Digital Image Processing

Medical Images

Emad Fatemizadeh

Distance/online Course: Session 02 Episode #1

Date: 16 February 2021, 28th Bahman 1399

Basic Definitions

- > Digital Image, Mathematical Definition:
 - -I = f(x, y)
 - *I*: intensity (or color)
 - -(x,y): Position or Coordination
- > When (x, y) and I are finite and discrete quantities \rightarrow digital image
 - Pixels, picture elements, image elements, Voxel
 - › Digital Camera: Physical Pixel
 - > Medical Images: Physical Voxel

Matrix Representation

 \rightarrow Image Representation, f(x, y):

0.71	0.81	0.81	0.87	0.57	0.37	0.80
0.49	0.62	0.60	0.58	0.50	0.60	0.58
0.86	0.84	0.74	0.58	0.51	0.39	0.73
0.96	0.67	0.54	0.85	0.48	0.37	0.88
0.69	0.49	0.56	0.66	0.43	0.42	0.77
0.79	0.73	0.90	0.67	0.33	0.61	0.69
0.91	0.94	0.89	0.49	0.41	0.78	0.78

$$f(3,4)=0.48$$

Samples (1)

> Radiography

SHARIF UNIVERSITY OF TECHNOLOGY, MIAP, E. FATEMIZADEH

Samples (2)

> CT

Samples (3)

> MRI

SHARIF UNIVERSITY OF TECHNOLOGY, MIAP, E. FATEMIZADEH

Samples (4)

> MRI

SHARIF UNIVERSITY OF TECHNOLOGY, MIAP, E. FATEMIZADEH

 π

Samples (5)

> US

Samples (6)

> US

SHARIF UNIVERSITY OF TECHNOLOGY, MIAP, E. FATEMIZADEH

 π

Samples (7)

> US

Samples (8)

> SPECT

Samples (9)

> PET

Samples (10)

> PET

Samples (11)

> PET-CT

Samples (12)

> MRA

Sample (13)

> MRI as a Multi Channels imaging modalities:

Applications (1)

- > DIP applications:
 - Image Quality Enrichment
 - Data Redundancy Reduction
 - Automatic Detection
 - Machine Vision
 - Machine Recognition/Verification

Applications (2)

> An Example of Image Processing Results

Basic Concepts (1)

- > Frequency in 2D:
 - Gray level changes in any direction

Basic Concepts (2)

- > Image Sampling
 - How to determine the sampling rate?
 - Nyquist sampling theorem
 - \rightarrow If input is a <u>band-limited signal</u> with maximum frequency Ω_{N}
 - > The input can be <u>uniquely determined</u> if sampling rate $\Omega_{\rm S}$ > $2\Omega_{\rm N}$
 - Nyquist frequency : Ω_N
 - Nyquist rate : Ω_S

Basic Concepts (3)

- > Image Quantization
 - L- level digital image of size MxN
 - Means: A digital image having:
 - > A spatial resolution MxN pixels
 - > A gray-level resolution of L levels (*o-L-1*)
 - Medical image standard: 16/12 bits
- > Spatial resolution in real-world space
 - Pixel and Voxel dimension $(1 \times 1 \times 1) = 1mm^3$

Basic Concepts (4)

> Pixel and Voxel in Medical Images:

Basic Concepts (4)

> Voxel in Medical Images:

Basic Concepts (5)

- \rightarrow L = 2^k gray levels, gray scales [0,...,L-1]
- > The dynamic range of an image
 - [min(image) max(image)]
 - If the dynamic range of an image spans a significant portion of the gray scale → high contrast
 - Otherwise, low dynamic range results in a washed out gray look

Basic Concepts (6)

- > Gray Levels in CT:
 - Gray levels in CT image represent attenuation coefficient in each pixel.
 - Gray levels expressed in Hounsfield units (HU)
 - > Water: o HU
 - > Air: -1000 HU
 - > Bone: 400 3000 HU
 - Maximum CT number is 2000-4000

 $CT = \frac{\mu - \mu_{\text{Water}}}{1000 \text{ HU}}$

 μ_{Water} - μ_{air}

Basic Concepts (7)

- > CT images displayed with suitable brightness and contrast.
 - Two important value: Window Level (WL) and Window Width (WW)
 - > WL is CT number of mid-grey
 - > WW is number of HU from black to white
- > Choice of WW and WL dictated by clinical need
 - -1000 HU
 - o HU
 - 4000+ HU

Basic Concepts (8)

> WL and WW effect:

Basic Concepts (8)

- > Paradigm of image processing:
 - Low-level processing
 - > Inputs and outputs are images
 - > Primitive operations: de-noise, enhancement, sharpening, ...
 - Mid-level processing
 - > Inputs are images, outputs are attributes extracted from images
 - > Segmentation, classification,...
 - High-level processing
 - > "Make sense" of an ensemble of recognized objects by machines

Matlab Command (1)

- Matlab Image Processing Read/Write:
 - imformats
 - imfinfo, imread, imwrite
 - dicominfo, dicomread, dicomwrite
 - analyze75info, analyze75read (Mayo Clinic)
 - interfileinfo, interfileread

Matlab Command (2)

- Matlab Image Processing *Display*:
- > image, imagesc, imshow, imtool, subimage
- > colorbar, montage

Matlab Command (3)

- Matlab Image Processing *Type Conversion*:
- > double, ind2gray, im2double
- viint16, uint8, gray2ind

The End

> AnY QuEsTiOn?

SHARIF UNIVERSITY OF TECHNOLOGY, MIAP, E. FATEMIZADEH