模糊控制系統設計

Design of Fuzzy Control System

- 使用Matlab Fuzzy Toolbox

摘 要

- ◎ 模糊控制器設計步驟
- 3 實際例子分析
- Matlab Fuzzy Toolbox實現

Page 2

摘 要

藁 模糊控制器設計步驟

- 實際例子分析
- Matlab Fuzzy Toolbox實現

模糊控制器設計步驟

①模糊控制器與受控系統之間關係

模糊控制器設計步驟

模糊控制器設計步驟

模糊控制器設計步驟

模糊控制器設計步驟

Fuzzy Reasoning Process (Min-Min-Max)

IF x is A_1 AND y is B_1 , THEN z is C_1 ,

IF x is A_2 AND y is B_2 , THEN z is C_2 .

模糊控制器設計步驟

Fuzzy Reasoning Process (Min-Product-Max)

IF x is A_1 AND y is B_1 , THEN z is C_1 ,

IF x is A_2 AND y is B_2 , THEN z is C_2 .

Page 9

模糊控制器設計步驟

模糊控制器設計步驟

$$y_{\text{MOM}} = \sum_{j=1}^{m} \frac{w_j}{m} = \frac{4+5}{2} = 4.5$$

$$y_{\text{COA}} = \frac{\sum_{j=1}^{n} \mu_{C}(y_{j}) \cdot y_{j}}{\sum_{j=1}^{n} \mu_{C}(y_{j})} = \frac{2 \times 0.5 + 3 \times 0.5 + 4 \times 0.7 + 5 \times 0.7 + 6 \times 0.3}{0.5 + 0.5 + 0.7 + 0.7 + 0.3}$$
$$= 3.9$$

模糊控制器設計步驟

6 總結:設計模糊控制器的原則

- (1)定義輸入及輸出變數
- (2) 決定模糊化的策略
- (3) 定義各語言變數的資料庫
- (4) 設計控制器規則庫
- (5) 設計模糊推論機構
- (6) 選擇解模糊化的方式

摘 要

- 록 模糊控制器設計步驟
- **實際例子分析**
- I Matlab Fuzzy Toolbox實現

Page 13

實際例子分析

(2) 定義輸入及輸出變數

輸入變數:物體位置與目標位置之誤差

(追蹤誤差=目標位置-物體位置)

輸出變數:力量

實際例子分析

① 問題描述(搬運一質量m之物體至1公尺遠處)

F+f=ma

F為施加物體之控制力

f 為施加物體之外力,如摩擦力

m為物體之質量

a 為物體受外力時之加速度

Page 14

實際例子分析

- 3 定義各語言變數的資料庫
 - ▲ 輸入變數的資料庫

→ 輸出變數的資料庫

實際例子分析

(4) 設計控制器規則庫

☀PI 型模糊控制器

IF e is F_e and Δe is $F_{\Delta e}$ THEN Δu is $F_{\Delta u}$

※PD 型模糊控制器

IF e is F_e and Δe is $F_{\Delta e}$ THEN u is F_u

Page 17

實際例子分析

- (5) 設計模糊推論機構
 Fuzzy Reasoning Process (Min-Min-Max)
- 6 解模糊化方式 重心法

實際例子分析

(4) 設計控制器規則庫

IF e is F_e and \dot{e} is $F_{\dot{e}}$ THEN u is F_u

ė e	N	Z	Р
N	NB	NS	ZO
Z	NS	ZO	PS
Р	ZO	PS	РВ

Page 18

摘 要

- 👿 模糊控制器設計步驟
- 實際例子分析
- Matlab Fuzzy Toolbox實現

(1) 基本命令介紹

(可在Matlab命令字元下鍵入help fuzzy得更詳細資料)

fuzzy

- Basic FIS editor.

mfedit

- Membership function editor.

ruleedit

- Rule editor and parser.

ruleview

- Rule viewer and fuzzy inference diagram.

surfview

- Output surface viewer.

addmf

- Add membership function to FIS

addrule

- Add rule to FIS.

addvar

- Add variable to FIS.

plotfis

- Display FIS input-output diagram.

plotmf

- Display all membership functions for one variable.

readfis

- Load FIS from disk.

writefis

- Save FIS to disk.

Page 21

Matlab Fuzzy Toolbox

② Simulink 工具

Page 22

Matlab Fuzzy Toolbox

③ 呼叫Fuzzy Toolbox圖形介面

Matlab Fuzzy Toolbox

4 Fuzzy Toolbox之操作介面 輸入變數 規則庫 輸出變數 File Bdit View Uratled (mandari)

(mandari)

(Mandari)

Page 23

(5) Fuzzy Toolbox之功能介紹(一)

Page 25

Page 27

Matlab Fuzzy Toolbox

(5) Fuzzy Toolbox之功能介紹(二)

Page 26

Matlab Fuzzy Toolbox

⑤ Fuzzy Toolbox之功能介紹(三)

Matlab Fuzzy Toolbox

定義輸入及輸出變數以符合模糊規則形式

IF e is F_e and \dot{e} is $F_{\dot{e}}$ THEN u is F_u

建立輸入與輸出變數之歸屬函數

Page 29

Matlab Fuzzy Toolbox

建立所需之模糊規則庫(一)

按兩下進入編輯所需之模糊規則

Page 30

Matlab Fuzzy Toolbox

建立所需之模糊規則庫(一)

Matlab Fuzzy Toolbox

觀看所建立之模糊規則庫

規則形式表現方式

表面形式表現方式

建立Simulink模擬系統方塊圖 (傳統PD-type control)

Page 33

Matlab Fuzzy Toolbox

PD控制器之模擬結果

Matlab Fuzzy Toolbox

建立Simulink模擬系統方塊圖 (FUZZY control)

鍵入模糊推論資料之矩陣名稱

「To Workspace1

For Integrator Integrat

Simulink模擬參數設定

練習

(1)在移動物體過程中,增加考慮當有物體負載變化與磨差力之情狀下之控制響應,且可以增加考慮PI/PD-type模糊規則形式之運用。

Page 39

結論

利用模糊理論發展出之模糊控制器,其設計過程中加入日常生活中的語意特質,且模糊規則為匯集相關專家的經驗和操控法則而得,可完全不需知道受控系統之數學模型下進行設計。因此,在面對系統具有不確定性、時變性和非線性等複雜狀態時,能提供傳統控制器無法達到的成果。