ビット表現

- スピン状態 (↑ / ↓) や量子ビット状態 (|0⟩ / |1⟩ を表現するには二進数を考えるのが便利
 - ▶ スピン数 (量子ビット数): N
 - ▶ 状態数: 2^N
 - ▶ 整数を二進数表現したときの下から i 番目 $(i=0,1,\ldots,N-1)$ の数字 (0/1) を i 番目のスピン状態 (\uparrow/\downarrow) あるいは i 番目の量子ビット 状態 $(|0\rangle/|1\rangle)$ に対応させる
- N = 3 の例
 - ightharpoonup 0 o 000: $\uparrow \uparrow \uparrow |000\rangle$
 - $ightharpoonup 1 o 001: \uparrow \uparrow \downarrow |001\rangle$
 - \triangleright 2 \rightarrow 010: $\uparrow\downarrow\uparrow$ $|010\rangle$
 - $ightharpoonup 3
 ightharpoonup 011: \uparrow \downarrow \downarrow \mid 011\rangle$
 - $4 \rightarrow 100: \downarrow \uparrow \uparrow |100\rangle$

 - ightharpoonup 6
 ightharpoonup 110: $\downarrow\downarrow\uparrow$ $|110\rangle$
 - $7 \rightarrow 111: \downarrow \downarrow \downarrow \downarrow |111\rangle$

ビット表現

- 特定のビットの取り出し
 - ト シフト演算 (>>) と AND 演算 (&) を利用 例) 3 番目 (i=3) のビット (0/1) を取り出す: (s>>3)&1 3 番目 (i=3) のスピン状態 $(\sigma_3=\pm 1)$ を取り出す: 1-2*((s>>3)&1) $\sigma_i\sigma_i$ の計算: (1-2*((s>>i)&1)) * (1-2*((s>>j)&1))
 - ▶ i は 0 から数えることに注意 (i = 0, 1, ..., N-1)
 - ▶ ビット AND (&) と論理 AND (&&) との違いに注意
- 特定のビットのフリップ (反転)
 - ▶ シフト演算 (<<) と XOR(排他的論理和) 演算 (^) を利用 例) 3番目 (*i* = 3) のビットを反転: s^(1<<3)
- N ビット全てが1の状態を作る
 - ► (1<<N)-1
- N 重の for ループを書く代わりに、状態を 1 つの N ビットの整数 $(s=0,\cdots,2^N-1)$ で表し、ひとつのループに

疎行列

- 疎行列: 非零の要素の数が非常に少ない行列
 - ightharpoonup 全ての要素 (N^2) を保存しておくのはメモリの無駄
 - lacktriangle 行列ベクトル積の計算量 (通常 $O(N^2)$) も削減の余地あり

疎行列の格納

- ▶ 三重対角行列 (一次元ラプラシアンなど): 例) tridiagonal.c 対角成分+副対角成分を3本のベクトルに保存しておけばよい 対称 (エルミート) 行列の場合は副対角はどちらか1本だけでよい LAPACK の三重対角行列用のソルバー (DSTEV, DGTTRF など) にはこの形式の行列を渡す
- ► 一般の疎行列: 例) sparse.c 各行で非零の要素の場所 (列) とその値をベクトルに保存する CRS (Compressed Row Storage) 形式とも呼ばれる
- matfree 形式: 例) matfree.c
 要素は保存せず、その場で非零の場所と要素を計算する
 FTCS 法を行列形式を使わずに素直に実装するのと同じ
 横磁場イジング模型のハミルトニアンの掛け算などでも使える