Взаимодействие между външните фактори и генетиката

Мултифакторно унаследяване. Вродени аномалии и често срещани (социално-значими) болести при възрастните

Мултифакторно унаследяване – принципи

□ Терминът "мултифакторен" се използва за означаването на болестите, които се причиняват от комбинацията на множество генетични и негенетични фактори

□ Унаследяването се нарича "полигенно" ако се включват само генетични фактори.

Основен модел Полигенно (количествено) унаследяване

Унаследяване и експресия на фенотип, определен от много гени в различни локуси, всеки от които с малък адитивен (кумулативен) ефект

- Кръвно налягане
- Интелигентност
- Цвят на кожата

Тези характеристики показват преходно, непрекъснато разпределение в общата популация, което наподобява нормалното Гаусово разпределение

Разпределение на лицата в популацията по ръст, ако белегът се контролира от:

- а) един локус 3 генотипа АА, Аа, аа
- б) два локуса 5 гено- и фенотипа, резпределението започва да наподобява Гаусовото разпределение
- в) множество гени всеки с малко участие при формирането на белега, изцяло Гаусово разпределение

Количествените фенотипи

§ Те могат да бъдат измерени

§ Те показват значителна вариабилност с неограничен брой междинни стойности между две крайности

§ Всеки родител предава половината от гените за кой да е мултифакторен признак на своето дете.

Нормални (количествени) белези

- Децата най-често изразяват средни родителски стойности на признака, по-рядко екстремни стойности проява на нормална вариабилонст на родителските стойности.
- Децата на родители с екстремни варианти обикновено имат по-малко екстремен фенотип "регрес към средата".

Мултифакторни болести -

модели

1. Някои се определят като екстремна манифестация на мултифакторен количествен белег (ХБ се диагностицира на базата на повишените нива на кръвното налягане над определени стойности).

Разликата между "норма" и "болест" в тези случаи е условна и спорна. Кръвното налягане е непрекъсната преходност, а патологичният ефект на "високото" RR спрямо"нормалното" RR е само една степен.

2. Други мултифакторни заболявания се отличават качествено от нормалното състояние.

В тези случаи (напр. цепка на небцето) предиспозицията за заболяването се унаследява мултифакторно, а болестта се проявява или не в зависимост от общата сила на предразполагащите фактори. За теоретично обяснение се използва прагов модел.

Прагов модел принципа "всичко или нищо"

- Моделът обяснява как може полигенната теория за унаследяване на количествени (преходни) белези да се приложи при качествените (непреходни) състояния.
- □ Генетичните и <u>средови</u> фактори като една цялост създават предразположение с <u>преходно</u>, непрекъснато разпределение водещо до фенотип с ново качество.
- □ За постигането на това ново качество се предполага съществуването на критичен праг, над който има изява болестният фенотип.

3. Други модели - смесени модели - действие на един **главен ген** със значителен ефект, работещ в мултифакторната среда на **допълнителни гени** и **външни фактори** с по-малко самостоятелно значение.

Разпределение на индивидите по ръст, приемайки наличието на главен ген (генотипи АА, Аа,аа) в съчетание с мултифакторна среда. Наслагването на индивидите от трите генотипа формира Гаусово разпределение.

Концепция за наследствеността

До каква степен вариациите на фенотипа се дължат на генетични фактори.

Наследственост = коефициент на корелация (r) коефициент на родство

- Коефициент на корелация (r) изчислява се от измервания на количествени белези.
- При изследване на <u>качествени</u> болести се изчислява ниво на конкордантност.
- Сравнението на корелацията и конкордантността
 при близнаци позволява оценка на наследствеността.

Определяне на зиготността според плацентарните мембрани (разделяне на зиготата в 1-3: 4-6: 7-13 ден.

Късното разделяне, след 14-ти ден, може да доведе до появата на Сиамски близнаци (1 на 50000 бременности)

Фамилни корелации за количествени белези Степен на сходство т.е. коефициент на корелация (r)

	Degree of similarity			
Trait	Monozygotic (%)	Dizygotic (%)		
Height	95	52		
IQ	90	60		
Finger ridge count	95	49		
Diastolic blood pressure	50	27		

Колко еднакви са монозиготните близнаци по отношение диастоличното кръвно налягане?

