

NEC Laboratories **America**

Why Not Use Your Textbook? Knowledge-Enhanced Procedure Planning of Instructional Videos

SEATTLE, WA JUNE 17-21, 2024

Kumaranage Ravindu Yasas Nagasinghe, Honglu Zhou, Malitha Gunawardhana, Martin Renqiang Min, Daniel Harari, Muhammad Haris Khan

Contributions

- We propose KEPP, a Knowledge-Enhanced Procedure Planning system for instructional videos that leverages rich procedural knowledge from a probabilistic procedural knowledge graph (P^2KG).
- > Requires a minimal number of annotations for supervision.
- > Decompose the problem in procedure planning of instructional videos:
 - predicting the initial and final steps from the start and end visuals, and then creating a plan using procedural knowledge retrieved based on these predicted steps.
- Experimental evaluations on three datasets, under settings of varying complexity, reveal that KEPP attains state-of-the-art results in procedure planning.

Introduction

- Problem Statement: Generate procedural plans with minimal supervision considering causal constraints in the sequencing of steps and the variability inherent in multiple feasible plans.
- Solution: Infuse procedure planning with comprehensive procedural knowledge, derived from training procedure plans and structured as a directed weighted graph.

Method

- > Decompose procedure planning problem: $p(\hat{a}_{1:T}|v_s,v_g) = p(\hat{a}_{2:T-1}|\hat{a}_1,\hat{a}_T)p(\hat{a}_1,\hat{a}_T|v_s,v_g)$
- > Harnessing a Probabilistic Procedural Knowledge Graph (P^2KG): $p(\hat{a}_{1:T}|v_s,v_g) = p(\hat{a}_{1:T}|\tilde{a}_{1:T},v_s,v_g)p(\tilde{a}_{1:T}|\hat{a}_1,\hat{a}_T)p(\hat{a}_1,\hat{a}_T|v_s,v_g)$
- > Adopting conditioned projected diffusion Model as the Step Model and Planning Model

Results

 $ightharpoonup 'P^2KGC = 1'$ and ' $P^2KGC = 2'$ indicates the first and second paths obtained from the probabilistic procedure knowledge graph, respectively.

Conclusion

- \triangleright KEPP employs a P^2KG , sourced from the training domain, effectively serving as a 'textbook' for procedure planning.
- ➤ KEPP delivers top-tier performance while necessitating only a minimal amount of supervision.

Models	T = 3	T = 4	T=5	T=6
PDPP	26.38	18.69	13.22	7.49
Skip Plan	28.85	15.56	8.55	5.12
Ours (R=1)	33.34	20.38	13.25	8.09
Ours (R=2)	33.38	21.02	12.74	9.23

SR comparison on CrossTask

SCAN ME