Lab04 ITAI 2376 - Convolutional Neural Networks (CNN) with MNIST Dataset

Part 1: Technical Implementation

Introduction

This lab focuses on implementing a Convolutional Neural Network (CNN) using the MNIST dataset. The MNIST dataset consists of handwritten digits, making it a fundamental benchmark for image classification tasks.

Steps to Complete the Lab

1. Download and Open the Notebook

- Access the provided notebook from Module 04.
- Upload the notebook to Google Colab.

2. Understanding the Dataset

- The MNIST dataset contains 60,000 training images and 10,000 testing images of digits (0-9).
- Each image is 28x28 pixels in grayscale.

3. Building the CNN Model

Layers Used:

- Convolutional layers for feature extraction.
- Max-pooling layers for down-sampling.
- Fully connected layers for classification.

• Activation Functions:

■ ReLU for non-linearity.

■ Softmax for final classification.

4. Training and Evaluating the Model

- Compile the model using an appropriate loss function (categorical cross-entropy).
- Train the model with multiple epochs and batch sizes.
- Evaluate performance using accuracy metrics.

5. Visualizing the Results

- Display training accuracy and loss curves.
- Visualize sample predictions.

6. Saving and Exporting the Notebook

- Ensure all cells execute without errors.
- \circ Save the completed notebook as a PDF (File \rightarrow Print \rightarrow Save as PDF).

Part 2: Reflective Journal

Learning Insights

- The lab provided hands-on experience in constructing CNNs from scratch.
- Learned about feature extraction using convolutional layers.
- Understood how pooling layers help reduce computational complexity while retaining important features.
- Observed the impact of different hyperparameters on model performance.
- Reinforced previous knowledge of neural networks by applying it to real-world image classification.
- Surprised by the ability of a simple CNN to achieve high accuracy on MNIST.

Challenges and Growth

• Challenges Faced:

- Understanding the dimensional transformations across layers.
- Tuning hyperparameters like learning rate and number of epochs.
- Managing runtime errors in Colab due to memory constraints.

• Overcoming Challenges:

- Referencing documentation and online resources for troubleshooting.
- Experimenting with different architectures and observing their impact.
- Using visualization tools to debug misclassified images.

Personal Development

- Gained a deeper understanding of deep learning and CNNs.
- Improved confidence in implementing models from scratch.
- Interested in exploring more complex architectures like ResNets and GANs.
- Recognized the importance of computational efficiency in real-world applications.

Conclusion This lab reinforced the core principles of CNNs and their application to image classification. The hands-on experience provided valuable insights into the structure and behavior of deep learning models.