CS & **I** ENGINERING Algorithm

Heap Algorithms

Topics to be Covered

Topic

Sets

Representation of Sets

Set Operations: Union and Find

Recursion Tree Method-Por Boling Dande Recurrences,

(i)
$$T(n) = a.T(n/b) + f(n)$$

Recursion Tree

(ii)
$$T(n) = T(\alpha n) + T((-\alpha)n) + f(n)$$

$$T(n) = T(\alpha | \beta) + T(2\alpha | \beta) + n$$

$$Recursion Tree$$
(iii) $T(n) = T(\alpha | \beta) + T(\alpha n) + f(n)$

$$E_n T(n) = T(\alpha | \alpha n) + T(\beta n) + T(\alpha n) + f(n)$$

$$E_n T(n) = T(\alpha | \alpha n) + T(\alpha | \beta) + T(\alpha$$

- 2) Master Method -> order
- 3) Recurrence True order

2)
$$T(n) = T(n/3) + T(2n/3) + n$$

$$T(n/3) = T(n/3) + T(2n/3) + n$$

$$T(n/3) = T(2n/3) + n$$

$$T(n/3) = T(2n/4) + n$$

$$T(n/3) = T(n/3) + n$$

$$T(n/3) = T(n/3$$

3)
$$T(n) = T(n/5) + T(4n/5) + n$$
 $k = \log n$
 $T(n/5)$
 $T(4n/5)$
 $T(4n/5)$

4)
$$T(n) = T(n|3) + T(2n|3) + n^{2}$$
 $T(n) = D(n^{2})$
 $T(n) = D(n^$

$$T(n) = D(n^{2})$$

$$(5h)^{2}n^{2}$$

$$\frac{5h^{2}}{9}$$

$$\frac{5h^{2}}{1-h^{2}}$$

$$\frac{5h^{2}}{9}$$

$$\frac{5h^{$$

More
$$T(n-1)$$
 $T(n-2)$

$$S_m = a(x^{-1})$$

$$= a(x^{-1})$$

$$= 1(2^{m+1})$$

$$= 1$$

$$R.S.T = T(m) \ge \frac{m}{2}z^{2} = 1(\frac{2^{k+1}-1}{2^{k+1}-1})$$

L.S.T =
$$\sum_{i=0}^{\infty} 2^{i} = \binom{m+1}{2}$$

 $i=0$
 $1.S.T \left(T(n) \leq 2^{m+1} - 1\right)$
 $O\left(2^{m}\right)$

$$T(m) = SL(2^{m/2})$$

$$T(n) = 3 \cdot T(n/4) + n^{2}$$

$$T(n/4) \qquad T(n/4) \qquad$$

myk = logy m

$$T(n) = \left(n^{2} + \left(\frac{3}{16}\right)^{n^{2}} + \left(\frac{3}{16}\right)^{n^{2}} + \cdots + \left(\frac{3}{16}\right)^{k-1}n^{2} + 3^{k-1}(n)$$

$$= n^{2} \cdot \left(\frac{3}{16}\right)^{n^{2}} + 3^{\log n} \cdot \cdots$$

$$= (n) = (n)^{2} + (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} + (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} + (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} + (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} \cdot (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} \cdot (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} \cdot (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} \cdot (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} \cdot (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} \cdot (n)^{2} \cdot (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} \cdot (n)^{2} \cdot (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} \cdot (n)^{2} \cdot (n)^{2} \cdot (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} \cdot (n)^{2} \cdot (n)^{2} \cdot (n)^{2} \cdot (n)^{2} + 3^{\log n} \cdot \cdots$$

$$= (n)^{2} \cdot (n)^{$$

$$T(n) = C \cdot m + m$$

$$= O(n^2) ; \Omega(n^2)$$

$$\vdots T(n) = O(n^2)$$

$$+1/w Q_1) T(m) = T(m/2) + T(m/3) + T(m/4) + n$$

MCQ

H/W 2

Consider the following recurrence relation:

$$T(n) = \begin{cases} T\left(\frac{n}{2}\right) + T\left(\frac{2n}{5}\right) + 7n & \text{if } n > 0\\ 1 & \text{if } n = 0 \end{cases}$$

