

Universidade do Minho

Licenciatura em Engenharia Informática

Aprendizagem e Decisão Inteligentes 3º Ano, 2º Semestre Ano letivo 2023/2024

Trabalho em Grupo Fevereiro, 2024

Tema

Conceção de modelos de aprendizagem e decisão.

Objetivos de Aprendizagem

Com a realização deste Trabalho em Grupo pretende-se sensibilizar e motivar os estudantes para a conceção e desenvolvimento de um projeto, no âmbito da unidade curricular de Aprendizagem e Decisão Inteligentes, utilizando os modelos de aprendizagem abordados ao longo do semestre.

Enunciado

Este enunciado pretende ser o ponto de partida para a análise e extração de conhecimento atendendo à distribuição de dados disponíveis e o respetivo desenvolvimento de modelos de aprendizagem. Os problemas propostos deverão ser resolvidos por recurso à plataforma KNIME.

O Trabalho em Grupo engloba duas tarefas.

Tarefa <u>Dataset Grupo</u>

- Consultar, analisar e selecionar um dataset de entre os que estão acessíveis a partir de fontes como, por exemplo, o Kaggle ou o UCI Machine Learning Repository;
- Explorar, analisar e preparar o dataset selecionado, procurando extrair conhecimento relevante no contexto do problema em questão;
- Conceber e otimizar diversos modelos de Machine Learning,
- Realizar uma análise crítica de resultados.

Tarefa <u>Dataset</u> Atribuído

- Os grupos com número impar trabalharão com o dataset disponível no Blackboard em [Dataset grupos impar];
- Os grupos com número par trabalharão com o dataset disponibilizado no Blackboard em [Dataset grupos par];
- O link disponibilizado para cada dataset disponibiliza alguma informação de contexto, que pode ser entendida complementar aos dados fornecidos sobre cada problema;
- Estes datasets não poderão ser utilizados para a Tarefa Dataset Grupo;
- Explorar, analisar e preparar os datasets, procurando extrair conhecimento relevante no contexto do problema em questão;
- Conceber modelos de Machine Learning de classificação e de regressão;
- Realizar uma análise crítica de resultados.

Os resultados deverão ser objeto de um único relatório, limitado a 30 páginas, que apresente, entre outros:

- Quais os domínios a tratar, quais os objetivos a alcançar e como os atingir;
- Qual a metodologia seguida e como foi aplicada;
- Descrição e exploração detalhada dos datasets de ambas as tarefas e do tratamento de dados efetuado;
- Descrição dos modelos desenvolvidos e quais as suas características, parâmetros de treino, entre outros detalhes que enriqueçam a explicação;
- Sumário dos resultados obtidos e respetiva análise crítica;
- Apresentação de sugestões e recomendações após análise dos resultados obtidos e dos modelos desenvolvidos.

A descrição do trabalho desenvolvido deverá ser acompanhada de exemplos e indicações que permitam reproduzir os passos realizados e os resultados obtidos.

Entrega e Avaliação

Durante o período de aulas na semana <u>de 18 a 23 de março de 2024</u> realizar-se-á um *checkpoint* do trabalho desenvolvido pelos grupos. Cada grupo disporá de 10 minutos.

Na semana <u>de 6 a 11 de maio de 2024</u> decorrerão as <u>apresentações finais do trabalho desenvolvido</u>. Cada grupo disporá de 15 minutos para realizar a apresentação, utilizando os meios que considerar adequados.

A organização do *checkpoint* e da apresentação final será divulgada oportunamente.

O relatório e os restantes elementos produzidos deverão ser <u>compactados num único ficheiro</u> que será submetido na plataforma de *e-learning* da Universidade do Minho (em [Conteúdo/Trabalho em Grupo/Submissão]), por apenas um membro de cada grupo.

A data limite para a submissão dos trabalhos é o dia 3 de maio de 2024.

Avaliação por pares

Cada grupo deverá realizar uma análise coletiva sobre o contributo que cada membro apresentou no desenvolvimento do trabalho, definindo a avaliação por pares (APP).

Cada grupo dispõe de tantos pontos quantos os membros do grupo (p.ex., grupo de 3 pessoas = 3 pontos; grupo de 4 pessoas = 4 pontos).

Na APP o grupo deve distribuir os seus pontos proporcionalmente ao contributo relativo de cada um dos seus membros. A APP deve ser consensualizada no seio do grupo de trabalho.

Por exemplo, num grupo de 4 pessoas, A=1, B=1, C=1 e D=1, significa que todas as pessoas A, B, C e D desempenharam as suas tarefas em condições de equidade.

Noutro exemplo, num grupo de 3 pessoas, X=1, Y=1.5 e Z=0.5, significa que X participou no trabalho na medida do esperado, que Y se envolveu com mais esforço e que Z teve um empenho inferior ao esperado.

A soma final de todas as parcelas deve ser igual ao número de pontos atribuído ao grupo: $X_1+X_2+...+X_N=N$, sendo N o número de elementos do grupo de trabalho e X_i os pontos atribuídos a cada um dos seus membros "i", podendo ser utilizados valores com até 1 casa decimal.

Cada grupo deverá enviar a APP numa mensagem de correio eletrónico para a equipa docente (Cesar Analide analide@di.uminho.pt, Inês Alves d12090@di.uminho.pt, Pedro Oliveira pedro.jose.oliveira@algoritmi.uminho.pt), colocando em cc: todos os membros do grupo de trabalho, com assunto/subject «[ADI^3] APP Grupo XX».

As classificações do instrumento de avaliação Trabalho de Grupo não são calculadas na falta desta informação.

Código de Conduta

Os intervenientes neste trabalho académico declararão ter atuado com integridade e confirmarão não ter recorrido a práticas de plágio nem a qualquer forma de utilização indevida de informação ou falsificação de resultados em nenhuma etapa decorrente da sua elaboração.

Mais declararão conhecer e respeitar o Código de Conduta Ética da Universidade do Minho.

Referências Bibliográficas

Além do material disponibilizado nas aulas, aconselha-se a consulta de fontes como:

- Machine Learning. T. Michell, McGraw Hill, ISBN ISBN: 978-1259096952, 2017.
- Introduction to Machine Learning. Alpaydin, E. ISBN: 978-0-262-02818-9. Published by The MIT Press, 2014
- Computational Intelligence: An Introduction. Engelbrecht A., Wiley & Sons. 2nd Edition, ISBN: 978-0470035610, 2007.
- The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Hastie, T., R. Tibshirani, J. Friedman, 12nd Edition, Springer, ISBN: 978-0387848570, 2016.
- Machine Learning: A Probabilistic Perspective. K.P. Murphy, 4th Edition, The MIT Press, ISBN: 978-0262018029, 2012.