לוגיקה הרצאה 10

2019 ביוני 5

תחשיב היחסים

 $au=\left\langle R\ldots,F\ldots,C\ldots
ight
angle$ מילון: $M=\left\langle D^M,R^M\ldots,F^M\ldots,C^M\ldots
ight
angle$ מבנה עבור מילון: מבנה עבור מילון: term(au) שמות עצם מעל מילון 'קבוצה אינד

- ש"ע ש"ל במילון הוא שc במילון הוא ש . כל משתנה x_i הוא ש"ע
- מתקיים t_1,\dots,t_k ש"ע ש"ע במילון, ולכל F מתקיים הימקומית לכל סימן פונקציה fשגם $F(t_1,\ldots,t_k)$ היא ש"ע
 - הפירוש של ש"ע ניתן ע"י השמה.

. au עבור M עבור au ומבנה ומינתן בהינתן $s: \underbrace{Var}_{\{x_i|i\in\mathbb{N}\}} o D^M$ פנקצייה: $x_i|i\in\mathbb{N}\}$

בהינתן השמה s עבור מבנה M במילון עבור השמה s.term(au) באינדוקציה על באינדוקציה $\overline{S}:term(au) o D^M$

- $\overline{s}(t)=s(t)$:שהוא משתנה, נגדיר שהוא $t=x_i$ עבור (גדיר: au ביau נגדיר: כאשר $t=c_i$ כאשר $\overline{s}(c_I) = c_i^M$
 - $t_1, \ldots t_k$ ע"ע עבור ש"ע את סגור: נניח שהגדרנו את סגור: ונניח שF מקומית במילון.

$$\overline{s}(F(t_1,\ldots,t_k)) = F^M(\overline{s}(t_1),\ldots,\overline{s}(t_k))$$

דוגמה:

$$\tau = \langle F, (,), C \rangle$$

$$M=<\mathbb{N}, imes,0>$$
 .1
 $S(x_i)=i$ השמה נגדיר השמה

:דוגמאות לש"ע

$$\overline{S}(x_0) = 0
\overline{S}(x_1) = 1
\overline{S}(c) = C^M = 0
\overline{S}(F(x_0, c)) = F^M(\overline{S}(x_0), \overline{S}(c)) = 0 \cdot 0 = 0
\overline{S}(F(x_8, x_{100})) = F^M(\overline{S}(x_8), \overline{S}(x_{100})) = 8 \cdot 100 = 800
\overline{S}(F(F(x_0, c), x_1))$$

$$M=< P(\mathbb{N}),\bigcup,\emptyset>$$
 .2
$$s=(x_i)=\{i\}$$
 נגדיר השמה דוגמאות לש"ע

$$\begin{split} & \overline{S}(x_0) = \{0\} \\ & \overline{S}(c) = C^M = \emptyset \\ & \overline{S}(F(X_0, c)) = F^M(\overline{S}(x_0), \overline{S}(c)) = \{0\} \cup \emptyset = \{0\} \end{split}$$

נוסחאות:

:תנוסחאות מעל מילון au. מוגדרת בצורה אינדוקטיבית

- הוא $t_1\approx t_2$ (נוסחאות אטומיות) לכל שני שמות עצם t_1,t_2 מתקיים ש־ נוסחא. נוסחא. לכל סימן יחס t_1,\ldots,t_k במילון ולכל t_1,\ldots,t_k מתקיים ש־ t_1,\ldots,t_k היא נוסחא.
 - :פיים ש: בהינתן בהינתן מחסאות a,β מתקיים ש: $(\alpha\to\beta),(\alpha\vee\beta),(\alpha\wedge\beta),(\neg\alpha)$
 - בהינתן x_i משתנה α ומחתנה בהינתן ש־: כמתים: בהינתן נוסחא $(\exists x_i,\alpha)$ ו־ $(\forall \underbrace{x_i},\alpha)$ for each possible value

דוגמאות:

הגדרת ערכי אמת

 $.\tau$ מעל α מוסחא מספקים אוירים מתי מגדירים מגדירים והשמה האנת מילון מילון בהינתן ההשמה או והשמה האנת מגדירים מח $M \models \alpha$ מרך אמת α רך אמת בלומר כלומר כלומר מותנים ל- α

