

Deep Learning

Lecture 8: Deep Learning Architectures (Part I)

University of Agder, Kristiansand, Norway

Prepared by: Hadi Ghauch*, Hossein S. Ghadikolaei[†]

* Telecom ParisTech

 † Royal Institute of Technology, KTH

https://sites.google.com/view/fundl/home

April 2019

Outline

1. Recurrent Neural Networks

2. Long Short Term Memory Networks

Recap: Deep Neural Networks (DNNs)

Multi-layer Percepteron:

- Output from some perceptrons are used in the inputs to other perceptrons

Feedforward Deep Neural Network (DNN):

- Multi-layer Percepteron with 'many' hidden layers
- Only forward connections: from input to hidden layer or output

Recap: Deep Neural Networks (DNNs)

DNN with J-layers: cascade of J filters + activation

In compact form: $oldsymbol{z}_j = oldsymbol{\sigma}_j (oldsymbol{W}_j oldsymbol{z}_{j-1} + oldsymbol{b}_j)$

 $\boldsymbol{z}_{j} \in \mathbb{R}^{d_{j}}$: output to layer j

 $oldsymbol{W}_j \in \mathbb{R}^{d_j imes d_{j-1}}$: Weights for layer j (drop bias for simplicity)

 $\sigma_i: \mathbb{R}^{d_j} \mapsto \mathbb{R}^{d_j}$: Activation func for layer j

Outline

1. Recurrent Neural Networks

2. Long Short Term Memory Networks

Motivation and Setting

Feedforward NNs assume input/output have **fixed dimension**: e.g. image classification, regression

assume samples of training set are i.i.d.

these assumptions restrictive when dealing with sequential data

Feedforward NN ill-equipped when **data is sequential**: temporal/causal dependence in data: e.g., classifying frames of a movie, or words in sentence knowing previous samples critical to predict next sample

Recurrent NNs: family of NNs designed to learn sequential data

training set **time-dependent samples** (not i.i.d.): $\{(x_t, y_t)\}_{t=1}^T$ sample (x_t, y_t) depends on previous ones

classifying images/frames of a movie: time index t is frame number consecutive frames correlated (i.i.d. assumption does not hold)

learning such relation critical to classify other frames

Intuition: Share parameters from different parts of model enables learning sequences not seen in training and improve generalization

Recurrent NNs implement parameter sharing by design: each output depends on previous outputs

Recurrent NN

Motivation: dynamical system, $s_t = g(s_{t-1}, x_t)$, x_t external input states are recursively generated by g()

Goal: Use recurrent NN learn states of dynamical system

not suitable for feedforward NNs

Recurrent NNs: designed specifically to learn states in a recursive setting similar to feed-forward NNs used to learn non-recursive func

several designs used. start with **plain recurrent NNs**: $h_t = g(h_{t-1}, x_t)$ set state the dynamical system equal to hidden unit, h_t

Model system by unfolding the states: start with unfolded model

Simple **toy architecture**. Next, move more realistic architecture.

Prevalent design Recurrent NNs

So far no learning: now lets add some parameters to learn

Single input single output at each time: at time t, one input-output pair (x_t,y_t) . Goal: Learn a same set parameters/weights, V,W,U, that approximates all samples, $\{x_t,y_t\}_{t=1}^T$ parameters/weights shared across all samples: notion of parameter sharing

Mathematical Model of Recurrent NNs

Model for sample t:

```
oldsymbol{x}_t \in \mathbb{R}^n: Input vector at time t oldsymbol{h}_t \in \mathbb{R}^n: Hidden layer/unit at time t
```

Inputs for h_t :

linear combination of prev hidden layer: $m{W}m{h}_t$, where $m{W} \in \mathbb{R}^{n imes n}$

linear combination of input: Ux_t , where $U \in \mathbb{R}^{n \times n}$

what happens in h_t ? sum them apply non-linear activation: $\psi(Wh_{t-1}+Ux_t)$

