Caractérisation des inverses à gauche et application à la résolution des systèmes linéaires

A. Messaoudi*

Résumé

On considère une matrice W_k de taille $n \times k$, avec $k \leq n$. On va commencer par caractériser les inverses à gauche W_k^L de W_k ($W_k^L W_k = I_k$). Cette caractérisation va dépendre de deux matrices Y_k et Z_k de même taille que W_k . Soit W_k^g une inverse à gauche de W_k on démontre que toute inverse W_k^L à gauche de W_k peut s'écrire sous la forme

$$W_k^L = W_k^g + Z_k^T (I_n - W_k W_k^g).$$

Un cas particulier sera étudié:

$$W_k^g = (Y_k^T W_k)^{-1} Y_k^T,$$

$$W_k^L = (Y_k^T W_k)^{-1} Y_k^T + Z_k^T (I_n - W_k (Y_k^T W_k)^{-1} Y_k^T).$$

Des relations de récurrence entre W_{k+1}^L et W_k^L seront établies. Des propriétés seront aussi données en utilisant les projecteurs. Des algorithmes seront aussi proposés. Les choix de W_k , Y_k et Z_k permettent de retrouver la plupart des méthodes itératives pour la résolution d'un système linéaire Ax = b.

^{*}Ecole Normale Supérieure, Mohammed V University in Rabat, Maroc. E-mail: abderrahim.messaoudi@gmail.com