COMP 540 Final Note

1 Linear models for regression

1.1 Least squares regression

- Loss function: $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} h_{\theta}(x^{(i)}))^2$ Vectorized form: $J(\theta) = \frac{1}{2m} (X\theta - y)^T (X\theta - y)$
- Gradient: $\nabla_{\theta} J(\theta) = \frac{1}{m} X^T (X\theta y)$
- Closed form solution: $\hat{\theta} = (X^T X)^{-1} X^T y$
- Assume $y^{(i)} = (\theta^*)^T x^{(i)} + \epsilon$, where $E[\epsilon] = 0, Var[\epsilon] = \sigma^2$: $E[\hat{\theta}] = \theta^*, Var[\hat{\theta}] = (X^T X)^{-1} \sigma^2$.
- \equiv MLE on θ with normal distributed error ϵ .

1.2 L2-regularization: ridge regression

- Loss function: $J(\theta) = \frac{1}{2m} \sum_{i=1}^m (y^{(i)} h_{\theta}(x^{(i)}))^2 + \frac{\lambda}{2m} \sum_{j=1}^d \theta_j^2$
- Closed form solutionn: $\hat{\theta} = (X^T X + \lambda I)^{-1} X^T y$
- \equiv MAP on θ with prior: $\theta \sim \mathcal{N}(0, \alpha^2 I)$, with $\frac{\lambda}{m} = \frac{\sigma^2}{2}$.

1.3 L1-regularization: lasso regression

- Loss function: $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (y^{(i)} h_{\theta}(x^{(i)}))^2 + \frac{\lambda}{2m} \sum_{j=1}^{d} |\theta_j|$
- \equiv MAP on θ with prior: $\theta_i \sim Laplace(0, \alpha), \forall j$

1.4 Locally weighted linear regression

- $\begin{array}{l} \bullet \quad \text{Loss function: } J(\theta) = \frac{1}{2m} \sum_{i=0}^m w^{(i)} (y^{(i)} \theta^T x^{(i)})^2 \\ \text{where } w^{(i)} = \exp\left(-\frac{(x-x^{(i)})^T (x-x^{(i)})}{2\sigma^2}\right) \\ \text{Vectorized form: } J(\theta) = \frac{1}{2m} (X\theta y)^T W(X\theta y) \end{array}$
- Gradient: $\nabla_{\theta} J(\theta) = \frac{1}{T} X^T W(X\theta y)$
- Closed form solution: $\hat{\theta} = (X^T W X)^{-1} X^T W y$
- · Non-parametric method.

2 Linear models for classification

2.1 Discriminative models for classification

- $P(y = 1|x) = h_{\theta}(x) = \frac{1}{1 + \exp(-\theta^T x)}$ $\Rightarrow \log \frac{P(y=1|x)}{P(u=0|x)} = \theta^T x$
- Loss (cross-entropy) function: (convex & has a global minimum) $J(\theta) = -\frac{1}{m} \sum_{i=0}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1-y^{(i)}) \log(1-h_{\theta}(x^{(i)}))$
- L2-regularizion: $J_{reg}(\theta) = J(\theta) + \frac{\lambda}{m} \sum_{j=1}^{d} \theta_j^2$ L1-regularizion: $J_{reg}(\theta) = J(\theta) + \frac{\lambda}{m} \sum_{j=1}^{d} |\theta_j|$

2.2 Generative models for classification

2.2.1 Gaussian discriminant analysis (GDA)

- Assumptions: $y \sim Bernoulli(\phi)$ $x|y = 0 \sim \mathcal{N}(\mu_0, \Sigma) \& x|y = 1 \sim \mathcal{N}(\mu_1, \Sigma)$
- Likelihood: $\mathcal{L}(D) = \prod_{i=1}^{m} P(x^{(i)}, y^{(i)}; \phi, \mu_0, \mu_1, \Sigma)$ = $\prod_{i=1}^{m} \phi^{y^{(i)}} (1 - \phi)^{(1-y^{(i)})} \mathcal{N}(x^{(i)}|\mu_1, \Sigma)^{y^{(i)}} \mathcal{N}(x^{(i)}|\mu_0, \Sigma)^{(1-y^{(i)})}$
- Estimation for parameters: $\phi = \frac{1}{m} \sum_{i=1}^{m} y(i)$

$$\begin{split} \phi &= \frac{1}{m} \sum_{i=1}^{i=1} y(i) \\ \mu_1 &= \frac{\sum_{i=1}^{m} y(i) x(i)}{\sum_{i=1}^{m} y(i)}, \mu_0 = \frac{\sum_{i=1}^{m} (1 - y(i)) x(i)}{\sum_{i=1}^{m} (1 - y(i))} \\ \Sigma &= \frac{1}{m} \sum_{i=1}^{m} (x - \mu_{y(i)}) (x - \mu_{y(i)})^T \end{split}$$

 Linear decision boundaries when same Σ; quadratic boundaries when each class has its own Σ.

2.2.2 Naive Bayes models

- Assumptions: $P(x|y) = \prod_{j=1}^{d} P(x_j|y)$
- Bernoulli Naive Bayes models are estimated using counts, regularize using Beta prior (≡ pre-count).

2.3 Model criteria

- · False negative: positive predicted to be negative.
- · False positive: negative predicted to be positive.
- specificity = $P(y_{pred} = 0|y = 0) = \frac{TN}{FP+TN}$
- sensitivity = $P(y_{pred} = 1|y = 1) = \frac{TP}{FN+TP}$
- true positive rate (TPR) = sensitivity
- false positive rate (FPR) = 1 specificity
- ROC curve represents FPR and TPR as a function of classification threshold. 0.5 \(\) (area under curve) \(\) \(\) 1.0.

2.4 Multiclass classification

2.4.1 One vs. All (OVA) & One vs. One (OVO)

- OVA: not theoretically justified; simple and widely used.
- OVO: needs $O(K^2)$ classifiers for K classes; overfitting!

