STATE OF NEW YORK MARIO M. CUOMO, Governor

DEPARTMENT OF TRANSPORTATIONFRANKLIN E. WHITE, Commissioner

1220 WASHINGTON AVE., STATE CAMPUS, ALBANY, NEW YORK 12232

RECEIVED

OCTOI 1985

NYS. DOTDEN.

Energ. Res. & Dev.

TECHNICAL REPORT 85-3

ASPHALT CEMENT MONITOR PROGRAM
FALL 1984

materials bureau technical services division

MARCH 1985

TECHNICAL REPORT 85-3

ASPHALT CEMENT MONITOR PROGRAM FALL 1984

Prepared by

Ronald L. Zack Senior Engineering Materials Chemist

Steven J. Palko Senior Engineering Materials Technician

February 1985

MATERIALS BUREAU
JAMES J. MURPHY, DIRECTOR

NEW YORK STATE DEPARTMENT OF TRANSPORTATION 1220 WASHINGTON AVENUE, ALBANY, NY 12232

Preface

Each year the Materials Bureau conducts a monitor testing program in cooperation with various suppliers of asphalt cement. Samples are obtained by Bureau personnel and split for testing by both the supplier and the Bureau in accordance with standard AASHTO test procedures. This report summarizes the results of the 1984 program.

NYSDOT Library 50 Wolf Road, POD 34 Albany, New York 12232

MYSDOT Silvery So Wod Road, POD 34 Sharey, New York 12232

TABLE OF CONTENTS

I.	Introduction	Page
II.	Sample Information	Page
III.	Tests Performed	Page
IV.	Test Data and Sample Identification Forms	Page
٧.	New York State Department of Transportation Specification for Asphalt Cement	Page
VI.	Summary of Test Results	Page
VII.	Test Results	Page
VIII.	Statistical Analysis of Test Results	Page
IX.	Graphs and Charts of Related Material Information	Page
	A. Comparision TFOT Data B. Asphaltene Dispersion Data	Page Page

I. Introduction

During September and October, 1984, personnel from the Materials Bureau Chemistry Laboratory Section obtained twenty samples from thirteen suppliers of asphalt cement. These samples represented many of the sources which had supplied material to the Department during the 1984 construction season including Boscan, Maya, Mid Continent, Canadian, Arab, Venezuelan and other various crude sources.

At the time of sampling, the twenty samples were split into two parts. One part was given to the asphalt supplier while the other was returned to the Bureau's Laboratory. All tests were conducted in accordance with the applicable AASHTO test procedures.

Two standard test report forms and one sample identification form were provided by the Bureau for recording sample information and all test results. Each supplier submitted the test results to the Bureau for review and incorporation into this report.

Personneller Tax on transport Till To

II. Sample Information

A. The distribution of the samples by grade was as follows:

Grade	Number of Samples
the particular back to have a	
Flux	4
AC-5	2
AC-15	3
AC-20	8
85/100	3

B. The supplier, location, crude source and lot number are tabulated below.

	Flux		
Supplier	Location	Lot	Crude Source
Chevron	Perth Amboy, NJ	20	Boscan - Maya
Cibro	Albany, NY	41	Boscan
Marathon	Tonawanda	7	Mid Continent and
			Candian
United Refinery	Warren, PA	12	Western Canadian
	<u>AC-5</u>		
Supplier	Location	Lot 1	Crude Source
Petro Canada	Montreal, Quebec	-	Mexican Menemota
Petro Canada	Oakville, Ontario	317/318	Bow River
	AC-15		
Supplier	Location	Tot	Crude Source
Marathon	Tonawanda	Lot 12	Mid Continent
	2011GW GITGG		and Canadian
Petro Canada	Oakville, Ontario	315/316	Bow River
United Refinery	Warren, PA	11	Western Canadian
•			
	AC-20		
Supplier	Location	Lot 31	Crude Source
Arco	Philadelphia, PA	31	Maya Crude
			and North Slope
Chevron	Perth Amboy, NJ	19	Boscan and Maya
Cibro	Albany, NY	42	Boscan
Exxon	Linden, NJ	14	North Slope - Maya - Arab Heavy
Marathon	Tonawanda	9	Mid Continent and Candian
Monaco	Pittsford, NY	20	Boscan
Parco	Stamford, CT	36	Boscan - Maya
West Bank Oil	Perth Amboy, NJ	11	Corpovan and Baja Grande, Venezuela

	85/100		
Supplier	Location	Lot	Crude Source
Gulf Canada	Montreal, Quebec	38/40	Lloydminster
			Canadian
Petro Canada	Montreal, Quebec	1	Mexican Menemota
			and Western Condensate
Shell Canada	Montreal, Quebec	1.	Canadian, Venezuelan,
			Mexican

III. Test Performed

- A. Tests required by Department of Transportation Specification: (all tests not required on all items of asphalt cement)
 - 1. Viscosity @ 140°F, Absolute, (AASHTO T202)
 - 2. Viscocity @ 275°F, Kinematic, (AASHTO T201)
 - 3. Penetration @ 77°F, (AASHTO T49)
 - 4. Ductility @ 39.2°F, (AASHTO T51)
 - 5. Flash Point, Cleveland Open Cup, (AASHTO T48)
 - 6. Solubility in Trichloroethylene, (AASHTO T44)
 - 7. % Loss on Thin Film Oven Test Residue, (AASHTO T179)
 - 8. Penetration @ 77°F on Thin Film Oven Test Residue (AASHTO T49)
 - 9. Penetration @ 77°F Ratio (% of Original) between the Thin Film Oven Test Residue and the Penetration @ 77°F on the orginal sample
 - 10. Viscosity @ 140°, Absolute on Thin Film Oven Test Residue (AASHTO T202)
 - Ductility @ 77°F on Thin Film Oven Test Residue (AASHTO T51)
- B. Additional tests not required by Department of Transportation Specifications:
 - 1. Penetration @ 39.2°F (AASHTO T49)
 - 2. Penetration Ratio: 39.2°F/77°F
 - 3. Ductility @ 77°F (AASHTO T51)
 - 4. Specific Gravity @ 77°F (AASHTO T228)
 - 5. Softening Point, Ethylene Glycol (AASHTO T53)
 - 6. Viscosity @ 275°F, Kinematic, on Thin Film Oven Test Residue (AASHTO T201)
 - 7. Ductility @ 60°F on Thin Film Oven Test Residue (AASHTO T51)
 - 8. Viscosity @ 140°F, Absolute, Ratio, between viscosity @ 140°F, Absolute on Thin Film Oven Test Residue Sample and the original sample.
 - 9. A Settling Test to Evaluate the Relative Degree of Dispersion of Asphaltenes.
 - 10. Chemical Analysis of asphalt cement.
- C. A Penetration Viscosity Number (PVN) and a Pentration Index Number (PIN) has been computed for each asphalt cement sample.

IV. Test Data and Sample Identification Forms

On the following pages are the Standard Test Report and Sample Identification Forms used for this project.

PRIMARY SOURCE	LOCATION
CRUDE SOURCE	SAMPLED AT
SAMPLED BY	DATE SAMPLED
ITEM NO.	GRADE TYPE
LOT NO,	DATE OF CERTIFICATION

REAMRKS:

NEW YORK STATE

DEPARTMENT OF TRANSPORTATION

MATERIALS BUREAU

1984 ASPHALT MONITOR PROGRAM

	TEST	NO.	
PRIMARY SOURCE . LO	CATION		
LOT NO. ITEM NO.	GRAD	E TYPE	
CRUDE SOURCE			
	AASHTO	RESULTS	
1. Viscosity Ratio @ 140 F			
a.) Viscosity of Original Sample, (poises)	T 202		
b.) Viscosity After T.F.O.T., (poises)	T 202		
2. Viscosity @ 275 F, Centistokes	I 201		
3. Penetration @ 77 F, 100g., 5 sec.	T 49		
4. Penetration @ 39.2 F, 200g., 60 sec.	T 49		
5. Penetration Ratio (39.2°F/77°F) 100		-	
6. Ductility @ 39.2 F, 1 cm/min., cm.	T 51		
7. Ductility @ 77 F, 5cm/min., cm.	T 51		
8. Flash Point C.O.C., F	T 48		
9. Solubility in Trichloroethylene	T 44		
10. Loss on Heating T.F.O.T., Percent, 325F @ 5 Hrs	I 179		
11. Specific Gravity @ 77 F	T 228		
12. Ductility @ 60 F, T.F.O.T., 5cm/mins, cm.	T 51		
13. Ductility @ 77 F, T.F.O.T., 5em/min., em.	T 51		
14. Penetration @ 77 F, T.F.O.T., 100g., 5 sec.	T 49		
a.) Percent of Original			
15. Viscosity @275 F After T.F.O.T. (cst)	T 201		
16. Penetration Viscosity Number, PVN			
17. Softening Point, Ethylene Glycol, F	T 53		
18. Penetration Index Number, PIN			

