Jona Koltaj Mentor: prof. dr. Andrej Bauer

26.9.2025

Eliminacija rezov v linearni logiki

Sekvent

Definicija

Naj bodo $A_0, \ldots, A_n, B_0, \ldots, B_m$ logične formule. *Sekvent* je izraz oblike:

$$A_0,\ldots,A_n\Rightarrow B_0,\ldots,B_m$$

Formulam na levi pravimo *predpostavke*, označimo jih z Γ , formulam na desni pa *sklepi*, označimo jih z Δ .

Sekvent

Definicija

Naj bodo $A_0, \ldots, A_n, B_0, \ldots, B_m$ logične formule. *Sekvent* je izraz oblike:

$$A_0,\ldots,A_n\Rightarrow B_0,\ldots,B_m$$

Formulam na levi pravimo *predpostavke*, označimo jih z Γ , formulam na desni pa *sklepi*, označimo jih z Δ .

Opomba

Če Γ in Δ definiramo kot multimnožici nam vrstni red predpostavk in sklepov ni pomemben.

Logična pravila

$$\mathsf{L} \wedge \frac{\mathsf{\Gamma}, \mathsf{A}_0 \Rightarrow \Delta}{\mathsf{\Gamma}, \mathsf{A}_0 \wedge \mathsf{A}_1 \Rightarrow \Delta} \ \ \, \mathsf{ali} \ \ \, \frac{\mathsf{\Gamma}, \mathsf{A}_1 \Rightarrow \Delta}{\mathsf{\Gamma}, \mathsf{A}_0 \wedge \mathsf{A}_1 \Rightarrow \Delta} \, \mathsf{L} \wedge \\$$

$$\frac{\Gamma, A_0 \Rightarrow \Delta}{A_0 \land A_1 \Rightarrow \Delta} \quad \mathsf{ali} \quad \frac{\Gamma, A_1 \Rightarrow \Delta}{\Gamma, A_0 \land A_1 \Rightarrow \Delta}$$

 $\frac{\Gamma \Rightarrow A_0, \Delta \qquad \Gamma \Rightarrow A_1, \Delta}{\Gamma \Rightarrow A_0 \land A_1, \Delta} \mathsf{R} \land$

Strukturna pravila

Pravilo aksioma

Aksiom je sekvent oblike $A \Rightarrow A$. Pravilo aksioma nam pove:

$$A \Rightarrow A \to A$$

Strukturna pravila

Pravilo aksioma

Aksiom je sekvent oblike $A \Rightarrow A$. Pravilo aksioma nam pove:

$$A \Rightarrow A \to A$$

Pravili *ošibitve* in *skrčitve*

$$\begin{array}{cccc} \mathbb{W} & \frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} & \text{ali} & \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow A, \Delta} \mathbb{W} \\ \mathbb{C} & \frac{\Gamma, A, A \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} & \text{ali} & \frac{\Gamma \Rightarrow A, A, \Delta}{\Gamma \Rightarrow A, \Delta} \mathbb{C} \end{array}$$

Linearna Logika

Definicija

V linearni logiki zavržemo pravili skrčitve in ošibitve.

Linearna Logika

Definicija

V *linearni logiki* zavržemo pravili skrčitve in ošibitve.

Veznika
$$\star$$
 (tenzor) ter \sqcap (in)

$$\Gamma, A_0, A_1 \Rightarrow \Delta$$

$$L_{\star} \xrightarrow{\Gamma, A_0, A_1 \Rightarrow \Delta}$$

$$\Gamma, A_0 \cap A_1 \Rightarrow \Delta$$

$$\Gamma \Rightarrow A_0, \Delta \qquad \Gamma \Rightarrow A_1, \Delta$$

$$\mathsf{R}\star \frac{\Gamma \Rightarrow A_0, \Delta}{\Gamma, \Gamma' \Rightarrow A_0 \star A_1, \Delta, \Delta'} \qquad \frac{\Gamma \Rightarrow A_0, \Delta}{\Gamma \Rightarrow A_0, \Delta} \qquad \mathsf{R}\sqcap$$

Eksponenti

Logična pravila za ! (seveda) in ? (zakaj ne)

$$\frac{\Gamma, A \Rightarrow \Delta}{\Gamma, !A \Rightarrow \Delta} L! \qquad \frac{\Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow ?A, \Delta} R?$$

$$\Gamma, !A \Rightarrow \Delta$$
 $\Gamma \Rightarrow ?A$

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma . ! A \Rightarrow \Delta} W! \qquad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow ?A \Delta}$$

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma, !A \Rightarrow \Delta} W! \qquad \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow ?A, \Delta} W?$$

$$\Gamma \downarrow A \downarrow A \Rightarrow \Delta \qquad \Gamma \Rightarrow ?A, \Delta \downarrow \Delta$$

$$\frac{\Gamma, !A, !A \Rightarrow \Delta}{\Gamma, !A \Rightarrow \Delta} C! \qquad \frac{\Gamma \Rightarrow ?A, ?A, \Delta}{\Gamma \Rightarrow ?A, \Delta} C?$$

$$\frac{!\Gamma \Rightarrow A, ?\Delta}{!\Gamma \Rightarrow !A, ?\Delta} R! \qquad \frac{!\Gamma, A \Rightarrow ?\Delta}{!\Gamma, ?A \Rightarrow ?\Delta} R?$$

$$\Gamma, !A \Rightarrow \Delta$$
 $\Gamma \Rightarrow ?A, \Delta$

$$\frac{\Gamma, !A, !A \Rightarrow \Delta}{\Gamma, !A \Rightarrow \Delta} C! \qquad \frac{\Gamma \Rightarrow ?A, ?A}{\Gamma \Rightarrow ?A, A}$$

Rez

Logično pravilo reza

$$\frac{\Gamma, A \Rightarrow \Delta \qquad \Gamma' \Rightarrow A, \Delta'}{\Gamma, \Gamma' \Rightarrow \Delta, \Delta'} \ \mathsf{Rez}$$

Rez

Logično pravilo reza

$$\frac{\Gamma, A \Rightarrow \Delta \qquad \Gamma' \Rightarrow A, \Delta'}{\Gamma, \Gamma' \Rightarrow \Delta, \Delta'} \text{ Rez}$$

Izrek

Izrek o *eliminaciji reza* nam pove, da lahko vsak sekvent, izpeljan z uporabo reza, izpeljemo tudi brez uporabe reza.

