

Type XXXX

MFC Family

- Digital Communication

Supplement to Operating Instructions

Ergänzung zur Bedienungsanleitung Complément aux instructions de service

We reserve the right to make technical changes without notice. Technische Änderungen vorbehalten! Sous réserve de modifications techniques.

Beschreibung der Kommunikation mit den Geräten der MFC-Familie

<u>Inhalt</u>

1.	ERG	ANZENDE BEDIENUNGSANLEITUNG	5
	1.1.	Darstellungsmittel	5
_			
2.	ALLC	GEMEINE HINWEISE	6
	2.1.	Kontaktadressen	6
	2.2.	Informationen im Internet	6
	2.3.	Englische Begriffe	6
3.	SER	ELLE KOMMUNIKATION	7
	3.1.	Allgemeines	7
	3.2.	Befehle	12
	3.3.	Fehlermeldungen	26
4.	INBE	TRIEBNAHME PROFIBUS DP	30
	4.1.	Adresseinstellung bei BUS-Geräten	30
	4.2.	Technische Daten	31
	4.3.	DP-Alarmmodus	31
	4.4.	PROFIBUS PDI/PDOs	31
	4.5.	Erläuterungen der Variablen des zyklischen Datenverkehrs	32
	4.6.	Azyklische Daten	33
5.	INBE	TRIEBNAHME DEVICENET	34
	5.1.	Begriffe	34
	5.2.	Konfiguration der Prozessdaten	35
	5.3.	Azvklische Daten	35

6.	INBE	TRIEBNAHME CANOPEN	36
	6.1.	CANopen Allgemeines	36
	6.2.	CANopen Notfall	39
	6.3.	CANopen - Service Data Transfer (Servicedatenübertragung)	43
	6.4.	CANopen - Process Data Transfer (Prozessdatenübertragung)	44
	6.5.	CANopen - Communication Object (Kommunikationsobjekt)	50
	6.6.	Azyklische Daten	50
7.	AZYI	KLISCHE DATENÜBERTRAGUNG PROFIBUS, DEVICENET UND CANOPEN	51
	7.1.	CANopen-Manufactory Object	51
	7.2.	CANopen-Identity Object	51
	7.3.	DeviceNet S-Identity Object	52
	7.4.	S-Analog Sensor Object	53
	7.5.	S-Analog Actuator Object	54
	7.6.	S-Single Stage Controller Object	56
	7.7.	Bürkert General Description Object	57
	7.8.	Bürkert MFC Family Object	57
8.	INBE	TRIEBNAHME MODBUS	66
	8.1.	Allgemeine Hinweise	66
	8.2.	Modbus Allgemeines	66
	8.3.	Modbus Register und Kommunikationsobjekte	70
9.	ANH	ANG	81
	9.1.	Beschreibung der Bitfelder	81
	9.2.	Tabelle der Einheiten	85

1. ERGÄNZENDE BEDIENUNGSANLEITUNG

Die ergänzende Bedienungsanleitung beschreibt die Kommunikation mit den Geräten der MFC-Familie.

Informationen zur Sicherheit!

Sicherheitshinweise und Informationen für den Einsatz des Geräts finden Sie in der dazugehörigen Bedienungsanleitung.

Die Bedienungsanleitung muss gelesen und verstanden werden.

1.1. Darstellungsmittel

GEFAHR!

Warnt vor einer unmittelbaren Gefahr!

Bei Nichtbeachtung sind Tod oder schwere Verletzungen die Folge.

WARNUNG!

Warnt vor einer möglicherweise gefährlichen Situation!

Bei Nichtbeachtung drohen schwere Verletzungen oder Tod.

VORSICHT!

Warnt vor einer möglichen Gefährdung!

Nichtbeachtung kann mittelschwere oder leichte Verletzungen zur Folge haben.

HINWEIS!

Warnt vor Sachschäden!

Bei Nichtbeachtung kann das Gerät oder die Anlage beschädigt werden.

Bezeichnet wichtige Zusatzinformationen, Tipps und Empfehlungen.

Verweist auf Informationen in dieser Bedienungsanleitung oder in anderen Dokumentationen.

→ Markiert einen Arbeitsschritt, den Sie ausführen müssen.

2. ALLGEMEINE HINWEISE

2.1. Kontaktadressen

Deutschland

Kontaktadresse:

Bürkert Fluid Control System Sales Center Chr.-Bürkert-Str. 13-17 D-74653 Ingelfingen Tel.: 07940 - 10 91 111

Fax: 07940 - 10 91 448 E-mail: info@de.buerkert.com

International

Die Kontaktadressen finden Sie auf den letzten Seiten der gedruckten Bedienungsanleitung.

Außerdem im Internet unter:

www.burkert.com

2.2. Informationen im Internet

Bedienungsanleitungen und Datenblätter zu den Gerätetypen finden Sie im Internet unter:

www.buerkert.de

Desweiteren steht eine komplette Dokumentation auf CD bereit, die unter der Identnummer 804625 bestellt werden kann.

2.3. Englische Begriffe

Auf eine Übersetzung von englischen Fachbegriffen und Eigennamen wird verzichtet. Weiterhin werden die verwendeten Variablen, Funktionsnamen usw. im Englischen belassen und wie deutsche Begriffe verwendet.

3. SERIELLE KOMMUNIKATION

3.1. Allgemeines

3.1.1. RS232 - Treiber im Gerät enthalten

(z. B. bei den Typen 8626/8006, 8716/8706, 8712/8702)

MFC / MFM	PC (SUB-D 9pin Stecker)
RS232 TxD (Pin 6 SUB-HD Buchse)	Pin 2
RS232 RxD (Pin 14 SUB-HD Buchse)	Pin 3
RS232 GND (Pin 15 SUB-HD Buchse)	Pin 5

3.1.2. RS232 - Treiber nicht im Gerät enthalten

(z. B. bei den Typen 8711/8701)

MFC /	MFM	
TxD	vom Gerät	(Pin 15 SUB-D Stecker)
RxD	vom Gerät	(Pin 14 SUB-D Stecker)
GND	vom Gerät	(Pin 11 SUB-D Stecker)

3.1.3. Übertragungsprotokoll

Übertragungskanäle

Für die serielle Schnittstelle werden folgende Leitungen verwendet:

Drahtgebundene Kommunikation GND Masse

RxD Empfangsleitung (Sicht vom MFC)
TxD Sendeleitung (Sicht vom MFC)

Datenformat

Das Protokoll der seriellen Schnittstelle ist wie folgt aufgebaut:

Übertragungsrate Standard 9600 Bd (abweichend von HART)

Datenbits 8

Parität keine (abweichend von HART)

Stoppbits 1 Hardware-Handshake nein

Telegramm

Allgemeines

Der Aufbau des Sendetelegramms beruht auf dem HART-Protokoll. HART ist ein Master-Slave-Protokoll, d. h. jede Übertragung wird durch ein Master-Gerät gestartet (PC oder manuelle Bedieneinheit). Das Slave-Gerät (Feldgerät, MFC / MFM) reagiert nur auf ein Master-Telegramm, wenn es von ihm adressiert wurde. Ausnahme: Burstmeldung

Weitere Informationen über das HART-Protokoll sind zu finden unter:

http://www.hartcomm.org/

http://www.romilly.co.uk/

Es wird unterschieden zwischen Short Frame und Long Frame Telegrammen. Diese bestehen aus den folgenden Zeichen:

Short frame

Preamble 2 ... 20 Bytes 0xFF

(Präambel)

Delimiter 1 Byte

(Startzeichen)

 $\begin{array}{ccc} \text{Master} & \rightarrow & \text{Slave} & 0x02 \\ \text{Slave} & \rightarrow & \text{Master} & 0x06 \\ \text{Burstmeldung} & 0x01 \end{array}$

Address 1 Byte

(Adresse) (Master-Adresse + Burst-Info + Polling-Adresse)

Command 1 Byte

(Befehl)

Byte count 1 Byte

(Bytezählwert)

Status 2 Byte, nur für Slave Master

(Bedeutung siehe "3.3. Fehlermeldungen")

Data 0 ... 255 Bytes

(Daten)

Checksum 1 Byte

(Checksumme)

Long frame

Preamble 2 ... 20 Bytes 0xFF

(Präambel)

Delimiter 1 Byte

(Startzeichen)

Master \rightarrow Slave 0x82 Slave \rightarrow Master 0x86 Burstmeldung 0x81

Address 5 Bytes

(Adresse)

Command 5 Bytes

(Befehl)

Bytecount 1 Byte

(Bytezähler)

Status 2 Byte, nur für Slave Master

(Bedeutung siehe "3.3. Fehlermeldungen")

Data 0 ... 255 Bytes

(Daten)

Checksum 1 Byte

(Checksumme)

Präambel

Die Präambel besteht aus 2 bis 20 0xFF Zeichen (unterscheidet sich von HART). Sie wird zum Synchronisieren des Datentransfers verwendet.

Startzeichen

Die Telegramme unterscheiden sich voneinander in erster Linie durch das Startzeichen:

Master: PC oder manuelle Bedieneinheit

Slave: Feldgerät, MFC/MFM

Adresse

Das Adressfeld enthält sowohl die Masteradresse wie auch die Slaveadresse der Meldung. In einem Short Frame wird ein Byte dafür verwendet und 5 Byte in einem Long Frame. Jedes Gerät muss auf eine Long Frame-Adresse von 0 (= Rundrufadresse) antworten, d. h. Bit 0/1=X, Bit 0 ... 37=0.

In beiden Formaten zeigt das höchste Wertbit an, welcher Master an der Kommunikation beteiligt ist.

(1: Primärer Master, ständig angeschlossene Hosts;

0: Sekundärer Master, manuelle Betriebseinheiten)

Short frame Adresse (1 Byte)

Bit 7 0 Sekundärer Master

1 Primärer Master

Bit 6 0 Nicht im Burstmodus

1 Im Burstmodus (nicht unterstützt)

Bit 0 ... 5 Polling-Adresse (0 ... 32), Bit 5 = MSB, Bit 0 = LSB

mbxxxxxx

x Polling-Adresse

b Burst Info

mMaster-Adresse

Long Frame-Adresse (5 Byte)

Bit 39 0: Sekundärer Master

1: Primärer Master

Bit 38 0: Nicht im Burstmodus

1: Im Burstmodus (nicht unterstützt)

Bit 32 ... 37 Hersteller-ID-Code (0x78 = Buerkert),

Bit 37 = MSB, Bit 32 = LSB

Bit 24 ... 31 Gerätetyp-Code (0xEE = Massendurchflussregler/-messer),

Bit 31 = MSB, Bit 24 = LSB

Bit 0 ... 23 Geräte-ID-Nummer,

Bit 23 = MSB, Bit 0 = LSB

(entspricht der Seriennummer des Geräts)

Jede Feldeinheit muss auf die Adresse 0 antworten (Bit 0 ... 23 = 0).

Befehl

Befehle werden entsprechend HART unterteilt in:

Universelle Befehle Befehl 0 ... 30
Standard Befehle Befehl 32 ... 126
Gerätespezifischer Befehl 128 ... 253

Befehl

(reserviert 31, 127, 254, 255)

Bytezählwert

Der Bytezählwert zeigt an, wie viele Bytes noch vor der Checksumme kommen, d. h. die Zahl der Statusbytes + Zahl der Datenbytes. Dies führt zu einem maximalen Zählwert von einer Gesamtzahl von 255 Status- und Datenbytes.

Antwortcode

Wird nur vom Slave zum Master in einem Antworttelegramm übertragen und besteht aus 2 Byte. Die Statusbytes werden für die Detektion von Kommunikationsfehlern oder für den Betriebsstatus des Slave-Geräts verwendet.

Daten

Datenbytes, je nach Befehl. Bis zu maximal 255 Datenbytes können übertragen werden.

Float – IEEE 754 einfache Genauigkeit (4 Byte) Float

Checksumme

Die Checksumme ist eine XOR (Exclusiv-OR, Antivalenz) Kombination aller Bytes aus dem Startbyte (Startzeichen) bis zum und einschließlich des letzten Datenbytes.

Eine XOR-Kombination ist die logische Kombinationsfunktion für zwei logische Werte ("0" und "1"), was das Ergebnis "1" ergibt, wenn einer der zwei Werte, aber nicht beide, "1" sind.

Befehle 3.2.

Befehlsnummer	0x00			
Befehlsname	ReadUniqueldentifier			
Anforderung				
Befehl	0x00			
Bytezählwert	0			
Daten	-			
Antwort				
Befehl	0x00			
Bytezählwert	14 (18)			
Status	2 Bytes	Gerätestatus		
Daten	12 (16)	·		
	0	"254" (expansion)		
	1	manufacturer identification code		
	2	manufacturer's device type code		
	3	number of preambles required		
	4	universal command revision		
	5	device-specific command revision		
	6	software revision		
	7	hardware revision		
	8	device function flags		
	9 11	device ID number 1)		
	(12	common-practice command revision) 1)		
	(13	common tables revision) 2)		
	(14	data link revision) ²⁾		
	(15	device family code) 2)		
Beschreibung				
HART-Universal Cor	mmand 0.			

¹⁾ erstes übertragenes Byte: MSB ²⁾ reserviert für spätere Versionen

Befehlsnummer	0x01	
Befehlsname	ReadPrimaryVariable	
Anforderung		
Befehl	0x01	
Bytezählwert	0	
Daten	_	
Antwort		
Befehl	0x01	
Bytezählwert	7	
Status	2 Bytes Gerätestatus	
Daten	5 Bytes	
	0 PV units code	
	1 4 primary variable (float) 1)	
Beschreibung		
HART-Universal C	Command 1.	
PV Unit 0 x 39 → %		
PV Ist-Durchfluss X (±)		
(siehe auch "3.3.3	B. Codierungen und Einheiten")	

Beispiel:

alle Daten als Hexadezimale Zahlen (Präfix 0x) Short Frame

Primary Master

Short Adresse 0

- → gesendete Daten
- ← empfangene Daten
- Read Primary Variable
 - → 0xFF 0xFF 0x02 0x80 0x01 0x00 0x83
 - ← 0xFF 0xFF 0x06 0x80 0x01 0x07 0x00 0x00 <u>0x39 0x41 0xC8 0x00 0x00</u> 0x30 0x39 für PV Unit = % 0x41 C80000 = 25,0 IEEE 754 floating point

¹⁾ erstes übertragenes Byte: MSB

Befehlsnummer	0x03			
Befehlsname	ReadCurrentAndFourDynamicVariables			
Anforderung				
Befehl	0x03			
Bytezählwert	0			
Daten	-			
Antwort				
Befehl	0x03			
Bytezählwert	26			
Status	2 Bytes G	erätestatus		
Daten	24 Bytes			
	0 3	current (mA) (float) 1)		
	4	PV units code		
	5 8	primary variable (float) 1)		
	9	SV units code		
	10 13	secondary variable (float) 1)		
	14	TV units code		
	15 18	third variable (float) 1)		
	19	FV units code		
	20 23	fourth variable (float) 1)		
Beschreibung				
HART-Universa	l Command	3.		
Ab Firmware Version A.00.28.09 neue Variablenzuordnung:				
current PV Unit PV SV Unit SV TV Unit TV FV Unit FV	t % Ist-Durchfluss X (±) t % Soll-Durchfluss W t % Stellgröße y 2 (Ventiltastverhältnis)			

¹⁾ erstes übertragenes Byte: MSB

Befehlsnummer	0x06		
Befehlsname	WritePollingAddress		
Anforderung			
Befehl	0x06		
Bytezählwert	1		
Daten	1 Byte		
	0 polling address		
Antwort			
Befehl	0x06		
Bytezählwert	3		
Status	2 Bytes Gerätestatus		
Daten	1 Byte		
	0 polling address		
Beschreibung			
HART-Universal Command 6:			
Befehl zur Änderung der HART Polling-Adresse.			

Befehlsnummer	0x27	
Befehlsname	Eeprom	Control
Anforderung		
Befehl	0x27	
Bytezählwert	1	
Daten	1 Byte	
	0	= EEPROM beschreiben
	1	= Inhalt des EEPROM in den RAM kopieren
Antwort		
Befehl	0x27	
Bytezählwert	3	
Status	2 Bytes (Gerätestatus
Daten	1 Byte	
	0	= EEPROM beschreiben
	1	= Inhalt des EEPROM in den RAM kopieren
Beschreibung		
HART-Universal Command 39.		

Befehl zum Schreiben/Lesen der HART-Parameter (z. B. Polling-Adresse) ins / aus dem EEPROM.

