Bijections with composition (S_A)

Miliyon T.

October 7, 2014

Let A be a non empty set and S_A denotes the set of all bijections of A onto itself i.e.

$$S_A = \{f : A \to A \text{ and } f \text{ is 1-1 \& onto}\}$$

Claim S_A with composition, (S_A, \circ) , is a group.

Proof. First of all $S_A \neq \emptyset$ because $\mathrm{Id}(x) = x$ for all $x \in A$. Thus, $\mathrm{Id} \in S_A$.

1. Closed: Let $f, g \in S_A$. Then $f: A \to A$ and $g: A \to A$.

$$f \circ g : A \to A$$
 is 1-1 correspondence

Thus, $f \circ g \in S_A$. Hence S_A is closed under \circ .

2. Associative: Let $f, g, h \in S_A$

$$(f \circ g) \circ h = f \circ (g \circ h)$$
 (Composition of function is associative)

3. **Identity**: Let $f \in S_A$. Then $f : A \to A$ is 1-1 and onto. Define

$$\mathrm{Id}:A\to A\quad \text{ by }\mathrm{Id}(x)=x$$

then

$$f \circ \mathrm{Id} : A \to A$$

Let $x \in A$,

$$(f \circ \operatorname{Id})(x) = f(\operatorname{Id}(x)) = f(x) \Rightarrow f \circ \operatorname{Id} = f$$

 $(\operatorname{Id} \circ f)(x) = \operatorname{Id}(f(x)) = f(x) \Rightarrow \operatorname{Id} \circ f = f$

Hence $f \circ \text{Id} = f = \text{Id} \circ f$. Thus, the identity element of S_A is $\text{Id} : A \to A$ defined by Id(x) = x for all x in A.

4. **Inverse**: Let $f \in S_A$. Then $f : A \to A$ is 1-1 and onto. Then $f^{-1} : A \to A$ is 1-1 and onto. This implies $f^{-1} \in S_A$.

Therefore (S_A, \circ) is a group.

Remark 0.1. If $A = \{1, 2, 3, ..., n\}$, then instead of S_A we write S_n .