En esta clase trataremos:

- Proposiciones abiertas
- Cuantificador Universal
- Cuantificador Existencial
- Negación de cuantificadores

Proposiciones

- Considera los siguientes enunciados:
- a) "X es un profesor de matemáticas"
- b) "Paolo es un profesor de matemáticas".
- c) "X es un divisor de 8"
- d) "X es un divisor de Y".
- e) "2 es un divisor de Y".
- f) "3 es un divisor de 8".
- □ ¿Qué diferencias observas entre unas y otras?
- □ ¿Cuáles son proposiciones?

Se dan enunciados que no son proposiciones pero que pueden convertirse en proposiciones si se da **un valor** a las variables X ó Y.

Proposiciones abiertas

universo, de modo que se convierte en una proposición para cada valor o reemplazo de la variable.

Ejemplo:

Supongamos que el universo está formado por los números naturales. Son proposiciones abiertas:

- P(X): "X es un divisor de 8"
 Observa P(2) es cierta, P(5) es falsa, P(32) es falsa.
- \square Q(X,Y): "X es un divisor de Y". Q(2,5) es falsa pero Q(5, 100) es verdadera.

Ejercicio

- Decide cuáles enunciados son proposiciones abiertas y propón un universo.
- a) $(2n+3)^2$ es un número impar.
- b) 1 + 3 = 5
- c) Existe un número real x tal que $x < \pi$.
- d) x es un número real.

Piensa, antes de responder.

Respuestas:

- a) Es proposición abierta. b) Es proposición.
- c) Es proposición. d) Es proposición abierta.

Las expresiones

"Existe un x", "Para algún x", "Para cualquier x", "Para todo x", cuantifican las proposiciones abiertas, lo que hace posible asignarles un valor de verdad, convirtiéndolas en proposiciones.

Son proposiciones cuantificadas

"Para alguna x se cumple P(x)"

"Para algunos x y algunos y, se verifica Q(x,y)"

"Para todo x se satisface R(x)".

Como se observa en las proposiciones anteriores hay dos tipos de cuantificadores. ¿Puedes distinguirlos?

□ El cuantificador existencial,

"Para algún x se verifica p(x)"

"Existe x tal que se cumple p(x)"

"Para al menos un x se satisface p(x)"

son proposiciones que se escriben como " $\exists x \ p(x)$ "

El cuantificador universal,

"Para todo x se verifica p(x)"

"Para cualquier x tal que se cumple p(x)"

"Para cada x se satisface p(x)"

son proposiciones que se escriben como "∀x p(x)"

Ejemplo:

Escribe simbólicamente las proposiciones:

- r: "Para cada entero n, si n es par entonces n² + 19 es primo"
- s: "Existe un número real x tal que $x/(x^2 + 1) = 2/5$ "
- a) Universo: los números enteros, p(n): "n es par" y q(n): "n² + 19 es primo"

$$r: \forall n [p(n) \rightarrow q(n)]$$

b) Universo: los números reales, t(x): "x/(x² + 1) = 2/5 "
 s: ∃x t(x)

Observa: Es importante especificar el Universo de discurso.

Ejercicio 2:

En el Universo es los números reales, considere las proposiciones abiertas p(x): "x > 2", q(x): " $x^2 > 4$ "

Expresa en lenguaje coloquial y decide el valor de verdad de las siguientes proposiciones.

- a) $\forall x p(x)$
- b) $\forall x [p(x) \rightarrow q(x)]$
- c) $\forall x [q(x) \rightarrow p(x)]$
- a) "Todos los números reales son mayores a 2"
- b) "Todo número real mayor que 2 tiene cuadrado mayor a 4"
- c) "Cualquier número real con cuadrado mayor a 4 es mayor que 2"

Ejercicio

Escribe en forma simbólica las siguientes proposiciones y decida el valor de verdad de las mismas.

p: "Todo número real mayor que 2 tiene un cuadrado mayor que él mismo"

q: "Algunos números reales con cuadrado mayor que 4 son menores que 2"

r: "Cualquier número satisface $x^2 - x \ge 0$ o no es mayor que 2"

Toma unos minutos ... observa que en "r" hace falta el universo de discurso ...

