IN1150 – Logiske metoder

Prøveeksamen 2018 (med løsningsforslag)

Dette er et utkast til løsningsforslag til prøveeksamen i IN1150, og feil kan forekomme. Hvis du finner noen feil, si ifra til Roger på rantonse@ifi.uio.no.

1 Små oppgaver [70 poeng]

1.1 Grunnleggende mengdelære [3 poeng]

Anta at $A = \{\{1, \{1\}\}, \{2\}, \{1, 2\}\}.$

- Er det slik at $\{1\} \in A$? (Ja / Nei)
- Er det slik at $\{2\} \in A$? (Ja / Nei)
- Er det slik at $\{1\} \subseteq A$? (Ja / Nei)

1.2 Utsagnslogikk [3 poeng]

Anta at S står for «han er sulten» og at T står for utsagnet «han er tålmodig».

- Formelen $(S \to \neg T)$ representerer utsagnet «han er ikke tålmodig hvis han er sulten». (Sant / Usant)
- Formelen $(\neg S \lor \neg T)$ representerer utsagnet «han er hverken sulten eller tålmodig». (Sant / <u>Usant</u>)
- Formelen $(T \rightarrow \neg S)$ representerer utsagnet «han er tålmodig bare hvis han ikke er sulten». (<u>Sant</u> / Usant)

1.3 Sannhetsverdier og valuasjoner [3 poeng]

Avgjør om følgende påstander er sanne eller usanne.

- Formelen $(\neg P \rightarrow \neg P)$ er sann for alle valuasjoner. (Sant / Usant)
- $(P \lor \neg P)$ kan gjøres usann. (Sant / <u>Usant</u>)
- Hvis $(P \rightarrow Q)$ er sann, kan P være sann. (Sant / Usant)

1.4 Utsagnslogiske begreper [3 poeng]

Avgjør om følgende påstander er sanne eller usanne.

- Det finnes en utsagnslogisk formel som er både gyldig og kontradiktorisk. (Sant / **Usant**)
- Alle gyldige formler er ekvivalente med hverandre. (Sant / Usant)
- Formelen $(Q \to P)$ er en logisk konsekvens av $\{(\neg R \to \neg Q), (\neg R \lor P)\}$. (Sant / Usant)

1.5 Bevis og moteksempler [3 poeng]

Avgjør om følgende påstander er sanne eller usanne.

• En formel som ikke er oppfyllbar, må være kontradiktorisk. (Sant / Usant)

- For å vise at «hvis vi har $A \subseteq B$ og $B \subseteq C$, så har vi også $A \subseteq C$ » er det tilstrekkelig å finne tre mengder slik at $A \subseteq B$, $B \subseteq C$ og $A \subseteq C$. (Sant / <u>Usant</u>)
- Et moteksempel til påstanden «F er en falsifiserbar formel» er en valuasjon som gjør F sann. (Sant / <u>Usant</u>)

1.6 Relasjoner [3 poeng]

La R = $\{\langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle b, c \rangle, \langle c, a \rangle, \langle c, c \rangle\}$ være en relasjon på A = $\{a, b, c, d\}$.

- Er R refleksiv? (Ja / Nei)
- Er R symmetrisk? (Ja / Nei)
- Er R transitiv? (Ja / Nei)

1.7 Funksjoner [3 poeng]

Avgjør om følgende påstander er sanne eller usanne.

- Det finnes funksjoner som også er transitive relasjoner. (Sant / Usant)
- For enhver refleksiv relasjon R finnes det en funksjon f slik at f \subseteq R. (<u>Sant</u> / Usant)
- Det finnes funksjoner som er hverken injektive eller surjektive. (Sant / Usant)

1.8 Litt mer mengdelære [3 poeng]

Avgjør om følgende påstander er sanne eller usanne.

- For alle mengder A er det slik at potensmengden til A har større kardinalitet enn A. (Sant / Usant)
- Kardinaliteten til unionen av A og B er lik kardinaliteten til A pluss kardinaliteten til B. (Sant / <u>Usant</u>)
- Mengden av heltall, $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ er tellbar. (Sant / Usant)

1.9 Induktivt definerte mengder [3 poeng]

La M være den minste mengden slik at $0 \in M$, og hvis $x \in M$, så er $2x \in M$ og $2x + 1 \in M$.

