Test d'ipotesi per due campioni

Giorgio Corani - (IDSIA, SUPSI)

Statistica Applicata (G2A)

Testo di riferimento

Douglas P. Montgomery, Introduction to Statistical Process Control, 6th Edition, Wiley.

Confrontare due popolazioni

- Sinora abbiamo studiato test d'ipotesi e intervalli di confidenza riguardanti il parametro (μ o π) di una singola popolazione.
- Adesso studiamo come confrontare i parametri di due popolazioni.

Confrontare due popolazioni

- lacksquare La prima popolazione ha media μ_1 e varianza σ_1^2 .
- La seconda popolazione ha media μ_2 e varianza σ_2^2 .

Confrontare due popolazioni

- I due campioni hanno dimensione n_1 e n_2 .
- Assumiamo che i campioni siano estratti in modo indipendente dalle due popolazioni.
- Più avanti vedremo il caso dei campioni non indipendenti (appaiati).

Uguaglianza delle varianze

- $\blacksquare \text{ Assumiamo } \sigma_1^2 = \sigma_2^2.$
- Questa assunzione ci permette di stimare σ^2 facendo una media pesata di s_1^2 e s_2^2 . Questo è generalmente più accurato rispetto a stimare in modo indipendente le due varianze.

Confrontare la media di due popolazioni

■ Il test a due code è:

$$H_0 \ : \mu_1 = \mu_2$$

$$H_1 \ : \mu_1 \neq \mu_2$$

Test per due popolazioni

Sui due campioni misuriamo:

- $\blacksquare \ \bar{x}_1$ e \bar{x}_2 : media del primo e del secondo campione.
- lacksquare s_1^2 e s_2^2 : varianza del primo e del secondo campione.

Distribuzione campionaria di $\bar{x}_1 - \bar{x}_2$

- \blacksquare Supponiamo di estrarre molte volte due campioni di dimensioni n_1 e n_2 e di misurare ogni volta $\bar{x}_1-\bar{x}_2$.
- Assumendo:
 - che le due popolazioni abbiano la stessa varianza σ^2 .
 - lacksquare n_1 e n_2 >15-20 (per avere la normalità di \bar{x}_1 e \bar{x}_2):

$$ar{x}_1 - ar{x}_2 \sim N\left(\mu_1 - \mu_2, \sigma^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right)$$

9

Statistica con σ nota

Dato:

$$\bar{x}_1 - \bar{x}_2 \sim N\left(\mu_1 - \mu_2, \sigma^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right)$$

sotto H_0 abbiamo:

$$\frac{\bar{x}_1 - \bar{x}_2 - \overbrace{(\mu_1 - \mu_2)}^{\text{ipotizzato 0 in } H_0}}{\sigma \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\bar{x}_1 - \bar{x}_2}{\sigma \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0, 1)$$

lacksquare Ma σ è ignota e quindi non possiamo usare questa statistica.

■ La statistica del t test è invece:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- lacksquare che si distribuisce come una t con (n_1+n_2-2) gradi di libertà.
- $\blacksquare \ s_p$ sostituisce σ ed è spiegato nella prossima slide.

Varianza pesata

lacksquare Per stimare σ^2 usiamo la media pesata di s_1^2 e s_2^2 :

$$\begin{split} s_P^2 &= \frac{(n_1-1)}{n_1+n_2-2} \cdot s_1^2 + \frac{(n_2-1)}{n_1+n_2-2} \cdot s_2^2 \\ s_P &= \sqrt{s_P^2} \end{split}$$

- s_P^2 : varianza pesata (pooled)
 - i due pesi sono proporzionali ai gradi di libertà dei due campioni.
 - $\,\blacksquare\,$ se i campioni hanno uguale ampiezza, s_p^2 è la media di s_1^2 e $s_2^2.$

La statistica del test

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

- $\blacksquare \ \bar{x}_1 \bar{x}_2$ è la stima di $\mu_1 \mu_2$ in base ai dati del campione.
- $s_P\sqrt{rac{1}{n_1}+rac{1}{n_2}}$ è una stima della deviazione standard di $ar{x}_1-ar{x}_2$, che misura quanto $ar{x}_1-ar{x}_2$ è disperso attorno a $\mu_1-\mu_2$

Regioni di rifiuto

Test a due code

- $\blacksquare H_0: \mu_1 = \mu_2$
- $\blacksquare \ H_1: \mu_1 \neq \mu_2$
 - \blacksquare Regione di rifiuto: $t_0 < t_{n_1+n_2-2,\alpha/2}$ e $t_0 > t_{n_1+n_2-2,1-\alpha/2}$
 - Ogni coda contiene probabilità $\alpha/2$

Test con coda destra

- $\blacksquare H_0: \mu_1 \leq \mu_2$
- $\blacksquare H_1: \mu_1 > \mu_2$
 - lacksquare Valori positivi della statistica tendono a supportare H_1
 - \blacksquare Regione di rifiuto: $t_0>t_{n_1+n_2-2,\alpha}$ (contiene probabilità α).

