Design of FIR Filter using Kaiser Window

Kaiser window:

It is a parametric window function that facilitates the designer to select the value of the ripple parameter $\pi\alpha$. The $\pi\alpha$ parameter enables to tradeoff between the ripple and the transition bandwidth. It is a generalized window function, which gives a particular kind of window function depending on the value of $\pi\alpha$ chosen. The coefficients of the Kaiser window, which uses the modified zeroth order Bessel function $I_0(x)$, are usually calculated using some software package.

$$w[n] = \begin{cases} I_0 \left(\pi \alpha \left(1 - \left(\frac{2n}{N} \right)^2 \right)^{1/2} \right) \\ \hline I_0(\pi \alpha) \end{cases}, \quad 0 \le n \le N \\ otherwise \end{cases}$$

N= Length of window.

I_o = Modified Bessel's Function of first order

Kaiser window of length N=100

References:

- CC Studio examples.
- TMS320C6713 Datasheet, User Manual (and supporting documents).
- http://en.wikipedia.org/wiki/Finite_impulse_response.
- http://en.wikipedia.org/wiki/Kaiser_window.
- http://www.labbookpages.co.uk/audio/firWindowing.html.