Formelsamling

Formelsamligen utgör bara ett stöd för minnet. Beteckningar förklaras sålunda ej. Ej heller anges förutsättningar för formlernas giltighet.

Fysikaliska modeller

Kontinuitetsekvationen

$$\frac{\partial q}{\partial t} + \nabla \cdot \mathbf{j} = k.$$

Diffusion

$$\mathbf{j} = -D \nabla u,$$

$$\frac{\partial u}{\partial t} - D \Delta u = k. \qquad \text{(Allmännare } \frac{\partial u}{\partial t} - \nabla \cdot (D \nabla u) = k.\text{)}$$

Värmeledning

$$\mathbf{j} = -\lambda \, \nabla u, \quad \mathrm{d}q = \rho c \, \mathrm{d}u,$$

$$\frac{\partial u}{\partial t} - a \, \Delta u = \frac{a}{\lambda} k \quad \mathrm{där} \, a = \frac{\lambda}{\rho c}. \qquad \text{(Allmännare } \rho c \, \frac{\partial u}{\partial t} - \nabla \cdot (\lambda \, \nabla u) = k.\text{)}$$

Elektrostatisk potential

$$\Delta u = -\frac{\rho}{\epsilon \epsilon_0}.$$

Svängande sträng och membran

$$\frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = \frac{f}{\rho} \quad \text{där } c^2 = \frac{S}{\rho}. \qquad \text{(Allmännare } \rho \, \frac{\partial^2 u}{\partial t^2} - \nabla \cdot (S \, \nabla u) = f.)$$

Longitudinella svängningar

$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = \frac{f}{\rho_l} \quad \text{där } c^2 = \frac{\alpha}{\rho_l}, \quad S = \alpha \frac{\partial u}{\partial x}.$$

Svängningar i gaser (ljud)

$$u = \frac{p - p_0}{p_0}$$
 (tryckstörning),

$$\frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = 0 \quad \text{där } c^2 = \frac{\gamma p_0}{\rho_0}.$$

För svängningar i gaser (ljud) gäller efter linjärisering att

$$\begin{cases} \frac{1}{\gamma} \frac{\partial \tilde{p}}{\partial t} + v_0 \frac{\partial \tilde{v}}{\partial x} = 0, \\ v_0 \frac{\partial \tilde{v}}{\partial t} + \frac{p_0}{\rho_0} \frac{\partial \tilde{p}}{\partial x} = 0, \\ \tilde{p} = \gamma \tilde{\rho} \end{cases}$$

där
$$\tilde{p} = \frac{p - p_0}{p_0}$$
 och $\tilde{v} = \frac{v}{v_0}$.

Vektoranalys

Gauss formel
$$\int_{\Omega} \nabla \cdot \boldsymbol{u} \, dV = \int_{\partial \Omega} \boldsymbol{u} \cdot d\boldsymbol{S}.$$

Stokes formel
$$\int_{S} \nabla \times \boldsymbol{u} \cdot d\boldsymbol{S} = \int_{\partial S} \boldsymbol{u} \cdot d\boldsymbol{r}.$$

Greens formel I
$$\int_{\Omega} \nabla u \cdot \nabla v \, dV = \int_{\partial \Omega} u \, \frac{\partial v}{\partial n} \, dS - \int_{\Omega} u \, \Delta v \, dV.$$

Greens formel II
$$\int_{\Omega} (u \, \Delta v - v \, \Delta u) \, dV = \int_{\partial \Omega} \left(u \, \frac{\partial v}{\partial \mathbf{n}} - v \, \frac{\partial u}{\partial \mathbf{n}} \right) dS.$$

Laplaceoperatorn i cylindriska koordinater

$$\Delta = \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2}$$
$$= \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2}$$

Laplaceoperatorn i sfäriska koordinater

$$\Delta = \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{1}{r^2} \Lambda = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{r^2} \Lambda$$

$$= \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \Lambda,$$

$$\Lambda = \frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \sin(\theta) \frac{\partial}{\partial \theta} + \frac{1}{\sin^2(\theta)} \frac{\partial^2}{\partial \phi^2},$$

$$\Lambda = \frac{\partial}{\partial s} (1 - s^2) \frac{\partial}{\partial s} + \frac{1}{1 - s^2} \frac{\partial^2}{\partial \phi^2} \quad \text{om } s = \cos(\theta),$$

