MATH 5340 Fall '23 Lecture 12

Part II. Ordinan Defendial Equations
Backword and Forward Enler

(wropping up from lost time)

The following Theorems gives one way of addressing the potential short time interval of existence.

Theorem (Picaré plus a little extra, see votebook2)

Suppose $f: \mathbb{R}^d \times Co_{,\infty}) \rightarrow \mathbb{R}^d$ is such that * $|f(x,t) - f(y,t)| \in L(x-y) \quad \forall t \in C_{0,\infty}$

↓ \f(o,t)\ \ \ C e

Then, for any initial vector $x \in \mathbb{R}^d$ There is a unique function x(t), $x: E_{0/0} \rightarrow \mathbb{R}^d$ such that

 $\dot{\chi}(t) = f(\chi(t),t) \quad \text{for } t \in (0,\infty)$ $\chi(0) = \chi_0$ $e^{-Lt} |\chi(t)| \in L^{\infty}((0,\infty)) \quad \text{i.e.}$ $\text{The } \chi \in \chi_0 \quad \text{for } t \in (0,\infty)$ $e^{-Lt} |\chi(\tau)| \leq M \quad \forall t \in (0,\infty)$

A remark about the proof

For the proof one works with the following functional space

X := of x. co, w) - 1Rd | xtt) is continuous out

| J(H) | = Mext for com

M>0?

This is a bower speel with the norm $\|\chi\|_{\omega,\lambda} := \sup_{0 \le t \le 0} \left\{ e^{-\lambda t} |\chi(t)| \right\}$ the proof of the theorem will follow from

the Baroch contraction mapping theorem applied $t: \chi_{\chi} \longrightarrow \chi_{\chi}$ alefund ζ $T(\chi)(t) = \chi_{\zeta} + \int_{0}^{t} f(\chi(s),s) \, ds \, , \, t \in Lo, 0)$ Then you must show $t = T(\chi) \in \chi_{\chi} + \int_{0}^{t} \chi(x) \, ds \, ds \, ds$ If $\chi > L$, then $\chi \in \chi_{\chi}$ and χ_{χ} .

Forward and Backword Evler schemes

(AKA Explicit / implicit Evler)

At their most bosic these schemes produce diserte sequences of vectors that one ment to opporoximate the values of the solution to our JVP at a disente set of times

and given a womber h>0, colled the time step, we produce a sequence of vector or follow K=0,1,2,...

Forward Euler

We generate a sequen IK (K=0,1,...)
rearrively or follows

- · to is given
- $x_{\kappa+1} = x_{\kappa} + h f(x_{\kappa}, t_{\kappa})$

Ballward Ever

As before, we generate a requere χ_{K} recursively or follow,

* χ_{0} is given

* Given χ_{K} , we define χ_{KH} as any vector such that $\chi_{KH} = \chi_{K} + h f(\chi_{KH}, t_{KH})$ (If we define $\chi_{CD} = \chi - h f(\chi_{KH}, t_{KH})$, and $\chi_{KH} = g^{-1}(\chi_{K})$

Remark: One could comider a transformation $T_n: IR^d \to IR^d$ defined by $T_n(x) = X_K + h f(x, t_{K+1})$ (here, X_K, t_{K+1} are already given)

The way X_{K+1} is defined is as a fixed point of T_h . Conveniently, T_h will be a

contraction support if $h < \frac{1}{L}$, because $t \le 5, \le 17^d$

 $T_{N}(y_{1}) - T_{N}(y_{2})$ $= \chi_{N} + N f(y_{1}, t_{N+1}) - \chi_{N} - h f(y_{2}, t_{N+1})$ $= h \left(f(y_{1}, t_{N+1}) - f(y_{2}, t_{N+1}) \right)$

 $= \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) - \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) + \frac{1}{1} \left(\frac{1}{1} \left(\frac{1}{1} \right) \right) = \frac{1}{1} \left(\frac{1$

no it hL < 1, Th is a contraction mapping and There is a unique fixed point.

The hope with either of there schemes is
that if h is very small and XHT solves
the IVP (this is allow sometimes the analytical
robotion) then

Xu is dose to Iltur

Let's make This hope into a theorem. To der not it will be commented to work with the piecewise linear function generated by the sequence [2x] generated above.

Definition: Fet >2x2 be a sequence agreenated by Forward or Backward Euler with time step hoo, then define the function

$$\chi^{(n)} := \chi_{\kappa} + \frac{t - t_{\kappa}}{\eta} (\chi_{\kappa + 1} - \chi_{\kappa})$$

$$= (l - \frac{t - t_{\kappa}}{\eta}) \chi_{\kappa} + \frac{t - t_{\kappa}}{\eta} \chi_{\kappa + 1}$$

For J=2, this can be visualized via a polysonal line x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_6 , x_7 , x_8 , $x_$

Next time we will show that for either book word or forward Ealer

wor (x(1)(+) - X(+)) ->>> 0

0515T

for any time T.