```
import pandas as pd
import numpy as np
```

from statsmodels.tsa.statespace.sarimax import SARIMAX
from statsmodels.tsa.seasonal import seasonal_decompose
from pmdarima import auto arima

/Users/mirek/opt/anaconda3/lib/python3.8/site-packages/statsmodels/compat/p andas.py:61: FutureWarning: pandas.Int64Index is deprecated and will be rem oved from pandas in a future version. Use pandas.Index with the appropriate dtype instead.

from pandas import Int64Index as NumericIndex

In [4]: from sklearn.metrics import mean_absolute_error,mean_absolute_percentage_er

In [5]:
 df=pd.read_csv('airline_passengers.csv',index_col='Month',parse_dates=True
 df

Out [5]: Thousands of Passengers

Month	
1949-01-01	112
1949-02-01	118
1949-03-01	132
1949-04-01	129
1949-05-01	121
•••	
1960-08-01	606
1960-09-01	508
1960-10-01	461
1960-11-01	390
1960-12-01	432

144 rows × 1 columns

```
In [6]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
           DatetimeIndex: 144 entries, 1949-01-01 to 1960-12-01
           Data columns (total 1 columns):
                Column
                                              Non-Null Count
                                                                Dtype
                Thousands of Passengers
                                                                 int64
                                              144 non-null
           dtypes: int64(1)
           memory usage: 2.2 KB
 In [7]:
           df.index.freq='MS'
 In [8]:
           df.plot();
                    Thousands of Passengers
           600
           500
           400
           300
           200
           100
                     1951
                              1953
                                               1957
                                                       1959
             1949
                                      1955
                                      Month
 In [9]:
           seasonalDecomposition=seasonal_decompose(df,model='mul')
In [10]:
           seasonalDecomposition.plot();
             500
             250
                    1950
                             1952
                                      1954
                                                1956
                                                         1958
                                                                  1960
             400
             200
                    1950
                             1952
                                      1954
                                                1956
                                                         1958
                                                                  1960
           1.2
1.0
0.8
                    1950
                             1952
                                      1954
                                                1956
                                                         1958
                                                                  1960
                    1950
                             1952
                                      1954
                                                         1958
                                                1956
                                                                  1960
```

```
In [13]: auto_arima(df,seasonal=True,m=12,trace=True).summary()
```

```
Performing stepwise search to minimize aic
                                     : AIC=1020.048, Time=0.48 sec
ARIMA(2,1,2)(1,1,1)[12]
                                     : AIC=1031.508, Time=0.01 sec
ARIMA(0,1,0)(0,1,0)[12]
                                    : AIC=1020.393, Time=0.05 sec
ARIMA(1,1,0)(1,1,0)[12]
ARIMA(0,1,1)(0,1,1)[12]
                                    : AIC=1021.003, Time=0.07 sec
ARIMA(2,1,2)(0,1,1)[12]
                                    : AIC=1019.935, Time=0.28 sec
ARIMA(2,1,2)(0,1,0)[12]
                                    : AIC=1019.290, Time=0.11 sec
ARIMA(2,1,2)(1,1,0)[12]
                                   : AIC=1019.546, Time=0.28 sec
                                    : AIC=1024.160, Time=0.06 sec
ARIMA(1,1,2)(0,1,0)[12]
                                    : AIC=1017.847, Time=0.11 sec
ARIMA(2,1,1)(0,1,0)[12]
                                    : AIC=1017.914, Time=0.25 sec
ARIMA(2,1,1)(1,1,0)[12]
ARIMA(2,1,1)(0,1,1)[12]
                                    : AIC=1018.359, Time=0.24 sec
                                    : AIC=1018.248, Time=0.47 sec
ARIMA(2,1,1)(1,1,1)[12]
                                   : AIC=1022.393, Time=0.03 sec
ARIMA(1,1,1)(0,1,0)[12]
ARIMA(2,1,0)(0,1,0)[12]
                                   : AIC=1022.393, Time=0.03 sec
                                    : AIC=1019.084, Time=0.11 sec
ARIMA(3,1,1)(0,1,0)[12]
                                    : AIC=1020.393, Time=0.02 sec
ARIMA(1,1,0)(0,1,0)[12]
ARIMA(3,1,0)(0,1,0)[12]
                                   : AIC=1023.666, Time=0.05 sec
                                   : AIC=1021.083, Time=0.20 sec
ARIMA(3,1,2)(0,1,0)[12]
ARIMA(2,1,1)(0,1,0)[12] intercept : AIC=inf, Time=0.26 sec
```