Befehlsnummer	0x80		
Befehlsname	ReadVersion		
Anforderung			
Befehl	0x80		
Bytezählwert	0		
Daten	-		
Antwort			
Befehl	08x0		
Bytezählwert	36 ^{2) 3) 4) 5)}		
Status	2 Bytes C	Gerätestatus	
Daten	34 Bytes		
	01	Gerätetyp (unsigned int), z. B. 8626	
	2	Gerätenummer, z. B. 1	
	36	Geräte-Identnummer (unsigned long) 1)	
	710	Geräte-Seriennummer (unsigned long) 1)	
	1114	Software-Identnummer (unsigned long) 1)	
	15	Software-Version x (x.y.z.cc): A Z	
	16	Software-Version y (x.y.z.cc): 0 99	
	17	Software-Version z (x.y.z.cc): 0 99	
	18	Software-Version cc (x.y.z.cc): 0 99	
	19	Version EEPROM-Aufbau x (x.y): A Z 2)	
	20	Version EEPROM-Aufbau y (x.y): 0 99 2)	
	21	Version Table_x (x.y): A Z ³⁾	
	22	Version Table_y (x.y): 0 99 ³⁾	
	23 26	Bios-Identnummer (unsigned long) 4)	
	27	Bios-Version x (x.y.z.cc): A Z 4)	
	28	Bios-Version y (x.y.z.cc): 0 99 4)	
	29	Bios-Version z (x.y.z.cc): 0 99 4)	
	30	Bios-Version cc (x.y.z.cc): 0 99 4)	
	31	MFi Software-Version x (x.y): A Z ⁵⁾	
	32	MFi Software-Version y (x.y): 0 99 5)	
	33	MFi Software-Version x (x.y): A Z ⁵⁾	
Beschreibung			

¹⁾ erstes übertragenes Byte: LSB

²⁾ Versionsabhängig – erhältlich ab Firmware Version A.00.29.02

³⁾ Versionsabhängig – erhältlich ab Firmware Version A.00.63.00

⁴⁾ Versionsabhängig – erhältlich ab Firmware Version A.00.64.00 5) Versionsabhängig – erhältlich ab Firmware Version A.00.83.03

Befehlsnummer	0x92	
Befehlsname	ExtSetp	oint
Anforderung		
Befehl	0x92	
Bytezählwert	5	
Daten	1 Byte	
	0	interne Sollwertvorgabe
	1	externe Sollwertvorgabe
	4 Byte	
	0 3	Sollwert [%] (float) 1)
Antwort		
Befehl	0x92	
Bytezählwert	7	
Status	2 Bytes	Gerätestatus
Daten	1 Byte	
	0	interne Sollwertvorgabe
	1	externe Sollwertvorgabe
	4 Byte	
	0 3	Sollwert [%] (float) 1)

Ab Firmware Version A.00.28.09 verfügbar.

Legt die Sollwertvorgabe fest und beschreibt den externen Sollwert in Prozent:

intern = analog, die Sollwertvorgabe erfolgt über das angelegte analoge Sollwertsignal

extern = digital über die serielle Schnittstelle

Verwenden Sie diesen Befehl nicht bei Einsatz eines Busgeräts (PROFIBUS, DeviceNet ...). Die digitale Sollwertvorgabe über die serielle Schnittstelle besitzt eine höhere Priorität.

Beispiel:

Alle Daten als Hexadezimale Zahlen (Präfix 0x) Short Frame

Primary Master

Short-Adresse 0

- → gesendete Daten
- ← empfangene Daten
- Sollwertvorgabe digital 0,0 % (→ 0x00000000 IEEE 754)
 - → 0xFF 0xFF 0x02 0x80 0x92 0x05 0x01 0x00 0x00 0x00 0x00 0x14
- Sollwertvorgabe digital 50,0 % (→ 0x42480000 IEEE 754)
 - → 0xFF 0xFF 0x02 0x80 0x92 0x05 0x01 0x42 0x48 0x00 0x00 0x1E
 - ← 0xFF 0xFF 0x06 0x80 0x92 0x07 0x00 0x00 0x01 0x42 0x48 0x00 0x00 0x18

¹⁾ erstes übertragenes Byte: MSB

MFC Family

Serielle Kommunikation

- Sollwertvorgabe digital 100,0 % (→ 0x42C80000 IEEE 754)
 - → 0xFF 0xFF 0x02 0x80 0x92 0x05 0x01 0x42 0xC8 0x00 0x00 0x9E
 - ← 0xFF 0xFF 0x06 0x80 0x92 0x07 0x00 0x00 0x01 0x42 0xC8 0x00 0x00 0x98
- Sollwertvorgabe auf analoge Sollwertvorgabe schalten:
 - → 0xFF 0xFF 0x02 0x80 0x92 0x05 0x00 0x00 0x00 0x00 0x00 0x15
 - ← FF FF 06 80 92 07 00 00 00

Befehlsnummer	0x93			
Befehlsname	GetAddDeviceInfo			
Anforderung				
Befehl	0x93			
Bytezählwert	0			
Daten	-			
Antwort				
Befehl	0x93			
Bytezählwert	10			
Status	2 Bytes Gerätestatus			
Daten	8 Bytes			
	0 1 Bitfeld ERRORS 1)			
	2 3 Bitfeld OTHERS ¹⁾			
	4 5 Bitfeld LIMITS ¹⁾			
	6 7 reserved (Bitfeld) 1)			

Ab Firmware Version A.00.28.09 verfügbar.

Befehl zum Auslesen zusätzlicher Geräteinformationen, wie Fehlerbits, Betriebszustände (AutoTune, Safepos ...),

Zustände der Grenzwertschalter und Binärein-/ausgänge.

¹⁾ erstes übertragenes Byte: LSB

Befehlsnummer	0x94	
Befehlsname	GetBusAddress	
Anforderung		
Befehl	0x94	
Bytezählwert	0	
Daten	-	
Antwort		
Befehl	0x94	
Bytezählwert	4	
Status	2 Bytes Gerätestatus	
Daten	2 Bytes	
	0 1 Busadresse (unsigned int) 1)	

Ab Firmware Version A.00.28.09 verfügbar.

Befehl zum Auslesen der Busadresse (PROFIBUS, DeviceNet ...). Handelt es sich bei dem angeschlossenen Gerät nicht um ein Busgerät, wird in der Antwort der Fehler "Zugriff verweigert" zurückgegeben.

Befehlsnummer	0x95	
Befehlsname	SetBusAddress	
Anforderung		
Befehl	0x95	
Bytezählwert	2	
Daten	2 Bytes	
	0 1 Busadresse (unsigned int) 1)	
Antwort		
Befehl	0x95	
Bytezählwert	4	
Status	2 Bytes Gerätestatus	
Daten	2 Bytes	
	0 1 Busadresse (unsigned int) 1)	
Reschreibung		

Ab Firmware Version A.00.28.09 verfügbar.

Befehl zum Setzen der Busadresse (PROFIBUS, DeviceNet ...). Handelt es sich bei dem angeschlossenen Gerät nicht um ein Busgerät, wird in der Antwort der Fehler "Zugriff verweigert" zurückgegeben.

¹⁾ erstes übertragenes Byte: LSB

Befehlsnummer	0x96	
Befehlsname	GetTota	izer
Anforderung		
Befehl	0x96	
Bytezählwert	1	
Daten	1 Byte	
	0	Index der Kalibriergase
Antwort		
Befehl	0x96	
Bytezählwert	8	
Status	2 Bytes Gerätestatus	
Daten	1 Byte	
		Index der Kalibriergase
		0 Gas 1
		1 Gas 2
	5 Byte	
	1	Einheit
	2 5	Totalizerwert (Float)

Ab Firmware Version A.00.28.09 verfügbar.

Liest den Totalizerwert für das Gas mit dem ausgewählten Index in der übertragenen Einheit aus (167 = NI; bezogen auf 1013 mbar, 273 K).

MFC Family

Serielle Kommunikation

Befehlsnummer	0x97	
Befehlsname	ClearTotalizer	
Anforderung		
Befehl	0x97	
Bytezählwert	1	
Daten	1 Byte	
	0 Index der Kalibriergase	
Rückmeldung		
Befehl	0x97	
Bytezählwert	3	
Status	2 Bytes Gerätestatus	
Daten	1 Byte	
	Index der Kalibriergase	
	0 Gas 1	
	1 Gas 2	
Beschreibung		

Ab Firmware Version A.00.28.09 verfügbar.

Löscht den Totalizerwert des entsprechenden Gases.

Befehlsnummer	0x98	
Befehlsname	ExtSetpointWithoutAnswer	
Device Types	0xEE	
Anforderung		
Befehl	0x92	
Bytezählwert	5	
Daten	1 Byte	
	0	Sollwertvorgabe intern
	1	Sollwertvorgabe extern
	4 Byte	
	1 4	Sollwert [%] (float) 1)
Antwort		
Befehl	-	
Bytezählwert	-	
Status	-	
Daten	-	

Ab Firmware Version A.00.51.06 verfügbar.

Legt die Sollwertvorgabe fest und beschreibt den externen Sollwert in Prozent:

intern = analog, die Sollwertvorgabe erfolgt über das angelegte analoge Sollwertsignal

extern = digital über die serielle Schnittstelle

Verwenden Sie diesen Befehl nicht bei Einsatz eines Busgeräts (PROFIBUS, DeviceNet ...). Die digitale Sollwertvorgabe über die serielle Schnittstelle besitzt eine höhere Priorität.

Bei diesem Befehl wird keine Antwort gesendet.

¹⁾ erstes übertragenes Byte: MSB

3.3. Fehlermeldungen

2 Bytes Gerätestatus

Die Fehlermeldungen werden im Gerätestatus abgelegt. Wenn der Gerätestatus 0 ist, ist kein Fehler aufgetreten.

3.3.1. Erstes Statusbyte

Kommunikationsfehler			
Fehlercode	0x82		
Fehlername	overflow		
Beschreibung	UART-Fehler, Receive Buffer, Overflow wurde erkannt.		
Fehlercode	0x88		
Fehlername	checksum		
Beschreibung	Es wurde eine falsche Checksumme empfangen.		
Fehlercode	0x90		
Fehlername	framing		
Beschreibung	UART-Fehler, Framing Error wurde erkannt.		
Fehlercode	0xA0		
Fehlername	overrun		
Beschreibung	UART-Fehler, Overrun Error wurde erkannt.		
Fehlercode	0xC0		
Fehlername	parity		
Beschreibung	UART-Fehler, Parity Error wurde erkannt.		

Befehlsfehler			
	000		
Fehlercode	0x02		
Fehlername	invalid_selection		
Beschreibung Es wurde ein ungültiger Datenbereich ausgewählt.			
Fehlercode	0x03		
Fehlername	parameter_too_large		
Beschreibung	Übergabeparameter zu groß, dies kann ein Tabellen oder Array-Index sein oder auch einer der Parameter aus dem Datenbereich, d. h. falscher Wertebereich.		
Fehlercode	0x04		
Fehlername	parameter_too_small		
Beschreibung	Übergabeparameter zu klein, dies kann ein Tabellen oder Array-Index sein oder auch einer der Parameter aus dem Datenbereich, d. h. der Wertbereich wurde unterschritten.		
Fehlercode	0x05		
Fehlername	too_few_data_bytes		
Beschreibung Es wurden zu wenig Datenbytes empfangen.			
Fehlercode	0x07		
Fehlername	write_protected		
Beschreibung	Gerät ist schreibgeschützt.		
Fehlercode	0x10		
Fehlername	access_restricted		
Beschreibung	Der gesendete Befehl kann (momentan) nicht ausgeführt werden, der Zugriff wurde verweigert. Ursachen können zum Beispiel sein, dass die erforderlichen Zugriffrechte fehlen oder der Befehl in der aktuellen Betriebsart nicht zulässig ist.		
Fehlercode	0x40		
Fehlername	no_command		

MFC Family

Serielle Kommunikation

Gerätestatus		
Fehlercode	0x20	
Fehlername	device_busy	
Beschreibung	Gerät ist beschäftigt.	

Eigene, gerätespezifische Fehlermeldungen			
Fehlercode	0x01		
Fehlername	timeout		
Beschreibung	Das Zeitlimit wurde überschritten, d. h. zwischen dem Empfang eines gültigen Startzeichens und einem kompletten Befehl verging zuviel Zeit.		
Fehlercode	0x41		
Fehlername	wrong_command		
Beschreibung	Falscher Befehlsaufbau, d. h. der Befehl ist gültig und existiert, jedoch stimmt die Anzahl der übertragenen Bytes nicht überein. Es wurde bei einer 2-Byte Variablen nur 1 Byte übergeben.		

3.3.2. Zweites Statusbyte

Zweites	Zweites Statusbyte		
Bit 7	Feldgerätefehlfunktion		
Bit 6	reserviert für zukünftige Zwecke		
Bit 5	reserviert für zukünftige Zwecke		
Bit 4	reserviert für zukünftige Zwecke		
Bit 3	reserviert für zukünftige Zwecke		
Bit 2	reserviert für zukünftige Zwecke		
Bit 1	reserviert für zukünftige Zwecke		
Bit 0	reserviert für zukünftige Zwecke		

UART-Fehler haben bei der Fehlererkennung Vorrang. Mehrere UART-Fehler können nicht gleichzeitig erkannt werden.

3.3.3. Codierungen und Einheiten

Codierung Hersteller (nach HART)				
Hex	Dez	Beschreibung		
0x78	120	Buerkert		
0xFA	250	not used		
0x FB	251	none		
0xFC	252	unknown		
0xFD	253	special		

Einheiten (nach HART)			
Hex	Dez	Einheit	Beschreibung
0x33	51	sec	Sekunde
0x39	57	%	Prozent
0xA7	167	NI	Normliter
0xFA	250	-	not used
0xFB	251	-	none
0xFC	252	-	unknown
0xFD	253	-	special

4. INBETRIEBNAHME PROFIBUS DP

4.1. Adresseinstellung bei BUS-Geräten

4.1.1. Geräte ohne Drehschalter zur Adresseinstellung

Die BUS-Adresse der Geräte kann wahlweise über das Bürkert Konfigurations-Tool MassFlowCommunicator in der Ansicht "*Views"* — "*PROFIBUS/DeviceNet/CANopen"* eingestellt werden oder direkt über den BUS-Master.

Nach einer Adressänderung muss diese am Slave sowie am Master neu initialisiert werden. Hierbei ist es erforderlich, abhängig vom BUS, evtl. ein entsprechendes Telegramm zu senden.

Um eine störungsfreie Einstellung zu gewährleisten, sollte ein Geräte-Reset durchgeführt werden (Gerät stromlos schalten).

4.1.2. Geräte mit Drehschalter zur Adresseinstellung

Beim Einschalten des Geräts wird die an den Drehschaltern eingestellte Adresse als Slave Adresse übernommen. Gültige Adressen sind:

• PROFIBUS 0 ... 126

• DeviceNet 0 ... 63

CANopen 1 ... 127

Falls die Adresse außerhalb des zulässigen Bereiches eingestellt wurde, hat die Adresseinstellung wie unter Punkt "4.1.1" beschrieben Gültigkeit.

LBS	Einerstelle, x 1		
	0 9	Ziffer mal 1	→ 0 9
MBS	Zehnerstelle,	κ 10	
	0 9	Ziffer mal 10	\rightarrow 0 90
	Α		\rightarrow 100
	В		→ 110
	С		\rightarrow 120
	D		→ 130
	E		\rightarrow 140
	F		\rightarrow 150

Die Adresse setzt sich somit aus LSB + MSB zusammen.

MSB	LBS	Adresse
0	1	1
6	3	63
Α	0	100
С	7	127

Wird bei vorhandenen Drehschaltern eine Adresseinstellung über den BUS-Master gewünscht, so ist dies durch die Einstellung einer Adresse außerhalb des gültigen Bereiches realisierbar.

4.2. Technische Daten

GSD-Datei BUV10627.GSD

Symbole BUV10627.BMP Adresse 0 ... 126

Standard: 126

4.3. DP-Alarmmodus

DP-Alarmmodus wird nicht unterstützt.

Siemens-spezifisch:

Wert "DPV0" im Hardwarekonfigurator verwenden. Es gibt keine Änderung des Kommunikationsprotokolls.

Der Wert ändert nur die "Alarmmodusunterstützung".

Weitere Informationen finden Sie in der Simatic - S7-Hilfe.

4.4. PROFIBUS PDI/PDOs

In diesem Eingabefenster können Sie sämtliche für die Bus-Kommunikation notwendigen Einstellungen durchführen. Wichtig hierbei ist die BUS-Adresse des Geräts (BUS AdrProfibus) sowie die zu sendenden (Input SPS bzw. PDIs) und zu empfangenden (Output SPS bzw. PDOs) Prozessdaten. Sie können über die Optionsfelder aktiviert /deaktiviert werden.

→ Übernehmen Sie die veränderten Einstellungen in der Menüleiste unter "Functions" / "Write Data to Device".

Es dürfen nicht mehr als insgesamt 10 Prozessdaten ausgewählt werden. Hierbei zählen sowohl die Prozess-Input-Daten, als auch die Prozess-Output-Daten.

