鼠

财

┉

K

丕

狱

盐

倒

勤奋求学 诚信考试 理工大学试卷(A) 昆明

考试科目: 大学物理|| 考试日期: 2018年1月5日 命题教师: 命题组

题号	选择题	填空题	计算题			总分
			1	2	3	心力
评分						
阅卷人						

物理基本常量

真空的磁导率: $\mu_0 = 4 \pi \times 10^{-7} \text{H/m}$; 真空的电容率: $\varepsilon_0 = 8.85 \times 10^{-12} \text{F/m}$; 电子静止质量: $m_e = 9.11 \times 10^{-31} \text{ kg}$; 1nm = 10⁻⁹ m; 1 eV = 1.602 × 10⁻¹⁹ J; 基本电荷; $e = 1.602 \times 10^{-19}$ C; 普朗克常数: $h = 6.63 \times 10^{-34}$ J·s; 1 atm = 1.013×10^5 Pa: 玻尔兹曼常数: $k = 1.38 \times 10^{-23}$ J/K

总分:

-、选择题 (共 12 题, 每题 3 分, 共 36 分)答案请填在 [1中

]1、一定量的理想气体贮于某一容器中,温度为T,气体分子的质量为 m. 根据理想气体的分子模型和统计假设,分子速度在x方向的分量平方的平均 值

(A)
$$\overline{v_x^2} = \sqrt{\frac{3kT}{m}}$$
.

(A)
$$\overline{v_x^2} = \sqrt{\frac{3kT}{m}}$$
. (B) $\overline{v_x^2} = \frac{1}{3}\sqrt{\frac{3kT}{m}}$.

(C)
$$\overline{v_x^2} = 3kT/m$$
 . (D) $\overline{v_x^2} = kT/m$.

(D)
$$\overline{v^2} = kT/m$$

]2、压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为:

- (A) $\frac{5}{2}pV$.
- (B) $\frac{3}{2}pV$.

(C) pV.

(D) $\frac{1}{2}pV$.

13、在一个体积不变的容器中,储有一定量的理想气体,温度为 T_0 时, 气体分子的平均速率为 \overline{v}_0 ,分子平均碰撞次数为 \overline{Z}_0 ,平均自由程为 $\overline{\lambda}_0$. 当气 体温度升高为 $4T_0$ 时,气体分子的平均速率 \bar{v} ,平均碰撞频率 \bar{Z} 和平均自由程 $\bar{\lambda}$ 分别为:

(A)
$$\overline{v} = 4\overline{v_0}$$
, $\overline{Z} = 4\overline{Z_0}$, $\overline{\lambda} = 4\overline{\lambda_0}$.

第1页共6页

(B)
$$\overline{v} = 2\overline{v_0}$$
, $\overline{Z} = 2\overline{Z_0}$, $\overline{\lambda} = \overline{\lambda_0}$.

(C)
$$\overline{v} = 2\overline{v_0}$$
, $\overline{Z} = 2\overline{Z_0}$, $\overline{\lambda} = 4\overline{\lambda_0}$.

(D)
$$\overline{\upsilon} = 4\overline{\upsilon_0}$$
 , $\overline{Z} = 2\overline{Z}_0$, $\overline{\lambda} = \overline{\lambda}_0$.

[14、如图所示,质量为 m 的物体由劲度系数为 k_1 和 k_2 的两个轻弹簧连接 在水平光滑导轨上作微小振动,则该系统的振动频率为

(A)
$$v = 2\pi \sqrt{\frac{k_1 + k_2}{m}} .$$

(B)
$$v = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{m}}$$

(C)
$$v = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{mk_1 k_2}}$$

(C)
$$v = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{mk_1 k_2}}$$
 (D) $v = \frac{1}{2\pi} \sqrt{\frac{k_1 k_2}{m(k_1 + k_2)}}$

15、一质点作简谐振动,周期为 T. 当它由平衡位置向 x 轴正方向运动时, 从二分之一最大位移处到最大位移处这段路程所需要的时间为

- (A) T/12. (B) T/8. (C) T/6. (D) T/4.

