

Inferência II

Felipe Figueiredo

## Inferência II

Inferências com amostras pequenas

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

# Recapitulando

- ullet Quando vamos fazer uma inferência sobre  $\mu$  e sabemos  $\sigma^2$ , podemos usar  $\sigma$  diretamente no intervalo de confiança.
- Para isto, consultamos na tabela normal padrão (tabela Z) para obter o valor crítico  $z_c$
- Esse valor crítico representa a probabilidade de que o intervalo criado em torno de  $\hat{\mu} = \bar{x}$  contenha o valor desejado  $\mu$ .
- Na prática, isso raramente acontece (se não sabemos  $\mu$ , raramente saberemos  $\sigma^2$ ).



Inferência II

Felipe Figueiredo

Recapitulando

## Sumário



Inferência I

Felipe Figueiredo

- Intervalos de confiança para a média
  - A distribuição t de Student
  - Intervalos de confiança para amostras pequenas
- Resumo

Recapitulando

# Recapitulando



Inferência I

Felipe Figueiredo

Recapitulando

- Uma situação mais realista é quando queremos estimar  $\mu$  e não sabemos  $\sigma$ .
- Quando temos uma amostra grande (n > 30), podemos aproximar  $\sigma$  por s, e usar s diretamente no cálculo da margem de erro
- Isso é justificado pelo Teorema Central do Limite (TCL) (e.g. vídeo do experimento de Galton).
- Consultamos o z<sub>c</sub> na tabela Z, usando s como estimador de  $\sigma$

# A tabela Z

- INTO
- Inferência II

#### Felipe Figueiredo

#### Recapitulando

Intervalos de confiança para a média

Resumo

- Para a construção de intervalos de confiança, usamos o nível de confiança c (tipicamente c = 0.95).
- Isto é equivalente à significância  $\alpha = 1 0.95 = 0.05$
- Isto é, a confiança (c = probabilidade de que o IC contenha a média) é o complementar da significância (α = probabilidade de que o IC não contenha a média).
- Pela forma como a tabela é organizada, é mais conveniente procurar pela significância  $\alpha$  na tabela.
- A significância deve ser dividida entre as duas caudas.

### A tabela Z



Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Resumo

### Example

a seguir)

A probabilidade de uma variável aleatória Z ser menor que z=0.35 é:

A tabela da Normal Padrão mostra os valores sob a

curva até o ponto z observado (à esquerda de z).

• Cada linha corresponde ao primeiro dígito da área, e

cada coluna identifica o segundo dígito da área (figura

$$P(Z < 0.35) = 0.6368 = 63.68\%$$

### A tabela Z

# INTO

#### Inferência II

#### Felipe Figueiredo

#### Recapitulando

Intervalos de confiança para a média

Resumo

• c = 95% = 0.95

•  $\alpha = 5\% = 0.05$ 

•  $\frac{\alpha}{2} = 2.5\% = 0.0250$ 

 $\bullet$  1 - 0.025 = 0.9750

• Assim, o *z<sub>c</sub>* é 1.96

# E se a amostra não for grande?



Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média

Resumo

- Quando a amostra é pequena, não podemos simplesmente substituir σ por s na fórmula, pois o erro
- Nesse caso, a média amostral não tem distribuição normal.
- Assim precisamos usar uma outra distribuição (tabelada) com a distribuição t de Student.

dessa aproximação não é desprezível.



# A distribuição t de Student

- Inferência II
- Felipe Figueiredo

A distribuição t de Intervalos de

- Student (pseudônimo de W. S. Gossett [1876-1937], trabalhando para a cervejaria Guiness) criou uma distribuição que melhor se aproxima dos dados de amostras pequenas
- Tem um parâmetro graus de liberdade (gl) vinculado ao tamanho da amostra n.

# A distribuição t de Student



Figura: A distribuição t de Student

# Propriedades da distribuição t



Inferência II

Felipe Figueiredo

A distribuição t de

Intervalos de amostras pequer

- A distribuição tem forma de sino (simétrica) assim como a Normal padrão Z
- Reflete a major variabilidade inerente às amostras pequenas
- O formato da curva depende do tamanho da amostra n
- Quanto mais graus de liberdade (dados), mais a distribuição t se parece com a distribuição Z.

