CS162 Solo Project Weekly Report: Week 07

CS162, Intro. to Computer Science II Semester 2, AY2023/24

Solo Project

Full Name	Student ID
NGUYEN Hoang The Kiet	23125023

Lecturer: DINH Ba Tien (PhD)
TAs: HO Tuan Thanh (MSc), NGUYEN Le Hoang Dung (MSc)

Tasks by Week

Week 07

- 1. (Chapter 2) Bus Network Graph: Construction Stage
- 2. (Chapter 1) Dijkstra: Shortest Paths and related Centrality Measures
- 3. (Section 1.2) APSP: All Pairs Shortest Path problem
- 4. (Section 1.3) Betweenness Centrality, (Section 3.2) NetworkAnalysisBetweenness class

Contents

Ta	asks t	y Wee	·k	Ĭ
Co	onten	its		iii
Li	st of	Figure	s	iv
Li	st of	Tables		\mathbf{v}
Li	st of	Listing	gs	vi
1	Dijk	stra: S	Shortest Paths and related Centrality Measures	1
	1.1	SSSP:	Single Source Shortest Path problem	1
			Formulation	1
		_	Dijkstra's Algorithm	1
		_	Shortest-path Tree	5
	1.2	_	All Pairs Shortest Path problem	5
			Formulation	5
		_	Dijkstra vs. alternatives	5
	1.3		enness Centrality	6
			Formulation of the Betweenness centrality	6
		_	The naive $O(V ^2 E \log V)$ algorithm \dots	6
			An improvement to $O(V ^2 + V E \log V)$ using Shortest-path tree	7
		(1)	Other Centrality Measures based on Shortest Paths	7
2	Bus	Netwo	ork Graph: Construction Stage	10
	2.1	Definit	ion	10
		a	Bus Network	10
		(b)	Bus (Network) Graph	10
	2.2	Explora	atory Data Analysis on real bus network	10
		a	Stops	11
		(b)	Routes	13
		\odot	Relationship between <i>Stops</i> and <i>Paths</i>	13
	2.3	Graph	construction algorithm	14
		a	Fixing data errors	14
		(b)	A simple algorithm	15
		©	An optimisation using R-tree	16
	2.4	Implem	nentation	17
		(a)	A generic Network class	17

		BusNetwork as an inheritance of generic Network class	18
	2.5	Experiments	21
		a Running time of construction algorithms	21
		b # of edge candidates $ E $ per $Stop$	21
3	Bus	Network Graph: Analysis Stage	23
	3.1	NetworkDijkstra, BusNetworkDijkstra	23
		(a) Generic NetworkDijkstra class	23
		BusNetworkDijkstra class	24
	3.2	NetworkAnalysisBetweenness class	25
	3.3	Experiments on real data	27
		(a) Shortest Path between arbitary nodes	27
		® Running time between Betweenness Analysis algorithms	
		© Top $k = 10$ most influential $Stops$	
	3.4	Network class diagram	
B	ibliog	graphy	30

List of Figures

1.1	Dijkstra: Shortest paths from source node A (red paths) generate the	
	shortest-path tree	4
1.2		8
2.1	EDA: Degree distribution of bus <i>Stops</i> (total)	11
2.2	EDA: Degree distribution of bus <i>Stops</i> (by StopType)	12
2.3	EDA: Relationship between <i>Route</i> distance and running time	13
2.4	EDA: Case 1 - a Stop lies on a Path	13
2.5	EDA: Case 2 - a Stop lies at a distant from the Path	14
2.6	Graph Construction: Error fixing, Method 1	14
2.7	Graph Construction: Error fixing, Method 2	15
2.8	Graph Construction: Algorithm I	16
2.9	Graph Construction: Algorithm II (optimisation with R-tree)	16
2.10	Bus Graph Experiments: # of edge candidates $ E $ per $Stop$ on each $Route$	22
3.1	Shortest path between nodes 35 and 1234	27
3.2	Bus Graph Experiments: Spatial distribution of Betweenness score	28
3.3	Bus Network Analysis: Network class diagram	29

List of Tables

2.1	Bus Network Graph: Types of bus <i>Stops</i>	11
2.1	Bus Graph Experiments: Running time of construction algorithms	21
2.2	Bus Graph Experiments: Stats on $\#$ of edge candidates $ E $ per $Stop$ on each $Route$	21
	Bus Graph Experiments: Running time of analysis algorithms Bus Graph Experiments: Top $k=10$ most influential $Stops$	