NEW YORK STATE DEPARTMENT OF TRANSPORTATION MATERIALS BUREAU

1984 ASPHALT MONITOR PROGRAM

			TEST NO.
PRIMARY SOURCE		LOCAT	ION
LOT NO.	ITEM NO.		GRADE TYPE
CRUDE SOURCE			
<u>A</u>	SPHALT COMPOSIT	TION ANALYSIS	
ASPHALTENES, %			
SATURATES, %			·
NAPHTHENE AROMATICS	, %		
POLAR AROMATICS, %	·	• • [
A Settling Test to I	Evaluate the Re	elative Degree	of Dispersion of
SETTLEMENT TIME, MIN	NUTES		

V. NEW YORK STATE DEPARTMENT OF TRANSPORTATION SPECIFICATIONS FOR ASPHALT CEMENT

TABLE 702-1

ASPHALT CEMENTS FOR PAVING

702-0500	AC-20	Min. Max.	1600 2400 300 100 60 100 450(232) 99.0	10,000	Hot plant mix moderate climate. Sheet mixes. Open graded surface course mixes.
702-0400	AC-15	Max.	1800 100 (225)	7500	Hot plant mix moderate m climate. c
702-0300	AC-10	Min. Max. Min.	800 1200 275 250 275 70 120 60 425(219) 435 99.0	5000	Hot plant mix Ho cold climate. mo Recycle Mix. cl
702-0200	AC -5	Min. Max. M	400 600 8 175 2 120 200 350(177) 4	2500	Hot plant mix H very cold colimate. Recycycle Mix.
702-0100	AC-2.5	Min. Hax.	200 300 125 200 325 325(163) 99.0	100	Recycle Mix
MATERIAL DESIGNATION	VISCOSITY GRADE	Test Requirements	Viscosity 140F (60 C), P Viscosity 275F(135 C), cSt Penetration 77F (25C),100g, 5s Flash Point COC, F(C) Solubility in Trichloroethylene,%	Tests on Residue from Thin Film Oven Test Viscosity, 140 F(60C), P Ductility, 77 F(25C) 5 cm/min., cm	TYPICAL USES (intended only as a general information guide)

TABLE 702-2
MISCELLANEOUS ASPHALT CEMENTS

702-0600	85-100	Min Max	85 100 280 450 99.5 6	.85 75 Hot plant mix moderate climate
MATERIAL DESIGNATION	GRADE	TEST REQUIREMENTS	Penetration, 77F(25C), 100g, 5s Viscosity, 275F(135C), cSt Flash Point, COC, F Solubility in trichloroethylene, % Ductility, 39.2F(4C), 1cm/min., cm	Tests on residue from Thin-film Oven Test (AASHTO T179) Loss on Heating, 325F, 5h, % Penetration, % original Ductility, 77F(25C), 5cm/min., cm Typical Uses

SPECIFICATION CHEVRON ASPHALT FLUX FOR RECYCLING

TEST REQUIREMENTS	MIN	MAX
Viscosity, 140F(60C), Poises	600	800
Viscosity, 275F(135C), cst	200	-
Penetration, 77F(25C), 100g., 5 sec.	140	190
Flash Point, C.O.C., F	350	-
Solubility in Trichloroethylene, %	99.0	-
Tests on Residue from Thin Film Oven Test:		
Viscosity, 140F(60C), Poises	-	3200
Ductility, 77F(25C), 5cm/min., cm.	100	-

SPECIFICATION CIERO ASPHALT FLUX FOR RECYCLING

TEST REQUIREMENTS	MIN	MAX
Viscosity, 140F(60C), Poises	800	1200
Viscosity, 275F(135C), cst	175	
Penetration, 77F(25C), 100g., 5 sec.	125	175
Flash Point, C.O.C., F	400	-
Solubility in Trichloroethylene, %	99.0	***
Tests on Residue from Thin Film Oven Test:		
Viscosity, 140F(60C), Poises	•	4000
Ductility, 77F(25C), 5cm/min., cm.	75	-

SPECIFICATION MARATHON ASPHALT FLUX FOR RECYCLING

TEST REQUIREMENTS	MIN	MAX
Viscosity, 140F(60C), Poises	400	600
Viscosity, 275F(135C), cst	175	-
Penetration, 77F(25C), 100g., 5 sec.	175	225
Flash Point, C.O.C., F	350	-
Solubility in Trichloroethylene, %	99.0	-
Tests on Residue from Thin Film Oven Test:		
Viscosity, 140F(60C), Poises	-	2500
Ductility, 77F(25C), 5cm/min., cm.	100	-

SPECIFICATION UNITED REFINING ASPHALT FLUX FOR RECYCLING

TEST REQUIREMENTS	MIN	MAX								
Viscosity, 140F(60C), Poises	300	500								
Viscosity, 275F(135C), cst	125	-								
Penetration, 77F(25C), 100g., 5 sec.	150	200								
Flash Point, C.O.C., F	350	-								
Solubility in Trichloroethylene, %	99.0	-								
Tests on Residue from Thin Film Oven Test:										
Viscosity, 140F(60C), Poises	esp.	2500								
Ductility, 77F(25C), 5cm/min., cm.	100	_								

VI. Summary of Test Results

Test results for all twenty asphalt cement samples met New York State Department of Transporation Specification requirements. The following exceptions are noted below:

A. United Refinery, Warren , PA.

FLUX Lot 12 Western Candian Crude

Solubility in Trichloroethylene 98.9%

Specification Requirement 99.0% minimum

VII. Test Results

On the following pages is a tabulation of all test results. The column headed by the name of the test contains the test result determined by the Materials Bureau. The column headed by "Comparative Results" contains the test result provided by the supplier for the test indicated in the column immediatley to the left.

以对人员

85/ 85/ 85/

VII. Test Results

On the following pages is a tabulation of all test results. The column headed by the name of the test contains the test result determined by the Materials Bureau. The column headed by "Comparative Results" contains the test result provided by the supplier for the test indicated in the column immediatley to the left.