Test a una coda (sinistra)

- $\blacksquare \ H_0: \mu_1 \geq \mu_2$
- $\blacksquare H_1 : \mu_1 < \mu_2$
 - Valori negativi della statistica supportano H_1
 - Regione di rifiuto: $t_0 < -t_{n_1+n_2-2,\alpha}$ (contiene probabilità α)

Esempio: resa di due catalizzatori

- Si confronta la resa di un processo chimico gestito dalla stessa azienda in due diversi impianti.
- Vogliamo testare se i due impianti hanno la stessa resa media.
- Facciamo quindi il test a due code:

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

Esempio: resa di due catalizzatori

I dati (
$$n_1$$
 = n_2 = 8) sono:

- \bar{x}_1 = 92.25, s_1 =2.39
- lacksquare \bar{x}_2 = 92.73, s_2 =2.98
- Svolgiamo il test con α =0.05.

Esempio: resa di due catalizzatori

 \blacksquare Siccome n_1 = n_2 , s_p^2 è la media di s_1^2 e s_2^2 :

$$s_p^2 = \frac{7}{14}s_1^2 + \frac{7}{14}s_2^2 = \frac{2.39^2 + 2.98^2}{2} = 7.3$$

$$s_p = \sqrt{s_p^2} = \sqrt{7.3} = 2.7$$

Statistica e valori critici

$$t_0 = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
$$= \frac{92.25 - 92.73}{2.7 \sqrt{\frac{1}{8} + \frac{1}{8}}}$$
$$= -0.35$$

■ I valori critici sono $\pm t_{.975,14} = \pm 2.145$.

Decisione

La statistica è in regione di non rifiuto: non c'è evidenza che la resa dei due impianti sia diversa.

Intervallo di confidenza di $\mu_1 - \mu_2$

 \blacksquare L'intervallo contiene i valori plausibili della differenza $\mu_1-\mu_2$:

$$\bar{x}_1 - \bar{x}_2 \pm t_{1-\alpha/2, n_1+n_2-2} \cdot s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

- $t_{1-\alpha/2,n_1+n_2-2}$: quantile $(1-\alpha/2)$ della t con (n_1+n_2-2) gradi di libertà; corrisponde al valore critico del test.
- $\blacksquare \ s_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ è il denominatore della statistica e rappresenta l'errore standard di $(\bar{x}_1 \bar{x}_2)$

Intervallo di confidenza vs test d'ipotesi

- Se l'ipotesi $\mu_1 = \mu_2$ è plausibile alla luce dei dati disponibili:
 - \blacksquare il test a due code non rifiuta H_0
 - il CI contiene 0.
- Se l'ipotesi $\mu_1 = \mu_2$ non è plausibile:
 - \blacksquare il test a due code rifiuta H_0
 - il CI non contiene 0.

Intervallo di confidenza (confidence interval, CI)

■ I gradi di libertà sono 8-1+8-1 = 14

$$\begin{split} \bar{x}_1 - \bar{x}_2 \pm t_{.975,14} \cdot s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \\ (92.25 - 92.73) \pm 2.145 \cdot 2.7 \sqrt{\frac{1}{8} + \frac{1}{8}} = (-3.38, 2.42) \end{split}$$

- \blacksquare Lo 0 è uno dei valori plausibili di $\mu_1-\mu_2$, in quanto contenuto dal CI.
- lacksquare Questo è coerente con l'esito del test, che non rifiuta H_0 .

Esempio di test a una coda

- Uno studio riporta le percentuali di calcio misurate in cemento standard e cemento addizionato con piombo (doped), al termine di uno stress test.
- Maggiori percentuali di calcio indicano maggiore resistenza all'infiltrazione dell'acqua.
- Siccome il cemento doped è più costoso, si richiede forte evidenza che contenga una maggiore percentuale di calcio rispetto a quello standard.
- Svolgere il test usando α =0.05.

