Machine Learning Introduction

Data & Models

Machine Learning Data

- Instances
 - Instances are like objects (e.g customer)
 - Instances each have a predefined set of features or attributes.
- Input is a single relational table, often a csv file.
- Rows are instances.
- Columns are features.

Features

- Features
 - Can be numerical or categorical.
- Non numerical or categorical features have a set of predefined values. Can be nominal (no order) or ordinal
- Examples Numerical features
 - number calls made, MB downloaded
- Examples Nominal features
 - make of car
- Examples Ordinal Features
 - usage of something (low, medium & high)

Data Mining Model

- Data Mining algorithms build models.
- Example is a decision tree.
- For example, a decision tree of size 1 (referred to as 1R)
 - if number calls tech support > 10 then churn
- (A decision tree can have a large number of nodes.)

Data Mining - Model Building

Data Mining Algorithm Model

Data Mining - Prediction

Supervised v. Unsupervised Learning

Supervised learning

- For example, find the group of customers likely to leave after their contract expires.
- It's a predefined set.
- We can use a set of existing training data

Unsupervised learning

- Do customers fall into natural groups
- Not a predefined set
- Training data not labelled with these groups.

Types of Problems

- Supervised Learning
 - Regression
 - Classification (also probability estimation)
- Unsupervised
 - Clustering

Regression

- Value estimation.
- Estimate the value for a particular attribute.
- For example predict tomorrows temperature at midday.
- Use historical data (trining set) about other instances (days).
- Supervised learning technique.

Classification

- The learning scheme/algorithm is presented with a set of classified examples.
- Expected to learn and be able to classify unseen examples.
- For example cancer diagnosis.
- Mostly assume that instances belong to one class.
- Includes Logistic Regression!

Classification & Prob. Estimation

- Logistic Regression produces numbers which are the probability of an instance being in a particular class.
- Produces a "Probabilistic Classifier".
- Produces a model giving probability of an individual belonging to particular groups.

Clustering

- Find groups of instances that cluster or belong together.
- [Identify clusters with no specific purpose in mind.]
- Training set not labelled with groups.
 (Unsupervised technique)
- Success is often gauged subjectively by how meaningful the clusters are to users.

Clustering (cont)

- Can be followed by a classification step.
- The clusters are now treated as classes and results used as input to a classification algorithm.

Data Reduction/ Feature Selection

- Not covered in the module.
- So dont do it!!
- Throw away irrelevant features.
 - For clearer insight.
 - Better accuracy.
 - Performance reasons.
- In a lot of cases dont need to do this.
- Let the model use any features it wants.

Summary

- Supervised Learning
 - Regression
 - Classification
- Unsupervised Learning
 - Clustering