Numerical methods for ordinary differential equations

Walter Mudzimbabwe

R\/Pe

Numerical methods for ordinary differential equations

Walter Mudzimbabwe

Ordinary differential equations

Numerical methods for ordinary differential equations

Walter Mudzimbabw

IVPs

The general first order equation can be written as:

$$\frac{dy}{dx} = f(x, y), \ \ y(x_0) = y_0,$$
 (1)

with f(x, y) given.

This is an Initial value problem (IVP).

Euler's Method

Numerical methods for ordinary differential equations

Walter Mudzimbabw

Mudzimbabw

BVP:

It is the simplest.

Choose step size h and $y(x_0) = y_0$ to generate $y(x_1), y(x_2), ...$ by sequence $y_i, i = 1, 2, ...$ Note $x_i = x_0 + ih$.

Taylor's expansion

$$y(x + h) = y(x) + hy'(x) + \frac{1}{2!}h^2y''(x) + \cdots$$

Since y'(x) = f(x, y) then $y'(x_i) = f(x_i, y_i)$, therefore

$$y(x + h) = y(x) + hf(x_i, y_i) + \frac{1}{2!}h^2f_x(x_i, y_i) + \cdots$$

Truncate after the term in h and use notation $y(x_i) = y_i$ then

$$y_{i+1} = y_i + hf(x_i, y_i).$$

The truncation error is $\mathcal{O}(h^2)$:

$$E = \frac{h^2}{2!} y_i''(\xi), \quad \xi \in [x_i, x_{i+1}].$$

Example

Numerical methods for ordinary differential equations

Walter Mudzimbabw

BVP:

Apply the Euler's method to solve the simple equation:

$$\frac{dy}{dx} = x + y, \quad y(0) = 1$$

with h=0.1 (Exercise: Solve the equation analytically and show that the analytic solution is $y=2e^{x}-x-1$.)

Solution:

Here
$$f(x_i, y_i) = x_i + y_i$$
. With $h = 0.1$, and $y_0 = 1$ so

$$y_1 = y_0 + hf(x_0, y_0) = 1 + 0.1(0+1) = 1.1$$

$$y_2 = y_1 + hf(x_1, y_1) = 1.1 + 0.1(0.1 + 1.1) = 1.220$$

$$y_3 = y_2 + hf(x_2, y_2) = 1.220 + 0.1(0.2 + 1.220) = 1.362$$

$$y_4 = y_3 + hf(x_3, y_3) = 1.362 + 0.1(0.3 + 1.362) = 1.528$$

So

$$y(0.1) = 1.1, y(0.2) = 1.220, y(0.3) = 1.362, y(0.4) = 1.528.$$

Midpoint Method

Numerical methods for ordinary differential equations

Walter Mudzimbabwe

IVPs BVPs Euler method: $y_{i+1} = y_i + hf(x_i, y_i)$.

The Euler method assumes that $y'(x_i) = f(x_i, y_i)$ is the same for the whole interval $[x_i, x_{i+1}]$.

The midpoint uses Euler method to find y at the midpoint of $[x_i, x_{i+1}]$ ie.,

$$y_{i+\frac{1}{2}} = y_i + \frac{h}{2}f(x_i, y_i)$$

This is then used to find

$$y'(x_{i+\frac{1}{2}}) = f(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})$$

This derivative is then used for the whole interval $[x_i, x_{i+1}]$. So the Euler method becames

$$y_{i+1} = y_i + hy'(x_{i+\frac{1}{2}}) = y_i + hf(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}}).$$

This is the midpoint rule and is $\mathcal{O}(h^3)$.

Note that $x_{i+\frac{1}{2}} = x_i + h/2$ but $y_{i+\frac{1}{2}} \neq y_i + h/2$.

Example

Numerical methods for ordinary differential equations

IVPs

Apply the midpoint rule solve the equation:

$$\frac{dy}{dx} = x + y, \quad y(0) = 1$$

with h = 0.1.

