

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROJETO DE CIRCUITOS FOTÔNICOS EM SILÍCIO

Professor: Adolfo Herbster

Aluno: Caio Rodrigues Correia de Oliveira

Lista de exercícios: Guia dielétricos retangulares

Pasta do exercício:

TEEE-2021.1/Subject Exercises/Exercício 03 (Github.com)

1. Considere um guia retangular tipo buried similar ao da estrutura ilustrada na Figura 1. O índice do núcleo é $n_1 = 1,5$, enquanto as regiões horizontais laterais possuem índice $n_2 = n_3 = 1.49$, e as regiões do topo e borda possuem índice $n_3 = n_2 = 1.495$. As dimensões do guia são a = 10 μ m e b = 5 μ m. Se um sinal óptico de comprimento de onda $\lambda = 1 \mu$ m no vácuo é propagado no guiam qual polarização apresentará maior valor de beta para os modos fundamentais, E_x ou E_y ?

Figura 1 - Problema 1.

Com base no método de marcatili, obtêm-se os seguintes pares de gráficos, um par para o modo E_x e outro para o modo E_y

Figura 1 – Gráficos (Lhs-Rhs) $x (k_x*k_0) e (Lhs-Rhs) x (k_y*k_0)$

Devido à minuciosidade da localização das soluções nos gráficos, optou-se pelo método numérico, assim obtendo

	Kx	Ky	Beta
Modo E _x	406621,06	698246,43	9390077,25
Modo Ey	405878,77	700931,64	9389909,31

Assim, concluindo que a polarização E_x possui o maior beta.

2. Considere um guia retangular ilustrado na Figura 2 que será utilizado para conectar dois chips de alta velocidade. Qual o comprimento de onda de corte do modo de mais baixa ordem? Utilize o método de Mercatili.

Figura 2 - Problema 2 e Problema 3.

Usando o método de marcotili, prede-re calcular reparadomente as frequências de corte para es casos de $E_m^*(Tm)$, $E_m^*(TE)$, e assim determinar qual o modo de menor ordem, e reu comprimento de onder de corte:

Sabe-se que
$$V = \frac{217}{\lambda} \cdot \alpha \cdot \sqrt{m_1^2 - m_3^2}$$
, logo:

 $\lambda_c^m = \frac{417 \cdot \alpha \cdot \sqrt{m_1^2 - m_3^2}}{m_17 + \alpha n chan (PeV6)}$

para E_x no quia horizontal (a), $Pc = \frac{m_1^2}{m_c^2} \Rightarrow \lambda_c^0 = 1,0104 \cdot 10^{-6}$

para E_y no quia horizontal (b), $Pc = 1 \Rightarrow \lambda_c^0 = 1,0525 \cdot 10^{-6}$

(ondui-se que E_{11}^y e o modo de mais baixa orden

Com $\lambda_c^0 = 1,0525$ μm

3. Considerando ainda o guia ilustrado na Figura 2, determine a partir do método do índice efetivo o valor de β para o comprimento de onda λ = 0,8 μ m.

Analisando primeiramente no modo E_y , no slab formado por n3/n1/n2 (modo TE) resgata-se seu índice efetivo graficamente abaixo, com valor de aproximadamente $n_{\rm eff} = 1.49562$

Utilizando o slab formado por n5/ $n_{\rm eff}$ / n4, resgata-se seu índice efetivo e sua constante de propagação beta

	beta	neff
TM		
0	1.174499e+07	1.495418

Analisando agora no modo E_x , no slab formado n3/n1/n2 (modo TM) resgata-se seu índice efetivo graficamente abaixo, com o valor de aproximadamente $n_{\rm eff}$ = 1.49545

Utilizando o slab formado por $n5/n_{eff}/n4$, resgata-se seu índice efetivo e sua constante de propagação beta

	beta	neff
TE		
0	1.174386e+07	1.495275

4. Considere o guia simétrico ilustrado na Figura 3. O núcleo apresenta um índice de refração n_1 = 1,5 e o índice da região circundante é n_2 = 1,499. As dimensões do guia são a = 5 μ m e b = 10 μ m. Determine o índice efetivo e a intensidade das componentes do modo E^{x}_{12} para o comprimento de onda λ = 0,4 μ m.

Figura 3 - Problema 4.

Utilizando a princípio o método do índice efetivo para determinar n_{eff} , analisa-se o slab formado por n2/n1/n2, obtendo:

	beta	neff
TE		
0	2.355815e+07	1.499758

E por conseguinte, analisa-se o slab $n2/n_{eff}/n2$, obtendo:

тм	beta	neff
0	2.355685e+07	1.499676
1	2.355311e+07	1.499438

Utilizaremos o índice efetivo da solução TE₁ , assim n_{eff} = 1.499438

Utilizando o método gráfico e numérico, extrapola-se os seguintes valores para kx e ky

 $K_y = \{ 254169.5, 500000, 725000 \}$

 $K_x = \{422943.8, 790000\}$

Assim, para E_{12}^{x} , $K_{x} = 422943.8$, $K_{y} = 500000$

Calculando γ_2 , γ_3 , γ_4 , γ_5 , ϕ_X e ϕ_Y a partir de K_X e K_Y , temos:

gamma_2 = 749060.8333193765 gamma_3 = 749060.8333193765 gamma_4 = 699981.1354397765 gamma_5 = 699981.1354397765

phix = -0.513436786300424 phiy = -0.9505340942601401 Assim, as componentes do modo E^x₁₂ são, para cada região:

Região 1: Sen(422943.8 · x - 0.51343) · Cos(500000 · y - 0.95053)

Região 2: $Cos(500000 \cdot y - 0.95053) \cdot exp(749060 \cdot (x + 5.10^{-6}))$

Região 3: $Cos(500000 \cdot y - 0.95053) \cdot exp(-749060 \cdot x)$

Região 4: $Sin(422943.8 \cdot x - 0.51343) \cdot exp(-699981.1 \cdot (y - 10 \cdot 10^{-6}))$

Região 5: $Sin(422943.8 \cdot x - 0.51343) \cdot exp(699981.1 \cdot y)$

	$Cos(K_y \cdot y + \phi_y) \cdot exp(-\gamma_3 \cdot x)$	
$Sin(K_x \cdot x + \phi_x) \cdot exp(\gamma_5 \cdot y)$	$Sin(K_x \cdot x + \phi_x) \cdot Cos(K_y \cdot y + \phi_y)$	Sin(K _x ·x + φ _x) · exp(-γ ₄ ·(y - b))
	$Cos(K_y \cdot y + \phi_y) \cdot exp(\gamma_2 \cdot (x + a))$	

5. Considere o guia simétrico quadrado ilustrado na Figura 4, cujo índice de refração do núcleo é $n_1 = 1,5$ e o índice da casca em torno do núcleo é n = 1.499. Como o guia é simétrico, ele deve guiar pelo menos um modo. Para o comprimento de onda $\lambda = 1,3~\mu m$, determine a distribuição

de campo do modo guiado de mais baixa ordem.

Figura 4 - Problema 5.

É argumentável que, pelo fato do guia ser simétrico tanto no eixo vertical quanto no horizontal, os valores característicos para E^x e E^y são iguais. Portanto, por preferência singular, tratar-se-á de resolver para E^x

Assim, extrai-se $K_x = 113015.46 \text{ e } K_y = 112979.16 \text{ (soluções } E_{11}^x\text{)}$

gamma_2 = 239341.13110975985 gamma_3 = 239341.13110975985 gamma_4 = 239358.26838779825 gamma_5 = 239358.26838779825

phix = -0.44064169100342954 phiy = -1.1297915362964477

Assim, as componentes do modo E^x₁₁ são, para cada região:

Região 1: $Cos(113015.46 \cdot x - 0.44064) \cdot Cos(112979.16 \cdot y - 0.95053)$

Região 2: $Cos(112979.16 \cdot y - 1.12979) \cdot exp(239341.13 \cdot (x + 20 \cdot 10^{-6}))$

Região 3: $Cos(112979.16 \cdot y - 1.12979) \cdot exp(-239341.13 \cdot x)$

Região 4: $Cos(113015.46 \cdot x - 0.44064) \cdot exp(-239358.27 \cdot (y - 20 \cdot 10^{-6}))$

Região 5: $Cos(113015.46 \cdot x - 0.44064) \cdot exp(239358.27 \cdot y)$

6. Utilize o método do índice efetivo para determinar o modo propagante (ou modos propagantes) no guia retangular tipo ridge ilustrado na Figura 5. Assuma que o campo está polarizado na direção y e que o comprimento de onda é λ = 1.55 μ m. Em seguida, calcule o confinamento do modo encontrado.

Figura 5 - Problema 6.

Podemos transformar o guia retangular acima em 3 slabs horizontais como está descrito na imagem abaixo (slab laranja, slab vermelho, slab amarelo)

Como o campo está polarizado na direção y, os três slabs estão admitindo modos TE, assim, calculando os $n_{\rm eff}$ dos slabs

Calculando o n_{eff} resultante do slab equivalente:

Assim possuindo os fatores de confinamento Γ_0 = 0.96172 e Γ_1 = 0.81971