Домашня Робота з Математичної Статистики #1

Захаров Дмитро 8 вересня, 2024

Зміст

1	Впр	ави з лекції	2
	1.1	Вправа 1. Випадкові матриці	2
	1.2	Вправа 2. Стандартний нормальний розподіл	3
	1.3	Вправа 3. Ортогональні матриці	3
	1.4	Вправа 4. Некорельовані залежні випадкові величини	4
	1.5	Вправа 5. Підвектор нормального вектору.	5
	1.6	Вправа 6. Двовимірний нормальний розподіл	6
	1.7	Вправа 7. Нормальність по компонентам не означає нормальність всього	
		вектору.	7
2	Вправи з практики		8
	2.1	Двовимірний розподіл	8
	2.2	Трьохвимірний розподіл	9

Вправи з лекції

1.1Вправа 1. Випадкові матриці.

Умова Задачі 1.1. Довести, що:

- (a) Якщо $A \in \mathbb{R}^{m \times n}$ детермінована матриця та $B \in \text{випадковою матрицею розміру}$ $n \times p$ з математичним сподіванням $\mathbb{E}[B]$, то $\mathbb{E}[AB] = A \cdot \mathbb{E}[B]$.
- (б) Якщо $B \in \mathbb{R}^{n \times p}$ детермінована матриця та A є випадковою матрицею розміру $m \times n$ з математичним сподіванням $\mathbb{E}[A]$, то $\mathbb{E}[AB] = \mathbb{E}[A] \cdot B$.
- (в) Якщо A, B дві випадкові матриці розміру $m \times n$ та існують $\mathbb{E}[A], \mathbb{E}[B],$ то $\mathbb{E}[A+$ $[B] = \mathbb{E}[A] + \mathbb{E}[B].$

Розв'язання.

Пункт (a). Нехай $A = \{a_{i,j}\}_{i,j=1}^{m \times n}$, де $a_{i,j} \in \mathbb{R}$ фіксовані, а $B = \{b_{i,j}\}_{i,j=1}^{n \times p}$ — випадкова матриця. Якщо $\mathbb{E}[B]$ існує, то існують $\mathbb{E}[b_{i,j}]$ для всіх i,j.

Розглянемо $\mathbb{E}[AB]$. Маємо за означенням, що $AB = \{c_{i,j}\}_{i,j=1}^{m \times p}$, де $c_{i,j} = \sum_{\ell=1}^n a_{i,\ell} b_{\ell,j}$. Тоді справедливо, що:

$$\mathbb{E}[AB] = \left\{ \mathbb{E}[c_{i,j}] \right\}_{i,j=1}^{m \times p} = \left\{ \mathbb{E}\left[\sum_{\ell=1}^{n} a_{i,\ell} b_{\ell,j}\right] \right\}_{i,j=1}^{m \times p} = \left\{ \sum_{\ell=1}^{n} a_{i,\ell} \mathbb{E}[b_{\ell,j}] \right\}_{i,j=1}^{m \times p}.$$

3 іншого боку, $A \cdot \mathbb{E}[B] = \{a_{i,j}\}_{\substack{i,j=1 \ i,j=1}}^{m \times n} \cdot \{\mathbb{E}[b_{i,j}]\}_{\substack{i,j=1 \ i,j=1}}^{n \times p} = \{c'_{i,j}\}_{\substack{i,j=1 \ i,j=1}}^{m \times p}$, де $c'_{i,j} = \sum_{\ell=1}^n a_{i,\ell} \mathbb{E}[b_{\ell,j}]$. Отже, $c_{i,j} = c'_{i,j}$ для всіх i,j і тому $\mathbb{E}[AB] = A \cdot \mathbb{E}[B]$.

Пункт (б). Доводиться аналогічно за вийнятком рівності $\mathbb{E}[a_{i,j}b_{i,j}] = \mathbb{E}[a_{i,j}]b_{i,j}$. Пункт (с). Нехай $A = \{a_{i,j}\}_{i,j=1}^{m \times n}$ та $B = \{b_{i,j}\}_{i,j=1}^{m \times n}$ — дві випадкові матриці. Якщо існують $\mathbb{E}[A]$ та $\mathbb{E}[B]$, то існують $\mathbb{E}[a_{i,j}]$ та $\mathbb{E}[b_{i,j}]$ для всіх i,j.

Отже, розглядаємо $\mathbb{E}[A+B]$. Маємо за означенням, що $A+B=\{a_{i,j}+b_{i,j}\}_{i,j=1}^{m\times n}$ та за означенням математичного сподівання матриці тоді, $\mathbb{E}[A+B]=\{\mathbb{E}[a_{i,j}+b_{i,j}]\}_{i,j=1}^{m\times n}=$ $\{\mathbb{E}[a_{i,j}] + \mathbb{E}[b_{i,j}]\}_{i,j=1}^{m imes n}$. З іншого боку, $\mathbb{E}[A] + \mathbb{E}[B] = \{\mathbb{E}[a_{i,j}] + \mathbb{E}[b_{i,j}]\}_{i,j=1}^{m imes n}$. Отже, $\mathbb{E}[A+B] = \{\mathbb{E}[a_{i,j}] + \mathbb{E}[b_{i,j}]\}_{i,j=1}^{m imes n}$. $\mathbb{E}[A] + \mathbb{E}[B]$.

1.2 Вправа 2. Стандартний нормальний розподіл

Умова Задачі 1.2. Довести, що якщо випадковий вектор $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$ має стандартний нормальний розподіл, то її коваріаційна матриця $\Sigma = E_{n \times n}$.

Розв'язання. За означенням, якщо випадковий вектор $\boldsymbol{\xi}$ має стандартний нормальний розподіл, то ξ_1,\ldots,ξ_n є незалежними в сукупності і $\xi_j\sim\mathcal{N}(0,1), j\in\{1,\ldots,n\}$. За визначенням, коваріаційна матриця:

$$\Sigma = \begin{bmatrix} \mathsf{Var}[\xi_1] & \mathsf{Cov}[\xi_1, \xi_2] & \cdots & \mathsf{Cov}[\xi_1, \xi_n] \\ \mathsf{Cov}[\xi_2, \xi_1] & \mathsf{Var}[\xi_2] & \cdots & \mathsf{Cov}[\xi_2, \xi_n] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[\xi_n, \xi_1] & \mathsf{Cov}[\xi_n, \xi_2] & \cdots & \mathsf{Var}[\xi_n] \end{bmatrix}$$

За умовою, $Var[\xi_j]=1, j\in\{1,\ldots,n\}$. Оскільки випадкові величини незалежні, то $Cov[\xi_i,\xi_j]=0$ для всіх $i\neq j$. Отже, $\Sigma=E_{n\times n}$.

1.3 Вправа 3. Ортогональні матриці.

Умова Задачі 1.3. Наведіть приклади ортогональних матриць другого та третього порядку, відмінні від одиничної матриці.

Розв'язання.

Випадок $\mathbb{R}^{2 \times 2}$. За означенням матриця U ортогональна, якщо $U^{-1} = U^{\top}$. Оскільки $\det[U^{-1}] = \frac{1}{\det[U]}$ та $\det[U^{\top}] = \det[U]$, то $\det[U]^2 = 1$, а отже $\det[U] = \pm 1$. Для нашого прикладу візьмемо $\det[U] = 1$. Нехай $U = \begin{bmatrix} u_{1,1} & u_{1,2} \\ u_{2,1} & u_{2,2} \end{bmatrix}$. Тоді справедливо:

$$U^{\top} = \begin{bmatrix} u_{1,1} & u_{2,1} \\ u_{1,2} & u_{2,2} \end{bmatrix}, \quad U^{-1} = \begin{bmatrix} u_{2,2} & -u_{1,2} \\ -u_{2,1} & u_{1,1} \end{bmatrix} \implies \begin{cases} u_{1,1} = u_{2,2} \\ u_{2,1} = -u_{1,2} \end{cases}$$

Отже, нехай $u_{1,1}=u_{2,2}=\lambda$ та $u_{1,2}=\mu$, $u_{2,1}=-\mu$. Тоді маємо $U=\begin{bmatrix}\lambda&\mu\\-\mu&\lambda\end{bmatrix}$ з умовою на те, що $\det[U]=\lambda^2+\mu^2=1$. Тоді ми можемо параметризувати $\lambda=\cos\theta$, $\mu=\sin\theta$ для деякого $\theta\in[0,2\pi)$. Таким чином,

$$U = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Отже достатньо вказати будь-яку матрицю повороту на кут θ .

Випадок $\mathbb{R}^{3\times 3}$. За аналогією, достатньо взяти деяку матрицю повороту, але в просторі \mathbb{R}^3 . Для простоти можна взяти щось подібне:

$$U = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

1.4 Вправа 4. Некорельовані залежні випадкові величини.

Умова Задачі 1.4. Наведіть приклад двох некорельованих, проте залежних дискретних випадкових величин.

Розв'язання. Нехай ξ має рівномірний розподіл на множині $\{-1,0,1\}$, а $\eta=\mathbb{1}[\xi=0]$. Тоді розподіл η має вигляд:

$$Pr[\eta = 1] = \frac{1}{3}, \quad Pr[\eta = 0] = \frac{2}{3}$$

Також маємо $\mathbb{E}[\xi]=0$, $\mathbb{E}[\eta]=1\cdot \frac{1}{3}+0\cdot \frac{2}{3}=\frac{1}{3}$ і

$$\mathbb{E}[\xi \eta] = \sum_{x \in \{-1,0,1\}} \Pr[\xi = x] \cdot x \cdot \mathbb{1}[x = 0] = 0$$

Отже, коваріація:

$$Cov[\xi, \eta] = \mathbb{E}[\xi\eta] - \mathbb{E}[\xi]\mathbb{E}[\eta] = 0$$

1.5 Вправа 5. Підвектор нормального вектору.

Умова Задачі 1.5. Довести, що будь-який підвектор нормально розподіленого випадкового вектору має нормальний закон розподілу. Зокрема, будь-яка компонента нормально розподіленого випадкового вектору є нормально розподіленою випадковою величиною.

Розв'язання.

Спосіб 1. Скористаємось тим, що якщо $B \in \mathbb{R}^{k \times n}$ і $\mathrm{rank}(B) = k \leq n$, то якщо $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n) \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$, то $B\boldsymbol{\xi} \sim \mathcal{N}(B\boldsymbol{\mu}, B\Sigma B^\top)$. Без обмеження загальності, нехай k < n та ми розглядаємо відвектор $\boldsymbol{\xi}_{[:k]} = (\xi_1, \dots, \xi_k)$. Тоді ми можемо задати

$$B := \operatorname{diag}\{\underbrace{1, \dots, 1}_{k \text{ pasis}}, 0, \dots, 0\} = \begin{bmatrix} E_{k \times k} & O_{k \times (n-k)} \\ O_{(n-k) \times k} & O_{(n-k) \times (n-k)} \end{bmatrix}$$

Очевидно, що ${\rm rank}(B)=k$ та $B{m \xi}={m \xi}_{[:k]}$. Отже, ${m \xi}_{[:k]}\sim \mathcal{N}({\pmb \mu}_{[:k]}, \Sigma_{[:k,:k]})$. Узагальнити це на будь-який підвектор вектору ${m \xi}$ досить просто — нехай нам потрібно вибрати номери $\mathcal{I}\subset\{1,\ldots,n\}, |\mathcal{I}|=k$. Тоді достатньо покласти $B:={\rm diag}\{\mathbb{1}(j\in\mathcal{I})\}_{j=1}^n$.

Спосіб 2. Нехай маємо $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n) \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$ для математичного сподівання $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n) \in \mathbb{R}^n$ та коваріаційної матриці $\Sigma \in \mathbb{R}^{n \times n}$. Без обмеження загальності, нехай k < n та ми розглядаємо відвектор $\boldsymbol{\xi}_{[:k]} = (\xi_1, \dots, \xi_k)$. Спочатку подивимось на його матрицю коваріації $\Sigma_{[:k]}$ та математичне сподівання $\boldsymbol{\mu}_{[:k]}$.

$$\Sigma_{[:k]} = \begin{bmatrix} \mathsf{Var}[\xi_1] & \mathsf{Cov}[\xi_1, \xi_2] & \cdots & \mathsf{Cov}[\xi_1, \xi_k] \\ \mathsf{Cov}[\xi_2, \xi_1] & \mathsf{Var}[\xi_2] & \cdots & \mathsf{Cov}[\xi_2, \xi_k] \\ \vdots & \vdots & \ddots & \vdots \\ \mathsf{Cov}[\xi_k, \xi_1] & \mathsf{Cov}[\xi_k, \xi_2] & \cdots & \mathsf{Var}[\xi_k] \end{bmatrix} = \Sigma_{[:k,:k]},$$

де $\Sigma_{[:k,:k]}$ — це підматриця Σ з перших k рядків та перших k стовпців. Також, аналогічно, $\boldsymbol{\mu}_{[:k]} = (\mu_1, \ldots, \mu_k)$. Отже ми знаємо математичне сподівання та матрицю коваріації, залишається довести, що перед нами дійсно нормальний вектор.

Для цього скористаємося тим, що $\pmb{\xi} = \pmb{\mu} + U\hat{\pmb{\xi}}$ для $UU^\top = \Sigma$ та $\hat{\pmb{\xi}} \sim \mathcal{N}(\pmb{0}, E_{n \times n})$. Отже, маємо

$$\begin{bmatrix} \boldsymbol{\xi}_{[:k]} \\ \boldsymbol{\xi}_{[k:]} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu}_{[:k]} \\ \boldsymbol{\mu}_{[k:]} \end{bmatrix} + \begin{bmatrix} U_{[:k,:k]} & U_{[:k,k:]} \\ U_{[k:,:k]} & U_{[k:,k:]} \end{bmatrix} \begin{bmatrix} \hat{\boldsymbol{\xi}}_{[:k]} \\ \hat{\boldsymbol{\xi}}_{[k:]} \end{bmatrix}$$

Звичайно, за означенням, оскільки усі компоненти стандартного нормально розподіленого вектору незалежні в сукупності та мають стандартний розподіл, то $\hat{\boldsymbol{\xi}}_{[:k]} \sim \mathcal{N}(\boldsymbol{0}, E_{k \times k})$ та $\hat{\boldsymbol{\xi}}_{[k:]} \sim \mathcal{N}(\boldsymbol{0}, E_{(n-k) \times (n-k)})$. Також, з твердження вище,

$$\boldsymbol{\xi}_{[:k]} = \boldsymbol{\mu}_{[:k]} + U_{[:k,:k]} \hat{\boldsymbol{\xi}}_{[:k]} + U_{[:k,k:]} \hat{\boldsymbol{\xi}}_{[k:]}$$

Маємо лінійну комбінацію нормально розподілених величин (причому $U_{[:k,:k]}$, $U_{[:k,k:]}$ невироджені), тому $\boldsymbol{\xi}_{[:k]}$ має нормальний розподіл.

1.6 Вправа 6. Двовимірний нормальний розподіл.

Умова Задачі 1.6. Нехай випадковий вектор $\boldsymbol{\xi}=(\xi_1,\xi_2)$ має нормальний розподіл, причому задані математичні сподівання компонент μ_1,μ_2 , дисперсії σ_1^2,σ_2^2 та коефіцієнт кореляції r. Довести, що густина розподілу вектора $\boldsymbol{\xi}$ має вигляд:

$$f_{\xi}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}} \exp\left\{-\frac{z_1^2 - 2rz_1z_2 + z_2^2}{2(1-r^2)}\right\},$$

де було введено позначення $z_1 = \frac{x_1 - \mu_1}{\sigma_1}$ та $z_2 = \frac{x_2 - \mu_2}{\sigma_2}$.

Розв'язання. Потрібно знайти математичне сподівання μ_{ξ} та матрицю коваріації Σ_{ξ} вектора ξ . За визначенням, $\mu_{\xi} = (\mathbb{E}[\xi_1], \mathbb{E}[\xi_2]) = (\mu_1, \mu_2)$. В свою чергу матриця коваріації має вигляд:

$$\Sigma_{\xi} = \begin{bmatrix} \mathsf{Var}[\xi_1] & \mathsf{Cov}[\xi_1, \xi_2] \\ \mathsf{Cov}[\xi_2, \xi_1] & \mathsf{Var}[\xi_2] \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & r\sigma_1\sigma_2 \\ r\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}$$

де ми скористалися тим фактом, що $r[\xi_1, \xi_2] = \text{Cov}[\xi_1, \xi_2]/\sigma[\xi_1]\sigma[\xi_2]$, звідки легко отримуємо $\text{Cov}[\xi_1, \xi_2] = r[\xi_1, \xi_2]\sigma[\xi_1]\sigma[\xi_2] = r\sigma_1\sigma_2$. Далі залишається лише підставити ці значення у формулу густини двовимірного нормального розподілу. Маємо:

$$f_{\boldsymbol{\xi}}(x_1, x_2) = \frac{1}{2\pi\sqrt{\det\Sigma_{\boldsymbol{\xi}}}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{\xi}})^{\top}\Sigma_{\boldsymbol{\xi}}^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{\xi}})\right)$$

Подивимось на детермінант матриці:

$$\det \Sigma_{\xi} = \sigma_1^2 \sigma_2^2 - r^2 \sigma_1^2 \sigma_2^2 = \sigma_1^2 \sigma_2^2 (1 - r^2) \implies \sqrt{\det \Sigma_{\xi}} = \sigma_1 \sigma_2 \sqrt{1 - r^2}$$

Нарешті, у дужках у нас квадратична форма з матрицею

$$\Sigma_{\xi}^{-1} = \frac{1}{\det \Sigma_{\xi}} \begin{bmatrix} \sigma_2^2 & -r\sigma_1\sigma_2 \\ -r\sigma_1\sigma_2 & \sigma_1^2 \end{bmatrix} = \frac{1}{\sigma_1^2\sigma_2^2(1-r^2)} \begin{bmatrix} \sigma_2^2 & -r\sigma_1\sigma_2 \\ -r\sigma_1\sigma_2 & \sigma_1^2 \end{bmatrix}.$$

Позначимо $\mathbf{y} := \mathbf{x} - \boldsymbol{\mu}$ тому після підстановки ми отримаємо:

$$-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{\xi})^{\top} \Sigma_{\xi}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\xi}) = -\frac{1}{2\sigma_{1}^{2} \sigma_{2}^{2} (1 - r^{2})} (\sigma_{2}^{2} y_{1}^{2} + \sigma_{1}^{2} y_{2}^{2} - 2y_{1} y_{2} r \sigma_{1} \sigma_{2})$$

Поділивши доданки у внутрішній скобці на $\sigma_1^2\sigma_2^2$ і позначивши $z_1:=y_1/\sigma_1$, $z_2:=y_2/\sigma_2$, отримаємо вираз, що потрібно було довести:

$$f_{\xi}(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}} \exp\left\{-\frac{z_1^2 - 2rz_1z_2 + z_2^2}{2(1-r^2)}\right\}.$$

1.7 Вправа 7. Нормальність по компонентам не означає нормальність всього вектору.

Умова Задачі 1.7. Наведіть приклад двовимірного випадкового вектору, який не має нормального розподілу, проте його компоненти мають нормальний розподіл.

Відповідь. Нехай $\xi \sim \mathcal{N}(0,1)$ — нормально розподілений вектор і

$$\eta := \begin{cases} \xi, & |\xi| < a \\ -\xi, & |\xi| \ge a \end{cases}$$

Lemma 1.8. Випадкова величина η має нормальний розподіл.

Доведення. Розглянемо функцію розподілу η :

$$Pr[\eta < y] = Pr[\xi < y, |\xi| < a] + Pr[-\xi < y, |\xi| \ge a]$$

= $Pr[\xi < y, |\xi| < a] + Pr[\xi < y, \xi \ge a] = Pr[\xi < y]$

Проте, легко побачити, що (ξ,η) не є нормально розподіленим вектором. Скористаємося тим, що будь-яка лінійна комбінація з компонент вектора (ξ,η) має нормальний розподіл. Проте, розглянемо таку лінійну комбінацію: $\zeta:=\xi-\eta$:

$$\zeta := \xi - \eta = \begin{cases} 0, & |\xi| < a \\ 2\xi, & |\xi| \ge a \end{cases},$$

що не є нормально розподіленою випадковою величиною.

2 Вправи з практики

2.1 Двовимірний розподіл

Умова Задачі 2.1. Вектор $\boldsymbol{\xi}=(\xi_1,\xi_2)$ має нормальний розподіл, причому $\mathbb{E}[\xi_1]=1,\mathbb{E}[\xi_2]=2,$ Var $[\xi_1]=4,$ Var $[\xi_2]=9,$ коефіцієнт кореляції $r[\xi_1,\xi_2]=-0.5.$ Знайти:

(a) Щільність випадкового вектору $\boldsymbol{\eta} = B\boldsymbol{\xi}$, де

$$B = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

(б) Щільність розподілу $\eta = 2\xi_1 - \xi_2$.

Розв'язання.

Пункт (а). Для початку помітимо, що середньоквадратичні відхилення дорівнюють $\sigma_1 = \sqrt{\text{Var}[\xi_1]} = 2$, $\sigma_2 = \sqrt{\text{Var}[\xi_2]} = 3$. Тепер помітимо, що наш початковий вектор $\boldsymbol{\xi}$ має наступне математичне сподівання та матрицю коваріації:

$$\boldsymbol{\mu}_{\xi} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \Sigma_{\xi} = \begin{bmatrix} \sigma_1^2 & r\sigma_1\sigma_2 \\ r\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ -3 & 9 \end{bmatrix}$$

Тепер, оскільки B є невиродженою матрицею, то згідно доведеній теоремі з лекції, $\boldsymbol{\eta} = B\boldsymbol{\xi} \sim \mathcal{N}(B\boldsymbol{\mu}_{\xi},B\boldsymbol{\Sigma}_{\xi}B^{\top})$. Тому:

$$\boldsymbol{\mu}_{\eta} := B \boldsymbol{\mu}_{\xi} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

$$B_{\eta} := B \boldsymbol{\Sigma}_{\xi} B^{\top} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ -3 & 9 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 37 & -26 \\ -26 & 19 \end{bmatrix}$$

Також для щільності знадобиться обернена матриця та детермінант нової матриці коваріації:

$$\det \Sigma_{\eta} = 27, \ \Sigma_{\eta}^{-1} = \begin{bmatrix} \frac{19}{27} & \frac{26}{27} \\ \frac{26}{27} & \frac{37}{27} \end{bmatrix}$$

Тоді щільність запишеться як:

$$f_{\eta}(x_1, x_2) = \frac{1}{2\pi\sqrt{\det B\Sigma_{\xi}B^{\top}}} \exp\left\{-\frac{1}{2}(\mathbf{x} - B\boldsymbol{\mu}_{\xi})^{\top}(B\Sigma_{\xi}B^{\top})^{-1}(\mathbf{x} - B\boldsymbol{\mu}_{\xi})\right\}$$
$$= \frac{1}{6\pi\sqrt{3}} \exp\left\{-\frac{1}{2}\left(\frac{19}{27}x_1^2 - \frac{52}{27}x_1(x_2 - 1) + \frac{37}{27}(x_2 - 1)^2\right)\right\}$$

Пункт (б). Скористаємось тим, що якщо $B \in \mathbb{R}^{k \times n}$ і $\mathrm{rank}(B) = k \leq n$, то якщо $\pmb{\xi} = (\xi_1, \dots, \xi_n) \sim \mathcal{N}(\pmb{\mu}, \Sigma)$, то $B\pmb{\xi} \sim \mathcal{N}(B\pmb{\mu}, B\Sigma B^\top)$. В нашому конкретному випадку задамо $B = \begin{bmatrix} 2 & -1 \end{bmatrix}$, тоді $\eta = B\pmb{\xi} = 2\xi_1 - \xi_2$ — шукана випадкова величина. Очевидно, її ранг дорівнює 1, тому ми можемо скористатися теоремою. Тоді $B\pmb{\mu} = 0$ та

$$B\Sigma B^{\top} = \begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} 4 & -3 \\ -3 & 9 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = 37$$

Отже $\eta \sim \mathcal{N}(0,37)$ і тому $f_{\eta}(x) = \frac{1}{\sqrt{74\pi}}e^{-x^2/74}$.

2.2 Трьохвимірний розподіл

Умова Задачі 2.2. Вектор $\pmb{\xi}$ має нормальний закон розподілу з математичним сподіванням $\pmb{\mu}_{\xi}=(2,0,-1)$ і коваріаційною матрицею $\Sigma_{\xi}=\begin{bmatrix}2&-1&0\\-1&2&-1\\0&-1&1\end{bmatrix}$. Знайти щільність розподілу вектору $\pmb{\eta}=B\pmb{\xi}$, де $B=\begin{bmatrix}1&1&0\\-1&1&1\end{bmatrix}$

Розв'язання. Очевидно rank(B)=2, а тому ми можемо застосувати теорему про лінійні перетворення нормальних величин. Тоді $\pmb{\eta}=B\pmb{\xi}\sim\mathcal{N}(B\pmb{\mu}_{\xi},B\Sigma_{\xi}B^{\top})$. Отже:

$$\boldsymbol{\mu}_{\eta} = B\boldsymbol{\mu}_{\xi} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}, \ \boldsymbol{\Sigma}_{\eta} = B\boldsymbol{\Sigma}_{\xi}B^{\top} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 5 \end{bmatrix}$$

Отже, остаточно маємо:

$$\eta \sim \mathcal{N}\left(\begin{bmatrix} 2\\ -3 \end{bmatrix}, \begin{bmatrix} 2 & -1\\ -1 & 5 \end{bmatrix}\right)$$

Тепер, для щільності розподілу, знайдемо детермінант та обернену матрицю:

$$\det \Sigma_{\eta} = 9, \ \Sigma_{\eta}^{-1} = \frac{1}{9} \begin{bmatrix} 5 & 1 \\ 1 & 2 \end{bmatrix}$$

Щільність розподілу в такому випадку має вигляд:

$$f_{\eta}(x_1, x_2) = \frac{1}{2\pi\sqrt{\det\Sigma_{\eta}}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{\eta})^{\top}\Sigma_{\eta}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{\eta})\right\}$$
$$= \frac{1}{6\pi} \exp\left\{-\frac{1}{2}\left(\frac{5}{9}(x_1 - 2)^2 + \frac{2}{9}(x_1 - 2)(x_2 + 3) + \frac{2}{9}(x_2 + 3)^2\right)\right\}$$