Programming Report of Chapter 1

张志心 混合 2106

日期: 2023 年9月30日

1 设计思路

1.1 函数类

函数类作为一个抽象的模板类,其中 operator()函数为纯虚函数,用于函数的求值运算,Diff()函数为求导运算,(对于向量函数而言,即为求梯度运算)。

```
template <class Xtype, class Ytype = Xtype>
class Function{
public:
    virtual Ytype operator() (const Xtype& x) const = 0;
    virtual Ytype Diff (const Xtype& x) const {custom_assert(0, "Diff() has not be designed\" n");}
};
```

为了简化求导的运算,还对本次实验中使用的常见的 $F: double \rightarrow double$ 类型的函数的求导运算进行了特化,使用

$$f'(x) \simeq \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}.$$

作为导数的近似,取 $10*std::numeric_limits<NUM>::epsilon()$ 作为 ϵ 的值。当继承类并未定义 Diff() 函数时,默认采用如下函数作为求导函数:

```
template <>
NUM Function < NUM, NUM >:: Diff (const NUM& x) const {
    // the default difference calculator
    return ((*this)(x+EPS_MIN)-(*this)(x-EPS_MIN))/(2*EPS_MIN);
}
```

在使用时,需要定义一个具体的函数作为 class function 的继承,并定义其求值运算(必要的)和求导运算(可选择的)。比如函数类 f(x) = x - tan(x) 的定义如下:

```
class func : public Function<double, double>{
  public:
    double operator() (const double& x) const {
        return x-tan(x);
    }
    double Diff(const double& x) const {
        return 1-1/(sq(cos(x)));
    }
};
```

1.2 方程求解类

class EquationSolver 为方程求解基类,其中只含有一个 solve() 的纯虚函数。 代码实现见 EquationSolver.hpp, 在使用时, 请先引用该文件(#include "EquationSolver.hpp")。

1.2.1 Bisection Method

class Bisection_Method: public EquationSolver 为二分法的求解类,用于求解方程 f(x)=0 在初始区间上的解。其成员变量包括: 求解函数 f(x)、迭代初始区间 [a,b]、迭代终止条件 ϵ 和 δ 、以及最大的迭代次数 Maxiter。当以下任何一个条件不满足时,结束迭代:

$$\begin{cases} |f(\frac{a+b}{2})| \le \epsilon \\ |a-b| \le \delta \\ iter \le Maxiter. \end{cases}$$

二分法求解类的构造函数定义如下:

```
Bisection_Method(const Function<Type> &F, const Type &a, const Type &b,

const NUM& eps = 1e-7, const NUM& delta = 1e-8, const int& Maxiter = 50) :

F(F), a(a), b(b), Maxiter(Maxiter), eps(eps), delta(delta) {}
```

可以使用 Bisection_Method solver(f, a, b);构造一个二分法求解实例(其中参数采用默认值),然后调用 solver.solve()来进行求解运算。

1.2.2 Newton Method

class Newton_Method: public EquationSolver 为牛顿法的求解类,用于求解方程 f(x)=0 在初始值附近的解。其成员变量包括: 求解函数 f(x)、初始值 x_0 、迭代终止条件 ϵ 、以及最大的迭代次数 Maxiter。当以下任何一个条件不满足时,结束迭代:

$$\begin{cases} |f(x_n)| \le \epsilon \\ iter \le Maxiter. \end{cases}$$

牛顿法求解类的构造函数定义如下:

可以使用 Newton_Method solver(f, x0);构造一个牛顿法求解实例(其中参数采用默认值),然后调用 solver.solve()来进行求解运算。

1.2.3 Secant Method

class Secant_Method: public EquationSolver 为割线法的求解类,用于求解方程 f(x)=0 在初始值附近的解。其成员变量包括: 求解函数 f(x)、初始值 x_0,x_1 、迭代终止条件 ϵ 和 δ 、以及最大的迭代次数 Maxiter。当以下任何一个条件不满足时,结束迭代:

$$\begin{cases} |f(x_n)| \le \epsilon \\ |x_n - x_{n-1}| \le \delta \\ iter \le Maxiter. \end{cases}$$

割线法求解类的构造函数定义如下:

可以使用 Secant_Method solver(f, x0, x1);构造一个割线法求解实例(其中参数采用默认值),然后调用 solver.solve()来进行求解运算。

