

Лабораторная работа 2-5. Поток минимальной стоимости

А. Максимальный поток минимальной стоимости

ограничение по времени на тест: 5 секунд ограничение по памяти на тест: 512 мегабайт ввод: mincost.in

вывод: mincost.out

Задан ориентированный граф, каждое ребро которого обладает пропускной способностью и стоимостью. Найдите максимальный поток минимальной стоимости из вершины с номером 1 в вершину с номером n.

Входные данные

Первая строка входного файла содержит n и m — количество вершин и количество ребер графа ($2 \le n \le 100$, $1 \le m \le 1000$). Следующие m строк содержат по четыре целых числа числа: номера вершин, которые соединяет соответствующее ребро графа, его пропускную способность и его стоимость. Пропускные способности и стоимости не превосходят 10^5 .

Выходные данные

В выходной файл выведите одно число — цену максимального потока минимальной стоимости из вершины с номером 1 в вершину с номером n. Ответ не превышает 2^{63} - 1. Гарантируется, что в графе нет циклов отрицательной стоимости.

Пример

В. Задача о назначениях

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт ввод: assignment.in вывод: assignment.out

Дана целочисленная матрица C размера $n \times n$. Требуется выбрать n ячеек так, чтобы в каждой строке и каждом столбце была выбрана ровно одна ячейка, а сумма значений в выбранных ячейках была минимальна.

Входные данные

Первая строка входного файла содержит n ($2 \le n \le 300$). Каждая из последующих n строк содержит по n чисел: C_{ij} Все значения во входном файле неотрицательны и не превосходят 10^6 .

Выходные данные

В первую строку выходного файла выведите одно число — искомая минимизуруемая величина. Далее выведите *п* строк по два числа в каждой — номер строки и столбца клетки, участвующей в оптимальном назначении.

Пары чисел можно выводить в произвольном порядке.

Пример

C. Costly Labels

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Дано дерево без корня с N вершинами, являющееся связным, неориентированным графом с N вершинами, пронумерованными с 1 до N, и N - 1 ребрами. i-е ребро соединяет вершины A_i и B_i .

Вы хотите отметить каждую вершину числом от 1 до K, включительно так, чтобы потратить как можно меньше денег. Отметить i-ю вершину числом j, стоит $C_{i,j}$ долларов.

Также, после того, как все дерево было отмечено, вы должны заплатить еще P долларов за каждую вершину, которая имеет как минимум одну пару соседей, отмеченных одним числом. Другими словами, за каждую вершину u, вы должны заплатить P долларов если существуют две другие вершины v и w, смежные с u, такие, что числа, которыми отмечены v и w, одинаковы (заметим, что число, которым отмечена u, не важно). Вы платите штраф в P долларов один раз для данной центральной вершины u, даже если существует несколько пар соседей, удовлетворяющих вышеописанному условию.

Какая минимальная стоимость (в долларах) отметки всех N вершин?

Входные данные

В первой строчке содержатся натуральные числа N ($1 \le N \le 1000$), K ($1 \le K \le 30$), и P ($0 \le P \le 10^6$), отделенные пробелом. Затем, N строчек, i-я из которых содержит разделенные пробелом числа от $C_{i,\,1}$ до $C_{i,\,K}$ ($0 \le C_{i,\,j} \le 10^6$). Далее, N - 1 строчка, i-я из которых содержит два разделенных пробелом числа A_i и B_i ($1 \le A_i, B_i \le N$).

Выходные данные

Выведите минимальную стоимость отметки всех вершин дерева.

Примеры

входные данные	Скопировать
1 1 1 111	
выходные данные	Скопировать
111	

входные данные	Скопировать
3 1 8 1	
2	
1 2	
2 3	
выходные данные	Скопировать
15	
входные данные	Скопировать
3 2 10 4 7	
8 9	
2 3 1 2	
2 3	
выходные данные	Скопировать
15	
входные данные	Скопировать
4 2 99	
0 1 0 1	
0 1 0 0	
4 1	
2 4 4 3	
выходные данные	Скопировать
99	
DVO RUUJO - ROJUUJO	Скопироват
входные данные 4 3 99	Скопировать
0 1 0	

```
0 1 0
0 1 0
0 0 0
4 1
2 4
4 3

Выходные данные

Скопировать
```

Примечание

В первом примере дана только одна вершина, которая должна быть покрашена в единственный возможный цвет за 111 долларов. Во втором примере есть только один цвет, так что штраф в 8 долларов должен быть выплачен так как вторая вершина имеет двух соседей с одинаковым цветом. В сумме мы платим 1+2+4+8=15 долларов. В третьем случае оптимальным будет раскрасить вершины 1 и 2 цветом 1 и вершину 3 цветом 2. Стоимость такого раскрашивания 4+8+3=15 долларов.