- Det er slik at $4 \in M$. (Sant / Usant)
- M inneholder alle positive oddetall. (Sant / Usant)
- Det finnes uendelig mange naturlige tall som ikke er i M. (Sant / <u>Usant</u>)

1.10 Rekursive funksjoner [3 poeng]

La f være en funksjon på naturlige tall definert rekursivt på følgende måte:

- (1) f(0) = 0
- (2) $f(n+1) = 2 \cdot f(n) + 1$

Avgjør om følgende påstander er sanne eller usanne.

- Det er slik at f(f(2)) = 7. (Sant / Usant)
- Bildemengden til f inneholder alle positive oddetall. (Sant / Usant)
- Funksjonen f er identisk med funksjonen g som er slik at $g(n) = 2^n 1$. (Her betyr 2^n «2 i n-te potens», det vil si 2 ganget med seg selv n ganger.) (<u>Sant</u> / Usant)

1.11 Strukturell induksjon [3 poeng]

Avgjør om følgende påstander er sanne eller usanne.

- Et bevis ved matematisk induksjon trenger ikke en induksjonshypotese. (Sant / Usant)
- Basissteget i et induksjonsbevis kan ikke være et motsigelsesbevis. (Sant / <u>Usant</u>)
- Bevis ved strukturell induksjon kan også fungere for endelige mengder. (Sant / Usant)

1.12 Førsteordens språk [4 poeng]

Avgjør om følgende påstander er sanne eller usanne.

- $Px \wedge (\forall xRy \rightarrow \exists yRx)$ er en formel. (Sant / Usant)
- $\forall Px \text{ er en formel. (Sant / } \underline{Usant})$
- $\forall x(Qx \rightarrow (\exists y \rightarrow Rxy))$ er en formel. (Sant / <u>Usant</u>)
- $(Ax \lor \neg Ax \forall x)$ er en formel. (Sant / **Usant**)

1.13 Representasjon av kvantifiserte utsagn [3 poeng]

Anta at P er et relasjonssymbol slik at Px tolkes som «x er et primtall».

Anta at M er et relasjonssymbol slik at Mx tolkes som «x er et magisk tall».

Anta at R er et relasjonssymbol slik at Rxy tolkes som «tallet x er relatert til tallet y».

Avgjør om følgende påstander er sanne eller usanne.

- Formelen $(\forall x Px \lor \forall y My)$ representerer utsagnet «ethvert tall er enten et primtall eller et magisk tall». (Sant / <u>Usant</u>)
- Formelen $\exists x(Mx \to Px)$ representerer utsagnet «det finnes et magisk tall som også er et primtall». (Sant / <u>Usant</u>)
- Formelen $\exists x (Mx \land \forall y (Rxy \rightarrow Py))$ representerer utsagnet «det finnes et magisk tall som bare er relatert til primtall».

(Sant / Usant)

1.14 Tolkning i modeller [4 poeng]

La \mathcal{M} være en modell med domene $\{1, 2, 3\}$ slik at følgende holder.

$$\begin{split} P^M &= \{1,2,3\} \\ Q^M &= \{1,2\} \\ R^M &= \{\langle 1,1\rangle, \langle 1,2\rangle, \langle 1,3\rangle, \langle 2,2\rangle, \langle 2,3\rangle\} \end{split}$$

Avgjør om følgende påstander er sanne eller usanne.

- Det er slik at $M \models \forall x (\neg Qx \lor Px)$. (Sant / Usant)
- Det er slik at $M \models \forall x \exists y Rxy$. (Sant / <u>Usant</u>)
- Det er slik at $M \models \forall x (\neg Qx \lor \exists y Rxy)$. (Sant / Usant)
- Det er slik at $M \models \exists y \forall x Rxy$. (Sant / <u>Usant</u>)

1.15 Resonnering om modeller [3 poeng]

Avgjør om følgende påstander er sanne eller usanne.

