

第16章 E-mail服务

主讲人: 梁如军

2015-05-05

本章内容要点

- 电子邮件系统的组成及相关协议
- ■邮件消息的传输流程
- Postfix的体系结构及工作流程
- Postfix的安装和配置
- Dovecot的安装和配置
- SASL与TLS

本章学习目标

- 理解电子邮件系统的组成
- 熟悉电子邮件相关协议
- 熟悉Postfix的体系结构及功能实现
- 掌握邮件消息的传输流程
- 熟悉Postfix映射表的功能及类型
- 学会配置和使用access/aliases/virtual映射表
- 掌握Postfix UCE控制的基本配置方法
- 学会安装和配置Dovecot
- 学会配置带有SMTP认证的MTA
- 学会配置带有SSL/TLS支持的邮件服务

邮件系统与邮件协议

邮件系统与邮件协议

- 电子邮件系统的组成
- ■邮件消息的传输流程
- 电子邮件相关协议

电子邮件系统组成

MUA (邮件用户代理)

Mail User Agent

- □提供发送和接收电子邮件的用户接口
 - 使用SMTP协议向MTA发送邮件
 - 读取由MDA递送的或由MRA检索的邮件
- □提供给用户方便的阅读和撰写邮件的编辑环境

- Mozilla Thunderbird
- Microsoft Outlook Express
- Foxmail
- DreamMail

MRA (邮件检索代理)

Mail Retrieval Agent

- □ MRA从MAA检索或获取邮件
- □ 与MDA协同工作将邮件投递到本地或远程的邮箱 (MailBox)
- □为MUA读取邮件做好准备

- 独立的应用程序: 如 fetchmail和 getmail
- 构建到MUA中,如在Mozilla Thunderbird中整合的 MSA功能

MAA (邮件访问代理)

Mail Access Agent

- □ 将用户连接到系统邮件库,为MUA提供用户认证
- □ 为MUA使用POP或IMAP协议从用户邮箱读取邮件 做好准备

- Dovecot
- Cyrus-IMAP
- Courier-IMAP
- UW-IMAP

MSA (邮件提交代理)

Mail Submission Agent

- □ 接受来自 MUA 的邮件
- □ 负责消息由MTA发送之前必须完成的所有准备工作 和错误检测

- Postfix 的 postdrop+pickup
- Sendmail 的 sendmail-msa

MTA (邮件传输代理)

Mail Transfer Agent

- □根据邮件的目标地址进行入站路由
- □管理邮件队列将接收到的邮件进行缓冲
- □ 决定将邮件发往不同的MDA,还可能会改变邮件路由

- Postfix cleanup+qmgr+trivial-rewrite
- Sendmail

MDA (邮件投递代理)

Mail Delivery Agent

- □ 从MTA接收邮件
- □ 投递邮件到本地邮箱、邮件列表、文件或程序
- □ 投递邮件到其他的MTA

- Postfix 的local, smtp, pipe
- □ Sendmail本身包含了MDA的功能

LDA (本地投递代理)

Local Delivery Agent

- □ 当接收者的地址与本地主机一致时,负责投递的 MDA也称本地投递代理(LDA)
- **LDA是MDA**的特例
- Examples
 - procmail (www.procmail.org)
 - maildrop (http://www.courier-mta.org/maildrop/)
 - Sieve (http://wiki.dovecot.org/LDA/Sieve)
 - □ Sendmail 提供的 mail.local 和 smrsh

邮件消息的传输流程

邮件消息的传输流程(1)

1.撰写新邮件

- □ 使用MUA撰写邮件
- □ 将撰写的邮件提交给MSA

2.MSA接受邮件消息

- □ MSA 验证用户
- □ MSA允许授权用户提交邮 件消息
- MSA 根据需要重写消息 头
- MSA 将消息提交给MTA
- □ MSA 向MUA发送成功报 告

3.MTA接受邮件消息

- □ MTA检查邮件的发送者和接收 者是否有效以及是否被允许
- MTA检查邮件内容是否有效以 及是否被允许
- □ MTA可能会运行邮件内容过滤
- □ MTA根据需要重写消息头
- MTA根据邮件头决定提交给哪个MDA(smtp, local等)
- □ MTA 提交给适当的MDA
- 」若提交失败,MTA将其放入适 当的邮件队列以便稍后重新提 交

邮件消息的传输流程(2)

4.MDA接受邮件消息

MDA 使用SMTP协议发送 邮件到远程MTA,实现邮 件中继(Relay)

5.远程MTA接受邮件消息

- 操作流程与3.相同
- □ 邮件消息提交给LDA

6.LDA接受邮件消息

- □ LDA 可能会执行邮件过滤规则
- □ LDA 将邮件消息投递到本地用 户邮箱

7.MAA 检测新邮件消息

- MAA 接受MUA的用户 认证授权
- MUA 通过MAA索取邮件消息

8.阅读邮件消息

■ MUA 将邮件消息展示 给用户

电子邮件相关协议

-简单邮件传输协议(SMTP)

- Simple Message Transfer Protocol
 - □ 默认端口: 25 (TCP)
 - □ Text-based 协议,RFC2821
 - □ 定义了SMTP命令
 - 无加密(No encryption)
 - □ 无认证(No authentication)
- 用于
 - □发送邮件的MUA与MTA建立连接并发送邮件
 - □ MTA之间也使用STMP进行电子邮件的转发

电子邮件相关协议 ——扩展的SMTP协议(ESMTP)

- Extended SMTP
 - □ RFC1869、RFC1870、RFC1891和RFC1985
 - □ 提供了如身份认证和传输加密等功能

电子邮件格式及标准

RFC2822/RFC822

- MIME
 - □ RFC2045、RFC2046
 - □ RFC2047、RFC4288
 - □ RFC4289、RFC2049

信封

包含了发送者电子邮件地址、接收者电子邮件地址以及投递模式

内容

报头

邮件格式所规定的必要的部分

报文

信件内容

附件部分

电子邮件相关协议

—多用途互联网邮件扩展(MIME)

Multipurpose Internet Mail Extension

- □ 提供了一个扩展的邮件格式标准,使消息在不同的邮件 系统内进行交换
- □ MIME的主要功能
 - 支持除了ASCII之外的字符集文本
 - 支持非ASCII字符集的头信息
 - 支持多种类型的非文本(图象、声音、视频及应用程序)附件
- □ 复合消息体包含多个部分
 - 复合消息的目录信头设有分界标志
 - 分界标志出现在各部之间以及消息体的开始和结束处
 - 分界标志绝不可出现在消息的其它位置

