expérimentale du bruit de ventilateurs et d' Caractérisation éoliennes

Anbo Cao, Maëlle Breton 22/3/2018

Introduction

<u>La croissance d'énergies</u> <u>renouvelables en Europe</u>

Qui voudra s'offrir une tranche de vent?

Dispositif expérimental

Dimension de l'éolienne

Ventilateur industriel

Modèle d'éolienne

Influence de la vitesse de rotation des pales

Mesure de la directivité pour trois vitesses de rotation différentes

Signal brut à 0°

Signal brut à 90°

Analyse spectrale à 0°

Influence de l'inclinaison des pales

Mesure de la directivité pour les pales inclinés de 5°, 8° et 15°

Analyse spectrale en fonction de l'inclinaison des pales à 90°

Influence de la distance à la tour

Modèle d'éolienne avec le tube

Mesure de la directivité avec et sans barre

Etude d'autre paramètres

Pression acoustique et la distance

$$L_w = 10log_{10} \frac{W}{W_{ref}} = 10log_{10} \frac{4\pi r^2 p_e^2}{\rho c W_{ref}} = 10log_{10} \frac{p_e^2 r^2}{p_{ref}^2} + k = L_p + 20log_{10} r + k$$

$$L_p = -20log_{10}r + K$$

Pression acoustique en fonction de la distance

Pression acoustique en fonction de la hauteur

Comparaison de directivité du modèle d'éolienne et le ventilateur industriel

Conclusion

Comparaison taille homme-éolienne

Renforcement potentiel du son produit du fait de l'interaction entre deux éoliennes

Questions

Merci pour votre attention!