Diagnostic virologique

Pr. Samir Gourari

Virologie – CHU Mustapha

Indications

Dc individuel:

hépatites virales

infection à VIH,...

Dc épidémiologique / Dc des formes atypiques :

infections respiratoires aigues

infections cutanées,...

Deux approches:

Diagnostic indirect

Détection d'**ANTICORPS** spécifiques du virus: réponse immunitaire de l'individu

Diagnostic direct

Détection (directe) du VIRUS ou de ses COMPOSANTS, antigènes ou génomes viraux, dans les liquides biologiques

Dc direct versus Dc indirect

- Dans certaines infections virales, le diagnostic ne peut être que direct, comme les IRA et les infections à papillomavirus, mais
- la sérologie représente toujours l'outil de première intention du diagnostic de nombreuses autres infections (rubéole, hépatites, VIH...).
- le statut immunitaire d'un individu ou d'une population ne peut être déterminé que par les tests sérologiques.

Dc direct versus Dc indirect

Dc direct	Dc indirect
diversité des prélèvements et des techniques utilisés : LCS, sang, liquide pleural, aspiration nasopharyngée,	le prélèvement est simple, il s'agit de sang
l'interprétation des résultats est relativement facile	l'interprétation des résultats est plus compliquée : - état immunitaire de l'hôte -fenêtre sérologique -réactions croisées -réactions non spécifiques (FR, stimulation polyclonale) -persistance des IgM -infection active/trace sérologique?

Diagnostic Direct

Microscopie électronique

Indications Dc rares

• Outil précieux pour caractériser un nouveau virus: orientation vers un nouveau coronavirus sur une image en «couronne» en ME (épidémie de SARS en 2003)

Microscopie électronique : virus grippal

Arenaviridae

Coronaviridae

Herpesviridae

Isolement virale

3 systèmes cellulaires:

- Culture cellulaire +++
- Œuf de poule embryonné (v. grippe)
- Animal (coxackies virus)

Culture cellulaire

Nappe cellulaire normale

Effet Cytopathique (ex: VRS)

FIGURE 5 - ŒUF DE POULE EMBRYONNÉ DE 10 JOURS A. Représentation schématique. B. Image de Science-Art (© W.G.ROTH)

Culture cellulaire: inconvénients

 Dépend de la qualité du prélèvement → garder la viabilité du virus :

```
milieu de transport
acheminement rapide au labo (chaine de froid)
conservation à – 80°C si analyse différée
```

- Technique lourde et coûteuse
- Certains virus sont non cultivables

Culture cellulaire: avantages

- Mise en évidence du virus infectieux
- Système ouvert
- Très sensible
- Permet l'étude de la sensibilité aux ATVs,...

Détection directe des Ags viraux

• Immunofluorescence / Réaction immunoenzymatique

• Immunochromatographie (tests rapides)

Technique d'Immunofluorescence:

Pvts nasopharyngés / Virus respiratoires

Cellules infectées Ag viraux **Anticorps monoclonaux** marqués Signal

Immunofluorescence: Lecture au microscope à UV

Antigènémie pp65 du CMV positive (Pvt = leucocytes circulants)

Test rapide/Immunochromatographie

Diagnostic rapide, quelques exemples :

- ☐ Virus respiratoires (v. grippe, SARS-CoV-2,..)
- ☐ Virus entériques (Rotavirus, Adénovirus...)

Simple, Rapide, Faible coût, Sensibilité imparfaite

Test rapide / Immunochromatographie (Recherche d'Antigène)

Figure 1. Schéma d'un test d'immunoch

BIOLOGIE MOLECULAIRE

Techniques d'hybridation

La complémentarité des bases est à la base de cette technique

Techniques d'hybridation (cas Pos)

5' ATCAGTACCTTATACGCTTCGTTAT 3' Prélèvement 3' TAGTCATGGAATATGCGAAGCAATA5' Dénaturatio 5' ATCAGTACCTTATACGCTTCGTTAT 3' 3' T A G T C A T G G A A T A T G C G A A G C A A T A 5' Hybridation Sonde marquée ATCAGTACCTTATAC3' TAGTCATGGAATATGCGAAGCAATA5' Lavage Signal +

TAGTCATGGAATATGCGAAGCAATA5'

ATCAGTACCTTATAC3'

Pvt POSITIF

Techniques d'hybridation (cas Neg)

Prélèvement

5' CTAAGTACCGGATACGCTTCGTTAT 3' 3' GATTCATGGCCTATGCGAAGCAATA5'

Dénaturatio

n

5' CTAAGTACCGGATACGCTTCGTTAT 3'

3' GATTCATGGCCTATGCGAAGCAATA5'

Pas d'Hybridation

3' GATTCATGGCCTATGCGAAGCAATA5'

Lavage

Pas de signal

3' GATTCATGGCCTATGCGAAGCAATA5'

→ Pvt négatif

faible sensibilité, de l'ordre de $10^4\,$ à $10^5\,$ copies

Amplification de la cible avant détection pour améliorer la sensibilité

Polymerase Chain Reaction

Prélèvements:

Selon site de réplication

Sang total sur tube sec /EDTA, jamais l'héparine

Conservation longue période à – 80°C (virus à ARN++)

PCR conventionnelle ou end point

Quatre étapes successives :

- 1. Extraction des acides nucléiques
- 2. Addition du mix (+ amorces + polymérase + dNTP)
- 3. Amplification (thermocycleur)
- 4. Détection des produits amplifiés par hybridation avec sonde spécifique

PCR conventionnelle ou end point

- Quatre étapes successives :
- 1. Extraction des acides nucléiques
- 2. Addition du mix (+ amorces + polymérase + dNTP)
- 3. Amplification (thermocycleur)
- 4. Détection des produits amplifiés
 - migration sur gel
 - hybridation avec sonde spécifique

PCR: Polymerase Chain Reaction

30 - 40 cycles of 3 steps:

Step 1: denaturation

1 minut 94 °C

Step 2 : annealing

45 seconds 54 °C

forward and reverse primers !!!