4.5. Erläuterungen der Variablen des zyklischen Datenverkehrs

Prozessdaten	Erklärung	Kennung
Actual value (Istwert)	Istwert (1 Wort = 2 Byte) Wertebereich 0 1000	41,40,00 (HEX); PDI
Set-point (Sollwert)	Sollwert (1 Wort = 2 Byte) Wertebereich 0 1000	41,40,01 (HEX); PDI 81,40,01 (HEX); PDO
Active gas (verwendete Gassorte)	mit deren Kalibrierkurve geregelt wird, Gas 1 oder Gas 2 (1 Wort = 2 Byte) Wertebereich 0 1	41,40,02 (HEX); PDI
Nominal flow Gas 1 (Nenndurchfluss Gas 1)	Nenndurchfluss in NI/min von Kalibrierung für Gas 1 Float = 4 Byte	41,83,03 (HEX); PDI
Nominal flow Gas 2 (Nenndurchfluss Gas 2)	Nenndurchfluss in NI/min von Kalibrierung für Gas 2 Float = 4 Byte	41,83,04 (HEX); PDI
Status limits (Zustand der Schwellwerte)	Nur Lesen Bitfeld für Zustände der geräteinternen Schwellwerte: (1 Wort = 2 Byte) siehe "9.1. Beschreibung der Bitfelder" min. Wert 0, max. Wert 65535	41,40,05 (HEX); PDI
Status errors (Fehlerzustände)	Nur Lesen Bitfeld für vorhandene Gerätefehler. (1 Wort = 2 Byte) siehe "9.1. Beschreibung der Bitfelder" min. Wert 0, max. Wert 65535	41,40,06 (HEX); PDI
Status others (andere Zustände)	Nur Lesen Bitfeld für aktuelle Zustände im Regler. (1 Wort = 2 Byte) siehe "9.1. Beschreibung der Bitfelder" min. Wert 0, max. Wert 65535	41,40,07 (HEX); PDI
Status LEDs (Zustände der LEDs)	Nur Lesen Bitfeld für Kommunikationszustände. (1 Wort = 2 Byte) siehe "9.1. Beschreibung der Bitfelder" min. Wert 0, max. Wert 65535	41,40,08 (HEX); PDI
Status binary outputs (Zustand Binärausgänge)	reserviertes Bitfeld (1 Wort = 2 Byte) siehe "9.1. Beschreibung der Bitfelder"	41,40,09 (HEX) PDI
Default values via bus (Vorgabewerte über Bus)	Bitfeld für die Zustände der LED's und der Binärausgänge, wie sie vom Bus vorgegeben werden können. Hierzu müssen die entsprechenden Funktionen mit dem PC-Programm im Gerät konfiguriert werden. (1 Wort = 2 Byte) siehe "9.1. Beschreibung der Bitfelder"	41,40,0B (HEX); PDI 81,40,0B (HEX); PDO

Prozessdaten	Erklärung	Kennung
Totalizer value Gas 1 (Totalizerwert Gas 1)	Totalizerwert der Kalibrierung für Gas 1 in NI. Float = 4 Byte	41,83,03 (HEX); PDI
Totalizer value Gas 2 (Totalizerwert Gas 2)	Totalizerwert der Kalibrierung für Gas 2 in NI. Float = 4 Byte	41,83,0D (HEX); PDI
Actual value as float (Istwert als Float)	(4 Byte) Default: 0100 % Parametrisierung der Einheit. (siehe auch "7.4. S-Analog Sensor Object")	41,83,0E (HEX) PDI 81,83,0E (HEX) PDO
Set-point as float (Sollwert als Float)	(4 Byte) Default: 0100 % Parametrisierung der Einheit. (siehe auch "7.6. S-Single Stage Controller Object")	81,83,0E (HEX) PDO
Stellgröße y2	(2 Byte) Nur für MFC Stellgröße y2 des Reglers in Promille Wertebereich 0 1000	41,40,10 (HEX); PDI
AddMeasureValue	Zusätzlicher Wert als Float (4 Byte) Wert in Prozent	41,83,11 (HEX); PDI
	Dieser Wert wird nur von einigen MFCs unterstützt. Bei Nichtunterstützung wird 0 % zurückgegeben.	
Хр	Zusätzlicher Druckwert (2 Byte) Wert in Promille Wertebereich 0 1000	41,40,12 (HEX); PDI
	Dieser Wert wird nur von einigen MFCs unterstützt. Bei Nichtunterstützung wird 0 % zurückgegeben.	

4.6. Azyklische Daten

siehe "7. Azyklische Datenübertragung PROFIBUS, DeviceNet und CANopen"

5. INBETRIEBNAHME DEVICENET

5.1. Begriffe

DeviceNet

DeviceNet ist ein Feldbussystem, das auf dem CAN-Protokoll (Controller Area Network) basiert. Es ermöglicht die Vernetzung von Aktoren und Sensoren (Slaves) mit übergeordneten Steuereinrichtungen (Master).

Das Device-Net-Profil "Mass Flow Controller Device" wird getreu der DeviceNet-Spezifikationen unterstützt.

Man unterscheidet zwischen zyklisch oder ereignisgesteuert übertragenen Prozessnachrichten hoher Priorität (I/O Messages) und azyklischen Managementnachrichten niederer Priorität (Explicit Messages).

Protokollablauf

Der Protokollablauf entspricht der DeviceNet-Spezifikation Release 2.0.

Technische Daten

EDS-Datei BUER8626.EDS lcons BUER8626.ICO

Baudrate 125, 250, 500 kBit/s

Werkseinstellung 125 kBit/s

Adresse 0 ... 63

Werkseinstellung 63

Prozessdaten 5 statische Input-Assemblies

4 statische Output-Assemblies

5.2. Konfiguration der Prozessdaten

Zur Übertragung von Prozessdaten über eine I/O-Verbindung stehen 5 statische Input- und 2 statische Output-Assemblies zur Auswahl. In diesen Assemblies sind ausgewählte Attribute in einem Objekt zusammengefasst, um als Prozessdaten gemeinsam über eine I/O-Verbindung übertragen werden zu können.

Die Auswahl der Prozessdaten erfolgt durch Setzen der Geräteparameter Active Input Assembly und Active Output Assembly oder, falls vom DeviceNet-Master/Scanner unterstützt, durch Setzen von Produced Connection Path und Consumed Connection Path beim Initialisieren einer I/O-Verbindung entsprechend der DeviceNet-Spezifikation.

Assembly Object general		
Name	Beschreibung der Input-Datenattribute	Attribut-Adresse (Class, Instance Attribute, Datentyp)
ASS_NumberOfObjects		4, x, 1
ASS_Memberlist		4, x, 2
ASS_Data		4, x, 3

Assembly Object		
Daten Richtung	Beschreibung der Datenattribute	Attribut-Adresse (Class, Instance Attribute, Datentyp)
Input / Output	Not Active / nicht aktiv	4, 0, 3
Input	Statusbyte + Flow(INT)	4, 2, 3
Input	Statusbyte + Flow(INT) + Setpoint(INT) + ActuatorOverrideByte + ValveDutyCycle(INT)	4, 6, 3
Output	Setpoint(INT)	4, 7, 3
Output	ActuatorOverrideByte + Setpoint(INT)	4, 8, 3
Input	Flow + status errors	4, 21, 3
Input	Flow + status errors + status limits	4, 22, 3
Input	Flow + status errors + status limits + status others	4, 23, 3

5.3. Azyklische Daten

siehe "7. Azyklische Datenübertragung PROFIBUS, DeviceNet und CANopen"

6. INBETRIEBNAHME CANOPEN

6.1. CANopen Allgemeines

6.1.1. Verwendete Begriffe

CANopen

CANopen ist ein Feldbussystem, das auf dem CAN-Protokoll (Controller Area Network) beruht.

CANopen ist eine Norm der CAN in Automation (CiA).

Das CANopen-Kommunikationsmodell stellt zwei Arten von Kommunikationsmechanismen bereit:

- Unbestätigte Sendung von Datenblöcken von max. 8 Byte zur Übertragung von Prozessdaten (PDO "Prozessdaten objekt") ohne zusätzlichen Mehraufwand, im Vergleich zu SDO.
- Bestätigte Sendung von Daten zwischen zwei Knoten mit direktem Zugriff auf die Einträge des Objektwörterbuchs (SDO "Servicedatenobjekt") des adressierten Knotens.

Protokollfolge

Die Protokollfolge entspricht dem CANopen-Kommunikationsprofil CiA Normentwurf 301 V 4.02.

6.1.2. Technische Daten

EDS Datei Buerkert_COP8626.EDS

Baudrate 20, 50, 100, 125, 250, 500, 800, 1000 kBit/s

Werkseinstellung 125 kBit/s

Adresse 1 ... 127

Werkseinstellung 127

Prozessdaten 4 TxPDOs

1 RxPDO

6.1.3. Zuweisung der Prozessdatenobjekte

Siehe "6.4. CANopen – Process Data Transfer (Prozessdatenübertragung)"

Vordefinierter ID-Verbindungssatz

CANopen definiert ein Standard-Identifikatorzuweisungsschema (siehe Tabelle unten). Diese Identifikatoren stehen im Zustand vor dem Einsatz direkt nach der Knoteninitialisierung zur Verfügung.

Objekt	Identifikator
NMT	0 hex
SYNC	80 hex
EMERGENCY (NOTFALL)	80 hex + Adresse
1 st TPDO	180 hex + Adresse
1st RPDO	200 hex + Adresse
2 nd TPDO	280 hex + Adresse
2 nd RPDO	300 hex + Adresse
3 rd TPDO	380 hex + Adresse
3 rd RPDO	400 hex + Adresse
4 th TPDO	480 hex + Adresse
4 th RPDO	500 hex + Adresse
TSDO	580 hex + Adresse
RSDO	600 hex + Adresse
NODE-GUARDING (KNOTENSCHUTZ)	700 hex + Adresse

6.1.4. Fehlerüberwachung

Zum Feststellen eines nicht aktiven Busses, ist es nötig, dass der Master eine der beiden Fehlerüberwachungen, Node-Guarding oder Heartbeat, unterstützt.

Die Einbindung einer der beiden Fehlerüberwachungen, Node-Guarding oder Heartbeat, ist obligatorisch.

Bei der Fehlerüberwachung eines CAN-basierten Netzwerkes erkennt das NMT-Objekt lokale Fehler innerhalb eines Knotens. Diese Fehler können z. B. zu einem Reset oder einem Zustandswechsel führen. Diese Fehlerdefinitionen sind nicht Bestandteil der Spezifikation.

Die Fehlerüberwachung geschieht periodisch während der Datenübertragung.

Es existieren zwei Möglichkeiten der Fehlerüberwachung:

Node-Guarding (Knotenüberwachung)

Die Knotenüberwachung erfolgt, indem das Node-Guarding-Telegramm vom NMT-Master gesendet wird. Antwortet der NMT-Slave nicht innerhalb einer festgelegten Zeit oder hat sich der Kommunikationsstatus des NMT-Slaves geändert, so teilt der NMT-Master seiner NMT-Master Anwendung dies mit.

Sofern die Laufzeitüberwachung unterstützt wird, benutzt der Slave die Überwachungszeit und den Ausfallfaktor von seiner Objektbibliothek, um die Reaktionszeit zu berechnen. Wenn es zu einem Ansprechen der Laufzeitüberwachung gekommen ist, informiert der NMT-Slave seine lokale Anwendung über dieses Ereignis. Wenn die Werte der Überwachungszeit und des Ausfallfaktors Null (0) sind, findet keine Laufzeitüberwachung statt.

Die Laufzeitüberwachung des Slaves startet, sobald der Slave die erste Überwachungsanforderung empfangen hat. Dies geschieht in der Regel während der Startphase oder später.

Die Verwaltung der Knotenüberwachung erfolgt durch folgende Objekte:

Name	Beschreibung	Index, Subindex		
		CANope	en	
Node-Guarding Time	Lesen Schreiben	Dec:	4108, 0	
(Überwachungszeit)	Definiert die Überwachungszeit in ms.	Hex:	100C, 0	
		UNSIGN	IED32	
Node-Guarding Fail Factor	Lesen Schreiben	Dec:	4109, 0	
(Ausfallfaktor)	Definiert die Reaktionszeit bei einem Timeout.	Hex:	100D, 0	
	z. B. Reaktionszeit = Überwachungszeit × Ausfallfaktor.	UNSIGN	IED32	

Heartbeat

Beim Heartbeat wird zyklisch überprüft ob der andere Teilnehmer noch reagiert. Wenn die Heartbeat Meldung des Teilnehmers unterbleibt, wird der überwachende Teilnehmer informiert. Sind die Heartbeat Objekte mit Werten ungleich 0 beschrieben, so erfolgt die Überwachung nach dem Zustandswechsel von INITIALISING nach PRE-OPERATIONAL. Hierbei wird die Bootup Meldung als erste mit der Heartbeat Meldung versehen. Es ist verboten beide Mechanismen (Node-Guarding und Heartbeat) gleichzeitig zu verwenden. Wenn die Objekte des Heartbeat ungleich Null (0) sind, wird Heartbeat als Überwachungsmechanismus benutzt.

Die Anpassung von Heartbeat erfolgt durch folgende Objekte:

Name	Beschreibung	Index, S	ubindex
		CANope	en
Consumer Heartbeat Time	Lesen Anzahl der Einträge 1–127	Dec: Hex:	4118, 0 1016, 0
		UNSIGN	IED8
	Lesen Schreiben Bits 31–24: Reserviert Bits 23–16: Knoten ID des Erzeugers Bits 15–0: Heartbeat Zeit	Dec: Hex: UNSIGN	4118, 1–127 1016, 1–7F IED32
Producer Heartbeat Time	Lesen Schreiben Definiert die Überwachungszeit in ms	Dec: Hex:	4109, 0 100D, 0

6.2. CANopen Notfall

Die implementierten Notfallfunktionen entsprechen den "CiA Entwurfsnormen 301".

6.2.1. Notfallzustandsmaschine

Ein Gerät kann sich in einem von zwei Notfallzuständen befinden (siehe "Bild 1: Notfallzustände"). Je nach den Übergängen werden Notfallobjekte gesendet. Verbindungen zwischen der Notfallzustandsmaschine und der NMT-Zustandsmaschine werden in den Geräteprofilen definiert.

Bild 1: Notfallzustände

- Wenn kein Fehler festgestellt wird, geht das Gerät nach der Initialisierung in den fehlerfreien Zustand über. Es wird keine Fehlermeldung gesendet.
- Das Gerät stellt einen internen Fehler fest, der in den ersten drei Bytes der Notfallmeldung angezeigt wird (Fehlercode und Fehlerregister). Das Gerät geht in den Fehlerzustand über. Es wird ein Notfallobjekt mit entsprechendem Fehlercode und Fehlerregister gesendet. Der Fehlercode wird am Ort von Objekt 1003H (vordefiniertes Fehlerfeld) eingetragen.
- 2 Einer, aber nicht alle Fehler sind verschwunden. Eine Notfallmeldung, die den Fehlercode 0000 (Fehlerreset) enthält, kann zusammen mit den übrigen Fehlern im Fehlerregister und im herstellerspezifischen Fehlerfeld gesendet werden.
- 3 Es tritt ein neuer Fehler am Gerät auf. Das Gerät bleibt im Fehlerzustand und sendet ein Notfallobjekt mit dem entsprechenden Fehlercode. Der neue Fehlercode wird am oberen Ende des Feldes der Fehlercodes (1003H) eingetragen. Es muss garantiert werden, dass die Fehlercodes nach Zeit sortiert werden (ältester Fehler höchster Subindex, siehe "Objekt 1003h: Vordefiniertes Fehlerfeld" auf Seite 41).
- Es sind alle Fehler behoben. Das Gerät geht in den fehlerfreien Zustand über und sendet ein Notfallobjekt mit dem Fehlercode "Resetfehler / kein Fehler".

6.2.2. Diagnoseobjektdaten

Das Diagnosetelegramm besteht aus 8 Byte mit den Daten, die in nachfolgender Abbildung gezeigt werden:

Diagnoseobjekt-Daten.

Byte	0	1	2	3	4	5	6	7
Inhalt	(siehe "Ta Diagnosefe	hlercode abelle der ehlercodes" ite 42)	Fehler- register (Objekt 1001H)		herstellers	spezifisches	Fehlerfeld	

Alle Fehler werden durch die folgenden zwei Punkte ergänzt:

Objekt 1001h: Fehlerregister

Name	Beschreibung des Eingabedatenattributs	Index, Subindex
Fehlerregister	Alle am Gerät aufgetretenen Fehler werden auf diesem Objekt abgebildet.	Dez: 4097, 0 Hex: 1001, 0 UNSIGNED8

Dieses Objekt ist ein Fehlerregister für das Gerät. Dieses Gerät kann interne Fehler in diesem Byte abbilden.

Dieser Eintrag ist für alle Geräte obligatorisch. Er ist Teil eines Notfallobjektes.

Bit	M/O	Bedeutung
0	М	generelle Fehler
1	0	Strom
2	0	Spannung
3	0	Temperatur
4	0	Kommunikationsfehler (Überlauf, Fehlerzustand)
5	0	gerätespezifisch
6	0	reserviert (immer 0)
7	0	herstellerspezifisch

Wenn ein Bit auf 1 gesetzt ist, ist der angegebene Fehler aufgetreten. Der einzige obligatorische Fehler, der signalisiert werden muss, ist der generelle Fehler. Der generelle Fehler wird in jeder Fehlersituation signalisiert.

Objekt 1003h: Vordefiniertes Fehlerfeld

Name	Beschreibung des Eingabedatenattributs	Index, Subindex
Error Register (Fehlerregister)	Das Objekt enthält im Gerät aufgetretene Fehler.	Dez: 4099, 0-10 Hex: 1003, 0-A
		UNSIGNED32

Das Objekt beim Index 1003h enthält Fehler, die im Gerät aufgetreten und über das Notfallobjekt signalisiert worden sind. Es liefert also eine Fehlerhistorie.

