1.2.2 Экспериментальная проверка закона вращательного движения на крестообразном маятнике

Анна Назарчук Б02-109

1 Теоретические сведения

Закон вращательного движения:

$$I\ddot{\varphi} = M \tag{1}$$

 $\ddot{\varphi} \equiv \dot{\omega} \equiv \beta$

Рис. 1: Крестообразный маятник Обербека

На маятник действуют два момента сил: силы натяжения нити (M_T) и трения $(M_{\rm Tp})$: $M_T=rT,\ r$ - радиус шкива. Для движения платформы с учетом нерастяжимости нити:

$$m_H \beta r = m_H \ddot{y} = m_H g - T$$

Откуда согласно основному уравнению вращательного движения:

$$(I + m_H r^2)\beta = m_H g r - M_{\rm TD} \tag{2}$$

Рассмотрим момент силы трения. Его зависимость от скорости не ясна, однако может иметь как составляющую, пропорциональную силе реакции в оси N (сухое трение), так и составляющую, пропорциональную угловой скорости вращения (вязкое трение). Откуда:

$$M_{\rm TP} \simeq (1 + \frac{m_H}{m_M})M_0 + \eta\omega \approx M_0 + \eta\omega \tag{3}$$

где M_0 - момент сил трения для покоящегося маятника при нулевой массе подвеса, m_M - масса маятника

Для расчета момента инерции системы, предположим, что грузы m_i имеют форму полых цилиндров, внутренний и внешний радиус которых известен, образующая h

$$I = I_0 + \sum_{i=1}^{4} (I_i + m_i R_i^2) \tag{4}$$

где I_0 - момент инерции системы без грузов, R_i - расстояние от центров масс грузов до оси вращения

$$I_i = \frac{1}{12}m_i h^2 + \frac{1}{4}m_i (a_1^2 + a_2^2)$$
 (5)

- момент инерции груза относительно оси, проходящей через его центр масс

2 Экспериментальная установка

В работе используется крестообразный маятник (рис. 1), состоит из четырех тонкий стержней, перпендикулярных друг другу, укрепленных на втулке. Втулка и два шкива насажены на общую ось, вся система благодаря подшипникам может вращаться вокруг горизонтальной оси. Установка позволяет автоматически фиксировать моменты прохождения концов стержня через датчик.

Таблица 1: Характеристики системы в сбалансированном состоянии

№ груза	т, г	R, см
1	155.5 ± 0.1	8.2 ± 0.05
2	148.9 ± 0.1	8.6 ± 0.05
3	151.9 ± 0.1	9.4 ± 0.05
4	150.1 ± 0.1	9.5 ± 0.05

3 Измерения и обработка данных

3.1 Балансировка

Балансировка системы при помощи добаления грузов на стержни, при движении несбалансированного маятника слышны стуки в подшипниках, график зависимости ускорения от угловой скорости имеет пульсации (рис. 2)

Рис. 2: Пульсации при движении недостаточно сбалансированного маятника

Маятник приходит в движение без добавления перегрузков, поэтому так момент силы трения в подшипниках измерить невозможно. Но можно сделать вывод, что:

$$M_0 < m_{\pi} g r = 2.9 \cdot 10^{-3} \tag{6}$$

Таблица 2: Измерения с постоянным моментом инерции и разными перегрузками

$m_{\scriptscriptstyle \rm II}, \ \Gamma$	k, 1/c	σ_k , 1/c	β_0 , рад $/c^2$	$\sigma_{eta_0},~\mathrm{pag}/c^2$	R_1 , cm	R_2 ,cm	R_3 , cm	R_4 , cm	r, cr
0	-0.005163	0.0023	0.1837	0.0015	8.2	8.6	9.4	9.5	1.75
6.21	-0.00831	0.0028	0.2607	0.0024	8.2	8.6	9.4	9.5	1.75
9.07	-0.0084	0.0018	0.3008	0.0016	8.2	8.6	9.4	9.5	1.75
45	-0.009674	0.002	0.7118	0.0027	8.2	8.6	9.4	9.5	1.75
62	-0.01475	0.0012	0.95	0.002	8.2	8.6	9.4	9.5	1.75
51.5	-0.01102	0.0055	0.7811	0.0074	8.2	8.6	9.4	9.5	1.75
100	-0.01176	0.0011	0.7065	0.0019	8.2	8.6	9.4	9.5	0.9
103.55	-0.01237	0.0013	0.7288	0.0023	8.2	8.6	9.4	9.5	0.9
8.95	-0.006902	0.0022	0.136	0.002	8.2	8.6	9.4	9.5	0.9
64.2	-0.00763	0.0027	0.4785	0.0029	8.2	8.6	9.4	9.5	0.9
106	-0.01022	0.0017	0.7382	0.0026	8.2	8.6	9.4	9.5	0.9

3.2 Измерения с постоянным моментом инерции и разными перегрузками

Значение k мало, можно считать, что угловое ускорение постоянно. По полученным данным (таблица 2) и формуле 2 построим график зависимости β_0 от M_T (рис. 3)

Данные образуют прямую, что подтверждает справедливость уравнения вращательного движения. С помощью графика определим M_0 - момент сил трения для покоящегося маятника при нулевой массе подвеса и I - момент инерции системы: $M_0=0.32\pm0.03~{\rm MH\cdot M},~I=14.2\pm0.1~{\rm r\cdot M}^2$

Получили, что $M_0 < m_{\pi} gr = 2.93 \cdot 10^{-3}$, что согласуется с результами из предыдущих пунктов.

3.3 Измерения с одинаковой массой перегрузка, но разными моментами инерции

Значение к мало, можно считать, что угловое ускорение постоянно. По полученным данным (таблица 4) и формуле 2 найдем момент инерции системы в зависимости от положений грузов и построим график зависимости I от $\sum_i m_i R_i^2$ (рис. 4)

Определим сумму I_i :

$$\sum_{i} I_{i} = \sum_{i} \left(\frac{1}{12} m_{i} h^{2} + \frac{1}{4} m_{i} (a_{1}^{2} + a_{2}^{2})\right) = 7.3 \cdot 10^{-5} \text{ Kg} \cdot \text{M}^{2}$$

Рис. 3: Зависимость углового ускорения от момента силы натяжения нити

Сумма значительно меньше сдвига (а) прямой графике, определенного по МНК, поэтому $I_0 \approx a$ С помощью графиков и формул (4 и 5) определим значение $I_0 = a = (73 \pm 0.91) \cdot 10^{-4} \ \mathrm{kr} \cdot \mathrm{m}^2$

3.4 Измерения без грузов

Из полученных данных можно определить $I_0 = (68 \pm 0.136) \cdot 10^{-4} \text{ кг} \cdot \text{м}^2$, что согласуется с результатами измерений предыдущим способом.

3.5 Измерение коэффициента, отвечающего за вязкое трение

Согласно формулам 3 и 2 можно считать, что:

$$\eta = -m_{\rm H}r^2k \tag{7}$$

где k - коэффициент зависимости углового ускорения от угловой скорости. Из данных в таблице 2 получим, что:

Таблица 3: Измерения с одинаковой массой перегрузка, но разными моментами инерции

	1 1								
m_{π} , г	k, 1/c	σ_k , 1/c	β_0 , рад $/c^2$	σ_{eta_0} , рад $/c^2$	R_1 , cm	R_2 ,см	R_3 , cm	R_4 , cm	r, см
100	-0.002031	0.0037	1.587	0.0072	7.2	7.8	7.8	8.3	1.75
100	-0.01096	0.0026	1.026	0.0036	11.9	11.6	12	12	1.75
100	-0.0339	0.0024	2.501	0.0053	3.1	3.3	2.4	2.6	1.75
100	-0.02494	0.0049	2.081	0.0085	4.6	5.6	4.6	4.7	1.75
100	-0.02627	0.0098	-2.013	0.018	4.6	5.6	4.6	4.7	1.75
100	-0.01335	0.0041	0.8113	0.0066	7.2	7.8	7.8	8.3	0.9
100	-0.003478	0.0099	0.504	0.013	11.9	11.6	12	12	0.9
100	-0.02933	0.0035	1.294	0.0071	3.1	3.3	2.4	2.6	0.9
100	-0.01663	0.0051	1.071	0.001	4.6	5.6	4.6	4.7	0.9

Таблица 4: Измерения без грузов

				1 0	
m_{π} , г	k, 1/c	$\sigma_k, 1/c$	β_0 , рад $/c^2$	$\sigma_{eta_0},~\mathrm{pag}/c^2$	r, cm
100	-0.0084	0.0018	2.87	0.0178	1.75
100	-0.003478	0.0099	2.67	0.0211	1.75
100	-0.006902	0.0022	1.41	0.0137	0.9
100	-0.005464	0.002	1.76	0.0128	0.9

Таблица 5: Коэффициент вязкого трения

масса перегрузка, г	k, 1/c	r, см	$\eta, 10^{-9} \ { m kr} \cdot { m m}^2/{ m c}$		
0	-0.005163	1.75	2.695892719		
6.21	-0.00831	1.75	5.919524625		
9.07	-0.0084	1.75	6.71937		
100	-0.01176	0.9	11.1497148		
103.55	-0.01237	0.9	12.0837582		
8.95	-0.006902	0.9	1.4535612		
64.2	-0.00763	0.9	5.02149375		
106	-0.01022	0.9	10.1863251		

Рис. 4: Зависимость момента инерции от положений грузов

Исходя из полученных данных можно найти значение $\eta=(6.09\pm1.22)\cdot10^{-9}$ кг·м²/с. Однако из полученного значения можно сделать немного выводов ввиду высокой погрешности, но при данных скоростях можно пренебречь составляющей с вязким трением, так как значение существенно меньше момента сил трения для покоящегося маятника при нулевой массе подвеса, что подтверждает предполагаемые приближения.

4 Вывод

Экспериментально получена зависимость углового ускорения от момента прикладываемых к маятнику сил, тем самым подтверждено уравнение вращательного движения. Определен момент инерции маятника несколькими способами, приводящими к одному и тому же результату.