1784	ASPHALT CEMENT		ABSOLUTE		KINEMATIC			•			PENETRATION	3
	TOR PROGRAM	CRUDE	VISCOSITY	COMPARATIVE	VISCOSITY		PENETRATION	COMPARATIVE	PENETRATION	COMPARATIVE	RATIO	COMPARATIV
AC	SUPPLIER - LOCATION - LOT	SOURCE	@140°F	RESULTS	@275°F	RESULTS	@ 77°F	RESULTS	@39.2°F	RESULTS	39.2°/77°F	RESULTS
LUX	CHEVRON, PERTH AMBOY 20	BOSCAN-	762	745	289	283	166	165	60	*	36.1	*
FLUX	CIBRO, ALBANY 41	BOSCAN	995	1018	343	312	154	160	59	60	38.3	37.5
FLUX	MARATHON, TONAWANDA 7	MID. CONT	491	495	212	208	184	190	61	59	33.2	31.1
FLUX	UNITED REF., WARREN 12	W. CANADIAN	343	330	153	149	161	160	37	32	23.0	20.0
		TI DESERVIES		330				100		52	20.0	20.0
	\overline{X}		648	647	249	238	166	169	54	50	32.7	29.5
	6		289.3	300.5	83.7	73.8	12.8	14.4	11.5	15.9	6.8	8.9
5	PETRO. CAN., MONTREAL 1	MEXICAN MENEMOTA	503	508	208	199	171	171	55	58	32.2	33.9
5	PETRO CAN, OAKVILLE 317/318	BOW RIVER	518	518	219	214	173	174	50	*	28.9	*
	·											
	\overline{X}		511	513	214	207	172	173	53		30.6	
	6		10.6	7.1	7.8	10.6	1.4	2.1	3.5		2.3	
							1.					
15	MARATHON, TONAWANDA 12	MID. CONT	1341	1404	334	331	86	90	26	27	30.2	30.0
	PETRO (AN., OAKVILLE 315/316			1354	345	345	84	87	26	*	31.0	*
	1. 1	W. CANADIAN		1496	356	349	65	69	19	15	29.2	21.7
								W /			61.6-	61.1
	$\overline{\mathbf{x}}$		1422	1418	345	342	78	82	24	2.1	30.1	25.9
	6		92.7	72.0	11.0	9.5	11.6	11.4	4.0	8.5	0.9	5.9
				12.0			11.0	11.7	7.0	0.7	0.7	7.7
20	ARCO, PHILADELPHIA 31	MAYA/NO.5LOPE	2073	2047	425	423	71	74	26	28	36.6	37.8
	CHEVRON, PERTH AMBOY 19	BOSCAN- MAYA	2090	2093	463	455	82	83	32	*	39.0	*
20		BOSCAN	2158	2242	497	481	91	94	35	32	38.5	34.0
	EXXON, LINDEN 14	MAYA-ARAB HVY. NO. SLOPE	1927	2180	407	406	70	70	24	*	34.3	<u> </u>
		MID-CONT CANADIAN	1866	1902	381	391	72	74	24	25	33.3	33.8
	MONOCO, PITTSFORD 20		2022	2078	435	405	76	81	26	28	34.2	34.6
	PARLO, STAMFORD 36	BOSCAN-	2079	1811	461	*	83	82	32	*	38.6	*
	WEST BANK, P. AMBOY 11	CORPOVAN - VENEZUELA	2270	2179	495	471	83	85	30	*		*
						7.1		0)	30		36.1	*
	\overline{x}		2061	2067	446	433	79	80	29	.28	3/2	75 1
	É		126.4	146.3	41.1	35.6	7.4	7.6			36.3	35,1
			120:-1		71.1		1, 7	1.0	4.2	2.9	2.2	1.9
35/100	GULF CAN., MONTREAL 38/40	LLOYDMINSTER CANADIAN	1137	1234	306	314	88	88	28	24	31.8	27.3
		MEX. MENEMOTA W. CONDENSATE	1269	1263	319	312	89	94	32	28		
1 1	SHELL CAN, MONTREAL 1	CAN MEX	1662	*	403	374	85	92	30		36.0	29.8
	THE CAN PER INCAL			1	100	517		16	30	*	35.3	*
	$\overline{\mathbf{x}}$		1356	1249	343	333	87	91	30	26	34.4	201
	6		273.1	20.5	52.7	35.2	2.1	3.1	2.0			28.6
	* RESULTS NOT GIVEN		·			37.6		J.	2.0	2.8	2.3	1.8

19 Adddd

85/11 85/11

1984	ASPHALT CEMENT	T			T =		1====			·		
Mo	NITOR PROGRAM	CRUDE	T.F.O.T.	(- ADADATUE	T.F.O.T.	/ 174 34 Tule	T.F.O. T.	11	T. F. O. T.		T.F.O.T.	1
AC	SUPPLIER - LOCATION - LOT	SOURCE	1055°/0	RESULTS		RESULTS	@77°F	COMPARATIVE RESULTS	@ 140° F	RESULTS	RATIO	COMPARATIVE
FLUX	CHEVRON, PERTH AMBOY 20	BOSCAN - MAYA	0.776	*	75.75	*	150.0+	110.0+	3103	2878	4.07	3.86
FLUX	CIBRO, ALBANY 41	BOSCAN	1.393	1.100	136.50	150.0+	150.0+			3551	3.65	3.49
FLUX	MARATHON, TONAWANDA 7	MID. CONT	0.287	0.370	150.0+	150.0+	150.0+		1170		2.38	2.45
FLUX					عسنا المستحد ا					1211		
	WARREN IZ	W. CANADIAN	0.130 GAIN	TO. USUGAIN	150.0+	120.0	126.25	130.0+	693	612	2.02	1.85
	X		0 (1 1	0.400	120 1	1400	1 4 4 1		21.40	0017	7.67	201
	6		0.614	0.490	128.1	140.0	144.1		2149	2063	3.03	2.91
			0.610	0.560	35.5	17.3	11.9		1435.5	1379.6	0.98	0.93
5	P M	MEXICAN	0 1 1 7		1=		1= -					
5	PETRO CAN, MONTREAL 1	MEXICAN MENEMOTA	0.147	0.250	150.0+	126.0	150.0+		1267	1675	2.52	3.30
1 2	PETRO CAN., OAKVILLE 317/318	BOW RIVER	+0.071 GAIN	+0.050 GAIN	150.0+	*	150.0+	121.0	1044	960	2.02	1.85
					1= -							
	<u> </u>		0.074	0.125	150.0+		150.0+	130.5	1156	1318	2.27	2.58
***	6		0.104	0.177				13.4	157.7	505.6	0.35	1.03
1 9-		1415-6-17			·							
15	MARATHON, TONAWANDA 12	CANADIAN	0.133	0.170	105.75	150.0+	150.0+	150.0+	3356	3351	2.50	2.39
15	PETRO CAN., OAKVILLE 315/316			0.040	139.0	*	150.0+	150.0+	3186	2910	2.27	2.15
15	UNITED REF., WARREN 11	W. CANADIAN	0.315	+0.020 GAIN	14.25	14.0	150.0+	130.0+	3999	3482	2.63	2.33
	X		0.149	0.070	86.3	82.0	150.0+		3514	3248	2.47	2.29
1	5		0.158	0.089	64.6	96.2			428.8	299.7	0.18	0.12
20	ARCO, PHILADELPHIA 31	MAYA - NO. SLOPE	0.032	0.034	23.0	40.0	150.0+	*	6355	5541	3.07	2.71
	CHEVRON, PERTH AMBOY 19	BOSCAN - MAYA	0.290	0.410	30.0	*	137.75	100.0+	7524	7366	3.60	3.52
20	CIBRO, ALBANY 42	BOSCAN	0.860	0.670	108.50	38.50	150.0+	150.0+	7607	7490	3.53	3.34
20	EXXON, LINDEN 14	MAYA - ARABHY	+0.013 GAIN	0.138	42.0	49.0	150.0+	150.0+	4934	3856	2.56	1.77
20 %	MARATHON, TONAWANDA 9	MID-CONT CANADIAN	0.103	0.140	91.50	79.0	150.0+	150.0+	4584	4436	2.46	2.33
20	MONOCO, PITTSFORD 20	BOSCAN	0.312	0.270	51.25	35.0	150.0+	122.0+	5443	5951	2.69	2.86
	PARCO, STAMFORD 36	BOSCAN - MAYA	0.268	*	25.75	*	138.0	*	7243	*	3.48	*
	WEST BANK, P. AMBOY 11	CORPOVAN -	0.343	0.249	74.75	31.0	150.0+	*	6623	5527	2.92	2.54
											to: I to	F-27
	X		0.276	0.273	55.8	45.4	147.0		6289	5738	3.04	2.72
	<u> </u>		0.271	0.212	32.2	17.5	5.6		1180.0	1359.3	0.46	0.60
										11.1.1	0.70	0.60
85/100	GULF CAN., MONTREAL 38/40	CANAPIAN	0.024	0.010	120.75	150.0+	150.0+	150.0+	2883	2292	2.54	1.86
	PETRO CAN. MONTREAL 1	MEX. MENEMOTA W. CONDENSATE	0.075	0.020	47.0	50.0	150.0+	140.0	3585	3295	2.83	
	SHELL CAN, MONTREAL 1	CANMEX	+0.09 GAIN	+0.100 GAIN		*			4166	*	2.51	2.61
									1100		2.71	*
	$\overline{\mathbf{x}}$		0.033	0.010	66.5	100.0	150.0+		3545	2794	2/2	2 24
	රි		0.038	0.010	47.6	70.7			642.5	709.2	2.63	2.24
	* RESULTS NOT GIVEN								V-16-	107.2	0.18	0.53

