1. Линейное однородное уравнение с переменными коэффициентами.

В этой главе мы будем изучать свойства решений линейных уравнений 2го порядка

$$x'' + p(t)x' + q(t)x = 0, t \in (a, b)$$
6.1

ниже предполагается, что $p(t) \in C^1(a,b), q(t) \in C(a,b)$

1.1. Теоремы Штурма

Лемма 1. Пусть $x(t), t \in (a,b)$ - решение уравнения (6.1); Тогда мн-во его нулей на (codepжащихся в (a,b)) любых отрезках $[t_1,t_2] \subset (a,b)$ конечно.

Доказательство. Если $x(t), t \in (a, b)$ - решение уравнения (6.1), то $x(t) \in C^1(a, b)$

Предположим, противное, т.е. решение x(t) имеет бесконечное число нулей на $[t_1, t_2]$.

Выберем сходящуюся посл-ть нулей $\{t_k\}, t_k \to t_0, k \to \infty$ В силу непрерывности решения x(t) мы имеем $\lim_{k \to \infty} x(t_k) = x(t_0) = 0$, т.к. $\forall k \to x(t_k) = 0$

$$x'(t_0) = \lim_{k \to \infty} \frac{x(t) - x(t_0)}{t - t_0} = \lim_{t_k \to t_0} \frac{x(t_k) - x(t_0)}{t_k - t_0} = 0$$

$$x(t_0) = x'(t_0) = 0$$

По теореме о существовании и единственности решения $3{\bf K}$ - единственное решение $x(t)\equiv 0, t\in [t_1,t_2]$ - противоречие.

Следствие 1. Если нетривиальное решение $x(t) \in (a,b)$ имеет конечное число нулей, то их можно перенумеровать.

Доказательство. Назовем t_1, t_2 последовательными нулями решения x(t), если x(t) не имеет нулей на (t_1, t_2) Произведем замену функции x(t) в уравнении (6.1) на ф-ию y(t) согласно формуле

$$x(t) = y(t)e^{-1/2\int_{t_0}^t p(\tau)d\tau}$$
6.2

В результате подстановки (6.2) получим уравнение для y(t):

$$y'' + Q(t)y(t) = 0, t \in (a, b)$$
6.3

$$Q(t) = q(t) - \frac{p^2(t)}{4} - \frac{p'(t)}{2} \in C(a, b)$$

Рассмотрим уравнение

$$y'' + Q_1(t)y = 0 6.4$$

$$z'' + Q_2(t)z = 0 ag{6.5}$$

$$Q_2(t), Q_1(t) \in C(a, b), t \in (a, b)$$

Теорема 1 <Штурма о сравнении>. Пусть $Q_1(t) \leq Q_2(t), t \in (a,b), t_1, t_2$ - два последовательных нуля решения y(t) уравнения (6.4).

Tогда любое решение z(t) уравнения (6.5) имеет хотя бы 1 ноль на $[t_1, t_2]$.

1

Доказательство. По условию Th. решение y(t) уравнения (6.4) на (t_1, t_2) не меняет знак.

Предположим обратное: решение z(t) уравнения (6.5) не имеет нулей на $[t_1,t_2]$ и будем считать, что z(t)> $0, t \in [t1, t2]$

Умножим уравнение (6.4) на z(t), а уравнение (6.5) на y(t) и вычтем одно из другого, тогда

$$zy'' - yz'' = (Q_2(t) - Q_1(t))yz$$
6.6

Нетрудно видеть, что левая часть (6.6) преставима в виде

$$zy'' - yz'' = d(zy' - yz')$$

Тогда

$$d/dt(zy' - yz') = (Q_2 - Q_1)yz 6.7$$

Проинтегрируем (6.7) на $[t_1, t_2]$, получим

$$(zy' - yz')_{t_1}^{t_2} = \int_{t_1}^{t_2} (Q_2(t) - Q_1(t))yzdt$$

Т.к. $y(t_1) = y(t_2) = 0$,

$$y'(t_2)z(t_2) - y'(t_1)z(t_1) = \int_{t_1}^{t_2} (Q_2(t) - Q_1(t))yzdt$$

$$6.8$$

Исследуем знак левой части (6.8). $y'(t_1) > 0, y'(t_2) < 0$

Согласно формуле Тейлора $y(t) = y(t_1) + y'(t_1)(t - t_1) + o(t - t_1)$

Если $t \to t_1 + 0$, то $t - t_1 > 0, y(t) > 0 \Rightarrow y'(t_1) > 0$. Аналогично $y'(t_2) < 0$.

