SUHU DAN KALOR

DEPARTEMEN FISIKA IPB

Pendahuluan

- Dalam kehidupan sehari-hari sangat banyak didapati penggunaan energi dalam bentuk kalor:
 - Memasak makanan
 - Ruang pemanas/pendingin
 - -DII.

TUJUAN INSTRUKSIONAL

 Menentukan besaran suhu, kalor jenis, kalor, konduktivitas dalam kaitannya dengan pemuaian, penjalaran kalor, dan perubahan fasa

Suhu dan Pemuaian

- Pada kehidupan sehari-hari temperatur merupakan ukuran mengenai panas atau dinginnya benda.
- •Es dikatakan memiliki temperatur rendah

 Api dikatakan panas atau bertemperatur tinggi

 Temperatur merupakan sifat sistem yang menentukan apakah sistem berada dalam keadaan kesetimbangan dengan sistem lain

Kesetimbangan

termal?

- •Jika dua sistem dengan temperatur yang berbeda diletakkan dalam kontak termal, maka kedua sistem tersebut pada akhirnya akan mencapai temperatur yang sama.
- •Jika dua sistem dalam kesetimbangan termal dengan sistem ketiga, maka mereka berada dalam kesetimbangan termal satu sama lain

- Alat yang digunakan untuk mengukur temperatur disebut termometer
- ► Untuk mengukur temperatur secara kuantitatif, perlu skala numerik seperti °C, °F, K, °R

Pemuaian

 Suatu zat jika dipanaskan pada umumnya akan memuai dan menyusut jika didinginkan

$$\Delta L = \alpha L_o \Delta T$$

$$\Delta A = \beta A_o \Delta T$$

$$\Delta V = \gamma V_o \Delta T$$

 ΔL , ΔA , ΔV = Perubahan panjang, luas dan volume

 L_0 , A_{o_1} V_o = Panjang, luas dan volume awal

 ΔT = Perubahan suhu (${}^{0}C$)

 α , β , γ = Koefisien muai panjang, luas dan volume (${}^{0}C^{-1}$)

$$\gamma = 3\alpha \text{ dan } \beta = 2\alpha$$

Contoh soal

Sebuah cincin besi berdiameter 1,5 m pada suhu 20°C. Harus dipanaskan didalam ketel dengan suhu berapakah cincin tersebut agar diameternya menjadi 1,52 m, jika α_{besi} = 12 x 10⁻⁶ / °C

T?

ANOMALI AIR

- •4°C → 0°C : Volumenya membesar
- •0°C → 4°C : Volumenya mengecil dengan massa jenis (ρ) paling tinggi, sehingga perilaku air ini sangat penting untuk bertahannya kehidupan di dalam air laut selama musim dingin

Kalor

- Kalor merupakan transfer energi dari satu benda ke benda lain karena adanya perbedaan temperatur
- Dalam satuan SI, satuan kalor adalah joule dengan 1 kal = 4.186 J
- 1 kalori (kal) = kalor yang dibutuhkan untuk menaikkan temperatur 1 gr air sebesar 1°C

 Jumlah kalor yang diperlukan untuk mengubah suhu suatu sistem

 $Q = m c \Delta T$

m = massa (gr) c = kalor jenis (kal/g 0 C) Δ T = Perubahan suhu (0 C)

- Jika bagian yang berbeda dari sistem yang terisolasi berada pada temperatur yang berbeda, kalor akan mengalir dari temperatur tinggi ke rendah
- Jika sistem terisolasi seluruhnya, tidak ada energi yang bisa mengalir ke dalam atau keluar, maka berlaku kekekalan energi dengan

Contoh soal

Hitunglah jumlah kalor yang diperlukan untuk menaikkan suhu 20 Kg besi (c = 0,11 kal/g°C) dari 10°C ke 90°C

Jawab.

```
Q = m c \Delta T
= 20.10<sup>3</sup> gr x 0,11 kal/g<sup>0</sup>C x (90 – 10)<sup>0</sup>C
= 17600000 kal
```

Perubahan Fasa

 Zat dapat berbentuk padat, cair atau gas. Ketika terjadi perubahan fasa, sejumlah kalor dilepas atau diserap suatu zat yaitu

```
Q = m L Q = kalor (kalori)

m = massa (gr)

L = kalor laten (kal/gr)
```

Kalor penguapan air $(100^{\circ}C) = 530 \text{ kal/gr}$

Kalor peleburan es $(0^{\circ}C) = 80 \text{ kal/gr}$

Contoh

Berapa banyak energi yang harus dikeluarkan lemari es dari 150 kg air pada 20°C untuk membuat es pada – 12°C

Jawab

Kalor yang ditambahkan

 Kalor laten untuk mengubah cairan menjadi gas tidak hanya pada titik didih (100°C) tetapi juga pada suhu ruang. Hal ini disebut evaporasi

Perpindahan kalor

Kalor berpindah dari satu tempat atau benda ke yang lain dengan tiga cara :

- 1. konduksi
- 2. konveksi
- 3. radiasi

Konduksi

Berpindahnya kalor dari satu tempat ke tempat lain dengan cara tumbukan antar molekul, dengan laju aliran kalor

$$H = \frac{\Delta Q}{\Delta t} = -KA \frac{\Delta T}{1}$$

K = Konduktivitas termal (J/s.m.ºC)

A = Luas penampang (m²)

 $T = Suhu (^{0}C)$

L = Tebal / panjang (m)

Contoh

1. Berapa laju aliran kalor melalui jendela kaca yang luasnya 2.0 m x 1.5 m dan tebalnya 3.2 mm, jika temperatur pada permukaan dalam dan luar jendela 15°C dan 30°C dengan konduktivitas termal 0.84 J/s.m.°C

Konveksi kalor ditransfer dari satu tempat ke tempat yang lain dengan pergerakan molekul, zat atau materi

Konveksi paksa

Sepanci air dipanaskan

Konveksi alami

- Aliran udara panas/dingin dipantai
- Arus samudra yang hangat/dingin karena perubahan cuaca

Radiasi

Kecepatan sebuah benda meradiasikan energi/ persamaan stefan-Boltzmann

$$\frac{\Delta Q}{\Delta t} = e \, \sigma A T^4$$

e =koefisien pemancaran

 σ = 5.67 x 10⁻⁸ W/m²K⁴

A = Luas permukaan

T = suhu

Penutup

- Kita telah mempelajari masalah:
 - Suhu dan pemuaian
 - Suhu dan perpindahan kalor
 - Suhu, kalor dan perubahan fasa
- Bahasan selanjutnya adalah hukumhukum termodinamika yang mencakup
 - Hukum I: mengenai hubungan antara energi dalam, kerja dan kalor yang terjadi pada suatu sistem
 - Hukum II: mengenai arah berjalannya suatu proses