Entwicklung eines Konzepts und Konstruktion einer Versuchseinrichtung zur zeitlich synchronisierten Generierung von Partikel-Testsignalen

Advanced Design Project Nr. 123456

Alexander Sonnleitner, Dinh-Van Vo, Kim-Khanh Vo, Gia Thi Ngo, Felix Sternkopf

Betreuer: M.Sc. Hartmut Niemann

Entwicklung eines Konzepts und Konstruktion einer Versuchseinrichtung zur zeitlich synchronisierten Generierung von Partikel-Testsignalen

Advanced Design Project

Nr. 123456

Eingereicht von Alexander Sonnleitner, Dinh-Van Vo, Kim-Khanh Vo, Gia Thi Ngo, Felix Sternkopf Tag der Einreichung: 13. Februar 2018

Gutachter: Prof. Dr. rer. nat. Hermann Winner

Betreuer: M.Sc. Hartmut Niemann

Technische Universität Darmstadt Fachbereich Maschinenbau

Fachgebiet Fahrzeugtechnik und Dynamik Prof. Dr. rer. nat. Hermann Winner

Ehrenwörtliche Erklärung	

Kurzzusammen fassung

In halts verzeichn is

1		führung Motivation	1 1
	1.2	Voraussetzungen	1
2	Pro	jektdefinition und Zeitmanagement	3
	2.1	Projektziele	3
	2.2	Anforderungen	3
		2.2.1 Aerosole	3
		2.2.2 Versuchsaufbau	3
	2.3	Aufgaben	3
	2.4	Zeitmanagement	3
3	Tecl	hnische Grundlagen	5
	3.1	Strömungsmechanik	5
	0.1	3.1.1 Strömungseigenschaften	5
	3.2	Reinraumtechnik	5
	0.2	3.2.1 Eigenschaften von Partikeln	5
		3.2.2 Partikelmessverfahren	5
		3.2.3 Aerosole	5
	3.3	Mechanische Grundlagen	5
	5.5	3.3.1 Ventile (Noch nicht fest)	5
		3.3.2 Luftfiltersysteme (Noch nicht fest)	5
4	Vone	${ m such splatt form}$	7
4		Partikelmessgeräte	7
	4.1	4.1.1 OPS-3330	7
	4.0	11.12 11.11 0 00/1 11.11.11.11.11.11.11.11.11.11.11.11.11	7
	4.2	Simulation (Unsicher)	7
		4.2.1 SpaceClaim (Unsicher)	7
		4.2.2 Fluent (Unsicher)	7
	4.3	Partikelgeneratoren	7
		4.3.1 Topas ATM 220	7
		4.3.2 Palas 2000H	7
5		dyse von Prüf-Aerosole	9
	5.1	Di-Ethyl-Hexyl-Sebacat (DEHS)	9
	5.2	Di-N-Octylphtalat (DOP)	9
	5.3	Emery 3004 (PAO-4)	9
	5.4	Poly Styrene Latex Spheres (PSL)	9
	5.5	Auswertung der Analyse	9
		5.5.1 Anforderungsvergleich der Aerosole	9

6	Kon	zepte für den Versuchsaufbau	11
	6.1	Konzept 1	11
		6.1.1 Aufbau	11
	6.2	Konzept 2	11
	6.3	Konzept 3	11
	6.4	Konzept 4	11
	6.5	Konzept 5	11
7	Eva	luation	13
	7.1	Analyse der Konzepte	13
	7.2	Evaluation der Ergebnisse	13
8	Fazi	${f t}$	15
Αŀ	bildı	ungsverzeichnis	15

iv Inhaltsverzeichnis

1 Einführung			
1.1 Motivation			
1.2 Voraussetzungen			

3 Technische Grundlagen
3.1 Strömungsmechanik
3.1.1 Strömungseigenschaften
Reynolds- und Prandtlzahl
3.2 Reinraumtechnik
3.2.1 Eigenschaften von Partikeln
6.2.1 Ligensenation von Fartikein
Bremsemissionspartikel
Diemsemissionspartikei
3.2.2 Partikelmessverfahren
3.2.2 Partikelmessverianren
3.2.3 Aerosole
3.3 Mechanische Grundlagen
3.3.1 Ventile (Noch nicht fest)
3.3.2 Luftfiltersysteme (Noch nicht fest)

4 Versuchsplattform
4.1 Partikelmessgeräte
4.1.1 OPS-3330
4.1.2 FMPS-3091
4.2 Simulation (Unsicher)
4.2.1 SpaceClaim (Unsicher)
4.2.2 Fluent (Unsicher)
4.3 Partikelgeneratoren
4.3.1 Topas ATM 220
4.3.2 Palas 2000H

5 Analyse von Prüf-Aerosole	
5.1 Di-Ethyl-Hexyl-Sebacat (DEHS)	
5.2 Di-N-Octylphtalat (DOP)	
5.3 Emery 3004 (PAO-4)	
5.4 Poly Styrene Latex Spheres (PSL)	
5.5 Auswertung der Analyse	
5.5.1 Anforderungsvergleich der Aerosole	

6 Konzepte für den Versuchsaufbau		
6.1 Konzept 1		
6.1.1 Aufbau		
6.2 Konzept 2		
6.3 Konzept 3		
6.4 Konzept 4		
6.5 Konzept 5		

7 Evaluation		
7.1 Analyse der Konzepte		
7.2 Evaluation der Ergebnisse		

8 Fazit		