

DOT/FAA/AR-95/47

Office of Aviation Research
Washington, D.C. 20591

Investigation of Fuselage Structure Subject to Widespread Fatigue Damage

DISTRIBUTION STATEMENT A

Approved for public release
Distribution Unlimited

February 1996

Final Report

This document is available to the U.S. public
through the National Technical Information
Service, Springfield, Virginia 22161.

19960430 104

U.S. Department of Transportation
Federal Aviation Administration

DTIC QUALITY INSPECTED 1

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.**

NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report.

1. Report No. DOT/FAA/AR-95/47	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle INVESTIGATION OF FUSELAGE STRUCTURE SUBJECT TO WIDESPREAD FATIGUE DAMAGE		5. Report Date February 1996
7. Author(s) M.L. Gruber, C.J. Mazur, K.E. Wilkins, R.E. Worden		6. Performing Organization Code
9. Performing Organization Name and Address Structural Damage Technology Boeing Commercial Airplane Group P.O. Box 3707 Seattle, WA 98124		8. Performing Organization Report No. D6-81738
12. Sponsoring Agency Name and Address U.S. Department of Transportation Federal Aviation Administration Office of Aviation Research Washington, DC 20491		10. Work Unit No. (TRAIS)
		11. Contract or Grant No. DTFA03-94C-00065
		13. Type of Report and Period Covered Final Report October 1994-October 1995
		14. Sponsoring Agency Code AAR-430
15. Supplementary Notes FAA COTR: Dr. Paul Tan		
16. Abstract This report documents the results of the "Investigation Of Fuselage Structure Subject To Widespread Fatigue Damage" contract. The primary program objective was to obtain data on airplane fuselage structures subject to multiple site damage (MSD) in an environment that reflects typical commercial jetliner manufacturing and operating conditions. The program involves three technical tasks which include flat panel material characterization testing (Task I), Full-scale fuselage pressure panel testing (Task II) and predictions of pressure panel behavior through finite element modeling (Task III). In Task I, six specimens were tested to characterize the lot of 2024-T3 clad material used to fabricate the skins for the Task II pressure test panels. Material static, crack growth, and toughness (K_{app} and R-curves) data were generated. In Task II, two generic wide-body curved fuselage panels were fabricated and pressure tested. Frame centered cracks in the lap joint outer skin upper fastener row were grown by pressure cycling to two frame bays. A panel residual strength test was then conducted with the skin crack centered on a broken frame. Panel lap joints were fabricated with and without MSD sawcuts in the fasteners ahead of the lead crack to develop the head-to-head comparison. In Task III, a detailed finite element model was constructed to analyze the pressure test panels. Predictions were made of the pressure test panel strain gage stresses, crack growth life, and residual strength. General conclusions from the testing and analysis were drawn.		
17. Key Words Multiple Site Damage, Widespread Fatigue Damage, Fuselage Structure, Lap Joint, Finite Element Analysis, 2024-T3 Aluminum, Fatigue Crack Growth, and Residual Strength		18. Distribution Statement This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 243
		22. Price N/A

ACKNOWLEDGEMENTS

The authors would like to thank Glenn Laroya who conducted much of the pressure panel data reduction and developed many of the data plots in this report. Further, Glenn oversaw the assembly of this report. Also, special thanks are due to the test facility personnel who constructed and tested the flat panels and the two wide-body pressure test panels.

Dr. D. S. Dawicke, a contractor to NASA Langley, performed the crack tip opening angle measurements on the flat panel tests. The measuring equipment was provided by NASA Langley.

The work documented in this report was contracted by the Federal Aviation Administration (FAA). Dr. Paul Tan was the technical monitor.

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	xiii
1. INTRODUCTION	1
1.1 Background	1
1.2 Program Objectives	2
1.3 Program Overview	3
2. TASK I: FLAT PANEL TESTING	4
2.1 Test Objective	4
2.2 Material and Specimen Details	4
2.3 Instrumentation	7
2.4 Test Procedures	7
2.5 Test Results	8
2.5.1 Tensile Specimens	8
2.5.2 M(t) Specimens	9
3. TASK II: CURVED PRESSURE PANEL TESTING	15
3.1 Pressure Test Facility	15
3.2 Pressure Panel Design and Drawing Preparation	16
3.3 Material and Fabrication	22
3.4 Test Results	26
3.4.1 Panel FAA 1 - Test 1	26
3.4.1.1 Crack Growth Results (FAA 1 - Test 1)	26
3.4.1.2 Residual Strength and Panel Repair (FAA 1 - Test 1)	33
3.4.2 Panel FAA 1 - Test 2	34
3.4.2.1 Crack Growth Results (FAA 1 - Test 2)	34
3.4.2.2 Residual Strength (FAA 1 - Test 2)	43

TABLE OF CONTENTS

Section		Page
	3.4.3 Panel FAA 2 - Test 1	46
	3.4.3.1 Crack Growth Results (FAA 2 - Test 1)	46
	3.4.3.2 Residual Strength (FAA 2 - Test 1)	56
	3.4.4 Panel FAA 2 - Test 2	58
3.5	Crack Growth and Residual Strength Test Comparison	58
3.6	Curved Panel Testing Discussion	60
4.	TASK III: ANALYSIS	61
4.1	Pressure Panel Finite Element Model Development	61
4.2	Results	66
4.3	Pressure Panel Test and Analysis Correlation	73
	4.3.1 Strain Gage Stress Comparisons	73
	4.3.2 Crack Growth Comparisons	81
	4.3.3 Residual Strength Comparisons	84
4.4	Analysis Discussion	85
5.	CONCLUSIONS	88
5.1	Task I: Flat Panel Testing	88
5.2	Task II: Curved Pressure Panel Testing	88
5.3	Task III: Analysis	88
6.	REFERENCES	89
Appendix A	M(t) Crack Growth Testing	
Appendix B	M(t) R-Curve Testing	
Appendix C	Instrumentation and Strain Gage Readings	
Appendix D	Stress Intensity Factor Calculation	
Appendix E	Additional Strain Gage Stress Comparison Plots	

LIST OF ILLUSTRATIONS

	Page
Figure 1. Tensile Specimen Geometry	4
Figure 2. Flat M(t) Panel Geometry	5
Figure 3. Certification Inspection Report for 2024-T3 Aluminum Panels	6
Figure 4. Engineering Stress-Strain Curve for 0.063-Inch-Thick 2024-T3 L-T Aluminum	8
Figure 5. Crack Growth Rate Data Calculated From Fractomat and Visual Crack Length Measurements	10
Figure 6. Crack Growth Rate Data Reduced to $R = 0.0$	11
Figure 7. R-Curve Test Results	13
Figure 8. Critical Crack Tip Opening Angle Versus Crack Extension	14
Figure 9. Structural Configuration and Test Locations of Panel FAA 1 and FAA 2	16
Figure 10. Wide-Body Pressure Test Fixture	17
Figure 11. Structural Details of Panel FAA 1 and FAA 2	18
Figure 12. Structural Dimensions of Panel FAA 1 and FAA 2 With Bonded Tear Straps	19
Figure 13. Structural Dimensions (Detail I) of Panel FAA 1 and FAA 2	20
Figure 14. Frame and Stringer Dimensions of Panel FAA 1 and FAA 2	21
Figure 15. Skin Material Cutting Diagram	22
Figure 16. MSD Overview of Panel FAA 1 and FAA 2	23
Figure 17. MSD Sawcut Details for Panel FAA 1, Test 1	24
Figure 18. MSD Sawcut Details for Panel FAA 2, Test 1	25
Figure 19. Initial Sawcut Details for Panel FAA 1, Test 1	27
Figure 20. Crack Trajectory of Panel FAA 1, Test 1	28
Figure 21. Crack Trajectory of Panel FAA 1, Test 1	29

LIST OF ILLUSTRATIONS

		Page
Figure 22.	Crack Trajectory of Panel FAA 1, Test 1	30
Figure 23.	Crack Growth History of Panel FAA 1, Test 1	31
Figure 24.	Panel Repair of FAA 1, Test 1	33
Figure 25.	Initial Sawcut Details for Panel FAA 1, Test 2	35
Figure 26.	Crack Trajectory of Panel FAA 1, Test 2	36
Figure 27.	Crack Trajectory of Panel FAA 1, Test 2	37
Figure 28.	Crack Trajectory of Panel FAA 1, Test 2	38
Figure 29.	Crack Trajectory of Panel FAA 1, Test 2	39
Figure 30.	Crack Trajectory of Panel FAA 1, Test 2	40
Figure 31.	Crack Growth History of Panel FAA 1, Test 2	41
Figure 32.	Crack Configuration Prior to Panel Failure	43
Figure 33.	Crack Trajectory of Panel FAA 1, Test 2	44
Figure 34.	Dynamic Panel Failure, FAA 1, Test 2	45
Figure 35.	Initial Sawcut Details for Panel FAA 2, Test 1	47
Figure 36.	Crack Trajectory of Panel FAA 2, Test 1	48
Figure 37.	Crack Trajectory of Panel FAA 2, Test 1	49
Figure 38.	Crack Trajectory of Panel FAA 2, Test 1	50
Figure 39.	Crack Trajectory of Panel FAA 2, Test 1	51
Figure 40.	Crack Trajectory of Panel FAA 2, Test 1	52
Figure 41.	Crack Growth History of Panel FAA 2, Test 1	53
Figure 42.	Crack Configuration Prior to Panel Failure	56
Figure 43.	Dynamic Panel Failure, FAA 2, Test 1	57
Figure 44.	Panel FAA 1, Test 1 and Test 2 Crack Growth Comparison	58

LIST OF ILLUSTRATIONS

Page

Figure 45. Panel FAA 1, Test 2 vs. FAA 2, Test 1 Residual Strength Comparison	59
Figure 46. Skin Mesh	62
Figure 47. Tear Strap Mesh	63
Figure 48. Stiffener Mesh	64
Figure 49. Frame and Stringer Inputs for FAA Test Panel Models	65
Figure 50. Displaced Intact Skin Mesh, Internal Pressure = 8.6 psi, Magnification Factor $\approx 100x$	66
Figure 51. Displaced Skin Mesh Containing a 30-Inch Crack, Internal Pressure = 8.6 psi, Magnification Factor $\approx 10x$	67
Figure 52. Predicted Midplane Stresses at Station 100	68
Figure 53. Predicted Midplane Stresses at Station 110	69
Figure 54. Predicted Midplane Stresses in the Upper Skin 2.3 Inches Right of the Lap Joint Stringer Centerline	70
Figure 55. Predicted Midplane Stresses in the Upper Skin 4.6 Inches Right of the Lap Joint Stringer Centerline	71
Figure 56. Stress Intensity Factor Predictions at Operating Pressure	72
Figure 57. Test / Analysis Strain Gage Correlation for Intact Test Panels	74
Figure 58. Skin Stress Correlation at Station 100 for an Intact Test Panel	75
Figure 59. Skin Stress Correlation at Station 110 for an Intact Test Panel	76
Figure 60. Skin Stress Correlation at Stringer S-1 + 2.3 Inches for an Intact Test Panel	77
Figure 61. Skin Stress Correlation at Stringer S-1 + 4.6 Inches for an Intact Test Panel	78
Figure 62. Frame Stress Correlations for an Intact Test Panel	79
Figure 63. Stringer Stress Correlation at Stringer S-1 for an Intact Test Panel	80

LIST OF ILLUSTRATIONS

	Page
Figure 64. Crack Growth Prediction vs. Test Results for FAA 1, Test 1 (0.05-Inch MSD)	81
Figure 65. Crack Growth Prediction vs. Test Results for FAA 1, Test 2 (No MSD)	82
Figure 66. Crack Growth Prediction vs. Test Results for FAA 2, Test 1 (Varied MSD)	83
Figure 67. Predicted $K_{I\text{eff}}$ vs. Δa_{eff} for $a_0 = 20$ inches	85
Figure 68. Residual Strength Prediction for a Lap Joint Upper Row Skin Crack	86
Figure 69. Comparison of the Predicted Midplane Hoop Stresses Along the Upper Row of Fasteners in the Tear Strap at Station 100 for the Residual Strength Tests	87

LIST OF TABLES

	Page
Table 1. Test Matrix for Tensile Specimens	7
Table 2. Test Matrix for M(t) Specimens	8
Table 3. Stress-Strain Curve	9
Table 4. Material Properties	9
Table 5. Toughness Results for 2024-T3 T-L Aluminum	12
Table 6. Test Record of Crack Length Measurements From Panel FAA 1, Test 1	32
Table 7. Test Record of Crack Length Measurements From Panel FAA 1, Test 2	42
Table 8. Test Record of Crack Length Measurements From Panel FAA 2, Test 1	54
Table 9. Test Files Used for Comparison With Finite Element Analysis	73
Table 10. Additional Fatigue Cycles to Initiate Crack Growth From a Rivet Hole	82

EXECUTIVE SUMMARY

This document is the final report covering the results of a one-year program entitled "Investigation of Fuselage Structure Subject to Widespread Fatigue Damage." The program focused on developing representative data on the effects of widespread fatigue damage on fuselage lap joints using unique Boeing testing capabilities and expertise in airplane analysis and design. Widespread fatigue damage (WFD) is defined as the simultaneous presence of cracks at multiple structural details that are of sufficient size and density whereby the structure will no longer meet its damage tolerance requirements. Multiple site damage (MSD) is a subset of WFD which was the focus of this program. MSD involves the simultaneous presence of fatigue cracks in the same structural element. The most notable example of an area with potential for having MSD is airplane fuselage structure. The understanding of MSD and the development of analytical prediction capability would be a major step forward in developing an understanding of its effects on all structure susceptible to WFD.

The need exists for data on MSD in structure representing actual airplane geometry and fabrication processes, and which is tested in a realistic operating environment. The primary objective of this program was to fabricate test panels representative of actual airplane structure and conduct residual strength tests in a fixture which can realistically simulate airplane pressure loading. This program was divided into three technical tasks which are documented in this report.

Task I consisted of six tests conducted to characterize the 2024-T3 sheet material that was used for the skins of the two curved fuselage pressure test panels fabricated for Task II. Static, crack growth rate, and fracture toughness data were generated.

Task II involved curved pressure panel tests conducted in the Boeing 127-inch-radius pressure test fixture. Two panels representative of typical wide-body crown fuselage construction were fabricated and tested. The testing focused on the outer skin lap joint upper fastener row with and without simulated MSD. Lead cracks were grown in the lap joints by pressure cycling from an initial 5-inch sawcut to two frame bays (40 inches). Test results indicated that the crack growth rate was faster in the presence of MSD. The frame spanning the 40-inch crack was then cut and residual strength tests conducted by gradually increasing the pressure until dynamic panel failure occurred. Test results indicated that panel residual strength was reduced 20 percent in the presence of MSD for the panel geometry tested.

Task III consisted of performing analyses to predict the crack growth and residual strength of the pressure test panels. Stress intensity factors were obtained from a material and geometric nonlinear finite element model developed using standard Boeing practices. Crack growth rate and residual strength predictions were made and correlated with test results from the pressure tests. The crack growth predictions correlated very well with test results for small and no MSD cases. The analysis and residual strength prediction focused on the instability of the lead crack as the cause of the final panel failure. For the no MSD case, the test results were over predicted. From further analysis and examination of the test results a theory was developed that the panel failure was perpetuated by the static failures of the panel tear straps, rather than the instability of the lead crack.

1. INTRODUCTION

This document is the final report covering the results of a one year program entitled "Investigation of Fuselage Structure Subject to Widespread Fatigue Damage." The program was funded through the FAA Technical Center in Atlantic City under FAA contract number DTFA03-94-C-00065. The program focused on developing representative data on the effects of widespread fatigue damage on fuselage structure using unique Boeing testing capabilities and expertise in airplane analysis and design.

Widespread fatigue damage (WFD) is defined as the simultaneous presence of cracks at multiple structural details that are of sufficient size and density whereby the structure will no longer meet its damage tolerance requirements. Subsets of WFD are multiple element damage (MED) and multiple site damage (MSD). MED involves the simultaneous presence of fatigue cracking in adjacent structural elements while MSD is characterized by the simultaneous presence of fatigue cracks in the same structural element. WFD behavior occurs in structure with similar details under similar loading conditions, with the most notable area being fuselage structure. Although it is understood that WFD can occur in many areas of an airframe and considerable effort is underway within the air transport industry to identify potential WFD locations, the scope of this discussion and the "Investigation of Fuselage Structure Subject to Widespread Fatigue Damage" program (known as the program from here on) will focus on MSD of fuselage skins, in particular lap joints. The understanding of WFD and the development of analytical prediction capability on a lap joint would be a major step forward in developing an understanding of its effects on all structure susceptible to WFD.

1.1 Background

Most airplane primary structure is designed to sustain regulatory loads in the presence of damage (fatigue cracking, corrosion or accidental damage) until the damage is detected by planned inspections and repaired. Damage tolerance is mandated by the current amendments to FAR 25.571 and JAR 25.571. The damage tolerance process consists of three distinct elements: crack (damage) growth (rate of damage propagation in the structure), residual strength (the maximum damage that the structure can sustain without catastrophic failure under regulatory load conditions) and damage detection (opportunities to locate the damage through planned inspection). Boeing has developed standard analysis methods for predicting the damage tolerance of airplane structure based on these three elements. The 757 and 767 were designed with these methods and their service history demonstrates the effectiveness of the Boeing approach.

High replacement costs and competition in the commercial airline industry have led today's operators to use their airplanes beyond the originally expected design service objective. The result is

an aging fleet with a higher probability of fatigue-initiated cracking. Since most of the older airplanes were designed prior to implementation of the damage tolerance regulations, the principles are applied as supplemental structural inspection programs in accordance with FAA Advisory Circular 91-56.

Damage tolerance methods that primarily focus on local damage may not be sufficient to maintain the structural airworthiness of aging airplanes. WFD is a structural ailment which if undetected or unrepaired could result in a rapid fracture and loss of structural integrity. Small undetected MSD cracks in several adjacent fastener holes can link together and reach a critical size in relatively few flights. This might reduce the opportunities to find damage prior to catastrophic failure. Further, the residual strength or final critical damage size in the structure in the presence of MSD may be smaller. Also crack arrest devices such as tear straps designed for containing damage may not function as planned. For example, narrow body fuselage structure may not vent as designed.

An increased understanding of MSD behavior and its implications on fuselage structure would allow the existing damage tolerance processes to better account for the presence of MSD. The susceptibility of the aging fleet to MSD must be evaluated on a model-by-model basis once proven analytical methods are available. Modifications to susceptible structure can then be carried out to maintain flight safety. An understanding of the fundamental behavior of MSD would also allow engineers to develop structural designs capable of containing the effects of MSD.

1.2 Program Objectives

The need exists for data on MSD in structure representing actual airplane geometry and fabrication processes, and which is tested in a realistic operating environment. The primary objective of this program was to fabricate test panels representative of actual airplane structure and conduct residual strength tests in a fixture which can realistically simulate airplane pressure loading.

Much of the experimental data available on MSD was developed using flat panel tests. The ability of this type of data to represent actual airplane structure is questionable. Test results indicate up to a 30% reduction in residual strength of a flat panel with a primary crack in the presence of MSD (References 1 and 2). Limited Boeing (Reference 2) and FAA sponsored tests (Reference 3) indicated that representative curved fuselage structure may experience only a 10% reduction in residual strength. This suggests that flat panel data cannot be applied directly to fuselage structure. Clarification of this issue was a second objective of this program.

A third objective of the program was to evaluate existing analytical capability for predicting the crack growth and residual strength behavior of fuselage structure containing MSD.

1.3 Program Overview

The program was divided into the following three technical tasks which are documented in this report:

- Task I Flat Panel Testing
- Task II Curved Pressure Panel Testing
- Task III Analysis

Task I consisted of six tests to characterize the material that was used for the skins of the two curved fuselage pressure test panels fabricated for Task II. Four center-cracked tension panels were tested to determine crack growth rates and material fracture toughness. Two tensile specimens were also fabricated and tested to determine the static properties of the material.

Task II curved pressure panel tests were conducted in the Boeing 127-inch-radius pressure test fixture. Two panels representative of typical wide body fuselage construction were fabricated and tested. Original test plans called for two crack growth and residual strength tests on each panel allowing for a total of four tests. However, circumstances encountered during the initial testing made it impractical to attempt two residual strength tests on the same panel. Thus the program scope was revised to conduct a total of two residual strength tests, one on each panel. The two tests focused on comparing residual strength of the lap joints with and without MSD.

Task III consisted of performing analyses to predict the crack growth and residual strength of fuselage structure. Stress intensity factors were obtained from a material and geometric nonlinear finite element model developed using standard Boeing practices. Crack growth rate and residual strength predictions were made and correlated with test results from the pressure tests. The MSD cracks were not modeled in the finite element analyses.

2. TASK I: FLAT PANEL TESTING

2.1 Test Objective

The following sections describe the design, fabrication and testing of tensile and center-cracked tension specimens. These tests were performed in order to develop stress-strain, crack growth, and the toughness (R-curve) properties for the skin material used to fabricate the large curved pressure panels in Task II (0.063-inch-thick 2024-T3 clad aluminum sheet). Four center-cracked tension, M(t), specimens were used to generate the material's crack growth and R-curve properties, while two tensile coupons were tested to develop the material's stress-strain relationship.

2.2 Material and Specimen Details

The tensile specimen geometry and dimensions are shown in figure 1. Note that the material grain direction ("L") is perpendicular to the loading direction. Figure 2 shows the geometry and dimensions of the M(t) specimens. Each M(t) panel was 48.0 inches wide ("L" or grain direction) by 80 inches long ("T" direction). The crack was oriented in the "L" direction, which corresponds to the orientation of a typical airplane lap joint crack. The initial crack was installed in each M(t) panel with a series of sawcuts. The geometry of the initial crack is also shown in figure 2.

The flat panel specimens and large curved pressure panel skins were all fabricated from 2024-T3 clad aluminum sheet obtained from the same heat lot. The certification report provided by ALCOA for this material is shown in figure 3.

Figure 1. Tensile Specimen Geometry

Figure 2. Flat M(t) Panel Geometry

CERTIFIED INSPECTION REPORT

ALUMINUM COMPANY OF AMERICA

PITTSBURGH, PA.

SHIPPED FROM: RAVENPORT, IOWA

PAGE 001

ALCOA CUSTOMER P.O. NO. 00001, CONTRACT NO.
JA6244

BUEING LCFWAW, R. CHAI F. GIAU
1. ACC. JUN 1. 1. AVAIL.
1. 1/3 ALU T3
1. P. O. BOX 1114
1. SEATTLE, WA 98104
BLDG 101
DOOR E-14
800-43RD & 14.
RENTON, WA 98057
40-034

AS1 Boeing LCFWAW, R. CHAI F. GIAU
1. ACC. JUN 1. 1. AVAIL.
1. 1/3 ALU T3
1. P. O. BOX 1114
1. SEATTLE, WA 98104
BLDG 101
DOOR E-14
800-43RD & 14.
RENTON, WA 98057
40-034

We hereby certify that the material covered by this report has been inspected in accordance with, and has been found to meet, the applicable requirements described below, including any specific forming or part of the description and the mechanical properties specified above on the face sheet.

Quality Assurance Manager
John Shaffy

INVOICE NO.	22540780	ALCOA NO.	SE 50216	SHIP DATE	95/01/24	MERCER	VIA	BL NO.	GROSS WEIGHT
CODE	540 120623	ALLOY-TEMPER	ALCLAD	2024 T3					
PRODUCT DESCRIPTION	SKIN SHEET								
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		

ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	Φ TEST
		POUNDS	6PC	390					
		T3	6PC	2 L.T	MAX 64.3	43.2	19.5		
					MIN 63.7	43.1	19.0		
ITEM	1	QUANTITY SHIPPED	POCS. FT. ETC.	NO. OF TESTS & DRG	Φ TEST	Φ TEST	Φ TEST	Φ TEST	

2.3 Instrumentation

On one side of each M(t) panel, a 200 mm electronic crack measurement gage, Fractomat gage, was mounted just beyond each crack tip in order to measure crack growth during constant amplitude cycling. To cure the adhesive used to attach the Fractomat gages to the panels, the panels were put in an autoclave for three hours at a temperature of 225°F. The cure time and temperature were selected to limit the temperature effects on the material and to make sure the gages would adhere to the panels. For the R–curve tests, an MTS model 632.03 extensometer was mounted across the crack during each test to monitor crack opening displacements, while an MTS 632.25 extensometer was used to measure material strain on the tensile specimens.

2.4 Test Procedures

To determine the stress–strain curve for 2024–T3 aluminum, the tensile coupons identified in table 1 were tested per ASTM E8 in a 50 kip MTS tensile test machine and at room temperature.

Table 1. Test Matrix for Tensile Specimens

Specimen ID	Material Orientation	Thickness (inch)	Width (inch)
2024_faa_t11	Long Transverse	0.0612	0.4973
2024_faa_t12	Long Transverse	0.0615	0.5006

Each of the four M(t) specimens were cycled per ASTM E647 in a 200 kip MTS fatigue test machine under the loading given in table 2 to generate material crack growth rate data. During cycling, crack growth measurements were taken on one side using the Fractomat gages, and visual measurements were taken on the other side of the panel (at intervals of approximately 0.5 inch of total crack growth) to verify the Fractomat readings. After cycling, each panel was pulled to failure per ASTM E561 to develop the material’s R–curve. Visual crack extension and crack opening displacement measurements were taken during each R–curve test.

Buckling restraints were used to prevent out of plane displacements on all four panels during crack growth rate testing and on three of the four panels during the R–curve tests. Buckling restraints were not used during the R–curve test on panel t16 because there was interest in determining the effect of the buckling restraints on the test results, and that for future analyses, the panel would be easier to model without the added complexity of the buckling restraints.

