RA:	NC	ME:		
RE	SPONDA	-	-	STINADO DE CADA QUESTÃO, AS ESTA FOLHA
a duas molas disco, que rola	de cons no plano ue as du ocamento	tante elástic horizontal s as molas se	ca k , combes encon	isco uniforme de massa m está conecta conforme mostrado na figura. O centro clizar, possui velocidade v para a direita, tram em suas posições não comprimida ara a direita.
			RESPOS	STA:
2ª Questão (3	,5 Pontos	s): O pequer	no blocc	o retangular de massa m desliza sem atr
•	•			e a uma distância d da linha de centro
•				intânea $u,$ em relação à placa, conforr $$ rial da força que atua sobre o bloc $$
sabendo que	a placa gi S: O MOV	ra a uma ve	elocidad	le angular constante ω , conforme indicac ENUM PLANO HORIZONTAL, DESPREZ
DESENVOLV	IMENTO:			
				w rad/s m d
	,			
DIAGRAMA (CINÉTICO	:		
				RESPOSTA:

 ${\bf 3^a}$ Questão (3,5 Pontos): Um avião possui uma velocidade horizontal v constante no ponto mais baixo de um loop no plano vertical, a uma altitude h. O raio da curvatura do loop é ρ . Determine os valores \ddot{r} e $\ddot{\theta}$ registrados pelo radar em O, sabendo que a sua leitura angular θ é também conhecida nesse instante.

Fórmulas:

Velocidade:
$$\mathbf{v}_{A} = \mathbf{v}_{B} + \mathbf{\omega} \times \mathbf{r}_{A/B} + \mathbf{v}_{A/B}$$
,
$$\mathbf{v}_{\mathbf{r},\theta} = \dot{r} \, \mathbf{e}_{r} + r \dot{\theta} \, \mathbf{e}_{\theta}$$

Aceleração:
$$\mathbf{a}_{_{A}} = \mathbf{a}_{_{B}} + 2\mathbf{\omega} \times \mathbf{v}_{_{A/B}} + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}_{_{A/B}}) + \mathbf{a}_{_{A/B}} + \mathbf{\omega} \times \mathbf{r}_{_{a/B}}$$

$$\mathbf{a}_{_{\mathbf{r},\theta}} = (\ddot{r} - r\dot{\theta}^{2})\mathbf{e}_{_{r}} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\mathbf{e}_{_{\theta}}$$

Momento de inércia no eixo de um disco de raio r e massa m : $I_{zz} = \frac{mr^2}{2}$

Energia cinética:
$$T = \frac{1}{2} m (\mathbf{v}_G \cdot \mathbf{v}_G) + \frac{1}{2} (\boldsymbol{\omega} \cdot \mathbf{H}_G)$$

Energia Potencial Elástica:
$$U = \frac{1}{2}k(\Delta x)^2$$