Bilgiye Erişim Sistemleri Information Retrieval (IR) Systems

M.Fatih AMASYALI BLM 5212 Doğal Dil İşlemeye Giriş Ders Notları

> YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış

- Örnek IR Sistemleri
- IR Sistem Mimarisi
- Arama Motoru Mimarisi
- Vektör Uzayı
- Google
- Anahtar Kelime Problemleri
- Zeki IR Teknikleri
- IR Sistemlerinin Değerlendirilmesi

Örnek IR Sistemleri

- Kütüphane veritabanları anahtar kelime, başlık, yazar, konu vs. ile büyük veritabanlarında arama (www.library.unt.edu)
- Metin Tabanlı Arama Motorları (Google, Yahoo, Altavista vs).
 - Anahtar kelimelerle arama
- Multimedya Arama (QBIC, WebSeek, SaFe) Görsel öğelerle arama (şekil, renk vs.)
- Soru Cevaplama Sistemleri (AskJeeves, Answerbus) Doğal dille arama

Vektör Uzayı

• Varsayım: Kelimeler birbirinden bağımsızdır

Eldekiler:

N doküman 1 sorgu

$$\begin{pmatrix}
T_{1} & T_{2} & \dots & T_{t} \\
D_{1} & d_{11} & d_{12} & \dots & d_{1t} \\
D_{2} & d_{21} & d_{22} & \dots & d_{2t} \\
\vdots & \vdots & \vdots & & \vdots \\
D_{n} & d_{n1} & d_{n2} & \dots & d_{nt}
\end{pmatrix}$$

$$\frac{Q \quad q_{1} \quad q_{2} \quad \dots q_{t}}{q_{1} \quad q_{2} \quad \dots q_{t}}$$

Benzerlik Ölçümü- Inner Product

$$sim(D_i, Q) = \sum_{k=1}^{t} (D_i \cdot Q)$$
$$= \sum_{j=1}^{t} d_{ij} \cdot q_j$$

Inner Product - Örnek

Ağırlıklı

$$D_1 = 2T_1 + 3T_2 + 5T_3$$

$$Q = 0T_1 + 0T_2 + 2T_3$$

$$\sin(D_1, Q) = 2*0 + 3*0 + 5*2 = 10$$

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Cosine Benzerlik Ölçümü

- İki vektör arasındaki açının cosinüsü
- Inner product, vektör büyüklükleriyle normalize edilir.

Cosine Benzerlik: Örnek

```
D_1 = 2T_1 + 3T_2 + 5T_3 CosSim(D_1, Q) = 0.81

D_2 = 3T_1 + 7T_2 + T_3 CosSim(D_2, Q) = 0.13

Q = 0T_1 + 0T_2 + 2T_3
```

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Doküman ve Terim Ağırlıkları

• Ağırlıklar dokümanlardaki frekanslarla (*tf*) ve tüm doküman kütüphanesindeki frekanslarla (*idf*) hesaplanır.

 $tf_{ij} = j$. terimin *i*. dokümandaki frekansı $df_j = j$. terimin doküman frekansı = j. terimi içeren doküman sayısı $idf_j = j$. terimin ters doküman frekansı $= \log_2 (N/df_j)$ (N: toplam doküman sayısı)

Terim Ağırlıklarının Bulunması

• j. terimin i. doküman için ağırlığı:

$$d_{ij} = tf_{ij} \bullet idf_j = tf_{ij} \bullet \log_2(N/df_j)$$

- TF → Terim Frekansı
 - Bir dokümanda sıkça geçen ancak diğer dokümanlarda pek bulunmayan terimin ağırlığı yüksek olur.
 - $max_{l}\{tf_{li}\}=i$. dokümanda en çok geçen terimin frekansı
 - Normalizasyon: terim frekansı = $tf_{ii}/max_{l}\{tf_{li}\}$

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Terim Frekansı Uygulaması

• Pratikte doküman vektörleri direkt olarak saklanmaz. Hafıza problemlerinden ötürü, arama için aşağıdaki gibi bir yapıda saklanırlar.