Solution:

Here $f(x_i, y_i) = x_i + y_i$. With h = 0.1, and $y_0 = 1$ also

$$y_{i+1} = y_i + hf(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}}) = hf(x_i + \frac{h}{2}, y_i + \frac{h}{2}f(x_i, y_i)).$$

$$y_1 = y_0 + hf(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}f(x_0, y_0))$$

$$= 1 + 0.1f(0 + 0.05, 1 + 0.05f(0, 1)) = 1.110$$

$$y_2 = y_1 + hf(x_1 + \frac{h}{2}, y_1 + \frac{h}{2}f(x_1, y_1))$$

$$= 1.110 + 0.1f(0.1 + 0.05, 1.110 + 0.05f(0.1, 1.110))$$

Error of Midpoint rule

Numerical methods for ordinary differential equations

IVPs

The truncation error is $\mathcal{O}(h^3)$:

$$E = -\frac{h^3}{12}y_i'''(\xi), \quad \xi \in [x_i, x_{i+1}].$$

Runge-Kutta Methods

Numerical methods for ordinary differential equations

Walter Mudzimbabwe

IVPs BVPs The general form of the Runge-Kutta method is:

$$y_{i+1} = y_i + \phi(x_i, y_i; h),$$
 (2)

where $\phi(x_i, y_i; h)$ is called the increment function. For Euler's method, $\phi(x_i, y_i; h) = hf(x_i, y_i) = hy_i'$ In the midpoint

$$\phi(x_i, y_i; h) = hf(x_{i+\frac{1}{2}}, y_{i+\frac{1}{2}}) = hy'_{i+\frac{1}{2}}$$

The increment function can be written in a general form as:

$$\phi = w_1 k_1 + w_2 k_2 + \dots + w_n k_n \tag{3}$$

where the k's are constants and the w's are weights and $w_1 + w_2 + \cdots + w_n = 1$

Second order Runge-Kutta Methods

Numerical methods for ordinary differential equations

IVPs

The second order R-K method has the form:

$$y_{i+1} = y_i + (w_1 k_1 + w_2 k_2),$$
 (4)

where

$$k_1 = hf(x_i, y_i) (5)$$

$$k_2 = hf(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}),$$
 (6)

and the weights $w_1 + w_2 = 1$.

If $w_1 = 1$, then $w_2 = 0$ and we have Euler's method.

If $w_1 = 0$, then $w_2 = 1$ we have the mipoint rule:

$$y_{i+1} = y_i + hf(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}),$$
 (7)

If $w_1 = w_2 = 1/2$, then we have:

called Heun's method.

$$y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2) = y_i + \frac{h}{2}\left(f(x_i, y_i) + f\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)\right),$$

Fourth Order Runge-Kutta Methods

Numerical methods for ordinary differential equations

Walter Mudzimbabı

IVPs

The classical fourth order R-K method has the form:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$
 (8)

where

$$k_1 = hf(x_i, y_i) (9)$$

$$k_2 = hf(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$$
 (10)

$$k_3 = hf(x_i + \frac{h}{2}, y_i + \frac{k_2}{2})$$
 (11)

$$k_4 = hf(x_i + h, y_i + k_3),$$
 (12)

This is the most popular R-K method. It has a local truncation error $\mathcal{O}(h^4)$.

BVP:

Solve

$$y' = x + y, \ y(0) = 1.$$

using 4^{th} order Runge-Kutta method. Compare your results with those obtained from Euler's method, midpoint method and the actual value. Determine y(0.1) and y(0.2) only. The solution using Runge-Kutta is obtained as follows:

For y_1 :

$$k_1 = hf(x_i, y_i)$$

$$= 0.1(0+1) = 0.1$$

$$k_2 = hf(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$$

$$= 0.1\left(\left(0 + \frac{0.1}{2}\right) + \left(1 + \frac{0.1}{2}\right)\right) = 0.11$$

Example cnt'd

Numerical methods for ordinary differential equations

Walter Mudzimba

IVPs

$$k_3 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}\right)$$

$$= 0.1\left(\left(0 + \frac{0.1}{2}\right) + \left(1 + \frac{0.11}{2}\right)\right) = 0.1105$$

$$k_4 = hf(x_i + h, y_i + k_3)$$

$$= 0.1((0 + 0.1) + (1 + 0.1105)) = 0.1211$$

and therefore:

$$y_1 = y_0 + \frac{1}{6}(0.1 + 2(0.11) + 2(0.1105) + 0.1211) = 1.1103$$

A similar computation yields

$$y_2 = 1.1103 + \frac{1}{6}(0.1210 + 2(0.1321) + 2(0.1326) + 0.1443 = 1.2428$$

Therefore y(0.1) = 1.1103 and y(0.2) = 1.2428

Comparison of all the methods so far

Numerical methods for ordinary differential equations

Walter Mudzimbabwe

ividdziiiibabv

IVPs BVP A table for all the approximate solutions using the required methods is:

Xį	Euler	Midpoint	4 th Order RK	Actual value
0.1	1.1000000	1.1100000	1.1103417	1.1103418
0.2	1.2300000	1.2420500	1.2428052	1.2428055

Systems of First Order ODEs

Numerical methods for ordinary differential equations

Walter Mudzimbabw

IVPs BVPs So far we have solved a single first order ODE for y(x).

