Instruction Manual 8

Question 1: Solution:

Attribute subset selection using the ID3 algorithm. Let take following data to compute maximum information gain.

Attribute A1 (Outlooks)	Attribute A2 (Temperature)	•	
Sunny	Hot	High	No No
Sunny	Hot	High	No
0vercast	Hot	High	Yes
Rainy	Mild	High	Yes
Rainy	Cool	Normal	Yes
Overcast	Cool	Normal	Yes
Sunny	Mild	Normal	Yes
Sunny	Cool	High	No
Rainy	Mild	Normal	Yes
Sunny	Mild	Normal	Yes
Overcast	Mild	High	Yes
Overcast	Hot	Normal	Yes
Rainy	Mild	High	No

With ID3 algorithms, select an attribute subset that best predicts the class labels.

Step 1: Calculate the Entropy of the Whole Dataset

To calculate information gain for attribute selection, we first calculate the entropy of the whole dataset:

```
Entropy(S) = -p(Yes) * log2(p(Yes)) - p(No) * log2(p(No))
= -9/13 * log2(9/13) - 4/13 * log2(4/13)
≈ 0.940
```

Step 2: Calculate Information Gain for Each Attribute

Information Gain for A1 (Outlook):

Split the dataset based on "Outlook" attribute:

- Outlook = Sunny: 5 examples (2 Yes, 3 No)
- Outlook = Overcast: 4 examples (4 Yes)
- Outlook = Rainy: 4 examples (3 Yes, 1 No)

calculate the information gain for each attribute by partitioning the dataset based on each attribute's values and then calculating the weighted entropy.

```
Entropy(Outlook = Sunny) = -2/5 * log2(2/5) - 3/5 * log2(3/5) \approx 0.971

Entropy(Outlook = Overcast) = 0 (pure subset)

Entropy(Outlook = Rainy) = -3/4 * log2(3/4) - 1/4 * log2(1/4) \approx 0.811

Weighted Entropy(Outlook) = (5/13) * Entropy(Outlook = Sunny) + (4/13) * Entropy(Outlook = Overcast) + <math>(4/13) * Entropy(Outlook = Rainy) \approx 0.892
```

Information Gain for A1 = Entropy(S) - Weighted Entropy(Outlook) ≈ 0.048

Information Gain for A2 (Temperature):

```
Split the dataset based on "Temperature" attribute:
```

```
Temperature = Hot: 4 examples (2 Yes, 2 No)
```

Temperature = Mild: 6 examples (4 Yes, 2 No)

Temperature = Cool: 3 examples (3 Yes)

```
Entropy(Temperature = Hot) = 1 (impure subset)

Entropy(Temperature = Mild) = -2/6 * log2(2/6) - 4/6 * log2(4/6) \approx 0.918

Entropy(Temperature = Cool) = 0 (pure subset)

Weighted Entropy(Temperature) = (4/13) * 1 + (6/13) * 0.918 + (3/13) * 0 \approx 0.654
```

Information Gain for A2(Temperature) =

Entropy(S) - Weighted Entropy(Temperature)

=0.940-0.654

≈ 0.286

Information Gain for A3 (Humidity):

Split the dataset based on "Humidity" attribute:

Humidity = High: 7 examples (3 Yes, 4 No)

Humidity = Normal: 6 examples (6 Yes)

```
Weighted Entropy(Outlook) = (5/13) * Entropy(Outlook = Sunny) + (4/13) * Entropy(Outlook = Overcast) + (4/13) * Entropy(Outlook = Rainy) \approx 0.892 Entropy(Humidity = High) = -3/7 * \log 2(3/7) - 4/7 * \log 2(4/7) \approx 0.985 Entropy(Humidity = Normal) = 0 (pure subset)
```

```
Weighted Entropy(Humidity) = (7/13) * 0.985 + (6/13) * 0 ≈ 0.452
```

Information Gain for A3 = Entropy(S) - Weighted Entropy(Humidity) ≈ 0.4882

Step 3: Attribute Selection

The attribute with the highest information gain is A3 (Humidity), so we select it as the root node of our decision tree.

