

ルーティング方式 ダイナミックルーティング ティング情報 管理者が経路を設計し, 手動で ルータが、ルーティングプロトコル 設定.トポロジーに変更があれば、 手動で設定し直す によって経路情報を取得し、自動的に設定する の設定 ルータやネットワーク 経路情報の交換や最適経路の計 経路情報の交換や最適経路の計 の負荷 算のために負荷がかかる 質が必要ないので、 負荷が小さ スタブネットワーク(注), 小規模 小~大規模ネットワークまで対応 ネットワークの規 ネットワークに最適 セキュリティ 経路情報を転送しないので、改ざ 経路情報の改ざんや偽造の恐れ んや偽造の心配がない がある(セキュリティが低い) (ヤキュリティが高い)

注:1台のルータとだけ接続されたネットワーク (stub:木の切り株)これ以上枝分かれしないネットワークという意味

ルーティングとプロトコル

	ルーテット゚プロトコル:routed protocol	ルーティング プロトコル: routing protocol
	(経路を決められたプロトコル)	(経路情報を得るためのプロコル)
意味	ルーティング・テーブルを参照し、パケット の転送経路を決定するプロトコル	ルータ間で経路情報を交換し、ルーティングテープルに最適経路を登録・更新するためのプロトコル
例	IP, IPX, AppleTalk	RIPv1, RIPv2, IGRP, EIGRP, OSPF, BGP, EGP

RIP:Routing Information Protocol (RFC 1058) IGRP:Interior Gateway Routing Protocol(RFC無し) ^(注)

EIGRP: Enhanced Interior Gateway Routing Protocol (RFC無し) (注)

OFPF: Open Shortest Path Fast (RFC 2328)

BGP: Border Gateway Protocol (RFC 1771)

EGP: Exterior Gateway Protocol (RFC 904) 注: Cisco独自の非標準プロコル

route:「経路を決める」という意味の動詞 routed:routeの過去分詞「経路を決められた」という意味 routing:routeの現在分詞「経路を決めるための」という意味

ルーティングプロトコルの分類

方式	ディスタンスベクター ^(注3)	リンクステート ^(注4)	ハイブリッド ^(注5)	
プロトコル	RIPv1, RIPv2, IGRP(注1)	OSPF, IS-IS	EIGRP ^(注1)	
パスの選択方法	距離(ホップ数等)が最 小の方向を選択	各ルータがネットワーク全体の地図を作成し、最短パスを計算	ディスタンスベクター +リンクステート	
通知するものと通 知間隔	ルーティングテーブルの コピーを定期的に通知	リンクステート(リンクの状態)が変化したときに通知	ルーティングテーブルの コピーを変化したときに 通知	
ネットワーク規模	小	大	中	
ルータの負荷	小	大	中	
コンパージ・エンス ^(注2)	遅い	速い	速い	

注1:IGRPはシスコ社独自のプロトコル、非標準なので、他社製品が混在すると使えない、 注2:ネットワークの状態を反映し、ルーティングテーブルの内容が収束すること。 注3:ディスタンス (Distance: 距離、ベクター (Vector: ベクトル)、距離情報のテーブル、 注4:リンク(ネットワークを接続するルータのインタフェース)の状態(ステート)を使うプロコル 注5:ハイブリット(Hybrid: 雑種、混血種)、

ルーティングプロトコルまとめ

プロトコル	メトリック	利用範囲	ルーティング方式	ルート情報
RIPv1	ホップ数	IGP	ディスタンスペクター	クラスフル
RIPv2	ホップ数	IGP	ディスタンスペクター	クラスレス
IGRP	帯域幅, 遅延, 負荷, 信頼性, MTU	IGP	ディスタンスペクター	クラスフル
OSPF	パスコスト(帯域幅より計算)	IGP	リンクステート	クラスレス
IS-IS	コスト,遅延,エクスペンス,エラー	IGP	リンクステート	クラスレス
EIGRP	帯域幅, 遅延, 負荷, 信頼性, MTU	IGP	ハイフ゛リット゛	クラスレス
BGP	パスアトリビュート	EGP	パス属性型	クラスレス

