

Introdução

- Algoritmos de busca
 - Maneiras sistemáticas de visitar vértices

- Principais algoritmos
- → BFS: largura
 - DFS: profundidade

BFS: busca em largura

Ideia: Dado um vértice inicial s, a busca em largura é como uma propagação de fogo.

Exemplo

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

Exemplo

Exemplo

Exemplo

Exemplo

Exemplo

Exemplo

Exemplo

Exemplo

Exemplo

Exemplo

Exemplo

Exemplo

BFS: busca em largura

Tarefa

- Exercícios:
 - Lista 1

- Um caminho de s a t é uma sequência de vértices <s, u, v, ..., t> onde cada par de vértices consecutivos é conectado por uma aresta.
- Dizemos que o caminho começa em s e termina em t.
- O comprimento de um caminho é o total de arestas usadas no caminho.
 - Ex: <1,2,3,4,5> é um caminho que começa em 1 e termina em 5, e tem comprimento 4.

- Um caminho de s a t é um caminho mínimo se ele tem comprimento mínimo.
- Ex:
 - <1,2,3,4> é um caminho de 1 a 4, de comprimento 3.

Caminho mínimo? Não, mas <1,5,4> é caminho mínimo.

- A distância entre dois vértices é o comprimento de um caminho mínimo.
 - Ex:
 A distância entre 1 e 4 vale 2.

Notação:

$$\delta(1,4) = 2$$

BFS: busca em largura

(BFS: Breadth First Search)

- BFS(G, s)
 - Entrada: um grafo G e um vértice inicial s
 - Saída: distâncias em relação ao vértice inicial s
- Atributos para cada vértice $v \in V$
 - v.d: "distância"
 - V.cor
 - branca (inicial)
 - cinza (visitado)
 - preta (finalizado)

Fila: "First-In-First-Out"

BFS: busca em largura

Fila: operações

- Insere(Q, x)
 - insere elemento x no final da fila Q
- Remove(Q)
 - remove e devolve o primeiro elemento da fila Q

Fila: "First-In-First-Out"

Universidade Federal do ABC

Teoria dos Grafos

```
BFS(G, s):
 1 para cada vértice v; em G.V faça
   v_i.d = INFINITO
   v_i.cor = BRANCO
 4 \text{ s.d} = 0
                                                     (Inicialização)
 5 \text{ s.cor} = CINZA
 6 \ Q = VAZIO
 7 Insere(Q, s)
 8 enquanto Q != VAZIO faça
        u_i = Remove(Q)
10
        para cada v; em G.Adj[u;] faça
11
            se v<sub>i</sub>.cor == BRANCO
12
               entao v_i.d = u_i.d + 1
13
                      v_i.cor = CINZA
14
                      Insere(Q, v_i)
15
        u_i.cor = PRETO
```

Chinesidade Federal do ABC

Teoria dos Grafos

BFS: busca em largura

```
BFS(G, s):
```

```
1 para cada vértice v_i em G.V faça
```

- $v_i.d = INFINITO$
- 3 v_i .COr = BRANCO
- 4 s.d = 0
- 5 s.cor = CINZA
- 6 Q = VAZIO
- 7 Insere(Q, s)

(Inicialização)

Chinesidade Federal do ABC

Teoria dos Grafos

```
\label{eq:bfs} \begin{array}{lll} \text{BFS}(G,\,s): \\ & 1 \text{ para cada v\'ertice } v_i \text{ em } G.V \text{ faça} \\ & 2 & v_i.d = \text{INFINITO} \\ & 3 & v_i.\text{COT} = \text{BRANCO} \\ & 4 \text{ s.d} = 0 & & & & & & & & & \\ & 4 \text{ s.d} = 0 & & & & & & & & & \\ & 5 \text{ s.cor} = \text{CINZA} & & & & & & & & \\ & 6 & Q = \text{VAZIO} & & & & & & & & \\ & 7 \text{ Insere}(Q,\,s) & & & & & & & & \\ \end{array}
```


Chinesidade Federal do ABC

Teoria dos Grafos

```
\label{eq:bfs} \begin{array}{lll} \text{BFS}(G,\,s): \\ & 1 \text{ para cada v\'ertice } v_i \text{ em } G.V \text{ faça} \\ & 2 & v_i.d = \text{INFINITO} \\ & 3 & v_i.\text{COT} = \text{BRANCO} \\ & 4 \text{ s.d} = 0 & \text{(Inicializa\'eao)} \\ & 5 \text{ s.cor} = \text{CINZA} \\ & 6 \text{ Q} = \text{VAZIO} \\ & 7 \text{ Insere}(Q,\,s) \end{array}
```


BFS: busca em largura

BFS(G, s):

BFS: busca em largura

BFS(G, s):

