MACROECONOMICS 73-240

LECTURE 8

Shu Lin Wee

This version: September 25, 2019

Competitive Equilibrium Pt 2

Recap: Competitive equilibrium

A competitive equilibrium is achieved when the HH indifference curve is tangent to the budget line AND also tangent to the production possibility frontier!

Recap: Competitive Equilibrium

So eqm is achieved when we have:

• Tangency of HH indifference curve to PPF.

$$MRT_{l,C} = MP_N = w = MRS_{l,C}$$

• And consumption-leisure choice is feasible

$$C^* = zF(K, h - l^*) - G$$

• Also, the consumption allocation is affordable

$$C^* = w(h - l^*) + \pi - T$$

Recap: Mathematical Approach Explained

- Endogenous Objects to find: C, N^s, N^d, T, Y, w (6 objects!)
- Equilibrium Conditions:
 - HH optimality: 2 Conditions ($MRS_{l,c} = w$ and the Budget Constraint)
 - Firm optimality: 1 Condition (MPN = w)
 - Gov't Budget Constraint: 1 Condition (G = T)
 - Market Clearing: 2 conditions $(N^d = N^s \text{ and } C + G = Y)$
- Note: We must solve for 6 objects and we have 6 equilibrium conditions!
- Note π is endogenous, but we know $\pi = Y wN^d$.

Recap: Roadmap

Hence to solve, we

- 1) Solve the HH's problem: solve for C, N^s in terms of π, w, T, h .
- 2) Solve the firm's problem: solve for \mathbb{N}^d as a function of z,K,w
- 3) Use the fact that G = T and substitute T for G
- 4) Labor market clears: $N^d = N^s = N^*$ at w^* . Solve for w^* by equating $N^s = N^d$.
- 5) Knowing $w^* \to \text{know } N^* \text{ from } N^d \to \text{know } \pi^* \text{ and } Y^*$
- 6) Knowing $Y^* \to \text{know } C^*$ from goods market clearing:

Example: Increase in Government Spending

Government spending

Suppose government decides to spend more: $\Delta G > 0$

Government Spending

Suppose the government increases its expenditure : $\Delta G = G_2 - G_1 > 0$

- Balanced budget if $G_2 > G_1$ then $T_2 > T_1$;
- $\ \, \ \, \ \, \ \, \ \, \ \, \ \,$ Reduces household's disposable income $C_2 < C_1$ and $l_2 < l_1;$
- **3** Increase in equilibrium hours worked: $N_2 > N_1$ implies $Y_2 > Y_1$.
- Question 1: ΔC vs. ΔG ?
- Question 2: what has happened to the real wage?
- Question 3: does GDP increase?
- Question 4: does the household prefer the increase in G?

Government spending

Summarizing:

- 1) $G_1 \Rightarrow G_2$ with $G_2 > G_1$
- 2) $T_1 \Rightarrow T_2$ with $T_2 > T_1$
- 3) Negative income effect! Agent is poorer $C_2 < C_1$ and $l_2 < l_1$
- 4) $N_2 > N_1$ and $Y_2 > Y_1$
- 5) So output is higher because individuals decide to spend more time in labor.
- 6) Need to check if in equilibrium: C is lower.

If we measure welfare in terms of the utility of the household, reprise the household happier?

A model with a simpler production function

- Technology: $Y = zN^d$ In This Example production is LINEAR in N
- Preferences: $U(C, l) = \log(C) + \log(l)$ (with h = 1 so that $l = 1 - N^s$)
- Marginal Product of labor: MPN = z
- Marginal Rate of Substitution: $MRS_{l,C} = \frac{C}{1-N^s}$
- Recall, for Comp. Eq. we solve for C, l, N^d, Y, w (and T = G) Tepper

Firm's Problem

• Firm's optimal decision:

$$\max_{N^d} zN^d - wN^d$$

- Suppose w < z, then firm would choose $N^d = \infty$
- Suppose w > z, then firm would choose $N^d = 0$ Neither can be consistent with equilibrium!
- Only candidate equilibrium wage: w=zUseful Result: If production is linear and there are no taxes on firms, then in any equilibrium, w=z.
- If w=z, firm happy to choose any N^d . How do we determine it? What are profits?

Household's Problem

• Household's decision is standard:

$$\max_{C,l} U(C,l) = \log c + \log l$$

s.t.

$$C = w(h-l) + \pi - T$$

where h = 1 and $N^s = h - l$

• Derive FOC and solve for N^s

$$w = \frac{C}{1 - N^s}$$
 and $C = wN^s - T$

• Solving for labor supply:

$$N^s(w) = \frac{1}{2} + \frac{T}{2w}$$

and Consumption:

$$C = w(1 - N^s)$$

Household's Problem

• In equilibrium, w = z and G = T, we thus have

$$N^{s} = \frac{1}{2} + \frac{G}{2z}$$
 and $C = z(1 - N^{s}) = \frac{z}{2} - \frac{G}{2}$

Equilibrium Outcomes

• Let's check goods market clearing:

$$Y = zN^d = zN^s = \frac{z}{2} + \frac{G}{2}$$

and

$$C + G = \frac{z}{2} - \frac{G}{2} + G \implies C = \frac{z}{2} - \frac{G}{2}$$

• Increase G_1 to $G_2 > G_1$

$$\frac{dY}{dG} = \frac{1}{2}$$

• Increasing G by \$1 increases Y by \$0.50 cents!

How Happy is the Household?

• Household utility in equilibrium. Recall:

$$C^* = wl^* \text{ and } l^* = 1 - N^{s*} = \frac{1}{2} - \frac{G}{2z}$$

$$U(C^*, l^*) = \log(C^*) + \log(l^*)$$

$$U(C^*, l^*) = \log(C^*) + \log(l^*)$$

$$= \log(wl^*) + \log(l^*)$$

$$= \log(w) + 2\log(l^*)$$

$$= \log(w) + 2\log\left(\frac{1}{2} - \frac{G}{2z}\right)$$

• In this example, higher G makes household worse off!

How Happy is the Household?

- This model had the prediction that more government spending makes the household worse off in terms of utility
- Is this always true? What assumption did we start with?

Testing the prediction of the model: ΔG

 Question: Can exogenous govt spending shocks be a driver of business cycle fluctuations?

Testing the prediction of the model: ΔG

For example 1: using data we can

- Look at the relation between ΔG and ΔC (we expect a negative correlation)
- Look at the relation between ΔG and ΔN (we expect a positive correlation)

For G and C we use NIPA table 1.1.6: http://www.bea.gov/

For N we use FRED: $\label{eq:http://research.stlouisfed.org/fred2/series/CE16OV?cid=12}$

Model Predictions and Data

Relation between government spending and fluctuations:

ullet Model: Increase in G implies

$$Y\uparrow,N\uparrow,C\downarrow$$

- With concave production function, $N \uparrow \Longrightarrow w \downarrow$
- Data (in the Short-Run):
 - Employment is pro-cyclical (similar to model)
 - Consumption and real wage are procyclical (different from model)
- \bullet Question: Is the change in G in the data always exogenous?

Example: Changes in TFP

Changes in TFP

Suppose there is an increase in TFP: $\Delta z > 0$

Changes in TFP

Summarizing:

- \bullet $z_1 \Rightarrow z_2$ with $z_2 > z_1$
- **2** Wage increases $w_2 > w_1$
- **3** Consumption increases $C_1 \Rightarrow C_2$
- Mours worked? depends on Income and Substitution effects

An example with G = 0

- Technology: $Y = zK^{\alpha}N^{d,1-\alpha}$
- Preferences: $U(C, l) = \log(C) + \log(l)$ (with h = 1 so that $l = 1 - N^s$)
- Marginal Product of labor: $MPN = (1 \alpha)z \left(\frac{K}{N^d}\right)^{\alpha}$
- Marginal Rate of Substitution: $MRS_{l,C} = \frac{C}{1-N^s}$
- Recall, for Comp. Eq. we solve for C, l, N^d, Y, w (and T = G)

Characterizing a competitive equilibrium

• Labor market clears, $N^s = N^d$ at equilibrium wage w^*

$$MRS_{l,C} = \frac{C}{1-N} = w^* = (1-\alpha)z\left(\frac{K}{N}\right)^{\alpha} = MPN$$

• Desired allocations must be feasible

$$C = zK^{\alpha}N^{1-\alpha}$$

Solve for N^* :

$$N^* = \frac{1 - \alpha}{2 - \alpha}$$

and C^*

$$C^* = zK^{\alpha} \left(\frac{1-\alpha}{2-\alpha}\right)^{1-\alpha}$$

• In this example, what happened to income and substitution of the state of the sta

Testing the prediction of the model: Δz

• Can productivity shocks be a driver of business cycle fluctuations?

Testing the prediction of the model: Δz

For example 2: using data we can

- Look at the relation between Δz and ΔC (we expect a positive correlation)
- Look at the relation between Δz and Δw (we expect a positive correlation)

For C we use NIPA table 1.1.6: http://www.bea.gov/

For w we use FRED:

https://research.stlouisfed.org/fred2/series/CES0500000003

Model Predictions and Data

Relation between producitivity and fluctuations:

 \bullet Model: Increase in z implies

$$Y \uparrow, N$$
 ambiguous, $C \uparrow, w \uparrow$

- Data:
 - Long-Run:
 - Output, consumption, real wages have risen, hours about the same (consistent if income and subst. effects cancel over the long-run)
 - Short-Run:
 - Consumption and real wages are pro-cyclical (consistent)
 - Employment is pro-cyclical (consistent if substitution effect dominates in the short run)

Measuring Short Run fluctuations in z

- Exactly as in Development accounting! Called the Solow Residual.
- In equilibrium, $Y = zK^{.36}N^{.64}$
- Measure z_t using

$$\ln z_t = \ln Y_t - 0.36 \ln K_t - 0.64 \ln N_t$$

- Data:
 - $Y_t \equiv \text{Real GDP}$
 - $K_t \equiv \text{sum of undepreciated capital (add up capital expenditures over time from NIPA)}$
 - $N_t \equiv \text{total employment from Bureau of Labor Statistics}$

Solow Residual in the U.S.

• Primary motivation for business cycle theory

CONGRATULATIONS!

You just studied a model of the free-market economy!

For what good is a model of the economy?

- How is the model useful?
 - We can use the model to ask questions about how key aggregate variables: Y,C,N and w would change:
 - Forecasting: if $z \downarrow$ by 10%, what happens to Y,C,N,w?
 - Policy-making: if country A were to receive foreign aid via an injection of K, how would Y,C,N, w change?
 - Welfare considerations: is the economy performing the 'best' that it can? (to be discussed next!)

Roadmap

• Next Class... \Rightarrow Pareto Optimality

