

## Détection Multi-Utilisateurs

### 3<sup>ème</sup> année Sciences du Numérique Parcours Télécoms sans Fil et Objets Connectés

Communications sans Fil Multi-Antennes et Multi-Utilisateurs

Martial COULON

INP-ENSEEIHT

### Position du Problème

- Systèmes de communications (sans fil);
   typiquement téléphonie mobile (2G, 3G, 4G, 5G)
- Système à accès multiple : plusieurs utilisateurs accèdent au système simultanément (⇒ interférences possibles)
- Comment séparer les données des utilisateurs en voie montante/descendante?
- Solutions dépendantes de la méthode d'accès (FDMA, TDMA, CDMA, OFDMA, SC-FDMA, SDMA, CRDSA(satellite),...)



## Objectifs du cours

- ✓ Présenter les grands principes des différentes méthodes de détection multi-utilisateurs
- ✓ Comparaison des algorithmes en termes de performance/complexité
- ✓ Se concentrer sur les grandes lignes ⇒ modèles de transmission simples
- ✓ Se limiter au modèle 3G (CDMA) avec codes d'étalement et canaux de transmission non-sélectifs en fréquence
- √ Généralisation possible (plus compliquée) pour systèmes 4G/5G
  de type OFDMA+MIMO

### Position du problème dans un cadre CDMA

<u>Principe du CDMA (rappel)</u>: attribution d'un code d'étalement (signature) à chaque utilisateur pour étaler la puissance sur une bande plus large que nécessaire, en maintenant une « certaine » orthogonalité entre utilisateurs.

<u>CDMA orthogonal</u>: signatures des utilisateurs orthogonales

<u>Intérêt</u> : détecteur optimal = corrélateur, simple à mettre en œuvre

<u>Pb</u>: nb d'utilisateurs K limité à K=2BT (modulations antipodales)

où B = bande disponible, T = durée du signal

<u>CDMA non-orthogonal</u>: signatures des utilisateurs non-orthogonales

#### Intérêts:

- ✓ utilisateurs asynchrones (en utilisant la quasi-orthogonalité)
- ✓ nb d'utilisateurs K non limité 2BT
- ✓ partage dynamique des ressources
   (Nb potentiel d'utilisateurs >> Nb simultanés d'utilisateurs)

<u>Pb</u>: détecteur optimal plus complexe ⇒ détecteurs sous-optimaux

### Modèle de Canal CDMA Synchrone

Modèle « one-shot » : 
$$y(t) = \sum_{k=1}^{K} A_k b_k s_k(t) + n(t), \quad t \in [0, T]$$

nombre d'utilisateurs K

période symbole T

signature (ou code, ou forme d'onde) du kème utilisateur,  $S_k(t)$ 

normalisée:

$$||s_k||^2 = \int_0^T s_k^2(t)dt = 1$$

 $s_k(t)$  nulle en dehors de [0,T]  $\Longrightarrow$  pas d'interférence inter-symbole amplitude du  $k^{\text{ème}}$  utilisateur  $\implies A_k^2$  énergie du  $k^{\text{ème}}$  utilisateur  $A_k$ :

 $b_{\nu} = \pm 1$  bit émis par le  $k^{\text{ème}}$  utilisateur

bruit blanc gaussien de moyenne nulle et variance  $\sigma^2$ . n(t):

Intercorrélations entre signatures :  $\rho_{ij} = \langle s_i, s_j \rangle = \int_0^T s_i(t) s_j(t) dt$ ,  $|\rho_{ij}| \le 1$ 

**Ex**: K=2 utilisateurs:  $y(t) = A_1b_1s_1(t) + A_2b_2s_2(t) + n(t)$ ,  $\rho = \int_0^t s_1(t)s_2(t)dt$ 

## Modèle Synchrone Discret

#### 3 types de discrétisation :

- ✓ classique :  $y_k = y(kT_e)$
- ✓ par projections sur une famille orthonormée définie sur [0,T]
- ✓ par corrélation

$$y_k = \langle y, s_k \rangle = \int_0^T y(t) s_k(t) dt = A_k b_k + \sum_{j \neq k} A_j b_j \rho_{jk} + n_k$$

$$n_k \sim N(0, \sigma^2)$$

#### Sous forme matricielle:

$$\underline{y} = RA\underline{b} + \underline{n}$$

$$\underline{y} = \begin{bmatrix} y_1, \dots, y_K \end{bmatrix}^T, \underline{b} = \begin{bmatrix} b_1, \dots, b_K \end{bmatrix}^T, A = diag(A_1, \dots, A_K)$$

$$R = (\rho_{ij})_{i,j}, \underline{n} \sim N(0, \sigma^2 R)$$

 $\frac{y}{z}$  contient toute l'information contenue dans y(t) nécessaire à la détection