- 1. Der Eintrag beim Subindex 0 enthält die Anzahl der tatsächlichen Fehler, die im Feld aufgetreten sind. Die Aufzeichnung der Fehler erfolgt im Array ab Subindex 1.
- 2. Der neueste Fehler wird in Subindex 1 gespeichert, die älteren verschieben sich in der Liste nach unten.
- 3. Das Schreiben einer "0" in Subindex 0 löscht die gesamte Fehlerhistorie (leert das Feld). Werte größer als 0 dürfen nicht geschrieben werden. Dies führt zu einer Abbruchmeldung (Fehlercode: 0609 0030h).
- 4. Die Fehlernummern sind vom Typ UNSIGNED32 und bestehen aus einem 16-Bit-Fehlercode und einem zusätzlichen 16-Bit-Informationsfeld, das herstellerspezifisch ist. Der Fehlercode ist in den unteren 2 Byte (LSB) enthalten, und die zusätzlichen Informationen sind in den oberen 2 Byte enthalten (MSB). Wenn das Objekt unterstützt wird, muss es aus mindestens zwei Einträgen bestehen. Aus dem Längeneintrag auf dem Subindex 0h und mindestens einem Fehlereintrag bei Subindex 1H.

Byte	MSB	LSB
	zusätzliche Informationen	Fehlercode

Bild 2: Aufbau des vordefinierten Fehlerfeldes

Die folgende Tabelle gibt einen Überblick über die implementierten Diagnosefehlercode:

Tabelle der Diagnosefehlercodes

Fehler Beschreibung	Notfall Fehlercode	Inhalt des Feh- lerregisters (Objekt 1001H)	Inhalt des vorde- finierten Fehler- feldes (Objekt 1003H)	Inhalt des Hersteller- spezifischen Fehlerfeldes
	Hex	Hex	Hex	Hex
			Dez	
Current out of Range	2200	03	00002200	
(Strom außerhalb des Bereichs)			8704	
Error LED (Fehler LED) >Power LED<	FF00	81	0001FF00 130816	Byte 0: 01
Error LED	FF00	81	0002FF00	Byte 0: 02
(Fehler LED) >Kommunikations-LED<			196352	
Error LED	FF00	81	0003FF00	Byte 0: 03
(Fehler LED) >Grenzwert-LED<			261888	
Error LED	FF00	81	0004FF00	Byte 0: 04
(Fehler LED) >Fehler-LED<			327424	
Error BinOut	FF10	81	0001FF10	Byte 0: 01
(Fehler BinOut) >BinOut 1<			130832	
Error BinOut	FF10	81	0002FF10	Byte 0: 02
(Fehler BinOut) >BinOut 2<			196368	
Error Internal Supply Voltage	3200	05	00003200	
(Fehler Interne Spannungsversorgung)			12800	
Error Sensor Supply Voltage	3210	05	00003210	
(Fehler Sensor Spannungsversorgung)			12816	
Error Sensor fault	5030	21	00005030	
(Fehler Sensorausfall)			20528	
Error after autotune	FF20	81	0000FF20	
(Fehler nach Autotune)			65312	
Error Bus modul MFI	FF30	81	0000FF30	
(Fehler Busmodul MFI)			65328	
Stack Overflow	6100	21	00006100	
(Stapelspeicherüberlauf)			24832	
CAN Queue Overrun	8110	01	00008110	
CAN Überlauf Warteschlange			33040	
CAN in Error Passiv Mode	8120	11	00008210	
(CAN befindet sich in einem Error Passiv Mode)			33296	

6.3. CANopen – Service Data Transfer (Servicedatenübertragung)

Der Datentransfer zwischen zwei Teilnehmern wird im Client-Server-Modell beschrieben. Ein SDO-Client (initiierender Teilnehmer) hat hierbei einen direkten Zugriff auf individuelle Einträge des Objektverzeichnisses eines SDO-Servers und kann Datensätze beliebiger Länge zu einem Server laden (download) beziehungsweise von einem Server lesen (upload). Durch Angabe von einem 16-Bit Index und 8-Bit Subindex kann der zu transferierende Datensatz spezifiziert werden. Da pro Übertragungsrichtung je ein Nachrichtenidentifier benötigt wird, werden zwei CAN-Identifier für die Verbindung zwischen einem SDO-Client und einem SDO-Server benötigt. Die Verbindung zwischen einem Client und einem Server wird auch als SDO-Kanal bezeichnet.

Das Bürkert-Feldgerät besitzt einen SDO-Kanal und unterstützt die folgenden Transfertypen:

Segmented Transfer

Segmented Transfer ermöglicht den Transfer von 7 Byte pro Transfersequenz. Zu Beginn wird eine Initialisierungssequenz mit 16-Bit Index und 8-Bit Subindex übertragen. Anschließend erfolgt die bestätigte, segmentierte Übertragung der Daten.

Expedited 1) Transfer

Expedited Transfer ermöglicht den beschleunigten Transfer von 4 Byte pro Transfersequenz und wird standardmäßig verwendet, solange die Größe der zu übertragenden Daten 4 Byte nicht überschreitet.

Eine SDO-Nachricht ist wie folgt aufgebaut:

ID	DLC	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
-	8	CMD	Inc	dex	Sub-Index		Dater	bytes	

Im Byte 1 wird die Übertragung durch Control Bytes spezifiziert. Eine Übersicht über die Bedeutung der verschiedenen Control Bytes ist in der nachstehenden Tabelle zu sehen.

Vorgang	CMD	Bemerkung
Master fordert Daten vom Slave	40h	
Slave antwortet	42h	(Gültige Datenbytes nicht spezifiziert)
	43h	(4 gültige Datenbytes)
	47h	(3 gültige Datenbytes)
	4Bh	(2 gültige Datenbytes)
	4Fh	(1 gültiges Datenbyte)
Master schreibt zum Slave	22h	(Gültige Datenbytes nicht spezifiziert)
	23h	(4 gültige Datenbytes)
	27h	(3 gültige Datenbytes)
	2Bh	(2 gültige Datenbytes)
	2Fh	(1 gültiges Datenbyte)
Slave antwortet	60h	

¹⁾ Expedited: beschleunigt

6.4. CANopen – Process Data Transfer (Prozessdatenübertragung)

Es werden alle verfügbaren Prozessdatenobjekte abgebildet. Nur die ausgewählten Prozessdatenobjekte enthalten gültige Werte.

6.4.1. Empfangs-PDOs

Empfangs-PDOs sind Daten, die vom Gerät (MFC) empfangen werden. Aus Sicht der SPS handelt es sich um Ausgabedaten.

Empfangs	Empfangs-PDO					
Byte	RxPDO0					
0	niederes Byte	Callyrant				
1	höherwertiges Byte	Sollwert				
2	niederes Byte	District Average with a Programme to the state of the sta				
3	höherwertiges Byte	Binäre Ausgabe über Bus einstellen				
4	Byte 0					
5	Byte 1	Cally yout als Floor				
6	Byte 2	Sollwert als Float				
7	Byte 3					

Das folgende Bitfeld ermöglicht das Auswählen der Objekte für die Prozessdatenübertragung.

Prozessdaten	Erklärung		Identifikation
BUS_PDOs	Bitfeld zum Auswählen von (Prozessdatenübertragung (T	Dez: 16896, 1 Hex: 4200, 1	
	Bit 0	-	INTEGER16
	Bit 1	Sollwert	
	Bit 2	-	
	Bit 3	-	
	Bit 4	-	
	Bit 5	-	
	Bit 6	-	
	Bit 7	-	
	Bit 8	-	
	Bit 9	-	
	Bit 10	-	
	Bit 11	Standardwerte über Bus	
	Bit 12	-	
	Bit 13	-	
	Bit 14	-	
	Bit 15	Sollwert als Float	

Das Bitfeld kann durch einen SDO-Zugriff definiert werden.

ID	DLC	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
600h+ID	8	22	420	00H	01H	Bitfeld			

6.4.2. Sende-PDOs

Sende-PDOs sind Daten, die an das Gerät (MFC) gesendet werden. Aus Sicht der SPS handelt es sich um Eingabedaten.

Sende	Sende-PDO								
Byte	TxPDO0		TxPDO1		TxPDO2		TxPDO3		
0	Byte 0	Istwert	Byte 0	Status	Byte 0		Byte 0		
1	Byte 1	istwert	Byte 1	limits	Byte 1	Totalizer (des	Byte 1	Istwert	
2	Byte 0	Sollwert	Byte 0	Status	Byte 2	aktiven Gases)	Byte 2	als Float	
3	Byte 1	Sollwert	Byte 1	others	Byte 3		Byte 3		
4	Byte 0	aktives	Byte 0		Byte 0	D 1	Byte 0		
5	Byte 1	Gas	Byte 1	AddMea-	Byte 1	Durch- flussrate	Byte 1	Sollwert	
6	Byte 0	Status	Byte 2	sureValue	Byte 2	(des aktiven Gases)	Byte 2	als Float	
7	Byte 1	errors	Byte 3		Byte 3	Guscsy	Byte 3		

Das folgende Bitfeld ermöglicht das Auswählen der Objekte für die Prozessdatenübertragung.

Prozessdaten	Erklärung		Identifikation
BUS_PDIs	Bitfeld zum Auswählen von Ob Prozessdatenübertragung (Tx)	jekten für die	Dez: 16896, 2 Hex: 4200, 2
	Bit 0	Istwert	UNSIGNED32
	Bit 1	Sollwert	
	Bit 2	Aktives Gas	
	Bit 3	Nenndurchfluss Gas 1	
	Bit 4	Nenndurchfluss Gas 2	
	Bit 5	Status limits	
	Bit 6	Status errors	
	Bit 7	Status others	
	Bit 8	-	
	Bit 9	-	
	Bit 10	-	
	Bit 11	-	
	Bit 12	Totalizerwert Gas 1	
	Bit 13	Totalizerwert Gas 1	
	Bit 14	Istwert als Float	
	Bit 15	Sollwert als Float	
	Bit 16	-	
	Bit 17	AddMeasureValue	
	Bit 18	Xp (not supported yet)	

Das Bitfeld kann durch einen SDO-Zugriff definiert werden.

ID	DLC	Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
600h+ID	8	22	420	DOH	02H		Bitt	feld	

6.4.3. Transmission Type (Übertragungstyp)

Index	Subindex	Parameter	Länge	Zugriff
1800h	0	Nummer der Subindizes		Lesen
	1	von der PDO genutzte COB-ID		Lesen/Schreiben
	2	Transmission Type (Übertragungstyp)		Lesen/Schreiben
	5	Inhibit Time (Sperrzeit)		Lesen/Schreiben

Der Übertragunstyp (Subindex 2) definiert die Übertragungs-/ Empfangsart des PDO.

Die folgende Tabelle erläutert die Nutzung des Eintrages. Beim Versuch den Wert der Variable auf einen nicht unterstützten Eintrag zu setzen wird eine Fehlermeldung (Abbruchcode:0609 0030h) generiert.

Transmission Type	Triggerbedingung der PDO (B= beide benötigt, E= eine benötigt)			PDO Übertragung
	SYNC	RTR	Event	
0	В	-	В	synchron, azyklisch
1-240	Е	-	-	synchron, zyklisch
241-251	-	-	-	reserviert
252	В	В	-	synchron, nach RTR
253	-	E	-	asynchron, nach RTR
254	-	E	E	asynchron, herstellerspezifisches Ereignis
255	-	E	Е	asynchron, gerätespezifisches Ereignis

6.4.4. Überblick über die abgebildeten Objekte

Prozessdaten	Erklärung	Identifikation
Actual value	Istwert	RX (Empfang)
(Istwert)	(1 Wort = 2 Byte) Wertebereich 0 1000	Dez: 12288, 1 Hex: 3000, 1
		INTEGER16
Set point (Sollwert)	Sollwert (1 Wort = 2 Byte) Wertebereich 0 1000	Tx, Rx Dez: 12288, 2 Hex: 3000, 2
		UNSIGNED16
Active gas	deren Kalibrierung zur Regelung genutzt wird,	RX (Empfang)
(Aktives Gas)	Gas 1 oder Gas 2 (1 Wort = 2 Byte) Wertebereich 0 1	Dez: 12288, 3 Hex: 3000, 3
		UNSIGNED16
Nominal flow Gas 1	Nenndurchfluss in NI/min der	RX (Empfang)
(Nenndurchfluss Gas 1)	Kalibrierung für Gas 1 Float = 4 Byte	Dez: 12288, 4 Hex: 3000, 4
		REAL32
Nominal flow Gas 2	Nenndurchfluss NI/min der	RX (Empfang)
(Nenndurchfluss Gas 2)	Kalibrierung für Gas 2 Float = 4 Byte	Dez: 12288, 5 Hex: 3000, 5
		REAL32
Status limits	Bitfeld für die Zustände der geräteinternen	RX (Empfang)
(Zustand der Schwellwerte)	Schwellwerte: (1 Wort = 2 Byte) siehe "9.1. Beschreibung der Bitfelder"	Dez: 12288, 6 Hex: 3000, 6
		UNSIGNED16
Status errors	Bitfeld für vorhandene Gerätefehler.	RX (Empfang)
(Fehlerzustände)	(1 Wort = 2 Byte) siehe "9.1. Beschreibung der Bitfelder"	Dez: 12288, 7 Hex: 3000, 7
		UNSIGNED16
Status others	Bitfeld für aktuelle Zustände im Regler.	RX (Empfang)
(andere Zustände)	(1 Wort = 2 Byte) siehe "9.1. Beschreibung der Bitfelder"	Dez: 12288, 8 Hex: 3000, 8
		UNSIGNED16

Prozessdaten	Erklärung	Identifikation
Default values via bus (Vorgabewerte über Bus)	Bitfeld für die Zustände der LEDs und die binären Ausgaben, wenn sie vom Bus vorgegeben werden können. Hierzu müssen die entsprechenden Funktionen im Gerät mit dem PC-Programm konfiguriert werden. (1 Wort = 2 Byte) siehe "9.1. Beschreibung der Bitfelder"	Tx (Senden) Dez: 12288, 12 Hex: 3000, C UNSIGNED16
Totalizer value Gas 1 (Totalizerwert Gas 1)	Totalizerwert der Kalibrierung für Gas 1 in NI. Float = 4 Byte	RX (Empfang) Dez: 12288, 13 Hex: 3000, D REAL32
Totalizer value Gas 2 (Totalizerwert Gas 2)	Totalizerwert der Kalibrierung für Gas 2 in NI. Float = 4 Byte	RX (Empfang) Dez: 12288, 14 Hex: 3000, E REAL32
Actual value as float (Istwert als Float)	Istwert als Float (4 Byte) Wertebereich 01000 Andere Einheiten können durch den Wert der Durchflusseinheit aus dem "7.4. S-Analog Sensor Object" parametrisiert werden. z. B. Promille, NI/min und die kalibrierte Einheit	Tx, Rx Dez: 8960, 3 Hex: 2300, 3 REAL32
Set point as float (Sollwert als Float)	Sollwert als Float (4 Byte) Wertebereich 01000 Andere Einheiten können durch den Wert der Durchflusseinheit aus dem "7.6. S-Single Stage Controller Object" parametrisiert werden. z. B. Promille, NI/min und die kalibrierte Einheit	RX (Empfang) Dez: 8448, 4 Hex: 2100, 4 REAL32
AddMeasureValue	Nur Lesen Zusätzlicher Wert als Float (4 Byte) Wert in Prozent Dieser Wert wird nur von einigen MFCs unterstützt. Bei Nichtunterstützung wird 0 % zurückgegeben.	Dez: 12288, 46 Hex: 3000, 2E REAL32
Xp (bisher noch nicht unterstützt)	Nur Lesen Zusätzlicher Druckwert (2 Byte) Wert in Promille Wertebereich 0 1000 Dieser Wert wird nur von einigen MFCs unterstützt. Bei Nichtunterstützung wird 0 % zurückgegeben.	Dec: 12288, 47 Hex: 3000, 2F UNSIGNED16

6.5. CANopen - Communication Object (Kommunikationsobjekt)

Name	Beschreibung des Eingabedatenattributs	Index, Subindex
		CANopen
Node ID (Knoten-ID)	Lesen Schreiben Busadresse Adresse, mit der der CANopen-Master mit dem Gerät kommuniziert. 1 127	Dez: 16384, 1 Hex: 4000, 1 UNSIGNED8
	Standard: 127	
Baudrate (Baudrate)	Lesen Schreiben 0 - 1000 kb 1 - 800 kb	Dez: 16384, 1 Hex: 4000, 1 UNSIGNED8
	2 - 500 kb 3 - 250 kb 4 - 125 kb 5 - 100 kb	
	6 – 50 kb 7 – 20 kb 8 - 10 kb Standard: 4 = 125 kb	

Zum Aktivieren der geänderten Werte ist es notwendig, einen "NMT"-Reset zu senden. Durch Ändern der Werte mit der MassFlowCommunicator-Software wird ein Hardware-Reset notwendig.

