SES 2024 届高一下数学测验(8)22.04.27

一、填空题: (本大题共 12 小题, 每题 5 分, 共 60 分)

- 下列各式正确的是
 - ① $\arcsin\left(\sin\frac{5\pi}{4}\right) = -\frac{\pi}{4}$ ② $\arcsin\left(-\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$ ③ $\arccos\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$

- 方程 $\sin x = \lg x$ 的实根有______个. 2.
- 满足 $\arccos 2x < \arccos(1-x)$ 的 x 的取值集合______. 3.
- 已知 A(0,3) 、B(2,0) 、C(-1,3) 与 $\overrightarrow{AB} + 2\overrightarrow{AC}$ 方向相反的单位向量是 4.
- 在 $\triangle ABC$ 中, $a = 5, b = 8, C = 60^{\circ}$,则 $\overrightarrow{BC} \cdot \overrightarrow{CA}$ 的值为______. 5.
- 设函数 $y = \arctan x$ 的图象沿 x 轴正方向平移 2 个单位,所得图象为 C_1 ,又设图象 C_2 与 C_1 6. 关于原点对称,那么 C_2 所对应的函数是_____
- 函数 $y = 2 \arcsin 3x (0 < x \le \frac{1}{3})$ 的值域为______.
- 方程 $\sin 3x \sin x = 0$ 的解集是______. 8.
- 函数 $y = \sin x, x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ 的反函数为______.
- 10. 方程 $\sqrt{5}\cos x + \cos 2x + \sin x = 0$ 在 $[0,2\pi]$ 上的解集是______.
- 11. 在 $\triangle ABC$ 中,AB=2,BC=3, $\angle ABC=60^{\circ}$,AD 为 BC 边上的高,O 为 AD 的中点,若 $\overrightarrow{AO}=\lambda \overrightarrow{AB}$ $+\mu \overrightarrow{BC}$,其中 λ , $\mu \in \mathbf{R}$,则 $\lambda + \mu$ 等于______.
- 12. 如图, 菱形 ABCD 的边长为 2, $\angle BAD = 60^{\circ}$, M 为 DC 的中点, 若 N 为菱形内任意一点(含 边界),则 $\overrightarrow{AM} \cdot \overrightarrow{AN}$ 的最大值为

二、解答题: (12+14+14=40分)

- 13. 已知函数 $f(x) = \sqrt{3}\cos^2 x + \sin x \cos x$, $x \in [0,\pi]$
 - (1)求函数 f(x) 的单调递增区间;
 - (2)如果关于x的方程|f(x)|=m,在区间 $(0,\pi)$ 上有两个不同的实根,求实数m的取值范围
- 14. 甲船在 A 处观察到乙船在它的北偏东 60° 方向的 B 处,两船相距 a 海里,乙船正向北行驶,若甲船是乙船速度的 $\sqrt{3}$ 倍,问甲船应取什么方向前进才能在最短时间内追上乙船?此时乙船行驶多少海里?
- 15. 己知 $\vec{a} = (\cos \alpha, \sin \alpha)$, $\vec{b} = (\cos \beta, \sin \beta)$, 其中 $0 < \alpha < \beta < \pi$.
 - (1)求证: $\vec{a} + \vec{b}$ 与 $\vec{a} \vec{b}$ 互相垂直;
 - \rightarrow \rightarrow \rightarrow \rightarrow (2)若 ka+b 与 a-k b 的长度相等,求 $\beta-\alpha$ 的值(k 为非零的常数).

附加题(10分)

- 16. 在 $\triangle ABC$ 中, $\overrightarrow{AB} \cdot \overrightarrow{AC} = \left| \overrightarrow{AB} \overrightarrow{AC} \right| = 2$.
 - (1) 求 $\left|\overrightarrow{AB}\right|^2 + \left|\overrightarrow{AC}\right|^2$ 的值; (2) 当 $\triangle ABC$ 的面积最大时,求 $\angle A$ 的大小.