STA 311 Statistical Computing and Data Management

Instructor: Cheng Peng, Ph.D.
Department of Mathematics
West Chester University
West Chester, PA 19383

Office: 25 University Avenue, RM 111

Phone: 610-435-2369

Email: cheng.peng@maine.edu

Computing Univariate Statistics

- Review of Descriptive Statistics
- PROC MEANS
- PROC FREQ
- **PROC UNIVARIATE**

Computing Univariate Statistics

What we have learned from Introduction to Statistics

- Basic Concepts of Statistics
- Summarizing Data
- Probability
- Confidence Intervals
- Hypothesis Testing Means & Proportions

Basic Statistics

Continuous Variables

Measures of Central Tendency

- Median
- Mean

Graphs

- Histograms
- Scatter Plots

Measures of Dispersion

- •Interquartile Range (IQR)
- Variance
- Standard Deviation (SD)

Two Continuous Variables

- Correlation
- Regression

Basic Statistics

Categorical Variables

Descriptive Statistics

- Counts
- Proportions

Graphs

- Bar charts
- Pie charts

Basic Statistics SAS PROCs

SAS procedures MEANS, UNIVARITE and FREQ produce much more than what are covered in Introductory Statistics

1. Continuous variable

mean, variance, standard deviation, median, mode, upper quartile, lower quartile, percentiles, skewness, kurtosis, number of missing observations.

2. Classification variable

Frequency in each category, relative frequency.

Several Options of Descriptive Statistics

N Number of observations with non-missing values

Sum Wgts Sum of weights = N unless a weighted analysis is

requested

Mean Arithmetic average

Sum Total of all values

Std Dev Sample standard deviation

Variance Sample variance

CV Coefficient of variation =

(standard deviation divided by mean) times 100

Std Mean Standard error of the mean =

standard deviation/(square root of N)

Sum of Squares

USS	Uncorrected sum of squares =
-----	------------------------------

sum of the squared values of the observations

CSS Corrected sum of squares =

sum of the squares of the differences between the

observations and their mean.

Num $\neq 0$ the number of observations not equal to zero.

Num > 0 the number of observations greater than zero.

$$USS = \sum_{i=1}^{N} x_i^2$$

$$CSS = \sum_{i=1}^{N} (x_i - \overline{x})^2$$

Skewness

The **skewness** is a measure of the tendency of the deviations from the mean to be larger in one direction than in the other. The sample **skewness** is calculated as:

$$\mu_3 = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} (x_i - \overline{x})^3$$

Negative values of μ_3 indicate **skewness** to the right. Positive values of μ_3 indicate **skewness** to the left. The normal and t distributions have zero **skewness**.

Skewness

Symmetric Bell shaped

Skewed to the Left

Skewed to the Right

Test Statistics

T: Mean=0 t-test statistic for testing whether the population average is zero.

This is often used for paired t-tests in which one examines whether the difference between two measurements on the same experimental unit is different from zero.

Pr > |T| P-value for a two-tailed t-test of whether the population average is zero.

Low P-values provide evidence that the population mean is not zero.

PROC MEANS Syntax

The MEANS procedure provides descriptive statistics such as the mean, minimum, and maximum provide useful information about numeric data.

Procedure Syntax

RUN;

Where

SAS-data-set is the name of the data set to be used **statistic-keyword(s)** specify the statistics to compute **option(s)** control the content, analysis, and appearance

Example

```
proc means data=perm.survey;
run;
```


PROC MEANS Example

Selecting Statistics

Consider that you want to see the median and range of Perm. Survey numeric values, add the MEDIAN and RANGE keywords as options.

