# RIASSUNTI MATEMATICA DISCRETA

# **Sommario**

| 1 | GRA   | FI                                                    | . 3 |
|---|-------|-------------------------------------------------------|-----|
|   | 1.1   | Non Orientati                                         | . 3 |
|   | 1.1.1 | Grado dei Vertici                                     | . 3 |
|   | 1.1.2 | Bipartiti                                             | . 3 |
|   | 1.1.3 | Complementari                                         | . 3 |
|   | 1.1.4 | Isomorfi                                              | . 3 |
|   | 1.1.5 | Planari                                               | . 3 |
|   | 1.2   | Orientati                                             | . 4 |
|   | 1.3   | Connettività                                          | . 4 |
|   | 1.3.1 | Connettività sugli spigoli                            | . 4 |
|   | 1.3.2 | Connettività sui vertici                              | . 4 |
|   | 1.3.3 | Connettività ottima                                   | . 4 |
|   | 1.4   | Cicli                                                 | . 4 |
|   | 1.4.1 | Trail                                                 | . 4 |
|   | 1.4.2 | Ciclo                                                 | . 4 |
|   | 1.4.3 | Trail Euleriano                                       | . 4 |
|   | 1.4.4 | Ciclo Euleriano                                       | . 4 |
|   | 1.4.5 | Circuito Hamiltoniano                                 | . 5 |
| 2 | ALBI  | ERI                                                   | . 5 |
|   | 2.1   | Non orientato                                         | . 5 |
|   | 2.2   | Orientato                                             | . 6 |
|   | 2.2.1 | Albero m-ario                                         | . 6 |
| 3 | CAL   | COLO COMBINATORIO                                     | . 6 |
|   | 3.1   | Principio di Addizione                                | . 6 |
|   | 3.2   | Principio di Moltiplicazione                          | . 6 |
|   | 3.3   | r-Sequenze                                            | . 6 |
|   | 3.4   | Disposizioni = Permutazioni = Ordinamenti = Anagrammi | . 6 |
|   | 3.4.1 | Permutazioni                                          | . 6 |
|   | 3.4.2 | r-Permutazioni (Disposizioni Semplici)                | . 6 |
|   | 3.5   | r-Combinazioni                                        | . 6 |
|   | 3.6   | Disposizioni con Ripetizione                          | . 6 |
|   | 3.7   | Selezioni (Combinazioni con Ripetizione)              | . 6 |
|   | 3.8   | Distribuzioni                                         | . 7 |
|   | 3.8.1 | r-Sequenze con ripetizione                            | . 7 |
|   | 3.8.2 | Disposizioni con ripetizione                          | . 7 |
|   | 3.8.3 | Oggetti Identici                                      | . 7 |
|   | 3.9   | Lavorare per differenza                               | . 7 |
| 4 | BINC  | DMAILI                                                | 7   |

1

| 4.1   | Coefficiente Binomiale                       |   |
|-------|----------------------------------------------|---|
| 4.2   | Sviluppo di polinomi                         | 8 |
|       | Identità Binomiali                           |   |
|       | AZIONI DI RICORRENZA                         |   |
|       | Relazione di Ricorrenza Lineare Omogenea     |   |
|       | Relazione di Ricorrenza Lineare Non Omogenea |   |
|       | Dipendenza di $a_n$ da $n/2$                 |   |
| 2.2.1 | DIPOHOCHEU OI Oη OU 1/2                      | U |

### 1 GRAFI

### 1.1 Non Orientati

Grafo G(V, E) in cui

V = insieme finito di vertici

E = insieme di coppie NON ordinate di vertici, detti spigoli ( coppie (u, v) con  $u \neq v$  e  $u, v \in V$  ), con  $0 \leq |E| \leq \frac{n(n-1)}{2}$ 

<u>Cammino</u>: sequenza di vertici tutti distinti  $(u_1, u_2, ..., u_n)$  tali che ogni spigolo  $(u_i, u_{i+1}) \in E, \forall i (1 ... n-1)$ <u>Circuito</u>: cammino il cui percorso mi riporta al nodo iniziale.

