

Theoretische Informatik

Logik Aussagenkalkül

- Aussagenkalkül wird definiert durch:
 - » Menge aussagenlogischer Formeln
 - » Menge aussagenlogischer Axiome
 - » Menge aussagenlogischer Ableitungsregeln
- Der Aussagenkalkül definiert eine Ableitbarkeitsbeziehung über Formeln
- "Formel ist ableitbar (herleitbar, beweisbar)"
- Im reinen Aussagenkalkül sind <u>alle Tautologien</u> ableitbar
- Beweisbarkeit ist syntaktische Beziehung:
 »intelligente Textersetzung« d. h. »intelligentes Text-Suche-Tausche-Verfahren«
- Die Ableitung ist »voll automatisierbar«, da die Ableitungsregeln exakt vorgegeben sind.
- Aussagen (aus denen hergeleitet wird) werden Prämissen genannt
- die hergeleiteten Aussagen werden Konklusionen genannt

- Zur Vereinfachung beschränken wir uns auf \neg , \rightarrow .
- Menge der Formeln
 - 1. Aussagenvariable A, B, C,
 - 2. Mit den Formeln a, b sind auch \neg a, a \rightarrow b Formeln.
 - 3. Klammerung: ist a eine Formel, dann ist auch (a) eine Formel Es gelten die üblichen Regeln zur Vermeidung von Klammern
- Menge der Axiome (per Definition ableitbar)
 - » A1) $a \rightarrow (b \rightarrow a)$
 - » A2) $(a \rightarrow (b \rightarrow c)) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow c))$
 - \rightarrow A3) $(\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a)$

Aussagenkalkül

Beweise mittels Wahrheitstabellen, dass die Aussagen A1 – A3 Tautologien sind

- \Rightarrow A1) $a \rightarrow (b \rightarrow a)$
- » A2) $(a \rightarrow (b \rightarrow c)) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow c))$
- » A3) $(\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a)$

Aussagenkalkül

■ Beweise mittels Wahrheitstabellen, dass die Aussagen A1 – A3 Tautologien sind

» A1)
$$a \rightarrow (b \rightarrow a)$$

» (a
$$\rightarrow$$
 (b \rightarrow c)) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow c))

$$\rightarrow$$
 A3) $(\neg a \rightarrow \neg b) \rightarrow (b \rightarrow a)$

Aussagenkalkül – Regeln /Beweisregel

Beweisregeln (Schlussfiguren) bilden die Grundlagen des Aussagenkalküls, da sie wahre Aussagen in neue wahre Aussagen überführen.

Beweisregeln werden nachfolgendem Schema aufgebaut:

```
    P₁ (Prämisse)
    P₂ (Prämisse)
    ··· (weitere Pämissen)
    Pn (Prämisse)
    K (Konklusion)
```

Die Prämissen sind dabei die bereits als wahr nachgewiesenen Aussagen. Da sie gelten, darf auf die Konklusion geschlossen werden.

Aussagenkalkül – Regeln /Beweisregel

Regel R1 "Modus Ponens"(Abtrennungsregel):

Abtrennungsregel

a Prämisse

 $a \rightarrow b$ Implikation

b Konklusion

- » Gilt eine Implikation und Ihre Prämisse so gilt auch die Konklusion.
- » Man kann sie aus der Implikation abtrennen.

 $a \rightarrow b$

Aussagenkalkül – Regelanwendung (Beispiel)

```
Anwendung modus ponens (Abtrennungsregel)
a
```

b ist ableithar

a:Die Ampel ist rot

b:Ich muss anhalten

 $a \rightarrow b$:

Wenn die Ampel rot ist, muss ich anhalten

Hinweis: $b \rightarrow a$ gilt nicht!

Wenn ich anhalte (stehen bleibe), wird die Ampel nicht - zwangsläufig - rot

Aussagenkalkül

Weiteres Beispiel zum Modus ponens (Abtrennungsregel)

Der Modus ponens (Abtrennungsregel) ist folgende Beweisregel:

- Gilt eine Implikation und Ihre Prämisse so gilt auch die Konklusion.
- Man kann sie aus der Implikation abtrennen.

```
»Es regnet.«
»Wenn es regnet, ist die Straße nass.«
»Die Straße ist nass.«
```

Aussagenkalkül

- Satz (Modus Ponens)
 - » Der Modus Ponens

$$(a \land (a \Rightarrow b)) \Rightarrow b$$

ist eine Tautologie

Beweis

а	b	$a \Rightarrow b$	$a \wedge (a \Rightarrow b)$	$ \Rightarrow b$
0	0	1	0	1
0	1	1	0	1
1	0	0	0	1
1	1	1	1	1

Aussagenkalkül

Definition Modus tollens (Aufhebungsregel)

$$a \Rightarrow b$$
 (Prämisse: Implikation)
$$\frac{\neg b}{\neg a}$$
 (Konklusion)

Gilt eine Implikation $a \Rightarrow b$, aber ihre Folgerung (b) gilt nicht, dann kann die Voraussetzung (a) der Implikation nicht gelten.