Table 2. Test Matrix for M(t) Specimens

Specimen ID	a_i (inch)	a_f (inch)	σ_{max} (ksi)	R
2024_faa_tl3	2.0	8.0	8.0	0.1
2024_faa_tl4	2.0	5.5	16.0	0.1
	5.5	8.0	8.0	
2024_faa_tl5	5.0	12.0	12.0	0.1
2024_faa_tl6	2.0	8.0	7.0	0.5

2.5 Test Results

2.5.1 Tensile Specimens

The stress-strain results obtained from the two tensile specimens are plotted in figure 4. As shown in the plot, similar results were obtained from the two different specimens. The stress-strain curve used for the finite element analyses in Task III consists of the points on the curve in figure 4 that are denoted by the solid circles. The numerical values associated with these discrete points are given in table 3. Table 4 gives the corresponding elastic modulus, 0.2 percent tensile yield stress, and the ultimate tensile stress obtained from the two tensile tests. The ultimate and tensile yield stresses obtained from the certification report, figure 3, are also given in table 4 for comparison.

Figure 4. Engineering Stress-Strain Curve for 0.063-Inch-Thick 2024-T3 L-T Aluminum

Table 3. Stress–Strain Curve

Stress (ksi)	30.0	37.5	42.7	47.0	50.0	55.0	59.0	62.0	63.6	64.0
Strain (in/in)	0.00304	0.00400	0.00633	0.0110	0.0186	0.0399	0.0660	0.100	0.140	0.190

Table 4. Material Properties

Specimen ID	Tensile Modulus (Msi)	Tensile Yield 0.2% (ksi)	Tensile Ultimate (ksi)	%Elongation
2024_faa_t11	10.11	42.8	64.0	20
2024_faa_t12	9.61	42.7	64.6	20
certification report	N/A	43.2 43.1	64.3 63.7	19.5 19.0

2.5.2 M(t) Specimens

Crack growth testing of the four M(t) specimens was performed as outlined in previous sections. The crack growth curves comparing visual and Fractomat measurements are given in appendix A, while the crack growth rate data, da/dN versus ΔK , calculated from both the Fractomat and visual measurements for all specimens is given in figure 5. As shown in the plot, there is very good agreement between the crack growth rate data from the visual measurements and the Fractomat gage readings for each specimen.

A change was made to the test plan while testing specimen t14, which was the first panel tested. For this panel, the final total crack length for gathering crack growth rate data was reduced from 16 inches to approximately 11 inches. This change was made because the crack was growing very fast and there was concern that the panel might fracture before the crack reached a total length of 16 inches. The data missed by not continuing the crack growth testing on this panel was expected to be obtained from one of the other panels, so no gaps in the crack growth rate curve occurred because of this change. After cycling was stopped on specimen t14 at a total crack length of 11 inches, the maximum applied stress was reduced from 16 to 8 ksi, and the crack was cycled out to a total length of 16 inches.

The da/dN versus ΔK crack growth data calculated from the Fractomat gage readings that is plotted in figure 5 was reduced to da/dN versus ΔK_{eff} data using Newman's crack opening stress equations with $\alpha = 1.2$, reference 4. The ΔK_{eff} data was then modified back to da/dN versus ΔK data for a stress ratio, R, equal to zero using the same crack opening stress equations. A stress ratio equal to zero was chosen because it corresponds to the stress ratio applied in the large curved panel tests. The resulting crack growth data is given in figure 6. Examining the reduced crack growth data shows that the data for stress ratios equal to 0.1 and 0.5 have collapsed onto the same curve. Also shown in figure 6 is the corresponding Boeing crack growth data, which is conservative relative to the test data for the lower range of ΔK 's where most of the crack growth life occurs. An equation was fit to the test data using least squares and is shown along with the corresponding data in figure 6..

Figure 5. Crack Growth Rate Data Calculated From Fractomat and Visual Crack Length Measurements

Figure 6. Crack Growth Rate Data Reduced to $R = 0.0$

After crack growth rate testing, each panel was pulled monotonically to obtain the material's toughness value and R-curve. As noted before, buckling restraints were used to limit out of plane deflections during loading, except on specimen tl6. The load versus crack opening displacement plots and visual crack extension versus load tables are given in appendix B.

The toughness values, K_{app} obtained from the four panels are given along with the corresponding Boeing allowable in table 5. Comparing the results from the four test panels shows good agreement for those panels tested with buckling restraints. Results for the panel tested without buckling restraints are 30 percent less than the results for panels tested with buckling restraints, which shows the importance of reducing out of plane deformations. The toughness values obtained from the four M(t) specimens are slightly lower than the Boeing value since the Boeing value was developed from M(t) panels wider than 48 inches.

Table 5. Toughness Results for 2024-T3 T-L Aluminum

Specimen	Width (inch)	Thickness (inch)	Initial half crack length (inch)	Maximum load (kips)	K_{app} (ksi·√in)
2024_faa_tl3	48.0	0.0615	7.98	71.1	130.
2024_faa_tl4	48.0	0.0613	7.98	70.1	128.
2024_faa_tl5	48.0	0.0613	12.3	51.8	131.
2024_faa_tl6	48.0	0.0608	8.11	52.6	98.0
Boeing					137

The resulting R-curves, K_{eff} versus Δa_{eff} , for each panel are plotted in figure 7, which shows that the results for the three panels tested with buckling restraints compare well with each other. Again, the results for tl6 are lower than the those of the other three panels. An equation was fit to the data for tl3, tl4, and tl5 using least squares, and is given along with the corresponding curve in figure 7.

The equation used to calculate the stress intensity factor, K, for a M(t) specimen is given below:

$$K = \frac{P_{max}}{tW} F \sqrt{\pi a},$$

where P_{max} = maximum load, t = thickness, W = specimen width, a = half crack length, and $F = \sqrt{\sec \frac{\pi a}{W}}$.

Figure 7. R-Curve Test Results

To calculate the effective crack length, Irwin's plastic zone correction, $r_y = \frac{1}{2\pi} \left(\frac{K}{\sigma_y} \right)^2$, was added to the physical crack length. The effective crack length was then used to calculate the effective stress intensity factor, K_{eff} .

During the R-curve test on panel t13, an optical microscope was used to measure the critical crack tip opening angle (CTOA) at one crack tip. The results of these measurements are presented in figure 8. Averaging all of the measured angles shown in figure 8 gives a critical angle equal to 5.5° .

Figure 8. Critical Crack Tip Opening Angle Versus Crack Extension

3. TASK II: CURVED PRESSURE PANEL TESTING

The two full-scale pressure panels with simulated multiple site damage (MSD) were tested in the wide-body pressure test fixture located in Tulalip, Washington. Each panel had two tests planned as shown in figure 9. In general, the test procedure consisted of inserting a five inch longitudinal sawcut in the skin at the selected test location and pressure cycling until either test termination or the crack reached a length at which a residual strength test was conducted. The crack was then repaired before proceeding to the next test location.

3.1 Pressure Test Facility

The wide-body pressure test fixture used in testing of the panels has a 127 inch radius and a 20 foot length as shown in figure 10. The overall geometry of the fixture is consistent with typical fuselage design having frames at a 20 inch pitch and stringers at a 9.25 inch pitch. The frames are attached to the stringers by means of stringer clips, but are otherwise not connected directly to the skin. The 2024-T3 clad skin, 7075-T6 frame and 2024-T3 clad stringer gages are thicker than typical minimum gage fuselage structure but have been selected to maintain realistic fixture stiffness and provide adequate longevity. External 2.8 inch wide circumferential tear straps made of 2024-T3 clad sheet are riveted to the skin at a 20 inch spacing. The end bulkheads are steel, one of which is fixed and the other on rollers to permit axial expansion during pressurization.

The wide-body fixture has a single rectangular cutout approximately 10 x 10 feet designed to accept the test panels. The test panels are attached to the fixture at the skin, frames, and stringers by a fusing arrangement that allows the panel to fail at loads below the elastic limit of the fixture components. The stringer and frame splices are designed to allow attachment fasteners to shear during a dynamic panel failure. The test panel skin is allowed to tear circumferentially along the perimeter fasteners with the help of a sharp notch introduced into the panel prior to its installation in the fixture. These features make it possible to conduct residual strength tests which result in test panel failure without extensive damage to the test fixture.

Compressed air is used as the pressurizing medium. The flow of air is regulated into the fixture by means of a digitally controlled valve. Cyclic rates were approximately two minutes per cycle. Polystyrene blocks are placed within the fixture to reduce the required air volume. To reduce air leakage through the sawcut and thus improve cyclic rates, an internal rubber dam was installed after the sawcuts were made. The dam consisted of rubber sheet that was laid up against the skin.

Figure 9. Structural Configuration and Test Locations of Panel FAA 1 and FAA 2

3.2 Pressure Panel Design and Drawing Preparation

Two identical curved wide-body generic panels (FAA 1 and FAA 2) were designed using standard Boeing practices. The panel design was similar to typical wide-body fuselage crown structure consisting of bonded tear straps and floating frames connected to hat section stringers via stringer clips. This is illustrated in figure 11. The skin is divided into three sections, upper, middle and lower. These sections are joined together along the longitudinal splices (lap joints) located at stringer 3 left

Wide-body Fixture Capabilities:

- 2 minutes/cycle with 40% void fill
- 1600 CFM (electric compressors)
- 300 channel data acquisition system

Figure 10. Wide-Body Pressure Test Fixture

and right. The lap joints are a typical three row configuration assembled using standard 3/16 inch diameter 100° countersunk head rivets and faying surface sealant. Circumferential tear straps are hot bonded to the skin at each frame station every 20 inches. The grain in the skin is oriented longitudinally unlike the hot bonded tear straps which have their grain oriented circumferentially. The typical panel details such as fastener spacing, lap joint details, tear strap, frame and stringer dimensions are found in figures 12 through 14.

The tear strap dimensions are defined in terms of strap stiffening ratio: $R_s = A_{strap} / (B \times t_{skin})$. The frame cross sectional area is not included in this area. The stiffening ratio for both test panels was: $R_s = 0.12$.

The drawings were produced using the CAD system CATIA and the current Boeing drafting standards. A paper and an electronic copy (IGES file) of the drawings were delivered to the FAA after drawing release by Boeing.

Structural Dimensions	
radius	127 inches
stringer spacing	9.25 inches
frame spacing	20.0 inches
skin thickness	0.063 inch
tear strap thickness	0.063 inch
tear strap width	2.4 inches
$R_s = A_{strap} / (B \times t_{skin})$ $= 0.12$	

Figure 11. Structural Details of Panel FAA 1 and FAA 2

Figure 12. Structural Dimensions of Panel FAA 1 and FAA 2 With Bonded Tear Straps

Figure 13. Structural Dimensions (Detail I) of Panel FAA 1 and FAA 2

Figure 14. Frame and Stringer Dimensions of Panel FAA 1 and FAA 2

3.3 Material and Fabrication

The skin material used to fabricate the Task II wide-body pressure panels is typical of that used in current production airplanes, as well as from the same lot of material as the Task I flat panel testing program. The test panel skins were typical wide-body crown gage (0.063 inch) with (0.063 inch) circumferential tear straps hot bonded to the skin every 20 inches. This hot bonding process required specific surface treatments, namely phosphoric acid etching prior to bonding and custom autoclave fixturing. The skins and tear straps were shipped to Boeing Wichita in order to meet the hot bonding requirements.

The skin and tear straps were sheared from the same piece of 2024-T3 clad aluminum sheet received from ALCOA. The material was received in three pieces; each were 85 inches wide x 278 inches long. Figure 15 illustrates how the three pieces were divided between Task I and II. Stringers and frames were made from 7075 aluminum clad. The stringers are roll formed and the frames stretch formed into the appropriate radius then both are heat treated to the -T6 condition. The stringer clips are made from 7075-T6511 extrusion.

The detailed parts fabrication and the final assembly of both curved panels were completed at Boeing using standard production procedures and processes.

Figure 15. Skin Material Cutting Diagram

Simulated multiple site damage (MSD) was introduced in the upper row of three out of the four lap joints. Saw cuts were made in the outer skin of the lap joints along the upper row of rivets. The sawcuts were oriented out of the fastener holes longitudinally in the 3 and 9 o'clock positions by the use of a modified handsaw producing a 0.006 to 0.008-inch-wide cut. These sawcuts were introduced in the upper skin after the fastener holes had been drilled and countersunk to size, but prior to the application of the fay sealant and rivet installation. Figure 16 shows the 4 bay region (80-inch section) where the simulated MSD sawcuts were installed in both panels with figures 17 and 18 showing further detail.

Figure 16. MSD Overview of Panels FAA 1 and FAA 2

Typical from Sta. 80 to 160

Figure 17. MSD Sawcut Details for Panel FAA 1, Test 1

Figure 18. MSD Sawcut Details for Panel FAA 2, Test 1

3.4 Test Results

The results for the three tests conducted are divided into the following sections:

- 3.4.1 Panel FAA 1 – Test 1
 - 3.4.1.1 Crack Growth Results
 - 3.4.1.2 Residual Strength and Panel Repair
- 3.4.2 Panel FAA 1 – Test 2
 - 3.4.2.1 Crack Growth Results
 - 3.4.2.2 Residual Strength and Panel Repair
- 3.4.3 Panel FAA 2 – Test 1
 - 3.4.3.1 Crack Growth Results
 - 3.4.3.2 Residual Strength and Panel Repair

The instrumentation details and strain gage readings for all three tests are found in appendix C. All sawcuts to the skins and frames were installed by the use of an air driven hand held abrasive rotary wheel which creates a 0.1-inch-wide sawcut.

3.4.1 Panel FAA 1 – Test 1

This test was conducted on the upper row of the lap joint located at stringer S-3R centered in the 4 bay region of 0.05-inch simulated MSD shown in figure 17. Prior to beginning the test, ten pressure cycles were applied in order to “seat” the panel in the test fixture. This allows for any permanent settling to occur prior to conducting the initial strain survey.

The 5-inch sawcut was installed in the upper skin centered on frame station 120 as shown in figure 19. The panel was pressure cycled at 8.6 psi.

No residual strength test was conducted at this location and the crack was repaired.

The instrumentation details and strain gage readings are found in appendix C.

3.4.1.1 Crack Growth Results (FAA 1 – Test 1)

The initial 5-inch sawcut was made in the outer skin only. No crack initiations were visible after 281 pressure cycles. At that point the tear strap bridging the sawcut was cut and 88 cycles later 0.63 inch of total crack extension (0.3 and 0.33 inch at the individual tip) was measured. As cycling continued, the main crack steadily grew to approximately 6.5 inches. At this point, the MSD cracks near the tips of the main crack had grown from under the rivets and became visible. The crack trajectory, showing active MSD growth is illustrated pictorially in figures 20 and 21.

The main crack ran dynamically at 1233 cycles after reaching a length of 17.2 inches and arrested at a length of 37.4 inches. The tear straps contained the dynamic crack, but as a result, created visible MSD in the fasteners common to the tear straps at frame station 100 and 140 as shown in figure 22.

The crack length versus pressure cycles plot is provided in figure 23 showing the growth from the initial 5-inch sawcut to the final length of 37.44 inches. Table 6 contains the crack growth data for the main crack in conjunction with the visually measured MSD sizes.

Notes:

- 5-inch sawcut centered at Sta. 120 and along upper fastener row of S-3R lap joint. Skin only at cycle 0.
- Sta 120 tear strap was cut at cycle 281.

Figure 19. Initial Sawcut Details for Panel FAA 1, Test 1

① Cycle 968 – MSD crack at aft side of fastener 47 had grown 0.06 inch beyond fastener head.

② Cycle 968 – MSD crack at fwd side of fastener 53 had grown 0.10 inch beyond fastener head.

Figure 20. Crack Trajectory of Panel FAA 1, Test 1

③ Cycle 1111 – Fwd end of crack had grown through fastener 47.

④ Cycle 1111 – Aft end of crack had grown through fastener 53.

⑤ Cycle 1190 – MSD crack at aft side of fastener 45 had grown 0.11-inch beyond fastener head.

⑥ Cycle 1190 – MSD crack at fwd side of fastener 55 had grown 0.11-inch beyond fastener head.

Figure 21. Crack Trajectory of Panel FAA 1, Test 1

Figure 22. Crack Trajectory of Panel FAA 1, Test 1

Figure 23. Crack Growth History of Panel FAA 1, Test 1

Table 6. Test Record of Crack Length Measurements From Panel FAA 1, Test 1

Cycle Number	Length of New Growth (inch)	Total (X) Dimension (inch)		Total (Y) Dimension (inch)		Total Crack Length (inch)
		Fwd Tip	Aft Tip	Fwd Tip	Aft Tip	
-	Intact	0	0	0	0	0
0	Sawcut installed (skin only)	-	-	-	-	5.0
281	Tear strap cut	-	-	-	-	5.0
369	0.63	0.30	0.33	0	0	5.63
569	0.22	0.44	0.41	0	0	5.85
789	0.25	0.58	0.52	0	0	6.10
937	0.28	0.70	0.68	0	0	6.38
968	0.20 MSD cracks: 0.06 at fastener 47 aft 0.10 at fastener 53 fwd	0.80	0.78	0.04	-0.04	6.58
1111	1.97 Crack grew through fasteners 47 and 53	1.77	1.78	0	0.06	8.55
1190	2.49 MSD cracks: 0.11 at fastener 45 aft 0.11 at fastener 55 fwd	3.01	3.02	0	0.04	11.03
1231	6.18	6.1	6.1	0.05	0.05	17.20
1233	20.24	16.87	15.57	0.12	0.30	37.44 Dynamic Extension

3.4.1.2 Residual Strength and Panel Repair (FAA 1 – Test 1)

No residual strength test was conducted at this test location as a result of the damage caused by the crack running from 17 to 37 inches in one cycle. It was agreed upon by the FAA that the Test 1 location would be repaired prior to running the residual strength test and at location 2 in order to guarantee the completion of the only non-MSD test. The risk of conducting the residual strength test at location 1 in this condition was that the panel would be destroyed if the crack dynamically ran unexpectedly.

The test 1 location was repaired by applying an external doubler as shown in figure 24. The circumferential size of the repair was minimized in order to reduce any influence on the test 2 location.

Figure 24. Panel Repair of FAA 1, Test 1

3.4.2 Panel FAA 1 – Test 2

This test was conducted on the upper row of the lap joint located at stringer S-3L with no MSD as shown in figure 16. The initial strain survey was recorded after the repair was completed at test 1 location.

The 5-inch sawcut was installed in the upper skin and tear strap centered on frame station 120 as shown in figure 25. The panel was pressure cycled at 8.6 psi.

The residual strength test was conducted once the crack length reached 36.91 inches with a severed central frame. Panel failure occurred at 9.4 psi.

The instrumentation details and strain gage readings are found in appendix C.

3.4.2.1 Crack Growth Results (FAA 1 – Test 2)

The initial 5-inch sawcut was made in the outer skin and tear strap. After 1172 pressure cycles, no crack growth had been detected from the sawcut, and therefore the sawcut was extended to 5.72 inches, approximately 0.25 inch beyond the fastener holes at each end of the sawcut as shown in figure 25. After 274 additional pressure cycles, a crack extension of 0.26 inch (0.14 and 0.12 inch on the individual tips) was measured. As cycling continued the main crack steadily grew to a length of 36.91 inches, as illustrated pictorially in figures 26 through 30.

The crack length versus pressure cycles plot is provided in figure 31 showing the growth from the initial 5-inch sawcut to the final length of 36.91 inches. Table 7 contains the crack growth data for the main crack.

Notes:

- 5-inch sawcut centered at Sta. 120 and along upper fastener row of S-3L lap joint. Upper skin and tear strap was cut at test cycle 6 (panel cycle 1260).
- Sawcut was extended to 5.72 inches at test cycle 1172 (panel cycle 2426).

Figure 25. Initial Sawcut Details for Panel FAA 1, Test 2

① Cycle 2056 – Fwd end of crack grew into fastener 47. Aft end of crack grew into fastener 53.

② Cycle 2162 – Aft end of crack grew thru fastener 53.

Figure 26. Crack Trajectory of Panel FAA 1, Test 2

③ Cycle 2309 – Fwd end of crack grew thru fastener 47. Aft end of crack grew 0.23 inch.

④ Cycle 2484 – Aft end of crack grew into fastener 54. Fwd end of crack grew 0.46 inch.

⑤ Cycle 2680 – Aft end of crack grew into fastener 55. Fwd end of crack grew into fastener 45.

Figure 27. Crack Trajectory of Panel FAA 1, Test 2

⑥ Cycle 2859 – Fwd end of crack grew thru fastener 43. Aft end of crack grew thru fastener 57.

⑦ Cycle 2974 – Aft end of crack grew into fastener 60. Fwd end of crack grew into fastener 39.

⑧ Cycle 3025 – Fwd end of crack grew thru fastener 37. Aft end of crack grew thru fastener 64.

Figure 28. Crack Trajectory of Panel FAA 1, Test 2

⑨ Cycle 3035 – Fwd end of crack grew thru fastener 36. Aft end of crack grew to fastener 65.

⑩ Cycle 3045. – Fwd end of crack grew 0.53 inch. No new growth at aft end of crack.

⑪ Cycle 3055 – Fwd end of crack grew into fastener 35. No new growth at aft end of crack.

Figure 29. Crack Trajectory of Panel FAA 1, Test 2

⑫ Cycle 3065 - Fwd end of crack grew thru fastener 35. Second crack grew 0.20 inch on aft side of fastener 35. No new growth at aft end of crack.

⑬ Cycle 3101 – Both ends of crack is at leading edge of tear straps. Prior to dynamic panel failure at cycle 3102.

Figure 30. Crack Trajectory of Panel FAA 1, Test 2

Figure 31. Crack Growth History of Panel FAA 1, Test 2

Table 7. Test Record of Crack Length Measurements From Panel FAA 1, Test 2

Test Cycle Number	Panel Cycle Number	Length of New Growth (inch)	Total (X) Dimension (inch)		Total (Y) Dimension (inch)		Total Crack Length (inch)
			Fwd Tip	Aft Tip	Fwd Tip	Aft Tip	
-	1254	Intact	0	0	0	0	0
6	After 1260	Sawcut installed	-	-	-	-	5.00
1172	2426	Sawcut extended	-	-	-	-	5.72
1446	2700	0.26	0.14	0.12	0	0	5.98
1614	2868	0.14	0.20	0.20	0	0	6.12
1791	3045	0.22	0.32	0.30	0	0	6.34
1961	3215	0.36	0.50	0.48	0	0	6.70
2056	3310	0.57	0.77	0.78	0	0	7.27
2162	3416	0.42	0.77	1.20	0	0	7.69
2309	3563	0.70	1.24	1.43	0	0	8.39
2484	3738	0.91	1.70	1.88	0	0.04	9.30
2680	3934	2.45	3.05	2.98	0	0	11.75
2859	4113	5.55	5.86	5.72	0	0	17.30
2974	4228	6.97	9.87	8.68	0	0	24.27
3025	4279	7.97	12.75	13.77	0	0	32.24
3035	4289	1.54	13.67	14.39	0	0	33.78
3045	4299	0.53	14.20	14.39	0.12	0	34.31
3056	4310	0.36	14.56	14.39	0.08	0	34.67
3075	4329	0.32	14.88	14.39	0	0	34.99
3099	4353	1.72	15.51	15.48	0.07	0.08	36.71
3101	4355	0.20	15.64	15.55	0.06	0.08	36.91

3.4.2.2 Residual Strength (FAA 1 – Test 2)

The residual strength test consisted of increasing the internal pressure in small intervals until dynamic panel failure occurred. Prior to running the residual strength test the central frame at station 120 was severed.

The crack configuration prior to start was a 2 bay skin crack centered on a severed central frame. The tips of the 36.91-inch crack were adjacent to the edges of the tear straps as shown in figure 30. The pressure was increased at a rate of approximately 0.2 psi. per minute. As the pressure was increased above 8.3 psi. the forward tip grew into fastener hole 34 (refer to figure 32 below for fastener numbering) then as the pressure was increased from 9.2 to 9.3 psi. the crack stably grew to within approximately 0.1 inch of fastener 33. The aft tip showed no growth as the pressure was increased to 9.3 psi. As the pressure was further increased above 9.3 to 9.4 psi. the crack ran dynamically from approximately 38.2 inches to the ends of the panel resulting in catastrophic failure. Figures 33 and 34 illustrate the dynamic crack trajectory.

The strain gage stresses are provided at 8.6 psi. with the central frame intact and then severed for review in appendix C figures C-35 through C-38 (intact) and C-39 through C-42 (severed) respectively.

The stresses recorded at the highest pressure (9.4 psi.) prior to failure are provided in appendix C figures C-43 through C-46.

Figure 32. Crack Configuration Prior to Panel Failure

Figure 33. Crack Trajectory of Panel FAA 1, Test 2

PANEL FAILURE

Figure 34. Dynamic Panel Failure, FAA 1, Test 2

3.4.3 Panel FAA 2 – Test 1

This test was conducted on the upper row of the lap joint located at stringer S-3R centered in the 4 bay region of variable size (0.05, 0.10 and 0.15 inch) simulated MSD shown in figure 18. Prior to beginning the test, ten pressure cycles were applied in order to “seat” the panel in the test fixture. This allows any permanent settling to occur prior to conducting the initial strain survey.

The 5-inch sawcut was then installed in the upper skin and tear strap centered on frame station 120 as shown in figure 35. The panel was pressure cycled initially at 8.6 psi.

The residual strength test was conducted once the crack length reached 38.50 inches with a severed central frame. Panel failure occurred at 7.51 psi.

The instrumentation details and strain gage readings are found in appendix C.

3.4.3.1 Crack Growth Results (FAA 2 – Test 1)

The initial 4.9-inch sawcut was made in the outer skin and tear strap. After 489 pressure cycles, 1.0 inch of visible crack extension (0.55 and 0.45 inch each tip) was measured. As cycling continued the main crack steadily grew to 11.84 inches where the first MSD crack became visible near the aft tip of the main crack. The crack trajectory, showing active MSD growth is illustrated pictorially in figures 36 through 40.

