Lesson 7 - Logical Equivalence and Logical Implication

Learning Outcomes

By the end of this lesson, students will be able to;

- identify logically equivalent propositions.
- describe logical implications.
- use truth tables to determine logically equivalence propositions.

7.1 Logical Equivalences

Let P and Q be two statements made up from the propositions p, q, r, \ldots If the truth value of P is the same as the truth value of Q for every combination of truth values of p, q, r, \ldots then P and Q are said to be *logically equivalent*, and write

$$P \equiv Q$$
.

In other words P and Q are logically equivalent if the final columns of their truth tables are the same.

Example 7.1

Show that the negation of $p \to q$ is logically equivalent to $p \land \neg q$.

Solution.

Consider the below truth table for $P \equiv \neg(p \to q)$ and $Q \equiv p \land \neg q$.

p	q	$\neg(p \rightarrow q)$	$p \land \neg q$
T	T	F	F
T	F	T	T
F	T	F	F
F	F	F	F

Comparing the columns of truth table for $\neg(p \to q)$ and for $p \land \neg q$ we note that the truth values are same for each row of the table. Thus $\neg(p \to q)$ and $p \land \neg q$ are logically equivalent.

Remark 7.1. If the biconditional statement $P \leftrightarrow Q$ is a tautology, then it is called as an equivalence and it is denoted by $P \Leftrightarrow Q$. It is read as "P is equivalent to Q".

Example 7.2

Verify that the following two propositions, (a) and (b), are logically equivalent.

- (a) If I go to the university then, if I study a lot, I'll be a graduate.
- (b) If I go to the university and I study a lot then I'll be a graduate.

Solution.

We can define the following three propositions.

p: I go to the university.

q: I study a lot.

r: I'll be a graduate.

We want to show that $p \to (q \to r)$ and $(p \land q) \to r$ are logically equivalent.

p	q	r	$q{\rightarrow}r$	$p \rightarrow (q \rightarrow r)$	$p \land q$	$(p \land q) \rightarrow r$
T	T	T	T	T	T	T
T	T	F	F	F	T	F
T	F	T	T	T	F	T
T	F	F	T	T	F	T
F	T	T	T	T	F	T
F	T	F	F	T	F	T
F	F	T	T	T	F	T
F	F	F	T	T	F	T

Comparing the columns for $p \to (q \to r)$ and for $(p \land q) \to r$ we note that the truth values are same for each raw. Therefore, $p \to (q \to r)$ and $(p \land q) \to r$ are logically equivalent.

7.2 Logical Implication

Let P and Q be two statements, compound or simple. If the conditional statement $P \to Q$ is a tautology, it is called an *implication* and is denoted by $P \Rightarrow Q$.

Example 7.3

Show that $(p \wedge q) \Rightarrow (q \wedge p)$.

Solution.

To prove $(p \land q) \Rightarrow (q \land p)$ we have to show that $(p \land q) \rightarrow (q \land p)$ is a tautology.

p	q	$p \land q$	$q \land p$	$(p \land q) \rightarrow (q \land p)$
T	T	T	T	T
T	F	F	F	T
F	T	F	F	T
F	F	F	F	T

According to the above truth table only truth value 'T' occurs in the last column. Therefore, $(p \land q) \rightarrow (q \land p)$ is a tautology.

Self-Assessment Exercises

1. Show that each of the following compound propositions are logically equivalent.

(a)
$$p \to q \equiv \neg q \to \neg p$$

(b)
$$\neg (p \to q) \equiv p \land (\neg q)$$

(c)
$$(p \leftrightarrow \neg q) \equiv (q \leftrightarrow \neg p)$$

(d)
$$p \to q \equiv \neg p \lor q$$

2. Prove the following.

(a)
$$p \Rightarrow (q \rightarrow p)$$

(b)
$$[(p \lor q) \land \neg q] \Rightarrow p$$

(c)
$$(p \land q) \Rightarrow p$$

(d)
$$p \land (p \to q) \Rightarrow q$$

Suggested Reading

Chapter 1: Kenneth Rosen, (2011) Discrete Mathematics and Its Applications, $7^{\rm th}$ Edition, McGraw-Hill Education.