PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10098047 A

(43) Date of publication of application: 14 . 04 . 98

(51) Int. CI

H01L 21/322

(21) Application number: 09201762

(22) Date of filing: 28 . 07 . 97

(30) Priority:

12 . 09 . 96 DE 96 19637182

(71) Applicant:

WACKER SILTRONIC G FUER

HALBLEITERMATERIALIEN AG

(72) Inventor:

GRAEF DIETER DIPL PHYS DR

AMMON WILFRIED VON DIPL

PHYS D

WAHLICH REINHOLD KROTTENTHALER PETER

ULRICH LAMBERT

(54) METHOD FOR MANUFACTURING SILICON SEMICONDUCTOR WAFER HAVING LOW **DEFECT DENSITY**

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a manufacturing method, in which a silicon wafer, which has low defect density in an area especially near a surface and whose oxygen doping concentration is at least 4x10¹⁷/cm³, is obtained for an optimized silicon wafer.

SOLUTION: In this manufacturing method for silicon

wafer having low defect density, (a) a silicon single crystal whose oxygen doping concentration is at least 4x10¹⁷/cm³ is manufactured by solidifying and cooling a melting material. In this case, a holding time for the single crystal in cooling in a temperature range of 850-1100°C is less than 80min, and (b) the silicon crystal is worked to form a silicon wafer, and then (c) the silicon wafer is annealed at 1000°C for at least one

COPYRIGHT: (C)1998,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-98047

(43)公開日 平成10年(1998) 4月14日

(51) Int.Cl.⁶

識別記号

FΙ

H01L 21/322

H 0 1 L 21/322

X

審査請求 有 請求項の数2 〇L (全 6 頁)

(21)出願番号

特願平9-201762

(22)出廣日

平成9年(1997)7月28日

(31)優先権主張番号 196-37-182-1

(32)優先日

1996年9月12日

(33)優先権主張国

ドイツ (DE)

(71)出願人 595075034

ワッカー・ジルトロニク・ゲゼルシャフ ト・フュア・ハルプライターマテリアリエ

ン・アクチェンゲゼルシャフト

Wacker Siltronic Ge sellschaft fuer Hal bleitermaterialien

AG .

ドイツ連邦共和国 ブルクハォゼン、ヨハ

ネスーへスーシュトラーセ 24

(74)代理人 弁理士 萩野 平 (外3名)

最終頁に続く

(54) 【発明の名称】 低欠陥密度を有するシリコン半導体ウエハの製造方法

(57)【要約】

【課題】 特に表面近傍の領域において低欠陥密度を有 する酸素ドーピング濃度が少なくとも4×101/cm * であるシリコンウエハを得ることができる、シリコン ウエハの最適化された製造方法を提供する。

【解決手段】 低欠陥密度を有するシリコンウェハの製 造方法であって、a)酸素ドーピング濃度が少なくとも 4×1017/cm3 であるシリコン単結晶を融解物質を 凝固し冷却することにより製造するが、その際、850 ℃~1100℃の温度範囲での冷却中の単結晶の保持時 間が80分未満であり;b)単結晶を加工してシリコン ウエハを形成し;そしてc)シリコンウエハを少なくと も1000℃の温度で少なくとも1時間アニーリングす ること、を特徴とする製造方法。

【特許請求の範囲】

【請求項1】 低欠陥密度を有するシリコンウェハの製造方法であって、

- a)酸素ドーピング濃度が少なくとも4×10''/cm' であるシリコン単結晶を融解物質を疑固し冷却することにより製造するが、その際、850℃~1100℃の温度範囲での冷却中の単結晶の保持時間が80分未満であり;
- b) 単結晶を加工してシリコンウエハを形成し;そして c) シリコンウエハを少なくとも1000℃の温度で少 10 なくとも1時間アニーリングすること、を特徴とする製 造方法。

【請求項2】 低欠陥密度を有するシリコンウェハの製造方法であって、

- a)酸素ドーピング濃度が少なくとも4×10¹⁷/cm¹ であり、窒素ドーピング濃度が少なくとも1×10¹⁴/cm¹ であるシリコン単結晶を調製し;
- b) 前記単結晶を加工してシリコンウェハを形成し; そして
- c)前記シリコンウエハを、少なくとも1000℃の温 20度で少なくとも1時間アニーリングすること、を特徴とする製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、いわゆる「as-grown」欠陥が低密度であるシリコン半導体ウエハの製造方法に関する。

[0002]

