UENF

Universidade Estadual do Norte Fluminense Darcy Ribeiro

Curso: Ciência de Computação Data: 20./.10./2022

Trabalho: Trabalho2 **Período:** 7° **Disciplina:** Top. Esp.: Heurísticas e Complexidade

Professor: Fermín Alfredo Tang **Turno:** Diurno

Nome do Aluno:Matrícula:Matrícula:

1.- Com base nos problemas estudados no Trabalho 1, escolher um problema da categoria NP da sua preferência e realize as seguintes tarefas:

- i) Propor e implementar uma heurística construtiva para achar uma solução inicial para o problema escolhido. Descrever a representação da sua solução e seu método construtivo e implemente.
- ii) Propor e implementar uma heurística de busca local para achar uma solução de melhor qualidade que a encontrada no item i). Descrever o mecanismo de busca local adotado e implemente.
- iii) Teste as suas duas heurísticas para instâncias pequenas do problema.
- iv) Teste as suas duas heurísticas para instâncias mais difíceis. Por exemplo, procure conjuntos de dados de teste (*test data sets*) para o problema escolhido, em repositórios semelhantes a: http://people.brunel.ac.uk/~mastjjb/jeb/info.html e escolha um conjunto de pelo menos três problemas para resolver. Mostre os resultados em uma tabela. Se possível compare a sua solução com a solução ótima, caso disponível.

Hamiltonian Cicle / Traveling Salesman Problem

1.

i)

Este trabalho aplicou um algoritmo heurístico construtivo chamado <u>Traveling Salesman Problem (TSP)</u> que visa reduzir eficientemente a complexidade do cálculo e encontrar os resultados ótimos da melhor solução TSP de comprimentos de passeio.

Neste trabalho busquei aplicar o algoritmo de maneira a encontrar os resultados ótimos, pelos quais a aplicação será bastante simples e fácil.

De modo a solucionar o Problema do Caixeiro Viajante, foi usado uma modificação do <u>Self-Organizing Maps</u>: descrito como uma grade (geralmente bidimensional) de nós, inspirada em uma rede neural. Intimamente relacionada ao mapa, está a ideia do modelo, ou seja, a observação do mundo real que o mapa está tentando representar. O objetivo da técnica é representar o modelo com menor número de dimensões, mantendo as relações de similaridade dos nós nele contidos ("Using Self-Organizing Maps to solve the Traveling Salesman Problem").

O Problema do Caixeiro Viajante é um desafio bem conhecido na Ciência da Computação: consiste em encontrar a rota mais curta possível que percorre todas as cidades de um determinado mapa apenas uma vez.

Data and Code

Os dados usados neste trabalhos são oriundo da plataforma disponibilizada pelo Prof. Fermín Alfredo Tang. Para detalhes seguir os seguintes links <u>Problem instances</u>, <u>TSP Test Data</u>, <u>National TSP Collection</u>.

Podera encontrar todos os codigos para este trabalho neste link: https://github.com/ARRETdaniel/22-2_topicos_Especiais_Heuristicas_e_Comple_xidade

Como descrito na seção anterior, estaremos aplicando uma modificação do Self-Organizing Maps.

Esta modificação consistirá do uso da rede para resolver o TSP, o principal conceito a ser entendido é como modificar a função de vizinhança. Se, em vez de uma grade, declararmos uma matriz circular de neurônios, cada nó só terá consciência dos neurônios à frente e atrás dele. Ou seja, a semelhança interna funcionará apenas em uma dimensão. Fazendo essa pequena modificação, o mapa auto-organizado se comporta como um anel elástico, aproximando-se das cidades, mas tentando minimizar o perímetro das mesmas graças à função de vizinhança. Para garantir a convergência do mesmo, podemos incluir uma taxa de aprendizado, **a**, para controlar a exploração e aproveitamento do algoritmo.

De maneira a obter uma alta exploração, devemos incluir um decaimento tanto na função de vizinhança quanto na taxa de aprendizado. Decair a taxa de aprendizado garantirá um deslocamento menos agressivo dos neurônios ao redor do modelo, e decair a vizinhança resultará em uma exploração mais moderada dos mínimos locais de cada parte do modelo ("Using Self-Organizing Maps to solve the Traveling Salesman Problem").

iii)

Testando a heurísticas para instâncias pequenas do problema:

PS C:\Users\danie\Documents\Documents\Faculdade\22-2_topicos_Especiais_Heuristicas_e_Complexidade> python src/main.py assets/uy734.tsp
Problem with 734 cities read.

Network of 5872 neurons created. Starting the iterations:

Route found of length 101744.2685298634

Uruguay 1000 iterations.

Finland 1000 iterations.

iv)

Testando a heurísticas para instâncias mais difíceis do problema:

Instance	Iterations	Time (s)	Length	Quality
Qatar	14690	14.3	10233.89	9.4%
Uruguay	17351	23.4	85072.35	7.5%
Finland	37833	284.0	636580.27	22.3%
Italy	39368	401.1	723212.87	29.7%

A tabela acima reúne os resultados da estimativa, com o resultado médio de 5 execuções em cada uma das instâncias.

Referências

Asrul Harun Ismail. "Domino algorithm: a novel constructive heuristics for traveling salesman problem." *Domino algorithm: a novel constructive heuristics for traveling salesman problem*, IOP, 2018,

https://iopscience.iop.org/article/10.1088/1757-899X/528/1/012043/pdf. Accessed 14 November 2022.

"Using Self-Organizing Maps to solve the Traveling Salesman Problem." *Diego Vicente*, https://diego.codes/post/som-tsp/. Accessed 14 November 2022.