

Proyecto final - Regresión: Gas Turbine CO and NOx Emission dataset

Minería de Datos Zavala Roman Irvin Eduardo 1270771

Descripción dataset

Consiste en 11 atributos que son mediciones de sensores en una turbina de gas en Turquía con variables de ambiente. El dataset está dividido en 5 años y aunque no es pronóstico los datos están ordenados cronológicamente para predecir ciertas emisiones.

¿Qué hacer con 5 datasets separados?

Se plantean 2 opciones para la integración de los datasets, realizar un análisis de viabilidad para ver si simplemente pegar verticalmente los datos o usar unos datasets para entrenamiento y otros para prueba.

Probando si unir los datasets

```
dataset 2011 = pd.read csv('https://raw.githubusercontent.com/EduardoZaRo/Mineria-de-datos-571/main/Proyecto/gt 2011.csv')
dataset 2012 = pd.read csv('https://raw.githubusercontent.com/EduardoZaRo/Mineria-de-datos-571/main/Proyecto/gt 2012.csv'
dataset 2013 = pd.read csv('https://raw.githubusercontent.com/EduardoZaRo/Mineria-de-datos-571/main/Proyecto/gt 2013.csv'
dataset 2014 = pd.read csv('https://raw.githubusercontent.com/EduardoZaRo/Mineria-de-datos-571/main/Proyecto/gt 2014.csv'
dataset 2015 = pd.read csv('https://raw.githubusercontent.com/EduardoZaRo/Mineria-de-datos-571/main/Proyecto/gt 2015.csv')
data = [dataset_2011['TEY'], dataset_2012['TEY'],dataset_2013['TEY'],dataset_2014['TEY'],dataset_2015['TEY']]
fig = plt.figure(figsize =(10, 7))
ax = fig.add axes([0, 0, 1, 1])
bp = ax.boxplot(data)
plt.show()
                                                               print(dataset 2011['TEY'].median())
                                                               print(dataset 2012['TEY'].median())
170
                                                                print(dataset_2013['TEY'].median())
                                                                print(dataset 2014['TEY'].median())
160
                                                               print(dataset 2015['TEY'].median())
150
                                                               133.81
140
                                                               133.76
                                                               133.57
130
                                                                                      La mediana del target es prácticamente
                                                               133.42
120
                                                               131.6
                                                                                      la misma los 5 años!
110
```

Probando si unir los datasets

```
histogramas_TEY(dataset_2011)
histogramas_TEY(dataset_2012)
histogramas_TEY(dataset_2013)
histogramas_TEY(dataset_2014)
histogramas_TEY(dataset_2015)
```


Los histogramas muestran un patrón en la distribución de los datos menos en 2014

Probando si unir los datasets

```
fig = plt.figure(figsize=(15, 5))
for i in range(5):
    plt.subplot (1, 5, i+1)
    plt.scatter(np.arange(len(data[i])),data[i])
    plt.xlabel (i)
fig.tight_layout()
plt.show()

dataset_2011['TEY'].plot()
dataset_2012['TEY'].plot()
dataset_2013['TEY'].plot()
dataset_2014['TEY'].plot()
dataset_2015['TEY'].plot()
```


<matplotlib.axes._subplots.AxesSubplot at 0x7fed5c846710>

¡Se decidió unirlos!

```
dataset = pd.concat([dataset_2011, dataset_2012, dataset_2013, dataset_2014, dataset_2015], axis=0)
dataset = dataset.reset_index()
dataset.pop('index')
```