Всички роднини от първа степен ли имат сходна степен на сходство (r)? Има ли доказателство за влиянието на "споделената среда"?

	Correlation of first-degree relatives		
Trait	Observed	Expected	
Height	0.53	0.5	
IQ	0.41	0.5	
Finger ridge count	0.49	0.5	
Diastolic blood pressure	0.18	0.5	

Affective disorder (bipolar)	0.79	0.24	>1.0 [±]	Ниво на конкордантност
Affective disorder (unipolar)	0.54	0.19	0.70	при еднояйчни и двуяйчни
Alcoholism	>0.60	< 0.30	0.60	близнаци за качествени
Autism	0.92	0.0	>1.0	олизнаци за качествени
Blood pressure (diastolic) [†]	0.58	0.27	0.62	белези и болести
Blood pressure (systolic) [†]	0.55	0.25	0.60	
Body fat percentage [†]	0.73	0.22	>1.0	
Body mass index [†]	0.95	0.53	0.84	
Cleft lip/palate	0.38	0.08	0.60	
Club foot	0.32	0.03	0.58	
Dermatoglyphics (finger ridge count) [†]	0.95	0.49	0.92	
Diabetes mellitus	0.45-0.96	0.03-0.37	>1.0	
Diabetes mellitus (type 1)	0.35-0.50	0.05-0.10	0.60-0.80	
Diabetes mellitus (type 2)	0.70-0.90	0.25-0.40	0.90-1.0	
Epilepsy (idiopathic)	0.69	0.14	>1.0	
Height [†]	0.94	0.44	1.0	
IQ⁺	0.76	0.51	0.50	
Measles	0.95	0.87	0.16	
Multiple sclerosis	0.28	0.03	0.50	
Myocardial infarction (males)	0.39	0.26	0.26	Дял наследственост > 100% (единица) показва действието и на
Myocardial infarction (females)	0.44	0.14	0.60	други фактори (напр. споделена
Schizophrenia	0.47	0.12	0.70	среда).
Spina bifida	0.72	0.33	0.78	

Concordance rate

DZ twins

Heritabilit

MZ twins

Trait or disease

Мултифакторни състояния и болести

Количествени

Качествени

- **« Ръст**
- ***** Тегло
- Обиколка на глава
- **ЦВЯТ НА КОЖАТА**
- TRC (ridge count)
- ***** Интелигентност
- **Кръвно** налягане
- У Серумни нива на холестерола

- Често срещани заболявания при възрастните
- Изолирани (единични) вродени аномалии

Въпреки че нарушенията са фамилни

няма ясно различим тип на унаследяване в семействата.

Мултифакторни заболявания Риск за повторение

- **емпиричен** основава се на големи проучвания
- нисък в рамките на смейството
- засягат се основно родствениците от първа степен
- зависи от дела наследственост при конкретното заболяване

Фактори увеличаващи риска при родствениците

1. Дял на наследствеността (Н) на болестта. Колкото е по-голям, толкова е по-силна ролята на генетичните фактори. Изчислява се въз основа данните от проучвания с близнаци и осиновени деца.

Disorder	Frequency (%)	Heritability
Schizophrenia	1	85
Asthma	4	80
Cleft lip +/- cleft palate	0.1	76
Pyloric stenosis	0.3	75
Ankylosing spondylitis	0.2	70
Club foot	0.1	68
Coronary artery disease	3	65
Hypertension (essential)	5	62
Congenital dislocation of the hip	0.1	60
Anencephaly and spina bifida	0.3	60
Peptic ulcer	4	37
Congenital heart disease	0.5	35

A look at risk factors A calculated risk

In considering the possibility of personal injury, most people would regard sitting under a cherry tree as being a very low risk behavior even in the unlikely event that a soft, little cherry falls and strikes the sitter.

If a stiff wind starts to blow:

The person sitting under the cherry tree is still in little danger, because the initial risk (getting hurt by a cherry) was negligible.

