Soluciones Matemática Discreta 2

Tercer examen curso 2003

Febrero 2004

```
1) a) Probar que n(2n + 1)(7n +1) es divisible por 6 para todo n natural
```

Sol.: n puede ser de la forma 6k, 6k+1, 6k+2, 6k+3, 6k+4, 6k+5

Si n = 6k el primer factor del producto es divisible por 6.

Si n = 6k+1 entonces 2n+1=12k+3 es múltiplo de 3 y 7n+1=42k+8 es par, por lo que el producto es múltiplo de 6

Si n= 6k+2 entonces es par y 7n+1 = 42k + 15 es múltiplo de 3

Si n = 6k+3 entonces es múltiplo de 3 y 7n+1 es par.

Si n= 6k+4 entonces n es par y 2n+1= 12k + 9 es múltiplo de 3

Si n= 6k+5 entonces 7n+1=42k+36 es múltiplo de 6

- b) Por \$ 5 se compraron 100 unidades de diferentes frutas. Sus precios son los siguientes: Sandía = 50 centésimos; Manzana = 10 cent.; Ciruela = 1 cent. ¿ Cuánta fruta de cada clase fue comprada?
- **Sol.**: Llamamos x, y, z a las cantidades de sandías, manzanas y ciruelas compradas.

Entonces: x+y+z=100 , 50x+10y+z=500

50x+10y+100-x-y=500. 49x + 9y = 400

Mcd(49,9) = 1, así que hay soluciones enteras.

49= 5*9+4

9= 4*2+1

Entonces: $1 = 9 - 4^2 = 9 - (49-5^9)^2 = 11^9 - 2^49$

-800*49 + 4400*9 = 400

x = -800 + 9k, y = 4400 - 49k. Además z = -3500 + 40k

 $x \ge 0$, $-800 + 9k \ge 0$, $k \ge 88.88$

 $y \ge 0$, $4400 - 49k \ge 0$, k = 89.79. Quedaría k = 89.

x = 1, y = 39, z = 60

- c) Hallar el resto de dividir $8381^{529} * 237^{421}$ entre 11
- **Sol.**: Trabajamos módulo 11: 8381 = 10 = -1 (11) . 237 = 6 (11) $8381^{529} * 237^{421} = (-1)^{529} * 6^{421} = -6^{421}$

Por Fermat: $6^{10} \equiv 1(11)$ y por lo tanto $6^{421} \equiv 6(11)$

-6 = 5 (11). Por tanto el resto pedido vale 5

Nota: Para b) se pide desarrollar un método de resolución. No se dará puntaje a resoluciones del tipo probar todos los casos posibles.

- **2)** Sea G un grupo tal que: $\forall x, y \in G$ vale $(xy)^k = x^k y^k$ para 3 enteros k consecutivos. Probar que G es abeliano
- **Sol.**: Supongamos que se cumple para k+1, k, k-1 :

 $(xy)^{k+1} = xy(xy)^k = xyx^ky^k = x^{k+1}y^{k+1} \implies yx^k = x^ky$ (usando k+1 y k)

Usando k y k-1 llegamos a $yx^{k-1} = x^{k-1}y$

Entonces: $yx^k = x^k y = xx^{k-1}y = xyx^{k-1} \implies yx = xy$ y G es abeliano.

- 3) a) Probar que N = { e , (1 2) (3 4) , (1 3) (2 4) , (1 4) (2 3) } es subgrupo de A_4 (permutaciones pares de S_4)
- **Sol.** $((1\ 2)(3\ 4))^2 = e$, $((1\ 2)(3\ 4))((1\ 3)(2\ 4))=(1\ 4)(3\ 2)$,

 $((1\ 2)(3\ 4))((1\ 4)(2\ 3))=(1\ 3)(4\ 2)$

 $((1\ 3)(2\ 4))((1\ 2)(3\ 4))=(1\ 4)(3\ 2)$

 $((1\ 3)(2\ 4))((1\ 4)(2\ 3))=(1\ 2)(3\ 4)$

 $((1\ 4)(2\ 3))((1\ 2)(3\ 4))=(1\ 3)(2\ 4)$

 $((1 \ 4)(2 \ 3))((1 \ 3)(2 \ 4))=(1 \ 2)(3 \ 4)$

Como el producto es cerrado en N y N es finito entonces N es subgrupo. Como los elementos de N son permutaciones pares entonces N es subgrupo de A_4

b) Hallar las clases laterales derechas e izquierdas de N en A_4

Estas dos con N nos dan todas las clases laterales izquierdas de N en

 $A_{\scriptscriptstyle 4}$

```
ya que |A_4| = 12

N(1 2 3) = { (1 2 3), (1 2)(3 4)(1 2 3), (1 3)(2 4)(1 2 3), (1 4)(2 3)(1 2 3)} = { (1 2 3), (2 4 3), (1 4 2), (1 3 4)}

N(1 3 2) = { (1 3 2), (1 2)(3 4)(1 3 2), (1 3)(2 4)(1 3 2), (1 4)(2 3)(1 3 2)} = { (1 3 2), (1 4 3), (2 3 4), (1 2 4)}
```

- c) Probar que N es normal en A_4
- **Sol.**: Cada clase lateral izquierda de un elemento a coincide con la clase lateral derecha de a, o sea : aN = Na y entonces $N = a^{-1}Na$ y por lo tanto N es normal en A_4
 - d) Hallar la tabla del producto en A_4 / N

- 4) Sea A un anillo.
 - a) Probar que M = $\{x \in A / x + x = z\}$ es un ideal de A
- **Sol.**: Si x, y están en M, entonces: (x+y)+(x+y)=(x+x)+(y+y)=z+z=zPor lo tanto x+y está en M.

Si x está en M, entonces (-x)+(-x) = -(x+x) = -z = z. Entonces -x está en M.

Si a está en A y m está en M entonces:

am+am = a(m+m)= az = z, con lo que am está en M.

ma + ma = (m + m)a = za = z, con lo que ma está en M.

Por lo anterior M es ideal de A.

- b) Hallar M para el anillo $Z_4 \times Z_8$
- **Sol.**: Si (a,b)+(a,b)= (0,0) entonces (2a,2b)=(0,0) y por tanto a puede ser 0 o 2 y b puede ser 0 o 4 .

 M = { (0,0), (0,4), (2,0), (2,4) }
 - c) Listar el anillo cociente $Z_4 \times Z_8$ / M . ¿ Cuántos elementos tiene ? [(1,0)]={ (1,0), (1,4), (3,0), (3,4) } [(0,1)]={ (0,1), (0,5), (2,1), (2,5) }

$$[(0,2)] = \{ (0,2), (0,6), (2,2), (2,6) \}$$

$$[(0,3)] = \{ (0,3), (0,7), (2,3), (2,7) \}$$

$$[(1,1)] = \{ (1,1), (1,5), (3,1), (3,5) \}$$

$$[(1,2)] = \{ (1,2), (1,6), (3,2), (3,6) \}$$

 $[(1,3)] = \{ (1,3), (1,7), (3,3), (3,7) \}$

$$Z_4 \times Z_8$$
 / M = { [(0,0)],[(1,0)],[(0,1)],[(0,2)],[(0,3)],[(1,1)],[(1,2)],[(1,3)] }

$$|Z_4 \times Z_8 / M| = 8$$

d) Hallar las tablas de la suma y del producto en $Z_4 \times Z_8$ / M Sol.: [(0,0)][(1,0)][(0,1)][(0,2)][(0,3)] [(1,1)] [(1,2)][(1,3)]+ [(0,0)][(0,0)][(1,0)][(0,1)][(0,2)][(0,3)] [(1,1)] [(1,2)][(1,3)][(1,0)][(1,2)][(0,0)][(1,1)][(1,3)] [(0,1)] [(0,2)][(0,3)][(0,1)][(0,2)][(0,3)][(0,0)] [(1,2)] [(1,3)][(1,0)][(0,2)][(0,1)] [(1,3)] [(1,0)][(1,1)][(0,0)][(0,3)][(0,2)] [(1,0)] [(1,1)][(1,2)][(1,1)]simetrica [(0,2)] [(0,3)][(0,0)][(1,2)][(0,0)][(0,1)][(1,3)][(0,2)][(0,0)][(1,0)][(0,1)][(0,2)][(0,3)] [(1,1)] [(1,2)][(1,3)][(0,0)][(0,0)][(0,0)][(0,0)][(0,0)][(0,0)] [(0,0)] [(0,0)][(0,0)][(1,0)][(1,0)][(1,0)][(0,0)][(0,0)] [(1,0)] [(1,0)][(0,0)][(0,1)][(0,1)][(0,2)][(0,3)] [(0,1)] [(0,2)][(0,3)][(0,2)][(0,0)][(0,2)] [(0,2)] [(0,0)][(0,2)][(0,3)][(0,1)] [(0,3)] [(0,2)][(0,1)]simetrica [(1,1)][(1,1)] [(1,2)][(1,3)][(1,2)][(1,0)][(1,2)]

5) Sea la función booleana de 3 variables f definida como : f(x,y,z) = 1 si $x = \overline{y}$ o $y = \overline{z}$; f(x,y,z) = 0 en otro caso. Hallar la f.n.d y la f.n.c de f

[(1,1)]

Sol:

[(1,3)]

f.n.d de f: $f = \bar{x} \, \bar{y} \, z + \bar{x} \, y \, \bar{z} + \bar{x} \, y \, z + x \, \bar{y} \, \bar{z} + x \, \bar{y} \, z + x \, \bar{y}$

f.n.c de f: $f = (x + y + z)(\bar{x} + \bar{y} + \bar{z})$

Puntajes: 1) 31: a) 10 b) 11 c) 10

2) 14

3) 19: a) 4 b) 6 c) 5 d) 4

4) 24: a) 6 b) 6 c) 6 d) 6

5) 12