

Tecnologías de la Información Desarrollo de Software Multiplataforma

Propuesta de proyecto

Salud y Bienestar (Healthcare & Wellbeing IoT)

Equipo Cuna Inteligente

Integrantes

Hernandez Ornelas Julian Javier Solis Lopez Cesar Ernesto Valencia García Rosalio Valenzuela Plata Jesús Virginia Dominguez Galvez Antonio Azael

Fecha

30 de Junio del 2025

1. Introducción

1.1 Propósito del Documento

Este documento presenta de forma estructurada la propuesta del sistema "Ameyalli", una solución tecnológica basada en IoT orientada al monitoreo de salud y condiciones ambientales de bebés de 0 a 12 meses.

1.2 Alcance del Sistema

Hospitales: Uso de la cuna inteligente con sensores, conectada a una plataforma web para la gestión de las cunas y los enfermeros relacionados con estas, y una app móvil de monitoreo centralizado por personal médico y administradores.

1.3 Definiciones

❖ IoT: Internet of Things

❖ ESP32: Microcontrolador con Wi-Fi/Bluetooth

MAX30102: Sensor óptico para ritmo cardíaco y oxigenación

MongoDB: Base de datos NoSQL utilizada para almacenar lecturas de sensores

❖ SQL Server: Base de datos relacional para usuarios, roles y configuraciones

ERS: Especificación de Requisitos de Software

1.4 Referencias

- Modelo loT de 7 capas
- Documentación oficial de ESP32 y sensores utilizados
- **❖** IEEE 830-1998

2. Descripción General

2.1 Perspectiva del Producto

Ameyalli se integra como una solución modular de salud infantil, combinando sensores biométricos y ambientales con plataformas digitales web y móviles. La arquitectura permite la segmentación del sistema para su aplicación en entornos hospitalarios

2.2 Funciones Clave

Función	Descripción	Dirigido a
Medición de signos vitales	Peso, temperatura, humedad, ritmo cardíaco	Hospital y Padres
Almacenamiento en la nube	MongoDB para lecturas en tiempo real, SQL para datos estáticos	Hospital y Padres
Visualización en tiempo real	App móvil (padres), Web/App (hospital)	Hospital y Padres
Alertas configurables	Notificaciones ante valores anómalos	Hospital y Padres
Historial y gráficas	Evolución de datos biométricos	Hospital y Padres
Gestión de usuarios	Padres, médicos y administradores	Hospital
Reportes estadísticos	Por institución, usuario o dispositivo	Hospital
Seguridad y respaldo	HTTPS, autenticación, backups en la nube	Hospital y Padres

2.3 Características y roles de los usuarios

2.3.1: Padre / Madre (Usuario final de la app móvil para el hogar)

Objetivo Principal:

Supervisar en tiempo real los signos vitales del bebé desde la aplicación móvil, recibir alertas personalizadas y consultar el historial de salud desde casa.

Responsabilidades y funcionalidades dentro de la app móvil:

- Visualización en tiempo real de los signos vitales del bebé (temperatura, pulso, oxigenación, humedad ambiental).
- Recepción de alertas y notificaciones en caso de valores anormales o pérdida de conexión con la cuna o guante.
- Consulta de historial y gráficas de datos médicos (por día, semana, mes).
- Configuración personalizada de umbrales de alerta para cada signo vital.
- Registro de información del bebé: nombre, edad, peso, fecha de nacimiento y condiciones médicas relevantes.
- Gestión de la cuenta de usuario (editar perfil, contraseña, nombre de usuario).

2.3.2: Personal Médico (Usuario de la aplicación móvil relacionado con hospital)

Objetivo Principal:

Monitorear los signos vitales de múltiples bebés conectados a cunas inteligentes desde una interfaz centralizada, tomar decisiones clínicas y consultar historiales detallados.

Responsabilidades y funcionalidades dentro de la app móvil y web:

- Visualización en tiempo real del estado de salud de varios bebés hospitalizados.
- Identificación rápida de pacientes en riesgo mediante indicadores visuales por color (verde, amarillo, rojo).
- Consulta del historial de lecturas y gráficas por paciente.
- Configuración de parámetros críticos según criterios médicos (rango seguro de signos vitales).
- Generación y descarga de reportes clínicos semanales o mensuales por bebé o por área.
- Acceso desde distintos dispositivos para brindar seguimiento desde distintas áreas del hospital.

2.3.3: Director del hospital

Objetivo Principal:

Supervisar la infraestructura tecnológica, visualizar de manera general gráficas de funcionamiento, gestionar usuarios de enfermería y dispositivos, y mantener la disponibilidad y seguridad del sistema.

Responsabilidades y funcionalidades dentro de la plataforma web:

- Vista global de todas las cunas conectadas al sistema en su hospital, con su estado en tiempo real.
- Administración de cuentas de personal médico, pacientes y dispositivos (cunas, guantes).
- Generación automática de reportes agregados por institución, área o tipo de alerta.
- Control de seguridad y acceso al sistema mediante roles y permisos.

