Lentes

F2 1/6/21

Elementos ópticos

- Espejos
- Dioptras
- Lentes (delgadas)

Objetos

- Cualquier fuente lumínica, o
- Cualquier objeto no luminoso iluminado por una fuente externa.
 - No vamos a distinguir entre ambos
- Objeto ideal: fuente puntual esférica
- Objeto extenso: arreglo continuo de fuentes puntuales

Preguntas

- ¿Qué tipo de imagen se forma?
- ¿Donde se ubica? ¿Qué tamaño tiene?
- Para objetos extensos: ¿la imagen es derecha o invertida?
- Para sistemas de elementos ópticos: ídem para la imagen formada por cada elemento, hasta obtener la imagen final.

Haces homocéntricos

Frente de onda convergente

Frente de onda divergente

Estos haces convergen o divergen hacia o desde un punto del espacio

Formación de imágenes

Formación de imágenes

Recordar que, para el observador, los rayos siempre parecen provenir de B

- Para el observador esta situación es equivalente a la anterior.
- La persona detrás del espejo ahora sí puede ver a la persona "objeto".

Persona que antes estaba frente al espejo

Si la imagen es real, puedo colocar un elemento fotosensible en la posición de la imagen para registrarla

Ejemplos:

- Película fotográfica (cámara analógica)
- Sensor CCD (cámara digital)
- Retina (ojos)
- Pantalla de observación

Si la imagen es virtual, esto no es posible.

Dispositivos convergentes

El haz emergente tiene menor apertura

Los rayos emergentes se desvían hacia el eje óptico

Frente incidente divergente $\beta < \alpha$

Los rayos "se cierran" (comparados con su inclinación anterior)

Eje óptico

Dispositivos divergentes

El haz emergente tiene <u>mayor</u> apertura

Los rayos emergentes se alejan del eje óptico

Los rayos "se abren" (comparados con su inclinación anterior)

Dispositivos convergentes

El haz emergente tiene menor apertura

Los rayos emergentes se desvían hacia el eje óptico

Frente incidente plano

Frente incidente convergente

Dispositivos divergentes

El haz emergente tiene mayor apertura

Los rayos emergentes se alejan del eje óptico

Problema

Dada la posición del objeto, hallar la posición de la imagen

Este problema se puede resolver analíticamente o gráficamente (ambos métodos coinciden)

¿Qué pasa si el objeto es extenso?

Se toma a la punta del objeto como referencia y se la resuelve como si fuese una fuente puntual

Convenciones

El origen se coloca en el elemento óptico

Si tenemos más de un elemento, se resuelve cada elemento por separado aplicando este criterio.

Convenciones

Se dibuja al sistema de modo que los rayos viajen de izquierda a derecha

 Si debido a la acción de algún elemento (por ejemplo un espejo) los rayos se invierten, se rehace el dibujo para respetar el criterio.

Sistema de coordenadas

Convención cartesiana

Un único sistema de referencia para todo

Sistema de coordenadas

Convención "positiva"

(la que usa el Hecht)

Dos sistemas diferentes para la distancia horizontal (s):

Uno para el objeto y otro para la imagen

Tienen el mismo origen pero el sentido positivo es diferente

Ecuación de la lente delgada

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$
 (Escrita en la convención "positiva")

f es la distancia focal:

- Es un parámetro que caracteriza a la lente
- Es una distancia respecto al elemento
- Puede ser positivo o negativo (ya veremos qué significa)

Ecuación de la lente delgada

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$
 (Escrita en la convención "positiva")

Problema típico:

- Dados f y un objeto definido por s_o e y_o
- Hallar s_i e y_i

O cualquier otra variante

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

Ejemplo (con fuente puntual)

-
$$f = 5 \text{ cm}$$

- $s_0 = 10 \text{ cm}$ $s_i^{-1} = 1/f - 1/s_0$
- $s_0 = 10 \text{ cm}$ $s_i^{-1} = (5 \text{ cm})^{-1} - (10 \text{ cm})^{-1}$
 $s_i^{-1} = (10 \text{ cm})^{-1}$

$$s_i = 10 \text{ cm } > 0$$

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

Ejemplo (con fuente puntual)

-
$$f = 5 \text{ cm}$$

- $s_0 = 10 \text{ cm}$ $s_i^{-1} = 1/f - 1/s_0$
- $s_0 = 10 \text{ cm}$ $s_i^{-1} = (5 \text{ cm})^{-1} - (10 \text{ cm})^{-1}$
 $s_i^{-1} = (10 \text{ cm})^{-1}$

$$s_{i} = 10 \text{ cm } > 0$$

Todos los rayos que salen del objeto y que inciden en la lente, son desviados y convergen en la imagen

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

¿Qué pasa si el objeto se aleja de la lente?