Step 3: extension

2 minutes 72 °C only dNTP's

(Andy Vierstraete 1999)

Principe de la PCR

Copies of Target
2
4
8
16
32
64
1,048,576
1,073,741,824

les cycles de la PCR

PCR: Détection par hybridation avec sonde spécifique

Produits de PCR

5' ATCAGTACCTTATACGCTTCGTTAT 3' 3' TAGTCATGGAATATGCGAAGCAATA5'

Dénaturatio n

5' ATCAGTACCTTATACGCTTCGTTAT 3'

3' TAGTCATGGAATATGCGAAGCAATA5'

5' ATCAGTACCTTATAC3'
3' TAGTCATGGAATATGCGAAGCAATA5'

Sensibilité améliorée

PCR en temps reel

Trois étapes:

- 1. Extraction des acides nucléiques
- 2. Addition du mix (+ amorces + polymérase + dNTP + sonde)
- 3. Amplification et détection de la cible simultanément

PCR conventionnelle ou end point

Quatre étapes successives :

- 1. Extraction des acides nucléiques
- 2. Addition du mix (+ amorces + polymérase + dNTP)
- 3. Amplification (thermocycleur)
- 4. Détection des produits amplifiés par hybridation avec sonde spécifique

In Real-Time PCR the detection of PCR products is dependent on fluorescent light.

Fluorescence

=

absorption of short-wave light, emission of long-wave light

DNA detection by fluorescent oligonucleotides

DNA detection by fluorescent oligonucleotides

Determine the TIME POINT of signal generation rather than signal strength!

The measure of this TIME POINT is achieved in Real-Time PCR by determination of the

Ct

C_t = threshold cycle: The calculated cycle number at which the PCR product crosses a threshold of detection (= C_p: crossing point)

PCR en temps reel

Avantages

- Réduction des risques de contamination par les produits de PCR (Pas d'ouverture de tubes en post PCR)
- Amélioration de la sensibilité
- Plus large domaine de linéarité
- Quantification plus précise
- Plus rapide

Séquençage de l'ADN (méthode enzymatique de Sanger)

Détermination de la séquence des nucléotides (Adénine, Guanine, Cytosine et Thymine) composant une portion ou la totalité du génome viral

Séquençage de l'ADN (méthode enzymatique)

Séquençage de l'ADN

Recherche des mutations de résistance aux traitements antiviraux (HIV, HBV, CMV,..)

Séquençage + Analyse phylogénétique

→ Génotype: HCV, HBV, HIV,...

NGS (New Generation Sequencing) ou séquençage à haut débit

- débits de 50 à 1000 fois supérieurs.
- permettent une lecture en profondeur et détectent des variants présents en faible proportion dans une population de génomes (aux environs de 5%, alors qu'elle est de 20% pour Sanger)

SEROLOGIE

Cinétique des Ac

Prélèvements

• Sang total sur tube sec → sérum

Sang total sur tube avec anticoagulant → plasma

• Si sérum/plasma était congelé → clarifier avant analyse = centrifuger

Conservation à $+4^{\circ}$ C sinon à -20° C

Techniques sérologiques

- Séroneutralisation
- Réaction de déviation du complément (RFC)
- Inhibition de l'hemagglutination (IHA)
- Immunofluorescence indirecte
- Tests immuno-enzymatiques (EIA), Chimiluminescence +++

Test ELISA

Principe général (recherche des Ac dans le sérum):

- l'antigène viral est immobilisé sur un support solide (puits de microplaque);
- le sérum à tester est mis en contact avec l'Ag;
- étape de lavage,
- un anticorps anti-immunoglobuline humaine est ajouté;
- cet Ac est couplé à une enzyme → réaction
 colorée → Densité Optique (spectrophotomètre)

Test ELISA

- Rapide, automatisable
- Sensible
- Spécifique
- Permet de discriminer entre IgM et IgG

ELISA immunocapture (IgM)

Dc de l'hépatite A, Rubéole, Rougeole,..

Chimiluminescence

• Emission de lumière consécutive à une réaction chimique

• Automatisation ++

Avidité des IgG

Avidité des IgG

Présence d'IgM spécifiques:

- au cours des primo-infections
- au cours des réinfections/réactivations
- stimulation polyclonale du système immunitaire
- Persistance

→ Mesure de l'avidité des IgG (rubéole, CMV)

Avidité faible en faveur d'une primo-infection

Western blot : confirmation de l'infection HIV

TROD (Test Rapide d'Orientation Diagnostique)

- Résultat en 30 minutes maximum
- principe d'immunochromatographie ou d'immunofiltration sur membrane
- Lecture visuelle
- dépistage de l'infection à VIH et de l'infection à VHC
- sensibilité moindre par rapport aux tests classiques au cours de la phase de séroconversion (fenêtre sérologique)

Test rapide / Immunochromatographie (Recherche d'Anticorps : HIV, HCV)

Figure 1. Schéma d'un test d'immunoch

