# 058165 - PARALLEL COMPUTING

Fabrizio Ferrandi a.a. 2022-2023

#### References

□ "Structured Parallel Programming: Patterns for Efficient Computation," Michael McCool, Arch Robinson, James Reinders, 1<sup>st</sup> edition, Morgan Kaufmann, ISBN: 978-0-12-415993-8, 2012

- What are Collectives?
- Reduce Pattern
- Scan Pattern
- Sorting

- □ Collective operations deal with a collection of data as a whole, rather than as separate elements
- Collective patterns include:
  - ▶ Reduce
  - ▶ Scan
  - Partition
  - Scatter
  - Gather

- Collective operations deal with a collection of data as a whole, rather than as separate elements
- Collective patterns include:
  - Reduce
  - Scan
  - Partition
  - Scatter
  - ▶ Gather

Reduce and Scan will be covered in this lecture

- Reduce is used to combine a collection of elements into one summary value
- A combiner function combines elements pairwise
- A combiner function only needs to be associative to be parallelizable
- Example combiner functions:
  - Addition
  - Multiplication
  - Maximum / Minimum

### **Reduce**

**Serial Reduction** 



#### Parallel Reduction



#### Vectorization



☐ **Tiling** is used to break chunks of work up for workers to reduce serially



## **Reduce – Add Example**



## **Reduce – Add Example**







■ We can "fuse" the map and reduce patterns



#### Reduce

- Precision can become a problem with reductions on floating point data
- Different orderings of floating-point data can change the reduction value

## **Reduce Example: Dot Product**

- 2 vectors of same length
- Map (\*) to multiply the components
- ☐ Then reduce with (+) to get the final answer

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{n-1} a_i b_i.$$

Also: 
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cos(\theta) |\vec{b}|$$

- Essential operation in physics, graphics, video games,...
- □ Gaming analogy: in Mario Kart, there are "boost pads" on the ground that increase your speed
  - red vector is your speed (x and y direction)
  - blue vector is the orientation of the boost pad (x and y direction). Larger numbers are more power.

How much boost will you get? For the analogy, imagine the pad multiplies your speed:

- If you come in going 0, you'll get nothing
- If you cross the pad perpendicularly, you'll get 0 [just like the banana obliteration, it will give you 0x boost in the perpendicular direction]

 $Total = speed_x \cdot boost_x + speed_y \cdot boost_y$ 



Ref: http://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/

- ☐ The **scan** pattern produces partial reductions of input sequence, generates new sequence
- ☐ Trickier to parallelize than reduce
- Inclusive scan vs. exclusive scan
  - ► Inclusive scan: includes current element in partial reduction
  - Exclusive scan: excludes current element in partial reduction, partial reduction is of all prior elements prior to current element

#### Scan – Example Uses

- Lexical comparison of strings e.g., determine that "strategy" should appear before "stratification" in a dictionary
- Add multi-precision numbers (those that cannot be represented in a single machine word)
- Evaluate polynomials
- Implement radix sort or quicksort
- Delete marked elements in an array
- Dynamically allocate processors
- Lexical analysis parsing programs into tokens
- Searching for regular expressions
- Labeling components in 2-D images
- Some tree algorithms e.g., finding the depth of every vertex in a tree

#### Serial Scan



#### Parallel Scan



- One algorithm for parallelizing scan is to perform an "up sweep" and a "down sweep"
- Reduce the input on the up sweep
- ☐ The down sweep produces the intermediate results











☐ Three phase scan with tiling



☐ Just like reduce, we can also fuse the **map** pattern with the **scan** pattern





## Merge Sort as a reduction

- We can sort an array via a pair of a map and a reduce
- Map each element into a vector containing just that element
  - is the merge operation:

$$[1,3,5,7] <> [2,6,15] = [1,2,3,5,6,7,15]$$

- ▶[] is the empty list
- How fast is this?

```
Start with [14,3,4,8,7,52,1]
Map to [[14],[3],[4],[8],[7],[52],[1]]
Reduce:
   [14] <> ([3] <> ([4] <> ([8] <> ([7] <>
([52] <> [1])))))
  = [14] <> ([3] <> ([4] <> ([8] <> ([7] <>
  [1,52]))))
  = [14] <> ([3] <> ([4] <> ([8] <> [1,7,52])))
  = [14] <> ([3] <> ([4] <> [1,7,8,52]))
  = [14] <> ([3] <> [1,4,7,8,52])
  = [14] <> [1,3,4,7,8,52]
  = [1,3,4,7,8,14,52]
```

### **Right Biased Sort Cont**

- ☐ How long did that take?
- We did O(n) merges...but each one took O(n) time
- $\Box$  O(n<sup>2</sup>)
- We wanted merge sort, but instead we got insertion sort!

### **Tree Shape Sort**

```
Start with [14,3,4,8,7,52,1]

Map to [[14],[3],[4],[8],[7],[52],[1]]

Reduce:

(([14] <> [3]) <> ([4] <> [8])) <> (([7] <> [52]) <> [1])

= ([3,14] <> [4,8]) <> ([7,52] <> [1])

= [3,4,8,14] <> [1,7,52]

= [1,3,4,7,8,14,52]
```

## **Tree Shaped Sort Performance**

- Even if we only had a single processor this is better
  - ▶ We do O(log n) merges
  - ► Each one is O(n)
  - ▶ So O(n\*log(n))
- But opportunity for parallelism is not so great
  - ▶ O(n) assuming sequential merge
  - ▶ Takeaway: the shape of reduction matters!