Lecture 1: The Poisson Process

Parimal Parag

1 The Poisson Process

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space.

Definition 1.1 (Point Process). A stochastic process $\{N(t), t \ge 0\}$ is a **point process** if

- 1. N(0) = 0.
- 2. $t \mapsto N(t)(\omega)$ is non-decreasing, integer valued, right continuous and at points of discontinuity (wherever it has jumps) $(N(t)-N(t^-)) \leqslant 1$, $\forall \quad \omega \in \Omega$.

Definition 1.2 (Simple Point Process). A simple point process is a point process of jump size 1.

Definition 1.3 (Stationary Increment Point Process). A point process $\{N(t), t \ge 0\}$ is called **stationary increment point process**, if for any collection of $0 \le t_1 < t_2 ..., < t_n$, we have $(N(t_n) - N(t_{n-1}), N(t_{n-1}) - N(t_{n-2}), ..., N(t_1))$ having the same joint distribution as $(N(t_n+t) - N(t_{n-1}+t), ..., N(t_1+t)), \forall t \ge 0$.

Definition 1.4 (Stationary Independent Increment Point Process). A point process $\{N(t), t \ge 0\}$ is called **stationary independent increment process**, if it has stationary increments and the increments are independent random variables.

The points of discontinuity corresponds to the arrival instants of the point process. Let X_n denote the inter arrival time between $(n-1)^{th}$ and n^{th} arrival. Further, let, $S_0 = 0$, $S_n = \sum_{k=1}^n X_k$. S_n is the arrival instant of n^{th} point. The arrival at time zero is not counted.

Definition 1.5 (Poisson Process). A simple point process $\{N(t), t \ge 0\}$ is called a **Poisson process** with rate $0 < \lambda < \infty$, if inter-arrival times $\{X_n, n \ge 1\}$ are $iid \exp(\lambda)$ random variables, i.e.

$$\Pr\{X_1 \leqslant x\} = \begin{cases} 1 - e^{-\lambda x}, & x \geqslant 0\\ 0, & \text{else.} \end{cases}$$

Remarks: Observe that

$$\{S_n \leq t\} = \{N(t) \geq n\},$$

 $\{S_n \leq t, S_{n+1} > t\} = \{N(t) = n\},$ and
 $\Pr\{X_n = 0\} = \Pr\{X_n \leq 0\} = 0.$

Figure 1: Sample path of a Poisson process.

Also, by Strong Law of Large Numbers (SLLN),

$$\lim_{n\to\infty}\frac{S_n}{n}=E[X_1]=\frac{1}{\lambda}\quad\text{a.s.}$$

Therefore, we have $S_n \to \infty$, a.s. This implies $\Pr\{\omega : N(t)(\omega) < \infty\} = 1$. To see this, let's pick an $\omega \in \Omega$ such that $N(t)(\omega) = \infty$, then $S_n(\omega) \leq t$, $\forall n$. This implies $S_\infty(\omega) \leq t$ and $\omega \notin \{\omega : S_n(\omega) \to \infty\}$. Hence, probability measure for such *omega*'s is zero and the claim follows.

1.1 Moment Generating Function and Density Function of S_n

We know that time of n^{th} event S_n is sum of n consecutive iid inter-arrival times X_k , i.e. $S_n = \sum_{k=1}^n X_k$. Therefore, moment generating function $\mathbb{E}[e^{\alpha S_n}]$ of S_n is given by

$$\mathbb{E}[e^{\alpha S_n}] = \left(\mathbb{E}[e^{\alpha X_1}]\right)^n.$$

Since each X_k is *iid* exponential with rate λ , it is easy to see that moment generating function of intr-arrival time X_1 is

$$\mathbb{E}[e^{\alpha X_1}] = \begin{cases} \frac{\lambda}{\lambda - \alpha}, & \alpha < \lambda \\ \infty, & \alpha \geqslant \lambda. \end{cases}$$

Substituting the moment generating function of inter-arrival time X_1 in moment generating function of n^{th} event time S_n , we obtain

$$\mathbb{E}[e^{\alpha S_n}] = \begin{cases} \left(\frac{\lambda}{\lambda - \alpha}\right)^n, & \alpha < \lambda, \\ \infty, & \text{else.} \end{cases}$$

Theorem 1.6 (Arrival Time). Density function of S_n is Gamma distributed with parameters n and λ . That is,

$$f_{S_n}(s) = \frac{\lambda(\lambda s)^{n-1}}{(n-1)!}e^{-\lambda s}.$$

Proof. Notice that X_i 's are *iid* and $S_1 = X_1$. In addition, we know that $S_n = X_n + S_{n-1}$. Since, X_n is independent of S_{n-1} , we know that distribution of S_n would be convolution of distribution of S_{n-1} and X_1 . Since X_n and S_1 have identical distribution, we have $f_{S_n} = f_{S_{n-1}} * f_{S_1}$. The result follows from straightforward induction.

Process N(t) is of real interest, and we can compute the distribution of N(t) for each t from the distribution of S_n in the following.

