The OpenSMT Solver

Conference Paper · March 2010
DOI: 10.1007/978-3-642-12002-2_12 · Source: DBLP

CITATIONS

78

READS 273

4 authors:

LETERAL SALE

Roberto Bruttomesso

Nozomi Networks

41 PUBLICATIONS 1,114 CITATIONS

SEE PROFILE

Natasha Sharygina

Universita della Svizzera Italiana, Lugano, Switzerland

132 PUBLICATIONS 2,621 CITATIONS

SEE PROFILE

Edgar Pel

University of Illinois, Urbana-Champaign

22 PUBLICATIONS 231 CITATIONS

SEE PROFILE

Aliaksei Tsitovich

Sonova AG

13 PUBLICATIONS 285 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Harnessing Parallel Computing for Model Checking View project

Intrepyd: a model checker for control engineering and industrial automation View project

The OpenSMT Solver

Roberto Bruttomesso

Edgar Pek, Natasha Sharygina, Aliaksei Tsitovich

University of Lugano, Switzerland (Università della Svizzera Italiana)

September 18, 2010

Outline

- Introduction
- 2 Architecture
- 3 A Variable Elimination Techique for SMT
 - \blacksquare DP + FM = DPFM
 - A crazy benchmark suite
 - Related Work
- 4 Extending and Using OPENSMT
 - Extending OpenSMT
- 5 Conclusion

 Satisfiability Modulo Theory (SMT) Solvers are key engines of several verification approaches

- Satisfiability Modulo Theory (SMT) Solvers are key engines of several verification approaches
- Efficient solvers however are proprietary (Z3, YICES, BARCELOGIC, MATHSAT, ...)

- Satisfiability Modulo Theory (SMT) Solvers are key engines of several verification approaches
- Efficient solvers however are proprietary (Z3, YICES, BARCELOGIC, MATHSAT, ...)
- OPENSMT is an effort of providing a simple, extensible, and efficient infrastructure for the development of customized decision procedures

$$a \wedge ((x + y \leq 0) \vee \neg a) \wedge ((x = 1) \vee b)$$

$$a \wedge ((x + y \leq 0) \vee \neg a) \wedge ((x = 1) \vee b)$$

$$a \wedge ((x + y \leq 0) \vee \neg a) \wedge ((x = 1) \vee b)$$

$$a \wedge (\underbrace{(x+y \leq 0)}_{C} \vee \neg a) \wedge (\underbrace{(x=1)}_{d} \vee b)$$

 We need to reason about Boolean combinations of atoms in a theory T (LRA for instance)

 We need to reason about Boolean combinations of atoms in a theory T (LRA for instance)

 We need to reason about Boolean combinations of atoms in a theory T (LRA for instance)

• DPLL + LRA \Rightarrow DPLL(LRA)

DPLL(LRA)

- DPLL(LRA) seems easy to achieve
 - Let DPLL enumerate Boolean models
 - Check LRA constraints with Simplex

- DPLL(LRA) seems easy to achieve
 - Let DPLL enumerate Boolean models
 - Check LRA constraints with Simplex
- However a lot more has to be done to make it efficient
 - Don't wait for complete Boolean model
 - Theory Propagation
 - Preprocessing
 - Conversion to CNF
 - Theory Layering
 - . . .

$$e(DPLL(T)) = e(DPLL) + e(T) + e(COMM)$$

opensmt

$$e(DPLL(T)) = e(DPLL) + e(T) + e(COMM)$$

opensmt

$$e(DPLL(T)) \approx e(T)$$

opensmt

Outline

- 1 Introduction
- 2 Architecture
- 3 A Variable Elimination Techique for SMT
 - \blacksquare DP + FM = DPFM
 - A crazy benchmark suite
 - Related Work
- 4 Extending and Using OPENSMT
 - Extending OpenSMT
- 5 Conclusion

Architecture

Architecture

Architecture

Outline

- 1 Introduction
- 2 Architecture
- 3 A Variable Elimination Techique for SMT
 - \blacksquare DP + FM = DPFM
 - A crazy benchmark suite
 - Related Work
- 4 Extending and Using OPENSMT
 - Extending OpenSMT
- 5 Conclusion

A Generic Template for Variable Elimination Procedures

Variable Types: T_1 , T_2 , . . .

Resolution Rules: R_1 , R_2 , ...

Algorithm:

Input: a set of constraints

Repeat

Choose a variable X of type T_i to eliminate

Combine positive and negative occurrences of X, using R_i

The Davis-Putnam Procedure [DP60]

Variable Types:

Resolution Rules:

Algorithm:

Input:

Repeat

Choose a variable X of type to eliminate

Combine positive and negative occurrences of X, using

The Davis-Putnam Procedure [DP60]

Variable Types: **Bool**

Resolution Rules:

Algorithm:

Input:

Repeat

Choose a variable X of type to eliminate

Combine positive and negative occurrences of X, using

The Davis-Putnam Procedure [DP60]

Variable Types: **Bool**

Resolution Rules: **Boolean Resolution (BR)**

Algorithm:

Input:

Repeat

Choose a variable X of type to eliminate

Combine positive and negative occurrences of X, using

The Davis-Putnam Procedure [DP60]

Variable Types: **Bool**

Resolution Rules: **Boolean Resolution (BR)**

Algorithm:

Input: a set of Boolean clauses

Repeat

Choose a variable X of type to eliminate

The Davis-Putnam Procedure [DP60]

Variable Types: **Bool**

Resolution Rules: **Boolean Resolution (BR)**

Algorithm:

Input: a set of Boolean clauses

Repeat

Choose a variable X of type **Bool** to eliminate

The Davis-Putnam Procedure [DP60]

Variable Types: **Bool**

Resolution Rules: **Boolean Resolution (BR)**

Algorithm:

Input: a set of Boolean clauses

Repeat

Choose a variable X of type **Bool** to eliminate

• Clauses are expressions like $(a \lor \neg b \lor c)$, i.e., disjunctions of literals (Boolean variables or negated Boolean variables)

- Clauses are expressions like $(a \lor \neg b \lor c)$, i.e., disjunctions of literals (Boolean variables or negated Boolean variables)
- In the following C_1 , C_2 , D_1 , D_2 are disjunctions of literals

- Clauses are expressions like $(a \lor \neg b \lor c)$, i.e., disjunctions of literals (Boolean variables or negated Boolean variables)
- In the following C_1 , C_2 , D_1 , D_2 are disjunctions of literals

