Brevissime note di geometria simplettica

Bruno Bucciotti

16 agosto 2018

Sommario

Poichè le coordinate qui vengono "a coppie", in uno spazio 2n dimensionale indico le prime n coordinate con X^{q^i} , le successive n con X^{p_i} . Si farà ampio uso delle note sull'Isham, in particolare non citerò l'uso della "formula per la derivata esterna" per le 0 forme.

1 Symplectic manifold

Definizione Coppia (M, ω) con M varietà differenziabile, ω forma bilineare antisimmetrica, chiusa $(\omega = d\alpha)$ non degenere $(\forall u \in M, \omega(u, v) = 0 \implies v = 0)$.

Symplectomorphism Data una mappa $\phi : \mathcal{M} \to \mathcal{N}$ fra due spazi simplettici, ϕ è simplettomorfismo (trasformazione canonica) quando $\phi^*\omega_N = \omega_M$.

Darboux~Esiste sempre un sistema di coordinate, dette canoniche, per cui $\omega = \sum dx^i \wedge dp_i$

Isomorfismo fra campi vettoriali e 1-forme Dato un campo vettoriale Ω_{α} posso costruire l'1-forma $\alpha = \omega(\Omega_{\alpha}, *)$. La mappa è lineare e iniettiva (per non degenerazione di ω), dunque per dimensionalità è un isomorfismo.

Symplectic vector field Un campo vettoriale X si dice simplettico se il suo flusso preserva la forma simplettica. Si scrive $\mathcal{L}_X \omega = 0$ o equivalentemente, detto ϕ il flusso associato a X, $\phi_t^* \omega = \omega$.

Proof: la freccia a sinistra segue dalla definizione di \mathcal{L}_X , l'altra si fa considerando $f_p(t) = (\phi_t^* \omega)(p)$ (al variare di t sono forme tutte in p, quindi ha senso la differenza); $\frac{df_p}{dt}|_{t=s} = \phi_s^*(\mathcal{L}_X \omega) = 0$, cioè f_p costante.

Un'altra definizione possibile è Ω_{α} simplettico quando α , associata mediante ω , è chiusa. Il conto usa la formula di Cartan e la chiusura di ω : $\mathcal{L}_{\Omega_{\alpha}}\omega = d(\omega(\Omega_{\alpha},*)) = d\alpha$

Hamiltonian vector field Un campo vettoriale X_H si dice Hamiltoniano di Hamiltoniana $H: \mathcal{M} \to \mathbf{R}$ se dH è associato a X_H mediante ω ; esplicitamente $dH = \omega(X_H, *)$. Osserviamo che per la terza definizione data di campo simplettico, poichè dH è una forma chiusa, X_H è simplettico $(d^2 = 0)$. Nelle coordinate canoniche ho che $dH = \sum \frac{\partial H}{\partial q^i} dq^i + \frac{\partial H}{\partial p_i} dp_i$, mentre $\omega(X_H, *) = (\sum dq^i \otimes dp_i - dp_i \otimes dq^i)(X_H, *) = \sum X_H^{q^i} dp_i - X_H^{p_i} dq^i$, e dall'uguaglianza delle due ho $X_H = \left(\frac{\partial H}{\partial p_i}, -\frac{\partial H}{\partial q^i}\right)$.

Proprietà dei campi Hamiltoniani

- La combinazione lineare di Hamiltoniane genera un campo Hamiltoniano che è la combinazione lineare dei campi.
- In coordinate canoniche le curve integrali del campo Hamiltoniano X_H sono le traiettorie nello spazio delle fasi del sistema soggetto a evoluzione temporale data dall'Hamiltoniana H.
- H costante lungo le curve integrali di X_H (H costante del moto).
- Più in generale se $\{F, H\} = 0$ allora $\mathcal{L}_{X_H}F = X_H(F) = (dF)(X_H) = \omega(X_F, X_H) = \{F, H\} = 0$ dove l'ultimo passaggio si giustifica o in coordinate o assumendolo come definizione di parentesi di Poisson.

Verso l'Identità di Jacobi. Definiamo per f, g funzioni $\{f, g\} = \omega(X_f, X_g)$

- $\{a,b\} = X_b(a) = -X_a(b)$ poichè $\{a,b\} = \omega(X_a,X_b) = (da)(X_b) = X_b(a)$ dove ho usato l'Hamiltonianietà di X_a .
- $X_{\{f,g\}} = -[X_f, X_g]$ dove il meno in alcuni testi è assente perchè si cambia la definizione di Lie bracket per un segno. $Proof: (d\omega)(X_f, X_g, V) = 0$ per chiusura di ω , V vettore qualsiasi.

Proof: $(a\omega)(X_f, X_g, V) = 0$ per chiusura di ω , V vettore quaisiasi. Sviluppando ho:

$$X_f\omega(X_g, V) - X_g\omega(X_f, V) + V\omega(X_f, X_g) - \omega([X_f, X_g], V) +$$
$$+\omega([X_f, V], X_g) - \omega([X_g, V], X_f) = 0$$

allora usando l'Hamiltonianietà

$$X_f V g - X_g V f + V \{f,g\} - \omega([X_f,X_g],V) - [X_f,V]g + [X_g,V]f = 0$$

sviluppo gli ultimi 2 commutatori e uso l'identità al punto precedente dell'elenco

infine

$$V\{f,g\} - \omega([X_f, X_g], V) + VX_f g + VX_g f = V\{f,g\} - \omega([X_f, X_g], V) - 2V\{f,g\} = 0$$

$$V\{f,g\} = -\omega([X_f, X_g], V) = (d\{f,g\})(V) = \omega(X_{\{f,g\}}, V)$$

da cui la tesi per non degenerazione di ω e l'assenza di ipotesi su V.

• Identità di Jacobi: $\{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0.$ $Proof: \{f,\{g,h\}\}=X_fX_gh.$ Allora ho

$$\{f, \{g, h\}\} + X_g X_h f + X_h X_f g = \{f, \{g, h\}\} + X_g X_h f - X_h X_g f = \{f, \{g, h\}\} + [X_g, X_h] f = \{f, \{g, h\}\} - X_{\{g, h\}} f = 0$$