

數學 試卷一 試題答題簿

本試卷必須用中文作答兩小時完卷(上午八時三十分至上午十時三十分)

- 1. 在本封面的適當位置填寫考生編號、試場 編號及座位編號。
- 2. 本試卷分**三部**,即甲部(1)、甲部(2)和乙部。每部各佔33分。
- 3. 甲部(1)及甲部(2)**各題均須作答**,乙部**選答 三題**,答案須寫在本試題答題簿中預留的 空位內。 如有需要,可要求派發補充答題 紙,每張紙均須寫上考生編號,並用繩縛 於簿內。
- 4. 在本封面的適當位置填寫乙部中選答試題 的編號。
- 5. 除特別指明外,須詳細列出所有算式。
- 6. 除特別指明外,數值答案須用真確值,或 準確至三位有效數字的近似值表示。
- 7. 本試卷的附圖不一定依比例繪成。

©香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 2001

2001-CE-MATH 1-1

考生編號					
試場編號					
座位編號					

	由閲卷員填寫	由試卷主席 填寫
	閱卷員編號	試卷主席編號
甲部試題編號	積分	積分
1–2		
3–4		
5–6		
7		
8–9		
10		
11		
12		
13		
甲部總分		

核分員專用	甲部總分		
-------	------	--	--

乙部試題編號 (由考生填寫)	積分	積分
乙部總分		

核分員專用	乙部總分		
-------	------	--	--

核分員編號

參考公式

球	體	表面	積	$=4\pi r^2$
		體	積	$= \frac{4}{3}\pi r^3$
圓	柱	側 面	積	$= 2\pi rh$
		體	積	$= \pi r^2 h$
圓	錐	側 面	積	$= \pi r l$
		體	積	$= \frac{1}{3}\pi r^2 h$
角	柱	體	積	= 底面積×高
角	錐	體	積	$= \frac{1}{3} \times \mathbb{E} $

甲部(1) (33分)

本部各題均須作答, 答案須寫在預留的空位內。

1. 化簡 $\frac{m^3}{(mn)^2}$,並以正指數表示答案。 (3分)

3. 求圖 1 中扇形的周界。

(3分)

4. 解 $x^2 + x - 6 > 0$, 並於圖 2 中表示其解。

(3分)

←	1 1 1 1 1 3 3 4 5
	3 2 · · · · · · · · · · · · · · · · · ·

-2-

2001-CE-MATH 1-3

5. 圖 3 中, AC 是圓的直徑。 求 ∠DAC。

(4分)

6.	令 x 成為公式 $y = \frac{1}{2}(x+3)$ 的主項。	(4分)
----	--	------

若 y 值增加 1 , 則 x 值對應地會增加多少?

(4分)

- 7. 圖 4 中標記了 A 、 B 兩點。
 - (a) 寫出 A 及 B 的坐標。
 - (b) 求連接 $A \times B$ 的直線的方程。

_		≠`	工士	17
_/	\ I	=	不言	4
$^{\prime}$		ᆽ	15	/ J

(4分)

	8.	去年某課本的售價爲	\$80	,	今年它的售價增加了	20%	c
--	----	-----------	------	---	-----------	-----	---

- (a) 求新的售價。
- (b) <u>培德</u>今年在某書店以八折購買該課本,他要付款多少?

9. 求圖 5 中 AB 及 ΔABC 的面積。 (5 分)

甲部(2)(33分) 本部各題均須作答,答案須寫在預留的空位內。

10. 圖 6中的直方圖顯示某班 40 名學生於一次測驗的得分分佈。

表 1 40 名學生得分的頻數分佈表

得分(x)	組中點 (組標)	頻數
$44 \le x < 52$		3
52 ≤ <i>x</i> < 60		
	64	15
68 ≤ <i>x</i> < 76		11
	80	

(a) 完成表 1。	(3	分	(۱
------------	----	---	----

(b) 估計這個分佈的平均值及標準差。 (2分)

(c) <u>素珊</u>在這次測驗的得分是 76 , 求她的標準分。 (2 分)

(d) 同一班學生進行第二次測驗, 並知道這次測驗得分的平均值及標準差依次爲 58 及 10 。 與她的同學相比, 若<u>素珊</u>在這兩次測驗的表現同樣地好, 估計她在第二次測驗的得分。 (2分)

11. 如圖 7 所示,一塊邊長為 12 cm 的正方形紙張 ABCD 沿線段 PQ 摺疊,使頂點 A 與邊 BC 的中點重疊。 設 A 及 D 的新位置依次為 A' 及 D', 並將 A'D' 及 CD 的交點記作 R。

