MPEC Approach

C.Conlon - thanks to late great Che-Lin Su

Grad IO

Extremum Estimators

Often faced with extremum estimator problems in econometrics (ML, GMM, MD, etc.) that look like:

$$\hat{\theta} = \arg\max_{\theta} Q_n(\theta), \quad \theta \in \Theta$$

Many economic problems contain constraints, such as: market clearing (supply equals demand), consumer's consume their entire budget set, or firm's first order conditions are satisfied. A natural way to represent these problems is as constrained optimization.

Constrained Problems

MPEC

$$\hat{\theta} = \arg\max_{\theta,P} Q_n(\theta,P), \quad \text{s.t.} \quad \Psi(P,\theta) = 0, \quad \theta \in \Theta$$

Fixed Point / Implicit Solution

In much of the literature the tradition has been to express the solutions $\Psi(P,\theta)=0$ implicitly as $P(\theta)$:

$$\hat{\theta} = \arg\max_{\theta} Q_n(\theta, P(\theta)), \quad \theta \in \Theta$$

Constrained Problems

MPEC

$$\hat{\theta} = \arg\max_{\theta,P} Q_n(\theta,P), \quad \text{s.t.} \quad \Psi(P,\theta) = 0, \quad \theta \in \Theta$$

Fixed Point / Implicit Solution

In much of the literature the tradition has been to express the solutions $\Psi(P,\theta)=0$ implicitly as $P(\theta)$:

$$\hat{\theta} = \arg\max_{\theta} Q_n({\color{black}\theta}, {\color{black}P({\color{black}\theta})}), \quad {\color{black}\theta} \in \Theta$$

NFXP vs MPEC

Probably you were taught some things that weren't quite right

- ightharpoonup Fewer parameters ightharpoonup easier problems to solve!
- ▶ Reformulate problems with fixed points or implicit solutions to concentrate out parameters.
- ▶ But sometimes this makes the problem more complicated (saddle points, complicated Hessians, etc.)

MPEC says do the opposite:

- ▶ Add lots of parameters
- ▶ But add them with simple constraints (linear or quadratic).
- ▶ Idea: Make the Hessian as close to constant, block diagonal, sparse, etc. as possible.

Mostly this is in response to change in technology: nonlinear solvers supporting large sparse Hessians.

Rust Problem

- $\blacktriangleright\,$ Bus repairman sees mileage x_t at time t since last overhaul
- ▶ Repairman chooses between overhaul and normal maintenance

$$u(x_t, d_t, \boldsymbol{\theta^c}, \boldsymbol{RC}) = \begin{cases} -c(x_t, \boldsymbol{\theta^c}) & \text{if} \quad d_t = 0 \\ -(\boldsymbol{RC} + c(0, \boldsymbol{\theta^c}) &) & \text{if} \quad d_t = 1 \end{cases}$$

Repairman solves DP:

$$V_{\pmb{\theta}}(x_t) = \sum_{f_t, f_{t+1}, \dots} E\left\{\sum_{j=t}^{\infty} \beta^{j-t}[u(x_j, f_j, \pmb{\theta}) + \varepsilon_j(f_j)] | x_t\right\}$$

- lacksquare Structural parameters to be estimated $heta=(heta^c,RC, heta^p).$
- $lackbox{ Coefficients of cost function } c(x, { heta^c}) = heta^c_1 x + heta^c_2 x^2$
- \blacktriangleright Transition probabilities in mileages $p(x_{t+1}|x_t,d_t,{\theta^p})$

Rust Problem

- lacksquare Data: time series $(x_t,d_t)_{t=1}^T$
- ▶ Likelihood function

$$\begin{split} \mathcal{L}(\theta) &= \prod_{t=2}^{I} P(d_t|x_t, \textcolor{red}{\theta^c}, \textcolor{blue}{RC}) p(x_t|x_{t-1}, d_{t-1}, \textcolor{blue}{\theta^p}) \\ \text{with } P(d|x, \textcolor{red}{\theta^c}, \textcolor{blue}{RC}) &= \frac{\exp[u(x, d, \textcolor{red}{\theta^c}, \textcolor{blue}{RC}) + \beta EV_{\textcolor{red}{\theta}}(x, d)}{\sum_{d' \in \{0,1\}} \exp[u(x, d', \textcolor{red}{\theta^c}, \textcolor{blue}{RC}) + \beta EV_{\textcolor{red}{\theta}}(x', d)} \\ EV_{\textcolor{red}{\theta}}(x, d) &= T_{\textcolor{red}{\theta}}(EV_{\textcolor{red}{\theta}})(x, d) \end{split}$$

$$\equiv \int_{x'=0}^{\infty} \log \left[\sum_{d' \in \{0,1\}} \exp[u(x,d', \textcolor{red}{\theta^c}, \textcolor{red}{RC}) + \beta \textcolor{red}{EV}_{\textcolor{red}{\theta}}(x',d)] \right] p(dx'|x,d,\textcolor{red}{\theta^p})$$

