Optimisation stochastique

Contents

1	Mo	tivation et quelques rappels	2
	1.1	Un problème d'optimisation "fréquent"	2
		Exemples d'applications	
		Rappels de convexité	
	1.4	Régularité des fonctions convexes	5
2		as-différentiell d'une fonction Sous-gradient et sous différentiel	6
		Calculs de sous-gradients	
${f L}$	\mathbf{ist}	of Figures	
	1	SVM	9

1 Motivation et quelques rappels

1.1 Un problème d'optimisation "fréquent"

$$\min_{x \in \mathbb{R}^n} h(x) = \min_{x \in \mathbb{R}^n} f(x) + g(x) \tag{1}$$

avec:

- $f: \mathbb{R}^n \to \mathbb{R}$ lisse, à savoir à gradient lipschitzien : $\exists L > 0$ tel que $\forall x,y \in \mathbb{R}^n, ||\nabla f(x) \nabla f(y)|| \le L||x-y||$
- $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ convexe, potentiallement non-lisse.

Exemple:

- i) g = 0: problème d'optimisation lisse non-convexe.
- ii) $g(x) = \lambda ||x||_1$ avec $\lambda > 0$ régularisation parcimonieuse.
- iii) Reformulation d'un problème d'optimisation avec contraintes : $\min_{x\in\mathcal{C}}f(x) \text{ avec } \mathcal{C}\subset\mathbb{R}^n \text{ convexe non-vide}.$

1.2 Exemples d'applications

Exemple 1 : Moindres carrés régularisés

On dispose d'un modèle linéaire :

 $\forall x \in \mathbb{R}^n, f(x, \beta) = x^T \beta$ $\beta \in \mathbb{R}^n$ paramètre du modèle

On dispose d'observations $(x_i, y_i) \in (\mathbb{R}^n \times \mathbb{R})^p$ permettant d'estimer β

D'où le problème d'optimisation suivant :

$$\min_{\beta \in \mathbb{R}^n} \frac{1}{2} \sum_{i=1}^p (f(x_i, \beta) - y_i)^2 \quad \Leftrightarrow \quad \min_{\beta \in \mathbb{R}^n} \frac{1}{2} ||X\beta - y||_2^2 \quad \text{avec } X = \begin{pmatrix} x_1^T \\ \vdots \\ x_n^T \end{pmatrix} \in \mathbb{M}_{p,n}(\mathbb{R}) \tag{2}$$

Texte manquant

- i) $g(\beta) = \frac{\lambda}{2} ||\beta||_2^2$: régularisation de Tikhonov.
- ii) $g(\beta) = \lambda ||\beta||_1$: régularisation parcimonieuse (LASSO).
- iii) $g(\beta) = \frac{\lambda}{2} ||\beta||_{\beta}^2 =$

Texte manquant

Exemple 2 : SVM (Séparateurs à Vaste Marge)

On dispose de données $(x_i)_{i \in \{1,\dots,p\}} \in \mathbb{R}^p$ labelisés $(y_i)_{i \in \{1,\dots,p\}} \in \{-1,1\}^p$ On cherche à construire un hyperplan séparant les données (x_i) selons leurs labels (y_i)

Dans un premier temps, on suppose qu'il existe un tel hyperplan de vecteurs normal $\beta \in \mathbb{R}^n$, passant par l'origine.

Figure 1: SVM

Question: Quel hyperplan choisir?

- \Rightarrow Incertitude : nombre de données, répartition dans \mathbb{R}^n , etc...
- ⇒ Maximiser la distance maximale entre les données et l'hyperplan.