(a) 設 *AP* 的長度爲 *x* cm。 通過 考慮三角形 *PBA'* , 求 *x*。 (3 分)

(b) 證明三角形 *PBA'* 及 *A'CR* 相似。

(3分)

(c) 求 A'R 的長度。

(2分)

12. 如下所示, $F_1, F_2, F_3, \cdots, F_{40}$ 爲 40 個相似圖形。 F_1 的周界是 $10~\rm cm$, 而接著的每個 圖形的周界均較前一個長 $1~\rm cm$ 。

- (a) (i) 求 F₄₀ 的周界。
 - (ii) 求這 40 個圖形的周界的總和。

(4分)

- (b) 已知 F₁ 的面積爲 4 cm²。
 - (i) 求 F₂ 的面積。
 - (ii) 判斷 $F_1, F_2, F_3, \dots, F_{40}$ 的面積是否組成一等差數列, 並提出論據。

(4分)

13. S 是兩部分的和,一部分隨 t 正變,另一部分隨 t 的平方正變。 下表顯示 S 和 t 的 某幾對數值。

S	0	33	56	69	72	65	48	21
t	0	1	2	3	4	5	6	7

(b)	求 $S=40$ 時的 t 值。	(2分	.)

(c) 利用表中的數據,於圖 8 中繪畫 S 對 t 在區間 $0 \le t \le 7$ 內的圖像。

從圖像讀出當 S 值爲最大時的 t 值。

(3分)

乙部 (33分)

選答三題, 每題 11 分, 答案須寫在預留的空位內。

- - (i) 完成表 2。
 - (ii) 已知方程 f(x) = 0 僅有一個大於 1 的根,利用 (i) 及分半法求此根, 答案須準確至三位小數。

(5分)

x	f(x)
1	0
1.05	
1.1	
1.15	0.111

表 2

(b)	從 199	7至 200	0年,	<u>陳</u> 先生	於每	年開	始時均	將 \$1	1 000	存入す	某銀行。	銀行以	年利率
	$r^{0}/_{0}$,	每年一	結計	算複利	息。	2001	年開始	治時:	,他	所存え	人銀行的	的款項共	累積得
	\$5000	的本利	和。	利用 (a) 求 r	,答	茶 須準	雄至	一位	小數。			

(6分)

本頁積分

 	······································

15. (a) 於圖 9 中,將代表下列限制條件的解的區域塗上陰影:

$$\begin{cases}
1 \le x \le 9, \\
0 \le y \le 9, \\
5x - 2y > 15 \circ
\end{cases} \tag{4 }$$

(b) 某餐廳有 90 張餐桌。 圖 10 顯示這餐廳的平面圖,每一個圓圈代表一張餐桌。 每 張餐桌編上一個由 10 至 99 的兩位數桌號。 在餐廳的平面圖上引入一直角坐標系 使 10x+y 號餐桌位於 (x,y),其中 x、 y 依次爲桌號的十位數及個位數。 圖中已 標示 42 號餐桌作爲示例。

該餐廳劃分爲吸煙與非吸煙兩區。 只有桌號的十位及個位數是滿足 (a) 中限制條件的餐桌才是位於吸煙區。

- (i) 於圖 10 中,將所有代表位於吸煙區內餐桌的圓圈塗上陰影。
- (ii) 從這 90 張餐桌中,隨機地先後選取兩張不同桌號的餐桌。 求以下事件的**冴** 率:
 - (I) 第一張選出的餐桌是位於吸煙區內;
 - (II) 兩張選出的餐桌中,一張位於吸煙區內,而另一張則位於非吸煙區內 及其桌號是3的倍數。

(7分)

|--|

– 14 –

16. 圖 11 所示為一五邊形紙板 ABCDE 。 它是從等邊三角形紙板 AFG 剪去兩個邊長均為x cm 的等邊三角形部分後造成的。 AB 長 6 cm 而 BCDE 的面積為 $5\sqrt{3}$ cm²。

圖 12

(a) 證明 $x^2 - 12x + 20 = 0$ 。 由此求 x 。

(4分)

- (b) 將圖 11 中的三角形部分 ABE 沿直線 BE 摺起直至頂點 A 到達位置 A' (如圖 12 所示),使 $\angle A'ED=40^\circ$ 。
 - (i) 求 A'D 的長度。
 - (ii) 求平面 BCDE 與 A'BE 間的夾角。
 - (iii) 若 $A' \times B \times C \times D \times E$ 是一個以 BCDE 爲底的角錐體的頂點,求這角錐體的體積。

(7分)

