Recognition of Motor Imagery
Electroencephalography Using
Independent Component Analysis
and Machine Classifiers

吳育德 國立陽明交通大學 生物醫學光電研究所

Annals of Biomedical Engineering, Vol. 33, No. 8, August 2005 (© 2005) pp. 1053−1070 DOI: 10.1007/s10439-005-5772-1

Recognition of Motor Imagery Electroencephalography Using Independent Component Analysis and Machine Classifiers

CHIH-I HUNG,^{1,2} PO-LEI LEE,² YU-TE WU,^{1,2,3} LI-FEN CHEN,^{2,4} TZU-CHEN YEH,^{2,5} and JEN-CHUEN HSIEH^{2,3,5,6}

¹Institute of Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; ²Laboratory of Integrated Brain Research, Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan; ³Institute of Health Informatics and Decision Making, School of Medicine, National Yang-Ming University, Taipei, Taiwan; ⁴Center for Neuroscience, National Yang-Ming University, Taipei, Taiwan; ⁵Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; and ⁶Institute of Neuroscience, School of Life Science, National Yang-Ming University, Taipei, Taiwan

What is brain computer interface?

A technique in assisting people to communicate with external environments or trigger surrounding devices by means of their brain signals.

The **success** of BCI systems relies on two integral parts:

- 1.distinguishable neural patterns
- 2.effective classifiers.

AIM of this work:

- 1.extract reliably distinguishable feature from the motor imagery EEG using Independent Component Analysis (ICA)
- 2. employ **machine classifiers** to investigate the efficacy of extracted pattern

MOTOR IMAGERY EEG EXPERIMENT

FEATURE EXTRACTION BY INDEPENDENT COMPONENT ANALYSIS

PATTERN RECOGNITION BY MACHINE CLASSIFIERS

EEG Experiment Paradigm

A: Cue for eyes blinking

A-B: Eyes fixation

B : Cue for starting motor imageryC : Time interval for data analysis

EMG Monitor

Nasion

During imaged hand movement:

Left motor imagery right motor imagery Alpha band ERD was found over contralateral hemisphere, whereas the ipsilateral and central electrodes didn't show any significant band power changes.

Beta band ERS was only found over contralateral hand area following a beta ERD. No beta ERS was found at ipsilateral or medial locations.

G.Pfurtscheller, F.H. Lopes da Silva, Event-Related Dsynchronization, Ch 19

MOTOR IMAGERY EEG EXPERIMENT

FEATURE EXTRACTION BY INDEPENDENT COMPONENT ANALYSIS

PATTERN RECOGNITION BY MACHINE CLASSIFIERS

Independent Component Analysis

Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis, John Wieley & Sons, Inc., New York, 2001

Feature Extraction with ICA

Step 1: Signal decomposition by using ICA.

a. Arranged each pre-processed epoch across m channels (m=62) and n sampled points (n=1750) into an matrix X. ICA estimates an un-mixing matrix W and transform X into S:

$$S = WX$$

the rows of S: independent sources the columns of W-1 (mixing matrix): spatial map (show as follows)

Feature Extraction with ICA

Step 2: Correlating the IC spatial maps with pre-defined spatial templates to select task-related components.

Feature Extraction with ICA

Step 3: Computing the envelopes of beta reactivity from reconstructed signals using the Amplitude Modulation method.(a)

$$m(t) = \sqrt{M_{BP}(t)^2 + H(M_{BP}(t))^2}$$

 $M_{\it BP}(t)$: single-trial band-passed EEG signal $H(M_{\it BP}(t))$: Hilbert transform of $M_{\it BP}(t)$

Step 4: Extracting the beta rebound maps. (c)

MOTOR IMAGERY EEG EXPERIMENT

FEATURE EXTRACTION BY INDEPENDENT COMPONENT ANALYSIS

PATTERN RECOGNITION BY MACHINE CLASSIFIERS

LINEAR DISCRIMINANT ANALYSIS
 BACK-PROPAGATION NEURAL NETWOR
 RADIO-BASIS FUNCTION NEURAL NETWORK
 SUPPORT VECTOR MACHINE

Linear Discriminant Analysis

For a given training sample set, determine a set of optimal projection axes such that the set of projective feature vectors of the training samples has the maximum between-class scatter and minimum within-class scatter simultaneously.

$$J(w) = \frac{w^t S_b w}{w^t S_w w}$$

Sb: between-class scatter matrix

Sw: within-class scatter matrix

Back Propagation Neural Network

* Forward pass:

$$e_{j}(n) = y_{d}(n) - y_{j}(n)$$

* Backward pass

$$\Delta w_{kj}(n)$$

Adjust synaptic weights

Parameters -- Hidden layer: 1

Neurons: 10

Radial Basis Function Neural Network

Parameters -- Hidden layer: 1

Neurons: the same as training data set

Support Vector Machine

- 1. Nonlinear mapping of an input vector into a high-dimensional feature space that is hidden from both the input and output.
- 2. Construction of an optimal hyperplane for separating the features discovered in step1.

Parameters - nonlinear mapping: radio-basis function

Training Stage of Machine Classifiers

*AVERAGE RECOGNITION RATE OVER 4 SUBJECTS

Classification Accuracy(%)	Classifier			
	LDA	BPNN	RBFNN	SVM
without	54	54	57.3	55
with ICA	69.8	75.5	76.5	77.3

The Features of Task-unrelated Components

The Single-trial EEG with Feature Extraction by ICA

Comparison of Single-trial EEG with and without ICA

Imagery right index finger lifting

CONCLUSIONS

- •We have developed an ICA-based method in extracting the beta rebound map as a reliable feature from motor imagery EEG.
- •With a minimum training for each subject (20 minutes only), satisfactory classification rates (70%) from four classifiers have been achieved.