Задание 1 (Лаб №4, аппроксимация)

Ссылка на лекцию:

https://vk.com/doc162314205_593613211?hash=e37f03fd81b9 17c298&dl=dd2683263cae81c8b9

• Линейная y = ax+b

Линейная аппроксимация

Введем обозначения:

$$SX = \sum_{i=1}^{n} x_i$$
, $SXX = \sum_{i=1}^{n} x_i^2$, $SY = \sum_{i=1}^{n} y_i$, $SXY = \sum_{i=1}^{n} x_i y_i$

Получим систему уравнений для нахождения параметров а и b:

$$\begin{cases} aSXX + bSX = SXY \\ aSX + bn = SY \end{cases}$$

из которой находим:

$$\Delta = SXX \cdot n - SX \cdot SX$$

$$\Delta_{1} = SXY \cdot n - SX \cdot SY$$

$$\Delta_{2} = SXX \cdot SY - SX \cdot SXY$$

$$\alpha = \frac{\Delta_{1}}{\Delta}, \quad b = \frac{\Delta_{2}}{\Delta}$$

$$a_{0} = \frac{\sum_{i=1}^{N} y_{i} \cdot \sum_{i=1}^{N} x_{i}^{2} - \sum_{i=1}^{N} (y_{i} \cdot x_{i}) \cdot \sum_{i=1}^{N} x_{i}}{N \cdot \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}}$$

$$a_{1} = \frac{N \cdot \sum_{i=1}^{N} (y_{i} \cdot x_{i}) - \sum_{i=1}^{N} y_{i} \cdot \sum_{i=1}^{N} x_{i}}{N \cdot \sum_{i=1}^{N} x_{i}^{2} - \left(\sum_{i=1}^{N} x_{i}\right)^{2}}$$

a1 = a, a0 = b

Определим меру отклонения: $S = \sum_{i=1}^{n} \varepsilon_{i}^{2} = 1{,}3459$

E = y(x) - fi(x) fi - функция, которую мы нашли

Полинофункция у = ax^2 + bx + c

Сумма квадратов отклонений запишется следующим образом:

$$S = S(a_0, a_1, a_2) = \sum_{i=1}^{n} (a_0 + a_1 x_i + a_2 x_i^2 - y_i)^2 \to min$$

Вычислим:

$$\sum_{i=1}^{n} x_{i} = 31,3 \quad \sum_{i=1}^{n} x_{i}^{2} = 172,09 \quad \sum_{i=1}^{n} x_{i}^{3} = 1049,05 \quad \sum_{i=1}^{n} x_{i}^{4} = 6779,43$$

$$\sum_{i=1}^{n} y_{i} = 64 \quad \sum_{i=1}^{n} x_{i} y_{i} = 368,03 \quad \sum_{i=1}^{n} x_{i}^{2} y_{i} = 2355,72$$

Получим систему линейных уравнений, решив которую, определим значения коэффициентов эмпирической формулы:

$$\begin{pmatrix} 7a_0 + 31, 3a_1 + 172, 09a_2 = 64 \\ 31, 3a_0 + 172, 09a_1 + 1049, 05a_2 = 368, 03 \\ 172, 09a_0 + 1049, 05a_1 + 6779, 43a_2 = 2355, 72 \end{pmatrix} \begin{pmatrix} a_0 = 6, 365 \\ a_1 = -2, 687 \\ a_2 = 0, 602 \end{pmatrix}$$