# Intervalos de confiança para a média



Inferência II

Felipe

Figueiredo

A distribuição t de

Inferência II

Felipe Figueiredo

A distribuição t de Intervalos de confiança para

# Definition

A margem de erro usando a estatística t é

$$E = t_c imes rac{s}{\sqrt{n}}$$

- Consultamos a tabela t de Student para encontrar o valor crítico t<sub>c</sub>
- Graus de liberdade: gl = n 1 (onde n é o tamanho da amostra)

## A tabela t



#### Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média A distribuição t de

Intervalos de confiança para amostras pequenas

Resumo

| ď                        |                                          |                                  |                                          |                                         |                                         |                                         |
|--------------------------|------------------------------------------|----------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| Degrees<br>of<br>freedom | .005<br>(one tail)<br>.01<br>(two tails) | (one tail)<br>.02<br>(two tails) | .025<br>(one tail)<br>.05<br>(two tails) | .05<br>(one tail)<br>.10<br>(two tails) | .10<br>(one tail)<br>.20<br>(two tails) | .25<br>(one tail)<br>.50<br>(two tails) |
| 1                        | 63.657                                   | 31.821                           | 12.706                                   | 6.314                                   | 3.078                                   | 1.000                                   |
| 2                        | 9.925                                    | 6.965                            | 4.303                                    | 2.920                                   | 1.886                                   | .816                                    |
| 3                        | 5.841                                    | 4.541                            | 3.182                                    | 2.353                                   | 1.638                                   | 765                                     |
| 4                        | 4.604                                    | 3.747                            | 2.776                                    | 2.132                                   | 1.533                                   | 741                                     |
| 5                        | 4.032                                    | 3.365                            | 2:571                                    | 2.015                                   | 1.476                                   | 727                                     |
| 6                        | 3.707                                    | 3.143                            | 2.447                                    | 1.943                                   | 1.440                                   | .718                                    |
| 7                        | 3.500                                    | 2.998                            | 2.365                                    | 1.895                                   | 1.415                                   | .711                                    |
| 8                        | 3.355                                    | 2.896                            | 2.306                                    | 1.860                                   | 1.397                                   | .706                                    |
| 9                        | 3.250                                    | 2.821                            | 2.262                                    | 1.833                                   | 1.383                                   | .703                                    |
| 10                       | 3.169                                    | 2.764                            | 2.228                                    | 1.812                                   | 1.372                                   | .700                                    |
| 11                       | 3.106                                    | 2.718                            | 2.201                                    | 1.796                                   | 1.363                                   | ,697                                    |
| 12                       | 3,054                                    | 2,681                            | 2.179                                    | 1.782                                   | 1.356                                   | .696                                    |
| 13                       | 3.012                                    | 2,650                            | 2.160                                    | 1.771                                   | 1.350                                   | .694                                    |
| 14                       | 2.977                                    | 2.625                            | 2.145                                    | 1.761                                   | 1.345                                   | .692                                    |
| 15                       | 2.947                                    | 2.602                            | 2.132                                    | 1.753                                   | 1.341                                   | .691                                    |
| 16                       | 2.921                                    | 2.584                            | 2.120                                    | 1.746                                   | 1.337                                   | .690                                    |
| 17                       | 2.898                                    | 2.567                            | 2.110                                    | 1.740                                   | 1.333                                   | .689                                    |
| 18                       | 2.878                                    | 2.552                            | 2.101                                    | 1.734                                   | 1.330                                   | .688                                    |
| 19                       | 2.861                                    | 2.540                            | 2.093                                    | 1.729                                   | 1.328                                   | .688                                    |
| 20                       | 2.845                                    | 2.528                            | 2.086                                    | 1.725                                   | 1.325                                   | .687                                    |
| 21                       | 2.831                                    | 2.518                            | 2,080                                    | 1.721                                   | 1.323                                   | .686                                    |
| 22                       | 2.819                                    | 2.508                            | 2.074                                    | 1.717                                   | 1.321                                   | .686                                    |
| 23                       | 2.807                                    | 2.500                            | 2.069                                    | 1.714                                   | 1.320                                   | .685                                    |

