Comparison Tables: CEC BBOB 2015 Function Testbed with BBOB 2009 as Reference (Expensive Setting)

The BBOBies May 27, 2015

Abstract

This document provides tabular results of the special session on Black-Box Optimization Benchmarking at CEC 2015 with a focus on benchmarking black-box algorithms for small function evaluation budgets ("expensive setting"), see http://coco.gforge.inria.fr/doku.php?id=cec-bbob-2015. Overall, eight algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. A description of the used objective functions can be found in [6, 4]. The experimental set-up is described in [5].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [1]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT $_{\rm best}$ is noted as infinite). See [5] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at CEC 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed

algorithm short	paper	reference
name		
MATSuMoTo	Comparison of the MATSuMoTo Library for Expensive Optimization on the Noiseless Black-Box Optimization Benchmarking Testbed	[2]
R-DE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-DE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
R-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e2	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
RL-SHADE-10e5	Parameter Tuning for Differential Evolution for Cheap, Medium, and Expensive Computational Budgets	[7]
SOO	Simultaneous Optimistic Optimization on the Noiseless BBOB Testbed	[3]

ಲ

" PP (P						
#FEs/D	0.5	1.2	3	10	50	# succ
f1	1.6e+1:1.2	4.0e+0:2.6	2.5e-2:6.2	1.0e-8:6.2	1.0e-8:6.2	15/15
MATSUMOTO-	1.7(2)	1.8 (1)	$2.8(0.8)^{\star 2}$	∞	∞ 100	0/15
R-DE-10e2-	2.7 (1)	2.3 (3)	10(5)	∞	∞ 200	0/15
R-DE-10e5-	2.3 (1)	3.0 (4)	66(222)	102(6)	102(150)	15/15
RL-SHADE-1	1.8 (4)	2.1(0.8)	11(4)	240(210)	240(330)	2/15
RL-SHADE-1	2.1(2)	3.3(4)	30(17)	225(20)	225(26)	15/15
R-SHADE-10	2.7 ₍₂₎	2.8 (2)	13(5)	∞	∞ 200	0/15
R-SHADE-10	1.9 (1)	2.9 (1)	11(4)	45 (6)	45 (7)	15/15
SOO-Derbel	1.1(0.2)	1.2(0.8)	5.6 (2)	52 (7)	52 (3)	15/15
R-SHADE-10 R-SHADE-10	2.7(2) 1.9(1)	2.8 (2) 2.9 (1)	13(5) 11(4)	∞ $45_{(6)}$	$\infty 200$ $45_{(7)}$	0/ 15/

Table 3: 02-D, running time excess ERT/ERT_{best 2009} on f_2 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f2	1.0e + 7:1.4	1.6e+6:2.7	1.0e + 5:6.1	6.3e-1:20	1.0e-8:30	15/15
MATSUMOTO-	1.5 (0.7)	1.6(0.5)	1.3(1)	∞	∞ 100	0/15
R-DE-10e2-	1.6 (1)	1.9(2)	2.2 (2)	7.3 (3)	∞ 200	0/15
R-DE-10e5-	1(0.5)	1.2(2)	2.1 (2)	13(46)	24 (3)	15/15
RL-SHADE-1	1.1 (1)	1.0(0.5)	3.2(2)	6.4 (2)	∞ 200	0/15
RL-SHADE-1	0.90 (0.4)	1.5(0.9)	2.8 (3)	27(13)	73(4)	15/15
R-SHADE-10	1.1(0.9)	1.1(0.7)	5.0(3)	12(6)	∞ 200	0/15
R-SHADE-10	1.1 (1)	2.3 (2)	2.2 (3)	8.7(1)	15 (2)	15/15
SOO-Derbel	1.1(0.4)	1.2(1)	2.6 (1)	8.9(2)	27(4)	15/15

#FEs/D	0.5	1.2	3	10	50	#succ
f3	1.0e+2:1.4	4.0e+1:4.1	2.5e+1:6.6	6.3e+0:26	2.5e+0:112	15/15
MATSUMOTO-	1.6(0.7)	1.4 (1)	1.5(0.9)	2.7(2)	1.4(0.5)	8/15
R-DE-10e2-	1.3 (1)	1.3 (1)	1.7 ₍₁₎	2.2(2)	0.87 (0.6)	15/15
R-DE-10e5-	1.0(0.7)	2.1(2)	2.3 (1)	2.1(2)	2.2 (2)	15/15
RL-SHADE-1	1.4 (1)	1.5(1)	2.3(2)	1.8(0.7)	1.0(0.2)	13/15
RL-SHADE-1	1.8(2)	2.3 (2)	3.8(3)	4.9(4)	2.8 (1.0)	15/15
R-SHADE-10	1.2(0.5)	2.0(2)	2.0(2)	1.9 (1)	0.80 (0.6)	15/15
R-SHADE-10	1.5 (1)	2.3 (2)	2.8 (3)	5.4(9)	2.0 (2)	15/15
SOO-Derbel	0.86 (0.2)	1.3(0.9)	1.7(2)	1.9 (1)	0.90 (0.5)	15/15

ರ

6

#FEs/D	0.5	1.2	3	10	50	#succ
f4	6.3e+1:2.4	4.0e+1:5.2	2.5e+1:8.5	1.0e + 1:22	2.5e+0:120	5/5
MATSUMOTO-	1.9 (1)	1.5(0.9)	1.8 (1)	1.9 (1)	2.2 (2)	5/15
R-DE-10e2-	1.6 (0.9)	1.7 ₍₁₎	2.0(2)	1.9(2)	1.2(0.4)	13/15
R-DE-10e5-	2.5 (2)	2.8 (2)	5.5(2)	5.1(11)	1.7(0.3)	15/15
RL-SHADE-1	1.4(1)	1.6 (1)	1.5(2)	1.8(0.9)	0.81(0.2)	14/15
RL-SHADE-1	2.1(2)	1.5(0.9)	4.1(3)	5.2(1)	2.9 (1)	15/15
R-SHADE-10	1.8(1)	2.4(2)	1.9 ₍₁₎	2.0(2)	1.1(0.5)	13/15
R-SHADE-10	1.9(2)	1.6(2)	1.8(1)	2.4 (0.6)	3.0 (6)	15/15
SOO-Derbel	0.83(0.4)	1.2(0.6)	1.5(1)	1.5(0.8)	1.2(0.4)	15/15

Table 6: 02-D, running time excess ERT/ERT_{best 2009} on f_5 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

~1

#FEs/D	0.5	1.2	3	10	50	#succ
f5	4.0e+1:1.4	1.6e+1:3.5	1.0e-8:4.4	1.0e-8:4.4	1.0e-8:4.4	15/15
MATSUMOTO-	1.5(1)	1.2(0.9)	$2.5_{(0.9)}^{*4}$	$2.5_{(1)}^{\star 4}$	$2.5(0.6)^{\star 4}$	15/15
R-DE-10e2-	1.9(0.7)	3.1(3)	∞	∞	∞ 200	0/15
R-DE-10e5-	1.5(1)	2.7 (2)	319(272)	319(367)	319(295)	15/15
RL-SHADE-1	2.0 (1)	3.0(2)	320(474)	320(253)	320(276)	2/15
RL-SHADE-1	1.3(0.4)	1.7 (3)	349(24)	349(33)	349(14)	15/15
R-SHADE-10	2.0 (1)	2.9 (3)	∞	∞	∞ 200	0/15
R-SHADE-10	1.9 (1)	2.0 (0.9)	133 (49)	133(52)	133 (22)	15/15
SOO-Derbel	1.8(0.4)	2.5(0.1)	338(0.1)	338(0.1)	338(0.1)	15/15

Table 7: 02-D, running time excess ERT/ERT_{best 2009} on f_6 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f6	6.3e+4:1.4	1.0e+2:2.8	1.6e+1:10	1.0e+0:23	2.5e-6:103	15/15
MATSUMOTO-	1.3 (0.9)	1.7(1)	1.3(0.9)	14(9)	∞ 100	0/15
R-DE-10e2-	1.4 (0.9)	2.1(2)	1.4(2)	2.3 (0.8)	∞ 200	0/15
R-DE-10e5-	1.5(0.9)	1.8(2)	12(4)	20(66)	18(21)	15/15
RL-SHADE-1	1.2(0.4)	2.0(2)	2.0(2)	4.2(2)	∞ 200	0/15
RL-SHADE-1	1.4(2)	2.0(2)	2.4(2)	7.1(5)	16 (4)	15/15
R-SHADE-10	1.0(0.5)	1.3(1)	1.2(0.8)	4.2(2)	∞ 200	0/15
R-SHADE-10	1.4(2)	2.3 (3)	1.7 ₍₃₎	3.2(2)	4.9 (3)	15/15
SOO-Derbel	1 (1)	0.95 (0.4)	1.2(2)	7.6(7)	1.4e4(2e4)	2/15

Table 8: 02-D, running time excess ERT/ERT_{best 2009} on f_7 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f7	4.0e+2:1.6	1.0e+1:3.2	2.5e+0:14	1.6e + 0:21	1.6e-2:188	15/15
MATSUMOTO-	1.4 (1)	2.8 (2)	1.2(0.9)	1.1(0.3)	0.55 (0.4)	10/15
R-DE-10e2-	1.5(0.8)	3.1(2)	1.9 (1)	2.0(2)	1.0(1)	11/15
R-DE-10e5-	0.87 (0.6)	2.2 (2)	1.5(2)	2.6 (5)	1.6(0.8)	15/15
RL-SHADE-1	1 (1)	5.9(4)	2.5(2)	2.8 (4)	2.4(2)	6/15
RL-SHADE-1	0.96 (0.5)	4.9(7)	2.9 (4)	3.0 (4)	2.3 (1)	15/15
R-SHADE-10	1.0(0.3)	2.9 (1)	1.4(0.8)	2.0(2)	4.9(4)	3/15
R-SHADE-10	0.75 (0.3)	2.6 (3)	1.4(2)	1.4(1)	0.81(0.6)	15/15
SOO-Derbel	1.2(1)	1.8(2)	1.0(1.0)	1.3(0.7)	0.76(0.4)	15/15

Table 9: 02-D, running time excess ERT/ERT_{best 2009} on f_8 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

L	is larger unai	.ı ı, wıuıı D	omenom co	iiccolon by	one number	or mountees.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f8	2.5e+3:1.2	1.0e+2:3.2	6.3e+0.7.0	1.6e-1:27	1.6e-6:100	15/15
	MATSUMOTO-	1.7 (1)	2.1 (1)	2.6 (1)	7.7(11)	∞ 100	0/15
	R-DE-10e2-	1.5(0.8)	4.2(4)	4.1(4)	16(5)	∞ 200	0/15
	R-DE-10e5-	2.0 (0.6)	2.5 (0.8)	2.8 (3)	16(8)	12 (6)	15/15
	RL-SHADE-1	1.8 (1)	2.5 (3)	3.8(4)	6.3(2)	∞ 200	0/15
	RL-SHADE-1	2.1 (0.4)	2.6 (1)	7.8(8)	12(5)	23(3)	15/15
	R-SHADE-10	2.3 (1)	3.0 (3)	7.6(8)	15(34)	∞ 200	0/15
	R-SHADE-10	2.0(2)	2.7 (2)	3.4(2)	4.6 (5)	5.3 (5)	15/15
	SOO-Derbel	1.7(0.4)	1.4(1)	1.9(1)	4.4 (3)	21(13)	15/15

Table 10: 02-D, running time excess ERT/ERT_{best 2009} on f_9 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f9	6.3e+0:13	4.0e+0:15	2.5e+0:15	2.5e-1:21	1.0e-8:94	15/15
MATSUMOTO-	1.3 (1)	1.4(0.9)	1.6 (1)	4.3(2)	∞ 100	0/15
R-DE-10e2-	3.0 (6)	3.5(5)	4.9(1)	8.3(9)	∞ 200	0/15
R-DE-10e5-	3.8(3)	4.6(2)	6.0(5)	27(86)	20 (13)	15/15
RL-SHADE-1	3.9(6)	4.0(3)	4.4(7)	10(8)	∞ 200	0/15
RL-SHADE-1	3.2(2)	3.4(4)	3.6(4)	15(8)	28(2)	15/15
R-SHADE-10	3.4(2)	3.7(3)	5.0(4)	16(15)	∞ 200	0/15
R-SHADE-10	2.2(2)	2.0(2)	2.3 (3)	7.3(3)	8.0(12)	15/15
SOO-Derbel	1.4 (0.8)	1.6(0.9)	1.9(0.8)	2.8 (2)	25(16)	15/15

Table 11: 02-D, running time excess ERT/ERT_{best 2009} on f_{10} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f10	1.6e+6:2.0	4.0e + 5:3.2	6.3e+2:8.8	1.0e+1:30	2.5e-8:101	15/15
MATSUMOTO-	2.3 (2)	2.4 (2)	2.9 (3)	9.1(11)	∞ 100	0/15
R-DE-10e2-	2.2 (1)	2.0 (1)	6.8(6)	7.3(5)	∞ 200	0/15
R-DE-10e5-	2.8(2)	2.8 (2)	6.9(6)	27(30)	74(51)	15/15
RL-SHADE-1	1.7(2)	1.7 ₍₁₎	7.1(6)	18(24)	∞ 200	0/15
RL-SHADE-1	2.0(2)	2.2 (1)	14(8)	15(8)	26 (2)	15/15
R-SHADE-10	2.2(2)	1.6 (1)	11(10)	13(11)	∞ 200	0/15
R-SHADE-10	2.2(2)	2.4(2)	5.0(3)	3.2 (0.9)	4.4 (1)	15/15
SOO-Derbel	1.3(0.8)	1.1(0.9)	3.9 (3)	3.3 (2)	494(196)	15/15

Table 12: 02-D, running time excess ERT/ERT_{best 2009} on f_{11} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f11	1.0e + 7:1.1	1.6e+6:3.2	1.0e+4:6.6	4.0e+1:23	4.0e-8:100	15/15
MATSUMOTO-	1.6 (0.9)	1.2(1)	2.4 (1)	2.8 (2)	∞ 100	0/15
R-DE-10e2-	1.8(0.5)	1.1(0.8)	4.2(4)	5.1(3)	∞ 200	0/15
R-DE-10e5-	1.9(2)	1.8 (1)	3.0 (2)	10(20)	94(103)	15/15
RL-SHADE-1	2.0 (0.7)	1.6(2)	4.4(4)	5.7(5)	∞ 200	0/15
RL-SHADE-1	2.1(3)	1.9(2)	8.6(12)	12(5)	25 (3)	15/15
R-SHADE-10	1.8(0.9)	1.5(1)	4.1(2)	9.0(7)	∞ 200	0/15
R-SHADE-10	1.8(0.5)	2.2 (1)	4.4(4)	4.1(5)	5.0 (2)	15/15
SOO-Derbel	1.2(0.5)	0.94 (0.8)	2.7 (1)	2.9 (0.9)	481(197)	15/15

Table 13: 02-D, running time excess ERT/ERT_{best 2009} on f_{12} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f12	2.5e+8:1.3	6.3e+6:2.7	6.3e + 5:6.3	4.0e+1:21	1.6e-3:101	15/15
MATSUMOTO-	1.1 (0.8)	0.93 (0.7)	0.77 (0.4)	4.6(3)	∞ 100	0/15
R-DE-10e2-	0.85 (0.2)	0.80(0.5)	1.0(1.0)	5.3(5)	29(22)	1/15
R-DE-10e5-	0.95 (0)	0.98 (0.5)	0.98 (0.5)	8.0(1.0)	37(55)	15/15
RL-SHADE-1	1.6(2)	1.5(2)	1.1(0.6)	3.9 (2)	29(27)	1/15
RL-SHADE-1	1 (1)	0.76(0.7)	1.4 (1)	13(5)	26 (9)	15/15
R-SHADE-10	1.1(0.6)	1.7 (1)	1.4(1.0)	7.8(3)	∞ 200	0/15
R-SHADE-10	0.80 (0.2)	0.90 (0.7)	1.6 (0.8)	4.7(4)	15 (15)	15/15
SOO-Derbel	0.95 (0.8)	0.73 (0.7)	0.59 (0.5)	4.3(2)	33(20)	15/15

Table 14: 02-D, running time excess ERT/ERT_{best 2009} on f_{13} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f13	4.0e+2:1.6	2.5e+2:3.1	6.3e+1:8.7	1.0e+1:23	4.0e-6:100	15/15
MATSUMOTO-	1.6 (0.9)	1.5(0.6)	1.4(0.5)	1.6(0.4)	∞ 100	0/15
R-DE-10e2-	1.5(2)	1.6 (4)	2.1(2)	4.0(0.7)	∞ 200	0/15
R-DE-10e5-	1.8(1)	1.5(1)	2.4 (5)	4.5(9)	100(94)	15/15
RL-SHADE-1	1.4(2)	1.5(0.6)	2.4 (2)	3.9(3)	∞ 200	0/15
RL-SHADE-1	1.2(0.3)	0.68(0.5)	2.5(4)	4.7(4)	25 (2)	15/15
R-SHADE-10	2.3 (1)	1.6 (1)	3.0 (2)	5.8(6)	∞ 200	0/15
R-SHADE-10	1.5 ₍₁₎	1.3(1)	1.8(1)	2.6 (0.8)	4.9(0.4)	15/15
SOO-Derbel	1.4 (3)	1.1 (1)	1.8 (1)	2.8 (4)	153(161)	15/15

Table 15: 02-D, running time excess ERT/ERT_{best 2009} on f_{14} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0 = 1.0		4.0		
0.5 1.2	3	10	50	# succ
6e+1:1.4 $2.5e+0:4$.2 1.0e + 0:7.4	4 2.5e-2:21	1.0e-8:101	15/15
0.7) 1.4 (1)	1.5(1)	$1.7_{(0.5)}^{\star 2}$	∞ 100	0/15
0.7) 2.0 (2)	3.1(2)	4.2(1)	∞ 200	0/15
0.7) 1.1 (1)	1.9(0.8)	4.2(0.4)	94(129)	15/15
0.7) 2.2 (3)	2.7 (3)	4.1(2)	∞ 200	0/15
0.4) 3.2(1)	4.3(4)	13(6)	24 (2)	15/15
1) 2.0 (3)	3.3(3)	5.5(3)	∞ 200	0/15
0.7) 2.8 (3)	3.8(4)	4.2(1)	4.1(0.4)	15/15
(0) 1.6 (1)	1.8 (1)	3.2 (1)	43(19)	15/15
	$\begin{array}{ccc} 0.7) & 1.4(1) \\ 0.7) & 2.0(2) \\ 0.7) & 1.1(1) \\ 0.7) & 1.2(3) \\ 0.4) & 3.2(1) \\ 1) & 2.0(3) \\ 0.7) & 2.8(3) \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 16: 02-D, running time excess ERT/ERT_{best 2009} on f_{15} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f15	1.6e+2:1.2	4.0e+1:4.7	2.5e+1:10	1.0e + 1:37	2.5e+0:118	5/5
MATSUMOTO-	1.6 (1)	1.1(0.7)	0.79 (0.8)	0.85 (0.6)	1.0(0.8)	9/15
R-DE-10e2-	1.7(0.8)	1(0.8)	1.3(1)	1.2(0.5)	1.9(2)	10/15
R-DE-10e5-	1.8(1)	1.4(0.9)	1.2(1)	0.94(1)	2.1 (4)	15/15
RL-SHADE-1	2.2 (1)	1.6 (1)	1.4 (1)	1.8 (1)	2.0 (2)	9/15
RL-SHADE-1	1.8(1)	2.0 (4)	1.4(2)	1.5(2)	2.7 (2)	15/15
R-SHADE-10	1.5 ₍₁₎	2.0(2)	1.4(0.8)	1.7 ₍₁₎	4.4(2)	5/15
R-SHADE-10	1.3(0.2)	1.2(1)	1.7(0.8)	1.0(0.8)	1.4(2)	15/15
SOO-Derbel	1.1(0.4)	0.84 (1)	0.74(0.6)	0.75 (0.4)	1.1(0.8)	15/15

