Practice for Quiz 2

Charlie Meyer

MoWeFri 1:00 - 1:50

Pratice 1-2: Boolean Algebra

This includes both the pratice from the worksheet Elizabeth handed out in-class on Wednesday, review from the Discord Review session on Thursday, and as many practice problems I could do from 1-2.

Worksheet

1: Prove $A \wedge (A \vee B) \equiv A$

symbol	Equation	Reasoning
	$A \wedge (A \vee B)$	Given
=	$(A \lor \bot) \land (A \lor B)$	distributive property
≡	$A \vee (\bot \wedge B)$	simplification
=	$A \lor \bot$	simplification
\equiv	A	simplification

2: Prove $(P \vee \neg P) \rightarrow P \equiv P$

symbol	equation	reasoning
	$(P \lor \neg P) \to P$	given
≡	$\neg (P \lor \neg P) \lor P$	definition of implication
≡	$(\neg P \land \neg \neg P) \lor P$	DeMorgan's Law
≡	$(\neg P \land P) \lor P$	Double Negation
≡	$\bot \lor P$	simplification
≡	P	simplification

An alternate solution for (2) is:

symbol	equation	reasoning
	$(P \vee \neg P) \to P$	given
≡	op o P	simplification
=	$\neg \top \vee P$	definition of implication
≡	$\bot \lor P$	simplification
≡	P	simplification

3: Prove $\neg A \land \neg B \equiv \neg A \land (B \rightarrow A)$

symbol	equation	reasoning
	$\neg A \land \neg B$	given
≡	$(\neg A \land \neg B) \lor \bot$	simplification
=	$(\neg A \land \neg B) \lor (\neg A \land A)$	simplification
=	$\neg A \wedge (\neg B \vee A)$	Distributive Property
≡	$\neg A \land (B \rightarrow A)$	Definition of implication

4: Prove: $R \wedge \neg (P \to Q) \equiv P \wedge (\neg Q \wedge R)$

grmbol	oquation	roagoning
symbol	equation	reasoning
	$R \wedge \neg (P \to Q)$	Given
≡	$R \wedge \neg (\neg P \vee Q)$	definition of implication
≡	$R \wedge (\neg \neg P \wedge \neg Q)$	DeMorgan's Law
≡	$R \wedge (P \wedge \neg Q)$	double negation
=	$R \wedge (\neg Q \wedge P)$	commutative
=	$(R \wedge \neg Q) \wedge P$	associative
=	$P \wedge (R \wedge \neg Q)$	commutative
≡	$P \wedge (\neg Q \wedge R)$	commutative

5: Prove: $(X \to Y) \land (\neg X \to \neg Y) \equiv X \leftrightarrow Y$

symbol	equation	reasoning
≡	$ \begin{array}{c} (X \to Y) \land (\neg X \to \neg Y) \\ (X \to Y) \land (\neg \neg X \lor \neg Y) \end{array} $	given definition of implication
≡ =	$(X \to Y) \land (X \lor \neg Y) (X \to Y) \land (\neg Y \lor X)$	Double negation commutative
≡ ≡	$(X \to Y) \land (Y \to X)$ $X \leftrightarrow Y$	definition of implication definition of bimplication

6: Prove $\neg(P \lor M) \to \neg M \equiv \top$

symbol	equation	reasoning
= = = =	$ \neg (P \lor M) \to \neg M \neg \neg (P \lor M) \lor \neg M (P \lor M) \lor \neg M P \lor (M \lor \neg M) P \lor \top $	given definition of implication double negation associativity simplification
=	T	simplification

