Deploying Infrastructure for Dask on Google Cloud

Sang-Yun Oh

Dept. of Statistics and Applied Probability University of California Santa Barbara

What is Dask?

Dask breaks up large computations and route parts of them efficiently onto distributed hardware. Dask is routinely run on thousand-machine clusters ...

About Dask

- Description of Dask
- Example distributed applications
- Distributed infrastructure

Computing Infrastructure for Dask

- Dask run on laptops, clusters, and HPC environments
- Develop/test in small scale (laptops)
- Deploy/scale in large scale (clusters and HPC environments)

Which Infrastructure to Use?

- Cloud computing: slow(er) but easy access and on-demand
- HPC: highly optimized but access is restricted and may not be interactive

Cloud Computing and Reproducibility

What is reproducibility?

An article about computational result is advertising, not scholarship. The actual scholarship is the **full software environment**, **code** and **data**, that produced the result.

Cloud Platforms and Infrastructure as Code (IaC)

- Cloud platforms have APIs
- Setups of cloud infrastructure can be coded (IaC)
- ♠ Analysis code and cloud IaC on GitHub + Data → Reproducibility

Unfortunately, cloud infrastructure is mostly Do-It-Yourself (DIY) 😭

Infrastructure as Code

(Using Recommendations for Infrastructure as Code)

Goal for Today

- Conceptual understanding of distributed computing infrastructure for Dask
- Discuss enabling technologies
- Hands-on lab using Google Cloud Platform

Dask Architecture

Workers compute tasks / store and serve computed results to other workers or clients

Architecture Components

Client, scheduler, and worker processes can be distributed in different ways

- A Before 2006: physical server run (a combination of) processes
- <u>Machines</u> Before 2015: multiple virtual machines on powerful machines
- III After 2015: Kubernetes cluster to handle orchestration

What is Kubernetes? 🦀

Kubernetes and Containers

Kubernetes is an open-source system for automating deployment, scaling, and management of containerized applications.

Application containerization (e.g. Docker) is an OS-level virtualization method used to deploy and run distributed applications without launching an entire virtual machine (VM) for each app.

Enabling Technologies

Component contents

Components wiring diagram

Builder and manager

Provides resources

Hands-on Lab

Google Cloud Command Line Tool: https://shell.cloud.google.com/

Main tools

```
gcloud --version  # controls Google Cloud resources
docker --version  # container-level controls
kubectl version  # cluster-level controls
helm version  # installation "blueprint"
```

Login to Google Cloud

```
gcloud auth list # check current account
# gcloud auth login syoh@ucsb.edu # login using another account

# set default project
gcloud config set project testing-sandbox-324502
gcloud config set compute/zone us-central1-a
```

Start Kubernetes Cluster

```
# create Kubernetes cluster
gcloud container clusters create \
    --machine-type e2-standard-4 \
    --num-nodes 2 \
    [unique-cluster-name]
```

- Machine type documentation
- Regions and zones documentation
- Use unique cluster names: e.g. include your initials

Dask Cluster Helm Chart

Three important concepts for Helm:

- 1. *Chart*: a bundle of information necessary to create an instance of a Kubernetes application. (the blueprint)
- 2. **Config**: configuration information that can be merged into a packaged chart. (user specified setting)
- 3. *Release*: running instance of a *chart*, combined with *config*. (deployed instance)

Dask Helm Chart 🔗

Blueprint for setting up Jupyter Lab, scheduler, and workers on Kubernetes cluster

Dask Helm Chart Config

• User configuration supercedes default values in values.yam1 file

```
cat << EOF > config.yaml
jupyter:
    serviceType: "LoadBalancer" # makes Jupyter notebook publicly accessible
scheduler:
    serviceType: "LoadBalancer" # makes Dask scheduler publicly accessible
worker:
    replicas: 4
EOF
```

Instantiate Dask Cluster

```
helm repo add dask https://helm.dask.org/
helm repo update
helm install --wait my-dask -f config.yaml dask/dask # takes a while
```

