Plano de Ensino - Elementos de Análise Combinatória

1. Identificação

• Nome da disciplina: Elementos de Análise Combinatória

• Código: CC0279

• Curso: Bacharelado em Estatística

• Departamento: Estatística e Matemática Aplicada

• Unidade Acadêmica: Centro de Ciências

• Semestre de oferta: 1°

Caráter da disciplina: Obrigatória
Carga horária total: 96h (6 créditos)

Turno: DiurnoRegime: Semestral

• Professor(a): Albert Einstein F. Muritiba

2. Ementa

Introdução à Lógica Proposicional e à Teoria dos Conjuntos; Indução Matemática; Análise Combinatória; Coeficientes Binomiais; Introdução à Probabilidade em Espaços Discretos.

3. Objetivos

Objetivo Geral

• Introduzir os fundamentos de análise combinatória, lógica proposicional, teoria dos conjuntos e probabilidade discreta, desenvolvendo o raciocínio lógico e a capacidade de resolução de problemas.

Objetivos Específicos

- Associar operações da lógica matemática com operações de conjuntos.
- Familiarizar o aluno com técnicas fundamentais de contagem.
- Aplicar técnicas combinatórias na introdução à teoria da probabilidade.
- Desenvolver capacidade de demonstração matemática por indução.
- Estimular a formulação e resolução de problemas clássicos e aplicados em contextos discretos.

4. Conteúdo Programático e Cronograma

Semana	Conteúdo	Carga Horária	Bibliografia
1	Noções de lógica proposicional: proposições, conectivos lógicos, tabelas-verdade	6h	[1], [2]
2	Teoria dos conjuntos: subconjuntos, cardinalidade, operações, diagramas de Venn	6h	[2], [5]
3	Notações somatório e produtório	6h	[2]
4	Indução matemática: primeiro e segundo princípios	6h	[2], [5]
5	Provas por indução matemática	6h	[2]
6	Princípio fundamental da contagem (aditivo e multiplicativo)	6h	[1], [2]
7	Permutações e combinações simples e com repetição (I)	6h	[1], [2]
8	Permutações e combinações simples e com repetição (II)	6h	[1], [2]
9	Princípio da inclusão e exclusão	6h	[2], [4]
10	Permutações caóticas, lemas de Kaplansky (I)	6h	[2], [4]
11	Permutações caóticas, lemas de Kaplansky (II)	6h	[2], [4]
12	Coeficientes binomiais: triângulo de Pascal, binômio de Newton, aplicações	6h	[1], [2]
13	Conceito de probabilidade, espaço amostral e eventos	6h	[3], [5]
14	Probabilidade condicional	6h	[3], [5]
15	Eventos independentes	6h	[3], [5]
16	Teorema de Bayes	6h	[3], [5]

5. Metodologia

- Aulas expositivas dialogadas com uso de quadro e/ou recursos audiovisuais;
- Exercícios dirigidos e listas de problemas;
- Discussão de exemplos clássicos e aplicações em estatística e ciências exatas;
- Atividades assíncronas opcionais para reforço dos conteúdos;
- Apoio ao aluno via monitoria e/ou ambiente virtual de aprendizagem (AVA).

6. Avaliação

- A avaliação será composta por **Três Provas** (P1, P2 e P3).
- A Média Parcial (MP) será calculada da seguinte forma:

$$\circ$$
 MP = (P1 + P2 + P3) / 3

- Para ser aprovado por média, o aluno deve atender aos seguintes critérios:
 - Obter uma Média Parcial (MP) igual ou superior a 7,0 (sete).
 - o Possuir frequência mínima de 75% nas aulas e atividades propostas.
- O aluno que não alcançar a Média Parcial mínima (MP < 7,0) terá a oportunidade de realizar uma Prova Final (AF).
- A Média Final (MF) será calculada da seguinte forma:
 - \circ MF = (MP + AF) / 2
- Para ser aprovado após a Prova Final, o aluno deve obter uma Média Final (MF) igual ou superior a 5,0 (cinco).

7. Bibliografia

Básica

- 1. MORGADO, A. C. et al. Análise Combinatória e Probabilidade. SBM, 2004.
- 2. SANTOS, J. P. O. et al. Introdução à Análise Combinatória. Editora Unicamp, 2002.
- 3. MEYER, P. L. Probabilidade: Aplicações à Estatística. LTC, 1999.

Complementar

- 4. FELLER, W. An Introduction to Probability Theory and its Applications. Wiley, 1991.
- 5. GRAHAM, R. L. et al. Matemática Concreta. Addison Wesley, 1995.
- 6. ROSS, S. Introduction to Probability Models. Academic Press, 1989.
- 7. XAVIER, A. F. S. Análise combinatória e aplicações: quia do professor. UFC, 1976.

8. Observações Finais

- Recomenda-se que o(a) estudante mantenha acompanhamento contínuo do conteúdo, dada sua natureza acumulativa.
- A disciplina é base para diversas outras áreas da estatística, como inferência, processos estocásticos e teoria da probabilidade.
- A participação ativa em sala e o desenvolvimento de raciocínio lógico são essenciais para o bom aproveitamento do curso.