EE4620 - Spectral Methods in Electromagnetics: Spectral Green's Function for Stratified Media MATLAB Instruction 1

Shahab Oddin Dabironezare

Faculty of Electrical Engineering, Mathematics and Computer Science
Department of Microelectronics
THz Sensing Group

s.o.dabironezare-1@tudelft.nl

Question 1

Write a MATLAB routine to calculate the spectral Green's function for the electric field given an elementary electric source placed at the top of a grounded slab of thickness h and dielectric constant ε_r as shown in the figure.

Consider h = 4.5mm, $\varepsilon_r = 6$ and the source oriented along x.

Make a plot of the amplitude variation of the x-component of spectral field at $z = h^+$ as a function of k_x from 0 to $3k_0$ with $k_y = 0$ at 10GHz and 20GHz.

Spectral Green's function of stratified media

$$\vec{e}(\vec{r}) = \frac{1}{(2\pi)^2} \iint_{-\infty}^{\infty} \tilde{\vec{G}}^{ej}(k_x, k_y, z, z') e^{-jk_x x} e^{-jk_y y} dk_x dk_y$$

$$\widetilde{\mathbf{G}}^{ej} = \begin{bmatrix} -\frac{v_{TM}k_{x}^{2} + v_{TE}k_{y}^{2}}{k_{\rho}^{2}} & \frac{(v_{TE} - v_{TM})k_{x}k_{y}}{k_{\rho}^{2}} \\ \frac{(v_{TE} - v_{TM})k_{x}k_{y}}{k_{\rho}^{2}} & -\frac{v_{TE}k_{x}^{2} + v_{TM}k_{y}^{2}}{k_{\rho}^{2}} \\ \zeta_{i}\frac{k_{x}}{k_{i}}i_{TM} & \zeta_{i}\frac{k_{y}}{k_{i}}i_{TM} \end{bmatrix}$$

z: observation point in z (voltage/current output of the transmission line)

z': source location (generator in the transmission line)

Implementation of the square root: $k_{z0} = -j\sqrt{-(k_0^2 - k_\rho^2)}$

$$V(z=h)=Z_U||Z_D\times 1A|$$

Boundary 2:

$$V(z=0)=0$$

Voltage and current in air (z > h)

$$V_2(z) = V_2^+ e^{-jk_{z0}z}$$

$$I_2(z) = \frac{V_2^+}{Z_0} e^{-jk_{Z0}z}$$

Voltage and current in substrate (0 < z < h)

$$V_1(z) = V_1^+ e^{-jk_{ZS}z} + V_1^- e^{+jk_{ZS}z}$$

$$I_1(z) = \frac{V_1^+}{Z_S} e^{-jk_{ZS}z} - \frac{V_1^-}{Z_S} e^{+jk_{ZS}z}$$

$$V(z=h)=Z_U||Z_D\times 1A$$

$$V_{2}(z) = V_{2}^{+} e^{-jk_{z0}z} \xrightarrow{\text{Boundary 1}} V_{2}^{+} e^{-jk_{z0}h} = Z_{U}||Z_{D} \longrightarrow V_{2}^{+} = Z_{U}||Z_{D} e^{+jk_{z0}h}$$

$$V_{2}(z = h) = Z_{U}||Z_{D}$$

Voltage and current in air (z > h)

$$V_2(z) = Z_U || Z_D e^{+jk_{z0}h} e^{-jk_{z0}z}$$

$$I_2(z) = \frac{Z_U||Z_D|}{Z_0} e^{+jk_{z0}h} e^{-jk_{z0}z}$$

Boundary 1:

$$V(z=h)=Z_U||Z_D\times 1A$$

Boundary 2:

$$V(z=0)=0$$

$$V_{1}(z) = V_{1}^{+} e^{-jk_{zS}z} + V_{1}^{-} e^{+jk_{zS}z} \xrightarrow{\text{Boundary 2}} V_{1}(z=0) = V_{1}^{+} + V_{1}^{-} = 0 \longrightarrow V_{1}^{+} = -V_{1}^{-}$$

