USE OF THE NOAA-2 DIGITIZED SATELLITE DATA FOR DIAGNOSING MARINE FOG IN THE NORTH PACIFIC OCEAN AREA

Ronald Eugene Hale

CHOOL SCHOOL SCHOOL

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

USE OF THE
NOAA-2 DIGITIZED SATELLITE DATA
FOR DIAGNOSING MARINE FOG
IN THE
NORTH PACIFIC OCEAN AREA

by

Ronald Eugene Hale

September 1975

Thesis Advisor:

Robert J. Renard

Approved for public release; distribution unlimited.

Prepared for Naval Air Systems Command Washington, D.C. 20360

T169791

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter

Use of the NOAA-2 Digitized Satellite Data for Diagnosing Marine Fog in the North Pacific Ocean Area Author(*) Ronald E. Hale In conjunction with Robert J. Renard Performing organization name and address Naval Postgraduate School Monterey, California 93940 Master's Thesis; September 1975 6. Performing org. Report number **Supplement of the Master's Thesis; September 1975 6. Performing org. Report number **Supplement of the NOAA-2 Digital organization number **Supplement of the Noad organization number of the North	SECURITY CERSSIFICATION OF THIS PAGE (When Data Entered)			
NPS-51H175091 TITLE (and Subtitie) Use of the NOAA-2 Digitized Satellite Data for Diagnosing Marine Fog in the North Pacific Ocean Area Author(*) Ronald E. Hale In conjunction with Robert J. Renard PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940 Controlling office NAME AND ADDRESS Naval Air Systems Command, 370C Washington, D.C. 20360 S. Type of Report & Period Covered Master's Thesis; September 1975 6. PERFORMING ORG. REPORT NUMBER: September 1975 6. PERFORMING ORG. REPORT NUMBER: September 1975 6. PERFORMING ORG. REPORT NUMBER: September 1975 7. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS: TASK AREA & WORK UNIT NUMBER: TASK AREA & WORK UNIT NUM				
Use of the NOAA-2 Digitized Satellite Data for Diagnosing Marine Fog in the North Pacific Ocean Area Author(*) Ronald E. Hale In conjunction with Robert J. Renard Performing organization name and address Naval Postgraduate School Monterey, California 93940 Controlling office name and address Naval Air Systems Command, 370C Washington, D.C. 20360 S. Type of Report & Period Covered Master's Thesis; September 1975 6. Performing org. Report number(*) 8. Contract or Grant number(*) 8. Contract or Grant number(*) 62759N; N000 19-76- WR 61240 12. Report Date September 1975 13. Number of Pages 92	1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
Use of the NOAA-2 Digitized Satellite Data for Diagnosing Marine Fog in the North Pacific Ocean Area Author(*) Ronald E. Hale In conjunction with Robert J. Renard Performing organization Name and address Naval Postgraduate School Monterey, California 93940 Controlling office Name and address Naval Air Systems Command, 370C Washington, D.C. 20360 Master's Thesis; September 1975 Contract or grant number(*) **September 1975 **Outract or grant number(*) **Outract or grant numbe	NPS-51H175091			
Data for Diagnosing Marine Fog in the North Pacific Ocean Area Author(*) Ronald E. Hale In conjunction with Robert J. Renard Performing organization name and address Naval Postgraduate School Monterey, California 93940 Controlling office name and address Naval Air Systems Command, 370C Washington, D.C. 20360 September 1975 6. Performing org. Report number(*) 8. Contract or Grant number(*) 8. Contract or Grant number(*) 6. Performing org. Report number(*) 8. Contract or Grant number(*) 10. Program element, Project, Task Area & WORK Unit numbers 4. Author(*) 8. Contract or Grant number(*) 12. Program element, Project, Task Area & WORK Unit numbers 13. Number of Pages 14. Report Date September 1975 13. Number of Pages 92	4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED	
Data for Diagnosing Marine Fog in the North Pacific Ocean Area Author(*) Ronald E. Hale In conjunction with Robert J. Renard PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940 Controlling Office Name and Address Naval Air Systems Command, 370C Washington, D.C. 20360 S. Contract or Grant Number(*) 8. Contract or Grant Number(*) 8. Contract or Grant Number(*) 6. PERFORMING ORG. REPORT NUMBER(*) 8. Contract or Grant Number(*) 8. Contract or Grant Number(*) 6. PERFORMING ORG. REPORT NUMBER(*) 8. Contract or Grant Number(*) 4. Area & Work Unit Numbers 5. Area & Work Unit Numbers 6. Area & Work U	Use of the NOAA-2 Digitized	Satellite	Master's Thesis;	
North Pacific Ocean Area Author(*) Ronald E. Hale In conjunction with Robert J. Renard Performing organization name and address Naval Postgraduate School Monterey, California 93940 Controlling office name and address Naval Air Systems Command, 370C Washington, D.C. 20360 **Controlling office Name and Address September 1975 13. Number of Pages 92	Data for Diagnosing Marine F	og in the	September 1975	
Ronald E. Hale In conjunction with Robert J. Renard PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940 CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command, 370C Washington, D.C. 20360 Washington, D.C. 20360 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS AREA & WORK UNIT NUMBERS 12. REPORT DATE September 1975 13. NUMBER OF PAGES 92	North Pacific Ocean Area		6. PERFORMING ORG. REPORT NUMBER	
In conjunction with Robert J. Renard PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940 Controlling Office Name and Address Naval Air Systems Command, 370C Washington, D.C. 20360 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS, TASK 62759N; N000 19-76- WR 61240 12. REPORT DATE September 1975 13. NUMBER OF PAGES 92	7. AUTHOR(•)		8. CONTRACT OR GRANT NUMBER(*)	
Robert J. Renard PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940 Controlling Office Name and Address Naval Air Systems Command, 370C Washington, D.C. 20360 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS. 62759N; N000 19-76-WR 61240 12. REPORT DATE September 1975 13. NUMBER OF PAGES 92				
Naval Postgraduate School Monterey, California 93940 Controlling office name and address Naval Air Systems Command, 370C Washington, D.C. 20360 10. Program Element, Project, Task Area a work unit numbers 62759N; N000 19-76- WR 61240 12. Report Date September 1975 13. Number of Pages 92				
Naval Postgraduate School Monterey, California 93940 CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command, 370C Washington, D.C. 20360 AREA & WORK UNIT NUMBERS 62759N; N000 19-76- WR 61240 12. REPORT DATE September 1975 13. NUMBER OF PAGES 92				
Monterey, California 93940 CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command, 370C Washington, D.C. 20360 WR 61240 12. REPORT DATE September 1975 13. NUMBER OF PAGES 92	PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
Monterey, California 93940 CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command, 370C Washington, D.C. 20360 WR 61240 12. REPORT DATE September 1975 13. NUMBER OF PAGES 92	Naval Postgraduate School Monterey, California 93940		62759N: N000 19-76-	
Naval Air Systems Command, 370C Washington, D.C. 20360 September 1975 13. NUMBER OF PAGES 92				
Washington, D.C. 20360 13. NUMBER OF PAGES 92	1. CONTROLLING OFFICE NAME AND ADDRESS			
Washington, D.C. 20360 92	Naval Air Systems Command 3700			
7=	<u>-</u>	700		
			7-	
month of the report)	MONITORING AGENCY NAME & ADDRESS(II dilleren	r from Controlling Office)	15. SECURITY CLASS. (of this report)	
Naval Postgraduate School Unclassified	Naval Postgraduate School		Unclassified	
Monterey, California 93940 ISO DECLASSIFICATION/DOWNGRADING	Monterey, California 93940		15a. DECLASSIFICATION/DOWNGRADING	
SCHEDULE			SCHEDULE	

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the obstrect entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

fog; marine fog; weather satellite; North Pacific Ocean; ocean fog; NOAA-2 satellite data; meteorological satellite; marine visibility

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Digital NOAA-2 visual and daytime infrared satellite data and marine surface synoptic reports, North Pacific Ocean, July 1973, are computer processed and diagnosed in an attempt to develop a scheme for identifying fog over open ocean areas as a function of satellite information only. Using approximately 3250 ship observations as ground-truth data, present and past weather, visibility, and cloud cover and type, were sorted into eleven categories and

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 |

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

related to the satellite data observed within two hours of the ship report. Critical visual (brightness) and infrared (temperature) count values, separately and in combination, are specified for the purpose of discriminating fog from no-fog marine areas.

Satellite count-value distributions for select categories are illustrated by histograms; the relative accuracies in separating fog from no fog as a function of visual and infrared count values are shown by skill-score analyses.

USE OF THE NOAA-2 DIGITIZED SATELLITE DATA FOR DIAGNOSING MARINE FOG IN THE NORTH PACIFIC OCEAN AREA

by

Ronald Eugene Hale Lieutenant, United States Navy B.S., University of Missouri, 1968

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN METEOROLOGY

from the

NAVAL POSTGRADUATE SCHOOL September 1975 Thesis H1385

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral Isham Linder Superintendent

Jack R. Borsting Provost

This thesis prepared in conjunction with research supported by the Naval Air Systems Command 370C under Work Request 61240.

Reproduction of all or part of this report is authorized.

Released as a Technical Report by:

ABSTRACT

Digital NOAA-2 visual and daytime infrared satellite data and marine surface synoptic reports, North Pacific Ocean,
July 1973, are computer processed and diagnosed in an attempt to develop a scheme for identifying fog over open ocean areas as a function of satellite information only. Using approximately 3250 ship observations as ground-truth data, present and past weather, visibility, and cloud cover and type, were sorted into eleven categories and related to the satellite data observed within two hours of the ship report. Critical visual (brightness) and infrared (temperature) count values, separately and in combination, are specified for the purpose of discriminating fog from no-fog marine areas.

Satellite count-value distributions for select categories are illustrated by histograms; the relative accuracies in separating fog from no fog as a function of visual and infrared count values are shown by skill-score analyses.

TABLE OF CONTENTS

I.	INT	RODUCTION AND BACKGROUND	12
II.	OBJ	ECTIVE AND APPROACH	15
III.	DAT	A	16
	A.	SURFACE SHIP REPORTS	16
	В.	METEOROLOGICAL SATELLITE DATA	16
	C.	SEA-LEVEL PRESSURE ANALYSES	18
IV.	PRO	CEDURES	19
	Α.	SELECTION OF AREA AND TIME PERIOD FOR STUDY	19
	В.	PREPARATION OF SEA-LEVEL PRESSURE ANALYSES	20
	С.	PROCESSING OF SURFACE SHIP DATA	20
	D.	PROCESSING OF NOAA-2 DIGITAL DATA	21
	E.	"EARTH LOCATION" AND CALIBRATION OF NOAA-2 DIGITAL DATA	23
	F.	TIME COMPATABILITY OF SHIP AND SATELLITE DATA	25
	G.	CATEGORIZATION OF SHIP DATA	27
	Н.	DETERMINATION OF SRIR-DAY AND SRVIS CUTOFF COUNT VALUES	28
		1. Histograms	28
		2. Skill Score Analyses	30
		a. SRIR-DAY Data	31
		b. SRVIS Data	33
		3. VIF Diagram	34
	Τ.	ANALYSIS OF SRIR-DAY AND SRUIS COUNT VALUES	26

V. CONCLUSIONS AND RECOMMENDATIONS	38
A. CONCLUSIONS	38
B. RECOMMENDATIONS	40
APPENDIX A TRIGONOMETRIC RELATIONSHIPS USED TO DEVELOP "EARTH-LOCATION" PROGRAM	43
ILLUSTRATIONS	45
TABLES	69
LIST OF REFERENCES	89
TNITTAL DISTRIBUTION LIST	90

LIST OF ILLUSTRATIONS

F	i	q	u	r	e

1.	July Climatological Marine-Fog Frequencies, Eastern North Pacific Ocean	45
2.	July Climatological Marine-Fog Frequencies, Western North Pacific Ocean	46
3.	Digital Tape and Mosaic Format for Northern Hemisphere NOAA-2 SRIR-DAY and SRVIS Data	47
4.	North Pacific Ocean Study Area	48
5.	Comparison Between Selected "Earth-Located" and Corresponding Geographical Positions	49
6.	Plot of Selected NOAA-2 Orbit Paths Within Study Area	50
7.	Histograms of SRIR-DAY and SRVIS Count Values for Total Reports Processed in Study	51
8.	Histograms of SRIR-DAY and SRVIS Count Values for Category 5 (Heavy Fog)	53
9.	Histograms of SRIR-DAY and SRVIS Count Values for Category 7 (Past-Weather Fog)	55
10.	Histograms of SRIR-DAY and SRVIS Count Values for Category 8 (Stratus)	57
11.	Histograms of SRIR-DAY and SRVIS Count Values for Category 9 (Clear)	59
12.	Histograms of SRIR-DAY and SRVIS Count Values for Category 0 (Total Reports Minus Categories 1 to 10)	61
13.	Contingency Table Format Used to Compute Skill Scores and Example	63
14.	Digitally Composited NOAA-2 Mosaic of SRIR-DAY Data for July 1, 1973 Within Study Area	64
15.	Analysis of Selected SRIR-DAY Count Values for July 1, 1973 Within Study Area	65

16.	NOAA-2 Digitally Composited Mosaics of SRVIS Data for 1 July 1973 Within Study Area	66
17.	Analysis of Selected SRVIS Count Values for July 1, 1973 Within Study Area	67
18.	Trigonometric Relationships Used in "Earth- Location" of Satellite Data	68

LIST OF TABLES

I.	Format for Categorization of Ship Reports	69
II.	Skill Score Analysis for Selected SRIR-DAY Count Values: Category 5 Versus Category 9	70
III.	Skill Score Analysis for Selected SRIR-DAY Count Values: Categories 1-5 Versus Category 9	71
IV.	Skill Score Analysis for Selected SRIR-DAY Count Values: Category 8 Versus Category 9	72
V.	Skill Score Analysis for Selected SRIR-DAY Count Values: Category 5 Versus Category 8	73
VI.	Skill Score Analysis for Selected SRIR-DAY Count Values: Categories 1-5 Versus No Fog	74
VII.	Skill Score Analysis for Selected SRIR-DAY Count Values: Categories 1-5 Versus Category 7	75
VIII.	Skill Score Analysis for Selected SRIR-DAY Count Values: Category 8 Versus Category 7	76
IX.	Skill Score Analysis for Selected SRVIS Count Values: Category 5 Versus Category 9	77
Х.	Skill Score Analysis for Selected SRVIS Count Values: Categories 1-5 Versus Category 9	78
XI.	Skill Score Analysis for Selected SRVIS Count Values: Category 8 Versus Category 9	79
XII.	Skill Score Analysis for Selected SRVIS Count Values: Category 5 Versus Category 8	80
XIII.	Skill Score Analysis for Selected SRVIS Count Values: Categories 1-5 Versus Category 8	81
XIV.	Skill Score Analysis for Selected SRVIS Count Values: Categories 1-5 Versus No Fog	82
XV.	Skill Score Analysis for Selected SRVIS Count Values: Categories 1-5 Versus Category 7	83

XVI.	Skill Score Analysis for Selected SRVIS Count Values: Category 8 Versus Category 7	84
XVII.	VIF Diagram: Category 9 Versus Total Reports	85
XVIII.	VIF Diagram: Category 5 Versus Total Reports (With Categories 1-4 and 6 Removed)	86
XIX.	Skill Score Analysis for Selected SRIR-DAY Count Values: Category 9 Versus Total Reports	87
XX.	Skill Score Analysis for Selected SRVIS Count Values: Category 9 Versus Total Reports	88

ACKNOWLEDGEMENTS

The author would like to express his deepest appreciation to Dr. Robert J. Renard for his guidance, assistance and constructive criticism throughout the course of this study.

