The Poker Squares Challenge

Todd W. Neller

What is the Poker Squares Challenge?

 A semester-long contest where Gettysburg College students (individuals and/or teams) compete to develop the best time-limited Poker Squares playing program.

Outline:

- Learn how to play
- Play
- Discuss strategy
- Present possible computational approaches
- Contest details

Poker Squares

Materials:

- shuffled standard (French) 52-card card deck,
- paper with 5-by-5 grid, and
- pencil
- Each turn, a player draws a card and writes the card rank and suit in an empty grid position.
- After 25 turns, the grid is full and the player scores each grid row and column as a 5-card poker hand according to the American point system.

American Point System

Poker Hand	Points	Description	<u>Example</u>
Royal Flush	100	A 10-J-Q-K-A sequence all of the same suit	10 \$, J \$, Q \$, K \$, A \$
Straight Flush	75	Five cards in sequence all of the same suit	A♦,2♦,3♦,4♦,5♦
Four of a Kind	50	Four cards of the same rank	9♣,9♦,9♥,9♠,6♥
Full House	25	Three cards of one rank with two cards of another rank	7♠,7♣,7♦,8♥,8♠
Flush	20	Five cards all of the same suit	A♥,2♥,3♥,5♥,8♥
Straight	15	Five cards in sequence; Aces may be high or low but not both	8 ♣ , 9 ♠ , 10♥, J♦, Q♣
Three of a Kind	10	Three cards of the same rank	2♠,2♥,2♦,5♣,7♠
Two Pair	5	Two cards of one rank with two cards of another rank	3♥,3♦,4♣,4♠,A♣
One Pair	2	Two cards of one rank	5♦,5♥,9♣,Q♠,A♥
High Card	0	None of the above	2♦,3♣,5♠,8♥,Q♦

Scoring Examples

Let's Play!

Poker Hand	Points	Description	<u>Example</u>
Royal Flush	100	A 10-J-Q-K-A sequence all of the same suit	10 4 , J 4 , Q 4 , K 4 , A 4
Straight Flush	75	Five cards in sequence all of the same suit	A♦,2♦,3♦,4♦,5♦
Four of a Kind	50	Four cards of the same rank	9♣,9♦,9♥,9♠,6♥
Full House	25	Three cards of one rank with two cards of another rank	7♠,7♣,7♦,8♥,8♠
Flush	20	Five cards all of the same suit	A♥,2♥,3♥,5♥,8♥
Straight	15	Five cards in sequence; Aces may be high or low but not both	8 ♣ , 9 ♠ , 10♥, J♦, Q♣
Three of a Kind	10	Three cards of the same rank	2♠,2♥,2♦,5♣,7♠
Two Pair	5	Two cards of one rank with two cards of another rank	3♥,3♦,4♣,4♠,A♣
One Pair	2	Two cards of one rank	5♦,5♥,9♣,Q♠,A♥
High Card	0	None of the above	2♦,3♣,5♠,8♥,Q♦

Strategy Discussion

Possible Computational Approaches

- Rule-based: hard code an algorithm (e.g. decision tree) for the placement of cards
 - Example: Place cards so as to maximize potential column flushes and row rank repetitions
- Simple Monte Carlo:
 - For each possible play, shuffle remaining cards and simulate a number of random/rule-based playouts.
 - Choose the play that yields the best average result.
- More complex Monte Carlo play is possible.

Structure of the Game

- The game is structured as an alternating sequence of chance nodes and player choice nodes.
 - Each card draw is a probabilistic event where any remaining card is drawn with equal probability.
 - Each player action is a commitment to a card placement.

- Assume:
 - all chance events are equiprobable
 - numbers indicate node utility (e.g. score)
- What is the expected value of the root chance node?

- Assume:
 - all chance events are equiprobable
 - numbers indicate node utility (e.g. score)
- What is the expected value of the root chance node?

- Assume:
 - all chance events are equiprobable
 - numbers indicate node utility (e.g. score)
- What is the expected value of the root chance node?