6.6. Azyklische Daten

siehe "7. Azyklische Datenübertragung PROFIBUS, DeviceNet und CANopen"

7. AZYKLISCHE DATENÜBERTRAGUNG PROFIBUS, DEVICENET UND CANOPEN

7.1. CANopen-Manufactory Object

Manufactory Object		
Name	Beschreibung der Input-Datenattribute	Index, Subindex
		CANopen
Device Type (Gerätetyp)	Nur Lesen CANopen Profil kein Profil unterstützt Eintrag 0	Dez: 4096, 0 Hex: 1000, 0 UNSIGNED32
Device Name (Gerätename)	Nur Lesen Gerätename	Dez: 4104, 0 Hex: 1008, 0 VISIBLE_STRING
Hardware Version (Hardwareversion)	Nur Lesen Hardwareversion z. B. "A"	Dez: 4105, 0 Hex: 1009, 0 VISIBLE_STRING
Software Version (Softwareversion)	Nur Lesen Softwareversion z. B. "A01.00"	Dez: 4106, 0 Hex: 100A, 0 VISIBLE_STRING

7.2. CANopen-Identity Object

Identity Object				
Name	Beschreibung der Input-Datenattribute	Index, Subindex		
		CANop	en	
Vendor ID (Lieferanten-ID)	Nur Lesen Kennnummer des Lieferanten. Bürkerts CANopen Vendor-ID 39h	Dez: Hex: UNSIG	4120, 1 1018, 1 NED32	
Product Code (Produktcode)	Nur Lesen Produktcode des Geräts.	Dez: Hex: UNSIG	,	
Revison Number (Revisionsnummer)	Nur Lesen Dies ist eine Struktur von zwei UNSIGNED16-Werten. Dies ist die Bürkert-CANopen-Kommunikations-Versionsnummer	Dez: Hex: UNSIG	4120, 3 1018, 3 NED32	
Serial Number (Seriennummer)	Nur Lesen Die Geräte-Seriennummer, welche auf dem Typenschild angegeben ist.	Dez: Hex: UNSIG	4120, 4 1018, 4 NED32	

7.3. DeviceNet S-Identity Object

S-Identity Object		
Name	Beschreibung der Input-Datenattribute	Attribut-Adresse (Klasse, Instanz Attribut; Datentyp)
		DVN
Vendor ID (Lieferanten-ID)	Nur Lesen Kennnummer des Lieferanten. Bürkerts DeviceNet Vendor-ID 57h	Dez: 1, 1, 1 Hex: 1, 1, 1
Device Type (Produktart)	Nur Lesen numeric device identifier Identifikation der allgemeinen Art des Produktes. Dies ist Typ 0 (generisches Gerät).	Dez: 1, 1, 2 Hex: 1, 1, 2 UINT
Product Code (Produktcode)	Nur Lesen Der Productcode ist 2 entsprechend dem eds-File.	Dez: 1, 1, 3 Hex: 1, 1, 3 UINT
Revision	Nur Lesen Revision des Elementes, welches das Identitätsobjekt repräsentiert. Dies ist eine Struktur von zwei Byte.	Dez: 1, 1, 4 Hex: 1, 1, 4 WORD
Status	Nur Lesen Zusammengefasster Status des Geräts.	Dez: 1, 1, 5 Hex: 1, 1, 5 WORD
Serial Number (Seriennummer)	Nur Lesen Seriennummer, welche über alle Bürkert Geräte ein- deutig ist.	Dez: 1, 1, 6 Hex: 1, 1, 6 UDINT
Product Name (Produktname)	Nur Lesen MFC/MFM	Dez: 1, 1, 7 Hex: 1, 1, 7 SHORT_STRING

7.4. S-Analog Sensor Object

S-Analog Sens	sor Object						
Name	Beschreibung der Input-Datenattribute	(Klasse,	-Adresse Instanz Datentyp)	Slot, In	dex	Index, S	Subindex
		DVN		DPV1		CANop	en
Data Type (Datentyp)	Lesen Schreiben Beschreibt das Datenformat des Istwerts und den "Flow Full Scale" (Nenndurchfluss) Hex 0xC3 INT 0xCA REAL	Dez: Hex: USINT	49, 1, 3 31, 1, 3	Dez: Hex:	1, 3 1, 3	Dez: Hex: UNSIG	8448, 1 2100, 1 NED8
Data Units (Durchfluss- einheit)	Lesen Schreiben min. Wert 2048, max. Wert 4103 Auflistung der Einheiten siehe "9.2. Tabelle der Einheiten" "% "Promille" und die kalibrierte Geräteeinheit	Dez: Hex: UINT	49, 1, 4 31, 1, 4	Dez: Hex:	1, 4 1, 4	Dez: Hex: UNSIG	8448, 2 2100, 2 NED16
Reading Valid (Lesen Gültig)	Nur Lesen min. Wert 0, max. Wert 1	Dez: Hex: BOOL	49, 1, 5 31, 1, 5	Dez: Hex:	1, 5 1, 5	Dez: Hex: UNSIG	8448, 3 2100, 3 NED8
Actual Value (Istwert)	Nur Lesen Abhängig von den Einstellungen unter Datentyp und Durchflusseinheit.	Dez: Hex: INT Oder REAL	49, 1, 6 31, 1, 6	Dez: Hex:	1, 6 1, 6	Dez: Hex: INTEGE Oder Dez: Hex:	8448, 4 2100, 4 ER16 8448, 5 2100, 5
Status	Nur Lesen Dies wird noch nicht unterstützt. Der Rückgabewert ist immer 0.	Dez: Hex: BYTE	49, 1, 7 31, 1, 7	Dez: Hex:	1, 7 1, 7	Dez: Hex: UNSIG	8448, 6 2100, 6

S-Analog Sens	S-Analog Sensor Object										
Name	Beschreibung der Input-Datenattribute	(Klasse	Attribut-Adresse (Klasse, Instanz Attribut; Datentyp)		idex	Index,	Subindex				
		DVN		DPV1		CANop	en				
Flow Full Scale (Nenndurch- fluss)	Nur Lesen Abhängig von den Einstellungen unter Datentyp und Durchflusseinheit.	Dez: Hex: INT Oder REAL	49, 1, 10 31, 1, A	Dez: Hex:	1, 10 1, A	Dez: Hex: INTEGI Oder Dez: Hex: REAL3	8448, 8 2100, 8				

7.5. S-Analog Actuator Object

S-Analog Act	uator Object			
Name	Beschreibung der Input-Daten-Attribute	Attribut-Adresse (Klasse, Instanz Attribut; Datenart)		Index, Subindex
		DVN	DPV1	DPV1
Data Type (Datentyp)	Lesen Schreiben Beschreibt das Datenformat des "Werts" Hex 0xC3 INT 0xCA REAL	Dez: 50, 1, 3 Hex: 32, 1, 3 USiNT	Dez: 1, 53 Hex: 1, 35	Dez: 8704, 1 Hex: 2200, 1 UNSIGNED8
Data Units (Durchfluss- einheit)	Lesen Schreiben min. Wert 2048 max. Wert 4103 Mögliche Einheiten sind: "% " "Promille" 0x800 "Promille" 0x1007 "% "	Dez: 50, 1, 4 Hex: 32, 1, 4 UINT	Dez: 1, 54 Hex: 1, 36	Dez: 8704, 2 Hex: 2200, 2 UNSIGNED16

S-Analog Actu	ator Object						
Name	Beschreibung der Input-Daten-Attribute	(Klasse,	Adresse Instanz Datenart)	Slot, Inc	dex	Index, S	ubindex
		DVN		DPV1		DPV1	
Actuator Override (Stellgröße überschreiben)	1 aus / geschlossen 2 ein / offen -der Durchfluss wird begrenzt durch den Druck und die Nennweite des Ventils 3 Stellgröße ans Ventils wird ein- gefroren 64 Stellgröße ans Ventils wird gesteuert durch den Wert des Sollwerts. Es gelten die min. und max. Anstiegs- und Abfallzeiten (Rampen,). Nur Lesen 65 ähnlich 64, allerdings prozen- tuale Angabe der Stellgröße nur innerhalb des Arbeitsbereichs des Ventils 66 Kalibriermodus aktiv 67 AutotuneModus aktiv	Dez: Hex: USINT	50, 1, 5 32, 1, 5	Dez: Hex:	1, 55 1, 37	Dez: Hex: UNSIGN	
Valve Value (Stellgröße ans Ventil)	Nur Lesen Das Ventiltestverhältnis. Das Werteformat hängt vom Datentyp ab. Die Werteeinheit wird durch den Wert der Einheit definiert.	Dez: Hex: INT Oder REAL	50, 1, 6 32, 1, 6	Dez: Hex:	1, 56 1, 38	Dez: Hex: INTEGEI Oder Dez: Hex: REAL32	8704, 4 2200, 4 R16 8704, 5 2200, 5
Status (Status)	Nur Lesen Dies wird noch nicht unterstützt. Der Rückgabewert ist immer 0.	Dez: Hex: BYTE	50, 1, 7 32, 1, 7	Dez: Hex:	1, 57 1, 39	Dez: Hex: UNSIGN	8704,6 2200, 6 IED8

7.6. S-Single Stage Controller Object

S-Single Stag	ge Controller Object						
Name	Beschreibung der Input-Datenattribute	(Klasse,	Adresse Instanz Datentyp)	Slot, In	dex	Index, S	Subindex
		DVN		DPV1		CANop	en
Data Type (Datentyp)	Lesen Schreiben Beschreibt den Datentyp des Sollwerts Hex 0xC3 INT0 0xCAREAL	Dez: Hex: USINT	51, 1, 3 33, 1, 3	Dez: Hex:	1, 103 1, 67	Dez: Hex: UNSIGI	8960, 1 2300, 1 NED8
Data Units (Durchfluss- einheit)	Lesen Schreiben min. Wert 2048, max. Wert 4103 Auflistung der Einheiten siehe "9.2. Tabelle der Einheiten" "% " "Promille" und die kalibrierte Geräteeinheit	Dez: Hex: UINT	51, 1, 6 33, 1, 6	Dez: Hex:	1, 104 1, 68	Dez: Hex: UNSIGI	8960, 2 2300, 2 NED16
Setpoint (Sollwert)	Lesen Schreiben Das Werteformat hängt vom Datentyp ab. Die Werteeinheit wird durch den Wert der Einheit definiert.	Dez: Hex: INT Oder REAL	51, 1, 6 33, 1, 6	Dez: Hex:	1, 106 1, 6A	Dez: Hex: INTEGE Oder Dez: Hex: REAL32	8960, 4 2300, 4
Status (Status)	Nur Lesen Dies wird noch nicht unterstützt. Der Rückgabewert ist immer 0.	Dez: Hex: BYTE	51, 1, 6 33, 1, 6	Dez: Hex:	1, 107 1, 6B	Dez: Hex: UNSIGI	8960, 5 2300, 5 NED8

7.7. Bürkert General Description Object

Bürkert Genera	al Description Object						
Name	Beschreibung der Input-Datenattribute	(Klasse,	Adresse Instan Datentyp)			Index, S	Subindex
		DVN		DPV1		CANopen	
Device Ident Number (Identnummer)	Nur Lesen Bürkert Identifikations-Nummer des Geräts	Dez: Hex:	101, 1, 1 65, 1, 1	Dez: Hex:	0, 101 0, 65	Dez: Hex:	8192, 1 2000, 1
	min. Wert 0, max. Wert 9999999	UDINT				UNSIGN	NED32
Device Serial Number (Serien-	Nur Lesen Bürkert Serien-Nummer des Geräts	Dez: Hex:	101, 1, 2 65, 1, 2	Dez: Hex:	0, 102 0, 66	Dez: Hex:	8192, 2 2000, 2
nummer)	min. Wert 0, max. Wert 4294967295	UDINT				UNSIGN	NED32
Device Type (Gerätetyp)	Nur Lesen Bürkert Typ Nummer des Geräts	Dez: Hex:	101, 1, 3 65, 1, 3	Dez: Hex:	0, 103 0, 67	Dez: Hex:	8192, 3 2000, 3
	min. Wert 0, max. Wert 65535	UINT				UNSIGN	NED16
Ident Number printed circuit board	Nur Lesen Identnummer der bestückten Platine	Dez: Hex:	101, 1, 4 65, 1, 4	Dez: Hex:	0, 104 0, 68	Dez: Hex:	8192, 4 2000, 4
(Identnummer der Platine)	min. Wert 0, max. Wert 9999999	UDINT				UNSIGN	NED32
Revision Number Hardware	Nur Lesen Revisionsnummer der bestückten Platine	Dez: Hex:	101, 1, 5 65, 1, 5	Dez: Hex:	0, 105 0, 69	Dez: Hex:	8192, 5 2000, 5
(Hardware revision)	min. Wert A', max. Wert Z'	USINT				UNSIGN	NED8

7.8. Bürkert MFC Family Object

Bürkert MFC	Bürkert MFC Family Object									
Name	Beschreibung der Input-Datenattribute	Attribut-Adresse (Klasse, Instanz Attribut; Datentyp)		Slot, Index		Index,	Subindex			
		DVN		DPV1		CANop	en			
Actual value (Istwert (x))	Nur Lesen Wert in Promille des aktiven Gases min. Wert 0, max. Wert 1000	Dez: Hex: UINT	110, 1, 1 6E, 1, 1	Dez: Hex:	1, 151 1, 97	Dez: Hex: UNSIG	12288, 1 3000, 1 NED16			
Setpoint (Sollwert (w))	Lesen Schreiben Sollwert in Promille für das aktive Gases min. Wert 0, max. Wert 1000	Dez: Hex: UINT	110, 1, 2 6E, 1, 2	Dez: Hex:	1,152 1, 98	Dez: Hex: UNSIG	12288, 2 3000, 2 NED16			

Bürkert MFC	Family Object						
Name	Beschreibung der Input-Datenattribute	(Klasse,	Adresse Instanz Datentyp)	Slot, Inc	lex	Index, S	ubindex
		DVN		DPV1		CANope	n
Active gas (aktives Gas)	Lesen Schreiben Aktives Gas, dessen Kalib- rierung zur Regelung genutzt wird. Gas 1 oder Gas 2 min. Wert 0, max. Wert 1	Dez: Hex: UINT	110, 1, 3 6E, 1, 3	Dez: Hex:	1,153 1,99	Dez: Hex: UNSIGN	12288, 3 3000, 3 ED16
Flow rate gas 1 (Nenndurch- fluss Gas 1)	Nur Lesen Nenndurchfluss in NI/min für die Kalibrierung von Gas 1 min. Wert 0, max. Wert 1,00E+39	Dez: Hex: REAL	110,1,4 6E, 1, 4	Dez: Hex:	1,154 1, 9A	Dez: Hex: REAL32	12288, 4 3000, 4
Flow rate gas 2 (Nenndurch- fluss Gas 2)	Nur Lesen Nenndurchfluss in NI/min für die Kalibrierung von Gas 2 min. Wert 0, max. Wert 1,00E+39	Dez: Hex: REAL	110, 1, 5 6E, 1, 5	Dez: Hex:	1,155 1, 9B	Dez: Hex: REAL32	12288, 5 3000, 5
Status limits (Zustand der Schwellwerte)	Nur Lesen Bitfeld zum Zustand der geräteinternen Schwellwerte. siehe "9.1. Beschreibung der Bitfelder" min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 6 6E, 1, 6	Dez: Hex:	1, 156 1, 9C	Dez: Hex: UNSIGN	12288, 6 3000, 6 ED16
Status errors (Fehlerzu- stände)	Nur Lesen Bitfeld für Gerätefehler siehe "9.1. Beschreibung der Bitfelder" min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 7 6E, 1, 7	Dez: Hex:	1, 157 1, 9D	Dez: Hex: UNSIGN	12288, 7 3000, 7 ED16
Status others (andere Zustände)	Nur Lesen Bitfeld für aktuelle Reglerzustände siehe "9.1. Beschreibung der Bitfelder" min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 8 6E, 1, 8	Dez: Hex:	1, 158 1, 9E	Dez: Hex: UNSIGN	12288, 8 3000, 8 ED16
Status LEDs (Zustände der LEDs)	Nur Lesen Bitfeld für Kommunikations- zustände siehe "9.1. Beschreibung der Bitfelder" min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 9 6E, 1, 9	Dez: Hex:	1, 159 1, 9F	Dez: Hex: UNSIGN	12288, 9 3000,9 IED16

Bürkert MFC	Family Object						
Name	Beschreibung der Input-Datenattribute	Attribut- (Klasse, Attribut;		Slot, Inc	lex	Index, S	ubindex
		DVN		DPV1		CANope	n
Status binary Outputs (Binäraus- gänge)	Nur Lesen Bitfeld für Zustände der Binärausgänge (Reserviert) siehe "9.1. Beschreibung der Bitfelder" min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 10 6E, 1, A	Dez: Hex:	1, 160 1, A0	Dez: Hex: UNSIGN	12288, 10 3000, A ED16
Status Hardware	Nur Lesen Bitfeld zum aktuellen Zustand der binären Ein- und Ausgaben sowie der Zustand der LEDs siehe "9.1. Beschreibung der Bitfelder" min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 11 6E, 1, B	Dez: Hex:	1, 161 1, A1	Dez: Hex: UNSIGN	12288, 11 3000, B ED16
Set BinOut via Bus (Binär- ausgänge über Bus konfigurieren)	Lesen Schreiben Bitfeld der Zustände der LEDs und der Binäraus- gänge und deren Konfi- guration über BUS. Es ist notwendig, das Verhalten des Geräts über die PC- Software vorher zu konfi- gurieren. MenüViews → DeviceSettings → Assigne- ments of Inputs and Outputs. "Zuweisung von Eingaben und Ausgaben" min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 12 6E, 1, C	Dez: Hex:	1, 162 1, A2	Dez: Hex: UNSIGN	2288, 12 3000, C
Totalizer Gas 1	Lesen Schreiben Totalizerwert in NI aus der Kalibrierung für Gas 1 min. Wert 0, max. Wert 1,00E+39	Dez: Hex: REAL	110, 1, 13 6E, 1, D	Dez: Hex:	1, 163 1, A3	Dez: Hex: REAL32	12288, 13 3000, D
Totalizer Gas 2	Lesen Schreiben Totalizerwert in NI aus der Kalibrierung für Gas 2 min. Wert 0, max. Wert 1,00E+39	Dez: Hex: REAL	110, 1, 14 6E, 1, E	Dez: Hex:	1, 164 1, A4	Dez: Hex: REAL32	2288, 14 3000, E

