On Lévy and Markov additive friendships

Stochastics Seminar Aarhus

Lukas Trottner Aarhus University 01.12.2021 (joint work with Leif Döring [Mannheim] and Alex Watson [UCL])

Positive and negative definite functions

 \bullet a function $\phi\colon\mathbb{R}\to\mathbb{C}$ is called positive definite, if

$$\forall n \in \mathbb{N}, (x_i)_{i=1,\dots,n} \in \mathbb{R}^n, (c_i)_{i=1,\dots,n} \in \mathbb{C}^n : \sum_{i,j=1}^n \varphi(x_i - x_j) c_i \overline{c_j} \geqslant 0$$

- \bullet a function $\psi \colon \mathbb{R} \to \mathbb{C}$ is called negative definite if
 - 1. $\psi(0) \geqslant 0$
 - 2. $\psi(-\cdot) = \overline{\psi}$
 - 3.

$$\forall n \in \mathbb{N}, (x_i)_{i=1,\dots,n} \in \mathbb{R}^n, (c_i)_{i=1,\dots,n} \in \mathbb{C}^n \text{ s.t. } \sum_{i=1}^n c_i = 0: \sum_{i,j=1}^n \psi(x_i - x_j) c_i \overline{c_j} \leqslant 0$$

Relation to probability theory

 $\begin{array}{ll} \psi \text{ is cont. negative definite} & \overset{\text{Schoenberg}}{\Longleftrightarrow} \psi(0) \geqslant 0 \text{ and } x \mapsto \mathrm{e}^{-\psi(x)} \text{ is cont. positive definite} \\ & \overset{\text{Bochner}}{\Longleftrightarrow} & \mathrm{e}^{-\psi(x)} = \widehat{\mu}(x) \text{ for some finite measure } \mu \text{ w. } \mu(\mathbb{R}) \leqslant 1 \\ & \overset{\text{LK}}{\Longleftrightarrow} & \mu/\mu(\mathbb{R}) \text{ is infinitely divisible with char. exponent } \psi - \psi(0) \\ & \Longleftrightarrow & \exists \text{ killed L\'evy process } (X_t)_{t\geqslant 0} \text{ with char. exponent } \psi, \end{array}$

Relation to probability theory

→ 1:1-relation between cont. negative definite functions and Lévy processes. In particular,

$$\psi(\theta) = q - \mathrm{i} a \theta + \frac{1}{2} \sigma^2 \theta^2 + \int_{\mathbb{D}} \left(1 - \mathrm{e}^{\mathrm{i} \theta x} + \mathrm{i} \theta x \mathbf{1}_{[-1,1]}(x) \right) \Pi(\mathrm{d} x), \quad \theta \in \mathbb{R},$$

where the Lévy measure Π is a σ -finite measure s.t. $\Pi(\{0\}) = 0$ and $\int_{\mathbb{D}} (1 \wedge x^2) \, \Pi(dx) < \infty$

Operations on negative definite functions in terms of Lévy processes

cont. negative definite functions	Lévy interpretation
$(\psi, \varphi) \mapsto \psi + \varphi$	Summation of independent Lévy processes ~>
	$(X,Y)\mapsto X+Y$
$\psi \mapsto a \cdot \psi$ for some $a > 0$	speed up Lévy process X by factor $a \rightsquigarrow$
	$(X_t)_{t\geqslant 0}\mapsto (X_{at})_{t\geqslant 0}$
$\psi \mapsto \psi(-\cdot)$	reflection of Lévy process (dual) $\rightsquigarrow X \mapsto -X$
$(\psi,\varphi)\mapsto \varphi(i\psi)$ with φ being analytical ex-	subordination of Lévy process X by indepen-
tension from $\mathbb R$ to $\{z\in\mathbb C:\Im z\geqslant 0\}$ of char.	dent subordinator $S \rightsquigarrow (X, S) \mapsto X_{S}$.
exponent of a subordinator	

