System binarny jest opisany tylko na liczbach 0 i 1 i 1-dnym bicie

System 8-kowy jest opisany na liczbach [0, 1, 2, 3, 4, 5, 6, 7] i opisujemy go na 3 bitach

System 16-kowy jest opisany na liczbach [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F] i opisany jest na 4-rech bitach dodatkowo trzeba pamiętać że cyfry: A = 10, B = 11, C = 12, D = 13, E = 14, F = 15

Warto zapamiętać rozwinięcie potęgowe liczby 2 na 8 bitach ©

128, 64, 32, 16, 8, 4, 2, 1

Pokażę w jak łatwy sposób można zamienić systemy liczb nie korzystając z dzielenia tylko pomocy systemu binarnego.

Zamiana z systemu dziesiętnego $_{(10)}$ na binarny $_{(2)}$. Bierzemy liczbę i patrzymy na rozwinięcie potęgowe liczby 2 staramy się dobierać najwyższą możliwą liczbę np.

• 103₍₁₀₎

(- /							
128	64	32	16	8	4	2	1
0	1	1	0	0	1	1	1

Wynik: 01100111₍₂₎

24₍₁₀₎

128	64	32	16	8	4	2	1
0	0	0	1	1	0	0	0

Wynik: 00011000₍₂₎

• 255₍₁₀₎

(==)								
128	64	32	16	8	4	2	1	
1	1	1	1	1	1	1	1	

Wynik: 11111111₍₂₎

Dzięki zamianie z dziesiętnego na binarny oraz odwrotnie polegającego na tej samej zasadzie patrzenia na rozwinięcie potęgowe liczby 2 np. (wystarczy że będziemy dodawać miejsca gdzie są 1)

• 0000000₍₂₎

128	64	32	16	8	4	2	1
0	0	0	0	0	0	0	0

Wynik: 0₍₁₀₎

• 10101010₍₂₎

•	•						
128	64	32	16	8	4	2	1
1	0	1	0	1	0	1	0

Wynik: 170₍₁₀₎

• 01101110₍₂₎

•	<u>'</u>						
128	64	32	16	8	4	2	1
0	1	1	0	1	1	1	0

Wynik: 110(10)

Znając system binarny możemy praktycznie zamieniać na każdy inny system tylko wystarczy zapamiętać iż system 8-kowy opisany jest na 3 bitach a 16 jest opisany na 4 bitach

Jak prosto zamienić liczbę dziesiętną na system 8-kowy lub 16-kowy? Wykorzystam do tego system binarny ze względu na to iż bardzo łatwo jest zamienić z dziesiętnego na binarny a mając już tzw. notację 0, 1 mogę podzielić na odpowiednie bity i zapisać odpowiednimi literami © na koniec dodam tabelkę która pokazuje każdą cyfrę w systemie 0 i 1.

103₍₁₀₎ Najpierw zamieniam na system binarny na 8 bitach.

128	64	32	16	8	4	2	1
0	1	1	0	0	1	1	1

Mając tak zamienioną liczbę mogę teraz podzielić na odpowiednie bity dla 16 są to 4 a dla 8 są to 3.

Zacznę od 16-kowego ze względu na to że łatwiej podzielić.

8	4	2	1	8	4	2	1	
0	1	1	0	0	1	1	1	
	6	5		7				

Wynik: 67₍₁₆₎

(Dlaczego zamieniłem w tabelce potęgi 2? Ze względu na to, że opisujemy to tylko na 4 bitach maksymalna liczba w 16 to F co daje nam 15, a dodanie do siebie 1+2+4+8 = 15 © to samo dzieje się w 8-kowym tylko że tam maksymalna liczba to 7 dlatego 3 bity)

Teraz zamienię na system 8-kowy.

