2025. 06. 29

Deep Image Processing Lab

Contents

연구 목표

최종 목표

현재 목표

Multi frame image fusion

Image fusion에 의한 denoising

Alignment를 고려한 denoising

Denoising 연구

Laser speckle

About laser speckle

Speckle suppression 연구 동향

Laser speckle suppression for SHG image

연구 목표

연구 목표

n 최종 목표

CNN 기반 FET defect 분류 모델

- FET array에 레이저를 조사, 발생하는 SHG 신호를 수집
- SHG 신호를 분석해 defect 판단 및 분류

Second harmonic generation

SHG signal 분석을 통한 defect 분류 모델

연구 목표

SHG dataset 구조

3개의 scene에 대한 SHG 이미지

• 각 scene에 대해 Background와 시료에 대한 SHG signal을 수집한 영상 100장

(a) A122 (b) C64 (c) F13

연구 목표

현재 목표

영상 정합을 이용한 clean image 획득

• 100장의 이미지를 합쳐 clean image를 생성

(a) Noisy images

(b) Image fusion

(c) Clean image

(d) 목표 수준

Multi frame image fusion

Multi frame image fusion

lmage fusion에 의한 denoising

Signal to noise ratio (SNR)

- Signal에 대해 noise의 비율을 나타내는 값
- 1dB : signal과 noise의 비율이 1.26:1
- 일반적으로 10dB 이상이면 signal이 유의미하게 존재함을 의미

제곱근 법칙

- N장의 이미지를 평균내면 noise의 표준편차가 1/√N만큼 감소
- Signal에 대해 noise가 random하고 iid인 경우에 성립

$$\mathbf{\hat{S}} = rac{1}{N} \sum_{k=1}^{N} (\mathbf{S} + \mathbf{N}_k)$$

평균 연산을 통한 noise reduction

$$\sigma_{
m avg} = rac{\sigma}{\sqrt{N}}$$

 $\mathrm{SNR}_{\mathrm{gain}} pprox 10 \cdot \log_{10}(N)$

(a) 평균 연산 후 noise의 표준편차

(b) SNR 계산 식

프레임 수(N)	SNR 향상 배율 (√N)	SNR 개선 (dB)
1	1배	0 dB
2	1.414배	약 3 dB
4	2배	약 6 dB
8	2.828배	약 9 dB
16	4 배	약 12 dB

(c) 이미지 수에 따른 SNR 증가량

Multi frame image fusion

lmage fusion에 의한 denoising

Alignment를 고려한 fusion

- 앞의 제곱근 법칙은 동일한 구조를 가지는 영상에 적용 가능
- 흔들림, 회전, 이동 등의 구조적 변형이 일어난 경우 해당 변형을 고려해서 연산해야 함

Homography matrix

• 두 이미지가 같은 평면을 나타낼 때, 한 이미지의 점을 다른 이미지의 점으로 매핑하는 행렬

$$egin{bmatrix} x' \ y' \ 1 \end{bmatrix} \sim H egin{bmatrix} x \ y \ 1 \end{bmatrix}$$

• SIFT 등의 알고리즘을 통해 이미지에서 특징점을 추출 한 후, 동일한 특징점 사이의 관계를 나타내는 행렬을 도출

2D transformation hierarchy

(a) Homography matrix

(b) SIFT 등을 이용한 특징점 추출 및 매핑

Image fusion에 의한 denoising

Align을 고려하지 않은 평균 연산 결과 Align을 고려한 평균 연산 결과 둘의 차이

• Image fusion을 이용해 denoising하는 것은 효과가 없음

Multi frame image fusion

Denoising 연구

Supervised learning

- Noise가 없는 clean image에 gaussian noise 등을 추가한 후,
 noisy-clean image pair를 이용해 학습
- 가장 직관적이고 확실한 방법
- Paired dataset이 필요하나, dataset을 구축하기 어려움

Noisy Image County But RelU Conty But RelU

Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising, IEEE TIP, 2017

Self-upervised learning

- Clean image없이 noisy image만으로 학습
- 제곱근 원리를 응용한 알고리즘
- 일정한 signal에 대해 다양한 noise가 존재하는 이미지가 필요

Noise2Noise: Learning Image Restoration without Clean Data , ICML 2018

Laser speckle

About laser speckle

- Coherence가 높은 laser의 특성에 기인해 발생하는 현상
- 불균일한 표면에서 발생한 산란파가 서로 간섭을 일으켜 점무늬 패턴(speckle)이 생성
- 피사체, 광학 시스템, 관측 시스템이 고정되어 있다면 시간에 따라 변하지 않음

ForceSight: Non-Contact Force Sensing with Laser Speckle Imaging, Youtube

Speckle suppression 연구 동향

Conditional GAN을 이용한 laser speckle suppression

DeepLSR: a deep learning approach for laser speckle reduction Biomedical optics express, 2019

- Speckle을 형성하는 RGB laser와 speckle을 형성하지 않는 Tri-LED를 이용해 이미지 취득
- cGAN을 이용해 denoising generator를 학습
- oLSR을 함께 사용했을 때 성능이 가장 좋음

(a) Speckle w/wo images

(b) cGAN base model structure

Speckle suppression 연구 동향

CycleGAN을 이용한 laser speckle suppression

Physics-Informed Generative Adversarial Networks for Laser Speckle Noise Suppression Sensors, 2025

- Speckle을 형성하는 355nm UV laser와 speckle을 형성하지 않는 broadband laser(260~450nm) 을 이용해 이미지 취득
- CycleGAN을 이용해 noisy-clean domain 사이의 변환을 학습
- KL divergence loss와 gradient consistency loss를 이용

(a) Speckle w/wo images

(b) CycleGAN base model structure

Original

Ours

Speckle suppression 연구 동향

Speckle 패턴 자체를 활용한 classification

Photonic human identification based on deep learning of back scattered laser speckle patterns Optics Express, 2019

- 정적인 레이저 스펙클 패턴만으로도 사람 식별 가능
- 5명에 대해서만 분류하는 closed-set problem 환경
- 생체정보가 명확히 드러나지 않는 비접촉 광학식 인식 방법

(a) Speckle 취득 과정

(b) Model architecture

Laser speckle suppression for SHG image

Non-temporal degradation을 제거하는 모델

- 파장의 변화, 물체의 회전 등을 이용해 speckle을 없애거나 다른 형태로 바꾸어 dataset 형성
- 구축된 dataset에 따라 Supervised, self-supervised learning을 적절히 사용
- Speckle이 특정 주기성을 가지고 있다면, fourier domain에서의 조작을 취할 수도 있음
- A122, C64, F13 scene이 완전 다른 형태인 줄 알았는데, 비슷한 부분이 많음 -> align을 맞추어 Noise2Noise처럼 학습하도록 설계

(a) 앞서 제공받은 이미지

(b) Magnitude spectrum

Appendix

Image fusion에 의한 denoising

Align을 고려하지 않은 평균 연산 결과

Align을 고려한 평균 연산 결과

Digital gain 7.0

A1

Image fusion에 의한 denoising

Image fusion에 의한 denoising

Generative Adversarial Network (GAN)