Appreciation is also extended to the Naval Weather

Service Detachment, Asheville, North Carolina, for providing

NOAA-2 digital satellite data and the synoptic ship obser
vations used in the study; to the Environmental Prediction

Research Facility, Monterey, California, particularly to

Mr. Roland Nagle for his valuable assistance in developing

the "earth-location" procedures used in the study; and to

Mr. Russell Schwanz for his computer programming assistance.

Finally the author wishes to express his deepest thanks to his wife, Joy, and children for their patience, understanding, and unfading moral support during the course of this study.

I. INTRODUCTION AND BACKGROUND

The existence of marine fog poses a potential threat to all ship operations at sea. Both commercial and military shipping are faced with possible property and personnel losses due to collision and costly schedule delays resulting from reduced speeds during periods of low visibility in marine fog. In addition, many Navy operations such as aircraft launch and recovery, multi-ship training maneuvers, and underway replenishment are severely hampered by the reduction in horizontal visibility due to marine fog. The impact of marine fog on the United States Navy has been addressed in terms of losses in lives and revenue during the five-year period from 1969 to 1974. (Wheeler, 1974)

It is evident that an accurate depiction of fog regions over the open ocean would be of significant value in the selection of areas for short- or long-range sea and air operations dependent on good visibility for successful completion. The knowledge of these fog regions could also influence ship routing procedures.

The Departments of Meteorology and Oceanography, Naval Postgraduate School, (NPS), Monterey, California are actively involved in research relating to marine-fog analysis and the development of fog forecasting procedures. A portion of the NPS group has addressed the problem of marine-fog climatology and are pursuing further refinements

of a method to specify fog duration, and hence frequency, from the visibility-weather group elements of the primary synoptic report in order that frequencies of marine-fog occurrence may be derived. (Renard, Englebretson, and Daughenbaugh, 1975; Willms, 1975)

High quality marine-fog forecasts are of operational importance, but a forecast can be no better than the data base from which it was made. Climatology may be used as the data base at locations where current observations are not available, but it has apparent limitations in areas outside the normal shipping lanes where the data coverage is historically sparse. Ideally, the meteorologist would like a mechanism for data gathering which provides good temporal and spatial continuity of fog occurrence for diagnosing marine fog. The meteorological satellite may hold the key to such marine-fog surveillance. A pilot study using visual and infrared satellite imagery as a means of discerning the presence of marine fog has been accomplished (Wallace, 1975), indicating the need for further investigations into the use of digital satellite data for detecting marine fog.

The only known objective technique which predicts fog occurrence over large ocean areas, such as the North Pacific Ocean, is the model currently being used by Fleet Numerical Weather Central (FNWC), Monterey, California. Their operational product, called FTER, is based on the statistical processing of certain fog related parameters within FNWC's Primitive Equation (P.E.) Model and is provided twice daily

(verifying at 0000 and 1200 GMT) in a fog-probability format for forecast intervals from zero to 72 hours. Although an extensive evaluation of this product has not been conducted to date, its accuracy is believed to be similar to that of a credible climatology in depicting regions of marine-fog occurrence and thus is not at a totally acceptable level for operational purposes. If it can be determined that marine fog is discernable by current meteorological satellite sensors, then a real-time diagnosis of fog distribution may be possible at long last, thus providing an input data base from which improved fog forecasts can be produced.

II. OBJECTIVE AND APPROACH

The primary objective of this study was to develop a procedure for evaluating digital visual and/or infrared data from meteorological satellites for the purpose of determining the value of such data in diagnosing the spatial extent of marine fog over the open ocean.

The approach taken to achieve this study's objective was to process and quantitatively interpret digital satellite data in an attempt to outline, with a reasonable degree of accuracy, regions where marine fog exists. "Cutoff" brightness (visual) and temperature (infrared) values were statistically determined to optimize the skill in specifying fog/no-fog boundaries, utilizing conventional ship data as "ground truth" verification.

III. DATA

A. SURFACE SHIP REPORTS

Primary-time synoptic weather observations from transient ships for July 1973 were the main source used to establish the basic "ground truth" for the existence or nonexistence of marine fog. In addition, the three-hourly reports from ocean station vessels PAPA (50N145W) and NOVEMBER (30N140W), as well as the few available "off-time" transient ship weather reports, were incorporated into the "ground-truth" data base. These ship data were obtained on magnetic tape from the National Climatic Center (NCC), via the Naval Weather Service Detachment (NWSD), both located in Asheville, North Carolina. Ship data for the period 11-15 July 1973 were not available at the NCC and hence were not used in this study.

B. METEOROLOGICAL SATELLITE DATA

NOAA-2 (ITOS-D) satellite data were chosen for this study since readout information (direct or archived) from the NOAA-2 satellite is available to both civilian and military activities worldwide. In addition, previous work on the discernment of marine fog from satellites (Wallace, 1975) utilized the NOAA-2 data.

Digitally composited data for the scanning radiometer daytime visual (SRVIS) and daytime infrared (SRIR-DAY) were provided on magnetic tape by the NCC through the NWSD,

Asheville, North Carolina, for the period 1-31 July 1973.

Nighttime infrared (SRIR-NIGHT) data were also requested for the same period but were not received in time to be incorporated into this study. In addition, 10 x 10 inch photographic prints of digitally-composited mosaics for the Northern Hemisphere, both SRVIS and SRIR-DAY, were provided by the Environmental Prediction Research Facility (EPRF), Monterey, California. The mosaics and the digital data on magnetic tape were originally processed by the National Environmental Satellite Service (NESS), Washington, D. C..

For the data period processed, the NOAA-2 satellite was in a circular, sun-synchronous, near-polar orbit at an average altitude of 1451 km above the earth's surface. The average nodal (orbital) period was 115 minutes and the earth rotated 28.75 degrees between each orbital track, resulting in approximately 12.5 orbital passes every twenty-four hours. The SRIR-DAY and SRVIS data were obtained while the satellite was southbound on the daylight side of the orbit with the satellite subpoint of each orbit crossing the equator at the descending node longitude near 0900 local time each day.

The NOAA-2 scanning radiometer has two channels: a visible channel (SRVIS) with a spectral response from 0.2 to 0.7 μm and a resolution at the nadir point (directly beneath the satellite) of about 4 km; and an infrared channel (SRIR) with a spectral response from 10.5 to 12.5 μm and resolution of about 8 km at the nadir point. The resolution at 1600 km either side of nadir is about 8 to 12 km

for the visible channel and about 16 to 25 km for the infrared channel (National Environmental Satellite Service, 1973).

The NOAA-2 satellite also carries a Very High Resolution Radiometer (VHRR) with 1 km resolution in both the visible and infrared channels. However, the VHRR NOAA-2 data, acquired through direct readout by three NOAA stations, and limited to the acquisition range of the stations were not archived and thus were not available for the study period.

C. SEA-LEVEL PRESSURE ANALYSES

The Northern Hemispheric sea-level pressure analyses, originated by the National Meteorological Center (NMC), Suitland, Maryland were provided on microfilm for the study period by the EPRF, Monterey, California. The surface analyses were used to relate processed satellite data to the general synoptic weather patterns such as major low pressure systems and associated frontal activity.

IV. PROCEDURES

A. SELECTION OF AREA AND TIME PERIOD FOR STUDY

Since the presence of fog is related to thermally stable low-level atmospheric conditions, maximum aerial coverage of marine fog would be expected during a period when the variation in sea-level pressure was at a minimum and the baroclinicity of the atmosphere was weak. In the Northern Hemisphere, the summer season, particularly the month of July, appears to best meet these conditions since the annual deviation of sea-level pressure is lowest (Hesse and Stevenson, 1968) and the extratropical storms reach their northernmost mean track during this period. The month of July 1973 was selected as the time period for this study.

Figures 1 and 2, (Willms, 1975) indicate that for the month of July the North Pacific Ocean provides the highest frequency of fog occurrence north of the Kuroshio Current (approximately 40N) and west of 155W where a southerly component of the surface wind advects the relatively warm, moist air of the subtropical region over the colder waters of the polar region. Thus the oceanographic region shown in Figures 1 and 2, which extends approximately from 30N to 60N latitude between 115W and 135E longitude, was chosen for this study. This area allowed the entire gamut of fog frequencies, from maximum to minimum, to be observed so that the critical boundaries between fog and no fog could be investigated.

Since the NMC sea-level pressure analyses, the NOAA-2 mosaics, and the NOAA-2 digital data on magnetic tapes were provided on polar stereographic projections of various scales, simply expanding the material to a 1:15 million scale proved to be the most practical means of processing and displaying the data involved in this study.

B. PREPARING SEA-LEVEL PRESSURE ANALYSES

The NMC sea-level pressure analyses, which were provided on microfilm, were photographically enlarged to 1:15 million charts for the study area. This projection allowed for the sea-level pressure analyses to be overlayed with the appropriate computer output of processed satellite data so various synoptic features on the charts could be related when establishing fog/no fog boundaries.

C. PROCESSING SURFACE SHIP DATA

The surface ship data, received on magnetic tape (TDF-11 format), were scanned and reports within the time-frame and geographic area of the study were transferred to an NPS magnetic tape in a format convenient for processing. Each day of ship reports was placed on a separate file for easy access by future programs in the study, and the reports were checked for duplication using the ship's international call sign, latitude, and the date-time group (DTG) of the report as criteria for duplication. Approximately 3% of the 3585 ship reports scanned were found to be duplicates and were removed from the data base.

D. PROCESSING NOAA-2 DIGITAL DATA

The NOAA-2 SRVIS and SRIR-DAY digital data were provided on magnetic tape in the format shown in Figure 3. 2048 x 2048 grid-point array of digital data available on each magnetic tape (Figure 3A) coincides with the 20.7 x 20.7 cm imagery area contained on each 10 x 10 inch mosaic print (Figure 3B) and has a meshlength resolution of approximately 6.1 nmi at 60N and 4.9 nmi at 30N latitude. A more detailed schematic of the mosaic background is provided in Figure 4A showing the study area within the shaded portion. rectangular boundary incorporating the study area (Figure 4B) represents the outer limits of the data points extracted from the larger 2048 x 2048 array for use in this study. This rectangular region was oriented for convenience of processing so that the rows and columns of the study area grid (sub-grid) parallel the rows and columns of the larger rectangular grid. The actual grid points (rows and columns) from the larger grid, used as boundaries for the sub-grid, were determined by (1) measuring the linear distance from the first row or column of the large grid to the corresponding boundary of the sub-grid, (2) dividing this measured distance by the total length of the larger grid (20.7 cm) to produce a simple, linear ratio, and (3) multiplying the resulting ratio by the total number of grid spacings (2047) for the large grid. Thus, the sub-grid corresponded to rows 608 through 1475 and columns 440 through 759 of the larger grid resulting in a 320 x 868 grid array. The geographical

location (latitude and longitude) of each sub-grid boundary corner are displayed in Figure 4A.

Each grid point extracted from the magnetic tape consists of one SRIR-DAY count value and one SRVIS count value. The SRIR-DAY digital count values are representative of radiation emitted from land, sea and cloud surfaces. They range from 0 to 255 with the lower end of the count scale corresponding to colder temperatures (higher clouds) and the higher values corresponding to warmer temperatures (low or no clouds). SRVIS count values are related to albedos of land, sea and cloud surfaces. They range from 0 to 255, with low order values indicating darker areas (low or no clouds) and high values corresponding to brighter areas (high level clouds). Missing data were indicated by the count value of 255 for both the SRVIS and the SRIR-DAY data.

The spacing between grid points needed to obtain a 1:15 million polar stereographic projection of the sub-grid area was found using an expansion factor of 7.76 applied to the sub-grid outlined on the NOAA-2 mosaic (Figure 4A). This expansion factor was determined by dividing the distance from 20N to the North Pole on a 1:15 million polar stereographic chart (62.9 cm) by the corresponding distance on the 20.7 x 20.7 cm NOAA-2 mosaic (8.1 cm).

The digital satellite data for the sub-grid area were analyzed utilizing the program CONTUR, a system routine in the general purpose NPS library which displays the analyzed charts on a CALCOMP plotter. Due to output size limitations

of the CONTUR routine, the sub-grid (320 x 868) was divided into three equal sections (see Figure 4B) resulting in a 320 x 290 grid array for each section. Also, the CONTUR routine was not capable of processing the number of grid values used in each section so the meshlength was increased by fourfold along each row and column (using every fourth grid point). Thus an 80 x 73 grid field was used to provide input data for each CONTUR section.

Each of the three output analysis sections from the CONTUR routine were then taped together forming a 1:15 million polar stereographic projection for each day which could be used in register with the NMC sea-level pressure analyses or used to merge the SRIR-DAY and SRVIS analyses when diagnosing fog/no-fog boundaries. Comparing this coarse array (80 x 217) with the original finer mesh array (320 x 868) for a small test area indicated little or no degradation of the SRIR-DAY or SRVIS analyses. The major effect was to smooth out much of the "bumpiness" of the contour lines resulting in isolines which were easier to work with when diagnosing fog/no-fog boundaries. This coarse meshlength was utilized only for the display output of the CONTUR routine; the original fine meshlength was retained when correlating the digital count values with "ground-truth" information.

E. "EARTH LOCATION" AND CALIBRATION OF NOAA-2 DIGITAL DATA Since the satellite SRIR-DAY and SRVIS data were stored on the magnetic tape in polar stereographic coordinates,

each grid point was located by knowing only its x-distance and y-distance on the sub-grid (i.e. location by column and row). The positions of the corresponding ship reports were determined by latitude and longitude. Thus a software scheme was developed which converted the latitude and longitude position of a ship report within the sub-grid to the row and column at that position. This "earth location" was accomplished using trigonometric identities as depicted in Appendix A. 1

Following development of the "earth location" program, the next step was to test the scheme to determine its accuracy. This was achieved by initially setting all the grid points in the 320 x 868 array to zero, then boqusing in a known constant at designated latitude and longitude positions within the sub-grid area. The array was then analyzed using the CONTUR subroutine, resulting in concentric "bulls-eyes" at the bogus points. The output was superimposed on a 1:15 million polar stereographic projection chart and the bogus points were compared with corresponding latitude and longitude positions on the chart. (See Figure 5.) Since the polar stereographic projection used was "true" at 60N, the location of the bogus points were also assumed to be accurate at 60N. It was found that the error below 60N increased with decreasing latitude, to the extent that the error of the points at 30N was approximately ± 10 nmi. Discussions

The development of the "earth location" program was accomplished with the assistance of Mr. R. Nagle, EPRF.

with personnel in the Satellite Department at EPRF indicated the "earth location" accuracy of the NOAA-2 satellite was approximately ± 30 nmi, thus, the accuracy of the "earth location" program was believed sufficient for purposes of this study.

