Teorija programskih jezikov: 3. izpit

11. april 2024

1. naloga (20 točk)

V λ -računu definirajmo izraz:

applyIf =
$$\lambda p.\lambda f.\lambda x.$$
if px then fx else x

- a) (10 točk) Zapišite vse korake evalvaciji izraza applylf $(\lambda x.1*2 < x)(\lambda y.y + 3*4)(5*6)$ v leni semantiki malih korakov. Izpeljav posameznih korakov ni treba pisati.. Izpeljav posameznih korakov ni treba pisati.
- **b)** (10 točk) S pomočjo Hindley-Milnerjevega algoritma izračunajte najbolj splošen tip izraza applylf.

2. naloga (20 točk)

Vzemimo varianto jezika IMP, ki namesto pomnilniških lokacij uporablja sklad celih števil:

```
aritmetični izraz e := \underline{n} \mid \text{head} \mid e_1 + e_2 \mid \cdots logični izraz b := \text{true} \mid \text{false} \mid \text{isEmpty} \mid e_1 = e_2 \mid \cdots ukaz c := \text{push} e \mid \text{drop} \mid \text{if} \ b \ \text{then} \ c_1 \ \text{else} \ c_2 \mid \text{while} \ b \ \text{do} \ c \mid c_1; c_2 \mid \text{skip}
```

kjer:

- isEmpty vrne true, če je sklad prazen, in false sicer,
- head vrne glavo sklada, če ta obstaja,
- push e na vrh sklada doda vrednost izraza e,
- drop odstrani glavo sklada, če ta obstaja.

Podajte ustrezno spremenjena pravila za relacije operacijske semantike:

$$s, e \downarrow n$$
 $s, b \downarrow r$ $s, c \leadsto s', c'$

kjer sklad s predstavimo s seznamom celih števil $n_1 :: n_2 :: \cdots :: []$.

3. naloga (20 točk)

Prostor Sierpinskega $\mathbb{S} = \{\bot, \top\}$ delno uredimo z:

$$a \sqsubseteq b \iff (a = \bot) \lor (b = \top)$$

Tedaj je (\mathbb{S},\sqsubseteq) domena, česar vam ni treba dokazovati. Definirajmo preslikavi any, all : $[\mathbb{N}_{\perp} \to \mathbb{S}] \to \mathbb{S}$ s predpisoma:

$$\operatorname{any}(f) = \begin{cases} \top & \exists n \in \mathbb{N}. f(n) = \top \\ \bot & \operatorname{sicer} \end{cases} \quad \operatorname{all}(f) = \begin{cases} \top & \forall n \in \mathbb{N}. f(n) = \top \\ \bot & \operatorname{sicer} \end{cases}$$

Pokažite, da je preslikava any zvezna, preslikava all pa ni.

4. naloga (20 točk)

Drobnoz
rnati neučakani λ -račun razširimo s sprožanjem in lovljenjem iz
jem E iz vnaprej podane množice \mathbb{E} , kar določimo s sintakso:

$$\text{vrednost } V ::= x \mid () \mid \lambda x.M$$

$$\text{izračun } M,N ::= \text{return } V \mid \text{let } x = M \text{ in } N \mid V_1V_2 \mid \text{throw } E \mid \text{try } M \text{ with } \{E \mapsto N\}$$

in operacijsko semantiko:

$$\frac{M \rightsquigarrow M'}{\text{let } x = M \text{ in } N \rightsquigarrow \text{let } x = M' \text{ in } N} \qquad \frac{\text{let } x = \text{return } V \text{ in } N \rightsquigarrow N[V/x]}{\text{let } x = \text{throw } E \text{ in } N \rightsquigarrow \text{throw } E} \qquad \frac{(\lambda x.M)V \rightsquigarrow M[V/x]}{(\lambda x.M)V \rightsquigarrow M[V/x]}$$

$$\frac{M \rightsquigarrow M'}{\text{try } M \text{ with } \{E \mapsto N\} \rightsquigarrow \text{try } M' \text{ with } \{E \mapsto N\}} \qquad \frac{E \neq E'}{\text{try } (\text{throw } E) \text{ with } \{E \mapsto N\} \rightsquigarrow \text{throw } E}$$

Namesto z običajnim sistemom tipov jezik opremimo s *sistemom učinkov*, v katerem poleg tipov vrednosti sledimo tudi izjemam, ki jih lahko sprožajo programi. Tako sintakso tipov podamo z

$$\operatorname{tip} A, B ::= \operatorname{unit} \mid A \stackrel{\mathscr{E}}{\to} B,$$

kjer tip $A \stackrel{\mathscr{E}}{\to} B$ predstavlja funkcije iz A v B, ki med izvajanjem lahko (morebiti) sprožijo eno izmed izjem iz podmnožice $\mathscr{E} \subseteq \mathbb{E}$. Podobno pri pravilih za določanje tipov izračunom z relacijo $\Gamma \vdash_{\mathcal{E}} M : A ! \mathscr{E}$ priredimo tudi množico izjem \mathscr{E} , ki jih lahko sprožajo:

$$\frac{(x:A) \in \Gamma}{\Gamma \vdash_v x:A} \qquad \frac{\Gamma, x:A \vdash_c M:B!\mathscr{E}}{\Gamma \vdash_v \lambda x.M:A \xrightarrow{\mathcal{E}} B}$$

$$\frac{\Gamma \vdash_v V_1:A \xrightarrow{\mathcal{E}} B \qquad \Gamma \vdash_v V_2:A}{\Gamma \vdash_c V_1 V_2:B!\mathscr{E}} \qquad \frac{\Gamma \vdash_v V:A}{\Gamma \vdash_c \operatorname{return} V:A!\mathscr{E}} \qquad \frac{\Gamma \vdash_c M:A!\mathscr{E} \qquad \Gamma, x:A \vdash_c N:B!\mathscr{E}}{\Gamma \vdash_c \operatorname{let} x=M \operatorname{in} N:B!\mathscr{E}}$$

$$\frac{E \in \mathscr{E}}{\Gamma \vdash_c \operatorname{throw} E:A!\mathscr{E}} \qquad \frac{\Gamma \vdash_c M:A!\mathscr{E} \cup \{E\} \qquad \Gamma \vdash_c N:A!\mathscr{E}}{\Gamma \vdash_c \operatorname{try} M \operatorname{with} \{E \mapsto N\}:A!\mathscr{E}}$$

Za razširjeni jezik velja natančnejša trditev o napredku, ki vam ga $ni\ treba$ dokazovati: če velja $\vdash_c M:A!\mathscr{E}$, tedaj:

- obstaja V, da velja M = return V,
- obstaja $E \in \mathcal{E}$, da velja M = throw E,
- obstaja M', da velja $M \rightsquigarrow M'$.

Dokažite še ohranitev: če velja $\vdash_c M : A!\mathscr{E}$ in $M \rightsquigarrow M'$, tedaj velja $\vdash_c M' : A!\mathscr{E}$. Pri tem lahko predpostavite ustrezno lemo o substituciji.