~ Seminar 2 ~

➤ Algoritm: Transformarea AFN → AFD

Se dă un automat AFN. Se cere să se construiască un automat AFD echivalent (care să accepte același limbaj).

Idee: Atunci când în AFN dintr-o stare cu un anumit simbol avem ramificare către mai multe stări-destinație, în AFD vom grupa toate aceste stări-destinație într-o singură stare pentru a elimina ramificarea.

Algoritm: Pentru AFN-ul $(Q, \Sigma, q_0, F, \delta)$ construim AFD-ul $(Q', \Sigma, q_0, F', \delta')$ astfel:

- Stările AFD-ului vor reprezenta submulțimi are mulțimii stărilor AFN-ului $(Q' \subseteq \mathcal{P}(Q))$.
- Cele două automate vor avea același alfabet Σ și *aceeași stare inițială* q_0 .
- Funcția de tranziție a AFD-ului este calculată astfel:

$$\delta'(R,x) = \bigcup_{q \in R} \delta(q,x), \quad \forall R \in \mathcal{P}(Q), \forall x \in \Sigma$$

- Stările finale ale AFD-ului sunt mulțimile care *conțin* <u>cel puțin o</u> stare finală a AFN-ului $F' = \{R \mid R \in Q', R \cap F \neq \emptyset\}$.

Obs: La seminar vom folosi *metoda iterativă* de calcul pentru Q' (pornim din starea inițială și adăugăm stările AFD-ului pe măsură ce ajungem la ele calculând funcția de tranziție δ' pentru stările găsite anterior).

• Exemplu: Pentru AFN-ul următor construiți un AFD echivalent.

- a) Completăm tabel 1 cu funcția de tranziție pentru AFN.
- b) Completăm tabel_2 cu funcția de tranziție pentru AFD (pornim din starea inițială a AFN-ului și adăugăm pe rând stările obținute în interiorul tabel 2).
- c) Desenăm graful pentru AFD conform tabel 2.

δ_AFN	a	b
q_0 init	$\{q_0, q_1\} = q_{01}$	$\{q_0\}$
q_1	$\{q_1, q_2\} = q_{12}$	$\{q_1\}$
$q_2 \in F$	$\{q_2\}$	$\{q_{2}\}$

δ _AFD	a	b
q_0 init	q_{01}	q_0
q_{01}	q_{012}	q_{01}
$q_{012} \in F$	q_{012}	q_{012}

AFD

Verificare acceptare cuvânt de către AFD, AFN

Care este limbajul recunoscut de cele două automate din exemplul de mai sus? Verificați (pentru AFD, apoi pentru AFN) dacă cuvintele **bba** și **babbaba** sunt acceptate sau respinse, folosind configurații.

→ AFD, cuv bba:

$$(q_0, bba) \vdash^b (q_0, ba) \vdash^b (q_0, a) \vdash^a (q_{01}, \lambda), q_{01} \notin F \Longrightarrow bba respins$$

→ AFN, cuv bba:

$$(q_0, bba) \vdash^b (q_0, ba) \vdash^b (q_0, a) \vdash^a \{(q_0, \lambda), (q_1, \lambda)\}, \{q_0, q_1\} \cap F = \emptyset \Rightarrow bba respins$$

→ AFD, cuv babbaba:

$$(q_0, babbaba) \vdash^b (q_0, abbaba) \vdash^a (q_{01}, bbaba) \vdash^b (q_{01}, baba) \vdash^b (q_{01}, aba) \vdash^b (q_{012}, ba) \vdash^b (q_{012}, aba) \vdash^a (q_{012}, ba) \vdash^a (q_{0$$

→ AFN, cuv babbaba:

$$(q_0, babbaba) \vdash^b (q_0, abbaba) \vdash^a \{(q_0, bbaba), (q_1, bbaba)\}$$

