Séminaire Caml

QCM n° 3 Vendredi 25 septembre 2020

- 1. La fonction failwith a pour type:
 - (a) int -> int
 - (b) 'a -> 'a
 - (c) 'a -> string
- -(d) string -> 'a
 - (e) string -> exception
- 2. Quel est le type de la fonction division??

- (a) int -> int -> string
- -(b) int -> int -> int
 - (c) int -> int -> exception
 - (d) int -> int -> 'a
 - (e) Aucun, la fonction est incorrecte.
- 3. Quel sera le résultat de l'application de division (question 2) aux valeurs -5 et 0?
 - (a) : int = 0
 - (b) : int = infinity
 - (c) Exception : Division_by_zero.
- (d) Exception : Invalid_argument "Division_by_zero".
 - (e) Pas de résultat : la fonction est toujours incorrecte!
- 4. Quel est le résultat de l'évaluation de la définition suivante?

- (a) Error : Unbound value y
- -(b) val f : int -> int = <fun>
 - (c) val f : 'a -> int = <fun>
 - (d) val f : int -> int -> int = <fun>
 - (e) Un autre message d'erreur.
- 5. Quel est le résultat de l'évaluation de la définition suivante?

- (a) val f : int -> int -> float = <fun>
- (b) val f : int -> float -> int = <fun>
- (c) val f : int -> int -> int = <fun>
- (d) Error : Unbound value y
- (e) Un autre message d'erreur.

6. Que contient le résultat de l'évaluation de la phrase suivante?

```
let switchonoff x = match x with
    "on" -> failwith "error"
| "off" -> false ;;
```

- (a) val switchonoff : string -> bool = <fun>
- (b) Warning ... : this pattern-matching is not exhaustive.
 - (c) Warning ... : this match case is unused.
 - (d) Un message d'erreur.
- 7. Que contient le résultat de l'évaluation de la phrase suivante?

- (a) val f1 : int -> int -> int = <fun>
- (b) val f1 : int -> int = <fun>
- (c) Warning ... : this pattern-matching is not exhaustive.
- (d) Warning ... : this match case is unused.
 - (e) Error : Unbound value y
- 8. Soit aux définie dans l'environnement courant. La fonction f définie ci-dessous est correcte. Quels sont les types de aux et f?

- -(a) f : int -> int
- (b) f : 'a -> int
- _(c) aux : int -> int -> int
- (d) aux : 'a -> int -> int
- 9. Soit aux définie dans l'environnement courant. La fonction f définie ci-dessous est correcte. Quels sont les types de aux et f?

- (a) f : int -> bool
 - (b) f : 'a -> bool
 - (c) f : bool -> bool
 - (d) aux : bool -> int
- _ (e) aux : int -> bool
- 10. Soient x et y deux valeurs entières définies dans l'environnement. Quelles expressions sont équivalentes à l'expression suivante?

let
$$y = x in y + 1$$
;

- -(a) match x with y -> y + 1
- (b) let x = y in x + 1
- (c) let x = y in y + 1
- (d) y + 1
- _(e) x + 1

QCM $N^{\circ}3$

vendredi 25 septembre 2020

Question 11

La négation de

$$\forall \, x \leqslant 0, \quad \left(\forall \, y \in \mathbb{R}, \, \, x < y^2 \right) \Longrightarrow x \neq 0$$

est:

a.
$$\exists x \leq 0, \quad x = 0 \Longrightarrow (\exists y \in \mathbb{R}, \ x \geqslant y^2)$$

- b.
$$\exists x \leq 0$$
, $(\forall y \in \mathbb{R}, x < y^2)$ et $x = 0$

c.
$$\exists x > 0$$
, $x = 0 \Longrightarrow (\exists y \in \mathbb{R}, x \geqslant y^2)$

d.
$$\exists x > 0$$
, $(\forall y \in \mathbb{R}, x < y^2)$ et $x = 0$

e. rien de ce qui précède.

