Lemma 9.1 Pro neprázdné, konečné Σ je množina 2^{Σ^*} nespočetná.

 $D\mathring{u}kaz$. $D\mathring{u}kaz$ provedeme tzv. diagonalizací (poprvé použitou Cantorem při důkazu rozdílné mohutnosti \mathbb{N} a \mathbb{R}).

- Předpokládejme, že 2^{Σ^*} je spočetná. Pak dle definice spočetnosti existuje bijekce $f: \mathbb{N} \longleftrightarrow 2^{\Sigma^*}$.
- Uspořádejme Σ^* do nějaké posloupnosti $w_1, w_2, w_3, ...,$ např. $\varepsilon, x, y, xx, xy, yx,$ yy, xxx, ... pro $\Sigma = \{x, y\}$. Nyní můžeme f zobrazit nekonečnou maticí:

- Uvažujme jazyk $\overline{L} = \{w_i \mid a_{ii} = 0\}$. \overline{L} se liší od každého jazyka $L_i = f(i), i \in \mathbb{N}$:
 - je-li $a_{ii}=0$, pak w_i patří do jazyka,
 - je-li $a_{ii} = 1$, pak w_i nepatří do jazyka.
- Současně ale $\overline{L} \in 2^{\Sigma^*}$, f tudíž není surjektivní, což je spor.