Table 17: 02-D, running time excess ERT/ERT_{best 2009} on f_{16} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f16	1.0e+2:1.1	2.5e+1:3.9	1.6e + 1:6.5	4.0e+0:31	2.5e-1:127	5/5
MATSUMOTO-	1.3 (1)	1.7 ₍₁₎	1.6 (2)	1.1(1)	1.3(2)	7/15
R-DE-10e2-	1.4(0.4)	2.1(2)	1.8 (1)	1.8(2)	3.8(8)	5/15
R-DE-10e5-	1.3(0.9)	1.3(1)	2.4 (3)	4.3(1)	2.6 (3)	15/15
RL-SHADE-1	1.1(0)	2.1(2)	1.8(2)	2.2 (1)	5.0(5)	4/15
RL-SHADE-1	1.4(0.9)	2.4(2)	3.3(3)	2.2(2)	4.5(2)	15/15
R-SHADE-10	1.4(0.7)	2.2(2)	2.3 (3)	1.7 ₍₁₎	4.0(5)	5/15
R-SHADE-10	1.2(0.4)	2.3 (2)	1.8(2)	1.9 ₍₃₎	2.2 (1)	15/15
SOO-Derbel	1.5(0.4)	2.3 (2)	1.9 (1)	1.0(0.6)	0.93 (1)	15/15

Table 18: 02-D, running time excess ERT/ERT_{best 2009} on f_{17} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f17	4.0e+1:1.2	1.0e + 1:2.7	4.0e+0:10	2.5e+0:28	1.6e-1:119	5/5
MATSUMOTO-	1.2(0.6)	1.5(1)	1.2(0.3)	0.52 (0.4)	2.1 (3)	5/15
R-DE-10e2-	1.7 ₍₁₎	3.2(2)	1.6 (1)	1.1(1)	1.3(0.9)	14/15
R-DE-10e5-	1.2(0.4)	1.8(0.8)	1.5(2)	0.85 (0.3)	1.7(2)	15/15
RL-SHADE-1	1.2(0.4)	2.3 (3)	1.8(1.0)	1.2(2)	1.6 (1)	11/15
RL-SHADE-1	1.6(2)	1.9(2)	2.4 (3)	1.4 (1)	3.4(1)	15/15
R-SHADE-10	1.5(1)	2.8 (1)	1.9(2)	1.0(1)	4.6(6)	5/15
R-SHADE-10	1.5(1)	2.3 (3)	1.8(2)	1.1(0.6)	1.2(0.5)	15/15
SOO-Derbel	0.94(0)	1.8(1)	0.85 (0.5)	0.48(0.3)	0.95 (0.8)	15/15

Table 19: 02-D, running time excess ERT/ERT_{best 2009} on f_{18} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f18	4.0e+2:1.2	1.0e + 2:3.2	4.0e+1:7.2	6.3e+0:32	1.6e+0:104	5/5
MATSUMOTO-	1.1(0.4)	0.83 (0.4)	0.95 (0.4)	0.86(0.8)	1.0(0.6)	10/15
R-DE-10e2-	1.3(0.4)	1.2(0.5)	1.5(1)	1.6(0.7)	1.0(0.9)	14/15
R-DE-10e5-	1.2(0.2)	1.2(0.9)	1.3 (1)	3.2(0.8)	3.0(7)	15/15
RL-SHADE-1	1.2(0.4)	1.3(1)	2.1(2)	1.2(1)	1.6 (1)	10/15
RL-SHADE-1	1.4 (0.6)	1.6(2)	1.9(2)	2.6 (1)	2.3 (1)	15/15
R-SHADE-10	1.2(0.4)	0.98 (0.3)	0.77 (1)	1.2(2)	1.6(0.8)	12/15
R-SHADE-10	1.5(0.6)	1.8(0.6)	1.4 (1)	1.4(0.8)	2.4 (0.4)	15/15
SOO-Derbel	1.1(0.4)	1.6 (1)	$0.94_{(0.9)}$	0.73 (0.4)	0.94 (0.5)	15/15

Table 20: 02-D, running time excess ERT/ERT_{best 2009} on f_{19} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:23	1.0e-1:26	6.3e-2:38	4.0e-2:40	1.0e-2:216	15/15
MATSUMOTO-	6.9(8)	9.3(4)	11(11)	11(12)	6.6(8)	1/15
R-DE-10e2-	4.3(2)	4.2 (3)	5.5(2)	6.6(5)	6.7(5)	2/15
R-DE-10e5-	5.2(5)	5.6(6)	6.4(4)	12(14)	11(6)	15/15
RL-SHADE-1	5.4(6)	7.1(7)	6.9(7)	13(10)	6.5 (7)	2/15
RL-SHADE-1	7.0(11)	7.6(8)	7.0(6)	14(14)	9.1(6)	15/15
R-SHADE-10	9.4(7)	8.4(11)	11(18)	24(33)	∞ 200	0/15
R-SHADE-10	2.9 (2)	3.3 (1)	3.2 (3)	4.9 (5)	5.2 (3)	15/15
SOO-Derbel	4.1(2)	5.0(4)	3.6 (2)	3.7 (2)	17(15)	15/15

Table 21: 02-D, running time excess ERT/ERT_{best 2009} on f_{20} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f20	4.0e+3:1.9	2.5e+2:2.8	4.0e+0:6.3	2.5e+0:21	6.3e-1:139	15/15
MATSUMOTO-	1.5(0.8)	2.0(2)	2.1 (1)	1.8 (1)	3.4(2)	3/15
R-DE-10e2-	1 (0.5)	1.7 ₍₁₎	2.6 (3)	1.8 (1)	2.0 (3)	8/15
R-DE-10e5-	1.2(1)	2.2(2)	1.9 (1)	1.8(1.0)	2.4 (1)	15/15
RL-SHADE-1	1.4 (0.9)	2.7 (2)	3.1(2)	2.1 (1)	2.7 (3)	7/15
RL-SHADE-1	1.7 ₍₁₎	3.3(3)	4.7(3)	3.1(3)	4.6(2)	15/15
R-SHADE-10	2.0(5)	2.6 (4)	4.0(2)	2.4 (1)	6.7(5)	3/15
R-SHADE-10	1.5(2)	2.5(2)	3.2(2)	2.1 (1)	2.3 (1)	15/15
SOO-Derbel	1.4(0.3)	5.1(0.2)	3.0 (0.1)	1.3(0.0)	1.2(4e-3)	15/15

Table 22: 02-D, running time excess ERT/ERT_{best 2009} on f_{21} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f21	1.0e+1:1.7	6.3e+0:2.6	2.5e+0:7.9	1.6e+0:30	4.0e-1:105	15/15
MATSUMOTO-	1.1 (1)	1.8(2)	1.7(2)	0.92(1)	0.64(1)	12/15
R-DE-10e2-	1.6(2)	2.6 (10)	1.7(4)	2.1(2)	2.7 (2)	7/15
R-DE-10e5-	1.3(0.6)	1.3(1)	1.5(0.4)	6.9(2)	5.3(7)	15/15
RL-SHADE-1	1.1(0.4)	1.5(1)	1.2(0.8)	0.92 (0.2)	1.1(0.5)	11/15
RL-SHADE-1	1.6(1)	2.2(2)	1.3(2)	1.1(1)	1.2(2)	15/15
R-SHADE-10	1.5(2)	1.7(2)	1.4(0.9)	1.6(1)	1.1(1)	12/15
R-SHADE-10	1.3(0.3)	1.9 ₍₃₎	2.0(2)	1.2(0.7)	3.3(6)	15/15
SOO-Derbel	0.88(0.3)	1.5(0.7)	1.3(0.9)	0.93 (0.8)	0.53 (0.6)	15/15

Table 23: 02-D, running time excess ERT/ERT_{best 2009} on f_{22} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f22	4.0e+1:1.3	1.6e+1:3.2	6.3e+0:9.3	1.6e+0:25	1.0e-1:168	15/15
MATSUMOTO-	1.7 (0.8)	2.0(2)	1.2(1.0)	1.1(0.8)	0.90 (0.9)	8/15
R-DE-10e2-	1.9(2)	1.7(2)	1.5(0.6)	1.8 (4)	0.64 (0.4)	13/15
R-DE-10e5-	1.6 (1)	1.5(1)	1.5(2)	11(2)	3.0(6)	15/15
RL-SHADE-1	1.5(0.4)	1.4(0.9)	1.4(1.0)	1.8 (3)	0.90 (2)	10/15
RL-SHADE-1	1.3(0.4)	0.58(0.2)	0.74(1)	2.0(2)	17(1)	15/15
R-SHADE-10	1.2(0.6)	0.77 (0.7)	1.3(2)	2.5 (3)	1.5(2)	8/15
R-SHADE-10	1.3(0.8)	1.2(0.8)	0.81(0.5)	4.2(12)	1.9(4)	15/15
SOO-Derbel	1.3(0.4)	1.2(0.9)	0.78 (0.8)	0.89 (1)	0.71 (0.7)	15/15

Table 24: 02-D, running time excess ERT/ERT_{best 2009} on f_{23} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

50 #succ
.5e+0:103 $5/5$
(2) 6/15
(3) 10/15
(7) 15/15
(5) 6/15
(1) 15/15
(5) 7/15
(1) 15/15
(1) 15/15
,

Table 25: 02-D, running time excess ERT/ERT_{best 2009} on f_{24} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f24	4.0e+1:1.1	2.5e+1:2.7	1.6e + 1:7.7	6.3e+0:44	2.5e+0:275	5/5
MATSUMOTO-	1.6 (0.9)	1.7(2)	1.1(0.8)	1.2(2)	∞ 100	0/15
R-DE-10e2-	1.5(0.9)	1.3(0.9)	0.77 (0.7)	0.96 (0.6)	2.4 (3)	4/15
R-DE-10e5-	1.5(0.9)	1.7 ₍₁₎	1.0(1)	1.5(1)	8.3(7)	15/15
RL-SHADE-1	1.6 (1)	1.6 (1)	1.4(2)	1.7(2)	5.0(6)	2/15
RL-SHADE-1	1.6(0.9)	1.4(0.9)	1.4(2)	1.3(1)	2.9 (2)	15/15
R-SHADE-10	1.2(0)	2.5 (3)	1.8 (3)	1.0(1)	11(13)	1/15
R-SHADE-10	1.5(0.9)	2.0(2)	1.2(1)	0.75 (0.6)	1.8 (1)	15/15
SOO-Derbel	1.1(0.2)	1.4 (1)	1.9(0.8)	0.88(0.7)	1.6 (3)	15/15

Table 26: 03-D, running time excess ERT/ERT_{best 2009} on f_1 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

-	is raiger unai	.1 1, **********************************	OIIICITOIII C	office of officers	une mannoer	or mountees.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f1	1.6e+1:3.0	1.0e+1:3.6	1.0e-8:8.0	1.0e-8:8.0	1.0e-8:8.0	15/15
	MATSUMOTO-	1.6(2)	1.9 (1)	∞	∞	∞ 150	0/15
	R-DE-10e2-	1.6 (0.9)	2.6 (3)	∞	∞	∞ 300	0/15
	R-DE-10e5-	2.4 (3)	2.5 (3)	72 (33)	72(68)	72 (43)	15/15
	RL-SHADE-1	1.4 (1)	1.5 (1)	279(150)	279(234)	279(385)	2/15
	RL-SHADE-1	1.4 (0.7)	2.1 (2)	387(38)	387(29)	387(26)	15/15
	R-SHADE-10	1.8(2)	2.9 (3)	∞	∞	∞ 300	0/15
	R-SHADE-10	2.3 (2)	3.0(2)	74 (5)	74 (11)	74 (8)	15/15
	SOO-Derbel	0.69(0.5)	1.1(1.0)	99(4)	99(7)	99(10)	15/15

Table 27: 03-D, running time excess ERT/ERT_{best 2009} on f_2 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f2	6.3e+6:1.5	6.3e+5:4.3	4.0e+4:10	1.0e + 2:32	1.0e-8:49	15/15
MATSUMOTO-	1.3 (1.0)	0.89 (0.8)	1.8 (1)	22(30)	∞ 150	0/15
R-DE-10e2-	1.9(0.8)	1.8(2)	2.1 (3)	3.3 (1)	∞ 300	0/15
R-DE-10e5-	1.8(6)	1.6 (3)	2.1(2)	3.6 (3)	26 (8)	15/15
RL-SHADE-1	2.1(2)	1.7(0.7)	4.0(2)	3.9(1)	∞ 300	0/15
RL-SHADE-1	1.1(1.0)	1.3(0.8)	2.8 (3)	18(8)	91(6)	15/15
R-SHADE-10	1.4 (1.0)	1.5(0.8)	4.0(3)	4.8(2)	∞ 300	0/15
R-SHADE-10	1.3(0)	1.2(1)	2.7 (1)	4.7(1)	18 (3)	15/15
SOO-Derbel	1.5 ₍₁₎	2.5 (2)	3.7(3)	6.0(2)	39(5)	15/15

Table 28: 03-D, running time excess ERT/ERT_{best 2009} on f_3 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

_	is iai Sci tiiai	, wron 	JIIICI I OIII COI	1 CC 01O11 Dy 0.	iic iidiiibci o	i iiibuaiiceb.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f3	1.0e + 2:2.2	6.3e+1:6.1	4.0e+1:10	1.6e+1:32	4.0e+0:319	15/15
	MATSUMOTO-	1.9 (1)	1.1(1.0)	1.4(0.8)	1.6(0.8)	0.95(1)	6/15
	R-DE-10e2-	2.2 (1)	2.2 (2)	2.7 (1.0)	2.0 (0.8)	1.1(1)	10/15
	R-DE-10e5-	2.0(2)	1.6(0.9)	2.3 (1.0)	2.9 (0.6)	1.0(0.8)	15/15
	RL-SHADE-1	2.1(2)	1.8(2)	2.5 (1)	2.2 (1)	0.44(0.2)	15/15
	RL-SHADE-1	2.2 (3)	1.6 (1)	2.6 (3)	6.5(3)	2.0 (0.9)	15/15
	R-SHADE-10	2.2 (0.9)	2.3 (3)	2.1(0.8)	2.3 (0.9)	0.57 (0.1)	14/15
	R-SHADE-10	2.3 (1)	1.6(2)	3.1(1)	2.1(2)	1.7(2)	15/15
	SOO-Derbel	0.91(0)	0.80(0.5)	2.2(1)	2.2(1)	1.4(1)	15/15

Table 29: 03-D, running time excess ERT/ERT_{best 2009} on f_4 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

-	is raiger una	.ı ı, wıuıı D	microm cor	1 CCOIOII Dy 0.	ne number o	i ilibualices.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f4	1.0e + 2:5.4	6.3e+1:10	6.3e+1:10	2.5e+1:36	4.0e+0:617	15/15
	MATSUMOTO-	1.6(2)	1.8 (1)	1.8 (1)	1.4(1.0)	1.2(2)	3/15
	R-DE-10e2-	2.4 (4)	2.0(2)	2.0(2)	1.6 (1)	0.60(0.4)	10/15
	R-DE-10e5-	1.2(1)	2.0 (1)	2.0 (1)	1.5(0.5)	1.3 (1)	15/15
	RL-SHADE-1	1.0(1)	2.2(1)	2.2 (2)	1.5(1)	0.58 (0.5)	9/15
	RL-SHADE-1	2.4 (3)	2.5(2)	2.5 (5)	5.4(1)	1.7(0.8)	15/15
	R-SHADE-10	1.5(2)	1.8 (3)	1.8 (1)	1.8(0.6)	0.49(0.4)	11/15
	R-SHADE-10	1.1(0.9)	1.2(1)	1.2(1)	2.0 (3)	1.3 (1)	15/15
	SOO-Derbel	0.69(2)	0.99(1.0)	0.99(1)	2.1(1)	0.94(0.5)	15/15

Table 30: 03-D, running time excess ERT/ERT_{best 2009} on f_5 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f5	4.0e+1:2.2	2.5e+1:4.8	1.0e-8:6.6	1.0e-8:6.6	1.0e-8:6.6	15/15
MATSUMOTO-	1.5 (1)	1.0(0.8)	$1.9(0.6)^{*4}$	$1.9(0.5)^{\star 4}$	$1.9(0.5)^{\star 4}$	15/15
R-DE-10e2-	2.2 (1)	3.0 (3)	∞	∞	$\infty 300$	0/15
R-DE-10e5-	2.8 (2)	3.0 (2)	256(292)	256(170)	256(299)	15/15
RL-SHADE-1	1.8(3)	1.6 (3)	∞	∞	$\infty 300$	0/15
RL-SHADE-1	3.8(2)	3.9(4)	431(21)	431(8)	431(15)	15/15
R-SHADE-10	4.7(4)	4.4(3)	∞	∞	$\infty 300$	0/15
R-SHADE-10	1.5(0.9)	3.6(4)	150(17)	150 (26)	150 (26)	15/15
SOO-Derbel	2.0 (0.2)	1.8(0.1)	531(0.1)	531(0.1)	531(0.1)	15/15

Table 31: 03-D, running time excess ERT/ERT_{best 2009} on f_6 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f6	6.3e+4:1.8	6.3e+3:3.7	4.0e+1:13	1.0e + 1:34	6.3e-4:159	15/15
MATSUMOTO-	1.2(2)	1.1(1)	3.2(3)	6.3(5)	∞ 150	0/15
R-DE-10e2-	2.9 (3)	2.1 (3)	3.2(1)	1.9 (3)	$\infty 300$	0/15
R-DE-10e5-	2.8 (6)	3.4(3)	2.0 (1)	2.2 (0.5)	26(50)	15/15
RL-SHADE-1	1.9(3)	2.6 (4)	2.9 (1)	2.7 (0.4)	28(31)	1/15
RL-SHADE-1	1.6(0.6)	4.8(4)	6.3(7)	4.9(5)	16 (3)	15/15
R-SHADE-10	2.0(1)	3.9(8)	3.0(2)	2.6 (1)	$\infty 300$	0/15
R-SHADE-10	1.3(1)	3.7(8)	3.8(8)	2.3(2)	3.4 (0.3)	15/15
SOO-Derbel	1.4(2)	1.7(1.0)	2.0 (2)	1.9(2)	1.3e4(8958)	2/15

Table 32: 03-D, running time excess ERT/ERT_{best 2009} on f_7 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