Bürkert MFC	Family Object						
Name	Beschreibung der Input-Datenattribute	(Klass	ut-Adresse se, Instanz ut; Datentyp)	Slot,	Index	Index	, Subindex
		DVN		DPV1		CANo	pen
Max ramp time up (max. Anstiegszeit)	Lesen Schreiben Sie können die Zeitver- zögerung (0 100 ⇒ 0 10 Sekunden), die einen Sollwertsprung von 0 % auf 100 % verzögert, mit Hilfe einer Rampenfunktion ein- stellen. min. Wert 0, max. Wert100	Dez: Hex: UINT	110, 1, 15 6E, 1, F	Dez: Hex:	1, 165 1, A5	Dez: Hex: UNSI	12288, 15 3000, F GNED16
Max ramp time down (max. Abfallzeit)	Lesen Schreiben Sie können die Zeitver- zögerung (0 100 ⇒ 0 10 Sekunden), die einen Sollwertsprung von 100 % auf 0 % verzögert, mit Hilfe einer Rampenfunktion ein- stellen min. Wert 0, max. Wert10	Dez: Hex: UINT	110, 1, 16 6E, 1, 10	Dez: Hex:	1, 166 1, A6	Dez: Hex: UNSI	12288, 16 3000, 10 GNED16
Dynamic behavior of the control (Regel dynamik)	Lesen Schreiben Ändern der Dynamik des Reglers. Kann langsamer eingestellt werden (Werte < 1) und schneller (Werte > 1) als die Werkseinstellung (Wert = 1) (Schrittwerte 0,1) min. Wert 0,1, max. Wert 2	Dez: Hex: REAL	110, 1, 17 6E, 1, 11	Dez: Hex:	1, 167 1, A7	Dez: Hex: REAL	12288, 17 3000, 11 32
x_Limit1	Lesen Schreiben Grenzwert für den ersten Schwellwertschalter aus dem Prozesswert (x) in Promille für das aktive Gas min. Wert 0, max. Wert 1000	Dez: Hex: UINT	110, 1, 18 6E, 1, 12	Dez: Hex:	1, 168 1, A8	Dez: Hex: UNSI	12288, 18 3000, 12 GNED16
x_Limit1 Hyst	Lesen Schreiben Hysterese für x_Limit1 in Promille min. Wert 0, max. Wert 1000	Dez: Hex: UINT	110, 1, 19 6E, 1, 13	Dez: Hex:	1, 169 1, A9	Dez: Hex: UNSI	12288, 19 3000, 13 GNED16
x_Limit2	Lesen Schreiben Grenzwert für den zweiten Schwellwert-schalter aus dem Prozesswert (x) in Promille für das aktive Gas min. Wert 0, max. Wert 1000	Dez: Hex: UINT	110, 1, 20 6E, 1, 14	Dez: Hex:	1, 170 1, AA	Dez: Hex: UNSI	12288, 20 3000, 14 GNED16

	Family Object	A 11 11		01			2 1 1
Name	Beschreibung der Input-Datenattribute	(Klasse	Attribut-Adresse (Klasse, Instanz Attribut; Datentyp)		Slot, Index		Subindex
		DVN		DPV1		CANop	en
x_Limit2 Hyst	Lesen Schreiben Hysterese für x_Limit2 in Promille min. Wert 0, max. Wert 1000	Dez: Hex: UINT	110, 1, 21 6E, 1, 15	Dez: Hex:	1, 171 1, AB	Dez: Hex: UNSIG	12288, 21 3000, 15
y2_Limit1	Lesen Schreiben Grenzwert für den ersten Schwellwertschalter aus der	Dez: Hex:	110, 1, 22 6E, 1, 16	Dez: Hex:	1, 172 1, AC	Dez: Hex:	12288, 22 3000, 16
	Stellgröße (y2) in Promille (nur durch MFCs) min. Wert 0, max. Wert 1000	UINT				UNSIG	NED16
y2_Limit1 Hyst	Lesen Schreiben Hysterese für y2_Limit1 in Promille	Dez: Hex:	110, 1, 23 6E, 1, 17	Dez: Hex:	1, 173 1, AD	Dez: Hex:	12288, 23 3000, 17
	min. Wert 0, max. Wert 1000	UINT		_		UNSIGNED16	
y2_Limit2	Lesen Schreiben Grenzwert für den zweiten Schwellwertschalter aus der	Dez: Hex:	110, 1, 24 6E, 1, 18	Dez: Hex:	1, 174 1, AE	Dez: Hex:	12288, 24 3000, 18
	Stellgröße (y2) in Promille (nur durch MFCs) min. Wert 0, max. Wert 1000	UINT				UNSIG	NED16
y2_Limit2 Hyst	Lesen Schreiben Hysterese für y2_Limit2 in Promille	Dez: Hex:	110, 1, 25 6E, 1, 19	Dez: Hex:	1, 175 1, AF	Dez: Hex:	12288, 25 3000, 19
	min. Wert 0, max. Wert 1000	UINT				UNSIG	NED16
Gas1 Totalizer Limit1	Lesen Schreiben Grenzwert für den ersten Schwellwertschalter des	Dez: Hex:	110, 1, 26 6E, 1, 1A	Dez: Hex:	1, 176 1, B0	Dez: Hex:	12288, 26 3000, 1A
Lillier	Totalizer für Gas1 in NI/min min. Wert 0, max. Wert 1,00E+39	REAL				REAL3:	2
Gas1 Totalizer Limit2	Lesen Schreiben Grenzwert für den zweiten Schwellwertschalter aus	Dez: Hex:	110, 1, 27 6E, 1, 1B	Dez: Hex:	1, 177 1, B1	Dez: Hex:	12288, 27 3000, 1
	dem Totalizer für Gas1 in NI/min min. Wert 0, max. Wert 1,00E+39	REAL				BREAL	32
Gas2 Totalizer Limit1	Lesen Schreiben Grenzwert für den ersten Schwellwertschalter des	Dez: Hex:	110, 1, 28 6E, 1, 1C	Dez: Hex:	1, 178 1, B2	Dez: Hex:	12288, 28 3000,1C
	Totalizer für Gas2 in NI/min min. Wert 0, max. Wert 1,00E+39	REAL				REAL3:	2

Bürkert MFC	Bürkert MFC Family Object						
Name	Beschreibung der Input-Datenattribute	Attribut-Adresse (Klasse, Instanz Attribut; Datentyp)		Slot, Index		Index, S	Subindex
		DVN		DPV1		CANope	en
Gas2 Totalizer Limit2	Lesen Schreiben Grenzwert für den zweiten Schwellwertschalter aus dem Totalizer für Gas2 in NI/min min. Wert 0, max. Wert 1,00E+39	Dez: Hex: REAL	110, 1, 29 6E, 1, 1D	Dez: Hex:	1, 179 1, B3	Dez: Hex: REAL32	12288, 29 3000, 1D
Gas1 SafeValue (Gas1 Sicher- heitswert)	Lesen Schreiben Ändern der Durchflussrate von Gas1 auf die das Gerät im Fall einer Notfallsituation im System gesetzt wird (Wert in Promille) min. Wert 0, max. Wert 1000	Dez: Hex: UINT	110, 1, 30 6E, 1, 1E	Dez: Hex:	1, 180 1, B4	Dez: Hex: EUNSIG	12288, 30 3000, 1 GNED16
Gas2 SafeValue (Gas2 Sicher- heitswert)	Lesen Schreiben Ändern der Durchflussrate von Gas2 auf die das Gerät im Fall einer Notfallsituation im System gesetzt wird (Wert in Promille) min. Wert 0, max. Wert 1000	Dez: Hex: UINT	110, 1, 31 6E, 1, 1F	Dez: Hex:	1, 181 1, B5	Dez: Hex: UNSIGN	12288, 31 3000, 1F NED16
Binary output 1 function- limits (Binär- ausgang 1 Funktion Limits)	Lesen Schreiben Legt fest, wann der Binär- ausgang 1 aktiv ist. Es ist eine logische ODER Ver- knüpfung von allen "Binär- ausgang 1-Funktionen". (hier: Gruppe der Limits, siehe "Bitfeld LIMITS" in "9.1. Beschreibung der Bit- felder" min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 32 6E, 1, 20	Dez: Hex:	1, 182 1, B6	Dez: Hex: UNSIGN	12288, 32 3000, 20 NED16
Binary output 1 function- errors (Binär- ausgang 1 Funktion Error)	Lesen Schreiben Legt fest, wann der Binär- ausgang 1 aktiv ist. Es ist eine logische ODER Ver- knüpfung von allen "Binär- ausgang 1-Funktionen". (hier: Gruppe der Fehler, siehe "Bitfeld ERRORS" in "9.1. Beschreibung der Bit- felder" min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 33 6E, 1, 21	Dez: Hex:	1, 183 1, B7	Dez: Hex: UNSIGN	12288, 33 3000, 21 NED16

Bürkert MFC	Bürkert MFC Family Object						
Name	Beschreibung der Input-Datenattribute	Attribut-Adresse (Klasse, Instanz Attribut; Datentyp)		Slot, Index		Index, Subindex	
		DVN		DPV1		CANop	en
Binary output 1 function- others (Binär- ausgang 1 Funktion Others)	Lesen Schreiben Legt fest, wann der Binär- ausgang 1 aktiv ist. Es ist eine logische ODER Ver- knüpfung von allen "Binär- ausgang 1-Funktionen". (hier: Gruppe der Anderen, siehe "Bitfeld OTHERS" in "9.1. Beschreibung der Bit- felder") min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 34 6E, 1, 22	Dez: Hex:	1, 184 1, B8	Dez: Hex: UNSIG	12288, 34 3000, 22 NED16
Binary output 1 mode of operation (Binär- ausgang 1 Wirkrich- tung)	Lesen Schreiben Legt die Betriebsart des Binärausgangs 1 fest 0: normal, 1: invers min. Wert 0, max. Wert 1	Dez: Hex: UINT	110, 1, 35 6E, 1, 23	Dez: Hex:	1, 185 1, B9	Dez: Hex: UNSIG	12288, 35 3000, 23 NED16
Binary output 2 function- limits (Binär- ausgang 2 Funktion Limits)	Lesen Schreiben Legt fest, wann der Binär- ausgang 2 aktiv ist. Es ist eine logische ODER Ver- knüpfung von allen "Binär- ausgang 2-Funktionen". (hier: Gruppe der Limits, siehe "Bitfeld LIMITS" in "9.1. Beschreibung der Bit- felder") min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 36 6E, 1, 24	Dez: Hex:	1, 186 1, BA	Dez: Hex: UNSIG	12288, 36 3000, 24 NED16
Binary output 2 function- errors (Binär- ausgang 2 Funktion Error)	Lesen Schreiben Legt fest, wann der Binär- ausgang 2 aktiv ist. Es ist eine logische ODER Ver- knüpfung von allen "Binär- ausgang 2-Funktionen". (hier: Gruppe der Fehler, siehe "Bitfeld ERRORS" in "9.1. Beschreibung der Bit- felder" min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 37 6E, 1, 25	Dez: Hex:	1, 187 1, BB	Dez: Hex: UNSIG	12288, 37 3000, 25 NED16

Bürkert MFC	Bürkert MFC Family Object						
Name	Beschreibung der Input-Datenattribute	(Klasse,	Adresse Instanz Datentyp)	Slot, Inc	dex	Index, S	ubindex
		DVN		DPV1		CANope	en
Binary output 2 function- others (Binär- ausgang 2 Funktion Others)	Lesen Schreiben Legt fest, wann der Binär- ausgang 2 aktiv ist. Es ist eine logische ODER Ver- knüpfung von allen "Binär- ausgang 2-Funktionen". (hier: Gruppe der Anderen siehe "Bitfeld OTHERS" in "9.1. Beschreibung der Bit- felder") min. Wert 0, max. Wert 65535	Dez: Hex: WORD	110, 1, 38 6E, 1, 26	Dez: Hex:	1, 188 1, BC	Dez: Hex: UNSIGN	12288, 38 3000, 26 IED16
Binary output 2 mode of operation (Binär-ausgang 2 Betriebsart)	Lesen Schreiben Legt die Betriebsart des Binärausgangs 2 fest 0: normal, 1: invers min. Wert 0, max. Wert 1	Dez: Hex: UINT	110, 1, 39 6E, 1, 27	Dez: Hex:	1, 189 1, BD	Dez: Hex: UNSIGN	12288, 39 3000, 27 JED16
Binary input 1 function (Binär- eingang Funktion)	Lesen Schreiben Legt die Funktion des Binäreingangs 1 fest (Beschreibung siehe "Bedienungsanleitung") min. Wert 0, max. Wert 65535	Dez: Hex: UINT	110, 1, 40 6E, 1, 28	Dez: Hex:	1, 190 1, BE	Dez: Hex: UNSIGN	12288, 40 3000, 28 IED16
Binary input 2 function (Binär- eingang 2 Funktion)	Lesen Schreiben Legt die Funktion des Binäreingangs 2 fest (Beschreibung siehe "Bedienungsanleitung") min. Wert 0, max. Wert 65535	Dez: Hex: UINT	110, 1, 41 6E, 1, 29	Dez: Hex:	1, 191 1, BF	Dez: Hex: UNSIGN	12288, 41 3000, 29 IED16
Binary input 3 function (Binär- eingang 3 Funktion)	Lesen Schreiben Legt die Funktion des Binäreingangs 3 fest (Beschreibung siehe "Bedienungsanleitung") min. Wert 0, max. Wert 65535	Dez: Hex: UINT	110, 1, 42 6E, 1, 2A	Dez: Hex:	1, 192 1, C0	Dez: Hex: UNSIGN	12288, 42 3000, 2A IED16
Control output y2 (Stellgröße y2)	Nur Lesen nur für MFC, Stellgröße y2 des Reglers in Promille min. Wert 0, max. Wert 1000	Dez: Hex: UINT	110, 1, 44 6E, 1, 2C	Dez: Hex:	1, 194 1, C2	Dez: Hex: UNSIGN	12288, 44 3000, 2C IED16

Bürkert MFC	Bürkert MFC Family Object							
Name	Beschreibung der Input-Datenattribute	(Klasse,	Attribut-Adresse (Klasse, Instanz Attribut; Datentyp)		Slot, Index Index, Su		ubindex	
		DVN		DPV1		CANope	n	
Modus MFC	Lesen Schreiben Aktivierung der Autotune- Funktion. Der Regler muss sich im normalen Modus befinden. (ModusMFC = 0) Aktivierung der Autotune ist durch Schreiben des Werts 2 möglich.	Dez: Hex: UINT	110, 1, 46 6E, 1, 2E	Dez: Hex:	1, 196 1, C4	Dez: Hex: UNSIGN	12288, 46 3000, 2E ED16	
AddMeasure- Value	Nur Lesen Zusätzlicher Wert als Float (4 Byte) Wert in Prozent Dieser Wert wird nur von einigen MFCs unterstützt. Bei Nichtunterstützung wird 0 % zurückgegeben.	Dez: Hex: REAL"	110,1,47 6E, 1, 2D	Dez: Hex:	1, 197 1, C5	Dec: Hex: REAL32	12288, 47 3000, 2D	
Хр	Nur Lesen Zusätzlicher Druckmesswert (2 byte) Wert in Promille min. Wert 0, max. Wert 1000 Dieser Wert wird nur von einigen MFCs unterstützt. Bei Nichtunterstützung wird 0 zurückgegeben.	Dez: Hex: UINT	110,1,48 6E, 1, 30	Dez: Hex:	1, 198 1, C6	Dec: Hex: UNSIGN	12288, 48 3000, 30 ED16	

8. INBETRIEBNAHME MODBUS

8.1. Allgemeine Hinweise

Der MFC unterstützt das Modbus Kommunikationsprotokoll ab der Firmware A.00.90 bei Geräten mit digitaler Sollwertvorgabe (Ausführung RS485 z. B. 8713).

Firmware Versionen größer als A.00.96 unterstützen das Modbus Kommunikationsprotokoll für analoge Geräte.

Der Modbus arbeitet nach einem Master-Slave Verfahren. Der MFC ist hierbei als Slave ausgeführt. Einstellbare Adressen sind 1 bis 32.