- Beispiel
 - » Prämisse:Implikation Wenn es regnet, ist die Straße nass
 - » Prämisse Die Straße ist nicht nass
 - » Konklusion Es regnet nicht

Aussagenkalkül

Beweisen Sie den Modus Tollens.

- Satz (Modus Tollens)
 - » Der Modus Tollens $((a \rightarrow b) \land \neg b) \rightarrow \neg a$ ist eine Tautologie.

Aussagenkalkül

Beweisen Sie den Modus Tollens.

Es gilt:

$$((a \rightarrow b) \land \neg b) \rightarrow \neg a$$

■ Es gilt
$$a \Rightarrow b$$
 (Prämisse: Implikation)
 $\frac{\neg b}{\neg a}$ (Prämisse)
(Konklusion)

- Und somit auch
 - Sei a eine (wissenschaftliche) Theorie und b eine »erwartete Beobachtung«, die sich aus der Theorie ergeben sollte (also: a → b).
 Zeigt sich nun in einem wissenschaftlichen »Experiment« aber, dass b nicht gilt, so ist mit dem Modus tollens die Theorie a falzifiziert, also als unwahr erkannt.

Aussagenkalkül

- Definition Kettenschlussregel, Transitivität
- Der Kettenschluss ist folgende Beweisregel:

$$a \Rightarrow b$$
 (Prämisse: Implikation)
 $b \Rightarrow c$ (Prämisse: Implikation)
 $a \Rightarrow c$ (Konklusion)

Wenn aus a die Aussage b folgt und aus dieser dann c folgt, dann darf aus a direkt auf c geschlossen werden.

- Beispiel
 - »Wenn es regnet, ist die Straße nass.«
 - »Wenn die Straße nass ist, dann besteht Schleudergefahr.«
 - »Wenn es regnet, dann besteht Schleudergefahr.«

Aussagenkalkül

 Beweis der Kettenschlussregel mittels Wahrheitstafel

$$a \Rightarrow b$$
 (Prämisse: Implikation)
 $b \Rightarrow c$ (Prämisse: Implikation)
 $a \Rightarrow c$ (Konklusion)

Α	В	С	$A \rightarrow B$	$B \rightarrow C$	A→B ^ B → C	$A \rightarrow C$
0	0	0	1	1	1	1
0	0	1	1	1	1	1
0	1	0	1	0	0	1
0	1	1	1	1	1	1
1	0	0	0	1	0	0
1	0	1	0	1	0	1
1	1	0	1	0	0	0
1	1	1	1	1	1	1

- Satz Kalkülregeln
 - » Neben dem Modus ponens gibt es noch weitere Kalkülregeln des Aussagenkaküls.

R1	а	R2	$a \Rightarrow b$
Modus	$a \Rightarrow b$	Transitiv-	$b \Rightarrow c$
Ponens	b	ität	$a \Rightarrow c$
R3 Konjunktion	a b a∧b	R4 Konjunktion	a∧b a
R5 Disjunktion	a _¬a∨b 	R6 Disjunktion	a∨ b <u>¬a∨ c</u> b∨ c

Aussagenkalkül

- Aufgabe: Abwandlung von Regel 6 (Disjunktion)
 - » Begründen oder widerlegen Sie, ob

$$\begin{array}{c|c}
a \lor b \\
\neg a \lor \neg b \lor c \\
\hline
c
\end{array}$$

eine gültige Regel ist.

Aussagenkalkül

- Aufgabe: Abwandlung von Regel 6 (Disjunktion)
 - » Begründen oder widerlegen Sie, ob

$$\begin{array}{c|c}
a \lor b \\
\neg a \lor \neg b \lor c \\
\hline
c
\end{array}$$

eine gültige Regel ist.

» Dies ist keine gültige Regel, denn um R6 anwenden zu können, muss man wie folgt vorgehen:

 $\frac{\neg a \lor (\neg b \lor c)}{(b) \lor (\neg b \lor c)}$

Mit der Regel » $x \lor \neg x = 1$ « folgt, dass $b \lor \neg b \lor c$ immer wahr ist. Damit ist die Abwandlung von R6 keine gültige Regel.