A. TYPES OF VARIATION

CONTINUOUS	DISCONTINUOUS (DISCRETE)
Human height/mass/intelligence	Blood group/tongue rolling/albinism
Controlled by two or more genes (polygenic) and the environment	Controlled by genes only (usually one gene) with little/no effect from the environment
Individuals fit within a range of two extreme groups	Individuals fit into one of a number of non-overlapping groups
Results in a range of phenotypes between two extremes	Results in a limited number of separate phenotypes with no intermediates
Tend to be quantitative (can be measured with numbers)	Tend to be qualitative (cannot be measured with numbers)
Drawn as a frequency histogram	Drawn as a bar chart

B. GENE POOL

All the genes and their different alleles, present in an interbreeding population

C. TYPES OF NATURAL SELECTION

1. Directional

- One extreme phenotype in the range is selected for.
- The other extreme phenotype is selected against.

Favours one extreme

Shifts the distribution left or right

Example: peppered moths (see SL notes).

2. Disruptive

- Extreme phenotypes are selected for.
- Intermediate phenotypes are selected against.

Favours both extreme phenotypes

• Example: Bird species *Passerina amoena*. 1 year-old males with the dullest and brightest feathers are better at securing high-quality territories than males with an intermediate feather colour. This allows them to pair with females and breed.

3. Stabilising

- · Intermediate phenotypes are selected for.
- Extreme phenotypes are selected against.

Decreases extreme variations

Narrows the distribution

Example: sickle-cell anaemia in African populations.

• The Hb^S allele for sickle-cell anaemia gives some protection against malaria.

Genotype	Phenotype	
Hb ^S Hb ^S	Can die from sickle-cell anaemia	
Hb ^S Hb ^A	No sickle-cell anaemia and protected from malaria	
Hb ^A Hb ^A	Can die from malaria	

Heterozygous individuals have a selective advantage.

D. TYPES OF REPRODUCTIVE ISOLATION

- For **speciation**, **reproductive isolation** is needed, so that some individuals in a population are **prevented** from **interbreeding** with others.
- There are three types of reproductive isolation.

Type	Description	Example
Temporal Isolation	Populations breed at different times of the year.	Some species of cicada insects breed every 13 th year.
Behavioural Isolation	Populations have behaviour that prevents them from breeding.	Different mating calls, courtship dances or markings.
Geographical Isolation	Populations live in different areas or a physical barrier separates them in some way, such as a river or mountain.	Lava lizards migrate from island to island in the Galapagos islands, becoming reproductively isolated.

E. TYPES OF SPECIATION

- Sympatric speciation = population stays in the same geographical area (temporal and behavioral isolation)
- Allopatric speciation = population separates into two new populations by a physical barrier (geographical isolation)

In terms of the **timescale**, speciation can occur in **two** ways:

GRADUALISM

Gradual cumulative changes over long periods of time

PUNCTUATED EQUILIBRIUM

Sudden abrupt changes

Long periods without significant change and short periods of rapid change

F. SPECIATION

• This is the **formation** of a **new species** or the **splitting** of a **species**.

The Process

- speciation is the formation of a new species/splitting of a species
- (populations become) reproductively isolated
- example given of temporal/behavioural/geographical isolation
- (so) no interbreeding / no gene flow (between the populations)
- different conditions/environment/selective pressures/natural selection for the two populations
- different features/adaptations are selected for / different individuals survive
- (over a long time) populations become genetically different / have different allele frequencies / different gene pools
- (so) unable to produce <u>fertile</u> offspring
- can happen by gradualism/changes accumulating over long periods
- can happen by punctuated equilibrium/sudden changes over a short period of time

G. EXAM QUESTIONS ON SPECIATION

- You need to **read** the question **very carefully**. Consider the following two questions:

Explain how speciation occurs [8]

This is what you have just read about above.

Explain how natural selection can lead to speciation [8]

- Here, you need to also write in **more detail** about the whole process of **natural selection**, which will operate **differently** on **each population** after **reproductive isolation**.
- variation is required for natural selection in a species/population
- mutation/meiosis/sexual reproduction is a source of variation
- competition/more offspring produced than the environment can support
- adaptations make individuals suited to their environment
- better adapted individuals survive and reproduce
- (and) pass on useful alleles
- speciation is formation of a new species/splitting of a species
- reproductive isolation of separated populations
- geographic isolation «of populations can lead to speciation»
- temporal/behavioural isolation «of populations can lead to speciation»
- disruptive selection/differences in selection «between populations can lead to speciation»
- gradual divergence of populations due to natural selection/due to differences in environment
- changes in the gene pools «of separated populations»
- interbreeding becomes impossible/no fertile offspring produced «so speciation has happened»

H. POLYPLOIDY

- Polyploidy is having more than two sets of homologous chromosomes.
- Polyploid individuals are **reproductively isolated**
- Polyploidy can cause instant/immediate speciation.
- Triploid (3n) organisms have 3 sets of homologous chromosomes.
- Tetraploid (4n) organisms have 4 sets of homologous chromosomes.
- Polyploidy individuals tend to be larger.

Normal Meiosis In Plants

How polyploidy plants can be produced

- Joining of a diploid gamete with a (normal) haploid gamete produces a triploid.
- Joining two diploid gametes produces a tetraploid (plants can do self-fertilisation).
- Meiosis fails in triploids because homologous chromosomes cannot pair up.
- Tetraploids cannot cross/produce fertile offspring with diploid plants.
- Tetraploids can form a new species as they can cross with each other.
- **Speciation** by **polyploidy** is more common in **plants** than in animals as they may lack separate sexes or can reproduce asexually
- A good example of polyploidy in plants is the Allium genus (onion, garlic, chives, leeks).

Speciation in Allium

- The genus *Allium* contains flowering plants and includes onions, garlic, chives and leeks.
- In many of these species **polyploidy** has occurred, resulting in **reproductively isolated** populations with their own **unique phenotypes**.

Examples of polyploidy in Allium species include:

Name of	Polyploidy	Number of
plant		chromosomes
Onion	Diploid (2n)	16
Keeled garlic	Triploid (3n)	24
Chinese chives	Tetraploid (4n)	32
Field garlic	Pentaploid (5n)	40
Blue chives	Octoploid (8n)	66

How farmers can use polyploidy

- **Polyploid** crops may be particularly desirable to farmers for a number of reasons:
- Allows for the production of seedless fruits
 e.g. triploid watermelons are infertile and hence do not produce seeds
- 2. Polyploid crops will typically **grow larger** and demonstrate **improved longevity** and **disease resistance** (known as "hybrid vigour")

Consequently, farmers may **induce polyploidy** in certain plant species by treating plants with certain **drugs** (e.g. colchicine)

I. HOMOLOGOUS v ANALAGOUS STRUCTURES

HOMOLOGOUS STRUCTURES	ANALAGOUS STRUCTURES
Same basic structure but	Different structures but
adapted for different functions	used for the same function
e.g. pentadactyl limb	e.g. eyes of humans and insects
Share more recent common ancestor/	Do not share (more) recent common
same evolutionary origin	ancestor/different evolutionary origin
Arise by divergent evolution/	Arise by convergent evolution
adaptive radiation	
Used for natural classification	Used for artificial classification
Classification based on these	
matches evolutionary history	