Operations on negative definite functions in terms of Lévy processes

cont. negative definite functions	Lévy interpretation
$(\psi, \varphi) \mapsto \psi + \varphi$	Summation of independent Lévy processes ~>
	$(X,Y)\mapsto X+Y$
$\psi \mapsto a \cdot \psi$ for some $a > 0$	speed up Lévy process X by factor $a \rightsquigarrow$
	$(X_t)_{t\geqslant 0}\mapsto (X_{at})_{t\geqslant 0}$
$\psi \mapsto \psi(-\cdot)$	reflection of Lévy process (dual) $\rightsquigarrow X \mapsto -X$
$(\psi, \varphi) \mapsto \varphi(i\psi)$ with φ being analytical ex-	subordination of Lévy process X by indepen-
tension from $\mathbb R$ to $\{z\in\mathbb C:\Im z\geqslant 0\}$ of char.	dent subordinator $S \rightsquigarrow (X, S) \mapsto X_{S}$.
exponent of a subordinator	

Question

For which types of LK-exponents ψ_1, ψ_1 is $\psi \coloneqq \psi_1 \cdot \psi_2$ a LK-exponent and how can we interpret this probabilistically?

• Let ψ^+ and ψ^- be the LK-exponents of subordinators H^+ and H^- , resp.

- Let ψ^+ and ψ^- be the LK-exponents of subordinators H^+ and H^- , resp.
- Vigon calls H^+ and H^- friends (amis) if $\psi \coloneqq \psi^+ \cdot \psi^-(-\cdot)$ is again a LK-exponent of some Lévy process ξ (bonding process or la fruit de l'amitié)

- Let ψ^+ and ψ^- be the LK-exponents of subordinators H^+ and H^- , resp.
- Vigon calls H^+ and H^- friends (amis) if $\psi := \psi^+ \cdot \psi^-(-\cdot)$ is again a LK-exponent of some Lévy process ξ (bonding process or la fruit de l'amitié)
- We say that H^+ and H^- are compatible if $d^{\mp}>0$ implies that $\Pi^{\pm}\ll$ Leb with densities $\partial\Pi^+(x)=\nu^+(x,\infty)$ and $\partial\Pi^-(x)=\nu^-(-\infty,-x)$ for some signed measures ν^{\pm} , resp.

- Let ψ^+ and ψ^- be the LK-exponents of subordinators H^+ and H^- , resp.
- Vigon calls H^+ and H^- friends (amis) if $\psi := \psi^+ \cdot \psi^-(-\cdot)$ is again a LK-exponent of some Lévy process ξ (bonding process or la fruit de l'amitié)
- We say that H^+ and H^- are compatible if $d^{\mp} > 0$ implies that $\Pi^{\pm} \ll$ Leb with densities $\partial \Pi^+(x) = \nu^+(x, \infty)$ and $\partial \Pi^-(x) = \nu^-(-\infty, -x)$ for some signed measures ν^{\pm} , resp.

Theorem [Vigon (2002)]

Two subordinators H^+ and H^- are friends if and only they are compatible and the function

$$\Upsilon(x) = \begin{cases} \int_{(0,\infty)} (\Pi^{-}(y,\infty) + \psi^{-}(0)) \Pi^{+}(x + dy) + d^{-}\partial \Pi^{+}(x), & x > 0, \\ \int_{(0,\infty)} (\Pi^{+}(y,\infty) + \psi^{+}(0)) \Pi^{-}(-x + dy) + d^{+}\partial \Pi^{-}(-x), & x < 0, \end{cases}$$

is a.e. increasing on $(0,\infty)$ and a.e. decreasing on $(-\infty,0)$. Moreover, if H^+ and H^- are friends, then the tails of the Lévy measure Π of the bonding process are given by $\Upsilon(x) = \Pi(x,\infty) \mathbf{1}_{(0,\infty)}(x) + \Pi(-\infty,x) \mathbf{1}_{(-\infty,0)}(x) \text{ for a.e. } x \neq 0.$

Vigon's philanthropists

Vigon calls a subordinator with decreasing Lévy density on $(0,\infty)$ a philanthropist.

Theorem [Vigon (2002)]

Philanthropists are always friends.

Vigon's philanthropists

Vigon calls a subordinator with decreasing Lévy density on $(0, \infty)$ a philanthropist.

Theorem [Vigon (2002)]

Philanthropists are always friends.