In contrast, the person under the coconut tree is in much greater danger of suffering injury, `cause the initial risk (getting hurt by a coconut) was fairly high.

2. Пол на пробанда

Индивидът от по-рядко засегнатия пол е разположен по-екстремално на кривата на предразположението за болест и има **по-висок праг на възприемчивост.** Т.е. този индивид трябва да е изложен на повече фактори (генетични и средови), отколкото са необходими за да се разболее по-чувствителният пол.

FIGURE 4-14. Relative gender incidence of single common malformations.

Графика на предразположението показва два прага при пилорна стеноза:

по-нисък (мъжки пол) по-висок (женски пол)

Полът, който се засяга по-рядко, има по-висок праг на възприемчивост

3. Тежест на фенотипа при пробанда

По-тежката клинична изява показва, че засегнатият индивид се разполага на края на кривата на предразположението.

Двустранна цепка на небцето носи по-висок риск за повторение в семейството отколкото едностранния дефект.

4. Степен на родство с пробанда

Рискът за повторение намалява значително с отдалечаване степента на родство (намалява вероятността е всички рискови фактори да са налични при по-отдалечена степен на родство).

	Frequency (%)			
Trait	First-degree relatives	Second-degree relatives	Third-degree relatives	Population frequency
Cleft lip	4	0.6	0.3	0.1
Spina bifida/anencephaly	4	1.5	0.6	0.3
Pyloric stenosis	2	1	0.4	0.3
Epilepsy	5	2.5	1.5	1
Schizophrenia	10	4	2	1
Manic depression	15	5	3.5	1

Мултифакторните заболявания са по-чести сред поколението на кръвнородствените бракове (по-вероятно е да носят сходни, предразполагащи към болестта гени).

		Степен на родство	Дял общи гени	Вероятност за хомозиготност в потомството
	Монозиготные близнецы	-		-
	Дизиготные близнецы	1	1/2	1/4
	Сибсы	1	ν2	1/4
	Родитель-ребенон	1	1/2	1/4
	Дядя (тетна)—племянник (племянница)	11	1/4	1/8
	Полусибсы	11	1/4	1/8
To To	Дважды двоюродные сибсы		1/4	1/8

	Степен на _п родство	Дял общи гени	Вероятност за хомозиготност в потомството
Двоюродные сибсы	ļu	1/8	1/16
Полудядя— племянница (или аналогичные комбинации)	IJ	1/8	1/16
Двоюродные дядя и племянница	IV	1/16	1/32
Троюродные сибсы	V	1/32	1/64

5. Брой засегнати членове в семейството

При едно дете със spina bifida, рискът за следващите бременности е 4,8%, но при двама засегнати сибси, рискът нараства на 12%. Това значи, че родителите на две засегнати деца имат повече рискови фактори (генетични и средови).

ГЕНЕТИКА НА ЧЕСТО СРЕЩАНИТЕ ЗАБОЛЯВАНИЯ

Вродени малформации
 Мултифакторни аболявания на възрастните

Мултифакторни болести

Вродени аномалии (изолирани)	Болести с късно начало (често срещани)		
Цепка на устна/небце	Захарен диабет		
	-		
Вродено изкълчване на тазобедрената става	Хипертония		
Вродени сърдечни пороци	Епилепсия		
Дефекти на невралната тръба	Исхемична болест на сърцето		
Пилорна стеноза	Маниакална депресия		
Пес еквиноварус	Шизофрения		

Големи вродени аномалии (изолирани)

Вродени дефекти на сърцето (CHD)

- § Честота 4-8 на 1 000 раждания.
- § Хетерогенна група генни (3%), хромозомни (10%), тератогенни (2%).
- § Причината обикновенно е неясна и се <u>приема</u>, че в болшинството случаи е <u>мултифакторна</u> (85%) т.е. диагнозата чрез изключване.
- § При фамилност, засегнатият индивид няма непреманно същия анатомичен дефект, а нарушение сходно по механизъм на развитие.
- § Периодът на активна органогенеза е 3-8 г.с.
 - » УЗ в 18 г.с.
 - » Фолиева киселина