A *n*th order system of first order initial value problems can be expressed in the form:

$$\frac{dy_1}{dx} = f_1(x, y_1, y_2, \dots, y_n), \quad y_1(x_0) = \alpha_1
\frac{dy_2}{dx} = f_2(x, y_1, y_2, \dots, y_n), \quad y_2(x_0) = \alpha_2
\vdots
\frac{dy_n}{dx} = f_n(x, y_1, y_2, \dots, y_n), \quad y_n(x_0) = \alpha_n,$$

All the methods we have seen can used to solve first order systems of IVPs.

We seek n solutions y_1, y_2, \ldots, y_n each with an intial condition $y_k(x_i)$; $k = 1, \ldots, n$ at the points x_i , $i = 1, 2, \ldots$

4th order Runge-Kutta for systems of ODEs

Numerical methods for ordinary differential equations

Walter Mudzimbab

IVPs

BVP

Consider the system of two equations:

$$\frac{dy}{dx} = f(x, y, z), \quad y(0) = y_0 \tag{13}$$

$$\frac{dz}{dx} = g(x, y, z), \quad z(0) = z_0. \tag{14}$$

Let $y = y_1$, $z = y_2$, $f = f_1$, and $g = f_2$. The fourth order R-K method would be applied as follows. For each j = 1, 2 corresponding to solutions $y_{i,j}$, compute

$$k_{1,j} = hf_j(x_i, y_{1,i}, y_{2,i}), \quad j = 1, 2$$
 (15)

$$k_{2,j} = hf_j(x_i + \frac{h}{2}, y_{1,i} + \frac{k_{1,1}}{2}, y_{2,i} + \frac{k_{1,2}}{2}) \ j = 1,2 \ (16)$$

$$k_{3,j} = hf_j(x_i + \frac{h}{2}, y_{1,i} + \frac{k_{2,1}}{2}, y_{2,i} + \frac{k_{2,2}}{2}), j = 1, 2(17)$$

$$k_{4,j} = hf_j(x_i + h, y_{1,i} + k_{3,1}, y_{2,i} + k_{3,2}), j = 1,2$$
 (18)

4th order Runge-Kutta for systems of ODEs

Numerical methods for ordinary differential equations

IVPs

So for the system:

$$\frac{dy}{dx} = f(x, y, z), \quad y(0) = y_0 \tag{19}$$

$$\frac{dy}{dx} = f(x, y, z), \quad y(0) = y_0$$

$$\frac{dz}{dx} = g(x, y, z), \quad z(0) = z_0.$$
(20)

we finally have,

$$y_{i+1} = y_{1,i+1} = y_{1,i} + \frac{1}{6}(k_{1,1} + 2k_{2,1} + 2k_{3,1} + k_{4,1})$$
 (21)

$$z_{i+1} = y_{2,i+1} = y_{2,i} + \frac{1}{6}(k_{1,2} + 2k_{2,2} + 2k_{3,2} + k_{4,2}).(22)$$

Note that we must calculate

 $k_{1,1}, k_{1,2}, k_{2,1}, k_{2,2}, k_{3,1}, k_{3,2}, k_{4,1}, k_{4,2}$ in that order.

Converting an n^{th} Order ODE to a System of First Order ODEs

Numerical methods for ordinary differential equations

Walter Mudzimbabw

IVPs

BVP

Consider the general second order IVP

$$y'' + ay' + by = 0$$
, $y(0) = \alpha_1$, $y'(0) = \alpha_2$

If we let

$$z = y', \quad z' = y''$$

then the original ODE can now be written as

$$y' = f(x, y, z) = z, \quad y(0) = \alpha_1$$
 (23)

$$z' = g(x, y, z) = -az - by, \quad z(0) = \alpha_2$$
 (24)

Once transformed into a system of first order ODEs the methods for systems of equations apply.

Remember the solution is only $y_1, y_2, y_3,...$ and **not** $z_1, z_2, z_3,...$ (why is that?)