 $\psi:\mathbb{R}^n\mapsto\mathbb{R}^n$: vector-valued vector func (applied element-wise)

Output for h_t :

linearly combine output of $m{h}_t$: $m{V}m{h}_t$, where $m{V} \in \mathbb{R}^{n imes n}$

then apply non-linear activation: $\phi(Vh_t)$

 $\phi: \mathbb{R}^n \mapsto \mathbb{R}^n$: vector-valued vector func (applied element-wise)

 $\hat{m{y}}_t \in \mathbb{R}^n$: predicted output vector (by RNN) at time t

 $oldsymbol{y}_t \in \mathbb{R}^n$: true output vector at time t

 $\{x_t, y_t\}_{t=1}^T$: training set of T samples (recall the time index t) assume all dimensions are same (= n) for simplicity

Goal: Learn RNN parameters, W, V, U to minimize the loss b/w predicted output by RNN, \hat{y}_t , and true output, y_t

Plain Recurrent NNs (folded form)

snapshot of input-output at time t Source: Trivedi, Kodor, 2017

Plain Recurrent NNs (folded form):

 $oldsymbol{\phi}()$, $oldsymbol{\psi}()$: vector-valued vector function (non-linear activation)

 $oldsymbol{U}$, $oldsymbol{W}$, $oldsymbol{V}$: weight matrices of appropriate size DL Architectures

Plain Recurrent NNs (unfolded form)

Previous Recurrent NN in unfolded form

snapshot of input-output relation at time t=1

Plain Recurrent NNs (unfolded form)

Previous Recurrent NN in unfolded form

snapshot of input-output relation at time $t=2\,$

Plain Recurrent NNs (unfolded form)

Parameters (weights) the same or all time samples (weights indep of t): learn set of **parameters (weights) shared for all time samples** By learning W, U, V uncover time-dependence/correlation among **time-dependent samples** of training set

Training Recurrent NN

Express mathematically input-output relation at time t:

```
m{a}_t = m{W} m{h}_{t-1} + m{U} m{x}_t + b: linearly combine m{x}_t and m{h}_{t-1} m{h}_t = m{\psi}(m{a}_t): apply non-linearity at input of hidden layer m{o}_t = m{V} m{h}_t + c: linearly combine output of hidden layer \hat{m{y}}_t = m{\phi}(m{o}_t): apply non-linearity just before output
```

 \hat{y}_t is prediction that RNN outputs for sample x_t (drop b, c wlog):

$$\hat{m{y}}_t := m{\phi} [\ m{V} m{\psi} (m{W} m{h}_{t-1} + m{U} m{x}_t) \]$$

Training Recurrent NN

Training Recurrent NNs:

Loss for sample t: $f_t(y_t, \hat{y}_t)$ (diff b/w true and predicted value) **negative log-likelihood** loss is a common choice total loss function, f is sum of individual losses: $f := \sum_t f_t$

Empirical risk minimization:

$$\underset{\boldsymbol{U},\boldsymbol{W},\boldsymbol{V}}{\operatorname{arg\,min}} \sum_{t=1}^{T} f_{t} \left(\underbrace{\boldsymbol{y}_{t}}_{\text{true}}, \underbrace{\boldsymbol{\phi}[\; \boldsymbol{V}\boldsymbol{\psi}(\boldsymbol{W}\boldsymbol{h}_{t-1} + \boldsymbol{U}\boldsymbol{x}_{t})\;]}_{\text{RNN prediction}} \right) := f \tag{1}$$

How to optimize U, W, V?

