Burger Nutrition

(Burger King & McDonald)

by Pakawat Raksasin 6520422022 Thanyalak Limsukhawat 6520422030

Outline

- Objective
- Get to know our data
- Interval Estimation
 - t.test
 - re-sampling (Bootstrap)
- Conclusion

Objective

 To determine interval estimation for Burger's nutritional mean (including calories, fat, and cholesterol)

 To compare the result of Burger's nutritional mean from 2 methods (t-test and Bootstrap)

Get to know our data...

FastFood Nutrition

https://www.kaggle.com/datasets/joebeachcapital/fast-food

Description

The dataset contains nutritional values from six of the largest and most popular fast food restaurants.

Preparation

- Filter data from 2 restaurants (Burger King & McDonald)
- Filter only burger product
- 3. Focus on 3 columns including Calories, Total Fat, and Cholesterol

DataSet

Company	Company Item		Total Fat (g)	Cholesterol (mg)
McDonald's	Hamburger	250	9	2
McDonald's	Cheeseburger	300	12	41
McDonald's	Double Cheeseburger	440	23	8
McDonald's	McDouble	390	19	6
McDonald's	Quarter Pounder® with Cheese	510	26	90
McDonald's	Double Quarter Pounder® with Cheese	740	42	15
McDonald's	Big Mac®	540	29	7
McDonald's	Big N' Tasty®	460	24	7
McDonald's	Big N' Tasty® with Cheese	510	28	8
McDonald's	Angus Bacon & Cheese	790	39	14
McDonald's	Angus Deluxe	750	39	13
McDonald's	Angus Mushroom & Swiss	770	40	13
McDonald's	Filet-O-Fish®	380	18	4
McDonald's	McChicken ®	360	16	3
McDonald's	McRib ®	500	26	7
McDonald's	Premium Grilled Chicken Classic Sandwich	360	9	6
McDonald's	Premium Crispy Chicken Classic Sandwich	510	22	4
McDonald's	Premium Grilled Chicken Club Sandwich	460	17	9
McDonald's	Premium Crispy Chicken Club Sandwich	620	29	7
McDonald's	Premium Grilled Chicken Ranch BLT Sandwich	380	10	7
McDonald's	Premium Crispy Chicken Ranch BLT Sandwich	540	23	5
McDonald's	Southern Style Crispy Chicken Sandwich	400	17	4
Burger King	Whopper® Sandwich	660	40	9
Burger King	Whopper® Sandwich with Cheese	740	46	11

Burger King

29 observations

McDonalds

- 22 observations

Variables

- Calories (Cal)
- Total Fat (g)
- Cholesterol (mg)

Variable Distribution

Calories (Cal)

Mean = 607.451

Total Fat (g)

Mean = 34.41176

Cholesterol (mg)

Mean = 98.82353

Interval Estimation

```
## t-test
t.test(bg_cal, conf.level = 0.95)
t.test(bg_fat, conf.level = 0.95)
t.test(bg_chl, conf.level = 0.95)
```

One Sample

Definition:

 A comparison of 1 group of data with standard values or values that already exist

Application for this study:

 Utilize one sample because the data set is combine into one group

One Sample t-test

```
data: bg cal
                           t = 16.813, df = 50, p-value < 2.2e-16
                           alternative hypothesis: true mean is not equal to 0
  Calories
                           95 percent confidence interval:
                            534.8833 680.0187
                           sample estimates:
                           mean of x
                             607.451
                           data: bg_fat
                           t = 12.397, df = 50, p-value < 2.2e-16
                           alternative hypothesis: true mean is not equal to 0
 Total Fat
                           95 percent confidence interval:
                            28.83634 39.98718
                           sample estimates:
                           mean of x
                            34,41176
                           data: bg_chl
                           t = 10.726, df = 50, p-value = 1.444e-14
                           alternative hypothesis: true mean is not equal to 0
                           95 percent confidence interval:
Cholesterol
                             80.31709 117.32997
                           sample estimates:
                           mean of x
                            98.82353
```

```
## Performing Bootstrap re-sampling
set.seed(100)
mean.fun<-function(bg_cal,i)</pre>
          {m<-mean(bg cal[i])}
bg_cal_b <-boot(bg_cal,mean.fun,R=2000)</pre>
bg_cal_b
set.seed(100)
mean.fun<-function(bg fat,i)</pre>
           {m<-mean(bg fat[i])}
bg_fat_b <-boot(bg_fat,mean.fun,R=2000)</pre>
bg_fat_b
set.seed(100)
mean.fun<-function(bg chl,i)
           {m<-mean(bg chl[i])}
bg_chl_b <-boot(bg_chl,mean.fun,R=2000)</pre>
ba chl b
## Plot
plot(bg cal b)
plot(bg fat b)
plot(bg chl b)
## Find Confidence Interval of Bootstrap
bg_cal_ci<-boot.ci(bg_cal_b,conf = 0.95,type = c("norm", "perc"))</pre>
bg cal ci
bg_fat_ci<-boot.ci(bg_fat_b,conf = 0.95,type = c("norm", "perc"))</pre>
bg_fat_ci
bg_chl_ci<-boot.ci(bg_chl_b,conf = 0.95,type = c("norm", "perc"))</pre>
bg chl ci
```

Bootstrap

The main purpose of bootstrap is to evaluate the variance of the estimator.

Other applications might be:

- To estimate confidence intervals, standard errors for the estimator
- To estimate precision for an estimator θ to deal with non-normally distributed data
- To create sample sizes for experiments

Result of Bootstrap

Calories (Cal)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL: boot.ci(boot.out = bg_cal_b, conf = 0.95, type = c("norm", "perc"))

Intervals :
Level Normal Percentile
95% (537.8, 677.4) (539.4, 679.4)
Calculations and Intervals on Original Scale

Total Fat (g)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 2000 bootstrap replicates

CALL : boot.ci(boot.out = bg_fat_b, conf = 0.95, type = c("norm", "perc"))

Intervals:
Level Normal Percentile
95% (29.08, 39.77) (29.35, 39.92)
Calculations and Intervals on Original Scale

Bias = 0.5 Bias = 0.04

Cholesterol (mg)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS Based on 2000 bootstrap replicates

CALL : boot.ci(boot.out = bg_chl_b, conf = 0.95, type = c("norm", "perc"))

Intervals:
Level Normal Percentile
95% (80.80, 116.65) (81.86, 117.25)
Calculations and Intervals on Original Scale

Bias = 0.1

Conclusion

Summary

	Calories (Cal)		Total Fat (g)		Cholesterol (mg)	
Mean	607.451		34.41176		98.92353	
Interval Estimation (t-test)	(534.88	680.02)	(28.84	39.99)	(80.317	117.32)
Bootstrap	(537.8	677.4)	(29.08	39.77)	(80.80	116.65)
Range (t-test) 145.14		11.15		37.003		
Range (Bootstrap)	139.6		10.69		35.85	
Difference	(2.93	-2.62)	(0.24	-0.22)	(0.483	-0.67)

From the result, it can be seen that **the range of data** from <u>t-test method is wider than</u> <u>Bootstrap method</u>. However, **the different value** of 3 variables' mean from these methods is <u>not significantly different</u>. Therefore, it can be implied that the distribution of data is nearly **'Normal Distribution'**.

THANK YOU