## Modèle de Canal CDMA Asynchrone

Util. 1

$$t_1$$
 $t_2$ 

Util. 2

Util. 3

 $t_3$ 
 $t_4$ 
 $t_5$ 
 $t_7$ 
 $t_8$ 
 $t$ 

Utilisateur  $k \implies \text{bits } [b_k(-M),...,b_k(0),...b_k(M)]$ 

$$y(t) = \sum_{k=1}^{K} \sum_{i=-M}^{M} A_k b_k(i) s_k(t - iT - \tau_k) + n(t), \quad t \in [0, T]$$

(rq: 
$$\tau_1 = ... = \tau_K \implies \text{modèle synchrone}$$
)

**Intercorrélations** entre signatures pour i < j:

$$\rho_{ij}(\tau) = \int_{\tau}^{T} s_i(t) s_j(t-\tau) dt$$

$$\rho_{ji}(\tau) = \int_{\tau}^{T} s_i(t) s_j(t+T-\tau) dt$$
Pour  $\tau_1 \le ... \le \tau_K$ , 
$$\rho_{ij} = \rho_{ij}(\tau_j - \tau_i)$$

## Modèle Asynchrone Discret

#### 3 types de discrétisation :

- ✓ classique :  $y_k = y(kT_e)$
- ✓ par projections sur une famille orthonormée définie sur [0,T]
- ✓ par corrélation

$$y(t) \int_{iT+\tau_k}^{(i+1)T+\tau_k} y_k(i)$$

$$y_{k}(i) = \int_{iT+\tau_{k}}^{(i+1)T+\tau_{k}} y(t) s_{k}(t-iT-\tau_{k}) dt$$

$$y(t) = \int_{iT+\tau_{k}}^{(i+1)T+\tau_{k}} y_{k}(i)$$

$$y_{k}(i) = \int_{iT+\tau_{k}}^{(i+1)T+\tau_{k}} y(t)s_{k}(t-iT-\tau_{k})dt$$

$$y_{k}(i) = A_{k}b_{k}(i) + \sum_{j < k} A_{j}b_{j}(i+1)\rho_{kj} + \sum_{j < k} A_{j}b_{j}(i)\rho_{jk}$$

$$\sum_{j > k} A_{j}b_{j}(i)\rho_{kj} + \sum_{j > k} A_{j}b_{j}(i-1)\rho_{jk} + n_{k}(i)$$

Sous forme matricielle:

$$\underline{y}(i) = R_1^T \underline{A}\underline{b}(i+1) + R_0 \underline{A}\underline{b}(i) + R_1 \underline{A}\underline{b}(i-1) + \underline{n}(i)$$

 $R_0$  et  $R_1$  matrices dépendant des  $\rho_{ik}$ 

$$y = RAb + n$$

# Détection par Filtre Adapté (1)

#### Détecteur Optimal (minimise le BER) dans 2 cas :

■ Pour 
$$K=1$$
:  $y(t) = Abs(t) + n(t), t \in [0,T] \implies y = Ab + n$ 

$$\hat{b} = sgn(\langle y, s \rangle) \qquad \Longrightarrow \qquad BER(\sigma) = Q\left(\frac{A}{\sigma}\right)$$

### ■ Pour Canal Synchrone Orthogonal:

Pas d'interférences : 
$$\rho_{ij} = 0$$
,  $i \neq j$   $\Rightarrow$   $y_k = A_k b_k + n_k$ 

$$\hat{b}_{k} = sgn(\langle y, s_{k} \rangle) = sgn(y_{k}) \implies BER_{k}(\sigma) = Q\left(\frac{A_{k}}{\sigma}\right)$$

Détecteur simple  $\implies$  idée de généraliser à K quelconque

# Détection par Filtre Adapté (2) Canal Synchrone Non-Orthogonal

**Pour K=2:**  $y_1 = A_1b_1 + A_2b_2\rho + n_1$ : (existence d'interférences)



$$BER_{1}(\sigma) = \frac{1}{2}Q\left(\frac{A_{1} - A_{2}|\rho|}{\sigma}\right) + \frac{1}{2}Q\left(\frac{A_{1} + A_{2}|\rho|}{\sigma}\right)$$

#### 2 cas :

• 
$$A_2/A_1 < 1/|\rho| \implies BER_1(\sigma) \underset{\sigma \to 0}{\longrightarrow} 0$$

• 
$$A_2/A_1 > 1/|\rho| \Rightarrow BER_1(\sigma) \underset{\sigma \to 0}{\rightarrow} 1/2$$
: effet Near-Far (éblouissement)

# Détection par Filtre Adapté (3) Canal Synchrone Non-Orthogonal

Pour K quelconque : 
$$y_k = A_k b_k + \sum_{j \neq k} A_j b_j \rho_{jk} + n_k$$

**Décision**: 
$$\hat{b}_k = sgn(\langle y, s_k \rangle) = sgn(y_k)$$

les interférences agissent comme un bruit supplémentaire

### Condition « d'œil ouvert »:

$$BER_k(\sigma) \underset{\sigma \to 0}{\longrightarrow} 0 \text{ ssi } A_k > \sum_{j \neq k} A_j |\rho_{jk}|$$

#### Bilan:

- ✓ détection simple à mettre en œuvre
- √ détection non-optimale

# Détection par Filtre Adapté (4) Canal Asynchrone

$$\hat{b}_k = sgn(\langle y, s_k \rangle) = sgn(y_k)$$

#### Condition « d'œil ouvert »:

$$BER_k(\sigma) \underset{\sigma \to 0}{\longrightarrow} 0 \text{ ssi } A_k > \sum_{j \neq k} A_j \left( \left| \rho_{jk} \right| + \left| \rho_{kj} \right| \right)$$

<u>Rq</u>: quelles que soient les signatures, il existe un ensemble d'offsets et d'énergies tels que l'œil soit **fermé**.

- Les interférences dominent sur le bruit
- il existe des erreurs même sans bruit
- le filtre adapté élimine le bruit mais pas les interférences



FIGURE 3.8. Bit-error-rate of single-user matched filter with two synchronous users and  $\rho=0.2$ .



FIGURE 3.9.

Signal-to-noise ratios necessary to achieve bit-error-rate not higher than  $3\times 10^{-5}$  for both users, parametrized by  $\rho$ .





FIGURE 3.15.
Bit-error-rate of the single-user matched filter with 14 equal-energy users and identical crosscorrelations  $\rho_{kl} = 0.08$ ; (a) exact, (b) Gaussian approximation.



# Détection par Filtre Adapté (4) Canal de Rayleigh

<u>Coefficients de Fading aléatoires</u>:  $A_k = |A_k|R_k$  où  $R_k \sim Rayleigh$ 

$$y(t) = \sum_{k=1}^{K} \sum_{i=-M}^{M} A_k b_k(i) s_k(t - iT) + n(t), \quad t \in [0, T]$$

<u>Détection cohérente</u>: coefficients de Fading connus

#### <u>Pour *K=1*</u>:

$$\hat{b} = sgn(\text{Re}(Ay^*))$$

$$\implies BER^F(\sigma) = \frac{1}{2} \left( 1 - \frac{|A|^2}{\sqrt{|A|^2 + \sigma^2}} \right)$$

#### <u>Pour K quelconque:</u>

$$\hat{b}_{k} = sgn\left(\operatorname{Re}\left(Ay^{*}\right)_{k}\right) \qquad \Longrightarrow \quad BER_{k}^{F}(\sigma) = \frac{1}{2}\left(1 - \frac{\left|A_{k}\right|}{\sqrt{\sigma^{2} + \sum_{j \neq k}\left|A_{j}\right|^{2}\rho_{jk}^{2}}}\right)$$