Example: hypergeometric Lévy processes with LK-exponent

$$\psi(\theta) = \underbrace{\frac{\Gamma(1-a^+ + \gamma^+ - \mathrm{i}\theta)}{\Gamma(1-a^+ - \mathrm{i}\theta)}}_{=\psi^+(\theta)} \times \underbrace{\frac{\Gamma(a^- + \gamma^- + \mathrm{i}\theta)}{\Gamma(a^- + \mathrm{i}\theta)}}_{=\psi^-(-\theta)}, \quad \theta \in \mathbb{R},$$

for appropriate choices of a^{\pm} , γ^{\pm} , where ψ^{\pm} are LK-exponents of β -subordinators.

Probabilistic interpretation

Wiener-Hopf factorization

Let H^+ and H^- be the ascending/descending ladder height processes of a given Lévy process ξ , i.e., $H^+_t = \xi_{L^{-1}_t}$ and $H^-_t = \widehat{\xi}_{\widehat{L}^{-1}_t}$ for some versions of local time at the maximum L, \widehat{L} of ξ and its dual $\widehat{\xi}$, resp. Then,

$$\psi(\theta) = c\psi^+(\theta)\psi^-(-\theta), \quad \theta \in \mathbb{R},$$

where the constant c > 0 depends on the scaling of local times L, \widehat{L} .

Uniqueness of the Wiener-Hopf factorization

Theorem [Döring, Watson, T. (2021+)]

The Wiener–Hopf factorization of ξ is unique if one of the following conditions is satisfied:

- 1. ξ is killed
- 2. $\mathbb{E}[\exp(\lambda X_1)] < \infty$ for some $\lambda \neq 0$
- 3. ξ has non-trivial Brownian component
- 4. Both $\Pi|_{(-\infty,0)}$ and $\Pi|_{(0,\infty)}$ are not purely singular

In particular, a pair of philanthropists is always equal in law to the ascending resp. descending ladder height processes of their bonding process.

Markov additive processes

- Let (ξ, J) be a MAP on $\mathbb{R} \times \{1, \ldots, n\}$
- J Markov chain with transition rate matrix Q
- On $[\sigma(i), \sigma(i+1))$, ξ has the same law as a Lévy process $\xi^{(J_{\sigma(i)})}$ started in $\xi_{\sigma(i)}$
- jumps from i to j trigger jump $\Delta_{i,j}$ of ξ with distribution $F_{i,j}$
- ullet characteristic exponent Ψ given by

$$\Psi(\theta) = \operatorname{diag}((\psi_i(\theta))_{i \in [n]}) - \mathbf{Q} \odot (\widehat{F_{i,j}}(\theta))_{i,j \in [n]}, \quad \theta \in \mathbb{R},$$

is such that

$$\mathbb{E}^{0,i}[\exp(\mathrm{i}\theta\xi_t)\mathbf{1}_{\{J_t=j\}}]=\left(\mathrm{e}^{-t\Psi(\theta)}\right)_{i,j}$$

• Lévy system $\Pi = (\Pi_{i,j})_{i,j \in [n]}$ defined by

$$\Pi_{i,i} = \Pi_i, \quad \Pi_{i,j} = q_{i,j}F_{i,j}$$

MAPs in a nutshell

Matrix Wiener-Hopf factorization for MAPs

MAP Wiener-Hopf factorization [Dereich, Döring, Kyprianou (2018)]

Let (H^+,J^+) and (H^-,J^-) be the ascending/descending ladder height processes of a given MAP (ξ,J) , i.e., $(H^+_t,J^+_t)=(\xi_{L^{-1}_t},J_{L^{-1}_t})$ and $H^-_t=(\widehat{\xi}_{\widehat{L}^{-1}_t},\widehat{J}_{\widehat{L}^{-1}_t})$ for some versions of local time at the maximum L,\widehat{L} of ξ and $\widehat{\xi}$, resp. Then, for an appropriate scaling of local time,

$$\Psi(\theta) = \Delta_{\pi}^{-1} \Psi^{-}(-\theta)^{\top} \Delta_{\pi} \Psi^{+}(\theta), \quad \theta \in \mathbb{R}.$$
 (MAP-WH)

