Test-Time Adaptation for Robust Face Anti-Spoofing

The 34th British Machine Vision Conference 20th - 24th November 2023, Aberdeen, UK

Pei-Kai Huang, Chen-Yu Lu, Shu-Jung Chang, Jun-Xiong Chong, and Chiou-Ting Hsu National Tsing Hua University, Taiwan

Face Anti-Spoofing (FAS)

■ Fully Test-Time Adaptation (TTA)

 $\{X_T\}$: Unlabeled target dataset $\{X_T\} = \{X_T^1, X_T^2, \dots, X_T^n\}$

Challenges in TTA Setting

- Noisy pseudo-label problem
- Class imbalance within a batch of target data
- Unseen attack types

■ Goal

- To obtain reliable pseudo labels
- Via fine-grained activation map
- To prevent overfitting to one dominant class
 - Via memory bank
- To detect unseen attack types
 - > Associate unseen attacks with seen attacks

3A-TTA Framework

Activation-Based Pseudo-Labeling

- Pseudo label
- Similarity between liveness feature and class activation map

$$\bar{y} = \begin{cases} 1, & if \ sim(\mathbf{f}, \mathbf{A}_l) \ge sim(\mathbf{f}, \mathbf{A}_s); \\ 0, & if \ sim(\mathbf{f}, \mathbf{A}_l) < sim(\mathbf{f}, \mathbf{A}_s); \end{cases}$$

Liveness loss

$$\mathcal{L}_l = -\sum \bar{y}log\mathbf{CF}(\mathbf{f}) + (1 - \bar{y})log(1 - \mathbf{CF}(\mathbf{f}))$$

Anti-Forgetting Feature Learning

Reliable feature selection

$$\gamma = \begin{cases} 1, & if \\ 0, & otherwise \end{cases} \begin{cases} \mathbf{CF(f)} > \alpha & and & m_{sim} \geq \beta; \\ \mathbf{CF(f)} < 1 - \alpha & and & m_{sim} \leq -\beta; \end{cases}$$

Anti-forgetting liveness loss

$$\mathcal{L}_{afl} = -\sum \hat{y}log\mathbf{CF}(\hat{\mathbf{f}}) + (1 - \hat{y})log(1 - \mathbf{CF}(\hat{\mathbf{f}}))$$

Asymmetric Prototype Contrastive Learning

Asymmetric prototype contrastive loss

$$\mathcal{L}_{apc} = -\log \frac{\exp\left(sim(\mathbf{f}_{s}^{a}, \hat{\mathbf{f}}_{s}^{p})\right)}{\sum_{j=\{\hat{\mathbf{f}}_{s}^{p} \cup N_{s}\}} \exp\left(sim(\mathbf{f}_{s}^{a}, \hat{\mathbf{f}}^{j}\right)\right)} - \log \frac{\exp(sim(\mathbf{f}_{l}^{a}, \hat{\mathbf{f}}_{l}^{p}))}{\sum_{j=\{\hat{\mathbf{f}}_{l}^{p} \cup N_{l}\}} \exp(sim(\mathbf{f}_{l}^{a}, \hat{\mathbf{f}}^{j}))}$$

Total Loss

$$\mathcal{L}_T = \mathcal{L}_l + \lambda_1 \mathcal{L}_{afl} + \lambda_2 \mathcal{L}_{apc}$$

Experiments

Datasets

• OULU-NPU (O), MSU-MFSD (M), CASIA-MFSD (C), Replay-Attack (I), 3DMAD (D), and HKBU-MARs (H)

Evaluation Metrics

- Half Total Error Rate (HTER)
- Area Under Curve (AUC)

Ablation Study

Method	Γ	otal L	$\cos \mathcal{L}$	T	pse	udo-labeling Mech	nanisms	Feature	[OMI]	\rightarrow D	$[OMI] \rightarrow C$		
Wichiod		$ \mathcal{L}_l \mathcal{L}_{afl} \mathcal{L}_{apc} \mathcal{L}$		$ \mathcal{L}_c $	Score	Class Prototype	Activation	Selection	HTER AUC		HTER	AUC	
╙						based	based	based					
M M	[0									26.86	87.83	28.78	86.26
M	[1	✓				\checkmark				23.19	88.41	29.78	85.05
M	[2	✓					√			27.72	88.28	30.24	86.05
M	[3	✓						√		21.87	88.68	26.02	86.44
M	[4	√	√					√				24.94	
M	15	✓	\checkmark					√	\checkmark	18.15	89.47	24.33	87.07
M	[6	✓	√		√			√	√			26.00	
M	17	√	√	\checkmark				√	√	17.21	90.63	23.55	87.29

