MA2102: LINEAR ALGEBRA

Lecture 21: Invertibility

7th October 2020

Definition [Invertible Maps] A linear map $T: V \to W$ is called invertible if there exists $S: W \to V$ such that $S \circ T = I_V$ and $T \circ S = I_W$.

The existence of S with the properties imply that T is a bijection. Thus, T is a linear isomorphism and S is unique. Conversely, if T is a linear isomorphism, then the set theoretic inverse $S: W \to V$ of T is a linear map satisfying the required properties. Thus, linear isomorphisms and invertible linear maps are synonymous.

Remark If *V* is finite dimensional and $T: V \to W$ is invertible, then *T* is a linear isomorphism, whence dim $V = \dim W$.

Definition [Invertible Matrix] A matrix $A \in M_{m \times n}(\mathbb{R})$ is called invertible if there exists a matrix $B \in M_{n \times m}(\mathbb{R})$ such that

$$AB = I_m, \quad BA = I_n.$$

Observation If $A \in M_{m \times n}(\mathbb{R})$ is invertible, then m = n.

Proof.

Let B be the (why?) inverse of A. Then A, B define linear maps

$$L_A: \mathbb{R}^n \to \mathbb{R}^m, L_B: \mathbb{R}^m \to \mathbb{R}^n$$

via the matrices acting on vectors. With respect to the standard bases β_k of \mathbb{R}^k we have (exercise)

$$[L_A]^{\gamma}_{\beta} = A, \ [L_B]^{\beta}_{\gamma} = B.$$

Moreover, we have

$$L_A \circ L_B = I_{\mathbb{R}^m}, \ L_B \circ L_A = I_{\mathbb{R}^n}.$$

Thus, m must equal n.

The following properties hold for invertible linear maps. If $T: V \rightarrow W$ and $S: U \rightarrow V$ are invertible linear maps, then

- $(T \circ S)^{-1} = S^{-1} \circ T^{-1}$ Follows by composing both sides with $T \circ S$.
- $(T^{-1})^{-1} = T$ Follows by composing both sides with T^{-1} .

The following result connects the two notions of invertibility.

Theorem

Let V and W be finite dimensional vector spaces with ordered bases β and γ respectively. If $T: V \to W$ is a linear map, then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible. Moreover, we have

$$[T^{-1}]_{\gamma}^{\beta} = ([T]_{\beta}^{\gamma})^{-1}.$$

Proof.

If T is invertible, then dim $V=\dim W=n$ by our earlier remark, whence $[T]_{\beta}^{\gamma} \in M_n(\mathbb{R})$. As $T \circ T^{-1} = I_W$ and $T^{-1} \circ T = I_V$, we get

$$I_n = [I_V]_{\beta} = [T^{-1} \circ T]_{\beta} = [T^{-1}]_{\gamma}^{\beta} [T]_{\beta}^{\gamma}$$

 $I_n = [I_W]_{\gamma} = [T \circ T^{-1}]_{\gamma} = [T]_{\beta}^{\gamma} [T^{-1}]_{\gamma}^{\beta}$

For the converse, assume that $A = [T]_{\beta}^{\gamma}$ is invertible with B its inverse. By our earlier observation, m = n. It suffices to show that T is injective. If $v \in N(T)$, then $T(v) = \mathbf{0}_W$. As

$$A[v]^{\beta} = [T]_{\beta}^{\gamma}[v]^{\beta} = [T(v)]^{\gamma} = 0$$

multiplying by *B* on the left, we conclude that $[v]^{\beta} = 0$. This implies that $v = 0_V$ and that *T* is injective.

Example We specialize to the case of $T: V \to V$, where V is finite dimensional. Let β, γ be two (ordered) bases of V. We had seen that

$$[I_V]_{\beta}^{\gamma}[T]_{\beta}[I_V]_{\gamma}^{\beta} = [T]_{\gamma}.$$

Let $Q = [I_V]_{\beta}^{\gamma}$ denote the change of basis (from β to γ) matrix. Then we may rewrite the above identity as

$$Q[T]_{\beta}Q^{-1} = [T]_{\gamma}.$$

Remark Note that $[T]_{\beta}$ is invertible if and only if $[T]_{\gamma}$ is invertible as both are equivalent to T being invertible.

In order to define meaningful invariants of linear maps $T: V \to V$ we need to define scalar quantities associated to matrices which are unchanged under *conjugation*.

In subsequent lectures we will explore trace, rank and determinant as potential invariants. Let us focus on conjugation.

Definition [Similarity] A matrix $A \in M_n(\mathbb{R})$ is said to be similar to $B \in M_n(\mathbb{R})$ if there exists an invertible matrix $Q \in M_n(\mathbb{R})$ such that

$$QAQ^{-1} = B.$$

Observe that if we define $A \sim B$ by the relation of similarity, then \sim is an equivalence relation.

- [reflexive] $I_n A I_n^{-1} = A$
- [symmetric] If $QAQ^{-1} = B$, then $Q^{-1}BQ = A$
- [transitive] If $QAQ^{-1} = B$ and $PBP^{-1} = C$ then

$$(PQ)A(PQ)^{-1} = PQAQ^{-1}P^{-1} = PBP^{-1} = C.$$

For $M_1(\mathbb{R}) = \mathbb{R}$, the relation of similarity is not interesting - every real number is its own equivalence class as multiplication is commutative. When n=2, multiplication in $M_2(\mathbb{R})$ is not commutative. We will see later that

$$\operatorname{trace}(PAP^{-1}) = \operatorname{trace}(A)$$
 and $\operatorname{det}(PAP^{-1}) = \operatorname{det}(A)$.

Question Do the trace and determinant determine the similarity class of $A \in M_2(\mathbb{R})$?

The matrices

$$A = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right), \quad B = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$$

are traceless and have zero determinant. However, they are not similar (exercise).