Android Concurrency: Overview of Android Concurrency Frameworks

Douglas C. Schmidt <u>d.schmidt@vanderbilt.edu</u> www.dre.vanderbilt.edu/~schmidt

> Institute for Software Integrated Systems Vanderbilt University Nashville, Tennessee, USA

 Identify key characteristics of a software framework

A framework provides an integrated set of classes that collaborate to provide a reusable software architecture for a family of related apps

- Identify key characteristics of a software framework
- Understand motivations for Android concurrency & concurrency frameworks

A concurrency framework provides integrated classes that collaborate to provide a resuable software architecture for concurrent apps

- Identify key characteristics of a software framework
- Understand motivations for Android concurrency & concurrency frameworks
- Recognize the structure & functionality of Android's concurrency frameworks

- Identify key characteristics of a software framework
- Understand motivations for Android concurrency & concurrency frameworks
- Recognize the structure & functionality of Android's concurrency frameworks
 - Handler, Messages, & Runnables (HaMeR) framework

- Identify key characteristics of a software framework
- Understand motivations for Android concurrency & concurrency frameworks
- Recognize the structure & functionality of Android's concurrency frameworks
 - Handler, Messages, & Runnables (HaMeR) framework
 - AsyncTask framework

Overview of Frameworks (Part 1)

 A framework is an integrated set of components that provide a reusable architecture for a family of apps

See www.dre.vanderbilt.edu/ ~schmidt/frameworks.html

 A framework is an integrated set of components that provide a reusable architecture for a family of apps

- A framework is an integrated set of components that provide a reusable architecture for a family of apps
 - Often use an event-driven programming model to plug app code into them

See en.wikipedia.org/wiki/ Event-driven_programming

- A framework is an integrated set of components that provide a reusable architecture for a family of apps
 - Often use an event-driven programming model to plug app code into them
 - Apps register callbacks for specific types of events that can occur within the framework

- A framework is an integrated set of components that provide a reusable architecture for a family of apps
 - Often use an event-driven programming model to plug app code into them
 - Apps register callbacks for specific types of events that can occur within the framework
 - e.g., arrival of messages from remote servers, gestures on GUI elements, etc.

- A framework is an integrated set of components that provide a reusable architecture for a family of apps
 - Often use an event-driven programming model to plug app code into them
 - Apps register callbacks for specific types of events that can occur within the framework
 - Framework calls back to app code when an event occurs

- A framework is an integrated set of components that provide a reusable architecture for a family of apps
 - Often use an event-driven programming model to plug app code into them
 - Apps register callbacks for specific types of events that can occur within the framework
 - Framework calls back to app code when an event occurs
 - The app performs its processing in context of framework's thread

- A framework is an integrated set of components that provide a reusable architecture for a family of apps
 - Often use an event-driven programming model to plug app code into them
 - Apps register callbacks for specific types of events that can occur within the framework
 - Framework calls back to app code when an event occurs
 - When app code is done, control returns to the framework

- A framework is an integrated set of components that provide a reusable architecture for a family of apps
 - Often use an event-driven programming model to plug app code into them
 - Apps register callbacks for specific types of events that can occur within the framework
 - Framework calls back to app code when an event occurs
 - When app code is done, control returns to the framework
 - Lather, rinse, repeat until app is done...

Overview of Frameworks (Part 2)

Key frameworks characteristics

See <u>en.wikipedia.org/wiki/</u> Software_framework

Key frameworks characteristics

 Exhibit "inversion of control" via callbacks

See www.dre.vanderbilt.edu/~schmidt/ Coursera/articles/hollywood-principle.txt

Key frameworks characteristics

 Exhibit "inversion of control" via callbacks

 i.e., it controls main thread of execution & decides when to run app code

Key frameworks characteristics

 Exhibit "inversion of control" via callbacks

 i.e., it controls main thread of execution & decides when to run app code

Key frameworks characteristics

 Exhibit "inversion of control" via callbacks

 i.e., it controls main thread of execution & decides when to run app code

- Key frameworks characteristics
 - Exhibit "inversion of control" via callbacks
 - Integrated domain-specific structure & functionality

Domain-specific functionality for concurrent Android programs

- Key frameworks characteristics
 - Exhibit "inversion of control" via callbacks
 - Integrated domain-specific structure & functionality
 - e.g., provide default capabilities useful to some domain(s)