F. TIME COMPATABILITY OF SHIP AND SATELLITE DATA

Tabulation of the orbit numbers, descending node longitudes, and the hour, minute and second of the equator crossing at the descending node longitude for each orbit within the sub-grid area were made for each day during the month of July 1973. It was found that the orbital track of the NOAA-2 satellite repeated a given descending node longitude crossing approximately once every 23 to 25 days with the time of the two crossings differing by only approximately two to three minutes. This time difference was considered negligible for the purposes of this study so each descending node longitude was assigned one equator crossing time.

Selected orbits were plotted to determine the best cutoff boundaries between times of ship data such that the ship
reports used for "ground truth" would be within approximately
two hours of the time of the satellite data at a given
location. (See Figure 6.) This boundary selection was
complicated by two factors. First, the orbits, as shown in
Figure 6, correspond to the paths followed by the subsatellite
point and cross the sub-grid area at an angle making it difficult to choose a row within the sub-grid array which best
separates the satellite orbits. Secondly, the scanning

radiometer obtains a continuous strip image, or swath, along the orbital track which extends approximately 2500 kilometers (km) either side of the subsatellite point. This resulted in considerable overlay in coverage between consecutive swaths in the northern latitudes. With the NOAA-2 data, the overlap between successive swaths was eliminated by retaining only the latest data. Thus, the western edge of each orbit was replaced by data from the next orbit when producing the composited NOAA-2 mosaic. Taking these factors into account, the cutoff boundaries (shown in Figure 6) were determined, which retained as "ground truth" the ship reports approximately two hours either side of the nadir point. This ± twohour criteria, in essence, assumes that the cloud conditions observed by the satellite at a given location existed at that location for the past two hours and would continue to persist for the next two hours. It is believed that any error in SRIR-DAY and SRVIS count values introduced by this assumption would be negligible within the study area during the summer months, except perhaps in the vicinity of moving frontal systems. If a more restrictive time constraint were placed on the "ground truth," it would have significantly reduced the verifying data base to the extent that a much larger time period would need to be studied to retain statistical reliability of the results; moreover, there would be portions of the study area, between primary synoptic times, which would be nearly void of "ground truth," making verification of those areas virtually impossible.

Thus the "processed" surface ship data were scanned, retaining only those which met the above time constraints, resulting in a data base for the time period of the study of approximately 3471 reports. The ship reports retained to this stage of the study were then "earth-located" to obtain their SRIR-DAY and SRVIS count values and scanned to eliminate those reports with missing SRIR-DAY and/or SRVIS data. The ship data which remained at this point constituted the data base used for this study (3257 reports).

G. CATEGORIZATION OF SHIP DATA

After the ship data were screened for time compatibility, they were then assigned one of eleven categories as depicted in Table I. The categories were designed to aid in the selection of cutoff count values between fog and no fog from which a fog/no-fog boundary could be diagnosed. A few of the fog categories had limitations. For example, Category 6 included only those fog reports whose total cloud amount (N) was at least three-eighths greater than the low cloud amount (NL), which indicated a potential for higher-cloud "contamination." Since the majority of ships reporting fog also reported an obscuration of the sky, segregation of fog reports with higher-cloud "contamination" became a problem primarily when fog was reported within frontal bands where multilevel clouds existed over the fog. Further, it may be noted from Table I that Categories 1 through 4 do not contain a sufficient number of ship reports to be statiscally useful when studied individually. Also, Category 10 reports were removed from the data base at this point, since this category indicates missing satellite data.

H. DETERMINATION OF SRIR-DAY AND SRVIS CUTOFF COUNT VALUES
In resolving cutoff count values (see Section D) for fog,
it was necessary to find SRIR-DAY and SRVIS values which
would best distinguish between clear conditions and fog on
one end of the fog scale and between fog and stratus and/or
higher clouds on the other end of the scale. One would
expect the separation between clear and fog areas to be
reasonably distinct except possibly when the fog was shallow
and/or light such that the fog related IR temperatures sensed
were near those of the sea surface in adjacent clear areas and
the brightness of the fog area was minimal. The primary
problem arose when attempting to separate fog from stratus
since, by definition, fog is a stratus cloud based at the

Essentially, three approaches were used to determine the cutoff count values between fog and no-fog ship reports.

1. Histograms

surface.

In the first appraoch, the ship data were sorted into the eleven categories and histograms were prepared for each category (except Category 10) for both SRIR-DAY and SRVIS data. Figures 7-12 show selected categories. By analyzing the distribution of count values for these selected categories, a range of cutoff values was subjectively determined. Figures 7A and 7B show the entire spectrum of

SRVIS and SRIR-DAY count values, respectively, for all the ship reports utilized in the study.

When comparing Category 5 (heavy fog) to Category 9 (clear sky) (see Figures 8 and 11), it was found that a relatively narrow range of count values could be subjectively established between clear skies and fog conditions. The lower cutoff value for fog in the SRVIS display was estimated to range from 45 to 60 (Figures 8A and 11A) while the boundary between clear skies and fog from SRIR-DAY data is best located in the IR range 160 to 175 (Figures 8B and 11B). Figures 9A and 9B show the range of count values for past-weather fog; Figure 9A indicates a relatively broad spectrum, making the boundary determination extremely difficult.

A usable cutoff range between fog and either stratus or higher level clouds was almost impossible to assess using histograms (compare Figure 8 with Figures 10 and 12). When using SRIR-DAY values, the differentiation is especially complicated because the tops of the fog layer and stratus are nearly the same height and thus the temperature in both cases would also be similar, resulting in nearly identical count values (Figures 8B and 10B).

Also the distinction between fog and high-level clouds in SRIR-DAY imagery may be obscurred due to the "high level" contamination of fog reports discussed previously in Section II. G, especially within frontal bands as well as due to the tenuousness of summer-time middle/high clouds

(Figures 8B and 12B). The SRVIS appeared to have an upper boundary cutoff fog value within a relatively large range of 150 to 200 (Figure 8A). The lower boundary cutoff for SRIR-DAY was found to be between 50 and 70 (Figure 8B). Since the range of cutoff values obtained using histograms was too broad and subjective, an alternative was sought which would reduce the cutoff ranges.

2. Skill Score Analyses

A second approach used to narrow the cutoff ranges for fog involved the analyses of skill scores. Computer software was developed which inputed arbitrarily chosen cutoff values of SRVIS and SRIR-DAY for diagnosing fog and outputed an array of skill scores using the July 1973 ship observations as verifying "ground truth." The skill scores, computed from selected upper and lower cutoff values for fog, were determied from contingency-table information outlined in Figure 13A; in this case, the scores indicate the ability to discern fog relative to change (Panofsky and Brier, 1968). By allowing both the upper and lower cutoff count values to vary, a computer printout of a field of skill scores for the various count values then could be analyzed to determine the existence of relative skill score maxima.

For example, in Table II, if the lower SRIR-DAY value for fog was chosen to be 70 (horizontal scale), and the upper value was chosen to be 130 (vertical scale), with values < 70 and > 130 indicating clear, the resulting skill score

is .192. See Figure 13B. In Table II, only data from Categories 5 (heavy fog) and 9 (clear skies) are considered. In Table II, as well as the remaining skill score tables, the actual skill scores have been multiplied by 1000 for ease of analysis.

Skill scores may range from negative values to ± 1.0 with ± 1.0 indicating a perfect distinction between clear and fog reports while a score of 0.0 would imply no skill relative to chance. Negative skill values indicate chance performs better than the scheme specified here. In the discussions which follow, Category 6 was not used when relating fog to other categories due to probable contamination with higher level clouds.

a. SRIR-DAY Data

versus Category 9 reports with a "tongue" of relative maxima centered about the count value of 166 and a maximum skill score of .540. Similar results were obtained when all fog categories (1-5) were compared with the clear category (Table III), except count value 166 became a secondary maxima while count value 170 became the primary maxima, and the skill in general was lower by a scant .03. A portion of the dilution of skill may be attributed to the inclusion of the light fog categories. An analysis of stratus clouds versus clear (Table IV) indicates a less distinct boundary with maxima occurring in the upper value range of 158 to 170.

An attempt to ascertain the boundary between fog and stratus was made by contrasting Categories 5 and 8 (Table V). The boundaries are inconclusive, as seen in the table.

The real test of the IR sensor's ability to detect fog was found by considering all the fog reports (Categories 1-5) and those indicating no fog (Table VI). A primary horizontal axis of positive skill was shown along the upper value of 146 with several secondary maxima oriented along a vertical axis centered about the lower values of 70 to 72. As with Table V, skill is minimal.

When investigating fog occurrence over ocean areas, every attempt was made to extract information from the existing synoptic ship reports which would give an indication of fog presence. Therefore, it was reasonable to assume that a past-weather report of heavy fog (Category 7) might be a useful tool (in the absence of present-weather fog) when establishing fog boundaries. A report of past-weather fog indicates the horizontal visibility was reduced to less than 5/8 mi during the five-hour period one to six hours preceding the observation, due to heavy fog, haze, or smoke. Since haze and smoke are seldom observed to reduce horizontal visibility over the open ocean, the reduction in visibility was attributed to fog. Thus, it may be reasoned that, although fog was not observed at the time of the synoptic report, the ship was likely to have been located near the fog boundary and perhaps Category 7 should be

included with the fog categories (1-5). However, when Categories 1-5 were compared with Category 7 (Table VII), a relatively skill maxima was found near the upper count value of 162, implying a reasonable distinction existed between present-weather fog and past-weather fog. Similar results were obtained when comparing Category 7 with stratus (Table VIII). The fact that the axis of the skill score maxima were oriented along an upper count value would indicate that a past-weather fog report with no present-weather fog exhibited a tendency toward higher SRIR-DAY count values or the clear area. Compare Table VIII to Table V. Although the sample size for Category 7 was relatively small (103 reports), its inclusion with present-weather fog reports was not recommended at this time based on the above results.

b. SRVIS Data

Comparisons, similar to those described for SRIR-DAY, were also conducted using SRVIS data. Table IX shows that the largest distinction between heavy fog and clear occurs close to count value 54, but with the axis of maxima values quite broad. When all fog categories (1-5) were contrasted with clear reports, the axis of the relatively broad maxima "tongue" shifted slightly toward the clear area to a count value of 52 to 54 (Table X). This shift would be expected if the visual sensor "looked through" some of the light fog being reported, yielding count values similar to those found in clear areas. Table XI depicted an indistinct boundary between stratus and clear

occurring near count value 52 and secondary protrusions were noted at count values 46 and 66.

An effort to discern a boundary between fog and stratus, using Table XII, indicated only a very small positive skill (maximums .048) was present with a vertical axis of maxima centered around the lower count value of 56. A primary horizontal axis of maxima skill score was found near the upper count value 154. The contrast between all fog (Categories 1-5) and stratus (Table XIII) also indicated a vertical axis of maxima along upper count value 56 with maxima in the horizontal along lower count value 154.

When skill scores for fog (1-5) versus no fog were analyzed (Table XIV), the distinctions observed were quite subtle. Weak maxima in the vertical were observed between the lower count values of 56 to 66. However, the variations in the horizontal were broad with weak fluctuations occurring from the upper count values of 146 to 168 and from 174 to 218.

Tables XV and XVI indicated the existence of a very weak distinction between past-weather fog (Category 7) and present-weather fog and stratus as discussed using SRIR-DAY data.

3. VIF Diagram

In pursuing still another approach to depict boundaries between either fog and clear skies or fog and stratus or higher clouds, a three-dimensional diagram was devised showing relationships between visual data, infrared data, and frequency of occurrence (VIF diagram). The VIF

diagram (see Table XVII) has been divided into a grid of squares with each square representing 10 SRIR-DAY count values and 10 SRVIS count values. The scale of SRIR-DAY count values is shown along the top of the diagram with SRVIS count values along the left margin. Two values were plotted within each square which represent the total ship reports contained within the combined SRIR-DAY and SRVIS count values of that square (lower value) and the percentage of the total reports within the square which fell within the category or categories being investigated (upper value). For example, in Table XVII, it is found that 51 of the reports in this study had SRIR-DAY count values between 160 and 169 inclusively and SRVIS count values between 20 and 29 inclusively. Also, 11% of these 51 reports were within Category 9 (i.e. clear reports). The right-hand side of the diagram displays the number of clear and total reports, and the percentage of clear reports for each row. A similar tabulation is given along the bottom of the diagram for each column. The distribution of clear and total reports can be determined through an analysis of the VIF diagram; such information then can be used in selecting cutoff count values for the combined SRIR-DAY and SRVIS data. Also, skill scores can be calculated for various cutoff count values to aid in obtaining an optimum combination of SRIR-DAY and SRVIS count values.

For example, if all ship reports within the SRVIS range of 0 through 49 and within the SRIR-DAY range of 170 through 199 (shaded region of Table XVII) were diagnosed as

clear reports, the skill score would be .217, associated with 47% of the total clear reports in the shaded area. This skill score can be compared with skill scores obtained using SRIR-DAY and SRVIS individually for Category 9 versus total reports. The results are shown in Tables XIX and XX which indicate a maximum skill of .216 for SRIR-DAY only and .179 for SRVIS only. Thus the combined efforts of SRIR-DAY and SRVIS data indicated no improvement over using SRIR-DAY count values alone to distinguish clear areas. When heavy fog reports (Category 5) were contrasted with all remaining nonfog reports (i.e. Categories 1-4 and 6 were removed from the sample), the resulting distribution on the VIF diagram was more complex (see Table XVIII). If the shaded composite of SRIR-DAY and SRVIS values in Table XVIII were used to diagnose heavy fog, the resulting skill score would be .06.

I. ANALYSES OF SRIR-DAY AND SRVIS COUNT VALUES

Analyses of the NOAA-2 data utilizing the routine "CONTUR," as previously discussed, was accomplished for most of the study period. Figures 15 and 17 depict analyses of July 1, 1973, NOAA-2 digital data using selected cutoff count values. Figure 15 is an analysis of the SRIR-DAY imagery shown in Figure 14 and used the count value of 168 to distinguish between clear areas and potential fog areas. Count value 145 was used to segregate the higher level clouds from the potential fog area. Count value 125 was utilized to depict the boundary of frontal-type clouds.

Similarly, Figure 17, an analysis of the SRVIS imagery in Figure 16, utilized count value 58 for the clear/potential fog boundary, count value 150 for the potential fog/higher cloud boundary, and count value 165 to depict frontal-type clouds. It should be noted that fog existed below the frontal-type clouds, but the limitations of the satellite data discussed earlier in "seeing through" higher clouds precluded detection of fog within this region using satellite data only.

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The objective of this study was to develop a procedure for utilizing meteorological satellite data to diagnose marine fog over the open ocean. This objective was accomplished by merging conventional ship reports with the NOAA-2 digital satellite data and applying three methods (discussed in Section IV. H) to determine cutoff count values of both SRIR-DAY and SRVIS data.

The use of histograms denoted the frequency distribution of SRIR-DAY and SRVIS data over the domain of count values (0-254) for all the ship reports involved in this study, but, at best, could only be utilized to obtain relatively broad cutoff values.

Analyses of skill scores, obtained by means of contrasting various category combinations, resulted in relative maxima of skill scores, which were interpreted to portray regions of optimum distinction between the contrasting categories.

