Ostfalia

Hochschule für angewandte Wissenschaften

Fakultät Fahrzeugtechnik Prof. Dr.-Ing. B. Lichte Institut für Fahrzeugsystem- und Servicetechnologien

Modulprüfung Regelungstechnik **BPO 2011**

> SS 2017 20.06.2017

Name:
Vorname
Matr.Nr.:
Lintorophrift

Zugelassene Hilfsmittel: Kurzfragen: Keine

> Aufgaben: Eigene Formelsammlung DIN A4 doppelseitig

> > Nichtprogrammierbarer Taschenrechner

Zeit: Kurzfragen: 30 Min.

60 Min. Aufgaben:

Punkte:

K 1	K2	К3	A 1	A2	А3	A4	Summe (max. 90)	Prozente	Note	

Bearbeitungshinweise:

- Verwenden Sie nur das ausgeteilte Papier für Ihre Rechnungen und Nebenrechnungen. Zusätzliches Papier erhalten Sie von den Aufsichtsführenden. Beschriften Sie die Deckblätter mit Namen, Matrikel-Nr. und Unterschrift.
- Existiert für eine Teilaufgabe mehr als ein Lösungsvorschlag, so wird diese Teilaufgabe mit 0 Punkten bewertet. Verworfene Lösungsansätze sind durch deutliches Durchstreichen kenntlich zu machen. Schreiben Sie keine Lösungen in roter Farbe.
- Ihre Lösung muss Schritt für Schritt nachvollziehbar sein. Geben Sie zu allen Lösungen, wenn möglich auch das zugehörige Formelergebnis ohne Zahlenwerte an (Punkte). Die schlichte Angabe des Zahlenergebnisses reicht i. allg. für die volle Punktzahl nicht aus.
- Lösen Sie die Heftklammern nicht.

Fakultät Fahrzeugtechnik Prof. DrIng. B. Lichte	Modulprüfung Regelungstechnik	Name:
Institut für Fahrzeugsystem- und Servicetechnologien	Kurzfragenteil	Vorname
Hilfsmittel: Keine Zeit: 30 Min.	SS 2017	Matr.Nr.:
	20.06.2017	Wat 14

Kurzfrage 1 – (10 Punkte) Regelkreis

(6 P) Tragen Sie in das nachstehende Blockschaltbild die korrekten Bezeichnungen und Symbole ein.

(4 P) Zeichnen Sie das Blockschaltbild des Standardregelkreises inklusive der korrekten Bezeichnungen und Symbole.

Kurzfrage 2 – (11 Punkte) Wirkungsplan

Gegeben ist die folgende Übertragungsfunktion einer Regelstrecke:

$$G(s) = \frac{X(s)}{Y(s)} = \frac{1}{T_I s (1 + T_1 s)}$$
.

- (3 P) Wie nennt man dieses Übertragungsglied? Geben Sie die zugehörige lineare Differentialgleichung an.
- (8 P) Zeichnen Sie aus den elementaren Übertragungsgliedern (P-,I-,D- und T_t-Glied) einen zugehörigen Wirkungsplan. Geben Sie die benötigten Gleichungen an.

Kurzfrage 3 – (15 Punkte) Verständnisfragen

Kreuzen Sie an, ob die folgenden Aussagen richtig oder falsch sind. **Falsche** Antworten führen zu einem **Punktabzug**.