Степенная функция у = a * x^b

Вид функции	Табличный X	Табличный Ү
Степенная	Ln X	Ln Y
Экспоненциальная	X	Ln Y
Логарифмическая	Ln X	Υ

$$\ln(a) = \frac{\sum_{i=1}^{N} \ln(y_i) \cdot \sum_{i=1}^{N} (\ln(x_i))^2 - \sum_{i=1}^{N} (\ln(y_i) \cdot \ln(x_i)) \cdot \sum_{i=1}^{N} \ln(x_i)}{N \cdot \sum_{i=1}^{N} (\ln(x_i))^2 - \left(\sum_{i=1}^{N} \ln(x_i)\right)^2}$$

$$b = \frac{N \cdot \sum_{i=1}^{N} (\ln(y_i) \cdot \ln(x_i)) - \sum_{i=1}^{N} \ln(y_i) \cdot \sum_{i=1}^{N} \ln(x_i)}{N \cdot \sum_{i=1}^{N} (\ln(x_i))^2 - \left(\sum_{i=1}^{N} \ln(x_i)\right)^2}$$

Экспоненциальная функция a*e^(bx)

Вид функции	Табличный Х	Табличный Ү
Степенная	Ln X	Ln Y
Экспоненциальная	X	Ln Y
Логарифмическая	Ln X	Υ

$$\ln(a) = \frac{\sum_{i=1}^{N} \ln(y_i) \cdot \sum_{i=1}^{N} x_i^2 - \sum_{i=1}^{N} (\ln(y_i) \cdot x_i) \cdot \sum_{i=1}^{N} x_i}{N \cdot \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2}$$

$$b = \frac{N \cdot \sum_{i=1}^{N} (\ln(y_i) \cdot x_i) - \sum_{i=1}^{N} \ln(y_i) \cdot \sum_{i=1}^{N} x_i}{N \cdot \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2}$$

• Логарифмическая функция a*ln(x) + b

Вид функции	Табличный Х	Табличный Ү
Степенная	Ln X	Ln Y
Экспоненциальная	X	Ln Y
Логарифмическая	Ln X	Υ

$$a = \frac{\sum_{i=1}^{N} y_{i} \cdot \sum_{i=1}^{N} (\ln(x_{i}))^{2} - \sum_{i=1}^{N} (y_{i} \cdot \ln(x_{i})) \cdot \sum_{i=1}^{N} \ln(x_{i})}{N \cdot \sum_{i=1}^{N} (\ln(x_{i}))^{2} - \left(\sum_{i=1}^{N} \ln(x_{i})\right)^{2}}$$

$$b = \frac{N \cdot \sum_{i=1}^{N} (y_{i} \cdot \ln(x_{i})) - \sum_{i=1}^{N} y_{i} \cdot \sum_{i=1}^{N} \ln(x_{i})}{N \cdot \sum_{i=1}^{N} (\ln(x_{i}))^{2} - \left(\sum_{i=1}^{N} \ln(x_{i})\right)^{2}}$$

а - это b

b - это а

• Коэффициент корреляции

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Средние значения х и у:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \quad \bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

При r=0 - связь между переменными отсутствует (в данном случае линейная).

r < 0,3 - связь слабая

 $r = 0.3 \div 0.5$ - связь умеренная

 $r = 0.7 \div 0.7$ - связь заметная

 $r = 0.7 \div 0.9$ - связь высокая

 $r = 0.9 \div 0.99$ - связь весьма высокая

• Решатель

Задание 2 (Лаб №5, интерполяция)

Ссылка на лекцию:

https://vk.com/doc162314205_594898213?hash=b73e40375b5 f2e3408&dl=56d977ca43de78e361

• Многочлен Лагранжа

При глобальной интерполяции на всем интервале [a,b] строится единый многочлен. Одной из форм записи интерполяционного многочлена для глобальной интерполяции является многочлен Лагранжа:

$$L_n(x) = \sum_{i=0}^n y_i \cdot l_i(x)$$
 (3.11)

где $l_i(x)$ – базисные многочлены степени n:

$$l_i(x) = \prod_{\substack{j=1\\j\neq i}}^n \frac{x - x_j}{x_i - x_j} = \frac{(x - x_0)(x - x_1)...(x - x_{i-1})(x - x_{i+1})...(x - x_n)}{(x_i - x_0)(x_i - x_1)...(x_i - x_{i-1})(x_i - x_{i+1})...(x_i - x_n)}$$
(3.12)

