Álgebra Moderna Tarea 2.2

Tomás Ricardo Basile Álvarez 316617194

13 de octubre de 2020

a) Sea G un grupo tal que |G| = 2k. Prueba que el número de elementos de orden 2 es impar. (Hint: Crea una partición adecuada de G)

Primero notamos que $x \in G$ es de orden dos si y sólo si $x^2 = e$, si y sólo si $x = x^{-1}$. Por tanto, los elementos de orden 2 de G son aquéllos que son sus propios inversos. Para elementos $y \in G$ con orden mayor a 2, esto no sucede y estos elementos vienen en pares $\{y, y^{-1}\}$ ya que y^{-1} es diferente a y.

Entonces, propongo partir G de la siguiente forma:

$$G = \{e\} \bigcup \{\text{Elementos de orden 2}\} \bigcup \{\text{Elementos de orden mayor a 2}\}$$

Claramente ésta es una partición de G en conjuntos disjuntos. Y por tanto, se debe de tener que la cantidad de elementos de G sea igual a la cantidad de elementos de orden 2 + 1 (el 1 corresponde a $\{e\}$)

$$|G| = 1 + |\{\text{Elementos de orden } 2\}| + |\{\text{Elementos de orden mayor a } 2\}|$$
 (1)

Como mencioné antes, si y es un elemento de orden mayor a 2, entonces y^{-1} es un elemento distinto de y y con también orden mayor a 2 (porque un elemento y su inverso tienen el mismo orden).

Entonces, los elementos de orden mayor a 2 vienen en pares $\{y, y^{-1}\}$ y por tanto el conjunto {Elementos de orden mayor a 2} tiene una cantidad par de elementos.

G también tiene una cantidad par de elementos por hipótesis. Entonces, viendo la suma (1), concluimos que $1 + |\{\text{Elementos de orden 2}\}|$ debe de ser también un número par y por tanto la cantidad de elementos de orden 2 es impar.

b) Sea G un grupo tal que $|G| \le 5$. Prueba que G es Abeliano.

Con lo que hemos visto en clase, la prueba es muy sencilla. En clase vimos los únicos grupos con orden menor a 7 que existen:

G	1	2	3	4	5	6	7	2p
$G \cong$	{e}	\mathbb{Z}_2	\mathbb{Z}_3	$\mathbb{Z}_4, \mathbb{Z}_2 \times \mathbb{Z}_2$	\mathbb{Z}_5	$D_{2(3)}, \mathbb{Z}_6$	\mathbb{Z}_7	$\mathbb{Z}_{2p}, D_{2(p)}$

Cualquier grupo de orden menor o igual a 7 tiene que ser isomorfo a alguno de los grupos en la casilla correspondiente.

Entonces, un grupo de orden menor o igual a 5 tiene que ser isomorfo a alguno de los siguientes: $\{e\}$, \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 , $\mathbb{Z}_2 \times \mathbb{Z}_2$, \mathbb{Z}_5 .

De estos grupos, ya hemos visto que los \mathbb{Z}_n son abelianos.

Y también $\mathbb{Z}_2 \times \mathbb{Z}_2$ es abeliano porque si tomamos $(\overline{a_1}, \overline{a_2}), (\overline{b_1}, \overline{b_2}) \in \mathbb{Z}_2 \times \mathbb{Z}_2$, entonces tenemos que:

$$(\overline{a_1}, \overline{a_2}) + (\overline{b_1}, \overline{b_2}) = (\overline{a_1} + \overline{b_1}, \overline{a_2} + \overline{b_2}) = (\overline{a_1} + \overline{b_1}, \overline{a_2} + \overline{b_2}) = (\overline{a_1} + \overline{b_1}, \overline{a_2} + \overline{b_2}) = (\overline{b_1} + \overline{a_1}, \overline{b_2} + \overline{a_2}) = (\overline{b_1}, \overline{b_2}) + (\overline{a_1} + \overline{a_2})$$

Por tanto, un grupo de orden menor o igual a 5 necesariamente es isomorfo a un grupo abeliano.