Best model: ARIMA(2,1,1)(0,1,0)[12]

Total fit time: 3.138 seconds

```
Out [13]: SARIMAX Results
```

Dep. Variable: y No. Observations: 144

Model: SARIMAX(2, 1, 1)x(0, 1, [], 12) **Log Likelihood** -504.923

Date: Tue, 26 Apr 2022 **AIC** 1017.847

Time: 06:45:11 BIC 1029.348

Sample: 0 **HQIC** 1022.520

- 144

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	0.5960	0.085	6.987	0.000	0.429	0.763
ar.L2	0.2143	0.091	2.343	0.019	0.035	0.394
ma.L1	-0.9819	0.038	-25.602	0.000	-1.057	-0.907
sigma2	129 3150	14 557	8.883	0.000	100 784	157.846

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 7.68

Prob(Q): 0.98 **Prob(JB):** 0.02

Heteroskedasticity (H): 2.33 Skew: -0.01

Prob(H) (two-sided): 0.01 Kurtosis: 4.19

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [15]: model=SARIMAX(train,order=(2,1,1),seasonal_order=(0,1,0,12))
    results=model.fit()
```

RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16N = 4 M = 10

At X0 0 variables are exactly at the bounds

At iterate 0 f= 3.42129D+00 |proj g|= 2.27842D-01

At iterate 5 f= 3.39217D+00 | proj g|= 1.21741D-02

At iterate 10 f= 3.39006D+00 | proj g|= 2.06863D-03

At iterate 15 f= 3.39003D+00 | proj g|= 1.15951D-03

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F 4 18 32 1 0 0 1.039D-05 3.390D+00 F = 3.3900246510399326

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

/Users/mirek/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/stat espace/sarimax.py:966: UserWarning: Non-stationary starting autoregressive parameters found. Using zeros as starting parameters.

warn('Non-stationary starting autoregressive parameters'

/Users/mirek/opt/anaconda3/lib/python3.8/site-packages/statsmodels/tsa/stat espace/sarimax.py:978: UserWarning: Non-invertible starting MA parameters f ound. Using zeros as starting parameters.

warn('Non-invertible starting MA parameters found.' This problem is unconstrained.

Warning: more than 10 function and gradient evaluations in the last line search. Termination may possibly be caused by a bad search direction.

In [16]:

results.summary()

```
Out [16]: SARIMAX Results
```

Dep. Variable: Thousands of Passengers **No. Observations:** 132

Model: SARIMAX(2, 1, 1)x(0, 1, [], 12) **Log Likelihood** -447.483

Date: Tue, 26 Apr 2022 **AIC** 902.967

Time: 06:45:41 **BIC** 914.083

Sample: 01-01-1949 **HQIC** 907.481

- 12-01-1959

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.5253	0.929	-0.566	0.572	-2.345	1.295
ar.L2	0.0110	0.275	0.040	0.968	-0.529	0.551
ma.L1	0.3064	0.935	0.328	0.743	-1.527	2.140
sigma2	108 0093	13 498	8.002	0.000	81.553	134 466

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 1.39

Prob(Q): 0.97 **Prob(JB):** 0.50

Heteroskedasticity (H): 1.47 Skew: -0.09

Prob(H) (two-sided): 0.23 Kurtosis: 3.50

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [17]:
    start=len(train)
    end=start+len(test)-1
    predictions=results.predict(start=start,end=end,dynamic=False).rename('SAR:

In [18]:
    ax=test.plot(legend=True,figsize=(12,6))
    predictions.plot(legend=True)
```

Out[18]: <AxesSubplot:xlabel='Month'>


```
In [19]:
          mean_absolute_percentage_error(test,predictions)
         0.044317548784737405
Out[19]:
In [20]:
          import scipy.stats as stats
          import matplotlib.pyplot as plt
In [21]:
          x=df['Thousands of Passengers']
          xt, lambda_mle=stats.boxcox(x)
          x \log = np. \log(x)
          fig, (ax1,ax2,ax3)=plt.subplots(3,figsize=(12,6))
          stats.probplot(x,dist=stats.norm,plot=ax1);
          stats.probplot(xt,dist=stats.norm,plot=ax2);
          stats.probplot(x log,dist=stats.norm,plot=ax3);
          ax1.set title('Probplot against normal distribution')
          ax2.set_title('')
          ax3.set_title('')
          ax1.set_xlabel('')
```

