Section 8.6: Modular arithmetic

CS1231S Discrete Structures

Wong Tin Lok

National University of Singapore

9 October 2020

Question

Which of the following are true for all $a, b, m, n \in \mathbb{Z}^+$?

- 1. $((a \mod n) + (b \mod n)) \mod n$ $= (a+b) \mod n$. \checkmark Proposition 8.6.6
- 2. $((a \mod m) + (a \mod n)) \mod (m+n)$ = $a \mod (m+n)$. a = m = n = 1?
- 3. ((a mod n) × (b mod n)) mod n
 = (a × b) mod n. ✓ Proposition 8.6.13
 4. ((a mod m) × (a mod n)) mod (m × n)
 = a mod (m × n). a = m = n = 2?

Answer at https://pollev.com/wtl/.

Towards a proof of the Fundamental Theorem of Arithmetic

Theorem 8.1.16 (Division Theorem)

For all $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$, there exist unique $q, r \in \mathbb{Z}$ such that n = dq + r and $0 \le r < d$.

$$n = aq + r$$

Algorithm 8.4.8 (Euclidean Algorithm)

Let $m, n \in \mathbb{Z}$ such that $m \geqslant n > 0$. Set

 $r_1 := m \mod n$, $r_2 := n \mod r_1$, $r_3 := r_1 \mod r_2$, ..., $r_{k+1} := r_{k-1} \mod r_k$, where $r_k \neq 0$ but $r_{k+1} = 0$. Then $gcd(m, n) = r_k$.

Theorem 8.5.2 (Bézout's Lemma)

For all $m, n \in \mathbb{Z}$ with $n \neq 0$, there exist $s, t \in \mathbb{Z}$ such that gcd(m, n) = ms + nt.

Theorem 8.5.5 (Euclid's Lemma)

Let $m, n, p \in \mathbb{Z}^+$. If p is prime and $p \mid mn$, then $p \mid m$ or $p \mid n$.

Theorem 8.5.9 (Fundamental Theorem of Arithmetic; Prime Factorization Theorem) Every integer $n \ge 2$ has a unique prime factorization in which the prime factors are arranged in nondecreasing order.

Motivation

+	even	odd	_	×	even	odd
even	even	odd		even	even	even
odd	odd	even		odd	even	odd

Aim

To formalize and generalize

- the arithmetic of the even and the odd; and
- clock arithmetic.

Plan

- congruence
- addition and multiplication
- subtraction and division

 $ig(\mathsf{Search} \ \mathsf{for} \ \mathsf{``RSA} \ \mathsf{cryptosystem''} \,.$

We have concluded that the trivial mathematics is, on the whole, useful, and that the real mathematics, on the whole, is not.

G.H. Hardy

Congruence
$$(1/4)$$

Definition 8.1.1: $d \mid n \Leftrightarrow n = dk$ for some $k \in \mathbb{Z}$.

Definition 8 6 1

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then a is congruent to b modulo n if a mod $n = b \mod n$. In this case, we write $a \equiv b \pmod{n}$.

Lemma 8.6.2 (alternative definitions of congruence)

The following are equivalent for all $a, b \in \mathbb{Z}$ and all $n \in \mathbb{Z}^+$.

(i)
$$a \equiv b \pmod{n}$$
. $\longrightarrow TFAF$

(ii)
$$a = nk + b$$
 for some $k \in \mathbb{Z}$.

(iii)
$$n | (a - b)$$
.

Example 8.6.3

(1)
$$5 \equiv 1 \pmod{2}$$
 because $5 \mod{2} = 1 = 1 \mod{2}$.

(2)
$$-2 \equiv 4 \pmod{3}$$
 because $-2 \mod{3} = 1 = 4 \mod{3}$.

(3)
$$-4 \not\equiv 5 \pmod{7}$$
 because $-4 \bmod{7} = 3 \not\equiv 5 = 5 \bmod{7}$.

Remark 8.6.4. If we defined a mod n to have the same sign as a for all $a \in \mathbb{Z}$ and all $n \in \mathbb{Z}^+$. then this would fail.

