Attention is all you need

Vaswani et al, NeurIPS 2017

The need for attention in NMT

Contributions and claims

One contribution:

Model purely based on attention

Claims:

- Better performance on NMT tasks
- Faster to train (easy to parallelize)
- Long-range dependencies

Attention mechanism -- Overview

Great blog post:

http://ruder.io/deep-learning-nlp-best-practices/index.html#attention

Attention mechanism -- Overview

$$\mathbf{c}_i = \sum_j a_{ij} \mathbf{h}_j$$

 $\mathbf{a}_i = \operatorname{softmax}(f_{att}(\mathbf{s}_i, \mathbf{h}_j))$

Attention mechanism -- Additive

$$f_{att}(\mathbf{s}_{i-1}, \mathbf{h}_j) = \mathbf{v}_a^{\top} \tanh(\mathbf{W}_1 \mathbf{s}_{i-1} + \mathbf{W}_2 \mathbf{h}_j)$$

Attention mechanism -- Multiplicative

$$f_{att}(s_i, h_j) = s_i^{\mathsf{T}} \mathbf{W}_a h_j$$

Attention mechanism -- Self-attention

$$f_{att}(\mathbf{h}_j) = \mathbf{v}_a^{\top} \mathrm{tanh}(\mathbf{W}_a \mathbf{h}_j)$$

$$\mathbf{a} = \mathrm{softmax}(\mathbf{v}_a \mathrm{tanh}(\mathbf{W}_a \mathbf{H}^{\top}))$$

$$\mathbf{c} = \mathbf{H} \mathbf{a}^{\top}$$

Attention mechanism -- Self-attention

$$\mathbf{A} = \operatorname{softmax}(\mathbf{V}_a \operatorname{tanh}(\mathbf{W}_a \mathbf{H}^\top))$$
$$\mathbf{C} = \mathbf{A}\mathbf{H}$$

Attention mechanism -- Key-value

$$\mathbf{h}_i = [\mathbf{k}_i; \mathbf{v}_i]$$

$$\mathbf{a}_i = \operatorname{softmax}(\mathbf{v}_a^{\top} \operatorname{tanh}(\mathbf{W}_1[\mathbf{k}_{i-L}; \dots; \mathbf{k}_{i-1}] + (\mathbf{W}_2 \mathbf{k}_i) \mathbf{1}^{\top}))$$

$$\mathbf{c}_i = [\mathbf{v}_{i-L}; \dots; \mathbf{v}_{i-1}] \mathbf{a}^{\top}$$

Transformer networks

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Previous states of the decoder

Hidden states of the encoder

Ablation study on NMT

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	$\begin{array}{c} \text{params} \\ \times 10^6 \end{array}$
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
					32					5.01	25.4	60
(C)	2									6.11	23.7	36
	2 4 8									5.19	25.3	50
	8									4.88	25.5	80
		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)	positional embedding instead of sinusoids									4.92	25.7	
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Other NLP tasks

Subject-verb agreement (long-range dependency)

Word sense disambiguation (semantic features)

English: [...] plan will be approved

German: [...] Plan verabschiedet wird

Contrast: [...] Plan verabschiedet werden

source: Er hat zwar schnell den Finger am Abzug, aber er ist eben neu.

reference: Il a la gâchette facile mais c'est parce qu'il débute.

contrastive: Il a la **soustraction** facile mais c'est parce qu'il débute. contrastive: Il a la **déduction** facile mais c'est parce qu'il débute. contrastive: Il a la **sortie** facile mais c'est parce qu'il débute.

contrastive: Il a la rétraction facile mais c'est parce qu'il débute.

RNNs are better than CNNs and Transformers

Transformers are better than CNNs and RNNs

Non-local networks, Wang et al CVPR 2018

Applied to action recognition in videos (Kinetics and Charades datasets)

Applied to object segmentation/detection and keypoint detection in images (MS-COCO dataset)

Key Query Value

Wang et al, CVPR 2018