

Differential Equations

Homogeneous Systems: Real Roots

Homogeneous Linear Systems

Recall:

- · (Section 3.4) The general solution of an n-th order homogeneous system $D\vec{x} = A\vec{x}$ is generated by n solutions with linearly independent initial vectors .
- · (Section 3.5) \vec{v} is an eigenvector corresponding to the eigenvalue λ of A if and only if

$$\vec{h}(t) = e^{\lambda t} \vec{v}$$

is a solution of $D\vec{x} = A\vec{x}$ with initial vector

$$\vec{h}(0) = \vec{v} \neq 0.$$

Fact: For $D\vec{x} = A\vec{x}$ of order n, if we find n linearly independent eigenvectors $\vec{v}_1, \ldots, \vec{v}_n$ corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_n$, respectively, then the associated solutions

$$\vec{h}_1(t) = e^{\lambda_1 t} \vec{v}_1, \dots, \vec{h}_n(t) = e^{\lambda_n t} \vec{v}_n$$

generate the general solution of $D\vec{x} = A\vec{x}$

$$\vec{x} = c_1 \vec{h}_1(t) + \dots + c_n \vec{h}_n(t).$$

Note: We allow the eigenvalues λ_i to repeat due to multiplicity. It is possible that $\lambda_i = \lambda_j$ with $i \neq j$.

Ex: Solve $D\vec{x} = A\vec{x}$, where

$$A = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

Sln: We found the eigenvalues and the corresponding eigenvectors of A in §3.5 and §3.6. Corresponding to the eigenvalue -1, we have an eigenvector

$$\vec{v} = \begin{bmatrix} -2\\0\\1 \end{bmatrix}$$
.

We get a solution of $D\vec{x} = A\vec{x}$ in

$$\vec{h}_1(t) = e^{-t}\vec{v} = \begin{bmatrix} -2e^{-t} \\ 0 \\ e^{-t} \end{bmatrix}.$$

For the eigenvalue 3, we have two linearly independent eigenvectors

$$\vec{w}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{w}_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

and two more solutions associated to \vec{w}_1 and \vec{w}_2

$$\vec{h}_2(t) = e^{3t}\vec{w}_1 = \begin{bmatrix} 0\\e^{3t}\\0 \end{bmatrix}, \quad \vec{h}_3(t) = e^{3t}\vec{w}_2 = \begin{bmatrix} 2e^{3t}\\0\\e^{3t} \end{bmatrix}.$$

The three functions $\vec{h}_1(t)$, $\vec{h}_2(t)$, $\vec{h}_3(t)$ generate the general solution of the third order system if and only if the initial vectors \vec{v} , \vec{w}_1 , \vec{w}_2 are linearly independent. To check for independence, we calculate the determinant of the matrix whose columns are these three vectors. We get

$$\det \begin{bmatrix} -2 & 0 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \det \begin{bmatrix} -2 & 2 \\ 1 & 1 \end{bmatrix} = -4 \neq 0.$$

Thus, \vec{v} , $\vec{w_1}$, $\vec{w_2}$ are linearly independent and the general solution of $D\vec{x} = A\vec{x}$ is

$$\vec{x} = c_1 \vec{h}_1(t) + c_2 \vec{h}_2(t) + c_3 \vec{h}_3(t)$$

$$= c_1 \begin{bmatrix} -2e^{-t} \\ 0 \\ e^{-t} \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ e^{3t} \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 2e^{3t} \\ 0 \\ e^{3t} \end{bmatrix}.$$

Fact: If the eigenvectors corresponding to the same eigenvalue are independent, then a list of eigenvectors of A corresponding to distinct eigenvalues will also be linearly independent.

Fact: For each eigenvalue λ of A, an $n \times n$ matrix with constant entries, find as many independent eigenvectors corresponding to λ as possible, and associate to each independent eigenvector the solution $e^{\lambda t}\vec{v}$. These vector valued solutions of $D\vec{x} = A\vec{x}$ have independent initial vectors. In particular, if we find n such solutions $\vec{h}_1(t), \ldots, \vec{h}_n(t)$, then the general solution of $D\vec{x} = A\vec{x}$ is

$$\vec{x} = c_1 \vec{h}_1(t) + \dots + c_n \vec{h}_n(t)$$

Ex: Solve $D\vec{x} = A\vec{x}$, where

$$A = \begin{bmatrix} -1 & -1 & 0 \\ 1 & -3/2 & 3/2 \\ 0 & 1 & -1 \end{bmatrix}.$$

Sln: By what we found in §3.5 and §3.6, the vectors

$$\vec{v} = \begin{bmatrix} -3 \\ 0 \\ 2 \end{bmatrix}, \quad \vec{w} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, \quad \vec{u} = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}$$

are eigenvectors corresponding to the eigenvalues -1, -2 and -1/2, respectively. We get three solutions associated to these eigenvectors

$$\vec{h}_1(t) = e^{-t}\vec{v}, \quad \vec{h}_2(t) = e^{-2t}\vec{w}, \quad \vec{h}_3(t) = e^{-t/2}\vec{u}$$

with linearly independent initial vectors. Thus, the

general solution of the third order system $D\vec{x} = A\vec{x}$ is

$$\vec{x} = c_1 \vec{h}_1(t) + c_2 \vec{h}_2(t) + c_3 \vec{h}_3(t)$$

$$= c_1 \begin{bmatrix} -3e^{-t} \\ 0 \\ 2e^{-t} \end{bmatrix} + c_2 \begin{bmatrix} -e^{-2t} \\ -e^{-2t} \\ e^{-2t} \end{bmatrix} + c_3 \begin{bmatrix} -2e^{-t/2} \\ e^{-t/2} \\ 2e^{-t/2} \end{bmatrix}.$$