САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Отчёт по лабораторной работе №1 по теме «Дискретные системы управление. Моделирование и устойчивость» по дисциплине "Дискретные системы управления"

Вариант 9

Дюжев В. Д. Лалаянц К. А.

Преподаватели:

Чепинский С. А. Краснов А.Ю.

ОГЛАВЛЕНИЕ

Цель работы	1
Теоретическая часть	1
1 Дискретизация	. 1
2 Построение линейных дискретных генераторов внешних воз- действий	
Экспериментальная часть	3
Выводы	3

Цель работы

Ознакомиться с методами синтеза и анализа дискретных системам. Получить опыт построения регуляторов и генераторов внешних воздействий для дискретных систем.

Теоретическая часть

Дискретизация

В ходе работы мы будем использовать модели дискретных элементов (при непрерывном изменении входной переменной выходная переменная изменяется только в дискретные моменты времени). В частности таким является экстраполятор нулевого порядка, задающийся уравнением 1.

$$\begin{cases} x_2(t) = x_1(mT) \\ t = mT + \tau \\ 0 \le \tau \le T \end{cases}$$
 (1)

, где x_1 — непрерывный входной сигнал, x_2 — дискретный выходной сигнал, T — интервал дискретности, $m \in \mathbb{Z}_+$. Экстраполятор нулевого порядка (zero order hold, далее — ZOH) является частным случаем импульсного элемента.

Для преобразования непрерывной системы в дискретный вид рассмотрим последовательное соединение ZOH и непрерывной линейной системы (НЛС). Полученная система задается уравнениями 2.

$$\begin{cases} \dot{x} = A_c x + B_c \varepsilon \\ y = C x \\ \varepsilon (mT + \tau) = u(mT), 0 \le \tau \le T \end{cases}$$
 (2)

Рассмотим значения системы 2 в дискретные моменты времени t=Tm. Запишем решение ОДУ в виде свертки:

$$x((m+1)T) = e^{A_cT}x(mT) + \int_{mT}^{(m+1)T} e^{A_c((m+1)T - \theta)} B_c \varepsilon(\theta) d\theta$$

Сделав замену $\theta = mT + \tau, 0 \le \tau \le T$ и заметив, что $\varepsilon(mT + \tau) = \varepsilon(mT)$ перепишем уравнение выше:

$$x((m+1)T) = e^{A_cT}x(mT) + \int_0^T e^{A_c(T-\tau)}d\tau B_c\varepsilon(mT)$$

Вычислим значение интеграла:

$$\int_0^T e^{A_c(T-\tau)} d\tau = e^{A_cT} \int_0^T e^{-A_c\tau} d\tau = e^{A_cT} A_c^{-1} \left(I - e^{-A_cT} \right) = A_c^{-1} \left(e^{A_cT} - I \right) =$$

$$= A_c^{-1} \sum_{i=0}^{\infty} \left(\frac{A_c^i T^i}{i!} - I \right) = A_c^{-1} \left(I + \sum_{i=1}^{\infty} \frac{A_c^i T^i}{i!} - I \right) = \sum_{i=1}^{\infty} \frac{A_c^{i-1} T^i}{i!}.$$

Таким образом, подставив выражение для интеграла, можем записать:

$$x((m+1)T) = Ax(mT) + B\varepsilon(mT) \tag{3}$$

, где
$$A=e^{A_cT}=\sum_{i=0}^{\infty} \frac{A_c^i T^i}{i!},\ B=\sum_{i=1}^{\infty} \frac{A_c^{i-1} T^i}{i!} B_c.$$

Рекурсивно подставляя выражения для x в 3, получим аналитическое выражение состояния дискретной системы:

$$x(mT) = A^{m}x(0) + \sum_{i=0}^{m-1} A^{i}Bu(iT)$$
(4)

Построение линейных дискретных генераторов внешних воздействий

Рассмотрим построение дискретных моделей генераторов внешних возмущений g(k).

Метод разностей

Основным методом построения дискретных моделей внешних возмущений является последовательное взятие разностей. Рассмотрим его на примере из задания 3(a):

$$g(k) = A_q \sin(kT\omega) \tag{5}$$

За первую компоненту вектора состояний возьмем сам сигнал $\xi_1(k) = g(k)$.

Выразим g(k+1) на основе 5:

$$\xi_2(k) = \xi_1(k+1) = g(k+1) = A_g \sin(kT\omega)\cos(T\omega) + A_g \sin(T\omega)\cos(kT\omega)$$
(6)

Заметим, что $A_g \sin(kT\omega)\cos(T\omega) = g(k)\cos(\omega T)$.

Выразим g(k + 2) на основе 6:

$$\xi_2(k+1) = g(k+2) = g(k+1)\cos(\omega T) + A_g\sin(T\omega)\cos((k+1)T\omega)$$
 (7)

Заметим:

$$A_g \sin(T\omega)\cos((k+1)T\omega) = A_g \sin(T\omega)(\cos(kT\omega)\cos(T\omega) - \sin(kT\omega)\sin(T\omega))$$

Подставив $A_g \sin(T\omega)\cos(kT\omega) = g(k+1) - g(k)\cos(\omega T)$ из 6 и выражение g(k) из 5 получим:

$$A_g \sin(T\omega) \cos((k+1)T\omega) = g(k+1) \cos(\omega T) - g(k) \cos^2(\omega T) - g(k) \sin^2(\omega T)$$

Подставив полученный результат в 7:

$$\xi_2(k+1) = 2\cos(\omega T)\xi_2(k) - \xi_1(k) \tag{8}$$

Итого, получаем дискретную модель внешнего возмущения 5:

$$\begin{cases}
\xi(k+1) = \Gamma \xi(k), \Gamma = \begin{bmatrix} 0 & 1 \\ -1 & 2\cos(\omega T) \end{bmatrix} \\
g(k) = H\xi, H = \begin{bmatrix} 1 & 0 \end{bmatrix}_T \\
\xi(0) = \begin{bmatrix} 0 & A_g \sin(T\omega) \end{bmatrix}^T
\end{cases}$$
(9)

Непрерывный аналог

Возможно также построить непрерывный аналог модели $g_c: g_c(kT) = g(k)$ предполагамого генератора и дискретизировать систему согласно уравнениям 2-3:

$$\begin{cases}
g_c = C_g \xi_c \\
\dot{\xi}_c = \Gamma_c \xi_c \\
\xi(k+1) = \Gamma \xi(k) \\
g(k) = H \xi(k) = H \Gamma^k \xi(0)
\end{cases}$$
(10)

Экспериментальная часть

Выводы