BRAIN STROKE **PREDICTION**

AGENDA

01

ABOUT THE DISEASE

02

DATA UNDERSTANDING

03

EXPLORATORY DATA

ANALYSIS

04

DATA PREPARATION

05

MODELING

06

CONCLUSIONS

O1. ABOUT THE DISEASE

ABOUT THE DISEASE

DEFINATION

A stroke is a medical condition in which poor blood flow to the brain or bleeding causes cell death.

MAIN FACTORS

The main risk factor for stroke is high blood pressure. Other risk factors include high blood cholesterol, smoking, obesity, diabetes and end-stage kidney disease

O2. DATA UNDERSTANDING

DATA UNDERSTANDING

- This dataset is used to predict whether a patient is likely to get stroke or not.
- Each row in the data provides relevant information about the patient.
- Dataset has 4981 rows and 11 columns
- No Null values in this data
- No duplicates in the data

DISTRIBUTION OF DATA

We can infer from these graphs that the data is imbalanced

FEATURES AGAINST STROKE

- o Females are more likely to have a stroke
- Marriage people are more likely to have a stroke
- Private work type category are more likely to have a stroke
- o People who have aged more than 40 are more likely to have a stroke

FEATURES AGAINST STROKE (CONT.)

- o "never smoked" category is more likely to have a stroke also the category that does not have hypertension and heart disease is more likely to have a stroke
- People that have low levels of glucose are more likely to have a stroke
- o High levels of BMI can lead to a stroke

WHICH AGE CATEGORY IS MORE LIKELY TO HAVE HYPERTENSION AND HEART DISEASE

 People who have aged more than 40 are more likely to have a hypertension and heart disease

WHICH GENDER IS MORE LIKELY TO HAVE HYPERTENSION AND HEART DISEASE

 Females are more likely to have hypertension and stroke but Males are more likely to have heart disease

WHICH SMOKING CATEGORY IS MORE LIKELY TO HAVE HYPERTENSION AND HEART DISEASE

 An unexpected result of smoking is that the "never smoked" category is more likely to have hypertension and heart disease

EXPLORATORY DATA ANALYSIS

Smoking Category that more likely to have hypertension

Smoking Category that more likely to have heart_disease

DOES HIGH BMI LEVELS AND AVG GLUCOSE LEVELS CAN BE A FACTOR FOR HYPERTENSION AND HEART DISEASE?

- o High levels of BMI can be a factor in hypertension and heart disease
- o People with low and high levels of glucose both can get hypertension and heart disease

IS MARRIAGE A FACTOR FOR HYPERTENSION AND HEART DISEASE?

 Marriage people are more likely to have hypertension and heart disease :-)

DOES WORK TYPE CAN BE A FACTOR FOR HYPERTENSION AND HEART DISEASE

 Private work type category are more likely to have hypertension and heart disease

IS THERE A RELATION BETWEEN BMI AND AGE?

getting old can cause an increase in BMI levels

IS THERE A RELATION BETWEEN BMI AND AVG GLUCOSE LEVEL?

 We can say that Increasing BMI levels can cause an increase of avg glucose levels

O4. DATA PREPARATION

DATA PREPARATION

CHECKING OUTLIERS

 The box plot shows that there are outliers for avg glucose levels and BMI, but these values are real data and we must take them into accounts

CHECK CORRELATION DROP UNNECESSARY FEATURES

 we will take only the features that correlated with stroke like:

- o age
- hypertension
- o heart disease
- avg glucose level
- ever married

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

O5. MODELING

MODELING

ALGORITHMS USED:

- Logistic Regression
- XGB Classifier
- Decision Tree Classifier
- O SVC
- Extra Trees Classifier

LOGISTIC REGRESSION

- ACCURACY: 77.1%
- PERCISION: 75.3%
- o RECALL: 80%
- o F1-SCORE: 77%
- AUC-ROC SCORE: 84.5%

XGB CLASSIFIER

ACCURACY: 96.3%

PERCISION: 93.2%

o RECALL: 100%

o F1-SCORE: 96.4%

AUC-ROC SCORE: 99.3%

DECISION TREE CLASSIFER

ACCURACY: 97.6%

PERCISION: 95.5%

o RECALL: 100%

o F1-SCORE: 97.7%

AUC-ROC SCORE: 97.6%

SVC

- ACCURACY: 77.4%
- PERCISION: 73.2%
- o RECALL: 86.2%
- o F1-SCORE: 79.2%
- O AUC-ROC SCORE: 84.8%

EXTRA TREES CLASSIFIER

- o ACCURACY:98.6%
- PERCISION: 97.3%
- o RECALL: 100%
- o F1-SCORE: 98.6%
- AUC-ROC SCORE: 99.8%

OG. CONCLUSIONS

COMPARING AUC SCORE OF MODELS

Extra Trees Classifier Model performs the best with99.8% AUC score

COMPARING ACCURACY SCORE OF MODELS

 Also we can see that Extra Trees Classifier Model performs the best with 98.6% Accuracy score

THE END

"The model does not misclassify any stroke patient as a non-stroke patient, which is fascinating. We don't want any patient who is suffering from a stroke to be categorized as having a non-stroke and so not receive the necessary medical care."

THANKS THANKS

THANKS!

Do you have any questions?