5 Oefeningen

1 De rechten *x* en *y* worden gesneden door *z*. Vul de tabel aan.

HOEKEN	BENAMING
\widehat{X}_1 en \widehat{Y}_1	overeenkomstige hoeken
\widehat{X}_1 en \widehat{Y}_3	verwisselende buitenhoeken
\widehat{X}_4 en \widehat{Y}_2	verwisselende buitenhoeken
\widehat{X}_2 en \widehat{Y}_1	binnenhoeken aan dezelfde kant van de snijlijn
\widehat{X}_4 en \widehat{Y}_3	buitenhoeken aan dezelfde kant van de snijlijn
\widehat{X}_3 en \widehat{Y}_1	verwisselende binnenhoeken

- De rechten a en b worden gesneden door c.
 - a Geef alle overeenkomstige hoeken.

\widehat{X}_1 en \widehat{Y}_1	$\widehat{\mathrm{X}}_{2}$ en $\widehat{\mathrm{Y}}_{2}$	
\widehat{X}_3 en \widehat{Y}_3	$\widehat{\mathrm{X}}_{\!\scriptscriptstyle{4}}$ en $\widehat{\mathrm{Y}}_{\!\scriptscriptstyle{4}}$	

b Geef alle verwisselende binnenhoeken.

$$\widehat{X}_3$$
 en \widehat{Y}_1

$$\widehat{X}_4$$
 en \widehat{Y}_2

c Geef alle verwisselende buitenhoeken.

$$\widehat{X}_1$$
 en \widehat{Y}_3

$$\widehat{X}_2$$
 en \widehat{Y}_4

d Geef alle binnenhoeken aan dezelfde kant van de snijlijn.

$$\widehat{X}_3$$
 en \widehat{Y}_2

$$\widehat{X}_4$$
 en \widehat{Y}_1

e Geef alle buitenhoeken aan dezelfde kant van de snijlijn.

$$\widehat{X}_1$$
 en \widehat{Y}_4

$$\widehat{X}_2$$
 en \widehat{Y}_3

Vul de ontbrekende hoekgroottes in als je weet dat $a \parallel b$.

4 De rechten a en b zijn evenwijdig en worden gesneden door c. Zoek de grootte van de hoeken.

$$\widehat{A}_1 = \underline{\qquad \qquad 145^{\circ}}$$

$$\widehat{A}_2 = \underline{35^{\circ}}$$

$$\widehat{A}_3 = \underline{\qquad \qquad 145^{\circ}}$$

$$\widehat{A}_4 = 35^{\circ}$$

$$\widehat{B}_1 = \underline{\qquad \qquad 145^{\circ}}$$

$$\widehat{B}_3 = \underline{\qquad \qquad 145^{\circ}}$$

- 5 Gegeven: parallellogram ABCD Gevraagd: verklaar volgende gelijkheden
 - a $\widehat{A} + \widehat{B} = 180^{\circ}$

b $\widehat{B} + \widehat{C} = 180^{\circ}$

Binnenhoeken aan dezelfde kant van de snijlijn zijn supplementair bij AB // CD en snijlijn BC.

 $c \quad \widehat{A} = \widehat{C}$

Overstaande hoeken in een parallellogram zijn even groot.

of:
$$\widehat{A} + \widehat{B} = 180^{\circ}$$
$$\widehat{B} + \widehat{C} = 180^{\circ}$$
 $\Longrightarrow \widehat{A} + \widehat{B} = \widehat{B} + \widehat{C} \Longrightarrow \widehat{A} = \widehat{C}$

6 Een rechte snijdt twee evenwijdige rechten. De som van twee verwisselende binnenhoeken is 160°. Bereken de acht gevormde hoeken.

$$\widehat{X}_2 + \widehat{Y}_4 = 160^{\circ}$$

Verwisselende binnenhoeken zijn even groot.

$$\widehat{X}_2 = \widehat{Y}_4$$
 dus is $\widehat{X}_2 = 80^\circ = \widehat{Y}_4$

Dus

$$\widehat{X}_2 = \widehat{X}_4 = 80^\circ = \widehat{Y}_2 = \widehat{Y}_4$$
 (overstaande hoeken)

$$\widehat{X}_1 = \widehat{X}_3 = 100^\circ = \widehat{Y}_1 = \widehat{Y}_3$$
 (overstaande hoeken)

ABCD is een trapezium.