Condition de séparabilité :

$$\forall i \in \{1,\ldots,p\}, y_i(x_i^T\beta) \geq 0$$

D'où le problème d'optimisation suivant :

$$\max_{(\beta,M)\in(\mathbb{R}^n\times\mathbb{R}^+)} M \quad \text{s.c.} \quad \forall i \in \{1,\dots,p\}, \quad y_i \frac{(x_i^T\beta)}{||\beta||_2} \ge M$$
 (3)

Remarque: $d(z, \{\beta^T x = 0\}) = \frac{|\beta^T z|}{||\beta||_2}$

En pratique, la condition de séparabilité n'est pas vérifiée pour tout $i \in \{1, ..., p\}$ \Rightarrow Pénalisation des contraintes non satisfaites. On pose $\forall t \in \mathbb{R}, t^+ = \max(t, 0)$

Ceci conduit à formuler un autre problème d'optimisation :

$$\max_{(\beta,M)\in(\mathbb{R}^n\times\mathbb{R}^+)} M - \lambda \sum_{i=1}^p (1 - y_i \frac{(x_i^T\beta)}{||\beta||_2 M})^+ \tag{4}$$

avec : $||\beta||_2 = \frac{1}{M}$ et en reformulant pour obtenir un problème de minimisation :

$$\min_{\beta \in \mathbb{R}^n} ||\beta||_2^2 + \lambda \sum_{i=1}^p (1 - y_i(x_i^T \beta))^+$$
 (5)

avec : $\sum_{i=1}^{p} (1 - y_i(x_i^T \beta))^+$ non-lisse (non différentiable)

1.3 Rappels de convexité

Définition:

Soit $\mathcal{C} \subset \mathbb{R}^n$. On dit que \mathcal{C} est convexe si $\forall x, y \in \mathcal{C}, \forall \lambda \in [0, 1], \lambda x + (1 - \lambda)y \in \mathcal{C}$

Exemples:

- i) partie affine : $\{x_0 + s \text{ avec } s \in S\}$ avec S un sous-espace vectoriel de \mathbb{R}^n et $x_0 \in \mathbb{R}^n$.
- ii) hyperplan : $\{x \in \mathbb{R}^n \text{ tel que } \alpha^T x = \beta\}$
- iii) demi-espace : $\{x \in \mathbb{R}^n \text{ tel que } \alpha^T x \leq \beta\}$
- iv) polyèdre : $\{x \in \mathbb{R}^n \text{ tel que } Ax \leq b\}$ avec $A \in \mathbb{M}_{m,n}(\mathbb{R})$ et $b \in \mathbb{R}^m$.
- v) ellipoïde : $\{x \in \mathbb{R}^n \text{ tel que } x^T C x \leq 1\}$ avec $C \in \mathbb{S}_n(\mathbb{R})$ (matrice symétrique semi-définie positive).

Propriétés : Opérations préservant la convexité

- i) intersection
- ii) somme
- iii) multiplication par un scalaire
- iv) produit cartésien
- v) image réciproque par une application linéaire
- vi) image directe par une application linéaire
- vii) projection : $\{x_1 \text{ tel que } (x_1, x_2) \in \mathcal{C}\}$ avec \mathcal{C} convexe.

<u>Définition</u>: Fonction convexe sur \mathcal{C} convexe

 $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe.

- f est convexe sur \mathcal{C} si $\forall x, y \in \mathcal{C}$, $\forall \lambda \in [0, 1]$, $f(\lambda x + (1 \lambda)y) \leq \lambda f(x) + (1 \lambda)f(y)$
- f est strictement convexe sur \mathcal{C} si $\forall x, y \in \mathcal{C}$, $\forall \lambda \in]0,1[, f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$

Propriétés : CNS (Condition Nécessaire et Suffisante) de convexité dans le cas dérivable.

Soit $f: \Omega \to \mathbb{R}$ avec Ω ouvert de \mathbb{R}^n et $\mathcal{C} \subset \Omega$ convexe.

- 1. Si f est dérivable sur Ω , alors f est convexe sur \mathcal{C} convexe si et seulement si $\forall x, y \in \mathcal{C}, f(y) \geq f'(x)(y-x) + f(x)$ $\Leftrightarrow \forall x, y \in \mathcal{C}, f(y) \geq f(x) + \nabla f(x)^T (y-x)$
- 2. Si f est deux fois dérivable sur Ω , alors f est convexe sur \mathcal{C} convexe si et seulement si $\forall x \in \mathcal{C}, f''(x)(y-x,y-x) \geq 0$ $\Leftrightarrow \forall x \in \mathcal{C}, (y-x)^T \nabla^2 f(x)(y-x) \geq 0$