 $(\theta \text{ polardistans}, 0 < \theta < \pi, \phi \text{ längdgrad}, 0 \le \phi < 2\pi.$

Ortogonalutvecklingar

$$(u \mid v) = \int_{I} \overline{u(x)} v(x) w(x) dx, \qquad ||u||^2 = (u \mid u).$$

Om $(\varphi_j \mid \varphi_k) = 0$, $j \neq k$, så $u = \sum c_k(u) \varphi_k \mod c_k(u) = \frac{(\varphi_k \mid u)}{\rho_k}$, där $\rho_k = (\varphi_k \mid \varphi_k)$. Parseval

$$(u \mid v) = \sum \frac{1}{\rho_k} \overline{(\varphi_k \mid u)} (\varphi_k \mid v) = \sum \rho_k \overline{c_k(u)} c_k(v).$$

Sturm-Liouville

$$\mathcal{A}u = \frac{1}{w}(-\nabla \cdot (p \nabla u) + q u).$$

Speciella funktioner

Gammafunktionen och Betafunktionen

$$\Gamma(z) = \int_0^\infty t^{z-1} \, \mathrm{e}^{-t} \, \mathrm{d}t, \qquad \Gamma(z+1) = z \, \Gamma(z), \qquad \Gamma(n+1) = n!, \qquad \Gamma(1/2) = \sqrt{\pi},$$

$$B(p,q) = \frac{\Gamma(p) \, \Gamma(q)}{\Gamma(n+q)}.$$

Felfunktion/Error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-y^2} dy, \qquad \int_0^\infty e^{-y^2} dy = \frac{\sqrt{\pi}}{2}.$$

Besselfunktioner

$$\begin{split} & \operatorname{eir} \operatorname{sin}(\theta) = \sum_{-\infty}^{\infty} \operatorname{J}_{n}(r) \operatorname{e}^{\mathrm{i}n\theta}, \\ & \operatorname{J}_{n}(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{e}^{\mathrm{i}(z \sin(\theta) - n\theta)} \mathrm{d}\theta, \quad n \text{ heltal}, \\ & \operatorname{J}_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{1}{k! \, \Gamma(k + \nu + 1)} \left(-\frac{z^{2}}{4}\right)^{k}, \quad \nu \neq -1, -2, \dots \end{split}$$

Bessels differentialekvation

$$u'' + \frac{1}{r}u' + \left(\lambda - \frac{\nu^2}{r^2}\right)u = 0$$

har den allmänna lösningen

$$\begin{cases} a \operatorname{J}_{\nu}(\sqrt{\lambda} \, r) + b \operatorname{Y}_{\nu}(\sqrt{\lambda} \, r) & \text{om } \lambda > 0 \,, \\ a \, r^{\nu} + b \, r^{-\nu} & \text{om } \lambda = 0, \, \nu \neq 0, \\ a + b \ln(r) & \text{om } \lambda = \nu = 0. \end{cases}$$

Normuttryck

$$\int_0^R \left| J_{\nu} \left(\frac{r}{R} \alpha_{\nu k} \right) \right|^2 r \, \mathrm{d}r = \frac{R^2}{2} J_{\nu+1} (\alpha_{\nu k})^2 = \frac{R^2}{2} J_{\nu}' (\alpha_{\nu k})^2.$$

Nollställen till Besselfunktioner $J_n(x)$, $J_n(\alpha_{nk}) = 0$.

$k \setminus n$	0	1	2	3	4	5	6	7	8	9	10
1	2,405	3,832	5,136	6,380	7,588	8,771	9,936	11,086	12,225	13,354	14,475
2	5,520	7,016	8,417	9,761	11,065	12,339	13,589	14,821	16,038	17,241	18,433
3	8,654	10,173	11,620	13,015	14,372	15,700	17,004	18,288	19,554	20,807	22,047
4	11,791	13,324	14,796	16,223	17,616	18,980	20,321	21,641	22,945	24,234	25,509
5	14,931	16,471	17,960	19,409	20,827	22,218	23,586	24,935	26,267	27,584	28,887
6	18,071	19,616	21,117	22,583	24,019	25,430	26,820	28,191	29,546	30,885	32,212
7	21,212	22,760	24,270	25,748	27,199	28,627	30,034	31,423	32,796	34,154	35,500
8	24,352	25,904	27,421	28,908	30,371	31,812	33,233	34,637	36,026	37,400	38,762
9	27,493	29,047	30,569	32,065	33,537	34,989	36,422	37,839	39,240	40,628	42,004
10	30,635	32,190	33,716	35,219	36,699	38,160	39,603	41,031	42,444	43,844	45,232

