Partially Observable Markov Decision Processes for Planning in Uncertain Environments

Project Thesis Lasse Peters

Institute of Mechanics and Ocean Engineering Prof. Dr.-Ing. Robert Seifried Hamburg University of Technology

> Hybrid Systems Laboratory Prof. Claire J. Tomlin University of California at Berkeley

> > 25.07.2019

Types of Uncertainty

- state uncertainty
- outcome uncertainty

Types of Uncertainty

- state uncertainty
- outcome uncertainty

Dealing with Uncertainty

- worst case disturbance sequences
- probabilistic reasoning

Types of Uncertainty

- state uncertainty
- outcome uncertainty

Dealing with Uncertainty

- worst case disturbance sequences
- probabilistic reasoning

POMDPs

- general framework
- computationally demanding

Types of Uncertainty

- state uncertainty
- outcome uncertainty

Dealing with Uncertainty

- worst case disturbance sequences
- probabilistic reasoning

POMDPs

- general framework
- computationally demanding
- recent research: faster solvers

This Work

problem specific approximations

This Work

problem specific approximations vs. full POMDP approaches

This Work

- problem specific approximations vs. full POMDP approaches
- application domains:
 - localization and planning
 - 2 motion planning with latent human intentions

This Work

- problem specific approximations vs. full POMDP approaches
- application domains:
 - localization and planning
 - 2 motion planning with latent human intentions

Outline

- 1 The Partially Observable Markov Decision Process
- 2 Approximate Online POMDP Solvers
 - DESPOT
 - POMCPOW
- 3 Application Domain: Localization and Planning
 - Baselines
 - POMDP Solvers
- 4 Conclusion and Future Work

The Partially Observable Markov Decision Process

Dynamic Decision Network

MDP

- state s
- action a
- reward *r*

Objective: Finding a policy π^* that maximizes

$$J(\pi) = E\left[\sum_{t=0}^{\infty} \gamma^t r_t\right].$$

The Partially Observable Markov Decision Process

Dynamic Decision Network

POMDP

- state s
- action a
- reward *r*
- observation o
- initial belief *b*₀

Objective: Finding a policy π^* that maximizes

$$J(\pi) = E\left[\sum_{t=0}^{\infty} \gamma^t r_t\right].$$

Determinized Sparse Partially Observable Tree (DESPOT)

Determinized Sparse Partially Observable Tree (DESPOT)

High Level Idea

- incrementally construct sparse tree
- maintain bounds on value at nodes
- choose action with best lower bound

Determinized Sparse Partially Observable Tree (DESPOT)

High Level Idea

- incrementally construct sparse tree
- maintain bounds on value at nodes
- choose action with best lower bound

Domain Knowledge

user-defined initial bound estimates

Partially Observable Monte-Carlo Planning with Observation Widening (POMCPOW)

High Level Idea

- Monte-Carlo tree search
- locally approximate the value function through Monte-Carlo simulations
- choose action with highest value

Partially Observable Monte-Carlo Planning with Observation Widening (POMCPOW)

High Level Idea

- Monte-Carlo tree search
- locally approximate the value function through Monte-Carlo simulations
- choose action with highest value

Domain Knowledge

user-defined value estimate

Localization and Planning

Screenshot of the Simulator

Problem Details

■ known room but unknown location

Localization and Planning

Screenshot of the Simulator

Problem Details

- known room but unknown location
- objective:
 - success: leave room at exit (green)
 - failure: falling down stairs (red)
 - penalties: time and collisions
- observations: collision sensor
- dynamics: noisy differential drive
 - actions: left, right, straight

Lasse Peters POMDP Planning 8 / 16

Localization and Planning

Screenshot of the Simulator

Problem Details

- known room but unknown location
- objective:
 - success: leave room at exit (green)
 - failure: falling down stairs (red)
 - penalties: time and collisions
- observations: collision sensor
- dynamics: noisy differential drive
 - actions: left, right, straight

