MAT1400B - H24 : Calcul 1

Professeur: Xuan Kien Phung

Université de Montréal

- Quelques rappels révision
- 2 Convergence absolue et convergence simple
- Test du rapport
- Oritère de Cauchy
- **5** Stratégies pour tester la convergence d'une série

- Quelques rappels révision
- 2 Convergence absolue et convergence simple
- Test du rapport
- Oritère de Cauchy
- Stratégies pour tester la convergence d'une série

Rappel

Pour des suites et des séries, un nombre fini de termes n'influe pas sur la convergence/divergence. Ainsi, pour $N \in \mathbb{N}^*$ quelconque, on a :

- $\{a_n\}_{n\geq 1}$ converge $\iff \{a_n\}_{n\geq N}$ converge.
- $\sum_{n=1}^{\infty} a_n$ converge $\iff \sum_{n=N}^{\infty} a_n$ converge.

Soit $\sum_{n=1}^{\infty} a_n$ une série et soit $s_n = \sum_{k=1}^{n} a_k$.

Question

Vrai ou faux : $\sum_{n=1}^{\infty} a_n = s \in \mathbb{R}$ si pour tout $\varepsilon > 0$, il existe N > 0 tel que pour tout n > N, on a $|s - s_n| < \varepsilon$?

Question

Étant donné $\{s_n\}$, on a $a_n =$

(a)
$$s_{n+2} - s_{n+1}$$
 (b) $s_{n+1} - s_n$ (c) $s_n - s_{n-1}$?

Question

Vrai ou faux : si $\sum a_n$ est une série à termes positifs, alors $\{s_n\}$ est une suite croissante.

Question

Est-ce que la série $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converge ?

Question

En admettant que $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, calculer π^2 à 0.001 près.

⇒ c'est une série à termes positifs, on peut appliquer l'estimation du reste pour le test de l'intégrale. Soit

- $s_m = \sum_{n=1}^m \frac{1}{n^2}$ et $R_m = \frac{\pi^2}{6} s_m > 0$,
- $f(x) = \frac{1}{x^2}$ continue, positive, décroissante sur $[1, \infty[$.

• On a pour tout $m \ge 1$:

$$R_m \le \int_m^\infty f(x) dx = \int_m^\infty \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_m^\infty = \frac{1}{m}.$$

Par conséquent,

$$|\pi^2 - 6s_m| = 6|\frac{\pi^2}{6} - s_m| = 6R_m < \frac{1}{m}$$

- Pour que $6R_m < 0.001$, il suffit de prendre m tel que $\frac{6}{m} < 0.001$, c-à-d, $m > \frac{6}{0.001} = 6000 \Longrightarrow$ on choisit m = 6001.
- Donc $6s_{6001} \simeq 9.8686$ est une approximation voulue.

Exemples

Question

Étudier la convergence de la série $\sum \sin\left(\frac{1}{n}\right)$.

Indication: comparer avec $\sum \frac{1}{n}$.

On a sin $\left(\frac{1}{n}\right) > 0$ pour tout $n \ge 1$ (car $0 < \frac{1}{n} \le 1 < \pi$) et avec $x = \frac{1}{n} \to 0^+$:

$$\lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = \lim_{x \to 0^+} \frac{(x)}{x} = \lim_{x \to 0^+} \frac{(\sin x)'}{x'}$$
$$= \lim_{x \to 0^+} \frac{\cos x}{1} = \cos 0 = 1 > 0.$$

Comme $\sum \left(\frac{1}{n}\right)$ diverge, la forme limite du test de comparaison dit que $\sum \sin\left(\frac{1}{n}\right)$ diverge.

- Quelques rappels révision
- 2 Convergence absolue et convergence simple
- Test du rapport
- Oritère de Cauchy
- Stratégies pour tester la convergence d'une série

Convergence absolue

Définition

Une série $\sum a_n$ est dite **absolument convergente** si la série des valeurs absolues $\sum |a_n|$ converge.

Exemple

• $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ et $\sum_{n=1}^{\infty} \frac{(-1)^{n^{2023}+n^9+n^7}}{n^2}$ convergent absolument.

Définition

Une série est **simplement convergente** ou **semi-convergente** si elle est convergente, mais pas absolument convergente.

Exemple

• $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converge mais $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge (pourquoi ?).

