Automata and Formal Languages

October 16, 2019

1 Register Machines and Computability

Books: PTJ (Chapter 4)

Note: Here $\mathbb{N} = \{0, 1, 2, ...\}$

A register machine (RM) consists of:

- 1. A sequence of **registers** R_1, R_2, R_3, \ldots where at discrete time steps $t = 0, 1, 2, \ldots$ have $R_i(t) \in \mathbb{N}$, In fact, we only have finitely many registers, and regard $R_i \equiv 0$ for all $i \geq I$.
- 2. A finite **program** consisting of a fixed number of **states** S_0 (HALT), S_1 (START), S_2, \ldots, S_n . Each state comes with a fixed instruction performed when in state S_i . When the computer reaches HALT, we get the output from R_1 . Otherwise, for $1 \le i \le n$ we have 2 types of **commands**:
 - (a) Increment R_j , then move to state S_k . We write this $S_i:(j,+,k)$.
 - (b) If $R_j \neq 0$ then decrement R_j , then move to state S_k . Otherwise move to state S_l . We write this $S_i : (j, -, k, l)$.

A sequence of instructions for a RM is the ordered list of the instructions for the program. An input for a RM is, for some $k \geq 1$, a finite k-tuple $(n_1, \ldots, n_k) \in \mathbb{N}^k$ which are the initial values of R_1, \ldots, R_k . The other registers are set to 0.

A **program diagram** for a RM is a directed graph with vertices being the states of the machine and the labelled arrows denote the instructions: $S_i : (j, +, k)$

We can then use these to describe programs:

For any k > 0 a program P halts on input $(m_1, m_2, ..., m_k) \in \mathbb{N}^k$ if it ever reaches state S_0 , written $P(m_1, ..., m_k) \downarrow$

The **halting set** $\Omega(P)$ is a set of inputs on which P halts.

$$\Omega(P) = \bigcup_{k>0} \{ (m_1, \dots, m_k) : P(m_1, \dots, m_k) \downarrow \}$$

(a) Repeatedly increment R_1 , never halting

(b) For input (n_1, n_2) returns $n_1 - n_2$ if $n_1 \ge n_2$, else never halt

(c) Transfer R_i to R_j , emptying R_i

If P does not halt, we write $P(m_1, \ldots, m_k) \uparrow$.

For each program P, the *upper register index* upper(P) is the largest index of a register appearing in the instructions for P. So if i > upper(P) then R_i never changes.

A partial function $f: \mathbb{N}^k \to \mathbb{N}$ is one where the domain of f is a subset of \mathbb{N}^k , and undefined otherwise. If f is defined everywhere then we call it a **total function**. This lets us define these programs as functions - we say f is **partial computable** by a program P such that $\forall (m_1, \ldots, m_k) \in \text{dom}(f)$ have $P(m_1, \ldots, m_k) \downarrow \text{ with } f(m_1, \ldots, m_k) = R_1$ on halting, and $\forall (m_1, \ldots, m_k) \notin \text{dom}(f)$ we have $P(m_1, \ldots, m_k) \uparrow$. Hence any program P and k > 0 gives a partial function $f: \mathbb{N}^k \to \mathbb{N}$.

Lemma 1.1. We can add R_i to R_j leaving R_i unchanged.

Proof.

Thus by setting (i = 2, j = 1) we see that $(n_1, n_2) \mapsto n_1 + n_2$ is total computable.

We have already seen that the function $n \mapsto 0$ is also computable. This can be done with the machine:

$$R_1 - 1$$
 S_1 \cdots S_0

Corollary 1.2. There exists a routine which can copy R_i to R_j leaving R_i unchanged.

Proof. First empty R_j , then use **1.1** to add R_i to R_j .

We can use these as subroutines to join with other programs P. Use registers R_n s.t. n > upper(P) and largest input register. Then replace the halt state of P with the start state of the subroutine. In fact we have already done this - if you look carefully at the adding machine, you can see that the middle section is the same as the machine in (c) of the examples - this is the part where we replace the value in R_i from its temporary location in R_n .

Partial Recursive Functions

Partial computable functions have good closure properties.

Theorem 1.3.

