Image Super Resolution

10 Juli 2023

@mahaamesha

out-of-focus blur

noise

Denoising & Deblurring

Blur & Noise

Remove the noise first, then do deblurring. **Concern: noise amplification**.

To solve salt & pepper noise, use **median filter**.

The PSF h(m, n) has to be known/predicted. Move to frequency domain and use Wiener Filter.

Get the inverse filter

Inverse filter:

$$G(u,v) = \frac{1}{H(u,v)}$$

Pseudo-inverse filter:

$$G(u,v) = \begin{cases} \frac{1}{H(u,v)} & |H(u,v)| > \delta \\ 0 & |H(u,v)| \le \delta \end{cases}$$

Radially limited inverse filter:

$$G(u,v) = \begin{cases} \frac{1}{H(u,v)} & \sqrt{u^2 + v^2} \le R \\ 0 & \sqrt{u^2 + v^2} > R \end{cases}$$

Wiener filter:

$$G(u,v) = \frac{H^*(u,v)}{|H(u,v)|^2 + K} \text{ where } K = \frac{\sigma_W^2}{\sigma_X^2}$$

Wiener denoising filter:

$$G(u,v) = \frac{\sigma_X^2}{\sigma_X^2 + \sigma_W^2}$$

$$G(u,v) = \frac{H^*(u,v)}{|H(u,v)|^2 + \frac{\sigma_W^2}{\sigma_X^2}}$$

Phase: Has same phase response as Inverse Filter

$$\begin{split} \operatorname{Phase} \left[H_{W}(\omega_{x}, \omega_{y}) \right] &= \operatorname{Phase} \left[H^{*}(\omega_{x}, \omega_{y}) \right] \\ &= - \operatorname{Phase} \left[H(\omega_{x}, \omega_{y}) \right] = \operatorname{Phase} \left[\frac{1}{H(\omega_{x}, \omega_{y})} \right] \end{split}$$

Practicality: Need to specify $\sigma_{\scriptscriptstyle W}^2$ and $\sigma_{\scriptscriptstyle X}^2$

 $\sigma_{\scriptscriptstyle W}^2$ Can be estimated from sensor characteristics

 $\sigma_{_Y}^2$ Can be estimated from image

Ideal image (500 x 500)

- 1. Read ideal image
- 2. Create PSF, do gaussian blurring (ksize=7, sigma=3), add salt n pepper noise
- 3. Deblurring:
 - 1. Transform to frequency domain
 - 2. Get OTF, WTF, use Wiener approach
- 4. Get result

Real Case Challenge: Estimate PSF, K, solve ringing effect

Evaluation: MSE, PSNR, SSIM, histogram matching, etc

Image Pyramid

Image Pyramid

Low resolution

- No details (blurred)
- Store low frequencies

High resolution

- Details
- Low + high frequencies

Performs bilinear interpolation: Bicubic (common)

Gaussian & Laplacian Pyramid

Gaussian pyramid

- Blurring (Gaussian is good)
- Downsampling

Laplacian pyramid

- Upscaling
- Interpolation (fill empty pixel)

Mini-project: Upscaling

Ideal image (500 x 500)

- 1. Read ideal image
- Do pyramid upscaling (until level 5 for testing)
- 3. Result

MSE increasing caused because of blurring.

Mini-project: Upscaling

original vs im0	original vs im3
MSE = 0.0	MSE = 17.738
PSNR = inf	PSNR = 35.642
original vs im1	original vs im4
MSE = 11.681	MSE = 18.338
PSNR = 37.455	PSNR = 35.497
original vs im2	original vs im5
MSE = 16.176	MSE = 18.520
PSNR = 36.042	PSNR = 35.454

Name	Size
im_pyramid_imfsize0.jpg	164 KB
im_pyramid_imfsize1.jpg	398 KB
im_pyramid_imfsize2.jpg	1,092 KB
im_pyramid_imfsize3.jpg	3,280 KB
im_pyramid_imfsize4.jpg	9,830 KB

Mini-project: Upscaling

Thanks