# Sequence Alignment for Ride Sharing

Dalya Gartzman



## PART I - Ride Sharing









# Question #1:

What is the best way to perform a given sequence of events?





















# Question #1:

What is the best way to perform a given sequence of events?

# Question #2:

What is the best permutation to perform a given set of events?



















 $\frac{(2n)!}{2^n}$ 

 $\frac{(2n)!}{2^n}$ 

Values:

| n               | 1 | 2 | 3  | 4    | 5      |
|-----------------|---|---|----|------|--------|
| $2^{-n} (2 n)!$ | 1 | 6 | 90 | 2520 | 113400 |





#### PART I - Conclusion



# Question #3:

Given a set of events, how can we scale down the number of permutations?

## PART II - Sequence Alignment

## PART II - Sequence Alignment

#### **Motivation**

|                  | Forward Primer                                |     |
|------------------|-----------------------------------------------|-----|
|                  | <del></del>                                   |     |
| Ph. edulis       | ACTTCTCAGGCTAGTAAATTGGATTAGCAGAGAGCTCAAATAAAT | 60  |
| Ph. aureosulcata | ACTTCTCAGGCTAGTAAATTGGGTTAGCAGAGAGCTCAAATAAAT | 60  |
| Ph. praecox      | ACTTCTCAGGCTAGTAAATTGGGTTAGCAGAGAGCTCAAATAAAT | 60  |
| Ph. heteroclada  | ACTTCTCAGGCTAGTAAATTGGGTTAGCAGAGAGCTCAAATAAAT | 60  |
|                  | ************                                  |     |
| Ph. edulis       | CCATATATATATATATATATATATATATATATATAT          | 112 |
| Ph. aureosulcata | CCATATCAACAT TATATATATATATAT GAAAATGGTATGGT   | 105 |
| Ph. praecox      | CCATATATATATATATATATATATATATATATATATATA       | 120 |
| Ph. heteroclada  | CCATATCAACAT TATATA AATGGTATGGTATTC           | 93  |
|                  | ***** * * * * * * * * * * * * * * * * *       |     |
| Ph. edulis       | CTGGGAGTACGTACTCCCACCTCTCAT                   | 139 |
| Ph. aureosulcata | CTGGGAGTACTCCCACCTCTCAT                       | 132 |
| Ph. praecox      | CTGGGAGTACGTACTCCCACCTCTCAT                   | 147 |
| Ph. heteroclada  | CTGGGAGTACGTACTCCCACCTCTCAT                   | 120 |
|                  | **********                                    |     |
|                  | <b>—</b>                                      |     |
|                  | Reverse Primer                                |     |

### In The Wild

Sequence1 -TCAGGA-TGAAC-G-

Sequence2 ATCACGA-TGAACC--

Sequence3 -TCACGATTGAACCGC

Sequence4 ATCACGAATGAATCC-

### In The Wild

```
Sequence1 -TCAGGA-TGAAC-G-
Sequence2 ATCACGA-TGAACC--
Sequence3 -TCAGGATTGAACCGC
Sequence4 ATCACGAATGAATCC-
```

### In The Wild

Sequence1 - TCAGGA-TGAAC-G-Sequence2 ATCACGA-TGAACC--Sequence3 - TCAGGATTGAACCGC Sequence4 ATCACGAATGAATCC-

#### In **OUR** Wild

```
Sequence1 Ph Ps Dh - - Ds
```

Sequence2 Ph - Dh Pr Dr -

### In OUR Wild

Sequence1 Ph Ps Dh - Ds

Sequence2 Ph - Dh Pr Dr -

### In OUR Wild

Sequence1 Ph Ps Dh - Ds
Sequence2 Ph - Dh Pr Dr -

### PART II - Conclusion





# PART III - Sequence Alignment for Ride Sharing

### The Ride Sharing Problem

#### We are given:

▷ A set of *n* pairs of pickup and dropoff  $T = \{p_i, d_i\}_{i \in [n]}$ 

#### Our Goal:

Find the set of all possible permutations of *T* 

### The Ride Sharing Problem

#### We are given:

▷ A set of *n* pairs of pickup and dropoff  $T = \{p_i, d_i\}_{i \in [n]}$ 

#### Our Goal:

Find the set of all possible permutations of *T* 



### The Ride Sharin

#### We are given:

A set of *n* pairs of pickup and dropoff

#### Our Goal:

Find the set of all possible permutations of 7



# Question #3:

Given a set of events, how can we scale down the number of permutations?

