- 46. 设G 是全体 $n \times n$ 实可逆矩阵关于矩阵乘法构成的群,H 是G 中全体行列式大于0 的矩阵集合.
- (1) 证明 H ≤ G;
- (2) 计算[G:H].

47. 设

 $G_1 = \{A \mid A \in M_n(Q) \land |A| \neq 0\},$

其中 $M_n(Q)$ 是有理数域上的 n 阶矩阵集合 $(n \ge 2)$. G_1 关于矩阵乘法构成群. φ 是 G_1 到 $G_2 = \langle R^*, \cdot \rangle$ 的映射、 $\varphi(A) = \langle A \rangle$, $\forall A \in M_n(Q)$, 其中·为普通乘法.

- (1) 证明 φ 是 G₁ 到 G₂ 的同态映射;
- (2) 求出 $\varphi(G_1)$ 和 ker φ .

別有A + Mr(Q), x= p(A) E y(G)

48. 证明除零同态以外,不存在 $\langle Q, + \rangle$ 到 $\langle Z, + \rangle$ 的同态映射.

- 51. 设 φ 是群 G_1 到 G_2 的词态映射,证明
- (1) 若 H 是 G_2 的子群,则 $\varphi^{-1}(H)$ 是 G_1 的子群;
- (2) 若 H 是 G_2 的正规子群,则 $\varphi^{-1}(H)$ 是 G_1 的正规子群.
- (1) y (H) 为春 → y g ∈ G1, h ∈ y (H),
 y (g h g ') = y (g) y (h) y (g ') ∈ H
 以有g h g ' ∈ y ' (H) ⇒ y (H) ≤ G1

53. 设 φ 是群 G_1 到 G_2 的满同态映射,H 是 G_1 的子群. 若 |H| 与 $|G_2|$ 互素,证明 $H\subseteq\ker\varphi$.

=> H/ker(y(H) = y(H) => |y(H)|= | H/ker(y(H)) = [H:kery] / |H|

60. 设 φ 是群 G 的满自同态,若 G 只有有限个子群,证明 φ 是 G 的自同构.