【従来の技術】シリコンウエハを、単結晶から切断し、 さらに加工して電子部品製造用基礎材料を形成すること 30 が知られている。単結晶は、通常チョコラルスキー法 (CZ法)又はフロートゾーン法(FZ法)を用いて製 造されている。これらの方法では、融解物質、一般的に ドービングしたシリコンを凝固させて単結晶を形成しそ れを冷却する。CZ法では、石英ガラスるつぼに融解物 を満たし、その融解物から単結晶を引上げる。このよう な場合、るつぼ材料に由来する酸素が融解物に溶解し、 単結晶にある程度含有される。F Z 法は、るつぼを使用 しない引上げ法であり、フロートゾーン単結晶 (FZ結 晶)中の酸素濃度は、るつぼから引上げた単結晶(CZ 40 単結晶)よりも実質的に低い。しかしながら、製造中に FZ結晶に酸素がドーピングする可能性があり、それら の酸素濃度はCZ結晶における酸素ドーピングに匹敵す る値に到達する。この種のFZ法の改良は、例えば、U S-5,089,082号明細書に記載されている。F 乙結晶の酸素によるドーピングは、特に、単結晶の結晶 格子を機械的にもっと強靭するためと、いわゆる「真正 ゲッター」として金属不純物を集める酸素析出物を使用 するために実施する。

【0003】CZ結晶もFZ結晶も、完全結晶格子を有 50 された製造方法を提供することである。

していない。格子は、「as-grown」欠陥と称さ れる規則的障害を含んでいる。用語「欠陥」は、以下、 もっぱら成長したままでの欠陥を意味するのに使用す る。電子部品を製造するには、特に表面近傍の領域の欠 陥密度ができるだけ小さいことが最も重要である。シリ コンウェハの表面付近の領域に位置する欠陥は、電子部 品の機能を妨害するか、部品の破壊を生じることさえあ る。FZウエハの欠陥密度は、CZウエハについて見ら れる欠陥密度よりも通常実質的に低い。しかしながら、 酸素ドーピング濃度が少なくとも4×10¹⁷/c m³ で ある、酸素をドーピングしたFZウエハの場合には、欠 陥密度は、CZウエハにおける欠陥密度のオーダーの値 に達する。CZ結晶の場合に避けることができず且つF Z結晶の場合に望ましいことがある、単結晶の酸素によ るドーピングは、このように必ず高欠陥密度を生じる。 【0004】とりわけ、半導体ウエハにおける欠陥密度 はアニーリングと称される熱処理により減少できること が知られているので、電子部品の欠陥密度と予測される 品質との間を結びつけて考えることにより、低欠陥密度 を有する単結晶が開発できることを示している (M. S ano、M. Hourai、S. Sumita及びT. Shigematsu, Proc. Satellite Symp., ESSDERC Grenoble/ France、B. O. Kolbesen編、第3頁、 The Electrochemical Socie ty, Pennington, NJ (1993)), 7 ニーリング中の必須のパラメータには、温度、アニーリ ング時間、雰囲気及び温度変化度などがある。欠陥密度 の減少は、通常温度が高いほど及びアニーリング時間が 長いほどより顕著になる。これには、髙温で長時間アニ ーリングすると、必ずシリコンウェハの製造コストが増 加するという欠点がある。

【0005】欠陥の大きさがアニーリングにより欠陥密度を減少させるときに部分的に役割りを果たすことを開示するとともに、単結晶をその製造中に冷却する速度が欠陥のサイズ分布に影響するという研究が最近公表された(D. Graef、U. Lambert、M. Brohl、A. Ehlert、R. Wahlich及びP. Wagner、Materials Science and Engineering B36、50(1996))。しかしながら、この研究には、この知見がシリコンウエハの製造に有利に用いることができるかについてはなんら示されていない。

[0006]

【発明が解決しようとする課題】本発明の目的は、特に表面近傍の領域において低欠陥密度を有する酸素ドーピング浪度が少なくとも4×10"/cm"であるシリコンウエハを得ることができる、シリコンウエハの最適化された製造方法を提供するとよである

[0007]

【課題を解決するための手段】上記目的は、本発明によ ス

- (1) 低欠陥密度を有するシリコンウエハの製造方法で あって、
- a) 酸素ドーピング浪度が少なくとも $4 \times 10^{17}/c$ m 1 であるシリコン単結晶を融解物質を凝固し冷却することにより製造するが、その際、850 1 $^$
- b) 単結晶を加工してシリコンウエハを形成し:そして c) シリコンウエハを少なくとも1000℃の温度で少なくとも1時間のアニーリング時間でアニーリングする こと、を特徴とする製造方法、または、
- (2) 低欠陥密度を有するシリコンウエハの製造方法であって、
- a)酸素ドーピング濃度が少なくとも4×10¹⁷/cm¹であり、窒素ドーピング濃度が少なくとも1×10¹⁴/cm¹であるシリコン単結晶を調製し;
- b) 前記単結晶を加工してシリコンウエハを形成し;そ 20 して
- c) 前記シリコンウエハを、少なくとも1000℃の温度で少なくとも1時間アニーリングすること、を特徴とする製造方法、により達成される。