8 enquanto Q != VAZIO faça

15 u;.cor = PRETO

BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```

```
9 u_i = Remove(Q)
```

```
10 para cada v_i em G.Adj[u_i] faça 11 se v_i.cor == BRANCO 12 entao v_i.d = u_i.d + 1 v_i.cor = CINZA Insere(Q, v_i)
```


BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```

```
9 u<sub>i</sub> = Remove(Q)
10 para cada v<sub>i</sub> e
```

10 para cada v_i em G.Adj[u_i] faça 11 se v_i .cor == BRANCO 12 entao v_i .d = u_i .d + 1 v_i .cor = CINZA Insere(Q, v_i)

15 u_i.cor = PRETO

BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```

9
$$u_i = Remove(Q)$$

$$10$$
 para cada v_i em G.Adj $[u_i]$ faça 11 se v_i .cor == BRANCO 12 entao v_i .d = u_i .d + 1 v_i .cor = CINZA Insere(Q, v_i)

 \rightarrow 15 u_i.cor = PRETO

BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```

15 u_i.cor = PRETO

BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```

9
$$u_i = Remove(Q)$$

$$10$$
 para cada v_i em G.Adj $[u_i]$ faça 11 se v_i .cor == BRANCO 12 entao v_i .d = u_i .d + 1 v_i .cor = CINZA Insere(Q, v_i)

 \rightarrow 15 u_i.cor = PRETO

BFS: busca em largura

BFS(G, s):

8 enquanto Q != VAZIO faça

15 u;.cor = PRETO

BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```

9 $u_i = Remove(Q)$

10 para cada v_i em G.Adj $[u_i]$ faça 11 se v_i .cor == BRANCO 12 entao v_i .d = u_i .d + 1 v_i .cor = CINZA Insere(Q, v_i)

 \rightarrow 15 u_i.cor = PRETO

BFS: busca em largura

BFS(G, s):


```
enquanto Q != VAZIO faça
```

 $u_i.cor = PRETO$

```
u_i = Remove(Q)
        para cada {
m v_i} em G.Adj[{
m u_i}] faça
10
             se v_i.cor == BRANCO
11
12
                entao v_i.d = u_i.d + 1
13
                       v_i.cor = CINZA
                       Insere(Q, v_i)
14
15
```


BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```

```
9 u_i = Remove(Q)
```

```
10 para cada v_i em G.Adj[u_i] faça 11 se v_i.cor == BRANCO 12 entao v_i.d = u_i.d + 1 v_i.cor = CINZA Insere(Q, v_i)
```


BFS: busca em largura

BFS(G, s):

3 enquanto Q != VAZIO faça

BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```

9 $u_i = Remove(Q)$

10	para cada v _i em G.Adj[u _i] faça
11	se v _i .cor == BRANCO
12	entao $v_i.d = u_i.d + 1$
13	v _i .cor = CINZA
14	Insere(Q, v_i)

BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```

15 u_i .cor = PRETO

BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```

9 $u_i = Remove(Q)$

10	para cada v _i em G.Adj[u _i] faça
11	se v _i .cor == BRANCO
12	entao $v_i.d = u_i.d + 1$
13	v _i .cor = CINZA
14	Insere(Q, v _i)

BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```


BFS: busca em largura

BFS(G, s):


```
8 enquanto Q != VAZIO faça
```

```
u_i = Remove(Q)
```

10	para cada v _i em G.Adj[u _i] faça
11	se v _i .cor == BRANCO
12	entao $v_i.d = u_i.d + 1$
13	$v_{i}.cor = CINZA$
14	$Insere(Q, v_i)$

BFS: busca em largura

BFS(G, s):

Distâncias em relação a s:

$$\delta(s,r) = 1$$
 $\delta(s,v) = 2$
 $\delta(s,s) = 0$ $\delta(s,w) = 1$
 $\delta(s,t) = 2$ $\delta(s,x) = 2$
 $\delta(s,u) = 3$ $\delta(s,y) = 3$

```
 8 \  \, \text{enquanto Q != VAZIO faça} \\ 9 \qquad u_i = \text{Remove(Q)} \\ 10 \qquad \text{para cada } v_i \  \, \text{em G.Adj[} u_i \text{] faça} \\ 11 \qquad \qquad \text{se } v_i.\text{cor == BRANCO} \\ 12 \qquad \qquad \text{entao } v_i.\text{d = } u_i.\text{d + 1} \\ 13 \qquad \qquad \qquad v_i.\text{cor = CINZA} \\ 14 \qquad \qquad \qquad \text{Insere(Q, } v_i) \\ 15 \qquad \qquad u_i.\text{cor = PRETO}
```


BFS: busca em largura

Tarefa

EP 1

- Página da disciplina:
 - https://sites.google.com/site/alexnoma/home/grafos