Assignment 1: CS 663, Fall 2021

Question 3

August 15, 2021

• Suppose an image is subjected to histogram equalization. Prove that another round of histogram equalization will produce the exact same result as the first round. [15 points]

Answer:

Let L be the number of intensity levels in the input image I_1 . Let r_k be the intensity values of the pixels in the image. Let R be the random variable with PDF $P_R(r)$ from which the values of r_k are taken. We know that, from histogram equalization, the equalized image has intensity values s_k given by:

$$s_k = T(r_k) = (L-1) \int_0^{r_k} P_R(r) dr$$
 (1)

Now, let S be the random variable from which s_k is taken. From above:

$$P_S(s_k) = \frac{P_R(r_k)}{|T'(r_k)|} = \frac{P_R(r_k)}{(L-1)P_R(r_k)}$$

$$= \frac{1}{(L-1)}$$
(2)

(When
$$x \to 0$$
, $\lim_{x \to 0} \frac{x}{(L-1)x} = \frac{1}{L-1}$.)

Clearly the random variable S is U(0, L - 1). Let the equalized image be I_2 . If we equalize I_2 using the above procedure, assuming m_k to be the new intensity values, we get:

$$m_{k} = T(s_{k}) = (L-1) \int_{0}^{s_{k}} P_{S}(s) dr$$

$$= (L-1) \int_{0}^{s_{k}} \frac{1}{(L-1)} dr$$

$$= (L-1) \frac{s_{k}}{(L-1)}$$

$$= s_{k}$$
(3)

Therefore, we get the intensity values after equalization, of the equalized image (m_k) , equal to that of the equalized image, i.e., $m_k = s_k$. Therefore another round of histogram equalization will produce the exact same result as the first round.

Hence Proved.