UNIVERSIDAD GALILEO STATISTICAL LEARNING Catedratico: Ing. Preng Biba Auxiliar: Ing. Gladys Rodriguez

PROYECTO 2

Human Activity Recognition using Smartphone Data

MARVIN A. DIAZ CASTILLO Carnet: 9516008

OBJETIVO

- Clasificar la Actividad Humana por medio de la data de un Smartphone
- El objetivo es clasificar las actividades en una de las seis actividades realizadas
 - Descansando
 - Parado
 - Sentado
 - Caminando
 - Subiendo escaleras
 - Bajando escaleras

DATA

- Data Set: 10299 muestras y 562 características
- 30 personas, 6 actividades.
- Información del sensor: Velocidad angular triaxial del giroscopio.
- Variables de dominio de tiempo y frecuencia
- Su etiqueta de actividad.
- Un identificador del sujeto que llevó a cabo el experimento.

DISTRIBUCION DE LAS ACTIVIDADES

df.Activity.valu √ 0.1s	e_counts()
LAYING	1944
STANDING	1906
SITTING	1777
WALKING	1722
WALKING_UPSTAIRS	1544
WALKING_DOWNSTAIRS	1406
Name: Activity, dtyp	oe: int64

ANALISIS DE CORRELACION

corr_	lores con mayor correlación _values.sort_values('correla	tion', <i>ascending</i> =False).quo	ery('abs_cor	relation>0.8')
✓ 0.2s	feature1	feature2	correlation	abs correlation
456004				
156894	fBodyBodyGyroJerkMag-mean()	fBodyBodyGyroJerkMag-sma()	1.000000	1.000000
93902	tBodyAccMag-sma()	tGravityAccMag-sma()	1.000000	1.000000
101139	tBodyAccJerkMag-mean()	tBodyAccJerkMag-sma()	1.000000	1.000000
96706	tGravityAccMag-mean()	tGravityAccMag-sma()	1.000000	1.000000
94257	tBodyAccMag-energy()	tGravityAccMag-energy()	1.000000	1.000000
22657	tGravityAcc-mean()-Y	angle(Y,gravityMean)	-0.993425	0.993425
39225	tGravityAcc-arCoeff()-Z,3	tGravityAcc-arCoeff()-Z,4	-0.994267	0.994267
38739	tGravityAcc-arCoeff()-Z,2	tGravityAcc-arCoeff()-Z,3	-0.994628	0.994628
23176	tGravityAcc-mean()-Z	angle(Z,gravityMean)	-0.994764	0.994764
38252	tGravityAcc-arCoeff()-Z,1	tGravityAcc-arCoeff()-Z,2	-0.995195	0.995195
22815 row	rs × 4 columns			

	lr					
	0	1	2	3	4	5
467	0.002993	0.217266	0.308574	0.054700	0.098334	0.237068
549	0.134871	-1.306534	1.478447	0.255047	0.282069	-0.354369
219	0.024451	-0.113410	-0.022481	-0.621019	-0.027569	-0.490645
81	-0.025714	-0.133342	0.071428	-0.080978	0.044292	-0.202523
245	-0.020129	0.084135	-0.158133	-0.348243	0.212745	-0.018933
55	-1.260545	2.287108	1.111516	0.094611	-0.975173	0.948330
78	0.125709	-0.057108	-0.000535	0.123442	-0.340251	0.224885
79	-0.141387	0.019343	0.006189	-0.193702	0.390725	-0.304583
147	-0.129983	-1.146467	1.122597	-0.054408	0.361250	-0.441206
493	0.001605	0.220263	0.274081	0.133273	0.253586	0.267638

