

Mathematics 1A ITMTA1-B44

Derivatives

With

Amakan Elisha Agoni Amakan.agoni@EDUVOS.com

Lecture 3 Week 4

3 Differentiation Rules

Copyright © Cengage Learning. All rights reserved.

3.2

The Product and Quotient Rules

The Product Rule

The Product Rule

The correct formula was discovered by Leibniz and is called the Product Rule.

If you have 2 separate functions given as u = f(x) and v = g(x), and they are both positive differentiable functions. Then we can interpret the product rule of uv as:

The Product Rule If f and g are both differentiable, then

$$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]$$

Or simply as:

$$\frac{d}{dx}[uv] = uv' + vu'$$

The Product Rule

In words, the Product Rule says that the derivative of a product of two functions is the first function times the derivative of the second function plus the second function times the derivative of the first function.

Example 1

(a) If $f(x) = xe^x$, find f'(x), then solve for find f''(x) and f''(0).

Solution:

(a) By the Product Rule, we have

$$f'(x) = \frac{d}{dx}(xe^{x})$$

$$= x\frac{d}{dx}(e^{x}) + e^{x}\frac{d}{dx}(x)$$

$$= xe^{x} + e^{x} \cdot 1$$

$$f'(x) = (x+1)e^{x}$$

Example 1 – Solution

(b) Using the Product Rule a second time, we get

$$f''(x) = \frac{d}{dx}[(x+1)e^x]$$

$$= (x+1)\frac{d}{dx}(e^x) + e^x\frac{d}{dx}(x+1)$$

$$= (x+1)e^x + e^x \cdot 1$$

$$= xe^x + e^x + e^x$$

$$= (x+2)e^x$$

Given the following functions, find f''(-2)

1.
$$f(x) = x^{2}(3x + 5)$$

 $f'(x) = g(x).h'(x) + g'(x).h(x)$
 $f'(x) = x^{2}(3) + 2x(3x + 5)$
 $f'(x) = 9x^{2} + 10x$
 $f''(x) = 18x + 10$
 $f''(-2) = -26$

2.
$$f(x) = (3x^2 - 7)(x^2 + 2x)$$

 $f'(x) = (3x^2 - 7)(2x + 2) + (6x)(x^2 + 2x)$
 $f'(x) = 6x^3 + 6x^2 - 14x - 14 + 6x^3 + 12x^2$
 $f'(x) = 12x^3 + 18x^2 - 14x - 14$
 $f''(x) = 36x^2 + 36x - 14$
 $f''(-2) = 58$

Given the function, find f''(1)

3.
$$f(x) = \frac{1}{\sqrt{x}}(5x^2 - 4x)$$

$$f(x) = x^{-1/2} (5x^2 - 4x)$$

$$f'(x) = \frac{1}{\sqrt{x}}(10x - 4) + \left[-\frac{1}{2}\right]x^{-3/2}(5x^2 - 4x)$$

$$f'(x) = \frac{1}{\sqrt{x}}(10x - 4) - \frac{1}{2\sqrt{x^3}}(5x^2 - 4x)$$

$$f''(x) = \left[\frac{1}{\sqrt{x}}(10) - \frac{1}{2\sqrt{x^3}}(10x - 4)\right] - \left[\frac{1}{2\sqrt{x^3}}(10x - 4) - \frac{3}{4\sqrt{x^5}}(5x^2 - 4x)\right]$$

$$f''(x) = \left[\frac{10}{\sqrt{x}} - \frac{(10x - 4)}{2\sqrt{x^3}}\right] - \left[\frac{(10x - 4)}{2\sqrt{x^3}} - \frac{3(5x^2 - 4x)}{4\sqrt{x^5}}\right]$$

$$f''(1) = 10 - 3 - 3 + \frac{3}{4} = 4.75$$

Given the function, find f''(1)

