MESTRADOS INTEGRADOS EM ENGª MECÂNICA E EM ENGª E GESTÃO INDUSTRIAL | 2017-18

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância).

2ª Prova de Reavaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

1. [5,2] Sejam as aplicações lineares $S \in L(\mathbb{R}^3, \mathbb{R}^2)$, $T \in L(\mathbb{R}^3, \mathbb{R}^3)$ e $R \in L(\mathbb{R}^2, \mathbb{R}^3)$

$$S(x, y, z) = (x - y + z, x + z), T(x, y, z) = (x + y + z, x + z, -x + y - z)$$

$$R(x, y) = (x - 2y, -x - y, 4x - 2y)$$

definidas em relação às bases canónicas $E_3 \subset \mathbb{R}^3$ e $E_2 \subset \mathbb{R}^2$.

- **a)** Calcule o núcleo e o contradomínio de *T*. Para cada um desses subespaços, indique uma base e conclua em relação à sua dimensão.
- b) Serão as funções dadas sobrejetivas? Justifique.
- c) Mostre que apenas uma das funções é injetiva e obtenha a sua função inversa.
- **2.** [2,0] Sejam a transformação linear $T: V \to V$ e \vec{u}_1 e \vec{u}_2 vetores próprios de T associados, respetivamente, aos valores próprios distintos λ_1 e λ_2 . Mostre que o conjunto $U = \{\vec{u}_1, \vec{u}_2\}$ é linearmente independente.
- **3.** [4,2] Considere as transformações lineares definidas na pergunta 1. e as bases $W = \{(1,1),(-1,1)\} \subset \mathbb{R}^2$ e $U = \{(1,0,1),(0,-1,-1),(0,1,0)\} \subset \mathbb{R}^3$.
 - a) Usando o cálculo matricial, calcule as matrizes $T_{E_3,U} = m(T)_{E_3,U}$, representação matricial de T em relação às bases E_3 e U, e $R_{W,U} = m(R)_{W,U}$, representação matricial de R em relação às bases W e U.
 - b) Recorrendo preferencialmente às matrizes obtidas na alínea anterior, obtenha a matriz $m(RS-T^2)_{E_3,U}$, representação matricial de $RS-T^2$ em relação às bases E_3 e U.

(continua no verso)

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância).

2ª Prova de Reavaliação

GRUPO II

4. [2,8] Calcule, usando o método da condensação e indicando todas as operações efetuadas, o determinante da matriz real:

$$\mathbf{F} = \begin{bmatrix} 0 & 1 & 0 & k \\ w & k & w+1 & -w+k^2 \\ k-1 & w & -k-1 & kw+k+1 \\ 2k-1 & k & -1-2k & (k+1)^2 \end{bmatrix}$$

5. [5,8] Considere a transformação linear $S: \mathbb{R}^3 \to \mathbb{R}^3$, definida, em relação à base canónica, E, para o espaço \mathbb{R}^3 , por:

$$S(1,0,0) = (1,3,4)$$
, $S(0,1,0) = (2,6,8)$, $S(0,0,1) = (1,3,4)$

Seja a base $B = \{(1,0,0), (1,0,-1), (1,1,-1)\} \subset \mathbb{R}^3$.

- a) Calcule os valores próprios e os espaços próprios que lhes estão associados.
- **b**) Determine uma base de vetores próprios, U, para o espaço \mathbb{R}^3 e obtenha as matrizes $S_{U.E}$ e $S_{B.E}$.
- c) Calcule a matriz $S_{B,B}$ e verifique se alguma das matrizes obtidas na alínea anterior lhe é semelhante. Justifique devidamente, apresentando as expressões matriciais que as relacionam.