Grado en Ingeniería Informática

SISTEMAS DE AYUDA A LA DECISIÓN

Práctica 7. TOPSIS.

Alumno: Sergio Perea de la Casa (spc00033@red.ujaen.es), DNI: 77433569K.

Profesor: Luis Martínez López (martin@ujaen.es)

Índice

Ejercicio 1.	3
Normalización distribuida.	3
Normalización ideal.	5
Ejercicio 2.	7
Enunciado.	7
Pesos de los criterios comparándolos por pares en una matriz.	8
Normalización.	8
Normalización distribuida.	8
Normalización ideal.	9

Ejercicio 1.

A partir del enunciado del ejercicio propuesto, se realizan las siguientes formas de plantear y resolver un problema mediante TOPSIS.

Normalización distribuida.

Para la normalización distributiva tenemos que tener en cuenta primero que necesitamos normalizar la tabla respecto a la siguiente fórmula.

$$r_{ia} = \frac{x_{ia}}{\sqrt{\sum_{a=1}^{n} x_{ia}^2}}$$
 for $a = 1, ..., n$ and $i = 1, ..., m$.

Donde a partir de los datos de las tablas siguientes, generamos dicha distribución para cada una de las alternativas respecto a cada uno de los criterios:

	Personalidad	Vida en el extranjero	Examen	Experiencia laboral
Ana	7	9	9	8
Tomás	8	7	8	7
Juan	9	6	7	12
Emma	6	11	8	6
Peso	0,1	0,4	0,3	0,2
Normalización d	istributiva			
	Personalidad	Vida en el extranjero	Examen	Experiencia laboral
Ana	0,461566331	0,531253202	0,560315526	0,46736499
Tomás	0,527504379	0,413196935	0,498058245	0,408944366
Juan	0,593442426	0,354168802	0,435800964	0,701047485
Emma	0,395628284	0,64930947	0,498058245	0,350523743
Peso	0,1	0,4	0,3	0,2

El siguiente paso a realizar es añadir el peso que tiene cada criterio a sus correspondientes valores. Esto simplemente es multiplicar el valor final (peso) por la columna que le corresponde.

Normalización d	istributiva			
	Personalidad	Vida en el extranjero	Examen	Experiencia laboral
Ana	0,461566331	0,531253202	0,560315526	0,46736499
Tomás	0,527504379	0,413196935	0,498058245	0,408944366
Juan	0,593442426	0,354168802	0,435800964	0,701047485
Emma	0,395628284	0,64930947	0,498058245	0,350523743
Peso	0,1	0,4	0,3	0,2
Norm. Distrib. N	lult. por los pesos			
	Personalidad	Vida en el extranjero	Examen	Experiencia laboral
Ana	0,046156633	0,212501281	0,168094658	0,093472998
Tomás	0,052750438	0,165278774	0,149417474	0,081788873
Juan	0,059344243	0,141667521	0,130740289	0,140209497
Emma	0,039562828	0,259723788	0,149417474	0,070104749
Peso	0,1	0,4	0,3	0,2

Ahora nos queda el paso más característico del modelo TOPSIS; es decir, identificar PIS y NIS (calificaciones normalizadas ponderadas). Para ello, necesitamos buscar el intervalo en el que se está aplicando respecto a estas alternativas por cada uno de los criterios. Se obtienen los siguientes intervalos de [menor_valor_alt_crit, mayor_valor_alt_crit].

