Digitaltechnik Wintersemester 2017/2018 8. Vorlesung

Inhalt

- 1. Einleitung
- 2. Konzept, Notationen und Anwendungsbeispiele
- 3. Mealy vs. Moore
- 4. Zerlegen von Zustandsautomaten
- 5. Zusammenfassung

Einleitung

0111101010110001100110010111011110110001
000010100110000000101000000101000111111000
1001111101101001101100010100101011111010
11010011100010001001010100101111101100110
0011011110100000100100111010101000110000
101000111011000011100000001111111010010
11111101010100111101000010110101001011101
00001100100101110001101111111001000100
1010011010110001010000001100000001011110
0101100111001000110000011100110111110101
00110111011111110101110101000111011010
100011001100000010010101011001100000000
0111000100111000100100101100101010111100
00100101011111001100011011110100001100010
1011110111101101110111001010000110110000
0111101010011000110110001001010000010000

Überblick der heutigen Vorlesung

- Endliche Zustandsautomaten
 - Konzept, Notationen und Anwendungsbeispiele
 - Moore vs. Mealy
 - Zerlegen von Zustandsautomaten

Kap. 3.4 Seite 117 - 133

Konzept, Notationen und Anwendungsbeispiele

				1	1	1	1	0	0	1	1	0	1	0	0	1	0	1	1	1	0	1	1	1	1	0	1	1	0	1	0	0	1	0 () -	1 ()
					1		0	1	0	0	1	1	0	1	0	0	1	0	1	1	0	0	1	1	1	0	1	1	0	0	1	0	1	0 .	1 -	1 1	
				1	1		1	1	1	0	0	1	1	0	0	0	0	1	0	0	1	1	1	0	0	0	1	0	0	1	1	1	1	1 () -	1	
						1	1	1	1	0	1	1	1	0	0	0	1	0	0	1	1	1	1	1	0	0	1	0	1	1	1	1	0	0 () (1 (
			1	1			1	0	1	0	1	1	1	1	0	1	0	0	0	0	0	1	0	1	1	0	0	0	0	1	1	1	1	1	1 1	1	
			1	1	1		1	1	1	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	0 .	1 () ()
				1	1		0	0	1	0	1	1	0	1	1	0	0	0	0	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	1 1	1	
				1		1	0	0	0	1	0	0	0	0	1	0	0	1	0	1	1	1	0	1	1	1	1	1	1	0	1	0	1	0	1 1	1 ()
							1	1	0	1	0	0	0	1	0	0	1	1	0	1	0	0	1	1	0	0	1	1	0	0	1	0	1	0	1 (1 (
			1			1	0	0	1	0	0	1	0	0	1	1	1	0	1	0	0	1	0	0	0	1	1	1	0	0	1	0	1	1	1 () 1	
			1				0	0	0	1	1	1	1	0	1	1	0	1	0	0	1	0	0	0	0	1	1	1	1	0	1	0	0	0 () () 1	
							1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	0	0	1	0	0	1	0	0	1	1	1	1	1 1	1	
				1	1		0	1	0	1	1	1	1	1	1	0	1	1	0	0	0	1	1	1	0	1	1	1	1	0	0	0	1	0 .	1 1	1	
				1	1		0	0	1	1	0	0	0	0	1	1	0	1	0	0	1	1	1	1	1	0	0	1	1	0	1	1	1	0 .	1 () ()
																																		1 () -	1	
					1	1	1	1	0	1	0	0	1	()	1	1	()	0	1	()	()	1	1	1	()	1	0	1	1	1	1	1	1	0 .	1 (1	

Endliche Zustandsautomaten Finite State Machines (FSM)

- synchrone sequentielle Schaltungen mit
 - n Eingabebits
 - k Ausgabebits
 - ein interner Zustand (besteht aus $m \ge 1$ Bits)
 - Takt und Reset
- in jedem Takt (zur steigenden Flanke)
 - ▶ Reset aktiv → Zustand = Startzustand
 - Reset inaktiv → neuen Zustand und Ausgaben aus aktuellem Zustand und Eingaben berechnen

