Supplementary Notes to "Supervised Tensor Decomposition with Interactive Side Information"

A Proofs

We restate the Theorem 4.1 from the main text.

Theorem A.1 (Statistical convergence). Consider a data tensor generated from model (3), where the entries are conditionally independent realizations from an exponential family. Let $(\hat{C}, \hat{M}_1, \dots, \hat{M}_K)$ be the M-estimator in (8) and $\hat{B} = \hat{C} \times \hat{M}_1 \times \dots \times \hat{M}_K$. Define $r_{\text{total}} = \prod_k r_k$ and $r_{\text{max}} = \max_k r_k$. Under Assumptions A1 and A2 with scaled feature matrices $\check{X}_k = \sqrt{d_k} X_k$, or under Assumptions A1' and A2 with original feature matrices, there exist two positive constants $C_1 = C_1(\alpha, K), C_2 = C_2(\alpha, K) > 0$ independent of dimensions $\{d_k\}$ and $\{p_k\}$, such that, with probability at least $1 - \exp(-C_1 \sum_k p_k)$,

$$\|\mathcal{B}_{\text{true}} - \hat{\mathcal{B}}\|_F^2 \le \frac{C_2 r_{\text{total}}}{r_{\text{max}}} \frac{\sum_k p_k}{\prod_k d_k}.$$
 (1)

Furthermore, if the unfolded core tensor has non-degenerate singular values at mode $k \in [K]$, i.e., $\sigma_{\min}(\text{Unfold}_k(\mathcal{C}_{\text{true}})) \geq c > 0$ for some constant c, then

$$\sin^2\Theta(\boldsymbol{M}_{k,\text{true}},\ \hat{\boldsymbol{M}}_k) \leq \frac{C_2 r_{\text{total}}}{r_{\text{max}} \sigma_{\min}^2(\text{Unfold}_k(\mathcal{C}_{\text{true}}))} \frac{\sum_k p_k}{\prod_k d_k}.$$

Proof of Theorem A.1. Let $\sigma_{\min}^{(k)} = \sigma_{\min}(\boldsymbol{X}_k)$ and $\sigma_{\max}^{(k)} = \sigma_{\max}(\boldsymbol{X}_k)$. First we prove (1). Define $\ell(\mathcal{B}) = \mathbb{E}(\mathcal{L}_{\mathcal{Y}}(\mathcal{B}))$, where the expectation is taken with respect to $\mathcal{Y} \sim \mathcal{B}_{\text{true}}$ under the model with true parameter $\mathcal{B}_{\text{true}}$. We prove the following two conclusions:

C1. There exist two positive constants C_1 , $C_2 > 0$, such that, with probability at least $1 - \exp(-C_1 \log K \sum_k p_k)$, the stochastic deviation, $\mathcal{L}_{\mathcal{Y}}(\mathcal{B}) - \ell(\mathcal{B})$, satisfies

$$|\mathcal{L}_{\mathcal{Y}}(\mathcal{B}) - \ell(\mathcal{B})| = |\langle \mathcal{E}, \, \mathcal{B} \times_1 \mathbf{X}_1 \times_2 \cdots \times_K \mathbf{X}_K \rangle| \le C_2 ||\mathcal{B}||_F \left(\prod_k \sigma_{\max}^{(k)} \right) \sqrt{\frac{\prod_k r_k}{\max_k r_k} \sum_k p_k}.$$

C2. The inequality $\ell(\hat{\mathcal{B}}) - \ell(\mathcal{B}_{\text{true}}) \leq -\frac{L}{2} \|\hat{\Theta} - \Theta^{\text{true}}\|_F^2$ holds, where L > 0 is the lower bound for $\min_{|\theta| \leq \alpha} |b''(\theta)|$.

To prove C1, we note that the stochastic deviation based on (4.1) can be written as:

$$\mathcal{L}_{\mathcal{Y}}(\mathcal{B}) - \ell(\mathcal{B}) = \langle \mathcal{Y} - \mathbb{E}(\mathcal{Y}|\Theta^{\text{true}}), \ \Theta(\mathcal{B}) \rangle$$

$$= \langle \mathcal{Y} - b'(\Theta^{\text{true}}), \ \Theta \rangle$$

$$= \langle \mathcal{E} \times_1 \mathbf{X}_1^T \times_2 \cdots \times_K \mathbf{X}_K^T, \ \mathcal{B} \rangle, \tag{2}$$

