VARIEDADES LINEALES

Extendamos el estudio de los vectores al espacio n-dimensional.

Se llama variedad lineal de ${\bf R^n}$, de dimensión ${\bf m}<{\bf n}$, a un conjunto de puntos X de ${\bf R^n}$, del tipo:

$$X = P + t_1 A_1 + t_2 A_2 + t_3 A_3 + \dots t_m A_m \longrightarrow m < n$$

- A_1, A_2, \dots, A_m son vectores no nulos de \mathbb{R}^n , llamados vectores directores de la variedad lineal; tales que ninguno de ellos es combinación lineal de los demás.
- P es un punto de R^n
- $t_1, t_2, ..., t_m$ son números reales(parámetros)

Si la dimensión m=1, la Variedad Lineal es una recta de $R^n \longrightarrow X=P+t_1A_1$

Ejemplo :Una recta de \mathbb{R}^4 que pasa por el punto P=(1;2;3;4) en la dirección de vector A=(5;6;7;8):

$$X = (1; 2; 3; 4) + t (5; 6; 7; 8)$$

$$x=1+5t$$

$$y = 2 + 6t$$

$$z = 3 + 7t$$

$$w = 4 + 8t$$

Ecuaciones paramétricas

Lo que antes escribías así: X=P+uA+vB

Si la dimensión m=2 la Variedad Lineal es un plano de $R^n \longrightarrow X=P+t_1A_1+t_2A_2$

Un plano de R^4 que pasa por el punto P = (1;2;3;4) y tiene los vectores directores Ejemplo: A = (5;6;7;8), B = (9;10;11;12)

$$x=1+5u+9v$$

 $y=2+6u+10v$ Ecuaciones paramétricas
 $z=3+7u+11v$
 $w=4+8u+12v$

Si la dimensión es m = n-1, la Variedad Lineal se llama HIPERPLANO DE \mathbb{R}^n

O sea los hiperplanos de \mathbb{R}^n son Variedades Lineales de dimensión n-1

Ejemplo: El plano de
$$\mathbb{R}^3$$
: $X = u(1,2,3) + v(0,1,0)$ es un Hiperplano de \mathbb{R}^3

$$m=n-1 \rightarrow m=3-1$$

$$m=2$$

2 vectores no paralelos

Ejemplo:
$$X = t_1(1,0,0,-1) + t_2(0,1,0,0) + t_3(0,0,0,1)$$
 Hiperplano de \mathbb{R}^4 de dimensión 3.

- Los hiperplanos de \mathbb{R}^n son las únicas variedades lineales de \mathbb{R}^n que pueden representarse mediante una única ecuación cartesiana.
- Los planos de \mathbb{R}^3 pueden representarse mediante una única ecuación cartesiana porque los planos de \mathbb{R}^3 son también hiperplanos de \mathbb{R}^3 .
- Las rectas de \mathbb{R}^2 también son hiperplanos de \mathbb{R}^2 y como ya sabemos se pueden representarse mediante una única ecuación cartesiana.

Ejemplo:
$$X = t(1,2)$$

$$m = \mathbf{n} - 1 \rightarrow m = 2 - 1$$

$$m = 1$$

Recta de R^2 es un **Hiperplano de R^2** de dimensión m = 1 (un vector director no nulo)

Para hallar la ecuación cartesiana del hiperplano de R⁴ que pasa por el punto P = (1,-1,2,-3) y es ortogonal a la recta X = (2,0,4,1) + t(3,4,5,6), el vector normal N del hiperplano debe ser **paralelo** al **vector director de la recta** (leer página 147 del texto)

$$ax_1 + bx_2 + cx_3 + dx_4 + k = 0$$
Ecuación cartesiana del hiperplano de R^4

$$3x_1 + 4x_2 + 5x_3 + 6x_4 + k = 0$$
 $3.1+4.(-1)+5.2+6.(-3)+k=0 \longrightarrow K=9$

$$3x_1 + 4x_2 + 5x_3 + 6x_4 + 9 = 0$$

$$3x_1 + 4x_2 + 5x_3 + 6x_4 = -9$$

Para escribir la ecuación cartesiana del hiperplano de R⁵ que pasa por el punto P = (2;1;0;4;-1) y es paralelo al hiperplano $x_1 + x_2 - x_3 + 3x_4 - 5x_5 = 1$, los **vectores normales** de ambos hiperplanos deben ser **paralelos**: $x_1 + x_2 - x_3 + 3x_4 - 5x_5 + k = 0$

reemplazamos por el punto P: 2+1-0+3.4-5.(-1)+k=0, de donde despejando resulta k=-20

$$x_1 + x_2 - x_3 + 3x_4 - 5x_5 = 20$$