

Com MPLAB®X e Compilador XC8

- > O PIC18F4520 possui um dispositivo interno para Comunicação Serial
 - USART (*Universal Synchronous Asynchronous Receiver Transmitter* Interface Universial Serial Síncrona e Assícrona)
- > O Microcontroalor pode transmitir e receber através dos modos síncrono ou assíncrono
- Modo Síncrono:
 - Uma das vias é utilizada como clock (via de sincronismo)
 - A segunda via é utilizada para transmissão e recepção de dados
- Modo Assíncrono (objeto de estudo):
 - Não existe via de sincronismo
 - Uma das vias é utilizada para transmissão e a outra pra recepção
 - Pino RC6 atuando como receptor de dados seriais
 - Pino RC7 atuando como transmissor de dados seriais

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

- > Baud rate (taxa de transmissão de dados)
 - Medida em **bps** (bits por segundo)
 - Ex.: 1200 bps, 2400 bps, 4800 bps, 9600 bps, 19200 bps, etc.

- O PIC18F4520 possui algumas funções adicionais para comunicação serial
- Módulo aprimorado (Enhanced)
 - EUSART (Enhanced USART)
- Funções Adicionais
 - Auto Wake Up quando da recepção de um caractere
 - Ajuste automático de Baud rate
 - Transmissão de um caractere break contendo 12 bits

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

Registrador TXSTA								
Bit	7	6	5	4	3	2	1	0
Nome	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D

> BIT 7: **CSRC** - Seleção de fonte de clock (somente para o modo síncrono)

> BIT 6: **TX9**

• 1: Habilita transmissão em 9 bits de dados

0: Habilita transmissão em 8 bits de dados

➤ BIT 5: **TXEN**

• 1: Habilita transmissão

0: Desabilita transmissão

➤ BIT 4: SYNC

• 1: Seleciona modo Síncrono

0: Seleciona modo Assíncrono

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

Registrador TXSTA								
Bit	7	6	5	4	3	2	1	0
Nome	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D

➤ BIT 3: **SENDB** – Envio do caractere *break*

➤ BIT 2: BRGH

• 1: Habilita alta velocidade para o baud rate

• 0: Habilita baixa velocidade para o baud rate

➤ BIT 1: TRMT

1: Informa transmissão finalizada

0: informa transmissão em curso

➤ BIT 0: **TX9D** – nono bit (paridade)

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

Registrador RCSTA								
Bit	7	6	5	4	3	2	1	0
Nome	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D

> BIT 7: **SPEN**

- 1: Habilita módulo USART (Pinos RC6 e RC7 serão usados para comunicação serial)
- 0: Desabilita módulo USART (Pinos RC6 e RC7 serão usados como I/O)

> BIT 6: **RX9**

- 1: Habilita recepção em 9 bits de dados
- 0: Habilita recepção em 8 bits de dados
- > BIT 5: **SREN** Recepção unitário (somente para modo síncrono)

➤ BIT 4: CREN

- Habilita recepção contínua
- Desabilita recepção contínua

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

Registrador RCSTA								
Bit	7	6	5	4	3	2	1	0
Nome	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D

> BIT 3: ADDEN – Sistema de endereçamento (somente para recepção em 9 bits dde dados)

➤ BIT 2: **FERR**

• 1: Habilita recepção em 9 bits de dados

• 0: Habilita recepção em 8 bits de dados

> BIT 1: OERR

• 1: Erro de overflow na recepção de dados

• 0: Sem erro na recepção de dados

➤ BIT 0: **RX9D** – Nono bit (paridade)

Com MPLAB®X e Compilador XC8

Comuncação Serial – Microcontrolador PIC18F4520

Registrador BAUDCON								
Bit	7	6	5	4	3	2	1	0
Nome	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	-	WUE	ABDEN

> BIT 3: **BRG16**

• 1: Habilita registro de baud rate em 16 bits (registradores SPBRGH e SPBRG)

• 0: Habilita registro de baud rate em 8 bits (somente registrador SPBRG)

