第六章 变压器

一次侧额定电流 $I_{1N}=9.1~{\rm A}$,试求二次侧的额定电流 I_{2N} 。(答案: $I_{2N}=55.6~{\rm A}$)

$$\frac{U_{1N}}{V_{2N}} = \frac{N_1}{N_2} = k$$

$$\frac{1_{N_1}}{V_{2N}} = \frac{N_1}{N_1} = \frac{1}{k}$$

$$\frac{1_{N_2}}{I_{2N}} = \frac{V_{1N}}{V_{2N}} \cdot 1_{N_1} = 55.6$$

6—2 有一单相照明变压器,容量为 $10\,\mathrm{kVA}$,额定电压为 $3300\,\mathrm{V}/220\,\mathrm{V}$ 。今欲在二次侧接上 $40\,\mathrm{W}$ 、 $220\,\mathrm{V}$ 的白炽灯,如果要变压器在额定情况下运行,这种电灯可接多少盏? 并求一次、二次绕组的额定电流。(答案:n=250 盏; $I_{1N}=3.03\,\mathrm{A}$; $I_{2N}=45.5\,\mathrm{A}$)

$$\gamma = \frac{10 \times 10^{3}}{40} = 50 \stackrel{?}{=} 1. = \frac{P}{V} = \frac{10 \times 10^{3}}{3300} = 3.03 A$$

$$I_{2} = \frac{3300}{210} \cdot I_{3} = 15 \times 3.03 = 45.1 A$$
The state of the stat

6—3 某单相变压器—次绕组 $N_1=460$ 匝,接于 220 V 的电源上,空载电流略去不计。 现二次 侧需 要三个电压: $U_{21}=110$ V, $U_{22}=36$ V, $U_{23}=6.3$ V; 电流分别为 $I_{21}=0.2$ A, $I_{22}=0.5$ A, $I_{23}=1$ A,负载均为电阻性。试求:(1)二次绕组匝数 N_{21} 、 N_{22} 、 N_{23} ; (2) 变压器容量 S 和一次侧电流 I_1 。(答案: $N_{21}=230$; $N_{22}=75$; $N_{23}=13$;

(2)
$$S = 46.3 \text{ VA}; I_1 = 0.21 \text{ A}$$

$$\frac{N_1}{N_{21}} = \frac{220}{110} = 2 \qquad N_{21} = 230$$

$$\frac{N_1}{N_{22}} = \frac{220}{36} = 6.0 \qquad N_{22} = 75$$

$$\frac{N_1}{N_{22}} = \frac{220}{36} = 35 \qquad N_{23} = 13$$

$$I = I_1 + I_2 + I_3$$

$$= 0.2/2 + 0.5/6.11 + 1/35$$

$$= 0.1 + 0.08 + 0.03$$

$$= 0.21$$

$$S = 220 \cdot 0.21 = 46.3 \text{ VA}$$

$$S = U_1 I_1$$

6-4 一信号源的内阻 R_0 为 200 Ω , U_s 的有效值为 18 V, 负载电阻 R_L 为10Ω, 求:(1)负载直接接在信号源上,信号源的输出功率;(2)负载 通过变比为4的变压器接到信号源时,信号源的输出功率。(答案:

(1)
$$I = 0.086 \,\mathrm{A}$$
, $P = 73 \,\mathrm{mW}$: (2) $R'_{L} = K^{2}R_{L} = 160 \,\Omega$, $P = 400 \,\mathrm{mW}$)

(1) $I = \frac{18}{200 + 10} = 0.086 \,\mathrm{A}$

$$P = I^{2} \cdot R = 0.086^{2} \cdot 10 = 100 \,\mathrm{mW}$$

(2) $R'_{L} = k^{2} \cdot R_{L} = 160 \,\mathrm{MW}$

$$I' = \frac{18}{200 + 160} = 0.08 \,\mathrm{A}$$

$$P = I'^{2} \cdot R'_{L} = 0.08^{2} \cdot 160 \,\mathrm{A} = 0.08 \,\mathrm{W}$$

6—5 已知信号源电压为 10 V,内阻 R_0 为 560Ω ,负载电阻 R_L 为 8Ω ,欲使负载获得 最大功率,阻抗需要变换,今在信号源与负载之间接人一变压器,如图所示。(1)试求变 压器最合理的变比; (2) 原、副边电流及电压; (3) 负载获得的功率。(答案: (1) K = 8.4;

(2)
$$U_1 = 5 \text{ V}$$
; $U_2 = 0.6 \text{ V}$; $I_1 = 9 \text{ mA}$; $I_2 = 75 \text{ mA}$

(3)
$$P_L = 45 \text{ mW}$$
)

$$K^2 \cdot R_L = R_0 \implies K = 8.37$$

$$I = \frac{10}{560 \times 2} = 9 \text{ mA}$$

$$I_{2} = K \cdot 9 = 75 \text{ mA}$$

$$U_{3} = \frac{10}{2} = 5 \text{ V}$$

$$U_{2} = \frac{5}{8.37} = 0.6 \text{ V}$$

$$P = \frac{U^2}{R} = \frac{0.31}{8} = 45 \text{ mW}$$

A15.0 - 题 6—5 电路图

Sçanned by CamScanner