

PHYC 3640 QUANTUM PHYSICS I: TUTORIAL 1 COMPLEX NUMBERS, OPERATORS, AND EIGENVALUES



Kyle R. Bryenton Dalhousie Department of Physics & Atmospheric Science September 15, 2022

# Complex Numbers

The Imaginary Number

Complex Numbers

**Problems** 

**Properties** 

# Operators and Eigenvalues

Operators

Eigenvalues (Non-Matrix Style)

**Problems** 

#### WHAT IS THE IMAGINARY NUMBER?

You've probably heard of the imaginary number before. It's commonly introduced as

$$\mathrm{i}=\sqrt{-1}$$

#### WHAT IS THE IMAGINARY NUMBER?

You've probably heard of the imaginary number before. It's commonly introduced as

$$i=\sqrt{-1}$$

Unfortunately, that's incorrect (or at least not the accepted definition). That old teaching "You can't take the square root of a negative number" was actually true.

#### WHAT IS THE IMAGINARY NUMBER?

You've probably heard of the imaginary number before. It's commonly introduced as

$$i=\sqrt{-1}$$

Unfortunately, that's incorrect (or at least not the accepted definition). That old teaching "You can't take the square root of a negative number" was actually true.

The accepted definition of the imaginary number, i, is

$$i^2 = -1$$

## ISN'T THAT PEDANTIC?

Sure, but math involving negative square roots can lead to contradictions. Consider this example

$$\sqrt{-1} = \sqrt{-1}$$

$$\sqrt{-1} = \sqrt{\frac{1}{-1}}$$
Flip the negative to the denominator 
$$\sqrt{-1} = \frac{\sqrt{1}}{\sqrt{-1}}$$
Distribute the square root 
$$\sqrt{i^2} = \frac{\sqrt{1}}{\sqrt{i^2}}$$
Definition of i
$$i = \frac{1}{i}$$

$$i^2 = 1$$
Multiply both sides with i
$$-1 = 1$$

which is obviously wrong.

### Wikipedia does a better job explaining

# Square roots of negative numbers [edit]

Care must be used when working with imaginary numbers that are expressed as the principal values of the square roots of negative numbers:<sup>[14]</sup>

$$6 = \sqrt{36} = \sqrt{(-4)(-9)} \neq \sqrt{-4}\sqrt{-9} = (2i)(3i) = 6i^2 = -6.$$

That is sometimes written as:

$$-1 = i^2 = \sqrt{-1}\sqrt{-1} \stackrel{ ext{(fallacy)}}{=} \sqrt{(-1)(-1)} = \sqrt{1} = 1.$$

The fallacy occurs as the equality  $\sqrt{xy}=\sqrt{x}\sqrt{y}$  fails when the variables are not suitably constrained. In that case, the equality fails to hold as the numbers are both negative, which can be demonstrated by:

$$\sqrt{-x}\sqrt{-y}=i\sqrt{x}\ i\sqrt{y}=i^2\sqrt{x}\sqrt{y}=-\sqrt{xy}
eq \sqrt{xy},$$

where both x and y are positive real numbers.

https://en.wikipedia.org/wiki/Imaginary\_number

### What is a complex number?

A complex number is one which has both a real and an imaginary part. e.g.

$$z = 2 - 3i$$
.

The real part can be extracted with the "Real" function

$$Re(z) = Re(2 - 3i) = 2,$$

and similarly, the imaginary part can be extracted with the "Imaginary" function

$$Im(z) = Im(2 - 3i) = -3.$$

We note that both the  ${\rm Re}$  and  ${\rm Im}$  functions both output real numbers.

#### A BIT OF NOTATION

 $\mathbb{R}$  is the set of Real Numbers.

Examples:  $1, -2, 7.3, 1/2, \pi, e \in \mathbb{R}$ 

I is the set of Imaginary Numbers.

Examples:  $i, -2i, 7.3i, i/2 \in \mathbb{I}$ 

 $\mathbb{C}$  is the set of Complex Numbers.

Examples: 1 + 2i,  $\pi - ie$ ,  $2e^{1.2i} \in \mathbb{C}$ 

Sometimes you will see i written as j in the context of engineering.

## THE COMPLEX PLANE

Sometimes it's nice to imagine the space of complex numbers as a plane. Let's write the "Cartesian form" of a complex number, z, as

$$z = x + iy$$

where x = Re(z) and y = Im(z). We can then plot this:



https://en.wikipedia.org/wiki/Complex\_number

# THE COMPLEX PLANE (POLAR)

What if instead we try to represent this point using something like polar coordinates?



https://en.wikipedia.org/wiki/Complex\_number

### Obviously

$$r=\sqrt{x^2+y^2}$$
  $\phi=\arctan\left(rac{y}{x}
ight)$  (Be careful to choose the correct quadrant!)

There are functions to deal with the quadrant issue. Look up arg and atan2!

