COMP SCI 7411 Event Driven Computing Practice 2 Plan

Tinson Lai a1812422

1 ϵ -NFA

The complete ϵ -NFA for RegEx /ba+a | (bc) +/ is

Figure 1: ϵ -NFA

which contains several unnecessary ϵ -transitions representing concatenation. By removing those ϵ -transitions, the ϵ becomes

Figure 2: Simplified ϵ -NFA

and the table is

state	$ \epsilon $	a	b	c
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\{q_1, q_5\}$	Ø	Ø	Ø
q_1	Ø	Ø	$\{q_2\}$	Ø
q_2	Ø	$\{q_3\}$	Ø	Ø
q_3	$\{q_2\}$	$\{q_4\}$	Ø	Ø
q_4	$\{q_8\}$	Ø	Ø	Ø
q_5	Ø	Ø	$\{q_6\}$	Ø
q_6	Ø	Ø	Ø	$\{q_7\}$
q_7	$\{q_5, q_8\}$	Ø	Ø	Ø
$*q_8$	Ø	Ø	Ø	Ø

Table 1: ϵ -NFA Table

2 NFA

First, we compute the ϵ -closure table

state	ϵ -closure
$\rightarrow q_0$	$\{q_0,q_1,q_5\}$
q_1	$\{q_1\}$
q_2	$\{q_2\}$
q_3	$\{q_2,q_3\}$
$*q_4$	$\{q_4, q_8\}$
q_5	$\{q_5\}$
q_6	$\{q_6\}$
$*q_7$	$\{q_5,q_7,q_8\}$
$*q_8$	$\{q_8\}$

Table 2: ϵ -closure

By lazy evaluation, we can compute the following NFA table

state	a	b	c
$\rightarrow q_0$	Ø	$\{q_2, q_6\}$	Ø
q_1	Ø	$\{q_2\}$	Ø
q_2	$\{q_3\}$	Ø	Ø
q_3	$\{q_3,q_4\}$	Ø	Ø
$*q_4$	Ø	Ø	Ø
q_5	Ø	$\{q_6\}$	Ø
q_6	Ø	Ø	$\{q_7\}$
$*q_7$	Ø	$\{q_6\}$	Ø
$*q_8$	Ø	Ø	Ø

Table 3: NFA Table

Thus we can draw out the NFA

Figure 3: NFA

We can safely remove q_1 and q_5 which are source vertices but not initial states as well as the independent state q_8 . Thus the simplified NFA will be

Figure 4: Simplified NFA

3 DFA

The table for DFA converted from the NFA below is

state	a	b	c
$\longrightarrow \{q_0\}$	Ø	$\{q_2, q_6\}$	Ø
$\{q_2, q_6\}$	$\{q_3\}$	Ø	$\{q_7\}$
$\{q_3\}$	$\{q_3,q_4\}$	Ø	Ø
$*\{q_7\}$	Ø	$\{q_6\}$	Ø
$*\{q_3,q_4\}$	$\{q_3,q_4\}$	Ø	Ø
$\{q_6\}$	Ø	Ø	$\{q_7\}$

Table 4: DFA Table

Thus the DFA is

Figure 5: DFA

which kind of rearrange and simplify the original RegEx.