C-520

M. A./M. Sc. (Second Semester) (Main/ATKT) EXAMINATION, May-June, 2019

MATHEMATICS*

Paper Second

(Real Analysis-II)

Time: Three Hours]

[Maximum Marks: 80

Note: Attempt all Sections as directed.

Section-A

1 each

(Objective/Multiple Choice Questions)

Note: Attempt all questions.

- 1. Let I = [0, 1] and let $f, \alpha: I \to \mathbb{R}$ be function such that $f(x) = x, \alpha(x) = x^2$. Then the value of $\int_0^1 f d\alpha$ is:
 - (a) $\frac{1}{3}$
 - $(6) \frac{2}{3}$
 - (c) 2
 - (d) $\frac{1}{2}$

2. Let $f \in \Re(\alpha)$ on [a, b], then:

 $|f| \in \Re(\alpha)$ $|f| \in \Re(\alpha)$ $|\int_a^b f d\alpha| < \int_a^b |f| d\alpha$

- (c) Both (a) and (b)
- (d) None of the above
- 3. If $P_1, P_2 \in \Re[a, b]$. Then P^* is their common refinement if:
 - (a) $P *= P_1 \cap P_2$
- (b) $P^*=P_1 \cup P_2$
 - (c) Both (a) and (b)
 - (d) Neither (a) not (b)
 - 4. If the set of numbers $\Lambda_{\gamma}(P)$ is unbounded for all partitions $P \in P[a,b]$, then the curve γ is said to be:
 - (a) rectifiable
 - (b) non-rectifiable
 - (c) arc
 - (d) None of the above
 - Singleton set {x} has its measures:
 - (a) 0
 - (b) 1
 - (c) $\frac{1}{2}$
 - (d) 2

(C-12) P. T. O.

- Cantor's set has measure :
 - (a)
 - (b)
 - (c)
 - (d)
- 7. An extended real-valued function $f: E \rightarrow \mathbb{R}$ defined on measurable set E. Let E = R, then the set E(f > a) is:
 - open set (a)
 - closed set
 - (c) Both (a) and (b)
 - None of the above
- 8. A continuous function:
 - is never measurable
 - may not be measurable (b)
 - is always measurable
 - None of the above (d)
- Let ϕ and ψ be simple functions then :

(a)
$$\int (\varphi + \psi) dx < \int \varphi dx + \int \psi dx$$

(b) $\int (\varphi + \psi) dx > \int \varphi dx + \int \psi dx$

(b)
$$\int (\varphi + \psi) dx > \int \varphi dx + \int \psi dx$$

(c)
$$\int (\varphi + \psi) dx = \int \varphi dx + \int \psi dx$$

None of the above (d)

- 10. If f(x)=1 almost everywhere on a set E of finite measure, then $\int_{\mathcal{F}} f$ is:
 - (a)

 - - None of the above
 - 11. Consider the following statements:
 - Every simple function is also a step function.
 - Every step function is also a simple function.
 - (I) is true and (II) is false
 - (I) is false and (II) is true
 - €0° (I) and (II) both are false
 - (I) and (II) both are true
 - 12. Let (X, B, μ) be measurable space. A measure μ is called σ-finite if:
 - there is a sequence $\{X_n\}$ of measurable sets in B such that $X = \bigcup X_n$
 - there is a sequence $\{X_n\}$ of measurable sets in B such that $X = \bigcup_{n=1}^{\infty} X_n$ and $\mu(X_n) < \infty$
 - there is a sequence $\{X_n\}$ of measurable sets in **B** such that $X = \bigcap_{n=1}^{\infty} X_n$
 - there is a sequence $\{X_n\}$ of measurable sets in **B** such that $X = \bigcap_{n=1}^{\infty} X_n$ and $\mu(X_n) < \infty$

- 13. Consider the following statements:
 - (1) If f is an absolutely continuous function, then it has a derivative almost everywhere.
 - (II) If f is an absolutely continuous on [a, b] and f'=0 almost everywhere, then f is a constant function.
 - (a) (I) is true and (II) is false
 - (b) (I) is false and (II) is true
 - (c) (I) and (II) both are false
 - (d) (I) and (II) both are true
- 14. Consider the following statements:
 - A continuous function may not be of bounded variation.
 - (II) A function of bounded variations continuous.
 - (a) (I) is true and (II) is false
 - (b) (I) is false and (II) is true
 - (c) (I) and (II) both are false
 - (d) (I) and (II) both are true
- 15. Consider the following statements:
 - (I) Every bounded variation function is absolutely continuous.
 - (II) Every absolutely continuous function is of bounded variation.
 - (a) (I) is true and (II) is false
 - (I) is false and (II) is true
 - (c) (I) and (II) both are false
 - (d) (I) and (II) both are true

