Interpretable Machine Learning

SHAP (SHapley Additive exPlanation) Values

- Understand KernelSHAP as weighted least-squares regression over coalitions
- Grasp how background samples impute "absent" features
- Observational vs. interventional SHAP

Interpretable Machine Learning

Shapley **Kernel SHAP**

- Understand KernelSHAP as weighted least-squares regression over coalitions
- Grasp how background samples impute "absent" features
- Observational vs. interventional SHAP

Definition: A kernel-based, model-agnostic method to compute Shapley values via local surrogate models (e.g. linear model)

- **1** Sample coalition vectors $\mathbf{z}' \in \{0, 1\}^p$
- Map coalition vectors to original feature space and predict
- Ompute kernel weights for surrogate model
- Fit a weighted linear model
- Return Shapley values

KERNEL SHAP - IN 5 STEPS

Definition: A kernel-based, model-agnostic method to compute Shapley values via local surrogate models (e.g. linear model)

- **1** Sample coalition vectors $' \in \{0, 1\}^p$
- Map coalition vectors to original feature space and predict
- Compute kernel weights for surrogate model
- Fit a weighted linear model
- Return Shapley values

Step 1: Sample coalition vectors

• Sample K coalitions from the simplified (binary) feature space

$$\mathbf{z}'^{(k)} \in \{0,1\}^p, \quad k \in \{1,\dots,K\}$$

- $\mathbf{z}^{\prime(k)} \in \{0,1\}^p$ indicates which features are present in k-th coalition
- To evaluate the model on each coalition, we must map $\mathbf{z}^{\prime(k)}$ to original space
- Example ($\mathbf{x} = (51.6, 5.1, 17.0)$) $\Rightarrow 2^p = 2^3 = 8$ coalitions (without sampling)

	_		Map to	origina	al feature s	pace			
Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws		$\mathbf{z}^{(k)}$	hum	temp	ws
Ø	z ′ ⁽¹⁾	0	0	0		$z^{(1)}$?	?	?
hum	z ′ ⁽²⁾	1	0	0		$z^{(2)}$	51.6	?	?
temp	z ′ ⁽³⁾	0	1	0		$z^{(3)}$?	5.1	?
ws	z ′ ⁽⁴⁾	0	0	1		$z^{(4)}$?	?	17.0
hum, temp	z ′ ⁽⁵⁾	1	1	0		$z^{(5)}$	51.6	5.1	?
temp, ws	z ′ ⁽⁶⁾	0	1	1		$z^{(6)}$?	5.1	17.0
hum, ws	z ′ ⁽⁷⁾	1	0	1		$z^{(7)}$	51.6	?	17.0
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1		$z^{(8)}$	51.6	5.1	17.0

KERNEL SHAP - IN 5 STEPS

Step 1: Sample coalition vectors

• Sample K coalitions from the simplified (binary) feature space

$$\mathbf{z}^{\prime(k)} \in \{0,1\}^p, \quad k \in \{1,\ldots,K\}$$

- $\mathbf{z}^{\prime(k)} \in \{0,1\}^p$ indicates which features are present in k-th coalition
- To evaluate the model on each coal., we must map $\mathbf{z}^{\prime(k)}$ to original space
- Example $(\mathbf{x} = (51.6, 5.1, 17.0)) \Rightarrow 2^p = 2^3 = 8 \text{ coals (without sampling)}$

	_		Map to	origina	I feature spa	ce	—	_	
Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	z	(k)	hum	temp	ws
Ø	z ′ ⁽¹⁾	0	0	0	z	(1)	?	?	?
hum	z ′ ⁽²⁾	1	0	0	z	(2)	51.6	?	?
temp	z ′ ⁽³⁾	0	1	0	z	(3)	?	5.1	?
ws	$z'^{(4)}$	0	0	1	z	(4)	?	?	17.0
hum, temp	z ′ ⁽⁵⁾	1	1	0	z	(5)	51.6	5.1	?
temp, ws	z ′ ⁽⁶⁾	0	1	1	z	(6)	?	5.1	17.0
hum, ws	z ′ ⁽⁷⁾	1	0	1	z	(7)	51.6	?	17.0
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	z	(8)	51.6	5.1	17.0

