Sistemi II

2018/19

2. izpit

Izpit rešujete posamičn	o. Naloge so	enakovre	dne. Pri	reševanju	ni d	ovoljena	uporah	эa
literature ali zapiskov.	Dovoljena je	uporaba	žepnega	računala.	Čas	pisanja	izpita	jε
90 minut								

Veliko uspeha!	
Ime in priimek:	
Vpisna številka:	
D 1 '	

Imamo magnetni trdi disk. Diskovna glava (roka) se trenutno nahaja nad sledjo št. 30. V naslednjem vrstnem redu (skoraj sočasno) pridejo zahtevki za branje sektorjev, ki se nahajajo na naslednjih sledeh:

Glava za premik na *sosednjo* sled potrebuje 2 ms. Za vsakega od spodnjih algoritmov razporejanja opravil za diskovno roko izračunajte skupni čas za premikanje roke:

- (a) "kdor prej pride, prej melje" (first-come, first-served);
- (b) najkrajša pot najprej;
- (c) algoritem dvigala.

Imamo 5 okvirjev in 8 strani (oštevilčenih z $0, 1, \ldots, 7$). Predpostavimo, da so na začetku vsi okvirji prosti. Zaporedje referenc strani je naslednje:

$7\ 1\ 2\ 3\ 1\ 4\ 2\ 0\ 5\ 6\ 2\ 5\ 0\ 3\ 1\ 2\ 1.$

- (a) Koliko napak strani se bo zgodilo, če za zamenjavo strani uporabimo algoritem FIFO?
- (b) Kaj pa, če uporabimo algoritem "druga možnost"?

Vse odgovore je potrebno utemeljiti (pri katerih straneh pride do napake in kaj je razlog zanjo).

Naš sistem uporablja virtualni pomnilnik. Imamo 32-bitni virtualni naslovni prostor in 16-bitni fizični naslovni prostor. Velikost strani je 8 KiB.

- (a) Koliko vnosov ima (enonivojska) tabela strani?
- (b) Naš sistem ima tudi TLB (Translation Lookaside Buffer), ki ima prostora za 64 vnosov. Poženemo program, ki bere 16-bitna števila iz tabele (array) velikosti 250 000:

```
short[] t = new short[250000];
int k;

for (int i=49; i>=0; i--) {
    for (int j=0; j<5000; j++) {
        k = i + 50 * j;
        // dostopamo do t[k]
    }
}</pre>
```

Kako učinkovit je TLB v tem primeru? (Natančneje, kolikokrat se bo zgodilo, da podatka ne bo v TLB in bo potreben dostop do tabele strani?) Predpostavite, da je pred začetkom izvajanja for zanke TLB prazen.

Za pet periodičnih procesov Π_1 , Π_2 , Π_3 , Π_4 in Π_5 , ki procesirajo video, imamo podane periode P_i in čase procesiranja C_i (v milisekundah). Za:

- (a) algoritem "najprej najbližji rok" (EDF) in
- (b) monotonični razporejevalni algoritem (RMS)

narišite diagram, ki prikazuje vrstni red preklapljanja med procesi za dolžino trajanja 120 ms. Podatki so naslednji:

Proces	P_i	C_i
Π_1	35	5
Π_2	45	12
Π_3	50	10
Π_4	40	5
Π_5	50	5

V primeru enakih prioritet ima prednost proces, ki se že izvaja oz. proces, ki ima manjšo zaporedno številko. Ali se pri katerem od algoritmov kaj zalomi?