

1 CLAIMS:

2 1. A system comprising:
3 a first ASIC (Application Specific Integrated Circuit) including a first substrate;
4 a plurality of On Chip Macros mounted on said first substrate;
5 a second ASIC including a second substrate positioned in spaced relationship to said first
6 substrate;
7 a plurality of On Chip Macros mounted on said second substrate;
8 a Chip to Chip Bus Interface subsystem operatively positioned to provide
9 communications between the first ASIC and the second ASIC; and
10 a Chip to Chip Macro subsystem operatively mounted on the first ASIC and the second
11 ASIC, said Chip to Chip Macro subsystem aggregating all communications between at least a
12 pair of On Chip Macros one of each being located on the first substrate and the second substrate
onto the Chip to Chip Bus Interface subsystem.

1 2. The system of Claim 1 wherein the Chip to Chip bus interface subsystem includes a first
2 transmission system transmitting data from the first ASIC to the second ASIC; and
3 a second transmission system transmitting data from the second ASIC to the first ASIC.

1 3. The system of Claim 2 wherein the first transmission system includes a first
2 unidirectional data bus;
3 a first unidirectional parity bus;
4 a first unidirectional start of message control line; and
5 a first unidirectional clock bus.

1 4. The system of Claim 3 wherein the first transmission system further includes a first
2 control line that transmits a signal in a direction opposite to signal transmission on other
3 lines in said first transmission system, said signal inhibiting a Macro on a selected ASIC
4 from transmitting data.

5 5. The system of Claim 2 wherein the second transmission system includes a set of
6 transmission lines substantially similar to those set forth in Claim 4.

1 6. The system of Claim 5 further including a second control line that transmits signals in a
2 direction opposite to signal transmission on other lines in said second transmission
3 systems.

1 7. The system of Claim 1 wherein the Chip to Chip Macro subsystem includes a first Chip
2 to Chip Macro operatively mounted on the first ASIC; and
3 a second Chip to Chip macro operatively mounted on the second ASIC.

3 a Receive channel; said Transmit Channel including an arbitrator that arbitrates Requests
4 generated from multiple Requesters and granting priority to one of the requests;
5 a generator responsive to said one of the requests to generate a message based upon
6 information in said one of the requests;
7 a first Speed Matching Buffer that receives the message; and
8 a Serializer extracting messages from said Speed Matching Buffer at a first data rate over
9 a relatively wide data bus and converting said message to a second data rate for transmission over
10 a data bus narrower than the relatively wide data bus.

1

2

3

4

5

6

7

8

9

10

11

12. The Macro of Claim 11 wherein the Speed Matching Buffer includes a RAM; and
13. a controller coupled to said RAM, said controller causing data to be written in said RAM
14. at a first frequency and read from said RAM at a different frequency.

15. The Macro of Claim 11 wherein the Receive Channel further includes
16. a second Speed Matching Buffer that buffers messages received from another macro;
17. a De-serializer receiving the messages having a first footprint and first data rate from
18. another macro, said De-serializer adjusting the first footprint and first data rate of the messages
19. from another macro and loading said messages into the second Speed Matching Buffer; and
20. a De-Multiplexor including circuits to extract messages from the Speed Matching Buffer,
21. determining destination of extracted messages and forwarding the extracted message to
22. determined destinations.

1 14. The Macro of Claim 12 further including circuit in said second Speed Matching Buffer to
2 generate a control signal if said second speed matching buffer does not wish to receive
3 additional data.

1 15. The Macro of Claim 11 or Claim 13 further including
2 a Network Processor Complex Chip operatively coupled to said Macro.

1 16. The Macro of Claim 11 or Claim 13 further including
2 a Scheduler Chip operatively coupled to said Macro.

1 17. The Macro of Claim 11 or Claim 13 further including a Data Flow Chip operatively
2 coupled to the Macro.

1 18. A method comprising:
2 partitioning circuits into functional blocks on a first ASIC and a second ASIC;
3 generating Request signals by functional blocks on the first ASIC wanting to
4 communicate with functional blocks on the second ASIC;
5 granting priority to one Request based upon a result of an arbitrator arbitrating between
6 multiple Requests;
7 generating a message based upon information in the one Request;
8 buffering the message in a first buffer; and

9 serializing buffered messages with a Serializer to permit data transmitted at a first data
10 rate on a wide internal ASIC bus to be transferred on a narrower bus at a higher data rate.

1 19. The method of Claim 18 wherein the internal ASIC bus is approximately 128 bits.

1 20. The method of Claim 19 wherein the narrower bus is approximately 32 bits and the
2 higher data rate is approximately 500Mbit/sec (per bit).

1 21. The method of Claim 18 further including the steps of providing on the first ASIC a
2 second buffer to receive messages from the second ASIC;
3 converting the message by a De-serializer from a first footprint, equivalent to a width of a
4 first bus, and first data rate to a second footprint, equivalent to a width of a second bus, and
5 second data rate; and
6 writing converted messages into the second buffer.

1 22. The method of Claim 21 further including the steps of extracting by a De-multiplexor
2 messages from said second buffer;
3 determining by said De-multiplexor a destination for said extracted messages; and
4 forwarding said extracted messages to the destination.

1 23. The system of Claim 1 wherein the first ASIC includes a Network Processor Complex
2 Chip and the second ASIC includes a Data Flow Chip.

1 24. The system of Claim 1 where the first ASIC includes a Data Flow Chip and the second
2 ASIC includes a Scheduler chip.

1 25. A system comprising:

2 a Data Flow Chip;

3 a first Chip to Chip Macro operatively mounted on said Data Flow Chip;

4 a Schedule Chip;

5 a second Chip to Chip Macro operatively mounted on said Data Flow Chip;

6 a transmission interface interconnecting the first Chip to Chip Macro and second Chip to
7 Chip Macro.

1 26. A device comprising:

2 an ASIC having circuits that can be grouped into separate sub Macros; and

3 a Chip to Chip Macro mounted on said ASIC, said Chip to Chip macro receiving data at a
4 first data rate with a first footprint from selected ones of said sub Macros converting the data to a
5 second footprint at a second data rate and transmitting the data at the second data rate and second
6 footprint.

