SC223 - Linear Algebra

Aditya Tatu

Lecture 10

August 18, 2023

▶ Column Space:

$$C(A) = \{Ax \mid \forall x \in \mathbb{R}^n\}, C(A) \subseteq \mathbb{R}^m$$

► Nullspace:

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

► Rowspace:

$$C(A^T) = \{A^T y \mid \forall y \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$$

► Left Nullspace:

$$N(A^T) := \{ y \in \mathbb{R}^m \mid A^T y = \mathbf{0}_n \} \subseteq \mathbb{R}^m$$

▶ Column Space:

$$C(A) = \{Ax \mid \forall x \in \mathbb{R}^n\}, C(A) \subseteq \mathbb{R}^m$$

► Nullspace:

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

► Rowspace:

$$C(A^T) = \{A^T y \mid \forall y \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$$

► Left Nullspace:

$$N(A^T) := \{ y \in \mathbb{R}^m \mid A^T y = \mathbf{0}_n \} \subseteq \mathbb{R}^m$$

• All the above sets $S \subseteq \mathbb{R}^k$, k = m, n as appropriate, satisfy: (1) $\mathbf{0}_k \in S$, (2) $\forall p, q \in S, \forall k_1, k_2 \in \mathbb{R}, k_1p + k_2q \in S$.

▶ Column Space:

$$C(A) = \{Ax \mid \forall x \in \mathbb{R}^n\}, C(A) \subseteq \mathbb{R}^m$$

► Nullspace:

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

► Rowspace:

$$C(A^T) = \{A^T y \mid \forall y \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$$

► Left Nullspace:

$$N(A^T) := \{ y \in \mathbb{R}^m \mid A^T y = \mathbf{0}_n \} \subseteq \mathbb{R}^m$$

- All the above sets $S \subseteq \mathbb{R}^k$, k = m, n as appropriate, satisfy: (1) $\mathbf{0}_k \in S$, (2) $\forall p, q \in S, \forall k_1, k_2 \in \mathbb{R}, k_1p + k_2q \in S$.
- Row/Column Rank of a Matrix: The number of linearly independent rows/columns of a matrix is called the Row/Column Rank.

▶ Column Space:

$$C(A) = \{Ax \mid \forall x \in \mathbb{R}^n\}, C(A) \subseteq \mathbb{R}^m$$

► Nullspace:

$$N(A) := \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}_m\}, N(A) \subseteq \mathbb{R}^n$$

► Rowspace:

$$C(A^T) = \{A^T y \mid \forall y \in \mathbb{R}^m\} \subseteq \mathbb{R}^n$$

► Left Nullspace:

$$N(A^T) := \{ y \in \mathbb{R}^m \mid A^T y = \mathbf{0}_n \} \subseteq \mathbb{R}^m$$

- All the above sets $S \subseteq \mathbb{R}^k$, k = m, n as appropriate, satisfy: (1) $\mathbf{0}_k \in S$, (2) $\forall p, q \in S, \forall k_1, k_2 \in \mathbb{R}, k_1p + k_2q \in S$.
- Row/Column Rank of a Matrix: The number of linearly independent rows/columns of a matrix is called the Row/Column Rank.
- LD columns of $A \Leftrightarrow \exists z \neq 0$ such that $Az = \mathbf{0}_m$.

Row Space and Nullspace/Column Space and Left Nullspace

Ilspace

• Who lives in
$$C(A^T) \cap N(A)$$
?

$$C(A^T) \cap N(A) = \{ \overrightarrow{O_n} \}.$$

$$C(A) \cap N(A^T) = \{ \overrightarrow{O_n} \}.$$

• Who lives in
$$C(A^T) \cap N(A)$$
? $\Rightarrow C(A) \cap N(A^T) = \{\overrightarrow{D}_{M}\}$
Let $\chi \in C(A^T) \cap N(A)$.
 $\Rightarrow \chi \in C(A^T)$ $\Rightarrow \chi \in N(A)$
 $\Rightarrow \chi \in C(A^T)$ $\Rightarrow \chi \in N(A)$
 $\Rightarrow \chi \in C(A^T)$ $\Rightarrow \chi \in N(A)$
 $\Rightarrow \chi \in C(A^T)$ $\Rightarrow \chi \in N(A)$