j	108	4 ASPHALT CEMENT											
	MO	NITOR PROGRAM		T.F.O.T.	(- ACADETILE	T.F.O.T. PENETRATION	(- APARATUIC	T.F.O.T.	(- AGAGATUIC	SPECIFIC	COMPARATIVE	C.O.C. FLASH	COMPARATIVE
	AC	SUPPLIER - LOCATION - LOT	SOURCE	e 275°F	RESULTS	@77°F	RESULTS	RATIO	RESULTS	@ 77°F	RESULTS		REGULTS.
	1	CHEVRON, PERTH AMBOY 20	BOSCAN- MAYA	524	517	78	78	47.0	47.3	1.026	1.024	480	495
			BOSCAN	668	628	71	81	46.1	50.6	1.028	1.026	470	450
ı	FLUX	MARATHON, TONAWANDA 7	MID CONT	303	294	100	103	54.3	54.2	1.018	1.019	545	595
1	FLUX	UNITED REF., WARREN 12	LICHIDIAN	195	184	95	100	59.0	62.5	1.004	0.999	635	630
ı	1007	WARREN 12	W-CANADIAN		10-7		100		<i>QL.</i>	1.004	V. / /		
ч		X		423	406	86	91	51.6	53.7	1.019	1.017	533	543
J		6		213.4	202.8	13.7	12.8	6.1	6.5	0.011	0.012	76.0	84.1
ı				412.4	202.0	12.	12.0	9.1	6.5	0.011	0.012	10.0	04.1
1	5	P () M 1	MEXICAN MENEMOTA	200	711	9.1	85	55.0	49.7	1.017	1.016	545	545
				299	344	94					1.015	595	597
٦	-5	PETRO CAN., OAKVILLE 317/318	BOW KIVER	290	*	104	105	60.1	60.3	1.015	1.015	775	
				205		0.0	05	F-7 (re o	1.614	1.016	5.70	571
	-	<u>Z</u>		295		99	95	57.6	55.0	1.016	1.016	570	
		6		6.4		7.1	14.1	3.6	7.5	0.001	0.001	35.4	36.8
d	15		Min Court	0									() 0
4			MID CONT	478	487	52	53	60.5	58.9	1.025	1.026	590	610
4	15	PETRO CAN., OAKVILLE 315/316			*	52	56	61.9	64.4	1.023	1.023	600	615
1	15	UNITED REF., WARREN 11	W. CANADIAN	501	465	39	43	60.0	62.3	1.004	1.006	620	630
		<u>X</u>		485	476	48	51	60.8	61.9	1.017	1.018	603	618
		6		13.6	15.6	7.5	6.8	1.0	2.8	0.012	0.011	15.3	10.4
1													
7	20		MAYA - NO. SLOPE	637	*	45	48	63.4	64.9	1.029	1.026	625	580
Ц	20	CHEVRON, PERTH AMBOY 19	BOSCAN - MAYA	805	805	49	48	59.8	57.8	1.032	1.031	520	515
	20	CIBRO, ALBANY 42	BOSCAN	892	845	49	53	53.8	56.4	1.032	1.036	470	495
1	20	EXXON, LINDEN 14	MAYA-ARAB HM.	597	551	46	47	65.7	67.1	1.027	1.034	605	550+
ı	20	MARATHON, TONAWANDA 9	MID CONT	564	543	45	47	62.5	63.5	1.028	1.028	565	600+
1		MONOCO, PITTSFORD 20	BOSCAN	666	686	47	44	61.8	54.3	1.029	1.033	570	595
4	20	PARCO, STAMFORD 36	BOSCAN - MAYA	792	*	49	*	59.0	*	1.032	*	520	*
		WEST BANK, P. AMBOY 11	CORPOVAN - VENEZUELA	808	*	51	51	61.4	60.0	1.033	1.032	505	510
				·									
		\overline{X}		720	686	48	48	60.9	60.6	1.030	1.031	548	
1		6		118.9	139.7	2.2	2.9	3.5	4.7	0.002	0:003	. 52.7	
1													
	85/100	GULF CAN., MONTREAL 38/40	LLOYD MINSTER CANADIAN	448	400	53	60	60.2	68.2	1.027	1.027	560	545
	85/100	PETRO CAN, MONTREAL	W. CONDENSATE	470	454	54	56	60.7	59.6	1.022	1.022	555	560
		SHELL CAN, MONTREAL 1	CAN MEX	579	*	56	61	65.9	66.3	1.017	1.017	630	310+
	21100												
		\overline{x}		499	427	54	59	62.3	64.7	1.022	1.022	582	
		X		70.1	38.2	1.5	2.6	3.2	4.5	0.005	0.005	41.9	
		* RESULTS NOT GIVEN								0.000	0.007	71./	
		MILESULES NO. BIVEN											
Ш													

A FLI FLI FLI FLI 20 20 20 20 20 20 20 20 85/10 85/10

1	198	4 ASPHALT CEMENT	T						T				-
	710	MILUK PROKRAM	1011DE	DUCTILITY	(OMPARATIVE	DUCTUITY	COMPARATUE	À 1211 1-1/		SOFTENING		Dill	
	AC	SUPPLIER - LOCATION-LOT	SOURCE	c39.2°F	RESULTS	@ 77°F	RESULTS	°/o	DEGULTS	POINT, of	RESULTS	PVN	COMPARATIVE RESULTS
	LLUX	CHEVRON, PERTH AMBOY 20	BOSCAN - MAYA	150.0+	*	97.0	*	99.97	99.98	109	*	-0.111	-0.154
	LUX	CIBRO, ALBANY 41	BOSCAN	150.0+	*	114.25	150.0+		99.98	110	104		
Ц	-LUX	MARATHON, TONAWANDA 7	MID CONT	150.0+	15.0+	92.50	150.0+					+0.078	-0.030
1	ELUX		W. CANADIAN		*	89.25			99.92	107	114	-0.510	-0.502
			IN. CANAVIAN	120.0.	715	07.67	130.0+	98.93	*	113	115	-1.227	-1.279
		$\overline{\mathbf{x}}$		150.0+		00 25		0070	0000				
		Ĝ		190.01		98.25	 	99.72	99.96	110		-0.443	-0.491
								0.52	0.03	2.5	6.1	0.578	0.562
	5	PETRO CAN., MONTREAL 1	MEXICAN MENEMOTA	15001									
		PETERO (ALL ONLINE 317)	MENEMOTA	150.0+	75.0+	95.0	140.0+	99.97	99.96	105	106	-0.634	-0.710
		PETRO CAN., OAKVILLE 317/318	BOW RIVER	150.0+	15.0+	125.25	*	99.98	99.89	107	*	-0.532	-0.564
12				15.5									
		X		150.0+		110.1		99.98	99.93	106		-0.583	-0.637
		<u></u>				21.4		0.01	0.05	1.4		0.072	0.103
-	15	14	Mar Comment									0.012	0.107
	15	MARATHON, TONAWANDA 12	MID CONT.	39.75	15.0+	150.0+	150.0+	99.98	99.98	115	121	-0.664	-0.629
	15	PETRO CAN., OAKVILLE 315/316	BOWRIVER	38.75	15.0+	150.0+	*	99.98	99.90	118	*	-0.641	
	15	UNITED REF., WARREN 11	W. CANADIAN	6.25	*	150.0+	130.0+	99.28	*	121			-0.603
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100.0	11.20	7.	121	125	-0.858	-0.827
		$\overline{\mathbf{x}}$		28.25		150.0+		99.75	99.94	110	100	0.701	
Ш		6		19.1						118	122	-0.721	-0.686
								0.40	0.06	3.0	1.4	0.119	0.123
	20	ARCO, PHILADELPHIA 31	MAYA - NO SLOPE	11.25	*	150.0+	*	00.07	0007				
	20	CHEVRON, PERTH AMBOY 19	BOSCAN -	26.25	*	150.0+	*	99.97	99.97	122	* -	-0.514	-0.477
- 1	20	CIBRO, ALBANY 42	BOSCAN	140.75	*			99.97	99.70	120		-0.23	-0.243
			MAYA-ARABHY. NO.SLOPE	14.50	*	138.0	150.0+	99,99	99.99	121		-0.003	-0.013
	ر خوست کارن	MARATHON, TONAWANDA 9	MID CONT	18.25	9.0	150.0+	*	99.99	99.99	125		-0.591	-0.595
			BOSCAN	25.75			150.0+	99.99	99.98	124	122 -	-0.658	-0.591
		PARCO, STAMFORD 36	BOSCAN- MAYA		*	150.0+		99.99	99.96	122		-0.407	-0.443
		WEST BANK, P. AMBOY 11	MAYA CORPOVAN - VENEZUELA	21.25	*	150.0+	*	99.97	*	121		-0.223	*
		MEST DANK, F. AMBOY	NENEZUELA	82.50	*	150.0+	*	99.99	99.90	121	* -		-0.164
				12.1									
1		X		42.6			150.0+	99.98	99.93	122	124 -	-0.343	-0.361
9		<u></u>		45.7		4.2		0.01	0.10	1.7		0.235	0.224
1	-1	201	I LOYDMINATED									0.5/	V. L. L.
		GULF CAN., MONTREAL 38/40	CANADIAN	73.75		150.0+	150.0+	99.91	99.70	117	118 -	-0.771	-0772
			MEX.MENEMOTA W.CONDENSATE	38.0	26.0				99.95	119			-0.732
8	5/100	SHELL CAN., MONTREAL 1	CAN MEX. VENZ.	15.0	4.0				99.70	118			-0.671
1												-0.397	-0.420
		X 6		42.25	23.3	150.0+		99.94	99.78	118	117 -	0.600	
		6		29.6	18.1			0.03	0.14	1.0			-0.608
		* RESULTS NOT GIVEN						0.0)	0.14	1.0	1.4	0.198	0.165