Bereken \widehat{A}_1 als je weet dat $\widehat{A}_2 = 35^\circ$ en $\widehat{D} = 72^\circ$.

Binnenhoeken aan dezelfde kant van de snijlijn

zijn supplementair bij AB // CD en snijlijn AD.

$$\widehat{A} + \widehat{D} = 180^{\circ}$$

$$\widehat{A}_{1} + 35^{\circ} + 72^{\circ} = 180^{\circ}$$

$$\widehat{A}_{1} = 180^{\circ} - 35^{\circ} - 72^{\circ}$$

$$\widehat{A}_{1} = 73^{\circ}$$

De rechten a en b zijn evenwijdig en worden gesneden door c. Zoek \widehat{B}_2 , \widehat{B}_3 en \widehat{B}_4 als je weet dat $\widehat{A}_1 + \widehat{B}_1 = 130^\circ$.

Overeenkomstige hoeken zijn even groot bij $a \parallel b$ en snijlijn c.

$$\widehat{A}_1 = \widehat{B}_1 = \widehat{B}_3 = 65^{\circ}$$

$$\hat{B}_2 = 180^{\circ} - 65^{\circ} = 115^{\circ} = \hat{B}_4$$

Kun je aan de hand van de gegeven hoeken afleiden dat $a \parallel b$? Verklaar aan de hand van een geziene eigenschap.

a

d

g

NEEN

overeenkomstige hoeken

zijn even groot

verwisselende buitenhoeken

zijn even groot

buitenhoeken aan dezelfde

NEEN

kant van de snijlijn

zijn supplementair

b

e

f

h

i

NEEN

overeenkomstige hoeken

zijn niet even groot

buitenhoeken aan dezelfde

kant van de snijlijn

zijn niet supplementair

binnenhoeken aan dezelfde

NEEN

kant van de snijlijn

zijn niet supplementair

c

NEEN

verwisselende buitenhoeken

zijn even groot

overeenkomstige hoeken

91° b a

zijn niet even groot

buitenhoeken aan dezelfde

kant van de snijlijn zijn

niet supplementair

102

- $a /\!\!/ b$ en $c /\!\!/ d$ Gegeven:
 - $\widehat{B}_1 = 55^{\circ}$
 - hoe groot is \widehat{D}_1 ? Gevraagd:

Overeenkomstige hoeken zijn even groot bij $c \not\parallel d$ met snijlijn b,

$$dus \, \widehat{B}_1 = \widehat{C}_1 = 55^{\circ}$$

Buitenhoeken aan dezelfde kant van de snijlijn zijn

supplementair bij $a \parallel b$ met snijlijn d, dus

$$\widehat{C}_1 + \widehat{D}_1 = 180^\circ \iff \widehat{D}_1 = 180^\circ - 55^\circ$$

$$\iff$$
 $\widehat{D}_1 = 125^{\circ}$

11 Gegeven: $a /\!\!/ b$ en $b /\!\!/ c$ zoek telkens \widehat{B}_1 en \widehat{B}_2 als: Gevraagd:

a
$$\widehat{A}_1 = \widehat{B}_2 + 28^\circ$$

$$\widehat{A}_{1} + \widehat{B}_{2} = 180^{\circ}$$

$$// \qquad \qquad \downarrow \qquad \qquad \qquad$$

$$c \quad \widehat{A}_1 = \widehat{A}_2 + \frac{1}{3} \, \widehat{A}_1$$

$$A_{1} - \frac{1}{3}\widehat{A}_{1} \stackrel{\updownarrow}{=} \widehat{A}_{2}$$