Нарушения на кръвния поток, почти винаги изолирани (единични)

Normal

Atrial septal defect

Tetralogy of Fallot

Coarctation of the aorta

Hypoplastic left heart

Patent ductus arteriosus (PDA)

Таблица 78. Генетический риск при врожденных пороках сердца

ж Тип порока	Частота (на 1000 жи-	Повторный риск, % (после изолированного случая)	
The Hopolica	ворожден- ных)	сибсы	потомство
Дефект межжелудочковой перегородки Дефект межпредсердной перегородки Открытый проток Тетрада Фалло Дефект атриовентрикулярного канала Стеноз легочной артерии Стеноз аорты Коарктация аорты Транспозиция магистральных сосудов Атрезия легочной артерии Общий ствол Атрезия трехстворчатого клапана Аномалия Эбштейна Гипоплазия левых отделов сердца Фиброэластоз эндокарда	2,5—5 1,0 0,5—1,2 0,7 0,7 0,8 0,5 0,15 0,4 0,2 0,15 0,15 0,15 0,15 0,17	2,1-4,2 (3) 2,9-3,7 (3) 1,0-3,5 (3) 3,0 2,6 1,5-2,7 (2) 2,2 1,0-1,8 1,7 1,3 1,2 1,0 1,0 2,7 3,8	4,0 2,5 1,7—4,3(3) 4,2 3,6 3,9 2,7

- •При наличие на двама засегнати (сибси или сибс и родител) 10%
- •При повече от двама болни родственици от 1ва степен 50%
- •При комбинация от пороци (с изкл. на Фало) рискът зависи от този при най-често срещащата се компонента

Мултифакторни заболявания при възрастните Сърдечно-съдови болести

Най-честа е коронароартериалната болест, причинена от атеросклероза.

Стеснението забавя кръвния поток към сърцето (мозъка) и може да доведе до миокарден инфаркт (мозъчен инсулт).

Разпространение и годишни разходи за най-често срещаните заболявания при възрастни в САЩ

Disease	Number of affected Americans (approximate)	Annual cost (dollars)*
Alcoholism	14 million	185 billion
Alzheimer disease	4 million	90 billion
Arthritis	43 million	65 billion
Asthma	17 million	13 billion
Cancer	8 million	157 billion
Cardiovascular disease (all forms) Coronary artery disease Congestive heart failure Congenital defects Hypertension Stroke	13 million 5 million 1 million 50 million 5 million	300 billion
Depression and bipolar disorder	17 million	44 billion
Diabetes (type 1)	1 million	
Diabetes (type 2)	15 million	100 billion (type 1 + type 2)
Epilepsy	2.5 million	3 billion
Multiple sclerosis	350,000	5 billion
Obesity [†]	60 million	117 billion
Parkinson disease	500,000	5.5 billion
Psoriasis	3–5 million	3 billion
Schizophrenia	2 million	30 billion

Гени и генни продукти въвлечени в стъпаловидния процес на КАБ

- 1. Траспорт и метаболизъм на серумни липиди
 - холестерол
 - аполипопротеин Е
 - аполипопротеин CIII
 - LDL рецепрор и липопротеин(а)
 - ниво на общ холестерол

↑LDL холестерол и ↓HDL холестерол, всеки от които увеличава риска за КАБ са количествени признаци със значима наследственост съответно 40-60% и 45-75%

Гени за липопротеини с доказан принос към риска от коронарна сърдечна болест

ром. локализация	Функция на протеиновия продукт
11q	HDL component; LCAT cofactor
11q	Component of chylomicrons and HDL; may influence HDL metabolism
11q	Allelic variation associated with hypertriglyceridemia
2p	Ligand for LDL receptor; involved in formation of VLDL, LDL, IDL, and chylomicrons
2p	HDL component
19q	LCAT activation
19q	Lipoprotein lipase activation
19q	Ligand for LDL receptor
1p	HDL component
19p	Uptake of circulating LDL particles
6q	Cholesterol transport
8p	Hydrolysis of lipoprotein lipids
15q	Hydrolysis of lipoprotein lipids
16q	Cholesterol esterification
otein 16q	Facilitates transfer of cholesterol esters and phospholipids between lipoproteins
	11q 11q 2p 2p 19q 19q 1p 1p 19p 6q 8p 15q 16q

