第四章: 连续时间信号的采样

- ◆4.1 周期采样
- ◆4.2 采样的频域表示
- ◆4.3 由样本重构带限信号
- ◆4.4 连续时间信号的离散时间处理
- ◆4.5 离散时间信号的连续时间处理
- ◆4.6 利用离散时间处理改变采样率
- ◆4.7 多采样率信号处理
- ◆4.8 模拟信号的数字处理
- ◆4.9 在A/D和D/A转换中的过采样和噪声成形

4.1 周期采样

◆ 一个连续时间信号的周期采样序列表示为

$$x[n] = x_c(nT), \quad -\infty < n < \infty$$

T是采样周期,

采样周期的倒数为采样频率 $f_s = 1/T$

采样频率的弧度表示为 $\Omega_s = 2\pi/T$

理想连续时间到离散时间(C/D)转换器

4.1 周期采样

◆理想采样的数学模型

4.1 周期采样

◆相同输入连续信号采用不同采样率的输出序列

第四章: 连续时间信号的采样

- ◆4.1 周期采样
- ◆4.2 采样的频域表示
- ◆4.3 由样本重构带限信号
- ◆4.4 连续时间信号的离散时间处理
- ◆4.5 离散时间信号的连续时间处理
- ◆4.6 利用离散时间处理改变采样率
- ◆4.7 多采样率信号处理
- ◆4.8 模拟信号的数字处理
- ◆4.9 在A/D和D/A转换中的过采样和噪声成形

◆ 冲激串调制信号的时域表式

冲激串函数可表示为:

$$s(t) = \sum_{n = -\infty} \delta(t - nT)$$

 $\delta(t)$ 为单位冲激函数。

用
$$x_c(t)$$
 调制 $s(t)$ 可得冲击串调制信号

$$x_{s}(t) = x_{c}(t)s(t)$$

$$= x_c(t) \sum_{r=-\infty}^{\infty} \delta(t - nT)$$

$$=\sum_{n=-\infty}^{\infty}x_{c}\left(nT\right)\delta\left(t-nT\right)$$

◆ 冲激串调制信号的频域表示

$$\overset{\clubsuit}{x}_{c}(t) & \overset{\mathscr{F}}{\longleftrightarrow} & X_{c}(j\Omega)$$

$$s(t) & \overset{\mathscr{F}}{\longleftrightarrow} & S(j\Omega)$$

$$x_{s}(t) & \overset{\mathscr{F}}{\longleftrightarrow} & X_{s}(j\Omega)$$

可得

$$S(j\Omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s)$$

$$X_{s}(j\Omega) = \frac{1}{2\pi} X_{c}(j\Omega) * S(j\Omega)$$
$$= \frac{1}{T} \sum_{s}^{\infty} X_{c}(j(\Omega - k\Omega_{s}))$$

冲激串调制输出信号的频 谱为输入信号频谱按采样 频率为周期的移位叠加

◆ 采样序列的频域表达式

由冲激串调制时域表达式

$$x_{s}(t) = \sum_{n=-\infty}^{\infty} x_{c}(nT)\delta(t-nT)$$

其傅里叶变换(频域)表示为

$$X_{s}(j\Omega) = \sum_{n=-\infty}^{\infty} x_{c}(nT)e^{-j\Omega Tn} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega Tn}$$

可得采样序列的FT与冲激串调制(连续信号)的FT之间存在关系:

$$x[n] \longleftrightarrow X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = X_s(j\Omega)\Big|_{\Omega=\omega/T}$$

即由输入连续信号的FT --> 冲激串调制信号的FT --> 采样序列的FT

$$X_{c}(j\Omega) * S(j\Omega) \xrightarrow{\Omega = \omega/T} X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\omega - 2\pi k)/T)$$

◆时、频域尺度关系

▶ 频域尺度(频谱)

频率尺度关系 $\omega = \Omega T$ 表征 $X\left(e^{j\omega}\right)$ 与 $X_s\left(j\Omega\right)$ 之间的尺 度变换。

频域尺度变换是一种频率轴 的归一化,使 $\Omega = \Omega_s$ 归一 化到 $\omega = 2\pi$ 。

▶ 时域尺度(信号)

x[n] 与 $x_s(t)$ 之间亦存 在(时域)尺度变换。

时域尺度变换使 t=T 归一化到 n=1 。

课后阅读例4.1-4.3, 加深理解

◆奈奎斯特采样定理

令 $x_c(t)$ 是一个带限信号,

$$X_c(j\Omega) = 0, \quad |\Omega| > \Omega_N$$

那么 $x_c(t)$ 能唯一取决于它的采样样本

连续信号可由采样 样本无失真的恢复

$$x[n] = x_c(nT), \quad n = 0, \pm 1, \pm 2, \dots$$

所需的 (采样频率) 必要条件为

$$\Omega_s = \frac{2\pi}{T} > 2\Omega_N$$

频率 Ω_N 一般称为奈奎斯特频率

允许的最大信号带宽

频率 $2\Omega_N$ 称为奈奎斯特(采样)率

允许的最小采样频率

◆冲激串调制频谱示例

连续时间信号频谱

冲激串信号频谱

 $\Omega_s > 2\Omega_N$ 调制频谱 --无混叠

调制频谱 $\Omega_s < 2\Omega_N$ — 有混叠

◆ 由冲激串调制输出信号 重构原始连续时间信号

当 $\Omega_s > 2\Omega_N$ 无混叠

采用理想低通滤波器, 截止频率 Ω_c 满足 $\Omega_N \leq \Omega_c \leq \left(\Omega_s - \Omega_N\right)$

