CSCB63 – Design and Analysis of Data Structures

Anya Tafliovich¹

¹with huge thanks to Anna Bretscher and Albert Lai

Weight-balanced Binary Search Trees

Another way to keep a BST balanced: a <u>weight-balanced</u> BST. Idea: at every node n:

$$\frac{1}{3} \le \frac{\textit{size}(\textit{n.left}) + 1}{\textit{size}(\textit{n.right}) + 1} \le 3$$

or

$$\frac{1}{3} \le \frac{weight(n.left)}{weight(n.right)} \le 3$$

where weight(n) = size(n) + 1

Equivalently,

$$weight(n.left) \le weight(n.right) \times 3$$

 $weight(n.right) \le weight(n.left) \times 3$

Q. How should we augment the tree?

A. Add a size field to each node.

WBT example

balanced

unbalanced: node (51)

Rotations again!

Case 1: v is right-heavy; single counter-clockwise rotation works

 \mathbf{Q} . When exactly is v right heavy?

A. $weight(x) > weight(R) \times 3$, i.e. $weight(v.right) > weight(v.left) \times 3$

Case 1: v is right-heavy; single counter-clockwise rotation works

 \mathbf{Q} . For a single rotation to work, what should be true about x?

A. $weight(S) < weight(T) \times 2$, i.e.

 $weight(v.right.left) < weight(v.right.right) \times 2$

Show why $weight(x.left) < weight(x.right) \times 2$ is a sufficient condition.

v is right-heavy, so either

- a node was added to x to cause imbalance. or
- a node was removed from R to cause imbalance

Assumptions:

$$s+1 < 2(t+1)$$
 assumption $3(r+1) < s+t+2$ v is right-heavy

Before addition:

$$r+1 \leq 3(s+t+1)$$
 and $s+t+1 \leq 3(r+1)$ v was balanced $t \leq 3(s+1)$ and $s+1 \leq 3t$ x was balanced

Show that after addition:

$$r+s+2 \leq 3(t+1)$$
 and $t+1 \leq 3(r+s+2)$ x is balabced $r+1 \leq 3(s+1)$ and $s+1 \leq 3(r+1)$ v is balabced

Show why $weight(x.left) < weight(x.right) \times 2$ is a sufficient condition.

v is right-heavy, so either

- a node was added to x to cause imbalance. or
- a node was removed from R to cause imbalance

Assumptions:

$$s+1 < 2(t+1)$$
 assumption $3(r+1) < s+t+2$ v is right-heavy

Before removal:

$$r+2 \leq 3(s+t+2)$$
 and $s+t+2 \leq 3(r+2)$ v was balanced $s+1 \leq 3(t+1)$ and $t+1 \leq 3(s+1)$ x was balanced

Show that after removal:

$$r+s+2 \leq 3(t+1)$$
 and $t+1 \leq 3(r+s+2)$ x is balabced $r+1 \leq 3(s+1)$ and $s+1 \leq 3(r+1)$ v is balabced

What if

- $weight(v.right) > weight(v.left) \times 3$ and
- weight(v.right.left) ≥ weight(v.right.right) × 2?

Double rotation.

ç

Case 2: *v* is right-heavy; need a double rotation: clockwise then counter-clockwise

- $weight(x) > weight(R) \times 3$
- $weight(S) \ge weight(T) \times 2$

- S was too big: we split it
- convince yourself that v, x, and w are balanced (even longer proof)

Case 3: v is left-heavy; single clockwise rotation works

- $weight(v.left) > weight(v.right) \times 3$ and
- $weight(x.right) < weight(x.left) \times 2$
- argument is symmetric to Case 1

Case 4: *v* is left-heavy; need a double rotation: counter-clockwise then clockwise

- $weight(v.left) > weight(v.right) \times 3$ and
- $weight(x.right) \ge weight(x.left) \times 2$
- argument is symmetric to Case 2

For each node v on the path from new/deleted node back to root:

```
if weight(v.right) > weight(v.left) * 3:
  let x = v.right
  if weight(x.left) < weight(x.right) * 2:</pre>
    single rotation: counter-clockwise
  else:
    double rotation: clockwise then counter-clockwise
else if weight(v.left) > weight(v.right) * 3:
  let x = v.left
  if weight(x.right) < weight(x.left) * 2:
    single rotation: clockwise
  else:
    double rotation: counter-clockwise then clockwise
else.
  no rotation
```