Id. PIS & NIS	Personalidad	Vida en el extranjero	Examen	Experiencia laboral
A (+)	0,059344243	0,259723788	0,168094658	0,140209497
A (-)	0,039562828	0,141667521	0,130740289	0,070104749

Tras obtener el menor y mayor valor que las alternativas han generado respecto a cada uno de los criterios, necesitamos calcular para cada una de las alternativas, para todos los criterios, cuál es la distancia que existe entre dicho valor de alternativa al menor valor y al mayor valor. Además, obtenemos el coeficiente de proximidad relativa de cada acción para poder clasificar las diferentes alternativas.

$$d_a^+ = \sqrt{\sum_i (v_i^* - v_{ai})^2}, \quad a = 1, \dots, m,$$

$$d_a^- = \sqrt{\sum_i (v_i^- - v_{ai})^2}, \quad a = 1, \dots, m.$$

$$C_a = \frac{d_a^-}{d_a^+ + d_a^-}.$$

Norm. Distrib. Distancias						
	d(A (+))		d(A (-))		C (A)	
Ana	0,067736095	Ana	0,083679889	Ana	0,552648979	
Tomás	0,112805786	Tomás	0,034882092	Tomás	0,236187913	
Juan	0,123825002	Juan	0,072842159	Juan	0,370382928	
Emma	0,075198519	Emma	0,119524556	Emma	0,61381814	

Por último, ya tenemos la clasificación gracias al coeficiente de proximidad relativa de cada acción. Por lo que, siendo la alternativa ganadora **Emma**, la clasificación que nos quedaría es:

Norm.Distrib. Ranking			
Ana	2		
Tomás	4		
Juan	3		
Emma	1		

Es **importante saber** que el ranking **no es robusto**, ya que depende de los máximos y mínimos obtenidos en cada uno de los criterios respecto a los valores de las alternativas que han aparecido en este problema; es decir, en caso de que se añadiera una nueva alternativa que modifique dichos valores de intervalos provocaría cambios en los cálculos de distancias y por lo tanto modificaciones en el ranking.

Normalización ideal.

Dicha normalización respecto al proceso anterior nos varía en el inicio del modelo TOPSIS; es decir, la normalización ideal se basa en una mayor representación que indica cuál de las alternativas para un criterio concreto es el mejor valor entre las demás (representado con valor igual a uno). Existe normalización ideal para criterios de beneficio y para coste.

1. Criterios de beneficio (Maximizar):

$$r_{ai} = \frac{x_{ai}}{u_a^+}$$
 for $a = 1, \dots, n$ and $i = 1, \dots, m$, $u_a^+ = \max(x_{ai})$ for all $a = 1, \dots, n$;

2. Criterios de coste (Minimizar):

$$r_{ai} = \frac{x_{ai}}{u_a^-}$$
 for $a = 1, \dots, n$ and $i = 1, \dots, m$, $u_a^- = \min(x_{ai})$ for all $a = 1, \dots, n$.

Por lo tanto, sabiendo que en el ejercicio a resolver tiene todos sus criterios de beneficio (maximizar), necesitamos encontrar el máximo valor entre las alternativas para cada uno de los criterios y aplicar la fórmula.

Normalización I	deal			
	Personalidad	Vida en el extranjero	Examen	Experiencia laboral
Ana	0,77777778	0,818181818	1	0,666666667
Tomás	0,888888889	0,636363636	0,88888889	0,583333333
Juan	1	0,545454545	0,77777778	1
Emma	0,666666667	1	0,88888889	0,5
Peso	0,1	0,4	0,3	0,2
Máximo	9	11	9	12

La anterior tabla ya tiene aplicada la fórmula, indicando en la última fila cuál ha sido el valor máximo con el que se ha hecho.

Los siguientes pasos son los mismos aplicados anteriormente para la normalización distribuida. Los iré indicando de forma esquemática:

Multiplicación por los pesos de cada criterio.

Norm. Ideal multiplicado por los pesos				
	Personalidad	Vida en el extranjero	Examen	Experiencia laboral
Ana	0,07777778	0,327272727	0,3	0,133333333
Tomás	0,088888889	0,254545455	0,266666667	0,116666667
Juan	0,1	0,218181818	0,233333333	0,2
Emma	0,066666667	0,4	0,266666667	0,1
Peso	0,1	0,4	0,3	0,2

Obtener intervalo mínimo y máximo de los criterios según las alternativas.

