CAH détailler :

Voici un ensemble de points qui représentera notre jeu de données pour la première partie :

Point	X	Y
A	1,95	0.97
В	1.62	0.74
C	3.12	1.85
D	0.91	1.09
\mathbf{E}	2.37	4.11
\mathbf{F}	5.20	2.52
G	5.74	5.04
H	3.00	3.47
I	4.70	3.65
k	4.97	3.32

Single Linkage:

	A	В	C	D	E	\mathbf{F}	G	H	I	K
A	0	0.40	1.46	1.04	3.16	3.60	5.56	2.71	3.83	3.82
В	0.40	0	1.86	0.79	3.45	3.99	5.95	3.05	4.23	4.22
C	1.46	1.86	0	2.33	2.38	2.18	4.12	1.62	2.39	2.36
D	1.04	0.79	2.33	0	3.35	4.52	6.23	3.16	4.57	4.63
E	3.16	3.45	2.38	3.35	0	3.24	3.49	0.89	2.37	2.71
${f F}$	3.60	3.99	2.18	4.52	3.24	0	2.57	2.39	1.23	0.83
G	5.56	5.95	4.12	6.23	3.49	2.57	0	3.15	1.73	1.88
H	2.71	3.05	1.62	3.16	0.89	2.39	3.15	0	1.70	1.97
I	3.83	4.23	2.39	4.57	2.37	1.23	1.73	1.70	0	0.42
K	3.82	4.22	2.36	4.63	2.71	0.83	1.88	1.97	0.42	0

Commençons par calculer la distance euclidienne de ces données :

D(A,B)=D[(x,y), (a,b)] =
$$\sqrt{(x-a)^2 + (y-b)^2}$$

Exemple : D (A, B) =
$$\sqrt{(1.95 - 1.62)^2 + (1.95 - 0.74)^2} = \sqrt{0.1618} = 0.40$$

Maintenant, nous avons la distance minimale, qui est le lien entre A et B de sorte que le dendrogramme est :

Ensuite, nous devrions mettre à jour la matrice ci-dessus :

Min [distance (A, B), Z], $Z \in \{C, D, E, F, G, H, I, K\}$

- o Min [distance (A, B), C] = Min [distance (A, C), distance (B, C)] = (1.86, 1.46) = 1.46
- o Min [distance (A, B), D] = Min (1.04, 0.79) = 0.79
- o Min [distance (A, B), E] = Min (3.16, 3.45) = 3.16
- o Min [distance (A, B), F] = Min (3.60, 3.99) = 3.60
- o Min [distance (A, B), G] = Min (5.56, 5.95) = 5.56
- o Min [distance (A, B), H] = Min (2.71, 3.05) = 2.71
- \circ Min [distance (A, B), I] = Min (3.83, 4.23) = 3.83
- o Min [distance (A, B), K] = Min (3.82, 4.22) = 3.82

La matrice de la distance de mise à jour pour le cluster A, B et encore une fois, nous sélectionnons la distance min :

	A-B	С	D	E	F	G	Н	I	K
A-B	0	1.46	0.79	3.16	3.60	5.56	2.71	3.83	3.82
C	1.46	0	2.33	2.38	2.18	4.12	1.62	2.39	2.36
D	0.79	2.33	0	3.35	4.52	6.23	3.16	4.57	4.63
E	3.16	2.38	3.35	0	3.24	3.49	0.89	2.37	2.71
F	3.60	2.18	4.52	3.24	0	2.57	2.39	1.23	0.83
\mathbf{G}	5.56	4.12	6.23	3.49	2.57	0	3.15	1.73	1.88
H	2.71	1.62	3.16	0.89	2.39	3.15	0	1.70	1.97
I	3.83	2.39	4.57	2.37	1.23	1.73	1.70	0	0.42
K	3.82	2.36	4.63	2.71	0.83	1.88	1.97	0.42	0

Ensuite, nous répétons la même chose que nous avons faite avec A-B à I-K :

Min [distance (I, k), Z], $Z \in \{A-B, C, D, E, F, G, H\}$

- o Min [distance (I, K), (A-B)] = 3.82
- o Min [distance (I, K), C] = 2.36
- o Min [distance (I, K), D] = 4.57
- o Min [distance (I, K), E] = 2.37
- o Min [distance (I, K), F] = 0.83
- o Min [distance (I, K), G] = 1.73
- o Min [distance (I, K), H] = 1.70

