Patent Office

CT/EP+ 00/0967.Z

The Patent Office Concept House Cardiff Road Newport

South Wales

NPIC 8QG

4

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 0 9 NOV 2000

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

ed American

Dated

11 October 2000

: ~

Patents Form 1/77 59

Patent Office

0727749 8410/85-1 (A270) 215 7839-1 | 2 2277777

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form) The Patent Office

Cardiff Road Newport Gwent NP9 1RH

1. Your reference

MPD309/III/GB/RGMS

Patent-application-number --- -- (The Patent Office will fill in this part)

n / OCT 1999

9923593.9

3. Full name, address and postcode of the or of each applicant (underline all surnames)

ALBRIGHT & WILSON UK LIMITED 210-222 HAGLEY ROAD WEST OLDBUR!

WEST MIDLANDS

4N0 806

Patents ADP number (if you know ti)

If the applicant is a corporate body, give the country/state of its incorporation

ENGLAND

4. Title of the invention

STRUCTURED SURFACTANT SYSTEMS

5. Name of your agent (if you bave one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

R G M SAVIDGE

ALBRIGHT & WILSON UK LIMITED PATENTS DEPARTMENT
210-222 HAGLEY ROAD WEST OLDBURY
WEST MIDLANDS B68 ONN 11 C

Patents ADP number (if you know it)

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number (if you know it)

Date of filing
(day / month / year)

 If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / montb / year)

 Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' 1f:

Inis request! (Answer 'Yes' if:

a) any applicant named in part 3 is not an inventor, or

there is an inventor who is not named as an applicant, or

c) any named applicant is a corporate body. See note (d)) NO

Patents Form 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

NONE

Description

6 PAGES

Claim(s)

NONE

Abstract

NONT

Drawing(s)

NONE

 If you are also filing any of the following, state how many against each item.

Priority documents

NONE

Translations of priority documents:

NONE

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

NONE

Request for preliminary examination

.....

Request for preliminary examination and search (Patents Form 9/77)

NONE

Request for substantive examination

(Patents Form 10/77)

Any other documents

....

NONE

(please specify)

NONE

11.

I/We request the grant of a patent on the basis of this application.

Signature

Date

06/10/99

R G M SAV DOB - By Power of Attorney

12 Name and daytime telephone number of person to contact in the united Kingdoni

MR R G M SAVIDGE 0121 420 5436

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need belp to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

MPD309/iii

PATENTS ACT 1977

PRELIMINARY SPECIFICATION (Description)

STRUCTURED SURFACIANT SYSTEMS

Applicant:

ALBRIGHT & WILSON UK LIMITED

Inventors:

RICHARD L <u>CROMBIE</u> JOHN <u>HAWKINS</u>

STRUCTURED SURFACTANT SYSTEMS

The invention relates to a novel type of structured surfactant system. The novel system is especially suitable for suspending pearlising concentrates for incorporation into liquid formulations such as shampoos and toiletries to import a nacreous iridescence which is attractive to consumers, and can mask inhomogeneities in the formulations.

Structured surfactant systems have the ability to suspend solid particles indefinitely in a pourable liquid. While the system is at rest it behaves like a solid gel holding the particles immobile, but the shear forces associated with pouring break the structure causing the suspension to flow like a mobile liquid. Known structured surfactant systems are either opaque interspersions of a surfactant mesophase with an aqueous phase or cloudy opalescent lamellar phases.

Pearlisers typically comprise small, thin, transparent platelet crystals which can be suspended in a parallel configuration. When so suspended light falling on the crystals undergoes complex multiple reflections within the substrate similar to those which occur in a pearl and giving rise to similar optical interference effects.

Natural pearls comprise alternate layers of calcium carbonate and protein. Artificial pearlisers include quanine/hypoxanthine crystals extracted from fish scales, mica, various salts of lead, zinc, mercury and bismuth (e.g. bismuth oxychloride), titanium oxide and various fatty acid derivatives such as magnesium stearate, coconut monoethanolamide, ethylene glycol distearate and ethylene glycol monostearate. Fish scale extracts are too expensive and the inorganic pearlisers are either too toxic for general use in toiletries e.g. lead, mercury, or relatively ineffective e.g. bismuth. The fatty acid derivatives are therefore now the most widely used pearlisers. In addition to the chemical nature and physical form of the pearliser the manner in which it is suspended has an important effect on it's visual impact. Difficulty is sometimes encountered obtaining the desired effect when incorporating pearlisers into aqueous formulations.

Conventional fatty acid derived pearlisers are supplied as solids which are usually added to a heated formulation above their melting point and recrystallised in situ. The conditions of crystallisation and especially the amount and nature of the agitation applied must be carefully

controlled in order to obtain an acceptable result. This makes it difficult to obtain consistent effects and renders solid pearlisers inconvenient to use.