* =	待厶
44 🖯	作用のア

- 17. (a) 圖 13 中, OP 是圓的直徑, 銳角三角 形 OPQ 的高 QR 與圓交於 S 。 設 P 、 S 的坐標依次爲 (p,0) 及 (a,b) 。
 - (i) 求圓 OPS 的方程。
 - (ii) 利用 (i) 或其他方法, 證明 $OS^2 = OP \cdot OQ \cos \angle POQ$ 。

(7分)

圖 13

- (b) 圖 14 中, ABC 是一銳角三角形, AC 及 BC 分別是圓 AGDC 及 BCEF 的直徑。
 - (i) 證明 BE 是 ΔABC 的高。
 - (ii) 利用 (a) 或其他方法, 比較 *CF* 和 *CG* 的長度, 並提出論據。

(4分)

圖 14

	本頁積
	1 2 2 12

本頁積分

}

- 試卷完 -

2001

Mathematics 1 Section A(1)

- 1. $\frac{m}{n^2}$
- 2. 5
- 3. 8.62 cm
- 4. x < -3 or x > 2
- 5. 60°
- 6. x = 2y 3x will be increased by 2 if y is increased by 1.
- 7. (a) (-1, 5), (4, 3)
 - (b) 2x + 5y 23 = 0
- 8. (a) \$96
 - (b) \$76.8
- 9. 7.08 cm, 26.6 cm²

Section A(2)

10. (a)

Score (x)	Class mid-value (Class mark)	Frequency
44 ≤ <i>x</i> < 52	48	3
$52 \le x < 60$	56	9
$60 \le x < 68$	64	15
$68 \le x < 76$	72	11
$76 \le x < 84$	80	2

- (b) Mean = 64 Standard deviation = 8
- (c) Standard score = $\frac{76 64}{8}$ = 1.5
- (d) Let her score in the second test be y, then

$$\frac{y-58}{10} = 1.5$$
$$y = 73$$

11.

(a) Since A'P = x cm,

$$\therefore (12-x)^2 + 6^2 = x^2$$

$$144 - 24x + x^2 + 36 = x^2$$

$$x = 7.5$$

(b) In $\Delta s PBA'$ and A'CR,

(i)
$$\angle PBA' = \angle A'CR = 90^{\circ}$$

Since
$$\angle A'PB + 90^{\circ} + \angle BA'P = 180^{\circ}$$

$$(\angle \text{ sum of } \Delta)$$

(adj. $\angle \text{s on st. line})$

and
$$\angle RA'C + 90^{\circ} + \angle BA'P = 180^{\circ}$$

$$\therefore$$
 (ii) $\angle A'PB = \angle RA'C$

Hence
$$\Delta PBA' \sim \Delta A'CR$$

(c) Let A'R = y cm and use the result of (b),

$$\frac{A'R}{A'C} = \frac{PA'}{PB}$$

$$\frac{y}{6} = \frac{7.5}{12 - 7.5}$$

$$y = 10$$

i.e.
$$A'R = 10 \text{ cm}$$

12. (a) (i) Perimeter of
$$F_{40} = [10 + (40 - 1) \times 1]$$
 cm
= 49 cm

(ii) The sum of the perimeters of the 40 figures
$$= \left[40 \times \frac{10+49}{2} \right] \text{ cm}$$

$$= 1180 \text{ cm}$$

(b) (i) Area of
$$F_2 = [4 \times (\frac{11}{10})^2] \text{ cm}^2$$

= 4.84 cm²

(ii) Area of
$$F_3 = 4 \times \left(\frac{12}{10}\right)^2 \text{ cm}^2 = 5.76 \text{ cm}^2$$

- : Area of F_2 Area of $F_1 \neq$ Area of F_3 Area of F_2 (0.84 cm² \neq 0.92 cm²)
- the areas of figures F_1, F_2, \dots, F_{40} do not form an arithmetic sequence.

13. (a) Let $S = at + bt^2$ for some non-zero constants a and b.

Solving
$$\begin{cases} 33 = a + b \\ 56 = 2a + 4b \end{cases}$$
, we have

$$a = 38$$
 and $b = -5$

$$\therefore S = 38t - 5t^2$$

(b) When S = 40, $5t^2 - 38t + 40 = 0$ t = 1.26 or 6.34

From the graph, S is greatest when $t \approx 3.8$.