The use of skill scores relative to chance when investigating fog may be questioned as a suitable comparator since the formation of fog was not a completely random process in this study as revealed by the existence of 740 fog reports compared to 2516 non-fog reports. It is believed that skill scores, utilizing the non-random nature of fog, as a basis, would be primarily reflected in the magnitude of the skill scores

(probably lower) but would not have a significant effect on the relative distribution of the skill scores.

The VIF diagram was a convenient method for displaying the distribution of the ship reports relative to both the SRIR-DAY and SRVIS count values. It indicated that the ship reports were not uniformly distributed throughout the field of count values. Preferred areas of concentration were noted for various categories. By applying various "cutoff" combinations within these preferred areas for fog and computing the resulting skill scores, regions could be selected which would optimize the distinction between fog and no fog, thus facilitating the depiction of fog boundaries. The utility of the VIF diagrams could be greatly enhanced by significantly increasing the data base from which the diagrams were derived.

From the processing completed in this study, the cutoff count values for fog were subjectively determined to be as follows:

SRIR-DAY:

- lower cutoff boundary between fog and higher clouds: 142-146
- upper cutoff boundary between fog and clear: 166-170

SRVIS:

- lower cutoff boundary between fog and clear: 54-60
- upper cutoff boundary between fog and higher clouds: 148-154

The approaches using skill-score analyses and VIF diagrams showed the capability of positive skill in diagnosing marine fog. Although the use of satellite data alone is not sufficient to adequately depict marine fog boundaries, it is believed that when the digital satellite data are utilized in conjunction with other meteorological parameters such as wind, temperature, etc., the satellite becomes an essential tool in improving marine-fog analyses over the open ocean.

Results observed in this study indicated the SRIR-DAY data alone performed as well as the combined effects of SRIR-DAY and SRVIS data. Thus the incorporation of SRVIS data did not appear to justify the additional computer requirements for processing. However, further investigations into the necessity of visual data in diagnosing marine fog are required before this observation can be substantiated.

The final phase anticipated for this study was to verify plotted "ground-truth" ship reports for each day of the study period utilizing the analyzed potential fog areas depicted above to determine the regional degree of skill involved in diagnosing fog from these cutoff count values. However, time limitations precluded incorporation of this final phase into the study. The completion of this verification phase is believed a requisite for future studies of marine fog diagnosis using digitized satellite data.

B. RECOMMENDATIONS

The following recommendations are offered for future studies:

- 1) Expand a similar study to a significantly larger data base which would permit further refinement of the fog categories, to include wind and temperature variations.
- 2) Incorporate SRIR-NIGHT data into future studies and determine the latitudinal variation, if any, in the infrared count values so that corrections may be made to existing data to eliminate such variations.
- 3) Perform an investigation to determine whether the addition of visual count values enhance the capability of diagnosing marine fog in a scheme involving infrared count value only.
- 4) Perform a complete verification of fog areas analyzed by the "CONTUR" or similar analysis scheme, using conventional ship reports as "ground-truth."
- 5) Explore the possibility of assigning "weighting" factors to selected visual/IR count-value combinations utilizing climatology, moisture content, wind, temperature, and other fog-related parameters to arrive at a credible fog probability analysis which has operational utility and can be used as an improved data base for fog forecasting.
- 6) Investigate the feasibility of using a geo-stationary, vice polar orbiting, satellite to obtain the visual and infrared data in future studies to alleviate the time-compatibility problem. If these data are obtained from a satellite positioned over the equator, such as in the GOES series, it will be necessary to determine if any distortion exists due to the inclination angle of the satellite view in the fog regions (40-60N).

7) Investigate the use of the analysis of cutoff count values of digital satellite data to depict frontal systems, extratropical and tropical storms, potential fog areas, and clear areas which information then can be transmitted to surface ships lacking satellite receiving capabilities via the fleet broadcast in lieu of satellite imagery mosaics. It is believed this type of display of major satellite features could be a significant improvement over visual interpretation of gray shades from satellite imagery facsimile.

APPENDIX A

TRIGONOMETRIC RELATIONSHIPS USED TO DEVELOP "EARTH-LOCATION" PROGRAM

Given: Latitude and longitude of Point B in Figure 18

Find: Grid distances HB and JB on 320 \times 868 sub-grid

array (Figure 18B) which locate Point B

Method:

(1) Determine distance AB in Figure 18A. $\beta = \text{latitude of Point B}$ AD = 998.54 = CONSTANT $\mathbf{0} = 90 - \beta$ $ANGLE ADB = \frac{\mathbf{0}}{2}$ $AB = AD(\tan(\frac{\mathbf{0}}{2}))$

In Figure 18A, line $\mathrm{E_1F_1}$ lies in plane EF and intersects the surface at the earth at 60N. AD is a segment of the line passing through the north and south poles (north pole at top of diagram). Figure 18B is a view of the plane EF as seen from the north pole looking toward the center of the earth. AB in Figure 18B corresponds to AB in Figure 18A.

(2) LONG = LONGITUDE of Point B (in radians) $\alpha = \text{LONG} - 10 \text{ (note: } 10 \text{ is subtracted from the} \\ \text{longitude because } \alpha \text{ is measured} \\ \text{from } 10\text{E})$

 $\theta = 180 - \alpha$

 $GA = AB \cos \theta$

 $BG = AB \sin\theta$

HB = (417 - BG) + 1.5 (note: 1.5 is correction

2048 x 2048 array)

July Climatological Marine-Fog Frequencies (%), Eastern North Pacific Ocean (Willms, 1975) Figure 1.

July Climatological Marine-Fog Frequencies (%), Western North Pacific Ocean (Willms, 1975) Figure 2.

Figure 4A. Background for Digitally Composited NOAA-2 Mosaic Showing North Pacifc Ocean Study Area (Shaded)

Figure 4B. Sub-grid Area Showing Dimensions of Sections Used for "CONTUR" Output

Figure 5. Comparison Between Selected "Earth-Located"
Positions (Dots) and Corresponding Geographical
Positions (Crosses)

Plot of Selected NOAA-2 Orbit Paths Within Study Area Showing Hoursand One-Minute Intervals Along Each Orbit at (GML) Minutes Figure 6.

Figure 7A

Histograms of (A) SRVIS and (B) SRIR-DAY Count Values for Total Reports Processed in Study

Figure 7B

Histograms of (A) SRVIS and (B) SRIR-DAY Count Values for Category 5 (Heavy Fog) Reports Processed in Study

Figure 8B

Figure 9A

Histograms of (A) SRVIS and (B) SRIR-DAY Count Values for Category 7 (Past-Weather Fog) Reports Processed in Study

Figure 10A

Histograms of (A) SRVIS and (B) SRIR-DAY Count Values for Category 8 (Stratus) Reports Processed in Study

Figure 10B

Figure 11A

Histograms of (A) SRVIS and (B) SRIR-DAY Count Values for Category 9 (Clear) Reports Processed in Study

Figure 11B

Figure 12A

Processed in Study Histograms of (A) SRVIS and (B) SRIR-DAY Count Values for 0 (Total Reports Minus Categories 1-10) Reports Category

Figure 12B

	DIAGNOSED				
VERIFIED		FOG	NO FOG		
	FOG	H ₁	M ₁	R ₁	
	NO FOG	M ₂	H ₂	R_2	
		C ₁	C ₂	T	

Figure 13A. General Contingency Table Format Used to Compute Skill Scores Relative to Chance

V	DIAGNOSED				
ERIFIED		FOG	CLEAR		
	FOG	153	299	452	
	CLEAR	23	219	242	
		176	518	694	

Figure 13B. Example of Contingency Table Data Used to Compute Skill Score for the Case of Discriminating Heavy Fog (Category 5) from Clear Skies (Category 9) as a Function of SRIR-DAY Count Values. Heavy Fog Specified for Count Values 70-130; Skill Score = .192 (See Table II).

Digitally Composited NOAA-2 Mosaic of SRIR-DAY Data for 1 July 1973 Within Study Area Figure 14.

Count Values (i.e. 125, 145 Analysis of Selected SRIR-DAY Digital Count Values (i.e. 125, 14 and 168) for 1 July 1973 Within Study Area. The Shaded Portion Represents Potential Areas of Fog Not Obscured by Middle- or High-Level Clouds Figure 15.

Digitally Composited NOAA-2 Mosaic of SRVIS Data for 1 July 1973 Within Study Area Figure 16.

by Middle- or High-Level Clouds Analysis of Selected SRVIS Digital Count Values (i.e. 58, 150, 165) The Shaded Portion Represents for 1 July 1973 Within Study Area. Potential Areas of Fog Not Obscured Figure 17.

A. Plan View of Earth; AD Along Polar Axis With North at the Top. Line E_1F_1 , Perpendicular to Polar Axis and in Plane EF, Intersects Earth's Surface at 60N. See Appendix A for explanation of symbols.

B. Plane EF. See Appendix A for explanation of symbols. Figure 18. Trigonometric Relationships Used in "Earth-Location" of Satellite Data

		NUMBER OF OBS	1877	72	29	39	23	452	125	103	294	242	3471
FOG CHARACTERISTICS		TIME OF OCCURRENCE	!	AT OBSERVÆICN	AT OBSERVATION	WITHIN ONE HR OF OB BUT NOT AT OB	AT OBSERVATION	AT OBSERVATION		IN PERIOD 1-6 HRS BEFORE OB	AT OBSERVATION	AT OBSERVATION	
ARACTE	VISIBILITY	KM		1 - 10	< 1	* + + + + + + + + + + + + + + + + + + +	\ \			× 1 ×	. 1	-	-
FOG CH	VISIB	MI	1	9 - 8	۸ ات	× 100	ر ساس م	ر اص		v v	I I		1
	H OF	M		> 10	× 10	> 10	> 10	> 10	l	-	-	! !	1
	DEPTH	단	-	> 33	< 33	> 33	> 33	> 33	l	-			1
FYING	LEMENT	CODE	 	10	11,12	28	40	41-49	-	4	9	\	-
IDENTIFYING	WEATHER ELEMENT	SYMBOL	1	WW	WW	WW	WW	MM		W	CI	Z	
		GENERAL DESCRIPTION	ALL OTHER OBSERVATIONS NOT IN CATEGORIES 1-10	DEEP LIGHT FOG AT STATION	SHALLOW HEAVY FOG AT STATION	HEAVY FOG AT STATION	HEAVY FOG AT A DISTANCE FROM STATION	HEAVY FOG AT STATION	OBS IN CATEGORIES 1-5 WITH POSSIBLE HIGH CLOUD CONTAMINATION	PAST WEATHER HEAVY FOG, OR SMOKE	OBS NOT IN CATEGORIES 1-7 REPORTING > 5/8 STRATUS COVER _	OBS NOT IN CATEGORIES 1-8 WITH CLEAR SKIES	OBS WITH MISSING SRVIS AND/OR SRIR-DAY DATA
		CATEGORY	0	1	2	m	4	Ŋ	9	7	∞	0	10

*At time of visibility restriction indicated by code figure.

Format Used to Categorize Ship Reports for North Pacific Ocean Study Area During July 1973 Table I.

```
Lower Cutoff Values
                     66
                          68
                              70 72
                                      74
                                          76
                                               78
                                                   80
                                                       82
                                                           84
                                                               86
                                                                        90
                                                                            92
                                                                    88
                                                                                94
                                                                                    96
                                                                                        98
   120
        127 125 128 120 124 128 120 113 116 110 106
                                                       98
                                                           98 100
                                                                    95
                                                                        91
                                                                            92
                                                                                        73
                                                                                    83
        136 134 137 135 133 137 129 122 124 119 115 106 107 108 103
   122
                                                                        99 101
S
lues
   124
        144 142 145 143 141 144 137 129 132 126 123 114 115 116 111 107 108
                                                                                        89
        157 155 158 156 153 157 150 142 145 139 135 126 127 128 123 119 120 117 111
   126
Va
   128
        176 174 177 175 173 176 169 161 163 157 154 145 145 147 141 137 138
        192 190 193 191 18d 192 184 176 179 173 169 160 160 162 156 152 153 150 144
   130
44
Cutof
        195 193 195 194 191 195 187 179 181 175 171 162 163 164 158 154 155 152 146
   132
   134
        201 200 202 200 197 201 193 185 188 181 178 168 169 170 165 160 161 158 152 141
        217 215 218 216 213 217 209 201 203 197 193 183 184 185 179 175 176 173 166 155
   136
        228 226 229 227 224 228 220 211 213 207 203 193 194 195 190 185 186 183 176 165
   138
er
        241 239 242 240 237 240 232 224 226 219 215 206 206 207 202 197 198 195 188 177
   140
   142
        246 244 247 245 242 245 257 228 251 224 220 210 211 212 236 201 203 199 192 181
   144
        295 293 295 293 290 293 285 275 278 271 266 256 257 258 252 247 248 244 237 225
   146
        337 335 337 335 332 335 326 317 319 311 307 296 297 298 291 286 287 283 276 264
        354 352 354 352 348 352 343 333 335 327 323 312 312 314 307 302 303 299 292 279
   148
   150
        401 398 400 398 394 397 388 378 380 372 367 356 356 357 351 345 346 342 334 321
        425 423 425 422 419 422 412 401 403 395 391 379 379 380 373 367 368 364 356 343
   152
        462 459 461 458 455 457 448 436 438 430 425 413 413 414 407 401 402 397 389 375
   154
        490 487 489 487 482 485 475 463 465 456 452 439 439 440 433 426 427 423 414 400
   150
        512 510 511 509 504 507 497 485 487 478 473 460 459 460 453 447 448 443 424 420
   158
   160
        509 507 508 506 501 504 494 481 483 474 469 456 456 457 (449 443 444 439 430 415
        524 521 523 520 515 518 507 495 497 487 482 469 469 470 462 455 456 450 442 427
   162
        519 516 518 515 511 513 503 490 492 482 477 464 463 464 456 450 451 446 436 421
   164
        540 537 539 536 531 534 523 510 511 500 496 482 482 483 475 468 469 463 459 438
   165
        515 512 514 511 506 509 498 465 487 477 471 457 457 458 450 443 444 438 429 413
   168
        521 518 520 517 513 516 504 491 493 482 477 463 462 463 455 448 449 444 434 418
   170
         91 488 490 487 482 486 474 461 463 453 447 433 432 433 425 418 419 414 404 388
   172
   174
        454 431 434 431 426 430 418 405 407 397 391 377 378 370 363 364 359 349 333
        368 365 368 365 360 365 353 340 343 333 327 313 313 314 306 299 301 295 286 270
   176
   178
        314 311 314 311 307 311 300 287 290 280 274 260 261 262 254 247 249 243 234
        250 247 250 247 243 248 237 224 227 218 212 198 199 201 192 186 188 182 173
   180
   182
        187 184 188 185 181 187 175 163 166 157 151 137 139 141 132
                                                                      126 128
   184
        132 129
                133
                     130
                         127
                             135 121
                                     109
                                         113 104
                                                   99
                                                       85
                                                           86
                                                               88
                                                                    80
                                                                        74
                                                                            76
                                                                                71
                                                                                    62
                                                                                        47
                                                   57
                                                       43
                                                           45
                                                                47
                                                                    39
   186
                              91
                                      67
                                           72
                                               63
                                                       -6
                                                               -1
   188
         37
                  39
                          32
                              40
                                  28
                                      16
                                          21
                                               12
                                                    7
                                                           -4
                                                                   -9 -15 -13 -18 -2o
                      36
   190
         21
             18
                 23
                      20
                          17
                              24
                                  13
                                       1
                                              -2
                                                  -7 -21 -19 -16 -24 -30 -28 -33 -41
                   7
                                  -2
                                     -14
                                          -9 -17 -23 -36 -34 -32 -40 -45 -43 -48 -56 -71
   192
              2
                               8
                   7
                               8
                                  - 2
                                          -9 -17 -23 -36 -34 -32 -40 -45 -43 -48 -56 -71
   194
                                     -14
                                          -9 -17 -23 -36 -34 -32 -40 -45 -43 -48 -56 -71
   196
                   7
                               8
                                  - 2
                                     -14
                                          -9 -17 -23 -36 -34 -32 -40 -45 -43 -48 -56 -71
   198
          5
                   7
                               8
                                  -2 -14
```

