

#### Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék



#### Mesterséges Intelligencia - MI

Ajánló rendszerek

Hullám Gábor – Pataki Béla





### Ajánló rendszerek – hétköznapi példák Google











- •Legyen j∈ M(i) azon oldalak halmaza, mely tartalmaz linket i-re
- L(j) az adott j. oldal kimenő linkjeinek a száma
- A "d" legyen egy csillapítási tényező
- Az összes oldal száma legyen "N"
- Így az i. oldal PageRankje:

$$ext{PageRank}(i) = rac{1-d}{N} + d\sum_{j \in M(i)} rac{ ext{PageRank}(j)}{L(j)}$$

#### Ajánló rendszerek – hétköznapi példák AMAZON



#### Ajánló rendszerek – hétköznapi példák Youtube



#### Ajánló rendszerek – hétköznapi példák STEAM





- Kitűzött díj: I'000'000 \$
- ► Feltétel: Legyen 10%-kal jobb, mint a NetFlix saját rendszere (CineMatch RMSE: 0.95)
- ▶ Ajánlások: I-5 \*, I7'000 film
- Nyertes: UV dekompozíciós algoritmus
  - Michael Harris, Jeffrey Wang, and David Kamm, 2009
  - Végső változat: több algoritmus együttese

#### Miért szükségesek az ajánló rendszerek?

- A fizikai valóságban létező (offline) kereskedelmi egységek, boltok eleve egy szűrt kínálatot tárnak a vásárlók elé
  - Korlátos mennyiségű árut képesek bemutatni
  - Népszerű vagy várhatóan népszerű termékeket ajánl
    - Kritikusok/szakértők véleménye alapján
    - Korábbi tapasztalatok alapján



#### Miért szükségesek az ajánló rendszerek?

- Online térben létező kereskedelmi egységeknél nincs ilyen korlát
  - 'Tetszőleges' mennyiségű árut képesek bemutatni
- Van viszont egy másik korlát:
  - A felhasználó korlátos mennyiségű árut képes átlátni



# Ajánlási feladat

#### Adott:

- U
- p: U→ Su
- ightharpoonup c:  $I \rightarrow Si$
- f:  $U \times I \rightarrow R$

- felhasználók (users),
- termékek (items),
- felhasználói profilok
- termék leírások
- preferencia (rating) mátrix

# Lényeges: nagy mértékű a hiányzó elemek száma R-ben!



Felhasználó

|       | Α | В | С | D |
|-------|---|---|---|---|
| Userl | 5 |   | 3 | ı |
| User2 |   | 4 |   |   |
| User3 |   |   | 2 |   |
| User4 | 2 |   |   | 5 |

Termék

# Ajánlási feladat

#### Termék

Felhasználó

#### Cél:

Határozzuk meg azt az  $f^{\wedge}: U \times I \rightarrow R$  leképezést,

- ami a legjobban közelíti f-et, és
- teljesen definiált a teljes U×I téren

# Ajánló rendszer – virtuális közösség

- Virtuális közösség: Olyan emberek egy csoportja, mely
  - személyre szabott információkat oszt meg / vesz igénybe járulékos kommunikációs költségek nélkül
  - képesek egymást befolyásolni valós interakció nélkül

W. Hill et al.: "Recommending And Evaluating Choices In A Virtual Community Of Use.", Bellcore; CHI 1995

- Az ajánlások (legalább részben) emberektől származnak
- Az ajánlás mellé mellékelni kellene egy bizonyossági mértéket
- Nem csak egyedi felhasználók számára, hanem felhasználók csoportjai számára is legyen képes ajánlatot adni

# Ajánló rendszerek – további szempontok

- Altalában nincs szükség az összes hiányzó elem jóslására
- Nem kell az összes terméket rangsorolni egy felhasználó szempontjából, elég ha egy kellően nagy eredményhalmazt kap eredményül
- Nem kell megadni a felhasználónak az összes az magas rangú találatot

#### Termék

Felhasználó

|       | A | В | C | D |
|-------|---|---|---|---|
| UserI | 5 |   | 3 | 1 |
| User2 |   | 4 |   |   |
| User3 |   |   | 2 |   |
| User4 | 2 |   |   | 5 |

#### Honnan származik az értékelés?

- Felhasználók explicit értékelései alapján
  - ▶ Termékek értékelése (1-5\*), vélemények, kedvelések (0/1)
  - Sokan megtagadják az értékelést
  - Torzíthat, ezért normalizációra lehet szükség (átlagos értékeléssel)
- Felhasználók viselkedése alapján
  - Milyen termékeket vásárolt?
  - Milyen termékeket nézett meg?
  - Hol időzött sokáig?