Nollställen till $J'_n(x)$, $J'_n(\alpha'_{nk}) = 0$.

$k \setminus n$	0	1	2	3	4	5	6	7	8	9	10
1	0,000	1,841	3,054	4,201	5,317	6,416	7,501	8,578	9,647	10,711	11,771
2	3,832	5,331	6,706	8,015	9,282	10,520	11,735	12,932	14,115	15,287	16,448
3	7,016	8,536	9,969	11,346	12,682	13,987	15,268	16,529	17,774	19,005	20,223
4	10,173	11,706	13,170	14,586	15,964	17,313	18,637	19,942	21,229	22,501	23,761
5	13,324	14,864	16,347	17,789	19,196	20,575	21,932	23,268	24,587	25,891	27,182
6	16,471	18,015	19,513	20,972	22,401	23,804	25,184	26,545	27,889	29,219	30,534
7	19,616	21,164	22,672	24,145	25,590	27,010	28,410	29,791	31,155	32,505	33,842
8	22,760	24,311	25,826	27,310	28,768	30,203	31,618	33,015	34,397	35,764	37,118
9	25,904	27,457	28,978	30,470	31,938	33,385	34,813	36,224	37,620	39,002	40,371

Sfäriska Besselfunktioner

Differentialekvationen

$$u'' + \frac{2}{z}u' + \left(\lambda - \frac{\ell(\ell+1)}{z^2}\right)u = 0$$

har den allmänna lösningen

$$\begin{cases} aj_{\ell}(\sqrt{\lambda}z) + by_{\ell}(\sqrt{\lambda}z) & \text{om } \lambda > 0, \\ az^{\ell} + bz^{-\ell-1} & \text{om } \lambda = 0, \ \ell \neq -1/2, \\ \frac{a + b\ln(z)}{\sqrt{z}} & \text{om } \lambda = 0, \ \ell = -1/2, \end{cases}$$

där

$$\mathbf{j}_{\ell}(z) = \sqrt{\frac{\pi}{2z}} \ \mathbf{J}_{\ell+1/2}(z), \quad \mathbf{y}_{\ell}(z) = \sqrt{\frac{\pi}{2z}} \ \mathbf{Y}_{\ell+1/2}(z) \ .$$

Speciellt är

$$\begin{split} & \mathbf{j}_0(z) = \frac{\sin(z)}{z}, \qquad \mathbf{j}_1(z) = \frac{\sin(z) - z\cos(z)}{z^2}, \\ & \mathbf{y}_0(z) = -\frac{\cos(z)}{z}, \quad \mathbf{y}_1(z) = -\frac{\cos(z) + z\sin(z)}{z^2}. \end{split}$$

Legendrefunktioner

Legendrepolynomen $(P_\ell)_0^\infty$ är ortogonala i $L_2(I),\ I=(-1,1).$

Legendres differentialekvation

$$\frac{d}{dx} \left((1 - x^2) \frac{du}{dx} \right) + \ell(\ell + 1) u = 0, \quad \ell = 0, 1, 2, \dots$$

har allmänna lösningen

$$a P_{\ell}(x) + b Q_{\ell}(x)$$

där Q_{ℓ} ej är begränsad i (-1,1) och

$$P_{\ell}(x) = \frac{1}{2^{\ell} \ell!} D^{\ell} (x^2 - 1)^{\ell}.$$

Rekursionsformel för Legendrepolynom:

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_{\ell+1}(x) = \frac{2\ell+1}{\ell+1} x P_{\ell}(x) - \frac{\ell}{\ell+1} P_{\ell-1}(x)$.