Rust Problem

Outer Loop: Solve Likelihood

$$\max_{\boldsymbol{\theta} \geq 0} \mathcal{L}(\boldsymbol{\theta}) = \prod_{t=2}^{T} \Pr(d_t|x_t, \boldsymbol{\theta^c}, \boldsymbol{RC}) p(x_t|x_{t-1}, d_{t-1}, \boldsymbol{\theta^p})$$

- $lackbox{}$ Convergence test: $\|
 abla_{ heta} \mathcal{L}(heta) \| \leq \epsilon_{out}$
- lacktriangle Inner Loop: Compute expected value function $EV_{ heta}$ for a given heta
- $lackbox{EV}_{ heta}$ is the implicit expected value function defined by the Bellman equation or the fixed point function

$$EV_{\theta} = T_{\theta}(EV_{\theta})$$

- \blacktriangleright Convergence test: $\|EV_{\pmb{\theta}}^{(k+1)} EV_{\pmb{\theta}}^{(k)}\| \leq \epsilon_{in}$
- ▶ Start with contraction iterations and polish with Newton Steps

NFXP Concerns

- ▶ Inner-loop error propagates into outer-loop function and derivatives
- ▶ NFXP needs to solve inner-loop exactly each stage of parameter search
 - to accurately compute the search direction for the outer loop
 - to accurately evaluate derivatives for the outer loop
 - for outer loop to converge!
- ▶ Stopping rules: choosing inner-loop and outer-loop tolerance
 - inner loop can be slow: contraction mapping is linearly convergent
 - tempting to loosen inner loop tolerance ϵ_{in} (such as 1e-6 or larger!).
 - Outer loop may not converge with loose inner loop tolerance.
 - check solver output message
 - \blacksquare tempting to loosen outer loop tolerance ϵ_{out} to promote convergence (1e-3 or larger!).

Convergence Properties (Su and Judd)

- $\blacktriangleright \ \mathcal{L}(EV(\theta,\epsilon_{in}),\theta)$ the programmed outer loop objective function
- lackbox L: the Lipschitz constant (like modulus) of inner-loop contraction mapping
- $\blacktriangleright \ \ \text{Analytic derivatives} \ \nabla_{\theta} \mathcal{L}(EV(\theta, \epsilon_{in}), \theta) \ \text{is provided:} \ \epsilon_{out} = O(\tfrac{L}{1-L} \epsilon_{in})$
- \blacktriangleright Finite-difference derivatives are used: $\epsilon_{out} = O(\sqrt{\frac{L}{1-L}} \epsilon_{in})$

MPEC Alternative (Su and Judd))

 \blacktriangleright Form the augmented likelihood function for data $X=(x_t,d_t)_{t=1}^T$

$$\begin{split} \mathcal{L}(EV, \theta; X) &= \prod_{t=2}^T P(d_t|x_t, \theta^c, RC) p(x_t|x_{t-1}, d_{t-1}, \theta^p) \\ \text{with } P(d|x, \theta^c, RC) &= \frac{\exp[u(x, d, \theta^c, RC) + \beta EV(x, d)}{\sum_{d' \in \{0.1\}} \exp[u(x, d', \theta^c, RC) + \beta EV(x', d)} \end{split}$$

lacksquare Rationality and Bellman equation imposes a relationship between heta and EV

$$EV = T(EV, \theta)$$

► Solve constrained optimization problem

$$\max_{({\color{red}\theta},EV)} \mathcal{L}(EV,{\color{red}\theta};X)$$

subject to
$$EV = T(EV, \theta)$$

MPEC Alternative²

The previous approach solves the problem "on the grid".

- $ightharpoonup x_t$ takes on discrete values.
- lacktriangle We only evaluate $EV(x_t,i_t)$ at values on the grid.
- \blacktriangleright We don't evaluate $EV(x_t,i_t)$ and values between $[x_s,x_{s+1}].$

If we did we would have to interpolate.