Inverted index

Metinler

T0 = "it is what it is"

T1 = "what is it"

T2 = "it is a banana"

"what", "is" ve "it" kelimeleriyle arama yapılırsa.

 $\{0,1\} \cap \{0,1,2\} \cap \{0,1,2\} = \{0,1\}$

inverted file index:

• "a": {2}

• "banana": {2}

• "is": {0, 1, 2}

• "it": {0, 1, 2}

• "what": {0, 1}

Full inverted file index: (pozisyonları da içerir)

•"a": $\{(2, 2)\}$

•"banana": {(2, 3)}

•"is": {(0, 1), (0, 4), (1, 1), (2, 1)}

•"it": $\{(0, 0), (0, 3), (1, 2), (2, 0)\}$

•"what": $\{(0, 2), (1, 0)\}$

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Web Katalogları vs. Arama Motorları

- Web Katalogları
 - Elle seçilmiş siteler
 - Sayfaların içeriğinde değil, tanımlarında arama
 - Hiyerarşik kategorilere atanırlar
- Arama Motorları
 - Tüm sitelerdeki tüm sayfalar
 - Sayfaların içeriğinde arama
 - Sorgu geldikten sonra bulunan skorlara göre sıralanırlar.

W N

Puanlama Sistemi

- Kriterler
 - Pozisyon, Font Büyüklüğü, Büyük Harfle/ Bold/italik yazılma
 - Sitenin popülerliği (PageRank)
 - Başlık ,link metni (Anchor Text), URL metni vs.

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

İlk Google'ın Web depo büyüklükleri istatistikleri

Total Without Repository	55.2 GB
Links Database	3.9 GB
Document Index Incl. Variable Width Data	9.7 GB
Temporary Anchor Data (not in total)	6.6 GB
Lexicon	293 MB
Full Inverted Index	37.2 GB
Short Inverted Index	4.1 GB
Compressed Repository	53.5 GB
Total Size of Fetched Pages	147.8 GE

Total With Repository

Number of Web
Pages Fetched
Number of URLs
Seen
Number of Email
Addresses
Number of 404's
1.6 million

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

108.7 GB

Sistem Performansı

- 26 milyon site 9 günde indirilmiş.(Saniyede 48.5 sayfa)
- Indexer ve Crawler aynı anda çalışıyor
- Indexer saniyede 54 sayfayı indeksliyor
- Sorter'lar 4 makinede paralel çalışarak 24 saatte inverted index'i oluşturuyor

YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Anahtar Kelime ile Aramada Problemler

- Eşanlamlı kelimeleri içeren dokümanlar bulunamaz.
 - -"PRC" vs. "China"
- Eşsesli kelimeler ilgisiz dokümanların bulunmasına sebep olabilir.
 - -"bat" (baseball vs. mammal)
 - -"Apple" (company vs. fruit)
 - -"bit" (unit of data vs. act of eating)

Zeki IR Teknikleri

- Kelimelerin anlamları
- Sorgudaki kelimelerin sırası
- Kullanıcılardan döndürülen sonuçların kalitesiyle ilgili alınan geri bildirimler (sonuçların kaçıncısına tıkladı, kaç sonuç sayfası inceledi vb.)
- Aramayı ilgili kelimelerle genişletmek
- İmla denetimi kelime önermek
- Kaynakların güvenilirliği
- Kişiselleştirilmiş arama
- Eklemeli dillerde bazı eklerden bağımsızlık

Kaynaklar

- http://www.cs.huji.ac.il/~sdbi/2000/google/index.htm
- Searching the Web ,Ray Larson & Warren Sack
- Knowledge Management with Documents, Qiang Yang
- Introduction to Information Retrieval, Rada Mihalcea
- · Wikipedia
- Introduction to Information Retrieval, Evren Ermis
- The Anatomy of a Large-Scale Hypertextual Web Search Engine, Sergey Brin, Lawrence Page (http://infolab.stanford.edu/~backrub/google.html)