Au	ssage	richtig	falsch				
	Wie kann ein Flüssigkeitsbehälter mit der Ausgangsgröße $X(s)$ (Füllstandshöhe in m)						
	und der Eingangsgröße $Y(s)$ (Volumenstrom in $\frac{m^3}{sec}$) als Übertragungsfunktion prinzipiell						
bes	schrieben werden?	I	T				
1.	$G_S(s) = \frac{1}{s T_1}.$						
2.	$G_S(s) = s T_1.$						
3.	$G_S(s) = \frac{K_S}{1+sT_1}.$						
We	lche Aussagen gelten für die Wurzelortskurve?						
4.	Sie ist immer symmetrisch zur reellen Achse.						
5.	Sie wird benutzt, um die Stabilität mit dem Nyquist-Kriterium zu bestimmen.						
6.	Die WOK stellt den Zusammenhang zwischen den Nullstellen und Polen						
	des offenen Kreises und den Polen des geschlossenen Kreises dar.						
Wa	s sind die Merkmale einer Regelung?						
7.	Kennzeichen einer Regelung ist ein offener Wirkungsablauf.						
8.	Entscheidend für die Wirkungsweise einer Regelung ist die Vorzeichen-						
	umkehr im Vergleichsglied.						
9.	Zumindest für die Regelgröße wird eine Messeinrichtung benötigt.						
We	Iche Aussagen über bleibende Regeldifferenzen sind richtig?						
10.	Bei Reglern ohne I-Anteil kommt es immer zu bleibenden						
	Regelabweichungen.						
11.	Um einen bleibenden Regelfehler bei rampenförmiger Führungsgröße						
	zu vermeiden, muss der offene Regelkreis 2 Integratoren enthalten.						
12.	Eine bleibende Regelabweichung kann durch Erhöhen der Verstärkung						
	des offenen Regelkreises reduziert werden (Stabilität vorausgesetzt).						
Wa	s ist bezüglich des D-Anteils im PID-Regler zu beachten?						
13.	Der D-Anteil verstärkt das Messrauschen. Je nach Stärke des						
	Messrauschens ist daher eine geeignete Filterung des Messsignales						
	notwendig, um eine verrauschte Stellgröße zu vermeiden.						
14.	Der D-Anteil in einem PID-Regler wirkt sich stets destabilisierend auf die						
	Regelung aus.						
15.	Besitzt die Regelstrecke bereits 2 Integratoren, so ist der D-Anteil zur						
	Stabilisierung des Regelkreises notwendig.						

Fakultät Fahrzeugtechnik	Modulprüfung	
Prof. DrIng. B. Lichte	Regelungstechnik	Name:
Institut für Fahrzeugsystem- und		
Servicetechnologien	Aufgabenteil	Vorname
Hilfsmittel: Schriftl. Unterlagen		
Taschenrechner (n. program.)	SS 2017	Matr.Nr.:
kein PC/Mobiltelefon	20.06.2017	
Zeit: 60 Min.		

Aufgabe 1 – (15 Punkte) Bode-Diagramm

Gegeben ist die Übertragungsfunktion des offenen Regelkreises:

$$G_O(s) = \frac{0.1(1+5\,s)}{s\,\left(1+\frac{1}{80}\,s\right)^2}$$

(15 P) Zeichnen Sie die asymptotischen Amplitudengänge in das unten abgebildete Diagramm. Kennzeichnen Sie die Eckfrequenzen und geben Sie die Asymptoten-Steigungen an.

Aufgabe 2 – (16 Punkte) Laplace-Transformation

Gegeben ist die folgende Übertragungsfunktion:

$$G(s) = \frac{X(s)}{Y(s)} = \frac{4}{s+2}e^{-\frac{1}{2}s}$$

- a) (1 P) Wie heißt dieses System?
- b) (11 P) Berechnen Sie die bezogene Sprungantwort h(t) des Systems.

Hinweis: Zeitverschiebungssatz: $f(t-T) \rightsquigarrow F(s)e^{-sT}$

Skizzieren Sie die bezogene Sprungantwort h(t) im nachstehenden Diagramm:

c) (4 P) Berechnen Sie Anfangs- und Endwert der Sprungantwort sowohl mit Hilfe des Endwertsatzes der Laplace-Transformation als auch direkt aus der Lösung im Zeitbereich.

