三角比と三角関数

2022.04.25

2次関数と方程式(復習+)

(1)
$$y = a(x - b)^2 + c$$

$$(1)$$
 $y = a(x-b)^2 + c$ $y = ax^2$ のグラフと形は同じ

- (1) $y = a(x b)^2 + c$
 - ・ $y=ax^2$ のグラフと形は同じ
 - ・x方向にb,y方向にc平行移動

- (1) $y = a(x b)^2 + c$
 - • $y=ax^2$ のグラフと形は同じ
 - ・x方向にb,y方向にc平行移動
 - ・頂点は (b, c)

- (1) $y = a(x b)^2 + c$
 - • $y=ax^2$ のグラフと形は同じ
 - ・x 方向にb, y 方向にc 平行移動
 - ・頂点は (b, c)
- (2) $y = ax^2 + bx + c$

(1)
$$y = a(x - b)^2 + c$$

- ・ $y=ax^2$ のグラフと形は同じ
- ・x 方向にb, y 方向にc 平行移動
- ・頂点は (b, c)

・(1)の形に変形(平方完成)

(1)
$$y = a(x - b)^2 + c$$

- ・ $y=ax^2$ のグラフと形は同じ
- ・x 方向にb, y 方向にc 平行移動
- ・頂点は (b, c)

(2)
$$y = ax^2 + bx + c$$

- ・(1)の形に変形(平方完成)
- •例) $y = x^2 + 4x + 1$

(1)
$$y = a(x - b)^2 + c$$

- ・ $y=ax^2$ のグラフと形は同じ
- ・x 方向にb,y 方向にc 平行移動
- ・頂点は (b, c)

(2)
$$y = ax^2 + bx + c$$

- ・(1)の形に変形(平方完成)
- ・例) $y=x^2+4x+1 = (x^2+4x+4)-4+1$

(1)
$$y = a(x - b)^2 + c$$

- ・ $y=ax^2$ のグラフと形は同じ
- ・x 方向にb,y 方向にc 平行移動
- ・頂点は (b, c)

- ・(1)の形に変形(平方完成)
- ・例) $y = x^2 + 4x + 1$ = $(x^2 + 4x + 4) - 4 + 1 = (x + 2)^2 - 3$

- (1) $y = a(x b)^2 + c$
 - ・ $y=ax^2$ のグラフと形は同じ
 - ・x方向にb,y方向にc平行移動
 - ・頂点は (b, c)

- ・(1)の形に変形(平方完成)
- ・例) $y=x^2+4x+1 = (x^2+4x+4)-4+1 = (x+2)^2-3$ 項点は(-2,-3)

2次方程式の解

2次方程式の解

• 方程式 $ax^2 + bx + c = 0$ の解は $y = ax^2 + bx + c$ のグラフとx軸との交点のx座標

2次方程式の解

• 方程式 $ax^2 + bx + c = 0$ の解は $y = ax^2 + bx + c$ のグラフとx軸との交点のx座標

課題 0508-1 「関数のグラフ」でグラフをかき, 方程式の解(整数か分母が 2 の分数)を求めよ

[1]
$$y = x^2 - 2x - 3$$
, $x^2 - 2x - 3 = 0$

[2]
$$y = 2x^2 + 7x - 4$$
, $2x^2 + 7x - 4 = 0$

$$\bullet \ x^2 + 2ax + b = 0$$

•
$$x^2 + 2ax + b = 0$$

 $(x+a)^2 - a^2 + b = 0$

$$ullet x^2 + 2ax + b = 0 \ (x+a)^2 - a^2 + b = 0 \ (x+a)^2 = a^2 - b$$

•
$$x^2 + 2ax + b = 0$$

 $(x+a)^2 - a^2 + b = 0$
 $(x+a)^2 = a^2 - b$
 $x + a = \pm \sqrt{a^2 - b}$

•
$$x^2 + 2ax + b = 0$$

 $(x+a)^2 - a^2 + b = 0$
 $(x+a)^2 = a^2 - b$
 $x + a = \pm \sqrt{a^2 - b}$
よって $x = -a \pm \sqrt{a^2 - b}$

