CSE 102 - Midterm Study Guide

Zack Traczyk

Vaggos, Winter 2024

Contents

1	Intr	oductory Material Review	2
	1.1	Asymptotic Bounds	2
		Inductive Proofs	2
		Practice Problems	
		1.3.1 HW1 - Ex.1 Part 2	
2	Solv	ring Recurrence Relations	3
	2.1	Master Theorem	3
	2.2	Unpacking Tree / Algebraic Pattern	3
	2.3	Substitution	
	2.4	Guess and Verify	3
	2.5		
	2.5	Practice Problems	
		2.5.1 HW3 - Ex.4	3
3	Algo	prithms	7
	3.1	Binary Search	7
	3.2	Sorting	7
		3.2.1 Lower Bounds	7
	3.3	Merge Sort	7
	3.4	Number of leaves / depth as proof for lower asymptotic bounds	7
	3.5	Quick Select	7
	3.6	Dynamic Programming	7
	5.0		7
		3.6.1 Fibonacci	
		3.6.2 Binomial Coefficients	7
		3.6.3 Maximize independent set	7

1 Introductory Material Review

1.1 Asymptotic Bounds

Definition 1 (Big-O). f(n) = O(g(n)) if there exists a positive constant c and an integer n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Definition 2 (Big- Ω). $f(n) = \Omega(g(n))$ if there exists a positive constant c and an integer n_0 such that $c \cdot g(n) \leq f(n)$ for all $n \geq n_0$.

Definition 3 (Big- Θ). $f(n) = \Theta(g(n))$ if there exists positive constants c_1 , c_2 , and an integer n_0 such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

1.2 Inductive Proofs

Definition 4 (Inductive Proof). Simples rules of induction taken from CSE 16 with Prof. Tracy Larrabee.

- 1. Write down the Left Hand Side of P(k+1).
- 2. Rewrite P(k+1) to include Left Hand Side P(k).
- 3. Replace Left Hand Side of P(k) with Right Hand Side of P(k).
- 4. Rewrite so Right Hand Side of P(k) becomes Right Hand Side of P(k+1).

Examples:

Proof. For all $n \in \mathbb{Z}^+$ the number $n^2 + n$ is even

Base Case (n = 1):

$$n^2 + n = 1 + 1 = 2$$
, which is even

Inductive Hypothesis:

Assume $n^2 + n$ is even, prove $(n + 1)^2 + (n + 1)$ is even

$$(n+1)^2 + (n+1) = n^2 + 2n + 1 + n + 1$$
(1)

$$= n^2 + n + 2n + 2 \tag{2}$$

$$2p = n^2 + n$$
, 2p is the definition of even (3)

$$=2p+2n+2\tag{4}$$

$$= 2(p+n+1), \text{ which is even}$$
 (5)

1.3 Practice Problems

1.3.1 HW1 - Ex.1 Part 2

Problem 1.1. Prove that T(n) = 2T(n-1) + 1 is $T(n) = 2^n - 1$.

2 Solving Recurrence Relations

- 2.1 Master Theorem
- 2.2 Unpacking Tree / Algebraic Pattern
- 2.3 Substitution
- 2.4 Guess and Verify
- 2.5 Practice Problems
- 2.5.1 HW3 Ex.4

Like in many previous exercises and homeworks, find tight asymptotic bounds (big-Theta) for T(n) in each of the cases.

Problem 2.1. $T(n) = 2T(n/4) + n^2\sqrt{n}$

Problem 2.2. $T(n) = T(n-1) + \frac{1}{n}$

Problem 2.3. T(n) = 1600T(n/4) + n! (hint: answering this shouldn't require too many, if any, difficult calculations)

Problem 2.5. $T(n) = \sqrt{n}T(\sqrt{n}) + n$ (hint: when everything fails, you guess and check)

Problem 2.6. $T(n) = T(n/2) + n(5 - \cos^2 n \sin^{20} n)$ (hint: answering this shouldn't require too many, if any, difficult calculations, just think the most basic trigonometric inequality)

Problem 2.7. $T(n) = \alpha T(n/4) + n^2$ (hint: your answer should depend on the α parameter)

Problem 2.8. $T(n) = 5T(n/5) + \frac{n}{\log_5 n}$ (hint: think of $n = 5^m$. Also the recursion $T(n) = T(n-1) + \frac{1}{n}$ above may come in handy.)

3 Algorithms

- 3.1 Binary Search
- 3.2 Sorting
- 3.2.1 Lower Bounds
- 3.3 Merge Sort
- 3.4 Number of leaves / depth as proof for lower asymptotic bounds
- 3.5 Quick Select
- 3.6 Dynamic Programming
- 3.6.1 Fibonacci
- 3.6.2 Binomial Coefficients
- 3.6.3 Maximize independent set