```
In [1]: import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         %matplotlib inline
In [2]: | df = pd.read csv('StudentsPerformance.csv')
In [3]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1000 entries, 0 to 999
         Data columns (total 8 columns):
                                             Non-Null Count Dtype
              Column
              ____
          0
                                              1000 non-null
                                                               object
              gender
                                                               object
          1
              race/ethnicity
                                             1000 non-null
          2
              parental level of education
                                             1000 non-null
                                                               object
          3
              lunch
                                             1000 non-null
                                                               object
          4
              test preparation course
                                             1000 non-null
                                                               object
          5
              math score
                                             1000 non-null
                                                               int64
          6
              reading score
                                             1000 non-null
                                                               int64
          7
              writing score
                                             1000 non-null
                                                               int64
         dtypes: int64(3), object(5)
         memory usage: 62.6+ KB
In [4]: |df.describe()
Out[4]:
                math score reading score writing score
          count
                1000.00000
                            1000.000000
                                        1000.000000
          mean
                  66.08900
                              69.169000
                                          68.054000
            std
                  15.16308
                              14.600192
                                          15.195657
                   0.00000
                              17.000000
                                          10.000000
           min
           25%
                  57.00000
                              59.000000
                                          57.750000
           50%
                  66.00000
                              70.000000
                                          69.000000
           75%
                  77.00000
                              79.000000
                                          79.000000
                 100.00000
                             100.000000
                                         100.000000
           max
In [5]: df.isnull().sum()
Out[5]: gender
                                          0
         race/ethnicity
                                          0
         parental level of education
                                          0
         lunch
                                          0
                                          0
         test preparation course
         math score
                                          0
         reading score
                                          0
         writing score
                                          0
```

dtype: int64

```
In [5]: sns.displot(df, x='math score')
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x221f1b109a0>

In [6]: sns.displot(df, x='gender')

Out[6]: <seaborn.axisgrid.FacetGrid at 0x221f3cbdd60>


```
In [7]: sns.displot(df, x='race/ethnicity')
```

Out[7]: <seaborn.axisgrid.FacetGrid at 0x221f3cf8c70>

Out[8]: <seaborn.axisgrid.FacetGrid at 0x221f3d12460>


```
In [9]: sns.displot(df, x='test preparation course')
```

Out[9]: <seaborn.axisgrid.FacetGrid at 0x221f3d78d60>

In [10]: sns.displot(df, x='reading score')

Out[10]: <seaborn.axisgrid.FacetGrid at 0x221f3d78f70>


```
In [11]: sns.displot(df, x='writing score')
```

Out[11]: <seaborn.axisgrid.FacetGrid at 0x221f3e25520>

In [18]: df_numerical = pd.DataFrame(scaled_numerical, columns = ['math score','writing sc

In [19]: df_numerical

Out[19]:

	math score	writing score	reading score
0	0.390024	0.391492	0.193999
1	0.192076	1.313269	1.427476
2	1.577711	1.642475	1.770109
3	-1.259543	-1.583744	-0.833899
4	0.653954	0.457333	0.605158
•••			
995	1.445746	1.774157	2.044215
996	-0.269803	-0.859491	-0.970952
997	-0.467751	-0.201079	0.125472
998	0.126093	0.589015	0.605158
999	0.719937	1.181586	1.153370

1000 rows × 3 columns

```
In [20]: df_categorical = pd.get_dummies(df_categorical, drop_first=True)
```

In [21]: df_categorical

Out[21]:

	gender_male	lunch_standard	race/ethnicity_group B	race/ethnicity_group C	race/ethnicity_group D
0	0	1	1	0	0
1	0	1	0	1	0
2	0	1	1	0	0
3	1	0	0	0	0
4	1	1	0	1	0
995	0	1	0	0	0
996	1	0	0	1	0
997	0	0	0	1	0
998	0	1	0	0	1
999	0	0	0	0	1

1000 rows × 12 columns

