Data Analytics

Welcome to Data Analytics

What You'll Learn Today

In this lesson, we'll:

- Outline goals, expectations, and logistics.
- Definition of data analytics vs other data fields
- Identify the skills and mindset of a successful data analyst.
- Discuss the discipline of data analytics, including topics such as data formats and data ethics.
- Identify tools and topics within data analytics

Global Campuses

Course Alumni

Workshop Attendees

Expert Instructors

Meet Your Instructor

Ng Shu Min

Data Analytics and Data Science Instructor

- Passionate educator with over 20 years of experience in teaching and training specialising in Programming, Data Modelling, Data Analytics, Data Science
- Industry experience in Manufacturing, Media, and Education
- Consulting in **Data Analytics** and **Data Science** for academia and business

Group Exercise:

Getting to Know You! (Ice Breaking!)

Introduce yourself and say hi to your classmates!

- Fill in this Google JamBoard:
 https://jamboard.google.com/d/1Xi5t
 u6MjSN7Tdj2rywVl3lydpT6bn3Nc
 5f2eoaE0Y/edit?usp=sharing
- You can click on the text box and Duplicate, then fill in your info: name, location and favourite food!
- Also: your experience with Excel, SQL and Tableau

Orientation

No such thing as a silly question

Slides and data files in Google Classroom

Your time - limit distractions

Last class

– Fri 6 October

Orientation

Out of class support & working as a team

Camera on, mic off

Timing and pace

At GA, we create norms for how we'll work together during the course.

Check out the working norms. Is there anything else we should add to the list?

Be Present Constructively Work Hard

Ask
Questions Be Supportive Talk to Us!

Buckle Up for the Journey Ahead!

Gaining new idea => the path

Our Teaching Method

Where We're Going | Lesson by Lesson

1	Introduction to Data Analytics
2	Introduction to SQL
3	Grouping and CASE WHEN in SQL
4	JOINs and Merges
5	Subqueries in SQL
6	Data Cleaning and Formulas
7	Referencing and Lookups
8	Aggregating Data With PivotTables

9	Communicating With Excel
10	Introduction to Tableau
11	Data Manipulation in Tableau
12	Dashboards in Tableau
13	Data Narratives in Tableau
14	Final Presentation

You'll Leave This Course Saying...

"I am no longer intimidated by rows and rows of data! I can combine, clean, and visualize data to gain insights into important business trends."

"I feel empowered to continue learning new techniques and acquiring new ways of working with data."

"Converting numbers into visually appealing, easy-to-understand visualizations is such a creative process. It's a lot of fun!"

Introduction to Data Analytics

Course Logistics

Here for You

Office Hours

Support and advice

Day and time - refer to:

Google Classroom and Telegram

Used for course content, announcements, and class discussions.

Graduation Requirements

Complete 80% of homework assignments.

Maintain consistent attendance.

Complete and submit the final project.

Homework

- Homework may be assigned at the end of each lesson. It generally consists
 of pre-lesson work in myGA (optional), additional practice as assigned by
 your instructor, and project work (required).
 - To submit your project work, you'll be provided with a link to your own Google drive and share it with your instructor.
 - This will be your work repository where you upload your project work and any assignments as required by your instructor.
- Grading: The pre-lesson work is not graded. Project work will be graded after your project presentation.

Final Project Presentation

At the end of the course, you'll give a **5–7 minute presentation** that should address the following:

- Who is your target audience?
- What problem are you solving?
- What is your solution and how does it solve the problem?
- What are some insights and trends you want to share, and why are they important?
- How do you tell the story of your data through data narratives and visualization?

New jobs and lost jobs, 2023 - 2027 (World Economic Forum Future of Jobs Report, 2023)

Introduction to Data Analytics

The Role of a Data Analyst

What Does a Data Analyst Do?

Maybe you already know what a data analyst does on a daily basis, or maybe you're totally new to the field. Focus on 2–3 of the points below and share your experience:

- What does the typical work day of a DA look like?
- How does a DA collaborate with others?
- What is it like to work for a small startup versus a mid-sized or large company?
- What are some fun things about the job?
- What are some challenges?
- What's the most important skill to have as a DA? (This can also include soft skills.)

