ML Week

0x05 K-Means

Jeff Abrahamson

2-5 novembre 2015

The Problem

Have points $d = \{d_1, \dots, d_n\}$.

Have number of clusters k.

Want: an assignment of points to clusters

The Algorithm

- Assign points to clusters at random
- 2 Repeat until stable:
 - 1 Compute centroids of each cluster
 - 2 Assign points to nearest centroid

Cost function

$$cost = \sum_{i} \sum_{j} |x_{j} - \mu_{i}|$$

Points $d = \{d_1, ..., d_n\}$

Clusters $K = \{k_1, \ldots, d_k\}$.

Cluster k_{d_i} is the cluster of d_i .

Points $d = \{d_1, ..., d_n\}$

Clusters $K = \{k_1, \ldots, d_k\}$.

Cluster k_{d_i} is the cluster of d_i .

Let a_i be the average dissimilarity of d_i to all points in its cluster.

Let b_i be the least average dissimilarity of d_i to any cluster other than k_{d_i}

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

$$s_i = \begin{cases} 1 - a_i/b_i & \text{if } a_i < b_i \\ 0 & \text{if } a_i = b_i \\ b_i/a_i - 1 & \text{if } a_i > b_i \end{cases}$$

$$s_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

$$s_i = \begin{cases} 1 - a_i/b_i & \text{if } a_i < b_i \\ 0 & \text{if } a_i = b_i \\ b_i/a_i - 1 & \text{if } a_i > b_i \end{cases}$$

So
$$s_i \in [-1, 1]$$

- s_i near 1 \iff d_i well clustered
- s_i near $0 \iff d_i$ on the border between two clusters
- s_i near -1 \iff d_i well clustered

Consider $\overline{s_i}$ over $i \in k_j$ for cluster k_j

Consider $\overline{s_i}$

Questions?

purple.com/talk-feedback