

• GHANDOUZ Amina

Agenda

- * Introduction
- * Dataset overview
- * Baseline approach
- * Transformer-based Approach

Introduction

Every day, millions of SMS messages are sent — many of them are spam, fraudulent, or malicious.

- These messages try to scam users, spread malware, or waste user time.
- Traditional keyword-based filters are ineffective, easily bypassed, and not adaptive.

We propose an MCP-based SMS spam detection system that:

- Uses Natural Canguage Processing (NCP) to understand message content.
- Applies machine learning and deep learning models to classify messages as spam or ham (not spam).

Dataset Overview

- Source: Kaggle
- Number of raws: 5,574 messages
- Classes: Spam / Ham

	Label	text
0	ham	Go until jurong point, crazy Available only
1	ham	Ok lar Joking wif u oni
2	spam	Free entry in 2 a wkly comp to win FA Cup fina
3	ham	U dun say so early hor U c already then say
4	ham	Nah I don't think he goes to usf, he lives aro

Class Distribution

, Baseline approach

1. Data Preprocessing Pipeline

- 1.1 Train-Test Split
 - Split dataset: 80% training / 20% testing
 - Used stratified splitting to maintain class balance
- 1.2. Text Mormalization
 - Cowercasing
 - Removing special characters
- 1.3. Text Vectorization
 - Transformed text using TF-IDF
 - Applied only to training data to avoid data leakage and ensure test set remains unseen and evaluation is fair

What is data leakage?

- TF: how often the word appears in a document.
- IDF: how rare the word is across all documents.

If we fit TF-IDF on the entire dataset (training + test), then the IDF part includes information from the test data, which is supposed to be unseen during training. This creates a data leakage problem — the model indirectly "sees" part of the test set, leading to unrealistically high performance during evaluation.

1.4 Addressing Class Imbalance

• Applied SMOTE after tf-idf to oversample minority class in training set

2. Model Training Process

- Cogistic Regression (CR)
- Gaussian Maive Bayes (GMB)
- Random Forest (RF)

Model	Recall	F1-Score	ROC-AUC	
Logistic Regression	0.98	0.98	0.99	
Gaussian Naive Bayes	0.88	0.89	0.87	
Random Forest	0.95	0.95	0.97	

After evaluating all models using comprehensive classification metrics — including accuracy, precision, recall, F1-score, confusion matrix, and ROC curves — we observed that Cogistic Regression consistently outperformed the others.

Transformerbased Approach

Why Transformers for SMS Spam Detection?

- Traditional models rely on handcrafted features (like TF-IDF).
- Transformers (like BÉRT) understand context, semantics, and word relationships.

Transformerbased Approach

Model Used & Setup

- Model: BERT
- Cibrary/Framework: Hugging Face Transformers and PyTorch

BERT Input

- Input: A sentence is tokenized using WordPiece tokenizer
- Special tokens added.
- [CCS] = Classification token added at the start of every input.
- [SEP] = Separator token added at the end (or between sentences if there are two).

BERT Architecture?

we used BERT Base, that have:

- 12 transformer encoder layers and self-attention heads
- Add a final classification layer with 2 neurons, corresponding to the Ham and Spam classes.
- 768-dimensional hidden representations
- A total of around 110 million trainable parameters

How BERT Works?

- Each token is converted into an embedding vector.
- The whole sequence passes through multiple Transformer layers.
- The output embedding corresponding to [CCS] is used by a classifier to predict. Spam or Ham

Data preprocessing

- Used a cleaned SMS dataset (no missing values or duplicates)
- Split into 80% training / 20% test
- · Applied stratified sampling to preserve spam/ham ratio across both sets

Tokenization and Input Formatting

- Used bert-base-uncased tokenizer (based on WordPiece)
- Automatically lowercases text
- Converts SMS into token IDs
- Padded/truncated to 128 tokens
- Returns:
- input_ids (tokens)
- attention_mask (1 = real token, 0 = padding)

Addressing Class Imbalance

Computed class weights based on inverse class frequency

<u>weight_class = total_samples / (num_classes × samples_in_class)</u>

- Integrated weights into the cross-entropy loss
- Spam (minority class) received higher weight
- This helps model better detect spam by penalizing misclassifications more heavily

Model Configuration and Training

- Coss function: CrossEntropyCoss with class weights
- Optimizer: Adam with learning rate 2e-5
- Epochs: 3
- Batch size: 16

Evaluation

Accuracy: 0.9923

Coss : 0.0235

Classification report.

Classification Report:									
precision		recall	f1-score	support					
Ham	0.99	1.00	1.00	903					
Spam	0.99	0.95	0.97	131					
accuracy			0.99	1034					
macro avg	0.99	0.97	0.98	1034					
weighted avg	0.99	0.99	0.99	1034					

Confusion matrix:

THANK YOU.

