半直積と Galois 群

https://seasawher.hatenablog.com/

@seasawher

命題. (直積の内部特徴づけ)

群Gとその部分群N,Hがあるとする。このとき次は同値。

(1) G と直積 $N \times H$ は自然に同型である。つまり積をとる写像 $\varphi \colon N \times H \to G$ は群の準同型であって、かつ同型になる。次の図式

を可換にするような同型 φ があるといってもよい。

(2) $N \triangleleft G$ かつ $H \triangleleft G$ であり、かつ $N \cap H = 1$ で NH = G である。

証明.

$$\psi(gqg^{-1}) = \psi(g)(q,1)\psi(g)^{-1}$$
$$= (g_N, g_H)(q,1)(g_N^{-1}, g_H^{-1})$$
$$= (g_N q g_N^{-1}, 1)$$

である。したがって $gqg^{-1}=\varphi(g_Nqg_N^{-1},1)\in N$ であるから、 $N\lhd G$ である。同様にして $H\lhd G$ もいえる。また、 $x\in N\cap H$ とすると、 $\psi(x)\in N\times H$ は (1,1) でなくてはならない。したがって、 $x\in \operatorname{Ker}\psi$ である。 ψ は同型だから x=1 であって、 $N\cap H=1$ がいえた。さらに、G=NH であることはあきらかであろう。

(2)⇒(1) N,H は G の部分群なので、積をとる写像 $\varphi\colon N\times H\to G$ が定義できる。 $N\lhd G, H\lhd G$ なので交換子 [N,H] は $N\cap H$ の部分群であるが、 $N\cap H=1$ なので [N,H]=1 である。よって N の元と H の元は可換であり、 φ は群準同型になる。 $N\cap H=1$ より φ は単射であり、NH=G より φ は全射である。

補題. (半直積の基本的な性質)

群 N, H と群作用 $\Phi: H \to \operatorname{Aut} N$ があって、半直積 $N \rtimes_{\Phi} H$ を考えているとする。 $q \in N, h \in H$ とする。このとき次が成り立つ。

- (1) 作用成分への射影 $N \rtimes_{\Phi} H \to H$ s.t. $(q,h) \mapsto h$ は準同型である。
- (2) 正規成分への入射 $N \to N \rtimes_{\Phi} H$ s.t. $q \mapsto (q,1)$ は準同型である。
- (3) 作用成分への入射 $H \to N \rtimes_{\Phi} H$ s.t. $h \mapsto (1,h)$ は準同型である。
- (4) $h \in \text{Ker } \Phi$ ならば (q,h) = (1,h)(q,1) である。
- (5) 常に (q,h) = (q,1)(1,h) が成り立つ。
- (6) 自然な入射と射影は、分裂する短完全列

をなす。

証明. あきらか。

命題. (半直積の内部特徴づけ)

群Gの部分群N,Hが与えられているとする。このとき次は同値。

(1) ある群作用 $\Phi: H \to \operatorname{Aut} N$ が存在して、G は半直積 $N \rtimes_{\Phi} H$ と自然に同型 である。つまり積をとる写像 $\varphi: N \rtimes_{\Phi} H \to G$ s.t. $(q,h) \mapsto qh$ は群準同型 で、かつ同型である。次の図式

を可換にするような同型 φ があるといってもよい。

(2) $N \triangleleft G$ かつ NH = G かつ $N \cap H = 1$ が成り立つ。

証明.

(1)⇒(2) NH=G はあきらか。 $x\in N\cap H$ とすると $(x,x^{-1})\in \operatorname{Ker}\varphi$ だから x=1 で なくてはならない。よって $N\cap H=1$ である。 $N\lhd G$ を示そう。 $g\in G$ と $q\in N$ が与えられたとする。 $p\colon N\rtimes_\Phi H\to H$ を射影とし、 ψ を φ の逆写像とする。このとき $\psi(g)=(g_N,g_H)$ と表せる。ゆえに

$$p \circ \psi(gqg^{-1}) = p((g_N, g_H)(q, 1)(g_N^{-1}, g_H^{-1}))$$

= 1

である。したがって $qqq^{-1} \in \varphi(\operatorname{Ker} p) = N$ である。よって $N \triangleleft G$ がわかった。

(2)⇒(1) $N \triangleleft G$ より、群作用 $\Phi: H \to \operatorname{Aut} N$ を $\Phi_h(q) = hqh^{-1}$ により定めることができる。(順序を逆にして $\Phi_h(q) = h^{-1}qh$ とするとうまくいかないことに注意) このとき $q_1, q_2 \in N$ と $h_1, h_2 \in H$ が与えられたとすれば

$$\varphi((q_1, h_1)(q_2, h_2)) = \varphi(q_1 \Phi_{h_1}(q_2), h_1 h_2)$$

$$= \varphi(q_1 h_1 q_2 h_1^{-1}, h_1 h_2)$$

$$= q_1 h_1 q_2 h_2$$

$$= \varphi(q_1, h_1) \varphi(q_2, h_2)$$

だから φ は群準同型になる。 φ が単射であることは $N\cap H=1$ より従い、全射であることは NH=G より従う。

命題. (半直積の関手性 その 1)

 N_1,N_2,H が群で群作用 $\Phi\colon H\to \operatorname{Aut} N_1$ が与えられていたとする。このとき同型 $g\colon N_1\to N_2$ に対して $_g\Phi\colon H\to \operatorname{Aut} N_2$ を $_g\Phi(h)=g\circ\Phi_h\circ g^{-1}$ で定めると、写像 $g_*\colon N_1\rtimes_\Phi H\to N_2\rtimes_{g\Phi} H$ s.t. $g_*(q,h)=(g(q),h)$ は群の準同型である。

証明. 計算すればわかる。実際に行ってみると

$$g_*((q, h_1)(q', h_2)) = g_*(q\Phi_{h_1}(q'), h_1h_2)$$

$$= (g(q)g(\Phi_{h_1}(q')), h_1h_2)$$

$$(g(q), h_1)(g(q'), h_2) = (g(q)_g\Phi_{h_1}(g(q')), h_1h_2)$$

$$= (g(q)g(\Phi_{h_1}(q')), h_1h_2)$$

であるから一致する。

命題. (半直積の関手性 その2)

 N, H_1, H_2 が群で群作用 $\Phi: H_2 \to \operatorname{Aut} N$ が与えられていたとする。このとき群準 同型 $f: H_1 \to H_2$ に対して $\Phi_f: H_1 \to \operatorname{Aut} N$ を $(\Phi_f)_h = \Phi_{f(h)}$ により定める。そうすると写像 $f_*: N \rtimes_{\Phi_f} H_1 \to N \rtimes_{\Phi} H_2$ s.t. $f_*(q,h) = (q,f(h))$ は群の準同型である。

証明. 計算すればわかる。実際に行ってみると

$$f_*((q_1, h)(q_2, h')) = f_*(q_1 \Phi_{f(h)}(q_2), hh')$$

$$= (q_1 \Phi_{f(h)}(q_2), f(h)f(h'))$$

$$= f_*(q_1, h)f_*(q_2, h')$$

であるから一致。

命題. (分裂する完全列からの半直積の構成)

群 G, H, N と準同型 i, j, p からなる分裂する短完全列

$$1 \longrightarrow N \xrightarrow{j} G \xrightarrow{p} H \longrightarrow 1$$

$$\downarrow i \qquad \downarrow 1$$

$$H$$

が与えられたとする。このとき、ある群作用 $\Psi\colon H\to \operatorname{Aut} N$ が存在して、自然な同 型 $G\cong N\rtimes_{\Psi} H$ がある。すなわち、ある同型 ψ が存在して次の図式

が可換になる。

証明. $N'=j(N),\ H'=i(H)$ とおく。このとき $N'=\operatorname{Ker} p$ より $N'\lhd G$ である。 $x\in N'\cap H'$ とすると x=j(q)=i(h) なる $q\in N, h\in H$ があるが、p(x)=1=h より x=1 でなくてはならない。よって $N'\cap H'=1$ である。また $g\in G$ とすると $g(i\circ p)(g^{-1})\in \operatorname{Ker} p$ なので $g(i\circ p)(g^{-1})=j(q)$ なる $q\in N$ がある。したがって $g=j(q)(i\circ p)(g)\in N'H'$ だから G=N'H' が成り立つ。よって、ある同型 φ と群作用 $\Phi\colon H'\to\operatorname{Aut} N'$ であって、次の図式

を可換にするようなものがある。ここで i,j は単射であるので、同型 $I\colon H\to H'$ と $K\colon N'\to N$ が存在して、次の図式

は可換になる。これで示すべきことがいえた。

命題. (有限巡回群の半直積の表示)

群 N,H は有限巡回群であり群作用 $\Phi\colon H\to \operatorname{Aut} N$ が存在して半直積 $N\rtimes_\Phi H$ を考えているとする。N,H の生成元 q,h をそれぞれとって固定し $\Phi_h(q)=q^t$ となる $t\in\mathbb{Z}$ をとることができる。このとき

$$N \rtimes_\Phi H \cong \left\{q, h \mid q^{\#N} = h^{\#H} = 1, hqh^{-1} = q^t\right\}$$

が成り立つ。

証明. 右辺の群を G とおく。自由群の普遍性により、自由群 F_2 から $N \rtimes_{\Phi} H$ への準同型 φ であって $\varphi(q)=(q,1)$ かつ $\varphi(h)=(1,h)$ なるものがある。なお、ここで $q\in F_2$ と $q\in N$ は本来別の記号で書くべきだが、かえって煩雑になるので同じ記号とした。 φ は全射である。このとき $q^{\#N}, h^{\#H}\in \operatorname{Ker}\varphi$ はあきらか。また

$$\varphi(hqh^{-1}) = (1,h)(q,1)(1,h^{-1})$$
$$= (\Phi_h(q),1)$$
$$= (q^t,1)$$
$$= \varphi(q)^t$$

だから $hqh^{-1}q^{-t}\in \operatorname{Ker}\varphi$ である。したがって、全射 $\psi\colon G\to N\rtimes_\Phi H$ が誘導される。 ここで $N\rtimes_\Phi H$ の位数は $\#(N\times H)$ であるので $\#G\geq \#(N\times H)$ である。一方で $\#G\leq \#(N\times H)$ はあきらかなので結局 $\#G=\#(N\times H)$ であり、 ψ は同型でなくては ならない。

命題. (半直積と Galois 群)

有限次 Galois 拡大 L/K があり、その中間体 M,N があって $L=M\cdot N$ かつ $K=M\cap N$ を満たすとする。

さらに M/K は Galois 拡大であるとする。このとき

$$Gal(L/K) \cong Gal(L/M) \rtimes Gal(L/N)$$

が成り立つ。

証明. M/K は Galois 拡大なので $\operatorname{Gal}(L/M) \lhd \operatorname{Gal}(L/K)$ である。L は M と N の合成なので $\operatorname{Gal}(L/M) \cap \operatorname{Gal}(L/N) = 1$ である。また Galois 拡大の推進定理(雪江 [1] 定理 4.6.1) により $\operatorname{Gal}(L/N) \cong \operatorname{Gal}(M/K)$ なのでとくに [L:N] = [M:K] であり、したがって [L:N][L:M] = [L:K] である。ゆえに、 $\operatorname{Gal}(L/K) \cong \operatorname{Gal}(L/M) \rtimes \operatorname{Gal}(L/N)$ がわかる。

参考文献

[1] 雪江明彦『代数学2環と体とガロア理論』(日本評論社, 2010)