Formulazione del cemento

- L'ipotesi alternativa è ciò che vogliamo dimostrare, cioè che il cemento doped contiene una maggiore percentuale di calcio.
- Il test quindi è:

$$H_0: \mu_{\text{standard}} \ge \mu_{\text{doped}}$$

 $H_1: \mu_{\text{standard}} < \mu_{\text{doped}}$

$$H_1: \mu_{ ext{standard}} < \mu_{ ext{doped}}$$

Formulazione del cemento: dati

$$\begin{split} n_{\rm standard} &= 10 \\ \bar{x}_{\rm standard} &= 87.0 \\ s_{\rm standard} &= 5.0 \\ \\ n_{\rm doped} &= 15 \\ \bar{x}_{\rm doped} &= 90.0 \\ \\ s_{\rm doped} &= 4.0 \end{split}$$

Formulazione del cemento: \boldsymbol{s}_P

La varianza pooled è:

$$\begin{split} s_P^2 &= \frac{9 \cdot (5)^2 + 14 \cdot (4)^2}{10 + 15 - 2} = 19.52 \\ s_P &= \sqrt{19.52} = 4.4 \end{split}$$

La statistica è:

$$t_0 = \frac{x_{\text{standard}} - x_{\text{doped}}}{s_p \sqrt{\frac{1}{n_{\text{standard}}} + \frac{1}{n_{\text{doped}}}}}$$
$$= \frac{87 - 90}{4.4 \sqrt{\frac{1}{10} + \frac{1}{15}}} = -1.67$$

Regione di rifiuto

- \blacksquare Se $\bar{x}_{\text{doped}} > \bar{x}_{\text{standard}}$, la statistica è negativa e tende supportare $H_1.$
- In particolare, rifiutiamo H_0 se $t_0 < t_{0.05,23} = -1.71$.
- La statistica (-1.67) è in regione di non-rifiuto: non abbiamo forte evidenza che il cemento *doped* aumenti il contenuto di calcio.

Esercizio: p - value

- La statistica è comunque vicina alla regione di rifiuto.
- Usando le tavole, provate a stimare approssimativamente il valore del p-value.

Esercizio: confronto fra metodi di vendita

- Si confrontano i pezzi venduti settimanalmente di un certo prodotto in due gruppi di supermercati.
- I supermercati del primo adottano la collocazione a scaffale, mentre quelli del secondo utilizzano uno spazio dedicato.
- Con confidenza 95%., possiamo concludere che le vendite medie nel caso dello spazio dedicato siano significativamente superiori a quelle dello scaffale?

Dati

$$\begin{split} n_{\text{scaffale}} &= 10 \\ n_{\text{dedicato}} &= 10 \\ \\ \bar{x}_{\text{scaffale}} &= 50.3 \\ \bar{x}_{\text{dedicato}} &= 72 \\ \\ s_{\text{scaffale}}^2 &= 350 \\ s_{\text{dedicato}}^2 &= 157 \end{split}$$

Campioni appaiati

Campioni non indipendenti (appaiati)

- A volte le osservazioni delle due popolazioni sono appaiate (paired)
- $lue{}$ L'osservazione i-esima è presa in condizioni omogenee per entrambi i campioni, ma la condizione cambia ad ogni osservazione.

Esempio di campioni appaiati

- Vogliamo comparare le misure di durezza del metallo svolte da due tipi di punte.
- La macchina spinge la punta nel metallo con una forza prestabilita.
 La durezza del metallo si deduce dalla profondità del foro.
- Potremmo testare le due punte su pezzi di metallo diversi tratti dalla stessa produzione e poi applicare il *t*-test per campioni indipendenti.
- Ma le differenze di misura sarebbero dovute sia al tipo di punta sia alle piccole differenze tra i pezzi.

Campioni appaiati

- È meglio usare entrambe le punte su ogni pezzo di metallo.
- I pezzi di metallo sono il fattore appaiante dei due campioni.
- Misuriamo quindi la differenza di misura su ogni pezzo di metallo.

t-test appaiato

- \blacksquare Consideriamo due campioni costituiti da n osservazioni appaiate:
- Calcoliamo la differenza, in ogni osservazione, tra il valore del primo e del secondo campione.
- \blacksquare Otteniamo così il campione delle differenze, che ha lunghezza n, media \bar{d} e deviazione standard s_d .

t-test appaiato

 \blacksquare Denotiamo $\mu_d=\mu_1-\mu_2$ e facciamo questo test sul campione delle differenze:

$$H_0 \ : \mu_d = 0$$

$$H_1 \ : \mu_d \neq 0$$

La statistica è:

$$t_0 = \frac{\bar{d}}{s_d/\sqrt{n}}$$

 \blacksquare la cui distribuzione campionaria è una t con n-1 gradi di libertà.

