Carrefour

Daisy Lynn

2022-04-01

```
library(readr)
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(corrplot)
## corrplot 0.92 loaded
library(ggplot2)
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.1 --
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v purrr 0.3.4 v forcats 0.5.1
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x purrr::lift() masks caret::lift()
library(dplyr)
library(GGally)
## Registered S3 method overwritten by 'GGally':
    method from
##
    +.gg ggplot2
library(Rtsne)
library(superml)
## Loading required package: R6
```

```
library(clustvarsel)

## Loading required package: mclust

## Package 'mclust' version 5.4.9

## Type 'citation("mclust")' for citing this R package in publications.

##

## Attaching package: 'mclust'

## The following object is masked from 'package:purrr':

##

## map

## Package 'clustvarsel' version 2.3.4

## Type 'citation("clustvarsel")' for citing this R package in publications.

library(mclust)
```

Loading dataset

Below dataset will be used for the practice of dimensionality reduction and feature selection

```
## Rows: 1000 Columns: 16
## -- Column specification -------
## Delimiter: ","
## chr (7): Invoice ID, Branch, Customer type, Gender, Product line, Date, Pay...
## dbl (8): Unit price, Quantity, Tax, cogs, gross margin percentage, gross in...
## time (1): Time
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
head(data1)
```

```
## # A tibble: 6 x 16
##
    'Invoice ID' Branch 'Customer type' Gender 'Product line'
                                                                     'Unit price'
##
    <chr>>
                 <chr> <chr>
                                       <chr> <chr>
                                                                           <dbl>
## 1 750-67-8428 A
                       Member
                                      Female Health and beauty
                                                                            74.7
## 2 226-31-3081 C
                       Normal
                                      Female Electronic accessories
                                                                            15.3
## 3 631-41-3108 A
                       Normal
                                       Male Home and lifestyle
                                                                            46.3
## 4 123-19-1176 A
                       Member
                                       Male Health and beauty
                                                                            58.2
## 5 373-73-7910 A
                       Normal
                                                                            86.3
                                       Male Sports and travel
## 6 699-14-3026 C
                        Normal
                                       Male Electronic accessories
                                                                            85.4
## # ... with 10 more variables: Quantity <dbl>, Tax <dbl>, Date <chr>,
      Time <time>, Payment <chr>, cogs <dbl>, 'gross margin percentage' <dbl>,
     'gross income' <dbl>, Rating <dbl>, Total <dbl>
```

```
## [1] 1000 16

There are 1000 records and 16 variables
```

```
# Identifying missing data in dataset
colSums(is.na(data1))
```

##	Invoice ID	Branch	Customer type
##	0	0	0
##	Gender	Product line	Unit price
##	0	0	0
##	Quantity	Tax	Date
##	0	0	0
##	Time	Payment	cogs
##	0	0	0
##	gross margin percentage	gross income	Rating
##	0	0	0
##	Total		
##	0		

NO missing values

Dimensionality reduction

```
Label<-data1$Branch
data1$Branch<-as.factor(data1$Branch)

# Assign colors
colors = rainbow(length(unique(data1$Branch)))
names(colors) = unique(data1$Branch)</pre>
```

```
# Creating a new dataframe which specifies which features to be used
data_use <- data1[, c(2:8, 11, 12, 14, 15, 16)]
head(data_use)</pre>
```

```
## # A tibble: 6 x 12
    Branch 'Customer type' Gender 'Product line'
                                                           'Unit price' Quantity
                                                                                    Tax
##
   <fct> <chr>
                            <chr> <chr>
                                                                  <dbl>
                                                                           <dbl> <dbl>
                        Female Health and beauty
Female Electronic accessor~
Male Home and lifestyle
## 1 A
            Member
                                                                   74.7
                                                                               7 26.1
## 2 C
           Normal
                                                                               5 3.82
                                                                  15.3
## 3 A
          Normal
                                                                  46.3
                                                                              7 16.2
                                                                   58.2
## 4 A
           Member
                            Male Health and beauty
                                                                              8 23.3
```

```
## 5 A
            Normal
                            Male
                                   Sports and travel
                                                                86.3
                                                                            7 30.2
## 6 C
           Normal
                            Male
                                   Electronic accessor~
                                                                85.4
                                                                            7 29.9
## # ... with 5 more variables: Payment <chr>, cogs <dbl>, 'gross income' <dbl>,
## # Rating <dbl>, Total <dbl>
unique(data_use$Payment)
## [1] "Ewallet"
                                   "Credit card"
                     "Cash"
lbl <- LabelEncoder$new()</pre>
data_new <- data_use %>%
  mutate(`Customer type` = factor(lbl$fit_transform(.$`Customer type`)),
         Gender = factor(lbl$fit_transform(.$Gender)),
         `Product line` = factor(lbl$fit transform(.$`Product line`)),
         Payment = factor(lbl$fit_transform(.$Payment)))
#viewing the new dataset
head(data_new)
## # A tibble: 6 x 12
    Branch 'Customer type' Gender 'Product line' 'Unit price' Quantity Tax
                                                                  <dbl> <dbl>
    <fct> <fct>
                            <fct> <fct>
                                                          <dbl>
## 1 A
                                                          74.7
                                                                      7 26.1
           Ω
                            0
                                   0
## 2 C
           1
                            0
                                   1
                                                          15.3
                                                                      5 3.82
## 3 A
                                   2
                                                          46.3
                                                                      7 16.2
           1
                            1
## 4 A
           0
                            1
                                                          58.2
                                                                      8 23.3
## 5 A
                                   3
                                                                      7 30.2
            1
                            1
                                                          86.3
## 6 C
                            1
                                   1
                                                          85.4
                                                                      7 29.9
## # ... with 5 more variables: Payment <fct>, cogs <dbl>, 'gross income' <dbl>,
## # Rating <dbl>, Total <dbl>
# Executing the algorithm
tsne <- Rtsne(data_new,dims = 2, perplexity=30, verbose=TRUE, max_iter = 500)
## Performing PCA
## Read the 1000 x 19 data matrix successfully!
## OpenMP is working. 1 threads.
## Using no_dims = 2, perplexity = 30.000000, and theta = 0.500000
## Computing input similarities...
## Building tree...
## Done in 0.20 seconds (sparsity = 0.101260)!
## Learning embedding...
## Iteration 50: error is 58.761062 (50 iterations in 0.12 seconds)
## Iteration 100: error is 51.508937 (50 iterations in 0.09 seconds)
## Iteration 150: error is 50.183960 (50 iterations in 0.11 seconds)
## Iteration 200: error is 49.655824 (50 iterations in 0.10 seconds)
## Iteration 250: error is 49.399839 (50 iterations in 0.11 seconds)
## Iteration 300: error is 0.574251 (50 iterations in 0.10 seconds)
```

```
## Iteration 350: error is 0.415194 (50 iterations in 0.10 seconds)
## Iteration 400: error is 0.365160 (50 iterations in 0.10 seconds)
## Iteration 450: error is 0.347704 (50 iterations in 0.10 seconds)
## Iteration 500: error is 0.338604 (50 iterations in 0.12 seconds)
## Fitting performed in 1.04 seconds.
## Plotting our graph
```

```
# Plotting our graph
#
plot(tsne$Y, t='n', main="tsne")
text(tsne$Y, labels=data_new$Branch, col=colors[data_new$Branch])
```

tsne

model was a success and the dimension has been reduced to a lower one, this helps to flexibly and easily work with the data

Feature Selection

##

1 A

```
feature<- data_new
feature

## # A tibble: 1,000 x 12

## Branch 'Customer type' Gender 'Product line' 'Unit price' Quantity Tax
## <fct> <fct> <fct> <fct> <dbl> <dbl> <dbl> </dbl>
```

74.7

7 26.1

0

```
## 2 C
                                                                      5 3.82
                                                          15.3
## 3 A
                            1
                                   2
                                                          46.3
                                                                     7 16.2
            1
                                                                      8 23.3
## 4 A
            0
                            1
                                   0
                                                          58.2
## 5 A
                                   3
                                                          86.3
                                                                     7 30.2
                            1
            1
## 6 C
            1
                            1
                                   1
                                                          85.4
                                                                     7 29.9
## 7 A
                            0
                                   1
                                                          68.8
                                                                      6 20.7
            0
## 8 C
                            0
                                   2
                                                          73.6
                                                                     10 36.8
            1
## 9 A
                            0
                                   0
                                                          36.3
                                                                      2 3.63
            0
## 10 B
            0
                            0
                                   4
                                                          54.8
                                                                      3 8.23
## # ... with 990 more rows, and 5 more variables: Payment <fct>, cogs <dbl>,
## # 'gross income' <dbl>, Rating <dbl>, Total <dbl>
```

```
#Changing the factor columns to numeric
#Branch
feature$Branch <- factor(feature$Branch)</pre>
feature$Branch <- as.numeric(feature$Branch)</pre>
# Customer type
feature$`Customer type` <- factor(feature$`Customer type`)</pre>
feature$`Customer type` <- as.numeric(feature$`Customer type`)</pre>
# Gender
feature$Gender <- factor(feature$Gender)</pre>
feature$Gender <- as.numeric(feature$Gender)</pre>
# Product line
feature$`Product line` <- factor(feature$`Product line`)</pre>
feature$`Product line` <- as.numeric(feature$`Product line`)</pre>
#Payment
feature$Payment <- factor(feature$Payment)</pre>
feature$Payment <- as.numeric(feature$Payment)</pre>
```

```
#checking if the data type has changed
head(feature)
```

```
## # A tibble: 6 x 12
    Branch 'Customer type' Gender 'Product line' 'Unit price' Quantity
                                                                  <dbl> <dbl>
##
      <dbl>
                     <dbl> <dbl>
                                           <dbl>
                                                         <dbl>
                                                                      7 26.1
## 1
                         1
                                 1
                                                1
                                                          74.7
## 2
         3
                         2
                                 1
                                                2
                                                          15.3
                                                                      5 3.82
## 3
                         2
                                 2
                                                3
                                                          46.3
                                                                      7 16.2
         1
                                 2
                                                                      8 23.3
## 4
                                                          58.2
         1
                          1
                                                1
## 5
         1
                          2
                                 2
                                                4
                                                          86.3
                                                                      7 30.2
## 6
                          2
                                 2
                                                2
                                                          85.4
                                                                      7 29.9
## # ... with 5 more variables: Payment <dbl>, cogs <dbl>, 'gross income' <dbl>,
## # Rating <dbl>, Total <dbl>
```

the data types have been changed

Filter Method

```
# Calculating the correlation matrix
# ---
#
correlationMatrix <- cor(feature)</pre>
# Find attributes that are highly correlated
#
highlyCorrelated <- findCorrelation(correlationMatrix, cutoff=0.75)</pre>
highlyCorrelated
## [1] 9 12 7
names(feature[,highlyCorrelated])
## [1] "cogs" "Total" "Tax"
cogs, total and tax have a high correlation
#removing the variables with a higher correlation
feature_clean <- feature[-highlyCorrelated]</pre>
head(feature_clean)
## # A tibble: 6 x 9
     Branch 'Customer type' Gender 'Product line' 'Unit price' Quantity Payment
##
      <dbl>
                      <dbl> <dbl>
                                              <dbl>
                                                           <dbl>
                                                                     <dbl>
                                                            74.7
                                                                        7
## 1
          1
                           1
                                                  1
                                                                                 1
                                  1
## 2
          3
                           2
                                                  2
                                                            15.3
                                                                        5
                                                                                 2
                                  1
                           2
## 3
                                  2
                                                  3
                                                            46.3
                                                                        7
                                                                                 3
          1
## 4
          1
                           1
                                  2
                                                  1
                                                            58.2
                                                                        8
                                                                                 1
                           2
                                  2
                                                            86.3
                                                                        7
## 5
          1
                                                  4
                                                                                 1
## 6
          3
                           2
                                  2
                                                  2
                                                            85.4
                                                                         7
                                                                                 1
## # ... with 2 more variables: 'gross income' <dbl>, Rating <dbl>
```

cogs, total and tax have been removed

```
#lets check how the original correlation was
corrplot(cor(feature), order = 'hclust')
```


#lets check how the correlation is after removing the highly correlated variables
corrplot(cor(feature_clean), order = 'hclust')

Comparing the original correlation to the clean correlation, our correlation matrix has improved. The above correlation for the clean dataset shows variables with a high enough significance level

Wrapper Method

```
#qreedy search
greedy = clustvarsel(feature, G = 1:5)
greedy
## Variable selection for Gaussian model-based clustering
## Stepwise (forward/backward) greedy search
##
##
##
    Variable proposed Type of step
                                      BICclust Model G
                                                           BICdiff Decision
##
                  Tax
                                Add
                                     -7382.354
                                                   V 4
                                                          389.0238 Accepted
##
                                     55117.386
                                                 VEV 3
                                                         2502.9883 Accepted
         gross income
                                Add
##
             Quantity
                                Add -16164.602
                                                 VVI 5 -66967.5199 Rejected
##
                                    -7392.222
                                                   V 3
                                                         2512.8564 Rejected
                  Tax
                            Remove
##
## Selected subset: Tax, gross income
```

algorithm selected Tax and gross income, they'll be used for the model

```
Subset1 = feature[,greedy$subset]
model = Mclust(Subset1, G = 1:5)
summary(model)
```

```
Gaussian finite mixture model fitted by EM algorithm
##
## Mclust VEV (ellipsoidal, equal shape) model with 2 components:
##
##
    log-likelihood
                      n df
                                 BIC
                                          ICL
##
          27364.17 1000 10 54659.26 54524.45
##
## Clustering table:
##
     1
         2
## 564 436
```

model has chosen 2clusters 1 with 564, 2 with 436

```
plot(model,c("classification"))
```

Warning in sqrt(rev(sort(ev\$values))): NaNs produced

our two variables chosen by the greedy algorithm have a good linear relationship.

The model can be considered a success since it was able to pick variables and compare the well

Conclusions

two methods were used to determine which features contribute the most information to the dataset some of these features are gross income , tax, quantity