SJSU SAN JOSÉ STATE UNIVERSITY

Lesson 1 – Classical Ciphers

Yan Chen CS166 Fall 2024

... Previously

Crypto Basics Classical Intro Simple Substitution Other Classicals Next Lesson ... Appendix

yan.chen01@sjsu.edu

- Add [CS166] at the beginning of the subject line
- Everything on Canvas, check it regularly
 - Assignments, announcements, lecture notes, etc.
- In person sessions will be recorded
 - Lecture part only, excluding homework hint
- Office hour on Zoom (Link on Canvas)
 - Hours: Regular: T/Th 13:50 14:50, first come, first serve
 - Or appointment (Link on Canvas)

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

General Info

Grading

Rules & Tips

Course Overview

At least 130 pts in total

- \triangleright Assignments (7 * 3 = 21 pts)
- \rightarrow Midterms (2 * 3 = 6 pts)
- (Mandatory) Final (100 pts) = max(final, sum of midterms)
- Others (3+ pts)
- Grading Scale
 - Raw points, not percentages

Grade	Pts	Grade	Pts	Grade	Pts
Α	≥ 93.00	B minus	80.00 to 82.99	D plus	66.00 to 69.99
A minus	90.00 to 92.99	C plus	76.00 to 79.99	D	63.00 to 65.99
B plus	86.00 to 89.99	С	73.00 to 75.99	D minus	60.00 to 62.99
В	83.00 to 85.99	C minus	70.00 to 72.99	F	≤ 59.99

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

Class protocols

- Passwords only given in class (in person & in recording)
- No sharing course materials
- No late homework question via Email
- NO cheating!
- Effective communication
- Important Dates
 - Sep. 17, Tuesday: Last day to drop without a W grade
 - Dec. 17, Tuesday: Final Exam 14:45 17:00 PT (can pick earlier dates)

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

The Cast of Characters

- Alice (customer) and Bob (system) are the good guys
- Trudy is the attacker
- CIA triad: primary focus
 - Confidentiality: prevent unauthorized reading of information
 - Integrity: detect unauthorized writing of information
 - > Availability: data is available in a timely manner when needed
- 4 topics
 - Crypto, software, access control, protocols
- Think like Trudy, but NOT act like Trudy!

Classical Ciphers

... Previously

Crypto Basics

Classical Intro
Simple Substitution
Other Classicals

Next Lesson ...

Appendix

Introduction

Terminologies

Cipher System

Principle

- Alice and Bob want to communicate (exchange information) secretly
 - Again, Alice & Bob not necessarily human
 - > They don't want other people know the information exchanged
- When the distance between Alice & Bob is large, they have to communicate via a channel (media)
 - > Old school: Pigeons, mails, phone
 - Digital era: network, Internet
- But these channels are not secure...
 - That's why we need "Cryptology"...

... Previously

Crypto Basics

Classical Intro
Simple Substitution
Other Classicals
Next Lesson ...
Appendix

- Cryptography: making "secret codes" (secret message)
 - Note that here "code" does not mean "program"
- Cryptanalysis: breaking "secret codes"
 - Alice & Bob want prevent Trudy from doing that!
- Cryptology: making and breaking "secret codes"
 - Cryptology = Cryptography + Cryptanalysis
- Crypto: a synonym for any of the above and more!
- Cipher system (cryptosystem): a suite of algorithms
 needed to implement a particular security service

Classical Ciphers

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

Introduction

Terminologies

Cipher System

Principle

Cipher system elements

- Plaintext: the original data (in lowercase)(Data can be any form, such as text, audio, video, ...)
- Encryption: convert plaintext to ciphertext
- Ciphertext: the result of encryption (in uppercase)
- Decryption: convert ciphertext back to plaintext
- > Key(s): string(s) for configuring the cipher system

... Previously

Crypto Basics

Classical Intro Simple Substitution Other Classicals Next Lesson ... Appendix

- Key used for encryption and decryption can be different
 - Symmetric cipher system: same key (symmetric key) are used for both encryption and decryption
 - Asymmetric cipher system: different keys are used (public key for encrypt, private key for decrypt)
- Typically, a cipher system consists 3 algorithms
 - One algorithm for key generation
 - One algorithm for encryption
 - One algorithm for decryption

Classical Ciphers

... Previously

Crypto Basics

Classical Intro
Simple Substitution
Other Classicals

Next Lesson ...