 $(i) \Leftarrow (iii)$

Congruence (2/4)Definition 8 6 1

(i) $a \equiv b \pmod{n}$.

Proof of (i) \Rightarrow (ii)

(iii) $n \mid (a - b)$.

(ii) a = nk + b for some $k \in \mathbb{Z}$.

1.2. Let $r = a \mod n$, so that $r = b \mod n$ too. 1.3. Let $p = a \operatorname{div} n$ and $q = b \operatorname{div} n$, so that

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then a is congruent to b modulo n if a mod $n = b \mod n$. In

this case, we write $a \equiv b \pmod{n}$.

1.1. Suppose $a \equiv b \pmod{n}$. By definition, this means $a \mod n = b \mod n$.

a = np + r and b = nq + r.

1.4. Then a = a - b + b = (np + r) - (nq + r) + b = n(p - q) + b, where $p - q \in \mathbb{Z}$.

Lemma 8.6.2 (alternative definitions of congruence)

The following are equivalent for all $a, b \in \mathbb{Z}$ and all $n \in \mathbb{Z}^+$.

Definition 8.1.1: $d \mid n \Leftrightarrow n = dk$ for some $k \in \mathbb{Z}$.

 $(i) \Leftarrow (iii)$

Congruence
$$(3/4)$$

Definition 8.1.1: $d \mid n \Leftrightarrow n = dk$ for some $k \in \mathbb{Z}$.

Definition 8.6.1

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then a is congruent to b modulo n if a $\underline{\text{mod}} \ n = b \ \underline{\text{mod}} \ n$. In this case, we write $a \equiv b \pmod{n}$.

Lemma 8.6.2 (alternative definitions of congruence)

The following are equivalent for all $a, b \in \mathbb{Z}$ and all $n \in \mathbb{Z}^+$. (i) \Leftarrow (iii)

- (i) $a \equiv b \pmod{n}$.
- (ii) a = nk + b for some $k \in \mathbb{Z}$.
- (iii) n | (a b).

Proof of (ii) \Rightarrow (iii)

- 2.1. Let $k \in \mathbb{Z}$ such that a = nk + b.
- 2.2. Then a b = nk, where $k \in \mathbb{Z}$.
- 2.3. So $n \mid (a b)$.

Congruence
$$(4/4)$$

Definition 8.1.1: $d \mid n \Leftrightarrow n = dk$ for some $k \in \mathbb{Z}$.

Definition 8.6.1

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then a is congruent to b modulo n if $a \mod n = b \mod n$. In this case, we write $a \equiv b \pmod n$.

Lemma 8.6.2 (alternative definitions of congruence)

The following are equivalent for all $a, b \in \mathbb{Z}$ and all $n \in \mathbb{Z}^+$.

(i) $a \equiv b \pmod n$.

(ii) $a \equiv b \pmod n$.

(iii) $a = nk + b$ for some $k \in \mathbb{Z}$.

(iii) $a = nk + b$ for some $k \in \mathbb{Z}$.

(iv) $a = nk + b \pmod n$.

So $a = nk + b \pmod n$. This says

3.8. Hence $a \mod n = k = k \pmod n$. This says

3.1. Suppose
$$n \mid (a - b)$$
.

3.2. Let $p = a \underline{\text{div}} n \text{ and } r = a \underline{\text{mod}} n$, and $q = b \underline{\text{div}} n \text{ and } s = b \underline{\text{mod}} n$.

3.4. As $n \mid (a-b)$ and $n \mid n(p-q)$, the Closure Lemma implies $n \mid (r-s)$. 3.5. So n | |r - s| by Lemma 8.1.9.

3.3. Then a - b = (np + r) - (nq + s) = n(p - q) + (r - s).

3.6. We know $0 \le |r-s| < n$ because $0 \le r < n$ and $0 \le s < n$.

Prop 8.1.10

Reflexivity, symmetry, and transitivity

Definition 8.6.1

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then a is congruent to b modulo n if $a \bmod n = b \bmod n$. In this case, we write $a \equiv b \pmod n$.

