Journal Report 6 10/7/19-10/14/19 Michael Huang Computer Systems Research Lab Period 1, White

Daily Log

Monday October 7

Verified that my proof from last week worked and that there were no holes.

Tuesday October 8

Began compiling data between scarcity and MIS ratio.

Thursday October 10

Finished the data compilation calculated the pearson coefficient.

Timeline

Date	Goal	Met
9/30	Find a way to make Mathematica	Yes, by specifying the exact number
	work with weighted vertices in or-	of vertices required by Mathematica.
	der to finalize the $\{-1,0,1\}^3$ case with	This shows 100/316 to be a minimum
	varying amounts of 1s and -1s	for symmetric cases.
10/7	Find an answer for asymmetric	Yes, the answer is intuitively the same
	amounts of 1s and -1s.	as above, and I found a proof show-
		ing that.
10/14	Find the correlation coefficient be-	Yes, however the data was not great.
	tween the density of the graph and	
	the maximum independent vertex set	
	for different sets using $\{-1,0,1\}$	
10/21	Find an effective approximation algo-	
	rithm for MIS	
10/28	Implement an effective approxima-	
	tion algorithm for MIS	

Reflection

The goal of this week was to see if the density of edges the graph was a very good heuristic for the maximum independent set. Intuitively, it should be, however I came into a massive roadblock along the way. The size of the graph played a huge role in contributing to the MIS (more so than the density of the graph). It was also incredibly hard to keep size constant, because then I'd be finding the correlation coefficient of 4 terms or something. When I put everything together, regardless of size. I found there was some negative correlation, meaning that when the graph was denser, there was a smaller MIS. However, the r^2 value was only 0.4351.

I think a lot of my problems come back to the issue of not being able to get quite enough data because of the limitations of my current algorithms. I will work on rectifying that over the next two weeks by finding good approximation algorithm.