- Formelen $(\forall x Px \lor \forall x Qx)$ er en logisk konsekvens av $\forall x (Px \lor Qx)$. (Sant / <u>Usant</u>)
- Det finnes en modell som gjør både $\forall x (Px \rightarrow \neg Qx)$ og $\exists x Qx$ sanne. (Sant / Usant)
- Enhver modell som gjør ∀x∃yRxy sann, må også gjøre ∃y∀xRxy sann. (Sant / <u>Usant</u>)

1.16 Ekvivalensrelasjoner [4 poeng]

Avgjør om følgende påstander er sanne eller usanne.

- $\{\langle 1, 1 \rangle, \langle 2, 2 \rangle\}$ er en ekvivalensrelasjon på $\{1, 2, 3\}$. (Sant / **Usant**)
- $\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,1\rangle,\langle 2,2\rangle\}$ er en ekvivalensrelasjon på $\{1,2\}$. (Sant / Usant)
- $\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 2,1\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 3,3\rangle\}$ er en ekvivalensrelasjon på $\{1,2,3\}$. (Sant / <u>Usant</u>)
- $\{\langle 1, 1 \rangle, \langle \alpha, \alpha \rangle, \langle Z, Z \rangle, \langle 1, \alpha \rangle, \langle \alpha, 1 \rangle, \langle 1, Z \rangle, \langle Z, 1 \rangle\}$ er en ekvivalensrelasjon på $\{1, \alpha, Z\}$. (Sant / <u>Usant</u>)

1.17 Kombinatorikk [3 poeng]

Avgjør om følgende påstander er sanne eller usanne.

- Det finnes nøyaktig 12 delmengder av mengden {1, 2, 3, 4}. (Sant / Usant)
- Det finnes nøyaktig 8 funksjoner fra {1, 2, 3} til {1, 2}. (Sant / Usant)
- Det finnes nøyaktig 24 bijektive funksjoner fra {1, 2, 3, 4} til {1, 2, 3, 4}. (Sant / Usant)

1.18 Litt mer kombinatorikk [3 poeng]

Avgjør om følgende påstander er sanne eller usanne.

- Antall permutasjoner av en mengde med n elementer er n!. (Sant / Usant)
- Antall funksjoner fra en mengde med k elementer til en mengde med n elementer er nk. (Sant / Usant)
- Antall injektive funksjoner fra en mengde med n elementer til en mengde med n elementer er n!. (Sant / Usant)

1.19 Litt abstrakt algebra [3 poeng]

Avgjør om følgende påstander er sanne eller usanne.

- Funksjonen f(x) = x 1 er en operasjon på de naturlige tallene. (Sant / <u>Usant</u>)
- Operasjonen \times (multiplikasjon) på de rasjonale tallene er en idempotent operasjon. (Sant / <u>Usant</u>)
- Den algebraiske strukturen $(\mathbb{Q}, +)$, hvor \mathbb{Q} står for de rasjonale tallene, er en gruppe. (Sant / Usant)

1.20 Vandringer i grafer [3 poeng]

Se på grafen over. Avgjør om følgende påstander er sanne eller usanne.

- Grafen har en eulervei, det vil si en vei som inneholder hver kant fra grafen nøyaktig én gang.
 (Sant / <u>Usant</u>)
- Grafen har en hamiltonsykel, det vil si en sykel som inneholder hver node fra grafen nøyaktig én gang.
 (Sant / Usant)
- Grafen har flere enn fem sykler. (Sant / Usant)

1.21 Regulære språk [4 poeng]

La L være språket definert av det regulære uttrykket (0|1)(00|1)(000|1)*.

- Det er slik at $001 \in L$. (Sant / <u>Usant</u>)
- Det er slik at $0101 \in L$. (Sant / Usant)
- Det er slik at $\{0^{3n} \mid n \ge 1\} \subseteq L$. (Sant / Usant)
- Det er slik at $\{1^n \mid n \ge 1\} \subseteq L$. (Sant / <u>Usant</u>)

1.22 Naturlig deduksjon 1 [1 poeng]

Avgjør om følgende påstand er sann eller usann.

