

Features or spurious artifacts?

Data-centric baselines for fair and robust hate speech detection

Alan **Ramponi**, Sara **Tonelli** Fondazione Bruno Kessler, Trento, Italy

Warning: This presentation contains content that may be offensive/upsetting

► Focused sampling introduces topic-specific terms [Wiegand+ 2019; i.a.]

- ► Focused sampling introduces topic-specific terms [Wiegand+ 2019; i.a.]
- ▶ Platforms: norms, practices & lang use introduce platform-specific terms

- ► Focused sampling introduces topic-specific terms [Wiegand+ 2019; i.a.]
- ▶ Platforms: norms, practices & lang use introduce platform-specific terms
- ▶ Data collection shapes distribution of hate targets i.e., identity terms

Undesired identity bias

Identity terms as shortcuts for prediction [Zhou+ 2021; Kennedy+ 2020; i.a.]

OOD: out-of-distribution **ID:** in-distribution

Weak out-of-distribution robustness

Platform-specific terms as shortcuts for prediction

Lexical artifacts in hate speech detection

"Statistical correlations between surface lexical items and labels in training data, which models exploit to derive predictions"

Lexical artifacts in hate speech detection

"Statistical correlations between surface lexical items and labels in training data, which models exploit to derive predictions"

Contributions

► Characterization and cross-platform study English

Lexical artifacts in hate speech detection

"Statistical correlations between surface lexical items and labels in training data, which models exploit to derive predictions"

Contributions

- ► Characterization and cross-platform study English
- ► Impact on OOD robustness & fairness

Lexical artifacts in hate speech detection

"Statistical correlations between surface lexical items and labels in training data, which models exploit to derive predictions"

Contributions

- ► Characterization and cross-platform study English
- ► Impact on OOD robustness & fairness
- ► Lexical artifacts statement for diagnosis of pre-existing bias

Characterization of lexical artifacts

OI: possibly offensive identity mentions

possibly offensive or stereotyping identity terms e.g., n*gro, f*ggot

Onl: possibly offensive non-identity mentions

possibly offensive swear words and profanities e.g., f*ck, idiot

nOI: non-offensive identity mentions

non-offensive terms describing identities e.g., Jews, women, gay

Characterization of lexical artifacts

^{*}OI, OnI and nOI in [Zhou+ 2021]

Characterization of lexical artifacts

^{*}OI, OnI and nOI in [Zhou+ 2021]

Datasets & unified preprocessing

Selection criteria: (i) different platforms, (ii) minimize topic bias, (iii) similar annotation guidelines

Datasets & unified preprocessing

Selection criteria: (i) different platforms, (ii) minimize topic bias, (iii) similar annotation guidelines

- ► Consistent preprocessing, cleaning, and label binarization
- ▶ **Deduplication** many duplicates for all datasets, reliability of bias studies

WordPiece tokenization

consistent to end model's input
 ("##" is a subword marker)

Computation of lexical artifacts

Token-label PMI [Gururangan+ 2018]: reweighted, positive

In-distribution lexical artifacts

In-distribution lexical artifacts

In-distribution lexical artifacts

In-distribution lexical artifacts

##tar, ##ded ##s, fa b*tch, ##g gay, women ##ds, f*cking ##gga, hate rt, ##s @user, idiot trump, ass idiots, people

white, jews ##gger, ##s jew, islam muslim, whites ##gg, women

n*gro, white black, ##s jews, whites blacks, jew race, ##es

WordPiece tokenization

consistent to end model's input ("##" is a subword marker)

Computation of lexical artifacts

Annotation of lexical artifacts

Task: "Is the token potentially <u>hateful</u> and/or related to <u>identities</u>?"

- ► Top-k predictive tokens from cross-distribution rank (k=200)
- ▶ Tokens in context (randomly sampled posts from multiple platforms)
- ▶ 2 annotators (M&F; fluent in English; background in NLP and linguistics)

Annotation of lexical artifacts

Task: "Is the token potentially <u>hateful</u> and/or related to <u>identities</u>?"

- ► Top-k predictive tokens from cross-distribution rank (k=200)
- ► Tokens in context (randomly sampled posts from multiple platforms)
- ▶ 2 annotators (M&F; fluent in English; background in NLP and linguistics)

Inter-annotator agreement

- ▶ Before adjudication: $\kappa = 0.6887$
- ▶ After adjudication: $\kappa = 0.8311$
- Disagreement correlates with rank

Experiments

Investigate the impact of spurious lexical artifacts

- ▶ ID/OOD experiments: training & testing on same/different platforms
- **Evaluation**: macro F1 (performance); FPR on subset w/ S_I (identity bias reduction)

Experiments

Investigate the impact of spurious lexical artifacts

- ▶ **ID/OOD experiments:** training & testing on same/different platforms
- **Evaluation**: macro F1 (performance); FPR on subset w/ \mathcal{S}_I (identity bias reduction)

