周末检测参考答案

周末检测(一)

(数与式)

1. A 2. B 3. C 4. B 5. D

6.
$$x > 3$$
 7. 3 8. m 9. 1 10. $\frac{n(n+1)}{2}$

12. 解:原式 =
$$1 - x^2 + x^2 + 2x = 1 + 2x$$
,
供对快对快对

13.
$$\mathbb{R}$$
: \mathbb{R} :

$$= \frac{m+3}{m-3} \cdot \frac{m-3}{m-5} = \frac{m+3}{m-5},$$

当
$$m=2$$
 时,原式 = $\frac{2+3}{2-5} = -\frac{5}{3}$.

14. $\Re:(1)L = 2(m+2n) + 2(2m+n)$

=2m+4n+4m+2n=(6m+6n) cm. (2)每块小矩形的面积为 30 cm²,即 mn = 30, 四个正方形的面积和为 180 cm²,即 $m^2 + n^2 = 90$,

$(m+n)^2 = m^2 + 2mn + n^2 = 90 + 2 \times 30 = 150.$

周末检测(二)

(方程与不等式)

1. A 2. C 3. A 4. D 5. C

6.
$$x = 2$$
 7. $x_1 = 0$, $x_2 = 2$ 8. 5 9. $\frac{4000}{x} - \frac{4200}{1.5x} = 3$ 10. 1

11. 解:②-①得 y=1,

把 y = 1 代人①得 x = 2.

 $(4) - 2 \le x \le 3$

13. $M: (1)T = (a+3b)^2 + (2a+3b)(2a-3b) + a^2$ $= a^2 + 6ab + 9b^2 + 4a^2 - 9b^2 + a^2 = 6a^2 + 6ab.$

(2): 关于x的方程 $x^2 + 2ax - ab + 1 = 0$ 有两个相等的实 数根.

$$\Delta = (2a)^2 - 4(-ab+1) = 0,$$

 $a^2 + ab = 1$, $T = 6(a^2 + ab) = 6 \times 1 = 6$.

14. 解:(1)设购买1件乙种农机具需要 x 万元,则购买1件甲种

万元. (2)设购买 m 件甲种农机具,则购买(20-m)件乙种农

机具. 依題意得 3m+2(20-m)≤46,解得 m≤6.

答:甲种农机具最多能购买6件.

周末检测(三)

(函数)

1. B 2. A 3. B 4. B 5. C

6. 2 7. x < 1 8. 6

9. (3,5) 10. -4

11. 解: : 将点 A(-4,2) 先向右平移 2 个单位, 再向下平移 3 个 单位得到点C,

C(-2,-1)

设直线 l 的解析式为 y = kx + b, : 直线 l 过点 A, C,

 \therefore 直线 l 的解析式为 $y = -\frac{3}{2}x - 4$,

 $\Leftrightarrow x = 0, \text{ if } y = -4, \therefore B(0, -4).$

12. 解:(1)把点 A(-1,2)代人 $y = \frac{k}{x}(k \neq 0)$ 得 $2 = \frac{k}{-1}$,

 $\therefore k = -2, \therefore$ 反比例函数的解析式为 $y = -\frac{2}{x}$.

(2): 反比例函数 $y = \frac{k}{x}(k \neq 0)$ 与正比例函数 $y = mx(m \neq 0)$

0)的图象交于点 A(-1,2)和点 B,∴ B(1,-2),

 \therefore 点 C 是点 A 关于 y 轴的对称点, \therefore C(1,2),

$$\therefore AC = 2, \therefore S_{\triangle ABC} = \frac{1}{2} \times 2 \times (2+2) = 4.$$

13. 解:(1)设y与x的函数解析式为y=kx+b,

由题意得 $\begin{cases} 60k+b=200\\ 80k+b=100 \end{cases}$ 解得 $\begin{cases} k=-5\\ b=500 \end{cases}$

∴ y 与 x 的函数解析式为 y = -5x +500(50 < x < 100).

(2)设月销售利润为w元,则w = (x - 50)(-5x + 500)

 $= -5x^2 + 750x - 25\ 000 = -5(x - 75)^2 + 3\ 125$

: 抛物线开口向下,且50 < x < 100,

∴ 当 x = 75 时, w 有最大值, 是 3 125.

答: 当销售单价定为75元时,该种油茶的月销售利润最大, 最大利润是 3 125 元.

14. 解:(1)把A(4,0)代人 $y=x^2-3x+c$ 得16-12+c=0,

:. 二次函数的解析式为 y = x² - 3x - 4.

(2) 当 y = 0 时, $x^2 - 3x - 4 = 0$,解得 $x_1 = -1$, $x_2 = 4$, $\therefore B(-1,0),$

∴ $\triangle ABC$ 的面积 = $\frac{1}{2}$ × (4 + 1) × 4 = 10.