[8000]

【発明の実施の形態】本発明者等は、上記製造方法の工 程a)が、単結晶の欠陥密度を、規定の温度範囲におい てもっとゆっくりと冷却させた比較結晶で見られる欠陥 密度と比較してかなり増加させる効果を有することを見 出した。したがって、この種の欠陥の多い単結晶から製 30 造した半導体ウエハは、電子部品の製造用基礎材料とし ては不適当であると思われる。しかしながら、欠陥密度 の増加は、工程c)による半導体ウエハのアニーリング による欠陥の減少が著しく効率的であるような欠陥サイ ズ分布の小さい欠陥(空間範囲が小さい欠陥)へのシフ トと関連している。これは、非常に効果的であって、ア ニーリング後に見られる欠陥密度は、上記比較結晶から 製造した同等の処理をした比較ウエハの欠陥密度よりも 小さい。この結果は、もし小欠陥がアニーリング中に優 先的に除去されるとするならば説明がつく。これに対し 40 て、大きな欠陥は、アニーリング中に除去されない。こ れらは残存し、これらの数は、アニーリングしたシリコ ンウエハにおける検出可能欠陥密度に決定的な影響を及 ぼす。低欠陥シリコンウエハを得る目的では、上記のこ とは、単結晶における欠陥密度の重要性が欠陥サイズ分 布における小欠陥の割合が増加するにつれて減少すると とを意味する。製造方法の工程a)により、確実に小欠 陥の割合はできるかぎり大きくなり、大欠陥の割合はで きるかぎり小さくなる。小欠陥は、製造方法の工程c)

ンウエハは低い欠陥密度しか有していない。

【0009】さらに、本発明者等は、窒素による単結晶のドービングも、欠陥サイズ分布に影響を及ぼすことを見出した。窒素によりドービングされ、窒素ドービング 浪度が少なくとも1×10¹¹/c m³ である単結晶については、欠陥サイズ分布は、窒素によりドービングされなかった比較結晶の欠陥サイズ分布に対して同様に小欠陥に有利にシフトする。窒素をドービングした単結晶から製造したシリコンウエハは、したがって同様に、製造方法の工程 c)にしたがって処理した後の欠陥密度は小さい。

【0010】窒素による単結晶のドービングは、製造方法の工程a)による単結晶の製造中に起こる。しかしながら、基本的には、酸素ドービング濃度が少なくとも4×10¹¹/cm¹であり、窒素ドービング濃度が少なくとも1×10¹¹/cm¹である窒素をドービングしたシリコン単結晶を調製し、製造方法の工程b)及びc)によりさらに処理することで十分である。したがって、窒素による単結晶のドービングは、製造方法の工程a)で必要とする規定の温度範囲850℃~1100℃における単結晶の急速冷却の代わりに行うことができる。

【0011】試験の結果、欠陥サイズ分布の点における 窒素による単結晶のドービングの効果は、酸素による単 結晶のドービングとの関連で考えることも必要なことが 判明した。同じ窒素ドービングについて、小欠陥の割合 は、酸素ドーピングが減少するにつれて増加する。

【0012】製造方法を実施するために、単結晶を、C 乙法又はF 乙法を用いることにより製造する。これら2 つの製造方法の基本原理は、例えば、Ullmann′ sEncyclopedia of Industri al Chemistry、第A23巻、第727頁~ 第731頁(1993) に記載されている。FZ法を用 いるとき、酸素ドービングを、US-5,089,08 2号明細書に記載のように行うのが好ましい。製造方法 の工程a)による単結晶の急冷は、FZ法を用いるとき には必須ではない。これは、フロートゾーン単結晶は、 プロセスの自体の性質により急速に冷却し、850℃~ 1100℃の範囲の温度にとどまるのは80分間未満で あることによる。CZ法を用いるときには、強制冷却を 用いて、確実に単結晶を所要速度で前記温度範囲に冷却 するのが好ましい。単結晶の強制冷却に用いられる装置 は、例えば、DE-195 03 357 A1号明細 書に記載されている。

【0013】窒素によるシリコン単結晶のドーピングは、通常単結晶をドーパント源としての役割りを果たす 窒素含有環境中で成長させることにより、単結晶の製造 中に起こる。

陥の割合はできるかぎり大きくなり、大欠陥の割合はで 【0014】単結晶を加工してシリコンウエハを形成すきるかぎり小さくなる。小欠陥は、製造方法の工程c) るのも、同様に従来技術に基づき行う。単結晶からシリ中に実質的に除去されるので、アニーリングしたシリコ 50 コンウエハをスライスするのに、通常環状又はワイヤソ

1

ーを使用する。欠陥密度を測定するため、及び欠陥サイズ分布を測定するためにも、シリコンウエハを作製しなければならない。種々の作製方法が知られている。欠陥の特性決定は、実質的に使用される作製方法に依存するので、欠陥サイズの絶対的な指標を与えることはできない。欠陥サイズと欠陥サイズ分布の評価は、同じ作製方法を基準としたときのみ互いに比較できる。

【0015】一つの方法(COP試験)によれば、シリコンウエハを、欠陥を「結晶由来粒子」(COP)として目に見えるようにする、いわゆるSC1溶液で処理す 10る。次に、欠陥を、市販の表面検査機器を用いて調査する。

【0016】欠陥の存在に関する定量的な結論は、いわゆるGOI試験(GOIは、「ゲート酸化物インテグリティー」を意味する)によっても可能である。この場合、シリコンウエハの表面に適用した酸化物層の電気破壊電圧を試験する。この方法では、欠陥の特性決定は、GOI欠陥密度を特定することにより行う。GOIの検討結果とCOP試験の結果が、互いによく相関することがすでに示された(M. Brohl、D. Graef、P. Wagner、U. Lambert、H. A. Gerber、H. Piontek、ECS Fall Meeting 1994、第619頁、The Electro-chemical Society、Pennington、NJ(1994)。

【0017】工程c)によるプロセスは、シリコンウエハを、少なくとも1000℃、好ましくは1100℃~1200℃の温度、少なくとも1時間のアニーリング時間で熱処理(アニーリング)することを含んでなる。シリコンウエハは、個々にアニーリングしても、グループ 30でアニーリングしてもよい。使用される雰囲気は、好ましくは貴ガス、酸素、窒素、酸素/窒素混合物及び水素からなる群から選択されるガスである。水素又はアルゴンが、好ましい。

[0018]

【実施例】以下、本発明を、実施例により説明する。 実施例1)

直径200mmの種々の単結晶を、CZ法により製造し、加工して、カテゴリーCZ1~CZ3のシリコンウエハを形成した。全ての単結晶において、酸素濃度は、5×10¹⁷/cm³よりも上であった。カテゴリーCZ1のシリコンウエハの場合には、成長している単結晶を積極的に冷却し、冷却している結晶の850℃~1100℃の範囲の温度における保持時間は、80分未満であった。カテゴリーCZ2及びCZ3の比較ウエハの場合には、単結晶の引上げ中の強制冷却を省略し、前記温度インターバルの保持時間は80分間を超えていた。欠陥の特性決定のために、3つのカテゴリーの全てのシリコンウエハを、GOI検査及びCOP試験した。表面検査機器を使用してCOPを評価したとCろ、0、12μm

より大きい欠陥を検出できた。次に、3つのカテゴリー 全てのシリコンウエハを、温度1200℃、アニーリン グ時間2時間でアルゴン雰囲気中でアニーリングし、上 記と同様にして、欠陥を検査した。GOI検査の結果を 図1に示し、COP試験の結果を図2に示す。これらの シリコンウエハの熱処理前に、GOI欠陥密度は、CZ 3~CZ1の順序に増加した。アニーリング後、この傾 向は逆となり、GOI欠陥密度はCZ1~CZ3の順序 に増加した。全てのシリコンウエハの欠陥密度は、アニ ーリングにより減少したけれども、欠陥密度の減少は、 カテゴリーCZ1のシリコンウェハについて最も顕著で あった。図3は、アニーリング前のシリコンウェハにつ いての欠陥サイズ分布を示す。カテゴリーC22及びC Z3のシリコンウエハについての欠陥サイズは、測定節 囲にわたってほとんど均一に分布しているけれども、小 欠陥の割合はカテゴリーC Z 1 のシリコンウェハについ ては著しく大きく、大欠陥の割合は著しく小さい。

【0019】実施例2)