where $\mathcal{E} \stackrel{\text{def}}{=} \mathcal{Y} - b'(\Theta^{\text{true}})$, and the second line uses the property of exponential family that $\mathbb{E}(\mathcal{Y}|\mathcal{X}) = b'(\Theta^{\text{true}})$. Based on Proposition 2, the boundedness of $b''(\cdot)$ implies that \mathcal{E} is a sub-Gaussian- (ϕU) tensor. Let $\check{\mathcal{E}} \stackrel{\text{def}}{=} \mathcal{E} \times_1 \mathbf{X}_1^T \times_2 \cdots \times_K \mathbf{X}_K^T$. By Proposition 1, $\check{\mathcal{E}}$ is a (p_1, \ldots, p_K) -dimensional sub-Gaussian tensor with parameter bounded by $C = \phi U \prod_k \sigma_{\max}^{(k)}$. Applying Cauchy-Schwarz inequality to (2) yields

$$|\mathcal{L}_{\mathcal{Y}}(\mathcal{B}) - \ell(\mathcal{B})| \le \|\check{\mathcal{E}}\|_{2} \|\mathcal{B}\|_{*}, \tag{3}$$

where $\|\cdot\|_2$ denotes the tensor spectral norm and $\|\cdot\|_*$ denotes the tensor nuclear norm. The nuclear norm $\|\mathcal{B}\|_*$ is bounded by $\|\mathcal{B}\|_* \leq \sqrt{\frac{\prod_k r_k}{\max_k r_k}} \|\mathcal{B}\|_F$ (Wang et al., 2017; Wang and Li, 2020). The spectral norm $\|\check{\mathcal{E}}\|_2$ is bounded by $\|\check{\mathcal{E}}\|_2 \leq C_2 \prod_k \sigma_{\max}^{(k)} \sqrt{\sum_k p_k}$ with probability at least $1 - \exp(-C_1 \log K \sum_k p_k)$ (Tomioka and Suzuki, 2014). Combining these two bounds with (3), we have, with probability at least $1 - \exp(-C_1 \log K \sum_k p_k)$,

$$|\mathcal{L}_{\mathcal{Y}}(\mathcal{B}) - \ell(\mathcal{B})| \le C_2 \|\mathcal{B}\|_F \left(\prod_k \sigma_{\max}^{(k)}\right) \sqrt{\frac{\prod_k r_k}{\max_k r_k} \sum_k p_k},$$

where $C_2 > 0$ is a constant absorbing all factors that do not depend on $\{p_k\}$ and $\{r_k\}$. Next we prove C2. Applying Taylor expansion to $\mathcal{L}_{\mathcal{Y}}(\mathcal{B})$ around $\mathcal{B}_{\text{true}}$ yields

$$\mathcal{L}_{\mathcal{Y}}(\mathcal{B}) = \mathcal{L}_{\mathcal{Y}}(\mathcal{B}_{\mathrm{true}}) + \Big\langle \frac{\partial \mathcal{L}_{\mathcal{Y}}(\mathcal{B})}{\partial \mathcal{B}} \big|_{\mathcal{B} = \mathcal{B}_{\mathrm{true}}}, \mathcal{B} - \mathcal{B}_{\mathrm{true}} \Big\rangle + \frac{1}{2} \mathrm{vec}(\mathcal{B} - \mathcal{B}_{\mathrm{true}})^T \mathcal{H}(\check{\mathcal{B}}) \mathrm{vec}(\mathcal{B} - \mathcal{B}_{\mathrm{true}}),$$

where $\mathcal{H}_{\mathcal{Y}}(\check{\mathcal{B}})$ is the (non-random) Hession of $\frac{\partial \mathcal{L}_{\mathcal{Y}}^{2}(\mathcal{B})}{\partial^{2}\mathcal{B}}$ evaluated at $\check{\mathcal{B}} = \text{vec}(\alpha\mathcal{B} + (1-\alpha)\mathcal{B}_{\text{true}})$

for some $\alpha \in [0,1]$. Note that we have used the fact that $\mathbb{E}\left(\frac{\partial \mathcal{L}_{\mathcal{Y}}(\mathcal{B})}{\partial \mathcal{B}}\big|_{\mathcal{B}=\mathcal{B}_{\text{true}}}\right) = 0$. This is because $\mathcal{L}_{\mathcal{Y}}(\Theta)$ is defined as $\langle \mathcal{Y}, \Theta \rangle - \sum_{i_1, \dots, i_K} b(\Theta_{i_1, \dots, i_K})$ and

$$\frac{\partial \mathcal{L}_{\mathcal{Y}}(\theta_{i_1,\dots,i_K})}{\partial \theta_{i_1,\dots,i_K}}\Big|_{\Theta=\Theta^{\text{true}}} = y_{i_1,\dots,i_K} - \frac{\partial b(\theta_{i_1,\dots,i_K})}{\partial \theta_{i_1,\dots,i_K}}\Big|_{\Theta=\Theta^{\text{true}}}$$
$$= y_{i_1,\dots,i_K} - \mathbb{E}(y_{i_1,\dots,i_K}|\theta_{i_1,\dots,i_K\text{true}}),$$

where the last equality has used the fact that $b'(\theta) = \mathbb{E}(y|\theta)$. Taking derivative with respect to \mathcal{B} has the same result because of the chain rule.

