

INSTITUTE OF TECHNOLOGY - TRALEE

AUTUMN EXAMINATIONS AY 2012 - 2013

Computer Architecture

COMP61003 CRN43829

External Examiner: Mr. Michael Godley **Internal Examiner:** Ms. Mairead O'Sullivan

Duration of Exam: 2 Hours

Instructions to Candidates: Answer any three questions.

Question One (33 Marks)

(i) Convert the binary number 101011 to its decimal **and** octal equivalent.

(8 Marks)

(ii) Show the logic symbol **and** the truth table for:

(8 Marks)

(i) AND gate

(ii) XOR gate

(iii) Complete the truth table for the expression below:

(9 Marks)

$$Z = A\overline{C} + \overline{B} + \overline{D}$$

(iv) Draw the circuit for the expression below:

(8 Marks)

$$Z = \overline{ACD} + \overline{B}$$

Question Two (33 Marks)

(i) Write an expression for the circuit given below:

Figure 1 (10 Marks)

(ii) Simplify the following:

$$Z = A + \overline{AB} + C(A\overline{C} + \overline{AB})$$

(12 Marks)

(iii) Write an expression for Z below. Simplify the expression if possible and draw the circuit.

(12 Marks)

A	В	С	Z
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Question Three (33 Marks)

(i) Show the truth table for the Half-Adder. Hence or otherwise, write the equation for the Half-Adder and show the logic circuits required to implement it.

(12 *Marks*)

(ii) Explain how a Full-Adder can be derived from two Half-Adders and some logic circuitry. Use diagrams to support your answer.

(10 *Marks*)

(iii) Write a short note on Random Access Memory (RAM), discussing Static-RAM and Dynamic-RAM and highlighting the differences between them. How does ROM differ from RAM?

(11 Marks)

Question Four (33 Marks)

(i) Draw a block diagram of a generic CPU, and write a short paragraph describing the function of each component.

(12 *Marks*)

(ii) Write a note on the *Instruction Cycle* of the CPU.

(12 *Marks*)

(iii) Show how four flip-flops can be connected to form a parallel-in serial-out register. Show how 1100 would be loaded and read from such a register.

(11 *Marks*)

Rules of Boolean Algebra

1	A + O = A
	A + 1 = 1
	A . O = O
	A . 1 = A
	A + A = A
	A + A = A
6	A + A = 1
7	A . A = A
8	$A \cdot \overline{A} = O$
9	
10	A + AB = A
11	— A + AB = A + B
12	(A + B)(A + C) = A + BC

Laws of Boolean Algebra

Commutative	A + B = B + A AB = BA
Associative	A + (B + C) = (A + B) + C A(BC) = (AB)C
Distributive	A(B + C) = AB + AC