Appendix

Introduction Terminologies Cipher System Principle

- Kerckhoffs' principle: the strength of a cryptosystem depends ONLY on the key
 - > Trudy knows the system (algorithm & ciphertext)
 - > Trudy only doesn't know the key (and of course, the plaintext)
- Because experience has shown that ...
 - > Secret algorithms tend to be weak
 - > Secret algorithms never remain secret
 - Better to find weaknesses beforehand
- Cryptographers will not use a cryptosystem until it has been approved by many cryptographers over time

Classical Ciphers

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

... PreviouslyCrypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

- Classical ciphers are dead!
 - We don't use it anymore!
- Then why need to talk about classical ciphers?
 - Some of them represent the features of modern ciphers
 - Roughly speaking, modern ciphers are the enhanced version of the classical ciphers by combining those features
- So, we need to analyze the features of the following classical ciphers, and learn why they are dead
 - Simple substitution
 - Double transposition, one-time pad, codebook

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

 Simple substitution: each letter is substituted with another (one-to-one mapping)

- Simplest: Caesar's cipher shift left by alphabet by 3
 - Used 2,000 years ago, named after Roman emperor Caesar

—— Shift by 3

Plaintext

ip	her	text

á	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	S	t	u	V	W	X	У	Z
	E	F	G	Н	I	J	K	L	M	Ν	O	Р	Q	R	S	Т	U	V	W	X	Y	Z	Α	В	С

- Examples
 - Encrypt "hello" → "KHOOR"
 - Decrypt "ZRUOG" → "world"

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

- A little enhancement: parameterize the key
 - Instead of hard-code the key = 3
 - \triangleright i.e., shift by k for some k \in {1, 2, ..., 25}
 - > And let's call it "parameterized Caesar cipher"
- Example: k = 5

Shift by 5

Plaintext

а	b	С	d	е	f	g	h	i	j	k	I	m	n	0	р	q	r	S	t	u	V	W	X	У	Z
F	G	Н	ı	J	K		М	Z	C	Р	C	R	S	Т	IJ	V	W	X	Υ	7	Α	В	С	D	F

Ciphertext

- ➤ Encrypt "hello" → "MJQQT"
- ➤ Decrypt "BTWQI" → "world"

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

- Cryptanalysis of parameterized Caesar
 - > i.e., how can Trudy find the key?
 - The simplest way: checking all possible values of k
 - So how many values does Trudy need to try? Worst case: 25 attempts; Average: 13 attempts (~half)
- Exhaustive key search (brute-force attack): check the whole keyspace
 - Keyspace: the set of all possible values of the key e.g. $k \in \{1, 2, ..., 25\}$ is the keyspace of parameterized Caesar
 - This attack is always available for Trudy! (\$\tilde{\phi}\$ why?)

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

- In general, the key to a simple substitution cipher can be any permutation of letters
 - Instead of simple shift
 - > Also known as "character cipher" or "monoalphabetic cipher"
- Example

Plaintext a b c d e f g h i j k I m n o p q r s t u v w x y z

Ciphertext J I C A X S E Y V D K W B Q T Z R H F M P N U L G O

- Encrypt "hello"
- Decrypt "UTHWA"

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

- What is the size of the keyspace?
 - > i.e., how many possible keys (permutations)?
 - \geq 26! \approx 288 keys!
 - i.e., if use exhaustive key search, Trudy need to try 2^{88} times in the worst case; and on average, need 2^{88} / $2 = 2^{87}$ times
- How many years does Trudy need if she used a computer that can check 2^{20} (\approx 1 million) keys/second?
 - ightharpoonup On average: $2^{87}/2^{20}=2^{67}$ sec $\approx 4.7 * 10^{12}$ years!
- The larger keyspace makes general simple substitution "stronger" than parameterized Caesar, but...

