Übung 2

Philip Magnus

October 27, 2024

Aufgabe 1

Ausdruck	Landau	Erklärung		
$n^4 + 12n^3 + 17n$	$O(n^4)$	n^4 Term wächst am stärksten und dominiert das Wachstum der Funktion		
$n^3 + 2n^2 \log_2 n$	$O(n^3)$	(1) hieraus ergibt sich, wenn $O(n) = c \cdot g(n)$ angewendet: $c = 3 g(n) = n^3$		
$n^2 + 2^n$	$O(2^n)$	$2^n \ge n^2 \ \forall \ n > 4$		
$\frac{13n^4 + 7n + 31}{n^4 + 1}$	O(1)	(2)		

(1)
$$n^3 + 2n^2 \log_2 n \le n^3 + 2n^2 \cdot n = n^3 + 2n^3 = 3n^3$$

(2)
$$13n^4 + 7n + 31 \le 13n^4 + n^4 + 31 \ \forall \ n \ge 3$$

 $14n^4 + 31 \le 31n^4 + 31 = 31(n^4 + 1)$
 $\frac{31(n^4 + 1)}{n^4 + 1} = 31$

Aufgabe 2

Ausdruck	Landau	Erklärung
$3n^2 + 7n + 1$	$O(n^2)$	$3n^2 + 7n + 1 \le 3n^2 + n^2 + 1 \ \forall \ n \ge 4$
$(n-1)(n^3-n^2)$	$O(n^4)$	$(n-1)(n^3 - n^2) = n^4 - n^3 - n^3 + n^2$
$n^2 + \log_2(\log_2(n))$	$O(n^2)$	$log_2(log_2(n))$ wächst sehr langsam, n^2 dominiert das Wachstum

Aufgabe 3

Ist korrekt, da:

$$f(n) = O(n^3), \ g(n) = O(n^2)$$
$$c \cdot n^3 \cdot c \cdot n^2 = c^2 \cdot n^3 \cdot n^2 = c^2 \cdot n^5$$
$$\Rightarrow O(n^5)$$

Aufgabe 4

a)

Q	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2*
q_2*	q_1	q_0

b)

Aufgabe 5

a)

δ	a	Q_{new}
$\rightarrow \{q_0, q_3\}$	$\{q_1,q_4\}$	s ₀ *
$\{q_1,q_4\}$	$\{q_2,q_5\}$	s_1
$\overline{\{q_2, q_5\}}$	$\{q_0, q_6\}$	s_2
$\boxed{\{q_0,q_6\}}$	$\{q_1,q_7\}$	s ₃ *
$\boxed{\{q_1,q_7\}}$	$\{q_2,q_3\}$	s_4
$\overline{\{q_2,q_3\}}$	$\{q_0, q_4\}$	s_5*
$\overline{\{q_0,q_4\}}$	$\{q_1,q_5\}$	s_6
q_1, q_5	$\{q_2, q_6\}$	s_7
$\boxed{\{q_2,q_6\}}$	$\{q_0, q_7\}$	s_8
$\overline{\{q_0, q_7\}}$	$\{q_1, q_3\}$	s_9*
$\overline{\{q_1,q_3\}}$	$\{q_2, q_4\}$	s_{10}
$\overline{\{q_2, q_4\}}$	$\{q_0, q_5\}$	s_{11}
$\overline{\{q_0, q_5\}}$	$\{q_1, q_6\}$	$s_{12}*$
q_1, q_6	$\{q_2, q_7\}$	s_{13}
$\overline{\{q_2, q_7\}}$	$\{q_0, q_3\}$	s_{14}

Aufgabe 6

a)

- benötigt wird ein Zustand für OK, lesen von 0
- Zustand für WARN, lesen von $1\,$
- bei lesen von 1 aus WARN \rightarrow REJCET
- bei lesen von Leerzeichen in Zustand WARN oder OK \to ACCEPT bei lesen von 0 in Zustand WARN \to OK

b)

Q	F	0	1	Ц
OK	(OK, \vdash, R)	(OK, 0, R)	(W, 1, R)	$(ACCEPT, \sqcup, R)$
WARN	_	(OK, 0, R)	(REJECT, 1, R)	$(ACCEPT, \sqcup, R)$
ACCEPT	_	_	_	_
REJECTT	_	_	_	_

$$Q = \{OK, WARN, ACCEPT, RECJECT\}$$

$$\Sigma = \{0,1\} \ \Sigma \subset \Gamma$$

$$\Gamma = \{0,1,\vdash,\sqcup\}$$

$$\delta:\ Q\times\Gamma\ \to\ Q\times\Gamma\times\{R,L\}$$

$$M = \{Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, OK, ACCEPT, REJECT\}$$