in GnoudQ TRAN QUANG DUONG traanquangduong@gmail.com **L** +84 338730486

Education

FPT University

Artificial Intelligence; Curent GPA: 3.2

Oct.2020 – Dec.2024 (expected)

Relevant Coursework

Connecting to Computer Science, Computer Organization and Architecture, Data Structures and Algorithm, Artificial Intelligence, Database Systems, Statistics and Probability, Machine Learning, Computer Vision, Deep Learning, Search Engines, Text Mining

Awards

3rd	Provincial Scientific and Technical Research Competition	2019
Representing the province	National Student Entrepreneurship Day	2019

Technical skills

Programming Languages Python, C/C++, SQL

Framework Tensorflow, Pytorch, Scikit-learn, Pandas, OpenCV

Techniques Machine learning Algorithms, Deep learning Algorithms, Signal Processing,

Face Recognition, Object detections

Certificate

Software Development Lifecycle	Sep.2022
IBM Data Warehouse Engineer	Jan.2023
IBM Data Engineering	May.2023
IBM Full Stack Software Developer	May.2023
TensorFlow for CNNs: Learn and Practice CNNs	Oct.2023

Project

Image and video retrieval using Content-Based Image Retrieval

Aug.2023 – Present

Project link: https://github.com/tunneee/Glimpse-Album-Retrieval-System

- Utilized Multi-task Cascaded Neural Network (MTCNN) for accurate face detection in images within the Glimpse system.
- Employed advanced embedding models to convert facial features into numerical vectors, enhancing the system's ability to categorize and retrieve media.
- Managed the integration of these face embeddings into the Qdrant Vector Database, ensuring efficient storage and quick retrieval of data

Publications

Evaluating Audio Feature Extraction Methods for Identifying Bee Queen Presence

https://doi.org/10.1145/3628797.3628852

- Implemented Fast Fourier Transform (FFT) method for efficient extraction of audio features from audio
- Applied Machine Learning and Deep Learning techniques to train models specifically on the extracted audio features.
- Project link: https://github.com/tunneee/bee-acoustic-classification