$$\Rightarrow \chi \in C(A^{T}) \Rightarrow \chi \in N(A)$$

$$\exists y_{1} \in \mathbb{R}^{M} \text{ s.t. } Ay_{1} = \chi \Rightarrow A\chi = \overrightarrow{O} \rightarrow 2$$
Substitute (1) in (2)

$$\begin{array}{ll}
\exists y_1 \in \mathbb{R}^M \text{ s.t. } Ay_1 = \chi & \Rightarrow A\chi = \overrightarrow{O} \rightarrow \widehat{2} \\
\downarrow \Rightarrow \widehat{0} & \Rightarrow & \downarrow \Rightarrow \widehat{0} \\
\Rightarrow & (A(A^Ty_1) = \overrightarrow{O}_{M\times 1}) \\
\Rightarrow & \underbrace{y_1^T A A^T y_1}_{X} = \underbrace{y_1^T \overrightarrow{O}}_{X} = 0
\end{array}$$

Substitute () in (2)	
$\Rightarrow (A(A^{T}y_{1})) = \overrightarrow{O}_{M\times 1}$	
$= y_1^T A A^T y_1 = y_1^T \vec{O} = 0$	
$\frac{91 + 491 - 910 - 0}{(A^{5}4)^{5}(A^{5}4) = 0} \Rightarrow \chi \chi = 0 \Rightarrow \chi = 0$	

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{ccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{ccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$.

$$\bullet \ \, \mathsf{Let} \, \, \mathcal{A} \in \mathbb{R}^{m \times n} = \left[\begin{array}{ccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$. Assume cols $\{a_{*1}, \ldots, a_{*k}\}$ are LI.

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{ccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$. Assume cols $\{a_{*1}, \ldots, a_{*k}\}$ are LI.

$$A = \left[\begin{array}{cccc} | & & | & & | \\ a_{*1} & \dots & a_{*k} & \dots & a_{*n} \\ | & & | & & | \end{array} \right]$$

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{ccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$. Assume cols $\{a_{*1}, \ldots, a_{*k}\}$ are LI.

$$A = \left[\begin{array}{cccc} | & & & | & & | \\ a_{*1} & \dots & a_{*k} & \dots & a_{*n} \\ | & & & | & \end{array}\right] = \underbrace{\left[\begin{array}{cccc} | & & | & | \\ a_{*1} & \dots & a_{*k} \\ | & & & | \end{array}\right]_{m \times k}}_{A_k}$$

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{ccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$. Assume cols $\{a_{*1}, \ldots, a_{*k}\}$ are LI.

$$A = \begin{bmatrix} & & & & & & & & \\ & a_{*1} & \dots & a_{*k} & \dots & a_{*n} \\ & & & & & & \end{bmatrix} = \underbrace{\begin{bmatrix} & & & & & \\ & a_{*1} & \dots & a_{*k} \\ & & & & & \end{bmatrix}}_{m \times k} B_{k \times n}$$

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{ccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$. Assume cols $\{a_{*1}, \ldots, a_{*k}\}$ are LI.

$$A = \begin{bmatrix} & & & & | & & & | \\ a_{*1} & \dots & a_{*k} & \dots & a_{*n} \\ & & & & | & \end{bmatrix} = \underbrace{\begin{bmatrix} & | & & | & | \\ a_{*1} & \dots & a_{*k} & | & \\ & & & & | & \end{bmatrix}}_{m \times k} B_{k \times n}$$
$$= A_{k}$$

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{ccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$. Assume cols $\{a_{*1}, \ldots, a_{*k}\}$ are LI.

$$A = \begin{bmatrix} & & & & | & & & | \\ a_{*1} & \dots & a_{*k} & \dots & a_{*n} \\ & & & & | & & | \end{bmatrix} = \underbrace{\begin{bmatrix} & & & & | \\ a_{*1} & \dots & a_{*k} \\ & & & & | & \end{bmatrix}}_{m \times k} B_{k \times n}$$
$$= A_k \begin{bmatrix} I_k \end{bmatrix}$$

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{ccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$. Assume cols $\{a_{*1}, \ldots, a_{*k}\}$ are LI.

$$A = \begin{bmatrix} | & & | & & | \\ | & a_{*1} & \dots & a_{*k} & \dots & a_{*n} \end{bmatrix} = \underbrace{\begin{bmatrix} | & & | & | \\ | & a_{*1} & \dots & a_{*k} \\ | & & | & \end{bmatrix}}_{m \times k} B_{k \times n}$$
$$= A_k \underbrace{[I_k \quad b_{*,k+1} \quad \dots \quad b_{*,n}]_{k \times n}}_{B}$$