$$V_{1}(z=h) = V_{1}^{+} e^{-jk_{zS}h} - V_{1}^{+} e^{+jk_{zS}h} = V_{1}^{+}(-2j)\sin(k_{zS}h) \xrightarrow{\text{Boundary 1}}$$

$$V_{1}^{+}(-2j)\sin(k_{zS}h) = Z_{U}||Z_{D} \longrightarrow V_{1}^{+} = \frac{Z_{U}||Z_{D}}{(-2j)}\frac{1}{\sin(k_{zS}h)}$$

$$V(z = h) = Z_U || Z_D \times 1A$$

Boundary 2:

$$V(z=0)=0$$

Voltage and current in substrate (0 < z < h)

$$V_1(z) = V_1^+ e^{-jk_{ZS}z} + V_1^- e^{+jk_{ZS}z} = \frac{Z_U||Z_D}{(-2j)} \frac{1}{\sin(k_{ZS}h)} \left(e^{-jk_{ZS}z} - e^{+jk_{ZS}z} \right) = Z_U||Z_D \frac{\sin(k_{ZS}z)}{\sin(k_{ZS}h)}|$$

$$I_1(z) = \frac{V_1^+}{Z_S} e^{-jk_{ZS}z} - \frac{V_1^-}{Z_S} e^{+jk_{ZS}z} = \frac{Z_U||Z_D}{Z_S(-2j)} \frac{1}{\sin(k_{ZS}h)} \left(e^{-jk_{ZS}z} + e^{+jk_{ZS}z}\right) = \frac{Z_U||Z_D}{Z_S} \frac{j\cos(k_{ZS}z)}{\sin(k_{ZS}h)}$$

Transmission line Solution: Summary

Voltage solution in the slab:

$$V_s(z) = \frac{Z_u Z_d}{Z_u + Z_d} \frac{\sin(k_{zs}z)}{\sin(k_{zs}h)}$$

Current solution in the slab:

$$I_{S}(z) = \frac{V_{S}^{+}}{Z_{S}} \left(e^{-jk_{ZS}z} + e^{jk_{ZS}z} \right) = \frac{1}{Z_{S}} \frac{Z_{u}Z_{d}}{Z_{u} + Z_{d}} \frac{j\cos(k_{ZS}z)}{\sin(k_{ZS}h)}$$

Voltage solution in the air:

$$V_0(z) = \frac{Z_u Z_d}{Z_u + Z_d} e^{jk_{z0}h} e^{-jk_{z0}z}$$

Current solution in the air:

$$I_0(z) = \frac{1}{Z_0} \frac{Z_u Z_d}{Z_u + Z_d} e^{jk_{z0}h} e^{-jk_{z0}z}$$

Routines

- Solution of the equivalent transmission line:

$$[v_{TM}, v_{TE}, i_{TM}, i_{TE}] = trxline_GroundSlab(k0, zeta0, er, h, kro, z)$$

- Dyadic SGF:

$$[Gxx, Gyx, Gzx] = SpectralGFej(k0, er, kx, ky, v_{TM}, v_{TE}, i_{TM}, i_{TE}, zeta0)$$

How to code spectral GF in MATLAB

$$\vec{e}(\vec{r}) = \frac{1}{(2\pi)^2} \iint_{-\infty}^{\infty} \tilde{\tilde{G}}^{ej}(k_x, k_y, z, z') e^{-jk_x x} e^{-jk_y y} dk_x dk_y$$

- Defining the independent variables: k_x and k_y
 - Radial propagation vector is related to these two:

$$k_{\rho} = \sqrt{k_x^2 + k_y^2}$$

• Calculating the perpendicular propagation vector:

$$k_{z0} = -j\sqrt{-(k_0^2 - k_\rho^2)}$$
$$k_{zs} = -j\sqrt{-(k_s^2 - k_\rho^2)}$$