D. Камень, ножницы, бумага — 2

ограничение по времени на тест: 1 секунда ограничение по памяти на тест: 512 мегабайт

ввод: rps2.in вывод: rps2.out

Год назад Ростислав с Мирославом играли в камень, ножницы, бумагу на щелбаны. За каждый выигранный раунд победитель ставил один щелбан проигравшему. В случае ничьи щелбаны не ставились. Эта игра запомнилась Мирославу как самая худшая игра в его жизни: всю следующую неделю у него болел лоб.

Воспоминания нахлынули на Мирослава, когда он нашел бумажку с шестью числами — запись с той самой игры. Прошло много времени, и теперь Мирослав может спокойно подумать, почему он проиграл так много раз. Но, к сожалению, он не может посчитать точное количество своих поражений, так как он записал только то, что Ростислав показал камень r_1 раз, ножницы s_1 раз и бумагу s_2 раз, ножницы s_3 раз и бумагу s_4 раз, ножницы s_5 раз и бумагу s_6 раз.

Помогите Мирославу узнать по этим данным, какое минимальное количество щелбанов он мог получить в той самой роковой игре.

Для справки, победитель этой игры определяется по следующим правилам:

•

•

Если игроки показали одинаковый знак, то засчитывается ничья.

Входные данные

В первой строке входных данных три целых числа r_1 , s_1 , p_1 . Во второй строке три целых числа r_2 , s_2 , p_2 .

Все числа неотрицательные и не превышают 10^8 , $r_1 + s_1 + p_1 = r_2 + s_2 + p_2$.

Выходные данные

Выходные данные должны содержать единственное число — минимальное количество щелбанов, которые мог получить Мирослав.

Примеры

входные данные	Скопировать
3 0 0 0 3 0	
выходные данные	Скопировать
3	

Е. Задача коммивояжеров

ограничение по времени на тест: 2 секунды ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Есть *п* городов. Между городами есть ориентированные дороги, у каждой дороги есть стоимость покупки разрешения на проезд. Мы хотим торговать во всех городах. У нас есть неограниченное кол-во коммивояжеров. Для каждого из них мы должны определить список городов, в которых они будут торговать. Каждый коммивояжер будет объезжать все города из своего списка по циклу (он может по пути заезжать в другие города, но не торговать там). Если два (или более) коммивояжеров будут ездить по одной дороге, то каждому из них мы должны купить разрешение на проезд. Если список у коммивояжера состоит только из одного города, то он либо должен регулярно выезжать из города (тоже по какому-то циклу), либо мы должны купить ему прописку (у каждого города есть цена прописки). Наконец, в любом городе должен торговать только один коммивояжер, иначе предприятием заинтересуется налоговая. Нужно минимизировать издержки.

Входные данные

В первой строке два числа n, m — количество городов и количество дорог ($1 \le n \le 256, 0 \le m \le n(n-1)$).

Во второй строке n чисел a_i — цена прописки для города номер i ($0 \le a_i \le 10^9$).

Затем в m строках описаны дороги. Описание дороги из города u в город v со стоимостью разрешения на проезд c выглядит как u v cost $(1 \le u, v \le n, u \ne v, 0 \le c \le 10^9)$. Гарантируется, что между любой парой городов не более 1 дороги в каждом из направлений.

Выходные данные

Выведите одно число — минимальную сумму издержек.

Пример

```
ВХОДНЫЕ ДАННЫЕ

3 3
30 25 30
1 2 3
2 3 5
3 1 10

ВЫХОДНЫЕ ДАННЫЕ

Скопировать
```

Codeforces (c) Copyright 2010-2019 Михаил Мирзаянов Соревнования по программированию 2.0