2.4.2 Softmax

• Log-likelyhood:

$$\ell(\mathcal{D}) = \frac{1}{m} \sum_{i=1}^{m} \sum_{c=1}^{K} I(y^{(i)} = c) \log \frac{\exp(\theta^{(c)} T_{x^{(i)}})}{\sum_{c'} \exp(\theta^{(c')} T_{x^{(i)}})}$$

- Regularized loss: $J(\theta) = -\ell(\mathcal{D}) + \frac{\lambda}{2m} \sum_{j=1}^{d} \sum_{c=1}^{K} \theta_j^{(c)}^2$
- Gradient: $\nabla_{\theta} J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} x^{(i)} (I\{y^{(i)} = c\} P(y^{(i)} = c|x^{(i)};\theta)) + \frac{\lambda}{m} \sum_{j=1}^{d} \theta_j^{(c)}$

3 Kernel methods

3.1 Kernel functions

- Gaussian kernel: $\kappa(x, x') = \exp\left(-\frac{\|x x'\|^2}{2\sigma^2}\right)$
- Polynomial kernel: $\kappa(x, x') = (1 + x^T x')^p$
- Mercer's theorem (⇔ valid kernel): Gram matrix K whose elements are κ(x⁽ⁱ⁾, x^(j)), 1 ≤ i, j ≤ m, should be positive definite for all possible {x⁽ⁱ⁾|1 ≤ i ≤ m}
 ⇔ ∃φ s.t. κ(x, x') = φ(x)^T φ(x')

3.2 Perceptron

- Prediction: $h_{\theta}(x) = \operatorname{sign}(\theta^T x)$
- Update rule: $\theta \leftarrow \theta + \eta x^{(i)} y^{(i)}$, when $h_{\theta}(x^{(i)}) y^{(i)} = -1$
- Convergence bounds: Let $\|x^{(i)}\| \le R, \forall 1 \le i \le m$, the perceptron converges in at most $\frac{R^2\|\theta^*\|^2}{\gamma^2}$ updates, where $\gamma > 0$, $y^{(i)}(\theta^Tx^{(i)}) \ge \ \gamma, \forall 1 \le i \le m$. (Appendix)
- Kernalized version: (if $\eta = 1$, $\theta = \sum_{(x,y) \in \mathcal{D}_{mistake}} xy$) $\hat{y} = \text{sign}(\sum_{(x^{(i)},y^{(i)}) \in \mathcal{D}} \alpha^{(i)} \langle x^{(i)},x \rangle)$, in training: update $\alpha^{(i)} \leftarrow \alpha^{(i)} + y^{(i)}$, when $y\hat{y} = -1$

3.3 Support vector machine (SVM)

3.3.1 Maximize margin

- Optimization problem: $\min_{\theta,\theta_0} \frac{1}{2} \|\theta\|^2$, subject to $y^{(i)}(\theta^T x^{(i)} + \theta_0) > 1, \forall 1 < i < m$
- Dual problem: $\max_{\alpha} \sum_{i=1}^{m} \alpha_{i} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} \langle x^{(i)}, x^{(j)} \rangle \text{ subject}$ to: $\alpha_{i} \geq 0, \forall 1 \leq i \leq m; \sum_{i=1}^{m} \alpha_{i} y^{(i)} = 0$
- • Results of solving Lagrange: • $\theta = \sum_{i=1}^{m} \alpha^{(i)} x^{(i)} y^{(i)}$ • $\sum_{i=1}^{m} \alpha^{(i)} y^{(i)} = 0$
- KTT condition yields: $\alpha^{(i)}[y^{(i)}(\theta^Tx^{(i)}+\theta_0)-1]=0, \forall 1\leq i\leq m$
- Prediction: $h_{\theta}(x) = \operatorname{sign}(\sum_{i=1}^{m} \alpha^{(i)} y^{(i)} \langle x^{(i)}, x \rangle + \theta_0)$

3.3.2 Non-separable case

- Optimization problem: $\min_{\theta,\theta_0} \frac{1}{2} \|\theta\|^2 + C \sum_{i=1}^m \xi^{(i)}$, subject to $y^{(i)}(\theta^T x^{(i)} + \theta_0) \ge 1 \xi^{(i)}, \forall 1 \le i \le m$; and $\xi^{(i)} \ge 0, \forall 1 \le i \le m$
- Dual problem: $\max_{\alpha} \sum_{i=1}^{m} \alpha_i \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y^{(i)} y^{(j)} \langle x^{(i)}, x^{(j)} \rangle$ subject to: $0 \le \alpha_i \le C, \forall 1 \le i \le m; \sum_{i=1}^{m} \alpha_i y^{(i)} = 0$

3.3.3 Hinge loss - another view of SVM

- Define $h_{\theta}(x) = \theta^T x + \theta_0$, rewrite constraints into $\xi^{(i)} = \max(0, 1 y^{(i)}h_{\theta}(x))$.
- Loss function: $J(\theta) = C \sum_{i=1}^{m} \max(0, 1 y^{(i)} h_{\theta}(x)) + \frac{1}{2} \|\theta\|^2$

3.3.4 Multiclass SVM

• Loss function:

$$J(\theta) = \sum_{i=1}^{m} \sum_{j \neq y(i)} \max(0, \theta^{(j)} x^{(i)} - \theta^{y^{(j)}} x^{(i)} + \Delta)$$

• Δ is some fixed margin.

3.3.5 SVM for regression

- Loss function: $L_{\epsilon}(y, \hat{y}) = \max(0, |y \hat{y}| \epsilon)$ in $J(\theta) = C \sum_{i=1}^{m} L_{\epsilon}(y^{(i)}, \theta^T x^{(i)} + \theta_0) + \frac{1}{2} \theta^T \theta$
- $J(\theta)$ is convex but not differentiable, the optimization problem is unconstrained.
- Quadratic programming (QP) problem: $\min_{\theta} C \sum_{i=1}^{m} (\xi_{+}^{(i)} + \xi_{-}^{(i)}) + \frac{1}{2} \theta^{T} \theta, \text{ subject to}$ $\xi_{+}^{(i)} \geq 0, \xi_{-}^{(i)} \geq 0, \forall 1 \leq i \leq m;$ $\theta^{T} x^{(i)} + \theta_{0} \xi_{-}^{(i)} \epsilon \leq y^{(i)} \leq \theta^{T} x^{(i)} + \theta_{0} + \xi_{+}^{(i)} + \epsilon$
- Lagrange yields: $\theta = \sum_{i=1}^{m} (\alpha_{+}^{(i)} \alpha_{-}^{(i)}) x^{(i)}$, where $\alpha_{+}^{(i)}$ and $\alpha_{-}^{(i)}$ are Lagrange multipliers of two constraints.
- Prediction: $h_{\theta}(x) = \sum_{i=1}^{m} (\alpha_{+}^{(i)} \alpha_{-}^{(i)}) \langle x^{(i)}, x \rangle + \theta_{0}$

4 Neural Networks

Note: A feed forword network with a linear output layer and at least one hidden layer with any squashing activation function (e.g. sigmoid, ReLU), can approaximate any function from $\mathbb{R}^d \to \mathbb{R}$ to arbitrary percision with enough hidden units.