• Defining the TE and TM characteristic transmission line impedances

$$Z_i^{TM} = rac{\zeta_i k_{zi}}{k_i}$$
 $Z_i^{TE} = rac{\zeta_i k_i}{k_{zi}}$

 Code the solution of TL line for TE and TM transmission lines

$$\tilde{G}^{ej} = \begin{bmatrix} -\frac{v_{TM}k_{x}^{2} + v_{TE}k_{y}^{2}}{k_{\rho}^{2}} & \frac{(v_{TE} - v_{TM})k_{x}k_{y}}{k_{\rho}^{2}} \\ \frac{(v_{TE} - v_{TM})k_{x}k_{y}}{k_{\rho}^{2}} & -\frac{v_{TE}k_{x}^{2} + v_{TM}k_{y}^{2}}{k_{\rho}^{2}} \\ \zeta_{i}\frac{k_{x}}{k_{i}}i_{TM} & \zeta_{i}\frac{k_{y}}{k_{i}}i_{TM} \end{bmatrix}$$

Question 2

Write a MATLAB routine to calculate the spectral Green's function for the electric field given by an elementary x-oriented magnetic source radiating at z=0 with the presence of a ground plane and a dielectric layer of thickness h_s located at a distance of h from the ground plane, as shown in the figure. Consider h=15.6mm, $h_s=2.6$ mm, $\varepsilon_r=10$.

Make a plot of the amplitude variation of the y-component of spectral field at $z = h + h_s^+$ as a function of k_v from 0 to k_0 with $k_x = 0$ for the following frequencies: 8GHz, 8.5GHz, 9GHz, 9.5GHz and 10GHz

3 boundary to use and 3 parameters to calculate: V_1^+, V_2^+, V_3^+

$$Z_i^{TM} = \frac{\zeta_i k_{zi}}{k_i}$$
$$Z_i^{TE} = \frac{\zeta_i k_i}{k_{zi}}$$

Starting from bottom and going up:

In region $0 \le z < h$:

$$V_1(z) = V_1^+ e^{-jk_{Z0}z} + V_1^- e^{+jk_{Z0}z}$$

$$I_1(z) = \frac{V_1^+}{Z_0} e^{-jk_{z0}z} - \frac{V_1^-}{Z_0} e^{+jk_{z0}z}$$

$$V_1(z=0) = 1 \rightarrow V_1^- = 1 - V_1^+$$

$$\Gamma_1 = \frac{Z_1 - Z_0}{Z_1 + Z_0} = \frac{V_1^- e^{+jk_{z0}h}}{V_1^+ e^{-jk_{z0}h}} \to$$

$$\frac{(1 - V_1^+)}{V_1^+} e^{+2jk_{z0}h} = \Gamma_1 \to$$

$$V_1^+ = \frac{e^{+2jk_{z0}h}}{\Gamma_1 + e^{+2jk_{z0}h}}$$

In region
$$0 \le z < h$$
:

$$V_1(z) = V_1^+ e^{-jk_{Z0}z} + V_1^- e^{+jk_{Z0}z}$$

$$I_1(z) = \frac{V_1^+}{Z_0} e^{-jk_{Z0}z} - \frac{V_1^-}{Z_0} e^{+jk_{Z0}z}$$

$$V_1^+ = \frac{e^{+2jk_{z0}h}}{\Gamma_1 + e^{+2jk_{z0}h}}$$

$$V_1(z) = \frac{e^{+2jk_{z0}h}}{\Gamma_1 + e^{+2jk_{z0}h}} e^{-jk_{z0}z} \left[1 + \Gamma_1 e^{-2jk_{z0}h} e^{+2jk_{z0}z}\right]$$

$$I_1(z) = \frac{e^{+2jk_{z0}h}}{Z_0(\Gamma_1 + e^{+2jk_{z0}h})} e^{-jk_{z0}z} \left[1 - \Gamma_1 e^{-2jk_{z0}h} e^{+2jk_{z0}z}\right]$$

In region $h \le z < h + h_s$:

$$V_2(z) = V_2^+ e^{-jk_{ZS}z} + V_2^- e^{+jk_{ZS}z}$$

$$I_2(z) = \frac{V_2^+}{Z_S} e^{-jk_{ZS}z} - \frac{V_2^-}{Z_S} e^{+jk_{ZS}z}$$

$$\Gamma_2 = \frac{Z_2 - Z_S}{Z_2 + Z_S} = \frac{V_2^- e^{+jk_{ZS}(h+h_S)}}{V_2^+ e^{-jk_{ZS}(h+h_S)}} \to$$

$$V_2^- = \Gamma_2 V_2^+ e^{-2jk_{ZS}(h+h_S)}$$

$$V_2(z=h)=V_1(z=h)$$

$$V_2^+ = \frac{e^{jk_{z0}h}e^{+jk_{zs}h}(1+\Gamma_1)}{(\Gamma_1 + e^{2jk_{z0}h})(1+\Gamma_2e^{-2jk_{zs}h_s})}$$