(3)存在. 设 $D(t,t^2-3t-4)$,

∵ △ABD 与△ABC 的面积相等,

$$\therefore \frac{1}{2} \times 5 \times |t^2 - 3t - 4| = 10, \text{ EP} |t^2 - 3t - 4| = 4,$$

解方程
$$t^2 - 3t - 4 = 4$$
 得 $t_1 = \frac{3 + \sqrt{41}}{2}$, $t_2 = \frac{3 - \sqrt{41}}{2}$,

此时点
$$D$$
 的坐标为 $\left(\frac{3+\sqrt{41}}{2},4\right)$ 或 $\left(\frac{3-\sqrt{41}}{2},4\right)$;

解方程 $t^2 - 3t - 4 = -4$ 得 $t_1 = 0$, $t_2 = 3$, 此时点 D 的坐标为(3,-4)

VIP

综上所述,点 D 的坐标为 $\left(\frac{3+\sqrt{41}}{2},4\right)$ 或 $\left(\frac{3-\sqrt{41}}{2},4\right)$ 或

周末检测(四)

(三角形、全等三角形)

1. D 2. C 3. B 4. B 5. B 6. 120° 7. AB = AC(或 $\angle ADC = \angle AEB$ 或 $\angle B = \angle C$ 等,答案不唯一) 8. 70° 9. 40 10. 40

11. 证明:∵AC 平分∠BAD,∴∠BAC = ∠DAC,

 $\nabla : AB = AD, AC = AC,$

 $\triangle ABC \cong \triangle ADC(SAS)$ BC = DC.

12. 证明: EA //FB, A = FBD, AC = BD, AC = BD, AC = BD,

EA = FB

在△EAC和△FBD中对快利快对 △FBD, 快对快和快到BD

 $\therefore \triangle EAC \cong \triangle FBD(SAS), \therefore \angle E = \angle F.$

13. 证明:(1): AB//CD, $\therefore \angle B = \angle C$, $: BE = CF, : BE - EF = CF - EF, \exists PBF = CE,$

在 $\triangle ABF$ 和 $\triangle DCE$ 中, $\begin{cases} AB = CD \\ \angle B = \angle C, \\ BF = CE \end{cases}$

 $\therefore \triangle ABF \cong \triangle DCE(SAS).$

(2): $\triangle ABF \cong \triangle DCE$, ∴ $\angle AFB = \angle DEC$, ∴ $\angle AFE = \angle DEF$, ∴ AF // DE.

14. (1)证明:∵ AB//DE,∴ ∠BAC = ∠D,

 $\nabla :: \angle B = \angle DCE = 90^{\circ}, AC = DE,$

 $\therefore \triangle ABC \cong \triangle DCE(AAS).$

(2) $\mathbb{M}: :: \triangle ABC \cong \triangle DCE :: CE = BC = 5.$

 $\therefore \angle ACE = \angle DCE = 90^{\circ},$

 $\therefore AE = \sqrt{AC^2 + CE^2} = \sqrt{144 + 25} = 13.$

周末检测(五次

1. C 2. C 3. D 4. C 5. B

 $8.2\sqrt{5}$ 9.5.5 10.40

11. 证明: ∵ △ABC 是等边三角形, ∴ ∠C = ∠B = 60°.

 $\therefore \angle ADB = \angle CAD + \angle C = \angle CAD + 60^{\circ}.$

12. (1)证明:∵ D, E 分别为 AC, BC 的中点,∴ DE //AB,

 $\angle DEC = \angle EBH$, $\angle DEF = \angle EHB$,

又 $\triangle DEF$ 为等腰直角三角形, $\therefore \angle DEF = \angle EHB = 90^{\circ}$, $\therefore \angle DCE = 90^{\circ}$, $\therefore \angle DCE = \angle EHB$. $\therefore \triangle CDE \hookrightarrow \triangle HEB$.

(2)解:∵ D,E 分别为 AC,BC 的中点,DE=1,

AB = 2DE = 2.

13. 解:如图,过点 A 作 AF ⊥ CD 于点 F,

在 Rt $\triangle BCD$ 中, $\angle DBC = 60^{\circ}$, BC = 30 m,

 $\therefore \tan \angle DBC = \frac{CD}{BC},$

 $\therefore CD = BC \cdot \tan 60^{\circ} = 30\sqrt{3} \text{ (m)},$

∴ 乙建筑物的高度为 30√3 m.

在 Rt $\triangle AFD$ 中, $\angle DAF = 45^{\circ}$, $\therefore DF = AF = BC = 30 \text{ m}$

:. $AB = CF = CD - DF = (30\sqrt{3} - 30) \text{ m}, \Box$

∴ 甲建筑物的高度为(30√3 30) 1

14. 解:如图,过点 P作PH

由题意得 AB = 30 × 2 = 60(海里), ∠PBH = 90°-60°=30°. $/PAH = 90^{\circ} - 45^{\circ} = 45^{\circ}$ 则△*PHA* 是等腰直角三角形,∴ *AH* = *PH*.