То есть многочлен Лагранжа можно записать в виде:

$$L_n(x) = \sum_{i=0}^{n} y_i \cdot \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}$$
 (3.13)

Многочлен $l_i(x)$ удовлетворяет условію $l_i(x_j) = \begin{cases} 1, & i=j \\ 0, & i\neq j \end{cases}$. Это условію означаєт, что многочлен равен нулю при каждом x_j кроме x_i , то есть $x_0, x_1, \dots x_{i-1}, x_{i+1}, \dots x_n$ — корнії этого многочлена. Такім образом, степень многочлена $L_n(x)$ равна n ії при $x \neq x_i$ обращаются в ноль все слагаємые суммы, кроме слагаємого с номером i=j, равного y_i .

Пример

Пример 2. Найти приближенное значение функции y=f(x) при x=0,35 для заданной таблицы с помощью многочлена Лагранжа.

X	0,1	0,2	0,3	0,4	0,5
У	1,25	2,38	3,79	5,44	7,14

Решение:

$$l_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)(x - x_4)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_0 - x_4)} = \frac{(0.35 - 0.2)(0.35 - 0.3)(0.35 - 0.4)(0.35 - 0.5)}{(0.1 - 0.2)(0.1 - 0.3)(0.1 - 0.4)(0.1 - 0.5)} = 0.0234375 * y_0 = 0.0234375 * 1.25 = 0.029297$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)(x - x_4)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)} = \frac{(0.35 - 0.1)(0.35 - 0.3)(0.35 - 0.4)(0.35 - 0.5)}{(0.2 - 0.1)(0.2 - 0.3)(0.2 - 0.4)(0.2 - 0.5)} = (-0.15625) * y_1 = (-0.15625) * 2.38 = -0.37187$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)} = \frac{(0.35 - 0.1)(0.35 - 0.2)(0.35 - 0.4)(0.35 - 0.5)}{(0.3 - 0.1)(0.3 - 0.2)(0.3 - 0.4)(0.3 - 0.5)} = 0.703125 * y_2 = 0.703125 * 3.79 = 2.66485$$

$$l_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)(x - x_4)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)(x_3 - x_4)} = \frac{(0.35 - 0.1)(0.35 - 0.2)(0.35 - 0.3)(0.35 - 0.5)}{(0.4 - 0.1)(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}$$
$$= 0.46875 * y_3 = 0.46875 * 5.44 = 2.55$$

$$l_4(x) = \frac{(x - x_0)(x - x_1)(x - x_2)(x - x_3)}{(x_4 - x_0)(x_4 - x_1)(x_4 - x_2)(x_4 - x_3)} = \frac{(0,35 - 0,1)(0,35 - 0,2)(0,35 - 0,3)(0,35 - 0,4)}{(0,5 - 0,1)(0,5 - 0,2)(0,5 - 0,3)(0,5 - 0,4)} = -0,0390625 * y_3 = -0,0390625 * 7,14 = -0,27891$$

$$L_4(0,35) = l_0(x) + l_1(x) + l_2(x) + l_3(x) + l_4(x) = 4,59336$$

Пример 3. Построить многочлен Лагранжа, если функция y = f(x) задана таблицей:

x	1	2	3	4
у	0	3	5	7

n=3
$$L_3(x) = 0 \cdot \frac{(x-2)(x-3)(x-4)}{(1-2)(1-3)(1-4)} + 3 \cdot \frac{(x-1)(x-3)(x-4)}{(2-1)(2-3)(2-4)} + 5 \cdot \frac{(x-1)(x-2)(x-4)}{(3-1)(3-2)(3-4)} + \frac{(x-1)(x-3)(x-4)}{(3-1)(3-2)(3-4)} + \frac{(x-1)(x-3)(x-4)}{(3-1)(x-4)} + \frac{(x-1)(x-4)}{(3-1)(x-4)} + \frac{(x-1)(x-4)}{(x-1)(x-4)} + \frac{(x-1)(x$$

$$7 \cdot \frac{(x-1)(x-2)(x-3)}{(4-1)(4-2)(4-3)} = \frac{x^3}{6} - \frac{9}{6}x^2 + \frac{38}{6}x - 5$$

Пример 4: Вычислить, пользуясь интерполяционной формулой Лагранжа, $\sqrt{105}$ и оценить погрешность.

