Data Science Project

Mid-term Project Presentation

Team <u>User13</u> (<u>Tempête De Données</u>)

5th November, 2019

Team Members:

Akshay Singh Rana Harmanpreet Singh Himanshu Arora Nitarshan Rajkumar Sreya Francis

Problem Statement

User modeling with multi-source user data such as text, images, and relations to arrive at accurate user profiles.

Prediction task overview

Classification Tasks:

- Categorical age
- Gender

Régression Tasks:

- Personality Score Prediction
 - Openness
 - Conscientiousness
 - Extroversion
 - Agreeableness
 - Neuroticism

Pipeline

Data Sources

- Text LIWC + NRC
- Image Oxford Features
- User-Page-likes
- Feature Stats
 - O Number of users: 9500
 - O Total number of features: 65 (oxford) + 1 (relationships) + 81 (liwc) + 10 (nrc)
 - O Missing images for 2326 users
 - O Multiple faces in images of ~700 users

Exploratory Analysis (1/3)

Exploratory Analysis (2/3)

Exploratory Analysis (3/3)

- Using Embedded feature selection methods (Lasso and Random Forest)
- Important features identified for age and gender prediction:
 - facialHair_mustache
 - facialHair_beard
 - o facialHair_sideburns

Prediction Task (1/2)

Tasks	Classification (Acc, higher is better)				Régression (RMSE, lower is better)						
	Ger	nder	Âge		OPN	NEU	EXT	AGR	CON		
Baseline	0.5	594	0.591		0.652	0.798	0.788	0.665	0.734		
SVM	0.613	0.583	0.591	0.583							
Random Forests	0.871	0.647	0.571	0.621	0.605	0.785	0.771	0.632	0.707		
Features Used	Oxford	LIWC + NRC	Oxford	LIWC + NRC	LIWC + NRC	LIWC + NRC	LIWC + NRC	LIWC + NRC	LIWC + NRC		

Third Source: User-Page Like

Shortlisted the pages with more than 10 likes.

Converted the data into a multi-one hot encoding.

	Page 1	Page 2	Page 3	Page 4
User 1	1	0	1	1
User 2	0	0	1	0
User 3	1	0	0	1

Age	Gender
24	Male
35	Male
58	Female

Prediction Task (2/2)

Tasks	Classification (Acc, higher is better)					Régression (RMSE, lower is better)							
		Gender		Âge			OPN	NEU	EXT	AGR	CON		
Baseline	i ne 0.594			0.591			0.652	0.798	0.788	0.665	0.734		
SVM	0.613	0.583	0.819	0.591	0.583	0.670	-	-	-	-	-		
Random Forests	0.871	0.647	0.788	0.571	0.621	0.660	0.605	0.785	0.771	0.632	0.707		
Features Used	Oxford	LIWC + NRC	Page Likes	Oxford	LIWC + NRC	Page Likes	LIWC + NRC	Page Likes					

Learnings

- Improve the encodings in the user page-like data using Node2Vec, etc.
- All three data sources are important and we can leverage them by fusing them together.
- Endless possibilities of stacking models based on different features, algorithms and data sources and fusing them all together.
- We can also stack models with different tasks and combine all the task in the end.

Further Steps

- Investigate stacking features and models
- Feature Engineering
 - Forward search
 - Domain knowledge
 - Node2Vec
- Better Models
 - Gradient Boosted Trees (XGBoost)
 - Neural Networks
- Hyperparameter Search

Q&A