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

Registrador TXREG

Buffer de transmissão

Registrador RCREG

Buffer de recepção

Registrador SPBRG

Gerador de baud rate, parte baixa

Registrador SPBRGH

Gerador de baud rate, parte alta

Com MPLAB®X e Compilador XC8

- > Habilitando a transmissão de dados
 - TXREN = 1;
 - (Registrador TXSTA) Habilita o circuito de transmissão serial
 - SYNC = 0;
 - (Registrador TXSTA) Habilita operação de transmissão/recepeção no modo assíncrono
 - SPEN = 1;
 - (Registrador RCSTA) Habilita módulo USART fazendo RC6 (TX) e RC7 (RX) como pinos para comunicação serial

Comunicação Serial – Microcontrolador PIC18F4520

> Transmissão de dados

- Transmissão de dados iniciada quando escrito um caractere em TXREG
- Quando um caractere for posicionado em TXREG, o flag da interrupção TXIF (registrador PIR1) será ajustado em 1.
- Quando o caractere é transferido de TXREG para TSR (Registrador de transmissão), o flag da interrupção TXIF retorna a 0

Com MPLAB®X e Compilador XC8

- > Habilitando a recepção de dados
 - **CREN = 1**;
 - (Registrador RCSTA) Habilita o circuito de recepção serial
 - SYNC = 0;
 - (Registrador TXSTA) Habilita operação de transmissão/recepeção no modo assíncrono
 - SPEN = 1;
 - (Registrador RCSTA) Habilita módulo USART fazendo RC6 (TX) e RC7 (RX) como pinos para comunicação serial

Comunicação Serial – Microcontrolador PIC18F4520

> Recepção de dados

- Recepção de um dado é verificada no registrador RCREG
- Quando um caractere for posicionado em RCREG, o flag da interrupção RCIF (registrador PIR1) será ajustado em 1

- > Roteiro para transmissão e recepção de dados
 - Iniciar os registradores SPBRG, SPBRGH, BRGH e BRG16 de acordo com o baud rate
 - Posicionar bit SYNC em 0 para modo de comunicação assíncrono
 - Posicionar em 1 os registradores TXEN e RCEN para habilitar transmissão e recepção de dados

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

> BAUD RATE

BRG16	BRGH	Modo de operação para o gerador de Baud Rate	Fórmula
0	0	8 bits	Fosc / [64 (SPBRG:SPBRGH + 1)]
0	1	8 bits	5 / [4 C (CDDD C CDDD C)
1	0	16 bits	Fosc / [16 (SPBRG:SPBRGH + 1)]
1	1	16 bits	Fosc / [4 (SPBRG:SPBRGH + 1)]

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

> BAUD RATE 9600 bps com cristal oscilador de 8MHz

$$Baud\ Rate\ desejado = \frac{Fosc}{64*(SPBRG:SPBRGH+1)}$$

 $Fazendo\ SPBRG: SPBRGH = X$

$$X = \frac{FOSC}{64 * Baud Rate desejado} - 1$$

$$X = \frac{8000000}{64 * 9600} - 1 = 12,02 \approx 12$$

Com MPLAB®X e Compilador XC8

Comunicação Serial – Microcontrolador PIC18F4520

> BAUD RATE 9600 bps com cristal oscilador de 8MHz

Calculando o Baud Rate:
$$\frac{8000000}{64 * (12 + 1)} \approx 9615$$

$$Erro = \frac{Baud\ Rate\ Calculado - Baud\ Rate\ desejado}{Baud\ Rate\ desejado}$$

$$Erro = \frac{9615 - 9600}{9600} \approx 0,0016 * 100 \approx 0,16\%$$

Com MPLAB®X e Compilador XC8

- > BAUD RATE 9600 bps com cristal oscilador de 8MHz
- BRG16 = 0;
- BRGH = 0;
- Teremos um modo de operação para o gerador de Baud rate em 8 bits
- Fosc / [64 * (SPBRG + 1)]
- SPBRG = 12;

Com MPLAB®X e Compilador XC8

