Why Calibration is Needed for Gas Sensors (e.g., MQ Series)

Calibration is essential for gas sensors like the MQ-2, MQ-3, MQ-4, MQ-5, and others to ensure accurate, reliable, and consistent gas concentration readings. Without calibration, the sensor may produce incorrect readings, leading to false alarms or undetected gas leaks.

Reasons for Calibrating Gas Sensors

1. Sensor Variability

- Each sensor has **slight variations** due to manufacturing tolerances.
- Calibration adjusts for these differences to ensure all sensors behave consistently.

2. Environmental Factors

- Temperature, humidity, and air pressure affect sensor readings.
- Calibration helps the sensor adjust to real-world conditions.

3. Aging and Drift

- Over time, gas sensors degrade and their sensitivity changes.
- Regular calibration corrects for this drift to maintain accuracy.

4. Interference from Other Gases

- Gas sensors often detect multiple gases at different sensitivity levels.
- Calibration ensures the sensor correctly identifies the target gas.

5. Ensuring Safety and Accuracy

- In industrial or home safety applications (e.g., detecting gas leaks, alcohol detection), a misreading could lead to false alarms or missed dangers.
- Proper calibration ensures that the sensor responds only when necessary.

How to Calibrate an MQ Gas Sensor?

1. Baseline Calibration in Clean Air

- Place the sensor in **fresh**, **clean air** (outdoors or in a ventilated room).
- Read the sensor's **analog output** and note the baseline value.
- Example: If in clean air, the sensor reads 200, this is the "zero" point.

2. Calibration Using a Known Gas Concentration

- Expose the sensor to a **known concentration** of the target gas.
- Adjust software threshold levels accordingly.
- Example: If an MQ-5 sensor detects **LPG at 500 ppm**, record this value.

3. Adjust Threshold for Detection

- Set an appropriate **detection threshold** in the code.
- Example: If background readings are **200**, but gas is detected at **500**, set a **threshold** at **400** to trigger an alert.

How Often Should You Calibrate a Gas Sensor?

- For home use: Every 3-6 months.
- For industrial use: Every week or month, depending on sensitivity.
- After long storage or heavy use: Always recalibrate before using.

Conclusion

Gas sensor calibration is **critical** for **accuracy**, **reliability**, **and safety**. Without it, the sensor might produce **false positives** (false alarms) or **false negatives** (failing to detect gas). Regular calibration ensures the sensor provides **trustworthy** readings, making it useful in applications like **gas leak detection**, **air quality monitoring**, **and breathalyzer devices**.

Basic Gas Detector Maintenance: The Importance of Calibration and Bump Testing

Calibrating Sensors

Air Quality Sensor

AirQuality-Multiple Gas Sensor1 4

<u>Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning—A Review</u>

<u>Effect of Relative Humidity and Air Temperature on the Results Obtained from Low-Cost Gas Sensors for Ambient Air Quality Measurements</u>

Physical Confounding Factors Affecting Gas Sensors Response: A Review on Effects and Compensation Strategies for Electronic Nose Applications