• Et bevis i naturlig deduksjon er en utledning hvor alle antakelser er lukkede. (Sant / Usant)

1.23 Naturlig deduksjon 2 [1 poeng]

$$\begin{array}{c|c} \hline (P)^1 & [\neg P]^2 \\ \hline \begin{matrix} \frac{\bot}{Q} \bot \\ \hline P \to Q \end{matrix} \to I_1 \end{matrix} & [(P \to Q) \to P]^3 \\ \hline \begin{matrix} P \end{matrix} & \to E \end{matrix} & [\neg P]^2 \\ \hline \begin{matrix} \bot \\ \hline \begin{matrix} \bot \\ \hline \end{matrix} & {}^{RAA_2} \end{matrix} \to E \\ \hline \begin{matrix} \hline F \end{matrix} & \to I_3 \end{matrix} & \to I_3 \\ \hline \text{ane utledningen?} \end{array}$$

Hva er formelen F i denne utledningen?

- $\bullet \ (P \to Q) \to P$
- P (riktig)

1.24 Naturlig deduksjon 3 [1 poeng]

Avgjør om følgende påstand er sann eller usann.

«Naturlig deduksjon er en sunn og komplett kalkyle» betyr nøyaktig at mengden av bevisbare formler er lik mengden av gyldige formler. (<u>Sant</u> / Usant)

2 Større oppgaver [70 poeng]

2.1 Kvotientmengder [5 poeng]

La S være mengden $S = \{1, 2, 3\}$, og la R være relasjonen $R = \langle 1, 1 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 3, 1 \rangle, \langle 3, 3 \rangle$.

Hva er kvotientmengden S/R?

Kvotientmengden S/R er mengden av alle ekvivalensklassene under R, det vil si {[1], [2], [3]}, som er lik {{1,3},{2}}.

2.2 Partiell ordning [5 poeng]

Forklar kort hva en partiell ordning er.

En partiell ordning er en binær relasjon som er transitiv, refleksiv og anti-symmetrisk.

2.3 Førsteordens modeller [7 poeng]

Spesifiser en førsteordens modell $\mathcal M$ for signaturen $\langle ;; R, Q \rangle$ slik at følgende egenskaper holder:

- (1) Både R og Q har aritet 2.
- (2) Domenet til modellen er $\{1, 2, 3\}$.
- (3) Formelen $\forall x \forall y (Rxy \lor Qxy)$ er sann i M.
- (4) R tolkes som en irrefleksiv og anti-symmetrisk relasjon.
- (5) Q tolkes som en symmetrisk relasjon.

Her er én løsning:

La R tolkes slik: ∅

La Q tolkes slik: $\{1,2,3\} \times \{1,2,3\} = \{\langle 1,1 \rangle, \langle 1,2 \rangle, \langle 1,3 \rangle, \langle 2,1 \rangle, \langle 2,2 \rangle, \langle 2,3 \rangle, \langle 3,1 \rangle, \langle 3,2 \rangle, \langle 3,3 \rangle\}$

2.4 Induktivt definerte mengder [7 poeng]

Gi en induktiv definisjon av mengden av oddetall (både positive og negative).

La M være den minste mengden slik at $1 \in M$ og hvis $x \in M$, så $x - 2 \in M$ og $x + 2 \in M$.

2.5 Rekursiv funksjon på strenger [7 poeng]

La $A = \{0, 1, x\}$. Definer en rekursiv funksjon d på A^* som *dobler* antallet 0-er i en streng. For eksempel vil d(001) = 00001 og d(01x01) = 001x001.

La d være definert rekursivt på følgende måte:

- d(e) = e, hvor e står for den tomme strengen.
- d(s0) = d(s)00, hvor s er en streng.
- d(s1) = d(s)1, hvor s er en streng.
- d(sx) = d(s)x, hvor s er en streng.

2.6 Bevis ved matematisk induksjon [12 poeng]

Bevis ved matematisk induksjon at for alle naturlige tall n større enn eller lik 2, er det slik at n! er et partall.

Påstanden vi skal bevise at er sann for alle naturlige tall $n \ge 2$ er: «n! er et partall».

Basissteget er å bevise at påstanden holder for tallet 2. Siden $2! = 2 \cdot 1 = 2$ er et partall, får vi at påstanden holder.

Induksjonssteget går som følger: Anta at påstanden holder for et tall n, det vil si at n! er et partall. Dette er induksjonshypotesen (IH). Fra denne må vi vise at påstanden også holder for n+1, det vil si at (n+1)! er et partall. Per definisjon av fakultetsfunksjonen, er (n+1)! lik $(n+1)\cdot(n!)$. Ved induksjonshypotesen må n! være et partall. Når vi multipliserer et partall med et hvilket som helst tall, får vi et partall, og derfor må også (n+1)! være et partall.

