(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 811 682 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 10.12.1997 Builetin 1997/50

(21) Application number: 97108764.8

(22) Date of filing: 02.06.1997

(51) Int. Cl.⁶: **C12N 9/06**, C12N 9/88, C12N 15/77, C12P 13/08

- (84) Designated Contracting States: DE DK ES FR GB IT NL
- (30) Priority: 05.06.1996 JP 142812/96
- (71) Applicant: Ajinomoto Co., Inc. Tokyo 104 (JP)
- (72) Inventors:
 - Hirano, Seiko, Ajinomot Co., Inc. Kawasaki-shi, Kanagawa 210 (JP)
 - Sugimoto, Masakazu, Ajinomoto Co., Inc. Kawasaki-shi, Kanagawa 210 (JP)
 - Nakano, Elichi, Ajinomoto Co., Inc. Kawasaki-shi, Kanagawa 210 (JP)

- Izui, Masako,
 Ajinomoto Co., Inc.
 Kawasaki-shi, Kanagawa 210 (JP)
- Hayakawa, Atsushi,
 Ajinomoto Co., Inc.
 Kawasaki-shi, Kanagawa 210 (JP)
- Yoshihara, Yasuhiko,
 Ajinomoto Co., Inc.
 Kawasaki-shi, Kanagawa 210 (JP)
- Nakamatsu, Tsuyoshi,
 Ajinomoto Co., Inc.
 Kawasaki-shi, Kanagawa 210 (JP)
- (74) Representative:
 Kolb, Helga, Dr. Dipl.-Chem. et al
 Hoffmann Eitle,
 Patent- und Rechtsanwälte,
 Arabellastrasse 4
 81925 München (DE)

(54) Method of producing L-lysine

(57) A coryneform bacterium in which a DNA coding for a diaminopimelate decarboxylase and a DNA coding for a diaminopimelate dehydrogenase are enhanced is cultivated in a medium to allow L-lysine to be produced and accumulated in a culture, and L-lysine is collected from the culture.

Description

BACKGROUND OF THE INVENTION

The present invention relates to a method for producing L-lysine by cultivating a microorganism obtained by modifying a coryneform bacterium used for fermentative production of amino acids or the like by means of a technique based on genetic engineering.

L-Lysine, which is used as a fodder additive, is usually produced by a fermentative method by using an L-lysine-producing mutant strain belonging to the coryneform bacteria. Various L-lysine-producing bacteria known at present are those created by artificial mutation starting from wild type strains belonging to the coryneform bacteria.

As for the coryneform bacteria, there are disclosed a vector plasmid which is autonomously replicable in bacterial cells and has a drug resistance marker gene (see United States Patent No. 4,514,502), and a method for introducing a gene into bacterial cells (for example, Japanese Patent Application Laid-open No. 2-207791). There is also disclosed a possibility for breeding an L-threonine- or L-isoleucine-producing bacterium by using the techniques as described above (see United States Patent Nos. 4,452,890 and 4,442,208). As for breeding of an L-lysine-producing bacterium, a technique is known, in which a gene participating in L-lysine biosynthesis is incorporated into a vector plasmid to amplify the gene in bacterial cells (for example, Japanese Patent Application Laid-open No. 56-160997).

Known genes for L-lysine biosynthesis include, for example, a dihydrodipicolinate reductase gene (Japanese Patent Application Laid-open No. 7-75578) and a diaminopimelate dehydrogenase gene (Ishino, S. et al., <u>Nucleic Acids Res.</u>, 15, 3917 (1987)), which are cloned genes which participate in L-lysine biosynthesis, as well as a phosphoenolpyruvate carboxylase gene (Japanese Patent Application Laid-open No. 60-87788), a dihydrodipicolinate synthase gene (Japanese Patent Publication No. 6-55149), and a diaminopimelate decarboxylase gene (Japanese Patent Application Laid-open No. 60-62994), amplification of which affects L-lysine productivity.

As described above, certain successful results to improve L-lysine productivity have been obtained by means of amplification of genes for the L-lysine biosynthesis. However, amplification of some genes decreases growth speed of bacteria although the amplification improves L-lysine productivity, resulting in decrease of rate of L-lysine production.

No case has been reported in which growth is intended to be improved by enhancing a gene for L-lysine biosynthesis as well. In the present circumstances, no cafe is known for the coryneform bacteria, in which anyone has succeeded in remarkable improvement in L-lysine yield without restraining growth, by combining a plurality of genes for L-lysine biosynthesis.

SUMMARY OF THE INVENTION

35

An object of the present invention is to improve the L-lysine-producing ability without decreasing the growth speed of a coryneform bacterium, by enhancing a plurality of genes for L-lysine biosynthesis in combination in the coryneform bacteria.

When an objective substance is produced fermentatively by using a microorganism, the production speed, as well as the yield of the objective substance relative to an introduced material, is an extremely important factor. An objective substance may be produced remarkably inexpensively by increasing the production speed per a unit of fermentation equipment. Accordingly, it is industrially extremely important that the fermentative yield and the production speed are compatible with each other. The present invention proposes a solution for the problem as described above in order to fermentatively produce L-lysine by using a coryneform bacterium.

The principle of the present invention is based on the fact that the growth of a coryneform bacterium can be improved, and the L-lysine-producing speed thereof can be improved by enhancing both of a DNA sequence coding for a diaminopimelate dehydrogenase (a diaminopimelate dehydrogenase is hereinafter referred to as "DDC", and a gene coding for a DDC protein is hereinafter referred to as "lysA", if necessary), and a DNA sequence coding for a diaminopimelate decarboxylase (a diaminopimelate decarboxylase is hereinafter referred to as "DDH", and a gene coding for a DDH protein is hereinafter referred to as "ddh", if necessary) compared with the case in which these DNA sequences are each enhanced singly.

Namely, the present invention lies in a recombinant DNA autonomously replicable in cells of coryneform bacteria, comprising a DNA sequence coding for a diaminopimelate dehydrogenase and a DNA sequence coding for a diaminopimelate decarboxylase.

In another aspect, the present invention provides a corynetorm bacterium harboring an enhanced DNA sequence coding for a diaminopimelate dehydrogenase and an enhanced DNA sequence coding for a diaminopimelate decarbox-

In still another aspect, the present invention provides a method for producing L-lysin comprising the steps of cultivating the coryneform bacterium described above in a medium to allow L-lysine to be produced and accumulated in a culture, and collecting L-lysine from the culture.

The coryneform bacteria referred to in the present invention are a group of microorganisms as defined in Bergey's

Manual of Determinativ Bacteriology, 8th ed., p. 599 (1974), which are aerobic Gram-positive non-acid-fast rods having no spore-forming ability. The coryneform bacteria include bacteria belonging to the genus <u>Corynebacterium</u>, bacteria belonging to the genus <u>Brevibacterium</u> having been hitherto classified into the genus <u>Brevibacterium</u> but united as bacteria belonging to the genus <u>Corynebacterium</u> at present, and bacteria belonging to the genus <u>Brevibacterium</u> closely relative to bact ria belonging to the genus <u>Corynebacterium</u>.

According to the present invention, the L-lysine-producing ability of coryneform bacteria can be improved, and the growth speed can be also improved. The present invention can be applied to ordinary L-lysine-producing bacteria as well as strains with high L-lysine productivity.

BRIEF EXPLANATION OF DRAWINGS

- Fig. 1 illustrates a process of construction of a plasmid p299LYSA carrying lysA.
- Fig. 2 illustrates a process of construction of a plasmid pLYSAB carrying <u>lysA</u> and Brevi.-ori.
- Fig. 3 illustrates a process of construction of a plasmid pPK4D carrying ddh and Brevi.-ori.
- Fig. 4 illustrates a process of construction of a plasmid p399DL carrying ddh and lysA.
- Fig. 5 illustrates a process of construction of a plasmid pDL carrying ddh, lysA and Brevi.-ori.
- Fig. 6 illustrates a process of construction of plasmids p399AKYB and p399AK9B each carrying mutant lysC.
- Fig. 7 illustrates a process of construction of a plasmid pDPRB carrying dapB and Brevi.-ori.
- Fig. 8 illustrates a process of construction of a plasmid pDPSB carrying dapA and Brevi.-ori.
- Fig. 9 illustrates a process of construction of a plasmid pCRCAB carrying lysC, dapB and Brevi.-ori.
 - Fig. 10 illustrates a process of construction of a plasmid pCB carrying mutant lysC, dapB, and Brevi.-ori.
 - Fig. 11 illustrates a process of construction of a plasmid pAB carrying dapA, dapB and Brevi.-ori.
 - Fig. 12 illustrates a process of construction of a plasmid pCAB carrying mutant lysC, dapA, dapB, and Brevi.-ori.
 - Fig. 13 illustrates a process of construction of a plasmid pCABL carrying mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, <u>lysA</u>, and Brevi.-

ori.

Fig. 14 illustrates a process of construction of a plasmid pCABDL carrying mutant lysC, dapA, dapB, ddh, lysA, and Brevi.-ori.

DETAILED DESCRIPTION OF THE INVENTION

30

35

50

5

15

20

25

The present invention will be explained in detail below.

(1) Preparation of genes for L-lysine biosynthesis used for the present invention

The genes for L-lysine biosynthesis used in the present invention can be obtained respectively by preparing chromosomal DNA from a bacterium as a DNA donor, constructing a chromosomal DNA library by using a plasmid vector or the like, selecting a strain harboring a desired gene from the library, and recovering, from the selected strain, recombinant DNA into which the gene has been inserted. The DNA donor for the gene for L-lysine biosynthesis used in the present invention is not specifically limited provided that the desired gene for L-lysine biosynthesis expresses an enzyme protein which functions in cells of coryneform bacteria. However, the DNA donor is preferably a coryneform bacterium.

Both of the genes of <u>lysA</u> and <u>ddh</u> originating from coryneform bacteria have known sequences. Accordingly, they can be obtained by performing amplification in accordance with the polymerase chain reaction method (PCR; see White, T. J. et al., <u>Trends Genet.</u>, <u>5</u>, 185 (1989)).

Each of the genes for L-lysine biosynthesis used in the present invention is obtainable in accordance with certain methods as exemplified below.

(1) Preparation of mutant lysA

lysA can be isolated from chromosome of a coryneform bacterium by preparing chromosomal DNA in accordance with, for example, a method of Saito and Miura (H. Saito and K. Miura, <u>Biochem. Biophys. Acta, 72</u>, 619 (1963)), and amplifying <u>lysA</u> in accordance with the polymerase chain reaction method (PCR; see White, T. J. et al., <u>Trends Genet.</u>, <u>5</u>, 185 (1989)). The DNA donor is not specifically limited, however, it is exemplified by <u>Brevibacterium lactofermentum</u> ATCC 13869 strain.

In the coryn form bacteria, <u>IysA</u> forms an operon together with <u>argS</u> (arginyl-tRNA synthase gene), and <u>IysA</u> exists downstream from <u>argS</u>. Expression of <u>IysA</u> is regulated by a promoter existing upstream from <u>argS</u> (see <u>Journal of Bacteriology</u>, <u>Nov.</u>, 7356-7362 (1993)). DNA sequences of these genes are known for <u>Corynebacterium glutamicum</u> (see <u>Molecular Microbiology</u>, <u>4(11)</u>, 1819-1830 (1990); <u>Molecular and General Genetics</u>, <u>212</u>, 112-119 (1988)), on the basis of which DNA primers for PCR can be prepared. Such DNA primers are specifically exemplified by DNA's of 23-mers

respectively having nucleotide sequences shown in SEQ ID NO: 1 in Sequence Listing (corresponding to nucleotide numbers 11 to 33 in a nucleotide sequence described in Molecular Microbiology, 4(11), 1819-1830 (1990)) and SEQ ID NO: 2 (corresponding to nucleotide numbers 1370 to 1392 in a nucleotide sequence described in Molecular and General Genetics, 212, 112-119 (1988)).

In Example described later on, a DNA fragment containing a promoter, <u>argS</u>, and <u>lysA</u> was used in order to enhance <u>lysA</u>. However, <u>argS</u> is not essential for the present invention. It is allowable to use a DNA fragment in which lysA is ligated just downstream from a promoter.

A nucleotide sequence of a DNA fragment containing <u>argS</u> and <u>lysA</u>, and an amino acid sequence deduced to be encoded by the nucleotide sequence are exemplified in SEQ ID NO: 3. An example of an amino acid sequence encoded by <u>argS</u> is shown in SEQ ID NO: 4, and an example of an amino acid sequence encoded by <u>lysA</u> is shown in SEQ ID NO: 5. In addition to DNA fragments coding for these amino acid sequences, the present invention can equivalently use DNA fragments coding for amino acid sequences substantially the same as the amino acid sequence shown in SEQ ID NO: 5, namely amino acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amino acids provided that there is no substantial influence on the DDC activity.

DNA can be synthesized in accordance with an ordinary method by using DNA synthesizer model 380B produced by Applied Biosystems and using the phosphoamidite method (see <u>Tetrahedron Letters</u> (1981), <u>22</u>, 1859). PCR can be performed by using DNA Thermal Cycler Model PJ2000 produced by Takara Shuzo, and using Taq DNA polymerase in accordance with a method designated by the supplier.

It is preferred that <u>IvsA</u> amplified by PCR is ligated with vector DNA autonomously replicable in cells of <u>E. coli</u> and/or coryneform bacteria to prepare recombinant DNA, and the recombinant DNA is introduced into cells of <u>E. coli</u> beforehand. Such provision makes following operations easy. The vector autonomously replicable in cells of <u>E. coli</u> is preferably a plasmid vector which is preferably autonomously replicable in cells of a host, including, for example, pUC19, pUC18, pBR322, pHSG299, pHSG399, pHSG398, and RSF1010. When a DNA fragment having an ability to allow a plasmid to be autonomously replicable in coryneform bacteria is inserted into these vectors, they can be used as a so-called shuttle vector autonomously replicable in both <u>E. coli</u> and coryneform bacteria.

Such a shuttle vector includes the followings. Microorganisms harboring each of vectors and accession numbers in international depositary authorities are shown in parentheses.

pHC4: Escherichia coli AJ12617 (FERM BP-3532)

pAJ655: Escherichia coli AJ11882 (FERM BP-136) Corynebacterium glutamicum SR8201 (ATCC 39135)

pAJ1844: Escherichia coli AJ11883 (FERM BP-137) Corynebacterium glutamicum SR8202 (ATCC 39136)

pAJ611: Escherichia coli AJ11884 (FERM BP-138)

pAJ3148: Corynebacterium glutamicum SR8203 (ATCC 39137)

pAJ440: Bacillus subtilis AJ11901 (FERM BP-140)

These vectors are obtainable from the deposited microorganisms as follows. Cells collected at a logarithmic growth phase were lysed by using lysozyme and SDS, followed by separation from a lysate by centrifugation at $30,000 \times g$ to obtain a supernatant. Polyethylene glycol is added to the supernatant, followed by fractionation and purification by means of cesium chloride-ethidium bromide equilibrium density gradient centrifugation.

<u>E. coli</u> can be transformed by introducing a plasmid in accordance with, for example, a method of D. M. Morrison (<u>Methods in Enzymology</u>, <u>68</u>, 326 (1979)) or a method in which recipient cells are treated with calcium chloride to increase permeability for DNA (Mandel, M. and Higa, A., <u>J. Mol. Biol.</u>, <u>53</u>, 159 (1970)).

(2) Preparation of ddh

5

15

35

40

45

A DNA fragment containing <u>ddh</u> can be prepared from chromosome of a coryneform bacterium by means of PCR. Th DNA donor is not specifically limited, however, it is exemplified by <u>Brevibacterium lactofermentum</u> ATCC 13869 strain.

A DDH gene is known for <u>Corynebacterium glutamicum</u> (Ishino, S. et al., <u>Nucleic Acids Res.</u>, <u>15</u>, 3917 (1987)), on the basis of which primers for PCR can be prepared. Such DNA primers are specifically exemplified by DNA's of 20-mers respectively having nucleotide sequences shown in SEQ ID NOs: 6 and 7 in Sequence Listing. Synthesis of DNA, PCR, and preparation of a plasmid carrying obtained <u>ddh</u> can be performed in the same manner as those for <u>lysA</u> described above.

A nucleotide sequence of a DNA fragment containing <u>ddh</u> and an amino acid sequence deduced from the nucleotide sequence are illustrated in SEQ ID NO: 8. Only the amino acid sequence is shown in SEQ ID NO: 9. In addition to DNA fragments coding for this amine acid sequence, the present invention can equivalently use DNA fragments coding for amine acid sequences substantially the same as the amine acid sequence shown in SEQ ID NO: 9, namely amine acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amine acids provided that there is no substantial influence on the DDH activity.

Ġ.

(2) Recombinant DNA and coryneform bacterium of the present invention

The coryneform bacterium of the present invention harbors a DNA sequence coding for diaminopimelate decarboxylase (<u>lysA</u>) and a DNA sequence coding for diaminopimelate dehydrogenase (<u>ddh</u>) which are enhanced. The term "a DNA sequence is enhanced" herein refers to the fact that the intracellular activity of an enzyme encoded by the DNA sequence is raised by, for example, increasing the copy number of a gene, using a strong promoter, using a gene coding for an enzyme having a high specific activity, or combining these means.

The coryneform bacterium to which the DNA sequences described above is an L-lysine-producing coryneform bacterium, examples of which include L-lysine-producing wild type strains and artificial mutant strains and coryneform bacteria enhanced in L-lysine productivity by genetic engineering. Even if the bacterium has low L-lysine productivity, the L-lysine productivity can be improved by enhancing <u>lysA</u> and <u>ddh</u>. If the bacterium has high L-lysine productivity, the L-lysine production efficiency can be more raised by enhancing <u>lysA</u> and <u>ddh</u>.

(1) L-Lysine-producing strain belonging to coryneform bacteria

15

20

25

30

35

Examples of the coryneform bacterium used to introduce <u>lysA</u> and <u>ddh</u> include, for example, the following lysine-producing strains:

Corynebacterium acetoacidonhilum ATCC 13870;

Corynebacterium acetoglutamicum ATCC 15806;

Corynebacterium callunae ATCC 15991;

Corvnebacterium glutamicum ATCC 13032;

(Brevibacterium divaricatum) ATCC 14020;

(Brevibacterium lactofermentum) ATCC 13869;

(Corynebacterium lilium) ATCC 15990;

(Brevibacterium flavum) ATCC 14067;

Corynebacterium melassecola ATCC 17965;

Brevibacterium saccharolyticum ATCC 14066;

Brevibacterium immarjophilum ATCC 14068;

Brevibacterium roseum ATCC 13825;

Brevibacterium thiogenitalis ATCC 19240;

Microbacterium ammoniaphilum ATCC 15354;

Corynebacterium thermoaminogenes AJ12340 (FERM BP-1539).

Other than the bacterial strains described above, those usable as a host in which IvsA and ddh are to be enhanced include, for example, mutant strains having an L-lysine-producing ability derived from the aforementioned strains. Such artificial mutant strains include the followings: S-(2-aminoethyl)-cysteine (hereinafter abbreviated as "AEC") resistant mutant strains (Brevibacterium lactofermentum AJ11082 (NRRL B-11470), Japanese Patent Publication Nos. 56-1914, 56-1915, 57-14157, 57-14158, 57-30474, 58-10075, 59-4993, 61-35840, 62-24074, 62-36673, 5-11958, 7-112437, and 7-112438); mutant strains which require an amino acid such as L-homoserine for their growth (Japanese Patent Publication Nos. 48-28078 and 56-6499); mutant strains which exhibit resistance to AEC and require amino acids such as L-leucine, L-homoserine, L-proline, L-serine, L-arginine, L-alanine, and L-valine (United States Patent Nos. 3,708,395 and 3,825,472); L-lysine-producing mutant strains which exhibit resistance to DL- α -amino- ϵ -caprolactam, α amino-lauryllactam, aspartate-analog, sulfa drug, quinoid, and N-lauroylleucine; L-lysine-producing mutant strains which exhibit resistance to inhibitors of oxyaloacetate decarboxylase or respiratory system enzymes (Japanese Patent Application Laid-open Nos. 50-53588, 50-31093, 52-102498, 53-9394, 53-86089, 55-9783, 55-9759, 56-32995 and 56-39778, and Japanese Patent Publication Nos. 53-43591 and 53-1833); L-lysine-producing mutant strains which require inositol or acetic acid (Japanese Patent Application Laid-open Nos. 55-9784 and 56-8692); L-lysine-producing mutant strains which exhibit sensitivity to fluoropyruvic acid or temperature not less than 34°C (Japanese Patent Application Laid-open Nos. 55-9783 and 53-86090); and production mutant strains belonging to the genus <u>Brevibacterium</u> or Corynebacterium which exhibit resistance to ethylene glycol and produce L-lysine (United States Patent No. 4,411,997).

