CSC4008 Assignment 2

CHEN Ang (118010009)

2.1

Recall from the lectures that if $p \geq 1$, $||\cdot||_p$ is a norm. Suppose given vectors ${\pmb x}, {\pmb y}$, one has for all $\lambda \in [0,1]$ that

$$||\lambda \boldsymbol{x} + (1 - \lambda)\boldsymbol{y}||_p \le ||\lambda \boldsymbol{x}||_p + ||(1 - \lambda)\boldsymbol{y}||_p$$
 (Triangle Inequality)
= $\lambda ||\boldsymbol{x}||_p + (1 - \lambda)||\boldsymbol{y}||_p$ (Scalability)

If $0 , consider <math>\boldsymbol{x} = [0; 1], \boldsymbol{y} = [1; 0]$ for \mathbb{R}^2 , and $\boldsymbol{x} = [0; 1; \boldsymbol{0}]$ and $\boldsymbol{y} = [1; 0; \boldsymbol{0}]$ for higher dimensional spaces where $\boldsymbol{0}$ denotes zero vectors of suitable lengths. Then with $\lambda = 1/2$,

$$||\lambda oldsymbol{x} + (1-\lambda)oldsymbol{y}||_p = 2^{1/p-1} > 1 = \lambda ||oldsymbol{x}||_p + (1-\lambda)||oldsymbol{y}||_p$$

2.6

Denote by s and k the spark and krank of ${\boldsymbol A}$, respectively. By definition of krank, k is the maximum number of columns one can arbitrary choose from ${\boldsymbol A}$ such that these columns are always linearly independent. Thus if one gets to choose one more column, namely k+1 columns, the requirement of krank would fail as there exists a set of k+1 columns from ${\boldsymbol A}$ that are linear dependent. In other words, there exists ${\boldsymbol x} \neq {\boldsymbol 0}$ with $||{\boldsymbol x}||_0 = k+1$ such that ${\boldsymbol A}{\boldsymbol x} = {\boldsymbol 0}$. Hence we have $s \leq k+1$. Further, because any k-subset of columns of ${\boldsymbol A}$ is always linearly independent, there exists no ${\boldsymbol y} \neq {\boldsymbol 0}$ with $||{\boldsymbol y}||_0 = k$ such that ${\boldsymbol A}{\boldsymbol y} = {\boldsymbol 0}$. Hence s > k, and we conclude that s = k+1.

2.10

Consider the SVD of matrix A with full a row rank:

$$oldsymbol{A} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^ op = oldsymbol{U} [oldsymbol{\Sigma}_1 \ oldsymbol{O}] egin{bmatrix} oldsymbol{V}_1^ op \ oldsymbol{V}_2^ op \end{bmatrix} = oldsymbol{U} oldsymbol{\Sigma}_1 oldsymbol{V}_1^ op \end{bmatrix}$$

The solution to Ax = y with the minimum 2-norm is given by

$$oldsymbol{x}_m = oldsymbol{A}^ op (oldsymbol{A}oldsymbol{A}^ op)^{-1}oldsymbol{y} = oldsymbol{V}_1oldsymbol{\Sigma}_1^{-1}oldsymbol{U}^ opoldsymbol{y}$$

From last assignment, we know

$$abla f(oldsymbol{x}) = 2(oldsymbol{A}^ op oldsymbol{A} oldsymbol{x} - oldsymbol{A}^ op oldsymbol{y})$$

Writing $\beta := 2\alpha$, GD generates the sequence

$$egin{aligned} m{x}_0 &= m{0} \ m{x}_k &= m{B}m{x}_{k-1} + m{c} \ &= m{B}^2m{x}_{k-2} + m{B}m{c} + m{c} \ &dots \ &= m{B}^km{x}_0 + \sum_{i=0}^{k-1} m{B}^im{c} \ &= \sum_{i=0}^{k-1} m{B}^i \cdot m{c} \end{aligned}$$

where $m{B} := m{I} - eta m{A}^ op m{A}$ and $m{c} := eta m{A}^ op m{y}$. Notice that we cannot directly take $k o \infty$ as

$$\boldsymbol{I} - \boldsymbol{B} = \beta \boldsymbol{A}^{\top} \boldsymbol{A}$$

is singular. However, using SVD

$$egin{aligned} oldsymbol{x}_k &= eta \sum_{i=0}^{k-1} (oldsymbol{I} - eta oldsymbol{V} oldsymbol{\Sigma}^ op oldsymbol{U} oldsymbol{V}^ op oldsymbol{V}^ op oldsymbol{V}^ op oldsymbol{V}^ op oldsymbol{V}^ op oldsymbol{V}^ op oldsymbol{U}^ op oldsymbol{U}^ op oldsymbol{U}^ op oldsymbol{V}^ op oldsymbol{U}^ op oldsymbol{V}^ op oldsymbol{V}^ op oldsymbol{V}^ op oldsymbol{V}^ op oldsymbol{U}^ op oldsymbol{U}^$$

where $oldsymbol{D} := oldsymbol{I} - eta oldsymbol{\Sigma}^ op oldsymbol{\Sigma}$. Multiplying $oldsymbol{V}^ op$ on both sides, we obtain

$$egin{aligned} ilde{oldsymbol{x}}_k &:= oldsymbol{V}^ op oldsymbol{x}_k = eta \sum_{i=0}^{k-1} oldsymbol{D}^i \cdot oldsymbol{\Sigma}^ op oldsymbol{U}^ op oldsymbol{y} \ &= eta egin{bmatrix} \sum_{i=0}^{k-1} (oldsymbol{I} - eta oldsymbol{\Sigma}_1^2)^i & oldsymbol{O} \ oldsymbol{O} & oldsymbol{O} \end{bmatrix} oldsymbol{\Sigma}^ op oldsymbol{U}^ op oldsymbol{y} \end{aligned}$$

