Pneumonia Detection Model with Neural Networks

JAN ABDULLAH

Overview

In this project, we build a neural network model that can detect pneumonia in images of human chest X-rays.

Which metrics are we focused on most for a model in this type of domain?

Data

We download labeled chest X-ray images from Kaggle for our problem.

- There are \sim 5,800 images in total in the dataset.
- The labels are "NORMAL" and "PNEUMONIA"

Data Preprocessing

Steps for data preprocessing are laid out below:

- 1. Data directory construction.
- 2. Image reading.
- 3. Image augmentation.
- 4. Image reshaping.

Modeling

We iterate through different dense and convolutional neural network structures to find the optimal model.

The optimal model achieved in this project is a convolutional neural network with 1 convolving layer and 2 dense layers. See below:

conv2d_15 (Conv2D) (max pooling2d 14 (MaxPooling ((None,	254, 254,	256\	
may nooling2d 14 (MayPooling (230)	7168
max_pooring2u_14 (MaxPooring ((None,	127, 127,	256)	0
flatten_10 (Flatten) ((None,	4129024)		0
dense_51 (Dense)	(None,	25)		103225625
dense_52 (Dense)	(None,	50)		1300
dense_53 (Dense) ((None,	1)		51

Evaluation

What other metrics should we look at other than the generic accuracy metric?

The false negative rate

Future Work

Biggest project bottleneck = processing power.

In the future, can try out (with better resources):

- 1. More varieties of complex networks and parameters.
- Expand the project infrastructure by wrapping around it to create more robust and scalable tools.

Thank you!