

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 08 Oct 2020 1 of 4

Sample Information

Patient Name: 王文賢 Gender: Male ID No.: F120553642 History No.: 39779550

Age: 53

Ordering Doctor: DOC1373L 陳三奇

Ordering REQ.: 0AWYGSE Signing in Date: 2020/10/07

Path No.: \$109-89712 **MP No.:** F20084

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$109-28920A Percentage of tumor cells: 90%

Note:

Sample Cancer Type: Liver Cancer

Table of Contents	Page
Variant Details	1
Biomarker Descriptions	2

Report Highlights

O Relevant Biomarkers O Therapies Available O Clinical Trials

Relevant Biomarkers

No relevant biomarkers found in this sample.

Prevalent cancer biomarkers without relevant evidence based on included data sources CTNNB1 p.(D32G) c.95A>G

Variant Details

DNA Sequence Variants								
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
CTNNB1	p.(D32G)	c.95A>G	COSM5681	chr3:41266098	17.76%	NM_001904.3	missense	1999
ALK	p.(D1529E)	c.4587C>G		chr2:29416366	100.00%	NM_004304.4	missense	2000
ALK	p.(I1461V)	c.4381A>G		chr2:29416572	99.95%	NM_004304.4	missense	1999
ALK	p.(=)	c.3375C>A		chr2:29445458	100.00%	NM_004304.4	synonymous	1993
FGFR3	p.(=)	c.1953G>A		chr4:1807894	100.00%	NM_000142.4	synonymous	1011

RET

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

100.00% NM_020975.4

Tel: 02-2875-7449

1993

Date: 08 Oct 2020 2 of 4

synonymous

Variant Details (continued)

DNA Sequence Variants (continued)								
Gene	Amino Acid Change	Coding	Variant ID	Locus	Allele Frequency	Transcript	Variant Effect	Coverage
PDGFRA	p.(=)	c.1701A>G		chr4:55141055	100.00%	NM_006206.5	synonymous	1998
FGFR4	p.(P136L)	c.407C>T		chr5:176517797	99.60%	NM 213647.2	missense	2000

chr10:43613843

Biomarker Descriptions

c.2307G>T

CTNNB1 (catenin beta 1)

p.(=)

Background: The CTNNB1 gene encodes catenin beta-1 (β-catenin), an integral component of cadherin-based adherens junctions involved in maintaining adhesion and regulating the growth of epithelial cell layers¹. CTNNB1 binds to the APC protein in the cytoplasm and also interacts with TCF and LEF transcription factors in the nucleus to regulate WNT signaling². Steady state levels of CTNNB1 are regulated by ubiquitin-dependent proteolysis^{3,4,5}.

Alterations and prevalence: Recurrent somatic mutations leading to CTNNB1 activation are common in cancer. The most prevalent alterations include missense mutations in exon 3 at codons S33, S37, T41, and S45 that block phosphorylation by GSK-β and inhibit CTNNB1 degradation^{6,7,8,9}. These activating mutations are observed in diverse solid tumors and have a prevalence of 20-30% in hepatocellular carcinoma, 20% of uterine carcinoma, and 15% of adrenocortical carcinoma^{10,11,12,13,14,15,16}.

Potential relevance: Currently, no therapies have been approved for CTNNB1 aberrations. CTNNB1 alterations in EGFR positive lung cancer have been proposed to promote cancer progression and limit the response to EGFR tyrosine kinase inhibitors¹⁷.

Taipei Veterans General Hospital

Pathologist:

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 08 Oct 2020 3 of 4

Signatures		
Testing Personnel:		
Laboratory Supervisor:		

Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 08 Oct 2020 4 of 4

References

- 1. Valenta et al. The many faces and functions of β-catenin. EMBO J. 2012 Jun 13;31(12):2714-36. PMID: 22617422
- 2. Korinek et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997 Mar 21;275(5307):1784-7. PMID: 9065401
- 3. Aberle et al. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997 Jul 1;16(13):3797-804. PMID: 9233789
- 4. Winston et al. The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 1999 Feb 1;13(3):270-83. PMID: 9990852
- 5. Kitagawa et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO J. 1999 May 4;18(9):2401-10. PMID: 10228155
- Liu et al. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell. 2002 Mar 22;108(6):837-47.
 PMID: 11955436
- 7. Miyoshi et al. Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res. 1998 Jun 15;58(12):2524-7. PMID: 9635572
- 8. Gao et al. Exon 3 mutations of CTNNB1 drive tumorigenesis: a review. Oncotarget. 2018 Jan 12;9(4):5492-5508. PMID: 29435196
- Morin et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997 Mar 21;275(5307):1787-90. PMID: 9065402
- 10. Schulze et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015 May;47(5):505-511. PMID: 25822088
- 11. Ahn et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology. 2014 Dec;60(6):1972-82. PMID: 24798001
- 12. Harding et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin. Cancer Res. 2018 Oct 29. PMID: 30373752
- 13. Cancer et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013 May 2;497(7447):67-73. PMID: 23636398
- 14. Soumerai et al. Clinical Utility of Prospective Molecular Characterization in Advanced Endometrial Cancer. Clin. Cancer Res. 2018 Dec 1;24(23):5939-5947. PMID: 30068706
- 15. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 16. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 17. Blakely et al. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat. Genet. 2017 Dec;49(12):1693-1704. PMID: 29106415