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

例)
$$2x^2-5x+1=0$$

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

例)
$$2x^2 - 5x + 1 = 0$$
 $x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

例)
$$2x^2 - 5x + 1 = 0$$
 $x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{5 \pm \sqrt{17}}{4}$

ullet 2 次方程式 $ax^2+bx+c=0$ の解

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

例)
$$2x^2 - 5x + 1 = 0$$
 $x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{5 \pm \sqrt{17}}{4}$

課題 0508-2 次の2次方程式を解け.

Text P.74

三角比

● 角 C が直角の直角三角形 △ABC

● 角 C が直角の直角三角形 △ABC

$$\Longrightarrow \left| a^2 + b^2 = c^2 \right|$$

● 角 C が直角の直角三角形 △ABC

$$\Longrightarrow \left| a^2 + b^2 = c^2 \right|$$

課題 0508-3 図のa, b, cを求めよ

● 角 C が直角の直角三角形 △ABC

$$\Longrightarrow \boxed{a^2+b^2=c^2}$$

課題 0508-3 図のa, b, cを求めよ

$$\cos heta = rac{$$
 馬辺
斜辺

$$\sin heta = rac{高さ}{斜辺}$$

$$an heta=rac{高さ}$$
底辺

$$\cos heta = rac{$$
 馬辺
斜辺

$$\sin heta = rac{高さ} 斜辺$$

$$an heta = rac{高さ}$$
底辺

比だから大きさによらない

$$\cos heta = rac{$$
 馬辺
斜辺

$$\sin heta = rac{高さ}{斜辺}$$

$$an heta = rac{高さ}$$
底辺

比だから大きさによらない 角 θ だけで決まる

$$\cos \theta = \frac{$$
 底辺 斜辺

$$\sin heta = rac{高さ}{斜辺}$$
 高さ

$$an heta = rac{高さ}{底辺}$$
 比

比だから大きさによらない 角 θ だけで決まる

$$\cos \theta = \frac{$$
底辺} 斜辺

$$\sin heta = rac{高さ}{斜辺}$$
 高さ

$$an heta = rac{ 高さ}{ 底辺}$$
 比

比だから大きさによらない 角 θ だけで決まる

課題 0508-4 次の三角比を求めよ.

- $[1] \cos 30^{\circ}$
- $[2] \sin 45^{\circ}$
- $[3] \tan 60^{\circ}$

練習 (鋭角の三角比)

課題 0508-5 図の三角形について次を求めよ.

 $[1] x^{\circ}$

[2] 辺AC

 $[3] \tan x$

 $[4] \cos x$

 $[5] \sin x$

- $[6] \tan 59^{\circ}$
- $[7] \cos 59\degree$
- $[8] \sin 59^{\circ}$

三角比の拡張

鋭角から以下の角に拡張する.

- $(1) \,\, 0^{\circ}$
- $(2) 90^{\circ}$
- (3) 鈍角 $(90^{\circ} < \theta < 180^{\circ})$

三角比の拡張

鋭角から以下の角に拡張する.

- $(1) \ 0^{\circ}$
- $(2) 90^{\circ}$
- (3) 鈍角 $(90^{\circ} < \theta < 180^{\circ})$

課題 0508-6 「鈍角等の三角比」を動かそう.次の三角比は どうなるだろうか.

