Curb-GAN: Conditional <u>Urb</u>an Traffic Estimation Through Spatio-Temporal <u>Generative Adversarial Networks</u>

KDD-20 Research Track Paper

Code: github.com/Curb-GAN/Curb-GAN

Problem Overview

& Definitions

- Challenges:
- (1) Traffic status heavily depends on travel demand. When travel demand <u>dramatically changes</u> (e.g. big development/construction), data-driven approaches may no longer be effective
- (2) Spatial/Temporal auto-correlations
- Conditional traffic estimation problem:

estimate traffic distribution (on region R) sequence based on expected travel demand sequence

$$\hat{\mathcal{M}}^R = \{\hat{M_1^R}, \dots, \hat{M_{N_t}^R}\} \in \mathbb{R}^{N_t \times \ell \times \ell} \longleftarrow \hat{\mathcal{D}}^R = \{\hat{d_1^R}, \dots, \hat{d_{N_t}^R}\} \in \mathbb{N}^{N_t}$$

• Definitions: traffic status m_t^s on target square region $R_{ij} = \langle s_{ij}, \ell \rangle$ with $N_s = \ell \times \ell$ grid cells traffic correlation tensor $\mathcal{A}^R = \{A_1^R, \dots, A_{N_t}^R\} \in \mathbb{R}^{N_t \times N_s \times N_s}$ traffic condition tensor $C^R = \{C_1^R, \dots, C_{N_t}^R\} \in \mathbb{R}^{N_t \times N_s \times 4}$, in which $C_t^R = \text{Repeat}(\text{Concat}(i, j, d_t^R, t))$.

Motivations & Model Components

- Formulate <u>Conditional traffic estimation problem</u> as a <u>traffic data generation problem</u> Solve challenge (1)
 - cGAN structure: conditional image sequence generation problem (travel demand as condition)
 - Propose Curb-GAN:

Solve challenge (2)

- Spatially, Dynamic GConv. $H_i^R = f(H_{i-1}^R, A^R) = \sigma(A^R H_{i-1}^R W_i)$
- Temporally, Self-Attention (Transformer multi-head)

$$MultiHead(Q, K, V) = Concat (head_1, ..., head_h) W^O$$

where $head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)$

Basic GAN Framework

• Gaming between generator *G* and discriminator *D*

Image from: https://filebox.ece.vt.edu/~jbhuang/teaching/ece6554/sp17/lectures/cGAN-topic.pdf

Curb-GAN Modules

Model optimization

Historical

travel demands

Generator

Discriminator

Curb-GAN

Input information of Curb-GAN

Noise

Traffic

spatial info

Models

Historical

 $\tilde{M}^i = G(C^i, \mathcal{A}^i, \mathcal{Z}^i).$

 $\hat{O} = {\hat{M}^1, \hat{M}^2, \cdots, \hat{M}^m}$

A decis

Noise

A decision rule for minimizing the worst case (maximum) loss

Loss function: (two-player minimax game)
$$\min_{G} \max_{D} V(D,G) = E_{\mathcal{M} \sim p_{data}(\mathcal{M})}[\log D(C,\mathcal{A},\mathcal{M})]$$

+
$$E_{Z \sim p_Z(Z)}[\log(1 - D(G(C, \mathcal{A}, Z)))]$$
.

(resembles Jensen-Shannon divergence: measuring 两个概率分布的相似性)

Algorithm 1 Curb-GAN Training Process

Input: Training iteration k, a training set \mathcal{P} , initialized G and D.

Output: Well trained G and D.

- 1: In each training iteration iter:
- 2: repeat
- Sample P₀ from training set P.
- Sample B from Gaussian distribution.
- Generate \tilde{O} with G.
- Sample O from training set Z.
- Update D with Eq. 6 to maximize Eq. 5.
- 8: Update G with Eq. 8 to maximize Eq. 7.
- until iter > k.

Aim: increase error rate of *D!*

$$\tilde{V}_D = \frac{1}{m} \sum_{i=1}^{m} \left(\log(1 - D(C^i, \mathcal{A}^i, \underline{\tilde{M}^i})) \right)$$
 generated

sampled true

Traffic

spatial info

Well-trained

Expected

travel demands

Generator

Future traffic

$$+ \log D(C^i, \mathcal{A}^i, \underline{M}^i) + \log(1 - D(C^i, \mathcal{A}^i, \underline{\hat{M}^i})),$$
 (5)

$$\theta_D = \theta_D + \eta_D \nabla \tilde{V}_{\theta_D}(\theta_D).$$

Estimated traffic

sampled wrong (6)

Heuristic, non-saturating game

$$\tilde{V}_{G} = \frac{1}{m} \sum_{i=1}^{m} \log D(G(C^{i}, \mathcal{A}^{i}, \mathcal{Z}^{i})),$$
 (7)

$$\theta_G = \theta_G + \eta_G \nabla \tilde{V}_{\theta_G}(\theta_G).$$
 (8)

Experiment

on (16下半年) Shenzhen Traffic speed and taxi inflow data

- Partition: 40×50 grid \rightarrow Region: 10×10 ($N_s = 100$)
- Time interval: 1 hour; 7AM-7PM (N_t =12)

Figure 7: Comparisons of selected models in consecutive time slots in traffic speed estimation.

Figure 8: Comparisons of selected models in consecutive time slots in taxi inflow estimation.

MAPE =
$$\frac{1}{N_s N_t} \sum_{s=1}^{N_s} \sum_{t=1}^{N_t} |y_{s,t} - \hat{y}_{s,t}| / y_{s,t}$$

RMSE =
$$\sqrt{\frac{1}{N_s N_t} \sum_{s=1}^{N_s} \sum_{t=1}^{N_t} (y_{s,t} - \hat{y}_{s,t})^2}$$

Table 2: Performance results on traffic speed estimation and taxi inflow estimation.

Methods		Smoothing	ConvLSTM	FC-SA	CNN-SA	FC-LSTM	CNN-LSTM	DyConv-LSTM	Curb-GAN
Traffic speed	RMSE	16.37	18.90	44.30	38.06	128.03	30.15	22.72	13.34
	MAPE	0.94	1.07	3.44	3.02	3.70	2.27	1.26	0.76
Taxi inflow	RMSE	37.71	38.73	40.30	38.54	41.11	38.20	37.33	36.29
	MAPE	27.56	10.43	79.75	52.25	36.92	62.02	16.88	5.88

Thanks for your listening!

Discussion Time 🙋