1

- a) Consider $f(x) = (x 1 i)(x 1 + i) = x^2 2x + 2 \in \mathbb{Q}[x]$ by Eisenstein condition and p = 2 this is irreducible. in $\mathbb{Q}[x]$.
- b) Consider $f(x) = (x (2 + \sqrt{3}))(x 2 + \sqrt{3}) = x^2 4x + 1$ by Gauss lemma if f(x) can be factorized in $\mathbb{Q}[x]$ so does it in \mathbb{Z} so assume.

$$f(x) = (x - a)(x - b)[\because f(x) \text{ is monic }].$$

So ab = 1 and a + b = 4 $a, b \in \mathbb{Z}$ this is not possible so irreducible

c) Say
$$x = 1 + \sqrt[3]{2} + \sqrt[3]{4}$$
.

so
$$(x-1) = \sqrt[3]{2} + \sqrt[3]{4}$$

$$\Rightarrow (x-1)^3 = 2 + 4 + 3 \cdot \sqrt[3]{2} \cdot \sqrt[3]{4} (\sqrt[3]{2} + \sqrt[3]{4}).$$

$$\Rightarrow (x-1)^3 = 6 + 3 \cdot 2 \cdot (x-1)$$

$$\Rightarrow x^3 + 3x - 3x^2 - 1 = 6 + 6x - 6.$$

$$\Rightarrow x^3 - 3x - 3x^2 - 1 = 0.$$

So. $(1 + \sqrt[3]{2} + \sqrt[3]{4})$ satisfies the equation $x^3 - 3x - 3x^2 - 1 = 0$.

if this polynomial is reducible then it can be written as (again using gauss lemma)

$$(x-a)(x^2-bx+c)$$

a, b, c are integers now ac = 1 so a = 1 or -1 but none of them can satisfy this equation.

2 Consider the field Extension $Q(i, \sqrt[3]{2})/Q$ now $Q(\sqrt[3]{2}) \subseteq Q(i, \sqrt[3]{2})$ also $Q(i) \subseteq Q(i, \sqrt[3]{2})$. Also $x^3 - 2$ is irreducible in Q because of eisenstein criterion. So $[Q(\sqrt[3]{2}):Q] = 3$. also $x^2 + 1$ is irreducible over Q so [Q(i):Q] = 2. So $2 \mid [Q(i, \sqrt[3]{2}):Q]$ and $3 \mid [Q(i; \sqrt[3]{2}):Q]$. but $[Q(i, \sqrt[3]{2}):Q] \leq [Q[i):Q] \times [Q(\sqrt[3]{2}):Q]$.

$$=6$$

so $[Q(i, \sqrt[3]{2}): Q] = 6$.

now
$$[Q(i, \sqrt[3]{2}): Q(i)][Q(i): Q] = 6$$

so
$$[Qi, \sqrt[3]{2}): Q(i)] = 3$$

Let $\rho(x)$ be the minimum polynomial of $\sqrt[3]{2}$ over Q (i). $\sqrt[3]{2}$ is a root of $x^3 - 2$ so $f(x) \mid x^3 - 2$ also p(x) has degree 3. thus $p(x) = x^3 - 2$. So it is irreducible over Q(i).

Similarly $x^3 - 3$ is also not reducible.

4a) F/K degree n

$$T_a: F \to F$$
 given by $T_a(x) = ax$

$$T_a(x + y) = a(x + y) = ax + ay = T_a(x) + T_a(y)$$

abs $T_a(cx)$ $c \in K$

=
$$acx = c \cdot ax$$
 [commutative]
= $cT_a(x)$

Thus it is a linear transformation of. K-vector space

3 F/K field extension and R is a ring such that $F \supset R \supset K$. To prove R is a field we have to prove that. $\forall a \in R$ as $a^{-1} \in R$ as we already know R is a ring with unity. [K is a subfield of R]. $a \in R \Rightarrow a \in F$ which is algebraic over K. So there exists

$$\alpha^n + a_{n-1}x^{n-1} + \cdots + a_0 = 0 \ a_i \in K.$$

now $\frac{1}{\alpha} = -\frac{1}{a_0}(\alpha^{n-1} + a_{n-2}\alpha^{n-2} \cdots + a_1) \in K$ thus $\frac{1}{\alpha} \in K$. 5. β satisfies $x^3 - 2$ which is irreducible over Q. Now we know

$$Q(\beta) \cong Q[x]/\langle x^3 - 2 \rangle$$

($\alpha = 2^{1/3}$ is real cube root of 2) in also root of $x^3 - 2$

so,
$$Q(\alpha) \cong Q[x]/\langle x^3 - 2 \rangle \cong Q(\beta)$$

That means there exist an isomorphism from $\mu: Q(\beta) \mapsto Q(\sqrt[3]{2})$

