Approximating local observables on MPS/PEPS tensor networks with translation-invariant properties

Yupan Liu

College of Computer Science and Technology
Zhejiang University

Aug 11, 2017

Joint work with Itai Arad (Technion)

Local Hamiltonian Problem

Given k-local Hamiltonian $H = \sum_{i=1}^{m} H_i$ on n-qudits with m local terms. Promise that the ground energy $\lambda_0(H) = \langle \Omega | H | \Omega \rangle$ satisfies $\lambda_0(H) \leq \alpha$ or $\lambda_0(H) \geq \beta$ with $\beta - \alpha \geq \frac{1}{poly(n)}$. The output is YES if $\lambda_0(H) \leq \alpha$ otherwise NO if $\lambda_0(H) \geq \beta$.

- k-local Hamiltonian satisfies $H = \sum_i H_i \in \mathcal{L}(\mathbb{C}^{d \otimes n});$
- Each interaction $H_i \in \mathcal{L}(\mathbb{C}^k)$ involving at most k particles.
- Here we focus on *gapped* local Hamiltonian in *2D*.

- In general, k-LHP is even hard for a quantum computer, since it is QMA-complete(QMA=quantum NP).
- But we knew that there exist some special cases are easier, such as the *gapped* or the *commute*.

?

Given local observables B and a ground state $|\Omega\rangle$, how to calculate its expectation value $\langle \Omega | B | \Omega \rangle$ efficiently?

Tensor networks: efficient representation of $|\Omega\rangle$ _

- Using only poly(n) parameters instead of the exponantial size;
- Corollary of area law(conjecture), only with proofs in 1D;
- Related local Hamiltonian problem is inside NP (conjecture);
- MPS / PEPS(conjecture) tensor networks serve as the witness.

$$|\psi\rangle = \sum_{i_1,\dots,i_n} c_{i_1\dots i_n} |i_1\dots i_n\rangle$$
 rank-*n* tensor

Matrix Product State (MPS)

Projected Entangled-Pair State (PEPS)

- Network structure corresponds to entanglement structure;
- Allows variational algorithms.

Contracting the tensor network of $\langle \Omega | B | \Omega \rangle$

♦ 1D: Matrix Product State (MPS)

♦ 2D: Projected Entangled-Pair State (PEPS)

- Using the swalling bubbles;
- Contracting a general PEPS is #P-hard, which is as least harder than NP-hard.
- Approximations must be used, such as boundary MPS, CTM etc.

Can we approximate $\langle \Omega | B | \Omega \rangle$ using only a local patch of the tensor network, assuming that a ground state $|\Omega\rangle$ of a known local Hamiltonian H?

Expectation value from a local patch

Main Problem

Given a g.s. $|\Omega\rangle$ of a known local Hamiltonian H in the form of a PEPS and a local observable B, approximate $\langle \Omega | B | \Omega \rangle$ using only a local patch L of the PEPS around B.

• Local patch
$$V_L = \operatorname{span}\{|v_{\alpha}\rangle\}$$

• Environment $V_L^c = \operatorname{span}\{|v_{\alpha}^c\rangle\}$

internal states (local patch) (environment)
$$\Omega\rangle = \sum |v_{\alpha}\rangle \otimes |v_{\alpha}^c\rangle$$

Finding the g.s. by imaginary time evolution

 \bigcirc Given a local Hamiltonian H with **non-degenerate** g.s., then

$$|\Omega\rangle = \lim_{t \to \infty} \frac{e^{-Ht}|\psi_0\rangle}{\|e^{-Ht}|\psi_0\rangle\|} = \lim_{t \to \infty} \frac{\prod e^{-H\delta t}|\psi_0\rangle}{\|e^{-Ht}|\psi_0\rangle\|}$$

- \bigcirc Simulating imaginary time evolution e^{-Ht}
 - Suzuki-Trotter expansion

$$(e^{-H_o\delta t}e^{-H_e\delta t})^m = e^{-(H_o+H_e)t} + O(mh^2\delta t^2),$$

where $\delta t = \frac{t}{m}$ and $h = \max\{\|H_1\|, \|H_2\|\}.$

■ Taylor expansion *arXiv:1701.05039*

$$e^{-iH\delta t} pprox \sum_{k=0}^K rac{1}{k!} (-iH\delta t)^k$$
, where $K = O(\frac{\log(r/\epsilon)}{\log\log(r/\epsilon)})$ for the given precision ϵ/r .