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{ccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$. Assume cols $\{a_{*1}, \ldots, a_{*k}\}$ are LI.

$$A = \begin{bmatrix} | & & | & & | \\ | & a_{*1} & \dots & a_{*k} & \dots & a_{*n} \end{bmatrix} = \underbrace{\begin{bmatrix} | & & | \\ | & a_{*1} & \dots & a_{*k} \end{bmatrix}}_{A_k} B_{k \times n}$$

$$= A_k \underbrace{[I_k \quad b_{*,k+1} \quad \dots \quad b_{*,n}]_{k \times n}}_{B}$$

$$A = A_k B$$

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{ccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$. Assume cols $\{a_{*1}, \ldots, a_{*k}\}$ are LI.

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{cccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$. Assume cols $\{a_{*1}, \ldots, a_{*k}\}$ are LI.

$$A = \begin{bmatrix} \begin{vmatrix} & & & & & & & & & & \\ a_{*1} & \dots & a_{*k} & \dots & a_{*n} \\ & & & & & & \end{vmatrix} = \underbrace{\begin{bmatrix} & & & & & \\ a_{*1} & \dots & a_{*k} \\ & & & & & \end{vmatrix}}_{m \times k} B_{k \times n}$$

$$= A_k \underbrace{\begin{bmatrix} I_k & b_{*,k+1} & \dots & b_{*,n} \end{bmatrix}_{k \times n}}_{B}$$

$$A = A_k B$$

$$\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Thus row rank of A

$$\bullet \text{ Let } A \in \mathbb{R}^{m \times n} = \left[\begin{array}{cccc} | & \dots & | \\ a_{*1} & \dots & a_{*n} \\ | & \dots & | \end{array} \right]$$

• Let column rank of $A = k \le n$. Assume cols $\{a_{*1}, \ldots, a_{*k}\}$ are LI.

• Thus row rank of $A \leq k$.

$$A_{M\times n} = \begin{bmatrix} 1 & 0 & T & -0 \\ \hline -C_{r+1,*} & -C_{m,*} & -C_{m,*} \\ \hline -C_{m,*} & -C_{m,*} & -C_{m,*} \end{bmatrix}$$

$$M\times A = \begin{bmatrix} 1 & 0 & T & -0 \\ -C_{r+1,*} & -C_{m,*} & -C_{m,*} \\ \hline -C_{m,*} & -C_{m,*} & -C_{m,*} \\ -C_{m,*} & -C_{m,*} & -C_{m,*} \\ \hline -C_{m,*} & -C_{m,*} & -C_{m,*} \\ \hline -C_{m,*} & -C_{m,*} & -C_{m,*} \\ \hline -C_{m,*} & -C_{m,*} & -C$$

$$\begin{bmatrix} - & a_{1*}^T & - \\ \vdots & \vdots & \vdots \\ - & a_{m*}^T & - \end{bmatrix} = C_{m \times r} \begin{bmatrix} - & a_{1*}^T & - \\ \vdots & \vdots & \vdots \\ - & a_{r*}^T & - \end{bmatrix}_{r \times n}$$

$$\begin{bmatrix} - & a_{1*}^T & - \\ \vdots & \vdots & \vdots \\ - & a_{m*}^T & - \end{bmatrix} = C_{m \times r} \underbrace{\begin{bmatrix} - & a_{1*}^T & - \\ \vdots & \vdots & \vdots \\ - & a_{r*}^T & - \end{bmatrix}_{r \times n}}_{A^r}$$
$$= \begin{bmatrix} I_r \\ - & c_{r+1,*}^T & - \\ \vdots & \ddots & \vdots \\ - & c_{r}^T & - \end{bmatrix} A_{r \times n}^r$$

$$\begin{bmatrix} - & a_{1*}^T & - \\ \vdots & \vdots & \vdots \\ - & a_{m*}^T & - \end{bmatrix} = C_{m \times r} \underbrace{\begin{bmatrix} - & a_{1*}^T & - \\ \vdots & \vdots & \vdots \\ - & a_{r*}^T & - \end{bmatrix}_{r \times n}}_{A^r}$$

$$= \begin{bmatrix} I_r \\ - & c_{r+1,*}^T & - \\ \vdots & \ddots & \vdots \\ - & c_{m,*}^T & - \end{bmatrix}_{m \times r} A_{r \times n}^r$$