#### We are given:

 $\triangleright$  A set of n pairs of pickup and dropoff  $T = \{p_i, d_i\}_{i \in [n]}$ 

#### Our Goal:

Find the set of all possible permutations of *T* 

#### We are given:

- $\triangleright$  A set of n pairs of pickup and dropoff  $T = \{p_i, d_i\}_{i \in [n]}$
- ightharpoonup For each subset of n-1 pairs  $\left(T^{(j)}=\{p_i,d_i\}_{i\in[n],i\neq j}\right)$  we are given a subset of all possible permutaions  $S^{(j)}=\left\{s_k^{(j)}\right\}_{k\in K^{(j)}}$

#### Our Goal:

Find the set of all possible permutations of T that agree with all  $\{S^{(j)}\}_{j\in[n]}$ .

#### We are given:

- $\triangleright$  A set of n pairs of pickup and dropoff  $T = \{p_i, d_i\}_{i \in [n]}$
- ⊳ For each subset of n-1 pairs  $T^{(j)} = \{p_i, d_i\}_{i \in [n], i \neq j}$  we are given a subset of all possible permutaions  $S^{(j)} = \{s_k^{(j)}\}_{i \in V^{(j)}}$

#### Our Goal:

Find the set of all possil

**Induction Assumption** 

### **Induction Step**

$$\{a_i, d_i\}_{i \in [n]}$$

$$i \in [n].i \neq i$$

we are given a subset of all possible permutaions  $S^{(j)} = \left\{ s_k^{(j)} \right\}$ 

ns 
$$S^{(j)} = \left\{ s_k^{(j)} \right\}_{k \in K^{(j)}}$$

#### Our Goal:

Find the set of all possible permutations of *T* that agree with all

$$\left\{S^{(j)}\right\}_{j\in[n]}$$

#### We are given:

- $\triangleright$  A set of *n* pai
- ⊳ For each subsequent
  we are given



 $k \in K^{(j)}$ 

#### Our Goal:

Find the set of all possible permutations of T that agree with all  $\{S^{(j)}\}_{j\in[n]}$ 

## Question #4:

How can we break down the induction step?

#### We are given:

 $\triangleright$  A set of *n* pairs of pickup and dropoff  $T = \{p_i, d_i\}_{i \in [n]}$ 

#### We are given:

- ▷ A set of *n* pairs of pickup and dropoff  $T = \{p_i, d_i\}_{i \in [n]}$
- Down Two subsets of n 1 pairs:  $I_1 = \{2, ..., n\}$ ,  $I_2 = \{1, 3, ..., n\}$

$$|I_1 \cap I_2| = n - 2$$
$$|I_1 \cup I_2| = n$$

#### We are given:

- ▷ A set of *n* pairs of pickup and dropoff  $T = \{p_i, d_i\}_{i \in [n]}$
- $\triangleright$  Two subsets of *n* − 1 pairs:  $I_1 = \{2, ..., n\}$ ,  $I_2 = \{1, 3, ..., n\}$
- $\triangleright$  One permutation from each subset:  $\sigma_1 = \sigma\left(\{p_i, d_i\}_{i \in I_1}\right)$ ,  $\sigma_2 = \sigma\left(\{p_i, d_i\}_{i \in I_2}\right)$

#### We are given:

- ▷ A set of *n* pairs of pickup and dropoff  $T = \{p_i, d_i\}_{i \in [n]}$
- $\triangleright$  Two subsets of *n* − 1 pairs:  $I_1 = \{2, ..., n\}$ ,  $I_2 = \{1, 3, ..., n\}$
- $\triangleright$  One permutation from each subset:  $\sigma_1 = \sigma\left(\{p_i, d_i\}_{i \in I_1}\right)$ ,  $\sigma_2 = \sigma\left(\{p_i, d_i\}_{i \in I_2}\right)$

**Our Goal:** Find the set of all possible permutations of T that agree with both  $\sigma_1$  and  $\sigma_2$ .

# Question #5:

How can we find all permutations that agree with two sub-permutations?



### **Example: Induction Sub-Step**

$$\mathbf{T} = \{\mathbf{Pr}, \mathbf{Ps}, \mathbf{Ph}, \mathbf{Dh}, \mathbf{Dr}, \mathbf{Ds}\}$$

$$\sigma_{hs} = P_h P_s D_h D_s$$

$$\sigma_{hr} = P_h D_h P_r D_r$$

### **Example: Induction Sub-Step**

$$\mathbf{T} = \{\mathbf{Pr}, \mathbf{Ps}, \mathbf{Ph}, \mathbf{Dh}, \mathbf{Dr}, \mathbf{Ds}\}$$

