On Multiphase-Linear Ranking Functions

Xie Li

May 11, 2020

Single Path Linear Constraint Loop

Example

while
$$(x \ge -z)$$
 do $x' = x + y$, $y' = y + z$, $z' = z - 1$

while
$$(x_2-x_1\leq 0,\, x_1+x_2\geq 1)$$
 do $x_2'=x_2-2x_1+1,\, x_1'=x_1$

Definition (SLC)

while
$$(B\mathbf{x} \leq \mathbf{b})$$
 do $A\begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \end{pmatrix} \leq \mathbf{c}$

$$A'' = \begin{pmatrix} B & 0 \\ A \end{pmatrix} \qquad \qquad \mathbf{c}'' = \begin{pmatrix} \mathbf{b} \\ \mathbf{c} \end{pmatrix}$$

Ranking Functions

Definition (Linear Ranking Function(LRF))

$$f(x_1,...,x_n) = a_1x_1 + ... a_nx_n + a_0$$
, such that

- ▶ $f(\mathbf{x}) \ge 0$ for any \mathbf{x} satisfies the loop constraints.
- $f(\mathbf{x}) f(\mathbf{x}') \ge 1$ for any transition from \mathbf{x} to \mathbf{x}' .

Example

while
$$(x-1>0)$$
do $x'=x-5$

Its LRF:
$$f(x) = x - 1$$

We can define a binary relation ${\bf x}\succeq {\bf x}'$ iff $f({\bf x})-f({\bf x}')\geq 1$ and $f({\bf x})\geq 0$

Nested r.f.

Definition (Nested Ranking Function)

A tuple $\langle f_1,\dots,f_d\rangle$ is a nested ranking function for T if the following requirements are satisfied for all $\mathbf{x}''\in T$

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

Let
$$f_0 = 0$$
.

Example: Nested r.f.

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

while
$$(q > 0)$$
do $q' = q - y, y' = y + 1$

▶ Above loop has Nested r.f. $\langle 1-y, q+1 \rangle$

Example: Multiphase Ranking Function

while
$$(x > -z)$$
do $x' = x + y, y' = y + z, z = z - 1$

Attempt to use a ranking function that has several phases: $\langle z+1,y+1,x\rangle$

x	y	z	z+1	y+1	x
1	1	1	2	2	1
2	2	0	1	3	2
4	2	-1	0	3	4
6	1	-2	-1	2	6
7	-1	-3	-2	0	7
6	-4	-4	-3	-3	6
2	-8	-5	-4	-7	2
-6	-13	-6	-5	-12	-6

Multiphase Ranking Function

Definition

Given a set of transitions $T\subseteq \mathbb{Q}^{2n}$, we say $\langle f_1,\ldots,f_d\rangle$ is a multiphase ranking function for T if for every $\mathbf{x}''\in T$, there is an index $i\in [1,d]$, s.t.

$$\forall j \le i . \Delta f_j(\mathbf{x}'') \ge 1,$$

$$f_i(\mathbf{x}) \ge 0,$$

$$\forall j < i . \qquad f_j(\mathbf{x}) \le 0.$$

We say that \mathbf{x}'' is ranked by f_i (for the minimal).

Example Revisit

while
$$(x>-z)$$
do $x'=x+y, y'=y+z, z=z-1$
$$\langle z+1, y+1, x \rangle$$

 \mathbf{x}'' is ranked by f_k when i = k.

$$\forall j \le i \cdot \Delta f_j(\mathbf{x}'') \ge 1,$$

$$f_i(\mathbf{x}) \ge 0,$$

$$\forall j < i \cdot f_j(\mathbf{x}) \le 0.$$

Motzkin's Transposition Theorem

Theorem (Motzkin's Transposition Theorem)

For $A \in \mathbb{K}^{m \times n}, C \in \mathbb{K}^{l \times n}, b \in \mathbb{K}^m$, and $d \in \mathbb{K}^l$. The formulae below are equivalent.

- $\forall x \in \mathbb{K}^n. \neg (Ax \le b \land Cx < d)$
- ► $\exists \lambda \in \mathbb{K}^m . \exists \mu \in \mathbb{K}^l$. $\lambda \geq 0 \land \mu \geq 0$ $\land \lambda^T A + \mu^T C = 0 \land \lambda^T b + \mu^T d \leq 0$ $\land (\lambda^T b < 0 \lor \mu \neq 0)$

Intuition of Motzkin's transposition theorem:...

Lemma (0)

Given an non-empty polyhedron $\mathcal P$ and linear functions f_1,\ldots,f_k such that

1.
$$\mathbf{x} \in \mathcal{P} \to f_1(\mathbf{x}) \ge 0 \lor \ldots \lor f_{k-1}(\mathbf{x}) \ge 0 \lor f_k(\mathbf{x}) \ge 0$$

2.
$$\mathbf{x} \in \mathcal{P} \not\to f_1(\mathbf{x}) \ge 0 \lor \dots f_{k-1}(\mathbf{x}) \ge 0$$

There exists a non-negative constants μ_1, \ldots, μ_{k-1} such that

$$\mathbf{x} \in \mathcal{P} \to \mu_1 f_1(\mathbf{x}) + \mu_{k-1} f_{k-1}(\mathbf{x}) + f_k(\mathbf{x}) \ge 0$$

Proof of Lemma (0)

Let \mathcal{P} be $B\mathbf{x} \leq c$, $f_i = \vec{a}_i\mathbf{x} - b_i$. Then (i) is equivalent to the infeasibility of $B\mathbf{x} \leq c \wedge A\mathbf{x} < b$, by the theorem we have $\vec{\lambda}, \vec{\mu}$ s.t.

$$\vec{\lambda}B + \vec{\mu}A = 0 \land \vec{\lambda}\mathbf{c} + \vec{\mu}\mathbf{b} \le 0 \quad \land (\vec{\mu} \ne 0 \lor \vec{\lambda}\mathbf{c} + \vec{\mu}\mathbf{b} < 0)$$

Then for all $\mathbf{x} \in \mathcal{P}$

$$\sum_{i} \mu_{i} f_{i}(\mathbf{x}) = \vec{\mu} A \mathbf{x} - \vec{\mu} \mathbf{b} = -\vec{\lambda} B \mathbf{x} - \vec{\mu} \mathbf{b} \ge -\vec{\lambda} \mathbf{c} - \vec{\mu} \mathbf{b} \ge 0$$

$M\Phi RF$ to Nested r.f.

Theorem (1)

If $\mathcal Q$ has a $M\Phi RF$ of depth d, then it has a nested ranking function of depth at most d.

Proof.

By induction on the depth d.

- ▶ d = 1: M Φ RF and nested r.f. are both LRF.
- ▶ d > 1: d = 2 e.g. $\langle f_1, f_2 \rangle$. When index i = 1, we do not impose bound on $f_2(\mathbf{x})$. However, a bound is needed for $f_2'(\mathbf{x}s)$ in nested r.f. $\langle f_1', f_2' \rangle$.

To solve the problem that $f_2(\mathbf{x})$ might goes under 0, when \mathbf{x}'' is ranked by f_1 . Consider $\mathcal{Q}' = \mathcal{Q} \cap \{\mathbf{x}'' \in \mathbb{Q}^{2n} \mid f_1(\mathbf{x}) \leq 0\}$

M Φ RF to Nested r.f.

Lemma (1)

Let $\tau = \langle f_1, \ldots, f_d \rangle$ be an irredundant M Φ RF for \mathcal{Q} , such that $\langle f_2, \ldots, f_d \rangle$ is a nested ranking function for $\mathcal{Q}' = \mathcal{Q} \cap \{\mathbf{x}'' \in \mathbb{Q}^{2n} \mid f_1(\mathbf{x}) \leq 0\}$. Then there is a nested ranking function of depth d for \mathcal{Q} .

Prove by construction: construct a nested r.f. $\langle f_1', \dots, f_d' \rangle$

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x''}) - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

If f_d is non-negative on \mathcal{Q} , then $f_d' = f_d$. Otherwise, $\mathbf{x}'' \in \mathcal{Q} \to f_d(\mathbf{x}) \geq 0 \lor f_1(\mathbf{x}) > 0$

MΦRF to Nested r.f.

$$f_d(\mathbf{x}) \ge 0$$

$$(\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \qquad \text{for all } i = 1, \dots, d.$$

Assume $f'_n(\mathbf{x}) = f_n(\mathbf{x}) + \mu_n f_1(\mathbf{x})$ and f'_d, \dots, f'_i has already been computed.

$$\mathbf{x}'' \in \mathcal{Q}' \to (\Delta f_i(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0$$

$$\mathbf{x}'' \in \mathcal{Q}' \to (\Delta f_i'(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0$$

If above inequation also holds for Q, then $f'_{i-1} = f_{i-1}$, Otherwise

$$\mathbf{x}'' \in \mathcal{Q} \to (\Delta f_i'(\mathbf{x}'') - 1) + f_{i-1}(\mathbf{x}) \ge 0 \lor f_1(\mathbf{x}) \ge 0$$

$\mathsf{BM}\Phi\mathsf{RF}(\mathbb{Q})\in\mathsf{PTIME}$

Theorem (2) $BM\Phi RF(\mathbb{Q}) \in PTIME$.

Proof.

LLRF

Intuition: remind binary relation $\mathbf{x}\succeq\mathbf{x}'$ iff $f(\mathbf{x})-f(\mathbf{x}')\geq 1$ and $f(\mathbf{x})\geq 0.$

Generalize it into several phases using lexicographical order of ranking functions.

$$\langle f_1, f_2, \dots, f_d \rangle$$

 $(2, 3, 1, 3) \ge (2, 1, 5, 4)$

Definition (LLRF)

Given a set of transitions T we say that $\langle f_1, f_2, \dots, f_d \rangle$ is a LLRF (of depth d) for T if for every $\mathbf{x}'' \in T$ there is an index i such that

$$\forall j < i \cdot \Delta f_j(\mathbf{x''}) \ge 0,$$

 $\Delta f_i(\mathbf{x''}) \ge 1,$
 $f_i(\mathbf{x}) \ge 0,$

A LLRF is weak if ..

Weak LLRF to M⊕RF

Theorem (3)

If Q has a weak LLRF of depth d, it has a $M\Phi$ RF of depth d.

Proof.

Prove by induction.

- ▶ d=1: For LLRF: $\Delta f_1(\mathbf{x}'')>0$, $f_1(\mathbf{x})\geq 0$ is a LRF due to the loop is linear. For M Φ RF: is a LRF.
- ▶ d>1: Observe that for a given LLRF $\langle f_1,f_2,\ldots,f_d\rangle$, after removing f_k , $\langle f_1,\ldots,f_{k-1},f_{k+1},\ldots,f_d\rangle$ is also a LLRF. If we apply IH here, we get a M Φ RF of depth d-1.

Weak LLRF to M⊕RF

Now we want some techniques to use a M Φ RF of depth d-1 and f_k we removed to prove there is a M Φ RF of depth d on $\mathcal Q$.

Lemma (2)

Let f be a non-negative linear function over $\mathcal Q$. If $\mathcal Q'=\mathcal Q\cap\{\mathbf x''\mid \Delta f(\mathbf x'')\leq 0\}$ has a $M\Phi RF$ of depth d, then $\mathcal Q$ has a $M\Phi RF$ of depth at most d+1.

Proof.

Prove by construction: if the known M Φ RF is $\langle g_1,\ldots,g_d\rangle$ and the funtion non-negative function is f, we wish to construct a M Φ RF $\langle g_1',\ldots,g_n',f\rangle$ of depth d+1

$$\mathbf{x}'' \in \mathcal{Q} \to \Delta f(\mathbf{x}'') > 0 \lor \Delta g_1(\mathbf{x}'') \ge 1$$

Then update g_2 to g_2' when $g_1'(\mathbf{x}) \leq -1$, an so on...

Weak LLRF to M⊕RF

Remind the f_k we removed in the theorem, together with Lemma(2), we wish to construct a non-negative linear function g over $\mathcal Q$ and g decrease on (at least) the same transitions of f_k .

Lemma (3)

Let $\langle f_1, \ldots, f_d \rangle$ be a weak LLRF for \mathcal{Q} . There is a linear function g that is positive over \mathcal{Q} , and decreasing on (at least) the same transitions of f_i , for some $i \in [1, d]$.

Proof.

Use Lemma(0) to find the i.

$M\Phi RF$ and LLRFs over the Integers

- Actual programs with int.
- More important, conclusions for rational does not always applicable in on integer version.

Example

while
$$(x_2 - x_1 \le 0, x_1 + x_2 \ge 1)$$
 do $x_2' = x_2 - 2x_1 + 1, x_1' = x_1$

For rationals: $x_1=\frac{1}{2}, x_2=\frac{1}{2}$ For integers: there exists a linear ranking function $f(x_1,x_2)=x_1+x_2$

$M\Phi RF$ and LLRFs over the Integers

- Integer case for LRF: completeness for the integer version was achieved by reducing the problem to the rational case. Intuitionly, since \mathcal{Q}_I is the convex combinition of points in $I(\mathcal{Q})$.
- Theorems above does not apply to the integer versions, but in the following we will prove that the reduction from integer case to rational also works for LLRF and M⊕RF.

Weak LLRF: Integer to Rational

Theorem (4)

Let $\langle f_1, \ldots, f_d \rangle$ be a weak LLRF for $I(\mathcal{Q})$. Then there are constants c_1, \ldots, c_d such that $\langle f_1 + c_1, \ldots, f_d + c_d \rangle$ is a weak LLRF for \mathcal{Q}_I (over the rationals).

Proof.

prove by induction:

- ightharpoonup d = 1, LRF.
- ▶ d > 1, define

$$Q' = Q_I \cap \{\mathbf{x}'' \mid f_1(\mathbf{x}) \le -1\}$$
$$Q'' = Q_I \cap \{\mathbf{x}'' \mid \Delta f_1(\mathbf{x}'') = 0\}$$

by IH, the theorem holds on \mathcal{Q}_I' and \mathcal{Q}_I'' for weak LLRF of depth d-1. say,

$$\langle f_2 + c'_2, \dots, f_d + c'_d \rangle, \langle f_2 + c''_2, \dots, f_d + c''_d \rangle$$

Proof Continue

$$Q' = Q_I \cap \{\mathbf{x}'' \mid f_1(\mathbf{x}) \le -1\}$$
$$Q'' = Q_I \cap \{\mathbf{x}'' \mid \Delta f_1(\mathbf{x}'') = 0\}$$

Then we wish to have a lower bound on $f_1(\mathbf{x})$.

$$\langle f_1 + c_1, f_2 + \max(c'_2, c''_2), \dots, f_d + \max(c'_d, c''_d) \rangle$$

This implies the above formula is a weak LLRF on Q_I . i.e. given a $\mathbf{x}'' \in Q_I$, either..., or...

Problem: how to prove the existence of the lower bound?

Prove the Lower Bound

$$Q_I', Q_I''$$
.

- ▶ If Q'_I is empty, then by the definition of Q' f_1 is lower bounded.
- ▶ Otherwise, prove the lower bound on $\mathcal{Q}_I \setminus \mathcal{Q}_I'$

$$Q_I' = \{ \mathbf{x}'' \mid \vec{a}_i \cdot \mathbf{x}'' \le b_i, i \in [1, m] \}$$

$$\mathcal{P}_i = Q_I \cap \{ \mathbf{x}'' \mid \vec{a}_i \cdot \mathbf{x}'' > b_i \}$$

$$\mathcal{P}_i' = Q_I \cap \{ \mathbf{x}'' \mid \vec{a}_i \cdot \mathbf{x}'' \ge b_i \}$$

For $i \in [1,m]$. Then clearly $\mathcal{Q}_I \setminus \mathcal{Q}_I' \subseteq \bigcup_{i=1}^m \mathcal{P}_i$, by construction all the integer points in \mathcal{P}_i are also in $\mathcal{Q}_I \setminus \mathcal{Q}_I'$. Proof target: for every i, f_1 is lower bounded in \mathcal{P}_i for every i. Fix i for the following arguments, s.t. \mathcal{P}_i is not empty.

Intuition: Proof of the Lower Bound

Prove the Lower Bound

$$Q'_{I} = \{ \mathbf{x}'' \mid \vec{a}_{i} \cdot \mathbf{x}'' \leq b_{i}, i \in [1, m] \}$$

$$\mathcal{P}_{i} = Q_{I} \cap \{ \mathbf{x}'' \mid \vec{a}_{i} \cdot \mathbf{x}'' > b_{i} \}$$

$$\mathcal{P}'_{i} = Q_{I} \cap \{ \mathbf{x}'' \mid \vec{a}_{i} \cdot \mathbf{x}'' \geq b_{i} \}$$

Assume (prove by contradiction) \mathcal{P}_i does not lower bound f_1 . Let $\mathbf{x}_0'' \in \mathcal{P}_i$.

$$f_1(\mathbf{x}) = \vec{\lambda} \cdot \mathbf{x} + \lambda_0$$
$$\mathcal{P}_i = \mathcal{O} + \mathcal{C}$$

There must be a vector $\mathbf{y}'' \in \mathcal{C}$ s.t. $\vec{\lambda} \cdot \mathbf{y} < 0$

Prove the Lower Bound

$$Q' = Q_I \cap \{\mathbf{x}'' \mid f_1(\mathbf{x}) \le -1\}$$

$$Q'_I = \{\mathbf{x}'' \mid \vec{a}_i \cdot \mathbf{x}'' \le b_i, i \in [1, m]\}$$

$$\mathcal{P}_i = Q_I \cap \{\mathbf{x}'' \mid \vec{a}_i \cdot \mathbf{x}'' > b_i\}$$

$$\mathcal{P}'_i = Q_I \cap \{\mathbf{x}'' \mid \vec{a}_i \cdot \mathbf{x}'' \ge b_i\}$$

 $\mathbf{x}_0'' + k\mathbf{y}''$ is in \mathcal{P}_i' , the set $S = \{\mathbf{x}_0'' + k\mathbf{y}'' \mid k \in \mathbb{Z}_+\}$ is contained in \mathcal{P}_i .

Integer points of \mathcal{P}_i are all in $\mathcal{Q}_I \setminus \mathcal{Q}'_I$.

Contradiction.

Hence, f_1 is bounded.

The Depth of a $M\Phi RF$

Idea: pre-compute the depth d for M Φ RF synthesis.

Theorem (5)

For integer B > 0, the following loop Q_B

while
$$(x \ge 1, y \ge 1, x \ge y, 2^B y \ge x)$$
 do $x' = 2x, y' = 3y$

needs at least B+1 components in any M Φ RF.

Proof.

Define $R_I = \{(2^i c, c, 2^{i+1} c, 3c) \mid c \geq 1\}$ and note that for $i \in [0, B]$, we have $R_i \in \mathcal{Q}_B$.

Assume the loop has a M Φ RF with depth B, then it is obvious that there are R_i and $R_j, i \neq j$ that are ranked by the same phase f_k , w.l.o.g., assume j > i and $f_k(x,y) = a_1x + a_2y + a_0$, we have

Proof of Theorem (5)

$$\begin{split} j > i \text{ and } f_k(x,y) &= a_1 x + a_2 y + a_0 \\ f_k(2^i,1) - f_k(2^{i+1},3) &= -a_1 2^i - a_2 2 > 0 \\ f_k(2^j,1) - f_k(2^{j+1},3) &= -a_1 2^j - a_2 2 > 0 \\ f_k(2^i,1) - f_k(0,0) &= a_1 2^i + a_2 &\geq 0 \\ f_k(2^j,1) - f_k(0,0) &= a_1 2^j + a_2 &\geq 0 \end{split}$$

Iteration Bounds from M⊕RFs

Example

while
$$(x \ge 0)$$
do $x' = x + y, y' = y - 1$

M
$$\Phi$$
RF: $\langle y+1, x \rangle$

When start from $x = x_0$ and $y = y_0...$

$$x_0 + \frac{y_0(y_0+1)}{2} - 1$$

Iteration Bounds from M⊕RFs

Overview: Given a SLC loop and a corresponding M Φ RF $\tau = \langle f_1, \dots, f_d \rangle$.

- ▶ $F_k(t)$: the value of f_k after iteration t.
- ▶ $UB_k(t)$: bound for f_k . For $t > T_k$, $UB_k(T_k)$ becomes negative.
- ▶ *T_k*: an upper bound on the time in which the *k*-th phase ends.
- ▶ The whole loop must terminate before $\max_k T_k$ iterations.

