Logarithmic space queries and regular transductions in the elementary affine λ -calculus

Nguyễn Lê Thành Dũng (LIPN, Univ. Paris 13) – nltd@nguyentito.eu partly based on j.w.w. Pierre Pradic (ENS Lyon & Univ. Warsaw)
Logic and Computational Complexity, July 8th, 2019, Patras

Implicit Computational Complexity

This is a work of *implicit computational complexity* (ICC): we capture a complexity class via "functional programming" (Whereas descriptive complexity \approx declarative programming.) Many techniques in ICC: function algebras, term rewriting, etc.

Implicit Computational Complexity

This is a work of *implicit computational complexity* (ICC): we capture a complexity class via "functional programming" (Whereas descriptive complexity \approx declarative programming.) Many techniques in ICC: function algebras, term rewriting, etc. More precisely, we follow a type theory approach to ICC:

- Express functions in some λ -calculus / constructive logic \longrightarrow same thing, via proof-as-programs correspondence!
- \bullet Indirectly enforce complexity constraint via type system

Type-theoretic Computational Complexity

Even in type-theoretic ICC, "there is more than 1 way to do it"! We work at the junction between 2 distinct traditions:

- 1. *semantic evaluation* in the simply typed λ -calculus (ST λ) (in particular, Hillebrand et al.'s work; also, System T, PCF...)
- 2. constrained variants of Girard's linear logic

Type-theoretic Computational Complexity

Even in type-theoretic ICC, "there is more than 1 way to do it"! We work at the junction between 2 distinct traditions:

- 1. *semantic evaluation* in the simply typed λ -calculus (ST λ) (in particular, Hillebrand et al.'s work; also, System T, PCF...)
- 2. constrained variants of Girard's linear logic

and look at 2 possible input representations:

- 1. Church-encoded strings \rightarrow relationship with *automata* (see also: higher-order model checking)
- 2. *finite models* i.e. finite relational structures (as in descriptive complexity)

Some background on ICC in the

simply typed λ -calculus

Expressivity of the simply typed λ -calculus

The *simply typed* λ -calculus: a bare-bones functional programming language

no primitive data types, only functions

Types of "Church encodings" Str / Bool: standard representations of strings / booleans as functions

$$\overline{abb}:(f_a,f_b)\mapsto f_a\circ f_b\circ f_b$$

What languages can we decide by programs taking Str to Bool?

Expressivity of the simply typed λ -calculus

The simply typed λ -calculus: a bare-bones functional programming language no primitive data types, only functions

Types of "Church encodings" Str / Bool: standard representations of strings / booleans as functions

$$\overline{abb}:(f_a,f_b)\mapsto f_a\circ f_b\circ f_b$$

What languages can we decide by programs taking Str to Bool?

Theorem (Hillebrand & Kanellakis 1996)

The languages decided by simply typed programs of type $Str[A] \rightarrow Bool$ are exactly the regular languages.

(Str[*A*] is Str with a type substitution)

Semantic evaluation and regular languages

Theorem (Hillebrand & Kanellakis 1996)

The languages decided by simply typed programs of type $Str[A] \rightarrow Bool$ are exactly the regular languages.

To prove (\subseteq) , we use a *semantics*:

- type $T \rightsquigarrow$ some mathematical structure $[\![T]\!]$
- program t of type $T \leadsto [\![t]\!] \in [\![T]\!]$
- if the program p : Bool returns true, then $[\![p]\!] = [\![\mathtt{true}]\!]$

Semantic evaluation and regular languages

Theorem (Hillebrand & Kanellakis 1996)

The languages decided by simply typed programs of type $Str[A] \rightarrow Bool$ are exactly the regular languages.

To prove (\subseteq) , we use a *semantics*:

- type $T \rightsquigarrow$ some mathematical structure $[\![T]\!]$
- program t of type $T \leadsto [\![t]\!] \in [\![T]\!]$
- if the program p : Bool returns true, then $[\![p]\!] = [\![\mathtt{true}]\!]$

Proof idea:

 $w \in \Sigma^* \mapsto [\![\overline{w}]\!] \in [\![\mathsf{Str}[A]]\!]$ is a morphism to a finite monoid

The λ -calculus meets finite model theory

So the simply typed λ -calculus doesn't seem too expressive... Idea: *change input representation* to overcome limit.

The λ -calculus meets finite model theory

So the simply typed λ -calculus doesn't seem too expressive... Idea: *change input representation* to overcome limit.

Theorem (Hillebrand, Kanellakis & Mairson 1993)

With the right choice of encoding, the class of queries expressible in the simply typed λ -calculus over finite models is ELEMENTARY.

The λ -calculus meets finite model theory

So the simply typed λ -calculus doesn't seem too expressive... Idea: *change input representation* to overcome limit.

