II. | Taylor Polynomials $\begin{aligned} &\text{N!} = |\times 2 \times 3 \times \cdots \times (n-1) \times \text{N} &\text{ is called the } n\text{-th factorial} \;, \; 0! = 1 \;, \; 1! = 1 \;, \; 2! = 1 \times 2 = 2 \\ &\text{f}^{(n)}(x) \; \text{ is the } n\text{-th derivative of } f \;, \; f^{(0)}(x) = f(x) \;, \; f^{(1)}(x) = f'(x) \;, \; f^{(2)}(x) = f''(x) \end{aligned}$

Definition: the n-th Taylor polynomial of f(x) at x=a is the polynomial $P_n(x)=f(a)+\frac{f'(a)}{1!}(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^n$ $P_n(a)=f(a)$, $P_n'(a)=f'(a)$, $P_n''(a)=f''(a)$, ..., $P_n^{(n)}(a)=f^{(n)}(a)$ In particular, the n-th Taylor polynomial of f(x) at x=0 is the polynomial $P_n(x)=f(0)+\frac{f'(0)}{1!}x+\frac{f''(0)}{2!}x^2+\cdots+\frac{f^{(n)}(0)}{n!}x^n$ $P_n(0)=f(0)$, $P_n''(0)=f''(0)$, $P_n''(0)=f''(0)$, ..., $P_n^{(n)}(0)=f^{(n)}(0)$

Example: The 2rd $TP(Taylor\ polynomial)$ of $f(x) = m(1+5x^2)$ at x = 0 which is $f_2(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2$, hence we need to calculate f(0), f'(0), f''(0) $f(0) = m(1+5\cdot 0^2) = m(1) = 0$ $f'(x) = \left[m(1+5x^2)\right]' = \frac{1}{1+5x^2} \cdot 10x = \frac{10x}{1+5x^2}, \quad f'(0) = 0$ $f''(x) = \left[\frac{10x}{1+5x^2}\right]' = 10\left[\frac{x}{1+5x^2}\right]' = 10\frac{(1+5x^2)-x\cdot 10x}{(1+5x^2)^2}$ f''(0) = 10

hence $p_2(x) = 5x^2$

How about $P_4(x)$? There is a quicker way Definition: Taylor expension(TE) of f at x=0 is $f(x) \sim f(0) + \frac{f'(0)}{1!}x + \frac{f'(0)}{2!}x^2 + \cdots + \frac{f(n)}{n!}x^n + \cdots$ without ending, if we truncate the first n+1 terms, we will get $P_n(x)$ consider the TE of $g(x) = \ln(1+x)$ at x=0, g(0) = 0, $g'(x) = \frac{1}{1+x}$, $g''(x) = -\frac{1}{(1+x)^2}$ thus g'(0) = 1, thus $\ln(1+x) \sim g(0) + \frac{g'(0)}{1!}x + \frac{g''(0)}{2!}x^2 + \cdots$ $= x - \frac{1}{2}x^2 + \cdots$, replace x with $5x^2$, you have $\ln(1+5x^2) \sim (5x^2) - \frac{1}{2}(5x^2)^2 + \cdots = 5x^2 - \frac{25}{2}x^4 + \cdots$, Notice $P_2(x) = 5x^2$, $P_4(x) = 5x^2 - \frac{25}{2}x^4$