在 $Rt \triangle PHA$ 中,设 AH = PH = x 海里,在 $Rt \triangle PBH$ 中,PB = 2PH = 2x 海里,

BH = AB - AH = (60 - x)海里, $\therefore \tan \angle PBH = \tan 30^\circ = \frac{PH}{BH} = \frac{\sqrt{3}}{3}$

解得 $x = 30(\sqrt{3} - 1)$,

∴ $PB = 2x = 60(\sqrt{3} - 1) \approx 44($ 海里).

答:此时船与小岛 P 的距离约为 44 海里.

周末检测(六)

(四边形)

1. D 2. B 3. D 4. B 5. C

6.720° 7.8 8.50° 9.2.5 cm 10.8√5 11. 证明:: 四边形 ABCD 是平行四边形,

 $\therefore OA = OC, OD = OB,$

AF = CE, DE = OF,

在 $\triangle BEO$ 和 $\triangle DFO$ 中, $\begin{cases} OB = OD \\ \angle BOE = \angle DOF, \\ OE = OF \end{cases}$

 $\therefore \triangle BEO \cong \triangle DFO(SAS), \therefore BE = DF.$

12. 证明: :: 四边形 ABCD 是平行四边形, :: $\angle B = \angle D$,

 $\because AE \perp BC, AF \perp CD, \therefore \ \angle AEB = \angle AFD = 90^{\circ},$ $\angle AEB = \angle AFD$

在 $\triangle ABE$ 和 $\triangle ADF$ 中, BE = DF $\angle B = \angle D$

 $\therefore \triangle ABE \cong \triangle ADF(ASA), \therefore AB = AD,$

平行四边形 ABCD 是菱形.

13. 证明: :: 四边形 ABCD 是平行四边形, AB//CD,:. $\angle BAE = \angle CFE$, $\angle ABE = \angle FCE$,

E 为 BC 的中占 ... EB = EC.

 $\triangle ABE \cong \triangle FCE(AAS)$, $\therefore AB = CF$.

AB//CF,:. 四边形 ABFC 是平行四边形,

AD = BC, AD = AF

∴ BC = AF,∴ 四边形 ABFC 是矩形. 14. (1)证明:∵ 在矩形 ABCD 中, O 为对角线 AC 的中点,

AD//BC, AO = CO

 $\therefore \angle OAM = \angle OCN, \angle OMA = \angle ONC,$

 $\angle AMO = \angle CNO$ $\begin{cases} \angle OAM = \angle OCN, \\ AO = CO \end{cases}$ 在△AOM 和△CON中,

 $\therefore \triangle AOM \cong \triangle CON(AAS), \therefore AM = CN$

:: AM // CN, .: 四边形 ANCM 为平行四边形. (2)解:: 四边形 ANCM 为平行四边形, MN LAC,

:. 平行四边形 ANCM 为菱形,

 $\therefore AM = MC = AD - DM = 4 - DM,$ 在矩形 ABCD 中, AB = CD = 2, ∠D = 90°,

∴ 在 Rt $\triangle CDM$ 中,根据勾股定理,得 $(4-DM)^2=2^2+DM^2$,

解得 $DM = \frac{3}{2}$.

周末检测(七)

(周)

3. B 4. D 5. A 6. 30 7. 125

10. 10

证明:: AB 是⊙O 的直径, CD ⊥ AB,

 $\widehat{BC} = \widehat{BD}, \therefore \angle A = \angle BCD,$

VIP

 $\nabla : OA = OC$, $\therefore \angle ACO = \angle A$, $\therefore \angle ACO = \angle BCD$.

12. 解:(1):: AB 是⊙O 的直径,:. ∠ADB = 90°,

- $\therefore \angle B = \angle ACD = 30^{\circ},$
- $\angle BAD = 90^{\circ} \angle B = 90^{\circ} 30^{\circ} = 60^{\circ}.$
- (2)由(1)知 $\angle B = 30^{\circ}$,
- ∴ 在 Rt $\triangle ADB$ 中 $,BD = \sqrt{3}AD = \sqrt{3} \times \sqrt{3} = 3.$
- 13. 证明:连接 OP, OC.

 - 又 PD//AC,:: $OP \perp PD$, 即 $\angle DPO = 90^{\circ}$.
- ∵ PO 为半径,∴ PD 是⊙O 的切线. 14. (1)证明;∵ AD = CD,∴ DAC = ∠ACD, ∴ ∠ADC + 2∠ACD = 180

 - ... ∠ABC + ∠ABC = 180°... ∠ABC = 2 ∠ACD. (2)解:如图,连接 Objection E.