Boolean Resolution for two clauses

$$(C_1 \vee \mathbf{a} \vee C_2) \otimes_{\mathbf{a}} (D_1 \vee \neg \mathbf{a} \vee D_2) := (C_1 \vee C_2 \vee D_1 \vee D_2)$$

- Clauses are expressions like $(a \lor \neg b \lor c)$, i.e., disjunctions of literals (Boolean variables or negated Boolean variables)
- In the following C_1 , C_2 , D_1 , D_2 are disjunctions of literals

Boolean Resolution for two clauses

$$(C_1 \lor \mathbf{a} \lor C_2) \otimes_{\mathbf{a}} (D_1 \lor \neg \mathbf{a} \lor D_2) := (C_1 \lor C_2 \lor D_1 \lor D_2)$$

• Let S_a , $S_{\neg a}$ be the set of clauses with positive resp. negative occurrences of a

- Clauses are expressions like $(a \lor \neg b \lor c)$, i.e., disjunctions of literals (Boolean variables or negated Boolean variables)
- In the following C_1 , C_2 , D_1 , D_2 are disjunctions of literals

Boolean Resolution for two clauses

$$(C_1 \vee \mathbf{a} \vee C_2) \otimes_{\mathbf{a}} (D_1 \vee \neg \mathbf{a} \vee D_2) := (C_1 \vee C_2 \vee D_1 \vee D_2)$$

• Let S_a , $S_{\neg a}$ be the set of clauses with positive resp. negative occurrences of a

Boolean Resolution for sets of clauses

$$S_a \otimes_a S_{\neg a} := \{ C_1 \otimes_a C_2 \mid C_1 \in S_a, C_2 \in S_{\neg a} \}$$

• Let S_a , $S_{\neg a}$ be the set of clauses with positive resp. negative occurrences of a

Boolean Resolution for sets of clauses

$$S_a \otimes_a S_{\neg a} := \{C_1 \otimes_a C_2 \mid C_1 \in S_a, C_2 \in S_{\neg a}\}$$

Theorem [DP60]

 $S_a \cup S_{\neg a}$ is equisatisfiable with $S_a \otimes_a S_{\neg a}$

OLD	NEW
$(a \lor b \lor c)$	
$(a \lor b \lor c)$ $(a \lor \neg b \lor \neg c)$ $(\neg a \lor \neg b \lor \neg c)$	
$(\neg a \lor \neg b \lor \neg c)$	
$(\neg a \lor \neg b \lor c)$	

	OLD	NEW
S_a	$(a \lor b \lor c)$	
\mathcal{J}_a	$(a \lor b \lor c)$ $(a \lor \neg b \lor \neg c)$	
$S_{\neg a}$	$(\neg a \lor \neg b \lor \neg c)$ $(\neg a \lor \neg b \lor c)$	
$J_{\neg a}$	$(\neg a \lor \neg b \lor c)$	

	OLD	NEW
S_a	$(a \lor b \lor c)$	
\mathcal{J}_a	$\frac{(a \lor b \lor c)}{(a \lor \neg b \lor \neg c)}$	
$S_{\neg a}$	$(\neg a \lor \neg b \lor \neg c)$	
$S_{\neg a}$	$\frac{(\neg a \lor \neg b \lor \neg c)}{(\neg a \lor \neg b \lor c)}$	

opensmt

	OLD	NEW
S_a	$(a \lor b \lor c)$	$(b \lor c \lor \neg b \lor \neg c)$
J _a	$(a \lor b \lor c)$ $(a \lor \neg b \lor \neg c)$	
ς	$(\neg a \lor \neg b \lor \neg c)$	
$\mathcal{I}_{\neg a}$	$\frac{(\neg a \lor \neg b \lor \neg c)}{(\neg a \lor \neg b \lor c)}$	
		opensmt

	OLD	NEW
S_a	$(a \lor b \lor c)$	$(b \lor c \lor \neg b \lor \neg c)$
Ja	$\frac{(a \lor b \lor c)}{(a \lor \neg b \lor \neg c)}$	
$S_{\neg a}$	$(\neg a \lor \neg b \lor \neg c)$	
$\mathcal{I}_{\neg a}$	$(\neg a \lor \neg b \lor \neg c)$ $(\neg a \lor \neg b \lor c)$	
		opensmt

	OLD	NEW
ς	$(a \lor b \lor c)$	$(b \lor c \lor \neg b \lor \neg c)$
\mathcal{I}_a	$\frac{(a \lor b \lor c)}{(a \lor \neg b \lor \neg c)}$	$(b \lor c \lor \neg b \lor \neg c)$ $(b \lor c \lor \neg b \lor c)$
ς		
$J_{\neg a}$	$(\neg a \lor \neg b \lor \neg c)$ $(\neg a \lor \neg b \lor c)$	
		opensmt

	OLD	NEW
ς	$(a \lor b \lor c)$	$(b \lor c \lor \neg b \lor \neg c)$
<i>J</i> a		$(b \lor c \lor \neg b \lor \neg c)$ $(b \lor c \lor \neg b \lor c)$
ς	$\frac{(\neg a \lor \neg b \lor \neg c)}{(\neg a \lor \neg b \lor c)}$	
J¬a	$(\neg a \lor \neg b \lor c)$	
		opensmt

	OLD	NEW
S_a	$(a \lor b \lor c)$	$(b \lor c \lor \neg b \lor \neg c)$ $(b \lor c \lor \neg b \lor c)$
\mathcal{I}_a		
$S_{\neg a}$	$\frac{(\neg a \lor \neg b \lor \neg c)}{(\neg a \lor \neg b \lor c)}$	$(\lnot b \lor \lnot c)$
J¬a	$(\neg a \lor \neg b \lor c)$	
		opensmt

	OLD	NEW
S_a	$(a \lor b \lor c)$	$(b \lor c \lor \neg b \lor \neg c)$ $(b \lor c \lor \neg b \lor c)$
	$(a \lor b \lor c)$ $(a \lor \neg b \lor \neg c)$	$(b \lor c \lor \neg b \lor c)$
$S_{\neg a}$		$(\neg b \lor \neg c)$
J¬a	$(\neg a \lor \neg b \lor c)$	
		opensmt

