```
Text Statistical Analysis
```

```
In [4]: import pandas as pd
         import os
         from nltk.tokenize import word_tokenize
         from nltk.tokenize import sent tokenize
         from collections import Counter
         from nltk.corpus import stopwords
         import matplotlib.pyplot as plt
 In [2]: os.chdir('/Users/yang-/PycharmProjects/hw/Fintech/pj')
         transcript = pd.read csv('transcripts.csv', index col=0)
         transcript = transcript.iloc[:, 1]
 In [5]: # sentence tokenize
         transcript = transcript.apply(lambda x: sent tokenize(x.lower()))
         # eliminate 'title:'
         transcript = transcript.apply(lambda x: ["".join(sentence.split(sep=':', maxsplit=1)[1:]) if ':'in sentence else sente
         nce for sentence in x ])
 In [6]: #frequency analysis
         transcript = transcript.apply(lambda x : "".join(x))
         str transcript = "".join(list(transcript))
         tokens = [w for w in word tokenize(str transcript)if w.isalpha()]
         no_stops = [t for t in tokens if t not in stopwords.words('english')]
         count = Counter(no_stops).most_common()
In [11]: #bar plot & zipf plot
         rank = pd.DataFrame(map(lambda x: x[0], count), columns=['word'])
         rank['count'] = pd.Series(map(lambda x: x[1], count))
         rank['expected_zipf'] = [ rank['count'][0]/(i+1) for i in range(rank.shape[0])]
         rank 30 = rank.iloc[0:30]
         plt.bar(rank_30['word'], rank_30['count'])
```

plt.plot(rank_30['word'], rank_30['expected_zipf'], color='r', linestyle='--', linewidth=2,alpha=0.5) plt.xticks(rotation=90) plt.ylabel('Frequency') plt.title('Top 30 tokens in Transcript & Expected Frequency for Zipf Curve')

Out[11]: Text(0.5, 1.0, 'Top 30 tokens in Transcript & Expected Frequency for Zipf Curve')

Top 30 tokens in Transcript & Expected Frequency for Zipf Curve Frequency 1000 500

The actual observations in most cases does not strictly follow Zipf's distribution, but rather follow a trend of "near-Zipfian" distribution. Even though we can see the plot follows the trend of Zipf's Law, but it looks like it has more area above the expected Zipf curve in higher ranked words.

Word Cloud for top 30 tokens in full rank:

Analysis based on financial dictionary

```
In [8]: positive_dict = pd.read_csv('positive.csv')
        positive dict = positive dict.iloc[:,0].apply(lambda x : x.lower())
        negative dict = pd.read csv('negative.csv')
        negative_dict = negative_dict.iloc[:,0].apply(lambda x : x.lower())
        positive dict = positive dict.rename('word')
        negative dict = negative dict.rename('word')
        rank positive = pd.merge(rank,positive dict, how = 'inner')
        rank_negative = pd.merge(rank,negative_dict, how = 'inner')
In [9]: rank_30 = rank_positive.iloc[0:30]
        plt.bar(rank_30['word'], rank_30['count'])
        plt.xticks(rotation=90)
```

plt.ylabel('Frequency') plt.title('Top 30 positive tokens in Transcript') Out[9]: Text(0.5, 1.0, 'Top 30 positive tokens in Transcript')

Word Cloud for top 30 positive tokens:


```
plt.bar(rank_30['word'], rank_30['count'])
         plt.xticks(rotation=90)
          plt.ylabel('Frequency')
         plt.title('Top 30 negative tokens in Transcript')
Out[10]: Text(0.5, 1.0, 'Top 30 negative tokens in Transcript')
                      Top 30 negative tokens in Transcript
```

300 250 200 Frequency 150 100 50

In [10]: rank 30 = rank negative.iloc[0:30]

Word Cloud for top 30 negative tokens:

Word Cloud for Positive and Negative Words:


```
from sklearn.linear model import LinearRegression
from datetime import datetime
import pandas as pd
import numpy as np
import glob
import sys
import os
import re
def parse_args():
    data path = sys.argv
    return data_path
def get_time(entries):
    ec_date = []
    quarter_year = []
    for file in entries:
        basename = os.path.basename(file)
        quarter_f = basename[0:2]
        year_f = basename[3:7]
        quarter_year.append('{}_{}'.format(quarter_f, year_f))
        with open(file, 'r') as call:
            raw txt = call.read()
            ec_date.extend(re.findall(r"[\d]{1,2} [ADFJMNOS]\w* [\d]
{4}", raw_txt[:120]))
    ec_date = list(map(lambda x: datetime.strptime(x, '%d %B %Y'),
ec_date))
    return ec_date, quarter_year
def get_trend(df_p, date, days):
    trend = []
    for i in date:
        if np.sign(days) < 0:
            price_range = df_p.iloc[df_p.index.get_loc(i) +
days:df_p.index.get_loc(i), ]
        else:
            price range =
df_p.iloc[df_p.index.get_loc(i):df_p.index.get_loc(i) + days, ]
        reg = LinearRegression()
        x = np.array(range(1, abs(days) + 1)).reshape(-1, 1)
        y = price_range.values.reshape(-1, 1)
        reg.fit(x, y)
```

```
trend.append(reg.coef_.item())
    return trend
def main():
    try:
        arg = parse_args()
        earning dir = arg[1]
        price dir = arg[2]
        eps dir = arg[3]
        output_dir = arg[4]
        print('Usage: python spread.py <earning call path> <price</pre>
path> <eps_path> <output path>')
        sys.exit()
    # get a list of all the files in a directory
    entries = []
    for f in glob.glob('{}/*'.format(earning_dir)):
        entries.append(f)
    ec_date, quarter_year = get_time(entries)
    df_eps = pd.read_excel(eps_dir)
    df_eps['EPS_Spread'] = df_eps['Reported_EPS'] -
df eps['Consensus Estimate']
    df_eps['Quarter'] = df_eps['Quarter'].str.replace(' ', ' ')
    df_price = pd.read_csv(price_dir, index_col='date',
parse_dates=True)['close']
    trend_before = get_trend(df_price, ec_date, -5)
    trend_after = get_trend(df_price, ec_date, 5)
    df_trend = pd.DataFrame({'Quarter_Year': quarter_year,
'Trend_Before': trend_before, 'Trend_After': trend_after})

df_trend['Trend_Spread'] = df_trend['Trend_After'] -
df trend['Trend Before']
    df_spread = pd.merge(df_eps[['Quarter', 'EPS_Spread']],
df_trend[['Quarter_Year', 'Trend_Spread']],
                           left_on="Quarter", right_on='Quarter_Year',
how='left')
    df_spread = df_spread[['Quarter_Year', 'EPS_Spread',
'Trend Spread']].dropna(axis=0)
    df spread.to csv('{}/spread.csv'.format(output dir))
if __name__ == '__main__':
    main()
```

```
import pandas as pd
import numpy as np
import sys
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor,
DecisionTreeClassifier
from sklearn.linear_model import LinearRegression,
LogisticRegression
np.set_printoptions(linewidth=100, precision=3)
pd.set_option('display.max_columns', 100)
pd.set_option('display.precision', 3)
def get_data(data, col_name, classification=False):
    if classification == True:
        data_subset = data[[col_name, 'EPS_Spread',
'Trend_Spread_Class']]
    else:
        data_subset = data[[col_name, 'EPS_Spread', 'Trend_Spread']]
    return data_subset
def split_data(data, test_size=0.2):
    x = np.array(data.drop(data.columns[-1], axis=1))
    v = np.array(data[data.columns[-1]])
    x_train, x_test, y_train, y_test = train_test_split(x, y,
test_size=.2)
    return x_train, x_test, y_train, y_test
def main():
    try:
        data path = sys.argv[1]
        output_dir = sys.argv[2]
        print('Please provide appropriate data path & output
directory')
        sys.exit()
    data = pd.read csv(data path, index col=0)
    df_prediction = pd.DataFrame({'Model': ['Tree_reg', 'Linear',
'Tree_Class', 'Logistic']})
    for col name in data.columns[:8]:
        data_pred_r = get_data(data, col_name=col_name,
classification=False).dropna(axis=0)
        data pred c = get data(data, col name=col name,
classification=True).dropna(axis=0)
```

```
iter_cv = 20
        score = np.empty([4, iter_cv])
        for i in range(iter cv):
            x_train_r, x_test_r, y_train_r, y_test_r =
split_data(data_pred_r, test_size=0.2)
            x_train_c, x_test_c, y_train_c, y_test_c =
split_data(data_pred_c, test_size=0.2)
            tree r = DecisionTreeRegressor()
            tree_r.fit(x_train_r, y_train_r)
            score[0, i] = tree_r.score(x_test_r, y_test_r)
            lm = LinearRegression(normalize=True)
            lm.fit(x_train_r, y_train_r)
            score[1, i] = lm.score(x_test_r, y_test_r)
            tree_c = DecisionTreeClassifier()
            tree_c.fit(x_train_c, y_train_c)
            score[2, i] = tree_c.score(x_test_c, y_test_c)
            lg = LogisticRegression(penalty='none')
            lg.fit(x_train_c, y_train_c)
            score[3, i] = lg.score(x_test_c, y_test_c)
        xtra = pd.DataFrame({'with {}'.format(col_name):
score.mean(axis=1)})
        df_prediction = pd.concat([df_prediction, xtra], axis=1)
    df_prediction.set_index('Model', inplace=True)
    df_prediction.to_csv('{}/prediction.csv'.format(output_dir))
if __name__ == '__main__':
    main()
```

```
import glob
import os
import sys
import pandas as pd
def parse_args():
    data_path = sys.argv
    return data path
def process_file(file):
    # throw away top part
    top_part_ending = ["All rights reserved", "FDCH e-Media."]
    for top in top_part_ending:
        if top in file:
            file.split(top)[1]
    f = file.split("\n")
    indexes = []
    f_no_factiva = []
    for line in f:
        if len(line) == 0:
            continue
        if line.startswith("\f"):
            line = line[1:]
        if not line.endswith(" Factiva, Inc. All rights reserved."):
            f_no_factiva.append(line)
    count = 0
    for line in f_no_factiva:
        if ":" in line:
            indexes.append(count)
        count = count + 1
    final text = []
    tuples = [[x, y] for x, y in zip(indexes, indexes[1:])]
    for tup in tuples:
        line = f no factiva[tup[0]:tup[1]]
        line = "".join(line).replace("\n", "")
        final_text.append(line.strip())
    string_out = ""
    ceos_cfos = ["MARIANNE L", "JAMIE D", "JENNIFER A", "BILL H",
"DINA D", "MIKE C"]
    for speaker in final_text:
        for person in ceos cfos:
            if speaker.startswith(person):
                string_out = string_out + "\n" + speaker
    return string_out
def read files(entries):
    transcript = []
```

```
quarter year = []
    # for each earning call do the following
    for file in entries:
        # extract basename of file ( i.e. only "name.txt")
        basename = os.path.basename(file)
        # from file name get the quarter and year
        quarter f = basename[0:2]
        year_f = basename[3:7]
        # read the file into a string
        with open(file, "r") as call:
            unprocessed f = call.read()
        # clean file and get only the speakers that we want
        file clean = process file(unprocessed f)
        transcript.append(file_clean)
        quarter_year.append('{}_{}'.format(quarter_f, year_f))
    return transcript, quarter_year
def main():
    # parse input arguements 1. where JP morgan calls flder is 2.
where price folder is 3. where to write transcript
    try:
        args = parse_args()
        earning_dir = args[1]
        output_dir = args[2]
    except IndexError:
        print('Usage: python preprocess.py <earning call path>
<output path>')
        sys.exit()
    # get a list of all the files in a directory
    entries = []
    for f in glob.glob('{}/*'.format(earning_dir)):
        entries.append(f)
    # read all files and return date , transcript and quarter year
