Spectral Clustering

Part 1: The Graph Laplacian

Ng Yen Kaow

Laplacian of a function

- □ Given a multivariate function $f: \mathbb{R}^n \to \mathbb{R}$
- $\neg \nabla f(x)$, the gradient at f(x), is a vector pointing at the steepest ascent of f(x)

- \square Δf , the Laplacian of f, is the divergence of ∇f , that is, $\Delta f(x) = \nabla \cdot \nabla f(x)$
 - A scalar measurement of the smoothness in $\nabla f(x)$ about point x

Incidence matrix

- Consider each vertex as a point on the grid
 - The domain of f are now the vertices
 - f(v) operates on each vertex v
 - The gradient from vertex v to v' is given by the edge $e: v \to v'$, more specifically, f(v') f(v)
 - \square Denote the gradient of edge e as w(e)
- Define a matrix which captures all the gradients

Incidence matrix

Incidence matrix

$$M = \begin{bmatrix} v_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 & e_8 \\ v_1 & 1 & -1 & 1 & -1 & 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

Every column represents an edge in the graph

$$(M^{\mathsf{T}})_{1} f = \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} f(v_{1}) \\ f(v_{2}) \\ f(v_{3}) \\ f(v_{4}) \end{bmatrix} = f(v_{1}) - f(v_{2}) = w(e_{1})$$

Incidence matrix

Incidence matrix

$$M = \begin{bmatrix} v_1 & e_2 & e_3 & e_4 & e_5 & e_6 & e_7 & e_8 \\ v_2 & 1 & -1 & 1 & -1 & 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

- Every column represents an edge in the graph
- \square $M^{\top}f$ is a $|E| \times 1$ vector where each entry gives the gradient of an edge
 - lacksquare $M^{T}f$ contains all the gradients of the graph

The graph Laplacian L

The graph Laplacian L is obtained by

$$\Delta f = \nabla \cdot \nabla f = M M^{\mathsf{T}} f$$

- $MM^{\top}f$ is a $|V| \times 1$ vector where each entry gives the divergence of a vertex
- \square MM^{\top} is a $|V| \times |V|$ matrix where

$$MM^{\mathsf{T}} \begin{bmatrix} f(v_1) \\ f(v_2) \\ \vdots \end{bmatrix} = \begin{bmatrix} \Delta f(v_1) \\ \Delta f(v_2) \\ \vdots \end{bmatrix}$$

Properties of L

- \square The graph Laplacian L is obtained as $L = MM^{\top}$
 - Since L is of the form MM^{\top} , L is symmetric and positive-semidefinite
 - This allows us to obtain an orthogonal eigenbasis, which has special meanings (next slide)
 - L = D A, where D is the degree matrix and A the adjacency matrix

- \square A eigenvector x of L fulfills $Lx = \lambda x$
- \square Compared with $Lx = \begin{bmatrix} \Delta f(v_1) \\ \vdots \end{bmatrix}$, we have $\lambda x = \begin{bmatrix} \Delta f(v_1) \\ \vdots \end{bmatrix}$
- The eigenvector x corresponds to the values f(v) where $\lambda f(v) \approx \Delta f(v)$
 - A small λ indicates that f(v) does not vary much from f(v') of its neighbors v'
- The smallest λ (for a connected graph) is 0, indicating that $\forall v \Delta f(v) = 0$
 - In which case f(v) = const (stationary state)
 - Graphs that are not fully connected will be discussed later

- A eigenvector $x = [f(v_1) \quad f(v_2) \quad ...]$ of Lfurthermore minimizes $\frac{x^TLx}{x^Tx}$ (Rayleigh quotient)
- \square Since $Lx = \begin{bmatrix} \Delta f(v_1) \\ \vdots \end{bmatrix}$, we have

$$x^{\mathsf{T}}Lx = [f(v_1) \quad \dots] \begin{bmatrix} \Delta f(v_1) \\ \vdots \end{bmatrix} = \sum_{v} f(v) \Delta f(v)$$