If the step size is chosen such that for all singular value σ of \boldsymbol{A} ,

$$|1-eta\sigma^2| < 1 \iff eta \in \left(0,2\sigma^{-2}
ight) \iff lpha \in \left(0,\sigma^{-2}
ight)$$

then as $k o \infty$,

$$\sum_{i=0}^{k-1}(oldsymbol{I}-etaoldsymbol{\Sigma}_1^2)^i
ightarroweta^{-1}oldsymbol{\Sigma}_1^{-2}$$

and so

$$ilde{oldsymbol{x}}_k
ightarrow egin{bmatrix} oldsymbol{\Sigma}_1^{-1} \ oldsymbol{O} \end{bmatrix} oldsymbol{U}^ op oldsymbol{y}$$

Multiplying by $oldsymbol{V}$ back,

$$egin{aligned} oldsymbol{x}_k &
ightarrow oldsymbol{x}_{\star} = oldsymbol{V} egin{bmatrix} oldsymbol{\Sigma}_1^{-1} \ oldsymbol{O} \end{bmatrix} oldsymbol{U}^{ op} oldsymbol{y} \ &= oldsymbol{V}_1 oldsymbol{\Sigma}_1^{-1} oldsymbol{U}^{ op} oldsymbol{y} \ &= oldsymbol{x}_m \end{aligned}$$

2.13

1

" ⇒ ":

Suppose z = Bx + e has a solution (x, e) with $||e||_0 = k$. Then by multiplying A through in (2.6.10),

$$Az = ABx + Ae = Ae$$

"⇐=":

Suppose $oldsymbol{Ae} = oldsymbol{Az}$ has a solution $oldsymbol{e}$ with $||oldsymbol{e}||_0 = k$. Then

$$oldsymbol{A}(oldsymbol{e}-oldsymbol{z}) = oldsymbol{0} \iff oldsymbol{e}-oldsymbol{z} \in \ker(oldsymbol{A})$$

It's been given that the rows of ${\boldsymbol A}$ span the left null space of ${\boldsymbol B}$, i.e., $\operatorname{im}({\boldsymbol A}^\top) = \ker({\boldsymbol B}^\top)$. We also know by relationship of fundamental subspaces that $\ker({\boldsymbol A}) = \operatorname{im}({\boldsymbol A}^\top)^\perp$ and $\operatorname{im}({\boldsymbol B}) = \ker({\boldsymbol B}^\top)^\perp$. Hence $\ker({\boldsymbol A}) = \operatorname{im}({\boldsymbol B})$, and so

$$oldsymbol{e} - oldsymbol{z} \in \operatorname{im}(oldsymbol{B}) \iff oldsymbol{e} - oldsymbol{z} = oldsymbol{B}(-oldsymbol{x}) + oldsymbol{e}$$

for some $\boldsymbol{x} \in \mathbb{R}^r$.

2

Note that **1** also holds for L1 norm. (Simply replace $||e||_0$ by $||e||_1$ in the proof).

Let $\hat{m{x}}$ be a solution to $\min_{m{x}} ||m{B}m{x} - m{z}||_1$. Then $\hat{m{e}} = m{z} - m{B}\hat{m{x}}$ satisfies

$$A\hat{e} = Az - AB\hat{x} = Az$$

Moreover, \hat{e} is optimal to (2.6.13). To see that, assume there exists some $e \neq \hat{e}$ such that Ae = Az and $||e||_1 < ||\hat{e}||_1$. By " \longleftarrow ", there must also exists x' such that z = Bx' + e. But then

$$\min_{m{x}} ||m{B}m{x} - m{z}||_1 \leq ||m{B}m{x}' - m{z}||_1 = ||-m{e}||_1 = ||m{e}||_1 < ||\hat{m{e}}||_1 = ||m{B}\hat{m{x}} - m{z}||_1$$

contradicting the optimality of \hat{x} .

Now suppose $\hat{\pmb{e}}$ is a solution to (2.6.13). Due to the constraint it is also a solution to equation (2.6.11). By " \Longleftarrow ", there exists \pmb{x}' such that $\pmb{z}=\pmb{B}\pmb{x}'+\hat{\pmb{e}}$. We claim that \pmb{x}' is a solution to (2.6.12) with $\hat{\pmb{e}}=\pmb{z}-\pmb{B}\pmb{x}'$.

By way of contradiction assume there exists $\boldsymbol{x}_* \neq \boldsymbol{x}'$ such that $k := ||\boldsymbol{B}\boldsymbol{x}_* - \boldsymbol{z}||_1 < ||\boldsymbol{B}\boldsymbol{x}' - \boldsymbol{z}||_1$. Clearly, $(\boldsymbol{x}_*, \boldsymbol{z} - \boldsymbol{B}\boldsymbol{x}_*)$ is a solution to (2.6.10) with $||\boldsymbol{z} - \boldsymbol{B}\boldsymbol{x}_*||_1 = k$. Thus by " \Longrightarrow ", $\boldsymbol{z} - \boldsymbol{B}\boldsymbol{x}_*$ is also a solution to (2.6.11) with $||\boldsymbol{z} - \boldsymbol{B}\boldsymbol{x}_*||_1 = k$. But then

$$\min_{\pmb{e}} ||\pmb{e}||_1 \leq ||\pmb{z} - \pmb{B}\pmb{x}_*||_1 = k < ||\pmb{B}\pmb{x}' - \pmb{z}||_1 = ||-\hat{\pmb{e}}||_1 = ||\hat{\pmb{e}}||_1$$

contradicting the optimality of \hat{e} .