La matrice de la distance de mise à jour pour le cluster I, K et encore une fois, nous sélectionnons la distance min :

	A-B	С	D	Е	F	G	Н	I-K
A-B	0	1.46	0.79	3.16	3.60	5.56	2.71	3.82
C	1.46	0	2.33	2.38	2.18	4.12	1.62	2.36
D	<mark>0.79</mark>	2.33	0	3.35	4.52	6.23	3.16	4.57
Е	3.16	2.38	3.35	0	3.24	3.49	0.89	2.37
F	3.60	2.18	4.52	3.24	0	2.57	2.39	0.83
G	5.56	4.12	6.23	3.49	2.57	0	3.15	1.73
Н	2.71	1.62	3.16	0.89	2.39	3.15	0	1.70
I-K	3.82	2.36	4.57	2.37	0.83	1.73	1.70	0

Nous répétons la même chose que nous avons faite avec I-K à AB-D :

Min [distance (AB-D), Z], $Z \in \{C, E, F, G, H, I-K\}$

- o Min [distance (AB-D), C] = 1.46
- o Min [distance (AB-D), E] = 3.16
- o Min [distance (AB-D), F] = 3.60
- o Min [distance (AB-D), G] = 5.56
- \circ Min [distance (AB-D), H] = 2.71
- o Min [distance (AB-D), (I-K)] = 3.82

La matrice de la distance de mise à jour pour le cluster A, B et encore une fois, nous sélectionnons la distance min :

	AB-D	С	Е	F	G	Н	I-K
AB-D	0	1.46	3.16	3.60	5.56	2.71	3.82
С	1.46	0	2.38	2.18	4.12	1.62	2.36
Е	3.16	2.38	0	3.24	3.49	0.89	2.37
F	3.60	2.18	3.24	0	2.57	2.39	0.83
G	5.56	4.12	3.49	2.57	0	3.15	1.73
Н	2.71	1.62	0.89	2.39	3.15	0	1.70
I-K	3.82	2.36	2.37	0.83	1.73	1.70	0

Nous répétons la même chose que nous avons faite avec AB-D à IK-F:

Min [distance (IK-F), Z], $Z \in \{AB-D, C, E, G, H\}$

- o Min [distance (IK-F), (AB-D)] = 3.60
- o Min [distance (IK-F), C] = 2.18
- o Min [distance (IK-F), E] = 2.37
- o Min [distance (IK-F), G] = 1.73
- o Min [distance (IK-F), H] = 1.7

La matrice de la distance de mise à jour pour le cluster I, K et F, encore une fois, nous sélectionnons la distance min :

	AB-D	С	E	G	Н	IK-F
AB-D	0	1.46	3.16	5.56	2.71	3.60
С	1.46	0	2.38	4.12	1.62	2.18
Е	3.16	2.38	0	3.49	0.89	2.37
G	5.56	4.12	3.49	0	3.15	1.73
Н	2.71	1.62	<mark>0.89</mark>	3.15	0	1.70
IK-F	3.60	2.18	2.37	1.73	1.70	0

Nous répétons la même chose que nous avons faite avec AB-D à E, H:

Min [distance (E, H), Z], $Z \in \{AB-D, C, G, IK-F\}$

- o Min [distance (E, H), (AB-D)] = 2.71
- o Min [distance (E, H), C] = 1.62
- \circ Min [distance (E, H), G] = 3.15
- o Min [distance (E, H), (IK-F)] = 1.70

La matrice de la distance de mise à jour pour le cluster E, H, encore une fois, nous sélectionnons la distance min :

	AB-D	C	Е-Н	G	IK-F
AB-D	0	1.46	2.71	5.56	<mark>3.60</mark>
С	1.46	0	1.62	4.12	2.18
E-H	2.71	1.62	0	3.15	1.70
G	5.56	4.12	3.15	0	1.73
IK-F	3.60	2.18	1.70	1.73	0

Nous répétons la même chose que nous avons faite avec AB-D à AB-D-C :

Min [distance (AB-D-C), Z], $Z \in \{E-H, G, IK-F\}$

- o Min [distance (AB-D-C), (E-H)] 1.62
- \circ Min [distance (AB-D-C), G] = 4.12
- o Min [distance (AB-D-C), (IK-F)] = 2.18

La matrice de la distance de mise à jour pour le cluster A, B, D et C, encore une fois, nous sélectionnons la distance min :

