Primeira Prova de Álgebra Linear 1 - 08.013-6 Turma C 26-09-2017

Nome:______ RA: _____

- 1. Seja $\mathbb{V}=\{x\in\mathbb{R}:\ x>0\}$. Definimos a soma de dois elementos u e v de \mathbb{V} como sendo a multiplicação usual de números reais (por exemplo, se u=2 e v=9, então $u+v:=2\cdot 9=18$). Definimos também o produto de um número real α por um elemento v de \mathbb{V} como sendo v^{α} (por exemplo, se $\alpha=-\frac{1}{2}$ e v=9, temos que $\alpha\cdot v:=9^{-\frac{1}{2}}=\frac{1}{3}$). \mathbb{V} equipado com essas operações é um espaço vetorial sobre \mathbb{R} .
 - a. Determine quem é o vetor nulo $0_{\mathbb{V}}$. (justifique sua resposta)

Temos que $0_{\mathbb{V}} = 1$ pois, dado $v \in \mathbb{V}$ temos que $v + 1 := v \cdot 1 = v$ para todo $v \in \mathbb{V}$.

b. Determine uma base para V. (justifique sua resposta)

Temos que $\{2\}$ é uma base para \mathbb{V} pois,

Se $\alpha \cdot 2 = 0_{\mathbb{V}}$ então, $2^{\alpha} = 1$, de onde segue que $\alpha \cdot \ln(2) = \ln(1) = 0$ logo, $\alpha = 0$. Assim, $\{2\}$ é L.I.

Analogamente, seja $v \in \mathbb{V}$. Temos que $v = 2^{\alpha}$ com $\alpha = \log_2(v)$. Portanto, $v = \alpha \cdot 2$. Assim, $\{2\}$ gera o espaço \mathbb{V} .

- 2. Seja $\mathbb{W} = \{ \begin{pmatrix} 2a & a+2b \\ 0 & a-b \end{pmatrix} : a, b \in \mathbb{R} \} \subseteq M_{\mathbb{R}}(2,2).$
 - a. Mostre que W é subespaço de V;

Temos que,

1)
$$0_{M_{\mathbb{R}}(2,2)} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2a & a+2b \\ 0 & a-b \end{pmatrix}$$
 com $a = b = 0$. Portanto, $0_{M_{\mathbb{R}}(2,2)} \in \mathbb{W}$.

2) Dados
$$A = \begin{pmatrix} 2a_1 & a_1 + 2b_1 \\ 0 & a_1 - b_1 \end{pmatrix}, B = \begin{pmatrix} 2a_2 & a_2 + 2b_2 \\ 0 & a_2 - b_2 \end{pmatrix} \in \mathbb{W}$$
 temos que,

$$A + B = \begin{pmatrix} 2a_1 & a_1 + 2b_1 \\ 0 & a_1 - b_1 \end{pmatrix} + \begin{pmatrix} 2a_2 & a_2 + 2b_2 \\ 0 & a_2 - b_2 \end{pmatrix} = \begin{pmatrix} 2a_1 + 2a_2 & (a_1 + 2b_1) + (a_2 + 2b_2) \\ 0 + 0 & (a_1 - b_1) + (a_2 - b_2) \end{pmatrix} = \begin{pmatrix} 2(a_1 + a_2) & (a_1 + a_2) + 2(b_1 + b_2) \\ 0 & (a_1 + a_2) - (b_1 + b_2) \end{pmatrix} = \begin{pmatrix} 2a & a + 2b \\ 0 & a - b \end{pmatrix}$$

com $a = a_1 + a_2$ e $b = b_1 + b_2$. Portanto, $A + B \in \mathbb{W}$.

3) Dados
$$A = \begin{pmatrix} 2a_1 & a_1 + 2b_1 \\ 0 & a_1 - b_1 \end{pmatrix} \in \mathbb{W} \text{ e } \alpha \in \mathbb{R} \text{ temos que,}$$

$$\alpha \cdot A = \alpha \cdot \begin{pmatrix} 2a_1 & a_1 + 2b_1 \\ 0 & a_1 - b_1 \end{pmatrix} = \begin{pmatrix} \alpha \cdot 2a_1 & \alpha \cdot (a_1 + 2b_1) \\ \alpha \cdot 0 & \alpha \cdot (a_1 - b_1) \end{pmatrix} = \begin{pmatrix} 2a & a + 2b \\ 0 & a - b \end{pmatrix},$$

com $a = \alpha \cdot a_1$ e $b = \alpha \cdot b_1$. Portanto, $\alpha \cdot A \in \mathbb{W}$.