	OLD	NEW
S_a	$(a \lor b \lor c)$	$(b \lor c \lor \neg b \lor \neg c)$
Ja	$(a \lor b \lor c)$ $(a \lor \neg b \lor \neg c)$	$(b \lor c \lor \neg b \lor \neg c)$ $(b \lor c \lor \neg b \lor c)$
ς	$(\neg a \lor \neg b \lor \neg c)$	$(\lnot b \lor \lnot c)$
J¬a	$(\neg a \lor \neg b \lor \neg c)$ $(\neg a \lor \neg b \lor c)$	$(\neg b \lor \neg c \lor c)$
		opensmt

OLD
$(a \lor b \lor c)$
$(a \lor \neg b \lor \neg c)$
$(\neg a \lor \neg b \lor \neg c)$
$(\neg a \lor \neg b \lor c)$

NEW

$$(b \lor c \lor \neg b \lor \neg c)$$
$$(b \lor c \lor \neg b \lor c)$$

$$(b \lor c \lor \lnot b \lor c)$$

$$(\neg b \lor \neg c)$$

$$(\neg b \lor \neg c)$$

 $(\neg b \lor \neg c \lor c)$

OLD

$$(a \lor b \lor c)$$

$$(a \lor \neg b \lor \neg c)$$

$$(\neg a \lor \neg b \lor \neg c)$$

$$(\neg a \lor \neg b \lor c)$$

NEW

$$(b \lor c \lor \neg b \lor \neg c)$$

$$(b \lor c \lor \neg b \lor c)$$

$$(\neg b \lor \neg c)$$

$$(\neg b \lor \neg c \lor c)$$

OLD	NEW
$(a \lor b \lor c)$	
$(a \lor \neg b \lor \neg c)$	
$(\neg a \lor \neg b \lor \neg c)$	$ (\neg b \lor \neg c)$
$(\neg a \lor \neg b \lor c)$	

Variable Types:

Resolution Rules:

Algorithm:

Input:

Repeat

Choose a variable X of type

to eliminate

Variable Types: Rational

Resolution Rules:

Algorithm:

Input:

Repeat

Choose a variable X of type

to eliminate

Variable Types: Rational

Resolution Rules: *LRA* **Resolution (RR)**

Algorithm:

Input:

Repeat

Choose a variable X of type

to eliminate

Variable Types: Rational

Resolution Rules: LRA Resolution (RR)

Algorithm:

Input: a set of \mathcal{LRA} constraints

Repeat

Choose a variable X of type to eliminate

Variable Types: Rational

Resolution Rules: LRA Resolution (RR)

Algorithm:

Input: a set of \mathcal{LRA} constraints

Repeat

Choose a variable X of type Rational to eliminate

Variable Types: Rational

Resolution Rules: LRA Resolution (RR)

Algorithm:

Input: a set of \mathcal{LRA} constraints

Repeat

Choose a variable X of type Rational to eliminate

• \mathcal{LRA} constraints are expressions like $3x - 5y + 10z \le 15$

- \mathcal{LRA} constraints are expressions like $3x 5y + 10z \le 15$
- Notice that ≤ is sufficient to represent also {=,<} (see [DdM06])

- \mathcal{LRA} constraints are expressions like $3x 5y + 10z \le 15$
- Notice that ≤ is sufficient to represent also {=, <} (see [DdM06])
- \mathcal{LRA} constraints can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

- \mathcal{LRA} constraints are expressions like $3x 5y + 10z \le 15$
- Notice that ≤ is sufficient to represent also {=, <} (see [DdM06])
- \mathcal{LRA} constraints can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

- \mathcal{LRA} constraints are expressions like $3x 5y + 10z \le 15$
- Notice that ≤ is sufficient to represent also {=,<} (see [DdM06])
- \mathcal{LRA} constraints can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

\mathcal{LRA} Resolution for two constraints

$$(x \leq p) \otimes_x (-x \leq q) := (-q \leq p)$$

- \mathcal{LRA} constraints are expressions like $3x 5y + 10z \le 15$
- Notice that ≤ is sufficient to represent also {=,<} (see [DdM06])
- \mathcal{LRA} constraints can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

\mathcal{LRA} Resolution for two constraints

$$(x \leq p) \otimes_x (-x \leq q) := (-q \leq p)$$

• Let S_x , S_{-x} be the set of upper resp. lower bounds for x

- \mathcal{LRA} constraints are expressions like $3x 5y + 10z \le 15$
- Notice that ≤ is sufficient to represent also {=,<} (see [DdM06])
- \mathcal{LRA} constraints can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

\mathcal{LRA} Resolution for two constraints

$$(x \leq p) \otimes_x (-x \leq q) := (-q \leq p)$$

• Let S_x , S_{-x} be the set of upper resp. lower bounds for x

\mathcal{LRA} Resolution for sets of constraints

$$S_x \otimes_x S_{-x} := \{(x \leq p) \otimes_x (-x \leq q) \mid (x \leq p) \in S_x, (-x \leq q) \in S_{-x} \}$$

opensmt

• Let S_x , S_{-x} be the set of upper resp. lower bounds for x

\mathcal{LRA} Resolution for sets of constraints

$$S_x \otimes_x S_{-x} := \{(x \leq p) \otimes_x (-x \leq q) \mid (x \leq p) \in S_x, (-x \leq q) \in S_{-x} \}$$

Theorem [Fou26]

 $S_x \cup S_{-x}$ is equisatisfiable with $S_x \otimes_x S_{-x}$

OLD	NEW
$-x+z\leq -4$	
$x+z \le 18$	
$x-z \le 6$	
$-x-z \leq -16$	
$y \le 5$	
$-y \le -3$	

	OLD	NEW
S_z	$-x+z\leq -4$	
<i>J_Z</i>	$x + z \le 18$	
S_{-z}	$x-z \le 6$	
	$x - z \le 6$ $-x - z \le -16$	
	$y \le 5$	$y \leq 5$
	$-y \leq -3$	$-y \le -3$

	OLD	NEW
S_z	$-x+z \leq -4$	
<i>J</i> _Z	$x + z \le 18$	
S_{-z}	$x-z \leq 6$	
	$-x-z \le -16$	
	$y \le 5$	$y \leq 5$
	$-y \leq -3$	$-y \leq -3$

	OLD	NEW
S_z	$-x+z \leq -4$	$0 \le 2$
$\mathcal{I}_{\mathcal{I}}$	$x + z \le 18$	
S_7	$x-z \leq 6$	
\mathcal{S}_{-z}	$-x-z \leq -16$	
	$y \le 5$	$y \leq 5$
	$-y \le -3$	$-y \leq -3$

