# Robotic Surgery Al Challenge

TEAM - 한우정과 아이들

### **Contents**

- Key Components of Deep Learning
  - Data
  - Model
  - Loss
  - Algorithm
- Further works

### **Data**

Train Dataset: 12,408건

중복되지 않은 사진 : 10,792장

- 한 이미지 내에 다양한 클래스가 포함 (max: 5)



#### - 사진마다 크기가 다 다름.

**Height, Width** = {(720, 1280), (1072, 1912), (240, 352), (1024, 1280), (1076, 1912), (1074, 1912), (1080, 1920)}

Height: Width = 9:16 비율이 많다. → Resize (288, 512)

#### Image shape: (288, 512, 3)





#### **Data**

Train Dataset: 12,408건

중복되지 않은 사진: 10,792장

- 한 이미지 내에 다양한 클래스가 포함 (max: 5)

- 라벨 데이터: 도구마다 n개의 포인트들 (json)

이미지 기준으로 모든 도구의
Pixel-wise Segmentation이
가능하도록 9 channel 의
2D 데이터 생성.



Label shape: (288, 512, 9)

| -             |                               |                 |
|---------------|-------------------------------|-----------------|
| 로 봇 수 술 도 구   | 1. Prograsp                   | Popular Control |
|               | 2. Large needle driveer       |                 |
|               | 3. Bipolar Maryland forceps   | RMaryland       |
|               | 4. Curved Scissors            | R-Scissors      |
| 복 강 경 수 술 도 구 | 1. Suction irrigator          |                 |
|               | 2. Grasping forceps           |                 |
|               | 3. Laparoscopic needle holder | Topola Nation   |
|               | 4. Metal clip applier         |                 |
|               | 5. Polymer clip applier       |                 |

## **Input Data**

Image shape: (288, 512, 3) x 10,792

Label shape: (288, 512, 9) x 10,792

#### ! 문제점.

도구 기준으로 마킹을 진행했기 때문에, 이미지마다 라벨링 값이 누락된 도구들이 상당히 많았음.







- Conv2D(+BN) + ReLU
- Conv2D(strides=2)
- UpConv2D(+BN) + ReLU
- Conv2D(activation='sigmoid')

| Layer (type)                 | Output Shape | Param # |
|------------------------------|--------------|---------|
| encoder_block (EncoderBlock) | multiple     | 19648   |
| encoder_block_1 (EncoderBloc | multiple     | 92864   |
| encoder_block_2 (EncoderBloc | multiple     | 370048  |
| encoder_block_3 (EncoderBloc | multiple     | 1477376 |
| conv_block_4 (ConvBlock)     | multiple     | 3544064 |
| flatten (Flatten)            | multiple     | 0       |
| dense (Dense)                | multiple     | 2654217 |
| decoder_block (DecoderBlock) | multiple     | 2952960 |
| decoder_block_1 (DecoderBloc | multiple     | 739200  |
| decoder_block_2 (DecoderBloc | multiple     | 185280  |
| decoder_block_3 (DecoderBloc | multiple     | 46560   |
| conv2d_22 (Conv2D)           | multiple     | 297     |

Trainable params: 12,075,666

Non-trainable params: 6,848

Params: 12M







- Conv2D(+BN) + ReLU
- Conv2D(strides=2)
- UpConv2D(+BN) + ReLU
- Conv2D(activation='sigmoid')

| Layer (type)                 | Output Shape | Param # |
|------------------------------|--------------|---------|
| encoder_block (EncoderBlock) | multiple     | 19648   |
| encoder_block_1 (EncoderBloc | multiple     | 92864   |
| encoder_block_2 (EncoderBloc | multiple     | 370048  |
| encoder_block_3 (EncoderBloc | multiple     | 1477376 |
| conv_block_4 (ConvBlock)     | multiple     | 3544064 |
| flatten (Flatten)            | multiple     | 0       |
| dense (Dense)                | multiple     | 2654217 |
| decoder_block (DecoderBlock) | multiple     | 2952960 |
| decoder_block_1 (DecoderBloc | multiple     | 739200  |
| decoder_block_2 (DecoderBloc | multiple     | 185280  |
| decoder_block_3 (DecoderBloc | multiple     | 46560   |
| conv2d_22 (Conv2D)           | multiple     | 297     |

Trainable params: 12,075,666

Non-trainable params: 6,848

Params: 12M



Conv2D(+BN) + ReLU

Conv2D(strides=2)

#### Loss



200

Target



사용한 Loss Function







사용한 Loss Function





**BCE Loss** 

### Loss





Predicted Segmentation







#### Loss

#### **BCE-Loss**

$$J(\mathbf{w}) \ = \ rac{1}{N} \sum_{n=1}^N H(p_n,q_n) \ = \ - rac{1}{N} \sum_{n=1}^N \left[ y_n \log \hat{y}_n + (1-y_n) \log (1-\hat{y}_n) 
ight],$$

Dice-Loss = 1- DSC

$$DSC = rac{2|X\cap Y|}{|X|+|Y|}$$

**BCE Dice Loss = BCE-Loss + Dice-Loss** 

## Algorithm

• Training : 2 Days

• Optimizer: Adam

• Learning rate: 1e-4

• Batch size: 16

- Batch Normalization
- Dropout

### **Further works**

- Weight initialization + Early Stopping
- Data Augmentation

- Ablation Study
  - Model 4층 > 5층.
  - Filter size 변경
- 도구별로 Model 을 구성, 총 9개 모델을 병렬적으로 학습.

## Augmentation

Train, Test 테스트 뿐만이 아니라 실제 데이터에 대한 예측을 하는 것이 목적이기 때문에, 예측 범위를 넓혀주며 한정된 Image들을 보완하기 위하여 Augmentation 진행

- Shift image
- Rotate image
- Flip image
- Hue transition





































### 9 Models

각 도구에 민감한 모델을 각각 만들자.

N 번 모델은 N번째 클래스 도구를 감지하는 모델.

학습 방법 -

N번째 클래스의 데이터가 들어올 경우.

N번째 모델에 Positive data로 넣고, 다른 2개의 모델에 Negative data로 넣어 학습 진행.

효과: 각 도구에 대한 세그멘테이션 성능이 월등히 높아짐.



## 9 Models