$$A_{m \times n} = C_{m \times r} A_{r \times n}^r$$

$$\begin{bmatrix} - & a_{1*}^{T} & - \\ \vdots & \vdots & \vdots \\ - & a_{m*}^{T} & - \end{bmatrix} = C_{m \times r} \underbrace{\begin{bmatrix} - & a_{1*}^{T} & - \\ \vdots & \vdots & \vdots \\ - & a_{r*}^{T} & - \end{bmatrix}_{r \times n}}_{A^{r}}$$

$$= \begin{bmatrix} I_{r} \\ - & c_{r+1,*}^{T} & - \\ \vdots & \ddots & \vdots \\ - & c_{m,*}^{T} & - \end{bmatrix}_{m \times r}$$

$$A_{m \times n} = C_{m \times r} A_{r \times n}^{r}$$

$$\begin{bmatrix} | & | & | \\ a_{*1} & \dots & a_{*k} & \dots & a_{*n} \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | \\ c_{*1} & \dots & c_{*r} \\ | & | & | \end{bmatrix} A^{r}$$

$$\begin{bmatrix} - & a_{1*}^{T} & - \\ \vdots & \vdots & \vdots \\ - & a_{m*}^{T} & - \end{bmatrix} = C_{m \times r} \underbrace{\begin{bmatrix} - & a_{1*}^{T} & - \\ \vdots & \vdots & \vdots \\ - & a_{r*}^{T} & - \end{bmatrix}_{r \times n}}_{A^{r}}$$

$$= \begin{bmatrix} I_{r} \\ - & C_{r+1,*}^{T} & - \\ \vdots & \ddots & \vdots \\ - & & C_{m,*}^{T} & - \end{bmatrix}_{m \times r} A_{r \times n}^{r}$$

$$A_{m \times n} = C_{m \times r} A_{r \times n}^{r}$$

$$\begin{bmatrix} | & | & | \\ a_{*1} & \dots & a_{*k} & \dots & a_{*n} \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ C_{*1} & \dots & C_{*r} \\ | & | & | \end{bmatrix} A^{r}$$

• Thus col rank of $A \le r$, which is a contradiction!.

$$\begin{bmatrix} - & a_{1*}^{T} & - \\ \vdots & \vdots & \vdots \\ - & a_{m*}^{T} & - \end{bmatrix} = C_{m \times r} \underbrace{\begin{bmatrix} - & a_{1*}^{T} & - \\ \vdots & \vdots & \vdots \\ - & a_{r*}^{T} & - \end{bmatrix}_{r \times n}}_{A^{r}}$$

$$= \begin{bmatrix} I_{r} \\ - & C_{r+1,*}^{T} & - \\ \vdots & \ddots & \vdots \\ - & & C_{m,*}^{T} & - \end{bmatrix}_{m \times r} A_{r \times n}^{r}$$

$$A_{m \times n} = C_{m \times r} A_{r \times n}^{r}$$

$$\begin{bmatrix} | & | & | & | \\ a_{*1} & \dots & a_{*k} & \dots & a_{*n} \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | \\ C_{*1} & \dots & C_{*r} \\ | & | & | \end{bmatrix} A^{r}$$

- Thus col rank of $A \le r$, which is a contradiction!.
- Rank of a matrix = Col rank = Row Rank.

• Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.

- Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.
- Consider the restriction $A|_{C(A^T)}: C(A^T) \to C(A) \subseteq \mathbb{R}^m$.

- Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.
- Consider the restriction $A|_{C(A^T)}: C(A^T) \to C(A) \subseteq \mathbb{R}^m$.
- For $y_1, y_2 \in C(A^T)$, what if $Ay_1 = Ay_2$?

$$Ay_1 = Ay_2$$

$$Ay_1 - Ay_2 = \overline{O}_m$$

$$A(y_1 - y_2) = \overline{O}_m$$

$$Y_1 - y_2 \in \mathcal{N}(A)$$

$$Y_1, y_2 \in \mathcal{C}(A^T), \quad y_1 - y_2 \in \mathcal{C}(A^T)$$

$$y_1 - y_2 = \overline{O}_m \Rightarrow y_1 = y_2$$

- Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.
- Consider the restriction $A|_{C(A^T)}: C(A^T) \to C(A) \subseteq \mathbb{R}^m$.
- For $y_1, y_2 \in C(A^T)$, what if $Ay_1 = Ay_2$?
- Thus $A|_{C(A^T)}$ is **injective**.

- Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.
- Consider the restriction $A|_{C(A^T)}: C(A^T) \to C(A) \subseteq \mathbb{R}^m$.
- For $y_1, y_2 \in C(A^T)$, what if $Ay_1 = Ay_2$?
- Thus $A|_{C(A^T)}$ is **injective**.
- Is $A|_{C(A^T)}$ surjective?

- Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.
- Consider the restriction $A|_{C(A^T)}: C(A^T) \to C(A) \subseteq \mathbb{R}^m$.
- For $y_1, y_2 \in C(A^T)$, what if $Ay_1 = Ay_2$?
- Thus $A|_{C(A^T)}$ is **injective**.
- Is $A|_{C(A^T)}$ surjective?i.e., $\forall Ax, \exists \bar{y} \in \mathbb{R}^m$ such that $AA^T\bar{y} = Ax$.

- Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.
- Consider the restriction $A|_{C(A^T)}: C(A^T) \to C(A) \subseteq \mathbb{R}^m$.
- For $y_1, y_2 \in C(A^T)$, what if $Ay_1 = Ay_2$?
- Thus $A|_{C(A^T)}$ is **injective**.
- Is $A|_{C(A^T)}$ surjective?i.e., $\forall Ax, \exists \bar{y} \in \mathbb{R}^m$ such that $AA^T\bar{y} = Ax$.
- Let rank(A) = r.

- Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.
- Consider the restriction $A|_{C(A^T)}: C(A^T) \to C(A) \subseteq \mathbb{R}^m$.
- For $y_1, y_2 \in C(A^T)$, what if $Ay_1 = Ay_2$?
- Thus $A|_{C(A^T)}$ is **injective**.
- Is $A|_{C(A^T)}$ surjective?i.e., $\forall Ax, \exists \bar{y} \in \mathbb{R}^m$ such that $AA^T\bar{y} = Ax$.
- Let rank(A) = r. $A = \begin{bmatrix} A_{LI_{r} \times n} \\ A_{LD(m-r) \times n} \end{bmatrix}$.

- Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.
- Consider the restriction $A|_{C(A^T)}: C(A^T) \to C(A) \subseteq \mathbb{R}^m$.
- For $y_1, y_2 \in C(A^T)$, what if $Ay_1 = Ay_2$?
- Thus $A|_{C(A^T)}$ is **injective**.
- Is $A|_{C(A^T)}$ surjective?i.e., $\forall Ax, \exists \bar{y} \in \mathbb{R}^m$ such that $AA^T\bar{y} = Ax$.
- Let rank(A) = r. $A = \begin{bmatrix} A_{LI_{r \times n}} \\ A_{LD(m-r) \times n} \end{bmatrix}$.
- All elements of $C(A^T)$ can be written as $A_{LI}^T y, y \in \mathbb{R}^r$.

- Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.
- Consider the restriction $A|_{C(A^T)}:C(A^T)\to C(A)\subseteq\mathbb{R}^m$.
- For $y_1, y_2 \in C(A^T)$, what if $Ay_1 = Ay_2$?
- Thus $A|_{C(A^T)}$ is **injective**.
- Is $A|_{C(A^T)}$ surjective?i.e., $\forall Ax, \exists \bar{y} \in \mathbb{R}^m$ such that $AA^T\bar{y} = Ax$.
- Let rank(A) = r. $A = \begin{bmatrix} A_{LIr \times n} \\ A_{LD(m-r) \times n} \end{bmatrix}$.
- All elements of $C(A^T)$ can be written as $A_{LI}^T y, y \in \mathbb{R}^r$.

$$\left[\begin{array}{c} A_{LI} \\ A_{LD} \end{array}\right] A_{LI}^T y = \left[\begin{array}{c} A_{LI} \\ A_{LD} \end{array}\right] x$$

- Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.
- Consider the restriction $A|_{C(A^T)}: C(A^T) \to C(A) \subseteq \mathbb{R}^m$.
- For $y_1, y_2 \in C(A^T)$, what if $Ay_1 = Ay_2$?
- Thus $A|_{C(A^T)}$ is **injective**.
- Is $A|_{C(A^T)}$ surjective?i.e., $\forall Ax, \exists \bar{y} \in \mathbb{R}^m$ such that $AA^T\bar{y} = Ax$.
- Let rank(A) = r. $A = \begin{bmatrix} A_{LI_{r \times n}} \\ A_{LD(m-r) \times n} \end{bmatrix}$.
- All elements of $C(A^T)$ can be written as $A_{LI}^T y, y \in \mathbb{R}^r$.

