

Relatório A1

Séries Temporais

Gerardo Mikael Do Carmo Pereira

Professor: Thiago Guerrera Martins

RIO DE JANEIRO 2025

Conteúdo

1	Introdução	3
2	Desenvolvimento	3

1 Introdução

Este trabalho tem como objetivo analisar o comportamento de uma série temporal referente ao volume observado ao longo de várias semanas. A partir da visualização dos dados e do estudo das funções de autocorrelação e autocorrelação parcial (ACF e PACF), buscamos identificar padrões de tendência, estacionariedade e possíveis modelos adequados para previsão.

2 Desenvolvimento

Análise inicial

Figura 1

Figura 2

Figura 3

O histograma e o boxplot indicam que a distribuição da variável volume é marcadamente assimétrica positiva. A maior parte das observações concentra-se em valores baixos, como evidenciado pela alta frequência de volumes entre 0 e 2.5 no histograma. O boxplot corrobora essa observação, mostrando que a mediana está mais próxima do primeiro quartil, e a presença de uma longa cauda superior com múltiplos outliers. Essa forte assimetria sugere que modelos lineares que pressupõem normalidade dos resíduos podem não performar bem com a variável na escala original, apontando para a necessidade de aplicar uma transformação para estabilizar a variância e aproximar a distribuição de uma simetria.

A análise da série temporal, que plota o volume em função da semana, revela que os dados não são estacionários. Há um comportamento distinto em dois regimes: nas primeiras 9 semanas, o volume se mantém em um patamar baixo e com pouca variabilidade. A partir da semana 9, inicia-se uma clara tendência de crescimento, acompanhada por um aumento na volatilidade. A existência dessa tendência é o fator mais crítico para a modelagem violando a independência das observações. Isso justifica a necessidade de decompor a série ou de criar co-variáveis baseadas no tempo para capturar esse efeito e modelá-lo adequadamente.

Análise de autocorrelação

Foram gerados os gráficos da Função de Autocorrelação (ACF) e da Função de Autocorrelação Parcial (PACF). Ferramentas usadas para identificar a presença de tendência, sazonalidade e a natureza dos processos estocásticos subjacentes.

Figura 4

Gráfico ACF (Autocorrelação): O gráfico ACF à esquerda exibe um decaimento lento e quase linear. As autocorrelações são muito altas e positivas para um grande número de lags, permanecendo estatisticamente significativas (fora do intervalo de confiança azul) para todos os 40 lags exibidos. Este padrão é a assinatura clássica de uma série temporal não-estacionária, confirmando a forte tendência de crescimento observada no gráfico de linha. A intuição é que, devido à tendência, uma observação em um ponto t será muito similar à observação em t-1, t-2, etc., simplesmente porque ambas estão na mesma trajetória ascendente, gerando uma alta correlação que só diminui muito lentamente com o tempo.

Análise do Gráfico PACF (Autocorrelação Parcial): O gráfico PACF, por outro lado, nos mostra a correlação entre a série e um de seus lags após remover o efeito dos lags intermediários. O resultado é diferente: observa-se um pico muito significativo e positivo no lag 1, seguido por um corte abrupto. Após o primeiro lag, os valores da PACF caem imediatamente para dentro do intervalo de confiança, tornando-se não-significativos. Este comportamento sugere que, uma vez que a influência do valor imediatamente anterior t-1 é considerada, os valores mais antigos não adicionam uma informação nova e significativa para prever o valor atual.

Após aplicar uma primeira diferenciação para remover a tendência, os novos gráficos ACF e PACF tiveram uma transformação bem-sucedida, pois ambos os gráficos

agora mostram que todas as autocorrelações estão dentro do intervalo de confiança (ou muito perto disso), indicando que a série se tornou estacionária.

O resultado se assemelha a um white noise, o que é uma forte evidência de que a série de volume original segue um processo de randon walk.

Isso estabelece o modelo ARIMA(0, 1, 0) como um excelente e robusto modelo baseline para o projeto. A partir dele, qualquer modelo mais complexo deve provar seu valor superando a simples previsão de que o próximo valor será igual ao último observado.

ARIMA(0,1,0)

Figura 6

A análise do modelo baseline ARIMA(0, 1, 0) revela um resultado misto. Por um lado, o teste de Ljung-Box (Prob(Q) = 0.07) indica que o modelo foi bem-sucedido em remover a autocorrelação dos resíduos, significando que a diferenciação capturou a dependência temporal dos dados. Contudo, os testes de diagnóstico expõem falhas importantes: os resíduos não seguem uma distribuição normal (teste Jarque-Bera com Prob(JB) = 0.00), principalmente devido a uma alta curtose que sugere a presença de outliers. Além disso, o teste de heterocedasticidade (Prob(H) = 0.00) confirma que a variância dos erros não é constante.

A previsão gerada, que exibe uma tendência de queda em vez de se manter no último valor observado, mostra que o modelo ajustado foi, na verdade, uma "caminhada aleatória com drift negativo". Em conclusão, este modelo baseline cumpriu seu papel ao demonstrar que, embora a diferenciação trate a correlação, ela é insuficiente para lidar com a variância crescente e os valores extremos da série. Esses resultados validam a necessidade de avançar para uma abordagem mais robusta, como um modelo de

regressão sobre a variável transformada (log(volume)), para tratar essas questões de forma mais eficaz.

Regressão da tendencia no log

ARIMA(0,1,0)

Dep. Variable:	log volume		R-sauared:		0.665		
Model:		0_		Adi. R-squared:		0.659	
Method:	Least Squares Mon, 06 Oct 2025 01:46:48 : 120				116.0 1.70e-28 -53.861 113.7 122.1		
Date:							
ime:							
lo. Observations							
Of Residuals:							
Of Model:							
ovariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
onst	0.1907	0.103	1.845	0.068	-0.014	0.396	
eek_num	0.0120	0.004	2.981	0.003	0.004	0.020	
eek_squared 2.		3.27e-05	0.879			9.34e-05	
			Durbin-Watson:		0.134		
rob(Omnibus):	0.013	Jarque-Bera (JB):			7.593		
kew:		0.532	Prob(JB):			0.0225	
rtosis:		2.380	Cond. No.			1 880+04	

Figura 7

A conclusão desta análise clara, a abordagem de regressão linear para modelar a tendência em log(volume) é superior ao modelo baseline de random walk. Isso é comprovado pela redução de quase 60% no erro de previsão (RMSE), que caiu de 4.68 para 1.90. O modelo final indica que o volume possui uma forte tendência de crescimento linear, e a transformação logarítmica foi essencial para estabilizar os dados.

Apesar do melhor desempenho preditivo, a análise dos resíduos do modelo de regressão deixa espaço pra melhoria. O teste Durbin-Watson (0.134) aponta que ainda existe autocorrelação nos erros, uma característica temporal que o modelo atual não capturou.

Este resultado estabelece um modelo robusto como ponto de partida. Para a próxima fase o foco será refinar este modelo, utilizando mais dados para corrigir a autocorrelação residual e aprimorar ainda mais a precisão das previsões.