Centralna Komisja Egzaminacyjna

Układ graficzny © CKE 2010

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

WPISUJE ZDAJĄCY

KOD				Pl	ESE	CL		

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM PODSTAWOWY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron (zadania 1-3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2012

WYBRANE:

(środowisko)
(kompilator)
•••••
(program użytkowy)

Czas pracy:

75 minut

Liczba punktów do uzyskania: 20

MIN-P1 1P-122

Zadanie 1. Fibonacci (7 pkt)

Poniższa funkcja rekurencyjna *Fib* oblicza *k*-ty wyraz ciągu Fibonacciego.

Dane: k – liczba naturalna większa od zera

Funkcja Fib(k)

- 1. Jeżeli k = 1 lub k = 2, to wynikiem jest 1.
- 2. Jeżeli k > 2, to wynikiem jest Fib(k-1) + Fib(k-2).

Przykład:

Zgodnie z powyższą definicją funkcji Fib mamy:

$$Fib(4) = Fib(3) + Fib(2) =$$

= $[Fib(2) + Fib(1)] + Fib(2) =$
= $[1 + 1] + 1 = 3$

a) Uzupełnij tabelę, wpisując dla podanych argumentów k wartości obliczane przez funkcję Fib.

k	Fib(k)
1	1
2	1
3	2
8	
11	

b) Wywołanie funkcji Fib(k) dla k>2 powoduje dwa kolejne wywołania tej funkcji z mniejszymi argumentami, które z kolei mogą wymagać kolejnych wywołań Fib, itd. Proces ten można zilustrować za pomocą tzw. drzewa wywołań rekurencyjnych. Poniżej prezentujemy drzewo wywołań rekurencyjnych dla k=5. W węzłach drzewa znajdują się argumenty wywołań.

Narysuj drzewo wywołań rekurencyjnych dla Fib(6).

c) k-ty wyraz ciągu Fibonacciego można wyznaczyć iteracyjnie w następujący sposób:

Dane: k – liczba naturalna większa od zera

Algorytm:

1.
$$Fi \leftarrow 1$$
, $Fi_1 \leftarrow 1$, $i \leftarrow 2$

2. dopóki
$$i < k$$

$$pom \leftarrow Fi$$

$$Fi \leftarrow Fi + Fi_1$$

$$Fi_1 \leftarrow pom$$

$$i \leftarrow i + 1$$

3. wypisz Fi

Zdefiniujmy następujący ciąg:

- Pierwszy i drugi wyraz ciągu są równe 1.
- Jeśli k > 2 i k jest parzyste, to k-ty wyraz jest sumą trzech wyrazów go poprzedzających.
- Jeśli k > 2 i k jest nieparzyste, to k-ty wyraz jest równy wyrazowi o numerze (k-1).

Kilka pierwszych wyrazów tego ciągu podano w poniższej tabeli.

k	1	2	3	4	5	6	7	8
<i>k</i> -ty wyraz	1	1	1	3	3	7	7	17

Zapisz algorytm (w postaci listy kroków, schematu blokowego lub w wybranym języku programowania), który dla danej wartości *k* wyznacza *k*-ty wyraz opisanego powyżej ciągu. Zapisz rozwiązanie w postaci **iteracyjnej**.

Specyfikacja:

Dane: k – liczba naturalna większa od zera

Wynik: k-ty wyraz ciągu zdefiniowanego powyżej

Algorytm:

Warnalasia	Nr zadania	1a	1b	1c
Wypełnia	Maks. liczba pkt	2	1	4
egzaminator	Uzyskana liczba nkt			

Zadanie 2. Diamenty (8 pkt)

W sejfie jubilera znajduje się n diamentów wycenionych odpowiednio na $d_1, ..., d_n$ złotych, przy czym żadne dwa diamenty nie są w tej samej cenie. Jubiler nie ujawnia cen diamentów, co oznacza, że tylko on zna ceny $d_1, ..., d_n$.