Matrix Wiener-Hopf factorization for MAPs

MAP Wiener-Hopf factorization [Dereich, Döring, Kyprianou (2018)]

Let (H^+,J^+) and (H^-,J^-) be the ascending/descending ladder height processes of a given MAP (ξ,J) , i.e., $(H^+_t,J^+_t)=(\xi_{L^{-1}_t},J_{L^{-1}_t})$ and $H^-_t=(\widehat{\xi}_{\widehat{L}^{-1}_t},\widehat{J}_{\widehat{L}^{-1}_t})$ for some versions of local time at the maximum L,\widehat{L} of ξ , and $\widehat{\xi}$, resp. Then, for an appropriate scaling of local time,

$$\Psi(\theta) = \Delta_{\pi}^{-1} \Psi^{-}(-\theta)^{\top} \Delta_{\pi} \Psi^{+}(\theta), \quad \theta \in \mathbb{R}.$$
 (MAP-WH)

 \rightsquigarrow (H^+, J^+) is a π -friend of $(H^-, J^-) :\Leftrightarrow$ LHS of (MAP-WH) is matrix exponent of a MAP (ξ, J) (bonding MAP)

Matrix Wiener-Hopf factorization for MAPs

MAP Wiener-Hopf factorization [Dereich, Döring, Kyprianou (2018)]

Let (H^+,J^+) and (H^-,J^-) be the ascending/descending ladder height processes of a given MAP (ξ,J) , i.e., $(H^+_t,J^+_t)=(\xi_{L^{-1}_t},J_{L^{-1}_t})$ and $H^-_t=(\widehat{\xi}_{\widehat{L}^{-1}_t},\widehat{J}_{\widehat{L}^{-1}_t})$ for some versions of local time at the maximum L,\widehat{L} of ξ and $\widehat{\xi}$, resp. Then, for an appropriate scaling of local time,

$$\Psi(\theta) = \Delta_{\pi}^{-1} \Psi^{-}(-\theta)^{\top} \Delta_{\pi} \Psi^{+}(\theta), \quad \theta \in \mathbb{R}. \tag{MAP-WH}$$

- \hookrightarrow (H^+, J^+) is a π -friend of (H^-, J^-) : \Leftrightarrow LHS of (MAP-WH) is matrix exponent of a MAP (ξ, J) (bonding MAP)
- \leadsto if WH-factorization of the bonding MAP is unique and π is stationary distribution of bonding modulator J, then (H^\pm, J^\pm) are equal in law to ascending/descending ladder height MAP, resp.

Uniqueness of MAP-WH factorization I

Classical result: For a random variable X we have

$$\exists \theta \neq 0 : \mathbb{E}[\exp(\mathrm{i}\theta X)] = 1 \iff \exists \theta \neq 0 : \operatorname{supp}(\mathbb{P}_X) \subset \frac{2\pi}{\theta}\mathbb{Z}$$

In particular, for a Lévy process ξ it holds that

$$\exists \theta \neq 0: \psi(\theta) = 0 \iff \xi_1 \text{ has lattice support}$$

Proposition [Döring, Watson, T. (2021+)]

If J is irreducible and none of the Lévy components $\xi^{(i)}$ has lattice support, then $\Psi(\theta) \in \mathsf{GL}_n(\mathbb{C})$ for any $\theta \neq 0$.

Uniqueness of MAP-WH factorization II

- Let A₀: MAP subordinator exponents s.t. the modulator J is irreducible and the Lévy components and transitional jumps have finite mean
- \mathcal{A}_{∞} : MAP subordinator exponents s.t. $\lim_{|\theta| \to \infty} |\psi_i(\theta)| = \infty$ for all $i \in [n]$.
- \bullet \mathcal{A}_{\ll} : MAP subordinator exponents s.t. Lévy system Π is absolutely continuous

Uniqueness of MAP-WH factorization II

- Let A_0 : MAP subordinator exponents s.t. the modulator J is irreducible and the Lévy components and transitional jumps have finite mean
- \mathcal{A}_{∞} : MAP subordinator exponents s.t. $\lim_{|\theta| \to \infty} |\psi_i(\theta)| = \infty$ for all $i \in [n]$.
- \mathcal{A}_{\ll} : MAP subordinator exponents s.t. Lévy system Π is absolutely continuous

