

Tagestemperaturverlauf

Aufgabennummer: A_057		
Technologieeinsatz:	möglich 🗆	erforderlich ⊠

Der Tagestemperaturverlauf von Innsbruck für einen Sommertag lässt sich annähernd durch folgende Funktion beschreiben:

$$T(t) = \frac{37}{172740} \cdot t^4 - \frac{2277}{131404} \cdot t^3 + \frac{4953}{13406} \cdot t^2 - \frac{7804}{4101} \cdot t + \frac{70604}{4029}$$

 $t \dots$ Zeit in Stunden (h) 0 h $\leq t \leq$ 24 h

T(t) ... Temperatur in Grad Celsius (°C) zum Zeitpunkt t

- a) Stellen Sie die Funktion im angegebenen Definitionsbereich grafisch dar.
 - Lesen Sie aus dieser Grafik den Unterschied zwischen maximaler und minimaler Temperatur an diesem Tag ab.
- b) Berechnen Sie mithilfe der Differenzialrechnung denjenigen Zeitpunkt, zu dem die Tagestemperatur am höchsten ist.
- c) Begründen Sie mithilfe der Differenzialrechnung, warum eine Polynomfunktion
 3. Grades genau 1 Wendepunkt hat.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben. Diagramme sind zu beschriften und zu skalieren.

Tagestemperaturverlauf

2

Möglicher Lösungsweg

a) minimale Temperatur:

$$T_{\min} = 14,7 \, ^{\circ}\text{C}$$

maximale Temperatur:

$$T_{\text{max}} = 24,7 \, ^{\circ}\text{C}$$

Unterschied zwischen maximaler und minimaler Temperatur (= maximale Temperaturschwankung) an diesem Tag: $\Delta T = 10 \, ^{\circ}\text{C}$

(Eine angemessene Ungenauigkeit beim Ablesen der Werte wird toleriert.)

b) Ermittlung des Maximums

$$T'(t) = \frac{37}{43\,185} \cdot t^3 - \frac{6\,831}{131\,404} \cdot t^2 + \frac{4\,953}{6\,703} \cdot t - \frac{7\,804}{4\,101}$$

$$T''(t) = \frac{37}{14395} \cdot t^2 - \frac{6831}{65702} \cdot t + \frac{4953}{6703}$$

$$T'(t) = 0 \implies t_1 \approx 3.3; t_2 \approx 16.4; t_3 \approx 40.9$$
 (liegt nicht im Definitionsbereich)

(Randstellen-Überprüfung: T(0) ≈ 17,52 °C; T(24) ≈ 16,18 °C)

 $T''(3,3) \approx 0,42 \Rightarrow \text{Minimum bei } t \approx 3,3 \text{ h}$

 $T''(16,5) \approx -0.28 \Rightarrow \text{Maximum bei } t \approx 16,5 \text{ h}$

(Auch andere gleichwertige Argumentationen sind zulässig.)

Um 16:30 Uhr ist es in Innsbruck am wärmsten.

c) Die allgemeine Gleichung einer Polynomfunktion 3. Grades lautet:

$$f(t) = a \cdot t^3 + b \cdot t^2 + c \cdot t + d \text{ mit } a \neq 0.$$

Die 2. Ableitung f'' ist eine lineare Funktion. Die Gleichung f''(t) = 0 hat genau 1 Lösung, deshalb 1 Wendepunkt.

(Auch andere gleichwertige Argumentationen sind zulässig.)

Tagestemperaturverlauf 3

Klassitikation		
⊠ Teil A □ Teil B		
Wesentlicher Bereich der Inhaltsdimension:		
a) 3 Funktionale Zusammenhängeb) 4 Analysisc) 4 Analysis		
Nebeninhaltsdimension:		
a) — b) — c) —		
Wesentlicher Bereich der Handlungsdimension:		
a) B Operieren und Technologieeinsatzb) B Operieren und Technologieeinsatzc) D Argumentieren und Kommunizierer	٦	
Nebenhandlungsdimension:		
a) –b) A Modellieren und Transferierenc) –		
Schwierigkeitsgrad:	Punkteanzahl:	
a) leichtb) mittelc) mittel	a) 2b) 2c) 1	
Thema: Geografie		
Quelle: http://wetter.vienna.at/?region=tiro	ol	