WBT insert

Assuming the height of the weight-balanced tree is $O(\log n)$,

- 1. insert as in BST
- 2. check and fix balance, update size from parent of new node up to root
- complexity: $\Theta(\log n)$

WBT delete

Assuming the height of the weight-balanced tree is $\mathcal{O}(\log n)$,

- 1. find which node has the key, call it w
 - complexity: $\Theta(\log n)$ time
- 2. if w is a leaf, remove it
 - complexity: $\Theta(1)$ time
- 3. if w has one child, w's parent adopts that child
 - complexity: $\Theta(1)$ time
- 4. else:
 - 4.1 go to successor node (complexity: $\Theta(\log n)$ time)
 - 4.2 replace key of node with successor key
 - complexity: $\Theta(1)$ time
 - 4.3 successor's parent adopts successor's right child
 - complexity: $\Theta(1)$ time
 - 4.4 from adopter node to root: check and fix balance, update size
 - complexity: $\Theta(\log n)$ time

WBT union

Recall the algorithm to compute union of AVL trees T_1 and T_2 :

```
if T_1 == nil:
  return T_2
if T_2 == nil:
  return T_1
k = T_2.key
(L, R) = split(T_1, k)
L' = union(L, T_2.left)
R' = union(R, T_2.right)
return join(L', k, R')
```

What needs to change for WBTs?

WBT union

Need to change the algorithm for join(L, k, G):

```
if height(L) - height(G) > 1:
 p = L
 while height(p.right) - height(G) > 1:
   p = p.right
 q = new node(key=k, left=p.right, right=G)
 p.right = q
 rebalance and update heights at p up to the root
 return I.
elif height(G) - height(L) > 1:
  ... symmetrical ...
else:
 return new node(key=k, left=L, right=G)
```

WBT union

New algorithm for join(L, k, G): if weight(L) > weight(G) * 3: p = Lwhile weight(p.right) > weight(G) * 3: p = p.right q = new node(key=k, left=p.right, right=G) p.right = qrebalance and update sizes at p up to the root return I. elif weight(G) > weight(L) * 3: ... symmetrical ... else: return new node(key=k, left=L, right=G)

WBT union — join(L, k, G)

In L, keep going to the right until find node p:

- $weight(p) > weight(G) \times 3$
- $weight(p.right) \le weight(G) \times 3$

Create new node q with key k, left child p.right, right child G. This node is balanced. (Why?)

p and ancestors may need rebalancing.

Height of the WBT

Claim:

$$height(T) \leq \log(size(T) + 1)/\log(4/3)$$

for all weight-balanced trees T.

Proof. By induction on size of the tree.

Base. $height(nil) = 0 = \log(size(nil) + 1)/\log(4/3)$

IH. Suppose $\forall k \in \mathbb{N}, 0 \le k < n, height(T') \le \log(k+1)/\log(4/3)$ where size(T') = k.

Show. $height(T) \le \log(n+1)/\log(4/3)$ where size(T) = n.

Height of the WBT

Show. $height(T) \le \log(n+1)/\log(4/3)$ where size(T) = n.

WLOG assume that $height(T.left) \leq height(T.right)$, thus height(T) = height(T.right) + 1.

Let (I, r) = (size(T.left), size(T.right)). Then

size(T) + 1
=n+1
=l+r+1+1
≥(r+1)/3+r+1 [since
$$l+1 \ge (r+1)/3$$
]
=(r+1) * 4/3
∴r+1 ≤ (n+1)/(4/3)

Height of the WBT

Show. $height(T) \leq \log(n+1)/\log(4/3)$ where size(T) = n.

$$\begin{array}{ll} \textit{height}(T) \\ = \textit{height}(T.\textit{right}) + 1 & \text{IH} \\ \leq \log(r+1)/\log(4/3) + 1 & \text{result above} \\ \leq \log((n+1)/(4/3))/\log(4/3) + 1 & \\ = (\log(n+1) - \log(4/3))/\log(4/3) + 1 & \\ = \log(n+1)/\log(4/3) - 1 + 1 & \\ = \log(n+1)/\log(4/3) & \end{array}$$