Тооцон Бодох Математик: Тооцооллын Инженер

2 мая 2020 г.

1 Curse of Dimensional

Бидэнд $d \in \mathbb{N}$ ширхэг хувьсагчаас хамаарч буй $f : \mathbb{R}^d \to \mathbb{R}, f : \vec{x} = \{x^{(1)}, x^{(2)}, \dots x^{(d)}\} \to f(\vec{x})$ функц өгөгдсөн гэж үзэе. Сонирхож буй интегралын утгын муж нь $\Omega = \Omega_1 \times \Omega_2 \times \dots \times \Omega_d, \ \Omega_i = [a_i, b_i]$ гэж өгөгдсөн бол.

$$I = \int_{\Omega} f(\vec{x}) d\vec{x} = \int_{\Omega_1} \int_{\Omega_2} \dots \int_{\Omega_d} f(\vec{x}) dx^{(d)} \dots dx^{(2)} dx^{(1)}.$$
 (1)

Дээрх интегралыг тооцохын тулд n-цэгийн Gauss quadrature дүрмийг интеграл бүрд $i=1,\ldots,d$ ашиглах боломжтой. Нэг хэмжээст Gauss quadrature дүрмийг x_1,x_2,\ldots,x_n цэгүүд болон w_1,w_2,\ldots,w_n жинтэй тохиолдолд ашиглавал, d хэмжээст интеграл нь

$$I \approx \sum_{i_1=1...i_n=1}^{n} \tilde{w}_{i_1,...i_d} f(x_{i_1}^{(1)}, \dots x_{i_d}^{(d)}), \quad \tilde{w}_{i_1,...i_d} = \prod_{r=1}^{d} w_{i_r}.$$
 (2)

Энд нийт үнэлэх функцын тоо нь $N=n^d$ болж байна. Жишээ болгон d=2, n=3 үед доорх функцыг сонирхож үзвэл,

$$I = \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(x, y) dx dy = \sum_{j=1}^{3} \sum_{i=1}^{3} w_i w_j f(x_i, y_j)$$

$$= \sum_{j=1}^{3} (w_1 w_j f(x_1, y_j) + w_2 w_j f(x_2, y_j) + w_3 w_j f(x_3, y_j))$$

$$= (w_1 w_1 f(x_1, y_1) + w_2 w_1 f(x_2, y_1) + w_3 w_1 f(x_3, y_1))$$

$$+ (w_1 w_2 f(x_1, y_2) + w_2 w_2 f(x_2, y_2) + w_3 w_2 f(x_3, y_2))$$

$$+ (w_1 w_3 f(x_1, y_3) + w_2 w_3 f(x_2, y_3) + w_3 w_3 f(x_3, y_3)).$$
(3)

буюу $N = n^d = 3^2 = 9$ гэдэг нь харагдаж байна. Одоо тэгвэл **curse of dimensional** гэж ямар утгатай вэ? гэдгийг сонирхоё. Өмнөх хэсэгт узсэн нэг

Рис. 1: Энэхүү графикийн $\epsilon=0.25$ үед харгалзах эзэлхүүний хувийг өөр өөр хэмжээст огторгуйд тооцон тэмдэглэсэн болно.

хэмжээст Симпсоны дүрмийн хувьд интегралын нарийвчилал нь алхмын өргөнийг 4 зэрэгт дэвшүүлсэнтэй тэнцүү h^4 гэдгийг үзсэн бөгөөд (N=n,d=1) үед

$$I - I_s = O(h^4), \quad h = \frac{b - a}{n} = O(n^{-1}) = O(N^{-1}),$$
 (4)

дээрх байдлаар илэрхийлж болно. Цаашилбал d хэмжээст үед

$$h = O(n^{-1}) = O(N^{-1/d}). (5)$$

Эндээс үзвэл хэмжээс d-г ихэсгэх тусам, нарийвчилал h нь буурч байна. Үүнийг **curse of dimensional** гэж нэрлэгдэг буюу d хэмжээст интегралыг тооцох өөр арга хэрэгтэй гэдэг нь харагдаж байна. Энэхүү аргыг Монте Карло гэдэг.

