WHAT IS CLAIMED AS NEW AND DESIRED TO BE SECURED BY LETTERS PATENT OF THE UNITED STATES IS:

1. A camptothecin analog having the structure:

$$(CW_2)_n$$
 X
 Y
 OR^7
 O
 (I)
 R^{13}

$$\begin{array}{c|c}
 & OR^7 \\
 & OR^7 \\
 & OII
\end{array}$$

5

10

15

20

where

X and Y are each independently NO_2 , NH_2 , H, F, Cl, Br, I, COOH, OH, O-C₁₋₆ alkyl, SH, S-C₁₋₆ alkyl, CN, NH-C₁₋₆ alkyl, N(C₁₋₆ alkyl)₂, CHO, C₁₋₈ alkyl, N₃,

-Z-(CH₂)_a-N-((CH₂)_bOH)₂, wherein Z is selected from the group consisting of O, NH and S, and a and b are each independently an integer of 2 or 3,

-Z- $(CH_2)_a$ -N- $(C_{1-6}$ alkyl)₂ wherein Z is selected from the group consisting of O, NH and S, and a is an integer of 2 or 3,

-CH₂-L, where L is halogen (F, Cl, Br, I), ${}^+N_2$, ${}^+(OR^1)_2$, ${}^+S(R^1)_2$, ${}^+N(R^1)_3$, OC(O)R¹, OSO₂R¹, OSO₂CF₃, OSO₂C₄F₉, C₁₋₆ alkyl-C(=O)-, C₄₋₁₈ aryl-C(=O)-, C₁₋₆ alkyl-SO₂-, perfluoro C₁₋₆ alkyl-SO₂- or C₄₋₁₈ aryl-SO₂-, (where each R¹ independently is C₁₋₆ alkyl, C₄₋₁₈ aryl or C₄₋₁₈ ArC₁₋₆ alkyl); or

-CH₂NR²R³, where (a) R² and R³ are, independently, hydrogen, C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl, C_{1-6} alkyl, C_{2-6} alkenyl, hydroxy C_{1-6} alkyl, C_{1-6} alkoxy C_{1-6} COR⁴ where R⁴ is hydrogen, C_{1-6} alkyl, perhalo C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl- C_{1-6} alkyl, C_{2-6} alkenyl, hydroxyl- C_{1-6} alkyl, C_{1-6} -alkoxy, or C_{1-6} alkoxy- C_{1-6} alkyl, or (b) R² and R³ taken together with the nitrogen atom to which they are attached form a saturated 3-7

membered heterocyclic ring which may contain a O, S or NR⁵ group, where R⁵ is hydrogen, C_{1-6} alkyl, perhalo- C_{1-6} alkyl, aryl, aryl substituted with one or more groups selected from the group consisting of C_{1-6} alkyl, halogen, nitro, amino, C_{1-6} alkylamino, perhalo- C_{1-6} alkyl, hydroxyl- C_{1-6} alkyl, C_{1-6} alkoxy, C_{1-6} alkoxy- C_{1-6} alkyl and - COR^6 where R⁶ is hydrogen, C_{1-6} alkyl perhalo- C_{1-6} alkyl, C_{1-6} alkoxy, aryl, and aryl substituted with one or more C_{1-6} alkyl, perhalo- C_{1-6} alkyl, hydroxyl- C_{1-6} alkyl, or C_{1-6} alkyl, groups;

 R^7 is H, or C(O)-(CH₂)_m-NR⁸R⁹, where m is an integer of 1-6 or -C(O)CHR¹⁰NR⁸R⁹, where R¹⁰ is the side chain of one of the naturally occurring α -amino acids, R⁸ and R⁹ are, independently, hydrogen, C₁₋₈ alkyl or -C(O)CHR¹¹NR¹²R¹³ where R¹¹ is the side chain of one of the naturally occurring α -amino acids and R¹² and R¹³ are each independently hydrogen or C₁₋₈ alkyl;

W is independently H or F,

 R^{13} and R^{14} are each H or combine to form a double bond; and

n is an integer of 1 or 2, and salts thereof.

5

10

15

25

30

- 2. The camptothecin analog of claim 1, wherein n is 1.
- 3. The camptothecin analog of claim 1, wherein Y is -CH₂-L.
- 4. The camptothecin analog of claim 1, wherein L is selected from the group consisting of Cl, Br and I.
 - 5. The camptothecin analog of claim 1, wherein R^7 is C(O)- $(CH_2)_m$ - NR^8R^9 , where m is an integer of 1-6 or -C(O)CH R^{10} N R^8R^9 , where R^{10} is the side chain of one of the naturally occurring α -amino acids, R^8 and R^9 are, independently, hydrogen, C_{1-8} alkyl or -C(O)CH R^{11} N R^{12} R^{13} , where R^{11} is the side chain of one of the naturally occurring α -amino acids and R^{12} and R^{13} are each independently hydrogen or C_{1-8} alkyl.
 - 6. The camptothecin analog of claim 1, which is selected from the group consisting of R isomers, S isomers and mixtures thereof.
 - 7. The camptothecin analog of claim 6, wherein the analog is the S isomer.
 - 8. The camptothecin analog of claim 6, wherein the analog is the R isomer.
 - 9. The camptothecin analog of claim 6, wherein the analog is an S rich mixture of S and R isomers.
 - 10. The camptothecin analog of claim 6, wherein the analog is a R rich mixture of S and R isomers.

- 11. The camptothecin analog of claim 6, wherein the analog is a racemic mixture of R and S isomers.
- 12. A method of treating leukemia or solid tumors comprising administering to a patient in need thereof, the camptothecin analog of claim 1.
 - 13. A pharmaceutical composition comprising the camptothecin analog of claim 1.
- 14. A method for inhibiting the enzyme topoisomerase I, comprising contacting a DNA-topoisomerase I complex with the camptothecin analog of claim 1.
 - 15. A method of preparing the camptothecin analog according to claim comprising: condensing a compound of formula IV or V

$$(CW_2)_n$$
 X
 Y
 O
 (IV)

10

5

where X, Y, W and n are as defined in claim 1, with a tricyclic ketone of formula III

where R^{13} and R^{14} are as defined in claim 1 to form the camptothecin analog of claim 1.