Estructuras de Datos y Algoritmos

Departamento de Informática Universidad de Valladolid

Curso 2014-15

Grado en Ingeniería Informática
Grado en Estadística

Motivación (vida real)

- Detectar (medir) si la solución a un problema es escalable o no. Saber que en caso contrario pueden existir otras alternativas (otros algoritmos y/o estructuras de datos).
- Comprender cómo (y porqué) se estructuran las bibliotecas de contenedores más usadas.
 - Standard Template Library (STL) de C++
 - Collections en Java, .Net
 - Organización interna de lenguajes como JavaScript (hashtables), Python (dictionaries)
- Poder crear aplicaciones donde la eficiencia sea esencial.

Ejemplo #1: **© sнаzam**

- Aplicación para averiguar la canción que está sonando en un entorno (mediante el teléfono móvil).
- Se obtiene un fragmento de unos 10 seg. y se envía a un servidor.
- El servidor identifica las posibles canciones y envía la lista al teléfono móvil.
- El fragmento puede ser cualquiera.
- El entorno puede ser ruidoso.
- El número de posibles canciones supera el millón.
- La identificación debe tardar segundos.

Metodología

- Cada canción se representa por su huella acústica: Información comprimida de forma especial para facilitar su identificación.
- La base de datos almacena huellas, no canciones.
- Es necesario encontrar la huella adecuada:
 - Máxima compresión.
 - Mínima entropía (capacidad de identificación).
 - Resistente a ruido
 - Independiente de la posición dentro de la canción.
- El método se basa en el cálculo de puntos especiales (constelación) en el espectograma.

Espectograma

Fig. 1A - Spectrogram

Constelación

Fig. 1B - Constellation Map

Diferencial

Fig. 1C - Combinatorial Hash Generation

Primera etapa

- Procesar un número grande de canciones para encontrar los parámetros óptimos de generación de constelaciones.
- Problema 1: Convencer a una discográfica para que te permita trastear con su base de datos de canciones.
- Problema 2: Encontrar un algoritmo que pueda tratar los datos en un tiempo razonable y en equipos modestos (4 meses de cómputo).

Segunda etapa

- Encontrar una estructura de datos adecuada para el servidor.
- Que almacene las huellas de las canciones de manera que la búsqueda de fragmentos sea lo más rápida posible.
- Que permita actualizar su contenido en tiempo razonable.
- Que ocupe un espacio de almacenamiento razonable.

www.ee.columbia.edu/~dpwe/papers/Wang03-shazam.pdf

Ejemplo #2: ProasCyL

- Aplicación para optimizar la localización de recursos sanitarios en Castilla y León.
- Objetivos:
 - Localizar poblaciones donde situar servicios sanitarios.
 - Que cubran la mayor demanda posible.
 - En el menor tiempo de acceso.
 - Con otras restricciones secundarias.
 - Problema parametrizable
- Dificultades:
 - Más de 6.000 poblaciones en CyL.
 - Problema con características combinatorias

ProasCyL

Basada en GIS	ProasCyL
ED y algoritmos "estandar"	ED específica, algoritmos adaptados al problema
Resuelve un problema restringido	Resuelve el problema general
Ejecución: Supercomputador "Origin", 18.000 €	Ejecución: PC normal
Tiempo de cómputo:	Tiempo de cómputo:

Basada en GIS	ProasCyL
ED y algoritmos "estandar"	ED específica, algoritmos adaptados al problema
Resuelve un problema restringido	Resuelve el problema general
Ejecución: Supercomputador "Origin", 18.000 €	Ejecución: PC normal
Tiempo de cómputo: 4 dias	Tiempo de cómputo: 3 seg.