Решение: Рассмотрим функцию $y = \sqrt{x}$

Х	100	121	144
у	10	11	12

n=2

$$L_{2}(x) = 10 \cdot \frac{(105 - 121)(105 - 144)}{(100 - 121)(100 - 144)} + 11 \cdot \frac{(105 - 100)(105 - 144)}{(121 - 100)(121 - 144)} + 12 \cdot \frac{(105 - 100)(105 - 121)}{(144 - 100)(144 - 121)} = 10,245624$$

Оценим $R_2(x)$:

$$R_{2}(x) \leq \frac{\max_{x \in [x_{0}; x_{n}]} f'''(x)}{(3)!} |(x - x_{0})(x - x_{1})(x - x_{2})|$$

$$y' = \frac{1}{2\sqrt{x}} \quad y'' = \frac{1}{4\sqrt{x^{3}}} \quad y''' = \frac{3}{8\sqrt{x^{5}}}$$

$$\max_{x \in [100; 144]} y'''(x) = \left| \frac{3}{8\sqrt{100^{5}}} \right| = \frac{3}{8} 10^{-5}$$

$$R_{2}(x) < \frac{1}{3!} \cdot \frac{3}{8} \cdot 10^{-5} \left| (105 - 100)(105 - 121)(105 - 144) \right| \approx 1,95 \cdot 10^{-3}$$

- Решатель
- Многочлен Ньютона с разделенными разностями:

<u>Определение</u>. Разделенные разности первого порядка называют величины (определяются через разделенные разности нулевого порядка):

$$f(x_0, x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0}, \quad f(x_1, x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \quad f(x_i, x_{i+1}) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

Разделенные разности второго порядка называют величины (определяются через разделенные разности первого порядка):

$$f(x_0, x_1, x_2) = \frac{f(x_1, x_2) - f(x_0, x_1)}{x_2 - x_0}, \quad f(x_1, x_2, x_3) = \frac{f(x_2, x_3) - f(x_1, x_2)}{x_3 - x_1}$$
$$f(x_i, x_{i+1}, x_{i+2}) = \frac{f(x_{i+1}, x_{i+2}) - f(x_i, x_{i+1})}{x_{i+2} - x_i}$$

<u>Разделенные разности *k*-го порядка</u> определяются через разделенные разности порядка *k*-1:

$$f(x_i, x_{i+1}, \dots, x_{i+k}) = \frac{f(x_{i+1}, \dots, x_{i+k}) - f(x_i, x_{i+k-1})}{x_{i+k} - x_i}$$

$$N_n(x) = f(x_0) + f(x_0, x_1) \cdot (x - x_0) + f(x_0, x_1, x_2) \cdot (x - x_0) \cdot (x - x_1) + \dots + f(x_0, x_1, \dots, x_n) \cdot (x - x_0) \cdot (x - x_1) \dots (x - x_{n-1})$$

$$N_n(x) = f(x_0) + \sum_{k=1}^n f(x_{0,1}, \dots, x_k) \prod_{j=0}^{k-1} (x - x_j)$$

Пример:

<u>Пример 5.</u> Используя интерполяционную формулу Ньютона для неравноотстоящих узлов найти приближенное значение функции *для x=0,22*. При вычислениях учитывать только разделенные разности первого и второго порядков. Вычисления провести дважды, используя различные узлы.