 - :: PD 是⊙O 的切线,:: OD \ DP,

 - \therefore PD 定じ 的 切 刻 次 \dots OD \perp DF , \therefore \angle ODP = 90° , \bigcirc 又 : AD = CD , : OD \perp AC , AE = EC ,
 - ∴ ∠*DEC* = 90°
 - : AB 是⊙O 的直径,... $\angle ACB = 90$ °,
 - ∴ ∠*ECP* = 90°
 - ∴ 四边形 DECP 为矩形,∴ DP = EC,
 - $\because \tan \angle CAB = \frac{5}{12}, BC = 1, \therefore \frac{CB}{AC} = \frac{1}{AC} = \frac{5}{12},$
 - $\therefore AC = \frac{12}{5}, \therefore EC = \frac{1}{2}AC = \frac{6}{5}, \therefore DP = \frac{6}{5}.$

周末检测(八)

(尺规作图及图形变换)

1. B 2. D 3. B 4. D 5. C

 $6. \equiv 7.72 \quad 8.\sqrt{7} \quad 9.55 \quad 10.3$

11. 解:(1)如图,射线 BD 即为所求.

(2): $\angle C = 90^{\circ}$, $\angle A = 30^{\circ}$,

 $\therefore \angle ABC = 90^{\circ} \frac{30^{\circ}}{10^{\circ}} = 60^{\circ}$

∵ BD 平分 ∠ABC, ... ∠ABQ

 $\therefore \angle A = \angle ABD, \therefore BD = AD = A$ 12. 解:(1)如图,MN即为所求.

13. 解:(1)如图, △A, B, C, 即为所求.

(3) - 2 014. 解:(1)如图, △A,B,C,为所

(2)如图, △A₂B₂C₂ 为所求.

第一种情况: $A_2(-2,-6)$, $B_2(-8,-2)$, $C_2(-2,-2)$;

第二种情况:A₂(2,6),B₂(8,2),C₂(2,2).

周末检测(九)

(统计与概率)

1. A 2. D 3. A 4. B 5. B

6. 50 7. \angle 8. 8 9. $\frac{1}{2}$ 10. 480

- 11. 解:(1)下 正 T 8 15 22 5
 - (2)108° (3)1 080
- 12. 解:(1)50 12 1
 - (2)补全条形统计图略(数据为12).

答:估计该校学生每天体育锻炼时间超过1小时的学生有 720 人.

13. 解:根据题意画树状图如下:

共有9种等可能的情况,其中两次抽出的卡片上的图案都是 "保卫和平"的有1种,

- :. 两次抽出的卡片上的图案都是"保卫和平"的概率是10.
- 14. $\Re:(1)\frac{1}{4}$

(2)画树状图如下:

由树状图知,共有16种等可能结果,其中至少有1张印有 '兰"字的有7种结果,

: 至少有 1 张印有"兰"字的概率为 7 16

周末检测(十)

(综合训练)

- 1. B 2. B 3. D 4. A 5. C 6. $x \neq 7$ 7. 20°
- 8. 线段的垂直平分线的性质 9. $\frac{5}{13}$ 10. 8
- 11. 解:去分母,得 $2x-1<4(3x+\frac{7}{2})$,

去括号,得2x-1<12x+14, 移项,得2x-12x<14+1,

合并同类项,得-10x<15,

VIP

系数化为1,得 $x > -\frac{3}{2}$.

- 12. 解:(1)将 A 与 B 的坐标代入一次函数的解析式,
 - 得 $\begin{cases} -k+b=3\\ 2k+b=-3 \end{cases}$,解 得 $\begin{cases} k=-2\\ b=1 \end{cases}$
 - :. 一次函数的解析式为 y = -2x + 1. (2) $\stackrel{\text{def}}{=} x = \frac{3}{2}$ ft $y = -2 \times \frac{3}{2} + 1 = -2$.
- 13. $\Re:(1)\frac{1}{2}$
 - (2)画树状图如下:

和 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8 共有16个等可能的结果,两次抽取的卡片上的数字和等于6 的结果有3个.

