ЛР з розділу 4, Щербакова Валерія, ФІ-71

3. Судоку

Сформулювати умови головоломки судоку як задачу пошуку розмітки на напівкільці $(\{0,1\}, \lor, \land)$ та реалізувати алгоритм її розв'язку.

- 1. На вхід програма приймає табличку з цифрами від 1 до 9 в заповнених клітинках та 0 в якості пустих клітинок.
- 2. На вихід програма виводить або розв'язок задачі (табличку з цифрами), або повідомлення про те, що розв'язок не було знайдено.
- 3. Необов'язковою корисною можливістю буде вивід на екран проміжних результатів: табличок, що містять цифри там, де вже обрано відповідь, та пробіли там, де ще ϵ кілька варіантів можливих цифр.

Сформулирую условие головоломки судоку как CSP:

$$Z = \langle T, \tau \subseteq T^2, K, g: \tau \times K^2 \to \{0,1\} \rangle$$

Множество меток: $K = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Множество объектов $T = \{ \forall i, j \in I : t_{ij} \}$ (здесь множество индексов I = K).

Условие соседства:
$$\tau(t_{ij}, t_{ab}) = (\llbracket i \neq a \rrbracket \land \llbracket j = b \rrbracket) \lor (\llbracket i = a \rrbracket \land \llbracket j \neq b \rrbracket) \lor (\llbracket i \neq a \rrbracket \land \llbracket j \neq b \rrbracket \land \llbracket s_i = s_a \rrbracket \land \llbracket s_i = s_b \rrbracket)$$

Пусть множество соседей x_{ij} : $N_{ij} = \{ \forall a, b \in I, \ \tau(t_{ij}, t_{ab}) = 1 : t_{ab} \}$

Вспомогательная функция s_i определяет квадрат:

$$\mathbf{s}_i = \lceil (i-1)/3 \rceil \stackrel{i \in I}{=} \begin{cases} 0, 1 \le i \le 3 \\ 1, 4 \le i \le 6 = [i \ge 4] + [i \ge 7]. \\ 2, 7 \le i \le 9 \end{cases}$$

S_i, S_j	i=1	2	3	4	5	6	7	8	9
j=1	1,1	1,1	1,1	2,1	2,1	2,1	3,1	3,1	3,1
2	1,1	1,1	1,1	2,1	2,1	2,1	3,1	3,1	3,1
3	1,1	1,1	1,1	2,1	2,1	2,1	3,1	3,1	3,1
4	1,2	1,2	1,2	2,2	2,2	2,2	3,2	3,2	3,2
5	1,2	1,2	1,2	2,2	2,2	2,2	3,2	3,2	3,2
6	1,2	1,2	1,2	2,2	2,2	2,2	3,2	3,2	3,2
7	1,3	1,3	1,3	2,3	2,3	2,3	3,3	3,3	3,3
8	1,3	1,3	1,3	2,3	2,3	2,3	3,3	3,3	3,3
9	1,3	1,3	1,3	2,3	2,3	2,3	3,3	3,3	3,3

Таким образом, соседями какого-то элемента x_{ij} считаются все элементы на одной вертикали с ним ([i=a]), все элементы на одной горизонтали с ним ([j=b]) а также все элементы в одном квадрате ($[s_i=s_a]$ $\land [s_j=s_b]$), за исключением x_{ij} .

Ограничение простое – метки у соседей не должны совпадать: $g_{tt'}(k,k') = [\![k \neq k']\!]$.

Вспомогательная функция индикатора установленной метки: $q_{ij}(x) = \llbracket k_{ij} = x
rbrace$

Теперь следует описание непосредственно алгоритма решения задачи.

На вход передается $\left\{v_{ij}\right\}=v\in \widetilde{K}^{9 imes 9}$, где $\widetilde{K}=K\cup\{0\}$, где 0 — не заполнена.

- 1. Задать метки объектов t_{ij} входными данными: $k_{ij} \coloneqq v_{ij}$.
- 2. Проверить $g_{t_{ij}t_{ab}}(k_{ij},k_{ab})$ для $\forall k_{ij} \neq 0$, $\forall k_{ab} \in N_{ij}$. Если хотя бы одно значение g будет равно нулю, завершить алгоритм с результатом задача не имеет решения по причине некорректного условия задачи.
- 3. Определить допустимые метки для каждого объекта с $k_{ij}=0$: $P_{ij}\coloneqq K\setminus\bigcup_{\substack{t_{ab}\in N_{ij}\\k_{ab}\neq 0}}\{k_{ab}\}$
- 4. Если существует объект без допустимых значений: $\exists k_{ij} = 0$, $|P_{ij}| = 0$, то завершить алгоритм с результатом задача не имеет решения по причине некорректного условия задачи (в процессе решения обнаруживаются противоречащие ограничения).
- 5. Если существует такой объект, для которого допустимо только одно значение метки $\exists P_{ij} \colon \big| P_{ij} \big| = 1$, то, обозначив $P_{ij} = \big\{ p_{ij} \big\}$, зафиксировать это допустимое значение в разметке: $k_{ij} \coloneqq p_{ij}$ и перейти на шаг 3.
- 6. Завершить работу алгоритма.

Если $\nexists k_{ij} = 0$, то k – решение задачи.

Если $\exists k_{ij} = 0$, то алгоритм не может решить задачу.