Compute $\nabla_{W} f$, $\nabla_{U} f$, $\nabla_{V} f$ using same 'tricks' as backpropagation called **backpropagation trough time (BPTT)** for RNN training

BPTT

1. gradient of V:

$$\nabla_{\boldsymbol{V}} f = \sum_{t} (\nabla_{\boldsymbol{o}_{t}} f) (\boldsymbol{h}_{t})^{T}$$

2. gradient of W:

$$abla_{W}f = \sum_{t} [\; \mathsf{diag}(\mathbf{1} - oldsymbol{h}_{t} \circ oldsymbol{h}_{t}) \; oldsymbol{\left(
abla_{oldsymbol{h}_{t}} f
ight)} \; oldsymbol{\left(oldsymbol{h}_{t-1}
ight)^{T}} \;]$$

$$(\nabla_{\boldsymbol{h_t}} f) = \begin{cases} (\boldsymbol{V})^T (\nabla_{\boldsymbol{o_t}} f), & \text{for } t = T \\ (\boldsymbol{W})^T \ \text{diag} (\boldsymbol{1} - \boldsymbol{h_{t+1}} \circ \boldsymbol{h_{t+1}}) (\nabla_{\boldsymbol{h_{t+1}}} f) + (\boldsymbol{V})^T (\nabla_{\boldsymbol{o_t}} f), & \text{for } t < T \end{cases}$$

 $(\nabla_{h_t} f)$ depends on $(\nabla_{h_{t+1}} f)$:

start hidden layers with largest index, $m{h}_T$, and work backwards (like BackProp)

3. gradient of $m{U}$:

$$\nabla_{U} f = \sum_{t} [\ \mathsf{diag} (\mathbf{1} - \boldsymbol{h}_{t} \circ \boldsymbol{h}_{t}) (\nabla_{\boldsymbol{h}_{t}} f) (\boldsymbol{x}_{t})^{T}$$

see [Goodfellow, 2016], Chap 10, for detailed derivations of BPTT.

BPTT

Source: Trivedi, Kodor, 2017

BPTT= BP in the unrolled RNN

sample (x_5, \hat{y}_5) : compute $\nabla_{\boldsymbol{V}} f$, then $\nabla_{\boldsymbol{W}} f$, then $\nabla_{\boldsymbol{U}} f$ sample (x_4, \hat{y}_4) : compute $\nabla_{\boldsymbol{V}} f$, then $\nabla_{\boldsymbol{W}} f$, then $\nabla_{\boldsymbol{U}} f$ sample (x_3, \hat{y}_3) : compute $\nabla_{\boldsymbol{V}} f$, then $\nabla_{\boldsymbol{W}} f$, then $\nabla_{\boldsymbol{U}} f$

Some variants on Plain Recurrent NN:

- many inputs (x_t) , single output (y_t) . Used in sentiment analysis
- **bidirectional Recurrent NNs**: plain RNNs capture time-dependence in chronological order: $h_1, ..., h_t$. Bidirectional RNNs also capable of capturing reverse chronological order: $g_t, ..., g_1$.
 - widely applied in handwriting and speech recognition, bioinformatics
- **Encoder-decoder Recurrent NN:** designed to handle input and output sequences that have different lengths.
 - widely used in language translation (e.g., one sentence may have different number of words in different languages)
- **Deep Recurrent NN:** more hidden layers between input and output depth increase approximation capacity (but make optimization harder)
- **Deep Recursive NN:** computational graph is a tree used for Natural Language processing and computer vision

Outline

1. Recurrent Neural Networks

2. Long Short Term Memory Networks

Practical Problems for Deep RNNs:

Challenges for learning long term dependencies:

many layers (matrix multiplications) needed to capture long-term dependence i.e., deep RNNs needed

challenge for deep RNNs: output becomes too small after multiplication with many matrices

illustrate with a simple RNN (w/out nonlinearity), $oldsymbol{W} \in \mathbb{R}^{n imes n}$

$$oldsymbol{h}_t = oldsymbol{W} oldsymbol{h}_{t-1} \Rightarrow oldsymbol{h}_T = oldsymbol{W} oldsymbol{W} ... oldsymbol{W}}{oldsymbol{h}_1 ext{ times}} oldsymbol{h}_1 = oldsymbol{W}^T oldsymbol{h}_1 \Rightarrow \|oldsymbol{h}_T\|_2 \leq oldsymbol{(\lambda_{ ext{max}}[oldsymbol{W}])^T} \|oldsymbol{h}_1\|_2$$

if
$$\lambda_{\max}[oldsymbol{W}]$$
 $< 1 \Rightarrow \|oldsymbol{h}_T\|_2 o 0$, $T o \infty$

output, h_T , becomes too small, so does it gradient vanishing gradient

depends on spectral radius of $oldsymbol{W}$

problem peculiar to RNNs (due to loops b/w input and output)

some fixes to vanishing gradient: skip connections, leaky hidden units, echo state networks; see [Goodfellow, 2016], Chap 10