Out[21]: Text(0.5, 0, '')


```
In [22]: lambda_mle
```

Out[22]: 0.14802265137037945

Out[23]:		Thousands of Passengers	Log
	Month		
	1949-01-01	112	4.718499
	1949-02-01	118	4.770685
	1949-03-01	132	4.882802
	1949-04-01	129	4.859812
	1949-05-01	121	4.795791
	•••		•••
	1960-08-01	606	6.406880
	1960-09-01	508	6.230481
	1960-10-01	461	6.133398
	1960-11-01	390	5.966147
	1960-12-01	432	6.068426

144 rows × 2 columns

```
In [24]: auto_arima(df['Log'],seasonal=True,m=12,trace=True).summary()
```

```
Performing stepwise search to minimize aic
                                     : AIC=-480.365, Time=0.81 sec
ARIMA(2,0,2)(1,1,1)[12] intercept
                                     : AIC=-358.005, Time=0.03 sec
ARIMA(0,0,0)(0,1,0)[12] intercept
                                     : AIC=-472.836, Time=0.28 sec
ARIMA(1,0,0)(1,1,0)[12] intercept
ARIMA(0,0,1)(0,1,1)[12] intercept
                                     : AIC=-423.080, Time=0.30 sec
ARIMA(0,0,0)(0,1,0)[12]
                                     : AIC=-152.756, Time=0.01 sec
                                     : AIC=-485.489, Time=0.64 sec
ARIMA(2,0,2)(0,1,1)[12] intercept
ARIMA(2,0,2)(0,1,0)[12] intercept
                                     : AIC=-455.362, Time=0.29 sec
ARIMA(2,0,2)(0,1,2)[12] intercept
                                     : AIC=-483.632, Time=1.63 sec
                                     : AIC=-479.075, Time=0.74 sec
ARIMA(2,0,2)(1,1,0)[12] intercept
                                     : AIC=-482.918, Time=1.32 sec
ARIMA(2,0,2)(1,1,2)[12] intercept
ARIMA(1,0,2)(0,1,1)[12] intercept
                                     : AIC=-486.812, Time=0.54 sec
                                     : AIC=-455.568, Time=0.29 sec
ARIMA(1,0,2)(0,1,0)[12] intercept
                                     : AIC=-477.167, Time=0.45 sec
ARIMA(1,0,2)(1,1,1)[12] intercept
ARIMA(1,0,2)(0,1,2)[12] intercept
                                     : AIC=-484.812, Time=1.31 sec
ARIMA(1,0,2)(1,1,0)[12] intercept
                                     : AIC=-480.056, Time=0.58 sec
                                     : AIC=-483.074, Time=1.67 sec
ARIMA(1,0,2)(1,1,2)[12] intercept
ARIMA(0,0,2)(0,1,1)[12] intercept
                                     : AIC=-455.593, Time=0.41 sec
ARIMA(1,0,1)(0,1,1)[12] intercept
                                     : AIC=-489.188, Time=0.50 sec
                                     : AIC=-457.177, Time=0.12 sec
ARIMA(1,0,1)(0,1,0)[12] intercept
                                     : AIC=-487.318, Time=0.61 sec
ARIMA(1,0,1)(1,1,1)[12] intercept
ARIMA(1,0,1)(0,1,2)[12] intercept
                                     : AIC=-487.300, Time=1.13 sec
ARIMA(1,0,1)(1,1,0)[12] intercept
                                     : AIC=-482.595, Time=0.47 sec
ARIMA(1,0,1)(1,1,2)[12] intercept
                                     : AIC=-485.198, Time=1.18 sec
ARIMA(1,0,0)(0,1,1)[12] intercept
                                     : AIC=-482.026, Time=0.27 sec
ARIMA(2,0,1)(0,1,1)[12] intercept
                                     : AIC=-487.314, Time=0.55 sec
                                     : AIC=-367.061, Time=0.10 sec
ARIMA(0,0,0)(0,1,1)[12] intercept
                                     : AIC=-489.295, Time=0.37 sec
ARIMA(2,0,0)(0,1,1)[12] intercept
ARIMA(2,0,0)(0,1,0)[12] intercept
                                     : AIC=-458.262, Time=0.11 sec
                                     : AIC=-487.388, Time=0.66 sec
ARIMA(2,0,0)(1,1,1)[12] intercept
ARIMA(2,0,0)(0,1,2)[12] intercept
                                     : AIC=-487.321, Time=0.68 sec
                                     : AIC=-482.539, Time=0.90 sec
ARIMA(2,0,0)(1,1,0)[12] intercept
                                     : AIC=-486.907, Time=1.21 sec
ARIMA(2,0,0)(1,1,2)[12] intercept
                                     : AIC=-487.303, Time=0.52 sec
ARIMA(3,0,0)(0,1,1)[12] intercept
                                     : AIC=-485.297, Time=0.61 sec
ARIMA(3,0,1)(0,1,1)[12] intercept
ARIMA(2,0,0)(0,1,1)[12]
                                     : AIC=-481.419, Time=0.33 sec
```

