Abel-konkurransen 2004–2005

FINALE - 10. mars 2005

Tid: 4 timer

På hver oppgave gis det inntil 10 poeng

Oppgave 1

- a) Et positivt heltall m kalles et trekanttall dersom $m = 1 + 2 + \cdots + n$, for et heltall n. Vis at et positivt heltall m er et trekanttall hvis og bare hvis 8m + 1 er kvadratet av et heltall.
- b) I en pyramide er grunnflaten en rettvinklet trekant med heltallige sider. Høyden i pyramiden er også heltallig. Vis at volumet av pyramiden er et partall.

Oppgave 2

- a) I et akvarium er det ni småfisk. Akvariet er terningformet med sidelengde to meter, og er helt fullt med vann. Vis at det til enhver tid er mulig å finne to småfisk med avstand mindre enn $\sqrt{3}$ meter.
- b) La A være mengden av alle punkter med heltallige koordinater i et tredimensjonalt koordinatsystem. Vi tenker oss at ni vilkårlige punkter i A blir farget blå. Vis at vi alltid kan finne to blå punkter slik at linjestykket mellom dem inneholder minst ett punkt fra A.

Oppgave 3

- a) I den likebeinte trekanten $\triangle ABC$ er AB = AC. La D være midtpunktet på linjestykket BC. Punktene P og Q ligger henholdsvis på linjestykkene AD og AB (med $Q \neq B$) slik at PQ = PC. Vis at $\angle PQC = \frac{1}{2} \angle A$.
- b) I parallellogrammet ABCD er alle sidene like lange, og $\angle A = 60^{\circ}$. La F være et punkt på linjestykket AD, H et punkt på linjestykket DC og G et punkt på diagonalen AC, slik at DFGH er et parallellogram. Vis at da er $\triangle BHF$ likesidet.

Oppgave 4

a) Vis at for alle positive reelle tall a, b og c, gjelder ulikheten

$$(a+b)(a+c) \ge 2\sqrt{abc(a+b+c)}.$$

b) La a, b og c være reelle tall slik at ab + bc + ca > a + b + c > 0. Vis at da er

$$a + b + c > 3.$$