Poisson random variables are concerned with the number of				
random events occurring per unit of time or space, if there is a				
constant rate of random events occurring across this unit.				
E.g. the number of patients arriving at an emergency room in a				
hour.				
If we have a non-unit interval (or space) of length t : λt can be				
used in the pmf instead of λ , so that $p(x)=rac{e^{-\lambda t}(\lambda t)^x}{x!}$, $x=$				
$0, 1, 2,$, and $X \sim Poi(\lambda t)$. Now we see λ as the rate at which				
random events occur and λt as the mean number of events in t.				
Uniform U({1, 2,, n}): Let X be a random variable on {1,2,,n}				
with pmf $p(x) = \frac{1}{n}, x = 1, 2,, n$. Then X is said to follow a				
discrete uniform distribution and $X \sim U(\{1,2,\ldots,n\})$.				
Mean: $\mu=\frac{n+1}{2}$, Variance: $\sigma^2=\frac{n^2-1}{12}$.				
Distribution	rv	pmf	μ	σ^2
Bernoulli(p)	$X \in \{0, 1\}$	$\rho^{\times}(1-\rho)^{\times}$	p	p(1 - p)
Binomial(n, p)	$X \in \{0, \ldots, n\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
Geometric(p)	$X \in \{1, 2, \ldots\}$	$p(1-p)^{x-1}$	1 0	$\frac{(1-\rho)}{\rho^2}$
Alternative	Y = X - 1	$\rho(1-\rho)^{\gamma}$	(1-p)	$\frac{(1-\rho)}{\rho^2}$
Geometric(p)	$X \sim \text{Geometric}(p)$		-	r
Poisson(λ)	$X \in \{0,1,\ldots\}$	$\frac{e^{-\lambda}\lambda^{x}}{x!}$	λ	λ
Uniform(1, n)	$X \in \{1, \ldots, n\}$	$\frac{1}{n}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$