Détecter les BadBuzz grâce au Deep Learning

Sommaire

- 1. Enjeux et objectifs
- 2. Données
- 3. Prétraitement
- 4. Word Embeddings
- 5. Modèle sur mesure simple
- 6. Modèles sur mesure avancés
- 7. Résultats
- 8. Mise en production

Enjeux et objectifs

Enjeux

- Anticiper des tweets potentiellement nuisibles
- Prédire le sentiment associé à un tweet

Objectifs

 Comparer plusieurs modèles de réseaux de neurones

 Créer le prototype d'un produit IA

Données

Analyse du dataset

- > Jeu de données :
 - 1600 000 tweets
 - o propre
- **Echantillon:**
 - o contenu d'un tweet + label
 - 8000 pos + 8000 neg
- ➤ Target:
 - variable binaire
 - classes très équilibrées
- ➤ Métrique :
 - o score F1 + AUROC

Prétraitement

Transformer le texte en chiffres

Stemming Lemmatisation Forme tronquée: Forme canonique: suppression analyse morpho des suffixes suppression des flexions

lemmatize() Nettoyage: caractères spéciaux stopwords **lowercase** tokénisation stem()

Transformation du texte en chiffres

Vectorisation

fit_on_texts()

texts_to_sequences()

Padding

pad_sequences()

```
{'qood': 1,
 'go': 2,
 'like': 3,
 'work': 4,
 'love': 5.
 'quot': 6,
 'today': 7,
'time': 8.
 'well': 9,
 'make': 10,
 'back': 11.
 'miss': 12.
 'feel': 13,
 'want': 14.
 'know': 15,
 'think': 16,
 'amp': 17,
 'really': 18,
 'need': 19.
```

```
[186, 251, 42],
[25, 21, 24, 4531].
[641, 604, 642, 518].
[1892, 3024, 4532, 160, 4533],
[7, 3, 965, 3025, 168, 49, 1608, 466],
[95, 60, 192, 229].
[1, 3026, 2310, 1270, 109, 123, 5, 4534, 494],
[727, 145, 1893, 1429].
[1609].
[4535, 77, 1894, 337, 4536, 316, 4537],
[158, 1610, 2, 2311, 18, 210, 12, 128],
[72].
[78, 14, 78, 14, 4538],
[877, 100, 2312, 4539, 1153],
[341, 390, 19, 500],
[573, 5],
```

```
[[ 412, 324, 2, ..., 0, 0, 0], [ 19, 1251, 4456, ..., 0, 0, 0], [1252, 251, 78, ..., 0, 0, 0], ..., [2992, 2992, ..., 0, 0, 0], [ 16, 23, 108, ..., 0, 0, 0], [ 36, 863, 0, ..., 0, 0, 0]],
```

Word Embeddings

Word2Vec vs GloVe

Contexts

| Contexts | Features |
| Contexts |
| Word - Context |
| Co-Occurrance |
| Matrix |
| Matrix |
| Contexts |
| Feature |
| Matrix |
|

- réseau de neurones feed forward
- capture le contexte similaire

- calcul basé sur les cooccurrences de mots sur l'ensemble du corpus
- capture la probabilité que 2 mots apparaissent ensemble

Modèle sur mesure simple

Régression Logistique

La FONCTION SIGMOIDE permet de mesurer si une entrée a dépassé le seuil de classification.

F1 score: 0.7197274698048932							
Classification Report							
	precision	recall	f1-score	support			
0 1	0.72 0.71	0.71 0.73	0.71 0.72	1604 1596			
accuracy macro avg weighted avg	0.72 0.72	0.72 0.72	0.72 0.72 0.72	3200 3200 3200			

Modèles sur mesure avancés

Keras + Embedding / RNN & LSTM / CNN / BERT

Couche Embedding de Keras

	precision	recall	f1-score	support
Θ	0.52	0.45	0.48	2452
1	0.50	0.57	0.53	2348
accuracy			0.51	4800
macro avg	0.51	0.51	0.50	4800
weighted avg	0.51	0.51	0.50	4800

- > optimisation d'hyperparamètres
- > tuner Hyperband de Keras Tuner
- > tuning de l'hypermodèle :
 - best learning rate
 - best epochs
 - o nb de neurones couche Dense

RNN & LSTM

- Entraînement :
 - avec Word2Vec et Glove
 - sur un corpus lemmatisé et stemmé
- Résultats : médiocres
- > Le meilleur score F1 => corpus prétraité avec le stemmeur :
 - Word2Vec: 0.54
 - GloVe: 0.51

CNN

- > Résultats:
 - médiocres
 - o meilleurs que RNN
- ➤ Le meilleur score F1 => corpus prétraité avec le lemmatiseur :
 - Word2Vec: 0.54
 - GloVe: 0.54

BERT

- > Lenteurs à l'exécution
- > Résultats :
 - meilleurs que RNN ou CNN
- ➤ Le score F1:
 - o corpus lemmatisé : 0.70
 - o corpus stemmé : 0.62

Résultats

Comparaison des scores

Corpus

Stemming

Lemmatisation

	Loss	Acc	AUROC	Time	F1
Logistic Regression		0.72	0.72	1.19	0.72
Keras Emb STEM	0.6	0.69	0.76	6.88	0.47
W2V RNN / LSTM STEM	0.91	0.5	0.5	123.71	0.54
W2V CNN STEM	0.87	0.51	0.51	21.72	0.52
Glove RNN / LSTM STEM	0.9	0.5	0.51	47.84	0.51
Glove CNN STEM	0.8	0.51	0.52	7.64	0.53
BERT STEM	0.73	0.49	0.62	2016.06	0.62

	Loss	Acc	AUROC	Time	F1
Logistic Regression	(0.72	0.72	1.19	0.72
Keras Emb LEMMA	0.6	0.69	0.76	5.18	0.53
W2V RNN / LSTM LEMMA	0.81	0.51	0.51	49.0	0.51
W2V CNN LEMMA	0.81	0.5	0.5	11.88	0.54
Glove RNN / LSTM LEMMA	0.89	0.5	0.5	37.26	0.48
Glove CNN LEMMA	0.84	0.51	0.51	7.63	0.54
BERT LEMMA	0.67	0.6	0.68	1940.3	0.7

Mise en production

Fast API + GitHub + Heroku

FastAPI


```
Curl
curl -X 'POST' \
   'https://fastapi-projet.herokuapp.com/prediction' \
  -H 'accept: application/json' \
-H 'Content-Type: application/json' \
   "reviev": "I enjoyed the flight, thank you."
Request URL
 https://fastapi-projet.herokuapp.com/prediction
Server response
Code
             Details
200
             Response body
                "prediction": "The sentiment is positive :-)"
```

```
Curl
curl -X 'POST' \
   'https://fastapi-projet.herokuapp.com/prediction' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
   "review": "This flight was absolutely awful."
Request URL
 https://fastapi-projet.herokuapp.com/prediction
Server response
Code
               Details
200
               Response body
                   "prediction": "The sentiment is negative :-("
```

Conclusions

Envisager des actions supplémentaires pour obtenir de meilleurs résultats :

- augmenter la volumétrie de l' échantillon
- mieux prétraiter les données textuelles
- une recherche d'hyper paramètres plus poussée