Lemma 8.6.5

Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$.

- (1) (Reflexivity) $a \equiv a \pmod{n}$.
- (2) (Symmetry) If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.
- (3) (Transitivity) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Proof

- 1. (Reflexivity) Since $a \bmod n = a \bmod n$, we know $a \equiv a \pmod n$.
- 2. (Symmetry) $a \equiv b \pmod{n} \Rightarrow a \mod n = b \mod n$ $\Rightarrow b \mod n = a \mod n \Rightarrow b \equiv a \pmod{n}$.
- 3. (Transitivity) 3.1. Suppose $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$.
 - 3.2. Then $a \mod n = b \mod n$ and $b \mod n = c \mod n$.
 - 3.3. So $a \mod n = c \mod n$.
 - 3.4. This means $a \equiv c \pmod{n}$.

Addition

Definition 8.6.1

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then a is congruent to b modulo n if a $\underline{\text{mod}}\ n = b \ \underline{\text{mod}}\ n$. In this case, we write $a \equiv b \ (\underline{\text{mod}}\ n)$.

Lemma 8.6.2 (alternative definitions of congruence)

The following are equivalent for all $a, b \in \mathbb{Z}$ and all $n \in \mathbb{Z}^+$.

- (i) $a \equiv b \pmod{n}$.
- (ii) a = nk + b for some $k \in \mathbb{Z}$.
- (iii) n | (a b).

Proposition 8.6.6

Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $a + c \equiv b + d \pmod{n}$.

Proof

- 1. Use Lemma 8.6.2(ii) to find $k, \ell \in \mathbb{Z}$ such that a = nk + b and $c = n\ell + d$.
- 2. Then $a + c = (nk + b) + (n\ell + d) = n(k + \ell) + (b + d)$, where $k + \ell \in \mathbb{Z}$.
- 3. This implies $a + c \equiv b + d \pmod{n}$ by Lemma 8.6.2.

Multiplication

Definition 8.6.1

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then a is congruent to b modulo n if $a \mod n = b \mod n$. In this case, we write $a \equiv b \pmod n$.

Lemma 8.6.2 (alternative definitions of congruence)

The following are equivalent for all $a, b \in \mathbb{Z}$ and all $n \in \mathbb{Z}^+$.

- (i) $a \equiv b \pmod{n}$.
- (ii) a = nk + b for some $k \in \mathbb{Z}$.
- (iii) n | (a b).

Proposition 8.6.13

Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $ac \equiv bd \pmod{n}$.

Proof

- 1. Use Lemma 8.6.2(ii) to find $k, \ell \in \mathbb{Z}$ such that a = nk + b and $c = n\ell + d$.
- 2. Then $ac = (nk + b)(n\ell + d) = n(nk\ell + kd + b\ell) + bd$.
- 3. This implies $ac \equiv bd \pmod{n}$ by Lemma 8.6.2.

Additive inverse

Note 8.6.7. $\forall x \in \mathbb{Z} \ x + 0 \equiv x \pmod{n}$ for all $n \in \mathbb{Z}^+$.

Definition 8.6.8

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. The integer b is an additive inverse of a modulo n if $a + b \equiv 0 \pmod{n}$.

Example 8.6.9

- (1) 1 is an additive inverse of 3 mod 4 as $3+1=4\equiv 0\pmod 4$.
- (2) -3 is an additive inverse of 3 mod 4 as $3 + (-3) = 0 \equiv 0 \pmod{4}$.

Proposition 8.6.10

Let $a,b\in\mathbb{Z}$ and $n\in\mathbb{Z}^+.$

- (1) -a is an additive inverse of a modulo n.
- (2) b is an additive inverse of a modulo n if and only if $b \equiv -a \pmod{n}$.

Definition 8.6.15

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. A multiplicative inverse of a modulo n is an integer b such that $ab \equiv 1 \pmod{n}$.

Proposition 8.6.16

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$.