-
$$s_0 = 10^2$$
 cm, 10^3 cm, etc. $s_i^{-1} = 1/f - 1/s_0$
(es decir, $s_0 \to \infty$) $s_i^{-1} = (5 \text{ cm})^{-1} - (100 \text{ cm})^{-1} \to s_i = 5.26 \text{ cm}$
 $s_i^{-1} = (5 \text{ cm})^{-1} - (1000 \text{ cm})^{-1} \to s_i = 5.02 \text{ cm}$
 $s_i^{-1} = (5 \text{ cm})^{-1} - (\infty \text{ cm})^{-1} \to s_i = 5 \text{ cm}$

Foco imagen: lugar donde se forma la imagen cuando el objeto se encuentra a una distancia infinita

FOCO IMAGEN

Frente de onda plano incidente → Frente esférico convergente en el foco imagen Cualquier rayo incidente paralelo al eje óptico se desvía hacia el foco imagen

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

¿Qué pasa si el objeto se acerca a la distancia focal?

-
$$s_o = 6$$
 cm, 5.5 cm, etc.
(es decir, $s_o \to 5$ cm) $s_i^{-1} = 1/f - 1/s_o$
(es decir, $s_o \to 5$ cm) $s_i^{-1} = (5 \text{ cm})^{-1} - (6 \text{ cm})^{-1} \to s_i = 30 \text{ cm}$
 $s_i^{-1} = (5 \text{ cm})^{-1} - (5.5 \text{ cm})^{-1} \to s_i = 55 \text{ cm}$
 $s_i^{-1} = (5 \text{ cm})^{-1} - (5 \text{ cm})^{-1} = 0 \to s_i = \infty \text{ cm}$

Foco objeto: lugar donde debe ubicarse el objeto para que la imagen se forme a distancia infinita

FOCO OBJETO

¿Cómo es el frente de onda emergente	
cuando la imagen se forma en infinito?	

Frente esférico proveniente desde el foco objeto → Frente de onda plano emergente Cualquier rayo incidente proveniente del foco objeto se desvía hacia el foco imagen

 $\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$

Pasando en limpio...

Cada foco se ubica en una posición positiva respecto a su sistema de referencia

 $\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$

Pasando en limpio...

Convención positiva

Cada foco se ubica en una posición negativa respecto a su sistema de referencia

Para pensar...

¿Qué significa que los focos de una lente "sean iguales"?

Mismo ejemplo de antes pero ahora la lente es divergente

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

Ejemplo 2, ahora la lente es divergente (f < 0)

-
$$f = -5 \text{ cm}$$

- $s_0 = 10 \text{ cm}$ $s_i^{-1} = 1/f - 1/s_0$
- $s_0 = 10 \text{ cm}$ $s_i^{-1} = (-5 \text{ cm})^{-1} - (10 \text{ cm})^{-1}$
 $s_i^{-1} = (-3.33 \text{ cm})^{-1}$

$$s_i = -3.33 \text{ cm } < 0$$

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

Ejemplo 2, ahora la lente es divergente (f < 0)

-
$$f = -5 \text{ cm}$$

- $s_0 = 10 \text{ cm}$ $s_i^{-1} = 1/f - 1/s_0$
- $s_0 = 10 \text{ cm}$ $s_i^{-1} = (-5 \text{ cm})^{-1} - (10 \text{ cm})^{-1}$
 $s_i^{-1} = (-3.33 \text{ cm})^{-1}$

$$s_i = -3.33 \text{ cm } < 0$$

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

Ejemplo 2, ahora la lente es divergente (f < 0)

-
$$f = -5 \text{ cm}$$

- $s_0 = 10 \text{ cm}$ $s_i^{-1} = 1/f - 1/s_0$
- $s_0 = 10 \text{ cm}$ $s_i^{-1} = (-5 \text{ cm})^{-1} - (10 \text{ cm})^{-1}$
 $s_i^{-1} = (-3.33 \text{ cm})^{-1}$

$$s_{i} = -3.33 \text{ cm } < 0$$

FOCO IMAGEN

Lente delgada

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

Ejemplo 2, ahora la lente es divergente (f < 0)

