

UNITED INTERNATIONAL UNIVERSITY

Department of Computer Science and Engineering (CSE)

Course Syllabus

	Course Syllabus			
1	Course Title	Microprocessors and M	Aicrocontrollers Laboratory	
2	Course Code	CSE 4326		
3	Trimester and Year	Fall, 2024		
4	Pre- requisites	N/A		
5	Credit Hours	1.0		
6	Section	F		
7	Class Hours	Wed: 11:11 AM - 01:40 I	PM	
8	Classroom	505		
9	Instructor'	Shekh. Md. Saifur Rahi	man	
10	s Name Email	saifur@cse.uiu.ac.bd		
10		_		
11	Office	837		
12	Counseling Hours	<u>-</u>		
		Day	Counseling Hours	
		Saturday	8:30 AM - 11:10 AM, 12:31 PM - 3:10 PM	
		Sunday		
		Monday	As per makeup day schedule	
		Tuesday	12:31 PM - 1:50 PM	
		Wednesday	1:51 PM - 3:10 PM	
13	Text Book	None.		
14	Reference	None.		

15	Course Contents (approved by UGC)	Stude	ents will design simple	embedded :	systems using	the princi	ples learned in	CSE 425.
16	Course	СО	Description	Bloom's	Program	Knowl	Complex	Complex
	Outcomes		Description		_		_	
	(COs)	S		Domain	Outcome	edge Profile	Engg. Problems	Eng. Activities
		СО	Illustrate the	С	e	Fione		Attivities A1
		1	interfacing of	C	e Modern		(Any three)	Range of
		1	microcontroller		Tool	К3	P1	resources
			with different		Usage	Engine	Depth of	
						ering	Knowledge	A2
			input/output devices and			Funda	P2	Level of
						mental s	Wide	interactio n
			simulate using Proteus to			3	ranging	"
						K4		
			observe and			Speciali	P3	
			analyze behaviors			st	No obvious	
			of different			Knowle	solution	
			electronic			dge	P7	
			hardware circuits.	Α		K5	Many	
		CO	Design a basic	A	С	Design	Componen	
		2	embedded		Design of	W.C	ts	
			hardware group		solutions	K6 Technol		
			project.			ogy		
		CO	Work in a team	A	i Individual	00		
		3	and communicate		work and			
			effectively.		teamwork			
					j .			
					Communi cation			
			I	<u> </u>	cacion	l .	<u> </u>	
17	Teaching Methods	Lectu	re, Laboratory exercise	e and report	s, Project Dev	elopments.		

18	CO with			
	Assessme	CO	Assessment Method	(%)
	nt	-	Attendance	10%
	Methods	CO3	Class Performance	5%
		CO3	Report/Viva	15%
		CO2	Project	50%
		CO1	Final Exam	20%
	T 1 0 .11			-

20 Lab Outline

Class	Class Topics/Assignments		Lab Outcomes/Activities	
Lab1	Experiment 1: An introduction to Arduino, Interfacing of Gas Sensor using Arduino & Showing the Sensor Data in OLED Display	CO1, CO2	To understand the configuration of Microcontroller Arduino board, learn how to code, connect arduino to perform simple projects and simulation of the such projects in Proteus.	
Lab2	Experiment 1: An introduction to Arduino, Interfacing of Gas Sensor using Arduino & Showing the Sensor Data in OLED Display	CO1, CO2	To learn about gas sensor, understand how gas sensor works using Arduino. Also, learn about how OLED Display works. Interfacing Arduino, OLED Display and other sensors to perform different mini projects using Arduino. Also, learn how to use datasheet in real life experiment.	
Lab3	Experiment 2: Wifi Communication and building IoT based systems using Arduino	CO1, CO2	To learn how to use microcontroller ESP32 using Arduino IoT Cloud. Also, how to interface gas sensor to send data via wifi to store and display on the cloud	
Lab4	Experiment 3: Introduction to Raspberry Pi (Gen 4 Model B/B+)	CO1, CO2	To understand the configuration of the microprocessor Raspberry pi, how to	

		Lab5	Experiment No 4: Video processing using Raspberry Pi	CO1, CO2	setup the Pi and how to interface with Led using the GPIO of Pi. To understand the configuration of Pi camera and how to use it using Raspberry Pi. Also, learn how simple computer vision problems can be solved using Pi.	
			MIDTERM QUIZ			
		Lab6	Final Project Proposal	CO3	To understand the configuration of Arduino board and simulation in Proteus.	
		Lab7	Project Update 1	CO3	To understand the analog to digital conversion and digital to analog conversion. How to use analog input-output using Arduino Uno board.	
		Lab8	Project Update 2	CO3	To understand the fundamental of communication protocol and how configure in Arduino board.	
		Lab9	Project Update 3	CO3	To understand how to interface RF 433MHz Transmitter/Receiver module with Arduino board	
		Lab10	Final Presentation and Project showing	CO3	To understand the configuration of the Raspberry pi and how to interface with Led	

Appendix 1: Assessment Methods

Assessment Types	Marks
Attendance	10%
Class Performance	5%
Report/Viva	15%
Project	50%
Final Exam	20%

Appendix 2: Grading Policy

Letter	Marks %	Grade Point	Letter	Marks%	Grade Point
Grade			Grade		
A (Plain)	90-100	4.00	C+ (Plus)	70-73	2.33
A- (Minus)	86-89	3.67	C (Plain)	66-69	2.00
B+ (Plus)	82-85	3.33	C- (Minus)	62-65	1.67
B (Plain)	78-81	3.00	D+ (Plus)	58-61	1.33
B- (Minus)	74-77	2.67	D (Plain)	55-57	1.00
			F (Fail)	<55	0.00

Appendix-3: Program outcomes

	Program Outcomes
1	Engineering knowledge: Apply knowledge of mathematics, natural science, engineering fundamentals and Computer Science and Engineering to the solution of complex engineering problems.
2	Problem analysis: Identify, formulate, research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
3	Design/development of solutions: Design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
4	Investigation: Conduct investigations of complex problems using research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions
5	Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering problems, with an understanding of the limitations.
6	The engineer and society: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solutions to complex engineering problems.
7	Environment and sustainability: Understand and evaluate the sustainability and impact of professional engineering work in the solution of complex engineering problems in societal and environmental contexts.
8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
9	Individual work and teamwork: Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
11	Project management and finance: Demonstrate knowledge and understanding of engineering management principles and economic decision-making and apply these to one's 13 own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.