Problem Set 6.2

In Problems 1–6, the graph of y = f(x) is shown. In each case, decide whether f has an inverse and, if so, estimate $f^{-1}(2)$.

1.

3.

4.

5.

6.

In Problems 7-14, show that f has an inverse by showing that it is strictly monotonic (see Example 1).

7.
$$f(x) = -x^5 - x^3$$

8.
$$f(x) = x^7 + x^5$$

9.
$$f(\theta) = \cos \theta, 0 \le \theta \le \pi$$

10.
$$f(x) = \cot x = \frac{\cos x}{\sin x}, 0 < x < \frac{\pi}{2}$$

11.
$$f(z) = (z-1)^2, z \ge 1$$

12.
$$f(x) = x^2 + x - 6, x \ge 2$$

13.
$$f(x) = \int_0^x \sqrt{t^4 + t^2 + 10} dt$$

14.
$$f(r) = \int_{-\infty}^{1} \cos^4 t \, dt$$

In Problems 15–28, find a formula for $f^{-1}(x)$ and then verify that $f^{-1}(f(x)) = x \text{ and } f(f^{-1}(x)) = x \text{ (see Examples 2 and 3)}.$

15.
$$f(x) = x + 1$$

16.
$$f(x) = -\frac{x}{3} + \frac{x}{3}$$

17.
$$f(x) = \sqrt{x+1}$$

15.
$$f(x) = x + 1$$
 16. $f(x) = -\frac{x}{3} + 1$ **17.** $f(x) = \sqrt{x + 1}$ **18.** $f(x) = -\sqrt{1 - x}$

19.
$$f(x) = -\frac{1}{x-3}$$

19.
$$f(x) = -\frac{1}{x-3}$$
 20. $f(x) = \sqrt{\frac{1}{x-2}}$

21.
$$f(x) = 4x^2, x \le 1$$

21.
$$f(x) = 4x^2, x \le 0$$
 22. $f(x) = (x - 3)^2, x \ge 3$

23.
$$f(x) = (x-1)^3$$

24.
$$f(x) = x^{5/2}, x \ge 0$$

25.
$$f(x) = \frac{x-1}{x+1}$$

25.
$$f(x) = \frac{x-1}{x+1}$$
 26. $f(x) = \left(\frac{x-1}{x+1}\right)^3$

27.
$$f(x) = \frac{x^3 + 2}{x^3 + 1}$$

27.
$$f(x) = \frac{x^3 + 2}{x^3 + 1}$$
 28. $f(x) = \left(\frac{x^3 + 2}{x^3 + 1}\right)^5$

29. Find the volume V of water in the conical tank of Figure 8 as a function of the height h. Then find the height h as a function of volume V.

Figure 8

30. A ball is thrown vertically upward with velocity v_0 . Find the maximum height H of the ball as a function of v_0 . Then find the velocity v_0 required to achieve a height of H.

In Problems 31 and 32, restrict the domain of f so that f has an inverse, yet keeping its range as large as possible. Then find $f^{-1}(x)$. Suggestion: First graph f.

31.
$$f(x) = 2x^2 + x - 4$$
 32. $f(x) = x^2 - 3x + 1$

32.
$$f(x) = x^2 - 3x + 1$$

In each of Problems 33–36, the graph of y = f(x) is shown. Sketch the graph of $y = f^{-1}(x)$ and estimate $(f^{-1})'(3)$.

33.

35.

36.

In Problems 37-40, find $(f^{-1})'(2)$ by using Theorem B (see Example 4). Note that you can find the x corresponding to y = 2 by inspection.

37.
$$f(x) = 3x^5 + x - 2$$
 38. $f(x) = x^5 + 5x - 4$

38.
$$f(r) = r^5 + 5r - r^6$$

39.
$$f(x) = 2 \tan x, -\frac{\pi}{2} < x < \frac{\pi}{2}$$

40.
$$f(x) = \sqrt{x+1}$$

41. Suppose that both f and g have inverses and that $h(x) = (f \circ g)(x) = f(g(x))$. Show that h has an inverse given by $h^{-1} = g^{-1} \circ f^{-1}$.

42. Verify the result of Problem 41 for f(x) = 1/x, g(x) =

43. If $f(x) = \int_0^x \sqrt{1 + \cos^2 t} \, dt$, then f has an inverse. (Why?) Let $A = f(\pi/2)$ and $B = f(5\pi/6)$. Find

(a)
$$(f^{-1})'(A)$$
,

(b)
$$(f^{-1})'(B)$$
,

(c)
$$(f^{-1})'(0)$$
.

44. Let
$$f(x) = \frac{ax + b}{cx + d}$$
 and assume $bc - ad \neq 0$.

- (a) Find the formula for $f^{-1}(x)$.
- (b) Why is the condition $bc ad \neq 0$ needed?
- (c) What condition on a, b, c, and d will make $f = f^{-1}$?

45. Suppose that f is continuous and strictly increasing on [0, 1] with f(0) = 0 and f(1) = 1. If $\int_0^1 f(x) dx = \frac{2}{5}$, calculate $\int f^{-1}(y) dy$. Hint: Draw a picture.

EXPL 46. Let f be continuous and strictly increasing on $[0, \infty)$ with f(0) = 0 and $f(x) \to \infty$ as $x \to \infty$. Use geometric reasoning to establish **Young's Inequality.** For a > 0, b > 0,

$$ab \le \int_0^a f(x) \, dx + \int_0^b f^{-1}(y) \, dy$$

What is the condition for equality?

EXPL 47. Let p > 1, q > 1, and 1/p + 1/q = 1. Show that the inverse of $f(x) = x^{p-1}$ is $f^{-1}(y) = y^{q-1}$ and use this together with Problem 46 to prove Minkowski's Inequality:

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}, \qquad a > 0, b > 0$$

Answers to Concepts Review: 1. $f(x_1) \neq f(x_2)$

2. x; $f^{-1}(y)$ **3.** monotonic; increasing; decreasing **4.** $(f^{-1})'(y) = 1/f'(x)$

4.
$$(f^{-1})'(y) = 1/f'(x)$$

6.3 The Natural **Exponential Function**

Figure 1

The graph of $y = f(x) = \ln x$ was obtained at the end of Section 6.1 and is reproduced in Figure 1. The natural logarithm function is differentiable (hence continuous) and increasing on its domain $D=(0,\infty)$; its range is $R=(-\infty,\infty)$. It is, in fact, precisely the kind of function studied in Section 6.2, and therefore has an inverse \ln^{-1} with domain $(-\infty, \infty)$ and range $(0, \infty)$. This function is so important that it is given a special name and a special symbol.

Definition

The inverse of ln is called the **natural exponential function** and is denoted by exp. Thus,

$$x = \exp y \iff y = \ln x$$

It follows immediately from this definition that

$$1. \exp(\ln x) = x, \qquad x > 0$$

2.
$$ln(exp y) = y$$
, for all y

Since exp and In are inverse functions, the graph of $y = \exp x$ is just the graph of $y = \ln x$ reflected across the line y = x (Figure 2).

But why the name exponential function? You will see.

Properties of the Exponential Function We begin by introducing a new number, which, like π , is so important in mathematics that it gets a special symbol, e. The letter e is appropriate since Leonhard Euler first recognized the significance of this number.

Figure 2

Definition

The letter e denotes the unique positive real number such that $\ln e = 1$.