L	is larger unar	u i, wion be	Jiiici i Oili Coi	1 CC 01O11 Dy 0	ne number o	i ilibualices.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f7	2.5e+2:1.5	6.3e+1:4.2	1.0e + 1:11	2.5e+0:38	4.0e-1:174	15/15
	MATSUMOTO-	1.3(0.8)	1.4 (1)	2.3 (2)	1.6(0.7)	1.7 (1.0)	7/15
	R-DE-10e2-	1.0(1.0)	1.4 (2)	2.2 (1)	1.4 (1)	1.0(1)	13/15
	R-DE-10e5-	1.2(1)	0.94 (1.0)	1.7(2)	1.4(2)	2.4 (1)	15/15
	RL-SHADE-1	1.7(2)	2.1 (3)	3.5(4)	2.3 (1)	1.2(0.6)	13/15
	RL-SHADE-1	2.0 (0.7)	3.8(2)	6.6(7)	5.0(3)	2.5 (0.4)	15/15
	R-SHADE-10	1.3(1.0)	1.3(2)	3.4(3)	2.2 (0.7)	2.5 (3)	8/15
	R-SHADE-10	2.2 (2)	3.6(2)	3.7(6)	2.2(2)	1.4(0.7)	15/15
	SOO-Derbel	1.1(0.7)	1.1(2)	2.3 (0.7)	1.5(0.7)	2.6 (8)	15/15

Table 33: 03-D, running time excess ERT/ERT_{best 2009} on f_8 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

-	is raiger orian	, **********************************	OIIICIIOIII CO.	i i ccoioii by	one manner	or mountees.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f8	1.0e+4:1.8	1.6e + 3:4.0	1.0e + 2:15	6.3e+0:31	1.0e-1:152	15/15
	MATSUMOTO-	1.6(2)	1.1(0.5)	1.5(0.8)	4.1(5)	15(15)	1/15
	R-DE-10e2-	1.7 (1)	3.5(5)	3.2(2)	3.7(1)	5.6(6)	5/15
	R-DE-10e5-	1.3(1.0)	1.6(2)	2.2(2)	3.5(1)	14(19)	15/15
	RL-SHADE-1	1.4(0.8)	3.8(2)	3.2(1)	3.3 (1)	14(10)	2/15
	RL-SHADE-1	1.1(0.6)	2.6 (1)	5.7(3)	11(4)	14(4)	15/15
	R-SHADE-10	1.5 ₍₁₎	2.1(2)	3.1(2)	5.3(3)	$\infty 300$	0/15
	R-SHADE-10	2.0(2)	2.0(2)	2.2(2)	3.4(1)	4.6 (2)	15/15
	SOO-Derbel	1.4(2)	1.1(0.9)	1.1(0.8)	1.8(0.7)	4.6(2)	15/15

Table 34: 03-D, running time excess ERT/ERT_{best 2009} on f_9 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f9	1.0e + 1:21	6.3e+0:25	4.0e+0:32	2.5e+0:48	6.3e - 3:152	15/15
MATSUMOTO-	2.5(2)	2.5 (1)	2.7 (3)	2.4 (3)	∞ 150	0/15
R-DE-10e2-	4.5(2)	4.4(2)	4.2(2)	4.4(1)	∞ 300	0/15
R-DE-10e5-	8.1(17)	8.4(24)	15(30)	26(34)	36(23)	15/15
RL-SHADE-1	5.1(4)	5.2(10)	5.0(2)	5.4(5)	∞ 300	0/15
RL-SHADE-1	14(12)	15(13)	15(8)	13(6)	19(4)	15/15
R-SHADE-10	6.2(3)	8.3(7)	12(12)	9.3(9)	$\infty 300$	0/15
R-SHADE-10	3.7(1)	3.6(2)	3.6(2)	3.1(2)	4.4 (4)	15/15
SOO-Derbel	2.2 (1)	2.1(0.5)	2.0 (1.0)	1.7(0.8)	12 (5)	15/15

Table 35: 03-D, running time excess ERT/ERT_{best 2009} on f_{10} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

10 50 #succ
2+2:37 $1.0e+0:152$ $15/15$
$\infty 150$ 0/15
29(33) 1/15
52(40) 15/15
$\infty 300$ 0/15
14 (4) 15/15
$\infty 300$ 0/15
) 2.2 (0.4) 15/15
92(178) $15/15$

Table 36: 03-D, running time excess ERT/ERT_{best 2009} on f_{11} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f11	2.5e+6:1.9	4.0e + 5:4.5	6.3e+4:9.4	2.5e+1:36	2.5e-1:174	15/15
MATSUMOTO-	1.6 (2)	1.3(1)	1.4(0.8)	7.8(12)	∞ 150	0/15
R-DE-10e2-	1.2(1)	1.3(1)	1.4 (1)	13(16)	$\infty 300$	0/15
R-DE-10e5-	2.0(2)	1.4(1)	1.7(2)	23(39)	100(176)	15/15
RL-SHADE-1	2.8 (3)	2.3 (2)	2.6 (2)	17(9)	$\infty 300$	0/15
RL-SHADE-1	1.6(0.8)	1.3(1)	1.3(0.5)	15(16)	12 (2)	15/15
R-SHADE-10	1.2(1)	0.99 (0.5)	1.1(2)	9.2(13)	$\infty 300$	0/15
R-SHADE-10	1.4(0.8)	2.3 (2)	1.6(1)	4.6(2)	3.3 (4)	15/15
SOO-Derbel	1.8(2)	1.6 (2)	1.8(0.8)	4.6 (3)	183(927)	14/15

Table 37: 03-D, running time excess ERT/ERT_{best 2009} on f_{12} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

-	8 mic som is i	iai Sci dilaii	i, with Don	iciioiii coii	ccolon by one	munico or n	induito
	#FEs/D	0.5	1.2	3	10	50	#succ
	f12	1.0e+8:1.5	1.0e + 7:3.6	6.3e + 5:13	6.3e + 2:31	1.0e+0:168	15/15
	MATSUMOTO-	0.83(0)	1.1(2)	1.4(0.5)	3.4 (1)	14(19)	1/15
	R-DE-10e2-	0.91(0.7)	1.6 (1)	2.4 (2)	6.7(0.9)	$\infty 300$	0/15
	R-DE-10e5-	1.1(1.0)	2.5(4)	2.5 (1)	10(8)	76(126)	15/15
	RL-SHADE-1	1.2(1.0)	1.9(2)	2.4 (1)	5.4(2)	$\infty 300$	0/15
	RL-SHADE-1	1.0(0.3)	2.3 (3)	4.2(2)	25(16)	20(7)	15/15
	R-SHADE-10	1.3(0.7)	2.0(2)	2.3(2)	11(12)	$\infty 300$	0/15
	R-SHADE-10	0.87(0.3)	1.3 (1)	2.7 (2)	5.5(2)	8.2(20)	15/15
	SOO-Derbel	0.87(0)	0.89(0.6)	1.3(1)	4.8(0.8)	4.3(0.8)	15/15

Table 38: 03-D, running time excess ERT/ERT_{best 2009} on f_{13} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f13	1.0e+3:1.6	4.0e + 2:6.8	2.5e+2:11	4.0e+1:30	2.5e-3:182	15/15
MATSUMOTO-	1.5 (1)	1.0(0.9)	0.86(0.5)	1.6(0.4)	∞ 150	0/15
R-DE-10e2-	1.0(0.9)	1.2(1)	1.1(0.6)	2.6 (0.8)	∞ 300	0/15
R-DE-10e5-	1.6(2)	1.9(2)	1.7(2)	3.9(4)	44(24)	15/15
RL-SHADE-1	1.2(1)	1.6(2)	1.7(2)	3.8(9)	∞ 300	0/15
RL-SHADE-1	1.4(0.3)	2.4 (2)	3.3(4)	12(3)	21(1)	15/15
R-SHADE-10	2.0 (1)	1.5(2)	1.8(2)	3.9(2)	∞ 300	0/15
R-SHADE-10	1.3(0.8)	2.1 (3)	2.4 (1)	3.7(1)	3.8 (1)	15/15
SOO-Derbel	0.83(1)	0.74(0.7)	0.87 (0.6)	2.4 (2)	20 (17)	15/15

Table 39: 03-D, running time excess ERT/ERT_{best 2009} on f_{14} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f14	1.0e+1:2.2	6.3e+0:4.2	2.5e+0:10	6.3e-2:31	2.5e-6:160	15/15
MATSUMOTO-	1.5 (1)	1.5(2)	1.6 (1)	2.8 (4)	∞ 150	0/15
R-DE-10e2-	1.8(1)	1.7 (1)	2.2 (1)	3.7(1)	$\infty 300$	0/15
R-DE-10e5-	2.8 (7)	2.0(2)	2.2 (2)	4.9(5)	107(113)	15/15
RL-SHADE-1	1.7(2)	2.0(2)	2.5(2)	3.7(2)	$\infty 300$	0/15
RL-SHADE-1	1.3(1)	0.90 (0.8)	2.7 (5)	19(5)	22 (2)	15/15
R-SHADE-10	3.5(6)	2.5 (4)	2.4(2)	4.9(2)	$\infty 300$	0/15
R-SHADE-10	2.7 (3)	2.0(2)	2.5 (4)	4.5(1)	3.8 (0.4)	15/15
SOO-Derbel	1.3(1)	0.92 (0.8)	0.93 (0.5)	3.4 (1)	225(75)	14/15

Table 40: 03-D, running time excess ERT/ERT_{best 2009} on f_{15} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f15	1.6e+2:1.6	6.3e+1:5.6	4.0e+1:12	1.6e+1:68	6.3e+0:221	15/15
MATSUMOTO-	1.3(0.9)	0.96 (0.6)	1.3 (1)	0.66(0.6)	0.82(0.6)	9/15
R-DE-10e2-	2.2 (4)	1.9(2)	2.0(2)	0.92 (0.7)	1.3 (1)	11/15
R-DE-10e5-	2.1 (4)	1.9(2)	1.5 ₍₁₎	0.97 (0.4)	3.3(3)	15/15
RL-SHADE-1	1.8(2)	2.2(2)	2.1(1.0)	1.3(0.4)	0.91 (0.6)	13/15
RL-SHADE-1	2.0(2)	2.0 (3)	2.6 (2)	2.9 (1)	2.8 (2)	15/15
R-SHADE-10	0.96 (0.3)	1.4(4)	1.9(2)	1.6(0.9)	2.1(2)	8/15
R-SHADE-10	3.0(2)	3.0 (2)	3.1(4)	1.4(0.6)	1.3(0.6)	15/15
SOO-Derbel	1.3 (1)	1.0(1)	1 (1)	1.1(0.5)	0.76 (0.3)	15/15

Table 41: 03-D, running time excess ERT/ERT_{best 2009} on f_{16} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f16	6.3e+1:1.5	2.5e+1:8.2	1.6e+1:10	1.0e + 1:41	2.5e+0:208	15/15
MATSUMOTO-	1.5(1)	1.8 (3)	2.7 (4)	1.3(1.0)	0.82(0.7)	10/15
R-DE-10e2-	2.1(2)	1.6 (1)	3.2(4)	1.8(0.8)	1.6(2)	10/15
R-DE-10e5-	2.1 (4)	1.1(0.5)	1.3(0.8)	1.7(2)	2.7 (5)	15/15
RL-SHADE-1	2.0 (0.8)	1.9(2)	3.1(3)	1.3(2)	1.0(0.8)	12/15
RL-SHADE-1	1.5(0.7)	1.3(2)	2.7 (3)	1.9 ₍₁₎	2.9 (3)	15/15
R-SHADE-10	1.8(2)	1.4(0.7)	2.7 ₍₄₎	0.98 (0.7)	2.3 (2)	7/15
R-SHADE-10	1.3(0.7)	1.3(2)	2.2 (3)	1.0(0.9)	1.6 (3)	15/15
SOO-Derbel	2.0(2)	1.2(1)	1.6(0.8)	0.91 (0.6)	0.45 (0.3)	15/15

Table 42: 03-D, running time excess ERT/ERT_{best 2009} on f_{17} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

15 0110 0001 10 1	anger eman	1, 111111 11111	corrotti corro	001011 5, 0110	mannoor or r	induction
#FEs/D	0.5	1.2	3	10	50	#succ
f17	1.6e+1:1.8	1.0e+1:3.6	6.3e+0:14	2.5e+0:34	2.5e-1:189	5/5
MATSUMOTO-	2.4 (2)	2.6 (4)	1.1(1)	1.3(0.4)	2.8 (4)	4/15
R-DE-10e2-	2.7 (3)	2.2 (2)	1.5(2)	1.6 (1)	1.4(2)	13/15
R-DE-10e5-	1.6 (1)	2.1 (1)	1.1(1)	1.6 (1)	1.4(0.7)	15/15
RL-SHADE-1	2.1(2)	2.5(2)	1.6(2)	1.6 (2)	3.5(5)	6/15
RL-SHADE-1	2.6 (0.8)	2.1(2)	0.90 (1)	3.6(3)	5.1(2)	15/15
R-SHADE-10	2.4 (2)	2.6 (2)	1.6(2)	2.1(0.8)	4.7(3)	5/15
R-SHADE-10	1.9(2)	1.8 (1)	0.98 (0.4)	1.2(0.8)	1.1(0.6)	15/15
SOO-Derbel	0.67(0)	1.2(1)	0.72(0.3)	0.96(0.7)	0.98(0.1)	15/15

Table 43: 03-D, running time excess ERT/ERT_{best 2009} on f_{18} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f18	6.3e+1:1.8	4.0e+1:4.8	2.5e+1:13	1.0e+1:40	6.3e-1:184	15/15
MATSUMOTO-	3.0 (2)	1.6 (0.9)	1.2(1)	1.1(0.4)	∞ 150	0/15
R-DE-10e2-	1.3(0.4)	1.7(1)	1.2(2)	1.3 (1)	2.4 (3)	9/15
R-DE-10e5-	2.1 (3)	2.1 (0.8)	1.5(1)	1.3(0.9)	21(0.5)	15/15
RL-SHADE-1	4.0(6)	2.9 (3)	3.2(3)	2.2 (1)	24(20)	1/15
RL-SHADE-1	3.1(3)	2.4(2)	2.2 (3)	2.9 (2)	6.7(0.8)	15/15
R-SHADE-10	3.9(6)	1.9(3)	2.3 (2)	2.4 (2)	24(12)	1/15
R-SHADE-10	3.1(3)	1.9(2)	1.1(0.9)	1.2(1)	1.8(0.4)	15/15
SOO-Derbel	0.96(1)	1.2 (1)	0.90 (0.5)	0.97 (0.7)	1.5(0.8)	15/15

Table 44: 03-D, running time excess ERT/ERT_{best 2009} on f_{19} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:81	1.0e-1:109	6.3e-2:109	4.0e-2:119	1.6e-2:1230	15/15
MATSUMOTO-	∞	∞	∞	∞	∞ 150	0/15
R-DE-10e2-	25(26)	39(75)	∞	∞	$\infty 300$	0/15
R-DE-10e5-	20 (25)	31(19)	54(67)	103(190)	20(14)	15/15
RL-SHADE-1	27(20)	41(49)	∞	∞	$\infty 300$	0/15
RL-SHADE-1	25(11)	25(20)	34(29)	64(61)	11(4)	15/15
R-SHADE-10	52(73)	38(55)	38(64)	35 (31)	$\infty 300$	0/15
R-SHADE-10	24(30)	24 (41)	30 (19)	50(60)	10 (28)	15/15
SOO-Derbel	2.8 (2)	2.8 (2)	3.1 (4)	4.4(6)	0.92 (0.7)	15/15

Table 45: 03-D, running time excess ERT/ERT_{best 2009} on f_{20} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f20	4.0e+3:3.5	2.5e+3:4.3	4.0e+0:13	1.6e+0:41	1.0e+0:385	5/5
MATSUMOTO	-1.1 (0.6)	0.86 (0.6)	1.5(0.8)	17(30)	2.9 (3)	2/15
R-DE-10e2-	1.8(0.7)	1.6(2)	2.9(2)	3.4(1)	0.89 (1.0)	10/15
R-DE-10e5-	1.3(0.7)	1.3(0.8)	18(2)	8.7(40)	2.7 (3)	15/15
RL-SHADE-1	1.6 (1)	1.5(0.5)	2.5(2)	3.2(2)	0.62 (0.5)	12/15
RL-SHADE-1	1.2(0.4)	1.2(0.8)	4.9(3)	13(7)	2.7 (1)	15/15
R-SHADE-10	1.6 (1)	1.8(2)	3.3(2)	3.8(1.0)	1.3 (1)	8/15
R-SHADE-10	1.6(2)	1.6(2)	2.8 (2)	6.0(5)	1.8(2)	15/15
SOO-Derbel	$0.75_{(0.1)}$	0.61(0.1)	3.8(0.0)	1.8(6e-3)	$0.19 (1e-3)^{\star 2}$	15/15

Table 46: 03-D, running time excess ERT/ERT_{best 2009} on f_{21} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f21	1.6e+1:2.5	1.0e+1:5.9	6.3e+0:14	2.5e+0:41	1.6e + 0:167	15/15
MATSUMOTO-	2.1 (2)	1.6 (1)	1.3(0.8)	0.70 (0.8)	0.63 (0.4)	11/15
R-DE-10e2-	1.4(2)	1.3(0.9)	1.3(2)	1.1(1)	1.1(1)	12/15
R-DE-10e5-	2.7 ₍₄₎	1.8 (3)	1.9 ₍₂₎	4.2(9)	4.1(8)	15/15
RL-SHADE-1	2.3(2)	1.2(2)	1.1(1)	0.96 (1)	1.3(1)	12/15
RL-SHADE-1	2.3(2)	1.3(1)	1.7(3)	1.8(1)	2.0(2)	15/15
R-SHADE-10	2.4(1)	2.6 (1)	2.7 ₍₂₎	2.3(2)	2.3 (3)	8/15
R-SHADE-10	2.5 (3)	1.4(1)	1.5(1)	1.5(2)	1.4(3)	15/15
SOO-Derbel	1.3(2)	1.3(1)	1.2(0.4)	0.90 (0.5)	0.43(0.7)	15/15

Table 47: 03-D, running time excess ERT/ERT_{best 2009} on f_{22} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f22	4.0e+1:2.9	2.5e+1:5.2	1.0e + 1:18	6.3e+0:33	1.0e + 0:170	5/5
MATSUMOTO-	2.1 (3)	2.2 (2)	1.4(0.8)	1.4(2)	1.5(2)	7/15
R-DE-10e2-	1.8(0.9)	1.7(2)	1.7 (3)	1.9 (1)	1.5(0.9)	11/15
R-DE-10e5-	2.1(6)	1.9 ₍₁₎	8.2(28)	5.6(30)	5.7(7)	15/15
RL-SHADE-1	1.2(0.5)	1.4 (1)	2.9 (4)	2.3 (0.7)	1.5(1)	11/15
RL-SHADE-1	1.3(2)	0.78 (0.4)	2.0 (3)	2.0(2)	2.4(2)	15/15
R-SHADE-10	1.8(2)	2.4 (3)	2.2 (3)	2.9 (4)	1.6 (1)	10/15
R-SHADE-10	1.3(0.9)	1.5(0.7)	0.87(0.5)	1.2(1)	1.9(3)	15/15
SOO-Derbel	1.0(1)	0.74 (0.6)	0.71(0.7)	0.78 (0.8)	0.47 (0.2)	15/15

Table 48: 03-D, running time excess ERT/ERT_{best 2009} on f_{23} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f23	1.0e+1:2.6	6.3e+0:16	4.0e+0:44	2.5e+0:79	1.6e+0:198	15/15
MATSUMOTO-	4.3(2)	1.5(2)	2.1(2)	5.0(6)	∞ 150	0/15
R-DE-10e2-	3.1 (2)	2.1 (3)	1.8(2)	3.4(3)	7.0(4)	3/15
R-DE-10e5-	4.6(3)	2.5(2)	1.9(2)	2.8 (1)	6.8(6)	15/15
RL-SHADE-1	3.4(4)	0.90 (0.6)	1.3(4)	3.6(3)	7.2(8)	3/15
RL-SHADE-1	3.3(2)	1.5(2)	2.0(2)	2.9 (2)	7.9(6)	15/15
R-SHADE-10	4.1(4)	3.6(5)	2.8 (2)	5.3(6)	6.9(9)	3/15
R-SHADE-10	2.8 (3)	1.7(0.8)	1.5(2)	3.3(2)	3.0 (3)	15/15
SOO-Derbel	4.4(6)	1.8 (3)	2.2 (2)	2.8 (2)	1.8(1.0)	15/15

Table 49: 03-D, running time excess ERT/ERT_{best 2009} on f_{24} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f24	4.0e+1:4.6	2.5e+1:13	1.6e + 1:47	1.6e + 1:47	6.3e+0:382	15/15
MATSUMOTO-	1.6 (1)	1.9(2)	1.7 ₍₁₎	1.7(4)	5.8(5)	1/15
R-DE-10e2-	1.9(0.7)	2.2(2)	1.8 (1)	1.8(0.7)	2.4(2)	4/15
R-DE-10e5-	1.1(1)	1.6(0.9)	2.7 (4)	2.7 (4)	4.4(7)	15/15
RL-SHADE-1	1.6(2)	2.2 (1)	1.3(0.4)	1.3(0.5)	2.6 (3)	4/15
RL-SHADE-1	1.2(0.5)	1.8(2)	2.0 (1)	2.0 (1.0)	3.1(3)	15/15
R-SHADE-10	1.0(0.6)	1.5(2)	1.5(2)	1.5(2)	5.4(4)	2/15
R-SHADE-10	1.7 ₍₁₎	1.9(2)	1.5(0.9)	1.5(0.9)	1.1(0.9)	15/15
SOO-Derbel	1.4(2)	1.4 (1)	2.1(0.7)	2.1 (3)	1.4 (1)	15/15

Table 50: 05-D, running time excess ERT/ERT_{best 2009} on f_1 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

# PP /P						
#FEs/D	0.5	1.2	3	10	50	#succ
f1	2.5e+1:4.8	1.6e+1:7.6	1.0e-8:12	1.0e-8:12	1.0e-8:12	15/15
MATSUMOTO-	1.8(1)	1.7(0.8)	∞	∞	∞ 250	0/15
R-DE-10e2-	2.5 (4)	2.6 (2)	∞	∞	$\infty 500$	0/15
R-DE-10e5-	2.5 (2)	2.8 (3)	67 (13)	67 (8)	67 (14)	15/15
RL-SHADE-1	1.7 ₍₁₎	2.7 (1)	614(553)	614(430)	614(932)	1/15
RL-SHADE-1	2.8 (11)	3.8(5)	632(17)	632(20)	632(36)	15/15
R-SHADE-10	2.8(2)	2.6 (1)	∞	∞	$\infty 500$	0/15
R-SHADE-10	2.2(2)	3.4(2)	110 (9)	110 (9)	110 (11)	15/15
SOO-Derbel	0.99 (1)	1.3(0.8)	194(12)	194(14)	194(18)	15/15

Table 51: 05-D, running time excess ERT/ERT_{best 2009} on f_2 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f2	1.6e+6:2.9	4.0e + 5:11	4.0e+4:15	6.3e + 2:58	1.0e-8:95	15/15
MATSUMOTO-	1.6 (1.0)	0.68(0.4)	4.0(5)	∞	∞ 250	0/15
R-DE-10e2-	2.0(4)	1.2(1)	4.0(2)	2.8 (0.5)	∞ 500	0/15
R-DE-10e5-	2.1(1)	1.6(2)	4.4(4)	2.9 (0.9)	10 (0.6)	15/15
RL-SHADE-1	2.5 (3)	1.4(0.6)	5.2(3)	2.9 (0.7)	∞ 500	0/15
RL-SHADE-1	1.8(2)	0.92 (3)	10(10)	22(5)	113(4)	15/15
R-SHADE-10	2.9 (8)	2.2 (3)	4.6(4)	3.7(0.6)	∞ 500	0/15
R-SHADE-10	1.7(0.7)	0.85(1)	4.2(6)	5.4(1)	22 (2)	15/15
SOO-Derbel	6.6(11)	2.5 (3)	6.7(5)	6.6(2)	872(2643)	13/15

Table 52: 05-D, running time excess ERT/ERT_{best 2009} on f_3 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

_	15 101501 01101	, wron 	omici com	i i ccoion by t	iic iidiiibei o	i ilibualices.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f3	1.6e+2:4.1	1.0e + 2:15	6.3e+1:23	2.5e+1:73	1.0e+1:716	15/15
	MATSUMOTO-	1.8(2)	1.2(1)	1.8 (1)	2.7 (2)	1.1(1)	4/15
	R-DE-10e2-	2.5 (3)	1.1(1)	1.5(0.9)	1.8 (1)	0.41(0.1)	15/15
	R-DE-10e5-	1.9(3)	1.5(1)	1.7(1)	1.5(0.8)	0.36(0.1)	15/15
	RL-SHADE-1	2.9 (2)	2.5 (1)	2.5 (1)	1.7(0.4)	0.33 (0.4)	14/15
	RL-SHADE-1	1.3(1.0)	1.9(4)	7.8(2)	11(3)	3.1(1)	15/15
	R-SHADE-10	4.6(3)	2.3 (1)	2.3 (1.0)	1.6(0.5)	0.33 (0.0)	15/15
	R-SHADE-10	1.5(2)	1.1(1)	2.4 (0.9)	3.0(0.6)	1.1(0.5)	15/15
	SOO-Derbel	1.9(1)	1.2(0.5)	1.9(1.0)	2.4 (1)	1.2(2)	15/15

Table 53: 05-D, running time excess ERT/ERT_{best 2009} on f_4 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

-	is raiger una	ıı ı, wımı D	omici com co	i i ccoion by t	iic number o	i ilisualices.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f4	2.5e+2:2.6	1.6e + 2:10	1.0e + 2:19	4.0e+1:65	1.6e+1:434	15/15
	MATSUMOTO-	2.6 (4)	1.1(0.7)	2.9 (2)	3.0(1)	9.0(12)	1/15
	R-DE-10e2-	2.1(2)	1.5(1)	1.8(0.7)	1.9(0.5)	0.92 (0.4)	12/15
	R-DE-10e5-	4.3(4)	2.5 (2)	2.7 (2)	2.2 (1)	1.3(2)	15/15
	RL-SHADE-1	2.7 (0.8)	2.0 (2)	2.5 (2)	1.9(0.7)	0.49(0.2)	15/15
	RL-SHADE-1	3.0(1)	2.2 (1)	4.2(5)	10(3)	4.1(1)	15/15
	R-SHADE-10	3.3(3)	2.0(2)	2.0 (1)	1.6 (0.6)	0.54(0.2)	15/15
	R-SHADE-10	2.4(2)	1.5(0.7)	2.1 (1)	2.5 (0.6)	1.4(0.5)	15/15
	SOO-Derbel	0.69(0)	0.68(0.7)	1.3(1)	2.3 (1)	3.7(19)	15/15

Table 54: 05-D, running time excess ERT/ERT_{best 2009} on f_5 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f5	6.3e+1:4.0	4.0e+1:10	1.0e-8:10	1.0e-8:10	1.0e-8:10	15/15
MATSUMOTO-	1.6 (0.8)	1.2(0.6)	$1.9_{(0.3)}^{\star 4}$	$1.9_{(0.3)}^{*4}$	$1.9(0.3)^{*4}$	15/15
R-DE-10e2-	2.4(2)	2.7 (1)	∞	∞	∞ 500	0/15
R-DE-10e5-	2.3 (3)	2.4 (1)	184 (115)	184 (44)	184 (93)	15/15
RL-SHADE-1	2.0(2)	3.1(3)	372(325)	372(187)	372(538)	2/15
RL-SHADE-1	3.4(3)	4.4(5)	613(20)	613(21)	613(27)	15/15
R-SHADE-10	3.9(5)	3.9(2)	∞	∞	∞ 500	0/15
R-SHADE-10	2.6 (4)	5.6(3)	219(30)	219(20)	219(15)	15/15
SOO-Derbel	3.6(0.1)	1.4(0.1)	1054(0.1)	1054(0.1)	1054(0.1)	15/15

Table 55: 05-D, running time excess ERT/ERT_{best 2009} on f_6 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f6	1.0e+5:3.0	2.5e+4:8.4	1.0e + 2:16	2.5e+1:54	2.5e-1:254	15/15
MATSUMOTO-	1.3(0.5)	0.90 (0.7)	1.7(1)	12(14)	∞ 250	0/15
R-DE-10e2-	1.9(2)	2.0 (2)	3.5(4)	2.0(2)	6.9 (10)	4/15
R-DE-10e5-	2.7 (2)	1.9 (1)	3.5(3)	2.4(2)	16(40)	15/15
RL-SHADE-1	3.0(3)	1.9(5)	3.8(3)	2.4(2)	14(10)	2/15
RL-SHADE-1	1.9 ₍₃₎	2.6 (3)	11(10)	6.7(5)	13(2)	15/15
R-SHADE-10	1.9(2)	1.6 (1)	3.3(4)	2.3(2)	29(35)	1/15
R-SHADE-10	2.4 (1)	2.5 (4)	4.2(4)	2.7(2)	2.7 (0.9)	15/15
SOO-Derbel	1.7(4)	1.2(2)	1.8(2)	2.0 (2)	6105(3636)	4/15

Table 56: 05-D, running time excess ERT/ERT_{best 2009} on f_7 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

-	is larger una	.ı ı, wıuıı D		rection by t	iic number o	i ilibualices.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f7	1.6e + 2:4.2	1.0e + 2:6.2	2.5e+1:20	4.0e+0:54	1.0e+0:324	15/15
	MATSUMOTO-	1.3(2)	1.8 (1)	1.5(0.7)	7.6(9)	5.4(4)	2/15
	R-DE-10e2-	2.3 (2)	2.3 (5)	2.5 (1)	5.4(5)	5.3(5)	4/15
	R-DE-10e5-	2.0 (0.9)	2.1(1)	2.8 (1)	4.0(3)	2.7 (1.0)	15/15
	RL-SHADE-1	1.5(2)	2.3 (4)	3.5(2)	5.9(5)	2.8 (1)	7/15
	RL-SHADE-1	2.2 (0.9)	2.1 (1)	8.2(9)	12(7)	5.5(2)	15/15
	R-SHADE-10	2.9 (3)	3.1(2)	4.0(3)	3.9 (2)	1.9(3)	10/15
	R-SHADE-10	2.3 (2)	2.6 (5)	2.4 (2)	2.6 (2)	1.3(2)	15/15
	SOO-Derbel	1.1(0.9)	2.2 (1)	2.1(2)	4.1(4)	2.1(2)	15/15

Table 57: 05-D, running time excess ERT/ERT_{best 2009} on f_8 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f8	1.0e+4:4.6	6.3e + 3:6.8	1.0e + 3:18	6.3e+1:54	1.6e+0:258	15/15
MATSUMOTO-	1.7 (1)	1.9 (1)	1.4(0.6)	2.6 (2)	∞ 250	0/15
R-DE-10e2-	3.3(4)	2.9 (2)	2.9 ₍₂₎	2.4 (1)	9.0 (19)	3/15
R-DE-10e5-	2.1 (3)	2.0 (1)	2.0 (1)	2.6 (0.6)	22(57)	15/15
RL-SHADE-1	3.3(2)	3.8(4)	3.9(0.5)	3.6(5)	14(12)	2/15
RL-SHADE-1	2.5 (2)	3.5(7)	4.9(4)	13(6)	17(3)	15/15
R-SHADE-10	2.4 (3)	1.8(2)	2.5 (1)	3.4(2)	$\infty 500$	0/15
R-SHADE-10	3.6(5)	3.0(3)	3.2(4)	3.9(3)	4.3(2)	15/15
SOO-Derbel	1.4(0.5)	1.3(2)	1.4(1.0)	2.1 (1)	16(42)	15/15

Table 58: 05-D, running time excess ERT/ERT_{best 2009} on f_9 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

-	is raiger unai	1 1, WIUII D	microm cor	it couldn't by t	ne number e	or mountees.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f9	2.5e+1:20	1.6e+1:26	1.0e + 1:35	4.0e+0.62	1.6e-2:256	15/15
	MATSUMOTO-	18(20)	34(13)	35(44)	64(65)	∞ 250	0/15
	R-DE-10e2-	11 (7)	10(5)	8.1 (3)	11(13)	$\infty 500$	0/15
	R-DE-10e5-	12(4)	13(12)	11(6)	10(5)	487(633)	15/15
	RL-SHADE-1	13(10)	11(3)	10(4)	15(17)	$\infty 500$	0/15
	RL-SHADE-1	54(20)	51(10)	46(11)	45(4)	28 (3)	15/15
	R-SHADE-10	14(7)	13(8)	10(4)	28(20)	$\infty 500$	0/15
	R-SHADE-10	11(4)	10 (1)	8.1(3)	8.5 (1)	9.1(8)	15/15
	SOO-Derbel	6.5(2)	6.3 (2)	5.7 (1)	5.1 (2)	202(348)	15/15

Table 59: 05-D, running time excess ERT/ERT_{best 2009} on f_{10} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f10	2.5e+6:2.9	6.3e + 5:7.0	2.5e+5:17	6.3e + 3:54	2.5e+1:297	15/15
MATSUMOTO-	1.5 (2)	1.9 (1)	1.4(0.9)	6.4(9)	∞ 250	0/15
R-DE-10e2-	1.4(2)	1.2(0.7)	1.2(1)	2.6 (0.7)	$\infty 500$	0/15
R-DE-10e5-	1.3(3)	1.9(2)	1.2(0.4)	7.1(4)	169(117)	15/15
RL-SHADE-1	1.6 (3)	1.6(0.9)	1.5(2)	4.5(3)	12 (15)	2/15
RL-SHADE-1	1.6 (1)	2.3 (2)	1.4(0.5)	14(6)	15(1)	15/15
R-SHADE-10	1.7 (1)	1.7(3)	1.2(2)	6.7(8)	$\infty 500$	0/15
R-SHADE-10	1.8(3)	1.2(1)	1.3(2)	3.5 (1)	2.2 (0.6)	15/15
SOO-Derbel	1.4(0.7)	0.74(0.8)	0.56 (0.6)	4.6(2)	74(254)	15/15

Table 60: 05-D, running time excess ERT/ERT_{best 2009} on f_{11} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f11	1.0e+6:3.0	6.3e+4:6.2	6.3e+2:16	6.3e+1:74	6.3e-1:298	15/15
MATSUMOTO-	1.4 (2)	2.5 (2)	4.7(1)	8.9(6)	∞ 250	0/15
R-DE-10e2-	2.3 (4)	2.0(2)	5.1(5)	3.8(3)	∞ 500	0/15
R-DE-10e5-	1.9(2)	3.3(1)	4.6(2)	36(121)	4079(4104)	5/15
RL-SHADE-1	1.5(0.8)	2.2(5)	3.7 (2)	3.1 (3)	∞ 500	0/15
RL-SHADE-1	3.0 (6)	3.4(5)	6.6(5)	6.7(3)	15 (3)	15/15
R-SHADE-10	2.0 (3)	1.8(2)	4.0(5)	4.0(4)	∞ 500	0/15
R-SHADE-10	1.2(1)	4.2(3)	3.9 (3)	2.2 (0.9)	2.7 (1)	15/15
SOO-Derbel	0.98 (0.3)	1.6 (3)	5.0(2)	7.5(20)	2683(2985)	6/15

Table 61: 05-D, running time excess ERT/ERT_{best 2009} on f_{12} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f12	4.0e + 7:3.6	1.6e + 7:7.6	4.0e+6:19	1.6e + 4:52	1.0e + 0.268	15/15
MATSUMOTO-	1.2(0.6)	1.4(1.0)	1.7(0.5)	3.2 (1)	∞ 250	0/15
R-DE-10e2-	1.8(2)	2.6 (4)	3.1(1)	4.5(2)	∞ 500	0/15
R-DE-10e5-	1.6(2)	2.3 (2)	2.4 (2)	5.3(3)	112(66)	15/15
RL-SHADE-1	1.4 (1)	2.5 (1.0)	3.3(1)	4.8(0.9)	$\infty 500$	0/15
RL-SHADE-1	2.1(2)	4.0(1)	6.9(10)	39(11)	29(4)	15/15
R-SHADE-10	2.1 (0.6)	2.7 (1)	2.9 (1)	5.6(2)	$\infty 500$	0/15
R-SHADE-10	0.96 (0.8)	1.8 (1)	2.3(2)	6.0(2)	7.1 (8)	15/15
SOO-Derbel	0.50 (0.1)	0.66(2)	1.2(0.7)	5.4(2)	6.8 (1)	15/15
SOO-Derbel	0.50 (0.1)	0.66(2)	1.2(0.7)	5.4(2)	6.8 (1)	1

Table 62: 05-D, running time excess ERT/ERT_{best 2009} on f_{13} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

15 0110 0001 10 .	iai Sci dilaii	1, 111011 1011	iiciiciii coii	. CCCIOII D., CII	.c mannoci or i	TID COLLC
#FEs/D	0.5	1.2	3	10	50	#succ
f13	1.0e + 3:2.8	6.3e + 2:8.4	4.0e+2:17	6.3e+1:52	6.3e-2:264	15/15
MATSUMOTO-	2.0 (1.0)	1.8 (1)	1.5(0.5)	$1.7(0.3)^{\star 2}$	∞ 250	0/15
R-DE-10e2-	2.5(2)	2.7 (0.7)	2.4 (2)	4.5(1)	$\infty 500$	0/15
R-DE-10e5-	2.0(2)	3.0 (2)	3.3(2)	4.6(3)	739(735)	13/15
RL-SHADE-1	1.7(0.8)	2.6 (3)	3.4(2)	3.9(0.9)	∞ 500	0/15
RL-SHADE-1	3.4(8)	5.0(5)	6.7(5)	23(6)	28 (2)	15/15
R-SHADE-10	2.5 (5)	3.4(2)	2.8 (1)	5.3(5)	∞ 500	0/15
R-SHADE-10	1.2(0.8)	1.9(5)	2.8 (3)	4.2(2)	4.8(2)	15/15
SOO-Derbel	1.0(2)	0.96(0.7)	1.2(0.4)	3.9(0.3)	29(26)	15/15

