$3	4030-7731	David Henry	Gary L. Stone	1978	Н	649	S	Swc/
3SS	403S-7710	J. Pyle	Hubler Drilling & Pump Service	1978	Н	660	S	Dmh/
356	4038-7714	D. Landis	do.	1978	Н	840	S	DSkt/
361 362	4033-7723 4033-7723	Empire Kosher Poultry do.			N N	480 480	V	Swc/
363	4033-7723	do.			N	490	٧	Swc/
364 36S	4033-7723 4D33-7724	do. do.			N N	430 430	V	Swc/
366	4033-7723	do.			N	420	V	Swc/
367 368	4033-7723 4033-7723	do. do.			N N	430 450	V	Swc/
	40.7							MIFFLIN
Mf- 1 7	4042-7733 4044-7732	C. C. Naginey Alexander Burns			U H	680 800	V	0cn/ 0r/ls
20	4036-7743	Penn Reed Milk Co.			C	800	V	Obf/ls
26 28	4035-773S 4D35-773S	The Viscose Co.	Layne-New York Co., Inc.		U N	460	V	Swc/
46	4D31-7734	do. Lewistown Dairy Farm			N C	480 600	S	DSkt/ls
47 48	4037-7734	Lewistown Pure Milk Co.			C	\$30	V	Doo/1s
	4036-7733	Supplee-Wills-Jones Milk Co.			N	480		Swc/
49	4D3S-7734	Embassy Theater		1930	А	490	٧	Swc/

Total depth below land surface (feet)	Casi	iameter	Oepth(s) to water- bearing zone(s) (feet)		Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9p9)	Specific conduc- tance (micro- mhos at 25°C)	рН	Well number
105 185 164 223 61 223 110 27 86 180 61 90 150 208 222 72	18 100 20 40 35 40 32 90 137 62	666666666666666666666666666666666666666	90 160 18;30;60 80 218	25 F 80 92 24 86 110 12 20 28 30 3	1/64 8/65 8/65 8/65 8/65 8/65 9/65 9/65 9/38 	5 5 8 10 25 10 175 15 5	.2	18 6 21 15 14 7 5 18 8	520 750 870 430 525 280 185 650 270	7.2	Ju-258 259 260 261 262 263 264 265 266 267 268 269 270 278 279 280
100 98 375 92 422 53 82 105 198 248	48 -26 21 60 10 25 43 42 21	6 6 6 6 6 6 6 6 6 6 6 6	80 47;72;90 150;420 20;50 175;185 175;230 60;115	60 43 8 17 180 5 17 21 95 65	6/66 5/66 6/66 9/66 9/66 9/66 5/80 11/77 8/78	6 3 102 2 12 20 15 24 10	.26 63 .17 .40 .88	11 35 3 2 1	350 1700 100 55 82 170	7.3	281 282 283 284 288 289 295 299 304 305 307
198 115 120 221 220 60 55 320	42 60 21 200 40 20 20 20	6 6 6 6 6 6	95;185 50;75;95 44;85;103 215 75;130;190 40 250;300	F 95 100 50 200 12	6/76 6/78 6/78 5/77 4/78 7/73 8/75 3/79	5 10 10 25 10 5 4		1 6	395 360 50 265		310 311 313 314 316
270 177 215 198 225	60 185 42	6 6 6	180;260 92;171 190;210 90;175 215	170 F 103 20 50	7/78 5/80 5/80 3/78 9/78	5 7 5 6 12		2 5 2 	90 220 80 		326 327 328 329
301 100		6 6	135;284 62;90	60 13	6/79 5/80	8		14	595		
82 220 150	20	6 6	75 75;130;180 135;141	20 175	5/79 3/78 9/78	12 4 12					- 333
150 150 250 220 170 225	43 47 125 37	6 6 6 6	130 143 175;250 160;200 90;150 215	120 78	4/79 12/78 8/78 9/78 5/80 11/78	6 20 15 10 10	 		345		- 336 - 337 - 338 - 339 - 341
270 110 1036) 18	6 6	175;255	149 16	5/80 6/68	7 9 	.16	10 7 	330 220 		- 351
98 260		6 6	60;85 140;240	12 54	5/78 5/80	60 8		2	110		055
22' 35' 20' 9' 39' 20 30 31	5 26 0 54 0 40 0 0 40 0 28 5 41 0 39	6 8 8 8 8 8 8 8 8	70;210 	64	5/80 	15 125 125 65 125 210 125 125 250		16	650		- 361 - 362 - 363 - 364 - 365 - 366
COUN											- Mf- 1
2 12 4 20 16 14 18	2 13 32 51 50 50 37 117	36 6 8 8 8 6 8	33;100;200 48;58;62	23 64 1 3 100 35 100 40 F		5 60 25 360 5 150 35	16 7.0				7 20 26
14		6		40		90				-	49

TABLE 16.

	_		-					
						}		
						Alti-		
						tude of		
Well	location					land	Topo-	
				Date		surface	graphic	Aguifer/
Number	Lat-Long	Owner	Driller	completed	Use	(feet)	setting	lithology
Mf- 50	4035-7734	Lewistown lce &			C	470	V	DSkt/1s
6.1	4035 7734	Storage Co.				470	14	6 (2
51	4035-7734	Penn Central Light &			C	470	V	Swc/1s
54	4D42-7724	Power Co. Elder Will		1932	Н	76S	S	Dm/
75	4039-7728	Max Fisher	Freed and 8ell	1962	H	670	S S	Doo/
76	4039-7725	Mr. Carter	do.	1960	H	600	S	DSkt/ls
77	4D4D-7724	Claire Soreman	do.	1 96D	Н	595	V	DSkt/1s
78	4041-7727	Donald Collins	do.	1960	H	690	Š	Don/
79	4D39-7727	Donald Horner	do.	1960	Н	630	S	Doo/
80	4039-7727	Jess Yeater	do.	1960	Н	\$90	V	Doo/
82	4039-7727	Rosenberry	do.	1960	Н	\$90	V	Doo/
83	4039-7728	Calvin 8argo	do.	1960	H	655	S	Doo/
84	4039-7727	William Koontz	do.	1961	H	698	S	Doo/sh
85	4039-7728	Richard Ritter	do.	1964	H	640	S	Doo/
87	4038 - 7728	Lewis Snyder	do.	1964	Н	600	S	DSkt/ls
88	4039-7728	Albert Brower	do.	1964	Н	630	S	Doo/
93	4D 39-7728	D. Wray	do.	1963	Н	780	S	Dop/1s
95	4039-7727	Harry Durst	do.	1962	Н	630	S	Doo/
96	4038-7729	Daniel Shilling	do.	1962	Н	630	S	Doo/
101	4042-7725	Marlin Henry	do.	1961	Н	780	S	Doo/sh
102	4040-7728	Robert Davis	do.	1961	Н	610	٧	Doo/sh
104	4037-773D	Arthur Weimer	do.	1962	Н	S20	S	DSkt/
105	4041-7727	Donald Loht	do.	1965	Н	660	S	Doo/sh
106	4039-7729	J. R. Goss	do.	1962	S	6\$5	٧	DSkt/1s
107	4041-7727	Donald Loht	do.	1965	Н	660	V	Don/
109	4041-7722	H. E. Kline	do.	1965	Н	780	S	Dop/sh
110	4D38-7726	Noerr Lee Wilt	do.	1962	Н	622	S V	Swc/ Dmh/
111 112	4D4D-7726	Norman Shawver	do.	1962 1962	H H	660	V	
113	4040-7725 4042-7724		do. do.		H	S98		Doo/
113	4D40-7725	Thomas Wray E. Derry Sportsman	do.	1963 1963	H	720 74 S	S S	Doo/ Dmh/
114	4040-7723	Assoc.	do.	1903	В	743	3	Uniti/
115	4D41-7725	J. W. Rupe	do.		Н	640	V	Dmh/
116	4039-7726	Irvin Paige	do.	1963	H	600	Š	DSkt/ls
117	4040-7725	Charles Marker, Jr.	do.	1963	H	600	Š	Dm/
119	4039-7726	Marlin Aurand	do.	1964	H	723	Š	Doo/
12D	4041-7721	Russel Hoffman	Gilbert R. Zechman	1961	Н	780	S	Doo/
121	4D40-7725	Dallas Brinninger	Freed and 8el1	1964	Н	635	S	Doo/sh
122	4039-7727	Gene 8oreman	do.	1964	H	S80	V	Doo/
123	4040-7725	Thomas Deamer	do.	1964	H	660	S	Doo/sh
125	4042-7723	Palmer Snook	do.	1964	H	723	S	Dmh/sh
126	4041-7724	George Kline	do.	1964	H	720	S	Dmh/
127	4039-7727	Charles Kenepp	do.	1963	Н	605	S	Doo/
1 30	4042-7723	Kenneth Mowery	do.	1963	H	698	S	Dmh/
131	4041-7724	Mrs. Neta Spigelmyer	do.	1963	Н	610	V	Dmh/
132	4040-7726	Foster Smith	do.	1963	Н	710	S	Dmh/
133	4043-7723	S. C. Olnick	Milton H. Romig	1989	Н	790	S	Dmh/
134	4042-7722	Samuels U. Ch. of Christ	do.	1962	T	660	V	Dmh/sh
137	4041-7723	Larry Marks	do.	1961	Н	695	S	Dmh/sh
138 139	4D40-7724	Harold Sellers Palmer Snook	do.	1961	Н	710	S S	Dop/ss
14D	4042-7723 4042-7722	Clarence Sheriff, Jr.	do. do.	1962	H H	72S 670	V	Dmh/sh
141	4D40-772S	Charles Jones	do.	1960 1960	Н	620	S	Dmh/sh Dm/sh
149	4036-7744	Munic. Authority of		1966	P	020	V	0b1/
113	1030-7744	Union Twp.		1300			*	001/
151	4D43-7728	Reeds Gap State Park	Lester E. Gladfelter, Jr	r. 1983	Р	800	S	Or/
		No. 5				000		0.7
152	4043-7728	Reeds Gap State Park	F. L. 8ollinger & Sons	196S	T	812	V	Or/sh
		No. 4	~					
153	4D43-7728	Reeds Gap State Park	Lester E. Gladfelter, J	r. 1983	Р	830	V	Or/
		No. 3						·
154	4D43-7728	Reeds Gap State Park	do.	1953	P	820	V	Or/
		No. 2						
185	4043-7728	Reeds Gap State Park	do.	1989	Р	800	V	0r/
	4000	No. 1						
156	4038-7728	Harry Knepp	Hubler Well Orilling Co		Н	\$80	V	DSkt/1s
157	4039-7725	Ray Goss	do.	1989	Н	S63	V	DSkt/
159	4038-7727	Albert Lepley	do.	1962	Н	S75	V	DSkt/ls
165	4041-7726	C. R. Freed	U-11 P-4114 C-	1959	Н	765	S	Dop/1s
166 168	4042-7726 4039-7727	George Gesselman	Hubler Well Drilling Co		Н	780	ν 8	Don/ls
169	4040-7727	Guy Spigelmyer E. H. Flood	do.	1989	Н	S7S 60D	V	Dm/ Dmh/
170	4D40-7727	do.	do. do.	1961 1964	H	S9S	V	Dmh/
171	4D40-7727 4D40-7729	William Lepley	do.	1964	Н	S90	V	Dmh/
172	4D41-7727	Lewis Parsons	do.	1959	H	668	Š	Dm/
176	4040-772S	Ralph Grabbe	do.	1961	H	600	V	Dm/sh
177	4042-7721	Henry Kline	do.	1960	Н	648	V	Dmh/
18D	4041-7723	8ruce Goss	Freed and 8ell	1965	H	665	Š	Dmh/
181	4041-7724	J. E. Wike	Gilbert R. Zechman	1503	H	725	H	Dmh/
182	4039-7726	Earl Wilson	do.	1963	ü	\$90	Š	DSkt/
183	4040-7724	George Wagner	do.	1986	S	755	S	DSk t/
184	4040-7724	do.	do.	1958	н	715	Š	Dop/sh
186	4D41-7727	R. E. Wagner	Milton H. Romig	1959	Н	720	Š	Dop/
198	4D43-7721	Samuel Yetter		1965	Н	7 7S	S	Dmh/sh
200	4D40-7723	Norman Hower	Gilbert R. Zechman	196 S	Н	70S	S	Dop/
201	4041-7727	R. W. Wagner	do.	1966	Н	720	S	Dop/1s