	AB-D-C	Е-Н	G	IK-F
AB-D-C	0	1.62	4.12	2.18
E-H	1.62	0	3.15	1.70
G	4.12	3.15	0	1.73
IK-F	2.18	1.70	1.73	0

Nous répétons la même chose que nous avons faite avec IK-F à AB-D-C-EH :

Min [distance (AB-D-C-EH), Z], $Z \in \{G, IK-F\}$

- o Min [distance (AB-D-C-EH), (G)] = 3.15
- o Min [distance (AB-D-C-EH), (IK-F)] = 1.70

La matrice de la distance de mise à jour pour le cluster A, B, D, C, encore une fois, nous sélectionnons la distance min :

	AB-D-C-EH	G	IK-F
AB-D-C-EH	0	3.15	1.70
G	3.15	0	1.73
IK-F	1.70	1.73	0

Nous répétons la même chose que nous avons faite avec AB-D-C-EH à AB-D-C-EH-IK-F:

Min [distance (AB-D-C-EH-IK-F), Z], $Z \in \{G\}$

o Min [distance (AB-D-C-EH-IK-F), (G)] = 1.73

La matrice de la distance de mise à jour pour le cluster A, B, D, C, E, G, H, encore une fois, nous sélectionnons la distance min :

	AB-D-C-EH-IK-F	G
AB-D-C-EH-IK-F	<mark>0</mark>	1.73
G	1.73	0

Dendrogramme du « Single linkage »

Complete linkage:

La Distance euclidienne:

D (A, B)=D [(x,y), (a,b)] =
$$\sqrt{(x-a)^2 + (y-b)^2}$$

Exemple : D (A, B) =
$$\sqrt{(1.95 - 1.62)^2 + (1.95 - 0.74)^2} = \sqrt{0.1618} = 0.40$$

	A	В	C	D	E	F	G	H	I	K
A	0	<mark>0.40</mark>	1.46	1.04	3.16	3.60	5.56	2.71	3.83	3.82
В	<mark>0.40</mark>	0	1.86	0.79	3.45	3.99	5.95	3.05	4.23	4.22
C	1.46	1.86	0	2.33	2.38	2.18	4.12	1.62	2.39	2.36
D	1.04	0.79	2.33	0	3.35	4.52	6.23	3.16	4.57	4.63
E	3.16	3.45	2.38	3.35	0	3.24	3.49	0.89	2.37	2.71
\mathbf{F}	3.60	3.99	2.18	4.52	3.24	0	2.57	2.39	1.23	0.83
G	5.56	5.95	4.12	6.23	3.49	2.57	0	3.15	1.73	1.88
H	2.71	3.05	1.62	3.16	0.89	2.39	3.15	0	1.70	1.97
I	3.83	4.23	2.39	4.57	2.37	1.23	1.73	1.70	0	0.42
K	3.82	4.22	2.36	4.63	2.71	0.83	1.88	1.97	0.42	0

Maintenant, nous avons la distance minimale, qui est le lien entre A et B de sorte que le dendrogramme est :

Ensuite, nous devrions mettre à jour la matrice ci-dessus :

Max [distance (A, B), Z], $Z \in \{C, D, E, F, G, H, I, K\}$

- o Max [distance (A, B), C] = Max [distance (A, C), distance (B, C)] = Max (1.86, 1.46) = 1.86
- o Max [distance (A, B), D] = Max (1.04, 0.79) = 1.04
- o Max [distance (A, B), E] = Max (3.16, 3.45) = 3.45
- o Max [distance (A, B), F] = Max (3.60, 3.99) = 3.99
- \circ Max [distance (A, B), G] = Max (5.56, 5.95) = 5.95
- o Max [distance (A, B), H] = Max (2.71, 3.05) = 3.05
- o Max [distance (A, B), I] = Max (3.83, 4.23) = 4.23
- o Max [distance (A, B), K] = Max (3.82, 4.22) = 4.22

La matrice de la distance de mise à jour pour le cluster A, B et encore une fois, nous sélectionnons la distance minimale :

