DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, nec, Bhaktapur

ARTIFICIAL INTELLIGENCE Lab Sheet III

- 1. Implement automated vacuum cleaner reflex agent.
- 2. Improve the vacuum cleaning agent's efficiency by implementing a model-based agent. Provide your arguments.
- 3. WAP in Python will implement DFS/BFS on the water jug problem. Given a 4 - litre jug filled with water & an empty 3 - litre Jug, how can one obtain exactly 2 liters in 4 litres jug. There is no measuring mark on any of them.
 - Define WaterJug Class with a constructor to initialize the initial and goal state
 - Define boolean goalTest(current_state, goal_state) to check if current_state is goal_state or not
 - Define successor() with reference to the production rules to generate possible child(s).
 - Verify if successor() is working properly or not
 - Define DFS/BFS search algorithm to find the solution
 - Modify search algorithm to store state, parent in CLOSED list and also define generate_path() to provide the path of solution.
- 4. Based on your last digit of your CRN, implement the following search problems as above

The last Digit of CRN	Problem
0	City-Map Problem
1	n-Puzzle
2	Missionaries and Cannibals
3	Towers of Hanoi
4	Tic-Tac-Toe
5	Block World
6	Man Goat Lion Cabbage
7	Monkey and Bananas Problem
8	n-Queen Problem
9	Water Jug with arbitrary size, i.e., the user will input
	the container size. Also update the goalTest() to verify
	the description instead of a fixed goal_state(2,0).

5. WAP in Python to calculate the heuristic value of the states for Blocks World Problem as follows

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, nec, Bhaktapur

Global heuristic: e(p) is calculated as

- For each block that has the correct support structure, give +1 to every block in the support structure.
- For each block that has a wrong support structure: -1 to every block in the support structure

Start	A	Goal	D	
-6	D	6	С	
	С		В	
	В		A	

Blocks World

6. WAP in Python to calculate the heuristic value of the states for Tic-Tac-Toe as follows

Heuristic function:

e(p)= No. of complete rows, columns or diagonals are still open for player) – (No. of complete rows, columns or diagonals are still open for opponent)

- 7. Solve the 8 puzzle problems using A* algorithm in Python.
- 8. Write a program to implement the steepest ascent hill climbing for the 8-puzzle problem. Develop appropriate heuristic functions.
- 9. WAP to demonstrate the effect of temperature on the probability of choosing an inferior node by selecting an appropriate temperature schedule.