Special Topics Comp Stat & Pro MAT5999 and Computational Stats & Prob. AIM 5002 Written Assignment 5 (25 points)

Solutions to be submitted on Canvas by the beginning of class on Wednesday, 3/2/22.

- 1. (5 points) Let $Y_1, ..., Y_n$ be a random sample from normal distribution with unknown μ and known σ . Show that \bar{Y} is a sufficient statistic for μ .
- 2. (5 points) The Pareto distribution of parameters $\alpha, \beta > 0$ is defined by the pdf

$$f(y) = \begin{cases} \alpha \beta^{\alpha} y^{-(\alpha+1)}, & \text{if } y \ge \beta \\ 0 & \text{otherwise} \end{cases}$$

(The Pareto distribution is often used in economics to model income distributions.) If β is known, show that $\prod_{i=1}^{n} Y_i$ is a sufficient statistic for α .

3. (5 + 5 points) Let X denote the proportion of allotted time that a randomly selected student spends working on a certain aptitude test. Suppose the pdf of X is

$$f_{\theta}(x) = (\theta + 1)x^{\theta}$$
 for $0 < x < 1$ and 0 otherwise,

where $\theta > -1$ is an unknown parameter. A random sample of 10 students yields data $x_1 = .92, x_2 = .79, x_3 = .90, x_4 = .65, x_5 = .86, x_6 = .47, x_7 = .73, x_8 = .97, x_9 = .84, x_{10} = .67.$

- (a) Use the method of moments to obtain an estimator of θ , and then compute the estimate for this sample.
- (b) Compute the maximum likelihood estimator of θ , and then compute the estimate for this data.
- 4. (5 points) Let $X_1, ..., X_{10}$ be a random sample from a uniform distribution on the interval $[0, \theta]$. Find the likelihood function $L(x_1, ..., x_{10}; \theta)$. Hint: you may wish to distinguish two cases: when $\theta < \max\{x_1, ..., x_{10}\}$ and when $\theta \ge \max\{x_1, ..., x_{10}\}$. Show that the maximum likelihood estimator of θ is $\max\{X_1, ..., X_{10}\}$.

The following problems form the extra homework. They will not contribute to your final grade and are only included for your entertainment.

5. Problem 9.65 from textbook # 1.