Algèbre 3 TD7

Polynômes à une indéterminée

Licence 2 MAE 2020-2021 Université Paris Descartes Marc Briant

Dans tout ce TD, $(\mathbb{K}, +, .)$ désigne un corps commutatif.

Des K-ev et des calculs chez les polynômes

Exercice 1

- 1) Soient $P_1 = X^2 + 1$, $P_2 = X^2 + X$ et $P_3 = X^2 + X + 1$. Montrer que (P_1, P_2, P_3) est une base de $\mathbb{R}_2[X]$.
- 2) Soient $(P_1, ..., P_n)$ des polynômes de $\mathbb{C}[X]$ tels que $\deg(P_1) < ... < \deg(P_n)$. Montrer que $(P_1,..,P_n)$ est une famille libre de $\mathbb{C}[X]$.

Exercice 2

Soit un entier $n \ge 1$. Dans chacun des cas suivant montrer que f est dans $L(\mathbb{R}_n[X])$ et exprimer sa matrice dans la base canonique de $\mathbb{R}_n[X]$

1)
$$f(P)(X) = P(X+1)$$
 2) $f(P)(X) = P - XP'$

$$2) \quad f(P)(X) = P - XP'$$

Exercice 3: Relations entre racines et coefficients

Cet exercice a pour but de rappeler que les coefficients d'un polynômes sont liés à ses racines lorsque le polynôme est scindé.

Dans chacun des cas suivants calculer la somme S demandée.

- 1) $S = \alpha^2 + \beta^2$ où α et β sont les racines complexes de $X^2 + bX + c$ avec b et c des complexes.
- 2) $S = \alpha^2 + \beta^2 + \gamma^2$ où α , β et γ sont les racines complexes de $X^3 + aX^2 + bX + c$ avec a, b et c des complexes.
- 3) $S = \alpha^3 + \beta^3$ où α et β sont les racines complexes de $X^2 \sqrt{2}X \sqrt{3}$.
- 4) $S = \alpha^4 + \beta^4 + \gamma^4$ où α , β et γ sont les racines complexes de $X^3 X + i$.

Exercice 4 : Des équations et des polynômes

Résoudre dans $\mathbb{R}[X]$ les équations suivantes d'inconnue $P \in \mathbb{R}[X]$. On se rappelera que ce qui est intéressant dans un polynôme de sont son degré et ses racines...

1)
$$P(X^2) = (X^2 + 1)P(X)$$

1)
$$P(X^2) = (X^2 + 1)P(X)$$
 2) $(P')^2 = 4P$ N'hésitons pas à être complexes...

Racines, factorisation et irréductibilité

Exercice 5

Déterminer la décomposition en facteurs irréductibles dans $\mathbb{R}[X]$ des polynômes suivants.

1)
$$1 + X + X^2 + X^3$$
 2) $X^8 - 2X^4 + 1$

2)
$$X^8 - 2X^4 + 3$$

3)
$$1 + X^6$$

3)
$$1 + X^6$$
 4) $1 + X^4 + X^8$

Exercice 6

Factoriser les polynômes suivants en produits d'irréductibles sur $\mathbb{C}[X]$ puis sur $\mathbb{R}[X]$.

1)
$$X^8 - 1$$

2)
$$(X^2 - X + 1)^2 + 1$$

3)
$$1 + X + X^2 + X^3 + X^4 + X^5$$
 4) $1 + X^2 + X^4 + X^6$

4)
$$1 + X^2 + X^4 + X$$

Exercice 7

Nous définissons

$$P_1 = X^3 - 3X + 1$$
 $P_2 = X^3 - 3X - 1$ $Q(X) = P_1(X^2 - 2)$.

- a) Vérifier que $P_1(-X) = -P_2(X)$ et que $Q = P_1P_2$
- b) Démontrer que P_1 a trois racines distinctes situées dans]-2,2[.
- c) Linéariser $\cos^3 \theta$ puis résoudre $P_1(2\cos\theta) = 0$ pour en déduire les zéros de P_1 , P_2 et Q.

Exercice 8

Dans les cas suivants, démontrer que les racines du polynôme P dans $\mathbb{C}[X]$ sont toutes distinctes.

1)
$$P = 1 + X + \frac{X^2}{2} + \frac{X^3}{3!} + \frac{X^4}{4!}$$
 2) $(X+1)^4 - X^4$

$$2) \quad (X+1)^4 - X^4$$

Arithmétique et algorithmique au pays des polynômes

Exercice 9: Parlons division euclidienne

Effectuer la division euclidienne dans $\mathbb{C}[X]$ de A par B dans les cas suivants.

1)
$$A = 2X^4 - 3X^3 + 4X^2 - 5X + 6$$
 et $B = X^2 - 3X + 1$.

2)
$$A = 4X^3 + X^2$$
 et $B = X + 1 + i$.

3)
$$A = X^4 + 2X^3 + X^2 - 9$$
 et $B = X^2 + X + 1$.

4)
$$A = X^4 + 7X^3 + 7X^2 + 28X + 12$$
 et $B = X^2 + 7X + 3$.

Dans les cas suivants, déterminer le reste de la division euclidienne de A par B dans $\mathbb{R}[X]$.

- 5) A quelconque et B = (X a)(X b) où $a \neq b$ sont deux réels.
- 6) $A = nX^{n+2} (n+2)X^{n+1} + (n+2)X n$ et $B = (X-1)^3$, où n est un entier naturel non nul.

Exercice 10

Dans les cas suivants déterminer le PGCD des polynômes A et B et en déduire, s'il y en a, les zéros communs à A et B.

1)
$$A = 2X^4 - 17X^3 + 31X^2 - 15X$$
 et $B = X^2 - 7X + 5$.

2)
$$A = X^5 + X^4 - 6X^3 - X^2 - X + 6$$
 et $B = X^4 + 2X^3 - X - 2$

Exercice 11 : Divisibilité abstraite

Les deux questions sont indépendantes mais porte chacune sur un problème de divisibilité moins concret que les exemples explicites ci-dessus.

- 1) Soient p et q deux entiers positifs tels que p|q. Montrer que $X^p 1|X^q 1$.
- 2) Prenons P un polynôme de $\mathbb{R}[X]$. Montrer que

$$P(X) - X|P(P(X) - P(X).$$