$$\sigma_{hs} = P_h P_s D_h D_s$$

$$\sigma_{hr} = P_h D_h P_r D_r$$

#### **Reminder:**

Sequence1 Ph Ps Dh - - Ds

Sequence2 Ph - Dh Pr Dr -

$$\sigma_{hs} = P_h P_s D_h D_s$$

$$\sigma_{hr} = P_h D_h P_r D_r$$

mutual subsequence

$$\sigma_{hs} = P_h P_s D_h D_s$$

$$\sigma_{hr} = P_h D_h P_r D_r$$

mutual subsequence



Ph

Dh

**END** 









$$\sigma_{hs} = P_h P_s D_h D_s$$

$$\sigma_{hr} = P_h D_h P_r D_r$$

aligned insertions



$$\sigma_{hs} = P_h P_s D_h D_s$$

$$\sigma_{hr} = P_h D_h P_r D_r$$

aligned insertions



$$\sigma_{hs} = P_h P_s D_h D_s$$

$$\sigma_{hr} = P_h D_h P_r D_r$$

aligned insertions



$$\sigma_{hs} = P_h P_s D_h D_s$$

$$\sigma_{hr} = P_h D_h P_r D_r$$

aligned insertions



 $\sigma_{hs} = P_h P_s D_h D_s$ 

 $\sigma_{hr} = P_h D_h P_r D_r$ 

Induction sub-step result:

Ph Ps Dh Ds Pr Dr

Ph Ps Dh Pr Ds Dr

Ph Ps Dh Pr Dr Ds

```
Ph Ps Dh Ds
Ps Ds Ph Dh
```

```
hr Ph Dh Pr Dr Ph Pr Dh Dr
```

hs Ps Dh Ds
Ps Ds Ph Dh

Ph Ps Dh Ds Pr Dr
Ph Ps Dh Pr Ds Dr
Ph Ps Dh Pr Dr Ds

hr Ph Dh Pr Dr Ph Pr Dh Dr

**Induction Sub-Step** 

hs Ps Dh Ds
Ps Ds Ph Dh

hr Ph Dh Pr Dr Ph Pr Dh Dr

Ph Ps Dh Ds Pr Dr Ph Ps Dh Pr Ds Dr Ph Ps Dh Pr Dr Ds Ph Ps Pr Dh Ds Dr Ph Pr Ps Dh Ds Dr Ph Ps Pr Dh Dr Ds Ph Pr Ps Dh Dr Ds

hs Ph Ps Dh Ds Ps Ds Ph Dh

hr Ph Dh Pr Dr Ph Pr Dh Dr

Ph Ps Dh Ds Pr Dr Ph Ps Dh Pr Ds Dr Ph Ps Dh Pr Dr Ds Ph Ps Pr Dh Ds Dr Ph Pr Ps Dh Ds Dr Ph Ps Pr Dh Dr Ds Ph Pr Ps Dh Dr Ds Ps Ds Ph Dh Pr Dr

Ph Ps Dh Ds
Ps Ds Ph Dh

hr Ph Dh Pr Dr Ph Pr Dh Dr

Ph Ps Dh Ds Pr Dr Ph Ps Dh Pr Ds Dr Ph Ps Dh Pr Dr Ds Ph Ps Pr Dh Ds Dr Ph Pr Ps Dh Ds Dr Ph Ps Pr Dh Dr Ds Ph Pr Ps Dh Dr Ds Ps Ds Ph Dh Pr Dr Ps Ds Ph Pr Dh Dr

hs Ph Ps Dh Ds
Ps Ds Ph Dh

hr Ph Dh Pr Dr Ph Pr Dh Dr

Ph Ps Dh Ds Pr Dr Ph Ps Dh Pr Ds Dr Ph Ps Dh Pr Dr Ds Ph Ps Pr Dh Ds Dr Ph Pr Ps Dh Ds Dr Ph Ps Pr Dh Dr Ds Ph Pr Ps Dh Dr Ds Ps Ds Ph Dh Pr Dr Ps Ds Ph Pr Dh Dr



# Examples

hs

Ph Ps Dh Ds
Ps Ds Ph Dh

Ph Dh Pr Dr
Ph Pr Dh Dr

Ps Pr Ds Dr
Ps Ds Pr Dr









# etion Step

Ps Dh Ds Pr Dr

Ps Dh Pr Ds Dr

Ps Dh Pr Dr Ds

Ps Pr Dh Ds Dr

Pr Ps Dh Ds Dr

Ps Pr Dh Dr Ds

Pr Ps Dh Dr Ds

Ds Ph Dh Pr Dr

Ds Ph Pr Dh Dr



hr Ph Dh Pr Dr Ph Pr Dh Dr



Ph Ps Dh Ds Pr Dr

Ph Ps Dh Pr Ds Dr

Ph Ps Dh Pr Dr Ds

Ph Ps Pr Dh Ds Dr

Ph Pr Ps Dh Ds Dr

Ph Ps Pr Dh Dr Ds

Ph Pr Ps Dh Dr Ds

Ps Ds Ph Dh Pr Dr

Ps Ds Ph Pr Dh Dr



Ph Ps Dh Ds Pr Dr Ph Ps Dh Pr Ds Dr Ph Ps Dh Pr Dr Ds Ph Ps Pr Dh Ds Dr Ph Pr Ps Dh Ds Dr Ph Ps Pr Dh Dr Ds Ph Pr Ps Dh Dr Ds Ps Ds Ph Dh Pr Dr Ps Ds Ph Pr Dh Dr