At a crack length of 11.84 inches the cyclic pressure was decreased from 8.6 to 6.0 psi in an attempt to reduce the risk of the crack dynamically running as demonstrated in FAA 1, Test 1 at 17 inches. This reduced pressure significantly slowed the crack growth rate to the point where the testing schedule would be impacted. In an attempt to meet the planned testing schedule the cyclic pressure was increased from 6.0 to 7.0 psi.

As cycling continued the main crack ran dynamically at a length of 15.29 inches and arrested after reaching a length of 35.72 inches. The tips of the crack stopped 0.6 and 0.8 inch short of the tear straps. The forward tip developed a sharp 0.2 inch upward turn after running through the fastener hole adjacent to the tear strap. Conversely, the aft tip remained in the horizontal orientation. These details are illustrated in figure 38.

Next, the crack was sawcut horizontally as shown in figure 39 in order to develop the similar crack trajectory as in FAA 1, Test 2. One more cycle was applied in order to sharpen the new sawcut resulting in 1.88 inches of crack extension occurring at 8.0 psi. This made the tip to tip crack length 38.50 inches which is 1.6 inches longer than the final crack length on the non-MSD test performed on FAA 1, Test 2. The crack extended under the tear strap region as illustrated in figure 40.

The crack length versus pressure cycles plot is provided in figure 41 showing the growth from the initial 4.9-inch sawcut to the final length of 38.50 inches. Table 8 contains the crack growth data for the main crack in conjunction with the visually measured MSD sizes.

Notes:

- 4.90-inch sawcut centered at Sta. 120 and along upper fastener row of S-3R lap joint. Upper skin and tear strap was cut at test cycle 0 (panel cycle 11).

Figure 35. Initial Sawcut Details for Panel FAA 2, Test 1

① Cycle 842 – Fwd end of crack grew thru fastener 46. Aft end of crack grew into fastener 54.

Figure 36. Crack Trajectory of Panel FAA 2, Test 1

② Cycle 858 – MSD crack at fwd side of fastener 55 had grown 0.13 inch beyond fastener head.
 – Fwd end of crack grew thru fastener 45 and aft end thru fastener 54.

③ Cycle 1278 – MSD crack at aft side of fastener 42 had grown 0.20 inch beyond fastener head.
 – Fwd end of crack grew thru fastener 43 and aft end thru fastener 55.

Figure 37. Crack Trajectory of Panel FAA 2, Test 1

④ Cycle 1279 – Crack extended between fastener 35 and 65. 20.43 inches of new growth within one cycle.

Figure 38. Crack Trajectory of Panel FAA 2, Test 1

⑤ Cycle 1279 – Extension due to sawcut. This was done to simulate FAA 1, Test 2 crack configuration.

Figure 39. Crack Trajectory of Panel FAA 2, Test 1

⑥ Cycle 1280 – Fwd end of crack grew thru fastener 34 and aft end grew thru fastener 66.
 – Sta. 120 frame was cut prior to residual strength test.
 – Dynamic panel failure occurred at test cycle 1281.

Figure 40. Crack Trajectory of Panel FAA 2, Test 1

Figure 41. Crack Growth History of Panel FAA 2, Test 1

Table 8. Test Record of Crack Length Measurements From Panel FAA 2, Test 1

Test Cycle Number	Panel Cycle Number	Length of New Growth (inch)	Total (X) Dimension (inch)		Total (Y) Dimension (inch)		Total Crack Length (inch)
			Fwd Tip	Aft Tip	Fwd Tip	Aft Tip	
-	11	Intact	0	0	0	0	0
0	11	Sawcut installed	-	-	-	-	4.90
189	200	0.0	0	0	0	0	4.90
489	500	1.00	0.55	0.45	0	0	5.90
589	600	0.11	0.58	0.53	0	0	6.01
643	654	0	0.58	0.53	0	0	6.01
842	853	4.45 Crack went fwd of fast. 46 and aft into fast. 54	2.83	2.73	0	0	10.46
858	869	1.38 MSD crack grew 0.13 inch fwd of fastener 55 Fwd crack grew thru fastener 45 & thru fastener 54 Operating press. changed from 8.6 psi to 6.0 psi	3.94	3.00	0	0	11.84
878	889	0.11	4.05	3.00	0	0	11.95
928	939	0.0	4.05	3.00	0	0	11.95
1187	1198	0.04	4.05	3.04	0	0	11.99
1205	1216	Operating press. changed from 6.0 psi to 7.0 psi	-	-	-	-	-
1278	1289	3.30 MSD crack grew 0.2 inch aft of fast. 42 Crack grew thru fast. 43 & 55	6.32	4.07	0	0.04	15.29

Table 8. Test Record of Crack Length Measurements From Panel FAA 2, Test 1 (Continued)

Test Cycle Number	Panel Cycle Number	Length of New Growth (inch)	Total (X) Dimension (inch)		Total (Y) Dimension (inch)		Total Crack Length (inch)
			Fwd Tip	Aft Tip	Fwd Tip	Aft Tip	
1279	1290	20.43 Crack extended between fast. 35 and 65	15.50	15.32	0.13	0.06	35.72
1279	1290	0.90 Extension due to sawcut: fwd = 0.35 aft = 0.55 (This was done to simulate FAA 1, test 2)	15.85	15.87	0	0	36.62
1280	1291	1.88 Sta. 120 frame was cut prior to residual strength test Step pressure 1 psi increments from 0 – 8 psi	16.83	16.77	0	0	38.50

3.4.3.2 Residual Strength (FAA 2 – Test 1)

The residual strength test consisted of increasing the internal pressure in small intervals until dynamic panel failure occurred. Prior to running the residual strength test the central frame at station 120 was severed.

The crack configuration prior to start was a 2 bay skin crack centered on a severed central frame. The tips of the 38.50-inch crack were through the first fastener common to the tear straps as shown in figure 40. The pressure was increased at a rate of approximately 0.2 psi. per minute. As the pressure was increased above 6.7 psi. the forward tip grew from fastener hole 34 into the MSD crack aft of fastener 33 (refer to figure 42 below for fastener numbering). Then at 6.9 psi. approximately 0.1-inch MSD became visible out of the aft side of fastener 32. Then at 7.0 psi. linkup between fasteners 66 and 67 occurred followed by approximately 0.15 inch of visible growth out of the aft side of fastener 67. At 7.2 psi. link up occurred between fastener 32 and 33 with approximately 0.2-inch of MSD was visible out of the forward side of fastener 32. Then as the pressure was increased to 7.51 psi. approximately 0.1-inch of MSD became visible fwd out of fastener 68, then the crack ran dynamically from approximately 41.7 inches to the ends of the panel resulting in catastrophic failure. Figure 43 illustrates the dynamic crack trajectory.

The strain gage stresses are provided prior to failure with the central frame intact and then severed for review in appendix C figures C-59 through C-62 (intact) and C-63 through C-66 (severed) respectively. Note the pressures at which the stresses are provided for the intact and severed frame conditions do not correspond, 6.0 and 7.51 psi. respectively. This was because no data was available at 7.51 psi. with the frame intact.

The stresses recorded at the highest pressure (7.51 psi.) prior to failure are provided in appendix C figures C-63 through C-66.

Figure 42. Crack Configuration Prior to Panel Failure

PANEL FAILURE

Figure 43. Dynamic Panel Failure, FAA 2, Test 1

3.4.4 Panel FAA 2 – Test 2

This test was not conducted. Boeing and the FAA decided not to perform this test because of program costs.

3.5 Crack Growth and Residual Strength Test Comparison

Figure 44 shows a comparison of crack growth data between panel FAA 1, Test 1 vs. Test 2 (simulated MSD vs. No MSD) normalized to an initial crack length of 5.72 inches.

Figure 44. Panel FAA 1, Test 1 and Test 2 Crack Growth Comparison

Figure 45 shows a comparison of the residual strength capabilities between FAA 1, Test 2 and FAA 2, Test 1. Note that the panel with MSD had a 3.5-inch larger crack prior to final failure.

Figure 45. Panel FAA 1, Test 2 vs. FAA 2, Test 1 Residual Strength Comparison

3.6 Curved Panel Testing Discussion

In contrast to the test data presented in this report, past Boeing pressure panel tests, Reference 5, have showed a 10 percent reduction in residual strength capability due to MSD rather than the 20 percent reported here. The referenced Boeing tests were run much the same way as the tests contained in this report: results from one test panel containing simulated MSD in the lap joint were compared with results from a similar panel without MSD. The primary structural difference between the referenced Boeing tests and the tests reported here was the presence of shear ties connecting the skin and tear strap assembly to the frames, essentially increasing the strength and stiffness of the tear straps in the referenced Boeing tests.

The apparent increased sensitivity of the residual strength capability of structure with floating frames (no shear ties) to MSD suggests that additional tests be conducted to further investigate the significance of varying structural configurations. Specifically, additional testing should be conducted on structure containing an increased tear strap stiffening ratio or on shear tied structure.

4. TASK III: ANALYSIS

This section discusses the development of a finite element model to analyze the FAA test panels. The goal of the analysis was to predict strain gage stresses, crack growth life and residual strength maximum pressure. The scope of the analysis was limited to a general model of the test panel that accounted for major structural effects on the lead crack but did not include the effects of MSD. The output from the finite element analysis was used to predict the stresses at strain gage locations. Stress intensity factors were calculated at different crack lengths and were used to predict crack growth and residual strength. The analysis predictions were then compared with the test results.

4.1 Pressure Panel Finite Element Model Development

Section 3 describes the test fixture and the test panels. The test fixture is a general wide body fuselage structure that has been thickened by approximately 75 percent to achieve a design life goal of one million pressure cycles. The test panels had dimensions of typical fuselage crown structure. Thus, a test fixture/test panel assembly simulated a fuselage crown subjected to cyclic pressure loads. This had implications for the strategy used to model the test panels. For this study, the strategy was to model a section of fuselage crown structure (i.e. the test panel) and apply boundary conditions for cylindrical symmetry. The advantage to this strategy was that a model of the entire test fixture/test panel assembly was avoided allowing a smaller, more detailed model of the test panel to be used. The disadvantage to this strategy was that the effect of the test fixture on the test panel was not modelled. Since this effect has not been quantified, it cannot be dismissed as negligible, although this assumption was implied by the modelling strategy.

The scope of the analysis was limited to modelling the major structure of the test panel, i.e., the skins, tear straps, stringers, and frames. Elements were included to model the load transfer at fasteners and stringer clips, however, local effects such as fastener holes and MSD cracks were not modelled.

Figures 46 through 48 show the different layers of the model of a test panel containing a crack in the upper skin. The model was fifteen stringer bays wide ($\theta=62.6^\circ$) by three and one-half frame bays long ($z=70$ inch). Only the six stringer bays nearest the lap joint were modelled in detail. The remainder of the model was a coarse mesh with rigidly connected structural elements. Extending the model beyond six stringer bays was necessary to prevent warping of the frame at station 120 when that frame was severed for residual strength testing. Because the symmetrical boundary conditions imply that all damage is mirrored across the boundaries, there can be significant interactions if the damage is too close to a boundary.

Figure 46. Skin Mesh

Note in figures 46 through 48 that the lap joint is at stringer S-1. On the test panels there were two lap joints, one at stringer S-3L and the other at stringer S-3R. Only one lap joint was included in the finite element model. However, the directions left and right were consistent between the finite element model and the test panels.

Note as well in figures 46 that a lower skin crack was included in the finite element model. When the 5-inch sawcut was made in the test panel to initiate the crack in the upper skin, the lower skin was cut as well. However, the lower skin crack did not experience growth as it was near the free edge of the lower skin. In the finite element model, the lower skin crack remained at 5 inches while the upper skin crack varied from 5 to 40 inches.

The sketch in figure 11 details the structure of the test panels. The skins and tear straps were 0.063 inch thick 2024-T3 clad aluminum. The tear straps were 2.4 inches wide and were bonded to the skin except at the lap joints. The stringers and frames were 0.063 inch thick 7075-T6 clad aluminum. The stringers were riveted to the skin. The frames were free-floating and attached to the stringers via stringer clips. The skins and tear straps were modelled with 0.063 inch thick eight-noded shell

Figure 47. Tear Strap Mesh

elements (ABAQUS element S8R). The stringers and frames were modelled with three-noded beam elements (ABAQUS element B32). The beam cross-sections were input explicitly; figure 49 shows the dimensions and coordinates of the stringers and frames that were used in the model.

Figures 12 and 13 show the details of the rivet patterns in the lap joint and along the stringers. Fastener elements were used at each rivet location to model the effect of load transfer, except along the crack; the fastener elements were removed from the model when the crack grew past them. Fastener elements were circular two-noded beam elements (ABAQUS element B31). The radius of the cross-section was equal to the radius of the shank of the rivet. Similarly, a stringer clip element was used at each stringer clip location. The stringer clip elements were rectangular two-noded beam elements that made a simple connection between a frame node and a stringer node.

Geometric nonlinearity was accounted for in the ABAQUS analysis of the model. As well, material plasticity was accounted for in the residual strength analyses, where the station 120 frame had been severed and significant plastic behavior was expected in the tear straps beneath the crack tips. In the model, the tear strap elements near the lap joint at station 100 were given plastic material properties using the curve shown in figure 4.

Figure 48. Stiffener Mesh

Symmetrical boundary conditions were applied to all nodes at the edges of the model. If the lap joint is at $\theta = 90^\circ$, then displacement u_θ and rotations ϕ_r and ϕ_z were fixed at $\theta = 58.7^\circ$ and $\theta = 121.3^\circ$. As well, displacement u_z and rotations ϕ_r and ϕ_θ were fixed at station 120. At station 50, rotations ϕ_r and ϕ_θ were fixed. Displacement u_z was constrained to be constant so that a force per unit length of $\frac{p R}{2}$ was applied to the edge of the model. Hence, a load of $-(15 \text{ bays}) \left[(9.25 \text{ inches}) \frac{p R}{2} \right]$ was applied in the z-direction to the node at station 50 on stringer S-1, and all other nodes at station 50 were fixed in the z-direction with respect to the node on stringer S-1. An outward pressure load, p , was applied to all external skin elements.

Stringer

x-coord y-coord thickness

1.2945	-0.9185	0.063
1.2945	-0.9655	0.063
1.26482	-1.07625	0.063
1.18375	-1.15732	0.063
1.073	-1.187	0.063
0.753	-1.187	0.063
0.64225	-1.15732	0.063
0.56118	-1.07625	0.063
0.5315	-0.9655	0.063
0.5315	-0.2215	0.063
0.50182	-0.11075	0.063
0.42075	-0.02968	0.063
0.31	0.0	0.063
-0.31	0.0	0.063
-0.42075	-0.02968	0.063
-0.50182	-0.11075	0.063
-0.5315	-0.2215	0.063
-0.5315	-0.9655	0.063
-0.56118	-1.07625	0.063
-0.64225	-1.15732	0.063
-0.753	-1.187	0.063
-1.073	-1.187	0.063
-1.18375	-1.15732	0.063
-1.26482	-1.07625	0.063
-1.2945	-0.9655	0.063
-1.2945	-0.9185	0.063

Frame

x-coord y-coord thickness

1.063	2.015	0.063
1.063	2.192	0.063
1.0427	2.26775	0.063
0.98725	2.3232	0.063
0.9115	2.3435	0.063
0.1515	2.3435	0.063
0.07575	2.3232	0.063
0.0203	2.26775	0.063
0.	2.192	0.063
0.	-2.192	0.063
-0.0203	-2.26775	0.063
-0.07575	-2.3232	0.063
-0.1515	-2.3435	0.063
-0.9115	-2.3435	0.063
-0.98725	-2.3232	0.063
-1.0427	-2.26775	0.063
-1.063	-2.192	0.063
-1.063	-2.015	0.063

Figure 49. Frame and Stringer Inputs for FAA Test Panel Models

4.2 Results

Figure 50 shows the displaced shape of the skin mesh of the finite model for an intact test panel. Here the magnification factor on the displacements is high enough to see the detail of the skin bulging and the lap joint rotation. Figure 51 shows the displaced shape of the skin mesh containing a 30-inch crack. Here the bulging of the skin caused by the crack is much more significant than bulging caused by the stiffening structure.

Figures 52 through 55 contain line plots of the stresses predicted by the finite element analyses for different crack lengths. These stresses were used for the strain gage stress comparisons. Note the singular behavior of the stresses near the crack tips.

**Figure 50. Displaced Intact Skin Mesh, Internal Pressure = 8.6 psi,
Magnification Factor $\approx 100x$**

Figure 51. Displaced Skin Mesh Containing a 30-Inch Crack, Internal Pressure = 8.6 psi, Magnification Factor $\approx 10x$

Figure 52. Predicted Midplane Stresses at Station 100

Figure 53. Predicted Midplane Stresses at Station 110

Figure 54. Predicted Midplane Stresses in the Upper Skin 2.3 Inches Right of the Lap Joint Stringer Centerline

Figure 55. Predicted Midplane Stresses in the Upper Skin 4.6 Inches Right of the Lap Joint Stringer Centerline

A total stress intensity factor that could be related to the strain energy release rate was used to calculate crack growth. Figure 56 contains a plot of the total stress intensity factors vs. crack length. The method for deriving the stress intensity factors from the finite element analysis output is explained in appendix D.

Figure 56. Stress Intensity Factor Predictions at Operating Pressure

4.3 Pressure Panel Test and Analysis Correlation

4.3.1 Strain Gage Stress Comparisons

A stress prediction was calculated for each strain gage. Generally, the location of a strain gage did not coincide with the location of a node on the finite element model. For strain gages on the skins and tear straps of a test panel, the following method was used to calculate a stress prediction. The six nodes closest to the strain gage location were found; these nodes had to lie on the same surface and could not be separated from the strain gage location by a crack front. It was determined if the strain gage was on the inner or outer fiber of the surface containing the six nodes. The inner or outer fiber stresses at the six nodes were then used to make a least squares estimation of the stress at the strain gage location. For strain gages on the stringers and frames, the axial load and beam bending moments were known for all strain gage locations. It was then a simple matter to calculate predicted stresses using standard beam formulae. Table 9 lists the test files that were suitable for correlation purposes; that is, the test crack length was close to an analysis crack length.

Scatter plots for predicted strain gage stresses vs. measured strain gage stresses are shown for the intact test panel in figure 57 and for the test panel containing a crack in figures E-1 through E-4 of appendix E. As well, error bands are shown in figure 57 and figures E-1 through E-4. These bands are for $\pm 0.5\text{ksi}$ $\pm 10\%$.

For comparison purposes, membrane and bending stresses were calculated for the skins and tear straps, and axial and bending stresses were calculated for the frames and stringers. These stresses were then compared to test stresses so that trends along a cut of test panel could be observed. These

Table 9. Test Files Used for Comparison With Finite Element Analysis

Crack Length, l (inch)	Frame Condition	Internal Pressure (psi)	Correlation Test File
Intact	Intact	8.6	FAA 1, Cycle 10 (Test 1, Intact) FAA 1, Cycle 1259 (Test 2, Intact) FAA 2, Cycle 9 (Test 1, Intact)
5.0			FAA 1, Cycle 21 (Test 1, $l = 5.0$ inches) FAA 1, Cycle 1796 (Test 2, $l = 5.0$ inches) FAA 2, Cycle 395 (Test 1, $l = 4.9$ inches)
30.0			FAA 1, Cycle 4286 (Test 2, $l = 32.24$ inches)
38.0	↓		FAA 1, Cycle 4351 (Test 2, $l = 36.71$ inches)
40.0	Broken	↓	FAA 1, Cycle 4355 (Test 2, $l = 36.71$ inches)

Figure 57. Test / Analysis Strain Gage Correlation for Intact Test Panels

line plots are shown in figures 58 through 63 for the intact test panel and in figures E-5 through E-28 for the test panel containing a crack.

Figure 58. Skin Stress Correlation at Station 100 for an Intact Test Panel

- Analysis
- Test 1 (0.05-inch MSD)
- ◊ Test 2 (No MSD)
- △ Test 3 (Variable MSD)

Figure 59. Skin Stress Correlation at Station 110 for an Intact Test Panel

Figure 60. Skin Stress Correlation at Stringer S-1 + 2.3 Inches for an Intact Test Panel

Figure 61. Skin Stress Correlation at Stringer S-1 + 4.6 Inches for an Intact Test Panel

Figure 62. Frame Stress Correlations for an Intact Test Panel

Figure 63. Stringer Stress Correlation at Stringer S-1 for an Intact Test Panel

4.3.2 Crack Growth Comparisons

Crack growth predictions were calculated using the K vs. a curve from the analyses (shown in figure 56) and the crack growth rate equation derived from the flat panel test results (shown in figure 6). Figure 64 shows a comparison of prediction vs. test results for crack growth along the lap joint with 0.05-inch MSD emanating from the rivet holes. In this case, the prediction was calculated so that at each rivet hole, the length of the lead crack was advanced forward the diameter of the rivet shank plus the length of the MSD.

Figure 65 shows the crack growth comparison for the lap joint test without MSD. It was clear from the test that additional pressurization cycles were needed to initiate a new crack tip after the crack grew into a rivet hole. The current Boeing practice is to calculate crack growth without adding fatigue cycles for the crack to re-initiate on the opposite side of the rivet hole. This curve is shown in figure 65 as a dashed line. A second calculation was made with added pressurization cycles for the lead crack to re-initiate out of the rivet holes. These additional cycles were estimated using the

Figure 64. Crack Growth Prediction vs. Test Results for FAA 1, Test 1 (0.05-Inch MSD)

Table 10. Additional Fatigue Cycles to Initiate Crack Growth From a Rivet Hole

Rivet Location (inch)	Predicted Stress – f_a (ksi)	Additional Fatigue Cycles
3.74	9.3	517
4.88	9.7	109
6.02	9.8	37
7.15	10.0	13
8.29	10.0	6
9.43	10.0	3
10.57	10.0	1
11.71	10.0	1

Figure 65. Crack Growth Prediction vs. Test Results for FAA 1, Test 2 (No MSD)

empirical equation below which describes stop drilling test data:

$$N_{add} = \left[0.61 + \frac{f_a}{590 \text{ ksi}} \left(1 + 2 \sqrt{\frac{a}{r_s}} \right) \right]^{-33}$$

where f_a is the membrane hoop stress at the rivet hole predicted by analysis, r_s is the radius of the rivet shank (3/32 inch), and a is the half-length of the crack to the outside edge of the rivet hole. N_{add} is the number of cycles needed for the crack to re-initiate on the outside edge of the rivet hole. The results of the above equation are given in table 10.

Figure 66 contains the crack growth comparison for the lap joint test with variable MSD. The method used here for calculating crack growth was the same as that for the case of 0.05 MSD shown in figure 64. Here the prediction does not match well with experimental results. Most likely, the larger-sized MSD in this test accelerated the crack growth.

Figure 66. Crack Growth Prediction vs. Test Results for FAA 2, Test 1 (Varied MSD)

4.3.3 Residual Strength Comparisons

The R-curve results from the flat panel tests are shown in figure 67, along with K_r_{eff} vs. Δa_{eff} calculated from the finite element analysis results using the equations given in Section 2.5.2:

$$a_{eff} = a + r_y = a + \frac{1}{2\pi} \left(\frac{K}{\sigma_y} \right)^2$$

and

$$K_r_{eff} = F(a_{eff}, p) \frac{pR}{t} \sqrt{\pi a_{eff}} = \frac{F(a_{eff}, p)}{F(a, p)} \sqrt{\frac{a_{eff}}{a}} K(a, p)$$

where $F(a, p)$ is the shape function for the fuselage which is dependent on crack length and pressure load.

The results obtained by using the R-curve to predict panel residual strength assuming an initial half-crack length of $a_0 = 20$ inches are shown in figure 67. It is obvious that this information alone does not reasonably predict the test panel residual strength. In this case, either the initial total crack length must be significantly greater than 40 inches or the maximum pressure must be significantly greater than 10 psi. In actuality, for the residual strength test without MSD, the initial crack length was 36.7 inches and the maximum pressure was 9.4 psi.

In figure 68, an apparent fracture toughness of $130 \text{ ksi} \sqrt{\text{in}}$ (obtained from the flat panel test results shown in table 5) was used to calculate the maximum pressure vs. half-crack length for the intact frame case and for the case of a severed frame at station 120 and plastic yielding of the tear straps beneath the crack tips. For the severed frame case, a maximum pressure of 10.1 psi was found at a crack length of 46 inches.

The net section failure of the tear strap (shown in figure 68) was found by calculating the average net stress for the tear strap across the upper rivet row for pressurizations of 7.2 psi, 8.6 psi and 10.0 psi for varying crack lengths. Using a quadratic fit for the three pressurizations, a pressurization that caused the net tear strap average stress to equal the ultimate strength of the material (64 ksi) could be found for varying crack lengths. This curve indicates that as the crack extends, the tear strap is not able to support the additional load and fails, causing total panel failure. Thus, the panel is not able to develop the full 10 psi indicated by the curve for fracture failure of the skin.

The possibility that tear strap failure preceded dynamic skin crack growth was investigated further. Just prior to failure, the test panel without MSD contained a crack of length 38.2 inches and was pressurized to 9.4 psi. The test panel with MSD contained a crack of length 41.7 inches and was pressurized to 7.5 psi (see figure 44). Figure 69 shows the predicted stresses in the tear strap at station 100 directly below the crack tip for each panel under these conditions. Note that the stresses in the ligament between the outer fastener and the edge of the tear strap are very close in each case. Possibly, this ligament of the tear strap failed, causing complete tear strap failure and dynamic skin crack growth. However, this hypothesis cannot be verified from the test data because of the rapid sequence of events at final failure.