Мөн түүнчилэн **curse of dimensional** хэмээх ойлголт машин сургалтын өгөгдөлд ажиллах үед чухал хэрэгтэй байдаг. Учир нь n тооны өгөгдөлийн $(\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_n)$ хэмжээс ихсэх тусам машин сургалтын алгоритмыг тооцолоход хүдрэлтэй болдог. Жишээ болгож d=3 хэмжээст огторгуйд орших бөмбөрцөгийн эзэлхүүнийг авч үзэе. Өөр үгээр хэлбэл өгөгдөл нь d=3 хэмжээст огторгуйд орших цэгүүд юм; $\vec{x}_i=(x_i,y_i,z_i)^T$. Бидний мэдхээр бөмбөрцөгийн эзэлхүүн нь d=3 үед $V_3=(4\pi/3)r^3=c\cdot r^3$, төдийгүй ерөнхий d тохиолдолд бөмбөрцөгийн эзэлхүүн $V_d=k\cdot r^d$ гэж тодорхойлогддог. Жишээ болгон r_1 мужид орших $r-\epsilon \leq r_1 \leq r$ бөмбөрцөгийн эзэлхүүний эзлэх хувийг тодорхойлоё. Тэгвэл $r=1, V=k\cdot r^d, V_e=k\cdot (r-e)^d$ гэж авч

үзэе;

$$\frac{V - V_e}{V} = 1 - (1 - \epsilon)^d. \tag{6}$$

Одоо d=1,3,8,20 үеийн графикийг $\epsilon=0.0,0.01,0.02,\ldots,1$ үед байгуулая (Зур. 1). Дээрх зургаас үзвэл хэмжээс d ихсэх тусам нийт эзэлхүүн нь бөмбөрцөгийн гадаргын ойролцоо төвлөрч байна гэдгийг харж болох буюу цаашилбал d хэмжээст n ширхэг өгөгдөлийн ихэнхи нь бөмбөрцөгийн гадаргын дагуу байрлаж байна (Зур. 2). Тиймээс ихэнхи тохиолдолд өгөгдөлийн огторгуйг багасгах шаардлагатай болдог (жишээ нь: $d=3 \rightarrow d=2$).

Рис. 2:

2 Магадлалын үндэс

2.1 Олонлог

Олонлог гэдэг нь эрэмбэ, дараалалгүй ялгаатай биетүүдийн цуглуулага. Биетүүдийг нь олонлогийн бүрдүүлэгч элементүүд эсвэл гишүүд гэж нэрлэдэг. Дурын олонлогийг A гэж тэмдэглэе. Харин а нь олонлог A-г бүрдүүлэгч элементүүдийн нэг гэж үзэе. Тэгвэл математикийн хэлээр $a \in A$ гэж илэрхийлдэг. Жишээ 1: Олонлог $A = \{a,b,c,d\}$ нь a,b,c,d бүрдүүлэгч элементүүдийг агуулж байна. Дурын элемент e-г авч үзвэл, энэхүү элементийг олонлог A агуулахгүй байгаа буюу $e \notin A$ гэж илэрхийлдэг. Жишээ 2: 10 хүртэлх тоонд агуулагдаж буй эерэг ба сондгой тооны олонлог нь $B = \{1,3,5,7,9\}$ бөгөөд үүнийг ихэнхи тохиолдолд доорх байдлаар илэрхийлдэг,

$$B = \{x | \text{x нь 10-аас бага, эерэг ба сондгой тоо} \}$$

$$= \{x \in \mathbb{Z}^+ | x < 10 \text{ ба x нь сондгой тоо} \}.$$

2.1.1 Дэд Олонлог

Эерэг ба 10-аас бага тоонуудын олонлогийг авч үзэе;

$$I = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} = \{x \in \mathbb{Z}^+ | x \le 10\}.$$

