

Licence 1ère année, Mathématiques et Calcul 2 (MC2) Interrogation 4 : Séries Numériques

Exercice 1. /3

Montrer que
$$\sum \frac{1}{n(n+1)}$$
 converge et calculer $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$.

Correction.

Pour $n \ge 1$, soit $u_n := \frac{1}{n(n+1)}$. La suite $(u_n)_{n \ge 1}$ est positive.

On a $\frac{1}{n(n+1)} \sim \frac{1}{n^2}$, qui est le terme général d'une série convergente (série de Riemann avec $\alpha = 2$), donc par critère d'équivalence, $\sum \frac{1}{n(n+1)}$ converge. Soit $N \ge 1$.

On a
$$\sum_{n=1}^{N} \frac{1}{n(n+1)} = \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1 - \frac{1}{N+1} \xrightarrow[N \to +\infty]{} 1$$
, donc $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$.

Exercice 2. /3

Déterminer la nature de $\sum \frac{1}{\sqrt{n} \ln(n)}$.

Correction.

Pour $n \ge 2$, soit $u_n := \frac{1}{\sqrt{n} \ln(n)}$. La suite $(u_n)_{n \ge 2}$ est positive.

Par croissances comparées, $n^{-1/4} \ln(n) \longrightarrow 0$, donc il existe $n_0 \ge 2$ tel que $\forall n \ge n_0$, $\ln(n) \le n^{1/4}$.

On a pour $n \ge n_0, \ u_n \ge \frac{1}{n^{3/4}} \ge 0$, donc $\sum u_n$ diverge, par comparaison avec la série de Riemann divergente $\sum \frac{1}{n^{3/4}} (\alpha = 3/4 \le 1)$.

1

Exercice 3. /3

Déterminer la nature de $\sum \frac{(-1)^n}{\sqrt{n} \ln(n)}$.

Correction.

Pour $n \ge 2$, soit $a_n := \frac{1}{\sqrt{n} \ln(n)}$. La suite $(a_n)_{n \ge 2}$ est positive; de plus, on a $a_n \longrightarrow 0$.

Comme $x \longrightarrow \sqrt{x} \ln(x)$ est croissante sur $[1, +\infty[$, la suite $(a_n)_{n\geq 2}$ est décroissante.

Ainsi, par le critère spécial des séries alternées, $\sum \frac{(-1)^n}{\sqrt{n} \ln(n)}$ converge.

Exercice 4. /3

Montrer que
$$\sum \frac{n}{2^n}$$
 converge et calculer $\sum_{n=1}^{+\infty} \frac{n}{2^n}$.

Correction.

Pour
$$n \ge 1$$
, soit $u_n := \frac{n}{2^n}$. Pour tout $n \ge 1$, $u_n > 0$, et on a $\frac{u_{n+1}}{u_n} = \frac{n+1}{2n} \longrightarrow \frac{1}{2} < 1$.

Ainsi, par le critère de d'Alembert, $\sum \frac{n}{2^n}$ converge.

Soit
$$S := \sum_{n=1}^{+\infty} \frac{n}{2^n} = \frac{1}{2} \sum_{n=1}^{+\infty} \frac{n}{2^{n-1}}$$
, effectuons le changement d'indice $k = n - 1$.

On a
$$S = \frac{1}{2} \sum_{k=0}^{+\infty} \frac{k+1}{2^k} = \frac{S}{2} + \frac{1}{2} \times \frac{1}{1-1/2} = \frac{S}{2} + 1$$
. On en déduit $S = 2$.