FSM Anwendungsbeispiele

- Zahlenschloss (bspw. an Tresor)
 - Eingaben: Taste i gedrückt
 - Ausgaben: Schloss öffnen, Fehlermeldung anzeigen
 - Zusammenhang zwischen Zuständen: nur Öffnen, wenn letzte (4) Eingaben korrekt und in richtiger Reihenfolge

- Steuerwerk von Rechnern (Mikroarchitektur)
 - Eingaben: Bits des aktuellen Instruktionswortes
 - Ausgaben: Steuersignale für
 - Arithmetik (welche Operation)
 - Speicher (welche Operanden)
 - Zusammenhang zwischen Zuständen: bspw. in Pipeline-Stufen
- vieles mehr (sehr häufig verwendetes Konzept)

FSM Diagramme als gerichtete Graphen

- Zustände als Knoten
 - ▶ symbolische Namen (typ. $S_0, S_1, ...$)
 - ▶ binäre Zustandskodierung ist unabhängiges Problem
- Zustandsübergang als Kante
 - als boole'scher Ausdruck (leere Bedingung entspricht 1)
 - Disjunktion aller ausgehenden Kanten ergibt 1
 - Keine zwei Kantenbedingung gleichzeitig erfüllbar
 - Vereinfachte Notation (keine Selbstschleifen):
 Zustand bleibt unverändert, wenn keine Bedinung erfüllt
- genau eine Kante ohne Startpunkt für Reset
- Ausgaben
 - an Kanten (Mealy-Automat) oder
 - ▶ in Zuständen (Moore-Automat)
 - als vollständiger boole'scher Ausdruck (Minterm)
 - oder nur gesetzte Ausgaben

FSM Beispiel für Ampelsteuerung

- ► Eingänge:
 - ▶ $a_k = 1$ ← Induktionsschleife k erkennt Fahrzeug für $k \in \{A, B\}$
- Ausgänge
 - ▶ $y_k \in \{\text{rot,grün,gelb}\} \Rightarrow \text{Ampelphase für } k \in \{A, B\}$
- ⇒ FSM für Bedarfssteuerung
 - halte Spur grün, solange auf dieser
 Fahrzeuge erkannt werden
 - ansonsten schalte aktuelle Fahrbahn über gelb nach rot und andere Fahrbahn auf grün

Moore-Automat für Ampelsteuerung

Mealy-Automat für Ampelsteuerung

Zustandsübergangs- und Ausgabetabelle

- kompaktere (maschinenlesbare) Darstellung
- kann noch mit abstrakten Zuständen und Ausgaben arbeiten
- kann Don't Cares verwenden
- Kurzschreibweise
 - aktueller Zustand S
 - nächster Zustand S'
- Achtung: implizite Bedingungen (bspw. Selsbstschleifen) beim Ableiten aus Diagrammen beachten

Zustandsübergangs- und Ausgabetabelle für Moore-Automat der Ampelsteuerung

S	a_A	a_B	S'
Α	1	*	Α
Α	0	*	AB
AB	*	*	В
В	*	1	В
В	*	0	BA
BA	*	*	Α

S	y_A	Ув
Α	grün	rot
AB	gelb	rot
В	rot	grün
BA	rot	gelb

Zustandsübergangs- und Ausgabetabelle für Mealy-Automat der Ampelsteuerung

S	a_A	a_B	S'
Α	1	*	A
Α	0	*	AB
AB	*	*	В
В	*	1	В
В	*	0	BA
BA	*	*	A

S	a_A	a_B	УA	У В
Α	1	*	grün	rot
Α	0	*	gelb	rot
AB	*	*	rot	grün
В	*	1	rot	grün
В	*	0	rot	gelb
BA	*	*	grün	rot