Propriété:

- i) f convexe sur \mathcal{C} convexe $\Rightarrow \alpha f$ convexe sur \mathcal{C} convexe pour $\alpha > 0$
- ii) combinaisons linéaires à coefficients positifs de fonctions convexes sont convexes
- iii) f convexe sur \mathcal{C} convexe : Soit $A \in \mathbb{M}_{m,n}(\mathbb{R})$ et $b \in \mathbb{R}^m$. alors $\mathcal{C}' = \{x \in \mathbb{R}^n \text{ tel que } Ax + B \in \mathcal{C}\}$ est convexe et $x \mapsto f(Ax + b)$ est convexe sur \mathcal{C}' .
- iv) $(f_i)_{i \in \{1,\dots,m\}}$ convexes sur $(C_i)_{\{i \in \{1,\dots,m\}\}}$, alors $\max_{i \in \{1,\dots,m\}} f_i$ convexe sur $\bigcap_{i=1}^n C_i$.
- v) $g: \mathbb{R}^n \to \mathbb{R}$ convexe sur $\mathcal{C} \subset \mathbb{R}^n$ $h: \mathbb{R} \to \mathbb{R}$ croissante et convexe sur \mathcal{C}' tel que $g(\mathcal{C}) \subset \mathcal{C}'$ alors $h \circ g$ est convexe sur \mathcal{C} .
- vi) $g: \mathbb{R}^n \to \mathbb{R}^p$ avec $\forall i \in \{1, \dots, p\}$, g_i convexe sur \mathbb{R}^n $h: \mathbb{R}^p \to \mathbb{R}$ croissante et convexe vis-à-vis de chacun de ses arguments. alors $f: \underset{x \mapsto h \circ g(x) = h(g_1(x), \dots, g_p(x))}{\mathbb{R}^n}$ est convexe sur \mathbb{R}^n .

1.4 Régularité des fonctions convexes

<u>Définition</u>: Epigraphe de f

Soit $f: \mathcal{C} \to \mathbb{R}$

On appelle épigraphe de f, noté $\varepsilon(f)$, l'ensemble suivant :

$$\varepsilon(f) = \{(x, w) \in \mathcal{C} \times \mathbb{R} \text{ tel que } f(x) \le w\}$$

Propriété:

 $f: \overline{\mathcal{C} \to \mathbb{R} \text{ avec } \mathcal{C} \subset \mathbb{R}^n \text{ convexe.}}$

f est convexe sur \mathcal{C} si et seulement si $\varepsilon(f)$ est convexe.

Preuve:

i) Supposons f convexe sur \mathcal{C} convexe

$$\forall x, y \in \mathcal{C}, \forall \lambda \in [0, 1], f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

Soient $(x_1, w_1) \in \varepsilon(f)$ et $(x_2, w_2) \in \varepsilon(f)$ et $\lambda \in [0, 1]$
$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2) \leq \lambda w_1 + (1 - \lambda)w_2$$

$$\Rightarrow \lambda(x_1, w_1) + (1 - \lambda)(x_2, w_2) \in \varepsilon(f)$$

ii) Supposons $\varepsilon(f)$ convexe

Soit $x, y \in \mathcal{C}$ et $\lambda \in [0, 1]$

 $(x, f(x)), (y, f(y)) \in \varepsilon(f)$

 $\Rightarrow \lambda(x, f(x)) + (1 - \lambda)(y, f(y)) \in \varepsilon(f)$

 $\Rightarrow (\lambda x + (1 - \lambda)y, \lambda f(x) + (1 - \lambda)f(y)) \in \varepsilon(f)$

 $\Rightarrow f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

Propriété : Inégalité de Jensen

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe.

Soit $x_1, \ldots, x_p \in \mathcal{C}$ et $\lambda_1, \ldots, \lambda_p \in \mathbb{R}^+$ tel que $\sum_{i=1}^p \lambda_i = 1$.

Alors $f(\sum_{i=1}^{p} \lambda_i x_i) \leq \sum_{i=1}^{p} \lambda_i f(x_i)$

Propriété:

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe.

