4.2 Considere o problema de se testar se um AFD e uma expressão regular são equivalentes. Expresse esse problema como uma linguagem e mostre que ela é decidível.

Let $EQ_{\mathsf{DFA},\mathsf{REX}} = \{(A,R)|\ A \text{ is a DFA}, R \text{ is a regular expression and } L(A) = L(R)\}$. The following TM E decides $EQ_{\mathsf{DFA},\mathsf{REX}}$.

E = "On input $\langle A, R \rangle$:

- Convert regular expression R to an equivalent DFA B using the procedure given in Theorem 1.28.
- 2. Use the TM C for deciding EQ_{DFA} given in Theorem 4.5, on input $\langle A,B\rangle$.

3. If R accepts, accept. If R rejects, reject."

4.3 Seja $TOD_{\mathsf{AFD}} = \{ \langle A \rangle \mid A \text{ \'e um AFD que reconhece } \Sigma^* \}$. Mostre que TOD_{AFD} $\acute{\mathsf{e}}$ decidível

Let $ALL_{\mathsf{DFA}} = \{\langle A \rangle | \ A \text{ is a DFA that recognizes } \Sigma^* \}.$ The following TM L decides $ALL_{\mathsf{DFA}}.$

L = "On input $\langle A \rangle$ where A is a DFA:

- 1. Construct DFA B that recognizes $\overline{L(A)}$ as described in Exercise 1.10.
- 2. Run TM T from Theorem 4.4 on input $\langle B \rangle$, where T decides E_{DFA} .
- 3. If T accepts, accept. If T rejects, reject."

4.4 $A\varepsilon_{\mathsf{GLC}} = \{\langle G \rangle \mid G \text{ é uma GLC que gera } \varepsilon \}$. Mostre que $A\varepsilon_{\mathsf{GLC}}$ é decidível.

Let $A\varepsilon_{\mathsf{CFG}} = \{\langle G \rangle | G \text{ is a CFG that generates } \varepsilon \}$. The following TM V decides $A\varepsilon_{\mathsf{CFG}}$.

V = "On input $\langle G \rangle$ where G is a CFG:

- 1. Run TM S from Theorem 4.6 on input $\langle G, \varepsilon \rangle$, where S is a decider for A_{CFG} .
- 2. If S accepts, accept. If S rejects, reject."

	o $\{1, 2, 3, 4, 5\}$ e Y o Y e $g: X \longrightarrow Y$ nas t da resposta negativa.	conjunto {6, 7, 8, 9, 10}. Descrev tabelas abaixo. Responda a cada ite	
Oma tot que té pais e um deciere Alec- escate en ania en el decidirez.	$ \begin{array}{c cc} n & f(n) \\ \hline 1 & 6 \\ 2 & 7 \\ 3 & 6 \\ 4 & 7 \end{array} $	$ \begin{array}{c cc} n & g(n) \\ \hline 1 & 10 \\ 2 & 9 \\ 3 & 8 \\ 4 & 7 \end{array} $	
	5 6	5 6	

a.	f é um-para-um?	Rd.	g é um-para-um?
b.	f é sobrejetora?	e.	g é sobrejetora?
c.	f é uma correspondência?	f.	g é uma correspondência?

- a. g is one-to-one. f is not one-to-one because f(1) = f(3).
- b. g is onto. f is not onto because there does not exist $x \in X$ such that f(x) = 10.
- c. g is a correspondence because g is one-to-one and onto. f is not a correspondence because f is not one-to-one and onto.

4.6

Seja $\mathcal B$ o conjunto de todas as seqüências infinitas sobre $\{0,1\}$. Mostre que $\mathcal B$ é incontável, usando uma prova por diagonalização.

Suppose \mathcal{B} is countable and a correspondence $f: \mathcal{N} \longrightarrow \mathcal{B}$ exists. We construct x in \mathcal{B} that is not paired with anything in \mathcal{N} . Let $x = x_1x_2 \ldots$ Let $x_i = 0$ if $f(i)_i = 1$, and $x_i = 1$ if $f(i)_i = 0$ where $f(i)_i$ is the *i*th bit of f(i). Therefore, we ensure that x is not f(i) for any i because it differs from f(i) in the *i*th symbol, and a contradiction occurs.

4.9

Seja INFINITA $_{AFD}$ = { <A> | A é uma AFD e L(A) é uma linguagem infinita}. Mostre que INFINITA $_{AFD}$ é decidível.