Table 63: 05-D, running time excess ERT/ERT_{best 2009} on f_{14} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f14	1.6e+1:3.0	1.0e+1:10	6.3e+0:15	2.5e-1:53	1.0e-5:251	15/15
MATSUMOTO-	2.1 (1)	1.4(0.8)	1.3(0.5)	2.3 (1)	∞ 250	0/15
R-DE-10e2-	3.4(6)	1.7(2)	2.3 (2)	3.4 (2)	∞ 500	0/15
R-DE-10e5-	3.5(2)	2.1(2)	1.8(2)	3.7(2)	579(1050)	14/15
RL-SHADE-1	2.3 (2)	2.2 (3)	2.6 (3)	3.6(1)	∞ 500	0/15
RL-SHADE-1	5.3(3)	3.1(4)	3.5(3)	20(7)	29 (2)	15/15
R-SHADE-10	2.7 (4)	1.6(2)	2.1(2)	3.9(0.5)	∞ 500	0/15
R-SHADE-10	3.2(2)	1.3(0.7)	1.4 (1)	4.4(0.6)	5.3 (0.9)	15/15
SOO-Derbel	1.0(1)	0.59 (0.8)	0.74(0.9)	3.6(1)	1342(1364)	12/15

Table 64: 05-D, running time excess ERT/ERT_{best 2009} on f_{15} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f15	1.6e+2:3.0	1.0e + 2:13	6.3e+1:24	4.0e+1:55	1.6e + 1:289	5/5
MATSUMOTO-	2.4 (2)	1.3(0.1)	1.6(2)	1.7(1.0)	0.97 (0.8)	10/15
R-DE-10e2-	2.6 (2)	1.6(0.8)	1.8(0.8)	1.9(2)	2.1(0.8)	10/15
R-DE-10e5-	2.9 (2)	1.6 (1)	1.8 (1)	1.6(0.4)	3.4(7)	15/15
RL-SHADE-1	2.5 (2)	2.8 (2)	3.1(0.8)	2.0 (0.4)	3.0(3)	7/15
RL-SHADE-1	1.9(3)	2.6 (4)	6.1(5)	7.3(5)	7.6(3)	15/15
R-SHADE-10	4.8(5)	2.3(2)	2.4 (1)	2.0(0.4)	2.8 (3)	8/15
R-SHADE-10	4.2(6)	2.0 (1)	2.4 (1)	2.4 (3)	2.0 (0.6)	15/15
SOO-Derbel	1.1(2)	0.64(0.5)	1.3(0.7)	1.8(2)	1.6 (0.6)	15/15

Table 65: 05-D, running time excess ERT/ERT_{best 2009} on f_{16} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f16	4.0e+1:4.8	2.5e+1:16	1.6e + 1:46	1.0e+1:120	4.0e+0:334	15/15
MATSUMOTO-	1.4(2)	0.86(0.7)	1.2(2)	1.2(0.9)	3.9(4)	3/15
R-DE-10e2-	1.4 (0.8)	1.9(2)	1.1 (1)	0.95(1)	5.3(4)	4/15
R-DE-10e5-	1.0(0.9)	1.2(1.0)	1.7(2)	1.7(2)	4.5(5)	15/15
RL-SHADE-1	1.8(0.8)	1.4(2)	1.3(0.5)	1.2(0.9)	1.7(1.0)	10/15
RL-SHADE-1	1.1(1)	1.3(0.6)	1.6 (3)	1.6(2)	7.5(5)	15/15
R-SHADE-10	1.9(2)	1.6(2)	1.6 (1)	1.4(0.7)	2.2 (4)	8/15
R-SHADE-10	1.7(2)	0.85 (0.5)	1.5(2)	1.1(0.8)	2.7 (1)	15/15
SOO-Derbel	1.7(2)	1.6 (1)	1.9 (1)	1.2(0.7)	0.85 (0.5)	15/15

Table 66: 05-D, running time excess ERT/ERT_{best 2009} on f_{17} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f17	1.0e+1:5.2	6.3e+0:26	4.0e+0:57	2.5e+0:110	6.3e-1:412	15/15
MATSUMOTO-	3.1(2)	1.2(1)	1.1(0.5)	1.9 ₍₁₎	9.2(8)	1/15
R-DE-10e2-	4.1(4)	1.8 (1)	1.5(0.8)	1.2(0.7)	0.94 (0.2)	12/15
R-DE-10e5-	4.2(2)	1.8(2)	1.7 ₍₁₎	5.0(7)	7.4(11)	15/15
RL-SHADE-1	2.4(2)	1.0(1)	1.1(0.5)	1.3(0.8)	1.8(2)	8/15
RL-SHADE-1	2.8 (2)	1.7 ₍₁₎	3.1(3)	4.3(2)	4.6(1)	15/15
R-SHADE-10	3.3(4)	2.1(2)	1.9 (1)	1.8(2)	2.7 (2)	6/15
R-SHADE-10	2.8 (2)	1.3(0.4)	1.2(0.9)	1.3 (1)	1.0(0.4)	15/15
SOO-Derbel	1.4(2)	0.64(0.6)	0.86(0.7)	0.93 (0.5)	0.92 (0.6)	15/15

Table 67: 05-D, running time excess ERT/ERT_{best 2009} on f_{18} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f18	6.3e+1:3.4	4.0e+1:7.2	2.5e+1:20	1.6e + 1:58	1.6e+0:318	15/15
MATSUMOTO-	1.9(2)	1.4(2)	1.1(0.9)	0.85(1)	∞ 250	0/15
R-DE-10e2-	2.1(2)	2.5(2)	1.9(2)	1.3(0.3)	4.2(2)	5/15
R-DE-10e5-	2.6 (1)	2.7 (6)	2.1(2)	1.3(0.5)	2.9 (3)	15/15
RL-SHADE-1	1.5 (3)	1.7 (1)	2.2 (2)	1.4 (1)	4.4(3)	5/15
RL-SHADE-1	1.1(0.8)	2.1 (1)	3.1(2)	3.9(3)	8.2(3)	15/15
R-SHADE-10	1.5(1)	2.8 (5)	1.8(2)	1.7(0.8)	12(13)	2/15
R-SHADE-10	1.4 (1)	1.5(2)	1.8(2)	1.5(0.9)	1.5(1)	15/15
SOO-Derbel	0.76 (0.8)	1.0(1)	0.76(0.4)	0.79 (0.5)	1.6(0.7)	15/15

Table 68: 05-D, running time excess ERT/ERT_{best 2009} on f_{19} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:172	1.0e-1:242	6.3e-2:675	4.0e-2:3078	2.5e-2:4946	15/15
MATSUMOTO-	∞	∞	∞	∞	∞ 250	0/15
R-DE-10e2-	∞	∞	∞	∞	$\infty 500$	0/15
R-DE-10e5-	1109(1356)	1951(2356)	3319(4999)	1163(1634)	1470(1238)	1/15
RL-SHADE-1	∞	∞	∞	∞	$\infty 500$	0/15
RL-SHADE-1	273(149)	269(150)	134(116)	70(52)	116(136)	9/15
R-SHADE-10	∞	∞	∞	∞	$\infty 500$	0/15
R-SHADE-10	90(115)	111 (153)	85 (75)	68 (108)	61 (82)	11/15
SOO-Derbel	3.7 (1)	10(28)	6.3(0.3)	1.4(0.1)	0.90 (3)	15/15

Table 69: 05-D, running time excess ERT/ERT_{best 2009} on f_{20} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0.5	1.2	3	10	50	#succ
6.3e+3:5.1	4.0e + 3:8.4	4.0e+1:15	2.5e+0:69	1.0e+0.851	15/15
1.7 (1)	1.4 (1)	1.9 (1)	4.1(3)	∞ 250	0/15
2.1 (3)	1.8(2)	3.5(3)	2.0(0.7)	1.1 (1)	7/15
2.4(2)	1.8(0.8)	3.3 (2)	2.2 (0.8)	0.95 (1)	15/15
1.4 (1)	1.3 (1)	4.3(3)	2.0 (0.6)	1.3 (1)	6/15
2.0(2)	1.8(2)	12(4)	11(6)	5.6(2)	15/15
2.5 (3)	2.2 (3)	4.0(3)	2.5 (1)	1.4(2)	6/15
2.3 (4)	1.9(2)	3.9(2)	3.2(3)	1.9(0.8)	15/15
0.88(0.1)	1.5(0.1)	11(0.0)	3.7(7e-3)	1.2(6e-4)	15/15
	6.3e+3:5.1 1.7(1) 2.1(3) 2.4(2) 1.4(1) 2.0(2) 2.5(3) 2.3(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 70: 05-D, running time excess ERT/ERT_{best 2009} on f_{21} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f21	4.0e+1:3.9	2.5e+1:11	1.6e+1:31	6.3e+0:73	1.6e + 0:347	5/5
MATSUMOTO-	1.3 (0.6)	1.3(2)	0.73 (0.8)	1.2(0.7)	1.5(1)	7/15
R-DE-10e2-	1.8(1)	1.2(0.8)	0.82 (0.8)	1.6 (1)	4.7(4)	4/15
R-DE-10e5-	2.2 (3)	1.6(0.7)	1.1(0.7)	3.6(6)	33(23)	15/15
RL-SHADE-1	1(0.7)	1.4 (1)	1.9(2)	2.1 (1.0)	2.3 (3)	7/15
RL-SHADE-1	1.5(2)	1.5(2)	1.6 (1)	5.0(3)	4.5(2)	15/15
R-SHADE-10	1.9(2)	1.5(3)	1.3(1)	2.0 (0.7)	2.1 (4)	8/15
R-SHADE-10	2.1(0.8)	2.2 (2)	1.6 (1)	4.5(9)	5.3(10)	15/15
SOO-Derbel	1.3(1.0)	1.1(2)	0.88(0.7)	0.99 (0.6)	0.90 (0.8)	15/15

Table 71: 05-D, running time excess ERT/ERT_{best 2009} on f_{22} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f22	6.3e+1:3.6	4.0e+1:15	2.5e+1:32	1.0e+1:71	1.6e+0:341	5/5
MATSUMOTO-	1.6 (1)	1.1(0.9)	1.1(0.6)	1.1(0.7)	2.3 (3)	5/15
R-DE-10e2-	2.8 (3)	1.5(2)	1.2(0.6)	1.3(0.9)	2.3 (3)	7/15
R-DE-10e5-	1.4 (0.7)	1.3 (1)	1.5(2)	2.1 (1)	17(29)	15/15
RL-SHADE-1	1.4(2)	1.9(2)	1.3(0.7)	1.6(0.7)	2.9 (4)	6/15
RL-SHADE-1	2.5 (3)	2.0 (1.0)	1.9 ₍₃₎	3.7(5)	4.2(2)	15/15
R-SHADE-10	2.7 (5)	1.5(1)	1.1(0.4)	1.6(2)	6.4(11)	3/15
R-SHADE-10	3.0(2)	1.8 (1)	1.2(1)	1.5(0.8)	3.3(7)	15/15
SOO-Derbel	1.5(2)	0.94 (0.6)	0.77 (0.7)	1.0(0.5)	1.00(1.0)	15/15

Table 72: 05-D, running time excess ERT/ERT_{best 2009} on f_{23} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f23	1.0e+1:3.0	6.3e+0:9.0	4.0e+0:33	2.5e+0:84	1.0e+0.518	15/15
MATSUMOTO-	1.8(2)	1.7(2)	2.4 (3)	3.9 (6)	∞ 250	0/15
R-DE-10e2-	1.6(2)	1.1(1)	2.1(2)	4.5(3)	14(10)	1/15
R-DE-10e5-	2.0 (1)	2.4 (3)	3.8(4)	6.0(7)	34(34)	15/15
RL-SHADE-1	2.8 (3)	2.8 (1)	3.1(3)	7.3(9)	∞ 500	0/15
RL-SHADE-1	2.2(2)	2.3 (0.9)	2.5 (1)	5.1(6)	18(9)	15/15
R-SHADE-10	3.1(4)	2.6 (1)	3.5(4)	5.2(6)	$\infty 500$	0/15
R-SHADE-10	2.9 (3)	2.1(2)	3.2(3)	6.3(7)	6.2 (3)	15/15
SOO-Derbel	1.7(2)	2.9 (5)	2.5 (3)	3.8 (2)	1.4(0.2)	15/15

Table 73: 05-D, running time excess ERT/ERT_{best 2009} on f_{24} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f24	6.3e+1:15	4.0e+1:37	4.0e+1:37	2.5e+1:118	1.6e+1:692	15/15
MATSUMOTO-	1.9 (3)	3.1(2)	3.1(4)	10(8)	5.3(4)	1/15
R-DE-10e2-	1.7(0.9)	2.7 (1)	2.7 (1)	3.9(4)	11(18)	1/15
R-DE-10e5-	1.9(2)	2.0(2)	2.0(2)	2.0 (3)	2.0 (1)	15/15
RL-SHADE-1	2.4 (3)	3.7(1)	3.7(2)	5.3(4)	11(14)	1/15
RL-SHADE-1	2.8 (3)	8.0(6)	8.0(7)	10(4)	5.0(3)	15/15
R-SHADE-10	2.8 (1)	3.3(2)	3.3(2)	5.7(4)	11(16)	1/15
R-SHADE-10	2.4 (3)	3.1(2)	3.1(2)	3.0 (2)	1.8 (1)	15/15
SOO-Derbel	1.1(2)	5.1(4)	5.1(3)	5.2(2)	1.8 (1)	15/15

Table 74: 10-D, running time excess ERT/ERT_{best 2009} on f_1 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

L	is larger unar	.i .i, wiuii 10	omerion co	office of the control	one mannoer	or mountees.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f1	4.0e+1:8.0	2.5e+1:16	1.0e-8:23	1.0e-8:23	1.0e-8:23	15/15
	MATSUMOTO-	2.9 ₍₂₎	2.0 (0.4)	∞	∞	∞ 500	0/15
	R-DE-10e2-	4.7(3)	3.5(1)	∞	∞	∞ 1000	0/15
	R-DE-10e5-	9.0(6)	6.3(3)	110 (7)	110 (6)	110 (7)	15/15
	RL-SHADE-1	9.0(5)	7.5(2)	∞	∞	$\infty 1000$	0/15
	RL-SHADE-1	13(9)	25(16)	884(34)	884(34)	884(20)	15/15
	R-SHADE-10	5.5(4)	5.0(3)	∞	∞	∞ 1000	0/15
	R-SHADE-10	7.3(6)	7.2(4)	191 (10)	191(12)	191 (14)	15/15
	SOO-Derbel	1.5(1)	1.8(2)	457(23)	457(26)	457(17)	15/15

Table 75: 10-D, running time excess ERT/ERT_{best 2009} on f_2 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f2	2.5e+6:5.6	1.0e+6:17	1.0e + 5:33	2.5e+3:118	1.0e-8:196	15/15
MATSUMOTO-	2.0(2)	1.3(0.6)	4.6(4)	∞	$\infty 500$	0/15
R-DE-10e2-	2.0 (0.9)	1.7 ₍₁₎	2.9 (2)	2.1(0.8)	∞ 1000	0/15
R-DE-10e5-	1.7(2)	2.2 (3)	5.1(3)	4.1(0.7)	18(0.7)	15/15
RL-SHADE-1	2.8 (2)	3.3(0.7)	5.4(2)	3.1(1)	∞ 1000	0/15
RL-SHADE-1	2.0(2)	2.6 (2)	26(15)	34(5)	140(3)	15/15
R-SHADE-10	2.1(2)	2.3 (3)	3.9 (2)	2.7 (1)	∞ 1000	0/15
R-SHADE-10	1.4(2)	2.1(1)	6.5(4)	6.4(2)	32 (2)	15/15
SOO-Derbel	16(15)	8.7(8)	16(7)	621(5)	6117(2550)	7/15

Table 76: 10-D, running time excess ERT/ERT_{best 2009} on f_3 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

-	is larger than	.ı ı, wıun D	omerion co	iiccoion by o	ne number o	i ilibualices.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f3	4.0e+2:8.2	1.6e + 2:37	1.0e+2:69	6.3e+1:147	2.5e+1:1129	15/15
	MATSUMOTO-	1.3 (1.0)	1.5(0.3)	1.8(0.9)	2.0 (1.0)	2.1 (1)	3/15
	R-DE-10e2-	2.1(2)	1.6(0.5)	1.8(0.5)	1.6(0.5)	1.5(1)	8/15
	R-DE-10e5-	1.8(2)	3.3(1)	3.5(0.8)	2.8 (0.6)	0.88 (0.1)	15/15
	RL-SHADE-1	1.9(2)	3.9(0.5)	2.9 (0.7)	1.8(0.3)	0.83 (0.7)	10/15
	RL-SHADE-1	2.0(2)	14(7)	19(3)	18(6)	11(2)	15/15
	R-SHADE-10	2.8 (2)	2.4 (0.4)	2.3 (0.6)	1.7(0.2)	0.45 (0.1)	15/15
	R-SHADE-10	1.9 ₍₃₎	3.8(2)	5.3(2)	6.2(3)	3.3(0.9)	15/15
	SOO-Derbel	2.3(4)	1.7(0.7)	3.1(1)	3.7(2)	1.8(2)	15/15

Table 77: 10-D, running time excess ERT/ERT_{best 2009} on f_4 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f4	2.5e+2:21	1.6e + 2:59	1.6e + 2:59	6.3e+1:139	4.0e+1:854	15/15
MATSUMOTO-	2.9 (4)	2.9 (1)	2.9 (3)	18(16)	$\infty 500$	0/15
R-DE-10e2-	3.0(2)	2.1(0.3)	2.1 (1)	3.1(3)	0.81(0.4)	13/15
R-DE-10e5-	4.6(3)	3.4(1)	3.4(0.9)	3.8(1.0)	0.89(0.2)	15/15
RL-SHADE-1	6.5(2)	3.0 (0.7)	3.0 (0.6)	2.8 (0.6)	1.1(2)	10/15
RL-SHADE-1	13(9)	16(7)	16(6)	29(6)	10(2)	15/15
R-SHADE-10	3.8(3)	2.3 (0.9)	2.3 (0.7)	2.4 (0.7)	0.56 (0.2)	15/15
R-SHADE-10	4.4(2)	3.9(1)	3.9(2)	10(7)	3.3(0.9)	15/15
SOO-Derbel	1.4(2)	1.5(0.8)	1.5(1.0)	5.9(1)	3.1(0.8)	15/15

Table 78: 10-D, running time excess ERT/ERT_{best 2009} on f_5 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f5	1.0e+2:16	6.3e+1:19	1.0e-8:20	1.0e-8:20	1.0e-8:20	15/15
MATSUMOTO-	1.2 (0.5)	$1.3(0.0)^{\star 2}$	$2.0(0.2)^{*4}$	$2.0_{(0.2)}^{\star 4}$	$2.0_{(0.2)}^{*4}$	15/15
R-DE-10e2-	2.1 (0.9)	4.1 (1)	∞	∞	∞ 1000	0/15
R-DE-10e5-	3.4(3)	7.9(3)	203 (9)	203 (12)	203 (9)	15/15
RL-SHADE-1	4.2(3)	6.9(3)	∞	∞	∞ 1000	0/15
RL-SHADE-1	6.9(12)	39(24)	862(10)	862(21)	862(13)	15/15
R-SHADE-10	2.8(2)	4.6(3)	367(396)	367(533)	367(644)	2/15
R-SHADE-10	4.8(4)	12(9)	444(43)	444(22)	444(24)	15/15
SOO-Derbel	3.9(0.0)	7.3(0.0)	2290(0.0)	2290(0.0)	2290(0.0)	15/15