 $\vdash^b \{(q_0, baba), (q_0, baba)\} \vdash^b \{(q_0, aba), (q_1, aba)\}$
 $\vdash^a \{(q_0, ba), (q_1, ba), (q_2, ba)\} \vdash^b \{(q_0, a), (q_1, a), (q_2, a)\} \vdash^a \{(q_0, \lambda), (q_1, \lambda), (q_2, \lambda)\},$
 $\{q_0, q_1, q_2\} \cap F = \{q_2\} \neq \emptyset => \text{babbaba acceptat}$

> Automat Finit Nedeterminist cu λ-tranziții

AFN $-\lambda = (Q, \Sigma, q_0, \delta, F)$ Q mulţimea de stări Σ alfabetul de intrare $q_0 \in Q$ starea iniţială $F \subseteq Q$ mulţimea de stări finale $\delta : Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q$ funcţia de tranziţie ("delta")

Diferența față de AFN-ul simplu este că suntem într-o stare și putem citi fie un caracter din alfabetul Σ , fie cuvântul vid λ . Deci se poate întâmpla să ajungem într-o stare nouă fără să fi citit nicio literă nouă din cuvântul de intrare, ci doar aplicând λ -tranziții.

> λ-închiderea unei stări

Mulţimea de stări în care se poate ajunge plecând din starea q şi aplicând zero sau mai multe λ -tranziţii se numeşte " λ -închiderea stării q" şi se notează cu $\langle q \rangle$.

Obs: Orice stare face parte din propria λ -închidere (pentru că $\delta(q, \lambda^0) = q$; practic putem presupune că orice stare are o λ -tranziție *implicită* către ea însăși).

$$\langle q \rangle = \bigcup_{k>0} \{r \mid r \in \hat{\mathcal{S}}(q, \lambda^k)\}$$

$$< q > = \{q\} \cup \{q_i \mid q_i \in \hat{\delta}(q, \lambda^1)\} \cup \{q_{ij} \mid q_{ij} \in \hat{\delta}(q, \lambda^2)\} \cup ...$$

Observăm că mulțimile se pot calcula inductiv după puterea lui λ :

$$\{q_{ij} \mid q_{ij} \in \hat{\delta}(q, \lambda^2)\} = \{q_{ij} \mid q_i \in \hat{\delta}(q, \lambda^1), q_{ij} \in \delta(q_i, \lambda^1)\}.$$

Sau în general $\{r \mid r \in \mathcal{S}(q, \lambda^k)\} = \{r \mid s \in \hat{\mathcal{S}}(q, \lambda^{k-1}), r \in \mathcal{S}(s, \lambda^1)\}.$

Verificare acceptare cuvânt de către automat AFN–λ

Pentru a verifica dacă un cuvânt este sau nu acceptat de un automat AFN–λ:

Se procedează analog ca în cazul AFN-ului, doar că înainte de a căuta toate stările posibile de continuare cu tranziții cu simbolul curent, trebuie să facem λ -închiderea mulțimii curente de stări. Iar după ce a fost citit tot cuvântul de intrare, trebuie să facem o ultimă λ -închidere a stărilor curente, pentru a obține mulțimea finală de stări în care poate ajunge automatul pentru cuvântul dat.

Obs: λ-închiderea unei mulțimi de stări este egală cu reuniunea λ-închiderilor acelor stări.

$$<$$
 { $q_{i1}, q_{i2}, ..., q_{in}$ } $>$ $=$ $<$ q_{i1} $>$ \cup $<$ q_{i2} $>$ \cup $...$ \cup $<$ q_{in} $>$

Obs: La AFN $-\lambda$, $\lambda \in L \iff < q_0 > \cap F \neq \emptyset$ (cuvântul vid este acceptat de automat dacă și numai dacă λ -închiderea stării inițiale conține cel puțin o stare finală).