# Ajánló rendszerek csoportosítása

#### Felhasznált információ alapján:

- Tartalom alapú (content-based) módszerek: a felhasználó korábbi értékelései alapján
- Kollaboratív szűrés (collaborative filtering): az ajánlás inputjához hasonló adatok is felhasználásra kerülnek
  - user-user: a felhasználóhoz hasonló felhasználók szavazatainak felhasználásával
  - item-item: a cél termékhez hasonló termékek értékelései használatával
- Hibrid módszerek: az előzőek együttes alkalmazása

# Ajánló rendszerek csoportosítása

#### Megközelítés alapján:

- memória alapú módszerek
  - hasonlósági metrikák
- dimenzió redukciós módszerek
  - mátrix faktorizáció
- gépi tanulás alapú módszerek
  - ajánló rendszer, mint osztályozási feladat
- valószínűségi modell alapú megközelítések

# Ajánló rendszerek – profilok készítése

#### Tartalom alapú rendszerek

- Termék profilok
  - Termék tulajdonságok
  - Tartalom alapú hasonlósági metrikák

#### Tartalom alapú kollaboratív szűrés

- Felhasználói profilok
  - Kedvelt termékek
  - Viselkedési mutatók
- Felhasználó és/vagy termék klaszterezés
- Felhasználók modellezése
  - Osztályozás

#### User alapú CF BellCore: MovieRecommender

- A résztvevők emailben kaptak egy 500 filmet tartalmazó listát (250 random, 250 populáris) értékelés céljából (I-I0 közötti skálán)
  - Csak egy részhalmazt kell értékelniük
- Az új résztvevő U\* beküldi az értékelését
- A keretrendszer összehasonlítja U\* értékelését más (random) felhasználókéval
- A leghasonlóbb felhasználók értékelései alapján a nem értékelt filmek is értékelést kapnak
  - Empirical Analysis of Predictive Algorithms for Collaborative Filtering Breese, Heckerman, Kadie, UAI98
- A keretrendszer visszaküld egy emailt az új ajánlásokkal

#### BellCore: MovieRecommender

- Kiértékelés
  - Minden felhasználó értékeléseinek 10%-a legyen a teszthalmaz része
  - Vizsgáljuk meg a prediktált értékelések és a valódi értékelések közötti korrelációt

# Memória alapú CF

- $v_{i,j} = i$  felhasználó értékelése (szavazata) j termékről
- I<sub>i</sub> = mindazon termékek, melyekről i felhasználó értékelést adott
- Átlagos értékelés i felhasználónál:  $\overline{v}_i = \frac{1}{|I_i|} \sum_{i \in I_i} v_{i,j}$
- Prediktált értékelés a "aktív felhasználóra" egy súlyozott összeg formájában áll elő

$$p_{a,j} = \overline{v}_a + \kappa \sum_{i=1}^n w(a,i)(v_{i,j} - \overline{v}_i)$$
 $n$  hasonló felhasználó súlya

Normalizációs tényező

#### Memória alapú CF – hasonlóság metrikák

K- legközelebbi szomszéd (k-nearest neighbor)

$$w(a,i) = \begin{cases} 1 & \text{if } i \in \text{neighbors}(a) \\ 0 & \text{else} \end{cases}$$

Pearson korrelációs koefficiens

$$w(a,i) = \frac{\sum_{j} (v_{a,j} - \overline{v}_a)(v_{i,j} - \overline{v}_i)}{\sqrt{\sum_{j} (v_{a,j} - \overline{v}_a)^2 \sum_{j} (v_{i,j} - \overline{v}_i)^2}}$$

Koszinusz távolság:

$$w(a,i) = \sum_{j} \frac{v_{a,j}}{\sqrt{\sum_{k \in I_a} v_{a,k}^2}} \frac{v_{i,j}}{\sqrt{\sum_{k \in I_i} v_{i,k}^2}}$$

#### Tartalom alapú ajánló rendszerek LIBRA Book Recommender

• CF módszerek felteszik, hogy egyes felhasználók preferenciái általában egyeznek más felhasználók preferenciáival.

• Azokat a termékeket, melyeket kevesen értékeltek, jellemzően nem javasolja a CF.

- Egyes könyveket kevesen használnak és így kevesen értékelnek
- A CF jól ismert címeket ajánl homogenitást feltételezve az ízlésben
- Mindezek miatt szükség van egy tartalom alapú megközelítésre

Content-Based Book Recommending Using Learning for Text Categorization. Raymond J. Mooney, Loriene Roy, Univ Texas/Austin; DL-2000

# LIBRA Book Recommender - jellemzők

- Adatbázis szöveges leírással + meta-információ a könyvekről (pl.: Amazon.com-ról)
  - cím, szerzők, kivonat, könyvkritika, vásárlói hozzászólások, kapcsolódó szerzők, kapcsolódó címek és kulcsszavak
- Felhasználó I-10 között értékeli a tanítás alapját képző könyveket
- A rendszer egy (naiv Bayes-háló alapú) modellt készít a felhasználóról
  - ▶ A modell alapján prediktálható: P(user rating>5|book)
- A rendszer informatív jegyek (tulajdonságok) segítségével magyarázatot ad az értékelésekre

#### Különbségek a MovieRecommender-hez képest:

- Az ajánlás az értékelt terméken alapul és nem más felhasználók választásain
- A memória alapú módszerekkel összehasonlítva a LIBRA konkrét modellt készít a felhasználóról (különböző szavakhoz rendelt súlyok formájában)

# LIBRA Book Recommender - példa

The Fabric of Reality:

The Science of Parallel Universes- And Its Implications by David Deutsch recommended because:

| Slot        | Word         | Strength |
|-------------|--------------|----------|
| DESCRIPTION | MULTIVERSE   | 75.12    |
| DESCRIPTION | UNIVERSES    | 25.08    |
| DESCRIPTION | REALITY      | 22.96    |
| DESCRIPTION | UNIVERSE     | 15.55    |
| DESCRIPTION | QUANTUM      | 14.54    |
| DESCRIPTION | INTELLECT    | 13.86    |
| DESCRIPTION | OKAY         | 13.75    |
| DESCRIPTION | RESERVATIONS | 11.56    |

The word UNIVERSES is positive due to your ratings:

| Title                                         | Rating | Count |
|-----------------------------------------------|--------|-------|
| The Life of the Cosmos                        | 10     | 15    |
| Before the Beginning: Our Universe and Others | 8      | 7     |
| Unveiling the Edge of Time                    | 10     | 3     |
| Black Holes : A Traveler's Guide              | 9      | 3     |
| The Inflationary Universe                     | 9      | 2     |

# Hibrid ajánló rendszerek Tartalom + CF

| Műfaji besorolás  Felhasználói profil |       | Airplane | Matrix | Room with a View | ••• | Hidalgo |   |
|---------------------------------------|-------|----------|--------|------------------|-----|---------|---|
|                                       |       | comedy   | action | romance          | ••• | action  |   |
|                                       | Joe   | 27,M,70k | 9      | 7                | 2   |         | 7 |
|                                       | Carol | 53,F,20k | 8      |                  | 9   |         |   |
|                                       | •••   |          |        |                  |     |         |   |
|                                       | Kumar | 25,M,22k | 9      | 3                |     |         | 6 |
|                                       | $U_a$ | 48,M,81k | 4      | 7                | ?   | ?       | ? |

# Megközelítés osztályozási feladatként

Osztályozási feladat: (felhasználó,film) párok értékelésének leképzése {likes,dislikes} címkékre

Tanító adat: ismert kedvelések (likes/dislikes)

Teszt adat: aktív felhasználók

Jegyek (features): (felhasználó,film) párok tulajdonságai

| asznaio,iim) |          | Airplane | Matrix | Room with a View | ••• | Hidalgo |
|--------------|----------|----------|--------|------------------|-----|---------|
|              |          | comedy   | action | romance          | ••• | action  |
| Joe          | 27,M,70k | 1        | 1      | 0                |     | 1       |
| Carol        | 53,F,20k | 1        |        | 1                |     | 0       |
|              |          |          |        |                  |     |         |
| Kumar        | 25,M,22k | 1        | 0      | 0                |     | 1       |
| $U_a$        | 48,M,81k | 0        | 11     | ??               | ??  | ?       |

# Hibrid ajánló rendszerek

genre={romance}, age=48, sex=male, income=81k, usersWhoLikedMovie={Carol}, moviesLikedByUser={Matrix,Airplane}, ...

genre={action}, age=48, sex=male, income=81k, usersWhoLikedMovie = {Joe,Kumar}, moviesLikedByUser={Matrix,Airplane},...

|       |          | Airplane | Matrix | Room with a View | ••• | Hidalgo |
|-------|----------|----------|--------|------------------|-----|---------|
|       |          | comedy   | action | romance          | ••• | action  |
| Joe   | 27,M,70k | 1        | 1      | 0                |     | 1       |
| Carol | 53,F,20k | 1        |        | 1                |     | 0       |
|       |          |          |        |                  |     |         |
| Kumar | 25,M,22k | 1        | 0      | 0                |     | 1       |
| $U_a$ | 48,M,81k | 1        | 11     | ??               | ??  | ?       |

#### Osztályozási szabályok tanulása

genre={romance}, age=48, sex=male, income=81k, usersWhoLikedMovie={Carol}, moviesLikedByUser={Matrix,Airplane}, ...

genre={action}, age=48, sex=male, income=81k, usersWhoLikedMovie = {Joe,Kumar}, moviesLikedByUser={Matrix,Airplane},...

