Converting from binary to dot decimal notation

Converting from Decimal to Binary

		128	64	32	16	8	4	2	1
168 -128		1							
40	< 64, place a 0 in the 64 position do not subtract	1	0						
40 -32	> 32, place a 1 in the 32 position subtract 32	1	0	1					
8	< 16, place a 0 in the 16 position do not subtract	1	0	1	0				
8	= 8, place a 1 in the 8 position subtract 8	1	0	1	0	1			
0	place a 0 in all remaining positions All done. Result	1	0	1	0	1	0	0	0

Converting Decimal to Binary

IPv4 Subnet Mask

 A subnet mask is a separate 32-bit pattern used to define the network and host portions of an address.

• Shows where the network portion is in the IP.

IPv4 address	192	168	10	10
irv4 address	11000000	10101000	00001010	00001010
	255	255	255	0
Subnet Mask	11111111	11111111	11111111	00000000
	192	168	10	0
Network address	11000000	10101000	00001010	00000000

Subnet mask always has 1s from left to final position of network address. 1s show the location of netawork portion