- 1. For $i \leq k$, the **projection function** $(n_1, \ldots, n_k) \mapsto n_i$ is computable.
- 2. The zero function $n \mapsto 0$ and successor function $n \mapsto n+1$ are computable
- 3. (Composition) If $f: \mathbb{N}^k \to \mathbb{N}$ and $g_1, \ldots, g_k : \mathbb{N}^l \to \mathbb{N}$ are all partial computable then so is the composition function $h(n_1, \ldots, n_l) = f(g_1(n_1, \ldots, n_l), \ldots, g_k(n_1, \ldots, n_l))$ where defined. If f, g_1, \ldots, g_k are total functions, so is h.
- 4. (Recursion) If f on k variables and g on k+2 variables are partial computable, then so is the partial function $h: \mathbb{N}^{k+1} \to \mathbb{N}$ defined inductively as:

$$h(n_1, \dots, n_k, 0) = f(n_1, \dots, n_k)$$

$$h(n_1, \dots, n_k, n_{k+1} + 1) = g(n_1, \dots, n_{k+1}, h(n_1, \dots, n_{k+1}))$$

Moreover, f, g total $\implies h$ total.

5. (Minimisation) If f on k+1 variables is partial computable then so is the partial function $g: \mathbb{N}^k \to \mathbb{N}$ defined by $g(n_1, \ldots, n_k) = n$ if $f(n_1, \ldots, n_k, n) = 0$ and $f(n_1, \ldots, n_k, m) > 0$ for all m < n, and is undefined if no zero is ever found. Note that f total $\Rightarrow g$ total.

Proof.

- 1. We can use the program Transfer R_i to R_1 , HALT.
- 2. Zero function has already been seen. For successor function, use:

- 3. First transfer R_1, \ldots, R_l to R_{N+1}, \ldots, R_{N+l} where N is large enough to not be needed in other subroutines. Then for each $1 \leq i \leq k$ in turn, copy R_{N+1}, \ldots, R_{N+l} to R_{k+1}, \ldots, R_{k+l} , perform g_i but with all registers shifted up by k and then transfer answer from R_{k+1} to R_i , then clear R_{k+2}, \ldots, R_N . Finally, apply f.
- 4. Copy R_1, \ldots, R_k to R_{N+1}, \ldots, R_{N+k} , transfer R_{k+1} to R_{N+k+2} ("counts down"), then do f. Then:

5. Copy R_1, \ldots, R_k to R_{N+1}, \ldots, R_{N+k} . Then

The class of partial recursive functions is the smallest class of partial functions from \mathbb{N}^k to N over all k > 1 closed under the operations 1.3 (1) to (5). That is, f can be constructed from basic functions and applications of (3), (4), (5) a finite number of times.

So 1.3 says that partial recursive \implies partial computable.

A partial function is *primitive recursive* if we never use 1.3 (5) its construction. Note that primitive recursive \implies total recursive, as (5) was the only construction that breaks the totality of the function. [The converse implication is not true: the Ackermann function.]

Example: + and \times are primitive recursive:

+: Let h(m,0) = m, h(m,n+1) = h(m,n) + 1 = g(m,n,h(m,n)), where g(x,y,z) = z + 1.

 \times : H(m,0) = 0, H(m,n+1) = H(m,n) + m = g(m,n,H(m,n)) for g(x,y,z) = x + z.

Example: $(m, n) \mapsto m^n$ is primitive recursive - left as exercise.

We need to be able to "encode" finite sequences of arbitrary length in \mathbb{N} . For n > 0 and $i \in \mathbb{N}$, write p_i for the (i+1)th prime (so $p_0 = 2$). Write $(n)_i$ for the largest power of the prime p_i that divides n.

Lemma 1.4. For each fixed i, the 1 variable function $(\cdot)_i : \mathbb{N} \to \mathbb{N}$ is primitive recursive.

Proof. First note that, for any finite sequence $(m_0, m_1, \dots, m_s) \subseteq \mathbb{N}^{s+1}$, the function $f(n) = \begin{cases} m_n & n \leq s \\ 0 & n > s \end{cases}$ is primitive recursive.

By induction on s and recursion from 1.3 (4), for k=0 if c constant and $g: \mathbb{N}^2 \to \mathbb{N}$ is primitive recursive, then so is h(0)=c, h(n+1)=g(n,h(n)).

Thus, given $f: \mathbb{N} \to \mathbb{N}$ primitive recursive, let g(n, m) := f(n), which is primitive recursive. So h(0) = c, h(n+1) = f(n) is primitive recursive, and we can repeat this process.

