NOVEL FEATURE: MARKET-BASED TASK ALLOCATION IN ROBOT FARMING

• 1. Overview of the Novel Mode:

- This mode introduces a **market-based mechanism** where tasks are allocated dynamically through an auction system.
- Farming robots (Drones and Pickers) bid on tasks based on their current states, such as battery level, workload, and proximity to tasks.
- 2. Key Concept:
- Task Auctions: Tasks are treated as "goods" in a virtual marketplace.
- Agents (robots) calculate utility scores to determine their bids for tasks.
- 3. Farming Context:
- Example Tasks:
 - Stag Tasks: Harvesting dense crop areas requiring cooperation.
 - Hare Tasks: Scouting or picking scattered crops independently.
- The mode balances cooperation and competition, optimizing efficiency and adaptability.

Comparison of Extended and Novel

Aspect	Extended Mode	Novel Mode
Exploration Approach	Random exploration for drones, with no prioritization of tasks.	Market-based task allocation where drones bid for tasks based on utility scores.
Task Allocation	Predefined roles for agents; tasks assigned without prioritization.	Dynamic allocation via auctions, prioritizing tasks based on agent states and utility.
Coordination	Limited cooperation; agents operate independently within predefined logic.	Cooperative and competitive balance through task auctions promoting adaptive strategies.
Energy Efficiency	Tasks not optimized for energy use or time; potential redundancy.	Optimized allocation reduces redundancy, conserving energy and time.
Adaptability	Static task distribution; minimal adjustment to changes in environment or agent state.	Dynamic task allocation adapts to agent states and environmental changes in real-time.
Scalability	Effective for smaller grids and fewer agents.	Scalable to larger grids with more agents due to adaptive task allocation mechanisms.

STRUCTURAL AND DYNAMIC CHANGES

Structural Changes:

• <u>Task Manager:</u>

- A new central component in the simulation responsible for:
 - Generating tasks dynamically.
 - Handling the auction process.

• Modified Agent Utility Function:

- Each robot calculates utility for each task:
 - Utility = Reward (Cost + Risk)
 - Reward: Payoff for completing the task.
 - Cost: Energy or time expenditure.
 - Risk: Failure probability due to low battery or distance.

• Dynamic Changes:

- Agents interact indirectly through task bidding, rather than relying on predefined roles.
- Behavior adapts over time:
 - Successful bids reinforce task preferences.
 - Failed bids adjust future strategies.

ADVANTAGES, APPLICATIONS, CHALLENGES, MITIGATIONS

Advantages:

Dynamic Task Allocation:

• Real-time optimization of task distribution based on agent states.

• Scalability:

• Handles larger grids and more agents effectively.

• Adaptability:

• Responds dynamically to changes in the environment or agent capabilities.

• Energy and Time Efficiency:

• Optimized task allocation reduces redundancy and resource wastage.

• Real-World Application:

• Autonomous Farming Example:

- Drones scout fields and identify high-yield areas.
- Pickers prioritize those areas for harvesting, maximizing crop yield.
- Reflects realistic coordination challenges and solutions in precision agriculture.

• Challenges:

Computational Overhead:

• The auction system increases simulation complexity.

• Fairness in Task Allocation:

• Agents may monopolize tasks, leading to unequal workload distribution.

• Environmental Disruptions:

• Factors like weather or crop conditions can impact task availability and outcomes.

Mitigations:

• Simplified Utility Function:

• Reduce computational load by simplifying cost and risk calculations for smaller simulations.

• Fairness Mechanisms:

• Introduce penalties for monopolizing agents to ensure balanced task distribution.

• Dynamic Task Adjustment:

• Allow Task Manager to modify task availability based on environmental conditions, ensuring resilience.