Intervals, Transformations, and Slope Solution (version 149)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-5,0) \cup (2,6)$
Negative	$(-10, -5) \cup (0, 2)$
Increasing	$(-7, -3) \cup (1, 6)$
Decreasing	$(-10, -7) \cup (-3, 1)$
Domain	(-10,6)
Range	(-6,8)

Intervals, Transformations, and Slope Solution (version 149)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=11$ and $x_2=92$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 11 & 49 \\ 13 & 11 \\ 49 & 92 \\ 92 & 13 \\ \hline \end{array}$$

$$\frac{f(92) - f(11)}{92 - 11} = \frac{13 - 49}{92 - 11} = \frac{-36}{81}$$

The greatest common factor of -36 and 81 is 9. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-4}{9}$$

2