Problem 2: Python Code:

```
import numpy as np
import pandas as pd
# Sample dataset
data = pd.DataFrame({
    'Outlook': ['Sunny', 'Sunny', 'Overcast', 'Rainy', 'Rainy', 'Overcast',
'Sunny', 'Sunny', 'Rainy', 'Sunny', 'Overcast', 'Overcast', 'Rainy'],
    'Temperature': ['Hot', 'Hot', 'Hot', 'Mild', 'Cool', 'Cool', 'Mild',
'Cool', 'Mild', 'Mild', 'Hot', 'Mild'],
    'Humidity': ['High', 'High', 'High', 'Normal', 'Normal', 'Normal',
'High', 'Normal', 'Normal', 'High', 'Normal', 'High'],
    'Class': ['No', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'Yes',
'Yes', 'Yes', 'Yes', 'No']
})
# Function to calculate entropy
def entropy(class_labels):
    unique_labels, counts = np.unique(class_labels, return_counts=True)
    prob = counts / len(class_labels)
    entropy = -np.sum(prob * np.log2(prob))
    return entropy
# Function to calculate information gain
def information_gain(data, attribute, class_label):
    total entropy = entropy(data[class label])
    unique values = data[attribute].unique()
   weighted_entropy = 0
    for value in unique values:
        subset = data[data[attribute] == value]
        subset_entropy = entropy(subset[class_label])
        weight = len(subset) / len(data)
        weighted_entropy += weight * subset_entropy
    return total entropy - weighted entropy
```

```
# ID3 algorithm for attribute selection
def id3(data, class label, attributes):
    if len(attributes) == 0:
        # If no attributes are left, return the majority class
        return data[class label].mode().iloc[0]
    unique_classes = data[class_label].unique()
    if len(unique classes) == 1:
        return unique_classes[0]
    best_attribute = max(attributes, key=lambda attr: information_gain(data,
attr, class_label))
    tree = {best attribute: {}}
    for value in data[best_attribute].unique():
        subset = data[data[best_attribute] == value]
        if len(subset) == 0:
            # If the subset is empty, return the majority class
            tree[best_attribute][value] = data[class_label].mode().iloc[0]
        else:
            new attributes = [attr for attr in attributes if attr !=
best_attribute]
            tree[best attribute][value] = id3(subset, class label,
new_attributes)
    return tree
# Define the class label and attributes
class label = 'Class'
attributes = ['Outlook', 'Temperature', 'Humidity']
# Build the ID3 decision tree
decision_tree = id3(data, class_label, attributes)
# Print the decision tree
import pprint
pprint.pprint(decision tree)
OUTPUT:
```

```
PROBLEM 3: Classification of Data(IRIS SAMPLE DATA)with Decision Tree Algo from sklearn import datasets

import pandas as pd import numpy as np from sklearn import metrics #from sklearn.linear model import LogisticRegression
```

```
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt #if not install then pip install from terninal
from sklearn.model selection import train test split
from sklearn.metrics import accuracy_score, classification_report,
confusion matrix
iris = datasets.load_iris() #Loading the dataset
iris.keys()
#print(iris.keys)
dict_keys=(['data', 'target', 'frame', 'target_names', 'DESCR',
'feature_names', 'filename', 'data_module'])
#print(dict keys)
#convert dataset to pandas df
iris = pd.DataFrame(
    data= np.c_[iris['data'], iris['target']],
    columns= iris['feature_names'] + ['target']
# print(iris)
# he=head(iris)
# print(he)
# print(iris.head())
# To give name to target class as species, Species is a list
species = []
for i in range(len(iris['target'])):
    if iris['target'][i] == 0:
        species.append("setosa")
    elif iris['target'][i] == 1:
        species.append('versicolor')
    else:
        species.append('virginica')
iris['species'] = species
# print("Species have class now", iris['species'])
#To check new data set is taken place or not then used once again tail/head
command
# print(iris.tail())
# Do observe total sample of each species
# print( iris.groupby('species').size())
#Plotting a dataset is a great way to explore its distribution.
# Plotting the iris dataset can be done using matplotlib,
# a Python library for 2D plotting.
#import library matplotlib
setosa = iris[iris.species == "setosa"]
versicolor = iris[iris.species=='versicolor']
virginica = iris[iris.species=='virginica']
fig, ax = plt.subplots()
```

```
fig.set_size_inches(13, 7) # adjusting the length and width of plot
# lables and scatter points
ax.scatter(setosa['petal length (cm)'], setosa['petal width (cm)'],
label="Setosa", facecolor="blue")
ax.scatter(versicolor['petal length (cm)'], versicolor['petal width (cm)'],
label="Versicolor", facecolor="green")
ax.scatter(virginica['petal length (cm)'], virginica['petal width (cm)'],
label="Virginica", facecolor="red")
ax.set_xlabel("petal length (cm)")
ax.set_ylabel("petal width (cm)")
ax.grid()
ax.set title("Iris petals")
ax.legend()
# To display image here (optional)
# plt.show()
# Split the data into features (X) and target labels (y)
X = iris.drop('species', axis=1)
y = iris['species']
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random state=42)
# Create and Train the Decision Tree Classifier:
# Create an instance of DecisionTreeClassifier and train it on the training
data using the fit() method.
# Create a DecisionTreeClassifier instance
classifier = DecisionTreeClassifier(random_state=42)
# This library need to import--->from sklearn.tree import
DecisionTreeClassifier
# Train the classifier on the training data
classifier.fit(X_train, y_train)
# Now Do Prediction
#Make Predictions:
#Use the trained classifier to make predictions on new,
# unseen data (testing set) using the predict() method.
# Make predictions on the testing data
y pred = classifier.predict(X test)
x_pred=classifier.predict(X_train)
'''Evaluate the Model:
Calculate evaluation metrics to assess the performance
of the model. For classification tasks, you can use metrics
like accuracy, precision, recall, F1-score, and confusion matrix.
```

```
''' Compute Training time Accuracy'''
# Calculate accuracy
accuracy = accuracy_score(y_train, x_pred)
print("Accuracy:", accuracy)
# Display classification report
print("Classification Report:")
print(classification_report(y_train, x_pred))
# Display confusion matrix
print("Confusion Matrix:")
print(confusion_matrix(y_train, x_pred))
''' Compute Testing time Accuracy'''
print("Testing Time Accuracy")
# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy Testing:", accuracy)
# Display classification report
print("Classification Report Testing:")
print(classification_report(y_test, y_pred))
# Display confusion matrix
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))
```