(001111	INUED)										
					c water evel						
Total depth below land surfac (feet)	Casi	ng Jiameter (inches)	Oepth(s) to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9p9)	Specific conduc- tance (micro- mhos at 25°C)	РH	Well number
235		8		40		100					Mf- 50
201	30	6		20		150		8			51
86 90 75 54 90 80 65 50 80 60 95 70 100 120 90 150 95 225 240 130 50 101 101 101 101 101 101 101 101 101	32 45 57 44 36 30 22 29 33 50 57 63 144 53 35 33 132 68 102 33 225 78 27 25 52	666666666666666666666666666666666666666	68;84 60 50 37;55;62;84 35;64;72 34;60 42 35;66;75 85 62;65 80;95 150;165 70 60;88;95 40;85;110 75 145 91 150;193;215 120 235 90;118 46 55;100 61;69;90 68;132	35 23 31 27 24 28 15 22 16 18 20 35 15 60 14 15 30 10 40 8 70 5 168 30 10 40 40 40 40 40 40 40 40 40 40 40 40 40	11/62 3/60 4/60 5/60 8/60 12/60 8/60 1/61 10/64 6/64 11/63 6/62 9/61 9/61 9/61 9/62 11/65 8/62 4/65 3/65 3/65 3/63	3 7 7 8 6 7 20 20 20 20 20 20 20 20 20 20 20 20 20	1.166.33.1155.772.1177.442.113.31.00.88.77.6614411	6	215 215 230 240 230 260 240 230 260 170 290 270		54 75 76 77 78 80 82 83 84 85 87 98 90 101 102 104 105 106 107 109 110 111 111 112
50 150 75 90 190 140 150 50 65 65 125 64 90 103 114 45 9	28 11 180 27 27 28 24 38 41 44 25 66 20 33 52 63 21 22 24	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 8	72,92;132 35,50 30 182 100 90;125 30;40;55;60 150;170 55;78;90 88;145 81;110;119 30;60 70 40;70 35;75;145; 187	42 68 42 20 140 35 20 50 30 26 38 20 31 72 12 6 9	4/63 5/63 12/64 7/61 10/64 9/64 6/64 5/64 5/63 10/63 10/65 9/65 7/60 5/66	10 7 20 3 16 6 5 7 20 10 20 20 20 20 20 10 11 5	1.3 .1 1.4 .05 .06 .06 1.3 .1 1.7 .7 1 1.0 	5 7 3 3 4 5 5 5 7 3 2 4 4 4	215 365 140 215 250 220 110 95 190	6.7	115 116 117 119 120 121 122 123 125 126 127 130 131 132 133 134 137 138 139 140 141
38	34	6	35	22	5/53	15	.8				151
250	78	8		24	12/65	46	. 52		160		152
65	45	6	153	19	5/53	8	. 25	6		7.8	153
56	28	6	56	11	5/53	10	. 5				154
40	27	6	40	5	5/59	10	.59	5	230	7.5	155
80 70 121 134 85 125 52 55 80 85 92 85 100 147 73 243 142 110 100 243 197	21 42 74 56 27 42 42 27 42 21 20 54 22 180 130 110 27 207	665656666666666666666666666666666666666	120 68;77;92 135 170 190	35 5 525 54 500 12 25 40 17 F 25 31 42 13 140 30 42 20 109 50	7/60 5/59 1/62 10/59 4/42 12/59 7/61 10/64 8/59 12/59 12/60 2/60 9/65 7/65 9/65 9/65 11/65 8/65 12/65 12/65	5 12 5 7 1 5 20 5 4 7 7 5 12 5 5 10 5 10 10 20	.45	15 10 3 6 11 4 7 7 -9 2 2 3	590 365 140 280 435 140 260 330 65 110	7.6	156 157 159 165 166 168 169 170 171 172 176 177 180 181 182 183 184 186 198 200

TABLE 16.

_	-					-		
Well Number	location Lat-Long	Owner	Oriller	Oate completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aguifer/ lithology
Mf - 202 203 204 205 206 207 208 209 210 211 214 216 219 220 221 222	4042-7723 4040-7723 4039-7725 4039-7725 4042-7724 4040-7723 4040-7723 4040-7724 4040-7724 4040-7726 4041-7726 4041-7726 4043-7723 4043-7723 4043-7723 4043-7723 4043-7723	Austin Snook Jay Shawver John Mapstone James Helter Carl Snook Bradley Pennebaker do. Harry Blyer Grace Rager Beatrice Henery Russell Coates Mrs. Wilt Wesley Wiser Bustie Stine Clarence Ritter Warren Brower Orville Snook	Gilbert R. Zechman do. Gilbert R. Zechman do. do. do. do. do. do. freed and 8ell do Freed and 8ell do. do. do. do.	1961 1961 1958 1961 1965 1965 1965 1965 1965 1965 1965		660 670 618 580 720 710 710 690 620 617 597 865 750 560 655 710	V S S S S S S V S S S V S S S V S S S S	Dmh/ Oon/ls DSkt/ss DSkt/ss Oskt/ss Ooo/ls Dop/ Dop/ss Dop/sh Dm/sh Dm/sh Dm/sh Dmh/ Don/ DSkt/ls Dmh/ Dmh/ Dmh/ Dmh/ Dmh/ Dmh/ Dmh/ Dmh/ Dmh/ Dmh/ Dmh/ Dmh/ Dmh/ Dmh/
224 226 227 228 229 232	4040-7725 4039-7725 4040-7724 4038-7729 4039-7726 4D48-7743	Charles Seize Daryl Fowler Ronald Weaver James Schultz Willis Jury Union Twp. Munic. Authority No. 1	do. do. do.	1965 1965 1965 1965 1960 	Н Н Н U Р	640 600 740 640 600 1020	V S V S V	Om/sh DSkt/ Dm/ Om/ DSkt/ls Or/
233 234 235 236	4036-7746 4035-7734 4023-775D 4024-7752	Munic. Authority of Union Twp. Royal Dairy Co. Methodist Training Camp Ted Boozel	James R. Miller	1954 1938 1978	P N P H	1022 500 600 760	W V S	Or/ Swc/ Doo/ Sbm/sh
237 238 239 240 241 242 243 244	4032-7746 4032-7746 4034-7748 4036-7745 4034-7747 4034-7747 4032-7749 4025-7749	J. Delamarter R. Yoder B. Treaster J. Weikle D. Syler E. Byler F. Hartzler R. Mahews	Hubler Drilling 8 Pump Service do. do. do. Martin W. Shatzer do. do. Hubler Orilling	1978 1978 1978 1978 1978 1978 1978	H H H H H H	1060 1150 1205 1020 940 980 1070 76D	S S S V V S S	Or/ Or/ls Or/ Or/ls Or/ Obf/ls Ocn/ls Or/ls Oh/
245 246 247 248 249 250 251	4025-7748 4025-7748 4029-7747 4025-7748 4025-7745 4026-7744 4D41-7728	B. Reed H. Wilson C. Heckman O. Vaughan B. Kauffman Stephen Oavis R. Wagner	& Pump Service do. do. do. do. do. Hubler Well Orilling Co. Hubler Drilling	1978	H H H H H	690 800 800 615 610 675	V H V S S S	Doo/ls Oh/ls Doo/ls Ooo/ls Swc/ Swc/ Don/
252 253	4D4D-7726 4039-7727	J. Edmiston J. 8oyd	Hubler Well Orilling Co. Hubler Drilling & Pump Service	. 1978 1978	H	68D 680	S S	Dm/ Om/
254 255 256 257 258	4D39-7726 4D4D-7723 4042-7724 4042-7723 4041-7723	R. Borman R. Walters R. Casner O. Snook G. Smith	do. do. do. Freed and Bell Hubler Drilling	1978 1978 1978 1979 1978	Н Н S Н	660 750 805 700 640	S S H H S	Oop/ Dop/ls Dmh/ Dmh/
259 260 261 262 263	4038-7729 4039-7728 4039-7727 4040-7725 4043-7728	J. Kurtz P. Renninger M. Wray R. Shreffler J. Hassinger	8 Pump Service Freed and 8ell do. do. do. Hubler Orilling	1979 1979 1978 1978 1978	H H H H	600 665 610 64D 900	S S V S	Dm/ Dm/ Dm/ Om/
264 265 266 267	4D41-7721 4043-7721 4043-7722 4029-7744	L. 8ubb H. Wright G. Renninger McVeytown 8or. Authority	8 Pump Service do. Freed and 8ell do. Harrisburg's Kohl Bros.	1978 1978 1978 1977	Н Н Н Р	745 680 710 6 50	V V S S	DSkt/ls Dmh/ Dmh/ O h/
268 269 27D 271 272 273 274 275	4030-7744 4030-7744 4030-7744 4030-7744 4037-7740 4038-7740 4039-7739 4039-7741	do. do. McVeytown Bor. McVeytown Bor. Authority J. Kauffman J. Kauffman James Parson J. Byler	Hubler Well Drilling Co. do. Gilbert R. Zechman Hubler Drilling 8 Pump Service	1968 1978 1978 1975 1975	Р U Н Н Н	650 64D 570 640 755 780 760 900	S S S V S F S	000/ D00/ D00/ Dh/ Obf/ls Obf/ls Obf/ls
276 277 278 279	4029-7743 4027-7743 4029-7744 403D-7744	James Crozier Robert French Idle Acres Camping D. Stimeley	Hubler Well Drilling Co. do. do. Hubler Drilling	1972 1974 1973 1978	Н Н Р	602 680 515 640	S S V S	Sc/ Swc/ DSkt/ OSkt/
280 281	4028-7745 4034-7735	Rupert Russell W. Girose	<pre>% Pump Service Hubler Well Orilling Co. Hubler Drilling</pre>	1972 1978	H	60D 514	S V	Swc/
282 283 284	4D35-7736 4036-7736 4036-7736	J. Rishel S. Cricswell C. Rhodes	& Pump Service do. do. do.	1978 1978 1978	Н Н Н	74D 81D 635	\$ \$ \$	DSkt/sh OSkt/ DSkt/

