#Adithya Vardhan #21BAI1535 import pandas as r

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv('winequality-red.csv')

df.head()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

df.sample(5)

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
1596	6.3	0.51	0.13	2.30	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6
1455	6.5	0.90	0.00	1.60	0.052	9.0	17.0	0.99467	3.50	0.63	10.9	6
1111	5.4	0.42	0.27	2.00	0.092	23.0	55.0	0.99471	3.78	0.64	12.3	7
840	11.1	0.42	0.47	2.65	0.085	9.0	34.0	0.99736	3.24	0.77	12.1	7
431	7.8	0.55	0.35	2.20	0.074	21.0	66.0	0.99740	3.25	0.56	9.2	5

df.shape

(1599, 12)

df.describe()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	SU
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792	0.996747	3.311113	(
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324	0.001887	0.154386	(
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	0.990070	2.740000	(
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	0.995600	3.210000	(
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	0.996750	3.310000	(
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	0.997835	3.400000	(
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1.003690	4.010000	:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

Data	corumns (cocar 12 cor	umiis):	
#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	pH	1599 non-null	float64
9	sulphates	1599 non-null	float64

10 alcohol 1599 non-null float64 1599 non-null 11 quality int64

dtypes: float64(11), int64(1) memory usage: 150.0 KB

CHECKING NULL VALUES

df.isnull().sum() #THERE IS NO NULL VALUES

> fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide 0 density sulphates 0 alcohol 0 quality 0 dtype: int64

DULICATE VALUE CHECKING

df.duplicated().sum()

df[df.duplicated()]

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
4	7.4	0.700	0.00	1.90	0.076	11.0	34.0	0.99780	3.51	0.56	9.4	5
11	7.5	0.500	0.36	6.10	0.071	17.0	102.0	0.99780	3.35	0.80	10.5	5
27	7.9	0.430	0.21	1.60	0.106	10.0	37.0	0.99660	3.17	0.91	9.5	5
40	7.3	0.450	0.36	5.90	0.074	12.0	87.0	0.99780	3.33	0.83	10.5	5
65	7.2	0.725	0.05	4.65	0.086	4.0	11.0	0.99620	3.41	0.39	10.9	5
1563	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	10.1	5
1564	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	10.1	5
1567	7.2	0.695	0.13	2.00	0.076	12.0	20.0	0.99546	3.29	0.54	10.1	5
1581	6.2	0.560	0.09	1.70	0.053	24.0	32.0	0.99402	3.54	0.60	11.3	5
1596	6.3	0.510	0.13	2.30	0.076	29.0	40.0	0.99574	3.42	0.75	11.0	6

240 rows × 12 columns

df.drop_duplicates(keep='first')

C--- 4-4-1

```
df.shape
(1599, 12)

LABEL ENCODING FOR QUAL
```

LABEL ENCODING FOR QUALITY COLUMN TO MAKE IT OUT OF 5

```
1.0
                          U. / OU
                                    U.U4
                                                ۷.٥
                                                         ∪.∪9∠
                                                                     U.CI
                                                                                04.U U.997UU 3.Z0
                                                                                                         cơ.บ
                                                                                                                   9.0
df['quality'].unique()
     array([2, 3, 4, 1, 5, 0])
from sklearn import preprocessing
label_encoder = preprocessing.LabelEncoder()
df['quality']= label_encoder.fit_transform(df['quality'])
df['quality'].unique()
     array([2, 3, 4, 1, 5, 0])
      1598
                 6.0
                          0.310
                                    0.47
                                                3.6
                                                         0.067
                                                                     18.0
                                                                                42.0 0.99549 3.39
                                                                                                         0.66
                                                                                                                  11.0
                                                                                                                              6
```

BOXPLOT FOR OUTLIERS

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):
# Column Non-Null Count Dtype
```

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	pH	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64
4+,,,,	oc. float(4/11) int(4	(1)	

dtypes: float64(11), int64(1)
memory usage: 150.0 KB

```
sns.boxplot(df.iloc[:,0:5])
plt.show()
```


sns.boxplot(df.iloc[:,5:10])

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype					
0	fixed acidity	1599 non-null	float64					
1	volatile acidity	1599 non-null	float64					
2	citric acid	1599 non-null	float64					
3	residual sugar	1599 non-null	float64					
4	chlorides	1599 non-null	float64					
5	free sulfur dioxide	1599 non-null	float64					
6	total sulfur dioxide	1599 non-null	float64					
7	density	1599 non-null	float64					
8	pH	1599 non-null	float64					
9	sulphates	1599 non-null	float64					
10	alcohol	1599 non-null	float64					
11	quality	1599 non-null	int64					
dtynes: float64(11), int64(1)								

memory usage: 150.0 KB

df.corr()

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-0.682978	0.183006	-0.061668
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	0.234937	-0.260987	-0.202288
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-0.541904	0.312770	0.109903
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-0.085652	0.005527	0.042075
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-0.265026	0.371260	-0.221141
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	0.070377	0.051658	-0.069408
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269	-0.066495	0.042947	-0.205654
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000	-0.341699	0.148506	-0.496180
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699	1.000000	-0.196648	0.205633
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506	-0.196648	1.000000	0.093595

plt.figure(figsize=(10,10))

sns.heatmap(df.corr(),annot=True)

<Axes: >

sns.regplot(x='quality',y='pH',data=df)

 $\verb|sns.countplot(x='quality',data=df)|\\$

<Axes: xlabel='quality', ylabel='count'>

sns.regplot(x='quality',y='total sulfur dioxide',data=df)

<Axes: xlabel='quality', ylabel='total sulfur dioxide'>

sns.regplot(x='quality',y='fixed acidity',data=df)

sns.regplot(x='quality',y='citric acid',data=df)

<Axes: xlabel='quality', ylabel='citric acid'>

sns.regplot(x='quality',y='alcohol',data=df)

sns.regplot(x='quality',y='volatile acidity',data=df)

<Axes: xlabel='quality', ylabel='volatile acidity'>

sns.barplot(x='quality',y='alcohol',data=df)

sns.barplot(x='quality',y='residual sugar',data=df)

<Axes: xlabel='quality', ylabel='residual sugar'>

TRAIN TEST SPLIT

```
X=df.drop(['quality'],axis=1)
y=df['quality']
y=df['quality'].apply(lambda y_value: 1 if (y_value>4 ) else 0)
print(y.tail(4))
     1595
     1596
             0
     1597
             0
     1598
             0
     Name: quality, dtype: int64
from \ sklearn.model\_selection \ import \ train\_test\_split
from \ sklearn.ensemble \ import \ Random Forest Classifier
from sklearn.metrics import accuracy_score
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3)
print(y.shape, y_train.shape, y_test.shape)
     (1599,) (1279,) (320,)
print(X_train.shape,X_test.shape)
     (1279, 11) (320, 11)
Model building
Random Forest
model = RandomForestClassifier()
```

```
model.fit(X_train, y_train)
      ▼ RandomForestClassifier
     RandomForestClassifier()
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, y_test)
print('Accuracy : ', test_data_accuracy)
     Accuracy: 0.996875
input_data = (7.5,0.5,0.36,6.1,0.071,17.0,102.0,0.9978,3.35,0.8,10.5)
# changing the input data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)
# reshape the data as we are predicting the label for only one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)
prediction = model.predict(input_data_reshaped)
print(prediction)
if (prediction[0]==1):
 print('Good Quality Wine')
else:
 print('Bad Quality Wine')
     [0]
     Bad Quality Wine
     /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but RandomForestClas
       warnings.warn(
    - ◀
```