Accelerating Joins with Filters

Nicholas Corrado Xiating Ouyang

University of Wisconsin-Madison

Star Schema

- If the query optimizer chooses a poor join order, intermediate join results may be unnecessarily large.
- Solution: try to filter out extraneous tuples before performing joins

LIP-k

- ullet LIP uses statistics from all previous batches to compute σ
 - Slow response to local changes in key distributions in fact table
 - e.g. (11/28/2019, Turkey)
- LIP-k: Only use the previous k batches to compute σ

Implementation and benchmarking

SSB benchmark

Skewed SSB benchmark

Adversarial SSB benchmark

Select where Credit Score ≥ 700

Select where Credit Score ≥ 700

Select where Credit Score ≥ 700

Select where Credit Score ≥ 700

• LIP-k performs better than LIP on some queries...

Select where Credit Score ≥ 700

Credit Score 720 750 50 batches 720 400 400 50 batches 400 770 810 50 batches 800

- LIP-k performs better than LIP on some queries...
- ...but LIP performs better on others

• Given any tuple t, a mechanism \mathcal{M} decides a sequence of applying the filters to *minimize* the number of probes.

- Given any tuple t, a mechanism \mathcal{M} decides a sequence of applying the filters to *minimize* the number of probes.
 - if t passes **all** filters: n probes necessary

- Given any tuple t, a mechanism \mathcal{M} decides a sequence of applying the filters to *minimize* the number of probes.
 - if t passes **all** filters: n probes necessary
 - if not, at least one filter rejects it: 1 probe best / n probes worst

- Given any tuple t, a mechanism \mathcal{M} decides a sequence of applying the filters to *minimize* the number of probes.
 - if t passes all filters: n probes necessary
 - if not, at least one filter rejects it: 1 probe best / n probes worst

$$\frac{\text{\#probes by }\mathcal{M}}{\text{\#probes by OPT}} \leq n.$$

- Given any tuple t, a mechanism \mathcal{M} decides a sequence of applying the filters to *minimize* the number of probes.
 - if t passes all filters: n probes necessary
 - if not, at least one filter rejects it: 1 probe best / n probes worst

Competitive ratio of
$$\mathcal{M}=\frac{\# \text{probes by } \mathcal{M}}{\# \text{probes by OPT}} \leq n.$$

- Given any tuple t, a mechanism \mathcal{M} decides a sequence of applying the filters to *minimize* the number of probes.
 - if t passes all filters: n probes necessary
 - if not, at least one filter rejects it: 1 probe best / n probes worst

Competitive ratio of
$$\mathcal{M}=\frac{\# \text{probes by } \mathcal{M}}{\# \text{probes by OPT}} \leq n.$$

Theorem

There is no **deterministic** mechanism \mathcal{M} for LIP achieving a competitive ratio less than N, where N is the number of filters used in LIP.

- Given any tuple t, a mechanism \mathcal{M} decides a sequence of applying the filters to *minimize* the number of probes.
 - if t passes all filters: n probes necessary
 - if not, at least one filter rejects it: 1 probe best / n probes worst

Competitive ratio of
$$\mathcal{M} = \frac{\# \text{probes by } \mathcal{M}}{\# \text{probes by OPT}} \leq n.$$

Theorem

There is no **deterministic** mechanism \mathcal{M} for LIP achieving a competitive ratio less than N, where N is the number of filters used in LIP.

Randomness?

Conclusion

- Implemented LIP and its variant LIP-k
- Relative performance of LIP and LIP-k depends on the query
- Can we use randomness to achieve a better robustness guarantee?

Thank you!

Competitive Ratio vs. k on Uniform Data

Competitive Ratio vs. k on Adversarial Data

- Adversarial data set constructed such that LIP-k has worst case performance for odd k
- Run on query with N=2 joins

