Paper / Subject Code: 49371 / Engineering Mathematics-III

S.E. Computer Science & Engineering (Artificial Intelligence & Machine Learning) / IT (R-2019) SEMESTER - III - Engineering Mathematics-III QP CODE: 10027291 DATE: 24/05/2023

(Time: 3 hours) Max. Marks: 80

[5]

- N.B. (1) Question No. 1 is compulsory.
 - (2) Answer any three questions from Q.2 to Q.6.
 - (3) Use of Statistical Tables permitted.
 - (4) Figures to the right indicate full marks

Q1.

- (a) Find the Laplace transform of $t \sqrt{1 + \sin t}$
- (b) Find the constants a, b, c, d, e if [5]

 $f(z) = (ax^3 + b x y^2 + 3 x^2 + c y^2 + x) + i (dx^2 y - 2y^3 + e x y + y)$ is analytic.

- (c) Calculate the Spearman's rank correlation coefficient R [5]
- X : 85, 74, 85, 50, 65, 78, 74, 60, 74, 90
- Y: 78 91, 78, 58, 60, 72, 80, 55, 68, 70
- (d) Find inverse Laplace transform of $tan^{-1}\left(\frac{s+a}{b}\right)$. [5]

Q2.

- (a) Find the Laplace transform of $e^{-4t} \int_0^t u \sin 3u \ du$ [6]
- (b) find the value of k if the function $f(x) = k x^2 (1 x^3)$, $0 \le x \le 1$ F(x) = 0 otherwise

Is a probability density function, find mean and variance. [6]

(c) Obtain the Fourier series to represent f (x) = x^2 in (0, 2π)

Hence show that
$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2}$$
 [8]

Q3.

(a) Find the analytic function f(z) = u + iv such that [6]

 $u + v = \frac{2\sin 2x}{e^{2y} + e^{-2y-2\cos 2x}}$

Paper / Subject Code: 49371 / Engineering Mathematics-III

(b) Using convolution theorem Find inverse Laplace transform of $\frac{s^2}{(s^2+9)(s^2+4)}$. [6]

(c) Fit a second-degree parabolic curve to the following data

Year (x) : 1974 1975 1976 1977 1978 1979 1980 1981

Production (y) : 12 14 26 42 40 50 52 53. [8]

Q4.

- (a) Obtain the Fourier series to represent $f(x) = 9 x^2$ in (-3, 3).
- (b) . Find the coefficients of regression and hence obtain the equation of the lines of Regression for the following data

X: 78, 36, 98, 25, 75, 82, 90, 62, 65, 39.

(c) Prove that
$$\int_0^\infty e^{-t} \frac{\sin 2t + \sin 3t}{t} dt = \frac{3\pi}{4}.$$
 [8]

Q5.

- (a) Find the orthogonal trajectories of the family of curves $3x^2y + 2x^2 y^3 2y^2 = c$. [6]
- (b) If X denotes the outcome when a fair die is tossed, find Moment generating function

 Of X and hence find the mean and variance of X.

 [6]
- (c) Obtain the half range cosine series of $f(x) = x(\pi x)$ in $(0, \pi)$

Hence show that
$$\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} \dots$$
 [8]

Q6.(a) Find inverse Laplace transform of
$$\frac{s+29}{(s+4)(s^2+9)}$$
. [6]

(b) The probability density function of a random variable X is

$$X = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \end{bmatrix}$$

$$P(X=x): k = 3k = 5k = 7k = 9k = 11k = 13k$$

Find k,
$$p(X<4)$$
, $P(3< X \le 6)$. [6]

(c) Verify Laplace equation for
$$u = \left(r + \frac{a^2}{r}\right) \cos \theta$$
 also find v and f (z). [8]
