Data Journey:

SQL, Anomaly Categories Detection, and Power BI

Mays Moh'd Al-Fasfous

chapter Project

Presentation

0 1

Online Ticket Booking
Database System

By using SQL Server

chapter Projects

1

3

By using Python

chapter Projects

Exploring Olympic Data: Visualizations and Insights
By using Power BI

chapter Projects

0 1

Online Ticket Booking Database System

By using SQL Server

Conceptual Model for the

Online_Movie_Booking System DataBase

Conceptual Model with attributes

Logical Model for Online Movie Booking System Database

Integrating the Database with a Simple User Interface

Descriptive and Predictive Analytics for Anomaly Categories By using Python

Descriptive Analytic Techniques for numerical columns

	Measures	Flow_Duration	Idle_Mean
0	Central Tendency (Mean)	1310.317983	884.064876
1	Central Tendency (Median)	149.000000	83.000000
2	Dispersion (Range)	99984.000000	99973.000000
3	Dispersion (Variance)	42546457.499465	13367798.360496
4	Dispersion (Standard Deviation)	6522.764560	3656.199989
5	Dispersion (Interquartile Range)	220.000000	117.000000
6	Dispersion (Coefficient of Variation)	4.977986	4.135657
7	Position (Quartile (Q1))	78.000000	34.000000
8	Position (Quartile (Q3))	298.000000	151.000000
9	Position (Quartile (Q2))	149.000000	83.000000

- Calculate thresholds by IQR:

upper_outlier_threshold = Q3 + (1.5 *IQR_duration)
lower_outlier_threshold = Q1 - (1.5 * IQR_duration)

Flow_Duration:

- Upper outlier = 481.0
- Lower outlier = -296.0

Idle_Mean:

- Upper outlier = 326.5
- Lower outlier = 141.5

Descriptive Analytic Techniques

Outlier detections / Density plot

Descriptive Analytic Techniques

Descriptive Analytic Techniques for categorical columns ('Cat' column)

2

Descriptive Analytic - Insight

Relationships between Flow Duration, Active Mean and Idle Mean for Category DoS

Relationships between Fwd_Pkts/s, Subflow_Fwd_Pkts, Fwd_Act_Data_Pkts for Category "Mirai"

Key Insights Affecting Decisions

✓ In the context of the 'DoS' category, three key attributes, 'Flow_Duration,' 'Active_Mean,' and 'Idle_Mean,' have shown significant relationships with the classification of incidents into the 'DoS' category. This suggests their importance in the feature selection and model-building processes to enhance the accuracy of 'DoS' category classification.

✓ In the context of the 'Mirai' category, three key attributes, 'Fwd_Pkts/s,' 'Subflow_Fwd_Pkts,' and 'Fwd_Act_Data_Pkts,' have shown significant relationships with the classification of incidents into the 'Mirai' category. This suggests their importance in the feature selection and model-building processes to enhance the accuracy of 'Mirai' category classification.

Comparison of Metrics for Different Algorithms

	Models	Accuracy	Precision	Recall	F1-Score
0	SVC	0.840546	0.788565	0.840546	0.805021
1	KNN	0.885199	0.874795	0.885199	0.877721
2	Decision Tree	0.868339	0.870662	0.868339	0.869042
3	GaussianNB	0.620651	0.858077	0.620651	0.674882
4	Logistic Regression	0.849129	0.788453	0.849129	0.805289
5	Random Forest	0.869718	0.865322	0.869718	0.867387

F1 Scores for Different Classification Models

Comparison for Different Feature Selection Techniques – KNN

	Feature Selection	Accuracy	Precision	Recall	F1-Score
0	VarianceThreshold	0.885403	0.875026	0.885403	0.877920
1	SelectKBest	0.883615	0.869232	0.883615	0.873600
2	Select Percentile	0.835181	0.784363	0.835181	0.795258
3	Generic Univariate Select	0.883615	0.869232	0.883615	0.873600
4	SelectFwe	0.885199	0.874610	0.885199	0.877594
5	SelectFpr	0.885148	0.874610	0.885148	0.877572
6	SelectFdr	0.885148	0.874610	0.885148	0.877572

Feature Selection Accuracy Precision Recall

Comparison for Different Feature Selection Techniques – DT

0	VarianceThreshold	0.902161	0.894511	0.902161	0.896405
1	SelectKBest	0.872069	0.871668	0.872069	0.871649
2	SelectFromModel	0.871353	0.870211	0.871353	0.870447
3	Recursive feature elimination	0.901804	0.893947	0.901804	0.895904
4	Select Percentile	0.841465	0.784238	0.841465	0.794019
5	Generic Univariate Select	0.895417	0.885304	0.895417	0.888284
6	SelectFwe	0.902417	0.894703	0.902417	0.896636
7	SelectFpr	0.902263	0.894598	0.902263	0.896497
8	SelectFdr	0.901855	0.894161	0.901855	0.896160

Model Performance with and without Feature Selection - KNN

	K-Nearest Neighbours (KNN)	Accuracy	Precision	Recall	F1-Score
0	KNN With VarianceThreshold	0.885403	0.875026	0.885403	0.877920
1	KNN Without VarianceThreshold	0.885199	0.874795	0.885199	0.877721

Model Performance with and without Feature Selection - DT

		Decision Tree Classification (DT)	Accuracy	Precision	Recall	
2	0	DT with SelectFwe	0.902417	0.894703	0.902417	0.896636
	1	DT Without SelectFwe	0.868646	0.871274	0.868646	0.869474

Comparison of KNN and DT Performance

	Models	Accuracy	Precision	Recall	F1-Score
0	DT With With SelectFwe	0.902417	0.894703	0.902417	0.896636
1	KNN With VarianceThreshold	0.885403	0.875026	0.885403	0.877920

- The best performing predictive analytics model is the Decision Tree (DT) with 'SelectFwe' feature selection.

Exploring Olympic Data: Visualizations and Insights By using Power BI

Story: Equality in Olympic Participation

Total Participants 70K

₿ 52K

Male Participants

Female Participants A 18K

Women's Participation in Olympic Dashboard

Story: Women's Olympic Events Analysis and Regional Insight

Olympic Events Distribution Over Time

Equality in Participation

Events and Regional

87 MixedEventCount

69935 Count of Event

Team	Total Medals	Gold	Silver	Bronze
United States	495	246	141	108
Australia	145	48	49	48
Germany	132	43	47	42
Total	772	337	237	198

Top 3 Female's Teams

Gender Distribution in Mixed Events

Regional Distribution of Female Participants

2016

Event Name

Alpine Skiing Men's Combined

Alpine Skiing Men's Downhill

Alpine Skiing Men's Giant Slalom

Alpine Skiing Men's Slalom

Alpine Skiing Men's Super G

Alpine Skiing Women's Combined

Alpine Skiing Women's Downhill

Alpine Skiing Women's Giant Sl.,

Key Insights Affecting Decisions

Women's Participation in Olympic Dashboard

- ✓ Increase Women's Participation: The organization should actively work towards increasing the number of female participants in the Olympic Games, with the goal of achieving gender equality.
- ✓ Enhance Women's Events: Boost the number of women's events in the Olympic program to provide female athletes with more opportunities to compete at the highest level.
- ✓ Regional Focus: Targeted efforts should be made in regions with lower female participation rates to promote women's participation in the Olympics.

24 **Total Medals**

Jordan's Olympic **Performance Analysis**

Story: Analyzing Jordan's Olympic Journey Will

> 000 JORDAN

Season	~
All	V

Name	Sport	Games	Medal	Total Participants
Ahmad Abughaush	Taekwondo	2016 Summer	Gold	1
Khader Ghetrich Baqlah	Swimming	2016 Summer	No Medal	1
Lawrence Fanous	Triathlon	2016 Summer	No Medal	1
Total				47

Key Insights Affecting Decisions

Jordan's Olympic Performance Analysis Dashboard

- ✓ Increase Participation: Jordan should focus on increasing the number of participants in the Olympic Games to maximize its chances of success and explore Winter Olympics.
- ✓ Encourage Youth Participation: Targeting individuals in their twenties and encouraging them to participate in the Olympics can help Jordan develop a new generation of athletes.
- ✓ Support Athletes with Olympic Experience: Should be supported and encouraged to participate in subsequent games to leverage their expertise.
- ✓ Continue to encourage and promote the presence of Jordanian female athletes in Olympic events.

Key Insights Affecting Decisions

Seasonal Olympic Insight Dashboard

✓ Diversify Sports: Countries hosting the Winter Olympics may consider diversifying the range of sports to attract a broader audience and increase participant engagement.

✓ Promote Winter Sports: Focus on boosting the popularity of Winter Olympic sports to bridge the participation gap between Summer and Winter Games.

✓ Achieve Gold Medal Parity: Set the goal of achieving parity in gold medals between the Summer and Winter Olympics as a measure of overall success.

Thank you

Mays Moh'd Salih Al-Fasfous

maysmalfasfous@gmail.

http://www.linkedin.com/in/maysalfasfous

