Name:

Solution

Cryptography – Questionnaire 6

	l +	false
	true	raise
OWF exist if and only if CCA-secure ES exist.		
RSA "works" for $N=35$ and $e=3$, i.e. $x\mapsto x^e \bmod N$ is a permutation (in particular: invertible).		
The ElGamal-PKES is CCA-secure.		\boxtimes
If DDH is hard w.r.t. $Gen\mathbb{G}_cyc$ then ElGamal based on $Gen\mathbb{G}_cyc$ is CPA-secure.		

"(One|two)-liners"

Questions

Exercise 6.1

Briefly state why the DDH over \mathbb{Z}_p^* (p prime) is *not* hard. Answer:

• By computing the Legendre-symbol we can distinguish between an element from $\mathbb{Q}\mathbb{R}$ and one from $\mathbb{Z}_p^* \setminus \mathbb{Q}\mathbb{R}$. If g is a generator of \mathbb{Z}_p^* then g^r is in $\mathcal{G}_{\mathbb{SP}}$ with prob. 1/2 (for a random r) and g^{ab} is in $\mathbb{Q}\mathbb{R}$ with prob. 3/4 (for random a, b).

Exercise 6.2

Suppose Bob's public ElGamal key is $(\mathbb{G}, q, g, h_b) = (\mathbb{Z}_{17}^*, 16, 6, 5)$. Alice wants to send him the message m = 7 encrypted using the ElGamal PKES. Compute the ciphertext $c = (c_1, c_2)$ that is sent to Bob assuming Alice has generated a = 3 as her secret. Answer: c = (12, 8)

Exercise 6.3

Briefly state

- why RSA-based PKES use a probabilistic padding scheme and
- name one of these schemes used in practice.

Answer: Possible reasons:

- Without randomized padding the scheme is deterministic (and stateless, hence not CPA-secure)
- Padding is needed to prevent attacks on small messages (where no modulo-wraparound takes place)
- Randomized padding is needed to ensure that the effective message space used, is as large as the theoretical message space (compare: RSA full domain hash for signatures!).

Thus one uses for example OAEP-RSA (optimal asymmetric encryption padding).