Theorem 1.7 (Poisson process). Process N(t) is Poisson distributed with parameter λ for each t. That is,

$$\Pr\{N(t) = n\} = e^{-\lambda t} \frac{(\lambda t)^n}{n!}.$$

Proof.

$$\Pr\{N(t) = n\} = \Pr\{S_n \leq t, S_{n+1} > t\}$$

$$= \int_0^t \Pr\{S_{n+1} > t | S_n = s\} f_{S_n}(s) ds$$

$$\stackrel{(a)}{=} \int_0^t \Pr\{X_{n+1} > t - s\} f_{S_n}(s) ds$$

$$= \int_0^t e^{-\lambda(t-s)} \frac{\lambda^n s^{n-1}}{(n-1)!} e^{-\lambda s} ds$$

$$= \frac{e^{-\lambda t} (\lambda t)^n}{n!}.$$

where (a) follows from the memoryless property of exponential distribution. \Box

Remark: The Poisson process is not a stationary process. That is, the finite dimensional distributions (fdd) are not shift invariant. In the following section, we show that the Poisson process is a *stationary*, *independent increment* process. To this end, we will use an important property of exponential distribution-namely memoryless property. Memoryless property of exponential distribution will facilitate the computation of fdd of the Poisson process via one dimensional marginal distribution.

Proposition 1.8 (Memoryless Distribution). Exponential distribution with continuous support is the only distribution satisfying memoryless property.

Proof. Let X be a random variable with a distribution function F with memoryless property defined on \mathbb{R}^+ . Let $g(t) \triangleq \Pr\{X > t\} = 1 - F(t)$. Due to memoryless property of F, we notice that

$$\begin{array}{lcl} \Pr\{X>s\} &=& \Pr\{X>t+s|X>t\}\\ \Pr\{X>s\} &=& \frac{\Pr\{X>t+s,X>t\}}{\Pr\{X>t\}}. \end{array}$$

Since $\{X > t + s\} = \{X > t + s, X > t\}$, we have g(t + s) = g(t)g(s) and hence $g(0) = g^2(0)$. Therefore, g(0) is either unity or zero. Note, that g is a right continuous (RC) function and is non-negative.

We will show that g is an exponential function. That is, $g(t) = e^{\alpha t}$ for some $\alpha \geqslant 0$. We will prove this in stages. First, we show this is true for $t \in \mathbb{Z}^+$. Notice that we can obtain via induction

$$g(2) = g(1)g(1) = g^{2}(1)$$
, and $g(m) = [g(1)]^{m}$.

Since g(1) is non negative, there exists a β such that $g(1)=e^{\beta}$ and $g(m)=e^{m\beta}, m\in\mathbb{Z}_+$. Next we show that for any $n\in\mathbb{Z}_+$,

$$g(1) = g\left(\frac{1}{n} + ..., +\frac{1}{n}\right) = \left[g\left(\frac{1}{n}\right)\right]^n.$$

Therefore, for same β we used for g(1), we have $g\left(\frac{1}{n}\right) = e^{\frac{\beta}{n}}$. Now, we show that g is exponential for any $t \in \mathbb{Q}^+$. To this end, we see that for any $m, n \in \mathbb{Z}_+$, we have

$$g\left(\frac{m}{n}\right) = \left[g\left(\frac{1}{n}\right)\right]^m = e^{\frac{m\beta}{n}}.$$

Now, we can show that g is exponential for any real positive t by taking a sequence of rational numbers $\{t_n\}$ decreasing to t. From right continuity of g, we obtain

$$g(t) \stackrel{(a)}{=} \lim_{n \to \infty} g(t_n) = \lim_{n \to \infty} e^{\beta t_n} = e^{\beta t}.$$

Since $Pr\{X > x\}$ is decreasing with x, β is negative.

Figure 2: Stationary independent increment property of Poisson process.

Proposition 1.9 (Stationary Independent Increment Property). Poisson process $N(t), t \ge 0$ has stationary independent increment property.

Proof. To show that N(t) has stationary independent increment property, it suffices to show that $N_t - N(t_1) \perp N(t_1)$ and $N(t) - N(t_1) \sim N(t - t_1)$. Since, we can use induction to show this stationary independence increment property for for any finite disjoint time-intervals. The memoryless property of exponential distribution is crucially used. And, we see that independent increment holds only if inter-arrival time is exponential. We can see in Figure 2 that t_1 divides X_{n+1} in two parts such that, $X_{n+1} = X_{n+1}' + X_{n+1}''$. Here, X_{n+1}'' is independent of X_{n+1}' and has same distribution as X_{n+1} . Therefore,

$$\{N(t_1) = n\} \iff \{S_n = t_1 + X'_{n+1}\},$$
$$\{N(t) - N(t_1) \ge m\} \iff \{X''_{n+1} + \sum_{i=n+2}^{n+m} X_i \le t - t_1\}.$$

Since, $\{X_i: i \geqslant n+2\} \cup \{X_{n+1}^{''}\}$ are independent of $\{X_i: i \leqslant n\} \cup X_{n+1}^{'}$, we have $N(t) - N(t_1) \perp N(t_1)$. Further, since $X_{n+1}^{''}$ has same distribution as X_{n+1} , we get $N(t) - N(t_1) \sim N(t-t_1)$. By induction we can extend this result to $(N(t_n) - N(t_{n-1}), ..., N(t_1))$.