4.1 Activation functions

- $sigmoid(x) = \sigma(x) = \frac{1}{1 + \exp(-x)}$ $\frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x))$
- $\tanh(x) = \frac{\exp(x) \exp(-x)}{\exp(x) + \exp(-x)}$ (unbias, better than sigmoid)
- ReLU(x) = max(0, x)
- Softmax function: $g(z_i) = \frac{\exp(z_i)}{\sum_i \exp(z_i)}$ (output layer)

4.2 Backpropagation

- Using chain rule, propagate derivatives in inverse order.
- Gradients need to be added up at forks (accumulative)!

4.3 Convolutional neural networks

- Let K be filter number, F be filter size, S be stride, P be padding.
- A conv layer takes as input of a volume $W_1 \times H_1 \times D_1$, produces an output volume $W_2 \times H_2 \times D_2$:

$$W_2 = \frac{W_1 - F + 2P}{S} + 1$$

$$H_2 = \frac{H_1 - F + 2P}{S} + 1$$

$$D_2 = K$$

- Total number of parameters: F × F × D₁ weights per filter; F × F × D₁ × K weights, K biases.
- Pooling layer (subsampling): input $W_1 \times H_1 \times D$, output $W_2 \times H_2 \times D$: $W_2 = \frac{W_1 F}{S} + 1$ $H_2 = \frac{H_1 F}{S} + 1$
- Classical architecture: [(CONV RELU)*N POOL]*M (FC RELU)*K SOFTMAX

4.4 Optimization for training deep models

4.4.1 Momentum

- Require: learning rate α , initial parameter θ , batch size m, momentum parameter μ , initial velocity v.
- Sample a mini batch of m examples $(x^{(i)}, y^{(i)})$
- Compute gradient estimate $\hat{g} \leftarrow \frac{1}{m} \nabla_{\theta} \sum_{i} L(h_{\theta}(x^{(i)}), y^{(i)})$
- Compute velocity update $v \leftarrow \mu v \alpha \hat{g}$
- Apply update θ ← θ + v

4.4.2 Nesterov momentum

- Require: learning rate α , initial parameter θ , batch size m, momentum parameter μ , initial velocity v.
- Sample a mini batch of m examples $(x^{(i)}, y^{(i)})$
- Apply interim update $\tilde{\theta} \leftarrow \tilde{\theta} + \mu v$
- Compute gradient at interim point $\hat{g} = \frac{1}{m} \nabla_{\tilde{\theta}} \sum_{i} L(h_{\tilde{\theta}(x^{(i)}),y^{(i)}})$
- Compute velocity update $v \leftarrow \mu v - \alpha \hat{g}$
- Apply update $\theta \leftarrow \theta + v$

4.4.3 AdaGrad

- Require: step size α , initial parameter θ , batch size m, $\delta = 10^{-7}$ (constant for numerical stability)
- Compute gradient on minibatch $\hat{g}_{ij}^{(l)} \leftarrow \frac{1}{m} \nabla_{\theta_{ij}}^{(l)} \sum_{i} L(h_{\theta}(x^{(i)}), y^{(i)})$
- Accumulate squared gradient $r_{ij}^{(l)} \leftarrow r_{ij}^{(l)} + \hat{g}_{ij}^{(l)} * \hat{g}_{ij}^{(l)}$
- Compute gradient $\Delta \theta_{ij}^{(l)} \leftarrow -\frac{\alpha}{\delta + \sqrt{r_{ij}^{(l)}}} \hat{g}_{ij}^{(l)}$
- Apply update $\theta_{ij}^{(l)} \leftarrow \theta_{ij}^{(l)} + \Delta \theta_{ij}^{(l)}$

4.4.4 RMSprop

- Require: step size α, initial parameter θ, batch size m,
 δ = 10⁻⁷ (constant for numerical stability), exponential decay rate ρ.
- Compute gradient on minibatch $\hat{g}_{ij}^{(l)} \leftarrow \frac{1}{m} \nabla_{\theta_{ij}}^{(l)} \sum_{i} L(h_{\theta}(x^{(i)}), y^{(i)})$
- Accumulate squared gradient $r_{ij}^{(l)} \leftarrow \rho r_{ij}^{(l)} + (1 \rho)\hat{g}_{ij}^{(l)} * \hat{g}_{ij}^{(l)}$
- Compute gradient $\Delta \theta_{ij}^{(l)} \leftarrow -\frac{\alpha}{\delta + \sqrt{r_{ij}^{(l)}}} \hat{g}_{ij}^{(l)}$
- Apply update $\theta_{ij}^{(l)} \leftarrow \theta_{ij}^{(l)} + \Delta \theta_{ij}^{(l)}$