```
In [22]: df_multreg2 = pd.concat([df_numerical, df_categorical], axis=1, ignore_index=True
In [23]: df_multreg2
```

Out[23]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0.390024	0.391492	0.193999	0	1	1	0	0	0	1	0	0	0	0	1
1	0.192076	1.313269	1.427476	0	1	0	1	0	0	0	0	0	1	0	0
2	1.577711	1.642475	1.770109	0	1	1	0	0	0	0	0	1	0	0	1
3	-1.259543	-1.583744	-0.833899	1	0	0	0	0	0	0	0	0	0	0	1
4	0.653954	0.457333	0.605158	1	1	0	1	0	0	0	0	0	1	0	1
995	1.445746	1.774157	2.044215	0	1	0	0	0	1	0	0	1	0	0	0
996	-0.269803	-0.859491	-0.970952	1	0	0	1	0	0	0	1	0	0	0	1
997	-0.467751	-0.201079	0.125472	0	0	0	1	0	0	0	1	0	0	0	0
998	0.126093	0.589015	0.605158	0	1	0	0	1	0	0	0	0	1	0	0
aga	0 719937	1 181586	1 153370	Ο	Ο	Λ	Ω	1	Ω	Ω	Ο	0	1	Ο	1

1000 rows × 15 columns

In [25]: df_multreg2

Out[25]:

In [32]:

	math score	writing score	reading score	gender_male	lunch_standard	race/ethnicity_group B	race/ethnic		
0	0.390024	0.391492	0.193999	0	1	1			
1	0.192076	1.313269	1.427476	0	1	0			
2	1.577711	1.642475	1.770109	0	1	1			
3	-1.259543	-1.583744	-0.833899	1	0	0			
4	0.653954	0.457333	0.605158	1	1	0			
995	1.445746	1.774157	2.044215	0	1	0			
996	-0.269803	-0.859491	-0.970952	1	0	0			
997	-0.467751	-0.201079	0.125472	0	0	0			
998	0.126093	0.589015	0.605158	0	1	0			
999	0.719937	1.181586	1.153370	0	0	0			
1000	rows × 15	columns					•		
df_m	ultreg2 =	df_multr	reg2.renam	ne(columns =	: {"race/ethni	city_group B":"Ra	ce_B"})		
<pre>df_multreg2 = df_multreg2.rename(columns = {"math score":"math_score"})</pre>									
<pre>df_multreg2 = df_multreg2.rename(columns = {"writing score":"writing_score"})</pre>									
df_m	ultreg2 =	df_multr	eg2.renam	ne(columns =	:{"reading sc	ore":"reading_sco	re"})		
df_m	ultreg2 =	df_multr	reg2.renam	ne(columns =	{"race/ethni	city_group C":"Ra	ce_C"})		

```
In [49]: df_multreg2 = df_multreg2.rename(columns = {"math score":"math_score"})
In [50]: df_multreg2 = df_multreg2.rename(columns = {"writing score":"writing_score"})
In [51]: df_multreg2 = df_multreg2.rename(columns = {"reading score":"reading_score"})
In [52]: df_multreg2 = df_multreg2.rename(columns = {"race/ethnicity_group C":"Race_C"})
In [53]: df_multreg2 = df_multreg2.rename(columns = {"race/ethnicity_group D":"Race_D"})
In [54]: df_multreg2 = df_multreg2.rename(columns = {"race/ethnicity_group E":"Race_E"})
In [55]: df_multreg2 = df_multreg2.rename(columns = {"race/ethnicity_group B":"Race_B"})
In [56]: df_multreg2 = df_multreg2.rename(columns = {"parental level of education_bachelor of the defunition of education of educa
```

```
In [60]: df_multreg2 = df_multreg2.rename(columns = {"parental level of education_some hig
In [61]: df_multreg2
Out[61]:
```

	math_score	writing_score	reading_score	gender_male	lunch_standard	Race_B	Race_C	Ri
0	0.390024	0.391492	0.193999	0	1	1	0	
1	0.192076	1.313269	1.427476	0	1	0	1	
2	1.577711	1.642475	1.770109	0	1	1	0	
3	-1.259543	-1.583744	-0.833899	1	0	0	0	
4	0.653954	0.457333	0.605158	1	1	0	1	
995	1.445746	1.774157	2.044215	0	1	0	0	
996	-0.269803	-0.859491	-0.970952	1	0	0	1	
997	-0.467751	-0.201079	0.125472	0	0	0	1	
998	0.126093	0.589015	0.605158	0	1	0	0	
999	0.719937	1.181586	1.153370	0	0	0	0	

1000 rows × 16 columns

In [62]: import statsmodels.api as sm

In [63]: df_multreg2['intercept']=1