<u>Grafo Connesso</u>: se  $\forall u, v \in V$ ,  $\exists$  un cammino che colleghi u con v

<u>Grafo Completo</u>: (detto grafo  $K_n$ ) se  $\forall u, v \in V$  con  $u \neq v$ ,  $(u, v) \in E$  (ogni coppia di vertici è collegata da uno spigolo). Oss: il numero di vertici è massimo:  $|E| = \frac{n(n-1)}{2}$ , ed inoltre  $\forall v \in V$  gr(v) = n-1

<u>Sotto-grafo</u>: dato G(V, E), presi  $V' \subseteq V$  e  $E' \subseteq E$  allora G'(V', E') è un sotto-grafo di G <u>Sotto-grafo indotto</u>: se G' è un sotto-grafo di G è indotto da G' se:

-  $(u,v) \in E : u,v \in V' \Rightarrow (u,v) \in E'$ 

### 1.1.1 Grado dei Vertici

Grado dei vertici: gr(v) numero degli spigoli incidenti nel vertice v

**TEO:**  $\sum_{\forall v \in V} gr(v) = 2 \cdot |E|$ 

**COR:** in un grafo G(V, E) non orientato semplice i vertici di grado dispari sono pari

### 1.1.2 Bipartiti

<u>Bipartito</u>: indicato come  $G(V_1, V_2; E)$  con  $V_1 \cap V_2 = \emptyset$  e  $V_1 \cup V_2 = V$ .

se  $\forall$  *spigolo*  $(u, v), u \neq v, u \in V_1$   $e v \in V_2$  (gli estremi di ogni spigolo devono stare uno in  $V_1$  e l'altro in  $V_2$ ) **TEO:** G(U, V, E) è bipartito  $\Leftrightarrow$  tutti i suoi circuiti hanno lunghezza pari.

Massimo numero di spigoli su grafo bipartito =  $max|E| = |V_1| \cdot |V_2|$ 

Bipartito Completo: quando ha tutti i possibili spigoli che mantengono la proprietà di bipartismo

### 1.1.3 Complementari

<u>Grafi Complementari</u>: dato G(V, E) allora  $G^{C}(V^{C}, E^{C})$  è complementare di G se  $\forall u, v \in V \ con \ u \neq v; (u, v) \in E \iff (u, v) \notin E^{C}$ Oss:  $G \cup G^{C}$  da un grafo completo  $K_{n}$ 

#### 1.1.4 Isomorfi

<u>Grafi Isomorfi</u>: G(V, E) e G'(V', E') sono isomorfi se esiste una corrispondenza biunivoca tra V e V' tale che:  $u, v \in V$  sono adiacenti in  $G \Leftrightarrow$  i due sono corrispondenti  $u', v' \in V'$  sono adiacenti in G'. Due grafi isomorfi hanno:

- stesso numero di vertici
- mantengono le adiacenze ⇒ devono avere lo stesso grado dei vertici

Condizioni sufficienti perché due grafi non siano isomorfi.

- Hanno diverso numero di: vertici o spigoli o vertici dello stesso grado
- Hanno diversi sotto-grafi indotti
- Un grafo è bipartito mentre l'altro non lo è
- Sono complementari

### 1.1.5 Planari

<u>Grafi Planari</u>: G(V, E) è planare se può essere disegnato con una rappresentazione piana senza intersezione tra gli spigoli.