 $\Longrightarrow$  les interférences agissent comme un **bruit supplémentaire** 

# Détection Optimale (1) Canal Synchrone

**Pour K=2:** 
$$y(t) = A_1b_1s_1(t) + A_2b_2s_2(t) + n(t)$$

#### 2 types de détection optimale:

détection individuelle :

$$\hat{b}_{1} \text{ maximise P} \left[ b_{1} | y(t), 0 \le t \le T \right] \qquad \Longrightarrow \qquad \hat{b}_{1} = sgn \left[ y_{1} - \frac{\sigma^{2}}{2A_{1}} \log \frac{\cosh \left( \frac{A_{2}y_{2} + A_{1}A_{2}\rho}{\sigma^{2}} \right)}{\cosh \left( \frac{A_{2}y_{2} - A_{1}A_{2}\rho}{\sigma^{2}} \right)} \right]$$

$$\max \left( Q\left(\frac{A_1}{\sigma}\right), \frac{1}{2}Q\left(\frac{\sqrt{A_1^2 + A_1^2 - 2A_1A_2|\rho|}}{\sigma}\right) \right) \leq BER_1(\sigma) \leq Q\left(\frac{A_1}{\sigma}\right) + \frac{1}{2}Q\left(\frac{\sqrt{A_1^2 + A_1^2 - 2A_1A_2|\rho|}}{\sigma}\right)$$

· détection conjointe :

$$(\hat{b}_1, \hat{b}_2)$$
 maximise  $P[(b_1, b_2)|y(t), 0 \le t \le T]$ 

$$\implies \hat{b}_1 = sgn\left(A_1y_1 + \frac{1}{2}|A_2y_2 - A_1A_2\rho| - \frac{1}{2}|A_2y_2 + A_1A_2\rho|\right)$$

# Détection Optimale (2) Canal Synchrone

Pour K quelconque: 
$$y(t) = \sum_{k=1}^{K} A_k b_k s_k(t) + n(t), t \in [0,T]$$

détection individuelle :

$$\hat{b}_k$$
 minimise  $L_k(b) = \sum_{\underline{b},b_k=b} \exp(\Omega(\underline{b})/2\sigma^2)$ 

détection conjointe :

$$\hat{\underline{b}}$$
 maximise  $\Omega(\underline{b})$  avec  $\Omega(\underline{b}) = 2\underline{b}^T A \underline{y} - \underline{b}^T A R A \underline{b}$ 

Avantage: détection optimale

<u>Inconvénients</u>: ✓ détection (très) <u>complexe</u> (pour canal asynchrone, optimisation par algorithme de *programmation dynamique* - *cf* algorithme de *Viterbi*)

✓ besoin de beaucoup d'information a priori





Decision regions of jointly optimum detector for

$$A_1 = A_2$$
,

 $\rho = 0.2.$ 



Decision regions of jointly optimum detector for

$$A_1=6A_2,$$

$$\rho = 0.2$$
.





 $\rho = 0.2$ .

# Détection par Décorrélation (1) Canal Synchrone

$$\hat{b}_k = sgn((R^{-1}y)_k)$$



$$\hat{\underline{b}} \quad \text{solution de:} \quad \min_{\underline{b} \in \{-1;+1\}^K} \min_{\substack{A_k > 0 \\ k-1}} \int_0^T \left( y(t) - \sum_{k=1}^K A_k b_k s_k(t) \right)^2 dt$$

Avantages:  $\checkmark$  pas de connaissance a priori des amplitudes

 $\checkmark$  possibilité de **décentraliser** la détection, çàd : chaque  $\hat{b}_k$  peut être calculé indépendamment des autres

# Détection par Décorrélation (2) Canal Synchrone



 $(\tilde{s}_k \text{ combinaison linéaire des } s_k \text{ en fonction des } \rho_{ik})$ 

$$BER_{k}(\sigma) = Q\left(\frac{A_{k}}{\sigma\sqrt{(R^{-1})_{k,k}}}\right) \qquad \underline{indépendant} \operatorname{des}\left(A_{j}\right)_{j\neq k}$$

Suivant les valeurs des  $A_j$ , la décorrélation peut donner de meilleures ou de moins bonnes performances que le filtre adapté (car le décorrélateur élimine les interférences mais pas le bruit).

## Détection par Décorrélation (3) Canal Asynchrone



avec: 
$$S^{-1}(z) = (R_1^T z + R_0 + R_1 z^{-1})^{-1}$$

$$BER_k(\sigma) = Q\left(\frac{A_k}{\sigma}\sqrt{\eta_k}\right)$$
 indépendant  $des\left(A_j\right)_{j\neq k}$ 

avec: 
$$\eta_k = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left( R_1 e^{j\omega} + R_0 + R_1 e^{-j\omega} \right)_{k,k}^{-1} d\omega \right)^{-1}$$





FIGURE 5.4.
Decision regions of the two-user decorrelating detector;

$$A_1 = A_2$$
.



FIGURE 5.7.

Bit-error-rate comparison of

single-user

two users and  $\rho = 0.75$ .

decorrelator and

**FIGURE 5.12.** Bit-error-rate of decorrelating detector and single-user matched filter detector. Five equal-energy interferers.

## Détection MMSE linéaire (1)

Principe: trouver une forme d'onde  $c_k$  pour l'utilisateur k qui minimise

$$E\left\{\left(b_{k}-\left\langle c_{k},y\right\rangle\right)^{2}\right\}$$

où  $c_k$  combinaison linéaire des  $(s_j)_j$ 

on cherche la matrice M solution de

$$\min_{M \in \mathbb{R}^{K \times K}} E \left\{ \left\| \underline{b} - M \underline{y} \right\|^2 \right\}$$

# Détection MMSE linéaire (2)



#### Avantages:

- ✓ maximise le rapport signal-sur-interférences
- ✓ matrice R éventuellement singulière
- ✓ bruit additif éventuellement non-gaussien
- $\checkmark$  « bits »  $b_k$  éventuellement non-binaires

MMSE : compromis entre le filtre adapté et le décorrélateur

 $\sigma \rightarrow 0$  : MMSE ~ décorrélateur

 $\sigma \rightarrow \infty$ : MMSE ~ filtre adapté









FIGURE 6.6.
Bit-error-rate with eight equal-power users and identical crosscorrelations

 $\rho_{kl} = 0.1$ .

# Détecteurs « Decision-Driven » I. Détection par Annulations Successives (1)

Principe : éliminer dans le signal reçu l'interférence d'un utilisateur dont le bit a déjà été détecté

Exemple pour 
$$K=2$$
:  $\hat{b}_2 = sgn(\langle y, s_2 \rangle) = sgn(y_2)$   

$$\hat{b}_1 = sgn(\langle y - A_2 \hat{b}_2 s_2, s_1 \rangle) = sgn(y_1 - A_2 \hat{b}_2 \rho)$$



# Détecteurs « Decision-Driven » I. Détection par Annulations Successives (2)

### Pour K quelconque:

• Détection des bits pour les utilisateurs k+1 à K

$$\bullet \quad |\hat{b}_k = sgn\left(y_k - \sum_{j=k+1}^K A_j \hat{b}_j \rho_{jk}\right)|$$

#### Avantages:

- √ détection simple
- ✓ coût calculatoire par bit linéaire par rapport à K
- ✓ applicable à toute technique d'accès multiple

#### Inconvénients:

- √ nécessite la connaissance des amplitudes :
- ✓ erreur sur leur estimation 

  ⇒ erreur sur la décision
- ✓ retard de démodulation linéaire par rapport à K
- ✓ performances asymétriques

## Performances des Annulations Successives Canal synchrone (1)



FIGURE 7.3.

of successive

 $A_1 = 1$  and

 $A_2 = 1$ .

Decision regions

cancellation with

FIGURE 7.4. Decision regions of successive cancellation with  $A_1 = 0.5$  and  $A_2 = 1$ .



FIGURE 7.5. Decision regions of successive cancellation with  $A_1 = 2.5$  and  $A_2 = 1$ .



## Performances des Annulations Successives Canal synchrone (2)





# Détecteurs « Decision-Driven » II. Détection « Multi-Stage » (1)

Objectif: faire une détection en plusieurs étapes afin d'obtenir une version symétrisée du détecteur par annulations successives

### Première étape par Filtre Adapté

Exemple pour K=2:

$$\begin{vmatrix} \hat{b}_1 = sgn(y_1 - A_2 \tilde{b}_2 \rho) \\ \hat{b}_2 = sgn(y_2 - A_1 \tilde{b}_1 \rho) \end{vmatrix} \text{ avec } \tilde{b}_k = sgn(y_k)$$

avec 
$$\widetilde{b}_k = sgn(y_k)$$



# Détecteurs « Decision-Driven » II. Détection « Multi-Stage » (2)

### Première étape par Décorrélateur

$$\left| \hat{b}_k = sgn\left( y_k - \sum_{j=k+1}^K A_j \tilde{b}_j \rho_{jk} \right) \right| \text{ avec } \tilde{b}_j = sgn\left( \left( R^{-1} y \right)_j \right)$$



Pour *SNRs* proches : détecteur ≈ décorrélateur

Pour SNRs très différents : détecteur ≈ détecteur optimal

# Performances du Détecteur « Multi-Stage » Canal synchrone (1)



FIGURE 7.15. Decision regions of two-stage detector with  $A_1 = 1$ ,  $A_2 = 1$ .





## Performances du Détecteur « Multi-Stage » Canal synchrone (2)



FIGURE 7.19.
Decision regions
of multistage
detector with a
decorrelating first
stage.









# Détecteurs « Decision-Driven » III. Détection « Decision-Feedback » (1)

#### Principe:

- détection séquentielle, 1 bit à la fois
- utilisation de méthodes linéaires et non-linéaires afin de combattre l'interférence inter-utilisateur
- « decision feedback » : d'après techniques single-user pour combattre l'interférence inter-symbole

### Decision-Feedback par décorrélation synchrone

Soit 
$$\overline{\underline{y}} = F^{-T} \underline{y}$$
 avec  $R = F^{T} F$  ( $F$  triangula ire inférieure)
$$\overline{y}_{1} = F_{11} A_{1} b_{1} + \overline{n}_{1}$$

$$\overline{y}_{2} = F_{21} A_{1} b_{1} + F_{22} A_{2} b_{2} + \overline{n}_{2}$$
...
$$\overline{y}_{k} = \sum_{i=1}^{k-1} F_{kj} A_{j} b_{j} + F_{kk} A_{k} b_{k} + \overline{n}_{k}$$

# Détecteurs « decision-driven » III. Détection « Decision-Feedback » (2)

$$\hat{b}_k = sgn\left(\bar{y}_k - \sum_{j=1}^{k-1} F_{kj} A_j \hat{b}_j\right)$$

Sous forme matricielle:

$$\hat{\underline{b}} = sgn(F^{-T}\underline{\underline{y}} - (F - diag(F))A\hat{\underline{b}})$$

#### Avantages:

- si décision correcte pour l'utilisateur j, pour j de 1 à k-1, contribution totalement éliminée dans l'utilisateur k
- en absence de bruit, décision parfaite (contrairement à la technique par annulations successives)

# Détecteurs « decision-driven » III. Détection « Decision-Feedback » (3)

#### Decision-Feedback MMSE

principe : chercher un détecteur de la forme

$$\underline{\hat{b}} = sgn(G\underline{y} - BA\underline{\hat{b}})$$

Pour la méthode MMSE, on prend :

$$G = F_{\sigma}^{-T}$$

$$B = F_{\sigma}^{-T} - diag(F_{\sigma})$$
avec  $F_{\sigma}$  telleque  $F_{\sigma}^{T}F_{\sigma} = \sigma^{2}A^{-2} + R$ 

Avantage par rapport au détecteur MMSE « classique » :

pour BER faibles, la région d'acceptation en fonction des SNRs contient toujours la région correspondante dans le cas du MMSE « classique »

## Conclusion

- Existence d'un détecteur optimal complexe (synchrone ou asynchrone)
   mise en œuvre difficile
- · Mise au point d'algorithmes sous-optimaux
  - filtre adapté : réduction du bruit mais pas des interférences
  - décorrélateur : réduction des interférences mais pas du bruit
  - MMSE : compromis réduction bruit/interférences
- · Grand nombre d'autres détecteurs :
  - MMSE adaptatif
  - modèles asynchrones
  - ...
- Etudes de plus en plus nombreuses de détecteurs en présence de fading, de multi-trajet, de diversité, codage espace-temps (systèmes MIMO),...