POMDP

- continuous state space
- discrete action and observation space

Baselines

Mode Control

- use mode of belief to approximate the state
- treat POMDP as fully observable problem

Baselines

Mode Control

- use mode of belief to approximate the state
- treat POMDP as fully observable problem

Most Likely Reflex Agent (MLRA)

- handcrafted feedback policy
- P-controller tracking preset path

Baselines

Mode Control

- use mode of belief to approximate the state
- treat POMDP as fully observable problem

Most Likely Reflex Agent (MLRA)

- handcrafted feedback policy
- P-controller tracking preset path

Most Likely Model Predictive Control (MLMPC)

- use MPC to plan a path
- cost function: negative reward

 \Rightarrow MLMPC is an optimal policy for the fully observed problem (MDP)

Lasse Peters POMDP Planning 9 / 16

Integrating Domain Knowledge for POMDP Solvers

Value Estimates

- Rollout Value Estimate
 - simulate default policy: "always straight"
- 2 Analytic Value Estimate
 - estimate remaining steps from distance to goal
 - approximate value by cumulative living penalty

Integrating Domain Knowledge for POMDP Solvers

Value Estimates

- Rollout Value Estimate
 - simulate default policy: "always straight"
- 2 Analytic Value Estimate
 - estimate remaining steps from distance to goal
 - approximate value by cumulative living penalty

POMDP Solver Setups

- DESPOT-rollout
- 2 DESPOT-analytic
- 3 POMCPOW-rollout
- 4 POMCPOW-analytic

Evaluation – Undiscounted Return

Mean and SEM of the undiscounted return for 1000 simulations per policy.

Policy

Evaluation – Outcome Distribution

Histogram of outcome frequencies grouped by policy.

Outcome ${f b}{f y}$ Policy

Evaluation - Outcome Distribution

Initial Conditions

Histogram of outcome frequencies grouped by policy.

Evaluation – Outcome Distribution

Initial Conditions

Histogram of outcome frequencies grouped by policy.

 \Rightarrow POMCPOW-analytic near optimal with respect to safety

Evaluation – Qualitative Analysis

MLMPC

POMCPOW-Analytic

Lasse Peters POMDP Planning 14 / 16

Evaluation – Qualitative Analysis

MLMPC

- mode approximation compromises safety
- passive information gathering
- fails for highly symmetric beliefs

POMCPOW-Analytic

Lasse Peters POMDP Planning 14 / 16

Evaluation – Qualitative Analysis

MLMPC

- mode approximation compromises safety
- passive information gathering
- fails for highly symmetric beliefs

POMCPOW-Analytic

- active information gathering
- reliably reduces uncertainty
- safe and efficient behaviors

Conclusion and Future Work

Conclusions

- 1 safe and efficient behaviors
 - ⇒ suitable approach for safety vs. efficiency tradoff
- 2 near real-time planning capabilities
 - \Rightarrow already a useful high-level planner for moderately sized problems
- 3 designing suitable heuristic guidance hard but cruitial for performance

Conclusion and Future Work

Conclusions

- safe and efficient behaviors
 - ⇒ suitable approach for safety vs. efficiency tradoff
- 2 near real-time planning capabilities
 - ⇒ already a useful high-level planner for moderately sized problems
- 3 designing suitable heuristic guidance hard but cruitial for performance

Future Work

- theory for a-priory safety assurances
- improving scalability by using GPU
- 3 learning for designing of heuristic guidance

End

End

Monte-Carlo Tree Search

Evaluation: Localization and Planning - Objective Value

Mean and SEM of the discounted return for 1000 simulations per policy.

Policy

Evaluation – Undiscounted Return

Distribution of the undiscounted return for 1000 simulations per policy.

Policy

Evaluation: Localization and Planning - Objective Value

Distribution of the return for 1000 simulations per policy:

Evaluation: Motion Planning with Latent Human Intentions

Policy

Evaluation: Motion Planning with Latent Human Intentions

Outcome by Policy