ALY 6040 Final Project: Draft Report

Students' name: Mohammad Hossein Movahedi, Bharat Goel

Assignment title: Draft Report

Course number and title: ALY6040 71368 Data Mining Applications SEC 09 Fall 2022 CPS

[TOR-A-HY]

Term: 202315_A Fall 2022 CPS Quarter First Half

Instructor's name: Hootan Kamran, Ph.D.

Oct 11, 2022,

Introduction

This is the final report for our project. In the previous part (EDA), we cleaned the dataset we got to the last 20 variables.

In this part, we create a model for predicting the stock. We will also answer all the questions we asked in the proposal.

Brief describe of dataset

Since the dataset has a lot of variables, a thorough pre-processing was done by using tree-based algorithm r-part to determine the most important variables in the dataset. Then a correlation matrix was determined in order to remove the highly correlated variable and again the r-part algorithm was ran onto the dataset to finalize the most important variables to work on. All these tasks were performed in the initial report knows and Exploratory Data Analysis. Hence, this report is more focused on applying a technique to determine the best model for our dataset in order to predict the stock prices with the highest accuracy.

Table 1 shows the final selection of variables that we used in this project.

The unit of analytics in this project is best combination of accuray and sensitivity of models that we use to predict. The number of observation is 844 observation and there are 25 variables. One is the name of stock and two are the future value each stock(class) and howmuch that stock performed well in future (AnalystRating)

List of the questions

Below is the list of our initial questions

- 1. Are there any upper and lower outliers likely to skew results?
- 2. How effective can the random forest predict the Class variable?
- 3. Which model can more accurately predict the Class variable?
- 4. Which model can more accurately predict the analytic rating variable?

Our Approach

The following is the walkthrough of questions and the method we used to answer them

Question 1: Are there any upper and lower outliers likely to skew results?

To answer this question, we used Cook's Distance method. Since Cook's distance is calculated concerning a certain regression model, only the X variables that are part of the model affect it. Cook's distance calculates each data point (row) impact on the projected outcome.

The cook's distance for each observation I determines how much the observation I affected the fitted values by measuring the change in \hat{Y} Y^{Λ} (fitted Y) for all observations with and without observation i(R-bloggers, 2016).

In the Code in the appendix, we used the cook's distance method to calculate heavy influence outliers; however, we didn't do anything with this information since we wanted to use an ML method, and this method is based on GLM, but it was still a good run.

Question 2: What are different sectors' positive and negative price variances?

By group and summarizing the data, we found the answer to this question; the answer is shown in Table 2. As can be seen the highest variance is in book value per share for utilities sector

Question 3: Which model can more accurately predict the Class variable?

Random forest

The first model we used is the random forest. Random forest is generally one of the best ML algorithms for classification problems.it's aslo wildly used in financial world. The first step to use this algorithm is to split the data into training and testing sub sets and then run the algorithms until it generate a solution . and then look for the best number of variables for each tree and at last create a confusion matrix and look at how good the algorithm is on testing data.

After we follow these steps, created the algorithm and looked at the final result we found out the algorithm is performing poorly. Most of the stock performed well in 2016 and therefor the algorithm has very low sensitivity and by just predicting all stocks will be profitable it has accuracy of 85 percent and above.

This problem is due to the nature of random forest algorithms that they are heavily dependent on training data. However we shoudn't blame the algorithm for poorly performing in financial

world thus no algorithm has been developed that can perform well. There are meny instances of famous hedge funds performed poorly and it shows how hard is navigating the stock market.

However along the way be learned a lot about random forest.

Naïve Bayes Classifier Algorithm

While the result of the random forest was discouraging the Naive Bayes worked pretty well on our dataset giving the situation. The accuracy of the model for both training and testing data was more that 90 percent and the sensitivity of the model for training dataset was around 40 percent while for the test dataset it was around 25 present.

The Naive Bayes classification approach relies on the Bayes Theorem and the presumption of predictor independence. The Naive Bayes model is easy to build and works well with large data sets. If you have a sizable dataset, think about using Naive classification (finnstats, 2021).

The code for this algorithm also can be found in the appendix from line 334 to 366. The sucsess of this algorithm encoreaged us to continue looking for better algorithms.

Support Vector Machine Learning Algorithm

This algorithm failed again.it fail was even more notice able that random forest. The algorithm some how decided to go for 0 sensitivity and went for 85 accuracy without regarding the sensitivity.

Support vector machines, or SVMs, are supervised machine learning algorithms that are mostly used to categorize data into groups. SVM uses a hyperplane, which functions as a decision boundary between the multiple classes, unlike most methods (Lateef, 2019).

k mean clustering

Our attempt in k-mean clustering was kind of hoping that the final clusters have a corelation with the class variable. However this didn't happen and clusters and class variables didn't have a strong correlation.

The problem with unsupervised method such as clustering is that all you can do is hope for the best while the algorithm works it's way.

The code for this alogortim can be found in the appendix from line 411 to 425.

K-NN Classifier

After the k-mean, we tried the k-nn algorithm which is based on same principal as k-mean and is supervised. K Nearest Neighbour is a supervised learning algorithm that classifies a new data point into the target class, depending on the features of its neighboring data points. the k-nn didn't work well either and had very low sensitivity.

The problem with this algorithm is also being very sensitive to the training data, The code for this alogoritm can be found in the appendix from line 426 to 455.

Question 4: Which model can more accurately predict the analytic rating variable?

The "Analyst Rating" is used as the dependent variable in the first model to determine how much price will change in the following year.

In order to select the best model, the following algorithms were used on the dataset.

- Linear Discriminant Analysis (LDA)
- Classification and Regression Trees (CART)
- k-Nearest Neighbors (KNN)
- Bayesian Generalized Linear Model (GLM)
- Support Vector Machines (SVM)
- Random Forest

The final result of applying all these method shows that although there are differences in accuracy when it comes to predicting the results all of the model can't perform that good. The kappa test for all of the models doesn't show a significant advantage for the model over random prediction.

The code for this part can be found in appendix form line 457 to 497.

Interpretation

In this project we went through so many different machine learning methods and we tried our best to predict class or analytic rating variable and the models they succeed in doing so however all of models had low sensitivity. Therefore the sensitivity was our biggest problem in this project.all the confusion matrixes show promising accuracy but very low sensitivity. The best model we came up in our project is Naïve Bayes Classifier Algorithm.

Conclusion

This study concentrated on using all widely used methods to choose the optimum model for our dataset in order to forecast stock prices with the highest degree of accuracy and sensitivity. Additionally, we will address every guery we raised in the proposal.

Our recommendation for future research in this area is to avoid data cleaning as much as they can since most data cleaning methods are based on parametric statics and normal data however financial data is far from normal by nature and should not be treated as one.

Table and figures

```
> str(finalData2)
'data.frame': 844 obs. of 25 variables:
$ ebitda
                                     : num 6.80e+08 7.67e+08 3.08e+08
1.75e+08 4.25e+08 ...
                                   : num 5.93e+08 6.06e+08 3.19e+08
$ operating cash flow
3.48e+08 3.15e+08 ...
$ price_to_operating_cash_flows_ratio: num 19.86 18.36 7.73 8.4 12.6 ...
 $ price fair value
                                     : num 5.86 5.22 2.84 2.49 3.03 ...
$ operating_cash_flow_per_share
                                     : num 2.2 2.31 5.96 2.55 1.5 ...
 $ operating_cash_flow_per_share_2
                                     : num 2.2 2.31 5.96 2.55 1.5 ...
 $ pocf ratio
                                     : num 19.86 18.36 7.73 8.4 12.6 ...
$ r_d_to_revenue
                                     : num 0000000000...
$ free cash flow growth
                                     : num -0.192 0.159 1.261 -0.374
0.536 ...
 $ asset_growth
                                     : num 0.1059 -0.0235 -0.0596 0.0439
-0.038 ...
 $ book_value_per_share_growth
                                     : num 0.0094 -0.0081 -0.0433 -0.2999
0.0348 ...
 $ sg_a_expenses_growth
                                     : num 0.0631 0.0319 0.0215 0.112
0.0085 -0.0978 0.0048 0.177 0.0674 -0.0463 ...
 $ operating cash flow sales ratio : num 0.1002 0.1785 0.0615 0.246
0.0841 ...
 $ stock_based_compensation_to_revenue: num 0.0049 0.0001 0.0013 0.0088
0.005 0.0065 0.0044 -0.0001 0.0001 0.0065 ...
 $ return on equity
                                     : num 0.192 0.203 0.145 -0.112 0.157
```

```
$ net_profit_margin_2
                                   : num 0.0592 0.1209 0.0221 -0.0945
0.0469 ...
$ net_income_per_share
                                   : num 1.3 1.565 2.138 -0.979 0.838
. . .
$ eps
                                     : num 1.3 1.57 2.08 -0.98 0.84
-0.046 3.14 0.76 0.65 0.87 ...
$ cash_per_share_2
                                     : num 1.0204 1.2586 0.9777 1.7129
0.0359 ...
$ shareholders_equity_per_share : num 6.77 7.72 14.77 8.76 5.36 ...
                                     : num 6.77 7.72 14.77 8.76 5.36 ...
 $ book_value_per_share
                                     : chr "Hold" "Hold" "Buy" "Sell" ...
$ AnalystRating
$ sector
                                     : chr "Consumer Defensive" "Consumer
Defensive" "Consumer Defensive" "Consumer Defensive" ...
 $ class
                                     : int 1110001111...
                                     : chr "NWL" "CHD" "BIG" "HMHC" ...
 $ x
```

Table 1

sector	Basic Materia Is	Comm unicatio n Service s	Consu mer Cyclical	Consu mer Defensi ve	Energy	Financi al Service s	Healthc are	Industri als	Real Estate	Technol ogy	Utilities
ebitda_ var	3.2687 8E+16	200160 883553 33332	534291 976282 06584	357295 397618 44124	673236 900756 64664	187465 323986 70052	330269 973523 91124	351803 884493 44360	442234 678252 09752	253188 040082 69588	354964 414535 67888
operati ng_cas h_flow_ var	314618 008358 01104		308372 409675 51588	256729 495201 85380	5.9668 1E+16	127748 556504 76522	206407 409454 27316	213609 648557 17780	228943 939874 60460	216665 038397 99212	192026 191403 40380
price_t o_oper ating_c ash_flo ws_rati	46.079	30.490	36.279	70.658	41.774	49.110			55.043		13.465
o_var price_f air_val ue_var	76462 1.5132 81043	11238 1.8422 82905	1.9119 80405	3.1208 15928	0.9359 80681	5359 0.5832 584244	2.0557 83513	2.0817 78075	1.3953 38059	1.6625 57332	72868 0.4463 887024
operati ng_cas h_flow_	4.3786 97629	2.4370 90119	2.9481 42993	3.6932 42623	4.1617 12368	1.9100 7556		3.1844 3106	1.8966 69146		4.3832 77671

per_sh											
are_var											
operati ng_cas h_flow_ per_sh are_2_	4.3786	2.4370	2.9481	3.6932	4.1617	1.9100	3.1165	3.1844	1.8966	3.5749	4.3832
var	97629	90119	42993	42623	12368	7556	0889	3106	69146	03436	77671
pocf_ra tio_var	46.079 76462	30.490 11238	36.279 5882	70.658 1761	41.774 66585	49.110 5359	43.036 66649	45.154 82904	55.043 85715	58.019 89276	13.465 72868
r_d_to_ revenu e_var	0.0001 334760 213	0.0004 957347 619	0.0002 299054 803	6.67E- 05	3.98E- 05	0	0.0008 278496 97	0.0002 072305 685	0	0.0006 395904 036	4.09E- 07
free_ca sh_flow _growt h_var	0.5559 283887	0.1750 72669	0.4395 053166	0.5829 819457	0.9210 554381	0.2495 70936	0.4839 582733	0.5032 273753	0.6450 36301	0.5592 361616	0.6935 746321
asset_ growth _var	0.0106 826158 7	0.0071 925980 95	0.0090 803470 42	0.0086 969092 18	0.0144 835110 3	0.0089 384359 88	0.0104 377092 4	0.0123 995289 1	0.0108 688880 3	0.0126 515738 5	0.0027 112656 49
book_v alue_p er_shar e_grow th_var	0.0158 458336 3		0.0166 520717 7	0.0185 656397 5	0.0174 272784 6	0.0089 044229 9	0.0144 994377 2	0.0159 932007 9	0.0131 728950 4	0.0148 031064 8	0.0075 769709 96
sg_a_e xpense s_grow th_var	0.0228 256863 8		0.0119 148438 1	0.0102 913132 5	0.0331 387788 3	0.0087 569536 54	0.0103 643465 2	0.0144 282049 6	0.0159 288127 8	0.0176 530591 9	0.0033 538335 06
operati ng_cas h_flow_ sales_r atio_va r	0.01111 05611	0.0258 614059 4		0.0056 663034 99		0.0188 943519 3		0.0141 319281	0.0215 001874 6	0.0081 276479	0.0054 258975 41
stock_b ased_c ompen sation_ to_reve nue_va r	1.51E- 05	0.0001 762080 952	3.10E- 05	2.93E- 05	0.0001 729228 49	8.55E- 05	8.88E- 05	4.28E- 05	0.0001 319268 033	0.0001 314556 144	8.16E- 06
return_	0.0135 000124	0.0231	0.0114	0.0109 047136	0.0129	0.0024	0.0114	0.0110	0.0060 782484	0.0087	0.0010 559004

ity_var	8	5	3	2	4	17	9	2	74	09	55
net_pro fit_mar gin_2_ var	0.0089 950811 8	0.0048 570967 84	0.0016 428203 2	0.0038 412806 32	0.0085 929403 97	0.0089 751625 93	0.0062 722518 93	0.0062 065946 8	0.0224 378364	0.0037 299031 12	0.0028 628427 66
net_inc ome_p er_shar e_var	2.3724 45546	0.2787 469467	1.3976 95756	1.3630 0559	2.5902 69783	0.7470 28688	1.6576 8709	1.8391 4836	1.0544 29413	1.9629 3094	0.8243 578517
eps_va	2.3588 82393	0.2713 142857	1.4589 51996	1.3933 37023	2.2473 75524	0.7273 558719	1.6595 10517	1.8121 59392	1.0817 92999	1.9613 79588	0.9036 244663
cash_p er_shar e_2_va r	6.1892 35621	0.9324 83479	5.2970 64918	6.8526 83394	10.260 85306	9.0021 56611	4.0924 58787	5.8899 66494	3.6575 38621	7.9481 78249	1.7065 3669
shareh olders_ equity_ per_sh are_var	68.324 92256	64.955 15101	76.969 12087	99.132 2344	84.326 34642	57.663 23505	71.400 43881	66.001 46042	70.068 33534	96.097 46027	90.462 24944
book_v alue_p er_shar e_var	68.777 12693	64.955 07162	77.086 19264	99.132 27283	78.966 82466	57.663 63372	71.399 35537	66.091 06347	70.068 91509	95.912 41045	100.99 60649
class_v ar	0.0664 160401	0.2380 952381	0.1794 139427	0.1664 904863	0.1994 301994	0.0517 462194	0.2495 543672	0.1306 168831	0.1261 237441	0.1621 621622	0.0454 545454 5

Table 2

Refrences

Classifier evaluation with imbalanced datasets. (2015). Basic evaluation measures from the confusion matrix. [online] Available at:

https://classeval.wordpress.com/introduction/basic-evaluation-measures/ [Accessed 17 Oct. 2022].

Erin Sovansky Winter (2022). Chapter 4: apply Functions. [online] Uic.edu. Available at: https://ademos.people.uic.edu/Chapter4.html [Accessed 17 Oct. 2022].

finnstats (2021). Naive Bayes Classifier in Machine Learning» Prediction Model» finnstats. [online] finnstats. Available at:

https://finnstats.com/index.php/2021/04/08/naive-bayes-classification-in-r/ [Accessed 16 Oct. 2022].

Lateef, Z. (2019). Data Science with R Programming Certification Training Course. [online] Edureka. Available at:

https://www.edureka.co/blog/support-vector-machine-in-r/#:~:text=SVM%20(Support%20Vector %20Machine)%20is,boundary%20between%20the%20various%20classes. [Accessed 16 Oct. 2022].

R-bloggers. (2016). Outlier detection and treatment with R | R-bloggers. [online] Available at: https://www.r-bloggers.com/2016/12/outlier-detection-and-treatment-with-r/ [Accessed 11 Oct. 2022].

Statmethods.net. (2017). Quick-R: Tree-Based Models. [online] Available at: https://www.statmethods.net/advstats/cart.html [Accessed 17 Oct. 2022].

Appendix

```
install.packages('tidyverse')
install.packages('MASS')
install.packages('car')
install.packages('e1071')
install.packages('caret')
install.packages('carTools')
install.packages('cowplot')
install.packages('pROC')
install.packages('ggcorrplot')
install.packages('corrplot')
install.packages('dplyr')
install.packages('janitor')
install.packages("mlbench")
install.packages('repr')
install.packages("caTools")
install.packages("randomForest")
install.packages('effects')
# loading libraries
library(repr)
library(tidyverse)
library(MASS)
library(car)
library(e1071)
```

```
library(caret)
library(carTools)
library(cowplot)
library(pROC)
library(ggcorrplot)
library(dplyr)
library(janitor)
library(mlbench)
library(data.table)
library(matrixStats)
# Loading the training dataset
d15 <- read.csv("2015_Financial_Data.csv")</pre>
#looking at the dataset
dim(d15)
summary(d15)
#Gather missing data and plot graph to visualize missing data within
variables
data_miss <- d15 %>% summarise_all(funs(sum(is.na(.))/n()))
data miss <- gather(data miss, key = "variables", value =</pre>
"percent missing")
data_miss2=subset(data_miss,data_miss$percent_missing>0.1)
ggplot(data_miss2, aes(x = reorder(variables, percent_missing), y =
percent_missing)) +
  geom_bar(stat = "identity", fill = "red", aes(color = I('white')), size =
0.3) +
 xlab('variables')+
  coord_flip()+
 theme bw()
##Deleting variables from original dataset
data2=subset(d15,select =
-c(43,53,76,77,78,82,83,84,85,87,88,90,91,96,97,99,100,101,
103, 105, 112, 114, 120, 127, 128, 129, 130, 132, 143, 146, 148, 149, 150,
151, 152, 153, 155, 159, 172, 173, 174, 175, 186, 201, 202, 204, 205, 207, 208, 210, 211, 213
,214))
data3=subset(data2,select = -c(80))
```

```
data4=subset(data3,select =
-c(15,19,21,33,34,38,45,47,49,50,51,94,103,126,150))
#Modifying variable names
data4<-data4 %>% clean_names()
colnames(data4)
#Categorizing companies as small, medium, or large cap
market_cap_cat<-cut(data4$market_cap,breaks = c(0,1e+9,1e+10,1e+20),labels
=c("Small","Mid","Large") )
data4$market_cap_cat=market_cap_cat
table(market_cap_cat)
data5 = subset(data4, select = -c(100, 138, 136))
#Performing structural adjustments to the data
data5$x1=as.character(data5$x1)
data5$market cap cat=as.factor(data5$market cap cat)
data5$class=as.factor(data5$class)
data5$sector=as.factor(data5$sector)
#eliminate colinearity/non-essential variables
fit01 = lm(x2016_price_var~.- x - sector - class - market_cap_cat,data5)
summary(fit01)
#Create new dataset elminating "N/A" variables
data6=subset(data5,select =
-c(11,18,23,28,29,67,68,86,87,88,93,94,100,101,102,104,
                               105, 107, 110, 124, 125, 126, 128, 129))
#Create a new variable to categorize price variance into broader baskets
summary(data4$x2016_price_var)
AnalystRating<-cut(data4$x2016_price_var,breaks =</pre>
c(-100, -50, -5.17, 17.28, 40.57, 4000),
                   labels =c("Strong Sell","Sell","Hold","Buy","Strong
Buy") )
AnalystRating[1:10]
data6$AnalystRating=AnalystRating
#Use tree based algorithm r-part to determine the most important variables
in the dataset
rpartMod<-train(AnalystRating~.- x - sector - class -</pre>
market_cap_cat-x2016_price_var,data = data6,method="rpart",na.action =
na.exclude)
```

```
rpartImp<-varImp(rpartMod)</pre>
print(rpartImp)
#Putting selected variables into a dataset
VariableCorr2=subset(data6,select = c('operating_cash_flow_sales_ratio'
,'operating_cash_flow','stock_based_compensation_to_revenue',
'return_on_equity','net_profit_margin_2','net_income_per_share','eps','cash
_per_share_2',
'shareholders_equity_per_share','book_value_per_share' ))
colnames(VariableCorr2)
summary(VariableCorr2)
#Check that selected variables are not heavily correlated
corr2<-round(cor(VariableCorr2),1)</pre>
ggcorrplot(corr2,lab = TRUE)
finalData=subset(data6,select = c('x','operating cash flow sales ratio'
,'operating_cash_flow','stock_based_compensation_to_revenue',
'return_on_equity','net_profit_margin_2','net_income_per_share','eps','cash
per share 2',
'shareholders_equity_per_share','book_value_per_share',"AnalystRating",'sec
tor','class'))
summary(finalData)
colnames(finalData)
# choosing the best variables based on random forest to make final variable
selection better
# Loading package
library(caTools)
library(randomForest)
# Splitting data in train and test data
d15[is.na(d15)] <- 0
d15 \leftarrow subset(d15, select = -c(X2016.PRICE.VAR....))
split <- sample.split(d15, SplitRatio = 0.7)</pre>
split
train <- subset(d15, split == "TRUE")</pre>
test <- subset(d15, split == "FALSE")</pre>
```

```
# Fitting Random Forest to the train dataset
set.seed(100) # Setting seed
classifier_RF = randomForest(x = train[-224],
                               y = train$Class,
                               ntree = 100)
# Predicting the Test set results
y_pred = predict(classifier_RF, newdata = test[-224])
# Plotting model
plot(classifier_RF)
varImpPlot(classifier_RF)
# Importance plot
k <- importance(classifier_RF)</pre>
# selecting important 10
df <- enframe(k)</pre>
df<-df[order(df$value,decreasing = TRUE),]</pre>
Names <- c(head(df$name, n = 15L))
varforest <- d15[ , names(d15) %in% Names]</pre>
varforest<-varforest %>% clean names()
#making final data better
finalData <- left join(varforest, finalData)</pre>
finalData=subset(finalData, select = -c(7))
#Replace missing numerical values to take care of outliers
dt <- data.table(finalData[-1])</pre>
indx <- sapply(dt, \(x) !(x %in% boxplot(x, plot=FALSE)$out))</pre>
n <-dt[as.logical(rowProds(indx))]</pre>
n <- as.data.frame(n)</pre>
summary(n)
#Replace missing values of numeric variables
for(i in 1:ncol(n)){
  n[is.na(n[,i]), i] \leftarrow mean(n[,i], na.rm = TRUE)
}
n <- n %>%
  na.omit()
summary(n)
finalData2 <- left_join(n,finalData)</pre>
finalData2=subset(finalData2, select = -c(6))
finalData2 <- finalData2 %>%
```

```
na.omit()
#EDA
options(repr.plot.width = 17, repr.plot.height = 10)
ggplot(finalData2, aes(x=sector,fill=AnalystRating))+ geom_bar()+
theme_bw()
ggplot(finalData2, aes(x=AnalystRating, y=eps, fill=AnalystRating)) +
geom violin()+
  geom_boxplot(width=.1, fill="white") + labs(title="EPS")
ggplot(finalData2, aes(x=AnalystRating, y=return_on_equity,
fill=AnalystRating)) + geom_violin()+
  geom boxplot(width=0.1, fill="white") + labs(title="Total Return on
Equity")
ggplot(finalData2, aes(x=AnalystRating, y=net profit margin 2,
fill=AnalystRating)) + geom_violin()+
  geom_boxplot(width=0.1, fill="white") + labs(title="Total Net Profit
Margin")
ggplot(finalData2, aes(x=AnalystRating, y=net_income_per_share,
fill=AnalystRating)) + geom_violin()+
  geom boxplot(width=0.1, fill="white") + labs(title="net income per
share")
ggplot(finalData2, aes(x=AnalystRating, y=operating_cash_flow_sales_ratio,
fill=AnalystRating)) + geom_violin()+
  geom boxplot(width=0.1, fill="white") + labs(title="operating cash flow
sales ratio")
finalData2 %>%
  keep(is.numeric) %>%
                                          # Keep only numeric columns
  gather() %>%
                                          # Convert to key-value pairs
  ggplot(aes(value)) +
                                           # Plot the values
  facet_wrap(~ key, scales = "free") + # In separate panels
  geom_density()
#finalData2
write.csv(finalData2,"~/Data/finalData2.csv", row.names = FALSE)
finalData2 <- read.csv('finalData2.csv')</pre>
```

```
names(finalData2)
#Question 1 : Are there any upper and lower outliers likely to skew
results?
## Cook's Distance Method
mod <- glm(class ~ .-AnalystRating-x, data = finalData2,family=binomial)</pre>
par(mfrow = c(2, 2))
library(effects)
plot(allEffects(mod))
summary(mod)
dev.off()
cooksd <- stats:::cooks.distance.glm(mod)</pre>
plot(cooksd, pch="*", cex=2, main="Influential Obs by Cooks distance") #
plot cook's distance
abline(h = 4*mean(cooksd, na.rm=T), col="red") # add cutoff line
text(x=1:length(cooksd)+1, y=cooksd, labels=ifelse(cooksd>4*mean(cooksd,
na.rm=T),names(cooksd),""), col="red") # add Labels
influential <- cooksd[(cooksd > (1 * mean(cooksd, na.rm = TRUE)))]
influential
ci <- ifelse(cooksd>4*mean(cooksd, na.rm=T),1,0) # influential row numbers
table(ci)
names_of_influential <- names(influential)</pre>
outliers <- finalData2[names_of_influential,]</pre>
finalData2 without outliers <- finalData2 %>% anti join(outliers)
modn <- glm(class ~ .-AnalystRating-x, data =</pre>
finalData2 without outliers,family=binomial)
par(mfrow = c(2, 2))
plot(modn)
# Question 2: What are different sectors' positive and negative price
variances?
k <-finalData2 %>%
  group by(sector) %>%
  summarise(across(where(is.numeric), list( var = var)))
write.csv(k,"~/Data/k.csv", row.names = TRUE)
#Ouestion 3
## random forest algorithm
#Installing and loading nessesarry libraries
install.packages('pacman')
```

```
install.packages('tidyverse')
install.packages('tidymodels')
install.packages('leaps')
install.packages('glmnet')
install.packages('BMA')
install.packages('janitor')
install.packages("randomForest")
install.packages('effects')
library(tidyverse)
library(tidymodels)
library(leaps)
library(pacman)
library(glmnet)
library(BMA)
library(janitor)
library(caTools)
library(randomForest)
#loading the cleaned dataset
dt <- read.csv('finalData2.csv')</pre>
dt$class<- as.factor(dt$class)</pre>
dt <- subset(dt, select = -c(AnalystRating))</pre>
dim(dt)
# running random forest for the class variable
# spiting data into test and train
# Splitting data in train and test data
set.seed(321) # Setting seed
split <- sample.split(dt, SplitRatio = 0.8)</pre>
split
train <- subset(dt, split == "TRUE")</pre>
test <- subset(dt, split == "FALSE")</pre>
# Fitting Random Forest to the train dataset
set.seed(123) # Setting seed
classifier RF = randomForest(class~.,
                              data = train,
                              mtry = 11,
                              ntree = 2000)
```

```
classifier_RF
# finding mtry
a=c()
i=5
set.seed(123) # Setting seed
for (i in 3:23) {
  model3 <- randomForest(class ~ ., data = train, ntree = 100, mtry = i,
importance = TRUE)
  predValid <- predict(model3, newdata = test[-23])</pre>
  a[i-2] = mean(predValid == test$class)
}
plot(3:23,a)
# adjusted forest
set.seed(123) # Setting seed
classifier_RF = randomForest(class~.,
                              data = train,
                              mtry = 11,
                              ntree = 2000)
classifier RF
# Predicting the Test set results
y_pred = predict(classifier_RF, newdata = test[-23])
# Confusion Matrix
mtx = table(test[,23], y_pred)
#Calculating accuracy
confusionMatrix(mtx)
# Plotting model
plot(classifier_RF)
varImpPlot(classifier_RF)
# Importance plot
k <- importance(classifier_RF)</pre>
```

```
a=c()
i=5
set.seed(123) # Setting seed
for (i in 3:23) {
  model3 <- randomForest(class ~ ., data = train, ntree = 2000, mtry = i,</pre>
importance = TRUE)
  predValid <- predict(model3, newdata = test[-23])</pre>
  a[i-2] = mean(predValid == test$class)
}
plot(3:23,a)
##Naive Bayes Classifier
#install packages
install.packages('naivebayes')
install.packages('psych')
library(naivebayes)
library(psych)
# loading cleaned data
#loading the cleaned data set
dt <- read.csv('finalData2.csv')</pre>
dt$class<- as.factor(dt$class)</pre>
dt <- subset(dt, select = -c(AnalystRating,x))</pre>
dim(dt)
xtabs(~class+sector, data = dt)
# all the ranks are than 5 which satisfy the method needs
#create train and test data sets for training the model and testing
set.seed(1234)
ind <- sample(2, nrow(dt), replace = T, prob = c(0.8, 0.2))
train <- dt[ind == 1,]
test <- dt[ind == 2,]
#Naive Bayes Classification in R
model <- naive_bayes(class ~., data = train, usekernel = T)</pre>
model
plot(model)
p <- predict(model, train, type = 'prob')</pre>
p1 <- predict(model, train)</pre>
tab1 <- table(p1, train$class)</pre>
confusionMatrix(tab1)
#testing
p2 <- predict(model, test)</pre>
```

```
tab2 <- table(p2, test$class)</pre>
confusionMatrix(tab2)
#Support Vector Machine
##installing packages
install.packages('caret')
library(caret)
#reading the dataset
dt <- read.csv('finalData2.csv')</pre>
dt$class<- as.factor(dt$class)</pre>
dt <- subset(dt, select = -c(AnalystRating,x))</pre>
dim(dt)
# spliting data into training and testing subsets
intrain <- createDataPartition(y = dt$class, p= 0.8, list = FALSE)</pre>
training <- dt[intrain,]</pre>
testing <- dt[-intrain,]</pre>
# train control.this will control all the computational overheads
trctrl <- trainControl(method = "repeatedcv", number = 10, repeats = 3)</pre>
# train() method
svm Linear <- train(class ~., data = training, method = "svmLinear",</pre>
                     trControl=trctrl,
                     preProcess = c("center", "scale"),
                     tuneLength = 10)
svm Linear
test_pred <- predict(svm_Linear, newdata = testing)</pre>
p <-table(test_pred, testing$class)</pre>
confusionMatrix(p)
# tuning of an SVM classifier with different values of C
grid <- expand.grid(C = c(0,0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5,
1.75, 2,5)
svm_Linear_Grid <- train(class ~., data = training, method = "svmLinear",</pre>
                          trControl=trctrl,
                           preProcess = c("center", "scale"),
                          tuneGrid = grid,
                          tuneLength = 10)
svm Linear Grid
plot(svm Linear Grid)
#k mean clustering
##installing packages
install.packages('factoextra')
library(factoextra)
#reading the dataset
```

```
dt <- read.csv('finalData2.csv')</pre>
dt$class<- as.factor(dt$class)</pre>
dt <- subset(dt, select = -c(AnalystRating,x))</pre>
dim(dt)
#compute k-means
df <- dt %>%
  keep(is.numeric)%>%
  scale()
df
set.seed(123)
km.res < - kmeans(df, 2, nstart = 25)
fviz_nbclust(df, kmeans, method = "wss") +
  geom_vline(xintercept = 5, linetype = 2)
aggregate(dt, by=list(cluster=km.res$cluster), mean)
fviz_cluster(km.res ,data = df)
dd <- cbind(dt, cluster = as.factor(km.res$cluster))</pre>
head(dd)
p <-table(dd$cluster,dd$class)</pre>
#K-NN Classifier
install.packages("class")
library(class)
#Loading data
#reading the dataset
dt <- read.csv('finalData2.csv')</pre>
dt$class<- as.factor(dt$class)</pre>
dt <- subset(dt, select = -c(AnalystRating,x))</pre>
dim(dt)
#spliting the data
# Splitting data into train
# and test data
set.seed(1234)
split <- sample.split(dt, SplitRatio = 0.7)</pre>
train_cl <- subset(dt, split == "TRUE")</pre>
test_cl <- subset(dt, split == "FALSE")</pre>
# Feature Scaling
train scale <- train cl %>%
  keep(is.numeric)%>%
  scale()
test scale <- test cl %>%
  keep(is.numeric)%>%
  scale()
# Fitting KNN Model
```

```
# to training dataset
classifier_knn <- knn(train = train_scale,</pre>
                      test = test_scale,
                      cl = train cl$class,
                      k = 1
confusionMatrix(table(test_cl$class, classifier_knn))
#Question 4
finalData2 <- read.csv('finalData2.csv')</pre>
#Asses which model can most accurately predict price variance
#Pick the best model
control = trainControl(method="cv", number=10)
metric = "Accuracy"
# Linear Discriminant Analysis (LDA)
set.seed(138)
fit.lda = train(AnalystRating~.- x - class , data=finalData2, method="lda",
metric=metric, trControl=control,na.action = na.pass)
# Classfication and Regression Trees (CART)
set.seed(138)
fit.cart = train(AnalystRating~.- x - class, data=finalData2,
method="rpart", metric=metric, trControl=control)
# k-Nearest Neighbors (KNN)
set.seed(138)
fit.knn = train(AnalystRating~.- x - class, data=finalData2, method="knn",
metric=metric, trControl=control)
# Bayesian Generalized Linear Model
set.seed(138)
fit.logi = train(AnalystRating~.- x - class, data=finalData2,
method="bayesglm", metric=metric, trControl=control)
# Support Vector Machines (SVM)
set.seed(138)
fit.svm = train(AnalystRating~.- x - class, data=finalData2,
method="svmRadial", metric=metric, trControl=control)
# Random Forest
set.seed(138)
```

```
fit.rf = train(AnalystRating~.- x - class, data=finalData2, method="rf",
metric=metric, trControl=control)

# Select Best Model
# summarize accuracy of models
results = resamples(list(lda=fit.lda, cart=fit.cart, knn=fit.knn,
logi=fit.logi, svm=fit.svm, rf=fit.rf))
summary(results)
```