# A contrastive objective for training GFlowNets

Tiago da Silva, Diego Mesquita November 18, 2024

School of Applied Mathematics Getulio Vargas Foundation Rio de Janeiro

### Summary

- 1. Problem: Sampling from an unnormalized distribution
- 2. Generative Flow Networks (GFlowNets)
- 3. Contrastive balance and contrastive loss
- 4. Experiments
- 5. Conclusions

Problem: Sampling from an

unnormalized distribution

# Problem: Sampling from an unnormalized distribution

Let  $(\mathcal{X}, \Sigma, \mu)$  be a measurable **state space** with  $\sigma$ -algebra  $\Sigma$ .

Let  $r: \mathcal{X} \to \mathbb{R}_+$  be a **target probability density** (target density for short) and  $R(A) = \int_A r(x)\mu(\mathrm{d}x)$  be the associated measure.

We are interested in the problem of drawing  $x \in \mathcal{X}$  s.t.  $\mathbb{P}[x \in A] \propto R(A)$  for every  $A \in \Sigma$ .

This problem could be addressed from the perspective of MCMC, normalizing flows, diffusion models, etc. Here we consider **Generative Flow Networks**.

# Problem: Sampling from an unnormalized distribution

It will be useful to think about the discrete case in which

- 1.  $\mathcal{X}$  is finite (but potentially intractably large);
- 2.  $\Sigma$  is the discrete  $\sigma$ -algebra; and
- 3. *R* is an unnormalized probability mass function.

**Generative Flow Networks** 

(GFlowNets)

#### **GFlowNets**

A GFlowNet casts the sampling problem on  $\mathcal{X}$  as a planning problem over an extension  $\mathcal{S}\supseteq\mathcal{X}$  of  $\mathcal{X}$ .

### Core principle

A GFlowNet learns a (Markovian) **policy network**  $p_F \colon \mathcal{S} \times \mathcal{S} \to \mathbb{R}_+$  on  $\mathcal{S}$  such that, for a prescribed **initial state**  $s_o$ , the marginal of  $p_F(\cdot|s_o)$  matches R up to a normalizing constant.

4

#### **GFlowNets**

In practice,  $p_F$ 's support is defined on a **state graph** that dictates how the states in S are interconnected.

#### Core definition

A **state graph** is a directed acyclic graph (DAG)  $(S, \mathcal{E})$  defined on S with edges E.

We let  $s_o$  be a special element of S called the **initial state**; it is the only state without incoming edges.

We refer to  $p_F$  as a **forward policy** on  $\mathcal{X}$  if  $p_F(s,\cdot)$  is supported on  $\{u\colon (s,u)\in\mathcal{E}\}.$ 

# Learning a GFlowNet

To learn a GFlowNet, we introduce a **backward policy**<sup>1</sup>  $p_B$ .

Then, we seek for a  $p_F$  satisfying the **trajectory balance** (TB) condition.

$$Zp_F(\tau|s_o) = p_B(\tau|x)r(x), \qquad (1)$$

in which Z is an unknown constant represent the partition function of r,  $Z := \int r(x)\mu(\mathrm{d}x)$  and

$$p_{F}(\tau|s_{o}) = \prod_{(s,s')\in au} p_{F}(s'|s)$$



for every trajectory  $\tau$  (please see the figure on the right).

<sup>&</sup>lt;sup>1</sup>A forward policy on the transposed (edge-direction-switched) state graph.

# Learning a GFlowNet

$$Zp_F(\tau|s_o) = p_B(\tau|x)r(x),$$

If the TB condition above is satisfied, we can immediately conclude that

Marginal of 
$$x$$
 wrt  $p_F(\cdot|s_o)$ 

$$= \sum_{\tau \to x} p_F(\tau|s_o)$$

$$= \sum_{\tau \to x} \frac{r(x)p_B(\tau|x)}{Z}$$

$$\propto r(x) \sum_{\tau \to x} p_B(\tau|x)$$

$$= r(x).$$

Thus,  $p_F(\cdot|s_o)$  samples correctly from r(x)/Z.

## Learning a GFlowNet

Neither  $p_F$  or Z are known;  $p_B(s,\cdot)$  is fixed as an uniform over the parents of s in the state graph.

As such, we parameterize  $p_F(s,\cdot)$  as a neural network with parameters  $\theta$ . We then enforce the TB via the loss

$$\mathcal{L}_{TB}(p_F,p_B,Z) = \mathbb{E}_{\tau \sim p_E} \left[ \left( \log \frac{\mathbf{Z} p_F(\tau|s_o)}{r(x)p_B(\tau|x)} \right)^2 \right] \qquad g_1$$
 in which  $p_E$  is a exploratory policy that might depend on  $p_F$ . We fix 
$$p_E = \epsilon p_U + (1-\epsilon)p_F \qquad g_3$$

as an  $\epsilon$ -greedy version of  $p_F$ ;  $p_U(s,\cdot)$  is uniform over s's children.