    transcript, quarter year = read files(entries)
    df_t = pd.DataFrame(data={'quarter_year': quarter_year,
'transcript': transcript})
    df_t.to_csv("{}/transcripts.csv".format(output_dir))
if __name__ == '__main__':
    main()
```

```
import re
import sys
import pandas as pd
from textblob import TextBlob
def parse_args():
    data_path = sys.argv
    return data path
def read_lexicon(positive, negative, basecase = False):
postive_lex = {'big', 'grew', 'growth', 'high', 'increased',
'margin', 'over', 'profit', 'strong', 'up'}
   negative_lex = {'down', 'debt', 'loss', 'not', 'reduce',
'reduced', 'restrict', 'restricted', 'weak'}
    if basecase:
         return postive_lex, negative_lex
    with open(positive, "r") as p:
         pos_word = p.readlines()[1:]
    with open(negative, "r") as n:
         neg_word = n.readlines()[1:]
    postive_lex.update(x.rstrip().lower() for x in pos_word)
    negative_lex.update(x.rstrip().lower() for x in neg_word)
    return postive_lex, negative_lex
def numeric_sentiment_based_scoring(text, positive_lex,
negative_lex):
    """ window_size: integer
         alpha: float in range (0, 1)
    tb = TextBlob(text)
    positive = 0
    negative = 0
    index = 0
    numeric_regex = re.compile('\d+\.*\d*')
    window size = 5
    while index < len(tb.tokens):</pre>
         token = tb.tokens[index]
         if re.match(numeric_regex, token) is not None:
             low_bound = index - window_size
             high_bound = index + window_size
             # Iterate window_size words before and after token
             for l in tb.tokens[low bound:index] + tb.tokens[index +
1:high bound + 1]:
                  if l in positive_lex:
                       positive += 1
                  if l in negative_lex:
                      negative += 1
                  # More rules can be added in these lines, for
example, composite rules.
```

```
index += 1
    score = (positive - negative) / (positive + negative)
    return score
def main():
    try:
        args = parse_args()
        data_path = args[1]
        positive = args[2]
        negative = args[3]
        output dir = args[4]
    except IndexError:
        print('Usage: python preprocess_data.py <data_path> <lexicon</pre>
path> <output dir>')
        sys.exit()
    # read csv
    data = pd.read_csv(data_path, index_col=0)
    positive_lex_basecase, negative_lex_basecase =
read_lexicon(positive, negative, True)
    positive_lex, negative_lex = read_lexicon(positive, negative)
    data['numeric_sentiment_score_basecase'] =
data['transcript'].apply(numeric_sentiment_based_scoring,
args=(positive_lex, negative_lex))
    data['numeric_sentiment_score'] =
data['transcript'].apply(numeric_sentiment_based_scoring,
args=(positive_lex_basecase, negative_lex_basecase))
    data = data.drop(columns=["transcript"])
    data.to_csv("{}/rule_based_scores.csv".format(output_dir))
if __name__ == '__main__':
    main()
```

```
import glob
import sys
import numpy as np
import pandas as pd
from textblob import TextBlob
from nltk.tokenize import sent_tokenize
def parse_args():
    data path = sys.argv
    return data path
def text polarity(r, column):
    text_in_sentences = [r[column].split("\n")[1:]][0]
    # we want to score without the name of the speaker
    keep_only_text = [x.split(":")[1] for x in text_in_sentences]
    tb = TextBlob("".join(keep_only_text))
    return tb.polarity
def sentence_polarity_avg(r, column):
    polarities = []
    text_in_sentences = [r[column].split("\n")[1:]][0]
    # we want to score without the name of the speaker
    keep_only_text = [x.split(":")[1] for x in text_in_sentences]
    tb = TextBlob("".join(keep_only_text))
    for sentence in tb.sentences:
        polarities.append(sentence.polarity)
    return np.mean(polarities)
def check_sentence_length(sentence):
    tokens = sentence.split()
    if len(tokens) < 4:
        return True
    else:
        return False
def check word in lexicon(sentence, lexicon):
    # todo: we can refine the string matching here or normalize our
words?
    tokens = sentence.split()
    for tok in tokens:
        if tok in lexicon:
            return False
    return True
def filtering(r, column, method, lexicon=None):
    text = r[column].split("\n")[1:]
    words_filtered = []
    words thrown = []
```

```
for speaker in text:
        # sentences we keep
        filtered_sentences = []
        # sentences we throw out
        kicked_out = []
        # split their name and their words
        split = speaker.split(":")
        person = split[0]
        words = speaker.split(":")[1]
        words = sent tokenize(words)
        for sentence in words:
            # use the sentence length method to calculate score or
lexicon method
            if method == "len":
                if check_sentence_length(sentence):
                    kicked_out.append(sentence)
                    continue
                else:
                    filtered_sentences.append(sentence)
            elif method == "lexicon":
                if check_word_in_lexicon(sentence, lexicon):
                    kicked_out.append(sentence)
                    continue
                else:
                    filtered_sentences.append(sentence)
        # put together again their words without the filtered
sentences
        if len(filtered_sentences) > 0:
            words_filtered.append("\n" + person + ":" +
"".join(filtered_sentences))
        if len(kicked_out) > 0:
            words_thrown.append(kicked_out)
        # put together all the turns of the speakers
    return "".join(words_filtered)
def read lexicon(entries):
    list words = []
    for file in entries:
        with open(file, "r") as f:
            list_words.append(f.readlines()[1:])
    keep_words = set()
    for sentiment_list in list_words:
        for word in sentiment list:
            keep words.add(word.rstrip().lower())
    return keep_words
def main():
    try:
        args = parse_args()
```

```
data path = args[1]
        lexicon_dir = args[2]
        output dir = args[3]
    except IndexError:
        print('Usage: python preprocess data.py <data path> <lexicon</pre>
path> <output dir>')
        sys.exit()
   # read csv
    data = pd.read_csv(data_path, index_col=0)
   # get a list of lexicon files
    entries = []
    for f in glob.glob('{}/*.csv'.format(lexicon_dir)):
        entries.append(f)
    lexicon_dictionary = read_lexicon(entries)
   # Base case scoring without filtering with the two methods
    data['txt_polarity_basecase'] = data.apply(text_polarity,
args=("transcript",), axis=1)
    data['sentence_polarity_basecase'] =
data.apply(sentence_polarity_avg, args=("transcript",), axis=1)
    # Do the filtering Method length
    data['transcripts_filtered_length'] = data.apply(filtering,
args=("transcript", "len"), axis=1)
   # Do the filtering Method lexicon
    data['transcripts_filtered_lexicon'] = data.apply(filtering,
args=("transcript", "lexicon", lexicon_dictionary), axis=1)
    # Calculate the new scores for length method
    data['txt_polarity_filtered_length'] = data.apply(text_polarity,
args=("transcripts_filtered_length",), axis=1)
    data['sentence_polarity_filtered_length'] =
data.apply(sentence_polarity_avg,
args=("transcripts_filtered_length",), axis=1)
    # Calcualte the new scores for lexicon method
    data['txt_polarity_filtered_lexicon'] =
data.apply(text_polarity, args=("transcripts_filtered_lexicon",),
axis=1)
    data['sentence polarity filtered lexicon'] =
data.apply(sentence_polarity_avg,
args=("transcripts_filtered_lexicon",),
                                                            axis=1)
    data = data.drop(columns=["transcripts_filtered_length",
"transcript", "transcripts filtered lexicon"])
    data.to csv("{}/NPL scores.csv".format(output dir))
if __name__ == '__main__':
    main()
```