Table 79: 10-D, running time excess ERT/ERT_{best 2009} on f_6 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f6	1.6e+5:7.0	6.3e+4:16	4.0e+2:36	1.0e + 2:102	4.0e+0:504	15/15
MATSUMOTO-	1.5 (2)	1.2(0.5)	1.1(0.3)	5.1(6)	$\infty 500$	0/15
R-DE-10e2-	2.1(2)	1.8 (1)	2.3 (0.8)	2.1 (1)	4.5(4)	6/15
R-DE-10e5-	2.2 (3)	3.5(3)	4.5(3)	3.0 (2)	4.6(0.6)	15/15
RL-SHADE-1	3.1(3)	4.0(4)	3.8(1)	2.4 (1)	29(70)	1/15
RL-SHADE-1	2.2(1)	6.0(5)	18(11)	11(4)	17(3)	15/15
R-SHADE-10	2.4 (3)	2.9 (3)	3.3(4)	1.9 (1)	4.4 (3)	6/15
R-SHADE-10	3.3(2)	3.9(2)	6.3(5)	3.3(2)	3.2 (0.6)	15/15
SOO-Derbel	1.3 (3)	2.0 (2)	3.4(2)	2.6 (3)	2.8e4(6e4)	1/15

Table 80: 10-D, running time excess ERT/ERT_{best 2009} on f_7 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f7	2.5e+2:9.2	1.6e + 2:18	1.0e + 2:33	1.0e + 1:172	4.0e+0.678	15/15
MATSUMOTO-	1.4(2)	1.7 ₍₁₎	1.6 (0.6)	45(39)	$\infty 500$	0/15
R-DE-10e2-	2.8 (3)	2.6 (2)	3.2(1)	4.6(7)	2.1 (1)	8/15
R-DE-10e5-	3.5(3)	3.5(3)	3.2(3)	7.2(4)	4.7(2)	15/15
RL-SHADE-1	2.9 (5)	3.5(3)	3.6(3)	3.7 (5)	2.5 (1)	7/15
RL-SHADE-1	7.3(6)	7.5(5)	14(8)	19(4)	7.7(1)	15/15
R-SHADE-10	3.0 (3)	3.1(1)	2.8 (0.7)	3.9(4)	2.3(2)	8/15
R-SHADE-10	5.3(4)	4.1(2)	4.4(2)	3.9 (1)	1.5(0.4)	15/15
SOO-Derbel	1.8(2)	1.8(2)	1.7(2)	6.6(13)	4.7(3)	15/15

Table 81: 10-D, running time excess ERT/ERT_{best 2009} on f_8 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0.5	1.2	3	10	50	#succ
1.6e+4:15	1.0e+4:22	1.6e + 3:34	2.5e+2:103	4.0e+0.727	15/15
2.6 (2)	2.1 (0.9)	2.6 (1)	2.3 (1)	∞ 500	0/15
4.2(2)	3.0(0.9)	3.5 (2)	2.1(0.7)	∞ 1000	0/15
5.4(1)	4.2(1)	7.0(2)	4.4(1)	369(391)	13/15
5.2(4)	5.5(3)	6.2(1)	4.0(2)	∞ 1000	0/15
12(12)	15(7)	35(12)	27(5)	21(1)	15/15
4.1(2)	3.1(2)	4.7(1)	2.9 (0.8)	4.9 (3)	4/15
3.4(3)	3.7(3)	6.8(1)	4.2(0.8)	6.9 (6)	15/15
2.2 (2)	1.7(2)	4.2(3)	4.3(1)	944(1254)	11/15
	$\begin{array}{c} 1.6e{+}4{:}15 \\ \textbf{2.6}(2) \\ 4.2(2) \\ 5.4(1) \\ 5.2(4) \\ 12(12) \\ 4.1(2) \\ 3.4(3) \end{array}$	$\begin{array}{cccc} 1.6e+4:15 & 1.0e+4:22 \\ \textbf{2.6}(2) & \textbf{2.1}(0.9) \\ 4.2(2) & 3.0(0.9) \\ 5.4(1) & 4.2(1) \\ 5.2(4) & 5.5(3) \\ 12(12) & 15(7) \\ 4.1(2) & 3.1(2) \\ 3.4(3) & 3.7(3) \\ \end{array}$	$\begin{array}{c ccccc} 1.6e+4:15 & 1.0e+4:22 & 1.6e+3:34 \\ \textbf{2.6}(2) & \textbf{2.1}(0.9) & \textbf{2.6}(1) \\ 4.2(2) & 3.0(0.9) & \textbf{3.5}(2) \\ 5.4(1) & 4.2(1) & 7.0(2) \\ 5.2(4) & 5.5(3) & 6.2(1) \\ 12(12) & 15(7) & 35(12) \\ 4.1(2) & 3.1(2) & 4.7(1) \\ 3.4(3) & 3.7(3) & 6.8(1) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 82: 10-D, running time excess ERT/ERT_{best 2009} on f_9 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f9	4.0e+1:125	2.5e+1:148	1.6e+1:180	1.0e+1:200	1.6e+0:563	15/15
MATSUMOTO-	7.3(5)	12(12)	41(38)	∞	$\infty 500$	0/15
R-DE-10e2-	7.5(7)	7.4(5)	7.3(11)	7.3 (4)	∞ 1000	0/15
R-DE-10e5-	8.4(3)	8.4(4)	8.6(4)	10(7)	2063(1397)	9/15
RL-SHADE-1	17(18)	18(15)	19(22)	74(99)	∞ 1000	0/15
RL-SHADE-1	42(6)	41(6)	38(4)	44(4)	57 (180)	15/15
R-SHADE-10	7.3(4)	6.5 (2)	6.5 (6)	8.3(5)	$\infty 1000$	0/15
R-SHADE-10	6.5 (1)	6.2 (0.8)	5.9 (0.6)	7.1 (1)	16 (15)	15/15
SOO-Derbel	5.9 (2)	7.0(3)	7.4(2)	9.2(4)	1814(2203)	9/15

Table 83: 10-D, running time excess ERT/ERT_{best 2009} on f_{10} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f10	2.5e+6:6.0	1.0e+6:21	4.0e + 5:38	2.5e+4:104	6.3e + 2:512	15/15
MATSUMOTO-	1.7 (2)	1.3(1.0)	1.5(0.4)	6.2(1)	∞ 500	0/15
R-DE-10e2-	2.3 (3)	1.3(1)	2.0(2)	7.1(7)	∞ 1000	0/15
R-DE-10e5-	2.4(5)	1.6 (0.9)	2.1(0.9)	12(9)	1606(1431)	10/15
RL-SHADE-1	1.8(1)	1.5(3)	2.6 (2)	8.9(13)	∞ 1000	0/15
RL-SHADE-1	2.2(2)	1.3(1)	5.4(6)	26(10)	19 (3)	15/15
R-SHADE-10	2.5(2)	1.8(2)	1.9(2)	5.9(3)	∞ 1000	0/15
R-SHADE-10	1.3(1)	1.7(2)	2.1(2)	4.8(2)	3.0(0.8)	15/15
SOO-Derbel	2.7 ₍₄₎	1.2(2)	1.3(0.8)	5.3 (5)	360(991)	13/15

Table 84: 10-D, running time excess ERT/ERT_{best 2009} on f_{11} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f11	4.0e+4:6.4	2.5e+3:15	6.3e+1:217	4.0e+1:244	2.5e+0:675	15/15
MATSUMOTO-	4.5(4)	3.9(3)	16(22)	14 (13)	$\infty 500$	0/15
R-DE-10e2-	2.8 (3)	3.1 (2)	21(25)	∞	∞ 1000	0/15
R-DE-10e5-	2.6 (2)	4.5(7)	20(12)	59(55)	$\infty~1e6$	0/15
RL-SHADE-1	5.8(5)	5.4(2)	11(13)	58(55)	∞ 1000	0/15
RL-SHADE-1	2.2(2)	3.6(1)	12(12)	22(12)	19 (2)	15/15
R-SHADE-10	3.5(4)	3.3 (4)	7.7 (5)	27(32)	∞ 1000	0/15
R-SHADE-10	3.9(3)	6.3(3)	2.0 (1)	2.7 (2)	3.7 (3)	15/15
SOO-Derbel	1.1(1)	3.6(4)	8.6(3)	334(86)	$\infty~1e6$	0/15

Table 85: 10-D, running time excess ERT/ERT_{best 2009} on f_{12} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f12	4.0e + 7:15	2.5e + 7:24	1.6e + 7:34	1.0e+6:103	1.0e+1:515	15/15
MATSUMOTO-	2.0 (0.9)	1.7(0.6)	1.6(0.5)	$1.5(0.4)^{\star}$	∞ 500	0/15
R-DE-10e2-	3.4(1)	2.9 (1)	2.5 (1)	2.4 (0.9)	7.0 (4)	4/15
R-DE-10e5-	4.7(3)	4.9(2)	4.9(2)	4.6(1)	25(15)	15/15
RL-SHADE-1	5.5(4)	5.2(0.9)	4.5(0.8)	3.3(2)	∞ 1000	0/15
RL-SHADE-1	8.9(2)	16(10)	17(9)	32(7)	32(3)	15/15
R-SHADE-10	3.2(2)	3.5(1)	3.4(1)	3.1(0.4)	∞ 1000	0/15
R-SHADE-10	3.8(2)	3.4(1)	4.2(1)	5.4(1)	10 (16)	15/15
SOO-Derbel	1.2(0.7)	1.5(2)	1.7(2)	6.3(10)	12(4)	15/15

Table 86: 10-D, running time excess ERT/ERT_{best 2009} on f_{13} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f13	1.0e + 3:12	6.3e+2:32	4.0e+2:40	6.3e+1:154	2.5e+0:521	15/15
MATSUMOTO-	2.3 (1)	1.5(0.5)	2.0 (0.4)	$2.3(3)^{\star 2}$	6.9 (7)	2/15
R-DE-10e2-	3.8(2)	2.8 (1)	4.4(3)	7.1(7)	9.4(15)	3/15
R-DE-10e5-	6.0(6)	5.2(0.9)	7.2(2)	6.6(2)	46(87)	15/15
RL-SHADE-1	7.0(5)	4.6(2)	5.3(1)	7.4(5)	∞ 1000	0/15
RL-SHADE-1	18(15)	24(10)	36(7)	41(4)	25(1)	15/15
R-SHADE-10	5.1(4)	4.2(1)	5.4(2)	4.3 (1)	29(22)	1/15
R-SHADE-10	6.3(2)	5.6(0.8)	8.1(4)	6.8(2)	5.8 (2)	15/15
SOO-Derbel	1.5(1)	2.4 (2)	4.1 (2)	10(6)	108(62)	15/15

Table 87: 10-D, running time excess ERT/ERT_{best 2009} on f_{14} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

8٠	, one som is	iaigei ullali	i, with Doi	merrom com	ccolon by one	mumber or i	instance
	#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
_	f14	4.0e+1:7.7	1.6e+1:27	1.0e + 1:37	6.3e-1:107	1.0e-4:505	15/15
Ν	MATSUMOTO-	1.1(0.7)	1.1(0.8)	1.8(2)	4.6(5)	∞ 500	0/15
	R-DE-10e2-	1.2(0.5)	1.4(0.7)	1.8 (1)	4.1 (3)	∞ 1000	0/15
	R-DE-10e5-	1.4(2)	2.5 (2)	3.2(2)	5.2(0.9)	2.8e4(2e4)	1/15
	RL-SHADE-1	1.1(0.8)	2.8 (2)	3.5(2)	4.6(2)	∞ 1000	0/15
	RL-SHADE-1	1.3(1)	3.4(3)	10(5)	36(6)	31 (2)	15/15
	R-SHADE-10	2.1(2)	2.1 (1)	2.8 (2)	3.8 (0.8)	∞ 1000	0/15
	R-SHADE-10	1.0(1)	2.3 (1.0)	2.9 (2)	6.3(1)	7.2 (0.3)	15/15
	SOO-Derbel	0.84(1)	0.81(0.6)	1.3(0.7)	6.8(2)	2.9e4(3e4)	1/15

Table 88: 10-D, running time excess ERT/ERT_{best 2009} on f_{15} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f15	2.5e+2:9.0	1.6e + 2:72	1.0e + 2:186	6.3e+1:450	4.0e+1:872	15/15
MATSUMOTO-	3.5 (1)	0.98 (0.2)	0.79 (0.3)	1.0(0.7)	2.7 (2)	3/15
R-DE-10e2-	3.6(2)	1.1(0.9)	1.3 (1)	2.1 (3)	8.4(14)	2/15
R-DE-10e5-	5.8(5)	1.8(0.9)	1.7(0.5)	2.4 (1)	5.2(4)	15/15
RL-SHADE-1	11(5)	2.2 (0.5)	1.6 (1.0)	2.1(2)	3.2(3)	5/15
RL-SHADE-1	11(10)	8.2(4)	7.2(3)	8.0(2)	14(5)	15/15
R-SHADE-10	4.8(5)	1.8(0.7)	1.5(1)	1.7 ₍₁₎	5.6(4)	3/15
R-SHADE-10	6.0(6)	1.8(1)	1.6(0.9)	2.2 (0.6)	3.2(1.0)	15/15
SOO-Derbel	1.5(2)	0.88 (0.9)	1.1 (1)	1.7 (0.9)	1.5(0.3)	15/15

Table 89: 10-D, running time excess ERT/ERT_{best 2009} on f_{16} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f16	4.0e+1:12	2.5e+1:47	1.6e+1:88	1.0e+1:425	4.0e+0.989	15/15
MATSUMOTO-	1.9 (4)	2.8 (1)	8.1(9)	4.3(3)	∞ 500	0/15
R-DE-10e2-	1.1(0.8)	2.0(2)	10(8)	11(16)	∞ 1000	0/15
R-DE-10e5-	1.3(2)	1.6(2)	8.1(10)	7.9(4)	27(22)	15/15
RL-SHADE-1	1.1(1.0)	2.4(2)	5.3(4)	1.9(2)	15(17)	1/15
RL-SHADE-1	2.0(4)	3.6(3)	21(20)	26(12)	34(7)	15/15
R-SHADE-10	1.9 (1)	1.9 (1)	3.3 (4)	2.5 (0.9)	∞ 1000	0/15
R-SHADE-10	1.4(0.8)	3.2(6)	16(12)	7.5(5)	8.7 ₍₂₎	15/15
SOO-Derbel	1.4(2)	1.6 (2)	4.0 (2)	1.1(0.3)	1.1(0.3)	15/15

Table 90: 10-D, running time excess ERT/ERT_{best 2009} on f_{17} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f17	1.0e+1:26	6.3e+0.85	4.0e+0:155	2.5e+0:238	6.3e-1:585	15/15
MATSUMOTO-	1.5 (0.9)	1.0(0.4)	1.9(2)	6.9(9)	∞ 500	0/15
R-DE-10e2-	1.5(0.6)	1.7(0.4)	2.6 (1)	4.7(4)	26(36)	1/15
R-DE-10e5-	2.4(2)	2.4(2)	3.0 (1)	3.6(1)	5.4(3)	15/15
RL-SHADE-1	2.5(2)	1.6 (1)	1.9(1.0)	4.3(4)	∞ 1000	0/15
RL-SHADE-1	3.3(5)	3.9(3)	7.9(3)	11(5)	15(2)	15/15
R-SHADE-10	2.9 ₍₂₎	2.3(1.0)	5.3(3)	7.2(6)	26(50)	1/15
R-SHADE-10	2.0 (1)	1.5(0.3)	1.9(0.6)	2.0(0.4)	2.2 (0.5)	15/15
SOO-Derbel	0.69(1)	1.2(1)	1.4(0.6)	2.0 (1)	4.4(6)	15/15

Table 91: 10-D, running time excess ERT/ERT_{best 2009} on f_{18} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f18	4.0e+1:11	2.5e+1:56	1.6e + 1:172	1.6e + 1:172	2.5e+0:561	15/15
MATSUMOTO-	2.2 (3)	1.3(2)	1.7(2)	1.7(2)	$\infty 500$	0/15
R-DE-10e2-	3.3(5)	1.7(2)	1.4 (1)	1.4(0.5)	13(17)	2/15
R-DE-10e5-	4.6(6)	2.7 (1)	2.1 (1.0)	2.1 (0.6)	10(6)	15/15
RL-SHADE-1	3.9(4)	2.7 (0.6)	2.1 (1)	2.1 (1)	13(15)	2/15
RL-SHADE-1	5.2(4)	8.3(5)	7.0(3)	7.0(2)	15(2)	15/15
R-SHADE-10	11(25)	3.9(2)	2.3 (0.7)	2.3 (1)	26(10)	1/15
R-SHADE-10	3.3(3)	2.1 (0.9)	1.3(0.5)	1.3(0.4)	2.1(0.4)	15/15
SOO-Derbel	1.9 (3)	1.3(1)	1.1(0.7)	1.1(0.9)	3.3 (2)	15/15

Table 92: 10-D, running time excess ERT/ERT_{best 2009} on f_{19} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0.5	1.2	3	10	50	#succ
1.6e-1:618	1.0e-1:10609	6.3e-2:10623	4.0e-2:10625	2.5e-2:10644	15/15
∞	∞	∞	∞	$\infty 500$	0/15
∞	∞	∞	∞	∞ 1000	0/15
∞	∞	∞	∞	$\infty~1e6$	0/15
∞	∞	∞	∞	∞ 1000	0/15
670 (396)	188(361)	667(1083)	∞	$\infty~1e6$	0/15
∞	∞	∞	∞	∞ 1000	0/15
965(855)	115 (45)	309 (378)	1407(1200)	$\infty~1e6$	0/15
4.3(1)	0.30 (0.1)	0.38 (0.1)	7.2 (0.3)	20 (36)	13/15
	$1.6e-1:618$ ∞ ∞ ∞ ∞ ∞ $670(396)$ ∞ $965(855)$	$\begin{array}{cccc} 1.6e\text{-}1:618 & 1.0e\text{-}1:10609 \\ \infty & \infty & \infty \\ \infty & \infty & \infty \\ \infty & \infty & \infty \\ \infty & \infty &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 93: 10-D, running time excess ERT/ERT_{best 2009} on f_{20} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f20	1.0e+4:17	6.3e + 3:21	6.3e+1:30	2.5e+0:122	1.0e+0:154	26 13/15
MATSUMOTO-	1.9 (1.0)	2.0 (0.7)	3.0 (1)	11(20)	$\infty 500$	0/15
R-DE-10e2-	2.1 (0.5)	2.0 (0.9)	4.5 (3)	2.8 (0.9)	0.96(2)	1/15
R-DE-10e5-	3.4(2)	4.3(3)	8.6(1)	5.5(1)	0.21(0.1)	15/15
RL-SHADE-1	2.7 (2)	4.3(3)	6.8(2)	2.8 (0.6)	0.22 (0.1)	4/15
RL-SHADE-1	5.8(5)	6.9(4)	40(10)	38(7)	2.0(0.4)	15/15
R-SHADE-10	3.0 (1)	3.0(2)	6.1(2)	2.7 (0.4)	0.96 (0.4)	1/15
R-SHADE-10	3.0(1)	3.1(2)	6.8(3)	8.8(4)	0.71(0.5)	15/15
SOO-Derbel	2.3 (0.0)	3.1(0.0)	54(0.0)	163(4e-3)	2.3(3e-5)	15/15