Metodo grafico del circuito e delle corde:

- Cerco un circuito Hamiltoniano nel grafo G
- Dispongo a cerchio il circuito trovato
- Aggiungo le corde, una alla volta, partendo da quelle con posizioni vincolate e cerco di evitare gli incroci

**TEO:** (*Kuratowski*) G è planare  $\Leftrightarrow$  NON contiene  $K_{3,3}$  o  $K_5$  configurazioni. <u>Numero di regioni</u>: (formula di Eulero) G connesso e planare: r = e - v + 2 con e = |E| ev = |V| **COR:** Se G(V, E) è connesso e planare con  $e > 1 \implies e \le 3v - 6$  (NON vale il viceversa)

**COR:** se G(V, E) è connesso, planare e bipartito con  $e > 1 \Rightarrow e \le 2v - 4$  (bipartito NON può contenere circuiti dispari)

TEO: (Appel-Haken) posso colorare un qualsiasi grafo planare, dando colori diversi a nodi adiacenti, usando 4 colori

### 1.2 Orientati

Grafo G(N, A) in cui

N = insieme finito di nodi

A = insieme di coppie ordinate di nodi, detti archi (coppie  $(u, v) \in V$  sono u estremo iniziale e v estremo finale), con  $0 \le |A| \le n(n-1)$ 

Fortemente Connesso: come non orientati (difficile che si verifichi tale proprietà)

<u>Completo</u>: come non orientati però il numero di archi è E = n(n-1) perché arco  $(v_1, v_2) \neq (v_2, v_1)$ 

<u>Grado dei nodi</u>:  $gr^+(v)$  numero di archi uscenti da v,  $gr^-(v)$  numero di archi entranti in v

**TEO:**  $\sum_{\forall v \in N} gr^+(v) = |A| = \sum_{\forall v \in N} gr^-(v)$ 

### 1.3 Connettività

### 1.3.1 Connettività sugli spigoli

Connettività sugli spigoli:  $\lambda(G)$  è il minimo numero di spigoli la cui rimozione trasforma G in sconnesso.

*Edge cutset*: insieme  $S \subseteq E$  tale che :

- La rimozione di tutti gli spigoli di S trasforma G in sconnesso
- $\forall S' \subseteq S$  (sottoinsieme non uguale) la rimozione di S' lascia G connesso

#### 1.3.2 Connettività sui vertici

<u>Connettività sui vertici</u>: K(G) minimo numero di vertici la cui rimozione trasforma G (connesso e non completo), in sconnesso.

*Vertex cutset*: insieme  $U \subseteq V$  tale che :

- La rimozione di tutti i vertici di U trasforma G in sconnesso
- $\forall U' \subsetneq U$  (sottoinsieme non uguale) la rimozione di U' lascia G connesso

<u>Grado minimo di vertici</u>:  $\delta(G)$  è il minimo grado gr(v) dei vertici  $v \in V$ 

**OSS:**  $\forall G, K(G) \leq \lambda(G) \leq \delta(G) \leq 2|E|/|V|$ 

### 1.3.3 Connettività ottima

<u>Connettività ottima</u>:  $\forall$  G connesso  $K(G) = \lambda(G) = \delta(G) = 2|E|/|V|$ 

<u>Grado medio</u>:  $\forall v \in V \quad \left[\sum_{v \in V} gr(v)\right] / |V| = 2|E| / |V|$ 

### 1.4 Cicli

### 1.4.1 Trail

È una sequenza di nodi e spigoli  $\{x_1, e_1, x_2, e_2, ..., x_k, e_k, x_{k+1}\}$  dove gli spigoli  $\{e_1, e_2, ..., e_k\}$  sono tutti distinti mentre i vertici  $\{x_1, x_2, ..., x_k, x_{k+1}\}$  possono essere ripetuti.

### 1.4.2 Ciclo

È un Trail con  $x_1$ ,  $x_{k+1}$  adiacenti.

#### 1.4.3 Trail Euleriano

È un Trail nel quale compaiono tutti gli spigoli e tutti i vertici di un multigrafo.

