UNIVERSIDADE ESTADUAL DE CAMPINAS

RENATO LOPES MOURA RA163050

Estudo sobre Inferência Fuzzy baseada em medidas de subsethood

1 Definições

Definição 1. Seja uma função $S: \mathcal{F}(X)x\mathcal{F}(X) \to [0,1]$. S(A,B) é uma medida de subsethood se para $A,B,C \in \mathcal{F}(X)$ temos:

1.
$$S(A, B) = 1 \Leftrightarrow A \subseteq B$$

2.
$$S(X, \emptyset) = 0$$

3. Se
$$A \subseteq B \subseteq C$$
, então $S(C,A) \leq S(B,A)$ e $S(C,A) \leq S(C,B)$

Definição 2. A medida de subsethood de Kosko é definida da seguinte forma:

$$S_k(A, B) = \frac{\int_{x \in X} \min(\mu_A(x), \mu_B(x))}{\int_{x \in X} \mu_A(x)}$$

Definição 3. A medida de subsethood de Willmott é definida da seguinte forma:

$$S_w(A,B) = \frac{\int_{x \in X} \mu_B(x)}{\int_{x \in X} \max(\mu_A(x), \mu_B(x))}$$

Definição 4. As medidas de subsethood $S_p^{\cap}(\text{meet})$ e $S_p^{\cup}(\text{join})$ são definidas da seguinte forma:

$$S_p^{\cap}(A,B) = I_p(v_p(A), v_p(A \cap B)),$$

$$S_p^{\cup}(A,B) = I_p(v_p(A \cup B), v_p(B))$$

Onde I_p denota a implicação de Goguen

$$I_p(x,y) = \begin{cases} 1 & \text{se } x = 0\\ \min(1, \frac{y}{x}) & \text{se } x > 0 \end{cases}$$

e v_p é uma função $\mathcal{F}(X) \to [0,1]$ definida por:

$$v_p = \sum_{i=1}^k \frac{1 - \cos(\pi [\mu_C(x^i)]^p)}{k}, \quad X = \{x^1, ..., x^k\}$$

2 Experimentos

2.1 Caso 1

Entrada triangular quase discreta (3.4,3.5,3.6)

Figure 1: Entrada do caso 1

Figure 2: Resultados do caso 1

Medida	Regra 1(vermelho)	Regra 2(verde)	Defuzzificaçao
S_k	0	0.738	2.297
S_w	0.938	0.988	4.996
$S_{0.25}^{\cap}$	0	0.974	2.333
$S_{0.25}^{\cup}$	0.938	0.999	4.996
$S_{0.5}^{\cap}$	0	0.901	2.327
$S_{0.5}^{\cup}$	0.938	0.995	4.996
S_1^{\cap}	0	0.678	2.281
S_1^{\cup}	0.938	0.984	4.996
S_2^{\cap}	0	0.281	2.133
S_2^{\cup}	0.937	0.965	4.997
S_{10}^{\cap}	0	0	0
S_{10}^{\cup}	0.937	0.952	4.998
S_{100}^{\cap}	0	0	0
S_{100}^{\cup}	0.936	0.951	4.998
S_{1000}^{\cap}	0	0	0
S_{1000}^{\cup}	0.714	0.769	4.966

2.2 Caso 2

Entrada triangular quase igual ao antecedente (0.0,3.3,4.0)

Figure 3: Entrada do caso 2

Figure 4: Resultados do caso 2

Medida	Regra 1(vermelho)	Regra 2(verde)	Defuzzificaçao
S_k	0	0.929	2.330
S_w	0.429	0.935	4.539
$S_{0.25}^{\cap}$	0	0.988	2.333
$S_{0.25}^{\cup}$	0.429	0.988	4.536
$S_{0.5}^{\cap}$	0	0.968	2.333
$S_{0.5}^{\cup}$	0.429	0.969	4.536
S_1^{\cap}	0	0.926	2.330
S_1^{\cup}	0.429	0.931	4.540
S_2^{\cap}	0	0.839	2.318
S_2^{\cup}	0.429	0.861	4.554
S_{10}^{\cap}	0	0.323	2.151
S_{10}^{\cup}	0.429	0.596	4.730
S_{100}^{\cap}	0	0	0
S_{100}^{\cup}	0.429	0.5	4.864
S_{1000}^{\cap}	0	0	0
S_{1000}^{\cup}	0.426	0.497	4.864

