Mandelbrot Rendering

Introduction to Parallel Computing - 2020 Spring

Index

- 1. Mandelbrot Set
- 2. Mandelbrot Set Visualization
- 3. Mandelbulb
- 4. Mandelbulb Visualization
- 5. Goal
- 6. Requirements

Mandelbrot Set

- A set of complex numbers ©
 - o for every complex number $c \in \mathbb{G}$, under iterations of quadratic map $Z_{\nu+1} = Z_{\nu} + c$ remain bounded
 - \circ i.e, it satisfies for every Z_{ν} , where k is zero or a positive integer

$$Z_0 = 0$$

$$|Z_k| \le 2$$

Once $|Z_k| > 2$, it will increase forever!

Mandelbrot Set Visualization

- Convert each pixel to the corresponding coordinates on the complex plane
- Plug into the equation repeatedly until |Zk| > 2
- Color the pixel according to the iteration count

Mandelbulb

- A 3D fractal use <u>spherical coordinates</u> to represent its 3D space
- In this assignment, we refer to power 8 mandelbulb

$$v_{k+1} = v_k^8 + C$$

 $v = \langle x, y, z \rangle$ in \mathbb{R}^3 , $v^n \coloneqq r^n \langle \cos(n\theta) \cos(n\phi), \cos(n\phi) \sin(n\theta), -\sin(\phi) \rangle$
• $r = \sqrt{x^2 + y^2 + z^2}$, $\theta = \arctan(\frac{y}{x})$, $\phi = \arctan(\frac{z}{x})$

• e.g. $C = <1, 2, 3>, v_0 = <0, 0, 0>$ o $r = \sqrt{14}$

Mandelbulb Visualization - Ray Marching

- A kind of ray tracing algorithm.
- Casting a 3D ray for each screen pixel, uses a mathematical function called Distance Function (or Distance Estimator) to verify if the ray intersects with any objects.

Goal

- TA gives the sequential code for visualizing mandelbulb.
- You are asked to parallelize with MPI & OpenMP

Requirements

- Submit below files to ilms directly:
 - hw2.cc the source code of your implementation
 - build.ninja optional. Submit this file if you want to change the build command
 - o report.pdf your report
- Please refer to IPC20_HW2.spec.pdf for details
- Deadline
 - o 2020/04/13 (Mon.)