# THE COMPLEX PLANE (POLAR)

Using trig, we can write these as

$$z = r\cos(\phi) + ir\sin(\phi).$$

We remember "Euler's Formula" from calculus, which can be derived using Taylor series

$$e^{i\phi} = \cos(\phi) + i\sin(\phi),$$

letting us finally get to the two ways of representing complex numbers

$$z=x+\mathrm{i} y$$
 Cartesian Form  $z=r\mathrm{e}^{\mathrm{i}\phi}$  Polar Form

# Complex Conjugates

One last thing. We write the "Complex Conjugate" of  $z=x+\mathrm{i} y$  as

$$z^* = x - \mathrm{i} y$$

We now have a *proper* way of getting the magnitude of the complex number. It is called the "Norm".

$$||z|| = \sqrt{zz^*}$$

$$= \sqrt{(x + iy)(x - iy)}$$

$$= \sqrt{x^2 + ixy - ixy - i^2y^2}$$

$$= \sqrt{x^2 - (-1)y^2}$$

$$= \sqrt{x^2 + y^2}$$

Further, we say the product of a complex number z and its complex conjugate is the "absolute square" of z.

$$|z|^2 = zz^*$$

The result is always a positive real number. This will show up a lot in your quantum mechanics class.

#### Problems

- 1) Derive an expression for  $z^*$  in the polar form, in terms of r and  $\phi$ . Hints:
- Convert from polar to the Cartesian, take the complex conjugate, then convert back.
- To derive your new  $\phi$ , try using a geometric argument.
- 2) Take linear combinations of z and  $z^*$  to derive expressions for  $\mathrm{Re}(z)$  and  $\mathrm{Im}(z)$ .

- 1) Derive an expression for  $z^*$  in the polar form, in terms of r and  $\phi$ . Hints:
- Convert from polar to the Cartesian, take the complex conjugate, then convert back.
- To derive your new  $\phi$ , try using a geometric argument.
- 2) Take linear combinations of z and  $z^*$  to derive expressions for  $\mathrm{Re}(z)$  and  $\mathrm{Im}(z)$ .

### Solutions

1) 
$$z^* = r e^{-i\phi}$$

2) 
$$\operatorname{Re}(z) = \frac{z+z^*}{2}$$
 and  $\operatorname{Im}(z) = \frac{z-z^*}{2\mathrm{i}}$ 

3) The spherical harmonic functions are used to describe the quantum mechanical orbitals (You will learn about this later in the course!). Here are three of them.

$$Y_{1,0} = \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos(\theta) \qquad Y_{1,-1} = e^{-i\phi} \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin(\theta) \qquad Y_{1,+1} = -e^{i\phi} \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin(\theta)$$

 $Y_{1,0}$  is real valued, and is called the  $2p_z$  orbital because it is aligned along the z-axis. However, both  $Y_{1,-1}$  and  $Y_{1,+1}$  are complex and can't be plotted in  $\mathbb{R}^3$ .

Derive real-valued expressions for the  $2p_x$  and  $2p_y$  orbitals in terms of  $Y_{1,\pm 1}$ .

$$Y_{2p_x} = = \frac{1}{2}\sqrt{\frac{3}{\pi}}\sin(\theta)\cos(\phi)$$
  
 $Y_{2p_y} = = \frac{1}{2}\sqrt{\frac{3}{\pi}}\sin(\theta)\sin(\phi)$ 







3) The spherical harmonic functions are used to describe the quantum mechanical orbitals (You will learn about this later in the course!). Here are three of them.

$$Y_{1,0} = \frac{1}{2} \sqrt{\frac{3}{\pi}} \cos(\theta) \qquad Y_{1,-1} = e^{-i\phi} \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin(\theta) \qquad Y_{1,+1} = -e^{i\phi} \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin(\theta)$$

 $Y_{1,0}$  is real valued, and is called the  $2p_z$  orbital because it is aligned along the z-axis. However, both  $Y_{1,-1}$  and  $Y_{1,+1}$  are complex and can't be plotted in  $\mathbb{R}^3$ .

Derive real-valued expressions for the  $2p_x$  and  $2p_y$  orbitals in terms of  $Y_{1,\pm 1}$ .

$$Y_{2p_x} = \frac{1}{\sqrt{2}} (Y_{1,-1} - Y_{1,+1}) = \frac{1}{2} \sqrt{\frac{3}{\pi}} \sin(\theta) \cos(\phi)$$

$$Y_{2py} = \frac{i}{\sqrt{2}} (Y_{1,-1} + Y_{1,+1}) = \frac{1}{2} \sqrt{\frac{3}{\pi}} \sin(\theta) \sin(\phi)$$







## USEFUL PROPERTIES

Assume z and w are complex numbers, then:

- 1. i = -1/i
- 2.  $i^3 = -i$
- 3. If z = x + iy, then  $z^* = x iy$
- 4. If  $z=r\mathrm{e}^{\mathrm{i}\phi}$ , then  $z^*=r\mathrm{e}^{-\mathrm{i}\phi}$
- $5. |z|^2 = zz^*$
- 6.  $(z \pm w)^* = z^* \pm w^*$
- 7.  $(z \cdot w)^* = z^* \cdot w^*$
- 8.  $(z/w)^* = z^*/w^*$
- 9.  $Re(z) = \frac{z+z^*}{2}$
- 10.  $Im(z) = \frac{z z^*}{2i}$