### 1.4.4 Ciclo Euleriano

È un ciclo in cui compaiono tutti gli spigoli del multigrafo e tutti i suoi vertici.

by Caesar & Gira

4

TEO: G multigrafo NON ORIENTATO ha un Ciclo Euleriano ⇔

- 1) Gè connesso
- 2) Tutti i vertici sono di grado pari

TEO: G multigrafo ha un Trail Euleriano ma NON un Ciclo Euleriano ⇔

- 1) Gè connesso
- 2) Esattamente 2 vertici hanno grado dispari

TEO: G multigrafo ORIENTATO ha un Ciclo Euleriano ⇔

- 1) G è fortemente connesso
- 2)  $\forall v \in V$ : In-degree(v) = Out-degree(v)

### 1.4.4.1 Procedura pratica

- 1. Scelgo un ciclo C1 che abbia un vertice v con gr(v) > 2 e pari su cui passi anche un ciclo C2
- 2. Elimino tutti gli spigoli del ciclo C1
- 3. Ripeto la procedura su C2 dal punto 1 fino ad ottenere tutti i vertici privi di spigoli
- 4. Concateno  $C_1, C_2, ..., C_n$  in modo che:
  - a. Nel ciclo  $C_1$ sostituisco il vertice in comune con  $C_2$  con l'intero ciclo  $C_2$  ed ottengo il ciclo C
  - b. Nel ciclo C sostituisco il vertice in comune con  $C_3$  con l'intero ciclo  $C_3$  ed ottengo il nuovo ciclo C
  - c. Ripeto il punto "b" per  $C_4, \dots, C_n$
  - d. Il ciclo C ottenuto sarà il ciclo Euleriano di G

ES:  $C1 = \{a, b, c, a\}; C2 = \{b, e, b\} \rightarrow C = \{a, b, e, b, c, a\}$ 

#### 1.4.5 Circuito Hamiltoniano

Circuito Hamiltoniano: circuito che visita tutti i nodi passando per ogni nodo una sola volta.

#### **OSS:**

- 1) Se G non connesso ⇒ ∄ circuito Hamilt.
- 2) Se  $\exists v \in V \text{ con } gr(v) = 1 \Rightarrow \nexists \text{ circuito Hamilt.}$
- 3) Se vertice v ha grado 2 ⇒ circuito Hamilt., se esiste, contiene i due spigoli incidenti in v
- 4) Se ∃ dei sottocircuiti ⇒ ∄ circuito Hamilt.
- 5) Se 2 spigoli incidenti in v ∈ circuito Hamilt. ⇒ tutti gli altri spigoli incidenti in v ∉ al circuito Hamilt.
- 6)  $G(V_1, V_2; E)$  connesso e bipartito ha un circuito Hamiltoniano  $\Leftrightarrow |V_1| = |V_2|$ . (da esercizi)

**TEO:** (Dirac) [sufficiente ma non necessario] G(V, E) grafo, n = |V| > 2 se  $gr(v) \ge n/2 \ \forall v \in V \Rightarrow G$  è Hamilt.

**TEO:** (Chavatal) [sufficiente ma non necessario] G(V, E) grafo, n = |V| se  $gr(x_1) \le gr(x_2) \le \cdots \le gr(x_n)$  e  $\forall k \le n/2$   $gr(x_k) > k \Rightarrow G$  è Hamilt.

#### 1.4.5.1 Procedura pratica

- 1) Se esistono, trovare 1 o + assi di simmetria del grafo
- 2) Partendo dai vertici di grado 2 includere gli spigoli incidenti
- 3) Eliminare gli spigoli che formano sottocircuiti e considerare la simmetria

### 2 ALBERI

### 2.1 Non orientato

T(V,E) grafo non orientato connesso è un albero se vale una di queste proprietà (asserti equivalenti)

- T non ha circuiti
- $\forall x, y \in V \exists$  un unico cammino x--y
- Tè minimamente sconnesso, cioè la rimozione di un qualsiasi spigolo rompe la connessione

**Teo:** T(V,E) con |V| = n, ha  $|E| = |V \setminus radice| = n - 1$ 

Un grafo G(V,E) non orientato è un albero se valgono almeno due di queste proprietà: (da esercizi)