Die Bus Adresse der Geräte kann wahlweise über das Bürkert Konfigurations-Tool MassFlowCommunicator in der Ansicht (View) "*HART / Modbus COM Settings*" oder direkt über den Modbus Master eingestellt werden. Wird eine Adresseänderung über Modbus Master eingestellt, dann ist die neue Adresse erst ab den nächsten Befehlen gültig.

Die Kommunikation wird durch eine Timeout-Erkennung überwacht. Im Falle eines Timeout wird das Gerät in einen Sicherheitszustand versetzt (Sollwert wird auf 0 gesetzt, was ein Schließen des Ventils zur Folge hat).

Im Falle von analogen Geräten erfolgt die Sollwertvorgabe nach einem Timeout wieder vom analogen Sollwerteingang.

Die Timeout-Zeit kann über das Holding Register Timeout Detection Time bestimmt werden, der Defaultwert ist 60 (Sekunden). Die Timeout-Erkennung kann durch einen Wert von 0 deaktiviert werden. Bei analogen Geräten kann die Timeout-Erkennung nicht deaktiviert werden.

Die Kommunikation erfolgt über Modbus RTU. Die voreingestellten Kommunikationsparameter sind:

Übertragungsgeschwindigkeit: 9600 Baud

Startbit: 1
Datenbits: 8
Stoppbits: 1

Parity: keine (none)

8.2. Modbus Allgemeines

Das Modbus Protokoll wurde von der Firma Modicon für progammierbare Controller entwickelt und hat sich zu einem viel verwendeten Kommunikstionsprotokoll in der Industrie entwickelt.

Ein Modbus Master kann einzelne Slaves adressieren. Die Slaves senden ein Telegramm (Antwort) auf Abfrage zurück, die einzeln an sie adressiert wurden. Das Modbus Protokoll definiert das Format für die Abfrage vom Master, indem die Geräteadresse, ein Funktionscode zur Bestimmung der verlangten Aktion, alle zu übertragenden Daten und eine Checksumme in das Protokoll eingetragen werden. Das Antworttelegramm der Slaves wird auch mit Hilfe des Modbus Protokolls festgelegt. Es enthält Felder für die Bestätigung der ausgeführten Aktion, alle zurückzusendenden Daten und eine Checksumme. Falls beim Empfang des Telegramms ein Fehler auftritt oder falls der Slave die angeforderte Aktion nicht ausführen kann, wird vom Slave ein Fehlertelegramm zurückgeschickt.

Nachfolgendes Schema zeigt den Aufbau eines Befehls:

Abfrage vom Master
Geräteadresse
Funktionscode
Daten
Checksumme

Antworttelegramm vom Slave
Geräteadresse
Funktionscode
• Daten
Checksumme

Die Abfrage:

Der Funktionscode in der Abfrage teilt dem adressierten Slave mit, welche Aktion durchzuführen ist. Die Datenbytes enthalten alle Zusatzinformationen, die der Slave zur Ausführung der Aktion benötigt.

Z. B. fordert der Funktionscode 03 den Slave auf, das Holdingregister auszulesen und dessen Inhalt zurückzusenden. Das Datenfeld muss folgende Informationen enthalten: Start-Register und die Anzahl der zu lesenden Register. Hierbei entspricht jeweils ein Register einem WORD (2 Byte). Mit Hilfe der Checksumme kann der Slave die Vollständigkeit des Telegramminhalts feststellen.

Die Antwort:

Der Aufbau der Antwort entspricht dem des Abfragetelegramms. Wenn ein Fehler auftritt, wird statt des Funktionscodes ein Fehlercode gesendet. Die Daten enthalten in diesem Fall einen Code, der den Fehler beschreibt. Mit Hilfe der Checksumme kann der Master die Gültigkeit des Telegramminhaltes prüfen.

Beispiel Modbus Kommunikation (Befehle Read Input Register)

Die Abfrage spezifiziert das Anfangsregister und die Anzahl der zu lesenden Input Register. Im folgenden Beispiel wird von dem Gerät mit der Adresse 1 der Wert des Totalizer angefordert.

Abfrage

Feldname	Wert	
Slave-Adresse	0x01	
Funktion	0x04	(Read Input Register)
Anfangsadresse High	0x00	
Anfangsadresse Low	0x0A	
Anzahl der Register High	0x00	
Anzahl der Register low	0x02	
Fehlerprüfung	CRC	(high Byte)
Fehlerprüfung	CRC	(low Byte)

Die Registerdaten in der Antwort werden jeweils als zwei Byte pro Register gepackt.

Die Antwort wird übertragen, sobald die Daten vollständig assembliert sind.

Hier ein Beispiel für die Antwort auf die vorangegangene Abfrage:

Feldname	Wert	
Slave-Adresse	0x01	
Funktion	0x04	
Byte Count	0x04	
Data1 High Byte	0x00	
Data1 low Byte	0x00	
Data2 High Byte	0x09	
Data2 low Byte	0x04	
Fehlerprüfung	CRC	(high Byte)
Fehlerprüfung	CRC	(low Byte)

Ausnahmeantwort

Wenn ein Master-Gerät eine Abfrage an ein Slave-Gerät sendet, erwartet das Master-Gerät eine normale Antwort. Nach der Übertragung einer Abfrage durch den Master kann eines der vier Ereignisse eintreten:

- Wenn das Slave-Geräte die Abfrage ohne Datenübertragungsfehler erhält und die Abrage normal bearbeiten kann, wird eine normale Antwort zurückgesendet.
- Wenn das Slave-Gerät aufgrund eines Datenübertragungsfehlers die Abfrage nicht erhält, wird keine Antwort zurückgesendet. Das Programm des Master-Geräts stellt für die Abfrage eine Zeitüberschreitung fest.
- Wenn das Slave-Gerät aufgrund eines Datenübertragungsfehler ermittelt, wird keine Antwort zurückgesendet.
 Das Programm des Master-Geräts stellt für die Abfrage eine Zeitüberschreitung fest.
- Wenn das Slave-Geräte die Abfrage ohne Datenübertragungsfehler enthält, die Abfrage jedoch nicht bearbeitet kann (z. B. ein nicht vorhandenes Register auszulesen), wird eine Ausnahmeantwort zurückgesendet, mit der das Master-Gerät über die Art des Fehlers informiert wird. Die Ausnahmeantwort besitzt zwei Felder, die sie von einer normalen Antwort unterscheidet.

Funktionscodefeld

Bei einer normalen Antwort sendet der Slave eine Kopie des in der ursprünglichen Abfrage enthaltenen Funktionscodes im entsprechenden Feld der Antwort zurück. Bei einer Ausnahmeantwort wird der Wert des Funktionscodes um genau 0x80 Hexadezimale höher, als er in einer normalen Antwort sein würde.

Datenfeld

Bei einer Ausnahmeantwort sendet der Slave einen Ausnahmecode im Datenfeld, dadurch wird der Betriebszustand des Slave definiert, der die Ausnahme verursacht hat.

Beispiel einen Ausnahmeantwort

Abfrage (Read Input Register 0x68) Register ist außerhalb des Gültigkeitsbereiches

Feldname	Wert	
Slave-Adresse	0x01	
Funktion	0x04	
Anfangsadresse High	0x00	
Anfangsadresse Low	0x68 (ungültiges Register)	
Anzahl der Register High	0x00	
Anzahl der Register low	0x01	
Fehlerprüfung	CRC	(high Byte)
Fehlerprüfung	CRC	(low Byte)

Antwort

Feldname	Wert	
Slave-Adresse	0x01	
Funktion	0x84	
Datenfeld	0x02	
Fehlerprüfung	CRC	(high Byte)
Fehlerprüfung	CRC	(low Byte)

In diesem Beispiel adressiert der Master eine Abfrage an Slave-Gerät 01. Der Functionscode 04 steht für "Read Input Register". Die Register Adresse im Gerät ist außerhalb des Adressen Gültigkeitsbereichs, weshalb der Slave eine Ausnahmeantwort mit dem gezeigten Ausnahmecode 02 (Illegal Data Adresse) sendet.

Implementierte Ausnahmeantworten

Code	Name	Bedeutung
00		Kein Fehler
01	ILLEGAL FUNCTION	Funktions Code wird nicht unterstützt
02	ILLEGAL DATA ADDRESS	Die Datenadresse ist im Gerät nicht erlaubt
03	ILLEGAL DATA VALUE	Ein im Abfragefeld enthaltener Wert ist für das Gerät falsch
04	SLAVE DEVICE FAILURE	Geräteinterner Fehler

Zahlenformate

Datentyp	Beschreibung	Länge (Bytes)
UINT8	vorzeichenlose Ganzzahl, 8 Bit	1
UINT16	vorzeichenlose Ganzzahl, 16 Bit	2
UINT32	vorzeichenlose Ganzzahl, 32 Bit	4
FLOAT32	Fliesskomma-Zahl nach IEEE-754 Der Float32 Wert wird in zwei aufeinanderfolgenden Adressen gespeichert, wobei die erste Adresse das höchstwertige Wort (Vorzeichen, Exponent, und oberer Teil der Mantisse) enthält. und die zweite Adresse das niedrigstwertige Wort (unterer Teil der Mantisse)	4

Nähere technische Informationen finden Sie unter www.modbus.org.

8.3. Modbus Register und Kommunikationsobjekte

8.3.1. Modbus Registerlisten

Bis Firmware A.00.99 werden nur die Modbus Register der Liste 0 unterstützt.

Ab Firmware A.01.00 werden verschiedene Registerlisten zur Kommunikation unterstützt. Die Default Liste ist 0.

Die Beschreibung der unterstützen Daten sind den jeweiligen Modbus Registerlisten zu entnehmen.

Die Auswahl der zu verwendenden Modbus Register Liste erfolgt über den MassFlowCommunicator im Menüpunkt "Views \rightarrow HART / Modbus \rightarrow COM settings" unter "Modbus used register list".

8.3.2. Holding Register

Diese 16-Bit-Werte können vom Master gelesen und geändert werden.

Gültige Befehle

Code	Name	Broadcast
0x03	Read Holding Register	Nein
0x06	Write Single Register	Nein
0x10	Write Multiple Register	Nein

Gültige Adressen

siehe unten

Holdingregister der Registerliste 0 (default)

Register Adresse in MFC	Anzahl der Register	Bezeichnung / Beschreibung	R/W	Format
0001	1	Reset Device Bei einem Wert von 1 wird ein Reset im Gerät durchgeführt. Ein Rücksetzen des Werts ist nicht erforderlich	W	UINT16
0002	1	Reset Totalizer Bei einem Wert von 1 wird der Wert des aktuellen Totalisators gelöscht. Ein Rücksetzen des Werts ist nicht erforderlich.	W	UINT16
0003	1	Set-Point (in units per thousand) Sollwert Gasdurchfluss / Sollwert in Promille für das aktive Gas min. Wert 0, max. Wert 1000	R/W	UINT16

Register Adresse in MFC	Anzahl der Register	Bezeichnung / Beschreibung	R/W	Format
0004	1	Active Gas Aktives Gas, dessen Kalibrierung zur Regelung genutzt wird. Wert Gassorte 0 Gas 1 1 Gas 2	R/W	UINT16
0005	1	Actuator Override Definiert das Verhalten der Sollwertvorgabe 0 normaler Betrieb des Reglers und Binäreingang steuert das Ventil 1 aus / geschlossen 2 ein / offen, der Durchfluss wird begrenzt durch den Druck und die Nennweite des Ventils 3 Stellgröße an das Ventils wird eingefroren 64 Stellgröße ans Ventils wird gesteuert durch den Wert des Sollwerts. Es gelten die min. und max. Anstiegs- und Abfallzeiten (Rampen,). Nur Lesen 65 ähnlich 64, allerdings prozentuale Angabe der Stellgröße nur innerhalb des Arbeitsbereichs des Ventils 66 Kalibriermodus aktiv 67 AutotuneModus aktiv 68 Sicherheitsmodus aktiv	R/W	UINT8
0006	1	ModusMFC Aktivierung der Autotune-Funktion. Der Regler muss sich im normalen Modus befinden (ModusMFC = 0) Aktivierung der Autotune ist durch Schreiben des Werts 2 möglich. Modbus Device Address Geräteadresse / Busadresse Adresse, mit der der Modbus Master mit dem Gerät kommu-	R/W	UINT8 UINT8
00080009	2	niziert. min. Wert 1, max. Wert 32 Set-point as float Sollwert als Float (4 Byte) Wert in der kalibrierten Geräteeinheit, siehe Inputregister → "Data Unit"	R/W	FLOAT32

Register Adresse in MFC	Anzahl der Register	Bezeichnung / Beschreibung	R/W	Format
0010	Timeout Detection Time (In Second) Die Kommunikation wird durch eine Timeout-Erkennung überwacht. Im Falle eines Timeout wird das Gerät in einen Sicherheitszustand versetzt (Sollwert wird auf 0 gesetzt, was ein Schließen des Ventils zur Folge hat). Die Timeout-Zeit kann hier bestimmt werden, der Defaultwert ist 60 (Sekunden). Die Timeout-Erkennung kann durch einen Wert von 0 deaktiviert werden. Wertebereich: 0 60		R/W	UINT16
		Achtung: Dieser Wert wird erst ab Firmware A.00.96 nicht flüchtig gespeichert (bleibt nach einem Geräteneustart erhalten).		
0011	1	Baudrate Bestimmt die Baudrate der Modbus Kommunikation. Wert Baudrate 0 300 1 600 2 1200 3 2400 4 4800 5 9600 6 19200 7 38400 8 57600 9 115200 Achtung: Eine Änderung dieses Werts wird erst nach einem Geräteneustart aktiv. Dieses Register ist erst ab Firmware A.00.96 verfügbar.	R/W	UINT8
0012	1	Parity Bestimmt das Parity Bit der Modbus Kommunikation Wert Baudrate O NONE 1 ODD 2 EVEN Achtung: Eine Änderung dieses Werts wird erst nach einem Geräteneustart aktiv. Dieses Register ist erst ab Firmware A.00.96 verfügbar.	R/W	UINT8

Register Adresse in MFC	Anzahl der Register	Bezeichnung / Beschreibung	R/W	Format
0013	1	Stopbit Bestimmt die Anzahl der Stoppbits der Modbus Kommunikation.	R/W	UINT8
		Wert Anzahl Stoppbit		
		1 1 Stoppbit		
		2 2 Stoppbits		
		Achtung: • Eine Änderung dieses Werts wird erst nach einem Geräteneustart aktiv. • Dieses Register ist erst ab Firmware A.01.00 verfügbar.		

Holdingregister der Registerliste 1

Register Adresse in MFC	Anzahl der Register	Bezeichnung / Beschreibung	R/W	Format
00000001	2	Actual Flow Istwert als Float	R	FLOAT32
		min Wert -3.39E+38, max Wert 3.39E38		
		Einheit siehe: Holding Register → "Unit Flow Value"		
00020003	2	Medium temperature	R	FLOAT32
		Temperatur in °C als Float		
00040005	2	Totalizer Totalisator in Einheit NI als Float	R	FLOAT32
		(0°C / 1013mbar)		
00060007	2	Set-Point as float Sollwert in der kalibrierten Geräteeinheit als Float	R/W	FLOAT32
		Einheit siehe: Holding Register → "Unit Flow Value"		
00080009	2	Analog Input Signal in per cent	R	FLOAT32
		Analogeingangswert in 0100.0 %		
00100011	2	Control Output to Valve (y2)	R	FLOAT32
		Stellgröße Regelventil / nur für MFC, Stellgröße y2 des Reglers in 0100.0 %		
0012	1	Status Limits	R	UINT16
		Zustand der Schwellwerte / Bitfeld für die Zustände der geräteinternen Schwellwerte:		
		siehe "9.1.1. Bitfeld LIMITS"		
0013	1	Status Errors Fehlerzustände / Bitfeld für vorhandene Gerätefehler.	R	UINT16
		siehe "9.1.2. Bitfeld ERRORS"S		
0014	1	Controller Function Definiert das Verhalten der Sollwertvorgabe	R/W	UINT16
		0: normaler Betrieb des Reglers und Binäreingang steuert das Ventil 3: Stellgröße ans Ventils wird eingefroren 22: aus / geschlossen 23: ein / offen, der Durchfluss wird begrenzt durch den Druck und die Nennweite des Ventils 64: Stellgröße ans Ventil wird gesteuert durch den Wert des Sollwerts. Es gelten die min. und max. Anstiegs- und Abfallzeiten (Rampen,).		
		Nur Lesen: 65: ähnlich 64, allerdings prozentuale Angabe der Stellgröße nur innerhalb des Arbeitsbereichs des Ventils 66: Kalibriermodus aktiv 67: AutotuneModus aktiv 68: Sicherheitsmodus aktiv		