	OLD	NEW
S_z	$-x+z \leq -4$	$0 \le 2$
\mathcal{I}_Z	$x + z \le 18$	
S_{-z}	$x-z \le 6$	
	$-x-z \leq -16$	
	$y \le 5$	$y \leq 5$
	$-y \le -3$	$-y \leq -3$

	OLD	NEW
S_z	$-x+z \leq -4$	$0 \le 2$
	$x+z \le 18$	$-x \le -10$
S_{-z}	$x-z \le 6$	
	$-x-z \leq -16$	
	<i>y</i> ≤ 5	<i>y</i> ≤ 5
	$-y \leq -3$	$-y \leq -3$

	OLD	NEW
S_z	$-x+z \leq -4$	0 ≤ 2
	$x + z \le 18$	$-x \le -10$
S_{-z}	$x-z \leq 6$	
	$-x-z \le -16$	
	$y \le 5$	$y \le 5$
	$-y \leq -3$	$-y \le -3$

	OLD	NEW
S_z	$-x+z \leq -4$	0 ≤ 2
	$x + z \le 18$	$-x \le -10$
S_{-z}	$x-z \leq 6$	$x \le 12$
	$-x-z \le -16$	
	$y \le 5$	$y \leq 5$
	$-y \leq -3$	$-y \leq -3$

	OLD	NEW
S_z	$-x+z \leq -4$	0 ≤ 2
	$x + z \le 18$	$-x \le -10$
S_{-z}	$x-z \le 6$	<i>x</i> ≤ 12
	$-x-z \le -16$	
	$y \le 5$	$y \le 5$
	$-y \leq -3$	$-y \leq -3$

	OLD	NEW
S_z	$-x+z \leq -4$	0 ≤ 2
	$x + z \le 18$	$-x \le -10$
S_{-z}	$x-z \le 6$	<i>x</i> ≤ 12
	$-x-z \le -16$	$0 \le 2$
	$y \le 5$	$y \le 5$
	$-y \leq -3$	$-y \leq -3$

	OLD	NEW
S_z	$-x+z \leq -4$	0 ≤ 2
	$x + z \le 18$	$-x \le -10$
S_{-z}	$x-z \le 6$	<i>x</i> ≤ 12
	$-x-z \le -16$	<u>0 ≤ 2</u>
	$y \le 5$	$y \le 5$
	$-y \leq -3$	$-y \leq -3$

OLD	NEW
$-x+z \leq -4$	
$x + z \le 18$	$-x \le -10$
$x - z \le 6$	$x \le 12$
$-x-z \le -16$	
$y \le 5$	$y \leq 5$
$-y \le -3$	$-y \le -3$

Variable Types:

Resolution Rules:

Algorithm:

Input:

Repeat

Choose a variable X of type

to eliminate

Variable Types: **Bool**, **Rational**

Resolution Rules:

Algorithm:

Input:

Repeat

Choose a variable X of type

to eliminate

Variable Types: **Bool**, **Rational**

Resolution Rules: **BR**, **SMT**(\mathcal{LRA}) **Resolution (SR)**

Algorithm:

Input:

Repeat

Choose a variable X of type

to eliminate

Variable Types: **Bool**, **Rational**

Resolution Rules: **BR**, **SMT**(\mathcal{LRA}) **Resolution (SR)**

Algorithm:

Input: a set of $SMT(\mathcal{LRA})$ clauses in OCCF

Repeat

Choose a variable X of type to eliminate

```
Variable Types: Bool, Rational
```

Resolution Rules: **BR**, **SMT**(\mathcal{LRA}) **Resolution (SR)**

Algorithm:

Input: a set of $SMT(\mathcal{LRA})$ clauses in OCCF

Repeat

Choose a variable X of type **Bool** (**Rational**) to eliminate

$\mathsf{DP} + \mathsf{FM} = \mathsf{DPFM}$

```
Variable Types: Bool, Rational
```

Resolution Rules: **BR**, **SMT**(\mathcal{LRA}) **Resolution (SR)**

Algorithm:

Input: a set of $SMT(\mathcal{LRA})$ clauses in OCCF

Repeat

Choose a variable X of type **Bool** (**Rational**) to eliminate

One Constraint per Clause Form (OCCF)

 DPFM requires clauses in OCCF, clauses that contain at most one LRA constraint

One Constraint per Clause Form (OCCF)

- DPFM requires clauses in OCCF, clauses that contain at most one LRA constraint
- it is easy to transform clauses in OCCF, by means of auxiliary Boolean variables

One Constraint per Clause Form (OCCF)

- DPFM requires clauses in OCCF, clauses that contain at most one LRA constraint
- it is easy to transform clauses in OCCF, by means of auxiliary Boolean variables
 - E.g. $(a \lor (x \le 3) \lor b \lor (x + y \le 10))$ can be rewritten as $(a \lor (x \le 3) \lor b \lor c)$ and $(\neg c) \lor (x + y \le 10)$

- negated \mathcal{LRA} constr. can be expressed in terms of \leq
 - e.g. $\neg (x \le 10)$ is equiv. to $-x \le -10 \delta$, $(\delta > 0)$ (see [DdM06])

- negated \mathcal{LRA} constr. can be expressed in terms of \leq e.g. $\neg(x \leq 10)$ is equiv. to $-x \leq -10 \delta$, $(\delta > 0)$ (see [DdM06])
- \mathcal{LRA} constraints in SMT(\mathcal{LRA}) clauses can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

- negated \mathcal{LRA} constr. can be expressed in terms of \leq e.g. $\neg(x \leq 10)$ is equiv. to $-x \leq -10 \delta$, $(\delta > 0)$ (see [DdM06])
- \mathcal{LRA} constraints in SMT(\mathcal{LRA}) clauses can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

$\mathsf{SMT}(\mathcal{LRA})$ Resolution for two clauses in OCCF

$$(C_1 \vee (x \leq p) \vee C_2) \otimes_x (D_1 \vee (-x \leq q) \vee D_2) := C_1 \vee C_2 \vee (-q \leq p) \vee D_1 \vee D_2$$