Тэгвэл жишээ 2-д дурдсан $B=\{x\in\mathbb{Z}^+|x<10\ {\rm fa}\ {\rm x}\ {\rm th}\ {\rm coндгой}\ {\rm тоо}\}$ -г I-ын дэд олонлог гэж нэрлэдэг бөгөөд $B\subseteq I$ гэж тэмдэглэдэг. $B\subseteq I$ байх нөхцөлийг математикийн хэлээр

$$\forall x (x \in B \to x \in I). \tag{7}$$

Анхаарах зүйл: дурын хоосон биш олонлогт I хоёр дэд олонлог заавал байх ёстой. (1) хоосон олонлог $\varnothing \subseteq I$, (2) Олонлог нь өөрөө, өөрийнхөө дэд олонлог $I \subseteq I$ учир нь тэгшитгэл (6) хангагдаж байдаг.

2.1.2 Олонлогийн дүрмүүд

Дурын A ба B олонлогийг авч үзэө. Эдгээр олонлогуудын нэгдлийг $A \cup B$ гэж тэмдэглэдэг. $A \cup B$ -г бүрдүүлэгч элементүүд A-д, эсвэл B-д, бүр эсвэл хоёуланд нь зэрэг харъялагдаж байх ёстой;

$$A \cup B = \{x | x \in A \text{ or } x \in B\}.$$

Жишээ 3: $A = \{1,3,5\}$, ба $B = \{1,2,3\}$ -ийн нэгдэл нь $A \cup B = \{1,2,3,5\}$. Дурын A ба B олонлогийг авч үзэе. Эдгээр олонлогуудын огтлолцолыг $A \cap B$ гэж тэмдэглэдэг. $A \cap B$ -г бүрдүүлэгч элементүүд нь A,B олонлогт хоёуланд нь зэрэг харъялагдаж байх ёстой;

$$A \cap B = \{x | x \in A \text{ and } x \in B\}.$$

Жишээ 4: $A=\{1,3,5\}$ ба $B=\{1,2,3\}$ -ийн огтлолцол нь $A\cap B=\{1,3\}$. Дурын A ба B олонлогийг авч үзэе. Эдгээр олонлогуудын огтлолцол нь хоосон байвал $A\cap B=\varnothing$, A ба B олонлогийг үл давхцах олонлог гэж нэрлэдэг. Жишээ 5: $A=\{1,3,5,7,9\}$ ба $B=\{2,4,6,8,10\}$, огтлолцол нь хоосон олонлог $A\cap B=\varnothing$. Жишээ 6: цаашилбал дурын олонлогт агуулагдаж буй элементүүдийн тоог $|\cdot|$ гэж тэмдэглэдэг. Тэгвэл үл давхцах $A\cap B=\varnothing$ олонлогууд $A=\{1,3,5,7,9\}$ ба $B=\{2,4,6,8,10\}$ хувьд $|A|=5,|B|=5,|A\cup B|=10$ буюу $|A\cup B|=|A|+|B|=10$ гэж илэрхийлж болно. Давхцаж буй олонлог $A\cap B\ne\varnothing$ сонихрхое. $A=\{1,3,5,7,10\}$ ба $B=\{2,4,6,8,10\}$ хувьд $|A|=5,|B|=5,|A\cup B|=9,|A\cap B|=1$ буюу $|A\cup B|=|A|+|B|-|A\cap B|=9$ болно. Тиймээс ерөнхий тэгшитгэл нь

$$|A \cup B| = |A| + |B| - |A \cap B|.$$
 (8)

Дурын A ба B олонлогийг авч үзэе. Эдгээр олонлогуудын ялгааг $A \backslash B$ эсвэл A - B гэж тэмдэглэдэг. $A \backslash B$ -г бүрдүүлэгч элементүүд нь

A-д агуулагддаг, гэвч B-д агуулагддаггүй байх ёстой, эсвэл эсрэгээрээ.