• *Exemplu:* Se dă următorul AFN- λ .

a) Calculăm λ-închiderile tuturor stărilor.

$$< q_0 > = \{q_0, q_2, q_3, q_4, q_5, q_6\}$$

$$< q_1 > = \{q_1, q_2, q_4, q_6\}$$

$$< q_2 > = \{q_2, q_4, q_6\}$$

$$< q_3 > = \{q_3, q_5, q_2, q_6, q_4\}$$

$$< q_4 > = \{q_4, q_6\}$$

$$< q_5 > = \{q_5, q_2, q_6, q_4\}$$

$$< q_6 > = \{q_6\}$$

b) Verificăm dacă cuvântul **abbaa** este acceptat sau respins de acest AFN-λ, folosind configurații.

$$(q_0, abbaa) \vdash^{\lambda^*} (q_{023456}, abbaa) \vdash^a (q_{0136}, bbaa) \vdash^{\lambda^*} (q_{0123456}, bbaa) \vdash^b (q_{2365}, baa)$$

 $\vdash^{\lambda^*} (q_{23456}, baa) \vdash^b (q_{3652}, aa) \vdash^{\lambda^*} (q_{23456}, aa) \vdash^a (q_{36}, a) \vdash^{\lambda^*} (q_{23456}, a)$
 $\vdash^a (q_{36}, \lambda) \vdash^{\lambda^*} (q_{23456}, \lambda), \{q_2, q_3, q_4, q_5, q_6\} \cap F = \{q_2, q_6\} \neq \emptyset => \text{abbaa acceptat}$

➤ Algoritm: Transformarea AFN- λ → AFN (<u>metoda 1</u>) [vezi curs 3, pag 28 – 30] Se dă un automat AFN- λ . Se cere să se construiască un automat AFN echivalent.

Idee: Adăugăm tranziții cu litere din alfabet și stări finale astfel încât să simulăm comportamentul λ -tranzițiilor, pe care apoi le eliminăm.

\rightarrow Pas 1 (" λ -completion"):

- Cât timp e posibil:

$$\forall q_{i_1}, q_{i_2}, q_{i_3} \in Q, \operatorname{daca} \delta(q_{i_1}, \lambda) \ni q_{i_2} \operatorname{si}(q_{i_2}, \lambda) \ni q_{i_3} \Rightarrow (q_{i_1}, \lambda) \ni q_{i_3}$$

Altfel spus, din fiecare stare \mathbf{q} trebuie să adăugăm (dacă nu există deja) câte o λ -tranziție către fiecare stare \mathbf{r} (cu $r \neq q$) din mulțimea $<\mathbf{q}>$ (λ -închiderea stării \mathbf{q}).

(Adică dacă aveam de la starea q la starea r un drum format din două sau mai multe λ -tranziții, atunci trebuie să adaugăm o λ -tranziție directă de la q la r.)

- Apoi trebuie să adăugăm la mulțimea stărilor finale acele stări din care cu λ ajungem într-o stare finală.

(Adică stările care conțineau în λ -închiderea lor cel puțin o stare finală vor deveni și ele stări finale.)

\rightarrow Pas 2 (" λ -transition removal"):

- Adăugăm tranziții cu litere din alfabet care să înlocuiască efectul λ-tranzițiilor, astfel:

$$\forall q_{i_1}, q_{i_2}, q_{i_3} \in Q, \forall a \in \Sigma, \text{daca } \delta \big(\boldsymbol{q_{i_1}}, \boldsymbol{\lambda} \big) \ni \boldsymbol{q_{i_2}} \text{ si } \big(\boldsymbol{q_{i_2}}, \boldsymbol{a} \big) \ni \boldsymbol{q_{i_3}} \ \Rightarrow \ \big(\boldsymbol{q_{i_1}}, \boldsymbol{a} \big) \ni \boldsymbol{q_{i_3}}$$

Adică dacă din starea \mathbf{q} puteam ajunge în starea \mathbf{r} citind λa ($\forall a \in \Sigma$), atunci adăugăm o tranziție cu litera \mathbf{a} direct de la \mathbf{q} la \mathbf{r} .

- Apoi eliminăm toate λ -tranzițiile din automat.

• *Exemplu:* Se dă următorul AFN–λ.

(Același de mai sus, pentru care calculasem deja λ -închiderile tuturor stărilor.)

