Devoir surveillé 9.

Mardi 14 juin 2022, de 7h45 à 11h45.

Les calculatrices sont interdites

La présentation, la lisibilité et l'orthographe, ainsi que la rédaction, la clarté et la précision des raisonnements, entreront pour une part importante dans l'appréciation des copies.

En particulier, les résultats non justifiés ne seront pas pris en compte. Il est demandé d'encadrer ou de souligner les résultats, et de laisser une marge.

Dans un même exercice ou problème, on pourra admettre les résultats des questions non résolues afin de répondre aux questions suivantes. Les exercices ne sont pas classés par ordre de difficulté et peuvent être traités dans un ordre quelconque.

Exercice 1

Pour tout $n \in \mathbb{N}$, on note (E_n) l'équation différentielle linéaire suivante sur $]0, +\infty[$:

$$(E_n)$$
: $xy' + ny = \frac{1}{1+x^2}$.

Pour tout $n \in \mathbb{N}^*$, on note F_n la fonction définie sur $[0, +\infty[$ par :

$$\forall x \ge 0, \ F_n(x) = \int_0^x \frac{t^{n-1}}{1+t^2} dt.$$

1°) Soit $n \in \mathbb{N}$. Résoudre sur $]0, +\infty[$ l'équation différentielle homogène associée à (E_n) , que l'on notera (H_n) :

$$(H_n) : xy' + ny = 0.$$

 2°) a) Déterminer des réels a, b, c tels que :

$$\forall x > 0, \ \frac{1}{x(1+x^2)} = \frac{a}{x} + \frac{bx+c}{1+x^2}.$$

- **b)** Résoudre (E_0) sur $]0, +\infty[$.
- **3°)** Pour $n \in \mathbb{N}^*$, exprimer l'ensemble des solutions de (E_n) sur $]0, +\infty[$ en fonction de F_n .
- $\mathbf{4}^{\circ}$) Soit $n \in \mathbb{N}^*$.
 - a) Montrer que pour tout $x \ge 0$,

$$F_n(x) = \frac{x^n}{n(1+x^2)} + \frac{2}{n} \int_0^x \frac{t^{n+1}}{(1+t^2)^2} dt.$$

b) Montrer que pour tout $x \ge 0$,

$$0 \le \int_0^x \frac{t^{n+1}}{(1+t^2)^2} \, \mathrm{d}t \le \frac{x^{n+2}}{n+2}.$$

c) En déduire qu'il existe une unique solution de (E_n) sur $]0, +\infty[$, que l'on notera z_n , qui admette une limite finie en 0, et justifier que, pour tout x > 0,

$$z_n(x) = \frac{F_n(x)}{x^n}.$$

5°) Soit $n \in \mathbb{N}^*$. À l'aide d'un développement limité de la fonction $f_n: t \mapsto \frac{t^{n-1}}{1+t^2}$, déterminer le développement limité à l'ordre 2 en 0 de z_n .

Qu'en déduire sur la fonction z_n en 0?

6°) Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout x > 0,

$$z_n(x) = \int_0^1 \frac{u^{n-1}}{1 + x^2 u^2} \, \mathrm{d}u.$$

- **7°)** Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout x > 0, $0 \le z_n(x) \le \frac{1}{n}$.
- 8°) Soit $n \in \mathbb{N}^*$ fixé. À l'aide de (E_n) et de la question 4a, justifier que la fonction z_n est strictement décroissante sur $]0, +\infty[$.

2

Exercice 2

On considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires indépendantes sur un univers Ω fini.

On suppose que les X_n suivent la même loi et sont à valeurs dans l'ensemble $\{-1,1\}$.

On pose $p = P(X_n = 1)$ pour tout $n \in \mathbb{N}^*$. p est indépendant de n.

On suppose que $p \in [0, 1[$.

On définit, pour tout
$$n \in \mathbb{N}^*$$
, $Y_n = \prod_{k=1}^n X_k$ i.e. $Y_n = X_1 \times X_2 \times \cdots \times X_n$.

- 1°) Calculer, pour tout $n \in \mathbb{N}^*$, l'espérance et la variance de Y_n .
- 2°) Déterminer la loi de Y_2 .
- **3°)** On pose, pour tout $n \in \mathbb{N}^*$, $u_n = P(Y_n = 1)$. Montrer que : $\forall n \in \mathbb{N}^*$, $u_{n+1} = (2p-1)u_n + 1 - p$.
- **4**°) Montrer qu'il existe un réel α de]-1, 1[que l'on déterminera tel que, pour tout $n \in \mathbb{N}^*$, $u_n = \frac{1}{2}(1+\alpha^n)$.
- **5°)** Soit $n \in \mathbb{N}^*$.
 - a) Justifier que Y_n et Y_{n+1} sont indépendantes si et seulement si

$$P((Y_n = 1) \cap (Y_{n+1} = 1)) = P(Y_n = 1)P(Y_{n+1} = 1)$$

- **b)** Montrer que $P((Y_n = 1) \cap (Y_{n+1} = 1)) = u_n p$.
- c) En déduire que Y_n et Y_{n+1} sont indépendantes si et seulement si $p = \frac{1}{2}$.
- **6°)** Soit $n \in \mathbb{N}^*, m \in \mathbb{N}^*$.
 - a) Justifier que : $Y_n Y_{n+m} = X_{n+1} \times \cdots \times X_{n+m}$.
 - **b)** En déduire la covariance de Y_n et Y_{n+m} .

Exercice 3

Soit $z_0 = e^{i\theta_0}$ un complexe tel que $\theta_0 \in]-\pi,\pi[\, \setminus \{0\}$. On pose :

$$\forall n \in \mathbb{N}, z_{n+1} = \frac{|z_n| + z_n}{2}$$

- 1°) On note, pour tout $n \in \mathbb{N}$, $y_n = \text{Im}(z_n)$. Montrer que : $\forall n \in \mathbb{N}$, $y_{n+1} = \frac{y_n}{2}$.
- **2°)** En déduire que, pour tout $n \in \mathbb{N}, z_n \neq 0$.

Ainsi, pour tout $n \in \mathbb{N}$, z_n s'écrit sous forme trigonométrique : $z_n = r_n e^{i\theta_n}$ avec $r_n \in \mathbb{R}_+^*$ et $\theta_n \in]-\pi,\pi]$.

3

- **3°)** Soit $n \in \mathbb{N}$. Montrer que : $z_{n+1} = r_n \cos\left(\frac{\theta_n}{2}\right) e^{i\frac{\theta_n}{2}}$.
- **4**°) Soit $n \in \mathbb{N}$. Exprimer r_{n+1} en fonction de r_n et θ_n ; exprimer θ_{n+1} en fonction de θ_n .
- **5**°) En déduire que : $\forall n \in \mathbb{N}^*, r_n = \prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right)$.
- **6**°) Déduire des questions précédentes que : $\forall n \in \mathbb{N}^*, \prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right) = \frac{\sin(\theta_0)}{2^n \sin\left(\frac{\theta_0}{2^n}\right)}$.
- **7°)** Calculer $\lim_{n \to +\infty} \prod_{k=1}^{n} \cos \left(\frac{\theta_0}{2^k} \right)$.

Exercice 4

On note $E = \mathbb{R}_n[X]$ avec $n \geq 2$.

On considère la famille $\mathcal{B} = (P_0, P_1, \dots, P_n)$ de polynômes définie par :

$$P_0 = 1$$
, $P_1 = X$, $\forall k \in \{2, \dots, n\}$, $P_k = \frac{X(X - k)^{k-1}}{k!}$

On pose

$$\forall P \in E, \ f(P) = P(X) - P'(X+1)$$

où P' désigne le polynôme dérivé de P et P'(X+1) la composition (et non le produit) des polynômes P' et X+1.

- 1°) Montrer que f est linéaire.
- **2°)** Montrer que $\mathcal{B} = (P_0, P_1, \dots, P_n)$ est une base de E.
- **3°)** Montrer : $\forall P \in E, \deg(f(P)) = \deg(P)$.
- **4°)** On pose, pour tout $k \in \{0, \ldots, n\}$, $Q_k = f(P_k)$, et $\mathcal{C} = (Q_0, \ldots, Q_n)$. Justifier que \mathcal{C} est une base de E.
- 5°) Montrer que f est un automorphisme de E.
- **6**°) Montrer que, $\forall k \in \{1, ..., n\}, P'_k(X+1) = P_{k-1}(X).$
- 7°) En déduire la matrice A de f dans la base \mathcal{B} .
- 8°) On suppose ici n=3.
 - a) Exprimer X^3 dans la base \mathcal{B} .
 - b) À l'aide de la question 7, déterminer l'unique polynôme P de $\mathbb{R}_3[X]$ tel que :

$$P(X) - P'(X+1) = X^3$$

**** FIN ****