Proposition 8.6.13. Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $ac \equiv bd \pmod{n}$.

- (1) Let b, b' be multiplicative inverses of a. Then $b \equiv b' \pmod{n}$.
- (2) Let b be a multiplicative inverse of a and $b' \in \mathbb{Z}$ such that $b \equiv b' \pmod{n}$. Then b' is also a multiplicative inverse of a.

Proof of (1)

- 1. $ab \equiv 1 \pmod{n}$ as b is a multiplicative inverse of a;
- $\equiv ab' \pmod{n} \quad \text{as } b' \text{ is a multiplicative inverse of } a;$
- 3. \therefore $b'ab \equiv b'ab' \pmod{n}$ by Proposition 8.6.13;
- 4. \therefore $b \equiv b' \pmod{n}$ by Proposition 8.6.13, as $ab' \equiv 1 \pmod{n}$.

Definition 8.6.15

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. A multiplicative inverse of a modulo n is an integer b such that $ab \equiv 1 \pmod{n}$.

Proposition 8.6.16 Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Proposition 8.6.13. Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $ac \equiv bd \pmod{n}$.

- (1) Let b, b' be multiplicative inverses of a. Then $b \equiv b' \pmod{n}$.
- (2) Let b be a multiplicative inverse of a and $b' \in \mathbb{Z}$ such that $b \equiv b' \pmod{n}$. Then b' is also a multiplicative inverse of a.

Proof of (2)

- 1. $ab' \equiv ab \pmod{n}$ by Proposition 8.6.13, as $b \equiv b' \pmod{n}$;
- 2. $\equiv 1 \pmod{n}$ as b is a multiplicative inverse of a.

Definition 8.6.15

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. A multiplicative inverse of a modulo n is an integer b such that $ab \equiv 1 \pmod{n}$.

Proposition 8.6.16

Proposition 8.6.13. Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ such that $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $ac \equiv bd \pmod{n}$. Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$.

- (1) Let b, b' be multiplicative inverses of a. Then $b \equiv b' \pmod{n}$.
- (2) Let b be a multiplicative inverse of a and $b' \in \mathbb{Z}$ such that $b \equiv b' \pmod{n}$. Then b' is also a multiplicative inverse of a.

Example 8.6.17

- (1) 5 is a multiplicative inverse of 5 modulo 6 because $5 \times 5 = 25 \equiv 1 \pmod{6}$.
- (2) 11 is a multiplicative inverse of 5 modulo 6 because $5 \times 11 = 55 \equiv 1 \pmod{6}$. (3) 2 does not have a multiplicative inverse modulo 6.

Multiplicative inverse — existence (1/2) Closure Lemma. Let $a, b, d, m, n \in \mathbb{Z}$. Definition 8 6 15 If $d \mid m$ and $d \mid n$, then $d \mid am + bn$.

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. A multiplicative inverse of a modulo n is an integer b such that

 $ab \equiv 1 \pmod{n}$. Lemma 8.6.2. The following are equivalent for all $a, b \in \mathbb{Z}$ and

inverse modulo n if and only if gcd(a, n) = 1.

Proof of the "only if" part

a and n are coprime.

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then a has a multiplicative

equivalent for all $a, b \in \mathbb{Z}$ and all $n \in \mathbb{Z}^+$. (i) $a \equiv b \pmod{n}$.

(ii) a = nk + b for some $k \in \mathbb{Z}$.

(iii) n | (a - b).

- 1.1. Let b be a multiplicative inverse of a modulo n.
- 1.2. Then $ab \equiv 1 \pmod{n}$ by the definition of multiplicative inverses.
- 1.3. Use Lemma 8.6.2(ii) to find $k \in \mathbb{Z}$ such that ab = nk + 1.
- 1.4. Let $d = \gcd(a, n)$. Note that $d \geqslant 1$, and $d \mid a$ and $d \mid n$.
- 1.5. Then the Closure Lemma implies $d \mid ba + (-k)n = 1$. 1.6. So $1 \le d = |d| \le |1| = 1$ by Proposition 8.1.10.