х	0,15	0,2	0,33	0,47	0,62
у	1,25	2,38	3,79	5,44	7,14

Решение: Вычисления произведем по формуле:

$$Nn(x) = f(x_0) + f(x_0, x_1) \cdot (x - x_0) + f(x_0, x_1, x_2) \cdot (x - x_0) \cdot (x - x_1)$$

$$f(x_0, x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \ f(x_0, x_1, x_2) = \frac{f(x_1, x_2) - f(x_0, x_1)}{x_2 - x_0}$$

Для вычисления значение функции при x=0,22 за x_0 возьмем сначала 0,15, затем 0,2.

Для $x_0 = 0.15$

$$f(x_0, x_1) = \frac{2,38-1,25}{0,2-0,15} = 22,6$$

$$f(x_1, x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{3,79 - 2,38}{0,33 - 0,2} = 10,846$$

$$f(x_0, x_1, x_2) = \frac{10,846 - 22,6}{0,33 - 0,15} = -65,3$$

$$y(0.22) = 1.25 + 22.6 \cdot (0.22 - 0.15) - 65.3 \cdot (0.22 - 0.15) \cdot (0.22 - 0.2) = 2.74058$$

Для $x_0 = 0.2$:

$$f(x_0, x_1) = \frac{3,79 - 2,38}{0,33 - 0,2} = 10,846$$

$$f(x_1, x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{5,44 - 3,79}{0,47 - 0,33} = 11,786$$

$$f(x_0, x_1, x_2) = \frac{11,786 - 10,846}{0,47 - 0,2} = 3,482$$

$$y(0,22) = 2,38 + 10,846 \cdot (0,22 - 0,2) + 3,482 \cdot (0,22 - 0,2) \cdot (0,22 - 0,33)$$

= 2,58926

Принимаем
$$y(0,22) = \frac{2,74058+2,58926}{2} = 2,66492.$$

Решатель

или https://planetcalc.ru/9023/

• Многочлен Ньютона для равноотстоящих узлов:

Конечными разностями первого порядка называют величины:

$$\Delta y_i = y_{i+1} - y_i, \ i = 0, 1, ..., n-1$$

Конечными разностями второго порядка называют величины:

$$\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i$$

Конечными разностями к-го порядка называют величины:

$$\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$$

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$	$\Delta^5 y_i$	$\Delta^6 y_i$
x_0	y_0	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$	$\Delta^4 y_0$	$\Delta^5 y_0$	$\Delta^6 y_0$
x_1	y_1	Δy_1	$\Delta^2 y_1$	$\Delta^3 y_1$	$\Delta^4 y_1$	$\Delta^5 y_1$	
x_2	y_2	Δy_2	$\Delta^2 y_2$	$\Delta^3 y_2$	$\Delta^4 y_2$		
x_3	y_3	Δy_3	$\Delta^2 y_3$	$\Delta^3 y_3$			
x_4	y_4	Δy_4	$\Delta^2 y_4$				
x_5	y_5	Δy_5					
<i>x</i> ₆	y_6						

Если значение в левой половине:

Введем обозначение: $t = (x - x_0)/h$. Тогда получим формулу Ньютона, которая называется **первой интерполяционной формулой Ньютона для интерполирования вперед:**

$$Nn(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_0$$

Полученное выражение может аппроксимировать функцию на всем отрезке изменения аргумента $[x_0,x_n]$. Однако более целесообразно (с точки зрения повышения точности расчетов) использовать эту формулу для $x_0 \leq x \leq x_1$. При этом за x_0 может приниматься любой узел интерполяции x_k . Например, для $x_1 \leq x \leq x_2$, вместо x_0 надо взять значение x_1 . Тогда интерполяционный многочлен Ньютона:

$$Nn(x) = y_i + t\Delta y_i + \frac{t(t-1)}{2!}\Delta^2 y_i + \dots + \frac{t(t-1)\dots(t-n+1)}{n!}\Delta^n y_i$$
 (**)

