# Computer Logic Design Fundamentals Chapter 1 – Digital Systems and Information

Prof. Yueming Wang

ymingwang@zju.edu.cn

College of Computer Science and Technology, Zhejiang University

#### **Overview**

- Digital Systems, Computers, and Beyond
- Information Representation
- Number Systems [binary, octal and hexadecimal]
- Arithmetic Operations
- Base Conversion
- Decimal Codes [BCD (binary coded decimal)]
- Alphanumeric Codes
- Parity Bit
- Gray Codes

# DIGITAL & COMPUTER SYSTEMS - Digital System

Takes a set of discrete information <u>inputs</u> and discrete internal information <u>(system state)</u> and generates a set of discrete information <u>outputs</u>.



## **Types of Digital Systems**

- No state present
  - Combinational Logic System
  - Output = Function(Input)
- State present
  - State updated at discrete times
    - => Synchronous Sequential System
  - State updated at any time
    - =>Asynchronous Sequential System
  - State = Function (State, Input)
  - Output = Function (State) or Function (State, Input)

#### **Digital System Example:**

A Digital Counter (e. g., odometer):



Inputs: Count Up, Reset

**Outputs: Visual Display** 

State: "Value" of stored digits

Synchronous or Asynchronous?

## **Digital Computer Example**



#### **And Beyond – Embedded Systems**

- Computers as integral parts of other products
- Examples of embedded computers
  - Microcomputers
  - Microcontrollers
  - Digital signal processors

#### **Embedded Systems**

- Examples of Embedded Systems Applications
  - Smart phones
  - Video games
  - Copiers
  - Printers
  - Dishwashers
  - Flat Panel TVs
  - Global Positioning Systems

#### **Embedded Systems**

Block Diagram of Embedded Systems



# Example: Temperature Measurement and Display

TemperatureMeasurement



# **Example: Temperature** Measurement and Display

Temperature Display



## **INFORMATION REPRESENTATION - Signals**

- Information variables represented by physical quantities.
- For digital systems, the variables take on discrete values.
- Two level, or binary values are the most prevalent values in digital systems.
- Binary values are represented abstractly by:
  - digits 0 and 1
  - words (symbols) False (F) and True (T)
  - words (symbols) Low (L) and High (H)
  - and words On and Off.
- Binary values are represented by values or ranges of values of physical quantities

#### **Signal Examples Over Time**



# Signal Example – Physical Quantity: Voltage



# **Binary Values: Other Physical Quantities**

- What are other physical quantities represent 0 and 1?
  - CPU Voltage
  - Disk Magnetic Field Direction
  - CD Surface Pits/Light
  - Dynamic RAM Capacitor Charge

#### **NUMBER SYSTEMS - Representation**

- Positive radix, positional number systems
- A number with *radix r* is represented by a string of digits:

$$A_{n-1}A_{n-2} \dots A_1A_0 \cdot A_{-1}A_{-2} \dots A_{-m+1}A_{-m}$$
 in which  $0 \le A_i < r$  and . is the *radix point*.

• The string of digits represents the power series:

$$(Number)_{r} = \left(\sum_{i=0}^{i=n-1} A_{i} \cdot r^{i}\right) + \left(\sum_{j=-m}^{j=-1} A_{j} \cdot r^{j}\right)$$

$$(Integer Portion) + (Fraction Portion)$$

# **Number Systems – Examples**

|              |    | General         | Decimal | Binary  |
|--------------|----|-----------------|---------|---------|
| Radix (Base) |    | r               | 10      | 2       |
| Digits       |    | 0 => r - 1      | 0 => 9  | 0 => 1  |
|              | 0  | r <sup>0</sup>  | 1       | 1       |
|              | 1  | $r^1$           | 10      | 2       |
|              | 2  | $\mathbf{r}^2$  | 100     | 4       |
|              | 3  | $r^3$           | 1000    | 8       |
| Powers of    | 4  | $r^4$           | 10,000  | 16      |
| Radix        | 5  | r <sup>5</sup>  | 100,000 | 32      |
|              | -1 | r <sup>-1</sup> | 0.1     | 0.5     |
|              | -2 | r <sup>-2</sup> | 0.01    | 0.25    |
|              | -3 | r -3            | 0.001   | 0.125   |
|              | -4 | r <sup>-4</sup> | 0.0001  | 0.0625  |
|              | -5 | r <sup>-5</sup> | 0.00001 | 0.03125 |