# Complex Numbers

The Imaginary Number

Complex Numbers

**Problems** 

**Properties** 

## Operators and Eigenvalues

Operators

Eigenvalues (Non-Matrix Style)

**Problems** 

### WHAT IS AN OPERATOR?

It's as it sounds, some symbol that indicates an operation. Consider

$$\frac{d}{dx}f(x) = f'(x)$$

in this case, this is the "derivative operator" which operating on the function f(x). It doesn't have to be that simple though, you can define an operator  $\hat{D}$  such that

$$\hat{D} = \frac{d^2}{dx^2} + 2\frac{d}{dx} + 7\,,$$

in which case, operating on f(x) would give

$$\hat{D}[f(x)] = f''(x) + 2f'(x) + 7f(x).$$

We could even define an operator to just add 1 to the function it operates on

$$\hat{P}[f(x)] = f(x) + 1.$$

so 
$$\hat{P}[x^2] = x^2 + 1$$
.

### LINEAR OPERATORS

An operator  $\hat{O}$  is linear if both of the following are true

$$\hat{O}[f(x) + g(x)] = \hat{O}[f(x)] + \hat{O}[g(x)]$$
$$\hat{O}[zf(x)] = z\hat{O}[f(x)]$$

where z is some complex number.

Example of Linear Operator:  $\frac{d}{dx}$ 

Example of Non-Linear Operator: sin(x)

# QUESTION

What are some other linear/non-linear operators?

# EIGENVALUES (NON-MATRIX STYLE)

We can look at an eigenvalue problem that doesn't use the matrix notation. Consider an operator  $\hat{J}$ . An eigenvalue equation for this operator would look like

$$J[f(x)] = \lambda f(x) \,,$$

so the challenge is to find an eigenfunction, f(x), and eigenvalue,  $\lambda$ , that satisfy this problem.

# Non-Matrix Eigenvalue Example

Let  $\hat{J}$  be the "shift operator". This operation would look like

$$\hat{J}[f(x)] = f(x+a)$$

Consider an eigenfunction

$$f(x) = e^{\ln(c)\frac{x}{a}}$$

then we can show

$$\hat{J}[f(x)] = f(x+a)$$

$$= e^{\ln(c)\frac{(x+a)}{a}}$$

$$= e^{\ln(c)\left[1+\frac{x}{a}\right]}$$

$$= e^{\ln(c)+\ln(c)\frac{x}{a}}$$

$$= e^{\ln(c)}e^{\ln(c)\frac{x}{a}}$$

$$= c f(x)$$

thus  $f(x) = e^{\ln(c)\frac{x}{a}}$  is an eigenfunction of  $\hat{J}$  with an eigenvalue c.

1) Create an operator called the "Scale" operator which scales the argument of a function f(x) by some constant a. What are the eigenvectors and eigenvalues for this operator?

2) Let the momentum operator in position space be defined as  $\hat{p}=\frac{\hbar}{\mathrm{i}}\frac{d}{dx}$ . Find the eigenvalues and eigenvectors of  $\hat{p}$ .

Hint: Assume a wave-type eigenfunction for  $\psi(x)$ 

3) Find the eigenvalues and eigenvectors of the second-order boundary-value equation  $y''+\lambda y=0$  where y(0)=y(L)=0 assuming there are no negative eigenvalues.

Hint: Assume 
$$y = c_1 \cos(\sqrt{\lambda}x) + c_2 \sin(\sqrt{\lambda}x)$$

1) Create an operator called the "Scale" operator which scales the argument of a function f(x) by some constant a. What are the eigenvectors and eigenvalues for this operator?

Solution: 
$$\hat{K}[f(x)] = f(ax)$$
, let  $f(x) = cx$ , then  $\hat{K}[f(x)] = c(ax) = af(x)$ 

2) Let the momentum operator in position space be defined as  $\hat{p} = \frac{\hbar}{\mathrm{i}} \frac{d}{dx}$ . Find the eigenvalues and eigenvectors of  $\hat{p}$ .

Hint: Assume a wave-type eigenfunction for  $\psi(x)$ 

Solution: Let the eigenfunction be in either form

$$\psi(x) = Ae^{ik(x-a)}$$

$$\psi(x) = A\cos(k(x-a)) + iA\sin(k(x-a))$$

Then  $\hat{p}[\psi(x)] = \hbar k \psi(x)$ 

3) Find the eigenvalues and eigenvectors of the second-order boundary-value equation  $y''+\lambda y=0$  where y(0)=y(L)=0 assuming there are no negative eigenvalues.

Hint: Assume 
$$y = c_1 \cos\left(\sqrt{\lambda}x\right) + c_2 \sin\left(\sqrt{\lambda}x\right)$$
  
Solution

# QUESTIONS?

# WANT MY SLIDES?



HTTPS://GITHUB.COM/KYLEBRYENTON/SLIDES-POSTERS

Kyle.Bryenton@dal.ca