Trabajo práctico 4

Transformada de Fourier

Ejercicio 1:

Implementar la transformada discreta unidimensional de Fourier mediante un function-file de Matlab y comparar los resultados obtenidos con la función fft () provista por Matlab.

a) Calcular y visualizar el espectro de la transformada de la señal

$$x(t) = \cos(2\pi f_0 t)$$

para f_0 =5, 20, 200 H_Z, considerando t en [0,1) seg y el número de muestras N=512.

b) Comparar la estimación de la transformada de la señal

$$x(t) = 2e^{-3t} \text{ para } t \ge 0$$

evaluada en el intervalo de tiempos [0,4] seg considerando 512 muestras, con su solución analítica

$$X\left(u\right) = \frac{2}{3+j2\pi u}$$

c) Calcular las transformadas inversas de los resultados obtenidos en los puntos anteriores y comparar con los datos originales.

Ejercicio 2:

Con el algoritmo de transformada de Fourier unidimensional desarrollado, implementar la transformada bidimensional.

a) Generar una imagen de intensidad con franjas cosenoidales verticales y analizar el espectro obtenido. Comparar con el resultado obtenido con la función fft2() provista en Matlab.

b) Visualizar los espectros de las imágenes indicadas:

Visualizai 103	especifios de la	s imagenes mai	cadas.	
cosv.tif	senv.tif	cosh.tif	senh.tif	cos60.tif
sencos.tif	sen45.tif	cosr.tif	rect1.tif	rect2.tif
recth.tif	rectv.tif	circ1.tif	circ2.tif	circ3.tif
f01.jpg	f02.jpg	cam01.tif	cam02.tif	cam03.tif
letras01.tif	letras02.tif	cantor.jpg	cara.tif	

Ejercicio 3:

- a) Analizar y demostrar las propiedades de la transformada de Fourier: linealidad, traslación, periodicidad, simetría, convolución, cambio de escala
- b) Implementar la convolución discreta mediante un function-file de Matlab y aplicarlo a la convolución entre las señales

$$x_1(t) = 1$$
 y $x_2(t) = 0.5$

considerando 30 muestras. Comparar los resultados obtenidos con la función conv () provista por Matlab.

c) Calcular la convolución entre dos funciones cosenoidales de igual amplitud y frecuencias f_1 =5Hz y f_2 =7Hz, evaluadas en el intervalo [0,1) considerando la cantidad de muestras en ese intervalo N=1024. Verificar que la transformada de

Fourier de la convolución de las dos señales es igual al producto de las transformadas de cada una de ellas.

Ejercicio 4:

Extraer la fila 167 de la imagen *cam01.tif* y filtrarla con el kernel [3 6 10 6 3] / 28. Comparar las señales original, resultante y filtro en el dominio espacial y de frecuencias. Repetir el procedimiento para la imagen *cam03.tif*.

Ejercicio 5:

Graficar la señal en tiempo discreto que se obtiene al muestrear la señal en tiempo continuo

$$x(t) = \cos(2\pi f_0 t) \cos f_0 = 50 \text{ Hz y } t \text{ en } [0,0.2) \text{ s}$$

para diferentes frecuencias de muestreo ${\tt Fm}$ entre 25 Hz y 500 Hz. Analizar los espectros resultantes.

Ejercicio 6:

- a) Analizar los espectros de dos funciones cosenoidales de frecuencias f_1 =5 H_Z y f_2 =4.5 H_Z muestreadas en el intervalo de tiempo [0,1) seg. La cantidad de muestras es N=1024 puntos.
- b) Con los mismos parámetros de muestreo del punto anterior, graficar los valores y los espectros de las funciones siguientes:

```
rectwin() triang() hamming() hann()
gausswin() blackman()
```

c) Graficar y comparar la señal y el espectro resultantes del producto de las