Discord Review Session

Prove: $A \oplus B \equiv \neg (A \leftrightarrow B)$

operator	expression	reached by
	$A \oplus B$	given
≡	$(A \lor B) \land \neg (A \land B)$	definition of XOR
≡	$((A \land \neg (A \land B)) \lor (B \land \neg (A \land B)))$	distribute
≡	$((A \land (\neg A \lor \neg B)) \lor (b \land (\neg A \lor \neg B)))$	DeMorgan
\equiv	$((A \land \neg A) \lor (A \land \neg B)) \lor (B \land (\neg A \lor \neg B)))$	distribute
\equiv	$((A \land \neg A) \lor (A \land \neg B)) \lor ((B \land \neg A) \lor (B \land \neg B))$	distribute
\equiv	$(\bot \lor (A \land \neg B)) \lor (B \land \neg A) \lor (B \land \neg B))$	simplify
\equiv	$(\bot \lor (A \land \neg B)) \lor ((B \land \neg A) \lor \bot)$	simplify
\equiv	$(A \land \neg B) \lor ((B \land \neg A) \lor \bot)$	simplify
\equiv	$(A \land \neg B) \lor (B \land \neg A)$	simplify
\equiv	$(\neg \neg A \land \neg B) \lor (\neg \neg B \land \neg A)$	double negation
≡	$\neg(\neg A \lor B) \land \neg(\neg B \lor A)$	De Morgan
≡	$\neg((\neg A \lor B) \land (\neg B \lor A))$	De Morgan
≡	$\neg((A \to B) \land (B \to A))$	definition of implication
=	$\neg(A \leftrightarrow B)$	definition of bi implication

Another Solution (not sure if it's legal though)

• Use Definition of xor: $A \oplus B \equiv \neg (A \to B)$. The purpose of the question above was to show another way to do that, though.

Practice 1-2: Boolean Algebra

Question 1:

Prove $P \to Q \equiv \neg Q \to \neg P$

operator	expression	reached by
=	$P \to Q$ $\neg P \lor Q$	given definition of implication
=	$Q \vee \neg P$	commutativity
=	$\neg \neg Q \lor \neg P$ $\neg Q \to \neg P$	double negation definition of implication

Question 2

Prove $\neg (P \land Q \land R) \equiv (\neg P \lor \neg Q \lor \neg R)$

operator	expression	reached by
	$\neg (P \land Q \land R)$	given
=	$\neg((P \land Q) \land R)$	Associativity
≡	$(\neg(P \land Q) \lor \neg R)$	DeMorgan's Law
≡	$((\neg P \vee \neg Q) \vee \neg R)$	DeMorgan's Law
≡	$(\neg P \vee \neg Q \vee \neg R)$	associativity

In the solution on the website, their first step was to do $\neg(P \land (Q \land R))$ but I did $\neg((P \land Q) \land R)$. Doesn't matter.

Question 3

Prove $P \wedge (P \rightarrow Q) \equiv P \wedge Q$

operator	expression	reached by
	$P \wedge (P \to Q)$	given
≡	$P \wedge (\neg P \vee Q)$	definition of implication
≡	$(P \land \neg P) \lor (P \land Q)$	Distributive
≡	$(\bot) \lor (P \land Q)$	simplification
≡	$(P \wedge Q)$	simplification
≡	$P \wedge Q$	associativity

The answer on the website has the stripping of parenthesis around (\bot) and therefore does one less step than me but same difference.

Question 4

Prove $\neg(P \land Q) \equiv (Q \rightarrow (\neg P))$

operator	expression	reached by
	$\neg (P \land Q)$	given
≡	$(\neg P) \lor (\neg Q)$	DeMorgan's Law
≡	$(\neg Q) \lor (\neg P)$	commutative property
=	$Q \to (\neg P)$	definition of implication

Question 5

Prove $(P \land \neg Q) \equiv \neg (P \to Q)$

operator	expression	reached by
= =	$ \begin{array}{c} (P \wedge \neg Q) \\ (\neg \neg P \wedge \neg Q) \\ \neg (\neg P \vee Q) \end{array} $	given double negation DeMorgan's Law

operator	expression	reached by
≡	$\neg(P \to Q)$	definition of implication

Cringe double negation but whatever don't forget to do that. It's easy to overlook that step when you're DeMorgans-ing.

