CSC 348 Spring 2020

Homework 7 Due: June 1st, 2020

For all of the following questions, you may cite $\mathbb N$ is countably infinite.

For questions 1-7, you may also cite that \mathbb{Z}_{odd}^+ and \mathbb{Z} are countably infinite without proof (all proven in class).

- 1. Determine if $\mathbb{Z}_{\geq 10}$ is finite or countably infinite.
- 2. Determine if \mathbb{Z}_{odd}^- is finite or countably infinite.
- 3. Determine if $10 \mathbb{Z}^+ = \{10n \mid n \in \mathbb{Z}^+\}$ is finite or countably infinite.
- 4. Determine if $\{x \in \mathbb{Z} \mid |x| < 1,000,000\}$ is finite or countably infinite.
- 5. Determine if $\{1,2\} \times \mathbb{N}$ is finite or countably infinite.
- 6. Give an example of two countably infinite sets A and B such that $A \cap B$ is:
 - (a) finite
 - (b) countably infinite
- 7. Give an example of two countably infinite sets A and B such that $A \setminus B$ is:
 - (a) finite
 - (b) countably infinite
- 8. Recall the following theorems from class:
 - Let A and B be sets. If A and B are countable, then $A \cup B$ is countable.
 - Let A and B be sets. If A and B are infinite, then $A \cup B$ is infinite.
 - Let A and B be sets. If A and B are countably infinite, then $A \cup B$ is countably infinite.

Find nontrivial (sets that are not empty and do not equal \mathbb{Z}) sets A and B such that $A \cup B = \mathbb{Z}$, then use these theorems to show \mathbb{Z} is countably infinite.

- 9. Let A, B, and C be sets. Prove that, if |A| = |B| and |B| = |C|, then |A| = |C|.
- 10. Let A and B be sets. Prove that $|A \cup B| = |A| + |B \setminus A|$
- 11. Let A and B be sets. Prove that $|A \times B| = |A| \cdot |B|$