Given it is a ring momorphism 1 goes to 1 so -1 goes to -1.

now say $\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2 = -1$ in $Q(\beta)$.

how
$$(\alpha_1^2 + \alpha_2^2 + \dots + \alpha_n^2) = (\mu(\alpha_1))^2 + \dots + \mu(\alpha_n)^2 = 1$$

say $\mu(\alpha_i) = \gamma_i$

 $\sum_{i=1}^{N} \gamma_i^2 = -1 \text{ now } Q(\sqrt[3]{2}) \subseteq R.$ so $\gamma_i^2 \ge 0$ thus $\sum_{i=1}^{N} \gamma_i^2 \ge 0$ so this is impossible. thus there cannot be such α_i 's. $\underline{6}$. Say any $z^{\neq 0} \in R \notin \text{say } 1, z, z^2, z^3, ...$

as R is finite dimensional then there exist smallest m such that $1, z, z^2, \dots z^{m-1}$ is linearly independent. let

$$c_0 + c_1 z + c_2 z^2 + \cdots c_{m-1} z^{m-1} = 0$$

now $c_0 \neq 0$ it so $z_*(c_1 + c_2 z + \cdots c_{m-1}^{z^{m-2}}) = 0$ then $z_1 \neq 0$ integral domain so

$$c_1 + c_2 x + \dots + c_{m-1} z^{m-1} = 0$$
 but m is least such number

So
$$z \cdot \left(-\frac{1}{c_0}\right) \cdot \left(c_1 + c_2 x + \dots + c_{m-1} z^{m-1}\right) = 1.$$

So z has an inverse so R in a field. But R/C is finite dimensional $\forall a \in \mathbb{R}$ consider min, c(x). But min $a_{a,c}(x)$ has all the roots in \mathbb{C} thus $a \in \mathbb{C}$ thus R = C.

(7)
$$y = \frac{x^3}{x+1}$$
 so $x^3 - xy - y = 0$
in $k(y)[t], p(t) = t^3 - ty - y$ has the root x now.

$$p(t) = y(-1 - t) + t^3$$

 $y(-1-t) + t^3$ is k(t)[y] can written as.

now consider f(t)(yg(t) + h(t)) (only way to factorize).

but $gcd(x^3, x + 1) = 1$ [: $(x + 1)(x^2 - x + 1) - x^3 = 1$].

thus f(t) = 1 and $y(-1 - t) + t^3$ is irreducible in K[t]

now K[t][y] = k[y][t] as rings)

and $y(-1-t) + t^3$ has no-non trivial divisor in this ring so f(t) is

irreducible over K[y]. K(y) is the quotient field of the integral domain K[y]. $t^3 + y(-1 -$

t) is monic so using similar argument like gauss lemma for \mathbb{Z} and \mathbb{Q} we cen argue P(t) is irreducible over K(y) as well

8
$$K/Q(x)$$

$$y^2 - \frac{x^3}{x^2 + 1} \text{ is irreducible over } Q(x)$$
be cause
if $u = \frac{f(x)}{g(x)} \in Q(x)$
. $\gcd(f(x), g(x)) = 1$
then $\frac{f(x)^2}{q(x)^2} = \frac{x^3}{x^2 + 1}$
then $(x^2 + 1)f(x)^2 = x^3g^2(x)$
one size has even degree even otherside h as odd.