Data Analyst

The Storyteller

- Uses Excel, SQL (or NoSQL), Python, R, and visualization software like Tableau, Qliksense, and Power Bl.
- Explores data and presents trends and insights.

Data Scientist

The Wizard

- Uses Python, R, SAS, SQL, Matlab, Hive, Pig.
- Works with data using algorithms, machine learning, and Al.
- Also tells data stories but with more of a focus math and coding.

Data Analytics vs Data Science

Data Analytics

Data Science

Warning: A gross over-simplification!!

Data Analytics vs Data Science

Data Scientist

- Clean Data
- Massage Data
- Organize Data
- Build Digestible/Predictive /Prescriptive Models
- Build BI models

Data Analyst

- Collect Data
- Process Data
- Analyze Data
- Build Descriptive/Diagnost ic Models
- Build BI models

Data Engineer

- Software Engineers
- Develop Database
- Prepare Data for analytics
- Maintain data sources
- Data lake, data warehouse owner

Data Architect

- Design and plan data architecture
- Plan data pipeline
- Plan infrastructure
- Domain expert who understands business problem

Data Admin

- Data Owner
- Ensures pipelines are in place
- Responses to any downtime

How many of us have encountered this?

Storytelling can make or break your organization

Stop showing the data

This charts shows me the data – but so what?

Survey Results

Start storytelling with data

Communicate insight through data

Pilot program was a success

How do you feel about science?

Based on survey of 100 students conducted before and after pilot program (100% response rate on both surveys).

Developing an Analytical Mindset

What to Do	How to Do It
Be curious and ready to learn new things.	Ask lots of questions. Explore new techniques and new ways of looking at data.
Practice, practice!	Find data sets online and take them through the DA Workflow, from framing all the way to communicating.
Follow what the data tells you.	Never twist your analysis to support your initial hypothesis.

Developing an Analytical Mindset (Cont.)

What to Do	How to Do It
Stay ORGANIZED!	Keep your spreadsheets tidy and easy to understand.
Document, document!	Maintain lists of what you delete or change when cleaning data, and comment your code.

So... What Does Data Actually Look Like?

