Project Euler #92: Square digit chains

This problem is a programming version of Problem 92 from projecteuler.net

A number chain is created by continuously adding the square of the digits in a number to form a new number until it has been seen before.

For example,

$$44 \rightarrow 32 \rightarrow 13 \rightarrow 10 \rightarrow 1 \rightarrow 1 \\ 85 \rightarrow 89 \rightarrow 145 \rightarrow 42 \rightarrow 20 \rightarrow 4 \rightarrow 16 \rightarrow 37 \rightarrow 58 \rightarrow 89$$

Therefore any chain that arrives at $\bf 1$ or $\bf 89$ will become stuck in an endless loop. What is most amazing is that EVERY starting number will eventually arrive at $\bf 1$ or $\bf 89$.

How many starting numbers below 10^K will arrive at 89? As the result can be large, print modulo $(10^9 + 7)$

Input Format

First and only line contains K.

Constraints

 $1 \le K \le 200$

Output Format

Print the required answer.

Sample Input

1

Sample Output

7