2 求解结果

2.1 问题 B

设置 $\epsilon = 10^{-7}$, $\delta = 10^{-8}$ 二分法求解结果如下:

f(x)	[a,b]	近似解 x*	$ f(x^*) $	迭代次数 iter	终止区间长度 b* - a*
$x^{-1} - \tan x$	$[0, \pi/2]$	0.8603336024	0.0000000495	24	0.0000000936
$x^{-1} - 2^x$	[0, 1]	0.6411857605	0.0000000562	17	0.0000076294
$2^{-x} + e^x + 2\cos x - 6$	[1, 3]	1.8293836117	0.0000000400	22	0.0000004768
$\frac{x^3+4x^2+3x+5}{2x^3-9x^2+18x-2}$	[0, 4]	0.1178765632	-94846963.165	29	0.0000000075

二分法没有办法正确求解第四个函数 $f(x)=\frac{x^3+4x^2+3x+5}{2x^3-9x^2+18x-2}$ 的根。这是由于该函数的分子在 [0,4] 上恒大于 0,而分母在 [0,4] 上有一个零点,导致二分法实际在求解的是分母的零点,而原函数该 区间上没有零点,其在 $x\simeq 0.11788$ 处发散。

2.2 问题 C

即为求解 $f(x) = x - \tan x$ 的零点, $f'(x) = 1 - \frac{1}{\cos x^2}$ 。 设置 $\epsilon = 10^{-7}$, 牛顿法求解结果如下:

f(x)	x_0	近似解 x*	$ f(x^*) $	迭代次数 iter
$f(x) = x - \tan x$	4.5	4.4934094579	0.0000000000	3
	7.7	7.7252518369	0.0000000000	4

2.3 问题 D

使用割线法求解 $\sin(\frac{x}{2}) - 1$, $e^x - \tan x$, $x^3 - 12x^2 + 3x + 1$,设置迭代终止条件 $\epsilon = 10^{-7}$, $\delta = 10^{-8}$ 。为每一个函数都设置了不同的初始值 x_0, x_1 ,得到结果如下表所示。

f(x)	<i>x</i> ₀	<i>x</i> ₁	近似解 x*	$ f(x^*) $	迭代次数 iter	$ x_n - x_{n-1} $
$f(u) = \sin(X)$ 1	0	$\frac{\pi}{2}$	3.1409322315	.0000000545	16	0.0004081633
$f(x) = \sin(\frac{x}{2}) - 1$	14	15	15.7074076584	0.0000000386	15	0.0003433855
$f(u) = a^{\chi}$ to u	1	1.4	1.3063269404	0.0000000000	9	0.0000000151
$f(x) = e^x - \tan x$	-2.8	-3.1	-3.0964122941	0.000000103	2	0.0001338862
$f(x) = x^3 - 12x^2 + 3x + 1$	0	-0.5	-0.1886854043	0.0000000063	6	0.0000019974
$f(x) = x^{2} - 12x^{2} + 5x + 1$	8	9	11.7371421792	0.0000000004	10	0.0000001458

可以发现,不同的初始值会导致不同的求解结果。这是因为函数有不止一个零点,而割线法更倾向于找到离初始点近的零点。下为三个函数的函数图像:

(c)
$$x^3 - 12x^2 + 3x + 1$$

2.4 问题 E

求解方程:

$$f(h) = V - L \left[\frac{1}{2} \pi r^2 - r^2 \arctan \frac{h}{r} - h \sqrt{r^2 - h^2} \right] = 0.$$

对函数 f(h) 进行求导得到:

$$f'(h) = L \left[\frac{r}{\sqrt{1 - (h/r)^2}} + \frac{x^2}{\sqrt{r^2 - h^2}} + \sqrt{r^2 - h^2} \right].$$

问题所求水深即为r-h。

代入V = 12.4, L = 10, r = 1,使用二分法、牛顿法、割线法求解结果如下:

Method	初始条件	近似解 x*	$ f(x^*) $	迭代次数 iter	ϵ	δ
Bisection	[a,b] = [0,r]	0.1640625000	0.0414932414	6	10^{-7}	0.02
Newton	$x_0 = 0$	0.1653981634	0.0151449150	1	0.01×20	
Secant	$x_0 = 0, x_1 = r$	0.1662278952	0.0012200043	3	10^{-7}	$\frac{1}{2} \left[\left(\frac{0.01}{0.547} \right)^{0.618} - 0.01 \right]$

最后,使用 Bisection 法,Newton 法,Secant 法得到的问题的答案分别为 0.8359375、0.8346018366、0.8337721048。