 $[1] \cos 0^{\circ}$ $[2] \cos 90^{\circ}$

 $[3] \cos 120^{\circ}$

鈍角等の三角比

• 鈍角のとき, θ を1つの角とする直角三角形ができない

鈍角等の三角比

- 鈍角のとき, θ を1つの角とする直角三角形ができない
- 座標軸をおく
- 頂点 P の座標を (x, y) とする

鈍角等の三角比

- 鈍角のとき, θ を1つの角とする直角三角形ができない
- 座標軸をおく
- 頂点 P の座標を (x, y) とする

• 斜辺 = OP, 底辺 = x, 高さ = y $\cos \theta = \frac{x}{\mathrm{OP}}, \ \sin \theta = \frac{y}{\mathrm{OP}}, \ \tan \theta = \frac{y}{x}$

$$\cos 0^{\circ} =$$

$$\sin 0^{\circ} =$$

$$\tan 0^{\circ} =$$

$$\cos 0^{\circ} = 1$$

$$\sin 0^{\circ} =$$

$$\tan 0^{\circ} =$$

$$\cos 0^{\circ} = 1$$

$$\sin 0^{\circ} = 0$$

$$\tan 0^{\circ} =$$

$$\cos 0^{\circ} = 1$$

$$\sin 0^{\circ} = 0$$

$$\tan 0^{\circ} = 0$$

$$\cos 90^{\circ} =$$

$$\sin 90^{\circ} =$$

$$\tan 90^{\circ} =$$

$$\cos 90^{\circ} = 0$$

$$\sin 90^{\circ} =$$

$$\tan 90^{\circ} =$$

$$\cos 90^{\circ} = 0$$

$$\sin 90^{\circ} = 1$$

$$\tan 90^{\circ} =$$

 $\cos 90^{\circ} = 0$

 $\sin 90^{\circ} = 1$

 $\tan 90^\circ =$ 値がない

$$\cos 90^{\circ} = 0$$

$$\sin 90^{\circ} = 1$$

 $\tan 90^{\circ} = 値がない$

課題 0508-7 $\frac{0}{0}$, $\frac{1}{0}$ の値はどうなるか,次から選べ

1 0 値がない 値が決まらない

cosは

sin は

tan は

cos は —

sin は

tan は

cos は —

 $\sin \mathcal{U} +$

tan は

cos は —

 $\sin \mathcal{U} +$

tanはー

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

証)
$$\tan \theta = \frac{y}{x} = \frac{\frac{g}{OP}}{\frac{x}{OP}}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

証)
$$\tan \theta = \frac{y}{x} = \frac{\frac{y}{\text{OP}}}{\frac{x}{\text{OP}}} = \frac{\sin \theta}{\cos \theta}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

証)
$$\tan \theta = \frac{y}{x} = \frac{\frac{y}{\text{OP}}}{\frac{x}{\text{OP}}} = \frac{\sin \theta}{\cos \theta}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$ilde{\mathbb{I}}) an heta = rac{y}{x} = rac{rac{y}{ ext{OP}}}{rac{x}{ ext{OP}}} = rac{\sin heta}{\cos heta}$$

$$(2) \; \cos^2 heta + \sin^2 heta = 1 \;\;\;\; (\cos heta)^2 au \cos^2 heta$$
と書く KeTMath では $\cos(2, heta)$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

証)
$$\tan \theta = \frac{y}{x} = \frac{\frac{y}{OP}}{\frac{x}{OP}} = \frac{\sin \theta}{\cos \theta}$$

$$(2) \cos^2\theta + \sin^2\theta = 1$$

 $(\cos \theta)^2 \delta \cos^2 \theta$ と書く

KeTMath では $\cos(2,\theta)$

証)
$$\cos^2 \theta + \sin^2 \theta = \frac{x^2}{\mathrm{OP}^2} + \frac{y^2}{\mathrm{OP}^2}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

証)
$$\tan \theta = \frac{y}{x} = \frac{\frac{y}{\text{OP}}}{\frac{x}{\text{OP}}} = \frac{\sin \theta}{\cos \theta}$$

$$(2) \cos^2\theta + \sin^2\theta = 1$$

 $(\cos \theta)^2 \delta \cos^2 \theta$ と書く

KeTMath では $\cos(2,\theta)$

III)
$$\cos^2 \theta + \sin^2 \theta = \frac{x^2}{\text{OP}^2} + \frac{y^2}{\text{OP}^2} = \frac{x^2 + y^2}{\text{OP}^2} = 1$$

例題
$$\cos \theta = \frac{1}{3}$$
 のとき, $\sin \theta$ を求めよ.

例題 $\cos \theta = \frac{1}{3}$ のとき, $\sin \theta$ を求めよ.

解
$$\frac{1}{9} + \sin^2 \theta = 1$$
 より

例題 $\cos \theta = \frac{1}{3}$ のとき, $\sin \theta$ を求めよ.

解
$$\frac{1}{9} + \sin^2 \theta = 1$$
 より $\sin^2 \theta = 1 - \frac{1}{9} = \frac{8}{9}$

例題 $\cos \theta = \frac{1}{3}$ のとき, $\sin \theta$ を求めよ.

解
$$\frac{1}{9} + \sin^2 \theta = 1$$
 より $\sin^2 \theta = 1 - \frac{1}{9} = \frac{8}{9}$

鋭角でも鈍角でも $\sin \theta > 0$ だから

例題 $\cos \theta = \frac{1}{3}$ のとき, $\sin \theta$ を求めよ.

解
$$\frac{1}{9} + \sin^2 \theta = 1$$
 より $\sin^2 \theta = 1 - \frac{1}{9} = \frac{8}{9}$

鋭角でも鈍角でも $\sin heta > 0$ だから $\sin heta = \frac{2\sqrt{2}}{3}$

例題 $\cos \theta = \frac{1}{3}$ のとき, $\sin \theta$ を求めよ.

解
$$\frac{1}{9} + \sin^2 \theta = 1$$
 より $\sin^2 \theta = 1 - \frac{1}{9} = \frac{8}{9}$

鋭角でも鈍角でも $\sin heta > 0$ だから $\sin heta = \frac{2\sqrt{2}}{3}$

課題 0508- $8\sin\theta=rac{2}{3}$ とする.次の場合のそれぞれについて $\cos\theta$ を求めよ

[1] heta が鋭角のとき [2] heta が鈍角のとき

ullet これまで,角 heta は 2 つの線分の間の角だった $0^\circ \le heta \le 360^\circ$

• これまで,角 θ は2つの線分の間の角だった

$$0^{\circ} \leqq heta \leqq 360^{\circ}$$

- 角を回転を表す量とすると θ はどんな実数でもよい.
 - $\cdot x$ 軸を始線とする
 - $\cdot \theta > 0^{\circ}$ のとき,反時計回り

 \bullet これまで,角 θ は2つの線分の間の角だった

$$0^{\circ} \leqq heta \leqq 360^{\circ}$$

- 角を回転を表す量とすると θ はどんな実数でもよい.
 - $\cdot x$ 軸を始線とする
 - \cdot $heta > 0^\circ$ のとき,反時計回り
 - \cdot $heta < 0^\circ$ のとき,時計回り

「一般角」で一般角を見てみよう

一般角

「一般角」で一般角を見てみよう

例
$$heta=240^\circ \ \cos heta=$$

例
$$heta=240^\circ \ \cos heta=rac{-1}{2}=$$

例
$$heta=240^\circ \ \cos heta=rac{-1}{2}=-rac{1}{2}$$

例
$$heta=240^\circ \\ \cos heta=\frac{-1}{2}=-\frac{1}{2}$$
 $\sin heta=$

例
$$heta=240^\circ \\ \cos heta=\frac{-1}{2}=-\frac{1}{2} \\ \sin heta=\frac{\sqrt{3}}{2}$$

例
$$heta=240^\circ \\ \cos\theta=\frac{-1}{2}=-\frac{1}{2}$$
 $\sin\theta=\frac{\sqrt{3}}{2}$ $\tan\theta=$

例
$$heta=240^\circ \\ \cos\theta=\frac{-1}{2}=-\frac{1}{2} \\ \sin\theta=\frac{\sqrt{3}}{2} \\ \tan\theta=\frac{-\sqrt{3}}{-1}$$

例
$$heta=240^\circ \\ \cos\theta=\frac{-1}{2}=-\frac{1}{2}$$
 $\sin\theta=\frac{\sqrt{3}}{2}$ $\tan\theta=\frac{-\sqrt{3}}{-1}=\sqrt{3}$

• 座標を使う(鈍角の場合と同じ)

例
$$\theta = 240^\circ$$
 $\cos \theta = \frac{-1}{2} = -\frac{1}{2}$
 $\sin \theta = \frac{\sqrt{3}}{2}$
 $\tan \theta = \frac{-\sqrt{3}}{-1} = \sqrt{3}$

課題 0508-10 次の値を求めよ.

$$[1] \cos(-30^{\circ}) \quad [2] \sin(-30^{\circ}) \quad [3] \tan(-30^{\circ})$$

弧度法 (radian)

度。

1周を360°とする

- 1周を360°とする
- 半周は180°とする

- 1周を360°とする
- 半周は180°とする
- ullet 一周の $\dfrac{1}{360}$ を 1° とする

- 1周を360°とする
- 半周は180°とする
- \bullet 一周の $\frac{1}{360}$ を 1° とする
- 数学的な意味は余りない
- 日常的には使いやすい

ullet 弧の長さ ℓ と半径rの比 $heta(\mathrm{rad})=rac{\ell}{r}$

ullet 弧の長さ ℓ と半径rの比 $heta(\mathrm{rad})=rac{\ell}{r}$

・半径rの円周は $2\pi r$ だから1周の角 $(360^\circ)=rac{2\pi r}{r}=2\pi$

ullet 弧の長さ ℓ と半径rの比 $heta(\mathrm{rad}) = rac{\ell}{r}$

- ・半径rの円周は $2\pi r$ だから1周の角 $(360^\circ)=rac{2\pi r}{r}=2\pi$
- ◆ 半周の角 (180°) = π

ullet 弧の長さ ℓ と半径rの比 $heta(\mathrm{rad})=rac{\ell}{r}$

- ・半径rの円周は $2\pi r$ だから1周の角 $(360^\circ)=rac{2\pi r}{r}=2\pi$
- 半周の角 (180°) = π
- 比なので単位はない(sin などと同じ)

ullet 弧の長さ ℓ と半径rの比 $heta(\mathrm{rad})=rac{\ell}{r}$

- ◆ 半周の角 (180°) = π
- 比なので単位はない(sin などと同じ)度と区別するときは、ラジアン(rad)を付ける

$$ullet$$
 $ullet$ $ullet$

$$ullet$$
 $ullet$ $ullet$

$$ullet$$
 $ullet$ $ullet$

$$ullet$$
 60° は 180° の $egin{array}{c} 1 \ 3 \end{array}$, したがって $60^\circ = egin{array}{c} \pi \ 3 \end{array}$

$$ullet$$
 $ullet$ $ullet$

$$ullet$$
 60° は 180° の $egin{array}{c} 1 \ 3 \end{array}$, したがって $60^\circ = egin{array}{c} \pi \ 3 \end{array}$

$$ullet$$
 $ullet$ $ullet$

• 1°は
$$\frac{\pi}{180}$$
 1(ラジアン)は $\frac{180}{\pi}$

$$ullet$$
 60° は 180° の $egin{array}{c} rac{1}{3} \end{array}$, したがって $60^\circ = \boxed{rac{\pi}{3}}$

$$ullet$$
 $ullet$ $ullet$

課題 0508-11 °をラジアン,ラジアンを°に変換せよ.

$$[1]~30^{\circ}$$
 $\qquad \qquad [2]~45^{\circ}$ $\qquad \qquad [3]~\pi$

$$[2] 45^{\circ}$$

$$[3] \pi$$

$$[4]\,rac{2\pi}{3}$$