L&GRANGIAN METHOD

NLPP with equality Constraint

OPTIMIZATION WITH EQUALITY CONSTRAINTS

A general non-linear programming problem in which the object function is non linear but the constraints are linear and in the form of equalities takes the following form

OPTIMIZATION WITH EQUALITY CONSTRAINTS

where, $f(x_1, x_2, \dots, x_n)$ is a non linear function and $g_1(x_1, x_2, \dots, x_n), g_2(x_1, x_2, \dots, x_n), \dots, g_m(x_1, x_2, \dots, x_n)$ are linear functions and m < n

The problem of this type is solved by forming what is called Lagrangian Function with Lagrange's Multiplier λ

NON-LINEAR PROGRAMMING PROBLEM WITH 2 VARIABLES AND 1 EQUALITY CONSTRAINT

Optimize
$$z = f(x_1, x_2)$$

Subject to $g(x_1, x_2) = b_2$; $x_1, x_2 \ge 0$

We first express the constraints with RHS equal to zero

Then the problem becomes,

Optimize
$$z = f(x_1, x_2)$$

Subject to
$$h(x_1, x_2) = g(x_1, x_2) - b = 0$$

 $x_1, x_2 \ge 0$

We now construct a new function called Lagrangian function, using the Lagrangian multiplier λ

$$\therefore L(x_1, x_2, \lambda) \equiv f(x_1, x_2) - \lambda h(x_1, x_2) \quad(1)$$

The necessary conditions for maxima or minima subjected to the condition $h(x_1, x_2) = 0$ are

$$\frac{\partial L}{\partial x_1} = 0, \quad \frac{\partial L}{\partial x_2} = 0, \quad \frac{\partial L}{\partial \lambda} = 0$$
(2)

Now from (1) we get,

$$\frac{\partial L}{\partial x_1} = \frac{\partial f}{\partial x_1} - \lambda \frac{\partial h}{\partial x_1}; \frac{\partial L}{\partial x_2} = \frac{\partial f}{\partial x_2} - \lambda \frac{\partial h}{\partial x_2}; \frac{\partial L}{\partial \lambda} = -h.....(3)$$

Using (2) we get from (3) the following three necessary conditions,

$$\frac{\partial f}{\partial x_1} - \lambda \frac{\partial h}{\partial x_1} = 0;$$

$$\frac{\partial f}{\partial x_2} - \lambda \frac{\partial h}{\partial x_2} = 0;$$

$$h(x_1, x_2) = 0$$

Now, we should just solve these 3 conditions to get x_1, x_2 and λ .

Thus, the point of maxima or minima can be obtained

 To determine whether the point obtained above is maxima or a minima, we consider the following determinant.

If Δ_3 is positive, then X_0 is a maxima and if Δ_3 is negative, then X_0 is a minima

EXAMPLE-1

Using the method of Lagrange's multipliers, solve the following NLPP

Optimize
$$z = 6x_1^2 + 5x_2^2$$

Subject to $x_1 + 5x_2 = 7$, $x_1, x_2 \ge 0$

 $\lambda = \text{Lagrange's multiplier}$

$$L(x_1, x_2, \lambda) = f(x_1, x_2) - \lambda h(x_1, x_2)$$
$$f(x_1, x_2) = 6x_1^2 + 5x_2^2$$
$$h(x_1, x_2) = x_1 + 5x_2 - 7$$

$$\therefore L(x_1, x_2, \lambda) = (6x_1^2 + 5x_2^2) - \lambda(x_1 + 5x_2 - 7)$$

$$\frac{\partial L}{\partial x_2} = 0 = 10x_2 - 5\lambda \qquad \qquad \dots$$
 (b)

$$\frac{\partial L}{\partial \lambda} = 0 = x_1 + 5x_2 - 7$$
 (c)

Solving (a), (b) and (c) we get

$$x_1 = \frac{7}{31}, x_2 = \frac{42}{31}, \lambda = \frac{84}{31}$$

Here,
$$X_0(x_1, x_2) = X_0\left(\frac{7}{31}, \frac{42}{31}\right)$$

$$\Delta_{3} = \begin{vmatrix} 0 & \frac{\partial h}{\partial x_{1}} & \frac{\partial h}{\partial x_{2}} \\ \frac{\partial h}{\partial x_{1}} & \left(\frac{\partial^{2} f}{\partial x_{1}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{1}^{2}}\right) & \left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} - \lambda \frac{\partial^{2} h}{\partial x_{1} \partial x_{2}}\right) \\ \frac{\partial h}{\partial x_{2}} & \left(\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} - \lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{1}}\right) & \left(\frac{\partial^{2} f}{\partial x_{2}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{2}^{2}}\right) \end{vmatrix}$$

$$\bullet h(x_1, x_2) = x_1 + 5x_2 - 7$$

$$\bullet : \frac{\partial h}{\partial x_1} = 1; \frac{\partial^2 h}{\partial x_1^2} = 0 \text{ and } \frac{\partial h}{\partial x_2} = 5; \frac{\partial^2 h}{\partial x_2^2} = 0$$

$$f(x_1, x_2) = 6x_1^2 + 5x_2^2$$

Nandini Rai

$$\bullet : \frac{\partial f}{\partial x_1} = 12x_1; \frac{\partial^2 f}{\partial x_1^2} = 12 \text{ and } \frac{\partial f}{\partial x_2} = 10x_2; \frac{\partial^2 f}{\partial x_2^2} = 10$$

$$\bullet \frac{\partial^2 f}{\partial x_1^2} - \lambda \frac{\partial^2 h}{\partial x_1^2} = 12; \qquad \frac{\partial^2 f}{\partial x_2^2} - \lambda \frac{\partial^2 h}{\partial x_2^2} = 10$$

$$\bullet \qquad \frac{\partial^2 f}{\partial x_1 \partial x_2} = 0; \qquad \frac{\partial^2 f}{\partial x_2 \partial x_1} = 0$$

$$\bullet \qquad \frac{\partial^2 f}{\partial x_1 \partial x_2} - \lambda \frac{\partial^2 h}{\partial x_1 \partial x_2} = 0 \text{ and } \frac{\partial^2 f}{\partial x_2 \partial x_1} - \lambda \frac{\partial^2 h}{\partial x_2 \partial x_1} = 0$$

4/6/2024

We have
$$\Delta_3 = \begin{vmatrix} 0 & 1 & 5 \\ 1 & 12 & 0 \\ 5 & 0 & 10 \end{vmatrix}$$

$$= -310$$

Since Δ_3 is negative, X_0 is a minima

$$\therefore z_{min} = 6x_1^2 + 5x_2^2$$

$$= 6 \left(\frac{7}{31}\right)^2 + 5 \left(\frac{42}{31}\right)^2$$

$$= 9.48$$

EXAMPLE-2

Using the method of Lagrange's multipliers, solve the following NLPP

Optimize
$$z = 4x_1 + 8x_2 - x_1^2 - x_2^2$$

Subject to $x_1 + x_2 = 4$,
 $x_1, x_2 \ge 0$
 $L(x_1, x_2, \lambda)$
 $= (4x_1 + 8x_2 - x_1^2 - x_2^2) - \lambda(x_1 + x_2 - 4)$
 $\frac{\partial L}{\partial x_1} = 0$, $\frac{\partial L}{\partial x_2} = 0$, $\frac{\partial L}{\partial \lambda} = 0$,
 $4 - 2x_1 - \lambda = 0, 8 - 2x_2 - \lambda = 0, x_1 + x_2 = 4$
Hence, X_0 is $(1, 3)$

Now,

= 4

$$\Delta_{3} = \begin{bmatrix}
0 & \frac{\partial h}{\partial x_{1}} & \frac{\partial h}{\partial x_{2}} \\
\frac{\partial h}{\partial x_{1}} & \left(\frac{\partial^{2} f}{\partial x_{1}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{1}^{2}}\right) & \left(\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} - \lambda \frac{\partial^{2} h}{\partial x_{1} \partial x_{2}}\right) \\
\frac{\partial h}{\partial x_{2}} & \left(\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} - \lambda \frac{\partial^{2} h}{\partial x_{2} \partial x_{1}}\right) & \left(\frac{\partial^{2} f}{\partial x_{2}^{2}} - \lambda \frac{\partial^{2} h}{\partial x_{2}^{2}}\right)
\end{bmatrix}$$

$$\Delta_{3} = \begin{bmatrix}
0 & 1 & 1 \\
1 & -2 & 0 \\
1 & 0 & -2
\end{bmatrix}$$

Since, Δ_3 is positive, X_0 is a maxima Hence, $x_1 = 1$, $x_2 = 3$, $z_{max} = 18$

4/6/2024

In case of more than 2 variables

If the signs of the principal minors $\Delta_3, \Delta_4, \Delta_5, \ldots$ are alternatively positive and negative, i.e. $\Delta_3 > 0, \Delta_4 < 0, \Delta_5 > 0, \ldots$ etc. then the point X_0 is a maxima

If all the principal minors $\Delta_3, \Delta_4, \Delta_5, \dots, \Delta_{n+1}$ are negative i.e. $\Delta_3 < 0, \Delta_4 < 0, \dots, \Delta_{n+1} < 0 \dots$ etc then the point X_0 is a minima

EXAMPLE-3

Using the method of Lagrange's multipliers solve Optimize

$$z = x_1^2 + x_2^2 + x_3^2 - 10x_1 - 6x_2 - 4x_3$$

Subject to

$$x_1 + x_2 + x_3 = 7, x_1, x_2, x_3 \ge 0$$

$$L(x_1, x_2, x_3, \lambda)$$

$$= (x_1^2 + x_2^2 + x_3^2 - 10x_1 - 6x_2 - 4x_3)$$

$$- \lambda(x_1 + x_2 + x_3 - 7)$$

$$\frac{\partial L}{\partial x_1} = 0 = 2x_1 - 10 - \lambda \qquad(1)$$

$$\frac{\partial L}{\partial x_2} = 0 = 2x_2 - 6 - \lambda \qquad(2)$$

$$\frac{\partial L}{\partial x_3} = 0 = 2x_3 - 4 - \lambda \qquad(3)$$

$$\frac{\partial L}{\partial \lambda} = 0 = -(x_1 + x_2 + x_3 - 7)$$
 (4)

On solving we get

$$(x_1, x_2, x_3) = (4, 2, 1)$$

Now, Δ_4

$$\begin{vmatrix} \frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} & \frac{\partial h}{\partial x_3} \\ \frac{\partial h}{\partial x_1} & \left(\frac{\partial^2 f}{\partial x_1^2} - \lambda \frac{\partial^2 h}{\partial x_1^2} \right) & \left(\frac{\partial^2 f}{\partial x_1 \partial x_2} - \lambda \frac{\partial^2 h}{\partial x_1 \partial x_2} \right) & \left(\frac{\partial^2 f}{\partial x_1 \partial x_3} - \lambda \frac{\partial^2 h}{\partial x_1 \partial x_3} \right) \\ \frac{\partial h}{\partial x_2} & \left(\frac{\partial^2 f}{\partial x_2 \partial x_1} - \lambda \frac{\partial^2 h}{\partial x_2 \partial x_1} \right) & \left(\frac{\partial^2 f}{\partial x_2^2} - \lambda \frac{\partial^2 h}{\partial x_2^2} \right) & \left(\frac{\partial^2 f}{\partial x_2 \partial x_3} - \lambda \frac{\partial^2 h}{\partial x_2 \partial x_3} \right) \\ \frac{\partial h}{\partial x_3} & \left(\frac{\partial^2 f}{\partial x_3 \partial x_1} - \lambda \frac{\partial^2 h}{\partial x_3 \partial x_1} \right) & \left(\frac{\partial^2 f}{\partial x_3 \partial x_2} - \lambda \frac{\partial^2 h}{\partial x_3 \partial x_2} \right) & \left(\frac{\partial^2 f}{\partial x_3 \partial x_2} - \lambda \frac{\partial^2 h}{\partial x_3^2} \right) \end{vmatrix}$$

where
$$f = x_1^2 + x_2^2 + x_3^2 - 10x_1 - 6x_2 - 4x_3$$
 and $h = x_1 + x_2 + x_3 - 7$

We have
$$\Delta_4 = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{vmatrix}$$

By $C_2 - C_4$, $C_3 - C_4$, we get,

$$\Delta_{4} = \begin{vmatrix} 0 & 0 & 0 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & -2 & -2 & 2 \end{vmatrix}$$
$$= (-1) \begin{vmatrix} 1 & 2 & 0 \\ 1 & 0 & 2 \\ 1 & -2 & -2 \end{vmatrix} = -12$$

 Δ_4 is negative.

Hence finding Δ_3

$$\Delta_3 = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{vmatrix} = -4$$

4/6/2024

Since both Δ_3 and Δ_4 are negative, X_0 is a minima

$$X_0(x_1, x_2, x_3) = X_0(4, 2, 1)$$

 $z_{min} = 16 + 4 + 1 - 40 - 12 - 4 = -35$

EXAMPLE-4

Using the method of Lagrange's multipliers solve the following NLPP

Optimize

$$z = 12x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23$$
subject to $x_1 + x_2 + x_3 = 10, x_1, x_2, x_3 \ge 0$

$$L(x_1, x_2, x_3, \lambda)$$

$$= (12x_1 + 8x_2 + 6x_3 - x_1^2 - x_2^2 - x_3^2 - 23) - \lambda(x_1 + x_2 + x_3 - 10)$$

On solving we will get

$$X_0(x_1, x_2, x_3) = X_0(5, 3, 2)$$

By
$$C_2 - C_4$$
, $C_3 - C_4$, we get,
$$\Delta_4 = \begin{vmatrix}
0 & 0 & 0 & 1 \\
1 & -2 & 0 & 0 \\
1 & 0 & -2 & 0 \\
1 & 2 & 2 & -2
\end{vmatrix}$$

$$= (-1) \begin{vmatrix}
1 & -2 & 0 \\
1 & 0 & -2 \\
1 & 2 & 2
\end{vmatrix}$$

$$= (-1) (4 + 8) = -12$$

$$\bullet$$
 Now, $\Delta_3 = \begin{vmatrix} 0 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 0 & -2 \end{vmatrix} = 4$

• Since Δ_3 is positive and Δ_4 is negative, $X_0(5,3,2)$ is a maxima

$$x_1 = 5, x_2 = 3, x_3 = 2 \text{ and}$$

 $z_{max} = 35$