	AT	AP	AH	AFDP	GTEP	TIT	TAT	TEY	CDP	CO	NOX
0	4.5878	1018.7	83.675	3.5758	23.979	1086.2	549.83	134.67	11.898	0.32663	81.952
1	4.2932	1018.3	84.235	3.5709	23.951	1086.1	550.05	134.67	11.892	0.44784	82.377
2	3.9045	1018.4	84.858	3.5828	23.990	1086.5	550.19	135.10	12.042	0.45144	83.776
3	3.7436	1018.3	85.434	3.5808	23.911	1086.5	550.17	135.03	11.990	0.23107	82.505
4	3.7516	1017.8	85.182	3.5781	23.917	1085.9	550.00	134.67	11.910	0.26747	82.028
	***	375		***		***	2773			57.53	
36728	3.6268	1028.5	93.200	3.1661	19.087	1037.0	541.59	109.08	10.411	10.99300	89.172
36729	4.1674	1028.6	94.036	3.1923	19.016	1037.6	542.28	108.79	10.344	11.14400	88.849
36730	5.4820	1028.5	95.219	3.3128	18.857	1038.0	543.48	107.81	10.462	11.41400	96.147
36731	5.8837	1028.7	94.200	3.9831	23.563	1076.9	550.11	131.41	11.771	3.31340	64.738
36732	6.0392	1028.8	94.547	3.8752	22.524	1067.9	548.23	125.41	11.462	11.98100	109.240

Se hizo un stack vertical para seguir la cronología de los datos

Seguimiento de TEY en el dataset unido

Estadísticas del dataset

dataset.describe().T

<clas< th=""><th>ss 'pand</th><th>as.cor</th><th>e.frame.Da</th><th>taFrame'></th></clas<>	ss 'pand	as.cor	e.frame.Da	taFrame'>
Range	eIndex:	36733	entries, 0	to 36732
Data	columns	(tota	l 11 colum	ns):
#	Column	Non-No	ull Count	Dtype
0	AT	36733	non-null	float64
1	AP	36733	non-null	float64
2	AH	36733	non-null	float64
3	AFDP	36733	non-null	float64
4	GTEP	36733	non-null	float64
5	TIT	36733	non-null	float64
6	TAT	36733	non-null	float64
7	TEY	36733	non-null	float64
8	CDP	36733	non-null	float64
9	CO	36733	non-null	float64
10	NOX	36733	non-null	float64

memory usage: 3.1 MB

		-(//						
	count	mean	std	min	25%	50%	75%	max
AT	36733.0	17.712726	7.447451	-6.234800	11.7810	17.8010	23.6650	37.1030
AP	36733.0	1013.070165	6.463346	985.850000	1008.8000	1012.6000	1017.0000	1036.6000
АН	36733.0	77.867015	14.461355	24.085000	68.1880	80.4700	89.3760	100.2000
AFDP	36733.0	3.925518	0.773936	2.087400	3.3556	3.9377	4.3769	7.6106
GTEP	36733.0	25.563801	4.195957	17.698000	23.1290	25.1040	29.0610	40.7160
TIT	36733.0	1081.428084	17.536373	1000.800000	1071.8000	1085.9000	1097.0000	1100.9000
TAT	36733.0	546.158517	6.842360	511.040000	544.7200	549.8800	550.0400	550.6100
TEY	36733.0	133.506404	15.618634	100.020000	124.4500	133.7300	144.0800	179.5000
CDP	36733.0	12.060525	1.088795	9.851800	11.4350	11.9650	12.8550	15.1590
СО	36733.0	2.372468	2.262672	0.000388	1.1824	1.7135	2.8429	44.1030
NOX	36733.0	65.293067	11.678357	25.905000	57.1620	63.8490	71.5480	119.9100

dataset.isna().sum()

0

AFDP GTEP TIT TAT TEY

dtype: int64

fig = plt.figure(figsize=(15, 15)) atributos = list(dataset.columns.values) for i in range(len(atributos)): plt.subplot (math.ceil(dataset.shape[1]/2), math.floor(dataset.shape[1]/2), i+1) #plt.hist(dataset[atributos[i]], bins=30, edgecolor='black') sn.histplot(dataset[atributos[i]], kde=True, stat="density", linewidth=0, label="Skew: {:.3f}".format(dataset[atributos[i]].skew())) plt.legend(loc = 'upper left', bbox_to_anchor=(0, 1.5)) plt.xlabel (atributos[i]) plt.ylabel ('count') fig.tight layout() plt.show() histogramas(dataset) Skew: 0.194 Skew: -0.628 Skew: -0.044 Skew: 0.381 Skew: 0.329

Histogramas de todos los atributos

def histogramas(dataset):