Если значение в правой половине:

Для правой половины отрезка разности вычисляют справа налево: $t = (x - x_n)/h$. Тогда получим формулу Ньютона, которая называется второй интерполяционной формулой Ньютона для интерполирования назад:

$$Nn(x) = y_n + t\Delta y_{n-1} + \frac{t(t+1)}{2!}\Delta^2 y_{n-2} + \dots + \frac{t(t+1)\dots(t+n-1)}{n!}\Delta^n y_0$$

Пример:

Пример 6. Используя первую или вторую интерполяционную формулу Ньютона найти приближенное значение функции для x=0,15, x=0,22 и x=0,47 по заданной таблице.

х	0,1	0,2	0,3	0,4	0,5
у	1,25	2,38	3,79	5,44	7,14

Решение:

Nº	x _i	y _i	$\Delta \mathbf{y_i}$	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$
0	0, 1	1, 25	$\Delta y_0 = 1, 13$	$\Delta^2 \mathbf{y_0} = 0, 28$	$\Delta^3 \mathbf{y_0} = -0, 04$	$\Delta^4 \mathbf{y_0} = -0, 15$
1	0, 2	2,38	$\Delta y_1 = 1,41$	$\Delta^2 \mathbf{y_1} = 0, 24$	$\Delta^3 \mathbf{y_1} = -0, 19$	
2	0,3	3,79	$\Delta \mathbf{y}_2 = 1, 65$	$\Delta^2\mathbf{y}_2=0,05$		
3	0,4	5,44	$\Delta y_3 = 1, 7$			
4	0,5	7, 14				

Воспользуемся формулой Ньютона для интерполирования вперед, т.к. x=0,15 x=0,22 лежат в левой половине отрезка.

Для x=0,15:
$$t = \frac{(x-x_0)}{h} = \frac{0,15-0,1}{0,1} = 0,5$$

$$N_4(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!}\Delta^3 y_0 + \frac{t(t-1)(t-2)(t-3)}{4!}\Delta^4 y_0$$

$$y(0,15) \approx 1,25 + 0,5 \cdot 1,13 + \frac{0,5(-0,5)}{2} \cdot 0,28 + \frac{0,5(-0,5)(-1,5)}{6} \cdot (-0,04) + \frac{0,5(-0,5)(-1,5)(-2,5)}{24} \cdot (-0,15) \approx 1,78336$$

Для x=0,22:
$$t=\frac{(x-x_1)}{h}=\frac{0,22-0,2}{0,1}=0,2$$

$$N_3(x)=y_1+t\Delta y_1+\frac{t(t-1)}{2!}\Delta^2 y_1+\frac{t(t-1)(t-2)}{3!}\Delta^3 y_1$$

$$y(0,22)\approx 2,38+0,2\cdot 1,41+\frac{0,2(-0,8)}{2}\cdot 0,24+\frac{0,2(-0,8)(-1,8)}{6}\cdot (-0,19)\approx 2,63368$$

Воспользуемся формулой Ньютона для интерполирования назад, т.к. x=0,47 лежит в второй половине отрезка.

Для
$$x=0,47$$
: $t=\frac{(x-x_n)}{h}=\frac{0,47-0,5}{0.1}=-0,3$

$$N_4(x) = y_4 + t\Delta y_3 + \frac{t(t+1)}{2!} \Delta^2 y_2 + \frac{t(t+1)(t+2)}{3!} \Delta^3 y_1 + \frac{t(t+1)(t+2)(t+3)}{4!} \Delta^4 y_0$$

$$y(0,47) = 7,14 - 0,3 \cdot 1,7 + \frac{-0,3(-0,3+1)}{2!}0,05 + \frac{-0,3(-0,3+1)(-0,3+2)}{3!}(-0,19) + \frac{-0,3(-0,3+1)(-0,3+2)(-0,3+3)}{4!}(-0,15) \approx 6,64208$$

