

Bioinformatics

Nine Motifs and Logos

Wendy Lee
Department of Computer Science
San José State University
Biology/CS/SE 123A
Fall 2014

Importance and Abundance of Motifs

• DNA motifs are nucleotide sequence patterns of functional significance.

• Examples:

- The TATA box is a motif that helps RNA polymerase find the transcription start site (TSS) in many eukaryotic genes.
- The CAT box is another highly conserved region used for the initiation of transcription.

Getting the CDS

From DNA to Protein

Anatomy of an Intron

Conserved Sequences in Introns

The conserved nucleotides in the transcript are recognized by small nuclear ribonucleoprotein particles (snRNPs), which are complexes of protein and small nuclear RNA. A functional splicing unit is composed of a team of snRNPs called a spliceosome.

E.Coli Promoter Sequences

Sequence Motifs

Table MM2.1 Nucleotide frequencies in 389 known TATA boxes.

Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Α	61	16	352	3	354	268	360	222	155	56	83	82	82	68	77
С	145	46	0	10	0	0	3	2	44	135	147	127	118	107	101
G	152	18	2	2	5	0	10	44	157	150	128	128	128	139	140
T	31	309	35	374	30	121	6	121	33	48	31	52	61	75	71

Detecting Motifs

A motif is a sequence pattern of functional significance. **Example**: The **TATA box** is a motif that helps the polymerase find the transcription start site.

Table MM2.1 Nucleotide frequencies in 389 known TATA boxes.

Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	61	16	352	3	354	268	360	222	155	56	83	82	82	68	77
C	145	46	0	10	0	0	3	2	44	135	147	127	118	107	101
G	152	18	2	2	5	0	10	44	157	150	128	128	128	139	140
T	31	309	35	374	30	121	6	121	33	48	31	52	61	75	71

Creating Tables of Frequencies

The probability of having an A in the first position is: 61/389 = 0.1568 The probability of a T in the second position is: 309/389 = 0.7943 Similarly for all 4 bases at all 15 positions.

We can thus create a table of frequencies.

Table MM2.1 Nucleotide frequencies in 389 known TATA boxes.

Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	61	16	352	3	354	268	360	222	155	56	83	82	82	68	77
C	145	46	0	10	0	0	3	2	44	135	147	127	118	107	101
G	152	18	2	2	5	0	10	44	157	150	128	128	128	139	140
T	31	309	35	374	30	121	6	121	33	48	31	52	61	75	71

Creating Log-Odds Tables

Instead of creating a table of frequencies, we create a table of log-odds. Suppose that the genome-wide average G and C content is 44%. Then the probability of an A is 0.56/2 = 0.28.

 $\log_2(0.1568/0.28) = \log_2(0.56) = -0.84$. Note that the base of the logarithm here is 2. Similarly, $\log_2(0.7943/0.28) = 1.5$.

Table MM2.1 Nucleotide frequencies in 389 known TATA boxes.

Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	61	16	352	3	354	268	360	222	155	56	83	82	82	68	77
С	145	46	0	10	0	0	3	2	44	135	147	127	118	107	101
G	152	18	2	2	5	0	10	44	157	150	128	128	128	139	140
T	31	309	35	374	30	121	6	121	33	48	31	52	61	75	71

The Log-Odds Tables

Table MM2.1 Nucleotide frequencies in 389 known TATA boxes.

Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	61	16	352	3	354	268	360	222	155	56	83	82	82	68	77
C	145	46	0	10	0	0	3	2	44	135	147	127	118	107	101
G	152	18	2	2	5	0	10	44	157	150	128	128	128	139	140
T	31	309	35	374	30	121	6	121	33	48	31	52	61	75	71

Table MM2.2 Position weight matrix.

Α	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
C	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
G	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.71
T	-1.81	1.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62

What is the Significance of Log-Odds

- If the nucleotide is **more likely** to occur at a given position than it is to occur overall, the ratio will be **bigger than 1.0** and the **log odds** is **positive**.
- If the nucleotide is less likely to occur at a certain position than it is to occur overall, then the ratio will be smaller than 1.0 and the log odds is negative.

Using Log-Odds Tables (I)

Table MM2.2 Position weight matrix.

Α	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
С	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
G	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.71
T	-1.81	1.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62

Table MM2.3 PWM score of the 15 bp sequence ACATATATAAGCTGG.

	Α	С	Α	T	Α	T	Α	T	Α	Α	G	С	T	G	G
Α	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
С	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
G	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.71
T	-1.81	1.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62

Table MM2.2 was constructed as explained in the previous slides; in other words, by taking the log of the ratio of the observed frequency over the expected frequency.

Using Log-Odds Tables (II)

Table MM2.2 Position weight matrix.

Α	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
С	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
G	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.71
T	-1.81	1.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62

Table MM2.3 PWM score of the 15 bp sequence ACATATATAAGCTGG.

	Α	С	Α	T	Α	T	Α	T	Α	Α	G	С	T	G	G
Α	-0.84	-2.77	1.69	-5.18	1.70	1.30	1.76	1.03	0.51	-0.96	-0.39	-0.41	-0.41	-0.68	-0.50
С	0.76	-0.90	-99.00	-3.10	-99.00	-99.00	-4.80	-5.42	-0.96	0.66	0.78	0.57	0.46	0.32	0.24
G	0.83	-2.25	-5.42	-5.42	-4.10	-99.00	-3.06	-0.96	0.88	0.81	0.58	0.58	0.58	0.70	0.71
T	-1.81	1.50	-1.64	1.78	-1.86	0.15	-4.14	0.15	-1.72	-1.18	-1.81	-1.07	-0.84	-0.54	-0.62

To see if a sequence of length 15 is a TATA box, we simply add the corresponding values from the PWM and see if we get a value above some threshhold. In the example above, we add the 15 highlighted numbers to get 6.78.

Designing Logos

- A **logo** is a visual representation of a set of aligned sequences that indicates the positional preferences as given by **information theory**.
- A logo gives a visual representation of the motif.
- The size of the character in the stack of characters is proportional to the character's frequency in that position.
- The total height of each column is proportional to its **information** content.
- Information theory quantifies the amount of information

Logos with Bases

• Define:

$$I_j = log_2(4) - H_j = 2 + \sum f_{x,j} log_2(f_{x,j})$$

where $f_{x,j}$ is the frequency of character x at position j.

• 1 base occurs every time - 2 bits
• 2 bases occur 50% of time - 1bit
• 4 bases occur equally - 0 bits