实验三 矩形波导仿真

一、实验目的

- 1. 学习用 CST 搭建矩形波导, 并进行仿真实验
- 2. 了解传输线与波导相关性质

二、实验内容与步骤

1. 了解并搭建矩形波导仿真环境

矩形波导是最早用于传输微波信号的传输线类型之一,而且今天仍然有很多应用。用于从 1 GHz 到超过 220 GHz 波段的各种标准波导的大量元件,例如耦合器、检波器、隔离器、衰减器及槽线等。由于小型化和集成化趋势,大量微波电路现在都采用平面传输线,例如微带线和带状线,而不是用波导来制造。然而在很多应用中,例如高功率系统、毫米波系统及一些精密检测应用中仍然需要波导。

中空矩形波导可以传播 TM 模和 TE 模,但不能传播 TEM 模。矩形波导也具有截止频率,低于截止频率就不能传播。

建模过程:

(1.a) 新建 project

Create New Project -> MW & RF & Optical -> Antennas -> Waveguide -> Time Domain -> Unit Set (对照下图,一般情况下无需更改) -> Frequency (暂时不填) -> Finish

Please select the units:		
Dimensions:	mm	•
Frequency:	GHz	•
Time:	ns	•
Temperature:	Kelvin	•
Voltage:	V	•
Current:	А	▼
Resistance:	Ohm	•
Conductance:	S	•
Inductance:	nH	•
Capacitance:	pF	V

(1.b) 画波导

我们搭建的是 WR90 型矩形波导,其截面尺寸为 22.86 mm*10.16 mm, 频率范围在 8.20 GHz~12.4 GHz。Z 方向长度为 2 倍导波波长,在后续实验要求中有提及,需要进行计算。此处导波波长用参数 Lg 代替。

随后,在其外侧再画一个 Brick,要求 x 与 y (宽与高)尺寸略大。

在左侧 component 列表中,选择较大的 Brick (此处为 solid2),点击 Modeling 菜单下的 Boolean -> Subtract, 按照指示操作选择较小的 Brick (此处为 solid1),按下Enter,即通过布尔操作,获得了一个真空矩形波导。

(1.c) 添加 Waveguide port

选择 Pick Face,双击波导开口处。再点击 Simulation -> Waveguide Port,设置 Number of modes 为 1,即模数为 1。对另一边的开口处作同样操作。

最终得到两个 Ports, 为波导激励源。

(1.d) 添加 Field Monitor

实验要求添加 E-field Monitor 与 H-field Monitor, 并设置好对应侦测频率。点击 Simulation 菜单下的 Frequency, 确保侦测频率位于扫频范围内。

(1.e) 运行仿真

点击 Simulation 菜单下的 Setup Solver,无需更改参数,点击 Start 开始运算。

Time Domain Solver Parameters		>
Solver settings		5
Mesh type:	Accuracy:	Start
Hexahedral v	-30.0 × dB	Close
Store result data in cache		Apply
Stimulation settings	☐ Inhomogeneous port	Optimizer
Source type: All Ports ~		Par. Sweep
Mode: All v	Calculate port modes only	
	Superimpose plane	Acceleration
	wave excitation	Specials
S-parameter settings		Simplify Model
Normalize to fixed impedance	S-parameter symmetries	
50 Ohms	S-Parameter List	Help
Adaptive mesh refinement		
Adaptive mesh refinement	Adaptive Properties	
Sensitivity analysis		
Use sensitivity analysis	Properties	

此处的 Source type – All Ports 代表所有激励源分别激励,Mode – All 为激励所有设置的模数(先前设置 1)。得到仿真结果如图:

(仅展示 E-field)

2. 了解并搭建同轴——矩形波导仿真环境

同轴线传播的是 TEM 模,TEM 模的截止频率为 0。但同轴线同时支持 TE 与 TM 的传播,通常都是高次的,为避免不同传播常数的传播模叠加,也同时为避免高阶模的传播,同轴电缆的尺寸设置了上限,频率也需要通过最低阶波导型模式的截止频率给出限制。

建模过程:

(2.a) 新建 project, 并搭建矩形波导模型。
用 PEC 板封一侧口, 然后用布尔相加操作(Boolean -> Add) 合并。

(2.b) 得出同轴线尺寸,要求特征阻抗为 50Ω , D = 8mm, eps_r = 1。

Parameter List		
Name Name	Expression	
-94 x	= 22.86	
-⊫ y	= 10.16	
⊸ out_d	= 8	
-⊯ in_d	= 3.476	

(2.c) 搭建同轴线模型

我们需要分三次来构建一个同轴线模型。首先绘制内部中心圆柱,其中 Lg 为导波波长,在后续实验要求中有提及,需要进行计算。故此处用参数代替。同轴线画在 x 方向中心, z=λg/4 处,并嵌入波导中。

然后绘制中间真空层,在因结构重合弹出的菜单中选择 Insert Highlighted Space, 意为去除矩形波导材料/PEC 与真空层/Vaccum 重叠的部分。

最后绘制外部圆环。

(2.d) 添加 Port 与 Field Monitor, 进行仿真

如图选择面,添加 Waveguide Port,并依照之前的例子添加 E&H field Monitor,点击 Setup Solver 进行运算。

3. 同轴——矩形波导转换器再仿真

能将一种传输波形转换成另一种传输波形的元件, 称为波形转换器。从上例可知我们搭建了同轴——矩形波导转换器, 将同轴线的 TEM 波转换到了矩形波导的 TE10 模。他的模型为, 让同轴线的外导体与矩形波导的宽壁连在一起, 内导体的延伸部分插入波导中, 形成一个小辐射天线, 在波导中激励出 TE10 模。

接下来我们需要设计并搭建同轴线——矩形波导转换器,要求在波导中激励出 TE20 模。

(2.a) 新建或沿用先前的 project, 搭建矩形波导模型。

同轴线尺寸如下,此处用较小尺寸。此处我们使用两根同轴线,加两个激励。

参照上一例的方法画出一根同轴线,再用复制的方法画出另一根。注意此时同轴线的位置,应处在 x 轴四等分点上。注意此时激励的模式改变,故导波波长λg 也改变。范例中尽管 Zcenter 仍输入 Lg/4,但 Lg 的数字已发生变化。

画完一根后,按住 Ctrl,同时选中同轴线的三个 Components,点击 Modeling 菜单下的 Transform,勾选 Copy,移动出另一根同轴线。在因结构重合弹出的菜单中选择 Insert Highlighted Space,意为去除矩形波导材料/PEC 与真空层/Vaccum 重叠的部分。

用与上例相同的方法在两根同轴线上添加激励,并将 number of modes 设置为 1。 随后点击 Setup Solver,进行如下设置,再点击 Start 进行运算。

运算时间可能较长,需耐心等待。但如果时间过长,请及时检查操作是否有误。

三、实验要求

参照上述流程, 完成以下题目。

- 1. 建立一个 WR90 型矩形波导模型, 计算导波波长λg 与 TE10 模的截止频率 fc, 仿真观察两种频率 1.5*fc、2.5*fc 下的图案。波导 z 方向长度设置为 1.5*fc 频率下的 2 倍导波波长 2*λg(在之后的仿真中无需改变)。在波导两端放置激励源, 添加 Field Monitors, 展示电场与磁场在 xOy、xOz、yOz 横截面上的图案。
- 2. 使用第一题的矩形波导模型,要求在波导模型中填充相对介电常数为 4 (eps_r=4) 的无损材料,计算 TE10 模的截止频率 fc, 在 1.5*fc 频率下进行模拟。展示电场与磁场在 xOy、xOz、yOz 横截面上的图案。
- 3. 使用第一题的矩形波导模型,要求计算 TE20 模的截止频率 fc,在 1.5*fc 频率下进行模拟。展示电场与磁场在 xOy、xOz、yOz 横截面上的图案。
- 4. 建立同轴线馈电的矩形波导模型,使用第一题的矩形波导模型与截止频率 fc, 封掉 z=0 的波导口,添加特征阻抗为 Z0=50 Ω, D=8 mm 的同轴线馈电,同轴线在 y 方 向上嵌入波导尺寸的一半, x 方向位于波导中心, z 方向位于 z=λg/4, 尝试解释为 何要如此设置同轴线位置。展示 z=3/8*λg, 1/2*λg, λg, 2*λg 平面, 与 xOz 横截 面上的电场图案,尝试分析并解释。
- 5. 建立同轴线馈电的矩形波导模型,使用第一题的矩形波导模型,封掉 z=0 的波导口,添加特征阻抗为 Z0=50 Ω , d=1 mm 的同轴线馈电,要求使矩形波导中生成 TE20 模。同轴线在 y 方向上嵌入波导尺寸的一半,x 方向位于波导中心,z 方向位于 $z=\lambda g/4$ 。展示电场在 xOz 横截面与波导口上的图案,尝试分析并解释。

所有计算需给出计算过程。