Решатель

или https://planetcalc.ru/9023/

Задание 3 (Лаб №6, задача Коши)

Ссылка на лекцию Малышевой:

https://vk.com/doc162314205_595570919?hash=2f05f4159087 7528b6&dl=81abdc8881144863d0

Ссылка на норм лекцию:

http://saue.kdu.edu.ua/upload/subjects/mmm/mmm-7.pdf

$$f(x,y) = y'(x)$$

• Метод Эйлера

Тогда получаем формулу Эйлер:

$$y_{i+1} = y_i + hf(x_i, y_i)$$

• Усовершенствованный метод Эйлера

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_i + hf(x_i, y_i))], i = 0, 1 \dots$$

• Метод Рунге-Кутта 4- го порядка

Широко распространен **метод Рунге-Кутта четвертого порядка**, часто без угочнений называемый просто методом Рунге – Кутты.

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

$$k_1 = h \cdot f(x_i, y_i)$$

$$k_2 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$$

$$k_3 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{k_2}{2})$$

$$k_4 = h \cdot f(x_i + h, y_i + k_3)$$
(13)

• Метод Адамса

Ньютона. В случае постоянного шага h конечные разности для правой части в узле x_i имеют вид:

$$\Delta f_i = f_i - f_{i-1}$$

$$\Delta^2 f_i = f_i - 2f_{i-1} + f_{i-2}$$

$$\Delta^3 f_i = f_i - 3f_{i-1} + 3f_{i-2} - f_{i-3}$$

Тогда разностную схему четвертого порядка метода Адамса можно записать после необходимых преобразований в виде:

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2}\Delta f_i + \frac{5h^3}{12}\Delta^2 f_i + \frac{3h^4}{8}\Delta^3 f_i$$
 (17)

Первые 4 члена находим по формуле РунгеКутта4Порядка:

Выражая $P_k(x)$ через конечные разности до третьего порядка используя формулу Ньютона для интерполяции назад, получим экстраполяционную формулу Адамса-Башфорта

$$y_{i+1} = y_i + \frac{h}{24}(55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3})$$

Здесь используются значения функции f_i в точках $x_i, x_{i-1}, x_{i-2}, x_{i-3},$ предшествующих отрезку интегрирования.

После вычисления y_{i+1} , определяют $f_{i+1} = f(x_{i+1}, y_{i+1})$, а затем уточняют y_{i+1} по следующей интерполяционной формуле Адамса-Мултона:

$$y_{i+1} = y_i + \frac{h}{24}(9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2})$$

• Метод Милна

1. По четырем предыдущим точкам предсказываем следующее значение y_{i+1} :

$$y_{i+1}^{\text{пред.}} = y_{i-3} + \frac{4}{3}h(2f_i - f_{i-1} + 2f_{i-2})$$

где
$$f_i = f(x_i, y_i); (i = 3, 4, 5, ...)$$

2. Вычисляем значение правой части уравнения

$$f_{i+1}^{\text{пред.}} = f(x_{i+1}, y_{i+1}^{\text{пред.}})$$

3. Корректируем значение y_{i+1}

$$y_{i+1}^{\text{кор.}} = y_{i-1} + \frac{h}{3}(f_{i-1} + 4f_i + 2f_{i+1}^{\text{пред.}})$$
 $(i = 3, 4, 5, ...)$

Предельная абсолютная погрешность значения y_i в методе Милна равна

$$\varepsilon = \frac{1}{29} |y_i^{\text{пред.}} - y_i^{\text{кор.}}|$$

Выбираем по правилу: acc < abs(y_cor - y_pred)/29: acc - должно быть указано в задании иначе придётся наугад y(xi) = y_cor

Иначе: $y(xi) = y_pred$

Решатели

- Адамса/Милна
- РунгеКутта4степени
- Эйлера
- КрутогоЭйлера (усовершенствованный)