- 2. Вазоактивност ангиотензин-конвертиращ ензим
- 3. Кръвна коагулация, тромбоцитна адхезия и фибринолиза (инхибитор на плазминогенния активатор 1, тромбоцит повърхностни гликопротеини lb и Illa)
- 4. Възпалителни и имунни пътища
- 5. Компонентни на артериалната съдова стена

Секция на коронарна артерия демонстрираща стъпалата, водещи до КАБ. Генетични и средови фактори оперират на всеки или всички стъпки от тези пътища.

В някои от фамилиите са идентифицирани специфични гени

Complex disease	Mendelian subtype	Protein (gene)	Consequence of mutation
Heart disease	Familial hypercholesterolemia	LDL receptor (LDLR)	Elevated LDL level
	Tangier disease	ATP-binding cassette 1 (ABC1)	Reduced HDL level
	Familial defective apoB100	Apolipoprotein B (APOB)	Elevated LDL level
	Familial dilated cardiomyopathy	Cardiac troponin T (TNNT2)	Reduced force generation by sarcomere
		Cardiac β-myosin heavy chain (MYH7)	Reduced force generation by sarcomere
		β-sarcoglycan (SGCB)	Destabilized sarcolemma and signal transduction
		δ-sarcoglycan (SGCD)	Destabilized sarcolemma and signal transduction
		Dystrophin	Destabilized sarcolemma in cardiac myocytes
	Familial hypertrophic cardiomyopathy	Cardiac β-myosin heavy chain (MYH7)	Reduced force generation by sarcomere
	717	Cardiac troponin T (TNNT2)	Reduced force generation by sarcomere
		Myosin-binding protein C (MYBPC)	Sarcomere damage
	Long QT syndrome	Cardiac potassium channel α subunit	Prolonged QT interval on
		$(LQT1, \dot{K}VLQT1)$	electrocardiogram, arrhythmia
		Cardiac potassium channel a subunit	Prolonged QT interval on
		(LQT2, HERG)	electrocardiogram, arrhythmia
		Cardiac sodium channel	Prolonged QT interval on
		(LQT3, SCN5A)	electrocardiogram, arrhythmia
		Cardiac potassium channel β subunit	Prolonged QT interval on
		(LQT5, KCNE1)	electrocardiogram, arrhythmia
		Cardiac potassium channel subunit	Prolonged QT interval on
		(LQT6, KCNE2)	electrocardiogram, arrhythmia

• Ако пробандът е жена:

Риск за повторение за мъж 1ва степен родственик е 7 X популационния.

• Ако пробандът е мъж:

Рискът за повторение за жена 1 ва степен родственик е 2,5 X популационния.

•Ако пробандът е млад (<55 години):

Рискът се увеличава 11,4Х популационния.

Позитивна фамилна история с голям брой засегнати родственици от 1ва степен, особено женски пол и ранно начало (< 55г.).

Рискови фактори

- пълнота
- хипертония
- повишени нива на холестерола
- позитивна фамилна история с голям брой засегнати родственици от 1ва степен особено женски пол и ранно начало (< 55г.)

•тютюнопушене

Промяната в стила на живот (физическа активност, начин на хранене, отказ от тютюнопушене, лечение на повишените холестеролови нива) може значително да повлияе риска от ССЗ.