Ç.	shower City		stome:		utumer gion	Existance Age Range	Eustamor Gender	Customer Income Rouge		detempr decation	Haunebuild Count		ansing ape		ediment erital Status		Hetterp often
1	San Francico	(1)	CA	1.	West.	1. 5elow 20	T Male	1.0 + 20,000	-38	-Graduate	4.4	2	Owner	- 22	Married	1	High
+	New York	3	W	2	Cart	3 41-60	2 Female	T 80,001 upward	1	High School	3.3	ī	Owner	1	Described	1	High
	New York	3	THY	2	fast	5 81 and above	2 female	1 0 - 20,000	4	Other	1.1	7	Owner	1	Dispress	3	Line
5	Washington OC	4	: DC	2	fart	2 21-40	II Female	4 60,001 - 80,000	14	Other	3.3	1	Apreter	1	Simple (Never	12	Nedion
5	Washington DC	4	DC.	2	East	+ 61-80	2. Famale	2 20,001 - 40,000	11	High School	1.1	2	Owner	1	Siright (Never	13	Lille
1	San Francisco	8	CA	1.	West	5 81 and above	2 Female	5 80,001 upward	14	Other	7.7 or more	2	Owner	12	Married	1	High
4	New York	3	NV	7	East	2 71-40	2 Female	1 0 - 20,000	/1	High School	7.7 or more	7	Demer	12	Harrand	1	High
+	New York	3	W	7	Bart.	3 41-60	2 Female	3 40,001 - 60,000	.3	Oraduste	7.7 or more	1	Renter	T.	Single (Never	12	Medium
1	San Francisco:	1	CA	1.	West	5 85 and atoms	3 Main	5 80,001 upward	13	Graduate	4.4	1	Benter	72	Married .	3	High
2	Los Angeles	1	CA	1	West	1. below 20	2 Female	4 50,001 - 80,000	. 9	Graduate.	3.3	2	Owner	1	Simple (Never	12	Medium
1	Washington DC	4	DC	2	East	2 21-40	2 Female	1.0-20.000	1	High School	2.7	2	Owner	11	Single (Never	13	Low
7	Vienna	3	· WA	2	Eint	1 below 20	3. Male	1:0-20,000	-4	Other	2.5	12	Barrior	3	Description	7	Medium
2	Dittsburg	2	FIA.	2	tast	4 61-80	3. Male	2 20,001 - 40,000	13	Graduate	3.3	-1	Rentar	1	Simple (Never	12	LOW:
4	New York	3	nin	2	East	1 below 20	1. Male	2 20,001 - 40,000	12	Undergraduate	1.1	1	Rentar	2	Married	12	Nedium
1	San Francisco	1	CA	1	West	3 41-60	1 Male	3 40,001 - 60,000	4	Other	3.3	1.3	Rentar	1	Single thever	12	Medium
1	San Francisco	1	CA	1	West	5 81 and above	2 Female	3 40,001 + 60,000	- 4	Other	2.2	1	Reinter	1	Diviorited	7	Medium
2	Los Angeles	1	CA	1	West	2 21-40	2 Female	5 80,001 upward	13	Graduate	2.2	1	Panter	3	Divorced	1	High
4	Name York	3	101	2	East	4.61-80	1 Male	2 20,001 - 40,000	.)4	Other	1.1	2	Owner	2	Harried .	2	Medium
3	Washington OC	4	DC.	2	EAST	2 21-40	1 Wale	1.0 - 20,000	. 3	Graduate	7.7 or more	1	Rantur	3	Divibrand	1	High
4	New York	3	FFF	2	East	1. below 20	2 Female	3 40,001+60,000	1	High School	44	2	Dwner	2	Married	1	High
3	Pithsburg	2	PA.	2	East	1 below 20	1 Male	5 80,001 upward	-3	Graduate	5.5	12	Owner	2	Marrayd		reght
3	Washington DC	4	DC.	2	Last	5 81 and above	1 Main	3 40,001 - 60,000	- 2	Undergraduate	1.1	-1	Harritor.	3	Divorces	1	Medium
A	New York	3	NE	2	East	2 21-40	2 Female	3 40,001 - 60,000	3	Drieduste	4.4	2	Owner	2	Married	3	reigh
t	San Francisco	3	CA	1	West	5 B1 and above	1 Male	3 40,001 - 60,000	- 12	Undergraduate	3.3	2	Owner.	2	Harried	1	High
1	Bart Fransisco	Ġ.	CA.	1	West	2 21-40	1 Male	5 80,001 upward	13	Graduate	6.6	1	Bester	2	Married	1	High
1	San Fransisco	ď.	-CA	1	West	+ 61-60	1 Male	4 80,001 - 80,000	3	Graduate	2.2	1	Herter	1	Simple Oliever	12	Medium
4	Now York	3	BIT	2	Bust.	3 81 and above	1 Hotel	2 30,001 -40,000	1	High School	2.7 or more	2	Owner	11	Simple (Never	12	Nediur
4	New York	3	NY	2	fast.	2 21-40	2 Female	5 80,001 upward	- 2	Undergraduate	2.2	1	Parrier.	12	Single (Never	17	Medium
2	Los Angeles	н	CA	1	West	2 21-40	I Male	15 80,001 up+ard	1	High School	11	2	Owner	t	Single (Never	12	Medium
+	New York	3	NY	2	East.	+ 51-60	Il Female	2 20,001 - 40,000	1	Undergraduate	5.5	1	Renter	3	Divorced	2	Medium
1	San Fransisco	н	CA	1	west	1 below 20	1 Wate	2 20,001 -40,000	.13	Graduate	7.7 or more	1	Benter	1	Single Meyer	12	Modeum
	New York	3	NT	2	Bast	3 41-60	2 Female	9 00,001 upward	13	Oraquate	1.1	31	Norter	1	Dispress	1	140h
EO	Kansas		EA-	2	Contra	3 41-60	1 Maio	3 40,001 - 60,000	76	Graduate	6.6	2	Owner	2	Married	1	High
1	San Francisco	1	CA	1	West	1 below 20	1 Male	1.0 - 20,000	2	Undergraduate	1.1	1	Renter	13	Dispreed	13	Litre
11	Las Vegas	8	W	3	Cantral	5 81 and above	2 Female	3 40,001 + 68,000	0	Undergraduate	8.6	E	Owner	3	Divorned	1	High
7	Vierna	3	AVA.	2	East	2 21 40	I Male	I 30,001 - 40,000	19	Vindergraduate	6.1	I	Center		Dyrorpest		High
4	Figure Visits	3	THY	2	East	1 Bolow 20	2 Pemale	5 80,001 igiward		Undergraduate	2.2		Barrier		planned:		High
1	San Francisco	4	CA	1	West	1. 1010= 20	2 Female	T 80,001 upward		Undergraduate	1.1		Owner	11	Simple Dilever		
5	Washington DC	4	OC.	2	Eart	2 23-40	I Female	3 40,001 +60,000		Undergraduate	5.1	Ti.	Renter		Dispressi		Medium
#	Seattle	9	MAKE	1	Wast	2 21-40		3 20 001 - 40 000		Chine	2.2	16	Daner		Married		Medium