	A-B	С	D	Е	F	G	Н	I	K
A-B	0	1.86	1.04	3.45	3.99	5.95	3.05	4.23	4.22
С	1.86	0	2.33	2.38	2.18	4.12	1.62	2.39	2.36
D	1.04	2.33	0	3.35	4.52	6.23	3.16	4.57	4.63
E	3.45	2.38	3.35	0	3.24	3.49	0.89	2.37	2.71
F	3.99	2.18	4.52	3.24	0	2.57	2.39	1.23	0.83
G	5.95	4.12	6.23	3.49	2.57	0	3.15	1.73	1.88
Н	3.05	1.62	3.16	0.89	2.39	3.15	0	1.70	1.97
I	4.23	2.39	4.57	2.37	1.23	1.73	1.70	0	0.42
K	4.22	2.36	4.63	2.71	0.83	1.88	1.97	0.42	0

Ensuite, nous répétons la même chose que nous avons faite avec A-B à I-K :

Max [distance (I, k), Z], $Z \in \{A-B, C, D, E, F, G, H\}$

- o Max [distance (I, K), (A-B)] = 4.23
- o Max [distance (I, K), C] = 2.39
- o Max [distance (I, K), D] = 4.63
- o Max [distance (I, K), E] = 2.71
- o Max [distance (I, K), F] = 1.23
- o Max [distance (I, K), G] = 1.88
- o Max [distance (I, K), H] = 1.97

La matrice de la distance de mise à jour pour le cluster I, K et encore une fois, nous sélectionnons la distance min :

	A-B	С	D	Е	F	G	Н	I-K
A-B	0	1.86	1.04	3.45	3.99	5.95	3.05	4.23
С	1.86	0	2.33	2.38	2.18	4.12	1.62	2.39
D	1.04	2.33	0	3.35	4.52	6.23	3.16	4.63
Е	3.45	2.38	3.35	0	3.24	3.49	0.89	2.71
F	3.99	2.18	4.52	3.24	0	2.57	2.39	1.23
G	5.95	4.12	6.23	3.49	2.57	0	3.15	1.88
Н	3.05	1.62	3.16	0.89	2.39	3.15	0	1.97
I-K	4.23	2.39	4.63	2.71	1.23	1.88	1.97	0

Nous répétons la même chose que nous avons faite avec I-K à E-H :

Max [distance (E-H), Z], $Z \in \{A-B, C, D, F, G, I-K\}$

- o Max [distance (E-H), (A-B)] = 3.45
- o Max [distance (E-H), C] = 2.38
- o Max [distance (E-H), D] = 3.35
- o Max [distance (E-H), F] = 3.24
- \circ Max [distance (E-H), G] = 3.49
- o Max [distance (E-H), (I-K)] = 2.71

La matrice de la distance de mise à jour pour le cluster E, H et encore une fois, nous sélectionnons la distance min :

	A-B	С	D	E-H	F	G	I-K
A-B	0	1.86	1.04	3.45	3.99	5.95	4.23
С	1.86	0	2.33	2.38	2.18	4.12	2.39
D	1.04	2.33	0	3.35	4.52	6.23	4.63
E-H	3.45	2.38	3.35	0	3.24	3.49	2.71
F	3.99	2.18	4.52	3.24	0	2.57	1.23
G	5.95	4.12	6.23	3.49	2.57	0	1.88
I-K	4.23	2.39	4.63	2.71	1.23	1.88	0

Nous répétons la même chose que nous avons faite avec I-K à AB-D :

Nous répétons la même chose que nous avons faite avec I-K à AB-D :

Max [distance (AB-D), Z], $Z \in \{C, E-H, F, G, I-K\}$

- o Max [distance (AB-D), C] = 2.33
- o Max [distance (AB-D), (E-H)] = 3.45
- \circ Max [distance (AB-D), F] = 4.52
- o Max [distance (AB-D), G] = 6.23
- o Max [distance (AB-D), (I-K)] = 4.63

La matrice de la distance de mise à jour pour le cluster A, B, D et encore une fois, nous sélectionnons la distance min :

	AB-D	С	E-H	F	G	I-K
AB-D	0	2.33	3.45	4.52	6.23	4.63
С	2.33	0	2.38	2.18	4.12	2.39
E-H	3.45	2.38	0	3.24	3.49	2.71
F	4.52	2.18	3.24	0	2.57	1.23
G	6.23	4.12	3.49	2.57	0	1.88
I-K	4.63	2.39	2.71	1.23	1.88	0

Nous répétons la même chose que nous avons faite avec AB-D à IK-F

Max [distance (IK-F), Z], $Z \in \{AB-D, C, E-H, G\}$

- o Max [distance (IK-F), AB-D] = 4.63
 - o Max [distance (IK-F), C] = 2.39
- o Max [distance (IK-F), (E-H)] = 3.24
- o Max [distance (IK-F), G] = 2.57