2.3 Caso 3

Entrada triangular com pouca interseção (3.8,4.0,5.0)

Figure 5: Entrada do caso 3

Figure 6: Resultados do caso 3

Medida	Regra 1(vermelho)	Regra 2(verde)	Defuzzificaçao
S_k	0	0.028	2.014
S_w	0.714	0.774	4.963
$S_{0.25}^{\cap}$	0	0.601	2.258
$S_{0.25}^{\cup}$	0.714	0.787	4.956
$S_{0.5}^{\cap}$	0	0.266	2.126
$S_{0.5}^{\cup}$	0.714	0.777	4.961
S_1^{\cap}	0	0.045	2.022
S_1^{\cup}	0.714	0.771	4.965
S_2^{\cap}	0	0.001	2
S_2^{\cup}	0.714	0.769	4.966
S_{10}^{\cap}	0	0	0
S_{10}^{\cup}	0.714	0.769	4.966
S_{100}^{\cap}	0	0	0
S_{100}^{\cup}	0.714	0.769	4.966
S_{1000}^{\cap}	0	0	0
S_{1000}^{\cup}	0.649	0.711	4.949

2.4 Caso 4

Entrada triangular sem interseção mas próxima de um dos antecedentes (4.0,4.5,5.0)

Figure 7: Entrada do caso 4

Figure 8: Resultados do caso 4

Medida	Regra 1(vermelho)	Regra 2(verde)	Defuzzificaçao
S_k	0	0	0
S_w	0.750	0.800	4.974
$S_{0.25}^{\cap}$	0	0	0
$S_{0.25}^{\cup}$	0.750	0.800	4.974
$S_{0.5}^{\cap}$	0	0	0
$S_{0.5}^{\cup}$	0.750	0.800	4.974
S_1^{\cap}	0	0	0
S_1^{\cup}	0.750	0.800	4.974
S_2^{\cap}	0	0	0
S_2^{\cup}	0.750	0.800	4.974
S_{10}^{\cap}	0	0	0
S_{10}^{\cup}	0.750	0.800	4.974
S_{100}^{\cap}	0	0	0
S_{100}^{\cup}	0.750	0.800	4.974
S_{1000}^{\cap}	0	0	0
S_{1000}^{\cup}	0.696	0.753	4.962

2.5 Caso 5

Entrada triangular equidistante dos antecedentes (5.0,5.5,6.0). Obs: notar que os antecedentes não possuem o mesmo tamanho.

Figure 9: Entrada do caso 5

Figure 10: Resultados do caso 5

Medida	Regra 1(vermelho)	Regra 2(verde)	Defuzzificaçao
S_k	0	0	0
S_w	0.750	0.800	4.974
$S_{0.25}^{\cap}$	0	0	0
$S_{0.25}^{\cup}$	0.750	0.800	4.974
$S_{0.5}^{\cap}$	0	0	0
$S_{0.5}^{\cup}$	0.750	0.800	4.974
S_1^{\cap}	0	0	0
S_1^{\cup}	0.750	0.800	4.974
S_2^{\cap}	0	0	0
S_2^{\cup}	0.750	0.800	4.974
S_{10}^{\cap}	0	0	0
S_{10}^{\cup}	0.750	0.800	4.974
S_{100}^{\cap}	0	0	0
S_{100}^{\cup}	0.750	0.800	4.974
S_{1000}^{\cap}	0	0	0
S_{1000}^{\cup}	0.696	0.753	4.962