4.4.5 Adam (adaptive moments)

- Require: step size α (10⁻³ default), initial parameter θ, batch size m, exponential decay rates for moment estimates ρ₁ (0.99 default) & ρ₂ (0.999 default), δ = 10⁻⁷ (constant for numerical stability)
- Initialize time step t = 0, first and second moment s = 0, r = 0
- Compute gradient on minibatch $\hat{g}_{ij}^{(l)} \leftarrow \frac{1}{m} \nabla_{\theta_{ij}}^{(l)} \sum_{i} L(h_{\theta}(x^{(i)}), y^{(i)})$
- t ← t + 1
- Update biased first moment $s_{ij}^{(l)} \leftarrow \rho_1 s_{ij}^{(l)} + (1 \rho_1) \hat{g}_{ij}^{(l)}$
- Update biased second moment $r_{ij}^{(l)} \leftarrow \rho_2 r_{ij}^{(l)} + (1 \rho_2) \hat{g}_{ij}^{(l)} * \hat{g}_{ij}^{(l)}$
- Correct bias in first moment $\hat{s}_{ij}^{(l)} = \frac{s_{ij}^{(l)}}{1 \rho_t^t}$
- Correct bias in second moment $\hat{r}_{ij}^{(l)} = \frac{r_{ij}^{(l)}}{1-\rho_{b}^{t}}$
- Compute gradient $\Delta \theta_{ij}^{(l)} \leftarrow -\frac{\alpha \hat{s}_{ij}^{(l)}}{\delta + \sqrt{\hat{r}_{ij}^{(l)}}}$
- Apply update $\theta_{ij}^{(l)} \leftarrow \theta_{ij}^{(l)} + \Delta \theta_{ij}^{(l)}$

5 Decision trees

5.1 Cost functions

- Misclassification rate: $(\hat{y} = \text{the majority label in } \mathcal{D})$ $cost(\mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{(x,y) \in \mathcal{D}} I(y \neq \hat{y})$
- Entropy: $(p = \text{fraction of positive examples in } \mathcal{D})$ $cost(\mathcal{D}) = -p \log_2 p - (1-p) \log_2 (1-p)$
- Gini index: (same as entropy) $cost(\mathcal{D}) = 2p(1-p)$

5.2 Decision tree for regression

• Define $cost(\mathcal{D}) = \sum_{i=1}^{m} (y^{(i)} - \overline{y})^2$ where $\overline{y} = \frac{1}{|\mathcal{D}|} \sum_{i=1}^{m} y^{(i)}$

5.3 Node is not worth splitting when

- Node is pure
- Depth exceeds max depth
- $|\mathcal{D}_{left}|$ or $|\mathcal{D}_{right}|$ is too small
- Reduction in cost is too small

5.4 Avoid overfitting

- Early stopping stop growing the tree when the decrease in error is not sufficient to justify the complexity of an additional level.
- Post pruning grow the full tree and then prune using a validation set to guide subtree removal. Evaluate CV error on each subtree and pick tree whose error is within 1 standard deviation of minimum.

6 Ensembles

6.1 Bagging

- Assume errors of individual members are uncorrelated.
- For regression: when $h_l(x) = f(x) + \epsilon_l(x)$ for $1 \le l \le L$, and $\epsilon_l \sim \mathcal{N}(0, \sigma_l^2)$ $\Rightarrow E_{bag} = \frac{1}{t} E_{avg}$ (expected squared error)
- For classification: $\epsilon = \text{error of each classifier, and } \epsilon < \frac{1}{2}$ $\Rightarrow E_{bag} = \sum_{i=\frac{L}{L}+1}^{L} \binom{i}{L} \epsilon^{i} (1-\epsilon)^{L-i}$

6.2 Boosting

- Loss function: $J_l = \sum_{i=1}^m w_l^{(i)} I\left(h_l(x^{(i)}) \neq y^{(i)}\right)$
- Prediction: $h(x) = \operatorname{sign}\left(\sum_{l=1}^{L} \alpha_l h_l(x)\right)$
- Adaboost algorithm: initialize $w_1^{(i)} = \frac{1}{m}$, for $1 \le i \le m$ 1. fit h_l to minimize $J_l = \frac{1}{m} \sum_{i=1}^m w_l^{(i)} L(y^{(i)}, h_l(x^{(i)}))$
 - 2. calculate error rate $\epsilon_l = \frac{\sum_{i=1}^m w_l^{(i)} I(h_l(x^{(i)}) \neq y^{(i)})}{\sum_{i=1}^m w_i^{(i)}}$
 - 3. calculate $\alpha_l = \frac{1}{2} \log \left(\frac{1 \epsilon_l}{\epsilon_l} \right)$, stop if $\epsilon_l \ge \frac{1}{2}$ $\begin{cases} w_l^{(i)} \exp(\alpha_l), \text{ incorrect on } x^{(i)} \end{cases}$
 - 4. update $w_{l+1}^{(i)} = \begin{cases} w_l^{(i)} \exp{(\alpha_l)}, \text{ incorrect on } x^{(i)} \\ w_l^{(i)} \exp{(-\alpha_l)}, \text{ correct on } x^{(i)} \end{cases}$

6.3 Gradient boosting

6.3.1 Gradient boosting for regression

• Residuals are negative gradients (squared error loss): $J = \sum_{i=1}^m \tfrac{1}{2} (y - h(x))^2 \Rightarrow \frac{\partial J}{\partial h(x^{(i)})} = h(x^{(i)}) - y^{(i)}$

6.3.1 Gradient boosting for classification

- Loss function: $J = \frac{1}{m} \sum_{i=1}^{m} D_{KL}(y^{(i)}, h(x^{(i)}))$
- Gradient boosting algorithm (k classes):
- Start with an initial $h^0 ... h^k$ for $x^{(1)} ... x^{(m)}$
- Repeat until convergence: Calculate matrix of gradients, it each h_{add} to the negative gradient, $h \leftarrow h + h_{add}$

7 Probabilistic graphical models

7.1 Directed models - Bayesian network

- $P(X) = \prod_{i} P(x_i | Parents(x_i))$
- Reduce number of parameters O(kⁿ) → O(nk^m) if each variable in graph has no more than m parents.