Domain-specific functionality for concurrent Android programs

Android's frameworks focus on domains associated with mobile apps & services

- Key frameworks characteristics
 - Exhibit "inversion of control" via callbacks
 - Integrated domain-specific structure & functionality
 - Provide semi-complete (portions of) apps

Domain-specific functionality for concurrent Android programs

- Key frameworks characteristics
 - Exhibit "inversion of control" via callbacks
 - Integrated domain-specific structure & functionality
 - Provide semi-complete (portions of) app
 - Extensible hook methods plug app logic into the framework

Domain-specific functionality for concurrent Android programs

These hook methods customize reusable framework classes to run app-specific logic

- Key frameworks characteristics
 - Exhibit "inversion of control" via callbacks
 - Integrated domain-specific structure & functionality
 - Provide semi-complete (portions of) apps
 - Extensible hook methods plug app logic into the framework
 - Mediate interactions among common abstract & variant concrete classes/interfaces

Domain-specific functionality for concurrent Android programs

- Key frameworks characteristics
 - Exhibit "inversion of control" via callbacks
 - Integrated domain-specific structure & functionality
 - Provide semi-complete (portions of) apps
 - Extensible hook methods plug app logic into the framework
 - Mediate interactions among common abstract & variant concrete classes/interfaces

Domain-specific functionality for concurrent Android programs

Runnable is a common abstract interface that provides the basis for concrete variants

- Key frameworks characteristics
- Android & Java provide many frameworks

- Key frameworks characteristics
- Android & Java provide many frameworks
 - Android
 - Android Activity framework controls the main thread

See <u>developer.android.com/training/</u> multiple-threads/communicate-ui.html

- Key frameworks characteristics
- Android & Java provide many frameworks
 - Android
 - Android Activity framework controls the main thread
 - App lifecycle methods are called back by the Activity framework
 - e.g., onCreate(), onStart(), onStop(), onDestroy(), etc.

See <u>developer.android.com/</u> training/basics/activity-lifecycle

- Key frameworks characteristics
- Android & Java provide many frameworks
 - Android
 - Android Activity framework controls the main thread
 - App lifecycle methods are called back by the Activity framework
 - A listener for button clicks is called back by Android's GUI framework

- Key frameworks characteristics
- Android & Java provide many frameworks
 - Android
 - Java
 - A Thread calls back on the run() hook method of a Runnable

: MyThread

See <u>docs.oracle.com/javase/tutorial/</u> essential/concurrency/runthread.html

- Key frameworks characteristics
- Android & Java provide many frameworks
 - Android
 - Java
 - A Thread calls back on the run() hook method of a Runnable
 - The ExecutorService calls back to the call() hook method of a Callable

See <u>docs.oracle.com/javase/tutorial/</u> essential/concurrency/executors.html

- Key frameworks characteristics
- Android & Java provide many frameworks
- Your apps in these MOOCs use one or more frameworks

All Android apps run inside one or more frameworks

Motivation for Android Concurrency

 Many Android apps require and/or benefit from concurrency

- Many Android apps require and/or benefit from concurrency
 - These apps perform long-duration operations and/or access remote resources in the background

Often (but not always), apps interact with servers that reside in the cloud

- Many Android apps require and/or benefit from concurrency
 - These apps perform long-duration operations and/or access remote resources in the background, e.g.
 - Play music or videos on a device

Albums

Lucia Comnes

One TesseracT Songs

- Many Android apps require and/or benefit from concurrency
 - These apps perform long-duration operations and/or access remote resources in the background, e.g.
 - Play music or videos on a device
 - Synchronize contents of phone databases with cloud servers
 - e.g., Email, Contacts, Calendar, MMS/SMS, etc.

- Many Android apps require and/or benefit from concurrency
 - These apps perform long-duration operations and/or access remote resources in the background, e.g.
 - Play music or videos on a device
 - Synchronize contents of phone databases with cloud servers
 - Download & store images

- Many Android apps require and/or benefit from concurrency
 - These apps perform long-duration operations and/or access remote resources in the background, e.g.
 - Play music or videos on a device
 - Synchronize contents of phone databases with cloud servers
 - Download & store images
 - Access web services

- Many Android apps require and/or benefit from concurrency
- Concurrency benefits apps by overlapping communication & computations, e.g.
 - Increase performance via multi-core parallelism

See <u>developer.qualcomm.com/blog/multi-threading</u> -android-apps-multi-core-processors-part-1-2