We take expectation with respect to $\mathcal{Y} \sim \mathcal{B}_{\text{true}}$ on both sides of (4) and obtain

$$\ell(\mathcal{B}) = \ell(\mathcal{B}_{\text{true}}) + \frac{1}{2} \text{vec}(\mathcal{B} - \mathcal{B}_{\text{true}})^T \mathcal{H}(\check{\mathcal{B}}) \text{vec}(\mathcal{B} - \mathcal{B}_{\text{true}}). \tag{4}$$

By the fact $\frac{\partial \mathcal{L}_{\mathcal{Y}}^{2}(\Theta)}{\partial^{2}\Theta} = -b''(\Theta)$ and chain rule over $\Theta = \Theta(\mathcal{B}) = \mathcal{B} \times_{1} \mathbf{X}_{1} \cdots \times_{K} \mathbf{X}_{K}$, the equation (4) implies that

$$\ell(\mathcal{B}) - \ell(\mathcal{B}_{\text{true}}) = -\frac{1}{2} \sum_{i_1, \dots, i_K} b''(\check{\theta}_{i_1, \dots, i_K}) (\theta_{i_1, \dots, i_K} - \theta_{\text{true}, i_1, \dots, i_K})^2 \le -\frac{L}{2} \|\Theta - \Theta^{\text{true}}\|_F^2,$$

holds for all $\mathcal{B} \in \mathcal{P}$, provided that $\min_{|\theta| \le \alpha} |b''(\theta)| \ge L > 0$. In particular, the inequality (4) also applies to the constrained MLE $\hat{\mathcal{B}}$. So we have

$$\ell(\hat{\mathcal{B}}) - \ell(\mathcal{B}_{\text{true}}) \le -\frac{L}{2} \|\hat{\Theta} - \Theta^{\text{true}}\|_F^2.$$
 (5)

Now we have proved both C1 and C2. Note that $\mathcal{L}_{\mathcal{Y}}(\hat{\mathcal{B}}) - \mathcal{L}_{\mathcal{Y}}(\mathcal{B}_{\text{true}}) \geq 0$ by the definition of $\hat{\mathcal{B}}$. This implies that

$$0 \leq \mathcal{L}_{\mathcal{Y}}(\hat{\mathcal{B}}) - \mathcal{L}_{\mathcal{Y}}(\mathcal{B}_{\text{true}})$$

$$\leq \left(\mathcal{L}_{\mathcal{Y}}(\hat{\mathcal{B}}) - \ell(\hat{\mathcal{B}})\right) - \left(\mathcal{L}_{\mathcal{Y}}(\mathcal{B}_{\text{true}}) - \ell(\mathcal{B}_{\text{true}})\right) + \left(\ell(\hat{\mathcal{B}}) - \ell(\mathcal{B}_{\text{true}})\right)$$

$$\leq \langle \mathcal{E}, \ \Theta - \Theta^{\text{true}} \rangle - \frac{L}{2} \|\hat{\Theta} - \Theta^{\text{true}}\|_F^2,$$

$$(6)$$

where the second line follows from (5).

The inequality (6) can be rewritten as

$$\|\hat{\Theta} - \Theta^{\text{true}}\|_{F} \leq \frac{2}{L} \langle \mathcal{E}, \frac{\hat{\Theta} - \Theta^{\text{true}}}{\|\hat{\Theta} - \Theta^{\text{true}}\|_{F}} \rangle$$

$$\leq \frac{2}{L} \sup_{\Theta: \|\Theta\|_{F} = 1, \Theta = \mathcal{B} \times_{1} \mathbf{X}_{1} \times_{2} \dots \times_{K} \mathbf{X}_{K}} \langle \mathcal{E}, \Theta \rangle$$

$$\leq \frac{2}{L} \sup_{\mathcal{B} \in \mathcal{P}: \|\mathcal{B}\|_{F} \leq \left(\prod_{k} \sigma_{\min}^{(k)}\right)^{-1}} \langle \mathcal{E}, \mathcal{B} \times_{1} \mathbf{X}_{1} \times_{2} \dots \times_{K} \mathbf{X}_{K} \rangle. \tag{7}$$