Ved matematisk induksjon følger det at påstanden holder for alle naturlige tall større enn eller lik 2.

2.7 Mer om rekursive funksjoner [7 poeng]

Vi lar fortsatt $A = \{0, 1, x\}$.

Du skal nå definere funksjonen f på A^* som er slik at den dobler antall 0-er i nøyaktig den delen av strengen som følger etter den første forekomsten av x.

For eksempel har vi:

```
f(x10) = x100
f(101x) = 101x
f(001x0101) = 001x001001
f(01x01x01) = 01x001x001
```

Definerer f rekursivt. (Hint: Bruk funksjonen d som dobler antall 0-er i en streng.)

La f være definert rekursivt på følgende måte:

- f(e) = e, hvor e står for den tomme strengen
- f(0s) = 0f(s)
- f(1s) = 1f(s)
- f(xs) = xd(s)

2.8 Definisjon og utregning [3 poeng]

La * være funksjonen på endelige mengder av naturlige tall definert ved

$$X * Y = \{\alpha \mid (\alpha \in X \text{ eller } \alpha \in Y), \text{ men } \textit{ikke } (\alpha \in X \cap Y)\}$$

hvor X og Y er endelige mengder av naturlige tall.

For eksempel har vi følgende:

$$\{1,2,3\} * \{2,3,4\} = \{1,4\}$$

 $\{1,2,3\} * \{1,2,3\} = \emptyset$
 $\{1,2,3\} * \{1,3\} = \{2\}$

Regn ut $\{0, 1, 2, 3, 4, 5, 6\} * \{1, 3, 5, 7\}$

 $\{0, 2, 4, 6, 7\}$

2.9 Definisjon og assosiativitet [3 poeng]

Er dette en assosiativ operasjon?

Ja.

2.10 Definisjon og bevis 1 [7 poeng]

Bevis at X * Y = Y * X for alle endelige mengder X og Y av naturlige tall.

La X og Y være endelige mengder med naturlige tall, og anta at α er et element i X * Y. Vi må vise at α da også er et element i Y * X. Den motsatte retningen er tilsvarende. Ved definisjonen får vi at α er et element enten i X eller Y, men ikke begge deler. Det vil si at α ikke er et element i $Y \cap X$. Hvis α er et element i X, får vi at $\alpha \in Y * X$, og hvis α et element i X, får vi at $\alpha \in Y * X$.

Alternativ måte å skrive dette på:

```
\begin{split} X*Y &= \{\alpha \mid (\alpha \in X \text{ eller } \alpha \in Y), \text{ men } \textit{ikke } (\alpha \in X \cap Y)\} \\ &= \{\alpha \mid (\alpha \in Y \text{ eller } \alpha \in X), \text{ men } \textit{ikke } (\alpha \in X \cap Y)\} \\ &= \{\alpha \mid (\alpha \in Y \text{ eller } \alpha \in X), \text{ men } \textit{ikke } (\alpha \in Y \cap X)\} \\ &= Y*X \end{split}
```

2.11 Definisjon og bevis 2 [7 poeng]

Er det slik at $|X * Y| \le |X| + |Y|$? Hvis ja, gi et bevis. Hvis nei, gi et moteksempel.

Ja, det er slik. Antall elementer i X * Y, |X * Y|, er lik antallet elementer i X pluss antall elementer i Y minus antall elementer i snittet, $X \cap Y$. Det er fordi et element er X * Y nøyaktig når det er et element i X eller Y, men ikke i snittet. Vi kan skrive dette på følgende måte:

$$X * Y = (X \cup Y) \setminus (X \cap Y)$$

En øvre grense for antallet elementer i $X \cup Y$ er summen av antall elementer i X og antall elementer i Y. Antallet elementer i X * Y er mindre enn eller lik antall elementer i $X \cup Y$, fordi elementene i $X \cap Y$ fjernes. Det betyr at en øvre grense for antallet elementer i X * Y er |X| + |Y|, som betyr at $|X * Y| \le |X| + |Y|$.