Let $INFINITE_{DFA} = \{\langle A \rangle | \ L(A) \ \text{is an infinite language} \}.$ The following TM I decides $INFINITE_{DFA}.$

I = "On input $\langle A \rangle$ where A is a DFA:

- 1. Let k be the number of states of A.
- 2. Construct a DFA D that accepts strings of length $\geq k$.
- 3. Construct a DFA M such that $L(M) = L(A) \cap L(D)$.
- 4. Run TM T from Theorem 4.4 on input $\langle M \rangle$, where T decides E_{OFA} .
- 5. If T accepts, reject. If T rejects, accept."

If A accepts a string with length at least k, this string can be must cause A to enter the same state at least twice, so it can be pumped up to obtain infinitely many strings that are accepted by A. Conversely, if A accepts infinitely many strings, it must accept strings of arbitrarily long lengths, in particular, a string of length at least k.

4.11

Seja A = $\{ \le M \ge | M \text{ \'e um AFD que não aceita nenhuma cadeia contendo um número ímpar de 1s} \}$. Mostre que A é decidível.

The following TM X decides A.

X = "On input $\langle M \rangle$ where M is a DFA:

- Construct a DFA O that accepts any string containing an odd number of 1s.
- **2.** Construct DFA B such that $L(B) = L(M) \cap L(O)$.
- 3. Run TM T from Theorem 4.4 on input $\langle B \rangle$, where T decides E_{DFA} .
- 4. If T accepts, accept. If T rejects, reject."

4.12

Seja A = {<R,S> | R e S são expressões regulares e L(R) \subseteq L(S)}. Mostre que A é decidível.

We observe that $L(R)\subseteq L(S)$ if and only if $\overline{L(S)}\cap L(R)=\emptyset$. The following TM X decides A.

X = "On input $\langle R, S \rangle$ where R and S are regular expressions:

- 1. Construct DFA E such that $L(E) = \overline{L(S)} \cap L(R)$.
- 2. Run TM T from Theorem 4.4 on input $\langle E \rangle$, where T decides E_{DFA} .
- 3. If T accepts, accept. If T rejects, reject."

 14 4.13 Seja $\Sigma=\{0,1\}$. Mostre que o problema de se determinar se uma GLC gera alguma cadeia em 1 * é decidível. Em outras palavras, mostre que

Let $A = \{v | v \text{ is of the form } ww^{\mathcal{R}} \text{ for } w \in \{0,1\}^*\}$. A is a CFL. Problem 2.17 showed that $B \cap A$ is context free if B is regular. The following TM X decides E.

X = "On input $\langle M \rangle$ where M is a DFA:

- 1. Let $C = L(M) \cap A$. Let G be the CFG of C.
- Run TM R from Theorem 4.7 on input (G), where R decides E_{CFG}.
- 3. If R accepts, reject. If R rejects, accept."

X decides E because a DFA M accepts some string of the form $ww^{\mathcal{R}}$ if and only if $L(M)\cap A\neq\emptyset$.

4.15 Seja $A = \{\langle R \rangle | R$ é uma expressão regular que descreve uma linguagem contendo pelo menos uma cadeia w que tem 111 como uma subcadeia (isto é, w = x111y para alguma x e alguma y)}. Mostre que A é decidível.

The following TM X decides A.

- X = "On input $\langle R \rangle$ where R is a regular expression:
 - 1. Construct DFA E that accepts $\Sigma^*111\Sigma^*$.
 - **2.** Construct DFA B such that $L(B) = L(R) \cap L(E)$.
 - 3. Run TM T from Theorem 4.4 on input $\langle B \rangle$, where T decides E_{OFA} .
 - 4. If T accepts, reject. If T rejects, accept."

4.22 Um estado inútil em um autômato com pilha nunca é atingido sobre qualquer cadeia de entrada. Considere o problema de se determinar se um autômato com pilha tem quaisquer estados inúteis. Formule esse problema como uma linguagen e mostre que ele é decidível.

Let $U = \{\langle P \rangle | P \text{ is a PDA that has useless states} \}$. The following TM Tdecides U.

T = "On input $\langle P \rangle$, where U is a PDA:

- 1. For each state q of P:
- Modify P so that q is the only accept state. 2.
- 3. Use the decider for E_{PDA} to test whether the modified PDA's language is empty. If it is, accept. If it is not, continue.
- 4. At this point, all states have been shown to be useful, so reject."

