

On the Efficient Evaluation of Array Joins

Big Data in the Geosciences Workshop IEEE Big Data, Santa Clara, US, 2015-oct-29

Peter Baumann, Vlad Merticariu

Jacobs University | rasdaman GmbH {p.baumann,v.merticariu}@jacobs-university.de

[gamingfeeds.com]

Data Homogenization With OGC Standards

Web Coverage Service (WCS)

- OGC Coverages unifying regular & irregular grids, point clouds, meshes
 - OGC Coverage Implementation Schema
- WCS Core: access to spatio-temporal coverages & subsets

- WCS Extensions: optional functionality facets
 - Scaling, CRS transformation, ...

Large, growing implementation basis: rasdaman, GDAL, QGIS, OpenLayers, OPeNDAP, MapServer, GeoServer, NASA WorldWind, EOx-Server; Pyxis, ERDAS, ArcGIS, ...

OGC Web Coverage Processing Service (WCPS)

= high-level spatio-temporal geo analytics language std

[JacobsU, FhG; NASA; data courtesy BGS, ESA]

- "From MODIS scenes M1, M2, M3: difference between red & nir, as TIFF"
 - ...but only those where nir exceeds 127 somewhere, within LandMask

```
for $c in (M1, M2, M3),
    $lm in (LandMask)
where
    some($c.nir > 127 and $lm)
return
    encode($c.red - $c.nir, "image/tiff")
```


Earth Server: Datacubes At Your Fingertips

- Agile Analytics on Earth & Planetary datacubes
 - rasdaman + NASA WorldWind
 - Rigorously standards: OGC WMS + WCS + WCPS
 - 100s of TB online now, next: 1+ Petabyte per cube

EU + US + AUS

NCI

Australia

Agile Array Analytics: rasdaman

- "raster data manager": SQL + n-D arrays
- Scalable parallel "tile streaming" architecture
 - Joins!
- Supports R, QGIS, OpenLayers, MapServer,
 GDAL, EOxServer, Pyxis, ERDAS, ArcGIS, ...
- Blueprint for OGC WCPS, ISO Array SQL stds

T··Systems·

Array Joins :: IEEE Big Data :: ©2015 rasdaman

Array Partitioning

- Goal: faster loading by adapting storage units to access patterns
- Approach: split n-D array into n-D partitions ("tiles")
- Tiling classification based on degree of alignment [ICDE 1999]

chunking [Sarawagi, Stonebraker, DeWitt, ...

Why Irregular Partitioning?

[Centrella et al: scidacreviews.org]

[OpenStreetMap]

Array Joins :: IEEE Big Data :: ©2015 rasdaman

Array Join: What Happens?

"MODIS red band with cloud mask applied":

\$Modis.red * \$CloudMask

- Case 1: same tile shapes, same position
 - Easy
- Case 2: same tile shapes, different position
 - Overlaps, not so easy
- Case 3: different tile shapes
 - Worse
- Case 4: different dimensions
 - Gimme a break!

A1	A 3	A5
A2	A 4	A 6

Array Join: Problem Statement

 Goal: minimize tile reads when evaluating "A op B" in face of some arbitrary, independent partitioning of A and B

\$Modis.red * \$CloudMask

A-1	A 3	A 5
A2	A 4	A6

Bipartite Traversal Graphs

B1	B2
В3	B2

A1	A 2
А3	A4

B1	B2
В3	
B4	B5

Finding Complete Paths

Leonhard Euler: "complete, minimal path for even-degree nodes"

Carl Hierholzer: "not even degree? Add aux edges!"

Finding Shortest Paths

<B4, A3, B2, A1, B1, B3, A3, B5, A4, B2, A2>

<B4,A3,B3,A1,B1,A2, B2,A4,B5,A3,B2,A1>

- Assumption: can hold 1 red, 1 blue tile
- How to find shortest path? See paper!

Complexity?

Best case: full alignment

A1	A2
А3	A4

B1	B2
В3	B2

Worst case: All tiles of A x all tiles of B

 $\rightarrow |E_A|^*|E_B|$

 $\rightarrow |E_A| + |E_B|$

What else?

- We have: tile traversal with minimum duplicate tile reads
- Variation 1: buffer size to avoid dup reads?
 - query cost estimation
- Variation 2: for buffer size given, how much improvement?
- Variation 3: parallelize disconnected subgraph

A1	A2
АЗ	A4

Variation 4: how many tiles to ship between nodes for optimal parallelization?

Wrap-Up

 Array Database queries offer new Big Data service level, including datacube fusion

- Standardization: ISO Array SQL, OGC WCPS

Need efficient algorithms

Datacube Research @ Jacobs U

- Large-Scale Scientific Information Systems research group
 - Flexible, scalable n-D array services
 - www.jacobs-university.de/lsis
- Main results:
 - pioneer Array DBMS, rasdaman
 - standardization:
 - OGC Big Geo Data (also ISO, INSPIRE, W3C)
 - ISO Array SQL

Hiring PhD students, PostDocs

Array Joins :: IEEE Big Data :: ©2015 rasdaman