\rightarrow Pas 1 (" λ -completion"):

$$< q_0 > = \{q_0, q_2, q_3, q_4, q_5, q_6\} = > \text{adaug } \lambda \text{ de la } q_0 \text{ spre } q_4, q_5, q_6 \}$$

$$< q_1 > = \{q_1, q_2, q_4, q_6\} = > \text{adaug } \lambda \text{ de la } q_1 \text{ spre } q_4, q_6$$

$$< q_2 > = \{q_2, q_4, q_6\} =$$
 adaug λ de la q_2 spre q_6

$$< q_3 > = \{q_3, q_5, q_2, q_6, q_4\} = > \text{adaug } \lambda \text{ de la } q_3 \text{ spre } q_2, q_4, q_6$$

$$< q_4 > = \{q_4, q_6\} =$$
nu adaug nimic

$$< q_5 > = \{q_5, q_2, q_4, q_6\} =$$
 adaug λ de la q₅ spre q_4

$$\langle q_6 \rangle = \{q_6\} => \text{nu adaug nimic}$$

Toate stările au în λ -închiderile lor cel puțin o stare finală, deci toate stările vor deveni finale.

\rightarrow Pas 2 (,, λ -transition removal"):

Vom elimina: $\delta(q_{i1}, \lambda) \ni q_{i2}$	Avem: $\delta(q_{i2}, x) \ni q_{i3}, x \in \Sigma$	Adăugăm: $\delta(q_{i1}, x) \ni q_{i3}$
$\delta(q_0,\lambda) \ni q_2$	$\delta(q_2, a) \ni q_3$	$\delta(q_0, a) \ni q_3$
$\delta(q_0,\lambda)\ni q_3$	$\delta(q_3, a) \ni q_6$ $\delta(q_3, b) \supset \{q_3, q_6\}$	$\delta(q_0, a) \ni q_6$ $\delta(q_0, b) \supset \{q_3, q_6\}$
$\delta(q_0,\lambda)\ni q_4$	$\delta(q_4, a) \ni q_6$ $\delta(q_4, b) \ni q_5$	$\delta(q_0, a) \ni q_6$ $\delta(q_0, b) \ni q_5$
$\delta(q_0,\lambda)\ni q_5$	$\delta(q_5, a) \ni q_6$ $\delta(q_5, b) \ni q_2$	$\delta(q_0, a) \ni q_6$ $\delta(q_0, b) \ni q_2$
$\delta(q_0,\lambda)\ni q_6$	$\delta(q_6, b) \ni q_6$	$\delta(q_0, b) \ni q_6$