5.1 Mostre que EQ_{GLC} é indecidível.

Suppose for a contradiction that EQ_{CFG} were decidable. We construct a decider M for $ALL_{\mathsf{CFG}} = \{\langle G \rangle | \ G$ is a CFG and $L(G) = \Sigma^* \}$ as follows: M = "On input $\langle G \rangle$:

- 1. Construct a CFG H such that $L(H) = \Sigma^*$.
- 2. Run the decider for EQ_{CFG} on $\langle G, H \rangle$.
- 3. If it accepts, accept. If it rejects, reject."

M decides ALL_{CFG} assuming a decider for EQ_{CFG} exists. Since we know ALL_{CFG} is undecidable, we have a contradiction.

5.2 Mostre que EQ_{GLC} é co-Turing-reconhecível.

Here is a Turing Machine M which recognizes the complement of EQ_{CFG} : M ="On input (G, H):

- 1. Lexicographically generate the strings $x \in \Sigma^*$.
- 2. For each such string x:
- Test whether $x \in L(G)$ and whether $x \in L(H)$, using the algorithm for A_{CFG} .
- If one of the tests accepts and the other rejects, accept; otherwise, continue."
- 5.4 Se $A \leq_{\mathrm{m}} B$ e B é uma linguagem regular, isso implica que A seja uma linguagem regular? Por que ou por que não?

No, it does not imply that A is regular. For example, $\{a^nb^nc^n|n\geq 0\}\leq_m$ $\{a^nb^n| n \ge 0\}$. The reduction first tests whether its input is a member of $\{a^nb^nc^n|n\geq 0\}$. If so, it outputs the string ab, and if not, it outputs the string a.

R5.5 Mostre que A_{MT} não é redutível por mapeamento a V_{MT} . Em outras palavras, mostre que nenhuma função computável reduz AMT a VMT. (Dica: Use uma prova por contradição e fatos que você já conhece sobre AMT e VMT.)

Suppose for a contradiction that $A_{TM} \leq_m E_{TM}$ via reduction f. It follows from the definition of mapping reducibility that $\overline{A_{\mathsf{TM}}} \leq_{\mathsf{m}} \overline{E_{\mathsf{TM}}}$ via the same reduction function f. Observe that $\overline{E_{TM}}$ is Turing-recognizable, but, $\overline{A_{TM}}$ is not Turing-recognizable, contradicting Theorem 5.22.

R5.6 Mostre que ≤m é uma relação transitiva.

5.6 Suponha que $A \leq_{\mathrm{m}} B$ e $B \leq_{\mathrm{m}} C$. Então, existem funções computáveis f e gtais que $x \in A \iff f(x) \in B$ e $y \in B \iff g(y) \in C$. Considere a função composta h(x) = g(f(x)). Podemos construir uma MI que computa h como segue: primeiro, simule uma MT para f (tal MT existe porque supusemos que f é computável) sobre a entrada x e chame a saída de y. Então, simule uma MT para g sobre y. A soída á h(x) sobre y. A saída é h(x)=g(f(x)). Portanto, h é uma função computável. Além disso, $x\in A \iff h(x)\in C$. Logo, $A\leq_m C$ via a função de redução h.

R5.7 Mostre que se A é Turing-reconhecível e $A \leq_m \overline{A}$, então A é decidível.

Suppose $A \leq_m \overline{A}$. Then, $\overline{A} \leq_m A$, by the definition of mapping reducibility. Because A is Turing-recognizable, Theorem 5.22 implies that \overline{A} is Turingrecognizable, and then Theorem 4.16 implies that A is decidable.

 8 5.8 Na prova do Teorema 5 .15 modificamos a máquina de Turing M de modo que ela nunca tente mover sua cabeça além da extremidade esquerda da fita. Suponha que não fizéssemos essa modificação a M. Modifique a construção do PCP para lidar com esse caso.