2	1	4	2	1	4	2	1
0	1	1	0	0	1	1	1

Ze względu na to iż 8-kowy można opisać na 3 bitach muszę dopisać brakujące bity z przodu tablicy (to samo można zrobić z systemem 16-kowym jeśli brakuje)

4	2	1	4	2	1	4	2	1
0	0	1	1	0	0	1	1	1

Teraz mogę podzielić na równe części i obliczyć:

4		2	1	4	2	1	4	2	1
0		0	1	1	0	0	1	1	1
	1				4		7		

Wynik: 147₍₈₎

Działa to też w drugą stronę kiedy chcemy zamienić z innego systemu na system dziesiętny:

F1₍₁₆₎
Rozpisujemy F na 4bitach oraz 1 na kolejnych 4bitach

8	4	2	1	8	4	2	1	
	F =	15		1				
1	1	1	1	0	0	0	1	

Mając liczbę w systemie binarnym 11110001₍₂₎ już łatwo potrafimy zamienić ją na 10-siętny.

128	64	32	16	8	4	2	1
1	1	1	1	0	0	0	1

Wynik: 241₍₁₀₎

• 377₍₈₎

Rozpisuję każdą liczbę osobno na 3 bitach

	4	2	1	4	2	1	4	2	1	
		3			7		7			
Ī	0 1 1			1	1	1	1 1 1			

Posiadając liczbę w systemie binarnym $011111111_{(2)}$ możemy pierwsze 0 usunąć ze względu na to że nie zmienia nic w liczbie patrzymy tylko na 1-ki.

128	64	32	16	8	4	2	1
1	1	1	1	1	1	1	1

Wynik: 255₍₁₀₎

	BINA	ARNY		ÓSEMKOWY	DZIESIĘTNY	SZESTNASTWOY
0	0	0	0	0	0	0
0	0	0	1	1	1	1
0	0	1	0	2	2	2
0	0	1	1	3	3	3
0	1	0	0	4	4	4
0	1	0	1	5	5	5
0	1	1	0	6	6	6
0	1	1	1	7	7	7
1	0	0	0		8	8
1	0	0	1		9	9
1	0	1	0			A = 10
1	0	1	1			B = 11
1	1	0	0			C = 12
1	1	0	1			D = 13
1	1	1	0			E = 14
1	1	1	1			F = 15

Systemy binarne z zapisem liczb ujemnych.

System ZM – Znak Moduł dla mnie najprostszy system pisania liczb ujemnych. Pierwszy bit pokazuje nam czy jest to liczba ujemna (1) czy dodatnia (0)

Przykłady zamiany liczby binarnej na dziesiętną:

• 10011010_(ZM) Rozpisujemy liczbę:

ZM	64	32	16	8	4	2	1
1	0	0	1	1	0	1	0

ZM = 1 czyli jest to liczba ujemna

16+8+2 = 26 Wynik: $-26_{(10)}$

• 011010_(ZM)

Rozpisujemy liczbę:

ZM	16	8	4	2	1
0	1	1	0	1	0

ZM = 0 jest to liczba dodatnia

16+8+2 = 26 Wynik: 26₍₁₀₎

• 110101010_(ZM)

Rozpisujemy liczbę:

ZM	128	65	32	16	8	4	2	1
1	1	0	1	0	1	0	1	0

ZM = 1 liczba ujemna

Wynik: -170₍₁₀₎

• 010101010_(ZM)

Rozpisujemy liczbę:

ZM	12	28 6	5 32	2 16	8	4	2	1
0	1	_ () 1	0	1	0	1	0

ZM = 0 liczba dodatnia

Wynik: 170₍₁₀₎

Zamiana z liczny dziesiętnej na liczbę ZM

• 152₍₁₀₎

Rozpisujemy liczbę binarnie

128	64	32	16	8	4	2	1
1	0	0	1	1	0	0	0

Dopisujemy na początku ZM oraz usuwany niepotrzebne zera

Wynik: 010011000_(ZM)

• -152₍₁₀₎

Rozpisujemy liczbę binarnie

128	64	32	16	8	4	2	1
1	0	0	1	1	0	0	0

Dopisujemy na początku ZM oraz usuwany niepotrzebne zera

Wynik: 110011000_(ZM)

33₍₁₀₎

Rozpisujemy liczbę binarnie

128	64	32	16	8	4	2	1
0	0	1	0	0	0	0	1

Dopisujemy na początku ZM oraz usuwany niepotrzebne zera

ZM	128	64	32	16	8	4	2	1
0	0	0	1	0	0	0	0	1

ZM	32	16	8	4	2	1
0	1	0	0	0	0	1

Wynik: 0100001_(ZM)

• -33₍₁₀₎

Rozpisujemy liczbę binarnie

128	64	32	16	8	4	2	1
0	0	1	0	0	0	0	1

Dopisujemy na początku ZM oraz usuwany niepotrzebne zera

Ī	ZM	128	64	32	16	8	4	2	1
Ī	1	0	0	1	0	0	0	0	1

ZM	32	16	8	4	2	1
1	1	0	0	0	0	1

Wynik: 1100001_(ZM)

System U1 tak samo jak w ZM pierwszy bit oznacza czy jest to liczba ujemna (1) czy dodatnia (0) z tym że przy liczbach ujemnych liczba binarna jest negowana.

Zamiana z liczby dziesiętnej na U1

• 166

Zapisujemy liczbę w systemie binarnym

128	64	32	16	8	4	2	1
1	0	1	0	0	1	1	0

Ma być to liczna dodatnia czyli nie negujemy dopisujemy z przodu tylko znak U1 i otrzymujemy wynik

U1	128	64	32	16	8	4	2	1
0	1	0	1	0	0	1	1	0

Wynik: 010100110_(U1)

-166

Zapisujemy liczbę w systemie binarnym

128	64	32	16	8	4	2	1
1	0	1	0	0	1	1	0

Ma być to liczna ujemna czyli negujemy dopisujemy z przodu tylko znak U1 i otrzymujemy wynik

Negacja:

128	64	32	16	8	4	2	1
1	0	1	0	0	1	1	0
0	1	0	1	1	0	0	1

Dopisanie U1

U1	128	64	32	16	8	4	2	1
1	0	1	0	1	1	0	0	1

Wynik: 101011001_(U1)

• 21

Zapisujemy liczbę w systemie binarnym

128	64	32	16	8	4	2	1
0	0	0	1	0	1	0	1

Ma być to liczna dodatnia czyli nie negujemy dopisujemy z przodu tylko znak U1 i otrzymujemy wynik

U1	128	64	32	16	8	4	2	1
0	0	0	0	1	0	1	0	1

U1	16	8	4	2	1
0	1	0	1	0	1

Wynik: 010101_(U1)

-21

Zapisujemy liczbę w systemie binarnym

128	64	32	16	8	4	2	1
0	0	0	1	0	1	0	1

Ma być to liczna ujemna czyli negujemy dopisujemy z przodu tylko znak U1 i otrzymujemy wynik

Usunięcie niepotrzebnych zer

16	8	4	2	1
1	0	1	0	1

Negacja:

16	8	4	2	1
1	0	1	0	1
0	1	0	1	0

Dopisanie U1

U1	16	8	4	2	1
1	0	1	0	1	0

Wynik: 101010_(U1)

Zamiana z liczby U1 na dziesiętną

• 01010101

Rozpisujemy liczbę

U1	64	32	16	8	4	2	1
0	1	0	1	0	1	0	1

U1 = 0 jest to liczba dodatnia nie jest negowana

Wynik: 85₍₁₀₎

11010101

Rozpisujemy liczbę

U1	64	32	16	8	4	2	1
1	1	0	1	0	1	0	1

U1 = 1 jest to liczba ujemna musimy zanegować aby otrzymać wynik

64	32	16	8	4	2	1
1	0	1	0	1	0	1
0	1	0	1	0	1	0

Wynik: -42(10)

• 010011001

Rozpisujemy liczbę

U1	128	64	32	16	8	4	2	1
0	1	0	0	1	1	0	0	1

U1 = 0 jest to liczba dodatnia nie jest negowana

Wynik: 153₍₁₀₎

• 110011001

Rozpisujemy liczbę

	U1	128	64	32	16	8	4	2	1
Ī	1	1	0	0	1	1	0	0	1

U1 = 1 jest to liczba ujemna musimy zanegować aby otrzymać wynik

128	64	32	16	8	4	2	1
1	0	0	1	1	0	0	1
0	1	1	0	0	1	1	0

Wynik: -102₍₁₀₎

System U2 nie wiem jak wyjaśnić dobrze ten system jest dla mnie ułomny. nadaje się do liczb ujemnych i w odróżnieniu od U1 tutaj zamiast negować odejmujemy. Są dwa sposoby obliczania pokażę ten który uważam za łatwiejszy.

Na system U2 z dziesiętnego

• 166₍₁₀₎

Akurat tej liczby na 8 bitach nie możemy zapisać ale całość wygląda tak jak normalnie napisanie liczby binarnej dopisanie na początku 0 bo jest to liczba dodatnia, usunięcie nadmiarowych zer o ile występują i otrzymujemy wynik.

128	64	32	16	8	4	2	1
1	0	1	0	0	1	1	0

U2	128	64	32	16	8	4	2	1
0	1	0	1	0	0	1	1	0

Wynik: 010100110_(U2)

-166₍₁₀₎

Przy ujemnych liczbach musimy wiedzieć jaką wartość ma U2 ponieważ od tej wartości odejmujemy liczbę a później zapisujemy. Widzimy że liczba 166 jest większa od 128 więc bit znaczący będzie mieć wartość 256 oraz będziemy opisywać na 9 bitach

Musimy teraz obliczyć wartość kodu pozostałych bitów

256 - 166 = 90

Posiadając liczbę 90 przerabiamy na postać binarną dopisujemy na początku znak U2 i posiadamy już wynik

U2	128	64	32	16	8	4	2	1
1	0	1	0	1	1	0	1	0

Wynik: 101011010_(U2)

21₍₁₀₎

128	64	32	16	8	4	2	1
0	0	0	1	0	1	0	1

U2	128	64	32	16	8	4	2	1
0	0	0	0	1	0	1	0	1

U2	16	8	4	2	1
0	1	0	1	0	1

Wynik: 010101_(U2)

-21₍₁₀₎

Tą liczbę możemy zrobić na 8 bitach tak więc bit znaczący będzie miał wartość 128. Całość wygląda następująco:

128 - 21 = 107

U2	64	32	16	8	4	2	1
1	1	1	0	1	0	1	1

Wynik: 11101011_(U2)

Na dziesiętny z U2

• 01010101_(U2)

Tutaj mamy zwykłe przeliczenie z binarnego na dziesiętny

U2	64	32	16	8	4	2	1
0	1	0	1	0	1	0	1

Wynik: 85

• 11010101_(U2)

Z przodu stoi jedynak jest to znak U2 czyli liczba jest ujemna mamy 8 bitów tak więc bit znaczący posiada wartość 128 teraz wystarczy obliczyć resztę wartości

U2	64	32	16	8	4	2	1
1	1	0	1	0	1	0	1

64+16+4+1 = 85

Posiadając obie wartości odejmujemy je

128-85=43

Wiemy że ma być to liczba ujemna tak więc wynik będzie:

Wynik: -43

• 010011001_(U2)

U2	128	64	32	16	8	4	2	1
0	1	0	0	1	1	0	0	1

Wynik: 153

• 110011001_(U2)

Wartość jest opisana na 9 bitach czyli bit znaczący będzie miał wartość 256 zostaje obliczyć resztę:

U2	12	28	64	32	16	8	4	2	1
1	:	1	0	0	1	1	0	0	1

128+16+8+1 = 153

256 - 153 = 103

Wynik: -103