Mutant Gene Product	Pattern of Inheritance	Prevalence	Effect of Disease- Causing Mutations	Typical LDL Cholesterol Level (Normal Adults: ~120 mg/dL)
LDL receptor	Autosomal dominant	Heterozygotes: 1/500 Homozygotes: 1/million	Loss of function	Heterozygotes: 350 mg/dL Homozygotes: 700 mg/dL
Apoprotein B-100	Autosomal dominant	Heterozygotes: 1/1000* Homozygotes: 1/million*	Loss of function	Heterozygotes: 270 mg/dL Homozygotes: 320 mg/dL
ARH adaptor protein	Autosomal recessive	Very rare [†]	Loss of function	Homozygotes: 470 mg/dL
PCSK9	Autosomal dominant	Very rare	Gain of function	Heterozygotes: 225 mg/dL

Директен ДНК анализ

Липсата на ДНК потвърждение не се отразява на подхода към ФХ пациент (прогностичен и терепевтичен)

	- AND SEX-SP ATH IN FAMIL H		HOLESTEROI	
	Ma	les	Females	
Age	CAD	Death	CAD	Death
30	5	_	0	_
40	20-24	_	0-3	0
50	45-51	25	12-20	2
60	75-85	50	45-57	15
70	100	80	75	30

Средата (храната), полът модифицират ефекта на мутациите в ЛДЛР върху плазмените нива на холестерола и появата на атеросклероза. Ефектът на холестерола от храната се усилва от сатурирани мастни киселини (палмитиново масло) и се смекчава от несатурирани мастни к-ни (олеинова и линолова).

Мултифакторни заболявания при възрастните **Хипертония**

	Образцово налягане	Предхипертония	Първи стадий на хипертония	Втори стадий на хипертония
Систолно налягане	<120	120–139	140–159	160 и повече
Диастолно налягане	<80	80-89	90-99	100 и повече

Системната хипертония е ключов рисков фактор за ССЗ, инсулт или бъбречна болест

Кръвното налягане, особено систоличното има тенденция за увеличаване с възрастта така, че горните нормални стойности са възраст - зависими.

Мултифакторни заболявания при възрастните **Хипертония**

- Делът на наследствеността варира по отношение стойностите на систолното и диастолното налягане.
- Ако единият родител е хипертоник, рискът за поколението е 30%; ако и двамата родители са хипертоници той е 40%.
- Сканирането на генома очерта региони, които съдържат гени за предразположение към есенциална хипертония

Гени, отговорни за редки хипертонични синдроми:

Complex disease	Mendelian subtype	Protein (gene) C	onsequence of mutation
Hypertension	Liddle syndrome	Renal epithelial sodium channel subunits (SCNN1B, SCNN1G)	Severe hypertension, low renin and suppressed aldosterone
	Gordon syndrome	WNK1 or WNK4 kinase genes	High serum potassium level and increased renal salt reabsorption
	Glucocorticoid-remediable aldosteronism	Fusion of genes that encode aldosteron synthase and steroid 11β-hydroxylase	e Early-onset hypertension with suppressed plasma renin and norma
	Syndrome of apparent mineralocorticoid excess	11β-Hydroxysteroid dehydrogenase (11β- <i>HSD2</i>)	or elevated aldosterone levels Early-onset hypertension, low potassium and renin levels, low aldosterone

Мултифакторни заболявания при възрастните **Хипертония**

Други рискови фактори включват:

- § повишен прием на сол
- § ↓ физическа активност
- § психосоциален стрес
- § затлъстяване

Мултифакторни заболявания при възрастните Мозъчен инсулт

Емпиричният риск е 2-3 пъти по-висок от популационния при засягане на родственик от $\mathbf{1}^{\text{ва}}$ степен. Фамилността при инсулт се асоциира с:

- ✓ Моногенни заболявания: сърповидниклетъчна анемия, MELAS (митохондриална болест), CADASIL (церебрална автозомно доминантна артериопатия със субкортикални повтарящи се инфаркти и левкоенцефалопатия с деменция)
- ✓ Наследствени нарушения на коагулацията. Мутация във фактор V (Leiden) в хетерозиготи води до 7 пъти, а в хомозиготи до 100 пъти повишен риск за венозна тромбоза. Мутации в коагулационните инхибитори протеин С и протеин S са рисков фактор особено в деца.
- ✓ Други фактори (хипертония, затлъстяване, диабет, атеросклероза, тютюнопушене)

Мултифакторни заболявания при възрастните Захарен диабет

- Тип 1 Емпиричният риск за поколението на засегнати майки е 1-3% а на засегнати бащи е 4-6%.Има ясно обвързване с HLA-DR3/4 локус и HLA-DQ57 локус (при отстъствие на аспартинова к-на в позиция 57 се създава склонност към развитие на болестта).
- Тип 2 Емпиричният риск за 1ва степен родственици е 10-15%. Двата най-рискови фактора за този тип са положителна фамилна история и пълнота.