Theorem (Hillebrand, Kanellakis & Mairson 1993)

With the right choice of encoding, the class of queries expressible in the simply typed λ -calculus over finite models is ELEMENTARY.

One can be more precise: characterizations of k-EXPTIME / k-EXPSPACE queries

- expressivity upper bounds proved via semantics as before
- lower bounds proved using descriptive complexity

Transducers in the λ -calculus

The road not taken by Hillebrand et al.: embrace connections between Str type and automata theory

Open question

What functions $\Gamma^* \to \Sigma^*$ can be expressed in the simply typed λ -calculus by programs of type $\operatorname{Str}_{\Gamma}[A] \to \operatorname{Str}_{\Sigma}$?

Corollary (of characterization of $\mathsf{Str}_\Sigma[A] \to \mathsf{Bool}$)

For such a function $f: \Gamma^* \to \Sigma^*$,

 $L \subseteq \Sigma^*$ regular $\Longrightarrow f^{-1}(L)$ regular.

 \longrightarrow look for an answer in the theory of *transducers*.

The elementary affine λ -calculus

ICC in linear logic

Via formulæ-as-types / proofs-as-programs correspondence, Linear logic \approx type system with explicit control on *duplication*:

- *linear* function: $A \multimap B$ uses A *once* to produce B
- $A \multimap A \otimes A$ is not valid
- $!A \multimap !A \otimes !A$ is valid: '!' marks duplicable resources

ICC in linear logic

Via formulæ-as-types / proofs-as-programs correspondence, Linear logic \approx type system with explicit control on *duplication*:

- *linear* function: $A \multimap B$ uses A *once* to produce B
- $A \multimap A \otimes A$ is not valid
- $!A \multimap !A \otimes !A$ is valid: '!' marks duplicable resources

→ Restrictions on '!' have complexity effects.

Elementary Linear Logic: LL w/o $!A \multimap A$ and $!A \multimap !!A$

ICC in linear logic

Via formulæ-as-types / proofs-as-programs correspondence, Linear logic \approx type system with explicit control on *duplication*:

- *linear* function: $A \multimap B$ uses A *once* to produce B
- $A \multimap A \otimes A$ is not valid
- $!A \multimap !A \otimes !A$ is valid: '!' marks duplicable resources
- \longrightarrow Restrictions on '!' have complexity effects.

Elementary Linear Logic: LL w/o $!A \multimap A$ and $!A \multimap !!A$

Theorem (Girard 1998)

Programs of type !Str \multimap ! k Bool *in second-order ELL (for varying* $k \in \mathbb{N}$) *correspond to elementary recursive predicates.*

ICC in a linear type system (1)

Programming language counterpart / variant of 2nd-order ELL: the *elementary affine* λ -calculus (EA λ).

Theorem (Baillot et al. 2014)

Programs of type !Str \multimap !*Bool in EA λ (for varying $k \in \mathbb{N}$) correspond to elementary recursive predicates.

ICC in a linear type system (1)

Programming language counterpart / variant of 2nd-order ELL: the *elementary affine* λ -calculus (EA λ).

Theorem (Baillot et al. 2014)

Programs of type !Str \multimap ! k Bool in EA λ (for varying $k \in \mathbb{N}$) correspond to elementary recursive predicates.

Theorem (Baillot et al. 2014)

For fixed $k \in \mathbb{N}$, the programs of type !Str \multimap ! $^{k+2}$ Bool in EA λ with type fixpoints correspond to k-EXPTIME predicates. In particular !Str \multimap !!Bool corresponds to P.

More precise, but uses type fixpoints (a.k.a. recursive types).

ICC in a linear type system (2)

Theorem (Baillot et al. 2014)

In the elementary affine λ -calculus (EA λ) with type fixpoints, the programs of type !Str \multimap !!Bool correspond to P.

What if we remove type fixpoints?

ICC in a linear type system (2)

Theorem (Baillot et al. 2014)

In the elementary affine λ -calculus (EA λ) with type fixpoints, the programs of type !Str \multimap !!Bool correspond to P.

What if we remove type fixpoints?

Theorem

In EA λ without type fixpoints, the programs of type !Str \multimap !!Bool correspond to regular languages.

Proof adapted from Hillebrand and Kanellakis's theorem. Key tool: second-order LL without '!' has a finite semantics.

(Previous work on LL-based ICC did not use semantics, unlike the simply typed λ -calculus tradition.)

Finite models as inputs

Queries in EA λ (ICALP 2019 paper with P. Pradic)

Taking inspiration from the simply typed λ -calculus, we define a type Inp of inputs as finite models in EA λ .

Queries computed by programs of type Inp → !!Bool should:

- go beyond regular languages
- still be below P (the P soundness proof still holds)

Queries in EA λ (ICALP 2019 paper with P. Pradic)

Taking inspiration from the simply typed λ -calculus, we define a type Inp of inputs as finite models in EA λ .