Soit $x_0 \in \mathcal{C}$

alors f est continue en x_0 .

Preuve:

Soit $x_0 \in \mathcal{C}$

Soit Δ un simplexe inclus dans $\overset{\circ}{\mathcal{C}}$ et contenant x_0 .

Notons $(s_i)_{i \in \{1,\dots,n+1\}}$ les sommets de Δ .

 $\forall x \in \Delta, \exists !(\lambda_i)_{i \in \{1,\dots,n+1\}} \in \mathbb{R}^{n+1} \text{ tel que } \lambda_i \geq 0 \text{ et } \sum_{i=1}^{n+1} \lambda_i = 1 \text{ et } x = \sum_{i=1}^{n+1} \lambda_i s_i$ (coordonnées barycentriques de x vis-à-vis de Δ).

d'où

$$f(x) \leq \sum_{i=1}^{n+1} \lambda_i f(s_i)$$
 par convexité de f et inégalité de Jensen.

$$\leq \max_{i \in \{1, \dots, n+1\}} f(s_i) \operatorname{car} \sum_{i=1}^{n+1} \lambda_i = 1$$

Donc f est majorée sur Δ .

En particulier, $\forall \delta > 0$ tel que $B(x_0, \delta) \subset \Delta$, f est majorée sur $B(x_0, \delta)$.

Fixons un tel δ et notons M un majorant de f sur $B(x_0, \delta)$.

Texte manquant

$$\Rightarrow f(\delta) \le 2f(x_0) - M$$

Bilan : $2f(x_0) - M \le f(z) \le M, \forall z \in B(x_0, \delta)$ $\Rightarrow f$ est bornée sur $B(x_0, \delta)$

Soit K > 0 tel que $\forall z \in B(x_0, \delta), |f(z)| < K$

On montre que f est lipschitzienne sur $B(x_0, \frac{\delta}{2})$ Soit $x, y \in B(x_0, \frac{\delta}{2}), x \neq y$

On pose :
$$\begin{cases} x' = x - \frac{\delta}{2} \frac{y - x}{||y - x||} \\ y' = y + \frac{\delta}{2} \frac{y - x}{||y - x||} \end{cases}$$

Alors $x' \in B(x_0, \delta)$: $||x' - x_0|| = ||x - \frac{\delta}{2} \frac{y - x}{||y - x||} - x_0|| \le ||x - x_0|| + \frac{\delta}{2} < \delta$ De même, $y' \in B(x_0, \delta)$

D'où $|f(x')| \le K$ et $|f(y')| \le K$

De plus,
$$x = \frac{2||y-x||}{2||y-x||+\delta}x' + \frac{\delta}{2||y-x||+\delta}y = \lambda x' + (1-\lambda)y'$$
 avec $\lambda = \frac{2||y-x||}{2||y-x||+\delta} \in]0,1[$

Par convexité de f sur \mathcal{C} : $f(x) \leq \lambda f(x') + (1 - \lambda)f(y)$ $\Rightarrow f(x) - f(y) \leq \lambda (f(x') - f(y)) \leq 2K\lambda \leq \frac{4K}{2||y - x|| + \delta}||y - x||$ $\Rightarrow |f(x) - f(y)| \leq \frac{4K}{\delta}||y - x||$

De même, $y = \lambda y' + (1 - \lambda)x$ et de la même manière, on montre que $|f(y) - f(x)| \le \frac{4K}{\delta}||y - x|| \Rightarrow |f(x) - f(y)| \le \frac{4K}{\delta}||y - x||$

Bilan : f est lipschitzienne sur $B(x_0, \frac{\delta}{2})$ En particulier, f est continue en x_0

2 Sous-différentiell d'une fonction

2.1 Sous-gradient et sous différentiel

Définition:

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe.