- :. 两次抽取的卡片上的数字和等于6的概率为5
- 14. (1)证明::: 四边形 ABCD 是矩形,

$$\therefore OB = \frac{1}{2}BD, OC = \frac{1}{2}AC, \underline{\mathbb{H}} AC = BD, \therefore OB = OC,$$

在
$$\triangle EBO$$
 和 $\triangle FCO$ 中,
$$\begin{cases} \angle EBO = \angle FCO \\ OB = OC \\ \angle BOE = \angle COF \end{cases}$$

- $\therefore \triangle EBO \cong \triangle FCO(ASA), \therefore EO = FO.$
- (2) \mathbf{M} : ∴ OB = OC, ∴ $\angle OBC = \angle OCB$, ∴ $\angle EBO = \angle ACB = 30^{\circ}$, ∴ $\angle OBC = 30^{\circ}$,
- $\therefore \angle BEC = 180^{\circ} 30^{\circ} 30^{\circ} = 90^{\circ},$
- $\therefore BC = 2\sqrt{3}, \therefore BE = \frac{1}{2}BC = \sqrt{3},$
- 在 Rt \triangle BEO 中, \therefore \angle EBO = 30°, \therefore OE = 1,
- ∴ $\triangle BEO$ 的面积 = $\frac{1}{2}BE \cdot OE = \frac{1}{2} \times \sqrt{3} \times 1 = \frac{\sqrt{3}}{2}$.

周末检测(十-

- (综合训练)
- 1. C 2. C 3. B 4. D 5. B 8. -7 9. -3 10.4\sqrt{5}
- 11. 解:①+②,得6x=6,解得x=1,5 把 x = 1 代人①,得 y = -1,

则方程组的解为 $\begin{cases} x=1 \\ y=-1 \end{cases}$

12. 解:(1)如图,MN为线段 AC 的垂直平分线, $\overline{\mathcal{D}}$ 升点 E,连 接 CE.

- (2): 四边形 ABCD 为平行四边形,
- AD = BC = 5, CD = AB = 3,
- : 点 E 在线段 AC 的垂直平分线上, : EA = EC,
- \therefore $\triangle DCE$ 的周长 = CE + DE + CD = EA + DE + CD = AD + CD
- 13. 解:(1)84 0.33

 - (2)最喜爱阅读艺术类读物的学生最少 (3)估计 1 200 名学生中最喜爱阅读科普读物的学生有
 - $1200 \times 0.33 = 396(人)$.

- 14. 解:(1)设增长率为x,根据题意,得20(1+x)2=24.2, 解得 $x_1 = -2.1$ (舍去), $x_2 = 0.1 = 10\%$.
 - 答:增长率为10%.
 - $(2)24.2 \times (1+0.1) = 26.62.$

答:预计第四批网络课受益学生将达到 26.62 万人次.

周末检测(十二)

(综合训练)

- 1. D 2. C 3. A 4. D 5. C
- 6. (1+x)(1-x) 7. $\frac{9}{4}$ 8. \angle 9. $\frac{5\sqrt{6}}{6}$ # 10. 3
- 11. 解:原式=2-3-1=-2.
- 12. 解:原式 = $\frac{(x+2)^2}{x+2} \cdot \frac{x-2}{x(x+2)} 1$

$$=\frac{x-2}{x}-1=\frac{x-2-x}{x}=-\frac{2}{x}$$
.

- 13. 证明:∵ 四边形 ABCD 是菱形,∴ AD = CD,
- AE = CF, AD AE = CD CF, BDE = DF,
- $\therefore \angle D = \angle D, \therefore \triangle ADF \cong \triangle CDE(SAS),$
- $\angle DAF = \angle DCE$.
- 14. 解:(1)设y与x之间的函数关系式是 $y = kx + b(k \neq 0)$,

由题意,得
$$\left\{ {12k+b=500\atop 14k+b=400},$$
解得 $\left\{ {k=-50\atop b=1\ 100}, \right.$

- 即 y 与 x 之间的函数关系式为 y = -50x + 1 100.
- (2)w = (x 10)y = (x 10)(-50x + 1100)= $-50(x 16)^2 + 1800$,
- ∵ a = -50 < 0, ∴ 当 x < 16 时, w 随 x 的增大而增大,
- ∵12≤x≤15,且x为整数,
- ∴ 当 x = 15 时, w 有最大值, ∴ $w = -50 \times (15 16)^2 + 1800 = 1750$.
- 答: 当销售单价为 15 元时, 每周所获利润最大, 最大利润是

周末检测(十三)

(综合训练)

- 1. C 2. C 3. A 4. C 5. A
- $6 \frac{3}{4}\pi \quad 7. \begin{cases} x = 5 \\ y = 0 \end{cases} \quad 8.3 \quad 9.2 \frac{1}{2}\pi \quad 10.25\sqrt{6}$
- 11. 解 去分母,得 3(x-1) < x + 1, 去括号,得 3x 3 < x + 1,

 - 移项,得3x-x<1+3,
 - 合并同类项,得2x<4, 系数化为1,得x<2.
- 12. 证明:∵四边形 *ABCD* 是矩形, ∴ *AB* = *CD*, ∠*A* = ∠*D* = 90°,
 - ∵ M 为 AD 的中点,∴ AM = DM,
 - 在 $\triangle ABM$ 和 $\triangle DCM$ 中, $\begin{cases} AM = DM \\ \angle A = \angle D = 90^{\circ}, \\ AB = CD \end{cases}$
 - $\therefore \triangle ABM \cong \triangle DCM(\,\text{SAS})\;, \therefore \; \angle ABM = \angle DCM.$
- 13. $M:(1)\frac{1}{4}$
 - (2)列表如下:A.B.C.D表示四个小区

