Calculo

Alejandro Zubiri

March 10, 2025

Índice

	El espacio \mathbb{R}^n				
1.1	El con	junto \mathbb{R}^n			
	1.1.1	\mathbb{R}^n como espacio afín			
	1.1.2	\mathbb{R}^n como espacio métrico			
	1.1.3	Rectas e hiperplanos en \mathbb{R}^n			

0.1 Bibliografía

- Stewart, J. Cálculo en varias variables.
- Apuntes de Pepe Aranda.
- Tom M. Apostol, "Calculus".
- Tom M. Apostol, Análisis Matemático.

Chapter 1

El espacio \mathbb{R}^n

1.1 El conjunto \mathbb{R}^n

 \mathbb{R}^n es el conjunto

$$\mathbb{R}^n = \{(x_1, \dots, x_n)/x_i \in \mathbb{R}, 1 \le i \le n\}$$

De momento, este conjunto no tiene ninguna estructura. Para ello, se introduce la noción de espacio vectorial (EV a partir de ahora).

• La suma vectorial:

$$\vec{a} + \vec{b} = (a_i + b_i, \dots a_n + b_n)$$

• Producto por escalar:

$$k\vec{a} = (ka_1, \dots, ka_n)$$

Con estas dos operaciones, \mathbb{R}^n es EV, y a sus elementos, los vamos a llamar vectores, y los denotaremos por $\vec{x} = (x_1, \dots x_n)$.

Con esta estructura, los elementos de \mathbb{R}^n se pueden ordenar, por ejemplo, en una cuadrícula.

1.1.1 \mathbb{R}^n como espacio afín

Nos será útil para definir direcciones desde cualquier punto de \mathbb{R}^n . La estructura afín en \mathbb{R}^n se define por la aplicación

$$\varphi: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}^n$$

$$(\vec{u}, \vec{v}) \mapsto \varphi(\vec{u}, \vec{v})$$

donde $\varphi(\vec{u}, \vec{v})$ se representará como un vector cuyo punto de aplicación está en el extremo de \vec{u} y el extremo, el de $\varphi(\vec{u}, \vec{v})$ en el extremo de \vec{v} . Es fácil comprobar que

$$\varphi(\vec{u}, \vec{v}) = \vec{v} - \vec{u}$$

En este contexto es conveniente llamar puntos a los vectores con punto de aplicación en el $\vec{0}$ y vectores a los vectores cuyo punto de aplicación es arbitratio. Los puntos también los denotaremos mediante letras mayúsculas, y los vectores con letras minúsculas.

A recordar que punto - punto define un vector, y que punto + vector = punto. Con esto ya podemos definir direcciones.

1.1.2 \mathbb{R}^n como espacio métrico

Para medir longitudes, ángulos y distancias introduciremos en \mathbb{R}^n el **producto escalar**.

Definición 1. El producto escalar entre dos vectores \vec{u} y \vec{v} se define como

$$\cdot: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$$

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i \tag{1.1}$$

El producto escalar tiene las propiedades siguientes:

- $\bullet \ \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $\vec{u} \cdot (\vec{v} + \lambda \vec{w}) = \vec{u} \cdot \vec{v} + \lambda \vec{u} \cdot \vec{w}$
- $\vec{u} \cdot \vec{u} \ge 0 \implies \vec{u} \cdot \vec{u} = 0 \iff \vec{u} = \vec{0}$

Debido a la propiedad 3, podemos definir la longitud (o norma) de un vector como

Definición 2. La longitud o norma de un vector se define como:

$$|\vec{u}| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{\sum_{i=1}^{n} u_i^2}$$
(1.2)

Las propiedades son que:

- $|\vec{v}| = 0 \iff \vec{v} = 0$
- $|\lambda \vec{u}| = |\lambda| |\vec{u}|$
- Desigualdad de Cauchy-Schwarz:

$$|\vec{u} \cdot \vec{v}| \le |\vec{u}||\vec{v}|$$

Demostración. Observemos que si uno de los vectores es el vector nulo, entonces la desigualdad se satisface por igualdad, o también si ambos vectores son proporcionales entre sí. Supongamos entonces que u y v son LI. Eso significa que la ecuación $u = \lambda v$ no tiene solución.

$$u - \lambda v = \vec{0}$$

$$(u - \lambda v)(u - \lambda v) = 0$$
$$u \cdot u - 2xu \cdot v + x^{2}v \cdot v = 0$$

Recordando la definición de norma queda

$$x^2|v|^2 - 2xu \cdot v + |u|^2 = 0$$

Ahora tenemos una ecuación de segundo grado en x. Como no puede tener solución, $b^2 - 4ac < 0$.