2.3.4: Administrador general

- Alta o baja de los hospitales
- Supervisión general de la estructura del sistema (alta/baja de hospitales y usuarios).
- Vistas básicas de datos generales

2.4 Suposiciones y dependencias

- El sistema requiere conexión a Internet estable para el envío y recepción de datos en tiempo real.
- La plataforma web debe estar previamente instalada, configurada y vinculada con los dispositivos.
- ❖ Los sensores deben estar correctamente posicionados (el guante debe estar colocado en la extremidad del bebé).
- El usuario debe contar con las credenciales adecuadas para acceder a su rol asignado.
- ❖ Las bases de datos (MongoDB para lecturas, SQL para usuarios y relaciones) deben estar activas y sincronizadas.

3. Requisitos específicos

3.1 Requisitos funcionales

Tabla de Requerimientos Funcionales – IoT (Internet de las Cosas)

Materia	Código	Requisito Funcional	Descripción
loT	IOT-01	Medición precisa del peso del bebé	El sistema cuenta con una celda de carga que registra el peso en tiempo real y lo transmite al sistema.
loT	IOT-02	Registro de temperatura y humedad	Incorpora sensores digitales (como DHT22 o BME280) para monitorear las condiciones del entorno.
loT	IOT-03	Monitoreo del pulso cardíaco del bebé	Utiliza un sensor biométrico en una tobillera para medir el ritmo cardíaco y enviar los datos al sistema.
loT	IOT-04	Envío de datos a la nube	El ESP32 se conecta a internet por Wi-Fi y transmite todos los datos al servidor en tiempo real.
loT	IOT-05	Alertas ante valores anormales	El sistema detecta automáticamente variaciones críticas y activa notificaciones para los padres.
loT	IOT-06	Funcionamiento continuo y seguro	El hardware cuenta con fuente de energía estable para mantener activo el monitoreo las 24 horas.

Tabla de Requerimientos Funcionales – Aplicaciones Web

Materia	Código	Requisito Funcional	Descripción
Aplicaciones Web	WEB-01	Visualización en tiempo real	Permite consultar en línea el peso, pulso, temperatura y humedad del bebé.
Aplicaciones Web	WEB-02	Gráficas del historial de datos	Muestra gráficas interactivas para observar los cambios en los valores.
Aplicaciones Web	WEB-03	Acceso con usuario y contraseña	Los usuarios pueden iniciar sesión de forma segura.
Aplicaciones Web	WEB-04	Personalización de umbrales	El usuario configura rangos seguros para cada valor monitoreado.
Aplicaciones Web	WEB-05	Registro de eventos importantes	Se guardan eventos críticos como anomalías o desconexiones.
Aplicaciones Web	WEB-06	Notificaciones por correo o SMS	Se envían alertas automáticamente a través de correo o SMS.

Tabla de Requerimientos Funcionales – Aplicaciones Móviles

Materia	Código	Requisito Funcional	Descripción
Aplicaciones Móviles	MOV-01	Visualización de datos	Ver en tiempo real el pulso, peso, temperatura y humedad del bebé.
Aplicaciones Móviles	MOV-02	Gráficas fáciles de entender	Mostrar gráficas simples de evolución de datos.
Aplicaciones Móviles	MOV-03	Notificaciones instantáneas	Alertas push cuando se detectan valores anormales.
Aplicaciones Móviles	MOV-04	Historial de datos accesible	Consultar registros anteriores desde la app.
Aplicaciones Móviles	MOV-05	Botón para sincronizar datos	Opción para actualizar manualmente la información.
Aplicaciones Móviles	MOV-06	Interfaz simple y segura	Acceso fácil para padres con protección por contraseña.

3.2 Requisitos no funcionales

Código	Requisito	Descripción
RNF-01	Usabilidad	La interfaz debe ser amigable y accesible para usuarios sin conocimientos técnicos.
RNF-02	Disponibilidad	El sistema debe tener una disponibilidad mínima del 80%.
RNF-03	Rendimiento	La plataforma debe procesar y mostrar los datos en menos de 10 segundos.
RNF-04	Seguridad	Se debe implementar cifrado HTTPS y autenticación segura.
RNF-05	Escalabilidad	El sistema debe soportar múltiples dispositivos conectados simultáneamente.

4. Modelo loT de 7 Capas

Сара	Descripción	Tecnología
Percepción	Captura de datos	Sensores: DHT22, BME280, MAX30102
Red	Transmisión de datos	ESP32, Wi-Fi
Procesamiento	Preprocesamiento	ESP32
Almacenamiento	Base de datos mixta	MongoDB (lecturas), SQL (usuarios)
Servicios	Funciones del sistema	Alertas, gráficas, historial
Aplicación	Interfaces	Web (hospitales), Móvil (ambos)
Gestión empresarial	Análisis	Reportes médicos, estadísticas
Seguridad	Protección de datos	HTTPS, login, roles, cifrado

5. Propuesta de Solución

La presente propuesta plantea el desarrollo de Ameyalli, una solución tecnológica integral enfocada en el cuidado y monitoreo de bebés de entre 0 y 12 meses mediante el uso de dispositivos inteligentes basados en tecnología loT (Internet of Things). Esta solución combina elementos de hardware y software para ofrecer una supervisión continua del estado de salud y condiciones ambientales que rodean al infante, tanto en entornos hospitalarios como en el hogar.

