设 m 为 A 的最小元即 $m \in A$ 且 $\forall x \in A, m \leq x$

令 n=-m 则 $n\in -A$

对于所有 $y \in -A$ 存在 $x \in A$ 且 y = -x, 由 $x \ge m$ 可知 $y \le n$ 故 n 为 -A 的最大元,所以 -A 有最大元且 $\max(-A) = -\min A$ 2.

 $\ \ \diamondsuit \ \ s=\inf A, \ t=-s \ \ \textcircled{M} \ \ \forall x\in A, \ s\leq x$

对于所有 $y \in -A$ 存在 $x \in A$ 且 y = -x,由 $x \ge s$ 可知 $y \le t$

所以 t 是 -A 的上界,所以 -A 有上界

下面证明 t 是 -A 的上确界

假设 t 不是 -A 的上确界,则存在 u < t 且 $\forall y \in -A, u \geq y$ 则 -u > s

对于所有 $x \in A$ 则 $-x \in -A$, 由 $u \ge -x$ 可知 $-u \le x$

故 -u 是 A 的下界,且比 A 的下确界大,矛盾

故 t 是 -A 的上确界,所以 $\sup(-A) = -\inf A$