

Prova sem consulta. Duração: 2h.

2ª Prova de Reavaliação

- * Não são consideradas as folhas sem identificação. Justifique convenientemente todos os cálculos que efetuar;
- *A desistência só é possível após 1 hora do início da prova;
- * Não é permitida a utilização de máquinas de calcular gráficas nem de microcomputadores.
- 1. [3,6] Seja $\int_C (1-y^2)dx + (x+x^2)dy$, em que C é a fronteira da região limitada por y = 2x, y = -x e $0 \le x \le 2$ percorrida no sentido retrógrado. Esboce a linha C e determine o valor do integral.
- [3,6] Calcule o trabalho do campo vetorial F(x, y, z) = (y+1, -x+y, -z) ao longo da curva de interseção das superfícies $x^2 + 2y^2 = z^2 + 1$ e z = y e descrita no sentido direto visto da parte positiva do eixo dos zz.
- [3,6] Seja a superfície 2x+2y+z=6, com $x \ge 0$, $y \ge 0$, $z \ge 0$. Faça o seu esboço, **3.** parametrize-a e calcule a sua área.
- [3,6] Obtenha o fluxo da função de campo vetorial $F(x, y, z) = (0, y^2, 0)$ através da superfície $z = \frac{2}{3}(x^{3/2} + y^{3/2})$, com $0 \le x \le 1$ e $0 \le y \le 1 - x$; indique a sua direção.
- **5.** [3,6] Considere o integral $\int_{0}^{1} \int_{0}^{x} \int_{0}^{2} y \, dz \, dy \, dx + \int_{1}^{2} \int_{0}^{\sqrt{2x-x^2}} \int_{0}^{2} y \, dz \, dy \, dx$.
 - a) Esboce o domínio de integração.
 - **b**) Reescreva-o em coordenadas cilíndricas e calcule o seu valor.
- **6.** [2,0] Considere um campo escalar $f: \mathbb{R}^2 \to \mathbb{R}$. Usando o teorema de Green, mostre que se tem

$$\iint_{D} \left(\frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}} \right) dx dy = \oint_{C} \frac{\partial f}{\partial n} ds$$

onde D é uma região do plano limitada pela curva C e $\frac{\partial f}{\partial n}$ é a derivada direcional de f na direção normal exterior a C.