7.2 Undirected models - Markov network

- $\tilde{P}(X) = \prod_{C \in G} \phi(C)$ (C is a clique in graph)
- Partition function: $Z = \int_{Y} \tilde{P}(X) dX$ or $Z = \sum_{Y} \tilde{P}(X)$
- $P(X) = \frac{1}{7}\tilde{P}(X)$
- Energy function $E: \tilde{P}(X) = \exp(-E(X))$ high (low) energy \Leftrightarrow low (high) $\tilde{P}(X)$

7.3 Sampling

7.3.1 Ancestral sampling

- · For directed graphical models, polynomial time.
- Algorithm:
- Sort variables in topological order
- Sample x_i from distribution $P(x_i|Parents(x_i))$

7.3.2 Gibbs sampling

- For undirected graphical models.
- Algorithm:
- Algorithm:

 Start with randomly generated values $x_1, ..., x_n$
- Iteratively visit each x_i and sample a value for it based on $P(x_i|Neighbors(x_i))$
- Repeat previous step, generate stream of samples

7.4 Hidden Markov models

- Specified by sets S (hidden states), O (observations) and probability parameters $\lambda = [\pi, a, b]$
- $-\pi$ is initial state probability
- a is hidden state transition probability
- b is emission probability
- Inference problems:
- Filtering: $P(X_t|e_1,...,e_t)$
- Smoothing: $P(X_k|e_1,...,e_t), k < t$ – Most likely state sequence:
- arg $\max_{X_1,...,X_t} P(X_1,...,X_t|e_1,...,e_t)$

7.4.1 Forward computation - filtering

- Define: $\alpha_t(i) = P(e_1, ..., e_t, X_t = s_i)$
- - $\begin{aligned} & -\alpha_0(i) = \pi_i, \ 1 \le i \le n \text{ where } |S| = n \\ & -\alpha_{t+1}(i) = b_i(e_{t+1}) \sum_{j=1}^n \alpha_t(j) a_{ji}, \ 1 \le j \le n, \ 0 \le t \le T-1 \end{aligned}$
- Time complexity: O(n²T)

7.4.2 Backward computation - smoothing

- Define: $\beta_k(i) = P(e_{k+1}, ..., e_t | X_k = s_i)$
- Algorithm:
- Agoreams $-\beta_T(i) = 1, 1 \le i \le n$ $-\beta_K(i) = \sum_{j=1}^n a_{ij} b_j (e_{k+1}) \beta_{k+1}(j), 1 \le j \le n, 0 \le k \le T-1$
- Time complexity: $O(n^2T)$

7.4.3 Viterbi algorithm - most likely sequence

- Define:
- $\delta_t(i) = \max_{X_1,...,X_{t-1}} P(X_1,...,X_{t-1},X_t = s_i,e_1,...,e_t)$
- Algorithm:
- $-\widetilde{\delta_0}(i) = \pi(i), 1 \le i \le n$
- $-\delta_{t+1}(j) = \max_{i} \delta_{t}(i) a_{ij} b_{j}(e_{t+1}), 1 \le j \le n, 0 \le t \le T-1$
- Time complexity: O(n²T)

7.4.4 Parameter estimation

- Paired sequences: $\hat{a}_{ij} = \frac{\#s_i \to s_j}{\#s_i} \& \hat{b}_j(e_k) = \frac{\#s_j \to e_k}{\#s_i}$
- Observation sequences only Baum-Welch EM: Define: $\xi_t(i,j) = P(X_t = s_i, X_{t+1} = s_j | e_1, ..., e_T, \lambda)$

$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(e_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_t(i)a_{ij}b_j(e_{t+1})\beta_{t+1}(j)}$$

- $$\begin{split} &-\text{ Define: } \xi_t(i,j) = P(\lambda_t = s_i, \lambda_{t+1} = s_j|e_1, ..., e_T, \lambda_t) \\ &\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(e_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^n \sum_{j=1}^n \alpha_t(i)a_{ij}b_j(e_{t+1})\beta_{t+1}(j)} \\ &-\text{Let } \gamma_t(i) = P(X_t = s_i|e_1, ..., e_T, \lambda) = \sum_{j=1}^n \xi_t(i,j) \\ &-\text{Estimate } \hat{\pi}_i = \gamma_1(i), \, \hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}, \end{split}$$

$$\hat{b}_{j}(e_{k}) = \frac{\sum_{t=1}^{T} \gamma_{t}(j) * I(E_{t} = e_{k})}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

- Algorithm:
 - Guess $\lambda_0 = [\pi_0, a_0, b_0]$
 - Repeat until convergence:
 - Calculate α, β from λ
 - Re-estimate λ from α, β

8 Unsupervised learning

8.1 Principal components analysis (PCA)

- Assume: data distrubution is unimodal Gaussian (fully explained by mean & variance)
- Assume: information to be preserved is in the variance
- Project data $\mathbb{R}^d \to \mathbb{R}^k$ (k < d), maximizing variance.

8.1.1 PCA method

- Zero-mean, unit variance transform on \mathcal{D}
- Find S = covariance matrix of transformed D
- Find $\lambda_1, ..., \lambda_k$ (the k largest eigenvalues of S) and associated eigenvectors $u_1, ..., u_k$
- Project $x^{(i)} \mapsto [u_1^T x^{(i)}, \dots, u_h^T x^{(i)}]^T$, where $x^{(i)} \in \mathbb{R}^d$

8.1.2 Kernel PCA

- Idea: map $x^{(i)} \mapsto \phi(x^{(i)})$ where $\phi : \mathbb{R}^d \to \mathbb{R}^D$ (D >> d)
- ullet The result when project back to \mathbb{R}^d will be nonlinear.
- Algorithm:
- Pick a kernel
- Construct kernel matrix K over data $x^{\left(1\right)},...,x^{\left(m\right)}$
- Centralize the kernel matrix K to get \tilde{K} , where $\mathbf{1}_m$ denotes a m-by-m matrix for which each element takes value 1/m:
- $\tilde{K} = K \mathbf{1}_m K K \mathbf{1}_m + \mathbf{1}_m K \mathbf{1}_m$
- Solve the eigenvalue problem $\tilde{K}\alpha = \lambda \alpha$, $\alpha \in \mathbb{R}^m$
- For a new x, we project it as: $y_j = \sum_{i=1}^m \alpha_j^{(i)} \kappa(x, x^{(i)})$, for j = 1, ..., L (# of components) where eigenvectors are ordered by value

8.2 Expectation maximization algorithm (EM)

8.2.1 K-means

- Cost function: $J = \sum_{i=1}^{m} \sum_{k=1}^{K} z_k^{(i)} ||x^{(i)} \mu_k||^2$
- E-step: cluster assignment, minimize J wrt. z, fix μ
- M-step: relocate means, minimize J wrt. μ, fix z
- Time complexity: O(mK) per iteration
- · Converges to local minimum & vulnerable to outliers.

