Najważniejsze architektury

w głębokim uczeniu maszynowym

Pojęcia na dziś

- FCN
- CNN
- RNN
- Transformery

FCN

FCN Fully Connected Network

- wejściem do każdego neuronu jest ważona suma wartości wszystkich neuronów w poprzedniej warstwie
- wagi dla całej warstwy opisuje macierz parametrów, który model się uczy w czasie treningu
- po obliczeniu ważonych sum używa się funkcji aktywacji

FCN
Fully Connected Network

ZBYT PROSTE? PATRZ: MLP-MIXER :)

- wejściem do każdego neuronu jest ważona suma wartości wszystkich neuronów w poprzedniej warstwie
- wagi dla całej warstwy opisuje macierz parametrów, który model się uczy w czasie treningu
- po obliczeniu ważonych sum używa się funkcji aktywacji

CNN

CNN - komputerowa reprezentacja obrazu

Convolutional Neural Network

Obraz jest tablicą liczb (np. 0-255)!

CNN - komputerowa reprezentacja obrazu

Convolutional Neural Network

CNN - filtrowanie / konwolucja

Convolutional Neural Network

	7	2	3	3	8	
	4	5	3	8	4	
	3	3	2	8	4	
	2	8	7	2	7	
	5	4	4	5	4	

7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1 = 6

- filtr przesuwa się po całym obrazie
 i oblicza iloczyn skalarny
- początki lata 60., przybliżenie gradientu jasności obrazu
- wykrywa **cechy obrazu**

CNN - filtrowanie / konwolucja

Convolutional Neural Network

$$egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}$$

$$egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}$$

CNN - filtrowanie / konwolucja

Convolutional Neural Network

____ tego uczy się model (tzw. feature map / kernel / filter)

$$egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix}$$

$$egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix}$$

CNN - architektura

Convolutional Neural Network

- przez objętość w warstwie /
 produkuje 1 kanał w warstwie /+1
 (filtr ma tyle kanałów, ile poprzednia warstwa)
- na końcu rozwijamy wszelkie wartości w jeden długi wektor i używamy zwykłych warstw gęstopołączonych

CNN - architektura

Convolutional Neural Network

każdy filtr po przesunięciu się
przez objętość w warstwie /
produkuje 1 kanał w warstwie /+1
(filtr ma tyle kanałów, ile poprzednia warstwa)

 na końcu rozwijamy wszelkie wartości w jeden długi wektor i używamy zwykłych warstw gęstopołączonych TRANSFER LEARNING!

CNN - intuicja Convolutional Neural Network

CNN - historia

Convolutional Neural Network

LeNet (1998)

AlexNet (2012)

CNN - zastosowania

Convolutional Neural Network

detekcja obiektów

rozpoznawanie tekstu

segmentacja

RNN - reprezentacja słów

Recurrent Neural Network

	cð	Mai	on.	sð	.4/LE
the =>	0	0	0	0	1
cat =>	1	0	0	0	0
sat =>	0	0	0	1	0

Italy Spain Turkey Rome Madrid Ottawa Germany Russia Ankara Berlin Moscow Japan Vietnam China Tokyo Hanoi Beijing

one-hot encoding

word embedding

RNN - intuicja

RNN - intuicja

RNN - intuicja

RNN - architektura

Recurrent Neural Network

(np. wektorowa reprezentacja słowa)

- początkowy stan ukryty nie zawiera żadnej informacji (np. wektor zer)
- nowy stan ukryty to suma (dosłownie)
 poprzedniego stanu ukrytego i
 aktualnego wejścia (przemnożonych
 przez macierze / przetworzonych przez
 warstwę gęstopołączoną)
- wyjście to przetworzony ostatni stan ukryty
- są tylko 3 macierze (te same, kroków może być nieskończenie wiele)

RNN - inne reprezentacje

RNN - różne możliwości

RNN - różne możliwości

RNN - ulepszenia

Recurrent Neural Network

GRU (Gated Recurrent Unit) - dla krótszych, mniej złożonych sekwencji i
 LSTM (Long Short-Term Memory) - dla dłuższych, bardziej złożonych sekwencji

RNN - zastosowania

Recurrent Neural Network

modelowanie języka

tłumaczenie

mosaltingly polite but
megget you discuss this
with others including med
he forest you mill this in

rozpoznawanie pisma

rozpoznawanie mowy