- Macroeconomists tend to use cubic splines
- \blacktriangleright Could use global orthogonal polynomials $EV(x)\approx a_0+a_1b_1(x)+a_2b_2(x)+\dots$
 - ullet Advantage is that solving polynomial equation for EV=T(EV, heta) is pretty easy.
 - ullet Can easily switch to continuous state space without any additional complications: $f(x_{t+1}|x_t)$ must also be continuous.

β	Imple.	Parameters						MSE
		RC	θ_{11}	θ_{31}	θ_{32}	θ_{33}	θ_{34}	
	true	11.726	2.457	0.0937	0.4475	0.4459	0.0127	
0.975	MPEC1	12.212	2.607	0.0943	0.4473	0.4454	0.0127	3.111
		(1.613)	(0.500)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
	MPEC2	12.212	2.607	0.0943	0.4473	0.4454	0.0127	3.111
		(1.613)	(0.500)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
	NFXP	12.213	2.606	0.0943	0.4473	0.4445	0.0127	3.123
		(1.617)	(0.500)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_
0.980	MPEC1	12.134	2.578	0.0943	0.4473	0.4455	0.0127	2.857
		(1.570)	(0.458)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	-
	MPEC2	12.134	2.578	0.0943	0.4473	0.4455	0.0127	2.857
		(1.570)	(0.458)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	_
	NFXP	12.139	2.579	0.0943	0.4473	0.4455	0.0127	2.866
		(1.571)	(0.459)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	_

β	Imple.	Parameters						MSE
		RC	θ_{11}	θ_{31}	θ_{32}	θ_{33}	θ_{34}	
	true	11.726	2.457	0.0937	0.4475	0.4459	0.0127	
0.985	MPEC1	12.013	2.541	0.0943	0.4473	0.4455	0.0127	2.140
		(1.371)	(0.413)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	-
	MPEC2	12.013	2.541	0.0943	0.4473	0.4455	0.0127	2.140
		(1.371)	(0.413)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	-
	NFXP	12.021	2.544	0.0943	0.4473	0.4455	0.0127	2.136
		(1.368)	(0.411)	(0.0037)	(0.0057)	(0.0060)	(0.0015)	-
0.990	MPEC1	11.830	2.486	0.0943	0.4473	0.4455	0.0127	1.880
		(1.305)	(0.407)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
	MPEC2	11.830	2.486	0.0943	0.4473	0.4455	0.0127	1.880
		(1.305)	(0.407)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
	NFXP	11.830	2.486	0.0943	0.4473	0.4455	0.0127	1.880
		(1.305)	(0.407)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_

β	Imple.		Parameters					MSE
		RC	θ_{11}	θ_{31}	θ_{32}	θ_{33}	θ_{34}	
	true	11.726	2.457	0.0937	0.4475	0.4459	0.0127	
0.995	MPEC1	11.819	2.492	0.0942	0.4473	0.4455	0.0127	1.892
		(1.308)	(0.414)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
	MPEC2	11.819	2.492	0.0942	0.4473	0.4455	0.0127	1.892
		(1.308)	(0.414)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	-
1	NFXP	11.819	2.492	0.0942	0.4473	0.4455	0.0127	1.892
		(1.308)	(0.414)	(0.0036)	(0.0057)	(0.0060)	(0.0015)	_

β	Imple.	Runs Conv.	CPU Time (in sec.)	# of Major Iter.	# of Func. Eval.	# of Contrac. Mapping Iter.
		Conv.	(III Sec.)	rter.	Eval.	iviapping iter.
0.975	MPEC1	1240	0.13	12.8	17.6	_
	MPEC2	1247	7.9	53.0	62.0	_
	NFXP	998	24.6	55.9	189.4	1.348e + 5
0.980	MPEC1	1236	0.15	14.5	21.8	_
	MPEC2	1241	8.1	57.4	70.6	_
	NFXP	1000	27.9	55.0	183.8	1.625e + 5
0.985	MPEC1	1235	0.13	13.2	19.7	_
	MPEC2	1250	7.5	55.0	62.3	_
	NFXP	952	42.2	61.7	227.3	2.658e + 5
0.990	MPEC1	1161	0.19	18.3	42.2	_
	MPEC2	1248	7.5	56.5	65.8	_
	NFXP	935	70.1	66.9	253.8	4.524e + 5
0.995	MPEC1	965	0.14	13.4	21.3	_
	MPEC2	1246	7.9	59.6	70.7	_
	NFXP	950	111.6	58.8	214.7	7.485e + 5

```
KNITRO 5.2.0: alg=1
opttol=1.0e-6
feastol=1.0e-6
Problem Characteristics
Objective goal: Maximize
Number of variables:
                                        207
    bounded below:
                                          6
    bounded above:
                                        201
    bounded below and above:
    fixed:
    free:
Number of constraints:
                                        202
    linear equalities:
    nonlinear equalities:
                                        201
    linear inequalities:
    nonlinear inequalities:
                                          ٥
    range:
Number of nonzeros in Jacobian:
                                       2785
                                       1620
Number of nonzeros in Hessian:
```

