

UPEC 2018

53rd International Universities Power Engineering Conference 4th – 7th September 2018

University for the Common Good

Stochastic Technical Losses Analysis of Smart Grids under Uncertain Demand

J-A. Velasco¹, H. Amaris¹, M. Alonso¹ and M. Miguelez²

Universidad Carlos III de Madrid
 Naturgy (Gas Natural Fenosa)

Contents

University for the Common Good

- 1. Introduction
- 2. Methodology
- 3. Case Study
- 4. Conclusions

Introduction

1. Introduction

- Technical Losses in Low Voltage (LV) distribution networks
 power flow (measurements)
- LV distribution networks are still in transition (not 100% Smart Grids). Power losses can not be substracted from the measurements.
- Problem: Presence of non-telemetered customers = Uncertain Demand
- Losses accuracy → load demand resolution
- high-resolution load demand profiles would allow a more accurate technical losses analysis

Introduction

University for the Common Good

1. Introduction

Upper Level

Middle Level

Lower Level

High resolution

Monthly Energy Estimation

Daily Energy Estimation

Hourly Energy Estimation

Intra-Hour load demand

Introduction

University for the Common Good

1. Introduction

 Solution proposed: a stochastic top-down approach for uncertain load demand estimation

University for the Common Good

2. Methodology

Upper Level

- Non- Telemetered customers
- Energy Consumption
 Tendency (ETC) Curve

Monthly Energy Estimation

University for the Common Good

2. Methodology

Middle Level

Daily Energy Estimation

- Weekly Energy
 Consuption (WEC) profile
- Supervisor Smart Meter In Secondary Substation

University for the Common Good

2. Methodology

Hourly Energy Estimation

Lower Level

NLP Optimization : Minimize cuadratic error Minimize: Objective function

$$+\sum_{d\in\Omega_d}\sum_{h=1}^{24}\left(\sum_{i=\Omega_c}P_{(i,h,d)}-\widehat{P}_{(h,d)}^s\right)^2$$
(1a)

Subject to:

Constraints

$$\sum_{i \in \Omega_c} \sum_{h=1}^{24} P_{(i,h,d)} = \sum_{i \in \Omega_c} E_{(i,d)} \,\,\forall \, d \in \Omega_d \tag{1b}$$

$$\sum_{i \in \Omega_c} \sum_{h=1}^{24} P_{(i,h,d)} \le \sum_{h=1}^{24} P_{(s,h,d)}; \forall d \in \Omega_d$$

$$\sum_{i \in \Omega_c} E_{(i,d)} \le \hat{E}_{(d)}^s; \forall d \in \Omega_d$$
(1c)

$$\sum_{i \in \Omega_c} E_{(i,d)} \le \widehat{E}_{(d)}^s; \forall d \in \Omega_d$$
 (1d)

University for the Common Good

2. Methodology

High resolution

Intra-Hour load demand

Markov Chains

$$\Pr \{X_{t+1} = j | X_0 = i_0, ..., X_{t-1} = i_{t-1}, X_t = i\}$$

$$= \Pr \{X_{t+1} = j | X_t = i\} = p^{(t)}_{i,j}$$

$$[p_{1,1} \cdots p_{1,k}]$$
(2)

$$P = \begin{bmatrix} p_{1,1} & \cdots & p_{1,k} \\ \vdots & \ddots & \vdots \\ p_{k,1} & \cdots & p_{k,k} \end{bmatrix}$$
(3)

$$\hat{f}(\tau) = \frac{1}{n\hat{h}} \int_{1}^{24} \varphi(\tau) \left(\frac{\tau - S_d(t)dt}{\hat{h}} \right) \tag{6}$$

University for the Common Good

3. Case Study

- Demonstration Smart Grid project OSIRIS (Spain)
 - Utility Gas Natural Fenosa (Naturgy)
 - 1 substation 630 kVA (8 Feeders)
 - 32 Customers (10 non-telemetered)
 - Total power contracted: 442 kW
 - Yearly data: 2013-14 (incomplete)

University for the Common Good

3. Case Study

Statiscial study of load demand

PDFs estimated

University for the Common Good

3. Case Study

Realizations of the Markov Process

University for the Common Good

3. Case Study

Technical Losses Calculated With power flow

Stochastic Losses Obtained

University for the Common Good

3. Case Study

Probability Distribution Losses

Conclusions

University for the Common Good

4. Conclusions

- A stochastic top-down method to analyze Technical Losses in (still in transition) LV distribution Networks have been proposed
- Presence of non-telemeterd customers in LV networks as well as missing load demands have been taked into account
- Missing hourly load demand values have been estimated through an NLP optimization process

Conclusions

University for the Common Good

4. Conclusions

- Intra-hour high-resolution load demand profiles have been synthetically generated by means of Markov Chains
- For every stochastic realization of the Markov process, a balanced three-phase load flow analysis has been carried out to obtain the network losses
- Losses obtained have been statistically analyzed using a linear regression fitting to find the expected value

UPEC 2018

53^{rd} International Universities Power Engineering Conference $4^{th} - 7^{th}$ September 2018

University for the Common Good

Thank You

Questions?

Jose Angel Velasco