$$(2u \cdot v)^{2} - 4|v|^{2}|u|^{2} < 0$$
$$2|u \cdot v| < 2|v||u|$$
$$|u \cdot v| < |v||u|$$

Como deben cumplirse ambas

$$|u \cdot v| \le |v||u| \tag{1.3}$$

• Designaldad triangular

$$|\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|$$

Demostración. Partimos de u+v

$$(u+v)\cdot(u+v) = |u|^2 + 2u\cdot v + |v|^2 = |u+v|^2 \ge 0$$

Por Cauchy-Schwarz, $u \cdot v \leq |u \cdot v| \leq |u| \cdot |v|$

$$|u+v|^2 \le |u|^2 + |v|^2 + 2|u||v|$$

 $|u+v|^2 \le (|u|+|v|)^2$
 $|u+v| \le |u|+|v|$

De especial importancia son los vectores con norma 1, denominados como vectores unitarios.

Definición 3. Definimos como vectores unitarios a esos vectores \vec{v} que cumplen que

$$|\vec{v}| = 1 \tag{1.4}$$

Mediante la desigualdad de Cauchy-Schwarz, podemos obtener un método para medir ángulos. Observemos que de C-S se deduce

$$||u||v|| \le u \cdot v \le |u||v| \tag{1.5}$$

Si ninguno de los vectores es el nulo, podemos dividir entre las normas

$$-1 \le \frac{u \cdot v}{|u||v|} \le 1\tag{1.6}$$

Entonces, como está acotada en [-1,1], podemos definir el ángulo α entre u y v como

Definición 4. El ángulo α entre u y v como el ángulo que satisface

$$\cos \alpha = \frac{u \cdot v}{|u||v|} \tag{1.7}$$

donde $\alpha \in [0, \pi]$. Es de relevancia que α siempre se mide como el ángulo "interior" o el más pequeño.

 $Si \ \alpha = \frac{\pi}{2} \implies u \cdot v = 0 \implies u \ y \ v \ son \ ortogonales.$

Aunque el ángulo entre $\vec{0}$ y otro vector cualquiera no está definido, sin embargo, se suele decir que $\vec{0}$ es ortogonal a todos los vectores de \mathbb{R}^n

Ahora en \mathbb{R}^2 ya podemos dibujarlos "correctamente". Ahora falta definir distancias entre puntos de \mathbb{R}^n .

Definición 5. Definimos la distancia entre dos puntos P y Q como

$$d(P,Q) = |\overrightarrow{PQ}| = |Q - P| \tag{1.8}$$

1.1.3 Rectas e hiperplanos en \mathbb{R}^n

Una recta en \mathbb{R}^n que pasa por un punto P y tiene la dirección $\overrightarrow{v} \in \mathbb{R}^n$ se define como los puntos X que satisfacen

La recta está descrita por un solo parámetro libre, por lo que es un objeto de dimensión 1. Si $v_j \neq 0$ con $j \in \{1, ..., n\}$ podemos eliminar t

$$t = \frac{x_j - p_j}{v_j} \tag{1.10}$$

Y entonces

$$x_i = p_i + \frac{x_j - p_j}{v_j} v_i / i \neq j$$
 (1.11)

Por tanto, la recta está definida por n-1 ecuaciones. Por tanto, la recta es un objeto de codimensión n-1.

Chapter 2

Funciones Implícitas

2.1 Funciones Inversas

Dada $f: A \to B$, se dice que f tiene inversa si existe una función $g: B \to A$ tal que

$$f \circ g = Id_b$$

y similarmente

$$g \circ f = Id_a$$

Si esta función existe, se denota por

$$f^{-1} \neq \frac{1}{f}$$

Se puede demostrar que f^{-1} existe si y solo si f es inyectiva y sobreyectiva (biyectiva). Sin embargo, dadas ciertas funciones que no sean ni inyectivas ni sobreyectivas, se pueden restringir de forma que sean biyectivas.

Ejemplos:

- $f(x) = x^2$. Esta función es sobreyectiva, pero no es inyectiva, y por tanto no tiene inversa. Sin embargo, podemos restringir el dominio tal que $x \ge 0$, y entonces sí que es inyectiva, por tanto biyectiva, y por tanto tiene inversa.
- $g(x) = \cos x$. Esta función es periódica, pero si restringimos la función a un período $[0, \pi]$, entonces es biyectiva.

Sea $\bar{f}(\mathbf{x}) = \mathbf{y}$. Queremos ver si podemos invertir esta relación (\bar{f}^{-1}) , y obtener

$$\mathbf{x} = \bar{f}^{-1}(\mathbf{y})$$