R. Notebook

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
library(ggplot2)
library(tidyverse)
## -- Attaching packages --
                                                                  ----- tidyverse 1.3.0 --
## v tibble 2.1.3
                     v purrr
                              0.3.3
          1.0.0
## v tidyr
                    v stringr 1.4.0
## v readr
           1.3.1
                     v forcats 0.4.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
##
      lift
#install.packages("car", dependencies=TRUE)
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:purrr':
##
##
## The following object is masked from 'package:dplyr':
##
##
      recode
```

```
library(gvlma)
data <- read.csv("data_stats.csv")</pre>
  1. Simple linear regression i)EPS vs Trend Spread
lm_EPS <- lm(Trend_Spread~EPS_Spread, data = data)</pre>
sum_lm_EPS <- summary(lm_EPS)</pre>
sum_lm_EPS
##
## Call:
## lm(formula = Trend_Spread ~ EPS_Spread, data = data)
##
## Residuals:
##
        Min
                   1Q
                        Median
                                      3Q
                                              Max
   -1.11313 -0.52119 -0.02286
##
                                0.46386
                                         2.41736
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.2567
                             0.1018 -2.521
                                               0.0153 *
## EPS_Spread
                  0.9933
                             0.3015
                                       3.294
                                               0.0019 **
##
  ___
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 0.6853 on 46 degrees of freedom
     (14 observations deleted due to missingness)
##
## Multiple R-squared: 0.1909, Adjusted R-squared: 0.1733
## F-statistic: 10.85 on 1 and 46 DF, p-value: 0.001903
with(data, plot(EPS_Spread,Trend_Spread))
abline(lm_EPS)
                                                                         0
     \alpha
                                                                                0
                                                               000
     0
                                                         0
```

ii)txt_polarity_basecase & txt_polarity_filtered_lexicon vs Trend_Spread