Table 94: 10-D, running time excess ERT/ERT_{best 2009} on f_{21} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f21	4.0e+1:30	2.5e+1:46	1.6e+1:56	1.0e+1:130	6.3e+0:639	15/15
MATSUMOTO-	1.9(2)	1.8(0.9)	2.9 (4)	2.5 (2)	0.59 (0.6)	11/15
R-DE-10e2-	4.0(4)	5.4(7)	6.2(2)	3.6(1)	0.89 (1.0)	13/15
R-DE-10e5-	4.0(3)	5.6(4)	8.3(7)	5.1(3)	3.0(1)	15/15
RL-SHADE-1	4.4(2)	4.1(1)	4.8(1)	2.8 (2)	0.93 (0.2)	13/15
RL-SHADE-1	13(8)	19(12)	30(12)	22(12)	6.0(3)	15/15
R-SHADE-10	4.0(3)	4.2(2)	5.4(2)	3.3(2)	1.4(0.8)	12/15
R-SHADE-10	4.9(4)	6.3(5)	8.1(5)	4.6(3)	2.5 (0.7)	15/15
SOO-Derbel	1.8(3)	2.7 (2)	3.2 (3)	1.9 ₍₁₎	0.76(0.4)	15/15

Table 95: 10-D, running time excess ERT/ERT_{best 2009} on f_{22} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f22	6.3e+1:18	4.0e+1:30	4.0e+1:30	6.3e+0:155	4.0e+0:631	14/15
MATSUMOTO-	2.4 (1)	2.3 (1)	2.3 (1)	2.3 (3)	0.60(0.7)	11/15
R-DE-10e2-	3.3(1)	4.0(2)	4.0(2)	10(5)	3.7(5)	5/15
R-DE-10e5-	6.4(4)	7.0(5)	7.0(3)	21(38)	22(58)	15/15
RL-SHADE-1	4.7(4)	5.7(4)	5.7(3)	8.1(4)	3.4(2)	6/15
RL-SHADE-1	11(8)	24(19)	24(9)	27(20)	50(4)	15/15
R-SHADE-10	4.0(4)	5.3(5)	5.3(4)	4.2 (6)	1.9(0.9)	9/15
R-SHADE-10	6.7(2)	7.6(4)	7.6(3)	5.3(2)	5.3(9)	15/15
SOO-Derbel	2.5 (2)	2.5 (2)	2.5 (0.9)	5.5(5)	16(2)	15/15

Table 96: 10-D, running time excess ERT/ERT_{best 2009} on f_{23} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f23	6.3e+0:10	4.0e+0:62	2.5e+0:162	2.5e+0:162	1.0e+0.915	15/15
MATSUMOTO-	2.1 (3)	2.1(2)	8.6(12)	8.6(12)	$\infty 500$	0/15
R-DE-10e2-	1.6(2)	2.6 (2)	8.9(15)	8.9(12)	∞ 1000	0/15
R-DE-10e5-	2.0 (3)	1.9(3)	8.3(8)	8.3(8)	204(224)	15/15
RL-SHADE-1	2.0 (1)	1.2(1.0)	6.8(6)	6.8(17)	∞ 1000	0/15
RL-SHADE-1	2.1(2)	3.0(4)	6.8 (3)	6.8 (7)	68(32)	15/15
R-SHADE-10	1.6(2)	2.3 (2)	8.1(5)	8.1(9)	∞ 1000	0/15
R-SHADE-10	1.7 (0.9)	2.1 (3)	7.8(8)	7.8(11)	21 (11)	15/15
SOO-Derbel	1.9 ₍₃₎	2.5(2)	5.2(2)	5.2 (3)	2.3 (1)	15/15

Table 97: 10-D, running time excess ERT/ERT_{best 2009} on f_{24} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f24	1.0e+2:66	6.3e+1:596	4.0e+1:3181	2.5e+1:7668	1.6e+1:14353	15/15
MATSUMOTO-	7.0(6)	∞	∞	∞	$\infty 500$	0/15
R-DE-10e2-	3.3 (1)	2.5(2)	∞	∞	∞ 1000	0/15
R-DE-10e5-	4.4(2)	3.9(3)	10(7)	71(147)	475(719)	2/15
RL-SHADE-1	5.6(5)	2.7 (1)	∞	∞	∞ 1000	0/15
RL-SHADE-1	20(4)	10(6)	10(2)	7.4(1)	9.4(7)	15/15
R-SHADE-10	4.2(2)	7.9(5)	∞	∞	∞ 1000	0/15
R-SHADE-10	4.7(2)	2.4 (1)	1.8 (1)	1.7(0.9)	3.6 (2)	15/15
SOO-Derbel	11(8)	3.9(2)	2.1 (1)	4.2 (9)	7.1 (7)	15/15

Table 98: 20-D, running time excess ERT/ERT_{best 2009} on f_1 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f1	6.3e+1:24	4.0e+1:42	1.0e-8:43	1.0e-8:43	1.0e-8:43	15/15
MATSUMOTO-	2.5 (0.3)	$2.0(0.3)^{\star 2}$	∞	∞	∞ 1000	0/15
R-DE-10e2-	3.7(2)	3.2 (1)	∞	∞	∞ 2000	0/15
R-DE-10e5-	10(3)	10(1)	230 (6)	230 (5)	230 (6)	15/15
RL-SHADE-1	11(0.5)	7.1(0.8)	∞	∞	∞ 2000	0/15
RL-SHADE-1	53(17)	47(15)	1041(15)	1041(17)	1041(10)	15/15
R-SHADE-10	6.8(3)	5.5(1)	∞	∞	∞ 2000	0/15
R-SHADE-10	12(4)	12(3)	294 (18)	294 (20)	294 (32)	15/15
SOO-Derbel	3.6 (2)	4.3(1)	1042(23)	1042(26)	1042(19)	15/15

Table 99: 20-D, running time excess ERT/ERT_{best 2009} on f_2 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f2	4.0e+6:29	2.5e+6:42	1.0e + 5:65	1.0e+4:207	1.0e-8:412	15/15
MATSUMOTO-	0.79 (1)	1.3 (1)	9.3(6)	71(145)	∞ 1000	0/15
R-DE-10e2-	0.87 (0.8)	0.95 (0.3)	3.8(2)*2	2.6 (1)	$\infty 2000$	0/15
R-DE-10e5-	1.4(2)	2.0(2)	12(2)	6.9(0.7)	32 (0.9)	15/15
RL-SHADE-1	1.3(1)	1.3(2)	6.1 (1)	4.2(2)	∞ 2000	0/15
RL-SHADE-1	1.5(1)	3.0(1)	85(10)	61(4)	152(2)	15/15
R-SHADE-10	1.9(2)	2.0 (1)	6.2(1)	3.6 (0.3)	$\infty 2000$	0/15
R-SHADE-10	1.0(1)	2.1 (1)	16(3)	10(2)	44 (2)	15/15
SOO-Derbel	8.8(3)	12(12)	43(9)	24(7)	3.3e4(2e4)	2/15

Table 100: 20-D, running time excess ERT/ERT_{best 2009} on f_3 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0.5	1.2	3	10	50	#succ
6.3e+2:33	4.0e + 2:44	1.6e + 2:109	1.0e + 2:255	2.5e+1:3277	15/15
1.9(0.6)	2.5 (0.7)	8.0(5)	10(9)	∞ 1000	0/15
1.4(0.9)	2.5 (1)	5.4(9)	4.3 (1)	9.1(13)	1/15
4.3(2)	6.8(2)	10(2)	8.7(3)	2.8 (0.6)	15/15
5.2(3)	6.4(0.6)	5.1 (3)	5.9(5)	8.9(10)	1/15
10(7)	36(8)	75(11)	91(22)	28(2)	15/15
2.8(2)	4.0(1)	5.2(0.4)	3.9(0.7)	3.0 (5)	3/15
3.8(3)	7.7(2)	20(8)	33(6)	7.7(0.6)	15/15
5.0(3)	5.8(2)	12(5)	12(3)	234(655)	12/15
	6.3e+2:33 1.9 (0.6) 1.4 (0.9) 4.3 (2) 5.2 (3) 10 (7) 2.8 (2) 3.8 (3)	$\begin{array}{cccc} 6.3e+2:33 & 4.0e+2:44 \\ \textbf{1.9} (0.6) & \textbf{2.5} (0.7) \\ \textbf{1.4} (0.9) & \textbf{2.5} (1) \\ 4.3 (2) & 6.8 (2) \\ 5.2 (3) & 6.4 (0.6) \\ \textbf{10} (7) & 36 (8) \\ \textbf{2.8} (2) & 4.0 (1) \\ 3.8 (3) & 7.7 (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 101: 20-D, running time excess ERT/ERT_{best 2009} on f_4 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f4	6.3e + 2:22	4.0e+2:91	2.5e+2:250	1.6e + 2:332	6.3e+1:1927	15/15
MATSUMOTO-	7.6(8)	5.1(4)	10(7)	∞	∞ 1000	0/15
R-DE-10e2-	4.4 (3)	2.0 (0.4)	$1.5(0.4)^{\star}$	2.2 (0.7)	∞ 2000	0/15
R-DE-10e5-	13(4)	6.1(0.8)	4.0(0.4)	5.0(1)	2.6 (0.3)	15/15
RL-SHADE-1	12(2)	3.6(0.5)	1.9(0.4)	4.2(3)	7.4(10)	2/15
RL-SHADE-1	40(19)	30(3)	25(3)	38(6)	29(3)	15/15
R-SHADE-10	7.9(2)	3.2(0.5)	2.1(0.3)	2.4(0.5)	0.84(0.1)	15/15
R-SHADE-10	11(4)	6.6(2)	5.5(0.8)	13(3)	9.0(1)	15/15
SOO-Derbel	$1.1(2)^*$	2.7 (0.8)	3.9(3)	7.0(1.0)	47(1)	15/15
R-SHADE-10	11(4)	6.6(2)	5.5(0.8)	13(3)	9.0(1)	15

Table 102: 20-D, running time excess ERT/ERT_{best 2009} on f_5 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f5	2.5e+2:19	1.6e + 2:34	1.0e-8:41	1.0e-8:41	1.0e-8:41	15/15
MATSUMOTO-	1.8(0.6)	$1.3(0.1)^{*4}$	$2.4(0.1)^{*4}$	$2.4_{(1)}^{*4}$	$2.4_{(0.1)}^{\star 4}$	15/15
R-DE-10e2-	2.2 (0.7)	3.1(0.8)	∞	∞	∞ 2000	0/15
R-DE-10e5-	4.3(3)	10(2)	332(7)	332(5)	332(8)	15/15
RL-SHADE-1	6.3(5)	7.9(0.5)	242 (173)	242 (333)	242 (209)	3/15
RL-SHADE-1	8.0(23)	57(13)	1574(45)	1574(34)	1574(44)	15/15
R-SHADE-10	3.5(3)	4.8(0.6)	∞	∞	∞ 2000	0/15
R-SHADE-10	6.1(5)	19(4)	959(45)	959(33)	959(31)	15/15
SOO-Derbel	10(0.0)	8.7(0.0)	4928(0.0)	4928(0.0)	4928(0.0)	15/15

Table 103: 20-D, running time excess ERT/ERT_{best 2009} on f_6 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f6	2.5e+5:16	6.3e+4:43	1.6e+4:62	1.6e + 2:353	1.6e+1:1078	15/15
MATSUMOTO-	2.4 (0.2)	1.4(0.4)	$1.4(0.7)^{\star}$	9.5(21)	$\infty 1000$	0/15
R-DE-10e2-	2.9 (2)	2.2 (1)	2.4 (1)	3.4 (2)	27(44)	1/15
R-DE-10e5-	6.8(7)	7.2(5)	8.8(2)	4.9(1.0)	12 (3)	15/15
RL-SHADE-1	8.0(9)	6.3(1)	5.1(1)	3.9(2)	∞ 2000	0/15
RL-SHADE-1	16(22)	32(19)	36(23)	19(5)	20(0.7)	15/15
R-SHADE-10	4.0(3)	4.0(2)	4.1(2)	2.5 (1)	∞ 2000	0/15
R-SHADE-10	7.7(10)	9.0(7)	11(6)	4.3(1)	4.3(0.4)	15/15
SOO-Derbel	2.9 (3)	4.2(3)	5.3(2)	6.9(3)	1.3e4(2e4)	2/15

Table 104: 20-D, running time excess ERT/ERT_{best 2009} on f_7 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f7	1.0e+3:11	4.0e + 2:39	2.5e+2:74	6.3e+1:319	1.0e+1:1351	15/15
MATSUMOTO-	1.2(2)	2.2 (2)	2.0 (0.5)	5.6(6)	∞ 1000	0/15
R-DE-10e2-	1.9 ₍₁₎	2.1 (1)	2.0(2)	3.0 (2)	11 (6)	2/15
R-DE-10e5-	1.9(3)	4.9(3)	5.0(3)	5.0(2)	12(6)	15/15
RL-SHADE-1	2.0(4)	5.6(1)	4.1(0.3)	3.5(6)	∞ 2000	0/15
RL-SHADE-1	2.5(2)	22(16)	25(3)	22(6)	11(0.5)	15/15
R-SHADE-10	2.1(2)	3.0(1)	3.2(2)	2.2 (0.7)	11(7)	2/15
R-SHADE-10	3.4(5)	4.5(2)	5.2(1)	3.1(0.4)	2.0 (0.7)	15/15
SOO-Derbel	1.3(0.5)	2.0 (1)	1.9 (1)	5.7(5)	59(85)	15/15

Table 105: 20-D, running time excess ERT/ERT_{best 2009} on f_8 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FE	s/D	0.5	1.2	3	10	50	#succ
f8	3	4.0e+4:19	2.5e+4:35	4.0e + 3:67	2.5e+2:231	1.6e+1:1470	15/15
MATSUI	MOTO-	4.5 (1)	2.9 (0.8)	3.3 (1)	4.0 (7)	∞ 1000	0/15
R-DE-1	0e2-	5.1(1)	3.6 (1)	4.7 (1)	6.9(2)	∞ 2000	0/15
R-DE-1	0e5-	15(5)	11(2)	12(3)	9.1(2)	51(5)	15/15
RL-SHA	DE-1	14(2)	8.2(0.9)	7.2(2)	22(20)	∞ 2000	0/15
RL-SHA	DE-1	67(28)	50(14)	61(11)	48(4)	22(3)	15/15
R-SHAI	DE-10	8.6(2)	5.4(1)	5.8(1)	3.5 (1)	20 (25)	1/15
R-SHAI	DE-10	16(5)	9.3(3)	12(3)	8.3(1)	7.0 (3)	15/15
SOO-De	erbel	3.8(5)	4.5(5)	8.2(6)	12(4)	2107(3738)	6/15

Table 106: 20-D, running time excess ERT/ERT_{best 2009} on f_9 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f9	1.0e + 2:357	6.3e+1:560	4.0e+1:684	2.5e+1:756	1.0e+1:1716	15/15
MATSUMOTO-	7.9(9)	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	7.0(3)	12(15)	14(12)	19(19)	∞ 2000	0/15
R-DE-10e5-	20(7)	18(6)	16(7)	16(3)	3022(3021)	5/15
RL-SHADE-1	20(48)	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	37(2)	26(2)	24(1)	25(1)	33 (2)	15/15
R-SHADE-10	5.3 (3)	4.2 (4)	5.3 (4)	6.1 (5)	∞ 2000	0/15
R-SHADE-10	5.7 (0.5)	4.3 (0.3)	4.1(0.4)	4.6 (0.3)	16 (2)	15/15
SOO-Derbel	10(3)	11(3)	15(5)	21(6)	5000(4642)	3/15

Table 107: 20-D, running time excess ERT/ERT_{best 2009} on f_{10} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f10	1.6e+6:15	1.0e+6:27	4.0e+5:70	6.3e+4:231	4.0e+3:1015	15/15
MATSUMOTO-	4.4(1)	3.1 (1)	3.4 (8)	9.1(8)	$\infty 1000$	0/15
R-DE-10e2-	4.6(4)	4.2(0.8)	4.1(2)	12(13)	∞ 2000	0/15
R-DE-10e5-	9.2(11)	10(6)	12(9)	70(21)	$\infty~2e6$	0/15
RL-SHADE-1	12(4)	8.9(1)	5.9(3)	10(9)	∞ 2000	0/15
RL-SHADE-1	32(15)	31(15)	38(12)	57(8)	20 (2)	15/15
R-SHADE-10	6.9(3)	5.8(2)	5.8(3)	5.6 (2)	29(27)	1/15
R-SHADE-10	10(6)	8.8(4)	8.0(2)	6.4 (1.0)	3.8 (2)	15/15
SOO-Derbel	2.9 (4)	3.1 (2)	4.8(4)	14(12)	1743(1348)	10/15

Table 108: 20-D, running time excess ERT/ERT_{best 2009} on f_{11} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f11	4.0e+4:11	2.5e+3:27	1.6e+2:313	1.0e + 2:481	1.0e+1:1002	15/15
MATSUMOTO-	1.7 (0.7)	2.5(2)	21(17)	∞	∞ 1000	0/15
R-DE-10e2-	1.7(1)	2.0 (1)	13(10)	∞	∞ 2000	0/15
R-DE-10e5-	1.7 (1.0)	2.2 (2)	11(11)	51(83)	$\infty~2e6$	0/15
RL-SHADE-1	2.1(4)	3.8(2)	11(23)	60(52)	∞ 2000	0/15
RL-SHADE-1	1.9(2)	3.4(2)	14(12)	22 (17)	27 (2)	15/15
R-SHADE-10	1.6 (1)	1.6(0.8)	10 (7)	61(31)	∞ 2000	0/15
R-SHADE-10	1.8(1)	2.6 (2)	2.3 (1)	2.9 (1)	7.6 (6)	15/15
SOO-Derbel	1.4 (1.0)	2.0 (2)	11(0.9)	343(1430)	$\infty~2e6$	0/15