(2) L-Lysine-producing coryneform bacteria having L-lysine productivity enhanced by genetic recombination

55

Th L-lysine producing speed can be further improved by enhancing <u>lysA</u> and <u>ddh</u>, if the coryn form bacterium has been enhanced in L-lysine production by genetic engineering, for example, by introducing a gene coding for an enzyme having a mutation which causes desensitization in feedback inhibition, wild type of which enzyme is subjected to feedback inhibition among enzymes participating in L-lysine biosynthesis, or by enhancing a gene for L-lysine biosynthesis

other than lysA and ddh.

The coryneform bacterium enhanced in L-lysine productivity includes a coryneform bacterium harboring a DNA sequence coding for an aspartokinase which is desensitized in feedback inhibition by L-lysine and L-threonine (an aspartokinase is hereinafter referred to as "AK", a gene coding for an AK protein is hereinafter referred to as "IysC", and a gene coding for an AK protein which is desensitized in feedback inhibition by L-lysine and L-threonine, if necessary), and an enhanced DNA sequence coding for a dihydrodipicolinate reductase (a dihydrodipicolinate reductase is hereinafter referred to as "DDPR", and a gene coding for a DDPR protein is hereinafter referred to as "dapB", if necessary), and the coryneform bacterium further harboring an enhanced DNA sequence coding for a dihydrodipicolinate synthase (a dihydrodipicolinate synthase is hereinafter referred to as "DDPS", and a gene coding for a DDPS protein is hereinafter referred to as "dapA", if necessary). Each of the genes for L-lysine biosynthesis used in the present invention is obtainable in accordance with certain methods as exemplified below.

(i) Preparation of mutant lysC

15

35

45

A DNA fragment containing mutant <u>lysC</u> can be prepared from a mutant strain in which synergistic feedback inhibition on the AK activity by L-lysine and L-threonine is substantially desensitized (International Publication No. WO 94/25605). Such a mutant strain can be obtained, for example, from a group of cells originating from a wild type strain of a coryneform bacterium subjected to a mutation treatment by applying an ordinary mutation treatment such as ultraviolet irradiation and treatment with a mutating agent such as N-methyl-N'-nitro-N-nitrosoguanidine. The AK activity can be measured by using a method described by Miyajima, R. et al., <u>The Journal of Biochemistry</u> (1968), <u>63(2)</u>, 139-148. The most preferred as such a mutant strain is represented by an L-lysine-producing bacterium AJ3445 (FERM P-1944) derived by a mutation treatment from a wild type strain of <u>Brevibacterium lactofermentum</u> ATCC 13869 (having its changed present name of <u>Corynebacterium glutamicum</u>).

Alternatively, mutant <u>lysC</u> is also obtainable by an <u>in vitro</u> mutation treatment of plasmid DNA containing wild type <u>lysC</u>. In another aspect, information is specifically known on mutation to desensitize synergistic feedback inhibition on AK by L-lysine and L-threonine (International Publication No. WO 94/25605). Accordingly, mutant <u>lysC</u> can be also prepared from wild type <u>lysC</u> on the basis of the information in accordance with, for example, the site-directed mutagenesis method.

A DNA fragment containing <u>lysC</u> can be prepared from chromosome of a coryneform bacterium by means of PCR. DNA primers are exemplified by single strand DNA's of 23-mer and 21-mer having nucleotide sequences shown in SEQ ID NOs: 10 and 11 in Sequence Listing in order to amplify, for example, a region of about 1,643 bp coding for <u>lysC</u> based on a sequence known for <u>Corynebacterium glutamicum</u> (see <u>Molecular Microbiology</u> (1991), <u>5(5)</u>, 1197-1204; <u>Mol. Gen. Genet.</u> (1990), <u>224</u>, 317-324). Synthesis of DNA, PCR, and preparation of a plasmid carrying obtained <u>lysC</u> can be performed in the same manner as those for <u>lysA</u> described above.

Wild type <u>lysC</u> is obtained when <u>lysC</u> is isolated from an AK wild type strain, while mutant <u>lysC</u> is obtained when <u>lysC</u> is isolated from an AK mutant strain in accordance with the method as described above.

An example of a nucleotide sequence of a DNA fragment containing wild type \underline{lysC} is shown in SEQ ID NO: 12 in Sequence Listing. An amino acid sequence of α -subunit of a wild type AK protein is deduced from the nucleotide sequence, and is shown in SEQ ID NO: 13 in Sequence Listing together with the DNA sequence. Only the amino acid sequence is shown in SEQ ID NO: 14. An amino acid sequence of β -subunit of the wild type AK protein is deduced from the nucleotide sequence of DNA, and is shown in SEQ ID NO: 15 in Sequence Listing together with the DNA sequence. Only the amino acid sequence is shown in SEQ ID NO: 16. In each of the subunits, GTG is used as an initiation codon, and a corresponding amino acid is represented by methionine. However, this representation refers to methionine, valine, or formylmethionine.

The mutant <u>lysC</u> used in the present invention is not specifically limited provided that it codes for AK in which synergistic feedback inhibition by L-lysine and L-threonine is desensitized. However, the mutant <u>lysC</u> is exemplified by one including mutation in which a 279th alanine residue as counted from the N-terminal is changed into an amino acid residue other than alanine and other than acidic amino acid in the α -subunit, and a 30th alanine residue is changed into an amino acid residue other than alanine and other than acidic amino acid in the β -subunit in the amino acid sequence of the wild type AK. The amino acid sequence of the wild type AK specifically includes the amino acid sequence shown in SEQ ID NO: 14 in Sequence Listing as the α -subunit, and the amino acid sequence shown in SEQ ID NO: 16 in Sequence Listing as the β -subunit.

Those preferred as the amino acid residue other than alanine and other than acidic amino acid include threonine, arginine, cysteine, phenylalanine, proline, serine, tyrosine, and valine residues.

The codon corresponding to an amino acid residue to be substituted is not specifically limited for its type provided that it codes for the amino acid residue. It is assumed that the amino acid sequence of possessed wild type AK may slightly differ depending on the difference in bacterial species and bacterial strains. AK's, which have mutation based on, for example, substitution, deletion, or insertion of one or more amino acid residues at one or more positions irrelevant to the enzyme activity as described above, can be also used for the present invention. Other AK's, which have

mutation based on, for example, substitution, deletion, or insertion of other one or more amino acid residues, can be also used provided that no influence is substantially exerted on the AK activity, and on the desensitization of synergistic feedback inhibition by L-lysine and L-threonine.

An AJ12691 strain obtained by introducing a mutant <u>lysC</u> plasmid p399AK9B into an AJ12036 strain (FERM BP-734) as a wild type strain of <u>Brevibacterium lactofermentum</u> has been deposited on April 10, 1992 under an accession number of FERM P-12918 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan), transferred to international deposition based on the Budapest Treaty on February 10, 1995, and deposited under an accession number of FERM BP-4999.

(ii) Preparation of dapB

10

35

A DNA fragment containing <u>dapB</u> can be prepared from chromosome of a coryneform bacterium by means of PCR. The DNA donor is not specifically limited, however, it is exemplified by <u>Brevibacterium lactofermentum</u> ATCC 13869 strain.

A DNA sequence coding for DDPR is known for <u>Brevibacterium lactofermentum</u> (<u>Journal of Bacteriology</u>, <u>175(9)</u>, 2743-2749 (1993)), on the basis of which DNA primers for PCR can be prepared. Such DNA primers are specifically exemplified by DNA's of 23-mers respectively having nucleotide sequences shown in SEQ ID NOs: 17 and 18 in Sequence Listing. Synthesis of DNA, PCR, and preparation of a plasmid carrying obtained <u>dapB</u> can be performed in the same manner as those for <u>lysC</u> described above.

A nucleotide sequence of a DNA fragment containing <u>dapB</u> and an amino acid sequence deduced from the nucleotide sequence are illustrated in SEQ ID NO: 19. Only the amino acid sequence is shown in SEQ ID NO: 20. In addition to DNA fragments coding for this amino acid sequence, the present invention can equivalently use DNA fragments coding for amino acid sequences substantially the same as the amino acid sequence shown in SEQ ID NO: 20, namely amino acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amino acids provided that there is no substantial influence on the DDPR activity.

A transformant strain AJ13107 obtained by introducing a plasmid pCRDAPB carrying <u>dapB</u> obtained in Example described later on into <u>E. coli</u> JM109 strain has been internationally deposited since May 26, 1995 under an accession number of FERM BP-5114 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) based on the Budapest Treaty.

(iii) Preparation of dapA

A DNA fragment containing <u>dapA</u> can be prepared from chromosome of a coryneform bacterium by means of PCR. The DNA donor is not specifically limited, however, it is exemplified by <u>Brevibacterium</u> <u>lactofermentum</u> ATCC 13869 strain.

A DNA sequence coding for DDPS is known for <u>Corynebacterium glutamicum</u> (see <u>Nucleic Acids Research</u>, <u>18(21)</u>, 6421 (1990); <u>EMBL</u> accession No. X53993), on the basis of which DNA primers for PCR can be prepared. Such DNA primers are specifically exemplified by DNA's of 23-mers respectively having nucleotide sequences shown in SEQ ID NOs: 21 and 22 in Sequence Listing. Synthesis of DNA, PCR, and preparation of a plasmid carrying obtained <u>dapA</u> can be performed in the same manner as those for lysC described above.

A nucleotide sequence of a DNA fragment containing <u>dapA</u> and an amino acid sequence deduced from the nucleotide sequence are exemplified in SEQ ID NO: 23. Only the amino acid sequence is shown in SEQ ID NO: 24. In addition to DNA fragments coding for this amino acid sequence, the present invention can equivalently use DNA fragments coding for amino acid sequences substantially the same as the amino acid sequence shown in SEQ ID NO: 24, namely amino acid sequences having mutation based on, for example, substitution, deletion, or insertion of one or more amino acids provided that there is no substantial influence on the DDPS activity.

A transformant strain AJ13106 obtained by introducing a plasmid pCRDAPA carrying <u>dapA</u> obtained in Example described later on into <u>E. coli</u> JM109 strain has been internationally deposited since May 26, 1995 under an accession number of FERM BP-5113 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) based on the Budapest Treaty.

In a specified embodiment, in order to enhance <u>lysA</u> and <u>ddh</u> in the L-lysine-producing coryneform bacterium as described above, the genes are introduced into the host by using a plasmid vector, transposon or phage vector or the like. Upon the introduction, it is expected to make enhancement to some extent even by using a low copy type vector. However, it is preferred to use a multiple copy type vector. Such a vector includes, for example, plasmid vectors, pAJ655, pAJ1844, pAJ611, pAJ3148, and pAJ440 described above. Besides, transposons derived from coryneform bacteria are described in International Publication Nos. WO 92/02627 and WO 93/18151; European Patent Publication

No. 445385; Japanese Patent Application Laid-open No. 6-46867; Vertes, A. A. et al., Mol. Microbiol., 11, 739-746 (1994); Bonamy, C., et al., Mol. Microbiol., 14, 571-581 (1994); Vertes, A. A. et al., Mol. Gen. Genet., 245, 397-405 (1994); Jagar, W. et al., FEMS Microbiology Letters, 126, 1-6 (1995); Japanese Patent Application Laid-open Nos. 7-107976 and 7-327680 and the like.

A coryneform bacterium enhanced in <u>lysA</u> and <u>ddh</u> according to the present invention can be obtained, for example, by introducing, into a host coryneform bacterium, a recombinant DNA containing <u>lysA</u> and <u>ddh</u> and being autonomously replicable in cells of coryneform bacteria. The recombinant DNA can be obtained, for example, by inserting <u>lysA</u> and <u>ddh</u> into a vector such as plasmid vector, transposon or phage vector as described above.

Each of the genes of <u>lysA</u> and <u>ddh</u> may be successively introduced into the host by using different vectors respectively. Alternatively, two species of the genes may be introduced together by using a single vector. When different vectors are used, the genes may be introduced in any order, however, it is preferred to use vectors which have a stable sharing and harboring mechanism in the host, and which are capable of coexisting with each other.

In the case in which a plasmid is used as a vector, the recombinant DNA can be introduced into the host in accordance with an electric pulse method (Sugimoto et al., Japanese Patent Application Laid-open No. 2-207791). Amplification of a gene using transposon can be performed by introducing a plasmid carrying a transposon into the host cell and inducing transposition of the transposon.

Also, when mutant lysC, <u>dapA</u> and <u>dapB</u> are introduced into coryneform bacterium, each of the genes and <u>lysA</u> and <u>ddh</u> may be successively introduced into the host by using different vectors respectively or, alternatively, two or more species of the genes may be introduced together by using a single vector.

(3) Method for producing L-lysine

L-Lysine can be efficiently produced by cultivating, in an appropriate medium, the coryneform bacterium comprising the enhanced genes for L-lysine biosynthesis as described above to allow L-lysine to be produced and accumulated in a culture, and collecting L-lysine from the culture.

The medium to be used is exemplified by an ordinary medium containing a carbon source, a nitrogen source, inorganic ions, and optionally other organic components.

As the carbon source, it is possible to use sugars such as glucose, fructose, sucrose, molasses, and starch hydrolysate; and organic acids such as fumaric acid, citric acid, and succinic acid.

As the nitrogen source, it is possible to use inorganic ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate; organic nitrogen such as soybean hydrolysate; ammonia gas; and aqueous ammonia.

As organic trace nutrient sources, it is desirable to contain required substances such as vitamin B₁ and L-homoserine or yeast extract or the like in appropriate amounts. Other than the above, potassium phosphate, magnesium sulfate, iron ion, manganese ion and so on are added in small amounts, if necessary.

Cultivation is preferably carried out under an aerobic condition for about 30 to 90 hours. The cultivation temperature is preferably controlled at 25°C to 37°C, and pH is preferably controlled at 5 to 8 during cultivation. Inorganic or organic, acidic or alkaline substances, or ammonia gas or the like can be used for pH adjustment. L-lysine can be collected from a culture by combining an ordinary ion exchange resin method, a precipitation method, and other known methods.

40 EXAMPLES

20

30

35

45

The present invention will be more specifically explained below with reference to Examples.

Example 1: Preparation of lysA from Brevibacterium lactofermentum

(1) Preparation of lysA and construction of plasmid carrying lysA

A wild type strain ATCC 13869 of <u>Brevibacterium lactofermentum</u> was used as a chromosomal DNA donor. Chromosomal DNA was prepared from the ATCC 13869 strain in accordance with an ordinary method. A DNA fragment containing <u>argS</u>, <u>lysA</u>, and a promoter of an operon containing them was amplified from the chromosomal DNA in accordance with PCR. As for DNA primers used for amplification, synthetic DNA's of 23-mers having nucleotide sequences shown in SEQ ID NOs: 1 and 2 in Sequence Listing respectively were used in order to amplify a region of about 3.6 kb coding for arginyl-tRNA synthase and DDC on the basis of a sequence known for <u>Corynebacterium glutamicum</u> (see <u>Molecular Microbiology</u>, <u>4(11)</u>, 1819-1830 (1990); <u>Molecular and General Genetics</u>, <u>212</u>, 112-119 (1988)).

DNA was synthesized in accordance with an ordinary method by using DNA synthesizer model 380B produced by Applied Biosystems and using the phosphoamidite method (see <u>Tetrahedron Letters</u> (1981), <u>22</u>, 1859).

The gene was amplified by PCR by using DNA Thermal Cycler Model PJ2000 produced by Takara Shuzo, and using Taq DNA polymerase in accordance with a method designated by the supplier. pHSG399 was used as a cloning

vector for the amplified gene fragment of 3,579 bp. pHSG399 was digested with a restriction enzyme <u>Smal</u> (produced by Takara Shuzo), and was ligated with the DNA fragment containing amplified <u>lysA</u>. A plasmid obtained as described above, which had <u>lysA</u> originating from ATCC 13869, was designated as p399LYSA.

A DNA fragment containing <u>IysA</u> was extracted by digesting p399LYSA with <u>Kpn</u>I (produced by Takara Shuzo) and <u>Bam</u>HI (produced by Takara Shuzo). This DNA fragment was ligated with pHSG299 having been digested with <u>Kpn</u>I and <u>Bam</u>HI. An obtained plasmid was designated as p299LYSA. The process of construction of p299LYSA is shown in Fig. 1.

A DNA fragment (hereinafter referred to as "Brevi.-ori") having an ability to make a plasmid autonomously replicable in bacteria belonging to the genus <u>Corynebacterium</u> was introduced into p299LYSA to prepare plasmids carrying <u>lysA</u> autonomously replicable in bacteria belonging to the genus <u>Corynebacterium</u>. Brevi.-ori was prepared from a plasmid vector pHK4 containing Brevi.-ori and autonomously replicable in cells of both <u>Escherichia coli</u> and bacteria belonging to the genus <u>Corynebacterium</u>. pHK4 was constructed by digesting pHC4 with <u>Kpnl</u> (produced by Takara Shuzo) and <u>Bam</u>HI (produced by Takara Shuzo), extracting a Brevi.-ori fragment, and ligating it with pHSG298 having been also digested with <u>Kpnl</u> and <u>Bam</u>HI (see Japanese Patent Application Laid-open No. 5-7491). pHK4 gives kanamycin resistance to a host. <u>Escherichia coli</u> HB101 harboring pHK4 was designated as <u>Escherichia coli</u> AJ13136, and deposited on August 1, 1995 under an accession number of FERM BP-5186 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan).

pHK4 was digested with a restriction enzyme <u>Bam</u>HI, and cleaved ends were blunted. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>Kon</u>I linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>Kon</u>I. This plasmid was digested with <u>Kon</u>I, and the generated Brevi.-ori DNA fragment was ligated with p299LYSA having been also digested with <u>Kon</u>I to prepare a plasmid carrying <u>lysA</u> autonomously replicable in coryneform bacteria. The prepared plasmid was designated as pLYSAB. The process of construction of pLYSAB is shown in Fig. 2.

(2) Determination of nucleotide sequence of IysA from Brevibacterium lactofermentum

Plasmid DNA of p299LYSA was prepared, and nucleotide sequence determination was performed in accordance with a method of Sanger et al. (for example, F. Sanger et al., <u>Proc. Natl. Acad. Sci., 74</u>, 5463 (1977)). A determined nucleotide sequence and an amino acid sequence deduced to be encoded by the nucleotide sequence are shown in SEQ ID NO: 3. Concerning the nucleotide sequence, an amino acid sequence encoded by <u>argS</u> and an amino acid sequence encoded by <u>lysA</u> are shown in SEQ ID NOs: 4 and 5 respectively.

Example 2: Preparation of ddh from Brevibacterium lactofermentum

A <u>ddh</u> gene was obtained by amplifying the <u>ddh</u> gene from chromosomal DNA of <u>Brevibacterium lactofermentum</u> ATCC 13869 in accordance with the PCR method by using two oligonucleotide primers (SEQ ID NOs: 6, 7) prepared on the basis of a known nucleotide sequence of a <u>ddh</u> gene of <u>Corynebacterium glutamicum</u> (Ishino, S. et al., <u>Nucleic Acids Res.</u>, <u>15</u>, 3917 (1987)). An obtained amplified DNA fragment was digested with <u>Eco</u>T221 and <u>Aval</u>, and cleaved ends were blunted. After that, the fragment was inserted into a <u>Smal</u> site of pMW119 to obtain a plasmid pDDH.

Next, pDDH was digested with <u>Sal</u>l and <u>Eco</u>RI, followed by blunt end formation. After that, an obtained fragment was ligated with pUC18 having been digested with <u>Sma</u>I. A plasmid thus obtained was designated as pUC18DDH.