电子邮件相关协议 ——邮局协议(POP)

- Post Office Protocol
 - □ RFC1939 (默认端口: 110)
 - □ 所有数据(包括密码)都被明文传输
 - □功能
 - 检测用户的登录名和口令
 - 下载服务器上的邮件到本地硬盘(同时删除保存在邮件服务器上的邮件),用户可以在本机上进行离线邮件阅读,用户不必长时间地与邮件服务器连接
 - □ 当前使用的POP协议的版本是POP3
 - □ 可以通过TCP:995端口传递POP3的基于SSL的加密数据(POPS)

POP的缺点和IMAP引入

- ■用户几乎没有对邮件接收的控制决定权
 - 在整个收信过程中,用户无法知道邮件的具体信息, 只有全部收入硬盘后,才能慢慢浏览和删除
 - □ 一旦碰上邮箱被轰炸,或有比较大的邮件,用户不能通过分析邮件的内容及发信人地址来决定是否下载或删除,从而造成系统资源的浪费
- IMAP协议可以克服POP协议的缺陷,同时提供更强大的功能

电子邮件相关协议

-互联网邮件存取协议(IMAP)

- Internet Message Access Protocol
 - □ RFC2060 (默认端口: 143)
 - □ 所有数据(包括密码)都被明文传输
 - □功能
 - 实现了POP协议的功能
 - 在线从远程邮件服务器上获取E-mail信息
 - 提供了如何远程维护服务器上的邮箱的功能
 - 具有高性能和可扩展性的优点
 - □ 当前使用的IMAP协议的版本是IMAP4
 - □ 可以通过TCP:993端口传递IMAP4的基于SSL的加密数据(IMAPS)

IMAP提供三种操作模式

- 在线方式
 - □ 邮件保留在服务器端,客户端可以对其进行管理
 - □使用方式与WebMail相类似
- 离线方式
 - □ 邮件保留在服务器端,客户端可以对其进行管理
 - □与POP协议一样
- ■分离方式
 - □邮件的一部分在服务器端,一部分在客户端
 - □ 与一些成熟的组件包应用(如LotusNotes/Domino) 的方式类似

POSTFIX及其工作原理

Postfix及其工作原理

- Postfix简介
- Postfix的体系结构
 - □多进程协同工作
 - □邮件队列及其管理器
- Postfix邮件传输流程
- Postfix的MTA功能实现

Postfix起源

- Wietse Zweitze Venema 博士到IBM公司的T. J. Watson研究中心做学术休假的1998年时
- 启动了Postfix项目: "设计一个可以取代 Sendmail的软件,可以为网站管理员提供一个 更快速、更安全、而且完全兼容于Sendmail 的邮件服务器软件!"
- Postfix项目一直由IBM资助并成为开源的自由软件项目,其主站在 http://www.postfix.org

Postfix的设计目标

- **高性能**: Postfix要比同类的服务器产品速度快三倍以上
- 兼容性:保持与Sendmail的兼容性
- **健壮性**: 在过量负载情况下仍然保证程序的可靠 性
- **灵活性:** Postfix结构上由十多个小的子模块组成, 每个子模块完成特定的任务
- **安全性:** Postfix使用多层防护措施防范攻击者来保护本地系统
- 开放性: 遵从IBM的开放源代码版权许可证

Postfix的特点

- 配置简单
- ■虚拟域支持
- UCE (Unsolicited Commercial Email) 控制
 - □ 黑名单列表、RBL查找、HELO/发送者DNS核实
 - □ 邮件头和邮件内容过滤
- 表查询
 - ■使用一种扩展的表查询来实现地址重写功能
- 跨平台
 - □ Postfix 可以运行在类UNIX平台上(AIX、Solaris、 HP-UX、IRIX、Linux、FreeBSD、MacOS X)

Postfix在邮件系统中的角色

- Postfix在邮件系统中担任MTA的角色
- Postfix负责在服务器之间传递邮件,并收下其他系统寄到本地系统的邮件
- Postfix不处理任何POP或IMAP通信内容

Postfix的体系结构

Postfix的多进程协作

- 基于模块化的互操作的多进程体系结构设计
- 每个独立的进程完成不同的任务,这些独立的 进程称为组件(component)
- Postfix的组件之间没有任何特定的进程衍生关系(父子关系)
- 优点
 - □具有更好的隔离性
 - □ 便于审计和排错
 - □ 减少进程创建开销

Postfix协同工作的组件

- pickup
- smtpd
- qmqpd
- cleanup
- qmgr
- trivial-rewrite

- local
- Imtp
- smtp
- virtual
- pipe

Postfix组件的运行方式

- Postfix 的各个组件以半驻留方式运行(每隔一段时间执行一次)
- Postfix的各个组件由一个常驻内存的主控守护进程(master)控制
 - □ 主导邮件的处理流程,是Postfix其他组件的总管
 - □ 配置文件为 master.cf
 - 只有master以root身份运行的,其他Postfix组件以 postfix用户身份运行
- Postfix的组件之间通过UNIX的套接字(Socket) 或受保护的目录之下的先入先出命名管道(FIFO) 进行通信

邮件队列及其管理器

- Postfix的各个组件之间通过队列管理器 (Queue Manager) 交换邮件
- 等候投递的邮件由qmgr进程控制
- ■由qmgr管理的邮件队列
 - □ Incoming(收件队列)
 - □ Active (活动队列)
 - □ **Deferred**(延迟队列)
 - □ Corrupt (故障队列)
 - □ Hold (保留队列)

Postfix邮件传输流程

Postfix的MTA功能实现

- Postfix 实现了 MTA 的核心功能
 - □ 邮件路由 (Mail routing)
 - □ 邮件头重写 (Header rewriting)
 - □ 授权 (Authorization)
 - □ 内容过滤(Content filtering)

Postfix功能——邮件路由

- 查找收件人地址的服务器
- 选择适当的MDA/LDA投递邮件
- 为提交的邮件排队等待处理
- 重新提交失败的邮件消息
- 发送投递状态通知

邮件路由与DNS

example.com MX **10** mail1.example.com. example.com MX **20** mail2.example.com. example.com MX **30** mx.nodomain.org.

