Introduction to Mathematical Reason	Test #2 MATH 300	March 7, 2007
Name:	R. Hammack	Score:
	ions in the space provided. To get full creding or communication devices is not allowed of	
1. Complete the following definition	ns.	
(a) Suppose $a, b \in \mathbb{Z}$. Then $a b$	if	
(b) Suppose $a, b, n \in \mathbb{Z}$. Then a	$a \equiv b \pmod{n}$ if	
(c) A number r is rational if $_$		
(d) A number r is irrational if		
(e) If X and Y are sets, then X	X - Y =	

2. Suppose $a,b,c\in\mathbb{Z}$, and $a\neq 0$. Prove the following statement: If $a\not\mid bc$, then $a\not\mid b$ and $a\not\mid c$.

[Suggestion: Contrapositive may be easiest.]

3. Suppose $a,b,c,d,n\in\mathbb{Z}$, and $n\geq 2$. Prove the following statement. If $a\equiv b\pmod n$ and $c\equiv d\pmod n$, then $a+c\equiv b+d\pmod n$.

4. Let $x \in \mathbb{R}$. Prove the following statement: If $3x^4 + 1 \le x^7 + x^3$, then $x \ge 0$.

	_	_			_
5.	Prove that $\sqrt{2}$ is irration	nal. [Suggestion:	proof by cont	radiction is	probably easiest.]

6. Suppose A,B,C and D are sets. Prove the following statement. If $A\subseteq C$ and $B\subseteq D$, then $A\times B\subseteq C\times D$.

FOR THE PROBLEMS ON THIS PAGE:

Decide if the statement is true or false. If it is true, prove it; if it is false, give a counterexample.

7. Let A and B be sets. If A - B = B - A, then $A - B = \emptyset$.

8. If $x, y \in \mathbb{R}$ and $x^2 < y^2$, then x < y.

9. For every two sets A and B, $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.

10. Suppose A, B, C and D are sets. If $A \times B \subseteq C \times D$, then $A \subseteq C$ and $B \subseteq D$.