Intervallo di confidenza

L'intervallo di confidenza è simmetrico attorno a $ar{d}$:

$$\bar{d} \pm t_{\alpha/2, n-1} \frac{s_d}{\sqrt{n}}$$

Misure di durezza svolte dalle due punte.

metallo	punta A	punta B	diff
1	10.0	9.9	0.1
2	9.9	9.9	0.0
3	9.8	9.9	-0.1
4	10.0	9.8	0.2
5	9.9	9.9	0.0
6	10.0	9.8	0.2
7	9.9	10.0	-0.1
8	10.1	9.9	0.2

Le misure medie delle due punte sono significativamente diverse?

$$H_0\ : \mu_d = 0$$

$$H_1: \mu_d \neq 0$$

- \bar{d} = 0.06
- $s_d = 0.13$
- $t_0 = 0.06/(0.13 / \text{sqrt(8)}) = 1.31$
- lacksquare I valori critici sono: $t_{lpha/2,7}, t_{1-lpha/2,7},$ cioè \pm 2.31
- La statistica è in regione di non rifiuto. Non c'è differenza sistematica tra le misure medie dei due strumenti, anche se le misure su ogni singolo pezzo sono differenti.

Intervallo di confidenza

L'intervallo di confidenza è:

$$\bar{d} \pm t_{n-1,1-\alpha/2} \frac{s_D}{\sqrt{n}}$$

- i cui estremi sono [0.17, -0.05]
- \blacksquare Questo intervallo contiene lo 0, coerentemente con l'esito del test precedente (test a due code e CI svolti con lo stesso α danno esiti coerenti).

Esercizio

- Uno studio ha chiesto a 14 guidatori di parcheggiare due auto identiche, ma con volante di diversa dimensione.
- I tempi di parcheggio (espressi in secondi) mostrano una differenza media \bar{d} =1.21 ed una deviazione standard della differenza s_D =12.68.
- Con confidenza 90%, possiamo dire che il tempo medio di parcheggio delle due auto è significativamente diverso?

Confronto fra due proporzioni

Confronto fra due proporzioni

- Vogliamo confrontare i parametri π_1 e π_2 che caratterizzano due distribuzioni binomiali.
- Il test si basa su una approssimazione per campioni ampi per i quali $p_1=rac{X_1}{n_1}$ e $p_1=rac{X_2}{n_2}$ sono normalmente distribuite.
- Entrambi i campioni devono contenere almeno 5 successi e 5 insuccessi.
- Questo permette di applicare l'approssimazione normale alla binomiale per entrambe le popolazioni.

Confronto fra due proporzioni

- Abbiamo estratto due campioni di dimensione n_1 e n_2 dalle due popolazioni, il cui numero di successi è rispettivamente X_1 e X_2 .
- Il test di uguaglianza a due code è:

$$H_0 : \pi_1 = \pi_2$$

 $H_1 : \pi_1 \neq \pi_2$

Statistica del test

$$Z = \frac{(p_1 - p_2)}{\sqrt{\bar{p}(1 - \bar{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

dove:

$$\bar{p}=\frac{X_1+X_2}{n_1+n_2}$$

- lacksquare Sotto H_0 la statistica si distribuisce come una N(0,1).
- Nel caso di test a una coda, la statistica rimane identica ma cambia la regione di rifiuto.

Riassunto regioni di rifiuto

H_1	Regione di rifiuto	p-value
$\pi_1 \neq \pi_2$	$z < z_{\alpha/2} \ \mathrm{e} \ z > z_{1-\alpha/2}$	$2(1-\Phi(z))$
$\pi_1 > \pi_2$	$z > z_{1-\alpha}$	$1 - \Phi(z)$
$\pi_1 < \pi_2$	$z < z_{\alpha}$	$\Phi(z)$

Intervallo di confidenza di $\pi_1 - \pi_2$

I valori plausibili di $\pi_1-\pi_2$ sono contenuti nell'intervallo:

$$p_1 - p_2 \pm z_{1-\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

In questo caso non c'è una perfetta corrispondenza tra CI e test a due code, perchè il test ed il CI stimano l'errore standard di $\pi_1-\pi_2$ in modo (leggermente) diverso.

Esempio: valutare l'efficacia di un farmaco

- Per valutare l'efficacia di un farmaco si svolge un randomized trial.
- In modo casuale ad alcuni pazienti viene somministrato il farmaco; ad altri il placebo.
- Alla fine del periodo di cura, è necessario analizzare se c'è una differenza statisticamente significativa fra i due gruppi.

Esempio: valutare l'efficacia di un farmaco

- Il gruppo farmaco contiene 227 pazienti, di cui 163 guariti al termine del periodo.
- Il gruppo placebo contiene 262 pazienti, di cui 154 guariti al termine del periodo.
- Il farmaco è significativamente più efficace del placebo?