Segue de 1), 2) e 3) que W é subespaço de $M_{\mathbb{R}}(2,2)$.

b.
$$\begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix} \in \mathbb{W}$$
? (justifique)

Temos que
$$M=\begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix}=\begin{pmatrix} 2a & a+2b \\ 0 & a-b \end{pmatrix}$$
, com $a=0$ e $b=-1$. Logo, $M\in\mathbb{W}$.

c.
$$\begin{pmatrix} 0 & 2 \\ 0 & 3 \end{pmatrix} \in \mathbb{W}$$
? (justifique)

Para que a matriz $N = \begin{pmatrix} 0 & 2 \\ 0 & 3 \end{pmatrix}$ pertença a W, devem existir $a, b \in \mathbb{R}$ tais que,

$$\begin{pmatrix} 0 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 2a & a+2b \\ 0 & a-b \end{pmatrix}$$

ou seja, $2a=0,\ a+2b=2$ e a-b=3. Devemos ter então que, $a=0,\ b=1$ e b=-3, mas isso é impossível pois $1\neq -3.$ Logo, $N\notin \mathbb{W}.$

d. Determine a dimensão de W. (justifique)

Dado $A = \begin{pmatrix} 2a & a+2b \\ 0 & a-b \end{pmatrix} \in \mathbb{W}$ temos que,

$$A = \begin{pmatrix} 2a & a \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & 2b \\ 0 & -b \end{pmatrix} = a \cdot \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} + b \cdot \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix}$$

Logo,
$$\mathbb{W} = \begin{bmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix} \end{bmatrix}$$

Temos também que $E = \left\{ \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix} \right\}$ é L.I. pois, sejam $\alpha, \beta \in \mathbb{R}$ tais que,

$$\alpha \cdot \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} + \beta \cdot \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

então, $2\alpha=0,\,\alpha+2\beta=0$ e $\alpha-\beta=0.$ Mas disso segue que $\alpha=\beta=0.$

Desta forma, como E é L.I. e gera \mathbb{W} segue que E é uma base para \mathbb{W} . Logo, $\dim(\mathbb{W}) = 2$.

3. Sejam $E = \{(1,0),(0,1)\}, F = \{(-1,1),(1,1)\}, G = \{(\sqrt{3},1),(\sqrt{3},-1)\} \in H = \{(2,0),(0,2)\}$ bases ordenadas de \mathbb{R}^2 .

2

a. Determine as matrizes de mudança de base,

i)
$$[I]_E^F$$
; $[I]_E^F = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$

ii)
$$[I]_F^E$$
; $[I]_F^E = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

iii)
$$[I]_G^E$$
; $[I]_G^E = \begin{pmatrix} \frac{1}{2\sqrt{3}} & \frac{1}{2} \\ \frac{1}{2\sqrt{3}} & -\frac{1}{2} \end{pmatrix}$

iv)
$$[I]_H^E$$
. $[I]_H^E = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$

b. Determine as coordenadas de v=(3,-2) em relação às bases,

i)
$$E; [v]_E = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

ii)
$$F$$
; $[v]_F = [I]_F^E \cdot [v]_E = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} -\frac{5}{2} \\ \frac{1}{2} \end{pmatrix}$

iii)
$$G$$
; $[v]_G = [I]_G^E \cdot [v]_E = \begin{pmatrix} \frac{1}{2\sqrt{3}} & \frac{1}{2} \\ \frac{1}{2\sqrt{3}} & -\frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}-2}{2} \\ \frac{\sqrt{3}+2}{2} \end{pmatrix}$

iv)
$$H. [v]_H = [I]_H^E \cdot [v]_E = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ -1 \end{pmatrix}$$

