Informe de Trabajo Práctico N°5

Cinemática Inversa

Robótica I

Ingeniería en Mecatrónica Facultad de Ingeniería - UNCUYO

Alumno: Juan Manuel BORQUEZ PEREZ Legajo: 13567

1. Ejercicio 1

Figura 1: Robot Ejercicio 1

1.1.

Utilice el método geométrico para hallar un conjunto de ecuaciones cerradas que resuelvan el siguiente problema

$$\overline{q} = f(x, y, \gamma)$$

Al tratarse de un robot con solo dos grados de libertad, una **postura alcanzable está** suficientemente definida al especificar a lo sumo dos variables en el plano, esto es, (x, y), (x, γ) o (y, γ) ; mientras que la tercera variable queda determinada. Luego, como el problema se formula en término de las tres variables, las mismas deben ser congruentes para que exista solución.

Las posiciones alcanzables por el extremo del robot quedan definidas por las siguientes condiciones:

$$\sqrt{x^2 + y^2} \le a_1 + a_2 \quad (extension \, maxima)
\sqrt{x^2 + y^2} \ge |a_1 - a_2| \quad (extesion \, minima)$$
(1)

Cuando la posición es alcanzable, θ_2 se puede determinar por análisis de la suma de los vectores indicados en la fig. 2, como se indica a continuación:

$$\mathbf{w} = \mathbf{u} + \mathbf{v}$$

$$\mathbf{w}^2 = \mathbf{u}^2 + \mathbf{v}^2 + 2\mathbf{u} \cdot \mathbf{v}$$

$$x^2 + y^2 = a_1^2 + a_2^2 + 2a_1a_2\cos(\theta_2)$$

Luego:

$$\theta_2 = \arccos\left(\frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1 a_2}\right) \tag{2}$$

Esto da lugar a **dos posibles valores**, uno positivo (codo abajo) y otro negativo (codo arriba).

Figura 2: Análisis geométrico

El ángulo θ_1 se determina ahora por análisis de las proyecciones sobre los ejes Sobre el eje X:

$$x = a_1 \cos(\theta_1) + a_2 \cos(\theta_1 + \theta_2)$$

$$x = a_1 \cos(\theta_1) + a_2 \left[\cos(\theta_1) \cos(\theta_2) - \sin(\theta_1) \sin(\theta_2)\right]$$

$$x = \underline{[a_1 + a_2 \cos(\theta_2)]} \cos(\theta_1) - \underline{a_2 \sin(\theta_2)} \sin(\theta_1)$$

$$x = \underline{A} \cos(\theta_1) - \underline{B} \sin(\theta_1)$$

Sobre el eje Y:

$$y = a_1 \sin(\theta_1) + a_2 \sin(\theta_1 + \theta_2)$$

$$y = a_1 \sin(\theta_1) + a_2 \left[\sin(\theta_1)\cos(\theta_2) + \cos(\theta_1)\sin(\theta_2)\right]$$

$$y = \underline{[a_1 + a_2\cos(\theta_2)]}\sin(\theta_1) + \underline{a_2\sin(\theta_2)}\cos(\theta_1)$$

$$y = \underline{A}\sin(\theta_1) + \underline{B}\cos(\theta_1)$$

Se obtiene el siguiente sistema de ecuaciones lineales:

$$\begin{cases} x = A\cos(\theta_1) - B\sin(\theta_1) \\ y = B\cos(\theta_1) + A\sin(\theta_1) \end{cases}$$

Entonces se puede obtener θ_1 a partir de las siguientes:

$$\begin{cases}
\cos(\theta_1) &= \frac{Ax + By}{A^2 + B^2} \\
\sin(\theta_1) &= \frac{Ay - Bx}{A^2 + B^2} \\
\theta_1 &= \arctan\left(\frac{Ay - Bx}{Ax + By}\right) = atan2(Ay - Bx, Ax + By)
\end{cases} \tag{3}$$

La última se utiliza para determinar dos posibles soluciones para θ_1 mientras que el signo de las primeras dos determinan el valor correcto (el cuadrante). La eq. (3) se resuleve para cada valor de B (uno por cada valor de θ_2 dados en la eq. (2)).

Finalmente, la orientación dada para la postura en la formulación del problema debe ser congruente, y esta dada por:

$$\gamma = \theta_1 + \theta_2$$

Esta última condición, cuando se cumple permite acotar la solución a una sola del par obtenido.

En resumen, para $\overline{q} = (x, y, \gamma)$ en el rango del robot según eq. (1) se obtiene un par de posibles soluciones (codo arriba y codo abajo) que luego se acota a una sola con la orientación:

$$\begin{cases} \theta_2 &= \arccos\left(\frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1 a_2}\right) \to A = a_1 + a_2 \cos(\theta_2); B = a_2 \sin(\theta_2) \\ \theta_1 &= \operatorname{atan2}(Ay - Bx, Ax + By) \\ \overline{q} &= (\theta_1, \theta_2) \\ \operatorname{solo si } \gamma &= \theta_1 + \theta_2 \end{cases}$$

$$(4)$$

1.2.

Utilice el método geométrico para hallar un conjunto de ecuaciones cerradas que resuelvan el siguiente problema

$$\overline{q} = f(x, y)$$

La solución es la misma que en el caso anterior solamente que en este caso la orientación queda determinada por los desplazamientos angulares obtenidos:

$$\begin{cases}
\theta_2 = \arccos\left(\frac{x^2 + y^2 - a_1^2 - a_2^2}{2a_1 a_2}\right) \to A = a_1 + a_2 \cos(\theta_2); B = a_2 \sin(\theta_2) \\
\theta_1 = \operatorname{atan2}(Ay - Bx, Ax + By) \\
\overline{q} = (\theta_1, \theta_2)
\end{cases}$$
(5)

1.3.

Indique la cantidad de soluciones posibles que tendría cada conjunto de ecuaciones anterior, si los límites articulares fueran los siguientes

1.3.1. $\pm 90^{\circ}$

La mínima extensión alcanzable por el robot se consigue cuando los eslabones forman un ángulo recto. Luego la condición de rango señalada en eq. (1) es ahora:

$$\sqrt{x^2 + y^2} \le a_1 + a_2 \quad (extension \, maxima)
x^2 + y^2 \ge a_1^2 + a_2^2 \quad (extension \, minima)$$
(6)

Para los puntos dentro del rango del robot, definido en eq. (6), se tendrá:

- Para la ecuación 1, una sola solución posible para cada (x, y, γ) válido.
- Para la ecuación 2, en general dos soluciones en el cuadrante 1 y 4 (codo arriba y codo abajo), excepto en los extremos del espacio de trabajo del robot cerca del cuadrante 2 y 3 en donde una de las soluciones ponga fuera de límite a la variable q₁, en esos casos solo es una sola solución. También hay una sola solución en las extensiones máximas.

1.3.2. $\pm 180^{\circ}$

- Para la ecuación 1, en general, una sola solución posible para cada (x, y, γ) válido. Dos soluciones para cada punto en la mínima extensión $(\theta_2 = \pm 180^\circ)$. Dos soluciones cuando el punto está en la máxima extensión a 180° del eje x $(q_1 = \pm 180^\circ)$. Cuatro soluciones cuado el punto se encuentra en la mínima extensión a 180° del eje x $(q_1, q_2 = \pm 180^\circ)$.
- Para la ecuación 2, dos soluciones (codo arriba y codo abajo) más el caso particular de cuatro soluciones para la ecuación 1. Una sola solución en las extensines máximas.

1.3.3. $\pm 225^{\circ}$

- Para la ecuación 1 en general una solución para puntos no tan cercanos al límite inferior del rango del robot (puntos en donde el segundo eslabon no se encuentre tan replegado), en zonas entre los 135° y −135° respecto del eje x (del lado del eje x positivo), en cambio, se pueden obtener dos soluciones cuando los puntos están entre 135° y −135° respecto del eje x (del lado del eje x negativo) dado que son alcanzables con giros positivos y negativos en la primera articulación. Cuando el eslabón 2 está lo suficientemente replegado (puntos cerca del límite inferior del rango del robot) también se puede alcanzar la postura con un giro positivo y un giro negativo en la segunda articulación y abrán dos soluciones. En este último caso, cuando además la posición se encuentra entre 135° y −135° respecto del eje x (del lado del eje x negativo) tendremos hasta cuatro soluciones (un giro positivo y negativo por cada articulación).
- Para la ecuación 2 ahora además existen dos posibilidades (codo arriba y codo abajo) para cada caso. Luego existen dos soluciones cuando los puntos no están cerca del límite mínimo del rango y no se encuentran en la región de solapamiento del rango articular de la primera articulación. Cuatro soluciones en los puntos que se encuentran en la región de solapamiento del rango articular de la primera articulación

Robótica I - Año: 2024

Trabajo Práctico 5: Cinemática Inversa

y que no están cerca del mínimo del rango del robot. Cuatro soluciones en puntos que no están en la zona de solapamiento de la primera articulación y están cerca del mínimo del rango del robot. Ocho soluciones cuando los puntos se encuentra cerca el mínimo del rango y en la región de solapamiento articular de la primera articulación. Una única solución en la máxima extensión en la región de no solapamiento. Dos soluciones en la máxima extensión en la región de solapamiento. Dos soluciones en la mínima extensión en la zona de no solapamiento. Cuatro soluciones en la mínima extensión en la zona de solapamiento.

1.3.4. $\pm \infty$

Infinitas soluciones para ambas ecuaciones.