

IMPROVING SAMPLING EFFICIENCY IN 13C MFA Master's Thesis Outline

November 3, 2020 | Richard D. Paul |

CHALLENGES IN INST 13C MFA

- A forward simulation is a map from the flux polytope *U* to the isotope labelling space *I*.
- The mass balance equations $\frac{d}{dt}x = g(u,t)$ give us the time derivatives of the isotope labellings $x \in I$
- In isotopical stationary state

$$\frac{\mathrm{d}}{\mathrm{d}t}x=0$$

lacktriangleright In isotopical instationary state, measurements come with timestamps t_0 , hence

$$x(t_0)=\int_0^{t_0}g(u,t)\,\mathrm{d}t$$

■ Integration is computationally more costly than solving $\frac{d}{dt}x = 0$, up to two orders of magnitude \rightarrow 1 day vs 3 months

SAMPLING INST SCENARIOS

- Sampling INST scenarios is hence very costly, since for every move the forward simulation has to be computed.
- Even for rejected moves!
- Natural target: Minimize the number of forward simulations

What can we do?

A FIRST NAIVE THOUGHT

- Use chain history to fit a model online
- Use the model to get a gradient estimate
- Use this cheap gradient for tuning proposals
- → not Markovian anymore!

However, it contains some known concepts

MULTI-STAGE MCMC

- Replace costly evaluations with cheap but less accurate ones
- Only compute exact results, if the move was accepted by the cheap model
- Else stay put
- Adapt proposal probability
- Allows for stacking of arbitrary many intermediate acceptance steps
- What kind of cheap models do we have?

CHEAP MODELS

- INST vs stationary scenarios:
 - Every flux distribution satisfying the instationary data should also satisfy the stationary one
 - → Problem: we don't have mixed data
 - → But we may extrapolate from instationary data to stationary one
- Increasing error threshold using adaptive solvers for forward simulations:
 - \rightarrow How do inaccurate simulations affect the certainity?
 - ightarrow Also this requires global error estimates

CHEAP MODELS

- Incomplete vs complete simulations
 - \rightarrow Omitting some isotopomer measurements might reduce the network size and hence the system
- Regression models vs simulations
 - → No data to fit the model on
 - → Generating data is costly and should match the target function
 - \rightarrow the chicken or the egg?

TRUST CRITERION APPROACH

- Muller et al.¹ propose a trust criterion to use a fishy model fitted on a pre-run
- If the fishy model rejects too often, switch to exact evaluation
- If the exact evaluation matches the fishy model often enough, switch back to fishy only
- This approach may be generalized to any regression model
- The usage of the fishy model is arbitrary as long as we trust it
 - Tune proposal distribution
 - Apply Multi-Stage MCMC step
 - Gradient-based proposals
 -

¹A neural network assisted Metropolis adjusted Langevin algorithm. https://doi.org/10.1515/mcma-2020-2060

ACTIVE SUBSPACE METHODS AND ADAPTIVE MCMC

- Active Subspace Methods
 - Identify subspaces with largest influence on the target function
 - Also identify non-identifiabilities
 - → Reduce dimensionality of our parameter space
- Adaptive MCMC
 - Tune proposal distribution
 - Use the whole chains history
 - → not Markovian anymore!
 - → Applying online methods takes additional care to guarantee convergence
 - ... Most probably beyond scope of a Master's thesis

• The different parts described here are mostly combinable, which calls for a framework

Slide 10

The current status

Scope of this work

Most probably beyond scope

ACTION PLAN & GOALS

- Start off with proof of concept
 - Implement general framework
 - Use dummy simulators with artifical noise and delays
 - Test approximate models and trust criterion approach with them too
- Develop guidelines for meaningful and effective use of the framework
 - How many stages? And what coarse models?
 - Length of pre-runs? Perform pre-runs at all?
 - What proposal moves go well with multi-staging?
 - Where to use fishy models?
 - Trust criterion parameters?
 -

Thanks!

