

ENDEREÇAMENTO IPV4

ORLANDO OLIVEIRA DOS SANTOS

DEFINIÇÃO

Origem;

- Anterior => Protocolo NCP(Network Control Protocol);
- Posterior => Protocolo IP(Internet Protocol);

Funcionalidade;

DEFINIÇÃO

NCP:

- Controlava máquinas, na época, comunicação entre servidores e servidores;
- Estabelecia o link na comunicação;

TCP/IP:

 Permite o estabelecimento de endereços lógicos a dispositivos que estiverem conectados à rede, principalmente, por terem placas de rede como seus componentes;

	IPv4z	IPv6
Ano de Implementação	1981	1999
Tamanho do Endereço	32 bits	128 bits
Formato do Endereço	192.149.252.76 (Notação Decimal)	3FFE:F200:0234:AB00:0123 :4567:8901:ABCD (Notação Hexadecimal)

 O protocolo utiliza, principalmente, bits para definir um endereço, que pode ser definido como 2 elevado N, ou 2^N, sendo o N, o número de bits;

O motivo de ser 2, é devido os bits serem interpretados em 1 ou 0;

O ipv4 utiliza endereços de até 32 bits, sendo assim: 2^32 => 4.294.967.296
 em possibilidades de endereços;

Números decimais: Toda sequência montada entre os números 0 e 9.

O ipv6 utiliza 128 bits;

 Por utilizar caracteres hexadecimais, é permitido em sua estrutura 340 undecilhões de endereços;

Até então temos 8 bilhões de pessoas na Terra;

Esse protocolo ainda será bem útil por bastante tempo.

Notação Binária

Na notação binária, o endereço IPv4 é exibido como 32 bits. Cada octeto é geralmente conhecido como um byte. Portanto, é comum ouvirmos um endereço IPv4 referido como um endereço de 32 bits ou um endereço de 4 bytes. A seguir, temos um exemplo de um endereço IPv4 em notação binária:

01110101 10010101 00011101 00000010

Notação Decimal Pontuada

Para tornar o endereço IPv4 mais compacto e mais fácil de ser lido, os endereços Internet normalmente são escritos na forma decimal com um ponto decimal (dot) separando os bytes. A seguir, apresentamos a **notação decimal pontuada** do endereço anterior:

117.149.29.2

CONVERSÃO DE NOTAÇÕES

 Cada octeto pode corresponder a 8 bits, então a cada octeto temos 8 posições;

128	64	32	16	8	4	2	1
2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰

 Para se realizar a conversão de bits para decimal, ou o oposto devemos nos basear no esquema acima.

DECIMAL PARA BINÁRIO

 Quando formos fazer conversões de decimais para binários, sempre iniciamos a contagem da esquerda para direita, considerando os números necessários para se formar o binário.
 Por exemplo, transformaremos o número 27 para binário.

 Os números em alta marcação podem ser utilizados para formar o número 27. Então nas demais posições colocaremos zero, e nas posições utilizadas para somar 27 colocaremos 1.

128	64	32	16	8	4	2	1	
-----	----	----	----	---	---	---	---	--

 Como pudemos ver, a conversão do 27 ao binário foi realizada, sendo o resultado 00011011 ou 11011.

0	0	0	1	1	0	1	1
---	---	---	---	---	---	---	---

BINÁRIO PARA DECIMAL

- Quando formos fazer conversões de binários para decimais, sempre utilizamos a base de 2 para nos orientarmos. Por exemplo, vamos retornar de binário para o 27.
- Comece introduzindo a série binária da direita para esquerda, e caso falte números complete com o número **0**.

0	0	0	1	1	0	1	1
27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2^0

 Considerando as bases selecionadas para a formação do número decimal, se efetua a operação de soma das mesmas: 2⁴ + 2³ + 2¹ + 2⁰ => 27

 As classes são endereçadas em classes, pois compreendem um intervalo de possibilidades em endereços;

Por definição existem 5 classes: A, B, C, D e E;

 A classe D e E são classes especiais, onde podem ser utilizadas para testes internos ou configurações privadas de algum ambiente.

O primeiro byte do protocolo de internet, recebe os seguintes intervalos de valores nas seguintes classes:

b. Notação decimal pontuada

Classe	Número de Blocos	Tamanho do Bloco
A	128	16.777.216
В	16.384	65.536
С	2.097.152	256

 Os números de blocos significam as possibilidades de octetos utilizados para definir uma rede;

 O tamanho do bloco significa a possibilidade de hosts que podem estar inseridos nessa rede.

Novamente, na classe A: Temos os hosts ocupando os três últimos octetos, e a definição de rede ficando no primeiro octeto;

Na classe B:Temos os hosts ocupando os dois últimos octetos, e a definição de rede ficando nos dois primeiros octetos;

Na classe C: Temos os hosts ocupando o último octeto, e a definição de rede ficando nos três primeiros octetos;

	Primeiro byte	Segundo byte	Terceiro byte	Quarto byte
Classe A	0-127			
Classe B	128-191			
Classe C	192-223			
Classe D	224–239			
Classe E	240-255			

b. Notação decimal pontuada

Netid=> Parte de um comprimento variável do endereço do ip que identifica os octetos de rede;

Hostid=> Parte de um comprimento variável do endereço do ip que identifica os octetos de hosts;

Máscaras de rede=> São utilizadas como padronização de marcação dos netid's e dos hostid's.

Classe	Binária	Decimal Pontuada
A	1111111 00000000 00000000 00000000	255 .0.0.0
В	1111111 1111111 00000000 00000000	255.255 .0.0
C	11111111 11111111 11111111 00000000	255.255.255.0

Os octetos definidos pelas máscaras de redes como netid's são preenchidos no seu maior valor decimal.