## Music Emotion Classification

- LSTM i Transformer -

Julijana Jevtić Jelena Milošević

Matematički fakultet, Univerzitet u Beogradu

Septembar, 2025

## Pregled

- Uvod
- 2 Modeli
  - Long Short-Term Memory (LSTM)
  - Transformer
  - Loss and Accuracy
  - Metrički rezultati modela
  - F1 skor po klasama
  - Normalizovana matrica konfuzije
  - ROC krive po klasama
  - Precision-recall krive
- Zaključak

### Uvod

- Klasifikacija emocija iz muzičkih tekstova
- Cilj prepoznavanje emocija (sreća, tuga, ljubav, ljutnja)
- Primena u muzičkim preporukama i personalizaciji
- Zadatak podrazumeva analizu teksta i modelovanje sekvenci

### Modeli

## LSTM - Long Short-Term Memory

Sekvencijalni model za dugoročne zavisnosti.

#### **Transformer**

Model zasnovan na pažnji (attention), efikasniji u NLP zadacima.

# Long Short-Term Memory (LSTM)

- Vrsta RNN-a koja rešava problem nestajanja gradijenata.
- Koristi **memorijske ćelije** i **gate mehanizme** (input, forget, output) za kontrolu informacija.
- Obrada sekvenci:
  - Zaboravljanje irelevantnih podataka.
  - 2 Dodavanje novih informacija.
  - 3 Ažuriranje i prosleđivanje značajnih podataka.
- Primene: NLP (analiza, prevođenje, generisanje teksta), prepoznavanje govora, vremenske serije, biomedicina, računarska vizija, robotika, optimizacija resursa...
- Prednosti: stabilno učenje, dobar za dugoročne zavisnosti.
- Ograničenja: složeniji od RNN-a, osetljiv na inicijalizaciju.

#### Transformer

- Arhitektura zasnovana na mehanizmu pažnje (self-attention).
- Obrada celih sekvenci **paralelno**, za razliku od RNN-a.
- Ključne komponente:
  - Self-attention za hvatanje odnosa između svih reči.
  - Multi-head pažnja za učenje različitih tipova zavisnosti.
  - Pozicionalno kodiranje za očuvanje redosleda.
  - Feedforward mreže i rezidualne veze.
- **Primene:** mašinsko prevođenje, sažimanje teksta, generisanje teksta, odgovaranje na pitanja, obrada slika i govora.
- Prednosti: skalabilnost, hvatanje dugoročnih zavisnosti, osnova savremenih modela (BERT, GPT, T5...).
- Ograničenja: visoka složenost, velika potrošnja memorije i resursa.

## Rezultati primene modela – Hiperparametri

U ovom poglavlju prikazani su rezultati evaluacije LSTM i Transformer modela nad test skupom podataka

| LSTM                  |        | Transformer             |                   |  |
|-----------------------|--------|-------------------------|-------------------|--|
| Veličina rečnika      | 20 000 | Veličina rečnika        | 10 000            |  |
| Maks. dužina sekvence | 128    | Maks. dužina sekvence   | 384               |  |
| Dim. ugnežđavanja     | 100    | Dim. ugneždavanja       | 48                |  |
| LSTM jedinice         | 64     | Attention heads         | 4                 |  |
| Gusti sloj (neurona)  | 32     | Dim. feed-forward sloja | 192               |  |
| Dropout               | 0.3    | Dropout                 | 0.2               |  |
| Batch veličina        | 64     | Batch veličina          | 16                |  |
| Broj epoha            | 8      | Broj epoha              | 6                 |  |
| Random seed           | 42     | Patience                | 1                 |  |
|                       |        | Learning rate           | $2 \cdot 10^{-4}$ |  |

Tabela: Uporedni prikaz hiperparametara LSTM i Transformer modela.

## Tok funkcije gubitka i tačnosti tokom epoha



Slika: LSTM krive (gore) i Transformer krive (dole)

### Metrički rezultati modela



Slika: LSTM metrike



Slika: Transformer metrike

# F1 skor po klasama



Slika: LSTM F1 Score



Slika: Transformer F1 Score

# Normalizovana matrica konfuzije



Slika: LSTM matrica

Slika: Transformer matrica

## ROC krive po klasama



Slika: LSTM kriva

Slika: Transformer kriva

### Precision-recall krive



Slika: LSTM kriva



Slika: Transformer kriva

## Primeri predviđanja na osnovu teksta

| Text snippet                                 |     | Pred    | Prob  |
|----------------------------------------------|-----|---------|-------|
| "i told you that i loved you and i meant it" | joy | love    | 0.798 |
| "merry christmas have a very very merry"     |     | joy     | 0.999 |
| "this ending is all but an ending he said"   |     | sadness | 0.727 |
| "i catch a vibe when i am with you lets"     | joy | joy     | 0.927 |
| "so many memories and so many miles the"     | joy | sadness | 0.614 |

Tabela: Primeri predikcija LSTM modela za emocije u pesmama (skraćeni tekstovi).

# Primeri predviđanja na osnovu teksta (Transformer)

| Text snippet                                | True    | Pred    | Prob  |
|---------------------------------------------|---------|---------|-------|
| ".she got the red wine in her glass she is" | joy     | joy     | 0.605 |
| "and god said let there be light kings"     | sadness | sadness | 0.798 |
| "got to take the shame from my back it"     | sadness | fear    | 0.348 |
| "merry christmas have a very very merry"    | joy     | joy     | 0.971 |
| "i catch a vibe when i am with you lets"    | joy     | sadness | 0.599 |

Tabela: Primeri predikcija Transformer modela za emocije u pesmama (skraćeni tekstovi).

## Zaključak

- Poređenje LSTM i Transformer modela dalo je vrlo slične rezultate.
- Uprkos dominaciji Transformer arhitektura u savremenim NLP zadacima, LSTM modeli su i dalje relevantni i konkurentni modeli.