■ Puedes usar cualquier teorema o proposición demostrado en clase siempre y cuando especifiques cláramente que lo estás usando.

Profesor: Román Contreras

-	 Justifica todas tus respuestas y afirmaciones. Redact 	cta tus argumentos de la manera más clara posible,
	no es necesario que utilices símbolos lógicos.	

Pregunta	1	2	3	4	5	6	7	Total
Puntos	2	8	8	13	3	5	3	42
Puntaje								

Nombre: Juan Andrés Murillo Herrera

En lo sucesivo, fijemos una base ortonormal $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$. Además, fijemos el volumen V que cumple que $V(\vec{w}_1, \vec{w}_2, \vec{w}_3) = 1$. Recordemos que en clase definimos las funciones coordenadas asociadas a la base β como:

$$X(\vec{v}) = \langle v, \vec{w}_1 \rangle$$

$$Y(\vec{v}) = \langle v, \vec{w}_2 \rangle$$

$$Z(\vec{v}) = \langle v, \vec{w}_3 \rangle$$

Sea Q la forma cuadrática:

$$-\frac{X^2}{8} - \frac{3X}{4}Y - \frac{XZ}{2}\sqrt{6} - \frac{5Y^2}{8} - \frac{Z^2}{4}$$

Sea $\lambda_1 = \frac{1}{2}$.

El objetivo es simplificar la forma cuadrática Q y deducir qué tipo de superficie cuádrica es la superficie $Q(\vec{v}) = 1$.

1. (2 Puntos) Encuentra una transformación lineal y autoadjunta T tal que para todo vector \vec{v} se cumple que:

$$\langle \vec{v}, T(\vec{v}) \rangle = Q(\vec{v})$$

Las siguientes dos preguntas (preguntas 2 y 3) son dos maneras distintas de encontrar los valores propios de T. Valen la misma cantidad de puntos y puedes hacer cualquiera de las dos:

- 2. (a) (2 Puntos) Encuentra un vector \vec{v}_1 tal que $T(\vec{v}_1) = \lambda_1 \vec{v}_1$ Esto implica que λ_1 es un valor propio de T y que \vec{v}_1 es un vector propio.
 - (b) (2 Puntos) Encuentra una base ortonormal $\gamma = \{\vec{z}_1, \vec{z}_2, \vec{z}_3\}$ tal que \vec{z}_1 es paralelo a \vec{v}_1 .
 - (c) (2 Puntos) Calcula la matríz $[T]_{\gamma}$
 - (d) (2 Puntos) Calcula el polinomio característico de T a partir de la matriz $[T]_{\gamma}$
- 3. (8 Puntos) Calcula el polinomio característico de Ta partir de la matriz $[T]_\beta$
- 4. (a) (3 Puntos) Encuentra los tres valores propios de T: $\lambda_1,\,\lambda_2$ y λ_3
 - (b) (3 Puntos) Encuentra tres vectores propios correspondientes a los tres valores propios de T:

$$T(\vec{v}_1) = \lambda_1 \vec{v}_1$$

$$T(\vec{v}_2) = \lambda_2 \vec{v}_2$$

$$T(\vec{v}_3) = \lambda_3 \vec{v}_3$$

Geometría Analítica II 5 de junio de 2018

(c) (1 Pt) Verifica que los tres vectores anteriores son ortogonales y obtén una base ortonormal δ a partir de ellos.

- (d) (4 Puntos) Calcula la matríz $[T]_{\delta}$ Sean $\tilde{X}, \tilde{Y}, \tilde{Z}$ las coordenadas en la base δ .
- (e) (2 Puntos) Expresa Q en las coordenadas $\tilde{X}, \tilde{Y}, \tilde{Z}$.
- 5. (3 Puntos) ¿Qué tipo de superficie cuádrica es la superficie dada por $Q(\vec{v}) = 1$? ¿elipsoide, hiperboloide de una hoja, hiperboloide de dos hojas?
- 6. (5 Puntos) Esboza las intersecciones de la superficie anterior con los planos $P_{\tilde{X}=0}, P_{\tilde{Y}=0}$ y $P_{\tilde{Z}=0}$.
- 7. (3 Puntos) Sea T una transformación autoadjunta con forma cuadrática asociada:

$$\langle \vec{v}, T(\vec{v}) \rangle = aX^2 + bY^2 + cZ^2$$

.

Dado un ángulo α , sean:

$$\vec{z}_{1\alpha} = \cos(\alpha)\vec{w}_1 + \sin(\alpha)\vec{w}_2$$
$$\vec{z}_{2\alpha} = -\sin(\alpha)\vec{w}_1 + \cos(\alpha)\vec{w}_2$$
$$\vec{z}_{3\alpha} = \vec{w}_3$$

y sea $\gamma_{\alpha} := \{z_{1\alpha}, z_{2\alpha}, z_{3\alpha}\}$ la base ortonormal que se obtiene de la base β al rotar \vec{w}_1 y \vec{w}_2 un ángulo α . Sean $X_{\alpha}, Y_{\alpha}, Z_{\alpha}$ las coordenadas con respecto a la base γ_{α} , es decir:

$$X_{\alpha}(\vec{v}) = \langle \cos(\alpha)\vec{w}_1 + \sin(\alpha)\vec{w}_2, \vec{v} \rangle = \langle z_{1\alpha}, \vec{v} \rangle$$

$$Y_{\alpha}(\vec{v}) = \langle -\sin(\alpha)\vec{w}_1 + \cos(\alpha)\vec{w}_2, \vec{v} \rangle = \langle z_{2\alpha}, \vec{v} \rangle$$

$$Z_{\alpha}(\vec{v}) = \langle \vec{w}_3, \vec{v} \rangle = \langle z_{3\alpha}, \vec{v} \rangle$$

Demuestra que las siguientes afirmaciones son equivalentes:

- 1. a = b
- 2. Para todo ángulo α , la forma cuadrática $\langle \vec{v}, T(\vec{v}) \rangle$ en las coordenadas $X_{\alpha}, Y_{\alpha}, Z_{\alpha}$ tiene los mismos coeficientes que en las coordenadas X, Y, Z, es decir: $\langle \vec{v}, T(\vec{v}) \rangle = a X_{\alpha}^2 + b Y_{\alpha}^2 + c Z_{\alpha}^2$