

Joint Random Variables

Vibha Mane
The COSINE Lab
Department of Electrical and Computer Engineering

Topics

- Definition of Joint Random Variables
- Characterization of Discrete Joint Random Variables
 - Cumulative Distribution Function (CDF)
 - Probability Mass Function (PMF)
- Characterization of Continuous Joint Random Variables
 - Cumulative Distribution Function (CDF)
 - Probability Density Function (PDF)
- Marginals
- Independence
- Some Examples

I. Joint Random Variables

- We are interested in several random variables that are related to each other, for example the length and width of a flower petal or sugar level and diabetic disease in a person.
- Such variables are known as joint random variables or multiple random variables or random vectors.
- We are interested in studying the joint probability distributions of such random variables.
- When we have only two random variables, say X_1 and X_2 , we call this **bivariate probability** distributions.
- In this lecture, we will study the properties of two random variables.
- The same concepts can be extended to multiple random variables X_1, X_1, X_3, \cdots

II. Characterization of Joint Random Variables

- The discrete joint random variables are characterized by
 - Cumulative Distribution Function (CDF)
 - Probability Mass Function (PMF)
- The continuous joint random variables are characterized by
 - Cumulative Distribution Function (CDF)
 - Probability Density Function (PDF)

Cumulative Distribution Function

■ The cumulative distribution function (CDF) of joint random variables X_1 and X_2 (discrete or continuous) is the function

$$F_{X_1,X_2}(x_1,x_2): \mathbb{R}^2 \to [0,1]$$
, given by

 $F_{X_1,X_2}(x_1,x_2) = P(X_1 \le x_1,X_2 \le x_2)$, defined for both discrete and continuous random variables.

- Note that the uppercase X is used for the random variable and the lower case x is used for a specific value.
- For example, $P(X_1 \le 3, X_2 \le 5)$ means probability that the random variable X_1 is less than or equal to 3 and X_2 is less than or equal to 5.

Properties of CDF

The CDF of the random variables (X_1, X_2) has the following properties:

- $0 \le F_{X_1, X_2}(x_1, x_2) \le 1.$
- $F_{X_1}(x_1) = F_{X_1,X_2}(x_1,\infty).$
- $F_{X_2}(x_2) = F_{X_1,X_2}(\infty,x_2).$
- $\lim_{x_1 \to -\infty} F_{X_1, X_2}(x_1, x_2) = 0.$
- $\lim_{x_2 \to -\infty} F_{X_1, X_2}(x_1, x_2) = 0.$

Properties of CDF, cont.

• If $x_{11} < x_{12}$ and $x_{21} < x_{22}$, then

$$F_{X_1,X_2}(x_{11},x_{21}) \leq F_{X_1,X_2}(x_{12},x_{22}).$$

- Note that the above properties are necessary and sufficient conditions for $F_{X_1,X_2}(x_1,x_2)$ to be a joint CDF.

Joint Probability Mass Function

■ The joint probability mass function (PMF) of discrete random variables X_1 and X_2 is defined by

$$p_{X_1,X_2}(x_1,x_2) = P(X_1 = x_1,X_2 = x_2).$$

The joint PMF satisfies the property

$$\sum_{x_1,x_2} p_{X_1,X_2}(x_1,x_2) = 1$$
, that is, the sum of PMF over the support of X_1 and X_2 is 1.

• Probability in a region B within the support of X_1 and X_2 is given by

$$P((X_1, X_2) \in B) = \sum_B p_{X_1, X_2}(x_1, x_2).$$

Marginal Probability Mass Function

■ The marginal PMFs of X_1 and X_2 can be obtained from the joint PMF as follows:

$$p_{X_1}(x_1) = \sum_{x_2} p_{X_1, X_2}(x_1, x_2)$$
, and $p_{X_2}(x_2) = \sum_{x_1} p_{X_1, X_2}(x_1, x_2)$.

Further, the marginals satisfy the property

$$\sum_{x_1} p_{X_1}(x_1) = 1$$
, and

$$\sum_{x_2} p_{X_2}(x_2) = 1.$$

Joint Probability Density Function

■ The joint probability density function (PDF) of continuous random variables X_1 and X_2 satisfies the following property

$$F_{X_1,X_2}(x_1,x_2) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} f_{X_1,X_2}(u_1,u_2) du_1 du_2,$$

 u_1 and u_1 are dummy variables of integration.

for some integrable function $f: \mathbb{R}^2 \to [0, \infty)$.

The joint PDF satisfies the property

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_1,X_2}(x_1,x_2) dx_1 dx_2 = 1, \text{ that is, the integral of the PDF over the support of } X_1$$
 and X_2 is 1.

Joint Probability Density Function, cont.

• Probability in a region B within the support of X_1 and X_2 is given by

$$P((X_1, X_2) \in B) = \int_B f_{X_1, X_2}(x_1, x_2) dx_1 dx_2.$$

Marginal Probability Density Function

■ The marginal PDFs of X_1 and X_2 can be obtained from the joint PDF as follows:

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) dx_2$$
, and
 $f_{X_2}(x_2) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) dx_1$.