_												
	Total depth below land surface (feet)	Cas*	Diameter	Oepth(s) to water- bearing zone(s) (feet)		Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (gpg)	Specific conduc- tance (micro- mhos at 25°C)	pH	Well number
	362 198 75 52 107 247 212 147 197 72 110 80 50 70 80 122 96 61 85	28 169 72 47 25 97 170 39 27 58 60 8 8 25 41 64 81 138 21	666666666666666666666666666666666666666	350 190 64 98 230 140 195 68 72 32 62 62 67 65;105 85 65;90;120 45;90;115	50 8 18 15 18 85 50 40 45 20 47 17 38 35 12 16 13 24 40 25 15	3/61 9/61 4/58 4/58 5/61 8/65 2/61 7/65 3/66 4/65 3/66 7/65 8/65 9/65 10/65 12/65 12/65 12/65	28 50 38 20 18 7 5 10 7 10 19 30 20 20 25 8 40 30		2	340 87 210	5.8	Mf-202 203 204 205 206 207 208 209 210 211 214 216 219 220 221 222 223 224 226 227 228 229 232
	155 398 197 150	18 22 66	 6 6	 183 130;140	 5 39 56	12/38 7/80 7/80	85 8 25					234 235 236 237
	125 200 150 300 300 100	40 60 30 60 60 60	6 6 6 	80;115 110;185 80;130 185;280	88 26 33	4/78 8/78 7/78 7/80 7/80 7/80 8/78	25 20 10 8 5 12	.04 .03 .24	11 	480	7.15	238 239 240 241 242 243 244
	275 200 175 275 225 75 75	95 39 118 262 60 54 35	6666666	150;250 110;130;190 160 270 150;200 60	77 15	7/80 12/78 9/78 9/78 11/78 6/73 5/80	7 30 10 15 25 10	 	4 5 4 13	145 210 145 435	7.05 6.90	
	70 100	21 40	6 6	45;65 90	6	5/80 9/78	30 15					252 253
	150 260 175 140 150	75 251 34 50 40	6 6 6 6	141 255 160 69;94;128 102;140	116 53	9/78 5/80 8/78 5/80 4/78	10 20 20 44 40	1.5	8 3 	405 140 		254 255 256 257 258
	100 120 110 42 190	32 31 42 25 38	6 6 6 6	38;86 54;92;110 54;72;90 32 130;175	92 108 80 40 44	9/79 5/79 5/78 12/78 5/80	33 30 28 50 12		6 11 5	300 485 220		259 260 261 262 263
	175 125 130 415	55 38 40 71	6 6 8	161 52;87;114 48;81;123 175;345;390;	95 16 160	11/78 9/78 5/80 12/77	15 47 25 135	2.2	6	240 		264 265 266 267
	248 253 405 380 70 90 126 275	90 86 48 33 105 21	6 6 6 6 6 6	405 57 50;80 110;118 160;255	115 10 26 54 40 48	5/68 7/66 7/80 7/80 5/75 7/80	40 30 32 50 10 10 40 20	.50 .67	19 15 22	605 660 810		268 269 270 271 272 273 274 275
	120 146 30 200	20 20 26 43	6 6 6	20 150;180	67 20 24	9/72 5/74 6/73 5/80	10 5 20		7 10 9	335 350		276 277 278 279
	104 150	22 60	6 6	110;135	 24	8/72 2/80	10 25		11	453		280 281
	350 190 125	152 153 95	6 6 6	340 180 120	69 126 48	5/80 5/80 5/80	7 10 10		11 11 14	375 413 478		282 283 284

TABLE 16.

Well Number	location	Owner	Driller	Date completed	Use	Alti- tude of land surface (feet)	Topo- graphic setting	Aquifer/ lithology
Mf-285	4036-7736	J. Markley	Hubler Drilling	1978	Н	623	S	Swc/
286 287 288 289 290 291 292 293 294 295	4035-7736 4035-7736 4036-7736 4036-7736 4036-7734 4037-7731 4037-7732 4037-7730 4038-7729 4037-7733	D. Shifflit Bakos J. Frank H. Kline K. Weston J. Bloom Mildred Specht N. Kratzer T. Wise L. Bucanno	& Pump Service do. do. do. do. do. foed and Bell do. do. do. do. do. do. do. do.	1978 1979 1978 1978 1978 1979 1979 1979	:: H H H H H H H H H H	70D 709 885 828 820 722 800 590 620 580	S S S S S S S S S S S S S S S S S S S	DSkt/ DSkt/ Doo/ Don/ Dh/ Dh/ Dskt/ Swc/
296 297 298 299	4038-7732 4037-7735 4038-7735 4038-7734	M. Filson M. Hughes E. Espigh 8. Laird	& Pump Service Gilbert R. Zechman Freed and 8ell Hubler Well Orilling Co. Hubler Drilling & Pump Service	1979 1979 1978 1978	H H H	620 580 680 680	S S H	DSkt/ Swc/ Swc/
300 301	4040 - 7735 4034-7741	Harvey Maben Carl Royer	Gilbert R. Zechman Hubler Drilling & Pump Service	1973 1978	H	590 780	V S	0r/ Sc/
302 303 304 305	4034-7740 4031-7741 4031-7739 4034-7737	J. D'Andrea L. Yoder Ł. Hopple J. Hollis	do. do. James R. Miller Hubler Drilling & Pump Service	1978 1978 1978 1978	H H H	655 535 560 670	V V V S	DSkt/ Sc/ Sbm/sh DSkt/1s
306 307 308 309 310 311 312 313	4031-7741 4037-7744 4036-7745 4030-7747 4030-7746 4036-7742 4030-7741 4030-7740 4032-7737	J. Miller D. Hostetter Metz Farms Inc. B. Kmable Clair Dunmire Samuel Yoder William Staykook Randy taughlin T. White	Hubler Well Drilling Co. Gilbert R. Zechman Hubler Well Drilling Co. do. do. Glibert R. Zechman Hubler Well Drilling Co. do. Hubler Drilling Co. do. Hubler Drilling & Pump Service	1971 1979 1979 1973 1974	H S H H H H H	670 940 950 860 840 840 500 640	S S V F V S H	Sc/ Ocn/sh Ocn/ DSkt/ DSkt/ls Obf/ls Swc/ Sbm/ss Sbm/ls
316	40 36 - 7746	Munic. Authority of Union Twp.		1964	U	1080	W	0r/
317 318 326 327 328 329	4023-7751 4023-7750 4039-7735 4039-7735 4039-7736 4041-7733	Mount Tyrol Water Co. do. Ed Reed R. Brown Mt. View Chapel L. Goss	Hubler Well Drilling Co. Gilbert R. Zechman do. Hubler Drilling & Pump Service	1974 1979 1974 1978	U H H T H	680 610 720 680 742 700	W S S S	Dh/ Doo/ Or/ Obl/ Obl/1s
330 332 333	4044-7730 4043-7736 4041-7735	M. Treaster G. Workinger B. Moyer	do. Gilbert R. Zechman Hubler Drilling	1978 1978 1978	H H	840 895 820	S S V	0cn/ 0r/ 0be/ls
336 337 338 339	4045-7732 4045-7732 4036-7743 4036-7743	R. Baker N. Speicher Abbotts Dairies do.	& Pump Service Hubler Well Drilling Co. Gilbert R. Zechman	1979 1979 1951 1959	H N N	1040 885 798 800	S S V V	0r/ls 0cn/ 0bf/ 0bf/
								PERRY
Re- 1 5 6	4027-7730 4028-7707 4028-7708	Forged Steel Products Co.	Harrisburg's Kohl Bros.	1934 	H N N	735 380 420	V V	Dck/ Dtr/
27 35 69 77 80 81 87 97 101 103 135 137 149 150 164 172 176 235 236 240 241 244 249 255	4039-7710 4023-7701 4023-7701 4033-7709 4033-7709 4033-7709 4029-7712 4026-7713 4024-7720 4024-7720 4024-7720 4024-7720 4024-7720 4024-7720 4024-7720 4026-7723 4026-7723 4026-7723 4026-7723 4026-7723 4026-7724 4026-7724 4026-7725 4026-7724 4026-7725 4026-7724 4026-7724 4026-7725 4026-7724 4026-7725 4026-7724 4026-7725 4026-7724 4026-7725 4026-7716	Robert Fosselman Earl Walker Harry Hoffman Sunshine Hills Water Co. Millerstown Munic. Water do. 8. R. Hubbard V. E. Delaney L. V. Izer Mrs. M. Reader J. W. Myers J. G. Stum R. F. Weller Mrs. Isenburg Jacob Shuman Frank Minum H. Fuller Don Lightner Don Lightner Don Lightner C. F. Reisinger do. P. Stuber C. H. Swartz do. J. M. Delaney John Stambaugh H. R. Radle	Hubler Well Drilling Co. Harrisburg's Kohl Bros. Hubler Well Drilling Co. G. R. Blosser do. do. do. do. do. do. do. do. co. do. do. do. do. do. do. do. do. do. d	1943 1960 1963 1962 1964 1964 1962 1960 1960 1958 1957 1957 1957 1957 1965 1965 1965	H H H P P P P H H H H H H H H H H H H C H H H O H S H	480 500 530 510 410 760 660 575 550 795 775 630 640 650 975 720 785 630 710 745 720 750 790 790 575 770 825	2	Dck/ss Dck/sh Dck/ Dciv/ Sc/ Sc/ Dck/ Dtr/ Swc/sh Dm/ Dtr/ Sm/ Dmo/ Dtr/ Sb/ Sb/ Sb/ Sb/ Sw/ Don/ Don/ Don/ Don/ Don/ Don/ Don/ Don/ Don/ Don/ Don/ Don/ Don/ Don/ Dmo/ Dmo/ Dmo/ Dmo/