Id. PIS & NIS	Personalidad	Vida en el extranjero	Examen	Experiencia laboral
A (+)	0,1	0,4	0,3	0,2
A (-)	0,066666667	0,218181818	0,233333333	0,1

Calcular las distancias y el coeficiente de proximidad relativa.

Norm. Ideal Distancias					
	d(A (+))		d(A (-))		C (A)
Ana	0,10113124	Ana	0,132588984	Ana	0,567297864
Tomás	0,171277661	Tomás	0,056612985	Tomás	0,248421715
Juan	0,193655095	Juan	0,105409255	Juan	0,352463459
Emma	0,11055416	Emma	0,184848485	Emma	0,625750948

Una vez más, obtenemos como mejor candidata a **Emma**, pero se indica a continuación la clasificación ordenada respecto a todas las alternativas.

Norm. Ideal Ranking				
Ana	2			
Tomás	4			
Juan	3			
Emma	1			

La **validez** de estos datos sufren las mismas consecuencias que las explicadas en la normalización distribuida. Sabemos que **no es robusto**, ya que en caso de añadir alternativas que superen dichos límites de valores en los criterios podría modificar el ranking.

Es importante, por ello, predefinir unas alternativas que sean fronteras no modificables incluso al añadir nuevas alternativas para poder hacer del método TOPSIS un método automático con cierta **robustez**.

Ejercicio 2.

Enunciado.

Tras muchos años de estudio, los alumnos de informática deciden irse a estudiar por un tiempo al extranjero; Las posibilidades que han pensado han sido los siguientes países: México, Japón, Suecia o Suiza. Obviamente, hay que tener en cuenta una serie de criterios para reflexionar sobre cuál es la mejor alternativa como país anfitrión en donde estudiar. Los criterios a tener en cuenta son el gasto mensual, seguridad del país, adaptabilidad y facilidad de comunicación.

CRITERIOS	Gasto mensual	Seguridad	Adaptabilidad	Facilidad de comunicación
Gasto mensual	1	1/5	1/3	2
Seguridad	5	1	2	7
Adaptabilidad	3	1/2	1	5
Facilidad de comunicación	1/2	1/7	1/5	1

Cada país tiene asignado una serie de valores para cada uno de los criterios explicados antes, los cuáles tenemos como criterios de beneficio a todos exceptuando el **gasto mensual**, el cual es un **criterio de coste**:

	Gasto mensual	Seguridad	Adaptabilidad	Facilidad de comunicación
México	3	2	8	10
Japón	8	10	3	2
Suecia	9	8	7	7
Suiza	10	8	7	7

Pesos de los criterios comparándolos por pares en una matriz.

Antes de obtener los pesos de los criterios comparados por pares, debemos de comprobar que la matriz de comparación es **consistente**. Para ello utilizaré la **obtención de pesos** de criterios del programa usado en AHP, el cual nos indica el valor de **ratio de consistencia** (**CR**) que si no supera 0.1 significa que es suficientemente consistente.

CRITERIOS	Gasto mens	Seguridad	Adaptabilidad	Facilidad de
Gasto mens	1	1/5	1/3	2
Seguridad	1/1/5	1	2	7
Adaptabilidad	1/1/3	1/2	1	5
Facilidad de	1/2	1/7	1/5	1

Obtenemos un **CR** = 0.007445247550375587; es decir, es suficientemente **consistente**, por lo que los pesos obtenidos para cada uno de los criterios es el siguiente:

- Gasto mensual: 10,98%.

Seguridad: 52,67%.Adaptabilidad: 30,05%.

- Facilidad de comunicación: 6,30%.

Normalización.

Normalización distribuida.

Como se ha explicado anteriormente, volvemos a realizar el mismo procedimiento de normalización distribuida aplicado en el ejercicio anterior. Para ello, necesitamos tener en cuenta la **transformación** de los criterios de **coste**.

