

School of Computer Science and Engineering

Caro-Wei Theorem

Richard Vargas

Supervisor – Dr Owen Murphy

Prerequisites

- A graph, denoted G, is a collection of vertices, denoted V, connected by edge E.
- The independence number (also known as stability number), denoted $\alpha(G)$, is the cardinality of the largest independent vertex set.
- Independent vertex set is a set of pairwise non-adjacent vertices in a graph.

Prerequisites

School of Computer Science and Engineering

Example:

To the left is graph G, which has a vertex set, $V = \{A, B, C, D, E\}$

And let S denote the independent vertex set, $S = \{A, B, D | S \subset V\}$

Theorem of Caro and Wei (1981)

Computing a lower bound on the independence number of a graph G

$$\alpha(G) \ge w(G) \equiv \sum_{i=1}^{n} \frac{1}{d_i + 1}$$

$$3 \ge \frac{1}{5} + \frac{1}{3} + \frac{1}{3} + \frac{1}{2} + \frac{1}{2}$$

$$3 \ge 1\frac{13}{15}$$

School of Computer Science and Engineering

Proof

School of Computer Science and Engineering

Erdős (1970) refined Turán's theorem (1940) which created an algorithm for producing the Caro-Wei number. This algorithm creates a collection of pairwise non-adjacent vertices $w_1, w_2, ..., w_s$ in graph G.

$$j \leftarrow 0$$

while $G \neq \emptyset$ do
 $j \leftarrow j + 1$
 $w_j \leftarrow vertex$ with smallest degree in G
 $C_j \leftarrow \{w_j\} \cup \{v: v \text{ is adjacent to } w_j \text{ in } G\}$
 $G \leftarrow G - C_j$
endwhile
 $s \leftarrow j$
 $H \leftarrow \text{ the graph in which two vertices are}$
 $adjacent if \text{ and only if they belong to}$
the same C_j

Proof – Applied

School of Computer Science and Engineering

Only concerning ourselves with the while loop, we can apply w(G) on line 5, for all vertices removed from G

$$a_1$$
 = First iteration: $\frac{1}{2} + \frac{1}{5}$
 a_2 = Second iteration: $a_1 + \frac{1}{2}$
 a_3 = Third iteration: $a_2 + \frac{1}{3} + \frac{1}{3}$
 $\therefore a_3 = 1\frac{13}{15}$

$$j \leftarrow 0$$

while $G \neq \emptyset$ do

 $j \leftarrow j + 1$
 $w_j \leftarrow vertex$ with smallest degree in G
 $C_j \leftarrow \{w_j\} \cup \{v: v \text{ is adjacent to } w_j \text{ in } G\}$
 $G \leftarrow G - C_j$

endwhile

 $S \leftarrow j$
 $H \leftarrow the graph in which two vertices are adjacent if and only if they belong to$

the same C_i

Works Cited

Murphy, Owen. "Lower Bounds on the Stability Number of Graphs Computed in Terms of Degrees." *Discrete Mathematics*, vol. 90, no. 2, 1991, pp. 207–211., doi:10.1016/0012-365x(91)90357-8.

Chartrand, Gary, et al. *Graphs & Digraphs*. CRC Press, 2016.