	CCONTINU	(עבו										
-						ic water level						
	Total depth below land surface (feet)		ing Diameter (inches)	Oepth(s) to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9pg)	Specific conduc- tance (micro- mhos at 25°C)	рН	Well number
	150	40	6	110;138		5/80	15					Mf-285
	200 190 200 275 200 95 150 240 120 200	155 75 192 260 85 41 80 111 24	6 6 6 6 6 6 6 6 6 6 6	197 110;170 198 270 110;187 52;78 94;138 147;191;225 31;70;112	118 157 20 10 16 71 120	11/78 4/79 5/80 5/80 5/80 5/80 5/80 8/80 10/79 11/78	15 10 25 20 7 33 23 16 28 8	1.8 .24 .16	3 6 9	169 257 265		286 287 288 289 290 291 292 293 294 295
	151 150 180 200	132 42 21 40	6 6 6	142 64;91;130 70;150 185	30 26 110 90	4/79 8/80 8/78 8/80	25 35 5 10	1.5	14 15	595 510		296 297 298 299
	126 300	40 70	6 6	43;92;114 270	10 32	8/73 8/80	6 3		18 4	805 195	7.02	300 301
	75 200 190 125	30 51 20 100	6 6 6	60 150;180 65;125 115	19 43 F	8/80 8/80 1/78 6/78	15 12 3 18	 	10 4 	430 290 		302 303 304 305
	180 167 95 70 136 251 130 85 300	20 37 25 40 60 42 40 60 77	6 6 6 6 6 6	95;175 40;120;140 50;85 50;60 125;230;290 70;105 210;185	180 2 11 65 40	8/79 8/71 8/80 8/80 4/73 8/74 4/74 4/73 1/78	15 5 25 20 8 40 15 5	1.5	8	290		306 307 308 309 310 311 312 313 314
	300	23	6	45;60;94; 115	7	9/64	37					316
	400 278 120 151 226 100	82 63 42 20	6 6 6 6	78;105 70;115;140 190;215 80;95	60	2/74 11/79 8/74 8/78	128 20 15 7 6 15					317 318 326 327 328 329
	240 101 320	46 43 100	6 6 6	104;170 72;95 300;315	F	5/78 8/80 12/78	25 10					330 332 333
_	160 290 200 475	20 40 	6 6 10 10	65;150 115;215;240 	. 22 60 100	8/80 3/79 	10 6 350 500		4	205	7.05 	336 337 338 339
-	COUNTY							<u>. </u>				
	90 300 270	20 25 	6 8 6		25 25 45		3 100 85	1				Pe- 1 5 6
	140 115 70 215 290 200 287 53 94 90 32 45 57 59 50 95 53 52 73 225 165 60 235 275 48 300	20 12 16 28 40 40 41 27 44 56 14 17 19 18 21 15 21 16 18 23 20 16 52 50 50 50 50 50 50 50 50 50 50 50 50 50	666666666666666666666666666666666666666	57;86 18 41 24;56 15;57 48 90 30;50 48 225;68 225 49;58	40 10 8 53 6 8 27 42 3 F 20 15 18 8 27 45 5 35 15 15 15 15 15 15 15 15 15 15 15 15 15	 1943 1960 12/63 1962 7/64 5/62 6/62 4/60 9/58 6/57 7/57 12/57 8/57 3/65 8/65 12/61 1947 8/65 7/65	5 3 20 55 15 20 2 10 6 15 10 7 8 15 10 7 20 8 11 5 5 10 7 2 10 10 10 10 10 10 10 10 10 10 10 10 10	1.7 1 1 1 1 1.0		260 390 210 170 450 150 435 340 315 255 910	7.3 7.6 7.7 7.6 7.7 7.6 7.3 5.3 6.7	27 35 69 77 80 81 87 97 101 103 135 137 149 150 164 172 176 201 234 235 236 241 241 244

TABLE 16.

								IABLE 16.
Well	location			Oate		Alti- tude of land surface	Topo- graphic	Aguifer/
Number	Lat-Long	Owner	Driller	completed	Use	(feet)	setting	lithology
Pe-261 263	4028-7716 4029-7715	K. S. Knisely R. R. McNaughton	Earl Walker Lininger Orilling & Pumps	1940 1943	H H	745 690	H V	Otr/ss Ohb/
264 272 273 276 277 278	4028-7716 4026-7719 4027-7718 4027-7716 4027-7718 4028-7717	C. E. 8urd C. A. Knouse Mrs. George Long K. R. Stone C. W. Newlin Mrs. Edward Paden	do. Hubler Well Orilling Co Jack T. Walker G. R. Blosser Joe Cekovich Lininger Orilling & Pumps	1938 1965 1962 1951 1965 1948	H H H H	690 580 590 575 580 625	H V H W W 5	Otr/ Dmsr/sh Omsr/ Otr/ Dmsr/sh Omsr/
279 281 282 283 284 285 288	4028-7717 4028-7716 4025-7715 4025-7716 4026-7717 4027-7718 4027-7717	M. A. Metz C. Shotsberger J. A. Corman 5. G. Wrick G. H. Haas P. G. Reisinger W. E. Britcher	Paul T. Shiffer Hubler Well Drilling Co. Paul T. Shiffer Earl Walker Jack T. Walker Lininger Drilling & Pumps	1960 1960 1965 1957 1962 1945	H H H H	650 710 700 695 830 570 600	W S 5 V 5 V 5	Dmsr/ Dmsr/ Dmsr/ Dhb/sh Dciv/ Dhb/
290 297 298	4027-7719 4026-7718 4026-7717	J. Campbell Mrs. Ralph Jacobs Ralph Brinton	Lininger Orilling	1959 1963	H H S	750 635 825	W W	5to/ Dtr/ Otr/
305 307 308 309 310 311 312 313 314 315 316 319 320 323 324 327 328 329 332 333 334 335 336 338 339 340	4027-7721 4024-7727 4024-7727 4024-7727 4024-7727 4024-7727 4024-7727 4024-7726 4024-7726 4024-7726 4029-7716 4029-7716 4029-7716 4029-7716 4029-7717 4029-7717 4029-7717 4029-7717 4029-7717 4029-7717 4029-7717 4029-7717 4029-7717 4029-7717 4027-7721 4027-7721 4027-7721	Ted Shiffer M. L. Sheaffer do. Lindsay Depaw Edward Bichart M. L. Sheaffer do. Truman Sminkey A. Mesemer Joseph Sweeney Or. K. W. Worley Burt Hahn George Schlitzer Charles Rathfon Merle Lehmer Laross Johnson George Brinton Frank Jones M. L. Lauver G. A. Nulf M. L. Lauver George Weiser C. K. Baumbach J. A. Peck W. B. Reisinger O. R. Johnson O. S. Sheriff S. R. Sheriff Walnut Grove Ch. Reformed Ch. Stan Shiffert Ickesburg Notel	& Pumps Jack T. Walker Joe Cekovich do. do. do. do. do. do. do. do Joe Cekovich Hubler Well Drilling Co. do. do. do. do. do. do. do. do. do. d	1964 	ненининининининин ни ттис	625 1055 995 970 940 1005 1020 1020 1020 1020 950 645 655 1020 910 950 1000 1010 870 930 810 975 985 705 830 640 630	V S S S S S S S S S S S S S S S S S S S	5to/ls Sc/ Sc/ Sc/ Sc/sh 5c/ Sc/ Sc/ Sc/ Sc/ Dmo/ Dmo/ Dmo/ Omo/ Dmo/ Dmo/ Dmo/ Dmo/ Dmo/ Dmo/ Swc/ Swc/ls Dck/ Swc/ls Swc/ls Swc/ls
364 367 368 369 370	4027-7721 4027-7718 4027-7718 4025-7717 4024-7717 4028-7707	Jesse Smith Sheaffer Eshcol Sch. Oale Haas Marlin Rudy Newport 8or. Water	Lininger Orilling & Pumps do. do. do. do. Harrisburg's Kohl 8ros.	1950 1966	Н Н Н Н	595 585 800 765 385	V S S 5 V	Dmsr/ Dmsr/ Dmsr/ Dmsr/ Dmsr/ Dmsr/
371 372 3 7 3	4028-7708 4025-7716 4025-7715	Authority Newport Water Co. Russell Cristman H. R. Radle	Gilbert R. Zechman Joe Cekovich Lininger Drilling	1962 1964 1945	P H H	450 920 850	5 H S	Ock/ Omo/ Dmo/
384 385 387 401	4028-7708	J. R. 5mith W. H. Magill Lester Witmyer Clyde Smith	& Pumps Harrisburg's Kohl 8ros. do. do. G. R. Blosser	1964 1965 1965	H H H	750 700 510 750	H H 5 H	Dciv/ss Ociv/ss Dck/ Ociv/
404 407 408 414	4027-7721 4024-7716 4024-7716 4028-7720	Larry Rice Harry Radle do. Charles 8arnes	John Thran Joe Cekovich do. Lininger Orilling	1966 1966	Н Н Н	650 825 840 715	V 5 5	Sto/ Dmo/ Don/ Swc/
415 417 419 420 424 446 450 463 500	4024-7726 4024-7726 4023-7721 4029-7717 4024-7720 4024-7726	do. Fred Rice George Lombard Robert Gentzler David Hess Albert Verdekal Glen Clouse Harry Hartsough L. W. Lacy	& Pumps Hubler Well Orilling Co. Joe Cekovich do G. R. 8losser Earl Walker	1964	U H H H H H H H H H H	890 650 1155 1155 915 815 650 1130 640	S 5 H H 5 5 V 5 V	Sb/ Swc/ St/ 5t/ Omo/ Ohb/ St/