¿Qué ocurre si U está formado por los números reales? ¿Y si a U lo forman los enteros?

Veracidad y falsedad

- □ Con cuantificador existencial: ∃x p(x)
 - "Existe un número real con cuadrado mayor a 12"
 - Es verdadera pues se verifica para al menos un ejemplar del universo.
 - "Existen números reales con cuadrado negativo"
 - Es falsa pues todo ejemplar del universo no la satisface
- □ Con cuantificador universal: $\forall x \ p(x)$ "Para cualquier número real x, $x^2 \ge 0$ "
 - Es verdadera, pues se verifica para todos y cada uno de los ejemplares del universo
- "Cualquier número natural mayor a 1, divide a 8"
 - Es falsa, pues *no se satisface para al menos un ejemplar* del universo

... Veracidad y falsedad con cuantificadores

Ejemplo

En el universo de los números enteros, considere las proposiciones abiertas

p(x): $x^2 - 8x + 15 = 0$

q(x): x es impar.

r(x): x > 0.

-Determina si son verdaderas o falsas las siguientes proposiciones.

- a) $\forall x [p(x) \rightarrow q(x)]$
- b) $\exists x [q(x) \rightarrow p(x)]$
- c) $\exists x [\neg r(x) \land p(x)]$
- d) $\forall x [p(x) \rightarrow \neg r(x)]$

- a) V; q(x) es V para todo x que satisface p(x).
- b) V
- c) F
- d) F

Toma unos minutos para responder

...Veracidad y falsedad con cuantificadores

Ejercicio 4

Traduce a lenguaje simbólico y determina los valores de verdad de las proposiciones cuantificadas, si supones que el universo son los números enteros:

- a) "Al menos un entero es par "
- b) "Si x es par entonces no es divisible entre 5"
- c) "Ningún entero par es divisible entre 5"
- d) "Cualquier par es divisible entre 4"

Negación de proposiciones cuantificadas

```
o Con cuantificador existencial:
La negación de
       \exists x \ p(x) : "Existe x que satisface <math>p(x)"
es
    \neg[\exists x \ p(x)] \equiv \text{``No es cierto que exista x, que}
                         verifique p(x)"
                       \equiv "Ningún x satisface p(x)"
                       \equiv "Todo x satisface \neg p(x)"
                       \equiv \forall x \neg p(x)
```

 $\neg [\exists x \ p(x)] \Leftrightarrow \forall x \neg p(x)$

Negación de proposiciones cuantificadas

o Con cuantificador universal:

La negación de

 $\forall x \ p(x) : "Para todo x se satisface p(x)"$

es

$$\neg [\forall x \ p(x)] \equiv \text{``NO es cierto que todo x}$$

$$\text{verifique p(x)''}$$

$$\equiv \text{``Algún x satisface } \neg p(x)''$$

$$\equiv \exists x \neg p(x)$$

$$\neg [\forall x p(x)] \Leftrightarrow \exists x \neg p(x)$$

... Negación de proposiciones cuantificadas

Ejemplos: Exhiba la negación de las proposiciones

1) r: "Cualquier número real cuyo cuadrado es mayor que 1, es mayor que 1" equivale a
 r: "Para todo x real, si x² > 1 entonces x > 1"

La negación es

- \neg r: Existe algún x real tal que $x^2 > 1$ y $x \le 1$
- 2) p: "Existen números enteros pares que son divisibles entre 3" equivale a
 p: "Existen x enteros tales que x es par y x es divisible entre 3"

La negación es

¬ p : Para todo entero x se cumple que x es impar o x no es divisible entre 3

... Negación de proposiciones cuantificadas

Ejercicio:

- Determina si B, que es la negación propuesta de A, es correcta.
- Si la negación propuesta es incorrecta, escribe la correcta y determina su valor de verdad
- Determina cual de las proposiciones A o B es verdadera.
- a) A: "Todos los números reales x que satisfacen que x + 3 sea impar son impares".

B: "Existen números reales x tales que si x + 3 es par entonces x es par".

b) A: "Existen números impares cuyo producto con 17 es impar".

B: "Cualquier número impar multiplicado por 17 es par".