- Problem: 邮件路由过程中信件要投递给哪个 服务器?
- Solution: 查询 DNS 服务的 MX 记录
 - 」以MX记录优先数的升序进行选用
 - □ 若没有找到MX记录,则查询邮件地址的A记录

LDA与用户邮箱

- 当邮件的目标地址是Postfix的mydestination 参数指定的网域之一时,Postfix由本地投递代理(local)将邮件投递到服务器上用户的邮箱。
- ■用户邮箱主要有两种格式
 - □ 传统的mbox: /var/spool/mail/\$USER
 - □ 新型的maildir: \$HOME/mail/*
- CentOS 中 Postfix 默认配置使用mbox格式

Postfix功能——邮件头重写

- ■添加邮件的消息头
- 添加 Message-ID
- 实现地址重写
- 例如:
 - □移除主机名
 - □添加域名
 - □ osmond → osmond.liang

Postfix功能——授权

- ■检查提交的主机的IP或域名
- ■检查发件人地址
- ■检查收件人地址
- ■检查内容

- ■通常情况下允许
 - □ 来自本地系统的邮件
 - 」发送到本地系统的邮件
 - □ 来自可信主机并发往任何系统的邮件

邮件中继 (relay)

- 当需要把邮件从一个MTA传送到另一个MTA 时,这个邮件中转的动作称为邮件中继。
- 中继限制(Relay restrictions)
 - □ 为了避免本地MTA成为垃圾邮件的中转站,通常本地MTA直接禁止其他不明身份的主机利用本地服务器投递邮件。
 - □ 这种情况下,一个非本地主机使用本地服务器进行 投递时会产生"550 relay denied"错误。

Postfix功能——内容过滤

- 内置的内容检查
 - Header checks
 - Body checks
 - Regexp checks

- ■与其他内容过滤软件配合实现内容过滤
 - □可以实现各种功能的重型的内容过滤
 - □ 分为**入队后过滤**和**入队前过滤**两种实现方式

Postfix与其他软件配合 ——实现各种内容过滤

- 病毒 (virus) 内容扫描
- ■检查附件的有效性
- ■检查邮件的大小
- 检查垃圾邮件(spam)
 - □ 关键字过滤(Keyword filters)
 - □ 基于规则的过滤(rule filters)
 - 基于IP地址黑名单(IP address blacklists)
 - □ 基于DNS的黑名单(DNS-based blocklists)
 - □ 灰名单(Greylisting)

RHEL/CENTOS 下的POSTFIX

安装和启用Postfix

- 安装Postfix# yum install postfix
- 管理Postfix服务 # systemctl {enable|disable} postfix
 - # systemctl {start|stop|status|restart|reload} postfix
 - □或
 - # postfix {start|stop|reload}

Postfix服务概览

- 软件包: postfix
- 服务类型: 由Systemd启动的守护进程
- 配置单元:
 /usr/lib/systemd/system/postfix.service
- 守护进程: /usr/libexec/postfix/master
- 端口: 25 (smtp), 465 (smtps)
- ■配置文件
 - □ 主控守护进程配置文件: /etc/postfix/master.cf
 - □ 主配置文件: /etc/postfix/main.cf
- 相关软件包: procmail, openssl

Postfix的命令工具

- ■管理工具
 - /usr/sbin/postfix: Postfix的控制程序,类似于Apache的 apachectl
 - □ /usr/sbin/postconf: 显示和编辑 /etc/postfix/main.cf的配置 工具
 - □ /usr/sbin/postalias: 构造、修改和查询别名表
 - □ /usr/sbin/postmap:构造、修改或者查询查找表
 - □ /usr/sbin/postcat: 打印队列文件的内容
 - □ /usr/sbin/postqueue: 邮件队列管理工具
 - □ /usr/sbin/postsuper: 系统管理员的邮件队列管理工具
 - □ /usr/sbin/postlog: 一个向邮件日志直接写入信息的工具

Postfix的命令工具(续)

- 与Sendmail兼容的工具
 - // / usr/sbin/sendmail
 - 与Sendmail兼容的邮件发送替代工具
 - 链接到 /usr/sbin/sendmail.postfix
 - - 与Sendmail兼容的别名数据库生成替代工具
 - 链接到 /usr/bin/newaliases.postfix
 - /usr/bin/mailq
 - 与Sendmail兼容的邮件队列查询替代工具
 - 链接到 /usr/bin/mailq.postfix

控制和监视Postfix

- 控制Postfix
 - # postfix {abort|flush|check}
 - □ abort: 立即退出
 - □ flush: 强制将目前正在邮件队列的邮件寄出
 - □ check: 检查Postfix的目录及文件的权限并创建丢失的目录
- ■队列管理
 - □ 查看延期的消息: postqueue -p
 - □ 发送延期消息: postqueue -f
- 监视Postfix日志
 - # tail -f /var/log/maillog
 - # egrep '(reject|warning|error|fatal|panic):' /var/log/maillog

CentOS中Postfix的默认配置

- 在127.0.0.1网络接口上监听25号端口
- ■可以接收发往本地主机和本地域的邮件

```
# service postfix start
# ps -ef|grep postfix
       4755 1 0 Apr11 ? 00:00:00 /usr/libexec/postfix/master
root
postfix 4758 4755 0 Apr11 ? 00:00:00 qmgr -I -t fifo -u
postfix 6935 4755 0 02:33 ? 00:00:00 pickup -I -t fifo -u
# postconf -n |grep inet_interfaces
inet interfaces = localhost
# postconf -n |grep mydestination
mydestination = $myhostname, localhost.$mydomain, localhost
# netstat -lunpt|grep :25
     0 0 127.0.0.1:25 0.0.0.0:* LISTEN 4755/master
```

测试Postfix的默认配置

- 使用邮件客户工具
 - mail 或 mutt
 - □对SMTP协议是透明的
- 使用telnet或nc命令
 - # nc localhost 25
 - # telnet localhost 25
 - □ 需要熟悉SMTP/ESMTP协议命令
- 使用自动化测试工具

swaks

- swaks (SWiss Army Knife SMTP)
 - □ 一个专门的SMTP/ESMTP自动化测试工具
 - □ 用 Perl 语言编写
 - □ 主页: http://www.jetmore.org/john/code/swaks
 - □ 在EPEL仓库里提供了其RPM包 # yum install swaks
- 使用方法
 - \$ man swaks
 - \$ swaks --to osmond@localhost

POSTFIX的配置文件

Postfix 的配置文件

/etc/postfix/master.cf

- □ postfix的master进程的配置文件
- □ 每一行配置一个postfix组件进程的运行方式
- □ 默认的master.cf文件即可良好的工作,通常无需修改
- □ 一般地,只有当Postfix需要配合其他软件协同工作时才 需要修改

/etc/postfix/main.cf

- □ postfix的主配置文件
- □ 每一行指定一个参数的值

main.cf的配置语法

parameter = value1 [value2] [value3] [......]