- Osztályozás megvalósítása: szabálytanulással (RIPPER#)
  - If NakedGun33/13 in moviesLikedByUser and Joe in usersWhoLikedMovie and genre=comedy then predict likes(U,M)
  - If age>12 and age<17 and HolyGrail in moviesLikedByUser and director=MelBrooks then predict likes(U,M)
  - If Ishtar in moviesLikedByUser then predict likes(U,M)
- A memória alapú módszerekkel szemben a szabálytanuló algoritmus modellt készít: hogyan kapcsolódnak a felhasználó preferenciái a termékekhez és más felhasználók preferenciáihoz



# Ajánló rendszerek – Mátrix faktorizáció

- Preferencia információ sok felhasználótól
- Feltételezés: akik hasonló dolgokat kedveltek a múltban, a jövőben is így tesznek majd
- Vannak elemek, melyekről van preferencia megadva
- Sok esetben nincs megadva



https://www.mapr.com/blog/apache-spark-machine-learning-tutorial

# Ajánló rendszerek – Mátrix faktorizáció

- Kérdés: Hogyan döntenének a felhasználók a még nem értékelt elemekről?
- Ez kellene ahhoz, hogy ez alapján másoknak ajánlásokat adhassunk
- Mátrix alapú reprezentáció (ez sokszor hiányos)
- Cél: mátrix "kitöltése"
- Módszer: mátrix faktorizáció

|    | I1 | I2 | <b>I3</b> | <b>I4</b> |
|----|----|----|-----------|-----------|
| U1 | 4  | 2  | -         | 2         |
| U2 | 4  | 1  | -         | -         |
| U3 | -  | 3  | 5         | 2         |
| U4 | 2  | 5  | -         | 3         |
| U5 | -  | -  | 1         | 1         |

#### Mátrix faktorizáció alkalmazása

- Feltételezés a háttérben léteznek nem ismert jegyek K (features)
- jegyek alapján értékelnek a felhasználók: U
- jegyek száma jóval kisebb a felhasználókénál : K << U</p>
- elemek (pl.: filmek): I
- Preferencia információ (rating mátrix): R

|    | I1 | I2 | I3 | <b>I</b> 4 |
|----|----|----|----|------------|
| U1 | 4  | 2  | -  | 2          |
| U2 | 4  | 1  | -  | -          |
| U3 | -  | 3  | 5  | 2          |
| U4 | 2  | 5  | -  | 3          |
| U5 | -  | -  | 1  | 1          |

A cél megtalálni 2 mátrixot:

- P = U x K ~ felhasználók és jegyek közötti asszociáció
- **Q** = **I** x **K** ~ elemek és jegyek közötti asszociáció melyekre igaz, hogy:

$$P \times Q = R^{\prime}$$
 (R közelítése)

Az u<sub>i</sub> felhasználó által a i<sub>j</sub> elemre adott rating : r<sub>i,j</sub>

$$\hat{r}_{ij} = p_i^T q_j = \sum_{k=1}^k p_{ik} q_{kj}$$

P és Q "megtalálásához" két (valamilyen módon inicializált) mátrix szorzatát kell összevetni az eredeti R mátrixszal és törekedni iteratívan az eltérés csökkenésére.

$$e_{ij}^2 = (r_{ij} - \hat{r}_{ij})^2 = (r_{ij} - \sum_{k=1}^K p_{ik} q_{kj})^2$$

Gradiens számítás p<sub>ik</sub> és q<sub>ki</sub> módosításához

$$\frac{\partial}{\partial p_{ik}} e_{ij}^2 = -2(r_{ij} - \hat{r}_{ij})(q_{kj}) = -2e_{ij}q_{kj}$$

$$\frac{\partial}{\partial q_{ik}} e_{ij}^2 = -2(r_{ij} - \hat{r}_{ij})(p_{ik}) = -2e_{ij}p_{ik}$$

p<sub>ik</sub> és q<sub>kj</sub> módosítása a gradiens alapján

$$p'_{ik} = p_{ik} + \alpha \frac{\partial}{\partial p_{ik}} e_{ij}^2 = p_{ik} + 2\alpha e_{ij} q_{kj}$$
$$q'_{kj} = q_{kj} + \alpha \frac{\partial}{\partial q_{kj}} e_{ij}^2 = q_{kj} + 2\alpha e_{ij} p_{ik}$$

Leállni akkor célszerű, amikor a teljes hiba (E) minimális

$$E = \sum_{(u_i, i_j, r_{ij}) \in T} e_{ij} = \sum_{(u_i, i_j, r_{ij}) \in T} (r_{ij} - \sum_{k=1}^{K} p_{ik} q_{kj})^2$$



- ► Találtunk egy olyan P és Q mátrixot, ami jól közelíti R ismert részeit
- A nem ismert részeire pedig ad egy becslést
- lgy már **R** használható ajánláshoz