$$A - B = \{x | x \in A \text{ and } x \notin B\},\$$

$$B - A = \{x | x \in B \text{ and } x \notin A\}.$$

Жишээ 7: $A = \{1,3,5\}$, ба $B = \{1,2,3\}$. $A - B = \{5\}$ бөгөөд нөгөө талаар $B - A = \{2\}$; $A - B \neq B - A$. Ерөнхий олонлог хэмээх ойлголт байдаг бөгөөд U гэж авч үзэе. Олонлог A-г нэгдмэл болгогч олонлогийг \bar{A} ерөнхий олонлогтой харьцангуй тодорхойлдог ($\bar{A} = U - A$);

$$\bar{A} = \{x \in U | x \notin A\}.$$

Жишээ 8: $U=\{$ Англи хэлний цагаан толгойн үсгүүд $\}$, $A=\{a,e,i,o,u\}$. Иймээс $\bar{A}=\{b,c,d,f,g,h,j,k,\dots,z\}$.

2.2 Магадлал

Нэг ширхэг зоосыг авч үзэе. Зоос зөвхөн сүлд эсвэл тоо талаараа буух боломжтой. Тэгвэл сүлд-s, тоо-t гэж тэмдэглэвэл, математикт үүнийг **түүврийн** отторгуйн олонлог (sample space, Ω) гэж нэрлэдэг $\Omega = \{s,t\}$. Энд s болон t-г олонлогийн гишүүд (members) эсвэл бүрдүүлэгч элементүүд (elements) гэдэг. **Түүврийн огторгуйн олонлог**-т дэд олонлог/тохиолдолын огторгуй (subset/event space, $\mathbb F$) хэмээх ойлголт байдаг. Тохиолдолын огторгуй $\mathbb F$ нь түүврийн огторгуйн олонлог Ω -г бүрдүүлэгч элеметүүдийн бүх боломжит сонголтууд ($\{\varnothing\}, \{s\}, \{t\}, \{s,t\}$). Эндээс үзвэл нийт дэд олонлогийн тоо нь 2^n -тэй (n нь олонлог Ω -ын бүрдүүлэгч элементүүдийн тоо) тэнцүү байдаг. Математикийн хэлээр

$$\mathbb{F} = \{ \{ \emptyset \}, \{ s \}, \{ t \}, \{ s, t \} \} \subseteq \Omega = \{ s, t \}; \tag{9}$$

 \mathbb{F} -ын бүрдүүлэгч элементүүд $\{\{\varnothing\}, \{s\}, \{t\}, \{s,t\}\}$ -ийг тайлбарлая. Зоосыг n=100-н удаа хаясан гэж үзвэл. Заавал сүлд $\{s\}$, болон тоо $\{t\}$ талаараа буух тохиолдол нь тэнцүү буюу $n_s=50$ удаа сүлд, $n_t=50$ удаа тоо гэж авч үзэе. Тэгвэл нийт хаялтын тоо n-г сүлд n_s эсвэл тоо n_t байх тохиолдолд хуваавал

$$P(\{s\}) = P(\{t\}) = \frac{n_s}{n} = \frac{n_t}{n} = 0.5,$$
(10)

P-г магадлал гэж нэрлэдэг ба s болон t талаараа буух магадлал нь тэнцүү байна. Аль нэг талаараа буухгүй байх тохиолдолыг $\{\varnothing\}$ гэж тэмдэглэсэн бөгөөд магадлалаар илэрхийлбэл $P(\{\varnothing\})=0$. Харин сүлд эсвэл тоо $(s \text{ or } t)\approx \{s,t\}$ -ны аль нэг нь заавал буух магадлал нь үргэлж 1-тэй тэнцүү $P(\{s,t\})=P(s \ or \ t)=1$ юм. Цаашилбал (Ω,\mathbb{F},P) -ыг **Магадлалын Огторгуй** гэж нэрлэдэг.