Билет 8

Электроемкость конденсатора. Емкость плоского конденсатора. Энергия электрического поля.

Электрическая емкость уединенного проводника

Рассмотрим сферический проводник радиусом $\,r\,$.

Уединенный проводник — проводник, находящиеся очень далеко от других тел, так что его размеры во много раз меньше расстояний до других тел.

При сообщении шару заряда q в окружающем пространстве возникнет электростатическое поле, потенциал¹ шара измениться и станет равным $\ \, \varphi \,$. Приняв потенциал бесконечно удаленных тел за 0, можем вычислить

потенциал шара $\varphi = \frac{k \, q}{\varepsilon \, r}$, тогда $\frac{q}{\varphi} = \frac{\varepsilon \, r}{k}$. Эта величина на зависит от заряда и определяется лишь радиусом

шара и диэлектрической проницаемостью окружающей среды.

Отношение заряда проводника произвольной формы к его потенциалу не зависит от значения заряда и определяется его геометрическими размерами проводника, его формой и электрических свойств среды.

Электрическая емкость проводника — отношение заряда проводника к изменению его потенциала.

$$C = \frac{q}{\Delta \varphi}$$
; $[C] = \Phi = \frac{K_{\pi}}{R}$ $1\Phi = 9.10^{11} c_{M} = 9.10^{9} M$

Емкостью в 1 Ф обладает проводник, потенциал которого возрастает на 1 В при сообщении ему заряда 1 Кл.

Конденсаторы

Конденсатор — система проводников, емкость которой не зависит от окружающих тел, накопитель энергии. Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники называют обкладками конденсатора.

Заряд конденсатора — абсолютное значение заряда на одной из обкладок.

Электроемкость конденсатора — отношение заряда одного из проводников к разности потенциалов между этим проводником и соседним. $C = \frac{q}{II}$

Классификации конденсаторов							
1	По материалу диэлектрика						
	Бумажные	Электролитические	Слюдяные	Воздушные	Керамические		
2	По форме обкладок						
	Плоские	Сферические	Цилиндрические				
3	По величине емкости						
	Постоянные	остоянные Переменные					

Формулы емкостей

Вид	Емкость	Вид	Емкость
Н σ σ В В D d	Поверхностная плотность заряда $\sigma = \frac{q}{S}$ Энергия одной пластины $E_0 = \frac{\sigma}{2 \varepsilon \varepsilon_0}$ Рассмотрим точки В и D: $U = \Delta \varphi = \varphi_D - \varphi_B$ $C = \frac{q}{U} = \frac{q}{\varphi_D - \varphi_B} = \frac{\sigma S}{d E} = \frac{\sigma S}{d \cdot 2 \cdot \frac{\sigma}{2 \varepsilon \varepsilon_0}} = \frac{\varepsilon \varepsilon_0 S}{d}$	Сферический + - R ₂ R ₁	$\varphi_1 = \frac{k q}{R_1}; \varphi_2 = \frac{k q}{R_2}$ $\frac{q}{\varphi_1 - \varphi_2} = \frac{q}{k q \cdot (\frac{1}{R_1} - \frac{1}{R_2})}$ $C = 4\pi \varepsilon \varepsilon_0 \frac{R_1 R_2}{R_2 - R_1}$

Энергия плоского конденсатора

Рассмотрим плоский конденсатор. Напряженность поля, созданного зарядом одной из пластин равна $\frac{E}{2}$, где E - напряженность 2 поля в конденсаторе. В однородном поле находится заряд q . Тогда по формуле потенциальной энергии в однородном поле энергия конденсатора $W_p = q \, \frac{E}{2} \, d$.

$$E d = U \Rightarrow W_p = \frac{qU}{2} = \frac{CU^2}{2} = \frac{q^2}{2C}$$

Потенциал — энергетическая характеристика поля.

Напряженность — силовая характеристика электрического поля.

Энергия произвольного конденсатора

Будем постепенно заряжать конденсатор переносами малого заряда $- {\scriptstyle \Delta} \, q$ с одной пластины на другую.

Конденсатор будет заряжаться, электрическое поле внутри него будет совершать работу.

Так как порция заряда мала, можно считать, что напряжение во время переноса не изменяется.

Тогда работа $\Delta A = -\Delta q U = -\frac{1}{C} q \Delta q$. Изменение энергии конденсатора $\Delta W_p = -\Delta A = \frac{1}{C} q \Delta q$.

Суммарная энергия конденсатора равна $W_p = \int \frac{1}{C} q \, dq = \frac{1}{C} \cdot \frac{q^2}{2} = \frac{q^2}{2C}$

Энергия заряженного проводника

Будем аналогично заряжать проводник, перемещая к нему из бесконечности электрический заряд малыми порциями Δq .

$$_{\Delta}A=_{\Delta}q\left(arphi_{_{\infty}}-arphi
ight)$$
 , где $\,arphi\,$ - потенциал проводника с зарядом $\,q\,$. Пусть $\,q_{_{\infty}}=0\,$.

Тогда
$$\Delta A = -\Delta q \varphi = -\frac{q \Delta q}{C}$$
.

Суммарная энергия проводника равна
$$W_p = \int \frac{1}{C} q \, dq = \frac{1}{C} \cdot \frac{q^2}{2} = \frac{q^2}{2C} = \frac{q \, \varphi}{2} = \frac{C \, \varphi^2}{2}$$

Энергия электрического поля

Вся энергия заряженных тел сконцентрирована в электрическом поле этих тел.

Подставим в формулу энергии конденсатора значение емкости конденсатора

$$W_{p} = \frac{CU^{2}}{2} = \frac{\varepsilon_{0}\varepsilon S}{d} \cdot \frac{E^{2}d^{2}}{2} = \frac{\varepsilon_{0}\varepsilon E^{2}}{2} \cdot Sd = \frac{\varepsilon_{0}\varepsilon E^{2}}{2} \cdot V$$

Разделим формулу энергии на объем, занятый полем, и получим энергию, приходящуюся на единичный объем, то есть *плотность* энергии.

 $\omega_e = \frac{\varepsilon_0 \varepsilon \ E^2}{2} \;\;$ - данное выражение не зависит от формы конденсатора, справедливо для любого поля любого конденсатора.