Exploding gradient: $\lambda_{\min}[W] > 1 \Rightarrow ||h_T||_2 \to \infty, T \to \infty$

output, h_T , blows up: so does the gradient of h_T (rarely occurs)

Long Short Term Memory (LSTM):

Long Short Term Memory (LSTM) Networks:

among most efficient implementations of RNNs alleviate vanishing grad: add more paths in NN where gradient well defined

Idea: additional loops in NN where gradient does not vanish

basic unit of LSTM is a memory cell (shaded green). Let us zoom-in to understand it

Build LSTM gradually step by step.

 $\tilde{\boldsymbol{c}}_t = \tanh(\boldsymbol{W}\boldsymbol{h}_{t-1} + \boldsymbol{U}\boldsymbol{x}_t)$

 $\tanh()$: non-linear activation (element-by-element func)

 $ilde{c}_t$: output of non-linear activation (tanh)

 $oldsymbol{U}, oldsymbol{V}$: matrices of appropriate size

snapshot of input-output at time t source: Trivedi, Kodor, 2017

so far it looks like first layer of a plain RNN

$$egin{aligned} ilde{oldsymbol{c}}_t &= anh(oldsymbol{W}oldsymbol{h}_{t-1} + oldsymbol{U}oldsymbol{x}_t) \ extbf{\emph{c}}_t &= oldsymbol{c}_{t-1} + ilde{oldsymbol{c}}_t \end{aligned}$$

snapshot of input-output at time t source: Trivedi, Kodor, 2017

 $ilde{c}_t$: output of non-linear activation (tanh)

 c_t : running sum of output of non-linear activation, over t sum increases with t and may blow-up. how to prevent it?

scale down previous output $oldsymbol{c}_{t-1}$: forget gate

$$egin{aligned} ilde{oldsymbol{c}}_t &= anh(oldsymbol{W}oldsymbol{h}_{t-1} + oldsymbol{U}oldsymbol{x}_t) \ oldsymbol{c}_t &= oldsymbol{f}_t \circ oldsymbol{c}_{t-1} + oldsymbol{ ilde{c}}_t \ oldsymbol{f}_t &= oldsymbol{\sigma}_f(oldsymbol{W}_foldsymbol{h}_{t-1} + oldsymbol{U}_foldsymbol{x}_t) \end{aligned}$$

 $oldsymbol{W}_f, oldsymbol{U}_f$: weight matrices

snapshot of input-output at time t source: Trivedi, Kodor, 2017

LSTM with forget gate:

multiply (element by element) previous output $m{c}_{t-1}$, by forget factor $m{f}_t$: less importance on previous samples

 $oldsymbol{W}_f, oldsymbol{U}_f$: two additional weights to be learned

snapshot of input-output at time t source: Trivedi, Kodor, 2017

fully-fledged LSTM

$$egin{aligned} ilde{oldsymbol{c}}_t &= anh(oldsymbol{W}oldsymbol{h}_{t-1} + oldsymbol{U}oldsymbol{x}_t) \ oldsymbol{c}_t &= oldsymbol{f}_t \circ oldsymbol{c}_{t-1} + oldsymbol{ ilde{c}}_t \circ oldsymbol{i}_t \ oldsymbol{f}_t &= oldsymbol{\sigma}_f(oldsymbol{W}_foldsymbol{h}_{t-1} + oldsymbol{U}_foldsymbol{x}_t) \end{aligned}$$