• Further, the marginals satisfy the property

$$\int_{-\infty}^{\infty} f_{X_1}(x_1) dx_1 = 1, \text{ and}$$

$$\int_{-\infty}^{\infty} f_{X_2}(x_2) dx_2 = 1.$$

Notation

Notation

- We use uppercase $F_{X_1,X_2}(x_1,x_2)$ for joint CDF.
- We use lowercase $p_{X_1,X_2}(x_1,x_2)$ for joint PMF.
- We use lowercase $f_{X_1,X_2}(x_1,x_2)$ for joint PDF.

Example - Discrete Joint Random Variables (1 of 8)

Example

The joint PMF $p_{X_1,X_2}(x_1,x_2)$ of discrete random variables X_1 and X_2 is given by the following table:

$X_1 \setminus X_2$	-1	0	1
-1	1/12	1/12	1/6
0	1/6	1/6	0
1	1/12	1/6	1/12

14

Example - Discrete Joint Random Variables (2 of 8)

(a) Determine the marginal PMF $p_{X_1}(x_1)$.

The marginal PMF is given by the following sum formula

$$p_{X_1}(x_1) = \sum_{x_2} p_{X_1, X_2}(x_1, x_2).$$

We compute this marginal for each value of X_1 .

$$p_{X_1}(X_1 = -1) = p_{X_1, X_2}(X_1 = -1, X_2 = -1) + p_{X_1, X_2}(X_1 = -1, X_2 = 0)$$
$$+ p_{X_1, X_2}(X_1 = -1, X_2 = 1).$$

That is, we sum up over all values of X_2 , with $X_1 = -1$. This is the **row sum** in the above table.

Therefore,
$$p_{X_1}(X_1 = -1) = \frac{1}{12} + \frac{1}{12} + \frac{1}{6} = \frac{1}{3}$$
.

Example - Discrete Joint Random Variables (3 of 8)

Continuing in a similar manner, we obtain

$$p_{X_1}(X_1 = 0) = p_{X_1, X_2}(X_1 = 0, X_2 = -1) + p_{X_1, X_2}(X_1 = 0, X_2 = 0)$$

$$+ p_{X_1, X_2}(X_1 = 0, X_2 = 1).$$

$$= \frac{1}{6} + \frac{1}{6} + 0 = \frac{1}{3}.$$

And,

$$p_{X_1}(X_1 = 1) = p_{X_1, X_2}(X_1 = 1, X_2 = -1) + p_{X_1, X_2}(X_1 = 1, X_2 = 0)$$

$$+ p_{X_1, X_2}(X_1 = 1, X_2 = 1).$$

$$= \frac{1}{12} + \frac{1}{6} + \frac{1}{12} = \frac{1}{3}.$$

Example - Discrete Joint Random Variables (4 of 8)

The marginal $p_{X_1}(x_1)$ is shown in the table below:

$X_1 \setminus X_2$	-1	0	1	$p_{X_1}(x_1)$
-1	1/12	1/12	1/6	1/3
0	1/6	1/6	0	1/3
1	1/12	1/6	1/12	1/3

Example - Discrete Joint Random Variables (5 of 8)

(b) Determine the marginal PMF $p_{X_2}(x_2)$.

The marginal PMF is given by the following sum formula

$$p_{X_2}(x_2) = \sum_{x_1} p_{X_1, X_2}(x_1, x_2).$$

That is, now we sum over X_1 , for each value of X_2 . This is the **column sum** in the above table.

$$p_{X_2}(X_2 = -1) = p_{X_1, X_2}(X_1 = -1, X_2 = -1) + p_{X_1, X_2}(X_1 = 0, X_2 = -1) + p_{X_1, X_2}(X_1 = 1, X_2 = -1).$$

Here we sum up over all values of X_1 , with $X_2 = -1$.

Therefore,
$$p_{X_2}(X_2 = -1) = \frac{1}{12} + \frac{1}{6} + \frac{1}{12} = \frac{4}{12}$$
.

Example - Discrete Joint Random Variables (6 of 8)

The marginal $p_{X_2}(x_2)$ is also shown in the table below:

$X_1 \setminus X_2$	-1	0	1	$p_{X_1}\left(x_1\right)$
-1	1/12	1/12	1/6	1/3
0	1/6	1/6	0	1/3
1	1/12	1/6	1/12	1/3
$p_{X_2}(x_2)$	4/12	5/12	3/12	1

Each of the marginal satisfies $\sum_{x_1} p_{X_1}(x_1) = 1$, and $\sum_{x_2} p_{X_2}(x_2) = 1$.