La matrice de la distance de mise à jour pour le cluster I, K, F et encore une fois, nous sélectionnons la distance min :

	AB-D	С	E-H	IK-F	G
AB-D	0	2.33	3.45	4.63	6.23
C	2.33	0	2.38	2.39	4.12
E-H	3.45	2.38	0	3.24	3.49
IK-F	4.63	2.39	3.24	0	2.57
G	6.23	4.12	3.49	2.57	0

Nous répétons la même chose que nous avons faite avec AB-D à AB-D-C :

Max [distance (AB-D-C), Z], $Z \in \{E-H, G, IK-F\}$

- o Max [distance (AB-D-C), (E-H)] = 3.45
- o Max [distance (AB-D-C), G] = 4.63
- o Max [distance (AB-D-C), IK-F] = 6.23

La matrice de la distance de mise à jour pour le cluster A, B, C, D et encore une fois, nous sélectionnons la distance min :

	AB-D-C	E-H	IK-F	G
AB-D-C	0	3.45	4.63	6.23
E-H	3.45	0	3.24	3.49
IK-F	4.63	3.24	0	2.57
G	6.23	3.49	<mark>2.57</mark>	0

Nous répétons la même chose que nous avons faite avec AB-D à IK-F-G :

Max [distance (IK-F-G), Z], $Z \in \{AB-D-C, E-H\}$

- o Max [distance (IK-F-G), (E-H)] = 6.23
- o Max [distance (IK-F-G), G] = 3.49
- o Max [distance (IK-F-G), IK-F] = 6.23

La matrice de la distance de mise à jour pour le cluster I, K, F, G et encore une fois, nous sélectionnons la distance min :

AB-D-C	0	3.45	6.23
E-H	<mark>3.45</mark>	0	3.49
IK-F-G	6.23	3.49	0

Nous répétons la même chose que nous avons faite avec AB-D-C à AB-D-C-EH :

Max [distance (AB-D-C-EH), Z], $Z \in \{IK-F-G\}$

o Max [distance (AB-D-C-EH), (IK-F-G)] = 6.23

La matrice de la distance de mise à jour pour le cluster I, K, F, G et encore une fois, nous sélectionnons la distance min :

	AB-D-C-EH	IK-F-G
AB-D-C-EH	0	6.23
IK-F-G	6.23	0

Dendrogramme du « Complete linkage »

Average linkage:

La Distance euclidienne :

D (A, B)=D [(x,y), (a,b)] =
$$\sqrt{(x-a)^2 + (y-b)^2}$$

$$D(A, B) = \sqrt{(1,95 - 1.62)^2 + (1,95 - 0.74)^2} = \sqrt{0.1618} = 0.40$$

	A	В	С	D	E	F	G	H	Ι	K
A	0	0.40	1.46	1.04	3.16	3.60	5.56	2.71	3.83	3.82
В	<mark>0.40</mark>	0	1.86	0.79	3.45	3.99	5.95	3.05	4.23	4.22
C	1.46	1.86	0	2.33	2.38	2.18	4.12	1.62	2.39	2.36
D	1.04	0.79	2.33	0	3.35	4.52	6.23	3.16	4.57	4.63
E	3.16	3.45	2.38	3.35	0	3.24	3.49	0.89	2.37	2.71
F	3.60	3.99	2.18	4.52	3.24	0	2.57	2.39	1.23	0.83
G	5.56	5.95	4.12	6.23	3.49	2.57	0	3.15	1.73	1.88
H	2.71	3.05	1.62	3.16	0.89	2.39	3.15	0	1.70	1.97
I	3.83	4.23	2.39	4.57	2.37	1.23	1.73	1.70	0	0.42
K	3.82	4.22	2.36	4.63	2.71	0.83	1.88	1.97	0.42	0

Maintenant, nous avons la distance minimale, qui est le lien entre A et B de sorte que le dendrogramme est :

Ensuite, nous devrions mettre à jour la matrice ci-dessus :