Table II. Skill Score Analysis for Selected SRIR-DAY
Count Values: Category 5 Versus Category 9

Table III. Skill Score Analysis for Selected SRIR-DAY
Count Values: Categories 1-5 Versus Category 9

3 10

3 -10 -19 -32 -27 -26 -34 -39 -35 -43 -48 -59

118 112 116 110 97 101 134 128 132 126 114 115 109 113 117 111 111 105 106 147 140 144 138 126 128 121 125 129 124 124 117 118 146 109 107 104 159 153 157 151 139 140 134 138 142 136 136 130 131 128 122 Value 172 165 170 163 151 153 146 150 154 149 149 142 143 141 134 188 181 185 179 167 168 162 166 170 164 164 158 159 156 150 147 144 141 179 172 177 170 158 159 153 157 161 155 155 149 150 147 141 Cutoff 191 196 189 177 178 172 176 180 174 174 168 169 166 160 206 200 204 197 185 187 180 184 188 182 182 176 177 174 168 165 162 159 216 209 213 207 194 196 189 193 197 191 191 185 186 183 177 232 236 229 217 218 212 215 220 214 214 207 208 206 199 196 194 190 178 Upper 262 255 259 253 240 242 235 239 243 237 237 230 231 229 222 219 217 213 201 197 289 282 286 280 267 268 262 265 270 264 264 257 258 255 249 246 243 240 227 308 301 305 298 285 287 280 284 288 282 282 275 276 274 267 264 261 258 245 242 351 345 349 342 329 330 324 327 332 325 325 319 320 317 310 307 304 301 288 285 382 375 379 372 359 360 353 357 362 355 355 348 349 346 340 337 334 330 317 314 411 404 408 402 388 389 382 386 391 384 384 377 378 375 368 365 362 359 346 342 45-48 441 446 439 425 426 419 423 428 421 421 414 415 412 405 402 499 395 382 379 468 461 465 458 464 445 438 442 447 440 440 433 434 431 424 421 418 414 401 397 491 484 488 481 467 468 461 465 470 463 463 456 457 454 447 443 440 437 423 420 491 484 489 481 467 469 461 465 470 463 463 456 457 454 446 443 440 437 423 420 443 486 490 483 469 470 463 467 471 465 465 457 458 455 448 445 442 438 424 421 490 483 487 480 466 467 460 464 468 461 461 454 455 452 445 442 438 435 421 418

Lower Cutoff Values

 119 117 114

138 136 133 120 117

60 62

494 487 491 484 469 470 463 467 472 465 465 457 458 455 448 445 441 438 424 420 496 488 493 485 471 472 465 469 473 466 466 459 460 457 449 446 443 439 425 422 443 429 430 423 427 432 425 425 417 418 415 408 405 401 598 384 380 379 384 376 362 363 356 360 365 358 358 350 351 348 341 338 335 331 317 313 307 311 304 290 291 284 288 293 286 286 279 280 277 270 266 263 260 253 240 250 243 229 231 223 228 232 226 226 218 220 216 209 206 203 199 197 189 175 177 170 174 179 172 172 165 166 163 156 153 118 121 113 118 123 116 116 109 110 107 100 0 ۋ -8 -6 -4 -11 -7 -2 -8 -15 -14 -17 -24 -27 -30 -33 -51 -2 -16 -14 -21 -17 -11 -18 -18 -25 -24 -26 -34 -37 -39 -16 -30 -27 -35 -30 -25 -31 -31 -39 -37 -40 -47 -50 -53 -56 -8 -16 -30 -27 -35 -30 -25 -31 -31 -39 -37 -40 -47 -50 -53 -56 -70 -74 -8 -16 -30 -27 -35 -30 -25 -31 -31 -39 -37 -40 -47 -50 -53 -56 -70 -74 -14 -8 -16 -30 -27 -35 -30 -25 -31 -31 -39 -37 -40 -47 -50 -53 -56 -70 -74 -6 -14

491 495 488 474 475 468 472 476 469 469 462 463 459 452 449 446 442 428 425

Table IV. Skill Score Analysis for Selected SRIR-DAY Count Values: Category 8 Versus Category 9

			Low	er	C11:	tof	f \	7al	ues												
			_													,					
		60	62	64	66	68	70	72	74	76	78	80	82	84	86	88	90	92	94	96	98
	1 20	32	36	35	39.0	448	50	49)4 ³⁷	36	35	32	28	28	32	32	30	34	33	38	29
	122	27	31	30	34 (43	46	44	32	31	30	27	23	23	27	27	25	29	28	33	25
es	124	24	28	27	31	90	43	41	29	28	27	24	20	20	24	24	22	26	25	30	22
lu	126	26	30	29	33	42	45	43	31	30	29	25	22	22	26	26	24	28	27	32	23
Q	128	34	38	3 7	41	50	53	51	30	39	38	34	30	30	34	34	32	36	35	40	32
>	130	.04-	40	/96	43	52	55.0	53	41	40	40	36	32	32	36	36	34	3 8	37/	42	334
££	132	11	50	49	53	(62	65	63	51	50	49	45	42	42	+5	45	44	47	47	51	43
0	134	.04	35	38)	42	51	54.0	52	40	39	38	34	31	31	35	35	33	37	36	41	32
ut	136	.04 -	47	46	50	59/	62	De	48	47	46	42	38	38	42	42	40	44.0	43	48	2.04
Ü	138	45	49	48	52	61	64	62)	50	49	48	44	40	40	44	44	42	46	45	50	42
ы	140	.04	41	40	44	53	56	54	42	41	_40	30	32	<i>\$</i> 2	36	36	34	38	31	42	33
be	142	17	21	20	25	34	37	35	23	22	21	17	13	13	17	18	16	20	19	24	15
Up	144	.04	45	43	48	57	61	58	46	45	44	+0_	35	35	_40-	+6	28	42	41	40	3.7
	146	.063_	67	66	71	8	830	81	68	67	66	62)	57	57	62	620	659	64	63	680	65.84
	148	36	41	40	44	54	57	55	42	41	40	36	32	32	36	36	34	38	37)	43	33
	150	51	55	54	59	69	72	700	6 \ 56	55	54	50	45	45	50	50	48	52	51	56	47
	152	43	47	46	51	61	64	62/	48	47	46	42	37	37	42	42	49	44	43	49	384
	154	38	42	41	46	50	60	68	44	43	42	(37	32	33	37	37	35	40	38	44	34
	156	41	46	44	49	66	64	61)	47	46	45	•0	36	36	40	40	38	43	42	47	37
	158	35	39	38	43	54	58	55	41	40	39	34	29	29	34	34	32	37	36	41	31
	160	24	. 29	28	33	44	48	46	131	30	29	24	19	20	24	24	22	27	26	32	22
	162	31	37	35	40	52	55	53	38	37	36	31	26	26	31	1 ز	29	34	33	39	28
	164	24	29	28	33	44	48	45	31	29	28	23	19	19	24	24	21	26	25	31	21
	166	27	32	31	36	48	51	49/	34	33	31	26	22	22	27	27	25	29	28	35	24
	168	0	4	3	8	20	24	22	7	6	5	0	-4	-4	0	0	- 1	3	2	8	-1
	170	-1	4	3	8	20	24	22	6	5	4	0	- 5	- 5	0	0	-2	3	1	8	-2
	172	' 6	12	10	16	28	32	29	14	13	12	6	2	2	7	7	5	10	9	15	4
	174	14	19	18	23	35	39	37	21	20	19	14	9	9	14	14	12	17	16	23	12
	176	20	26	25	30	142	46	43	28	27	25	20	15	15	21	21	18	23	22	29	18
	178	28	34	32	38	50	54	51	36	34	33	28	23	23	28	28	26	31	30	36	25
	180	21	27	26	31	43	47	45	29	28	26	21	16	16	22	22	19	24	23	30	19
	182	21	27	26	31	6.0	47	45/	29	28	26	21	16	16	22	22	19	24	23	30	19
	184	13	19	17	23	35	39	37	21	20	19	13	8	8	14	14	12	17	16	22	11
	186	16	21	20	26	38	(42	\39	24	22	21	16	11	11	16	16	14	19	18	25	13
	188	16	21	20	26	38	42	.04	24	22	21	16	11	11	16	16	14	19	18	25	13
	190	12	17	16	22	34	38	35	20	18	17	12	7	7	12	13	10	15	14	21	10
	192	12	17	16	22	34	38	35	20	18	17	12	7	7	12	13	10	15	14	21	10
	194	12	17	16	22	34	38	35	20	18	17	12	7	7	12	13	10	15	14	21	10
	196	12	17	16	22	34	38	35	20	18	17	12	7	7	12	13	10	15	14	21	10
	198	12	17	16	22	34	38	35	20	18	17	12	7	7	12	13	10	15	14	21	10
	170					J+															

Table V. Skill Score Analysis for Selected SRIR-DAY Count Values: Category 5 Versus Category 8

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 120 80 82 83 86 87 91 91 87 89 80 78 70 70 74 72 67 73 70 122 76 77 78 81 82 86 86 82 83 75 73 65 65 69 67 63 68 65 124 73 74 75 78 79 83 82 79 80 72 70 63 63 66 64 60 65 62	96 98 70 64 64 59 61 56 61 55 74 69 79 75
122 76 77 78 81 82 86 86 82 83 75 73 65 65 69 67 63 68 65	64 59 61 56 61 55 74 69
122 76 77 78 81 82 86 86 82 83 75 73 65 65 69 67 63 68 65	64 59 61 56 61 55 74 69
	61 56 61 55 74 69
	61 55 74 69
126 72 73 74 77 78 82 81 77 79 71 69 62 62 65 63 59 64 61	74 69
W 123 02 34 35 06 00 03 32 00 00 82 61 74 74 77 74 72 77 74	1
D 130 87 89 90 92 94 97 97 94 95 88 86 79 80 83 81 77 82 79	
ro 132 84 86 87 89 90 94 94 90 92 85 83 76 77 80 78 74 79 76	76 72
> 134 77 78 79 81 82 86 85 82 83 77 74 68 68 71 70 66 70 67	67 63
44 136 86 87 88 AO 92 95 95 92 93 87 85 79 79 82 80 77 81 78	79 74
O 138 86 88 88 91 92 95 95 92 93 87 85 79 79 82 81 77 82 79	79 75
1/1 04 07 63 00 01 05 04 01 03 67 05 70 70 02 01 77 21 70	79 75
U 142 79 81 81 83 84 87 87 84 86 80 78 72 72 75 74 70 74 72	72 68
H 144 89 90 91 93 94 97 97 94 95 90 88 83 86 85 82 85 83	83 80
0 144 07 98 99 101 102 105 105 102 104 98 97 92 92 95 94 91 94 92	93 89
	82 79
D 150 95 96 96 98 99 (102 102) 99 100 96 94 90 90 92 91 89 92 90	90 87
152 90 91 91 93 94 96 96 94 95 90 89 85 85 87 86 83 87 85	85 82
154 85 86 87 89 89 92 91 89 90 86 84 80 80 82 81 79 82 80	80 77
156 (51 91 92 94 95 97 97 95 96 91 90 86 86 88 87 85 88 86	86 84
158 87 87 88 89 90 92 92 90 91 87 86 82 82 84 83 81 84 82	82 79
160 78 78 79 80 81 83 83 81 82 78 76 73 73 74 74 71 74 72	72 70
162 75 76 76 78 79 81 80 78 79 75 74 70 70 72 71 69 72 70	70 67
164 65 65 66 67 68 69 69 67 68 64 63 59 59 61 60 58 60 59	59 56
166 66 66 67 68 69 70 70 68 69 65 64 61 61 62 61 59 61 60	60 57
168 58 59 59 61 61 63 62 61 61 57 56 53 53 54 53 51 54 52	52 50
170 54 55 55 57 57 59 58 56 57 53 52 49 49 50 49 47 50 48	48 46
172 47 48 48 50 50 51 51 49 50 46 45 42 42 43 42 40 42 41	41 38
174 42 42 43 44 44 45 45 43 44 40 39 36 36 37 36 34 36 35	35 32
176 36 36 37 38 38 39 39 37 38 34 33 30 30 31 30 28 30 29	28 26
178 29 30 30 31 31 33 32 30 31 27 26 23 23 24 23 21 23 22	21 19
180 23 23 24 25 26 25 24 24 20 19 16 16 17 16 14 16 15	14 12
182 16 17 17 18 18 19 19 17 17 14 12 9 9 10 9 7 9 8	7 5
184 12 13 13 14 14 15 15 13 13 10 8 5 5 6 5 3 5 4	3 1
186 9 9 9 10 10 12 11 9 10 6 5 2 2 3 2 0 1 0	0 +2
188 5 6 6 7 7 8 8 6 6 3 1 -1 -1 0 -1 -3 -1 -2	-3 -5
190 5 5 5 6 0 7 7 5 5 2 1 -1 -2 -1 -2 -4 -2 -3	-4 -6
192 4 4 5 5 6 7 6 4 5 1 0 -2 -2 -1 -2 -4 -3 -4	-4 -7
194 4 4 4 5 5 6 6 4 4 1 0 -2 -3 -2 -3 -5 -3 -4	-5 -7
196 3 4 4 5 5 6 6 4 4 1 0 -3 -3 -2 -3 -5 -3 +4	-5 -7
198 3 4 4 5 5 6 6 4 4 1 0 -3 -3 -2 -3 -5 -3 -4	-5 -7

Table VI. Skill Score Analysis for Selected SRIR-DAY Count Values: Categories 1-5 Versus No Fog

