

Evaluación de Bachillerato para el Acceso a la Universidad

Castilla y León

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

EXAMEN

Nº páginas: 2 (tabla adicional)

OPTATIVIDAD: CADA ESTUDIANTE DEBERÁ ESCOGER **TRES** PROBLEMAS Y **UNA** CUESTIÓN Y DESARROLLARLOS COMPLETOS.

CRITERIOS GENERALES DE EVALUACIÓN

Cada problema se puntuará sobre un máximo de 3 puntos. Cada cuestión se puntuará sobre un máximo de 1 punto. Salvo que se especifique lo contrario, los apartados que figuran en los distintos problemas son equipuntuables. La calificación final se obtiene sumando las puntuaciones de los tres problemas y la cuestión realizados. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos efectuados.

CALCULADORA: Podrán usarse calculadoras no programables, que no admitan memoria para texto ni para resolución de ecuaciones, ni para resolución de integrales, ni para representaciones gráficas.

PROBLEMAS (A ELEGIR TRES)

P1. (Números y álgebra)

Una empresa de diseño ha comprado dos impresoras 3D para imprimir figuras y fichas para juegos de mesa. La primera impresora puede trabajar hasta 300 horas y necesita 6 horas para imprimir cada figura y 5 horas para cada ficha. La segunda impresora puede trabajar hasta 200 horas y necesita 2 horas para hacer cada figura y 5 horas para cada ficha. El beneficio neto que obtiene la empresa por imprimir cada figura es de 1 € mientras que el beneficio neto que obtiene por imprimir cada ficha es de 1.5 € Si el número máximo de figuras ha de ser 25, calcula, utilizando técnicas de programación lineal, cuántas figuras y fichas ha de imprimir para obtener el máximo beneficio neto. ¿Cuál es ese beneficio neto máximo?

P2. (Números y álgebra)

Se considera el sistema de ecuaciones lineales, dependiente del parámetro real a: $\begin{cases} 3x + 2y + az = 1 \\ 5x + 3y + 3z = 2 \\ x + y - z = 1 \end{cases}$

- a) Clasificar el sistema según su número de soluciones para los distintos valores de a.
- b) Resolver el sistema para a = 0.

P3. (Análisis)

El consumo (medido en litros/hora) de combustible, en una explotación industrial durante un turno de 8 horas, se puede expresar por la función: $f(t) = \begin{cases} -t^2 + 6t + 3 & \text{si } 0 \le t \le 2 \\ -t + a & \text{si } 2 < t \le 8 \end{cases}$ donde t representa el tiempo desde el inicio del turno, medido en horas.

- a) Establecer el valor de *a* para que el consumo sea continuo a lo largo de todo el turno. ¿A partir de la segunda hora cuánto cambia el consumo por cada hora que pasa?
- b) ¿En qué momento se alcanza el máximo consumo? ¿Cuánto se está consumiendo en ese momento? ¿En qué periodo de tiempo el consumo supera los 8 litros/hora?

P4. (Análisis)

El número de usuarios de una estación de metro a lo largo de un domingo evoluciona según la función $N(x) = -2x^3 + 75x^2 - 600x + 2000 \text{ con } 0 \le x < 24$, donde x indica la hora del día.

- a) Estudiar los intervalos de crecimiento y decrecimiento del número de usuarios de la estación a lo largo del domingo.
- b) ¿A qué hora el número de usuarios es máximo y a qué hora es mínimo? Calcular el número de usuarios correspondiente a dichas horas.

P5. (Estadística y probabilidad)

Una compañía ofrece seguros de cancelación de viajes a destinos exóticos: el 30 % de sus seguros se contratan para viajar al país A, el 50 % para viajar al país B y el resto para viajar al país C. Según estudios previos, se cancela el viaje en el 1 % de los seguros contratados para el país A, el 1.5 % de los contratados para B y el 3.5 % de los contratados para C. Elegido un seguro al azar,

- a) Calcular la probabilidad de que sea un viaje que se cancela.
- b) Si es un seguro de un viaje cancelado, calcular la probabilidad de que haya sido contratado para viajar al país C.

P6. (Estadística y probabilidad)

La distancia recorrida para ir a clase por los estudiantes de cierta universidad se distribuye según un modelo normal de media µ kilómetros y varianza 2.25. Se toma una muestra de 100 estudiantes, obteniéndose una distancia media de 4 kilómetros para esa muestra. Tomando esta información, se pide

- a) Hallar el intervalo de confianza para la media µ al nivel de confianza del 96 %.
- b) ¿Cuál debería ser el tamaño de la muestra para que, al nivel de confianza del 95 %, el error máximo de estimación de la distancia media μ sea de 0.1 kilómetros?

CUESTIONES (A ELEGIR UNA)

C1. (Números y álgebra)

Dadas tres matrices A, B y C se sabe que $A \cdot B \cdot C$ es una matriz de dimensiones 2×3 y que $B \cdot C$ es de dimensiones 4×3 , determinar las dimensiones que debe tener A.

C2. (Análisis)

Dada
$$f(x) = \frac{ax^2 + 1}{5x}$$
. Dar un valor de a para que en $x = 1$ haya un extremo relativo de $f(x)$.

C3. (Estadística y probabilidad)

La ficha técnica de una encuesta electoral realizada para las pasadas elecciones autonómicas indica que se ha encuestado a 1000 individuos con derecho a voto residentes en Castilla y León. La muestra se ha tomado mediante muestreo aleatorio simple. El error de estimación de la proporción de individuos de la población que vota al *partido K* es de \pm 3.2 % fijada una confianza del 95.5 %.

Para esta ficha técnica, identificar los siguientes elementos: Población, diseño muestral, tamaño muestral, parámetro estimado.

Distribución Normal

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt$$

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9014
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9318
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999