```
colnames (data)
    [1] "Quarter_Year"
                                               "txt_polarity_basecase"
    [3] "sentence_polarity_basecase"
                                               "txt_polarity_filtered_length"
##
##
   [5] "sentence_polarity_filtered_length"
                                               "txt_polarity_filtered_lexicon"
   [7] "sentence_polarity_filtered_lexicon"
                                               "numeric_sentiment_score"
   [9] "numeric_sentiment_score_basecase"
                                               "EPS_Spread"
## [11] "Trend_Spread"
                                               "Trend_Spread_Class"
head(data)
##
     Quarter_Year txt_polarity_basecase sentence_polarity_basecase
## 1
          Q3_2019
                               0.1267547
                                                           0.11691864
          Q3_2018
## 2
                                                           0.09072403
                               0.1176491
## 3
          Q4 2010
                               0.1295794
                                                          0.09628150
## 4
          Q1 2018
                               0.1100527
                                                          0.09159486
## 5
          Q4 2011
                               0.1214739
                                                           0.07799837
          Q1 2019
                               0.1050817
## 6
                                                          0.07708446
##
     txt_polarity_filtered_length sentence_polarity_filtered_length
## 1
                         0.1182558
                                                            0.12065628
## 2
                         0.1149488
                                                            0.09088038
## 3
                         0.1268051
                                                            0.12053531
## 4
                         0.1045307
                                                            0.17776528
## 5
                         0.1158916
                                                            0.10568206
## 6
                         0.1142718
                                                            0.14059921
##
     txt_polarity_filtered_lexicon sentence_polarity_filtered_lexicon
                                                              0.13965773
## 1
                          0.1818258
## 2
                          0.1468105
                                                              0.16538178
## 3
                          0.1345811
                                                              0.14835217
## 4
                          0.1129000
                                                              0.11120730
## 5
                          0.1410116
                                                              0.06225377
## 6
                          0.1326509
                                                              0.22606248
##
     numeric_sentiment_score numeric_sentiment_score_basecase EPS_Spread
                   0.6904762
                                                      0.7368421
## 1
                                                                       0.23
## 2
                   0.5463918
                                                      0.5402299
                                                                       0.10
## 3
                  -0.2500000
                                                     -0.2727273
                                                                       0.13
                                                                       0.09
## 4
                   0.4947368
                                                      0.4761905
## 5
                  -0.3000000
                                                     -0.1428571
                                                                      -0.02
## 6
                   0.5172414
                                                      0.5584416
                                                                       0.33
##
     Trend_Spread_Trend_Spread_Class
## 1
           -0.471
                                    0
## 2
            2.260
                                    1
## 3
           -0.217
                                    0
## 4
           -0.683
                                    0
## 5
            0.056
                                    1
            0.733
                                    1
lm_txt_polarity_basecase <- lm(Trend_Spread~txt_polarity_basecase, data = data)</pre>
sum_lm_txt_polarity_basecase <- summary(lm_txt_polarity_basecase)</pre>
sum_lm_txt_polarity_basecase
##
## Call:
## lm(formula = Trend_Spread ~ txt_polarity_basecase, data = data)
```

```
## Residuals:
##
       Min
                      Median
                  1Q
                                   30
                                            Max
  -2.78496 -0.30529 0.02165 0.39593
                                       2.40511
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          0.9561
                                      0.6783
                                               1.409
                                                       0.1654
## txt_polarity_basecase -9.3598
                                            -1.691
                                      5.5344
                                                       0.0976 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.7392 on 46 degrees of freedom
     (14 observations deleted due to missingness)
## Multiple R-squared: 0.05854,
                                   Adjusted R-squared:
## F-statistic: 2.86 on 1 and 46 DF, p-value: 0.09756
with(data, plot(txt_polarity_basecase,Trend_Spread))
abline(lm_txt_polarity_basecase)
```


lm_txt_polarity_filtered_lexicon <- lm(Trend_Spread~txt_polarity_filtered_lexicon, data = data)
sum_lm_txt_polarity_filtered_lexicon <- summary(lm_txt_polarity_filtered_lexicon)
sum_lm_txt_polarity_filtered_lexicon</pre>

```
##
## Call:
## lm(formula = Trend_Spread ~ txt_polarity_filtered_lexicon, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.10357 -0.34875 0.02596 0.37429 2.44995
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept)
                                   0.1314
                                              0.6930
                                                        0.19
                                                                 0.850
## txt_polarity_filtered_lexicon -2.1891
                                              4.8592
                                                       -0.45
                                                                 0.654
## Residual standard error: 0.7602 on 46 degrees of freedom
     (14 observations deleted due to missingness)
## Multiple R-squared: 0.004393,
                                    Adjusted R-squared:
## F-statistic: 0.203 on 1 and 46 DF, p-value: 0.6545
with(data, plot(txt_polarity_filtered_lexicon,Trend_Spread))
abline(lm_txt_polarity_filtered_lexicon)
```


txt_polarity_basecase_r2 <- data.frame(cbind(sum_lm_txt_polarity_basecase\$r.squared, sum_lm_txt_polarity
colnames(txt_polarity_basecase_r2) <- c("R.squared", "adj.R.squared", "P_value for slope")

txt_polarity_filtered_lexicon_r2 <- data.frame(cbind(sum_lm_txt_polarity_filtered_lexicon\$r.squared, succolnames(txt_polarity_filtered_lexicon_r2) <- c("R.squared", "adj.R.squared", "P_value for slope")

txt.vs.txt_filtered <- rbind(txt_polarity_basecase_r2,txt_polarity_filtered_lexicon_r2)
rownames(txt.vs.txt_filtered) <- c("txt","txt_filtered")

txt.vs.txt_filtered

R.squared adj.R.squared P_value for slope</pre>

txt_polarity_filtered_lexicon

```
## txt 0.058537535 0.03807096 0.09756435
## txt_filtered 0.004392581 -0.01725106 0.65446625

iii)numeric_sentiment_score & numeric_sentiment_score_basecase vs Trend_Spread

lm_numeric_sentiment_score <- lm(Trend_Spread~numeric_sentiment_score, data = data)

sum_lm_numeric_sentiment_score <- summary(lm_numeric_sentiment_score)

sum_lm_numeric_sentiment_score
```

```
##
## Call:
## lm(formula = Trend_Spread ~ numeric_sentiment_score, data = data)
##
```

