卷积神经网络 (CNN)

代启国

大连民族大学 计算机科学与技术系

2018年12月4日

教学内容

- 卷积神经网络原理及结构
- 卷积神经网络训练方法
- 卷积神经网络的实现

教学目标

- 理解卷积神经网络原理及结构
 - 卷积层
 - 池化层
- 理解卷积神经网络训练过程
- 学会利用 Keras 框架实现和训练卷积神经网络

深度神经网络

• 输入层: 一维信号

深度神经网络

• 输入层: 一维信号

深度神经网络

- 输入层: 一维信号
 - 没有考虑图像像素之间的距离和空间关系

回顾

深度神经网络

- 输入层: 一维信号
 - 没有考虑图像像素之间的距离和空间关系

如何能够更加有效地利用图像的空间结构信息?

- 卷积神经网络
 - (Convolutional Neural Network, CNN)
 - 一种十分重要的深度学习方法
- 适合于图像等二维数据的分类
 - 微软团队在 ImageNet 2012 分类数据 集中的错误率降至 4.94%,已经低于 人眼识别能力(约 5.1%)

- 卷积神经网络
 - (Convolutional Neural Network, CNN)
 - 一种十分重要的深度学习方法
- 适合于图像等二维数据的分类
 - 微软团队在 ImageNet 2012 分类数据 集中的错误率降至 4.94%,已经低于 人眼识别能力(约 5.1%)

- LeCun 出生在法国,曾在多伦多大学跟随深度学习鼻祖 Geoffrey Hinton 进行博士后研究
- 20 世纪 80 年代末, Yann LeCun 就作为贝尔实验室的研究员提出了卷积网络技术
- 上世纪末本世纪初,当神经网络失宠时 Yann LeCun 是少数几名一直坚持的科学家 之一
- Facebook 人工智能研究部门负责人

- 卷积神经网络
 - (Convolutional Neural Network, CNN)
 - 一种十分重要的深度学习方法
- 适合于图像等二维数据的分类
 - 微软团队在 ImageNet 2012 分类数据 集中的错误率降至 4.94%,已经低于 人眼识别能力(约 5.1%)

论文被拒千百遍,团队不受待见,Yann LeCun为何仍待深度学习如初恋?...

2017年4月25日 - Yann LeCun是当前人工智能领域的三驾马车之一, 可是你能想象神经网络在20年前曾有过被完全边缘化的经历吗? https://www.leiphone.com/news/... ▼ - 百度快照

- LeCun 出生在法国,曾在多伦多大学跟随深度学习鼻祖 Geoffrey Hinton 进行博士后研究
- 20 世纪 80 年代末, Yann LeCun 就作为贝尔实验室的研究员提出了卷积网络技术
- 上世纪末本世纪初,当神经网络失宠时 Yann LeCun 是少数几名一直坚持的科学家 之一
- Facebook 人工智能研究部门负责人

卷积神经网络

- 卷积层 (Convolution layer)
- 池化层 (Pooling layer), 也称降采样层 (Sub-sampling)
- 全连通层 (Fully connected layer)

6/1

如何进行卷积?

如何进行卷积?

1 将卷积核中心点,与输入图像中某一像素(C)对准

如何进行卷积?

- 1 将卷积核中心点,与输入图像中某一像素(C)对准
- 2 计算"输入图像中 C 及其邻域像素"与"卷积核对应位置元素"乘积之和

如何进行卷积?

- 1 将卷积核中心点,与输入图像中某一像素(C)对准
- 2 计算"输入图像中 C 及其邻域像素"与"卷积核对应位置元素"乘积之和
- 3 将该值作为卷积后图像对应 位置的像素值

如何进行卷积?

- 1 将卷积核中心点,与输入图像中某一像素(C)对准
- 2 计算"输入图像中C 及其邻域"与"卷积核对应位置元素"乘积之和
- 3 将该值作为卷积后图像对应 位置的像素值

1,	1,0	1,	0	0
0,0	1,	1 _{×0}	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Convolved Feature

如何进行卷积?

- 1 将卷积核中心点,与输入图像中某一像素(C)对准
- 2 计算"输入图像中C 及其邻域"与"卷积核对应位置元素"乘积之和
- 3 将该值作为卷积后图像对应 位置的像素值

1	1,	1,0	0,1	0
0	1,0	1,	1,0	0
0	0,,1	1,0	1,	1
0	0	1	1	0
0	1	1	0	0

თ	
	3

Convolved Feature

如何进行卷积?

- 1 将卷积核中心点,与输入图像中某一像素(C)对准
- 2 计算"输入图像中C 及其邻域"与"卷积核对应位置元素"乘积之和
- 3 将该值作为卷积后图像对应 位置的像素值

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,0	1,
0	0	1,0	1,	0 _{×0}
0	1	1,	0,0	0,,1

Image

4	3	4
2	4	3
2	3	4

Convolved Feature

如何进行卷积?