Brevi.-ori was introduced into pUC18DDH to construct a plasmid carrying <u>ddh</u> autonomously replicable in coryne-form bacteria. pHK4 was digested with restriction enzymes <u>KpnI</u> and <u>BamHI</u>, and cleaved ends were blunted. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>PstI</u> linker (produced by Takara Shuzo) was ligated so that it was inserted into a <u>PstI</u> site of pHSG299. A plasmid constructed as described above was designated as pPK4. Next, pUC18DDH was digested with <u>XbaI</u> and <u>KpnI</u>, and a generated fragment was ligated with pPK4 having been digested with <u>KpnI</u> and <u>XbaI</u>. Thus a plasmid carrying <u>ddh</u> autonomously replicable in coryneform bacteria was constructed. This plasmid was designated as pPK4D. The process of construction of pPK4D is shown in Fig. 3.

Example 3: Construction of Plasmid Carrying Both of ddh and lysA

The plasmid pUC18DDH carrying <u>ddh</u> was digested with <u>Eco</u>RI and then blunt-ended and further digested with <u>Xba</u>I to extract a DNA fragment containing <u>ddh</u>. This <u>ddh</u> fragment was ligated with the plasmid p399LYSA carrying <u>IysA</u> having been digested with <u>Bam</u>HI and then blunt-ended and further having been digested with <u>Xba</u>I. An obtained plasmid was designated as p399DL. The process of construction of p399DL is shown in Fig. 4.

Next, Brevi.-ori was introduced into p399DL. pHK4 was digested with Xbal and BamHI, and cleaved ends were

blunted. After the blunt end formation, a phosphorylated <u>Xbal</u> linker was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>Xbal</u>. This plasmid was digested with <u>Xbal</u>, and the generated Brevi.-ori DNA fragment was ligated with p399DL having been also digested with <u>Xbal</u> to construct a plasmid containing <u>ddh</u> and <u>IysA</u> autonomously replicable in coryneform bacteria. The constructed-plasmid was designated as pDL. The process of construction of pDL is shown in Fig. 5.

Example 4: Preparation of Mutant lysC, dapA and dapB from Brevibacterium lactofermentum

(1) Preparation of Wild Type lysC Gene and Mutant lysC Gene from Brevibacterium lactofermentum

(1) Preparation of wild type and mutant lysC's and preparation of plasmids carrying them

10

35

A strain of <u>Brevibacterium lactofermentum</u> ATCC 13869, and an Ł-lysine-producing mutant strain AJ3445 (FERM P-1944) obtained from the ATCC 13869 strain by a mutation treatment were used as chromosomal DNA donors. The AJ3445 strain had been subjected to mutation so that <u>lysC</u> was changed to involve substantial desensitization from concerted inhibition by lysine and threonine (<u>Journal of Biochemistry</u>, <u>68</u>, 701-710 (1970)).

A DNA fragment containing <u>lysC</u> was amplified from chromosomal DNA in accordance with the PCR method (polymerase chain reaction; see White, T. J. et al., <u>Trends Genet.</u>, <u>5</u>, 185 (1989)). As for DNA primers used for amplification, single strand DNA's of 23-mer and 21-mer having nucleotide sequences shown in SEQ ID NOs: 10 and 11 were synthesized in order to amplify a region of about 1,643 bp coding for <u>lysC</u> on the basis of a sequence known for <u>Coryne-bacterium glutamicum</u> (see <u>Molecular Microbiology</u> (1991), <u>5(5)</u>, 1197-1204; and <u>Mol. Gen. Genet.</u> (1990), <u>224</u>, 317-324).

An amplified gene fragment of 1,643 kb was confirmed by agarose gel electrophoresis. After that, the fragment excised from the gel was purified in accordance with an ordinary method, and it was digested with restriction enzymes Nrul (produced by Takara Shuzo) and EcoRI (produced by Takara Shuzo).

pHSG399 (see Takeshita, S. et al., <u>Gene</u> (1987), <u>61</u>, 63-74) was used as a cloning vector for the gene fragment. pKSG399 was digested with restriction enzymes <u>Smal</u> (produced by Takara Shuzo) and <u>Eco</u>RI, and it was ligated with the amplified <u>lysC</u> fragment. DNA was ligated by using DNA ligation kit (produced by Takara Shuzo) in accordance with a designated method. Thus plasmids were prepared, in which the <u>lysC</u> fragments amplified from chromosomes of <u>Brevibacterium</u> <u>lactofermentum</u> were ligated with pHSG399 respectively. A plasmid carrying <u>lysC</u> from ATCC 13869 (wild type strain) was designated as p399AKY, and a plasmid carrying <u>lysC</u> from AJ3463 (L-lysine-producing bacterium) was designated as p399AK9.

pHK4 was digested with restriction enzymes <u>KpnI</u> and <u>BamHI</u> (produced by Takara Shuzo), and cleaved ends were blunted. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>BamHI</u> linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>BamHI</u>. This plasmid was digested with <u>BamHI</u>, and the generated Brevi.-ori DNA fragment was ligated with p399AKY and p399AK9 having been also digested with <u>BamHI</u> to prepare plasmids carrying <u>lysC</u> autonomously replicable in coryneform bacteria.

A plasmid carrying the wild type <u>lysC</u> gene originating from p399AKY was designated as p399AKYB, and a plasmid carrying the mutant <u>lysC</u> gene originating from p399AK9 was designated as p399AK9B. The process of construction of p399AK9B and p399AKYB is shown in Fig. 6. A strain AJ12691 obtained by introducing the mutant <u>lysC</u> plasmid p399AK9B into a wild type strain of <u>Brevibacterium lactofermentum</u> (AJ12036 strain, FERM BP-734) was deposited on April 10, 1992 under an accession number of FERM P-12918 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, <u>lbaraki-ken</u>, Japan), transferred to international deposition based on the Budapest Treaty on February 10, 1995, and deposited under an accession number of FERM BP-4999.

(2) Determination of nucleotide sequences of wild type lysC and mutant lysC from Brevibacterium lactofermentum

The plasmid p399AKY containing the wild type <u>lysC</u> and the plasmid p399AK9 containing the mutant <u>lysC</u> were prepared from the respective transformants to determine nucleotide sequences of the wild type and mutant <u>lysC's</u>. Nucleotide sequence determination was performed in accordance with a method of Sanger et al. (for example, F. Sanger et al., <u>Proc. Natl. Acad. Sci.</u>, <u>74</u>, 5463 (1977)).

The nucleotide sequence of wild type IysC encoded by p399AKY is shown in SEQ ID NO: 12 in Sequence Listing. On the other hand, the nucleotide sequence of mutant IysC encoded by p399AK9 had only mutation of one nucleotide such that 1051st G was changed into A in SEQ ID NO: 12 as compared with wild type IysC. It is known that IysC of

Corynebacterium glutamicum has two subunits (α , β) encoded in an identical reading frame on an identical DNA strand (see Kalinowski, J. et al., Molecular Microbiology (1991) 5(5), 1197-1204). Judging from homology, it is expected that the gene sequenced herein also has two subunits (α , β) encoded in an identical reading frame on an identical DNA strand.

An amino acid sequence of the α-subunit of the wild type AK protein deduced from the nucleotide sequence of DNA is shown in SEQ ID NO: 13 together with the DNA sequence. Only the amino acid sequence is shown in SEQ ID NO: 14. An amino acid sequence of the β-subunit of the wild type AK protein deduced from the nucleotide sequence of DNA is shown in SEQ ID NO: 15 together with DNA. Only the amino acid sequence is shown in SEQ ID NO: 16. In each of the subunits, GTG is used as an initiation codon, and a corresponding amino acid is represented by methionine. However, this representation refers to methionine, valine, or formylmethionine.

On the other hand, mutation on the sequence of mutant <u>lysQ</u> means occurrence of amino acid residue substitution such that a 279th alanine residue of the α -subunit is changed into a threonine residue, and a 30th alanine residue of the β -subunit is changed into a threonine residue in the amino acid sequence of the wild type AK protein (SEQ ID NOs: 14, 16).

(2) Preparation of dapB from Brevibacterium lactofermentum

5

15

20

35

(1) Preparation of dapB and construction of plasmid carrying dapB

A wild type strain ATCC 13869 of <u>Brevibacterium lactofermentum</u> was used as a chromosomal DNA donor. Chromosomal DNA was prepared from the ATCC 13869 strain in accordance with an ordinary method. A DNA fragment containing <u>dapB</u> was amplified from the chromosomal DNA in accordance with PCR. As for DNA primers used for amplification, DNA's of 23-mers having nucleotide sequences shown in SEQ ID NOs: 17 and 18 in Sequence Listing respectively were synthesized in order to amplify a region of about 2.0 kb coding for DDPR on the basis of a sequence known for <u>Brevibacterium lactofermentum</u> (see <u>Journal of Bacteriology</u>, <u>157(9)</u>, 2743-2749 (1993)). Synthesis of DNA and PCR were performed in the same manner as described in Example 1. pCR-Script (produced by Invitrogen) was used as a cloning vector for the amplified gene fragment of 2,001 bp, and was ligated with the amplified <u>dapB</u> fragment. Thus a plasmid was constructed, in which the <u>dapB</u> fragment of 2,001 bp amplified from chromosome of <u>Brevibacterium lactofermentum</u> was ligated with pCR-Script. The plasmid obtained as described above, which had <u>dapB</u> originating from ATCC 13869, was designated as pCRDAPB. A transformant strain AJ13107 obtained by introducing pCRDAPB into <u>E. coli</u> JM109 strain has been internationally deposited since May 26, 1995 under an accession number of FERM BP-5114 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) based on the Budapest Treaty.

A fragment of 1,101 bp containing a structural gene of DDPR was extracted by digesting pCRDAPB with <u>EcoRV</u> and <u>Sph</u>I. This fragment was ligated with pHSG399 having been digested with <u>Hincll</u> and <u>Sph</u>I to prepare a plasmid. The prepared plasmid was designated as p399DPR.

Brevi.-ori was introduced into the prepared p399DPR to construct a plasmid carrying dapB autonomously replicable in coryneform bacteria. pHK4 was digested with a restriction enzyme Kpnl (produced by Takara Shuzo), and cleaved ends were blunted. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated BamHI linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only BamHI. This plasmid was digested with BamHI, and the generated Brevi.-ori DNA fragment was ligated with p399DPR having been also digested with BamHI to prepare a plasmid containing dapB autonomously replicable in coryneform bacteria. The prepared plasmid was designated as pDPRB. The process of construction of pDPRB is shown in Fig. 7.

(2) Determination of nucleotide sequence of dapB from Brevibacterium lactofermentum

Plasmid DNA was prepared from the AJ13107 strain harboring p399DPR, and its nucleotide sequence was determined in the same manner as described in Example 1. A determined nucleotide sequence and an amino acid sequence deduced from the nucleotide sequence are shown in SEQ ID NO: 19. Only the amino acid sequence is shown in SEQ ID NO: 20.

(3) Preparation of dapA from Brevibacterium lactofermentum

(1) Preparation of dapA and construction of plasmid carrying dapA

A wild type strain of Brevibacterium lactofermentum ATCC 13869 was used as a chromosomal DNA donor. Chro-

mosomal DNA was prepared from the ATCC 13869 strain in accordance with an ordinary method. A DNA fragment containing dapA was amplified from the chromosomal DNA in accordance with PCR. As for DNA primers used for amplification, DNA's of 23-mers having nucleotide sequences shown in SEQ ID NOs: 21 and 22 in Sequence Listing respectively were synthesized in rider to amplify a region of about 1.5 kb coding fir DDPS on this basis of a sequence known for Corynebacterium glutamicum (see Nucleic Acids Research, 18(21), 6421 (1990); EMBL accession No. X53993). Synthesis of DNA and PCR were performed in the same manner as described in Example 1. pCR1000 (produced by Invitrogen, see Bio/Technology, 9, 657-663 (1991)) was used as a cloning vector for the amplified gene fragment of 1,411 bp, and was ligated with the amplified dapA fragment. Ligation of DNA was performed by using DNA ligation kit (produced by Takara Shuzo) in accordance with a designated method. Thus a plasmid was constructed, in which the dapA fragment of 1,411 bp amplified from chromosome of Brevibacterium lactofermentum was ligated with pCR1000. The plasmid obtained as described above, which had dapA originating from ATCC 13869, was designated as pCRDAPA.

A transformant strain AJ13106 obtained by introducing pCRDAPA into <u>E. coli</u> JM109 strain has been internationally deposited since May 26, 1995 under an accession number of FERM BP-5113 in National Institute of Bioscience and Human Technology of Agency of Industrial Science and Technology of Ministry of International Trade and Industry (postal code: 305, 1-3, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken, Japan) based on the Budapest Treaty.

Brevi.-ori was introduced into the prepared pCRDAPA to construct a plasmid carrying <u>dapA</u> autonomously replicable in coryneform bacteria. pHK4 was digested with restriction enzymes <u>KpnI</u> and <u>BamHI</u> (produced by Takara Shuzo), and cleaved ends were blunted. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated <u>SmaI</u> linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only <u>SmaI</u>. This plasmid was digested with <u>SmaI</u>, and the generated Brevi.-ori DNA fragment was ligated with pCRDAPA having been also digested with <u>SmaI</u> to prepare a plasmid carrying <u>dapA</u> autonomously replicable in coryneform bacteria. This plasmid was designated as pDPSB. The process of construction of pDPSB(KmI) is shown in Fig. 8.

(2) Determination of nucleotide sequence of dapA from Brevibacterium lactofermentum

Plasmid DNA was prepared from the AJ13106 strain harboring pCRDAPA, and its nucleotide sequence was determined in the same manner as described in Example 1. A determined nucleotide sequence and an amino acid sequence deduced from the nucleotide sequence are shown in SEQ ID NO: 23. Only the amino acid sequence is shown in SEQ ID NO: 24.

(4) Construction of Plasmid Carrying Both of Mutant lysC and dapA

35

A plasmid carrying mutant <u>lysC</u>, <u>dapA</u>, and replication origin of coryneform bacteria was constructed from the plasmid pCRDAPA carrying <u>dapA</u> and the plasmid p399AK9B carrying mutant <u>lysC</u> and Brevi.-ori. p399AK9B was completely digested with <u>Sal</u>I, and then it was blunt-ended. An <u>Eco</u>RI linker was ligated therewith to construct a plasmid in which the <u>Sal</u>I site was modified into an <u>Eco</u>RI site. The obtained plasmid was designated as p399AK9BSE. The mutant <u>lysC</u> and Brevi.-ori were excised as one fragment by partially digesting p399AK9BSE with <u>Eco</u>RI. This fragment was ligated with pCRDAPA having been digested with <u>Eco</u>RI. An obtained plasmid was designated as pCRCAB. This plasmid is autonomously replicable in <u>E. coli</u> and coryneform bacteria, and it gives kanamycin resistance to a host, the plasmid carrying both of mutant <u>lysC</u> and <u>dapA</u>. The process of construction of pCRCAB is shown in Fig. 9.

(5) Construction of Plasmid Carrying Both of Mutant lysC and dapB

A plasmid carrying mutant <u>lysC</u> and <u>dapB</u> was constructed from the plasmid p399AK9 carrying mutant <u>lysC</u> and the plasmid p399DPR carrying <u>dapB</u>. A fragment of 1,101 bp containing a structural gene of DDPR was extracted by digesting p399DPR with <u>Eco</u>RV and <u>SphI</u>. This fragment was ligated with p399AK9 having been digested with <u>SalI</u> and then blunt-ended and having been further digested with <u>SphI</u> to construct a plasmid carrying both of mutant <u>lysC</u> and <u>dapB</u>. This plasmid was designated as p399AKDDPR.

Next, Brevi.-ori was introduced into the obtained p399AKDDPR. The plasmid pHK4 containing Brevi.-ori was digested with a restriction enzyme Kpnl (produced by Takara Shuzo), and cleaved ends were blunted. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated BamHI linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only BamHI. This plasmid was digested with BamHI, and the generated Brevi.-ori DNA fragment was ligated with p399AKDDPR having been also digested with BamHI to construct a plasmid carrying mutant lysC and dapB autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pCB. The process of construc-

tion of pCB is shown in Fig. 10.

20

(6) Construction of Plasmid Carrying Both of dapA and dapB

The plasmid pCRDAPA carrying <u>dapA</u> was digested with <u>KpnI</u> and <u>EcoRI</u> to extract a DNA fragment containing <u>dapA</u> and the fragment was ligated with the vector plasmid pHSG399 having been digested with <u>KpnI</u> and <u>EcoRI</u>. An obtained plasmid was designated as p399DPS.

On the other hand, the plasmid pCRDAPB carrying <u>dapB</u> was digested with <u>SacII</u> and <u>EcoRI</u> to extract a DNA fragment of 2.0 kb containing a region coding for DDPR and the fragment was ligated with p399DPS having been digested with <u>SacII</u> and <u>EcoRI</u> to construct a plasmid carrying both of <u>dapA</u> and <u>dapB</u>. The obtained plasmid was designated as p399AB.

Next, Brevi.-ori was introduced into p399AB. pHK4 carrying Brevi.-ori was digested with a restriction enzyme BamHI (produced by Takara Shuzo), and cleaved ends were blunted. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated KpnI linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only KpnI. This plasmid was digested with KpnI, and the generated Brevi.-ori DNA fragment was ligated with p399AB having been also digested with KpnI to construct a plasmid carrying dapA and dapB autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pAB. The process of construction of pAB is shown in Fig. 11.

(7) Construction of Plasmid Carrying Mutant lysC, dapA, and dapB Together

p399DPS was digested with <u>Eco</u>RI and <u>Sph</u>I followed by blunt end formation to extract a <u>dapA</u> gene fragment. This fragment was ligated with the p399AK9 having been digested with <u>Sal</u>I and blunt-ended to construct a plasmid p399CA in which mutant <u>lysC</u> and <u>dapA</u> co-existed.

The plasmid pCRDAPB carrying <u>dapB</u> was digested with <u>Eco</u>RI and blunt-ended, followed by digestion with <u>SacI</u> to extract a DNA fragment of 2.0 kb comprising <u>dapB</u>. The plasmid p399CA carrying <u>dapA</u> and mutant <u>lysC</u> was digested with <u>SpeI</u> and blunt-ended, and was thereafter digested with <u>SacI</u> and ligated with the extracted <u>dapB</u> fragment to obtain a plasmid carrying mutant <u>lysC</u>, <u>dapA</u>, and <u>dapB</u>. This plasmid was designated as p399CAB.

Next, Brevi.-ori was introduced into p399CAB. The plasmid pHK4 carrying Brevi.-ori was digested with a restriction enzyme BamHI (produced by Takara Shuzo), and cleaved ends were blunted. Blunt end formation was performed by using DNA Blunting kit (produced by Takara Shuzo) in accordance with a designated method. After the blunt end formation, a phosphorylated KpnI linker (produced by Takara Shuzo) was ligated to make modification so that the DNA fragment corresponding to the Brevi.-ori portion might be excised from pHK4 by digestion with only KpnI. This plasmid was digested with KpnI, and the generated Brevi.-ori DNA fragment was ligated with p399CAB having been also digested with KpnI to construct a plasmid carrying mutant lysC, dapA, and dapB together autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pCAB. The process of construction of pCAB is shown in Fig. 12.

(8) Construction of Plasmid Carrying Mutant lysC, dapA, dapB, and lysA Together

The plasmid p299LYSA carrying <u>lysA</u> was digested with <u>Kon</u>I and <u>Bam</u>HI and blunt-ended, and then a <u>lysA</u> gene fragment was extracted. This fragment was ligated with pCAB having been digested with <u>HpaI</u> (produced by Takara Shuzo) and blunt-ended to construct a plasmid carrying mutant <u>lysC</u>, <u>dapA</u>, <u>dapB</u>, and <u>lysA</u> together autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pCABL. The process of construction of pCABL is shown in Fig. 13. It is noted that the <u>lysA</u> gene fragment is inserted into a <u>HpaI</u> site in a DNA fragment containing the <u>dapB</u> gene in pCABL, however, the <u>HpaI</u> site is located upstream from a promoter for the <u>dapB</u> gene (nucleotide numbers 611 to 616 in SEQ ID NO: 19), and the <u>dapB</u> gene is not divided.

