

Wydział Mechatroniki

Praca przejściowa

Ireneusz Szulc

Planowanie bezkolizyjnych tras dla zespołu robotów mobilnych

Opiekun pracy: prof. dr hab. Barbara Siemiątkowska

Warszawa, 2018

Spis treści

Sp	ois treści	2
1	$\mathbf{Wst}\mathbf{ep}$	3
2	Konspekt pracy	4
3	Wnioski	6
Bi	ibliografia	7
W	ykaz skrótów	7
Sp	ois rysunków	7
Sp	ois tabel	8

Rozdział 1

Wstęp

Karta tematu:

Temat pracy: Planowanie bezkolizyjnych tras dla zespołu robotów mobilnych Temat pracy (w jęz. ang.): Path planning for a group of mobile robots Zakres pracy:

- Projekt algorytmu wyznaczania trajektorii dla pojedynczego robota
- Algorytm detekcji i zapobiegania kolizjom między robotami
- Implementacja oprogramowania symulacyjnego
- Przeprowadzenie testów symulacyjnych

Podstawowe wymagania:

- Aplikacja powinna umożliwiać symulację ruchu robotów oraz definiowanie położenia przeszkód przez użytkownika.
- Planowanie tras dotyczy robotów holonomicznych.

Rozdział 2

Konspekt pracy

- Wstęp teoretyczny:
 - Cooperative Pathfinding
 - algorytm A* szczegółowo
 - przegląd metod planowania tras dla wielu robotów
 - artykuł o Cooperative Pathfinding, time-space A*
 - artykuł o wyznaczaniu priorytetów i metodach planowania tras (prezentacja): Path
 Coordination, time-space A*
 - metoda ładunków problem minimów lokalnych
 - replanowanie po wykruciu kolizcji (algorytm D*)
 - algorytmy WHCA* i IADPP
 - Reciprocal Collision Avoidance
 - metody przydziału priorytetów zwiększanie i przeliczanie
 - metody zcentralizowane vs rozproszone (porównanie)
 - time-space A*, heurystyki, Reservation Table
- generowanie mapy labiryntu do testów: własny algorytm, teoria grafów, własności mapy
- metoda przydziału / zmiany priorytetów
- obszerne testy, porównanie wyników metod przy tych samych warunkacj początkowych
- zastosowanie: ciasne korytarze, częsty problem kolizji, szpitale, transport dokumentów, paczek

- $\bullet\,$ time-space A* pseudokod, schemat blokowy, własne heurystyki, modyfikacje
- ograniczenia nałożone uproszczenia: ruch skośny, czas dyskretny
- Implementacja aplikacji stack technologiczny: Java 8, Java FX, Spring, Spring Boot, testy jednostkowe jUnit, git, IntelliJ, Maven, Linux

Rozdział 3

Wnioski

Bibliografia

- [1] Thrun S. Bennewitz M., Burgard W. Optimizing Schedules for Prioritized Path Planning of Multi-Robot Systems. 2001.
- [2] Roszkowska E. Mówiński K. Sterowanie hybrydowe ruchem robotów mobilnych w systemach wielorobotycznych. Postępy Robotyki, 2016.
- [3] Siemiątkowska B. Uniwersalna metoda modelowania zachowań robota mobilnego wykorzystująca architekturę uogólnionych sieci komórkowych. 2009.

Wykaz skrótów

API Application Programming Interface

SDK Software Development Kit

Spis rysunków

Spis tabel