06 类型的幂

LATEX Definitions are here.

泛性质

默认函子 $\stackrel{c}{\to}$: $(C^{op} \times C) \stackrel{Cat}{\to} C$ 在范畴 C 中有下述性质 :

• $(c_1 \times c) \xrightarrow{c} c_2 \overset{\text{Set}}{\cong} c \xrightarrow{c} (c_1 \xrightarrow{c} c_2) \overset{\text{Set}}{\cong} c_1 \xrightarrow{c} (c_1 \xrightarrow{c} c_2)$ —— c 为任意 C 中对象。此即为幂的泛性质,亦表示了**指数加乘法之间的运算关系**。

函子性

如何证明 $\stackrel{c}{\rightarrow}$ 构成函子呢 ? 请看

- $\overset{\mathsf{c}}{\to} : [\underbrace{(:\mathsf{c}_1\mathrm{id} : :_{\mathsf{c}_2}\mathrm{id})}_{::\mathsf{c}} \longmapsto : \underbrace{(\mathsf{c}_1\overset{\mathsf{c}}{\to} \mathsf{c}_2)}_{::[\mathsf{c}_1\overset{\mathsf{c}}{\to} \mathsf{c}_2)}\mathrm{id}$ —— 即函子 \to 能**保持恒等箭头** ;
- $\overset{\mathsf{c}}{\to} : (f_1 \circ f_1' \cdot f_2 \circ f_2') \longmapsto (f \circ f')$ —— 即函子 $\overset{\mathsf{c}}{\to}$ **保持箭头复合运算** 。

 下图有助于形象理解证明过程:

下图 (自上到下分别为图 1 和图 2)后面会用到。

范畴 C 内任意两对象 c_1 和 c_2 间的箭头构成一个集合 $c_1 \xrightarrow{c} c_2$, 说明 \xrightarrow{c} 只能将两个对象打到一个集合;下面使 \xrightarrow{c} 升级为函子: 若还知道箭头 f_1^{op} : $c_1' \xrightarrow{c} c_1$ 以及 f_2 : $c_2 \xrightarrow{c} c_2'$,则规定

• $(_ \to c_2) : C^{op} \to Set$ 为函子且 $(_ \to c_2) : c \to (c \to c_2)$ 且对任意 $f^{op} : c' \to c$ 有 $(_ \to c_2) : f^{op} \mapsto (f^{op} \to c_2) = (f^{op} \to c_2)$ 国 1 有助于理解。 $(_ \to f_2) : C^{op} \to Set ,$ $(_ \to f_2) : c \to (c \to f_2) = (cid \to f_2) = c_2 (cof_2)$ 且对任意 $f^{op} : c' \to c$ 有 $(_ \to f_2) : c \mapsto (c \to f_2) = (cid \to f_2) = c_2 (cof_2)$ 且对任意 $f^{op} : c' \to c$ 有 $(_ \to f_2) : f^{op} \mapsto (f^{op} \to f_2) = (f^{op} \to c_2) = (f^{o$

图 2 有助于理解。

i Note

不难看出

・ よ: $C \xrightarrow{\mathsf{Cat}} (C^{\mathsf{op}} \xrightarrow{\mathsf{Set}} \mathsf{Set})$ $\mathsf{c}_2 \longmapsto (\mathsf{c}_2 \xrightarrow{\mathsf{Cop}}) = (_ \xrightarrow{\mathsf{c}} \mathsf{c}_2)$ 构成一个函子 $f_2 \longmapsto (f_2 \xrightarrow{\mathsf{Cop}}) = (_ \xrightarrow{\mathsf{c}} \mathsf{f}_2) = (_ \circ f_2)$ 构成一个函子间映射,即自然变换 该风子称作是**米田嵌入**。

• $(c_1 \xrightarrow{c}_-) : C^{op} \xrightarrow{Cat} Set$ 为函子且 $(c_1 \xrightarrow{c}_-) : c \longmapsto (c_1 \xrightarrow{c}_-), 且对任意 <math>f : c \xrightarrow{c}_- c'$ 有 $(c_1 \xrightarrow{c}_-) : f \longmapsto (c_1 \xrightarrow{f}) = (c_1 \text{id} \xrightarrow{f}) = c_1 \xrightarrow{c}_- f$

(i) Note

图 2 有助于理解。

不难看出

• 尤: $C^{\mathrm{op}} \xrightarrow{\mathsf{Cat}} (C \xrightarrow{\mathsf{Set}} \mathsf{Set})$ $c_1 \longmapsto (c_1 \xrightarrow{\mathsf{C}} \mathsf{L})$ $f_1^{\mathrm{op}} \longmapsto (f_1^{\mathrm{op}} \xrightarrow{\mathsf{C}} \mathsf{L}) = (f_1^{\mathrm{op}} \circ \mathsf{L})$ 构成一个函子间映射,即自然变换

积闭范畴

这里插个题外话:

若范畴包含终对象,所有类型的积以及指数,则可将其称作积闭范畴;

若范畴包含始对象,所有类型的和,则可将其称作是余积闭范畴;

若范畴满足上述条件,则可称作双积闭范畴。

很明显我们讨论的范畴 C 就是**双积闭范畴**。