- Postfix提供了800多个可供配置的参数
- ■说明
 - □ 等号左右两端紧跟的空格不是必须的。
 - 一个参数的多个值之间以空格间隔或以逗号和空格 作为间隔。
 - 」以空格开始的行为上一配置行的继续。
 - ■每个参数的值必须直接书写,不能使用单引号或双引号将其括起。

main.cf的配置语法(续)

parameter = value1 [value2] [value3] [.....]

■ 说明

- 不要在参数行后使用#号添加注释,所有以#号开始的注释行必须单独成行。
- ■可以在等号右边的参数名前加\$字符引用其他参数的值。
- 若重复设定某一参数的值,则以最后出现的设定值 为准。
- □ 可将参数值写在另一个文本文件中,并把文件名提供给参数,任何以/字符开始的字符串都会被视为文件名。

main.cf的常用参数

参数	说明	
inet_interfaces	指定Postfix监听的网络接口。all 表示所有网络接口	
myhostname	指定运行Postfix服务的邮件主机名称(FQDN名)	
mydomain	指定运行Postfix服务的邮件主机的域名	
myorigin	指定由本台邮件主机寄出的每封邮件的邮件头中mail from的地址	
mydestination	指定可接收邮件的主机名或域名,只有当发来的邮件的收件人地址与该参数值相匹配时,Postfix才会将该邮件接收下来	
mynetworks	设置可转发(Relay)哪些IP网段的邮件	
relay_domains	设置可转发(Relay)哪些网域的邮件	

■ 更多参数参见手册: \$ man 5 postconf

Postfix的配置方法

- 修改主配置文件main.cf的两种方法
 - □使用文本编辑器直接修改主配置文件
 - □ 使用 postconf -e 命令修改主配置文件的配置参数
- 使配置生效
 - # postfix reload

postconf 的常用功能

- ■显示默认设置
 - postconf -d
- ■显示当前的非默认设置
 - postconf -n
- 修改main.cf 的配置参数
 - postconf -e <key>=<value...>
- 显示支持的映射表类型
 - postconf -m
- ■显示支持用哪些程序做SASL身份认证
 - postconf -a

配置基本功能的MTA

vim /etc/postfix/main.cf

```
inet_interfaces = all
myhostname = centos1.ls-al.me
mydomain = ls-al.me
myorigin = $mydomain
mydestination = $myhostname, localhost.$mydomain,
    localhost, mail.$mydomain, $mydomain
mynetworks = 127.0.0.0/8, 192.168.0.0/24
relay_domains = $mydestination
```

postfix reload

POSTFIX的映射表及其应用

Postfix的映射表

- 映射表(Maps)是Postfix用于查询信息的文件和数据库。
- ■映射表可被用于多种不同的用途。
- Postfix使用映射表查询来实现各种地址重写功能。
- Postfix支持多种不同的映射类型,可用的格式 依赖于Postfix的编译情况。
- 查看Postfix支持哪些类型的映射 # postconf -m

Postfix的映射表类型

- 索引映射表 (Indexed Maps)
 - 是从普通文本文件通过工具生成的二进制数据库 postmap/postalias/newaliases
 - □ 这种键值数据库可以加快Postfix通过键来查找其对 应值的速度
 - □ 常用的映射类型为hash(Postfix默认的映射类型)、btree、dbm
- 线性映射表 (Linear Maps)
- 数据库(Databases)

Postfix的映射表类型(续)

- 线性映射表 (Linear Maps)
 - □线性映射表是常规的文本文件
 - □ 无需也无法生成线性映射表对应的二进制文件
 - □ 常用的映射类型为pcre、regexp、cidr
- 数据库(Databases)
 - □ Postfix对待数据库的处理类似于索引映射表
 - □ 常用的映射类型为: LDAP、MySQL、PostgreSQL

Postfix重要的映射表

■ access: SMTP存取控制映射表

■ aliases:别名映射表

■ virtual: 虚拟别名映射表

canonical:

□对传入的邮件进行地址改写的映射表

generic :

」对传出的邮件进行地址改写的映射表

■ header_checks: 过滤邮件头使用的映射表

■ body_checks: 过滤邮件内容使用的映射表

access映射表

- access映射表
 - □用于实现SMTP访问限制
 - □ 是索引映射表 (Indexed Maps)
 - 编辑纯文本文件 /etc/postfix/access
 - 生成散列数据库
 - # postmap /etc/postfix/access
 # postfix reload
- 在主配置文件 main.cf中配置使用access映射表

smtpd_TAG_restrictions = check_TAG_access hash:/etc/postfix/access, ...

□ TAG可以是 sender, recipient, client, helo

access映射表的格式

■每一行的格式为

<地址> <动作>

■地址字段常用格式

格式	举 例
domain	yourdomain.com
uomam	.yourdomain.com
in addraga	192.168.12
ip address	192.168.11.11
username@domain	someone@somedomain.com
username@	someone@

access映射表的格式 (续)