List of Listings

1.1	Dijkstra: The originally proposed algorithm	2	
1.2	Dijkstra: Improvements with PriorityQueue	3	
1.3	Dijkstra: Floyd-Warshall Algorithm for APSP	5	
1.4	Dijkstra: Computing $g(u)$ by iterating across all shortest paths	6	
1.5	Dijkstra: Computing $g_s(u)$	9	
	Graph Construction: BusNetworkConnector class inherited from generic		
	NetworkConnector	19	
2.2	Graph Construction: BusNetwork class inherited from generic Network	20	
3.1	Graph Analysis: Generic NetworkDijkstra class	23	
3.2	Graph Analysis: BusNetworkDijkstra class inherited from generic NetworkDij	kstra 24	Ĺ
3.3	Graph Analysis: NetworkAnalysisBetweenness class inner function imple-		
	mentation	25	
3.4	Graph Analysis: NetworkAnalysisBetweenness class	26	

Chapter 1

Dijkstra: Shortest Paths and related Centrality Measures

1.1 | SSSP: Single Source Shortest Path problem

(a) | Formulation

Given a graph G = (V, E, w), where

- $lue{V}$ is the set of nodes
- $E \subseteq V \times V$ is the set of **directed** edges
- $w: E \mapsto \mathbb{R}$ is the weight function of an edge.

A path from s to t is a sequence of nodes $P := s = u_0, u_1, \dots, u_{k-1}, u_k = t$, where

- $u_i \in V, \forall 0 \le i \le k$
- Every pair of consecutive nodes identify an edge in E, that is, $e_i := (u_i, u_{i+1}) \in E, \forall 0 \leq i < k$

Find the shortest path in the graph G, that is, to find a valid path that minimises

$$\delta(u, v) = \sum_{i=0}^{k-1} w(e_i) = \sum_{i=0}^{k-1} w(u_i, u_{i+1})$$

^aLet e = (u, v). Sometimes we also write w(e) = w(u, v), considering w as a function of two nodes. If the edge (u, v) does not exists, then $w(u, v) := \infty$

In this problem, our interest is on non-negative weighted graphs, that is, $w(e_i) \geq 0, \forall e_i \in E$

(b) | Dijkstra's Algorithm

In his original paper "A Note on Two Problems in Connexion with Graphs" (1959)[1], Dijkstra explains the tuition of his algorithm as follows,

Problem 2^1 . Find the path of minimum total length between two given nodes P and Q.

¹The first problem was to find the minimum weight spanning tree, for which Dijkstra, in his paper, had rediscovered Prim's algorithm

We use the fact that, if R is a node on the minimal path from P to Q, knowledge of the latter implies the knowledge of the minimal path from P to R. In the solution presented, the minimal paths from P to other nodes are constructed in order of increasing length until Q is reached.

The original $O(|V|^2)$ algorithm

We can easily reach an $O(|V|^2)$ algorithm based only on the original intuition of Dijkstra. Let S be a set of nodes to be considered. We excessively extract the node with minimum distance from the source, then use that source to update the currently-found minimal path for other adjacent nodes.

In each iteration, we need O(|V|) time to find the minimum distant node in the set². With V iterations, the complexity of the algorithm is $O(|V|^2)$

```
def dijkstra(V, E, w, src):
    11 11 11
    Run Dijkstra's Algorithm on graph G = (V, E, w) from src
    S = set()
    for u in V:
        dist[u] = INFINITY
        prev[u] = None
        S.add(u)
    dist[src] = 0
    while len(S) > 0:
        _, u = min((dist[u], u) for u in S)
        S.remove(u)
        for v in neighbours(u):
            if v not in S:
                continue
            if dist[v] > dist[u] + w(u, v)
                dist[v] = dist[u] + w(u, v)
                prev[v] = u
    return dist, prev
```

Listing 1.1: Dijkstra: The originally proposed algorithm

²In Python, set is a hash-table, hence find-min is O(n). In contrast, C++'s std::set is a red-black BST which supports find-min in $O(\log n)$

```
from priority_queue import PriorityQueue
def dijkstra(V, E, w, src):
    Run Dijkstra's Algorithm on graph G = (V, E, w) from src
   for u in V:
        dist[u] = INFINITY
       prev[u] = None
        S.add(u)
   dist[src] = 0
   pq = PriorityQueue()
   pq.put((0, src))
   while not pq.empty():
        _, u = pq.get()
       for v in neighbours(u):
            if v not in S:
                continue
            if dist[v] > dist[u] + w(u, v)
                dist[v] = dist[u] + w(u, v)
                prev[v] = u
                pq.put((dist[v], v))
   return dist, prev
```