Table 109: 20-D, running time excess ERT/ERT_{best 2009} on f_{12} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0.5	1.2	3	10	50	#succ
1.0e+8:23	6.3e + 7:39	2.5e + 7:76	4.0e+6:209	1.0e+1:1042	15/15
3.1 (0.7)	2.9 (0.4)	3.0 (0.5)	3.6(3)	∞ 1000	0/15
3.1(2)	3.1 (2)	3.3 (1)	3.0(2)	∞ 2000	0/15
9.4(4)	8.1(2)	9.5(2)	7.1(0.5)	31 (36)	15/15
11(1)	7.5(0.8)	5.0(0.4)	6.1(7)	∞ 2000	0/15
37(19)	38(16)	44(7)	44(6)	37(9)	15/15
7.8(2)	6.3(2)	5.0(1)	3.2 (0.5)	∞ 2000	0/15
11(5)	9.1(3)	10(3)	8.1(1)	8.5(0.7)	15/15
3.6(5)	5.0(4)	6.0(3)	11(9)	1110(972)	10/15
	1.0e+8:23 3.1(0.7) 3.1(2) 9.4(4) 11(1) 37(19) 7.8(2) 11(5)	$\begin{array}{ccc} \textbf{1.0}e+8:23 & 6.3e+7:39 \\ \textbf{3.1}(0.7) & \textbf{2.9}(0.4) \\ \textbf{3.1}(2) & \textbf{3.1}(2) \\ 9.4(4) & 8.1(2) \\ 11(1) & 7.5(0.8) \\ 37(19) & 38(16) \\ 7.8(2) & 6.3(2) \\ 11(5) & 9.1(3) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 110: 20-D, running time excess ERT/ERT_{best 2009} on f_{13} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0.5	1.2	3	10	50	#succ
1.6e + 3:28	1.0e + 3:64	6.3e+2:79	4.0e+1:211	2.5e+0:1724	15/15
2.6 (0.6)	$1.8(0.6)^{\star 2}$	$2.6_{(2)}^{\star 2}$	8.0(9)	∞ 1000	0/15
2.9 (1.0)	3.6 (0.9)	5.1 (1.0)	∞	∞ 2000	0/15
7.1(2)	7.8(2)	12(2)	27(3)	43(46)	15/15
8.8(0.7)	5.2(0.2)	7.4(0.7)	∞	∞ 2000	0/15
30(13)	41(5)	65(5)	93(2)	18 (0.5)	15/15
5.5(2)	4.8(1)	6.2(0.6)	11 (3)	∞ 2000	0/15
8.5(3)	9.3(2)	13(1)	21(4)	7.4 (5)	15/15
2.4 (3)	4.9(4)	11(4)	1339(1890)	5103(4830)	3/15
	$\begin{array}{c} 0.5 \\ 1.6e+3:28 \\ \hline 2.6(0.6) \\ 2.9(1.0) \\ 7.1(2) \\ 8.8(0.7) \\ 30(13) \\ 5.5(2) \\ 8.5(3) \end{array}$	$\begin{array}{ c c c }\hline 0.5 & 1.2\\ \hline 1.6e+3:28 & 1.0e+3:64\\ \hline 2.6(0.6) & 1.8(0.6)^{\star2}\\ \hline 2.9(1.0) & 3.6(0.9)\\ \hline 7.1(2) & 7.8(2)\\ \hline 8.8(0.7) & 5.2(0.2)\\ \hline 30(13) & 41(5)\\ \hline 5.5(2) & 4.8(1)\\ \hline 8.5(3) & 9.3(2)\\ \hline\end{array}$	$\begin{array}{ c c c c c }\hline 0.5 & 1.2 & 3\\ \hline 1.6e+3:28 & 1.0e+3:64 & 6.3e+2:79\\ \hline \textbf{2.6}(0.6) & \textbf{1.8}(0.6)^{*2} & \textbf{2.6}(2)^{*2}\\ \hline \textbf{2.9}(1.0) & \textbf{3.6}(0.9) & \textbf{5.1}(1.0)\\ \hline 7.1(2) & 7.8(2) & 12(2)\\ \hline 8.8(0.7) & 5.2(0.2) & 7.4(0.7)\\ \hline 30(13) & 41(5) & 65(5)\\ \hline 5.5(2) & 4.8(1) & 6.2(0.6)\\ \hline 8.5(3) & 9.3(2) & 13(1)\\ \hline \end{array}$	$\begin{array}{ c c c c c c }\hline 0.5 & 1.2 & 3 & 10 \\ \hline 1.6e+3:28 & 1.0e+3:64 & 6.3e+2:79 & 4.0e+1:211 \\ \hline 2.6(0.6) & 1.8(0.6)^{\star 2} & 2.6(2)^{\star 2} & 8.0(9) \\ \hline 2.9(1.0) & 3.6(0.9) & 5.1(1.0) & \infty \\ \hline 7.1(2) & 7.8(2) & 12(2) & 27(3) \\ \hline 8.8(0.7) & 5.2(0.2) & 7.4(0.7) & \infty \\ \hline 30(13) & 41(5) & 65(5) & 93(2) \\ \hline 5.5(2) & 4.8(1) & 6.2(0.6) & 11(3) \\ \hline 8.5(3) & 9.3(2) & 13(1) & 21(4) \\ \hline \end{array}$	$\begin{array}{ c c c c c c c }\hline 0.5 & 1.2 & 3 & 10 & 50\\ \hline 1.6e+3:28 & 1.0e+3:64 & 6.3e+2:79 & 4.0e+1:211 & 2.5e+0:1724\\ \hline 2.6(0.6) & 1.8(0.6)^{\star 2} & 2.6(2)^{\star 2} & 8.0(9) & \infty 1000\\ \hline 2.9(1.0) & 3.6(0.9) & 5.1(1.0) & \infty & \infty 2000\\ \hline 7.1(2) & 7.8(2) & 12(2) & 27(3) & 43(46)\\ \hline 8.8(0.7) & 5.2(0.2) & 7.4(0.7) & \infty & \infty 2000\\ \hline 30(13) & 41(5) & 65(5) & 93(2) & 18(0.5)\\ \hline 5.5(2) & 4.8(1) & 6.2(0.6) & 11(3) & \infty 2000\\ \hline 8.5(3) & 9.3(2) & 13(1) & 21(4) & 7.4(5)\\ \hline \end{array}$

Table 111: 20-D, running time excess ERT/ERT_{best 2009} on f_{14} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f14	2.5e+1:15	1.6e + 1:42	1.0e + 1:75	1.6e+0:219	6.3e-4:1106	15/15
MATSUMOTO-	5.7 (2)	3.1 (1)	2.9 (1)	9.5(11)	∞ 1000	0/15
R-DE-10e2-	7.3(5)	4.5 (1)	4.5 (4)	6.1 (7)	∞ 2000	0/15
R-DE-10e5-	13(7)	10(4)	9.4(4)	9.3(2)	∞ 2e6	0/15
RL-SHADE-1	17(6)	7.7(0.7)	5.8(1)	31(43)	∞ 2000	0/15
RL-SHADE-1	58(27)	45(10)	40(15)	47(4)	30 (1)	15/15
R-SHADE-10	12(5)	6.0(2)	4.8(1)	3.7 (0.6)	∞ 2000	0/15
R-SHADE-10	13(4)	8.4(1)	8.2(2)	9.0(2)	10 (2)	15/15
SOO-Derbel	3.9 (6)	4.7(3)	5.7(3)	34(8)	∞ 2e6	0/15

Table 112: 20-D, running time excess ERT/ERT_{best 2009} on f_{15} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f15	6.3e+2:15	4.0e + 2:67	2.5e + 2:292	1.6e + 2:846	1.0e + 2:1671	15/15
MATSUMOTO-	3.5 (1)	1.7(0.4)	1.1(1.0)	2.0(2)	8.8(12)	1/15
R-DE-10e2-	3.7(2)	2.3(2)	2.2 (3)	11(12)	∞ 2000	0/15
R-DE-10e5-	7.2(3)	5.0(2)	3.0(0.5)	4.5(3)	32(44)	15/15
RL-SHADE-1	12(4)	4.4(0.4)	1.9(0.8)	3.2(1)	18(37)	1/15
RL-SHADE-1	16(25)	24(13)	13(3)	13(3)	23(10)	15/15
R-SHADE-10	6.7(4)	3.5(1)	1.6(0.6)	1.3(0.4)	2.8 (6)	6/15
R-SHADE-10	7.1(5)	5.2(1)	2.6 (0.5)	2.9 (0.7)	6.3(2)	15/15
SOO-Derbel	1.4(3)*	2.6 (3)	2.0 (0.8)	3.6(2)	3.2 (0.8)	15/15

Table 113: 20-D, running time excess ERT/ERT_{best 2009} on f_{16} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0.5	1.2	3	10	50	#succ
4.0e+1:26	2.5e+1:127	1.6e+1:540	1.6e+1:540	1.0e+1:1384	15/15
3.4(3)	4.9(4)	3.3(2)	3.3(2)	11(15)	1/15
2.1(4)	39(29)	∞	∞	∞ 2000	0/15
3.4(3)	18(24)	50(30)	50(50)	236(346)	15/15
3.8(3)	3.8(1)	2.8 (2)	2.8 (2)	6.8 (13)	3/15
3.8(5)	38(47)	92(45)	92(22)	73(22)	15/15
1.8(1)	3.4 (1)	3.2(1)	3.2(3)	22(20)	1/15
4.1(4)	23(16)	23(7)	23(6)	27(21)	15/15
2.3 (3)	3.6 (2)	2.2 (1.0)	2.2 (1)	1.6(0.4)	15/15
	4.0e+1:26 3.4(3) 2.1(4) 3.4(3) 3.8(3) 3.8(5) 1.8(1) 4.1(4)	$\begin{array}{cccc} 4.0e{+}1:26 & 2.5e{+}1:127 \\ 3.4(3) & 4.9(4) \\ \textbf{2.1}(4) & 39(29) \\ 3.4(3) & 18(24) \\ 3.8(3) & 3.8(1) \\ 3.8(5) & 38(47) \\ \textbf{1.8}(1) & \textbf{3.4}(1) \\ 4.1(4) & 23(16) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 114: 20-D, running time excess ERT/ERT_{best 2009} on f_{17} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f17	1.6e+1:11	1.0e + 1:63	6.3e+0:305	4.0e+0:468	1.0e+0:1030	15/15
MATSUMOTO-	3.3(2)	2.2 (0.6)	1.3(0.5)	32(46)	∞ 1000	0/15
R-DE-10e2-	2.3(2)	2.1(2)	1.7(0.8)	4.1(2)	∞ 2000	0/15
R-DE-10e5-	4.4(4)	4.1(1.0)	2.7 (1)	4.3(1)	12 (6)	15/15
RL-SHADE-1	5.5(10)	3.9(2)	2.2(2)	11(6)	∞ 2000	0/15
RL-SHADE-1	4.6(13)	13(8)	10(3)	13(2)	18(2)	15/15
R-SHADE-10	6.0(6)	3.7(1)	1.7(0.7)	3.3 (2)	29(39)	1/15
R-SHADE-10	5.3(13)	3.7(2)	1.9(0.9)	2.3 (0.9)	3.4(0.8)	15/15
SOO-Derbel	0.99 ₍₃₎ *2	1.3(0.9)	1.6 (1)	3.5(2)	16(6)	15/15

Table 115: 20-D, running time excess ERT/ERT_{best 2009} on f_{18} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0.5	1.2	3	10	50	#succ
4.0e+1:116	2.5e+1:252	1.6e+1:430	1.0e + 1:621	4.0e+0:1090	15/15
1.0(0.4)	2.4(5)	8.3(12)	∞	∞ 1000	0/15
0.78 (0.6)	1.2(0.7)	2.1 (1)	8.4(13)	∞ 2000	0/15
1.8(0.7)	2.4 (0.6)	4.1(2)	6.2(2)	28(44)	15/15
2.0 (1)	2.2 (3)	4.2(0.7)	11(13)	∞ 2000	0/15
5.3(2)	10(4)	13(2)	17(2)	18(1)	15/15
1.4 (0.6)	2.0 (1)	3.0(1)	5.6(7)	28(44)	1/15
1.8(0.6)	2.0 (0.8)	2.7 (0.8)	3.1(0.7)	3.4(0.8)	15/15
0.54(0.5)	1.6(2)	3.2(2)	5.0 (2)	11 (5)	15/15
	4.0e+1:116 1.0(0.4) 0.78(0.6) 1.8(0.7) 2.0(1) 5.3(2) 1.4(0.6) 1.8(0.6)	$\begin{array}{cccc} 4.0e{+}1:116 & 2.5e{+}1:252 \\ \textbf{1.0}(0.4) & \textbf{2.4}(5) \\ \textbf{0.78}(0.6) & \textbf{1.2}(0.7) \\ \textbf{1.8}(0.7) & \textbf{2.4}(0.6) \\ \textbf{2.0}(1) & \textbf{2.2}(3) \\ 5.3(2) & 10(4) \\ \textbf{1.4}(0.6) & \textbf{2.0}(1) \\ \textbf{1.8}(0.6) & \textbf{2.0}(0.8) \\ \end{array}$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 116: 20-D, running time excess ERT/ERT_{best 2009} on f_{19} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:2.5e5	1.0e-1:3.4e5	6.3e - 2:3.4e5	4.0e-2:3.4e5	2.5e-2:3.4e5	3/15
MATSUMOTO-	∞	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	∞	∞	∞	∞	∞ 2000	0/15
R-DE-10e5-	∞	∞	∞	∞	∞ 2e6	0/15
RL-SHADE-1	∞	∞	∞	∞	∞ 2000	0/15
RL-SHADE-1	115(99)	∞	∞	∞	∞ 2e6	0/15
R-SHADE-10	∞	∞	∞	∞	∞ 2000	0/15
R-SHADE-10	55 (59)	∞	∞	∞	∞ 2e6	0/15
SOO-Derbel	0.55(2)	3.2 (3)	26 (24)	83 (95)	$\infty~2e6$	0/15

Table 117: 20-D, running time excess ERT/ERT_{best 2009} on f_{20} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f20	1.6e+4:38	1.0e+4:42	2.5e + 2:62	2.5e+0:250	1.6e+0:2536	15/15
MATSUMOTO-	2.2 (0.5)	2.4 (0.9)	4.6(2)	4.1 (5)	∞ 1000	0/15
R-DE-10e2-	1.9(0.9)	2.3 (1)	4.9 (7)	2.9 (0.6)	1.0(0.6)	9/15
R-DE-10e5-	6.4(4)	8.4(2)	15(2)	13(2)	4.5(2)	15/15
RL-SHADE-1	7.1(0.5)	6.9(1.0)	8.8(2)	7.4(6)	12(16)	1/15
RL-SHADE-1	22(11)	30(11)	68(15)	133(61)	35(5)	15/15
R-SHADE-10	4.4(1)	4.8(2)	7.7(0.5)	4.3(0.4)	1.8(2)	6/15
R-SHADE-10	5.0(2)	5.7(2)	10(3)	44(22)	13(3)	15/15
SOO-Derbel	4.8(0.0)	5.6(0.0)	51(8e-3)	13(2e-3)	3.6(2e-4)	15/15

Table 118: 20-D, running time excess ERT/ERT_{best 2009} on f_{21} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f21	6.3e+1:36	4.0e+1:77	4.0e + 1:77	1.6e+1:456	4.0e+0:1094	15/15
MATSUMOTO-	2.7 (0.5)	1.9 ₍₁₎ *	1.9(0.4)*	0.56 (0.5)	0.97(2)	9/15
R-DE-10e2-	3.7 (2)	3.1 (1)	3.1 (0.9)	1.2(0.4)	2.2 (3)	8/15
R-DE-10e5-	14(7)	12(5)	12(6)	7.3(3)	41(57)	15/15
RL-SHADE-1	9.1(2)	6.6(2)	6.6(3)	4.5(5)	6.1(2)	4/15
RL-SHADE-1	56(16)	52(14)	52(14)	15(3)	169(642)	14/15
R-SHADE-10	8.4(4)	7.0(2)	7.0(2)	3.5(3)	5.0(4)	5/15
R-SHADE-10	13(6)	11(3)	11(3)	3.0 (0.9)	17(8)	15/15
SOO-Derbel	3.8(1)	4.6(5)	4.6(5)	2.4 (2)	8.7(40)	15/15

Table 119: 20-D, running time excess ERT/ERT_{best 2009} on f_{22} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

0.5	1.2	3	10	50	# succ
6.3e+1:45	4.0e+1:68	4.0e+1:68	1.6e+1:231	6.3e+0:1219	15/15
2.2 (0.6)	$2.1(0.6)^{\star 2}$	$2.1_{(2)}^{\star 2}$	${\bf 1.5}_{(2)}{}^{\star}$	$0.58(0.7)^{\star}$	11/15
4.4(2)	4.7 (2)	4.7 (2)	6.9(9)	5.2(3)	4/15
12(8)	13(5)	13(9)	81(66)	25(47)	15/15
7.7(2)	7.2(4)	7.2(2)	7.2(13)	2.5 (2)	8/15
49(17)	59(12)	59(9)	493(1742)	221(2)	14/15
8.1(5)	10(3)	10(3)	5.1 (4)	2.1(2)	9/15
12(7)	12(3)	12(10)	28(161)	14(29)	15/15
4.7(2)	6.8(4)	6.8(5)	180(656)	69(247)	15/15
	2.2(0.6) 4.4(2) 12(8) 7.7(2) 49(17) 8.1(5) 12(7)	$\begin{array}{ccc} 6.3e+1:45 & 4.0e+1:68 \\ \textbf{2.2}(0.6) & \textbf{2.1}(0.6)^{\star 2} \\ \textbf{4.4}(2) & \textbf{4.7}(2) \\ 12(8) & 13(5) \\ 7.7(2) & 7.2(4) \\ 49(17) & 59(12) \\ 8.1(5) & 10(3) \\ 12(7) & 12(3) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 120: 20-D, running time excess ERT/ERT_{best 2009} on f_{23} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	# succ
f23	6.3e+0:29	4.0e+0:118	2.5e+0:306	2.5e+0:306	1.0e+0:1614	15/15
MATSUMOTO-	2.0(2)	10(15)	∞	∞	∞ 1000	0/15
R-DE-10e2-	2.1(2)	6.2(6)	95(126)	95(110)	∞ 2000	0/15
R-DE-10e5-	1.1(2)	6.5(5)	81(17)	81(56)	$\infty~2e6$	0/15
RL-SHADE-1	2.7 (3)	5.4(5)	48(61)	48(39)	∞ 2000	0/15
RL-SHADE-1	1.0(1)	4.0 (3)	57(11)	57(79)	116(25)	15/15
R-SHADE-10	2.4(2)	6.7(6)	45 (81)	45 (46)	∞ 2000	0/15
R-SHADE-10	1.7 ₍₁₎	4.8(5)	68(100)	68(88)	95 (97)	15/15
SOO-Derbel	1.7(4)	10(11)	12 (10)	12 (3)	3.9 (2)	15/15

Table 121: 20-D, running time excess ERT/ERT_{best 2009} on f_{24} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f24	2.5e+2:208	1.6e + 2:918	1.0e + 2:6628	6.3e+1:9885	4.0e+1:31629	15/15
MATSUMOTO-	15(10)	∞	∞	∞	∞ 1000	0/15
R-DE-10e2-	2.6 (3)	15(13)	∞	∞	∞ 2000	0/15
R-DE-10e5-	4.8(1)	16(5)	592(369)	∞	∞ 2e6	0/15
RL-SHADE-1	3.0(1)	5.7 (6)	∞	∞	∞ 2000	0/15
RL-SHADE-1	16(5)	16(2)	15(2)	20(3)	9.4 (1.0)	15/15
R-SHADE-10	3.0(0.7)	32(39)	∞	∞	∞ 2000	0/15
R-SHADE-10	2.7 (0.5)	2.7 (2)	3.2 (1)	5.4(0.6)	6.1 (3)	15/15
SOO-Derbel	6.9(4)	7.3(5)	5.6 (3)	13 (17)	20(9)	15/15

References

- Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [2] Dimo Brockhoff. Comparison of the matsumoto library for expensive optimization on the noiseless black-box optimization benchmarking testbed. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC* 2015, 25-28 May, Sendai, Japan, 2015.
- [3] Bilel Derbel and Philippe Preux. Simultaneous optimistic optimization on the noiseless bbob testbed. In *Proceedings of the IEEE Congress on Evolu*tionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.
- [4] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010
- [5] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [6] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [7] Ryoji Tanabe and Alex Fukunaga. Parameter tuning for differential evolution for cheap, medium, and expensive computational budgets. In *Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2015, 25-28 May, Sendai, Japan, 2015.*