(9) Construction of Plasmid Carrying Mutant lysC, dapA, dapB, ddh, and lysA Together

pHSG299 was digested with Xbal and Kpnl, and was ligated with p399DL carrying ddh and lysA having been digested with Xbal and Kpnl. A constructed plasmid was designated as p299DL p299DL was digested with Xbal and Kpnl and blunt-ended. After the blunt end formation, a DNA fragment carrying ddh and lysA was extracted. This DNA fragment was ligated with the plasmid pCAB carrying mutant lysC, dapA, and dapB together having been digested with Hpal and blunt-ended to construct a plasmid carrying mutant lysC, dapA, dapB, lysA and ddh together autonomously replicable in coryneform bacteria. The constructed plasmid was designated as pCABDL. The process of construction of pCABDL is shown in Fig. 14.

Example 5: Introduction of Plasmids Carrying Genes for L-Lysine Biosynthesis into L-Lysine-Producing Bacterium of Brevibacterium lactofermentum

The plasmids carrying the genes for L-lysine biosynthesis constructed as described above, namely pLYSAB(Cm¹), pPK4D(Cm¹), p399AK9B(Cm¹), pDPSB(Km¹), pDPRB(Cm¹), pCRCAB(Km¹), pAB(Cm¹), pDL(Cm²), pCB(Cm¹), pCB(Cm¹), pCB(Cm¹), pCB(Cm¹), pCB(Cm¹), pCABL(Cm¹), and pCABDL(Cm²) were introduced into an L-lysine-producing bacterium AJ11082 (NRRL B-11470) of Brevibacterium lactofermentum respectively. AJ11082 strain has a property of AEC resistance. The plasmids were introduced in accordance with an electric pulse method (Sugimoto et al., Japanese Patent Application Laidopen No. 2-207791). Transformants were selected based on drug resistance markers possessed by the respective plasmids. Transformants were selected on a complete medium containing 5 μg/ml of chloramphenicol when a plasmid carrying a chloramphenicol resistance gene was introduced, or transformants were selected on a complete medium containing 25 μg/ml of kanamycin when a plasmid carrying a kanamycin resistance gene was introduced.

Example 6: Production of L-Lysine

15

20

Each of the transformants obtained in Example 5 was cultivated in an L-lysine-producing medium to evaluate its L-lysine productivity. The L-lysine-producing medium had the following composition.

[L-Lysine-producing medium]

The following components other than calcium carbonate (per liter) were dissolved to make adjustment at pH 8.0 with KOH. The medium was sterilized at 115°C for 15 minutes, and calcium carbonate (50 g) having been separately sterilized in hot air in a dry state was added to the sterilized medium.

30

35

...

40	

Glucose	100 g
(NH ₄) ₂ SO ₄	55 g
KH ₂ PO₄	1 g
MgSO ₄ • 7H ₂ O	1 g
Biotin	500 μg
Thiamin	2000 μg
FeSO ₄ • 7H ₂ O	0.01 g
MnSO ₄ • 7H ₂ O	0.01 g
Nicotinamide	5 mg
Protein hydrolysate (Mamenou)	30 ml
Calcium carbonate	50 g

Each of the various types of the transformants and the parent strain was inoculated to the medium having the composition described above to perform cultivation at 31.5°C with reciprocating shaking. The amount of produced L-lysine after 40 or 72 hours of cultivation, and the growth after 72 hours (OD₅₆₂) are shown in Table 1. In the table, <u>lysC*</u> represents mutant <u>lysC</u>. The growth was quantitatively determined by measuring OD at 560 nm after 101-fold dilution.

50

Table 1

	Accumulation of L-Lysine after C	ultivation for 40	or 72 Hours	
Bacterial strain /plasmid	Introduced gene		oroduced L- e(g/L)	Growth (OD ₅₆₂ /101)
		after 40 hrs	after 72 hrs	
AJ11082		22.0	29.8	0.450
AJ11082/pLYSAB	<u>lysA</u>	19.8	32.5	0.356
AJ11082/pPK4D	<u>ddh</u>	19.0	33.4	0.330
AJ11082/p399AK9B	lysC*	16.8	34.5	0.398
AJ11082/pDPSB	<u>dapA</u>	18.7	33.8	0.410
AJ11082/pDPRB	dapB	19.9	29.9	0.445
AJ11082/pCRCAB	lysC*, dapA	19.7	36.5	0.360
AJ11082/pAB	dapA, dapB	19.0	34.8	0.390
AJ11082/pDL	lysA, ddh	23.3	31.6	0.440
AJ11082/pCB	lysC* dapB	23.3	35.0	0.440
AJ11082/pCAB	lysC*, dapA, dapB	23.0	45.0	0.425
AJ11082/pCABL	lysC* dapA dapB lysA	26.2	46.5	0.379
AJ11082/pCABDL	ivsC* dapA, dapB, lysA, ddh	26.5	47.0	0.409

30

As shown above, when <u>lysA</u>, <u>ddh</u>, mutant <u>lysC</u>, <u>dapA</u>, or <u>dapB</u> was enhanced singly, the amount of produced L-lysine after 72 hours of cultivation was larger than or equivalent to that produced by the parent strain, however, the amount of produced L-lysine after 40 hours of cultivation was smaller than that produced by the parent strain. Namely, the L-lysine-producing speed was lowered in cultivation for a short period. Similarly, when mutant <u>lysC</u> and <u>dapA</u>, or <u>dapA</u> and <u>dapB</u> were enhanced in combination, the amount of produced L-lysine after 72 hours of cultivation was larger than that produced by the parent strain, however, the amount of produced L-lysine after 40 hours of cultivation was smaller than that produced by the parent strain. Thus the L-lysine-producing speed was lowered.

On the other hand, when only <u>lysA</u> and <u>ddh</u> were enhanced in combination, the growth was improved, the L-lysine-producing speed was successfully restored in the short period of cultivation, and the accumulated amount of L-lysine was also improved in cultivation for a long period.

Also, in the case of the strain in which <u>dapB</u> was enhanced together with mutant <u>lysC</u>, and in the case of the strain in which <u>dapA</u> as well as these genes were simultaneously enhanced, the growth was improved and the L-lysine-producing speed was increased compared with the parent strain. In the case of the strain in which these three genes were simultaneously enhanced, both of the L-lysine-producing speed and the amount of accumulated L-lysine were further improved by further enhancing <u>lysA</u> and <u>ddh</u>.

50

SEQUENCE LISTING

5	(1) GENE	RAL INFORMATION:
	(i)	APPLICANT: AJINOMOTO CO., LTD.
	(ii)	TITLE OF INVENTION: METHOD OF PRODUCING L-LYSINE
	(iii)	NUMBER OF SEQUENCES: 24
10	(iv)	CORRESPONDENCE ADDRESS:
		(A) ADDRESSEE:
		(B) STREET:
15		(C) CITY:
		(E) COUNTRY:
		(F) ZIP:
	(v)	COMPUTER READABLE FORM:
20		(A) MEDIUM TYPE: Floppy disk
		(B) COMPUTER: IBM PC compatible
	•	(C) OPERATING SYSTEM: PC-DOS/MS-DOS
25	•	(D) SOFTWARE: PatentIn Release #1.0, Version #1.30
	(vi)	CURRENT APPLICATION DATA:
		(A) APPLICATION NUMBER:
•		(B) FILING DATE:
30		(C) CLASSIFICATION:
	(vii)	PRIOR APPLICATION DATA:
		(A) APPLICATION NUMBER: JP 8-142812
35		(B) FILING DATE: 05-JUN-1996
	(viii)	ATTORNEY/AGENT INFORMATION:
		(A) NAME:
40		(B) REGISTRATION NUMBER:
40	(ix)	TELECOMMUNICATION INFORMATION:
		(A) TELEPHONE:
		(B) TELEFAX:
45		
	• •	RMATION FOR SEQ ID NO: 1
	(i)	SEQUENCE CHARACTERISTICS:
50		(A) LENGTH: 23 base pairs
30		(B) TYPE: nucleic acid
		(C) STRANDEDNESS: single

55

	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
5	(A) DESCRIPTION: /desc="Synthetic DNA"	
	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
10	GTGGAGCCGA CCATTCCGCG AGG	23
	(2) INFORMATION FOR SEQ ID NO: 2	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 23 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc="Synthetic DNA"	
25	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	-
	CCAAAACCGC CCTCCACGGC GAA	23
30	(2) INFORMATION FOR SEQ ID NO: 3	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 3579 base pairs	
35	(B) TYPE: nucleic acid	
33	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
40	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Brevibacterium lactofermentum	
	(B) STRAIN: ATCC 13869	
45	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
	(B) LOCATION: 5332182	
50	(ix) FEATURE:	
50	(A) NAME/KEY: CDS	
	(B) LOCATION: 21883522	

	(xi)	SEQUEN	CE DESCRI	PTION: S	EQ ID NO	:3:				
	GTGGAGCC	CGA CCAT	CCGCG AC	GCTGCACT	GCAACGA	GGT · CGT	AGTTTTG	GTACA1	TGGCT	60
i	TCTGGCCA	GT TCAT	GGATTG GO	CTGCCGAAG	AAGCTAT	AGG CAT	CGCACCA	GGGCCA	ACCGA	120
	GTTACCGA	LAG ATGG	TGCCGT GO	CTTTTCGCC	TTGGGCA	GGG ACC	TTGACAA	AGCCCA	CGCT	180
	GATATCGC	CCA AGTG	AGGGAT CA	AGAATAGTG	CATGGGC	ACG TCG	ATGCTGC	CACATT	rgagc	240
0	GGAGGCAA	ATA TCTA	CCTGAG GT	rgggcattc	TTCCCAG	CGG ATG	TTTTCTT	GCGCTC	CTGC	300
	AGTGGGCA	ATT GATA	CCAAAA AC	GGGCTAAG	CGCAGTC	GAG GCG	GCAAGAA	CTGCTA	CTAC	360
	CCTTTTTA	ATT GTCG	AACGGG GG	CATTACGGC	TCCAAGG	ACG TTT	GTTTTCT	GGGTC	AGTTA	420
	CCCCAAAA	AAG CATA	TACAGA GA	ACCAATGAT	TTTTCAT	TAA AAA	GGCAGGG	ATTTG	ATATT	480
15	AGTATGG	STC GTAT	TCTGTG CO	GACGGGTGT	ACCTCGG	CTA GAA	TTTCTCC	CC ATO	3	535
								Me	t	
•		1							1	
20			CTC GCA							583
	Thr Pro		Leu Ala	Thr Leu		Glu Thr			Val	
		5		0.mom	10	00m 000	1			
~=			GAG CTC							631
25	LeuThr		Glu Leu		Ser Val	Leu Pro		n vai	vai	
	CTC CAC	20	CCT AAC	25	CAC CCC	CAT TAC	30	C 44C	A TT	679
			CGT AAC							019
3 0	35	AIG FIO	Arg Asn	40	nis Gly	45 45		I ven	116	
		CAG GTG	GCT AAA	_	GGT CAG			T TTG	CCT	727
			Ala Lys							
35	50	0111 101	55		01, 01	60		P 244	65	
		CTG GCA	GAG GCA		GCA GAT	GAC GCC	ATT GA	T TCT	GCT	775
			Glu Ala							
	_		70	•	75			80		
40	GAA ATT	GCT GGC	CCA GGC	TTT TTG	AAC ATT	CGC CTT	GCT GC	CA GCA	GCA	823
	Glu Ile	Ala Gly	Pro Gly	Phe Leu	Asn Ile	Arg Leu	ı Ala Al	a Ala	Ala	
		85	j		90		ç	95		
45	CAG GGT	GAA ATT	GTG GCC	AAG ATT	CTG GCA	CAG GGG	GAG AG	CT TTC	GGA	871
	Gln Gly	Glu Ile	e Val Ala	Lys Ile	Leu Ala	Gln Gly	/ Glu Ti	or Phe	Gly	
		100		105			110			
50	AAC TCC	GAT CAC	C CTT TCC	CAC TTG	GAC GTG	AAC CTO	GAG T	TC GTT	TCT	919
	Asn Ser	Asp His	s Leu Ser	· His Leu	Asp Val	Asn Le	ı Glu Pl	ne Val	Ser	
•	115			120		12!	5			

	GCA	AAC	CCA	ACC	GGA	ССТ	ATT	CAC	СТТ	GGC	GGA	ACC	CGC	TGG	GCT	GCC		967
	Ala	Asn	Pro	Thr	Gly	Pro	Ile	His	Leu	Gly	Gly	Thr	Arg	Trp	Ala	Ala		
5	130					135					140				•	145		
	GTG	GGT	GAC	TCT	TTG	GGT	CGT	GTG	CTG	GAG	GCT	TCC	GGC	GCG	AAA	GTG		1015
	Val	Gly	Asp	Ser	Leu	Gly	Arg	Val	Leu	Glu	Ala	Ser	Gly	Ala	Lys	Val		
10					150					155					160			
	ACC	CGC	GAA	TAC	TAC	TTC	AAC	GAT	CAC	GGT	CGC	CAG	ATC	GAT	CGT	TTC		1063
	Thr	Arg	Glu	Tyr	Tyr	Phe	Asn	Asp	His	Gly	Arg	Gln	Ile	Asp	Arg	Phe		
				165					170					175				
15	GCT	TTG	TCC	CTT	CTT	GCA	GCG	GCG	AAG	GGC	GAG	CCA	ACG	CCA	GAA	GAC		1111
	Ala	Leu	Ser	Leu	Leu	Ala	Ala	Ala	Lys	Gly	Glu	Pro	Thr	Pro	Glu	Asp		
			180					185					190					
20	GGT	TAT	GGC	GGC	GAA	TAC	ATT	AAG	GAA	ATT	GCG	GAG	GCA	ATC	GTC	GAA		1159
20	Gly	Tyr	Gly	Gly	Glu	Tyr	Ile	Lys	Glu	Ile	Ala	Glu	Ala	Ile	Val	Glu		
		195					200					205						
	AAG	CAT	CCT	GAA	GCG	TTG	GCT	TTG	GAG	CCT	GCC	GCA	ACC	CAG	GAG	CTT		1207
25	Lys	His	Pro	Glu	Ala	Leu	Ala	Leu	Glu	Pro	Ala	Ala	Thr	Gln	Glu	Leu		. •
	210					215					220					225		•
	TTC	CGC	GCT	GAA	GGC	GTG	GAG	ATG	ATG	TTC	GAG	CAC	ATC	AAA	TCT	TCC	•	1255
22	Phe	Arg	Ala	Glu	Gly	Val	Glu	Met	Met	Phe	Glu	His	Ile	Lys	Ser	Ser		
30					230					235					240			
	CTG	CAT	GAG	TTC	GGC	ACC	GAT	TTC	GAT	GTC	TAC	TAC	CAC	GAG	AAC	TCC		1303
	Leu	His	Glu	Phe	Gly	Thr	Asp	Phe	Asp	Val	Tyr	Tyr	His	Glu	Asn	Ser		
35				245					250					255				
	CTG	TTC	GAG	TCC	GGT	GCG	GTG	GAC	AAG	GCC	GTG	CAG	GTG	CTG	AAG	GAC		1351
	Leu	Phe	Glu	Ser	Gly	Ala	Val	Asp	Lys	Ala	Val	Gln	Val	Leu	Lys	Asp		
			260					265					270					
40	AAC	GGC	AAC	CTG	TAC	GAA	AAC	GAG	GGC	GCT	TGG	TGG	CTG	CGT	TCC	ACC		1399
	Asn	Gly	Asn	Leu	Tyr	Glu	Asn	Glu	Gly	Ala	Trp	Trp	Leu	Arg	Ser	Thr		
		275					280					285						
45	GAA	TTC	GGC	GAT	GAC	AAA	GAC	CGC	GTG	GTG	ATC	AAG	TCT	GAC	GGC	GAC		1447
	Glu	Phe	Gly	Asp	Asp	Lys	Asp	Arg	Val	Val	Ile	Lys	Ser	Asp	Gly	Asp		
	290					295					300	•				305		
	GCA	GCC	TAC	ATC	GCT	GGC	GAT	ATC	GCG	TAC	GTG	GCT	GAT	AAG	TTC	TCC	{	1495
50	Ala	Ala	Tyr	Ile	Ala	Gly	Asp	Ile	Ala	Tyr	Val	Ala	Asp	Lys	Phe	Ser		
					310					315					320			

	CGC	GGA	CAC	AAC	СТА	AAC	ATC	TAC	ATG	TTG	GGT	GCT	GAC	CAC	CAT	GGT	1543
	Arg	Gly	His	Asn	Leu	Asn	Ile	Tyr	Met	Leu	Gly	Ala	Asp	His	His	Gly	
5				325					330					335			
	TAC	ATC	GCG	CGC	CTG	AAG	GCA	GCG	GCG	GCG	GCA	CTT	GGC	TAC	AAG	CCA	1591
	Tyr	Ile	Ala	Arg	Leu	Lys	Ala	Ala	Ala	Ala	Ala	Leu	Gly	Tyr	Lys	Pro	
10			340					345					350				
												AAC					1639
	Glu	_	Val	Glu	Val	Leu		Gly	Gln	Met	Val	Asn	Leu	Leu	Arg	Asp	
		355					360					365					
15												ACC					1687
	-	Lys	Ala	Val	Arg		Ser	Lys	Arg	Ala		Thr	Val	Val	Thr		
	370		oma	0.00		375	100	000	400	O 4 T	380	000	00T	T. C	T00	385	1705
20												GCG					1735
	Asp	Asp	Leu	Val		Ala	He	GIY	116		Ala	Ala	Arg	ıyr		Leu	
	A TC	CCT	ፕሮር	ጥርር	390	CAT	ፐርፕ	ፐርር	CTC	395	ልተር	GAT	ርፐር	ccc	400	TCC	1783
25																	1103
25	116	VI R	Ser	405	Val	vəh	Set	261	410	vsh	116	Asp	Leu	415	Leu	Пр	
	GAA	TCC	CAG		TCC	GAC	AAC	CCT		TAC	TAC	GTG	CAG		GGA	CAC	1831
												Val					1001
30	O1u	001	420		001	·····	11011	425		.,_	-,-		430	•,-	U 1,		
	GCT	CGT			TCC	ATC	GCG		AAG	GCA	GAG	ACC		GGT	GTC	ACC	1879
												Thr					
35		435		•			440		-			445					
•	GAG	GAA	GGC	GCA	GAC	CTA	TCT	CTA	CTG	ACC	CAC	GAC	CGC	GAA	GGC	GAT	1927
	Glu	Glu	Gly	Ala	Asp	Leu	Ser	Leu	Leu	Thr	His	Asp	Arg	Glu	G1 y	Asp	
40	450					455					460					465	
40	CTC	ATC	CGC	ACA	CTC	GGA	GAG	TTC	CCA	GCA	GTG	GTG	AAG	GCT	GCC	GCT	1975
	Leu	Ile	Arg	Thr	Leu	Gly	Glu	Phe	Pro	Ala	Val	Val	Lys	Ala	Ala	Ala	
					470					475					480		
45	GAC	CTA	CGT	GAA	CCA	CAC	CGC	TTA	GCC	CGC	TAT	GCT	GAG	GAA	TTA	GCT	2023
	Asp	Leu	ı Arg	Glu	Pro	His	Arg	Ile	Ala	Arg	Tyr	Ala	Glu	Glu	Leu	Ala	
				485	;				490)				495			
50	GGA	ACT	TTC	CAC	CGC	TTC	TAC	GAT	TCC	TGC	CAC	ATC	CTT	CCA	AAG	GTT	2071
••	Gly	Thr	Phe	His	Arg	Phe	Tyr	Asp	Ser	Cys	His	Ile	Leu	Pro	Lys	: Val	
			500)			-	505	i				510				