```
In [64]: lm = sm.OLS(df_multreg2['math_score'],df_multreg2[['intercept','writing_score','r
results = lm.fit()
results.summary()
```

Out[64]:

OLS Regression Results

Dep. Variable: math_score **R-squared:** 0.877

Model: OLS Adj. R-squared: 0.875

Method: Least Squares F-statistic: 500.3

Date: Mon, 31 Jan 2022 Prob (F-statistic): 0.00

Time: 19:15:19 Log-Likelihood: -372.34

No. Observations: 1000 AIC: 774.7

Df Residuals: 985 **BIC:** 848.3

Df Model: 14

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
intercept	-0.7735	0.051	-15.277	0.000	-0.873	-0.674
writing_score	0.7031	0.044	16.120	0.000	0.617	0.789
reading_score	0.2537	0.040	6.266	0.000	0.174	0.333
gender_male	0.8736	0.025	35.599	0.000	0.825	0.922
lunch_standard	0.2120	0.025	8.585	0.000	0.164	0.260
Race_B	0.0551	0.046	1.207	0.228	-0.035	0.145
Race_C	0.0118	0.043	0.275	0.784	-0.072	0.096
Race_D	0.0065	0.044	0.147	0.883	-0.080	0.093
Race_E	0.3350	0.049	6.888	0.000	0.240	0.430
bachelors	-0.0691	0.041	-1.700	0.089	-0.149	0.011
high school	0.0375	0.035	1.061	0.289	-0.032	0.107
masters	-0.1225	0.052	-2.340	0.019	-0.225	-0.020
some college	0.0264	0.034	0.788	0.431	-0.039	0.092
some_high_school	0.0364	0.036	1.004	0.316	-0.035	0.108
test preparation course_none	0.2311	0.026	8.831	0.000	0.180	0.282

Omnibus: 0.330 Durbin-Watson: 1.986

Prob(Omnibus): 0.848 **Jarque-Bera (JB):** 0.402

Skew: -0.034 **Prob(JB):** 0.818

Kurtosis: 2.930 **Cond. No.** 12.9

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [65]: from patsy import dmatrices
from statsmodels.stats.outliers_influence import variance_inflation_factor
```

```
In [76]: X = df_multreg2[['intercept','writing_score','reading_score','math_score','gender
```

```
In [77]: vif = pd.DataFrame()
vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
vif['Predictor Variables'] = X.columns
```

In [78]: vif.sort_values(by=['VIF'], ascending=False)

Out[78]:

	VIF	Predictor Variables
0	25.332213	intercept
1	19.206435	writing_score
2	13.620604	reading_score
3	8.110733	math_score
7	3.182725	Race_C
8	3.020288	Race_D
4	2.746935	gender_male
6	2.569326	Race_B
9	2.385137	Race_E
12	1.571950	some college
11	1.571663	high school
13	1.547186	some_high_school
10	1.376347	bachelors
14	1.356828	test preparation course_none
15	1.221831	masters
5	1.198670	lunch_standard

Need to look at original model and remove any variables that have a p-value greater than 0.05. When looking at the VIF or variance inflation factor you typically want to remove anything that is over a ten. Following these two guidelines we are going to be taking away Race_C, writing score, reading score, and race d. We will re-run the model with the new set of variables to try and increase our r-squared and lower the p values in the model.

```
In [80]: lm = sm.OLS(df_multreg2['math_score'],df_multreg2[['intercept','gender_male','lur
results = lm.fit()
results.summary()
```

Out[80]:

OLS Regression Results

Covariance Type:

Dep. Variable: math score R-squared: 0.245 Model: OLS Adj. R-squared: 0.237 Method: Least Squares F-statistic: 32.08 Date: Mon, 31 Jan 2022 Prob (F-statistic): 4.32e-54 Time: 19:29:49 Log-Likelihood: -1278.5 No. Observations: 1000 AIC: 2579. **Df Residuals:** 989 BIC: 2633. **Df Model:** 10

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
intercept	-0.3500	0.086	-4.092	0.000	-0.518	-0.182
gender_male	0.3284	0.055	5.924	0.000	0.220	0.437
lunch_standard	0.7210	0.058	12.457	0.000	0.607	0.835
Race_B	-0.0791	0.072	-1.097	0.273	-0.221	0.062
Race_E	0.4534	0.082	5.551	0.000	0.293	0.614
bachelors	0.1239	0.100	1.245	0.214	-0.071	0.319
high school	-0.3225	0.086	-3.749	0.000	-0.491	-0.154
masters	0.2173	0.128	1.694	0.091	-0.035	0.469
some college	-0.0300	0.083	-0.363	0.717	-0.192	0.132
some_high_school	-0.2838	0.088	-3.222	0.001	-0.457	-0.111
preparation course_none	-0.3560	0.058	-6.134	0.000	-0.470	-0.242

 Omnibus:
 9.258
 Durbin-Watson:
 2.051

 Prob(Omnibus):
 0.010
 Jarque-Bera (JB):
 9.443

 Skew:
 -0.232
 Prob(JB):
 0.00890

 Kurtosis:
 2.890
 Cond. No.
 9.27

Notes:

test p

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

As you can see from the results of the model the p values did drop but the r-squared value dropped so significantly that using this reduced model would not be a good idea. To make business decisions I would use the original model with an r-squared of 0.877.

In []: