Block Ciphers

- Map n-bit plaintext blocks to n-bit ciphertext blocks (n = block length).
- For n-bit plaintext and ciphertext blocks and a fixed key, the encryption function is a bijection;
- E: $P_n \times K \rightarrow C_n$ s.t. for all key $k \in K$, E(x, k) is an invertible mapping, written $E_k(x)$.
- The inverse mapping is the decryption function, $y = D_k(x)$ denotes the decryption of plaintext x under k.

Block Ciphers Features

- <u>Block size</u>: in general *larger* block sizes mean greater security.
- <u>Key size</u>: *larger* key size means *greater* security (larger key space).
- Number of rounds: multiple rounds offer increasing security.
- <u>Encryption modes</u>: define how messages larger than the block size are encrypted, *very important* for the security of the encrypted message.

Feistel Network

- Several block ciphers are based on the structure proposed by Feistel in 1973
- A Feistel Network is fully specified given
 - the *block size*: n = 2w
 - number of rounds: d
 - d round functions $f_1, ..., f_d: \{0,1\}^w \rightarrow \{0,1\}^w$
- Used in DES, IDEA, RC5 (Rivest's Cipher n. 5), and many other block ciphers.
- Not used in AES

Feistel Network

• Encryption:

$$- L_1 = R_0 R_1 = L_0 \oplus f_1(R_0)$$

$$- L_2 = R_1 R_2 = L_1 \oplus f_2(R_1)$$

• • •

$$- L_d = R_{d-1} R_d = L_{d-1} \bigoplus f_d(R_{d-1})$$

• Decryption:

$$- R_{d-1} = L_d L_{d-1} = R_d \oplus f_d(L_d)$$

• • •

$$- R_0 = L_1; L_0 = R_1 \oplus f_1(L_1)$$

DES Features

Features:

- Block size = 64 bits
- Key size = 56 bits (in reality, 64 bits, but 8 are used as parity-check bits for error control, see next slide)
- Number of rounds = 16
- 16 intermediary keys, each 48 bits

Key length in DES

- In the DES specification, the key length is 64 bit:
- 8 bytes; in each byte, the 8th bit is a parity-check bit

Each parity-check bit is the XOR of the previous 7 bits

DES Rounds

Details

- $IP(x) = L_0R_0$
- $L_i = R_{i-1}$
- $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$
- $y = IP^{-1}(R_{16}L_{16})$

Note: IP means Initial Permutation

Initial Permutation (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

- This table specifies the input permutation on a 64-bit block.
- The meaning is as follows:
 - the first bit of the <u>output</u> is taken from the 58th bit of the <u>input</u>; the second bit from the 50th bit, and so on, with the last bit of the output taken from the 7th bit of the input.
- This information is presented as a table for ease of presentation:
 - it is a vector, not a matrix.

DES Rounds

У

- $IP(x) = L_0R_0$
- $L_i = R_{i-1}$
- $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$
- $y = IP^{-1}(R_{16}L_{16})$
- Note that, as usual:

$$- R_{16} = L_{15} \oplus f(R_{15}, K_{16})$$

$$-L_{16} = R_{15}$$

• ... but they are <u>switched</u> in the pre-output

Final Permutation (IP⁻¹)

40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31 38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29 36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27 34 2 42 10 50 18 58 26								
38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29 36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27	40	8	48	16	56	24	64	32
37 5 45 13 53 21 61 29 36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27	39	7	47	15	55	23	63	31
36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27	38	6	46	14	54	22	62	30
35 3 43 11 51 19 59 27	37	5	45	13	53	21	61	29
	36	4	44	12	52	20	60	28
34 2 42 10 50 18 58 26	35	3	43	11	51	19	59	27
	34	2	42	10	50	18	58	26
33 1 41 9 49 17 57 25	33	1	41	9	49	17	57	25

- The final permutation is the *inverse* of the initial permutation; the table is interpreted similarly.
 - That is, the output of the *Final Permutation* has bit 40 of the preoutput block as its first bit, bit 8 as its second bit, and so on, until bit 25 of the preoutput block is the last bit of the output.

DES Round i

- $L_i = R_{i-1}$
- $R_i = L_{i-1} \bigoplus f(R_{i-1}, K_i)$

DES "f(•)" Function

E is an <u>expansion function</u> which takes a block of 32 bits as input and produces a block of 48 bits as output

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

16 bits appear twice, in the expansion

S-boxes

S-boxes are the only <u>non-linear</u> elements in DES design

Each of the unique selection functions $S_1, S_2, ..., S_8$, takes a 6-bit block as input and yields a 4-bit block as output

- S = matrix 4x16, values from 0 to 15
- B (6 bit long) = $b_1b_2b_3b_4b_5b_6$
 - $-b_1b_6$ \rightarrow r = row of the matrix (2 bits: 0,1,2,3)
 - $-b_2b_3b_4b_5$ \rightarrow c = column of the matrix (4 bits:0,1,...15)
- C (4 bit long) = Binary representation of S(r, c)

Example (S1)

Row #	S_1	1	2	3				7								15	Column #
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	

 $S(i, j) \le 16$, can be represented with 4 bits

Example: B = 101111

$$b_1b_6 = 11 = row 3$$

$$b_2b_3b_4b_5 = 0111 = column 7$$

DES Key Generation $(K_1 - K_{16})$

DES Permuted Choice 1 and 2 (PC-1, PC-2)

Parity-check bits (namely, bits 8,16, 4,32,40,48,56,64) are not chosen, they do not appear in **PC-1**

Left										
57	49	41	33	25	17	9				
1	58	50	42	34	26	18				
10	2	59	51	43	35	27				
19	11	3	60	52	44	36				
	Right									
63	55	47	39	31	23	15				
7	62	54	46	38	30	22				
14	6	61	53	45	37	29				
21	13	5	28	20	12	4				

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

PC-2 selects the 48-bit subkey for each round from the 56-bit key-schedule state

DES Weak Keys

- DES uses 16 48-bits keys generated from a master 56bit key (64 bits if we consider also parity bits)
- Weak keys: keys make the same sub-key to be generated in more than one round.
- Result: reduce cipher complexity
- Weak keys can be avoided at key generation.
- DES has 4 weak keys
 - -0101010101010101
 - FEFEFEFE FEFEFEFE
 - E0E0E0E0 F1F1F1F1
 - 1F1F1F1F 0E0E0E0E

DES Decryption

 Decryption uses the same algorithm as encryption, except that the subkeys K₁, K₂, ...K₁₆ are applied in reversed order

DES "f(•)" Function