Proposition 8.1.10. Let $d, n \in \mathbb{Z}$. If $d \mid n$ and $n \neq 0$, then $|d| \leq |n|$.

1.7. Hence gcd(a, n) = d = 1.

Multiplicative inverse — existence (2/2)Definition 8 6 15

An algorithm for finding multiplicative inverses modulo *n*. Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. A multiplicative inverse of a modulo n is an integer b such that

 $ab \equiv 1 \pmod{n}$.

Theorem 8.6.19

2.1. Suppose gcd(a, n) = 1.

Let $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$. Then a has a multiplicative inverse modulo n if and only if gcd(a, n) = 1.

Proof of the "if" part

2.2. Use Bézout's Lemma to find $s, t \in \mathbb{Z}$ such that $1 = \gcd(a, n) = as + nt$.

2.3. Then as = 1 - nt = n(-t) + 1, where $-t \in \mathbb{Z}$.

2.4. So $as \equiv 1 \pmod{n}$ by Lemma 8.6.2.

Lemma 8.6.2. The following are equivalent for all $a, b \in \mathbb{Z}$ and all $n \in \mathbb{Z}^+$.

(i) $a \equiv b \pmod{n}$. (ii) a = nk + b for some $k \in \mathbb{Z}$.

(iii) n | (a - b).

2.5. This says s is a multiplicative inverse of a modulo n.

a and n are coprime.

Theorem 8.5.2 (Bézout's Lemma)

For all $m, n \in \mathbb{Z}$ with $n \neq 0$, there exist $s, t \in \mathbb{Z}$ such that $\gcd(m, n) = ms + nt$.

Finding multiplicative inverses Example 8.6.21

multiplicative inverses modulo n.

(3)

An algorithm for finding

5 0.0.2

Find a multiplicative inverse of 7 modulo 12.

Solution

Apply the Euclidean Algorithm:

```
Hence \begin{aligned} &12 \, \underline{\mathsf{mod}} \, 7 = 5 & \longleftarrow & 5 = 12 - 7 \times 1 \\ &7 \, \, \underline{\mathsf{mod}} \, 5 = 2 & \longleftarrow & 2 = \, 7 - 5 \times 1 \\ &5 \, \, \underline{\mathsf{mod}} \, 2 = 1 & \longleftarrow & 1 = \, 5 - 2 \times 2 \\ &2 \, \, \underline{\mathsf{mod}} \, 1 = 0 \end{aligned}
= 5 - (7 - 5 \times 1) \times 2 \qquad \qquad \mathsf{by} \ (3);
= 5 - (7 - 5 \times 1) \times 2 \qquad \qquad \mathsf{by} \ (2);
= 7 \times (-2) + 5 \times 3
```

 $= 12 \times 3 + 7 \times (-5)$ $\equiv 7 \times (-5) \pmod{12}.$

 $= 7 \times (-2) + (12 - 7 \times 1) \times 3$ by (1):

Hence -5 is a multiplicative inverse of 7 modulo 12.

Summary

Let $a, c \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$.

What we saw

division is not always possible.

congruence modulo *n*;

addition, multiplication and subtraction make sense;

Theorem 8.6.19

To solve the equation $ax \equiv c \pmod{n}$, where gcd(a, n) = 1

a has a multiplicative inverse modulo n if and only if gcd(a, n) = 1.

(1) Find a multiplicative inverse b of a modulo n.

as in the proof of Bézout's Lemma and Theorem 8.6.19.

(2) The solution is $x \equiv bc \pmod{n}$.

Example 8.6.24. To solve $7x \equiv 2 \pmod{12}$: 1. We know -5 is a multiplicative inverse of 7 modulo 12.

2. The solution is $x \equiv -5 \times 2 \pmod{12} = -10$

 $\equiv 2 \pmod{12}$.

Next: equivalence relations

This can be done either by trial and error, or by using the Euclidean Algorithm

Note $ax \equiv c \pmod{n} \Leftrightarrow x \equiv bax \equiv bc \pmod{n}$.