VIP

	A	В	C	D
A	(A,A)	(B,A)	(C,A)	(D,A)
В	(A,B)	(B,B)	(C,B)	(D,B)
C	(A,C)	(B,C)	(C,C)	(D,C)
D	(A,D)	(B,D)	(C,D)	(D,D)

由表知,共有16种等可能结果,其中王明和李丽被安排到同 一个小区工作的有4种结果,所以王明和李丽被安排到同一 个小区工作的概率为 $\frac{4}{16} = \frac{1}{4}$.

14. 解:(1): 直线 y = -2x + b 经过 $A\left(-\frac{1}{2}m, m-2\right), B(1,n)$

∴ C(-1,0),D(0, - 快对快对快对 \therefore 点 E 为 CD 的中点, \therefore $E\left(-\frac{1}{2},-1\right)$,

 $\therefore S_{\triangle BOE} = S_{\triangle ODE} + S_{\triangle ODB}$ $=\frac{1}{2}OD \cdot (x_B - x_E) = \frac{1}{2} \times 2 \times (1 + \frac{1}{2}) = \frac{3}{2}.$

周末检测(十四)

(综合训练)

- 1. A 2. D 3. D 4. C 5. C 6. $\alpha > 0$
- 7. 3 8. $y_1 > y_2$ 9. $\frac{300}{x+10} = \frac{240}{x}$ 10. $4\sqrt{2}$
- 11. $M: \mathbb{R} : \mathbb{R} = x^2 1 (x^2 2x + 1)$ $=x^2-1-x^2+2x-1=2x-2$, 当 x = 1 时,原式 = 2 - 2 = 0.
- 12. 解:(1)50
 - (2)50×32% = 16(人),补全统计图略

(3)1 000 $\times \frac{6+24+16}{50} = 920$ (人).

答:估计该校"关注""比较失注"及"非常关注"航天科技的 人数共有 920 人.

- 13. 证明:(1):: AC = BD,
 - $\therefore AC CD = BD CD, \exists \mathbb{P} AD = BC,$
 - AE//BF, AE//

在 $\triangle ADE$ 和 $\triangle BCF$ 中, $\begin{cases} AD = BC \\ \angle A = \angle B, \\ AE = BF \end{cases}$

- $\therefore \triangle ADE \cong \triangle BCF(SAS).$
- (2)由(1)得△ADE \ △BCF.
- $\therefore DE = CF, \angle ADE = \angle BCF,$
- $\therefore \angle EDC = \angle FCD, \therefore DE // CF,$
- :. 四边形 DECF 是平行四边形. 14. 解:(1): 一次函数 $y = -\frac{1}{2}x + b$ 的图象经过点 A(-4,0),

$$\therefore -\frac{1}{2} \times (-4) + b = 0, \therefore b = -2,$$

- ∴ 一次函数为 $y = -\frac{1}{2}x 2$,∴ B(0, -2),

过点 C 作 CE//y 轴交 x 轴于点 E,则 $\triangle ACE \sim \triangle ABO$,

- $\therefore \frac{AC}{AB} = \frac{CE}{BO} = \frac{AE}{AO}$
- : AB = 2AC, .: $CE = \frac{1}{2}BO = 1$, $AE = \frac{1}{2}AO = 2$,
- $\therefore OE = 4 + 2 = 6$,
- $\therefore C(-6,1), \therefore k = -6 \times 1 = -6.$

把 y = 1 代入 $y = \frac{6}{x}$ 得 x = 6, D(6,1), CD = 12, ∴ $\triangle ACD$ 的面积 = $\frac{1}{2} \times 12 \times 1 = 6$.

周末检测(十五)

(综合训练)

- 1. C 2. B 3. D 4. A 5. A
- 6. $\frac{1}{6}$ 7. 2 8. 57 9. 2 10. 3
- 11. 解;原式 = $\frac{x+1-1}{x+1} \cdot \frac{(x+1)(x-1)}{x} = x-1$,

当 $x = 1 - \sqrt{2}$ 时,原式 = $1 - \sqrt{2} - 1 = -\sqrt{2}$.

12. 解·设 A 种书架的单价是 x 元.

则 B 种书架的单价是(x-50)元, 根据题意得 $\frac{1000}{x} = \frac{800}{x - 50}$,解得 x = 250,

经检验,x=250 是原方程的解,

 $\therefore x - 50 = 250 - 50 = 200(\vec{\pi}).$

答: A 种书架的单价是 250 元, B 种书架的单价是 200 元.

- 13. **f**: $\triangle Rt \triangle ABC \Rightarrow \angle C = 90^{\circ}$, $\tan A = \frac{\sqrt{3}}{2}$,
 - $\therefore \angle A = 30^{\circ}, \therefore \angle ABC = 60^{\circ},$
 - ∵ BD 是∠ABC 的平分线,∴ ∠CBD = ∠ABD = 30°,
 - $\nabla : CD = \sqrt{3}, \therefore BC = \frac{CD}{\tan 30^{\circ}} = 3,$

在 Rt $\triangle ABC$ 中, $\angle C = 90^{\circ}$, $\angle A = 30^{\circ}$, $\therefore AB = \frac{BC}{\sin 30^{\circ}} = 6$.

- 14. 解:(1)将A(-1,0),B(3,0)代人 $y = x^2 + bx + c$,
 - 得 $\left\{ b = -2, \\ 9+3b+c=0, \right\}$ 解得 $\left\{ c = -3, \\ c = -3, \right\}$
 - :. 抛物线的解析式为 $y = x^2 2x 3$.
 - 将 C 点的横坐标 x = 2 代入 $y = x^2 2x 3$, 得 y = -3, C(2,-3)
 - 设直线 l 的解析式为 y = kx + n,

将 A, C 两点代入得 $\begin{cases} -k+n=0\\ 2k+n=-3 \end{cases}$, \vdots $\begin{cases} k=-1\\ n=-1 \end{cases}$

- :. 直线 l 的函数解析式是 y = -x 1.
- (2)设P点的横坐标为 $m(-1 \le m \le 2)$,则P,E 的坐标分别为P(m,-m-1), $E(m,m^2-2m-3)$, $\therefore P$ 点在E点的上方, $\therefore PE=(-m-1)-(m^2-2m-3)=$
- $-m^2 + m + 2 = -\left(m \frac{1}{2}\right)^2 + \frac{9}{4}$
- ∵ -1<0, ∴ 当 $m = \frac{1}{2}$ 时, PE 的最大值为 $\frac{9}{4}$, 此时 $P\left(\frac{1}{2}, -\frac{3}{2}\right)$.

周末检测(十六)

(综合训练)

- 1. C 2. C 3. A 4. D 5. B
- $6.1 \le x < 3$ 7. $\sqrt{5}$ 8. (2,3) 9. 10 10. 4
- 11. 解:圆圆的解答过程有错误,正确的解答如下:

$$\frac{a+b}{ab} \div \left(\frac{1}{b} - \frac{1}{a}\right) = \frac{a+b}{ab} \div \frac{a-b}{ab} = \frac{a+b}{ab} \cdot \frac{ab}{a-b} = \frac{a+b}{a-b}$$

- 12. (1) $\triangle BCE \triangle DAF$
 - (2)证明: :: 四边形 ABCD 是平行四边形,
 - $\therefore CB = AD, CB//AD, \therefore \angle BCE = \angle DAF,$
 - 在 $\triangle BCE$ 和 $\triangle DAF$ 中, $\begin{cases} CB = AD \\ \angle BCE = \angle DAF, \\ CE = AF \end{cases}$

VIP

- 14. 解:(1): ∠OAB = 90°, AO = AB = 4, C 为斜边 OB 的中点, A(4,0), B(4,4), C(2,2),
 - : 反比例函数 $y = \frac{k}{r}$ 在第一象限内的图象经过点 C,
 - $\therefore k = 2 \times 2 = 4$,即反比例函数的解析式为 $y = \frac{4}{1}$.
 - (2)由(1)知,反比例函数的解析式为 $y=\frac{4}{}$,
- 当 x = 4 时, y = 1, D(4,1),
- $\therefore BD = AB AD = 4 1 = 3,$
- $\therefore S_{\triangle BCD} = \frac{1}{2}BD(x_B x_C) = \frac{1}{2} \times 3 \times (4 2) = 3,$

$$S_{\triangle OAD} = \frac{1}{2}OA \cdot AD = \frac{1}{2} \times 4 \times 1 = 2, \therefore \frac{S_{\triangle BCD}}{S_{\triangle OAD}} = \frac{3}{2}.$$

周末检测(十八)

(综合训练)

- 1. D 2. B 3. B 4. D 5. A 6.3(m+1)(m-1)
- 7. 1. 5 < x < 6 8. $\frac{3}{5}$ 9. 15° 10. $\frac{1}{3}$ π
- 11. \mathbf{M} : \mathbf{M} :

当
$$x = \sqrt{2} + 1$$
 时,原式 = $\frac{\sqrt{2} + 2}{\sqrt{2}} = 1 + \sqrt{2}$.