Figure 67. Predicted $K_{r\text{eff}}$ vs. Δa_{eff} for $a_0 = 20$ inches

4.4 Analysis Discussion

The modelling strategy chosen worked well for modelling overall panel behavior. The crack growth predictions for the tests with no MSD and small MSD (0.05 inch) were relatively accurate, although the crack growth prediction for the test with variable MSD (up to 0.15 inch) failed to predict occurrences of fast crack growth. This is reasonable given that the analysis was for the lead crack only. As well, comparison of predicted skin and tear strap stresses with measured strain gage stresses was good. But the model did not reasonably predict stringer and frame stresses. This discrepancy should be investigated further. The stringer and frame strain gages were axial gages which only measured strain parallel to the neutral axis. This strain was transformed into a stress by assuming that the other stress components were zero. It should be determined first if this assumption is valid by comparing predicted strains with measured strains. Given that there is still some discrepancy in results, the model could be further improved. The load transfer to the frame could be investigated to determine the optimal location for nodes along the frame to be offset from nodes along the stringers,

Figure 68. Residual Strength Prediction for a Lap Joint Upper Row Skin Crack

i.e. the optimal location of frame nodes for stringer clip connections. Another improvement to the model would be to change the stringer, frame and stringer clip elements from beams to shell elements. However, this would greatly increase the number of degrees of freedom in the analysis.

In cases where the effect of the fasteners was important, such as predicting residual strength, the present analysis did not produce good results and a more detailed model is needed. In this case, a global/local modelling strategy would be more effective. The model used for this study could be further refined. Stringers, frames, and stringer clips could be modelled with shell elements. Fastener holes could be modelled as circular cutouts, and the fastener loads distributed as bearing loads on the boundaries. This level of refinement would also allow the explicit modelling of MSD on the fastener holes. As well, a more refined theory could be used to predict residual strength than the apparent stress intensity factor approximation made here, such as plastic collapse of the ligaments between

Figure 69. Comparison of the Predicted Midplane Hoop Stresses Along the Upper Row of Fasteners in the Tear Strap at Station 100 for the Residual Strength Tests

the lead crack tip and the MSD crack tips. Additional refinement of the tear straps would also allow a better prediction of tear strap failure.

5. CONCLUSIONS

5.1 Task I: Flat Panel Testing

- The static, crack growth and toughness properties determined for the 2024-T3 clad aluminum material used in this program were consistent with typical properties used by the Boeing Commercial Airplane Group for damage tolerance analysis of airplane structure.
- The material toughness (K_{app} and R-curve) properties generated from a center-cracked panel were dependent on the buckling restraint effectiveness. A 30 percent reduction in K_{app} was observed when buckling restraints were not used during the toughness tests.

5.2 Task II: Curved Pressure Panel Testing

- The crack growth rate of the lead crack in the lap joint was greater in the presence of simulated MSD. Without MSD the lead crack arrested in each fastener hole and additional cycles were required to extend the crack out of the opposite side.
- For the floating frame panel geometry (no shear ties) and crack lengths tested in this program, the presence of 0.05-inch MSD in the lap joint upper rivet row reduced the residual strength of the panel by 20 percent compared to a panel containing no MSD.
- During the residual strength portion of the tests, the tear straps bridging the crack tips of the two-bay lead crack remained intact until the final failure load was reached. However, the test results are inconclusive as to whether tear strap failure led to dynamic extension of the lead crack.

5.3 Task III: Analysis

- The predictions of skin and tear strap stresses and crack growth history with and without MSD are generally very accurate as shown in the test/analysis correlations. However, frame and stinger stresses could not be reliably predicted.
- The residual strength prediction using an R-curve method and a K_{app} method show that the lap joint lead crack without MSD ahead of the crack tips would not be expected to extend dynamically at the pressures and crack lengths observed in the tests.
- Examination of the stresses in the tear straps bridging the crack tips of the two-bay lead crack indicates that the tear strap probably failed first followed by lead crack instability for both the MSD and non-MSD cases.

6. REFERENCES

1. J. R. Maclin, "Performance of Fuselage Pressure Structure," *The Third International Conference on Aging Aircraft and Structural Airworthiness*, Washington D.C., November 1991.
2. U. G. Goranson, "14th Plantema Memorial Lecture: Damage Tolerance Facts and Fiction," *17th Symposium of the International Committee on Aeronautical Fatigue*, Stockholm, Sweden, June 1993.
3. D. Thomson, D. Hoadley, and J. McChatton, "Load tests on Flat and Curved Panels with Multiple Cracks," *Draft Final Report Prepared by Foster-Miller Inc., for the FAA Technical Center*, Atlantic City, New Jersey, September 1993.
4. J. C. Newman Jr., "FASTRAN-II A Fatigue Crack Growth Structural Analysis Program," *NASA Technical Memorandum 104159*, February 1992.
5. M. Miller, M. L. Gruber, K. E. Wilkins, and R. E. Worden, "Full-Scale Testing and Analysis of Fuselage Structure," *FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance*, Hampton, Virginia, May 1994.
6. M. Miller, K. N. Kaelber, and R. E. Worden, "Finite Element Analysis of Pressure Vessel Panels," *International Workshop on Structural Integrity of Aging Airplanes*, Atlanta, Georgia, March 1992, pages 337–348.

Appendix A M(t) Crack Growth Testing

Visual and Fractomat Crack Length Measurements

Appendix B M(t) R-Curve Testing

Figure B-1. Load Versus Crack Opening Displacement

2024_faa_tl3		2024_faa_tl4	
Load (kips)	Crack Length (in)	Load (kips)	Crack Length (in)
0.0	7.979	0.0	7.981
23.95	7.981	39.98	8.034
35.61	7.997	47.08	8.113
41.81	8.046	53.41	8.242
46.95	8.103	57.65	8.382
52.25	8.194	60.37	8.502
56.31	8.302	63.44	8.705
58.63	8.383	65.96	8.892
61.40	8.520	67.33	9.126
63.83	8.696	68.25	9.440
65.74	8.833	68.62	9.698
67.28	9.017	68.51	10.269
69.11	9.285		
69.22	9.424		
69.40	9.762		
69.40	10.194		
68.60	10.699		

2024_faa_tl5		2024_faa_tl6	
Load (kips)	Crack Length (in)	Load (kips)	Crack Length (in)
0.0	12.277	0.00	8.108
35.71	12.277	28.25	8.189
38.60	12.351	32.13	8.229
41.96	12.463	37.09	8.306
45.11	12.590	42.03	8.453
46.92	12.728	46.77	8.714
50.05	12.997	49.28	8.990
51.24	13.286	50.77	9.269
51.67	13.555	51.76	9.587
51.75	13.875	52.29	9.940
51.25	14.325	52.63	10.381
49.74	14.782	52.50	10.876

Figure B-2. Visual Crack Length Measurements Versus Applied Load

Appendix C Instrumentation and Strain Gage Readings

List of Illustrations

	Page
Figure C-1. Strain Gage Locations for Skin and Tear Straps of Panel FAA 1, Tests 1, 2 and FAA 2, Test 1	C-8
Figure C-2. Frame Strain Gage Locations of Panel FAA 1, Tests 1, 2 and FAA 2, Test 1	C-9
Figure C-3. Stiffener Strain Gage Locations of Panel FAA 1, Tests 1, 2 and FAA 2, Test 1	C-10
Figure C-4. Strain Gage Identification for Skin and Tear Straps of Panel FAA 1, Test 1	C-12
Figure C-5. Strain Gage Identification for Skin and Tear Straps of Panel FAA 1, Test 2	C-13
Figure C-6. Frame Strain Gage Identification of Panel FAA 1, Tests 1 and 2	C-14
Figure C-7. Stiffener Strain Gage Identification of Panel FAA 1, Tests 1 and 2	C-15
Figure C-8. Strain Gage Identification for Skin and Tear Straps of Panel FAA 2, Test 1	C-16
Figure C-9. Frame Strain Gage Identification of Panel FAA 2, Test 1	C-17
Figure C-10. Stiffener Strain Gage Identification of Panel FAA 2, Test 1	C-18
Figure C-11. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 1 Intact Structure	C-20
Figure C-12. Average Hoop Stress of Panel FAA 1, Test 1 Intact Structure	C-21
Figure C-13. Frame Stress of Panel FAA 1, Test 1 Intact Structure	C-22
Figure C-14. Stiffener Stress of Panel FAA 1, Test 1 Intact Structure	C-23
Figure C-15. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 1 With 5.63-Inch Crack Length	C-24
Figure C-16. Average Hoop Stress of Panel FAA 1, Test 1 With 5.63-Inch Crack Length	C-25

List of Illustrations

	Page
Figure C-17. Frame Stress of Panel FAA 1, Test 1 With 5.63-Inch Crack Length	C-26
Figure C-18. Stiffener Stress of Panel FAA 1, Test 1 With 5.63-Inch Crack Length	C-27
Figure C-19. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 1 With 11.03-Inch Crack Length	C-28
Figure C-20. Average Hoop Stress of Panel FAA 1, Test 1 With 11.03-Inch Crack Length	C-29
Figure C-21. Frame Stress of Panel FAA 1, Test 1 With 11.03-Inch Crack Length	C-30
Figure C-22. Stiffener Stress of Panel FAA 1, Test 1 With 11.03-Inch Crack Length	C-31
Figure C-23. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 2 Intact Structure	C-33
Figure C-24. Average Hoop Stress of Panel FAA 1, Test 2 Intact Structure	C-34
Figure C-25. Frame Stress of Panel FAA 1, Test 2 Intact Data	C-35
Figure C-26. Stiffener Stress of Panel FAA 1, Test 2 Intact Data	C-36
Figure C-27. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 2 With 5.72-Inch Crack Length	C-37
Figure C-28. Average Hoop Stress of Panel FAA 1, Test 2 With 5.72-Inch Crack Length	C-38
Figure C-29. Frame Stress of Panel FAA 1, Test 2 With 5.72-Inch Crack Length	C-39
Figure C-30. Stiffener Stress of Panel FAA 1, Test 2 With 5.72-Inch Crack Length	C-40
Figure C-31. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 2 With 24.27-Inch Crack Length	C-41
Figure C-32. Average Hoop Stress of Panel FAA 1, Test 2 With 24.27-Inch Crack Length	C-42

List of Illustrations

	Page
Figure C-33. Frame Stress of Panel FAA 1, Test 2 With 24.27-Inch Crack Length	C-43
Figure C-34. Stiffener Stress of Panel FAA 1, Test 2 With 24.27-Inch Crack Length	C-44
Figure C-35. Hoop Skin and Strap Stress of Panel FAA 1, Test 2 With Frame Intact and Crack Length = 36.71 Inches	C-45
Figure C-36. Average Hoop Stress of Panel FAA 1, Test 2 With Frame Intact and Crack Length = 36.71 Inches	C-46
Figure C-37. Frame Stress of Panel FAA 1, Test 2 With Frame Intact and Crack Length = 36.71 Inches	C-47
Figure C-38. Stiffener Stress of Panel FAA 1, Test 2 With Frame Intact And Crack Length = 36.71 Inches	C-48
Figure C-39. Hoop Skin and Strap Stress at 8.6 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches	C-49
Figure C-40. Average Hoop Stress at 8.6 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches	C-50
Figure C-41. Frame Stress at 8.6 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches	C-51
Figure C-42. Stiffener Stress at 8.6 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches	C-52
Figure C-43. Hoop Skin and Strap Stress at 9.4 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches	C-53
Figure C-44. Average Hoop Stress at 9.4 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches	C-54
Figure C-45. Frame Stress at 9.4 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches	C-55
Figure C-46. Stiffener Stress at 9.4 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches	C-56
Figure C-47. Hoop Skin and Tear Strap Stress of Panel FAA 2, Test 1 Intact Structure	C-58
Figure C-48. Average Hoop Stress of Panel FAA 2, Test 1 Intact Structure	C-59

List of Illustrations

	Page
Figure C-49. Frame Stress of Panel FAA 2, Test 1 Intact Data	C-60
Figure C-50. Stiffener Stress of Panel FAA 2, Test 1 Intact Data	C-61
Figure C-51. Hoop Skin and Tear Strap Stress of Panel FAA 2, Test 1 With 4.9-Inch Sawcut	C-62
Figure C-52. Average Hoop Stress of Panel FAA 2, Test 1 With 4.9-Inch Sawcut	C-63
Figure C-53. Frame Stress of Panel FAA 2, Test 1 With 4.9-Inch Sawcut	C-64
Figure C-54. Stiffener Stress of Panel FAA 2, Test 1 With 4.9-Inch Sawcut	C-65
Figure C-55. Hoop Skin and Tear Strap Stress of Panel FAA 2, Test 1 With 11.84-Inch Crack Length	C-66
Figure C-56. Average Hoop Stress of Panel FAA 2, Test 1 With 11.84-Inch Crack Length	C-67
Figure C-57. Frame Stress of Panel FAA 2, Test 1 With 11.84-Inch Crack Length	C-68
Figure C-58. Stiffener Stress of Panel FAA 2, Test 1 With 11.84-Inch Crack Length	C-69
Figure C-59. Hoop Skin and Tear Strap Stress of Panel FAA 2, Test 1 With 36.62-Inch Crack Length and Intact Frame	C-70
Figure C-60. Average Hoop Stress of Panel FAA 2, Test 1 With 36.62-Inch Crack Length and Intact Frame	C-71
Figure C-61. Frame Stress of Panel FAA 2, Test 1 With 36.62-Inch Crack Length and Intact Frame	C-72
Figure C-62. Stiffener Stress of Panel FAA 2, Test 1 With 36.62-Inch Crack Length and Intact Frame	C-73
Figure C-63. Hoop Skin and Tear Strap Stress of Panel FAA 2, Test 1 With 38.50-Inch Crack Length and Cut Frame	C-74
Figure C-64. Average Hoop Stress of Panel FAA 2, Test 1 With 38.50-Inch Crack Length and Cut Frame	C-75
Figure C-65. Frame Stress of Panel FAA 2, Test 1 With 38.50-Inch Crack Length and Cut Frame	C-76

List of Illustrations

	Page
Figure C-66. Stiffener Stress of Panel FAA 2, Test 1 With 38.50-Inch Crack Length and Cut Frame	C-77
Figure C-67. Panel FAA 1, Test 1 Raw Strain Gage Data Pressure = 0.0 psi, Intact Structure	C-79
Figure C-68. Panel FAA 1, Test 1 Raw Strain Gage Data Pressure = 8.6 psi, Intact Structure	C-80
Figure C-69. Panel FAA 1, Test 1 Raw Strain Gage Data Pressure = 0 psi, Test Cycle = 369, Sawcut = 5.63 Inches	C-81
Figure C-70. Panel FAA 1, Test 1 Raw Strain Gage Data Pressure = 8.6 psi, Test Cycle = 369, Sawcut = 5.63 Inches	C-82
Figure C-71. Panel FAA 1, Test 1 Raw Strain Gage Data Pressure = 0.0 psi, Test Cycle = 1190, Crack Length = 11.03 Inches	C-83
Figure C-72. Panel FAA 1, Test 1 Raw Strain Gage Data Pressure = 8.6 psi, Test Cycle = 1190, Crack Length = 11.03 Inches	C-84
Figure C-73. Panel FAA 1, Test 2 Raw Strain Gage Data Pressure = 0.0 psi, Intact Structure	C-85
Figure C-74. Panel FAA 1, Test 2 Raw Strain Gage Data Pressure = 8.6 psi, Intact Structure	C-86
Figure C-75. Panel FAA 1, Test 2 Raw Strain Gage Data Pressure = 0 psi, Test Cycle = 1178, Sawcut = 5.72 Inches	C-87
Figure C-76. Panel FAA 1, Test 2 Raw Strain Gage Data Pressure = 8.6 psi, Test Cycle = 1178, Sawcut = 5.72 Inches	C-88
Figure C-77. Panel FAA 1, Test 2 Raw Strain Gage Data Pressure = 0 psi, Test Cycle = 2979, Crack Length = 24.27 Inches ..	C-89
Figure C-78. Panel FAA 1, Test 2 Raw Strain Gage Data Pressure = 8.6 psi, Test Cycle = 2979, Crack Length = 24.27 Inches	C-90
Figure C-79. Panel FAA 1, Test 2 Raw Strain Gage Data Pressure = 0 psi, Test Cycle = 3099, Crack Length = 36.71 Inches, Frame Intact	C-91
Figure C-80. Panel FAA 1, Test 2 Raw Strain Gage Data Pressure = 8.6 psi, Test Cycle = 3099, Crack Length = 36.71 Inches, Frame Intact	C-92

List of Illustrations

	Page
Figure C-81. Panel FAA 1, Test 2 Raw Strain Gage Data Pressure = 0 psi, Test Cycle = 3102, Crack Length = 36.91 Inches, Frame Cut	C-93
Figure C-82. Panel FAA 1, Test 2 Raw Strain Gage Data Pressure = 8.6 psi, Test Cycle = 3102, Crack Length = 36.91 Inches, Frame Cut	C-94
Figure C-83. Panel FAA 1, Test 2 Raw Strain Gage Data Pressure = 9.4 psi, Test Cycle = 3102, Crack Length = 36.91 Inches, Frame Cut	C-95
Figure C-84. Panel FAA 2, Test 1 Raw Strain Gage Data Pressure = 0 psi, Intact Structure	C-96
Figure C-85. Panel FAA 2, Test 1 Raw Strain Gage Data Pressure = 8.6 psi, Intact Structure	C-97
Figure C-86. Panel FAA 2, Test 1 Raw Strain Gage Data Pressure = 0 psi, Test Cycle = 1, Sawcut = 4.90 Inches	C-98
Figure C-87. Panel FAA 2, Test 1 Raw Strain Gage Data Pressure = 8.6 psi, Test Cycle = 1, Sawcut = 4.90 Inches	C-99
Figure C-88. Panel FAA 2, Test 1 Raw Strain Gage Data Pressure = 0 psi, Test Cycle = 858, Crack Length = 11.84 Inches ..	C-100
Figure C-89. Panel FAA 2, Test 1 Raw Strain Gage Data Pressure = 8.5 psi, Test Cycle = 858, Crack Length = 11.84 Inches	C-101
Figure C-90. Panel FAA 2, Test 1 Raw Strain Gage Data Pressure = 0 psi, Test Cycle = 1280, Crack Length = 36.62 Inches, Frame Intact	C-102
Figure C-91. Panel FAA 2, Test 1 Raw Strain Gage Data Pressure = 8.0 Psi, Test Cycle = 1280, Crack Length = 36.62 Inches, Frame Intact	C-103
Figure C-92. Panel FAA 2, Test 1 Raw Strain Gage Data Pressure = 0 psi, Test Cycle = 1281, Crack Length = 38.50 Inches, Frame Cut	C-104

Appendix C Instrumentation and Strain Gage Readings

A 300 channel data acquisition system was used on both panels to measure and record strains. The unit was capable of providing real time data for a limited number of gages while also recording the full complement of gages for each test.

The strain measuring instrumentation consisted of 30 strain gages per test location with two locations per panel. Rosette gages were installed back-to-back on the skin and axial gages on the stringers and frame inner and outer chords. The back-to-back gage installation on the skin and inner and outer chords of the frames and stringers were used to provide a measure of the bending in the skin, frames and stringers, respectively. The clad layer was removed locally on the skin prior to gage installation. This was done using fine grit sandpaper.

The stresses were calculated from the measured strains based on the mechanical properties shown in table C-1:

Table C-1. Mechanical Properties for Calculating Stresses

Alloy	Tension Modulus (10^6 psi.)	Shear Modulus (10^6 psi.)	Compression Modulus (10^6 psi.)	Poisson's ratio
2024	10.5	4.0	10.7	0.33
7075	10.3	3.9	10.5	

The intent of the instrumentation was to measure strains prior to the installation of the initial sawcut followed by periodic measurements made as the crack propagated to the length of two bays (40 inches). During the crack growth phase of testing the strain measurements were recorded at specific cyclic intervals coinciding with the visually measured crack length. The typical strain measurements given in this appendix were made at peak internal pressure of 8.6 psi. unless otherwise noted. Each strain gage was zeroed prior to the start of each test. The raw data for all three tests in tabular form is given in appendix C, section C.6 figures C-67 to C-92 for 0 and 8.6 psi. to provide visibility of any zero shift in the gages. These tabular forms show strain gage number, leg stresses, shear stresses, principal stresses and the measured strains. During the residual strength phase of testing, it was attempted to record strains near the point of incipient panel failure.

All tests were remotely monitored using video cameras with the test differential pressure superimposed on the video image.

C.1 Panel FAA 1 and FAA 2 Gage Locations

The specific gage locations are found for the skin and tear straps in figure C-1, frames in figure C-2 and stringers in figure C-3.

Note:

↖ Location of back-to-back rosettes

7 back-to-back locations per test
14 rosette gages per test
28 gages, 84 channels per panel

Figure C-1. Strain Gage Locations for Skin and Tear Straps of Panel FAA 1, Tests 1, 2 and FAA 2, Test 1

Figure C-2. Frame Strain Gage Locations of Panel FAA 1, Tests 1, 2 and FAA 2, Test 1

– All gages are axials and oriented parallel to the centerline of the stringer

Figure C-3. Stiffener Strain Gage Locations of Panel FAA 1, Tests 1, 2 and FAA 2, Test 1

C.2 Panel FAA 1 and FAA 2 Gage Identifications

Gage identification for Panel FAA 1 and FAA 2 are found in figures C-4 through C-7 and figures C-8 through C-10, respectively. Table C-2 below shows figure numbers for the desired test.

Table C-2. Panel Gage I.D.

Panel ID	Test No.	Gage Numbers	Figure
FAA 1	1	102 – 150	C-4 to C-7
	2	202 – 250	
FAA 2	1	302 – 350	C-8 to C-10

Figure C-4. Strain Gage Identification for Skin and Tear Straps of Panel FAA 1, Test 1

↖ Location of back-to-back rosettes

Figure C-5. Strain Gage Identification for Skin and Tear Straps of Panel FAA 1, Test 2

Figure C-6. Frame Strain Gage Identification of Panel FAA 1, Tests 1 and 2

- Typical gage numbering sequence (all locations)
- All gages are axials and oriented parallel to the centerline of the stringer

Detail I – Midbay location

View looking aft

Detail II – At frame location

Figure C-7. Stiffener Strain Gage Identification of Panel FAA 1, Tests 1 and 2

Figure C-8. Strain Gage Identification for Skin and Tear Straps of Panel FAA 2, Test 1

Figure C-9. Frame Strain Gage Identification of Panel FAA 2, Test 1

- Typical gage numbering sequence (all locations)
- All gages are axials and oriented parallel to the centerline of the stringer

Detail I – Midbay location

View looking aft

Detail II – At frame location

Figure C-10. Stiffener Strain Gage Identification of Panel FAA 2, Test 1

C.3 Strain Gage Measurements (FAA 1 – Test 1)

The strain gage measurements are provided for FAA 1, Test 1 at various crack lengths according to table C-3. The skin and tear strap stresses provided are oriented in the hoop direction (circumferentially). Frame and stringer stresses are provided for the circumferential and longitudinal directions respectively.

All strain gage measurements were recorded at 8.6 psi.

Table C-3. Strain Gage Measurement Guide for Panel FAA 1, Test 1

Crack Length	Pressure (psi)	Test Cycle Number	Figure
0 (intact)	8.6	–	C-11 through C-14
5.63 inches (sawcut)	8.6	369	C-15 through C-18
11.03 inches	8.6	1190	C-19 through C-22

P (psi.)	Cycle No.	L (in.)
8.6	-	0 (intact)

Figure C-11. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 1 Intact Structure

Data file: 10h18

P (psi.)	Cycle No.	L (in.)
8.6	-	0 (intact)

Figure C-12. Average Hoop Stress of Panel FAA 1, Test 1 Intact Structure

Data file: 10h18

EXTERNAL VIEW

FRAME
STA 100 FRAME
STA 120 FRAME
STA 140

P (psi.)	Cycle No.	L (in.)
8.6	-	.0 (intact)

Typical all locations

5.3 Frame stress in ksi., inside flange

9.9 Frame stress in ksi., outside flange

Notes:

- Axial gages oriented circumferentially

Data file: 10h18

Figure C-13. Frame Stress of Panel FAA 1, Test 1 Intact Structure

Notes:

- Axial gage location
- All gages are axials and oriented parallel to the centerline of the stringer
- Stiffener stress in ksi.

Data file: 10h18

Figure C-14. Stiffener Stress of Panel FAA 1, Test 1 Intact Structure

P (psi.)	Cycle No.	L (in.)
8.6	369	5.63

Data file: 395h04

Figure C-15. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 1 With 5.63-Inch Crack Length

P (psi.)	Cycle No.	L (in.)
8.6	369	5.63

↳ Location of back-to-back rosettes

Data file: 395h04

Figure C-16. Average Hoop Stress of Panel FAA 1, Test 1 With 5.63-Inch Crack Length

P (psi.)	Cycle No.	L (in.)
8.6	369	5.63

Figure C-17. Frame Stress of Panel FAA 1, Test 1 With 5.63-Inch Crack Length

Notes:

- Axial gage location
- All gages are axials and oriented parallel to the centerline of the stringer
- Stiffener stress in ksi.

Data file: 395h04

Figure C-18. Stiffener Stress of Panel FAA 1, Test 1 With 5.63-Inch Crack Length

P (psi.)	Cycle No.	L (in.)
8.6	1190	11.03

Data file: 1210h10

Figure C-19. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 1 With 11.03-Inch Crack Length

P (psi.)	Cycle No.	L (in.)
8.6	1190	11.03

↖ Location of back-to-back rosettes

Data file: 121Ch10

Figure C-20. Average Hoop Stress of Panel FAA 1, Test 1 With 11.03-Inch Crack Length

FRAME STA 100	FRAME STA 120	FRAME STA 140	P (psi.)	Cycle No.	L (in.)
			8.6	1190	11.03

EXTERNAL VIEW

Notes:

- Axial gages oriented circumferentially

Data file: 1210h10

Figure C-21. Frame Stress of Panel FAA 1, Test 1 With 11.03-Inch Crack Length

Notes:

- Axial gage location
- Stiffener stress in ksi.
- All gages are axials and oriented parallel to the centerline of the stringer

Data file: 1210h10

Figure C-22. Stiffener Stress of Panel FAA 1, Test 1 With 11.03-Inch Crack Length

C.4 Strain Gage Measurements (FAA 1 – Test 2)

The strain gage measurements are provided for FAA 1, Test 2 at various crack lengths according to table C-4. The skin and tear strap stresses provided are oriented in the hoop direction (circumferentially). Frame and stringer stresses are provided for the circumferential and longitudinal directions respectively.