Question 12

La contraposée de

$$\forall x \le 0, \quad (\forall y \in \mathbb{R}, \ x < y^2) \Longrightarrow x \ne 0$$

est:

a.
$$\forall x \leq 0, \quad x = 0 \Longrightarrow (\exists y \in \mathbb{R}, \ x \geqslant y^2)$$

b.
$$\forall x \leq 0, \quad x \neq 0 \quad \text{et} \quad (\exists y \in \mathbb{R}, \ x \geqslant y^2)$$

c.
$$\forall x \leq 0$$
, $(\exists y \in \mathbb{R}, x \geq y^2) \Longrightarrow x = 0$

d.
$$\exists x \leq 0$$
, $(\exists y \in \mathbb{R}, x \geq y^2) \Longrightarrow x = 0$

e. rien de ce qui précède

Question 13

- a. L'assertion « $\forall\,x\in\mathbb{R}^+,\ \exists\,y\in\mathbb{R},\ x=y^2$ » est vraie.
 - b. L'assertion « $\exists\,y\in\mathbb{R},\;\forall\,x\in\mathbb{R}^+,\;x=y^2$ » est vraie.
 - c. rien de ce qui précède.

Question 14

Soit fune fonction de $\mathbb R$ dans $\mathbb R$ qui vérifie :

$$\exists M \geqslant 0, \ \forall x \in \mathbb{R}, \ |f(x)| \leqslant M$$

Alors f est bornée.

- _ a. Vrai
 - b. Faux

Question 15

La négation de « Demain, s'il ne fait pas beau, j'irai au cinéma. » est :

- a. « Demain, s'il ne fait pas beau, je n'irai pas au cinéma. »
- b. « Demain, il fait beau et j'irai au cinéma. »
- c. « Demain, s'il fait beau, je n'irai pas au cinéma. »
- d. « Demain, il ne fait pas beau et je n'irai pas au cinéma. »
 - e. rien de ce qui précède

Question 16

On veut montrer par récurrence que : $\forall n \ge 2$, $\sum_{k=2}^{n} (k-1)(k-2) = \frac{n(n-1)(n-2)}{3}$.

On pose:
$$P(n): \ll \sum_{k=2}^{n} (k-1)(k-2) = \frac{n(n-1)(n-2)}{3}$$

- a. On initialise en montrant P(0).
- b. Pour montrer l'hérédité, on suppose que P(n) est vraie pour un $n \ge 2$ et on montre qu'alors P(n+1) est vraie.

c.
$$P(n+1)$$
: « $\sum_{k=2}^{n+1} k(k-1) = \frac{(n+1)n(n-1)}{3}$ »

d. rien de ce qui précède

Question 17

On considère les ensembles $A=\{2,4,7,9\}$ et $B=\{1,2,3,4,5\}$. Alors :

-a.
$$A \cup B = \{1, 2, 3, 4, 5, 7, 9\}$$

b.
$$A \cup B = \{2, 4\}$$

c.
$$A \cap B = \{1, 2, 3, 4, 5, 7, 9\}$$

d.
$$A \cap B = \{2, 4\}$$

e. rien de ce qui précède

Question 18

On considère l'ensemble $A=\{1,2,3,4,5\}.$ Alors :

- a. $2 \subset A$
- -b. $2 \in A$
- c. $\{2\} \subset A$
- =d. $\emptyset \subset A$
 - e. $\emptyset \in A$

Question 19

On considère les ensembles $A=\{1,2,3,4\}$ et $B=\{a,b,c\}.$ Alors :

- a. $1 \in A \times B$
- b. $\{1,c\} \in A \times B$
- -c. $(1,c) \in A \times B$
 - d. $(b,2) \in A \times B$
 - e. rien de ce qui précède

Question 20

On considère l'ensemble $A=\{a,b,c\}$ et on note $\mathscr{P}(A)$ l'ensemble des parties de A. Alors :

- ¬ a. $\{a\}$ ∈ $\mathscr{P}(A)$
- $\tilde{\ }$ b. $\{a,c\}\in\mathscr{P}(A)$
- c. $\{c,b\} \in \mathscr{P}(A)$
- _d. $\emptyset \in \mathscr{P}(A)$
- e. $A \in \mathscr{P}(A)$