

Convex Sets

• $C \subseteq R^n$ is convex $f: C \rightarrow R$,

if $\lambda x + (1 - \lambda)y \in C$ for any $x, y \in C$ and $0 \le \lambda \le 1$.

that is, a set is convex if the line connecting any two points in the set is entirely inside the set

Convexity and Gradient Descent methods

 $f: C \rightarrow R$ is convex

 $f(x_0) \leq f(x)$ if dom (f) (the domain of f) is a convex set, and if $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ for any $x, y \in dom(f)$ and $0 \le \lambda \le 1$.

that is, the line connecting any two points on the graph of the function stays above the graph.

^{1.} Nick Henderson et al., Convex set functions and Problems , 2019.

 $f\left(\lambda^{x_0} + (1-\lambda)^{y}\right) \gtrsim \lambda f(x) + (1-\lambda) f(x)$ Concave functions f, g convex fync J+9 would be conver fine of f(x) would be come Max(f(x)g(x)) would de also corver

Convexity and Gradient Descent methods

• $f: C \rightarrow R$ is convex

if dom (f) (the domain of f) is a convex set,

and if $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$ for any $x, y \in dom(f)$ and $0 \le t \le 1$.

that is, the line connecting any two points on the graph of the function stays above the graph.

1. Nick Henderson et al., $\,$ Convex set functions and Problems $\,$, 2019 .

More examples of convex functions

Convexity and Gradient Descent methods

• $f: C \rightarrow R$ is concave

if dom (f) (the domain of f) is a convex set, and if $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$ for any $x, y \in dom(f)$ and $0 \le \lambda \le 1$. that is, the line connecting any two points on the graph of the function stays above the graph.

1

Properties of convex functions

- if f, $g \to R$ are convex, then f+g is also a convex function.
- if $f: C \rightarrow R$ is convex and $\alpha \ge 0$, then αf is also a convex function.
- Every linear function is convex function.
- if f, $g \to R$ are convex, then max(f,g) are also a convex function.

Gradient and derivatives

• For a function $f(x) = f(x_1, x_2,...,x_n)$, and a unit vector $u = (u_1, u_2,...,u_n)$, then the directional derivative is defined

as
$$\nabla_u f(x) = \lim_{h \to 0} \left(\frac{f(x+hu)-f(x)}{h} \right)$$
.

• f(x) is differentiable implies that $\nabla_u f(x)$ is well-defined for all x and u.

•
$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial xn} \end{bmatrix}$$
 and the directional derivative of f at point x, for any direction (unit vector) u can be obtained as $\nabla_u f(x) = u^T \nabla f$.

Gradient and convex function

Consider the optimization problem $\min_x f(x)$, where $f: \mathbb{R}^n \to \mathbb{R}$ is convex and smooth, then the necessary and sufficient condition for optimal solution x_0 is $\nabla f(x) = 0$ at $x = x_0$.

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ \end{bmatrix}$$

Find the direction of such that ods thange in the function is maximum

 $\int d^{T} \nabla f(x)$

 $d = \frac{\nabla f(x)}{1/\nabla f(x)}$

d= - \(\frac{11 \nabla f(\times)11}{11 \nabla f(\times)11}\)

direction of ascent

direction of descent

Gradient descent algorithm

An iterative algorithm

The negative Gradient direction is the direction of steepest descent.

Algorithm:- Gradient descent method

Initialize
$$x^0 = x^{\text{start}} \in \mathbb{R}^n$$

repeat $x^{(k+1)} := x^{(k)} - \gamma_k \nabla f(x^{(k)})$.

Until $|| \nabla f(x^{(k)}) || \le \varepsilon$