		60	62	64	66	68	70	72	74	76	78	80	82	04	86	88	90	92	94	96	98
	120	29	32	اڌ	30	31	29	27	30	28	26	23	20	18	17	21	1.0	2.1	10	1.	
	122	27	29	28	28	28	27	24	27	25	23	21	17	16	15	19	18	21	19 16	16 14	13
	124	21	24	23	22	23	21	19	22	20	18	16	12	10	9	14	11	13	11	8	5
	126	12	15	13	13	14	12	10	13	11	9	7	3	2	0	5	2	5	3	0	-2
Ø	128	14	17	16	15	16	14	12	15	13	11	9	5	3	2	7	4	7	4	2	-1
alue	130	15	18	1.7	16	17	15	13	16	14	12	10	6	4	3	8	5	7	5	2	Ū
1	132	17	20	18	18	19	17	14	18	16	14	11	7	5	4	9	6	9	6	3	0
>	134	17	21	19	19	20	18	15	19	17	14	12	8	6	5	10	7	10	7	4	1
441	136	27	30	29	28	29	2.7	24	28	26	23	21	17	15	13	18	15	18	15	12	8
Cutoff	138	24	27	25	25	26	24	21	24	22	20	17	13	11	10	15	11	15	12	9	5
Ĭ	140	25	28	2 7	26	27	25	22	26	24	21	18	14	12	11	16	12	16	13	10	0
C	142	25	29	27	26	28	25	22	26	24	21	18	14	12	10	16	12	16	13	9	5
ы	144	34	38	36	35	36	34	30	35	32	29	26	21	19	18	23	19	23	20	16	12
Upper	146	41	45	43	42	43	40	3 7	41	38	35	32	27	24	23	28	24	28	25	21	16
id	148	29	34	32	31	32	29	26	30	28	24	21	16	13	12	18	14	18	14	10	6
D	150	45	49	47	46	47	44	90	45	42	18	34	29	26	24	31	26	30	27	22	17
	152	59	63	61	60	_6D	58	53	58	55	51	46	300	38	36	42	37	41	38	33	28
	154	.0656	61	68	57_	-58	55	50	55	52	47	43	37	33	31	38	33	38	34	29	23
	156	00	85	82	81	82		72	77	73	68	63	56	53	50	57	52	56	52	47	3 0
	158	58	64	61	60	62	<u>67</u>	52	58	54	49	43	<u>G</u> 6	32	30	38	32	37	33	27	21
	160	.08	86	83	81	82	78	72	77	73	67	62	54	50	47	55	49	54	49	43	364
	162	.08	96	93	91	92	87	80	86	81)	75	69	-60	56	53	62	55	60	55	49	-404
	164	.06	84_	-80-	78	-00	75	68	74	69	63	57	48	43	41	50	43	49	43	/37	29
	166	44	52	48	47	49	43	36	44	63	33	27	17	13	10	≥ 1	14	20	15	8	0
	168	.049	58	54	52	54	48	40	49	43)	37	30	20	15	12	24	16	23	17	10	1
	170	36	45	41	39	42	35	27	37	31	24	17	7	2	0	11	3	11	5	-2	-10
	172	14	25	20	18	21	15	7	18	12	6	0	-10	-15	-19	- 5	-13	-5	-11	-19	-27
	174	-2	3	4	1	6	0	- 8	3	-2	- 8	-15	-25	-30	- 34	-19	-27		-25	- 32	-41
	176	16	28	23	20	24	17	8	20	14	7	0	-11	-17		-5	-14		-12		-29
	178	4	17	12	9	14	6	- 2	10	3	-2	-10	-22	-27	-31	-15	-24	-14	-21	-30	-39
	180	- 2	10	4	2	7	0	-9	4	-2	- 8	-16	-28	-33	+37	-21			-27	-35	-45
	182	2	15	10	7	12	4	- 5	8	1	-4	-12	-24	-30	- 33		-26			-32	-42
	184	10	24	18	15	20	12	2	15	8	1	-6	-18				-21				-37
	186	13	26	21	18	22	14	4	18	11	_ cı	-4	-16	- 22		-10	-19	-9	-17	-25	-35
	188	- 2	10	5	2	7		-10 -7	4	-2	-9	-17	-29 -27	-35 -33		-22	-31	-21	-28	-36	-46 -45
	,	0	13	8	5	10	2		6	0	-6	-15		• •	-36		-29	_		-35	-45
	192	0	13	8	5 5	10	2	- 7	6	0	-6	-15	-27		-36 -36				_	-35	-45
	194	0	13	8	5	10	2	- 7 - 7	6	0	-6	-15	-27	-33		-20	-29		- 26	-35	-45
	196	0	13	8	5	10	2	-7 -7	6	0	-6 -6	-15 -15				-20			-26	-35	-45
	198	0	13	8	>	10	2	- /	6	0	-0	-12	-21	-33	-36	-20	-29	-14	-26	- 35	-45

Table VII. Skill Score Analysis for Selected SRIR-DAY Count Values: Categories 1-5 Versus Category 7

Lower Cutoff Values

		60	62	64	66	68	70	72	74	76	78	80	82	84	86	88	90	92	94	96	98
	120	36	37	35	31	26	20	16	27	25	25	25	21	17	13	20	16	18	16	6	4
	122	35	36	34	30	25	19	15	20	24	24	24	20	16	12	19	15	16	14	5	3
	124	28	29	27	23	18	12	8	19	17	17	17	13	9	5	12	8	10	8	-1	-3
	126	12	14	12	8	3	-2	-6	4	2	2	2	-1	- 5	-9	- 2	-6	-4		-16	-18
O S	128	11	13	10	6	1	-4	- 8	3	1	1	1	-3	- 7	-11	-3	-7	-5	-7	-17	-19
lue	130	12	14	11	7	2	-3	- 8	4	1	1	1	-2	-6	-10	-3	-7	-5	- 7	-17	-19
al	132	10	12	9	5	0	- 5	- 9	2	0	0	0	-4	- 8	-12	-4	-9	-7	-9	-19	-21
	134	19	21	19	14	9	3	- 1	11	9	8	8	4	0	-4	3	0	1	0	-11	-13
Ŧ	136	27	29	26	22	17	10	5	18	16	15	15	11	7	2	10	6	8	5	-4	-6
οf	138	17	19	16	12	7	0	-4	8	6	5	5	1	-2	- 7	0	-3	-1	-3	-14	-16
Cuto	140	23	25	22	17	12	5	0	13	11	11	11	6	2	-2	5	1	3	1	-9	-11
ΰ	142	37	39	36	31	26	18	13	27	25	24	24	19	14	10	18	13	15	13	2	0
Я	144	37	39	36	31	25	17	12	26	24	23	23	18	13	9	17	13	14	12	o	-1
Uppeı	146	31	33	31	25	20	12	7	21	18	18	18	13	8	3	12	7	9	7	-4	-7
Jp	148	2د	34	31	26	20	12	6	21	19	18	18	13	8	2	12	7	9	6	-5	-8
	150	.0648	50	48	42	35	27	21	36	34	33	33	27	22	16	26	21	23	20	7	5
	152	72	74	71	63	57	48	43	58	55	54	54	49	43	37	47	41	43	40	27	24
	154	75	77	74	67	60	50	44	10	58	56	56	50	44	8ذ	48	43	45	42	27	24
	156	.0895	97	94	87	79	69	62	79	76	75	75	68	63	55	66	00	621	36 59	43	40
	158	06 70	72	69	61	63	43	36	54	51	50	50	43	37	30	41	35	37	34	19	15
	160	.1 q 08	110	106	98	89	78	71	90	86	84	84	77	70	63	75	68	70	67	50	47
	162	.102	104	100	92	83	71	64	83	_80	78	08	71	65	51	68	61	63	_60	43	40
	164	000	95	91	83	74	62	74	74	71	69	69	62	54	47	59	52	54	51	34	30
	166	.0651	54	50	42	32	20	13	34	30	29	29	22	1 4	7	20	13	16	12	- 5	-8
	168	.06-77		9875	66	56	43	35	57	53	52	52	43	3 5	27	41	33	36	32	13	10
	170	56		54	45	35	22	13	37	33	31	31	23	15	7	21	13	16	13	-6	-9
	172	27	30	26	17	7	_	-14	10	5	5	5	-3		-19	-4	-12		-12		-35
	174	-2	1	- 3	-12	-21	-34	-43	-18	-22	-22	-22	-30	-38	-46	-31	-38			-57	-61
	176	1	5	1	-7	-17	-30	-38	-13	-18	-18	-18	-26	-34	- 42	-27	-34	-31	-35	-54	-57
	178	-15	-11	-16	-25	-34	-47	-56	-30	-34	-34	-34	-43	-51	- 59	-42	-50	-46	-50	-69	-73
	180	-15	-11	-15	- 25	- 34	-47	-56	-30	-34	-34	-34	-43	-51	-59	-42	-51		-50	-70	-73
	182	-15	-11	-15	-25	-34	-47	-56	-30	-34	-34	-34	-43	-51	-59	-42	-51	-46	-50	-70	-73
	184	-5	-1	-6	-15	- 25	-38	-47	-21	-25	- 26	-26	-34	-43	-51	-34	-42	-38	-42	-62	-66
	186	-5	-1	-6	-15	- 25	-38	-47	-21	-25	-26	-26	-34	-43	-51	-34	-42	- 38	-42	-62	-66
	188	-19	-15	-20		-38	-52	-60	-34	-38	-38	-38	-47	-55	-64	-47	-55	-51	-55	-74	-78
	190	-14	-10	-15	- 24	-34	-47	-56	-30	-34	-34	-34	-43	-51	- 59	-43	- 51	-47	-51	-70 -70	-74
	192	-14	-10	-15	-24	-34	-47	-56	-30	-34	-34	-34	-43	-51	-59	-43	-51	-47	-51	-70	-74
	194	-14	-10	-15	-24	-34	-41	-56	-30	-34	-34	-34	-43	-51	-59	-43	-51	-47	-51	-70 -70	-74
	196	-14	-10			-34	-47	-56	-30	-34	-34	-34	-43	-51	- 59	-43	~51		-51	-70 -70	-74
	198	-14	-10	-15	-24	- 54	-47	-56	-30	- 34	-34	-34	-43	-51	- 59	-43	-51	-41	-51	-70	-74

Table VIII. Skill Score Analysis for Selected SRIR-DAY Count Values: Category 8 Versus Category 7

Table IX. Skill Score Analysis for Selected SRVIS
Count Values: Category 5 Versus Category 9

Table X. Skill Score Analysis for Selected SRVIS
Count Values: Categories 1-5 Versus
Category 9

206

208

210

212

214

216

218

Table XI. Skill Score Analysis for Selected SRVIS
Count Values: Category 8 Versus Category 9

400 394 448 469 482 493 484 486 499 497 491 488 488 485 478 491 487 480 474 478

403 398 452 472 486 498 488 490 503 500 494 492 492 488 482 494 491 484 477 482

407 401 455 476 489 601 491 493 506 50, 498 495 495 492 485 498 494 487 480 485

396 393 447 468 481 493 483 485 498 496 490 487 487 484 477 490 686 679 472 477

398 393 447 468 481 493 483 485 498 496 490 487 487 484 477 490 686 679 472 477

406 400 454 475 488 604 491 492 605 503 497 494 494 494 484 497 493 486 480 484

406 400 454 475 48 8 50 491 492 505 503 497 494 494 491 494 84 497 493 486 48 484

Lower Cutoff Values -18 -12 -16 -26 -8 -13 -23 -18 Upper Cutoff Values -19 -17 -11 -6 -1- 2 -10 -18 -14 -19 -12 -14 - 5 -22 -30 16-.02 -10 -13 -10 -15 -18 -26 -21 -25 21) -37 -15 -17 -20 -17 - 8 -11 -25 -33 -28 -32 -27 -30 -27 -32 - 7 -2) -6 -32 -10 -12 -15 -12 -20 -29 -23 -27 -11 -15 -11 - 8 - 2 -12 -15 -11 -17 F1 - 8 -20 -29 -23 -27 -7 -11 -7 -12 -16 -24 -18 -23 (23 -16 -2 23) -6 -14 -20 -9 -18 -12 -16 -14 -23 -17 -21 -3 -18 -27 -21 -25 -30 -6 -11 -20 -14 -18 -11 -20 -14 -18 -23 - 8 -13 -22 -16 -2 -5 -20 -29 -23 -27 - 8 -4 -19 -28 -22 -26 -3 -18 -27 -21 -25 Ì٥ -10 - 2 -30 - 24 - 28-12 -16 -12 -18 -35 -28 -33 -38 -15 -17 -21 -17 -23 -14 -36 -13 -15 -18 -14 -20 -31 -8 -10 -13 -9 -15 -3 -19 -28 -21 -26 -28 -22 -26 -31 -8 -10 -14 -10 -16 -6 -19 -6 O.O 16.0222.0219 -8 -10 -14 -10 -16 -19 -28 -22 -26 1.0

Table XII. Skill Score Analysis for Selected SRVIS
Count Values: Category 5 Versus Category 8

		24	38	40	/ 2	,,		/ 0	50		<i>-</i> .										
	1	36		40	42	44	46	.0	50	52	54	56	58	60	62	64	66	.0	70	72	74
	140	-3'	00	7	4	8	2	ıi	22	25	30	34	27/	23	12	14	11	j	-5	- 3	-6
S	142	-12) 3		-3	0	-5.	00 ³	14	17)	22	27	20	16	4	6	4	(-7	-12	-11	-13
ne	144	-8	7	3	0	4	\- <u>\</u>	7	18	21	26	31	24	36	8	10	8	-4	- 9	-7	-9
al	146	.00 2	18	14	11	14	8	18	29	32	36	410	34	30	V8	20	17	5	0	1	-000
\triangleright	148	9	16	21	18	31,	15	/25	36	39	44	48	4]	37	25	27	24	11	6	8	5
Į.	150	12	29	24	21	24	118	28	39	42	47	51	44	4)0	28	30	27	14	9	10	8
0	152	12	29	24	21	24	18	28	39/	42	47	51	44	69	28	29	27	14	8	10	8
Cut	154	13	30	25	22	26	19	29	40	44	48	53	45	4)	29	31	28	15	10	11	9
O	156 158	.008	25	10		10	14	1	35	39	43	48	سلنجب	36	24	26	23/	10	5	7	60
er	160	-24	-7	-11	7		-17	14	26	29	13	39	31	27	15 -5	-3	-5	سلب	-4	-2	-4
Q.	162	-22	-4		-12		-14	-4)	7	11	16.	$\frac{10}{210}$		6	(- ₂ ,	- 3		-18 -16			-24
Upl	164	- 12	5	0	- 2	1	-5	5	17	20	25	30	23	18	6	8	5		-21 -13		-22
	166	-18	0	-4	-8		-10	8	11	15	20	25	18	13	1	3		,	-18		-18
	168	-21	-3	- 8	-11		-14	-3	8	11	17	22/	14	10/	-1	ے۔	-2				-21
	170	-36	-18	-23	-26	-22	-28	-17	-5	1-	_ 3	9	1_	1-2	-15	-13		-28			-34
	172	-48	-29	-34	-37	-33	-39	-28	-16	-12	-6	-1		-13	-25	-23	-25	- 39	-44	-42	-44
	174	-36	-18	-22	- 26	-22	-28	-17	+4	-1	4	9.0	⁰⁰ >	-2	-14	-12	-15	-28	-34	-32	-34
	176	-37	-18	-23	-26	-22	-29	-18	-5	-1/	3	9	1	-2	-15	-13	- 15	- 29	-35	-32	-35
	178	-32	-14	-18	-22	-18	-24	-13	∞	3	8	14	6		-11	- 8	-11	-25	-31	-28	-31
	180	-38	-19	-24	-27	-23	-30	-18	-6	-2)	3	8	1	(3	-16	-14	-16	- 30	- 36	-33	-36
	182	-30	-11	-16	-19	-15	-22	-10	1	5	11	17	9	4	-8	-6	-9	-23	-28	-26	-29
	184	-20	0	- 5	-9	_	-11	9	12	15	(21	27	1	14	1	3		-13	-19	-17	-20
	186	-24		-10			-16	-4	8	12	17	23/	15	10	1	•	-3	-17	-23	-21	-23
	188			-15				-10	2	6	12	18	10	5/	-7	- 5		-22			-29
	190			- 20				-14	-)	2	8	14	6	1	-11	-9		- 26			
	192	-29		-14				-9	(4	8	13	19	11	. 6	-6	-4		-21			-28
	194			-16					2	6	11	17	9	4)	-8	-6		-23			
	196			-21 -28					-1 -9	-5	7	13	5				-13				
	200			-29					-9	- 5	Ĭ	6	(-1				-20 -20				-40
	202			-27					-8	-3	/2	8	1				-18				-39
	204			-26					-6	-2	3	9	J				-17				-38
	206			-30					-10	-6	6	5	1			-18		- 36			-42
	208			-32	_		_		-12	-8	-2	3/	/_4				-23	_		-41	-44
	210			- 39						-14	-8		-10	-15					-49	-47	-49
	212			-37						-12	-6	A		-13							-48
	214	-48	-28	-33	-36	-32	-39	-27	-13	-8	-2	/31	-5	-10	-23	-21	-23	- 38	-44	- 42	-44
	216	-51	-30	- 35	-39	-34	-41	-29	-15	-11	-5	1	-7	-12	-25	-23	- 26	-40	-46	-44	-47
	218	-49	-28	-33	-37	-32	-39	-27	-13	-9	-3.0	0 3.0	0-5	-10	-24	-21	- 24	-39	-45	- 42	-45
	l												-								