This includes for each fixed k:

- 1. The step function $\operatorname{Step}_k(n) = \begin{cases} 1 & 0 \leq n \leq k-1 \\ 0 & \text{otherwise} \end{cases}$
- 2. The delta function $\delta_k(n) = \begin{cases} 1 & n=k \\ 0 & n \neq k \end{cases}$ Let $\epsilon(n) = \delta_0(\delta_0(n)) = \begin{cases} 0 & n=0 \\ 1 & n=1 \end{cases}$ this is also primitive recursive.
- 3. The slope function $\mathrm{Slope}_k(n) = \begin{cases} n+1 & 0 \leq n \leq k-2 \\ 0 & \text{otherwise} \end{cases}$
- 4. The remainder function $\operatorname{Rem}_k(n) = n \mod k$ use recursion in the form g(n,m) := f(m), so h(0) = 0, h(n+1) = f(h(n)) primitive recursive if f is. Here, $\operatorname{Rem}_k(n+1) = \operatorname{Slope}_k(\operatorname{Rem}_k(n))$
- *5. Floor_k $(n) = \lfloor \frac{n}{k} \rfloor$
- *6. $\operatorname{Divide}_k(n) = \begin{cases} n/k & n \equiv 0 \mod k \\ 0 & \text{otherwise} \end{cases}$
- *7. Division by powers $\operatorname{Power}_k(n,m) = \begin{cases} n/k^m & n \equiv 0 \mod k^m \\ 0 & \text{otherwise} \end{cases}$
- *8. $\operatorname{Maxpower}_k(n) = \begin{cases} 0 & n = 0 \\ \operatorname{largest power of k dividing n} & n \neq 0 \end{cases}$

Proofs of *ed function are on example sheet 1.

Now define by recursion h(n,0) = 0 and $h(n,m+1) = h(n,m) + \epsilon(\operatorname{Power}_k(n,m+1))$.

$$\epsilon(\operatorname{Power}_{k}(n,j)) = \begin{cases} 1 & k^{j} \text{ divides } n > 0 \\ 0 & \text{otherwise} \end{cases}, \text{ so is } 0 \text{ if } j \geq n$$

So $h(n,n) = \sum_{i=1}^{n} \epsilon(\operatorname{Power}_{k}(n,1)) = \operatorname{Maxpower}_{k}(n)$, so h(n,n) is primitive recursive. \square

Computable = Recursive

We have seen already that partial recursive \implies partial computable.

Theorem 1.5. Every partial computable function $f: \mathbb{N}^k \to \mathbb{N}$ is partial recursive.

Proof. From a program P for f, define $g: \mathbb{N}^{k+2} \to \mathbb{N}$, "what actually goes on in P", to be the function:

```
g(n_1,\ldots,n_k,0,t) is the state of P after time t with input (n_1,\ldots,n_k)
```

So t = 0 gives 1 and if halt at t_0 then gives 0 for all $t \ge t_0$, and:

```
(n_1, \ldots, n_k, i, t) is the contents of R_i at time t
```

So have N (assume > k) such that $g(\dots, i, \cdot) = 0 \forall i > N$. Note that g is a total function.

Suppose that g is recursive and define $q(n_1, \ldots, n_k) = \min\{t : g(n_1, \ldots, n_k, 0, t) = 0\}$. Then q is partial recursive, and so $f(n_1, \ldots, n_k) = g(n_1, \ldots, n_k, 1, q(n_1, \ldots, n_k))$ is partial recursive.

Proof that g is recursive:

Fix n_1, \ldots, n_k and t. For each $0 \le i \le N$, g gives $(g_0, \ldots, g_N) \in \mathbb{N}^{N+1}$, encode as $c(d_0, \ldots, d_N) = 2^{d_0}3^{d_1} \ldots p_N^{d_N} \in \mathbb{N}$ is primitive recursive. Also, $(c(d_0, \ldots, d_N))_i = d_i$ is primitive recursive. We will define $h: \mathbb{N}^{k+2} \to \mathbb{N}$ via recursion where $h(n_0, n_1, \ldots, n_k, t)$ is the coded integer of state and registers of P at time t for input n_1, \ldots, n_k and start state n_0 (here = 1).

In particular, for $t = 0, h = 2^{n_0} 3^{n_1} \dots p_k^{n_k}$. For recursion for h, we need $s : \mathbb{N} \to \mathbb{N}$, the "transition function", which computes in coded form the changes at each step.