

Webinar 2014: Vorteile für Starrflex & Co.: Impedanzkontrolle für gute Signalintegrität

Würth Elektronik Circuit Board Technology

Agenda

- S Impedanz und Leiterplatte
 - Signalintegrität bei Starrflex
 - G Designoptionen bei Starrflex
 - N Kooperativer Designablauf
 - (A) Messung und Dokumentation
- L Zusammenfassung, Q&A

Warum kommt das Signal nicht unverändert an?

Quelle: Polar

Impedanz und Leiterplatte

- Leiterplatte ist kein ideales Übertragungsmedium zwischen Sender und Empfänger
- Veränderung der Information in der Leiterplatte u.a. durch:
 - Länge und Breite des Leiters
 - Verluste durch ohmsche, kapazitive und induktive Widerstände
 - Basismaterial Verlustfaktor und Dielektrizitätskonstante
 - Leiter Querschnittsänderungen = Impedanzsprünge
 - Wechsel von Bezugspotenzialen = Impedanzsprünge
 - Reflexionen aufgrund von DK Bohrungen
 - Übersprechen zwischen Leitern (crosstalk)
 - Störeinstrahlung von externen Quellen (z.B. EMV Abschirmung)

Signalintegrität und Leiterplatte

Kernthemen:

- Impedanz Leistungsanpassung
- Laufzeit / Gruppenlaufzeit (Timing)
- Reflexionen

Beispiel aus USB3-Schaltung:

Impedanz angepaßte Leiterplatte

- Die Leiterplatte als Kommunikationsträger
- Optimale Situation: Leistungsanpassung Z=Konstant → Impedanz definierte Leiterplatte

Parameter bei der Leiterplatte

Einfachstes Modell: Single Strip Line mit einer Referenzlage

Parameter bei der Leiterplatte

L ist im wesentlichen die Länge des Leiters

C ist im wesentlichen bestimmt durch:

Länge x Breite; Abstand; εr

03.09.2014

Modelle: Lagen / Leiterbahn Konfiguration

Lagen Konfiguration:

Leiterbahn Konfiguration:

Parameter für die Impedanzberechnung

Wirkung der Parameter

Impedanz - Einflussgrößen

w+h = Layouter / Entwickler + Leiterplattenhersteller

t = Galvanikprozess, Basiskupfer

 $\mathbf{\varepsilon_r}$ = Basismaterial

Besonderheiten bei Starrflex

- großer Materialmix
 (Starrmaterial, Flex-Kerne, Kleber, Bondply, etc.)
- unterschiedliche Aufbauten im Starr- und Flexbereich
 - Beispiel: Symmetrical-Strip-Line aus Rigid führt in Surface Strip Line im Flex
- geringe ε_r Werte bei Polyimid
- geringe dielektrische Abstände
 - Standard Polyimid: 50µm
 - Dickere PI-Filme extrem teuer

Besonderheiten bei Starrflex

$$Z_{flex} = Z_{rigid}$$

<u>Lösungsansatz:</u>

- Zielimpedanz festlegen
- Impedanzmodell auswählen
- H der Flexlage wählen
 - (! 75µm / 100µm PI sind Preistreiber!)
 - ? Fibt es mechanische Anforderungen (Biegeradien, dynamische Biegungen)?
- Simulation: Leiterbahnbreiten anpassen.
 W_{min} mit LP-Hersteller absprechen
- "Hatch" Option Referenzlage

Es erfolgt eine Umfrage

Welcher Parameter muss speziell bei Starrflex beachtet werden und hat einen großen Einfluß auf die Impedanz?

Auswirkung line / space Parameter

Hatch: aufgerasterte Referenzlagen

Kupferöffnungen

- verbessern die Biegbarkeit
- Trocknung des Flexmaterials
- erhöhen die Impedanz

Tipp für diff. pair: (hier 20% Cu)

Referenzlage mit "shield opening"

Differentielles Leiterpaar im Flexbereich

- unter Leiterpaar 100% Kupfer
- restliche Flächen aufgerastert für Trocknung!

Berechnung und Dokumentation 5Ri-4F-5Ri

Berechnung und Dokumentation 5Ri-4F-5Ri

Berechnung und Dokumentation 5Ri-4F-5Ri

Lagen Konfiguration: 1-lagig im Flex- / Biegebereich

Surface Coplanar – ohne Referenzlage

Starrflex 1F-xRi

FR4 Semiflex 1Ri–xRi

Anmerkung:

Lagen Konfiguration: 2-lagig im Flex- / Biegebereich

Surface Microstrip - mit 1 Referenzlage

Starrflex xRi-2F-xRi

FR4 Semiflex 2Ri–xRi

Lagen Konfiguration: > 2-lagig im Flexbereich

Stripline – mit 2 Referenzlagen

Starrflex > xRi-2F-xRi, z.B. 1Ri-6F-1Ri

Impedanzmessung mit Testcoupons

Standard

- Single ended
- Differentiell pair

Spezifisch

- Flex und starrflex möglich
- Kleiner zur Integration in den Nutzenrand
- Gemischte Modelle

Impedanzmessung

- TDR Technology
- Windows Oberfläche
- 10% 90% rise time lower than 65ps
- Ultra stable time base (RMS-Jitter < 500fs)
- Analog sampling bandwidth > 10GHz
- All specifications valid for 0°C ≤ T ≤ 40°C
- High stability w/o recurring calibrations

Deutsches Produkt

Impedanzmessung Diagramm

Impedanzmessung Protokoll

more than you expect

Würth Elektronik Salzstr. 21 74676 Niedernhall

Test-Zertifikat

für impedanzkontrollierte Leiterplatten

Kunde: T

Bauteil-Beschr.: WE 307387

Bauteil-Nr.