Question 6

Prove $P \to (A \lor Q) \equiv (P \land \neg A) \to Q$

operator	expression	rule used
≡	$P \to (A \lor Q)$ $\neg P \lor (A \lor Q)$	given definition of implication
≡	$(\neg P \lor A) \lor Q$ $\neg \neg (\neg P \lor A) \lor Q$	associativity double negation
≡ =	$\neg (P \land \neg A) \lor Q$ $(P \land \neg A) \to Q$	DeMorgan definition of implication

The answer online took extra steps but I think my answer is cleaner (and still valid).

Question 7

Did this over discord, see discord review section

Question 8.

Prove $(P \to Q) \equiv \neg(\neg Q \to \neg P)$

operator	expression	rule
	$(P \to Q)$	given
≡	$\neg P \vee Q$	definition of implication
=	$(\neg P \lor Q)$	associativity
this	cannot	be proven

Working backwards... $\neg(\neg\neg Q \lor \neg P)$

$$\neg(Q \vee \neg P)$$

$$\neg Q \wedge P$$

As you can see there is no way to work backwards to get $(\neg P \lor Q)$ from $(\neg Q \land P)$ therefore it is unsolvable.

Another way to see that it is unsolvable: If P and Q are both \bot , the left-hand side is \top and the right-hand side is \bot . So they're not \equiv .

Question 9

Prove
$$A \to (B \to C) \equiv (A \land B) \to C$$

operator	expression	rule
	$A \to (B \to C)$	given
=	$A \to (\neg B \lor C)$	DeMorgan's
=	$\neg A \lor (\neg B \lor C)$	DeMorgan's
=	$(\neg A \lor \neg B) \lor C$	Associativity
=	$\neg(A \land B) \lor C$	DeMorgan's
=	$(A \wedge B) \to C$	Definition of implication

Question 10

For more practice, prove

 $A \oplus B \oplus C \equiv (A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land \neg B \land C) \lor (A \land B \land C)$, or prove any equivalence rule using other equivalence rules, or prove \forall_x chapter 15 exercise C or \forall_x chapter 17 exercise B or all exercises in \forall_x chapter 19\$

Questions 11-21

"The Team wins or I am sad. If the team wins, then I go to a movie. My dog is quiet. If i am sad, then my dog barks."

- W: the team wins
- S: I am sad
- M: I go to a movie
- B: my dog barks

We can express the passage above as: $(W \vee S) \wedge (W \to M) \wedge \neg B \wedge (S \to B)$.

The following proof is one way to show that:

- my dog doesn't bark
- the team won
- I am not sad, and
- I went to the movies

expression	rule used
$\overline{(W \vee S) \wedge (W \to M) \wedge \neg B \wedge (S \to B)}$	given
$(W \lor S) \land (\neg W \lor M) \land \neg B \land (S \to B)$	definition of implication
$(W \vee S) \wedge (\neg W \vee M) \wedge \neg B \wedge (\neg S \vee B)$	definition of implication
$(W \vee S) \wedge (\neg W \vee M) \wedge (\neg B \wedge (\neg S \vee B))$	associativity
$(W \vee S) \wedge (\neg W \vee M) \wedge ((\neg B \wedge \neg S) \vee (\neg B \wedge B))$	distributive
$(W \lor S) \land (\neg W \lor M) \land ((\neg B \land \neg S) \lor \bot)$	simplification
$(W \vee S) \wedge (\neg W \vee M) \wedge (\neg B \wedge \neg S)$	simplification
$(W \lor S) \land (\neg W \lor M) \land \neg B \land \neg S$	associativity
$\neg S \wedge (W \vee S) \wedge (\neg W \vee M) \wedge \neg B$	commutativity
$(\neg S \land (W \lor S)) \land (\neg W \lor M) \land \neg B$	associativity
$((\neg S \land W) \lor (\neg S \land S)) \land (\neg W \lor M) \land \neg B$	distributive
$((\neg S \land W) \lor \bot) \land (\neg W \lor M) \land \neg B$	simplification
$((\neg S \land W)) \land (\neg W \lor M) \land \neg B$	simplification
$\neg S \land W \land (\neg W \lor M) \land \neg B$	associativity
$\neg S \land \neg B \land W \land (\neg W \lor M)$	commutativity
$\neg S \land \neg B \land (W \land (\neg W \lor M))$	associativity
$\neg S \wedge \neg B((W \wedge \neg W) \vee (W \wedge M))$	distributive
$\neg S \wedge \neg B \wedge (\bot \vee (W \wedge M))$	simplification
$\neg S \wedge \neg B \wedge ((W \wedge M))$	simplification
$\neg S \wedge \neg B \wedge W \wedge M$	associativity