- Many Android apps require and/or benefit from concurrency
- Concurrency benefits apps by overlapping communication & computations, e.g.
 - Increase performance via multi-core parallelism
 - Improve responsiveness by running longduration operations in background thread(s)

See <u>developer.android.com/</u> training/articles/perf-anr.html

- Many Android apps require and/or benefit from concurrency
- Concurrency benefits apps by overlapping communication & computations, e.g.
 - Increase performance via multi-core parallelism
 - Improve responsiveness by running longduration operations in background thread(s)
 - Simplify program structure by allowing threads to block synchronously

- Many Android apps require and/or benefit from concurrency
- Concurrency benefits apps by overlapping communication & computations, e.g.
 - Increase performance via multi-core parallelism
 - Improve responsiveness by running longduration operations in background thread(s)
 - Simplify program structure by allowing threads to block synchronously
 - Can yield more natural control flow & collaboration within an app

See en.wikipedia.org/ wiki/Control_flow

 These frameworks also address Android design constraints

See <u>developer.android.com/guide/components/</u> processes-and-threads.html#Threads

- These frameworks also address Android design constraints, e.g.
 - "ANR" dialog is generated if the UI thread blocks too long

The UI thread can't block on long-duration operations for more than several seconds

See <u>developer.android.com/</u> training/articles/perf-anr.html

- These frameworks also address Android design constraints, e.g.
 - "ANR" dialog is generated if the UI thread blocks too long
 - Network operations are disallowed on the UI thread by default

See <u>developer.android.com/reference/android/</u> os/NetworkOnMainThreadException.html

See <u>android-developers.blogspot.com/</u> 2009/05/painless-threading.html

- These frameworks also address Android design constraints, e.g.
 - "ANR" dialog is generated if the UI thread blocks too long
 - Non-UI threads can't access
 UI toolkit components directly

Java concurrency mechanisms alone don't address these constraints

See www.dre.vanderbilt.edu/ ~schmidt/LiveLessons/CPiJava

See <u>developer.android.com/guide/components</u> /processes-and-threads.html#WorkerThreads

- These frameworks also address Android design constraints
- The "Buggy Downloads" app motivates the need for the Android concurrency frameworks

See github.com/douglascraigschmidt/ POSA-15/tree/master/ex/BuggyDownloads

- These frameworks also address Android design constraints
- The "Buggy Downloads" app motivates the need for the Android concurrency frameworks
 - "Buggy1" throws an exception since the image is downloaded in the UI thread

- These frameworks also address Android design constraints
- The "Buggy Downloads" app motivates the need for the Android concurrency frameworks
 - "Buggy1" throws an exception since the image is downloaded in the UI thread
 - "Buggy2" throws an exception since a UI component is accessed via a background thread

Decouple computation(s) & communication

Decouple computation(s) & communication

Short-duration, user-facing operations run in the UI Thread

Decouple computation(s) &

communication

See github.com/douglascraigschmidt/POSA-15/tree/master/ex/SimpleImageDownloads

Decouple computation(s) & communication

- Decouple computation(s) & communication
- Two concurrency frameworks

See <u>developer.android.com/training/</u> multiple-threads/communicate-ui.html

See <u>developer.android.com/reference/</u> android/os/AsyncTask.html

- Decouple computation(s) & communication
- Two concurrency frameworks
- Each frameworks has pros
 & cons & are used heavily throughout Android

	Async Task	Posting Runnables	Sending Messages
Usability (Simple)	+++	+++	++
Usability (Complex)	+++	+	++
Scalability	+++	+	÷
Flexibility	++	+	+++
Efficiency	++	+++	+++

See upcoming part on "Evaluating Android's Concurrency Frameworks"

- Decouple computation(s) & communication
- Two concurrency frameworks
- Each frameworks has pros
 & cons & are used heavily
 throughout Android
- Both frameworks implement Android concurrency *idioms*

See <u>en.wikipedia.org/wiki/</u>
<u>Programming_idiom</u>

- Decouple computation(s) & communication
- Two concurrency frameworks
- Each frameworks has pros
 & cons & are used heavily
 throughout Android
- Both frameworks implement Android concurrency *idioms*
 - An idiom is a pattern specific to a certain context, such as a design method, platform, or language

- Decouple computation(s) & communication
- Two concurrency frameworks
- Each frameworks has pros
 & cons & are used heavily throughout Android
- Both frameworks implement Android concurrency *idioms*
 - An idiom is a pattern specific to a certain context, such as a design method, platform, or language
 - e.g., Messages passed between threads via sendToTarget()

