

Eletromagnetismo - Exame Recurso

Licenciatura Engenharia Informática

duração - 2 horas

12/07/2013

- 1. (5 val) Quatro cargas iguais ($Q = 2x10^{-8}$ C) formam um quadrado (a = 5 cm)
- a) qual a força F sobre uma carga elétrica $q = -3x10^{-6}$ C localizado no ponto P
- b) Qual o trabalho realizado ao trazer a carga $q = -3x10^{-6}$ C do infinito até P.

a) Pela Simetia:
$$F_{P_1} = F_{P_2} = S$$
 nato
$$F_{P_2} = F_{P_4} = S$$

$$F_{P_4} = F_{P_4} = S$$

$$F_{P_4} = F_{P_4} = S$$

$$F_{P_4} = S$$

$$F_{P_5} = S$$

$$F_{P_5} = S$$

$$F_{P_5} = S$$

$$G^2 + G^2 = S$$

$$F_{P_5} = S$$

$$G^2 + G^2 = S$$

$$E_{p} = E_{1,p} + E_{2,p} + E_{3,p} + E_{4,p} = 2 E_{1,p} + 2 \cdot E_{2,p}$$

$$= 2 \cdot \lambda \cdot Q\left(\frac{1}{\alpha/2}\right) + 2 \cdot \lambda \cdot Q\left(\frac{1}{\alpha^{2} + Q^{2}}\right)$$

$$= Q_{0029-9} V$$

= 0.304 N

2. (5 val) Uma espira retangular de largura ℓ= 60 cm e altura a = 40 cm, com uma resistência elétrica R = 0.5 Ω, encontra-se mergulhada uma região onde existe um campo magnético, B, uniforme de intensidade 0.8 T e com a direção e sentido do eixo positivo dos zz. Inicialmente a espira está na posição vertical (plano xz), conforme indicado na figura. A espira é então rodada terminando o movimento umiforme na posição horizontal (plano xy). Todo o movimento com uma velocidade angular ω = 15.7s⁻¹demora 0.1 s. Determine para a posição com ângulo 30⁰entre o plano da espira e o eixxo dos zz:

- a) o valor instantânea da força eletromotriz ε induzida :
- b) a intensidade instantânea e o sentido da corrente I (sentido relógio?, sentido anti-horário?) na espira.
- c) a potencia elétrica média P_{média} na espira durante a rotação

a)
$$\mathcal{E} = -\frac{d(\vec{B} \cdot \vec{R})}{olt} = -B \cdot \vec{R} \cdot \frac{d(\cot t)}{olt} = +B \cdot \vec{R} \cdot \vec{W}$$
 senant

$$= 2.61 \, V \cdot 4 \cdot \ln 15.7 \, t = 1.51 \, V$$

$$\mathcal{E} = R \cdot \vec{I} = 3.01 \, \vec{R}$$

$$= 1.51 \, V \cdot 4 \cdot \ln t = \frac{30}{90} \cdot 0.15$$

$$= 1.51 \, V \cdot 4 \cdot \ln t = \frac{30}{90} \cdot 0.15$$

$$= 1.51 \, V \cdot 4 \cdot \ln t = \frac{30}{90} \cdot 0.15$$

Vo = 2.61 V
$$P = I_0 \cdot U_0/2 = 6.81 W$$

$$I_0 = 5.22 V$$

In = 5.22 V

- 3. (5 val) Considere o circuito da figura com resistências R_1 = 100 Ω , R_2 = 50 Ω , R_3 = 25 Ω e $\epsilon 1$ = 25 V. Determine:
- a. as correntes i_1 e i_3 através das resistências R_1 e R_3 , respectivamente;
- b. a potência P₂ absorvida pela resistência R₂;
- c. a potência P $_{\epsilon 1}$ fornecida pela fonte ϵ_1

$$\begin{array}{c} (2) \ I) \ I_{3} - I_{2} - I_{1} = 0 \\ \hline D) \ \mathcal{E}_{1} - I_{3} \cdot R_{3} - I_{2} \cdot R_{2} = 0 \end{array} \qquad \begin{array}{c} \underline{I_{1}} = 0.143 \, R \\ \hline I) \ \mathcal{E}_{1} - I_{3} \cdot R_{3} - I_{2} \cdot R_{2} = 0 \end{array} \qquad \begin{array}{c} \underline{I_{1}} = 0.286 \, R \\ \hline I_{2} = 0.286 \, R \end{array}$$

b)
$$P_2 = I_1^2 \cdot R_2 = \frac{4.08 \, \text{W}}{1}$$

4. (5 val) Considere o circuito da figura com resistências R1 = 15 Ω , L = 30 mH e ε 1 = 25 V sen(628 t). A diferença de fase entre a corrente i_1 e ε_1 é Δ = 10°. Determine:

- a) a capacidade C e a impedância Z do circuito (caso que não consegue resolver a alínea a) utilize
- $Z = 15 e^{-j100}$ ou $Z = 14.77 + j 2.61 \Omega$ nas alíneas b), c), d))
- b) a corrente i₁ no condensador
- c) a potência média P_C absorvida no condensador;
- d) a potência média P₁ absorvida na resistência R₁;

$$= \frac{2c}{2L} + \frac{2R}{2R}$$

$$7 = -32.62 Dej(40.97 - \frac{1}{628.3.4.10^{-5}})$$

b)
$$\mathcal{E}_{i} = (1 + 25)$$
 $i_{i} = \frac{25}{33.12} \cdot e^{310}$

$$= 2c + \frac{3.18.84.15 R^2}{15R + j 18.84 R} = \frac{j.282.6 \cdot (15R + j 18.84 R)}{(15R + j 18.84 R)(15R - j 18.84 R)}$$

c) Pc = 0 um condensade ideal não absorve energia dunte