Final Statistics

```
Final objective value
                               = -2.35221126396447e+03
Final feasibility error (abs / rel) = 1.33e-15 / 1.33e-15
Final optimality error (abs / rel) = 1.00e-08 / 6.71e-10
# of iterations
                                           12
# of CG iterations
# of function evaluations
                                           13
# of gradient evaluations
                                           13
# of Hessian evaluations
                                           12
Total program time (secs)
                          = 0.10326 (
                                                       0.097 CPU time)
Time spent in evaluations (secs)
                                         0.05323
```

```
KNITRO 5.2.0: Locally optimal solution.
objective -2352.211264; feasibility error 1.33e-15
12 major iterations; 13 function evaluations
```

BLP Demand Example

BLP 1995

The estimator solves the following mathematical program:

$$\begin{split} \min_{\boldsymbol{\theta_2}} g(\xi(\boldsymbol{\theta_2}))'Wg(\xi(\boldsymbol{\theta_2})) \quad \text{s.t.} \\ g(\xi(\boldsymbol{\theta_2})) &= \frac{1}{N} \sum_{\forall j,t} \xi_{jt}(\boldsymbol{\theta_2})'z_{jt} \\ \xi_{jt}(\boldsymbol{\theta_2}) &= \delta_j(\boldsymbol{\theta_2}) - x_{jt}\beta - \alpha p_{jt} \\ s_{jt}(\delta(\boldsymbol{\theta_2}), \boldsymbol{\theta_2}) &= \int \frac{\exp[\delta_j(\boldsymbol{\theta_2}) + \mu_{ij}]}{1 + \sum_k \exp[\delta_j(\boldsymbol{\theta_2}) + \mu_{ik}]} f(\boldsymbol{\mu}|\boldsymbol{\theta_2}) \\ \log(S_{jt}) &= \log(s_{jt}(\delta(\boldsymbol{\theta_2}), \boldsymbol{\theta_2})) \quad \forall j,t \end{split}$$

BLP Algorithm

The estimation algorithm is generally as follows:

- 1. Guess a value of nonlinear parameters θ_2
- 2. Compute $s_{it}(\delta, \theta_2)$ via integration
- 3. Iterate on $\delta^{h+1}_{jt}=\delta^h_{jt}+\log(S_{jt})-\log(s_{jt}(\delta^h, {\color{red}\theta_2}))$ to find the δ that satisfies the share equation
- 4. IV Regression δ on observable X and instruments Z to get residual ξ .
- 5. Use ξ to construct $g(\xi(\theta_2))$.
- 6. Possibly construct other errors/instruments from supply side.
- 7. Construct GMM Objective

The idea is that $\delta(\theta_2)$ is an implicit function of the nonlinear parameters θ_2 . And for each guess we find that implicit solution for reduce the parameter space of the problem. But the Jacobian:

$$\tfrac{\partial \pmb{\xi}_t}{\partial \theta_2}(\theta_2) = - \Big[\tfrac{\partial \mathbf{s}_t}{\partial \pmb{\delta}_t}(\theta_2) \Big]^{-1} \, \Big[\tfrac{\partial \mathbf{s}_t}{\partial \theta_2}(\theta_2) \Big] \text{ is complicated to compute.}$$

BLP-MPEC

The estimator solves the following mathematical program:

$$\begin{split} \min_{\mathbf{\Sigma},\alpha,\beta,\xi} g(\xi)'Wg(\xi) \quad \text{s.t.} \\ g(\xi) &= \frac{1}{N} \sum_{\forall j,t} \xi'_{jt} z_{jt} \\ s_{jt}(\mathbf{\Sigma},\alpha,\beta,\xi) &= \sum_{i} w_{i} \frac{\exp[x_{jt}\beta + \xi_{jt} - \alpha p_{jt} + (\mathbf{\Sigma} \cdot \nu_{il}) \, x_{jt}]}{1 + \sum_{k} \exp[x_{kt}\beta + \xi_{kt} - \alpha p_{kt} + (\mathbf{\Sigma} \cdot \nu_{il}) \, x_{jt}]} \\ \log(S_{jt}) &= \log s_{jt}(\mathbf{\Sigma},\alpha,\beta,\xi) \quad \forall j,t \end{split}$$

- \blacktriangleright Expand the parameter space of the nonlinear search to include α, β, ξ
- \blacktriangleright Don't have to solve for ξ except at the end.
- ▶ No implicit functions of θ_2 and $\left[\frac{\partial \mathbf{s}_t}{\partial \sigma}(\sigma, \alpha, \beta, \xi)\right]$ is straightforward (no matrix inverse!).