Attempts have been made to prepare liquid concentrates or suspensions which can be added directly to shampoo formulations without heating. While more convenient for the user, such concentrates face the manufacturer with problems of obtaining a high and consistent pearl effect, similar to those which confront the user of conventional solid pearlisers. Difficulty is also encountered in maintaining the particles in stable suspension and preventing sedimentation.

We have now discovered that certain surfactants having a high solubility parameter such a alkyl etne: sulphates at concentrations just below those which normally give rise to liquic crystal phases, e.g. typically 18 to 30% by weight, will form mobile, clear protolamellar L₁ phases in the presence of sufficiently high concentrations of electrolyte. These mobile phases are clear and optically isotropic and are typically less viscous than normal G-phases but have the capacity to form stable suspensions of solids such as pearlisers.

The protolamellar phase is apparently unique in being clear and optically isotropic while exhibiting the suspending properties of a structured surfactant system. We believe that protolamellar phases comprise oblate (disc) micelles which can adopt a parallel lamellar-like orientation. They may typically be identified by placing them between crossed polarisers and applying stress, e.g. by tapping or shaking, when flashes are observed as the system transiently forms an anisotropic structure.

When pearlisers are suspended in a protolameliar phase the structure promotes the parallel orientation of the pearlising crystals which maximises the pearlescent effect, even in the absence of agitation. The concentrates are readily pourable but do not generally tend to separate on standing, and can easily be added to shampoo formulations, without heating, to give high and consistent pearlising effects.

The compositions are particularly useful because the preferred surfactant, alkyl ether sulphate, is the most commonly used ingredient of shampoo formulations on account of it's skin mildness and comparatively good foaming properties. Thus the concentrate can be included in shampoo formulations without introducing anything extraneous to the formulator's requirements. The optical clarity of the protolamellar phase permits the pearlescent effect to be clearly observed without being obscured by surfactant structures as occurs when any hitherto known structured surfactant is used.

When alkyl ether sulphates or similar water soluble surfactants are dissolved in water at relatively low concentrations they form a clear micellar solution (L1 phase) with the surfactant molecules arranged in spherical clusters (micelles). As the concentration is increased the micelles form rods (prolate micelles) of increasing length, and the viscosity increases. Further increases of concentration are accompanied by an anomalous fall in viscosity as the rods become aligned. The aligned rod micellar or protohexagonal system is optically clear, pourable and may exhibit a hexagonal symmetry when examined by small angle x-ray diffraction (SAX), giving a first order peak of momentum transfer vector Q₁, and, if the system is sufficiently well defined, one or more, progressively smaller, higher order peaks at Q values in the ratios:

$$Q_2 = Q_1$$
; $Q_3 = 2Q_1$

These ratios are diagnostic of hexagonal symmetry.

When the concentration is further increased the length of rods increases indefinitely and the immobile M phase is formed. This is typically observed at concentrations of about 30% by weight surfactant. The M phase also shows SAX peaks in the ratios characteristic of hexagonal symmetry. It typically resembles a curdy or gelatinous solid or very viscous mucous like fluid. The normal lamellar, or G phase is typically formed when the concentration of the alkyl ether sulphate is increased to about 55 to 60% by weight. It is a mobile brefringent liquid crystal with sheet dependent viscosit; and lamellar symmetry, revealed by SAX peaks with the characteristic ratios $Q_2 = 2Q_1$, $Q_3 = 3Q_1$. The peaks indicate structure with a repeat spacing (d =) of about 3 to 5 nm. Although the normal G-phase has a yield point and is relatively mobile compared with the M-phase it is not generally suitable for use as a suspending medium for solids, since the presence of appreciable amounts of suspended solid renders it unpourable. The high surfactant concentration is a further disadvantage.

However, when sufficient electrolyte is added to a micellar or protohexagonal solution of alkyl-ether-sulphate—there appears to be a change from prolate to oblate micelles and corresponding shift from hexagonal to lamellar symmetry with a d spacing typically in the range 6 to 15 nm. Such phases are able to suspend solids and remain readily pourable.

Our invention therefore provides a suspension of solid particles in an aqueous surfactant, wherein said surfactant is in a protolamellar phase. In a preferred embodiment the suspended particles comprise particles of a pearliser.

The surfactant is preferably a $C_{10.7}$, alkyl or alkenyl 1 to 20 mole ethoxy sulphate more usually a C_{12-14} alkyl ethoxy sulphate and preferable an alkyl 2 to 10 mole ethoxy sulphate. Alternatively the ether sulphate may be a mixed propoxy ethoxy sulphate or alkyl glyceryl or alkyl glyceryl polyethoxy sulphate. The cation of the alkyl ether sulphate is preferably sodium but may be potassium, lithium, ammonium, or an amine such as an alkanolamine.

The surfactant may comprise minor amounts of other surfactant, especially anionic, non-tonic or amphoteric surfactants, tor example alkyr sulphates, alkyl benzene sulphonates, paratim sulphonates, olefin sulphonates, alkyl sulpho-succinates, soaps, taurides, isethionates, alkyl ethoxylates, fatty acid ethoxylates, alkyl glyceryl ethoxylates, alkyl carbohydrate ethoxylates, anine oxides or betaines. However it is generally preferred to use essentially only alkyl ether sulphate.

The electrolyte is preferably sodium chloride, but could be, for example, sodium carbonate, sodium citrate, sodium tripolyphosphate, sodium hydroxide or any other salt or base which tends to salt alkyl ether sulphates out of solution. The cation of the electrolyte may be sodium, potassium lithium, ammonium or, less preferably, an amine such as alkanolamine or a mixture of any of the foregoing.

The choice of electrolyte and of auxiliary curfacture. Core may be conditioned by what ingredients the formulator, to whom the concentrate is to be supplied, wishes to include in the end formulations, or can tolerate.

Generally the surfactant is used in a total concentration which, in the absence of electrolyte, would correspond to a clear L₁ phase or protohexagonal phase. Typically the electrolyte-free surfactant/water system would be unstructured or would exhibit hexagonal symmetry under SAX. The concentrations required vary with different surfactants but are generally in the range 18 to 35% based on the total weight of surfactant and water, more usually 20 to 32% e.g. 25 to 30%.

The amount of electrolyte is sufficient to convert the ether sulphate/water mixture from an optically isotropic, clear, L_1 phase or a protohexagonal phase exhibiting hexagonal symmetry to a clear, protolamellar phase, typically exhibiting lamellar symmetry, under SAX. The

amount required will depend on the nature and concentration of the surfactant. Typically it will be between 5 and 25% based on the total weight of surfactant, electrolyte and water. more usually 6 to 20% e.g. 8 to 18%.

The pearliser may be any of those previously discussed herein including natura! pear, and inorganic pearlisers but is preferably a fatty acid derivative especially a mixture of ethylene glycol distearate and ethylene glycol monostearate.

The pearliser may be dispersed in the aqueous structure surfactant system e.g. by gently stirring, but in the case of the fatty acid derivatives are preferably prepared in situ by heating above their melting point. e.g. temperatures between 6.5 and 80°C, dispersing the liquid pearliser in the structured surfactant system, preferably with sufficient stirring to form droplets of from 0.5 to 20 microns, e.g. 1 to 10 microns, and cooling to ambient temperature. Preferably cooling is relatively slow e.g. the mixture is allowed to cool naturally. The amount of pearliser can be varied considerably, the main constraint on the upper limit being the viscosity.

The amount of pearliser should not be so high as to render the product unpourable, or unacceptably viscous. We prefer on economic grounds that the pearliser is present in amounts greater than suspending surfactant. Generally pearliser may be present in amounts ranging from 5% up to about 50% e.g. 10 to 45% of the total weight of the mixture.

Ancillary ingredients suitable for inclusion in toiletries could in principle be included, but are could be only constraining the costonic warrings of the costonic warring

The novel structured, protolamellar phase may be used to suspend solids other than pearliser, e.g. builders such as zeolite or phosphate for use in detergent. They may also suspend bentonite or calcite. They may suspend rock cuttings and/or weighting agents for use a drilling muds. They can suspend agricultural pesticides or dyes or pigments, dicalcium phosphate for use in toothpaste or ammonium polyphosphate for fire retardants.

The invention is illustrated by the following examples:-

	<u>WT%</u>
Sodium C ₁₂₋₁₄ alkyl 2-mole ethoxysulphate	21.00
Ethylene glycol distearate (pearliser)	20.00
Soaium Chloride	450
Water	balance

The alkyl ether sulphate, as a 70% by weight active G-phase, was diluted with the required amount of water and the sodium chloride was dissolved to provide a clear, homogeneous.

—pourable: optically isotropic. fround phase: The composition when viewed through a polarising microscope appeared uniformly dark. However, when the cover slip was gently tapped, bright flashes of light were observed, indicating the presence of a protolamellar phase.

The composition was heated to 80°C and the pearliser was melted and added to the composition with vigorous stirring. The composition was allowed to cool while gentle agitation was maintained. A stable suspension with an intense pearly appearance of exceptional quality was obtained.

The composition was reheated to 80°C to melt the pearliser and allowed to cool without further agitation. A stable, high quality pearl effect was obtained. This illustrates the fact that conditions of stirring and cooling and are not critical in order to obtain a good pearlising effect.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.