Satz 22.7. Seien V ein Vektorraum, dim V = n, $f \in \mathcal{L}(V; V)$ und λ eine n-fache Nullstelle von der char. Polynom P(t). Dann gibt es $r, k_j, q_j \in \mathbb{N}, 1 \leq j \leq r$ mit $\sum_{j=1}^r k_j q_j = n$, und eine Matrixdarstellung $J(\lambda)$ von f der Form

$$J(\lambda) = \begin{bmatrix} J_{q_1}(\lambda) & & & & 0 \\ & \ddots & & & & \\ & & J_{q_1}(\lambda) & & & \\ & & & J_{q_2}(\lambda) & & \\ & & & & \ddots & \\ 0 & & & & J_{q_r}(\lambda) \end{bmatrix},$$

wobei die Jordanmatrizen $J_{q_i}(\lambda)$ k_i -mal wiederholt werden.

Beweis. Nach Cayley-Hamilton gilt $(f - \lambda id)^n = 0 \in \mathcal{L}(\mathcal{V}; \mathcal{V})$, und somit $V_f(\lambda) = V$.

Sei nun $q_1 \in \{1,..,n\}$ minimal mit der Eigenschaft $(f - \lambda id)^{q_1} = 0$, d.h. $(f - \lambda id)^{q_1-1} \neq 0$. Seien weiter $\mathcal{U} := (f - \lambda id)^{q_1-1}(V)$ und $\dim(\mathcal{U}) := k_1$.

Wähle $b_1,...,b_{k_1} \in V$ sodass die Menge $(f - \lambda id)^{q_1-1}(\{b_1,...,b_{k_1}\})$ eine Basis von \mathcal{U} bildet.

Per Konstruktion ist jedes $u \in \mathcal{U}\setminus\{0\}$ ein Eigenvektor zu λ , denn ist $u = \sum_{i=0}^{k_1} (f - \lambda i d)^{q_1-1}(b_i)$ so gilt:

$$f(u) = f(\sum_{i=0}^{k_1} (f - \lambda id)^{q_1 - 1}(b_i)) = \sum_{i=0}^{k_1} f((f - \lambda id)^{q_1 - 1}(b_i))$$

$$= \sum_{i=0}^{k_1} (f - \lambda id)^{q_1 - 1}(f(b_i)) = \sum_{i=0}^{k_1} ((f - \lambda id)^{q_1 - 1} \circ (f - \lambda id + \lambda id))(b_i)$$

$$= \sum_{i=0}^{k_1} (f - \lambda id)^{q_1}(b_i) + (f - \lambda id)^{q_1 - 1}(\lambda b_i) = \lambda \sum_{i=0}^{k_1} (f - \lambda id)^{q_1 - 1}(b_i)$$

$$= \lambda \cdot u.$$

Für $0 \le i \le q_1, 1 \le j \le k_1$ definiere $b_j^{(i)} := (f - \lambda id)^{q_1 - i}(b_i)$. Dann ist $(b_1^{(1)}, ..., b_{k_1}^{(1)})$ eine Basis von \mathcal{U} .

Für jedes $j \in \{1, \ldots, k_1\}$ sind die q_1 Vektoren $b_j^{(1)}, \ldots, b_j^{(q_1)}$ nach Satz 22.4 linear unabhängig, und es gilt:

$$\begin{split} f(b_j^{(i)}) &= f((f - \lambda id)^{q_1 - i}(b_j)) = (f - \lambda id)^{q_1 - i}(f(b_j)) \\ &= (f - \lambda id)^{q_1 - i}(f(b_j) - \lambda b_j + \lambda b_j) \\ &= ((f - \lambda id)^{q_1 - i} \circ (f - \lambda id + \lambda id))(b_j) \\ &= (f - \lambda id)^{q_1 - i + 1}(b_j) + (f - \lambda id)(\lambda b_j) \\ &= b_j^{(i-1)} + \lambda b_j^{(i)}. \end{split}$$

Mit $\mathcal{U}_j = \lim\{b_j^{(1)}, \dots, b_j^{(q_1)}\}, 1 \leq j \leq k_1$ folgt, dass die Abbildung $f_{|\mathcal{U}_j} \colon \mathcal{U}_j \to \mathcal{U}_j$ bzgl. der Basis $b_j^{(1)}, \dots, b_j^{(q_1)}$ die Matrixdarstellung $J_{q_1}(\lambda)$ hat.

Erinnerung: Für $k \geq 2$ lässt sich die k-te Spalte A_k der Matrixdarstellung A von $f_{|\mathcal{U}_j}: \mathcal{U}_j \to \mathcal{U}_j$ wie Folgendes berechnen:

$$A_k = (B \circ f \circ B^{-1})(e_k) = (B \circ f)(b_j^{(k)})$$

$$= B(b_j^{(k-1)} + \lambda b_j^{(k)}) = B(b_j^{(k-1)}) + \lambda B(b_j^{(k)})$$

$$= e_{k-1} + \lambda e_k$$

wobei $B: \mathcal{U}_j \to \mathcal{U}_j$ der lineare Isomormphismus ist, der die Basisvektoren $b_j^{(1)}, \ldots, b_j^{(q_1)}$ auf die kanonischen Basisvektoren e_1, \ldots, e_{q_1} abbildet. Für k=1 gilt $B(b_j^{(0)})=B(0)=0$ und somit $A_1=\lambda e_1$. Folglich gilt:

$$A = \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & \dots & \lambda & 1 \\ 0 & \dots & \dots & \lambda & \lambda \end{bmatrix} = J_{q_1}(\lambda).$$