AVG [distance (A, B), Z], $Z \in \{C, D, E, F, G, H, I, K\}$

- o AVG [distance (A, B), C] = $\frac{1}{2}$ [distance (A, C), distance (B, C)] = $\frac{1}{2}$ (1.86, 1.46) = 1.66
- o AVG [distance (A, B), D] = $\frac{1}{2}$ (1.04, 0.79) = 2
- o AVG [distance (A, B), E] = $\frac{1}{2}$ (3.16, 3.45) = 3.21
- o AVG [distance (A, B), F] = $\frac{1}{2}$ (3.60, 3.99) = 3.79
- o AVG [distance (A, B), G] = $\frac{1}{2}$ (5.56, 5.95) = 5.75
- o AVG [distance (A, B), H] = $\frac{1}{2}$ (2.71, 3.05) = 2.88
- o AVG [distance (A, B), I] = $\frac{1}{2}$ (3.83, 4.23) = 4.03
- o AVG [distance (A, B), K] = $\frac{1}{2}$ (3.82, 4.22) = 4.02

	Al	В	С	D	Е	F	G	Н	- 1	K
AB	O		1.665	2	3.31	<mark>3.79</mark>	5.75	2.88	4.038	4.027
С	1.6	<mark>65</mark>	0	2.337	2.381	2.185	4.128	1.624	2.395	2.363
D	2		2.337	0	3.354	4.522	6.240	3.167	4.574	4.632
E	3.3	31	2.381	3.354	0	3.246	3.496	0.898	2.375	2.717
F	3.7	<mark>79</mark>	2.185	4.522	3.246	0	2.577	2.396	1.236	0.832

G	5.75	4.128	6.240	3.496	2.577	0	3.158	1.73	1.88
Н	2.88	1.624	3.167	0.898	2.396	3.158	0	1.71	1.97
I	<mark>4.03</mark>	2.395	4.574	2.375	1.236	1.73	1.71	0	<mark>0.426</mark>
K	4.027	2.363	4.632	2.717	0.832	1.88	1.976	<mark>0.426</mark>	0

La matrice de la distance de mise à jour pour le cluster A, B et encore une fois, nous sélectionnons la distance minimale :

Ensuite, nous répétons la même chose que nous avons faite avec A-B à I-K :

AVG [distance (I, k), Z], $Z \in \{A-B, C, D, E, F, G, H\}$

- o AVG [distance (I, K), (A-B)] = 4.032
- o AVG [distance (I, K), C] = 2.379
- o AVG [distance (I, K), D] = 4.603
- o AVG [distance (I, K), E] = 2.54
- o AVG [distance (I, K), F] = 1.03
- o AVG [distance (I, K), G] = 1.81
- o AVG [distance (I, K), H] = 1.84

La matrice de la distance de mise à jour pour le cluster I, K et encore une fois, nous sélectionnons la distance minimale :

	A-B	С	D	Е	F	G	Н	I-K
A-B	0	1.665	2	3.3 <mark>1</mark>	3.7995	5.7 <mark>5</mark> 8	2.885	4.032
С	1.665	0	2.337	2.381	2.185	4.128	1.624	2.379
D	2	2.337	0	3.354	4.522	6.240	3.167	4.603
Е	3.3 <mark>1</mark>	2.381	3.354	0	3.246	3.496	<mark>0.898</mark>	2.54
F	3.7995	2.185	4.522	3.246	0	2.577	2.396	1.034
G	5.758	4.128	6.240	3.496	2.577	0	3.158	1.81
Н	2.885	1.624	3.167	<mark>0.898</mark>	2.396	3.158	0	1.843
I-K	4.032	2.379	4.603	2.546	1.034	1.81	1.843	0

Nous répétons la même chose que nous avons faite avec I-K à E-H :

AVG [distance (E-H), Z], $Z \in \{A-B, C, D, F, G, I-K\}$

- o AVG [distance (E-H), (A-B)] = 3.09
- o AVG [distance (E-H), C] = 2.02
- o AVG [distance (E-H), D] = 3.26
- o AVG [distance (E-H), F] = 3.21
- \circ AVG [distance (E-H), G] = 3.32
- o AVG [distance (E-H), (I-K)] = 2.19

La matrice de la distance de mise à jour pour le cluster E, H et encore une fois, nous sélectionnons la distance min :

	A-B	С	D	E-H	F	G	I-K
A-B	0	1.665	2	3.097	3.7995	5.7 <mark>58</mark>	4.032
С	1.665	0	2.337	2.002	2.185	4.128	2.379
D	2	2.337	0	3.26	4.522	6.240	4.603
E-H	3.097	2.002	3.26	0	3.321	3.327	2.194
F	3.7995	2.185	4.522	3.321	0	2.577	1.034
G	5.758	4.128	6.240	3.327	2.577	0	1.81
<mark>I-K</mark>	4.032	2.379	4.603	2.194	1.034	1.81	0