Dla zainteresowanych klientów jubiler wykonuje operację porównania cen diamentów: dla wskazanych numerów i oraz j podaje, czy diament o numerze i ma wyższą cenę, niż diament o numerze j.

Przyjmijmy następujący sposób oznaczania wyniku operacji porównania cen:

$$większe(i, j) = prawda, gdy d_i > d_j$$

 $większe(i, j) = fałsz, gdy d_i < d_j$

- a) Poniżej prezentujemy pewien algorytm korzystający z operacji porównania cen:
 - 1. $j \leftarrow 0$
 - 2. $i \leftarrow 1$
 - 3. dopóki i < njeżeli większe(i,i+1) to $j \leftarrow j+1$ $i \leftarrow i+1$
 - 4. wypisz j

Uzupełnij poniższą tabelę, podając wyniki działania powyższego algorytmu po jego wykonaniu dla wskazanych danych.

n	$d_1,,d_n$	Wynik algorytmu
4	5 2 1 6	2
4	2 5 1 2	
4	1 2 3 4	
4	4 3 2 1	

b) Zapisz algorytm (w postaci listy kroków, schematu blokowego lub w wybranym języku programowania), który dla podanego ciągu cen diamentów znajduje numer diamentu o najwyższej cenie. W algorytmie zastosuj operację *większe* porównania cen dwóch diamentów.

Specyfikacja:

Dane: n – liczba naturalna większa od zera oznaczająca liczbę diamentów

 $d_1,...,d_n$ – ceny diamentów o kolejnych numerach 1, 2, ..., n; ceny dwóch różnych diamentów są różne

Wynik: i – numer diamentu o najwyższej cenie

Podaj, ile operacji porównania cen diamentów wykonuje Twój algorytm dla n = 1000.

Wypełnia	Nr zadania	2a	2b
	Maks. liczba pkt	3	5
egzaminator	Uzyskana liczba pkt		

Zadanie 3. Test (5 pkt)

W podpunktach a) -e) **zaznacz znakiem X** poprawne odpowiedzi.

Uwaga: W każdym podpunkcie poprawna jest tylko jedna odpowiedź.

Adres IP to 32-bitowa liczba zapisywana jako cztery binarne liczby ośmiobitowe oddzielone odstępami, bądź jako cztery liczby dziesiętne oddzielone kropkami. Na przykład:

to dwa różne zapisy tego samego adresu.

Poniżej podajemy dwie niepełne wersje tego samego adresu IP:

??????? 10101000 0000001 00000010

192.???.1.2

gdzie znaki zapytania oznaczają brakujące cyfry.

a)	Która z poniższych liczb jest równa brakującej części powyższego adresu IP w postaci binarnej?
	□ 11000000
	□ 10100000
	□ 10111110
b)	Która z poniższych liczb jest równa brakującej części powyższego adresu IP w postaci dziesiętnej?
	\square 178
	\square 168
c)	Największa liczba dziesiętna, jaką można zapisać na 32 bitach jest
	☐ równa 65 000.
	☐ większa od 1 123 000.
	☐ mniejsza od 4 000.
d)	Programowanie strukturalne to termin oznaczający
	tworzenie oprogramowania analizującego strukturę połączeń w sieci WWW.
	☐ programowanie nastawione na wykorzystanie struktury sprzętu, na którym uruchamiany będzie wynikowy program.
	U tworzenie programów zawierających struktury sterujące (np. pętle "dopóki", "powtarzaj", instrukcję "jeżeli").
e)	Aby uniemożliwić odczytanie przez niepowołane osoby pliku przesyłanego pocztą elektroniczną, stosuje się narzędzia służące do
	□ archiwizacji.
	□ kompilacji.
	□ szyfrowania.

Wypełnia	Nr zadania	3a	3b	3c	3d	3e
	Maks. liczba pkt	1	1	1	1	1
egzaminator	Uzyskana liczba pkt					

BRUDNOPIS