$$\frac{2}{3}\widehat{A}_{1} \stackrel{?}{=} \widehat{A}_{2}$$

$$\widehat{A}_{1} + \widehat{A}_{2} \stackrel{?}{=} 180^{\circ}$$

$$\widehat{A}_{1} + \frac{2}{3}\widehat{A}_{1} \stackrel{?}{=} 180^{\circ}$$

$$\frac{5}{3}\widehat{A}_{1} \stackrel{?}{=} 180^{\circ}$$

$$\widehat{A}_{1} \stackrel{?}{=} 108^{\circ}$$

$$\widehat{A}_{1} \stackrel{?}{=} 108^{\circ}$$

$$\widehat{B}_{2} = 72^{\circ}$$

b
$$\widehat{A}_4 = \widehat{B}_3 - 18^{\circ}$$

$$\widehat{A}_4 + \widehat{B}_3 = 180^{\circ}$$

$$// \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

d
$$\widehat{A}_1 + \widehat{B}_3 = 239^{\circ}$$

a De rechte c snijdt twee evenwijdige rechten a en b. Onder welke hoek snijden de bissectrices van twee binnenhoeken aan dezelfde kant van de snijlijn elkaar? Verklaar.

De bissectrices van 2 binnenhoeken aan dezelfde

kant van de snijlijn vormen samen 90°.

Verklaring:

In \triangle ACB is de hoekensom 180°.

Dus is $\widehat{C} = 90^{\circ}$.

b De rechte c snijdt twee evenwijdige rechten a en b. Teken de bissectrices van twee overeenkomstige hoeken. Wat is de onderlinge stand van de bissectrices? Verklaar.

De bissectrices van 2 overeenkomstige hoeken

zijn evenwijdig.

Verklaring:

$$\begin{array}{cccc} \widehat{\mathbf{A}}_1 + \widehat{\mathbf{A}}_2 & = & \widehat{\mathbf{B}}_1 + \widehat{\mathbf{B}}_2 \\ & & & & & & \\ & & & \widehat{\mathbf{A}}_1 = \widehat{\mathbf{A}}_2 \text{ en } \widehat{\mathbf{B}}_1 = \widehat{\mathbf{B}}_2 \end{array}$$
 overeenkomstige hoeken bij $a /\!\!/ b$ en snijlijn c

Gegeven:

 $k /\!\!/ m$

 $\widehat{B} = 55^{\circ}$

 $\widehat{D} = 125^{\circ}$

Te bewijzen: $b /\!\!/ c$

• $\widehat{C}_1 + 125^\circ = 180^\circ$ buitenhoeken aan dezelfde kant van de snijlijn bij $k \, / \! / \, m$ en snijlijn c

 $\widehat{C}_1 = 55^{\circ}$

ullet $\widehat{B}=\widehat{C}_1$ twee rechten zijn evenwijdig bij twee rechten en een snijlijn als twee overeenkomstige

hoeken even groot zijn

b // c

In de tekening worden enkele hoeken tussen de rechten a, b, c, m en n gegeven. Welke rechten zijn evenwijdig?

(A) $a \operatorname{en} b$

(B) b en c

a en c

m en n

(E) geen enkele rechte is evenwijdig met een andere

JWO 2003 tweede ronde, vraag 23 © Vlaamse Wiskunde Olympiade vzw

- Twee rechten worden gesneden door een derde rechte in de punten X en Y. De scherpe of stompe hoeken die zo gevormd worden, noemen we \widehat{X}_1 , \widehat{X}_2 , \widehat{X}_3 , \widehat{X}_4 , \widehat{Y}_1 , \widehat{Y}_2 , \widehat{Y}_3 , \widehat{Y}_4 . We weten het volgende:
 - \widehat{Y}_1 en \widehat{Y}_2 zijn overstaande hoeken;
 - \widehat{X}_3 en \widehat{Y}_2 zijn verwisselende binnenhoeken;
 - \widehat{Y}_3 en \widehat{X}_2 zijn verwisselende buitenhoeken;
 - \widehat{X}_1 en \widehat{Y}_2 zijn overeenkomstige hoeken.

Dan zijn \widehat{X}_4 en \widehat{Y}_4

verwisselende

binnenhoeken

(B) verwisselende buitenhoeken

(C) binnenhoeken aan dezelfde kant van de snijlijn

(D) buitenhoeken aan dezelfde kant van de snijlijn

(E) overeenkomstige hoeken