### Ai-Team 15

## **Startup Success Predection.**

Mentor: DR. V. VENKATARAMANA.

#### Team Members:

1:A.AMOGH VARSH RAJU 19K41A0<mark>590</mark>

2:A.SAI KIRAN 19K41A0592

3: A.FATHIMA 19K41A04F1

## CONTENT

**Objective** 

Stake holders

**Data insights** 

**ML** models

**Comparitive result analysis** 

**Application Demonstration** 

Conclusion & Future scope.

## **OBJECTIVE**

The Main Objective of the Project is to build a regression model, that can predict the success rate of the startup by comparing the results and previous data of these.

Companies. Startup's. Investments. Funding.

#### **Investors**

The people who generally investin a startup just through pitching

#### **Business holders**

The new business people who are willing to establish a new business in less time.

#### **Organizations**

Other NGO organizations who generally donate for the startups.



#### **Creative Employees**

Not only money lenders but also the people who want to work by knowing will they get paid.

#### **Events&Competetions**

Startup event hosters can filter the startups in the comptetion.

#### **Founder**

The startup founder for himself can analyze whther how to get investment, he will fail or pass.

| Marketing Labels                             | Founded at                            | Last funding at                                             | Age First Funding                                          |  |
|----------------------------------------------|---------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|--|
| The number of marketing labels a company has | The year of the company was found at. | The time of the company when it received its last funding . | The age of the company when it received its first funding. |  |
|                                              |                                       |                                                             | Тор 500                                                    |  |
| Age last funding                             | Age first Milestone                   | Participants                                                | Top 500                                                    |  |



|     | labels | founded_at | first_funding_at | last_funding_at | age_first_funding_year | age_last_funding_year | age_first_milestone_year |
|-----|--------|------------|------------------|-----------------|------------------------|-----------------------|--------------------------|
| 0   | 1      | 1/1/2007   | 4/1/2009         | 1/1/2010        | 2.2493                 | 3.0027                | 4.6685                   |
| 1   | 1      | 1/1/2000   | 2/14/2005        | 12/28/2009      | 5.1260                 | 9.9973                | 7.0055                   |
| 2   | 1      | 3/18/2009  | 3/30/2010        | 3/30/2010       | 1.0329                 | 1.0329                | 1.4575                   |
| 3   | 1      | 1/1/2002   | 2/17/2005        | 4/25/2007       | 3.1315                 | 5.3151                | 6.0027                   |
| 4   | 0      | 8/1/2010   | 8/1/2010         | 4/1/2012        | 0.0000                 | 1.6685                | 0.0384                   |
|     |        |            | •••              |                 |                        | •••                   | •••                      |
| 918 | 1      | 1/1/2009   | 7/9/2009         | 7/9/2009        | 0.5178                 | 0.5178                | 0.5808                   |
| 919 | 0      | 1/1/1998   | 4/1/2005         | 3/23/2007       | 7.2521                 | 9.2274                | 6.0027                   |
| 920 | 0      | 1/1/1999   | 6/29/2007        | 6/29/2007       | 8.4959                 | 8.4959                | 9.0055                   |
| 921 | 1      | 1/1/2009   | 10/5/2009        | 11/1/2011       | 0.7589                 | 2.8329                | 0.7589                   |
| 922 | 1      | 1/1/2003   | 2/13/2006        | 2/13/2006       | 3.1205                 | 3.1205                | 4.0027                   |
|     |        |            |                  |                 |                        |                       |                          |

922 rows × 23 columns

# ML Models & Comparitive Results

| ALGORITHM           | ACCURACY RATE |
|---------------------|---------------|
| KNN                 | 0.72(72%)     |
| SVC                 | 0.70 (70%)    |
| Decision Tree       | 0.89(89%)     |
| Random Forest       | 0.9(90%)      |
| Logistic regression | 0.9(90%)      |

```
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)

[ 1 100]]

[ 1 100]]
```

#### KNN

0.9090909090909091

#### Logistic regression

```
from sklearn.svm import SVC
  classifier = SVC(kernel = 'linear', random_state = 0)
  classifier.fit(X_train, y_train)
  y_pred = classifier.predict(X_test)
  from sklearn.metrics import confusion_matrix
  cm = confusion_matrix(y_test, y_pred)
  print(cm)
  from sklearn.metrics import accuracy_score
  accuracy_score(y_test, y_pred)

[[174    0]
  [    0    101]]
1.0
```

#### 

#### **SVC**

#### **Random forest Classifer**

#### DecisionTreeClassifer

```
from sklearn.tree import DecisionTreeClassifier
  classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0)
  classifier.fit(X_train, y_train)
  y_pred = classifier.predict(X_test)
  from sklearn.metrics import confusion_matrix
  cm = confusion_matrix(y_test, y_pred)
  print(cm)
  from sklearn.metrics import accuracy_score
  accuracy_score(y_test, y_pred)

[[174     0]
  [     0     101]]
1.0
```

### **Logistic regression**

```
from sklearn.ensemble import RandomForestClassifier
  classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0)
  classifier.fit(X_train, y_train)
  y_pred = classifier.predict(X_test)
  from sklearn.metrics import confusion_matrix
  cm = confusion_matrix(y_test, y_pred)
  print(cm)
  from sklearn.metrics import accuracy_score
  print(accuracy_score(y_test, y_pred))

[[174     0]
  [     0     101]]
1.0
```

### **Application Demonstration**





New format of ui rate of success display

Making the project based on the real time data.

Deploy and presentation

Make the project gloabal and user freindly.

## Ai-Team 15

# **Thankyou**