Analysis II

January 9, 2024

(Real) Analysis

- · Calculus
 - Differential
 - Integral (Riemann)
- · Functions and Maps
 - Measure Theory
 - (Lebesgue) Integration
- Topology
 - Completeness (as a metric space)
 - Compactness (Bolzano-Weierstrass theorem [real]) (Arzela-Ascoli)
 - Paracompactness / Metrizable / Baire Category Theorem
 - Algebraic / Combinatoric (continuous maps or functions)

Definition: Cardinality

For sets A, B, Card(A) = Card(B) if there exists a one-to-one correspondence $q: A \leftrightarrow B$. Counting, labelling, indexing, etc.

 $Card(A) \leq Card(B)$ if $A \subset B$ or there exists a one-to-one mapping $A \to B$.

Definition: Countable

If $A \hookrightarrow \mathbb{N}$, then A is countable.

Theorem

The countable union of countable sets is countable.

Proof

Let
$$A_i = \{a_i\}_{i=1}^{\infty}$$
, $i = 1, 2, ...$

Index by diagonalization.

Theorem

The cartesian product of countable sets is countable.

Proof

$$X \times Y = \{(x_i, y_i : x_i \in X, y_i \in Y\}$$

$$(x_1, y_1)$$
 (x_1, y_2) (x_1, y_3) ...
 (x_2, y_1) (x_2, y_2) (x_2, y_3) ...
 \vdots
 (x_k, y_1) (x_k, y_2) (x_k, y_3) ...

Theorem

 $\operatorname{Card}(2^X) > \operatorname{Card}(X)$, where $2^X = \{A \subset X\}$ is the power set of X.

Proof

For all $x \in X$, $\{x\} \subset 2^X$, so $Card(X) \leq Card(2^X)$.

Assume, for sake of contradiction, that $Card(X) = Card(2^X)$.

Then, by definition, there exists a one-to-one correspondence $\phi: X \leftrightarrow 2^X$.

Set $A = \{x \in X : x \notin \phi(x)\}$, and let $a = \phi^{-1}(A)$ (i.e. $A = \phi(a)$).

If $a \in A$, then $a \notin A \subset \phi(a)$; but if $a \notin A$, then $a \in A$, a contradiction.

Theorem

$$Card(\mathbb{R}) = Card(2^{\mathbb{N}}).$$

Topology of the Real Line

Completeness (as a metric space)

$$d(a,b)=|a-b|, \quad \forall \, a,b \in \mathbb{R}.$$

- 1. $x_i \to x$ if $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}$ such that $|x_i x| < \varepsilon$, $\forall i \ge n$.
- 2. $\{x_i\}$ is Cauchy if $\forall \varepsilon > 0$, $\exists n \in \mathbb{N}$ such that $|x_i x_j| < \varepsilon$, $\forall i, j \ge n$.

Definition: Open Inteval

(a,b) is an open set on the real line.

There exist interior points for any subset *A* of real numbers.

 $\forall x \in A, x \text{ is interior if } \exists (a, b) \text{ such that (1) } x \in (a, b) \text{ and (2) } (a, b) \subset A.$

Theorem

The union of open sets is open.

The intersection of finitely many open sets is open.

 \emptyset and \mathbb{R} are open.

Definition: Limit Point

A limit point $x \in \mathbb{R}$ of a subset A is a limit point in A if for every open neighborhood U of X, $(U \setminus \{x\}) \cap A \neq \emptyset$.

Definition: Closed

A is closed if A contains all of its limit points.

Theorem

A is closed if and only if $A^c = \mathbb{R} \setminus A$ is open.

- Proof

 $A \operatorname{closed} \Longrightarrow A^c \operatorname{open}.$

Otherwise, $\exists x \in A^c$ such that for every neighborhood U of X, $(U \setminus \{x\}) \cap A = \emptyset$ which would make it a limit point of A not in A. By assumption, A contains all its limit points so this is a contradiction.

 A^c open \Longrightarrow A closed.

For any x a limit point of A, assume otherwise that $x \in A^c$.

Then there exists some neighborhood U of x such that $U \subset A^c$ (since A^c is open).

It follows that $(U \setminus \{x\}) \cap A = \emptyset$ and x is not a limit point of A, which is a contradiction.

Definition: Sequential Compactness

A is compact if $\forall \{x_i\}, x_i \in A$ there exists a convergent subsequence $\{x_{i_k}\}$ and $x_{i_k} \to x \in A$.

• Theorem: Bolzano-Weierstrass

For $A \subseteq \mathbb{R}$, A is compact if and only if A is closed and bounded.

Proof

 $A ext{ compact} \implies A ext{ closed}$ and bounded.

Assume that *A* is not bounded from abvove.

Then there exists a sequence $\{x_i\}$, $x_i \in A$ where $x_{i+1} > x_i + 1$ and $\{x_i\}$ has no convergent subsequences.

Then compactness implies closedness.

A closed and bounded \implies A (sequentially) compact.

Let any $\{x_i\}$, $x_i \in A$.

Claim: $\forall \{x_i\}$ of reals, if there exists $m \in \mathbb{R}$ such that $|x_i| \leq m$, $\forall m$ then there is some convergent subsequence.

Divide and conquer: dividing the interval in half necessitates that at least one half contains infinitely many points. Repeat indefinitely.

• Theorem: Heine-Borel)

 $A \subseteq \mathbb{R}$ is (sequentially) compact if and only if any open cover has a finite subcover.

Proof

Heine-Borel Property ⇒ closed and bounded.

Assume that A is unbounded, $U_n = (-n, n)$ and $\{U_n\}_{n=1}^{\infty}$ an open cover for $A \subseteq \mathbb{R}$ has no finite subcover. Assume A is not closed, then $x \in \dot{A}$ (where \dot{A} is the limit set of A) and $x \notin A$, $U_n\left\{\left(-\infty, x - \frac{1}{n}\right) \cup \left(x + \frac{1}{n}, +\infty\right)\right\}$. Then $\{U_n\}$ covers $\mathbb{R} \setminus \{x\} \supset A$ has no finite subcover of A.

A is bounded and closed \implies A is Heine-Borel Divide and conquer: using open sets with respect to open covers.

Definition: Cantor Set

$$C = \{x \in [0,1] : \text{ the ternary expansion of } x \text{ has only the digits } \{0,2\}\}.$$
 Equivalenetly, let $C_0 = [0,1]$, $C_1 = \left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right]$, $C_2 = \left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{3}{9}\right] \cup \left[\frac{6}{9},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right]$. Then $C_n = \bigcup_{k=1}^{2^n} C_k^k$ and $C = \bigcap_{n=1}^{\infty} C_n$.
$$|C_n| = 2^n \left(\frac{1}{3}\right)^n \to 0.$$

Definition: Perfectly Symmetric Sets

Let
$$\{\xi_n\}$$
 where $\xi_n \in \left(0, \frac{1}{2}\right)$. $E_0 = [0, 1], E_1 = [0, \xi_1] \cup [1 - \xi_1, 1], E_2 = [0, \xi_1 \xi_2] \cup [\xi_1 - \xi_1 \xi_2, \xi_1] \cup [1 - \xi_1, 1 - \xi_1 + \xi_1 \xi_2] \cup [1 - \xi_1 \xi_2, 1].$ Then the cantor set is given by $\xi_n = \frac{1}{3}$.

$$E_n = \bigcup_{k=1}^{2^n} E_n^k, \ |E_n^k| = \xi_1 \xi_2 \cdots \xi_n, \ \text{and} \ |E_n| = \sum_{n=1}^{\infty} |E_n^k| = 2^n \xi_1 \xi_2 \cdots \xi_n.$$
 Therefore, $E = \bigcap_{n=1}^{\infty} E_n$ and we define $|E| = \lim_{n \to \infty} |E_n| = \lim_{n \to \infty} \left(2^n \xi_1 \xi_2 \cdots \xi_n\right) = \lambda$ where $\lambda \in [0,1)$. Let

$$2\xi_n = \frac{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n-1}\right)^{n-1}}{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n}\right)^n} < 1$$

, then

$$2^{n}\xi_{1}\cdots\xi_{n} = \frac{1}{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n}\right)^{n}} \to \lambda.$$

Proof

$$\lim_{n\to\infty}\left(\left(1+\frac{x}{n}\right)^{n/x}\right)^x=e^x, \text{ then } \lim_{y\to0}\left(1+y\right)^{1/y}=e, \log(1+y)^{1/y}=\frac{\log(1+y)}{y}\underset{y\to0}{\longrightarrow}1.$$
 Observe that

$$\left(\frac{\log(1+y)}{y}\right)' = \frac{\frac{y}{1+y} - \log(1+y)}{y^2} = \left(1 + \frac{1}{1+y} - \log(1+y)\right)' = \frac{1}{(1+y)^2} - \frac{1}{1+y} = -\frac{y}{(1+y)^2} < 0$$

Theorem

Cantor sets and perfect symmetric sets are closed, perfect, uncountable, and nowhere dense.

January 11, 2024

Last Week

Cardinality.

Topology of the reals.

• Cantor (perfect symmetric sets)

$$C_0 = [0,1]$$

$$C_1 = [0,1/3] \cup [2/3,1]$$

$$C_2 = [0,1/9] \cup [2/9,3/9] \cup [6/9,7/9] \cup [8/9,1]$$

$$C_n = \bigcup_{n=1}^{2^n} C_n^k$$

$$|C_n^k| = \left(\frac{1}{3}\right)^n$$

$$C = \bigcap_{n=1}^{\infty} C_n$$

$$|C_n| = 2^n \frac{1}{3^n} = \left(\frac{2}{3}\right)^n \implies |C| = \lim_{n \to \infty} |C_n| = 0$$
Closed, no interior points and uncountable.

· Perfect Symmetric Sets

$$\begin{split} &\{\xi_k\} \in \left(0,\frac{1}{2}\right) \\ &E_0 = [0,1] \\ &E_1 = [0,\xi_1] \cup [1-\xi_1,1] \\ &E_2 = [0,\xi_1\xi_2] \cup [\xi_1-\xi_1\xi_2,\xi_1] \cup [1-\xi_1,1-\xi_1+\xi_1\xi_2] \cup [1-\xi_1\xi_2,1] \\ &E_n = \bigcup_{n=1}^{2^n} E_n^k \\ &|E_n^k| \xi_1 \xi_2 \cdots \xi_n \\ &|E_n| = 2^n \xi_1 \xi_2 \cdots \xi_n \\ &|E_n| = 2^n \xi_1 \xi_2 \cdots \xi_n \\ &2\xi_n = \frac{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n-1}\right)^{n-1}}{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n}\right)^n} < 1 \\ &|E_n| = \frac{1}{\left(1 + \frac{\log\left(\frac{1}{n}\right)}{n}\right)^n} \\ &|E| = \lim_{n \to \infty} |E_n| = \frac{1}{e^{\log\left(\frac{1}{n}\right)}} = \lambda, \quad \lambda \in (0,1) \end{split}$$

Volterra's Function

$$\phi(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

IMAGE HERE - graph of phi(x)

$$\phi'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

$$f(x) = \begin{cases} 0 & x \in E \\ \phi(x-a) & x \in (a, a+y) \\ -\phi(b-x) & x \in (b-y, b) \\ \phi(y) & x \in (a+y, b-y) \end{cases}, (a,b) \in E^{c}$$

IMAGE HERE - f interval (a,b)

Propositions

- 1. f'(x) = 0 for $x \in E$.
- 2. f'(x) discontinuous on E.
- 3. f' exists on [0,1] and is bounded.

Since |E| > 0, f'(x) is not Riemann integrable and, therefore, the fundamental theorem of calculus does not apply.

Lebesgue Outer Measure

$$|(a,b)| = b - a$$
.
Let $A \subseteq \mathbb{R}$, then $m^*(A) = \inf\{\sum_{n=1}^{\infty} I_n : A \subseteq \bigcup_{n=1}^{\infty}\}$
Question: $m^*(A \cup B) \stackrel{?}{=} m^*(A) + m^*(B)$ for $A \cap B \neq \emptyset$?

Properties

- 1. $A \subseteq B \implies m^*(A) \le m^*(B)$.
- 2. $m^*(\emptyset) = 0$.
- 3. If I is an interval, then $m^*(I) = |I|$.
- 4. If $\{A_i\}$ is countable, $m^*(\bigcup A_i) \leq \sum m^*(A_i)$.
- Proof of 4 $\forall A_i, \ \exists \{I_n\} \text{ open intervals such that } \sum_n |I_n| < m^*(A_i) + \frac{\varepsilon}{2^i}.$ Then $\bigcup_i \bigcup_n I_n^i \supset \bigcup_i A_i$, and $\sum_{n,i} |I_n^i| = \sum_i \left(\sum_n |I_n^i|\right) \leq \sum_i \left(m^*(A_i) + \frac{\varepsilon}{2^i}\right).$
 - Corollary

If A is countable, then $m^*(A) = 0$. Thus, by contraposition, every interval is uncountable.

Proposition

For $A \subseteq \mathbb{R}$, $\forall \varepsilon > 0$, $\exists U$ open such that $A \subseteq U$ and $m^*(U) \le m^*(A) + \varepsilon$.

Corollary

There exists G in the intersection of countable open sets such that $m^*(G) = m^*(A)$ and $G \supseteq A$.

6

Caratheodory Criteria

If $\forall E, m^*(E \cap A) + m^*(E \cap A^c) = m^*(E)$, then A is Lebesgue measurable.

• Remark: $m^*(E \cap A) + m^*(E \cap A^c) \le m^*(E) \le +\infty$

Propositions

- 1. If A is measurable, then A^c is measurable.
- 2. $m^*(A) = 0$, then A is measurable.
- 3. If A, B are measurable, then $A \cup B$, $A \cap B$, $A \setminus B$ are measurable.
- 4. If $\{A_i\}_{i=1}^k$ are disjoint and measurable, then $m^*\left(\bigcup_{i=1}^k A_i\right) = \sum_{i=1}^k m^*(A_i)$.
- · Proof of 3

$$m^{*}(E \cap (A \cup B)) + m^{*}(E \cap (A \cup B)^{c}) = m^{*}((E \cap A) \cup (E \cap B)) + m^{*}(E \cap A^{c} \cap B^{c})$$
$$= m^{*}(E \cap A) + m^{*}((E \cap A^{c}) \cap B) + m^{*}((E \cap A^{c}) + B^{c})$$
$$\leq m^{*}(E)$$

Since o $(A \cap B)^C = A^c \cup B^c$, this holds from before; similarly, $A \setminus B = A \cap B^c = A^c \cup B$. If A, B disjoint, then

$$m^*(A \cup B) = m^*(E \cap A) + m^*(E \cap A^c)$$

= $m^*(A) + m^*(B)$

Theorem

If $\{A_i\}$ is a countable collection of disjoint and measurable sets, then

- 1. $\bigcup_i A_i$ is measurable.
- 2. $m^*(||A_i|) = \sum_i m^*(A_i)$.

Proof of 1

Want to show:

$$m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right) + m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right)^c \right) \le m^*(E)$$

By assumption, since the measure of *E* is finite, $m^*(E \cap \bigcup_{i=1}^{\infty} A_i) < +\infty$.

Claim: $\forall \varepsilon > 0$, $\exists k$ such that Therefore $m^*\left(E \cap \bigcup_{i=1}^k A_i\right) \ge m^*\left(E \cap \bigcup_{i=1}^\infty A_i\right) - \varepsilon$.

$$m^*(E) \le m^* \left(E \cap \bigcup_{i=1}^k A_i \right) + \varepsilon + m^* \left(E \cap \left(\bigcup_{i=1}^k A_i \right)^c \right) \le m^*(E) + \varepsilon$$

Proof of 2

We have shown $m^*\left(\bigcup_i A_i\right) \leq \sum_{i=1}^{\infty} m^*(A_i)$. Assume $m^*\left(\bigcup_i A_i\right) < +\infty$, then

$$\sum_{i=1}^{k} m^*(A_i) = m^* \left(\bigcup_{i=1}^{k} A_i \right) \le m^* \left(\bigcup_{i=1}^{\infty} A_i \right) \Longrightarrow \sum_{i=1}^{\infty} m^*(A_i) \le m^* \left(\bigcup_{i=1}^{\infty} A_i \right)$$

January 16, 2024

Office Hours Tuesday / Thursday 10 AM - 11:30 AM

A note on notation: Latin characters are to be understood as countable indecies; greek as possible uncountable.

Lebesgue Outer Measure

$$A \subset \mathbb{R}$$

 $m^*(A) = \inf\{\sum_{i=1}^{\infty} |I_i| : \bigcup_{i=1}^{\infty} I_i \supset A, I_i \text{ open intervals}\}$

Properties

- 1. $A \subset B \implies m^*(A) \leq m^*(B)$.
- 2. $m^*(\emptyset) = 0$.
- 3. $m^*(I) = |I|$ for I an interval.
- 4. Countable Subadditivity: $\{A_i\}_{i=1}^{\infty} \implies m^* \left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} m(A_i)$.
- 5. $\forall A \subset \mathbb{R}, \ \forall \varepsilon > 0, \ \exists \ \text{open neighborhood} \ U \supseteq A \ \text{such that} \ m^*(U) \leq m^*(A) + \varepsilon$.
- 6. $\exists G \in \bigcap_{n=1}^{\infty} U_n$, U_n open, $U_n \supseteq A \Longrightarrow G \supseteq A$, such that $m^*(G) = m^*(A)$.

Measurable (Caratheodory Criterion)

 $\forall A \subseteq \mathbb{R}$ is Lebesgue measurable if

$$m^*(A) = m^*(E \cap A) + m^*(E \cap A^c)$$

Essentially, $m^*(E \cap A) + m^*(E \cap A^c) \le m^*(E) \le +\infty$.

- Propositions
 - 1. A measurable $\implies A^c$ measurable.
 - 2. $m^*(A) = 0 \implies A$ measurable.
 - 3. $\{A_i\}_{i=1}^{\infty}$ countable with A_i measurable, then
 - (a) $\bigcap_{i=1}^{\infty} A_i$ are measurable.
 - (b) Moreover, $A_i \cap A_j = \emptyset \implies m^* \left(\bigcup_{i=1}^{\infty} (A_i) = \sum_{i=1}^{\infty} m^* A_i \right)$.
 - (c) A, B measurable $\implies A \cup B$, $A \cap B$, $A \setminus B$ measurable.
 - (d) $A \cap B = \emptyset \implies m^*(A \cup B) = m^*(A) + m^*(B)$.
 - (e) $\{A_i\}_i^{\infty}$ with A_i measurable, then $\bigcup_{i=1}^{\infty} A_i$ is measurable and $A_i \cap A_j \varnothing \implies m^* \left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} m^* (A_i)$.
 - Proof of e $\forall E \subset \mathbb{R}$, $m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right) + m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right)^c \right)$. Claim: $m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right) = \sum_{i=1}^{\infty} m^* \left(E \cap A_I \right)$ for $A_i \cap A_j = \emptyset$.

Then, $\forall \varepsilon > 0, \exists n \in \mathbb{N}$,

$$m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right) = \sum_{i=1}^{\infty} m^* (E \cap A_i) \le \sum_{i=1}^{n} m^* (E \cap A_i) + \varepsilon$$

$$\implies m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right) + m^* \left(E \cap \left(\bigcup_{i=1}^{\infty} A_i \right)^c \right) \le m^* \left(E \cap \left(\bigcup_{i=1}^{n} A_i \right) \right) + m^* \left(E \cap \left(\bigcup_{i=1}^{n} A_i \right)^c \right) + \varepsilon \le m^* (E) + \varepsilon$$

$$\implies \bigcup_{i=1}^{\infty} A_i \text{ measurable}$$

Proof of Claim:

Step 1: A, B measurable and $A \cap B = \emptyset$. Since A is measurable,

$$m^*(E \cap (A \cup B)) = m^*((E \cap (A \cup B)) \cap A) + m^*((E \cap (A \cup B)) \cap A^c)$$

= $m^*(E \cap A) + m^*(E \cap A^c)$

For $\{A_i\}_{i=1}^{\infty}$, $\bigcup_{i=1}^{\infty}A_i=\bigcup_{i=1}^{\infty}A_i'$ with $A_1=A_1'$ and $A_i'=A_i\setminus\bigcup_{k=1}^{i-1}A_k$, $\forall\, i\geq 2$. Therefore $A_i'\cap A_j'=\varnothing$ and A_i' is measurable.

$$m^* \left(\bigcup_{i=1}^n A_i \right) \le m^* \left(\bigcup_{i=1}^\infty A_i \right) \le \sum_{i=1}^\infty m^* (A_i)$$

$$m^* \left(\bigcup_{i=1}^n A_i \right) = \sum_{i=1}^n m^* (A_i) \le m^* \left(\bigcup_{k=1}^\infty A_k \right) < +\infty \implies \sum_{i=1}^\infty m^* (A_i) \le m^* \left(\bigcup_{k=1}^\infty A_k \right) \le \sum_{i=1}^\infty m^* (A_i)$$

Sigma Algebra and Borel Sets

Definition: Sigma Algebra

Let $S \subset 2^X$ for some set X. Then S is said to be a σ -algebra if

- 1. $\emptyset \in S$.
- 2. $A^c \in S$ if A^c .
- 3. $\bigcup_{i=1}^{\infty} A_i \in S$ if $A_i \in S$.
 - Equivalently, $\bigcap_{i=1}^{\infty} A_i \in S$ if $A_i \in S$.

Theorem:

The collection \mathcal{L} of all Lebesgue measurable sets is a σ -algebra.

Definition: Borel Set

Let B be the σ -algebra generated by open sets of reals (i.e. the smallet σ -algebra containing all open sets of reals). Then $b \in B$ is called a Borel set.

Remark

B is generated by $\{(a, +\infty) : a \in \mathbb{R}\}.$

1.
$$(a, +\infty)^c = (-\infty, a]$$
.

2.
$$\bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, +\infty \right) = \left[a, +\infty \right).$$

3.
$$[a, +\infty)^c = (-\infty, a)$$
.

4.
$$(-\infty, b) \cap (a, +\infty) = (a, b)$$
.

5.
$$(-\infty, b] \cap [a, +\infty) = [a, b]$$
.

Theorem:

Any Borel set is Lebesgue measurable.

Proof

It suffices to demonstrate that $(a, +\infty)$ is measurable $\forall a \in \mathbb{R}$. $\forall E \in \mathbb{R}$, we want to show that $m^*(E \cap (a, +\infty)) + m^*(-\infty, a]) \leq m^*(E)$. Then, $\forall \varepsilon > 0$, $\exists \mathcal{C} = \{I_i\}$ with I_i open intervals such that $\sum_{I_i \in \mathcal{C}} |I_i| \leq m^*(E) + \varepsilon/2$. Set

$$\mathcal{C}^{\ell} = \{ I \in \mathcal{C} : x < a, \forall x \in I \}$$

$$\mathcal{C}^{r} = \{ I \in \mathcal{C} : x > a, \forall x \in I \}$$

$$\mathcal{C}^{m} = \{ I \in \mathcal{C} : a \in I \} = \{ I_{k} \}$$

Then $AC = C^{\ell} \cup C^{r} \cup C^{m}$. $\forall I_{k} \in C^{m} = \{I_{k}\}, I_{k} = (c_{k}, d_{k}) \text{ for some } c_{k}, d_{k} \in \mathbb{R}, \text{ define}$

$$I_k^{\ell} = \left(c_k, a + \frac{\varepsilon}{2^{k+1}}\right)$$
$$I_k^{r} = (a, d_k)$$

Let $\mathcal{C}^m = \{I_k^\ell\} \cup \{I_k^r\} = \overline{\mathcal{C}}^{m\ell} \cup \overline{\mathcal{C}}^{mr}$. Then

$$\mathcal{C}^{\ell} \cup \overline{\mathcal{C}}^{m\ell}$$
 covers $E \cap (-\infty, k]$
 $\mathcal{C}^{r} \cup \overline{\mathcal{C}}^{mr}$ covers $E \cap (k, +\infty)$
 $\mathcal{C}^{\ell} \cup \mathcal{C}^{r} \cup \mathcal{C}^{m}$ covers E

Observe that

$$\left|I_{k}^{\ell}\right| + \left|I_{k}^{r}\right| \le \left|I_{k}\right| + \frac{\varepsilon}{2^{k+1}}$$

Therefore

$$m^*(E \cap (a, +\infty)) \le \sum_{I \in \mathcal{C}^R + \overline{\mathcal{C}}^{mr}} |I|$$

$$m^*(E \cap [-\infty, a]) \le \sum_{I \in \mathcal{C}^\ell + \overline{\mathcal{C}}^{m\ell}} |I|$$

Therefore

$$m^{*}(E \cap (a, +\infty)) + m^{*}(E \cap (-\infty, a]) \leq \sum_{I \in \mathcal{C}^{r} \cup \overline{\mathcal{C}}^{mr}} |I| + \sum_{I \in \mathcal{C}^{\ell} |I| \cup \overline{\mathcal{C}}^{m\ell}} |I|$$

$$= \sum_{I \in \mathcal{C}^{r}} |I| + \sum_{I \in \mathcal{C}^{\ell}} |I| + \sum_{k} \left(|I_{k}^{\ell}| + |I_{k}^{r}| \right)$$

$$\leq \sum_{I \in \mathcal{C}} |I| + \sum_{k=1}^{+\infty} \frac{\varepsilon}{2^{k+1}}$$

$$\leq m^{*}(E) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$\leq m^{*}(E) + \varepsilon$$

Lebesgue Measurable vs Borel

Theorem

The following statements are equivalent

- 1. A is measurable.
- 2. $\forall \varepsilon > 0$, $\exists U$ open, $U \supset A$ such that $m(U \setminus A) < \varepsilon$.
- 3. $\forall \varepsilon > 0$, $\exists C$ closed, $C \subset A$ such that $m(A \setminus C) < \varepsilon$.
- 4. $\forall A \in \mathbb{R}, \exists \bigcap_{n=1}^{\infty} U_n = F \in B, U_n \text{ open, } U_n \supset A \text{ such that } F \supset A \text{ and } m(F \setminus A) = 0.$
- 5. $\exists \{C_n\}, C_n \text{ closed and } C_n \subset A \text{ such that } G = \bigcup_{n=1}^{\infty} C_n \subset A \text{ and } m(A \setminus G) = 0.$

Corollary

Every measurable set is the union of a Borel set and a measure zero set.

Proof 1 Implies 2

Step 1: if $m(A) < \infty$, then for $\varepsilon > 0$, $\exists U$ open and $U \supset A$, then

$$m(U) \le m(A) + \varepsilon \iff m(U \setminus A) = m(U) - m(A) \le \varepsilon$$

Step 2: let $A_n = A \cap (-n, n), n \in \mathbb{N}$.

Then $m(A_n) \leq 2n < +\infty$.

For ech A_n , $\exists U_n$ open with $U_n \supset A_n$ and $m(U_n \setminus A_n) < \frac{\varepsilon}{2^n}$

Let
$$U = \bigcup_{n=1}^{\infty} U_n$$
 and $A = \bigcup_{n=1}^{\infty} A_n$.
Now verify that

$$m(U \setminus A) = m\left(\bigcup_{n=1}^{\infty} U_n \setminus \bigcup_{n=1}^{\infty} A_n\right) = m\left(\bigcup_{n=1}^{\infty} U_n \setminus A_n\right) \le \sum_{n=1}^{\infty} m(U_n \setminus A_n) \le \varepsilon$$

Proof 2 Implies 3

Write

$$A \setminus C = A \cap C^c = C^c \cap A = C^c \setminus A^c$$

Apply (2).

Proof 3 Implies 4

 U_n comes from 2.

Proof 4 Implies 5

Follows from 4.

Proof 5 Implies 1

 $A = G \cup (A \setminus G) \Longrightarrow A$ is measurable.

Example: Non-measurable Set

Define $x \sim y$ if $x - y \in \mathbb{Q}$, $\forall x, y \in \mathbb{R}$.

Let $A = \{x \in (0,1) : x \text{ is a representative of each class } \mathbb{R}/\sim \} \subset (0,1) \subset \mathbb{R}$.

Claim: *A* is not Lebesgue measurable.

Let $(-1,1) \supset S = \bigcup_{r \in \mathbb{Q} \cap (0,1)} (A+r) \supset (0,1)$, and observe that $\mathbb{Q} \cap (0,1)$ is countable.

So $(A+r) \cap (A+s) = \emptyset$ for $s \neq r$.

Then 1 < m(S) < 2, so m(A) = 0 and m(A) > 0 are both contradictions.

January 18, 2024

Abstract measure theory.

Definition: Topological Space

A set X equipped with a collection of subsets $\tau \in 2^X$ where τ is a topology if

- 1. $\emptyset, X \in \tau$
- 2. Union of subsets in τ remains in τ .
- 3. Intersection of finitely many subsets in τ remains in τ .

Any subset of τ is called an open set of X.

Definition: Measure Space

For a set X with $\Lambda \subset 2^X$ a σ -algebra such that

- 1. $\emptyset \in \Lambda$
- 2. $A^c \in \Lambda$ if $A \in \Lambda$.
- 3. $\bigcup_{i=1}^{\infty} A_i \in \Lambda \text{ if } A_i \in \Lambda.$
- 4. Remark: Borel Sigma Algebra

The σ -algebra generated by τ for a topological space (X,τ) . The measure space (X,Λ,μ) , $\Lambda \subset 2^X$ a σ -algebra equipped with set function $\mu : \Lambda \to [0,+\infty]$ such that

- 1. $\mu(\emptyset) = 0$
- 2. $\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} m(A_i)$ for $A_i \in \Lambda$ and $A_i \cap A_j = \emptyset$ for all $i \neq j$ (countable additivity).

Proposition: Monotonicity

 $A, B \in \Lambda, A \subseteq B \implies \mu(A) \le \mu(B).$

Proposition: Countable Subadditivity

$$\mu(\bigcup A_i) \le \sum \mu(A_i)$$
 if $A_i \in \Lambda$

Proposition: Monotone Convergence

Given $A_i \subset \Lambda$ such that $A_i \subset A_{i+1}$ where $A = \bigcup_{i=1}^{\infty} A_i$, then $\mu(A_i) \to \mu(A)$. Similarly, if $A_i \supset A_{i+1}$ such that $A = \bigcap_{i=1}^{\infty} A_i$, then $\mu(A_i) \to \mu(A)$ if $\mu(A_k) < +\infty$ for some $k = 1, 2, 3, \ldots$

Given
$$A_i' = \begin{cases} A_1 & i = 1 \\ A_i \setminus \bigcup_{i=1}^{i-1} A_i & i > 1 \end{cases}$$
, $\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} A_i'$ and

$$\mu(A)\sum_{i=1}^{\infty}A'_i = \lim_{n\to\infty}\sum_{i=1}^{\infty}\mu(A'_i)$$

and

$$\sum_{i=1}^{n} \mu(A_i') = \mu(A_1) + (\mu(A_2) - \mu(A_1)) + (\mu(A_3) - \mu(A_2)) + \dots + (\mu(A_n) - \mu(A_{n-1})) = \mu(A_n)$$

13

Similarly, $A_1 \setminus A = \bigcup_{i=2}^{\infty} (A_i \setminus A_{i-1})$ where $\mu(A_1) < +\infty$ gives

$$\mu(A_1) - \mu(A) = \mu(A_1) + \sum_{i=2}^{\infty} (\mu(A_i) - \mu(A_{i-1})) = \lim_{n \to \infty} \mu(A_n)$$

Definition: Complete Measure Space

A measure space (X, Λ, μ) is complete if $\forall A \in \Lambda$ with $\mu(A) = 0$, then $\forall B \in A$ and $B \in \Lambda$.

Example

The Lebesgue measure space on the reals $(\mathbb{R}, \mathcal{L}, m)$ is complete.

Theorem: Completion of a Measure Space

Given a measure space (X, Λ, μ) , then there exists $(X, \overline{\Lambda}, \overline{\mu})$ such that

- 1. $\Lambda \subset \overline{\Lambda}$.
- 2. If $A \in \Lambda$, then $\overline{\mu}(A) = \mu(A)$.
- 3. $(X, \overline{\Lambda}, \overline{\mu})$ is complete.

Proof (Construction)

Let $\overline{\Lambda} = \{A \cup Z : A \in \Lambda, \exists D \in \Lambda, m(D) = 0, Z \in D\}$ and $\overline{\mu}(A \cup Z) := \mu(A)$. Verify:

- 1. $\overline{\Lambda}$ is a σ -Algebra.
 - (a) If $A \cup Z \in \overline{\Lambda}$, then $(A \cup Z)^c \in \overline{\Lambda}$.
 - (b) If $A_i \cup Z_i \in \overline{\Lambda}$, then $\bigcup (A_i \cup Z_i) \in \overline{\Lambda}$.
- 2. $\overline{\mu}$ is a well-defined measure on $\overline{\Lambda}$.
- 3. $(X, \overline{\Lambda}, \overline{\mu})$ is complete.
- Proof of 1 Given $A \in \Lambda$ and $Z \subset D$ where $\mu(D) = 0$ and $D \in \Lambda$, we know $D^c \subset Z^c$ and $Z^c = D^c \cup (Z^c \cap D)$. Therefore

$$(A \cup Z)^C = A^c \cap Z^c = A^c \cap (D^c \cup (Z^c \cap D)) = (A^c \cap D^c) \cup (A^c \cap Z^c \cap D) \in \overline{\Lambda}$$

Since $A^c \cap D^c \in \Lambda$ and $A^c \cap Z^c \cap D \in D$ Since $\bigcup A_i \in \Lambda$ and $\bigcup Z_i \subset \bigcup D_i$,

$$\bigcup_{i=1}^{\infty} (A_i \cup Z_i) = \left(\bigcup_{i=1}^{\infty} A_i\right) \cup \left(\bigcup_{i=1}^{\infty} Z_i\right) \in \overline{\Lambda}$$

• Proof of 2

Given
$$A_1 \cup Z_1 = A_2 \cup Z_2$$
, $A_1 \subset A_2 \cup Z_2 \subset A_2 \cup D_2$ implies $\mu(A_1) \leq \mu(A_2)$. Then, $\mu(A_2) \leq \mu(A_1) \Longrightarrow \mu(A_1) = \mu(A_2)$. So $\overline{\mu}$ is well defined. Given $\{A_i \cup Z_i\}$ with $(A_i \cup Z_i) \cap (A_j \cup Z_j) = \emptyset$ for all $i \neq j$,

$$\overline{\mu}\left(\bigcup_{i=1}^{\infty}(A_i\cup Z_i)\right)=\overline{\mu}\left(\left(\bigcup_{i=1}^{\infty}A_i\right)\cup\bigcup_{i=1}^{\infty}Z_i\right)=\mu\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mu(A_i)=\sum_{i=1}^{\infty}\overline{\mu}(A_i\cup Z_i)$$

So $\overline{\mu}$ is countably additive and therefore a measure.

Borel Measure and Radon Measure

Given a measure space (X, Λ, μ) and an underlying topology (X, τ) ,

Definition: Borel Measure

 μ is a Borel measure if all borel sets $\tau \subset \Lambda$.

Definition: Locally Finite Measure

 μ is locally finite if $\forall x \in X$, $\exists U \subset X$ a neighborhood such that $\mu(U) < +\infty$.

Definition: Borel Regularity

 μ is Borel regular if $\forall A \in \Lambda$, $\exists B$ a Borel set such that $B \supseteq A$ and $\mu(B) = \mu(A)$.

Definition: Radon Measure

 μ is a Radon measure if

- 1. it is a Borel measure.
- 2. $\mu(K) \leq +\infty$ for K compact.
- 3. $\mu(V) = \sup \{ \mu(K) : K \subset V, K \text{ compact} \}, V \text{ open.}$
- 4. $\mu(A) = \inf \{ \mu(V) : A \subset V, V \text{ open} \}, \forall A \in \Lambda.$
- Example 1 Lebesgue measure.
- Example 2 Point charge: $\mu(\lbrace x \rbrace) = 1$ and $\mu(A) = 0$ if $x \notin A$.

Theorem:

Let (X, Λ, μ) be a Borel regular measure space where the underlying topology (X, τ) is a metric space. Then

1. For $A \in \Lambda$ with $\mu(A) < +\infty$, $\forall \varepsilon > 0$, $\exists C \subseteq A$ closed such that $\mu(A \setminus C) < \varepsilon$.

2. For $A \in \Lambda$, $\exists \{V_i\}$ open sets such that $A \subset \bigcup_{i=1}^{\infty} V_i$ and $\mu(V_i) < +\infty$. Then $\forall \varepsilon > 0$, $\exists U$ open with $A \subset U$ and $\mu(U \setminus A) < \varepsilon$.

Proof

Given $\mu(A) < +\infty$, $\nu(B) = \mu(B \cap A) < +\infty$, $\forall B \in \Lambda$ and (X, Λ, ν) .

Let $F = \{B \in \Lambda : \forall \varepsilon > 0, \exists C \subset B \text{ closed, with } \nu(B \setminus C) < \varepsilon\}.$

Note that closed sets are in F.

Claim 1: the Borel σ -algebra is in F.

Claim 2: if $A_i \in F$, $\bigcup A_i$, $\bigcap A_i \in F$.

Given claim 2, $\forall U$ open, U^c is closed. Then $U_{\varepsilon} = \{x \in U : \operatorname{dist}(x, U^c) \leq \varepsilon\}$ is closed and, therefore, $U = \bigcup_{i=1}^{\infty} U_{1/i}$.

So, given $A_i \in F$, $\exists C_i \subset A_i$ closed where $v(A_i \setminus C_i) < \varepsilon/2^{i+1}$. We want to show that $v(\bigcap A_i \setminus \bigcap C_i) < \varepsilon$.

Then, for $x \in \bigcap A_i \setminus \bigcap C_i$, $x \in A_i$ for all i and $x \notin C_{i_0}$ for some i_0 .

Therefore $x \in A_{i_0}$, $x \notin C_{i_0}$, and $x \in A_{i_0} \setminus C_{i_0}$. It follows that

$$\bigcap_{i=1}^{\infty} A_i \setminus \bigcap_{i=1}^{\infty} C_i \subset \bigcup_{i=1}^{\infty} (A_i \setminus C_i)$$

$$v \left(\bigcap_{i=1}^{\infty} A_i \setminus \bigcap_{i=1}^{\infty} C_i \right) \leq \sum_{i=1}^{\infty} v(A_i \setminus C_i) < \varepsilon$$

Therefore

$$v\left(\bigcup_{i=1}^{\infty} A_i \setminus \bigcup_{i=1}^{n} C_i\right) \to v\left(\bigcup_{i=1}^{\infty} A_i \setminus \bigcup_{i=1}^{\infty} C_i\right) \le v\left(\bigcup_{i=1}^{\infty} (A_i \setminus C_i) < \frac{\varepsilon}{2}\right)$$

so $\exists N >> 1$ such that $v\left(\bigcup_{i=1}^{\infty} \setminus \bigcup_{i=1}^{N} C_{i} < \varepsilon\right)$ with $\bigcup_{i=1}^{N} C_{i}$ closed.

Restatement

For A Borel,

$$\varepsilon > v(A \setminus C) = \mu((A \setminus C) \cap A) = \mu(A \setminus C)$$

January 23, 2024

Review - Abstract Measure

Given (X, Λ, μ) where $\Lambda \subseteq 2^X$ is a σ -algebra, $\mu : \Lambda \to [0, +\infty]$

1.
$$\mu(\emptyset) = 0$$
.

2.
$$m(\bigcup A_i) = \sum \mu(A_i), A_i \cap A_j = \emptyset.$$

Properties of a Measure

Monotonicity

$$\mu(A) \subseteq \mu(B)$$
, $A, B \in \Lambda$, $A \subseteq B$

Countable Subadditivity

$$\mu(\bigcup A_i) \leq \sum \mu(A_i)$$

Monotone Convergence

$$A_i \subset A_{i+1}, A_i \to \bigcup A_i \Longrightarrow \mu(A) = \mu(\bigcup A_i).$$

 $A_i \supset A_{i+1}, A_i \to \bigcap A_i \Longrightarrow \mu(A_i) \to \mu(\bigcap A_i) \text{ if } \mu(A_1) < \infty$

• Example $A_n = (n, +\infty)$ gives $\bigcap A_n = \emptyset$

Completeness of a Measure

 (X, Λ, μ) is complete if $\forall A \in \Lambda$ with $\mu(A) = 0$, then $\forall B \in \Lambda$ if $B \subseteq A$.

Theorem:

Given (X, Λ, μ) , there exists $(X, \overline{\Lambda}, \overline{\mu})$ such that $\Lambda \subset \overline{\Lambda}$ and $\overline{\mu}(A) = \mu(A)$ if $A \in \Lambda$.

$$\overline{\Lambda} = \{ A \cup Z : A \in \Lambda, Z \subset D, D \in \Lambda \text{ with } \mu(D) = 0 \}$$

$$\overline{\mu}(A \cup Z) = \mu(A)$$

 $(X, \overline{\Lambda}, \overline{\mu})$ is complete.

Measure Space with Topology

Given a topological space (X, τ) , a measure space (X, Λ, μ)

Definition: Locally Finite

The measure μ is locally finite if $\forall x \in X$, there exists an open neighborhood U of x such that $U \in \Lambda$ and $\mu(U) < +\infty$.

17

Definition: Borel Measure

 μ is a Borel measure if the Borel σ -algebra generated by τ , \mathcal{B} , is a subset of Λ .

Definition: Borel Regular

 $\forall A \in \Lambda$, $\exists B \in \mathcal{B}$ such that $B \supset A$ and $\mu(B) = \mu(A)$.

Definition: Radon Measure

- 1. Borel.
- 2. $\mu(K) < +\infty$ for K compact.
- 3. $\mu(V) = \sup\{\mu(K) : K \text{ compact}, K \subset V\}, \forall V \text{ open.}$
- 4. $\mu(A) = \inf\{\mu(V) : V \text{ open, } A \subset V\}, \ \forall A \in \Lambda.$

Theorem:

If X is a metric space equipped with a Borel regular (X, Λ, μ) , then

- 1. $\forall A \in \Lambda$, $\mu(A) < +\infty$, $\forall \varepsilon > 0$, $\exists C$ closed where $C \subset A$ and $\mu(C \setminus A) < \varepsilon$.
- 2. If $\exists \{V_i\}$, V_i open and $\mu(V_i) < +\infty$, and $A \in \Lambda$ with $A \subset \bigcup V_i$, then $\exists U$ open such that $A \subset U$ and $\mu(U \setminus A) < \varepsilon$.

Proof of 1

Define $v(B) = \mu(B \cap A)$ such that (X, Λ, v) is a new measure space.

Define $F = \{B \in \Lambda : \forall \varepsilon > 0, \exists C \text{ closed}, C \subset B, \nu(B \setminus C) < \varepsilon\}$, all closed sets in F.

Claim 1: $\bigcap A_i$, $\bigcap A_i \in F$ if $A_i \in F$.

Claim 2: U is open.

 $U = \bigcup U_i$, $U_i = \left\{ x \in U : \operatorname{dist}(x, U^c) \le \frac{1}{i} \right\}$, therefore $\mathcal{B} \subset F$.

IMAGE HERE - 1

If *A* is Borel, then $\forall \varepsilon > 0$, $\exists C$ closed with $C \subset A$ and $\mu(A \setminus C) < \varepsilon$.

To finish, $\forall A \subset \Lambda$ by Borel Regularity of μ , $\exists B \in \mathcal{B}$ such that $B \supset A$ and $\mu(B) = \mu(A)$.

Note also that this requires $\mu(B \setminus A) = 0$ since $\mu(A) < +\infty$.

IMAGE HERE - 2

Then $B \setminus A \in \Lambda$, $\exists D \in \mathcal{B}$ such that $D \supset B \setminus A$ and $\mu(D) = \mu(B \setminus A) = 0$. Then

$$B \cap A^{c} = B \setminus A \subset D$$
$$(B \cap A^{c})^{c} \supset D^{c}$$
$$B \cap (B^{c} \cup A) \supset D^{c} \cap B$$
$$A \supset B \setminus D$$

$$A \setminus (B \setminus D) = A \cap (B \cap D^c)^c = A \cap (B^c \cup D = (A \cap B^c)) \cup A \cap D = A \cap D \subset D$$

Therefore $B \setminus D \subset A$, and $\mu(A \setminus (B \setminus D)) = 0$.

 $B \setminus D \in \mathcal{B}, \ \forall \varepsilon > 0, \ \exists C \ \text{closed such that} \ C \subset B \setminus D \subset A, \ \mu((B \setminus D) \setminus C) < \varepsilon.$

This implies that $\mu(A \setminus C) = \mu(A \setminus (B \setminus D)) + \mu((B \setminus D) \setminus C) < \varepsilon$.

Proof of 2

Consider $V_i \setminus A$ where $\mu(V_i \setminus A) \leq \mu(V_i) < +\infty$.

By (1), $\exists C_i$ closed with $C_i \subset V_i \setminus A$ and $\mu((V_i \setminus A) \setminus C_i) < \varepsilon/2^{i+1}$. Write

$$(V_i \setminus A) \setminus C_i = (V_i \setminus A) \cap C_i^c = V_i \cap A^c \cap C_i^c = (V_i \cap C_i^c) \cap A^c = (V_i \setminus C_i) \setminus A$$

Note that $V_i \setminus C_i$ is open, since C_i is closed.

Define $U = \bigcup (V_i \setminus C_i) \supset A$. Then,

$$U \setminus A = \left(\bigcup (V_i \setminus C_i)\right) \setminus A = \bigcup ((V_i \setminus C_i) \setminus A)$$

Therefore $\mu(U \setminus A) \le \varepsilon \frac{\varepsilon}{2^{1+1}} = \varepsilon$.

Remark

$$X = \bigcup V_i, \ V_i \ \text{open and} \ \mu(V_i) < +\infty.$$
 Then $\forall A \in \Lambda$, $\forall \varepsilon > 0$, $\exists U$ open such that $U \supset A$ and $\mu(U \setminus A) < \varepsilon$. For A^c , $\exists U \supset A^c$ ($\Longrightarrow U^c \subset A$), $\mu(U \setminus A^c) < \varepsilon$. So

$$U \cap A = U \setminus A^c = A \setminus U^c = A \cap U$$

and $\mu(A \setminus U^c) < \varepsilon$, $U^c \subset A$ with U^c closed.

Corollary

For \mathbb{R}^n , a measure is Radon if and only if it is locally finite and Borel regular.

- Proof (\Longrightarrow) Let $B(r,x_0)=\{x\in\mathbb{R}^n : |x-x_0|< r\}$ and $\overline{B(r,x_0)}=\{x\in\mathbb{R}^n : |x-x_0|\leq r, \text{ compact}\}$. Then $\mu(B(r,x_0))\leq \mu(\overline{B(r,x_0)})<+\infty$. So μ is locally finite. For $A\in\Lambda$, we may assume without loss of generality that $\mu(A)<+\infty$. Then $\forall\,i,\,\exists\,U_i$ open where $U_i\supset A$ and $\mu(A)\leq \mu(U_i)\leq \mu(A)+\frac{1}{i}<+\infty$. Set $G=\bigcap U_i\in\mathcal{B}$, then $\mu(G)=\mu(A)$. (\Longleftrightarrow)
 - 1. Borel regular implies Borel.
 - 2. For *K* compact, $\forall x \in K \ni U_x$ open where $\mu(U_x) < +\infty$.

 $\{U_{\lambda}\}_{\lambda \in k}$ is an open cover. Therefore there is a finite subcover $\{U_{\lambda_i}\}_{i=1}^{\lambda}$ where

$$\mu(K) \le \mu\left(\bigcup_{i=1}^k U_{\lambda_i}\right) \le \sum_{i=1}^k \mu\left(U_{x_i}\right) < +\infty$$

3. $\forall V$ open, B(i) = B(i,0), $V \cap B(i)$, $\mu(V \cap B(i)) < +\infty$, $\exists C_i$ closed where $C_i \subset V_{\cap B(i)}$ so C_i is bounded and therefore compact.

So
$$\mu(C_i) \leq \mu((V \cap B(i)) \setminus C_i) < \frac{1}{i}$$
 and $\mu(V \cap B(i)) \leq \mu(C_i) + \frac{1}{i}$.
Then $\mu(V) = \lim_{i \to \infty} \mu(V \cap B(i)) = \lim_{i \to \infty} \mu(C_i)$, and $C_i \subset V \cap B(i) \subset V$ compact.
Therefore $\mu(V) = \sup\{\mu(K) : K \text{ compact}, K \subset V\}$.

4. $\forall A \in \Lambda$, $\forall i$, $\exists U_i$ open where $U_i \supset A$ and $\mu(U_i \setminus A) < \frac{1}{i}$

This implies that $\mu(A) \le \mu(U_i) \le \mu(A) + \frac{1}{i}$ and therefore $\mu(A) = \inf\{\mu(U) : U \supset A, U \text{ open}\}.$

Caratheodory Construction

Definition: Outer Measure

$$\mu^*(A), \forall A \in 2^X$$

1.
$$\mu^*(\emptyset) = 0$$
.

- 2. $\mu^*(A) \le \mu^*(B)$ if $A \subseteq B$.
- 3. $\mu^*(\bigcup A_i) \le \sum \mu^*(A_i), \forall A_i \in 2^X$ (countable subadditivity)

Define $\Lambda = \{ A \in 2^x : \mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c), \forall E \in 2^X \}$. Then $\mu(A) = \mu^*(A)$ if $A \in \Lambda$. (X, Λ, μ) is complete.

January 25, 2024

Theorem: Caratheodory Construction

Outer Measure

$$u^*: 2^X \to [0, +\infty].$$

- 1. $\mu^*(\emptyset) = 0$
- 2. Monotonicity: $\mu^*(A) \leq \mu^*(B)$, $A \subseteq B$
- 3. Countable Subadditivity: $\mu^* \left(\bigcup_i A_i \right) \leq \sum_i \mu^* (A_i)$.

Caratheodory Criterion

 $A \subset X$ is measurable if $\forall E \in X$,

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

Theorem

The collection Λ of all measurable sets is a σ -algebra. (X, Λ, μ) is a complete measure space (cf. proof of Lebesgue completeness).

Hausdorff Measure

 $\forall A \subseteq \mathbb{R}^n, \ \forall s \geq 0, \ H_s^\delta(A) = \inf \left\{ \sum_i (d(E_i))^s : \bigcup_i E_i \supset A, \ d(E_i) \leq \delta \right\} \text{ where } d(E_i) \text{ is the diameter of } E_i.$ Notice that $H_s^{\delta_1}(A) \leq H_s^{\delta_2}(A)$ if $\delta_2 \leq \delta_1$. Let $H_s^*(A) = \lim_{\delta \to 0} H_s^\delta(A), \ \forall A \in 2^{\mathbb{R}^n}$. Claim: H_s^* is an outer measure.

- Verify
 - 1. $H_s^*(\emptyset) = 0$.
 - 2. $H_s^*(A) \leq H_s^*(B), \forall A \subseteq B \subseteq \mathbb{R}^n$.
 - 3. Given $A_i \subset \mathbb{R}^N$,

$$\begin{split} &\exists \delta_0 > 0 \text{ such that } \forall \delta < \delta_0, \ H_s^*\left(\bigcup_i A_i\right) \leq H_s^\delta\left(\bigcup_i A_i\right) + \frac{\varepsilon}{2}. \end{split}$$
 Then $\forall \delta < \delta_0 \text{ fixed, } \forall A_i, \ \exists \{E_i^j\} \text{ such that } \bigcup_j E_i^j \supset A_i, \ \sum_j (d(E_i^j))^s \leq H_s^\delta(A_i) + \frac{\varepsilon}{2^{i+1}}, \text{ and } d(E_j^j) \leq \delta. \end{split}$ So

$$H_s^{\delta}\left(\bigcup_i A_i\right) \leq \sum_{i,j} \left(d(E_i^j)\right)^s$$

$$= \sum_i \left(\sum_j \left(d(E_i^j)^s\right)\right)$$

$$= \sum_i \left(H_s^{\delta}(A_i) + \frac{\varepsilon}{2^{i+1}}\right)$$

$$= \sum_i H_s^{\delta}(A_i) + \frac{\varepsilon}{2}$$

and

$$H_s^*\left(\bigcup_i A_i\right) \le \sum_i H_s^\delta(A_i) + \varepsilon \le \sum_i H_s^*(A_i) + \varepsilon, \quad \forall \varepsilon > 0.$$

Then, since H_s^* is an outer measure, it is a measure by the Caratheodory construction.

Definition: Hausdorff Measure

The Hausdroff Measure $H_s: \Lambda \to [0, +\infty)$ on a σ -algebra $\Lambda \subset 2^{\mathbb{R}^n}$.

Not Locally Finite

Consider $B(0,1) = \{x : |x| < 1\}.$

Then $H_s(B(0,1)) = \infty$ for s < n.

That is, the Hausdorff measure is not locally finite for s < n.

Complete

The Hausdorff measure, by the Caratheodory construction, is complete.

Symmetry

- 1. Translation Invariance: $H_s(A+x) = H_s(A)$.
- 2. Rotation Invariance: $H_s(RA) = H_s(A)$.
- 3. Scaling: $H_s(\lambda A) = \lambda^s H_s(A)$.

Open Balls Measurable

What about $B(0,1) \subset \mathbb{R}^n$. For $\delta > 0$,

$$H_{s}^{*}(E\cap B(0,1)) + H_{s}^{*}(E\cap B(0,1)^{c}) \leq H_{s}^{*}(E\cap B(0,1-\delta)) + H_{s}^{*}(E\cap (B(0,1)\setminus B(0,1-\delta))) + H_{s}^{*}(E\cap B(0,1)^{c})$$

Want to show that for all $\varepsilon > 0$, this is $\leq H_{\varepsilon}^{*}(E) + \varepsilon$.

· Lemma 1

$$H_s^*(E \cap B(0, 1 - \delta)) + H_s^*(E \cap B(0, 1)^c) = H_s^*(E \cap (B(0, 1 - \delta) \cup B(0, 1)^c))$$

$$\leq H_s^*(E)$$

· Lemma 2

$$H_s^*(E \cap (B(0,1) \setminus B(0,1-\delta)) < \varepsilon.$$

· Lemma 1'

If $A, B \subset \mathbb{R}^n$, dist(A, B) > 0, then $H_s^*(A \cup B) = H_s^*(A) + H_s^*(B)$. Since $\{E_i\}$ covering $A \cup B$, $d(E_i) < \frac{1}{4} \text{dist}(A, B)$ gives

$$\delta < \frac{1}{4} \operatorname{dist}(A, B) \iff \{E_j^A\} \cup \{E_k^B\}$$

if and only if $\{E_i^A\}$ covers A and $\{E_k^B\}$ covers B. Therefore,

$$\sum_{i} (d(E_{i}))^{s} = \sum_{j} (d(E_{j}^{A}))^{s} + \sum_{k} (d(E_{k}^{B}))^{s}$$

$$\inf \left\{ \sum_{i} (d(E_{i}))^{s} \right\} = \inf \left\{ \sum_{j} (d(E_{j}^{A}))^{s} \right\} + \inf \left\{ \sum_{k} (d(E_{k}^{B}))^{s} \right\}$$

and $H_s^{\delta}(A \cup B) = H_s^{\delta}(A) + H_s^{\delta}(B)$. Thus $H_s^*(A \cup B) = H_s^*(A) + H_s^*(B)$.

Let $T_i = E \cap \left(B\left(0, 1 - \frac{1}{i+1}\right)\right) \setminus B\left(0, 1 - \frac{1}{i}\right)$. IMAGE HERE - 1 CONCENTRIC RINGS We want to show that $H_s^*\left(E \cap \left(B(0,1) \setminus B\left(0, \frac{1}{i}\right)\right)\right) < \varepsilon$ for i >> 1. Then

$$\bigcup_{k=1}^{\infty} T_k = (B(0,1) \setminus \{0\}) \cap E$$

$$\bigcup_{k=i}^{\infty} T_k = \left(B(0,1) \setminus B\left(0,1 - \frac{1}{i}\right)\right) \cap E$$

Claim: $\sum_{i} H_s^*(T_i) < +\infty$. It suffices to prove this claim.

$$\sum_{i \text{ even}}^{2k} H_s^*(T_i) = H_s^* \left(\bigcup_{i \text{ even}}^{2k}\right) \le H_s^*(E) < +\infty$$

$$\sum_{i \text{ odd}}^{2k+1} H_s^*(T_i) = H_s^* \left(\bigcup_{i \text{ odd}}^{2k+1}\right) \le H_s^*(E) < +\infty$$

Then $\sum_{i=1}^{k} H_s^*(T_i) \le \infty$.

Borel

Take a countable, dense set $\{q_i\} \subset \mathbb{R}^n$ and $\left\{B\left(q_i,\frac{1}{k}\right)\right\}_{i,k}$. Claim: $\forall V \subseteq \mathbb{R}^n$ open, then $V = \bigcup_l B\left(q_{i_l},\frac{1}{k_l}\right)$. Then $\mathcal{B} \subseteq \Lambda$ and the Hausdorff measure is Borel.

Borel Regular

 $\forall A \subset \Lambda, \exists B \in \mathcal{B} \text{ such that } B \supset A \text{ and } H_s(B) = H_s(A).$ $\forall \delta = \frac{1}{i}, \{E_i^j\} E_i^j \text{ closed balls with } d(E_i^j) < \frac{1}{i},$

$$\sum_{i} (d(E_i))^s \le H_s^{\frac{1}{j}}(A) + \frac{1}{j}$$

Take $B = \bigcap_j \left(\bigcup_i E_i^j\right) \in \mathcal{B}$ since $B = \bigcap_j \bigcup_i E_i^j \supset A$. Then

$$H_{s}^{\frac{i}{j}}(B) \leq H_{s}^{\frac{1}{j}}\left(\bigcup_{i} E_{i}^{j}\right)$$

$$\leq \sum_{i} H_{s}^{\frac{1}{j}}\left(E_{i}^{j}\right)$$

$$\leq \sum_{i} \left(d(E_{i}^{j})\right)^{s}$$

$$\leq H_{s}^{\frac{1}{j}}(A) + \frac{1}{j}$$

and in the limit as $j \to \infty$

$$H_s^*(A) \le H_s^*(B) \le H_s^*(A)$$

Fractional or Hausdorff Dimension

Theorem:

1.
$$H_s^*(A) < +\infty \implies H_t^*(A) = 0, \forall t > s \ge 0.$$

2.
$$H_t^s > 0 \implies H_s(A) = \infty, \ \forall 0 \le s < t$$

Proof

$$H_s^{\delta}(A) \sim \sum_i (d(E_i))^s$$
$$= \sum_i (d(E_i))^t (d(E_i))^{s-t}$$

So s < t gives $\ge \delta^{s-t}$. In the other direction, when s < t

$$\sum_{i} (d(E_i))^t = \sum_{i} (d(E_i))^s (d(E_i))^{t-s}$$

$$\leq \delta^{t-s} \sum_{i} (d(E_i))^s$$

Definition: Hausdorff Dimension

Given $A \subset \mathbb{R}^n$,

$$\dim_{H}(A) = \sup \{ s : H_{s}^{*}(A) = \infty \}$$

$$= \sup \{ s : H_{s}^{*}(A) > 0 \}$$

$$= \inf \{ s : H_{s}^{*}(A) = 0 \}$$

$$= \inf \{ s : H_{s}^{*}(A) < +\infty \}$$

Example 1

 \mathbb{R}^n has n Hausdorff dimension. Consider the n-cube with sides d, C(d). Then

$$H_s(C(d)) = C(n,s)d^s$$

So $C(n, s) = C(n, s)2^{nk} \frac{1}{(2^k)^s} = C(n, s)2^{(n-1)k}$. If s < n, this tends to infinity as $k \to \infty$. Is s > n it tends to 0.

Example 2

Cantor set has Hausdorff dimension $\frac{\log(2)}{\log(3)}$.

$$\bigcup_{k=1}^{2^n} C_n^k = \frac{\log(2)}{\log(3)}$$

where $|C_n^k| = \frac{1}{3^n}$, so $H_s^{\delta}(C^n) \sim \frac{2^n}{(3^n)^s} = (\frac{2}{3^s})^n$.

Example 3

The Koch snowflake has dimension $\frac{\log(4)}{\log(3)}$.

January 30, 2024

Lemma:

Given a measure space (X, Λ, μ) and an extended real-valued function $f: X \to [-\infty, +\infty]$, the following are equivalent

24

- 1. $\forall \alpha \in \mathbb{R}, \{x \in X : f(x) > \alpha\} \in \Lambda.$
- 2. $\forall \alpha \in \mathbb{R}, \{x \in X : f(x) \ge \alpha\} \in \Lambda$.
- 3. $\forall \alpha \in \mathbb{R}, \{x \in X : f(x) < \alpha\} \in \Lambda$.
- 4. $\forall \alpha \in \mathbb{R}, \{x \in X : f(x) \le \alpha\} \in \Lambda$.
- 5. $\forall U \subset \mathbb{R}$ open, $f^{-1}(U) \in \Lambda$ and $f^{-1}(\pm \infty) \in \Lambda$.

Proof 1 Implies 2

$$\{x \in X : f(x) \ge \alpha\} = \bigcap_{n=1}^{\infty} \{x \in X : f(x) > \alpha - \frac{1}{n}\}.$$

Proof 2 Implies 3

$$\{x \in X : f(x) < \alpha\} = \{x \in X : f(x) \ge \alpha\}^c$$

Proof 3 Implies 4

$$\{x \in X : f(x) \le \alpha\} = \bigcap_{n=1}^{\infty} \{x \in X : f(x) < \alpha + \frac{1}{n}\}$$

Proof 4 Implies 1

$$\{x \in X : f(x) > \alpha\} = \{x \in X : f(x) \le \alpha\}^c$$

Proof of 5

 $\forall U \subset \mathbb{R}$ open, $V = \bigcup_i I_i$ disjoint open intervals.

Therefore
$$f^{-1}((a,b)) = \{x \in X : f(x) > a\} \cap \{x \in X : f(x) < b\}$$
.
Similarly, $f^{-1}(-\infty) = \bigcap_n \{x \in X : f(x) < -n\}$ and $f^{-1}(\infty) = \bigcap_n \{x \in X : f(x) > n\}$.

Proof 5 Implies 1

$$\{x \in X : f(x) > \alpha\} = f^{-1}((\alpha, +\infty)) \cup f^{-1}(+\infty) \in \Lambda.$$

Definition: Measurable Function

For a measure space (X, Λ, μ) , an extended real-valued function $f: X \to [-\infty, +\infty]$ is said to be measurable if one or all of (1)-(5) hold.

Remark:

If (X, Λ, μ) is Borel, then continuous functions are always measurable.

Remark:

The characteristic function

$$\chi_A = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

is measurable if $A \in \Lambda$.

Definition: Simple Functions

The function ϕ is simple if

$$\phi(x) = \sum_{i=1}^{k} \lambda_i \chi_{A_i}, \quad \lambda_I \in \mathbb{R}, A_i \in \Lambda$$

Proposition:

Given a measure space (X, Λ, μ) and measurable, real-valued f, g,

• $f \pm g$ is measruable.

$$\{x \in X \,:\, f(x) + g(x) < \alpha\} = \bigcup_{r \in \mathbb{O}} \big(\{x \in X \,:\, f(x) < r\} \cup \{x \in X \,:\, g(x) < \alpha - r\} \big).$$

• f^2 is measurable

$$\forall \alpha \ge 0, \{x \in X : f^2(x) < \alpha\} = \{x \in x : f(x) < \sqrt{\alpha}\} \cap \{x \in X : f(x) > -\sqrt{\alpha}\}.$$

• $f \cdot g$ is measurable

$$f(x) \cdot g(x) = \frac{1}{2} ((f+g)^2 - f^2 - g^2).$$

Definition: Almost Everywhere Equality

Measurable functions f and g on the space (X, Λ, μ) are the same almost everywhere with respect to μ (written μ -a.e.) if

$$\mu(\{x \in X : f(x) \neq g(x)\}) = 0$$

Proposition:

For a complete measure space (X, Λ, μ) , if f and g are equal μ -a.e., then f is measurable if and only if g is measurable.

Proof

$$\{x \in X : f(x) > \alpha\} = (\{x \in X : f(x) > \alpha\} \cap \{x \in X : f(x) = g(x)\}) \cup \{x \in X : f(x) > \alpha\} \cap \{x \in X : f(x) \neq g(x)\}$$

$$= (\{x \in X : g(x) > \alpha\} \cap \{x \in X : f(x) = g(x)\}) \cup \{x \in X : f(x) > \alpha\} \cap \underbrace{\{x \in X : f(x) \neq g(x)\}}_{y = 0}$$

Proppsotion:

Given $\{f_k(x)\}$ measurable.

- 1. $g_n(x) = \sup\{f_1(x), f_2(x), ..., f_n(x)\}\$ and $h_n(x) = \inf\{f_1(x), f_2(x), ..., f_n(x)\}\$ measurable.
- 2. $g(x) = \sup\{f_n(x)\}\$ and $h(x) = \inf\{f_n(x)\}\$ measurable.
- 3. $\limsup_{n\to+\infty} f_n(x) = \inf_n \sup\{f_n(x), f_{n+1}(x), \ldots\}$ and $\liminf_{n\to+\infty} f_n(x) = \sup_n \inf\{f_n(x), f_{n+1}(x), \ldots\}$ measurable.
- 4. $f_n(x) \to f(x)$ pointwise $\implies f$ measurable.

Proof of A

$$\{ x \in X : g_n(x) > \alpha \} = \bigcup_{k=1}^n \{ x \in X : f_k(x) > \alpha \}$$

$$\{ x \in X : h_n(x) < \alpha \} = \bigcup_{k=1}^n \{ x \in X : f_k(x) < \alpha \}$$

Proof of B

$$\{x \in X : g(x) > \alpha\} = \bigcup_{n} \{x \in X : f_n(x) > \alpha\}$$

$$\{x \in X : h(x) < \alpha\} = \bigcup_{n} \{x \in X : f_n(x) < \alpha\}$$

Definition: Almost Everywhere Convergence

For $f_n(x)$ measurable, $f_n(x) \to f(x)$ μ -a.e. in X if $f_n(x) \to f(x)$ in $A \subset X$ pointwise where $\mu(X \setminus A) = 0$.

Proposition:

On a complete measure space (X, Λ, μ) with f_n measurable and $f_n(x) \to f(x)$ μ -a.e. in X, f(x) is measurable.

Proof

$$f_n(x) \to f(x)$$
 pointwise in A and $\mu(A^c) = 0$.
 $\{x \in X : f(x) > \alpha\} = (\{x \in X : f(x) > \alpha\} \cap A) \cup (\{x \in X : f(x) > \alpha\} \cap A^c).$

Theorem:

With (X, Λ, μ) a measure space and f measurable, there exist simple functions ϕ_n such that

- 1. $|\phi_n(x)| \le |\phi_{n+1}(x)|$.
- 2. $\phi_n(x) \to f(x)$ pointwise in X.
- 3. If f is bounded, then $\phi_n(x) \rightrightarrows f(x)$ in X.

Proof

Consider $(-\infty, -n] \cup (-n, n) \cup [n, +\infty)$, and define $N_n = \{x \in X : f(x) \le -n\}$ and $P_n = \{x \in X : f(x) \ge n\}$. Then $\bigcap_n (N_n \cup P_n) = \emptyset$. Define

$$A_{n,k} = \left\{ x \in X : \frac{k-1}{2^n} < f(x) \le \frac{k}{2^n} \right\}_{k=-1,-2,\dots,-n2^n+1}$$

$$A_{n,0} = \left\{ x \in X : \frac{-1}{2^n} < f(x) < 0 \right\}$$

$$A_{n,1} = \left\{ x \in X : 0 < f(x) < \frac{1}{2^n} \right\}$$

$$A_{n,k} = \left\{ x \in X : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \right\}_{k=2,3,\dots,n2^n}$$

and set

$$\phi_n(x) = -n\chi_{N_n} + \sum_{k=0}^{-n2^n+1} \frac{k}{2^n} \chi_{A_{n,k}} + \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \chi_{A_{n,k}} + n\chi_{P_n}$$

Claim:

- 1. $\forall x \in X, \phi_n(x) \to f(x)$.
- 2. if $\exists N \in \mathbb{N}$ such that $|f(x)| < N \implies \phi_n(x) \Rightarrow f(x)$ in X.

Proof

$$\begin{split} |\phi_n(x)-f(x)| &\leq \tfrac{1}{2^n}, \ \forall \, x \in X \setminus (U_n \cup P_n) \\ \text{Note } \forall \, x \in X, \ \exists \, m \in \mathbb{N} \text{ such that } x \notin N_m \cup P_m. \ \text{So} \ |f(x)| < m. \\ \text{Then boundedness implies } \exists N \text{ such that } N_N \cup P_N = \varnothing. \\ \text{Therefore } \forall \, x \in X, \ |\phi_n(x)-f(x)| < \tfrac{1}{2^n}, \ \forall \, n \geq N. \end{split}$$

Theorem: Egoroff

Given a measure space (X, Λ, μ) , $\mu(x) < +\infty$ and $f_n \to f$ μ -a.e. in X, then $\forall \delta > 0$, $\exists A \in \Lambda$ such that $\mu(X \setminus A) < \delta$ and $f_n(x) \Rightarrow f(x)$ in A.

Recall: Pointwise Convergence

$$\forall x \in X, \ f_n(x) \to f(x) \ \text{if} \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N} \ \text{such that} \ |f_n(x) - f(x)| < \varepsilon, \ \forall n \geq N. \\ Bjj_{N,\varepsilon} = \{x \in X: \ \exists N \in \mathbb{N}, \ |f_n(x) - f(x)| < \varepsilon, \ \forall n \geq N \} \\ \text{In negation,} \ \exists \varepsilon > 0 \ \text{such that} \ \forall N \in \mathbb{N}, \ \exists m \geq N \ \text{such that} \ |f_n(x) - f(x)| \geq \varepsilon. \\ A_{N,\varepsilon} = B_{N,\varepsilon}^c = \{x \in X: \ \exists m \geq N, \ |f_n(x) - f(x)| \geq \varepsilon \} \\ \text{Then} \ \{x \in X: \ f_n(x) \to f(x)\} = \bigcap_{\varepsilon > 0} \bigcup_N B_{N,\varepsilon} = \bigcap_{\varepsilon_i \to 0} \bigcup_i B_{N_i,\varepsilon_i} \ \text{and} \ \{x \in X: \ f_n(x) \not\to f(x)\} = \bigcup_{\varepsilon > 0} \bigcap_N A_{N,\varepsilon} = \bigcup_{\varepsilon_i \to 0} \bigcap_i A_{N_i,\varepsilon_i} \ \text{where} \ \varepsilon_i = \frac{1}{i}.$$

February 2, 2024

Review: Measurable Function

An extended, real-valued function $f: X \to [-\infty, +\infty]$ is measurable if one or all of the following hold

- 1. $\forall \alpha \in \mathbb{R}, \{x : f(x) > \alpha\} \in \Lambda$.
- 2. $\forall \alpha \in \mathbb{R}, \{x : f(x) \ge \alpha\} \in \Lambda$.
- 3. $\forall \alpha \in \mathbb{R}, \{x : f(x) < \alpha\} \in \Lambda$.
- 4. $\forall \alpha \in \mathbb{R}, \{x : f(x) \leq \alpha\} \in \Lambda$.
- 5. $\forall V \subseteq \mathbb{R} \text{ open, } f^{-1}(U) = \{x : f(x) \in V\} \text{ and } f^{-1}(-\infty), f^{-1}(+\infty) \in \Lambda.$

Properties

- 1. For $f = g \mu$ -a.e., f is measurable if and only if g is measurable.
- 2. For f, g measurable, f + g and $f \cdot g$ are measurable.
- 3. For $\{f_n\}$ measurable,
 - (a) $\sup_{n \le k} \{f_n\}$ and $\inf_{n \le k} \{f_n\}$ are measurable.
 - (b) $\sup_{n} \{f_n\}$ and $\inf_{n} \{f_n\}$ are measurable.
 - (c) $\limsup_{n\to\infty} f_n$ and $\liminf_{n\to\infty} f_n$ are measurable.

(d) if $f_n \to f$ μ -a.e. in X, then f is measurable.

Examples

Characteristic Functions

$$\chi_A = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}, \quad A \in \Lambda$$

Simple Functions

$$\sum_{i=1}^{k} \alpha_i \chi_{A_i}, \quad \alpha_i \in \mathbb{R}, \ A_i \in \Lambda, \ A_j \cap A_k = \emptyset$$

Step Functions

$$\sum_{i=1}^k \alpha_i \chi_{I_i}, \quad I_i \text{ interval}$$

Theorem:

On a measure space (X, Λ, μ) , suppose f is measurable. There exists a sequence of simple functions $\{\phi_n\}$ such that

- 1. $\phi_n \to f$ pointwise.
- 2. $\phi_n \Rightarrow f$ for f bounded.

Proof

Let $N_n = \{x : f(x) \le -n\}$ and $A_{n,k} = \{x : \frac{k-1}{2^n} < f(x) \le \frac{k}{2^n}\}$. Then

$$A_{n,0} = \left\{ x : -\frac{1}{2^n} < f(x) < 0 \right\}$$

$$A_{n,1} = \left\{ x : 0 < f(x) < \frac{1}{2^n} \right\}$$

$$A_{n,k} = \left\{ x : \frac{k-1}{2^n} \le f(x) < \frac{k}{2^n} \right\}$$

$$P_n = \left\{ x : f(x) \ge n \right\}$$

and

$$\phi_n = -n\chi_{N_n} + \sum_{k=-n2^n+1}^{D} \frac{k}{2^n} \chi_{A_{n,k}} + \sum_{1}^{n2^n} \chi_{A_{n,k}} + n\chi_{\phi_n}$$

So

$$|\phi_n(x) - f(x)| \le \frac{1}{2^n}, \quad x \in X \setminus (N_n \cup P_n), \quad \bigcap_n (N_n \cap P_p) = \emptyset$$

Egoroff Theorem

Given (X, Λ, μ) where $\mu(X) < +\infty$, if

1. $f_n(x) \rightarrow f(x) \mu$ -a.e. in X and

2. f_n , $f \mu$ -a.e. finite.

Then, $\forall \delta > 0$, $\exists A \in \Lambda$ with $\mu(A) < \delta$ such that $f_n(x) \Rightarrow f(x)$ on A^c .

Proof

Define $D = \{x : f_n(x) \rightarrow f(x)\} = X$.

Then $\forall \varepsilon > 0$, $\exists m \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \varepsilon$, $\forall n \ge m$.

Say that the universal quantifier \forall is equivalent to grand intersection and the existential quantifier \exists is equivalent to grand union. Then

$$D_{m,\varepsilon} = \{x : f_n(x) - f(x) < \varepsilon, \ \forall n \ge m\}$$

and

$$\bigcap_{\varepsilon>0}\bigcup_m D_{m,\varepsilon}=X.$$

The negation is

$$D_{n,\varepsilon}^c = \{x : \exists n \ge m, |f_n(x) - f(x)| \ge \varepsilon\}$$

Then injection is equivalent to the complement.

Set $\varepsilon_i = \frac{1}{i}$ such that

$$D = \bigcap_{i} \bigcup_{m_{i}} D_{m_{i},1/i}$$

$$\emptyset = D^{c} = \bigcup_{i} \bigcap_{m} D_{m,1/i}^{c}$$

So $\bigcap_m D_{m,1/i}^c = \emptyset$,

$$D_{m,1/i}^{c} = A_{m,1/i} = \left\{ x : \exists n \ge m, |f_n(x) - f(x)| \ge \frac{1}{i} \right\}$$

and $A_{n,1/i} \supset A_{n+1,1/i} \supset \cdots$. Therefore

$$\mu(A_{n,1/i}) \to \mu\left(\bigcap_{m} A_{m,1/i}\right) = 0$$

for $\mu(X) < +\infty$.

Thus, $\forall i$, $\exists m_i$ such that $\mu(A_{m_i,1/i}) < \frac{\delta}{2^{i+1}}$. It follows that $A = \bigcup_i (A_{m_i,1/i})$,

$$\mu(A) \leq \sum \mu(A_{m_i,1/i}) < \delta$$

and

$$x \in A^{c} = \bigcap_{i} A_{m_{i},1/i}^{c} = \bigcap_{i} D_{m_{i},1/i} = \bigcap_{i} \left\{ x : |f_{n}(x) - f(x)| < \frac{1}{i}, \forall n \ge m_{i} \right\}$$

Finally, this implies $f_n(x) \rightrightarrows f(x)$ in A^c .

Example

Take $f_n = \chi_{[n,n+1]}$ on \mathbb{R} , then $f_n(x) \to 0$ in \mathbb{R} but $A \subset \mathbb{R}$, $\mu(A) < \frac{1}{2}$, $A^c \cap [n,n+1] \neq \emptyset$, $\forall n$. That is, $\forall n$, $\exists x \in A^c$ such that $f_n(x) = 1$ but f(x) = 0. Therefore $f_n(x) \not \Rightarrow f(x)$ on \mathbb{R} .

Definition: Essential Bounds

On a measure space (X, Λ, μ) with f measurable, define $||f||_{\infty} = \inf\{M : \mu(\{x : |f(x)| > M\}) = 0\}$. This is the L^{∞} -norm.

Proposition:

 $f_n \rightrightarrows f$ on A where $\mu(A^c) = 0$ if and only if $||f_n - f||_{\infty} \to 0$.

Proof

 (\Longrightarrow)

 $\forall \varepsilon > 0, \ \exists m \in \mathbb{N} \ \text{such that} \ |f_n(x) - f(x)| < \frac{\varepsilon}{2}, \ \forall x \in A.$ Claim: $||f_n(x) - f(x)|| > \infty < \varepsilon, \ \forall n \geq m.$

$$||f_n(x) - f(x)||_{\infty} = \inf\{M : \mu(\{x : |f_n(x) - f(x)| > M\}) = 0\}$$

Where $\{x: |f_n(x)-f(x)| > n\} \subset A^c$ and $n \ge m$ and $M \ge \varepsilon/2$. (\longleftarrow)

Recall: Urysohn's Lemma

For X locally compact and Hausdorff, $K \subset U$ for K compact and U open, $\exists \phi$ continuous such that $\phi = \begin{cases} 1 & K \\ 0 & U^c \end{cases}$.

Theorem: Vitali-Lusin

On measure space (X, Λ, μ) with X locally compact and Hausdorff and μ a Radon measure. For f measurable, μ -a.e. finite and vanishing outside A where $\mu(A) < +\infty$, $\forall \varepsilon > 0$, $\exists g$ continuous with compact support such that $\mu(\{x: f(x) \neq g(x)\}) < \varepsilon$.

Proof

- 1. $\exists C \subset A$ compact with $\mu(A \setminus C) < \varepsilon$.
- 2. For *A* compact with $\mu(A) < +\infty$, $\exists U \supset A$ open neighborhood with compact closure and $\mu(U \setminus A) < \varepsilon$.
- 3. $\phi_n = -n\chi_{N_n} + \sum_{n=0}^{\infty} \frac{k}{2^n} \chi_{A_{n,k}} + \sum_{n=0}^{\infty} \frac{k-1}{2^n} \chi_{A_{n,k}} + n\chi_{P_n}$

Since we may minimize $\mu(N_n \cup P_n) < \varepsilon$,

$$\phi_n = \sum_{-n2^n+1}^{0} \frac{k}{2^n} \chi_{A_{n,k}} + \sum_{1}^{n2^n} \frac{k-1}{2^n} \chi_{A_{n,k}}$$

Take $C_{1,k} \subset A_{1,k}$ compact with $\mu(C_{1,k}) \ge \mu(A_{1,k}) - 2^{-1}2^{-|k|+1}\varepsilon$. Write

$$C_1 = \bigcup_k C_{1,k}$$

and inductively define $C_{n-1,k}$ and $C_{n-1} = \bigcup_k C_{n-1,k}$ such that $C_{n,k} \subset A_{n,k} \cap C_{n-1}$ compact and

$$\mu(C_{n,k}) \ge \mu(A_{n,k} \cap C_{n-1}) - 2^{-1}2^{-|k|+1}\varepsilon$$

Define, by Urysohn's Lemma,

$$\tilde{\chi}_{A_{n,k}} := \begin{cases} 1 & C_{n,k} \\ 0 & U^c \cup \bigcup_{l \neq k} C_{n,l} \end{cases}$$

where $C_n \subset C_{n-1}$, $C = \bigcap C_n$, $C_n = \bigcup_k C_{n,k}$. Then define

$$g_n := \sum_{-n2^n+1}^{0} \frac{k}{2^n} \tilde{\chi}_{A_{n,k}} + \sum_{1}^{n2^n} \frac{k-1}{2^n} \tilde{\chi}_{A_{n,k}}$$

Then $g_n = \phi_n$ on C for all n.

Therefore $g_n = \phi_n \Rightarrow \hat{g} = f$ on C.

By uniform convergence, \hat{g} is continuous on C.

So, again by Urysohn's Lemma, $g = \phi \hat{g}$ and $\{x : g \neq f\} = U \setminus C$.

February 8, 2024

Midterm Review

Problem 2

Given a finite measure space (X, Λ, μ) , $\mu(X) < +\infty$ and a function f which is μ -a.e. finite. Monotone Convergence Theorem:

- 1. $A_1 \subset A_2 \subset \cdots$, then $\mu(\bigcup_i A_i) = \lim_{i \to \infty} \mu(A_i)$.
- 2. $A_1 \supset A_2 \supset \cdots$, then $\mu(\bigcap_i A_i) \lim_{i \to \infty} \mu(A_i)$ for $\mu(A_1) < +\infty$.

If
$$A_k = \{x : |f(x)| > k\}$$
 and

$$F = \bigcap_{k=1}^{\infty} A_k$$

then $\mu(F) = \lim_{k \to \infty} \mu(A_k) = 0$ since $\mu(X) < +\infty$. If instead we consider A_k^c , then

$$\bigcup_k A_k^c = X \setminus F$$

Problem 3

1. Borel

Given $(\alpha, +\infty)$, we want $\forall E \subset \mathbb{R}$

$$m^*(E \cap (\alpha, +\infty)) + m^*(E \cap (-\infty, \alpha]) \le m^*(E)$$

 $\forall \varepsilon > 0, \exists \{I_i\} \text{ pen intervals}$

$$\bigcup_{i} I_{i} \supset E \quad \sum_{i} |I_{i}| \leq m^{*}(E) + \varepsilon/2$$

Divide $\{I_i\}$ into 3 groups,

$$C^{\ell} = \{ I \in \{ I_i \} : I \text{ is to the left of } \alpha \}$$

$$C^{r} = \{ I \in \{ I_i \} : I \text{ is to the right of } \alpha \}$$

$$C^{m} = \{ I \in \{ I_i \} : \alpha \in I \}$$

Then, $\forall I_k^m \in C^m = \{I_k^m\}$, and

$${}^{\ell}I_{k}^{n} = \left(a_{k}, \alpha + \frac{2}{2^{k+2}}\right)$$

$${}^{r}I_{k}^{n} = \left(\alpha - \frac{2}{2^{k+2}}, b_{k}\right)$$

$${}^{m}I_{k}^{n} = \left(a_{k}, b_{k}\right)$$

where also

$$A_n \supset (\alpha, +\infty)^c \quad A_n = \left(-\infty, \alpha + \frac{1}{2^n}\right)$$

$$B_n \supset (\alpha, +\infty) \quad B_n = \left(\alpha + \frac{1}{2^n}, +\infty\right)$$

$$A_n \cap B_n = \left(\alpha - \frac{1}{2^n}, \alpha + \frac{1}{2^n}\right)$$

So $^{\ell}I_k^n \cup ^rI_k^n = I_k^n$, and $|^{\ell}I_k^n| + |^rI_k^n| = |I_k^n| + \frac{\varepsilon}{2^{k+1}}$. Finally

$$m^{*}(E \cap (\alpha, +\infty)) + m^{*}(E \cap (-\infty, \alpha]) \leq \sum_{I \in C^{r}} |I| + \sum_{k} |^{r} I_{k}^{n}| + \sum_{I \in C^{\ell}} |I| + \sum_{k} |^{\ell} I_{k}^{n}|$$

$$\leq \sum_{I \in C^{r}} |I| + \sum_{I \in C^{\ell}} |I| + \sum_{k} |I_{k}^{n}| + \frac{\varepsilon}{2}$$

$$\leq m^{*}(E) + \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

2. $\mu(K) < +\infty$ for $K \subset \mathbb{R}$ compact.

K is bounded, $k \in (-M, M)$ for large M. Therefore $\mu(K) \leq 2M < +\infty$.

3. $\forall U \subset \mathbb{R}$ open, we want to show $\exists K_n$ compact such that $K_n \subset U$ and $\mu(K_n) \to \mu(U)$.

Let $U = \bigcup_i I_i$ a union of countably many disjoint open intervals (e.g. $I_i = (a_i, b_i)$). Then $m(U) = \sum_i m(I_i)$. Set $I_i^n = \left[a_i + \frac{1}{n2^{i+1}}, b_i - \frac{1}{n2^{i+1}}\right]$. Then

$$\sum_{i=1}^{k} |I_i^n| \ge \sum_{i=1}^{k} |I_i| - \frac{1}{n}, \quad \forall k$$

It follows that

$$\sum_{i=1}^{k} |I_i| \to \sum_{i=1}^{\infty} |I_i|, \text{ as } k \to +\infty$$

and

$$K_k^n = \bigcup_{i=1}^k U_i^n \subset U \quad \text{compact}$$

$$m(U) \ge m(K_k^n) = \sum_{i=1}^n |I_i^n| \ge \sum_{i=1}^\infty |I_i| - \frac{1}{n}$$

Alternatively, we have the theorem that if X is a metric space and μ is Borel regular on (X, Λ) , then

- (a) $A \in \Lambda$, $\mu(A) < +\infty$, $\forall \varepsilon > 0$, $\exists C$ closed with $C \subset A$ such that $\mu(A \setminus C) < \varepsilon$.
- (b) $\exists \{U_i\}, \, \mu(U_i) < +\infty, \, U_i \text{ open where } A \subset \bigcup_i U_i, \, \forall \, \varepsilon > 0 \text{ there exists } V \text{ open such that } V \supset A \text{ and } \mu(V \setminus A)\varepsilon.$

With the corollary that for μ on \mathbb{R}^n , μ is Radon if and only if it is locally finite and Borel regular.

4. For $A \in \Lambda$, $m(A) = \inf\{m(V) : V \supset A, V \text{ open}\}\$

Recall Borel regularity: $\forall A \in \Lambda$, there is some Borel set $B \supset A$ with m(B) = m(A). We may assume $m(A) < +\infty$. Then, $\forall \varepsilon > 0$, there is some collection of open intervals $\{I_i^n\}$ containing A where

$$\sum_{i} |I_{i}^{n}| \leq m(A) + \varepsilon$$

Set $\varepsilon = \frac{1}{n}$ and let $U^n = \bigcup_i I_i^n \supset A$ open. Then

$$m(A) \le m(U^n) \le \sum_i |I_i^n| \le m(A) + \frac{1}{n}$$

If $B = \bigcap_n U_n$, then $\lim_{m \to \infty} m(U^n) = m(A)$ and m(B) = m(A).

Problem 4

Given $f: \mathbb{R} \to \mathbb{R}$, continuous outisde a measure zero set D.

That is, $\overline{f} : \mathbb{R} \setminus D \to \mathbb{R}$ is continuous.

$$\forall V \subset \mathbb{R}, f^{-1}(V) = (f^{-1})V \cap (\mathbb{R} \setminus D)) \cup (f^{-1}(V) \cap D).$$

By measure completeness, we are automatically safe on $f^{-1}(V) \cap D$.

Claim:
$$f^{-1}(V) \cap (\mathbb{R} \setminus D) = \overline{f}^{-1}(V)$$
.
Claim: \overline{f}^{-1} is measurable.

Claim: $\overline{f}^{-1}(V) = U \cap (\mathbb{R} \setminus D)$ where $U \subset \mathbb{R}$ open.

Since $U \cap (\mathbb{R} \setminus D)$ is open in the subspace topology, we are done.

Alternatively (similarly to Probelm 8 below), for D such that m(D) = 0, $\forall n, \exists U^n$ such that $m(U^n) \leq 2^{-n}$, $U^n \supset D$ and $U^n = \bigcup_i (a_i, b_i)$ where $(a_i, b_i) \cap (a_k, b_k) = \emptyset$ and $a_i, b_i \in \mathbb{R} \setminus D$. So

$$f_n = \begin{cases} f(x), & x \in (U^n)^c \\ f(a_i) + \frac{f(b_i) - f(a_i)}{b_i - a_i} (x - a_i), & x \in (a_i, b_i) \subset U^n \end{cases}$$

Then $\{x : f_n(x) \neq f(x)\} \subset U^n$ and $m(\{x : f_n(x) \neq f(x)\}) \leq 2^{-n}$.

Homework 4 Problem 8

Assume f(x) is decreasing.

- 1. Discontinuities are limited to jump discontinuities.
- 2. Discontinuities are countable.
- 3. $D = \{x_i\}_i$, $\forall n$ there exists an open cover $\{I_i^n = (a_i, b_i)\}$ where $\bigcup_i I_i^n = C^n \supset \{x_i\}_i$ and $m(C^n) \leq 2^{-n}$.

Then $\{x: f_n(x) \neq f(x)\} \subset C^n\}$ and $\mu(\{x: f_n(x) \neq f(x)\}) \leq 2^{-n}$. Claim: $f_n(x) \to f(x)$ on $\mathbb{R} \setminus G$ where $G = \bigcap_n^\infty \bigcup_{k=n}^\infty \{x: f_k(x) \neq f(x)\}$. By monotone convergence, $\mu(g) = \lim_{n \to +\infty} \mu\left(\bigcup_{k=n}^{\infty} \{x : f_n(x) \neq f(x)\}\right) = \lim_{n \to +\infty} \left(\sum_{k=n}^{+\infty} 2^{ik}\right) = 0.$ Consider the complement, $G^c = \bigcap_{n=1}^{\infty} \bigcap_{k=n}^{+\infty} \{x : f_k(x) \neq f(x)\}.$ Then $\forall x \in G^c$, $x \in \bigcap_{k=n_0}^{+\infty} \{x : f_k(x) = f(x), \text{ so } f_n(x) = f(x) \ \forall n \geq n_0.$

Riemann Integration

Given a function $f: [a,b] \to \mathbb{R}$ bounded and P a partiation of [a,b] where

$$a = x_0 < x_1 < \dots < x_n = b$$

The Cauchy sum

$$C(P,[a,b]) = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i+1}), \quad \xi_i \in [x_i, x_{i+1})$$

alternatively

$$\phi(P,[a,b]) = \sum_{i} f(\xi_i) \chi_{[x_i,x_i+1)}$$

Consider the upper Riemann sum

$$S(P,[a,b]) = \sum_{i} M_i(x_i, x_{i+1}), \quad M_i = \sup_{[x_i, x_{i+1}]} f(x)$$

and the lower Riemann sum

$$s(P,[a,b]) = \sum_{i} m_i(x_i, x_{i+1}), \quad m_i = \inf_{[x_i, x_{i+1}]} f(x)$$

then define

$$S = \inf_{P} S(P, [a, b]) = s = \sup_{P} s(P, [a, b]) \implies \int_{a}^{b} f(x) \, dx = \lim_{l(P) \to 0} C(P, [a, b])$$

Theorem:

f is Riemann integrable on [a, b] if and only if f is continuous m-a.e. (w.r.t Lebesgue measure) on [a, b].

Proof

 (\Longrightarrow) Let f be Riemann integrable on [a,b]. Define the oscillation

$$Osc_{I}(f) = \sup_{I} f(x) - \inf_{I} f(x)$$
$$Osc_{x}(f) = \lim_{\delta \to 0} Osc_{(x-\delta, x+\delta)}(f)$$

and observe that f is continuous at x if and only if $Osc_x(f) = 0$.

Let $D = \{x : \operatorname{Osc}_x(f) > 0\}$ and $D_k = \{x : \operatorname{Osc}_x(f) > \frac{1}{k}\}$ such that $D_k \subset D_{k+1}$ and $D = \bigcup_k D_k$. Therefore $m(D_k) \to m(D)$.

To show that m(D) = 0, assume otherwise that m(D) > 0.

Therefore, $\exists k \text{ such that } m(D_k) > d_{k_0} \text{ for any } k \ge k_0.$

Then, for any partition P we may examine

$$S(P,[a,b]) - s(P,[a,b]) = \sum_{I_i} (M_i - m_i)|I_i|$$

We want to show that this is $\geq \delta > 0$ for any P.

February 13, 2024

Recall: Riemann Integration

 $f(x) \geq 0 \text{ on } [a,b] \text{ bounded.}$ Partition $P = \{a = x_0 < x_1 < \dots < x_n = b\}, [x_{i-1},x_i].$ IMAGE HERE - Riemann Integration Upper Riemann Sum: $S_P = \sum_{i=1}^n M_i(x_i - x_{i-1})$ where $M_i = \sup\{f(x) : x \in [x_{i-1},x_i]\}.$ Lower Riemann Sum: $s_P = \sum_{i=1}^n m_i(x_i - x_{i-1})$ where $m_i = \inf\{f(x) : x \in [x_{i-1},x_i]\}.$ Step Functions: $\phi_{P,\alpha} = \sum_i \alpha_i \chi_{I_i}$ where $I_i = [x_{i-1},x_i].$ Set $S = \inf_P S_P = \inf\{\sum_i \alpha_i |I_i| : \phi_{P,\alpha}(x) \geq f(x)\}$ and $s = \sup_P s_P = \sup\{\sum_i \alpha_i |I_i| : \phi_{P,\alpha}(x) \leq f(x)\}.$

Definition: Riemann Integrable

The function f is Riemann integrable if S = s.

Remark:

$$S_P - s_P = \sum_{i=1}^n (M_i - m_i)(x_i - x_{i-1}) \to 0 \text{ as } \ell(P) \to 0$$

Remark:

If *f* is continuous, then it is Riemann integrable.

Theorem:

Given $f : [a, b] \to \mathbb{R}$ bounded, then f is Riemann integrable if and only if f is continuous m-a.e. m(D) = 0 if and only if f is Riemann integrable.

Proof

Recall that $\operatorname{Osc}_I(f) = \sup_I f(x) - \inf_I f(x)$ and $\operatorname{Osc}_{x_0}(f) = \lim_{\delta \to 0} \operatorname{Osc}_{(x_0 - \delta, x_0 + \delta)}(f)$. IMAGE HERE - 2 Oscillation

Write $D = \{x \in [a, b] : f \text{ is not continuous at } x\}$, and $D_k\{x \in [a, b] : Osc_x(f) \ge 1/k\}$ closed (since D_k^C open). Then

$$D = \bigcup_{k} D_{k} = \{ x \in [a, b] : Osc_{x}(f) > 0 \}$$

We have $m(D_k) \xrightarrow[k \to \infty]{} m(D)$.

Then there exists an open cover of D_k , $\{I_i\}$ such that $m(D_k) + \varepsilon \ge \sum_i |I_i| \ge m(D_k) - \varepsilon$.

Since D_k is closed and bounded, it is compact and there exists finite subcover $\{I_{i_k}\}_{k=1}^{\ell} \subset \{I_i\}$.

(\iff) Assume that f is Riemann integrable and, for sake of contradiction, that m(D) > 0.

Then $m(D_k) \ge m > 0$, $\forall k \ge k_0$.

Now for any partition $P = \{x_0, x_1, \dots, x_n\},\$

$$S_{P} - s_{P} = \sum_{i=1}^{n} (M_{i} - m_{i})(x_{i} - x_{i-1})$$

$$\geq \sum_{(x_{i-1}, x_{i}) \cap D_{k} \neq \emptyset} (M_{i} - m_{i})(x_{i} - x_{i-1})$$

$$\geq \frac{1}{k} \sum_{(x_{i-1}, x_{i}) \cap D_{k} \neq \emptyset} (x_{i} - x_{i-1})$$

Since $\bigcup_{(x_{i-1},x_i)\cap D_k\neq\emptyset}[x_{i-1},x_i]\supset D_k$,

$$\sum_{(x_i, x_{i-1}) \cap D_k \neq \emptyset} (x_i - x_{i-1}) = m \left(\bigcup_{(x_{i-1}, x_i) \cap D_k \neq 0} [x_{i-1}, x_i] \right) \ge m(D_k)$$

we conclude that

$$S_P - s_P \ge \frac{m}{k_0} \ge 0$$

 (\Longrightarrow) Assume m(D) = 0.

Then, for any k satisfying $\frac{1}{k} < \frac{\varepsilon}{2(b-a)}$, $m(D_k) = 0$ and $\{I_{i_k}\}_{k=1}^\ell \subset \{I_i\}$ for open intervals I_i . We have, also, $\bigcup_{k=1}^\ell I_{i_k} \supset D_k$ so

$$\sum_{k=1}^{\ell} |I_{i_k}| \le \sum_{i} |I_{i}| \le \frac{\varepsilon}{2M}$$

and

$$[a,b]\setminus\bigcup_{k=1}^{\ell}I_{i_k}\subset D_k^c$$

compact.

Claim: there exists some partition $P = \{x_i\}_{i=0}^n$ such that $S_P - s_P < \varepsilon = \frac{1}{k}$. Given $\operatorname{Osc}_x(f) \leq 2M$,

$$S_P - s_P = \sum_i (M_i - m_i)(x_i - x_{i-1})$$

$$= \sum_{[x_{i-1}, x_i] \cap D_k = \emptyset} + \sum_{[x_{i-1}, x_i] \cap D_k \neq \emptyset}$$

$$\leq \frac{\varepsilon}{2(b-a)}(b-a) + 2M \cdot \frac{\varepsilon}{4M}$$

Definition: Lebesgue Integration

Given a measure space (X, Λ, μ) and simple function $s = \sum_i \alpha_i \chi_{A_i}$ for $\alpha_i \in \mathbb{R}$ and $A_i \in \Lambda$,

$$\int_E s \, d\mu = \sum_i \alpha_i \mu(A_i \cap E)$$

Then, for extended real-valued $f \ge 0$,

$$\int_{E} f \, d\mu = \sup \left\{ \sum_{i} \alpha_{i} \mu(A \cap E) : 0 \le s(x) \le f(x) \right\}$$

Properties

- 1. For $0 \le f \le g$ on E, $\int_E f \ d\mu \le \int_E g \ d\mu$.
- 2. For $A \subset B$ where $A, B \in \Lambda$, $\int_A f d\mu \leq \int_B f d\mu$.
- 3. Since $f \ge 0$, $\forall c \in \mathbb{R}_{\ge 0} \int_E cf \ d\mu = c \int_E f \ d\mu$.
- 4. f = 0 μ -a.e. if and only if $\int_X f \ d\mu = 0$.
- 5. $\int_{E} f d\mu = \int_{X} f \chi_{E} d\mu.$
- 6. For $f, g \ge 0$, $\int_{E} f + g \ d\mu = \int_{E} f \ d\mu + \int_{E} g \ d\mu$.

- 7. For $A, B \in \Lambda$ where $A \cap B = \emptyset$, $\int_{A \cup B} f d\mu = \int_A f d\mu + \int_B f d\mu$.
- Proof of 4 $(\Longrightarrow) \sum_i \alpha_i \chi_{A_i} = s(x) = f(x) \implies \alpha_i > 0 \implies \mu(A_i) = 0.$ $(\Longleftrightarrow) \ f \geq \alpha > 0 \ \text{and} \ \mu(A) > 0 \implies f(x) \geq \alpha \chi_A \implies \int_X f \ d\mu \geq \alpha_{\mu(A)} > 0 \ \text{a contradiction}.$
- Proof of 5 $s\chi_E = \sum_i \alpha_i \chi_{A_i \cap E}.$
- Proof of 6 If $0 \le s_1 \le f$ and $0 \le s_2 \le g$, then $0 \le s_1 + s_2 \le f + g$.

Monotone Convergence of Lebesgue Integration

On a measure space (X, Λ, μ) , let $f_n \ge 0$ be a sequence of measurable functions which is monotone $f_i(x) \le f_{i+1}(x)$ and converging $f_n(x) \to f(x)$ for any $x \in X$. Then

$$\lim_{n \to +\infty} \int_X f_n \, d\mu = \int_X f \, d\mu = \int_X \left(\lim_{n \to +\infty} f_n \right) \, d\mu$$

Proof

Observe that $f_n(x) \le f(x)$, $\forall x \in X$, so

$$\int_X f_n \, d\mu \le \int_X f_{n+1} \, d\mu \le \int_X f \, d\mu$$

SO

$$\lim_{n\to+\infty}\int_X f_n\;d\mu\leq\int_X f\;d\mu$$

We want to show that

$$\lim_{n\to +\infty} \int_X f_n \; d\mu \geq \int_X f \; d\mu$$

Let s be a simple function satisfying $0 \le s(x) \le f(x)$, and define

$$E_n = \{ x \in X : f_n(x) \ge cs(x) \}$$

for some $c \in (0,1)$.

Then $E_n \subset E_{n+1}$ and $\bigcup_n E_n = X$. Consider

$$\int_X f_n d\mu \ge \int_{E_n} f_n d\mu \ge c \int_{E_n} s(x) d\mu = c \sum_i \alpha_i \mu(A_i \cap E_n)$$

For any $i, A_i \cap E_n \to A_i$. Therefore $\mu(A_i \cap E_n) \xrightarrow[n \to +\infty]{} \mu(A_i)$. So

$$\lim_{n\to+\infty}\int_X f_n\,d\mu\geq c\sum_i\alpha_i\mu(A_i)$$

for $0 \le s = \sum \alpha_i \chi_{A_i} \le f(x)$. Since this hold for any c,

$$\lim_{n \to +\infty} \int_X f_n \, d\mu \ge \int_X f \, d\mu$$

Corollary

Given a measurable sequence $f_n \ge 0$ with $f(x) = \sum_n f_n(x)$,

$$\int_X f \ d\mu = \sum_n \int_X f_n \ d\mu$$

and

$$\phi_n(x) = \sum_{k=1}^n f_k(x) \to f(x)$$

Definition: Fatou's Lemma

Given a sequence of measurable functions $f_n \ge 0$,

$$\int_{X} \left(\liminf_{n \to +\infty} f_n \right) d\mu \le \liminf_{n \to +\infty} \int_{X} f_n d\mu$$

Proof

Observe that

$$\liminf_{n \to +\infty} f_n = \lim_{n \to +\infty} \overline{\left(\inf\{f_n(x), f_{n+1}(x), \ldots\}\right)}$$

so, by monotone convergence,

$$\int_X \left(\lim_{n \to +\infty} g_n(x) \right) d\mu = \lim_{n \to +\infty} \int_X g_n(x) d\mu$$

and $g_n(x) \le f_n(x)$ gives

$$\int_X g_n(x) d\mu \le \int_X f_n(x) d\mu$$

and implies

$$\lim_{n\to +\infty} \int_X g_n(x) \ d\mu \leq \liminf_{n\to +\infty} \int_X f_n(x) \ d\mu$$

Space of Integrable Functions

Write

$$f(x) = f^+(x) - f^-(x)$$

where

$$f^{+}(x) = \max\{f(x), 0\} \ge 0$$
$$f^{+}(x) = \min\{-f(x), 0\} \ge 0$$

Then for $\int_X f^+ d\mu$ and $\int_X f^- d\mu$, $\int_X f d\mu$ is defined when at least one is finite. If both are finite, then

$$L^{1}_{\mu}(x) = \int_{X} |f| d\mu = \int_{X} f^{+} d\mu + \int_{X} f^{-} d\mu \le +\infty$$

Properties

1. For any $\alpha, \beta \in \mathbb{R}$,

$$\int_X (\alpha f + \beta g) \ d\mu = \alpha \int_X f \ d\mu + \beta \int_X g \ d\mu$$

if
$$f, g \in L^1_\mu(x)$$
.

2. For $f \in L^1_{\mu}(x)$,

$$\left| \int_X f \, d\mu \right| \le \int_X |f| \, d\mu$$

$$\left| \int_X f^+ \, d\mu - \int_X f^{-1} \, d\mu \right| \le \int_X f^+ \, d\mu + \int_X f^- \, d\mu$$

- 3. For $f \le g$, $f, g \in L^1_{\mu}(x)$, $\int_X f \ d\mu \le \int_X g \ d\mu$.
- 4. $\int_{A \cup B} f \ d\mu = \int_{A} f \ d\mu + \int_{B} f \ d\mu$.
- 5. f = 0 μ -a.e. if and only if $\int_X |f| d\mu = 0$.

February 15, 2024

Recall

Given (X, Λ, μ) a measure space and X topological.

 $M_{\mu}(x) = \{ f : X \to \mathbb{R} : \text{measurable} \}.$

 $L^1_{\mu}(x) = \{ f \in M_{\mu}(x) : \int_X |f| \ d\mu < +\infty \}.$

 $||f||_1 = ||f||_{L^1_\mu(x)} = \int_X |f| d\mu.$

 $L_{\mu}^{\infty}(x) = \Big\{ f \in M_{\mu}(x) \, : \, ||f||_{L_{\mu}^{\infty}(x)} < + \infty \Big\}.$

 $||f||_{\infty} = ||f||_{L^{\infty}_{\mu}(x)} = \inf\{M = \mu(\{x \in X : |f(x)| > M\} = 0\}.$

 $C_c(x)$ the space of continuous functions with compact support.

Remark

In $L^1_{\mu}(x)$ and $L^\infty_{\mu(x)}$, [f] = [g] if and only if f = g μ -a.e.

Topologies

- 1. $f_n, f \in M_{\mu}(x), f_n \to f \mu$ -a.e. in X.
- 2. $f_n \to f$ in $L^{\infty}_{\mu}(x)$ if and only if $\exists A \in \Lambda$, $\mu(A) = 0$, $f_n \Rightarrow +\infty$ in $X \setminus A$.
- 3. $f_n \to f$ in $L^1_{\mu}(x)$, $\lim_{n \to +\infty} ||f_n f|| = \lim_{n \to +\infty} \int_X |f_n f| d\mu$.
- 4. $f_n \to f$ in measure if $\forall \varepsilon > 0$, $\lim_{n \to +\infty} \mu(\{x \in X : |f_n(x) f(x)| \ge \varepsilon\}) = 0$.

Theorem:

For (X, Λ, μ) with $\mu(x) < +\infty$, asssume

1. $f_n \to f \mu$ -a.e. in X.

2. $||f_n||_{\infty} \le M \le +\infty, \forall n$

Then, $f_n \to f$ in $L^1_\mu(x)$. Therefore

$$\lim_{n\to +\infty} \int_X f_n \, d\mu = \int_X \left(\lim_{n\to +\infty} f_n \right) \, d\mu$$

Proof

Step 1: $f \in L^{\infty}_{\mu}(x)$ and $||f||_{\infty} \leq M$. Given $\varepsilon > 0$, $\{x \in X : |f(x)| > M + \varepsilon\} \subset \{x : |f_n(x)| > M + \varepsilon\}$, $\forall n \geq n_0$.

Then, $\mu(\lbrace x: |f(x)| > M + \varepsilon\rbrace) = 0$. Therefore $||f||_{\infty} \le M$.

Step 2: consider $\int_X |f_n - f| \ d\mu$. Since $\mu(X) < +\infty$, by Egoroff's theorem $\exists A \in X$ with $\mu(X \setminus A) < \frac{\varepsilon}{4M}$ where $f_n(x) \rightrightarrows f(x)$ in A. Then, $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \frac{\varepsilon}{2\mu(x)}$, $\forall x \in A$, $\forall n \geq n_0$.

$$\int_{X} |f_{n} - f| d\mu = \int_{A} |f_{n} - f| d\mu + \int_{X \setminus A} |f_{n} - f| d\mu$$

$$= \frac{\varepsilon}{2\mu(x)} \mu(A) + 2M\mu(X \setminus A) \frac{\varepsilon}{4M}$$

$$= \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

So $f_n \to f$ in $L^1_\mu(x)$.

Step 3: observe

$$\left| \int_X f_n \, d\mu - \int_X f \, d\mu \right| = \left| \int_X (f_n - f) \, d\mu \right| \le \int_X |f_n - f| \, d\mu \stackrel{n \to +\infty}{\longrightarrow} 0$$

Remark

For $\mu(X) < +\infty$,

1. $L_{u}^{\infty}(x) \subset L_{u}^{1}(x)$.

2. $f_n \to f$ in $L_u^{\infty}(x) \implies f_n \to f$ in $L_u^{1}(x)$.

Theorem: Dominated Convergence

Let (X, Λ, μ) and $f_n \in M_{\mu}(x)$. If $\exists g \in L^1_{\mu}(x)$ such that $|f_n(x)| \leq g(x)$, $\forall n$ and $f_n \to f$ μ -a.e. in X, then $f_n \to f$ in $L_u^1(x)$.

In particular,

$$\lim_{n\to+\infty}\int_X f_n\,d\mu=\int_X f\,d\mu$$

Proof

Note that $|f_n(x)| \le g(x)$, $\forall n$ means $|f(x)| \le g(x)$ and, consequently, that $f_n, f \in L^1_\mu(x)$. Define $\phi_n(x) := 2g(x) - |f_n(x) - f(x)|$. Since

$$|f_n(x) - f(x)| \le |f_n(x)| + |f(x)| \le 2g(x)$$

 $\phi_n \ge 0$.

By Fatou's lemma,

$$\begin{split} \int_{X} \left(\liminf_{n \to +\infty} \phi_{n} \right) \, d\mu & \leq \liminf_{n \to +\infty} \int_{X} \phi_{n} \, d\mu \\ & \leq \liminf_{n \to +\infty} \left(2 \int_{X} g \, d\mu - \int_{X} \left| f_{n} - f \right| \, d\mu \right) \\ & = 2 \int_{X} g \, d\mu - \limsup_{n \to +\infty} \int_{X} \left| f_{n} - f \right| \, d\mu \end{split}$$

Therefore

$$\limsup_{n \to +\infty} \int_X |f_n - f| \ d\mu \le 0 \implies \lim_{n \to +\infty} \int_X |f_n - f| \ d\mu = 0$$

and $f_n \to f$ in $L_u^1(x)$.

Definition: Vitality Continuity

On a measure space (X, Λ, μ) , $\nu : \Lambda \to \mathbb{R}$ is said to be Vitali continuous if for any $\varepsilon > 0$, there exists $\delta > 0$ such that

$$v(A) < \varepsilon, \ \forall A \in \Lambda, \ \mu(A) < \delta$$

Write $\forall f \in L_{\mu}^{1}(x), v_{f}(A) = \int_{A} |f| d\mu$.

Lemma

If $f \in L^1_\mu$, then v_f is Vitali continuous.

• Proof
$$\operatorname{Set} f_n(x) = \begin{cases} f(x) & |f(x)| \leq n \\ n & |f(x)| > n \end{cases}$$
 Then $f_n \to f$ in X and $|f_n(x)| \leq |f(x)|$. Therefore,

$$\int_{A} |f| \, d\mu \le \int_{A} ||f| - |f_n|| \, d\mu + \int_{A} |f_n| \, d\mu$$

By dominated convergence, for $\varepsilon > 0$, $\exists n_0$ such that $\int_X |f_n - f| d\mu < \frac{\varepsilon}{2}$ for all $n \ge n_0$. Then

$$\int_{A} \left| |f| - |f_n| \right| d\mu \le \int_{X} \left| |f| - |f_n| \right| d\mu \le \frac{\varepsilon}{2}, \quad \forall n \ge n_0$$

In particular

$$\int_{A} |f_{n_0}| \ d\mu \le n_0 \mu(A)$$

Letting $\delta = \frac{\varepsilon}{2n_0}$ gives

$$\int_{A} |f| \ d\mu \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

if $\mu(A) < \delta$.

Lemma

If (X, Λ, μ) , $\mu(X) < +\infty$, and $f_n \to f$ μ -a.e. in X, then $f_n \to f$ in measure μ .

Remark

Proof can be done through Egoroff's Theorem.

Proof

Set $A_{n,\varepsilon} = \{x: |f_n(x) - f(x)| \ge \varepsilon\}$ and $A_{\varepsilon} = \bigcap_{n=1}^{\infty} \bigcup_{j \ge n} A_{j,\varepsilon}$, and $N = \bigcup_{\varepsilon > 0} A_{\varepsilon}$. Then $N^c = \bigcap_{\varepsilon > 0} A_{\varepsilon}^c$, $A_{\varepsilon}^c = \bigcup_{n=1}^{j \ge n} A_{j,\varepsilon}^c$, and $A_{j,\varepsilon}^c = \{x: |f_j(x) - f(x)| < \varepsilon\}$. Therefore, $\forall x \in N^c$, $f_n(x) \to f(x)$ and $\forall x \in N$, $f_n \not\to f(x)$. So $\mu(N) = 0$ implies $\mu(A_{\varepsilon}) = 0$ for any $\varepsilon > 0$. Therefore

$$\mu\left(\bigcup_{j\geq n}A_{j,\varepsilon}\right)\to\mu(A_{\varepsilon})=0$$

since $\mu(X) < +\infty$. Then

$$\bigcup_{j\geq n}^{\infty} A_{j,\varepsilon} \supset \bigcup_{j\geq n+1}^{\infty} A_{j,\varepsilon}$$

and

$$A_{n,\varepsilon}\subset\bigcup_{j\geq n}^{\infty}A_{j,\varepsilon}$$

which implies $\mu(A_{n,\varepsilon}) \to 0$ as $n \to +\infty$.

Lemma (Chebyshev's Inequality)

~ Very Trivial
$$\P$$
 ~ If $f \in L^1_\mu(x)$ and $f \ge 0$, then $\mu(\{x: f > \alpha\}) \le \frac{1}{\alpha} \int_X f \ d\mu$.

Proof

$$\int_X f \ d\mu \geq \int_{\{x: f(x) > \alpha\}} f \ d\mu \geq \int_{\{x: f(x) \geq \alpha\}} f \ d\mu = \alpha \mu (\{x: f(x) > \alpha\})$$

Corollary

 $f_n \to f$ in $L^1_\mu(x)$ implies $f_n \to f$ in measure. Since $\forall \varepsilon > 0$,

$$\mu(\lbrace x: |f_n(x) - f(x)| \ge \varepsilon\rbrace) \le \frac{1}{\varepsilon} \int_X |f_n - f| \ d\mu \to 0$$

Definition: Vitali Equicontinuity

S sequence $\{v_n\}$ of Vitali continuous functions is Vitali equicontinuous if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $v_n(A) < \varepsilon$, $\forall n, \forall A \in \Lambda, \mu(A) < \delta$.

Theorem

On (X, Λ, μ) with $\mu(X) < +\infty$, $f_n \to f$ in $L^1_{\mu}(x)$ if and only if v_{f_n} is Vitali equicontinuous and $f_n \to f$ in measure μ .

Proof

 (\Longrightarrow) By assumption, $\int_X |f_n-f|\ d\mu \to 0$ as $n \to +\infty$. Therefore, $\exists n_0 \in \mathbb{N}$ such that $\int_X |f_n-f|\ d\mu < \frac{\varepsilon}{2}, \ \forall \ n \geq n_0$. See that for all $n \geq n_0$,

$$\left| \int_{A} |f_{n}| d\mu - \int_{A} |f| d\mu \right| = \int_{A} \left| |f_{n}| - |f| big \right| d\mu$$

$$\leq \int_{X} |f_{n} - f| d\mu$$

$$< \frac{\varepsilon}{2}$$

and therefore $\int_A |f_n| \ d\mu \le \int_A |f| \ d\mu + \frac{\varepsilon}{2}$.

So there exists $\delta_0 > 0$ such that $\int_A |f_n|^2 d\mu \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ for any $n \ge n_0$ and $\mu(A) < \delta_0$.

Then $\exists \delta_n > 0$ such that $\int_A |f_n| d\mu < \varepsilon$, $\forall A \in \Lambda$ and $\mu(A) < \delta_n$.

Set $\delta = \min\{\delta_0, \dots, \delta_{n_0-1}\} > 0$. Then $\int_A |f_n| d\mu < \varepsilon, \forall n, \forall A \in \Lambda, \mu(A) < \delta$.

By Vitali equicontinuity, $\exists \delta > 0$ giving $\int_A (|f_n| + |f|) d\mu < \frac{\varepsilon}{2}$, $\forall A \in \Lambda$, $\mu(A) < \delta$. Then

$$\int_{X} |f_{n} - f| \ d\mu = \int_{\left\{x : |f_{n}(x) - f(x)| < \frac{\varepsilon}{2\mu(x)}\right\}} |f_{n} - f| \ d\mu + \int_{\left\{x : |f_{n}(x) - f(x)| \ge \frac{\varepsilon}{2\mu(x)}\right\}} |f_{n} - f| \ d\mu$$

$$\leq \frac{\varepsilon}{2\mu(x)} \mu(x) + \int_{A_{n,\varepsilon}} (|f_{n}| + |f|) \ d\mu$$

for $\varepsilon > 0$, $\mu(A_{n,\varepsilon}) \to 0$ as $n \to +\infty$.

So $\exists n_0 \in \mathbb{N}$ where $\mu(A_{n,\varepsilon}) < \delta$ for $n \ge n_0$ such that

$$\int_X |f_n - f| \ d\mu < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Theorem: Riesz Theorem

On (X, Λ, μ) , $\mu(X) < +\infty$, if $f_n, f \in M_{\mu}(x)$ and $f_n \to f$ in measure then there exists a subsequence $\{f_{n_k}\} \subset \{f_n\}$ such that $f_{n_k} \to f$ μ -a.e.

Proof

Take

$$A_{n,\varepsilon}\{x: |f_n(x)-f(x)| \ge \varepsilon\}$$

and $f_n \to f$ in measure.

Then $\forall \varepsilon > 0$, $\mu(A_{n,\varepsilon}) \to 0$ as $n \to +\infty$. Let $\varepsilon = \frac{1}{i}$. There exists n_i such that $\mu(A_{n,\frac{1}{i}}) < 2^{-i}$. Set

$$A = \bigcap_{n} \bigcup_{j \ge n} A_{n_j, \frac{1}{i}}$$

Claim

- 1. $\mu(A) = 0$.
- 2. $f_{n_k} \to f \text{ in } X \setminus A$.

Since $\mu(X) < +\infty$,

$$\mu(A) = \lim_{n \to +\infty} \mu\left(\bigcup_{j \ge n} A_{n_j, \frac{1}{i}}\right)$$

where

$$\mu\left(\bigcup_{j\geq n} A_{n_j,\frac{1}{i}}\right) \leq \sum_{j\geq n} \mu\left(A_{n,\frac{1}{i}}\right)$$

$$\leq \sum_{j\geq n} 2^{-i}$$

$$\xrightarrow{n \to +\infty} 0$$

Then

$$X \setminus A = \bigcup_{n=1}^{+\infty} \bigcap_{j \ge n} A_{n_j, \frac{1}{i}}^c$$

where $A_{n_{j},\frac{1}{j}}^{c} = \left\{ x : |f_{n_{j}}(x) - f(x)| < \frac{1}{j} \right\}, \ \forall \varepsilon > \frac{1}{j_{0}}.$ So for some $n_0, x \in X \setminus A$ implies that $x \in \bigcap_{j \ge n_0} A_{n_j, \frac{1}{i}}^c$ where $j = \max\{n_0, j_0\}$.

February 20, 2024

Riesz Representation Theorem

Linear Functionals

On a vector space V, a map $T: V \to \mathbb{R}$ such that $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$, $\forall \alpha, \beta \in \mathbb{R}$, $\forall x, y \in V$ is called a linear functional.

A linear functional is positive if $T f \ge 0$ when $f \ge 0$.

Example

On (X, Λ, μ) , $L^1_{\mu}(X) = V$, take $Tf = \int_X f d\mu$. Then

$$T(\alpha x + \beta g) = \int_X \alpha x + \beta g \ d\mu = \alpha \int_X x \ d\mu + \beta \int_X g \ d\mu = \alpha T f + \beta T g$$

Example

On (X, Λ, μ) , X locally compact Hausdorff, μ Radon.

 $C_c(X)$, the space of continuous functions with compact support.

Recall: $supp(f) = \{x : f(x) \neq 0\}$ and $supp(f)^c = \{x : \exists \text{ open neighborhood } U \text{ of } X, f = 0 \text{ in } U\}.$

Then, $Tf = \int_X f d\mu$ on $C_c(x) \subset L^1_{\mu}(X)$ is a linear functional.

Theorem: Riesz Representation

Let X be a locally compact Hausdorff space and T be a positive linear functional on $C_c(X)$. Then there exists a unique, complete Radon measure μ such that $Tf = \int_X f \ d\mu$.

Lemma 0

If X is locally compact Hausdorff, if $K \subset U \subset X$ with K comapct, U open, then there exists some V open with \overline{V} compact such that $K \subset V \subset \overline{V} \subset U$.

Lemma 1 (Urysohn's)

If X is locally compact Hausdorff, if $K \subset U \subset X$ with K compact, U open, then there exists some continous function f with compact support such that

- 1. $supp(f) \subset U$
- 2. $0 \le f \le 1$
- 3. $f \equiv 1$ in K

Write $K \prec f \prec U$.

Radon Measure

For (X, Λ, μ) , μ is a Radon measure if

- 1. μ is Borel
- 2. $\mu(K) < +\infty$ for K compact
- 3. $\mu(V) = \sup \{ \mu(K) : K \subset V, K \text{ compact} \}$ for every V open.
- 4. $\mu(A) = \inf \{ \mu(V) : A \subset V, V \text{ open} \}$ for every V open.

Proof: Step 1 (Uniqueness)

Suppose μ_1 and μ_2 such that $Tf = \int_X f \ d\mu_1 = \int_X f \ d\mu_2$, $\forall f \in C_c(X)$. We want to show that $\mu_1(K) = \mu_2(K)$, $\forall K$ compact so that $\mu_1 = \mu_2$. So, for any K compact, there is some V open with $V \supset K$ such that $\mu_2(V) < \mu_2(K) + \varepsilon$. By Urysohn's lemma, K < f < V. So

$$\mu_1(K) = \int_K d\mu_1 = \int_X \chi_K d\mu \le \int_X f d\mu_1 = \int_X f d\mu_2 \le \mu_2(V) < \mu_2(K) + \varepsilon$$

Assuming $\mu_1(V) < \mu_1(V) + \varepsilon$ and repeating the proof mutatis mutandis shows $\mu_1 = \mu_2$.

Proof: Step 2 (Construction)

Let *T* be a positive linear function on $C_c(X)$.

We want to construct a complete Radon measure μ such that $Tf = \int_X f \ d\mu$, $\forall f \in C_c(X)$.

· Outer Measure

For any U open, let $\mu^*(U) = \sup\{Tf : f < U\}$.

Then for any $A \subset X$, $\mu^*(A) = \inf\{\mu^*(U) : A \subset U$, U open $\}$.

1.
$$\mu^*(\emptyset) = 0$$
.

2.
$$\mu^*(A) \le \mu^*(B)$$
 if $A \subset B$.

3.
$$\mu^*\left(\bigcup_i A_i\right) \leq \sum_i \mu^*(A_i), \forall A_i \subset X.$$

- Lemma: Partition of Unity

For X LCH, U_1, U_2, \ldots, U_n open, K compact and $K \subset \bigcup_{i=1}^n U_i$.

Then there exists a partition of unity $h_i < U_i$ and $\sum_{i=1}^n h_i = 1$ on K.

Since, $\forall x \in K$, $\exists V_x$ open, $\overline{V}_x \subset U_i$ for some i.

Then there exists a subcover $\{U_{x_i}\}_{i=1}^m$ and $H_i = \bigcup_i V_{x_i}$ while $\overline{V}_{x_i} \subset U_i$.

Thus \overline{H}_i is compact and $H_i \subset \overline{H}_i \subset U_i$.

By Urysohn's lemma, $\exists \overline{A}_i \prec g_i \prec U_i$.

Write
$$h_1 = g_1$$
, $h_2(1-g_1)g_2$, $h_k = (1-g_1)(1-g_2)\cdots g_k$, $h_n = (1-g_1)(1-g_2)\cdots (1-g_m)g_n$. Then

- 1. $h_i \prec U_i$, since we have not modified the support.
- 2. $K \prec \sum_i h_i$, since $\forall x \in K \subset \bigcup_i A_i \subset \bigcup_i \overline{A}_i \subset \bigcup_i U$.

Then $x \in \overline{H}_{i_0}$ for some i_0 implies that $g_{i_0}(x) = 1$.

$$\sum_{i} h_{i}(x) = \sum_{i \leq i_{0}} h_{i}(x) = g_{1}(x) + (1 - g_{1}(x))g_{2}(x) + \dots + (1 - g_{1}(x))\dots(1 - g_{i_{0}-1}) = g_{1}(x) + (1 - g_{1}(x)) = 1$$

Therefore, $K \subset \bigcup_i \overline{A}_i \prec \sum_{i=1}^n h_i$.

- Proof of 3

Take $\bigcup_i U_i$, U_i open and consider $\mu^* (\bigcup_i U_i)$.

Then $\forall f < \bigcup_i U_i$, there exists a finite subcover $f < \bigcup_{i=1}^n U_{i_i}$, $\{U_{i_i}\} \subset \{U_i\}$.

By the partition of unity, $\exists h_j \prec U_{i_j}$ where $\sum h_j = 1$ on supp(f). So

$$f = \left(\sum_{j} h_{j}\right) f = \sum_{j} \left(h_{j} f\right)$$

and

$$Tf = \sum_{j} T(h_j f) \le \sum_{j} \mu^*(U_{i_j} \text{ and } h_j f < U_{i_j}$$

It follows that $\mu^* (\bigcup_i U_i) \leq \sum_i \mu^* (U_i)$.

For $\bigcup_i A_i$, $A_i \subset X$, by definition there exists U_i open with $U_i \supset A_i$ and $\mu^*(U_i) \le \mu^*(A_i) + \frac{\varepsilon}{2i}$. Thus

$$\mu^* \left(\bigcup_i A_i \right) \le \mu^* \left(\bigcup_i U_i \right) \le \sum_i \mu^* (U_i) \le \sum_i \left(\mu^* (A_i) + \frac{\varepsilon}{2i} \right) \le \sum_i \mu^* (A_i) + \varepsilon$$

Therefore μ^* is an outer measure and, by the Caratheodory construction, (X, Λ, μ) complete.

· Radon Measure

- 1. Borel.
- 2. $\mu(K) < +\infty$ for K compact.
- 3. $\mu(V) = \sup{\{\mu(K) : K \subset V, K \text{ compact}\}}$.
- 4. $\mu(A) = \inf \{ \mu(V) : A \subset V, V \text{ open} \}.$
- Proof of 2

By definition of μ^* , for any K compact there is some V open such that $K \subset V$ and $\mu(K) \leq \mu(V)$. By Urysohn's lemma, $K \subset \bigcup_i H_i \subset \bigcup_i \overline{H}_i \prec f \prec V$ and

$$\mu(K) \le \mu\left(\bigcup_{i} H_i\right) \le Tf < +\infty, \quad f \in C_c(X)$$

since $\mu^*(\bigcup_i H_i) = \sup\{Tg : g \prec \bigcup_i H_i\}$ for $g \leq f$.

- Proof of 3

 $\forall K \subset V, K \text{ compact}, V \text{ open}, \mu(K) \leq \mu(V), \text{ by the definition of the outer measure } \exists f \prec V \text{ such that}$

$$\mu^*(V) \le Tf + \frac{\varepsilon}{2}$$

We have supp $(f) = K \subset V$, so there exists U open $U \supset K$ such that $\mu^*(U) \le \mu^*(K) + \frac{\varepsilon}{2}$. By Urysohn's lemma, $\exists K < g < U$ and

$$\mu^*(V) < Tf + \frac{\varepsilon}{2} \leq Tg + \frac{\varepsilon}{2} \leq \mu^*(U) + \frac{\varepsilon}{2} \leq \mu^*(K) + \varepsilon$$

Therefore, $\mu^*(V) = \sup\{\mu^*(K) : K \subset V, K \text{ compact}\}.$

- Lemma

If $A, B \subset X$, $\exists U \supset A U$ open, $\exists V \supset B V$ open, such that $U \cap V = \emptyset$. Then $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$.

* Proof

For $\forall W$ open, $W \supset A \cup B$, take

$$\begin{cases} W_1 = W \cap A \\ W_2 = W \cap B \end{cases}$$

such that $W_1 \cap W_2 = \emptyset$.

Fact: f < W if and only if $f = f_1 + f_2$ where $f_1 < W_1$ and $f_2 < W_2$. Since $Tf = Tf_1 + Tf_2$ gives $\mu^*(W) = \mu^*(W_1) + \mu^*(W_2) \ge \mu^*(A) + \mu^*(B)$, we have

$$\mu^*(A) + \mu^*(B) \ge \mu^*(A \cup B) \ge \mu^*(A) + \mu^*(B)$$

- Lemma (Proof of 1) If for any A open, $\mu^*(E \cap A) + \mu^*(E \cap A^c) \le \mu^*(E)$, then μ is Borel.
 - * Proof

For any open set $V \supset E$, $\mu^*(V) \le \mu^*(E) + \frac{\varepsilon}{2}$. By 3, $V \cap A$ is open and $\exists K$ comapct with $K \subset V \cap A$ such that $\mu^*(V \cap A) \le \mu^*(K) + \frac{\varepsilon}{2}$. So

$$\mu^*(E \cap A) + \mu^*(E \cap A^c) \le \mu^*(V \cap A) + \mu^*(E \cap A^c) \le \frac{\varepsilon}{2} + \mu^*(K) + \mu^*(E \cap A^c)$$

Since $K \subset V \cap A \subset A$ and A open, we may find $K \subset W \subset \overline{W} \subset A$ where $K \subset W$ and $A^c \subset \overline{W}^c$. Therefore

$$\frac{\varepsilon}{2} + \mu^*(K \cup (E \cap A^c)) \le \frac{\varepsilon}{2} + \mu^*((V \cap A) \cup (V \cap A^c)) \le \frac{\varepsilon}{2} + \mu^*(V) \le \varepsilon + \mu^*(E)$$

Therefore $A \in \Lambda$, and $\mathcal{B} \subset \Lambda$.

Proof: Step 3 (Verify)

For any $f \in C_c(X)$, write $f(x) \in [a, b]$.

Take $P = \{a = y_0 < y_1 < \dots < y_{n-1} < y_n = b\}$ with $\ell(P) = \max\{y_i - y_{i-1} : i = 1, \dots, n\}$.

Then, take $A_i = \{x \in X : y_{i-1} < f(x) \le y_i\} \cap \text{supp}(f)$.

We have $\bigcup_i A_i = \text{supp}(f)$.

So for each A_i there is some V_i open where $V_i \supset A_i$, $f(x) < y_i + \varepsilon$, $\forall x \in V_i$, and

$$\mathsf{supp}(f) = \bigcup_i A_i \subset \bigcup_i V_i$$

By partition of unity, $\exists h_i \prec V_i$ such that $\sum_i h_i = 1$ in supp(f).

Therefore $f = \sum_{i} (h_i f)$ and $Tf = \sum_{i} T(\overline{h_i} f)$.

We want to show that $Tf \leq \int_X f d\mu$ since linarity will make the reverse true by taking -f.

Since $fh_i \leq (y_i + \varepsilon)h_i$,

$$T(h_{i}f) \leq (y_{i} + \varepsilon)Th_{i}$$

$$\leq (|a| + y_{i} + \varepsilon)Th_{i} - |a|Th_{i}$$

$$\leq (|a| + y_{i} + \varepsilon)\mu(V_{i}) - |a|Th_{i}$$

$$\leq y_{i-1}\mu(A_{i})$$

$$\leq \int_{A_{i}} f d\mu + c\varepsilon$$

By summing each term, we get

$$\sum_i T(h_i f) \le \int_X f \ d\mu + c\varepsilon$$

February 22, 2024

Fubini's Theorem

Product of measure spaces.

Example 1

Given m a Lebesgue measure, m_c a counting measure, $\chi_D(x,y)$, $\forall x \in [0,1]$,

$$\int \chi_D(x,y) \, dm_c(y) = \int_{[0,1]} \chi_{\{x=y\}}(y) \, dm_c(y) = \chi_{[0,1]}(x)$$

$$\int_{[0,1]} \int_{[0,1]} \chi_D(x,y) \, dm(y) dm(x) = \int_{[0,1]} \chi_{[0,1]} \, dm(x) = 1$$

And $\forall y \in [0,1]$,

$$\int_{[0,1]} \chi_D(x,y) \, dm(x) = \int \chi_{\{x=y\}} \, dm(x) = 0$$
$$\int_{[0,1]} \int_{[0,1]} \chi_D(x,y) \, dm(x) dm(y) = 0$$

Example 2

For

$$0=\alpha_1<\alpha_2<\cdots\to 1$$

and
$$g_n(x) = \frac{1}{\alpha_{n+1} - \alpha_n} \chi_{[\alpha_n, \alpha_{n+1}]}, x \in [0, 1].$$

1.
$$\int_{[0,1]} g_n(x) dm(x) = 1$$

2.
$$f(x,y) = \sum_{n=1}^{+\infty} (g_n(x) - g_{n+1}(x))g_n(y)$$

3.

$$\forall x \in [0,1], \quad \int_{[0,1]} f(x,y) \, dm(y)$$

$$\forall x \in [\alpha_n, \alpha_{n+1}], n > 1, \quad \int_{[0,1]} -g_n(x) g_{n-1}(y) + g_n(x) g_n(y) \, dm(y) = 0$$

$$\forall x \in [\alpha_1, \alpha_2], n = 1, \quad \int_{[0,1]} g_1(x) g_1(y) \, dm(y)$$

$$\int_{x,y} f(x,y) \, dm(y) = g_1(x)$$

$$\int_{[0,1]} \left(\int_{[0,1]} f(x,y) \, dm(y) \right) dm(x) = \int_{[0,1]} g(x) \, dm(x) = 1$$

For $\forall n \in [0,1], y \in [\alpha_n, \alpha_m]$

$$\int_{[0,1]} f(x,y) \, dm(x) = \left(\int (g_n(x) - g_{n+1}(x)) \, dm(x) \right) g_n(y) = 0$$

$$\int_{[0,1]} \left(\int_{[0,1]} f(x,y) \, dm(x) \right) dm(y) = 0$$

Therefore, with (X, Λ, μ) and (Y, Γ, ν) , $(x \times y, \Lambda \times \Gamma, \mu \times \nu)$? We want

$$\int_X \int_Y f(x,y) \, d\nu(y) d\mu(x) = \int_{X \times Y} f(x,y) \, dm(\mu \times \nu) = \int_Y \int_X f(x,y) \, d\mu(x) d\nu(y)$$

Definition: Elementary Set

Take $A \in \Lambda$, $B \in \Gamma$ and construct $R = A \times B \subset X \times Y$ a measurable rectangle.

Define $Q = \bigcup_{i=1}^{k} R_i$ where $\{R_i\}$ are finitely many disjoint, measurable rectangles.

Then $(\mu \times \nu)(R) = \mu(A)\nu(B)$.

Take $\Lambda \times \Gamma$ the σ -algebra generated by all measurable rectangles.

Definition: Monotone Class

A collection M of subsets is a monotone class if

1.
$$A_i \in M$$
, $A_i \subset A_{i+1} \Longrightarrow \bigcup_i A_i \in M$.

2.
$$A_i \in M$$
, $A_i \supset A_{i+1} \Longrightarrow \bigcap_i A_i \in M$.

Proposition:

Let M be the monotone class generated by the set E of all elementary sets, then $M = \Lambda \times \Gamma$.

Proof

 $M \subset \Lambda \times \Gamma$.

Then, $\forall P \subset X \times Y$, define $\Omega(P) = \{Q : P \setminus Q, Q \setminus P, P \cup Q \in M\}$ with

- 1. $Q \in \Omega(P)$ if and only i $P \in \Omega(Q)$.
- 2. $\Omega(P)$ is a monotone class.
- 3. If $P \in E$, then $E \subset \Omega(P)$. Therefore $M \subset \Omega(P)$.
- 4. So $\forall P \in M, M \subset \Omega(P)$ and $\forall P, Q \in M, P \setminus Q, Q \setminus P, P \cup Q \in M$.
- 5. $X \times Y \in E \in M$, so $\forall P \in M$, $P^c = X \times Y \setminus P \in M$.

Proposition:

If $E \in \Lambda \times \Gamma$, then $E_X = \{y : (x, y) \in E\} \in \Gamma$ and $E^Y = \{x : (x, y) \in E\} \in \Lambda$.

Proof

- 1. For any measurable rectangle $R = A \times B$, $R_X = B \in \Gamma$ and $R^Y = A \in \Lambda$.
- 2. For $(A_i)_X \in \Gamma$ and $(A_i)^Y \in \Lambda$, $(\bigcup_i A_i)_X \in \Gamma$ and $(\bigcup_i a_i)^Y \in \Lambda$.
- 3. For A with $A_X \in \Gamma$ and $A^Y \in \Lambda$, $(A^c)_X \in \Gamma$ and $(A^c)^Y \in \Lambda$.

Product Measure on Elementary Sets

Given $\mu \times \nu$, $(\mu \times \nu)(R) = \mu \times \nu$, $(A \times B) = \mu(A)\nu(B)$.

$$\int_{X\times Y} \chi_{A\times B}(x,y) \ d(\mu\times \nu) = (\mu\times \nu)(A\times B) = \mu(A)\nu(B)$$

Define

$$\phi(x) = \int_{Y} \chi_{A \times B}(x, y) \, d\nu(y) = \nu(B) \chi_{A}$$

$$\psi(y) = \int_{X} \chi_{A \times B}(x, y) \, d\mu(x) = \mu(A) \chi_{B}$$

so

$$\int_X \phi \ d\mu = \int_X \int_V \chi_{A \times B} \ d\nu d\mu = \mu(A)\nu(B) = \int_V \int_X \chi_{A \times B} \ d\mu d\nu = \int_V \psi(y) \ d\nu$$

Now $\forall P \in \Lambda \times \Gamma$.

$$\phi(x) = \int_{Y} \chi_{P}(x, y) \, d\nu(y) = \int_{Y} \chi_{P_{x}} \, d\nu$$

$$\psi(y) = \int_{X} \chi_{P}(x, y) \, d\mu(x) = \int_{X} \chi_{P^{y}} \, d\mu$$

SO

$$(*) \quad (\mu \times \nu)(P) = \int_X \int_Y \chi_P \, d\nu d\mu = \int_X \phi \, d\mu = \int_Y \int_X \chi_P \, d\mu d\nu = \int_Y \psi \, d\nu$$

Theorem:

On (X, Λ, μ) and (Y, Γ, ν) σ -finite, the equality * holds. Recall that a space is σ -finite if $X = \bigcup_i X_i, X_i \in \Lambda, \mu(X_i) < +\infty$. One may assume $X_i \subset X_{i+1}$.

Proof

- 1. *E* ok!
- 2. $P_i \in \Lambda \times \Gamma$, $P_i \subset P_{i+1}$, and the equality of the product measure holds for any i.

If $P_i \subset P_{i+1}$, $\chi_{P_i} \leq \chi_{P_{i+1}}$, $\phi_i \leq \phi_{i+1}$, $\psi_i \leq \psi_{i+1}$, $\phi_i \to \phi$ and $\psi_i \to \psi$. Apply monotone convergence theorem for integration.

3. $P_i \in \Lambda \times \Gamma = M$, $P_i \supset P_{i+1}$, $\int \phi_1 \ d\mu < +\infty$, and $\int \psi_1 \ d\nu < +\infty$.

If 1, 2 and 3 hold, then $M = \Lambda \times \Gamma$.

4. $X = \bigcup_k X_k, Y = \bigcup_k Y_k, \Lambda_k = \{A \cap X_k : A \in \Lambda\}, \Gamma_k = \{B \cap Y_k : B \in \Gamma\}.$

Then take $\Lambda_k \times \Gamma_k = M_k$. By 2, $M_k \to M$ and 4 implies 3 holds.

Definition: Product Measure

Define

$$(\mu \times \nu)(P) = \int_X \phi \, d\mu + \int_Y \psi \, d\nu = \int_X \int_Y \chi_P \, d\nu d\mu = \int_Y \int_X \chi_P \, d\mu d\nu$$

Then

$$\int_{X\times Y} \chi_P \, d(\mu \times \nu)$$

On $(X \times Y, \Lambda \times \Gamma, \mu \times \nu)$.

Proposition:

If f(x, y) is measurable, then $\forall y \in Y$, $f_v(x)$ is measurable and $\forall x \in X$, $f_x(y)$ is measurable.

Proof

- 1. χ_P measurable gives $P \in \Lambda \times \Gamma$ which implies $P_x \in \Gamma$ for all $x \in X$ and $P^y \in \Lambda$ for any $y \in Y$.
- 2. $\phi_n(x,y) \to f(x,y)$ pointwise on $X \times Y$, then $(\phi_n)_x(y) \to f_x(y)$ in Y and $(\phi_n)_y(x) \to f_y(x)$ in X for fixed $x \in X$, $y \in Y$ respectively.

Therefore,

$$\phi_n = \sum_{j=1}^k \alpha_j \chi_{P_j} \quad \text{and} \quad \forall x \in X, \ (\phi_n)_x(y) = \sum_{j=1}^k \alpha_j \chi_{(P_j)_x}$$

$$\forall y \in Y, \ (\phi_n)_y(x) = \sum_{j=1}^k \alpha_j \chi_{(P_j)^y}$$

Theorem: Fubini Theorem

Let (X, Λ, μ) and (Y, Γ, ν) be σ -finite measure spaces, and take f(x, y) measurable on $(X \times Y, \Lambda \times \Gamma, \mu \times \nu)$. Assume also that $f \ge 0$.

$$\int_{X} \left(\int_{Y} f(x, y) \, d\nu(y) \right) d\mu(x) = \int_{X \times Y} f(x, y) \, d(\mu \times \nu) = \int_{Y} \left(\int_{X} f(xy) \, d\mu(x) \right) d\nu(y)$$

Proof

There exist ϕ_n simple such that $\phi_n \to f$ monotonically.

Corollary

When f assumes negative values, if

$$\int_{X} \int_{Y} |f(x,y)| \, d\nu(y) d\mu(x) < +\infty$$

then Fubini holds for f. Likewise when

$$\int_{X\times Y} |f(x,y)| \ d(\mu \times \nu) < +\infty$$

February 27, 2024

Definition: Lp Space

For (X, Λ, μ) a complete measure space,

$$L^p_{\mu}(x) = \left\{ f : \int_X \left| f \right|^p d\mu < +\infty \right\}$$

where $1 \le p \le +\infty$ and we identify [f] = [g] if $f = g \mu$ -a.e.

Definition: Banach Space

A normed, complete vector space.

Definition: Convec Funxtions

A function ϕ is convex if $((1-\lambda)+\lambda)\phi((1-\lambda)x+\lambda y) \leq (1-\lambda)\phi(x)+\lambda\phi(y)$,

Equivalently,

$$\frac{\left[\phi((1-\lambda)x+\lambda y)-\phi(x)\right]}{\lambda(y-x)} \le \frac{\left[\phi(y)-\phi((1-\lambda)x+\lambda y)\right]}{(1-\lambda)(y-x)}$$
$$\frac{\phi(z)-\phi(x)}{z-x} \le \frac{\phi(y)-\phi(z)}{y-z}$$
$$\phi'(a) \le \phi'(b)$$

Theorem:

If ϕ is differentiable, then ϕ is convex if and only if ϕ' is non decreasing. And if ϕ is twice differentiable, ϕ is convex if and only if $\phi'' \ge 0$.

Corollary

 e^x is convex, since

$$e^{(1-\lambda)x+\lambda y} \le (1-\lambda)e^x + e^y$$

Then if $e^x = a$ and $e^y = b$

$$a^{1-\lambda}b^{\lambda} \leq (1-\lambda)a + \lambda b$$

for $\lambda \in (0,1)$. If $\lambda = \frac{1}{2}$, then $\sqrt{ab} \leq \frac{a+b}{2}$.

Theorem: Jensen's Inequality

For ϕ convex and (X, Λ, μ) with $\mu(X) = 1$,

$$\phi\bigg(\int_X f\ d\mu\bigg) \leq \int_X \phi \circ f\ d\mu$$

where the range of f is in the domain of ϕ . Compare: $\phi\left(\frac{a+b}{2}\right) \leq \frac{1}{2}(\phi(a)+\phi(b))$.

Proof

Write $t = \int_X f d\mu$. Then $\forall a < t < b$,

$$\frac{\phi(t) - \phi(a)}{t - a} \le \frac{\phi(b) - \phi(t)}{b - t}$$

Set $\beta = \sup_{a} \frac{\phi(t) - \phi(a)}{t - a}$, then

$$\frac{\phi(t) - \phi(a)}{t - a} \le \beta$$
$$\phi(t) \le \beta(t - a) + \phi(a)$$

$$\frac{\phi(b) - \phi(t)}{b - t} \ge \beta$$
$$\phi(b) - \phi(t) \ge \beta(b - t)$$
$$\phi(t) \le \phi(b) + \beta(t - b)$$

Therefore

$$\phi(t) \le \phi(s) + \beta(t - s), \quad \forall s$$

$$\phi(t) \le \phi \circ f + \beta(t - s), \quad \forall x \in X$$

$$\phi(t) \le \int_{X} \phi \circ f \, d\mu + \beta \left(t - \int_{x}^{0} f \, d\mu\right)$$

$$\phi\left(\int_{X} f \, d\mu\right) \le \int_{X} \phi \circ f \, d\mu$$

Compare: $e^{\int_X f d\mu} \le \int_X e^{f(x)} d\mu$.

Theorem: Holder Inequality

On (X, Λ, μ) with $1 \le p \le +\infty$,

$$\left| \int_{X} f g \, d\mu \right| \leq \left(\int_{X} \left| f \right|^{p} \right)^{\frac{1}{p}} \left(\int_{X} \left| g \right|^{q} \right)^{\frac{1}{q}}$$

where $\frac{1}{p} + \frac{1}{q} = 1$, $p = 1 \implies q = \infty$ and $p = \infty \implies q = 1$.

Proof

Take
$$||f||_p = (\int_X |f|^p d\mu)^{\frac{1}{p}}$$
.
For $p = 1$, $q = \infty$ or $p = \infty$, $q = 1$,

$$\left|\int_X fg\ d\mu\right| \leq |f||g|\ d\mu \leq ||g||_{\infty} \int_X |f|\ d\mu = ||f||_1||g||_{\infty}$$

We have $\frac{1}{p} + \frac{1}{q} = 1$ and $1 - \lambda = \frac{1}{p}$ while $\lambda = \frac{1}{q}$, so

$$\frac{|f|}{||f||_{p}} \cdot \frac{|g|}{||g||_{q}} = \left(\frac{|f|^{p}}{||f||_{p}}\right)^{\frac{1}{p}} \left(\frac{|g|^{q}}{||g||_{q}}\right)^{\frac{1}{q}}$$
$$= \left(\frac{|f|^{p}}{||f||_{p}}\right)^{\frac{1}{p}} \left(\frac{|g|^{q}}{||g||_{q}}\right)^{\frac{1}{q}}$$

For

$$\begin{split} \left| \int_{X} f g \, d\mu \right| &\leq \int_{X} (|f||g|) \, d\mu \\ \int_{X} \frac{|f|}{||f||_{p}} \cdot \frac{|g|}{||g||_{q}} &\leq \int_{X} \frac{1}{p} \frac{|f|^{p}}{||f||_{p}^{p}} + \frac{1}{q} \frac{|g|^{q}}{||g||_{q}^{q}} \\ \frac{\int_{X} |fg| \, d\mu}{||f||_{p} ||g||_{q}} &\leq \frac{1}{p} \frac{\int_{X} |f|^{p} \, d\mu}{\int_{X} |f|^{p} \, d\mu} + \frac{1}{q} \frac{\int_{X} |g|^{q} \, d\mu}{\int_{X} |g|^{q} \, d\mu} \\ &\leq \frac{1}{p} + \frac{1}{q} \end{split}$$

Theorem: Minkowsky Inequality

On (X, Λ, μ) with $1 \le p \le +\infty$,

$$\left(\int_{X} |f+g|^{p} d\mu\right)^{\frac{1}{p}} \leq \left(\int_{X} |f|^{p} d\mu\right)^{\frac{1}{p}} + \leq \left(\int_{X} |g|^{p} d\mu\right)^{\frac{1}{p}}$$

Proof

If p = 1,

$$\begin{split} \int_X |f+g| \ d\mu &\leq \int_X |f| \ d\mu + \int_X |g| \ d\mu \\ ||f+g||_{L^\infty} &\leq ||f||_\infty + ||g||_\infty \end{split}$$

For $1 , <math>1 < q < +\infty$, $\frac{1}{p} + \frac{1}{q} = 1$,

$$\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p} \quad \text{and} \quad \frac{p}{p+1} = q$$

therefore

$$\begin{split} ||f+g||_{p}^{p} &= \int_{X} |f+g|^{p} \, d\mu = \int_{X} |f+g|^{p-1} |f+g| \, d\mu \\ &\leq \int_{X} |f+g|^{p-1} |f| \, d\mu + \int_{X} |f+g|^{p-1} |g| \, d\mu \\ &\leq \left(\int_{X} |f+g|^{p-1} \frac{p}{p-1} \, d\mu \right)^{\frac{p-1}{p}} \left(\int_{X} |f|^{p} \, d\mu \right)^{\frac{1}{p}} + \left(\int_{X} |f+g|^{p-1} \frac{p}{p-1} \, d\mu \right)^{\frac{p-1}{p}} \left(\int_{X} |g|^{p} \, d\mu \right)^{\frac{1}{p}} \\ &= ||f+g||_{p}^{p-1} (||f||_{p} + ||g||_{p}) \end{split}$$

Theorem:

 $L_{\mu}^{p}(x)$ is a Banach space with $1 \le p \le +\infty$.

Proof

It suffices to verify $L_{\mu}^{p}(x)$ is complete, but the $p = +\infty$ case must be considered separately.

For $1 \le p < +\infty$, let $\{f_n\}$ with $f_n \in L^p_\mu(x)$ be Cauchy.

We want to show that $\exists f \in L^p_\mu(x)$ such that $||f_n - f||_p \to 0$ as $n \to +\infty$.

Recall: a sequence is cauchy if $\forall \varepsilon > 0$, $\exists k \in \mathbb{N}$ such that $||f_n - f_m||_p < \varepsilon$, $\forall n, m \ge k$.

Pick f_{n_k} such that $||f_{n_{i+1}} - f_{n_i}||_p \le 2^{-i}$.

Take $g_k = \sum_{i=1}^k |f_{n_{i+1}}(x) - f_{n_i}(x)|$ and define $g(x) = \sum_{i=1}^\infty |f_{n_{i+1}}(x) - f_n(x)|$.

By the Minkowski inequality,

$$||g_k||_p \le \sum_{i=1}^k ||f_{n_{i+1}}f_{n_i}||_p \le 1$$

Therefore $\int_X |g_k|^p d\mu \le 1$, $\forall k$.

Then, by Fatou's Lemma

$$\int_{X} |g|^{p} d\mu \le 1$$

so g is μ -a.e. finite. So

$$s_k(x) = \sum_{i=1}^k \left(f_{n_{i+1}}(x) - f_{n_i}(x) \right) \to s(x) = \sum_{i=1}^\infty \left(f_{n_{i+1}}(x) - f_{n_i}(x) \right)$$

Therefore, by dominated convergence,

$$s_k \to s \text{ in } L^p_\mu(x)$$
 and $f_{n_k} \to s + f_{n_i}(x) = f(x) \text{ in } L^p_\mu(x)$

For $p = +\infty$, let

$$B_k = \{x : |f_k(x)| > ||f_k||_{\infty} \}$$

$$B_{m,n} = \{x : |f_m(x) - f_n(x)| > ||f_m - f_n||_{\infty} \}$$

Then $B = (\bigcup_k B_k) \cup (\bigcup_{m,n} B_{m,n})$ and $\mu(B) = 0$. Examining the convergence on $X \setminus B$ completes the proof.

Theorem:

Let (X, Λ, μ) be a complete measure space with X Locally Compact Hausdorff and μ Radon. Then $C_c(X) \subset L^p_\mu(x)$, $1 \le p < +\infty$.

Remark

Write $||f||_C = \sup_X |f(x)|$, and take $C_0(X)$ the collection of continuous functions vanishing at infinity to be the completion.

Proof

Step 1: $s_n(x) \to f$, where $s_n = \sum_{i=1}^k \alpha_i \chi_{A_i} \in L^p_\mu(x)$. Step 2: If f is bounded, and $\mu(\text{supp}(f)) < +\infty$, we may use Vitali-Lusin.

February 29, 2024

Recall: Lp Space is Banach

Given (X, Λ, μ) , $L_{\mu}^{p}(x)$ is a Banach space given $||f||_{p} = (\int_{X} |f|^{p} d\mu)^{1/p}$, $1 \le p \le +\infty$ and $||f||_{\infty} = \inf\{\mu : \mu(\{x : |f| > \mu\}) = 0\}$.

Definition: Linear Operator

Given vector spaces $V \to W$, $\alpha, \beta \in \mathbb{R}$, and $u, v \in V$, the map (or operator) $T: V \to W$ is linear if

$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$$

Definition: Linear Functional

If $L: V \to \mathbb{R}$ for linear operator L, then L is called a linear functional.

Definition: Operator Norm

For normed vector spaces, we have $||T|| = \sup\{||Tx|| : ||x|| \le 1\}$.

Definition: Bounded Linear Functional

A linear functional $L: V \to \mathbb{R}$ which sastisfies $|L(v)| \le ||L|| ||v||$.

Definition: Dual Space

If V is a normed vector space, then the dual space V^* is the collection of all bounded linear functionals $L: V \to \mathbb{R}$.

Theorem:

$$(L^p)^* = L^q, \, \frac{1}{p} + \frac{1}{q} = 1, \, 1 < p, \, q < +\infty.$$

Proof

The general proof will require Radon-Nikodym.

In this case, $\forall g \in L^q \Longrightarrow L_g : L^p \to \mathbb{R}$. Take $\phi(g) = L_g : L^q \to (L^p)^*$ so $L_g = \int_X f \cdot g \ d\mu$, $\forall f \in L^p$. Then

$$|L_g(f)| = \left| \int_X f \cdot g \, d\mu \right| \le \int_X |f| |g| \, d\mu \le ||g||_q ||f||_p$$

So $||L_g|| \le ||g||_q$. We claim that $||L_g|| = ||g||_q$. Take

$$f = \frac{\text{sign}(g)|g|^{q-1}}{||g||_q^{q-1}}$$

and, since, $||g||_q^q = \int_X |g|^q d\mu$ and q = p(q-1),

$$\int_{X} |f|^{p} d\mu = \int_{X} \frac{|g|^{p(q-1)}}{||g||_{q}^{p(q-1)}} d\mu = \frac{\int_{X} |g|^{q} d\mu}{\int_{X} |g|^{q} d\mu} = 1$$

Therefore,

$$L_g(f) = \int_X f \cdot g \, d\mu = \frac{\int_X |g|^q \, d\mu}{||g||_q^{q-1}} = ||g||_q$$

Since L_g is a linear operator, $L_g f_1 - L_g f_2 = L_g (f_1 - f_2)$ and $L_{g_1}(f) + L_{g_2}(f) = L_{g_1 + g_2}(f)$. That is, $||L_g|| = ||g||_q$ and L_g is injective. We claim that $L_G : L^q \to (L^p)^*$ is an isometric isomorphism. Step 1 of proving isometry is that $\forall L \in (L^p)^*$, $\exists v$ such that $L(f) = \int_X f \ dv$, $\forall f \in L^p$. Step 2, Radon-Nikodym, $\exists g \in L^q$ where $dv = g d\mu$. That is $\frac{dv}{d\mu} = g$.

Useful Inequalities

Chebyshev's Inequality

Suppose $f \in L^p$, then

$$\mu(\lbrace x: |f| > \alpha\rbrace) \le \frac{||f||_p^p}{\alpha^p}$$

Proof

$$||f||_{p}^{p} = \int_{X} |f|^{p} d\mu \ge \int_{\{x:|f|>\alpha\}} |f|^{p} d\mu \ge \int_{\{x:|f|>\alpha\}} \alpha^{p} d\mu$$

Minkowski's Inequality

$$\left| \left| \int_{Y} f(x, y) \, dv(y) \right| \right|_{p} \le \int_{Y} \left| \left| f(x, y) \right| \right|_{p} \, dv(y)$$

Equivalently

$$\left(\int_{X} \left| \int_{Y} f(x, y) \, d\nu(y) \right|^{p} \, d\mu(x) \right)^{\frac{1}{p}} \le \int_{Y} \left(\int_{X} \left| f(x, y) \right|^{p} \, d\mu(x) \right)^{\frac{1}{p}} \, d\nu(y)$$

Recall

$$\int_{X} |fg| \, d\mu \le ||f||_p ||g||_q$$

for
$$\frac{1}{p} + \frac{1}{q} = 1$$
.
Then

$$||f||_p \le ||f||_r^{\theta} ||f||_s^{1-\theta}$$

if $\frac{1}{p} = \frac{\theta}{r} + \frac{1-\theta}{s}$ for $r . Since <math>p\left(\frac{\theta}{r} + \frac{1-\theta}{s}\right) = 1$,

$$\frac{1}{\frac{r}{p\theta}} + \frac{1}{\frac{s}{p(1-\theta)}} = 1$$

and

$$\int_{X} |f|^{p} d\mu = \left(\int_{X} |f|^{p\theta} |f|^{p(1-\theta)} \right)^{\frac{1}{p}} \le \left(\int_{X} |f|^{r} \right)^{\frac{\theta}{r}} \left(\int_{X} |f|^{s} \right)^{\frac{1-\theta}{s}} = ||f||_{r}^{\theta} ||f||_{s}^{1-\theta}$$

For r ,

$$\left(\int_{X} |f|^{p}\right)^{\frac{1}{p}} = \left(\int_{X} |f|^{r} |f|^{p-r}\right)^{\frac{1}{p}} \leq ||f||_{\infty}^{1-\frac{r}{p}} \left(\left(\int_{X} |f|^{r}\right)^{\frac{1}{r}}\right)^{\frac{r}{p}} = ||f||_{\infty}^{\frac{r}{p}} ||f||_{\infty}^{1-\frac{r}{p}}$$

Homework 6 Problem 5

$$\int_X f \ d\mu = \sup \left\{ \int_X s \ d\mu : 0 \le s \le f \right\}$$

SO

$$\int_X f \ d\mu - \frac{1}{n} \le \int_X s_n \ d\mu \le \int_X f \ d\mu$$

Alternatively, $\forall f \ge 0$, $\exists s_n \text{ simple } 0 \le s_n \le f$, $0 \le s_n \le s_{n+1}$. So

$$s_n = \sum \frac{k}{2^i} \chi_{A_{n,k}}$$

gives

$$\int_X s_n \, d\mu \to \int_X f \, d\mu$$

by monotone convergence theorem.

Homework 6 Problem 6

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

was shown to be Vitali continuous, so

$$F(x) - F(y) = \left| \int_{(x,y)} f(t) \, dt \right| < \varepsilon$$

when $\mu((x, y)) = y - x < \delta$.

Homework 6 Problem 7

Given

$$\int_{\mathbb{R}} f_n \, dm \to \int_{\mathbb{R}} f \, dm$$

and $A \subset \mathbb{R}$, Fatou's Lemma gives

$$\int_{A} f \, dm \le \liminf_{n \to +\infty} \int_{A} f_{n} \, dm$$

$$\int_{A^{c}} f \, dm \le \liminf_{n \to +\infty} \left(\int_{\mathbb{R}} f_{n} \, dm - \int_{A} f_{n} \, dm \right)$$

Therefore

$$\int_{\mathbb{R}} f \ dm - \int_{A} f \ dm \le \int_{R} f \ dm - \limsup_{n \to +\infty} \int_{A} f_n \ dm$$

Homework 6 Problem 8

Given

$$\int_{\mathbb{R}} g(x)(f(x+t) - f(x)) dx \to 0$$

with f, g integrable and $|g| \le M$.

Part 1

If f(x) is continuous with compact support, we would have

 $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $|f(x+t) - f(x)| < \frac{\varepsilon}{2kM}$, $\forall |f| < \delta$ where supp(f)[-k, k]. Then, $\forall \varepsilon > 0$, $\exists \delta > 0$,

$$\left| \int_{\mathbb{R}} g(x)(f(x+t) - f(x)) \, dx \right| \le \int_{\mathbb{R}} |g(x)| |f(x+t) - f(x)| \, dx$$

$$\le M \int_{-k}^{k} |f(x+t) - f(x)| \, dx$$

$$\le M(2k) \frac{\varepsilon}{2kM}$$

$$= \varepsilon$$

when $|f| < \delta$. Part 2

 $||f-g||_{L^1} \leq \frac{\varepsilon}{2M}$, we have

$$\left| \int_{\mathbb{R}} g(x)(f(x+t) - f(x)) \, dx - \int_{\mathbb{R}} g(x)(f(x+t) - f(x)) \, dx \right| = \left| \int_{\mathbb{R}} g(x)((f(x+t) - f(x)) - (f(x) - g(x))) \, dx \right|$$

$$\leq M \int_{\mathbb{R}} (|f(x+t) - g(x+t)| + |f(x) - g(x)|)$$

$$\leq 2M ||f - g||_{L^{1}(\mathbb{R})}$$

$$\leq \frac{\varepsilon}{-}$$

Part 3

We need $C_c(\mathbb{R}) \subset L^1(\mathbb{R})$ to be dense.

We may patch our functions with Urysohn's Lemma or, more explicitly,

Since $f_n = f\chi_{[-n,n]} \xrightarrow{n \to \infty} f$, $f_n \to f$ in L^1 by dominated convergence theorem. Then

$$\phi_n = \begin{cases} f & |f| \le n \\ n & f \ge n \to f \\ -n & f \le -n \end{cases}$$

Homework 7

- 1: Calculate.
- 2: Fatou's Lemma to $g \pm f_n$.
- 3: Part 3 of Homework 6 Problem 8.
- 5: Use monotone class and monotone convergence.
- 7: Do the rectangles.

Problem 4

Part 1

With Riemann integration, take

$$\int_{a}^{b} f(x)\sin(nx) \, dx = \int_{a}^{b} f(x)\frac{1}{n}d(-\cos(nx))$$

$$= \frac{1}{n}f(x)(-\cos(nx))|_{a}^{b} + \frac{1}{n}\int_{a}^{b} f'(x)\cos(nx) \, dx$$

and $\int_a^b |f'(x)| dx < +\infty$. Part 2

$$\left| \int f(x) \sin(nx) \, dx - \int g(x) \sin(nx) \right| \le \int |f - g| \, dx$$

Part 3

Density. We need smooth

$$h(x) = \int g_n(x - y) f(x) \, dy$$

Problem 6

Write

$$\int_0^\infty \frac{\sin(x)}{x} dx = \int_0^\infty \int_0^\infty e^{-tx} \sin(x) dt dx = \int_0^\infty \int_0^\infty e^{-tx} \sin(x) dx dt$$

By integration by parts,

$$\int_0^\infty \left(\int_0^\infty e^{-tx} \sin(x) \, dx \right) dt = \int_0^\infty \frac{1}{1+t^2} \, dt$$

March 5, 2024

Definition: Signed Measure

A function $\nu:\Lambda\to\mathbb{R},\ \forall\, A\in\Lambda,\ \nu(A)\in\mathbb{R}$ which is countably additive (i.e. if $A_i\cap A_j=\emptyset$ then $\nu(\bigcup A_i)=\sum \nu(A_i)$).

Remarks

- 1. $v: \Lambda \to \mathbb{R}_+ = \{r \in \mathbb{R} : r \ge 0\}$ is a signed measure and a finite measure.
- 2. $f \in L^1_{\mu}(x)$, (X, Λ, μ) , $v(A) = \int_A f d\mu$.

Lemma: Signed Measure is Bounded from Above

On (X, Λ) with ν a signed measure, $\exists M > 0$ such that $|\nu(A)| \leq M$, $\forall A \in \Lambda$.

Proof

Assume, for sake of contradiction, that there is no such M. Claim: Then $\exists E \in \Lambda$ such that v(E) > 1 and $v(A) \le v(E) + 1$, $\forall A \in E$.

· Proof of Claim

Assume, again for sake of contradiction, that $\forall E \in \Lambda$ such that v(E) > 1, $\exists A \subset E$ such that v(A) > v(E) + 1 > 1. Then there exists $E_{i+1} \subset E_i \subset \cdots \subset E$ with $v(E_{i+1}) > v(E_i) + 1$. This gives

$$E \setminus \bigcap_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} E_{i-1} \setminus E_i$$

but since $v(E_{i-1} \setminus E_i) = v(E_{i-1}) - v(E_i) < -1$,

$$v\left(E\setminus\bigcap_{i=1}^{\infty}E_{i}\right)=\sum_{i=1}^{\infty}v\left(E_{i-1}\setminus E_{i}\right)=-\infty$$

a contradiction.

· By the Claim

$$\exists E_n \in A \text{ with } \nu(E_n) > n + \sum_{i=1}^{n-1} \nu(E_i) \text{ and } \nu(A) \leq \nu(E_n) + 1, \ \forall \ A \subset E_n.$$
 For $A_i \subset E_i \cap E_n \subset E_n$ with $A_i \cap A_j = \emptyset$, we have $\bigcup_{i=1}^{n-1} A_i = \bigcup_{i=1}^{n-1} (E_i \cap E_n)$, so

$$\left(\bigcup_{n=1}^{\infty} E_{n}\right) = v\left(\bigcup_{n=1}^{\infty} \left(E_{n} \setminus \bigcup_{i=1}^{n-1} E_{i}\right)\right)$$

$$= \sum_{n=1}^{\infty} v\left(E_{n} \setminus \bigcup_{i=1}^{n-1} E_{i}\right)$$

$$= \sum_{n=1}^{\infty} \left[v(E_{n}) - v\left(E_{n} \cap \left(\bigcup_{i=1}^{n-1} E_{i}\right)\right)\right]$$

$$\geq \sum_{n=1}^{\infty} \left[v(E_{n}) - \sum_{i=1}^{n-1} (v(E_{n}) + 1)\right]$$

$$\geq \sum_{n=1}^{\infty} 1$$

$$\geq \infty$$

a contradiction.

Definition: Variation

$$|v|(A) = \sup \left\{ \sum_{i} |v(E_i)| : \{E_i\} \text{ is a partition of } A \right\}$$

Definition: Total Variation

$$||v|| = |v|(X)$$

Lemma: Variation is a Finite Measure

Given (X, Λ) and ν a signed measure, $(X, \Lambda, |\nu|)$ is a finite measure space.

Proof

Monotonicity is given by the definition. For finite, we claim $|\nu|(A) \le 2M$, $\forall A \in \Lambda$. By the definition, $\exists \{E_i\}$ a partition of A such that

$$|v|(A) \le \sum_{i} |v(E_{i})| + \varepsilon$$

$$= \sum_{v(E_{i})>0} v(E_{i}) - \sum_{v(E_{i})<0} v(E_{i}) + \varepsilon$$

$$= v \left(\bigcup_{v(E_{i})>0} E_{i}\right) - v \left(\bigcup_{v(E_{i})<0} E_{i}\right) + \varepsilon$$

$$\le 2M + \varepsilon$$

For countable additivity, take $\{A_i\}\subset \Lambda$ a countably disjoint collection. Then for all i, $\exists \left\{E_j^i\right\}_i$ a partition of A_i such that

$$|v|(A_i) \le \sum_{i} |v(E_j^i)| + 2^{-i+1} \varepsilon$$

and where $\left\{E_{j}^{i}\right\}_{\substack{j=1,\ldots,\infty\\i=1,\ldots,k}}$ is a partition for $\bigcup_{i=1}^{k}A_{i}$,

$$\sum_{i=1}^{k} |v|(A_i) \le \left(\sum_{i=1}^{k} \sum_{j} |v(E_j^i)|\right) + \varepsilon$$

$$\le |v| \left(\bigcup_{i=1}^{k} A_i\right) + \varepsilon$$

$$\le |v| \left(\bigcup_{i=1}^{\infty} A_i\right) + \varepsilon$$

So $\sum_{i=1}^{\infty} |v|(A_i) \le |v| \left(\bigcup_{i=1}^{\infty} A_i\right)$. Then, given $\{E_i\}$ a partition of $\bigcup_{i=1}^{\infty} A_i$ such that

$$\left|v\left(\bigcup_{i=1}^{\infty}A_{i}\right)\leq\sum_{k}\left|v(E_{k})\right|+\varepsilon$$

we have that $\{A_i \cap E_k\}_k$ partitions A_i . So

$$|v|(A_i) \ge \sum_{i} \sum_{k} |v(A_i \cap E_k)|$$

$$= \sum_{k} \sum_{i} |v(A_i \cap E_k)|$$

$$\ge \sum_{k} \left| \sum_{i} v(A_i \cap E_k) \right|$$

$$= \sum_{k} |v(E_k)|$$

$$\ge |v| \left(\bigcup_{i=1}^{\infty} A_i \right) - \varepsilon$$

Therefore $\sum_{i=1}^{\infty} |v|(A_i) = |v| (\bigcup_{i=1}^{\infty} A_i)$.

Theorem: Jordan Decomposition

For any (X, Λ) with v a signed measure, we have two finite measures v^+ and v^- such that $v = v^+ - v^-$.

Proof

Set
$$v \le v^+ = \frac{1}{2}(|v| + v) \le |v|$$
 and $v^- = \frac{1}{2}(|v| - v) \le |v|$.

Lemma:

$$v^{+}(A) = \sup\{v(F) : F \subset A\} \text{ and } v^{-} = -\inf\{v(F) : F \subset A\}.$$

Proof

$$v(F) \le v^{+}(F) \le v^{+}(A)$$
 and $\sup\{v(F) : F \subset A\} \le v^{+}(A)$

Then, if $\{B,C\}$ is a partition of A for positive and negative values,

$$|v|(A) \le v(B) - v(C) + \varepsilon$$
 and $v(A) = v(B) - v(C)$

therefore $v^+(A) \le v(B) + \frac{\varepsilon}{2} \le \sup\{v(F) : F \subset A\} + \frac{\varepsilon}{2} \text{ and } v^+(A) \le \sup\{v(F) : F \subset A\}.$

Theorem: Hahn Decomposition

For any (X, Λ) with ν a signed measure, we have $X = E \cup F$, $E \cap F = \emptyset$, and $\nu(A) \ge 0$ for $A \subset E$ while $\nu(A) \le 0$ for $A \subset F$.

Proof

We have $v^+(X) = \sup\{v(A) : A \subset X\}$, so $\exists A_n$ such that $v^+(x) - 2^{-n} \le v(A_n) \le v^+(X)$. For $i \ge n+1$, since $v\left(A_i \cap \bigcup_{k=n}^{i-1} A_k\right) \le v^+\left(A_i \cap \bigcup_{k=n}^{i-1} A_k\right) \le v^+(X)$,

$$v\left(A_i \setminus \bigcup_{k=n}^{i-1} A_k\right) = v(A_i) - v\left(A_i \cap \bigcup_{k=n}^{i-1} A_k\right)$$
$$\geq v^+(X) - 2^{-i} - v^+(X)$$
$$\geq -2^{-i}$$

so $v\left(\bigcup_{i=n}^{\infty}A_i\right) \ge v(A_n) + v\left(\bigcup_{i=n+1}^{\infty}\left(A_i\setminus\bigcup_{k=n}^{i-1}A_k\right)\right) \ge v^+(X) - 2^{-n}$. Take $E = \bigcap_{n=1}^{\infty}\bigcup_{i=n}^{\infty}A_i$, and we claim that $v(E) = v^+(X)$.

· Proof of Claim

$$v^+(X) \ge v(E) = v\left(\bigcup_{i=n}^{\infty} A_i\right) - v\left(\bigcup_{i=n}^{\infty} A_i \setminus E\right) \ge v^+(X) - 2^{-n}$$

· Verify

$$v^{+}(X) = v(E) = v(A) + v(E \setminus A) \le v(A) + v^{+}(E \setminus A) \le v(A) + v^{+}(X)$$

such that $v(A) \ge 0$.

Then take $F = E^c$. For all $A \subset F$,

$$v^{+}(X) \ge v^{+}(E \cup A) \ge v(E \cup A) = v(E) + v(A) = v^{+}(X) + v(A)$$

such that $v(A) \leq 0$.

Remark

On (X, Λ, μ) with $f \in L^1_{\mu}(X)$

$$v(A) = \int_{A} f \, d\mu$$
$$|v|(A) = \int_{A} |f| \, d\mu$$
$$v^{+}(A) = \int_{A} f^{+} \, d\mu$$
$$v^{-}(A) = \int_{A} f^{-} \, d\mu$$

so $v = v^+ - v^-$ and $X = \{x : f(x) \ge 0\} \cup \{x : f(x) < 0\}.$

Example: Point Charge

For $x_0 \in X$,

$$v(A) = \begin{cases} 1 & \text{if } x_0 \in A \\ 0 & \text{otherwise} \end{cases}$$

Then $v(A) \neq \int_A f d\mu$ for any $f \in L^1_{\mu}(X)$.

Example: Cantor Function

Also called the double stairs. A function ϕ with the graph

For $\phi \in C$, we have $\phi(r) = \lim_{\substack{x \to r \\ x \in C}} \phi(x)$ and $\mu_{\phi}((a,b)) = \phi(b) - \phi(a)$.

Furthermore, $\mu_{\phi}(C) = 1$ and $\mu(C^c) = 0$.

The conclusion is that one necessary condition is v(A) = 0 if $\mu(A) = 0$.

March 7, 2024

Recall: Signed Measure

On (X, Λ) with Λ a σ -algebra, a function $\nu : \Lambda \to \mathbb{R}$ such that

$$v\left(\bigcup_{i} A_{i}\right) = \sum_{i} v(A_{i})$$

for $A_i \cap A_j = \emptyset$.

Example

$$(X, \Lambda, \mu), f \in L^1_\mu(X),$$

$$v_f(A) = \int_A f \, d\mu$$

69

 $\forall A \in \Lambda$.

Question

Given (X, Λ, μ) and $v : \Lambda \to \mathbb{R}$, is $\int_A |f| \ d\mu = 0$ when $\mu(A) = 0$ sufficient to make $v = v_f$ when $f \in L^1_\mu(X)$?

Recall: Signed Measure Bounded from Above

Given (X, Λ) and $v : \Lambda \to \mathbb{R}$, $\exists M > 0$ such that $|v(A)| \le M$, $\forall A \in \Lambda$.

Recall: Variation of Signed Measure

$$|v|(A) = \sup \left\{ \sum_{i} |v(E_i)| : \{E_i\} \text{ is a partiation of } A \right\}$$

Recall: Norm from Variation

$$||v|| + |v|(X)$$

Recall: Variation is a Finite Measure

 $(X, \Lambda, |v|)$ is a finite measure space.

Recall: Jordan Decomposition

Given (X, Λ) and $v : \Lambda \to \mathbb{R}$ a signed measure, then

$$v^{+} = \frac{1}{2}(|v| + v), \quad v^{-} = \frac{1}{2}(|v| - v), \text{ and } v = v^{+} - v^{-}$$

where v^+ and v^- are finite measures.

Recall: Lemma

Given (X, Λ) and $\nu : \Lambda \to \mathbb{R}$ a signed measure, we have

$$v^{+} = \sup\{v(F) : F \subseteq A\}$$
 and $v^{-} = -\inf\{v(F) : F \subseteq A\}$

Recall: Hahn Decomposition

Given (X, Λ) and $v : \Lambda \to \mathbb{R}$ a signed measure, we have $X = E \cup F$ with $E \cap F = \emptyset$ such that $v(A) \ge 0$ for $A \subseteq E$ and $v(A) \le 0$ for $A \subseteq F$.

Proof

By the preceding lemma, $\forall n, \exists A_n \in \Lambda$ such that

$$v^{+}(X) - 2^{-n} \le v(A_n) \le v^{+}(A_n) \le v^{+}(X)$$

where $E = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i$. Claim: $v(E) = v^+(X)$.

Part 1

$$v^+(X) \ge v \left(\bigcup_{i=n}^{\infty} A_i\right) = v \left(A_n \cup (A_{n+1} \setminus A_n) \cup \cdots \cup \left(A_k \setminus \bigcup_{i=n}^{k-1} A_i\right) \cup \cdots\right) \ge v^+(X) - 2^{-n+1}$$

since

$$v\left(A_{k}\setminus\bigcup_{i=n}^{k-1}A_{i}\right)=v(A_{k})-v\left(A_{k}\cap\bigcup_{i=n}^{k-1}A_{i}\right)\geq v^{+}(X)-2^{-k}-v^{+}(X)\geq -2^{-k}$$

Part 2 For all n,

$$v(E) = v\left(\bigcup_{i=n}^{\infty} A_i\right) - v\left(\bigcup_{i=n}^{\infty} \setminus E\right) \ge v^+(X) - 2^{-n+1}$$

and

$$\nu\bigg(\bigcup_{i=n}^{\infty}A_i\setminus E\bigg)$$

where

$$\bigcup_{i=n}^{\infty} A_i = \left(\bigcup_{i=n}^{\infty} A_i \setminus \bigcup_{i=n+1}^{\infty} A_i\right) \cup \left(\bigcup_{i=n+1}^{\infty} A_i \setminus \bigcup_{i=n+2}^{\infty} A_i\right) \cup \cdots$$

SO

$$v\left(\bigcup_{i=k}^{\infty} A_i \setminus \bigcup_{i=k+1}^{\infty} A_i\right) = v\left(\bigcup_{i=k}^{\infty} A_i\right) - v\left(\bigcup_{i=k+1}^{\infty} A_i\right) \le v^+(X) - (v^+(X) - 2^{-k-2}) \le 2^{-k+2}$$

Therefore, $\forall A \subset E$, we have

$$v^{+}(X) = v(E) = v(A) + v(E \setminus A) \le v(A) + v^{+}(X)$$

and $v(A) \ge 0$ while $\forall A \subset F$

$$v^{+}(X) \ge v(A \cup E) = v(A) + v(E) = v(A) + v^{+}(X)$$

so $v(A) \leq 0$.

Example: Jordan

Given (X, Λ, μ) , $f \in L^1_{\mu}(X)$ and $v_f(A) = \int_A f d\mu$,

$$|v_f|(A) = \int_A |f| d\mu$$
, $v_f^+(A) = \int_A f^+ d\mu$, $v_f^-(A) = \int_A f^- d\mu$ and $v_f = v_f^+ - v_f^-$

Example: Hahn

Given $E = \{x : f(x) \ge 0\}$ and $F = \{x : f(x) < 0\}, X = E \cup F$.

Definition: Absolute Continuity

Given (X, Λ, μ) and $\nu : \Lambda \to \mathbb{R}$ a signed measure, we say $\nu << \mu$ (ν is absolutely continuous with respect to μ) if

$$\mu(A) = 0 \Longrightarrow |\nu|(A) = 0$$

Lemma:

Given (X, Λ, μ) and $\nu : \Lambda \to \mathbb{R}$ a signed measure, $\nu << \mu$ if and only if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $|\nu|(A) < \varepsilon$, $\forall A \in \Lambda$, $\mu(A) < \delta$.

Proof

 (\longleftarrow) Trivial.

 (\Longrightarrow) Assume, for sake of contradiction, that there exists $\varepsilon_0 > 0$ such that $\forall n, \exists A_n$ where $|\nu|(A_n) \ge \varepsilon_n$ while $\mu(A_n) \leq 2^{-n}.$ Write $A = \bigcap_{n=1}^{\infty} \bigcup_{i=n}^{\infty} A_i$ such that $\mu(\bigcup_{i=n}^{\infty} A_i \leq 2^{-n+1})$ and

$$\mu(A) = \lim_{n \to +\infty} \mu\left(\bigcup_{i=n}^{\infty} A_i\right) = 0$$

but since

$$|v|\left(\bigcup_{i=n}^{\infty}A_i\right)\geq |v|(A_n)\geq \varepsilon_0$$

we have

$$|v|(A) = \lim_{n \to +\infty} |v| \left(\bigcup_{i=n}^{\infty} A_i\right) \ge \varepsilon_0$$

a contradiction.

Theorem:

Let (X, Λ, μ) be a complete σ -finite measure space, $\nu : \Lambda \to \mathbb{R}$ a signed measure and $\nu << \mu$. Then, $\exists ! f \in L^1_\mu(X)$ such that $v(A) = v_f(A) = \int_A f \ d\mu$.

Proof: Uniqueness

Proof: Step 1

Assume ν and μ are finite measures and define

$$G = \left\{ g : g \ge 0, \text{ measurable, and } \int_A g \ d\mu \le v(A) \right\}$$

then set

$$M = \sup \left\{ \int_X g \ d\mu \ : \ g \in G \right\} \le \nu(X)$$

For any n, $\exists g_n \in G$ such that $M - \frac{1}{n} < \int_X g_n d\mu \le M$. Then for $f_n = \max\{g_1, \dots, g_n\}$,

$$M - \frac{1}{n} \le \int_X f_n \ d\mu \le M$$

Since $f_n \to f$ with $f_n, f \in G$, by monotone convergence $\int_X f d\mu = M$.

Claim: $v(A) = \int_A f d\mu$, $\forall A \in \Lambda$.

Otherwise, $\exists A_0 \in \Lambda$ such that $\int_{A_0} f \ d\mu < v(A_0) \ (v(A_0) > 0)$

Therefore $\exists \varepsilon > 0$ such that $\int_A (f + \varepsilon) d\mu < v(A_0)$.

Then take $\xi(A) = v(A) - \int_A (f + \varepsilon) d\mu$.

We have the Hahn decompositon $A_0 = E_0 \cup F_0$. Therefore $\xi(A) \ge 0$, $\forall A \subseteq E_0$ and $\xi(A) \le 0$, $\forall A \subseteq F_0$. Then

$$g = \begin{cases} f & E_0^c \\ f + \varepsilon & E_0 \end{cases} \in G$$

since $\int_A g \ d\mu = \int_{A \cap E_0} g \ d\mu + \int_{A \cap E_0^c} f \ d\mu \le v(A \cap E_0^c(A) \le v(A)$. So

$$\int_{X} g \, d\mu = \int_{E_{0}} g \, d\mu + \int_{E_{0}^{c}} g \, d\mu = \int_{E_{0}} (f + \varepsilon) \, d\mu + \int_{E_{0}^{c}} f \, d\mu = \varepsilon \mu(E_{0}) + M$$

Then $v \ll \mu$ implies $\mu(E_0) > 0$.

Corollary

For (X, Λ, μ) a σ -finite measure space, ν a finite measure and $\nu << \mu$, then $\forall g \in L^1_{\nu}(X), \exists f \in L^1_{\mu}(X)$

$$\int_{A} g \, dv = \int_{A} f g \, d\mu$$

since $v(A) = \int_A f \ d\mu$. Therefore $f = \frac{dv}{d\mu}$.

Definition: Mutual Singularity

Signed measures v_1 and v_2 are said to be mutually singular if $\exists X = E \cup F \ (E \cap F = \emptyset)$ such that

$$\begin{cases} |v_1|(E) = 0 \\ |v_2|(F) = 0 \end{cases}$$

Write $v_1 \perp v_2$.

Remark

If v_1 is a signed measure and μ is a measure where $v_1 \perp \mu$ and $v_1 << \mu$, then v = 0.

Recall: Cantor Set

Given μ_{ϕ} a measure from the cantor set and Lebesgue measure m, we have $\mu_{\phi} \perp m$.

Theorem:

Given (X, Λ, μ) a σ -finite measure space and ν a signed measure, there are unique $\nu = \nu_s + \nu_a$ where $\nu_s \perp \mu$ and $v_a \ll \mu$.

Proof: Uniqueness

$$v_s + v_a = v_s^* + \mu_a^* \implies v_s - v_s^* = \mu_a^* - \mu_a \implies \text{uniqueness}$$

Proof: Step 1

For $v \ll v + \mu$, $\exists f$ where

$$v(A) = \int_A f \, d(v + \mu) = \int_A f \, dv + \int_A f \, d\mu$$

so take $E = \{x : f \ge 1\}$ and $F = \{x : f < 1\}$.

1.
$$v(E) \ge v(E) + \mu(E) \implies \mu(E) = 0$$
.

2.
$$\forall A \subseteq F$$
, $v(A) \le \int_A f \, dv + \mu(A)$ if $\mu(A) = 0 \implies v(A) = 0$.

Then $v_a(A) = v(A \cap F)$ and $v_s(A) = v(A \cap E)$.

Duality of Lp and Lq

On (X, Λ, μ) a σ -finite measure space, given $\frac{1}{p} + \frac{1}{q} = 1$ and $1 < p, q < +\infty$, we have $L^q = (L^p)^*$ and $\phi: L^q \to (L^p)^*$.

For $L \in (L^p)^*$, we want $\exists g \in L^q$ such that $L(X) = \int_X fg \ d\mu$.

$$\forall L \in (L^p)^*, \ \mu(X) < +\infty, \ \nu_L(A) = L(\chi_A), \ \nu\left(\bigcup_i A_i\right) = L\left(\sum \chi_{A_i}\right), \ \sum_{i=1}^k \chi_{A_i} \to \sum_{i=1}^\infty \chi_{A_i} \text{ in } L^p.$$

Then $\mu\left(\bigcup_{i=1}^k A_i\right) \to \mu\left(\bigcup_{i=1}^\infty A_i\right)$. So $L(\chi_A) = \nu_L(A) = 0$ if $\mu(A) = 0$; $\chi_A = 0$ μ -a.e. if $\mu(A) = 0$.

Therefore for g, $v_L(A) = \int_A g \ d\mu$, therefore $\forall s$ simple functions

$$\int_X s \, dv = \int_X sg \, d\mu$$

and $\forall f \in L_{\mu}^{\infty}(X), s_n \to f, L(s_n) \to L(f).$

$$\int_X s_n \, d\mu = \int_X s_n g \, d\mu \to \int_X f g \, d\mu$$

Then $f_n = \operatorname{sign}(g)|g|^{q-1}\chi_{\{x: |q| \le n\}} \in L^\infty_\mu \subset L^p_\mu$.

$$L(f_n) = \int_x f_n g \, d\mu = \int_X |g\chi_{\{x: |g| \le n\}}|^q \, d\mu$$

$$||f_n||^p = ||g\chi_{\{x:|g| \le n\}}||_q^{q-1}$$

$$||L|| \ge \frac{|Lf_n|}{||f_n||_p} = ||g\chi_{\{x:|g| \le n\}}||_q$$

Therefore $g \in L^{\infty}_{\mu}(X)$, $g\chi_{\{x:|g|\leq n\}} \to g$. Then for any $f \in L^{p}_{\mu}(X)$, $f\chi_{\{x:|f|\leq n\}} \to f$.

March 12, 2024

Recall: Fundemental Theorem of Calculus

$$f(a) - f(b) = \int_a^b f'(t) dt$$

for $f \in C^1$, continuously differentiable.

Definition: Vitali Covering

Given $E \subset \mathbb{R}$, a collection of intervals $F = \{I\}$ such that $\forall \epsilon > 0$, $\forall x \in E$, there exists $I \in F$ such that

- 1. $x \in I$
- 2. $|I| < \varepsilon$

Lemma: Vitali Covering Lemma

Given $E \subset \mathbb{R}$, $m^*(E) < +\infty$ and F a Vitali covering of E, then $\forall \varepsilon > 0$ there exists $\{I_i\} \subset F$ finite and disjoint such that $m^*(E \setminus \bigcup_i I_i) < \varepsilon$.

Proof

For $\{I\} = F$, we may assume I closed and assume that there exists some open set $U \supset E$ such that $m^*(U) \le m^*(E) + 1 < +\infty$.

Note that we may limit the size of our intervals such that $\forall I \in F, I \subset U$.

- Step 1
 - 1. I_1 is arbitrary.
 - 2. Inductively, assume $\{I_i\}_{i=1}^k$ with $I_i \cap I_i = \emptyset$ and select I_{k+1} .
 - (a) Select $l_k = \sup\{|I| : I \in F, I \cap I_i = \emptyset, i = 1, ..., k\}.$
 - (b) Pick I_{k+1} such that $|I_{k+1}| \ge \frac{1}{2} l_k$ and $I_{k+1} \cap I_i = \emptyset$ for i = 1, ..., k.
- Step 2

For
$$\bigcup_{i=1}^{\infty} I_i \subset U$$
, $\sum_{i=1}^{\infty} |I_i| \le m^*(U) < +\infty \implies l_k \to 0$ as $k \to +\infty$. Further, $\exists N$ such that $\sum_{i=N+1}^{\infty} |I_i| < \frac{\varepsilon}{5}$.

• Step 3

 $\forall x \in E \setminus \bigcup_{i=1}^N I_i, \ x \in \bigcup_{i=N+1}^\infty 5I_i.$ Where 5I is the interval I with the same center and five times the length. Then $\exists I, \ x \in I$ where $I \cap I_i = \emptyset, \ \forall \ i = 1, \dots, N.$

$$n_0 = \max\{n : I \cap I_i = 0, i = 1, ..., n\}$$

such that $I\cap I_{n_0+1}=\neq$. Then $|I|\leq l_{n_0}$ and $|I_{n_0}|\geq \frac{1}{2}l_{n_0}$. Therefore $I\subset 5I_{n_0+1}$. Note that we know n_0 exists by the fact that $l_k\to 0$. Therefore $E\setminus\bigcup_{i=1}^N I_i\subset\bigcup_{i=N+1}^\infty 5I_i$ and, subsequently, $m^*\left(E\setminus\bigcup_{i=1}^N I_i\right)<\varepsilon$.

Definition: Dini Derivative

Define

$$D^{r} f(x) = \limsup_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}$$

$$D_{r} f(x) = \liminf_{h \to 0^{+}} \frac{f(x+h) - f(x)}{h}$$

$$D^{l} f(x) = \limsup_{h \to 0^{+}} \frac{f(x) - f(x-h)}{h}$$

$$D_{l} f(x) = \liminf_{h \to 0^{+}} \frac{f(x) - f(x-h)}{h}$$

Fact

f'(x) exists if and only if $D^r f(x) = D_r f(x) = D^l f(x) = D_l f(x)$.

Theorem: Differentiability of Monotone Functions

If $f: [a,b] \to \mathbb{R}$ is nondecreasing, then it is differentiable *m*-a.e.

Proof

Let

$$B = \{x : D^{r} f(x) > D_{l} f(x)\} \cup \{x : D^{l} f(x) > D_{r} f(x)\}$$

and

$$B^{c} = \{x : D^{r} f(x) \le D_{l} f(x)\} \cap \{x : D^{l} f(x) \le D_{r} f(x)\}$$

That is, B is the collection of points at which f is not differentiable and

$$D_r f(x) \le D^r f(x) \le D_l f(x) \le D^l f(x) \le D_r f(x)$$

gives $\boldsymbol{\mathit{B}}^{\mathit{c}}$ the feature of including all differentiable points. Write

$$\{x: D^{r} f(x) > D_{l} f(x)\} = \bigcup_{\substack{p,q \in \mathbb{Q} \\ p > q}} \underbrace{\{x: D^{r} f(x) > p > q > D_{l} f(x)\}}_{E_{p,q}}$$

Claim: $m^*(E_{p,q}) = 0$.

Assume, for sake of contradiction, that $m^*(E_{p,q} = \delta > 0$.

Step 1

Then there exists U open such that $U \supset E_{p,q}$ and $m^*(U) < \delta + \varepsilon$. Then $\forall x \in E_{p,q}$, $D_l f(x) < q \implies \exists [x-h,x]$ such that f(x) - f(x-h) < hq for arbitarily small h.

Therefore $\{[x-h,x]\}=F_l$ is a Vitali covering of $E_{p,q}$.

By the Vitali Covering Lemma, $\exists \{I_i\}_{i=1}^k \subset F_l \text{ finite and disjoint and } m^*(E_{p,q} \setminus \bigcup_{i=1}^k I_i) < \varepsilon.$

It follows that $m^*\left(E_{p,q}\cap\bigcup_{i=1}^kI_i\right)>\delta-\varepsilon$. Letting $I_i=\left[x_i-h_i,x_i\right]$,

$$\sum_{i=1}^{k} (f(x_i) - f(x_i - h_i)) < q \sum_{i=1}^{k} h_i < q(\delta + \varepsilon)$$

Step 2

Consider $A_{p,q} = E_{p,q} \cap \bigcup_{i=1}^k \overset{\circ}{I}_i$.

$$m^*\left(E_{p,q}\cap\bigcup_{i=1}^k I_i\right) > \delta - \varepsilon$$

Then $\forall x \in A_{p,q}$, since $D^r f(x) > p$, $[x, x+h] \subset \bigcup_{i=1}^k \overset{\circ}{I_i}$, $f(x+h) - f(x) > p \cdot h$ for $h_i \to 0$. So $\{[x, x+h]\} = F_r$ is a Vitali covering for $A_{p,q}$.

Therefore there exists $\{I_i'\}_{i=1}^k \subset F_r$ finite and disjoint where $I_i' = [x_i', x_i' + h_i']$ and

$$\sum_{i=1}^{k} (f(x_i' + h_i') - f(x_i')) > p \sum_{i=1}^{k} h_i' \ge p(\delta - 2\varepsilon)$$

Conclusion

It follows that

$$p(\delta - 2\varepsilon) \le p \sum_{i=1}^{k} h'_i < \sum_{i=1}^{k} \left(f(x'_i + h'_i) - f(x'_i) \right) \le \sum_{i=1}^{k} \left(f(x_i) - f(x_i - h_i) \right) < q \sum_{i=1}^{k} h_i \le q(\delta + \varepsilon)$$

That is, p > q but $p(\delta - 2\varepsilon) \le q(\delta + \varepsilon)$ which means it must be the case that $\delta = 0$ which contradicts our assumption.

Definition: Function of Bounded Variation

A function $f: [a,b] \to \mathbb{R}$ is said to be of bounded variation if for any partition of [a,b]

$$P = \{ a = x_0 < x_1 < \dots < x_n = b \}$$

we define the variation of f over [a, b] as

$$V(f,[a,b])\sup\left\{\sum_{i=1}^{n}|f(x_{i})-f(x_{i-1})|=P\right\}$$

Observe that

$$f(x) = \int_a^b g(t) dt \Longrightarrow V(f, [a, b]) = \int_a^b |g(t)| dt$$

Positive and Negative Variation

Define

$$PV(f,[a,b]) = \sup \left\{ \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^+ = P \right\}$$
$$NV(f,[a,b]) = \sup \left\{ \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^- = P \right\}$$

Lemma

$$V(f,[a,b]) = PV(f,[a,b]) + NV(f,[a,b])$$

and

$$f(b) - f(a) = PV(f, [a, b]) - NV(f, [a, b])$$

Proof

$$\sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^+ + \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^-$$

$$f(b) - f(a) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^+ - \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))^-$$

Corollary

$$f(x) - f(a) = PV(f, [a, x]) - NV(f, [a, x])$$

So if f is of bounded variation, then $f = g_1 - g_2$ where g_1 , g_2 nondecreasing.

Corollary

If f is of bounded variation, it is m-a.e. differentiable.

Example: The Cantor Function

We have $\phi' = 0$ *m*-a.e., but $\phi(1) - \phi(0) \neq \int_0^1 \phi' d\mu$.

March 14(159265358979323846264), 2024

Recall: Theorem (Monotone Functions)

If f is monotone (nondecreasing) in [a, b], then f is differentiable m-a.e. Moreover,

$$\int_{a}^{b} f'(x) dx \le f(b) - f(a)$$

Example: Cantor Function

$$\begin{cases} \int \phi' \, dm = 0 \\ \phi(1) - \phi(0) = 1 \end{cases}$$

Recall: Bounded Variation

A function f is of bounded variation on [a, b] if

$$V(f,[a,b]) = \sup \left\{ \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| : P = \{a = x_0 < x_1 < \dots < x_n = b\} \right\} < +\infty$$

Example

$$F(x) = \int_{a}^{x} f \, dm, \, f \in L_{m}^{1}([a, b]) \implies V(F, [a, b]) = \int_{a}^{b} |f| \, dm$$

Recall: Positive and Negative Variation

$$PV(f,[a,b]) = \sup \left\{ \sum_{i} (f(x_i) - f(x_{i-1})^+ : P = \{a = x_0 < x_1 < \dots < x_n = b\} \right\}$$

$$NV(f,[a,b]) = \sup \left\{ \sum_{i} (f(x_i) - f(x_{i-1})^- : P = \{a = x_0 < x_1 < \dots < x_n = b\} \right\}$$

Recall: Lemma

$$V(f,[a,b] = PV(f,[a,b]) + NV(f,[a,b])$$

$$f(b) - f(a) = PV(f,[a,b]) - NV(f,[a,b])$$

Corollary

If f is of bounded variation, then f = g - h (= PV(f, [a, b]) - NV(f, [a, b])) where g, h are nondecreasing.

Corollary

If f is of bounded variation, then f is differentiable m-a.e.

Recall: Differentiation of Integrals

For $f \in L_m^1([a,b])$,

$$F(x) = \int_{a}^{x} f \, dm$$

Question: F'(x) = f(x) *m*-a.e.?

Lemma:

If $f \in L^1_m([a,b])$, then $F(x) = \int_a^x f \, dm$ is of bounded variation and continuous.

Proof

Since $|F(x_i) - F(x_{i-1})| \le \int_{x_{i-1}}^{x_i} |f| dm$,

$$\sum_{i} |F(x_i) - F(x_{i-1})| \le \int_{a}^{b} |f| \, dm < +\infty$$

Questions: F'(x) *m*-a.e.? F'(x) = f(x) *m*-a.e.?

Lemma:

For $f \in L_m^1([a,b])$,

$$F(x) = \int_a^x f \ dm = 0, \ \forall x \in [a, b] \Longrightarrow f = 0, m-\text{a.e.}$$

Proof

- 1. $\int_{x_1}^{x_2} f \, dm = 0$.
- 2. U open set, C([a,b]), $\int_V f dm = 0$.
- 3. $A \subset [a, b]$ measurable, $\int_A f dm = 0$.

Then, for any A measurable, $\forall \delta > 0$, $\exists U$ open set, $U \supset A$, $m(U \setminus A) = \delta$ such that

$$\int_{A} f \, dm \int_{U} \underbrace{f}_{=0} \, dm - \int_{U \setminus A} f \, dm \Longrightarrow \int_{A} f \, dm = 0$$

 $\forall \varepsilon, \exists \delta > 0, \left| \int_{U \setminus A} f \ dm \right| < \varepsilon, m(U \setminus A) < \delta.$

4. f = 0 m-a.e.

Lemma:

Let f be bounded and measurable on [a, b]. Then

$$F(x) = \int_{a}^{x} f \, dm \implies F'(x) = f(x)$$

Proof

Assume $F(x) = F(b), x \ge b$. Then

$$F_n = n\left(F\left(\left(x + \frac{1}{n}\right) - F(x)\right) \to F'(x) \text{ } m\text{-a.e.}$$

$$= n\left(\int_a^{x + \frac{1}{n}} f \ dm - \int_a^x f \ dm\right)$$

$$= n\int_x^{x + \frac{1}{n}} f \ dm \Longrightarrow |F_n| \le C$$

By dominated convergence

$$\int_{a}^{x} F' dm = \lim_{n \to +\infty} \int_{a}^{x} F_n dm$$

We calculate,

$$\int_{a}^{x} F_{n} dm = n \left(\int_{a}^{x} F\left(x + \frac{1}{n}\right) dm(x) - \int_{a}^{x} F(x) dm(x) \right)$$

$$= n \left(\int_{a + \frac{1}{n}}^{x + \frac{1}{n}} F dm - \int_{n}^{x} F dm \right)$$

$$= n \int_{x}^{x + \frac{1}{n}} F dm - n \int_{a}^{a + \frac{1}{n}} F dm \to F(x) - F(a)$$

by the continuity of F(x). So

$$\int_{a}^{x} F' dm = \lim_{n \to +\infty} \int_{a}^{x} F_n dm = F(x) - F(a) = \int_{a}^{x} f dm$$

and, therefore, F'(x) = f(x) m-a.e.

Theorem:

If $f \in L_m^1([a,b])$ and $F(x) = \int_a^x f dm$, then F'(x) = f(x) m-a.e.

Proof

 $f = f^{+} - f^{-}$ and $F = F^{+} - F^{-}$.

We may assume, without loss of generality, that $f \ge 0$. Let

$$f_n = \begin{cases} f, & f \le n \\ n, & f > n \end{cases}, \quad F_n(x) = \int_a^x f_n \, dm \quad \text{and} \quad G_n(x) = \int_a^x (f - f_n) \, dm$$

so $f \ge f_n$, G_n nondecreasing, $G'_n \ge 0$ m-a.e. and

$$F'(x) = G'_n(x) + F'_n(x) \ge F'_n(x) = f_n(x)$$

Therefore $F'(x) \ge f(x)$. On the other hand, we know that

$$\int_{a}^{b} F' \le F(b) - F(a) = \int_{a}^{b} f \, dm$$

So $\int_a^b (F'-f) dm \le 0$ where $F'-f \ge 0$, and therefre F'(x) = f(x) *m*-a.e.

Recall: Fundamental Theorem of Calculus

If $F \in C^1$, then

$$F(x) - F(a) = \int_a^x F'(t) dt$$

Example

Let $F(x) = \int_a^x f \ dm$ and $f \in L_m^1([a, b])$. Given $I_i = (x_i, y_i)$ disjoint and $\sum_i |I_i| < \delta$, then

$$\sum_{i} |F(x_i) - F(y_i)| \le \sum_{i} \int_{I_i} |f| \, dm = \int_{\bigcup I_i} |f| \, dm < \varepsilon$$

Definition: Absolute Continuity

If F on [a,b] and $\{I_i\}$ are disjoint intervals written $I_i = (x_i, y_i)$. We say F is absolutely continuous if $\forall \varepsilon > 0$, $\exists \delta > 0$ such that

$$\sum_{i} |F(x_i) - F(y_i)| < \varepsilon \implies \sum_{i} |I_i| < \delta.$$

Lemma:

If *F* is absolutely continuous, then

- 1. *F* is continuous.
- 2. *F* is of bounded variation.

Proof of 2

$$V(f, [a,b]) \leq V(f, [a,c]) + V(f, [c,b])$$

Then, $\exists \delta = \frac{b-a}{n}$ where $x_i = a + \frac{b-a}{n}$ such that V(f, [c, a]) < 1 if $b-c < \delta$ and

$$V(f, [a, b]) \le \sum_{i} V(f, [x_{i-1}, x_i]) \le n$$

Lemma:

Take F absolutely continuous where F' = 0 m-a.e., then F = c.

Proof

Take $E \subset (a,c)$ where $E = \{x \in (a,c): F' = 0\}$, noting that m(E) = c - a. Then $\forall \eta > 0$, $\forall x \in E$, $I = [x,x+h] \subset (a,c)$ h << 1, $|f(x+h) - f(x)| < \eta h$. So $\{I\} = F$ is a Vitali covering for E. By Vitali covering lemma, $\exists \{I_i\}$ disjoint with $m(E \setminus \bigcup_i I_i) < \delta$. So, given $I_i = (x_i, x_i + h_i)$ and $J_i = (x_{i-1} + h_{i+1}, x_i)$, we have

$$\sum_{i} ((x_{i} + h_{i}) - x_{i}) = \sum_{i} h_{i} > c - a - \delta$$

$$\sum_{i} (x_{i} - (x_{i-1} + h_{i-1})) < \delta$$

Since $|f(x_i + h_i) - f(x_i)| < \eta h_i$,

$$f(c) - f(a) \le \sum_{i} |f(x_i + h_i) - f(x_i)| + \sum_{i} |f(x_i) - f(x_{i-1} + h_{i-1})|$$

where the latter term is small by absolute continuity.

Theorem: Fundamental Theorem of Calculus

 $F(x) = F(a) + \int_a^x f \ dm, \ f \in L_m^1([a,b]), \ \text{and} \ F'(x) = f(x) \ m$ -a.e. if and only if F is absolutely continuous.

Proof

 (\longleftarrow) Claim: F' is integrable.

· Proof of Claim

$$F = g - h$$
, so $\int_a^b g' dm \le g(b) - g(a)$ and $\int_a^b f' dm \le f(b) - f(a)$. Therefore

$$\int_{a}^{b} |F'| dm \le \int_{a}^{b} (g' + h') dm < +\infty$$

Let $\Phi(x) = \int_a^x F' dm$, then $\Phi' = F' m$ -a.e., $\Phi = F + c$ and, finally, $F(x) - F(a) = \int_a^x F' dm$.