Table XIII. Skill Score Aanalysis for Selected SRVIS
Count Values: Categories 1-5 Versus
Category 8

			Lo	we:		Cuto	off	Va1	ues	S											
		36	3	8 40) 4	2 4	4 46	48	50	52	54	56	58	60	62	64	66	68	70	72	74
	140	20) 3	36	4	2 4	6 47	50	58	63	68.0	73	70	73	70	73	71,0	7	62	62	62
	142	1 4	9 2	9 3!	5 4	1 4	5 46	49	57	62	66,	/ 71	69	72	68	71	76	62	60	61	60
	144	2	2 3	2 3	9 4	4 4	9 50	52	60	65	76	75	72	75	72	75	73	66	64	65	64
	146	2	7 3	7 43	3 4	9 5	3 54	57	65	7,8	75	80	17	80	77	-00	79 ₈	71	10-	70	- 70 7
e S	148	30) 4) 4	7 5	2 5	7 58	60	68	/73	78	83	81	84	ععر	83	82	75	73	74	74
Ħ	150	30) 4	0 40	5	2 5	6 57	60	67	73	77	82	80	83/	79	82	81	74	73	73	73
al	152	29	3	8 4	5 5	0 5	4 55	58	65	71	75	10	77	80	77	во	79	72	70	71	70
\triangleright	154	30	3	9 45	5 5	1 5	5 56	59	66	71	75	0	78	81	77	80	79	72	71	71	71
44	156	30) 4) 46	5	1 5	5 56	59	66	ÅΙ	76	30	78	81/	78	61/	79	73	71	72	-71 07
of	158	29	3	3 44	+ 4	9 5	3 54	57	64	63	73	78	75	78	75	78	76	70	68	69	0 7
ut	160	27	7 3	5 42	2 4	7 5	1 52	55	62	67	71	75	73	76	72	75	74	67	66	66	66
ű	162	28	3	7 43	4	8 5	2 53	56	63	68	72	77	74	77	74	77	75	69	67	68	67
Н	164	30) 3	9 4	5	0 5	4 55	58	65	70	74	78	76	79	75	78	77	71)	69	70	69
be	166	28	3 3	7 43	3 4	8 5	2 53	55	62	67	71	75	73	76	72	75	74	67	66	66	66
Q	168	26	3	5 40) 4	5 4	9 50	53	59	64	68	72	70	73	69	12	71	64	63	63	63
D	170	22	3	1 3	7 4	1 4	5 46	48	55	60	63	68	65	68	65	67	66	60	58	58	58
	172	24	3	2 38	3 4	3 4	7 47	50	56	61	65	69	67	69	66	68	67	61	59	60	59
	174	28	3	7 42	4	7 5	1 52	54	61	66	69/	74	71	74	71	73	72	66	65	65	65
	176	29	3	8 4	4	8 5	2 52	55	62	66	10	74	72	74	71	74	73	66	65	65	65
	178	31	. 3	9 45	5	0 5	3 54	57	63	68	(₁)	76	74	76	73	76	74	68	67	67	67
	180	29	3	8 43	3 4	8 5	2 52	55	61	66	69	74	71	74	71	73	72	66	65	65	65
	182	32	2 4	1 4	5	1 5	5 55	58	64	69	12	77	75	77	74	77	75	ta	68	68	-68 07
	184	35	5 4	4 40	9 5	4 5	8 58	61	67	1/2	75	2800	78	-00	. 77	-80	08 ⁷⁹	73	72	72	07 72
	186	36	4	+ 50) 5	4 5	8 59	61	68	72	76	18 ⁰⁰	ノ ₇₈ (80.	987	-00	779	73	72	72	72
	188	3 :	5 4.	3 4	9 5	3 5	7 58	60	67	71	75	79	77	79	77	79	78	72	71	71	71
	190	35	5 4	3 4	9 5	3 5	7 58	60	67	71	75	79	77	79	76	79	78	72	71	71	71
	192	3.5	5 4	3 40	9 5	3 5	7 58	60	67	71	75	79	77	79	76	7 9	78	72	71	71	71
	194	35	5 4	4 4	9 5	3 5	7 58	60	67	71	75	79	77	79	8 ⁷⁶	79	78	72	71	71	71
	196	34	5 4	4 4	9 5	4 5	8 59	61	67	72	75	79	77	رنه	77	79	78	73	71	72	_72 07
	198	34	4 4	2 4	7 5	2 5	5 56	58	65	69	73	77	75	77	74	77	75	20	69	69	07 69
	200	33	3 4	1 40	5	1 5	4 55	57	64	68	71	75	73	76	73	75	74	69	67	68	67
	202	34	4	2 4	7 5	2 5	5 56	59	65	69/	72	77	75	77	74	77	75	Ta	69	69	69
	204	37	7 4	6 5	. 5	5 5	9 60	62	68	13	76	80	.088	81.0	878	80	79	74	73	73	07
	206	31	7 4	5 50) 5	5 5	8 59	62	68	72	76	(aa-	.08 -78	ВО	77	(80-	08. د7ر	73	72	72	72
	208	3	7 4	5 50) 5	5 5	8 59	61	68	72	75	79	77	00	77	79	78	73	72	72	72
	210	36						60	66	4	74	78	76	78	75	78	77	71	72	70	- 7 007
	212	ئۆ				2 5			65	69	73	77	75	77	74	77	76	70	69	69	69
	214	3:							65	76	73	77	75	77	74	77	76	to	69	69	69
	216	36							66	70	74	78	76	78	75	78	77	71	70	70	70
	218	36							66	- 1	773	77	76	78	75	77	76	71	70	70	7:07
											, ,										

Table XIV. Skill Score Analysis for Selected SRVIS
Count Values: Categories 1-5 Versus No Fog

Lower Cutoff Values -20 -8 - 2 - 5 Û -4 -16 -1 1.7 2) Cuto -13(8 21) 15) (17 (23 -6 -6 -2 -3 -12 -20 -25 - 8 -2 - 3 2) 4) (39 (18 (23 -10 (15 -9 (18 -3 -23 -18 - 3 -14 -24 -29 2] - 2 - 3 - 2 -13 -5 -6 -15 -25 -31 -9 -3 -29 -13 -24 -29 – 8 - 3 -2 -28 -11 -22 -28 -6 -6 - 2 -1-10 -21 -26 -5 - 5 -2 -13 -19

Table XV. Skill Score Analysis for Selected SRVIS
Count Values: Categories 1-5 Versus Category 7

0 -11 -18

Table XVI. Skill Score Analysis for Selected SRVIS
Count Values: Category 8 Versus Category 7

			SE	RIR	-D/	ΔY	Co	cunt	R REF		s 24 ues		TAL A	KEPOF	RTS 3	256						
			40	50 59	60	70 79	80	90 99	100		120	130	140 149	150 159	160	170 179	180 189	190 199	200 209	TOTAL	TOTAL PER	R CENT
	0-	9	0	0	Ú O	0	0	ů O	0	0	0	ů 0	0	3 3	16	28	12	5 Q	0	13	35	37.1
	10-	19	0	0	0	0	8	0	0	0	0	33	11	185	21 32	154	13	83	C	46	174	26.4
	20-	29	000	0	0	0	0	0	0	0	0	50	0 1 3,	1 7	11	33	(7	25	0	38	228	16.7
es	30-	39	000	0	0	8	0	0	0	50	0	12	125	33	70	28	33	50	0	38	240	15.8
11 n	40-	49	0	0	0	0	0	0	0	0	0	15	1 4	35	13	20	113/	/ 0	0	23	184	12.5
Va	50-	59	0	0	0	0	0	0	0	0	0	28	3 31	49	49	19	1/0	0	0	15	210	7.1
o t	60-	69	0	0	0	0	33	0	50	14	13	15	33	31	5 37,	ノ1g	0 2	0	0	7	165	4.2
uno	70-	79	0	0	0	G 1	0	0	0	25 8	0 1 2	11	20 3 15,	42	15	14	100	0	0	9	126	7.1
C	80-	89	0	0	0	0	5 O 2	0	0	0	0	121	- 0 32	34	11	0	100	0	0	10	169	5.9
ZI,	90-	99	000	0	0	0	0	0	25	0	0	17	37	2 4 3	40	1 0	0	0	0	2	185	1.1
SRV	100-1	09	0	0	33 3	0	0	0	0	14	0	5/ 19	0 29	0 29	24 /	1 0	0	0	0	4	150	2.7
•	110-1	19	0	0	33	0	0	0	10	0	0	18	1 29	3 26	118	20	0	0	0	5	148	3.4
	120-1	25	0	0	0	25	100	0	0	0	0	17	2 38	0 3 5	25	0 6	0	0	0	3	163	1.8
	130-1	34	0	0	0	0	0	0	10	7	0	13	3 3	6 3 1	21/	0 2	0	ó	0	5	159	3.1
	140-1	49	0	0	0	0	0	0	13	0	0	/ ₀ / 27	3 27	24	13	25	0	O C	0	5	154	3.2
	150-1	59	0	0	20	14	0	0	0	0	15	118	5	2 7	10	0	0	0	0	5	156	3.2
	160-1	69	0	0	16	0	10	0	0	12	20	0	125	29	100	0	0	0	0	5	144	3.5
	170-1	79	0	0	0	0	0	16	0	0	0	12	(23	20	0	0	0	0	0	1	132	0.8
	130-1	89	0	0	0	0	0	0	0	0	0	0	15	0 14	0	0	0	0	0	0	93	0.0
	190-1	99	0	0	12	0	0	0	10	0	0	0	0	0 5	0	100	0	0	0	2	78	2.6
	200-2	09	0	0	0	9	0	20	0	0	0	25	0	0 5	0	0	0	0	0	3	60	5.0
	210-2	19	0	0	16	14	0	0	0	0	0	0	0	0	0	0	0	0	0	2	41	4.9
	220-2	29	0	0 2	0	0	0	0	0 2	0	0 2	0	0	0	0	0	0	0	0	0	34	0.0
	230-2	39	0 2	0 2	0 2	0	0 2	0	0	0	0 3	0	0	0	0	0	0	0	0	0	13	0.0
	240-2	49	0	0 2	0 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0.0
	250-2	59	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0.0
			0 7 0	0 19 0	76 7	99	76 5		127	146	213	10 283 3		5 o 7 3		75 361 20	52 168 30	3 9 33	0	TOTAL TOTAL PER C	. CLEAR . REPORTS ENT CLEAR	

Table XVII. VIF Diagram: Category 9 Versus Total Reports. Dashed isoline encloses area of 20 or more reports; solid isolines (5 and 10) refer to number of clear reports. See text regarding shaded area.

		_						REP				AL F	REPOR	TS 2	968						
		\$0 49	RIF	₹ - [60 69	70 79	80 89	un §0 99	100 109	Val	120 129		140 149		160 169	170 179	180 189	190	200	TUTAL FOG	TOTAL	PER CENT
es	0- 9	0	0	0	0	3	0	o o	0	0	0	0	50	0	7 14	12	0	00	2	34	6.3
11 u	10- 19	0	0	0	0	0	0	0	0	U 1	0	28	,23	10	53	49	0 3	0	9	164	5.5
Va	20- 29	0	0	0	0	Ú	0	0	0	0	50	13	16		10))4 2	20 0	0	24	215	11.2
r t	30- 39	00	0	Ü	0	0	0	0	50 2	40	30	12 k2	6 32		53/	32	0 2	0	17	226	7.5
Count	40- 49	0	0	0	0	0	٥ 1	0	0	14	15 13	المُنْ الْمُنْ الْمُنْمِ لِلْمِنْ الْمُنْ الْمُنْ الْمُنْ الْمُنْ الْمِنْ الْمُنْ الْم	12:	(43)	2	43	C	0	17	175	9.7
	50- 59	000	0	0	0	0	ن 1	ن 3	0	7 13	10/	/13	22 40	41	35	1 0	0	0	22	188	11.7
ZI/	63- 69	0	0	0	0	0	3 3 3	0	0	13	36	137	144	18	117	0 2	ى 0	0	32	149	21.5
SRVIS	70- 79	0	0	0	0	0	0	50 2	12	18	25	28	20	(E	0	. 0	0	0	19	112	17.0
0,	80- 89	CO	0	0	0	ن 2	12	1 4	0	12	17/	1	18		¥2 6	0	0	0	21	148	14.2
	90- 99	0	0	0	0	5 Q	0	25	33	9	19	29	12	85		0	0	0	30	157	19.1
	100-109	0	0	ن 3	0	25	16	25	40 5	10	19	28 25	J (7 28	22	إليا	0	0	0	21	138	15.2
	110-119	00	0	C	0	66 3	0	20 10	15 15	46 15	17	14	23	12	0 5	0	0	0	24	133	16.0
	120-129	00	ن 1	0	25	0	20	2 8 7	14	10	18	116	15	19	33	0	0	J O	29	148	19.6
	130-139	CO	0	2 Ú 5	50 4	50 2	16	30	23	10	25	13	100	3 21/	1 0	0	C	0	28	146	19.2
	140-149	00	0	0	25	33	20	75	50	Ιά	*	14 27	5 31	1/2	0	0 1	0	0	33	140	23.6
	150-159	00	0	0	28 7	14	18	40	25 12	17	18	25	20/ 23	9	0	0	ن 0	0	24	143	16.8
	160-169	00	ა 1	0	0	0	7	12	16 12	10 10	2	١,	7	130	0	0	0	0	20	134	14.9
	170-179	0	0	28 7	(+2)		33	30	16 12	18 11	22	14	18	8 12	0	0	0	0	26	121	21.5
	180-189	00	0	12	11	66 3	0	(11)) 0	16	0 5	15		0	0	0	0	0	17	84	20.2
	190-199	00	0	14	25	3 3	⊉ ∪	229	12	40	14	16	20	0	0	0	0	0	14	71	19.7
	200-209	0	0	36	40 10) 0	20	0	33	U 5	25	0	0	0	0	0	0	0	10	54	18.5
	210-219	0	0	16	06	0 2	100	9	50 2	50	0	33	100	0	0	0	0	0	7	39	17.9
	220-229	0	0	25	20	100	0	0	0	0 2	0	0	0	0	0	0	0	0	4	31	12.9
	230-239	C	0	0	100	0	0	0	0	0 2	0	0	0	9	0	9	0	0	1	10	10.0
	240-249	0	0	0	0	o o	0	0	0	U O	0	0	0	0	0	0	0	0	0	8	0.0
	250-259	0	0	0	100	0	0	S)	0	9	0	0	0	0	0	S O	0	0	1	1	160.0
		0 7 0	0 17 0	10 72 13	19 83 22	16 67 23	1 8 8 7 2 0	30 115 26	24 127 18	38 192 19	248 17	81 440 18	89 522 17	54 4 76 11	26 3 4 5 7	160	0 9 0	0	TOTA TOTA PER	L FOG L REPOR CENT FO	rs G

Table XVIII. VIF Diagram: Category 5 Versus Total
Reports (With Categories 1-4 and 6
Removed). Dashed isoline encloses area
of 20 or more reports; solid isolines
(3 and 5) refer to number of heavy fog
reports. See text regarding shaded area.

