Computer Vision: Ex3

Or Tal - 305793168

Part one

Compute the fundamental matrix using normalized 8 points algorithm, and draw the epipolar lines

Note: please see attached code files and sources,

after unpacking simply run from shell: python3 eight_point_alg.py

input images:

our result: epipolar lines

1. Show how the linear triangulation method extends to n > 2 images

The linear triangulation works for two images, hence in case of n > 2 images it should be about the same for the following point correspondence x_1, \dots, x_n (indexed by image) with P_1, \dots, P_n according camera matrices we could then describe the matrix A as following:

$$for \ \mathbf{x}_{i} = (x_{i}, y_{i})^{T} \to A = \begin{bmatrix} x_{1} \mathbf{p}_{1}^{3T} - \mathbf{p}_{1}^{1T} \\ y_{1} \mathbf{p}_{1}^{3T} - \mathbf{p}_{1}^{2T} \\ x_{2} \mathbf{p}_{2}^{3T} - \mathbf{p}_{2}^{1T} \\ y_{2} \mathbf{p}_{2}^{3T} - \mathbf{p}_{2}^{2T} \\ y_{2} \mathbf{p}_{2}^{3T} - \mathbf{p}_{2}^{2T} \\ \vdots \\ x_{n} \mathbf{p}_{n}^{3T} - \mathbf{p}_{n}^{1T} \\ y_{n} \mathbf{p}_{n}^{3T} - \mathbf{p}_{n}^{2T} \end{bmatrix}_{2n \times 4}$$
 where \mathbf{p}_{i}^{JT} is the j'th row of the i'th camera matrix.

The 3D homogeneous point **X** is the one satisfying $AX = \mathbf{0}$

One way to find X would be computed by taking the last vector of V matrix in the SVD of A: $A = UDV^T$

2. Derive a method for triangulation in the case of pure translational motion of the cameras

We had previously seen that in case of pure translation, the fundamental matrix would be $F = [e']_{\times}$

Due to that, we may conclude that the epipolar lines which correspond to the same point X in the world frame, should be the same, as the epipole remains at the same.

We may then conclude that we may parametrize the epipolar line by its relevant angle θ where the epipole is its axis, and hence calculate the min geometric distance

$$c(x,x') = d(x,l(\theta))^{2} + d(x',l(\theta))$$

After doing so, we would estimate \hat{x} , \hat{x}' matching x, x' on the epipolar line we just found, hence assuming the translation is accurate and the only distortion is in the measurements, the lines from camera centers via \hat{x} , \hat{x}' would then lie on a single plane, therefor they would intersect at an estimated 3D point \hat{X}

Purposed method for the triangulation in case of pure motion: (this assumes that the translation is known)

- 1. Assume that the first camera is positioned at the origin, and the second camera is a pure translation of it. Find the epipole in the image intersecting the line between camera centers (the translation) with the image plane. The 3D line would be represented by 4 parameters matching ax + by + cz + d = 0, and in this case, as it passes through the origin, we may assume that d = 0, moreover, we would know that z = 1 on the intersection plane, we could then have two constraints: $\begin{cases} ax + by + c = 0\\ 1 + x^2 + y^2 = (ax)^2 + (by)^2 + c^2 \end{cases}$ Solving these will define the epipole in the image frame.
- 2. For the corresponding pts x, x', find the line $l(\theta)$ that minimizes $d(x, l)^2 + d(x', l)^2$

The line equation would match: $tan\theta \cdot x - y + (e_y - e_x \cdot tan\theta)$; where $\mathbf{e} = \begin{bmatrix} e_x \\ e_y \\ 1 \end{bmatrix}$ is the epipole

Hence:
$$\boldsymbol{l} = (tan\theta, -1, (e_y - e_x \cdot tan\theta))^T = (a, b, c)^T$$

We could then compute the distance for $\mathbf{x} = (x_0, y_0, 1) \Rightarrow d(\mathbf{x}, \mathbf{l}(\theta))^2 = \frac{(\mathbf{l}^T \mathbf{x})^2}{a^2 + b^2}$ (same for $\mathbf{x}' = (x_1, y_1, 1)^T$)

So, we would need to solve the minimization problem: $\min_{\theta} \{d(x, l(\theta))^2 + d(x', l(\theta))^2\}$

A closed formula for this would be: (calculated using wolfram alpha for simplicity)

$$\theta \approx \tan^{-1} \left(\frac{x_0 (y_0 - e_y) - e_x (y_0 + y_1) + x_1 (y_1 - e_y) + 2e_x e_y}{x_0^2 - 2e_x (x_0 + x_1) + x_1^2 + 2e_x^2} \right) + \pi k; \ k \in \mathbb{Z}$$

3. $\widehat{x}, \widehat{x}'$ could now be estimated, for $\widehat{x} = (x, y)^T, x = (x_0, y_0)^T, l = (a, b, c)^T$: (same for \widehat{x}' ; $x' = (x_1, y_1)^T$)

$$x = \frac{b(bx_0 - ay_0) - ac}{a^2 + b^2}, y = \frac{a(-bx_0 + ay_0) - bc}{a^2 + b^2}, z = 1$$

Shifting \widehat{x}' by the translation t, we could calculate the estimated world point \widehat{X} by building two 3D line equations, between the camera centers and \widehat{x} , $\widehat{x}' + t$ accordingly, and then calculate \widehat{X} by their intersection.