- negated \mathcal{LRA} constr. can be expressed in terms of \leq e.g. $\neg(x \leq 10)$ is equiv. to $-x \leq -10 \delta$, $(\delta > 0)$ (see [DdM06])
- \mathcal{LRA} constraints in SMT(\mathcal{LRA}) clauses can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

$\mathsf{SMT}(\mathcal{LRA})$ Resolution for two clauses in OCCF

$$(C_1 \vee (x \leq p) \vee C_2) \otimes_x (D_1 \vee (-x \leq q) \vee D_2) := C_1 \vee C_2 \vee (-q \leq p) \vee D_1 \vee D_2$$

• Let S_x , S_{-x} be the set of SMT(\mathcal{LRA}) clauses where x appears upper bounded resp. lower bounded

- negated \mathcal{LRA} constr. can be expressed in terms of \leq e.g. $\neg(x \leq 10)$ is equiv. to $-x \leq -10 \delta$, $(\delta > 0)$ (see [DdM06])
- \mathcal{LRA} constraints in SMT(\mathcal{LRA}) clauses can be rewritten in terms of upper bound $x \leq p$ or lower bound $-x \leq p$ for a variable x.

$\mathsf{SMT}(\mathcal{LRA})$ Resolution for two clauses in OCCF

$$(C_1 \vee (x \leq p) \vee C_2) \otimes_x (D_1 \vee (-x \leq q) \vee D_2) := C_1 \vee C_2 \vee (-q \leq p) \vee D_1 \vee D_2$$

• Let S_x , S_{-x} be the set of SMT(\mathcal{LRA}) clauses where x appears upper bounded resp. lower bounded

$SMT(\mathcal{LRA})$ Resolution for sets of clauses in OCCF

$$S_x \otimes_x S_{-x} := \{ C_1 \otimes_x C_2 \mid C_1 \in S_x, C_2 \in S_{-x} \}$$

opensmt

• Let S_x , S_{-x} be the set of SMT(\mathcal{LRA}) clauses where x appears upper bounded resp. lower bounded

$SMT(\mathcal{LRA})$ Resolution for sets of clauses in OCCF

$$S_x \otimes_x S_{-x} := \{ C_1 \otimes_x C_2 \mid C_1 \in S_x, C_2 \in S_{-x} \}$$

Theorem

$$S_x \cup S_{-x}$$
 is equisatisfiable with $S_x \otimes_x S_{-x}$

$$\begin{array}{lll} \neg a_1 \lor (-z \le -3) & a_1 \lor (z \le 3 - \delta) \lor a_2 \\ \neg a_1 \lor (-x \le -3) & \neg a_2 \lor (x \le 3 - \delta) \lor a_3 \\ \neg a_1 \lor (-y \le -3) & \neg a_3 \lor (y \le 3 - \delta) \lor a_4 \\ \neg a_1 \lor (y \le 5) & \neg a_4 \lor (-y \le 5 - \delta) \lor a_5 \\ \neg a_1 \lor (x \le 5) & \neg a_5 \lor (-x \le 5 - \delta) \lor a_6 \\ \neg a_1 \lor (z \le 5) & \neg a_6 \lor (-z \le 5 - \delta) \\ \neg b_1 \lor (-z \le -2) & b_1 \lor (z \le 2 - \delta) \lor b_2 \\ \neg b_1 \lor (-x \le -2) & \neg b_2 \lor (x \le 2 - \delta) \lor b_3 \\ \neg b_1 \lor (-y \le -2) & \neg b_3 \lor (y \le 2 - \delta) \lor b_4 \\ \neg b_1 \lor (y \le 4) & \neg b_4 \lor (-y \le 4 - \delta) \lor b_5 \\ \neg b_1 \lor (z \le 4) & \neg b_5 \lor (-x \le 4 - \delta) \lor b_6 \\ \neg b_1 \lor (z \le 4) & \neg b_6 \lor (-z \le 4 - \delta) \\ a_1 \lor b_1 \end{array}$$

$$\begin{array}{l}
a_{1} \lor (z \le 3 - \delta) \lor a_{2} \\
\neg a_{2} \lor (x \le 3 - \delta) \lor a_{3} \\
\neg a_{3} \lor (y \le 3 - \delta) \lor a_{4} \\
\neg a_{4} \lor (-y \le -5 - \delta) \lor a_{5} \\
\neg a_{5} \lor (-x \le -5 - \delta) \lor a_{6} \\
\neg a_{6} \lor (-z \le -5 - \delta) \\
b_{1} \lor (z \le 2 - \delta) \lor b_{2} \\
\neg b_{2} \lor (x \le 2 - \delta) \lor b_{3} \\
\neg b_{3} \lor (y \le 2 - \delta) \lor b_{4} \\
\neg b_{4} \lor (-y \le -4 - \delta) \lor b_{5} \\
\neg b_{5} \lor (-x \le -4 - \delta) \lor b_{6} \\
\neg b_{6} \lor (-z \le -4 - \delta)
\end{array}$$

DPFM - Example (on var z)

OLD	NEW
$ \begin{array}{l} \neg a_1 \lor (z \le 5) \\ \neg b_1 \lor (z \le 4) \\ a_1 \lor (z \le 3 - \delta) \lor a_2 \\ b_1 \lor (z \le 2 - \delta) \lor b_2 \\ \neg a_6 \lor (-z \le -5 - \delta) \\ \neg b_6 \lor (-z \le -4 - \delta) \\ \neg a_1 \lor (-z \le -3) \\ \neg b_1 \lor (-z \le -2) \end{array} $	

DPFM - Example (on var z)

	OLD	NEW
S_z		
S_{-z}	$ \neg a_6 \lor (-z \le -5 - \delta) \neg b_6 \lor (-z \le -4 - \delta) \neg a_1 \lor (-z \le -3) \neg b_1 \lor (-z \le -2) $	

$\overline{\mathsf{DPFM}}$ - Example (on var z)

	OLD	NEW
S_z	$ \begin{array}{l} \neg a_1 \lor (z \le 5) \\ \neg b_1 \lor (z \le 4) \\ a_1 \lor (z \le 3 - \delta) \lor a_2 \\ b_1 \lor (z \le 2 - \delta) \lor b_2 \end{array} $	
S_{-z}	$ \begin{array}{l} \neg a_6 \lor (-z \le -5 - \delta) \\ \neg b_6 \lor (-z \le -4 - \delta) \\ \neg a_1 \lor (-z \le -3) \\ \neg b_1 \lor (-z \le -2) \end{array} $	

