Convex Analysis and the Krein-Milman Theorem

Lynne Homann Cure '27

University of Maryland, College Park

Directed Reading Program, Spring 2025

Contents

- Intro
 - Convexity
 - Convexity-preserving operations
- 2 Combinations
 - Affine combinations
 - Convex hulls
- Sextreme points
 - Definition
- Mrein-Milman
 - Statement
 - Proof

Introduction

We will prove today this statement (Krein-Milman):

$\mathsf{Theorem}$

Let C be compact and convex in \mathbb{R}^n . Then C is equal to the convex hull of its extreme points.

- Based on Fundamentals of Convex Analysis by Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal
- Thank you to Rémi Barritault for his mentorship this semester!

Convexity

For our purposes, we are working within the real vector (affine) space \mathbb{R}^n equipped with the standard dot product as our scalar product $\langle \cdot, \cdot \rangle$ and the usual norm $||x|| = \sqrt{\langle x, x \rangle}$.

Convexity

For our purposes, we are working within the real vector (affine) space \mathbb{R}^n equipped with the standard dot product as our scalar product $\langle \cdot, \cdot \rangle$ and the usual norm $\|x\| = \sqrt{\langle x, x \rangle}$.

Formal definition

The set $C \subset \mathbb{R}^n$ is **convex** if $\alpha x + (1 - \alpha)x'$ is in C if $x, x' \in C$ and $\alpha \in (0, 1)$.

Convexity

For our purposes, we are working within the real vector (affine) space \mathbb{R}^n equipped with the standard dot product as our scalar product $\langle \cdot, \cdot \rangle$ and the usual norm $\|x\| = \sqrt{\langle x, x \rangle}$.

Formal definition

The set $C \subset \mathbb{R}^n$ is **convex** if $\alpha x + (1 - \alpha)x'$ is in C if $x, x' \in C$ and $\alpha \in (0, 1)$.

Intuitive definition

C is convex if the line segment [x,x'] is entirely contained in C when its endpoints x,x' are in C.

Intersection

Proposition

Let $\{C_j\}_{j\in J}$ be an arbitrary family of convex sets. Then their intersection $C=\bigcap_{j\in J}C_j$ is convex.

Many important convex sets are constructed by intersecting many convex sets, some of which we will encounter later.

Affine transformation

Definition

An **affine mapping** $A: \mathbb{R}^n \to \mathbb{R}^m$ is a mapping that can be characterised by a linear mapping $A_0: \mathbb{R}^n \to \mathbb{R}^m$ and a point $y_0 := A(0) \in \mathbb{R}^m$ such that

$$A(x) = A_0(x) + y_0.$$

Affine transformation

Definition

An **affine mapping** $A: \mathbb{R}^n \to \mathbb{R}^m$ is a mapping that can be characterised by a linear mapping $A_0: \mathbb{R}^n \to \mathbb{R}^m$ and a point $y_0:=A(0)\in \mathbb{R}^m$ such that

$$A(x) = A_0(x) + y_0.$$

Proposition

Let $A : \mathbb{R}^n \to \mathbb{R}^m$ be an affine mapping and C a convex set of \mathbb{R}^n . The image A(C) of C under A is convex in \mathbb{R}^m .

This means that the sum of two convex sets is also convex – a nice property that isn't true for, e.g., closedness.

Interior and closure

Definition

The **interior** of a set X, notated int X, is the union of all open subsets of X.

The **closure** of X, notated cl X, is the intersection of all closed sets containing X.

Note that int X is open, cl X is closed, and cl $X = (\text{int } X)^C$.

Interior and closure

Definition

The **interior** of a set X, notated int X, is the union of all open subsets of X.

The **closure** of X, notated cl X, is the intersection of all closed sets containing X.

Note that int X is open, cl X is closed, and cl $X = (\operatorname{int} X)^C$.

Proposition

If C is convex, so are int C and cl C.

Affine combinations

Definition

An **affine combination** of elements x_1, \ldots, x_k of \mathbb{R}^n is an element $\sum_{i=1}^{k} \alpha_i x_i$ where the coefficients α_i satisfy $\sum_{i=1}^{k} \alpha_i = 1$.

Affine combinations

Definition

An **affine combination** of elements x_1, \ldots, x_k of \mathbb{R}^n is an element $\sum_{i=1}^k \alpha_i x_i$ where the coefficients α_i satisfy $\sum_{i=1}^k \alpha_i = 1$.

Definition

The **affine hull** of a set S, denoted aff S, is the set of all affine combinations of S.

Affine combinations

Definition

An **affine combination** of elements x_1, \ldots, x_k of \mathbb{R}^n is an element $\sum_{i=1}^k \alpha_i x_i$ where the coefficients α_i satisfy $\sum_{i=1}^k \alpha_i = 1$.

Definition

The **affine hull** of a set S, denoted aff S, is the set of all affine combinations of S.

Definition

The k+1 points x_0, x_1, \ldots, x_k are said to be **affinely independent** if dim aff $\{x_0, \ldots, x_k\} = k$. Up to n+1 points can be affinely independent in \mathbb{R}^n .

Simplices

Definition

We define the **unit simplex** Δ_k in \mathbb{R}^k as

$$\Delta_k := \left\{ \alpha \in \mathbb{R}^k : \sum_{i=1}^k \alpha_i = 1, \alpha_i \ge 0 \right\}$$

Simplices are closely related to affine combinations – in fact, they are used to construct the most important kind of affine combination for our purposes.

Complex combinations and hulls

Definition

A **convex combination** of elements x_1, \ldots, x_k in \mathbb{R}^n is an affine combination where all the coefficients are nonnegative – that is, $\alpha = (\alpha_1, \ldots, \alpha_k) \in \Delta_k$.

Complex combinations and hulls

Definition

A **convex combination** of elements x_1, \ldots, x_k in \mathbb{R}^n is an affine combination where all the coefficients are nonnegative – that is, $\alpha = (\alpha_1, \ldots, \alpha_k) \in \Delta_k$.

Definition

The **convex hull** of a nonempty set S, denoted co S, is the set of all convex combinations of S.

Complex combinations and hulls

Definition

A **convex combination** of elements x_1, \ldots, x_k in \mathbb{R}^n is an affine combination where all the coefficients are nonnegative – that is, $\alpha = (\alpha_1, \ldots, \alpha_k) \in \Delta_k$.

Definition

The **convex hull** of a nonempty set S, denoted co S, is the set of all convex combinations of S.

Proposition

A set S is convex if and only if $S = \cos S$.

Carathéodory's theorem

$\mathsf{Theorem}$

Any $x \in \operatorname{co} S \subset \mathbb{R}^n$ can be represented as a convex combination of n+1 elements of S.

Proving this theorem essentially consists of expressing an arbitrary convex combination in terms of an *affine* combination, then using the upper bound of n+1 on dim aff S.

Extreme points

Definition

We say that $x \in C$ is an **extreme point** of C if there are no two distinct points $x_1, x_2 \in C$ such that x lies in the line segment between x_1 and x_2 .

Extreme points

Definition

We say that $x \in C$ is an **extreme point** of C if there are no two distinct points $x_1, x_2 \in C$ such that x lies in the line segment between x_1 and x_2 .

Examples

- Every x in the unit ball B(0,1) such that ||x|| = 1 is an extreme point of B(0,1)
- The vertices of a triangle (or any convex polygon) are its extreme points

We notate the set of extreme points of C as ext C.

The Krein-Milman Theorem

Theorem

Let C be compact and convex in \mathbb{R}^n . Then C is the convex hull of its extreme points – that is, C = co(ext C).

Recall that a set is compact iff it is closed and bounded.