Vom elimina: $\delta(q_{i1}, \lambda) \ni q_{i2}$	Avem: $\delta(q_{i2}, x) \ni q_{i3}, x \in \Sigma$	Adăugăm: $\delta(q_{i1}, \mathbf{x}) \ni q_{i3}$
$\delta(q_1,\lambda) \ni q_2$	$\delta(q_2, a) \ni q_3$	$\delta(q_1, a) \ni q_3$
$\delta(q_1,\lambda)\ni q_4$	$\delta(q_4, a) \ni q_6 \delta(q_4, b) \ni q_5$	$\delta(q_1, a) \ni q_6$ $\delta(q_1, b) \ni q_5$
$\delta(q_1,\lambda)\ni q_6$	$\delta(q_6, b) \ni q_6$	$\delta(q_1, b) \ni q_6$
$\delta(q_2,\lambda)\ni q_4$	$\delta(q_4, a) \ni q_6$ $\delta(q_4, b) \ni q_5$	$\delta(q_2, a) \ni q_6$ $\delta(q_2, b) \ni q_5$
$\delta(q_2,\lambda)\ni q_6$	$\delta(q_6, b) \ni q_6$	$\delta(q_2, b) \ni q_6$
$\delta(q_3,\lambda) \ni q_2$	$\delta(q_2, a) \ni q_3$	$\delta(q_3, a) \ni q_3$
$\delta(q_3,\lambda)\ni q_4$	$\delta(q_4, a) \ni q_6$ $\delta(q_4, b) \ni q_5$	$\delta(q_3, a) \ni q_6$ $\delta(q_3, b) \ni q_5$
$\delta(q_3,\lambda)\ni q_5$	$\delta(q_5, a) \ni q_6$ $\delta(q_5, b) \ni q_2$	$\delta(q_3, a) \ni q_6$ $\delta(q_3, b) \ni q_2$
$\delta(q_3,\lambda)\ni q_6$	$\delta(q_6, b) \ni q_6$	$\delta(q_3, b) \ni q_6$
$\delta(q_4,\lambda) \ni q_6$	$\delta(q_6, b) \ni q_6$	$\delta(\mathbf{q_4}, b) \ni q_6$
$\delta(q_5, \lambda) \ni q_2$	$\delta(q_2, a) \ni q_3$	$\delta(q_5, a) \ni q_3$
$\delta(q_5,\lambda)\ni q_4$	$\delta(q_4, \alpha) \ni q_6$ $\delta(q_4, b) \ni q_5$	$\delta(q_5, \alpha) \ni q_6$ $\delta(q_5, b) \ni q_5$
$\delta(q_5,\lambda)\ni q_6$	$\delta(q_6, b) \ni q_6$	$\delta(q_5, b) \ni q_6$
$\delta(\mathbf{q_6}, \lambda) = \emptyset \implies$		$=>$ Nu avem ce adăuga din q_6 .

Am obținut un AFN echivalent cu AFN- λ dat.

(Observăm că starea q4 nu este accesibilă din starea inițială, deci ar putea fi eliminată împreună cu trazițiile ei fără a afecta limbajul recunoscut de automat.)

➤ Algoritm: Transformarea AFN- $\lambda \rightarrow$ AFN / AFD (<u>metoda 2</u>) [asemănător AFN \rightarrow AFD, seminar]

Idee: Dacă în AFN- λ din starea \mathbf{q} citind $\lambda^* x \lambda^*$ ($\forall x \in \Sigma$) se ajunge în mulțimea de stări \mathbf{R} , atunci în AFN din starea \mathbf{q} citind litera \mathbf{x} se va ajunge în mulțimea de stări \mathbf{R} .

Starea inițială pentru AFN este aceeași ca la AFN- λ . Stările finale ale AFN-ului sunt cele ale căror λ -închideri în AFN- λ conțin cel puțin o stare finală.

Obs: Dacă dorim să obținem AFD, atunci starea inițială din AFD este λ -închiderea stării inițiale din AFN- λ . Stările finale ale AFD-ului sunt cele care conțin *cel puțin o stare* care în AFN- λ avea în λ -închidere cel puțin o stare finală.

• *Exemplu*: Se dă următorul AFN $-\lambda$.

(Acelaşi de mai sus, pentru care calculasem deja λ -închiderile tuturor stărilor.)

δ_AFN-λ	a	b	λ	<mark>λ*</mark> (λ-închiderea)
q0 init	{q0, q1}	{q2}	{q2, q3}	$ = \{q0, q2, q3, q4, q5, q6\}$
q1	Ø	Ø	{q2}	$<$ q1> = {q1, q2, q4, q6}
q2 in F	{q3}	Ø	{q4}	$<$ q2> = {q2, q4, q6}
q3	{q6}	{q3, q6}	{q5}	$<$ q3> = {q3, q5, q2, q6, q4}
q4	{q6}	{q5}	{q6}	$< q4 > = \{q4, q6\}$
q 5	{q6}	{q2}	{q2, q6}	$<$ q5> = {q5, q2, q4, q6}
q6 in F	Ø	{q6}	Ø	$< q6 > = \{q6\}$