Propriétés

Théorème

Si une suite est absolument convergente, alors elle est convergente. Autrement dit,

 $convergence \ absolue \implies convergence.$

Preuve.
$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|$$
 converge :

- la deuxième série converge par hypothèse
- la première converge par le théorème du sandwich car $0 \le a_n + |a_n| \le 2|a_n|$ et $\sum 2|a_n| = 2\sum |a_n|$.

Application

Question

Étudier la convergence de la série $\sum \frac{\sin(\frac{n\pi}{4})}{n^2}$.

⇒ le test pour les séries alternées ne s'applique pas directement.

• Soit $a_n = \frac{\sin(\frac{n\pi}{4})}{n^2}$. Comme $|\sin(\frac{n\pi}{4})| \le 1$, on a

$$|a_n|\leq \frac{1}{n^2}.$$

- Comme $\sum \frac{1}{n^2} = \sum \frac{1}{n^2}$ converge (série de Riemann avec p = 2 > 1), on déduit que $\sum |a_n|$ converge (test de comparaison).
- Ainsi, $\sum a_n$ converge absolument donc converge.

Question

Montrer que la série $\sum \frac{\sin(\frac{n\pi}{4})}{n}$ converge.

Indication: Rédiger

$$\sum_{n=1}^{\infty} \frac{\sin\left(\frac{n\pi}{4}\right)}{n} = \frac{\sqrt{2}}{2} \left(\sum_{k=0}^{\infty} \frac{1}{8k+1} + \frac{1}{8k+3} - \frac{1}{8k+5} - \frac{1}{8k+7} \right)$$

$$+ \sum_{k=0}^{\infty} \left(\frac{1}{8k+2} - \frac{1}{8k+6} \right)$$

$$= \frac{\sqrt{2}}{2} \left(\sum_{k=0}^{\infty} \frac{4}{(8k+1)(8k+5)} + \frac{4}{(8k+3)(8k+7)} \right)$$

$$+ \sum_{k=0}^{\infty} \frac{4}{(8k+2)(8k+6)}.$$

Question

Est-ce que

convergence ⇒ convergence absolue?

 \implies NON.

Contre-exemples : Les séries simplement convergentes sont convergentes mais pas absolument convergentes :

- la série harmonique alternée $\sum \frac{(-1)^n}{n}$ est simplement convergente : elle converge par le test de convergence pour les séries alternées et $\sum \frac{1}{n}$ est la série harmonique donc diverge.
- la série $\sum \frac{(-1)^n \ln n}{n}$ est simplement convergente.

- Quelques rappels révisior
- 2 Convergence absolue et convergence simple
- 3 Test du rapport
- 4 Critère de Cauchy
- Stratégies pour tester la convergence d'une série

Test du rapport

Jean Le Rond d'Alembert

Portrait par Quentin de La Tour (1753).

Test du rapport

- Aussi appelé test de d'Alembert ou test du rapport de Cauchy
 - ⇒ spécialisation du test de comparaison
 - ⇒ on compare notre série des valeurs absolues avec une série géomtérique bien choisie.
- Utile quand $\frac{a_{n+1}}{a_n}$ est facile à calculer, e.g., la série contient des factorielles ou d'autres produits comme c^n .

Test du rapport

Théorème

Soit
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L.$$

- Si L > 1 ou L = ∞ alors $\sum_{n=1}^{\infty} a_n$ diverge.
- Si L < 1 alors $\sum_{n=1}^{\infty} a_n$ converge absolument.
- Si L = 1 alors on ne peut rien conclure avec ce test.

Preuve

Supposons que L < 1. Soit r ∈ R tel que L < r < 1. Donc, il existe N ∈ N* tel que pour tout n ≥ N on a

$$\left|\frac{a_{n+1}}{a_n}\right| < r.$$

• Donc $|a_{n+1}| < r|a_n|$ si $n \ge N$. Par induction sur $k \ge 0$:

$$|a_{N+k}| \le r|a_{N+k-1}| \le r^2|a_{N+k-2}| \le \cdots \le r^k|a_N|.$$

- Comme $\sum_{k=0}^{\infty} |a_N| r^k$ converge (0 < r < 1), $\sum_{n=N}^{\infty} |a_n|$ converge par le test de comparaison.
- Donc la série $\sum_{n=1}^{\infty} |a_n|$ converge.