Rows and columns?!

The Five Vs (or Characteristics) of Big Data

Volume: Consider the scale of the data (big or small, structure).

Velocity: Understand data sources, timing, and flow.

Variety: What forms and types are required to answer questions?

Veracity: Verify the quality, accuracy, and reliability of sources.

Value: What are the metrics or measurements for desired outcomes?

The DA Workflow

Frame: Develop hypothesis-driven questions for your analysis.

Extract: Select and import relevant data.

Wrangle/Prepare: Clean and prepare relevant data.

Analyze: Structure, comprehend, and visualize data.

Interpret: Leverage your analysis to make decisions and recommendations.

Communicate: Present data-driven findings and insights in a compelling manner.

The DA Workflow

Frame: Develop hypothesis-driven questions for your analysis.

Extract: Select and import relevant data.

Wrangle/Prepare: Clean and prepare relevant data.

Analyze: Structure, comprehend, and visualize data.

Interpret: Leverage your analysis to make decisions and recommendations.

Communicate: Present data-driven findings and insights in a compelling manner.

Introduction to Data Analytics

Data Formats

Let's Talk About Data Formats

You'll be looking at a lot of data throughout this course.

The formatting of data can make a real difference in your work as a DA!

Data Formats | Columns

Take a look at this example:

- What do you notice?
- What can we do to improve it?

Share your answers with the class.

Street Address

1234 Main Street, Sacramento, CA, 95822

5678 Broadway Avenue, Denver, CO, 80122

9810 Poplar Street, Philadelphia, PA 19108

Data Formats | Columns

How about now?

- What's changed?
- What makes this version better?

City	State	Zip
Sacramento	CA	95822
Denver	CO	80122
Philadelphia	PA	19108
	Sacramento Denver	Sacramento CA Denver CO

Partner Exercise: Data Formats | Columns and Rows

Pair up with a classmate and take a look at the example below.

- What do you notice? What does this data set tell you?
- What can we do to improve it?

Country Name	Country Cod	Indicator Name	1960	1961	1962	1963
Aruba	ABW	Life expectancy at birth, total (years)	65.5693658	65.9880243	66.3655365	66.7139756
Andorra	AND	Life expectancy at birth, total (years)				
Afghanistan	AFG	Life expectancy at birth, total (years)	31.5800487	32.0959756	32.6118780	33.1273170
Angola	AGO	Life expectancy at birth, total (years)	32.9848292	33.3862195	33.7875853	34.1884634
Albania	ALB	Life expectancy at birth, total (years)	62.2543658	63.2734634	64.1628536	64.8870975
Arab World	ARB	Life expectancy at birth, total (years)	46.7626948	47.3886012	48.0024362	48.6075914
United Arab Emirates	ARE	Life expectancy at birth, total (years)	52.2432195	53.2865609	54.327	55.3635122
Argentina	ARG	Life expectancy at birth, total (years)	65.2155365	65.3385122	65.4326097	65.5093902
Armenia	ARM	Life expectancy at birth, total (years)	65.8634634	66.2843902	66.7098536	67.1378536

Data Formats | Columns and Rows

Here's a better way!