Indukcija

Zunanja indukcija

Začnemo z indukcijo na številu rezov v drevesu izpeljave. Če rezov ni, smo opravili, drugače si izberemo vrhnjega.

Indukcija

Zunanja indukcija

Začnemo z indukcijo na številu rezov v drevesu izpeljave. Če rezov ni, smo opravili, drugače si izberemo vrhnjega.

Notranja indukcija

Znotraj zgornjega koraka indukcije delamo indukcijo na stopnji reza. (Pod)drevo izpeljave preobrazimo tako da vsebuje rez nižje stopnje.

Indukcija

Zunanja indukcija

Začnemo z indukcijo na številu rezov v drevesu izpeljave. Če rezov ni, smo opravili, drugače si izberemo vrhnjega.

Notranja indukcija

Znotraj zgornjega koraka indukcije delamo indukcijo na stopnji reza. (Pod)drevo izpeljave preobrazimo tako da vsebuje rez nižje stopnje.

Definicija

Stopnja reza je par $(\mathfrak{R},\mathfrak{h})$, kjer je \mathfrak{R} rang rezane formule, \mathfrak{h} pa višina drevesa, ki se konča z danim rezom. Stopnje so urejene leksikografsko.

Eliminacija glavnega reza

Glavni rez veznika □

$$\begin{array}{c|c}
\mathcal{D}_{0} & \mathcal{D}_{1} & \mathcal{D}_{2} \\
\hline
\Gamma, A_{0} \Rightarrow \Delta & \frac{\Gamma' \Rightarrow A_{0}, \Delta' & \Gamma' \Rightarrow A_{1}, \Delta'}{\Gamma, A_{0} \sqcap A_{1} \Rightarrow \Delta} & \frac{\Gamma' \Rightarrow A_{0}, \Delta' & \Gamma' \Rightarrow A_{1}, \Delta'}{\Gamma' \Rightarrow A_{0} \sqcap A_{1}, \Delta'} \\
\hline
\downarrow & \downarrow \\
\frac{\mathcal{D}_{0} & \mathcal{D}_{1}}{\Gamma, A_{0} \Rightarrow \Delta & \Gamma' \Rightarrow A_{0}, \Delta'} \\
\hline
\Gamma, \Gamma' \Rightarrow \Delta, \Delta'
\end{array}$$
Rez

Eliminacija reza, ki ni glaven

Rez formule C

$$\begin{array}{c}
\mathcal{D}_{0} \\
 & \Gamma, A_{0} \Rightarrow C, \Delta \\
\hline
\Gamma, A_{0} \sqcap A_{1} \Rightarrow C, \Delta \\
\hline
\Gamma, \Gamma', A_{0} \sqcap A_{1} \Rightarrow \Delta, \Delta'
\end{array}$$
Rez
$$\begin{array}{c}
\downarrow \\
\mathcal{D}_{0} \\
\hline
\Gamma, A_{0} \Rightarrow C, \Delta \\
\hline
\Gamma, A_{0} \Rightarrow C, \Delta \\
\hline
\Gamma, \Gamma', A_{0} \Rightarrow \Delta, \Delta' \\
\hline
\Gamma, \Gamma', A_{0} \Rightarrow \Delta, \Delta'
\end{array}$$
Rez

Eliminacija glavnega reza eksponenta

Opomba

Pri eliminaciji glavnega reza z eksponenti (specifično !) imamo tri možnosti; pare (C!,R!), (L!,R!) in (W!,R!).

Eliminacija glavnega reza eksponenta

Opomba

Pri eliminaciji glavnega reza z eksponenti (specifično !) imamo tri možnosti; pare (C!,R!), (L!,R!) in (W!,R!).

Posplošeno pravilo reza

$$\frac{\Gamma, (!A)^n \Rightarrow \Delta \qquad \Gamma' \Rightarrow !A, \Delta'}{\Gamma, \Gamma' \Rightarrow \Delta, \Delta'} \operatorname{Rez!}_n$$

Eliminacija glavnega reza eksponentov

Primer (C!,R!)

$$\begin{array}{c}
\mathcal{D}_{0} & \mathcal{D}_{1} \\
\frac{\Gamma, (!A)^{n+1} \Rightarrow \Delta}{\Gamma, (!A)^{n} \Rightarrow \Delta} & \frac{!\Gamma' \Rightarrow A, ?\Delta'}{!\Gamma' \Rightarrow !A, ?\Delta'} \underset{\mathsf{Rez!}_{n}}{\mathsf{R!}} \\
\frac{\Gamma, !\Gamma' \Rightarrow \Delta, ?\Delta'}{\Gamma, !\Gamma' \Rightarrow \Delta, ?\Delta'} & \downarrow \\
\frac{\mathcal{D}_{0}}{\Gamma, (!A)^{n+1} \Rightarrow \Delta} & \frac{!\Gamma' \Rightarrow A, ?\Delta'}{!\Gamma' \Rightarrow !A, ?\Delta'} \underset{\mathsf{Rez!}_{n+1}}{\mathsf{R!}}
\end{array}$$

Konec

HVALA ZA POZORNOST:)