349: Machine Learning

Linear and Polynomial Regression

Classification vs. Regression

Classification:

Learning a function to map from a n-tuple to a **discrete** value from a finite set

Regression:

Learning a function to map from a n-tuple to a continuous value

Some Examples...

- Height and weight: as height increases, you'd expect weight to increase, but not perfectly
- Driving speed and gas mileage: as driving speed increases, you'd expect gas mileage to decrease, but not perfectly.

Regression Learning Task

There is a set of possible examples $X = \{\mathbf{x_1}, \dots \mathbf{x_n}\}$

Each example is a **vector** of k **real valued attributes**

$$\mathbf{X}_{i} = < x_{i1}, ..., x_{ik} >$$

There is a target function that maps X onto some **real value** Y

$$f: X \to Y$$

The DATA is a set of tuples <example, response value>

$$\{<\mathbf{x}_1, y_1>, ... <\mathbf{x}_n, y_n>\}$$

Find a hypothesis h such that...

$$\forall \mathbf{x}, h(\mathbf{x}) \approx f(\mathbf{x})$$

Why Use a Linear Regression Model

- Easily understood
- Interpretable
- Well studied by statisticians → many variations and diagnostic measures
- Computationally efficient

Linear Regression Model

Assumption: The observed response (dependent) variable, r, is the true function, f(x), with additive Gaussian noise, ε , with a 0 mean.

Observed response
$$y = f(\mathbf{x}) + \boldsymbol{\varepsilon}$$
Where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

Assumption: The expected value of the response variable *y* is a linear combination of the k independent attributes/features)

The Hypothesis Space

Given the assumptions on the previous slide, our hypothesis space is the set of linear functions (hyperplanes)

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k$$

 $(w_0$ is the offset from the origin. You always need w_0)

The goal is to learn a k+1 dimensional vector of weights that define a hyperplane minimizing an error criterion.

$$\mathbf{w} = \langle w_0, w_1, ... w_k \rangle$$

Simple Linear Regression

- x has 1 attribute a (predictor variable)
- Hypothesis function is a line:

The Error Criterion

Typically estimate parameters by minimizing sum of squared residuals (RSS)...also known as the Sum of Squared Errors (SSE)

Multiple (Multivariate*) Linear Regression

- Many attributes $X_1, ... X_k$
- h(x) function is a hyperplane

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k$$

Some Math...

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k$$

$$\mathbf{w} = \langle w_0, \dots, w_k \rangle \in \mathbb{R}^{Kx_1}$$

$$\boldsymbol{x} = \langle 1, x_1, \dots, x_k \rangle^T \in \mathbb{R}^{K \times 1}$$

$$h(x) = x^T w$$

Formatting the Data

Create a new 0 dimension with 1 and append it to the beginning of every example vector \mathbf{X}_i

This placeholder corresponds to the offset \mathcal{W}_0

$$\mathbf{x}_{i} = <1, x_{i,1}, x_{i,2}, ..., x_{i,k}>$$

Format the data as a matrix of examples **x** and a vector of response values *y*...

One training example $\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,k} & & y_1 \\ 1 & x_{2,1} & \dots & x_{2,k} & & \mathbf{y} = \begin{bmatrix} y_2 & & & \\ & \ddots & & \\ 1 & x_{n,k} & \dots & x_{n,k} \end{bmatrix}$

There Is a Closed-Form Solution!

Our goal is to find the weights of a function....

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k$$

...that minimizes the sum of squared residuals:

$$RSS = \sum_{i}^{n} (y_i - h(\mathbf{x}_i))^2$$

It turns out that there is a close-form solution to this problem!

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Just plug your training data into the above formula and the best hyperplane comes out!

There Is a Closed-Form Solution!

$$X \longrightarrow X^T$$
 $(n \times k)$ $(k \times n)$

$$w = (X^{T}X)^{-1}X^{T}y$$
(? x ?) = (k x n) (n x k) (k x n) (n x 1)
(? x ?) = (k x k) (k x 1)

RSS in Vector/Matrix Notation

$$RSS(w) = \sum_{i=1}^{n} (y_i - h(x_i))^2$$

$$= \sum_{i=1}^{n} (y_i - x^T w)^2$$

$$= \sum_{i=1}^{n} (y_i - x^T w)^T (y_i - x^T w)$$

$$= (y - Xw)^T (y - Xw)$$

$$\mathbb{R}^{1 \times n} \quad \mathbb{R}^{n \times 1}$$

Some Math for Understanding Notation

$$x^2 = x^T x$$

$$x = [1, 0, 2]^T$$

$$x^2 = x^T x = [1, 0, 2] * \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = 1^2 + 0^2 + 2^2 = 5$$

Gradient Descent Methodologies

Deriving the Formula for w

$$RSS(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^{T} (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$\frac{\partial RSS}{\partial \mathbf{w}} = -2\mathbf{X}^{T} (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$0 = -2\mathbf{X}^{T} (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$0 = \mathbf{X}^{T} (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$0 = \mathbf{X}^{T} (\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$0 = \mathbf{X}^{T} \mathbf{y} - \mathbf{X}^{T} \mathbf{X}\mathbf{w}$$

$$\mathbf{X}^{T} \mathbf{X} \mathbf{w} = \mathbf{X}^{T} \mathbf{y}$$

$$\mathbf{w} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{v}$$

Is X Invertible

We said there was a closed form solution:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- This presupposes matrix $(\mathbf{X}^T\mathbf{X})$ is invertible (non singular) and we can therefore find $(\mathbf{X}^T\mathbf{X})^{-1}$
- If two columns of X are exactly linearly related and thus not independent, then $(\mathbf{X}^T\mathbf{X})$ is NOT invertible
- What then?

Dealing with a Singular X

- We need to make every column of X independent.
- The easy way: add a small amount random noise (with an expected value of 0) to X.
 - This is useful when you can't get rid of redundant columns for some reason
 - For example, your input data file is a 1000 examples of a constant value. You still want the code to return something, so you add a touch of noise and it will run and return something.
- The (often) better way: do dimensionality reduction to get rid of those redundant columns.

Polynomial Regression

Formulating a Polynomial Regression

You're familiar with linear regression where the input has k dimensions.

$$h(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_k x_k$$

We can use this same machinery to make polynomial regression from a one-dimensional input.....

$$h(x) = w_0 + w_1 x + w_2 x^2 + ... w_k x^k$$

Coefficient of Determination

• the **coefficient of determination**, or \mathbb{R}^2 indicates how well data points fit a line or curve. We'd like \mathbb{R}^2 to be close to 1

$$R^2 = 1 - E_{RSE}$$

$$E_{RSS} = \frac{\sum_{i}^{n} (y_i - h(\mathbf{x}_i))^2}{\sum_{i}^{n} (y_i - \overline{y})^2}$$
 where \overline{y} is the sample mean

Don't Rely On Metrics Only -- Visualize!

For all 4 sets: same mean and variance for x, same mean and variance (almost) for y, and same regression line and correlation between x and y (and therefore same R-squared).

Summary of Regression Models

- Easily understood
- Interpretable
- Well studied by statisticians
- Computationally efficient
- Can handle non-linear situations if formulated properly
- Bias/variance tradeoff (occurs in all machine learning)
- Visualize!