Scottish Stroke Statistics

Thijmen Breeschoten CodeClan project DE21 30/08/2023

Cerebrovascular disease -

conditions that affect blood flow or blood vessels supplying oxygen rich blood to the brain

Cerebrovascular Disease Mortality per Year

Cerebrovascular disease

National clinical priority
Stroke Improvement Plan (2014, 2023)

Project aims

National clinical priority Stroke Improvement Plan (2014, 2023)

- 1 Update key numbers/trends
 Purpose: Inform improvement plan
- 2 Predict future incidence rates
 - Build predictive model using population projections 2024-2045 (NRS) Purpose: Help in care planning
- 3 Identify health boards of closest resemblance
 - Cluster analysis to identify similarity across boards Purpose: Setting up collaborative teams

Project aims

Personal goals

National clinical priority
Stroke Improvement Plan (2014, 2023)

1 - Update key numbers
Purpose: Inform improvement plan

NHS data	
Predictive modelling	
Clustering	
Leaflet spatial analysis	

- 2 Predict future incidence rates
 - Build predictive model using population projections 2024-2045 Purpose: Help in care planning
- 3 Identify health boards of closest resemblance
 - Cluster analysis to identify similarity across boards Purpose: Setting up collaborative teams

Project aims

Personal goals

NHS data

Clustering

Predictive modelling

Leaflet spatial analysis

National clinical priority
Stroke Improvement Plan (2014, 2023)

- 1 Update key numbers
 Purpose: Inform improvement plan
- 2 Predict future incidence rates
 - Build predictive model using population projections 2024-2045 Purpose: Help in care planning
- 3 Identify health boards of closest resemblance
 - Cluster analysis to identify similarity across boards Purpose: Setting up collaborative teams

Cerebrovascular disease

- National clinical priority
 Stroke Improvement Plan (2014, 2023)
- Preventable risk factors:
 - Smoking
 - Alcohol (mis)use
 - Lack of exercise
 - High blood pressure
 - Poor diet
 - Diabetes

- Major differences across levels of deprivation: Social inequality of health

Cerebrovascular disease by SIMD

Scottish Index of Multiple Deprivation

Access to Health Crime Housing Education **Employment** Income services

Cerebrovascular Disease

Age-Sex standardised mortality rates by SIMD quintile and year

Mortality 2012 - 2021

Cerebrovascular Disease Mortality per Sex age and sex adjusted death rates per year

Year

Trend:

♀ ♣ 30%

♂ **♣** 23%

0-44

45-64

65-74

75+

Mortality 2012 - 2021

Cerebrovascular Disease Mortality per Age Group age and sex adjusted death rates per year

Trend:

Incidences 2012 - 2021

Year

Incidences 2012 - 2021

Cerebrovascular Disease Incidences per Age Group age and sex adjusted incidence rates per year

Year

1 - Update key numbers

Purpose: Inform improvement plan

National clinical priority Stroke Improvement Plan (2014, 2023)

1 - Update key numbers
Purpose: Inform improvement plan

2 - Predict future incidence rates

- Build predictive model using population projections 2024-2045 Purpose: Help in care planning

3 - Identify health boards of closest resemblance

- Cluster analysis to identify similarity across boards Purpose: Setting up collaborative teams

2 Build predictive model using population projections

Purpose: Help in care planning

Join population estimates (NRS):
 per year, age_group, sex, health board

Wrangling:
 calculate proportions (discharges/population)

Variable correlations/selection:
 age_group, sex, hbr, population

Logistic regression model

Logistic regression model

Stroke%	~	age_	_group
		- U -	-0 1

term <chr></chr>	estimate <dbl></dbl>	std_error <dbl></dbl>	statistic <dbl></dbl>	p_value <dbl></dbl>
(Intercept)	-7.875934	2.924786	-2.6928241	0.007084965
age_group45-64 years	2.535882	3.050616	0.8312687	0.405821841
age_group65-74 years	3.522803	2.972899	1.1849725	0.236028327
age_group75plus years	4.564557	2.942161	1.5514301	0.120798636
age_groupAll	2.705686	3.008338	0.8993956	0.368441994

Stroke% ~ sex

term <chr></chr>	estimate <dbl></dbl>	std_error <dbl></dbl>	statistic <dbl></dbl>	p_value <dbl></dbl>
(Intercept)	-4.45287456	0.4188297	-10.6317066	2.121936e-26
sexFemales	-0.14955520	0.6158691	-0.2428360	8.081324e-01
sexMales	0.08903673	0.5755526	0.1546978	8.770596e-01

Stroke% ~ hbr

term <chr></chr>	estimate <dbl></dbl>	std_error <dbl></dbl>	statistic <dbl></dbl>	p_value <dbl></dbl>
(Intercept)	-4.48538000	0.8451899	-5.30694967	1.114749e-07
hbrS08000016	-0.03063811	1.2220307	-0.02507147	9.799980e-01
hbrS08000017	-0.03290705	1.2149271	-0.02708561	9.783914e-01

Stroke% ~ population

term <chr></chr>	estimate <dbl></dbl>	std_error <dbl></dbl>	statistic <dbl></dbl>	p_value <dbl></dbl>
(Intercept)	-4.309825e+00	2.843980e-01	-15.1542047	7.107049e-52
population_size	-1.053916e-06	1.292531e-06	-0.8153897	4.148493e-01
2 rows				

2 Build predictive model using population projections

Purpose: Help in care planning

Problem:

- Data (too) aggregated
 - -> row represented: demographics, location, admission, diagnosis

Solution:

- Augment data
- De-aggregate data (back to individuals)
- Time series forecasting

National clinical priority Stroke Improvement Plan (2014, 2023)

1 - Update key numbers

Purpose: Inform improvement plan

- 2 Predict future incidence rates
 - Build predictive model using population projections 2024-2045 Purpose: Help in care planning
- 3 Identify health boards of closest resemblance
 - Cluster analysis to identify similarity across boards Purpose: Setting up collaborative teams

Cerebrovascular Disease Incidences per Health Board age and sex adjusted incidence rates per year

3 - Identify health boards of closest resemblance

Cluster analysis to identify similarity across boards

- Hierarchical clustering: complete linkage (max distance), Euclidian distance

3 - Identify health boards of closest resemblance

Cluster analysis to identify similarity across boards

- Hierarchical clustering: complete linkage (max distance), Euclidian distance

3 - Identify health boards of closest resemblance

Conclusions

1 - Update key numbers/trend

Mortality -> decreasing across demographics -> increasing across demographics

Conclusions

1 - Update key numbers/trend

Mortality -> decreasing across demographics -> increasing across demographics

2 - Predict future incidence rates

Aggregated data -> augment, non-aggregate

Conclusions

1 - Update key numbers/trend

Mortality -> decreasing across demographics

Incidences -> increasing across demographics

2 - Predict future incidence rates

Aggregated data -> augment, deaggregate

3 - Identify health boards of closest resemblance

Cluster analysis -> identified healthboard clusters

Scottish Stroke Statistics

Data sources:

PHS open data - Scottish Stroke Statistics

version 1.0, SMR01, 24/01/2023

- Stroke Activity By Health Board
- Stroke Mortality By Health Board

NRS – Mid-Year Population Estimates

- TSD by NHS health board, sex and single year of age 1981-2021 – version 13/07/2022
- Sub-National Population Projections Scotland 2018-based – version 24/03/2020

Thijmen Breeschoten
CodeClan project DE21
30/08/2023

Cerebrovascular disease

Stroke – blood supply to part of brain is cut off Subarachnoid haemorrhage – bleeding in space surrounding brain TIAs and related syndromes – temporary stroke (few minutes)

Cerebrovascular disease