Combining (7) with C1 yields

$$\|\hat{\Theta} - \Theta^{\text{true}}\|_F \le \frac{2C_2}{L} \frac{\prod_k \sigma_{\text{max}}^{(k)}}{\prod_k \sigma_{\text{min}}^{(k)}} \sqrt{\frac{\prod_k r_k}{\max r_k}} \sum_k p_k.$$
 (8)

Therefore,

$$\|\hat{\mathcal{B}} - \mathcal{B}_{\text{true}}\|_F \le \|\hat{\Theta} - \Theta^{\text{true}}\|_F \left(\prod_k \sigma_{\min}^{(k)}\right)^{-1} \le \frac{2C_2}{L} \frac{\prod_k \sigma_{\max}^{(k)}}{\left(\prod_k \sigma_{\min}^{(k)}\right)^2} \sqrt{\frac{\prod_k r_k}{\max r_k}} \sum_k p_k. \tag{9}$$

We now consider the two cases of assumptions on the feature matrices.

[Case 1] Under Assumption A1 with scaled feature matrices, we have the singular value

$$\frac{\prod_k \sigma_{\max}^{(k)}}{\left(\prod_k \sigma_{\min}^{(k)}\right)^2} = \frac{\prod_k c_2 \sqrt{d_k}}{\left(\prod_k c_1 \sqrt{d_k}\right)^2}.$$
(10)

[Case 2] Under Assumption A1', we have asymptotic behavior of extreme singular values (Rudelson and Vershynin, 2010) as

$$\sigma_{\min}^{(k)} \sim \sqrt{d_k} - \sqrt{p_k}$$
 and $\sigma_{\max}^{(k)} \sim \sqrt{d_k} + \sqrt{p_k}$.

In this case, we obtain

$$\frac{\prod_{k} \sigma_{\max}^{(k)}}{\left(\prod_{k} \sigma_{\min}^{(k)}\right)^{2}} = \frac{\prod_{k} (\sqrt{d_{k}} + \sqrt{p_{k}})}{\prod_{k} (\sqrt{d_{k}} - \sqrt{p_{k}})^{2}} = \frac{\prod_{k} (1 + \sqrt{\gamma_{k}}) \sqrt{d_{k}}}{\prod_{k} (1 - \sqrt{\gamma_{k}})^{2} d_{k}}.$$
(11)

Combining (9) with either (10) or (11), we obtain the same conclusion in both cases,

$$\|\hat{\mathcal{B}} - \mathcal{B}_{\text{true}}\|_F^2 \le \frac{C_2 r_{\text{total}}}{r_{\text{max}}} \frac{\sum_k p_k}{\prod_k d_k},$$

where $C_2 = C_2(\alpha, K, c_1, c_2) > 0$ in the first case and $C_2 = C_2(\alpha, K, \gamma) > 0$ in the second case, both of which are constants that do not depend on the dimensions $\{d_k\}$ and $\{p_k\}$.

Now we prove bound for $\sin\Theta$ distance. We unfold tensors $\mathcal{B}_{\text{true}}$ and $\hat{\mathcal{B}}$ along the mode k and obtain $\text{Unfold}_k(\mathcal{B}_{\text{true}})$ and $\text{Unfold}_k(\hat{\mathcal{B}})$. Notice that

$$\operatorname{Unfold}_{k}(\mathcal{B}_{\operatorname{true}}) = \boldsymbol{M}_{k}\operatorname{Unfold}_{k}(\mathcal{C}_{\operatorname{true}}) \left(\boldsymbol{M}_{k+1} \otimes \boldsymbol{M}_{k+2} \otimes \cdots \otimes \boldsymbol{M}_{1} \otimes \cdots \boldsymbol{M}_{k-1}\right)^{T},$$

$$\operatorname{Unfold}_{k}(\hat{\mathcal{B}}) = \hat{\boldsymbol{M}}_{k}\operatorname{Unfold}_{k}(\hat{\mathcal{C}}) \left(\hat{\boldsymbol{M}}_{k+1} \otimes \hat{\boldsymbol{M}}_{k+2} \otimes \cdots \otimes \hat{\boldsymbol{M}}_{1} \otimes \cdots \hat{\boldsymbol{M}}_{k-1}\right)^{T},$$

where \otimes denotes the Kronecker product of matrices. Notice that M_k and \hat{M}_k have the same image of left singular matrices of $\mathrm{Unfold}_k(\mathcal{B}_{\mathrm{true}})$ and $\mathrm{Unfold}_k(\hat{\mathcal{B}})$ respectively. Applying Proposition 3, we have