実際に、EGPとして クラスフルは 使用されるのはBGPのみ RIPv1、IGRPのみ

第3回のスライド

IPv4におけるアドレスとクラス

- クラスフルアドレス:クラスの定義に従ったアドレス
- サブネットマスクはデフォルトの値を使用
- (そのため、サブネットマスクの表示は不要)
- 例 192.168.1.1 (192.168.1.1/24という意味になる)
- 172.16.1.1 (172.16.1.1/16という意味になる)
- 1/2.10.1.1 (1/2.10.1.1/1020·)&
- クラスフルネットワークアドレス
 - クラスの定義に従ったデフォルトのネットワークアドレス 例 192.168.1.0、172.16.0.0、10.0.0.0(デフォルトのホスト部をオールO)
- クラスレスアドレス:クラスの定義を無視したアドレス
 - サブネットマスクの値は自由
 - (そのため、ネットワーク部とホスト部の区切りを示すサブネットマスクが必須)
 - 例 192.168.1.1/28 (クラスCのネットワークを4ビットでサブネット化)
 - 172.16.1.1/24 (クラスBのネトワークを8ビットでサブネット化)
 - 192.168.0.0/16 (クラスCのネットワークを256個集約)
 - CIDR: クラスレスなIPアドレス割当て、経路情報の集約を行う技術

Classless Inter Domain Routin

第3回のスライド ip classless 同一クラスフルネットワーク内で宛先不明なサブネット宛のパケットをデフォルトルートに転送 172.16.7.0/24 172.16.4.0/24 172.16.1.0/24 172.16.6.0/24 172.16.3.0/24 172.16.5.0/24 172.16.2.0/24 172.16.9.0/24 クラスフルネットワーク172.16.0.0をサブネットマスク/24で RouterB#show ip route 9個のサプネットにしたもの 172.16.1.0/24 [1/0] via 172.16.3.2 ip classlessが無効だと、例えば 172.16.2.0/24 [1/0] via 172.16.3.2 172.16.3.0/24 is directly connected Serial0/0 ルータBのルーティング・テーブルが左の ような場合、172.16.7.0~9.0宛 172.16.4.0/24 is directly connected FastEthernet0/0 のパケットは廃棄される 172.16.5.0/24 is directly connected FastEthernet0/1 172.16.6.0/24 is directly connected Serial0/1 現在のIOSではデフォルトで有効 0.0.0.0/0 via 172.16.6.1

ルーティングプロトコルとクラス

- クラスフルルーティングプロトコル
 - 原則的にネットワークアドレスをクラス単位で扱う
 - ルート情報の通知にサブネットマスクを含まない
 - サブネット化はFLSMで行う必要がある(VLSMは使用不可)
 - 不連続サブネットには適用できない
- クラスレスルーティングプロトコル
- クラスレスアドレスを前提とする
- 通知するルート情報にサブネットマスクを含む
- VLSMによるサブネット化が可能
- 不連続サブネットにも適用できる
- 不連続サブネット: クラスフルネットワークのサブネットを不連続に配置した構成
- FLSM(Fixed Length Subnet Mask): 固定長サブネットマスク
 - 全てのサブネットで同一(同じプレフィックス長)のサブネットマスクを使用
 - VLSM(Variable Length Subnet Mask): 可変長サブネットマスク
 - サブネット毎に異なるサブネットマスクを使用して良い

RIP(RIPv1, RIPv2)の概要

- RIP共通
 - ディスタンスベクタールーティングプロトコル(標準)
 - メトリックにホップ数を使用。
 - ホップ数の最大値は15
 - ・ ホップ値16も使用するが、距離無限大で到達不能を意味する
 - 等コストルートが複数ある場合、トラフィックを分散して中継
 - 定期的(デフォルト30秒間隔)にルート情報をアドバタイズ(収束時間が長い)
- RIPv1固有
 - ルート情報のアドバタイズは、ブロードキャストで行う
 - クラスフルルーティングプロトコル(VLSM, 不連続サプネットに対応不可)
- RIPv2固有
 - ルート情報のアドバタイズは、マルチキャスト(アドレス224.0.0.9)で行う
 - クラスレスルーティングプロコル(VLSMに対応可)
 - 但しデフォルトではルート情報を自動集約(クラスフルネットワークの境界で集約)
 - ・ 不連続サブネットに対応するためには自動集約を無効にする