■ 每一行的格式为

<地址> <动作>

■动作字段常用格式

动作	说明
ОК	无条件接受或发送
RELAY	允许中继代理投递(SMTP RELAY)
REJECT	拒绝接受并发布错误信息
DISCARD	丢弃邮件,无错误信息发布
HOLD	将邮件阻止在邮件队列中
4nn text	返回临时错误码4nn及消息
5nn text	返回临时错误码5nn及消息

access映射表的使用时机

语句	说明
smtpd_client_restrictions	使用check_client_access选项指定要 检查的access映射表,用于SMTP建立 连接请求的阶段
smtpd_helo_restrictions	使用check_helo_access选项指定要 检查的access映射表,用于SMTP启动 会话的HELO/EHLO命令阶段
smtpd_sender_restrictions	使用check_sender_access选项指定要检查的access映射表,用于SMTP发件人说明的MAIL FROM命令阶段
smtpd_recipient_restrictions	使用check_recipient_access选项指定要检查的access映射表,用于SMTP收件人说明的RCPT TO命令阶段

access映射表配置举例

- ■限制向Postfix发起SMTP连接的客户
- 通过收件人地址限制Postfix的转发

参见教材的操作步骤

aliases映射表

- aliases映射表
 - □ 用于实现Postfix的本地别名机制,与Sendmail兼容
 - □ 是索引映射表 (Indexed Maps)
 - 编辑纯文本文件 /etc/aliases
 - 生成散列数据库
 - # postalias /etc/aliases
 - # postfix reload
- 在主配置文件 main.cf中配置使用aliases映射表

alias_maps = hash:/etc/aliases
alias_database = hash:/etc/aliases

aliases映射表的格式

■每一行的格式为

```
alias: recipient [, recipient, ...]
```

■ /etc/aliases举例

```
Irj:osmond
```

osmond:sinosmond, sinosmond@domian.tld

net_group:osmond, tom, stillman, patrcko

ourlist:include: /etc/postfix/ourmailinglist

```
# newaliases# service postfix reload
```

virtual映射表

- virtual映射表
 - □用于实现Postfix的虚拟别名机制
 - 将发给虚拟域的邮件投递到真实域的用户邮箱中
 - 也可以实现邮件列表的功能
 - □ 是索引映射表 (Indexed Maps)
 - 编辑纯文本文件 /etc/postfix/virtual
 - 生成散列数据库
 - # postalias /etc/postfix/virtual
 # postfix reload
- 在主配置文件 main.cf中配置使用virtual映射表

virtual_alias_maps = hash:/etc/postfix/virtual
virtual_alias_domains = olabs.org, olabs.net, olabs.com

virtual映射表的格式

■每一行的格式为

<虚拟域地址> <真实域地址>

■ /etc/postfix/virtual举例

@olabs.net @ls-al.me

@olabs.org @ls-al.me

sales@olabs.net sinosmond

sales@olabs.org sinosmond

sales@olabs.com sinosmond

admin@olabs.com osmond, osmond@domian.tld

web@olabs.com webmaster, osmond

postalias /etc/postfix/virtual

postfix reload

POSTFIX的UCE控制

Postfix默认的传输限制

- 接受符合以下条件的邮件
 - □ 目的地为\$inet_interfaces的邮件
 - □ 目的地为\$mydestination的邮件
 - □ 目的地为\$virtual_maps的邮件
- 转发符合以下条件的邮件
 - □ 来自客户端IP地址符合\$mynetworks的邮件
 - □ 来自客户端主机名符合\$relay_domains及其子域的邮件
 - □ 目的地为\$relay_domains及其子域的邮件

Postfix的UCE控制简介

- UCE(Unsolicited Commercial Email)控制
 - □ 控制 Postfix 接收或转发来自于什么地方的邮件
 - □ 控制 Postfix 接收或转发内容与设置相符的邮件
- UCE控制的功能
 - □ 白名单(允许)列表、黑名单(拒绝)列表
 - □ 实时黑名单列表(Real-time Blackhole List,RBL)
 - DNSRBL——Domain Name System Real-time Blackhole List
 - □发送者DNS核实
 - □邮件头检查过滤
 - □邮件内容检查过滤

实现强大的UCE控制功能

- 通过SMTP限制(smtpd restrictions)实现
 - □ 在SMTP会话的各个阶段进行限制
 - smtpd_*_restrictions
 - □通过严格SMTP会话标准进行限制
 - smtpd_helo_required = no|yes
- 通过Postfix内置的内容检查实现
 - □通过邮件头是否符合RFC标准进行限制
 - strict_rfc821_envelopes = no|yes
 - □ 通过邮件头过滤进行限制 (header_checks)
 - □ 通过邮件内容过滤进行限制(body_checks)

实现SMTP限制的参数

参数	说明
smtpd_client_restrictions	限制可以向Postfix发起SMTP 连接的客户端的主机名或IP地址
smtpd_helo_restrictions	指定客户端在执行 HELO 命令时 发送给 Postfix 的主机名
smtpd_sender_restrictions	通过发件人在执行MAIL FROM 命令时提供的地址进行限制
smtpd_recipient_restrictions	通过发件人在执行RCPT TO命令时提供的地址进行限制

- 每个参数均可以同时指定一个或多个限制规则(多个规则用逗号分隔)
- Postfix按顺序查询每一个限制规则,第一条符合条件的规则将被执行

使用 man 5 postconf 命令查看上述参数可使用的规则

SMTP会话一例

SMTP会话一例(续)


```
→ RCPT TO:<osmond@localhost>
                                                              recipient
← 250 2.1.5 Ok
\rightarrow DATA
← 354 Fnd data with <CR><I F> <CR><I F>
→ Date: Wed, 13 Apr 2011 04:07:33 +0800
→ To: osmond@localhost
                                                                 data
→ From: root@centos1.ls-al.me
→ Subject: test Wed, 13 Apr 2011 04:07:33 +0800
\rightarrow
→ This is a test mailing
\rightarrow
                                                           end_of_data
← 250 2.0.0 Ok: queued as 40FD39004B
→ QUIT
← 221 2.0.0 Bye
=== Connection closed with remote host.
```

SMTP限制的 检查顺序和检查时机

■检查顺序

■检查时机

client
helo/ehlo
sender
recipient
data
end_of_data

smtpd_delay_reject = yes

smtpd_client_restrictions

- 缺省值为空,即接收来自任何客户端的SMTP连接
- 常用的限制规则

限制规则	说明
permit_mynetworks	接受\$mynetworks参数定义的客户端连接
permit_sasl_authenticated	接受已经过SMTP认证的客户端连接
reject_unknown_client_hostname	若客户端的IP反向解析失败,或主机名正向解析失败,或以主机名解析的IP与客户端IP不符则拒绝连接
reject_unknown_reverse_client_ hostname	若客户端的IP反向解析失败则拒绝连接
reject_rbl_client rbl_domain	使用客户端的反向IP查询RBL,若在RBL 中出现则拒绝连接
check_client_access type:table	根据客户端的主机名、父域名、IP地址或 所属网段搜索Access映射表进行连接限制