Interpretable Machine Learning - 2/8 © Interpretable Machine Learning - 2/8

Step 2: Map coalition vectors to original feature space and predict

- Define mapping $h_{\mathbf{x},\mathbf{x}'}:\{0,1\}^p \to \mathbb{R}^p$, where: $(h_{\mathbf{x},\mathbf{x}'}(\mathbf{z}'))_j = \begin{cases} x_j & \text{if } z_j' = 1 \\ x_j' & \text{if } z_j' = 0 \end{cases}$
- Construct $\mathbf{z} = h_{\mathbf{x},\mathbf{x}'}(\mathbf{z}')$ where present features take their values from \mathbf{x} and absent features are imputed with values from a random background sample $\mathbf{x}' = (64.3, 28.0, 14.5)$
- Evaluate the model on each constructed vector: $\hat{f} = \hat{f}(h_{\mathbf{x},\mathbf{x}'}(\mathbf{z}'^{(k)}))$

KERNEL SHAP IN 5 STEPS

Step 2: Map coalition vectors to original feature space and predict

- Define mapping $h_{\mathbf{x},\mathbf{x}'}:\{0,1\}^p \to \mathbb{R}^p: (h_{\mathbf{x},\mathbf{x}'}(\mathbf{z}'))_j = \begin{cases} x_j & \text{if } z_j' = 1 \\ x_j' & \text{if } z_j' = 0 \end{cases}$
- Construct = $h_{\mathbf{x},\mathbf{x}'}(\mathbf{z}')$ where present features take their values from \mathbf{x} and absent features are imputed with values from a random background sample $\mathbf{x}' = (64.3, 28.0, 14.5)$
- Evaluate the model on each constructed vector: $\hat{f} = \hat{f}(h_{\mathbf{x} \mathbf{x}'}(\mathbf{z}'^{(k)}))$

	_			h	$(\mathbf{z}'(\mathbf{z}'^{(k)})$		\		
Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	$\mathbf{z}^{(k)}$	hum	temp	ws	$\hat{f}(h_{\mathbf{x}}(\mathbf{z}^{\prime(k)}))$
Ø	z ′ ⁽¹⁾	0	0	0	z ⁽¹⁾	64.3	28.0	14.5	6211
hum	z ′ ⁽²⁾	1	0	0	z ⁽²⁾	51.6	28.0	14.5	5586
temp	z ′ ⁽³⁾	0	1	0	z (3)	64.3	5.1	14.5	3295
ws	$z'^{(4)}$	0	0	1	$z^{(4)}$	64.3	28.0	17.0	5762
hum, temp	z ′ ⁽⁵⁾	1	1	0	z ⁽⁵⁾	51.6	5.1	14.5	2616
temp, ws	z ′ ⁽⁶⁾	0	1	1	z ⁽⁶⁾	64.3	5.1	17.0	2900
hum, ws	z ′ ⁽⁷⁾	1	0	1	z ⁽⁷⁾	51.6	28.0	17.0	5411
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	z ⁽⁸⁾	51.6	5.1	17.0	2573

Interpretable Machine Learning - 3 / 8

Step 2: Map coalition vectors to original feature space and predict

Fix coalition vector $\mathbf{z}' = (1,0,0)$; draw multiple background samples $\mathbf{x}'^{(1)}, \dots, \mathbf{x}'^{(B)}$

⇒ keep **hum**, replace **temp** and **ws** by draws from the background data.

Sample <i>b</i>	hum (from x)	temp (from $\mathbf{x}^{\prime(b)}$)	ws (from $\mathbf{x}^{\prime(b)}$)	$\hat{f}(h_{\mathbf{x},\mathbf{x}'^{(b)}}(\mathbf{z}'))$
1	51.6	28.0	14.5	4635
2	51.6	5.1	14.5	3295
3	51.6	28.0	17.0	5586
:				1
:				

• Typically, many background samples $\mathbf{x}'^{(1)}, \dots, \mathbf{x}'^{(B)}$ are used to approximate the marginal expectation required for KernelSHAP via Monte-Carlo average:

$$\mathbb{E}_{\mathbf{X}_{-S}}[f(\mathbf{x}_S, \mathbf{X}_{-S})] \approx \frac{1}{B} \sum_{b=1}^{B} \hat{f}(h_{\mathbf{x},\mathbf{x}'^{(b)}}(\mathbf{z}'))$$

- Background samples $\mathbf{x}^{\prime(b)}$ are drawn from:
 - ullet Conditional distribution $\mathbf{x}'^{(b)} \sim P_{\mathbf{X}|\mathbf{X}_c=\mathbf{x}_c} \leadsto \mathbf{Observational\ SHAP}$
 - Marginal distribution $\mathbf{x}'^{(b)} \sim P_{\mathbf{X}} \leadsto \mathbf{Interventional\ SHAP}$
- The same procedure applies to every other coalition vector $\mathbf{z}^{\prime(k)}$.