$$\sin^{2}\Theta(\boldsymbol{M}_{k}, \hat{\boldsymbol{M}}_{k}) \leq \frac{\|\operatorname{Unfold}_{k}(\hat{\boldsymbol{\mathcal{B}}}) - \operatorname{Unfold}_{k}(\boldsymbol{\mathcal{B}}_{\text{true}})\|_{F}}{\sigma_{\min}(\operatorname{Unfold}_{k}(\boldsymbol{\mathcal{B}}_{\text{true}}))} = \frac{\|\hat{\boldsymbol{\mathcal{B}}} - \boldsymbol{\mathcal{B}}_{\text{true}}\|_{F}}{\sigma_{\min}(\operatorname{Unfold}_{k}(\boldsymbol{\mathcal{C}}_{\text{true}}))}, \quad (12)$$

where $\sigma_{\min}(\operatorname{Unfold}_k(\mathcal{B}_{\text{true}})) = \sigma_{\min}(\operatorname{Unfold}_k(\mathcal{C}_{\text{true}}))$ holds based on the orthonormality of factor matrices. We finally prove the $\sin\Theta$ distance by combining (12) and (1).

Proposition 1 (sub-Gaussian tensors). Let S be a sub-Gaussian- (σ) tensor of dimension (d_1, \ldots, d_K) , and $X_k \in \mathbb{R}^{p_k \times d_k}$ be non-random matrices for all $k \in [K]$. Then $\mathcal{E} = S \times_1 X_1 \times_2 \cdots \times_K X_K$ is a sub-Gaussian- (σ') tensor of dimension (p_1, \ldots, p_K) , where $\sigma' \leq \sigma \prod_k \sigma_{\max}(X_k)$. Here $\sigma_{\max}(\cdot)$ denotes the largest singular value of the matrix.

Proof. To show \mathcal{E} is a sub-Guassian tensor, it suffices to show that the $\mathcal{E} \times_1 \mathbf{u}_1^T \times_2 \cdots \times_K \mathbf{u}_K^T$ is a sub-Gaussian scalar with parameter σ' , for any unit-1 vector $\mathbf{u}_k \in \mathbb{R}^{p_k}$, $k \in [K]$.

Note that,

$$\mathcal{E} \times_1 \boldsymbol{u}_1^T \times_2 \cdots \times_K \boldsymbol{u}_K^T = \mathcal{S} \times_1 (\boldsymbol{u}_1^T \boldsymbol{X}_1) \times_2 \cdots \times_K (\boldsymbol{u}_K^T \boldsymbol{X}_K)$$

$$= \left(\prod_k \lVert \boldsymbol{u}_k^T \boldsymbol{X}_k \rVert_2\right) \underbrace{\left[\mathcal{S} \times_1 \frac{(\boldsymbol{u}_1^T \boldsymbol{X}_1)}{\lVert (\boldsymbol{u}_1^T \boldsymbol{X}_1) \rVert_2} \times_2 \cdots \times_K \frac{(\boldsymbol{u}_K^T \boldsymbol{X}_K)}{\lVert (\boldsymbol{u}_K^T \boldsymbol{X}_K) \rVert_2}\right]}_{\text{sub-Gaussian-}\sigma \text{ scalar}}.$$

Because $\|(\boldsymbol{u}_k^T\boldsymbol{X}_k)\|_2 \leq \sigma_{\max}(\boldsymbol{X}_k^T)\|\boldsymbol{u}_k\|_2 = \sigma_{\max}(\boldsymbol{X}_k)$, we conclude that $\mathcal{E} \times_1 \boldsymbol{u}_1^T \times_2 \cdots \times_K \boldsymbol{u}_K^T$ is a sub-Gaussian tensor with parameter $\sigma \prod_k \sigma_{\max}(\boldsymbol{X}_k)$.

Proposition 2 (sub-Gaussian residuals). Define the residual tensor $\mathcal{E} = \llbracket \varepsilon_{i_1,\dots,i_K} \rrbracket = \mathcal{Y} - b'(\Theta) \in \mathbb{R}^{d_1 \times \dots \times d_K}$. Under the Assumption A2, $\varepsilon_{i_1,\dots,i_K}$ is a sub-Gaussian random variable with sub-Gaussian parameter bounded by ϕU , for all $(i_1,\dots,i_K) \in [d_1] \times \dots \times [d_K]$.

