Cumulative Gain

- With graded relevance judgments, we can compute the gain at each rank.
- Cumulative Gain at rank n:

$$CG_n = \sum_{i=1}^n rel_i$$

(Where rel_i is the graded relevance of the document at position i)

		relevance	
n	doc#	(gain)	CG _n
1	588	1.0	1.0
2	589	0.6	1.6
3	576	0.0	1.6
4	590	0.8	2.4
5	986	0.0	2.4
6	592	1.0	3.4
7	984	0.0	3.4
8	988	0.0	3.4
9	578	0.0	3.4
10	985	0.0	3.4
11	103	0.0	3.4
12	591	0.0	3.4
13	772	0.2	3.6
14	990	0.0	3.6

Discounting Based on Position

 Users care more about high-ranked documents, so we discount results by 1/log₂(rank)

Discounted Cumulative Gain:

$$DCG_n = rel_1 + \sum_{i=2}^{n} \frac{rel_i}{\log_2 i}$$

		rel			
n	doc#	(gain)	CG_n	log_n	DCG_n
1	588	1.0	1.0	-	1.00
2	589	0.6	1.6	1.00	1.60
3	576	0.0	1.6	1.58	1.60
4	590	8.0	2.4	2.00	2.00
5	986	0.0	2.4	2.32	2.00
6	592	1.0	3.4	2.58	2.39
7	984	0.0	3.4	2.81	2.39
8	988	0.0	3.4	3.00	2.39
9	578	0.0	3.4	3.17	2.39
10	985	0.0	3.4	3.32	2.39
11	103	0.0	3.4	3.46	2.39
12	591	0.0	3.4	3.58	2.39
13	772	0.2	3.6	3.70	2.44
14	990	0.0	3.6	3.81	2.44

Normalized Discounted Cumulative Gain (NDCG)

- To compare DCGs, normalize values so that a ideal ranking would have a Normalized DCG of 1.0
- Normalized Cumulative Gain (NDCG) at rank n
 - Normalize DCG at rank n by the DCG value at rank n of the ideal ranking
 - The ideal ranking would first return the documents with the highest relevance level, then the next highest relevance level, etc
 - Compute the precision (at rank) where each (new) relevant document is retrieved => p(1),...,p(k), if we have k rel. docs

Normalized Discounted Cumulative Gain (NDCG)

- To compare DCGs, normalize values so that a ideal ranking would have a Normalized DCG of 1.0
- Ideal ranking:

		rel			
n	doc#	(gain)	CG_n	\log_n	DCG _n
1	588	1.0	1.0	0.00	1.00
2	589	0.6	1.6	1.00	1.60
3	576	0.0	1.6	1.58	1.60
4	590	8.0	2.4	2.00	2.00
5	986	0.0	2.4	2.32	2.00
6	592	1.0	3.4	2.58	2.39
7	984	0.0	3.4	2.81	2.39
8	988	0.0	3.4	3.00	2.39
9	578	0.0	3.4	3.17	2.39
10	985	0.0	3.4	3.32	2.39
11	103	0.0	3.4	3.46	2.39
12	591	0.0	3.4	3.58	2.39
13	772	0.2	3.6	3.70	2.44
14	990	0.0	3.6	3.81	2.44

32

		rel			
n	doc#	(gain)	CG _n	\log_n	IDCG _n
1	588	1.0	1.0	0.00	1.00
2	592	1.0	2.0	1.00	2.00
3	590	0.8	2.8	1.58	2.50
4	589	0.6	3.4	2.00	2.80
5	772	0.2	3.6	2.32	2.89
6	576	0.0	3.6	2.58	2.89
7	986	0.0	3.6	2.81	2.89
8	984	0.0	3.6	3.00	2.89
9	988	0.0	3.6	3.17	2.89
10	578	0.0	3.6	3.32	2.89
11	985	0.0	3.6	3.46	2.89
12	103	0.0	3.6	3.58	2.89
13	591	0.0	3.6	3.70	2.89
14	990	0.0	3.6	3.81	2.89

Normalized Discounted Cumulative Gain (NDCG)

 Normalize by DCG of the ideal ranking:

$$NDCG_n = \frac{DCG_n}{IDCG_n}$$

- NDCG ≤ 1 at all ranks
- NDCG is comparable across different queries
- NDCG is now quite popular in evaluating Web search

		rel			
n	doc#	(gain)	DCG _n	IDCG _n	NDCG _n
1	588	1.0	1.00	1.00	1.00
2	589	0.6	1.60	2.00	0.80
3	576	0.0	1.60	2.50	0.64
4	590	8.0	2.00	2.80	0.71
5	986	0.0	2.00	2.89	0.69
6	592	1.0	2.39	2.89	0.83
7	984	0.0	2.39	2.89	0.83
8	988	0.0	2.39	2.89	0.83
9	578	0.0	2.39	2.89	0.83
10	985	0.0	2.39	2.89	0.83
11	103	0.0	2.39	2.89	0.83
12	591	0.0	2.39	2.89	0.83
13	772	0.2	2.44	2.89	0.84
14	990	0.0	2.44	2.89	0.84