- 13. (1)证明:∵ AD ⊥ BC,∴ ∠ ADB = ∠ ADC = 90°,
 - 根据对称的性质,得 $\angle E = \angle ADB = 90^{\circ}$, $\angle F = \angle ADC = 90^{\circ}$, AE = AD = AF, $\angle BAD = \angle BAE$, $\angle CAD = \angle CAF$,
- :: ∠BAC = 45°, .: ∠EAF = 90°, .: 四边形 AEGF 是矩形,
- ∵ AE = AF,∴ 四边形 AEGF 是正方形. (2)6
- $\therefore c = -3$, \therefore 抛物线的解析式为 $y = x^2 + bx 3$, 设 $A(x_1,0)$, $B(x_2,0)$,由题意得 $x_2-x_1=4$,
- $\therefore (x_1 + x_2)^2 4x_1x_2 = 16,$
- $x_1 + x_2 = -b, x_1x_2 = -3, \therefore b^2 + 12 = 16, \therefore b = \pm 2,$
- 又:对称轴在 y 轴左侧,:: b=2,
- :. 抛物线的解析式为 $y = x^2 + 2x 3$.
- (2)存在点 M,使得点 A,O,N,M 构成平行四边形.
- :: 抛物线的解析式为 $y = x^2 + 2x 3$,
- ∴ y = 0 时, x = -3 或 x = 1, ∴ A(-3,0), B(1,0).
- ①若 OA 为边,:. AO // MN, OA = MN = 3,
- : N 在对称轴 x = -1 上, :: 点 M 的横坐标为 2 或 -4, 当 x = 2 时, y = 5, 当 x = -4 时, y = 5,
- :: M(2,5)或(-4,5); ②若 OA 为对角线时,:: A(-3,0),O(0,0),
- $\therefore OA$ 的中点的坐标为 $\left(-\frac{3}{2},0\right)$,

VIP

- ∵ N 在直线 x = -1 上,
- 设 M 的横坐标为 $m, \therefore \frac{m-1}{2} = -\frac{3}{2}, \therefore m = -2$,
- 把 m = -2 代人抛物线解析式得 y = -3,∴ M(-2, -3).
- 综上所述,M 的坐标为(2,5)或(-4,5)或(-2,-3).

 $\therefore \triangle BCE \cong \triangle DAF(SAS)$

- 13. 解:(1)设该村耕地的年平均增长率为 x, 依题意得7200(1+x)2=8712,
 - 解得 $x_1 = 0.1 = 10\%$, $x_2 = -2.1$ (不合题意,舍去).
 - 答:该村耕地的年平均增长率为10%
 - (2)8712×(1+10%)=9583.2(亩).
- 答:2022 年该村拥有耕地 9 583.2 亩.
- 14. (1)证明:连接 OC,
 - :: AB 是 ⊙ O 的 直径 , :. ∠ ACB ≥ 90°,

 - ・ DE 与 \odot の 相切 于点 G、、 \angle DCO = \odot 0°、 ∴ \angle DCO \angle ACO \angle ACO \angle ACO \angle ACO + \angle AC

 - $\therefore \tan \angle CAD = \frac{3}{4}, AD = 8,$
 - $\therefore CD = AD \cdot \tan \angle CAD = 8 \times \frac{3}{4} = 6,$
 - $\therefore AC = \sqrt{AD^2 + CD^2} = \sqrt{8^2 + 6^2} = 10,$
 - $\therefore \angle D = \angle ACB = 90^{\circ}, \angle ACD = \angle ABC,$
 - $\therefore \triangle ADC \backsim \triangle ACB, \therefore \frac{AD}{AC} = \frac{AC}{AB}, \therefore \frac{8}{10} = \frac{10}{AB}$
 - ∴ $AB = \frac{25}{2}$,∴ $\odot O$ 的直径 AB 的长为 $\frac{25}{2}$.

周末检测(十七)

(综合训练)

- 1. C 2. D 3. D 4. C 5. B
- 6. $x \neq 3$ 7. 1 8. 88 9. 50 10. $\frac{2}{3}\pi$
- 11. 解:去分母,得8-(x+2)=2x,
 - 去括号,得8-x-2=2x,
- 移项,得-x-2x=-8+2合并同类项,得-3x=6系数化为1,得x=2,
- 检验:当 x = 2 时,2x≠0,∴ x = 2
- 12. 解:(1)如图,射线 AD 即为所作.
- (2)2.6 cm 13. 解:(1)30% 16%
- 补全直方图略(70~80的频数为15).
- (2)95 94
- (3)估计该校学生对团史知识掌握程度达到优秀的人数为
- 1 200×16% = 192(人).
- (4) 画树状图如下:

共有12种等可能情况,其中被抽取的2人恰好是女生的有6 种结果,

所以恰好抽中 2 名女生参加知识竞赛的概率为 $\frac{6}{12} = \frac{1}{2}$.