- Assume:
 - all chance events are equiprobable
 - numbers indicate node utility (e.g. score)
- What is the expected value of the root chance node?

Game Tree Size

- How big is the Poker Squares game tree?
 - Root chance node: 52 possible cards
 - 52 depth-1 choice nodes: 25 possible placements
 - 52x25 depth-2 chance nodes: 51 possible cards
 - 52x25x51 depth-3 choice nodes: 24 possible placements
 - **–** ...
 - $-52!/27! \times 25! = 52!/(27 \times 26) \cong 1.15 \times 10^{65} \text{ nodes}$
 - Although:
 - Different draw/play sequences can lead to the same state.
 - Rows/columns may be reordered without affecting score.
 - Still, we will not be able to evaluate entire expectimax trees except for much smaller end-game situations.

Static Evaluation

- Another approach: optimize static evaluation
 - Static evaluation: a measure of the relative goodness/badness of a partially filled grid.
 - Simple depth-1 greedy play: place a card so as to achieve the best static evaluation of the resulting board
 - More generally, compute depth-n expectimax for small n, using static evaluation at the depth limit.
 - Still, n must remain small for fast tree evaluation.

Monte Carlo Sampling

- We can reduce the branching factor and evaluate more deeply and approximately by sampling.
- Chance events and/or actions may be sampled:
 - At each chance node, average a sample drawn from the given probability distribution.
 - At each choice node, maximize a sample of the possible actions.
- However, we'd like to sample better plays more often to discern which is the best.

Monte Carlo Tree Search (MCTS)

Figure from http://www.personeel.unimaas.nl/g-chaslot/papers/newMath.pdf

- Monte Carlo Tree Search details are beyond the scope of this talk, but
 - UCT is a popular form of MCTS: L. Kocsis, C. Szepesvari. <u>Bandit based Monte-Carlo Planning.</u>
 - Richard Lorentz has recently had success adapting UCT to a game with similar structure: R. Lorentz. An MCTS Program to Play EinStein Würfelt Nicht!

Combining Static Evaluation and MCTS

- One can also combine the ideas of static evaluation and MCTS by
 - Limiting depth of MCTS playouts, and
 - Using static evaluations instead of terminal evaluations
- Many different approaches are possible
 - The better the static evaluation, the less the need for tree search.
 - Perfect static evaluation → use simple greedy play!

Contest Details

- From http://tinyurl.com/pokersqrs, download:
 - Card.java: basic card object
 - PokerSquares.java: game simulator, player tester
 - PokerSquaresPlayer.java: simple player interface
 - RandomPokerSquaresPlayer.java: random player
- Run RandomPokerSquaresPlayer to see random game.
- Run PokerSquares to see RandomPokerSquaresPlayer test.
 - Mean score: 14.4, standard deviation: 7.6
- Each game is limited to 1 minute. A player taking longer than 1 minute on a game scores 0 for that game.

Dickinson Contest Suggestion

- Mid-semester trial contest:
 - Submissions due before spring break to local coordinator, results available after break.
- End-semester contest:
 - Submissions due at the end of the 2nd-to-last week of classes, results available in the last week of classes.
- Prizes?

Be Encouraged

- Don't let the complexity of some of these approaches discourage you from trying. This is an open problem; the best approach is unknown. Remember the KISS principle.
- Recall that random play has a mean score of 14.4 with a standard deviation of 7.6.
- A very simple player of mine with a 15-line getPlay method has a mean score of 81.1 with a standard deviation of 16.8. Can you guess what it does?

Resources and References

- Gettysburg College Poker Squares Page: http://tinyurl.com/pokersqrs
 - References
 - Rules and play grids
 - Contest code
- Monte Carlo Tree Search (MCTS):
 - L. Kocsis, C. Szepesvari. <u>Bandit based Monte-Carlo</u> <u>Planning.</u>
 - http://www.mcts.ai/?q=mcts
- MCTS application to similar problem: R. Lorentz.
 An MCTS Program to Play EinStein Würfelt Nicht!