c. As coordenadas de um vetor v em relação à base F são dadas por $[v]_F = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$. Quais são as coordenadas de v em relação à base,

i)
$$E; [v]_E = [I]_E^F \cdot [v]_F = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 0 \end{pmatrix} = \begin{pmatrix} -4 \\ 4 \end{pmatrix}$$

ii)
$$G$$
; $[v]_G = [I]_G^E \cdot [v]_E = \begin{pmatrix} \frac{1}{2\sqrt{3}} & \frac{1}{2} \\ \frac{1}{2\sqrt{3}} & -\frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} -4 \\ 4 \end{pmatrix} = \begin{pmatrix} -\frac{2}{\sqrt{3}} + 2 \\ -\frac{2}{\sqrt{3}} - 2 \end{pmatrix}$

iii)
$$H. [v]_H = [I]_H^E \cdot [v]_E = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} -4 \\ 4 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$$

4. Seja V um espaço vetorial.

a. Mostre que, se $\{v_1, v_2, \dots, v_n\}$ é um conjunto LD de \mathbb{V} então $\{v_1, v_2, \dots, v_n, w\}$ é também um conjunto LD de \mathbb{V} , qualquer que seja o vetor $w \in \mathbb{V}$;

Como $\{v_1, v_2, \dots, v_n\}$ é LD, existem números $\alpha_1, \alpha_2, \dots, \alpha_n$ não todos nulos, tais que

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = 0_{\mathbb{V}}$$

Assim, temos que,

$$\beta_1 v_1 + \beta_2 v_2 + \dots + \beta_n v_n + \beta_{n+1} w = 0_{\mathbb{V}}$$

sendo $\beta_1 = \alpha_1, \ \beta_2 = \alpha_2, \dots, \ \beta_n = \alpha_n$ e $\beta_{n+1} = 0$. Como os números $\beta_1, \beta_2, \dots, \beta_{n+1}$ não são todos nulos, segue que $\{v_1, v_2, \dots, v_n, w\}$ é LD.

b. Mostre que, se $\beta = \{v_1, v_2, \dots, v_n\}$ é LI então $\beta - \{v_j\} = \{v_1, v_2, \dots, v_{j-1}, v_{j+1}, \dots, v_n\}$ é também um conjunto LI de \mathbb{V} , qualquer que seja $j = 1, 2, \dots, n$.

Se $\beta - \{v_j\}$ não é LI, então $\beta - \{v_j\}$ é LD. Segue então do item a) (tomando $w = v_j$) que β é LD, o que é um absurdo, pois por hipótese, β é LI. Portanto, conclui-se que $\beta - \{v_j\}$ é LI qualquer que seja $j = 1, 2, 3, \ldots, n$.

• Demonstração alternativa (direta)

Suponha que $\beta = \{v_1, v_2, \dots, v_n\}$ é LI e suponha que

$$\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_{j-1} v_{j-1} + \alpha_{j+1} v_{j+1} + \dots + \alpha_n v_n = O_{\mathbb{V}}$$

segue então que, $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_{j-1} v_{j-1} + 0 v_j + \alpha_{j+1} v_{j+1} + \cdots + \alpha_n v_n = O_{\mathbb{V}}$, ou seja, fazendo $\beta_1 = \alpha_1, \beta_2 = \alpha_2, \cdots, \beta_{j-1} = \alpha_{j-1}, \beta_j = 0, \beta_{j+1} = \alpha_{j+1}, \ldots, \beta_n = \alpha_n$ teremos

$$\beta_1 v_1 + \beta_2 v_2 + \dots + \beta_{j-1} v_{j-1} + \beta_j v_j + \beta_{j+1} v_{j+1} + \dots + \beta_n v_n = O_{\mathbb{V}}$$

como $\beta = \{v_1, v_2, \dots, v_n\}$ é LI, conclui-se que $\beta_1 = \beta_2 = \dots = \beta_n = 0$, ou seja, $\alpha_1 = \alpha_2 = \dots = \alpha_{j-1} = \alpha_{j+1} = \dots = \alpha_n = 0$. Logo, o conjunto $\beta - \{v_j\}$ é LI.