FSM als synchrone sequentielle Schaltungen

- Zustandsregister
 - speichert aktuellen Zustand
 - überimmt nächsten Zustand bei Taktflanke
- kombinatorische Logik realisiert
 - Zustandübergangstabelle ("next state logic")
 - Ausgangstabelle ("output logic")
- ⇒ binäre Kodierung der Zustände und Ein-/Ausgaben notwendig

Zustandskodierung cs : $S \to \mathbb{B}^m$

- weist jedem Zustand einen m Bit breiten Wert zu
- kann idR. frei gewählt werden (da nach außen nicht sichtbar)
- **b** bspw. "Durchnummerieren": $cs(S_k) = (s_{m-1}...s_0)$ mit $u_{2,m}(s_{m-1}...s_0) = k$
- manchmal führen aber andere Kodierungen zu effizienterer kombinatorischer Logik, auch wenn mehr Zustandsbits benötigt werden
 - One-Hot
 - bestehende Ausgabekodierung (wenn jeder Zustand eine spezifische Ausgabe verursacht)
- Kodierung der Ein-/Ausgänge ist idR. von der Anwendung vorgegeben
 - kann ansonsten für jede Ein/Ausgabe spezifisch gewählt werden

Kodierte Tabellen für Moore-Automat der Ampelsteuerung

S	s_1	s_0
Α	0	0
AB	0	1
В	1	0
BA	1	1

УA	<i>y</i> ₃	y 2
grün	0	0
gelb	0	1
rot	1	0

У В	<i>y</i> ₁	y 0
grün	0	0
gelb	0	1
rot	1	0

S	;	s_1	s_0	a_A	a_B	<i>S</i> ₁	s_0'
-	1	0	0	1	*	0	0
A	١	0	0	0	*	0	1
A	В	0	1	*	*	1	0
Е	3	1	0	*	1	1	0
Е	3	1	0	*	0	1	1
В	4	1	1	*	*	0	0

S A AB B BA	S ₁	s_0	<i>y</i> ₃	y 2	<i>y</i> ₁	y 0
Α	0	0	0	0	1	0
AB	0	1	0	1	1	0
В	1	0	1	0	0	0
BA	1	1	1	0	0	1
	'		1			

- ightharpoonup n = 2 Eingängssignale, m = 2 Zustandsbits, k = 4 Ausgabesignale
- ⇒ sechs bool'sche Funktionen aus Wahrheitswertetabellen ableiten

Minimierte kombinatorische Logik für Moore-Automat der Ampelsteuerung

ampel/state.esp

 espresso ampel/state.esp

$$s'_1 = s_1 \oplus s_0$$

$$s'_0 = s_1 \overline{s_0} \overline{a_B}$$

$$+ \overline{s_1} \overline{s_0} \overline{a_A}$$

ampel/output.esp

espresso ampel/output.esp

$$y_3 = s_1$$

$$y_2 = \overline{s_1} \ s_0$$

$$y_1 = \overline{s_1}$$

 $V_0 = S_1 S_0$

Schaltplan für Moore-Automaten der Ampelsteuerung

Zusammenfassung FSM Entwurfverfahren

- definiere Ein- und Ausgänge
- wähle zwischen Moore- und Mealy-Automat
- zeichne Zustandsdiagramm
- kodiere Zustände (und ggf. Ein-/Ausgänge)
- stelle Zustandsübergangstabelle auf
- stelle boole'sche Gleichungen für Zustandsübergangs- und Ausgangslogik unter Ausnutzung von Don't Cares auf
- entwerfe Schaltplan: Gatter + Register

Mealy vs. Moore

110111000110100011101010001010101011101	0 1
01011110011010010101000110011101110101	0 0
110110010010111000011110100011001011001	11
11001011101010111011000001110100000100	10
1110110101111111111111011011011011010	01
1101110101100101001100010100010101011100	11
000111001011001111010100000111110011101	00
010001001001010100000111110011101101101	10
101010111110111010111011111101101100011	10
010010111010110101110111101111001010111	00
001101100001100111011001011001111111111	00
01100110101011000111011101000101110000	10
111000011111110100010000110001101100000	11
01011001000010100011101000100111100101	11
00000011100111100100010100110011000000	00
100001011101001111100101111001011111100	11