KERNEL SHAP IN 5 STEPS

Step 2: Map coalition vectors to original feature space and predict

Fix $\mathbf{z}' = (1, 0, 0)$; draw multiple background samples $\mathbf{x}'^{(1)}, \dots, \mathbf{x}'^{(B)}$

⇒ keep **hum**, replace **temp** and **ws** by draws from the background data.

Sample b	hum (from x)	temp (from $\mathbf{x}'^{(b)}$)	ws (from $\mathbf{x}'^{(b)}$)	$\hat{f}(h_{\mathbf{x},\mathbf{x}'^{(b)}}(\mathbf{z}'))$
1	51.6	28.0	14.5	4635
2	51.6	5.1	14.5	3295
3	51.6	28.0	17.0	5586
:				'

approximate the marginal expectation required for KernelSHAP via Monte-Carlo average:

• Typically, many background samples $\mathbf{x}'^{(1)}, \dots, \mathbf{x}'^{(B)}$ are used to

$$\mathbb{E}_{\mathbf{X}_{-S}}[f(\mathbf{x}_S, \mathbf{X}_{-S})] \approx \frac{1}{B} \sum_{b=1}^{B} \hat{f}(h_{\mathbf{x},\mathbf{x}'(b)}(\mathbf{z}'))$$

- Background samples $\mathbf{x}'^{(b)}$ are drawn from:
 - Conditional distribution $\mathbf{x}'^{(b)} \sim P_{\mathbf{X}|\mathbf{X}_c=\mathbf{x}_c} \leadsto \mathbf{Observational SHAP}$
 - Marginal distribution $\mathbf{x}'^{(b)} \sim P_{\mathbf{x}} \leadsto \mathbf{Interventional SHAP}$
- The same procedure applies to every other coalition vector $\mathbf{z}^{\prime(k)}$.

Step 3: Compute kernel weights for surrogate model

Intuition: We learn most about a feature's effect when (recall multinomial coefficient in Shapley value's set definition):

- it appears in isolation (small coalition), or
- in **near-complete context** (large coalition).
- ⇒ SHAP assigns highest weights to very small and very large coalitions.

Note: The figure below is illustrative and not tied to the running example.

KERNEL SHAP - IN 5 STEPS

Step 3: Compute kernel weights for surrogate model

Intuition: We learn most about a feature's effect when (recall multinomial coefficient in Shapley value's set definition):

- it appears in isolation (small coalition), or
- in near-complete context (large coalition).
- ⇒ SHAP assigns highest weights to very small and very large coalitions.

Note: The figure below is illustrative and not tied to the running example.

Step 3: Compute kernel weights for surrogate model

Note: Weights differ from multinomial coefficient in the Shapley value set-definiton but are constructed to yield the same Shapley values via weighted linear regression.

• see shapley_kernel_proof.pdf

KERNEL SHAP - IN 5 STEPS

Step 3: Compute kernel weights for surrogate model

Note: Weights differ from multinomial coefficient in the Shapley value set-definiton but are constructed to yield the same Shapley values via weighted linear regression. • see_shap 2017

Step 3: Compute kernel weights for surrogate model

Purpose: Assign observation weights $\pi_x(\mathbf{z}')$ to each coalition vector \mathbf{z}' when solving the local surrogate (weighted linear regression), e.g.:

$$\pi_{x}(\mathbf{z}') = \frac{(p-1)}{\binom{p}{|\mathbf{z}'|}|\mathbf{z}'|(p-|\mathbf{z}'|)} \rightsquigarrow \pi_{x}(\mathbf{z}' = (1,0,0)) = \frac{(3-1)}{\binom{3}{1}|1(3-1)} = \frac{1}{3}$$