All strain gage measurements were recorded at 8.6 psi. with the exception of cycle 3102 were the measurements were recorded at 9.4 psi. prior to incipient panel failure. Refer to table C-4.

Table C-4. Strain Gage Measurement Guide for Panel FAA 1, Test 2

Crack Length	Pressure (psi)	Test Cycle Number	Figure
0 (intact)	8.6	–	C-23 through C-26
5.72 inches (sawcut)	8.6	1178	C-27 through C-30
24.27 inches	8.6	2979	C-31 through C-34
36.71 inches (frame intact)	8.6	3099	C-35 through C-38
36.91 inches (frame cut)	8.6	3102	C-39 through C-42
36.91 inches (frame cut)	9.4	3102	C-43 through C-46

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	1260	-	0 (Intact)

↖ Location of back-to-back rosettes

Data file: 1260h10

Figure C-23. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 2 Intact Structure

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	1260	-	0 (Intact)

↖ Location of back-to-back rosettes

Data file: 1260h10

Figure C-24. Average Hoop Stress of Panel FAA 1, Test 2 Intact Structure

Figure C-25. Frame Stress of Panel FAA 1, Test 2 Intact Data

Notes:

- Axial gage location
- All gages are axial and oriented parallel to the centerline of the stringer
- Stiffener stress in ksi.

Data file: 1260h10

Figure C-26. Stiffener Stress of Panel FAA 1, Test 2 Intact Data

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	2432	1178	5.72 (Sawcut)

↖ Location of back-to-back rosettes

Data file: 2432h10

Figure C-27. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 2 With 5.72-Inch Crack Length

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	2432	1178	5.72 (Sawcut)

← Location of back-to-back rosettes

Data file: 2432h10

Figure C-28. Average Hoop Stress of Panel FAA 1, Test 2 With 5.72-Inch Crack Length

EXTERNAL VIEW

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	2432	1178	5.72 (Sawcut)

FRAME STA 100 FRAME STA 120 FRAME STA 140

Notes:

- Axial gages oriented circumferentially

Data file: 2432h10

Figure C-29. Frame Stress of Panel FAA 1, Test 2 With 5.72-Inch Crack Length

Notes:

- Axial gage location
- Stiffener stress in ksi.

– All gages are axial and oriented parallel to the centerline of the stringer

Data file: 2432h10

Figure C-30. Stiffener Stress of Panel FAA 1, Test 2 With 5.72-Inch Crack Length

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	4233	2979	24.27

Typical for skin locations
Inner skin stress in ksi.
Outer skin stress in ksi.

Detail I

Typical for tear strap locations
Tear strap stress in ksi. (inside) 22.2
Hoop skin stress in ksi. (outside) 14.4

Detail II

- Location of back-to-back rosettes

Data file:4233h10

Figure C-31. Hoop Skin and Tear Strap Stress of Panel FAA 1, Test 2 With 24.27-Inch Crack Length

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	4233	2979	24.27

↖ Location of back-to-back rosettes

Data file: 4233h10

Figure C-32. Average Hoop Stress of Panel FAA 1, Test 2 With 24.27-Inch Crack Length

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	4233	2979	24.27

EXTERNAL VIEW

Notes:

- Axial gages oriented circumferentially

Data file: 4233h10

Figure C-33. Frame Stress of Panel FAA 1, Test 2 With 24.27-Inch Crack Length

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	4233	2979	24.27

EXTERNAL VIEW

Notes:

- Axial gage location
- Stiffener stress in ksi.
- All gages are axials and oriented parallel to the centerline of the stringer

Data file: 4233h10

Figure C-34. Stiffener Stress of Panel FAA 1, Test 2 With 24.27-Inch Crack Length

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	4353	3099	36.71

Frame intact

EXTERNAL VIEW

Typical for skin locations
Inner skin stress in ksi.
Outer skin stress in ksi.

Tear strap stress in ksi. (inside) 27.5

Hoop skin stress in ksi. (outside) 16.6

↖ Location of back-to-back rosettes

Data file: 4353h48

Figure C-35. Hoop Skin and Strap Stress of Panel FAA 1, Test 2 With Frame Intact and Crack Length = 36.71 Inches

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	4353	3099	36.71

Frame intact

↖ Location of back-to-back rosettes

Data file: 4353h48

Figure C-36. Average Hoop Stress of Panel FAA 1, Test 2 With Frame Intact and Crack Length = 36.71 Inches

Notes:

- Axial gages oriented circumferentially

Data file: 4353h48

Figure C-37. Frame Stress of Panel FAA 1, Test 2 With Frame Intact and Crack Length = 36.71 Inches

Notes:

- Axial gage location
- Stiffener stress in ksi.
- All gages are axials and oriented parallel to the centerline of the stringer

Data file: 4353b48

Figure C-38. Stiffener Stress of Panel FAA 1, Test 2 With Frame Intact And Crack Length = 36.71 Inches

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	4356	3102	36.91

Frame cut
prior to test

Typical for skin locations
Inner skin stress in ksi.
Outer skin stress in ksi.

Detail I

Typical for tear strap locations
Tear strap stress in ksi. (inside) 30.7
Hoop skin stress in ksi. (outside) 18.3

Detail II

↳ Location of back-to-back rosettes

Data file: 4356h32.086

Figure C-39. Hoop Skin and Strap Stress at 8.6 psi, Panel FAA 1, Test 2 With
Crack Length = 36.91 Inches

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	4356	3102	36.91

Frame cut
prior to test

EXTERNAL VIEW

↖ Location of back-to-back rosettes

Data file: 4356h32.086

Figure C-40. Average Hoop Stress at 8.6 psi, Panel FAA 1, Test 2 With
Crack Length = 36.91 Inches

Notes:

- Axial gages oriented circumferentially

Data file: 4356h32.086

Figure C-41. Frame Stress at 8.6 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches

Data file: 4356h32.086

Figure C-42. Stiffener Stress at 8.6 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches

P (psi)	Cycle No.		L (in.)
	Panel	Test	
9.4	4356	3102	36.91

Frame cut
prior to test

Typical for skin locations
Inner skin stress in ksi.
Outer skin stress in ksi.

Typical for tear strap locations
Tear strap stress in ksi. (inside) 31.5
Hoop skin stress in ksi. (outside) 19.4

↖ Location of back-to-back rosettes

Data file: 4356h40.094

Figure C-43. Hoop Skin and Strap Stress at 9.4 psi, Panel FAA 1, Test 2 With
Crack Length = 36.91 Inches

P (psi)	Cycle No.		L (in.)
	Panel	Test	
9.4	4356	3102	36.91

Frame cut
prior to test

↖ Location of back-to-back rosettes

Data file: 4356h40.094

Figure C-44. Average Hoop Stress at 9.4 psi, Panel FAA 1, Test 2 With
Crack Length = 36.91 Inches

EXTERNAL VIEW

P (psi)	Cycle No.		L (in.)
	Panel	Test	
9.4	4356	3102	36.91

Notes:

- Axial gages oriented circumferentially

Data file: 4356h40.094

Figure C-45. Frame Stress at 9.4 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches

Notes:

- Axial gage location
- Stiffener stress in ksi.
- All gages are axial and oriented parallel to the centerline of the stringer

Data file: 4356h40.094

Figure C-46. Stiffener Stress at 9.4 psi, Panel FAA 1, Test 2 With Crack Length = 36.91 Inches

C.5 Strain Gage Measurements (FAA 2 – Test 1)

The strain gage measurements are provided for FAA 2, Test 1 at various crack lengths according to table C-5. The skin and tear strap stresses provided are oriented in the hoop direction (circumferentially). Frame and stringer stresses are provided for the circumferential and longitudinal directions respectively.

All strain gage measurements were recorded at pressures according to table C-5.

Table C-5. Strain Gage Measurement Guide for Panel FAA 2, Test 1

Crack Length	Pressure (psi)	Test Cycle Number	Figure
0 (intact)	8.6	–	C-47 through C-50
4.90 inches (sawcut)	8.6	1	C-51 through C-54
11.84 inches	8.5	858	C-55 through C-58
36.62 inches (frame intact)	8.0	1280	C-59 through C-62
38.50 inches (frame cut)	7.5	1281	C-63 through C-66

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	11	-	0 (Intact)

EXTERNAL VIEW

Typical for skin locations
Inner skin stress in ksi.
Outer skin stress in ksi.

Detail I

Typical for tear strap locations

Tear strap stress in ksi. (inside) 12.8
Hoop skin stress in ksi. (outside) 12.1

Detail II

↖ Location of back-to-back rosettes

Data file: 11h18

Figure C-47. Hoop Skin and Tear Strap Stress of Panel FAA 2, Test 1 Intact Structure

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	11	-	0 (Intact)

↖ Location of back-to-back rosettes

Data file: 11h18

Figure C-48. Average Hoop Stress of Panel FAA 2, Test 1 Intact Structure

Data file: 11h18

Figure C-49. Frame Stress of Panel FAA 2, Test 1 Intact Data

Notes:

- Axial gage location
- Stiffener stress in ksi.
- All gages are axials and oriented parallel to the centerline of the stringer

Data file: 11h18

Figure C-50. Stiffener Stress of Panel FAA 2, Test 1 Intact Data

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	12	1	4.9 (Sawcut)

Data file: 12h10.C86

Figure C-51. Hoop Skin and Tear Strap Stress of Panel FAA 2, Test 1 With 4.9-Inch Sawcut

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	12	1	4.90 (Sawcut)

Data file: 12h10.086

Figure C-52. Average Hoop Stress of Panel FAA 2, Test 1 With 4.9-Inch Sawcut

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	12	1	4.90 (Sawcut)

EXTERNAL VIEW

Notes:

- Axial gages oriented circumferentially

Data file: 12h10.086

Figure C-53. Frame Stress of Panel FAA 2, Test 1 With 4.9-Inch Sawcut

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.6	12	1	4.90 (Sawcut)

EXTERNAL VIEW

Notes:

- Axial gage location
- Stiffener stress in ksi.
- All gages are axials and oriented parallel to the centerline of the stringer

Data file: 12h10.086

Figure C-54. Stiffener Stress of Panel FAA 2, Test 1 With 4.9-Inch Sawcut

Data recorded less than maximum cyclic pressure

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.5	869	858	11.84

EXTERNAL VIEW

Typical for skin locations
Inner skin stress in ksi.
Outer skin stress in ksi.

Detail I

Typical for tear strap locations

Tear strap stress in ksi. (inside) 14.4
Hoop skin stress in ksi. (outside) 12.7

Detail II

↳ Location of back-to-back rosettes

Data file: 869h32

Figure C-55. Hoop Skin and Tear Strap Stress of Panel FAA 2, Test 1 With 11.84-Inch Crack Length

Data file: 869h32

Figure C-56. Average Hoop Stress of Panel FAA 2, Test 1 With 11.84-Inch Crack Length

Data recorded less than maximum cyclic pressure

FRAME STA 100 FRAME STA 120 FRAME STA 140

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.5	869	858	11.84

Notes:

- Axial gages oriented circumferentially

Data file: 869h32

Figure C-57. Frame Stress of Panel FAA 2, Test 1 With 11.84-Inch Crack Length

Data recorded less than maximum cyclic pressure

FRAME
STA 100

FRAME
STA 120

FRAME
STA 140

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.5	869	858	11.84

EXTERNAL VIEW

Notes:

- Axial gage location
- All gages are axial and oriented parallel to the centerline of the stringer
- Stiffener stress in ksi.

Data file: 869h32

Figure C-58. Stiffener Stress of Panel FAA 2, Test 1 With 11.84-Inch Crack Length

Data file: 1291h09.080

Figure C-59. Hoop Skin and Tear Strap Stress of Panel FAA 2, Test 1 With 36.62-Inch Crack Length and Intact Frame

Data file: 1291h09.080

Figure C-60. Average Hoop Stress of Panel FAA 2, Test 1 With 36.62-Inch Crack Length and Intact Frame

Data recorded less than maximum cyclic pressure

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.0	1291	1280	36.62 (Intact frame)

Notes:

- Axial gages oriented circumferentially

Data file: 1291h09.080

Figure C-61. Frame Stress of Panel FAA 2, Test 1 With 36.62-Inch Crack Length and Intact Frame

Data recorded less than maximum cyclic pressure

P (psi)	Cycle No.		L (in.)
	Panel	Test	
8.0	1291	1280	36.62 (Intact frame)

EXTERNAL VIEW

Detail I

Left side		Right side			
(2nd gage ID)		(1st gage ID)			
Inner Flange	-12.8	N/A*	Inner Flange	Left side	Right side
Outer Flange	-1.9	-6.8	Outer Flange	-12.8	N/A*
	(4th gage ID)		(3rd gage ID)		

Notes:

- Axial gage location
- Stiffener stress in ksi.

– All gages are axial and oriented parallel to the centerline of the stringer

N/A* Data not available

Data file: 1291h09.080

Figure C-62. Stiffener Stress of Panel FAA 2, Test 1 With 36.62-Inch Crack Length and Intact Frame

Data file: 1292h32.075

Figure C-63. Hoop Skin and Tear Strap Stress of Panel FAA 2, Test 1 With 38.50-Inch Crack Length and Cut Frame

Data file: 1292h32.075

Figure C-64. Average Hoop Stress of Panel FAA 2, Test 1 With 38.50-Inch Crack Length and Cut Frame

Data recorded less
than maximum
cyclic pressure

FRAME STA 100 FRAME STA 120 FRAME STA 140

P (psi)	Cycle No.		L (in.)
	Panel	Test	
7.5	1292	1281	38.50 (Cut frame)

Notes:

- Axial gages oriented circumferentially

N/A* Data not available

Data file: 1292h32.075

Figure C-65. Frame Stress of Panel FAA 2, Test 1 With 38.50-Inch Crack Length and Cut Frame

Data recorded less than maximum cyclic pressure		FRAME STA 100	FRAME STA 120	FRAME STA 140	P (psi)	Cycle No.	L (in.)
Panel	Test				7.5	1292	1281
							38.50 (Cut frame)

EXTERNAL VIEW

Notes:

- Axial gage location
- Stiffener stress in ksi.

– All gages are axials and oriented parallel to the centerline of the stringer

N/A* Data not available

Data file: 1292h32.075

Figure C-66. Stiffener Stress of Panel FAA 2, Test 1 With 38.50-Inch Crack Length and Cut Frame

C.6 Raw Strain Gage Data

The following figures, C-67 to C-92, contain the raw data for all three tests in tabular form for the various crack lengths documented in this appendix. Data is provided not only for the maximum pressure but also at zero pressure to provide visibility of any zero shift that may have occurred. These tabular forms show strain gage number, leg stresses, shear stresses, principal stresses, angle and measured strains.

- The data for FAA 1, Test 1 is found in Figures C-67 to C-72.
- The data for FAA 1, Test 2 is found in Figures C-73 to C-83.
- The data for FAA 2, Test 1 is found in Figures C-84 to C-92.

10h19

Page 1

SWCCN: SDSTZWO09058

1st & last peak data pts missed - taken on down side

MATERIAL CONSTANTS

CRACK LENGTH: Saw cut or max crack length and location(inch)

MATERIAL T-MOD S-MOD C-MOD POIS T-TYP C-YP

2024 10.5 4.0 10.7 0.33 4857 3925

7075 10.3 3.9 10.5 0.33 7087 6857

TEST NUMBER: TEST 1

TEST DESCRIPTION: CYCLIC, CYCLE 1-11, PEAK PRESS 8.6* PSI CYCLE DATE: 05-04-95

PANEL CONDITION: No QC Pick Up# until after sawcut, panel intact

NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES,

NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.

! If strains reach yield, stress will be reported as xxxx.

! Stresses FA and FAavg do not consider Poissons Effects and are not true stresses.

! FAavg does not consider Poissons Effects and is not a true stress.

SCAN NUMBER: 19

GAGE NUMBER: 19

GAGE ID

AXIS STRESSES

PRINCIPAL STRESSES

ANGLE

FMIN

TMAX

B/B GAGE

AVG. FRAVG

FCavg

TACavg

AVG. PRIN. STRESSES

ANGA

FMAXA

FMINA

AXIS STRAINS(x10-6)

SC

ID	FA	FC	TAC	ANGLE	FMIN	TMAX	B/B GAGE	AVG. FRAVG	FCavg	TACavg	AVG. PRIN. STRESSES	ANGA	FMAXA	FMINA	AXIS STRAINS(x10-6)	SC	
102	0.4	0.0	0.1	10.2	0.4	0.0	0.2	103	0.3	0.0	0.1	11.8	0.3	0.0	34.1	21.2	-7.0
103	0.2	0.0	0.1	14.5	0.2	0.0	0.1	102	0.3	0.0	0.1	11.8	0.3	0.0	18.5	13.4	-4.5
104	0.8	0.3	-0.9	0.8	0.3	0.2	105	0.3	0.1	0.0	0.0	10.1	0.3	0.1	65.4	35.5	7.4
105	-0.2	-0.1	0.1	70.6	-0.1	-0.3	0.1	104	0.3	0.1	0.0	10.1	0.3	0.1	-19.7	-1.9	-0.0
108	0.1	-0.1	0.2	34.0	0.3	-0.2	0.3	109	0.2	0.0	0.1	30.9	0.3	-0.1	12.4	30.1	-11.4
109	0.3	0.1	0.1	21.4	0.3	0.1	0.1	108	0.2	0.0	0.1	30.9	0.3	-0.1	20.5	19.9	4.8
110	0.3	0.3	-0.0	-17.6	0.3	0.3	0.0	111	0.3	0.2	0.0	4.3	0.3	0.2	21.0	16.9	16.2
111	0.2	0.1	0.0	12.2	0.2	0.1	0.1	110	0.3	0.2	0.0	4.3	0.3	0.2	18.0	14.3	4.3
112	0.4	0.1	0.0	3.3	0.4	0.1	0.1	113	0.2	0.1	0.1	19.6	0.2	0.0	31.4	17.5	-0.1
113	0.1	0.0	0.1	37.3	0.2	-0.1	0.1	112	0.2	0.1	0.1	19.6	0.2	0.0	7.1	17.4	-0.7
114	0.3	0.1	0.1	26.5	0.4	0.0	0.2	115	0.2	0.1	0.1	32.6	0.3	-0.0	27.5	31.9	1.0
115	0.1	0.0	0.2	39.7	0.2	-0.1	0.2	114	0.2	0.1	0.1	32.6	0.3	-0.0	7.1	22.4	0.1
116	0.2	-0.0	0.3	33.5	0.4	-0.2	0.3	117	0.2	-0.0	0.2	28.1	0.3	-0.1	20.0	38.7	-7.4
117	0.3	-0.0	0.1	20.3	0.3	-0.1	0.2	116	0.2	-0.0	0.2	28.1	0.3	-0.1	26.9	34.2	-9.9
120!	-0.2														-14.3		
122!	-0.0														-3.8		
124!	-0.1														-6.9		
126!	-0.1														-10.2		
128!															0.7		
130!	-0.1														-8.7		
132!	-0.1														-7.3		
134!	-0.1														-6.9		
136!	-0.3														-23.9		
138!	0.0														2.4		
140!	-0.1														-8.3		
142!	-0.1														-8.9		
144!	-0.2														-17.1		
146!	0.0														4.7		
148!	-0.2														-15.0		
150!	0.1														10.5		

Figure C-67. Panel FAA 1, Test 1 Raw Strain Gage Data
Pressure = 0.0 psi, Intact Structure

SWCCN: STLAB000359

395h05

Page 1

RUN 1

DCCN: 5db52w009061

MATERIAL CONSTANTS

CRACK LENGTH: Saw cut or max crack length and location(inch)

MATERIAL	T-MOD	S-MOD	C-MOD	POIS	T-YP	C-YP
2024	10.5	4.0	10.7	0.33	4857	3925
7075	10.3	3.9	10.5	0.33	7087	6857

TEST NUMBER: TEST 1

TEST DESCRIPTION: CYCLIC, PEAK PRESS' 8.6 PSI

PANEL CONDITION: Crack Length 5.63", QC Pick Up #D45933

NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES,

NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.

If strains reach yield, stress will be reported as XXXXX.

! Stressess FA and FAavg do not consider Poissons Effects and are not true stresses.

! FAavg does not consider Poissons Effects and is not a true stress.

GAGE STRESSES (KSI)

SCAN NUMBER:	5	AXIS STRESSES			PRINCIPAL STRESSES			B/B			AVG. AXIS STRESSES			AVG. PRIN. STRESSES			AXIS STRAINS(x10-6)		
		GAGE ID	FA	FC	TAC	ANGLE	FMAX	FMIN	TMAX	GAGE	FAavg	FCavg	TAcavg	ANGA	FMAXA	FMINA	SA	SB	SC
102	1.0	-0.2	0.1	3.5	1.0	-0.2	0.6	103	0.6	0.1	0.1	11.2	0.6	0.0	102.7	34.2	-53.5		
103	0.2	0.3	0.2	56.5	0.4	0.1	0.2	102	0.6	0.1	0.1	11.2	0.6	0.0	9.3	36.5	23.5		
104	3.1	0.7	0.1	2.1	3.1	0.7	1.2	105	0.8	0.3	0.3	4.8	0.8	0.2	277.0	132.4	-35.3		
105	-1.6	-0.2	-0.0	-89.9	-0.2	-1.6	-0.7	104	0.8	0.3	0.3	4.8	0.8	0.2	-144.9	-55.4	34.8		
108	-0.7	-0.0	0.6	60.3	0.3	-1.0	0.7	109	-0.2	0.3	0.2	69.3	0.3	-0.2	-63.4	48.0	19.5		
109	0.4	0.6	-0.2	-58.3	0.7	0.3	0.2	108	-0.2	0.3	0.2	69.3	0.3	-0.2	18.4	6.8	41.7		
110	1.1	0.5	-0.2	-14.5	1.1	0.4	0.4	111	0.6	0.3	-0.1	-11.7	0.7	0.3	90.4	26.8	8.7		
111	0.2	0.2	0.1	-57.8	0.3	0.1	0.1	110	0.6	0.3	-0.1	-11.7	0.7	0.3	19.1	15.7	9.6		
112	1.4	0.2	-0.0	-1.9	1.4	0.2	0.6	113	0.6	0.2	0.0	5.3	0.6	0.2	125.2	46.9	-21.4		
113	-0.1	0.2	0.1	74.1	0.3	-0.2	0.2	112	0.6	0.2	0.0	5.3	0.6	0.2	-20.4	17.0	25.8		
114	1.3	0.3	0.1	4.3	1.3	0.3	0.5	115	0.5	0.1	0.0	6.5	0.5	0.1	116.4	60.9	-14.5		
115	-0.3	0.0	0.0	88.1	-0.0	-0.3	0.1	114	0.5	0.1	0.0	6.5	0.5	0.1	-27.6	-9.1	7.1		
116	0.7	0.2	0.3	24.9	0.9	0.0	0.4	117	0.5	-0.0	0.1	13.8	0.6	-0.1	63.7	-55.0	70.2		
117	0.3	-0.2	-0.0	-4.6	0.3	-0.2	0.3	116	0.5	-0.0	0.1	13.8	0.6	-0.1	36.2	-2.6	-30.5		
120!	-0.7														-67.6				
122!	0.1														13.3				
124!	-1.4														-132.7				
126!	-0.2														-15.1				
128!	0.0														0.8				
130!	-0.3														-28.3				
132!	0.0														1.7				
134!	-0.1														-10.6				
136!	-0.9														-83.5				
138!	0.1														13.7				
140!	-0.6														-56.1				
142!	-0.1														-13.9				
144!	-0.4														-39.1				
146!	0.3														24.9				
148!	-0.7														-64.6				
150!	0.1														7.1				

Figure C-69. Panel FAA 1, Test 1 Raw Strain Gage Data
Pressure = 0 psi, Test Cycle = 369, Sawcut = 5.63 Inches

SWCCN: STLAB000359

395h04

RUN 1

GAGE STRESSES (KSI)

DCCN: Sdsezwo09061 MATERIAL CONSTANTS

CRACK LENGTH: Saw cut or max crack length and location(inch)

MATERIAL T-MOD S-MOD C-MOD POIS T-YP C-YP
2024 10.5 4.0 10.7 0.33 4857 3925

7075 10.3 3.9 10.5 0.33 7087 6857

TEST NUMBER: TEST 1

TEST DESCRIPTION: CYCLIC

PANEL CONDITION: Crack Length 5.63", QC Pick Up #D745933 PEAK PRESS' 8.6 PSI

NOTE: ALL STRESS IS KSI, CRACK LENGTH IN INCHES,

NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.

If strains reach yield, stress will be reported as xxxx.

Stresses FA and FAvavg do not consider Poissons Effects and are not true stresses.

FAvavg does not consider Poissons Effects and is not a true stress.