2.6 Comentários

- Em todos os casos, as medidas de subsethood do tipo $meet(S_p^{\cap})$ com $p \geq 10$ não apresentam valores de ativação significativos. No Caso 2, temos $S_{10}^{\cap} = 0.323$ apesar de a entrada estar quase totalmente contida no antecedente. Portanto, não parece interessante considerar as medidas do tipo $meet(S_p^{\cap})$ com $p \geq 10$.
- Também é possível notar que conforme o parâmetro p aumenta, o grau de ativação pela medida de subsethood do tipo join (S_p^{\cup}) tende a se igualar para todas as regras. Portanto, também não parece interessante considerar as medidas do tipo join (S_p^{\cup}) com $p \geq 10$.
- No Caso 1, apesar de a entrada apresentar um nível considerável de interseção com o antecedente da Regra 2 (tomate verde), as medidas de subsethood do tipo join (S_p^{\cup}) ainda apresentam um elevado grau de ativação, em geral ≥ 0.9 . Desta forma, é possível concluir que para entradas com cardinalidade pequena, deve-se dar um peso maior para o grau de ativação das medidas de subsethood do tipo meet (S_p^{\cap}) .
- Nos Casos 4 e 5, pode-se notar que o grau de ativação das regras independe da localização da entrada no caso em que a interseção da entrada com os antecedentes é vazia. A medida de subsethood do tipo join (S_p^{\cup}) considera apenas a cardinalidade dos antecedentes e da entrada, o que pode representar um problema em bases de regras esparsas.

3 Experimentos com combinação de medidas

Proposição 1. A média ponderada entre medidas de subsethood dos tipos meet e join:

$$S_p(A, B) = \frac{\alpha S_p^{\cap}(A, B) + \beta S_p^{\cup}(A, B)}{\alpha + \beta}$$

é uma medida de subsethood

Proof. 1.
$$S(A, B) = 1 \Leftrightarrow A \subseteq B$$

 \Rightarrow : $S_p(A, B) = 1$
Suponha que $A \nsubseteq B \Rightarrow S_p^{\cap}(A, B) < 1$ e $S_p^{\cup}(A, B) < 1$
 $\Rightarrow \alpha S_p^{\cap}(A, B) < \alpha$ e $\beta S_p^{\cup}(A, B) < \beta$
 $\Rightarrow \alpha S_p^{\cap}(A, B) + \beta S_p^{\cup}(A, B) < \alpha + \beta$
 $\Rightarrow S_p(A, B) < 1$, o que contradiz a hipótese inicial.
Portanto, $A \subseteq B$.
 \Leftrightarrow : $A \subseteq B$
 $\Rightarrow S_p^{\cap}(A, B) = 1$ e $S_p^{\cup}(A, B) = 1$
 $\Rightarrow \alpha S_p^{\cap}(A, B) + \beta S_p^{\cup}(A, B) = \alpha + \beta$
 $\Rightarrow S_p(A, B) = 1$

2.
$$S(X, \emptyset) = 0$$

 $S_p^{\cap}(X, \emptyset) = 0 \text{ e } S_p^{\cup}(X, \emptyset) = 0$
 $\Rightarrow S(X, \emptyset) = \frac{\alpha \cdot 0 + \beta \cdot 0}{\alpha + \beta} = 0$

3. Se $A \subseteq B \subseteq C$, então $S(C, A) \leq S(B, A)$ e $S(C, A) \leq S(C, B)$

3.1 Caso 1

Entrada triangular quase discreta (3.4, 3.5, 3.6)

Figure 11: Entrada do caso $1\,$

Figure 12: Resultados do caso 1

Medida	Regra 1(vermelho)	Regra 2(verde)	Defuzzificaçao
$0.9S_k + 0.1S_w$	0.094	0.763	3.203
$0.9S_{0.25}^{\cap} + 0.1S_{0.25}^{\cup}$	0.094	0.977	3.186
$0.9S_{0.5}^{\cap} + 0.1S_{0.5}^{\cup}$	0.094	0.911	3.187
$0.9S_1^{\cap} + 0.1S_1^{\cup}$	0.094	0.708	3.215
$0.9S_2^{\cap} + 0.1S_2^{\cup}$	0.094	0.350	3.532
$0.7S_k + 0.3S_w$	0.281	0.813	4.167
$0.7S_{0.25}^{\cap} + 0.3S_{0.25}^{\cup}$	0.281	0.981	4.137
$0.7S_{0.5}^{\cap} + 0.3S_{0.5}^{\cup}$	0.281	0.929	4.140
$0.7S_1^{\cap} + 0.3S_1^{\cup}$	0.281	0.769	4.184
$0.7S_2^{\cap} + 0.3S_2^{\cup}$	0.281	0.486	4.456
$0.5S_k + 0.5S_w$	0.469	0.863	4.632
$0.5S_{0.25}^{\cap} + 0.5S_{0.25}^{\cup}$	0.469	0.986	4.613
$0.5S_{0.5}^{\cap} + 0.5S_{0.5}^{\cup}$	0.469	0.948	4.616
$0.5S_1^{\cap} + 0.5S_1^{\cup}$	0.469	0.831	4.642
$0.5S_2^{\cap} + 0.5S_2^{\cup}$	0.469	0.623	4.781