-						ic water evel						
	Total depth below land surface (feet)		ing Oiameter (inches)	0epth(s) to water- bearing zone(s) (feet)	Oepth below land surface (feet)	Oate measured (mo/yr)	Reported yield (gal/min)	Specific capacity ([gal/min]/ft)	Hard- ness (9p9)	Specific conduc- tance (micro- mhos at 25°C)	рН	Well number
	100 42	14					9 20		4	300 220	7.05 6.7	Pe-261 263
	55 60 187 70 140 54	18 25 20 28	6 6 6 6	100;140	16 30 20 F 10	8/65 7/65 8/65 1951 8/65 8/65	12 12 7 6 20	.2	4 3 4 5	240 193 160 210 220	6.9 7.1 7.1 7.4 6.7	264 272 273 276 277 278
	104 60 70 80 77 60 87	80 16 25 18 20	6 6 6 	40;60	10 5 8 22 F 20	1960 4/60 7/65 7/65 1945	12 35 10 18 3 40		3 4 4 5 	170 200 200 245 	6.5 7.3 7.1 6.5 	279 281 282 283 284 285 288
	208 68 350	80 25	6 6	80 	25 41	1964 8/65	8 21 10		3	280	7.3	290 297 298
And delighted the following th	211 139 73 117 92 117 160 142 92 125 65 150 100 170 170 170 125 200 200 81 80 68	18 68 43 67 67 67 67 62 63 45 20 20 20 20 20 20 20 20 20 20 20 20 20	666666666666666666666666666666666666666		6 26 25 15 10 20 35 20 F 125 F 70 30 35 55 125 160 15 30 7	7/58 8/65 1/65 5/64 5/64 1/65 7/64 1 10/64 7/65 7/65 8/65	9 10 12 25 20 10 4 3 12 10 35 10 7 3 5 5 5 3 3 5 5 5 3 3 5 5 10 7 7	.13	24 5 4 4 1 1 4 1 2 4 1 1 1 4 1 1 1 1 1 1 1 1	860 210 160 160 160 55 185 180 180	7.1	305 307 308 309 310 311 312 313 314 315 316 319 320 323 324 327 328 329 332 333 334 335 336 338 339 340
	50 67 72 100 81	22 20 39 28 25	6 6 6 6				20 16 30 50 30		17	678		354 356 358 359 361
	52 32 72 57 350	23 24 14 26 47	6 6 6 8	54,67	 24		50 8 16 11 75	 				364 367 368 369 370
	652 225 98	32 40 40	8 6 6	200;225	F 121 50	10/62 7/65	50 8 18	.12	2	130	6.0	371 372 373
The State of the S	170 118 197 152	33 24 31 48	6 6 6	110 135;190 32;60;125;	25 10 65 3	11/64 11/64 2/65 10/65	6 60 30 1	 				384 385 387 401
The Part of the last	58 97 95 162	45 40 20	6 6 6	60	30 5 44 	4/66 4/66 4/66	10 12 25 8	.84 2.5	8 4 	260 140 	7.2 6.6	404 407 408 414
	120 81 67 122 125 146 52 62 43	20 40 41 22 34 27 21 20	6 6 6 6 6 6 6 6 6	50;110;118 18;46	34 24 60 36 80 6 38 7	1964 5/66 1964 6/66 8/66 8/66 11/66 1966	< 5 12 2 10 20 7 2	.1 1.6 .3 .3	3 5 2 5 4 1 17	105 230 90 230 185 40 685	7.5	415 417 419 420 424 446 450 463 500

TABLE 16.