Proof. The proof is similar to Fan et al. (2019, Lemma 3). For ease of presentation, we drop the subscript (i_1, \ldots, i_K) and simply write $\varepsilon = (y - b'(\theta))$. For any given $t \in \mathbb{R}$, we have

$$\begin{split} \mathbb{E}(\exp(t\varepsilon|\theta)) &= \int c(x) \exp\left(\frac{\theta x - b(\theta)}{\phi}\right) \exp\left(t(x - b'(\theta))\right) dx \\ &= \int c(x) \exp\left(\frac{(\theta + \phi t)x - b(\theta + \phi t) + b(\theta + \phi t) - b(\theta) - \phi t b'(\theta)}{\phi}\right) dx \\ &= \exp\left(\frac{b(\theta + \phi t) - b(\theta) - \phi t b'(\theta)}{\phi}\right) \\ &\leq \exp\left(\frac{\phi U t^2}{2}\right), \end{split}$$

where $c(\cdot)$ and $b(\cdot)$ are known functions in the exponential family corresponding to y. Therefore, ε is sub-Gaussian- (ϕU) .

Proposition 3 (Wedin's sin Θ Theorem). Let \mathbf{B} and $\hat{\mathbf{B}}$ be two $m \times n$ real or complex with SVDs $\mathbf{B} = \mathbf{U} \Sigma \mathbf{V}^T$ and $\hat{\mathbf{B}} = \hat{\mathbf{U}} \hat{\Sigma} \hat{\mathbf{V}}^T$. If $\sigma_{\min}(\mathbf{B}) > 0$ and $\|\hat{\mathbf{B}} - \mathbf{B}\|_F \ll \sigma_{\min}(\mathbf{B})$, then

$$\sin\Theta(\boldsymbol{U}, \hat{\boldsymbol{U}}) \le \frac{\|\hat{\boldsymbol{B}} - \boldsymbol{B}\|_F}{\sigma_{\min}(\boldsymbol{B})}.$$
(13)

Proof. From Theorem 6.1 in Wang and Song (2017), we obtain the following bound

$$\max \left\{ \|\sin\Theta(\boldsymbol{U}, \hat{\boldsymbol{U}})\|_{\sigma}, \|\sin\Theta(\boldsymbol{V}, \hat{\boldsymbol{V}})\|_{\sigma} \right\} \leq \frac{\max \left\{ \|\hat{\boldsymbol{B}}\boldsymbol{V} - \boldsymbol{U}\boldsymbol{\Sigma}\|_{\sigma}, \|\hat{\boldsymbol{B}}^T\boldsymbol{U} - \boldsymbol{V}\boldsymbol{\Sigma}\|_{\sigma} \right\}}{\sigma_{\min}(\boldsymbol{B})}.$$

Notice that

$$\|\hat{\boldsymbol{B}}\boldsymbol{V} - \boldsymbol{U}\boldsymbol{\Sigma}\|_{\sigma} = \|\hat{\boldsymbol{B}}\boldsymbol{V} - \boldsymbol{B}\boldsymbol{V}\|_{\sigma} = \|\hat{\boldsymbol{B}} - \boldsymbol{B}\|_{\sigma} \le \|\hat{\boldsymbol{B}} - \boldsymbol{B}\|_{F},$$

$$\|\hat{\boldsymbol{B}}^{T}\boldsymbol{U} - \boldsymbol{V}\boldsymbol{\Sigma}\|_{\sigma} = \|\hat{\boldsymbol{B}}^{T}\boldsymbol{U} - \boldsymbol{B}^{T}\boldsymbol{U}\|_{\sigma} = \|\hat{\boldsymbol{B}} - \boldsymbol{B}\|_{\sigma} \le \|\hat{\boldsymbol{B}} - \boldsymbol{B}\|_{F}.$$

Therefore, we prove (13).

Proof of Theorem 4.1. The proof is similar to Berthet and Baldin (2020). We sketch the main steps here for completeness. Recall that $\ell(\mathcal{B}) = \mathbb{E}(\mathcal{L}_{\mathcal{Y}}(\mathcal{B}))$. By the definition of KL divergence, we have that,

$$\ell(\hat{\mathcal{B}}) = \ell(\mathcal{B}_{\text{true}}) - \sum_{(i_1, \dots, i_K)} KL(\theta_{\text{true}, i_1, \dots, i_K}, \hat{\theta}_{i_1, \dots, i_K})$$
$$= \ell(\mathcal{B}_{\text{true}}) - KL(\mathbb{P}_{\mathcal{Y}_{\text{true}}}, \mathbb{P}_{\hat{\mathcal{Y}}}),$$

where $\mathbb{P}_{\mathcal{Y}_{\text{true}}}$ denotes the distribution of $\mathcal{Y}|\mathcal{X}$ with true parameter $\mathcal{B}_{\text{true}}$, and $\mathbb{P}_{\hat{\mathcal{Y}}}$ denotes the distribution with estimated parameter $\hat{\mathcal{B}}$. Therefore

