

Parkour

Time limit: 2500 ms Memory limit: 256 MB

Catom is practicing parkour in the scaffolding of the new building in the city. The floor of the scaffolding is a grid. The cell in the x-th position to the right and the y-th position to the top has coordinates (x,y). Each cell should contain a floor tile. But as the building is not finished, there are only N cells numbered from 1 to N that currently contains a floor tile at positions $(x_1,y_1),(x_2,y_2),...,(x_N,y_N)$. These tiles are glued to the floor and called stable tiles.

In the entrance of the building there are k floor tiles waiting to be put on the floor. These tiles are called *movable* tiles. The movable tiles are very heavy and can only be moved using a crane. Catom has a remote control for the crane but it is very complicated to operate. Catom can thus only use the crane to move a movable tile when he is on a stable tile, because he needs the balance. When a movable floor tile is placed on a cell, it does not become glued to it, so it may be moved again. In other words, Catom can replace the movable floor tiles wherever he likes when standing on a stable tile.

Parkour is the art of getting from one point to another in a complex environment. Catom starts at stable tile s and wishes to reach stable tile t under the following constraints:

242

- Catom can only step on floor tiles on his way.
- . Catom can move from one floor tile to another only if they share a common edge.
- Catom can only move the movable tiles, and only when he is on a stable tile.

 $\text{Help Catom complete his parkour training by determining for some } (s,t,k) \text{ values whether or not Catom can go from stable tile } s \text{ to stable tile } t. \text{ You need to answer } Q \text{ such queries } (s_1,t_1,k_1), (s_2,t_2,k_2), \ldots, (s_Q,t_Q,k_Q).$

Standard input

To reduce the size of the input file, not all input data will be given explicitly. Instead, a set of parameters will be provided to generate the data.

The input has four integers N,Q,S_Q,M_k on the first line. S_Q is the number of queries that are explicitly given. M_k is a modulus used for generating the data.

The following N lines each have two integers as the position of one stable tile. The i-th line has x_i and y_i .

The next line has nine integer parameters $A_s, B_s, C_s, A_t, B_t, C_t, A_k, B_k, C_k$. These are followed by S_Q lines that each contain three integers as one query. The i-th line has s_i, t_i, k_i . The remaining queries with $S_Q < i \le Q$ are generated using the following rules:

- $s_i = (A_s \cdot s_{i-1} + B_s \cdot s_{i-2} + C_s) \mod N + 1$
- $t_i = (A_t \cdot t_{i-1} + B_t \cdot t_{i-2} + C_t) \mod N + 1$
- $k_i = (A_k \cdot k_{i-1} + B_k \cdot k_{i-2} + C_k) \mod M_k$

Standard output

Let the answer to the i-th query be R_i . If Catom can reach stable tile t from stable tile s then $R_i=1$, and otherwise $R_i=0$. Output a single integer $\sum_{1\leq i\leq Q}R_i\cdot 2^i \mod(10^0+7)$, which is the combined answers to all queries.

Constraints and notes

- $1 \le N \le 10^5$
- $1 \le Q \le 10^7$
- $2 \le S_Q \le Q$ • $1 \le M_k \le 10^9$
- ullet $0 \le x_i, y_i < 10^9$ for $1 \le i \le N$, all (x_i, y_i) are unique.
- $1 \leq s_i, t_i \leq N, 0 \leq k_i < M_k$ for $1 \leq i \leq Q$
- $0 \le A_s, B_s, C_s, A_t, B_t, C_t, A_k, B_k, C_k \le 10^9$
- ullet For 25% of the test data, $N,Q \leq 500$.
- ullet For another 25% of the test data, $N,Q \leq 10^5$ and $1 \leq M_k \leq 4$.
- ullet For another 25% of the test data, $N,Q \leq 10^5$.

Input	Output	Explanation
3 2 2 100 0 0 2 5	2	All stable tile positions and queries are explicitly given. The three stable tiles a illustrated below in blue.
53 00000000 .36		2
2 1 5		
		3
		1
		For the query $s_1=1, t_1=3, k_1=6$ the answer should be $R_1=1$, becau Catom can put the 6 movable floor tiles in a path from stable tile 1 to stable (shown in red), go to stable tile 2 , then move 4 of the movable tiles to connestable tile 2 and stable tile 3 (shown in green) and finally get to stable tile 3 .

3 7 2 9 0 0 2 5 5 3 7 8 10 3 2 1 5 4 59 1 3 6 2 1 5 $(R_1\cdot 2^1+R_2\cdot 2^2)\ mod\ (10^9+7)=(1\cdot 2+0\cdot 4)\ mod\ (10^9+7)=2$ Just 2 queries are explicitly given. The three stable tiles are the same as in test case

For the query $s_2=2,\,t_2=1,\,k_2=5$ the answer should be $R_2=0$ since Catom

can not reach stable tile 1 with fewer than 6 movable tiles.

The 7 queries are

#1.

Input	Output	Explanation
		The answer is therefore $(R_1 \cdot 2^1 + R_2 \cdot 2^2 + \dots + R_7 \cdot 2^7) \ mod \ (10^9 + 7)$ = $(1 \cdot 2 + 0 \cdot 4 + 0 \cdot 8 + 1 \cdot 16 + 1 \cdot 32 + 1 \cdot 64 + 1 \cdot 128) \ mod \ (10^9 + 7)$
		= 242