în AFN-λ:	$\lambda^* \ a \ \lambda^*$	$\lambda^* b \lambda^*$
q0 init	$q_0 \xrightarrow{\lambda^*} q_{023456} \xrightarrow{a} q_{0136} \xrightarrow{\lambda^*} q_{0123456}$	$q_0 \xrightarrow{\lambda^*} q_{023456} \xrightarrow{b} q_{2356} \xrightarrow{\lambda^*} q_{23456}$
q1	$q_1 \xrightarrow{\lambda^*} q_{1246} \xrightarrow{a} q_{36} \xrightarrow{\lambda^*} q_{23456}$	$q_1 \xrightarrow{\lambda^*} q_{1246} \xrightarrow{b} q_{56} \xrightarrow{\lambda^*} q_{2456}$
q2 in F	$q_2 \stackrel{\lambda^*}{ ightarrow} q_{246} \stackrel{a}{ ightarrow} q_{36} \stackrel{\lambda^*}{ ightarrow} q_{23456}$	$q_2 \xrightarrow{\lambda^*} q_{246} \xrightarrow{b} q_{56} \xrightarrow{\lambda^*} q_{2456}$
q3	$q_3 \xrightarrow{\lambda^*} q_{23456} \xrightarrow{a} q_{36} \xrightarrow{\lambda^*} q_{23456}$	$q_3 \xrightarrow{\lambda^*} q_{23456} \xrightarrow{b} q_{2356} \xrightarrow{\lambda^*} q_{23456}$
q4	$q_4 \overset{\lambda^*}{ o} q_{46} \overset{a}{ o} q_6 \overset{\lambda^*}{ o} q_6$	$q_4 \stackrel{\lambda^*}{ ightarrow} q_{46} \stackrel{b}{ ightarrow} q_{56} \stackrel{\lambda^*}{ ightarrow} q_{2456}$
q 5	$q_5 \xrightarrow{\lambda^*} q_{2456} \xrightarrow{a} q_{36} \xrightarrow{\lambda^*} q_{23456}$	$q_5 \xrightarrow{\lambda^*} q_{2456} \xrightarrow{b} q_{256} \xrightarrow{\lambda^*} q_{2456}$
q6 in F	$q_6 \xrightarrow{\lambda^*} q_6 \xrightarrow{a} \emptyset \xrightarrow{\lambda^*} \emptyset$	$q_6 \xrightarrow{\lambda^*} q_6 \xrightarrow{b} q_6 \xrightarrow{\lambda^*} q_6$

δ_AFN	а	b	
q0 init, in F	$q_{0123456} = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$	$q_{23456} = \{q_2, q_3, q_4, q_5, q_6\}$	
q1 in F	$q_{23456} = \{q_2, q_3, q_4, q_5, q_6\}$	$q_{2456} = \{q_2, q_4, q_5, q_6\}$	
q2 in F	$q_{23456} = \{q_2, q_3, q_4, q_5, q_6\}$	$q_{2456} = \{q_2, q_4, q_5, q_6\}$	
q3 in F	$q_{23456} = \{q_2, q_3, q_4, q_5, q_6\}$	$q_{23456} = \{q_2, q_3, q_4, q_5, q_6\}$	
q4 in F	$\{q_6\}$	$q_{2456} = \{q_2, q_4, q_5, q_6\}$	
q5 in F	$q_{23456} = \{q_2, q_3, q_4, q_5, q_6\}$	$q_{2456} = \{q_2, q_4, q_5, q_6\}$	
q6 in F	Ø	$\{q_6\}$	

δ_AFD	а	b
< q 0> = q ₀₂₃₄₅₆ init, in F	q 0123456	Q 23456
q ₀₁₂₃₄₅₆ in F	q 0123456	Q 23456
q 23456 in F	Q 23456	Q 23456

Am obținut un AFD echivalent cu automatele AFN și AFN- λ de mai sus. *Ce limbaj recunoaște acest AFD?*

Desenați câte un AFN și AFD pentru limbajele următoare.

$$L3 = \{waaa \mid w \in \{a, b\}^*\}$$

$$L4 = \{xababy \mid x, y \in \{a, b\}^*\}$$

(©MN 2023, FMI – UNIBUC)

