- 9. Any integer n can be written as a product of prime powers. Say $n = \prod_{i=1}^l p_i^{a_i}$. Then we can say that $f(n) = \prod_{i=1}^l f(p_i^{a_i})$, for any multiplicative function f, because the prime powers are relatively co-prime. Therefore, such a function is purely determined by its values on prime powers. This concludes the proof.
- 10. Consider g(ab) where gcd(a,b)=1. By definition of g(n), $g(ab)=\sum_{d|ab}f(d)$. But since gcd(a,b)=1, any divisor of ab can be written in the form d_ad_b where $d_a|a$ and $d_b|b$. Therefore, $g(ab)=\sum_{d_a|a,d_b|b}f(d_ad_b)$. But since f is multiplicative, we get $g(ab)=\sum_{d_a|a,d_b|b}f(d_a)f(d_b)=(\sum_{d_a|a}f(d_a))(\sum_{d_b|b}f(d_b))=g(a)g(b)$, which implies that g too is multiplicative. This concludes the proof.
- 15a. Imagine a function f(n)=1 for all values of n. Then, we can say that $\nu(n)=\sum_{d\mid n}1=\sum_{d\mid n}f(d)$. Thus, by the Mobius inversion theorem, $\sum_{d\mid n}\mu(n/d)\nu(d)=f(n)=1$. This concludes the proof.
- 15b. Imagine a function f(n) = n for all values of n. Then, we can say that $\sigma(n) = \sum_{d|n} d = \sum_{d|n} f(d)$. Thus, by the Mobius inversion theorem, $\sum_{d|n} \mu(n/d)\sigma(d) = f(n) = n$. This concludes the proof.