Register Adresse in MFC	Anzahl der Register	Bezeichnung / Beschreibung	R/W	Format
0015	1	Baudrate Bestimmt die Baudrate der Modbus Kommunikation. Wert Baudrate 0 300 1 600 2 1200 3 2400 4 4800 5 9600 6 19200 7 38400 8 57600 9 115200 Achtung: Eine Änderung dieses Werts wird erst nach einem	R/W	UINT16
0016	1	Geräteneustart aktiv. Parity Bestimmt das Parity Bit der Modbus Kommunikation. Wert Parity O NONE 1 ODD 2 EVEN Achtung: Eine Änderung dieses Werts wird erst nach einem Geräteneustart aktiv.	R/W	UINT16
0017	1	Stopbit Bestimmt die Anzahl der Stoppbits der Modbus Kommunikation. Wert Anzahl Stoppbit 1 1 Stoppbit 2 2 Stoppbits Achtung: Eine Änderung dieses Werts wird erst nach einem Geräteneustart aktiv.	R/W	UINT16
0018	1	Timeout Detection Time (In Second) Die Kommunikation wird durch eine Timeout-Erkennung überwacht. Im Falle eines Timeout wird das Gerät in einen Sicherheitszustand versetzt. (Sollwert wird auf 0 gesetzt, was ein Schließen des Ventils zur Folge hat) Die Timeout-Zeit kann hier bestimmt werden, der Defaultwert ist 60 (Sekunden). Die Timeout-Erkennung kann durch einen Wert von 0 deaktiviert werden. Wertebereich: 0 60	R/W	UINT16

Register Adresse in MFC	Anzahl der Register	Bezeichnung / Beschreibung	R/W	Format
0019	1	Modbus Device Address Geräteadresse / Busadresse	R/W	UINT16
		Adresse, mit der der Modbus Master mit dem Gerät kommuniziert.		
		min. Wert 1, max. Wert 32		
00200021	2	Flow Full Scale	R	FLOAT32
		min. Wert 0, max. Wert 1,00E+39		
		Einheit siehe: Holding Register → "Unit Flow Value"		
00220025	4	Unit Flow Value	R	UINT16
		Kalibrierte Geräte Einheit		¹)ASCII_2
00260029	4	Operating Medium	R	UINT16
		Betriebsmedium		¹)ASCII_2
00300031	2	Device Serial Number Bürkert Serien-Nummer des Geräts	R	UINT32
		min. Wert 0, max. Wert 4294967295		
0032	1	Version Number Hardware Versionsnummer der Hardware	R	UINT16
		Siehe Beschreibung "Versionierung der Hardware"		
0033	1	Version Number Software Versionsnummer der Software	R	UINT16
		Siehe Beschreibung "Versionierung der Software"		
0034	1	Active Gas Aktive Gassorte, dessen Kalibrierung zur Regelung genutzt wird.	R/W	UINT16
		Wert Gassorte 0 Gas 1 1 Gas 2		
00350036	2	Device Type Bürkert Typ Nummer des Geräts	R	UINT16 ASCII_2
0037	1	ModusMFC Aktivierung der Autotune-Funktion.	R/W	UINT16
		Der Regler muss sich im normalen Modus befinden. (ModusMFC = 0)		
		Aktivierung der Autotune ist durch Schreiben des Werts 2 möglich.		

Register Adresse in MFC	Anzahl der Register	Bezeichnung / Beschreibung	R/W	Format
0038	1	Reset Totalizer Bei einem Wert von 1 wird der Wert des aktuellen Totalisators gelöscht. Ein Rücksetzen des Werts ist nicht erforderlich.	W	UINT16
0039	1	Reset Device Bei einem Wert von 1 wird ein Reset im Gerät durchgeführt. Ein Rücksetzen des Werts ist nicht erforderlich.	W	UINT16

1) ASCII_2

Ein UINT16 Wert wird als zwei Character Zeichen interpretiert, wobei das höherwertige Byte das erste Zeichen darstellt.

- z.B. $0x4142 \rightarrow \text{"AB"}$
- z.B. "Luft" mit 4 x UINT16 0x4C75 0x6674 0x0000 0x0000
- z.B. Gerätetyp "8713" mit 2 x UINT16 0x3837 0x3133

Versionierung der Hardware

liefert 2 Bytes, die wie folgt aufgebaut sind:

X.Y

Wertebereiche:

- Χ 0 oder ,A' ... ,Z'
- ,A' ... ,Z'
- $0x004B \rightarrow K$ z.B. $0x414B \rightarrow A.K$

Versionierung der Software

liefert 2 Bytes, die wie folgt aufgebaut sind:

X.YY

Wertebereiche:

- ,A' ... ,Z' Χ ΥY 0 ... 99
- z.B. $0x4101 \rightarrow A.01$

8.3.3. Input Register

Diese 16-Bit Werte können vom Master gelesen werden.

Gültige Befehle

Code	Name	Broadcast
0x04	Read Input Register	Nein

Gültige Adressen

siehe unten

Inputregister der Liste 0 (default)

Register Adresse in MFC	Anzahl der Register	Bezeichnung / Beschreibung	R/W	Format
0001	1	Data Unit	R	UINT16
		Kalibrierte Geräte Einheit		
		min. Wert 2048		
		Auflistung der Einheiten siehe "9.2. Tabelle der Einheiten"		
0002	1	Actual Flow Istwert (x) / Wert in Promille des aktiven Gases	R	SINT16
		min. Wert -2000, max. Wert 2000		
00030004	2	Actual Flow Istwert als Float	R	FLOAT32
		Einheit siehe: Input Register → "Data Unit"		
		min Wert -3.39E+38, max Wert 3.39E38		
0005	1	Status Errors Fehlerzustände / Bitfeld für vorhandene Gerätefehler. siehe "9.1.2. Bitfeld ERRORS"	R	UINT16
0006	1	Status Limits Zustand der Schwellwerte / Bitfeld für die Zustände der geräteinternen Schwellwerte: siehe "9.1.1. Bitfeld LIMITS""	R	UINT16
0007	1	Control Output to Valve (y2) Stellgröße Regelventil / nur für MFC, Stellgröße y2 des Reglers in Promille	R	UINT16
		min. Wert 0, max. Wert 1000		
00080009	2	Flow Full Scale	R	FLOAT32
		Einheit siehe: Input Register → "Data Unit"		
		min. Wert 0, max. Wert 1,00E+39		

Register Adresse in MFC	Anzahl der Register	Bezeichnung / Beschreibung	R/W	Format
00100011	2	Totalizer Totalisator in Einheit NI.	R	FLOAT32
00120019	8	(0 °C / 1013 mbar) Operating Medium Betriebsmedium	R	8 x ASCII
0020	1	Device Typ Bürkert Typ Nummer des Geräts min. Wert 0, max. Wert 65535	R	UINT16
00210022	2	Device Ident Number Bürkert Identifikations-Nummer des Geräts	R	UINT32
00230024	2	min. Wert 0, max. Wert 99999999 Device Serial Number Bürkert Serien-Nummer des Geräts	R	UINT32
00250028	4	min. Wert 0, max. Wert 4294967295 Version Number Software Versionsnummer Software Siehe Beschreibung "Versionierung der Software"	R	ASCII & UINT8
0029	1	Modbus Baudrate Liefert die Baudrate der Modbus Kommunikation Wert Baudrate 0 300 1 600 2 1200 3 2400 4 4800 5 9600 6 19200 7 38400 8 57600 9 115200	R	UINT8
0030	1	Medium temperature Temperatur in 1/10 °C (231 = 23,1 °C)	R	UINT16

Versionierung der Software

Liefert 4 Byte, die wie folgt aufgebaut sind:

X.YY.ZZ.CC

Wertebereiche:

X 65 ... 90 (,A' ... ,Z' ASCII) YY 0 ... 99 ZZ 0 ... 99 CC 0 ... 99

Inputregister der Liste 1

Inputregister werden von der Modbus Registerliste 1 nicht unterstützt.

Beim Ansprechen von Inputregistern wird der Fehler "Illegal Data Address" generiert.

Anhang

9. ANHANG

9.1. Beschreibung der Bitfelder

9.1.1. Bitfeld LIMITS

Bitfeld LIMITS	
Bit 0	x > Limit1_x
Bit 1	x < Limit1_x
Bit 2	x > Limit2_x
Bit 3	x < Limit2_x
Bit 4	w > Limit1_w
Bit 5	w < Limit1_w
Bit 6	w > Limit2_w
Bit 7	w < Limit2_w
Bit 8	y2 > Limit1_y2
Bit 9	y2 < Limit1_y2
Bit 10	y2 > Limit2_y2
Bit 11	y2 < Limit2_y2
Bit 12	Totalizer [aktives Gas] > Limit1_Totalizer
Bit 13	Totalizer [aktives Gas] < Limit1_Totalizer
Bit 14	Totalizer [aktives Gas] > Limit2_Totalizer
Bit 15	Totalizer [aktives Gas] < Limit2_Totalizer

9.1.2. Bitfeld ERRORS

Bitfeld ERRORS	
Bit 0	Current out of Range / Strom außerhalb des Toleranzbereiches
Bit 1	Error >Power LED< / Fehler >Power LED<
Bit 2	Error >Communication LED< / Fehler >Communication LED<
Bit 3	Error >Limit LED< / Fehler >Limit LED<
Bit 4	Error >Error LED< / Fehler >Error LED<
Bit 5	Error BinOut 1 / Fehler BinOut 1
Bit 6	Error BinOut 2 / Fehler BinOut 2
Bit 7	Error Internal Supply Voltage / Fehler Interne Spannungsversorgung
Bit 8	Error Sensor Supply Voltage / Fehler Spannungsversorgung-Sensor
Bit 9	Error Data Storage / Fehler Datenspeicher
Bit 10	RESERVED / reserviert
Bit 11	RESERVED / reserviert
Bit 12	Error Sensorfault / Sensorfehler
Bit 13	Error after autotune / Fehler nach Autotune
Bit 14	Error BusModul MFI / Fehler Bus-Modul MFI
Bit 15	Stack Overflow / Stack Überlauf

9.1.3. Bitfeld OTHERS

Bitfeld OTHERS	Bitfeld OTHERS		
Bit 0	Power on / Spannungsversorgung liegt am Gerät an		
Bit 1	Autotune active / AutoTune aktiv		
Bit 2	Gas 1 active / Kennlinie Gas 1 aktiv		
Bit 3	Gas 2 actice / Kennlinie Gas 2 aktiv		
Bit 4	Batch process active / Batchabfüllung aktiv		
Bit 5	BinIn 1 active / Binäreingang 1 aktiv		
Bit 6	BinIn 2 active / Binäreingang 2 aktiv		
Bit 7	BinIn 3 active / Binäreingang 3 aktiv		
Bit 8	set BinOut via Bus / ermöglicht das Setzen der Binärausgänge über Bus		
Bit 9	Set to safety value / Sicherheitswert aktiv		
Bit 10	Profile active / Profil aktiv		
Bit 11	Valve control active / Steuerbetrieb des Ventils aktiv		
Bit 12	Close valve function active / Schließfunktion des Ventils aktiv		
Bit 13	Open valve function active / Öffnungsfunktion des Ventils aktiv		
Bit 14	Valve hold function active / Ventilposition ist eingefroren		
Bit 15	RESERVED / reserviert		

9.1.4. Bitfeld LEDs

Bitfeld LEDs	
Bit 0	Communication active / Kommunikation aktiv
Bit 1	MFIBusstatusNotActive / Kein zyklischer Datenverkehr aktiv
Bit 2	MFIBusstatusPdActive / Gerät ist ordnungsgemäß verbunden
Bit 3	MFIBusstatusPrmError / Fehler im Parametertelegramm
Bit 4	MFIBusstatusCfgError / Fehler im Konfigurationstelegramm
Bit 5	MFIBusstatusNoMaster / keine Verbindung zum Master
Bit 6	MFIBusstatusSdOnly / Es existiert eine Explicit Messaging Verbindung zum Master. Nur azyklische Kommunikation
Bit 7	MFIBusstatusTimeout / Ein Time out-Fehler wurde detektiert
Bit 8	MFIBusstatusCriticalError / Ein kritischer Fehler wurde detektiert (z. B. doppelte Adressbelegung am Slave).
Bit 9	RESERVED / reserviert
Bit 10	RESERVED / reserviert
Bit 11	RESERVED / reserviert
Bit 12	RESERVED / reserviert
Bit 13	RESERVED / reserviert
Bit 14	RESERVED / reserviert
Bit 15	RESERVED / reserviert

9.1.5. Bitfeld BINARY OUTPUTS

Bitfeld BINARY OUTPUTS		
Bit 0	RESERVED / reserviert	
:		
Bit 15	RESERVED / reserviert	

9.1.6. Bitfeld HARDWARE

Bitfeld HARDWARE	
Bit 0	active >Power LED< / >Power LED< aktiv
Bit 1	active >Communication LED< / >Communication LED< aktiv
Bit 2	active >Limit LED< / >Limit LED< aktiv
Bit 3	active >Error LED< / >Error LED< aktiv
Bit 4	Binäreingang 1 (BinIn 1) aktiv
Bit 5	Binäreingang 2 (BinIn 2) aktiv
Bit 6	Binäreingang 3 (BinIn 3) aktiv
Bit 7	Binärausgang 1 (BinOut 1) aktiv
Bit 8	Binärausgang 2 (BinOut 2) aktiv
Bit 9	RESERVED / reserviert
Bit 10	RESERVED / reserviert
Bit 11	RESERVED / reserviert
Bit 12	Valve completly close / Ventil komplett geschlossen
Bit 13	Valve completly open / Ventil komplett geöffnet
Bit 14	RESERVED / reserviert
Bit 15	RESERVED / reserviert

9.1.7. Bitfeld BINARY OUT VIA BUS

Bitfeld BINARY OUT VIA BUS		
Bit 0	activate > Power LED < / aktiviert > Power LED <	
Bit 1	activate > Communication LED < / aktiviert > Communication LED <	
Bit 2	activate > Limit LED < / aktiviert > Limit LED <	
Bit 3	ctivate > Error LED < / aktiviert > Error LED <	
Bit 4	activate BinOut 1 / aktiviert Binärausgang 1 (BinOut 1)	
Bit 5	activate BinOut 2 / aktiviert Binärausgang 2 (BinOut 2)	
Bit 6	RESERVED / reserviert	
Bit 7	RESERVED / reserviert	
Bit 8	RESERVED / reserviert	
Bit 9	RESERVED / reserviert	
Bit 10	RESERVED / reserviert	
Bit 11	RESERVED / reserviert	
Bit 12	RESERVED / reserviert	
Bit 13	RESERVED / reserviert	
Bit 14	RESERVED / reserviert	
Bit 15	RESERVED / reserviert	

9.1.8. ERROR AT SENSOR FAULT

Zur Auswahl stehen folgende Funktionen:

Close valve completely	> Ventil ganz schließen < Das Ventil wird vollständig geschlossen, die Sollwertvorgabe wird dabei nicht beachtet.
Open valve completely	> Ventil ganz öffnen < Das Ventil wird vollständig geöffnet, die Sollwertvorgabe wird dabei nicht beachtet.
Setpoint controls duty cycle 0 100 %	> Sollwert steuert Ventiltastverhältnis 0 100 % < Die Sollwertvorgabe steuert das Ventiltastverhältnis, z. B. 10 % Sollwertvorgabe würde 10 % Tastverhältnis am Ventil einstellen.
Setpoint controls duty cycle according to last autotune	Sollwert steuert Ventiltastverhältnis entsprechend letzter Streckenermittlung (Autotune). Die Sollwertvorgabe steuert das Ventiltastverhältnis prozentual in dem von der AutoTune ermittelten Ventilarbeitsbereich.
Safety value controls duty cycle 0 100 %	> Sicherheitswert steuert Ventiltastverhältnis 0 100 % < Der im Gerät hinterlegte Sicherheitswert (0100 %) steuert direkt das Ventiltastverhältnis.
Safety value controls duty cycle according to last autotune	> Sicherheitswert steuert Ventiltastverhältnis entsprechend letzter Streckenermittlung (Autotune) < Der im Gerät hinterlegte Sicherheitswert (0 100 %) steuert direkt das Ventiltastverhältnis prozentual in dem von der Autotune ermittelten Ventilarbeitsbereich.

9.2. Tabelle der Einheiten

Wert(HEX)	Bedeutung	
0x800	"Promille"	
0x801	"NI/sec"	
0x802	"NI/min"	
0x803	"NI/h"	
0x804	"SI/sec"	
0x805	"SI/min"	
0x806	"SI/h"	
0x807	"Nm3/sec"	
0x808	"Nm3/min"	
0x809	"Nm3/h"	
0x80A	"Sm3/sec"	
0x80B	"Sm3/min"	
0x80C	"Sm3/h"	
0x80D	"Ncm3/sec"	
0x80E	"Ncm3/min"	
0x80F	"Ncm3/h"	
0x810	"Scm3/sec"	
0x811	"Scm3/min"	
0x812	"Scm3/h"	
0x813	"kg/sec"	
0x814	"kg/min"	
0x815	"kg/h"	
Verfügbar ab Firmware Versi	on A.00.67:	
0x816	"SCF/sec"	
0x817	"SCF/min"	
0x818	"SCF/h"	
0x819	"I/sec"	
0x81A	"I/min"	
0x81B	"I/h"	
0x81C	"ml/sec"	
0x81D	"ml/min"	
0x81E	"ml/h"	
Verfügbar ab Firmware Version A.07.02:		
0x81F	"Nml/sec"	
0x820	"Nml/min"	
0x821	"Nml/h"	
0x822	"Sml/sec"	

MFC Family

Anhang

0x823	"Sml/min"
0x824	"Sml/h"
0x825	"g/sec"
0x826	"g/min"
0x827	"g/h"
0x1007	"%"

