Robust Kalman filter

Kjartan Halvorsen

2019-11-13

Why a robust version of the Kalman filter?

Why a robust version of the Kalman filter?

The Kalman filter assumes Gaussian measurement noise and so it is very sensitive to outliers.

Example 1

The target moves in a circle. Observations are noisy with one outlier

Example 1 contd.

The model of the dynamics: Nearly constant velocity model

$$x(k+1) = \begin{bmatrix} I & hI \\ 0 & I \end{bmatrix} x(k) + \begin{bmatrix} \frac{h^2}{2}I \\ hI \end{bmatrix} v(k),$$

where the state vector contains the position and velocity of the target

$$x = \begin{bmatrix} p \\ \dot{p} \end{bmatrix}.$$

Example 1 contd.

Result of tracking using standard Kalman filter

Convex optimization

Convex Optimization

Stephen Boyd

Department of Electrical Engineering Stanford University

Lieven Vandenberghe

Electrical Engineering Department University of California, Los Angeles

Preparation example

Linear regression model

$$y(k) = ax(k) + b + e(k) + w(k),$$

where e(k) is Gaussian noise and w(k) is a sparse vector of outliers.

Preparation example, contd

Least squares estimation:

minimize
$$||y - ax - b||_2$$

Or, equivalently

$$\begin{aligned} & \text{minimize } ||\epsilon||_2 \\ & \text{subject to } \epsilon = y - \mathsf{a} \mathsf{x} - \mathsf{b} \end{aligned}$$

Preparation example, contd

Least squares estimation:

minimize
$$||y - ax - b||_2$$

Solved by forming

$$A = \begin{bmatrix} x(1) & 1 \\ x(2) & 1 \\ \vdots & \vdots \\ x(N) & 1 \end{bmatrix}$$

and

$$z = \begin{bmatrix} a \\ b \end{bmatrix},$$

and solving for z in the (over-determined) system of equations

$$Az = y$$
.

Preparation example, contd

minimize $||y - ax - b||_2$

The problem with least squares

minimize
$$\sum_k \phi_{\mathcal{S}}(\epsilon_k)$$
 where $\phi_{\mathcal{S}}(u) = u^2$

More robust: The Huber penalty function

Also known as robust least squares

minimize
$$\sum_k \phi_{hub}(\epsilon_k)$$
 where $\phi_{hub}(u) = egin{cases} u^2 & |u| \leq M \ M(2|u|-M) & |u| > M \end{cases}$

Preparation example: Robust least squares

minimize $\sum_{k} \phi_{hub}(\epsilon_k)$

Robustifying the Kalman filter

The measurement update of the Kalman filter

We have the state space model

$$x(k+1) = Fx(k) + v(k)$$

$$y(k) = Hx(k) + e(k) + z(k)$$

$$e \sim \mathcal{N}(0, R)$$

$$v \sim \mathcal{N}(0, Q)$$

The measurement update of the Kalman filter can be shown to be equivalent to solving the problem

minimize
$$(y - Hx)^{\mathrm{T}} R^{-1} (y - Hx) + (x - \hat{x}_{k|k-1})^{\mathrm{T}} P_{k|k-1}^{-1} (x - \hat{x}_{k|k-1})$$

The optimal solution is $x^* = \hat{x}_{k|k} = \hat{x}_{k|k} + K(y - H\hat{x}_{k|k-a})$, where K is the Kalman gain.

The measurement update of the Kalman filter

Introduce $\tilde{x} = x - \hat{x}_{k|k-1}$ and $\tilde{y} = y - H\hat{x}_{k|k-1}$. The minimization problem can then be written

minimize
$$(y - Hx)^{\mathrm{T}} R^{-1} (y - Hx) + (x - \hat{x}_{k|k-1})^{\mathrm{T}} P_{k|k-1}^{-1} (x - \hat{x}_{k|k-1})$$

= $(\tilde{y} - H\tilde{x})^{\mathrm{T}} R^{-1} (\tilde{y} - H\tilde{x}) + \tilde{x}^{\mathrm{T}} P_{k|k-1}^{-1} \tilde{x}$

The measurement update of the Kalman filter

We now define the residuals ϵ for the system of equations

$$\begin{bmatrix} Z_R & 0 \\ 0 & Z_P \end{bmatrix} \begin{bmatrix} (\tilde{y} - H\tilde{x}) \\ \tilde{x} \end{bmatrix} = \epsilon,$$

where
$$Z_R^T Z_R = R^{-1}$$
 and $Z_P^T Z_P = P_{k|k-1}^{-1}$.

The minimization problem can now be written

$$\begin{array}{ll} \text{minimize} & \epsilon^{\mathrm{T}} \epsilon \\ \\ \text{subject to} & \begin{bmatrix} Z_R & \mathbf{0} \\ \mathbf{0} & Z_P \end{bmatrix} \begin{bmatrix} (\tilde{y} - H\tilde{x}) \\ \tilde{x} \end{bmatrix} = \epsilon, \end{array}$$

which is a least-squares problem.

Robustifying the measurement update

The idea is to use the Huber penalty function ϕ_{hub} instead of the quadratic criterion $\epsilon^T \epsilon$.

$$\begin{array}{ll} \text{minimize} & \displaystyle\sum_{i=1}^{n+m} \phi_{hub}\big(\epsilon(i)\big) \\ \\ \text{subject to} & \begin{bmatrix} Z_R & 0 \\ 0 & Z_P \end{bmatrix} \begin{bmatrix} (\tilde{y}-H\tilde{x}) \\ \tilde{x} \end{bmatrix} = \epsilon, \end{array}$$

Tracking example again

10% chance of outlier with 10 times normal standard deviation

