Analytical Approach to 3D Device Modeling of Nanoarchitectures for Solar Energy Conversion

August 23, 2011

Artit Wangperawong, Carl Hagglund and Stacey F. Bent Stanford University

Renewable energy devices load current PEC sunlight Counter-Semiconductor electrode electrode n-type silicon junction H₂ E_{c} ep-type Conduction silicon band H_2O photons 4 electron flow PV Valence band "hole" flow M. Grätzel, Nature, 414, 338 (2001).

http://solar-module-panels.com/pv/solar-electricit/solar-cells/

Carrier collection in planar devices

Diffusion length of minority carriers needs to be longer than the absorption depth for efficient carrier collection.

Problem: High quality materials are expensive. As for cheaper low quality materials, L_D is nanoscale.

Solution: Consider vertical nanojunctions to decouple absorption from collection.

Relevant to PEC as well.

Carrier collection in vertical junctions

- Diffusion length of minority carriers no longer needs to be greater than the absorption depth for efficient carrier collection.
- " Low-quality materials can be made more efficient.
- Since L_D is nanoscale, junction spacing should be nanoscale.
- To maximize benefit, we need to consider 3-D interdigitated nanojunctions.

New 3D interdigitated designs reported

Note that electronic communication between junctions

1. Point-contact nanojunctions

2. Extended nanojunctions

A. Wangperawong, S.F. Bent, Appl. Phys. Lett. 98, 233106 (2011).

Experimental interdigated devices

1. Point-contact nanojunctions

Au AAM CdS nanopillar Cu/Au Superstrate

Fan, et al., Nature Mater. 8, 648 (2009).

2. Extended nanojunctions

Peng, et al., J. Am. Chem. Soc., 132 (20), 6872 (2010).

Modeling beyond isolated nanojunctions

Limited 3D modeling work reported thus far

- "Only on isolated radial junctions, i.e. nanowires.
 - "Interdigitated design ≠ isolated radial junctions."
- "Should consider 3D carrier collection computationally expensive if numerical
- "Is nano better than planar? Which nano is the best?
 - "Depletion region lifetime greater than bulk lifetime + operate in full depletion
 - "Not likely, not generally applicable

Modeling Approach

1. Point-contact nanojunctions

Analytical approach using effective medium approximation to solve diffusion-collection problem in 3-D:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial\varphi_m}{\partial r}\right) + \frac{\partial^2\varphi_m}{\partial z^2} - \frac{1}{L_m^2}\varphi_m = 0 \qquad m = 1,2$$

2. Extended nanojunctions

Boundary conditions due to continuity:

$$\varphi_1(r=a,z)=\varphi_2(r=a,z)$$

$$\frac{\partial \varphi_1}{\partial r}\bigg|_{r=a} = \frac{\partial \varphi_2}{\partial r}\bigg|_{r=a}$$

Collection Probability Distributions

Application to PV

- 1. Calculate the depletion regions
- Solve diffusion problem for carrier collection throughout device
- 3. Calculate the photocurrent
- Relate carrier collection to minority carrier distribution throughout device
 - Calculate the ideal dark current
 - Calculate the depletion recombination current
- Superimpose current contributions as a function of applied voltage to obtain overall I-V curves

CdTe/CdS devices, high vs. low

Property	High	Low
Acceptor doping, N_a (cm ⁻³)	2x10 ¹⁴	$1x10^{17}$
Electron mobility, μ_n (cm ² /Vs)	320	100
Electron lifetime, τ_n (ns)	1	1x10 ⁻²
Diffusion length, L_n (μ m)	0.910	0.050

higher doping lower mobility lower lifetime lower diffusion length

- "Z. Fan, et al., Nature Mater. 8, 648 (2009).
- "R. Kapadia, et al., Appl. Phys. Lett. 96, 103116 (2010).
- S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors, Wiley, West Sussex, England (2005).
- "M. Gleockler, et al., Numerical modeling of CIGS and CdTe solar cells: setting the baseline, Proc. World Conf. Photov. Energy Conv., 3, 491 (2004).

A. Wangperawong, S.F. Bent, Appl. Phys. Lett. 98, 233106 (2011).

CdTe on Nanostructured SLG

Conclusion

- We developed an analytical model for
 - diffusion in 3-D, interdigitated nanojunctions
 - both point-contact and extended architectures
 - any system involving diffusion, e.g. PEC, PV, etc.
- Nanojunctions can
 - decouple absorption depth from collection distance
 - improve performance of low quality PV absorbers, making use of inexpensive materials
- Modeling valuable for choosing the right nano-architecture
 - the efficiency of the extended nanojunction geometry is superior to other designs considered
 - point-contact nanojunction, isolated radial nanojunction, planar
- Various geometries and materials systems can be further explored
 - there could be an even better design out there

Acknowledgements

cneec.stanford.edu

EFRC funded by the U.S. Department of Energy, Office of Basic Energy Sciences

Support from the Department of Energy Office of Science Graduate Fellowship Program, made possible in part by the American Recovery and Reinvestment Act of 2009.

National Science Foundation Grant