显然题目和 r 次剩余有关。先梳理一下 r 次剩余:

- r=1, 对于任意 $0 \le a < p$, $x^r=a$ 都仅有一个解。
- r=2, 此时对于 p>2 仅有 (p+1)/2 个 a 使得 $x^r=a$ 有解,且除了 a=0 外都有两个解。
- r=3,此时对于 p>3 要分类讨论。若 $3\mid p-1$,则仅有 (p+2)/3 个 a 使得 $x^r=a$ 有解,且除了 a=0 外都有三个解;否则对于每个 a 都有唯一解。

回到本题,考察哪些 b^i 是非零 r 次剩余。注意到 b^i 是 r 次剩余等价于 $b^{i \bmod r}$ 是 r 次剩余,于是分类 讨论可得

$$\sum_{a=0}^{p-1}\sum_{b=0}^{p-1}\left[a^rb^i\equiv 1\pmod{p}
ight] = egin{cases} p-1 & r=1\ 1 & r=2,p=2\ p-1 & r=2,p>2,2
mid i \ 2p-2 & r=2,p>2,2
mid i \ 2p-1 & r=3,p=2,3,3m+2\ p-1 & r=3,p=3m+1,3
mid i \ 3p-3 & r=3,p=3m+1,3
mid i \end{cases}$$

最后的求和是容易的,因为 $\sum_{i}(ti)^{k}=t^{k}\sum i^{k}$ 。