Mealy vs. Moore

- für Ampelsteuerung war Moore-Automat effizienterer
- das ist aber nicht allgemein so
- ⇒ muss von Fall zu Fall neu bewertet werden
- in der Regel
 - Moore besser, wenn Ausgaben statisch
 - Mealy besser, wenn Ausgaben kurzfristige Aktionen auslösen
 - Mealy reagiert schneller auf Änderungen der Eingabe
- Verdeutlichung durch weitere Beispiele

FSM Beispiel für Zahlenschloss

- ▶ Eingänge:
 - ▶ $a_k = 1 \Leftarrow \text{Taste } k \text{ gedrückt für } 0 \le k \le 9$
 - ► a_C = 1 ← Taste "Cancel" gedrückt
 - a_E = 1 ← Taste "Enter" gedrückt
- Ausgänge
 - ▶ $y_S = 1 \Rightarrow$ Schloss entriegeln
 - $V_F = 1 \Rightarrow$ Fehlermeldung angezeigen

- Vereinfachungen
 - Zustandsübergang nur dann, wenn überhaupt eine Taste gedrückt
 - immer nur eine Taste gleichzeitig aktivierbar
- Passwort: 2017
- Achtung: Fehlermeldung nicht direkt bei erster falscher Ziffer zeigen

Mealy-Automat für Zahlenschloss

Moore-Automat für Zahlenschloss

Mealy vs. Moore für Zahlenschloss

- Moore-Automat braucht zwei zusätzliche Zustände, um die beiden unterschiedlichen Übergänge zurück in den Ausgangszustand (nach richtiger oder falscher Eingabe) voneinander zu unterscheiden
- Ausgaben beschreiben eher
 - Aktionen (Schloss öffnen, Fehler anzeigen) als
 - Zustände (Schloss ist geöffnet, Fehler wird angezeigt)
- ⇒ Mealy-Automat besser geeignet

Weiteres Beispiel: Mustererkennung

- typisch in Bild- und Textanalyse (bspw. Suche nach regulären Ausdrücken)
- bspw.: Erkenne Bitfolge "1101" in zufälliger Bitsequenz
- ▶ Eingänge: das nächste Bit $a \in \mathbb{B}$
- ► Ausgabe: $y = 1 \Rightarrow$ gesuchte Bitfolge erkannt

Moore- und Mealy-Automat für 1101 Mustererkennung

Moore-Automat für 1101 Mustererkennung: Zustandübergangs- und Ausgabetabellen

S	а	\mathcal{S}'
S_0	0	S_0
S_0	1	S_1
S_1	0	S_0
S_1	1	S_2
S_2	0	S_3
S_2	1	S_2
S_3	0	S_0
S_3	1	S_4
S_4	0	S_0
S_4	1	S_2

	S	s ₂	s_1	s_0	S	у
_	S_0	0	0	0	S_0	0
	S_1	0	0	1	S_1	0
	S_2	0	1	0	S_2	0
	S_3	0	1	1	S_3	0
	S_4	1	0	0 1 0 1 0	S ₀ S ₁ S ₂ S ₃ S ₄	1

Moore-Automat für 1101 Mustererkennung: Logikgenerierung mit vielen Don't Cares


```
pattern/moore/state.esp
    . 0 3
    0000
          000
3
    0001
          001
    0010
          000
    0011
          010
    0100
          011
    0101
          010
   0110
          000
10
    0111
          100
    1000
          000
11
    1001
          010
    1010
13
    1011
14
    1100
15
    1101
16
    1110
17
    1111
18
```

```
espresso pattern/moore/state.esp
        4
    . 0 3
    .p 6
3
    0001
           001
    -100
           001
    -111
          100
    -011
          010
    1--1 010
8
    -10 - 010
10
    . е
```

