Devoir maison n°8: D'Hiver

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Exercice 1 - La couleur des nombres

Notons $x \sim y$ la relation d'équivalence sur \mathbb{Q}_+^* : « x et y sont de même couleur ». Les propriétés d'équivalence sont évidentes. On colore enfin en bleu les nombres bleus et en rouge les nombres rouges.

Les deux premières règles deviennent :

$$1 \tag{a}$$

$$x \sim \frac{1}{x}$$
 (b)

Enfin, comme il n'y a que deux couleurs, si x et y sont de couleurs différentes, alors x et y sont de couleurs opposées. La 3e règle devient donc :

$$x + 1 \nsim x$$
 (c)

1)

D'après (a), 1 est rouge et d'après (c), la couleur s'inverse à chaque ajout de 1. Par récurrence évidente, tous les nombres pairs sont donc bleus et tous les nombres impairs rouges.

Ainsi, comme 2016 est pair, 2016 est bleu.

2) Soit $x \in \mathbb{Q}_+^*$ et $k \in \mathbb{N}$. D'après (c) appliquée deux fois, $x+2 \sim x$. Par une récurrence évidente, $x+2k \sim x$.

Ainsi, si $n \in \mathbb{N}$ est pair, alors $x + n \sim x$, et si n est impair :

$$x + n \sim x + (n - 1) + 1$$

 $\sim x + 1$ par (b)
 $\sim x$ par (c)

Ainsi, selon la couleur de x, si n est pair, x+n aura la même couleur que x et si n est impair x+n sera de couleur opposée à x.

3)

$$\frac{2016}{2015} \sim 1 + \frac{1}{2015}$$
$$\sim 1 + 2015$$
$$\sim 2016$$

Donc $\frac{2016}{2015}$ est bleu.

D'autre part,

$$\frac{4}{13} \sim \frac{13}{4}$$

$$\sim 3 + \frac{1}{4}$$

$$\sim 3 + 4$$

$$\sim 7$$

Donc $\frac{4}{13}$ est rouge.

4)

TODO

5)

TODO

6)

7) Après implémentation de l'algorithme en typst, celui-ci donne :

$$\frac{1515}{1789}$$

Exercice 2 - Intercaler la somme

1)

$$E_4 = (1,\,4,\,3,\,5,\,2,\,5,\,3,\,4,\,1)$$

$$E_5 = (1,\, 5,\, 4,\, 7,\, 3,\, 8,\, 5,\, 7,\, 2,\, 7,\, 5,\, 8,\, 3,\, 7,\, 4,\, 5,\, 1)$$

(bien entendu généré automatiquement, le script est dans le DM sur Github)

- 2) Les réponses suivantes sont calculées automatiquement :
 - a) E_{11} contient 1025 éléments.
 - **b)** La somme des éléments de E_{11} est 59050.
 - **c)** Le plus grand élément de E_{11} est 144.
- **3) a)** Notons pour $n\in\mathbb{N}^*$, $u_n=N_n-1$. Les premiers termes de la suite $(u_n)_{n\in\mathbb{N}^*}$ sont :

$$u_1 = 1$$

$$u_2 = 2$$

$$u_1 = 1$$
 $u_2 = 2$ $u_3 = 4$ $u_4 = 8$

$$u_{4}=8$$

On conjecture que pour tout $n\in\mathbb{N}^*, u_n=2^{n-1}.$

<u>Preuve</u>: Notons E'_n la liste E_n dans laquelle on omet le dernier 1, et on considère u_n comme le nombre d'éléments de E'_n . Pour construire E'_{n+1} à partir de E'_n , on rajoute un nombre à droite de chaque élément de E'_n . On a donc :

$$\begin{split} |E'_{n+1}| &= |E'_n| + |E'_n| \\ \iff u_{n+1} &= 2u_n \end{split}$$

Par une récurrence immédiate, on a bien $u_n=2^{n-1}$.

b) Notons pour $n \in \mathbb{N}^*$ S_n la somme des éléments de E_n et