LinkedIn GreyKite Forecast - Staten Island **Rolling Data**

Here I will do the following:

- 1. Import necessary modules
- 2. Import the data
- 3. Prepare data to work with greykite
- 4. Forecast 30 days ahead with greykite
- 5. Note observation of what prices the model predicts

```
In [2]: import sys
         sys.path.append('../greykite')
In [3]:
        import pandas as pd
         import greykite
         from greykite.framework.templates.autogen.forecast_config import ForecastConfig
         from greykite.framework.templates.autogen.forecast_config import MetadataParam
         from greykite.framework.templates.forecaster import Forecaster
         from greykite.framework.templates.model_templates import ModelTemplateEnum
         import datetime
         import plotly
         #Supress default INFO logging
         %matplotlib inline
         import warnings
         warnings.filterwarnings('ignore')
         import logging
         logger = logging.getLogger()
         logger.setLevel(logging.CRITICAL)
         import logging, sys
         warnings.simplefilter(action='ignore', category=FutureWarning)
In [4]: | df = pd.read_csv('datasets/rollingsales_statenisland.xls_prepped_bare.csv', usec
In [5]: | df['SALE DATE'] = pd.to_datetime(df['SALE DATE'])
In [6]: df.dropna(inplace=True)
         df.reset_index(drop=True)
Out[6]:
               SALE PRICE SALE DATE
            O
                   315000
                           2020-10-02
                   450000
                           2020-06-24
            1
            2
                   525000
                           2020-07-02
            3
                   455000
                           2021-01-21
            4
                   720000
                           2020-10-15
                           2020-06-18
         4510
                   500000
          4511
                   537000
                           2020-09-25
                   525000
                           2020-10-09
         4512
         4513
                   500000
                           2020-06-02
         4514
                   500000
                           2020-06-02
```

4515 rows × 2 columns

```
In [7]: | df = df.rename(columns={'SALE DATE':'ts', 'SALE PRICE': 'y'})
          df.columns = df.columns.astype(str)
          df = df.set_index(['ts'], drop=True)
          df.index= pd.to_datetime(df.index)
 In [8]: df
 Out[8]:
                          У
                  ts
           2020-10-02 315000
           2020-06-24 450000
           2020-07-02 525000
           2021-01-21 455000
           2020-10-15 720000
                  ...
           2020-06-18 500000
           2020-09-25 537000
           2020-10-09 525000
           2020-06-02 500000
           2020-06-02 500000
          4515 rows × 1 columns
 In [9]: | df = df.resample('D').mean()
In [10]: df = df.reset_index()
In [11]:
          df.fillna(0)
Out[11]:
                                     у
             0 2020-04-01 577500.000000
             1 2020-04-02 650666.666667
             2 2020-04-03 519414.285714
             3 2020-04-04
                               0.000000
                2020-04-05
                               0.000000
           358 2021-03-25
                               0.000000
           359 2021-03-26
                               0.000000
           360 2021-03-27
                               0.000000
                2021-03-28
                               0.000000
           361
           362 2021-03-29 435000.000000
          363 rows × 2 columns
In [12]: df['ts']= pd.to_datetime(df['ts'])
```

```
In [13]:
         # df = ... # your input timeseries!
         df=df
         metadata = MetadataParam(
             time_col= 'ts',
                                 # time column in `df`
             value_col='y'
                                 # value in `df`
         forecaster = Forecaster() # creates forecasts and stores the result
         result = forecaster.run_forecast_config(
              df=df,
               config=ForecastConfig(
                   # uses the SILVERKITE model template parameters
                   model_template=ModelTemplateEnum.SILVERKITE.name,
                   forecast_horizon=30, # forecasts 30 steps ahead
                                          # 95% prediction intervals
                   coverage=0.95,
                   metadata_param=metadata
          )
         # Access the result
         forecaster.forecast_result
         Fitting 3 folds for each of 1 candidates, totalling 3 fits
         [Parallel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent worker
         [Parallel(n_jobs=1)]: Done
                                       3 out of 3 | elapsed:
                                                                 12.0s finished
Out[13]: ForecastResult(timeseries=<greykite.framework.input.univariate_time_series.Univ</pre>
         ariateTimeSeries object at 0x000002267659F700>, grid_search=RandomizedSearchCV
         (cv=RollingTimeSeriesSplit(expanding_window=True, forecast_horizon=30,
                      max_splits=3, min_train_periods=60, periods_between_splits=30,
                      periods_between_train_test=0, use_most_recent_splits=False),
                             estimator=Pipeline(steps=[('input',
                                                        PandasFeatureUnion(transformer li
         st=[('date',
         Pipeline(steps=[('select_date',
         ColumnSelector(column names=['ts'...
                                      'OutsideTolerance3p': make_scorer(score_func_finit
         e),
                                      'OutsideTolerance4p': make_scorer(score_func_finit
         e),
                                      'OutsideTolerance5p': make_scorer(score_func_finit
         e),
                                      'Q80': make_scorer(score_func_finite),
                                      'Q95': make_scorer(score_func_finite),
                                      'Q99': make_scorer(score_func_finite),
                                      'R2': make_scorer(score_func_finite),
                                      'RMSE': make_scorer(score_func_finite)
                                      'sMAPE': make_scorer(score_func_finite)},
                             verbose=1), model=Pipeline(steps=[('input',
                           PandasFeatureUnion(transformer_list=[('date',
                                                                  Pipeline(steps=[('select
         _date',
                                                                                   ColumnS
         elector(column_names=['ts']))])),
                                                                 ('response',
                                                                  Pipeline(steps=[('select
         _val',
                                                                                   ColumnS
         elector(column_names=['y'])),
                                                                                  ('outlie
         r',
                                                                                   Zscore0
         utlierTransformer()),
                                                                                  ('null',
                                                                                   NullTra
         nsformer(impute_algorithm='interpolate',
         impute_params={'axis': 0,
          'limit direct...
```

```
'simple_freq': <Sim
\verb|pleTimeFrequencyEnum.DAY: Frequency(default\_horizon=30, seconds\_per\_observation|)|
=86400, valid_seas={'WEEKLY_SEASONALITY', 'QUARTERLY_SEASONALITY', 'MONTHLY_SEA
SONALITY', 'YEARLY_SEASONALITY'})>,
                                                               'start_year': 202
0},
                                             uncertainty_dict={'params': {'condit
ional_cols': ['dow_hr'],
                                                                            'quanti
le_estimation_method': 'normal_fit',
                                                                            'quanti
les': [0.0250000000000000022,
0.975],
                                                                            'sample
_size_thresh': 5,
                                                                            'small
sample_size_method': 'std_quantiles',
                                                                            'small_
sample_size_quantile': 0.98},
                                                                'uncertainty_metho
d': 'simple_conditional_residuals'}))]), backtest=<greykite.framework.output.un</pre>
ivariate_forecast.UnivariateForecast object at 0x000002267694B700>, forecast=<g</pre>
reykite.framework.output.univariate_forecast.UnivariateForecast object at 0x000
002267CE4E8B0>)
```

```
In [14]: ts = result.timeseries
         fig = ts.plot()
         plotly.io.show(fig)
```