Coalition	$\mathbf{z}'^{(k)}$	hum	temp	ws	weight $\pi_{\scriptscriptstyle X}\left(\mathbf{z}'\right)$
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	$z'^{(3)}$	0	1	0	0.33
ws	$z'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	$z'^{(8)}$	1	1	1	∞

KERNEL SHAP - IN 5 STEPS

Step 3: Compute kernel weights for surrogate model

Purpose: Assign observation weights $\pi_x(\mathbf{z}')$ to each coalition vector ' when solving the local surrogate (weighted linear regression), e.g.:

$$\pi_{x}(\mathbf{z}') = \frac{(p-1)}{\left(\begin{array}{c}p\\|\mathbf{z}'|\end{array}\right)|\mathbf{z}'|(p-|\mathbf{z}'|)} \rightsquigarrow \pi_{x}\left(\mathbf{z}'=(1,0,0)\right) = \frac{(3-1)}{\left(\begin{array}{c}3\\1\end{array}\right)1(3-1)} = \frac{1}{3}$$

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight $\pi_{x}\left(\mathbf{z}'\right)$
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	z ′ ⁽³⁾	0	1	0	0.33
ws	$z'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

Interpretable Machine Learning - 6 / 8

Step 3: Compute kernel weights for surrogate model

- For p > 3 features, the finite weights are all 0.33 as every shown coalition has the same size (|S| = 1 and |-S| = 2 and vice versa for p = 3).
- In general (when p > 3), weights vary with coalition size.
- ullet Empty and full coalitions receive weight ∞ (division-by-zero term)
 - → These coalition vectors are not used as observations for the linear regression
 - → Instead constraints are used to ensure *local accuracy* and *missingness*

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight $\pi_{\scriptscriptstyle X}\left(\mathbf{z}'\right)$
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	z ′ ⁽³⁾	0	1	0	0.33
ws	$z'^{(4)}$	0	0	1	0.33
hum, temp	$z'^{(5)}$	1	1	0	0.33
temp, ws	z ′ ⁽⁶⁾	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

KERNEL SHAP - IN 5 STEPS

Step 3: Compute kernel weights for surrogate model

- For p > 3 features, the finite weights are all 0.33 as every shown coalition has the same size (|S| = 1 and |-S| = 2 and vice versa for p = 3).
- In general (when p > 3), weights vary with coalition size.
- Empty and full coalitions receive weight ∞ (division-by-zero term)
 - → These coalition vectors are not used as obs. for the linear regression
 - → Instead constraints are used to ensure *local accuracy* and *missingness*

Coalition	$\mathbf{z}^{\prime(k)}$	hum	temp	ws	weight $\pi_{\scriptscriptstyle X}\left(\mathbf{z}'\right)$
Ø	$z'^{(1)}$	0	0	0	∞
hum	$z'^{(2)}$	1	0	0	0.33
temp	z ′ ⁽³⁾	0	1	0	0.33
WS	$z'^{(4)}$	0	0	1	0.33
hum, temp	z ′ ⁽⁵⁾	1	1	0	0.33
temp, ws	$z'^{(6)}$	0	1	1	0.33
hum, ws	$z'^{(7)}$	1	0	1	0.33
hum, temp, ws	z ′ ⁽⁸⁾	1	1	1	∞

Interpretable Machine Learning - 6 / 8 © Interpretable Machine Learning - 6 / 8

Step 4: Fit a weighted linear model

Goal Estimate Shapley values ϕ_i as coefficients of a local, weighted linear surrogate.

$$g(\mathbf{z}') = \phi_0 + \sum_{j=1}^{p} \phi_j z_j'$$

$$\min_{\phi} \sum_{k=1}^{K} \pi_{\mathbf{x}}(\mathbf{z}'^{(k)}) \left[\hat{f}\left(h_{\mathbf{x}}(\mathbf{z}'^{(k)})\right) - g(\mathbf{z}'^{(k)}) \right]^{2}$$

Boundary coalitions ($\mathbf{z}' = \mathbf{1}$ and $\mathbf{z}' = \mathbf{0}$) enforce constraints on coefficients

$$\phi_0 = \mathbb{E}[\hat{f}(\mathbf{X})], \qquad \sum_{i=1}^p \phi_i = \hat{f}(\mathbf{X}) - \phi_0.$$