- $\Rightarrow x^{\mathsf{T}} L x = \text{projection of } \Delta f \text{ on eigenvector } x$
- $\Rightarrow \frac{x^{T}Lx}{x^{T}x}$ = projection of Δf on unit eigenvector x
- □ Furthermore the projection $\frac{x^TLx}{x^Tx} = \lambda$ (eigenvalue of x)
- □ A eigenvector is a distribution f that minimizes the total differences between neighboring f(v) values © 2021. Ng Yen Kaow

- □ A eigenvector = a distribution f that minimizes the total differences between neighboring f(v) values
- f(v) values from eigenvector of $\lambda = 0$
 - f(v) = const⇒ zero differences

From Shuman et al. "The emerging field of signal processing on graphs", 2013

If the graph consists of two disconnected components, the f(v) values of the individual components can have different constant values

- $lue{}$ A eigenvector = a distribution f that minimizes the total differences between neighboring f(v) values
- f(v) values from eigenvector of $\lambda = 0$
 - f(v) = const⇒ zero differences
- \Box f(v) values for eigenvector of 2^{nd} smallest λ
 - Orthogonality with eigenvector of $\lambda = 0$ forces large variations in f(v)

 \Box f(v) values from eigenvector of 50th smallest λ

Orthogonality of this eigenvector with the $1^{st}\sim49^{th}$ smallest eigenvectors forces distinctly different variations in f(v) from those eigenvectors

Mathematical property of L

- A precise mathematical property of L relates it to "sparsest cut" problems
- \Box Let the adjacency matrix $A = (a_{ij})$, then

$$x^{\mathsf{T}}Lx = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2$$

$$x^{\mathsf{T}}Lx = x^{\mathsf{T}}Dx - x^{\mathsf{T}}Ax = \sum_{i=1}^{m} d_{i}x_{i}^{2} - \sum_{i,j=1}^{m} a_{ij}x_{i}x_{j}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{m} d_{i}x_{i}^{2} - 2 \sum_{i,j=1}^{m} a_{ij}x_{i}x_{j} + \sum_{i=1}^{m} d_{i}x_{i}^{2} \right)$$

$$= \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_{i} - x_{j})^{2}$$

Mathematical property of L

- A precise mathematical property of L relates it to "sparsest cut" problems
- \Box Let the adjacency matrix $A = (a_{ij})$, then

$$x^{\mathsf{T}}Lx = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2$$

Suppose x is a vector of only the values +1 and
 -1, indicating the membership of the vertices in a set S

$$x_i = \begin{cases} 1 & \text{if } v_i \in S \\ -1 & \text{if } v_i \in \bar{S} \end{cases}$$

That is, we want to use x to indicate the result of a 2-partition, S and \overline{S}

Mathematical property of L

- A precise mathematical property of L relates it to "sparsest cut" problems
- \Box Let the adjacency matrix $A = (a_{ij})$, then

$$x^{\mathsf{T}}Lx = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2$$

Suppose x is a vector of only $\{1, -1\}$, then $x^T L x$ has special significance

$$\frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2 = \sum_{i,j=1,i < j}^{m} a_{ij} (x_i - x_j)^2$$

$$= 4 \sum_{1 \le i < j \le m, x_i \ne x_j}^{m} a_{ij}$$

That is, $x^T L x$ is 4 times the number of edges between adjacent vertices of each from S and \overline{S}

Finding x that minimizes x^TLx/x^Tx

- \Box Compute $x^{T}Lx$ for all x
 - e.g. for our earlier graph, when x = [1 1 1 1], $x^T L x = 12$

$$x^{\mathsf{T}}Lx = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix} = 12$$

Finding x that minimizes x^TLx/x^Tx

- \Box Compute $x^{T}Lx$ for all x
- $x^T L x = 0$ when $x = 1 = [1 \ 1 \ 1 \ 1]$ (or $x = -1 = [-1 \ -1 \ -1]$)
 - However, we do not want this trivial solution

Group 1	Group 2	$x^{T}Lx$
v_1	v_2 v_3 v_4	12
v_2	$v_1 v_3 v_4$	8
v_3	v_1 v_2 v_4	8
v_4	$v_1 v_2 v_3$	4
$v_1 v_2$	$v_3 v_4$	12
$v_1 v_3$	$v_2 v_4$	12
$v_1 \ v_4$	$v_2 v_3$	8
v_1 v_2 v_3 v_4	Ø	0