.
$$(M,S) \vDash \alpha$$
 , $(M,s)(\alpha) = 1$

 $s' = s[x_i \leftarrow d]$

: au באינדוקציה על קבוצת הנוסחאות מעל

$$M \vDash lpha$$
 נגדיר $lpha = t_1 pprox t_2$ • בסיס: $lpha = t_1 pprox t_2$ שיוויון ב $\overline{s}(t_1) = \overline{\underline{s}(t_2)}$ שיוויון ב $\overline{s}(t_2) = \overline{s}(t_2)$

<u>דוגאות:</u> •

$$T = \langle R, F_1, \overline{F_2, C} \rangle$$
 כמו קודם.
$$M \vDash \alpha \Leftarrow \begin{cases} M = \langle \mathbb{N}, \leq, ^2, +, 1 \rangle \\ S(x_i) = 1 & \forall i \\ \alpha = x_0 \approx c \end{cases}$$

$$M \nvDash \alpha \Leftarrow i \ \forall i \land i \end{cases}$$

$$\overline{s'}(c) = 1 \ , \ \overline{s}(x_0) = 0$$

$$\overline{s'}(c) = 1 \ , \ \overline{s}(x_0) = 0$$

$$\overline{s'}(c) = 1 \ , \ \overline{s}(x_0) = 0$$

$$\overline{s'}(c) = 1 \ , \ \overline{s}(x_0) = 0$$

$$\overline{s'}(c) = 1 \ , \ \overline{s}(x_0) = 0$$

$$\overline{s}(x_0) = 0$$

$$\overline{s}(x$$

$$s'(x_j) = \begin{cases} d & i = j \\ s(x_j) & i \neq j \end{cases}$$

עכשיו, בהינתן \widehat{lpha} שעבורו הגדרנו האם M,s מספקים אותה,

ובהינתן משתנה x_i נגדיר:

$$M Dashlpha$$
 אם"ם לכל $d \in D^m$ מתקיים $M Dasheta orall x_i lpha$

$$M \vDash \alpha$$
 מתקיים של $M \vDash \forall x_i \alpha$ אם"ם לכל $M \vDash \forall x_i \alpha$ אם"ם לכל $M \vDash \alpha$ מתקיים $M \vDash \exists x_i \alpha$ $M \vDash \alpha$ אם"ם קיים $M \vDash \exists x_i \alpha$

בחזרה להגדרה:

נגדיר: אותן, מספקים אותן שהגדרנו עבורן שהגדרנו מספקים אותן, נגדיר בהינתן בהינתן בהינתן שהגדרנו שהגדרנו מספקים אותן בהינתן

$$M \nvDash_s \alpha$$
 אם"ם $M \vDash \neg \alpha$

$$M \vDash \beta$$
 או $M \vDash \alpha$ מ"ם $M \vDash \alpha \lor \beta$

$$M
ot\models_{s[x_i \leftarrow d]} lpha$$
 אם"ם לכל $d \in D^M$ מתקיים $M
ot\models_{s} orall x_i c$

$$C$$
רים: בהינתן נוסחאות α,β שהגדרנו עבורן האם M,s מספקים אותן, נגדיר: $M \not\models \alpha$ אם"ם $M \not\models \neg \alpha$.
$$M \not\models \alpha$$
 אם"ם $M \not\models \alpha$ אם $M \not\models \alpha$.
$$M \not\models \alpha \lor \beta$$
 .
$$M \not\models \alpha \lor \beta$$
 עכשיו בהיתן α שעבורה הגדרנו האם M,s מספקים אותה, ובהינתן משתנה x_i נגדיר:
$$M \not\models \alpha$$
 אם"ם לכל
$$M \not\models \alpha$$
 אם"ם לכל
$$M \not\models \alpha$$
 אם"ם לכל
$$M \not\models \alpha$$
 אם"ם קיים
$$M \not\models \alpha$$
 כך שמתקיים
$$M \not\models \alpha$$
 אם"ם קיים
$$M \not\models \alpha$$
 כך שמתקיים
$$M \not\models \alpha$$
 אם
$$M \not\models \alpha$$
 אם
$$M \not\models \alpha$$
 ב

דוגמאות:

 $.\overline{s}(x_0) = \overline{s}(c)$

$$lpha'=orall x_{\emptyset_1}(x_0pprox c)$$
 $M\vDash x_1pprox c, d\in D^M$ לכלל $M\vDashlpha$ $s'=s[x_{\emptyset_1}\leftarrow d]$ $M
otsymp orall x_0$ (בדוגמא $\overline{s}(x_0)=\overline{s}(c)\Leftrightarrow \overline{s}(c)$