Box plots

```
def boxplots(dataset):
    columns = list(dataset.columns)
    fig, axes = plt.subplots(1, len(columns), figsize=(15, 10))
    for i, col in enumerate(columns):
        ax = sn.boxplot(y=dataset[col], ax=axes.flatten()[i])
        ax.set_ylim(dataset[col].min()-dataset[col].min()*0.001, dataset[col].max()+dataset[col].max()*0.001)
        ax.set_ylabel(col)
    fig.tight_layout()
    plt.show()
boxplots(dataset)
```


Removiendo outliers por rango intercuartil

```
dataset_sin_anomalias = dataset
atributos = list(dataset_sin_anomalias.columns.values)
for i in atributos:
    if(i == "TEY"):
        continue
    q1 = dataset[i].quantile(0.25)
    q3 = dataset[i].quantile(0.75)
    qr = q3-q1
    q3 = q3+1.5*qr
    q1 = q1-1.5*qr
    dataset_sin_anomalias = dataset_sin_anomalias[(dataset_sin_anomalias[i] < q3) & (dataset_sin_anomalias[i] > q1)]
boxplots(dataset_sin_anomalias)
dataset = dataset_sin_anomalias
```


Correlaciones entre atributos

```
corr_matrix = dataset.corr()
fig = plt.figure(figsize=(10,10))
ax = plt.axes()
sn.heatmap(corr_matrix,annot = True)
ax.set_title('Correlaciones')
fig.tight_layout()
plt.show()
```


-1.0

-0.8

- 0.6

-0.4

-0.2

-0.0

--0.2

- -0.4

--0.6

Pairplot o scatter matrix


```
def corr_coef(dataset, threshold):
    corr_matrix = dataset.corr()
    ax = plt.axes()
    sn.heatmap(corr_matrix,annot = True)
    ax.set_title('Original dataset correlation METODO 2')
    plt.show()
    corr_matrix = features.corr().abs()
    upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
    to_drop = [column for column in upper.columns if any(upper[column] > threshold)]
    return to_drop
features = dataset.drop('TEY', axis = 1)
to_drop = corr_coef(features, 0.95)
print("Correlacion propone borrar:",to_drop)
```

Feature selection

Se escoge CDP ya que está altamente correlacionado con GTEP (96%), por lo que se puede considerar redundante

Feature selection

```
dataset_procesado = dataset.drop(to_drop, axis = 1)
print(dataset procesado)
                                       GTEP
                                                              TEY
                               AFDP
                                               TIT
                                                       TAT
      4.5878
             1018.7 83.675 3.5758
                                    23.979
                                           1086.2
             1018.3 84.235 3.5709
                                     23.951
                                            1086.1
                                    23.990
             1018.4
                     84.858 3.5828
                                            1086.5
             1018.3 85.434 3.5808
                                    23.911
                                            1086.5
                                     23.917
                             3.5781
      2.8040
              1028.5
                     85.691
                             3.3807
                                     22.541
                                            1072.4
                                                           127.91
      2.4584
             1028.6
                     85.003
                            3.3503
                                     22.643
                                            1073.1
             1028.7 85.115 3.8577
                                    26.630
      2.6604
                                            1085.2
     3.4218 1028.7 91.003 3.6911
                                    22.859
                                            1073.5 549.78 129.86
36731 5.8837 1028.7 94.200 3.9831 23.563 1076.9 550.11 131.41
           CO
                 NOX
      0.32663 81.952
0
      0.44784 82.377
      0.45144 83.776
      0.23107 82.505
      0.26747 82.028
     3,54290 68,581
     3.64270 68.059
36708
36709 3.45260 62.330
36726 3.67380 67.737
36731 3.31340 64.738
[28503 rows x 10 columns]
```

Correlación de atributos con target

```
dataset_procesado.corr()["TEY"].sort_values(ascending=False)
```

```
TEY
        1.000000
TIT
        0.938548
GTEP
        0.935239
        0.561846
AFDP
        0.078913
        0.063745
NOX
AP
        0.001396
       -0.188136
TAT
       -0.610357
       -0.661107
CO
Name: TEY, dtype: float64
```