Componentes principales del sistema

Ameyalli se compone de dos dispositivos principales:

- 1. Cuna inteligente: Dispositivo físico que incorpora sensores ambientales y de carga.
 - Registra variables como peso, temperatura y humedad relativa del ambiente.
 - Está fabricada con materiales resistentes, ligeros y seguros para su uso hospitalario y doméstico.
- 2. Guante biométrico: Accesorio portátil que se coloca en la mano o pie del bebé.
 - Incluye un sensor óptico MAX30102, capaz de medir en tiempo real el ritmo cardíaco y la oxigenación (SpO₂) del infante.
 - Está diseñado con materiales suaves y flexibles que no afectan la movilidad del bebé.

Ambos dispositivos están controlados mediante un microcontrolador ESP32, que procesa las señales de los sensores y las transmite a través de Wi-Fi hacia un servidor en la nube.

Transmisión y almacenamiento de datos

La arquitectura del sistema incluye un flujo de datos continuo:

- Los datos capturados por los sensores son enviados en tiempo real a una plataforma digital, que procesa, analiza y presenta la información al usuario final mediante interfaces gráficas amigables.
- El almacenamiento se realiza en una estructura de base de datos mixta:
 - MongoDB, una base de datos NoSQL, se utiliza para almacenar las lecturas frecuentes de los sensores en formato JSON, ideal para datos masivos y no estructurados.
 - SQL Server gestiona los datos estructurados, como los registros de usuarios, dispositivos, configuraciones, roles y relaciones entre ellos.

Esta separación de responsabilidades permite una mayor eficiencia, escalabilidad y seguridad de la información.

Aplicaciones digitales según el contexto

Ameyalli ha sido diseñada para operar en un entorno hospitalario, y también para brindarles la confianza necesaria a los padres

Entorno hospitalario

- Médicos y enfermeros utilizan una aplicación web y una app móvil profesional para monitorear múltiples cunas conectadas simultáneamente.
- Se visualizan los signos vitales de todos los bebés en tiempo real, con indicadores visuales de estado (colores verde, amarillo y rojo).
- Los usuarios pueden configurar umbrales críticos, generar reportes médicos en PDF, y consultar gráficos históricos de salud.
- Los directores de hospital pueden administrar usuarios, dispositivos y generar estadísticas globales por área o institución.
- Los administradores generales seran los encargados de registrar a los nuevos hospitales

Los padres podrán ver los datos y gráficas en tiempo real de la cuna mediante la app móvil

Seguridad, escalabilidad e innovación

El sistema está diseñado bajo principios de seguridad informática y privacidad de datos:

- Se utilizan protocolos de conexión segura HTTPS y autenticación mediante JWT (JSON Web Tokens).
- El acceso a las plataformas está controlado por un sistema de roles y permisos que garantiza que cada usuario solo acceda a la información que le corresponde.
- Se realizan resguardos automáticos periódicos en la nube para evitar pérdida de información.

Además, Ameyalli es modular y escalable, permitiendo:

- Agregar más sensores (por ejemplo, CO₂ o luz ambiental).
- Conectar más cunas o guantes a una misma cuenta.
- Extender la solución a otras poblaciones vulnerables (adultos mayores, pacientes crónicos).

Beneficio esperado

Con la implementación de Ameyalli, se busca alcanzar múltiples beneficios:

- Reducción de riesgos médicos en bebés mediante una supervisión continua y alertas inteligentes.
- Mayor tranquilidad para los padres, al tener acceso constante al estado de salud de sus hijos.
- Apoyo al personal médico, al centralizar la información y mejorar la capacidad de reacción ante emergencias.
- Mejor toma de decisiones clínicas, al contar con datos históricos visualizados gráficamente.
- Innovación educativa, al fomentar el uso de tecnología avanzada dentro de instituciones de salud pública o privada.

6. Roles del Equipo

Nombre	Rol	Actividades
César	Coordinador, desarrollo web	Gestión del equipo, desarrollo de interfaz web, documentación
Rosalio	Líder IoT	Programación de ESP32, instalación de sensores, integración con backend
Virginia	Desarrollo web y documentación	Interfaz de usuario web, configuración de alertas, apoyo en manuales
Antonio	Base de datos y app móvil	Diseño e integración de MongoDB + SQL, visualización de datos, sincronización con app
Julián	Pruebas y validación	Pruebas funcionales, validación de sensores y flujo completo del sistema
Aplicación	Interfaces	Web (hospitales), Móvil (ambos)
Gestión empresarial	Análisis	Reportes médicos, estadísticas
Seguridad	Protección de datos	HTTPS, login, roles, cifrado