Associerade Legrendreekvationen

$$\frac{d}{dx} \left((1 - x^2) \frac{du}{dx} \right) - \frac{m^2}{1 - x^2} u + \ell(\ell + 1) u = 0$$

har allmänna lösningen

$$a P_{\ell}^{m}(x) + b Q_{\ell}^{m}(x)$$

där Q_{ℓ}^{m} ej är begränsad och

$$P_{\ell}^{m} = (1 - x^{2})^{m/2} D^{m} P_{\ell}(x).$$

Greenfunktioner

Fundamentallösningar till Laplaceoperatorn $(-\Delta K = \delta)$

$$K(\mathbf{x}) = -\frac{1}{2\pi} \ln |\mathbf{x}| \quad i \mathbb{R}^2,$$

$$K(\mathbf{x}) = \frac{1}{4\pi |\mathbf{x}|} \qquad i \mathbb{R}^3.$$

Poissonkärnor

$$P(r,\theta) = \frac{1}{2\pi} \frac{1 - r^2}{1 + r^2 - 2r\cos(\theta)}$$
 (enhetscirkeln),

$$P(x,y) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$$
 (halvplanet $y > 0$).

Greenfunktion för Dirichlets problem

$$\begin{cases} -\Delta_{x} G(x, \alpha) = \delta_{\alpha}(x), & x \in \Omega, \\ G(x, \alpha) = 0, & x \in \partial\Omega. \end{cases}$$

Om $-\Delta u = f$ i Ω , u = g på $\partial \Omega$ så

$$u(\mathbf{x}) = \int_{\Omega} G(\mathbf{x}, \boldsymbol{\alpha}) f(\boldsymbol{\alpha}) dV_{\boldsymbol{\alpha}} - \int_{\partial \Omega} \frac{\partial G}{\partial \boldsymbol{n}_{\boldsymbol{\alpha}}}(\mathbf{x}, \boldsymbol{\alpha}) g(\boldsymbol{\alpha}) dS_{\boldsymbol{\alpha}}.$$

Konjugerade punkter med avseende på cirkeln (sfären) $|x| = \rho$

$$|\alpha||\tilde{\alpha}| = \rho^2,$$

 $|x - \alpha| = \frac{|\alpha|}{\rho}|x - \tilde{\alpha}|$ då $|x| = \rho.$

Värmeledning

$$\begin{cases} G(x,t) = \frac{1}{\sqrt{4\pi at}} e^{-x^2/4at}, & x \in \mathbb{R}, \ t > 0, \\ \frac{\partial G}{\partial t} - a \frac{\partial^2 G}{\partial x^2} = 0, & x \in \mathbb{R}, \ t > 0, \\ G(x,0) = \delta(x), & x \in \mathbb{R}. \end{cases}$$

Vågutbredning

d'Alembert

$$\begin{cases} u(x,t) = \frac{1}{2}(g(x-ct) + g(x+ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} h(y) \, dy, \\ g(x) = u(x,0), \ h(x) = u_t(x,0). \end{cases}$$

Karakteristikor

$$\begin{cases} a_{11}u''_{xx} + 2a_{12}u''_{xy} + a_{22}u''_{yy} + F(x, y, u, u_x, u_y) = 0, \\ a_{11} dy^2 - 2a_{12} dx dy + a_{22} dx^2 = 0. \end{cases}$$

Kvasilinjära

$$\begin{cases} \alpha \frac{\partial u}{\partial x} + \beta \frac{\partial u}{\partial y} = f, \\ u(x_0, y_0) = u_0(x_0, y_0), & \text{för } g(x_0, y_0) = 0, \end{cases}$$

$$\begin{cases} \dot{x} = \alpha, \quad x(0) = x_0, \\ \dot{y} = \beta, \quad y(0) = y_0, \\ \dot{z} = f, \quad z(0) = u_0(x_0, y_0). \end{cases}$$

Fouriertransformer

$$\mathcal{F}f(\xi) = \widehat{f}(\xi) = \int_{-\infty}^{\infty} e^{-i\xi x} f(x) dx,$$

$$(\mathcal{F}^{-1}\widehat{f})(x) = f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\xi x} \widehat{f}(\xi) d\xi.$$

