δρ ((, a) = ECLOSE (δΕ (C, a)) = E(LOSE (Ø). SD (C, b) = ECLOSE (SE(C,b)) = ECLOSE(\$) 80 (CIC) = ECTORE (8E(CIC)) Z ECLOSE (\$) = p δ_{D} а A A φ 5) Convert the given E-NFA to DFA. E-NFA Consists of E-transitions (i.e, without an ilp symbol, it can change the state i.e. from 90 state we can reach state 9, without Step1:- Construct E-NFA transition table from reading an input symbol.) the above state diagram given above ٤ a ø 1904 -) % 1213 * %

Step 2: Then find the E-closure of all the states. (1)

E-closure (90) = {90,91,923}

E-closure of a state prepresents, the set of all states that are nearchable from the particular state state states that are nearchable from the particular state by following only E-transitions. (i.e, i) we count by following only E-transitions (i.e, i) we count to find E-closure (90), firstly include that state only its find E-closure (90), firstly include that state only state 90.)

E-closure (90) = 190,91,923

E-closure (90) = 190,91,923

E-closure (91) = 191,923

Step 3: find the DFA table.

5+ep3: 8	1	•	C
DFA 80	a	Ь	1923
→ 190,9,923	{ 90,91,92}	991,923	
'	ø	991,923	6923
* {9,7923		6	1923
* {923	*	10 00	and the ha

where input symbols are a,b,c. and the set having final state 92. make it as final.

find state
$$92$$
 make it as find.
(i) $8(20,91,92)$, $a) = \epsilon$ -closure $(8\epsilon(90,91,923,92)$.
 $= \epsilon$ -closure $(8\epsilon(90,91,923,92)$
 $8\epsilon(92,92)$

and Illy find for the other states also. III y the final DFA transition diagram can also as below.
190,91,923 = A. be represented 191,923 = B 1923 ZC-