Note: removing redundant parenthesis like $((W \wedge M))$ to $W \wedge M$ is associativity, not simplification.

Questions 22 - 24

Some lists of loical axioms will include the contrapositive, for example $(P \to Q) \equiv ((\neg Q) \to (\neg P))$. We can derive the contrapositive from other rules as follows:

Expression	Reached by
$P \to Q$	given
$\neg P \lor Q$ $Q \lor \neg P$	definition of implication commutativity
$\neg \neg Q \lor \neg P$	double negation
$(\neg Q) \to (\neg P)$	definition of implication

Question 25:

Given the expression $(P \land Q) \lor (O \land \neg Q)$, which **two** of the following can be reached by a single application of a rule listed on our equivalences?

- $((P \land Q) \lor P) \land ((P \land Q) \lor \neg Q)$ distributive
- $P \wedge (Q \vee \neg Q)$ Distributive (backwards)

Questions 26-30:

Consider the following proof that "if you challenge me to a game, I'll play and win. But I can't win against you" means that you won't challenge me. We can formalize this passage into several propositions, as follows:

- C: if you challenge me to game
- P: I'll play
- W: I'll win

We can symbolize this passage as: $(C \to (F \land W)) \land \neg W$

expression	rule used
$(C \to (F \land W)) \land \neg W$	given
$(\neg C \lor (P \land W)) \land \neg W$	definition of implication
$\neg W \land (\neg C \lor (P \land W))$	commutativity
$(\neg W \land \neg C) \lor (\neg W \land (P \land W))$	distributive
$(\neg W \land \neg C) \lor ((P \land W) \land \neg W)$	commutative
$(\neg W \land \neg C) \lor (P \land (W \land \neg W))$	associativity
$(\neg W \land \neg C) \lor (P \land \bot)$	simplification
$(\neg W \land \neg C) \lor \top$	simplification
$\neg W \land \neg C$	simplification
$\neg C \wedge \neg W$	simplification
$\neg C$	entailment rule $A \wedge B \vDash A$

Question 31

Which of the following statements are tautologies? (A tautology is an expression that always evaluates to true):

- $(P \land \neg P) \rightarrow Q$ Tautology
- $(P \vee \neg P) \rightarrow Q$ Not a tautology
- $(P \wedge Q) \rightarrow (P \vee Q)$ Tautology

Question 32

Select the correct formalism of "If I were rich and famous you wouldn't treat me like this!" Assume each parenthesized english statement becomes one symbol.

- $((I'm rich) \land (I'm famous)) \rightarrow \neg (you treat me like this)$
- $((I'm rich) \land (im famous)) \rightarrow (you wouldn't treat me like this)$

Question 33

Starting from $(A \land \neg B) \lor (B \land \neg C)$, which of the following can be reached by only one application of the distributive rule?

• $((A \land \neg B) \lor B) \land ((A \land \neg B) \lor \neg C)$

Question 34

I have an expression consisting of a disjunction of several conjunctions. I want to get some of the terms of the conjunctions to cancel out. To do this, I should first:

- Know what a disjunction and a conjunction is:
 - disjunction is \vee and conjunction is \wedge
- Use the distributive law to change it into a conjunction of disjunctions OR use the distributive law to factor out common terms.
 - The second option is probably better the :grin: