A NOTE ON THE LICHNEROWICZ VANISHING THEOREM FOR PROPER ACTIONS

WEIPING ZHANG

ABSTRACT. We prove a Lichnerowicz type vanishing theorem for non-compact spin manifolds admiting proper cocompact actions. This extends a previous result of Ziran Liu who proves it for the case where the acting group is unimodular.

0. Introduction

A classical theorem of Lichnerowicz [3] states that if an even dimensional closed smooth spin manifold admits a Riemannian metric of positive scalar curvature, then the index of the associated Dirac operator vanishes. In this note we prove an extension of this vanishing theorem to the case where a (possibly non-compact) spin manifold M admitting a proper cocompact action by a locally compact group G.

To be more precise, recall that for such an action, a so called G-invariant index has been defined by Mathai-Zhang in [5]. Thus it is natural to ask whether this index vanishes if M carries a G-invariant Riemannian metric of positive scalar curvature. Such a result has indeed been proved by Liu in [4] for the case of unimodular G. In this note we extend Liu's result to the case of general G.

We will recall the definition of the Mathai-Zhang index [5] and state the main result as Theorem 1.2 in Section 1; and then prove Theorem 1.2 in Section 2.

1. A Vanishing theorem for the Mathai-Zhang index

Let M be an even dimensional spin manifold. Let G be a locally compact group which acts on M properly and cocompactly, where by proper we mean that the map

$$G \times M \to M \times M, \quad (g, x) \mapsto (x, gx),$$

is proper (the pre-image of a compact subset is compact), while by cocompact we mean that the quotient M/G is compact. We also assume that G preserves the spin structure on M.

Given a G-invariant Riemannian metric g^{TM} (cf. [5, (2.3)]), we can construct canonically a G-equivariant Dirac operator $D: \Gamma(S(TM)) \to \Gamma(S(TM))$ (cf. [2] and [5]), acting on the Hermitian spinor bundle $S(TM) = S_{+}(TM) \oplus S_{-}(TM)$. Let $D_{\pm}: \Gamma(S_{\pm}(TM)) \to \Gamma(S_{\pm}(TM))$ be the obvious restrictions.

Let $\|\cdot\|_0$ be the standard L^2 -norm on $\Gamma(S(TM))$, let $\|\cdot\|_1$ be a (fixed) G-invariant Sobolev 1-norm. Let $\mathbf{H}^0(M, S(TM))$ be the completion of $\Gamma(S(TM))$ under $\|\cdot\|_0$. Let $\Gamma(S(TM))^G$ denote the space of G-invariant smooth sections of S(TM).

Recall that by the compactness of M/G, there exists a compact subset Y of M such that G(Y) = M (cf. [6, Lemma 2.3]). Let U, U' be two open subsets of M such that $Y \subset$

U and that the closures \overline{U} and $\overline{U'}$ are both compact in M, and that $\overline{U} \subset U'$. Following [5], let $f \in C^{\infty}(M)$ be a nonnegative function such that $f|_{U} = 1$ and $\operatorname{Supp}(f) \subset U'$. Let $\mathbf{H}_{f}^{0}(M, S(TM))^{G}$ and $\mathbf{H}_{f}^{1}(M, S(TM))^{G}$ be the completions of $\{fs: s \in \Gamma(S(TM))^{G}\}$ under $\|\cdot\|_{0}$ and $\|\cdot\|_{1}$ respectively. Let P_{f} denote the orthogonal projection from $\mathbf{H}^{0}(M, S(TM))$ to $\mathbf{H}_{f}^{0}(M, S(TM))^{G}$. Clearly, $P_{f}D$ maps $\mathbf{H}_{f}^{1}(M, S(TM))^{G}$ into $\mathbf{H}_{f}^{0}(M, S(TM))^{G}$. We recall a basic result from [5, Proposition 2.1].

Proposition 1.1. The operator $P_fD: \mathbf{H}_f^1(M, S(TM))^G \to \mathbf{H}_f^0(M, S(TM))^G$ is a Fredholm operator.

It has been shown in [5] that $\operatorname{ind}(P_f D_+)$ is independent of the choice of the cut-off function f, as well as the G-invariant metric involved. Following [5, Definition 2.4], we denote $\operatorname{ind}(P_f D_+)$ by $\operatorname{ind}_G(D_+)$.

The main result of this note can be stated as follows.

Theorem 1.2. If there is a G-invariant metric g^{TM} on TM such that its scalar curvature k^{TM} is positive over M, then $\operatorname{ind}_G(D_+) = 0$.

Remark 1.3. If G is unimodular, then Theorem 1.2 has been proved in [4]. Our proof of Theorem 1.2 combines the method in [4] with a simple observation that in order to prove the vanishing of the index, one need not restrict to self-adjoint operators.

2. Proof of Theorem 1.2

Following [5, (2.16)], let $\widetilde{D}_{f,\pm}: \mathbf{H}_f^1(M, S_{\pm}(TM))^G \to \mathbf{H}_f^0(M, S_{\mp}(TM))^G$ be defined by that for any $s \in \Gamma(S_{\pm}(TM))^G$,

$$\widetilde{D}_{f,\pm}(fs) = f D_{\pm}s.$$

Since one verifies easily that (cf. [5, (4.2)])

(2.2)
$$\widetilde{D}_{f,\pm}(fs) - P_f D_{\pm}(fs) = -P_f (c(df)s),$$

one sees that $\widetilde{D}_{f,\pm}$ is a compact perturbation of P_fD_{\pm} . Thus, one has

(2.3)
$$\operatorname{ind}\left(\widetilde{D}_{f,+}\right) = \operatorname{ind}\left(P_f D_+\right).$$

Now by (2.1), if $fs \in \ker(\widetilde{D}_{f,+})$, then $s \in \ker(D_+)$. Thus, by the standard Lichnerowicz formula [3], one has (cf. [1, pp. 112] and [4, (3.6)])

(2.4)
$$\frac{1}{2}\Delta(|s|^2) = \left|\nabla^{S_+(TM)}s\right|^2 + \frac{k^{TM}}{4}|s|^2 \ge \frac{k^{TM}}{4}|s|^2,$$

where Δ is the negative Laplace operator on M and $\nabla^{S_+(TM)}$ is the canonical Hermitian connection on $S_+(TM)$ induced by g^{TM} .

As has been observed in [4], since the G-action on M is cocompact and |s| is clearly G-invariant, there exists $x \in M$ such that

$$(2.5) |s(x)| = \max\{|s(y)| : y \in M\}.$$

By the standard maximum principle, one has at x that

$$\Delta\left(|s|^2\right) \le 0.$$

Combining (2.6) with (2.4), one sees that if $k^{TM} > 0$ over M, one has

$$(2.7) s(x) = 0,$$

which implies that $s \equiv 0$ on M. Thus, one has $\ker(\widetilde{D}_{f,+}) = \{0\}$, and, consequently,

(2.8)
$$\operatorname{ind}\left(\widetilde{D}_{f,+}\right) \leq 0.$$

On the other hand, for any $s, s' \in \Gamma(S(TM))$, one verifies that

(2.9)
$$\langle fDs, fs' \rangle = \langle s, D(f^2s') \rangle = \langle fs, D(fs') + c(df)s' \rangle.$$

Let $\widehat{D}_{f,\pm}: \mathbf{H}^1_f(M, S_{\pm}(TM))^G \to \mathbf{H}^0_f(M, S_{\mp}(TM))^G$ be defined by that for any $s \in \Gamma(S_{\pm}(TM))^G$,

(2.10)
$$\widehat{D}_{f,\pm}(fs) = P_f \left(D_{\pm}(fs) + c(df)s \right).$$

Clearly, $\widehat{D}_{f,+}$ is a compact perturbation of P_fD_+ . Thus one has

(2.11)
$$\operatorname{ind}\left(\widehat{D}_{f,+}\right) = \operatorname{ind}\left(P_f D_+\right).$$

Now by (2.9), one sees that the formal adjoint of $\widehat{D}_{f,+}$ is $\widetilde{D}_{f,-}$, while by proceeding as in (2.4)-(2.7), one finds that $\ker(\widetilde{D}_{f,-}) = \{0\}$. Thus, one has

$$(2.12) \qquad \operatorname{ind}\left(\widehat{D}_{f,+}\right) \ge 0.$$

From (2.3), (2.8), (2.11) and (2.12), one gets ind $(P_f D_+) = 0$, which completes the proof of Theorem 1.2.

Acknowledgements. The author is indebted to Mathai Varghese for sharing his ideas in the joint work [5] and to Ziran Liu for helpful discussions. This work was partially supported by MOEC and NNSFC.

References

- [1] M. Gromov and H. B. Lawson, Positive scalar curvature and the Dirac operator on complete manifolds. Publ. Math. I.H.E.S. 58 (1983), 295-408.
- [2] H. B. Lawson and M.-L. Michelsohn, Spin Geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989.
- [3] A. Lichnerowicz, Spineurs harmoniques. C. R. Acad. Sci. Paris, Série A, 257 (1963), 7-9.
- [4] Z. Liu, A Lichnerowicz vanishing theorem for proper cocompact actions. Preprint, arXiv:1310.4903.
- [5] V. Mathai and W. Zhang, Geometric quantization for proper actions (with an Appendix by U. Bunke). Adv. in Math. 225 (2010), 1224-1247.
- [6] N. C. Phillips, Equivariant K-Theory for Proper Actions. Longman Scientific & Technical, 1989.

Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071, P.R. China

E-mail address: weiping@nankai.edu.cn