Nous répétons la même chose que nous avons faite avec I-K à IK-F:

AVG [distance (AB-D), Z], $Z \in \{C, E-H, F, G, I-K\}$

- o AVG [distance (AB-D), C] = 1.995
- o AVG [distance (AB-D), (E-H)] = 3.1725
- o AVG [distance (AB-D), F] = 4.1575
- o AVG [distance (AB-D), G] = 5.99
- o AVG [distance (AB-D), (I-K)] = 4.3125

La matrice de la distance de mise à jour pour le cluster A, B, D et encore une fois, nous sélectionnons la distance min :

	A-B	С	D	E-H	IK-F	G
A-B	0	<mark>1.665</mark>	2	3.097	2.415	5.758
С	1.665	0	2.337	2.002	2.282	4.128
D	2	2.337	0	3.26	4.562	6.240
E-H	3.097	2.002	3.26	0	2.757	3.327
IK-F	2.415	2.282	4.562	2.757	0	2.193

2	
1.5	
1	
0.5	
0	O A B C I K F E H

6.240

3.327

2.193

0

4.128

Nous répétons la même chose que nous avons faite avec IK-F à AB-C :

AVG [distance (AB-C), Z], $Z \in \{IK-F, D, E-H, G\}$

G

- o AVG [distance (AB-C), IK-F] = 2.348
- o AVG [distance (AB-C), D] = 2.168
- o AVG [distance (AB-C), (E-H)] = 2.549
- o AVG [distance (AB-C), G] = 4.943

La matrice de la distance de mise à jour pour le cluster A, B, C et encore une fois, nous sélectionnons la distance min :

	AB-C	D	E-H	IK-F	G
AB-C	0	<mark>2.168</mark>	2.549	2.348	4.943
D	<mark>2.168</mark>	0	3.26	4.562	6.240
E-H	2.549	3.26	0	2.757	3.327
IK-F	2.348	4.562	2.757	0	2.193
G	4.943	6.240	3.327	2.193	0

Nous répétons la même chose que nous avons faite avec AB-C à AB-C-D :

AVG [distance (AB-C-D), Z], $Z \in \{E-H, G, IK-F\}$

- \circ AVG [distance (AB-C-D), (E-H)] = 2.904
- o AVG [distance (AB-C-D), IK-F] = 3.256
- o AVG [distance (AB-C-D), G] = 5.591

La matrice de la distance de mise à jour pour le cluster A, B, C, D et encore une fois, nous sélectionnons la distance min :

	AB-C-D	E-H	IK-F	G
AB-C-D	0	2.904	3.256	5.591
E-H	2.904	0	2.757	3.327
IK-F	3.256	2.757	O	<mark>2.193</mark>
G	5.591	3.327	<mark>2.187</mark>	0

Nous répétons la même chose que nous avons faite avec AB-D à IK-F-G :

AVG [distance (IK-F-G), Z], $Z \in \{AB-D-C, EH\}$

- o AVG [distance (IK-F-G), (AB-D-C)] = 4.52
- o AVG [distance (IK-F-G), EH] = 2.757

La matrice de la distance de mise à jour pour le cluster I, K, F, G et encore une fois, nous sélectionnons la distance min :

	AB-C-D	E-H	IK-F-G
AB-C-D	0	2.904	4.52
E-H	<mark>2.904</mark>	0	2.909
IK-F-G	4.52	<mark>2.757</mark>	0

Nous répétons la même chose que nous avons faite avec AB-C à IK-F-G -EH :

AVG [distance (IK-F-G -EH), Z], $Z \in \{AB-C-D\}$

o AVG [distance (IK-F-G -EH), (AB-C-D)] = 3.712

La matrice de la distance de mise à jour pour le cluster I, K, F, G, E, H et encore une fois, nous sélectionnons la distance min :

	AB-C-D	IK-F-G -EH
AB-C-D	0	<mark>3.712</mark>
IK-F-G -EH	<mark>3.712</mark>	0

	AB-C-D-IK-F-G -EH	
AB-C-D-IK-F-G -	00	
EH	00	

Dendrogramme du « Average linkage »

La hiérarchie du « Average linkage »