Weiter gilt, dass $b_j^{(i)}, 1 \leq j \leq k_1$ für alle $1 \leq i \leq q_1$ linear unabhängig sind, denn sind $\mu_j^{(i)} \in \mathbb{K}$ mit $0 = \sum_i^{q_1} \sum_j^{k_1} \mu_j^{(i)} b_j^{(i)} = \sum_{i,j} \mu_j^{(i)} b_j^{(i)}$ so folgt:

$$\begin{split} 0 &= (f - \lambda id)^{q_1 - 1} (\sum_{i,j} \mu_j^{(i)} b_j^{(i)}) = \sum_{i,j} \mu_j^{(i)} (f - \lambda id)^{q_1 - 1} (b_j^{(i)}) \\ &= \sum_{i,j} \mu_j^{(i)} (f - \lambda id)^{q_1 - 1} ((f - \lambda id)^{q_1 - i} (b_j)) = \sum_{i,j} \mu_j^{(i)} (f - \lambda id)^{q_1 - 1 + q_1 - i} (b_j) \\ &= \sum_{j=1}^{k_1} \mu_j^{(q_1)} (f - \lambda id)^{q_1 - 1} (b_j) = \sum_{j=1}^{k_1} \mu_j^{(q_1)} b_j^{(1)}. \end{split}$$

Da $b_1^{(1)},\ldots,b_{k_1}^{(1)}$ nach Wahl eine Basis von $\mathcal U$ bilden, folgt, dass $\mu_j^{(q_1)}=0$. Analog zeigt man, dass $\mu_j^{(q_1-1)}=\mu_j^{(q_1-2)}=\cdots=\mu_j^{(1)}=0$. Somit ist $V_1:=\mathcal U_1+\mathcal U_2+\cdots+\mathcal U_{k_1}$ ein Vektorraum mit dim $V_1=q_1k_1$. Daraus

Somit ist $V_1 := \mathcal{U}_1 + \mathcal{U}_2 + \cdots + \mathcal{U}_{k_1}$ ein Vektorraum mit dim $V_1 = q_1 k_1$. Daraus folgt, dass $f_{|V_1} \colon V_1 \to V_1$ bzgl. der Basis $(b_j^{(i)}), 1 \le i \le q_1, 1 \le j \le k_1$ eine Matrixdarstellung A hat, die aus k_1 Jordanmatrizen der From $J_{q_1}(\lambda)$ besteht.

Also gilt:
$$A = \begin{bmatrix} J_{q_1}(\lambda) & 0 \\ & \ddots \\ 0 & J_{q_1}(\lambda) \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \dots & \dots & \lambda & 1 \\ 0 & \dots & \dots & \lambda & 1 \\ 0 & \dots & \dots & \dots & \lambda \end{bmatrix}$$

$$= \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \dots & \dots & \lambda & 1 \\ \vdots & \ddots & & \vdots \\ 0 & \dots & \dots & \lambda & 1 \\ 0 & \dots & \dots & \lambda & 1 \end{bmatrix}$$

Beachte dass, $a_{nq_1,nq_1+1}=0$ für alle $1\leq n\leq k_1-1$, denn es gilt:

$$f(b_1^{(1)}) = 0 + \lambda b_1^{(1)}, f(b_2^{(1)}) = 0 + \lambda b_2^{(1)}, \dots, f(b_{k_1}^{(1)}) = 0 + \lambda b_{k_1}^{(1)}.$$

Ist $V_1=\mathcal{V}$ so folgt die Aussage des Satzes sofort. Sei also $V_1\neq\mathcal{V}$. Daraus folgt $q_1\geq 2$.

Ist
$$q_1 = 1$$
, so folgt:
$$V_1 = \mathcal{U}_1 + \mathcal{U}_2 + \dots + \mathcal{U}_{k_1} = \lim\{b_1^{(1)}\} + \inf\{b_2^{(1)}\} + \dots + \inf\{b_{k_1}^{(1)}\}$$
$$= \lim\{b_1^{(1)}, \dots, b_{k_1}^{(1)}\} = \mathcal{U} = \mathcal{V}$$
$$\text{da } (f - \lambda id)^{q_1 - 1} = (f - \lambda id)^0 = Id \in \mathcal{L}(\mathcal{V}; \mathcal{V}) \implies \mathcal{U} = Id(\mathcal{V}) = \mathcal{V}.$$
Also muss $q_1 \geq 2$ gelten, wenn $V_1 \neq \mathcal{V}$.

Folglich gilt für $l+1 \le i \le q_1, 1 \le j \le k_1$, dass die Vektoren $(f-\lambda id)^l(b_j^{(i)})$ eine Basis von $(f-\lambda id)^l(V_1)$ bilden, denn es gilt:

$$(f - \lambda id)^{l}(b_{j}^{(i)}) = (f - \lambda id)^{l}((f - \lambda id)^{q_{1} - i}(b_{j}))$$

$$= (f - \lambda id)^{q_{1} + l - i}(b_{j})$$

$$= b_{j}^{(i-l)}$$

und

$$(f - \lambda id)^{l}(V_{1}) = \lim\{(f - \lambda id)^{l}(b_{j}^{(i)}) \mid 1 \le i \le q_{1}, 1 \le j \le k_{1}\}$$
$$= \lim\{(f - \lambda id)^{l}(b_{j}^{(i)}) \mid l + 1 \le i \le q_{1}, 1 \le j \le k_{1}\}$$

d.h. die Vektoren sind linear unabhängig und ein Erzeugendensystem von $(f-\lambda id)^l(V_1).$

This proof is obviously not done, contributions are welcome at https://github.com/nullp0tr/lina2.