Listing 1.2: Dijkstra: Improvements with PriorityQueue

The improved $O(|E| \log |V|)$ algorithm

We can improve the algorithm by changing the data structure that stores the set S. Using a priority queue implemented by a binary heap leads to a complexity of $O((|E|+|V|)\log |V|)$.

Better data structures like Fibonacci heap can improve the complexity to $O(|E| + |V| \log |V|)$. However, due to the complex implementation of Fibonacci heaps and its high constant factors, binary heaps are usually perferred.

In this report we assume that the $O(|E|\log|V|)$ version of Dijkstra's Algorithm is used.

Figure 1.1: Dijkstra: Shortest paths from source node A (red paths) generate the shortest-path tree.

© | Shortest-path Tree

Assume a graph with real, positive weights where for every two nodes s, t, there exists a single shortest path. Then all shortest paths starting from a source s forms a tree T. As in Dijkstra: Improvements with PriorityQueue, we can recover the tree using the prev labels:

```
(u,v) \in T \iff \operatorname{prev}(v) = u \iff \delta(s,u) + w(u,v) = \delta(s,v)
```

The shortest-path tree has many applications in centrality measures, a characterisation of the "importance" of a node. One of which that makes it into this report is the Betweenness Centrality.

Note: Generally, the graph created by removing "redundant" edges (edges that when removed do not change any shortest path) is a Directed Acyclic Graph (DAG). We are assuming there is a single shortest path from any given pair of nodes (s,t), hence the resulting graph is a tree, a special version of a DAG.

1.2 | APSP: All Pairs Shortest Path problem

(a) | Formulation

Given a graph G=(V,E,w). Find the shortest path between all pairs of nodes, that is, to find $\delta(u,v)$ for all $(u,v)\in V^2$.

(b) | Dijkstra vs. alternatives

Dijkstra, $O(|V||E|\log|V|)$

Dijkstra is advantegous for sparse graph, where $|E| \ll |V|^2$.

Floyd-Warshall, $O(|V|^3)$

When the graph is dense, i.e., $|E| = O(|V|^2)$, then Floyd-Warshall's algorithm in $O(|V|^3)$ outperforms Dijkstra's in $O(|V|^3 \log |V|)$.

Listing 1.3: Dijkstra: Floyd-Warshall Algorithm for APSP

1.3 | Betweenness Centrality

Betweenness centrality is a measure of centrality in a graph based on shortest paths, formally defined first in 1977 by Freeman L. C. in his article in the journal *Sociometry*, A Set of Measures of Centrality Based on Betweenness[2]. We will be using a simpler variant of this metric: By assuming that the graph is real and stochastically valued, there is only a single shortest path between every pair of nodes.

a | Formulation of the Betweenness centrality

Given a graph G = (V, E, w). The Betweenness centrality of a node is defined as the number of shortest paths passing that node. Formally, let $\delta(s, t)$ be the shortest path from s to t, then

$$g(u) = \sum_{(s,t) \in V^2} \frac{\text{\# of shortest paths } s \to u \to t}{\text{\# of shortest paths } s \to t}$$

Assuming all weights are real numbers with high precision which implies that there is a single shortest path between any two nodes, we can redefined the Betweenness Centrality as such:

$$g(u) = \sum_{(s,t) \in V^2} \#$$
 of shortest paths $s \to u \to t$

b | The naive $O(|V|^2|E|\log|V|)$ algorithm

This version assumes a $O(|E|\log |V|)$ implementation of Dijkstra algorithm to find the shortest path between any two nodes s and t.

With N^2 pairs of nodes, the algorithm runs in total time of $O(|V|^2 \cdot |E| \log |V|)$.

```
import itertools as iters

def shortest_path(s, t) -> list[int]:
    # ...

def betweenness_centralities(V, E, w):
    g = {u: 0 for u in V}
    for s, t in iters.product(V, V):
        for x in shortest_path(s, t):
        g[x] += 1
    return g
```

Listing 1.4: Dijkstra: Computing g(u) by iterating across all shortest paths

© | An improvement to $O(|V|^2 + |V||E|\log |V|)$ using Shortest-path tree

Consider a shortest-path tree obtained by applying Dijkstra's Algorithm on source s. The betweenness centrality of a node u with respect to source s is defined as

$$g_s(u) = \sum_{t \in V} \#$$
 of shortest paths $s \to u \to t$

Hence, on the shortest-path tree, s is the root node, and t must be a descendant of u. The number of nodes t satisfing the above condition is equal to the size of the subtree of u.

Finding the size of the subtree of every node is a simple Dynamic Programming problem: Let $g_s(u) = \text{size}$ of subtree of u, then we have the well known recursive formula:

$$\boxed{g_s(u) = 1 + \sum_{(u,v) \in E_T} g_s(v)}$$

where E_T is the list of **directed** edge on the shortest-path tree, i.e., edges (u, v) that satisfies $\delta(s, v) = \delta(s, u) + w(u, v)$.

The complexity is $O(|V|^2 + |V||E|\log|V|)$. Had we used the theoretical fastest version of Dijkstra, the complexity would only be $O(|V||E| + |V|^2 \log |V|)$, which is what proposed in the Brandes' algorithm[3].

(d) | Other Centrality Measures based on Shortest Paths

Closeness Centrality (Alex Bavelas, 1950)[4]

$$g(u) = \frac{|V| - 1}{\sum_{v \in V} \delta(u, v)}$$

Harmonic Centrality (Marchiori and Latora, 2000)[5]

$$g(u) = \sum_{v \in V - \{u\}} \frac{1}{\delta(u, v)}$$

(assuming $1/\infty = 0$)

This measure is later independently discovered by Dekker (2005)[6] under the name "valued centrality", and by Rochat (2009).

Figure 1.2: Dijkstra: Usage of the shortest-path tree to compute $g_s(u)$.

```
from priority_queue import PriorityQueue
def dijkstra(V, E, w, src):
    Run Dijkstra's Algorithm on graph G = (V, E, w) from src
    for u in V:
        dist[u] = INFINITY
        prev[u] = None
        g[u] = 1
        S.add(u)
    dist[src] = 0
    pq = PriorityQueue()
    pq.put((0, src))
    while not pq.empty():
        _, u = pq.get()
        for v in neighbours(u):
            if dist[v] > dist[u] + w(u, v)
                dist[v] = dist[u] + w(u, v)
                prev[v] = u
                pq.put((dist[v], v))
    order = sorted((dist[u], u) for u in V, reverse=True)
    # Traverse tree in reverse topological order
    for _, u in order:
        g[prev[u]] += g[u]
    return dist, prev, g
```

Listing 1.5: Dijkstra: Computing $g_s(u)$

Chapter 2

Bus Network Graph: Construction Stage

We present key results in the construction and analysis of the bus graph. A deep analysis with code is presented in the main. ipynb Jupyter notebook in this repository.

2.1 | Definition

(a) | Bus Network

A bus network is a tuple of three sets:

- A set of *Stops*;
- A set of (Route) Variants containing Stops in chronological order;
- A set of *Paths*, each of which describes the topological shape of a corresponding (*Route*) Variant.

b | Bus (Network) Graph

A bus network graph (or bus graph) is a graph, where

- Each node represents a bus *Stop*.
- Each **directed** edge represents a connection between two bus *Stops* along a bus *Variant*.

2.2 | Exploratory Data Analysis on real bus network

The bus network is read from three JSON files:

- 'stops.json', containing a set of *Stops*, each stop has their own properties and belongs to multiple bus routes / variants.
- 'vars.json', containing a set of bus routes and variants, each record consists of a RouteId, RouteVarId and their perspective parameters (distance of travel, name, time of travel, route number, etc.)

• 'paths.json', describing the geometry of each route/variant in the form of a LineString in WGS-84 coordinate system.

a | Stops

StopType

StopType (in Vietnamese)	StopType (in English)	Count
Bến xe	Station	143
Nhà chờ	Shelter	628
Trụ dừng	Stop	2951
$\hat{ ext{O}}$ sơn	$Marking \ sign$	603
Biển treo	$Overhead\ sign$	61
Trạm tạm	Temporary	7
-/-	Others	4
	Total	4397

Table 2.1: Bus Network Graph: Types of bus Stops

Degree distribution

Figure 2.1: EDA: Degree distribution of bus *Stops* (total).