A E E E E

15 15

85/10 85/10

104/	ASPHALT CEMENT		1	-	γ	Ţ-						
M	ONITOR PROGRAM	CRUDE	PIN		SETTLEMENT			. 0/0	0/0			
AC		SOURCE	FIN	COMPARATIVE RESULTS	TEST MINUTES	ASPHALTENES 0/0	SATURATES %	NAPHTHENE	POLAR	,		
FLUX	CHEVRON, PERTH AMBOY 20	BOSCAN - MAYA	+0271	*				AROMATICS		2		
FLUX					19.5	17.5	9.7	24.5	39.4	-		
ELIV	MARATICAL T	BOSCAN MID GONT -	+0.164		18.5	18.0	12.3	25.6	41.9			
FLUX	MARATHON, TONAWANDA 7	MID CONT CANADIAN	+0.292	+1.911	33.7	10.7	13.0	29.1	43.4			
FLUA	UNITED REF., WARREN 12	W. CANADIAN	+0.946	+1.297	46.6	7.6	13.4	34.7	37.3			
-												
	\overline{X}		+0.418	0.739	29.6	13.5	12.1	28.5	40.5			
-	5		0.356	1.529	13.3	5.1	1.7	4.6	2.7			
5	PETRO CAN., MONTREAL 1	MEXICAN MENEMOTA	-0.488	-0.258	42.8	13.8	13.6	28.8	36.6			
5	PETRO CAN, OAKVILLE 317/318	BOW RIVED	+0.016	*	31.1	11.6	19.4	22.8	42.0		1	
	7,310	- A HIVE				11.0	1/. T	66.0	72.0			
	\overline{X}		-0.236		37.0	12.7	16.5	25.0	797			
	6		0.356		8.3		16.5	25.8	39.3			
	9		0.776		0.7	1.6	4.1	4.2	3.8			
15	MARATURAL To LA LINE 12	MID CONT CANADIAN	0 007	10201	7/7	10.7	10.0	07	15.0			
	MARATHON, TONAWANDA 12	CANADIAN	0.073		36.3	10.7	10.2	27.1	43.9			
15	PETRO CAN., OAKVILLE 315/316			*	25.8	12.2	9.6	28.8	42.7			
12	UNITED REF., WARREN 11	W. CANADIAN	-0.72	-0.267	63.7	6.9	10.3	37.0	39.1			
-												
	X		-0.692	-0.033	41.9	9.9	10.0	31.0	41.9			
-	5		0.211	0.331	19.6	2.7	0.4	5.3	2.5			
20	ARCO, PHILADELPHIA 31	MAYA - NO. SLOPE	-0.334	*	34.5	16.9	11.9	26.2	39.1			
20	CHEVRON, PERTH AMBOY 19	BOSCAN - MAYA	-0.230	*	20.6	19.2	8.8	25.1	39.9			
20	CIBRO, ALBANY 42	BOSCAN	+0.235	+0.934	17.3	17.9	5.5	24.0	43.1			
20	EXXON, LINDEN 14	MAYA-ARAB HNY. NO. SLOPE	+0.055	*	30.8	14.6	9.3	29.5	41.5			
	MARATHON, TONAWANDA 9	MID CONT CANADIAN	-0.008	-0.221	33.0	12.9	16.6	20.1	44.4		1	+
20	MONOCO, PITTSFORD 20	BOSCAN	-0.146	*	23.9	15.6	8.2	26.2				
20	PARCO, GTAMFORD 36	BOSCAN - MAYA	-0.042	*	18.9	18.9	8.6		43.9			
1	WEST BANK, P. AMBOY 11	1 11 1	-0.042	*	18.2	17.5	6.2	24.2	40.6			
	Case, a por	NEW CVE	0.0-12	,,	10.2	11.7	0.2	24.1	44.3			
	$\overline{\mathbf{x}}$		-0.064	+0 357	24.7	1/ 7	0.4	24.0	4.0			
	ô		0.175		7.1	16.7	9.4	24.9	42.1	•		
	9		0.115	0.817	(.)	2.2	3.5	2.7	2.1		-	
PELINA	GULF CAN., MONTREAL 38/40	LLOYDMINSTER	0.407	077/	217	14.0						
		MEX. MENEMOTA		-0.336	21.3	14.0	12.1	28.1	41.6			
		MEX. MENEMOTA W. CONDENSATE CAN MEX.	-0.143	-0.464	44.7	15.4	12.2	28.7	37.6			
85/100	SHELL CAN, MONTREAL !	VENZ.	-0.438	*	130.0	13.3	9.7	33.3	38.5			
	\overline{X}		-0.359	=0.100	157	14.0	11 7					
	<u>×</u>			-0.400	65.3	14.2	11.3	30.0	39.2			
-			0.190	0.091	57.2		1.4	2.8	2.1			
	* RESULTS NOT GNEN											

I

I

ı

Only one supplier submitted Asphalt Composition Analysis Results to the Materials Bureau.

Petro-Canada, Montreal, Quebec AC-5 and 85/100

Comparison test results are noted as follows:

Asphalt Composition Analysis

AC-5

	Materials Bureau	Petro Canada
% Asphaltenes,	13.8	15.6
% Saturates,	13.6	17.7
% Naphthene Aromatics,	28.8	24.8
% Polar Aromatics,	36.6	37.6

85/100

	Materials Bureau	Petro Canada
% Asphaltenes,	15.4	20.4
% Saturates,	12.2	13.6
% Naphthene Aromatics,	28.7	. 23.2
% Polar Aromatics,	37.6	38.4

VIII. Statistical Analysis of Test Results

The mean, range and standard deviation were determined for the number of samples tested in each grade of asphalt cement. For each test, this statistical information has been determined separately for the Materials Bureau results and when applicable, the comparable results submitted by the supplier.

ABSOLUTE VISCOSITY @ 140°F (POISES)

Α.

