Workshop Testing and Formal Methods, Week 4

This workshop is about working with sets and relations. Sets and lists are treated in chapter 4 of "The Haskell Road". Ordered sets of pairs (HR, 4.5) are the basic ingredients of relations. Relations are treated in chapter 5 of "The Haskell Road".

If the following exercises are difficult for you, you should study the relevant material (again).

Question 1 Consider the following relations on the natural numbers. Check their properties. The *successor* relation on \mathbb{N} is the relation given by $\{(n,m) \mid n+1=m\}$. The divisor relation on \mathbb{N} is $\{(n,m) \mid n \text{ divides } m\}$. The *coprime* relation C on \mathbb{N} is given by $nCm :\equiv GCD(n,m) = 1$, i.e., the only factor of n that divides m is 1, and vice versa.

	<	\leq	successor	divisor	coprime
irreflexive					
reflexive					
asymmetric					
antisymmetric					
symmetric					
transitive					
linear					

Question 2 Consider the relation

$$R = \{(0,2), (0,3), (1,0), (1,3), (2,0), (2,3)\}$$

on the set $A = \{0, 1, 2, 3, 4\}.$

- 1. Determine R^2 , R^3 and R^4 .
- 2. Give a relation S on A such that $R \cup (S \circ R) = S$.

Question 3 The transitive closure of a relation R is by definition the smallest transitive relation S such that $R \subseteq S$. Notation: R^+

Consider again the relation

$$R = \{(0,2), (0,3), (1,0), (1,3), (2,0), (2,3)\}$$

on the set $A = \{0, 1, 2, 3, 4\}$. What is the transitive closure of R?

Question 4 A binary relation R is transitive iff $R \circ R \subseteq R$. You should check this! Next, give an example of a transitive relation R for which $R \circ R = R$ is false. **Question 5** The reflexive transitive closure of a relation R is by definition the smallest transitive and reflexive relation S such that $R \subseteq S$. Notation: R^* .

Give the reflexive transitive closure of the following relation:

$$R = \{(n, n+1) \mid n \in \mathbb{N}\}.$$

Question 6 The inverse of a relation R is the relation $\{(y,x) \mid (x,y) \in R\}$. Notation R^{-1} or R^{\sim} .

- 1. if S is the successor relation on the natural numbers, what is S * ?
- 2. if S is the successor relation on the natural numbers, what is $S \cup S$?
- 3. if S is the successor relation on the natural numbers, what is $(S \cup S)^*$?

Question 7 Suppose a relation R satisfies $R \subseteq R$.

- 1. Does it follow from this that R is reflexive?
- 2. Does it follow from this that R is symmetric?
- 3. Does it follow from this that R is transitive?

Question 8

- 1. Is $R \cup R^{\check{}}$ symmetric for all relations R? Give a counterexample if your answer is negative.
- 2. Is $R^* \cup R^{**}$ symmetric for all relations R? Give a counterexample if your answer is negative.
- 3. Is $R^* \cup R^{**}$ transitive for all relations R? Give a counterexample if your answer is negative.
- 4. Is $(R \cup R)^*$ an equivalence relation (reflexive, transitive and symmetric) for all relations R?