	GAT	GAG	GAT	ACG	GCA	CCA	ATC	CAC	ACA	GCA	CGT	CTG	GCA	CTT	GCA	GCA	2119
	Asp	Glu	Asp	Thr	Ala	Pro	Ile	His	Thr	Ala	Arg	Leu	Ala	Leu	Ala	Ala	
5		515					520					525					
	GCA	ACC	CGC	CAG	ACC	CTC	GCT	AAC	GCC	CTG	CAC	CTG	GTT	GGC	GTT	TCC	2167
	Ala	Thr	Arg	Gln	Thr	Leu	Ala	Asn	Ala	Leu	His	Leu	Val	Gly	Val	Ser	
10	530					535					540					545	
	GCA	CCG	GAG	AAG	ATG	TAAC	CA AT	rg go	T AC	CA G	ΓT G	AA AA	AT T	C A	AT GA	\ A	2214
	Ala	Pro	Glu	Lys	Met		Me	et Al	la Th	nr Va	al G	lu As	sn Pl	ne As	sn G	lu	
					550			1				5					•
15	CTT	CCC	GCA	CAC	GTA	TGG	CCA	CGC	AAT	GCC	GTG	CGC	CAA	GAA	GAC	GGC	2262
	Leu	Pro	Ala	His	Val	Trp	Pro	Arg	Asn	Ala	Val	Arg	Gln	Glu	Asp	Gly	
	10					15					20					25	
20		GTC															2310
	Val	Val	Thr	Val		Gly	Val	Pro	Leu	Pro	Asp	Leu	Ala	Glu	Glu	Tyr	
					30					35					40		
		ACC															2358
25	Gly	Thr	Pro		Phe	Val	Val	Asp	Glu	Asp	Asp	Phe	Arg	Ser	Arg	Cys	
				45					50					55			
		GAC															2406
30	Arg	Asp		Ala	Thr	Ala	Phe		Gly	Pro	Gly	Asn		His	Tyr	Ala	
	TOT.		60		070			65					70		.	a'. a	
		AAA															2454
	Ser	Lys	Ala	Phe	Leu	Thr		Thr	He	Ala	Arg		Val	Asp	Glu	Glu	
35	000	75	001	070	010	4 TT	80	T 00	450			85	000	4 555			
		CTG															2502
		Leu	ита	Leu	Asp		Ala	5er	116	Asn		Leu	GIÀ	He	Ala		
40	90	ССТ	CCT	ተ ተረ	ccc	95	ACC	ССТ	170	100	100	CAC	ccc	440	440	105	0550
		GCT															2550
	мта	Ala	GIY	rne		AIA	2er	Arg	116		AIA	nis	GIY	Asn		Lys	
	CCC	GTA	CAC	TTC	110	ccc	ccc	T TC	СТТ	115	440	ССТ	CTC	CCA	120	СТС	2500
45																	2598
	Gly	Val	GIU		Leu	Mrg	міа	Leu		GIN	ASII	GIA	vai			vai	
	ርፐር	ርፕር	CAC	125	CC4	CAC	CAA	○ T4	130	ርፕሮ	ፐፐሶ	CAT	TAC	135		ССТ	0640
50		CTG															2646
	val	Leu		ser	чта	GIN	GIÜ		GIU	Leu	reu	кѕр	-	val	Ala	нта	
			140					145					150				

	GGT	GAA	GGC	AAG	ATT	CAG	GAC	GTG	ŢŢĞ	ATC	CGC	GTA	AAG	CCA	GGC	ATC	2694
	Gly	Glu	Gly	Lys	Ile	Gln	Asp	Val	Leu	Ile	Arg	Val	Lys	Pro	Gly	Ile	
5		155					160					165					
												CAC					2742
	Glu	Ala	His	Thr	His	Glu	Phe	He	Ala	Thr	Ser	His	Glu	Asp	Gln	Lys	
10	170					175					180					185	
10	TTC	GGA	TTC	TCC	CTG	GCA	TCC	GGT	TCC	GCA	TTC	GAA	GCA	GCA	AAA	GCC	2790
	Phe	Gly	Phe	Ser	Leu	Ala	Ser	Gly	Ser	Ala	Phe	Glu	Ala	Ala	Lys	Ala	
				•	190					195					200		
15	GCC	AAC	AAC	GCA	GAA	AAC	CTG	AAC	CTG	GTT	GGC	CTG	CAC	TGC	CAC	GTT	2838
	Ala	Asn	Asn	Ala	Glu	Asn	Leu	Asn	Leu	Val	Gly	Leu	His	Cys	His	Val	
				205					210					215			
	GGT	TCC	CAG	GTG	TTC	GAC	GCC	GAA	GGC	TTC	AAG	CTG	GCA	GCA	GAA	CGC	2886
20	Gly	Ser	Gln	Val	Phe	Asp	Ala	Glu	Gly	Phe	Lys	Leu	Ala	Ala	Glu	Arg	
			220					225					230				
											-	CTG					2934
25	Val	Leu	Gly	Leu	Tyr	Ser	Gln	Ile	His	Ser	Glu	Leu	Gly	Val	Ala	Leu	
		235					240					245					•
	CCT	GAA	CTG	GAT	CTC	GGT	GGC	GGA	TAC	GGC	ATT	GCC	TAT	ACC	GCA	GCT	2982
	Pro	Glu	Leu	Asp	Leu	Gly	Gly	Gly	Tyr	Gly	Ile	Ala	Tyr	Thr	Ala	Ala	
30	250					255					260					265	
	GAA	GAA	CCA	CTC	AAC	GTC	GCA	GAA	GTT	GCC	TCC	GAC	CTG	CTC	ACC	GCA	3030
	Glu	Glu	Pro	Leu	Asn	Val	Ala	Glu	Val	Ala	Ser	Asp	Leu	Leu	Thr	Ala	
35					270					275					280		
												GCA					3078
	Val	Gly	Lys	Met	Ala	Ala	Glu	Leu	Gly	Ile	Asp	Ala	Pro	Thr	Val	Leu	•
				285					290					295			
40												ACC					3126
	Va]	Glu	Pro	Gly	Arg	Ala	He	Ala	Gly	Pro	Ser	Thr			Ile	Tyr	
			300					305					310				
45																CGC	3174
	Glu	ı Val	Gly	Thr	Thr	Lys	Asp	Val	His	Val	Asp	Asp	Asp	Lys	Thr	Arg	
		315	5				320)			٠	325					
																GCA	3222
50	Arg	g Tyr	· Ile	e Ala	Val	Asp	Gly	/ Gly	Met	Ser	Ast	Asn	Ile	Arg	Pro	Ala	
	330)				335	;				340)				345	

	CTC	TAC	GGC	TCC	GAA	TAC	GAC	GCC	CGC	GTA	GTA	TCC	CGC	TTC	GCC	GAA.	3270
	Leu	Tyr	Gly	Ser	Glu	Tyr	Asp	Ala	Arg	Val	Val	Ser	Arg	Phe	Ala	Glu	
5					350					355					360		
	GGA	GAC	CCA	GTA	AGC	ACC-	CGC	ATC	GTG	GGC	TCC	CAC	TGC	GAA	TCC	GGC	3318
	Gly	Asp	Pro	Val	Ser	Thr	Arg	Ile	Val	Gly	Ser	His	Cys	Glu	Ser	Gly	
10				365					370					375			
	GAT	ATC	CTG	ATC	AAC	GAT	GAA	ATC	TAC	CCA	TCT	GAC	ATC	ACC	AGC	GGC	3366
	Asp	Ile	Leu	Ile	Asn	Asp	Glu	Ile	Tyr	Pro	Ser	Asp	Ile	Thr	Ser	Gly	
			380					385					390				
15	GAC	TTC	CTT	GCA	CTC	GCA	GCC	ACC	GGC	GCA	TAC	TGC	TAC	GCC	ATG	AGC	3414
	Asp	Phe	Leu	Ala	Leu	Ala	Ala	Thr	Gly	Ala	Tyr	Cys	Tyr	Ala	Met	Ser	
		395					400					405					
20	TCC	CGC	TAC	AAC	GCC	TTC	ACA	CGG	CCC	GCC	GTC	GTG	TCC	GTC	CGC	GCT	3462
	Ser	Arg	Tyr	Asn	Ala	Phe	Thr	Arg	Pro	Ala	Val	Val	Ser	Val	Arg	Ala	
	410					415					420					425	
	GGC	AGC	TCC	CGC	CTC	ATG	CTG	CGC	CGC	GAA	ACG	CTC	GAC	GAC	ATC	CTC	3510
25	Gly	Ser	Ser	Arg	Leu	Met	Leu	Arg	Arg	Glü	Thr	Leu	Asp	Asp	Ile	Leu	
					430					435					440		•
	TCA	CTA	GAG	GCA	TAAC	CGCT	ITT (CGAC	GCCT	GA CO	CCCG	CCCT	CA(CTT	CGCC		3562
30	Ser	Leu	Glu	Ala													
				445													
	GTG(GAGG	GCG (GTTT	TGG												3579
35	(2)	INF	ORMAT	NOI	FOR	SEQ	ID I	۷0: ،	1								
	• •		SEC														
			_				50 aı			ds							
40							no a										
•			(I)) T(OPOLO	OGY:	line	ear									
		(ii)	MOI	LECUI	LE TY	YPE:	pro	tein									
			SEC						SEQ	ID N):4:						
45	Met											Glu	Thr	Ala	Val	Glu	
	1				5					10	-				15		
	Val	Leu	Thr	Ser	Arg	Glu	Leu	Asp	Thr	Ser	Val	Leu	Pro	Glu		Val	
50				20	_			•	25					30			
	Val	Val	Glu			Arg	Asn	Pro		His	Glv	Asp	Tyr	Ala	Thr	Asn	
		•	35	•		J		40			Í	- •	45				

	Ile	Ala 50	Leu	Gln	Val	Ala	Lys 55	Lys	Val	Gly	Gln	Asn 60	Pro	Arg	Asp	Leu
	Ala 65		Trp	Leu	Ala	Glu 70	Ala	Leu	Ala	Ala	Asp 75	Asp	Ala	Ile	Asp	Ser 80
		Glu	lle	Ala	Gly 85	Pro	Gly	Phe	Leu	Asn 90	Ile	Arg	Leu	Ala	Ala 95	Ala
o	Ala	Gln	Gly	Glu 100		Val	Ala	Lys	Ile 105	Leu	Ala	G1n	Gly	Glu 110	Thr	Phe
5	Gly	Asn	Ser 115	Asp	His	Leu	Ser	His 120	Leu	Asp	Val	Asn	Leu 125	Glu	Phe	Val
	Ser	Ala 130	Asn	Pro	Thr	Gly	Pro 135	Ile	His	Leu	Gly	Gly 140	Thr	Arg	Trp	Ala
20	Ala 145	Val	Gly	Asp	Ser	Leu 150	Gly	Arg	Val	Leu	Glu 155	Ala	Ser	Gly	Ala	Lys 160
	Val	Thr	Arg	Glu	Tyr 165	Tyr	Phe	Asn	Asp	His 170	Gly	Arg	Gln	Ile	Asp 175	Arg
25	Phe	Ala	Leu	Ser 180	Leu	Leu	Ala	Ala	Ala 185	Lys	Gly	Glu	Pro	Thr 190	Pro	Glu
	Asp	Gly	Tyr 195	Gly	Gly	Glu	Tyr	Ile 200	Lys	Glu	Ile	Ala	Glu 205		Ile	Val
30	Glu	Lys 210	His	Pro	Glu	Ala	Leu 215	Ala	Leu	Glu	Pro	Ala 220		Thr	Gln	Glu
35	Leu 225	Phe	Arg	Ala	Glu	Gly 230	Val	Glu	Met	Met	Phe 235		His	Ile	Lys	Ser 240
	Ser	Leu	His	Glu	Phe 245		Thr	Asp	Phe	Asp 250	Val	Tyr	Tyr	His	Glu 255	
40	Ser	Leu	Phe	Glu 260	Ser	Gly	Ala	Val	Asp 265		Ala	Val	Gln	Val 270		Lys
	Asp	Asn	Gly 275		Leu	Tyr	Glu	Asn 280		G1y	Ala	Trp	7rp 285		Arg	Ser
45	Thr	Glu 290		Gly	Asp	Asp	Lys 295		Arg	Val	Val	300		Ser	Asp	Gly
	Asp 305		Ala	Tyr	Ile	Ala 310		Asp	Ile	Ala	Tyr 315		Ala	Asp	Lys	Phe 320
50	Ser	Arg	Gly	His	Asn 325		ı Asr	Ile	Tyr	Met 330		Gly	/ Ala	Asp	His 335	His

	Gly	Tyr	Ile		Arg	Leu	Lys	Ala		Ala	Ala	Ala	Leu	Gly	Tyr	Lys
5				340					345					350		
5	Pro	Glu	Gly 355	Val	Glu	Val	Leu	Ile 360	Gly	Gln	Met	Val	Asn 365	Leu	Leu	Arg
10	Asp	Gly 370	Lys	Ala	Val	Arg	Met 375	Ser	Lys	Arg	Ala	Gly 380	Thr	Val	Val	Thr
	Leu 385	Asp	Asp	Leu	Val	Glu 390	Ala	Ile	Gly	Ile	Asp 395	Ala	Ala	Arg	Tyr	Ser 400
15	Leu	Ile	Arg	Ser.	Ser 405	Val	Asp	Ser	Ser	Leu 410	Asp	Ile	Asp	Leu	Gly 415	
	Trp	Glu	Ser	Gln 420	Ser	Ser	Asp	Asn	Pro 425	Val	Tyr	Tyr	Val	G1n 430	Tyr	G1y
20	His	Ala	Arg 435	Leu	Cys	Ser	Ile	Ala 440	Arg	Lys	Ala	Glu	Thr 445	Leu	Gly	Val
	Thr	Glu 450	Glu	Gly	Ala	Asp	Leu 455	Ser	Leu	Leu	Thr	His 460	Asp ,	Arg	Glu	Gly
25	Asp 465	Leu	Ile	Arg	Thr	Leu 470	Gly	Glu	Phe	Pro	Ala 475	Val	Val	Lys	Ala	Ala 480
<i>30</i>	Ala	Asp	Leu	Arg	Glu 485	Pro	His	Arg	Ile	Ala 490	Arg	Tyr	Ala	Glu	Glu 495	Leu
	Ala	Gly	Thr	Phe 500	His	Arg	Phe	Tyr	Asp 505	Ser	Cys	His	Ile	Leu 510	Pro	Lys
35	Val	Asp	Glu 515	Asp	Thr	Ala	Pro	Ile 520	His	Thr	Ala	Arg	Leu 525	Ala	Leu	Ala
	Ala	Ala 530	Thr	Arg	G1n	Thr	Leu 535	Ala	Asn	Ala	Leu	His 540	Leu	Val	Gly	Val
40	Ser 545	Ala	Pro	Glu	Lys	Met 550										٠
45	(2)	INFO		rion Quenc												
		(1)	(/	A) LE B) TY	ENGTI	1: 44	15 ar	nino		ds				٠		
50		(j i)	(1	D) T(LECUI	OPOLO	GY:	line	ear				•				
		122/					220	111								

		(xi)	SEC	UENC	E DE	SCRI	PTIC	N: S	EQ 1	D NC	:5:					
	Met	Ala	Thr	Val	Glu	Asn	Phe	Asn	Glu	Leu	Pro	Ala	His	Val	Trp	Pro
5	1				5					10					15	
	Arg	Asn	Ala	Val	Arg	Gln	Glu	Asp	Gly	Val	Val	Thr	Val	Ala	Gly	Val
				20					25					30		
10	Pro	Leu		Asp	Leu	Ala	Glu		Tyr	Gly	Thr	Pro		Phe	Val	Val
			35					40					45			
	Asp		Asp	Asp	Phe	Arg		Arg	Cys	Arg	Asp		Ala	Thr	Ala	Phe
15		50				., 1		~	4.1			60	DI.			
15		Gly	Pro	Gly	Asn		HIS	lyr	Ala	Ser		Ala	Phe	Leu	lhr	
	65	T1.	41-	A	Т	70 V-1	A	C1	C1	C1	75	41_	1	۸	T1.	80
	ınr	116	ита	Arg	85	vai	ASP	GIU	GIU	Gly 90	Leu	итя	Leu	ASP		мта
20	Sar	Tle	Asn	Glu		Glv	Τlο	41a	Len	Ala	Ala	G1v	Pho	Pro	95 41a	Sar
	001	110	11011	100	Dou	OI,	110	MIG	105	1110	****	01 ,	1 110	110	MIG	501
	Arg	Ile	Thr		His	Gly	Asn	Asn		Gly	Val	Glu	Phe		Arg	Ala
25	•;=-0		115			,		120	_,_				125			
	Leu	Val		Asn	Gly	Val	Gly		Val	Val	Leu	Asp		Ala	Gln	Glu
		130					135					140				
30	Leu	Glu	Leu	Leu	Asp	Tyr	Val	Ala	Ala	Gly	Glu	Gly	Lys	Ile	Gln	Asp
	145					150					155					160
	Val	Leu	Ile	Arg	Val	Lys	Pro	Gly	Ile	Glu	Ala	His	Thr	His	Glu	Phe
					165					170					175	
35	Ile	Ala	Thr	Ser	His	Glu	Asp	Gln	Lys	Phe	Gly	Phe	Ser	Leu	Ala	Ser
				180					185					190		
	G1y	Ser		Phe	Glu	Ala	Ala			Ala	Asn	Asn			Asn	Leu
40		_	195					200			_		205			
	Asn			Gly	Leu	His			Val	Gly	Ser		Val	Phe	Asp	Ala
	01	210			,	4.1	215		.	17.3	1	220	,	т	C	C1
45			Pne	Lys	Leu			GIU	Arg	vai			Leu	ıyr	26L	Gln
	225		C	C1	1	230		41.	1	Dwa	235		۸	1	C1	240
	116	nis	ser	GIU			val	ита	Leu	250		Leu	nsp	Leu	255	Gly
50	G1 _v	Tur	G1 _v	Ila	245		Th⊷	. Ala	Δ1~			Pro	الم أ	Aen		Ala
	OLY	1,11	O1 y	260		1 7 1	1111		265		O Tu	110	LCu	270		MIG

	Glu	Val	Ala 275	Ser	Asp	Leu	Leu	Thr 280	Ala	Val	Gly	Lys	Met 285	Ala	Ala	Glu	
5	Leu	Gly 290	Ile	Asp	Ala	Pro	Thr 295	Val	Leu	Val	Glu	Pro 300	Gly	Arg	Ala	Ile	
10 .	Ala 305	Gly	Pro	Ser	Thr	Val 310	Thr	Ile	Tyr	Glu	Val 315	Gly	Thr	Thr	Lys	Asp 320	
	Val	His	Val	Asp	Asp 325	Asp	Lys	Thr	Arg	Arg 330	Tyr	Ile	Ala	Val	Asp 335	Gly	
15	Gly	Met	Ser	Asp 340	Asn	Ile	Arg	Pro	Ala 345	Leu	Tyr	Gly	Ser	Glu 350	Tyr	Asp .	
	Ala	Arg	Val 355	Val	Ser	Arg	Phe	Ala 360	Glu	Gly	Asp	Pro	Val 365	Ser	Thr	Arg	
20	Ile	Val 370	Gly	Ser	His	Cys	Glu 375	Ser	Gly	Asp	Ile	Leu 380	Ile	Asn	Asp	Glu	
25	Ile 385	Tyr	Pro	Ser	Asp	Ile 390	Thr	Ser	Gly	Asp	Phe 395	Leu	Ala	Leu	Ala	Ala 400	
	Thr	Gly	Ala	Tyr	Cys 405	Tyr	Ala	Met	Ser	Ser 410	Arg	Tyr	Asn	Ala	Phe 415	Thr	
30	Arg	Pro	Ala	Val 420	Val	Ser	Val	Arg	Ala 425	Gly	Ser	Ser	Arg	Leu 430	Met	Leu	
	Arg	Arg	Glu 435	Thr	Leu	Asp	Asp	Ile 440	Leu	Ser	Leu	Glu	Ala 445				
35	(2)	INFO	ORMA?	rion	FOR	SEQ	ID 1	10: f	ŝ								
40		(i)	(I	A) LI B) T	ENGTI (PE:	1: 20 nuc) bas leic	se pa acio	airs 1								
45			(I) T(rani Opolo	OGY:	line	ear									
45	(1	A) DI	MOI ESCR	IPT I): NC	/desc											
		•	AN				IDTI	731. 4	SEO S	יוג מז	· · · ·						
50	CATO		SEC STA 1				TL 1 T(יאור (o cų .	א עו	.0.						20

