Algorithms and data structures 5: Matricies-2 (end of lection)

Boris Kirikov

29.10.2015

When solution exists?: rank

Lets multiply m-row by n-column, we get M(m, n, R) matrix. This is rank 1 matrix.

Def: Tensor rank — minimum number of rank 1 matricies to sum.

Def: Column/Row rank — number of linear independent columns/rows.

 $(v_1,\ldots,v_n$ are linear dependent if $v_1 \in < v_2,\ldots,v_n>)$

Both defs are equal in case of \mathbb{R} ..

▶ We need rkA = n

When solution exists?: det

Def: Invariant up to primitive operations

Def: (Minor definition)

And both defs are equal.

▶ We need det $A \neq 0$.

Strassen matrix multiply

Summary

- Different parts of maths operate similar constructions
- ▶ This can be encapsulated in matrix theory
- ▶ We defined several operations on matricies
- Also we defined one decomposition

EOF