$\overline{\mathsf{DPFM}}$ - Example (on var z)

	OLD	NEW
S_z	$ \begin{array}{l} \neg a_1 \lor (z \le 5) \\ \neg b_1 \lor (z \le 4) \\ a_1 \lor (z \le 3 - \delta) \lor a_2 \\ b_1 \lor (z \le 2 - \delta) \lor b_2 \end{array} $	$ \neg a_1 \lor (0 \le -\delta) \lor eg a_6 $
S_{-z}	$ \begin{array}{l} \neg a_6 \lor \left(-z \le -5 - \delta\right) \\ \neg b_6 \lor \left(-z \le -4 - \delta\right) \\ \neg a_1 \lor \left(-z \le -3\right) \\ \neg b_1 \lor \left(-z \le -2\right) \end{array} $	

DPFM - Example (on var z)

OLD	NEW
$\neg a_1 \lor (z \le 5)$	$\neg a_1 \lor (0 \le -\delta) \lor \neg a_6$
$\neg b_1 \lor (z \le 4)$	$\mid \neg a_1 \lor (0 \le 1 - \delta) \lor \neg b_6$
$a_1 \lor (z \leq 3 - \delta) \lor a_2$	$ \neg a_1 \lor (0 \le 2)$
$b_1 \lor (z \le 2 - \delta) \lor b_2$	$ \neg a_1 \lor (0 \le 3) \lor \neg b_1$
$\neg a_6 \lor (-z \le -5 - \delta)$	$\mid \neg b_1 \lor (0 \le -1 - \delta) \lor \neg a_6$
	$\mid \neg b_1 \lor (0 \le -\delta) \lor \neg b_6$
	$\mid \neg b_1 \lor (0 \le 1) \lor \neg a_1$
$\neg b_1 \lor (-z \le -2)$	$\mid \neg b_1 \lor (0 \le 2)$
	$a_1 \lor (0 \le -2 - \delta) \lor a_2 \lor \neg a_6$
	$\mid a_1 \lor (0 \le -1 - \delta) \lor a_2 \lor \lnot b_6$
	$\mid a_1 \lor (0 \le -\delta) \lor \lnot a_1 \lor a_2$
	$\mid a_1 \lor (0 \le 1 - \delta) \lor \lnot b_1 \lor a_2$
	$b_1 \lor (0 \le -3 - \delta) \lor b_2 \lor \neg a_6$
	$b_1 \lor (0 \le -2 - \delta) \lor b_2 \lor \neg b_6$
	$\mid b_1 \lor (0 \le -1 - \delta) \lor \lnot a_1 \lor b_2$
	$\mid b_1 \lor (0 \le -\delta) \lor \lnot b_1 \lor b_2$

DPFM - Example (on var z)

OLD	NEW
$\neg a_1 \lor (z \le 5)$	$\neg a_1 \lor \neg a_6$
$\neg b_1 \lor (z \le 4)$ $a_1 \lor (z \le 3 - \delta) \lor a_2$	
$b_1 \lor (z \leq 2 - \delta) \lor b_2$	
$\neg a_6 \lor (-z \le -5 - \delta)$	$\neg b_1 \lor \neg a_6$
$\neg b_6 \lor (-z \le -4 - \delta)$ $\neg a_1 \lor (-z \le -3)$	$ \neg b_1 \lor \neg b_6 $
$\neg b_1 \lor (-z \le -2)$	
	$a_1 \lor a_2 \lor \neg a_6$
	$a_1 \lor a_2 \lor \neg b_6$
	$b_1 \lor b_2 \lor \lnot a_6$
	$\left \begin{array}{c} b_1 \lor b_2 \lor \lnot b_6 \\ b_1 \lor \lnot a_1 \lor b_2 \end{array} \right $
	$D_1 \lor a_1 \lor D_2$

DPFM - Example (on var z)

• High worst-case complexity

- High worst-case complexity
- Suppose we have n variables and m initial clauses

- High worst-case complexity
- Suppose we have *n* variables and *m* initial clauses
- Suppose we eliminate a_1 : in the worst case $|S_{a_1}| = |S_{\neg a_1}| = \frac{m}{2}$

- High worst-case complexity
- Suppose we have *n* variables and *m* initial clauses
- Suppose we eliminate a_1 : in the worst case $|S_{a_1}| = |S_{\neg a_1}| = \frac{m}{2}$
- After elim. a_1 we have $\frac{m}{2} \times \frac{m}{2} = \frac{m^2}{4}$ clauses

- High worst-case complexity
- Suppose we have *n* variables and *m* initial clauses
- Suppose we eliminate a_1 : in the worst case $|S_{a_1}| = |S_{\neg a_1}| = \frac{m}{2}$
- After elim. a_1 we have $\frac{m}{2} \times \frac{m}{2} = \frac{m^2}{4}$ clauses
- After elim. a_2 we have $\frac{m^2}{8} \times \frac{m^2}{8} = \frac{m^4}{4^3}$ clauses

- High worst-case complexity
- Suppose we have *n* variables and *m* initial clauses
- Suppose we eliminate a_1 : in the worst case $|S_{a_1}| = |S_{\neg a_1}| = \frac{m}{2}$
- After elim. a_1 we have $\frac{m}{2} \times \frac{m}{2} = \frac{m^2}{4}$ clauses
- After elim. a_2 we have $\frac{m^2}{8} \times \frac{m^2}{8} = \frac{m^4}{4^3}$ clauses
- After elim. a_n we have $\frac{m^{2^{n-1}}}{4^{(2^{n-1}-\frac{1}{2})}} \times \frac{m^{2^{n-1}}}{4^{(2^{n-1}-\frac{1}{2})}} = \frac{m^{2^n}}{4^{2^n-1}}$ clauses

- High worst-case complexity
- Suppose we have *n* variables and *m* initial clauses
- Suppose we eliminate a_1 : in the worst case $|S_{a_1}| = |S_{\neg a_1}| = \frac{m}{2}$
- After elim. a_1 we have $\frac{m}{2} \times \frac{m}{2} = \frac{m^2}{4}$ clauses
- After elim. a_2 we have $\frac{m^2}{8} imes \frac{m^2}{8} = \frac{m^4}{4^3}$ clauses
- After elim. a_n we have $\frac{m^{2^{n-1}}}{4^{(2^{n-1}-\frac{1}{2})}} \times \frac{m^{2^{n-1}}}{4^{(2^{n-1}-\frac{1}{2})}} = \frac{m^{2^n}}{4^{2^n-1}}$ clauses

