TD Test 3

Name:

Surname:

Group:

Question from the class (2 points)

Let (u_n) be a geometric sequence with common ratio $q \in \mathbb{R} \setminus \{1\}$ and (v_n) be an arithmetic sequence with common difference $r \in \mathbb{R}$.

Give the expression of $u_0 + u_1 + \cdots + u_n$ and $v_0 + v_1 + \cdots + v_n$.

$$V_0 + V_1 + \dots + V_n = V_0 + V_n \times (n+1)$$

Question from the class (2 points)

Let (u_n) be a real sequence and $\ell \in \mathbb{R}$. Give the precise definition, with the quantifiers, of « (u_n) converges to ℓ ».

Exercise 1 (2 points)

Let (u_n) be defined by $u_0 = 1$ and for all $n \in \mathbb{N}$, $u_{n+1} = 7u_n + 12$. Determine, for all $n \in \mathbb{N}$, u_n as a function of n.

We determine the fixed point
$$l$$
:

 $l = 7l + 12 = 0 - 6l = 12 = 0l = -2$

Let $V_n = u_n - l = u_n + 2$.

Then $\forall n \in \mathbb{N}$, $V_{n+1} = u_{n+1} + 2 = 7u_n + 12 + 2 = 7u_n + 14$
 $= 7(u_n + 2) = 7v_n$

So (v_n) is geometric with common ratio 7 .

$\forall n \in \mathbb{N}$, $v_n = v_o \times 7^n$, Only $v_o = u_o + 2 = 3$.

So $\forall n \in \mathbb{N}$, $v_n = 3 \times 7^n$
Since $v_n = u_n + 2$, we have $\forall n \in \mathbb{N}$, $u_n = v_n - 2 = 3 \times 7^n - 2$

Exercise 2 (4 points)

Let $(u_n)_{n\in\mathbb{N}^*}$ be defined for all $n\in\mathbb{N}^*$ by $u_n=\frac{1}{2}\times\frac{3}{4}\times\cdots\times\frac{2n-1}{2n}$

1. Give the expression of u_{n+1} in terms of n?

$$U_{n+1} = \frac{1}{2} \times \frac{3}{4} \times \cdots \times \frac{2n-1}{2n} \times \frac{2n+1}{2n+2} = 2(n+1)$$

2. Study the monotony of (u_n) by using $\frac{u_{n+1}}{u_n}$.

$$\frac{U_{n+1}}{U_n} = \frac{2n+1}{2n+2}$$
 because $u_{n+1} = \frac{1}{2} \times \frac{3}{4} \times \cdots \times \frac{2n-1}{2n} \times \frac{2n+1}{2n+2}$

Now, trem, un is the product of posstrictly positive terms, so un > 0.

Thus, (un) is decreasing.

3. Is (u_n) convergent? Justify your answer.

We have (un) decreasing

+ n EM, un >0, so (un) is brounded below.

The sequence (un) is hence convergent.