Midterm Practice Problems

- 1. Find the general solution to the following equations
 - (a) y'' + 3y' + 2y = 0
 - (b) $\frac{dr}{d\theta} = \frac{r^2}{\theta}$
 - (c) $y' + y^2 \sin x = 0$
 - (d) w' + w = 3t
 - (e) $(2xy 3x^2) + (x^2 + 1)y' = 0$
 - (f) $u' = u^2 e^x$
 - (g) $tv' v = t^2 e^{-t}$
 - (h) (2t 2y)y' = 2y 2t
 - (i) 9z'' + 6z' + z = 0
- 2. Solve the following IVPs
 - (a) $xdx + ye^{-x}dy = 0$; y(0) = 1
 - (b) $y' = xe^{\sin x} + y\cos x$; y(0) = 3
 - (c) y'' 2y' + 5y = 0; $y\left(\frac{\pi}{2}\right) = 0$, $y'\left(\frac{\pi}{2}\right) = 2$
- 3. Prove that t^a and t^b are linearly independent functions if $a \neq b$.
- 4. Given that $y_1(x) = \sin(x^2)$ is a solution to

$$xy'' - y' + 4x^3y = 0, x > 0,$$

find a second solution $y_2(x)$.

1. Find the general solution to the following equations

(a)
$$y = c_1 e^{-t} + c_2 e^{-3t}$$

(b)
$$r = (c - \ln \theta)^{-1}$$

(c)
$$y^{-1} + \cos x = c$$
 if $y \neq 0$, also $y = 0$

(d)
$$w = 3e^{-t} (\int te^t)$$
 (do IBP to finish)

(f)
$$u = (c - e^x)^{-1}$$

(g)
$$v = t(-e^{-t} + c)$$

(i)
$$z = c_1 e^{-t/3} + c_2 t e^{-t/3}$$

2. Solve the following IVPs

(a)
$$y = (2(1-x)e^x - 1)^{1/2}$$

(b)
$$y = e^{\sin x} \left(\frac{x^2}{2} + 3 \right)$$

(c)
$$y = -e^{t-(\pi/2)}\sin(2t)$$

3.
$$W[t^a, t^b] = (b - a)t^{a+b-1} = 0$$
 if and only if $a = b$

4.
$$y_2 = \cos(x^2)$$