Example

proc means data=perm.survey median range;
run;

The following keywords can be used with PROC MEANS to compute statistics:

Keyword	Description
MAX	Maximum value
MEAN	Average
MODE	Value that occurs most frequently
MIN	Minimum value
VAR	Variance

Variable	Median	Range
Item1	4.0000000	3.0000000
Item2	3.0000000	4.0000000
Item3	4.0000000	1.0000000
Item4	3.5000000	3.0000000
Item5	3.0000000	4.0000000
Item6	4.0000000	3.0000000
Item7	3.0000000	4.0000000
Item8	3.0000000	3.0000000
Item9	2.5000000	3.0000000
Item10	3.0000000	3.0000000
Item11	3.0000000	4.0000000
Item12	3.0000000	1.0000000
Item13	3.0000000	3.0000000
Item14	2.5000000	3.0000000
Item15	3.0000000	4.0000000
Item16	2.0000000	4.0000000
Item17	3.0000000	2.0000000
Item18	3.0000000	3.0000000

PROC MEANS: CLASS Statement

Group Processing Using the CLASS Statement

To produce separate analyses of grouped observations, add a CLASS statement to the MEANS procedure. General form, CLASS statement:

CLASS variable(s);

where *variable(s)* specifies category variables for group processing.

CLASS variables can be either character or numeric, but they should contain a limited number of discrete values that represent meaningful groupings.

Ourvivo	OUN IT	000 1011001	20.2.5	mount	td Dev M	itimitalii iii	Amilani
DIED	1	4 Arterial Heart Cardiac Urinary	4 4 4	92.5 111.0 176.8 98.0	10.5 53.4 75.2 186.1	83.0 54.0 95.0 0.0	103.0 183.0 260.0 377.0
	2	6 Arterial Heart Cardiac Urinary	6 6 6	94.2 103.7 318.3 100.3	27.3 16.7 102.6 155.7	72.0 81.0 156.0 0.0	145.0 130.0 424.0 405.0
SURV 1	5 Arterial Heart Cardiac Urinary	5 5 5 5	77.2 109.0 298.0 100.8	12.2 32.0 139.8 60.2	61.0 77.0 66.0 44.0	88.0 149.0 410.0 200.0	
	2	5 Arterial Heart Cardiac Urinary	5 5 5 5	78.8 100.0 330.2 111.2	6.8 13.4 87.0 152.4	72.0 84.0 256.0 12.0	87.0 111.0 471.0 377.0

Example

```
proc means data = clinic.heart maxdec=1;
   var arterial heart cardiac urinary;
   class survive sex;
run;
```


PROC MEANS: BY Statement

When using the BY statement, you must SORT the data by the variable to be used in the BY statement!

		Surv	ive=DIEI	D Sex=1	
Variable	N	Mean	Std Dev	Minimum	Maximum
Arterial	4	92.5	10.5	83.0	103.0
Heart	4	111.0	53.4	54.0	183.0
Cardiac	4	176.8	75.2	95.0	260.0
Urinary	4	98.0	186.1	0.0	377.0
		Surv	ive=DIE	Sex=2	
Variable	N	Mean	Std Dev	Minimum	Maximum
Arterial	6	94.2	27.3	72.0	145.0
Heart	6	103.7	16.7	81.0	130.0
Cardiac	6	318.3	102.6	156.0	424.0
Lleinanı					

Variable	N	Mean	Std Dev	Minimum	Maximum
Arterial	5	77.2	12.2	61.0	88.0
Heart	5	109.0	32.0	77.0	
Cardiac	5	298.0	139.8	66.0	410.0
Urinary	5	100.8	60.2	44.0	200.0

Survive=SURV Sex=1

Survive=SURV Sex=2								
Variable	N	Mean	Std	Dev	Minimum	Maximum		
Arterial	5	78.8		6.8	72.0	87.0		
Heart	5	100.0		13.4	84.0	111.0		
Cardiac	5	330.2		87.0	256.0	471.0		
Urinary	5	111.2	1	52.4	12.0	377.0		

PROC MEANS: OUTPUT Statement

Specifying the STATISTIC= Option

You can specify which statistics to produce in the output data set. To do so, you must specify the statistic and then list all of the variables. The variables must be listed in the same order as in the VAR statement. You can specify more than one statistic in the OUTPUT statement.