- 3 Truncation: finding low-rank approximation
 - SVD with *the canonical form* of MPS
 - Alternating least sqaure method (also for 2D)

absorption truncation $B \longrightarrow A' \quad B' \longrightarrow \tilde{A}$

Translation-Invariance Optimization (TIO)

** Transfer matrix method in 1D

$$\langle \psi | \psi \rangle = L_{env}$$

Let
$$E = \mathbf{T}$$
, we have $ER_{env} = R_{env}$ and $E^{\dagger}L_{env} = L_{env}$.

** Equality constraints of axises $\rho_{left} = \rho_{right}$ $\#_{\text{Constraints} = e^{O(|L|)}}$

TIO works for both frustrated and frustration-free systems.

- * Approximating constraints by l_2 -norm $||A|| = \sqrt{\text{Tr}(A^{\dagger}A)}$
 - Semi-definite quadratic programming (SDQP) problem Approximating $\rho_{left}-\rho_{right}=0$ by $\|\rho_{left}-\rho_{right}\|=0$, with
 - Approximating $\rho_{left} \rho_{right} = 0$ by $\|\rho_{left} \rho_{right}\| = 0$, with constraints $\text{Tr}(\rho) = 1$ and $\rho \succeq 0$, i.e. any reduced density matrix.
 - Minimizing $\|\rho_{left} \rho_{right}\|^2 + \|\rho_{up} \rho_{down}\|^2$ for 2D systems on the square lattice. Solving SDQP by the primal-dual interior method

Separating environments from ρ_L on a local patch

- ** Reconstruct a reduced density matrix ρ_L from $V_L = \text{span}\{|v_1\rangle, \cdots, |v_N\rangle\}$, since $\rho_L = \sum_{\alpha,\beta} \rho_{\alpha\beta} |v_{\alpha}\rangle \langle v_{\beta}|$ where $\rho_{\alpha\beta} \in \mathbb{C}^N$ is an unknown trace 1 PSD matrix.
- ** Taking TIO as an example, we have $\rho_{left} = \rho_{right}$ and $\rho_{up} = \rho_{down}$.

** Now consider $\rho_{left}^{\dagger}\rho_{left}$, let environments be $X_{\alpha\beta}$, we have

$$\rho = \sum_{\alpha\beta} \rho_{\alpha\beta} |v_{\alpha}\rangle \langle v_{\beta}| = \sum_{\alpha\beta} X_{\alpha\beta} |v_{\alpha}\rangle \langle v_{\beta}|,$$

$$\rho^{\dagger} = (\sum_{ab} \rho_{ab} |v_{a}\rangle \langle v_{b}|)^{\dagger} = \sum_{ab} X_{ab} |v_{b}\rangle \langle v_{a}|.$$

$$\langle v_{\alpha}| - v_{\alpha}\rangle \langle v_{\alpha}| - v_{\alpha}\rangle$$

* Finally, the SDQP in practial is the following.

$$\min_{X} F(X) := \sum_{\alpha,\beta,a,b} X_{\alpha\beta}^{*} K_{(\alpha\beta),(ab)} X_{ab}$$

subject to $X \succeq 0, \text{Tr}(CX) = 1$

Constructing tensor networks of the SDQP

* Taking TIO as an example, we have $\rho_{left}^{\dagger}\rho_{left}$ in its objective function F(X).

Only labels of open indices are important!

* Transformation between environments and the variable of SDQP.