Best model: ARIMA(2,0,0)(0,1,1)[12] intercept Total fit time: 21.662 seconds

```
SARIMAX Results
Out[24]:
```

Dep. Variable: y No. Observations: 144

Log Likelihood **Model:** SARIMAX(2, 0, 0)x(0, 1, [1], 12) 249.648

Date: Tue, 26 Apr 2022 AIC -489.295

Time: 06:46:57 BIC -474.881

Sample: 0 **HQIC** -483.438

- 144

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
intercept	0.0194	0.008	2.340	0.019	0.003	0.036
ar.L1	0.5750	0.075	7.632	0.000	0.427	0.723
ar.L2	0.2616	0.084	3.122	0.002	0.097	0.426
ma.S.L12	-0.5549	0.106	-5.225	0.000	-0.763	-0.347
sigma2	0.0013	0.000	8.856	0.000	0.001	0.002

Ljung-Box (L1) (Q): 0.02 Jarque-Bera (JB): 6.47

Prob(Q): 0.90 Prob(JB): 0.04

Heteroskedasticity (H): 0.58 **Skew:** 0.07

Prob(H) (two-sided): 0.07 Kurtosis: 4.08

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [25]:
          train=df.iloc[:-12]
          test=df.iloc[-12:]
          len(test)
         12
Out[25]:
In [27]:
          model2=SARIMAX(train['Log'],order=(2,0,0),seasonal_order=(0,1,1,12))
          results2=model2.fit()
          results2.summary()
```

RUNNING THE L-BFGS-B CODE

* * *

```
Machine precision = 2.220D-16
 N =
                       M =
                                      10
```

```
At XO
             0 variables are exactly at the bounds
At iterate
            0
                 f = -1.60346D+00
                                    |proj g| = 1.42556D+00
At iterate
            f = -1.67277D+00
                                    |proj g| = 4.61090D+00
                                    |proj g| = 7.10030D-02
At iterate 10 f = -1.68643D + 00
At iterate 15 f = -1.68739D + 00
                                    |proj g| = 5.02994D-02
At iterate 20
                 f = -1.68740D + 00
                                    |proj g|= 1.44260D-01
At iterate
            25
                 f = -1.68879D + 00
                                    |proj g| = 4.28816D-01
This problem is unconstrained.
                                    |proj g| = 2.38197D-01
At iterate
                 f = -1.69873D + 00
           30
At iterate 35 f = -1.69904D + 00
                                   |proj g| = 1.53912D-02
```

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value

* * *

N Tit Tnf Tnint Skip Nact Projg F 4 38 79 2 0 0 1.568D-03 -1.699D+00 F = -1.6990374795045518

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

Bad direction in the line search; refresh the lbfgs memory and restart the iteration.

Warning: more than 10 function and gradient evaluations in the last line search. Termination may possibly be caused by a bad search direction. Out [27]: SARIMAX Results

Dep. Variable: Log No. Observations: 132

Model: SARIMAX(2, 0, 0)x(0, 1, [1], 12) **Log Likelihood** 224.273

Date: Tue, 26 Apr 2022 **AIC** -440.546

Time: 06:47:26 **BIC** -429.396

Sample: 01-01-1949 **HQIC** -436.018

- 12-01-1959

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	0.6787	0.074	9.183	0.000	0.534	0.824
ar.L2	0.3143	0.076	4.161	0.000	0.166	0.462
ma.S.L12	-0.5626	0.094	-5.992	0.000	-0.747	-0.379
sigma2	0.0013	0.000	8.170	0.000	0.001	0.002

Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 0.98

Prob(Q): 0.97 **Prob(JB):** 0.61

Heteroskedasticity (H): 0.35 Skew: 0.02

Prob(H) (two-sided): 0.00 Kurtosis: 3.44

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [28]: predictions2=results2.predict(start=start,end=end,dynamic=False).rename('Log')
In [29]: ax=test['Log'].plot(legend=True,figsize=(12,6))
    predictions2.plot(legend=True)
```

Out[29]: <AxesSubplot:xlabel='Month'>

In [31]: mean_absolute_percentage_error(test['Thousands of Passengers'],np.exp(pred:

Out[31]: 0.02596284258776781

In []: