ECE569 Module 5

• Data vs Task Parallelism

Data Level Parallelism

- Image and video processing
 - Converting a color pixel to a greyscale

O[N-1]

- requires only the data of that pixel
 - -L=r*0.21+g*0.72+b*0.07
- Blurring an image
 - averages each pixel's color with the colors of nearby pixels, requiring only the data of that small neighborhood of pixels.

Output Array

- Data parallelism principle:
 - Break computations down into many smaller computations
 - organize the computation around the data,
 - execute the resulting independent computations in parallel to complete the overall job faster, much faster.

Data Parallelism vs Task Parallelism

- Task parallelism is typically exposed through decomposing the job into parallel tasks.
- molecular dynamics simulator, tasks include
 - vibrational forces,
 - rotational forces,
 - neighbor identification for non-bonding forces,
 - non-bonding forces,
 - velocity and position
- Data parallelism offers fine grained and much more scalable parallelism!

CUDA Programming Model

- The GPU is viewed as a compute <u>device</u> that:
 - Is a co-processor to the CPU or <u>host</u>
 - Has its own DRAM (global memory in CUDA parlance)
 - Runs many threads in parallel
- Data-parallel portions of an application run on the device as <u>kernels</u> which are executed in parallel by many threads

CUDA C Programming Model

- Each CUDA source file can have a mixture of both host and device code.
- NVCC (NVIDIA C Compiler)

CUDA C Program Execution

execution starts with host code (CPU serial code)

A Thread in CUDA

 simplified view of how a processor executes a sequential program in modern computers.

$$L = r * 0.21 + g * 0.72 + b * 0.07$$

$$Temp1 = r*0.21$$

 $Temp2 = g*0.72$
 $Temp1 = Temp1+Temp2$
 $Temp2 = b*0.07$
 $Temp1 = Temp1+Temp2$

Differences between GPU and CPU threads

GPU is a SIMD device: "streams" of data

- Each "GPU thread" executes one general instruction on the stream of data that the GPU is assigned to process
 - The NVIDIA calls this model SIMT (single instruction multiple thread)
- GPU threads are extremely lightweight
 - Very little creation overhead
 - GPU needs 1000s of threads for full efficiency
 - A collection of Streaming Multiprocessors (SMs)
 - Each SM has a set of Scalar Processors (SPs)
- Multi-core CPU needs only a few heavy ones

Tesla K20 GPU

Pascal, Volta

• K40: 30,720

• P100: 114,688

V100: 163,840

Feature	Tesla K40	P100	V100
Onboard Memory	12 GB	16 GB	16GB
# of SMX Units	15	56	80
# of CUDA Cores	2880	3584	5120
WARPS per SM	64	64	64
Threads per SM	2048	2048	2048
GPU Base Clock	745 MHz	1480 MHz	1530MHz
Wattage	235W	300W	300W
Transistors	7.1 billion	15.3	21.1

Compute Capability vs. CUDA Version

- https://docs.nvidia.com/cuda/cuda-cprogramming-guide/index.html#computecapabilities
- Compute Capability of a Device" refers to hardware
 - used by applications at runtime to determine which hardware features and/or instructions are available on the present GPU
 - Defined by a major revision number and a minor revision number

The "CUDA Version" indicates what version of the software you are using to run on the hardware

Compute Capability vs. CUDA Version

CUDA-Enabled NVIDIA GPUs								
NVIDIA Ampere Architecture (compute capabilities 8.x)				Tesla A Series				
NVIDIA Turing Architecture (compute capabilities 7.x)		GeForce 2000 Series	Quadro RTX Series	Tesla T Series				
NVIDIA Volta Architecture (compute capabilities 7.x)	DRIVE/JETSON AGX Xavier		Quadro GV Series	Tesla V Series				
NVIDIA Pascal Architecture (compute capabilities 6.x)	Tegra X2	GeForce 1000 Series	Quadro P Series	Tesla P Series				
	Embedded	Consumer Desktop/Laptop	Professional Workstation	Data Center				

Compute Capability

Technical Specifications	Compute Capability												
	3.5	3.7	5.0	5.2	5.3	6.0	6.1	6.2	7.0	7.2	7.5	8.0	8.6
Maximum number of resident grids per device (Concurrent Kernel Execution)	32				16	128	32	16	128	16		128	
Maximum dimensionality of grid of thread blocks	3												
Maximum x-dimension of a grid of thread blocks		2 ³¹ -1											
Maximum y- or z-dimension of a grid of thread blocks	65535												
Maximum dimensionality of a thread block	3												
Maximum x- or y-dimension of a block	1024												
Maximum z-dimension of a block	64												
Maximum number of threads per block	1024												
Warp size	32												
Maximum number of resident blocks per SM	16				32						16	32	16
Maximum number of resident warps per SM		64								32	64	48	
Maximum number of resident threads per SM	2048 1024								2048	1536			
Number of 32-bit registers per SM	64 K 128 K 64 K												
Maximum number of 32-bit registers per thread block	64 K			32 K	6	64 K 32 K			64 K				
Maximum number of 32-bit registers per thread							255						
Maximum amount of shared memory per SM	48 KB 112 KB 64 KB 96 KB			64	KB	96 KB	64 KB	96	KB	64 KB	164 KB	100 KB	
Maximum amount of shared memory per thread block 31	48 KB 96 KB 48 KB							64 KB	163 KB	99 KB			
Number of shared memory banks	32										1		

Next

 Memory management and data movement using "Vector addition" as example