In region
$$h \le z < h + h_s$$
:

$$V_2(z) = V_2^+ e^{-jk_{ZS}z} + V_2^- e^{+jk_{ZS}z}$$

$$I_2(z) = \frac{V_2^+}{Z_S} e^{-jk_{ZS}z} - \frac{V_2^-}{Z_S} e^{+jk_{ZS}z}$$

$$V_2^+ = \frac{e^{jk_{z0}h}e^{+jk_{zS}h}(1+\Gamma_1)}{(\Gamma_1 + e^{2jk_{z0}h})(1+\Gamma_2e^{-2jk_{zS}h_S})}$$

$$V_{2}(z) = \frac{e^{jk_{z0}h}e^{+jk_{zs}h}(1+\Gamma_{1})}{(\Gamma_{1}+e^{2jk_{z0}h})(1+\Gamma_{2}e^{-2jk_{zs}h_{s}})} \left[e^{-jk_{zs}z}+e^{+jk_{zs}z}\Gamma_{2}e^{-2jk_{zs}(h+h_{s})}\right]$$

$$I_{2}(z) = \frac{e^{jk_{z0}h}e^{+jk_{zs}h}(1+\Gamma_{1})}{Z_{s}(\Gamma_{1}+e^{2jk_{z0}h})(1+\Gamma_{2}e^{-2jk_{zs}h_{s}})} \left[e^{-jk_{zs}z}-e^{+jk_{zs}z}\Gamma_{2}e^{-2jk_{zs}(h+h_{s})}\right]$$

In region
$$z \ge h + h_s$$
:

$$V_3(z) = V_3^+ e^{-jk_{z0}z}$$

$$I_3(z) = \frac{V_3^+}{Z_0} e^{-jk_{z0}z}$$

$$V_3(z=h+h_s)=V_2(z=h+h_s) \rightarrow$$

$$V_3^+ = \frac{(1+\Gamma_1)(1+\Gamma_2) e^{+jk_{z0}h} e^{-jk_{zS}h_S} e^{+jk_{z0}(h+h_S)}}{(\Gamma_1 + e^{2jk_{z0}h})(1+\Gamma_2 e^{-2jk_{zS}h_S})}$$

Transmission Line Solution: Summary

$$\Gamma_1 = \frac{Z_1 - Z_0}{Z_1 + Z_0}$$

$$\Gamma_2 = \frac{Z_2 - Z_S}{Z_2 + Z_S}$$

In region $0 \le z < h$:

$$V_1(z) = \frac{e^{+2jk_{z0}h}}{\Gamma_1 + e^{+2jk_{z0}h}} e^{-jk_{z0}z} \left[1 + \Gamma_1 e^{-2jk_{z0}h} e^{+2jk_{z0}z} \right]$$

$$I_1(z) = \frac{e^{+2jk_{z0}h}}{Z_0(\Gamma_1 + e^{+2jk_{z0}h})} e^{-jk_{z0}z} \left[1 - \Gamma_1 e^{-2jk_{z0}h} e^{+2jk_{z0}z}\right]$$

In region $h \le z < h + h_s$:

$$V_2(z) = \frac{e^{jk_{z0}h}e^{+jk_{zS}h}(1+\Gamma_1)}{(\Gamma_1 + e^{2jk_{z0}h})(1+\Gamma_2e^{-2jk_{zS}h_s})} \left[e^{-jk_{zS}z} + e^{+jk_{zS}z}\Gamma_2e^{-2jk_{zS}(h+h_s)}\right]$$

$$I_{2}(z) = \frac{e^{jk_{z0}h}e^{+jk_{zS}h}(1+\Gamma_{1})}{Z_{s}(\Gamma_{1}+e^{2jk_{z0}h})(1+\Gamma_{2}e^{-2jk_{zS}h_{s}})} \left[e^{-jk_{zS}z}-e^{+jk_{zS}z}\Gamma_{2}e^{-2jk_{zs}(h+h_{s})}\right]$$

In region $z \ge h + h_s$:

$$V_3(z) = V_3^+ e^{-jk_{z0}z}$$
 $I_3(z) = \frac{V_3^+}{Z_0} e^{-jk_{z0}z}$

$$V_3^+ = \frac{(1+\Gamma_1)(1+\Gamma_2) e^{+jk_{z0}h} e^{-jk_{zS}h_S} e^{+jk_{z0}(h+h_S)}}{(\Gamma_1 + e^{2jk_{z0}h})(1+\Gamma_2 e^{-2jk_{zS}h_S})}$$

Routines

- Solution of the equivalent transmission line:

$$[v_{TM}, v_{TE}, i_{TM}, i_{TE}] = trxline_Superstrate(k0, zeta0, er, h, hs, kro, z)$$

- Dyadic SGF:

$$[Gxx, Gyx, Gzx] = SpectralGFem(k0, er, kx, ky, v_{TM}, v_{TE}, i_{TM}, i_{TE}, zeta0)$$

$$\underline{\underline{\mathbf{G}}}^{em}(k_{x},k_{y},z,z') = \\ \begin{bmatrix} \frac{k_{x}k_{y}}{k_{\rho}^{2}}(^{m}V_{TM}(k_{\rho},z,z') - {}^{m}V_{TE}(k_{\rho},z,z')) & \frac{-1}{k_{\rho}^{2}}(^{m}V_{TM}(k_{\rho},z,z')k_{x}^{2} + {}^{m}V_{TE}(k_{\rho},z,z')k_{y}^{2}) \\ \frac{1}{k_{\rho}^{2}}(^{m}V_{TM}(k_{\rho},z,z')k_{y}^{2} + {}^{m}V_{TE}(k_{\rho},z,z')k_{x}^{2}) & \frac{k_{x}k_{y}}{k_{\rho}^{2}}(^{m}V_{TE}(k_{\rho},z,z') - {}^{m}V_{TM}(k_{\rho},z,z')) \\ -\frac{k_{y}}{k_{zi}}Z_{TMi} \, {}^{m}I_{TM}(k_{\rho},z,z') & \frac{k_{x}}{k_{zi}}Z_{TMi} \, {}^{m}I_{TM}(k_{\rho},z,z') \end{bmatrix}$$

Question 3

Write a MATLAB routine to calculate the spectral Green's function for the electric field given by an elementary y-oriented magnetic source at z = 0 radiating into an infinite medium with a permittivity of ε_r in the presence of a ground plane and an air layer of thickness h, as shown in the figure.

Consider h = 5mm and a frequency of 30GHz.

Make a plot of the amplitude variation of the x-component of spectral field at $z = h^+$ as a function of k_x from 0 to $2k_0$ with $k_y = 0$ for the following values of the permittivity $\varepsilon_r = 2.5$, 6 and 12.

Voltage and current in air $(0 \le z < h)$

$$V_1(z) = V_1^+ e^{-jk_{z0}z} + V_1^- e^{+jk_{z0}z}$$

$$I_1(z) = \frac{V_1^+}{Z_0} e^{-jk_{z0}z} - \frac{V_1^-}{Z_0} e^{+jk_{z0}z}$$

Voltage and current in superstrate $(z \ge h)$

$$V_2(z) = V_2^+ e^{-jk_{ZS}z}$$

$$I_2(z) = \frac{V_2^+}{Z_S} e^{-jk_{ZS}z}$$

In air region $(0 \le z < h)$

$$V_{1}(z=0) = 1V$$

$$\Gamma_{1} = \frac{Z_{s} - Z_{0}}{Z_{s} + Z_{0}} = \frac{V_{1}^{-} e^{+jk_{z0}h}}{V_{1}^{+} e^{-jk_{z0}h}}$$

$$V_1^+ = \frac{1}{1 + \Gamma_1 e^{-2jk_{z0}h}}$$

$$V_1(z) = \frac{e^{-jk_{z0}z}}{1 + \Gamma_1 e^{-2jk_{z0}h}} \left[1 + \Gamma_1 e^{-2jk_{z0}h} e^{+2jk_{z0}z} \right]$$

$$I_1(z) = \frac{e^{-jk_{z0}z}}{Z_0(1+\Gamma_1 e^{-2jk_{z0}h})} \left[1-\Gamma_1 e^{-2jk_{z0}h}e^{+2jk_{z0}z}\right]$$

