GAUSSIANS

10.7.2020

RECAP

- * bootstrap
 - * confidence interval
 - * standard error (standard deviation of bootstrapped statistic)

- * DEMO: let's take a bunch of random values (from the same distribution)
- * and take their average
- * let's do this many times

- * as the number of samples we take increases, the distribution of their averages converges to..
- * a Gaussian distribution!

* and it doesn't matter what distribution you start with

* THE DISTRIBUTION YOU START WITH CAN BE TOTALLY BIZARRE AND NOTHING LIKE A GAUSSIAN DISTRIBUTION

* AND IT STILL WORKS!!!!!!

* this is why gaussian distributions are everywhere (fMRI data, behavioral data, calcium imaging data, etc. etc.), and we will learn about them

GAUSSIANS

Carl Gauss

* "Gaussian distribution" aka "Normal distribution"

* X ~ N(μ , σ^2) : X is a normal RV with mean μ and variance σ^2

$$PDF(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

GAUSSIANS

* "Standard normal" distribution has mean $\mu=0$, and variance $\sigma^2=1$

$$PDF \propto e^{-x^2}$$

* np.random.randn generates random
 variables from standard normal

GAUSSIAN TRANSFORMATIONS

- * suppose you have samples from $X \sim N(0,1)$ but you want samples from $Y \sim N(5,1)$
- * i.e. you want samples from a distribution with $\mu \text{=} 5$

GAUSSIAN TRANSFORMATIONS

- * suppose you have samples from $X \sim N(0,1)$ but you want samples from $Y \sim N(5,1)$
- * i.e. you want samples from a distribution with $\mu \text{=} 5$
- * add the mean! $(X + b) \sim N(b,1)$

GAUSSIAN TRANSFORMATIONS

```
* suppose you have samples from X \sim N(0,1) but you want samples from Y \sim N(0,5)
```

- * i.e. you want samples with variance 5
- * multiply by sqrt(5)!

```
(a * X) \sim N(0, sqrt(a))
```

ESTIMATING MEAN & VARIANCE

- * "sample mean" is just the mean of your sample
- * but "sample variance" (s²) is *not* just the variance of your sample! (omg)
 - * i.e. $s^2 != \sigma^2$

ESTIMATING MEAN & VARIANCE

* sample variance (s²) is defined as:

$$s^{2} = \frac{1}{n-1} \sum_{i} (x_{i} - \bar{x})^{2}$$

ESTIMATING MEAN & VARIANCE

* sample variance (s²) is defined as:

$$s^{2} = \frac{1}{n-1} \sum_{i} (x_{i} - \bar{x})^{2}$$

* which is normalized by n-1 instead of n

GAUSSIAN STANDARD ERROR

- * if we have samples from a Gaussian we can always use bootstrapping to find the standard error
- * but, like the binomial distribution, there is also an analytic solution for the standard error:

$$SE = \frac{s}{\sqrt{n}}$$

END