Valutare l'efficacia di un farmaco

- Entrambi i gruppi contengono almeno 5 successi e 5 insuccessi; possiamo quindi fare il test che usa l'approssimazione per campioni larghi.
- Vogliamo provare a dimostrare l'efficacia del farmaco, quindi facciamo il test:

$$\begin{split} H_0 \ : \pi_{\text{farmaco}} & \leq \pi_{\text{placebo}} \\ H_1 \ : \pi_{\text{farmaco}} & > \pi_{\text{placebo}} \end{split}$$

• Vogliamo forte evidenza che il farmaco sia efficace, quindi usiamo $\alpha=0.01$.

Valutare l'efficacia di un farmaco

- \blacksquare La regione di rifiuto del test contiene valori *positivi* di $p_{\rm farmaco} p_{\rm placebo} \ {\rm e} \ {\rm quindi} \ {\rm della} \ {\rm statistica}.$
- \blacksquare Regione di rifiuto: $Z_0 > \Phi^{-1}(.99)$ = 2.33

Valutare l'efficacia di un farmaco

$$\begin{split} p_{\text{farmaco}} &= 163/227 = 0.72 \\ p_{\text{placebo}} &= 154/262 = 0.59 \\ &\bar{p} = (163+154)/(227+262) = 0.65 \\ Z &= \frac{p_{\text{farmaco}} - p_{\text{placebo}}}{\sqrt{\bar{p} \cdot (1-\bar{p}) \cdot 1/n}} = 3.01 > 2.33 \\ \text{p-value} &= 1 - \Phi(3.01) = 0.0013 \end{split}$$

- La statistica è in regione di rifiuto.
- lacksquare Il p-value è un ordine di grandezza più piccolo di lpha

Esercizio

- Un processo produce cuscinetti per l'albero motore.
- Si preleva un campione di 85 cuscinetti, che risulta contenere 12 non-conformi.
- Il processo produttivo viene quindi rivisto. Si preleva un nuovo campione di 85 cuscinetti, che risulta contenere 8 non-conformi.
- Possiamo concludere con confidenza del 95% che la frazione di non-conformi è significativamente decresciuta?

Esercizio: p - value

- Il valore critico (quinto percentile) è $t_{0.05.23} = -1.71$
- Per 23 gradi di libertà, da tabella troviamo il decimo percentile $t_{0.1,23}=-t_{0.9,23}=-1.319.$
- La statistica (-1.67) è compresa fra il 5 ed il 10 percentile.
- Il p-value è calcolato integrando la distribuzione di $-\infty$ a -1.67. Concludiamo che 0.05 < p-value < 0.1

Vendite a scaffale vs spazio dedicato

$$\begin{split} H_0 \ : \mu_{\text{dedicato}} & \leq \mu_{\text{scaffale}} \\ H_1 \ : \mu_{\text{dedicato}} & > \mu_{\text{scaffale}} \end{split}$$

$$s_p = \sqrt{(350 + 157)/2} = 15.92$$

■ statistica
$$t = \frac{72 - 50.3}{s_p \sqrt{(1/10 + 1/10)}} = 3.05$$

- valore critico: $t_{0.95,18}$ =1.73
- \blacksquare Rifiutiamo H_0 : le vendite medie con spazio dedicato sono significativamente superiori a quelle dello scaffale.

Tempi di parcheggio

L'intervallo di confidenza per il tempo medio di parcheggio è:

$$1.21 \pm \frac{12.68}{\sqrt{14}} \cdot t_{0.95,13} = [-4.79, 7.21]$$

- e quindi la differenza nei tempi di parcheggio non risulta statisticamente significativa.
- Una conclusione analoga si può ottenere calcolando la statistica (0.35) e verificando che ricade all'interno dei valori critici (± 1.77).

Produzione di cuscinetti a sfera

Testiamo che dopo l'intervento il processo sia diventato meno difettoso:

$$\begin{split} H_0 \ : \pi_1 & \leq \pi_2 \\ H_1 \ : \pi_1 > \pi_2 \end{split}$$

Produzione di cuscinetti a sfera

$$\begin{split} \bar{p} &= \frac{8+12}{85+85} = 0.118 \\ Z &= \frac{12/85-8/85}{\sqrt{.118(1-.118)\cdot(\frac{1}{85}+\frac{1}{85})}} = 0.95 \end{split}$$
 valore critico: $\Phi^{-1}(1-\alpha) = \Phi^{-1}(0.95) = 1.64$ p-value $:1-\Phi(Z) = 1-\Phi(0.95) = 0.18$

 \blacksquare II test non rifiuta H_0