• De même, si L > 1, on fixe r tel que L > r > 1. Il existe $N \in \mathbb{N}^*$ tel que $a_N \neq 0$ et pour tout $n \geq N$:

$$\left|\frac{a_{n+1}}{a_n}\right| > r$$

et donc $|a_{N+k}| \ge r^k |a_N|$ pour tout $k \ge 0$ par induction.

• Comme r > 1 et $a_N \neq 0$, $|a_N| \lim_{n \to \infty} r^k = \infty$. Ainsi, $\lim_{k \to \infty} |a_{N+k}| = \infty$ (théorème du sandwich). Donc $\lim_{n \to \infty} |a_n| = \infty \neq 0$ et $\lim_{n \to \infty} a_n \neq 0$.

 $\Longrightarrow \sum a_n$ diverge par le critère de divergence.

Application

Question

Étudier la convergence/divergence de la série $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ en utilisant le test du rapport.

Question

Étudier la convergence de la série $\sum \sin\left(\frac{1}{n}\right)$. Indication : comparer avec $\sum \frac{1}{n}$.

• Soit $a_n = \frac{n!}{n^n} > 0 \rightarrow 0$ quand $n \rightarrow \infty$. On a :

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = \lim_{n \to \infty} \left(\frac{1}{1 + \frac{1}{n}}\right)^n$$
$$= \frac{1}{\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} < 1.$$

 $\Longrightarrow \sum_{n=1}^{\infty} \frac{n!}{n^n}$ converge par le test du rapport.

• $\sin\left(\frac{1}{n}\right) > 0$ pour tout $n \ge 1$ car $0 < \frac{1}{n} \le 1 < \pi$. Soit $x = \frac{1}{n} \to 0^+$,

$$\lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = \lim_{x \to 0^+} \frac{(x)}{x} = \lim_{x \to 0^+} \frac{(\sin x)'}{x'} = \lim_{x \to 0^+} \frac{\cos x}{1} = \cos 0 = 1.$$

Comme $\sum \left(\frac{1}{n}\right)$ est divergente, $\sum \sin\left(\frac{1}{n}\right)$ l'est aussi par le test de comparaison (forme limite).

Exemples

Question

Montrer que la série (Ramanujan, 1910)

$$\sum_{n=0}^{\infty} \frac{(4n)!(1103 + 26390n)}{(n!)^4 396^{4n}}$$

converge. Quel test de convergence à utiliser ?

• Soit $a_n = \frac{(4n)!(1103+26390n)}{(n!)^4396^{4n}} > 0$. On a:

$$\begin{split} \frac{a_{n+1}}{a_n} &= \frac{(4n+4)!(27493+26390n)}{((n+1)!)^4 396^{4n+4}} \frac{(n!)^4 396^{4n}}{(4n)!(1103+26390n)} \\ &= \frac{(4n+1)(4n+2)(4n+3)(4n+4)(27493+26390n)}{396^4(n+1)^4(1103+26390n)} \\ &\to \left(\frac{4}{396}\right)^4 < 1 \quad \text{quand } n \to \infty. \end{split}$$

Donc, le test du rapport implique que la série converge.

- 1 Quelques rappels révision
- 2 Convergence absolue et convergence simple
- 3 Test du rapport
- 4 Critère de Cauchy
- Stratégies pour tester la convergence d'une série

Critère de convergence de Cauchy

Cauchy around 1840. Lithography by Zéphirin Belliard after a painting by Jean Roller.

Criètre de convergence de Cauchy

- On compare $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ avec 1.
- aussi appelé "Root test" en anglais :
 - ⇒ spécialisation du test de comparaison où on compare notre série avec une série géométrique
- utile quand $\sqrt[n]{|a_n|}$ est facile à calculer, e.g., si a_n est de la forme $(b_n)^n$, etc.
- On verra plus tard que pour déterminer le rayon de convergence des séries entières, on utilise notamment :
 - le test du rapport
 - le critère de Cauchy.

Critère de Cauchy

Théorème

- Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ ou $L = \infty$ alors $\sum a_n$ diverge.
- Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$ alors $\sum a_n$ converge absolument.
- Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L = 1$, on ne peut rien conclure avec ce test.

Preuve : cas L < 1

• Soit $r \in \mathbb{R}$ tel que L < r < 1. Donc, il existe $N \in \mathbb{N}^*$ tel que $\sqrt[n]{|a_n|} < r$, c-à-d , $|a_n| < r^n$ pour tout $n \ge N$.

