Research & Coordination Activity

N. Vianello

May 21, 2012

Personal research interest

- Actively involved in fusion plasma science since the M.Sci. thesis in 1999
- Personal research interests can be summarized in four main macro-areas
 - (A) Flows & Turbulence induced transport in magnetized plasmas
 - (B) Emerging of electromagnetic structures
 - (C) 3D physics and helical plasmas
 - (D) Statistical characterization of electromagnetic fluctuations

Flows & Turbulence induced transport

▶ The principal results may be summarized as follows:

Α

Flows & Turbulence induced transport

▶ The principal results may be summarized as follows:

(i) Role of electrostatic Reynolds stress in momentum generation in RFPs, including first measurements of non-linear momentum flux $\langle \tilde{v}_{\perp} \tilde{v}_{r} \tilde{n} \rangle$

PRL 94 p. 135001, NF 45 p. 761, PPCF 48 p. S193

Flows & Turbulence induced transport

▶ The principal results may be summarized as follows:

(i) Role of electrostatic Reynolds stress in momentum generation in RFPs, including first measurements of non-linear momentum flux $\langle \tilde{v}_{\perp} \tilde{v}_{r} \tilde{n} \rangle$

(ii) Transport reduction induced by active modification of sheared flow

PRL 94 p. 135001, NF 45 p. 761, PPCF 48 p. S193

 Complete characterization of coherent structures responsible for intermittency

Coherent structures characterization

 Complete characterization of coherent structures responsible for intermittency Evaluation of transport contribution due to coherent structures

PRL 93 p.215003, PoP 9 p.4110

 Measurements of parallel plasma current associated to blobs & filaments in different experiments with different magnetic configuration

 First direct measurements of current filaments associated to plasma blob identified as DKA vortex PRL 102 2009, NF 50 2010

RFX-mod Reversed Field Pinch

 Measurements of parallel plasma current associated to blobs & filaments in different experiments with different magnetic configuration

ASDEX-Upgrade Tokamak

 First direct measurements of current associated to type-I filaments (PRL 106, 2011)

 Measurements of parallel plasma current associated to blobs & filaments in different experiments with different magnetic configuration

 First direct 2D map of parallel current associated to an interchange-induced plasma blob (PRL 106, 2011)

 Collaboration established to extend studies of current filaments to other devices, namely TJ-II stellarator, with a probe which combines vorticity and current measurements and EAST tokamak for the studies of ELMs

TJ-II Stellarator

EAST-Tokamak

 Observation and characterization of spontaneous helical plasmas developing in high current Reversed Field Pinch operation Nat. Phys. 5 pp. 570

With the appearence of a transport barrier located in the region of a local maxima of q value

Ambipolar electric field builds up as a response to the magnetic perturbation causing a perpendicular flow with the same periodicity of the helical perturbation

- Similar phenomenology appears in High density regime
- In this case, radiative collapse taused by density accumulation taused by perpendicular flow rayversion
- Accumulation point coincides with the X-point of the magnetic of the magnetic

 RFX-mod scientific program is coordinate by Task Force Leaders which determines priorities among experimental proposals in collaborations with Scientific Coordinators

- ▶ RFX-mod scientific program is coordinate by Task Force Leaders which determines priorities among experimental proposals in collaborations with Scientific Coordinators
- Scientific objectives are determined on the basis of experimental proposals (around 100 experimental proposals for each year)

- RFX-mod scientific program is coordinate by Task Force Leaders which determines priorities among experimental proposals in collaborations with Scientific Coordinators
- Scientific objectives are determined on the basis of experimental proposals (around 100 experimental proposals for each year)
- Experimental time appointed on the basis of scientific priorities and machine condition in order to optimize the experimental time

- RFX-mod scientific program is coordinate by Task Force Leaders which determines priorities among experimental proposals in collaborations with Scientific Coordinators
- Scientific objectives are determined on the basis of experimental proposals (around 100 experimental proposals for each year)
- Experimental time appointed on the basis of scientific priorities and machine condition in order to optimize the experimental time
- ▶ I've been appointed task force leaders for two subsequent years:

- RFX-mod scientific program is coordinate by Task Force Leaders which determines priorities among experimental proposals in collaborations with Scientific Coordinators
- Scientific objectives are determined on the basis of experimental proposals (around 100 experimental proposals for each year)
- Experimental time appointed on the basis of scientific priorities and machine condition in order to optimize the experimental time
- ▶ I've been appointed task force leaders for two subsequent years:
 - 2009 TFL for task force *Particle, momentum and energy transport*

- RFX-mod scientific program is coordinate by Task Force Leaders which determines priorities among experimental proposals in collaborations with Scientific Coordinators
- Scientific objectives are determined on the basis of experimental proposals (around 100 experimental proposals for each year)
- Experimental time appointed on the basis of scientific priorities and machine condition in order to optimize the experimental time
- ▶ I've been appointed task force leaders for two subsequent years:
 - 2009 TFL for task force *Particle, momentum and energy transport*
 - 2010 TFL for task force *Physics integration for high performance RFP*

▶ In 2011 I've been appointed as coordinator of the working group 3D field effects in edge and SOL and diagnostic development for the Transport-topical group

- ▶ In 2011 I've been appointed as coordinator of the working group 3D field effects in edge and SOL and diagnostic development for the Transport-topical group
- Monitoring and coordination of activities on the topics highlighted coming from 11 different European Associations

- In 2011 I've been appointed as coordinator of the working group 3D field effects in edge and SOL and diagnostic development for the Transport-topical group
- Monitoring and coordination of activities on the topics highlighted coming from 11 different European Associations
- Discussion stimulated through remote meeting and shared wiki page information

- In 2011 I've been appointed as coordinator of the working group 3D field effects in edge and SOL and diagnostic development for the Transport-topical group
- Monitoring and coordination of activities on the topics highlighted coming from 11 different European Associations
- Discussion stimulated through remote meeting and shared wiki page information
- Monitor of the activities exposed to the STAC committee