- 备注: 关于 δ 和 ϵ 的选取问题, 1. 对于二分法, $\left| \frac{a_n + b_n}{2} x^* \right| \leq \frac{1}{2} \left| a_n b_n \right|$,所以将 δ 设置为 2×0.01 ; 2. 对于牛顿法,考虑在 x^* 处 Taylor 展开:

$$f(x_n) \simeq f(x^*) + (x_n - x^*)f'(x^*) \Rightarrow \left| x_n - x^* \right| \le \left| \frac{f(x_n)}{f'(x^*)} \right|.$$

根据估计,函数在零点处导数约为 20,因此取 $\epsilon = 20 \times 0.01$,事实上,还可以为牛顿法增加一个 δ 项,然而这样会增加其计算负担,牛顿法的效率通常很高,精确性也很好,所以一般不需要增加迭 代终止条件;

3. 对于割线法的收敛性,有

$$|x_n - x^*| \le M|x_{n-1} - x^*|^{1.618} = M(-x_n + x_{n-1} + x_n - x^*)^{1.618}.$$

$$\delta = M(\delta + 0.01)^{1.618} \Rightarrow \delta = (\frac{0.01}{M})^{0.618} - 0.01.$$

取 $M = \left| \frac{f''(x^*)}{f'(x^*)} \right|$ 作为其近似值,并且为整个式子增加一个 $\frac{1}{2}$ 的因子,得到 δ 如上表所示。

2.5 问题 F

该问题需要把角度转化为弧度制,记 $k = \frac{\pi}{180}$ 。求解方程如下:

$$f(x) = A\sin kx \cos kx + B\sin^2 kx - C\cos kx - E\sin kx = 0.$$

$$f'(x) = k \left[A(\cos^2 kx - \sin^2 kx) + 2B\sin kx \cos kx + C\sin kx - E\cos kx \right].$$

(a) 和 (b) 使用牛顿法,采用了不同的参数值 (D = 55, 30),求解结果如下:

x_0	近似解 x*	$ f(x^*) $	迭代次数 iter	ϵ
33°	32.9721748224°	0.0000000000	2	10^{-7}
33°	33.1689038218°	0.0000000013	2	10^{-7}

对于 (c) 题,在 $[0^\circ, 160^\circ]$ 中以 10° 为间距取了若干组 x_0, x_1 作初始值,可以发现不同的初始值将会 收敛到不同的零点,具体结果如下:

x_0	x_1	近似解 x*	$ f(x^*) $	迭代次数 iter
0°	10°	11.4999999493°	0.0000000586	8
10°	20°	32.9721748162°	0.0000000057	6
20°	30°	32.9721748224°	0.0000000000	5
30°	40°	32.9721748157°	0.0000000061	4
40°	50°	32.9721748224°	0.0000000000	5
50°	60°	32.9721748224°	0.0000000000	5
60°	70°	32.9721748225°	0.0000000001	6
70°	80°	11.4999999999°	0.0000000001	7
80°	90°	216867.0278251776°	0.0000000000	13
90°	100°	1407.0278251776°	0.0000000001	8
100°	110°	147.0278252723°	0.0000000452	8
110°	120°	147.0278251774°	0.0000000001	6
120°	130°	147.0278251735°	0.0000000019	6
130°	140°	147.0278251776°	0.0000000000	6
140°	150°	147.0278251767°	0.0000000004	5
150°	160°	147.0278251356°	0.0000000200	7

可以发现,其中147°与33°两个恰好互补,前者恰好是车从左边上右边的坡的对称情景。

割线法的结果与初值点的选取有很大的关系,一般情况下,割线法会容易偏向于找到初值点附近零点,这是基于每次求割线后与坐标轴的交点一般不会离当前两个点太远,若在初值点附近存在零点,则容易收敛到附近的零点上。

然而也会有特殊的情况,比如当割线斜率的绝对值太小时,割线与坐标轴的交点离当前的两个点就 会很远。

进一步的,考虑割线法的收敛性质:

$$|x_n - x^*| \leq M|x_{n-1} - x^*||x_{n-2} - x^*|$$
 其中, $M = \frac{\max_{x \in \mathcal{B}} |f''(x)|}{2\min_{x \in \mathcal{B}} |f'(x)|}$, $\mathcal{B} = [x^* - \delta, x^* + \delta]$, $\delta = \max(|x_1 - x^*|, |x_0 - x^*|)$, 当 M 充分小的时候,一定会收敛到 x^* ,否则 $\{x_n\}$ 就可能会收敛到其他零点,甚至不收敛。

参考文献

[1] 张庆海. "Notes on Numerical Analysis and Numerical Methods for Differential Equations". In: (2023).