Zadaci za auditorne vježbe na nastavi, 13.04.2012.

Potrebno je osigurati napajanje svemirske sonde tijekom jednogodišnje misije. Sondi je potrebno najmanje 25 W električne energije za nesmetan rad. Električna energija se proizvodi u uređaju efikasnosti 10%. Kao izvor energije koristi se α-raspad Po-210. Vrijeme poluraspada Po-210 je 138 dana, a energija po raspadu Q = 5,4 MeV. Koliko je grama Po-210 potrebno i koja je početna snaga izvora?

$$m = 10.8 g, P_0 = 1556 W$$

- 2. Jezgra nuklearnog reaktora sastavljena je od 121 gorivnog elementa. Gorivni elementi su tipa 16x16 s 20 mjesta za kontrolne šipke i jednim za instrumentaciju. Aktivna dužina goriva je 3,7 m a nazivna linearna gustoća snage je 19,2 kW/m (prosječna snaga proizvedena po metru gorivne šipke u nominalnim uvjetima). Reaktor je radio 7 mjeseci na punoj snazi prije zaustavljanja.
 - a) Kolika se toplinska snaga stvara u gorivu 12 h nakon obustave? Specifični toplinski kapacitet hladioca $c_p=4,2 \, kJ/kgK$.
 - b) Izračunajte koliki je porast temperature hladioca u jezgri 12 sati nakon konačne obustave ako pretpostavimo da sustav za odvođenje ostatne topline ima protok hladioca 192,5 kg/s.

$$P_{0.5,dan} = 9.93 \ MW; \ \Delta T = 12.3 \ K$$

- 3. Nuklearna elektrana PWR tipa s 4 rashladne petlje ima ukupan maseni protok primarnog hladioca $75 \cdot 10^6 \ kg/h$, a entalpije primarne vode na ulazu i izlazu iz generatora pare su $1518,1 \ kJ/kg$ i $1337,3 \ kJ/kg$. U kondenzatoru se predaje toplina riječnoj vodi u iznosu od $2542 \ MW_t$ a ukupni stupanj djelovanja generatora je 0,95. Entalpija pojne vode generatora pare je $382,3 \ kJ/kg$ a entalpija zasićene pare na izlazu je $2772,1 \ kJ/kg$. Svaka od 4 primarne pumpe unese u krug toplinsku snagu od 3 MW. Jezgra sadrži $101 \ t \ 3\%$ obogaćenog UO_2 , efektivnog udarnog presjeka za fisiju $580 \ barn \ (1 \ barn = 10^{-28} \ m^2)$. Odredite:
 - a) stupanj djelovanja elektrane i maseni protok pare po generatoru pare,
 - b) srednji neutronski tok.

$$\eta_T = 0.31$$
, $\dot{m}_{sek} = 394$ kg/s, $\Phi = 2.96 \cdot 10^{17}$ n/m²s

4. Nuklearni reaktor PWR tipa ima toplinsku snagu jezgre 3,8 *GW_t*. Jezgra se sastoji od 241 gorivnog elementa s 236 gorivnih šipki po elementu. Širina gorivnog elementa je 20,7 *cm*, duljina gorivne šipke je 3,81 *m*, radijus šipke je 4,85 *mm*.

Odrediti:

- a) srednju volumnu gustoću snage u jezgri [MW/m³],
- b) srednju snagu proizvedenu po metru duljine gorivne šipke (linearna gustoća snage šipke) [kW/m],

$$O''' = 96.6 \, MW/m^3$$
, $q' = 17.5 \, kW/m$

- 5. Jezgra nuklearnog reaktora tipa PWR sadrži 76,33 *t* urana. Specifična snaga te jezgre na punoj snazi je 36,88 *kW/kgU*. Elektrana koristi 3 % obogaćeno gorivo. Mikroskopski udarni presjek za fisiju je 580·10⁻²⁸ *m*². Po jednoj fisiji oslobodi se 3,2·10⁻¹¹ *J* energije. Temperatura vode na ulazu u reaktor iznosi 296 °C, a srednja temperatura vode u jezgri iznosi 312 °C. Specifična toplina primarne vode je 5,875 *kJ/kgK*. Svaka primarna pumpa dovodi 3889 *kg/s* vode u nuklearni reaktor. U nominalnim uvjetima svaka primarna pumpa predaje vodi 4 *MW* topline, a u kondenzatoru se rashladnom vodom odvodi 1889 *MW* topline. Unutrašnji stupanj djelovanja turbine je 0,95, a stupanj djelovanja sinkronog generatora jednak je 1. Odrediti:
 - a) snagu jezgre, potreban maseni protok vode kroz jezgru i broj primarnih rashladnih krugova;
 - b) koliki je termički stupanj djelovanja elektrane i snaga na stezaljkama generatora;
 - c) srednji neutronski tok.

 P_j =2815 MW, \dot{m} =14973 kg/s, n_{RK} =4, η_i =0,33, P_{el} =896 MW, ϕ =2,6·10¹⁷ n/m^2 s