Lecture 1 Kasteleyn theorem

G-planar, bipartite graph

dimer configurations/ perfect matchings

· Today: Dimer model on 12? (domino tilings)

$$\iff$$

$$\iff$$

Q: How many domino tilings?

	11/		1/		4		4	
8		11		11,		11		4
	11,		1/		11		(1)	
		11		1/		(1)		4
	11/1		11		11		1//	
		11/		111		11		U,
	14		//		///		11)	
		4		11/		11,		1/
				<u> </u>	_			
				8	5			

= 12 988 816

Thm:
$$(\# dimer configurations)^2 = Perm \widetilde{A}$$
,

where \widetilde{A} is an adjacency matrix of G
 $\widetilde{A} = [(D) \widetilde{V}]$
 $\widetilde{A} = [(1, if i^{-j})]$

$$\widetilde{A} = \lim_{b_1} \left(\frac{\mathcal{O}}{\widetilde{K}} \right) \qquad a_{ij} = \begin{cases} 1, & \text{if } i \sim j \\ 0, & \text{otherwise} \end{cases}$$

$$\frac{P_{roo}f:}{34215867} = (1324)(5)(687)$$

signs
$$\mathcal{T}_{w_ib_i} \in \mathbb{C}, |\mathcal{T}_{w_ib_i}|=1$$

$$K = \int_{w_n}^{w_n} \left(\int_{w_n}^{b_{n-1}-b_n} b_n \right) = \begin{cases} \gamma(w_i b_j) & \text{if } w_i \sim b_j \\ 0 & \text{otherwise} \end{cases}$$

Kasteleyn sign condition:

For each face of degree
$$2k$$

$$\frac{T(e_1)}{T(e_2)} \cdot \frac{T(e_3)}{T(e_4)} \cdot \dots \cdot \frac{T(e_{2k-1})}{T(e_{2k})} = (-1)^{k-1}$$

$$K^{-1} \cdot K = Id$$

$$F_{w_o}(b) := K^{-1}(b, w_o) \text{ is }$$

$$diserete holomorphic$$

$$\frac{Proposition:}{\# \text{ tilings m}} = \prod_{N} 4 \left(\cos^{2} \frac{\pi p}{M+1} + \cos^{2} \frac{\pi p}{N+1}\right)$$

Thurston theorem

Q: When discrete domain is tileable?

1//		///
	1//	
1///		////

black faces

= # white faces

NOT enough:

<u>Det</u>: [Thurston height function] Given a tiling of a simply connected domain R with on on 722, the height function h is a 11-valued fict on the set of vertices of A defined by

local rules: Y u~v

 $h(v)-h(u) = \begin{cases} \pm 1 & \text{if } uv \text{ does not cross domino} \\ \mp 3 & \text{if } uv \text{ crosses domino} \end{cases}$

Rmk: h is defined up to a global additive constant by local rules.

Rmk: N-simply connected => hlor does not depend on a tiling

Thm: Simply-connected It is tileable iff both conditions hold:

- 1) h is well-defined on DR
- 2) Y u, v & DR $h(v)-h(u) \leq d(u,v)$

Def: Oriented graph distance: "w"-orientation

d(u,v) = edge length of shortest positive oriented path from u to v (within $\bar{\Lambda}$ = Λ vo Λ)

Rmk: d(u,v) = 1 8 d(v,u) = 3

$$h(v) - h(u) = 6$$

> $d(u,v) = 2$
(2)

Height Function of lozenge Lilings:

$$h(v)-h(u) = \begin{cases} \pm 1 \\ \mp 2 \end{cases}$$

$$\text{distance from surface}$$

$$\text{to } (1,1,1)-plane$$