Figure 2.2: EDA: Degree distribution of bus Stops (by StopType)

(b) | Routes

Relationship between Route distance and running time

Relationship between Distance and RunningTime

Figure 2.3: EDA: Relationship between Route distance and running time

- Trendline: Distance = $396.199 \cdot \text{RunningTime}$
- Average speed: 23.68 km/hr (396.199 m/min.)
- R^2 : 0.915583

c | Relationship between *Stops* and *Paths*

Figure 2.4: EDA: Case 1 - a Stop lies on a Path

Figure 2.5: EDA: Case 2 - a Stop lies at a distant from the Path

2.3 | Graph construction algorithm

(a) | Fixing data errors

From EDA, we know that the data given to us suffer from measurement errors, specifically when some *Stops* do not lie on the path of the corresponding *Route*. This report will fix the errors based on two principles:

- The coordinates of any *Stop* are precise and **must be respected**.
- The shape of any *Path* are just an approximation and **can be modified** in a way that insignificantly changes the basic shape of the path and the order of the *Stops* that it goes through.

With that, we propose two methods:

Method 1

Insert every stop into the path in the "least disruptive way".

Figure 2.6: Graph Construction: Error fixing, Method 1

Method 2

Modify the path so that at every stop there is a "ramp" connecting every *Stop* with its nearest edge.

Figure 2.7: Graph Construction: Error fixing, Method 2

We will be using Method 2 in this report.

b | A simple algorithm

Graph construction algorithm I

For each Variant (RouteId, RouteVarId)

- Let $V = \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ be the sequence of *Stops* in order from start to finish.
- Let $P = \mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_m$ be the sequence of junctions that defines the shape of the *Path*. The *i*-th edge of the path is $e_i = (\mathbf{p}_{i-1}, \mathbf{p}_i)$ $(1 \le i \le m)$.
- For each $Stop \mathbf{v}_i$, find the **closest edge** to the Stop; in other words, find an index s_i such that $dist(\mathbf{v}_i, e_{s_i})$ is minimised. Then determine the point \mathbf{r}_i on edge e_{s_i} that minimises $dist(\mathbf{v}_i, e_{s_i})$.
- For each pair of consecutive Stops $\mathbf{v}_i, \mathbf{v}_{i+1}$, define the edge $(\mathbf{v}_i, \mathbf{v}_{i+1})$ with the corresponding path $p(\mathbf{v}_i, \mathbf{v}_{i+1}) = \mathbf{v}_i, \mathbf{r}_i, \mathbf{p}_{s_i}, \mathbf{p}_{s_{i+1}}, \cdots, \mathbf{p}_{s_{i+1}-1}, \mathbf{r}_{i+1}, \mathbf{v}_{i+1}$. From that we can then find the corresponding length and time of the path.

The complexity of the above algorithm is $O((n+m) \cdot m)$ per variant. The extra m factor comes from the **closest edge finding** step which can be further optimised.

Figure 2.8: Graph Construction: Algorithm I

c | An optimisation using R-tree

Real life data shows that a bus variant should not be "near" a bus stop too many times. Hence, we can eliminate edges that are obviously irrelavant beforehand, and only check amongst edges that are "near" enough.

The prechecking part can be done using an R-tree: We insert every segment of the path into an R-tree, then query for segments that are "near" enough by performing an intersection check; the closest edge is guaranteed to be amongst the queried segments.

Figure 2.9: Graph Construction: Algorithm II (optimisation with R-tree)

Graph construction algorithm II

For each Variant (RouteId, RouteVarId)

- Let $V = \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ be the sequence of *Stops* in order from start to finish.
- Let $P = \mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_m$ be the sequence of junctions that defines the shape of the *Path*. The *i*-th edge of the path is $e_i = (\mathbf{p}_{i-1}, \mathbf{p}_i)$ $(1 \le i \le m)$.
- \blacksquare Let T be an RTree. Index tree.
- For each edge e_i , insert the minimum bounding rectangle (MBR) of e_i to T.
- Set $\varepsilon = 150$ (m).
- For each stop \mathbf{v}_i ,
 - \Box Let E be the set of edges whose MBR intersects the rectangle $\mathbf{v}_i \pm \mathbf{1}\varepsilon$
 - \Box Find the **closest edge** to the *Stop* \mathbf{v}_i . Now we only have to perform checks in the list of candidates E.
 - \Box With projection points \mathbf{r}_i , build the graph as the original algorithm follows.