	(2) INFORMATION FOR SEQ ID NO: 7.	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 20 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
10	(D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc="Synthetic DNA"	
	(iv) ANTI-SENSE: YES	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	TGCCCCTCGA GCTAAATTAG	20
	(2) INFORMATION FOR SEQ ID NO: 8	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1034 base pairs	
	(B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
30	(A) ORGANISM: Brevibacterium lactofermentum	
	(B) STRAIN: ATCC 13869	
	(ix) FEATURE:	
35	(A) NAME/KEY: CDS	
	(B) LOCATION: 611020	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
40	ATGCATCTCG GTAAGCTCGA CCAGGACAGT GCCACCACAA TTTTGGAGGA TTACAAGAAC	60
40	ATG ACC AAC ATC CGC GTA GCT ATC GTG GGC TAC GGA AAC CTG GGA CGC	108
	Met Thr Asn Ile Arg Val Ala Ile Val Gly Tyr Gly Asn Leu Gly Arg	
	1 5 10 15	
45	AGC GTC GAA AAG CTT ATT GCC AAG CAG CCC GAC ATG GAC CTT GTA GGA	156
	Ser Val Glu Lys Leu Ile Ala Lys Gln Pro Asp Met Asp Leu Val Gly	
	20 25 30	
50	ATC TTC TCG CGC CGG GCC ACC CTC GAC ACA AAG ACG CCA GTC TTT GAT	204
50	Ile Phe Ser Arg Arg Ala Thr Leu Asp Thr Lys Thr Pro Val Phe Asp	
	35 40 45	

	GTC	GCC	GAC	GTG	GAC	AAG	CAC	GCC	GAC	GAC	GTG	GAC	GTG	CTG	TTC	CTG	252
	Val	Ala	Asp	Val	Asp	Lys	His	Ala	Asp	Asp	Val	Asp	Val	Leu	Phe	Leu	
5		50					55					60					
	TGC	ATG	GGC	TCC	GCC	ACC	GAC	ATC	CCT	GAG	CAG	GCA	CCA	AAG	TTC	GCG	300
	Cys	Met	Gly	Ser	Ala	Thr	Asp	Ile	Pro	Glu	Gln	Ala	Pro	Lys	Phe	Ala	
10	65					70					75					80	
,,	CAG	TTC	GCC	TGC	ACC	GTA	GAC	ACC	TAC	GAC	AAC	CAC	CGC	GAC	ATC	CCA	348
•	Gln	Phe	Ala	Cys	Thr	Val	Asp	Thr	Tyr	Asp	Asn	His	Arg	Asp	Ile	Pro	
					85					90					95		
15	CGC	CAC	CGC	CAG	GTC	ATG	AAC	GAA	GCC	GCC	ACC	GCA	GCC	GGC	AAC	GTT	396
	Arg	His	Arg	Gln	Val	Met	Asn	Glu	Ala	Ala	Thr	Ala	Ala	Gly	Asn	Val	
				100					105				,	110			
20	GCA	CTG	GTC	TCT	ACC	GGC	TGG	GAT	CCA	GGA	ATG	TTC	TCC	ATC	AAC	CGC	444
20	Ala	Leu	Val	Ser	Thr	Gly	Trp	Asp	Pro	Gly	Met	Phe	Ser	Ile	Asn	Arg	
			115					120					125				
	GTC	TAC	GCA	GCG	GCA	GTC	TTA	GCC	GAG	CAC	CAG	CAG	CAC	ACC	TTC	TGG	492
25	Val	Tyr	Ala	Ala	Ala	Val	Leu	Ala	Glu	His	Gln	Gln	His	Thr	Phe	Trp	
		130					135					140					•
		CCA															540
	Gly	Pro	Gly	Leu	Ser	Gln	Gly	His	Ser	Asp	Ala	Leu	Arg	Arg	Ile	Pro	•
30	145					150					155					160	
		GTT															588
	Gly	Val	Gln	Lys	Ala	Val	Gln	Tyr	Thr	Leu	Pro	Ser	Glu	Asp	Ala	Leu	
35					165					170					175		
		AAG															636
	Glu	Lys	Ala	Arg	Arg	Gly	Glu	Ala	Gly	Asp	Leu	Thr	Gly	Lys	Gln	Thr	
				180					185					190			
40		AAG															684
	His	Lys		Gln	Cys	Phe	Val		Ala	Asp	Ala	Ala	Asp	His	Glu	Arg	
			195					200					205				
45		GAA															732
	Ile	Glu	Asn	Asp	Ile	Arg	Thr	Met	Pro	Asp	Tyr		Val	Gly	Tyr	Glu	
		210					215					220					
		GAA									•				•		780
50		Glu	Val	Asn	Phe	Ile	Asp	Glu	Ala	Thr	Phe	Asp	Ser	Glu	His	Thr	
	225					230					235					240	

	GGC	ATG	CCA	CAC	GGT	GGC	CAC	GTG	ATT	ACC	ACC	GGC	GAC	ACC	GGT	GGC	828
	Gly	Met	Pro	His	Gly	Gly	His	Val	Ile	Thr	Thr	Gly	Asp	Thr	Gly	Gly	
5					245					250					255	•	
	TTC	AAC	CAC	ACC	GTG	GAA	TAC	ATC	CTC	AAG	CTG	GAC	CGA	AAC	CCA	GAT	876
	Phe	Asn	His	Thr	Val	Glu	Tyr	Ile	Leu	Lys	Leu	Asp	Arg	Asn	Pro	Asp	
10				260					265					270	•		
	TTC	ACC	GCT	TCC	TCA	CAG	ATC	GCT	TTC	GGT	CGC	GCA	GCT	CAC	CGC	ATG	924
	Phe	Thr	Ala	Ser	Ser	Gln	Ile	Ala	Phe	Gly	Arg	Ala	Ala	His	Arg	Met	
			275					280					285				-
15				GGC													972
	Lys	Gln	Gln	Gly	Gln	Ser	Gly	Ala	Phe	Thr	Val	Leu	Glu	Val	Ala	Pro	
		290					295					300					
20				TCC													1020
	Tyr	Leu	Leu	Ser	Pro		Asn	Leu	Asp	Asp		Ile	Ala	Arg	Asp		
	305					310					315					320	
	TAA	TTTA	GCT (CGAG													1034
25	4-5								_								
	(2)			TION													
		(i,		QUEN													
30				A) Li					acı	ds					٠		
		•		B) T													
		1::		D) TO													
				LECU! QUEN			-		CEV	TD N	1·0·						
35	Vot			Ile								G1 v	Aen	الم أ	Glv	Ara	
	met 1		VOII	116	лг g	Vai	nia	116	Val	10	1 9 1	GLY	ASII	Leu	15		
			Glu	Lys		ماآ	Δla	Ive	Gln		Asn	Met	Asn	Leu			
40	Jei	141	GIU	20	Leu	116	MIG	Lys	25	110	пор	inc c	пор	30		01)	
	ماآ	Phe	Ser	Arg	Aro	Ala	Thr	Leu		Thr	Lvs	Thr	Pro			Asp	
	110	1110	35	_	*** 6	*****		40		••••	2,0		45				
	Val	Ala		Val	Asp	l.vs	His			Asp	Val	Asn			ı Phe	Leu	
45		50				-,-	55					60					
	Cvs			Ser	Ala	Thr			Pro	Glu	Gln			Lvs	: Phe	Ala	
	65			501		70					75			_,		80	
50			Ala	Cvs	Thr			Thr	Tvr	Asn			Arg	Asn	Ile	Pro	
				,-	85				- , -	90			0		95		

	Arg	His	Arg	Gln 100	Val	Met	Asn	Glu	Ala 105	Ala	Thr	Ala	Ala	Gly 110	Asn	Val
5	Ala	Leu	Val		Thr	Glv	Trp	Asn		Glv	Met	Phe	Sr		Ásn	Ara
			115			,		120		J 1,			125	110	non	vr 8
	Val	Tyr		Ala	Ala	Val	Leu			His	Gln	Gln		Thr	Phe	Trn
		130					135					140		• • • • •		
10	Gly	Pro	Gly	Leu	Ser	Gln	Gly	His	Ser	Asp	Ala		Arg	Arg	Ile	Pro
	145					150					155			Ĭ		160
	Gly	Val	G1n	Lys	Ala	Val	Gln	Tyr	Thr	Leu	Pro	Ser	Glu	Asp	Ala	Leu
15					165					170	•				175	
	Glu	Lys	Ala	Arg	Arg	Gly	Glu	Ala	Gly	Asp	Leu	Thr	Gly	Lys	Gln	Thr
				180					185					190		
20	His	Lys	Arg	Gln	Cys	Phe	Val	Val	Ala	Asp	Ala	Ala	Asp	His	Glu	Arg
			195					200					205			
	Ile	Glu	Asn	Asp	Ile	Arg		Met	Pro	Asp	Tyr		Val	G1y	Tyr	Glu
	v 1	210	1, 1		D1		215					220	_			
25		Glu	Val	Asn	Phe		Asp	Glu	Ala	Thr		Asp	Ser	Glu	His	
	225	Ma+	Dwa	u: -	C1	230	u: -	V-1	T1.	TL	235			Tri	01	240
	Gly	Met	FIO	การ	245	GIA	піѕ	vaı	116	250	inr	GIÀ	Asp	inr		GÏÀ
30	Phe	Asn	His	Thr		Glu	Tur	Π	الم آ		ا ا م	Acn	Ara	Acn	255 Pro	Acn
	• •••			260	, 41	01u	.,.	110	265	D	Deu	пор	ni g	270	110	nsp
	Phe	Thr	Ala		Ser	G1n	Ile	Ala		Glv	Arg	Ala	Ala		Arg	Met
35			275					280		•	J		285		0	
	Lys	Gln	Gln	G1y	Gln	Ser	Gly	Ala	Phe	Thr	Val	Leu	Glu	Val	Ala	Pro
		290					295					300				
	Tyr	Leu	Leu	Ser	Pro	Glu	Asn	Leu	Asp	Asp	Leu	Ile	Ala	Arg	Asp	Val
40	305					310					315					320
•																
	(2)	INFO				-										
45		(1)				IARAC										
						1: 23										
						nuc] EDNE										
50						OGY:		_	316							
		(j i)				PE:			iclei	ic ar	id			•		
		/						11								

	(A) DESCRIPTION: /desc="Synthetic DNA"	
	(iv) ANTI-SENSE: NO	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	TCGCGAAGTA GCACCTGTCA CTT	23
10	(2) INFORMATION FOR SEQ ID NO: 11	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 21 base pairs	
	(B) TYPE: nucleic acid	
15	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
20	(A) DESCRIPTION: /desc="Synthetic DNA"	
	(iv) ANTI-SENSE: YES	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	ACGGAATTCA ATCTTACGGC C	21
25	en e	ě
	(2) INFORMATION FOR SEQ ID NO: 12	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 1643 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Brevibacterium lactofermentum	
40	(B) STRAIN: ATCC 13869	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: TCGCGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TCGAATATCA ATATACGGTC	60
	TGTTTATTGG AACGCATCCC AGTGGCTGAG ACGCATCCGC TAAAGCCCCCA GGAACCCTGT	120
	GCAGAAAGAA AACACTCCTC TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG	180
45		240
	GTAACTGTCA GCACGTAGAT CGAAAGGTGC ACAAAGGTGG CCCTGGTCGT ACAGAAATAT GGCGGTTCCT CGCTTGAGAG TGCGGAACGC ATTAGAAACG TCGCTGAACG GATCGTTGCC	300
	ACCAAGAAGG CTGGAAATGA TGTCGTGGTT GTCTGCTCCG CAATGGGAGA CACCACGGAT	360
50	GAACTTCTAG AACTTGCAGC GGCAGTGAAT CCCGTTCCGC CAGCTCGTGA AATGGATATG	420
	CTCCTGACTG CTGGTGAGCG TATTTCTAAC GCTCTCGTCG CCATGGCTAT TGAGTCCCTT	480
	CIOCIANCIA CIGATANACA INTITUTANO OCICIOTES CONTROCINI TRADICOCTI	700

	GOCGCAGAAG CICAATCIII CACIGGCICI CAGGCIGGIG IGCICACCAC CGAGCGCCAC	540
	GGAAACGCAC GCATTGTTGA CGTCACACCG GGTCGTGTGC GTGAAGCACT CGATGAGGGC	60
5	AAGATCTGCA TTGTTGCTGG TTTTCAGGGT GTTAATAAAG AAACCCGCGA TGTCACCACG	660
	TTGGGTCGTG GTGGTTCTGA CACCACTGCA GTTGCGTTGG CAGCTGCTTT GAACGCTGAT	720
	GTGTGTGAGA TTTACTCGGA CGTTGACGGT GTGTATACCG CTGACCCGCG CATCGTTCCT	780
10	AATGCACAGA AGCTGGAAAA GCTCAGCTTC GAAGAAATGC TGGAACTTGC TGCTGTTGGC	840
	TCCAAGATTT TGGTGCTGCG CAGTGTTGAA TACGCTCGTG CATTCAATGT GCCACTTCGC	900
	GTACGCTCGT CTTATAGTAA TGATCCCGGC ACTTTGATTG CCGGCTCTAT GGAGGATATT	960
	CCTGTGGAAG AAGCAGTCCT TACCGGTGTC GCAACCGACA AGTCCGAAGC CAAAGTAACC	1020
15	GTTCTGGGTA TTTCCGATAA GCCAGGCGAG GCTGCCAAGG TTTTCCGTGC GTTGGCTGAT	1080
	GCAGAAATCA ACATTGACAT GGTTCTGCAG AACGTCTCCT CTGTGGAAGA CGGCACCACC	1140
	GACATCACGT TCACCTGCCC TCGCGCTGAC GGACGCCGTG CGATGGAGAT CTTGAAGAAG	1200
20	CTTCAGGTTC AGGGCAACTG GACCAATGTG CTTTACGACG ACCAGGTCGG CAAAGTCTCC	1260
	CTCGTGGGTG CTGGCATGAA GTCTCACCCA GGTGTTACCG CAGAGTTCAT GGAAGCTCTG	1320
	CGCGATGTCA ACGTGAACAT CGAATTGATT TCCACCTCTG AGATCCGCAT TTCCGTGCTG	1380
	ATCCGTGAAG ATGATCTGGA TGCTGCTGCA CGTGCATTGC ATGAGCAGTT CCAGCTGGGC	1440
25	GGCGAAGACG AAGCCGTCGT TTATGCAGGC ACCGGACGCT AAAGTTTTAA AGGAGTAGTT	150
	TTACAATGAC CACCATCGCA GTTGTTGGTG CAACCGGCCA GGTCGGCCAG GTTATGCGCA	156
	CCCTTTTGGA AGAGCGCAAT TTCCCAGCTG ACACTGTTCG TTTCTTTGCT TCCCCGCGTT	162
30	CCGCAGGCCG TAAGATTGAA TTC	164
00		
	(2) INFORMATION FOR SEQ ID NO: 13	
	(i) SEQUENCE CHARACTERISTICS:	
35	(A) LENGTH: 1643 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Brevibacterium lactofermentum	
45	(B) STRAIN: ATCC 13869	
	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
	(B) LOCATION: 2171482	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	TCGCGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TCGAATATCA ATATACGGTC	6

	TGTT	TATT	GG A	ACGC	CATCO	C AG	TGGC	TGAG	ACG	CATO	CGC	TAAA	GCCC	CA G	GAAC	CCTGT	120
	GCAG	AAAC	GAA A	ACAC	CTCCT	C TG	GCTA	GGTA	GAC	ACAG	TTT	ATAA	AGGT	`AG A	GTTG	SAGCGG	180
5	GTAA	CTG1	CA G	CACC	TAGA	T CG	AAAG	GTGC	ACA	AAG	GTG	GCC	CTG	GTC	GTA	CAG	234
											Met	Ala	Leu	Val	Val	Gln	
											1				5		
10	AAA	TAT	GGC	GGT	TCC	TCG	CTT	GAG	AGT	GCG	GAA	CGC	ATT	AGA	AAC	GTC	282
	Lys	Tyr	Gly	Gly	Ser	Ser	Leu	Glu	Ser	Ala	Glu	Arg	Ile	Arg	Asn	Val	
				10					15					20			
	GCT	GAA	CGG	ATC	GŢŢ	GCC	ACC	AAG	AAG	GCT	GGA	AAT	GAT	GTC	GTG	GTT	330
15	Ala	Glu	Arg	Ile	Val	Ala	Thr	Lys	Lys	Ala	Gly	Asn	Asp	Val	Val	Val	
			25					30					35				
•	GTC	TGC	TCC	GCA	ATG	GGA	GAC	ACC	ACG	GAT	GAA	CTT	CTA	GAA	CTT	GCA	378
20	Val	Cys	Ser	Ala	Met	Gly	Asp	Thr	Thr	Asp	Glu	Leu	Leu	Glu	Leu	Ala	
		40					45					50					
	GCG	GCA	GTG	AAT	CCC	GTT	CCG	CCA	GCT	CGT	GAA	ATG	GAT	ATG	CTC	CTG	426
	Ala	Ala	Val	Asn	Pro	Val	Pro	Pro	Ala	Arg	Glu	Met	Asp	Met	Leu	Leu	
25	55					60					65				•	70	
	ACT	GCT	GGT	GAG	CGT	ATT	TCT	AAC	GCT	CTC	GTC	GCC	ATG	GCT	ATT	GAG	474
	Thr	Ala	Gly	Glu	Arg	Ile	Ser	Asn	Ala	Leu	Val	Ala	Met	Ala	Ile	Glu	
30					75					80					85		
	TCC	CTT	GGC	GCA	GAA	GCT	CAA	TCT	TTC	ACT	GGC	TCT	CAG	GCT	GGT	GTG	522
	Ser	Leu	Gly	Ala	Glu	Ala	Gln	Ser	Phe	Thr	Gly	Ser	Gln	Ala	Gly	Val	
35				90					95					100			
J J	CTC	ACC	ACC	GAG	CGC	CAC	GGA	AAC	GCA	CGC	ATT	GTT	GAC	GTC	ACA	CCG	570
	Leu	Thr	Thr	Glu	Arg	His	Gly	Asn	Ala	Arg	Ile	Val	Asp	Val	Thr	Pro	
			105					110					115				
40	GGT	CGT	GTG	CGT	GAA	GCA	CTC	GAT	GAG	GGC	AAG	ATC	TGC	ATT	GTT	GCT	618
	Gly			Arg	Glu	Ala			Glu	G1y	Lys	Ile	Cys	Ile	Val	Ala	
		120					125					130					
45												GTC					666
	Gly	Phe	Gln	Gly	Val	Asn	Lys	Glu	Thr	Arg		Val	Thr	Thr	Leu	Gly	
	135					140					145					150	
												•				AAC	714
50	Arg	Gly	Gly	Ser	Asp	Thr	Thr	Ala	Val	Ala	Leu	Ala	Ala	Ala	Leu	Asn	
					155					160					165		

	GCT	GAT	GTG	TGT	GAG	ATT	TAC	TCG	GAC	GTT	GAC	GGT	GTG	TAT	ACC	GCT	762
	Ala	Asp	Val	Cys	Glu	Ile	Tyr	Ser	Asp	Val	Asp	Gly	Val	Tyr	Thr	Ala	
5				170					175					180			
	GAC	CCG	CGC	ATC	GTT	CCT	AAT	GCA	CAG	AAG	CTG	GAA	AAG	CTC	AGC	TTC	810
	Asp	Pro	Arg	Ile	Val	Pro	Asn	Ala	Gln	Lys	Leu	Glu	Lys	Leu	Ser	Phe	
10			185					190					195				
	GAA	GAA	ATG	CTG	GAA	CTT	GCT	GCT	GTT	GGC	TCC	AAG	ATT	TTG	GTG	CTG	858
	Glu	Glu	Met	Leu	Glu	Leu	Ala	Ala	Val	Gly	Ser	Lys	Ile	Leu	Val	Leu	
		200					205					210					
15	CGC	AGT	GTT	GAA	TAC	GCT	CGT	GCA	TTC	AAT	GTG	CCA	CTT	CGC	GTA	CGC	906
	Arg	Ser	Val	Glu	Tyr	Ala	Arg	Ala	Phe	Asn	Val	Pro	Leu	Arg	Val	Arg	
	215					220		`			225					230	
20	TCG	TCT	TAT	AGT	AAT	GAT	CCC	GGC	ACT	TTG	ATT	GCC	GGC	TCT	ATG	GAG	954
	Ser	Ser	Tyr	Ser	Asn	Asp	Pro	Gly	Thr	Leu	Ile	Ala	Gly	Ser	Met	Glu	
					235					240					245		
	GAT	ATT	CCT	GTG	GAA	GAA	GCA	GTC	CTT.	ACC	GGT	GTC	GCA	ACC	GAC	AAG	1002
25	Asp	Ile	Pro	Val	Glu	Glu	Ala	Val ⁻	Leu	Thr	Gly	Val	Ala	Thr	Asp	Lys	
				250					255					260			•
	TCC	GAA	GCC	AAA	GTA	ACC	GTT	CTG	GGT	ATT	TCC	GAT	AAG	CCA	GGC	GAG	1050
30	Ser	Glu	Ala	Lys	Val	Thr	Val	Leu	Gly	Ile	Ser	Asp	Lys	Pro	Gly	Glu	
			265					270					275				
	GCT	GCC	AAG	GTT	TTC	CGT	GCG	TTG	GCT	GAT	GCA	GAA	ATC	AAC	ATT	ĠAC	1098
	Ala	Ala	Lys	Val	Phe	Arg	Ala	Leu	Ala	Asp	Ala	Glu	Ile	Asn	Ile	Asp	
35		280					285					290					
	ATG	GTT	CTG	CAG	AAC	GTC	TCC	TCT	GTG	GAA	GAC	GGC	ACC	ACC	GAC	ATC	1146
	Met	Val	Leu	Gln	Asn	Val	Ser	Ser	Val	Glu	Asp	Gly	Thr	Thr	Asp	Ile	
40	295					300					305					310	
	ACG	TTC	ACC	TGC	CCT	CGC	GCT	GAC	GGA	CGC	CGT	GCG	ATG	GAG	ATC	TTG	1194
	Thr	Phe	Thr	Cys	Pro	Arg	Ala	Asp	Gly	Arg	Arg	Ala	Met	Glu	Ile	Leu	
					315					320					325		
45	AAG	AAG	CTT	CAG	GTT	CAG	GGC	AAC	TGG	ACC	AAT	GTG	CTT	TAC	GAC	GAC	1242
	Lys	Lys	Leu	Gln	Val	Gln	Gly	Asn	Trp	Thr	Asn	Val	Leu	Tyr	Asp	Asp	
				330					335			•		340			
50	CAG	GTC	GGC	AAA.	GTC	TCC	CTC	GTG	GGT	GCT	GGC	ATG	AAG	TCT	CAC	CCA	1290
-	Gln	Val	Gly	Lys	Val	Ser	Leu	Val	Gly	Ala	Gly	Met	Lys	Ser	His	Pro	
	•		345					350					355				

	GGT	GTT	ACC	GCA	GAG	TTC	ATG	GAA	GCT	CTG	CGC	GAT	GTC	AAC	GTG	AAC	1338
	Gly	Val	Thr	Ala	Glu	Phe	Met	Glu	Ala	Leu	Arg	Asp	Val	Asn	Val	Asn	
5		360					365					370					
	ATC	GAA	TTG	ATT	TCC	ACC	TCT	GAG	ATC	CGC	ATT	TCC	GTG	CTG	ATC	CGT	1386
	Ile	Glu	Leu	Ile	Ser	Thr	Ser	Glu	Ile	Arg	Ile	Ser	Val	Leu	Ile	Arg	
10	375					380					385					390	
										GCA							1434
	Glu	Asp	Asp	Leu	Asp	Ala	Ala	Ala	Arg	Ala	Leu	His	Glu	Gln	Phe	Gln	
15					395					400					405		
,,,										TAT						TAA	1482
	Leu	Gly	Gly	Glu	Asp	Glu	Ala	Val	Val	Tyr	Ala	Gly	Thr		Arg		
				410					415					420			
20																GCCAGG	
													AGCTO	JAC .	ACTG	TCGTT	
	TCTT	TGC	rtc (CCCG	CGTT	CC G(CAGG	CCGT	A AG	ATTG/	ATT	С					1643
25	(a)	*****	20144	n T O V	505	000	TD 1	VO.									
	(2)				FOR												
		(1,			CE CI					1.							
30	(A) LENGTH: 421 amino acids (B) TYPE: amino acid																
50				-	opol												
		(;;			LE T												
							-			ID N	n:14	:					
35	Met									Gly			Leu	Glu	Ser	Ala	
	1		Боа	, 41	5	· · · ·	۵,۵	•	02)	10	-		-		15		
		Arg	Ile	Arg		Val	Ala	Glu	Arg		Val	Ala	Thr	Lvs		Ala	
40	014			20					25					30			
	Glv	Asn	Asp	Val	Val	Val	Val	Cys	Ser	· Ala	Met	Gly	Asp	Thr	Thr	Asp	
	,		35					40				•	45				
45	Glu	Leu			Leu	Ala	Ala	Ala	Val	Asn	Pro	Val	Pro	Pro	Ala	Arg	
,,		50					55					60					
	Glu			Met	Leu	Leu			Gly	Glu	Arg			Ası	n Ala	Leu	
	65		•			70			·		75	•				80	
50			Met	Ala	Ile			Leu	G1y	, Ala	Glu	Ala	Gln	Sea	r Phe	e Thr	
					85				•	90					98		

	Gly	Ser	Gln	Ala 100	Gly	Val	Leu	Thr	Thr 105	Glu	Arg	His	Gly	Asn 110	Ala	Arg
5	Ile	Val	Asp 115	Val	Thr	Pro	Gly	Arg	Val	Arg	Glu	Ala	Leu 125	Asp	Glu	Gly
10	Lys	Ile 130	Cys	Ile	Val	Ala	Gly 135	Phe	Gln	Gly	Val	Asn 140	Lys	Glu	Thr	Arg
10	Asp 145	Val	Thr	Thr	Leu	Gly 150	Arg	Gly	Gly	Ser	Asp 155	Thr	Thr	Ala		Ala 160
15	Leu	Ala	Ala	Ala	Leu 165	Asn	Ala	Asp	Val	Cys 170	Glu	Ile	Tyr	Ser	Asp 175	Val
	Asp	Gly	Val	Tyr 180	Thr	Ala	Asp	Pro	Arg 185	Ile	Val	Pro	Asn	Ala 190	Gln	Lys
20	Leu	Glu	Lys 195	Leu	Ser	Phe	Glu	G1u 200	Met	Leu	Glu	Leu	Ala 205	Ala	Val	G1y
	Ser	Lys 210	Ile	Leu	Val	Leu	Arg 215	Ser	Val	Glu	Tyr	Ala 220	Arg	Ala	Phe	Asn
25	225					230					235		Pro			240
30					245					250			Ala		255	
				260					265				Val	270		
35			275					280					Ala 285			
		290		•			295					300	Ser			•
40	305					310					315		Ala			320
					325					330			Gly		335	
45				340					345				Leu	350		
50			355					360					Met 365			
	Arg	Asp 370	Val	Asn	Val	Asn	11e 375	Glu	Leu	Ile	Ser	Thr 380	Ser	Glu	Ile	Arg

	lie Ser vai Leu lie Arg Giu Asp Asp Leu Asp Aia Aia Aia Arg Aia	
	385 390 395 400	
5	Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr	
	405 410 415	
	Ala Gly Thr Gly Arg	
10	420	
	(2) INFORMATION FOR SEQ ID NO: 15	
	(i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 1643 base pairs	•
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Brevibacterium lactofermentum	
25	(B) STRAIN: ATCC 13869	
	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
	(B) LOCATION: 9641482	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	TCGCGAAGTA GCACCTGTCA CTTTTGTCTC AAATATTAAA TCGAATATCA ATATACGGTC	60
	TGTTTATTGG AACGCATCCC AGTGGCTGAG ACGCATCCGC TAAAGCCCCA GGAACCCTGT	120
35	GCAGAAAGAA AACACTCCTC TGGCTAGGTA GACACAGTTT ATAAAGGTAG AGTTGAGCGG	180
	GTAACTGTCA GCACGTAGAT CGAAAGGTGC ACAAAGGTGG CCCTGGTCGT ACAGAAATAT	240
	GGCGGTTCCT CGCTTGAGAG TGCGGAACGC ATTAGAAACG TCGCTGAACG GATCGTTGCC	300
	ACCAAGAAGG CTGGAAATGA TGTCGTGGTT GTCTGCTCCG CAATGGGAGA CACCACGGAT	360
40	GAACTTCTAG AACTTGCAGC GGCAGTGAAT CCCGTTCCGC CAGCTCGTGA AATGGATATG	420
	CTCCTGACTG CTGGTGAGCG TATTTCTAAC GCTCTCGTCG CCATGGCTAT TGAGTCCCTT	480
	GGCGCAGAAG CTCAATCTTT CACTGGCTCT CAGGCTGGTG TGCTCACCAC CGAGCGCCAC	540
45	GGAAACGCAC GCATTGTTGA CGTCACACCG GGTCGTGTGC GTGAAGCACT CGATGAGGGC	600
	AAGATCTGCA TTGTTGCTGG TTTTCAGGGT GTTAATAAAG AAACCCGCGA TGTCACCACG	660
	TTGGGTCGTG GTGGTTCTGA CACCACTGCA GTTGCGTTGG CAGCTGCTTT GAACGCTGAT	720
	GTGTGTGAGA TTTACTCGGA CGTTGACGGT GTGTATACCG CTGACCCGCG CATCGTTCCT	780
50	AATGCACAGA AGCTGGAAAA GCTCAGCTTC GAAGAAATGC TGGAACTTGC TGCTGTTGGC	840
	TCCAAGATTT TGGTGCTGCG CAGTGTTGAA TACGCTCGTG CATTCAATGT GCCACTTCGC	900

	GTA	CGCT	CGT	CTTA	TAGT!	AA TO	GATCO	CCGG	AC	TTTG/	ATTG	CCG	GCTC	TAT	GGAG	GATATT	960
	CCT	GT	G GA	A GA	A GC	A GTO	CT	r acc	GG1	r GTC	GC/	A AC	C GA	CAA	G TO	C GAA	1008
5		Me	t Gl	u Glu	ı Ala	a Val	l Lei	. Thi	Gly	/ Val	l Ala	a Thi	r Ası	b Ly	s Se	r Glu	
			1			ŧ	5				10)				15	•
	GCC	AAA	GTA	ACC	GTT	CTG	GGT	ATT	TCC	GAT	AAG	CCA	GGC	GAG	GCT	GCC	1056
10	Ala	Lys	Val	Thr	Val	Leu	Gly	Ile	Ser	Asp	Lys	Pro	Gly	Glu	Ala	Ala	
					20					25					30		
	AAG	GTT	TTC	CGT	GCG	TTG	GCT	GAT	GCA	GAA	ATC	AAC	ATT	GAC	ATG	GTT	1104
	Lys	Val	Phe	Arg	Ala	Leu	Ala	Asp	Ala	Glu	Ile	Asn	Ile	Asp	Met	Val	-
15				35					40		•			45			
		CAG															1152
	Leu	Gln		Val	Ser	Ser	Val		Asp	Gly	Thr	Thr	Asp	Ile	Thr	Phe	
20			50					55					60				
		TGC															1200
	Thr	Cys	Pro	Arg	Ala	Asp		Arg	Arg	Ala	Met		Ile	Leu	Lys	Lys	
	OTT.	65	OTT.	C4.0	600		70	4.00:	4.4.77	0.70	OTT TO	75	0.0				
25		CAG															1248
		Gln	vai	GIN	GIA		irp	ınr	ASN	vai		lyr	Asp	Asp	Gln		
	80	A A A	CTC	TCC	СТС	85 CTC	ርር ፕ	cct	ccc	A TC	90	тот	CAC	004	ОСТ	95	1000
30		AAA															1296
	GIY	Lys	Val	Ser	100	vai	GIY	MIA	GIY	мет 105	Lys	ser	пıs	rro			
	۸۲۲	GCA	GAG	TTC		CAA	CCT	CTC	ccc		CTC	4 A C	CTC	AAC	110		1244
35		Ala															1344
JJ	7112	MIG		115	MCC	oru	nia	Leu	120	vsh	va1	USII	141	125	116	Giu	
	TTG	ATT			TCT	GAG	ATC	CGC		TCC	ото	CTG	ATC		GAA	GAT	1392
		Ile															1032
40			130					135	110	501		Dog	140	*** 6	014	пор	
	GAT	CTG		GCT	GCT	GCA	CGT		TTG	CAT	GAG	CAG		CAG	CTG	GGC	1440
	•	Leu															
45	•	145	•				150					155				,	
	GGC		GAC	GAA	GCC	GTC	GTT	TAT	GCA	GGC	ACC		CGC	TAA	AGTT	TTAA	1490
		Glu															
	160					165		-		-	170	•	J				
50	AGG	AGTA	GTT :	TAC/	AATG/	AC CA	ACCAT	rcgc/	GT1	rgtto	GTG	CAA	CCGG	CCA	GGTC	GGCCAG	1550
	GTT	ATGC(GCA (CCCT	TTG	GA AC	GAGC	GCAAT	TTO	CCCAC	CTG	ACA	CTGT	TCG	TTTC	TTTGCT	1610

1643

TCCCCGCGTT CCGCAGGCCG TAAGATTGAA TTC

5	(2)	INFO	ORMA1	NOI	FOR	SEQ	ID N	10: 1	16							
		(i)	SEC	QUENC	CE CH	IARAC	TERI	STIC	:S:							
			(/	A) LE	ENGTH	i: 17	72 an	ino	acio	ls						
10			(E	3) TY	PE:	amir	o ac	id								
			(I)) T(POLO	GY:	line	ear								
		(ii)	MOI	LECUI	LE TY	PE:	prot	ein								
		(xi)	SEC	QUENC	CE DE	ESCR	PTIC	N: S	SEQ]	ED NO):16:	:				
15	Met	Glu	Glu	Ala	Val	Leu	Thr	Gly	Val	Ala	Thr	Asp	Lys	Ser	Glu	Ala
,	1				5					10					15	
	Lys	Val	Thr		Leu	Gly	Ile	Ser		Lys	Pro	Gly	Glu	Ala	Ala	Lys
20				20	_				25					30		
	Val	Phe		Ala	Leu	Ala	Asp		Glu	He	Asn	He		Met	Val	Leu
	01.	4	35	C	C	W . 1	01	40	01	T1	T1		45	TT1	DI	T.
25	GIN	50	Vai	ser	ser	vai	55	ASP	GIY	ınr	inr	-	116	ınr	Phe	inr
	Cve		Δrσ	41a	Acn	Glv		Ara	Δ1a	Mat	Glu	60 11a	Lau	lve	Lys	Lau
	65	110	νπ. P	MIG	nsp	70	игр	vir P	Mid	MC C	75	110	LCu	Lys	Lys	80
		Val	Gln	Gly	Asn		Thr	Asn	Val	Leu		Asp	Asp	Gln	Val	
30				•	85	•				90		•	•		95	•
	Lys	Val	Ser	Leu	Val	Gly	Ala	Gly	Met	Lys	Ser	His	Pro	Gly	Val	Thr
				100					105					110		
35	Ala	Glu	Phe	Met	Glu	Ala	Leu	Arg	Asp	Val	Asn	Val	Asn	Ile	Glu	Leu
			115	•				120					125			
	Ile	Ser	Thr	Ser	Glu	Ile	Arg	Ile	Ser	Val	Leu	Ile	Arg	Glu	Asp	Asp
40		130					135					140				
			Ala	Ala	Ala		Ala	Leu	His	Glu		Phe	Gln	Leu	Gly	Gly
	145					150	_				155					160
45	Glu	Asp	Glu	Ala			Tyr	Ala	Gly			Arg		`		
45					165					170						
	(0)	TAIC	ODMA	TION	EOD	CEO	ID	NO.	17			•				
	(2)			TION QUEN												
50		(1		QUEN A) L												
				B) T												
			•	_, .			-010	~~1	-							

	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc="Synthetic DNA"	
	(iv) ANTI-SENSE: NO	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	GTCGACGGAT CGCAAATGGC AAC	23
	(2) INFORMATION FOR SEQ ID NO: 18	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 23 base pairs	
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc="Synthetic DNA"	
25	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	•
	GGATCCTTGA GCACCTTGCG CAG	23
30		
	(2) INFORMATION FOR SEQ ID NO: 19	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1411 base pairs	
35	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: Genomic DNA	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Brevibacterium lactofermentum	
	(B) STRAIN: ATCC 13869	
45	(ix) FEATURE:	
	(A) NAME/KEY: CDS	
	(B) LOCATION: 3111213	•
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
	CTCTCGATAT CGAGAGAGA GCAGCGCCAC GGTTTTTCGG TGATTTTGAG ATTGAAACTT	60
	TGGCAGACGG ATCGCAAATG GCAACAAGCC CGTATGTCAT GGACTTTTAA CGCAAAGCTC	120

	ACAC	CCAC	GA C	CTAA	TAAA	T CA	TATA	GTTA	AGA	CAAC	ATT	TTTO	GCTC	TA A	AAGA	CAGCC	180
	GTAA	AAAA(CT (CTTGC	TCAT	G TO	CAATT	rgttc	TTA	TCGC	TAA	GTGG	CTTC	GG (GATT	GTTAT	240
5	GCAA	\AAG1	TG 1	TAGG	TTT1	T TO	CGGC	GTTG	TTT	TAACC	CCC	AAAT	GAGG	GA A	GAAG	GTAAC	300
	CTTC	GAAC1	CT A	ATG A	IGC A	CA C	GT 1	TA A	CA G	CT A	AG A	ACC G	GA G	TA (GAG C	CAC	349
			ł	let S	Ser 1	Thr G	ly l	.eu 1	hr A	la L	ys 1	Thr G	ly V	al (Glu H	lis	
10				1				5				1	.0				
10	TTC	GGC	ACC	GTT	GGA	GTA	GCA	ATG	GTT	ACT	CCA	TTC	ACG	GAA	TCC	GGA	397
	Phe	Gly	Thr	Val	Gly	Val	Ala	Met	Val	Thr	Pro	Phe	Thr	Glu	Ser	Gly	
		15					20					25					-
15	GAC	ATC	GAT	ATC	GCT	GCT	GGC	CGC	GAA	GTC	GCG	GCT	TAT	TTG	GTT	GAT	445
	Asp	Ile	Asp	Ile	Ala	Ala	Gly	Arg	Glu	Val	Ala	Ala	Tyr	Leu	Val	Asp	
	30					35					40					45	
00	AAG	GGC	TTG	GAT	TCT	TTG	GTT	CTC	GCG	GGC	ACC	ACT	GGT	GAA	TCC	CCA	493
20	Lys	Gly	Leu	Asp	Ser	Leu	Val	Leu	Ala	Gly	Thr	Thr	Gly	Glu	Ser	Pro	
					50					55					60		
	ACG	ACA	ACC	GCC	GCT	GAA	AAA	CTA	GAA	CTG	CTC	AAG	GCC	GTT	CGT	GAG	541
25	Thr	Thr	Thr	Ala	Ala	Glu	Lys	Leu	Glu	Leu	Leu	Lys	Ala	Val	Arg	Glu	
				65					70					75			•
	GAA	GTT	GGG	GAT	CGG	GCG	AAC	GTC	ATC	GCC	GGT	GTC	GGA	ACC	AAC	AAC	589
	Glu	Val	Gly	Asp	Arg	Ala	Asn	Val	Ile	Ala	Gly	Val	G1y	Thr	Asn	Asn	
30			80					85					90				
	ACG	CGG	ACA	TCT	GTG	GAA	CTT	GCG	GAA	GCT	GCT	GCT	TCT	GCT	GGC	GCA	637
	Thr	Arg	Thr	Ser	Val	Glu	Leu	Ala	Glu	Ala	Ala	Ala	Ser	Ala	Gly	Ala	
35		95					100					105					
		GGC															685
	Asp	Gly	Leu	Leu	Val	Val	Thr	Pro	Tyr	Tyr	Ser	Lys	Pro	Ser	Gln		
	110					115					120					125	
40		TTG															733
	Gly	Leu	Leu	Ala	His	Phe	Gly	Ala	Ile		Ala	Ala	Thr	Glu	Val	Pro	
					130					135					140		
45		TGT															781
	Ile	Cys	Leu			Ile	Pro	Gly			Gly	Ile	Pro			Ser	
				145					150					155			
		, VCC															829
50	Asp	Thr	Met	Arg	Arg	Leu	Ser	Glu	Leu	Pro	Thr	· Ile			Val	Lys	
			160)				165					170	1			

	GAC	GCC	AAG	GGT	GAC	CTC	GTT	GCA	ĢCC	ACG	TCA	TTG	ATC	AAA	GAA	ACG	877
	Asp	Ala	Lys	Gly	Asp	Leu	Val	Ala	Ala	Thr	Ser	Leu	Ile	Lys	Glu	Thr	
5		175					180					185					
	GGA	CTT	GCC	TGG	TAT	TCA	GGC	GAT	GAC	CCA	CTA	AAC	CTT	GTT	TGG	CTT	925
	Gly	Leu	Ala	Trp	Tyr	Ser	Gly	Asp	Asp	Pro	Leu	Asn	Leu	Val	Trp	Leu	
10	190					195					200					205	
	GCT	TTG	GGC	GGA	TCA	GGT	TTC	ATT	TCC	GTA	ATT	GGA	CAT	GCA	GCC	CCC	973
	Ala	Leu	Gly	Gly	Ser	Gly	Phe	Ile	Ser	Val	Ile	Gly	His	Ala	Ala	Pro	
					210					215					220		
15	ACA	GCA	TTA	CGT	GAG	TTG	TAC	ACA	AGC	TTC	GAG	GAA	GGC	GAC	CTC	GTC	1021
	Thr	Ala	Leu	Arg	Glu	Leu	Tyr	Thr	Ser	Phe	Glu	Glu	Gly	Asp	Leu	Val	
				225					230					235			
20	CGT	GCG	CGG	GAA	ATC	AAC	GCC	AAA	CTA	TCA	CCG	CTG	GTA	GCT	GCC	CAA	1069
	Arg	Ala	Arg	Glu	Ile	Asn	Ala	Lys	Leu	Ser	Pro	Leu	Val	Ala	Ala	Gln	
			240					245					250				
	GGT	CGC	TTG	GGT	GGA	GTC	AGC	TTG	GCA	AAA	GCT	GCT	CTG	CGT	CTG	CAG	1117
25	Gly	Arg	Leu	Gly	Gly	Val	Ser	Leu	Ala	Lys	Ala	Ala	Leu	Arg	Leu	Gln	
		255					260					265					•
	GGC	ATC	AAC	GTA	GGA	GAT	CCT	CGA	CTT	CCA	ATT	ATG	GCT	CCA	AAT	GAG	1165
30	Gly	Ile	Asn	Val	Gly	Asp	Pro	Arg	Leu	Pro	Ile	Met	Ala	Pro	Asn	Glu	
	270					275					280					285	
	CAG	GAA	CTT	GAG	GCT	CTC	CGA	GAA	GAC	ATG	AAA	AAA	GCT	GGA	GTT	CTA	1213
	Gln	Glu	Leu	Glu	Ala	Leu	Arg	Glu	Asp	Met	Lys	Lys	Ala	G1y	Val	Leu	
35					290					295					300		
																ACCAGA	1273
																CTCTAA	1333
40	CCAC	GAGC	GCT (GTAA.	VAGC1	rg ac	ACCO	GCCGC	G AAA	CGA(CAAT	CGGC	GATGO	CTG (CGCA	AGGTGC	1393
	TCA	AGGAT	rcc (CAAC	ATTC			,									1411
	(2)	INFO	ORMAT	ΓΙΟN	FOR	SEQ	ID N	NO: 2	20								
45		(i)	SEC	QUENC	Œ CH	IARAC	CTER	ISTIC	cs:								
			(/	A) LE	ENGTH	1 : 30)lan	nino	acio	is							
			(F	3) TY	PE:	amir	no ac	cid				•					
			1)) T(POLO	GY:	line	ear									
50		(ii)	MOI	LECUI	E TY	PE:	prot	tein									
		(xi)	SEC	QUENC	E DE	ESCRI	PTIC	ON: S	SEQ 1	D NO):20	:			••		-

	Met	Ser	Thr	Gly	Leu	Thr	Ala	Lys	Thr	Gly	Val	Glu	His	Phe	Gly	Thr
	1				5					10					15	
	Val	Gly	Val	Ala 20	Met	Val	Thr	Pro	Phe 25	Thr	Glu	Ser	Gly	Asp 30	Ile	Asp
	Ile	Ala	Ala 35	G1y	Arg	Glu	Val	Ala 40	Ala	Tyr	Leu	Val	Asp 45	Lys	Gly	Leu
o	Asp	Ser 50		Val	Leu	Ala	Gly 55		Thr	Gly	Glu	Ser 60		Thr	Thr	Thr
5	Ala 65	Ala	Glu	Lys	Leu	G1u 70	Leu	Leu	Lys	Ala	Val 75	Arg	Glu	Glu	Val	Gly 80
	Asp	Arg	Ala	Asn	Val 85	Ile	Ala	Gly	Val	G1y 90	Thr	Asn	Asn	Thr	Arg 95	Thr
20	Ser	Val	G1u	Leu 100	Ala	Glu	Ala	Ala	Ala 105	Ser	Ala	Gly	Ala	Asp 110	Gly	Leu
	Leu	Val	Val 115	Thr	Pro	Tyr	Tyr	Ser 120	Lys	Pro	Ser	Gln	Glu 125	Gly	Leu	Leu
25	Ala	His 130	Phe	Gly	Ala	Ile	Ala 135	Ala	Ala	Thr	Glu	Val 140	Pro	Ile	Cys	Leu
20	Tyr 145	Asp	Ile	Pro	Gly	Arg 150	Ser	Gly	Ile	Pro	Ile 155	Glu	Ser	Asp	Thr	Met 160
30	Arg	Arg	Leu	Ser	Glu 165	Leu	Pro	Thr	Ile	Leu 170	Ala	Val	Lys	Asp	Ala 175	Lys
35	Gly	Asp	Leu	Val 180	Ala	Ala	Thr	Ser	Leu 185		Lys	Glu	Thr	Gly 190	Leu	Ala
	Trp	Tyr	Ser 195		Asp	Asp	Pro	Leu 200		Leu	Val	Trp	Leu 205		Leu	Gly
40	Gly	Ser 210		Pḥe	Ile	Ser	Val 215		Gly	His	Ala	Ala 220		Thr	Ala	Leu
	Arg 225		Leu	Tyr	Thr	Ser 230		Glu	Glu	Gly	Asp 235		Val	Arg	Ala	Arg 240
45	Glu	Ile	Asn	Ala	Lys 245		Ser	Pro	Leu	Val 250		Ala	Gln	Gly	Arg 255	Leu
	G1 y	Gly	Val	Ser 260		Ala	Lys	Ala	Ala 265		Arg	Leu	Gln	Gly 270		Asn
50	Val	. Gly	Asp 275		Arg	Leu	Pro	11e		. Ala	Pro	Asn	Glu 285		Glu	Leu

	Glu Ala Leu Arg Glu Asp Met Lys Lys Ala Gly Val Leu	
_	290 295 300	
5		
	(2) INFORMATION FOR SEQ ID NO: 21	
	(i) SEQUENCE CHARACTERISTICS:	
10	(A) LENGTH: 23 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc="Synthetic DNA"	
	(iv) ANTI-SENSE: NO	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
	GGATCCCCAA TCGATACCTG GAA	23
	(2) INFORMATION FOR SEQ ID NO: 22	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 23 base pairs	•
	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid	
	(A) DESCRIPTION: /desc="Synthetic DNA"	
<i>35</i>	(iv) ANTI-SENSE: YES	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
	CGGTTCATCG CCAAGTTTTT CTT	23
40	(2) INFORMATION FOR SEQ ID NO: 23	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2001 base pairs	
45	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: Genomic DNA	
50	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: Brevibacterium lactofermentum	

(B) STRAIN: ATCC 13869

	(1x) FEATURE:	
5	(A) NAME/KEY: CDS	
	(B) LOCATION: 7301473	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
10	GGATCCCCAA TCGATACCTG GAACGACAAC CTGATCAGGA TATCCAATGC CTTGAATATT	60
. •	GACGTTGAGG AAGGAATCAC CAGCCATCTC AACTGGAAGA CCTGACGCCT GCTGAATTGG	120
	ATCAGTGGCC CAATCGACCC ACCAACCAGG TTGGCTATTA CCGGCGATAT CAAAAACAAC	180
	TCGCGTGAAC GTTTCGTGCT CGGCAACGCG GATGCCAGCG ATCGACATAT CGGAGTCACC	240
15	AACTTGAGCC TGCTGCTTCT GATCCATCGA CGGGGAACCC AACGGCGGCA AAGCAGTGGG	300
	GGAAGGGGAG TTGGTGGACT CTGAATCAGT GGGCTCTGAA GTGGTAGGCG ACGGGGCAGC	360
	ATCTGAAGGC GTGCGAGTTG TGGTGACCGG GTTAGCGGTT TCAGTTTCTG TCACAACTGG	420
20	AGCAGGACTA GCAGAGGTTG TAGGCGTTGA GCCGCTTCCA TCACAAGCAC TTAAAAGTAA	480
	AGAGGCGGAA ACCACAAGCG CCAAGGAACT ACCTGCGGAA CGGGCGGTGA AGGGCAACTT	540
	AAGTCTCATA TTTCAAACAT AGTTCCACCT GTGTGATTAA TCTCCAGAAC GGAACAAACT	600
	GATGAACAAT CGTTAACAAC ACAGACCAAA ACGGTCAGTT AGGTATGGAT ATCAGCACCT	660
25	TCTGAATGGG TACGTCTAGA CTGGTGGGCG TTTGAAAAAC TCTTCGCCCC ACGAAAATGA	720
	AGGAGCATA ATG GGA ATC AAG GTT GGC GTT CTC GGA GCC AAA GGC CGT	768
	Met Gly Ile Lys Val Gly Val Leu Gly Ala Lys Gly Arg	
30	1 5 10	
	GTT GGT CAA ACT ATT GTG GCA GCA GTC AAT GAG TCC GAC GAT CTG GAG	816
	Val Gly Gln Thr Ile Val Ala Ala Val Asn Glu Ser Asp Asp Leu Glu	
oe	15 20 25	
35	CTT GTT GCA GAG ATC GGC GTC GAC GAT GAT TTG AGC CTT CTG GTA GAC	864
	Leu Val Ala Glu Ile Gly Val Asp Asp Asp Leu Ser Leu Leu Val Asp	
	30 35 40 45	
40	AAC GGC GCT GAA GTT GTC GTT GAC TTC ACC ACT CCT AAC GCT GTG ATG	912
	Asn Gly Ala Glu Val Val Val Asp Phe Thr Thr Pro Asn Ala Val Met	
	50 55 60	
45	GGC AAC CTG GAG TTC TGC ATC AAC AAC GGC ATT TCT GCG GTT GTT GGA	960
	Gly Asn Leu Glu Phe Cys Ile Asn Asn Gly Ile Ser Ala Val Gly	
	65 70 75	
	ACC ACG GGC TTC GAT GAT GCT CGT TTG GAG CAG GTT CGC GCC TGG CTT	1008
50	Thr Thr Gly Phe Asp Asp Ala Arg Leu Glu Gln Val Arg Ala Trp Leu	
	80 85 90	
	·	

46

	GAA	GGA	AAA	GAC	AAT	GTC	GGT	GTT	CTG	ATC	GCA	CCT	AAC	TTT	GCT	ATC	1056
	Glu	Gly	Lys	Asp	Asn	Val	Gly	Val	Leu	Ile	Ala	Pro	Asn	Phe	Ala	Ile	
5		95					100					105					
	TCT	GCG	GTG	TTG	ACC	ATG	GTC	TTT	TCC	AAG	CAG	GCT	GCC	CGC	TTC	TTC	1104
	Ser	Ala	Val	Leu	Thr	Met	Val	Phe	Ser	Lys	Gln	Ala	Ala	Arg	Phe	Phe	
10	110					115					120					125	
	GAA	TCA	GCT	GAA	GTT	ATT	GAG	CTG	CAC	CAC	CCC	AAC	AAG	CTG	GAT	GCA	1152
	Glu	Ser	Ala	Glu	Val	Ile	Glu	Leu	His	His	Pro	Asn	Lys	Leu	Asp	Ala	
					130					135					140		
15	CCT	TCA	GGC	ACC	GCG	ATC	CAC	ACT	GCT	CAG	GGC	ATT	GCT	GCG	GCA	CGC	1200
	Pro	Ser	Gly	Thr	Ala	Ile	His	Thr	Ala	Gln	Gly	Ile	Ala	Ala	Ala	Arg	
				145					150					155			
20	AAA	GAA	GCA	GGC	ATG	GAC	GCA	CAG	CCA	GAT	GCG	ACC	GAG	CAG	GCA	CTT	1248
20	Lys	Glu	Ala	Gly	Met	Asp	Ala	Gln	Pro	Asp	Ala	Thr	Glu	Gln	Ala	Leu ·	
			160					165					170				
	GAG	GGT	TCC	CGT	GGC	GCA	AGC	GTA	GAT	GGA	ATC	CCA	GTT	CAC	GCA	GTC	1296
25	Glu	Gly	Ser	Arg	Gly	Ala	Ser	Val	Asp	Gly	[le	Pro	Val	His	Ala	Val	
		175					180					185					•
	CGC	ATG	TCC	GGC	ATG	GTT	GCT	CAC	GAG	CAA	GTT	ATC	TTT	GGC	ACC	CAG	1344
	Arg	Met	Ser	Gly	Met	Val	Ala	His	Glu	Gln	Val	Ile	Phe	Gly	Thr	Gln	
30	190					195					200					205	
	GGT	CAG	ACC	TTG	ACC	ATC	AAG	CAG	GAC	TCC	TAT	GAT	CGC	AAC	TCA	TTT	1392
	Gly	G1n	Thr	Leu	Thr	Ile	Lys	Gln	Asp	Ser	Tyr	Asp	Arg	Asn	Ser	Phe	
35					210					215					220		•
	GCA	CCA	GGT	GTC	TTG	GTG	GGT	GTG	CGC	AAC	ATT	GCA	CAG	CAC	CCA	GGC	1440
	Ala	Pro	Gly	Val	Leu	Val	Gly	Val	Arg	Asn	Ile	Ala	Gln	His	Pro	Gly	
				225					230					235		•	
40	CTA	GTC	GTA	GGA	CTT	GAG	CAT	TAC	CTA	GGC	CTG	TAA	AGGC	TCA	TTTC	AGCAGC	1493
	Leu	Val	Val	Gly	Leu	Glu	His	Tyr	Leu	Gly	Leu						
			240					245									
45	GGGT	GGA/	ATT 1	TTTT/	AAAA(GG AC	GCGT	TAA/	GG(CTGTO	GGCC	GAA	CAAG	TTA .	AATTO	GAGCGT	1553
	GGAG	TTG/	ATA (GCGT	GCAGT	rt ci	TTTT	ACTC	CACC	CCGC1	IGAT	GTT	GAGT	GGT	CAAC	TGATGT	1613
	TGAG	GGC	GCG (GAAGO	CACTO	CG TO	CGAG	TTTG(C GGC	GTCGT	rgcc	TGC	ΓACG.	AAA	CTTT	FGATAA	1673
	GCCG	AACO	CCT (CGAAC	ÇTGC1	TT CO	CAATO	GCTG(GT/	ATCTO	GCGC	CAC	ATCA'	TGG	AAGT(GGGCA	1733
50	CACT	GCTT	TTG (CTTG/	AGCAT	rg co	CAATO	GCCAC	GA1	rgta?	TATC	CGA	GGCA'	TTT	CTCG	GTCCGC	1793
	GACC	CATO	GAA 1	rtggi	rccg/	AC AC	CCGC	CATT	TT(CCTT	CTCT	CAA	CTGT	CTC .	AGCG1	TTTCGT	1853

	GCACAGCGGA GAATCGGAAG TAGTGGTGCC CACTCTCATC GATGAAGATC CGCAGTT	GCG 1913
	TGAACTTTTC ATGCACGCCA TGGATGAGTC TCGGTTCGCT TTCAATGAGC TGCTTAA	TGC 1973
i	GCTGGAAGAA AAACTTGGCG ATGAACCG	2001
	(2) INFORMATION FOR SEQ ID NO: 24	
0	(i) SEQUENCE CHARACTERISTICS:	
-	(A) LENGTH: 248 amino acids	
	(B) TYPE: amino acid	
	(D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: protein	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
	Met Gly Ile Lys Val Gly Val Leu Gly Ala Lys Gly Arg Val Gly Gl	n
20	1 5 10 15	
	Thr Ile Val Ala Ala Val Asn Glu Ser Asp Asp Leu Glu Leu Val Al	a
	20 25 30	
	Glu Ile Gly Val Asp Asp Leu Ser Leu Leu Val Asp Asn Gly Al	a
25	35 40 45	
	Glu Val Val Asp Phe Thr Thr Pro Asn Ala Val Met Gly Asn Le	u
	50 55 60	
30	Glu Phe Cys Ile Asn Asn Gly Ile Ser Ala Val Val Gly Thr Thr Gl 65 70 75	.y 30
	Phe Asp Asp Ala Arg Leu Glu Gln Val Arg Ala Trp Leu Glu Gly Ly	
	85 90 95	S
35	Asp Asn Val Gly Val Leu Ile Ala Pro Asn Phe Ala Ile Ser Ala Va	ıl
	100 105 110	
	Leu Thr Met Val Phe Ser Lys Gln Ala Ala Arg Phe Phe Glu Ser Al	a
	115 120 125	
40	Glu Val Ile Glu Leu His His Pro Asn Lys Leu Asp Ala Pro Ser G	y
	130 135 140	
	Thr Ala Ile His Thr Ala Gln Gly Ile Ala Ala Ala Arg Lys Glu A	la
45	145 150 155 16	3 0
	Gly Met Asp Ala Gln Pro Asp Ala Thr Glu Gln Ala Leu Glu Gly S	er
	165 170 175	
50	Arg Gly Ala Ser Val Asp Gly Ile Pro Val His Ala Val Arg Met S	er
50	180 185 190	
	Gly Met Val Ala His Glu Gln Val Ile Phe Gly Thr Gln Gly Gln T	nr

15

25

Claims

- 1. A recombinant DNA autonomously replicable in cells of coryneform bacteria, comprising a DNA sequence coding for a diaminopicolinate decarboxylase, and a DNA sequence coding for a diaminopicolinate dehydrogenase.
 - 2. The recombinant DNA according to claim 2, wherein said DNA sequence coding for the diaminopicolinate decarboxylase codes for an amino acid sequence shown in SEQ ID NO: 5 in Sequence Listing, or an amino acid sequence substantially the same as the amino acid sequence shown in SEQ ID NO: 5.

3. The recombinant DNA according to claim 1, wherein said DNA sequence coding for the diaminopicolinate dehydrogenase codes for an amino acid sequence depicted in SEQ ID NO: 9 in Sequence Listing, or an amino acid sequence substantially the same as the amino acid sequence depicted in SEQ ID NO: 9.

- 4. A coryneform bacterium in which said DNA sequence coding for a diaminopicolinate decarboxylase, and said DNA sequence coding for a diaminopicolinate dehydrogenase are enhanced.
 - 5. The coryneform bacterium according to claim 4, which is transformed by introduction of the recombinant DNA as defined in claim 1.

 A method for producing L-lysine comprising the steps of cultivating said coryneform bacterium as defined in claim 4 in a medium, to allow L-lysine to be produced and accumulated in a culture, and collecting L-lysine from the culture.

7. A method for producing L-lysine comprising the steps of cultivating said coryneform bacterium as defined in claim 5 in a medium, to allow L-lysine to be produced and accumulated in a culture, and collecting L-lysine from the culture.

45

35

50

F1G. 1

FIG. 2

F1G. 3

F1G. 4

F1G. 5

F1G. 6

F1G. 7

F1G. 8

F1G. 9

FIG. 10

FIG. 11

F/G. 12

F/G, 13

F/G. 14

THIS PAGE BLANK (USPTO)

FEB 2 6 1998 LIBRARY