$$\begin{aligned} \mathrm{KL}(\mathbb{P}_{\mathcal{Y}_{\mathrm{true}}}, \ \mathbb{P}_{\hat{\mathcal{Y}}}) &= \ell(\mathcal{B}_{\mathrm{true}}) - \ell(\hat{\mathcal{B}}) \\ &= \frac{1}{2} \sum_{i_1, \dots, i_K} b''(\check{\theta}_{i_1, \dots, i_K}) (\theta_{i_1, \dots, i_K} - \theta_{\mathrm{true}, i_1, \dots, i_K})^2 \\ &\leq \frac{U}{2} \|\Theta - \Theta^{\mathrm{true}}\|_F^2 \\ &\leq C_4 \frac{\prod_k r_k}{\max r_k} \sum_k p_k, \end{aligned}$$

where the second line comes from (4), and the last line is derived from (8). Notice that $C_4 = C(\alpha, K, U, c_1, c_2) > 0$ in Assumption 1 and $C_4(\alpha, K, U, \gamma) > 0$ in Assumption 1' are constants that do not depend on the dimension $\{d_k\}$ and $\{p_k\}$.

B Algorithm properties

In this section, we provide the convergence properties of Algorithm 1. For notational convenience, we drop the subscript \mathcal{Y} from the objective $\mathcal{L}_{\mathcal{Y}}(\cdot)$ and simply write as $\mathcal{L}(\cdot)$. Let

 $\mathcal{A} = (\mathcal{C}, \mathbf{M}_1, \dots, \mathbf{M}_K) \in \mathbb{R}^{d_{\text{total}}}$ denote the collection of decision variables in the alternating optimization, where $d_{\text{total}} = \prod_k r_k + \sum_k r_k d_k$. We introduce the equivalent relationship induced by orthogonal transformation. Let $\mathbb{O}_{d,r}$ be the collection of all d-by-r matrices with orthogonal columns, $\mathbb{O}_{d,r} := \{ \mathbf{P} \in \mathbb{R}^{d \times r} \colon \mathbf{P}^T \mathbf{P} = \mathbf{1}_r \}$, where $\mathbf{1}_r$ is the r-by-r identity matrix.

Definition 1 (Equivalence relation). Two parameters $\mathcal{A}' = (\mathcal{C}', M'_1, \dots, M'_k)$ and $\mathcal{A} = (\mathcal{C}, M_1, \dots, M_k)$ are called equivalent, denoted $\mathcal{A} \sim \mathcal{A}'$, if and only if there exist a set of orthogonal matrices $P_k \in \mathbb{O}_{d_k, r_k}$ such that

$$M'_k P_k^T = M_k, \ \forall k \in [K], \quad \text{and} \quad C' \times_1 P_1 \times_2 \cdots \times_K P_K = C.$$

Equivalently, two parameters \mathcal{A} , \mathcal{A}' are equivalent if the corresponding Tucker tensors are the same, $\mathcal{B}(\mathcal{A}) = \mathcal{B}'(\mathcal{A}')$.

Proposition 4 (Global convergence). Assume the set $\{\mathcal{A} \mid \mathcal{L}(\mathcal{A}) \geq \mathcal{L}(\mathcal{A}^{(0)})\}$ is compact and the stationary points of $\mathcal{L}(\mathcal{A})$ are isolated module the equivalence defined in (1). Furthermore, assume that $\alpha = \infty$; i.e., we impose no entrywise bound constrains on the parameter space. Then any sequence $\mathcal{A}^{(t)}$ generated by alternating algorithm converges to a stationary point of $\mathcal{L}(\mathcal{A})$ module equivalence class.

Proof. Pick an arbitrary iterate $\mathcal{A}^{(t)}$. Because of the compactness of set $\{\mathcal{A}: \mathcal{L}(\mathcal{A}) \geq \mathcal{L}(\mathcal{A}^{(0)})\}$ and the boundedness of the decision domain, there exist a sub-sequence of $\mathcal{A}^{(t)}$ that converges. Let \mathcal{A}^* denote one of the limiting points of $\mathcal{A}^{(t)}$. Let $\mathcal{S} = \{\mathcal{A}^*\}$ denote the set of all the limiting points of $\mathcal{A}^{(t)}$. We have $\mathcal{S} \subset \{\mathcal{A}: \mathcal{L}(\mathcal{A}) \geq \mathcal{L}(\mathcal{A}^{(0)})\}$ and thus \mathcal{S} is a compact set. By Lange (2012, Propositions 8.2.1 and 13.4.2), \mathcal{S} is also connected. Note that all points in \mathcal{S} are also stationary points of $\mathcal{L}(\cdot)$, because of the monotonic increase of $\mathcal{L}(\mathcal{A}^{(t)})$ as $t \to \infty$.

