CDN Caching

COS 316: Principles of Computer System Design Lecture 9

Amit Levy & Wyatt Lloyd

Anatomy of a Web Page Fetch

- Web page = HTML file + embedded images/objects
- HTML page does not embed objects in it
 - Q: Why not?

Serve It All From Datacenters?

- High latency for many clients ⊗
- Use a ton of bandwidth to send the same objects over and over ⊗

Serve Objects From CDN

- Lower latency because content is closer ©
- Less global bandwidth ©

CDN Locations

- Where can we stick machines?
- Inside our datacenters
- At colocation facilities (other people's DCs)
- At Internet Exchange Points
- Inside others' networks

Not that many machines (limited space and/or high cost)

CDN Locations vs Datacenters

- There are many more CDN locations
 - e.g., Akamai has 1000+
- CDNs are closer to people
 - Because there are more of them
 - Placed for locality
- CDN locations are much wimpier
 - Maybe 1 rack (~40 machines)
 - •
 - Maybe 8 racks (~320 machines)

What do we store on them?

CDN Locations Store What?

- Store everything?
 - Exabytes of data for some services
 - 1 rack (40 machines):
 - 144 GB memory? * 40 -> 5.8TB memory ... not even close...
 - 10x4 TB HDD? * 40 -> 1.6 PB ... not even close...
- Need to store a subset of objects!
 - Q: But which objects to store?

CDN Cache Hit

CDN Cache Miss

If I want to store X, what do I get rid of to make space?

Cache Algorithms 101

- First In First Out (FIFO)
- Least recently used (LRU)
- Least frequently used (LFU)
- Belady (Offline optimal)

(Note: all fully associative today)

First-In-First-Out (FIFO)

- Evict objects added to cache longest ago
- Very simple!
- 3 item cache example:
 - Request stream: a, b, a, c, a, d, a, e, a, f, g
- Can we do better?

Least Recently Used (LRU)

- Evict object used longest ago
 - "Objects used more recently are more likely to be accessed again"
 - Exploits temporal locality
- Implementation: Update access time for every hit
- 3 item cache example:
 - Request stream: a, b, a, c, a, d, a, e, a, f, g
 - Request stream: h, h, h, i, j, k, h

Least Frequently Used (LFU)

- Evict object with fewest hits
 - "Objects used more often are more likely to be accessed again"
 - If tie, use LRU
- Implementation: Update access count for every hit
- 3 item cache example:
 - Request stream: a, b, a, c, a, d, a, e, a, f, g
 - Request stream: h, h, h, i, j, k, h
 - Request stream: I, I, m, n, o, m

Belady (Offline Optimal Caching)

- What is the best a caching algorithm could do?
- Offline: uses knowledge of the future
 - (Can't use in practice)
- Evict the object with the furthest **next** access time
 - Worst object to keep in the cache
- 3 item cache example:
 - Request stream: h, h, h, i, j, k, h
 - Request stream: I, I, m, n, o, m

Effectiveness of Algorithms for CDN Caching?

[Figures from Qi Huang's 2013 SOSP Talk]

Edge Cache with Different Sizes

Cache size

Facebook's San Jose CDN edge cache circa 2013

Edge Cache with Different Sizes

• "x" estimates deployment size (59% hit ratio)

Edge Cache with Different Sizes

• "Infinite" size ratio needs 45x of capacity

Edge Cache with Different Algos

• LRU > LFU > FIFO

Edge Cache with Different Algos

S4LRU is a more complex algorithm, uses recency and frequency

Edge Cache with Different Algos

Clairvoyant (Bélády) shows we can do much better!

A Hierarchy of CDN Caches

[Figures from Qi Huang's 2013 SOSP Talk]

Purpose

- 1. Reduce cross-country latency
- 2. Reduce Data Center bandwidth

Purpose

1. Minimize I/O-bound operations

Backend

CDN Effectiveness

Content Distribution Networks

- Serve "objects" in web pages, and much more, e.g., video segments
- Caching Algorithms: What do we store on them?
 - FIFO, LRU, LFU, Belady, ... active area of research
- CDN Hierarchy
 - Smaller / more localized caches → bigger / more general caches