Materials Bureau

85/100	. 3 1356 1137 to 1662 273.1		85/100	$\frac{2}{1249}$ 1234 to 1263 20.5
<u>AC-20</u>	8 2061 1866 to 2270 126.4		<u>AC-20</u>	8 2067 1811 to 2242 146.3
<u>AC-15</u>	$\frac{3}{1422}$ 1341 to 1523 92.7		AC-15	3 1418 1354 to 1496 72.0
AC-5	2 511 503 to 518 10.6		<u>AC-5</u>	$\frac{2}{513}$ 508 to 518 7.1
FLUX	4 648 343 to 995 · 289.3	2. Comparative Results	FI.UX	$\frac{4}{647}$ 330 to 1018 300.5
	No. of Samples Mean Range Standard Deviation	2. Compara		No. of Samples Mean Range Standard Deviation

KINEMATIC VISCOSITY @ 275°F (CENTISTOKES) 8

85/100	343 306 to 403 52.7	
AC-20	8 446 381 to 497 41.1	
AC-15	$\frac{3}{345}$ 334 to 356 11.0	
AC-5	2 214 208 to 219 7.8	
FLUX	4 249 153 to 343	. Comparative Results
	No. of Samples Mean Range Standard Deviation	2. Compar

FLUX AC-5	40. of Samples 4/338 207 fean 149 to 312 199 to 214 Standard Deviation 73.8 10.6
<u>AC-15</u>	$\frac{3}{342}$ $\frac{3}{2}$ $\frac{331}{9.5}$
AC-20	7 433 391 to 481 35.6
85/100	$\frac{3}{333}$ 312 to 374

PENETRATION @ 77°F

0:

	85/100	$\frac{3}{87}$ 85 to 89 2.1		85/100	91 88 to 94 3.1			85/100	30 28 to 32 2.0		85/100	$\frac{2}{26}$ 24 to 28 2.8
	AC-20	$\frac{8}{79}$ 70 to 91 7.4		<u>AC-20</u>	$\frac{8}{80}$ 70 to 94			<u>AC-20</u>	$\frac{8}{29}$ 24 to 35 4.2		<u>AC-20</u>	$\frac{4}{28}$ 25 to 32 2.9
		3 78 65 to 86 11.6			$\frac{3}{82}$ $69 \text{ to } 90$ 11.4			AC-15	$\frac{3}{24}$ 19 to 26 4.0		AC-15	$\frac{2}{21}$ 15 to 27 8.5
	AC-5	$\frac{2}{172}$ 171 to 173 1.4		AC-5	$\frac{2}{173}$ 171 to 174 2.1			AC-5	2 53 50 to 55 3.5		<u>AC-5</u>	
Materials Bureau	FLUX	4 166 154 to 184 12.8	Comparative Results	FLUX	$\frac{4}{169}$ 160 to 190 14.4	4 39.2°E	Materials Bureau	FLUX	4 54 37 to 61 11.5	Comparative Results	FLUX	3 50 32 to 60 15.9
1. Materia		No. of Samples Mean Range Standard Deviation	2. Comparat		No. of Samplès Mean Range Standard Deviation	D. PENETRATION @ 39.2°F	1. Materia		No. of Samples Mean Range Standard Deviation	2. Comparat		No. of Samples Mean Range Standard Deviation

PENETRATION RATIO (Penetration @ 77°F x 100)

<u>د</u>

1. Materials Bureau

85/100 34.4 31.8 to 36.0 2.3		85/100	$\frac{28.6}{27.3}$ to 29.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		AC-20	4 35.1 0 33.8 to 37.8 1.9
$\frac{AC-15}{30.1}$ $\frac{3}{29.2}$ 0.9		<u>AC-15</u>	$\begin{array}{c} \frac{2}{25.9} \\ 21.7 \text{ to } 30.0 \\ 5.9 \end{array}$
$\frac{AC-5}{30.6}$ $\frac{2}{28.9}$ 2.3		AC-5	 } 1 1
FLUX 4 32.7 23.0 to 38.3 6.8	2. Comparative Results	FLUX	3 29.5 20.0 to 37.5 8.9
No. of Samples Mean Kange Standard Deviation	2. Compar		No. of Samples Mean Range Standard Deviation

THIN FILM OVEN TEST, % LOSS (Samples which showed weight gains were calculated as 0.000% loss) اخرا

85/100	3 0.033 0.038
AC-20	0.271 0.271
AC-15	0.149 0.000 to 0.315 0.158
<u>AC-5</u>	$\begin{array}{c} \frac{2}{0.074} \\ 0.000 \text{ to } 0.147 \\ 0.104 \end{array}$
FLUX	4 0.614 0.000 to 1.393 0.610
	No. of Samples Mean Range Standard Deviation

2. Comparative Results

85/100	3 0.010 0.000 to 0.020 0.010			85/100	$66.5 \\ 31.75 \text{ to } 120.75 \\ 47.6$		85/100	100.0 50.0 to 150.0+
AC-20	$0.\overline{2}73$ 0.034 to 0.670 0.212			AC-20	$\frac{8}{55.8}$ 23.0 to 108.50 32.2		<u>AC-20</u>	6 45.4 31.0 to 79.0 17.5
AC-15	3 0.000 to 0.170 0.089	TIMETERS)		AC-15	$\frac{3}{86.3}$ 14.25 to 139.0 64.6		AC-15	$\frac{2}{82.0}$ 14.0 to 150.0+ 96.2
AC-5	$\begin{array}{c} \frac{2}{0.125} \\ 0.000 \text{ to } 0.250 \\ 0.177 \end{array}$	@ 60°F, 5cm/min. (CENTIMETERS)		AC-5	150.0+		AC-5	
FLUX	3 0.490 0.000 to 1.100 0.560	THIN FILM OVEN TEST, DUCTILITY @	s Bureau	FLUX	4 128.1 75.75 to 150.0+ 35.5	Comparative Results .	FLUX	3 140.0 120.0 to 150.0+ 17.3
	No. of Samples Mean Range Standard Deviation	G. THIN FILM OVEN	1. Materials Bureau		No. of Samples Mean Range Standard Deviation	2. Comparati		No. of Samples Mean Range Standard Deviation

THIN FILM OVEN TEST, DUCTILITY @ 77°F, 5 cm/min. (CENTIMETERS)

1. Materials Bureau

=1

85/100 150.0+		85/100	125.0+ to 150.0+
AC-20 B 147.0 137.75 to 150.0+ 5.6		AC-20	100.0+ to 150.0+
AC-15 150.0+		AC-15	130.0+ to 150.0+
AC-5 150.0+		AC-5	$\frac{2}{130.5}$. 121.0 to 140.0
FLUX 4 144.1 126.25 to 150.0+ 11.9	2. Comparative Results	FLUX	110.0+ to 150.0+
No. of Samples Mean Range Standard Deviation	2. Compar		No. of Samples Mean Range Standard Deviation

THIN FILM OVEN TEST, ABSOLUTE VISCOSITY @ 140°F, (POISES) -1

85/100	3545 2883 to 4166 642.5		85/100	$\frac{2}{2794}$ 2292 to 3295 709.2
<u>AC-20</u>	62 <u>8</u> 4584 to 7607 1180.0		AC-20	2 3856 to 7490 1359.3
AC-15	3514 3186 to 3999 428.8		AC-15	$\frac{3}{3248}$ 2910 to 3482 299.7
<u>AC-5</u>	2 1156 1044 to 1267 157.7		<u>AC-5</u>	$ \begin{array}{c} 2 \\ 13\overline{18} \\ 960 \text{ to } 1675 \\ 505.6 \end{array} $
FLUX	7 2149 693 to 3630 1435.5	2. Comparative Results	FLUX	$\frac{4}{2063}$ 612 to 3551 1379.6
	No. of Samples Mean Range Standard Deviation	2. Compará		No. of Samples Mean Range Standard Deviation

ABSOLUTE VISCOSITY @ 140°F RATIO (After T.F.O.T. Viscosity @ 140°F - Original Viscosity @ 140°F) 7

Bureau	
Materials	
ه ب ز	

85/100	$\frac{3}{2.63}$ 2.51 to 2.83 0.18		85/100	$ \begin{array}{r} \frac{2}{2.24} \\ 1.86 \text{ to } 2.61 \\ 0.53 \end{array} $
AC-20	$\frac{8}{3 \cdot 04}$ 63 2.46 to 3.60 0.46		<u>AC-20</u>	$ \begin{array}{c} \frac{7}{2.72} \\ 1.77 \text{ to } 3.52 \\ 0.60 \end{array} $
AC-15	$\frac{3}{2.47}$ 2.27 to 2.63 0.18		<u>AC-15</u>	$ \begin{array}{c} 3 \\ 2.\overline{29} \\ 2.15 \text{ to } 2.39 \\ 0.12 \end{array} $
AC-5	$ \begin{array}{c} \frac{2}{2.27} \\ 2.02 \text{ to } 2.52 \\ 0.35 \end{array} $		AC-5	2.58 1.85 to 3.30 1.03
FLUX	3.03 2.02 to 4.07 0.98	2. Comparative Results	FLUX	4 2.91 1.85 to 3.86 0.93
	No. of Samples Mean Range Standard Deviation	2. Compara		No. of Samples Mean Range Standard Deviation

