The Domain Name System

History of DNS

- ☐ Before DNS
 - ARPAnet
 - > HOSTS.txt contains all the hosts' information
 - Maintained by SRI's Network Information Center
 - In SRI-NIC host
 - Problems: Not scalable!
 - > Traffic and Load
 - Name Collision
 - Consistency
- ☐ Domain Name System
 - Administration decentralization
 - 1984
 - Paul Mockapetris (University of Southern California)
 - \triangleright RFC 882, 883 \rightarrow 1034, 1035
 - 1034: Concepts
 - 1035: Implementation and Specification

RFC Sourcebook:

http://www.networksorcery.com/enp/default0304.htm

DNS Introduction

DNS Specification

- ☐ Make domain name system as
 - Tree architecture
 - ➤ Each subtree → "domain"
 - Domain can be divided in to "subdomain"
 - Distributed database
 - > Each site maintains segment of DB
 - Each site open self information via network
 - Client-Server architecture
 - ➤ Name servers provide information (Name Server)
 - Clients make queries to server (Resolver)

DNS Introduction

Domain and Subdomain

- ☐ DNS Namespace
 - A tree of domains
- ☐ Domain and subdomain
 - Each domain has a "domain name" to identify its position in database
 - > EX: nctu.edu.tw
 - > EX: cs.nctu.edu.tw

DNS database

DNS database

corp

com

subdomain

Reslov.conf

```
domain
       cs.nctu.edu.tw
                140.113.1.1
nameserver
/etc/resolv.conf: unmodified, readonly: line 1
```

The DNS Namespace (1)

- ☐ A inverted tree (Rooted tree)
 - Root with label "."

- ☐ Domain level
 - Top-level or First level
 - > Child of the root
 - Second-level
 - > Child of a First-level domain
- ☐ Domain name limitation
 - 63-characters in each component and
 - Up to 255-characters in a complete name

The DNS Namespace (2)

\Box gTLDs

- generic Top-Level Domains, including:
- com: commercial organization, such as ibm.com
- edu: educational organization, such as purdue.edu
- gov: government organization, such as <u>nasa.gov</u>
- mil: military organization, such as navy.mil
- net: network infrastructure providing organization, such as hinet.net
- org: noncommercial organization, such as $\underline{x11.org}$
- int: International organization, such as nato.int

ICANN – Internet Corporation for Assigned Names and Numbers http://www.icann.org/

The DNS Namespace (3)

- ☐ New gTLDs launched in year 2000:
 - aero: for air-transport industry
 - biz: for business
 - coop: for cooperatives
 - info: for all uses
 - museum: for museum
 - name: for individuals
 - pro: for professionals

The DNS Namespace (4)

- ☐ Other than US, ccTLD
 - country code TLD (ISO 3166)
 - \triangleright Taiwan \rightarrow tw
 - ➤ Japan → jp
 - Follow or not follow US-like scheme
 - ➤ US-like scheme example
 - edu.tw, com.tw, gov.tw
 - ➤ Other scheme
 - co.jp, ac.jp

DNS Namespace (5)

How DNS Works

– DNS Delegation

- ☐ Administration delegation
 - Each domain can delegate responsibility to subdomain

How DNS Works

DNS query process

- ☐ Recursive query process
 - Ex: query <u>lair.cs.colorado.edu</u> → <u>vangogh.cs.berkeley.edu</u>, name server "ns.cs.colorado.edu" has no cache data

DNS Delegation

- Administrated Zone

- Zone
 - Autonomously administered piece of namespace
 - ➤ Once the subdomain becomes a zone, it is independent to it's parent
 - Even parent contains NS's A record

DNS Delegation

Administrated Zone

- ☐ Zone
 - Autonomously administered piece of namespace
- ☐ Two kinds of zone files
 - Forward Zone files
 - > Hostname-to-Address mapping
 - > Ex:
 - <u>bsd1</u> IN A 140.113.235.131
 - Reverse Zone files
 - > Address-to-Hostname mapping
 - > Ex:
 - <u>131.235.113.140</u> IN PTR bsd1.cs.nctu.edu.tw.
 - Forward zone is necessary

The Name Server Taxonomy (1)

- ☐ Categories of name servers
 - Based on a name server's source of data
 - > Authoritative: official representative of a zone
 - Master: get zone data from disk
 - Slave: copy zone data from master
 - Nonauthoritative: answer a query from cache
 - caching: cashes data from previous queries
 - Based on the type of data saved
 - > Stub: a slave that copy only name server data (no host data)
 - Based on the type of answers handed out
 - **Recursive:** do query for you until it return an answer or error
 - ➤ Nonrecursive: refer you to the authoritative server
 - Based on the query path
 - Forwarder: performs queries on behalf of many clients with large cache

The Name Server Taxonomy (2)

☐ Nonrecursive referral

- Hierarchical and longest known domain referral with cache data of other zone's name servers' addresses
- Ex:
 - ➤ Query lair.cs.colorado.edu from a nonrecursive server
 - ➤ Whether cache has
 - Name servers of cs.colorado.edu, colorado.edu, edu, root
- The resolver libraries do not understand referrals mostly. They expect the local name server to be recursive

The Name Server Taxonomy (3)

- ☐ Caching
 - Positive cache
 - Negative cache
 - ➤ No host or domain matches the name queried
 - The type of data requested does not exist for this host
 - The server to ask is not responding
 - The server is unreachable of network problem
- ☐ Negative cache
 - 60% DNS queries are failed
 - To reduce the load of root servers, the authoritative negative answers must be cached

The Name Server Taxonomy (4)

☐ Caching and forwarder DNS server

The Name Server Taxonomy (5)

- ☐ How to arrange your DNS servers?
 - Ex:

The Name Server Taxonomy (6)

☐ Root name servers

List in named.root file of BIND

	2600000	TNI NG	A DOOR GEDIEDG NEE
· DOOTE GERLIERG VET	3600000	IN NS	A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET.	3600000	A	198.41.0.4
•	3600000	NS	B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET.	3600000	A	192.228.79.201
	3600000	NS	C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET.	3600000	A	192.33.4.12
	3600000	NS	D.ROOT-SERVERS.NET.
D.ROOT-SERVERS.NET.	3600000	A	128.8.10.90
	3600000	NS	E.ROOT-SERVERS.NET.
E.ROOT-SERVERS.NET.	3600000	A	192.203.230.10
	3600000	NS	F.ROOT-SERVERS.NET.
F.ROOT-SERVERS.NET.	3600000	A	192.5.5.241
	3600000	NS	G.ROOT-SERVERS.NET.
G.ROOT-SERVERS.NET.	3600000	A	192.112.36.4
	3600000	NS	H.ROOT-SERVERS.NET.
H.ROOT-SERVERS.NET.	3600000	A	128.63.2.53
	3600000	NS	I.ROOT-SERVERS.NET.
I.ROOT-SERVERS.NET.	3600000	A	192.36.148.17
	3600000	NS	J.ROOT-SERVERS.NET.
J.ROOT-SERVERS.NET.	3600000	A	192.58.128.30
	3600000	NS	K.ROOT-SERVERS.NET.
K.ROOT-SERVERS.NET.	3600000	A	193.0.14.129
	3600000	NS	L.ROOT-SERVERS.NET.
L.ROOT-SERVERS.NET.	3600000	A	198.32.64.12
	3600000	NS	M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET.	3600000	A	202.12.27.33

DNS Client

- ☐ /etc/resolv.conf
 - nameserver, domain, search
- ☐ /etc/hosts