8.2.2 Gaussian mixture model (GMM)

- Generative mode: $P(x^{(i)}) = \sum_{k=1}^{K} P(z^{(i)} = k) P(x^{(i)} | z^{(i)} = k)$ $z^{(i)} \sim \text{Multinomial}(\pi); \pi_k > 0, \sum_k \pi_k = 1$ $x^{(i)}|_{z(i)=k} \sim \mathcal{N}(\mu_k, \Sigma_k)$
- $$\begin{split} \bullet & \text{ Infer } z^{(i)} \text{ for each } x^{(i)}, \text{ where } \theta = \{\pi, \mu, \Sigma\}; \\ P(z^{(i)} = k | x^{(i)}; \theta) &= \frac{P(z^{(i)} = k) P(x^{(i)} | z^{(i)} = k; \theta)}{\sum_{k'} P(z^{(i)} = k') P(x^{(i)} | z^{(i)} = k'; \theta)} \end{split}$$
- Soft EM algorithm:
- Guess values of $\theta = \{\pi, \mu, \Sigma\}$
- E-step: calculate the responsibility of each component toward
- generating $x^{(i)}\colon r_k^{(i)}=P(z^{(i)}=k|x^{(i)};\theta)$ M-step: given $r_k^{(i)}$ and $x^{(i)},\,1\leq i\leq m,\,1\leq k\leq K,$ re-estimate π,μ,Σ :

$$\pi_k = \frac{1}{m} \sum_{i=1}^m r_k^{(i)}, \qquad \mu_k = \frac{\sum_{i=1}^m r_k^{(i)} x^{(i)}}{\sum_{i=1}^m r_k^{(i)}},$$

$$\Sigma_k = \frac{\sum_{i=1}^m r_k^{(i)} (x^{(i)} - \mu_k) (x^{(i)} - \mu_k)^T}{\sum_{i=1}^m r_k^{(i)}}$$

$$\Sigma_k = \frac{\sum_{i=1}^m r_k^{(i)} (x^{(i)} - \mu_k) (x^{(i)} - \mu_k)^T}{\sum_{i=1}^m r_k^{(i)}}$$

9 Reinforcement learning

9.1 Markov decision process (MDP)

9.1.1 The model

- A set of states S, a subset of which are terminal states.
- Actions(s): possible actions from state s, no actions from
- A transition function T(s, a, s'): probability of transitioning to state s' if action a is taken in state s.
- A reward function r(s, a, s'): reward for taking action a in state s and ending up in state s', or r(s,a) or r(s)

9.1.2 The value function - expected utility

- Definition: $V_{\pi}(s) = E\left[\sum_{t=0}^{\infty} r(s_t, \pi(s_t)) | \pi, s_0 = s\right]$
- Recursive: $V_{\pi}(s) = \sum_{s'} T(s, \pi(s), s') \left[r(s, \pi(s), s') + V_{\pi}(s') \right]$
- Q-function: $Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') \left[r(s, a, s') + V_{\pi}(s') \right]$

9.1.3 Policy evaluation

- Approach 1: set up linear equations and solve for V_{π}
- Approach 2: (iterative improvement) O(|S|) each iteration
- Repeat until convergence:
 - For each state s:

$$-V_{\pi}^{i}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') \left[r(s, \pi(s), s') + V_{\pi}^{i-1}(s') \right]$$

9.1.4 Optimality

- Definition: $V * (s) = V_{\pi^*}(s) = \max_{\pi} V_{\pi}(s)$
- Bellman's equation:

$$V^*(s) = \max_{a \in \text{Actions}(s)} T(s, a, s') \left[r(s, a, s') + V^*(s') \right]$$

- Given V^* : $Q^*(s, a) = \sum_{s'} T(s, a, s') [r(s, a, s') + V^*(s)]$
- Given Q^* : $V^*(s) = \max_{a \in Action(s)} Q^*(s, a)$

9.2 Solving MDPs

9.2.1 Policy iteration

- - · Policy improvement:
 - Compute $Q_{\pi}(s, a)$ from $V_{\pi}(s)$ – Update π : $\pi'(s) = \arg \max_{a \in Action(s)} Q(s, a)$
 - · Policy iteration algorithm:
 - Start with a random policy π
 - Repeat until no change to policy occurs:
 - Compute value of policy π (policy evaluation)
 - Improve the policy at each state (policy improvement)

9.2.2 Value iteration

- · Note: no explicit policy.
- · Value iteration algorithm:
- Start with $V^{(0)}(s) = 0$ for all states s in S
- Repeat until convergence:
 - Bellman update: $V^{i}(s) \leftarrow$

$$\max_{a \in \operatorname{Action}(s)} \sum_{s'} T(s, a, s') \left[r(s, a, s') + V^{i-1}(s') \right]$$

9.3 Model-based RL

- Training phase to get T (count and normalize) and R (maintain running average) estimates.
- · Solve using value or policy iteration.

9.4 Model-free RL

9.4.1 Passive temporal difference learning

- Learn from every experience (s, a, s', r).
- Update: $V_{\pi}(s) \leftarrow (1-\alpha)V_{\pi}(s) + \alpha(r + \gamma V_{\pi}(s'))$
- Update: $Q_{\pi}(s, a) \leftarrow (1 \alpha)Q_{\pi}(s, a) + \alpha(r + \gamma Q_{\pi}(s', \pi(s')))$

9.4.2 Q-learning

- · Off-policy learning.
- · Active temporal difference learning on Q-function.
- Update: $Q(s, a) \leftarrow (1 \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$

9.4.3 Generalization

- Linear value functions: $V(s) = \sum_{i=1}^{n} w_i f_i(s)$ and $Q(s,a) = \sum_{i=1}^{n} w_i f_i(s,a)$
- Q-learning with linear Q-functions:
- Given transition (s, a, s', r)
- Calculate difference: $\Delta = [r + \gamma \max_{a'} Q(s', a')] Q(s, a)$
- For i in $\{1, 2, ..., n\}$:
- Update: $w_i \leftarrow w_i + \alpha \Delta f_i(s, a)$

Appendix

Distributions

- Poisson distribution PMF: $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$
- Normal distribution PDF: $f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$
- Multivariate normal distribution PDF: $f(X; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} \exp\left(-\frac{1}{2}(X \mu)^T \Sigma^{-1}(X \mu)\right)$
- Laplace distribution PDF: $f(x; \mu, b) = \frac{1}{2b} \exp \left\{ -\frac{|x-\mu|}{b} \right\}$
- Beta distribution PDF: $f(x; \alpha, \beta) = \frac{1}{R(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1}$
- Given that $X_1 \sim Pois(\lambda_1), X_2 \sim Pois(\lambda_2), X = X_1 + X_2, X_1$ and X_2 are independent: $X \sim Pois(\lambda_1 + \lambda_2)$.
- Given that $P(X_0 = x_0) = \alpha_0 \exp\left\{-\frac{(x_0 \mu_0)^2}{2\sigma_n^2}\right\}$, and that $P(X_1 = x_1 | X_0 = x_0) = \alpha_1 \exp\left\{-\frac{(x_1 - x_0)^2}{2\sigma^2}\right\}$:

$$P(X_1 = x_1) = \alpha_0 \alpha_1 \sqrt{\frac{2\pi \sigma_0^2 \sigma_1^2}{\sigma_0^2 + \sigma_2^2}} \exp\left\{-\frac{1}{2} \frac{(x_1 - \mu_0)^2}{\sigma_0^2 + \sigma_2^2}\right\}$$

Information theory

- Conditional information: $H(Y|X) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log \frac{p(x)}{p(x, y)}$
- Mutual information: $I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \frac{p(x,y)}{p(x)P(y)}$
- Kullback-Leibler (KL) divergence: $D_{KL}(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$
- Cross entropy: $H(p,q) = E_p[-\log q] = H(p) + D_{KL}(p||q)$

Convex function

- A function f(x) is convex on a set S iff for $\lambda \in [0,1]$, and $\forall x, y \in S$: $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$.
- A function f(x) is convex on a set S iff $\frac{d^2}{dx^2}f(x)$ is positive semidefinite everywhere in the set.

Convergence of perceptron

Proof. Let $\theta^{(k-1)}$ be the parameter vector when the algorithm makes a mistake on (x,y).

$$\theta^{(k)} = \theta^{(k-1)} + \eta x y$$

Take dot product on both sides with θ^* (some separating hyperplane)

$$\theta^{*T}\theta^{(k)} = \theta^{*T}(\theta^{(k-1)} + \eta xy)$$
$$= \theta^{*T}\theta^{(k-1)} + \eta y(\theta^{*T}x)$$
$$> \theta^{*T}\theta^{(k-1)} + \eta \gamma$$

If $\theta^{(0)}$ is all zeros vector, then

$$\theta^{*T}\theta^{(k)} \ge \eta k \gamma \tag{1}$$

From the update rule,

$$\begin{split} \theta^{(k)} &= \theta^{(k-1)} + \eta xy \\ \|\theta^{(k)}\|^2 &= \|\theta^{(k-1)} + \eta xy\|^2 \\ &= \|\theta^{(k-1)}\|^2 + \eta^2 y^2 \|x\|^2 + 2\eta y (\theta^{(k)})^T x) \\ &\leq \|\theta^{(k-1)}\|^2 + \eta^2 \|x\|^2 \\ &\leq \|\theta^{(k-1)}\|^2 + \eta^2 R^2 \end{split}$$

Starting with $\theta^{(0)}$ of all zeros

$$\|\theta^{(k-1)}\|^2 \le k\eta^2 R^2 \tag{2}$$

Putting (1) and (2) together, $k \leq \frac{R^2 \|\theta^*\|^2}{\gamma^2}$.

Mercer's theorem

Proof. Since K is positive definite, $K=u^T\Lambda u$, where Λ is a diagonal matrix with entries $\lambda^{(i)}>0$. Consider an element $\kappa(x^{(i)},x^{(j)})$ of K. We can construct this element as follows

$$\kappa(x^{(i)}, x^{(j)}) = (\Lambda^{\frac{1}{2}} u_{:,i})^T (\Lambda^{\frac{1}{2}} u_{:,j})$$

Now define $\phi(x^{(i)}) = \Lambda^{\frac{1}{2}} u_{:,i}$, then we have $\kappa(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$.

Adaboost principle

 ${\it Proof.}$ Boosting can be viewed as sequential minimization of an exponential cost function:

$$J = \sum_{i=1}^{m} \exp \left[-y^{(i)} H_l(x^{(i)}) \right]$$
$$H_l(x) = \sum_{i=1}^{l} \alpha^{(j)} h^{(j)}(x)$$

We sequentially minimize J w.r.t. $\alpha^{(j)}$ and $h^{(j)}$ while holding $\alpha^{(1)}, ..., \alpha^{(j-1)}$ and $h^{(1)}, ..., h^{(j-1)}$ fixed. Rewrite J as follows.

$$J = \sum_{i=1}^{m} \left\{ \exp \left[-y^{(i)} H_{l-1}(x^{(i)}) \right] \exp \left[-\alpha^{(l)} y^{(i)} h^{(l)}(x^{(i)}) \right] \right\}$$

Now define $w_l^{(i)} = \exp \left[-y^{(i)} H_{l-1}(x^{(i)}) \right]$, then

$$J = \sum_{i=1}^{m} w_l^{(i)} \exp\left[-\alpha^{(l)} y^{(i)} h^{(l)}(x^{(i)})\right]$$

$$= \sum_{i \in \text{correct}} w_l^{(i)} \exp\left(-\alpha^{(l)}\right) + \sum_{i \in \text{incorrect}} w_l^{(i)} \exp\left(+\alpha^{(l)}\right)$$

$$= \left[\exp\left(\alpha^{(l)}\right) - \exp\left(-\alpha^{(l)}\right)\right] A + \exp\left(-\alpha^{(l)}\right) B$$

where we define $A = \sum_{i=1}^{m} w_l^{(i)} I\left[y^{(i)} \neq h^{(l)}(x^{(i)})\right], B = \sum_{i=1}^{m} w_l^{(i)},$ and $\epsilon^{(l)} = \frac{A}{B}$. Setting $\frac{\partial J}{\partial x_l^{(l)}} = 0$ yields

$$\alpha^{(l)} = \frac{1}{2} \log \left[\frac{1 - \epsilon^{(l)}}{\epsilon^{(l)}} \right]$$

To find best $h^{(l)},\,B$ is a constant, simply minimize A. Once we have $\alpha^{(l)}$ and $h^{(l)},$

$$w_{l+1}^{(i)} = w_l^{(i)} \exp \left[-y^{(i)} \alpha^{(l)} h^{(l)} (x^{(i)}) \right]$$

Therefore, we get

$$w_{l+1}^{(i)} = \begin{cases} w_l^{(i)} \exp\left(-\alpha^{(l)}\right), & \text{correct classification} \\ w_l^{(i)} \exp\left(+\alpha^{(l)}\right), & \text{incorrect classification} \end{cases}$$

Kernel PCA derivation

Proof. First the eigenvectors of covariance matrix lie in the span of the data $\left\{x^{(1)},...,x^{(m)}\right\}$.

$$Sv = \left[\frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)}^{T}\right] v = \lambda v$$

Use the fact that $x^{(i)}x^{(i)T}v = \langle x^{(i)}, v \rangle x^{(i)}$ where $x^{(i)}, v \in \mathbb{R}^d$,

$$\frac{1}{m} \sum_{i=1}^{m} \langle x^{(i)}, v \rangle x^{(i)} = \lambda v$$

$$\Leftrightarrow v = \frac{1}{m\lambda} \sum_{i=1}^{m} \langle x^{(i)}, v \rangle x^{(i)}$$

Define $\alpha^{(i)} = \frac{1}{m\lambda} \langle x^{(i)}, v \rangle$, then $v = \sum_{i=1}^m \alpha^{(i)} x^{(i)}$. Now project $x \in \mathbb{R}^d$ using $\phi : \mathbb{R}^d \to \mathbb{R}^D$ into a higher dimensional space. The covariance matrix C of the transformed data is (assume zero-mean)

$$C = \frac{1}{m} \sum_{i=1}^{m} \phi(x^{(i)}) \phi(x^{(i)})^{T}$$
(3)

and we need to solve

$$Cv = \lambda v$$
 (4)

We just showed that

$$v = \sum_{i=1}^{m} \alpha^{(i)} \phi(x^{(i)})$$
 (5)

Substitute (3) and (5) into (4) getting

$$\left[\frac{1}{m}\sum_{i=1}^{m}\phi(x^{(i)})\phi(x^{(i)})^{T}\right]\left[\sum_{i=1}^{m}\alpha^{(i)}\phi(x^{(i)})\right] = \lambda\left[\sum_{i=1}^{m}\alpha^{(i)}\phi(x^{(i)})\right]$$

Rearrange terms on the left hand side,

$$\begin{split} &\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(j)} \phi(x^{(i)}) \left[\phi(x^{(i)})^T \phi(x^{(j)}) \right] \\ &= &\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(j)} \phi(x^{(i)}) \kappa(x^{(i)}, x^{(j)}) \end{split}$$

Therefore,

$$\sum_{i=1}^m \sum_{j=1}^m \alpha^{(j)} \phi(x^{(i)}) \kappa(\alpha^{(i)}, \alpha^{(j)}) = m\lambda \sum_{i=1}^m \alpha^{(i)} \phi(x^{(i)})$$

Take dot product on both sides with $\phi(x^{(k)})$ getting

$$\sum_{i=1}^{m} \sum_{j=1}^{m} \alpha^{(j)} \kappa(x^{(k)}, x^{(i)}) \kappa(\alpha^{(i)}, \alpha^{(j)}) = m \lambda \sum_{i=1}^{m} \alpha^{(i)} \kappa(x^{(k)}, x^{(i)})$$

Switch to matrix form

$$K^2 \alpha = m \lambda K \alpha$$

 $\Rightarrow K \alpha = m \lambda \alpha$

Also, the condition that $v^T v = 1$ allows us to derive $\alpha^T K \alpha = 1$. By multiplying $K \alpha = m \lambda \alpha$ on both sides by α , we get

$$m\lambda\alpha^T\alpha = 1$$

For a new point x, its projection will be

$$\phi(x)^T v = \sum_{i=1}^m \alpha^{(i)} \phi(x)^T \phi(x^{(i)})$$
$$= \sum_{i=1}^m \alpha^{(i)} \kappa(x, x^{(i)})$$

Correctness of EM

Proof. For any **Z** with non-zero probability $p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})$, we can write:

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) - \log p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$$

We take the expectation over possible values of the unknown data ${\bf Z}$ under the current parameter estimate ${\boldsymbol \theta}^{(t)}$ by multiplying both sides by $p({\bf Z}|{\bf X},{\boldsymbol \theta}^{(t)})$ and summing over ${\bf Z}$. The left-hand side is the expectation of a constant, so we get:

$$\begin{aligned} \log p(\mathbf{X}|\boldsymbol{\theta}) &= \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(t)}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \\ &- \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(t)}) \log p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}) \\ &= Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) + H(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) \end{aligned}$$

where $H(\theta|\theta^{(t)})$ is defined by the negated sum it is replacing. This last equation holds for any value of θ including $\theta = \theta^{(t)}$,

$$\log p(\mathbf{X}|\boldsymbol{\theta}^{(t)}) = Q(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)}) + H(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)})$$

and subtracting this last equation from the previous equation gives

$$\log p(\mathbf{X}|\boldsymbol{\theta}) - \log p(\mathbf{X}|\boldsymbol{\theta}^{(t)}) = Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) - Q(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)}) + H(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) - H(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)})$$

However, Gibbs' inequality tells us that $H(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) \geq H(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)})$, so we can conclude that

$$\log p(\mathbf{X}|\boldsymbol{\theta}) - \log p(\mathbf{X}|\boldsymbol{\theta}^{(t)}) \ge Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) - Q(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)})$$

In words, choosing $\boldsymbol{\theta}$ to improve $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$ beyond $Q(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)})$ cannot cause $\log p(\mathbf{X}|\boldsymbol{\theta})$ to decrease below $\log p(\mathbf{X}|\boldsymbol{\theta}^{(t)})$, and so the marginal likelihood of the data is non-decreasing.