- G(V,E) è connesso
- G(V,E) è senza circuiti
- $|E| = |V| 1 \equiv |V| = |E| 1$

### 2.2 Orientato

G(V,E) è un albero orientato se è un grafo orientato con vertice  $\bar{v}$  detto radice, tale che  $\forall u \in \{V \setminus \bar{v}\}\ \exists$  un unico cammino da  $\bar{v}$  ad u. in-degree(v) = [1 se  $v \neq \bar{v}$ , 0 se  $v = \bar{v}$ ]; se out-degree(v) = [0  $\Rightarrow$  v foglia, >0  $\Rightarrow$  v nodo interno] G(V,E) albero orientato con: n = |V|, l = # foglie,  $i = \# nodi interni \rightarrow n = l + i$ 

### 2.2.1 Albero m-ario

G(V,E) è albero m-ario se tutti i nodi interni hanno m figli. Se G(V,E) è m-ario  $\rightarrow n = 1 + m \cdot i$ 

### CALCOLO COMBINATORIO

### 3.1 Principio di Addizione

Ho *n* insiemi disgiunti a due a due, con:  $r_i$  = numero di oggetti distinti nell'insieme  $i \in [1 \cdots n]$ . Il numero di modi in cui posso scegliere un oggetto è:  $r_1 + r_2 + \cdots + r_n$ .

### 3.2 Principio di Moltiplicazione

Data una **procedura** composta da *n* fasi ordinate, con:  $r_i$  = numero di esiti distinti della fase  $i \in [1 \cdots n]$ . Se:

- il numero di esiti di una qualsiasi fase non dipende dagli esiti delle precedenti fasi
- gli esiti di tutta la procedura sono distinti

Il numero di esiti distinti della procedura è:  $r_1 \cdot r_2 \cdots r_n$ .

### 3.3 r-Sequenze

Una r-sequenza è una sequenza di caratteri di lunghezza r.

Una r-sequenza binaria è una sequenza di due soli caratteri di lunghezza r.

### 3.4 Disposizioni = Permutazioni = Ordinamenti = Anagrammi

Ho n oggetti distinti e devo calcolare il numero di disposizioni possibili, cioè il numero di modi in cui possono essere messi in un particolare ordine. N.B.: l'ordine degli oggetti è fondamentale!

#### 3.4.1 Permutazioni

Il numero di disposizioni possibili è:  $n \cdot (n-1) \cdots (1) = n!$ 

#### 3.4.2 r-Permutazioni (Disposizioni Semplici)

Dati n oggetti distinti devo calcolare in quanti modi posso ordinare r degli n oggetti disponibili, con  $r \le n$ . Devo quindi calcolare il numero dei gruppi distinti che si possono formare composti da r degli n oggetti distinti disponibili.

Il numero di r-disposizioni possibili è:  $P(n,r) = n \cdot (n-1) \cdots (n-r+1) = \frac{n!}{(n-r)!}$ 

### 3.5 r-Combinazioni

Una r-combinazione quantifica il numero di modi in cui è possibile scegliere un sottoinsieme di r oggetti distinti da un insieme di n oggetti distinti, con  $r, n \in \mathbb{N}$  n > r. N.B.: l'ordine in cui vengono presi non è importate.

Il numero di r-combinazioni su n oggetti è:  $C(n,r) = \frac{n!}{(n-r)!r!} = \binom{n}{r}$ 

# 3.6 Disposizioni con Ripetizione

Ho n oggetti di m tipi diversi, con:  $r_i$  = numero di oggetti di tipo  $i \in [1 \cdots m]$  ed  $r_1 + r_2 + \cdots + r_m = n$ .

Il numero di disposizioni con ripetizioni è:  $\frac{n!}{r_1!r_2!\cdots r_m!}$ 

# 3.7 Selezioni (Combinazioni con Ripetizione)

Una **selezione** quantifica il numero di modi in cui è possibile scegliere r oggetti (anche *identici* tra loro) tra n diverse tipologie di oggetti, con  $r \le n$ 

numero di soluzioni dell'equazione  $x_1 + x_2 + \cdots + x_n = r$  con  $x_1, x_2, \cdots, x_n \ge 0 \in \mathbb{N}$ , ove  $x_i =$  numero di oggetti identici di tipo  $i \in [1 \cdots n]$ 

numero di (r + n - 1)-sequenze binarie con r simboli "x" ed n - 1 simboli "y".

