

Game Theory Intro

Game Theory Course: Jackson, Leyton-Brown & Shoham

Defining Games - Key Ingredients

- Players: who are the decision makers?
 - People? Governments? Companies? Somebody employed by a Company?...

Defining Games - Key Ingredients

- Players: who are the decision makers?
 - People? Governments? Companies? Somebody employed by a Company?...
- Game raped of the common product Theory random product Theory random product Theory random product Theory random must strategies zero-sum probability Online

- Actions: what can the players do?
 - Enter a bid in an auction? Decide whether to end a strike? Decide when to sell a stock? Decide how to vote?

Defining Games - Key Ingredients

Bayesian Normal-form auctions and Bayesian Normal-form auctions and the state of the common and the state of the

- Players: who are the decision makers?
 - People? Governments? Companies? Somebody employed by a Company?...
- Actions: what can the players do?
 - Enter a bid in an auction? Decide whether to end a strike? Decide when to sell a stock? Decide how to vote?
- Payoffs: what motivates players?
 - Do they care about some profit? Do they care about other players?...

Defining Games - Two Standard Representations

- Normal Form (a.k.a. Matrix Form, Strategic Form) List what payoffs get as a function of their actions
 - It is as if players moved simultaneously
 - But strategies encode many things...

Defining Games - Two Standard Representations

- Bayesian Nomil-form metal manual manu
- Normal Form (a.k.a. Matrix Form, Strategic Form) List what payoffs get as a function of their actions
 - It is as if players moved simultaneously
 - But strategies encode many things...
- Extensive Form Includes timing of moves (later in course)
 - Players move sequentially, represented as a tree
 - Chess: white player moves, then black player can see white's move and react...
 - Keeps track of what each player knows when he or she makes each decision
 - Poker: bet sequentially what can a given player see when they bet?

• Finite, n-person normal form game: $\langle N, A, u \rangle$:

• Finite, n-person normal form game: $\langle N, A, u \rangle$:

ullet Players: $N=\{1,\ldots,n\}$ is a finite set of n , indexed by i

• Finite, n-person normal form game: $\langle N, A, u \rangle$:

- Players: $N=\{1,\ldots,n\}$ is a finite set of n , indexed by i
- Action set for player i A_i
 - $a=(a_1,\ldots,a_n)\in A=A_1\times\ldots\times A_n$ is an action profile

Bayesian Normal-form autorism strategies serious Online

• Finite, n-person normal form game: $\langle N, A, u \rangle$:

- ullet Players: $N=\{1,\ldots,n\}$ is a finite set of n , indexed by i
- Action set for player i A_i
 - $a=(a_1,\ldots,a_n)\in A=A_1\times\ldots\times A_n$ is an action profile
- Utility function or Payoff function for player $i: u_i: A \to \mathbb{R}$
 - $u=(u_1,\ldots,u_n)$, is a profile of utility functions

Normal Form Games - The Standard Matrix Representation

- Writing a 2-player game as a matrix:
 - "row" player is player I, "column" player is player 2
 - rows correspond to actions $a_1 \in A_1$, columns correspond to actions $a_2 \in A_2$
 - cells listing utility or payoff values for each player: the row player first, then the column

Games in Matrix Form

Here's the TCP Backoff Game written as a matrix

	C	D
C	-1, -1	-4,0
D	0, -4	-3, -3

A Large Collective Action Game

• Players: $N = \{1, \dots, 10, 000, 000\}$

A Large Collective Action Game

• Players: $N = \{1, \dots, 10, 000, 000\}$

• Action set for player $i A_i = \{Revolt, Not\}$

A Large Collective Action Game

Bayesian Normal-form auctions—

Bayesian Normal-form auctions—

Came traged of the common product of the commo

• Players: $N = \{1, \dots, 10, 000, 000\}$

• Action set for player $i A_i = \{Revolt, Not\}$

- Utility function for player i:
 - $u_i(a) = 1$ if $\#\{j : a_j = Revolt\} \ge 2,000,000$
 - $u_i(a) = -1$ if $\#\{j: a_j = Revolt\} < 2,000,000$ and $a_i = Revolt$
 - $u_i(a) = 0$ if $\#\{j : a_j = Revolt\} < 2,000,000$ and $a_i = Not$

Summary: Defining Games

 For Now: Normal Form (Strategic Form, Matrix Representation...)

Players: N

• Actions: A_i

• Payoffs: u_i

Later: Extensive Form

- Timing: in what order do things happen?
- Information: what do players know when they act