```
## Residuals:
##
       Min
                      Median
                  1Q
                                   30
                                            Max
  -2.61469 -0.37747 -0.01992 0.42226
                                       2.20635
##
##
  Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                            -0.3910
                                       0.1238
                                               -3.158 0.00281 **
                                                2.973 0.00468 **
## numeric_sentiment_score
                            0.8138
                                       0.2737
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6978 on 46 degrees of freedom
     (14 observations deleted due to missingness)
## Multiple R-squared: 0.1612, Adjusted R-squared: 0.143
## F-statistic: 8.84 on 1 and 46 DF, p-value: 0.004679
with(data, plot(numeric_sentiment_score, Trend_Spread))
abline(lm_numeric_sentiment_score)
```


lm_numeric_sentiment_score_basecase <- lm(Trend_Spread~numeric_sentiment_score_basecase, data = data)
sum_lm_numeric_sentiment_score_basecase <- summary(lm_numeric_sentiment_score_basecase)
sum_lm_numeric_sentiment_score_basecase</pre>

```
##
  lm(formula = Trend_Spread ~ numeric_sentiment_score_basecase,
       data = data)
##
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
## -2.89072 -0.46061 0.05307 0.33050
                                         2.32137
##
## Coefficients:
```

```
##
                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                     -0.3863
                                                 0.1472
                                                        -2.624
                                                                 0.0118 *
## numeric_sentiment_score_basecase
                                                 0.2954
                                     0.6014
                                                          2.036
                                                                 0.0475 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7297 on 46 degrees of freedom
     (14 observations deleted due to missingness)
## Multiple R-squared: 0.08265,
                                    Adjusted R-squared:
                                                        0.06271
## F-statistic: 4.145 on 1 and 46 DF, p-value: 0.04755
with(data, plot(numeric_sentiment_score_basecase, Trend_Spread))
abline(lm_numeric_sentiment_score_basecase)
```


numeric_sentiment_score_basecase

```
numeric_sentiment_score_r2 <- data.frame(cbind(sum_lm_numeric_sentiment_score$r.squared, sum_lm_numeric
colnames(numeric_sentiment_score_r2) <- c("R.squared", "adj.R.squared", "P_value for slope")</pre>
numeric_sentiment_score_basecase_r2 <- data.frame(cbind(sum_lm_numeric_sentiment_score_basecase$r.squar
colnames(numeric_sentiment_score_basecase_r2) <- c("R.squared", "adj.R.squared", "P_value for slope")</pre>
score.vs.baseline <- rbind(numeric_sentiment_score_r2,numeric_sentiment_score_basecase_r2)</pre>
rownames(score.vs.baseline) <- c("score", "basecase")</pre>
score.vs.baseline
##
             R.squared adj.R.squared P_value for slope
            0.16119258
                           0.14295764
                                             0.004679046
## score
## basecase 0.08265421
                           0.06271191
                                             0.047548642
2. Multiple Linear Regression
mlr <- lm(Trend Spread~EPS Spread+numeric sentiment score+txt polarity basecase, data = data)
sum_mlr <- summary(mlr)</pre>
sum mlr
```

```
##
## Call:
  lm(formula = Trend Spread ~ EPS Spread + numeric sentiment score +
##
       txt_polarity_basecase, data = data)
##
## Residuals:
                       Median
        Min
                  10
                                     30
                                              Max
## -1.07868 -0.43658 -0.00825 0.34290
                                         2.20685
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              0.1979
                                         0.6144
                                                   0.322 0.74892
## EPS_Spread
                              0.8197
                                         0.2908
                                                   2.819 0.00719 **
## numeric_sentiment_score
                                                   2.739 0.00886 **
                              0.6938
                                         0.2533
                                         4.9180 -1.047 0.30080
## txt_polarity_basecase
                             -5.1493
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.639 on 44 degrees of freedom
     (14 observations deleted due to missingness)
## Multiple R-squared: 0.3272, Adjusted R-squared: 0.2813
## F-statistic: 7.131 on 3 and 44 DF, p-value: 0.0005256
newdata <- data.frame(cbind(data$EPS_Spread,data$numeric_sentiment_score,data$txt_polarity_basecase))
colnames(newdata) <- c("EPS_Spread", "numeric_sentiment_score", "txt_polarity_basecase")</pre>
Trend Spread pre <- predict(mlr, newdata = newdata)</pre>
pre table <- data.frame(cbind(Trend Spread pre, data$Trend Spread))</pre>
colnames(pre_table) <- c("Trend_Spread_pre", "Trend_Spread")</pre>
na.omit(pre_table)
##
      Trend_Spread_pre Trend_Spread
## 1
          0.2127931909
                            -0.47100
## 2
          0.0531528893
                             2.26000
## 3
         -0.5362377024
                            -0.21700
## A
          0.0482330224
                            -0.68300
## 5
                             0.05600
         -0.6521440871
## 6
          0.2861686058
                             0.73300
## 7
          0.0296801457
                            -0.25700
## 9
         -0.0079437329
                             0.11000
## 10
         -0.2206466604
                            -0.16100
## 13
         -0.1493831074
                             0.09000
## 14
         -0.0128449280
                            -0.50800
## 15
          0.1120148939
                            -0.74500
## 18
         -0.4462093004
                            -0.04300
## 19
         -0.9635287318
                            -1.15200
## 20
                            -0.55300
          0.1215632251
## 21
          0.1714959088
                             0.33200
## 27
         -0.5036028219
                             0.28300
## 28
         -0.0438113651
                             0.60700
## 29
         -0.4914871558
                            -0.60300
## 30
         -0.2887440457
                            -0.09600
## 31
                             0.60500
          0.0589863541
## 32
          0.0804849272
                             0.39100
## 33
         -0.1643865869
                             0.46400
## 34
          0.0009078796
                             0.20500
```

```
## 35
         -0.0788021007
                            0.24400
## 36
                            0.09200
         -0.1447708853
         -0.1818829649
## 37
                           -0.61900
## 38
         -2.4038418006
                           -3.27700
## 39
          0.3226245947
                            0.35100
## 40
         -0.3085647899
                            0.46900
## 41
         0.1357942122
                           -0.40600
## 42
          0.1436763461
                           -0.93500
## 43
         -0.3654469826
                           -0.11400
## 44
         0.0153971547
                           -0.42100
## 45
         -0.6367194678
                           -0.16698
         -0.3555122946
## 46
                            0.43600
## 47
         -0.3497633139
                           -0.76000
## 48
         -0.2843414672
                           -0.42600
## 51
         0.1198849555
                            0.07500
## 52
         -0.2100444419
                           -0.94600
## 53
         -0.3618436279
                            0.63800
## 54
         -0.4414590591
                           -1.16200
## 55
         0.3657044613
                           -0.01100
## 56
         -0.1424336872
                           -0.72300
## 57
         0.0246681852
                           -0.37400
## 60
          0.1241715019
                           -0.13800
## 61
         -0.1171410275
                           -0.54600
## 62
         -0.0508443173
                           -0.41400
##Check mean residuals are 0
mean(sum_mlr$residuals)
## [1] -7.256249e-18
##Correlation Test
cor.test(na.omit(data$Trend_Spread), sum_mlr$residuals)
##
##
   Pearson's product-moment correlation
##
## data: na.omit(data$Trend_Spread) and sum_mlr$residuals
## t = 9.7265, df = 46, p-value = 9.759e-13
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6990624 0.8956559
## sample estimates:
##
         cor
## 0.8202689
##Detecting multicollonearity
vif(mlr)
##
                EPS_Spread numeric_sentiment_score
                                                      txt_polarity_basecase
                  1.069715
                                           1.021149
                                                                    1.056851
par(mfrow=c(2,2))
mlr <- lm(Trend_Spread~EPS_Spread+numeric_sentiment_score+txt_polarity_basecase, data = data)
gvlma(mlr)
##
## Call:
```

```
## lm(formula = Trend_Spread ~ EPS_Spread + numeric_sentiment_score +
##
       txt_polarity_basecase, data = data)
##
  Coefficients:
##
##
               (Intercept)
                                          EPS_Spread numeric_sentiment_score
##
                    0.1979
                                              0.8197
                                                                        0.6938
##
     txt_polarity_basecase
##
                   -5.1493
##
##
## ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
## USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
## Level of Significance = 0.05
##
## Call:
   gvlma(x = mlr)
##
                               p-value
                                                          Decision
##
                       Value
## Global Stat
                      24.377 6.711e-05 Assumptions NOT satisfied!
## Skewness
                       5.744 1.655e-02 Assumptions NOT satisfied!
## Kurtosis
                       5.108 2.382e-02 Assumptions NOT satisfied!
## Link Function
                      10.254 1.364e-03 Assumptions NOT satisfied!
## Heteroscedasticity 3.271 7.049e-02
                                           Assumptions acceptable.
par(mfrow=c(2,3))
termplot(mlr)
#plot(mlr)
```



```
Statistical Analysis on Numeric Variables
In [59]: import pandas as pd
            import numpy as np
            import matplotlib.pyplot as plt
          import matplotlib.pyplot as pit
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
            from sklearn import metrics
            %matplotlib inline
In [22]: ##read tables
            ##below are three tables we need to combined and analyze
           df1=pd.read_csv('/Users/chenpengguan/Desktop/GR5293/NLP_scores.csv',index_col=0)
           df2=pd.read_csv('/Users/chenpengguan/Desktop/GR5293/rule_based_scores.csv',index_col=0)
           df3=pd.read_csv('/Users/chenpengguan/Desktop/GR5293/spread.csv',index_col=0)
In [23]: #df1.head()
In [24]: #df2.shape
In [25]: #df2.head()
In [26]: #df3.head()
In [27]: #df3.shape
In [28]: ##join three tables together
           df_left = pd.merge(df1, df2, on='Quarter_Year', how='left')
df=pd.merge(df_left,df3, on='Quarter_Year', how='left')
In [29]: df.head()
Out[29]:
               Quarter_Year txt_polarity_basecase sentence_polarity_basecase txt_polarity_filtered_length sentence
                   Q3_2019
                                         0.126755
                                                                      0.116919
            0
                                                                                                0.118256
                   Q3_2018
                                         0.117649
                                                                      0.090724
                                                                                                0.114949
                   Q4_2010
                                         0.129579
                                                                      0.096281
                                                                                                0.126805
                                         0.110053
                                                                      0.091595
                                                                                                0.104531
                   Q1_2018
                   Q4_2011
                                         0.121474
                                                                      0.077998
                                                                                                0.115892
           Explanation for variables
               - txt_polarity is overall score for a transcript
               - sentence_polarity is sentence wise scores
               - above two each have three methods (basecase, length, lexicon)
               - numeric sentiment score is a scoring method based on words around numbers in EC
               - numeric_sentiment_score has a basecase column and a more accurated, improved col
In [35]: df['Trend_Spread_Class']=df['Trend_Spread']
In [36]: for i in range(0,len(df['Quarter_Year'])-1):
                if df['Trend_Spread'][i]<0:</pre>
                   df['Trend_Spread_Class'][i]=0
                else:
                   df['Trend_Spread_Class'][i]=1
           /Users/chenpengguan/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:3: Setti
           ngWithCopyWarning:
           A value is trying to be set on a copy of a slice from a DataFrame
           See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user
           guide/indexing.html#returning-a-view-versus-a-copy
This is separate from the ipykernel package so we can avoid doing imports until
           /Users/chenpengguan/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:5: Setti
           ngWithCopyWarning:
           A value is trying to be set on a copy of a slice from a DataFrame
            See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_
           guide/indexing.html#returning-a-view-versus-a-copy
In [40]: df.shape
Out[40]: (62, 12)
In [48]: ##a subset for analysis
           df_elr=df.iloc[:,1:11]
In [57]: corrMatrix = df_elr.corr()
           sns.heatmap(corrMatrix, annot=True)
           plt.show()
                sentence_polarity_basecase -0.91 1 0.87
                 txt_polarity_filtered_length - 0.98 0.87 1 0.37 0.9 0.4 0.096 0.15 -0.24 -0.23
              sentence_polarity_filtered_length = 0.38 0.44 0.37 1 0.34 0.54 0.13 0.12 -0.11 -0.2
                txt_polarity_filtered_lexicon - 0.89 0.84 0.9 0.34 1 0.47 0.2 0.22 0.0780.0
             sentence_polarity_filtered_lexicon
                                  .096 0.26 0.096 0.13 0.2 0.14 1 0.87 0.13 0
            numeric_sentiment_score_basecase -0
                  numeric sentiment score -0
                                  EPS_Spread -0.23 -0.1 -0.24-0.11 0.0780.099 0.13 0.061 1
                        Trend_Spread -0.24-0.19-0.23 -0.2-0.0660.17 0.4 0.29 0.44
In [66]: df.describe()
Out[66]:
                   txt_polarity_basecase sentence_polarity_basecase txt_polarity_filtered_length sentence_polarity_fi
                               62.000000
                                                           62.000000
                                                                                      62.000000
            count
                                                            0.095324
                                                                                      0.116403
                               0.118167
            mean
                               0.026204
                                                            0.022079
                                                                                       0.027338
               std
                                                            0.030668
                                                                                      0.024897
              min
                                0.039010
             25%
                                0.102912
                                                            0.084741
                                                                                      0.102737
                               0.117390
                                                            0.093049
                                                                                      0.115899
             50%
                                                            0.107008
             75%
                               0.131874
                                                                                      0.130370
                               0.169164
                                                            0.144983
                                                                                      0.174152
              max
In [67]: ##Cor with Trend—Spread
           corr=df_elr.corr()
           corr['Trend_Spread']
Out[67]: txt_polarity_basecase
                                                       -0.241945
           sentence polarity basecase
                                                       -0.193356
           txt_polarity_filtered_length
sentence_polarity_filtered_length
                                                       -0.231591
                                                       -0.202263
           txt polarity filtered lexicon
                                                       -0.066277
           sentence_polarity_filtered_lexicon
numeric_sentiment_score_basecase
                                                       0.168417
                                                        0.401488
           numeric_sentiment_score
                                                        0.287496
           EPS_Spread
                                                        0.436928
           Trend_Spread
                                                        1.000000
           Name: Trend_Spread, dtype: float64
In [60]: df.plot(x='txt_polarity_basecase', y='Trend_Spread', style='o')
           plt.xlabel('txt_polarity_basecase')
           plt.ylabel('Trend_Spread')
           plt.show()
                       0.10
                                       0.14
In [63]: df.plot(x='numeric_sentiment_score_basecase', y='Trend_Spread', style='o')
           plt.xlabel('numeric_sentiment_score_basecase')
           plt.ylabel('Trend_Spread')
           plt.show()
                -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 numeric_sentiment_score_basecase
In [65]: df.plot(x='EPS_Spread', y='Trend_Spread', style='o')
           plt.xlabel('EPS_Spread')
           plt.ylabel('Trend_Spread')
           plt.show()
                             -1.0 -0.
EPS_Spread
                -2.0
                      -1.5
                                           0.0
           Note: we wanna pay attention to the seemingly 'outlier' here. Its affecting the relationship alot, we wanna make sure its not an anomaly data point. Otherwise, its actually a good thing.
In [74]: plt.figure(figsize=(8,5))
           plt.tight_layout()
           sns.distplot(df['EPS_Spread'])
Out[74]: <matplotlib.axes._subplots.AxesSubplot at 0x1a1c0346a0>
                                -1.0 -0
EPS_Spread
           Next Step: Need Simple Linear Regression
            • EPS vs Trend_Spread

    txt_polarity_basecase vs Trend_Spread

                sentence_polarity_basecase vs Trend_Spread (to check which one is better)
            numeric_sentiment_score VS Trend_Spread
                numeric_sentiment_score_basecase vs Trend_Spread (check which one is better)

    CHECK ASSUMPTION PLOTS

           Could also try Multiple Linear Regression
            • EPS + numeric_sentiment_score + sentence/txt_polarity_basecase ~ Trend_Spread
               then use them to either predict Irend_Spred or binary Irend_Spread_Class

    CHECK ASSUMPTION PLOTS
```

In [78]: df.to_csv('/Users/chenpengguan/Desktop/GR5293/data_stats.csv', index=False)