Il numero di selezioni è:  $\binom{r+n-1}{r} = \binom{r+n-1}{n-1}$ 

6

### 3.8 Distribuzioni

Ho r oggetti da disporre in n scatole diverse, con  $r \ge n$ .

### 3.8.1 r-Sequenze con ripetizione

numero di diverse distribuzioni di r oggetti distinti in n scatole diverse

=

numero di r-sequenze con elementi  $\in [1, \dots, n]$  con elementi ripetuti



### 3.8.2 Disposizioni con ripetizione

numero di diverse distribuzioni di r oggetti distinti in n scatole diverse sapendo che nella scatola i ci sono  $r_i$  oggetti, con  $r_1 + r_2 + \cdots + r_n = r$ 

=

numero di r-sequenze con elementi  $\in [1, \cdots, n]$  che contengono:  $r_1$  elementi = "1"  $\cdots r_n$  elementi = "n" -

disposizione con ripetizione di r oggetti di n tipi diversi, con:  $r_i$  = numero di oggetti di tipo  $i \in [1 \cdots n]$  ed  $r_1 + r_2 + \cdots + r_n = r$ 

$$\rightarrow \frac{n!}{r_1!r_2!\cdots r_m!}$$

### 3.8.3 Oggetti Identici

### 3.8.3.1 Selezioni

numero di diverse distribuzioni di r oggetti identici in n scatole diverse

=

numero di selezioni di r oggetti tra n varietà

#### 3.8.3.2 Selezioni con limitazioni

numero di diverse distribuzioni di r oggetti identici in n scatole diverse in modo che ogni scatola contenga almeno k oggetti con  $r \ge k \cdot n$ 

≡

numero di selezioni di r oggetti tra n varietà con almeno k oggetti per ogni varietà (cioè una selezione di  $r-k\cdot n$  oggetti)

=

numero di soluzioni dell'equazione  $x_1 + x_2 + \dots + x_n = r$  con  $x_1, x_2, \dots, x_n \ge k \in \mathbb{N}$ , ove  $r_i =$  numero di oggetti nella scatola  $i \in [1 \dots n]$ 

# 3.9 Lavorare per differenza

Quando viene richiesto di calcolare un numero di eventi difficile da modellizzare, in generale escludere eventi, è comodo lavorare per differenza:

numero di volte che si verifica A ma non si verifica B = numero di volte in cui si verifica A – numero di volte in cui si verifica B

Se viene richiesto di calcolare il numero di eventi in cui è presenta "almeno" un oggetto per differenza: numero di estrazioni con almeno un A = numero di possibili estrazioni – numero di estrazioni con zero A

### 4 BINOMAILI

### 4.1 Coefficiente Binomiale

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}$$

# 4.2 Sviluppo di polinomi

$$(a+x)^n = \sum_{k=0}^n \left[ \binom{n}{k} \cdot a^{n-k} \cdot x^k \right]$$

### 4.3 Identità Binomiali

$$\binom{n}{k} = \binom{n}{n-k} \qquad \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \qquad \binom{n}{k} \cdot \binom{k}{m} = \binom{n}{m} \cdot \binom{n-m}{k-m}$$

$$\binom{n}{k} \cdot \binom{k}{m} = \binom{n}{m} \cdot \binom{n-m}{k-m}$$

# **RELAZIONI DI RICORRENZA**

La relazione di ricorrenza è una equazione che coinvolge un paramento a che dipende da n oggetti:

- $a_n$  = numero di soluzioni di un problema con n oggetti
- $a_n$  = numero di modi di eseguire una procedura con n oggetti

### 5.1 Relazione di Ricorrenza Lineare Omogenea

 $a_n = c_1 \cdot a_{n-1} + c_1 \cdot a_{n-2} + \dots + c_r \cdot a_{n-r}$ Per risolverla:

- pongo:  $a_n = \alpha^n$  ed ottengo:  $\alpha^n = c_1 \cdot \alpha^{n-1} + c_1 \cdot \alpha^{n-2} + \dots + c_r \cdot \alpha^{n-r}$
- divido per  $\alpha^{n-r}$  ed ottengo:  $\alpha^r = c_1 \cdot \alpha^{r-1} + c_1 \cdot \alpha^{r-2} + \dots + c_r \rightarrow$  equazione caratteristica (\*)
- risolvo l'equazione (un polinomio) ed ottengo r soluzioni del polinomio:
  - o se  $\overline{\alpha}$  è una soluzione di (\*)  $\rightarrow a_n = \overline{\alpha}^n$  è una soluzione della relazione
  - o se  $\overline{\alpha}$  è una soluzione di (\*) con molteplicità  $m \rightarrow$  ottengo m soluzioni della relazione:  $a_n = \overline{\alpha}^n$ ;  $a_n =$  $n^1 \cdot \overline{\alpha}^n$ ; ...;  $a_n = n^{m-1} \cdot \overline{\alpha}^n$
- la soluzione generale della relazione è data dalla composizione lineare della r soluzioni ottenute:  $a_n =$  $A_1 \cdot \overline{\alpha_1}^n + A_2 \cdot \overline{\alpha_2}^n + \cdots$  (in questo caso non ho indicato sol. Con molteplicità > 1)
- mediante le condizioni iniziali, ricavo la soluzione particolare (es: ho  $a_n = A \cdot \overline{\alpha}^n$  conosco  $a_0$ , sostituisco 0 al posto di n ed ottengo  $a_0 = A \cdot \overline{\alpha}^0$  da cui ricavo il valore di A).

# 5.2 Relazione di Ricorrenza Lineare Non Omogenea

 $a_n = c_1 \cdot a_{n-1} + c_1 \cdot a_{n-2} + \dots + c_r \cdot a_{n-r} + f(n)$ Relazione omogena associata :  $a_n = c_1 \cdot a_{n-1} + c_1 \cdot a_{n-2} + \cdots + c_r \cdot a_{n-r}$  (ricavata sol. generale come sopra)

Soluzione particolare del caso:  $r = 1 \rightarrow a_n = c_1 \cdot a_{n-1} + f(n)$ 

- $c = 1 \rightarrow a_n = a_0 + \sum_{k=1}^n f(k)$
- $c \neq 1$ 
  - Studio f(n):
    - $f(n) = d \to a_n = B$
    - $f(n) = d \cdot n \rightarrow a_n = B_1 \cdot n + B_0$   $f(n) = d \cdot n^2 \rightarrow a = B_1 \cdot n^2 + B_0$
    - $f(n) = d \cdot n^2 \to a_n = B_2 \cdot n^2 + B_1 \cdot n + B_0$
  - o Sostituisco l' $a_n$  ricavato nella relazione di ricorrenza  $a_n = c_1 \cdot a_{n-1} + f(n)$  e ricavo i B facendo in modo di ottenere una verità del tipo 0=0  $\text{Es: } a_n = c_1 \cdot a_{n-1} + d \cdot n \rightarrow a_n = B_1 \cdot n + B_0 \rightarrow B_1 \cdot n + B_0 = c_1 \cdot [B_1 \cdot (n-1) + B_0] + d \cdot n \rightarrow \text{ricavo } B_0, B_1 \rightarrow B_1 \cdot n + B_0 \rightarrow B_1 \cdot$

 $Soluzione\ Generale = soluzione\ generale\ della\ relazione\ omogenea\ associata + soluzione\ particolare$ 

Ricavo la Soluzione Particolare applicando le condizioni iniziali.

### 5.2.1 Dipendenza di $a_n$ da n/2

Unico caso studiato:  $a_n = c \cdot a_{\underline{n}} + f(n)$ 

- c = 1,  $f(n) = d \rightarrow a_n = d \cdot \lceil \log_2 n \rceil + A$
- c=2,  $f(n)=d \rightarrow a_n=A_n-d$