计算机系统与云计算

1. 信息表示 - 整数 cont'd

华东师范大学 数据科学与工程学院

2021年09月10日

钱卫宁

wnqian@dase.ecnu.edu.cn

符号扩展

w 位的有符号整数 X, 转换为 w + k 位的整数 (要求值不变)

- 最高位复制 k 次: $X=x_{w-1}^0,\dots,x_{w-1}^{k-1},x_{w-1},x_{w-2},\dots,x_0$
- $\bullet \ x_{w-1}^i = x_{w-1}$

为什么成立???

符号扩展

"小"整数类型转换为"大"整数类型

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

C语言此时会自动进行符号扩展

截断 (truncation)

w+k 位的有符号或无符号整数 X,转换为 w 位的整数(**要求对于"在** 范围内的X",值不变)

• 扔掉最高的 k 位

截断示例

截断不变号

- $2 = 00010 \rightarrow 0010$: 2 mod 16 = 2
- ullet $-6=11010
 ightarrow 1010\colon -6\mod 16=26U\mod 16=10U=-6$

截断示例

截断变号

- $10 = 01010 \to -6 = 1010$: $10 \mod 16 = 10U$ $\mod 16 = 10U = -6$
- ullet -10=10110
 ightarrow 6=0110: $-10 \mod 16=22U$ $\mod 16=6U=6$

扩展与截断小结

扩展 (e.g. short \rightarrow int)

• 无符号: 加 O

• 有符号: 最高位扩展

• 结果可靠(可预期)

扩展与截断小结

截断 (e.g. unsigned to unsigned short)

- 无论有无符号: 去掉高位, 结果重新解释
- 无符号: 等同于取模运算
- 有符号: 类似于取模运算
- 对于不太大的数,结果可靠(可预期)

In the Game of Civilization

https://www.zhihu.com/question/24830939/answer/29131258

加法

$$s = UADD_w(u,v) = u+v \mod 2^w$$
 $s = TAdd_w(u,v) =$

- $u + v + 2^w$, $u + v < TMin_w$ (负溢出)
- $ullet \ u+v, \ TMin_w \leq u+v \leq TMax_w$
- $u+v-2^w$, $TMax_w < u+v$ (正溢出)

加法 (无符号)

Figure 2.22 Relation between integer addition and unsigned addition. When x + y is greater than $2^w - 1$, the sum overflows.

加法(补码)

Figure 2.24

Relation between integer and two's-complement addition. When x + y is less than -2^{w-1} , there is a negative overflow. When it is greater than or equal to 2^{w-1} , there is a positive overflow.

加法图示 (普通加法)

Figure 2.21 Integer addition. With a 4-bit word size, the sum could require 5 bits.

加法图示 (unsigned)

Figure 2.23 Unsigned addition. With a 4-bit word size, addition is performed modulo 16.

加法图示 (有符号)

Figure 2.26 Two's-complement addition. With a 4-bit word size, addition can have a negative overflow when x + y < -8 and a positive overflow when $x + y \ge 8$.

UAdd vs TAdd

位操作相同

 $ullet \ x +_w^t y = U2T_w(T2U_w(x) +_w^u T2U_w(y))$

```
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v;
s==t
```

例子: 11101001 + 11010101

乘法

w 位 x, y 相乘, 结果 (很可能) 超过 w 位

• 无符号: 最多 2w 位:

$$0 \le x * y \le (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$$

• 补码最小值: 最多 2w-1 位:

$$x*y \geq (-2^{w-1})*(2^{w-1}-1) = -2^{2w-2}+2^{w-1}$$

• 补码最大值: 最多 2w 位(当 $(TMin_w)^2$ 时达到): $x*y \leq (-2^{w-1})^2 = 2^{2w-2}$

如需要保留"完整"结果,需要扩展字长。如需要,由软件实现。

乘法

$$UMult_w(u,v) = u \cdot v \mod 2^w$$

$$TMult_w(u,v) = U2T_w((u\cdot v) \mod 2^w)$$

例子: 11101001 * 11010101

乘法示例

Mode		x		y		$x \cdot y$	Trunc	ated $x \cdot y$
Unsigned	5	[101]	3	[011]	15	[001111]	7	[111]
Two's complement	-3	[101]	3	[011]	-9	[110111]	-1	[111]
Unsigned	4	[100]	7	[111]	28	[011100]	4	[100]
Two's complement	-4	[100]	- 1	[111]	4	[000100]	-4	[100]
Unsigned	3	[011]	3	[011]	9	[001001]	1	[001]
Two's complement	3	[011]	3	[011]	9	[001001]	1	[001]

Figure 2.27 Three-bit unsigned and two's-complement multiplication examples. Although the bit-level representations of the full products may differ, those of the truncated products are identical.

移位:乘以2的幂

$$u << k = u * 2^k$$

- u << 3 = u * 8
- (u << 5) (u << 3) = u * 24

多数计算的移位操作快于乘法,编译器会自动用移位替换乘法

移位:除以2的幂

无符号数:
$$u>>k=u/2^k$$

• 无符号数的右移是逻辑右移

有符号数:
$$x >> k = x/2^k$$

• 有符号数的右移是算术右移

注意: 有符号数这样做除法以后,正数和负数的舍入方向是不同的

$$x = -15213, y = 15213, x >> 4$$
 和 $y >> 4$ 分别等于多少?

向上舍入

$$(x+2^k-1)/2^k$$

(x+(1<< k)-1) >> k

- 如果无舍入: 2^k-1 正好被右移去掉
- 负数,有舍入:最后结果增加1 (由向 $-\infty$ 变为向0)

向0舍入

(x<0 ? x+(1<< k)-1 : x) >> k

相反数

$$-x == \sim x + 1$$

运算小结

加法

• 有符号和无符号: 普通运算, 然后截断高位, **两者在位表示级别完全** 相同

乘法

• 有符号和无符号: 普通运算, 然后截断高位, **两者在位表示级别完全** 相同

关于无符号数

错:

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```

关于无符号数

正确:

```
size_t i;
for (i = cnt-2; i < cnt; i--)
  a[i] += a[i+1];</pre>
```

$$0-1
ightarrow UMax$$

Robert Seacord, Secure Coding in C and C++ (2nd Ed.). Addison-Wesley 2013

Why should I use unsigned?

- Do Use When Performing Modular Arithmetic
 - Multiprecision arithmetic
- Do Use When Using Bits to Represent Sets
 - Logical right shift, no sign extension
- Do Use In System Programming
 - Bit masks, device commands,...

数据表示的重要概念

- 内存(memory), 地址空间(address space)
- 字(word),字长(word size)
- 地址 (address, 字的低位)
- 字节序 (byte ordering)
 - o big endian: Sun (Oracle SPARC), PPC Mac, Internet
 - little endian: x86, ARM processors running Android, iOS, and Linux

Byte ordering

0x01234567

Big endian

0x100	0x101	0x102	0x103	
 01	23	45	67	

Little endian

 0x100	0x101	0x102	0x103	
 67	45	23	01	

Byte ordering

你能写一个显示计算机上字节序的程序(函数)么?

void show_bytes(pointer start, size_t len);

字符串

字符数组,以'\0'结尾

字符以 ASCII 编码

> man ascii

与字节序无关

汇编中的逆序字节列表

Address	Instruction Code	Assembly Rendition		
8048365:	5b	pop %ebx		
8048366:	81 c3 ab 12 00 00	add \$0x12ab, %ebx		
804836c:	83 bb 28 00 00 00 00	cmpl \$0x0,0x28(%ebx)		

预习要求

阅读至2.4结束

抽时间仔细/反复阅读第一章