• Comme $\sum_{k=0} r^k$ converge (0 < r < 1), la série $\sum_{n=1}^{\infty} |a_n|$ convergent par le **test de comparaison**.

Preuve : cas L > 1

• Fixe r tel que L > r > 1. Il existe $N \in \mathbb{N}^*$ tel que

$$\sqrt[n]{|a_n|} > r$$
, c-à-d, $|a_n| > r^n$ pour tout $n \ge N$.

- Donc $\lim_{n\to\infty} |a_n| = \infty \neq 0$.
 - $\Longrightarrow \sum a_n$ diverge par le **critère de divergence**.

Question

Déterminer si la série $\sum_{n=1}^{\infty} \left(\frac{1-n}{2+3n}\right)^n$ est convergente ou absolument convergente.

 \implies Soit $a_n = \left(\frac{1-n}{2+3n}\right)^n$. On voit que a_n contient une puissance n-ième. On a :

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n-1}{2+3n}\right)^n} = \lim_{n \to \infty} \frac{n-1}{2+3n} = \frac{1}{3} < 1.$$

Ainsi, le **critère de Cauchy** nous dit que $\sum_{n=1}^{\infty} \left(\frac{1-n}{2+3n}\right)^n$ est **absolument convergente** donc **convergente**.

Les réarrangements (hors programme)

- Un **réarrangement** d'une série infinie $\sum_{n=1}^{\infty} a_n$ est une série obtenue en changeant l'ordre des termes a_n .
- Ainsi, tout réarrangement de $\sum_{n=1}^{\infty} a_n$ est de la forme $\sum_{n=1}^{\infty} a_{\sigma(n)}$ où $\sigma \colon \mathbb{N}^* \to \mathbb{N}^*$ est une bijection.

 \Longrightarrow la suite des sommes partielles d'un arrangement ne peut être plus la même !

⇒ un réarrangement peut diverger alors que la série originale converge et vice versa.

Exemple

- $1 \frac{1}{2} + \frac{1}{3} \dots$ converge et on verra que sa somme est ln 2.
- Donc $0 + \frac{1}{2} + 0 \frac{1}{4} + 0 + \frac{1}{6} + 0 \dots = \frac{1}{2} \ln 2$ (pourquoi ?). Ainsi,

$$(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots) + (0 + \frac{1}{2} + 0 - \frac{1}{4} + 0 + \frac{1}{6} + 0 - \dots) = \frac{3}{2} \ln 2$$

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots = \frac{3}{2} \ln 2$$
 (sommation terme-à-terme)

Or,

$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots$$

est un réarrangement de $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \ln 2$.

Les réarrangements

Théorème

Si $\sum_{n=1}^{\infty} a_n$ est une **série absolument convergente** dont la somme est s, alors tout réarrangement de $\sum_{n=1}^{\infty} a_n$ admet la **même somme s**.

Preuve. n'est pas à étudier.

Théorème

Soit $r \in \mathbb{R}$ et soit $\sum_{n=1}^{\infty} a_n$ une **série simplement convergente**. Alors il existe un réarrangement de $\sum_{n=1}^{\infty} a_n$ dont la somme est égale à r.

 \implies si vous suivez **MAT1720**, ces deux théorèmes expliquent pourquoi on demande $E[|X|] < \infty$ dans la définition de l'espérance E[X] d'une variable aléatoire X.

- Quelques rappels révision
- 2 Convergence absolue et convergence simple
- 3 Test du rapport
- 4 Critère de Cauchy
- 5 Stratégies pour tester la convergence d'une série

Rappels : séries et limites importantes

On maîtrise bien la convergence/divergence des séries suivantes :

- Séries géométriques $\sum ar^n$, $\sum ar^{n-1}$, etc.
- Séries de Riemann $\sum \frac{1}{n^p}$.

De plus, on a déjà étudié la limite des rapports des suites suivantes et leurs variants :

• $\{n^k\}$ (k fixé); $\{\ln n\}$, $\{e^n\}$, $\{n^n\}$, $\{n!\}$

On a vu également :

$$\lim_{n\to\infty} \sqrt[q]{n} = 1, \quad \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e$$

En particulier, $\lim_{n\to\infty} \sqrt[n]{a} = 1$ (a > 0 fixé), etc.

À RETENIR : tests/critères disponibles

Attention : critère = condition suffisante pour conclure une propriété.