PROC MEANS in SAS LIST WINDOW

proc means data=clinic.diabetes;
 class sex;
 var age height weight;
 output out=work.sum_gender
 mean=AvgAge AvgHeight AvgWeight

min=MinAge MinHeight MinWeight;

 Sex N Obs Variable
 N
 Mean
 Std Dev
 Minimum
 Maximum

 F
 11 Age
 11 48.9090909 13.3075508 16.0000000 63.0000000 Height
 11 63.9090909 2.1191765 61.0000000 68.0000000 Weight
 61.0000000 168.0000000 168.0000000 11.0000000 12.3895117 15.0000000 54.0000000 12.3895117 15.0000000 75.0000000 Weight
 9 44.0000000 12.3895117 15.0000000 75.0000000 75.0000000 Weight
 9 204.2222222 30.2893454 140.0000000 240.00000000

run;

PROC MEANS OUTPUT TO SAS DATASET

To see the contents of the output data set, submit the following PROC PRINT step.

	Obs Sex	TYPE	FREQ_	AvgAge	AvgHeight	AvgWeight	MinAge	MinHeight	MinWeight
,	1	0	20	46.7000	66.9500	174.650	15	61	102
	2F	1	11	48.9091	63.9091	150.455	16	61	102
	3 M	1	9	44.0000	70.6667	204.222	15	66	140

PROC FREQ: Basics

The FREQ procedure is a descriptive procedure as well as a statistical procedure. It produces one-way and *n*-way frequency tables.

You can use the FREQ procedure to create cross-tabulation tables that summarize data for two or more categorical variables by showing the number of observations for each combination of variable values.

General form, basic FREQ procedure:

```
PROC FREQ <DATA=SAS-data-set>;
RUN;
```

By default, PROC FREQ creates a one-way table with the frequency, percent, cumulative frequency, and cumulative percent of every value of all variables in a data set.

PROC FREQ: Example- Frequency Table

For example, the following FREQ procedure creates a frequency table for each variable in the data set Parts. Widgets. All the unique values are shown for ItemName, LotSize, and Region.

```
proc freq data=parts.widgets;
run;
```

To create a frequency table for a specific variable, use TABLE statement,

```
proc freq data=parts.widgets;

TABLE Region;

run;
```

ItemName	Frequency		Cumulative Frequency	Cumulative Percent
Bolt	2930	34.52	2930	34.52
Locknut	3106	36.60	6036	71.12
Washer	2451	28.88	8487	100.00

			Cumulative	Cumulative
LotSize	Frequency	Percent	Frequency	Percent
1	4256	50.15	4256	50.15
2	1009	11.89	5265	62.04
3	3222	37.96	8487	100.00

Region	Frequency		Cumulative Frequency	Cumulative Percent
East	2848	33.56	2848	33.56
North	1355	15.97	4203	49.53
South	1706	20.10	5909	69.63
West	2578	30.38	8487	100.00

PROC FREQ: Cross-tabulation Syntax

Creating Two-Way Tables

It is often helpful to crosstabulate frequencies with the values of other variables. For example, census data is typically crosstabulated with a variable that represents geographical regions.

Syntax

```
TABLES variable-1 *variable-2 <* ... variable-n>;
```

variable-1 specifies table rows and variable-2 specifies table columns.
When crosstabulations are specified, PROC FREQ produces tables with cells that contain

column cell frequency cell percentage of total frequency cell percentage of row frequency cell percentage of frequency.

We will revisit this two-way table later this semester with examples!

PROC UNIVARIATE: Syntax

PROC UNIVARIATE produces descriptive statistics on continuous variables just like proc means, but many more of them, and also can produce some univariate plots.

Useful in so many ways

- -Instant(near-instant) analysis of large data sets
- -Can manipulate variables for relational comparison
- -Can provide hard-proof for QA flags
- -Can view in SAS or easily output to Excel (Word, PDF)
- -Easily Isolate outliers

PROC UNIVARIATE: Syntax

```
PROC UNIVARIATE DATA = SASdataset
         PLOTS
         FREQ
         NORMAL
         PCTLDEF= value
         MU0= value value ...;
  BY var-1 ... var-n;
  CLASS var-1 ... var-n;
  VAR variables;
  FREQ variable;
  HISTOGRAM < variable(s) >;
  PROBPLOT < variable(s) >;
  QQPLOT < variable(s) > ;
  OUTPUT OUT= SASdataset keyword= names...;
RUN;
```


PROC UNIVARIATE: Example

Below is a basic example of a PROC UNIVARIATE outputting to a new dataset _STAT_V1. Note that the data had been previously sorted by PARAMN,TXGROUP and AVISITN.