• Variable Elimination technique for $SMT(\mathcal{LRA})$

- Variable Elimination technique for $SMT(\mathcal{LRA})$
- We apply it for preprocessing, similarly to the SATElite [EB05] preprocessor
 - Variable elimination rule (among other rules) is applied in a controlled manner so that it does not produce too many clauses

- Variable Elimination technique for $SMT(\mathcal{LRA})$
- We apply it for preprocessing, similarly to the SATElite [EB05] preprocessor
 - Variable elimination rule (among other rules) is applied in a controlled manner so that it does not produce too many clauses
- In our case we use two upper bounds for two parameters concerning Rational variables

- Variable Elimination technique for $SMT(\mathcal{LRA})$
- We apply it for preprocessing, similarly to the SATElite [EB05] preprocessor
 - Variable elimination rule (among other rules) is applied in a controlled manner so that it does not produce too many clauses
- In our case we use two upper bounds for two parameters concerning Rational variables
- Centrality (for x): number of distinct variables that appear in some constraint with x

- Variable Elimination technique for $SMT(\mathcal{LRA})$
- We apply it for preprocessing, similarly to the SATElite [EB05] preprocessor
 - Variable elimination rule (among other rules) is applied in a controlled manner so that it does not produce too many clauses
- In our case we use two upper bounds for two parameters concerning Rational variables
- Centrality (for x): number of distinct variables that appear in some constraint with x
- Trade-off (for x): amount of new clauses that we want to "trade" for eliminating x

Formula Simplification - (Centrality 2, Trade-off 128)

O	$\operatorname{OPEnSMT}$ on QF_IDL/qlock Benchmarks - Structural Data													
	P.Tin	ne (s)	Cla	uses	TAt	oms	TVars							
Bench	WO W		WO	WO W		WO W		W						
Ind 37	1.08	6.57	41137	35299	6129	5285	829	185						
Ind 38	1.16	6.62	42265	36244	6299	5423	851	188						
Ind 39	1.19	7.02	43381	37150	6467	5562	873	189						
Ind 40	1.17	7.05	44457	38114	6619	5702	895	203						
Base 18	0.80	1.87	18630	16314	2867	2559	375	137						
Base 19	0.82	2.31	19780	17269	3045	2702	397	150						
Base 20	0.95	2.47	20914	18246	3215	2851	419	151						
Base 21	0.94	2.54	22052	19193	3389	2995	441	155						

Formula Simplification - (Centrality 2, Trade-off 128)

O	OPENSMT on QF_IDL/qlock Benchmarks - Structural Data													
	P.Tin	ne (s)	Cla	uses	TAt	oms	TVars							
Bench	WO W		WO	W	WO	W	WO	W						
Ind 37	1.08	6.57	41137	35299	6129	5285	829	185						
Ind 38	1.16	6.62	42265	36244	6299	5423	851	188						
Ind 39	1.19	7.02	43381	37150	6467	5562	873	189						
Ind 40	1.17	7.05	44457	38114	6619	5702	895	203						
Base 18	0.80	1.87	18630	16314	2867	2559	375	137						
Base 19	0.82	2.31	19780	17269	3045	2702	397	150						
Base 20	0.95	2.47	20914	18246	3215	2851	419	151						
Base 21	0.94	2.54	22052	19193	3389	2995	441	155						

	${ m OPENSMT}$ on QF_IDL/qlock Benchmarks - Solving Time													
Bench	Time WO (s)	Time W (s)	Bench	Time WO (s)	Time W (s)									
Base 18	61.3	59.0	Ind 37	90.5	18.0									
Base 19	146.1	138.4	Ind 38	105.7	54.6									
Base 20	> 1800	940.1	Ind 39	64.4	46.7									
Base 21	1367.9	765.0	Ind 40	98.3	37.3									

opensmt

Mixed Boolean-Theory Static Learning

	OPENSM	${ m T}$ on	QF_IDL/jc	b_shop/jol	oshop12-2-6	5-6-2-4-9.sr	nt
Centr.	Trade-Off	VE	P.Time	Clauses	TAtoms	BAtoms	T.Time (s)
-	-	0	0.05	216	612	0	> 1800
12	64	0	0.05	216	612	0	> 1800
12	256	2	0.06	458	832	22	180.0
12	1024	4	0.04	1094	968	42	91.4
12	4096	6	0.09	3076	1032	60	67.2
12	16384	6	0.10	3076	1032	60	67.1
18	64	0	0.02	216	612	0	> 1800
18	256	4	0.02	714	1054	56	192.3
18	1024	8	0.07	2005	1566	109	105.6
18	4096	12	0.15	5702	2254	156	125.6
18	16384	12	0.16	5702	2254	156	125.9
24	64	0	0.02	216	612	0	> 1800
24	256	4	0.03	781	1108	66	193.2
24	1024	8	0.07	1978	1638	117	157.1
24	4096	11	0.19	5005	2198	153	89.4
24	16384	12	0.32	5519	2294	163	92.2

opensmt

Fractal Diamonds

Fractal Diamonds (Centrality 18, Trade-off 8192)

B = BARCELOGIC (SMTCOMP'08 1st place for IDL)

Z = Z3 (SMTCOMP'08 2nd place for IDL)

Fractal Diamonds - Solving time (s) - TO = 1200 s													
	1 2 3 4 5												
Or.	B Z O B Z O B Z O B Z O											0	

Fractal Diamonds (Centrality 18, Trade-off 8192)

B = BARCELOGIC (SMTCOMP'08 1st place for IDL)

Z = Z3 (SMTCOMP'08 2nd place for IDL)

	Fractal Diamonds - Solving time (s) - $TO = 1200 \text{ s}$														
	1 2					3			4			5			
Or.	В	Z	0	В	Z	0	В	Z	0	В	Z	0	В	Z	0
1	0 0 0 0 0 0 0 0 0 0 0 0 0														

Fractal Diamonds (Centrality 18, Trade-off 8192)

B = BARCELOGIC (SMTCOMP'08 1st place for IDL)

Z = Z3 (SMTCOMP'08 2nd place for IDL)

	Fractal Diamonds - Solving time (s) - $TO = 1200 \text{ s}$														
	1 2						3				4		5		
Or.	В	Z	0	В	Z	0	В	Z	0	В	Z	0	В	Z	Ο
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	118	13	1	Т	Т	3	Т	Т	7