- **1** Critère de divergence : $\lim_{n\to\infty} a_n \neq 0 \Longrightarrow \sum a_n$ diverge.
- Série quelconque ⇒ test du rapport, test de Cauchy.
- Série à termes positifs ⇒ tests de comparaison, test de l'intégrale.
- Série alternée
 → test pour les séries alternées.
- **6 Convergence absolue** \Longrightarrow convergence : si $\sum |a_n|$ converge, alors $\sum a_n$ converge.
 - Donc on peut penser à (3) en étudiant $\sum |a_n|$.
- 6 Estimation du reste ⇒ test de l'intégrale, test pour les suites alternées.

Question

Mais quelle règle appliquer à une série donnée ?

- ⇒ pas de protocol définitif mais quelques conseils :
 - Si la série est semblable à celle d'une série de Riemann/série géométrique, e.g., a_n est une fraction rationnelle/fonction algébrique (avec racines), etc.

⇒ test de comparaison

- Si $\frac{a_{n+1}}{a_n}$ est facile à calculer, e.g., la série contient des factorielles ou d'autres produits comme c^n , etc.
 - ⇒ test du rapport
- Si $\sqrt[n]{|a_n|}$ est facile à calculer, e.g., si a_n est de la forme $(b_n)^n$, etc. \implies critère de Cauchy.
- Si $a_n = f(n)$ et $\int_1^\infty f(x) dx$ est facile à calculer \Longrightarrow test de l'intégrale.

Exemples

Étudier la convergence des séries suivantes :

- $\sum \sin\left(\frac{\pi}{2} + \frac{1}{n}\right)$
- $\sum \left(2n^2 + \frac{1}{n^2}\right)$
- $\sum \frac{3n+1}{n+2}$
- $\sum \frac{3n+1}{\sqrt{2n^2+3}}$

- $\sum \frac{n!}{n^n}$

- $\sum \sin\left(\frac{\pi}{2} + \frac{1}{n}\right)$ diverge : critère de divergence
- $\sum \left(2n^2 + \frac{1}{n^2}\right)$ diverge : critère de divergence
- $\sum \frac{3n+1}{n+2}$ diverge : critère de divergence
- $\sum \frac{3n+1}{\sqrt{2n^2+3}}$ diverge : comparer avec $\sum \frac{1}{n}$.
- $\sum \frac{n + \cos n}{\sqrt{3n^3 + 2}}$ diverge : comparer avec $\sum \frac{1}{n^{0.5}}$.
- $\sum \frac{n}{\sqrt[3]{n^5+2}}$ converge : comparer avec $\sum \frac{1}{n^{2/3}}$.
- $\sum \frac{n!}{n^n}$ converge : test du rapport !

Exemples

Étudier la convergence des séries suivantes :

- $\sum ne^{-n^2}$
- $\sum \frac{5^n}{3^n + 4^n}$
- $\sum \frac{1}{n^{1+\frac{1}{n}}}$
- $\sum \frac{n!}{e^{n^2}}$
- $\sum (\sqrt[n]{5} 1)^n$

- $\sum ne^{-n^2}$ converge : test de l'intégrale avec $f(x) = xe^{-x^2}$ ou test du rapport.
- $\sum \frac{(-1)^n \ln n}{\sqrt{n}}$ converge: test pour des séries alternées (calculer f'(x) où $f(x) = \frac{\ln x}{\sqrt{x}} \ge 0$ pour voir que f(x) est décroissante pour tout x suffisamment grand. Noter aussi $\lim_{x\to\infty} f(x) = 0$).
- $\sum \frac{5^n}{3^n + 4^n}$ diverge : critère de divergence $(\lim_{n \to \infty} \frac{5^n}{3^n + 4^n} = \lim_{n \to \infty} \frac{1}{(3/5)^n + (4/5)^n} = \frac{1}{0 + +0 +} = +\infty)$
- $\sum \frac{1}{n^{1+\frac{1}{n}}}$ diverge : comparer avec $\sum \frac{1}{n}$ et noter que $\lim_{n\to\infty} n^{1/n} = 1$.
- $\sum \frac{n!}{a^{n^2}}$ converge : test du rapport (à cause du n!)
- $\sum (\sqrt[n]{5} 1)^n$ converge : critère de Cauchy et noter que $\lim_{n \to \infty} \sqrt[n]{5} = 1$.