中国反垃圾邮件联盟(CASA) The Community ENTerprise Operating System

—— http://anti-spam.org.cn/

■ 提供免费的实时黑名单列表(RBL)服务

类型	说明	网址
CBL	中国国内的主要垃圾邮件发送源	cbl.anti-spam.org.cn
CDL	中国国内动态分配地址	cdl.anti-spam.org.cn
CBL+	CBL和CDL的合集	cblplus.anti-spam.org.cn
CBL-	CBL+中去除了中国邮件服务运营商 白名单(CML)的内容后的黑名单	cblless.anti-spam.org.cn

■配置Postfix使用CASA的RBL

smtpd_client_restrictions = ...
reject_rbl_client cblless.anti-spam.org.cn, ...

smtpd_client_restrictions举例》CENTOS The Community ENTERPRISE Operating System

```
smtpd_client_restrictions = permit_mynetworks,
permit_sasl_authenticated
reject_unknown_client_hostname
```

```
smtpd_client_restrictions =
    permit_mynetworks,
    permit_sasl_authenticated,
    check_client_access hash:/etc/postfix/client_access,
    reject_rbl_client cblless.anti-spam.org.cn,
    reject_rbl_client bl.spamcop.net,
    reject_rbl_client t1.dnsbl.net.au,
    reject_rbl_client xbl.spamhaus.org
```

```
smtpd_client_restrictions = permit_mynetworks,
permit_sasl_authenticated, reject
```

smtpd_helo_restrictions

- 缺省值为空,即接收客户端发送的任意形式的主机名
- 常用的限制规则

限制规则	说明
permit_mynetworks	若HELO命令所带的主机名参数包含在 \$mynetworks参数中则允许客户端连接
reject_invalid_helo_hostname	若HELO命令所带的主机名参数不符合语法 规范则拒绝客户机的连接请求
reject_non_fqdn_helo_hostname	若客户端执行HELO命令时的主机名不是 RFC规定的FQDN则拒绝客户端的连接请求
reject_unknown_helo_hostname	若客户端执行HELO命令时的主机名在DNS中没有相应的A或 MX记录则拒绝该客户端的连接请求
reject_rhsbl_helo rbl_domain	若执行HELO命令时的主机名在RBL中出现 则拒绝连接
check_helo_access type:table	根据执行HELO命令时的主机名、父域名搜索Access映射表进行连接限制

smtpd_helo_restrictions举例


```
smtpd_helo_restrictions =
    permit_mynetworks
    reject_invalid_helo_hostname
    reject_non_fqdn_helo_hostname
    reject_unknown_helo_hostname
    check_helo_access hash:/etc/postfix/helo_access
```

smtpd_sender_restrictions

- 缺省值为空,即接受来自任何发件人的邮件
- 常用的限制规则

限制规则	说明
permit_mynetworks	若MAIL FROM命令提供的主机名所对应的网段包含在\$mynetworks参数中则允许连接
reject_non_fqdn_sender	若执行MAIL FROM命令提供的主机名不是 RFC规定的FQDN则拒绝客户端的连接请求
reject_unknown_sender_domain	若执行MAIL FROM命令提供的主机名在 DNS中没有相应的A或 MX 记录则拒绝该客 户端的连接请求
reject_rhsbl_sender rbl_domain	若执行MAIL FROM命令时的主机名在RBL 中出现则拒绝连接
check_sender_access type:table	根据执行MAIL FROM命令时的主机名、父域名或发件用户搜索Access映射表进行连接限制

smtpd_sender_restrictions 举例


```
smtpd_sender_restrictions =
   permit_mynetworks
   reject_non_fqdn_sender
   reject_unknown_sender_domain
   check_sender_access hash:/etc/postfix/sender_access
```

smtpd_recipient_restrictions The Community Operating

- 缺省值为
 - permit_mynetworks, reject_unauth_destination
- 常用的限制规则

限制规则	说明
reject_non_fqdn_recipient	若执行RCPT TO命令提供的主机名不是 RFC规定的FQDN则拒绝客户端的连接 请求
reject_unknown_recipient_domain	若执行RCPT TO命令提供的主机名在 DNS中没有相应的A或 MX 记录则拒绝 该客户端的连接请求
reject_rhsbl_recipient rbl_domain	若执行RCPT TO命令时的主机名在RBL 中出现则拒绝连接
check_recipient_access type:table	根据执行RCPT TO命令时的主机名、父域名或收件用户搜索Access映射表进行连接限制

smtpd_recipient_restrictions The Community T

- 缺省值为
 - permit_mynetworks, reject_unauth_destination
- 常用的限制规则(续)

限制规则	说明
permit_mynetworks	若RCPT TO命令提供的主机名所对应的网段包含在\$mynetworks参数中则允许连接
permit_sasl_authenticated	允许已经通过SMTP认证的客户端连接
permit_auth_destination	若收件者域名符合\$relay_domains及其子域或收件者的目的地为本机(即域名列于\$inet_interfaces, \$proxy_interfaces, \$mydestination, \$virtual_alias_domains, \$virtual_mailbox_domains)则接受连接
reject_unauth_destination	与上一规则的逻辑相反

smtpd_recipient_restrictions The Community Companies of the Community Commun

举例

```
smtpd_recipient_restrictions =
  reject_unknown_recipient_domain
  permit_mynetworks
  permit_sasl_authenticated
  reject_unauth_destination
  check_recipient_access hash:/etc/postfix/recipient_access
```

Postfix内置的内容检查

- 内置的内容检查可以 实现邮件头和邮件内 容过滤
- 在邮件入队(调入 incoming队列)之前 由cleanup组件负责处 理内容检查
 - □ 仅接受pickup、smtpd、qmqpd组件接收的邮件
 - □ 通过查询pcre或regeap 类型的映射表实现

实现内置内容检查的参数

多数

参数	说明
header_checks type:table	通过邮件头过滤进行限制
body_checks type:table	通过邮件内容过滤进行限制

■ 举例

header_checks = pcre:/etc/postfix/header_checks
body_checks = pcre:/etc/postfix/body_checks

有关pcre映射表的书写语法参见手册

Postfix内置内容检查的缺点及解决方法

■ 缺点

- □ 采用一系列的RE匹配比对,相当耗费系统资源
- □ 只能实现轻量级的过滤规则处理
- 会导致 cleanup 组件因等待大量过滤规则检查的完成而超时
- □ 不适合在生产环境中用于垃圾邮件和病毒邮件处理

