Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Прикладні задачі машинного навчаннях»

«Класифікація методом k найближчих сусідів і набір даних Digits, частина 1»

Варіант 7

Виконав студент: ІП-12 Васильєв Єгор Костянтинович

Перевірив: Нестерук Андрій Олександрович

Київ 2023

Лабораторна робота №4

Тема: Класифікація методом k найближчих сусідів і набір даних Digits, частина 1.

Постановка завдання:

- 1) Візуалізація перших 24 і 36 цифр набору.
- 2) Розбиття даних на навчальні та тестові.
- 3) Порівняння прогнозованих та очікуваних цифр для перших 36 зразків.
- 4) Оцінка точності трьох різних класифікаторів.
- 5) Виведення матриці невідповідностей для KNN класифікатора.
- 6) Виведення звіту класифікації KNN.
- 7) Підбір гіперпараметра к в KNN класифікаторі.

Хід роботи:

• Графічне представлення цифр набору

• Ділення початкових даних на навчальні і тестові

X_test size: (360, 64) X_train size: (1437, 64)

• Порівняння передбачених та фактичних цифр

• Оцінка точності різних класифікаторів

KNN Accuracy: 98.611% SVC Accuracy: 98.611% GNB Accuracy: 85.556%

• Виведення матриці невідповідностей для KNN класифікатора

[[3	38	0	0	0	0	0	0	0	0	0]
[0	37	0	0	0	0	0	0	0	0]
[0	0	39	0	0	0	0	0	0	0]
[0	0	0	39	0	1	0	1	0	0]
[0	0	0	0	40	0	0	1	Θ	0]
[0	0	0	0	0	27	0	0	0	0]
[0	0	0	0	0	0	30	0	0	0]
[0	0	0	0	0	0	0	36	Θ	0]
[0	0	0	0	0	0	0	0	34	0]
[0	0	0	0	1	0	0	0	1	35]]

• Виведення звіту класифікації KNN

	precision	recall	f1-score	support
Θ	1.00	1.00	1.00	38
1	1.00	1.00	1.00	37
2	1.00	1.00	1.00	39
3	1.00	0.95	0.97	41
4	0.98	0.98	0.98	41
5	0.96	1.00	0.98	27
6	1.00	1.00	1.00	30
7	0.95	1.00	0.97	36
8	0.97	1.00	0.99	34
9	1.00	0.95	0.97	37
accuracy			0.99	360
macro avg	0.99	0.99	0.99	360
weighted avg	0.99	0.99	0.99	360

• Підбір оптимальної кількості сусідів для KNN класифікатора

Best accuracy: 99.44 with 2 neighbours

Висновок

Було поглиблено знання бібліотек pandas, matplotlib, numpy та досліджено різні типи класифікаторів Scikit-Learn; було порівняно декілька класифікаційних оцінювачів: KNeighborsClassifier, SVC та GaussianNB для вбудованого в scikit-learn digits датасету та досліджено, що при параметрах за замовчуванням, метод опорних векторів та метод к найближчих сусідів виконують класифікацію найкраще; було детально досліджено результат роботи класифікатора KNN, використовуючи метрики точності моделі: метод score, матриця невідповідностей, звіт класифікації; було порівняно ефективність оцінювача при різних значеннях гіперпараметра k (кількість сусідів) та підібрано його оптимальне значення і досягнуто точності 99,44%; таким чином було вивчену тему «Класифікація методом k найближчих сусідів і набір даних Digits»

Вихідний код

```
pd.set_option('display.precision', 2)
plt.style.use('seaborn-v0_8')
digits = load_digits()
def show_digits(row_amount, col_amount):
    figure, axes = plt.subplots(nrows=row_amount, ncols=col_amount, figsize=(col_amount, row_amount))
   for item in zip(axes.ravel(), digits.images, digits.target):
       axes, image, target = item
       axes.imshow(image)
       axes.set_xticks([])
       axes.set_yticks([])
       axes.set_title(target)
   plt.tight_layout()
   plt.show()
show_digits(4, 6)
show_digits(6, 6)
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, random_state=11, train_size=0.8)
print('X_train size: ', X_train.shape)
knn = KNeighborsClassifier(n_neighbors=5)
svc = SVC()
knn.fit(X_train, y_train)
svc.fit(X_train, y_train)
gnb.fit(X_train, y_train)
knn_predicted = knn.predict(X_test)
expected = y_test
print('predicted: ', knn_predicted[:36])
print(f'SVC Accuracy: {svc.score(X_test, y_test) * 100:.3f}%')
print(f'GNB Accuracy: {gnb.score(X_test, y_test) * 100:.3f}%')
confusion = confusion_matrix(y_true=expected, y_pred=knn_predicted)
names = [str(digit) for digit in digits.target_names]
k_range = range(1, 15)
accuracy_scores = []
for k in k_range:
    knn = KNeighborsClassifier(n_neighbors=k)
   accuracy = knn.score(X_test, y_test) # Evaluate the accuracy of the classifier on the test set
   accuracy_scores.append(accuracy) # Append the accuracy score to the list
plt.plot(k_range, accuracy_scores)
plt.show()
print(f'Best accuracy: {max(accuracy_scores) * 100:.2f} with {accuracy_scores.index(max(accuracy_scores)) + 1} neighbours')
```