Parsevals formel

$$\int_{-\infty}^{\infty} \overline{f(x)} g(x) dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{\widehat{f}(\xi)} \, \widehat{g}(\xi) d\xi.$$

 \mathcal{F}

1

(1)
$$\lambda f(x) + \mu g(x)$$
 $\lambda \hat{f}(\xi) + \mu \hat{g}(\xi)$

(2)
$$f(ax)$$

$$\frac{1}{|a|} \widehat{f}\left(\frac{\xi}{a}\right)$$

(3)
$$f(x-x_0) \qquad \qquad e^{-ix_0\xi} \widehat{f}(\xi)$$

(4)
$$e^{i\xi_0 x} f(x)$$
 $\widehat{f}(\xi - \xi_0)$

(5)
$$f'(x)$$
 $i\xi \widehat{f}(\xi)$

(6)
$$x f(x)$$
 $i \frac{d}{d\xi} \hat{f}(\xi)$

(7)
$$(f * g)(x)$$
 $\widehat{f}(\xi) \widehat{g}(\xi)$

(9)
$$1 2\pi \delta$$

(10)
$$e^{-x} \theta(x) \qquad \frac{1}{1+i\xi}$$

(11)
$$e^{-|x|}$$
 $\frac{2}{1+\xi^2}$

(12)
$$\frac{1}{1+x^2}$$
 $\pi e^{-|\xi|}$

(13)
$$e^{-x^2}$$
 $\sqrt{\pi} e^{-\xi^2/4}$
(14) $\theta(x+1) - \theta(x-1)$ $2\frac{\sin(\xi)}{\xi}$

(15)
$$\theta(x) \qquad \qquad \frac{1}{i} \operatorname{pv}\left(\frac{1}{\xi}\right) + \pi \delta$$

$$\theta(x) = \begin{cases} 1, & x > 0, \\ 0, & x < 0, \end{cases} \qquad \theta' = \delta, \qquad \operatorname{sgn}(x) = \begin{cases} 1, & x > 0, \\ -1, & x < 0, \end{cases}$$

$$f(x)\delta = f(0)\delta,$$
 $f(x)\delta' = f(0)\delta' - f'(0)\delta.$

Laplacetransformer

$$\mathcal{L} f(s) = \mathcal{L}_{\mathrm{II}} f(s) = \int_{-\infty}^{\infty} \mathrm{e}^{-st} f(t) \, \mathrm{d}t, \qquad \alpha < \mathrm{Re} \, s < \beta, \quad s = \sigma + \mathrm{i}\omega,$$

$$f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} e^{st} F(s) ds, \qquad \alpha < \sigma < \beta,$$

$$\mathcal{F}f(\omega) = \mathcal{L}_{II} f(i\omega),$$

$$\mathcal{L}_{I} f = \mathcal{L}_{II}(\theta f).$$

$\sim_1 j$	$-\sim_{\Pi}(\circ f)$.	
		$\stackrel{\mathcal{L}_{\mathrm{II}}}{\longrightarrow}$
(16)	$\lambda f(t) + \mu g(t)$	$\lambda F(s) + \mu G(s)$
(17)	f(at)	$\frac{1}{ a }F\left(\frac{s}{a}\right)$
(18)	$f(t-t_0)$	$e^{-t_0s}F(s)$
(19)	$e^{at} f(t)$	F(s-a)
(20)	f'(t)	sF(s)
(21)	t f(t)	$-\frac{\mathrm{d}}{\mathrm{d}s} F(s)$
(22)	(f*g)(t)	F(s) G(s)
(23)	$\theta(t) f'(t)$	$s \mathcal{L}_{\mathrm{II}}(\theta f)(s) - f(0)$
(24)	δ	1
(25)	$\Theta(t)$	$\frac{1}{s}$, $\sigma > 0$
(26)	$\theta(t) - 1$	$\frac{1}{s}$, $\sigma < 0$
(27)	$t^k e^{at} \theta(t)$	$\frac{k!}{(s-a)^{k+1}}, \sigma > \operatorname{Re}(a)$
		h