Consider the equivalence of Tucker tensor representation of elements in \mathcal{S} . We define an enlarged set \mathcal{E}_S induced by the equivalent class of elements in \mathcal{S} ,

$$\mathcal{E}_{S} = \{ \mathcal{A} \colon \mathcal{A} \sim \mathcal{A}^{*} \text{ for some } \mathcal{A}^{*} \in \mathcal{S} \}.$$

The enlarged set \mathcal{E}_S satisfies the two properties below:

- 1. [Union of stationary points] The set \mathcal{E}_S is an union of equivalent classes generated by the limiting points in \mathcal{S} .
- 2. [Connectedness module the equivalence] The set \mathcal{E}_S is connected module the equivalence relationship. That property is obtained by the connectedness of S.

Now, note that the isolation of stationary points and Property 1 imply that \mathcal{E}_S contains only finite number of equivalent classes. Otherwise, there is a subsequence of non-equivalent stationary points whose limit is not isolated, which contradicts the isolation assumption. Combining the finiteness with Property 2, we conclude that \mathcal{E}_S contains only a single equivalent class; i.e. $\mathcal{E}_S = \mathcal{E}_{\{\mathcal{A}^*\}}$, where \mathcal{A}^* is a stationary point of $\mathcal{L}(\mathcal{A})$. Therefore, all the convergent sub-sequences of $\mathcal{A}^{(t)}$ converge to one stationary point \mathcal{A}^* up to equivalence. We conclude that, any iterate $\mathcal{A}^{(t)}$ generated by Algorithm 1 converges to a stationary point of $\mathcal{L}(\mathcal{A})$ up to equivalence.

C Computational complexity

The computational complexity of our Algorithm (1) is $O(d\sum_k p_k^3)$ for each loop of iterations, where $d = \prod_k d_k$ is the total size of the data tensor. More precisely, the update of core tensor costs $O(r^3d)$, where $r = \prod_k r_k$ is the total size of the core tensor. The update of each factor matrix \mathbf{M}_k involves a GLM with a d-length response, and d-by- $(r_k p_k)$ feature matrix. Solving such a GLM requires $O(dr_k^3 p_k^3)$, and therefore the cost for updating K factors in total is $O(d\sum_k r_k^3 p_k^3)$. This complexity in tensor dimension matches with the classical tensor decomposition (Kolda and Bader, 2009).

D Additional simulation results

Section 5 in the main text has provided simulation results for two settings: low-signal, high-rank setting and high-signal, low-rank setting. Here, we perform the simulations for the full combinations of rank $\mathbf{r} = (3, 3, 3), (4, 5, 6)$ and signal $\alpha = 3, 6$. Figures S1 and S2 confirm the outperformance of the supervised tensor method in a range of model complexities.

Figure S1: Comparison of MSPE versus the number of modes with features. We consider full combinations of rank $\mathbf{r}=(3,3,3)$ (low), $\mathbf{r}=(4,5,6)$ (high), and signal $\alpha=3$ (low), $\alpha=6$ (high).

Figure S2: Comparison of MSPE versus effective sample size. We consider full combinations rank $\mathbf{r} = (3, 3, 3)$ (low), $\mathbf{r} = (4, 5, 6)$ (high), and signal $\alpha = 3$ (low), $\alpha = 6$ (high).

References

- Berthet, Q. and Baldin, N. (2020). Statistical and computational rates in graph logistic regression. *Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics*, 108:2719–2730.
- Fan, J., Gong, W., and Zhu, Z. (2019). Generalized high-dimensional trace regression via nuclear norm regularization. *Journal of Econometrics*.
- Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. *SIAM* review, 51(3):455–500.
- Lange, K. (2012). Numerical Analysis for Statisticians. Springer Publishing Company, Incorporated, 2nd edition.
- Rudelson, M. and Vershynin, R. (2010). Non-asymptotic theory of random matrices: extreme singular values. In *Proceedings of the International Congress of Mathematicians* 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pages 1576–1602. World Scientific.
- Tomioka, R. and Suzuki, T. (2014). Spectral norm of random tensors. arXiv preprint arXiv:1407.1870.
- Wang, M., Duc, K. D., Fischer, J., and Song, Y. S. (2017). Operator norm inequalities between tensor unfoldings on the partition lattice. *Linear Algebra and Its Applications*, 520:44–66.
- Wang, M. and Li, L. (2020). Learning from binary multiway data: Probabilistic tensor decomposition and its statistical optimality. *Journal of Machine Learning Research, In press*.
- Wang, M. and Song, Y. (2017). Tensor decompositions via two-mode higher-order SVD (HOSVD). In *Artificial Intelligence and Statistics*, pages 614–622.