Batch-Nr. LOS 3

Prozentsatz der Messungen innerhalb der vorgegeben Toleranz ist 100,0%.

Prüfparameter

Prüfmethode: Zeitbereichsreflektometrie (TDR)
Messgerät: Sequid STDR-65/DTDR-65

Nennimpedanz [Ohm]	90,0 (81,099,0)
Impedanzlagen	Lage 1
Nennimpedanz [Ohm]	100,0 (90,0110,0)
Impedanzlagen	Lage 1
Nennimpedanz [Ohm]	85,0 (76,593,5)
Impedanzlagen	Lage 1

Freitag, 25.04.2014

Unterschrift (Werner Öchslen, Würth Elektronik)

Test-Report

für impedanzkontrollierte Leiterplatten

Kunde:

Benutzer ID: Werner Ochslen

Datei: WE 207207 LOS 3 TC1.sqc

Gerät: DTDR/STDR-65 (SN: 01.0022)

Firmware: 4.1.14

Software: 1.4.256 (HS-100), SE: 1.0.49 (HS-100), CL: 1.0.70 (HS-100)

Anstiegszeit:65ps

Messungsbeschreibung	Mittlere Imp.	Min./Max.	Nennimpedanz	Bestanden	Kalibriert
Nr. 1 - L1 900hm diff (#1), WE 397287 (LOS 3)	87,58	85,07/90,31	90,00 (81,099,0)	Ja	Ja
Nr. 2 - L1 100Ohm diff (#1), WE 397287 (LOS 3)	95,28	94,67/96,33	100,00 (90,0110,0)	Ja	Ja
Nr. 4 - L1 850hm diff (#1), WE 397287 (LOS 3)	82,40	79,64/84,82	85,00 (76,593,5)	Ja	Ja
Nr. 5 - L3 900hm diff (#1), WE 397287 (LOS 3)	87,14	84,65/88,96	90,00 (81,099,0)	Ja	Ja
Nr. 6 - L3 100Ohm diff (#1), WE 397287 (LOS 3)	95,13	93,34/97,26	100,00 (90,0110,0)	Ja	Ja
Nr. 7 - L6 850hm diff (#1), WE 397287 (LOS 3)	84,66	83,14/85,63	85,00 (76,593,5)	Ja	Ja
Nr. 8 - L6 100Ohm diff (#1), WE 397287 (LOS 3)	99,45	97,88/101,11	100,00 (90,0110,0)	Ja	Ja
Nr. 9 - L6 90Ohm diff (#1), WE 397287 (LOS 3)	88,31	86,84/89,63	90,00 (81,099,0)	Ja	Ja
Nr. 10 - L10 900hm diff (#1), WE 397287 (LOS 3)	89,47	86,79/90,56	90,00 (81,099,0)	Ja	Ja
Nr. 11 - L10 1000hm diff (#1), WE 397287 (LOS 3)	98,06	96,07/99,25	100,00 (90,0110,0)	Ja	Ja
Nr. 12 - L12 900hm diff (#1), WE 397287 (LOS 3)	87,26	83,38/90,43	90,00 (81,099,0)	Ja	Ja
Nr. 13 - L12 1000hm diff (#1), WE 397287 (LOS 3)	95,10	94,33/95,93	100,00 (90,0110,0)	Ja	Ja
Nr. 14 - L12 85Ohm diff (#1), WE 397287 (LOS 3)	81,68	78,96/86,16	85,00 (76,593,5)	Ja	Ja

Es erfolgt eine Umfrage

Welcher Punkt ist Ihnen am Wichtigsten?

Zusammenfassung

Signalintegrität bei Starrflex

- Starrflex und Semiflex haben systematische Vorteile
- konstruktive Besonderheiten erfordern entsprechende Maßnahmen
- NEU: Ganzheitliche Berechnung und Dokumentation
- NEU: Möglichkeit, gerasterten Referenzlagen zu rechnen
- Design und Messung von starrflexiblen verkleinerten Impedanz Testcoupons

Die Kenntnis der Zusammenhänge ist ein Erfolgsgeheimnis!

Vielen Dank für Ihre Aufmerksamkeit!

Andreas Schilpp WÜRTH ELEKTRONIK GmbH & Co. KG Produkt Management

Circuit Board Technology T.: +49 7940 946 330

E. andreas.schilpp@we-online.de W. www.we-online.de/flex