Which one of the following options is correct? [GATE-2021: 2M]

A
$$T(n) = \theta(n \log n)$$

B)
$$T(n) = \theta(n^{5/2})$$

$$C) T(n) = \theta(n)$$

$$D T(n) = \theta \left((\log n)^{5/2} \right)$$

$$T(n|y) \qquad T(n|y) \qquad T(n|y) \qquad T(n|x) \qquad T$$

$$\begin{cases} \frac{x}{2}i & \frac{x}{2}k = 1\\ \frac$$

It is assumed that the elements of the sets are the numbers 1, 2, 3, ..., n. These number might, in practice, be indices into a symbol table in which the names of the elements are stored. We assume that the sets being represented are pairwise disjoint (that is, if S_i , and S_i , $i \neq j$, are two sets, then there is no element that is in both S_i and S_i).

For example, when n = 10, the elements can be partitioned into three disjoint sets, $S_1 = \{1, 7, 8, 9\}$, $S_2 = \{2, 5, 10\}$, and $S_3 = \{3, 4, 6\}$. Figure shows one possible representation for

Possible tree representation of sets

The operations we wish to perform on these sets are:

- 1. Disjoint set union. If S_i and S_j are two disjoint sets, then their union $S_i \cup S_j =$ all elements x such that x is in S_i or S_j . Thus, $S_1 \cup S_2 = \{1, 7, 8, 9, 2, 5, 10\}$. Since we have assumed that all sets are disjoint, we can assume that following the union of S_i and S_j , the sets S_i and S_j do not exist independently; that is, they are replaced by $S_i \cup S_j$ in the collection of sets.
- 2. Find (i). Given the element i, find the set containing i. Thus, 4 is in set S_3 , and 9 is in set S_1 .

Possible representations of $S_1 \cup S_2$

Representation 9 Sets:

$$\Rightarrow$$
 Array based Representation: $S_1 = \{1, 7, 8, 9\}$; $S_2 = \{2, 5, 10\}$ $S_3 = \{3, 4, 6\}$

							7			10	
P	-1	5	-	3	-	3	١	1	1	5	

m=10

Data representation for S₁, S₂, and S₃

i	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
Р	-1	5	-1	3	-1	3	1	1	1	5

Array representation of S₁, S₂, and S₃ of Figure

i	1	2	3	4	5	6	7	8	٦	10
7	8	3	G	3	6	-	6	7	2	7

- 1. Algorithm Union (i, j)
- 2. {
 - p[i]: = j;
- 4.

3.

- 1. Algorithm Find(i)
- 2. {
- 3. while $(p[i] \ge 0) do i := p[i];$
- 4. return ;
- 5.

Topic: Greedy Method

Pw

```
Algorithm Kruskal (E, cost, n, t)
     Construct a heap out of the edge costs using
     Heapify; (e)
4. 2. for i : = 1 to n do parent[i] := -1;
5. 3 i := 0; mincost := 0.0;
6.4 while ((i < n - 1) and (heap not empty)) do e loge
7. { (†)
8. Delete a minimum cost edge (u, v) from the heap
     and reheapify using Adjust; Loge
10. J = Find(u); k = Find(v);.
11.  (j \neq k)  then
12. { (%)
13.
        i := i + 1;
      t[i, 1] := u; t[i, 2] := U;
14.
15.
        mincost := mincost + cost[u, v];
```

```
Union (j, k);
16.
        } (*)
17.
18. } (+)
19. if (i ≠ n −1) then write ("No spanning
tree");
else return mincost;
21. }
```

Jime: c+e+n+eloge

O(e.loge)

For complete brokh O(n2 logn)

THANK - YOU