$$0>y'(t_2)z(t_2)-y'(t_1)z(t_1)=\int_{t_1}^{t_2}(Q_2(t)-Q_1(t))yzdt\geq 0\Rightarrow$$
 противоречие.

Замечание 1. Пусть на $(a,b)Q_2(t) > Q_1(t)$,тогда:

- 1. Если решение $z(t) > 0, t \in (t_1, t_2)$, то опять приходим к противоречию. Получаем, что любое решение z(t) уравнения (6.5) имеет хотя бы один нуль на (t_1, t_2) .
- 2. Если $z(t_1) = 0$, то следующий нуль $(z(t) = 0), t = t_* : t_* < t_2$

Теорема 2 <O разделении нулей>. Пусть $y_1(t), y_2(t), t \in (a,b)$ - ЛНЗ уравнения. $y'' + Q(t)y = 0, t \in (a,b)$ Eсли t_1,t_2 - последовательные нули решения $y_1(t),$ то решение $y_2(t)$ имеет на (t_1,t_2) ровно 1 нуль.

Доказательство. Рассмотрим уравнения (6.4), (6.5) при условии $Q_1(t) = Q_2(t)$. Покажем, что $y_2(t)$ имеет на (t_1,t_2) хотя бы 1 нуль, по теореме сравнения он имеет хотя бы 1 нуль на $[t_1,t_2]$. Кроме того, $y_2(t)\neq 0$ $0, y_2(t_1) \neq 0$. (Т.е. если $y_2(t_1) = 0$, то определитель Вронского $w(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix} = 0$ при $t = t_1 \Rightarrow y_2(t)$ другия (т. другия) $y_1(t), y_2(t)$ - ЛЗ \Rightarrow противоречие.)

Предположим противное. Пусть η , θ - последовательные нули $y_2(t)$ на $(t_1,t_2):y_2(\eta)=y_2(\theta)=0$. $y_1(\eta) \neq 0, y_1(\theta) \neq 0$ по условию. Значит по теореме сравнения y_1 должно иметь 0 на $(\eta, \theta) \Rightarrow$ противоречие.

Следствие 2 <из теорем Штурма>. *Если* $Q(t) \le 0$, то любое решение уравнения

$$y'' + Q(t)y = 0, t \in (a, b)$$
6.9

имеет не более 1 нуля на (a,b).

Доказательство. От противного. Пусть \exists решение (6.9), имеющее > 1 нуля. Пусть t_1, t_2 - его последовательные нули. Рассмотрим (6.5). $Q_2(t) = 0$. Т.о. $Q_2(t) \ge a_1(t)$ По теореме сравнения любое решение уравнения

$$z'' = 0 ag{6.10}$$

Будет иметь хотя бы 1 ноль на $[t_1,t_2]$, а это не так (решение $z=1,t\in(a,b)$ вообще не имеет нулей) \Rightarrow противоречие.

Следствие 3. Предположим

$$0 < m^2 \le Q(t) \le M^2, t \in (a, b)$$

$$6.11$$

Обозначим через δ расстояние между последовательными нулями уравнения (6.9). Если Q(t) удовлетворяет (6.11) на (a,b), то $\pi/M \leq \delta \leq \pi/m$.

Доказательство. Рассмотрим уравнения

$$y'' + m^2 y = 0, y'' + M^2 y = 0 ag{6.12}$$

Их общее решение задается формулой ???WTF??