KERNEL SHAP - IN 5 STEPS

Step 4: Fit a weighted linear model

Goal

Estimate Shapley values ϕ_j as coefficents of a local, weighted linear surrogate.

$$g(\mathbf{z}') = \phi_0 + \sum_{j=1}^{p} \phi_j z_j'$$

Weighted least-squares objective

$$\min_{\phi} \sum_{k=1}^{K} \pi_{x}(\mathbf{z}'^{(k)}) \Big[\hat{f} \big(h_{\mathbf{x}}(\mathbf{z}'^{(k)}) \big) - g(\mathbf{z}'^{(k)}) \Big]^{2}$$

Boundary coalitions (' = 1 and ' = 0) enforce constraints on coefficients

$$\phi_0 = \mathbb{E}[\hat{f}(\mathbf{X})], \qquad \sum_{i=1}^p \phi_i = \hat{f}(\mathbf{X}) - \phi_0.$$

Step 4: Fit a weighted linear model

Goal Estimate Shapley values ϕ_j as coefficients of a local, weighted linear surrogate.

$$g(\mathbf{z}') = \phi_0 + \sum_{i=1}^{p} \phi_i z_i'$$

Numeric illustration (p = 3)

$$g(\mathbf{z}') = 4515 + 34 z_1' - 1654 z_2' - 323 z_3'$$

\mathbf{z}'	hum	temp	ws	weight $\pi_{\scriptscriptstyle X}(\mathbf{z}')$	$\hat{f}(h_{\mathbf{x}}(\mathbf{z}'))$	$g(\mathbf{z}')$
(1,0,0)	1	0	0	0.33	4635	4549
(0, 1, 0)	0	1	0	0.33	3087	2861
(0,0,1)	0	0	1	0.33	4359	4192
(1, 1, 0)	1	1	0	0.33	3060	2895
(0, 1, 1)	0	1	1	0.33	2623	2538
(1,0,1)	1	0	1	0.33	4450	4226
	_	inputs		•	outputs	

The inputs and outputs are used to learn the weighted linear regression model.

Step 4: Fit a weighted linear model

Goal

Estimate Shapley values ϕ_i as coefficients of a local, weighted linear surrogate.

$$g(\mathbf{z}') = \phi_0 + \sum_{i=1}^p \phi_i z_i'$$

Numeric illustration (p = 3)

$$g(\mathbf{z}') = 4515 + 34 z_1' - 1654 z_2' - 323 z_3'$$

z'	hum	temp	ws	weight $\pi_{x}\left(\mathbf{z}'\right)$	$\hat{f}(h_{\mathbf{x}}(\mathbf{z}'))$	$g(\mathbf{z}')$
(1,0,0)	1	0	0	0.33	4635	4549
(0,1,0)	0	1	0	0.33	3087	2861
(0,0,1)	0	0	1	0.33	4359	4192
(1,1,0)	1	1	0	0.33	3060	2895
(0, 1, 1)	0	1	1	0.33	2623	2538
(1,0,1)	1	0	1	0.33	4450	4226

The inputs and outputs are used to learn the weighted lin. regression model.

Step 5: Return SHAP values

Intuition: Estimated Kernel SHAP values are equivalent to Shapley values

$$g(\mathbf{z}'^{(8)}) = \hat{f}(h_x(\mathbf{z}'^{(8)})) = 4515 + 34 \cdot 1 - 1654 \cdot 1 - 323 \cdot 1$$
$$= \underbrace{\mathbb{E}(\hat{f})}_{\phi_{D}} + \phi_{hum} + \phi_{temp} + \phi_{ws} = \hat{f}(\mathbf{x}) = 2573$$

KERNEL SHAP - IN 5 STEPS

Step 5: Return SHAP values

Intuition: Estimated Kernel SHAP values are equivalent to Shapley values

$$g(\mathbf{z}^{\prime(8)}) = \hat{f}(h_{x}(\mathbf{z}^{\prime(8)})) = 4515 + 34 \cdot 1 - 1654 \cdot 1 - 323 \cdot 1$$
$$= \underbrace{\mathbb{E}(\hat{f})}_{\text{hum}} + \phi_{\text{hum}} + \phi_{\text{temp}} + \phi_{\text{ws}} = \hat{f}(\mathbf{x}) = 2573$$

Interpretable Machine Learning - 8 / 8