4 Modificadores de números fuzzy

Definição 5. Um modificador fuzzy m sobre X é uma aplicação do tipo:

$$m: \mathcal{F}(X) \to \mathcal{F}(X)$$

tal que m é dito:

- 1. Expansivo se, para todo $A \in \mathcal{F}(X), A \subseteq m(A)$, ou seja, $\mu_A(x) \leq \mu_{m(A)}(x), \forall x \in X$;
- 2. Restritivo se, para todo $A \in \mathcal{F}(X), A \supseteq m(A),$ ou seja, $\mu_A(x) \ge \mu_{m(A)}(x), \forall x \in X;$

Proposição 2. Considere o seguinte procedimento para construção de números fuzzy modificados:

- 1. Centrar A em torno de 0;
- 2. Adicionar c a ambos os lados de supp(A);
- 3. Calcular $f = \frac{supp(A)}{supp(A^c)}$;
- 4. Multiplicar todos os α -cortes por f;
- 5. Transladar o resultado de volta.

Isto deve funcionar para todos os números fuzzy, menos números fuzzy crisp, que podem ser vistos como números fuzzy triangulares. Para $r \in \mathbb{R}$, podemos definir $r^c = (r - c; r; r + c)$.

Exemplo 1. Seja o seguinte número fuzzy $A \in \mathcal{F}(\mathbb{R})$:

Figure 13: Número fuzzy a ser modificado.

Com função de pertinência dada por:

$$\mu_A(x) = \begin{cases} x - 2 & \text{se } 2 < x \le 3 \\ 4 - x & \text{se } 3 < x \le 4 \\ 0 & \text{c.c.} \end{cases}$$

E $\alpha\text{-cortes}$ dados por:

$$A^{\alpha} = [\alpha + 2, -\alpha + 4]$$

Aplicando o procedimento descrito na Proposição [?], temos:

• Passo 1: Centrar A em torno de 0.

Figure 14: Número fuzzy centrado em 0.

• Passo 2: Adicionar c a ambos os lados de supp(A'). Considerando c = 1, temos:

$$supp(A') = [-1, 1] \Rightarrow supp(A'^c) = [-2, 2] \Rightarrow supp(A^c) = [1, 5]$$

• Passo 3: Calcular $f = \frac{supp(A)}{supp(A^c)}$.

$$\begin{split} f &= \frac{supp(A)}{supp(A^c)} = \frac{[2,4]}{[1,5]} = [2,4] \cdot [\frac{1}{5},1] \\ &= [\min(2 \cdot \frac{1}{5}, 4 \cdot \frac{1}{5}, 2 \cdot 1, 4 \cdot 1), \max(2 \cdot \frac{1}{5}, 4 \cdot \frac{1}{5}, 2 \cdot 1, 4 \cdot 1)] \\ &= [\frac{2}{5}, 4] \end{split}$$

• Passo 4: Multiplicar todos os α -cortes por f.

$$\begin{split} B^{\alpha} &= f \cdot A^{\alpha} = [\frac{2}{5}, 4] \cdot A^{\alpha} \\ &= [\min(\frac{2}{5} \cdot (\alpha + 2), \frac{2}{5} \cdot (-\alpha + 4), 4 \cdot (\alpha + 2), 4 \cdot (-\alpha + 4)), \\ \max(\frac{2}{5} \cdot (\alpha + 2), \frac{2}{5} \cdot (-\alpha + 4), 4 \cdot (\alpha + 2), 4 \cdot (-\alpha + 4))] \\ &= [(\frac{2}{5} \cdot \alpha + \frac{4}{5}), (-4 \cdot \alpha + 16)] \end{split}$$

 $\label{eq:Figure 15:Numero fuzzy modificado.}$

References

[1] Barros, L. C. de, Bassanezi, R. C. *Tópicos de lógica fuzzy e biomatemática*. Grupo de Biomatemática, Instituto de Matemática, Estatística e Computação Científica (IMECC), Universidade Estadual de Campinas (UNICAMP), (2006).