# **Special Powers of 2**

- **2**<sup>10</sup> (1024) is Kilo, denoted "K"
- <sup>20</sup> (1,048,576) is Mega, denoted "M"
- 2<sup>30</sup> (1,073, 741,824) is Giga, denoted "G"
- 2<sup>40</sup> (1,099,511,627,776) is Tera, denoted "T"

# ARITHMETIC OPERATIONS - Binary Arithmetic

- Single Bit Addition with Carry
- Multiple Bit Addition
- Single Bit Subtraction with Borrow
- Multiple Bit Subtraction
- Multiplication
- BCD Addition

# Single Bit Binary Addition with Carry

Given two binary digits (X,Y), a carry in (Z) we get the following sum (S) and carry (C):

#### Carry in (Z) of 1:

#### **Multiple Bit Binary Addition**

Extending this to two multiple bit examples:

 Carries
 0
 0

 Augend
 01100
 10110

 Addend
 +10001
 +10111

 Sum

• Note: The <u>0</u> is the default Carry-In to the least significant bit.

# Single Bit Binary Subtraction with Borrow

- Given two binary digits (X,Y), a borrow in (Z) we get the following difference (S) and borrow (B):
- Borrow in (Z) of 0: Z X - Y **-0** 0 0BS 11 0 1 0 0Borrow in (Z) of 1: 7 - Y **-0** 10 0 0BS

## **Multiple Bit Binary Subtraction**

Extending this to two multiple bit examples:

 Borrows
 0
 0

 Minuend
 10110
 10110

 Subtrahend
 -10010
 -10011

 Difference

#### **Difference**

■ Notes: The <u>0</u> is a Borrow-In to the least significant bit. If the Subtrahend > the Minuend, interchange and append a — to the result.

## **Binary Multiplication**

The binary multiplication table is simple:

$$0 * 0 = 0 \mid 1 * 0 = 0 \mid 0 * 1 = 0 \mid 1 * 1 = 1$$

**Extending multiplication to multiple digits:** 

| Multiplicand     | 1011         |
|------------------|--------------|
| Multiplier       | <u>x 101</u> |
| Partial Products | 1011         |
|                  | 0000 -       |
|                  | 1011         |
| Product          | 110111       |

#### **BASE CONVERSION - Positive Powers of 2**

#### Useful for Base Conversion

| <b>Exponent</b> | Value |
|-----------------|-------|
| 0               | 1     |
| 1               | 2     |
| 2               | 4     |
| 3               | 8     |
| 4               | 16    |
| 5               | 32    |
| 6               | 64    |
| 7               | 128   |
| 8               | 256   |
| 9               | 512   |
| 10              | 1024  |

| Exponent | Value     |
|----------|-----------|
| 11       | 2,048     |
| 12       | 4,096     |
| 13       | 8,192     |
| 14       | 16,384    |
| 15       | 32,768    |
| 16       | 65,536    |
| 17       | 131,072   |
| 18       | 262,144   |
| 19       | 524,288   |
| 20       | 1,048,576 |
| 21       | 2,097,152 |

## **Commonly Occurring Bases**

| Name        | Radix | Digits                          |
|-------------|-------|---------------------------------|
| Binary      | 2     | 0,1                             |
| Octal       | 8     | 0,1,2,3,4,5,6,7                 |
| Decimal     | 10    | 0,1,2,3,4,5,6,7,8,9             |
| Hexadecimal | 16    | 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F |

• The six letters (in addition to the 10 integers) in hexadecimal represent:

#### **Numbers in Different Bases**

#### Good idea to memorize!

| Decimal   | Binary   | Octal    | Hexadecimal |
|-----------|----------|----------|-------------|
| (Base 10) | (Base 2) | (Base 8) | (Base 16)   |
| 00        | 00000    | 00       | 00          |
| 01        | 00001    | 01       | 01          |
| 02        | 00010    | 02       | 02          |
| 03        | 00011    | 03       | 03          |
| 04        | 00100    | 04       | 04          |
| 05        | 00101    | 05       | 05          |
| 06        | 00110    | 06       | 06          |
| 07        | 00111    | 07       | 07          |
| 08        | 01000    | 10       | 08          |
| 09        | 01001    | 11       | 09          |
| 10        | 01010    | 12       | 0A          |
| 11        | 01011    | 13       | 0B          |
| 12        | 01100    | 14       | <b>0</b> C  |
| 13        | 01101    | 15       | 0D          |
| 14        | 01110    | 16       | 0E          |
| 15        | 01111    | 17       | 0F          |
| 16        | 10000    | 20       | 10          |

#### **Conversion Between Bases**

- To convert from one base to another:
  - 1) Convert the Integer Part
  - 2) Convert the Fraction Part
  - 3) Join the two results with a radix point

#### **Conversion Details**

#### To Convert the Integral Part:

Repeatedly divide the number by the new radix and save the remainders. The digits for the new radix are the remainders in *reverse order* of their computation. If the new radix is > 10, then convert all remainders > 10 to digits A, B, ...

#### To Convert the Fractional Part:

Repeatedly multiply the fraction by the new radix and save the integer digits that result. The digits for the new radix are the integer digits in *order* of their computation. If the new radix is > 10, then convert all integers > 10 to digits A, B, ...

## **Converting Binary to Decimal**

- To convert to decimal, use decimal arithmetic to form  $\Sigma$  (digit  $\times$  respective power of 2).
- **Example:** Convert  $11010_2$  to  $N_{10}$ :

## **Example: Convert 725<sub>10</sub> To Base 2**

```
2 \ 7 \ 2 \ 5 (725)_{10} = (10 \ 1101 \ 0101)_2
 2 4 5.....0
```

# Example: Convert 0.678<sub>10</sub> To Base 2

 $(0.678)_{10} = (0.1010 \ 1101 \ 1001)_2$  $2 \times 0.678.... = 1.356$  $2 \times 0.356... = 0.712$  $2 \times 0.712... = 1.424$  $2 \times 0.424... = 0.848$  $2 \times 0.848.... = 1.696$  $2 \times 0.696.... = 1.392$  $2 \times 0.392.... = 0.784$  $2 \times 0.784.... = 1.568$  $2 \times 0.568...$  = 1.136  $2 \times 0.136.... = 0.272$  $2 \times 0.272.... = 0.544$  $2 \times 0.544.... = 1.088$ 

## Example: Convert 46.6875<sub>10</sub> To Base 2

Convert 46 to Base 2

Convert 0.6875 to Base 2:

Join the results together with the radix point:

#### **Additional Issue - Fractional Part**

- Note that in this conversion, the fractional part can become 0 as a result of the repeated multiplications.
- In general, it may take many bits to get this to happen or it may never happen.
- Example Problem: Convert 0.65<sub>10</sub> to N<sub>2</sub>
  - $\bullet$  0.65 = 0.1010011001001 ...
  - The fractional part begins repeating every 4 steps yielding repeating 1001 forever!
- Solution: Specify number of bits to right of radix point and round or truncate to this number.

## **Checking the Conversion**

= 0.6875

- **To convert back, sum the digits times their respective powers of r.**
- From the prior conversion of  $46.6875_{10}$   $1011110_2 = 1.32 + 0.16 + 1.8 + 1.4 + 1.2 + 0.1$  = 32 + 8 + 4 + 2 = 46  $0.1011_2 = 1/2 + 1/8 + 1/16$ = 0.5000 + 0.1250 + 0.0625

# Why Do Repeated Division and Multiplication Work?

- Divide the integer portion of the power series on slide 11 by radix r. The remainder of this division is  $A_0$ , represented by the term  $A_0/r$ .
- Discard the remainder and repeat, obtaining remainders  $A_1, \ldots$
- Multiply the fractional portion of the power series on slide 11 by radix r. The integer part of the product is  $A_{-1}$ .
- Discard the integer part and repeat, obtaining integer parts A<sub>-2</sub>, ...
- This demonstrates the algorithm for any radix r > 1.

# Octal (Hexadecimal) to Binary and Back

- Octal (Hexadecimal) to Binary:
  - Restate the octal (hexadecimal) as three (four) binary digits starting at the radix point and going both ways.
- Binary to Octal (Hexadecimal):
  - Group the binary digits into three (four) bit groups starting at the radix point and going both ways, padding with zeros as needed in the fractional part.
  - Convert each group of three bits to an octal (hexadecimal) digit.

# Octal (Hexadecimal) to Binary and Back

#### Example:

```
(67.731)_8 = (110\ 111\ .111\ 011\ 001)_2
(312.64)_8 = (011\ 001\ 010\ .\ 110\ 1)_2
(11\ 111\ 101\ .\ 010\ 011\ 11)_{2} = (375.236)_{8}
(10\ 110.11)_{2}=(26.6)_{8}
(3AB4.1)_{16} = (0011\ 1010\ 1011\ 0100\ .0001)_2
(21A.5)_{16} = (0010\ 0001\ 1010\ .\ 0101)_2
(1001101.01101)_2 = (0100 1101.01101000)_2 = (4D.68)_{16}
(110\ 0101.101)_2 = (65.A)_{16}
```

# Octal to Hexadecimal via Binary

- Convert octal to binary.
- Use groups of <u>four bits</u> and convert as above to hexadecimal digits.
- Example: Octal to Binary to Hexadecimal

6 3 5 · 1 7 7 8

Why do these conversions work?

#### **A Final Conversion Note**

- You can use arithmetic in other bases if you are careful:
- Example: Convert 101110<sub>2</sub> to Base 10 using binary arithmetic:

```
Step 1 1011110 / 1010 = 100 \text{ r } 0110
Step 2 100 / 1010 = 0 \text{ r } 0100
Converted Digits are 0100_2 | 0110_2
or 4 = 6_{10}
```

# **Binary Numbers and Binary Coding**

#### Flexibility of representation

• Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded.

#### Information Types

- Numeric
  - Must represent range of data needed
  - Very desirable to represent data such that simple, straightforward computation for common arithmetic operations permitted
  - Tight relation to binary numbers
- Non-numeric
  - Greater flexibility since arithmetic operations not applied.
  - Not tied to binary numbers

# **Non-numeric Binary Codes**

- Given n binary digits (called <u>bits</u>), a <u>binary code</u> is a mapping from a set of <u>represented elements</u> to a subset of the  $2^n$  binary numbers.
- Example: A binary code for the seven colors of the rainbow
- Code 100 is not used

| Color  | Binary Number |
|--------|---------------|
| Red    | 000           |
| Orange | 001           |
| Yellow | 010           |
| Green  | 011           |
| Blue   | 101           |
| Indigo | 110           |
| Violet | 111           |

# **Number of Bits Required**

• Given M elements to be represented by a binary code, the minimum number of bits, *n*, needed, satisfies the following relationships:

 $2^n \ge M > 2^{(n-1)}$  $n = \lceil \log_2 M \rceil$  where  $\lceil x \rceil$ , called the *ceiling* function, is the integer greater than or equal to x.

Example: How many bits are required to represent <u>decimal digits</u> with a binary code?

# **Number of Elements Represented**

- Given n digits in radix r, there are  $r^n$  distinct elements that can be represented.
- But, you can represent m elements, m <</li>
- Examples:
  - You can represent 4 elements in radix r = 2 with n = 2 digits: (00, 01, 10, 11).
  - You can represent 4 elements in radix r = 2 with n = 4 digits: (0001, 0010, 0100, 1000).
  - This second code is called a "one hot" code.

# DECIMAL CODES - Binary Codes for Decimal Digits

■ There are over 8,000 ways that you can chose 10 elements from the 16 binary numbers of 4 bits. A few are useful:

| Decimal | 8,4,2,1 | Excess3 | 8,4,-2,-1 | Gray |
|---------|---------|---------|-----------|------|
| 0       | 0000    | 0011    | 0000      | 0000 |
| 1       | 0001    | 0100    | 0111      | 0100 |
| 2       | 0010    | 0101    | 0110      | 0101 |
| 3       | 0011    | 0110    | 0101      | 0111 |
| 4       | 0100    | 0111    | 0100      | 0110 |
| 5       | 0101    | 1000    | 1011      | 0010 |
| 6       | 0110    | 1001    | 1010      | 0011 |
| 7       | 0111    | 1010    | 1001      | 0001 |
| 8       | 1000    | 1011    | 1000      | 1001 |
| 9       | 1001    | 1100    | 1111      | 1000 |

# Excess 3 Code and 8, 4, -2, -1 Code

| Decimal | Excess 3 | 8, 4, -2, -1 |  |
|---------|----------|--------------|--|
| 0       | 0011     | 0000         |  |
| 1       | 0100     | 0111         |  |
| 2       | 0101     | 0110         |  |
| 3       | 0110     | 0101         |  |
| 4       | 0111     | 0100         |  |
| 5       | 1000     | 1011         |  |
| 6       | 1001     | 1010         |  |
| 7       | 1010     | 1001         |  |
| 8       | 1011     | 1000         |  |
| 9       | 1100     | 1111         |  |

What interesting property is common to these two codes?

# **Binary Coded Decimal (BCD)**

- The BCD code is the 8,4,2,1 code.
- 8, 4, 2, and 1 are weights
- BCD is a weighted code
- This code is the simplest, most intuitive binary code for decimal digits and uses the same powers of 2 as a binary number, but only encodes the first ten values from 0 to 9.
- **Example:** 1001 (9) = 1000 (8) + 0001 (1)
- How many "invalid" code words are there?
- What are the "invalid" code words?

# Warning: Conversion or Coding?

- Do NOT mix up conversion of a decimal number to a binary number with coding a decimal number with a BINARY CODE.
- $-13_{10} = 1101_2$  (This is <u>conversion</u>)
- $\blacksquare$  13  $\Leftrightarrow$  0001|0011 (This is <u>coding</u>)

#### **BCD Arithmetic**

Given a BCD code, we use binary arithmetic to add the digits:

```
8 1000 Eight

+5 +0101 Plus 5

13 1101 is 13 (> 9)
```

- Note that the result is MORE THAN 9, so must be represented by two digits!
- To correct the digit, subtract 10 by adding 6 modulo 16.

• If the digit sum is > 9, add one to the next significant digit

### **BCD Addition Example**

 Add 2905<sub>BCD</sub> to 1897<sub>BCD</sub> showing carries and digit corrections.

| 1             | 1               | 1               | 0            |
|---------------|-----------------|-----------------|--------------|
| 0001          | 1000            | 1001            | 0111         |
| + <u>0010</u> | <u>1001</u>     | <u>0000</u>     | <u>0101</u>  |
| 0100          | 10010           | 1010            | 1100         |
| + 0000 +      | - <u>0110</u> + | - <u>0110</u> - | <u> 0110</u> |
| 0100          | 1000            | 0000            | 0010         |

# **ALPHANUMERIC CODES - ASCII Character Codes**

- American Standard Code for Information Interchange (Refer to Table 1-4 in the text)
- This code is a popular code used to represent information sent as character-based data. It uses 7-bits to represent:
  - 94 Graphic printing characters.
  - 34 Non-printing characters
- Some non-printing characters are used for text format (e.g. BS = Backspace, CR = carriage return)
- Other non-printing characters are used for record marking and flow control (e.g. STX and ETX start and end text areas).

# **ASCII Properties**

ASCII has some interesting prop

- Digits 0 to 9 span Hexadecim
  - Upper case A-Z span 41<sub>16</sub> to
  - Lower case a -z span 61<sub>16</sub> to
    - Lower to upper case translation (and vice versa) occurs by flipping bit 6.
  - Delete (DEL) is all bits set, a carryover from when punched paper tape was used to store messages.
  - Punching all holes in a row erased a mistake!



#### 7 BIT ASCII CODE TABLE

| h3h2 | 2b1b0 | o6b5b4 |   | 000 | 001 | 010 | 011 | 100      | 101      | 110 | 111 |
|------|-------|--------|---|-----|-----|-----|-----|----------|----------|-----|-----|
| 0    | 0     | 0      | 0 | NUL | DLE | SP  | 0   | <u>a</u> | P        | ,   | p   |
| 0    | 0     | 0      | 1 | SOM | DC  | !   | 1   | A        | Q        | a   | q   |
| 0    | 0     | 1      | 0 | STX | DC  | "   | 2   | В        | R        | b   | r   |
| 0    | 0     | 1      | 1 | ETX | DC  | #   | 3   | C        | S        | c   | S   |
| 0    | 1     | 0      | 0 | EOT | DC  | \$  | 4   | D        | T        | d   | t   |
| 0    | 1     | 0      | 1 | ENQ | NAA | %   | 5   | E        | U        | e   | u   |
| 0    | 1     | 1      | 0 | ACA | SYN | &   | 6   | F        | V        | f   | v   |
| 0    | 1     | 1      | 1 | BEL | ЕТВ | ,   | 7   | G        | W        | g   | w   |
| 1    | 0     | 0      | 0 | BS  | CAN | (   | 8   | Н        | X        | h   | X   |
| 1    | 0     | 0      | 1 | HT  | EM  | )   | 9   | I        | Y        | i   | y   |
| 1    | 0     | 1      | 0 | LF  | SUB | *   | :   | J        | Z        | j   | z   |
| 1    | 0     | 1      | 1 | VT  | ESC | +   | ;   | A        | [        | k   |     |
| 1    | 1     | 0      | 0 | FF  | FS  | ,   | <   | L        | \        | 1   |     |
| 1    | 1     | 0      | 1 | CR  | GS  |     | =   | M        | ]        | m   |     |
| 1    | 1     | 1      | 0 | SO  | RS  | •   | >   | N        |          | n   | ~   |
| 1    | 1     | 1      | 1 | SI  | US  | /   | ?   | О        | <b>←</b> | 0   | DEL |

#### **PARITY BIT Error-Detection Codes**

- Redundancy (e.g. extra information), in the form of extra bits, can be incorporated into binary code words to detect and correct errors.
- A simple form of redundancy is <u>parity</u>, an extra bit appended onto the code word to make the number of 1's odd or even. Parity can detect all single-bit errors and some multiple-bit errors.
- A code word has <u>even parity</u> if the number of 1's in the code word is even.
- A code word has <u>odd parity</u> if the number of 1's in the code word is odd.

# 4-Bit Parity Code Example

Fill in the even and odd parity bits:

| Even Parity<br>Message - Parity | Odd Parity<br>Message_Parity |
|---------------------------------|------------------------------|
| 000 _                           | 000 _                        |
| 001 _                           | 001 _                        |
| 010 _                           | 010 _                        |
| 011 _                           | 011 _                        |
| 100 _                           | 100 _                        |
| 101 _                           | 101 _                        |
| 110 _                           | 110 _                        |
| 111 -                           | 111 _                        |

The codeword "1111" has even parity and the codeword "1110" has odd parity. Both can be used to represent 3-bit data.

#### **GRAY CODE - Decimal**

| Decimal | 8,4,2,1 | Gray |
|---------|---------|------|
| 0       | 0000    | 0000 |
| 1       | 0001    | 0100 |
| 2       | 0010    | 0101 |
| 3       | 0011    | 0111 |
| 4       | 0100    | 0110 |
| 5       | 0101    | 0010 |
| 6       | 0110    | 0011 |
| 7       | 0111    | 0001 |
| 8       | 1000    | 1001 |
| 9       | 1001    | 1000 |

What special property does the Gray code have in relation to adjacent decimal digits?

# **Optical Shaft Encoder**

Does this special Gray cochave any value?



图 2 光学编码器原理示意图

An Example: Optical Shaft Encoder



(a) Binary Code for Positions 0 through 7



(b) Gray Code for Positions 0 through 7

# Shaft Encoder (Continued)

How does the shaft encoder work?

For the binary code, what codes may be produced if the shaft position lies between codes for 3 and 4 (011 and 100)?

Is this a problem?

# Shaft Encoder (Continued)

For the Gray code, what codes may be produced if the shaft position lies between codes for 3 and 4 (010 and 110)?

Is this a problem?

Does the Gray code function correctly for these borderline shaft positions for all cases encountered in octal counting?

#### UNICODE

- UNICODE extends ASCII to 65,536 universal characters codes
  - For encoding characters in world languages
  - Available in many modern applications
  - 2 byte (16-bit) code words
  - See Reading Supplement Unicode on the Companion Website

http://www.prenhall.com/mano

# **Assignment**

**1**-3, 1-9, 1-12, 1-13, 1-16, 1-18, 1-19, 1-28