Proceso de regresión

```
copy = dataset procesado.copy()
copy.pop('TEY')
labels = dataset procesado.columns
X = dataset procesado.loc[:, copy.columns].values
y = dataset_procesado.loc[:, 'TEY'].values
print("Features:\n", X)
print("Target:\n", y)
Features:
[[4.5878e+00 1.0187e+03 8.3675e+01 ... 5.4983e+02 3.2663e-01 8.1952e+01]
 [4.2932e+00 1.0183e+03 8.4235e+01 ... 5.5005e+02 4.4784e-01 8.2377e+01]
 [3.9045e+00 1.0184e+03 8.4858e+01 ... 5.5019e+02 4.5144e-01 8.3776e+01]
 [2.6604e+00 1.0287e+03 8.5115e+01 ... 5.4374e+02 3.4526e+00 6.2330e+01]
 [3.4218e+00 1.0287e+03 9.1003e+01 ... 5.4978e+02 3.6738e+00 6.7737e+01]
 [5.8837e+00 1.0287e+03 9.4200e+01 ... 5.5011e+02 3.3134e+00 6.4738e+01]]
Target:
[134.67 134.67 135.1 ... 143.26 129.86 131.41]
```

Obteniendo los mejores regresores

```
split_methods = ['holdout', 'random_subsampling', 'kfold', 'kfold']
regression_methods = ['linear', 'decisiontree', 'kneighbors', 'sgd', 'randomforest', 'mlp']
```

1	i	n	a	=	'n	e.						
,-	÷	•	_	u		_	_	_	_	_	_	

SPLIT METHOD	r	r2	sse	mae	mse	rmse
holdout	0.992	0.985	23141.7	1.072	2.03	1.425
random_subsampling	0.992	0.985	5782.8	1.076	2.028	1.424
kfold	0.992	0.985	11595.5	1.077	2.034	1.426
kfold	0.992	0.985	5799.7	1.077	2.035	1.426

decisiontre	e
-------------	---

SPLIT METHOD	r	r2	sse	mae	mse	rmse
holdout	0.996	0.993	11077.1	0.629	0.972	0.986
random_subsampling	0.997	0.994	2326.36	0.583	0.816	0.903
kfold	0.997	0.993	4961.64	0.593	0.87	0.933
kfold	0.997	0.994	2280.02	0.577	0.8	0.894

kneighhors

Kneigi	1001 3					
SPLIT METHOD	r	r2	sse	mae	mse	rmse
holdout	0.993	0.987	19664.5	0.845	1.725	1.313
random_subsampling	0.994	0.989	4295	0.776	1.506	1.227
kfold	0.994	0.988	8961.49	0.793	1.572	1.254
kfold	0.994	0.989	4265.85	0.776	1.497	1.223

5.00	п .		
	M		

SPLIT METHOD	r	r2	sse	mae	mse	rmse
holdout	-0.799	-2.77788e+26	4.24853e+32	1.92637e+14	3.72613e+28	1.93032e+14
random_subsampling	0.249	-1.15575e+27	4.34705e+32	3.4904e+14	1.52475e+29	3.49615e+14
kfold	-0.224	-1.52722e+27	1.15415e+33	4.37376e+14	2.02461e+29	4.37763e+14
kfold	0.246	-1.11835e+27	4.23095e+32	3.1194e+14	1.48448e+29	3.12954e+14

____randomforest_____

SPLIT METHOD	r	r2	sse	mae	mse	rmse
holdout	0.998	0.996	5969.35	0.486	0.524	0.724
random_subsampling	0.998	0.996	1353.85	0.453	0.475	0.689
kfold	0.998	0.996	2915.48	0.469	0.511	0.715
kfold	0.998	0.996	1394.31	0.457	0.489	0.699

*random forest con n_estimators = 5

ml	n:	
	r	

SPLIT METHOD	r	r2	sse	mae	mse	rmse
holdout	0.99	0.981	28935.4	1.158	2.538	1.593
random_subsampling	0.991	0.975	9517.41	1.342	3.338	1.791
kfold	0.988	0.931	52918	2.311	9.283	2.837
kfold	0.992	0.973	10150.5	1.449	3.561	1.861