Fractal Diamonds (Centrality 18, Trade-off 8192)

B = BARCELOGIC (SMTCOMP'08 1st place for IDL)

Z = Z3 (SMTCOMP'08 2nd place for IDL)

	Fractal Diamonds - Solving time (s) - $TO = 1200 \text{ s}$														
	1 2							3		4			5		
Or.	В	Z	0	В	Z	0	В	Z	Ο	В	Z	0	В	Z	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	118	13	1	Т	Т	3	Т	Т	7
3	0	0	0	0	Т	2	Т	Т	153	М	Т	Т	Т	Т	Т

Related Work

- O. Strichman: "Deciding Disjunctive Linear Arithmetic with SAT" [Str04]
 - Eager reduction to SAT, using a procedure based on FM

Related Work

- O. Strichman: "Deciding Disjunctive Linear Arithmetic with SAT" [Str04]
 - · Eager reduction to SAT, using a procedure based on FM
- N. Eén, A. Biere: "Effective Preprocessing in SAT Through Variable and Clause Elimination" [EB05]
 - SATElite algorithm for SAT preprocessing

Related Work

- O. Strichman: "Deciding Disjunctive Linear Arithmetic with SAT" [Str04]
 - · Eager reduction to SAT, using a procedure based on FM
- N. Eén, A. Biere: "Effective Preprocessing in SAT Through Variable and Clause Elimination" [EB05]
 - SATElite algorithm for SAT preprocessing
- K. McMillan et al.: "Generalizing DPLL to Richer Logics" [MKS09]
 - "Shadow Rule" similar to our notion of SMT(\mathcal{LRA}) resolution: one application of the shadow rule is equiv. to many applications of SMT(\mathcal{LRA}) resolution

Outline

- 1 Introduction
- 2 Architecture
- 3 A Variable Elimination Techique for SMT
 - \blacksquare DP + FM = DPFM
 - A crazy benchmark suite
 - Related Work
- 4 Extending and Using OpenSMT
 - Extending OpenSMT
- 5 Conclusion

$$e(DPLL(T)) \approx e(T)$$

opensmt

$$e(DPLL(T)) \approx e(T)$$

opensmt

Extending OPENSMT

 To create an empty template for a new theory solver use script create_tsolver.sh

- To create an empty template for a new theory solver use script create_tsolver.sh
 - Creates a new directory with basic class files

- To create an empty template for a new theory solver use script create_tsolver.sh
 - Creates a new directory with basic class files
 - Creates/Sets up Makefile for compilation

- To create an empty template for a new theory solver use script create_tsolver.sh
 - Creates a new directory with basic class files
 - Creates/Sets up Makefile for compilation
 - Adds a new logic

- To create an empty template for a new theory solver use script create_tsolver.sh
 - Creates a new directory with basic class files
 - Creates/Sets up Makefile for compilation
 - Adds a new logic
 - Integrates the new solver with the core

- To create an empty template for a new theory solver use script create_tsolver.sh
 - Creates a new directory with basic class files
 - Creates/Sets up Makefile for compilation
 - Adds a new logic
 - Integrates the new solver with the core
 - · Basically, it creates an incomplete solver

```
class TSolver
 void inform (Enode *);
 bool assertLit (Enode *);
 bool check
            ( bool );
 void pushBktPoint ( );
 void popBktPoint ( );
 bool belongsToT (Enode *);
 void computeModel ( );
 vector< Enode * > & explanation;
 vector< Enode * > & deductions;
 vector < Enode * > & suggestions;
```

C API: you can compile a library and call OpenSMT via the C API

- C API: you can compile a library and call OpenSMT via the C API
- Interpolation: given two mutually unsatisfiable formulæ A and B, an interpolant [Cra57] is a formula I such that
 - $A \rightarrow I$
 - $B \wedge I$ is unsatisfiable
 - I is defined on the variables that are common to A and B

- C API: you can compile a library and call OpenSMT via the C API
- Interpolation: given two mutually unsatisfiable formulæ A and B, an interpolant [Cra57] is a formula I such that
 - $A \rightarrow I$
 - $B \wedge I$ is unsatisfiable
 - I is defined on the variables that are common to A and B
- Basically I is an "overapproximation" of A, that is still unsatisfiable with B

- C API: you can compile a library and call OpenSMT via the C API
- Interpolation: given two mutually unsatisfiable formulæ A and B, an interpolant [Cra57] is a formula I such that
 - $A \rightarrow I$
 - $B \wedge I$ is unsatisfiable
 - I is defined on the variables that are common to A and B
- Basically I is an "overapproximation" of A, that is still unsatisfiable with B
- It has applications in Model Checking [McM04]

- C API: you can compile a library and call OpenSMT via the C API
- Interpolation: given two mutually unsatisfiable formulæ A and B, an interpolant [Cra57] is a formula I such that
 - $A \rightarrow I$
 - $B \wedge I$ is unsatisfiable
 - I is defined on the variables that are common to A and B
- Basically I is an "overapproximation" of A, that is still unsatisfiable with B
- It has applications in Model Checking [McM04]
- \bullet $\operatorname{OPENSMT}$ can compute interpolants for propositional formulæ and some arithmetic fragments

Conclusion

- OPENSMT website http://www.verify.inf.unisi.ch/opensmt
- Source repository http://code.google.com/p/opensmt
- Discussion group http://groups.google.com/group/opensmt

Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symb. Log., pages 269–285, 1957.

B. Dutertre and L. M. de Moura.

A Fast Linear-Arithmetic Solver for DPLL(T). In CAV'06, pages 81–94, 2006.

Martin Davis and Hilary Putnam.

A Computing Procedure for Quantification Theory. J. ACM, 7(3):201–215, 1960.

N. Eén and A. Biere.

Effective Preprocessing in SAT Through Variable and Clause Elimination.

J.B.J. Fourier.

Solution d'une question particulire du calcul des angalits. Oevres. II:314–328, 1826.

K. L. McMillan.

Applications of Craig Interpolation to Model Checking.

K. L. McMillan, A. Kuehlmann, and M. Sagiv.

Generalizing dpll to richer logics.

In CAV, pages 462-476, 2009.

O. Strichman.

Deciding Disjunctive Linear Arithmetic with SAT. CoRR, 2004.