Nevo Results

	Nevo	BLP-MPEC	E
Price	-28.189	-62.726	-61.43
σ_p	0.330	0.558	0.52
σ_{const}	2.453	3.313	3.14
σ_{sugar}	0.016	-0.006	
σ_{mushy}	0.244	0.093	0.08
$\pi_{p,inc}$	15.894	588.206	564.26
$\pi_{p,inc2}$	-1.200	-30.185	-28.93
$\pi_{p,kid}$	2.634	11.058	11.70
$\pi_{c,inc}$	5.482	2.29084	2.24
$\pi_{c,age}$	0.2037	1.284	1.3787
GMM	29.3611	4.564	
EL			-1742
Time	28 s	12s	19

21/24

Another Example: Empirical Likelihood

Consider the GMM moment condition $\mathbb{E}[g(Z_i,\theta)]=0$

- \blacktriangleright A common example is $\mathbb{E}[z_i'(y_i-x_i\beta)]=0$
- \blacktriangleright Now consider re-weighting the data with ρ_i so that $\sum_i \rho_i g(Z_i,\theta) = 0$
 - We also need that $\sum_i \rho_i = 1$ and $\rho_i \in (0,1)$ (ie: ρ is a valid probability measure)
 - Idea: penalize distance between ρ_i and $\frac{1}{n}$ with $f(\rho)$
- ▶ Idea: your moments always hold (because economic theory)
- ► How much would you have to re-sample data?

Another Example: (Generalized) Empirical Likelihood

$$\begin{split} \min_{\pmb{\theta}, \rho} \sum_i f(\rho_i) &\quad \text{s.t } \sum_i \rho_i \cdot g(Z_i, \pmb{\theta}) = 0 \\ &\quad \sum_i \rho_i = 1 \quad \rho_i \geq 0 \end{split}$$

Choices of $f(\rho_i)$:

- lacktriangle Empirical Likelihood: $f(
 ho_i) = -\log
 ho_i$ [This is NPMLE]
- \blacktriangleright Continuously Updating GMM (CUE): $f(\rho_i)=\rho_i^2$ [Derivation is not obvious]
- \blacktriangleright Exponential Tilt: $f(\rho_i) = \rho_i \log \rho_i$ [has some "robustness" properties]
- ▶ Adversarial Method of Moments: Conlon, Kim, Manresa, Li (2025)
- ▶ See Kitamura's Handbook Chapter for more details (and convex analysis) or Newey Smith (2004) for asymptotic bias.

Empirical Likelihood: NFXP Solution

Start with the Lagrangian:

$$\mathcal{L} = \sum_{i=1}^{n} \log \rho_{i} + \lambda \left(1 - \sum_{i=1}^{n} \rho_{i}\right) - n \gamma' \sum_{i=1}^{n} \rho_{i} \cdot g\left(Z_{i}, \theta\right)$$

Take derivatives with respect to ho and heta and Lagrange multipliers to get γ and concentrate out $ho_i(heta)$

$$\begin{split} \hat{\gamma}(\boldsymbol{\theta}) &= \arg\min_{\gamma \in \mathbb{R}^q} - \sum_{i=1}^n \log\left(1 + \gamma' g\left(Z_i, \boldsymbol{\theta}\right)\right) \\ \hat{\rho}_i(\boldsymbol{\theta}) &= \frac{1}{n\left(1 + \hat{\gamma}(\boldsymbol{\theta})' a\left(Z_i, \boldsymbol{\theta}\right)\right)}, \quad \hat{\lambda} = n \end{split}$$

The resulting dual is a saddle-point problem:

$$\hat{\theta}_{EL} = \arg\max_{\mathbf{\theta} \in \Theta} \ell_{NP}(\mathbf{\theta}) = \arg\max_{\mathbf{\theta} \in \Theta} \min \ _{\gamma \in \mathbb{R}^q} - \sum_{i=1}^n \log \left(1 + \gamma' g\left(Z_i, \mathbf{\theta}\right)\right)$$

But the primal (MPEC) problem is much easier... unless $g(Z_i,\theta)$ is trivial.

Thanks!