Para ello, se ha escogido la transformación que se aplicó en la práctica 3; es decir la siguiente transformación:

$$a_i = (-a_i) + a_{max} + a_{min}$$

Una vez aplicada la transformación al criterio de coste. Podemos aplicar el mismo procedimiento de normalización distribuida, dando los siguientes resultados.

Normalización distributiva				
México	0,816496581	0,131306433	0,61177529	0,703597545
Japón	0,40824829	0,656532164	0,229415734	0,140719509
Suecia	0,326598632	0,525225731	0,535303379	0,492518281
Suiza	0,244948974	0,525225731	0,535303379	0,492518281
Peso	0,1098	0,5267	0,3005	0,063

Norm. Distrib. Mult. por los pesos				
México	0,089651325	0,069159098	0,183838475	0,044326645
Japón	0,044825662	0,345795491	0,068939428	0,008865329
Suecia	0,03586053	0,276636393	0,160858665	0,031028652
Suiza	0,026895397	0,276636393	0,160858665	0,031028652
Peso	0,1098	0,5267	0,3005	0,063

Id. PIS & NIS	Personalidad	Vida en el extranjero	Examen	Experiencia laboral
A (+)	0,089651325	0,345795491	0,183838475	0,044326645
A (-)	0,026895397	0,069159098	0,068939428	0,008865329

Norm. Distr	Norm. Distrib. Distancias				
	d(A (+))		d(A (-))		C (A)
México	0,27663639	México	0,135637761	México	0,328998944
Japón	0,12833018	Japón	0,277216861	Japón	0,683562771
Suecia	0,09154965	Suecia	0,228183173	Suecia	0,713668273
Suiza	0,0970886	Suiza	0,228006989	Suiza	0,701353692

Ya tenemos un ganador entre las alternativas, **Suecia**. En este caso, el ranking queda de la siguiente forma:

Norm.Distrib. Ranking	
México	4
Japón	3
Suecia	1
Suiza	2

Normalización ideal.

En este caso, tenemos que utilizar la normalización ideal a partir de si es un criterio de beneficio o si es de coste.

De esta forma, obtenemos las siguientes tablas:

Normalización Idea	l			
	Gasto mensual	Seguridad	Adaptabilidad	Facilidad de comunicación
México	1	0,2	1	1
Japón	0,375	1	0,375	0,2
Suecia	0,333333333	0,8	0,875	0,7
Suiza	0,3	0,8	0,875	0,7
Peso	0,1098	0,5267	0,3005	0,063
Max/Min	3	10	8	10
Norm. Ideal multipl	icado por los pesos			
	Gasto mensual	Seguridad	Adaptabilidad	Facilidad de comunicación
México	0,1098	0,10534	0,3005	0,063
Japón	0,041175	0,5267	0,1126875	0,0126
Suecia	0,0366	0,42136	0,2629375	0,0441
Suiza	0,03294	0,42136	0,2629375	0,0441
Peso	0,1098	0,5267	0,3005	0,063

Id. PIS & NIS	Gasto mensual	Seguridad	Adaptabilidad	Facilidad de comunicación	
A (+)	0,1098	0,5267	0,3005	0,063	
A (-)	0,03294	0,10534	0,1126875	0,0126	
Norm. Ideal Distan	cias				
	d(A (+))		d(A (-))		C (A)
México	0,42136	México	0,209096042	México	0,3316584
Japón	0,206211265	Japón	0,421440464	Japón	0,6714559
Suecia	0,134992248	Suecia	0,351353595	Suecia	0,7224357
Suiza	0,13701141	Suiza	0,351334531	Suiza	0,7194378

Por lo tanto, como ocurría en la normalización distribuida, el país ganador es **Suecia**. Además, el ranking obtenido es el mismo (simplemente cambian los valores del coeficiente de proximidad relativa de cada acción).

Norm. Ideal Ranking	
<u>México</u>	4
<u>Japón</u>	3
<u>Suecia</u>	1
<u>Suiza</u>	2