								i
Well	location			Date		Alti- tude of land surface	Topo- graphic	Aquifer/
Number	Lat-Long	Dwner	Driller	completed	Use	(feet)	setting	lithology
Pe-505	4D25-7710	Pa. Power and Light Co.	Joe Cekovich	1965	N	678	V	Sto/
507 525	4028 - 7707 4028 - 7709	Snap-Dn Tools John Frank	Harrisburg's Kohl Bros.	1947 1964	N H	400 619	V S	Dck/ Dck/
526 55D	4028-7709 4025-7713	do. C. Robinson	do. Gary L. Stone	1964 1979	H	603 7SD	S S	Dck/ Sto/
557 559	4024-7714 4D28-7711	David Weller W. Cramer	Leon K. Sunday Gary L. Stone	198D 197B	H	78D 62D	۷ S	Dmh/sh Dck/
560	4D26-7714	Daryl Fowler	do.	1977	Н	840	Н	Dck/sh
561 562	4028-7714 4029-7712	Darwin Yohn William Richelderaer		1977 1977	H	6SD 70S	S H	Dtr/ls Dck/sh
564	4025-7714	Pleasant Valley Ch.	Leon K. Sunday	1976	Н	690	S	Don/1s
565	4032-7711	parsonage P. Duncan	Eichelberger Well Drilling, Inc.	1978	Н	SDO	٧	Swc/1s
566 567	4030-7714 4031-7709	Frank Swartz Ray Potter	Gary L. Stone	1976 1977	H	S60 700	V H	Dm/sh
569	4031-7706	Roger Musselman	do.	1979	H	64D	Н	Dtr/sh Dck/
570 572	4032-7707 4032-7705	Smith Joseph Nazzaro	Leon K. Sunday Eichelberger Well Drilling, Inc.	1978 1978	Н	68D 64S	H S	Dck/sh Dck/sh
573	4032-7705	John Hetrick	Leon K. Sunday	1978	Н	64D	Н	Dck/sh
601 602	4027-7711 4027-771D	Little Buffalo State Park do.	Harrisburg's Yohl 8ros.	197D 197D	P P	S1D 48S	W S	Dha/ Dmh/
610	4D32-77D9	Millerstown Munic. Water Works	do. do.	1966	Р	\$28	٧	Dmh/
611 612	4D27-7706 4027-770S	K. Darr S. Hammer	Leon K. Sunday Gary L. Stone	1978 1980	H H	773 78D	S S	Sto/ Sto/
613	4027-7707	A. Toy	do.	1979	Н	475	S	Dtr/
615 616	4028-7657 4030-77D8	Jeff Miller L. Hoover	do. do.	1977 1979	Н	538 52D	S S	Dciv/ Dck/
617	4D30-7708	J. Hover	do.	1978	S	57D	S	Dck/
61B 62D	4030-7708 4D31-77D4	J. Hoover 8ruce Gothal	do. Leon K. Sunday	1979 1976	S H	59D 7D0	S S	Dck/ Dck/sh
621 622	4033-7704 4D32-7706	Robert Buckley Clyde Beaver		1977	Н	720	Н	Dck/sh
623	4032-7707	John Hetrick	Leon K. Sunday do.	1979 1979	H	7 90 680	S H	Dtr/sh Dtr/sh
624 630	4030-7714 4D3D-7713	Franklin Benson Steve Britcher	Gary L. Stone Gary L. Stone	1977 1977	H	S 2 5 S 2D	۷ S	Dop/sh Dop/
631	4031-7714	Lawrence Stultz	Leon Y. Sunday	1978	Н	61D	S	Sb/sh
634 635	4D26-7709 4D29-7710	Bob Campbell H. Stydingerplank	Gary L. Stone do.	1976 1978	H	65D 520	H F	Sto/ls Dck/
636 637	4D28-7713 4026-7711	V. Leisure Wilson Narehood	do. Leon K. Sunday	1979 1977	H	54 0 800	S S	Dck/ Sto/
6 3B	4D26-771D	L. Furry	R. L. Whisler	1979	Н	85D	Н	DSk/ls
640 641	4029-7708 4027-7712	D. M. White Dan Martz	Gary L. Stone do.	1976 1977	H	4 SD 750	S H	Dck/sh Dck/sh
642	4D27-7713	Naylor	Leon K. Sunday	1979	H	710	S	Dck/sh
644 645	4D25-7711 4027-7710	Barkley C. Bitting	do. Gary L. Stone	1977 1978	H	860 S7D	S H	Dop/ls Dck/
646 647	4D25-7702 4D25-77D3	John Shiffer, III P. Minsker	do. Harrisburg's Kohl Bros.	1977 1977	H	563 562	H S	Dciv/ Dck/
648	4026-77D4	Veletta Smee	Leon K. Sunday	1979	Н	621	S	Dck/
649 650	4D26-77D1 4O27-77O2	David Delter William Guntrum	Gary L. Stone do.	1975 1976	H	4D7 46D	S S	Dciv/ Dha/
651	4002-7727	Mahanoy Valley Nurseries	Eichelberger Well Drilling, Inc.	1979	Н	532	Н	Dciv/
660 661	4026 - 7706 4D24 - 7701	R. Miller Sunshine Hills Water Co.	do.	1978	H P	69D 51D	S H	DSk/ Dciv/
662	4D 27 - 77DB	Newport Bor. Water Authority			Р	410	W	Dmh/
663	4033-7709	Millerstown Munic. Water Works		1975	P	S4S	٧	Swc/
664 665	4027-771D 4030-7708	A. Voorees J. Hoover	Gary L. Stone do.	1980 1979	H S	74D 52D	H S	Dck/ Dck/
666 667	4D29-7712	R. Colick J. Gabert	do.	1979	Н	610	S	Dck/
668	4D3D-7713 4031-7714	L. Weibley	do. do.	1980 1979	H	66D \$80	S S	Dtr/ Sb/
669 671	4D31-7706 4D27-7707	W. 8enson R. Finton	do. do.	1979 1977	H	605 460	S V	Dck/ Dtr/sh
672	4D26-7714	J. Strader	do.	1978	Н	86D	Н	Dck/
673 674	4D26-7714 4027-7 71 D	E. McGeary Gary Gill	do. do.	1977 19 7 6	H H	840 61D	S S	Dck/sh Dck/sh
675	4025-7713	D. McCluskey	Leon K. Sunday	1978	Н	760	S '	Dm/ss
Sn- 76	4D43-7720	Carl Kauffman	Freed & Bell	1961	Н	750	V	SNYDER Dtr/
77	4043-772D	Harry Collabrine	do.	1961	H	715	Н	Dmh/sh
79 80	4D44-772D 4D43-772D	Glen Berryman S. J. Gross	do. do.	196D 196D	H	78D 68D	S V	Dmh/ Dtr/
93 106	4043-772D 4042-7721	D. C. Boonie Warren 8all	do. J. M. Hubler	1965 1962	H H	72 5 670	S V	Dmh/ Dmh/
112	4043-7721	Clifford Wagner	M. H. Romig	1962	Н	72D	Ĥ	Dmh/sh
120 121	4043-772D 4043-772D	Gerald Renninger John Gross	Freed & 8ell do.	1964 1966	H H	70D 68D	V S	Dmh/ Dtr/sh
122 123	4D43-7720 4043-7720	James McClosky Arthur Baumgardner	do. do.	1965 1965	H	720 740	S	Dmh/ Dtr/
143	TU43=//2U	ar thur baulilgar dher	uu.	1 300	п	740	3	DUI /

-			_			c water evel						
	Total depth below land	Casi	ng	Oepth(s) - to water- bearing	Oepth below land	Oate	Reported	5pecific	Hard-	Specific conduc- tance (micro-		
	surface (feet)	Oepth (feet)	iameter (inches)	zone(s) (feet)	surface (feet)	measured (mo/yr)	yield (gal/min)	capacity ([gal/min]/ft)	ness (9pg)	mhos at 25°C)	рН	Well number
-	176	70	6	70;106;140; 158	40	12/65	40	1.5				Pe-505
	255 298 97 297 300 149 148 348 150	57 39 80 80 40 40 40 40 40	6 6 6 6 6 6 6	245;278 87;90 95;160 270;290 180;230 80;140 220 95;135;145 65;120	95 125 45 26 32 100 40 35 40 50	5/80 5/80 5/80 7/78 3/77 3/77 7/77	30 2 50 4 20 38 60 1 12 20	.78	14 6 5	513 263 245 200 113		507 525 526 550 557 559 560 561 562 564
	250	42	6	85;120;139; 239	28	5/80	20		13	420		565
	72 73 247 160 100	46 41 42 40 42	6 6 6 6	45;65 50;60 90;230 95;140 80	6 30 68 40	4/76 8/77 5/80 11/78 10/78	15 20 6 12 10		4 3 6	140 140 245		566 567 569 570 572
	370 350	40 37	6 8	150;370 80;148;290	80 45	11/78 1/70	8 130	1.0				573 601
	300 420	40 42	8	55;78;162 	22 60	2/70 6/66	190 37	2.2				602 610
	200 123 348 123 448 373 372 255 100 155 160 72 120 100 173 198 422 195 199 247 223 140 500 323 224 200 120 122 148 205	102 60 40 40 42 42 60 30 41 62 48 40 42 84 40 42 157 194 40 105 43 42 60 60 42 44 40 40 42 84 40 40 40 40 40 40 40 40 40 40 40 40 40	666666666666666666666666666666666666666	120;150;170 110 90;335 110 230 175 110;220 60;99 125;145 135;150 60 65 80 160;190 180;400 1770;190 196 100;240 150;240 100;130 460 280;310 160;220 105;185 80;115 60;110 80;300 95;100;125	60 30 F 28 120 95 40 35 50 50 20 46 80 20 48 80 29 40 100 82 35 50 68 80 30 30 30 30 40 40 40 40 40 40 40 40 40 4	6/78 2/80 5/80 5/80 5/80 7/79 2/78 7/79 7/76 8/77 5/79 10/79 7/77 5/80 5/80 11/76 5/80 8/77 4/79 9/76 5/80 8/77 5/80 6/79 12/75 5/80 6/79 4/78 6/79	10 40 5 40 0 8 1 5 25 10 12 30 9 20 15 30 30 7 25 15 5 6 6 9 6 9 10 10 10 10 10 10 10 10 10 10 10 10 10		5 2 2 3 3 1 1 6 8 8 2 4 4 3 3 3	268 115 85 140 330 330 350 96 210 167 137		611 612 613 615 616 617 618 620 621 622 623 624 630 631 635 636 637 638 640 641 642 649 650 651
100	400	61	8		25	8/75	300	2.3				663
Control of the Contro	198 372 348 98 123 148 247 173 247 373 160	40 42 41 40 79 40 41 40 48 64	6 6 6 6 6 6 6 6 6	120;180 180;300 160 70;85 110 125;140 140;145 130;160 140;220 120;340 155	20 25 20 25 75 20 68 66 110 50	5/80 7/79 10/79 4/80 12/79 5/79 11/77 5/80 5/80 6/76 9/78	12 5 3 20 25 40 10 10 12 5		4	120 240 260		664 665 666 667 668 669 671 672 673 674 675
-	COUNTY											
	50 110 95 100 100 44 94 100 100 85	21 30 36 26 17 21 24 28 16 50 21	6 6 6 6 6 6 6 6 6	40 65;90;105 42;91 61;89 65;80;95 75;90 68;75 67;85	2 40 21 29 30 4 66 41 12 10 18	9/65 7/61 5/60 4/60 4/62 9/62 11/64 2/66 6/65 6/65	8 15 7 10 15 10 7 25 25 15	. 24 0.2 0.1 0.14 1.4 0.1 1.9 .83	7 6 3 6 6	300 245 160 310 260 	7.2 6.8 6.2 5.9 6.9	Sn- 76 77 79 80 93 106 112 120 121 122 123

TABLE 17. RECORD OF SPRINGS

ng location: The number that is assigned to identify the spring. It is prefixed by a two-letter abbreviation of the county. The latitude and longitude (lat-long) are the coordinates in degrees and minutes of the southeast corner of a 1-minute quadrangle within which the spring is located.

er Mmc., Mauch Chunk Formation, Ock, Catskill Formation; Of, Foreknobs Formation; Dm., Marcellus Formation: Ooo, Onnodaga and Old Port Formations, undivided; Oor, Ridgeley Member of Old Port Formation; DSkm, Keyser Formation through Mifflintown Formation, undivided; Sto, Tonoloway Formation; Swc., Will, Creek Formation, Sc., Clinton Group, Obe, Bald Eagle Formation, Or, Reedsville Formation; Obl., Benner Formation through Loysburg Formation, undivided, Old, Loysburg Formation, Obl., Beanner Formation, On, Nittany Formation, Eg., Gatesburg Formation.

harge E, estimated, M, measured.