 $s_2' = s_1 s_0 a$

 $s_1' = \overline{s_1} s_0 a$

 $+ S_2 a + S_1 \overline{S_0}$

 $s_0' = \overline{s_2} \ \overline{s_1} \ \overline{s_0} \ a$

$$y = s_2$$

+
$$S_1$$
 $\overline{S_0}$ \overline{a}

06.12.2017 | TU Darmstadt | Andreas Engel | 8. Vorlesung Digitaltechnik | 30 / 41

Moore-Automat für 1101 Mustererkennung: Schaltwerk

Mealy-Automat für 1101 Mustererkennung: Zustandübergangs- und Ausgabetabellen

S	а	\mathcal{S}'
S_0	0	S_0
S_0	1	S_1
S_1	0	S_0
S_1	1	S_2
S_2	0	S_3
S_2	1	S_2
S_3	0	S_0
S_3	1	S_1

S	s_1	s_0	
S_0	0	0	
S_1	0	1	
S_0 S_1 S_2 S_3	1	0	
S_3	1	1	
-			

S	а	y
S_0	0	0
S_0	1	0
S_1	0	0
S_1	1	0
S_2	0	0
S_2	1	0

Mealy-Automat für 1101 Mustererkennung: Logikgenerierung ohne Don't Cares

$$y = s_1 s_0 a$$

$$s'_{1} = \overline{s_{1}} s_{0} a$$

$$+ s_{1} \overline{s_{0}}$$

$$s'_{0} = s_{1} \overline{s_{0}} \overline{a}$$

$$+ \overline{s_{1}} \overline{s_{0}} a$$

$$+ s_{1} s_{0} a$$

Mealy-Automat für 1101 Mustererkennung: Schaltwerk

Moore- und Mealy-Automaten: Zeitverhalten

Mealy-Automat erkennt Muster einen Takt früher

Zerlegen von Zustandsautomaten

10101101001000010010101100110011111010	0 1
00100010110011100101100011011110111011	0 1
10100001101001010011011111010010100101	10
11000011001011100101101000111101100010	11
10010011100011010101101100100100101110	11
00101101001010001110001001101111000100	10
01101100110111000000101010110110010010	00
011111100000100000000111111000001111110	10
0010110010101010100000110011111011110	0 1
10011111001010010000010110001111011011	00
11000110100111110111100101000100000000	00
0110001100011101010001001001010001100	00
01101010101010101110110110111110010	11
11101001101100100110101100110001000000	11
11011010000111101010010011111110010000	10
00010100111000010110111101110000010011	00

Zerlegen von Zustandsautomaten (FSM Dekomposition)

- ▶ Aufteilen komplexer FSMs in einfachere interagierende FSMs
- Beispiel: Ampelsteuerung mit Modus für Festumzüge (Ampel B bleibt permanent grün)
 - ► FSM bekommt zwei weitere Eingänge: a_F, a_R
 - a_F = 1 ⇒ aktiviert Festumzugsmodus
 - ▶ $a_R = 1 \Rightarrow$ deaktiviert Festumzugsmodus

Unzerlegte FSM

Zerlegung in kommunizierende FSMs

Zusammenfassung

110100110110111011101111000111100011011
10001111011010100000001110011010101011
001000000111111011100000010100110001000
0100110101000100001010100110000111000011
001111110101101001010011000011001010010
0001101101110000101001110001000011101001
01111000111001000000
100001110101010101010111111001111110001000
1010011001001110001111111000100100110100
110001111111010110110101000100001010001
1101101001001111110110001011111110101010
001000100001110010110010100110100001001
1010001100000111001001111111010010111
00011001101110111001000010011000101011
011010011001100100011100010101001000
01101011101100110001010111110010100001100

Zusammenfassung und Ausblick

- Endliche Zustandsautomaten
 - Konzept, Notationen und Anwendungsbeispiele
 - Moore vs. Mealy
 - Zerlegen von Zustandsautomaten
- Nächste Vorlesung behandelt
 - Zeitverhalten sequentieller Schaltungen
 - Parallelität