- 1 将卷积核中心点,与输入图像中某一像素(C)对准
- 2 计算"输入图像中C 及其邻域"与"卷积核对应位置元素"乘积之和
- 3 将该值作为卷积后图像对应 位置的像素值

卷积操作 == 神经元

- 原始图像: 输入
- 卷积核: 加权参数
- 卷积后的值: 输出

2018年12月4日

CNN – Zero Padding

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

0	0	0					
0	1	0	0	0	0	1	
0	0	1	0	0	1	0	
	0	0	1	1	0	0	
	1	0	0	0	1	0	
	0	1	0	0	1	0	0
	0	0	1	0	1	0	0
		_			0	0	0
		О	x 6 i	ma	5C		

You will get another 6 x 6 images in this way

图像没有变化

对图像进行高斯模糊

▶图像导数

$$I_x = I * D_x \qquad I_y = I * D_y$$

➤ Sobel滤波器

$$D_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad D_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$D = 0.5 * D_x + 0.5 * D_y$$

卷积可用于识别图像中特定模式

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

用于检测特定曲线形状的结构 (模式)

Visualization of the filter on the image

● 卷积后的值: 6600 ("信号强")

● 卷积后的值: 6600 ("信号强")

◆ 卷积后的值: ○ ("信号低")

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30) = 6600 (A large number!)

● 卷积后的值: 6600 ("信号强")

◆ 卷积后的值: ○ ("信号低")

设计不同的卷积核,检测图像中不同的图像模式

详解卷积层

以 LeNet5 网络结构为例,用于识别手写数字,输入层为单通道图片 (黑白图片),输出层为 10 个节点

详解卷积层

以 LeNet5 网络结构为例,用于识别手写数字,输入层为单通道图片 (黑白图片),输出层为 10 个节点

● C1、C3、C5 是卷积层

详解卷积层

以 LeNet5 网络结构为例,用于识别手写数字,输入层为单通道图片 (黑白图片),输出层为 10 个节点

- C1、C3、C5 是卷积层
 - C1: 由 6 个不同卷积核得到 6 个特征图 (Feature map)

CNN 网络构造——卷积层

详解卷积层

以 LeNet5 网络结构为例,用于识别手写数字,输入层为单通道图片 (黑白图片),输出层为 10 个节点

- C1、C3、C5 是卷积层
 - C1: 由 6 个不同卷积核得到 6 个特征图 (Feature map)
 - C3: 由 16 个不同卷积核得到的 16 个特征图

CNN 网络构造——卷积层

详解卷积层

以 LeNet5 网络结构为例,用于识别手写数字,输入层为单通道图片 (黑白图片),输出层为 10 个节点

- C1、C3、C5 是卷积层
 - C1: 由 6 个不同卷积核得到 6 个特征图 (Feature map)
 - C3: 由 16 个不同卷积核得到的 16 个特征图
 - C5: 由 12 个不同卷积核得到的 120 个特征图

CNN 网络构造——卷积层

详解卷积层

以 LeNet5 网络结构为例,用于识别手写数字,输入层为单通道图片 (黑白图片),输出层为 10 个节点

- C1、C3、C5 是卷积层
 - C1: 由 6 个不同卷积核得到 6 个特征图 (Feature map)
 - C3: 由 16 个不同卷积核得到的 16 个特征图
 - C5: 由 12 个不同卷积核得到的 120 个特征图
- 每个卷积层的不同卷积核对应不同特征

• Subsampling the pixels will not change the object

We can subsample the pixels to make image smaller

Less parameters for the network to process the image

- 池化层 (降采样) 通常位于卷积层之后
- 池化的目的: 旨在降低模型的规模, 加速训练

- 池化层 (降采样) 通常位于卷积层之后
- 池化的目的: 旨在降低模型的规模, 加速训练
- 常用的池化方法主要包括最大池化法 和均值池化法

- 池化层 (降采样) 通常位于卷积层之后
- 池化的目的: 旨在降低模型的规模, 加速训练
- 常用的池化方法主要包括最大池化法 和均值池化法

- 池化层 (降采样) 通常位于卷积层之后
- 池化的目的: 旨在降低模型的规模, 加速训练
- 常用的池化方法主要包括最大池化法 和均值池化法

- S2、S4 层为池化层 (降采样)
- 面积分别是 C1、C3 层中的 1/4

CNN 网络构造——全连通层

- F6 为全连通层
- 包含 84 个节点, 与 C5 层 120 个节点全连通, 类似于普通神经网络

CNN 网络若干特性

- 局部连接 (local connections)
 - 每个神经元只与上一层的部分神经元相连,只感知局部,而不是整幅 图像
- 权值共享 (shared weights)
 - 用一个相同的卷积核去卷积整幅图像, 相当于对图像做一个全图滤波
- 降采样 (sub-sampling)

CNN 网络若干特性

- 局部连接 (local connections)
 - 每个神经元只与上一层的部分神经元相连,只感知局部,而不是整幅 图像
- 权值共享 (shared weights)
 - 用一个相同的卷积核去卷积整幅图像, 相当于对图像做一个全图滤波
- 降采样 (sub-sampling)

- 仿射不变性 (平移、旋转、缩放)
 - CNN 能够在浅层学到比较基础的特征,比如点、线、边缘,
 - 高层特征是这些基础浅层特征的组合
 - 即使发生仿射变化,底层基础特征依然不变

CNN 网络的训练

- 训练的目的: 估计各层中不同卷积核及相关参数、全连通层的权值 等
- 训练采用 "反向传播"
 - 前向传播、损失计算、反向传播、权重更新
 - 损失计算——均方误差 (Mean squared error)

$$E(f; D) = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

CNN-应用案例

Playing Go

Black: 1 white: -1

none: 0

19 x 19 vector

Fully-connected feedword network can be used

But CNN performs much better.

18/1

Why CNN for playing Go?

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

• The same patterns appear in different regions.