		:	Low	er	Cu	tof	fV	alı	ues												
		54	56	58	60	62	64	65	63	70	72	74	76	78	80	3 2	34	86	88	90	92
	130	28	2.8	27	27	26	27	26	26	27	25	2.5	25	24	23	22	23	22	22	21	21
	132	28	28	27	27	26	27	26	26	27	25	25	25	24	23	? 2	23	22	21	21	21
	134	31	30	30	30	29	٥ د	29	29	29	28	27	27	27	26	25	25	25	24	24	24
Ø	136	33	33	32	32	31	32	31	31	3.2	3 C	30	30	29	28	27	27	27	26	26	26
alue	138	36	36	36	35	35	36	35	34	35	34	33	33	3 2	31	30	31	30	29	29	29
J.	140	41	40	40	40	39	40	39	38	39	38	37	37	36	35	34	34	34	د ذ	33	32
>	142	43	43	42	42	41	42	41	41	41	40	39	39	38	37	36	36	36	35	35	34
44	144	51	51	51	50	49	50	49	48	49	48	47	46	45	44	43	44	43	42	42	41
Cutof	146	>8	58	58	57	56	57	56	55	56	54	53	53	51	50	49	50	49	48	47	47
r T	149	68	67	67	66	65	66	ან	64	65	63	62	61	60	58	57	58	57	56	55	55
Ũ	150	76	76	75	74	73	74	73	72	72	70	69	69	67	65	64	65	64	62	62	62
ы	152	36	86	85	84	83	84	93	82	82	80	78	78	76	74	73	73	72	71	70	70
Upper	154	10-	99	98	97	96	97	95	94	94	92	90	89	87	26	34	84	83	81	81	80
Пp	156 158	110	110	109	108		120		104	104	101	111	99	96	94	95 103	93	92	90 100	89 -99	88
	160		130		127		126		122		119		115		110					134	98 103
	162						141								123		121				114
	164	.15	159								145					131				124	
	166						168				-	152	150		143		140			133	
	168	185	184	182	180	178	178	175	171	170	165	160	158	153	149	147	146	144	140	139	137
	170	210	209	207	205	202	202	1 78	193	192	185	180	177	172	167	164	164	160	156	155	153
	172	212	211	208	206	203	203	198	194	192	185	180	176	170	166	162	162	158	154	152	150
	174	205	204	201	199	195	195	190	185	184	176	170	166	160	155	152	151	148	143	141	139
	176	191	190	187	184	181	131	176	170	169	161	155	154	144	140	130	135	132	127	125	123
	178	182	181	177	174	170	170	165	159	158	149	142	139	132	126	122	122	118	113	112	110
	180		160	156	152	148	149	143	157	157	127	121	118	111	1 05	101	101	98	93	91	89
	182	15	137	133	130	125	127	120	114	115	105	99	96	89	84	80	81	77	72	71	69
	184	112	111	106	103	98	101	94	89	91	81	75	73	67	ol	57	59	56	50	50	48
	1 86	.10	79	75	71	67	71	65	60	64	54	49	48	42	37	33	35	33	28	28	27
	188	31	30	26	23	19	2 5	20	17	23	15	11	12	8	3	0	3	1	-2	-2	-2
	190	16	16	12	9	5	12	7	4	12	4	0	2	-1	-6	- 9	-5	-6	-11	-10	-10
	192	-2	-2	- 5	-8	-12	-4	- 9	-11	-2	-10	-12	-10	-14			-17		-22 -21		-21
	194	0	-1	-4		-11	-3	- 8	-10	-1	-9 -9	-12	-10	-13		-20					
	196	0	0	-4		-10 -10	-2 -2	-8 -8	-9 -9	-1 -1	-9	-11	-9 -9	-13					-21 -21		-20
	200	0	0	-4		-10	-2	-8	-9	-1	-9 -9	-11	-9						-21		
	202	0	0	-4		-10	-2	-8	-9	-1	- 9	-11	-9						-21		
	204	0	0.	-4		-10	-2	-8	-9	-1	-9	-11	-9						-21		
	206	0	0.	-4		-10	-2	-8	-9	-1	-9	-11	-9	-13					-21		
	208	0	G	-4		-10	-2	-8	-9	-1	- 9	-11		-13							
	200	0	J	4	,	10	2	0	,	-	,		,		- '	_ 0	13	- '			

Table XIX. Skill Score Analysis for Selected SRIR-DAY Count Values: Category 9 Versus Total Reports

		Lo	owe	r C	Cut	off	Va	lue	es												
	,	16	19	22	25	28	31	34	37	40	43	46	49	52	55	58	61	64	67	70	73
	174	7	36	60	73	71	82	84	81	93	95	97	95	96	93	87	80	75	76	70	69
	176	12	41	66	79	76	87	89	86	97	99/	101	99	100	97	90	83	78	79	73	72
	178	15	45	7 C	83	80	91	93	89	(01	102	104	102	103	199	93	86	80	81	75	73
	180	19	49	74	86	63	94	96	92	103	105	106	105	105	102	95	88	8 2	83	77	75
e S	182	27	57	82	94	90	101	102	98/	109	110	112	110	110	106	99	92	86	87	80	79
lu	184	34	64	89	101	(97/	107	108	103	114	115	116	114	114	111	103	95	90	91	84	82
Ø	186	38	૯૬	94	105	101	111	112	107	118	118	120	117	117	113	105	98	92	93	86	84
>	188	40	71	96	107	103	113	113	109	119	120	121	119	118	114	107	69	93	94	87	85
££	190	45	76	101	112	107	117	117	112	123	123	124	122	121	117	109	101	95	96	89	87
	192	47	78	103	114	109	119	119	114	124	125	126	123	123	119	110	102	96	97	90	88
Cuto	194	52	83	108	119	113	123	123	117	128	128	129	126	125	121	113	1 05	68	99	92	90
O	196	58	89	114	124	118	127	127	121	131	131	132	129	129	124	116	107	101	108	94	92
E.	198	58	90	115	125	119	128	128	122	132	132	133	130	129	125	116	108	101	102	94	92
Uppe	200	60	92	118	128	121	130	130	124	134	134	134	131	131	126	117	109	102	103	95	93
ďΩ	202	64	9/6	121	131	124	133	133	126	136	136	137	133	132	128	119	110	104	104	96	94
	204	67	1300	125	135	128	137	136	129	139	139	139	136	135	130	121	112	105	106	88	96
	206	72	105	130	139	132	140	139	132	142	141	142	138	137	132	123	114	107	108	100	97
	208	74	107	132	141	134	142	141	133	143	143	143	139	138	133	124	115	108	108	190	98
	210	74	107	133	142	134	142	141	134	144	143	143	140	1.39	133	124	115	108	109	100	98
	212	71	106	132	141	133	142	141	133	143	143	143	139	138	133	124	114	108	108	100	98
	214	75	109	136	144	136	145	143	136	145	145	145	141	140	135	125	116	109	109	101	99
	216	80	114	140	148	140	148	146	138	148	147	147	143	142	137	127	118	110	111	103	100,10
	218	33	117	143	151	142	150	1 48	140	149	149	149	145	143	138	128	119	112	112	104	101
	220	86	121	146	154	145	152	15	142	151	151	160	147	145	139	129	120	113	113	105	102
	222	89	123	148	156	146	154	152	143	153	152	15)	148	146	140	130	121	114	114	105	103
	224	92	126	/ 51	158	44	156	154	145	154	153	153	149	1 47	142	132	122	115	115	106	104
	226	95	129	154	161	151	158	156	147	156	155	155	15)	149	143	133	123	116	116	107	105
	228	.10 59/	133	158	165	154	161	159	49	153	157	157	152	1,60	145	134	124	117	117	109	106
	233	102	135	160	166	156	163	160	151	159	158	158	153	15	146	135	125	118	118	109	107
	232	104	137	162	108	157	164	lól	152	160	159	158	154	1 52	146	136	126	118	119	110	107
	234	105	138	163	169	158	165	162	152	161	160	159	155	153	147	136	126	119	119	110	107
	236	107	141		171			163								137		119		111	- 1
	238													154				120	120	111	108
	240		- 1											155	1				120		
	242		- 1											155	1						
	244		- 1											156	- 1						
	246		- 1											156	١.						
	248		/											157	- 1						
	250		- /											157							
	252	118	150	174	179	167	173	169	159	167	165	165	160	158	151	140	130	122	123	114	111
	1														-						

Table XX. Skill Score Analysis for Selected SRVIS Count Values: Category 9 Versus Total Reports

LIST OF REFERENCES

- Hesse, T. S. and Stevenson, N. M., 1968: 1962-1968 Monthly Surface Hemispheric Means, Standard Deviations, and Diurnal Variations. Technical Note 43. Fleet Numerical Weather Central, Monterey, California 28 pp.
- National Environmental Satellite Service, 1973: Key to Meteorological Records Documentation (KMRD) No. 5.4, Environmental Satellite Imagery. Environmental Data Service, Washington, D. C., v.p.
- Panofsky, Hans A. and Brier, Glenn W., 1968: Some Applications of Statistics to Meteorology. The Pennsylvania State University, University Park, Pennsylvania, 224 pp.
- Renard, R. J., Englebretson, R. E. and Daughenbaugh, J. S., 1975: Climatological Marine Fog Frequencies Derived from a Synthesis of the Visibility-Weather Group Elements of the Transient-Ship Synoptic Reports. NPS-51Rd75031, Naval Postgraduate School, Monterey, California, 40 pp.
- Wallace, R. T. and Renard, R. J., 1975: The Use of Meteorological Satellites for Discerning Marine Fog. NPS-51Wa75031, Naval Postgraduate School, Monterey, California, 59 pp.
- Willms, G. R., 1975: A Climatology of Marine-Fog Frequencies for the North Pacific Ocean Summer Fog Season. M. S. Thesis, Department of Meteorology, Naval Postgraduate School, Monterey, California, 59 pp.
- Wheeler, S. E., 1974: Marine Fog Impact on Naval Operations. M. S. Thesis, Department of Oceanography, Naval Postgraduate School, Monterey, California, 118 pp.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940		2
3.	Department Chairman, Code 51 Department of Meteorology Naval Postgraduate School Monterey, California 93940		2
4.	Dr. Robert J. Renard, Code 51Rd Department of Meteorology Naval Postgraduate School Monterey, California 93940		10
5.	Dr. Dale F. Leipper, Code 58 Department of Oceanography Naval Postgraduate School Monterey, California 93940		1
6.	Dr. Glenn W. Jung, Code 58 Department of Oceanography Naval Postgraduate School Monterey, California 93940		1
7.	Professor G. E. Schacher, Code 61Sq Department of Physics and Chemistry Naval Postgraduate School Monterey, California 93940		1
8.	Commanding Officer Fleet Numerical Weather Central Monterey, California 93940		1
9.	Commanding Officer Environmental Prediction Research Facility Monterey, California 93940		1
10.	Mr. Paul Lowe Environmental Prediction Research Facility Monterey, California 93940		1

11. Mr. Roland Nagle 1 Environmental Prediction Research Facility Monterey, California 93940 12. Commander, Naval Weather Service Command 1 Naval Weather Service Headquarters Washington Navy Yard Washington, D. C. 20390 13. Mr. Murray H. Schefer 3 AIR-370C Naval Air Systems Command Washington, D. C. 20360 Library, Code 3330 14. 1 Naval Oceanographic Office Washington, D. C. 20373 15. Dr. Lothar Ruhnke 1 Naval Research Laboratory Washington, D. C. Code 8320 Dr. Dee F. Taylor 16. 1 Naval Air Systems Command AIR-540 Washington, D. C. 20360 17. Dr. Alan Weinstein 1 Stratiform Cloud Physics Fr. Meteorology Laboratory Department of the Air Force Air Force Cambridge Res. Lab. Laurence G. Hanscom Field Bedford, Massachusetts 01730 Dr. Pierre St. Amand 18. 1 Earth and Planetary Sci. Div. Code 602 Department of the Navy Naval Weapons Center China Lake, California 93555 1 19. Mr. James Hughes Office of Naval Research Code 412 Arlington, Virginia 22217 1 Dr. Thomas E. Hoffer 20. Desert Research Institute University of Nevada

Reno, Nevada 89502

21.	Dr. Patrick Squires Desert Research Institute University of Nevada Reno, Nevada 89507	Τ
22.	Mr. Roland Pilie Calspan Corporation Buffalo, New York 14221	1
23.	National Center for Atmospheric Research Library Aquisitions Boulder, Colorado 80301	1
24.	Dr. James L. Kassner, Jr. Graduate Center for Cloud Physics Research University of Missouri Rolla, Missouri 65401	1
25.	Mr. Francis J. Biernacki 269 Camino Elevado Bonita, California 92002	1
26.	Lieutenant Donald E. Hinsman Fleet Numerical Weather Central Monterey, California 93940	1
27.	Lieutenant Richard T. Wallace USS New Orleans (LPH 11) FPO San Francisco 96601	1
28.	Lieutenant Ronald E. Hale 484 Hale Street Chula Vista, California 92010	5

108077

24 - 81

H1385 Hale

Thesis 162714

c.1

Use of the NOAA-2 digitized satellite data for diagnosing marine fog in the North Pacific Ocean area.

1115577

24,14

Thesis

182714

H1385 Hale

c.1

Use of the NOAA-2 digitized satellite data for diagnosing marine fog in the North Pacific Ocean area.

thesH1385
Use of the NOAA-2 digitized satellite da

3 2768 002 13678 0
DUDLEY KNOX LIBRARY