Question Number	Answer		Mark
17a	The beam/electron/positron is gaining speed	(1)	4
	The length of tubes increases or the length of gaps between tubes increases	(1)	
	So time between beam exiting (successive) tubes is constant Or time spent in each tube is constant		
	Or time spent between (each successive pair of) tubes is constant	(1)	
	The p.d. has to reverse in this time period and hence frequency is constant	(1)	
17bi	Use of $m_{\Omega} = 3272 \times m_{\rm e}$	(1)	4
	Use of $\Delta E = c^2 \Delta m$	(1)	
	Use of conversion factor for eV	(1)	
	mass of omega baryon = 1680 MeV/c^2	(1)	
	Example of calculation mass=3272×9.11×10 ⁻³¹ kg Energy =2.981×10 ⁻²⁷ kg×(3×10 ⁸ ms ⁻¹) ² Energy = $\frac{2.68\times10^{-10}\text{J}}{1.6\times10^{-19}\text{JeV}^{-1}}$ mass = 1677 MeV/c ²		
17bii	Total energy of electron and positron = 29 GeV Or total energy available for each omega baryon = 14.5 GeV Or $\Delta E = c^2 \Delta m$ for omega rest mass energy Or Use of conversion factor for GeV to J for electron and positron energy (ignore rest mass of electron and positron)	(1)	3
	Uses Kinetic Energy = Total Energy – Rest mass energy of baryon	(1)	
	Kinetic energy of either omega = 12.8 GeV Or Kinetic energy of either omega = $2.05 \times 10^{-9} \text{ J}$	(1)	
	Example of calculation		
	Kinetic energy of both omegas = $29 \text{ GeV} - 2 \times 1.7 \text{ GeV} = 25.6 \text{ GeV}$		
	So kinetic energy of either omega baryon = 12.8 GeV		
17c	If both omega, it would break the conservation of baryon number	(1)	3
	Must be omega and anti-omega	(1)	
	Further detail of baryon number: If both omega, before collision baryon number = 0 and after collision baryon number = 2 (which breaks conservation law) Or		
	If omega and anti-omega before collision baryon number = 0 and after $1 - 1 = 0$ (which obeys conservation law)	(1)	
	Total for question 17		14