Define input/output gates:

$$egin{aligned} oldsymbol{i}_t &= oldsymbol{\sigma}_i(oldsymbol{W}_ioldsymbol{h}_{t-1} + oldsymbol{U}_ioldsymbol{x}_t) \ oldsymbol{o}_t &= oldsymbol{\sigma}_o(oldsymbol{W}_ooldsymbol{h}_{t-1} + oldsymbol{U}_ooldsymbol{x}_t) \ oldsymbol{h}_t &= oldsymbol{o}_t \circ anh(oldsymbol{c}_t) \end{aligned}$$

 $oldsymbol{W}_i, oldsymbol{U}_i, oldsymbol{W}_o, oldsymbol{U}_o$: weight matrices

Unpacking the fully fledged LSTM:

Information added/deleted from cell via input, forget or output gates each gate modeled by two matrices W_x, U_x $(x=\{o,i,f\})$, that are learned from training

```
 \begin{array}{ll} \textbf{Cell state:} & c_t = f_t \circ c_{t-1} + \tilde{c}_t \circ \pmb{i_t} \\ & \text{think of } c_t \text{ as state of the cell} \\ & \text{updated as func of info to be deleted } (f_t), \text{ and to be added } (\pmb{i_t}) \\ \end{array}
```

Forget gate: $oldsymbol{f}_t = oldsymbol{\sigma}_f(oldsymbol{W}_foldsymbol{h}_{t-1} + oldsymbol{U}_foldsymbol{x}_t)$

 f_t multiplies previous output, c_{t-1} , to reduce importance of previous samples by learning W_f, U_f LSTM throw away some unnecessary information

Input gate: $i_t = \sigma_i(W_i h_{t-1} + U_i x_t)$ what information from input to store in cell ? by multiplying output of non-linearity, \tilde{c}_t

intuition: learning $oldsymbol{W}_i, oldsymbol{U}_i$ LSTM decides what information to add to cell (store)

```
Output gate: o_t = \sigma_o(W_o h_{t-1} + U_o x_t) pass a "filtered version" of output (same intuition as input) intuition: learning W_o, U_o LSTM decides what information to pass to output
```

Update cell state: $c_t = f_t \circ c_{t-1} + \tilde{c}_t \circ i_t$ update state taking into account forget gate f_t , and input i_t

Related issues LSTM:

Training LSTM: similar to Recurrent NNs in addition to learning W, U for Recurrent NNs for LSTM the weight matrices, $W_i, U_i, W_o, U_o, W_f, U_f$, also learned. BPTT may still be used (derivations more complex)

Gated Recurrent Unit: is a related implementation of LSTM see [Goodfellow, 2016], Chapter 10

Conclusions

Several DL architectures

- Recurrent NNs: motivated by learning sequential data math model of plain recurrent NN, training with BPTT, some variants challenge of long term dependencies
- LSTM: practical solution to bypass challenge of long term dependencies solution to vanishing gradient discussed math model for LSTM, role of gates: input, output, forget

Some references

- J. Wu, "Introduction to convolutional neural networks", May 1, 2017, available on arxiv
- A. Goodfellow, Y. Bendgio, A Courville, "Deep Learning", MIT Press, Chap. 8, 9
- Y. LeCun, L Bottou, G. Orr, K-B Muller, "Efficient Backprop", Neural Networks: Tricks of the trade
- S. Trivedi, R. Kondor, CMSC 35246 Deep Learning, Spring 2017
- C. M. Bishop, "Pattern Recognition and Machine Learning", Springer-Verlag, 2006
- S. Haykin, "Neural Networks and Learning Machines", 3rd, 2009, Chap 4

Check Tutorial by Ruslan Salakhutdinov: http://www.cs.cmu.edu/~rsalakhu/

Deep Learning

Lecture 8: Deep Learning Architectures (Part I)

University of Agder, Kristiansand, Norway

Prepared by: Hadi Ghauch*, Hossein S. Ghadikolaei[†]

* Telecom ParisTech

 † Royal Institute of Technology, KTH

https://sites.google.com/view/fundl/home

April 2019