 \mathbf{x}_t be te state after iteration t. Define $F_k(t) = f_k(\mathbf{x}_t)$. Let $M = \max(f_1(\mathbf{x}_0), \dots, f_k(\mathbf{x}_0))$

Iteration Bounds from M⊕RF

Lemma (4)

For all $k \in [1,d]$, there are $\mu_1,\ldots,\mu_{k-2} \geq 0$ and $\mu_{k-1} > 0$ such that $\mathbf{x}'' \in \mathcal{Q} \rightarrow \mu_1 f_1(\mathbf{x}) + \cdots + \mu_{k-1} f_{k-1}(\mathbf{x}) + (\Delta f_k(\mathbf{x}'') - 1) \geq 0$.

Proof.

$$\mathbf{x}'' \in \mathcal{Q} \to f_1(\mathbf{x}) \ge 0 \lor \cdots \lor f_{k-1}(\mathbf{x}) \ge 0 \lor \Delta f_k(\mathbf{x}'') \ge 1.$$

Lemma (5)

For all $k \in [1, d]$, there are constants $c_k, d_k > 0$ such that $F_k(t) \le c_k M t^{k-1} - d_k t^k$, for all $t \ge 1$.

[6] Proof Idea: Use the bound for $-\Delta f_k(\mathbf{x}_i'')$ to bound $F_k(t)$.

Proof of Lemma (6)

$$\begin{split} F_k(t) &= f_k(\mathbf{x}_0) + \Sigma_{i=0}^{t-1}(f_k(\mathbf{x}_{i+1}) - f_k(\mathbf{x}_i)) \\ &< M + \Sigma_{i=0}^{t-1}\left(\mu_1F_1(i) + \dots + \mu_{k-1}F_{k-1}(i)\right) \\ &\leq M(1+\mu) + \Sigma_{i=1}^{t-1}\left(\mu_1F_1(i) + \dots + \mu_{k-1}F_{k-1}(i)\right) \\ &\leq M(1+\mu) + \Sigma_{i=1}^{t-1}\sum_{j=1}^{k-1}\left(\mu_jc_jMi^{j-1} - \mu_jd_ji^j\right) \\ &\leq M(1+\mu) + \Sigma_{i=1}^{t-1}\left((\Sigma_{j=1}^{k-1}\mu_jc_jMi^{j-1}) - \mu_{k-1}d_{k-1}i^{k-1}\right) \\ &\leq M(1+\mu) + \Sigma_{i=1}^{t-1}\left(M(\Sigma_{j=1}^{k-1}\mu_jc_j)i^{k-2} - \mu_{k-1}d_{k-1}i^{k-1}\right) \\ &= M(1+\mu) + M(\Sigma_{j=1}^{k-1}\mu_jc_j)(\Sigma_{i=1}^{t-1}i^{k-2}) - \mu_{k-1}d_{k-1}\Sigma_{i=1}^{t-1}i^{k-1} \\ &\leq M(1+\mu) + M(\Sigma_{j=1}^{k-1}\mu_jc_j)\left(\frac{t^{k-1}}{k-1}\right) - \mu_{k-1}d_{k-1}\left(\frac{t^k}{k} - t^{k-1}\right) \\ &= c_kMt^{k-1} - d_kt^k \end{split}$$

where
$$\mu_1 f_1(\mathbf{x}) + \dots + \mu_{k-1} f_{k-1}(\mathbf{x}) \ge \Delta f_k(\mathbf{x}'') = f_k(\mathbf{x}_{i+1} - f_k(\mathbf{x}_i))$$

Theorem (6)

An SLC loop that has a M Φ RF terminates in a number of iterations bounded by $O(||\mathbf{x}_0||_{\infty})$

Proof.

$$F_k(t) \leq c_k M t^{k-1} - d_k t^k.$$
 For $t > \max\{1, (c_k/d_k)M\}$, we have $F_k(t) < 0.$

Thus, the loop terminates by the time $\max\{1, (c_i/d_i)M, \dots, (c_k/d_k)M\}$ where $M = \max(f_1(\mathbf{x}_0), \dots, f_k(\mathbf{x}_0)).$