Classical Ciphers

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

Simplest Case

Parameterized

General Case

Conclusion

- Any smarter way (shortcut) to break simple substitution?
 - Yes, use linguistic knowledge...English letter frequency!
 - Also called "statistical attack"
 - For example ...

Need large enough ciphertext though

Classical Ciphers

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

Simplest Case

Parameterized

General Case

Conclusion

- A large keyspace is necessary but not sufficient to ensure security of a cipher
 - Only ensures that exhaustive key search is infeasible
 - But there can be a shortcut!
- So simple substitution is proven insecure!
 - Vulnerable to statistical attacks!
- Definition of "secure" for a cipher system...
 - > A cipher system is secure if best know attack is to try all keys
 - > A cipher system is insecure if any shortcut attack is known
 - Under this definition, is parameterized Caesar secure?

Classical Ciphers

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

Double Transposition

One-time Pad

Codebook

- Motivation: hide the statistics of the letters ("diffusion")
 - Prevent statistical attacks
- (Simplified) double transposition cipher
 - Put plaintext into a matrix (1 letter / cell)
 - Permutate the rows and columns
 - Key is the matrix size and permutations
- Example plaintext: wanttogetana
 - key: 3 * 4 matrix,(1, 3, 4, 2) and (2, 1, 3)
 - Ciphertext: awnegtnaatto

Classical Ciphers

... Previously
Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

Double Transposition

One-time Pad

Codebook

- To decrypt, just undo the permutation
- Pros: hide the statistic
 - In previous example, a is substituted to w, t, or o, NOT to a single letter as in simple substitution
- Cons: cipher does not disguise the letters
 - Just shuffled the order of the letters
 - > If can find several "words", possible to break
- Idea is employed by modern block ciphers
 - Deal with a "block" of text

q

p

0

0

Classical Ciphers

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

•	Motivation: hide	relationship	between	plaintext	and
	ciphertext ("con-	fusion")			

- One-time pad: key only used once, and use XOR
- Recap for XOR (exclusive OR)

Co	mmutative:	D	\oplus	a	= c	1 (+)	D
----	------------	---	----------	---	-----	-------	---

	Associative:	(p	\bigoplus	q)	$\bigoplus r$	=	q	\bigoplus	(p	\bigoplus	r)
--	--------------	----	-------------	----	---------------	---	---	-------------	----	-------------	----

- ➤ Identity: $p \oplus 0 = p$
- > Self-Inverse: $p \oplus p = 0$
- Encryption/decryption based on the property of XOR: if $p \oplus q = r$, then $p = q \oplus r$ (\diamondsuit how to prove?)

 $p \oplus q$

0

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

Procedures of using one-time pad

- First, encode plaintext to binary (encoding rule is public)
- Then, randomly generate a binary string in the same size of the encoded plaintext as the key
- ➤ To encrypt: CIPHER = plain ⊕ key, then decode to text
- To decrypt: plain = CIPHER ⊕ key, then decode to text

Example

Encoding rule: a = 00, n = 01, t = 10, w = 11

plaintext	W	a	n	t	a	n	a
(encoded) p	11	00	01	10	00	01	00
key	01	10	11	00	11	10	01
(encoded) C	10	10	10	10	11	11	01
CIPHERTEXT	T	T	Т	Т	W	W	N

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

- Pros: provably secure
 - Ciphertext gives NO useful info about plaintext
 - All plaintexts are equally likely
 - But only when used properly –use random & one-time key!
 - What will happen if the key is reused?
- Cons: not practical
 - > Recall: key size is same as the length of plaintext
 - ➤ If we have a secure channel to send the key...why not directly send the plaintext itself?
- One-time pad is developed to modern stream ciphers

