

Data Transformation

Session 5 **Dan Herman**December 13, 2020

Presentation adapted from...

Amrom Obstfeld

Assistant Professor of Clinical Pathology and Laboratory Medicine

University of Pennsylvania Perelman School of Medicine

Director of Hematology and Coagulation Laboratories

Children's Hospital of Philadelphia

Goal

- 1. Learn how to use dplyr to transform data frames
- 2. Appreciate the role of piping in facilitating data transformation

Objectives

- 1. Use the pipe operator to pass the output of one function as an input to the next function
- Create new calculated columns not found in the original data frame

%>%

Data Analysis Steps

```
day_10 <- filter(covid_testing, pan_day <= 10)
day_10 <- select(day_10, clinic_name)
day_10 <- arrange(day_10, clinic_name)</pre>
```

- 1. Filter tests to those from pandemic day 10 or earlier
- 2. Select the column that contains the ordering location
- 3. Arrange those columns by location

Data Analysis Steps

```
day_10 <- arrange(</pre>
             select(
               filter(
                 covid_testing,
                 pan_day <= 10
               clinic_name
             clinic_name
```


The Pipe Operator %>%

Passes result on left into first argument of function on right.

```
covid_testing %>% filter(____, pan_day <= 10)</pre>
```

```
filter(covid_testing, pan_day <= 10)
covid_testing %>% filter(pan_day <= 10)</pre>
```


Data Analysis Steps

```
day_10 <- arrange(</pre>
             select(
               filter(
                 covid_testing,
                 pan_day <= 10
               clinic_name
             clinic_name
```

Data Analysis Steps

```
covid_testing %>%
  filter(pan_day <= 10) %>%
  select(clinic_name) %>%
  arrange(clinic_name)
```


Example: TAT investigation

The PICU would like a word with you because of a <u>recent</u> incident involving a delay in results for a patient who required an aerosol generating procedure.

They had to wait over 10 hours before the procedure could begin!

You decide to investigate...WITH DATA

Your Turn 1

Open '05- Transform.Rmd' and run the setup chunk.

Use %>% to write a sequence of three functions that:

- 1. Filters to orders from the clinic (clinic_name) of "picu"
- 2. Selects the columns with the receive to verify turnaround time (rec_ver_tat) and day from start of the pandemic (pan_day)
- 3. Arrange the 'pan_day' from highest to lowest
- 4. Use <- to assign the result to a new variable and take a look.

Isolating data

Extract variables with select()

Extract rows with filter()

Arrange rows, with arrange().

Deriving Data

What are the average and standard deviation of the total turnaround time for each ordering clinic?

Breaking down the analytical question

- 1. Total TAT for each order
- 2. Group orders by clinic
- 3. Calculate average and standard deviation for each clinic

Deriving data

Make new variables with mutate()

Make summaries of data with summarize()

Creating new calculated columns

Creating new calculated columns

```
covid testing %>%
    mutate(new_column = calculation)
```

name for new column

equals

function whose results will populate columns

Creating new calculated columns

mrn	col_rec_tat	rec_ver_tat
5000876	29.5	11.5
5006017	3.6	5
5001412	1.4	5.2
5000533	2.3	5.8

mrn	col_rec_tat	rec_ver_tat	c_r_tat_mins	
5000876	29.5	11.5	1770	
5006017	3.6	5	216	
5001412	1.4	5.2	84	
5000533	2.3	5.8	138	

Your Turn 2

Create a new column using the mutate() function that contains the total TAT (sum of col_rec_tat and rec_ver_tat)

Replace columns

Function to "coerce" one date type into another data type

orders %>%
 mutate(mrn = as.character(mrn))

mrn <dbl></dbl>	first_name <chr></chr>	last_name <chr>></chr>	mrn <chr></chr>	first_name <chr></chr>	last_name <chr>></chr>
5000876	sarella	stark	5000876	sarella	stark
5006017	alester	stark	5006017	alester	stark
5001412	jhezane	westerling	5001412	jhezane	westerling
5000533	penny	targaryen	5000533	penny	targaryen

Functions to use in mutate()

Vector Functions

TO USE WITH MUTATE ()

mutate() and transmute() apply vectorized functions to columns to create new columns. Vectorized functions take vectors as input and return vectors of the same length as output.

vectorized function

OFFSETS

dplyr::lag() - Offset elements by 1 dplyr::lead() - Offset elements by -1

CUMULATIVE AGGREGATES

dplyr::cumall() - Cumulative all()
dplyr::cumany() - Cumulative max()
cummax() - Cumulative mean()
dplyr::cummean() - Cumulative mean()
cumprod() - Cumulative prod()
cumsum() - Cumulative sum()

RANKINGS

dplyr::cume_dist() - Proportion of all values <=
dplyr::dense_rank() - rank with ties = min, no
gaps
dplyr::min_rank() - rank with ties = min
dplyr::ntile() - bins into n bins
dplyr::percent_rank() - min_rank scaled to [0,1]
dplyr::row_number() - rank with ties = "first"</pre>

MATH

+,-,*,/,^,%/%, %% - arithmetic ops log(), log2(), log10() - logs <, <=, >, >=, !=, == - logical comparisons dplyr::between() - x >= left & x <= right dplyr::near() - safe == for floating point numbers

MISC

Goal

- 1. Learn how to use dplyr to transform data frames
- 2. Appreciate the role of piping in facilitating data transformation

Objectives

- 1. Use the pipe operator to pass the output of one function as an input to the next function
- Create new calculated columns not found in the original data frame