可从冲激串调制输出无失真恢复原始连续时间信号

 Ω_N

(c)

Ω

 $-\Omega_N$

例: COS信号冲激串调制与重构

COS信号

$$x_c(t) = \cos \Omega_0 t$$

无混叠 调制频谱

其傅里叶变换

$$X_{c}(j\Omega) = \pi\delta(\Omega - \Omega_{0}) + \pi\delta(\Omega + \Omega_{0})$$

$$x_r(t) = \cos \Omega_0 t$$

有混叠重构输出

$$x_r(t) = \cos(\Omega_s - \Omega_0)t$$

 $-(\Omega_s - \Omega_0) (\Omega_s - \Omega_0)$

◆带通信号的采样

通带信号 $x_c(t)$ 频谱位于

$$\Omega_L \le \Omega \le \Omega_H \quad \Omega_L > 0$$

由采样定理决定的采样率为 $\Omega_s \geq 2\Omega_H$

定义通带信号带宽为 $\Delta\Omega = \Omega_H - \Omega_I$

如果 Ω_H 为信号带宽的整数倍 $\Omega_H = M \times \Delta\Omega$

采用低通滤波 即可获取通带 等效基带信号

通带信号采样频率可选为

$$\Omega_s = 2 \times \Delta \Omega = \frac{2\Omega_H}{M}$$

通带信号的采样信号频谱为

$$X(j\Omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c (j(\Omega - 2 \times \Delta \Omega k))$$

第四章: 连续时间信号的采样

- ◆4.1 周期采样
- ◆4.2 采样的频域表示
- ◆4.3 由样本重构带限信号
- ◆4.4 连续时间信号的离散时间处理
- ◆4.5 离散时间信号的连续时间处理
- ◆4.6 利用离散时间处理改变采样率
- ◆4.7 多采样率信号处理
- ◆4.8 模拟信号的数字处理
- ◆4.9 在A/D和D/A转换中的过采样和噪声成形

4.3 由样本重构采样信号

◆理想重构系统

ightharpoonup 先由样本序列 x[n] 形成冲激串调制信号 $x_s(t)$,各连续冲激的面积等于序列值,即

$$x_{s}(t) = \sum_{n=-\infty}^{\infty} x[n]\delta(t-nT)$$

ightharpoonup 再通过频率响应为 $H_r(j\Omega)$ 、冲激响应为 $h_r(t)$ 的理想低通滤波器,输出为

$$x_r(t) = x_s(t) * h_r(t) = \sum_{n=-\infty}^{\infty} x[n]h_r(t-nT)$$

其中,理想低通滤波器的增益为 T 截止频率 Ω_c 满足 $\Omega_N \leq \Omega_c \leq (\Omega_s - \Omega_N)$ 一般地 Ω_c 取值为 $\Omega_c = \Omega_s/2 = \pi/T$

理想重构系统

 $x_{s}(t)$

序列串到冲

激串的转换

采样周期 7

理想重构

滤波器

 $H_r(j\Omega)$

 $|x_r(t)|$

4.3 由样本重构采样信号

◆理想重构系统(续)

截止频率为 π/T 理想低通滤波器的单位冲激响应为

$$h_r(t) = \sin(\pi t / T) / (\pi t / T)$$

 $h_r(t)$ 特性

$$h_{r}(0) = 1$$

$$h_r(nT) = 0$$
, $n = \pm 1, \pm 2, \cdots$

保证(通过移位叠加获得的)重构信 号在采样点处取值仅取决于原采样值

重构输出为

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

数字信号处理讲义

4.3 由样本重构采样信号

▶理想离散到连续时间(D/C)转换器

$$X_{s}(j\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega Tn}$$

由时域重构信号

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

通过傅里叶变换,可得频域重构信号

$$X_r(j\Omega) = H_r(j\Omega) \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega Tn} = H_r(j\Omega) X(e^{j\Omega T})$$

其中
$$X(e^{j\Omega T}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega Tn} = X_s(j\Omega)$$
 冲击串调制输出信号 $x(t)$ 的傅里叶变换