解决

- □ 采用入队后的过滤处理避免cleanup 组件因等待而超时
- 净邮件传给更专业的外部软件进行垃圾邮件和病毒邮件 处理

梁如军(linuxbooks@126.com) Creative Commons License(BY-NC-SA)

User

DOVECOT的安装和配置

Docecot简介

- Dovecot 实现了从邮件服务器中读取邮件时使用的POP/POPS、IMAP/IMAPS 协议
- Dovecot 由 Timo Sirainen 开发,最初发布于 2002年7月
- Dovecot 在安全性方面比较出众
- Dovecot 执行速度快、内存用量少
- Dovecot 支持多种认证方式
- Dovecot 配置简单

Docecot的特点

- 采用模块化设计
- 完全兼容 UW IMAP 和 Courier IMAP
- 包含内置的 LDA 和 LMTP 服务,并提供可选的 Sieve 过滤支持
- 支持标准的 mbox、Maildir以及 其自己开发的高性能的 dbox 邮箱格式
- 支持对 IMAP 和 POP 的多种验证模式,如: CRAM-MD5 和 DIGEST-MD5等
- 支持多种账户存储方式,如:口令文件、PAM、SQL、LDAP等
- 支持 SASL 和 TLS

Docecot的系统结构

-重要进程组件

- **dovecot**: Dovecot 常驻内存的主守护进程
- anvil: 用于跟踪用户的连接
- **log**: 为除了主守护进程之外的所有进程组件记录日志到日志文件
- config:解析配置文件并为其他进程组件发送配置
- auth: 用于处理所有认证
- auth -w: 用于处理后台数据库(如: MySQL)验证的"认证工作者"进程,这样的进程会随需要创建更多
- imap-login/pop3-login: 在用户登录之前处理新的 IMAP/ POP3 连接,甚至会在登录之后处理代理的SSL连接
- imap/pop3: 在用户登录后处理 IMAP/POP3 连接

Dovecot服务概览

- 软件包: dovecot
- 服务类型: 由Systemd启动的守护进程
- 配置单元: /usr/lib/systemd/system/dovecot.service
- 守护进程: /usr/sbin/dovecot
- 端口: 110 (pop), 995 (pop3s), 143 (imap), 993 (imaps)
- 配置文件: /etc/dovecot.conf
- 相关软件包: procmail, fetchmail, openssl

Dovecot的安装和启动

- 安装 # yum install dovecot
- 使用systemctl命令管理Dovecot服务 # systemctl {start|stop|status|restart|reload} dovecot # systemctl {enable|disable} dovecot
- 使用doveadm命令控制Dovecot # doveadm stop|reload
- 查看Dovecot监听的网络端口 # netstat -Inpt|grep dovecot

使用doveconf 显示Dovecot的配置

- doveconf -d 显示所有参数的默认值
- doveconf -a 显示所有参数的当前值
- doveconf -n 显示所有修改了默认值的参数

- doveconf -d <parameter> 显示指定参数的默认值
- doveconf <parameter> 显示指定参数的当前值
- doveconf -N 显示所有修改了默认值的参数以及明确设置了默认值的参数

Dovecot 的配置文件

- 主配置文件 /etc/dovecot/dovecot.conf
- 守护进程配置文件/etc/dovecot/conf.d/10-master.conf
- 配置文件 /etc/dovecot/conf.d/[129][05]-*conf 用于配置模块参数
- 被 /etc/dovecot/conf.d/10-auth.conf包含的 /etc/dovecot/conf.d/auth-*.conf.ext文件为不同的认证模块提供配置参数

Dovecot的基本配置

-实现POP3/IMAP服务

- 修改主配置文件 /etc/dovecot/dovecot.conf protocols = imap pop3 listen = *
- 编辑认证模块配置文件 /etc/dovecot/conf.d/10-auth.conf disable_plaintext_auth = no auth_mechanisms = plain login !include auth-system.conf.ext
- 编辑邮箱模块配置文件/etc/dovecot/conf.d/10-mail.conf mail location = maildir:~/Maildir
- 编辑ssl默认配置文件 /etc/dovecot/conf.d/10-ssl.confssl = no

检测POP和IMAP配置

- ■图形工具
 - Thunderbird
 - Evolution
 - Outlook
 - Foxmail
- 字符工具 Mutt

mutt -f pop://user@server[:port]

mutt -f pop://osmond@centos1.ls-al.me

mutt -f imap://user@server[:port]

mutt -f imap://osmond@centos1.ls-al.me

POSTFIX的SMTP认证

开放中继和中继控制

- 开放中继 (Open Relay)
 - 邮件服务器可以将不认识的客户机发来的邮件转发 给其他服务器
 - □ Postfix默认配置相当严格,默认不会做开放中继, 而仅对本机(localhost)开放转发功能
- 中继控制
 - 使用 mynetworks、relay_domains 参数开放一些可信任的网段或网域的中继
 - □ 使用 access 映射表实现中继控制
 - □ 使用SMTP认证

SMTP认证的引入和实现

- 引入

- □ 解决移动用户使用邮件服务器的发信问题
- □ SMTP认证机制可以实现用户级别的邮件中继控制
 - 对要求转发邮件的客户进行用户身份验证(用户名/口令)
 - 只有通过了验证才能接收该用户寄来的邮件并转发

- 实现

- □ 通过简单认证与安全层(Simple Authentication and Security Layer,SASL)实现
 - 允许使用多种类型的身份验证隐藏在SASL协议的后端
 - 实现验证的后端服务可以是PAM,用户和口令数据库、 LDAP等

Postfix的SMTP认证

- Postfix支持用于实现SMTP认证的SASL
- Postfix本身并没有内置SASL库程序,需要继承其他程序提供的SASL功能
- Postfix支持cyrus和dovecot提供的SASL功能
- Postfix支持用哪些程序做SASL身份认证 # postconf -a cyrus dovecot

配置Postfix启用SMTP认证1

■ 步骤1: 配置Dovecot 实现SMTP认证的监听 进程(可以是UNIX套接字或TCP端口)

/etc/dovecot/conf.d/10-master.conf

```
service auth {
  unix_listener /var/spool/postfix/private/auth {
  mode = 0660 # 指定套接字文件权限
  user = postfix # 指定套接字文件的属主
  group = postfix # 指定套接字文件的组
  }
  ...
}
```