THIN FILM OVEN TEST, KINEMATIC VISCOSITY @ 275°F, (CENTISTOKES) ×1

Materials Bureau

85/100	3 4 <u>9</u> 9	448 to 579 70.1		85/100	427	400 to 454	38.2
AC-20	$\frac{8}{7\overline{2}0}$	564 to 892 118.9		<u>AC-20</u>	5 686	543 to 845	139.7
AC-15	485	477 to 501 13.6		<u>AC-15</u>	$\frac{2}{476}$	465 to 487	15.6
AC5	$\frac{2}{295}$	290 to 299 6.4		AC-5		1	ı
FLUX	$4\frac{4}{4\overline{2}3}$	195 to 668. 213.4	2. Comparative Results	FLUX	406	184 to 628	202.8
	No. of Samples Mean	Range Standard Deviation	2. Compar		No. of Samples Mean	Range	Standard Deviation

	85/100	3 54 53 to 56 1.5		85/100	$\frac{3}{59}$ 56 to 61 2.6			85/100	62.3 60.2 to 65.9 3.2
	AC-20	$\frac{8}{48}$ 45 to 51 2.2		AC-20	$\frac{7}{48}$ 44 to 53			AC-20	8 60.9 53.8 to 65.7 3.5
	AC-15	$\frac{3}{48}$ 39 to 52 7.5		AC-15	$\frac{3}{51}$ 43 to 56 6.8	й 77°F x 100)		AC-15	3 60.8 60.0 to 61.9 1.0
	<u>AC-5</u>	$\frac{2}{99}$ 94 to 104		AC-5	2 95 85 to 105 14.1	netrat		AC-5	2 57.6 55.0 to 60.1 3.6
s Bureau	FILUX	$\frac{4}{86}$ 71 to 100 13.7	Comparative Results	FLUX	91 78 to 103 12.8	g 77°F	s Bureau	FLUX	51.6 46.1 to 59.0 6.2
1. Materials Bureau		No. of Samples Mean Range Standard Deviation	2. Comparat		No. of Samples Mean Range Standard Deviation	M. PENETRATION @ 77°F RATIO (After TFOT Penetration (l. Materials Bureau		No. of Samples Mean Range Standard Deviation

THIN FILM OVEN TEST, PENETRATION @ 77°F

انہ

S
lts
-
=
CD.
Resu
~
_
d)
~
\leq
1.1
==
CO
Comparative
g
-
=
0
0
2

	85/100	3 64.7 59.6 to 68.2 4.5			85/100	$\frac{3}{1.022}$ 1.017 to 1.027 0.005		85/100	$\begin{array}{c} \frac{3}{1.022} \\ 1.017 \text{ to } 1.027 \\ 0.005 \end{array}$			85/100	3 582 555 to 630 41.9
	AC-20	7 60.6 54.3 to 67.1 4.7			AC-20	$\frac{8}{1.030}$ 1.027 to 1.033 0.002		<u>AC-20</u>	$\begin{array}{c} \frac{7}{1.031} \\ 1.026 \text{ to } 1.036 \\ 0.003 \end{array}$			<u>AC-20</u>	8 548 470 to 625 52.7
	AC-15	3 61.9 58.9 to 64.4 2.8			<u>AC-15</u>	$\frac{3}{1.004}$ 1.004 to 1.025 0.012		AC-15	$\begin{array}{c} \frac{3}{1.018} \\ 1.006 \text{ to } 1.026 \\ 0.011 \end{array}$			<u>AC-15</u>	3 603 590 to 620 15.3
	AC-5	2 55.0 49.7 to 60.3 7.5			AC-5	$\begin{array}{c} \frac{2}{1.016} \\ 1.015 \text{ to } 1.017 \\ 0.001 \end{array}$		AC-5	$\frac{2}{1.016}$ 1.015 to 1.016 0.001			AC-5	2 570 545 to 595 35.4
comparative resuits	FLUX	6.5 6.5	John & 77° F	Materials Bureau	FLUX	4 1.019 1.004 to 1.028 0.011	Comparative Results	FLUX .	1.017 0.999 to 1.026 0.012	FLASH POINT, CLEVLAND OPEN CUP, °	Materials Bureau	FLUX	4 533 470 to 635 76.0
Z. compara		No, of Samples Mean Range Standard Deviation	N. SPECIFIC GRAVITY @ 77°F	1. Material		No. of Samples Mean Range Standard Deviation	?. Comparat		No. of Samples Mean Range Standard Deviation	O. FLASH POINT,	l. Material		No. of Samples Mean . Range Standard Deviation

150.0+

8 148.5 138.0 to 150.0+ 4.2

150.0+

 $\frac{2}{110.1}$ 95.0 to 125.25
21.4

 $\frac{4}{98.25}$ 89.25 to 114.25
11.1

Standard Deviation

Range

No. of Samples Mean

Results
Comparative
2.

		0 560				0 73.75			40.0	1		
	85/100	310+ to 560			85/100	$\frac{3}{42.25}$ 15.0 to		85/100	23.3 4.0 to 40.0			85/100
	c	7 495 to 600+			C.I	$\frac{8}{42.6}$ 11.25 to 140.75		Cl	,			
	AC-20	495			AC-20			AC-20				AC-20
	AC-15	618 610 co 630 10.4	NTIMETERS)		AC-15	3 28.25 6.25 to 39.75 19.1		AC-15	~!!!!	NTIMETERS)		AC-15
	AC-5	2 571. 545 to 597 36.8	ORIGINAL SAMPLE (CENTIMETERS)		<u>AC-5</u>	150.0+		AC-5	2 15.0+ to 75.0+	ORIGINAL SAMPLE (CENTIMETERS)		AC-5
3	FLUX	450 το 630 84.1	DUCTILITY @ 39.2°F, 1 cm/min., C	Materials Bureau	FLUX	150.0+ -	Comparative Results	FLUX	· · · · · · · · · · · · · · · · · · ·	@ 77°F, 5 cm/min., C	Materials Bureau	FLUX
		No. of Samples Mean Range Standard Deviation	P. BUCTILITY @	1. Materia		No. of Samples Mean Range Standard Deviation	2. Compara		No. of Samples Mean Range Standard Deviation	Q. DUCTILITY	1. Materia	

Results
Comparative
2.

85/100	3 140.0+ to 150.0+
AC-20	3 150.0+ -
AC-15	$\frac{2}{-\frac{1}{130.0+}}$ 130.0+ to 150.0+
AC-5	.0+
FLUX	3 130.0+ to 150.0+
	No. of Samples Mean Range Standard Deviation

SOLUBILITY IN TRICHLOROETHYLENE, (%)

≃|

1. Materials Bureau

85/100	3 99.94 99.91 to 99.96 0.03
AC-20	8 99.98 99.97 to 99.99 0.01
AC-15	3 99.75 99.28 to 99.98 0.40
AC-5	2 99.98 99.97 to 99.98 0.01
FLUX	99.72 98.93 to 99.99 0.52
	No. of Samples Mean Range Standard Deviation

2. Comparative Results

AC-20	99.93 99.70 to 99.99	0.10
<u>AC-15</u>	$\frac{2}{99.94}$	0.06
AC-5	99.93 99.89 to 99.96	0.05
FLUX	$\frac{3}{99.96}$	0.03
	No. of Samples Mean Range	Standard Deviation

3 99.70 to 99.95 0.14

85/100

SOFTENING POINT, ETHYLENE GLYCOL, (°F)

S

	FLUX	AC-5	AC-15	AC-20	85/100
No. of Samples	7	2	C	\pi	C
Mean	110	106	118	122	118
Range	107 to 113	105 to 107	115 to 121	120 to 125	117 to 119
Standard Deviation	2.5	1.4	3.0		1.0