 $\chi_{c}(t)$ 的傅里叶变换

第四章: 连续时间信号的采样

- ◆4.1 周期采样
- ◆4.2 采样的频域表示
- ◆4.3 由样本重构带限信号
- ◆4.4 连续时间信号的离散时间处理
- ◆4.5 离散时间信号的连续时间处理
- ◆4.6 利用离散时间处理改变采样率
- ◆4.7 多采样率信号处理
- ◆4.8 模拟信号的数字处理
- ◆4.9 在A/D和D/A转换中的过采样和噪声成形

4.4 连续时间信号的离散时间处理

◆连续时间信号离散时间处理模型

其中

离散系统 输入信号

$$x[n] = x_c(nT), \quad n = 0, \pm 1, \pm 2, \dots$$

$$X\left(e^{j\omega}\right) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c\left(j\left(\omega - 2\pi k\right)/T\right)$$

连续系统 输出信号

$$y_r(t) = \sum_{n=-\infty}^{\infty} y[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

$$Y_{r}(j\Omega) = H_{r}(j\Omega)Y(e^{j\Omega T}) = \begin{cases} TY(e^{j\Omega T}), & |\Omega| \leq \pi/T \\ 0, & other \end{cases}$$

◆连续时间信号离散时间处理模型(续)

若上述模型中<mark>离散</mark>时间系统为<mark>LTI</mark>, 则其输出信号的频谱为

$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

其中 $H\left(e^{j\omega}\right)$ 为离散系统的频率响应, $X\left(e^{j\omega}\right)$ 和 $Y\left(e^{j\omega}\right)$ 分别为输入和输

出序列的傅里叶变换(频谱)

则,整个连续时间信号系统的输出信号频谱可表示为

$$Y_r(j\Omega) = H_r(j\Omega)Y(e^{j\Omega T})$$

$$= H_r(j\Omega)H(e^{j\Omega T})X(e^{j\Omega T})$$

$$=H_r(j\Omega)H(e^{j\Omega T})\frac{1}{T}\sum_{k=-\infty}^{\infty}X_c(j(\Omega-2\pi k/T))$$

◆连续时间信号离散时间处理模型(续2)

若 $X_c(j\Omega) = 0$, $|\Omega| \ge \pi/T$, 则 $Y_r(j\Omega)$ 简化为

$$Y_{r}(j\Omega) = \begin{cases} H(e^{j\Omega T})X_{c}(j\Omega), & |\Omega| < \pi/T \\ 0, & |\Omega| \ge \pi/T \end{cases}$$

$$\begin{split} Y_{r}\left(j\Omega\right) &= H_{r}\left(j\Omega\right) H\left(e^{j\Omega T}\right) \times \\ &\frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(j\left(\Omega - 2\pi k/T\right)\right) \end{split}$$

因此,当 $X_c(j\Omega)$ 带限,且采样率不低于奈奎斯特率时,整个连续时间系统可表示成

$$Y_r(j\Omega) = H_{eff}(e^{j\Omega T})X_c(j\Omega)$$

其中整个连续时间系统的等效频率响应可表示成

$$H_{e\!f\!f}\left(j\Omega
ight)\!=\!egin{cases} H\left(e^{j\Omega T}
ight), & \left|\Omega
ight|\!<\!\pi/T \ 0, & \left|\Omega
ight|\!\geq\!\pi/T \end{cases}$$

若: 1) 离散时间系统为LTI; 2) 采样频率高于奈奎斯特率 $\Omega_{s}>2\Omega_{N}$

问:整个连续时间系统是否为LTI系统?

例4.4 采用离散时间低通滤波器的理想连续时间低通滤波

LTI离散时间系统频率响应为

$$H\left(e^{j\omega}\right) = \begin{cases} 1, & |\omega| < \omega_c \\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

对于采用不低于奈奎斯特率采 样的带限输入信号,等效的 LTI连续时间系统频率响应为

$$H_{eff}\left(j\Omega\right) = \begin{cases} 1, & \left|\Omega\right| < \omega_{c}/T \\ 0, & \left|\Omega\right| \ge \omega_{c}/T \end{cases}$$

LTI连续时间系统的频率响应可由 LTI离散时间系统在一个周期内的 频率响应经过尺度变换获得。

◆采用离散时间低通滤波器的理想 连续时间低通滤波系统信号的频键

结论1: **离散时间系统**采用截止频率为 ω_c 的理想离散低通滤波器时,整个连续时间系统则为截止频率为 $\Omega_c = \omega_c/T$ 的理想连续时间低通滤波器

结论2: 若 $\Omega_N T < \omega_c < (2\pi - \Omega_N T)$ 整个系统输出可无失真重构输入的连续时间信号, $y_r(t) = x_c(t)$

结论3: 离散时间系统输入信号有混叠时,如果混叠分量被滤除掉,

即要求: $\omega_c < (2\pi - \Omega_N T)$

连续时间系统 输入信号频谱

无混叠冲激串 调制信号频谱

 $X_c(j\Omega)$

离散时间系统 频率响应

离散时间系统 输出信号频谱

理想重构滤波 输入信号频谱

理想重构滤波 器频率响应

连续时间系统 输出信号频谱

上海科技入于 ShanghaiTech University