配置Postfix启用SMTP认证2

■ 步骤2: 配置Postfix启用基于Dovecot的 SASL (并设置与SASL相关的配置参数)

/etc/postfix/main.cf

```
smtpd_sasl_auth_enable = yes
smtpd_sasl_type = dovecot
smtpd_sasl_path = private/auth
```

Postfix的main.cf中 与SASL相关的配置参数

- smtpd_sasl_type: 指定SASL插件类型,默认为cyrus。
- smtpd_sasl_auth_enable: 指定是否启用SASL 作为SMTP认证方式。
- smtpd_sasl_security_options: 用来限制某些 登录的方式。
 - □ 若设置为 "noanonymous",则表示禁止采用匿名登录 方式。
- broken_sasl_auth_clients:表示是否兼容非标准的SMTP认证。用于M\$早期的SMTP客户端。

Postfix的main.cf中 与SASL相关的配置参数(续)

- smtpd_recipient_restrictions: 通过收件人地 址对客户端发来的邮件进行过滤
 - 选项 permit_sasl_authenticated 表示允许通过SASL 认证的客户转发邮件
 - □ 选项 permit_mynetworks 表示只要收件人地址位于 mynetworks参数中指定的网段就可以转发邮件
 - 选项 reject_unauth_destination 表示拒绝转发含不可 信任的目标地址的邮件
- smtpd_client_restrictions: 限制可以向Postfix 发起SMTP连接的客户端

配置Postfix的SMTP认证

vim /etc/postfix/main.cf

```
smtpd_sasl_auth_enable = yes
smtpd_sasl_type = dovecot
smtpd_sasl_path = private/auth
smtpd_sasl_security_options = noanonymous
smtpd_sasl_local_domain = $myhostname
broken_sasl_auth_clients = yes

smtpd_recipient_restrictions =
   permit_sasl_authenticated,
   permit_mynetworks,
   reject_unauth_destination
```

postfix reload

检测Postfix的SMTP认证

swaks -a -au osmond -ap <passwd> \ --to root@ls-al.me --from osmond@ls-al.me

.....

- <- 250-AUTH LOGIN PLAIN
- <- 250-AUTH=LOGIN PLAIN
- <- 250-ENHANCEDSTATUSCODES
- <- 250-8BITMIME
- <- 250 DSN
- -> AUTH LOGIN
- <- 334 VXNIcm5hbWU6
- -> b3Ntb25k
- <- 334 UGFzc3dvcmQ6
- -> d2xseXNobWxq
- <- 235 2.0.0 Authentication successful

•••••

基于TLS/SSL的邮件服务

邮件服务与TLS/SSL

- Postfix和Dovecot使用OpenSSL提供的库实现基于TLS/SSL的连接
- 使用基于TLS/SSL的连接可以提供如下功能
 - □ 对通信数据进行加密(对于支持PLAIN认证的邮件服务器尤其需要 加密通信)
 - □ 实现基于用户TLS证书的认证
- SMTP/POP3/IMAP4支持两种TLS/SSL连接
 - SMTP/POP3/IMAP4 over TLS:
 - 使用与SMTP/POP3/IMAP4独立的端口作加密连接。
 - 客户端连接465/995/993端口直接进行加密传输。
 - □ 通过STARTTLS将纯文本协议SMTP/POP3/IMAP4连接 升级为TLS/SSL加密连接。

创建自签名证书

cd /etc/pki/tls

openssl req -new -x509 -days 365 -sha256 -nodes -newkey rsa:2048 \ -keyout private/mail.olabs.lan.key -out certs/mail.olabs.lan.crt \ -subj

'/O=olabs/L=Beijing/C=CN/emailAddress=root@olabs.lan/CN=mail.olabs.lan'

配置基于TLS的Postfix

/etc/postfix/main.cf

```
smtpd_tls_security_level = may
#smtpd_tls_security_level = encrypt
smtpd_tls_protocols = !SSLv2, !SSLv3

smtpd_tls_auth_only = yes

smtpd_tls_cert_file = /etc/pki/tls/certs/mail.olabs.lan.crt
smtpd_tls_key_file = /etc/pki/tls/private/mail.olabs.lan.key

smtpd_tls_session_cache_database = btree:/var/lib/postfix/smtpd_scache
```

配置基于TLS的Dovecot

/etc/dovecot/conf.d/10-ssl.conf

```
ssl = yes
```

ssl_cert = </etc/pki/tls/certs/mail.olabs.lan.crt

ssl_key = </etc/pki/tls/private/mail.olabs.lan.key

ssl_protocols = !SSLv2 !SSLv3

本章思考题

- ■简述电子邮件系统的组成。
- ■简述几种电子邮件协议。
- 什么是邮件中继?
- MTA与DNS是如何协同工作的?
- ■简述Postfix的工作原理。
- Postfix如何实现SMTP认证?
- Postfix 如何实现UCE控制?

本章实验

- 学会配置带SMTP认证的邮件服务器
- 学会配置Postfix常用的映射表
 - □ access映射表
 - □ aliases映射表
 - □ virtual映射表
- 学会配置Postfix基于SMTP限制的UCE控制
- 学会配置Dovecot
- 学会配置基于SSL/TLS协议的邮件服务器

进一步学习

- 学习配置Postfix的基于TLS的SMTP服务(SMTPS)。
- 学习配置Dovecot的基于SSL的POP/IMAP服务 (POPS/IMAPS)。
- 学习配置Postfix+MySQL+Dovecot实现的虚拟用户邮件服务器。
- 学习配置Postfix+LDAP+Dovecot实现的虚拟用户邮件服务器。
- 学习Anti-Spam和Anti-Virus的相关概念及技术。
- 学习Postfix+Amavisd-new+ClamAV+Spamassassin的实现方法。
- 学习使用pflogsumm分析邮件日志。
- 学习配置Awstats分析和统计邮件目志。

进一步学习(续)

- ■学习如下Webmail的配置和使用。
 - RoundCube (http://roundcube.net)
 - SquirrelMail (http://squirrelmail.org)
 - RainLoop (http://www.rainloop.net)
- 学习如下邮件系统解决方案的安装、配置和使用。
 - iRedMail (http://www.iredmail.org/)
 - ExtMail (http://www.extmail.org/)