SCAN NUMBER: 4

AXIS STRESSES

PRINCIPAL STRESSES

B/B AVG. AXIS STRESSES

TMAX GAGE FAvavg

FMIN TMAX GAGE FAvavg

FAvg TAcAvg

ANGA FMMax FMINA

ANGA FMMax FMINA

AXIS STRAINS (x10-6)

SA SB SC

GAGE ID	FA	FC	TAC	ANGLE	FMAX	FMIN	TMAX	GAGE	FAvg	FCavg	TAcAvg	ANGA	FMMax	FMINA	ANGA	FMMax	FMINA	SA	SB	SC
102	14.1	11.3	0.4	1.7	14.1	1.2	6.4	103	12.9	3.2	0.5	2.8	13.0	3.2	1304.4	538.7	-321.7			
103	11.8	5.1	0.6	4.9	11.8	5.1	3.4	102	12.9	3.2	0.5	2.8	13.0	3.2	958.9	611.6	116.6			
104	20.2	3.8	0.5	1.8	20.2	3.8	8.2	105	13.1	3.7	0.4	2.5	12.1	3.7	1804.3	832.7	-259.2			
105	6.0	3.6	0.3	7.0	6.1	3.6	1.3	104	13.1	3.7	0.4	2.5	13.1	3.7	462.5	152.6				
108	10.7	7.1	1.9	23.3	11.5	6.3	2.6	109	11.2	6.2	0.7	7.8	11.3	6.1	793.4	807.0	340.4			
109	11.7	5.2	-0.5	-4.4	11.8	5.2	3.3	108	11.2	6.2	0.7	7.8	11.3	6.1	952.2	477.5	128.9			
110	12.1	1.8	0.3	1.5	12.1	1.8	5.2	111	12.4	3.3	0.3	1.6	12.4	3.3	1100.1	477.8	-212.5			
111	12.6	4.9	0.2	1.8	12.7	4.9	3.9	110	12.4	3.3	0.3	1.6	12.4	3.3	1049.6	590.7	711.6			
112	14.0	1.6	0.1	0.7	14.0	1.6	6.2	113	12.6	3.4	0.2	1.0	12.6	3.4	513.2	290.6				
113	11.3	5.2	0.2	1.7	11.3	5.2	3.0	112	12.6	3.4	0.2	1.0	12.6	3.4	908.2	548.8	143.3			
114	15.1	6.4	0.9	5.9	15.1	6.3	4.4	115	15.3	6.6	0.7	4.6	15.4	6.5	1233.6	798.1	132.4			
115	15.6	6.8	0.5	3.3	15.6	6.8	4.4	114	15.3	6.6	0.7	4.6	15.4	6.5	1269.9	779.7	161.8			
116	15.8	7.4	0.9	6.1	15.9	7.3	4.3	117	15.4	6.9	0.7	4.3	15.5	6.9	1276.8	856.3	203.4			
117	15.0	6.5	0.4	2.5	15.0	6.5	4.3	116	15.4	6.9	0.7	4.3	15.5	6.9	1224.9	733.3	148.4			
120!	0.8																			
122!	4.4																			
124!	-1.8																			
126!	3.4																			
128!	0.8																			
130!	-0.7																			
132!	1.9																			
134!	1.7																			
136!	5.5																			
138!	9.8																			
140!	5.3																			
142!	10.9																			
144!	5.6																			
146!	10.9																			
148!	4.7																			
150!	9.9																			

Figure C-70. Panel FAA 1, Test 1 Raw Strain Gage Data
 Pressure = 8.6 psi, Test Cycle = 369, Sawcut = 5.63 Inches

DCCN: 5DSTZWO09072

MATERIAL CONSTANTS

CRACK LENGTH: Saw cut or max crack length and location(inch)
 MATERIAL S-MOD C-MOD T-MOD POIS C-YP
 2024 10.5 4.0 10.7 0.33 4857 3925
 7075 10.3 3.9 10.5 0.33 7087 6857

TEST NUMBER: TEST 2

TEST DESCRIPTION: CYCLIC, Up # D745933, REPAIRED

P 08.60

PANEL CONDITION: QC Pick Up #

CRACK LENGTH IN INCHES,

NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.

If strains reach yield, stress will be reported as xxxxx.

! Stressess FA and FAvg do not consider Poissons Effects and are not true stresses.

! FAavg does not consider Poissons Effects and is not a true stress.

SCAN NUMBER: 10

GAGE ID	AXIS FA	FAVG	TAC	ANGLE	PRINCIPAL STRESSES	B/B	AVG. AXIS STRESSES	AVG. PRIN. STRESSES	AVG. PRIN. STRESSES	AXIS STRAINS(x10-6)
					FMIN	GAGE	FAavg	FMaxA	FMinA	SA SC
202	12.3	1.9	0.5	2.8	12.3	5.2	203	12.3	3.1	1109.5 -203.8
203	12.4	4.3	0.2	1.5	12.4	4.3	4.1	202	12.3	3.1 1044.9
204	17.8	4.0	0.4	1.7	17.8	4.0	6.9	205	12.5	3.1 557.6
205	7.2	2.8	0.2	2.2	7.2	2.8	2.2	204	12.5	3.1 16.4
208	11.9	6.8	1.5	15.0	12.3	6.4	2.9	209	11.2	3.4 1565.2
209	10.6	5.0	-0.5	-4.9	10.6	4.9	2.9	208	11.2	3.4 745.9
210	10.9	1.8	0.1	0.8	10.9	1.8	4.6	211	12.0	3.4 594.2
211	13.0	4.5	0.1	0.4	13.0	4.5	4.3	210	12.0	3.4 340.5
212	13.6	1.6	0.7	3.2	13.6	1.5	6.0	213	12.1	3.4 44.9
213	10.7	4.8	0.1	1.3	10.7	4.8	2.9	212	12.1	3.4 276.8
214	13.2	6.2	0.8	6.6	13.3	6.2	3.6	215	13.6	3.4 81.4
215	14.0	6.6	0.4	3.3	14.1	6.6	3.7	216	13.6	3.4 435.0
216	15.4	6.9	0.7	4.8	15.5	6.8	4.3	217	13.5	3.4 422.2
217	11.6	5.6	0.6	5.7	11.7	5.6	3.1	220	13.5	3.4 -171.4
220		3.4								564.6
222		4.8								16.0
224		2.2								
226		2.1								
228		0.8								
230		-0.2								
232		1.6								
234		1.7								
236		5.4								
238		10.7								
240		6.6								
242		9.6								
244		5.8								
246		11.0								
248		6.1								
250		9.8								

Figure C-74. Panel FAA 1, Test 2 Raw Strain Gage Data
Pressure = 8.6 psi, Intact Structure

PANEL NUMBER: 114X8001-1A
CYCLE DATE: 05-19-95
CYCLE PRESSURE: 8.6

GAGE STRESSES (KSI)											
SCAN NUMBER: 11	GAGE ID	AXIS STRESSES	PRINCIPAL STRESSES	B/B	Avg. Axis Stresses	Avg. Strain	Avg. Strains (x10^-6)	SA	SB	SC	
		GAGE FA	GAGE FC	GAGE TAC	FMAX	FMIN	ANGLE	TMAX	GAGE	FCavg	TACavg
202	0.4	0.2	0.2	26.5	0.5	0.1	0.2	20.3	0.4	0.2	0.4
203	0.3	0.3	0.1	41.3	0.4	0.2	0.1	20.2	0.4	0.2	31.8
204	0.8	0.2	0.1	10.4	0.8	0.2	0.3	20.5	0.4	0.2	31.8
205	-0.0	0.2	0.1	67.0	0.3	-0.1	0.2	20.4	0.4	0.1	27.4
208	0.0	-0.1	0.2	36.7	0.2	-0.2	0.2	20.9	0.2	0.1	27.4
209	0.3	0.2	0.2	34.4	0.5	0.0	0.2	20.8	0.2	0.1	35.5
210	0.4	0.1	-0.0	-5.2	0.4	0.1	0.1	21.1	0.4	0.2	0.3
211	0.3	0.3	0.0	20.9	0.4	0.3	0.0	21.0	0.4	0.2	0.7
212	0.6	0.3	0.1	12.1	0.6	0.3	0.2	21.3	0.4	0.2	0.7
213	0.1	0.2	0.1	51.4	0.2	0.1	0.1	21.2	0.4	0.2	24.5
214	1.0	0.1	0.1	7.8	1.0	0.1	0.4	21.5	0.4	0.1	19.0
215	-0.2	-0.1	0.2	52.5	-0.0	-0.4	0.2	21.4	0.4	0.1	0.4
216	0.6	0.2	0.2	24.0	0.7	0.1	0.3	21.7	0.4	0.1	26.3
217	0.2	0.0	0.1	30.9	0.3	-0.1	0.2	21.6	0.4	0.1	0.2
220!	-1.1										0.5
222!	-0.1										0.0
224!	-1.4										0.2
226!	0.1										0.1
228!	0.0										0.2
230!	-0.4										0.5
232!	-0.0										0.0
234!	-0.1										0.2
236!	-0.3										0.1
238!	0.3										0.3
240!	-0.2										0.2
242!	0.4										0.8
244!	-0.3										0.7
246!	0.4										0.4
248!	-0.1										0.1
250!	0.3										0.3

Figure C-75. Panel FAA 1, Test 2 Raw Strain Gage Data
Pressure = 0 psi, Test Cycle = 1178, Sawcut = 5.72 Inches

ID	FA	FC	TAC	ANGLE	FMAX	FMIN	TMAX	TMIN	GAGE	σ_{Avg}	σ_{Avg}	σ_{Max}	σ_{Min}	SA	SB	SC		
202	12.7	2.0	0.5	2.8	12.7	2.0	5.3	203	12.7	3.2	0.4	2.5	12.7	3.2	1141.4	535.4	-204.3	
203	12.7	4.3	0.3	2.2	12.7	4.3	4.2	202	12.7	3.2	0.4	2.5	12.7	3.2	1059.2	582.1	15.5	
204	18.2	4.1	0.5	1.9	18.2	4.1	7.0	205	12.8	3.5	0.4	2.2	12.8	3.5	1602.2	770.5	-177.3	
205	7.5	2.9	0.3	3.3	7.5	2.9	2.3	204	12.8	3.5	0.4	2.2	12.8	3.5	364.7	44.9	618.5	
208	12.0	6.7	1.6	15.3	12.4	6.3	3.0	209	11.5	6.0	0.6	6.2	11.5	5.9	799.4	265.1	152.9	
209	10.9	5.2	-0.3	-3.4	10.9	5.2	2.9	208	11.5	6.0	0.6	6.2	11.5	5.9	877.0	471.8	433.7	
210	11.2	1.8	0.2	1.0	11.2	1.8	4.7	211	12.2	3.3	0.0	0.3	12.2	3.3	1008.4	564.8	40.0	
211	13.2	4.8	-0.1	-0.5	13.2	4.8	4.2	210	12.2	3.3	0.0	0.3	12.2	3.3	1109.9	529.6	-277.6	
212	14.2	1.8	0.7	3.1	14.2	1.7	6.2	213	12.5	3.3	0.4	2.7	12.5	3.3	879.0	525.5	123.4	
213	10.8	4.9	0.2	1.8	10.8	4.9	3.0	212	12.5	3.3	0.4	2.7	12.5	3.3	1186.3	779.7	129.7	
214	14.5	6.1	1.0	6.5	14.6	6.0	4.3	215	14.7	6.3	0.8	5.4	14.8	6.3	763.2	471.8	154.3	
215	14.9	6.5	0.6	4.3	14.9	6.5	4.2	214	14.7	6.3	0.8	5.4	14.8	6.3	1003.7	406.2	183.7	
216	16.6	7.4	0.9	5.5	16.7	7.3	4.7	217	14.6	6.8	0.8	5.5	14.7	6.7	1057.5	494.5	961.4	
217	12.6	6.2	0.6	5.4	12.6	6.1	3.3	216	14.6	6.8	0.8	5.5	14.7	6.7	1003.7	406.2	183.7	
220	0.1	0.1	0.1	0.1	0.1	0.1	0.1	221	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
222	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	223	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3
224	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	225	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3
226	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	227	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3
228	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	229	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3	-2.3
230	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	231	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7
232	1.7	1.7	1.7	1.7	1.7	1.7	1.7	233	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
234	1.5	1.5	1.5	1.5	1.5	1.5	1.5	235	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
236	5.3	5.3	5.3	5.3	5.3	5.3	5.3	237	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3
238	11.0	11.0	11.0	11.0	11.0	11.0	11.0	239	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
240	6.3	6.3	6.3	6.3	6.3	6.3	6.3	241	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
242	10.5	10.5	10.5	10.5	10.5	10.5	10.5	243	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5
244	5.6	5.6	5.6	5.6	5.6	5.6	5.6	245	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6
246	11.8	11.8	11.8	11.8	11.8	11.8	11.8	247	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8	11.8
248	6.3	6.3	6.3	6.3	6.3	6.3	6.3	249	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
250	9.9	9.9	9.9	9.9	9.9	9.9	9.9	251	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9

C-88

**Figure C-76. Panel FAA 1, Test 2 Raw Strain Gage Data
Pressure = 8.6 psi, Test Cycle = 1178, Sawcut = 5.72 Inches**

CRACK LENGTH: Saw cut or max crack length and location(inch)
 MATERIAL T-MOD S-MOD C-MOD POIS T-YP C-YP
 2024 10.5 4.0 10.7 0.33 4857 3925
 7075 10.3 3.9 10.5 0.33 7087 6857

TEST NUMBER: TEST 2
 TEST DESCRIPTION: CYCLIC 0 psi ~ 8.6 psi
 PANEL CONDITION: Crack Length 24.27 inches, QC Pick Up # D745933
 NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES,
 NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.
 If strains reach yield, stress will be reported as XXXX.

! Stressess FA and FAvag do not consider Poissons Effects and are not true stresses.
 ! FAvg does not consider Poissons Effects and is not a true stress.

SCAN NUMBER: 11	GAGE ID	AXIS STRESSES			PRINCIPAL STRESSES			TMAX	B/B GAGE	AVG FAAvg	AVG FCAvg	AXIS STRESSES			AVG ANGa	PRIN. FMAXa	PRIN. FMNa	AXIS STRAINS(x10-6) SA SB SC
		FA	FC	TAC	ANGLE	FMAX	FMIN					FAAvg	FCAvg	TACavg				
202	1.5	-0.0	0.1	2.9	1.5	-0.0	0.8	203	0.8	-0.2	-0.0	-0.2	-2.2	0.8	-0.2	146.5	58.5	-49.7
203	0.1	-0.4	-0.2	-14.9	0.2	-0.5	0.3	202	0.8	-0.2	-0.0	-0.0	-2.2	0.8	-0.2	25.7	-30.4	-45.7
204	4.5	-0.8	-0.1	-11.9	4.5	0.8	1.9	205	1.3	0.1	-0.1	-3.3	1.3	0.1	0.1	407.5	155.0	-66.7
205	-1.9	-0.5	-0.0	-89.1	-0.5	-1.9	0.7	204	1.3	0.1	-0.1	-3.3	1.3	0.1	0.1	-157.0	-77.4	7.5
208	0.4	1.0	0.0	87.4	1.0	0.4	0.3	209	0.4	0.8	-0.1	-81.4	0.8	0.4	6.3	46.2	79.5	
209	0.5	0.6	-0.1	-58.1	0.7	0.4	0.2	208	0.4	0.8	-0.1	-81.4	0.8	0.4	0.4	25.4	16.7	42.3
210	1.8	0.1	0.2	-7.1	1.8	0.1	0.9	211	1.5	0.1	-0.0	-1.8	1.5	0.1	0.1	170.5	68.5	-46.7
211	1.2	0.0	-0.3	-14.3	1.2	-0.1	0.6	210	1.5	0.1	-0.0	-1.8	1.5	0.1	0.1	110.2	-1.3	-34.1
212	2.9	0.5	0.2	5.3	2.9	0.5	1.2	213	1.2	-0.1	0.2	7.8	1.3	-0.1	0.1	258.6	136.2	-43.0
213	-0.4	-0.7	0.1	24.4	-0.3	-0.7	0.2	212	1.2	-0.1	0.2	7.8	1.3	-0.1	0.1	-17.7	-15.4	-49.3
214	-4.1	-1.8	0.1	86.5	-1.8	-4.2	1.2	215	-0.1	2.8	-0.3	-83.6	2.8	-0.2	-0.2	-332.8	-167.2	-37.9
215	3.9	7.3	-0.8	-77.5	7.5	3.7	1.9	214	-0.1	2.8	-0.3	-83.6	2.8	-0.2	-0.2	142.5	257.3	572.9
216	-21.1	-8.9	7.1	65.3	-5.6	-24.3	9.4	217	-2.5	-0.6	-0.6	72.6	-0.4	-2.7	-2.7	-1695.9	-26.9	-182.0
217	16.1	7.7	-2.9	-26.9	19.0	4.8	7.1	216	-2.5	-0.6	0.6	72.6	-0.4	-2.7	-2.7	1288.9	36.1	230.7
220	-2.9	-2.0	-2.0	-2.4	-2.4	-2.4	-2.4	221	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
222	-2.0	-2.0	-2.0	-2.4	-2.4	-2.4	-2.4	223	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
226	-1.8	-1.8	-1.8	-2.4	-2.4	-2.4	-2.4	227	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
228	-3.9	-1.3	-1.3	-2.4	-2.4	-2.4	-2.4	229	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
230	-1.3	-1.3	-1.3	-2.4	-2.4	-2.4	-2.4	231	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
232	-2.4	-2.4	-2.4	-2.4	-2.4	-2.4	-2.4	233	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
234	-0.9	-0.9	-0.9	-2.4	-2.4	-2.4	-2.4	235	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
236	-0.1	-0.1	-0.1	-2.4	-2.4	-2.4	-2.4	237	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
238	0.4	-0.5	-0.5	-2.4	-2.4	-2.4	-2.4	239	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
240	-0.5	-0.5	-0.5	-2.4	-2.4	-2.4	-2.4	241	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
242	1.5	-0.8	-0.8	-2.4	-2.4	-2.4	-2.4	243	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
244	-0.8	-0.8	-0.8	-2.4	-2.4	-2.4	-2.4	245	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
246	2.0	-0.0	-0.0	-2.4	-2.4	-2.4	-2.4	247	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
248	-0.0	-0.3	-0.3	-2.4	-2.4	-2.4	-2.4	249	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9
250	0.3	-0.3	-0.3	-2.4	-2.4	-2.4	-2.4	251	-2.5	-0.6	-0.6	-0.4	-2.7	-2.7	-2.7	-192.9	-192.9	-192.9

Figure C-77. Panel FAA 1, Test 2 Raw Strain Gage Data
 Pressure = 0 psi, Test Cycle = 2979, Crack Length = 24.27 Inches

SWCCN: STLAB000359

DCCN: 5DSTZW009098

MATERIAL CONSTANTS

CRACK LENGTH: raw cut or max crack length and location(inch)

C-MOD Y-MOD S-MOD T-MOD Y-YP C-YP

MATERIAL: 10.5 4.0 10.7 0.33 4857 3925

7075 10.3 3.9 10.5 0.33 7087 6857

TEST NUMBER: TEST 2

TEST DESCRIPTION: CYCLIC 0 psi - 8.6 psi,

PANEL CONDITION: Crack Length 36.71 inches, QC Pick Up # D745933

NOTE: ALL STRESS IN KSI. CRACK LENGTH IN INCHES,

NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.

If strains reach yield, stress will be reported as xxxx.

! Stressess FA and FAvavg do not consider Poissons Effects and are not true stresses.

! FAvavg does not consider Poissons Effects and is not a true stress.

SCAN NUMBER: 49 GAGE ID

GAGE STRESSES (KSI) GAGE SC

GAGE

TEST 2

ANGLE

FAvg

TMax

GAGE

FAvg

TMax

GAGE

FAvg

TMax

GAGE

SC

SCAN NUMBER: 49	GAGE ID	PRINCIPAL STRESSES			B-B AVG. FAvg	A-A AVG. FAavg	T-T AVG. FAavg	AVG. PRIN. STRESSES			SA	SB	SC	
		FA	FC	TAC				FMIN	FMAX	FMRA				
202	2.7	0.7	1.9	31.2	3.8	-0.5	2.2	203	0.8	-0.4	-0.5	-21.0	1.0	-0.6
203	-1.1	-1.5	-3.0	-43.0	1.7	-4.3	3.0	202	0.8	-0.4	-0.5	-21.0	1.0	-0.6
204	3.6	1.9	0.8	21.4	3.9	1.6	1.2	205	1.9	-0.5	-0.5	-16.8	2.1	-0.7
205	0.1	-2.9	-2.8	-28.9	1.4	-4.2	2.8	204	1.9	-0.5	-0.8	-16.8	2.1	-0.7
208	-0.0	4.5	0.3	86.3	4.5	-0.0	2.3	209	0.2	3.5	0.4	82.9	3.6	0.2
209	0.5	2.5	0.6	76.2	2.7	0.3	1.2	208	0.2	3.5	0.4	82.9	3.6	0.2
210	3.3	0.7	1.6	24.8	4.0	0.0	2.0	211	1.3	0.4	1.0	32.6	2.0	-0.3
211	-0.6	0.1	0.5	62.3	0.4	-0.9	0.6	210	1.3	0.4	1.0	32.6	2.0	-0.3
212	2.0	0.8	0.8	26.9	2.3	0.5	0.5	213	0.9	0.3	0.8	34.3	1.4	-0.2
213	-0.1	-0.2	0.7	43.9	0.6	-0.9	0.7	212	0.9	0.3	0.8	34.3	1.4	-0.2
214	2.4	-0.1	-0.1	-2.5	2.4	0.1	1.1	215	0.6	1.3	-0.0	-89.1	1.3	0.6
215	-1.2	2.4	0.1	88.8	2.4	-1.2	1.8	214	0.6	1.3	-0.0	-89.1	1.3	0.6
216	2.2	-0.2	0.7	15.0	15.0	-0.4	1.4	217	0.6	1.9	0.3	79.5	2.0	0.6
217	-1.0	4.0	-0.2	-87.7	4.0	-1.0	2.5	216	0.6	1.9	0.3	79.5	2.0	0.6
220	-2.3	-2.3	-2.3	-1.6	-2.3	-2.3	-2.3	221	-1.6	-1.6	-1.6	-218.4	-218.4	-218.4
222	-1.6	-1.6	-1.6	-1.6	-1.6	-1.6	-1.6	223	-1.6	-1.6	-1.6	-155.6	-155.6	-155.6
224	-2.2	-2.2	-2.2	-2.2	-2.2	-2.2	-2.2	225	-2.2	-2.2	-2.2	-237.0	-237.0	-237.0
226	-2.1	-2.1	-2.1	-2.1	-2.1	-2.1	-2.1	227	-2.1	-2.1	-2.1	-254.5	-254.5	-254.5
228	-2.8	-2.8	-2.8	-2.8	-2.8	-2.8	-2.8	229	-2.8	-2.8	-2.8	-85.1	-85.1	-85.1
230	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	-2.5	231	-2.5	-2.5	-2.5	-202.9	-202.9	-202.9
232	-2.7	-2.7	-2.7	-2.7	-2.7	-2.7	-2.7	233	-2.7	-2.7	-2.7	-268.6	-268.6	-268.6
234	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	-0.9	235	-0.9	-0.9	-0.9	-13.2	-13.2	-13.2
236	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	-0.1	237	-0.1	-0.1	-0.1	-73.0	-73.0	-73.0
238	0.8	0.8	0.8	0.8	0.8	0.8	0.8	239	0.8	0.8	0.8	-28.7	-28.7	-28.7
240	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	241	-0.3	-0.3	-0.3	-151.7	-151.7	-151.7
242	1.6	1.6	1.6	1.6	1.6	1.6	1.6	243	1.6	1.6	1.6	-73.8	-73.8	-73.8
244	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	245	-0.8	-0.8	-0.8	277.0	277.0	277.0
246	2.9	2.9	2.9	2.9	2.9	2.9	2.9	247	2.9	2.9	2.9	2.1	2.1	2.1
248	0.0	0.0	0.0	0.0	0.0	0.0	0.0	249	0.0	0.0	0.0	76.7	76.7	76.7
250	0.8	0.8	0.8	0.8	0.8	0.8	0.8	251	0.8	0.8	0.8	415.1	415.1	415.1

Figure C-79. Panel FAA 1, Test 2 Raw Strain Gage Data
Pressure = 0 psi, Test Cycle = 3099, Crack Length = 36.71 Inches, Frame Intact

GAGE STRESSES (KSI)

DCCN: 5DSTIW0998

MATERIAL CONSTANTS

CRACK LENGTH: Saw cut or max crack length and location(inch)
 MATERIAL T-MOD S-MOD C-MOD POIS T-YP C-YP
 2024 10.5 4.0 10.7 0.33 4857 3925
 7075 10.3 3.9 10.5 0.33 7087 6857

TEST NUMBER: TEST 2

TEST DESCRIPTION: CYCLIC 0 psi - 8.6 psi,

PANEL CONDITION: Crack Length 36.71 inches, QC Pick Up # D745913

NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES,

Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.

If strains reach yield, stress will be reported as XXXXX.

! Stressess FA and FAvav do not consider Poissons Effects and are not true stresses.

NUMBER: 480

AXIS STRESSES

ID FA FC TAC

ANGLE

FMAX

FMIN

TMAX

GAGE

B/B

AVG

AXIS STRESSES

FAvg

FCavg

TACavg

ANGA

FMAXA

FMINA

PRTN. STRESSES

SA

SC

SB

AXIS STRAINS(x10-6)

SA

SC

SB

PANEL NUMBER: 114X8001-1A
 CYCLE DATE: 06-05-95
 CYCLE PRESSURE: 8.6

Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.

If strains reach yield, stress will be reported as XXXXX.

! Stressess FA and FAvav do not consider Poissons Effects and are not true stresses.

NUMBER: 480

AXIS STRESSES

ID FA FC TAC

ANGLE

FMAX

FMIN

TMAX

GAGE

B/B

AVG

AXIS STRESSES

FAvg

FCavg

TACavg

ANGA

FMAXA

FMINA

PRTN. STRESSES

SA

SC

SB

AXIS STRAINS(x10-6)

SA

SC

SNCN: STL8000359

DCCN: 5DST2W009097

MATERIAL CONSTANTS

CRACK LENGTH: Crack Length 36.91 inches to specimen failure.

MATERIAL	T-MOD	S-MOD	C-MOD	POIS	T-YP	C-YP
2024	10.5	4.0	10.7	0.33	4857	3925
7075	10.3	3.9	10.5	0.33	7087	6857

TEST NUMBER: TEST 2

TEST DESCRIPTION: STATIC 0-8.6 ksi one psi inc. to 6.0 psi, 0.1 psi inc to fail.

PANEL CONDITION: Q.C Pick Up # D745933

NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES

NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.

If strains reach yield, stress will be reported as xxxx.

Stresses FA and FAavg do not consider Poissons Effects and are not true stresses.

FAavg does not consider Poissons Effects and is not a true stress.