Kubernetes running my-dask release

```
sangoh@cloudshell:~ (testing-sandbox-324502)$ kubectl get all
NAME
                                         READY
                                                 STATUS
                                                           RESTARTS
                                                                      AGE
pod/my-dask-jupyter-54ddbfdd9d-rbsjb
                                         1/1
                                                 Running
                                                                      8m45s
pod/my-dask-scheduler-7f4f94bb7d-4c4fn
                                        1/1
                                                 Running
                                                           0
                                                                      8m45s
pod/my-dask-worker-6877d8f79f-42jrb
                                         1/1
                                                 Running
                                                           0
                                                                      8m44s
pod/my-dask-worker-6877d8f79f-88wvm
                                         1/1
                                                 Running
                                                          1
                                                                      8m45s
pod/mv-dask-worker-6877d8f79f-9gvc5
                                         1/1
                                                 Runnina
                                                          0
                                                                      8m44s
pod/my-dask-worker-6877d8f79f-g659d
                                         1/1
                                                 Running
                                                          1
                                                                      8m45s
pod/my-dask-worker-6877d8f79f-htg8p
                                         1/1
                                                          1
                                                 Running
                                                                      8m45s
pod/my-dask-worker-6877d8f79f-t44jn
                                         1/1
                                                          1
                                                 Running
                                                                      8m45s
NAME
                            TYPF
                                           CLUSTER-IP
                                                          EXTERNAL-IP
                                                                          PORT(S)
                                                                                                        AGE
service/kubernetes
                           ClusterIP
                                           10.12.0.1
                                                          <none>
                                                                          443/TCP
                                                                                                        11m
service/my-dask-jupyter
                           LoadBalancer
                                          10.12.8.243
                                                          34.121.167.99
                                                                          80:32536/TCP
                                                                                                        8m45s
service/mv-dask-scheduler
                                                          34.67.163.35
                           LoadBalancer
                                           10.12.14.160
                                                                          8786:30322/TCP,80:32005/TCP
                                                                                                        8m45s
                                    READY
NAME
                                           UP-TO-DATE
                                                         AVAILABLE AGE
deployment.apps/my-dask-jupyter
                                    1/1
                                            1
                                                         1
                                                                     8m45s
deployment.apps/my-dask-scheduler
                                   1/1
                                                         1
                                                                     8m45s
deployment.apps/my-dask-worker
                                    6/6
                                                                     8m45s
NAME
                                               DESIRED
                                                         CURRENT
                                                                   READY
                                                                           AGE
replicaset.apps/my-dask-jupyter-54ddbfdd9d
                                                                           8m46s
replicaset.apps/my-dask-scheduler-7f4f94bb7d
                                                         1
                                              1
                                                                           8m46s
replicaset.apps/my-dask-worker-6877d8f79f
                                                                           8m46s
```

Google Cloud Kubernetes Workloads Overview 🔗

Server addresses

Run Example Notebook

- 1. Open Jupyter notebook specified in output
- 2. Copy dashboard URL into Dask Jupyter lab extension
- 3. Open and run examples/04-dask-array.ipynb
- 4. Additional packages are needed for examples/05-nyc-taxi.ipynb

Install Additional Packages

```
cat << EOF > config.yaml
jupyter:
  serviceType: "LoadBalancer" # makes Jupyter notebook publicly accessible
  env:
    - name: EXTRA PIP PACKAGES
      value: "pyarrow gcsfs"
scheduler:
  serviceType: "LoadBalancer" # makes Dask scheduler publicly accessible
worker:
  replicas: 4
  env:
    - name: EXTRA PIP PACKAGES
      value: "pyarrow gcsfs"
EOF
```

Upgrade my-dask Release

• upgrade release rather than install

helm upgrade --wait my-dask -f config.yaml dask/dask # takes a while

• Run examples/05-nyc-taxi.ipynb (will break). Check why with kubectl

```
kubectl get all
kubectl describe [pod/my-dask-worker-00000]  # what do you notice?
# what do you notice?
# evicted resource name
```

Try again

```
cat << EOF > config.yaml
jupyter:
 serviceType: "LoadBalancer" # makes Jupyter notebook publicly accessible
  resources:
   limits:
     cpu: 1
     memory: 3G
    requests:
     cpu: 0.5
     memory: 2G
  env:
   - name: EXTRA_PIP_PACKAGES
     value: "pyarrow gcsfs matplotlib"
scheduler:
  serviceType: "LoadBalancer" # makes Dask scheduler publicly accessible
  resources:
   limits:
     cpu: 1
     memory: 3G
    requests:
     cpu: 0.5
     memory: 2G
worker:
  replicas: 15
  resources:
   limits:
     cpu: 1
     memory: 3G
   requests:
     cpu: 0.5
     memory: 2.5G
  env:
    - name: EXTRA_PIP_PACKAGES
     value: "pyarrow gcsfs"
E0F
```

Upgrade my-dask Release again

Resize cluster to add nodes

```
gcloud container clusters resize [your-cluster-name] --num-nodes 5
```

• upgrade release rather than install

```
helm upgrade --wait my-dask -f config.yaml dask/dask # takes a while
```

• Run examples/05-nyc-taxi.ipynb