Ph Ps Dh Ds Pr Dr Ph Ps Dh Pr Ds Dr Ph Ps Dh Pr Dr Ds Ph Ps Pr Dh Ds Dr Ph Pr Ps Dh Ds Dr Ph Ps Pr Dh Dr Ds Ph Pr Ps Dh Dr Ds Ps Ds Ph Dh Pr Dr Ps Ds Ph Pr Dh Dr

Ps Pr Ds Dr
Ps Ds Pr Dr

Ph Ps Dh Ds Pr Dr Ph Ps Dh Pr Ds Dr Ph Ps Dh Pr Dr Ds Ph Ps Pr Dh Ds Dr Ph Pr Ps Dh Ds Dr Ph Ps Pr Dh Dr Ds Ph Pr Ps Dh Dr Ds Ps Ds Ph Dh Pr Dr Ps Ds Ph Pr Dh Dr

Sr Ps Pr Ds Dr
Ps Ds Pr Dr

Ph Ps Dh Ds Pr Dr Ph Ps Dh Pr Ds Dr Ph Ps Dh Pr Dr Ds Ph Ps Pr Dh Ds Dr Ph Pr Ps Dh Ds Dr Ph Ps Pr Dh Dr Ds Ph Pr Ps Dh Dr Ds Ps Ds Ph Dh Pr Dr Ps Ds Ph Pr Dh Dr

Sr Ps Pr Ds Dr
Ps Ds Pr Dr

Ph Ps Dh Ds Pr Dr Ph Ps Dh Pr Ds Dr Ph Ps Dh Pr Dr Ds Ph Ps Pr Dh Ds Dr Ph Pr Ps Dh Ds Dr Ph Ps Pr Dh Dr Ds Ph Pr Ps Dh Dr Ds Ps Ds Ph Dh Pr Dr Ps Ds Ph Pr Dh Dr

Ps Pr Ds Dr
Ps Ds Pr Dr

Ph Ps Dh Ds Pr Dr

Ph Ps Dh Pr Ds Dr

Ph Ps Pr Dh Ds Dr

Ph Pr Ps Dh Ds Dr

Sr Ps Pr Ds Dr
Ps Ds Pr Dr

Ps Ds Ph Dh Pr Dr

Ps Ds Ph Pr Dh Dr

hs Ph Ps Dh Ds
Ps Ds Ph Dh

hr Ph Dh Pr Dr Ph Pr Dh Dr

Ps Pr Ds Dr
Ps Ds Pr Dr

Ph Ps Dh Ds Pr Dr Ph Ps Dh Pr Ds Dr Ph Ps Pr Dh Ds Dr Ph Pr Ps Dh Ds Dr Ps Ds Ph Dh Pr Dr Ps Ds Ph Pr Dh Dr







The Ride Sharing Machine



n = number of people

**k** = number of permutations in the previous induction step

1. Induction sub-step (Sequence Alignment): O(n)



2. Construction: O(k²)
(worst case, k=|Si| for all i)



3. Filtering: O(n·k³)
(naive ~(n-2)·k·k² comparissons)



- 1. Induction sub-step: O(n)
- 2. Construction: O(k<sup>2</sup>)
- 3. Filtering: O(n·k³)

- 1. Induction sub-step: O(n)
- 2. Construction: O(k²)
- 3. Filtering: O(n·k³)

=> Full Induction Step: O(n<sup>2</sup>k<sup>3</sup>)

```
hs Ph Ps Dh Ds
Ps Ds Ph Dh

Ph Ps Dh Ds Pr Dr
Ph Ps Dh Pr Ds Dr
Ph Ps Pr Dh Ds Dr
Ph Pr Dh Dr
Ph Pr Dh Dr

Ps Ds Ph Dh Pr Dr
Ps Ds Ph Dh Pr Dr
Ps Ds Ph Pr Dh Dr
```

=> Full Induction Step: O(n<sup>2</sup>k<sup>3</sup>)



=> Full Induction Step: O(n<sup>2</sup>k<sup>3</sup>)

Maximal number of sequences: O(k<sup>2</sup>)











# Take Home Message



# Thank you:) Questions?

# DalyaG@gmail.com OVIO