

Fetal Health Project

TABLE OF CONTENTS

INTRODUCTION

 We have made a study about fetal health classification based on many factors like (Baseline Fetal Heart Rate, Number of accelerations per second, Number of fetal movements per second, uterine contractions).

Target

X

(Fetal health) = Normal Suspect, Pathological.

Features X = 21 columns

Steps:

Tools:

Python Libraries

Jupyter Notebook

All Columns

The Target "fetal health"

Pie Chart of Fetal Heath

Correlation Matrix

Relationships

The relationship between fetal health and acceleration:

Relationships

The relationship between fetal health and fetal movement:

Relationships

The relationship between fetal health and prolongued

decelerations:

Modeling:

Modeling:

11040	anig i								
Model	Accuracy	MAE	MSE	RMSE	R^2	Recall	Precesion	F1 Score	ROC
Logistic regression	0.924	0.080	0.089	0.299	0.755	0.924	0.92271	0.92434	0.977
Random forest	0.957	0.047	0.056	0.238	0.845	0.957	0.956	0.957	0.984
KNN	0.929	0.075	0.085	0.291	0.768	0.929	0.933	0.929	0.948

confusion Matrix

Confusion Matrix: Logistic Regression

Confusion Matrix: Random Forest

Confusion Matrix: KNN

ROC

ROC: Logistic Regression

ROC: Random Forest

ROC: KNN

Conclusion:

At the end..
Random forest model is the best acuracy ..

THANKS

Name

Nada Algabbani

Shahad Almubki

Nada Alhamad

Sarah Alameer

Hala Almulhim

Do you have any questions?

Instructor:
Mohammed Bddar