

Matt Brems
Data Science Immersive

LINEAR AND LOGISTIC REGRESSION

- So far, we've learned how to fit linear and logistic regression models.
- Linear and logistic regressions are both types of linear models.
 - What do we mean when we say linear model?
 - We want to model some outcome by a series of predictors $X_1, ..., X_p$, where a one-unit change in an independent variable has a fixed effect on the outcome.
 - You might also hear the phrase linear in the coefficient.

LINEAR AND LOGISTIC REGRESSION

- If I want to predict some continuous Y value between $(-\infty, \infty)$, I'll probably use a linear regression model.
- If I want to predict some continuous *Y* value between (0,1), I'll probably use a logistic regression model.
 - Remember that logistic regression models predict probabilities between 0 and 1 and that we can use these probabilities to classify observations into one of two classes.
- What are examples of things we might like to predict that don't fall in either a $(-\infty, \infty)$ or (0,1) range?

GOING BEYOND LINEAR AND LOGISTIC REGRESSION

• What are examples of things we might like to predict that don't fall in either a $(-\infty, \infty)$ or (0,1) range?

- This is where generalized linear models comes into play.
 - We can create models that take the benefits of being linear in the coefficient and "bend" it to match the range of the *Y* we want to model.
 - In order to make this happen, we need three things:
 - A linear piece.
 - A "bending" piece.
 - A random piece.

Generalized linear models have the following form:

$$Y = g(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p) + \varepsilon$$

Generalized linear models have the following form:

$$Y = g(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p) + \varepsilon$$

- $\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$ is our **linear component**.
 - We want a one-unit change in *X* to change *Y* in a certain way.
- $g(\cdot)$ is our **link component**.
 - We need to "bend" our linear component to match the range of *Y*.
- ε is our **random component**.
 - We need our errors to also match our *Y*.

$$Y = g(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p) + \varepsilon$$

- Linear regression:
 - Linear Component:

• Link Component:

• Random Component:

$$Y = g(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p) + \varepsilon$$

- Logistic regression:
 - Linear Component:

Link Component:

• Random Component:

Generalized linear models have the following form:

$$Y = g(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p) + \varepsilon$$

- What does the link function do?
 - It transforms the linear component to match the range of *Y*.
 - It also affects how we interpret our coefficients.
- What does the random component do?
 - It relates our predicted values \hat{y} to our observed values y.

- If your *Y* values are {0,1,2, ...}:
 - Poisson Regression (if $Var[X] \approx E[X]$)
 - Negative Binomial Regression (if $Var[X] \gg E[X]$)

- If your *Y* values are {0,1,2 ..., *k*}:
 - Multinomial Logistic Regression (if categories are unordered)
 - Ordinal Logistic Regression (if categories are ordered)

- If your *Y* values are $[0, \infty)$:
 - Gamma Regression

GENERALIZED LINEAR MODELS CHEAT SHEET

ITERATIVELY REWEIGHTED LEAST SQUARES

• When we fit a linear regression model using ordinary least-squares, the values of $\hat{\beta}$ are directly calculated.

- However, there exists no closed-form solution for $\hat{\beta}$ with a generalized linear model.
 - Instead, we must calculate a first guess $\hat{\beta}_1$, update our weights, calculate $\hat{\beta}_2$, and iterate until $|\hat{\beta}_i \hat{\beta}_{i+1}|$ is sufficiently small.

WHY USE GLMS?

- Generalized linear models are a series of models that:
 - Allow us to easily infer relationships between X and Y.
 - Have convenient parametric distributions.
 - Are flexible enough to handle a variety of scenarios.
 - Hierarchical models.
 - "Zero-inflated" or "zero-truncated" models.