□ Next we compute the $\frac{x^TLx}{x^Tx}$ values from these

Finding x that minimizes x^TLx/x^Tx

□ Complete $\frac{x^{\mathsf{T}}Lx}{x^{\mathsf{T}}x}$ values (x is of only +1 and -1 ⇒ $x^{\mathsf{T}}x = |x| = 4$)

Group 1	Group 2	$x^{T}Lx$	$\frac{x^{\top}Lx}{x^{\top}x}$
v_1	$v_2 v_3 v_4$	12	3
v_2	$v_1 \ v_3 \ v_4$	8	2
v_3	$v_1 \ v_2 \ v_4$	8	2
v_4	$v_1 v_2 v_3$	4	1
$v_1 \ v_2$	$v_3 v_4$	12	3
$v_1 \ v_3$	$v_2 \ v_4$	12	3
$v_1 v_4$	$v_2 v_3$	8	2

- □ Optimal $\frac{x^{\top}Lx}{x^{\top}x} = 1$, when $x = \begin{bmatrix} 1 & 1 & 1 & -1 \end{bmatrix}$ or $\begin{bmatrix} -1 & -1 & -1 & 1 \end{bmatrix}$
- \Box This optimal x can be approximately obtained...

Finding x that minimizes $x^T Lx$

- □ Let $\lambda_1,...,\lambda_k$ where $\lambda_1 \ge ... \ge \lambda_k$ be the eigenvalues of L, and $\mu_1,...,\mu_k$ the respective eigenvectors
- By the min-max theorem of Rayleigh quotient,

$$\min_{x} \frac{x^{\top} L x}{x^{\top} x} = \lambda_{k}$$

- \square However, μ_k is the trivial ($\lambda_k = 0$) solution
 - Compromise and use the second best solution μ_{k-1} (of the 2nd smallest eigenvalue λ_{k-1})
 - Historically μ_{k-1} received more attention than the other eigenvectors, but this is no longer true (will be discussed later)

Eigendecomposition example

Eigenvalues

λ_1	λ_2	λ_3	λ_4
4.0000	3.0000	1.0000	0.0000

Eigenvectors

More precisely, -9.51E-17

μ_1	μ_2	μ_3	μ_4
0.8660	0.0000	0.000	-0.5000
-0.2887	0.7071	-0.4082	-0.5000
-0.2887	-0.7071	-0.4082	-0.5000
-0.2887	0.0000	0.8165	-0.5000

If group by the (\pm) sign, μ_3 correctly places v_1 , v_2 , v_3 in one group (-) and v_4 in another (+)

Compromise in +1/-1 restriction

- □ By relaxing the restriction of +1 and -1 in x to allow any real number, an x^TLx smaller than the optimal under the restriction is often achieved
 - The improvement can be guaranteed if x is orthogonal to $\mathbf{1}$ (or $-\mathbf{1}$) since by the min-max theorem, $\frac{\mu_{k-1}^{\mathsf{T}} L \mu_{k-1}}{\mu_{k-1}^{\mathsf{T}} \mu_{k-1}}$ is minimal among all $\frac{x^{\mathsf{T}} L x}{x^{\mathsf{T}} x}$ that are orthogonal to μ_k
 - □ However, in the present case, $x = [1 \ 1 \ 1 \ -1]$ and not orthogonal to $\mu_4 = [1 \ 1 \ 1 \ 1]$
 - $\square \quad \text{Still, } \frac{\mu_3^{\mathsf{T}} L \mu_3}{\mu_3^{\mathsf{T}} \mu_3} = \lambda_3 = 1 = \min_{x \in \{1, -1\}^4} \frac{x^{\mathsf{T}} L x}{x^{\mathsf{T}} x}$
 - Though no guarantee, improvements are usual

Historical use of μ_{k-1}

- \square Historically μ_{k-1} received more attention than the other eigenvectors
 - Shi and Malik (2000) started using multiple eigenvectors for clustering (see Part 3)
- \square μ_{k-1} is called the Fiedler vector
- \square λ_{k-1} is called the Fiedler value
 - The multiplicity of λ_{k-1} is always 1
 - Also called the algebraic connectivity
 - The further λ_{k-1} is from 0, the more highly connected is the graph (hard to separate)