3.6. Encontre o estimador de máxima verossimilhança de $g(\mu) = \mu^2$ no exercício 2.9 e compare seu erro médio quadrático com o do estimador eficiente $\hat{\gamma}$ dado no exercício 2.9(i).

Solução:

No exercício 2.9 temos:

Seja X_1, X_2, \ldots, X_n uma amostra aleatória da variável aleatória $X \sim N(\mu, 1)$.

Mostramos que

$$\hat{\gamma} = \bar{X}^2 - \frac{1}{n}$$

é um estimador não viciado de $g(\mu)=\mu^2$ e que o limite inferior de Cramer-Rao é dado por:

$$LICR = \frac{4\mu^2}{n}$$

A variância de $\hat{\gamma}$ é dada por:

$$Var(\widehat{\gamma}) = Var(\bar{X}^2) = \frac{4\mu^2}{n} + \frac{2}{n^2} > \frac{4\mu^2}{n} = LICR.$$

Assim ele não é eficiente como diz o problema.

O estimador de MV para μ^2 , pela propriedade da invariância, é dado por

$$T = \bar{X}^2$$

temos que

$$E(T) = E(\bar{X}^2) = \mu^2 + \frac{1}{n}.$$

O viés de T é dado por;

$$B(T) = \frac{1}{n}.$$

e

$$Var(T) = \frac{4\mu^2}{n} + \frac{2}{n^2}$$

O erro médio quadrático de T é dado por:

$$EQM(T) = Var(T) + B^2(T) = \frac{4\mu^2}{n} + \frac{2}{n^2} + \frac{1}{n^2}$$

$$EQM(T) = \frac{4\mu^2}{n} + \frac{3}{n^2} > \frac{4\mu^2}{n} + \frac{2}{n^2} = EQM[\hat{\gamma}].$$