21 B DSO 340

Abninar Dinesh Srivatsa

memistry

Digital Assignment - 1

Temperature, T	Rate constant, K (5")	1/T (K-1)	In (k)
375	1.68×10-5	0.00267	-10.99
400	3.5 ×10 -5	0.0025	-10.26
500	4.2 × 10-4	0.0020	-1.77
600	2.11 × 10-3	0.00167	-6.16

Slope from graph =
$$-3 - (-11.5)$$

 $10 \times 10^{-4} - 28 \times 10^{-4}$
 $= -8.5$
 18×10^{-4}
 $= -4722.22$

Slope =
$$-\frac{\epsilon_a}{R}$$

$$f_{\alpha} = 4722.22 \times R$$

= 39.3 kJ/mol

$$k_2 = \frac{A}{10} e^{-\frac{\epsilon a}{10LT}}$$

$$= \frac{k_1}{k_2} = 10e^{-16a \times 0.0036}$$

$$= \frac{k_1}{k_2} = 10e^{-0.0036}$$

The final ratio depends on Ea

Activation energy has a higher influence in this function as k & A but k & = Ea. Since the Ea is in the exponential, a change in that will have more influence.

a. 2000 cm - 1 to pm

Mm = 10000/cm-1

=) 2000 m = 5 mm

This is intrared radiation. This transition appears in molecular vibrations.

6. 0.15 nm to 1/2

1/2 = 3 × 10 8/ mm wavelength

=) 0.15 nm = 2 x 10 18 M2

This is x-rays radiation. This appears in inner electron

transitions.

c. 500 um to cmi

500 mm = 20 × 10 cm

Tuis visible radiation. This appears in outer electron

transitions.

d. 9 Guz to un-

9 442 = 33 mm

33 mm = 0. 5 cm

This is radio radiation. This appears in the excitement of a needless to a higher spin state.