8, bottling, C. commercial, H. household, M. medicinal; N. industrial, P. public, R. recreation, S. stock, T. institutional; U. unused.

pring	inglucation Owner (Spring name)		Altı- tude above sea level		Oischarge	Oate measured or		Estimated discharge bracterist (gal/min)	1CS		Temper- ature	
er	Lat-Long	(Spring name)	(feet)	Aquifer	(gal/min)	estimated	Max imum	Median	Minimum	Use	(°C)	Remarks
					8EDF0R0	COUNTY						
1	4001-7844	(Unnamed spring)	1540	Df						S	14	Complete chemical analysis. Sampled 7-9-68.
2	4003-7843	E. Shafer, Jr.	1800	Ock						Н	20	Complete chemical analysis. Sampled 7-9-68.
3	4001-7826	O. C. Hartley (Bubbling Spring)	1120	0b	100 (E)	9-30-33				Н	11	Partial chemical analysis. Two openings.
4	4009-7834	Reynoldsdale Hatchery (Spring Meadow Spring)	1125	Oor	1600 (M)	11-10-71	2000	1600	1200	N	11	Partial chemical analysis. Sampled 11-10-71.
5	3959-7B30	Bedford Springs Hotel	1100	000	100 (E)						11	Three openings.
6	3959-7830	(Bedford Springs) Bedford Springs Hotel	1100	000	30 (E)	10-13-33				М	15	Partial chemical
7	3959-7830	(Magnesium Spring) Bedford Springs Hotel	1140	000	40 (E)					В	13	analysis.
В	395B - 7B 30	(Still House Spring) Bedford Springs Hotel	1180	000	40 (E)					Р	12	
9	3957-7836	(Black Spring) M. S. Colvin (White Sulphur	1360	0r	5 (E)	10-13-33				Н	11	Hydrogen sulfide gas.
0	4002- 7839	Spring) United Church of Christ (Living Water Spring)	1200	Doo	1310 (M)	11-11-71		1400		R	13	
					8LAIR C	OUNTY						
1	4028-7816	Penn Central Railroad	880	Sto	200 (E)	10-10-33				Н	10	Ebbs and flows.
2	4027-7812	(Flowing Spring) West Virginia Pulp	900	€g	3640 (M)	1908						Oischarge is mean
Ç	4027 7012	and Paper Co.	,,,,	c y	4150 (M) 2330 (M)	1933				N N		of 89 measurements.
		(Big Springs)			3710 (M)	8-16-49 11-10-71	9000	3700	1200	N	11	Measured by owner.
4	4039-7815	West Virginia Pulp and Paper Co. (Cold Spring)	910	05km	1500 (E) 396 (M)	1933 11-08-71		400		U	11	Reported to be contaminated.
5	4017-7826	General Refractories	1180	Sto						Р		Large flow
6	4016-7827	Co (Weynant Spring) General Refractories Co. (Burket Stake	1180	Sto	100 (E)					Р		reported.
7	4019-7824	Spring) Roaring Springs Blank Book Co.	1200	0n	5500 (M) 4680 (M)	1908 7-03-44				N N,P	11	Measured by owner Partial chemical
9	4025-7816	(Roaring Spring) R. C. Hartman	1110	0bf	4280 (M) 250 (E)	11-10-71	5600	4500	3500	N,P H	11	analysis.
	4025-7816	(Unnamed spring) Pa. Fish Comm.	1100	0bf	1500 (E)	10-33				Н	11	Four openings.
1	4036-7812	H. C. Means	905	01	1410 (M) 2000 (E)	11-10-71 10-33		1500		H	10	Much of high flow
	1000 1012	(Arch Spring)	,,,,		7430 (M) 13500 (M)	6-20-44 11-09-71	30000	8000		U	11 10	in Sinking Run enters ground at Tytoona Cave about 1 mile upstream of
2	4040-7814	City of Tyrone (Big Spring)	905	Sto	415 (M) 104 (M)	6-23-44 11-09-71		100		 U	10 11	spring. Pumping of local wells is causing
3	4024-7818	P. Good	1290	Swc	10 (E)	6-19-80				U	11	flow to diminish.
4	4030-7832	(Unnamed spring) R. Ritchey (Unnamed spring)	2320	0ck	10 (E)	6-19-80				U	8	Partial chemical analysis.
					CENTRE	COUNTY						
7	4056-7731 4042-7758	Madisonburg Water Co. Mr. Walker	1440 1160	Or Obf	1000 (E)	7-16-34				P H	11	lssues from a
5	4043-7753	(Rock Spring) Ferguson Twp.	1400	0be	120 (E)	7 - 34				Р	9	cave.
8	4045-7814	Water Co. Oak Ridge Auth. (Able Spring)	1600	Ock	115					Р		

				7	TABLE 17. (. CONTINUED)						
Spring	g location Lat-Long	Owner (Spring name)	Alti- tude above sea level (feet)	Aquifer	Oischarge (qal/min)	Date measured or estimated	char	Estimated discharge iracteristi (gal/min)		Use	Temper- ature (°C)	Remarks
Number	Lat-Long	(Spring name)	(,,,,	Aquito		1	Pla A Inter-	ried ro	PHHIMMA	Uac	(0)	Rendiks
					FULTON							
Fu- 2	3956-7813	Crystal Spring Campground (Crystal Spring)	1200	Mmc	2 (E)					Н		
3	4006-7757	Paul Downin (Unnamed spring)	880	Doo						Н	19	Chemical analysis Sampled 9-18-80.
4	4006-7757	(Unnamed spring) Paul Downin (Unnamed spring)	738	Doo						U	14	3-10-00.
					HUNT I NGDO	ON COUNTY						
Hu- 1	4039-7812	W. Va. Pulp & Paper Co. (Hundred Springs)	880	Obf	2800 (E)	8-33				N		Many openings.
2	4041-7801	Mrs. Elder	1040	0b	500 (E)	9-05-33		450		Н	11	
4	4032-7758	(Double Spring) Dr. A. Layne	655	Dor	750 (E)	11-08-71 9-11-37				H	10 18	
		(Warm Spring)			243 (M)	11-09-71		300		U	17	
6	4029-7802	Commonwealth of Pa.	670	Dor	60 (E)	9-11-33				Ť		Partial chemical
8	4038-7811	(Mason Spring) Grier Water Works	1050	€g	10 (E)	3-12-63				Ρ		analysis. One of four springs.
9	4029-7801	Commonwealth of Pa.	630	Dor	585 (M) 690 (M)	12-05 - 32 2-16-33				Ţ		
10	4017-7809	(Prices Spring) (Unnamed spring)	1070	Mmc	690 (M)	6-21-72						
11	4038-7811	(8irmingham Cave Spring)	900	Eg		6-29-67				U	9	Partial chemical analysis.
12	4037-7807	(Spruce Creek Spring)	780	0n	•••	8-11-67				С	10	Partial chemical analysis. Used
13	4034-7809	(Tippery Cave	900	0ba		1-18-68				U	9	by fish hatchery. Partial chemical analysis.
. 14	4034-7809	Spring) (Near Tippery	900	0ba		5-15-67				U	9	Partial chemical
17	4032-7810	Spring) (Unnamed spring)	950	69						Н	11	analysis.
18	4016-7308	Mr. Lemin (Unnamed spring)	1360	Mmc						Н	16	
19	4016-7810	(Unnamed spring) Mr. Edward Gates (Unnamed spring)	1260	Mmc						Н	10	
					JUNIATA	COUNTY						
Ju- 1	4039-7717	McAlisterville Water Co.	1050	\$c	18 (E)	8-18-34	18			Р	12	Partial chemical analysis.
					MIFFL1N	COUNTY						
Mf- 1	4033-7746	1ddo W. Bender	840	0bf	750 (E)	1934				Н	11	
2	4039-7738	(Swarey Spring) James Reed	725	0.5	1130 (M) 500 (E)	11-11-71 1934		1250		U H	11	
		James Reed (Yoder Spring)	725	0a	1230 (M)	1934 11-08-71		1350		H		
3	4041-7733	(Mammoth Spring at Alexander Cavern)	640	0b1	14600 (M)	11-11-71		14000		Ü	9	Measured discharg includes 2900 gal/min entering ground at sink 1000 feet NE of spring.
4 6	4045-7731 4032 - 7749	(Unnamed spring) Allensville Mun. Water Auth.	830 1260	Or Or	107 (M) 300	11-16-71 4-06-55		100		U P		Partial chemical analysis.
					PERRY C	COUNTY						
Pe- 4	4033-7709	Millerstown Mun.	389	Swc	35-40	4-19-61				P		Partial chemical
6	4032-7708	Water Auth. Millerstown Bor.	560	Dm	15	8-27-34				Р		analysis (4-19-61

POPOGRAPHIC AND GEOLOGIC SURVEY

COMMONWEALTH OF PEXASYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

GEOLOGIC MAP OF THE JUNIATA RIVER BASIN, SHOWING THE LOCATIONS OF WELLS AND

BY

LARRY E. TAYLOR WILLIAM H. WERKHEISER NANCY S. duPONT MARY LOU KRIZ

1982

SYMBOLS a³¹⁸ Water well and county well number in concreted area, only selected wills are show ζ_{i}^{1} Spring and counly spring number ▼ ** : Stream gaging station and station number

