HT 2020

Analysis II

Jiaming (George) Yu jiaming.yu@jesus.ox.ac.uk

September 16, 2022

Contents

1 Limits and Continuity	2
-------------------------	---

- 2 Differentiability 2
- 2.1 Differentiability of Power Series
- 3 Mean-Value Theorems 3

1 Limits and Continuity

Definition 1.1

A sequence (z_n) of (real or complex) numbers has a <u>limit</u> L, if

$$\forall \varepsilon > 0 : \exists N \in \mathbb{R} : \forall n > N : |z_n - L| < \varepsilon$$

This is denoted by $z_n \to L$ as $n \to \infty$ or $\lim_{n \to \infty} z_n = L$. We say a sequence <u>converges</u> if it has a limit, and <u>diverges</u> otherwise.

Definition 1.2

A sequence (z_n) is a <u>Cauchy sequence</u> if

$$\forall \varepsilon > 0 : \exists N \in \mathbb{R} : \forall n, m > N : |z_n - z_m| < \varepsilon$$

2 Differentiability

Definition 2.1

Let f be a function (real or complex) defined on $(a,b) \subseteq \mathbb{R}$ and $x_0 \in (a,b)$. The <u>derivative</u> $f'(x_0)$ of f at x_0 is defined as the limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

provided the limit exists, in which case we say f is differentiable at x_0 . This derivative is also denoted by $\frac{df}{dx}(x_0)$.

We also define the <u>left derivative</u> and <u>right derivative</u> provided the respective limits exist:

$$f'(x_0^-) = \lim_{x \uparrow x_0} \frac{f(x) - f(x_0)}{x - x_0}, \quad f'(x_0^+) = \lim_{x \downarrow x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Theorem 2.1 (Differentiability Implies Continuity)

Let $f : (a,b) \to \mathbb{R}$ or \mathbb{C} . If f is differentiable at $x_0 \in (a,b)$, then f is also continuous at x_0 .

Proof. We have

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0)$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \lim_{x \to x_0} (x - x_0)$$

$$= 0$$

Hence $\lim_{x\to x_0} f(x) = f(x_0)$, therefore f is continuous at x_0 .

A notable result regarding inverse functions is as follows:

Theorem 2.2

Let f be a real-valued, continuous, and bijective function on (a, b). If f is differentiable at $x_0 \in (a, b)$ with $f'(x_0) \neq 0$, then f^{-1} is differentiable at $y_0 = f(x_0)$ with

$$\frac{\mathrm{d}}{\mathrm{d}y}f^{-1}(y_0) = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{f'(x_0)}$$

2.1 Differentiability of Power Series

Theorem 2.3

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with convergence radius R > 0. Its derivative f', also a power series, also has convergence radius R.

¹ differentiating term by term

Theorem 2.4

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series with convergence radius R > 0. For any |z| < R, the derivative f'(z) exists with

$$f'(z) = \frac{d}{dz} \sum_{n=0}^{\infty} a_n z^n = \sum_{n=1}^{\infty} n a_n z^{n-1}$$

We can now use power series to study the derivative of several elementary functions.

3 Mean-Value Theorems

We begin with formalizing and proving an intuitive yet important result.

Theorem 3.1 (Fermat's Theorem)

Let $f: E \to \mathbb{R}$ and x_0 a local extremum of f with f differentiable at x_0 . Then $f'(x_0) = 0$.

Proof. Without loss of generality, let x_0 be a local minimum. By definition, we can let $\delta > 0$ be such that $\forall x \in (x_0 - \delta, x_0 + \delta) : f(x) \ge f(x_0)$.

We now have that $\frac{f(x)-f(x_0)}{x-x_0}$ is negative for any $x \in (x_0 - \delta, x_0)$ and positive for any $x \in (x_0, x_0 + \delta)$. Hence, $f'(x_0^-) \le 0$ and $f'(x_0^+) \ge 0$.

But from the differentiability assumption, we know $f'(x_0^-) = f'(x_0^+)$, hence it must be the case that $f'(x_0) = f'(x_0^-) = f'(x_0^+) = 0$.

Lemma 3.2 (Darboux's IVT)

If $f:[a,b]\to\mathbb{R}$ is differentiable on [a,b], then for any $m\in\mathbb{R}$ strictly between f'(a) and f'(b), there exists some $\xi\in(a,b)$ such that $f'(\xi)=m$.

Theorem 3.3 (Rolle's Theorem)

If $f : [a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b), and that f(a) = f(b), then there exists some $\xi \in (a,b)$ such that $f'(\xi) = 0$.

Proof. If f is constant on [a,b], then $\forall x \in [a,b] : f'(x) = 0$, which suffices.²

Now suppose that f is not constant on [a, b].

² The fact that the derivative of a constant function is always o is glossed over here as it is trivial to prove, but still a result worth noting.

Theorem 3.4 (MVT)

If $f:[a,b]\to\mathbb{R}$ is continuous on [a,b] and differentiable on (a,b), then there exists some $\xi\in(a,b)$ such that

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$

Theorem 3.5 (Cauchy's MVT)

If $f,g:[a,b]\to\mathbb{R}$ are continuous on [a,b] and differentiable on (a,b), and $\forall x\in(a,b):g'(x)\neq0$, then there exists some $\xi\in(a,b)$ such that

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$