GAGE STRESSES (KSI)

Page 1

PANEL NUMBER: 114X8001-1A
CYCLE DATE: 06-07-95
CYCLE PRESSURE: 0.0

SCAN NUMBER: 1	GAGE	AXIS STRESSES			PRINCIPAL STRESSES			B/B AXIS STRESSES			AVG. PRIN. STRESSES			AXIS STRAINS(x10-6)			
		ID	FA	FC	TAC	ANGLE	FMAX	FMIN	TMAX	GAGE	Favg	TACavg	ANGa	FMAXa	FMINa	SA	SB
202	2.3	0.9	2.4	36.6	4.0	-0.9	2.5	203	0.6	-0.6	-0.3	-12.8	0.7	-0.7	191.4	399.1	12.3
203	-1.0	-2.1	-3.0	-39.8	1.4	-4.6	3.0	202	0.6	-0.6	-0.3	-12.8	0.7	-0.7	-30.4	-471.4	-166.9
204	3.3	2.1	1.0	28.4	3.8	1.6	1.1	205	1.6	-0.8	-0.5	-11.8	1.8	-1.0	249.1	290.4	93.2
205	-0.0	-3.7	-2.0	-23.9	0.9	-4.6	2.8	204	1.6	-0.8	-0.5	-11.8	1.8	-1.0	113.9	-372.1	-348.6
208	-0.1	4.2	0.8	80.2	4.3	-0.2	2.3	209	0.1	3.2	1.0	74.1	3.5	-0.2	-141.3	227.1	402.2
209	0.2	2.2	1.2	65.0	2.7	-0.3	1.5	208	0.1	3.2	1.0	74.1	3.5	-0.2	-448.6	226.6	202.1
210	3.1	0.8	1.4	25.1	3.7	0.1	1.8	211	1.2	0.5	1.0	34.4	1.9	-0.2	269.1	298.0	-24.1
211	-0.6	0.2	0.6	62.7	0.5	-0.9	0.7	210	1.2	0.5	1.0	34.4	1.9	-0.2	-62.6	60.3	39.5
212	2.0	0.6	0.8	24.5	2.4	0.2	1.1	213	0.9	0.1	0.8	31.2	1.4	-0.3	172.3	186.0	-5.9
213	-0.2	-0.3	0.7	41.8	0.4	-0.9	0.7	212	0.9	0.1	0.8	31.2	1.4	-0.3	-5.4	70.7	-24.6
214	3.0	0.9	-0.5	-11.8	3.1	0.8	1.2	215	0.4	0.6	0.0	89.6	0.6	0.4	260.3	68.3	-6.9
215	-2.3	0.4	0.5	80.2	0.4	-2.4	1.4	214	0.4	0.6	0.0	89.6	0.6	0.4	-226.5	-1.9	105.0
216	2.4	0.4	0.0	0.5	2.4	0.4	1.0	217	0.7	1.4	0.4	65.8	1.5	0.5	217.6	91.2	-39.5
217	-1.0	2.3	0.7	78.2	2.5	-1.2	1.8	216	0.7	1.4	0.4	65.8	1.5	0.5	-169.7	135.5	255.3
220	-1.8																
222	-1.7																
224	-1.0																
226	-1.4																
228	-1.5																
230	-1.3																
232	0.9																
234	-0.3																
236	-0.8																
238	1.4																
240	2.6																
242	-2.2																
244	-0.4																
246	3.4																
248	-0.3																
250	1.3																

C-93

Figure C-81. Panel FAA 1, Test 2 Raw Strain Gage Data

Pressure = 0 psi, Test Cycle = 3102, Crack Length = 36.91 Inches, Frame Cut

SWCCN: STL000359

DCCN: 50ST2W009097

MATERIAL CONSTANTS

CRACK LENGTH: Crack Length 36.91 inches to specimen failure.
 MATERIAL T-MOD S-MOD C-MOD POIS T-YP C-YP
 MATERIAL 10.5 4.0 10.7 0.13 10.5 0.13 4857 3925
 7075 10.3 3.9 7087 6857

TEST NUMBER: TEST 2
 TEST DESCRIPTION: STATIC 0-8.6 psi, one psi inc. to 6.0 psi, 0.1 psi inc to fail.
 QC Pick Up # D745933
 PANEL CONDITION:
 NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES,

NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.
 If strains reach yield, stress will be reported as XXXXX.

! Stressess FA and FAavg do not consider Poissons Effects and are not true stresses.
 ! FAavg does not consider Poissons Effects and is not a true stress.

SCAN NUMBER:	32	PRINCIPAL STRESSES										GAGE STRESSES (K S I)									
		GAGE ID	FA	FC	TAC	ANGLE	FMAX	FMIN	TMAX	GAGE	FAavg	FCavg	TACavg	ANGA	FMAXA	FMINA	SA	SB	SC	AXIS STRAINS(x10-6)	
202	32.7	2.0	-2.0	-3.7	32.9	1.9	15.5	20.3	29.8	2.4	-2.9	-5.9	30.0	2.1	3053.8	856.8	-837.3				
203	26.8	2.7	-3.8	-8.6	27.3	2.2	12.6	20.2	29.8	2.4	-2.9	-5.9	30.0	2.1	2465.7	471.9	-583.1				
204	46.5	9.2	-1.1	-1.6	46.5	9.2	18.7	20.5	35.0	6.2	-2.6	-5.1	35.3	6.0	4135.5	1644.4	-583.7				
205	23.6	3.2	-4.2	-11.1	24.4	2.4	11.0	20.4	35.0	6.2	-2.6	-5.1	35.3	6.0	2145.5	327.8	-434.7				
208	27.4	28.0	3.3	47.6	31.0	24.4	3.3	20.9	25.5	26.0	1.3	50.5	27.0	24.5	1728.0	2180.3	1802.8				
209	23.6	24.0	-0.8	-11.8	24.6	23.0	0.8	20.8	25.5	26.0	1.3	50.5	27.0	24.5	1494.2	1419.9	1541.8				
210	33.4	2.5	4.6	8.3	34.1	1.9	16.1	21.1	29.1	1.6	5.4	10.5	30.1	0.6	3104.5	1727.5	-809.5				
211	24.8	0.6	6.1	13.2	26.2	-0.8	13.5	21.0	29.1	1.6	5.4	10.5	30.1	0.6	2344.0	1573.9	-721.7				
212	30.7	2.2	5.8	11.0	31.8	1.1	10.5	21.2	24.5	1.3	5.7	12.9	25.8	0.0	2856.0	1777.6	-758.8				
213	18.3	0.5	5.5	15.7	19.8	-1.1	10.5	21.2	24.5	1.3	5.7	12.9	25.8	0.0	1728.7	1287.7	-530.4				
214	-5.4	-0.7	-3.0	-63.8	0.8	-6.9	3.9	21.5	1.8	6.9	-4.8	-59.1	9.7	-1.0	-480.8	-569.3	104.5				
215	9.0	14.4	-6.5	-56.5	18.6	4.7	6.9	21.4	1.8	6.9	-4.8	-59.1	9.7	-1.0	400.8	-63.6	1088.9				
216	3.7	3.2	1.4	39.2	4.8	2.0	1.4	21.7	0.3	3.1	-1.6	-65.6	3.8	-0.4	254.6	392.7	183.7				
217	-3.1	3.0	-4.5	-61.9	5.4	-5.5	5.4	21.6	0.3	3.1	-1.6	-65.6	3.8	-0.4	-379.5	-565.4	378.3				
220	-36.1	230!	-18.1	-27.9	0.9	-0.7	-11.6	226!	-13.6	228!	-26.8	-18.1	-17.8	-1.7	-1728.3	-2645.9					
222	-27.9	232!	0.9	-0.7	-24.4!	-0.7	-11.6	224!	-11.6	236!	2.5	-0.7	-1.0	-1.0	-109.0	-1109.0					
224	-11.6	234!	-0.7	-24.6!	6.3	-0.7	-22.2	238!	22.2	240!	1.7	-0.7	-1.0	-1.0	-1291.8	-245.7					
226	-13.6	236!	-0.7	-24.8!	8.9	-0.7	-22.2	248!	22.2	250!	17.6	-0.7	-1.0	-1.0	-1291.8	-245.7					
228	-26.8	238!	-0.7	-24.0!	0.4	-0.7	-22.2	242!	22.2	252!	1.7	-0.7	-1.0	-1.0	-163.1	-40.8					
230	-18.1	240!	-0.7	-24.4!	0.2	-0.7	-22.2	244!	22.2	254!	1.7	-0.7	-1.0	-1.0	-109.0	-19.4					
232	0.9	242!	-0.7	-24.6!	6.3	-0.7	-22.2	246!	22.2	256!	1.7	-0.7	-1.0	-1.0	-109.0	-613.6					
234	-0.7	244!	-0.7	-24.8!	8.9	-0.7	-22.2	248!	22.2	258!	1.7	-0.7	-1.0	-1.0	-109.0	-863.7					
236	2.5	246!	-0.7	-250!	17.6	-0.7	-22.2	250!	22.2	260!	1.7	-0.7	-1.0	-1.0	-109.0	-1709.2					

Figure C-82. Panel FAA 1, Test 2 Raw Strain Gage Data

Pressure = 8.6 psi, Test Cycle = 3102, Crack Length = 36.91 Inches, Frame Cut

SWCCN: STLAB000359

Page 1

GAGE STRESSES (KSI)											
SCAN NUMBER:	40	GAGE ID	FA	FC	TAC	ANGLE	PRINCIPAL STRESSES	B/B	Avg.	Axis Stresses	Avg. Prin. Stresses
							FMAX	FMIN	GAGE	FCAvg	TACAvg
202	33.8	2.4	-2.9	-5.2	34.1	2.1	16.0	203	31.0	2.9	-4.0
203	28.1	3.4	-5.2	-11.2	29.1	2.4	13.4	202	31.0	2.9	-4.0
204	47.6	10.7	-2.3	-3.6	47.8	10.6	18.6	205	36.0	7.5	-4.3
205	24.3	4.2	-6.3	-16.0	26.1	2.4	11.8	204	36.0	7.5	-4.3
208	35.1	33.8	3.8	40.0	38.3	30.6	3.8	209	32.9	31.8	1.8
209	30.7	29.8	-0.2	-9.1	30.7	29.8	0.5	208	32.9	31.8	1.8
210	34.9	3.2	5.8	9.9	35.9	2.2	16.9	211	30.0	2.0	6.8
211	25.2	0.9	7.9	16.4	27.5	-1.5	14.5	210	30.0	2.0	6.8
212	31.5	2.2	6.9	12.5	33.0	0.7	16.2	213	25.5	1.6	6.7
213	19.4	1.1	6.5	17.6	21.5	-1.0	11.2	212	25.5	1.6	6.7
214	-6.0	-0.3	-3.2	-66.0	1.1	-7.4	4.3	215	1.8	7.5	-4.9
215	9.6	15.3	-6.7	-56.6	19.6	5.3	7.2	214	1.8	7.5	-4.9
216	3.8	1.4	41.3	5.1	2.2	1.4	217	0.3	3.3	-1.6	-66.4
217	-3.2	3.1	-4.6	-62.1	5.5	-5.6	216	0.3	3.3	-1.6	-66.4
220	-39.6	-3.1	-4.6	-62.1	5.5	-5.6	216	0.3	3.3	-1.6	-66.4
221	-30.8	-3.1	-4.6	-62.1	5.5	-5.6	216	0.3	3.3	-1.6	-66.4
222	-12.4	-1.1	-0.6	-12.4	1.1	-0.6	1.1	215	1.8	7.5	-4.9
224	-15.1	-1.1	-0.6	-15.1	1.1	-0.6	1.1	214	1.8	7.5	-4.9
226	2.6	2.6	2.6	2.6	2.6	2.6	2.6	213	1.8	7.5	-4.9
228	-30.6	-30.6	-30.6	-30.6	-30.6	-30.6	-30.6	212	1.8	7.5	-4.9
230	-20.9	-20.9	-20.9	-20.9	-20.9	-20.9	-20.9	211	1.8	7.5	-4.9
232	0.8	0.8	0.8	0.8	0.8	0.8	0.8	210	1.8	7.5	-4.9
234	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	-0.6	209	1.8	7.5	-4.9
236	2.6	2.6	2.6	2.6	2.6	2.6	2.6	208	1.8	7.5	-4.9
238	25.1	25.1	25.1	25.1	25.1	25.1	25.1	207	1.8	7.5	-4.9
240	1.6	1.6	1.6	1.6	1.6	1.6	1.6	206	1.8	7.5	-4.9
242	0.7	0.7	0.7	0.7	0.7	0.7	0.7	205	1.8	7.5	-4.9
244	0.3	0.3	0.3	0.3	0.3	0.3	0.3	204	1.8	7.5	-4.9
246	6.6	6.6	6.6	6.6	6.6	6.6	6.6	203	1.8	7.5	-4.9
248	9.5	9.5	9.5	9.5	9.5	9.5	9.5	202	1.8	7.5	-4.9
250	20.6	20.6	20.6	20.6	20.6	20.6	20.6	201	1.8	7.5	-4.9

Figure C-83. Panel FAA 1, Test 2 Raw Strain Gage Data

Pressure = 9.4 psi, Test Cycle = 3102, Crack Length = 36.91 Inches, Frame Cut

SHCCN: STLAB000359

11h19

Page 1

GAGE STRESSES (KSI)

DCCN: 5DSTZM009108

MATERIAL CONSTANTS

CRACK LENGTH: Saw cut or max crack length and location(inch)
 MATERIAL T-MOD S-MOD C-MOD POIS T-YP C-YP
 2024 10.5 4.0 10.7 0.33 4857 3925
 7075 10.3 3.9 10.5 0.33 7087 6857

TEST NUMBER: TEST 1

TEST DESCRIPTION: CYCLIC 0 psi - 8.6 psi,

PANEL CONDITION: Initial cyclic data following step survey Panel Intact

NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES,

NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.

If strains reach yield, stress will be reported as XXXXX.

* Stressess FA and FAavg do not consider Poissons Effects and are not true stresses.
 * FAavg does not consider Poissons Effects and is not a true stress.

SCAN NUMBER: 19

GAGE AXIS STRESSES

ID FA FC TAC

ANGLE

FMAX

FMIN

TMAX

GAGE

B/B

Avg.

FAavg

Fcavg

Tacavg

ANgA

PRIN. STRESSES

FMAXA

FMINA

AVG.

PRIN. STRESSES

FAavg

FCavg

Tacavg

ANgA

AXIS STRAINS($\times 10^{-6}$)

SA

SB

SC

**Figure C-84. Panel FAA 2, Test 1 Raw Strain Gage Data
 Pressure = 0 psi, Intact Structure**

SWCCN: STLAB0009110

MATERIAL CONSTANTS

CRACK LENGTH: Saw cut was not measured by Q.C.

MATERIAL T-MOD S-MOD C-MOD POIS C-YP

2024 10.5 4.0 10.7 0.33 4857

7075 10.3 3.9 10.5 0.33 7087

3925 6857

TEST NUMBER: TEST 1

TEST DESCRIPTION: STATIC, CYCLE 0-1, PRESS 0-8.6 in 1 PSI increments.

PANEL CONDITION: Survey following sawcut, No QC PU *

NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES,

NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.

If strains reach yield, stress will be reported as xxxx.

! Stressess FA and FAavg do not consider Poissons Effects and are not true stresses.

! FAavg does not consider Poissons Effects and is not a true stress.

SCAN NUMBER: 11	GAGE ID	AXIS STRESSES			PRINCIPAL STRESSES			B/B GAGE			AXIS STRESSES			AVG. GAGE			PRIN. STRESSES			AXIS STRAINS(x10-6)		
		FA	FC	TAC	ANGLE	FMAX	FMIN	TMAX	FCavg	Favg	Tavg	ANGA	FMAXa	FMINa	ANGA	FMAXa	FMINa	SA	SB	SC		
302	0.9	-0.0	0.1	7.0	0.9	-0.1	0.5	303	0.5	0.1	0.1	16.4	0.5	0.1	83.1	40.2	-31.0					
303	0.1	0.3	0.1	56.7	0.4	0.1	0.2	302	0.5	0.1	0.1	16.4	0.5	0.1	5.5	30.7	-20.8					
304	1.9	0.5	-0.0	-1.4	1.9	0.5	0.7	305	0.6	0.3	0.0	7.8	0.6	0.3	168.2	73.5	-12.4					
305	-0.7	0.2	0.1	82.1	0.2	-0.7	0.4	304	0.6	0.3	0.0	7.8	0.6	0.3	-68.2	-0.5	37.4					
308	0.2	0.2	0.2	10.3	0.4	0.0	0.2	309	0.3	0.3	0.3	39.5	0.4	0.2	16.1	34.5	8.9					
309	0.4	0.4	0.1	36.5	0.5	0.4	0.1	308	0.3	0.3	0.1	39.5	0.4	0.2	28.6	33.0	24.8					
310	0.9	0.1	-0.1	-6.4	0.9	0.1	0.4	311	0.7	0.2	-0.0	-3.1	0.7	0.2	85.8	21.5	-19.1					
311	0.4	0.3	0.0	20.8	0.4	0.3	0.1	310	0.7	0.2	-0.0	-3.1	0.7	0.2	27.0	26.3	14.6					
312	1.2	0.2	-0.0	-1.1	1.2	0.2	0.5	313	0.5	0.2	0.0	6.5	0.5	0.2	110.8	41.0	-23.5					
313	-0.2	0.2	0.1	74.2	0.2	-0.2	0.2	312	0.5	0.2	0.0	6.5	0.5	0.2	-21.3	13.3	21.6					
314	1.6	0.5	0.0	1.4	1.6	0.5	0.6	315	0.5	0.5	0.2	8.0	0.5	0.2	138.2	69.7	-5.9					
315	-0.7	-0.0	0.0	86.1	-0.0	-0.7	0.3	314	0.5	0.2	0.0	8.0	0.5	0.2	-63.6	-17.8	17.0					
316	1.1	0.1	0.1	6.7	1.1	0.1	0.5	317	0.5	0.3	-0.0	-0.7	0.5	0.3	95.9	52.1	-19.0					
317	-0.1	0.4	-0.1	-75.6	0.4	-0.1	0.2	316	0.5	0.3	-0.0	-0.7	0.5	0.3	-16.6	-4.9	6.5					
320!	-1.2	-0.2	-0.2	-2.2	-0.2	-0.2	-0.2	321!	-0.2	-0.2	-0.0	-0.7	-0.7	-0.7	-112.1	-15.6						
322!	-0.2	-0.2	-0.2	-2.2	-0.2	-0.2	-0.2	323!	-0.2	-0.2	-0.0	-0.7	-0.7	-0.7	-214.2							
326!	1.3	1.3	1.3	1.3	1.3	1.3	1.3	327!	0.2	0.2	0.2	0.2	0.2	0.2	122.7							
328!	0.2	0.2	0.2	0.2	0.2	0.2	0.2	329!	0.2	0.2	0.2	0.2	0.2	0.2	18.5							
330!	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	331!	0.0	0.0	0.0	0.0	0.0	0.0	-26.2							
332!	0.0	0.0	0.0	0.0	0.0	0.0	0.0	333!	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	2.1							
334!	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	335!	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	-15.6							
336!	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	-0.3	337!	0.1	0.1	0.1	0.1	0.1	0.1	-24.1							
338!	0.1	0.1	0.1	0.1	0.1	0.1	0.1	339!	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	5.9							
340!	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	341!	0.6	0.6	0.6	0.6	0.6	0.6	-47.4							
342!	0.6	0.6	0.6	0.6	0.6	0.6	0.6	343!	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	56.7							
344!	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	345!	0.5	0.5	0.5	0.5	0.5	0.5	-33.7							
346!	0.5	0.5	0.5	0.5	0.5	0.5	0.5	347!	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	44.1							
348!	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	-0.4	349!	0.1	0.1	0.1	0.1	0.1	0.1	-41.5							
350!	0.1	0.1	0.1	0.1	0.1	0.1	0.1							6.5								

**Figure C-86. Panel FAA 2, Test 1 Raw Strain Gage Data
Pressure = 0 psi, Test Cycle = 1, Sawcut = 4.90 Inches**

DCCN: 5DSTZW009110

MATERIAL CONSTANTS

CRACK LENGTH: Saw cut was not measured by Q.C.

MATERIAL: T-MOD S-MOD C-MOD

POTS T-YP C-YP

2024 10.5 4.0 10.7 0.33 4857

7075 10.3 3.9 10.5 0.33 7087

6857

TEST NUMBER: TEST 1
TEST DESCRIPTION: STATIC, CYCLE 0-1, PRESS 0-8.6 in 1 PSI increments.
PANEL CONDITION: Survey following sawcut, No QC PU #

NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES.

NOTE: Angle is measured from leg A toward leg B, leg A is parallel to hoop; leg C is clockwise from leg A.

If strains reach yield, stress will be reported as xxxx.

Stresses FA and FAavg do not consider Poisson's Effects and are not true stresses.

FAavg does not consider Poisson's Effects and is not a true stress.

SCAN NUMBER: 10

GAGE AXIS STRESSES

PRINCIPAL STRESSES

ID FA FC TAC ANGLE FMAX FMIN

TMAX GAGE FAavg FCAvg

ANGA FMAXA

FMINA

AVG. PRIN. STRESSES

B/B AVG. AXIS STRESSES

SA SB SC

GAGE STRESSES (KSI)

DCCN: 5DSY2W009136 MATERIAL CONSTANTS/MATERIAL CONSTANTS

CRACK LENGTH: Saw cut or max crack length and location(inch)

MATERIAL T-MOD S-MOD C-MOD POIS T-YP C-YP

2024 10.5 4.0 10.7 0.33 4857 3925

7075 10.3 3.9 10.5 0.33 7087 6857

TEST NUMBER: TEST 1

TEST DESCRIPTION: CYCLIC 0 psi ~ 8.6 psi.

PANEL CONDITION: Total Crack 11.84 in.

NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES,

NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.

If strains reach yield, stress will be reported as xxxx.

! Stressess FA and FAavg do not consider Poissons Effects and are not true stresses.

FAavg does not consider Poissons Effects and is not a true stress.

SCAN NUMBER: 32	GAGE ID	AXIS STRESSES			PRINCIPAL STRESSES			BY/B GAGE			AVG. AXIS STRESSES			AVG. PRIN. STRESSES			AXIS STRAINS(x10-6)		
		FA	FC	TAC	ANGLE	FMAX	FMIN	TMAX	GAGE	FAavg	FCavg	TAcavg	ANGA	FMAXA	FMINA	SA	SB	SC	
302	15.9	1.3	0.6	2.2	15.9	1.3	7.3	303	14.0	3.0	0.6	2.8	14.0	3.0	1470.9	618.9	-374.0		
303	12.0	4.6	0.5	4.1	12.1	4.6	3.7	302	14.0	3.0	0.6	2.8	14.0	3.0	1000.5	600.4	64.1		
304	19.7	3.9	0.5	2.0	19.7	3.9	7.9	305	14.0	3.8	0.7	3.6	14.1	3.7	1756.1	823.0	-247.2		
305	8.3	3.7	0.8	8.4	8.4	3.5	2.4	304	14.0	3.8	0.7	3.6	14.1	3.7	676.3	476.1	87.0		
308	11.4	7.2	1.9	20.6	12.1	6.5	2.8	309	11.7	6.5	1.0	10.2	11.9	6.4	862.3	829.8	130.1		
309	12.0	5.8	0.1	0.7	12.0	5.8	3.1	308	11.7	6.5	1.0	10.2	11.9	6.4	956.0	577.5	180.3		
310	12.3	1.5	-0.1	-0.6	12.3	1.5	5.4	311	13.4	3.2	0.0	0.1	13.4	3.2	1123.8	427.8	-240.2		
311	14.6	4.9	0.2	1.0	14.6	4.9	4.8	310	13.4	3.2	0.0	0.1	13.4	3.2	641.8	641.8	8.3		
312	14.4	1.4	-0.2	-0.9	14.4	1.4	6.5	313	13.6	3.1	-0.1	-0.3	13.6	3.1	1326.9	480.0	-318.0		
313	12.7	4.8	0.1	0.6	12.7	4.8	4.0	312	13.6	3.1	-0.1	-0.3	13.6	3.1	1059.4	569.9	58.7		
314	19.7	5.8	-0.6	-2.5	19.7	5.7	7.0	315	19.0	5.2	-0.5	-2.0	19.0	5.2	1691.9	733.4	-70.2		
315	18.3	4.6	-0.4	-1.5	18.3	4.6	6.9	314	19.0	5.2	-0.5	-2.0	19.0	5.2	1598.8	684.1	-137.8		
316	22.4	10.2	0.9	4.4	22.5	10.1	6.2	317	20.2	9.4	0.9	4.8	20.3	9.3	1814.1	263.3			
317	18.0	8.6	0.9	5.3	18.1	8.5	4.8	316	20.2	9.4	0.9	4.8	20.3	9.3	1444.5	959.2	251.6		
320	-7.9	1.6	-5.5	-5.5	1.6	-5.5	-5.5	322	1.6	-5.5	-5.5	-5.5	-5.5	-5.5	-754.0	156.4	-525.1		
326	2.5	2.5	1.1	1.1	2.5	2.5	1.1	328	1.1	2.5	2.5	2.5	2.5	2.5	246.9	111.3			
328	1.1	-3.1	-3.1	-3.1	1.1	-3.1	-3.1	330	-3.1	1.1	-3.1	-3.1	-3.1	-3.1	-298.4	111.3			
330	-3.1	2.8	2.8	2.8	-3.1	2.8	2.8	332	2.8	-3.1	2.8	2.8	2.8	2.8	268.7	268.7			
332	2.8	-0.8	-0.8	-0.8	2.8	-0.8	-0.8	334	-0.8	-0.8	-0.8	-0.8	-0.8	-0.8	-71.6	-71.6			
334	-0.8	5.8	5.8	5.8	-0.8	5.8	5.8	336	5.8	5.8	5.8	5.8	5.8	5.8	559.4	559.4			
336	5.8	10.1	10.1	10.1	5.8	10.1	10.1	338	10.1	10.1	10.1	10.1	10.1	10.1	979.6	979.6			
338	10.1	4.4	13.7	13.7	10.1	4.4	13.7	340	4.4	13.7	13.7	13.7	13.7	13.7	423.5	423.5			
340	4.4	4.8	4.8	4.8	4.4	4.8	4.8	342	13.7	4.8	4.8	4.8	4.8	4.8	1325.4	1325.4			
342	13.7	13.7	13.7	13.7	13.7	13.7	13.7	344	4.8	13.7	13.7	13.7	13.7	13.7	469.0	469.0			
344	4.8	13.7	13.7	13.7	13.7	13.7	13.7	346	13.7	13.7	13.7	13.7	13.7	13.7	1329.3	1329.3			
346	13.7	5.7	5.7	5.7	5.7	5.7	5.7	348	5.7	5.7	5.7	5.7	5.7	5.7	548.6	548.6			
348	5.7	9.9	9.9	9.9	9.9	9.9	9.9	350	9.9	9.9	9.9	9.9	9.9	9.9	965.4	965.4			

Figure C-89. Panel FAA 2, Test 1 Raw Strain Gage Data
Pressure = 8.5 psi, Test Cycle = 858, Crack Length = 11.84 Inches

DCCN: 5DST2W009120
 MATERIAL CONSTANTS
 CRACK LENGTH: Saw cut or max crack length and location(inch)
 MATERIAL T-MOD S-MOD C-MOD POIS T-YP C-YP
 2024 10.5 4.0 10.7 0.33 4857 3925
 7075 10.3 3.9 10.5 0.33 7087 6857

TEST NUMBER: TEST 1
 TEST DESCRIPTION: STEP DATA 0 psi - 8.0 psi
 PANEL CONDITION: Total Crack 36.62 in QC Pick Up #E767025

NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES,
 NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.
 If strains reach yield, stress will be reported as xxxxx.
 ! Stressess FA and FAavg do not consider Poissons Effects and are not true stresses.
 ! FAavg does not consider Poissons Effects and is not a true stress.