In superstrate region $(z \ge h)$

$$V_1(z=h) = V_2(z=h) \rightarrow$$

$$V_2^+ = \frac{e^{-jk_{z0}h}e^{+jk_{zs}h}}{1 + \Gamma_1 e^{-2jk_{z0}h}} [1 + \Gamma_1]$$

$$V_2(z) = \frac{e^{-jk_{z0}h}e^{+jk_{zs}h}}{1 + \Gamma_1 e^{-2jk_{z0}h}} [1 + \Gamma_1]e^{-jk_{zs}z}$$

$$I_2(z) = \frac{e^{-jk_{z0}h}e^{+jk_{zs}h}}{Z_s(1+\Gamma_1e^{-2jk_{z0}h})}[1+\Gamma_1]e^{-jk_{zs}z}$$

Transmission Line Solution: Summary

$$\Gamma_1 = \frac{Z_S - Z_0}{Z_S + Z_0}$$

In air region $(0 \le z < h)$

$$V_1(z) = \frac{e^{-jk_{z0}z}}{1 + \Gamma_1 e^{-2jk_{z0}h}} \left[1 + \Gamma_1 e^{-2jk_{z0}h} e^{+2jk_{z0}z} \right]$$

$$I_1(z) = \frac{e^{-jk_{z0}z}}{Z_0(1+\Gamma_1 e^{-2jk_{z0}h})} \left[1-\Gamma_1 e^{-2jk_{z0}h}e^{+2jk_{z0}z}\right]$$

In superstrate region $(z \ge h)$

$$V_2(z) = \frac{e^{-jk_{z0}h}e^{+jk_{zs}h}}{1 + \Gamma_1 e^{-2jk_{z0}h}} [1 + \Gamma_1]e^{-jk_{zs}z}$$

$$I_2(z) = \frac{e^{-jk_{z0}h}e^{+jk_{zs}h}}{Z_s(1+\Gamma_1e^{-2jk_{z0}h})}[1+\Gamma_1]e^{-jk_{zs}z}$$

Routines

- Solution of the equivalent transmission line:

$$[v_{TM}, v_{TE}, i_{TM}, i_{TE}] = trxline_semi_inf_superstrate(k0, zeta0, er, h, kro, z)$$

- Dyadic SGF:

$$[Gxy, Gyy, Gzy] = SpectralGFem(k0, er, kx, ky, v_{TM}, v_{TE}, i_{TM}, i_{TE}, zeta0)$$

$$\underline{\underline{\mathbf{G}}}^{em}(k_{x},k_{y},z,z') = \\ \begin{bmatrix} \frac{k_{x}k_{y}}{k_{\rho}^{2}}(^{m}V_{TM}(k_{\rho},z,z') - {}^{m}V_{TE}(k_{\rho},z,z')) & \frac{-1}{k_{\rho}^{2}}(^{m}V_{TM}(k_{\rho},z,z')k_{x}^{2} + {}^{m}V_{TE}(k_{\rho},z,z')k_{y}^{2}) \\ \frac{1}{k_{\rho}^{2}}(^{m}V_{TM}(k_{\rho},z,z')k_{y}^{2} + {}^{m}V_{TE}(k_{\rho},z,z')k_{x}^{2}) & \frac{k_{x}k_{y}}{k_{\rho}^{2}}(^{m}V_{TE}(k_{\rho},z,z') - {}^{m}V_{TM}(k_{\rho},z,z')) \\ -\frac{k_{y}}{k_{zi}}Z_{TMi} {}^{m}I_{TM}(k_{\rho},z,z') & \frac{k_{x}}{k_{zi}}Z_{TMi} {}^{m}I_{TM}(k_{\rho},z,z') \end{bmatrix}$$