3.
$$f(x) = \frac{1}{\sqrt{x}}(5x^2 - 4x)$$

$$f'(x) = x^{-1/2}(5x^2 - 4x)$$

$$f'(x) = \frac{1}{\sqrt{x}}(10x - 4) + \left[-\frac{1}{2}\right]x^{-3/2}(5x^2 - 4x)$$

$$f'(x) = \frac{1}{\sqrt{x}}(10x - 4) - \frac{1}{2\sqrt{x^3}}(5x^2 - 4x)$$

$$f'(x) = \left[10\sqrt{x} - \frac{4}{\sqrt{x}}\right] - \left[\frac{5\sqrt{x}}{2} - \frac{2}{\sqrt{x}}\right]$$

$$f'(x) = 10\sqrt{x} - \frac{4}{\sqrt{x}} - \frac{5\sqrt{x}}{2} + \frac{2}{\sqrt{x}}$$

$$f''(x) = \frac{5}{\sqrt{x}} + \frac{2}{\sqrt{x^3}} - \frac{5}{4\sqrt{x}} - \frac{1}{\sqrt{x^3}} = 5 + 2 - \frac{5}{4} - 1$$

$$f'''(1) = 4.75$$

EXAMPLE 2 Differentiate the function $f(t) = \sqrt{t} (a + bt)$.

SOLUTION 1 Using the Product Rule, we have

$$f'(t) = \sqrt{t} \frac{d}{dt} (a + bt) + (a + bt) \frac{d}{dt} (\sqrt{t})$$
$$= \sqrt{t} \cdot b + (a + bt) \cdot \frac{1}{2} t^{-1/2}$$
$$= b\sqrt{t} + \frac{a + bt}{2\sqrt{t}} = \frac{a + 3bt}{2\sqrt{t}}$$

SOLUTION 2 If we first use the laws of exponents to rewrite f(t), then we can proceed directly without using the Product Rule.

$$f(t) = a\sqrt{t} + bt\sqrt{t} = at^{1/2} + bt^{3/2}$$
$$f'(t) = \frac{1}{2}at^{-1/2} + \frac{3}{2}bt^{1/2}$$

EXAMPLE 3 If
$$f(x) = \sqrt{x} g(x)$$
, where $g(4) = 2$ and $g'(4) = 3$, find $f'(4)$.

SOLUTION Applying the Product Rule, we get

$$f'(x) = \frac{d}{dx} \left[\sqrt{x} \ g(x) \right] = \sqrt{x} \ \frac{d}{dx} \left[g(x) \right] + g(x) \frac{d}{dx} \left[\sqrt{x} \right]$$
$$= \sqrt{x} \ g'(x) + g(x) \cdot \frac{1}{2} x^{-1/2}$$
$$= \sqrt{x} \ g'(x) + \frac{g(x)}{2\sqrt{x}}$$

So
$$f'(4) = \sqrt{4} g'(4) + \frac{g(4)}{2\sqrt{4}} = 2 \cdot 3 + \frac{2}{2 \cdot 2} = 6.5$$

The Quotient Rule

The Quotient Rule (1 of 4)

We find a rule for differentiating the quotient of two differentiable functions u = f(x) and v = g(x) in much the same way that we found the Product Rule.

If x, u, and v change by amounts Δx , Δu , and Δv , then the corresponding change in the quotient $\frac{1}{v}$ is

Or simply as:

$$\frac{d}{dx} \left[\frac{u}{v} \right] = \frac{vu' - uv'}{v^2}$$

The Quotient Rule (3 of 4)

The Quotient Rule If f and g are differentiable, then

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}$$

In words, the Quotient Rule says that the *derivative* of a quotient is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the denominator.

Example 4

Let
$$y = \frac{x^2 + x - 2}{x^3 + 6}$$
. Then
$$y' = \frac{(x^3 + 6)\frac{d}{dx}(x^2 + x - 2) - (x^2 + x - 2)\frac{d}{dx}(x^3 + 6)}{(x^3 + 6)^2}$$

$$= \frac{(x^3 + 6)(2x + 1) - (x^2 + x - 2)(3x^2)}{(x^3 + 6)^2}$$

$$= \frac{(2x^4 + x^3 + 12x + 6) - (3x^4 + 3x^3 - 6x^2)}{(x^3 + 6)^2}$$

$$= \frac{-x^4 - 2x^3 + 6x^2 + 12x + 6}{(x^3 + 6)^2}$$

Table of Differentiation Formulas

$$\frac{d}{dx}(c) = 0 \qquad \frac{d}{dx}(x^n) = nx^{n-1} \qquad \frac{d}{dx}(e^x) = e^x$$

$$(cf)' = cf' \qquad (f+g)' = f'+g' \qquad (f-g)' = f'-g'$$

$$(fg)' = fg' + gf' \qquad \left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$$

