```
In [1]: from pydoc import help
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.preprocessing import scale
    from sklearn.decomposition import PCA
    from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
    from scipy import stats
    from IPython.display import display, HTML
    %matplotlib inline
    np.set_printoptions(suppress=True)
    DISPLAY_MAX_ROWS = 20
    pd.set_option('display.max_rows', DISPLAY_MAX_ROWS)
```

```
In [3]: data = pd.read_csv("http://archive.ics.uci.edu/ml/machine-learning-databases/w
    data.columns = ["V"+str(i) for i in range(1, len(data.columns)+1)]
    data.V1 = data.V1.astype(str)
    X = data.loc[:, "V2":]
    y = data.V1
    data
```

Out[3]: V1 V2 V3 V4 V5 V6 **V7 V8** V9 V10 V11 V12 V13 V14 0 1 14.23 1.71 2.43 15.6 127 2.80 3.06 0.28 2.29 5.64 1.04 3.92 1065 1 1 13.20 1.78 2.14 11.2 100 2.65 2.76 0.26 1.28 4.38 1.05 3.40 1050 2 1 13.16 2.36 2.67 18.6 101 2.80 3.24 0.30 2.81 1.03 3.17 1185 5.68 3 1 14.37 1.95 2.50 16.8 113 3.85 3.49 0.24 2.18 7.80 0.86 3.45 1480 1 13.24 2.59 2.87 2.80 2.69 1.82 4 21.0 118 0.39 4.32 1.04 2.93 735 173 3 13.71 5.65 2.45 20.5 95 1.68 0.61 0.52 1.06 7.70 0.64 1.74 740 174 750 3 13.40 3.91 2.48 23.0 102 1.80 0.75 0.43 1.41 7.30 0.70 1.56 175 3 13.27 4.28 2.26 20.0 120 1.59 0.69 0.43 1.35 10.20 0.59 1.56 835 176 3 13.17 2.59 2.37 20.0 120 1.65 0.68 0.53 9.30 0.60 1.62 840 1.46

96 2.05 0.76 0.56 1.35

9.20 0.61 1.60

560

178 rows × 14 columns

3 14.13 4.10 2.74 24.5

177

In [4]: data.loc[:, "V2":"V6"]

$\alpha = -1$		
UHLI	141	1 1
0 0 0		

	V2	V3	V4	V5	V6
0	14.23	1.71	2.43	15.6	127
1	13.20	1.78	2.14	11.2	100
2	13.16	2.36	2.67	18.6	101
3	14.37	1.95	2.50	16.8	113
4	13.24	2.59	2.87	21.0	118
•••					
173	13.71	5.65	2.45	20.5	95
174	13.40	3.91	2.48	23.0	102
175	13.27	4.28	2.26	20.0	120
176	13.17	2.59	2.37	20.0	120
177	14.13	4.10	2.74	24.5	96

178 rows × 5 columns

```
In [7]:
        pd.plotting.scatter_matrix(data.loc[:, "V2":"V6"], diagonal="kde")
        plt.tight_layout()
        plt.show()
```



```
In [6]: ax = data[["V2","V3","V4","V5","V6"]].plot()
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5));
```



```
In [8]: X.apply(np.mean)
```

```
Out[8]:
        V2
                 13.000618
        V3
                  2.336348
         V4
                  2.366517
        ۷5
                 19.494944
        ۷6
                 99.741573
        V7
                  2.295112
        ٧8
                  2.029270
        V9
                  0.361854
        V10
                  1.590899
        V11
                  5.058090
        V12
                  0.957449
        V13
                  2.611685
        V14
                746.893258
        dtype: float64
```

```
In [9]: X.apply(np.std)
Out[9]: V2
                   0.809543
         V3
                   1.114004
         ٧4
                  0.273572
         V5
                   3.330170
         ۷6
                  14.242308
         V7
                  0.624091
         ٧8
                  0.996049
         V9
                  0.124103
         V10
                  0.570749
         V11
                  2.311765
         V12
                  0.227929
         V13
                  0.707993
         V14
                 314.021657
         dtype: float64
In [10]: class2data = data[y=="2"]
         class2data.loc[:, "V2":].apply(np.mean)
         class2data.loc[:, "V2":].apply(np.std)
Out[10]: V2
                   0.534162
         V3
                   1.008391
         ۷4
                   0.313238
         V5
                   3.326097
         ۷6
                  16.635097
         ٧7
                  0.541507
         ٧8
                  0.700713
         V9
                  0.123085
         V10
                  0.597813
         V11
                  0.918393
         V12
                  0.201503
         V13
                  0.493064
         V14
                 156.100173
         dtype: float64
In [11]: | def printMeanAndSdByGroup(variables, groupvariable):
          data_groupby = variables.groupby(groupvariable)
          print("## Means:")
          display(data_groupby.apply(np.mean))
          print("\n## Standard deviations:")
          display(data_groupby.apply(np.std))
          print("\n## Sample sizes:")
          display(pd.DataFrame(data_groupby.apply(len)))
```

```
In [12]:
         printMeanAndSdByGroup(X, y)
         ## Means:
         V1
```

1 98.081473 2 51.077883 60.259487 dtype: float64

Standard deviations:

	V2	V3	V4	V5	V6	V 7	V8	V9	V10	
V1										
1	0.458192	0.682689	0.225233	2.524651	10.409595	0.336077	0.394111	0.069453	0.408602	_
2	0.534162	1.008391	0.313238	3.326097	16.635097	0.541507	0.700713	0.123085	0.597813	(
3	0.524689	1.076514	0.182756	2.234515	10.776433	0.353233	0.290431	0.122840	0.404555	:
4									•	

Sample sizes:

0

V1

1 59

2 71

3 48

```
In [13]: corr = stats.pearsonr(X.V2, X.V3)
         print("p-value:\t", corr[1])
         print("cor:\t\t", corr[0])
```

p-value: 0.21008198597074274 cor: 0.09439694091041399

In [14]: corrmat = X.corr()
 corrmat

Out[14]:

	V2	V3	V4	V5	V6	V 7	V8	V9	
V2	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815	-0.155929	0.136
V3	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	0.292977	-0.220
V4	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	0.186230	900.0
V5	-0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370	0.361922	-0.197
V6	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784	-0.256294	0.236
V7	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	-0.449935	0.612
V8	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	-0.537900	0.652
V 9	-0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	1.000000	-0.365
V10	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692	-0.365845	1.000
V11	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379	0.139057	-0.025
V12	-0.071747	-0.561296	-0.074667	-0.273955	0.055398	0.433681	0.543479	-0.262640	0.295
V13	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194	-0.503270	0.519
V14	0.643720	-0.192011	0.223626	-0.440597	0.393351	0.498115	0.494193	- 0.311385	0.330

In [15]: sns.heatmap(corrmat, vmax=1., square=False).xaxis.tick_top()


```
In [17]: def mosthighlycorrelated(mydataframe, numtoreport):
    # find the correlations
    cormatrix = mydataframe.corr()
    # set the correlations on the diagonal or lower triangle to zero,
    # so they will not be reported as the highest ones:
    cormatrix *= np.tri(*cormatrix.values.shape, k=-1).T
    # find the top n correlations
    cormatrix = cormatrix.stack()
    cormatrix = cormatrix.reindex(cormatrix.abs().sort_values(ascending=False).in
    # assign human-friendly names
    cormatrix.columns = ["FirstVariable", "SecondVariable", "Correlation"]
    return cormatrix.head(numtoreport)
```

In [18]: mosthighlycorrelated(X, 10)

Out[18]: FirstVariable SecondVariable Correlation 0 V7 V8 0.864564 1 V8 V13 0.787194 2 V7 V13 0.699949 V8 V10 3 0.652692 V2 V14 0.643720 5 V10 V7 0.612413 V13 0.565468 6 V12 V12 -0.561296 7 V3 8 V2 V11 0.546364 V8 V12 0.543479

```
In [33]: standardisedX = scale(X)
standardisedX = pd.DataFrame(standardisedX, index=X.index, columns=X.columns)
```

```
In [34]: pca = PCA().fit(standardisedX)
```

```
In [35]: def pca_summary(pca, standardised_data, out=True):
    names = ["PC"+str(i) for i in range(1, len(pca.explained_variance_ratio_)+1)]
    a = list(np.std(pca.transform(standardised_data), axis=0))
    b = list(pca.explained_variance_ratio_)
    c = [np.sum(pca.explained_variance_ratio_[:i]) for i in range(1, len(pca.expl columns = pd.MultiIndex.from_tuples([("sdev", "Standard deviation"), ("varpro summary = pd.DataFrame(zip(a, b, c), index=names, columns=columns)
    if out:
        print("Importance of components:")
        display(summary)
    return summary
```

In [36]: | summary = pca_summary(pca, standardisedX)

Importance of components:

	sdev	varprop	cumprop
	Standard deviation	Proportion of Variance	Cumulative Proportion
PC1	2.169297	0.361988	0.361988
PC2	1.580182	0.192075	0.554063
PC3	1.202527	0.111236	0.665300
PC4	0.958631	0.070690	0.735990
PC5	0.923704	0.065633	0.801623
PC6	0.801035	0.049358	0.850981
PC7	0.742313	0.042387	0.893368
PC8	0.590337	0.026807	0.920175
PC9	0.537476	0.022222	0.942397
PC10	0.500902	0.019300	0.961697
PC11	0.475172	0.017368	0.979066
PC12	0.410817	0.012982	0.992048
PC13	0.321524	0.007952	1.000000

In [41]: summary.sdev

Out[41]:

PC1	2.169297
PC2	1.580182
PC3	1.202527
PC4	0.958631
PC5	0.923704

PC60.801035PC70.742313PC80.590337PC90.537476

Standard deviation

PC10 0.500902 PC11 0.475172

PC12 0.410817 PC13 0.321524

```
In [38]: | lda = LinearDiscriminantAnalysis().fit(X, y)
In [39]: def pretty scalings(lda, X, out=False):
              ret = pd.DataFrame(lda.scalings_, index=X.columns, columns=["LD"+str(i+1)
              for i in range(lda.scalings_.shape[1])])
                   print("Coefficients of linear discriminants:")
                   display(ret)
              return ret
         pretty_scalings_ = pretty_scalings(lda, X, out=True)
         Coefficients of linear discriminants:
                   LD1
                            LD2
           V2 0.403400
                        0.871793
           V3 -0.165255
                        0.305380
           V4 0.369075 2.345850
           V5 -0.154798 -0.146381
           V6 0.002163 -0.000463
           V7 -0.618052 -0.032213
              1.661191 -0.491998
           V9
               1.495818 -1.630954
          V10 -0.134093 -0.307088
          V11 -0.355056
                        0.253231
          V12 0.818036 -1.515634
          V13 1.157559
                        0.051184
          V14 0.002691
                        0.002853
In [43]: | sns.lmplot("LD1", "LD2", lda_values["x"].join(y), hue="V1", fit_reg=False);
         NameError
                                                      Traceback (most recent call last)
         Cell In[43], line 1
         ----> 1 sns.lmplot("LD1", "LD2", lda_values["x"].join(y), hue="V1", fit_reg=F
         alse)
         NameError: name 'lda_values' is not defined
 In [ ]:
```