Variational Corner Transfer Matrix (varCTM)

** Corner transfer matrix (CTM): directional coarse-graining move.

Finding low-rank approximations by truncation schemes

** Equality constraints of axies $\rho_{left} = \rho_L$ and $\rho_{right} = \rho_L$.

partial trace T_3 T_2 T_3 T_4 T_5 T_5 T_5 T_7 $T_$

varCTM works for both frustrated and frustration-free systems.

* Approximating constraints: SDQP problem with same structure.

$$\min_{\rho} F(\rho) = \|\rho_{left} - \rho_L\|^2 + \|\rho_{right} - \rho_L\|^2 + \|\rho_{up} - \rho_L\|^2 + \|\rho_{down} - \rho_L\|^2$$
subject to $\rho \succeq 0$, $\text{Tr}(\rho) = 1$

Commutator Gauge Optimaization (CGO)

Approximating environments

** The CGO lemma

Ref: Phys. Rev. B 94, 195143 (2016)

Given a local patch $L = L_0 \cup \partial L$, consider a local observable $B \in V_{L_0}$ and an eigenstates $|\psi\rangle$ of local Hamiltonian H, then

$$\langle \psi | [H_L, B] | \psi \rangle = \langle \psi | H_L B | \psi \rangle - \langle \psi | B H_L | \psi \rangle = 0.$$

Using the cyclicity of trace, we have

$$\langle \psi | [H_L, B] | \psi \rangle = \operatorname{Tr}_L(\rho_L[B, H_L]) = \operatorname{Tr}_L(B[H_L, \rho_L]).$$

$$\operatorname{Tr}_{\partial L}[H_L, \rho_L] = 0.$$

- * Area law (conjecture) guarantees that information of g.s. is local!
- \bigstar CGO only works for frustrated systems, since frustration-free systems ($[H_L, \rho_L] = 0$) satisfy it trivially.
- ** Approximating constraints: the SDQP problem

$$\min_{\rho_L} F(\rho_L) := \operatorname{Tr}_{L_0} \|\operatorname{Tr}_{\partial L}[H_L, \rho_L]\|^2$$
subject to $\rho_L \succeq 0$, $\operatorname{Tr}(\rho_L) = 1$

Numerical results of CGO

Testing CGO for approximating environments on the transverse Ising model:

 $local\ patch\ (l=5)$

local patch (l=12)

Numerical results of TIO

** Approximating environments and finding g.s. on the tranverse Ising model.

 \ref{model} Approximating environments on the 2D AKLT model with 3×3 square lattices.

Numerical results of varCTM

Testing CTM and varCTM for approximating environments on the *2D* AKLT model with the square lattice:

CTM (D'=4) on 3×3 lattice

varCTM (D'=4) on 3×3 lattice

$\overline{\text{CTM}(D'=20)}$	CTM(D'=2)	CTM(D'=3)	CTM(D'=4)	varCTM(D'=4)
-1.1688	-1.1685	-1.1684727	-1.1684726	-1.1504300234557

TIO(D'=2)	TIO(D'=2,full)	TIO(D'=3)	TIO(D' = 3, full)
(-1.18030, -1.18028)	(-1.17907, -1.17894)	(-1.183, -1.179)	(-1.18392, -1.18386)

Summary

- ** Efficient contraction of a 2D tensor-network is the main obstacle for good 2D tensor-based algorithms.
- * If we assume that the T.N. is a good approximation to the g.s., then local patches can be used to approximate a local expectation value.
- ** Non-trivial local constraints (translation-invariance and commutator gauge properties) for glocal g.s. of local Hamiltonian H guaranteed by area laws: $\#\text{Variables} = e^{O(|\partial L|)} \text{ and } \#\text{Constraints} = e^{O(|L|)}.$
- ** To approximate environments, these constraints can be written as *semi-definite* quadratic programming (SDQP) problems, and then solving them by the primal-dual interior point methods.
- ** Separate a series of environment tensors E_i from g.s. ρ_L , and it will leads us to some practical algorithms (optimizing them alternatively).
- ** Interesting numerical results in 2D among CGO, TIO and varCTM. But how to understand the structure of g.s.' environment by comparing TIO and varCTM?

Thanks for listening!

Q&A