直径200mmの2つの異なる単結晶を、CZ法により 製造し、加工して、シリコンウェハを形成した。2つの 単結晶のうちの一つだけを窒素によりドービングし、そ の窒素濃度は3×10¹¹/cm³であった。両方の単結 晶とも、酸素濃度は、9×10¹¹/cm³であった。シ リコンウェハについての欠陥サイズ分布の解析したとこ ろ(その結果を、図4に示す)、窒素ドービングにより 欠陥サイズ分布がより小さい欠陥のほうにシフトしたこ とが分かった。

【0020】実施例3)

直径125mmの3つの単結晶を、FZ法により製造し、加工して、カテゴリーFZI~FZ3のシリコンウエハを形成した。全てのシリコンウエハを酸素によりドーピングした。この際、酸素濃度は、4.5×10¹⁷/cm¹であった。窒素ドーピングは、以下のように選択した:

カテゴリードーパント濃度FZ12. 5×10¹¹/cm³FZ21. 0×10¹³/cm³FZ33. 0×10¹³/cm³

全てのカテゴリーのシリコンウエハを、まずCOP試験 した。図5に、測定した欠陥サイズ分布を示す。大欠陥の割合は、ドーピングの程度を増加するとともに、大きく減少する。測定が表面検査機器の検出限界までしかできなかったので、小欠陥範囲におけるサイズ分布の表示は不完全である。カテゴリーFZ1のシリコンウエハを、酸素/窒素雰囲気中1200℃で3時間アニーリングした。図6は、熱処理前後のシリコンウエハについて実施したGOI検査の結果である。図6から、熱処理中の小欠陥の除去によりGOI欠陥密度がかなりの改善されているのが分かる。

機器を使用してCOPを評価したところ、0.12μm 50 【0021】以下、本発明の好ましい実施形態を列挙す

(5)

- a)酸素ドーピング濃度が少なくとも4×101/cm ・ であるシリコン単結晶を融解物質を凝固し冷却するこ とにより製造するが、その際、850℃~1100℃の 温度範囲での冷却中の単結晶の保持時間が80分未満で あり:
- b) 単結晶を加工してシリコンウエハを形成し; そして c) シリコンウエハを少なくとも1000℃の温度で少 10 017/cm³ であるシリコンウエハを得ることができ なくとも1時間アニーリングすること、を特徴とする製
- 造方法。 (2) 前記単結晶が、工程a) 中に窒素によりドーピン

グされ、窒素ドーピング濃度が少なくとも1×10¹⁴/

c m³ である、前記(1)記載の製造方法。

- (3)前記単結晶を工程a)中に冷却するときに強制冷 却する、前記(1)又は(2)に記載の方法。
- (4) 低欠陥密度を有するシリコンウエハの製造方法で あって、
- a)酸素ドーピング濃度が少なくとも4×10¹⁷/cm 20 ¹ であり、窒素ドーピング濃度が少なくとも1×10¹¹ /cm'であるシリコン単結晶を調製し;

* b) 前記単結晶を加工してシリコンウェハを形成し: そ して

c) 前記シリコンウエハを、少なくとも1000 Cの温 度で少なくとも1時間アニーリングすること、を特徴と する製造方法。

[0022]

【発明の効果】以上の説明から明らかなように、本発明 の製造方法によれば、特に表面近傍の領域において低欠 陥密度を有する酸素ドービング濃度が少なくとも4×1

【図面の簡単な説明】

【図1】GOI検査の結果である。

【図2】COP試験の結果である。

【図3】アニーリング前のシリコンウエハについての欠 陥サイズ分布である。

【図4】シリコンウエハについての欠陥サイズ分布の解 析結果である。

【図5】欠陥サイズ分布の測定結果である。

【図6】熱処理前後のシリコンウエハについて実施した GOI検査の結果である。

[図1]

【図2】

[図3]

【図4】

[図5]

[図6]

フロントページの続き

(72)発明者 ディエター・グラエフ

ドイツ連邦共和国 ブルクハオゼン, ピラ

ハーシュトラーセ 109

(72)発明者 ヴィルフリート・フォン・アモン

ドイツ連邦共和国 ブルクハオゼン, ヘル

ツォクバトシュトラーセ 3 ...

(72)発明者 ラインホルト・ヴァリッヒ

ドイツ連邦共和国 ティットモニング,ブ

ルメンシュトラーセ 10

(72)発明者 ペーター・クロテンターラー

ドイツ連邦共和国 ブルクハオゼン, クラ

ウゼンシュトラーセ 33

(72)発明者 ウルリッヒ・ラムベルト

ドイツ連邦共和国 エメルティング, ヘッ

ケンヴェーク 22