(28)
$$\sin(bt) \theta(t)$$

(29)
$$\cos(bt) \theta(t)$$

(30)
$$e^{-t^2}$$

(31)
$$t^{\alpha-1}\,\theta(t)$$

(32)
$$\frac{|a|}{\sqrt{4\pi}} \frac{e^{-a^2/4t}}{t^{3/2}} \,\theta(t)$$
(33)
$$\frac{1}{\sqrt{\pi t}} \, e^{-a^2/4t} \,\theta(t)$$

$$\frac{b}{s^2 + b^2}, \quad \sigma > 0$$

$$\frac{s}{s^2 + b^2}, \quad \sigma > 0$$

$$\sqrt{\pi} e^{s^2/4}$$

$$\frac{s}{s^2+b^2}$$
, $\sigma > 0$

$$\sqrt{\pi} \, e^{s^2/4}$$

$$\frac{\Gamma(\alpha)}{s^{\alpha}}$$
, $\operatorname{Re}(\alpha) > 0$, $\operatorname{Re}(s) > 0$

$$e^{-|a|\sqrt{s}}$$

$$\frac{e^{-|a|\sqrt{s}}}{\sqrt{s}}$$

Fourierserier

$$f(t) = \sum_{k=-\infty}^{\infty} c_k e^{\mathrm{i}k\omega t} = c_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega t) + b_k \sin(k\omega t), \qquad \omega T = 2\pi,$$

$$c_k = \frac{1}{T} \int_{\mathrm{period}} e^{-\mathrm{i}k\omega t} f(t) dt,$$

$$\begin{cases} a_k = \frac{2}{T} \int_{\mathrm{period}} \cos(k\omega t) f(t) dt, \\ b_k = \frac{2}{T} \int_{\mathrm{period}} \sin(k\omega t) f(t) dt, \end{cases}$$

$$\begin{cases} a_k = c_k + c_{-k}, \\ b_k = \mathrm{i}(c_k - c_{-k}), \end{cases}$$

$$\begin{cases} c_k = \frac{1}{2} (a_k - \mathrm{i}b_k), \\ c_{-k} = \frac{1}{2} (a_k + \mathrm{i}b_k). \end{cases}$$

Parsevals formel

$$\begin{split} \frac{1}{T}\int_{\text{period}}\overline{f(t)}g(t)\,\mathrm{d}t &= \sum_{k=-\infty}^{\infty}\overline{c_k(f)}c_k(g),\\ \frac{1}{T}\int_{\text{period}}|f(t)|^2\,\mathrm{d}t &= \sum_{k=-\infty}^{\infty}|c_k|^2,\qquad \frac{1}{T}\int_{\text{period}}|f(t)|^2\,\mathrm{d}t = |c_0|^2 + \frac{1}{2}\sum_{k=1}^{\infty}(|a_k|^2 + |b_k|^2). \end{split}$$

Halvperiodutvecklingar

Cosinusserie Sinusserie
$$f(x) = c_0 + \sum_{k=1}^{\infty} \alpha_k \cos\left(\frac{k\pi}{L}x\right), \qquad f(x) = \sum_{k=1}^{\infty} \beta_k \sin\left(\frac{k\pi}{L}x\right),$$

$$\alpha_k = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{k\pi}{L}x\right) dx, \qquad \beta_k = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{k\pi}{L}x\right) dx,$$

$$c_0 = \frac{1}{L} \int_0^L f(x) dx.$$

Några trigonometriska formler

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta),$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta),$$

$$\cos(\alpha) + \cos(\beta) = 2\cos(\frac{\alpha + \beta}{2})\cos(\frac{\alpha - \beta}{2}),$$

$$\cos(\alpha) - \cos(\beta) = -2\sin(\frac{\alpha + \beta}{2})\sin(\frac{\alpha - \beta}{2}),$$

$$\sin(\alpha) + \sin(\beta) = 2\sin(\frac{\alpha + \beta}{2})\cos(\frac{\alpha - \beta}{2}),$$

$$\sin(\alpha) - \sin(\beta) = 2\cos(\frac{\alpha + \beta}{2})\sin(\frac{\alpha - \beta}{2}),$$

$$a\cos(\alpha) + b\sin(\alpha) = c\cos(\alpha - \gamma), \qquad c = \sqrt{a^2 + b^2}, \quad \tan(\gamma) = b/a.$$