['random_subsampling', 'randomforest']

Y vs Y pred

Haciendo fine tunning

El método que dió mejores resultados es Random Forest, por lo que se va a buscar la mejor configuración con Random Search.

```
from sklearn.model selection import RandomizedSearchCV
import random
X train, X test, y train, y test = train_test_split(X, y, train_size=0.6)
params = {
    "n estimators": range(5, 20),
    "max depth": range(0, 15),
    "min_samples_split": range(0, 20),
    "min samples leaf": range(0, 5),
    #"criterion": ['squared_error', 'absolute_error', 'poisson'],
    #"max_features": ['sqrt', 'log2'],
randomizedCV = RandomizedSearchCV(estimator=RandomForestRegressor(), param_distributions =params, verbose=2, cv = 5, n_iter = 5, n_jobs=-1)
randomizedCV.fit(X_train, y_train)
while(randomizedCV.best_score_ < 0.996):</pre>
    randomizedCV.fit(X_train, y_train)
    print(randomizedCV.best score )
randomizedCV.best params
```

Mejor configuración

Simplemente se podría aumentar la cantidad de árboles pero el tiempo de entrenamiento sería muy alto

```
Fitting 5 folds for each of 5 candidates, totalling 25 fits
Fitting 5 folds for each of 5 candidates, totalling 25 fits
0.9962057732133347
{'n_estimators': 47,
   'min_samples_split': 4,
   'min_samples_leaf': 1,
   'max_depth': 14}
```

- I diluoi	ntorest_			Nerros (1992)	es e partir de l'acc	988868
SPLIT METHOD	r	r2	sse	mae	mse	rmse
holdout	0.998	0.996	6027.77	0.493	0.529	0.727
random_subsampling	0.998	0.997	1320.19	0.463	0.463	0.68
kfold	0.998	0.996	2695.24	0.466	0.473	0.688
kfold	0.998	0.997	1317.42	0.462	0.462	0.679

¿Es buena idea usar Random Forest?

Viendo los buenos resultados de los regresores, me iría por aquel que tiene un comportamiento más sencillo y que tenga un tiempo de ejecución menor. Con esto me iría con el regresor lineal ya que estamos hablando de una diferencia de tiempo bastante grande respecto a Random Forest sin bajar de 0.99 en R y 0.98 en R2.

linear	r					
SPLIT METHOD	r	r2	sse	mae	mse	rmse
holdout	0.993	0.985	22598.3	1.07	1.982	1.408
random_subsampling	0.992	0.985	5769.27	1.074	2.024	1.422
kfold	0.992	0.985	11602.2	1.076	2.035	1.427
kfold	0.992	0.985	5794.31	1.076	2.033	1.426

SPLIT METHOD	r	r2	sse	mae	mse	rmse
holdout	0.998	0.997	5253.56	0.462	0.461	0.679
random_subsampling	0.998	0.997	1203.61	0.442	0.422	0.649
kfold	0.998	0.997	2462.8	0.448	0.432	0.657
kfold	0.998	0.997	1188.63	0.44	0.417	0.645

Tiempo de ejecucion: 3.195369005203247 segundos

Tiempo de ejecucion: 597.2100353240967 segundos

Referencias

- Kaya, H., Tüfekci, P., & Uzun, E. (2019). Predicting CO and NOxemissions from gas turbines: novel data and abenchmark PEMS. *TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES*, *27*(6), 4783–4796.
 - https://www.semanticscholar.org/paper/Predicting-CO-and-NOxemissions-from-gas-turbines%3A-Kaya-Tüfekçi/260c33c3a77a83fe4c15cc95800d4890d1b64985/figure/1
- *Sklearn.Model_selection.RandomizedSearchCV*. (s/f). Scikit-Learn.
 - https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.Randomized_SearchCV.html
- UCI machine learning repository: Gas turbine CO and NOx emission data set data set. (s/f). Uci.edu.
 - https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set

Notebook colab:

https://colab.research.google.com/drive/1rvUb9aNBHDnKsynbaOFAMFK6wlorYYVN?usp=sharing