The complexity is $O((n+m) \cdot (\log m + |E|))$ per variant in average. As stated, |E| is usually very small in real data.

2.4 | Implementation

a | A generic Network class

Qdataclass NetworkConnector

- property src: int, dest: int Source and destination of the edge.
- property weight: int Weight function of the edge.

class Network[TNode, TConnector]

- property nodes: Dict[int, TNode]
 A mapping from node IDs to set of Nodes.
- property adjs: Dict[int, TConnector]
 A mapping from node IDs to set of adjacent NetworkConnectors (adjacency list).

(b) | BusNetwork as an inheritance of generic Network class

@dataclass BusNetworkConnector(NetworkConnector)

- property src: int, dest: int Source and destination of the edge.
- property time: float, length: float Running time and length of the edge.
- property weight: int
 Weight function of the edge, defined as the running time of the edge.

class BusNetwork

```
from_ndjsons(
    stops_json_file: str = 'stops.json',
    vars_json_file: str = 'vars.json',
    paths_json_file: str = 'paths.json',
    sides_set_type: str = 'spatial'
) -> BusNetwork
```

Input the network from 3 JSON files describing a list of Stops, Variants and Paths.

Parameters:

- □ stops_json_file: JSON file describing a list of *Stops*.
- □ vars_json_file: JSON file describing a list of *Variants*.
- □ paths json file: JSON file describing a list of Paths.
- □ sides set type = 'default' | 'spatial':
 - If sides_set_type = 'default': Construct the graph using the Graph construction algorithm I algorithm.
 - If sides_set_type = 'spatial': Construct the graph using the Graph construction algorithm II algorithm (more optimised).

```
@dataclass
class NetworkConnector():
   src:
          int
   dest: int
   Oproperty
   def weight(self):
       raise NotImplementedError
@dataclass
class BusNetworkConnector(NetworkConnector):
   route_ids: tuple[int, int]
   time:
               float
   length:
               float
   real_path: list[tuple[float, float]]
   @property
   def weight(self) -> float:
       return self.time
   Oclassmethod
   def from_dict(cls, obj: dict) -> 'BusNetworkConnector':
        # ...
   def to_dict(self) -> dict:
        # ...
```

Listing 2.1: Graph Construction: BusNetworkConnector class inherited from generic NetworkConnector

```
class Network(Generic[TNode, TNetworkConnector]):
   @property
   def nodes(self) -> Dict[int, TNode]:
        # A mapping from node IDs to set of Nodes.
   @property
   def adjs(self) -> Dict[int, TNetworkConnector]:
        # A mapping from node IDs to list of adjacent NetworkConnectors
        # (adjacency list).
class BusNetwork(Network[Stop, BusNetworkConnector]):
   Oclassmethod
   def from_ndjsons(self, sides_set_type: str = 'spatial', **kwargs)
        -> 'NetworkConnector':
        # Read the bus network from three json files
   Oclassmethod
   def from dict(cls, obj: dict) -> 'NetworkConnector':
        # ...
   Oclassmethod
   def from_json(cls, file: str = 'net.json') -> 'NetworkConnector':
        # Read the bus network from a 'net.json' file
   def to_dict(self) -> dict:
        # ...
   def to_json(self, file: str):
        # ...
```

Listing 2.2: Graph Construction: BusNetwork class inherited from generic Network

2.5 | Experiments

a | Running time of construction algorithms

	$\begin{array}{cc} \textbf{Graph construction I} \\ \text{sec} & \text{iterations/sec} \end{array}$		-		Improvement %	
Run #1	43.384115	6.845824	8.083512	36.741458		
Run #2	42.890710	6.924576	8.161453	36.390578		
Run $\#3$	39.855744	7.451874	8.059147	36.852537		
Run #4	39.514839	7.516164	7.915563	37.521020		
Run #5	38.971134	7.621025	7.955797	37.331271		
Average	40.923309	7.271893	8.035094	36.967373	509.31%	