### **Example:** multiset generation

For concreteness, we consider the problem of **multiset generation**.

#### Illustrative problem

Let  $\mathcal{X}$  be the space de *m*-sized multisubsets of  $\mathcal{D} = \{1, \dots, d\}$ . How to sample  $x \in \mathcal{X}$  in proportion to a given  $R \colon \mathcal{G} \to \mathbb{R}_+$ ?

The figure below illustrates a state graph for this problem when m=2 and  $\mathcal{D}=\{1,2\}$ ;  $\mathcal{X}$  is the state space and  $\mathcal{S}$  is its extension.



so represents an empty multiset.

# \_\_\_\_

Contrastive balance and

contrastive loss

#### Contrastive balance and contrastive loss

Enforcing the TB condition presents a potentially enormous challenge: estimating the partition function  $Z^2$ .

Our objective is to **derive a balance condition** that does not depend on Z.

We will demonstrate that the following **contrastive balance** (CB) condition is equivalent to TB.

#### Contrastive balance condition

$$\frac{p_F(\tau|s_o)}{p_B(\tau|x)r(x)} = \frac{p_F(\tau'|s_o)}{p_B(\tau'|x')r(x')} \tag{2}$$

for every pair of trajectories  $(\tau, \tau')$  respectively finishing at (x, x').

 $<sup>^2</sup>$ Exact computation of Z is NP-hard for specific graphical models.

#### Contrastive balance and contrastive loss

 $\mathsf{TB} \implies \mathsf{CB}$ : We first note that the  $\mathsf{TB}$  condition entails

$$Zp_F(\tau|s_o) = p_B(\tau|x)r(x)$$
 and  $Zp_F(\tau'|s_o) = p_B(\tau'|x)r(x')$ . (3)

Hence,

$$Z = \frac{p_F(\tau|s_o)}{p_B(\tau|x)r(x)} = \frac{p_F(\tau'|s_o)}{p_B(\tau'|x)r(x')}.$$
 (4)

CB ⇒ TB: Define

$$Z := \frac{p_F(\tau|s_o)}{p_B(\tau|x)r(x)} = \frac{p_F(\tau'|s_o)}{p_B(\tau'|x)r(x')}.$$
 (5)

Then,

$$Zp_F(\tau|s_o) = p_B(\tau|x)r(x) \tag{6}$$

for every trajectory  $\tau$  finishing at x.

#### Contrastive balance and contrastive loss

To enforce the CB condition, we minimize the following loss.

#### Contrastive loss

$$\mathcal{L}_{\mathrm{CB}}(p_F, p_B) = \underset{\tau, \tau' \sim p_E}{\mathbb{E}} \left[ \left( \log \frac{p_F(\tau|s_o)}{p_B(\tau|x) r(x)} - \log \frac{p_F(\tau'|s_o)}{p_B(\tau'|x') r(x')} \right)^2 \right].$$

# Experiments

# Sampling from a MoG

Does  $\mathcal{L}_{\mathrm{CB}}$  leads to faster learning convergence than  $\mathcal{L}_{\mathrm{TB}}$ ?

**Task.** Train a GFlowNet to sample from a 2-dimensional sparse mixture of Gaussian (MoG) distributions with pdf

$$r(x) = \frac{1}{9} \sum_{1 \le i \le 9} \mathcal{N}(x|\mu_i, \sigma_i I). \tag{7}$$

Samples from r are depicted on the right. **GFlowNet design.** The iterative generative process starts at  $s_o = (0,0)$  and fills up one coordinate at a time with a sample from a learned MoG.



Figure 2: Target distribution.

# Sampling from a MoG



 $\mathcal{L}_{\mathrm{CB}}$  leads to a drastically better distributional approximation than  $\mathcal{L}_{\mathrm{TB}}.$ 

# Conclusions

## Takeaway message

- 1. Generative flow networks are an **emerging family** of models for **sampling** from **unnormalized distributions**.
- 2. Accurately estimating the partition function is hard.
- 3. The **Contrastive Balance** (CB) condition **avoids introducing the partition function** into the training process by **comparing** the alignemnt to the TB condition of **pairs of the trajectories**.

This work is an extension of our ICML 2024 paper "Embarrassingly Parallel GFlowNets", which will also be presented later today in TS10.