Nr.	Zeitfunktion $f(t), t \ge 0$	Bildfunktion $F(s)$, $(s = \sigma + j\omega)$	Anmerkung
1	δ (t)	1	Dirac-Impuls
2	σ (t)	$\frac{1}{s}$	Einheitssprung- funktion
3	r(t) = t	$\frac{1}{s^2}$	Einheitsanstiegs- funktion
4	$p(t) = \frac{1}{2}t^2$	$\frac{1}{s^3}$	Einheitsparabel- funktion
5	$\frac{1}{k!}t^k$	$\frac{1}{s^{k+1}}$	k > 0, ganzzahlig
6	e at	$\frac{1}{s-a}$	a konstant
7	te ^{at}	$\frac{1}{(s-a)^2}$	a konstant
8	$\frac{1}{k!}t^k e^{at}$	$\frac{1}{(s-a)^{k+1}}$	a konstant
9	$\sin(bt)$	$\frac{b}{s^2+b^2}$	b > 0, konstant
10	$\cos(bt)$	$\frac{s}{s^2+b^2}$	b > 0, konstant
11	$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$	b > 0, konstant a konstant
12	$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$	b > 0, konstant a konstant

Aufgabe 3 - (29 Punkte) Wurzelortskurve

Gegeben ist ein Standard-Regelkreis. Die Regelstrecke lautet:

$$G_S(s) = \frac{1}{(s+5)(s+4)(s+3)}$$
.

Es stehen die folgenden beiden Regler zur Verfügung:

$$G_{R_1}(s) = K_R(1 + s T_D)$$

und

$$G_{R_2}(s) = K_R \frac{(1+s T_D)}{1+s T_1}$$
.

Dabei gilt für die Regler-Parameter: $K_R = 1$, $T_D = 1$ und $T_1 = \frac{1}{5}$.

- a) (1 P) Wie nennt man diese Regler?
- b) (2 P) Berechnen Sie die Übertragungsfunktionen $G_{01}(s)$ und $G_{02}(s)$ der offenen Regelkreise.
- c) (25 P) Skizzieren Sie die zugehörigen Wurzelortskurven (WOK). Tragen Sie die Lage der Polund Nullstellen ein und skizzieren sie jeweils qualitativ den Verlauf der WOK für positive Verstärkungen. Markieren Sie die Richtung der Äste eindeutig. Benutzen Sie dazu die vorbereiteten Diagramme. Eine Berechnung von Verzweigungspunkten ist nicht notwendig.
- d) (1 P) Wie lässt sich für diese beiden Regelkreise bezüglich der stationären Genauigkeit sagen?

Aufgabe 4 - (17 Punkte) DGL und Routh-Kriterium

Gegeben sind folgende Differentialgleichungen der Strecke:

$$\dot{x}_1(t) = -\frac{1}{2}x_1(t) + \frac{1}{2}y(t)$$

$$\dot{x}_2(t) = -\frac{1}{2}x_2(t) + \frac{1}{2}x_1(t)$$

Dabei ist y(t) die Stellgröße und $x(t) = x_2(t)$ die Regelgröße.

Die Regelstrecke soll mit einem PI-Regler geregelt werden:

$$G_R(s) = K_P + K_I \frac{1}{s}$$

- a) (7 P) Bestimmen Sie die Übertragungsfunktion $G_S(s)$ der Regelstrecke (Transformieren Sie dazu die obigen Differentialgleichungen in den Laplace-Bereich).
- b) (4 P) Es liegt ein Standard-Regelkreis vor. Die Regelstrecke soll mit dem angegebenen Pl-Regler geregelt werden (keine Kompensation). Berechnen Sie die Übertragungsfunktion des offenen Regelkreises und die Führungsübertragungsfunktion.
- c) (6 P) Berechnen Sie mit Hilfe des Routh-Kriteriums den Stabilitätsbereich für die Regler-Parameter K_P und K_I . Zeichnen Sie das Stabilitätsgebiet in das nachstehende Bild ein.