Example - Discrete Joint Random Variables (7 of 8)

(c) What is
$$P(X_1 = X_2)$$
?
$$P(X_1 = X_2) = p_{X_1, X_2}(X_1 = -1, X_2 = -1) + p_{X_1, X_2}(X_1 = 0, X_2 = 0)$$

$$+ p_{X_1, X_2}(X_1 = 1, X_2 = 1).$$

$$= \frac{1}{12} + \frac{1}{6} + \frac{1}{12} = \frac{1}{3}.$$

Example - Discrete Joint Random Variables (8 of 8)

(c) Are X_1 and X_2 independent?

For X_1 and X_2 to be independent, the joint must factorize into marginals for all values of X_1 and X_2 .

That is,
$$p_{X_1,X_2}(x_1,x_2) = p_{X_1}(x_1)p_{X_2}(x_2)$$
.

Let us check this for some values.

$$p_{X_1,X_2}(X_1 = -1, X_2 = -1) = \frac{1}{12}$$
 (from the above table).

$$p_{X_1}(X_1 = -1) \ p_{X_2}(X_2 = -1) = \left(\frac{1}{3}\right)\left(\frac{1}{3}\right) = \frac{1}{9}$$
 (from the above computations).

Since $p_{X_1,X_2}(x_1,x_2) \neq p_{X_1}(x_1)p_{X_2}(x_2)$, therefore X_1 and X_2 are not independent.

Example - Continuous Joint Random Variables (1 of 6)

Example

The joint PDF $f_{X_1,X_2}(x_1,x_2)$ of continuous random variables X_1 and X_2 is given by

$$f_{X_1,X_2}(x_1,x_2) = \begin{cases} x_1 + x_2, & 0 \le x_1 \le 1, & 0 \le x_2 \le 1 \\ 0, & \text{otherwise} \end{cases}$$

(a) Determine the marginal PDF $f_{X_1}(x_1)$.

The marginal PDF is given by the following expression

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) dx_2,$$
$$= \int_{0}^{1} (x_1 + x_2) dx_2$$

Example - Continuous Joint Random Variables (2 of 6)

$$= \left| x_1 x_2 + \frac{x_2^2}{2} \right|_0^1$$

$$= x_1 + \frac{1}{2}, \qquad 0 \le x_1 \le 1.$$

The marginal of X_1 is a function of x_1 .

(b) Determine the marginal PDF $f_{X_2}(x_2)$.

The marginal PDF is given by the following expression

$$f_{X_2}(x_2) = \int_{-\infty}^{\infty} f_{X_1, X_2}(x_1, x_2) dx_1,$$
$$= \int_{0}^{1} (x_1 + x_2) dx_1$$

Example - Continuous Joint Random Variables (3 of 6)

$$= \left| \frac{x_1^2}{2} + x_1 x_2 \right|_0^1$$

$$= \frac{1}{2} + x_2, \qquad 0 \le x_2 \le 1.$$

(c) Determine the probability $P(X_1 \le 1/2)$.

The required probability is given by

$$P(X_1 \le 1/2) = \int_0^{1/2} f_{X_1}(x_1) dx_1,$$
$$= \int_0^{1/2} (x_1 + \frac{1}{2}) dx_1$$

The marginal of X_2 is a function of x_2 .

Here we use the marginal of X_1 .

Example - Continuous Joint Random Variables (4 of 6)

$$= \left| \frac{x_1^2}{2} + \frac{x_1}{2} \right|_0^{1/2}$$

$$= \frac{3}{8}.$$

(d) Determine the probability $P(X_1 + X_2 \le 1)$.

The required probability is given by

$$P(X_1 + X_2 \le 1) = \int_0^1 \int_0^{1 - x_1} (x_1 + x_2) dx_1 dx_2$$

This comes from the expression on slide 11 on probability in a region.

The limits of the integral are tricky to determine and are explained shortly.

Example - Continuous Joint Random Variables (5 of 6)

$$= \int_0^1 \left[x_1 (1 - x_1) + \frac{(1 - x_1)^2}{2} \right] dx_1$$

$$= \int_0^1 \left[\frac{1}{2} - \frac{x_1^2}{2} \right] dx_1$$

$$= \frac{1}{3}.$$

After doing the x_2 integral.

Example - Continuous Joint Random Variables (6 of 6)

Determining the limits of integration -

The triangular region is the region $X_1 + X_2 \le 1$.

This is bound by the line $x_1 + x_2 = 1$, the x_1 -axis and the x_2 -axis.

It includes the following constraints from the support of X_1 and X_2 :

$$0 \le x_1 \le 1 \text{ and } 0 \le x_2 \le 1.$$

Sliding the purple vertical strip over the triangular region "covers" this region. For this strip, $x_1: 0 \to 1$ and $x_2: 0 \to 1 - x_1$.

References

- 1. Charles Boncelet, Probability, Statistics and Random Signals, Oxford University Press, 2016.
- 2. Sheldon Ross, A First Course in Probability, Macmillan Publishing Company, 1988.
- 3. R. D. Yates, et al., Probability and Stochastic Processes, John Wiley, 2005.