See developer.android.com/reference/ android/os/Message.html#sendToTarget()

- Decouple computation(s) & communication
- Two concurrency frameworks
- Each frameworks has pros
 & cons & are used heavily
 throughout Android
- Both frameworks implement Android concurrency *idioms*
- Patterns/idioms also needed to program with Android's concurrency frameworks

See <u>developer.android.com/guide/</u> topics/resources/runtime-changes.html

Overview of Android Concurrency Frameworks

- Decouple computation(s) & communication
- Two concurrency frameworks
- Each frameworks has pros
 & cons & are used heavily
 throughout Android
- Both frameworks implement Android concurrency *idioms*
- Patterns/idioms also needed to program with Android's concurrency frameworks, e.g.
 - Use MVP pattern to robustly handle runtime configuration changes

See <u>developer.android.com/guide/</u> topics/resources/runtime-changes.html

Overview of Android Concurrency Frameworks

- Decouple computation(s) & communication
- Two concurrency frameworks
- Each frameworks has pros
 & cons & are used heavily
 throughout Android
- Both frameworks implement Android concurrency *idioms*
- Patterns/idioms also needed to program with Android's concurrency frameworks, e.g.
 - Use MVP pattern to robustly handle runtime configuration changes
 - "don't store a message passed to handleMessage() without copying it first"

See groups.google.com/forum/#!topic/ android-developers/9pHuc7lGunY

 Android's concurrency frameworks are built using reusable classes

Background Message Android's concurrency frameworks Thread A → ≥ Queue are built using reusable classes Message **Handler** Handler Message Looper Runnable Message Message Background Thread B Message

We first cover the classes used to write concurrent Android programs

Message

Message

UI Thread (main thread)

Handler

Executor

AsyncTask

Background Message Android's concurrency frameworks Thread A $\rightarrow \geq$ Queue are built using reusable classes Message Handler Handler Message Looper Runnable Message Message Background Thread B Message Handler Message Message **Executor UI Thread** (main thread) **AsyncTask**

We next explore the implementation of Android's concurrency frameworks

- Android's concurrency frameworks are built using reusable classes
 - Looper Run a message loop for a thread

See <u>developer.android.com/</u> reference/android/os/Looper.html

- Android's concurrency frameworks are built using reusable classes
 - Looper
 - MessageQueue Holds the list of messages to be dispatched by a Looper

See <u>developer.android.com/reference/</u> android/os/MessageQueue.html

- Android's concurrency frameworks are built using reusable classes
 - Looper
 - MessageQueue
 - Message Contains data & type information that can be sent to a Handler via a MessageQueue

See <u>developer.android.com/reference/</u> android/os/Message.html

See <u>developer.android.com/reference/</u> android/os/Handler.html

- Android's concurrency frameworks are built using reusable classes
 - Looper
 - MessageQueue
 - Message
 - Handler
 - Runnable Represents a command that can be executed

See <u>developer.android.com/reference/</u> java/lang/Runnable.html

- Android's concurrency frameworks are built using reusable classes
 - Looper
 - MessageQueue
 - Message
 - Handler
 - Runnable
 - FutureTask Can be used to
 - Start & cancel a computation that runs asynchronously
 - Query to see if computation is complete
 - Retrieve the result of the computation

See <u>developer.android.com/reference/</u> java/util/concurrent/FutureTask.html

- Android's concurrency frameworks are built using reusable classes
 - Looper
 - MessageQueue
 - Message
 - Handler
 - Runnable
 - FutureTask
 - Executor framework Execute submitted Runnable tasks either
 - Sequentially in one thread or
 - Concurrently in a thread pool

See <u>developer.android.com/reference/</u> java/util/concurrent/Executor.html

- Android's concurrency frameworks are built using reusable classes
- These frameworks are used by Android's application frameworks
 packaged applications

- Android's concurrency frameworks are built using reusable classes
- These frameworks are used by Android's application frameworks
 & packaged applications
- Android applies may patterns to overcome design constraints & ensure other concurrency benefits

See en.wikipedia.org/ wiki/Concurrency_pattern

- Android's concurrency frameworks are built using reusable classes
- These frameworks are used by Android's application frameworks
 & packaged applications
- Android applies may patterns to overcome design constraints & ensure other concurrency benefits

See upcoming discussions on "Concurrency Patterns in Android"