Baselines and data-centric methods

1. Vanilla: BERT-base, CE loss w/ balanced class weights

Experiments

Investigate the impact of spurious lexical artifacts

- ▶ ID/OOD experiments: training & testing on same/different platforms
- **Evaluation**: macro F1 (performance); FPR on subset w/ \mathcal{S}_I (identity bias reduction)

Baselines and data-centric methods

- 1. Vanilla: BERT-base, CE loss w/ balanced class weights
- 2. Filtering: train on 33% most ambiguous instances Vanilla's training dynamics
 - ▶ Promotes OOD generalization while preserving ID performance [Swayamdipta+ 2020]

Experiments (cont'd)

- 3. Removal: prior to fine-tuning, <u>remove</u> spurious lexical artifacts
 - 3a. Removal(\mathcal{S}_I): commonly employed "fairness" baseline [Kennedy+ 2020]
 - 3b. Removal $(S_{\neg I})$: removal variant for non identity-related lexical artifacts

Experiments (cont'd)

- 3. Removal: prior to fine-tuning, <u>remove</u> spurious lexical artifacts
 - 3a. Removal(\mathcal{S}_I): commonly employed "fairness" baseline [Kennedy+ 2020]
 - 3b. Removal $(S_{\neg I})$: removal variant for non identity-related lexical artifacts
- 4. **Masking:** prior to fine-tuning, <u>mask</u> spurious lexical artifacts <u>Hypothesis</u>: encourages model to blend all lexical artifacts to a single token representation that will never appear during testing
 - 4a. Masking(\mathcal{S}_I): mask identity-related lexical artifacts
 - 4b. Masking $(S_{\neg I})$: mask non identity-related lexical artifacts

Filtering is not a one-size-fits-all solution

- ▶ Detrimental effect: hate speech detection requires targeted approaches
- ► Consistent w/ results on Twitter [Zhou+ 2021], confirmed across platforms

Operating on $S_{\neg I}$ artifacts does not help

- \blacktriangleright Removal($S_{\neg I}$) worsen ID/OOD performance and identity bias reduction
- ▶ Masking($S_{\neg I}$) reduces identity bias only slightly
- ► Mixed results for both when looking closely at train/test pairs

Removal(S_I) mostly reduces identity bias

- ▶ Not on all pairs, so not as strong as it has been previously thought
- ▶ ID/OOD performance are only slightly reduced over the Vanilla baseline

Masking(S_I) consistently reduces identity bias

- ▶ Large improvement over all approaches, both ID/OOD, on all platforms
- ▶ Strong baseline for identity bias reduction in future research

Masking(S_I) <u>consistently</u> reduces identity bias

- ▶ Large improvement over all approaches, both ID/OOD, on all platforms
- ▶ Strong baseline for identity bias reduction in future research

F1 scores **reflect more realistically the performance** of a system that **do not rely on identity mentions** when making predictions!

Towards artifacts documentation

Inspired by data statements
[Bender & Friedman 2018]

Lexical artifacts statement to document and early diagnose *lexical* biases when datasets are created/released

Towards artifacts documentation

Inspired by data statements
[Bender & Friedman 2018]

Lexical artifacts statement to document and early diagnose *lexical* biases when datasets are created/released

I. Top lexical artifacts

k>=10 most informative tokens to classes of interest w/ scores

II. Class definitions

Explicit definition of target class(es) for lexical artifacts

III. Methods and resources

Method (e.g., PMI), preprocessing, deduplication, and additional resources

Towards artifacts documentation

Inspired by data statements
[Bender & Friedman 2018]

Lexical artifacts statement to document and early diagnose *lexical* biases when datasets are created/released

Top lexical artifacts

k>=10 most informative tokens to classes of interest w/ scores

II. Class definitions

Explicit definition of target class(es) for lexical artifacts

III. Methods and resources

Method (e.g., PMI), preprocessing, deduplication, and additional resources

Conclusions

- ► Cross-platform study of lexical artifacts
 - ▶ More attentive sampling is not enough: platforms do play a central role

Conclusions

- ► Cross-platform study of lexical artifacts
 - ▶ More attentive sampling is not enough: platforms do play a central role

- ▶ Impact of spurious lexical artifacts
 - ► Masking approach; robustness & identity bias are intertwined aspects

Conclusions

- ▶ Cross-platform study of lexical artifacts
 - ▶ More attentive sampling is not enough: platforms do play a central role

- ▶ Impact of spurious lexical artifacts
 - ► Masking approach; robustness & identity bias are intertwined aspects

- ▶ Documentation is first step towards mitigation
 - ► Lexical artifacts statement for better understanding of lexical biases

Sara Tonelli

Fondazione Bruno Kessler, Italy

NAACL reproducibility badges

Resources

- ► Source code and documentation
- ▶
 ► Lexical artifacts statement template
- ▶ Nisaggregated annotated lexical artifacts
- ► Fine-tuned language models
- ▶ **1exartifacts** package to ease documentation

https://github.com/dhfbk/ hate-speech-artifacts

