SLAM Based Autonomous Navigation of Mobile Robot

Project Members:

Bimal Paneru(069/BEX/408)

Niraj Basnet(069/BEX/422)

Rabin Giri(069/BEX/431)

Sagar Shrestha (069/BEX/436)

Project Supervisor:

Mr. Dinesh Baniya Kshatri

INTRODUCTION

- Autonomous Navigation
 - Navigation without human intervention
- Simultaneous Localization and Mapping (SLAM)
 - Chicken-egg problem of robotics
- Localizing, mapping and navigating from one location to another.

NAVIGATION SYSTEM

SENSOR FUSION

LOCALIZATION

MAPPING

SLAM

PATH PLANNING MOTION CONTROL

SYSTEM BLOCK DIAGRAM

APPLICATIONS

Cleaning with Navigation (left)

Automatic
Transportation of load
(right)

TOOLS AND PLATFORMS

Hardware

- Inertial Measurement Unit (IMU)
- Encoder
- LiDAR
- ARM
- Kinect

Software

- Robot Operating System (ROS)
- STM HAL
- Keil uVision IDE

SENSOR FUSION

- Sources of odometry
 - Encoder + IMU (Gyroscope + Compass)
- Fusion output is corrected orientation and position

Algorithm: Kalman filter

$$x(t-1|t-1) \xrightarrow{prediction} x(t|t-1) \xrightarrow{measurement} x(t|t) \xrightarrow{posteriori} posteriori$$

$$next state$$

SENSOR FUSION: Kalman Filter

LOCALIZATION

- Positioning the robot in world space.
- Appropriate algorithms to localize using multiple sensors data

Algorithms

- Monte Carlo Localization (MCL)
- Adaptive Monte Carlo Localization(AMCL)

$$\begin{array}{cccc} p(x_{0:t} \mid u_{1:t}, z_{1:t}, m) & & & & & \\ \text{Where,} & u_{1:t} = \{u_1, u_2, \ldots, u_t\} & & & & \\ z_{1:t} = \{z_1, z_2, \ldots, z_t\} & & & & \\ x_{0:t} = \{x_0, x_1, \ldots, x_t\} & & & & \\ \end{array}$$
 Observations
$$x_{0:t} = \{x_0, x_1, \ldots, x_t\} & & & & \\ \end{array}$$
 Path of the robot
$$m & & & & \\ \end{array}$$
 Map of the environment

LOCALIZATION: Random Particle Injection

LOCALIZATION: Particle Converges

MAPPING

- Map Development of surrounding
- LiDAR fused with odometry data for reliability

Algorithm: Occupancy Grid Mapping

$$p(m \mid x_{1:t}, z_{1:t})$$
Where,
$$z_{1:t} = \{z_1, z_2, ..., z_t\} \longrightarrow \text{Observations from time 1 to t}$$

$$x_{1:t} = \{x_1, x_2, ..., x_t\} \longrightarrow \text{Positions of the robot}$$

$$m \longrightarrow \text{Map of the environment}$$

MAPPING: Occupancy Grid Map

PATH PLANNING: Global

- Optimum path planning between source and destination
- Graph Search for finding routes

Algorithm: A*

$$f(n) = g(n) + h(n)$$

Where,

 $f(n) \longrightarrow \text{Total cost of node n}$

 $g(n) \longrightarrow \text{Cost of reaching node n from starting location}$

 $h(n) \longrightarrow \text{Value of heuristic function at node n}$

PATH PLANNING: Global

PATH PLANNING: Local

Execute segments of the Global plan sequentially

Algorithm: Dynamic Window Approach (DWA)

```
O(v,w) = a * heading (v,w) + b * velocity (v,w) + c * clearance (v,w)

Where,

O(v,w) \longrightarrow Objective function for linear velocity v and angular velocity w

heading (v,w) \longrightarrow Heading towards goal

clearance (v,w) \longrightarrow Clearance from obstacle

velocity (v,w) \longrightarrow Forward velocity of the robot
```

PATH PLANNING: Local

MOTION CONTROL: Kinematics

Differential Drive Kinematics

MOTION CONTROL: PID

PID control on the motors to attain desired velocities

COMPLETE NAVIGATION

Path Planned and actual trajectory followed by robot

COMPLETE NAVIGATION

Test path	Final Plan position(x_p, y_p)(m)	Final postion of robot(x_r, y_r)(m)	Deviation at goal(m)
1	(1.367,9.194)	(1.346,9.211)	0.027
2	(4.296,1.984)	(4.45,2.05)	0.1675
3	(4.037,3.1)	(3.985,3.054)	0.0694
4	(9.15,4.5)	(9.25,4.38)	0.1562

Maximum deviation from goal in four experiments =
 16.75 cm

CONCLUSION

- Sensor Fusion of IMU data for orientation with 2 degree of maximum error
- Localization with MCL using 500 particles
- Mapping with grid size 2048x2048 and scale: 1 pixel equivalent to 0.05 meters
- Path planning with less than 0.2 meters deviation on final location during navigation

Thank you!...