Section B

- 14. (a) (i) -0.0237, 0.0105
 - (ii) From (i), the root lies in the interval [1.05, 1.1]. Using the method of bisection,

esing the method of discours,			
<i>a</i> [f(<i>a</i>) < 0]	$b \\ [f(b) > 0]$	$m = \frac{a+b}{2}$	f(<i>m</i>)
1.0500	1.1000	1.0750	-0.0144
1.0750	1.1000	1.0875	-0.0039
1.0875	1.1000	1.0938	0.0028
1.0875	1.0938	1.0907	-0.0006
1.0907	1.0938	1.0923	0.0011
1.0907	1.0923	1.0915	0.0002
1.0907	1.0915		

- \therefore 1.0907 < h < 1.0915
 - $x \approx 1.091$ (correct to 3 decimal places)
- (b) The given conditions lead to the equation

$$1000(1+r\%)^4 + 1000(1+r\%)^3 + 1000(1+r\%)^2 + 1000(1+r\%) = 5000$$

Let
$$x = 1 + r\%$$
, then

$$1000x^4 + 1000x^3 + 1000x^2 + 1000x = 5000$$

$$x^4 + x^3 + x^2 + x = 5$$

$$\frac{x(x^4-1)}{x-1} = 5$$

$$x^5 - x = 5x - 5$$

$$x^5 - 6x + 5 = 0$$

From (a),
$$x \approx 1.091$$

i.e.
$$r \approx 9.1$$

15. (a)

(b) (i)

- (ii) (I) Required probability = $\frac{46}{90} = \frac{23}{45}$
 - (II) Required probability = $\frac{46}{90} \times \frac{14}{89} + \frac{14}{90} \times \frac{46}{89} = \frac{644}{4005}$

height =
$$x \sin 60^\circ$$
 cm = $\frac{\sqrt{3}}{2}x$ cm
 $CD = (6-x)$ cm

$$CD = (6-x) \text{ cm}$$
∴
$$\frac{6+(6-x)}{2} \times \frac{\sqrt{3}}{2} x = 5\sqrt{3}$$

$$\frac{\sqrt{3}(12-x)x}{4} = 5\sqrt{3}$$

$$x^2 - 12x + 20 = 0$$

$$(x-2)(x-10) = 0$$

$$x = 2 \text{ or } x = 10 \text{ (rejected)}$$

(b) (i)
$$A'D^2 = [6^2 + 2^2 - 2(6)(2)\cos 40^\circ] \text{ cm}^2 \approx 21.6149 \text{ cm}^2$$

 $A'D \approx 4.65 \text{ cm}$

(ii) Let
$$M$$
, N be the mid-points of EB and DC respectively, then $A'M = 6 \sin 60^{\circ} \text{ cm} = 3\sqrt{3} \text{ cm}$,

$$MN = 2 \sin 60^{\circ} \text{ cm} = \sqrt{3} \text{ cm}$$
, and

$$A'N = \sqrt{A'D^2 - DN^2}$$

$$\approx \sqrt{21.6149 - 2^2} \text{ cm}$$

$$\approx \sqrt{17.6149} \text{ cm}$$

The angle between the planes BCDE and A'BE is $\angle A'MN$.

$$\cos \angle A'MN \approx \frac{(3\sqrt{3})^2 + (\sqrt{3})^2 - 17.6149}{2(3\sqrt{3})(\sqrt{3})}$$
$$\approx 0.6881$$
$$\angle A'MN \approx 46.5^{\circ}$$

(iii) Required volume =
$$\frac{1}{3}$$
 (area of trapezium *CDEB*)($A'M \sin \angle A'MN$)

$$\approx \frac{1}{3} (5\sqrt{3})(3\sqrt{3} \sin 46.5^{\circ}) \text{ cm}^{3}$$

$$\approx 10.9 \text{ cm}^{3}$$

- 17. (a) (i) Centre = $\left(\frac{p}{2}, 0\right)$, radius = $\frac{p}{2}$
 - Equation of the circle OPS:

$$\left(x - \frac{p}{2}\right)^2 + y^2 = \left(\frac{p}{2}\right)^2$$
$$x^2 + y^2 - px = 0$$

(ii) :: S lies on the circle OPS.,

$$\therefore a^2 + b^2 - pa = 0$$

Using Pythagoras' Theorem,

$$OS^{2} = a^{2} + b^{2}$$

$$= pa$$

$$= OP \cdot OR$$

$$= OP \cdot OQ \cos \angle POQ$$

- (b) (i) : BC is a diameter of the circle BCEF, : $\angle BEC = 90^{\circ}$ (\angle in semic

(∠ in semicircle)

- i.e. BE is an altitude of $\triangle ABC$.
- (ii) Since the points C, A, B, G and E are defined analogously as the points O, P, Q, S and R in (a),

$$\therefore CG^2 = CA \cdot CB \cos \angle ACB .$$

Similarly, AD is also an altitude of $\triangle ABC$ and

$$CF^2 = CB \cdot CA \cos \angle ACB$$
.

Hence CG = CF.