5.8 Você tem que lidar com o caso em que a cabeça está na célula da extremidade esquerda da fita e tenta mover para a esquerda. Para fazer isso, acrescente domino

5.9 Seja $T = \{\langle M \rangle | M \text{ \'e uma MT que aceita } w^R \text{ sempre que ela aceita } w \}$. Mostre que

A seguir, perguntas 5.10, 5.11, 5.28 e 5.30:

- 5.10 Considere o problema de se determinar se uma máquina de Turing de duas fitas em algum momento escreve um símbolo não-branco sobre sua segunda fita quando ela é executada sobre a entrada w. Formule esse problema como uma linguagem e mostre que ele é indecidível.
- 5.11 Considere o problema de se determinar se uma máquina de Turing de duas fitas em algum momento escreve um símbolo não-branco sobre sua segunda fita durante o curso de sua computação sobre qualquer cadeia de entrada. Formule esse problema como uma linguagem e mostre que ele é indecidível.
- 5.28 Teorema de Rice. Seja P qualquer propriedade não-trivial da linguagem de uma máquina de Turing. Prove que o problema de determinar se a linguagem de uma dada máquina de Turing tem a propriedade P é indecidível.

Em termos mais formais, seja P uma linguagem constituída de descrições de máquinas de Turing, em que P satisfaz duas condições. Primeiro, P é não-trivial ela contém alguma descrição, mas não todas as descrições de MTs. Segundo, P é uma propriedade da linguagem da MT — quando $L(M_1) = L(M_2)$, temos que $\langle M_1 \rangle \in P$ sse $\langle M_2 \rangle \in P$. No caso, M_1 e M_2 são quaisquer MTs. Prove que P é uma linguagem indecidível.

- 5.30 Use o teorema de Rice, que aparece no Problema 5.28, para provar a indecidibilidade de cada uma das seguintes linguagens
 - $^{\mathsf{R}}$ a. $\mathit{INFINTTA}_{\mathsf{TM}} = \{\langle M
 angle | M ext{ \'e uma MT e } \mathit{L}(M) ext{ \'e uma linguagem infinita} \}.$
 - b. $\{\langle M \rangle | M \text{ \'e uma MT e 1011} \in L(M)\}.$
 - c. $TUDO_{\mathsf{TM}} = \{ \langle M \rangle | M \text{ \'e uma MT e } L(M) = \Sigma^* \}.$

A seguir, respostas 5.10, 5.11, 5.28 e 5.30:

- 5.10 Seja $B = \{(M, w) | M \text{ \'e uma MT de duas fitas que escreve um símbolo não-branco}$ Seja $B = \{(M, w) \mid M \}$ Mostre que A_{MT} se reduz a B. Suponha, para sua segunda fita quando roda $w\}$. Mostre que A_{MT} se reduz a B. Suponha, para A_{MT} B decide B. Fix B contact A_{MT} B decide B. o propósito de obter uma contradição, que a MT R decide B. Então, construa a MT S que usa R para decidir A_{MT} .
 - $S = \text{"Sobre a entrada } \langle M, w \rangle$:
 - 1. Use M para construir a seguinte MT de duas fitas, T

T ="Sobre a entrada x:

- 1. Simule M sobre x usando a primeira fita.
- 2. Se a simulação indicar que M aceita, escreva um símbolo não-branco na segunda fita."
- 2. Execute R sobre $\langle T,w\rangle$ para determinar se T sobre a entrada w escreve um símbolo não-branco na sua segunda fita.
- 3. Se R aceita, M aceita w; portanto, aceite. Caso contrário, rejeite.
- 5.11 Seja $C = \{\langle M \rangle | \ M$ é uma MT de duas fitas que escreve um símbolo não-branco na sua segunda fita quando roda sobre alguma entrada}. Mostre que $A_{\rm MT}$ se reduz a ${\it C}$. Suponha, para o propósito de obter uma contradição, que a MT ${\it R}$ decide ${\it C}$. Então, construa a MTS que usa R para decidir A_{MT} .
 - $S = \text{"Sobre a entrada } \langle M, w \rangle$:
 - 1. Use M e w para construir a seguinte MT de duas fitas, T_w . T_w = "Sobre qualquer entrada:
 - 1. Simule M sobre w usando a primeira fita.
 - 2. Se a simulação indicar que M aceita, escreva um símbolo não-branco na segunda fita."
 - 2. Execute R sobre (T_w) para determinar se T_w , em algum momento, escreve um símbolo não-branco na sua segunda fita.
 - 3. Se R aceita, M aceita w; portanto, aceite. Caso contrário,
- Suponha, para o propósito de obter uma contradição, que P é uma linguagem decidível satisfazendo as propriedades, e R_P uma MT que decide P. Mostramos como decidir $A_{\rm MT}$ usando R_P através da construção da MT S. Primeiro, seja $T_{\rm B}$ uma MT que campara raisita R_P através da construção da MT S. Como P não é trivial, existe uma MT T tal que $\langle T_{\emptyset} \rangle \in P$. Conceba S para decidir usando a capacidade de R_P de distinguir entre T_{\emptyset} e T.