So
$$Q(x)[y]/\left(\left(y^2 - \frac{x^3}{x^2 + 1}\right)\right)$$
 is a field and consider

$$\alpha = y + I$$
 where $I = \left(y^2 - \frac{x^3}{x^2 + 1}\right)$
 $\alpha^2 - \left(\frac{x^3}{x^2 + 1} + I\right) = I$ whech is zero of the extension field

9a)
$$(x^3 - 2) = (x - 2^{1/3})(x - 2^{1/3}\omega)(x - 2^{1/3}\omega^2)$$
.
where ω and its square are the roots of $x^2 + x + 1$
So splitting field is $Q(2^{1/3}, 2^{1/3}\omega, 2^{1/3}\omega^2) = Q(2^3, \omega)$
b) $x^4 - 1 = (x - i)(x + i)(x - 1)(x + 1)$

Q (i) is the spulting tield. (c) $x^4 + 1 = R(x^2 - i)(x^2 + i)$

$$= \left(x - \left(\frac{1+i}{\sqrt{2}}\right)\left(x + \left(\frac{1+i}{\sqrt{2}}\right)\left(x - \left(\frac{1-i}{\sqrt{2}}\right)\right)\left(x + \frac{(1-i)}{\sqrt{2}}\right)\right)$$

$$= \left(x - \left(\frac{1+i}{\sqrt{2}}\right)\left(x + \left(\frac{1+i}{\sqrt{2}}\right)\right)\left(x - \left(\frac{1-i}{\sqrt{2}}\right)\right)\left(x + \frac{(1-i)}{\sqrt{2}}\right)\right)$$

$$= \left(x - \left(\frac{1+i}{\sqrt{2}}\right)\left(x + \left(\frac{1+i}{\sqrt{2}}\right)\right)\left(x - \left(\frac{1-i}{\sqrt{2}}\right)\right)\left(x + \frac{(1-i)}{\sqrt{2}}\right)\right)$$

$$= \left(x - \left(\frac{1+i}{\sqrt{2}}\right)\left(x + \left(\frac{1+i}{\sqrt{2}}\right)\right)\left(x - \left(\frac{1-i}{\sqrt{2}}\right)\right)\left(x + \frac{(1-i)}{\sqrt{2}}\right)\right)$$

$$= \left(x - \left(\frac{1+i}{\sqrt{2}}\right)\right)$$

$$= \left(x - \left(\frac{1+i}{\sqrt{2}}\right)$$

$$x = \frac{1+i}{\sqrt{2}}$$
; $\frac{1}{x} = \frac{\sqrt{2}}{1+i} = \frac{\sqrt{2}}{2}(1-i) = \frac{1-i}{\sqrt{2}}$

So $Q\left(\frac{1+i}{\sqrt{2}}\right)/Q$ is the splitting field we cen show $Q\left(\frac{1+i}{\sqrt{2}}\right)\subseteq Q(i,\sqrt{2})$. sout x^4+1 is irreducible thus.

$$\left[Q\left[\frac{1+i}{\sqrt{2}}\right]:Q\right] \neq \left[Q(i,\sqrt{2}):Q\right] \leqslant 4$$
so $\left[Q(i,\sqrt{2}):Q\right] = 4$ and $Q\left(\frac{1+i}{\sqrt{2}}\right) \subseteq Q(i,\sqrt{2})$ thus $Q(i,\sqrt{2}) = Q\left(\frac{1+i}{\sqrt{2}}\right)$

$$(d) x^6 + 1 = (x^2 + 1)(x^4 + x^2 + 1)$$

$$= (x^2 + 1)(x^2 \cos(x^2 + 1)^2 - x^2)$$

$$(x^2 + 1)(x^2 - x + 1)(x^2 + x + 1)$$

$$= (x+i)(x-i)(x-w)(x-w^2)(x+w)(x+w^2)$$

∴ $Q(i, \omega)/Q$ is the splitting field extension $\omega \notin Q(i)$, (e) $(x^2+1)(x^3-1)$

$$= (x+i)(x-i)(x-1)(x-w)(x-w^2)$$

again $Q(i, \omega)/Q$ is the sputting field extension (f) $x^6 + x^3 + 1 = 0$ conside $y = x^3$

So
$$y^2 + y + 1 = 0$$

so $y = \omega$ or $y = \omega^v$
so $x^3 = \omega$ or $x^3 = \omega^2$
so $x^3 = e^{\frac{2\pi i}{3}}$ or $x^3 = \frac{4\pi i}{3}$.
So $x \in \left\{ e^{\frac{2\pi i}{9}}, e^{\frac{8\pi i}{9}}, e^{\frac{14\pi i}{9}}, e^{\frac{4\pi i}{9}}, e^{\frac{10\pi i}{9}}, e^{\frac{16\pi i}{9}} \right\}_{2\pi i}$

 $Q(\zeta_9)$ where $\zeta_9 = e^{\frac{2\pi i}{9}}$ is the splitting field