12					
0	1	2	3	4	5
-0.015393	0.527925	0.427618	-0.054149	0.288340	0.234280
0.318195	-5.517847	2.565188	0.439207	0.529715	-1.069425
0.042324	-0.080316	-0.019160	-1.437535	-0.193968	-1.004554
-0.050799	-1.813820	0.205014	-0.407655	-0.018429	-0.546569
-0.039755	0.332173	-0.290340	-0.753963	0.545235	-0.199476
-2.473193	2.878359	1.742269	0.212317	-1.856742	1.460618
0.350567	-0.199276	-0.031623	0.316007	-0.403523	0.334993
0.118011	-0.020612	-0.035518	-0.341141	0.670793	-0.674167
-0.290298	2.038250	1.319681	-0.282643	0.656109	-1.233966
-0.018180	0.448042	0.365899	0.383623	0.648394	0.180536

I 1					
0	1	2	3	4	5
0.000000	0.444868	0.288052	0.072614	0.000000	0.227805
0.000000	-3.085037	4.635855	0.521366	0.447211	-1.542963
0.000000	0.000000	0.000000	-0.684324	0.000000	-0.687159
0.000000	0.000000	0.000000	0.000000	0.053969	-0.630920
0.000000	0.000000	0.000000	-0.266923	0.351680	0.000000
-3.349345	3.259702	2.307449	0.000000	-3.291337	1.004223
0.000000	-0.144005	0.000000	0.153800	-0.646908	0.523292
-0.099450	0.000000	-0.065511	-0.234506	0.524329	-0.805003
0.000000	0.000000	0.000000	0.000000	0.000000	-2.611601
0.000000	0.315724	0.489997	0.121645	0.398609	0.123822

	lr	l1	I2	
0	3	3	3	
1	5	5	5	
2	3	3	3	
3	1	1	1	
4	0	0	0	

	lr .	l1	12
0	0.998939	0.998910	0.999757
1	0.988165	0.999462	0.999477
2	0.987592	0.995559	0.999671
3	0.981381	0.999137	0.994338
4	0.998277	0.999918	0.999997

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	583	
1	0.93	0.94	0.94	533	
2	0.95	0.94	0.94	572	
3	1.00	1.00	1.00	517	
4	0.99	0.99	0.99	422	
5	0.99	0.99	0.99	463	
accuracy			0.97	3090	
macro avg	0.98	0.98	0.98	3090	
weighted avg	0.97	0.97	0.97	3090	
Confusion mat	rix, withou	t normaliz	ation		
[[535 0]					
[0 418]]					

Error Data Frame Index número de trees Cuando incrementa el numero de trees disminuye el error

GRAFICANDO EL NUMERO DE TREES

Gradient Boost

El mejor estimador fue con el numero de estimadores de 100 con una learning rate de 0.01

```
GV_ABC.best_estimator_

AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=1),

learning_rate=0.01, n_estimators=100)
```

Utilizando el mejor estimador para predecir el X-test

	precision	recall	f1-score	support	
9	1.00	1.00	1.00	597	
1	0.96	0.97	0.97	558	
2	0.97	0.97	0.97	549	
3	1.00	1.00	1.00	540	
4	0.99	1.00	0.99	419	
5	0.99	0.99	0.99	427	
accuracy			0.99	3090	
macro avg	0.99	0.99	0.99	3090	
weighted avg	0.99	0.99	0.99	3090	

Se obtuvieron valores altos cercanos a I

MATRIZ DE CONFUSION

La actividad I se confunde con la actividad 2, que son las actividades sitting and standing

Se clasificaron en diagonal lo que quiere decir que se clasificaron correctamente

Ada Boost Clasificador

```
GV_ABC.best_estimator_

✓ 0.1s

AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=1),

learning_rate=0.01, n_estimators=100)
```

Class 2 fue muy bajo

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	598	
1	0.00	1.00	0.00	1	
2	1.00	0.49	0.66	1108	
3	0.92	0.84	0.88	589	
4	0.73	0.95	0.82	320	
5	0.89	0.80	0.84	474	
accuracy			0.75	3090	
macro avg	0.76	0.85	0.70	3090	
weighted avg	0.94	0.75	0.81	3090	

Class I y 2 fueron clasificados mal al igual que la clase 3