Soient $x \in \mathcal{C}$ et $q \in \mathbb{R}^n$

g est appelé sous-gradient de f en x si :

$$\forall y \in \mathcal{C}, f(y) \ge g^T(y - x) + f(x)$$

On appelle sous-différentiel de f en x, noté $\partial f(x)$, l'ensemble des sous-gradients de f en x:

$$f: \overline{\mathbb{R}} \to \mathbb{R}, \ f(x) = |x|$$

Soit $x \in \mathbb{R}$

• si x < 0, alors f(x) = -xSoit $g \in \mathbb{R}$ tel que $\forall y \in \mathbb{R}$, $f(y) \ge g(y - x) + f(x)$ - Soit $y \le 0$, $f(y) = -y = -y + x - x = -(y - x) + f(x) \ge g(y - x) + f(x)$ avec g = -1

- Soit y > 0, $f(y) = y \ge -y + x - x \ge -(y - x) + f(x) \ge g(y - x) + f(x)$ avec g = -1

Donc $\partial f(x) = \{-1\}$

- si x > 0, $\partial f(x) = \{1\}$ (même raisonnement)
- si x = 0, $\partial f(x) = [-1, 1]$

Propriété:

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe.

Soit $x \in \mathcal{C}$

Alors $\partial f(x)$ est un convexe non-vide.

Preuve:

Supposons $\partial f(x) = \emptyset$ alors $\partial f(x) = \bigcap_{y \in \mathcal{C}} \{g \in \mathbb{R}^n \text{ tel que } f(y) \ge g^T(y - x) + f(x) \}$

or, $\forall y \in \mathcal{C}$, $\{g \in \mathbb{R}^n \text{ tel que } f(y) \geq g^T(y-x) + f(x)\}$ est convexe (demi-espace) et fermé (comme image réciproque d'un fermé par une application continue ψ)

$$\psi: \mathbb{R}^n \to \mathbb{R}$$
$$g \mapsto f(y) - f(x) - g^T(y - x)$$

 $\Rightarrow \partial f(x)$ est convexe et fermé comme intersections de parties convexes et fermées.

Propriété:

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe.

Soit $x \in \overset{\circ}{\mathcal{C}}$ tel que f est continue en x. alors $\partial f(x)$ est borné.

Preuve:

Soit $x \in \overset{\circ}{\mathcal{C}}$ tel que f est continue en x.

 $x \in \overset{\circ}{\mathcal{C}}: \exists y_1 > 0 \text{ tel que } B(x, y_1) \subset \mathcal{C}$

f continue en $x: \forall \varepsilon > 0, \exists y_2 > 0$ tel que $\forall y \in B(x, y_2), |f(y) - f(x)| < \varepsilon$

Posons $\eta = min(y_1, y_2)$

Montrons que $\partial f(x)$ est borné.

Supposons le contraire.

 $\forall M > 0, \exists g \in \partial f(x) \text{ tel que } ||g||_2 > M$

Soit M > 0. Fixons un tel g tel que $||g||_2 > M \Rightarrow g \neq 0$

Soit
$$y=x+\frac{\eta}{2}\frac{g}{||g||_2}$$
d'où $||y-x||_2=\frac{\eta}{2}<\eta\Rightarrow y\in B(x,\eta)\subset\mathcal{C}$

Par définition de
$$g: f(y) \ge g^T(y-x) + f(x)$$

 $\Rightarrow f(y) - f(x) \ge \frac{\eta}{2}||g||_2 > \frac{\eta}{2}M$ avec $M = \frac{2}{\eta}$

$$\Rightarrow |f(y) - f(x)| > \varepsilon$$

Or,
$$y \in B(x, \eta) \Rightarrow y \in B(x, y_2) \Rightarrow |f(y) - f(x)| < \varepsilon$$

D'où
$$\varepsilon < |f(y) - f(x)| < \varepsilon$$
: contradiction.

Donc $\partial f(x)$ est borné.

Propriété:

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe.

- i) $\forall x \in \overset{\circ}{\mathcal{C}}, \, \partial f(x) \neq \emptyset$ (Et $\partial f(x)$ compact convexe non-vide)
- ii) Si f dérivable en $x \in \overset{\circ}{\mathcal{C}}$, alors $\partial f(x) = \{\nabla f(x)\}$

Preuve:

i) Soit $\mathcal{C} \subset \mathbb{R}^n$ convexe non-vide.

Soit
$$x_0 \in \mathcal{C}^c \cup (\overline{\mathcal{C}} \setminus \overset{\circ}{\mathcal{C}})$$

alors $\exists \alpha \in \mathbb{R}^n \setminus \{0\}$ tel que $\sup_{z \in \mathcal{C}} \alpha^T z \leq \alpha^T x_0$

Texte manquant

Soit
$$x \in \overset{\circ}{\mathcal{C}}$$

 $Texte\ manquant$

- ii) On suppose de plus f dérivable en $x \in \overset{\circ}{\mathcal{C}}$
 - f convexe sur \mathcal{C} convexe et dérivable en $x \in \overset{\circ}{\mathcal{C}}$ $\Rightarrow \forall y \in \mathcal{C}, f(y) \geq \nabla f(x)^T (y - x) + f(x)$ $\Rightarrow \nabla f(x) \in \partial f(x)$ $\Rightarrow \{\nabla f(x)\} \subset \partial f(x)$
 - Soit $g \in \partial f(x)$ $\forall y \in \mathcal{C}, f(y) \geq g^T(y-x) + f(x)$ Or, $x \in \mathring{\mathcal{C}} : \exists N \in \mathbb{N} \text{ tel que } y_N = x + \frac{u}{N} \in \mathcal{C} \text{ avec } u \in \mathbb{R}^n$

Fixons un tel
$$N$$
.

$$\forall n \geq N, f(y_n) \geq \frac{1}{n}g^T u + f(x)$$

Or,
$$f$$
 dérivable en x :

$$f(y_n) = f(x) + \frac{1}{n} \nabla f(x)^T u + \frac{1}{n} ||u||_2 \varepsilon(\frac{1}{n} u) \text{ avec } \varepsilon(h) \xrightarrow[h \to 0]{} 0$$

$$\Rightarrow f(x) + \frac{1}{n} \nabla f(x)^T u + \frac{1}{n} ||u||_2 \varepsilon(\frac{1}{n} u) \ge \frac{1}{n} g^T u + f(x)$$

$$\Rightarrow (\nabla f(x) - g)^T u + ||u||_2 \varepsilon(\frac{1}{n} u) \ge 0$$

A la limite :
$$(\nabla f(x) - g)^T u \ge 0, \forall u \in \mathbb{R}^n$$

 $\Rightarrow g = \nabla f(x)$

Donc
$$\partial f(x) \subset {\nabla f(x)}$$

Bilan :
$$\partial f(x) = {\nabla f(x)}$$

Propriété:

Soit $f: \mathcal{C} \to \mathbb{R}$ avec $\mathcal{C} \subset \mathbb{R}^n$ convexe. Soit $x^* \in \mathcal{C}$

Alors x^* est un minimum global de f sur \mathcal{C} si et seulement si $0 \in \partial f(x^*)$

Preuve:

$$0 \in \partial f(x^*) \Leftrightarrow \forall y \in \mathcal{C}, f(y) \geq 0^T (y - x^*) + f(x^*) = f(x^*) \Leftrightarrow x^*$$
 est un minimum global de f sur \mathcal{C}

2.2 Calculs de sous-gradients

Pour simplifier, on suppose avoir (f_i) convexes sur \mathbb{R}^n

Propriété :

- i) Soit $(\alpha_1, \alpha_2) \in (\mathbb{R}_+^*)^2$ On pose $f = \alpha_1 f_1 + \alpha_2 f_2$ alors $\partial f(x) = \alpha_1 \partial f_1(x) + \alpha_2 \partial f_2(x)$
- ii) Soit $h: x \mapsto f(Ax + b)$ avec $A \in \mathbb{M}_{m,n}(\mathbb{R})$ et $b \in \mathbb{R}^m$ alors $\partial h(x) = A^T \partial f(Ax + b)$
- iii) Soit $f: x \mapsto \max_{i \in \{1, \dots, m\}} f_i(x)$ Soit $I_0 = \{i \in \{1, \dots, m\} \text{ tel que } f_i(x) = f(x)\}$ alors $\forall gin \partial f_{I_0}(x), g \in \partial f(x)$
- iv) Soit $f: x \mapsto \sup_{a \in A} f_a(x)$ Soit