Classical Ciphers

... Previously
Crypto Basics
Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

Double Transposition

One-time Pad

Codebook

- Codebook: dictionary-like book filled with "codewords"
 - Words (plaintext) and corresponding codewords (ciphertext)
 - > The code book itself is the key
- Example
 - Codebook (key):

word	codeword
а	10928
to	31287
get	09165
want	82096

- Plaintext: want to get a
- > Ciphertext: 82096 31287 09165 10928

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

- The security of this cipher system depends on the physical security of the codebook
 - If the amount of ciphertexts is big enough, the statistical attack is possible (but harder than simple substitution)
- So, codebook usually use with "additive"
 - Additive: book of "random" numbers
 - Key is the codebook + position in additive book (which gives a Message Indicator MI)
 - For each word, new cipher = old cipher + MI
- Modern block ciphers are codebooks!

Classical Ciphers

... Previously

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

- Stream cipher
 - > A5/1
 - RC4

Crypto Basics

Classical Intro

Simple Substitution

Other Classicals

Next Lesson ...

Appendix

Concepts

Exercises

- Terminologies
 - Cryptography, Cryptanalysis, Cryptology, Cryptology, Crypto
- Cipher system
 - Plaintext, ciphertext, encryption, decryption, key, keyspace
 - Symmetric vs. Asymmetric (public/private)
 - Exhaustive key search
 - Secure vs. insecure
 - Confusion vs. diffusion
- Kerckhoffs' principle
- Classical ciphers
 - > Caesar Cipher, parameterize cipher, simple substitution
 - Double transposition, one-time pad, codebook

<u>Lesson 1</u>
Classical Ciphers

... Previously
Crypto Basics
Classical Intro
Simple Substitution
Other Classicals
Next Lesson ...

Appendix

Concepts Exercises

 Integrity or confidentiality, which one (and why) is more important from the perspective of...

- The bank
- The bank's customers
- Edgar Allan Poe's 1843 short story, "The Gold Bug," features a cryptanalytic attack
 - > What type of cipher is broken and how?
 - What happens as a result of this cryptanalytic success?
- Given that the Caesar's cipher was used, find the plaintext that corresponds to the following ciphertext

VSRQJHEREVTXDUHSDQWV

Appendix

Concepts Exercises

 Suppose we keep the spaces and punctuations as they are when we use simple substitution. Break the following message.

- ▶ DAHUFJOU HUC OCECBDA REDTGDWR TBFPACQ LG REFIE HF PC ETWFQTACHC, HUCBC LG D GTCWLDA WDGC HUDH WDE PC GFAZCX LE ALECDB HLQC. D GJTCBLEWBCDGLEO REDTGDWR LG GLQLADB HF HUC OCECBDA REDTGDWR CNWCTH HUDH, IUCE HUC ICLOUHG DBC DBBDEOCX MBFQ ACDGH HF OBCDHCGH, CDWU ICLOUH LG OBCDHCB HUDE GJQ FM DAA TBCZLFJG ICLOUHG.
- What if we remove the spaces and punctuations?
 Is it harder to break or easier?

<u>Lesson 1</u> Classical Ciphers

... PreviouslyCrypto BasicsClassical IntroSimple SubstitutionOther ClassicalsNext Lesson ...

Appendix

References

- Stamp, Mark and Low, Richard M., "Applied Cryptanalysis: breaking ciphers in the real world," John Wiley & Sons, Inc., New Jersey, USA, 2007
- Stallings, William, "Cryptography and Network Security, Principles and Practice, 6th ed.," Pearson, USA, 2014
- Paar, Christof, "Understanding Cryptography," Faller, Berlin, Germany, 2010
- Stamp, Mark, "Information Security, Principles and Practice, 2nd ed.," Wiley,
 New Jersey, USA, 2011