

Lumière Extrême L' Optique Relativiste et applications EA 572 Part.1 Ecole Polytechnique

Gérard A. MOUROU

Laboratoire d'Optique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France

gerard.mourou@ensta.fr

Durée des Impulsions depuis 1990

Shortest laser pulse today:
5 fs = 2 cycles of the electric field

Generating short pulses = "mode-locking"

·Locking the phases of the laser modes yields an ultrashort pulse.

Small-Scale Self-Focusing

Instabilities grow with a maximum growth rate:

$$g_{\text{max}} = \frac{2\pi}{\lambda} \left(\frac{n_2 I}{n_0} \right)$$

B-integral < 3 for good beam quality:

$$B = \frac{2\pi}{\lambda} \int_{0}^{L} n_2 I(z) dz$$

Chirped Pulse Amplification

D. Strickland and G. Mourou 1985

Matched Stretcher-Compressor

1000 Times Expansion/Compression of Optical Pulses for Chirped Pulse Amplification"

M. Pessot, P. Maine, and G. Mourou, Optics Commun. 62, 419-421 (June 1987)

Bound Electron Nonlinear Optics

 $F \not\propto x$

The field necessary corresponds to hv/λ^3

V << C

- · Harmonics
- Optical Rectification
- ·Self-focusing

Nonlinear Optics (bound electron)

Relativistic Optics

$$\vec{F} = q \left(\vec{E} + \left(\frac{\vec{v}}{c} \wedge \vec{B} \right) \right)$$

a)Classical optics v<<c, b) Relativistic optics v~c

$$a_0 << 1, a_0 >> a_0^2$$

$$a_0 >> 1$$
, $a_0 << a_0^2$

Relativistic Optics

Strong Motion of Matter

Large Laser Pressure

Relativistic Rectification E,

- 2) The charge separation generates an electrostatic longitudinal field. (Tajima and Dawson: Wake Fields or Snow Plough) $E_s = \frac{c \gamma m_o \omega_p}{e} = \sqrt{4 \pi \gamma m_o c^2 n_e}$
- 3) The electrostatic field $E_s \approx E_L$

Relativistic Rectification

-Ultrahigh Intensity Laser is associated with Extremely large E field.

Recent results on electrons acceleration - Setup

Recent results on electrons acceleration

Quasi-monochromatic beam with E_{max} =160 MeV at n_e =2.10¹⁹ cm⁻³

Tirinal Laser Plasma Lab

5 GeV proton bunch at solid state density

3d PIC simulations, A.Pukhov, Theorie, MPQ,

Front and back acceleration mechanisms

Peak energy scales as : $E_{\rm M} \sim (I_{\rm L} \sphericalangle \lambda)^{1/2}$

Reflected radiation spectra: the slow power-law decay 1D simulation

Gordienko, et al., Phys. Rev. Lett. 2004

The Gaussian laser pulse $a=a_0\exp[-(t/\tau)^2]\cos\omega_0 t$ is incident onto an overdense plasma layer with $n=30n_c$.

The color lines correspond to laser amplitudes a_0 =5,10,20.

The broken line marks the analytical scaling $I \sim \omega^{-8/3}$.

Possibility to produce zeptosecond pulses!!!

Moving plasma profile deflecting the isolated attosecond pulses at the instants of their generation

Relativistic electrons create the Doppler compression

N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, "Relativistic generation of isolated attosecond pulses in a λ³ focal volume," Phys. Rev. Lett. 92, 063902-1 (2004).

Scalable Isolated Attosecond Pulses

Electron bunches of ~100 as duration would produce backward

CoherentThomson scattering efficiency

- Cross-section for the backward Thomson scattering:
 - ~N+N(N-1)exp(-2(k'd')2)

depends on the factor in the exponent: $k'd'=kd(1+V/c)^2\gamma^2$.

- The resulting backward Thomson cross-section
 σ_TN² exp(-8(kd)²γ⁴) ~ 10⁻⁴ exp(-8(kd)²γ⁴) cm²
 is far above the channel cross-section σ_{Ch}=10-8 cm²
- Limitation for d and γ: kd < γ²(-0.125 ln(σ_{Ch}/σ_TN²))^{1/2}
- Attosecond bunches with width d ~ 1/kγ² ~ (100 as) · c

Bunch: N particles with Gaussian distribution

$$\gamma_{photon} = \frac{\lambda}{4\gamma^2}$$
 for $\gamma = 100$ $\eta \sim 1$ efficiency

$$\gamma_{\rm photon} = 40 \ {\rm keV}$$

For
$$\gamma = 10^3$$
 , $\gamma_{\text{photon}} = 6 MeV$

N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk,

V. Yanovsky, and G. Mourou, Attosecond Electron Bunches, Phys. Rev. Lett. 93, 195003 (2004).

Laser-Induced Nonlinear QED

EVBacamand Calibbe collysides ed 41ke 4 affelectric

Schwinger Field
$$E_s = \frac{2m_0c^2}{e\hbar_c}$$
 with $\hbar_c = \frac{\hbar}{m_0c^2}$
 $E_s = 1.3 \ 10^{16} \text{ V/cm}$

Vacuum Tunneling
$$W \propto \exp\left(-\frac{\pi E_s}{E}\right)$$

 $I_s = 10^{30} W/cm^2$

Unstable Particle Acceleration Muon and neutrino Beams

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$

Pions have 20ns lifetime (6m). They can only be accelerated up to 100MeV during this time with conventional technology. Their mass is \sim 200MeV, to increase their lifetime 100times, to 2 μ s, we need to increase their energy by 100 to 20GeV. This can be achieved with laser technology over only 20 μ m.

Lumière Extrême L' Optique Sub-Relativiste et ses Applications EA 572 Part.2 Ecole Polytechnique

Gérard A. MOUROU

Laboratoire d'Optique Appliquée – LOA ENSTA – Ecole Polytechnique – CNRS PALAISEAU, France

gerard.mourou@ensta.fr

Shortest laser pulse today: 5 fs = 2 cycles of the electric field

Generating short pulses = "mode-locking"

Locking the phases of the laser modes yields an ultrashort pulse.

Can we make « attosecond » pulses?

No lasers... go back to laser intensity

Higher Harmonic Generation During a Half Cycle of Driving Field

1.8 x10¹⁴ W/cm², 5.2 fs (FWHM), 785 nm in Ar

Harmonics: source of attosecond pulses

Harmonic output in Ne

 $E = 51 \text{ mJ}, \ \phi = 21 \text{ mm}$ $P_{\text{Ne}} = 9 \text{ Torr}, \ L_{\text{med}} = 4 \text{ cm}$ 13 nm harmonics with DM Output energy: 50 nJ

C.E.: 1 x 10-6

BASIC NON-LINEAR PROCESSES

(1) Self-Focusing

Optical Kerr Effect : $n = n_0 + n_2 I(r,t)$

BASIC NON-LINEAR PROCESSES

(2) Multi-Photon Ionization (MPI) and Plasma Defocusing

$$MPI \rightarrow \Delta n = -\frac{\rho(I)}{\rho_c}$$

 $\rho(I)$: electronic density ; $\rho_e = 2 * 10^{21} cm^{-3}$

With:

$$\frac{\partial \rho}{\partial t} = \sigma |E|^{2\alpha} (N - \rho)$$

N: neutral density, o:cross-section

 α : # photons for MPI of N_2/O_2 =10 (800nm)

Negative Lens

Propagation distance z

Defocusing