1.5 The bipolar transistor. Foundations

BJT: Bipolar Junction Transistor

- If we put a small current into one of the terminals, called the base, then the switch is ON:
 - Current may flow between the other two terminals, called the emitter and the collector.
- If no current is put into the base, then the switch is OFF:
 No current flows between the emitter and the collector.

1.5 The bipolar transistor. Foundations

B: Base

C: Collector

E: Emitter

$$I_B + I_C = I_E$$

- Notice that the symbol contains an arrow in the direction of positive current flow (base-to-emitter junction, like in a diode)
- It is also possible to manufacture a PNP transistor. However, pnp transistors are seldom used in digital circuits.

1.6 Output Characteristic Curves

Current I_C as a function of voltage V_{CF} and current I_B

1V

2V

Static Load Line: V_{CE}=V_{CC}-R_C x I_C(//)

$$I_B = (V_{BB} - 0.7) / R_B = 20 \mu A /2 /$$

The quiescent point is determined by the intersection of the transistor output characteristic curve associated with $I_B=20\mu A$ and the load line.

VBE(UN): VBE for 10mA transistor ON (Si:0.7V)

 $I_{R}=10\mu A$

1.7 Regions of operation. Cut-off

$$I_B = 0, I_C = 0, I_E = 0$$

VBB = VBE ~ VBF(ON)

The switch is OFF

1.7 Operating regions. Active

1.7 Regions of operation. Saturation

The switch is fully ON

In active if Jof=) Icf; View, but

Vie has a lower limit: When

Vie Vie Vien (SAT) = 0.2V=> Transist.

Saturated, and Ie doesn't increment more

• I_C can not increase more, the transistor is said to be SATURATED

$$I_C < \beta.I_B$$
; $V_{CE} \approx 0.2V$; being $I_B \ge I_{BminSAT}$

Saturation occurs because the output circuit (V_{CC} and R_C) limits I_C to a maximum value.

BIT summary (NPN)

(Si) VBE(ON)=0.70; VCE(SAT)= 0.20