TU Dortmund

V301 - Leerlaufspannung und Innenwiderstand von Spannungsquellen

Markus Stabrin markus.stabrin@tu-dortmund.de

Kevin Heinicke kevin.heinicke@tu-dortmund.de

Versuchsdatum: 7. Mai 2013

Abgabedatum: 14. Mai 2013

1 Einleitung

2 Theorie

3 Versuchsaufbau und Durchführung

4 Auswertung

4.1 Klemmspannungskurven

Zunächst wird für jede Spannungsquelle eine lineare Ausgleichsrechnung mit Hilfe von phython für die Funktion (??) durchgeführt. Der y-Achsenabschnitt entpricht dabei der Leerlaufspannung U_0 und die Steigung dem Innenwiderstand R_i der jeweiligen Spannungsquelle. Abbildungen 1 bis 3 zeigen die Graphen, Tabelle 1 beinhaltet die Messwerte. Die Ungenauigkeit der Messgeräte liegt bei

$$\Delta I = \pm 1.5 \%,$$

$$\Delta U = \pm 2 \%.$$

Zudem gilt für die Leistung P:

$$\begin{array}{rcl} P & = & UI \,, \\ \Delta P & = & \sqrt{(I\Delta U)^2 + (U\Delta I)^2} \,. \end{array}$$

Tabelle 1: Strom- und Spannungswerte der verschiedenen Spannungsquellen bei variierten Lastwiderständen R_a .

Monozelle			Rechteckspannung			Sinusspannung		
I[mA]	$U_{\rm k}[{ m V}]$	P[mW]	I[mA]	$U_{\rm k}[{ m mV}]$	$P[\mu W]$	I[mA]	$U_{\rm k}[{ m V}]$	$P[\mu W]$
84	0,083	$6,97 \pm 0,17$	7,7	40	308 ± 8	1,80	0,09	162 ± 4
76	0,240	$18,24 \pm 0,46$	6,5	50	325 ± 8	1,50	0,12	180 ± 4
66	0,280	$18,48 \pm 0,46$	5,1	65	332 ± 8	1,00	0,17	170 ± 4
58	0,570	$33,06 \pm 0,83$	4,2	70	294 ± 7	0,70	0,20	140 ± 4
54	0,640	$34,56 \pm 0,86$	3,5	75	263 ± 7	0,60	0,22	132 ± 3
47	0,750	$35,25 \pm 0,88$	3,1	80	248 ± 6	0,55	0,23	127 ± 3
43	0,770	$33,11 \pm 0,83$	2,7	85	230 ± 6	0,45	0,24	108 ± 3
41	0,780	$31,98 \pm 0,80$	2,3	85	196 ± 5	0,38	0,24	91 ± 2
38	0,810	$30,78 \pm 0,77$	2,0	90	180 ± 4	0,32	$0,\!25$	80 ± 2
36	0,820	$29,52 \pm 0,74$	1,8	90	162 ± 4	0,27	$0,\!25$	68 ± 2
34	0,820	$27,88 \pm 0,70$	1,7	90	153 ± 4	0,25	$0,\!25$	62 ± 2

Abbildung 1: Spannungs- Stromkurve der Monozelle.

Abbildung 2: Spannungs- Stromkurve der Rechteckspannung

Abbildung 3: Spannungs- Stromkurve der Sinusspannung

4.2 Innenwiderstand $R_{\rm i}$ und Leerlaufspannung U_0

Die Ausgleichsrechnung in Kapitel 4.1 liefert die Werte für die jeweiligen Innenwiderstände R_i und Leerlaufspannungen U_0 der verschiedenen Spannungsquellen. Tabelle 2 beinhaltet die Werte.

Tabelle 2: Innenwiderstand R_i und Leerlaufspannung U_0 .

Spannungsquelle	$R_{ m i}[\Omega]$	$U_0[V]$
Monozelle	$15,7 \pm 1,1$	$1,418 \pm 0,060$
Monozelle, Gegenspannung	$20,1 \pm 0,6$	$1,676 \pm 0,034$
Rechteckspannung	$107,6 \pm 3,0$	$0,106 \pm 0,001$
Sinusspannung	$8,5 \pm 0,2$	$0,282 \pm 0,003$

4.3 Systematische Fehler

Der Systematische Fehler $\Delta_s U_0$ bei der direkten Messung der Leerlaufspannung beträgt nach Umstellen von Gleichung (??):

$$\Delta_{\rm s} U_0 = U_{\rm k} \frac{R_{\rm i}}{R_{\rm a}} \,.$$

Mit einem Außenwiderstand im Voltmeter von $R_{\rm a}\approx 10\,{\rm M}\Omega$ und der direkt gemessenen Spannung

$$U_0 = 1.65 \,\mathrm{V}$$
,

folgt der Fehler

$$\Delta_{\rm s} U_0 = 2.59 \, \mu \Omega$$
.

Das entspricht einem relativen Fehler δ_s von $\delta_s = 1,57 \cdot 10^{-4} \%$. Schließt man das Voltmeter nicht wie vorgegeben an, sondern hinter dem Amperemeter, fällt in diesem – zusätzlich zur Leerlaufspannung U_0 – eine Spannung U_A ab.

4.4 Leistungsdiagramm

Im folgenden Diagramm 4 ist die Leistung P, die im Belastungswiderstand R_a umgesetzt wird, aufgetragen. Zusätzlich ist der Graph der theoretisch errechneten Leistungskurve $N = f(R_a)$ eingetragen. Die Leistungskurve berechnet sich mit Gleichung (??) nach

$$N = I^2 R_{\rm a} = \frac{U_0^2 R_{\rm a}}{R_{\rm i} + R_{\rm a}} \, .$$

Hierbei werden die Werte des Innenwiderstandes R_i und der Leerlaufspannung U_0 ohne Gegenspannung aus Kapitel 4.2 verwendet.

Abbildung 4: Leistungsdiagramm der Monozelle mit theoretischer Leistungskurve.

5 Diskussion

Wie in Kapitel 4.3 dargestellt, sind die bekannten Systematischen Fehler gering. Dennoch weichen die gemessenen Leistungswerte der Monozelle von der Theoriekurve ab. Die lässt möglicherweise sich durch Messfehler und nicht berücksichtigte Kabelwiderstände erklären. Ein weiterer Indiz für fehlerhafte Messung ist das Ergebnis der Leerlaufspannung der Monozelle mit und ohne Gegenspannung. Während ohne Gegenspannung ein Wert von

Literatur

[1] Physikalisches Anfängerpraktikum der TU Dortmund: Versuch Nr.301 - Leerlaufspannung und Innenwiderstand von Spannungsquellen. http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V301.pdf. Stand: Mai 2013.