Examples on Quotient Rule

1.
$$f(x) = \frac{x^2}{x+5} = \frac{g(x)}{h(x)}$$

$$f'(x) = \frac{[h(x)g'(x)] - [g(x)h'(x)]}{[h(x)]^2}$$

$$f'(x) = \frac{[(x+5)2x] - [x^2(1)]}{[(x+5)]^2}$$

$$= \frac{x^2 + 10x}{x^2 + 10x + 25}$$

2.
$$f(x) = \frac{\sqrt{x}}{x+5}$$

$$f'(x) = \frac{\left[(x+5)\frac{1}{2\sqrt{x}} \right] - \left[\sqrt{x}(1) \right]}{\left[(x+5) \right]^2}$$

Activities Quotient Rule

1. If
$$f(x) = \frac{\sqrt{x}}{x^2}$$
 find $f'(2)$

$$f'(x) = \frac{\left[\frac{x^2}{2\sqrt{x}}\right] - \left[2x\sqrt{x}\right]}{x^4}$$

$$=\frac{\frac{x^2 - (2x\sqrt{x})(2\sqrt{x})}{2\sqrt{x}}}{\frac{2\sqrt{x}}{x^4}}$$

$$=\frac{\frac{x^2 - 4x^2}{2\sqrt{x}}}{\frac{2\sqrt{x}}{x^4}} = \frac{-3x^2}{2x^4\sqrt{x}}$$

$$f'(x) = \frac{-3}{2x^2 \cdot x^{1/2}} = \frac{-3}{2x^{5/2}} = \frac{-3}{2\sqrt{x^5}}$$

2. If
$$f(x) = \frac{5x^3}{x-10}$$
 find $f'(1)$

$$f'(x) = \frac{[(x-10)(15x^2) - [5x^3(1)]]}{(x-10)^2}$$

$$= \frac{15x^3 - 150x^2 - 5x^3}{(x-10)^2}$$

$$= \frac{10x^3 - 150x^2}{(x-10)^2}$$

$$f'(x) = \frac{10x^2(x-15)}{(x-10)^2}$$

$$f'(1) = -1.728$$

Activities Quotient Rule

3. If
$$f(x) = \frac{7x^2 - 4}{x^3 - 6}$$
 find $f''(-2)$

Exercises

3-26 Differentiate.

3.
$$f(x) = (x^3 + 2x)e^x$$

5.
$$y = \frac{x}{e^x}$$

7.
$$g(x) = \frac{1+2x}{3-4x}$$

$$9. \ H(u) = \left(u - \sqrt{u}\right)\left(u + \sqrt{u}\right)$$

10.
$$J(v) = (v^3 - 2v)(v^{-4} + v^{-2})$$

11.
$$F(y) = \left(\frac{1}{y^2} - \frac{3}{y^4}\right)(y + 5y^3)$$

4.
$$g(x) = \sqrt{x} e^x$$

6.
$$y = \frac{e^x}{1 - e^x}$$

8.
$$G(x) = \frac{x^2 - 2}{2x + 1}$$

Exercises

12.
$$f(z) = (1 - e^z)(z + e^z)$$

13.
$$y = \frac{x^3}{1 - x^2}$$

15.
$$y = \frac{t^2 + 2}{t^4 - 3t^2 + 1}$$

17.
$$y = e^p (p + p\sqrt{p})$$

19.
$$y = \frac{v^3 - 2v\sqrt{v}}{v}$$

21.
$$f(t) = \frac{2t}{2 + \sqrt{t}}$$

14.
$$y = \frac{x+1}{x^3+x-2}$$

16.
$$y = \frac{t}{(t-1)^2}$$

18.
$$y = \frac{1}{s + ke^s}$$

20.
$$z = w^{3/2}(w + ce^w)$$

22.
$$g(t) = \frac{t - \sqrt{t}}{t^{1/3}}$$