Last name _	
First name	

LARSON—MATH 601—CLASSROOM WORKSHEET 05 Review.

Concepts & Notation

- (Sec. 1.4) row-reduced echelon matrix, zero matrix $0^{m,n}$.
- matrix multiplication.
- (Sec. 1.5) column matrix B_j , elementary matrix.
- (Sec. 1.6) left inverse, right inverse, invertible matrix, inverse A^{-1} .

Problems

- 1. If AB is defined, and $B = [B_1 \dots B_p]$, explain why $AB = [AB_1 \dots AB_p]$.
- 2. Show that $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ is invertible. Find A^{-1} .
- 3. Show that $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is invertible. Find B^{-1} .
- 4. Suppose A is invertible. How can you show that its inverse is unique (and therefore our notation A^{-1} is unambiguous)?
- 5. Find AB, find $B^{-1}A^{-1}$ and check that $(AB)^{-1} = B^{-1}A^{-1}$.
- 6. Suppose A is invertible. Why does $(A^{-1})^{-1} = A$?

Elementary Matrices

An elementary matrix E is one where left multiplication by E has the same effect as some row operation.

7. Suppose A is a 3×3 matrix. What elementary matrix E corresponds to scaling the first row by a (non-zero) constant c?

8.	Why is E invertible? What is E^{-1} ? Why is E^{-1} an elementary matrix?
9.	Suppose A is a $n \times n$ matrix. What elementary matrix E corresponds to scaling the i^{th} row by a (non-zero) constant c ?
10.	Is E invertible?
11.	Suppose A is a 3×3 matrix. What elementary matrix E corresponds to switching the 2^{nd} and 3^{rd} rows?
12.	Why is E invertible? What is E^{-1} ? Why is E^{-1} an elementary matrix?
13.	Suppose A is a $n \times n$ matrix. What elementary matrix E corresponds to switching the i^{th} and j^{th} rows?
14.	Is E invertible?
15.	Suppose A is a 3×3 matrix. What elementary matrix E corresponds to adding a multiple c of the 2^{nd} row to the 3^{rd} row?
16.	Why is E invertible? What is E^{-1} ? Why is E^{-1} an elementary matrix?
17.	Suppose A is a $n \times n$ matrix. What elementary matrix E corresponds to adding a multiple c of the i^{th} row to the j^{th} row?

18. Is E invertible?