SCAN NUMBER: 9	GAGE ID			AXIS STRESSES			PRINCIPAL STRESSES			B/B GAGE			AVG. AXIS STRESSES			AVG. PRIN. STRESSES			AXIS STRAINS(x10-6)		
	FA	FC	TAC	ANGLE	FMAX	FMIN	TMAX	GAGE	Favg	FCavg	Tavg	ANGa	FMAXa	FMINa	ANGa	SA	SC	SB			
302	30.5	1.4	-0.6	-1.2	30.5	1.4	14.6	103	25.8	2.4	-1.8	-4.4	25.9	2.3	2864.1	940.4	-828.0				
303	21.0	3.4	-3.0	-9.4	21.5	2.9	9.3	302	25.8	2.4	-1.8	-4.4	25.9	2.3	1894.6	402.0	-333.0				
304	40.9	9.3	0.9	1.7	40.9	9.3	15.8	305	30.0	7.0	-1.2	-3.0	30.1	6.9	3601.3	1720.0	-395.0				
305	19.1	4.6	-3.4	-12.4	19.8	3.9	8.0	304	30.0	7.0	-1.2	-3.0	30.1	6.9	1674.6	1340.0	-161.1				
308	23.2	28.0	3.5	62.4	29.8	21.4	4.2	309	22.1	25.2	2.2	62.9	26.3	21.0	1330.1	2067.1	1934.0				
309	21.0	22.5	0.9	65.0	22.9	20.6	1.1	308	22.1	25.2	2.2	62.9	26.3	21.0	1297.1	1499.9	1482.1				
310	27.2	1.9	4.5	9.6	27.9	1.1	13.4	311	24.5	1.0	4.8	10.9	25.4	0.1	2530.4	1487.2	-677.6				
311	21.9	0.2	5.0	12.3	22.9	-0.9	11.9	310	24.5	1.0	4.8	10.9	25.4	0.1	2074.6	1332.0	-666.9				
312	25.4	2.0	3.6	8.4	26.0	1.5	12.3	313	20.8	1.0	4.3	11.6	21.7	0.1	2361.4	1323.7	-611.4				
313	16.1	-0.0	5.0	15.7	17.5	-1.5	9.5	312	20.8	1.0	4.3	11.6	21.7	0.1	1536.4	1139.0	-510.4				
314	-11.2	0.5	-1.8	-81.6	0.8	-11.5	6.2	315	1.8	10.3	-3.5	-70.2	11.6	0.6	-1067.0	-556.3	398.1				
315	14.9	20.1	-5.2	-58.4	23.3	11.7	5.8	314	1.8	10.3	-3.5	-70.2	11.6	0.6	-786.6	460.6	1446.6				
316	2.9	9.1	0.3	87.2	9.1	2.8	3.2	317	0.4	10.1	-1.4	-82.1	10.3	0.2	-15.3	420.5	779.4				
317	-2.0	11.1	-3.1	-77.5	11.8	-2.6	7.2	316	0.4	10.1	-1.4	-82.1	10.3	0.2	-533.0	-91.5	1121.2				
322	-11.9	3.24	-14.1	3.26	2.2	3.28	xxxxxx	320	-181.9	-12.8	-6.8	-1.9	4.2	1.1	-1816.4	-1134.5	-1342.5				
330	-12.8	3.42	31.8	3.44	0.4	334	336	17.1	17.1	17.1	17.1	17.1	17.1	17.1	-1221.0	-648.3	-177.1				
332	-6.8	346	31.8	348	6.8	348	350	17.1	17.1	17.1	17.1	17.1	17.1	17.1	-53.6	3085.2	34.6				
334	-1.9	346	31.8	348	6.8	348	350	17.1	17.1	17.1	17.1	17.1	17.1	17.1	660.6	3086.1	1461.5				

Figure C-91. Panel FAA 2, Test 1 Raw Strain Gage Data

Pressure = 8.0 Psi, Test Cycle = 1280, Crack Length = 36.62 Inches, Frame Intact

GAGE STRESSES (KSI)

DCCN: SDST2W009121MATERIAL CONSTANTS

CRACK LENGTH: Saw cut or max crack length and location(inch)
 MATERIAL: T-MOD G-MOD I-MOD T YP C-YP
 2024 10.5 4.0 10.7 0.13 46.7 30.3
 7075 10.3 3.9 10.5 0.33 70.87 60.57

PANEL NUMBER: 114X6001-1B
 CYCLE DATE: 06-26-95
 CYCLE PRESSURE: 7.5

TEST NUMBER: TEST 1
 TEST DESCRIPTION: DESTRUCT 0 psi - 7.5 psi.
 PANEL CONDITION: Total Crack 39.50 in. QC Pick Up #E762025
 NOTE: ALL STRESS IN KSI, CRACK LENGTH IN INCHES.

NOTE: Angle is measured from leg A toward leg B; leg A is parallel to hoop; leg C is clockwise from leg A.
 If strains reach yield stress will be reported as xxxxx.

* Stresses FA and FAvsg do not consider Poissons Effects and are not true stresses.
 SCAN NUMBER: 32

GAGE ID	FA	TAC	ANGLE	FMAX	FMIN	TMAX	GAGE	B/B	Avg. Axis Stresses	FAvsg	TAcavg	AngA	Avg. PRIN. STRESSES	FMAXA	FMINA	Axis Strains(x10-6)
302	29.8	1.9	-1.6	-3.1	29.9	1.8	14.0	30.3	24.8	2.8	-3.2	-7.9	25.3	2.4	2778.4	817.3
303	19.9	3.7	-4.8	-15.2	21.2	2.4	9.4	30.2	24.8	2.8	-3.2	-7.9	25.3	2.4	1777.3	154.4
304	40.0	12.2	-0.1	-0.3	40.0	12.2	13.9	30.5	27.5	9.0	-3.1	-9.1	28.0	8.5	3429.1	1646.3
305	14.9	5.9	-6.0	-26.4	17.8	3.0	7.4	30.4	27.5	9.0	-3.1	-9.1	28.0	8.5	1234.4	-99.4
308	39.9	34.1	0.7	6.4	40.0	34.1	3.0	30.9	37.7	30.1	-0.5	-3.4	37.7	30.1	2730.0	93.2
309	35.5	26.1	-1.6	-9.2	35.7	25.8	4.9	30.8	37.7	30.1	-0.5	-3.4	37.7	30.1	2558.5	1995.6
310	27.8	2.6	5.1	10.9	28.8	1.6	13.6	31.1	23.1	0.9	6.7	15.4	24.9	-0.9	1766.5	1369.7
311	18.4	-0.7	8.3	20.3	21.4	-3.8	12.6	31.0	23.1	0.9	6.7	15.4	24.9	-0.9	2567.4	1610.3
312	25.4	1.4	5.0	11.2	26.4	0.5	13.0	31.3	20.0	0.7	5.8	15.3	21.5	-0.9	1769.4	-628.8
313	14.6	6.5	20.7	-2.4	17.0	-2.4	9.7	31.2	20.0	0.7	5.8	15.3	21.5	-0.8	2377.7	-660.3
314	-10.5	0.4	-1.6	-81.6	0.6	-10.7	5.7	31.5	1.8	10.0	-3.3	-70.7	11.1	0.7	1387.6	-454.7
315	14.1	19.6	-4.9	-59.9	22.5	11.3	5.6	31.4	1.8	10.0	-3.3	-70.7	11.1	0.7	-99.2	361.4
316	3.3	8.1	0.3	87.0	8.1	3.3	2.4	31.7	0.5	9.2	-1.2	-82.3	9.4	0.3	724.6	460.6
317	-2.4	10.4	-2.7	-78.6	10.9	-2.9	6.9	31.6	0.5	9.2	-1.2	-82.3	9.4	0.3	-545.4	1428.1
320	-34.5	-25.9	-13.4	-9.1	-25.9	-13.4	-1.6	-2.7	-2.7	-0.5	-0.5	-0.5	-0.5	-0.5	-3286.2	669.0
322	-25.9	-13.4	-9.1	-9.1	-25.9	-13.4	-1.6	-2.7	-2.7	-0.5	-0.5	-0.5	-0.5	-0.5	-2463.1	1059.6
324	-13.4	-9.1	-9.1	-9.1	-13.4	-9.1	-1.6	-2.7	-2.7	-0.5	-0.5	-0.5	-0.5	-0.5	-1280.2	1059.6
326	-9.1	-9.1	-9.1	-9.1	-9.1	-9.1	-1.6	-2.7	-2.7	-0.5	-0.5	-0.5	-0.5	-0.5	-870.9	1059.6
328	xxxxx	xxxxx	xxxxx	xxxxx	xxxxx	xxxxx	xxxxx	-220744.2								
330	-18.9	-8.7	-8.7	-8.7	-18.9	-8.7	-8.7	-8.7	-8.7	-0.7	-0.7	-0.7	-0.7	-0.7	-1797.0	-1797.0
332	-8.7	-2.6	-2.6	-2.6	-8.7	-2.6	-2.6	-2.6	-2.6	-0.7	-0.7	-0.7	-0.7	-0.7	-821.8	-821.8
334	-2.6	-3.1	-3.1	-3.1	-2.6	-3.1	-3.1	-3.1	-3.1	-0.7	-0.7	-0.7	-0.7	-0.7	-251.7	-251.7
336	-3.1	-3.1	-3.1	-3.1	-3.1	-3.1	-3.1	-3.1	-3.1	-0.7	-0.7	-0.7	-0.7	-0.7	-298.4	-298.4
338	20.7	20.7	20.7	20.7	20.7	20.7	20.7	20.7	20.7	10.0	10.0	10.0	10.0	10.0	200.0	200.0
340	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-0.7	-66.0	-66.0
342	2.6	1.8	1.8	1.8	2.6	1.8	1.8	1.8	1.8	0.5	0.5	0.5	0.5	0.5	555.7	555.7
344	1.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	177.5

Figure C-92. Panel FAA 2, Test 1 Raw Strain Gage Data
 Pressure = 0 psi, Test Cycle = 1281, Crack Length = 38.50 Inches, Frame Cut

Appendix D Stress Intensity Factor Calculation

Stress intensity factors are calculated from the finite element analysis results by the following method. The mesh pictured below is used at the crack tips. Elements E1 through E8 are degenerated eight-noded quadrilateral elements (ABAQUS element S8R5) with quarter-point nodes. Nodes N1 through N17 are at the crack tip and are rigidly connected. The quarter-point nodes (N18 through N26) introduce a square-root singularity into the shape functions of the elements.

Figure D-1. Crack Tip Shell Elements

The stress intensity factors are calculated from the nodal displacements using the following equations:

$$K_I = \left[4(u_{\theta}^{18} - u_{\theta}^{26}) - (u_{\theta}^{27} - u_{\theta}^{43}) \right] \frac{E}{8} \sqrt{\frac{2\pi}{l}}$$

$$K_{II} = \left[4(u_z^{18} - u_z^{26}) - (u_z^{27} - u_z^{43}) \right] \frac{E}{8} \sqrt{\frac{2\pi}{l}}$$

$$k_i \approx 0$$

$$k_{ii} = \left[32(u_r^{18} - u_r^{26}) - (u_r^{27} - u_r^{43}) \right] \left(\frac{1+v}{3+v} \right) \frac{E}{8} \frac{t}{(2l)^{3/2}}$$

where u_j^n is the j-displacement at node n, t is the shell thickness, v is Poissons ratio, and E is the elastic modulus. K_I , K_{II} , k_i , and k_{ii} are the shell stress intensity factors; K_I and K_{II} are the membrane

opening and shear mode stress intensity factors, and k_i and k_{ii} are the stress intensity factors for bending about the z and θ axes, respectively. The quantity k_i is not calculated as it is proportional to rotations that are fixed by the analysis to obtain a convergent solution. However, bending about the z-axis should not significantly contribute to the energy available for crack growth. The tearing mode stress intensity factor, k_{ii} , however, is significant.

The strain energy release rate, G is calculated from the following equation:

$$G = \frac{1}{E} \left[K_I^2 + K_{II}^2 + \frac{\pi}{3} \left(\frac{1+v}{3+v} \right) (K_I^2 + K_{II}^2) \right]$$

Finally, a total stress intensity factor is calculated as:

$$K_{TOT} = \sqrt{EG}$$

K_{TOT} is used to calculate crack growth using the crack growth rate equation determined from the center-cracked panel tests.

Table D-1. Stress Intensity Factors Determined by Finite Element Analysis

Crack Length, l (inches)	Frame Condition	Pressure Load, p (psi)	Stress Intensity Factors			
			K_I (ksi $\sqrt{\text{in}}$)	K_{II} (ksi $\sqrt{\text{in}}$)	k_{II} (ksi $\sqrt{\text{in}}$)	K_{TOT} (ksi $\sqrt{\text{in}}$)
5.0	Intact	8.6	39.6	3.4	9.2	40.2
			75.4	18.5	32.6	80.5
			93.8	25.9	38.0	100.4
			122.5	37.9	47.8	131.9
			130.3	38.7	55.7	140.6
			106.8	40.7	47.3	118.3
38.0	Broken	7.2	112.0	39.9	41.0	121.9
		8.6	133.7	45.1	44.3	144.0
		10.0	155.5	50.0	47.6	166.2
40.0		7.2	102.8	35.1	34.5	111.0
		8.6	126.0	40.5	37.8	134.6
		10.0	149.6	45.6	41.1	158.6
42.0		7.2	89.6	30.4	27.8	96.3
		8.6	113.1	36.0	31.0	120.4
		10.0	137.2	41.2	34.3	145.0
45.2		7.2	76.7	26.4	13.0	81.6
		8.6	99.6	32.1	15.7	105.2
		10.0	123.3	37.5	17.6	129.4
50.0		7.2	81.2	24.3	5.1	84.8
		8.6	105.8	29.7	5.7	109.9
		10.0	131.5	35.1	7.0	136.2

Appendix E Additional Strain Gage Stress Comparison Plots

List of Illustrations

	Page
Figure E-1. Test / Analysis Strain Gage Correlation for Test Panels Containing a 5-inch Sawcut	E-5
Figure E-2. Test / Analysis Strain Gage Correlation for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack	E-6
Figure E-3. Test / Analysis Strain Gage Correlation for FAA 1, Test 2. The Finite Element Model Contains a 38-Inch Crack and the Test Panel Contains a 36.71-Inch Crack	E-7
Figure E-4. Test / Analysis Strain Gage Correlation for FAA 1, Test 2 (No MSD) With a Severed Central Frame. The Finite Element Model Contains a 40-Inch Crack and the Test Panel Contains an Extending 36.71-Inch Crack	E-8
Figure E-5. Skin Stress Correlation at Station 100 for a Test Panel Containing a 5-Inch Sawcut	E-9
Figure E-6. Skin Stress Correlation at Station 110 for a Test Panel Containing a 5-Inch Sawcut	E-10
Figure E-7. Skin Stress Correlation at Stringer S-1 + 2.3 Inches for a Test Panel Containing a 5-Inch Sawcut	E-11
Figure E-8. Skin Stress Correlation at Stringer S-1 + 4.6 Inches for a Test Panel Containing a 5-Inch Sawcut	E-12
Figure E-9. Frame Stress Correlations for a Test Panel Containing a 5-Inch Sawcut	E-13
Figure E-10. Stringer Stress Correlation at Stringer S-1 for a Test Panel Containing a 5-Inch Sawcut	E-14
Figure E-11. Skin Stress Correlation at Station 100 for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack	E-15
Figure E-12. Skin Stress Correlation at Station 110 for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack	E-16

List of Illustrations

	Page
Figure E-13. Skin Stress Correlation at Stringer S-1 + 2.3 Inches for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack	E-17
Figure E-14. Skin Stress Correlation at Stringer S-1 + 4.6 Inches for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack	E-18
Figure E-15. Frame Stress Correlations for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack	E-19
Figure E-16. Stringer Stress Correlation at Stringer S-1 for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack	E-20
Figure E-17. Skin Stress Correlation at Station 100 for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 38-Inch Crack and the Test Panel Contains a 36.71-Inch Crack	E-21
Figure E-18. Skin Stress Correlation at Station 110 for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 38-Inch Crack and the Test Panel Contains 36.71-Inch Crack	E-22
Figure E-19. Skin Stress Correlation at Stringer S-1 + 2.3 Inches for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 38-Inch Crack and the Test Panel Contains a 36.71-Inch Crack	E-23
Figure E-20. Skin Stress Correlation at Stringer S-1 + 4.6 Inches for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 38-Inch Crack and the Test Panel Contains a 36.71-Inch Crack	E-24
Figure E-21. Frame Stress Correlations for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 38-Inch Crack and the Test Panel Contains a 36.71-Inch Crack	E-25
Figure E-22. Stringer Stress Correlation at Stringer S-1 for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 38-Inch Crack and the Test Panel Contains a 36.71-Inch Crack	E-26
Figure E-23. Skin Stress Correlation at Station 100 for FAA 1, Test 2 (No MSD). Crack Length of 40 Inches With a Severed Central Frame	E-27
Figure E-24. Skin Stress Correlation at Station 110 for FAA 1, Test 2 (No MSD). Crack Length of 40 Inches With a Severed Central Frame	E-28

List of Illustrations

	Page
Figure E-25. Skin Stress Correlation at Stringer S-1 + 2.3 Inches for FAA 1, Test 2 (No MSD). Crack Length of 40 Inches With a Severed Central Frame	E-29
Figure E-26. Skin Stress Correlation at Stringer S-1 + 4.6 Inches for FAA 1, Test 2 (No MSD). Crack Length of 40 Inches With a Severed Central Frame	E-30
Figure E-27. Frame Stress Correlations for FAA 1, Test 2 (No MSD). Crack Length of 40 Inches With a Severed Central Frame	E-31
Figure E-28. Stringer Stress Correlation at Stringer S-1 for FAA 1, Test 2 at a Crack Length of 40 Inches With a Severed Central Frame	E-32

Appendix E Additional Strain Gage Stress Comparison Plots

This appendix contains additional comparison plots for the test panels containing a crack. Table E-1 lists the test files that were suitable for correlation purposes and the parameters for the corresponding finite element analysis.

Scatter plots for predicted strain gage stresses vs. measured strain gage stresses are shown in figures E-1 through E-4. Line plots comparing membrane stresses and bending stresses along a cut of test panel are shown in figures E-5 through E-28.

Table E-1. Test Files Used for Comparison With Finite Element Analysis

Crack Length, l (inch)	Frame Condition	Internal Pressure (psi)	Correlation Test File
Intact	Intact	8.6	FAA 1, Cycle 10 (Test 1, Intact) FAA 1, Cycle 1259 (Test 2, Intact) FAA 2, Cycle 9 (Test 1, Intact)
5.0			FAA 1, Cycle 21 (Test 1, l = 5.0 inches) FAA 1, Cycle 1796 (Test 2, l = 5.0 inches) FAA 2, Cycle 395 (Test 1, l = 4.9 inches)
30.0			FAA 1, Cycle 4286 (Test 2, l = 32.24 inches)
38.0	↓		FAA 1, Cycle 4351 (Test 2, l = 36.71 inches)
40.0	Broken	↓	FAA 1, Cycle 4355 (Test 2, l = 36.71 inches)

Figure E–1. Test / Analysis Strain Gage Correlation for Test Panels Containing a 5-inch Sawcut

Figure E–2. Test / Analysis Strain Gage Correlation for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack

**Figure E-3. Test / Analysis Strain Gage Correlation for FAA 1, Test 2.
The Finite Element Model Contains a 38-Inch Crack and the Test Panel
Contains a 36.71-Inch Crack**

Figure E-4. Test / Analysis Strain Gage Correlation for FAA 1, Test 2 (No MSD) With a Severed Central Frame. The Finite Element Model Contains a 40-Inch Crack and the Test Panel Contains an Extending 36.71-Inch Crack

Figure E-5. Skin Stress Correlation at Station 100 for a Test Panel Containing a 5-Inch Sawcut

- Analysis
- Test 1 (0.05-inch MSD)
- ◇- Test 2 (No MSD)
- △- Test 3 (Variable MSD)

Figure E-6. Skin Stress Correlation at Station 110 for a Test Panel Containing a 5-Inch Sawcut

- Analysis
- Test 1 (0.05-inch MSD)
- ◊ Test 2 (No MSD)
- △ Test 3 (Variable MSD)

Figure E-7. Skin Stress Correlation at Stringer S-1 + 2.3 Inches for a Test Panel Containing a 5-Inch Sawcut

Figure E-8. Skin Stress Correlation at Stringer S-1 + 4.6 Inches for a Test Panel Containing a 5-Inch Sawcut

Figure E-9. Frame Stress Correlations for a Test Panel Containing a 5-Inch Sawcut

- Analysis
- Test 1 (0.05-inch MSD)
- ◇- Test 2 (No MSD)
- △- Test 3 (Variable MSD)

Figure E–10. Stringer Stress Correlation at Stringer S–1 for a Test Panel Containing a 5-Inch Sawcut

Figure E-11. Skin Stress Correlation at Station 100 for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack

Figure E-12. Skin Stress Correlation at Station 110 for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack

—○— Analysis
□ Test 2 (No MSD)

Figure E-13. Skin Stress Correlation at Stringer S-1 + 2.3 Inches for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack

Figure E-14. Skin Stress Correlation at Stringer S-1 + 4.6 Inches for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack

Figure E-15. Frame Stress Correlations for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack

Figure E-16. Stringer Stress Correlation at Stringer S-1 for FAA 1, Test 2 (No MSD).
The Finite Element Model Contains a 30-Inch Crack and the Test Panel Contains a 32.24-Inch Crack

Figure E-17. Skin Stress Correlation at Station 100 for FAA 1, Test 2 (No MSD).
The Finite Element Model Contains a 38-Inch Crack and the Test Panel
Contains a 36.71-Inch Crack

Figure E-18. Skin Stress Correlation at Station 110 for FAA 1, Test 2 (No MSD).
The Finite Element Model Contains a 38-Inch Crack and the Test Panel
Contains 36.71-Inch Crack

—○— Analysis
□ Test 2 (No MSD)

Figure E-19. Skin Stress Correlation at Stringer S-1 + 2.3 Inches for FAA-1, Test 2 (No MSD). The Finite Element Model Contains a 38-Inch Crack and the Test Panel Contains a 36.71-Inch Crack

—○— Analysis
□ Test 2 (No MSD)

Figure E–20. Skin Stress Correlation at Stringer S-1 + 4.6 Inches for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 38-Inch Crack and the Test Panel Contains a 36.71-Inch Crack

Figure E-21. Frame Stress Correlations for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 38-Inch Crack and the Test Panel Contains a 36.71-Inch Crack

Figure E-22. Stringer Stress Correlation at Stringer S-1 for FAA 1, Test 2 (No MSD). The Finite Element Model Contains a 38-Inch Crack and the Test Panel Contains a 36.71-Inch Crack

—○— Analysis
 □ Test 2 (No MSD)

Figure E-23. Skin Stress Correlation at Station 100 for FAA 1, Test 2 (No MSD).
Crack Length of 40 Inches With a Severed Central Frame

**Figure E-24. Skin Stress Correlation at Station 110 for FAA 1, Test 2 (No MSD).
Crack Length of 40 Inches With a Severed Central Frame**

Figure E-25. Skin Stress Correlation at Stringer S-1 + 2.3 Inches for FAA 1, Test 2 (No MSD). Crack Length of 40 Inches With a Severed Central Frame

Figure E-26. Skin Stress Correlation at Stringer S-1 + 4.6 Inches for FAA 1, Test 2 (No MSD). Crack Length of 40 Inches With a Severed Central Frame

Figure E-27. Frame Stress Correlations for FAA 1, Test 2 (No MSD).
Crack Length of 40 Inches With a Severed Central Frame

Figure E-28. Stringer Stress Correlation at Stringer S-1 for FAA 1, Test 2 at a Crack Length of 40 Inches With a Severed Central Frame