 $S = \text{"Sobre a entrada } \langle M, w \rangle$:

1. Use M e w para construir a seguinte MT M_w . M_w = "Sobre a entrada x:

1. Simule M sobre w. Se ela pára e rejeita, rejeite.

- Se ela aceita, prossiga no estágio 2.

 2. Simule *T* sobre *x*. Se ela aceita, *aceite*."
- 2. Use a MT R_P para determinar se $\langle M_w \rangle \in P$. Se SIM, aceite. Se NÃO, rejeite.

A MT M_w simula T se M aceita w. Logo, $L(M_w)$ é igual a L(T) se M aceita w e é igual a \emptyset , em caso contrário. Portanto, $\langle M, w \rangle \in P$ sse M aceita w.

5.30 (a) INFINITATM é uma linguagem de descrições de MTs. Ela satisfaz as duas condições do teorema de Rice. Primeiro, ela é não-trivial porque algumas MTs têm linguagens infinitas e outras não têm. Segundo, ela depende apenas da linguagem. Se duas MTs reconhecem a mesma linguagem, então ou ambas têm descriç em INFINITATM ou nenhuma delas tem. Consequentemente, o teorema de Rice implica que INFINITATM é indecidível.

MT que decide um AFD (4.4)

- $M = \text{"Sobre a entrada } \langle B, w \rangle$, onde $B \in \text{um AFD}$, e w, uma cadeia:
 - 1. Simule B sobre a entrada w.
 - 2. Se a simulação termina em um estado de aceitação, aceite. Se ela termina em um estado de não-aceitação, rejeite."

MT que decide uma AFN

- N = "Sobre a entrada (B, w) onde B é um AFN, e w, uma cadeia:
 - Converta AFN B para um AFD equivalente C, usando o procedimento para essa conversão dado no Teorema 1.39.
 - 2. Rode a MT M do Teorema 4.1 sobre a entrada $\langle C, w \rangle$.
 - Se M aceita, aceite; caso contrário, rejeite."

EXR é uma linguagem decídivel

- P= "Sobre a entrada $\langle R,w\rangle$ onde R é uma expressão regular e w é uma
 - 1. Converta a expressão regular R para um AFN equivalente A usando o procedimento para essa conversão dado no Teorema 1.54.
 - 2. Rode a MT N sobre a entrada $\langle A, w \rangle$.
 - 3. Se N aceita, aceite; se N rejeita, rejeite."

VAFD (vacuidade) é decidivel

- "Sobre a entrada $\langle A \rangle$ onde A é um AFD:
 - 1. Marque o estado inicial de A.
 - Repita até que nenhum estado novo venha a ser marcado:
 - Marque qualquer estado que tenha uma transição chegando nele a partir de qualquer estado que já está marcado.
 - Se nenhum estado de aceitação estiver marcado, aceite; caso contrário, rejeite."

MT que decide uma GLC (4.6)

PHOVA A MT S para AGLC segue.

"Sobre a entrada $\langle G, w \rangle$, onde G é uma GLC, e w, uma cadeia:

- 1. Converta G para uma gramática equivalente na forma normal de Chomsky.
- 2. Liste todas as derivações com 2n-1 passos, onde n é o comprimento de w, exceto se n=0; nesse último caso, liste todas as derivações com 1 passo.
- Se alguma dessas derivações gera w, aceite; se não, rejeite."

EQ AFD é uma linguagem decidível (4.5)

 $F = \text{"Sobre a entrada } (A, B), \text{ onde } A \in B \text{ são AFDs:}$

- Construa o AFD C conforme descrito.
- Rode a MT T do Teorema 4.4 sobre a entrada (C).
- 3. Se T aceita, aceite. Se T rejeita, rejeite."

TEOREMA 5.28 -

Se $A \leq_{\mathrm{m}} B$ e B é Turing-reconhecível, então A é Turing-reconhecível.

A prova é a mesma que aquela do Teorema 5.22, exceto que M e N são reconhecedores em vez de decisores.

TEOREMA 5.22 -

Se $A \leq_m B$ e B é decidível, então A é decidível.