[16、在双缝干涉实验中,两缝间距离为 d,双缝与屏幕之间的距离为 D(D>>d). 波长为λ的平行单色光垂直照射到双缝上, 屏幕上干涉条纹中相邻暗纹之 间的距离是

- (A) $2\lambda D/d$. (B) $\lambda d/D$ (C) dD/λ .
- (D) $\lambda D/d$.

17、在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反 射光中看到干涉条纹,则在接触点P处形成的圆斑为

- (A) 全明.
- (B) 全暗.
- (C) 右半部明,左半部暗.
- (D) 右半部暗,左半部明.

18、一束平行单色光垂直入射在光栅上, 当光栅常数(a + b)为下列哪种情 况时(a 代表每条缝的宽度), k=3、6、9 等级次的主极大均不出现?

- (A) a+b=2a.
- (B) a+b=3 a.
- (C) a+b=4 a.
- (A) a+b=6 a.

19、用频率为 u 的单色光照射某种金属时,测得饱和电流为 I₁,以频率为 ν_2 的单色光照射该金属时,测得饱和电流为 I_2 ,若 $I_1 > I_2$,则

- (A) $v_1 > v_2$.
- (B) $v_1 < v_2$.

	康普顿效应的主要特点是 †光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体
. ,	†光的波长均与入射光的波长相同,与散射角、散射体性质无关. †光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波
长短的,这些	5九年战争与人别无极长相同的,也有比人别无极长长的和比人别无极 5散射体性质有关. 1光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射
光波长与入射	寸光波长相同,这都与散射体的性质无关.
(A) 粒豆 (B) 粒豆 (C) 粒豆	不确定关系式 $\Delta x \cdot \Delta p_x \geq \hbar$ 表示在 x 方向上 一位置不能准确确定。 一动量不能准确确定。 一位置和动量都不能准确确定。 一位置和动量不能同时准确确定。
	已知一粒子在一维无限深势阱中运动,其波函数可以表示为: $\frac{n\pi x}{a}$ $(0 \le x \le a, n = 1, 2, 3 \cdots)$,则粒子出现在 x 处的概率密度为:
(A) $\frac{2}{a}$	$rac{\sin^2 \frac{n\pi x}{a}}{a}$ (B) $\sqrt{\frac{2}{a}} \sin^2 \frac{n\pi x}{a}$ (C) $\frac{2}{a}$ (D) $\frac{1}{2a}$
总分:] 二、填空题(共 11 题,共 34 分)
	(本题 3 分) 有一瓶质量为 M 的氢气(视作刚性双原子分子的理想气 T ,则氢分子的平均平动动能为,该瓶氢气的内能为
中:	(本题 3 分) 一定量理想气体,从同一状态开始使其体积由 V_1 膨胀到,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其过程气体对外作功最多;过程气体内能增加最多; 过程气体吸收的热量最多.
3,	(本题 3 分) 热力学第二定律的克劳修斯叙述是:
开尔文叙述是	<u> </u>

(C) $\nu_1 = \nu_2$. (D) $\nu_1 = \nu_2$ 的关系还不能确定.

三、计算题(共3题,每题10分,共30分)

1、一定量的某种理想气体进行如图所示的循环过程.已知气体在状态 A

 $T_A = 300 \text{ K}$,求

- (1) 气体在状态 $B \setminus C$ 的温度;
- (2) 各过程中气体对外所作的功;
- (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).

2、一平面简谐波沿x轴正向传播,其振幅和角频率分别为A和 ω ,波速为u,设t=0时的波形曲线如图所示.

- (1) 写出此波的表达式.
- (2) 求距 O 点为 $\lambda/8$ 处质点的振动方程.
- (3) 求距 O 点为 $\lambda/8$ 处质点在 t=0 时的振动速度.

3、有三个偏振片叠在一起. 已知第一个偏振片与第三个偏振片的偏振化方向相互垂直. 一束光强为 I_0 的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为 I_0 / 16. 求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.