- 16. Consider the following statements:
 - If a function F (x) is an indefinite integral, then it is an absolutely continuous.
 - (II) If a function F (x) is an absolutely continuous, then it is need not be an indefinite integral.
 - (a) (I) is true and (II) is false
 - (b) (l) is false and (ll) is true
 - (c) (I) and (II) both are false
 - (d) (I) and (II) both are true
 - 17. Consider the following statements:
 - (I) If $\{f(x)\}\$ converges almost everywhere to f(x), then it converges in measure to f(x).
 - (II) If $\{f(x)\}$ converges in measure to f(x), then it converges almost everywhere to f(x).
 - (I) is true and (II) is false
 - (b) (I) is false and (II) is true
 - (c) (I) and (II) both are false
 - (d) (I) and (II) both are true
 - 18. If $f(x) \in L^p$ and $g(x) \in L^q$, where $\frac{1}{p} + \frac{1}{q} = 1$, p > 1, then:
 - (a) $f(x)g(x) \in L^p$
 - (b) f(x)g(x)∈L^g
 - (a) $f(x)g(x) \in L$
 - (d) None of the above

19. If $f(x) \in L^p$ and $g(x) \in L^p$, then:

(a)
$$f(x)-g(x)\in L^p$$

(b)
$$f(x)+g(x)\in L^p$$

None of the above

20. If $f(x) \in L^q$ and $g(x) \in L^q$, then:

(a)
$$f(x)g(x) \in L^{\frac{q}{2}}$$

(b)
$$f(x)g(x) \in L^g$$

(e)
$$f(x)g(x) \in L$$

(d) None of the above

Section—B

 $1\frac{1}{2}$ each

(Very Short Answer Type Questions)

Note: Attempt all questions.

- 1. Define Riemann-Stieltjes integral of a real bounded function define on [a, b].
- 2. Write the statement of mean value theorem for Riemann-Stieltjes integrals.
- 3. Define Borel measurable.
- Define regularity of a measure.
- Define complete measure.
- Write the statement of Caratheodory extension theorem.
- State Vitali's Covering theorem.
- State Lebesgue differentiation theorem.
- State Hölder's inequality for L^p-space.
- Define L^p-space and give example.

(C-12) P. T. O.

Section-C

(Short Answer Type Questions)

Note: Attempt all questions.

- 1. Let f be monotonic on [a, b] and let α be continuous and monotonically increasing on [a, b]. Then prove that $f \in \mathbf{R}(\alpha)$.
- 2. Let f be a constant function on [a, b] define by f(x) = k and α a monotonically increasing function on [a, b]. Then prove that $\int_{a}^{b} fd \alpha$ exists and:

$$\int_a^b f d\alpha = k [\alpha(b) - \alpha(a)].$$

- 3. Prove that the intersection of a finite number of measurable sets is measurable. https://www.prsunotes.com
- Let f and g be measurable functions on a common domain E. Then prove that the set $E(f>g) = \{x \in E \mid f(x)>g(x)\}$ is measurable.
- 5. Let (X, B, μ) be a measure space. If $E_i \in B$, for all $i \in N$, then prove that:

$$\mu\left(\bigcup_{i=1}^{\infty} \mathbf{E}_i\right) \leq \sum_{i=1}^{\infty} \mu\left(\mathbf{E}_i\right).$$

6. Let {f_n} be a sequence of non-negative measurable function and let $f = \sum_{n=1}^{\infty} f_n$. Then prove that:

$$\int f = \sum_{n=1}^{\infty} \int f_n$$

.7. Find the four derivatives for the function $f: \mathbb{R} \to \mathbb{R}$ defined by:

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x > 0 \\ 0 & \text{if } x = 0. \\ x \sin\left(\frac{1}{x}\right) & \text{if } x < 0 \end{cases}$$

- 8. Prove that every absolutely continuous function is of bounded variation.
- 9. Let $f, g \in L^p[a, b]$, then prove that:

$$f+g\in \mathrm{L}^p\left[a,b\right]$$

10. If $f \in L^2[0,1]$, then show that:

$$\left| \int_{0}^{1} f(x) \, dx \right| \leq \left[\int_{0}^{1} |f(x)|^{2} \, dx \right]^{\frac{1}{2}}$$

Section-D

4 each

(Long Answer Type Questions)

Note: Attempt all questions.

1. Let $f \in \mathbb{R}$ on [a,b]. For $a \le x \le b$, put:

$$F(x) = \int_{a}^{x} f(t) dt.$$

Then prove that F is continuous on [a, b]; furthermore, if f is continuous at a point at x_0 of [a, b], then prove that F is differentiable at x_0 and:

$$F'(x_0)=f(x_0).$$

(C-12) P. T. O.

https://www.prsunotes.com

$$\Lambda_{\gamma}(a,b) = \Lambda_{\gamma}(a,c) + \Lambda_{\gamma}(c,b).$$

2. Prove that a continuous function defined on a measurable set is measurable but converse is not true.

Prove that the interval (α, ∞) is measurable.

- 3. Let (X,S,μ) be a measure space and let μ^* be the outer measure generated by μ . There for $E \subset X$, show the following statements are equivalent:
 - E is u*-measurable.
 - $\mu(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$ holds for all $A \in S$ with $\mu(A) < \infty$.

Or

State and prove Lebesgue-Monotone Convergence theorem.

4. State and prove Jordan-Decomposition theorem.

If f is of bounded variation on [a, b], then prove that $T_a^b = P_a^b + N_a^b$ and $f(b) - f(a) = P_a^b - N_a^b$.

5. State and prove Riesz theorem.

State and prove Riesz-Fischer theorem.

C-520