Boundary value problems (BVPs)

Numerical methods for ordinary differential equations

Walter Mudzimbabw

BVPs

A linear second order boundary value problem (BVP) is

$$\begin{cases} y''(x) + p(x)y'(x) + q(x)y(x) = r(x) \\ y(a) = \alpha, \quad y(b) = \beta \end{cases}$$

and a nonlinear second order boundary value problem (BVP) is

$$\begin{cases} y''(x) = f(x, y'(x), y''(x)) \\ y(a) = \alpha, & y(b) = \beta \end{cases}$$

Finite difference for (BVPs)

Numerical methods for ordinary differential equations

Walter Mudzimbabw

BVPs

Here we solve only a linear second order BVP:

$$\begin{cases} y''(x) + p(x)y'(x) + q(x)y(x) = r(x) \\ y(a) = \alpha, \quad y(b) = \beta \end{cases}$$

First subdivide [a, b] into N subintervals with size h. So

$$h=rac{b-a}{N}, \qquad x_i=a+ih, \quad i=0,1,\cdots,N.$$

The finite difference method for (BVPs) consists of replacing derivatives in the BVP by difference approximations. For example:

$$y'(x_i) \approx \frac{y(x_{i+1}) - y(x_{i-1})}{2h}$$
$$y''(x_i) \approx \frac{y(x_{i+1}) - 2y(x_i) + y(x_{i-1})}{h^2}$$

Finite difference for (BVPs) ctd

Numerical methods for ordinary differential equations

Walter Mudzimbabw

BVPs

Substituting these approximations in the BVP we get:

$$\left(1 - \frac{h}{2}p_i\right)y_{i-1} + \left(-2 + h^2q_i\right)y_i + \left(1 + \frac{h}{2}p_i\right)y_{i+1} = h^2r_i, (25)$$

where $i = 1, 2, \dots, N - 1, \quad y_0 = \alpha, \quad y_N = \beta$ and

$$y_i \approx y(x_i), \quad p_i = p(x_i), \quad q_i = q(x_i), \quad r_i = r(x_i).$$

So there are N-1 equations in N-1 unknowns.

System of N-1 equations in N-1 unknowns

Numerical methods for ordinary differential equations

Walter Mudzimbabwe

BVPs

$$\begin{bmatrix} b_1 & c_1 & & & & & \\ a_2 & b_2 & c_2 & & 0 & & \\ & a_3 & b_3 & c_3 & & & \\ & & \ddots & \ddots & \ddots & \\ & 0 & & a_{n-2} & b_{n-2} & c_{n-2} \\ & & & & a_{n-1} & b_{n-1} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{N-2} \\ y_{N-1} \end{bmatrix} = \begin{bmatrix} d_1 - a_1 \alpha \\ d_2 \\ d_3 \\ \vdots \\ d_{N-2} \\ d_{N-1} - c_{N-1} \beta \end{bmatrix},$$

where

$$a_i = 1 - \frac{h}{2}p_i, \quad b_i = -2 + h^2q_i, \quad c_i = 1 + \frac{h}{2}p_i, \quad d_i = h^2r_i,$$

for $i = 1, 2, \dots, N - 1$.

This is a tridiagonal system using Gaussian elimination, LU factorisation etc.

Example of BVP using difference approximations

Numerical methods for ordinary differential equations

Walter Mudzimbabw

BVPs

$$\begin{cases} y''(x) + (x+1)y'(x) - 2y(x) = (1-x^2)e^{-x} \\ y(0) = -1, \quad y(1) = 0 \end{cases}$$

using h = 0.2. Compare the approximate solution with exact solution $y = (x - 1)e^{-x}$.

Solution: Here

$$p(x) = (x + 1), \quad q(x) = -2, \quad r(x) = (1 - x^2)e^{-x}.$$

Equation (25) becomes

$$[1 - 0.1(x_i + 1)]y_{i-1} + (-2 - 0.08)y_i + [1 + 0.1(x_i + 1)]y_{i+1}$$

= 0.04(1 - x_i²)e^{-x_i},

where $y_0 = -1$, $y_5 = 0$ and $x_i = 0.2i$, i = 1, 2, 3, 4

Example of BVP using difference approximations

Numerical methods for ordinary differential equations

BVPs

The resulting system of equations is

$$\begin{bmatrix} -2.08 & 1.12 & 0 & 0 \\ 0.86 & -2.08 & 1.14 & 0 \\ 0 & 0.84 & -2.08 & 1.16 \\ 0 & 0 & 0.82 & -2.08 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0.91143926 \\ 0.02252275 \\ 0.01404958 \\ 0.00647034 \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0.91143926 \\ 0.02252275 \\ 0.01404958 \\ 0.00647034 \end{bmatrix}$$

Comparison of exact and difference approximation

Numerical methods for ordinary differential equations

Walter Mudzimbabw

BVPs

X	Difference solution	Exact solution				
0.0	-1.00000000	-1.0000000				
0.2	-0.65413043	-0.65498460				
0.4	-0.40102860	-0.40219203				
0.6	-0.21847768	-0.21952465				
8.0	-0.08924136	-0.08986579				
1.0	0.00000000	0.00000000				