$$\begin{bmatrix} A_{LI} \\ A_{LD} \end{bmatrix} A_{LI}^T y = \begin{bmatrix} A_{LI} \\ A_{LD} \end{bmatrix} x$$
$$\begin{bmatrix} A_{LI} A_{LI}^T y \\ A_{LD} A_{LI}^T y \end{bmatrix} = \begin{bmatrix} A_{LI} x \\ A_{LD} x \end{bmatrix}$$

- Given that $A: \mathbb{R}^n \to \mathbb{R}^m$, note that $C(A^T) \subseteq \mathbb{R}^n$, $C(A) \subseteq \mathbb{R}^m$.
- Consider the restriction $A|_{C(A^T)}:C(A^T)\to C(A)\subseteq\mathbb{R}^m$.
- For $y_1, y_2 \in C(A^T)$, what if $Ay_1 = Ay_2$?
- Thus $A|_{C(A^T)}$ is **injective**.
- Is $A|_{C(A^T)}$ surjective?i.e., $\forall Ax, \exists \bar{y} \in \mathbb{R}^m$ such that $AA^T\bar{y} = Ax$.
- Let rank(A) = r. $A = \begin{bmatrix} A_{LIr \times n} \\ A_{LD(m-r) \times n} \end{bmatrix}$.
- All elements of $C(A^T)$ can be written as $A_{LI}^T y, y \in \mathbb{R}^r$.

$$\begin{bmatrix} A_{LI} \\ A_{LD} \end{bmatrix} A_{LI}^T y = \begin{bmatrix} A_{LI} \\ A_{LD} \end{bmatrix} x$$
$$\begin{bmatrix} A_{LI} A_{LI}^T y \\ A_{LD} A_{LI}^T y \end{bmatrix} = \begin{bmatrix} A_{LI} x \\ A_{LD} x \end{bmatrix}$$

• Find a solution (i.e., $y \in \mathbb{R}^r$ for any given $x \in \mathbb{R}^n$) to $A_{LI}A_{LI}^Ty = A_{LI}x$.

 $\bullet \ A_{LI}A_{LI}^Ty = A_{LI}x$

- \bullet $A_{LI}A_{II}^Ty = A_{LI}x$
- Given that $A_{LI} \in \mathbb{R}^{r \times n}$, what do we know about $A_{LI}A_{LI}^T$?

- \bullet $A_{LI}A_{II}^Ty = A_{LI}x$
- Given that $A_{LI} \in \mathbb{R}^{r \times n}$, what do we know about $A_{LI}A_{LI}^T$?
- HW: Show that a square matrix with all columns LI is invertible.

- $\bullet \ A_{LI}A_{II}^Ty = A_{LI}x$
- Given that $A_{LI} \in \mathbb{R}^{r \times n}$, what do we know about $A_{LI}A_{LI}^T$?
- HW: Show that a square matrix with all columns LI is invertible.
- Thus, $A_{LI}A_{LI}^T$ is invertible!

- $\bullet \ A_{LI}A_{II}^Ty = A_{LI}x$
- Given that $A_{LI} \in \mathbb{R}^{r \times n}$, what do we know about $A_{LI}A_{LI}^T$?
- HW: Show that a square matrix with all columns LI is invertible.
- **●** Thus, $A_{LI}A_{LI}^T$ is invertible! $\exists y \in \mathbb{R}^r$ and therefore an element $A_{LI}^T y \in C(A^T)$ such that $AA_{LI}^T y = Ax$ for a given $x \in \mathbb{R}^n$.

- $\bullet \ A_{LI}A_{LI}^Ty = A_{LI}x$
- Given that $A_{LI} \in \mathbb{R}^{r \times n}$, what do we know about $A_{LI}A_{LI}^T$?
- HW: Show that a square matrix with all columns LI is invertible.
- Thus, $A_{LI}A_{LI}^T$ is invertible! $\exists y \in \mathbb{R}^r$ and therefore an element

 $A_{LI}^T y \in C(A^T)$ such that $AA_{LI}^T y = Ax$ for a given $x \in \mathbb{R}^n$. • Thus, $A|_{C(A^T)}: C(A^T) \to C(A)$ is **invertible**!