2.064

2.056 2.052 2.048 2.045 1.960 1.711

1.706 1.703 1.701 1.699 1.645

1.314

.685 .684

.683

## Example

Considere uma amostra de 10 bebês selecionada de uma população de bebês que recebe antiácidos que contém alumínio e são frequentemente usados para tratar distúrbios digestivos. A distribuição de níveis de alumínio no plasma é conhecida como aproximadamente normal, no entanto sua média e desvio padrão não são conhecidos. O nível médio de alumínio para a amostra de dez bebês é  $37.2~\mu\text{g/l}$  e desvio-padrão  $7.13~\mu\text{g/l}$ . Calcule um intervalo com 95% de confiança para a média populacional.

(Fonte: Hacker & Simões, 2008, Fiocruz)

# Exemplo

# IN<del>T</del>O

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média A distribuição t de Student Intervalos de confiança para

amostras pequenas

# Exemplo



• s = 7.13

•  $n = 10 \Rightarrow gl = 9$ 

2.797

2.779

2.492

2.479 2.473 2.467 2.462 2.327

### Solução

$$t_c = 2.262$$

$$E = t_c \times \frac{s}{\sqrt{n}}$$

$$E = 2.262 \times \frac{7.13}{\sqrt{10}} \approx 5.1$$
 $IC(95\%) = (37.2 - 5.1, 37.2 + 5.1) = (32.1, 42.3)$ 



Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média A distribuição t de Student

Intervalos de confiança para amostras pequena

Resumo

# Exercício

# INTO

Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média A distribuição t de Student Intervalos de confiança para

amostras pequena

#### Exercício

Num estudo para descrever o perfil dos pacientes adultos atendidos no ambulatório de um posto de saúde, uma amostra de 16 pacientes adultos foi selecionada ao acaso entre o total de pacientes atendidos no posto durante os últimos três anos, coletando-se dos prontuários desses pacientes dados relativos à idade, à escolaridade e a outros fatores de interesse.

Para a variável idade, observou-se uma média amostral de 36.86 anos com um desvio padrão amostral de 17.79 anos.

## Exercício



Inferência II

Felipe

Figueiredo

A distribuição t de Student

confiança para amostras pequena

Intervalos de

#### Exercício

- Defina a população e a amostra.
- 2 Forneça uma estimativa pontual, um intervalo de 90% de confiança e um intervalo de 95% de confiança para a idade média dos adultos atendidos neste ambulatório nos últimos três anos. Interprete e compare os intervalos de confiança.

$$E=rac{t_c s}{\sqrt{n}}$$
  $t_c(90\%)=1.753$ 

$$t_c(95\%) = 2.132$$

$$\bar{x} = 36.86$$

$$s = 17.79$$

$$n = 16 \Rightarrow gl = 15$$

# Resumo



• Se soubermos  $\sigma$ , usamos a tabela Z ( $z_c$ )

$$E=z_{c}\frac{\sigma}{\sqrt{n}}$$

 Se não soubermos σ, mas se n é grande (n ≥ 30), usamos a tabela Z (z<sub>c</sub>)

$$E=z_c\frac{s}{\sqrt{n}}$$

• Se não soubermos  $\sigma$ , mas e se n é pequeno (n < 30), usamos a tabela t ( $t_c$ )

$$E=t_{c}rac{s}{\sqrt{n}}$$



Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança

Resumo

## Exercício



Inferência II

Felipe Figueiredo

Recapitulando

Intervalos de confiança para a média A distribuição t de Student Intervalos de

Intervalos de confiança para amostras pequenas

acumo

• IC de 90% (c=0.90)

$$E = \frac{t_c s}{\sqrt{n}} = \frac{1.753 \times 17.79}{\sqrt{16}} \approx 7.80$$

$$IC_{0.90} = \bar{x} \pm E = 36.86 \pm 7.80 = (29.06, 46.66)$$

• IC de 95% (c=0.95)

$$E = \frac{t_c s}{\sqrt{n}} = \frac{2.132 \times 17.79}{\sqrt{16}} \approx 9.48$$

$$IC_{0.95} = \bar{x} \pm E = 36.86 \pm 9.48 = (27.38, 46.34)$$