Reporte de práctica 5 Lanzamiento de proyectiles (Gráficas en Gnuplot)

Rosa Luz Zamora Peinado 13 de marzo de 2015

1. Introducción

El lanzamiento de proyectiles es descrito por una forma de movimiento en la que un objeto o partícula (llamado proyectil) es lanzado en la superficie de la Tierra o cerca de ella, y su trayectoria sigue un patrón curvo bajo la acción de la gravedad.

La única fuerza significante que actua en el objeto es la gravedad, la cual actua hacia abajo y causa una aceleración negativa.

Ignorando la resistencia del aire, decimos que el movimiento horizontal es a velocidad constante, mientras que el movimiento vertical está uniformemente acelerado. La descripción de su velocidad y posición está dada por las siquientes ecuaciones:

The vertical and horizontal components of a projectile's motion are independent.

$$x = (v_0 \cos \theta_0)t, \qquad v_x = v_0 \cos \theta_0,$$

$$y = (v_0 \sin \theta_0)t - \frac{1}{2}gt^2, \qquad v_y = v_0 \sin \theta_0 - gt.$$

En esta práctica se graficaron las trayectorias del movimiento de proyectiles usando un programa que le pedía al usuario un ángulo de lanzamiento y una velocidad inicial.

A continuación se muestran los resultados obtenidos con lanzamientos a 0, 30, 60 y 90 grados.

2. Programa en Fortran

program lanzamiento_de_proyectiles
 implicit none
 real, parameter :: pi = 4.0*atan(1.0)
 real :: v, a, t, h, d, a_grados
 real, parameter :: g = 9.81
 real:: x(2000),y(2000)
 integer :: i

```
write(*,*) 'Ingrese un ángulo de lanzamiento para el proyectil(grados)'
read *, a_grados
write(*,*) 'Ingrese una velocidad de lanzamiento para el proyectil(metros p
read *, v
a = a_grados*pi/180.0
t = 2*v*sin(a)*(1/g)
h = v*v*sin(a)*sin(a)*(1/(2*g))
d = v*v*sin(2*a)*(1/g)
print * , 'Tiempo de vuelo =' , t
print * , 'Alcance máximo =' , d
print * , 'Altura máxima =' , h
open(1, file='proj.dat')
do i=1,2000
     t = (float(i)*0.01)
     x(i) = v*cos(a)*t
     y(i) = v*sin(a)*t - 0.5*g*t*t
     write(1,*) x(i), y(i)
     if (y(i)<0) exit
end do
close(1)
```

end program lanzamiento_de_proyectiles

2.1. Lanzamiento a 0 grados

Fig 2.1.1. Resultados del lanzamiento a 0 grados.

Fig 2.1.2. Gráfica del lanzamiento a 0 grados.

2.2. Lanzamiento a 30 grados

Fig 2.2.1. Resultados del lanzamiento a 30 grados.

Fig 2.2.2. Gráfica del lanzamiento a 30 grados.

2.3. Lanzamiento a 60 grados

Fig 2.3.1. Resultados del lanzamiento a 60 grados.

Poductos Gestor de a...

Fig 2.3.2. Gráfica del lanzamiento a 60 grados.

Lanzamiento a $90~{\rm grados}$ 2.4.

Fig 2.4.2. Gráfica del lanzamiento a 90 grados.

2.5. Comparación de los lanzamientos

Fig 2.5.1. Gráfica de comparación de los lanzamientos