HOMEWORK 1

Mai Tra My

Ngày 17 tháng 8 năm 2022

1.

(a) Marginal distributions:

	\mathbf{x}_1	x_2	x ₃	x_4	x ₅	$P_Y(y)$
У1	0.01	0.02	0.03	0.1	0.1	0.26
y_2	0.05	0.1	0.05	0.07	0.2	0.47
У3	0.1	0.05	0.03	0.05	0.04	0.27
$P_X(x)$	0.16	0.17	0.11	0.22	0.34	

(b)

$$P(x|Y = y) = \frac{P(x,y)}{p_Y(y)}$$

The conditional distributions $p(x|Y=y_1)$ and $p(x|Y=y_3)$:

	\mathbf{x}_1	x_2	х3	x_4	x_5
$P(x Y=y_1)$	$\frac{1}{26}$	$\frac{2}{26}$	$\frac{3}{26}$	$\frac{10}{26}$	$\frac{10}{26}$
$P(x Y=y_3)$	$\frac{10}{27}$	$\frac{5}{27}$	$\frac{3}{27}$	$\frac{5}{27}$	$\frac{4}{27}$

2.

 $E_X[x|y]$ denotes the expected value of x under the conditional distribution p(x, y).

$$E_Y[E_X[x|y]] = \sum_{y \in D_y} E[X|Y = y]P_Y(y)$$

$$= \sum_{y \in D_y} \sum_{x \in D_x} xP(x|y)P_Y(y)$$

$$= \sum_{x \in D_x} x \sum_{y \in D_y} P(x,y)$$

$$= \sum_{x \in D_x} xP_X(x)$$

$$= E_X[X]$$

3.

Gọi biến cố người dân được phỏng vấn dùng sản phẩm X là A, biến cố người dân được phỏng vấn dùng sản phẩm Y là B.

$$P(A) = 0.207$$

$$P(B) = 0.5$$

P(A|B) = 0.365

(a) Xác suất người dân được phỏng vấn dùng cả X và Y:

$$P(A \cap B) = P(B)P(A|B) = 0.5 * 0.365 = 0.1825$$

(b) Xác suất người dân được phỏng vấn dùng Y, đã biết người đó không dùng X:

$$P(B|\bar{A}) = \frac{P(\bar{A}|B)P(B)}{P(\bar{A})} = \frac{(1 - 0.365) * 0.5}{1 - 0.207} = 0.4004$$

4.

$$V_X = E_X[(X - \mu)^2]$$

$$= E_X[(X - E_X[X])^2]$$

$$= E_X[X^2 - 2E_X[X]X + (E_X[X])^2)$$

$$= E_X[X^2] - 2E_X[X]E_X[X] + (E_X[X])^2$$

$$= E_X[X^2] - (E_X[X])^2$$

5

* Cách 1: Có 3 ô cửa: 1, 2, 3.

Giả sử người chơi chọn ô cửa 1.

Gọi A: biến cố chiếc xe ở ô cửa 1

 $P(A) = \frac{1}{3}$

Gọi B: biến cố Monty mở ô cửa 2.

 $P(B)=\frac{1}{2}$ do Monty chỉ có thể mở 1 trong 2 ô, khác ô người choi chon

 $P(B|A) = \frac{1}{2}$ do sau khi người chơi chọn ô 1, Monty chỉ có thể chọn ô 2 hoặc 3.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{\frac{1}{2} * \frac{1}{3}}{\frac{1}{2}} = \frac{1}{3}$$

Tức là xác suất chiếc xe hơi ở ô cửa 1 khi người chơi chọn ô 1, Monty mở ô 2 là $\frac{1}{3}$.

Gọi biến cố chiếc xe ở ô cửa 3 là C.

(C|B) là biến cố đối của (A|B), do khi Monty đã mở cửa 2, chiếc xe chỉ có thể nằm sau cửa 1 hoặc 3.

$$P(C|B) = 1 - P(A|B) = 1 - \frac{1}{3} = \frac{2}{3}$$

Vậy xác suất chiếc xe ở ô cửa 3 cao gấp đôi xác suất xe ở ô 1, nên người chơi đổi ô cửa sau khi Monty loại trừ 1 đáp án sai sẽ giúp khả năng thắng cuộc lớn hơn.

* Cách 2: Giả sử người chơi chọn ô cửa số 1.

Có 3 trường hợp xảy ra:

1. Chiếc xe ở ô 1, Monty mở cửa 2 hoặc 3 đều được.

Nếu người chơi đổi cửa sang ô còn lại (ô 3 hoặc 2) thì người đó thua.

2. Chiếc xe ở ô 2, Monty mở cửa 3

Nếu người chơi đổi cửa sang ô còn lại (ô 2) thì người đó lấy được chiếc xe.

3. Chiếc xe ở ô 3, Monty mở cửa 2

Nếu người chơi đổi của sang ô còn lại (ô 3) thì người đó lấy được chiếc xe.

Như vậy xác suất thắng cuộc là $\frac{2}{3}$ nếu người chơi đổi ô cửa, tức là khả năng thắng cuộc lớn hơn.