Assignment 1 MAT 267

Q4a: We claim that x'(t) > 0 for all $t \in \mathbb{R}$. First, notice that if x'(t) = 0 for some $t \in \mathbb{R}$, we have that by uniqueness $x \equiv a$ on all of \mathbb{R} . This can not be the case though, since f(x(0)) = f(a) > 0. Suppose now that $f(t_0) < 0$ at some point t_0 . Then by taking a sufficiently large interval with endpoints t_0 and 0, the intermediate value theorem implies that at some point x_0 , $f(x_0) = 0$. Once again, this implies that we have a constant solution which can not be the case

Q4b: We first take note that the function x(t) can never be equal to 0 or 1, since this would imply it is a constant solution. Thus we have that 0 < x(t) < 1. Since x(t) is strictly increasing and continuous and bounded above at each point, by the monotone convergence theorem $\lim_{t\to\infty} x(t)$ converges to the supremum of x(t). This will be 1. Similarly, $\lim_{t\to-\infty} x(t)$ will converge to the infimum, which will be 0. We can evaluate that $\lim_{|t|\to\infty} x'(t) = 0$ in the following way.

$$\lim_{t \to \infty} x' = \lim_{|t| \to \infty} \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}$$

$$= \lim_{h \to 0} \lim_{|t| \to \infty} \frac{x(t+h) - x(t)}{h}$$

$$= \lim_{h \to 0} \frac{0}{h}$$

$$= 0$$

Q4c: Suppose that y(t) is a solution of x' = f(x), with initial value y(0) >= b > a. We know that y will share properties with x, namely those shown in a and b. Suppose that in some neighborhood of a point t_0 , we have that $y(t_0) \le x(t_0)$. The intermediate value theorem tells us that the functions x and y must be equal at some point. However, from our discussion in class we know that integreal curves can not cross eachother. Hence $y(t) > x(t) \forall t$.