Theorem [Döring, Watson, T. (2021+)]

If (H^+,J^+) is a π -friend of (H^-,J^-) and either $(H^\pm,J^\pm)\in (\mathcal{A}_0\cap\mathcal{A}_\infty)^2$ or $(H^\pm,J^\pm)\in (\mathcal{A}_0\cap\mathcal{A}_\infty)^2$, then the WH-factorization of the bonding MAP is unique within these classes.

Theorem of friends for MAPs

We introduce a notion of π -compatibility between two MAP subordinators (H^\pm,J^\pm) which

- generalizes the notion of compatibility of Lévy subordinators
- is necessary for off-diagonal entries to be the negative of characteristic functions
- e.g., π -compatibility implies that

$$\boldsymbol{\Delta}_{\boldsymbol{d}}^{-}\boldsymbol{\Pi}^{+}(\{0\}) = \boldsymbol{\Delta}_{\boldsymbol{\pi}}^{-1} \big(\boldsymbol{\Delta}_{\boldsymbol{d}}^{+}\boldsymbol{\Pi}^{-}(\{0\})\big)^{\top} \boldsymbol{\Delta}_{\boldsymbol{\pi}}.$$

Theorem of friends for MAPs

We introduce a notion of π -compatibility between two MAP subordinators (H^\pm,J^\pm) which

- generalizes the notion of compatibility of Lévy subordinators
- is necessary for off-diagonal entries to be the negative of characteristic functions
- e.g., π -compatibility implies that

$$\boldsymbol{\Delta}_{\boldsymbol{d}}^{-}\boldsymbol{\Pi}^{+}(\{0\}) = \boldsymbol{\Delta}_{\boldsymbol{\pi}}^{-1} \big(\boldsymbol{\Delta}_{\boldsymbol{d}}^{+}\boldsymbol{\Pi}^{-}(\{0\})\big)^{\top} \boldsymbol{\Delta}_{\boldsymbol{\pi}}.$$

Theorem [Döring, Watson, T. (2021+)]

 (H^+, J^+) is a π -friend of (H^-, J^-) if and only if (H^+, J^+) is π -compatible with (H^-, J^-) and the matrix valued function

$$\boldsymbol{\Upsilon}(\boldsymbol{x}) = \begin{cases} \int_{0+}^{\infty} \Delta_{\boldsymbol{\pi}}^{-1} \Big(\boldsymbol{\Pi}^{-}(\boldsymbol{y}, \boldsymbol{\infty}) + \boldsymbol{\Psi}^{-}(\boldsymbol{0}) \Big)^{\top} \boldsymbol{\Delta}_{\boldsymbol{\pi}} \, \boldsymbol{\Pi}^{+}(\boldsymbol{x} + \mathrm{d}\boldsymbol{y}) + \boldsymbol{\Delta}_{\boldsymbol{d}}^{-} \partial \boldsymbol{\Pi}^{+}(\boldsymbol{x}), & \boldsymbol{x} > \boldsymbol{0}, \\ \int_{0+}^{\infty} \Delta_{\boldsymbol{\pi}}^{-1} \Big(\boldsymbol{\Pi}^{-}(-\boldsymbol{x} + \mathrm{d}\boldsymbol{y}) \Big)^{\top} \boldsymbol{\Delta}_{\boldsymbol{\pi}} \, \Big(\boldsymbol{\Pi}^{+}(\boldsymbol{y}, \boldsymbol{\infty}) + \boldsymbol{\Psi}^{+}(\boldsymbol{0}) \Big) + \boldsymbol{\Delta}_{\boldsymbol{\pi}}^{-1} \Big(\boldsymbol{\Delta}_{\boldsymbol{d}}^{+} \partial \boldsymbol{\Pi}^{-}(-\boldsymbol{x}) \Big)^{\top} \boldsymbol{\Delta}_{\boldsymbol{\pi}}, & \boldsymbol{x} < \boldsymbol{0}, \end{cases}$$

is a.e. decreasing on $(0,\infty)$ and a.e. increasing on $(-\infty,0)$. Moreover, if (H^+,J^+) is a π -friend of (H^-,J^-) , then for a.e. $x\neq 0$, $\Upsilon(x)=\Pi(x,\infty)\mathbf{1}_{(0,\infty)}(x)+\Pi(-\infty,x)\mathbf{1}_{(-\infty,0)}(x)$.