In [15]: ts = result.timeseries fig = ts.plot() plotly.io.show(fig)

```
In [16]: from plotly.offline import init_notebook_mode, iplot
         init_notebook_mode(connected=True) # for generating offline graphs within Jupy
         backtest = result.backtest
         fig = backtest.plot()
         iplot(fig)
```

```
In [17]: from plotly.offline import init_notebook_mode, iplot
         init_notebook_mode(connected=True)
         fig = backtest.plot_components()
         iplot(fig) # fig.show() if you are using "PROPHET" template
```

```
In [18]: forecast = result.forecast
         fig = forecast.plot()
         iplot(fig)
```

```
In [19]: | from plotly.offline import init_notebook_mode, iplot
          from greykite.common.evaluation import EvaluationMetricEnum
          init_notebook_mode(connected=True) # for generating offline graphs within Jupy
          # MAPE by day of week
          fig = backtest.plot_grouping_evaluation(
              score_func=EvaluationMetricEnum.MeanAbsolutePercentError.get_metric_func(),
              score_func_name=EvaluationMetricEnum.MeanAbsolutePercentError.get_metric_nam
              which="train", # "train" or "test" set
groupby_time_feature="dow", # day of week
              groupby_sliding_window_size=None,
              groupby_custom_column=None)
          iplot(fig)
          # RMSE over time
          fig = backtest.plot_grouping_evaluation(
              score_func=EvaluationMetricEnum.RootMeanSquaredError.get_metric_func(),
              score_func_name=EvaluationMetricEnum.RootMeanSquaredError.get_metric_name(),
              which="test", # "train" or "test" set
              groupby_time_feature=None,
              groupby_sliding_window_size=7, # weekly aggregation of daily data
              groupby_custom_column=None)
          iplot(fig)
```

In [20]: summary = result.model[-1].summary() # -1 retrieves the estimator from the pipe print(summary)

Number of observations: 363, Number of features: 88

Method: Ridge regression Number of nonzero features: 88 Regularization parameter: 1.000e+05

Residuals:

Min 1Q -5.422e+05 -7.856e+04 Median 3Q Max

-5.422e+05	-7.856e+04	-3.075	e+04 2.2	286e+04	4.392e+06	
	Pred_col	Estimate	Std. Err	Pr(>)_boot	sig. code	
	ntercept 6	.056e+05	1.828e+04	<2e-16	***	(5.740e+05,
6.436e+05) events_C	New Year	-0.1276	0.289	0.416		(-0.8
89, 0.301) events_C	w Year-1	-0.2338	0.3531	0.602		(-1.22
5, 0.08686) events_C	w Year-2	-0.625	0.717	0.522		(-
2.373, 0.) events_C	w Year+1	-0.166	0.3226	0.684		(-1.15
9, 0.1662) events_C	w Year+2	-0.2074	0.3338	0.250		(-1.0
27, 0.109) events_Chris	tmas Day	0.391	0.4423	0.190		
(0., 1.498) events_C	as Day-1	0.7182	0.7936	0.558		
(0., 2.714) events_C	as Day-2	0.2267	0.3382	0.258		(-0.21
27, 1.099) events_C 91, 0.687)	as Day+1	0.06869	0.2519	0.488		(-0.42
events_C 8, 0.03435)	as Day+2	-0.2566	0.3135	0.234		(-1.06
events_E 6, 0.6566)	Ireland]	0.06068	0.2484	0.506		(-0.491
events_E 77, 0.427)	eland]-1	-0.04682	0.2702	0.512		(-0.
events_E 7, 0.1652)	eland]-2	-0.1542	0.3303	0.706		(-1.00
events_E 5, 0.0859)	eland]+1	-0.2329	0.338	0.584		(-1.17
events_E 3.745, 0.)	eland]+2	-1.088	1.115	0.514		(-
events_Goo 9, 0.0389)	d Friday	-0.2642	0.3731	0.206		(-1.26
events_Good 2.342, 0.)	Friday-1	-0.6828	0.6944	0.170		(-
events_Good (0., 5.944)	Friday-2	1.767	1.807	0.528		
events_Good 7, 0.1652)	Friday+1	-0.1542	0.3303	0.706		(-1.00
events_Good 77, 0.427)	Friday+2	-0.04682	0.2702	0.512		(-0.
events_I (0., 4.348)	ence Day	1.357	1.188	0.266		
events_I (0., 8.96)	ce Day-1	3.252	2.514	0.100		
events_I 94, 36.32)	ce Day-2	10.61	12.04	0.590		(-4.1
events_I 2, 0.6875)	ce Day+1	-0.5441	0.8114	0.432		(-2.36
events_I 4, 0.1349)	ce Day+2	-2.445	2.261	0.188		(-7.34
•	abor Day -0	0.0001173	0.5037	1.000		(-1.1
events_Lab 3.373, 0.)	or Day-1	-1.113	0.9413	0.140		(-
events_Lab	-	-0.5205	0.7624		VKITE%ED State	(-2.24

ĮLINK	EDIN GREYKITEJ S	staten Island Fored	cast - Jupyter Noteb	оок
6, 0.6396) events_Labor Day+1	0.1395	0.9067	0.936	(-1.6
52, 2.136) events_Labor Day+2	-2.084	1.568	0.106	(-
5.417, 0.) events_Memorial Day	0.1345	0.31	0.744	(-0.256
5, 0.9456) events_Mal Day-1	-0.3575	0.4631	0.530	(-
1.686, 0.) events_Mal Day-2	-0.8493	0.8981	0.166	(-
2.873, 0.) events_Mal Day+1	0.6274	0.6338	0.150	
(0., 2.296) events_Mal Day+2	-0.7284	0.7652	0.508	(-
2.674, 0.) events_New Years Day	-1.199	1.161	0.496	(-
3.858, 0.) events_Nrs Day-1	-0.6248	0.662	0.520	
	43.92	44.59	0.140	
	-1.767	1.858	0.502	(-
6.662, 0.) events_Nrs Day+2	-0.7825	0.8113	0.174	(-
2.708, 0.) events_Other	37.49	39.84	0.376	(-1
1.6, 125.9) events_Other-1	13.11	16.03	0.396	(-16.
79, 46.63) events_Other-2	31.65	39.78	0.506	(-21.
62, 120.0) events_Other+1	-9.571	12.19	0.424	(-33.
	25.74	39.93	0.604	(-25.
59, 113.7) events_Thanksgiving	-1.232	1.247	0.174	(-
4.221, 0.) events_Tgiving-1	0.07556	0.275	0.484	(-0.418
4, 0.7861) events_Tgiving-2	0.8792	0.9364	0.534	
(0., 3.146) events_Tgiving+1	-2.545	2.457	0.178	(-
7.954, 0.) events_Tgiving+2	-1.687	1.596	0.178	
	-0.4824	0.6013	0.556	(-
2.112, 0.) events_Vns Day-1	-0.5289	0.5968	0.512	(-
1.988, 0.) events_Vns Day-2	-0.6877	0.6735	0.130	(-
2.243, 0.) events_Vns Day+1	0.3978	0.4646	0.172	
(0., 1.639) events_Vns Day+2	-0.4655	0.4947	0.496	(-
1.567, 0.) str_dow_2-Tue	-9.469	10.96	0.394	(-30.
34, 9.062) str_dow_3-Wed 6.9, 128.8)	37.73	39.72	0.348	(-1
str_dow_4-Thu	0.8309	16.73	0.970	(-29.
83, 35.73) str_dow_5-Fri 24, 85.99)	19.8	29.23	0.510	(-23.
str_dow_6-Sat	-19.18	23.04	0.370	(-6
1.37, 32.0) str_dow_7-Sun 6.89, 17.2)	-17.01	16.82	0.314	(-4
ct1 11, 46.51)	12.23	16.89	0.462	(-16.
is_weekend:ct1 34, 26.75)	-12.12	18.68	0.486	(-47.
str_dow_2-Tue:ct1 1.63, 3.48)	-7.552	6.476	0.228	(-2
str_dow_3-Wed:ct1	26.97	30.66	0.452	(-13.

