Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 20: Controllo in retroazione dallo stato (parte 2)

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022

In questa lezione

 \triangleright Controllo in retroazione dallo stato: caso m > 1

▶ Stabilizzabilità

Allocazione autovalori (m > 1)

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$, $G \in \mathbb{R}^{n \times m}$, $m > 1$
 $\Sigma^{(K)}$: $x(t+1) = (F + GK)x(t) + Gv(t)$

Se Σ è raggiungibile, è possibile assegnare a F+GK degli autovalori desiderati?

$$F + GK = F + \begin{bmatrix} g_1 & \cdots & g_m \end{bmatrix} \begin{bmatrix} k_1 \\ \vdots \\ k_m \end{bmatrix} = F + g_1k_1 + \cdots + g_mk_m$$

Idea: Selezionare un singolo ingresso (una sola riga k_i non nulla) ed usare la procedura vista prima per il caso singolo ingresso (m = 1)!

Problema: Anche se il sistema Σ è raggiungibile, non è detto che lo sia usando un singolo ingresso !!

Esempio

$$x(t+1) = egin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} x(t) + egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} u(t)$$

Il sistema è raggiungibile? È raggiungibile da un ingresso?

Il sistema è raggiungibile, ma non è raggiungibile da un ingresso.

Allocazione autovalori (m > 1): Lemma di Heymann

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$, $G \in \mathbb{R}^{n \times m}$, $m > 1$
 $\Sigma^{(K)}$: $x(t+1) = (F + GK)x(t) + Gv(t)$

Se Σ è raggiungibile ma **non** da un ingresso, è possibile assegnare a F+GK degli autovalori desiderati?

Idea: Usare una retroazione preliminare che renda Σ raggiungibile da un ingresso!

Teorema: Se (F, G) è raggiungibile e se g_i è una colonna non nulla di G, esiste una matrice $M \in \mathbb{R}^{m \times n}$ tale che $(F + GM, g_i)$ è raggiungibile.

Esempio (cont.'d)

$$x(t+1) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} u(t)$$

Retroazione K^* tale che il sistema retroazionato abbia autovalori $\lambda_1=1/2,\ \nu_1=2?$

Prendendo $M = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ il sistema è raggiungibile dal primo ingresso g_1 .

$$K^* = M + \begin{bmatrix} 1 & -1/4 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1/4 \\ 1 & 0 \end{bmatrix}.$$

Allocazione autovalori (m > 1): osservazioni

- 1. Esistono algoritmi per trovare la matrice di retroazione preliminare M. Tuttavia, generando una matrice $M \in \mathbb{R}^{m \times n}$ "a caso" questa renderà Σ raggiungibile da un qualsiasi ingresso quasi certamente (con probabilità 1)!
- 2. Un approccio alternativo è usare il metodo diretto (cioè risolvere $\Delta_{F+GK}(\lambda) = p(\lambda)$ con incognite gli elementi di K) anche nel caso m > 1. In questo caso, però il sistema di equazioni da risolvere potrebbe essere non lineare!
- **3.** L'approccio tramite lemma di Heymann ci permette di allocare gli autovalori della matrice F + GK a nostro piacimento anche per m > 1, ma ha delle limitazioni. Ad esempio, usando un singolo ingresso non si possono ottenere controllori deadbeat che portano a zero lo stato in un numero di passi < n. Usando più ingressi invece è possibile costruire controllori dead-beat che portano a zero lo stato in un numero di passi < n! Tramite tecniche di controllo più avanzate che sfruttano tutti gli ingressi di controllo si possono ottenere quindi prestazioni di controllo migliori.

Stabilizzabilità a t.d.

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$
 n-dimensionale

Definizione: Il sistema Σ si dice stabilizzabile se esiste un controllo in retroazione dallo stato che rende il sistema asintoticamente stabile.

Teorema: Le seguenti condizioni sono equivalenti:

- 1. Σ è stabilizzabile.
- 2. Gli autovalori "non raggiungibili" di F hanno modulo < 1.
- 3. La matrice PBH [zI F G] ha rango n, $\forall z$ con $|z| \ge 1$.

Stabilizzabilità a t.c.

$$\Sigma : \dot{x}(t) = Fx(t) + Gu(t)$$
 n-dimensionale

Definizione: Il sistema Σ si dice stabilizzabile se esiste un controllo in retroazione dallo stato che rende il sistema asintoticamente stabile.

Teorema: Le seguenti condizioni sono equivalenti:

- 1. Σ è stabilizzabile.
- 2. Gli autovalori "non raggiungibili" di F hanno parte reale < 0.
- 3. La matrice PBH [zI F G] ha rango n, $\forall z$ con $\Re[z] \geq 0$.