Let (H^+,J^+) be a MAP subordinator with decreasing Lévy density system on $(0,\infty)$

Let (H^+, J^+) be a MAP subordinator with decreasing Lévy density system on $(0, \infty)$

• we call a MAP subordinator (H^-, J^-) a π -fellow of (H^+, J^+) if (H^+, J^+) is π -compatible with (H^-, J^-) and for any x > 0 the matrix

$$\Delta_{\boldsymbol{\pi}}^{-1} \Psi^{-}(0)^{\top} \Delta_{\boldsymbol{\pi}} \Pi^{+}(x, \infty) + \Delta_{\boldsymbol{d}}^{-} \partial \Pi^{+}(x),$$

is decreasing,

Let (H^+, J^+) be a MAP subordinator with decreasing Lévy density system on $(0, \infty)$

• we call a MAP subordinator (H^-, J^-) a π -fellow of (H^+, J^+) if (H^+, J^+) is π -compatible with (H^-, J^-) and for any x > 0 the matrix

$$\Delta_{\boldsymbol{\pi}}^{-1} \Psi^{-}(0)^{\top} \Delta_{\boldsymbol{\pi}} \Pi^{+}(x, \infty) + \Delta_{\boldsymbol{d}}^{-} \partial \Pi^{+}(x),$$

is decreasing,

• (H^+, J^+) is called π -philanthropist if a non-trivial π -fellow exists.

Let (H^+, J^+) be a MAP subordinator with decreasing Lévy density system on $(0, \infty)$

• we call a MAP subordinator (H^-, J^-) a π -fellow of (H^+, J^+) if (H^+, J^+) is π -compatible with (H^-, J^-) and for any x > 0 the matrix

$$\boldsymbol{\Delta}_{\boldsymbol{\pi}}^{-1}\boldsymbol{\Psi}^{-}(0)^{\top}\boldsymbol{\Delta}_{\boldsymbol{\pi}}\boldsymbol{\Pi}^{+}(\boldsymbol{x},\infty) + \boldsymbol{\Delta}_{\boldsymbol{d}}^{-}\boldsymbol{\partial}\boldsymbol{\Pi}^{+}(\boldsymbol{x}),$$

is decreasing,

• (H^+, J^+) is called π -philanthropist if a non-trivial π -fellow exists.

Theorem [Döring, Watson, T. (2021+)]

Two π -philanthropists that are π -fellows of each other are π -friends.

• So far, the only explicit MAP Wiener–Hopf factorization is the deep factorization of the stable process

 So far, the only explicit MAP Wiener-Hopf factorization is the deep factorization of the stable process

• Using our MAP-philanthropy result we construct

 So far, the only explicit MAP Wiener-Hopf factorization is the deep factorization of the stable process

- Using our MAP-philanthropy result we construct
 - 1. spectrally positive MAPs whose ascending ladder height's Lévy components have completely monotone Lévy densities, i.e.,

$$\Pi_i^+(\mathrm{d} x) = \int_{\mathbb{R}_+} \mathrm{e}^{-\mathrm{x} y} \, \mu_i^+(\mathrm{d} y) \, \mathrm{d} x, \quad i = 1, 2, x > 0$$

 So far, the only explicit MAP Wiener-Hopf factorization is the deep factorization of the stable process

- Using our MAP-philanthropy result we construct
 - 1. spectrally positive MAPs whose ascending ladder height's Lévy components have completely monotone Lévy densities, i.e.,

$$\Pi_i^+(dx) = \int_{\mathbb{R}_+} e^{-xy} \, \mu_i^+(dy) \, dx, \quad i = 1, 2, x > 0$$

two-sided MAPs, whose ladder height processes have exponentially distributed jump structure