Table 2.1: Bus Graph Experiments: Running time of construction algorithms

$f b \mid \#$ of edge candidates |E| per *Stop*

	Trendline	$cand. = 1.000 \cdot (\#of sides)$
	R^2	1.000
D-f1+	Min. cand.	6.00
Default	Mean cand.	247.27
	Max. cand.	14.04
	std .	155.00
	Trendline	cand. = $0.012 \cdot (\text{#of sides}) + 3.125$
	R^2	0.608
Cnoticl	Min. cand.	1.00
Spatial	Mean cand.	6.32
	Max. cand.	14.04
	std .	2.56

Table 2.2: Bus Graph Experiments: Stats on # of edge candidates |E| per Stop on each Route

Figure 2.10: Bus Graph Experiments: # of edge candidates |E| per Stop on each Route

Chapter 3

Bus Network Graph: Analysis Stage

We present key results in the construction and analysis of the bus graph. A deep analysis with code is presented in the main.ipynb Jupyter notebook in this repository.

3.1 | NetworkDijkstra, BusNetworkDijkstra

(a) | Generic NetworkDijkstra class

```
class NetworkDijkstra:
    def from_net(self, net: Network, src: int):
        # Run Dijkstra on network net and from source src

def reverse_path_from(self, dest: int):
    while dest != self._src:
        connector = self.pars[dest]
        yield connector
        dest = connector.src

def path_to(self, dest: int):
    return reversed(list(self.reverse_path_from(dest=dest)))
```

Listing 3.1: Graph Analysis: Generic NetworkDijkstra class

- from_net(self, net: Network, src: int)
 Run Dijkstra (using the implementation in Dijkstra: Computing $g_s(u)$) on network net and from source src.
- property dists: list[float]
 List of all shortest paths length from src to every node.
- property pars: list[int]
 Mapping from a node to its parent in the shortest-path tree.

- **property** count_paths: list[int] Mapping from a node to the number of descendants of that node in the shortest-path tree. Analogous to the $g_s(u)$ function.
- reverse_path_from(self, dest: int)

 Trace the shortest path from source to destination dest using the shortest-path tree stored in pars dictionary. Shortest path generated from the last edge to the first.
- path_to(self, dest: int)
 Trace the shortest path from source to destination dest using the shortest-path tree
 stored in pars dictionary. Shortest path generated from the first edge to the last.

b | BusNetworkDijkstra class

```
class BusNetworkDijkstra(NetworkDijkstra):
    def path_to_json(self, dest: int, file: str):
        # Export the shortest path from in-state source to file

def shortest_path_to_json(
    self,
    net: Network,
    src: int,
    dest: int,
    file: str
):
    # Run Dijkstra from given source,
    # then export the shortest path to file

self.from_src(net=net, src=src)
    return self.path_to_json(dest=dest, file=file)
```

Listing 3.2: Graph Analysis: BusNetworkDijkstra class inherited from generic NetworkDijkstra

3.2 | NetworkAnalysisBetweenness class

```
class NetworkAnalysisBetweenness:
    def _from_net_brute_force(
        self, net: Network,
        engine: NetworkDijkstra = None
    ):
        if engine is None:
            engine = NetworkDijkstra()
        raw_scores = { node_id: 0 for node_id in net.nodes }
        for src in tqdm(net.nodes):
            engine.from_src(src=src, net=net)
            for dest in net.nodes:
                for connector in engine.reverse_path_from(dest=dest):
                    raw_scores[connector.dest] += 1
                    if connector.src == src:
                        raw_scores[src] += 1
        self.scores = dict(
            sorted(raw_scores.items(), key=lambda x: x[1], reverse=True)
        )
    def _from_net(
        self, net: Network,
        engine: NetworkDijkstra = None
    ):
        if engine is None:
            engine = NetworkDijkstra()
        raw_scores = { node_id: 0 for node_id in net.nodes }
        for src in tqdm(net.nodes):
            engine.from_src(src=src, net=net)
            for (node_id, added_score) in engine.count_paths.items():
                raw_scores[node_id] += added_score
        self.scores = dict(
            sorted(raw_scores.items(), key=lambda x: x[1], reverse=True)
```

Listing 3.3: Graph Analysis: NetworkAnalysisBetweenness class inner function implementation

```
class NetworkAnalysisBetweenness:
   def from_net(
        self, net: Network,
        engine: NetworkDijkstra = None,
        alg: str = 'tree'
    ):
        if alg == 'tree':
            self._from_net_shortest_tree(net, engine)
        else:
            self._from_net_brute_force(net, engine)
   def top_scores(self, k: int = 10):
        it = iter(self._scores)
        return [next(it) for _ in range(k)]
    Oproperty
    def scores(self):
        # Returns the mapping from a node to its score in order of
        # decreasing score
```