-
$$f = -5 \text{ cm}$$

- $s_0^{-1} = 1/f - 1/\infty$
- $s_0^{-1} = (-5 \text{ cm})^{-1} - 0$
 $s_i^{-1} = (-5 \text{ cm})^{-1}$

$$s_{i} = -5 \text{ cm } < 0$$

Frente de onda plano incidente → Frente esférico divergente desde el foco imagen

Cualquier rayo incidente paralelo al eje óptico se desvía como si viniera desde el foco imagen

FOCO OBJETO

Lente delgada

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

¿Y si ubico la fuente en el foco objeto?

-
$$f = -5 \text{ cm}$$

- $s_0^{-1} = 1/f - 1/s_0$
- $s_0^{-1} = (-5 \text{ cm})^{-1} - (-5 \text{ cm})^{-1}$
 $s_1^{-1} = (0 \text{ cm})^{-1}$

$$s_i = \infty > 0$$

FOCO OBJETO

Lente delgada

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

¿Y si ubico la fuente en el foco objeto?

-
$$f = -5 \text{ cm}$$

- $s_0^{-1} = 1/f - 1/s_0$
- $s_0^{-1} = (-5 \text{ cm})^{-1} - (-5 \text{ cm})^{-1}$
 $s_i^{-1} = (0 \text{ cm})^{-1}$

$$s_i = \infty > 0$$

Frente de onda incidente convergente en el foco objeto → Frente emergente plano

Cualquier rayo incidente hacia el foco objeto se desvía paralelo al eje óptico

Reglas de trazado de rayos

- Rayo incidente en una trayectoria que contiene al foco objeto: emerge paralelo al eje óptico
- 2. Rayo incidente paralelo al eje óptico: emerge en una trayectoria que contiene al foco imagen
- 3. Rayo incidente que intersecta al eje óptico: no se desvía

Las primeras dos reglas valen para todos los elementos ópticos (espejo, dioptra, lente, etc.)

La última vale sólo para lentes delgadas.

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

Ejemplo (ahora con fuente extensa)

-
$$f = 5 \text{ cm}$$

- $s_0 = 10 \text{ cm}$
- $s_0 = 10 \text{ cm}$

$$s_{i} = 10 \text{ cm } > 0$$

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

Ejemplo (ahora con fuente extensa)

-
$$f = 5 \text{ cm}$$

- $s_0 = 10 \text{ cm}$
- $s_0 = 1 \text{ cm}$

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

Ejemplo (ahora con fuente extensa)

-
$$f = 5 \text{ cm}$$

- $s_0 = 10 \text{ cm}$
- $s_0 = 1 \text{ cm}$

$$s_{i} = 10 \text{ cm } > 0$$

Todos los rayos que salen del objeto se desvían en la lente de modo que convergen a la imagen

Si conocemos la posición del objeto y de su imagen, conocemos la trayectoria completa de todos los rayos

Nos falta determinar la altura de la imagen

Figure 5.24 Object and image location for a thin lens.

$$\frac{y_o}{|y_i|} = \frac{s_o}{s_i}$$

Definimos la magnificación transversal como

$$M_T \equiv \frac{y_i}{y_o}$$

...y usando lo obtenido en la diapo anterior

$$M_T = -\frac{s_i}{s_o}$$

Nos falta determinar la altura de la imagen

$$Mt = -s_i / s_o$$

$$s_0 = s_i = 10 \text{ cm}, \text{ luego Mt} = -1$$

Imagen del mismo tamaño, invertida

$$y_i = -1 \text{ cm}$$

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

Convención positiva

Último ejemplo

-
$$f = 5 \text{ cm}$$

- $s_0 = 2.5 \text{ cm}$
- $s_0 = 1 \text{ cm}$

$$s_{i} = -5 \text{ cm } < 0$$

En este ejemplo, el objeto se ubica entre la lente y el foco objeto.

El resultado es una imagen virtual en el espacio de imagen negativo ($s_i < 0$).

BONUS TRACK

Partamos de :

$$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$$

$$s_i = \left(rac{1}{f} - rac{1}{s_o}
ight)^{-1} = rac{fs_o}{s_o - f}$$

...y hallemos $s_i(s_o)$