2. Comparative Results

85/100	$\frac{2}{117}$ 116 to 118 1.4
<u>AC-20</u>	$\frac{2}{124}$ 122 to 125 2.1
AC-15	$\frac{2}{122}$ 121 to 123 1.4
<u>AC-5</u>	
FLUX	$\frac{3}{111}$ 104 to 115 6.1
	No. of Samples Mean Range Standard Deviation

Penetration Viscosity Number, (PVN)

-

Lower PVN indicates greater temperature susceptibility. It is suggested that an asphalt cement with a PVN less The penetration viscosity number, PVN, is an indicator of the temperature susceptibility of asphalt cements. than -0.5 is temperature susceptible.

$$PVN = \frac{\text{Log A} - \frac{\text{Log V}}{\text{Log A} - \frac{\text{Log V}}{\text{Log B}}} \times (-1.5)$$

Where Log A = 4.25800 - 0.79674 Log (Penetration @ 77°F) Log B = 3.46289 - 0.61094 Log (Penetration @ 77°F) Log V = Log (Viscosity @ 275°F, Kinematic)

85/100	en (-0.622	-0.397 to -0.0771	0.198
<u>AC-20</u>	& :	-0.343	-0.003 to -0.658	0.235
AC-15	ന	-0.721	-0.641 to -0.858	0.119
AC-5	2	-0.583	-0.532 to -0.634	0.072
FLUX	4	-0.443	+0.078 to -1.227	0,578
	No. of Samples	Mean	Range	Standard Deviation

Comparative Results 2.

85/100	3 -0.420 to -0.732 0.165
AC-20	7 -0.361 7 -0.013 to 0.595 0.224
AC-15	3 -0.686 -0.603 to -0.827 0.123
<u>AC-5</u>	$\begin{array}{c} \frac{2}{-0.637} \\ -0.564 \text{ to } -0.710 \\ 0.103 \end{array}$
FLUX	4 -0.491 -0.030 to -1.279 0.562
	No. of Samples Mean Range Standard Deviation

PENETRATION INDEX NUMBERS, (PIN)

=|

negative values of PIN indicate greater temperature susceptibility. "Typical" asphalts have values between +2 Large The Penetration Index Number is another indicator of temperature susceptibility of asphalt cements. and -2.

$$PIN = \frac{30}{1 + 90 \text{ PTS}}$$

PTS = Penetration Temperature Susceptibility

Materials Bureau

85/100	$\frac{3}{-0.359}$ -0.143 to -0.497 0.190		85/100	$-\frac{2}{400}$	-0.336 to -0.464 0.091
AC-20	8 -0.064 +0.235 to -0.334 0.175		AC-20	+0.357	+0.934 to -0:221 0.817
AC-15	3 -0.692 -0.472 to -0.893 0.211	<i>,</i> •	AC-15	-0.033	+0.201 to -0.267 0.331
AC-5	-0.236 +0.016 to -0.488 0.356		<u>AC-5</u>		1 1.
FLUX	4 +0.418 +0.164 to +0.946 0.356	Comparative Results	FLUX	$\frac{3}{+0.739}$	+1.911 to -0.991
	No, of Samples Mean Range Standard Deviation	2. Compar		No. of Samples Mean	Range Standard Deviation

A SETTLING TEST TO EVALUATE THE RELATIVE DEGREE OF DISPERSION OF ASPHALTENES

H. Plancher) Laramie Energy Technology Center J. C. Petersen) U.S. Department of Energy P.O. Box 3395
Laramie, Wyoming 82071
A. J. Holberg) Johns - Manville Sales Corporation S. C. Suhaka) R&D Center Ken - Caryl Ranch

Denver, Colorado 80217

hexane-maltene solutions. The test involves digesting asphalt in n-hexane, transferring the contents into a graduated cylinder and measuring the time required for the asphaltene meniscus to settle to the 25 ml. paving asphalts. This test distinguishes differences in asphaltene settling times of asphalts in their asphaltenes and thus a more compatible asphalt, which in turn is considered to be an important property The asphaltene settling test is used to evaluate the relative degree of dispersion of asphaltenes from mark of a 50 ml. cylinder. Slower settling times indicate a greater degree of dispersion of the that contributes to asphalt durability. The test is extremely sensitive to changes in asphalt composition. Time is reported in minutes.

SEPARATION OF ASPHALT INTO FOUR FRACTIONS MODIFIED METHOD OF ASTM D 4124-82 SECTION 4, VOLUME 04.03

3

determining the physical properties of the asphalt. These properties include viscosity, ductility, softening naphthene aromatics, polar aromatics, and asphaltenes. The relative amount of each fraction plays a role in The purpose is to separate the four generic fractions present in asphalt. These fractions are saturates, point and temperature susceptibility.

The procedure follows:

The insolubles The percent asphaltene is determined by dispersing the asphalt in n-heptane and refluxing. are the asphaltenes.

Saturates are eluted with n-heptane. Naphthene aromatics are eluted with toluene. Polar Aromatics are calcined alumina chromatography column and eluting (removing) each fraction with a different solvent. eluted with 50/50 toluene - methanol solution, followed by trichloroethylene. The solvents are then The remaining three fractious are determined by absorbing the deasphaltened n-heptane solution on a evaporated and weight percentages of each fraction with respect to the original asphalt sample are determined.

ASPHALTENES, Z

No. of Samples 4 Mean 13.5 12.7 9.9 16.7 Range 7.6 to 18.0 11.6 to 13.8 6.9 to 12.2 12.9 to 5.1 1.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
---	--

SATURATES, %

	AC-15	$\frac{3}{10.0}$ 9.6 to 10.3 0.4
	<u>AC-5</u>	$\frac{2}{16.5}$ 13.6 to 19.4
als Bureau	FLUX	$\frac{4}{12.1}$ 9.7 to 13.4
1. Materials Bureau		No. of Samples Mean Range Standard Deviation

NAPHTHENE - AROMATICS, Z

 $\frac{3}{11.3}$ 9.7 to 12.2
1.4

 $\frac{8}{9.4}$ 5.5 to 16.6

85/100

AC-20

	85/100	30.0 28.1 to 33.3 2.8	
	AC-20	$\frac{8}{24.9}$ 20.1 to 29.5	
	AC-15	$\frac{3}{31.0}$ 27.1 to 37.0 5.3	
	AC-5	25.8 22.8 to 28.8	
als Bureau	FLUX	$\frac{4}{28.5}$ 24.5 to 34.7 4.6	
1. Materials Bureau		No. of Samples Mean Range Standard Deviation	

POLAR AROMATICS, %

	85/100	39.2 37.6 to 41.6 2.1
	<u>AC-20</u>	$\frac{8}{42.1}$ 39.1 to 44.4
	AC-15	$\frac{3}{41.9}$ 39.1 to 43.9 2.5
	<u>AC-5</u>	$\frac{2}{39.3}$ 36.6 to 42.0
ls Bureau	FLUX	4 40.5 37.3 to 43.4 2.7
]. Materials Bureau		No. of Samples Mean Range Standard Deviation

IX. GRAPHS AND CHARTS OF RELATED MATERIAL INFORMATION

On the following pages are found a series of graphs and charts providing a comparison of thin film oven test, before and after, and charts showing asphaltene dispersion settling test.

COMPARISON 85/100, BEFORE VS. AFTER THIN FILM OVEN TEST

A SETTLING TEST TO EVALUATE THE RELATIVE DEGREE OF DISPERSION OF ASPHALTENES

C = FLUX, MARATHON, TONAWANDA D = FLUX, UNITED REF., WARREN A = FLUX, CHEVRON, PERTH AMBOY B = FLUX, CIBRO, ALBANY

5.).P.

4.).P.

A SETTLING TEST TO EVALUATE THE RELATIVE DEGREE OF DISPERSION OF ASPHALTENES

A = AC-15, MARATHON, TONAWANDA B = AC-15, PETRO - CANADA, OAKVILLE C = AC-15, UNITED REF., WARREN, PA.

C = 85/100, SHELL CANADA, MONTREAL B=85/100, PETRO CANADA, MONTREAL A = 85/100, GULF CANADA, MONTREAL

5.).R