Proposed TTA-FAS Benchmark

Protocol	Subset	Attack Type	Real data (V/I)	Attack data (V/I)	All data (V/I)	
$[O,C,I] \rightarrow [M,D,H]$	Source: OCI	print, replay	1280	5110	6390	
$[O,C,I] \rightarrow [M,D,II]$	Target: MDH	print,replay,3D Mask	339	355	694	
$[O,M,I] \rightarrow [C,D,H]$	Source: OMI	print, replay	1200	4360	5560	
	Target: CDH	print,replay,3D Mask	419	595	1014	
$[O,C,M] \rightarrow [I,D,H]$	Source: OCM	print, replay	1210	4620	5830	
$[O,C,WI] \rightarrow [I,D,II]$	Target: IDH	print,replay,3D Mask	409	845	1254	
$[I,C,M] \rightarrow [O,D,H]$	Source: ICM	print, replay	350	1360	1710	
$[1,C,N1] \rightarrow [C,D,\Pi]$	Target: ODH	print,replay,3D Mask	1259	4105	5364	

Experimental Comparisons

		$[\mathbf{O}, \mathbf{C}, \mathbf{I}] \to [\mathbf{M}, \mathbf{D}, \mathbf{H}]$									$[\mathbf{O},\!\mathbf{M},\!\mathbf{I}] \to [\mathbf{C},\!\mathbf{D},\!\mathbf{H}]$								
Method		$O,C,I \rightarrow M$		$O,C,I \rightarrow D$		$O,C,I \rightarrow H$		Average		O,M,I		O,M,I						Time	
,	HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC	Time	HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC	Tillic	
No adaptation	n 26.67	94.49	19.55	88.11	22.15	84.33	22.79	88.98	0.50	28.78	86.26	26.86	87.83	23.47	84.91	26.37	86.33	0.62	
Tent [42]	27.98	94.49	22.67	87.44	22.49	84.55	24.38	88.83	1.061	28.14	79.68	46.10	53.69	28.54	79.36	34.26	70.91	1.36	
OAP [3]	26.41	94.49	19.79	88.09	22.15	84.35	22.78	87.35	0.55	29.34	86.03	26.86	87.78	22.95	85.86	25.38	86.55	0.70	
- 3A-TTA	26.21	94.53	16.26	92.03	20.89	84.74	21.12	90.43	4.35	23.55	87.29	17.21	90.63	20.33	86.99	20.36	88.30	7.12	
-		$\textbf{[O,C,M]} \rightarrow \textbf{[I,D,H]}$								$[I,C,M] \rightarrow [O,D,H]$									
Method			$O,C,M \rightarrow D \mid O,C,M$					Time	, ,		$I,C,M \rightarrow D \mid I,C,M$					age	Time		
4	HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC	Time	HTER	AUC	HTER	AUC	HTER	AUC	HTER	AUC		
No adaptation	n 30.36	71.22	25.27	83.89	19.93	90.08	25.19	81.73	0.71	37.73	81.95	25.80	81.79	34.93	83.88	32.82	82.54	2.28	
Tent [42]	35.73	70.16	25.43	84.12	22.28	89.81	27.81	81.36	1.57	47.01	64.23	26.43	80.11	42.43	83.40	38.62	75.91	8.72	
OAP [3]	29.69	71.15	25.15	83.81	19.93	90.09	24.92	81.68	0.81	31.21	78.50	25.62	81.55	35.41	83.65	30.75	81.23	2.28	
JA-TTA	28.11	72.45	21.78	86.28	16.99	90.36	22.29	83.03	8.72	25.62	82.25	24.35	80.06	30.71	84.41	26.89	82.24	37.06	

T-SNE Visualization Live Spoof Spoof Spoof Al As Spoof Spoof Al As Spoof Spoof Al As Spoof Spoof Al As Spoof Spoof Spoof Al As Spoof Spoof Al As Spoof Spoof Spoof Al As Spoof Spoof Spoof Al As Spoof Spoof Al As Spoof Spoof Al As Spoof Spoof