37, 92.84)				
str_dow_4-Thu:ct1	0.2639	9.25	0.968	(-18.
15, 19.06)	13.93	21.32	0.544	(16
str_dow_5-Fri:ct1 25, 62.55)	13.93	21.32	0. 344	(-16.
str_dow_6-Sat:ct1	-5.349	15.99	0.728	(-3
1.96, 29.0)	6 775	44 42	0 530	(27
str_dow_7-Sun:ct1 17, 18.16)	-6.775	11.42	0.538	(-27.
sin1_tow_weekly	53.15	52.99	0.282	(-38.
67, 171.8)	-51.92	37.39	0.164	(-12
cos1_tow_weekly 8.4, 15.21)	-31.92	37.33	0.104	(-12
sin2_tow_weekly	-2.519	41.39	0.956	(-87.
05, 79.44)				•
cos2_tow_weekly	-10.66	53.6	0.860	(-12
5.7, 82.56)				
sin3_tow_weekly	-59.72	55.67	0.264	(-18
0.0, 39.2)				
cos3_tow_weekly	18.13	37.48	0.600	(-4
6.8, 102.5)				
sin4_tow_weekly	59.72	55.67	0.264	(-3
9.2, 180.0)				, ,
cos4_tow_weekly	18.13	37.48	0.600	(-4
6.8, 102.5)	25 42	20 11	0.264	/ 11
sin1_toq_quarterly	-35.42	38.11	0.364	(-11
8.6, 33.58)	06 60	בט טב	0.056	/10
<pre>cos1_toq_quarterly 14, 213.8)</pre>	96.69	53.35	0.056	. (10.
sin2_toq_quarterly	-18.61	43.56	0.688	(-10
9.4, 62.87)	-10.01	43.30	0.000	(-10
cos2_toq_quarterly	34.58	47.51	0.462	(-40.
03, 145.9)	2.1750		00.02	(
sin3_toq_quarterly	-23.77	30.22	0.386	(-94.
68, 29.02)				•
cos3_toq_quarterly	-21.77	56.25	0.678	(-12
5.4, 99.35)				
sin4_toq_quarterly	19.69	35.6	0.570	(-5
0.0, 91.21)				
cos4_toq_quarterly	15.37	52.42	0.786	(-7
7.6, 121.3)				
sin5_toq_quarterly	22.76	50.47	0.652	(-77.
41, 115.7)	,			,
cos5_toq_quarterly	41.54	40.93	0.296	(-23.
96, 135.6)	0 004 1441 0 0	4 141 0 05		
Signif. Code: 0 '***'	0.001 .**, 0.0	1 ·* · 0.05	. 0.1 ' 1	_

Multiple R-squared: 0.000175, Adjusted R-squared: 0.002807 F-statistic: -7.8377e-05 on 0 and 362 DF, p-value: nan Model AIC: 11407.0, model BIC: 11407.0

WARNING: the F-ratio and its p-value on regularized methods might be misleadin g, they are provided only for reference purposes.

Observation:

Per the model in Linkedin Greykite, property prices will be stabe around \$600,000.

Data might be skewed. Will have to analyze further with different parameters. Lower amount of data for Staten Island

Trend shows upward. Will have to analyze that futher.