02-680 Module 5

Essentials of Mathematics and Statistics

Aidan Jan

September 16, 2025

Vectors

A vector is a quantity with both magnitude and direction. It is either written as \vec{v} , or V.

• An *n*-dimensional vector *x* is defined as an element of the **Cartesian product** of *n* copies of the real numbers:

$$x \in \mathbb{R}^n$$

- This means that $x = (x_1, x_2, \dots, x_n)$, and if we want to reference the *i*-th element of x we will write x_i .
- (or sometimes x[i]. This is true of tuples as well)

For example, $\langle 0, 1 \rangle$, $\langle 1, 0 \rangle$, and $\langle \frac{1}{2}, \frac{1}{2} \rangle$ are all vectors of length 2 where elements are from \mathbb{Q} (or we would probably say \mathbb{R}).

• For the vector $x = \langle \frac{1}{2}, \frac{3}{2} \rangle$, we have $x_1 = \frac{1}{2}$, and $x_2 = \frac{3}{2}$

Vectors are sometimes contrasted with scalars, which are just numbers:

• That is, a scalar is an element of \mathbb{R}

Vectors are also sometimes written in parenthesis, so we may see an *n*-vector x written as $x = (x_1, x_2, \dots, x_n)$

Vector Arithmetic

Sum of Vectors

The **sum** of two vectors $x, y \in \mathbb{R}^n$, written x + y, is a vector $z \in \mathbb{R}^n$

- where for every index $i \in \{1, 2, ..., n\}$ we have $z_i = x_i + y_i$
- Note: the sum of two vectors with different sizes is meaningless

Examples:

- $\langle 3, 4 \rangle + \langle 2, 1 \rangle = \langle 5, 5 \rangle$
- $\langle 1.1, 2.2, 3.3 \rangle + \langle 4.4, 5.5, 6.6 \rangle = \langle 5.5, 7.7, 9.9 \rangle$
- $\langle 0, 1, 2 \rangle + \langle 3, 4 \rangle$ does not make sense!
- Vector addition operations are element-wise.

For $n = \{1, 2, 3\}$, we can visualize vectors.

- We usually draw them as arrows.
- This can help us interpret operations like addition.

Note that the order does not matter since addition is commutative.

Scalar Product

Given a vector $x \in \mathbb{R}^n$, and a real number $a \in \mathbb{R}$ the **scalar product**

- is a vector $z \in \mathbb{R}^n$,
- written z = ax,
- where for every index $i \in \{1, 2, ..., n\}$ we have $z_i = ax_i$.

${\bf Examples:}$

- $2\langle 3, 4\rangle = \langle 6, 8\rangle$
- $4.4\langle 1.1, 2.2, 3.3\rangle = \langle 4.84, 9.68, 14.52\rangle$