Université Paul Sabatier UPSSITECH 1A Examen d'Electronique Numérique Durée 1h00 - Sans Documents

NOM:	Prénom :	Spécialité
NOM:	Prenom:	Specia

Exercice I : combinatoire (Durée conseillée 30 min) – 9,5 pts

On souhaite réaliser un système assurant la gestion de l'allumage des différents feux d'une voiture.

Deux modes de fonctionnement sont possibles : mode manuel ou mode automatique. Un capteur présent sur le tableau de bord indique par un signal électrique le niveau de luminosité extérieure :

- si la luminosité **L** est faible (niveau logique « 0 »), alors on est en mode automatique.
- si la luminosité L est suffisante (niveau logique « 1 »), alors on est en mode manuel.

Lorsque le système est en mode manuel, un sélecteur à 3 positions (S_V, S_C, S_P) permet de choisir le type d'éclairage désiré :

- la position S_V allume les feux de position V (veilleuses),
- la position S_C allume les feux de croisement C (codes),
- la position **S**_P allume les feux de route **P** (phares).

L'activation du mode automatique déclenche l'allumage des feux de croisement **C**. En outre, si le mode automatique est activé, on ne peut pas allumer les feux de position **V** ; par contre, on peut activer les feux de route **P** mais, dans ce cas, les feux de croisement **C** s'éteignent car deux types de feux ne peuvent pas être activés simultanément.

Enfin, que le système soit en mode manuel ou automatique, il est évidemment **impossible** pour le sélecteur d'être simultanément sur deux ou trois des positions S_V , S_C et S_P .

[1] Identifier les variables d'entrée et de sortie du système. Entrée(s):

Sortie (s)

- [2] Décrire le fonctionnement du système par une table de vérité.
- [3] Déterminer par la méthode de votre choix les équations simplifiées de chaque sortie et les présenter chacune sous la forme de produits de somme.

Équations	simplifiées	:

Exercice II: séquentiel (durée conseillée 30 min) - 10,5 Pts

Le schéma de la figure ci-dessous décrit le circuit de la fonction à étudier. À t=0, $Q_3Q_2Q_1=000$ et les entrées $PRESET_1=PRESET_2=PRESET_3=CLR_1=CLR_2=CLR_3=1$ (non actives).

[1] Donner le type de bascule utilisée dans ce système et rappeler la table de vérité de cette bascule

[2] Donner les équations de D_1 , D_2 et D_3 en fonction de Q_1 , Q_2 et Q_3

$$D_1 = D_2 = D_3 =$$

[3] Déterminer l'état des entrées D1, D2 et D3 pour les 2 premières impulsions d'horloge

- 1^{ère} impulsion d'horloge
 - $D_1=$

 $D_2 =$

 $D_3 =$

- 2^{ème} impulsion d'horloge
 - \bullet $D_1=$

 $D_2 =$

 $D_3 =$

[4] Dessiner le chronogramme du circuit (D₃, D₂, D₁, Q₃, Q₂, Q₁) pour les 9 premières impulsions d'horloge

[5] Donner la fonction de ce système et préciser si le système est synchrone ou asynchrone (justifier votre réponse).

[6] Donner l'état de D_1 , D_2 , D_3 , Q_1 , Q_2 et Q_3 si on active (mise à 0) les entrées CLR_1 , CLR_2 et CLR_3 sur le front descendant de la $5^{\text{ème}}$ impulsion d'horloge ?

•
$$D_1 =$$

$$D_2 =$$

$$D_3 =$$

$$\bullet$$
 $Q_1=$

$$Q_2 =$$

$$Q_3 =$$