Sabiendo esto, probamos el siguiente resultado: Si un grupo G es isomorfo a H y H es abeliano, entonces G es abeliano.

Por ser isomorfos, existe un morfismo biyectivo $\phi: H \to G$.

Luego, tomamos dos elementos $g_1, g_2 \in G$ arbitrarios. Como el isomorfismo es biyectivo, existen dos elementos $h_1, h_2 \in H$ tales que $\phi(h_1) = g_1, \phi(h_2) = g_2$ y por tanto:

$$g_1g_2 = \phi(h_1)\phi(h_2) = \phi(h_1h_2) = \phi(h_2h_1) = \phi(h_2)\phi(h_1) = g_2g_1$$

* porque H es abeliano.

Entonces $g_1g_2 = g_2g_1$ y G es abeliano.

Con este resultado, y sabiendo que cualquier grupo de orden menor o igual a 5 es isomorfo a un abeliano, concluimos que cualquier grupo de orden menor o igual a 5 es abeliano.

c) Sea $a \in G$ de orden n = mk con $m, k \ge 1$. Prueba que a^k tiene orden m.

Primero observamos que $(a^k)^m = a^{km} = a^n = e$ (porque n es el orden de a). Por tanto $(a^k)^m = e$. Para probar que m es el orden de a^k solamente hace falta probar que m es el mínimo entero positivo con esta propiedad. Para eso, procedemos por contradicción y suponemos que existe un j con 0 < j < m tal que $(a^k)^j = e$. Esto implica que $a^{kj} = e$.

Pero como 0 < j < m, entonces 0 < kj < km = n y entonces kj < n. Con esto, encontramos un entero positivo kj menor que n tal que $a^{kj} = e$ lo que contradice que n sea el orden de a.

Por lo tanto, concluimos que no existe un j con 0 < j < m tal que $(a^k)^j = e$. Y por tanto, el entero positivo mínimo con esta propiedad es m. Lo que quiere decir que m es el orden de a^k .

d) Sea $a \in G$ de orden finito y sea $F: G \to H$ un homomorfismo de grupos. Prueba que el orden de F(a) divide al orden de a

Primero definimos a n como el orden de a. Y definimos a m como el orden de F(a) Entonces, tenemos que:

$$[F(a)]^n = F(a^n)$$
 Por propiedad de morfismos vista en clase
 $= F(e_G)$ Porque el orden de a es n
 $= e_H$ Por propiedad de morfismos (mandan el neutro al neutro)

Con esto tenemos que $[F(a)]^n = e_H$. Como el orden de F(a) es m, esto implica que $0 < m \le n$ (porque m es el entero positivo mas chiquito con $[F(a)]^m = e_H$).

Entonces, por el algoritmo de la división, existen enteros q y r con $0 \le r < m$ tal que n = qm + r.

Luego, tenemos que:

$$[F(a)]^n = e_H$$

$$\Rightarrow [F(a)]^{qm+r} = e_H$$

$$\Rightarrow [F(a)]^{qm}[F(a)]^r = e_H$$

$$\Rightarrow ([F(a)]^m)^q [F(a)]^r = e_H$$

$$\Rightarrow (e_H)^q [F(a)]^r = e_H \quad \text{Porque m es el orden de } F(a) \text{ y por tanto } [F(a)]^m = e_H$$

$$\Rightarrow e_H [F(a)]^r = e_H$$

$$\Rightarrow [F(a)]^r = e_H$$

Tenemos que $[F(a)]^r = e_H$ pero $0 \le r < m$. Pero como m es el menor entero positivo con $[F(a)]^m = e_H$, se debe de tener que r = 0.

Por lo tanto, n = qm + r = qm y concluimos que el orden de F(a) (el entero m) divide al orden de a (la n).