1 Medición de capacitores

Figura 1: Puente con Impedancias genericas

Se diseñó un puente que permita medir capacitores, en un rango de capacidad $C \in [10nF, 100nF]$ y en un rango de factor de disipación $D \in [0.015, 0.09]$, para una frecuencia de 10KHz.

Partiendo del puente de la figura 1, donde $V_d=\frac{Z_3}{Z_1+Z_3}-\frac{Z_4}{Z_4+Z_2}$, en el equilibrio $Z_1Z_4=Z_2Z_3$. Reemplazando $Z_1=R_1+\frac{1}{SC_1},\ Z_2=R_x+\frac{1}{SC_x},\ Z_3=R_3$ y $Z_4=R_4$. En el equilibrio se cumple que $C_x=\frac{C_1R_3}{R_4},\ R_x=\frac{R_1R_4}{R_3}$ y $D_x=2\pi fC_1R_1$.

1.1 Elección de componentes

Fijando $C_1 = 3nF$ y $R_3 = 1K\Omega$, y a partir de las ecuaciones $C_x = \frac{C_1R_3}{R_4}$ y $D_x = 2\pi f C_1R_1$, se obtuvieron los valores de las variables de ajuste, $R_1 \in \left[\frac{D_{min}}{2\pi f C_1R_1}, \frac{D_{max}}{2\pi f C_1R_1}\right] = [79.5\Omega, 477.46\Omega]$ y $R_4 \in \left[\frac{C_1R_3}{C_{X_{max}}}, \frac{C_1R_3}{C_{X_{min}}}\right] = [30\Omega, 300\Omega]$.

La resistencia R_1 se implementó con una resistencia de 68Ω en serie con dos presets de 200Ω y la resistencia R_4 se implementó con una resistencia de 20Ω en seire con un preset de 200Ω y otro de 100Ω .

1.2 Analisis de sensivilidades

Para analizar la sencivilidad del puente, se grafico el cosciente de la sencivilidad de V_d respecto de R_1 y R_2 . y el objetivo es que dicho cociente se encuentre lo mejor posible ditribuido entre 0 y 1. Con los valores de los componentes indicados anterioremente se obtuvo el siguiente grafico del cosiente de las sencivilidades

Figura 2: Cosciente de sencivilidades

Como se observa en el grafico al variar R_1 y R_4 se obtuvo una superficie acotada entre 0 y 1.

1.3 Calculo del error

Para calcular el error en la maedicion se tuvo que distinguir cuales fueron las fuentes de error en la medicion, supusimos que el error en analizador de impedancias es despreciable. Las fuentes de error que supusimos fueron las siguientes:

- ullet El error en la medición de las resistencias por parte del ohmetro lo cosnideramos de 1Ω
- Como V_d nunca llega a cero, y como la medicon se realizo con el voltimetro de banco consideramos que el error en la medicion de V_d es de 1mv . . .

Conociendo que constructivamente R_1 y R_4 se realizaron con presets de 200Ω , estiamos el $\Delta R_1 = \Delta R_2 = 2\Omega$ (un cuarto de vuelta del preset).

$$S_{R_1}^{V_d} \Delta R_1 = \Delta V_d$$
$$\Delta R_1 = 8\Omega$$

Considerando el peor caso cuando se suman los errores, para $\Delta R_1 = 8\Omega$, ahora calculamos para C_x .

$$\Delta C_x = C_1 R_3 \frac{\Delta R_4}{R_4^2}$$

como en el peor caso $R_4=30\Omega$

$$\Delta C_x = 3nF$$

y por ultimo, hay que hallar el error en D_x . Como $D_x = 2\pi f C_1 R_1$, entonces:

$$\Delta D_x = 2\pi f C_1 \cdot \Delta R_1$$

$$\Delta D_x = 0.0009$$

1.4 Convergencia

Se analizo si el puente convergia para un unico valor de R_1 a un unico D_x y R_4 a un unico C_x . Para ello se grafico vd en funcion de C_x y R_4 en un caso y R_1 , D_x para el otro.

Figura 3: Convergencia de ${\cal V}_d$ respecto de ${\cal R}_4$ y ${\cal C}_x$

Figura 4: Convergencia de V_d respecto de R_1 y D_x

Como se observa en ambas figuras hay una unica franja violeta (minimo) de V_d , por ende la convergancia del puente es unica para cada C_x y D_x .

1.5 Manual de uso

Para poder medir en el puente, se recomienda primero ajustar el preset correspoendiente a R_4 , devido a que la sencivilidad del puentes es mallor respecto a dicha reisitencia, encontrando el minimo de V_d . Despues variar R_1 para minimizar aun mas V_d . Posteriormente desconectar todos los elementos del puente y medir las resistencias R_4 y R_1 . Finalmente con las ecuaciones anteriormente mencionadas se obtiene el valor del capacitor medido, donde $C_x = \frac{C_1 R_3}{R_4}$, $R_x = \frac{R_1 R_4}{R_3}$ y $D_x = 2\pi f C_1 R_1$.

1.6 Mediciones

Se midieron los capacitores con el analizador de impedancias y con el puente.

1.6.1 Analizador de impedancia

Frecuencia	С	D
1KHz	9.8nf	0.015
10KHz	9.6nF	0.023
100KHz	9.3nF	0.085

Table 1: Capacitor minimo

Frecuencia	С	D
1KHz	47.24nf	0.019
10KHz	26nF	0.003
100KHz	$43.56\mathrm{nF}$	0.08

Table 2: Capacitor medio

Frecuencia	С	D
1KHz	108nf	0.018
10KHz	108nF	0.024
100KHz	102nF	0.083

Table 3: Capacitor maximo

Frecuencia	С	D
1KHz	186nf	0.01
10KHz	181nF	0.016
100KHz	171nF	0.08

Table 4: Capacitor doble del maximo

1.6.2 Puente

Se midió V_d con el voltimetro de banco

Frecuencia	С	D
1KHz	9.87nf	0.005
10KHz	9.9nF	0.013
100KHz	$9.58\mathrm{nF}$	0.1

Table 5: Capacitor minimo

Frecuencia	С	D
1KHz	44.8nf	0.0013
10KHz	$45.5\mathrm{nF}$	0.012
100KHz	$42.4\mathrm{nF}$	0.13

Table 6: Capacitor medio

Frecuencia	С	D
1KHz	108nf	0.0013
10KHz	108nF	0.013
100KHz	89.6nF	0.14

Table 7: Capacitor maximo

Frecuencia	С	D
1KHz	115nf	0.003
10KHz	115 nF	0.037
100KHz	115nF	0.3

Table 8: Capacitor doble del maximo

1.7 Conclusión

Como era de esperarse la medicion del capacitor al doble del maximo, no se puedo medir debido que el preset llego a su maximo. En cuanto a la medicion del D del capacitor en todos los casos nos dio mal, esto atribuimos a que se devio a un errado analisis de sencivilidades, y esto implico que al variar el preset correspondiente al D no se pudiese apreciar una variacion en el V_d . Ademas para mejorar la medición se tendria que haber meidido con un amplificador de instrumentación.