Някои гени асоциирани с диабет тип 2 са:

- calpain 10 (цистеин протеаза)
- пероксизом-пролифераия активиран рецептор γ (PPAR γ

Characteristic	Type 1 (IDDM)	Type 2 (NIDDM)
Sex	Female = male	Female > male
Age at onset	Childhood and adolescence	Adolescence through adulthood
Ethnic predominance	Whites	African Americans, Mexican
		Americans, Native
Concordance		
Monozygotic twins	33%-50%	69%-90%
Dizygotic twins	1%-14%	24%-40%
Family history	Uncommon	Common
Autoimmunity	Common	Uncommon
Body habitus	Normal to wasted	Obese
Acanthosis nigricans	Uncommon	Common
Plasma insulin	Low to absent	Normal to high
Plasma glucagon	High, suppressible	High, resistant
Acute complication	Ketoacidosis	Hyperosmolar
Insulin therapy	Responsive	Resistant or responsive
Oral hypoglycemic therapy	Unresponsive	Responsive

Empirical Risks for Counseling in Type 1 Diabetes

Relationship to Affected Individual	Risk for Development of Type 1 Diabetes
MZ twin	40%
Sibling	7%
Sibling with no DR haplotypes in common	1%
Sibling with 1 DR haplotype in common	5%
Sibling with 2 DR haplotypes	17% (20%-25% if shared

haplotype is DR3/DR4)

4%

3%

5%

in common

Child of affected mother

Child of affected father

Child

Мултифакторни заболявания при възрастните Захарен диабет

Повечето случаи на МОDY-диабет (1-5% от всички случаи) с начало преди 25 години се дължат на **автозомно-доминантни** мутации в някои от **6** специфични гена.

Complex diseas	e Mendelian subtype	Protein (gene)	Consequence of mutation
Diabetes	MODY1 MODY2	Hepatocyte nuclear factor- 4α (HNF4A) Glucokinase (GCK)	Decreased insulin secretion Impaired glucose metabolism, leading to mild nonprogressive hyperglycemia
	MODY3 MODY4 MODY5	Hepatocyte nuclear factor-1α (HNF1A) Insulin promoter factor-1 (IPF1) Hepatic transcription factor-2 (TCF2)	Decreased insulin secretion Decreased transcription of insulin gene Beta-cell dysfunction leads to decreased insulin secretion
	MODY6	NeuroD transcription factor (NEUROD1)	

Мултифакторни заболявания при възрастните Неврологични заболявания

Alzheimer disease	Familial Alzheimer disease	Amyloid beta precursor protein (APP)	Alteration of cleavage sites in amyloid beta precursor protein, producing
		Presenilin 1(PS1)	longer amyloid fragments Altered cleavage of amyloid beta precursor protein, producing larger
		Presenilin 2(PS2)	proportion of long amyloid fragments Altered cleavage of amyloid beta precursor protein, producing larger proportion of long amyloid fragments
Parkinson disease	Familial Parkinson disease (autosomal dominant)	α-Synuclein (PARK1, SNCA)	Formation of α-synuclein aggregates
	Familial Parkinson disease	Parkin: E3 ubiquityl ligase, thought to	Compromised degradation of
	(autosomal recessive)	ubiquinate α-Synuclein (PARK2)	α-synuclein
	Familial Parkinson disease (autosomal dominant)	Ubiquitin C-hydrolase-L1 (PARK5)	Accumulation of α-synuclein
Amyotrophic lateral sclerosis (Lou Gehrig's disease)	Familial amyotrophic lateral sclerosis	Superoxide dismutase 1 (SOD1)	Neurotoxic gain of function
,	Juvenile amyotrophic lateral sclerosis (autosomal recessive)	Alsin (ALS2)	Presumed loss of function
Epilepsy	Benign neonatal epilepsy, types 1 and 2	Voltage-gated potassium channels (KCNQ2 and KCNQ3, respectively)	Reduced M current increases neuronal excitability
	Generalized epilepsy with febrile seizures plus type 1	Sodium channel β1 subunit (SCN1B)	Sodium current persistence leading to neuronal hyperexcitability
	Autosomal dominant nocturnal frontal lobe epilepsy	Neuronal nicotinic acetylcholine receptor subunits (CHRNA4 and CHRNB2)	Increased neuronal excitability in response to cholinergic stimulation
	Generalized epilepsy with febrile seizures plus type 3	GABA _A receptor (GABRG2)	Loss of synaptic inhibition leading to neuronal excitability

Мултифакторни заболявания при възрастните Болест на Alzheimer

Болеста на Alzheimer засяга **10%** от популацията (лица >65г) и **40%** (лица >85г). Дефинитивна диагноза се поставя само при мозъчна аутопсия. **Емпиричният риск** е 2 пъти повисок при засегнат роднина от 1ва степен.

Около 10% от случаите на болестта се дължат на автозомни доминантни гени, което паказва генетична хетерогенност.

- □ 3 гени по-рядка форма, начало <65 години и засягат амилоид-прекурсорния протеин(21q,14q, 1q)</p>
- □ 1 ген по-честата, късна форма на болестта; кодира аполипопротеин Е (19q).Особено податливи към заболяване са хомо- и рядко хетерозиготни носители на алела ε4. Други гени (хр. 10 и 12) взаимодействащи с аполипопротеин Е също показват предиспозиращ ефект за болестта.

Мултифакторни заболявания при възрастните Големи психози

Фамилност е установена при **шизофренията** (разстройство на мисленето, което продължава повече от 6 месеца; **0.5%** от популацията). **Емпиричният риск** е 8-10% за 1ва степен, 2-3% за 2ра степен и 1,6% за 3та степен кръвен роднина.

Биполярни афективни разстройства (0.4-1.2% от популацията). **Емпиричният риск** за 1ва степен родственик е 5-10%.

В семействата са проучвани **гени**, кодиращи синтезата на невротрансмитери, рецептори и невротрансмитер-свързани ензими.

Мултифакторни заболявания при възрастните Пълнота

Обезитет ВМІ >30 30% от американците Наднормени ВМІ 25-30 35% от американците

Най-малко половината от популационната вариация на пълнотата се причинява от гени включени в контрола на апетита и податливост към пълнота

Лептин и неговите рецептори. Хормон секретиран от адипоцитите (мастните клетки) и се свързва с рецептори в хипоталамуса (центърът за контрол на апетита). Мутации със загуба на функция в **лептиновия ген** или **лептин-рецепторния ген** водят до неконтролиран апетит.

Други компоненти на апетитния контрол са:

невропептид У

меланоцит-стимулиращ хормон

рецептора на този хормон (меланокортин 4 рецептор)

Мултифакторни разстройства при възрастните Алкохолизъм

□ Близначните и адоптивни проучвания показват, че алкохолизмът се среща почесто в определени фамилии с вероятна генетична предразположеност.

 Фамилността е особено силно изразена по отношение тип II алкохолизъм (форма с ранно начало, предимно мъжки пол).

Мултифакторни заболявания при възрастните Карциноми

Повечето често срещани туморни заболявания имат генетична компонента. Рискът за повторение е по-висок ако:

- □ Има голям брой засегнати родственици и заболяването е с ранно начало.
- Идентифици са специфични гени, отговорни за появата на наследствен карцином на дебелото черво, карцином на гърдата и простатен карцином в някои фамилии.

Заключение

- Мултифактирните заболявания са фамилни, но не следват определен тип на моногенно унаследяване.
- Мултифакторно унаследяване е диагноза на изключването на друга причина за състоянието (цепната устна/небце).
- Мултифакторните вродени аномалии са обикновено единични: няма множественост на вродените дефекти.
- □ Промяната на факторите на средата с цел предпазване от заболяване е най-ефективна сред индивидите, при които е установена генетична предразположеност.