MAC 414 – Linguagens Formais e Autômatos

$1^{\underline{a}}$ Lista de Exercícios (12/08/2011) – Entregar 25/08/2011

Obs.: Ao provar algo, pode utilizar os resultados vistos em aula ou em exercícios. Ao apresentar um exemplo, **mostre** que ele tem a propriedade que você quer exemplificar. Entregue para nota apenas os exercícios que estão pontuados. (**Total de pontos: 11**)

- 1. (2 pontos) Seja $\Sigma = \{a, b\}$. Dê alguns exemplos de palavras que pertencem e que não pertencem a cada uma das linguagens a seguir:
 - (a) $L_1 = \{ w \in \Sigma^* : \text{existe uma palavra } x \text{ em } \Sigma^2 \text{ tal que } w = xx^Rx \}$
 - (b) $L_2 = \{ w \in \Sigma^* : ww = www \}$
 - (c) $L_3 = \{ w \in \Sigma^* : \text{existem palavras } x \in y \text{ em } \Sigma^+ \text{ tais que } xyw = wyx \}$
 - (d) $L_4 = \{ w \in \Sigma^* : \text{existe uma palavra } x \text{ em } \Sigma^* \text{ tal que } www = xx \}$
- 2. (2 pontos) Dê exemplos de linguagens não-vazias A,B e C sobre $\Sigma=\{a,b\}$ tais que
 - (a) AB = AC, mas $B \neq C$.
 - (b) $A(B \cap C) \neq AB \cap AC$.

Uma das inclusões $A(B\cap C)\subseteq AB\cap AC$ ou $AB\cap AC\subseteq A(B\cap C)$ é sempre válida. Prove-a.

- 3. Sejam $A, B \in C \subseteq \Sigma^*$.
 - (a) Prove que se $A \subseteq B$ então $AC \subseteq BC$ e $CA \subseteq CB$.
 - (b) (1 ponto) Dê exemplos de linguagens não-vazias $A, B \in C$, finitas e infinitas, tais que $A \subset B$ e AC = BC.
- 4. Sejam $A, B \in C \subseteq \Sigma^*$. Prove que
 - (a) Se $A \subseteq B$ então $A^n \subseteq B^n$, para todo $n \ge 1$.
 - (b) Se $A \subseteq B$ então $A^* \subseteq B^*$.
 - (c) (1 ponto) $(A^*)^n = A^*$, para todo $n \ge 1$.
 - (d) $(A^*)^* = A^*$.
 - (e) (1 ponto) Se $A \subseteq C^*$ e $B \subseteq C^*$ então $AB \subseteq C^*$.
 - (f) (1 ponto) $(A \cup B)^* = A^*(BA^*)^*$.
 - (g) $(A \cup B)^* = (A^*B^*)^*$.
 - (h) (1 ponto) $(\overline{A})^R = \overline{(A^R)}$.
- 5. (2 pontos) Seja $L = \{x \in \{0, 1\}^* : |x|_0 \neq |x|_1\}.$
 - (a) Prove que $L^* = \{0, 1\}^*$.
 - (b) Descreva \overline{L} , e prove que $(\overline{L})^* = \overline{L}$.