Queries computed by programs of type Inp → !!Bool should:

- go beyond regular languages (⊂ NC¹)
- still be below P (the P soundness proof still holds)

What we obtain – unexpectedly – is *logarithmic space*:

- lower bound: all L queries expressible (w/ linear orders)
- upper bound: NL
- encouraging partial results towards L upper bound
 - exact characterization of L with ad-hoc restriction on ∃-intro

Queries in EA λ (ICALP 2019 paper with P. Pradic)

Taking inspiration from the simply typed λ -calculus, we define a type Inp of inputs as finite models in EA λ .

Queries computed by programs of type Inp → !!Bool should:

- go beyond regular languages (⊂ NC¹)
- still be below P (the P soundness proof still holds)

What we obtain – unexpectedly – is *logarithmic space*:

- lower bound: all L queries expressible (w/ linear orders)
- upper bound: NL (actually L^{UL}, UL = *unambiguous* NL)
- encouraging partial results towards L upper bound
 - exact characterization of L with ad-hoc restriction on ∃-intro

Linearity in descriptive complexity

Recall that over finite models with linear orders:

Theorem (Immerman 1983)

L = queries in FO + DTC (deterministic transitive closure).

Linearity in descriptive complexity

Recall that over finite models with linear orders:

Theorem (Immerman 1983)

L = queries in FO + DTC (deterministic transitive closure).

How to compute (deterministic) transitive closure in EA λ ?

$$\psi_R: Q \mapsto \{(x,z) \mid x=z \lor (\exists y: (x,y) \in R \land (y,z) \in Q)\}$$

 $R^* = least fixpoint of \psi_R$, obtained by iteration (ψ_R monotone).

Problem: ψ_R is non-linear (because of $\exists y$), and the Inp type in $EA\lambda$ only allows us to iterate *linear* maps.

Linearity in descriptive complexity

Recall that over finite models with linear orders:

Theorem (Immerman 1983)

L = queries in FO + DTC (deterministic transitive closure).

How to compute (deterministic) transitive closure in EA λ ?

$$\psi_R : Q \mapsto \{(x,z) \mid x = z \lor (\exists y : (x,y) \in R \land (y,z) \in Q)\}$$

 $R^* = least \ fixpoint \ of \ \psi_R, \ obtained \ by \ iteration \ (\psi_R \ monotone).$

Problem: ψ_R is non-linear (because of $\exists y$), and the Inp type in $EA\lambda$ only allows us to iterate *linear* maps.

For DTC, we have:
$$\psi_{R_d}: Q \mapsto \{(x,z) \mid x=z \lor (f_R(x),z) \in Q\}$$
 (f_R partial function) which is linear in Q

 \longrightarrow *Determinism* (L vs NL) corresponds to *linearity*.

Church-encoded strings as both

inputs and outputs

Theorem

In EA λ without type fixpoints, the programs of type !Str \multimap !!Bool correspond to regular languages.

Corollary

All functions computed by programs of type !Str $\multimap !$ Str preserve regular languages by inverse image.

Can we do better?

Theorem

In EA λ without type fixpoints, the programs of type !Str \multimap !!Bool correspond to regular languages.

Corollary

All functions computed by programs of type !Str \multimap !Str preserve regular languages by inverse image.

Can we do better? Yes: they correspond to some class *X* with

regular functions $\subsetneq X \subseteq polyregular functions$

Regular functions: well-known class of transductions Polyregular functions: Bojańczyk 2018 (arXiv:1810.08760)

In fact, the previous result is a consequence of:

Theorem

The functions computed by EA λ *programs of type* Str \multimap Str *are exactly the* regular functions.

In fact, the previous result is a consequence of:

Theorem

The functions computed by EA λ *programs of type* Str \multimap Str *are exactly the* regular functions.

Many characterizations of regular functions:

- *two-way* finite state transducers (automata with output)
- Monadic Second-Order Logic
- basic functions + combinators (at least 3 possible variants)
- register transducers with "copyless assignment" condition

In fact, the previous result is a consequence of:

Theorem

The functions computed by EA λ *programs of type* Str \multimap Str *are exactly the* regular functions.

Many characterizations of regular functions:

- *two-way* finite state transducers (automata with output)
- Monadic Second-Order Logic
- basic functions + combinators (at least 3 possible variants)
- register transducers with "copyless assignment" condition
 - → none other than a *linearity* condition! this is what we use to prove the theorem

Conclusion

We started out by drawing upon different streams of ideas in type-theoretic ICC.

This led us to connections with

- descriptive complexity,
- automata theory.

It turns out that linearity conditions occur in both of these!

New characterizations of

- hopefully, logarithmic space (still conjectural)
- regular functions on strings