EXPLANATION

			EXPLANA	TION	
		UNIT	GEOLOGIC DESCRIPTION	WELL YIELDS	QUALITY OF WATER
VANIAN	AL	LEGILNY BILOUP	Primarily gray and black shale and claystone. Any and brown smultione, and coal; sandstone increases in abundance toward the bottom of the strategraphic section.	Reported well yields range from 0 to 255 gal/min; the median for domestic wells is 3 gal/min; yields of two mondomestic wells in the Commangs Group is erage 25 gal/min, and two in the Potteville Gridp average 170 gal/min.	Water is moderately hard; often contains high concentrations of trop management
-		PISVILLE GROUP	Minut gathelic and led		and sulfate.
MISSISSIPPIAN		MAUCH CHUNK FORMATION	annund lie Breail Top coal field, gray saiddone and minor annunts of rid and green sillstone and incidence along the Appalachian Phicau	lieported well yields range from 1 to 60 gal/min, the medians for domestic and nondomestic wells are 12 and 32 gal/min, respectively	Waier is moderately soft and generally of good quality; high levels of fron and manganise are a frequent problem.
MISSIS	BUBG SANDS	TONE FORMATION SELL SPITITY KOPP TORMATION	Pricono Furnalion—Thek bedded sanderoes and gray sandy shale, sume beets of gray and red sanderoes and red end to be able to the process of the sanderoes and the data Burroon Sandslone—Predominantly—practice—sanderoes—constitutions to present in the medial portion. It was not supported by the process of t	Reported well yields range from 2 to 118 gal/min, the median for domestic wells is 15 gal/min; yields of two mondiumestic wells at erage 49 gal/min.	Waler it movierately soft, high levels of iron and manganese are a problem in wa- ter from most wells,
	TLL FORMAT	UNCANNON MEMBER BEETMAN CHEEK MEMBER MEMBER OFFE ISII VALLEY MEMBER	Shale, multisure, and some sandstone approximately 80 to 45 percent of the unit is red in reduction states exceed 50 feel in this kness and most are between 5 and 20 feet thick.	Reported well yields range from 1 to 100 gal/ min; the medians fur dimestle and nondomes- ue ii ells are 10 anil 30 gal/min, respecta ely.	Water is moderately soft, about half the wells produce water high in Iron and manganese.
	SCII	ERR FORMATION OS HAVEN FORMATION	Foreignels Formation—Thin- to very this k leeded conglom- erate, anotheric, allistone, multimer, and studies. Suberr Formatine—Grey addition, studie, multione, and some smillstone. Lock Hassen Franction—Frederinantly shiftone with lesser ameurits of studieties, shale, and conglowerate.	Reported well yields range from 1 to 00 gal/min, lite median yields of domestic wells are 10, 7, and 4 gal/min for the ForeKnobs, Scherr, and Lock Haven Formation, respectively. The second of the second of the properties of the	Waler is moderately hard; more than half the wells produce waler high in iron and manganese.
DEVONIAN	BRALL	HIMMERS ROCK FORMATION Descriptions AER AND HARRELL ATTIONS, UNDIVIDED COM-	MATRON and allly shale, a munit anomat of interbedded very fine real candidate in the proper test in the proper state of the p		Water is moderately hard, one third of the wells produce water high in mon airc two thirds produce water high in manganese; excessive hydrogen sulfide is an occasional problem.
	IIA	MILTON GROUP	Consists of the Mahantango Formation, including the Sherman Rules and Montele-Ho Members, and the Marcellus Formation—ustino Mahantango Formation—Gray, Intown, and John Siltsone, Ighli-olive gray sity claystone (Sherman Hilder Member); and fine-grainest siliceous, assolitone Distone-Selfo Members, and fine-grainest siliceous, assolitone Distone-Selfo Members, and Marcellus Formation—Very dark gray to the 3st, Anale Salze Marcellus Formation—Very dark gray to the 3st, Anale Salze	Reported well yields range from 1 to 380 galf min, the median yields for domestic and non- domestic ivells are 12 and 38 galfmin, respec- tively.	Water is moderately hard; over half the wells produce water containing objectionable amounts of iron and manganess and many produce water containing hydrogen sulfide.
	OLD FORT SORMATION SON	NDAGA FORMATION ON RIDGILEY MEMBER ON SMETTER THROUGH NEW CREEK MEMBERS, UNDIVIDED DOWN	Onondaga. Formation—Intrihedded dath gray limestone, shalp limestone, and celearrous and noncalcatrous shale. Old Port Fermation—Comprised of the units a lower unit shale, and an upper calcarrous quartz sandiume unit plor).	Reported (well yields range from 0 to 1,400 gallmin, the medians for domestic and nondomestic wells are 10 and 66 gal/min, respectively.	Water is moderalely hard, about or fourth of the wells produce water high i
		KEYNER AND TONOLOWAY FORMATIONS, UNDIVIDED	Keyser Formation—Consists of an upper, mainly laminated, sequence of limitationes and a basel, nedular limitatione; middle part is sometimes transactions and chirty. Tonoloway Formation—Medium gray, very that to thick-bedded, laminated limitation and angillaceous lamestone; small amount of shale sometimes occurs as intertests.	Reported well yields range from 0 to 315 gal/ min, the median yield for domestic wells is 10 gal/min and the median for nondomestic wells is 33 gal/min.	Water is very hard and moderately hig in dissolved solids.
	OSen OSen	WILLS CREEK FORMATION	Interbedded olives and greenish-gray rals areous and noncal-cureous shale and argullaceous limestons, also a few interbeds of grayish-red shale and gray, fine-grained sunditione.	Reported well yields range from 1 to 360 gal/mm; the medians for domestic and nondomestic wells are 15 and 40 gal/mm, respectively.	Water is hard to very hard; about 20 pe- cent of the wells produce water high i iron.
SILURIAN		BLOOMSBURG AND MIFFLINTOWN FORMATIONS, UNDIVIDED	Bloomsburg Formation—Grayish-red shale and mudstone and some ninerbooks of light-gray standstone and line stone. Miffinitions Formation—Dark-gray calcarroot shale having many interbodied this layers of limestone, some red silistone is greeent near base of unit.	Reported well yields range from 1 to 150 gal/ min; the medians for domestic and nondomes- tic wells are 15 and 18 gal/min, respectively.	Water is moderately hard and compar- tively low in dissolved solids.
	,	CLINTON GROUP	Light-gray and light-olive-gray shale and some minor inter- bedded siltstone and sandstone, one or more grayish-red to reddish-black, hemalitie sandstone or silt-to-re horizons are generally present.	Reported well yields range from 1 to 386 gal/ min; the medians for domestic and nondomes- tic wells are 10 and 20 gal/min, respectively	Water is moderately hard and compar- tively low in dissolved solids; most well produce water high in iron and many nese.
		NATA FORMATION BALD EAGLE FORMATION	Tuscarora Formation—Light to medium grav sandstone and manor interbedded shale. Juntata Formation—Brownish to grayach red sandstone and some sillstone and shale. Bald Eagle Formation—Gray to olive-gray and grayashred, fine to coarse-grained sandstone and some coglomerate.	Limited data; reported well yields are generally low	Water is probably soft and low in d solved solids.
	REEDS	VILLE FORMATION	Dark-gray, greenish-gray, and olive-gray shale some saltstone and a few sandstone layers near the top	Reported well yields range from 1 to 50 gal/min; the median for domestic wells is 12 gal/min and the median for nondomestic wells is 20 gal/min.	Water is modifiately hard and relative low in dissolved solids; about half it wells produce water high in iron as manganese; excessive hydrogen sulfide an occasional problem.
ORDOVICIAIN	CORURN FORMATION THROUGH NEALMONT FORMATION, UNDIVIDED OCO RENNER FORMATION THROUGH LOVERURG FORMATION, UNDIVIDED OCO		Coburn Fermation—Medium gray limestone Salona Fermation—Shaly limestone and calraceous shale. Nonlinear Formation—Medium gray, fossilif-raya limestone. Benner Fermation—Cray, their beddled limestone. Benner Fermation—Cray, their beddled limestone. Blatter Fermation—Medium gray, graylifaceous limestone. Loysburg Formation—Light-to-nvolum gray, medium-beddled limestone overlying laminated, alternative limestone and dolomite.	Reported yields of 25 domestic wells range from 1 to 25 gal min; the median is 6 gal min.	Water is hard and moderately high in du- solved solids.
5		AMBERSBURG FORMATION DR : FAUL GROUP	Chambersburg Formation—Dark-gray, cobbty, angillaceous linestone. St. Paul Group—Very finely crystalline lunestone.		
	AXEX	BELLEFONTE FORMATION OF IANN FORMATION	Bellefonte Formation—Medium to thick-bodged, gray dolo- mile and minor amounts of chert and sandstone. Axeman Formation—Mainly lumestone and a few layers of dolomite.	Reported well yields range between 1 and 250 gal/mm; the medians for domestic and non-domestic wells are 10 and 30 gal/mm, respectively.	Water is very hard and high in dissolive solids.
	STO	NEHENGE/LARKE FORMATION	Nittany Formation—Medium to dark-gray, thick-bedded dolonute containing chert and alliceous collies, Stonchenge Formation—Medium gray, med am-bedded to laminated, collute linestone. Larke Formation—Medium to dark-gray, coancely crystalline dolonute (hiteral equivalent of Stonchenge Formation).	Reported well yields range from \$10.150 gal/min; the median yields für domestie and nondomestic irells are 15 and 26 gal/min, respectively.	Water is very hard and moderately high in dissolved solids.
AN	PORMATION	MINES MEMBER Con LOWER MEMBERS Cop	Gray dolomite containing siliceous "coalies" and chert over- tying cyclic repriitions of sandstone and doli-mite; laminated to massive limestone and dolomite; cyclic reystitions of sand- stone and dolomite; and thick-bedded crystalline dolomite.	Reported well yields range from 1 to 300 gal/ min; the median for domestic wells is 9 gal/ min; all four inventored nondomestic wells have yields greater than 100 gal/min.	Water is very hard and relatively high is dissolved solids.
CAMBRIAN	PI	LEASANT HILL FORMATION SBORD FORMATION	Warrior Formation—Gray, thin to medium b-deed limestone interbedded with dolomide and some sandstore. Pleasant IIII Formation—Gray, Imbreddied, artillaceous limestone viterbedded with shale, silistone, and sandstone. Waynesborn Formation—Greenthyray and grayith-purple shale interbedded with greenish gray sandstone and conglories of the properties of th	Limited data; reported well yields are small to moderate.	Water is probably hard to very hard and moderately high in dissolved solids.

MAP OF THE JUNIATA RIVER BASIN, PENNSYLVANIA, JING THE LOCATIONS OF WELLS AND SPRINGS

BY

LARRY E. TAYLOR WILLIAM II. WERKHEISER NANCY S. duPONT MARY LOU KRIZ

1982