Listing 3.4: Graph Analysis: NetworkAnalysisBetweenness class

- from_net(self, net: Network, src: int)
 Compute the betweenness scores of every node.
 - □ If alg == 'tree', run the An improvement to $O(|V|^2 + |V||E|\log |V|)$ using Shortest-path tree algorithm.
 - \Box Otherwise, run the The naive $O(|V|^2|E|\log|V|)$ algorithm algorithm.
- property top_scores(k: int) -> list[tuple[int, int]] Return k-most influential Stops with their corresponding scores.

3.3 | Experiments on real data

a | Shortest Path between arbitary nodes

Figure 3.1: Shortest path between nodes 35 and 1234

b | Running time between Betweenness Analysis algorithms

	alg =	'default'	alg = 'tree'		Improvement	
	\sec	iterations/sec	\sec	iterations/sec	%	
Run #1	568.207484	7.738370	148.743473	29.560961		
Run #2	534.781242	8.222054	141.632670	31.045097		
Run #3	460.380685	9.550792	143.763187	30.585020		
Run #4	450.744785	9.754966	137.384343	32.005103		
Run #5	436.979286	10.062262	137.740463	31.922355		
Average	490.218697	9.065689	141.852827	31.023707	345.58%	

Table 3.1: Bus Graph Experiments: Running time of analysis algorithms

$\bigcirc \ | \ \operatorname{Top} \ k = 10 \ \operatorname{most} \ \operatorname{influential} \ \mathit{Stops}$

Rank	StopId	StopId Name		District	StopType	Score
1	1 268 Mũi tàu Cộng Hòa		Trường Chinh	Tân Bình	Trụ dừng	2625614
2	2 267 Ngã ba Chế Lan Viên		Trường Chinh	Tân Bình	Nhà chờ	2625614
3	1239	Bến xe An Sương	Quốc lộ 22	Hóc Môn	Trụ dừng	2614406
4	1115	Bến xe An Sương	Quốc lộ 22	Quận 12	Trụ dừng	2613916
5	1393	Ngã tư Trung Chánh	Quốc lộ 22	Hóc Môn	Nhà chờ	2607219
6 1152 Trung tâm Văn hóa Qu		Trung tâm Văn hóa Quận 12	Quốc lộ 22	Quận 12	Nhà chờ	2604321
7 270		UBND Phường 15	Trường Chinh	Tân Bình	Nhà chờ	2311589
8 271 Khu Công Nghiệp Tân Bình		Trường Chinh	Tân Bình	Nhà chờ	2310622	
9	174	Trạm Dệt Thành Công	Trường Chinh	Tân Phú	Nhà chờ	2294866
10	510	Bệnh viện Quận Tân Bình	Hoàng Văn Thụ	Tân Bình	Nhà chờ	2261665

Table 3.2: Bus Graph Experiments: Top k = 10 most influential Stops

Figure 3.2: Bus Graph Experiments: Spatial distribution of Betweenness score

3.4 | Network class diagram

Figure 3.3: Bus Network Analysis: Network class diagram

Bibliography

- [1] E. W. Dijkstra, "A note on two problems in connexion with graphs," *Numerische mathematik*, vol. 1, no. 1, pp. 269–271, 1959.
- [2] F. L. Clarke, "A set of measures of centrality based on betweenness," *Sociometry*, 1977. [Online]. Available: https://doi.org/10.2307/3033543
- [3] U. Brandes, "A faster algorithm for betweenness centrality," The Journal of Mathematical Sociology, vol. 25, 03 2004.
- [4] A. Bavelas, "Communication Patterns in Task-Oriented Groups," *The Journal of the Acoustical Society of America*, vol. 22, no. 6, pp. 725–730, 11 1950. [Online]. Available: https://doi.org/10.1121/1.1906679
- [5] M. Marchiori and V. Latora, "Harmony in the small-world," *Physica A: Statistical Mechanics and its Applications*, vol. 285, no. 3–4, p. 539–546, Oct. 2000. [Online]. Available: http://dx.doi.org/10.1016/S0378-4371(00)00311-3
- [6] "Conceptual distance in social network analysis," Journal of Social Structure, 2005.