One row for each *variable*: country name, country code, year, and life expectancy.

It's OK if some data are repeated!

Country Name	Country Code	Year	Life Expectancy
Aruba	ABW	1960	65.56936585
Aruba	ABW	1961	65.98802439
Aruba	ABW	1962	66.36553659
Aruba	ABW	1963	66.71397561
Afghanistan	AFG	1960	31.58004878
Afghanistan	AFG	1961	32.09597561
Afghanistan	AFG	1962	32.61187805
Afghanistan	AFG	1963	33.12731707
Angola	AGO	1960	32.98482927
Angola	AGO	1961	33.38621951
Angola	AGO	1962	33.78758537
Angola	AGO	1963	34.18846341

Data Tools...

How many you think there is??

Data Tools...

THE 2023 MAD (MACHINE LEARNING, ARTIFICIAL INTELLIGENCE & DATA) LANDSCAPE

© Matt Turck (@mattturck), Kevin Zhang (@vkevinzhang) & FirstMark (@firstmarkcap)

Blog post: mattturck.com/MAD2023

Agile Information Architecture

Example of Tools for Analytics

Visualization Tools

Introduction to Data Analytics

Data Ethics

Data Ethics

Data ethics is about the **responsible**and sustainable use of data — doing
the right thing for people and society.

It refers to the principles and values on which human rights and personal data protection laws are based.

—DataEthics.eu

Real Cases: Netflix and... Data Ethics

According to a McKinsey report, 75% of Netflix viewing decisions result from product recommendations. This raises ethical implications such as:

- Addictiveness
- Radicalized content
- Privacy

Data Ethics Principles

- Privacy
- Transparency
- Faireness
- Accountability
- Responsiblity

Data Privacy

In order to protect individual data privacy, governments have implemented data protection laws:

Source: DLA Piper

Deep Fakes

Poses ethical problems everywhere

Regulating deep fakes: legal and ethical considerations

Edvinas Meskys S, Aidas Liaudanskas S, Julija Kalpokiene S, Paulius Jurcys S Journal of Intellectual Property Law & Practice, Volume 15, Issue 1, January 2020, Pages 24–31, https://doi.org/10.1093/jipip/jpz167. Published: 17 January 2020

Anticipating and Addressing the Ethical Implications of Deepfakes in the Context of Elections

New Media & Society

27 Pages - Posted: 1 Plan 2019 - Last revised: 23 Apr 2020

Nicholas Diakopoulos
Northwestern University - School of Communication

Deborah Johnson

University of Virginia - School of Engineering & Applied Science

Date Written: October 21, 2019

Real Cases:

A Healthier Landscape for Product Recommendations

It's certainly possible! Canopy is working on a recommendation system that:

- Looks for signs of quality.
- Makes suggestions without centralized data collection.
- Runs the recommendation algorithms on a person's device.
- Shares only anonymized usage data with company servers.

Partner Exercise: Doing Our Part as Data Analysts

Discuss the following with your partner. We'll regroup after five minutes.

- What does it mean to use data ethically?
- What are some ways you've seen data being used unethically?
- What role do data analysts play in using data ethically?

Group Exercise:

More examples of data

- How Google/Facebook faced problems with Data?
- Biased data reporting
- Prediction models
- The accessibility of datasets and what you do with them?
- Also check out deep fakes, and give an example of good usage of deep fakes

Introduction to Data Analytics

Wrapping Up

Recap

Today, we:

- Outlined goals, expectations, and logistics.
- Identified the skills and mindset of a successful data analyst.
- Discussed the discipline of data analytics, including topics such as data formats and data ethics.

Looking Ahead

Homework

- Optional myGA lessons:
 - Exploring Data (unit)
 - Data Profiling
 - Probing Data With Logical Functions
 - Data Wrangling (unit)
 - Cleaning Your Data

Up Next: Introduction to SQL

Q&A

