定義

位置点は整数である時刻 t,xy 平面上の座標値 x,y の組 $(t,x,y)\in\mathbb{Z}^+$ である.位置点の時刻に関して真に昇順の列(時系列) $q=((t_1,x_1,y_1),\dots,(t_n,x_n,y_n))$ を軌跡 trajectory とよぶ.

ある整数列(あるいは有限アルファベット上の文字列) $q=(q_1,q_2,\dots,q_n)$ と列 $s=(s_1,\dots,s_m)$ (ただし $m\leq n$)について,真に昇順である添え字の列 $i(1)< i(2)<\dots< i(m)$ で $q_{i(1)}=s_1,q_{i(2)}=s_2,\dots,q_{i(m)}=s_m$ を満たすものがあるとき,s は q の部分列 subsequence であるという.

文字列の連続した一部である部分文字列 substring と異なり,部分列は列中の要素の間が(添え字の数字が)飛んでいてもよい.

Example 1. q=(134,135,136,135,134,132,137) のとき,s=(134,135,132,137) は q の部分列.

Definition 1 (最長共通部分列問題 longest common sub-sequence problem). 整数 (あるいは有限アルファベット中の文字)の列の組q,rが与えられたとき,qの部分列かつrの部分列となる列で,最も長いものsを求める問題.

Definition 2 (2 つの位置点列の最長共通部分列 (I)). ある正の値 $\varepsilon \in \mathbb{R}^+$ について , 二つの位置点列 $q=(s_1,\ldots,s_n)$ と $r=(t_1,\ldots,t_p)$ の間の ε 共通部分列とは , q と r の点と点の距離が ε 以内の対を点が等しいとみなした最長共通部分列 longest common super sequence である .

Definition 3 (2 つの位置点列の最長共通部分列 (II)). 軌跡 q の位置点および位置点と次の点の間の線分からなる列

$$\tilde{q} = (r_1, (r_1, r_2), r_2, (r_2, r_3), r_3, \dots, r_{n-1}, (r_{n-1}, r_n), r_n)$$

を q の経路 path という . ある正の値 $\varepsilon\in\mathbb{R}^+$ について , 二つの位置点列 $q=(s_1,\ldots,s_n)$ と $r=(t_1,\ldots,t_p)$ それぞれの経路 \tilde{q},\tilde{r} の間の ε 共通部分列とは , \tilde{q} と \tilde{r} の (1) 点と点の距離が ε 以内 , または (2) 点と線分の距離が ε 以内である対を等しいとみなした最長共通部分列 longest common super sequence である .

Example 2. 例をつくってみよう.