Modelo Concetual de Visualização de Dados

Algoritmos

O algoritmo que transforma os dados é o coração\ motor da visualização

Os algoritmos podem ser classificados em acordo com:

- O efeito que a transformação tem na topologia e na geometria do conjunto de dados –
 Transformação Estrutural
- Conforme o tipo de conjunto de dados em que o algoritmo opera

Por Transformações Estruturais:

- 1. Transformação Geométrica
- 2. Transformação Topológica
- 3. Transformação de Atributos
- 4. Transformação Combinada

1. Transformação Geométrica

Alteram a geometria inicial, não deixando alterar a topologia nem os atributos e os seus valores;

2. Transformações Topológicas

Alteram a topologia inicial, não alteram a geometria nem os atributos associados.

3. Transformação de Atributos

Não alteram a geometria, nem a topologia do conjunto, convertem os dados em atributos.

4. Transformação Combinada

Alteram a topologia, geometria e os dados são convertidos em atributos.

Pelos conjuntos de dados:

- 1- Algoritmos Escalares
- 2- Algoritmos Vetoriais
 - 3- Tensores

1. Algoritmos Escalares

Geram linhas de contorno

2. Algoritmos Vetoriais

Criam setas orientadas

3. Tensores

Criam ícones

Algoritmos de Modelagem

Correspondem a algoritmos que não dizem respeito às outras categorias. Tomando por exemplo um algoritmo que cria um glifo orientado, este utiliza um vetor, uma escala e uma coloração de acordo com o escalar a ser representado.

Acaba por combinar um algoritmo escalar com algoritmo vetor

Combina a componente escalar da coloração com a componente da orientação gerada pelo glifo.

Algoritmo Escalar

Escalares são dados singulares associados a cada ponto e/ou célula do conjunto de dados. Os métodos mais comuns de visualização de escalares:

- Color Mapping (Mapeamento em cores)
- Contouring (Traçado de Isolinhas e isosuperficies)
- Carpet Plots (heigh plots, deformação de superficies)

Outros algoritmos de visualização escalar são: Probing (sondagem) e Geração de Escalar;

Color Mapping (Mapeamento em Cores)

Color Mapping ou mapeamento em cores é implementado pela indexação escalar conforme a tabela de cores correspondente, ou seja, por mapeamento de cor os escaleres são indexados respetivamente por valores diferentes da tabela de cores escolhida.

Mapeamento em Cores

Para converter uma variável continua é necessário aplicar valores escalares indexados na tabela de cor, onde o valor mínimo e máximo de temperatura registados são os limites da tabela de cores.

O mapeamento de cores é implementado por indexação. O método mais usual para a tabela de cores, é a denominada função de transformação.

A função de transformação é qualquer expressão que converta os valores em escalares de um mapa para a respetiva cor. Acaba por ser um método discreto de transformação.

Propriedades para a escolha e escala de cor

- 1- Ordem, ter em consideração a uniformidade dos dados e a sua ordenação quando representados.
- 2- Distanciamento e Uniformidade entre pontos adjacentes
- 3- Fronteiras

Escala de Cor para representar vários dados:

Quando é usada uma escala de cor para representar dados únicos, cada cor simboliza um valor de um escalar respetivo

A escala de cor pode dizer-se continua ou descontinua

Uma escala de cor continua é aquela cuja variação de coloração entre pontos adjacentes não são distintas.

Para a representar e escolha de mapa de cores existem na visualização científica vários usuais:

1. GreyScale – Escala de Cinzentos

Acaba por ser a forma mais usual e comum para representar um conjunto uni variado pela escala de cinzentos de 0 a 256 níveis.

Esta escala de cores mapeia escalares pelo seu brilho com as oscilações a intervalar entre preto e branco

- 1 Preto → Baixo Valor de Brilho
- 0 Branco → Alto valor de Brilho

Vantagens:

• Fácil ordenação

Desvantagens:

- Pouco contraste entre as cores
- Difícil identificação de pontos homólogos

2. Rainbow Scale – Escala de Arco-Íris

Consiste num intervalo de cores ao longo dos escalares que modifica a seu matiz, mantendo o contraste e saturação entre cores.

Vantagens:

Fácil identificação ed valores distintos a cada cor

Desvantagens:

Difícil Ordenação

3. Redundant Color Scale

Consiste na conjugação do brilho e matiz, podendo deste modo identificar os escalar e os seus valores como também ordená-los.

Mapas de Cor Escalar Convencionais

- GreySacle
- Rainbow Scale
- Redundant Color Scale

Contouring – Traçado de Isolinhas e isosuperficies

Isolines (isolinhas)

Isosurfaces (Isosuperficies)

O que representam?

Fundamentalmente representam a ligação entre pontos com o mesmo valor de escalar.

Existem dois métodos de conectar pontos de contour:

- 1 Edge Tracking
- 2- Matching Squares

1 - Edge Tracking

Este processo deteta o canto da interseção, e a partir das células com o valor correspondente, o contour é todo traçado até o conjunto de dados ser validado pelo valor respetivo.

Example of isoline with contour value 5

2- Matching Squares

Processo que se rege por dividir para conquistar, tratando cada célula de forma independente. A assunção da técnica é de dar o contorno por um número finito de acordo com a topologia da grelha.

Por célula este calcula a distribuição de cada vértice desenvolvendo o seu contour.

Dark vertices indicate that the scalar value is above contour value

Casos de ambiguidade:

A ambiguidade de contorno é vista quando os pontos adjacentes estão em diferentes estados, mas as diagonais estão no mesmo estado.

Carpet Plots (Deformação de Superficies)

Carpet Plot

• Um carpet plot é usualmente representado por superfícies, gerados pela função warping controlada por um escalar, que combina um fator de escala respetivo

Geração de Escalares

Muitas das vezes os dados não são singulares ou tem uma relação matemática entre si.

Portanto usam-se algoritmos para converter os dados numa forma de visualização.

Exemplo: Usar uma componente Z como dado escalar, a exemplo o vetor magnitude ou a distância entre os pontos...

Probing – Sondagem

Obtém os dados por uma amostra num conjunto de dados com um número finito de pontos, estimando em representações gráficas.