Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 4

Consigna

Sea $T: V \to V$ una transformación lineal. Probar que:

- 1. T es invertible \iff 0 no es valor propio de T.
- 2. Si T es invertible y λ es valor propio de T, entonces λ^{-1} es valor propio de T^{-1} .
- 3. Si λ es valor propio de T, entonces λ^n es valor propio de T^n para todo $n \in \mathbb{N}$.
- 4. Si T es invertible y λ es valor propio de T, entonces λ^{-n} es valor propio de T^{-n} para todo $n \in \mathbb{N}$.

Nota: Existen resultados análogos para matrices cuadradas.

Resolución

Veamos cada afirmación de forma separada

Afirmación #1

T es invertible \iff 0 no es valor propio de T.

 (\Rightarrow)

T es invertible, esto nos dice que T es biyectiva, y además nos dice que $Ker(T) = \{0\}$, es decir, el único vector que mapea a 0 es el 0 (todo esto es teórico).

Sabiendo esto, supongamos que 0 es valor propio de T, entonces existe un vector propio $v \neq 0$ tal que $T(v) = 0 \cdot v = 0$, pero esto contradice que $Ker(T) = \{0\}$, ya que dicho vector pertenecería al nucleo de T, por lo que 0 no puede ser valor propio de T.

 (\Leftarrow)

0 NO es valor propio de T, esto implica que $\nexists v \in V$ tal que $T(v) = 0 \cdot v = 0$, es decir, que el único vector que mapea a 0 es el 0. Esto implica que $Ker(T) = \{0\}$, por lo que T es inyectiva (teórico). Además como estamos trabajando en un espacio finito, si T es inyectiva, entonces también es sobreyectiva. Por lo que T es biyectiva, y por lo tanto invertible.

Afirmación #2

Si T es invertible y λ es valor propio de T, entonces λ^{-1} es valor propio de T^{-1} .

Sabemos que λ es valor propio de T, por lo que existe un vector $v \neq 0$ tal que $T(v) = \lambda v$. Si aplicamos T^{-1} a ambos lados de la ecuación, obtenemos:

$$T^{-1}(T(v)) = T^{-1}(\lambda v) \Rightarrow v = \lambda T^{-1}(v)$$

Ahora aplicando λ^{-1} a ambos lados de la ecuación, obtenemos:

$$\lambda^{-1}v = T^{-1}(v)$$

Por lo que λ^{-1} es valor propio de T^{-1} .

Afirmación #3

Si λ es valor propio de T, entonces λ^n es valor propio de T^n para todo $n \in \mathbb{N}$.

Sabemos que λ es valor propio de T, por lo que existe un vector $v \neq 0$ tal que $T(v) = \lambda v$. Probemos esto por inducción:

Caso base: n=2

$$T^2(v) = T(T(v)) = T(\lambda v) = \lambda T(v) = \lambda \cdot \lambda v = \lambda^2 v$$

Paso inductivo: Supongamos que λ^n es valor propio de T^n , probemos que λ^{n+1} es valor propio de T^{n+1}

$$T^{n+1}(v) = T(T^n(v)) = T(\lambda^n v) = \lambda^n T(v) = \lambda^n \lambda v = \lambda^{n+1} v$$

Por lo que λ^{n+1} es valor propio de T^{n+1} , lo que prueba la afirmación.

Afirmación #4

Si T es invertible y λ es valor propio de T, entonces λ^{-n} es valor propio de T^{-n} para todo $n \in \mathbb{N}$.

Sabemos que λ es valor propio de T, por lo que λ^{-1} es valor propio de T^{-1} , y por la afirmación 3, λ^n es valor propio de T^n para todo $n \in \mathbb{N}$.

Entonces, tomando $T = T^{-1}$ y usando la afirmación 3:

$$T^{-1} = \lambda^{-1}v$$

$$(T^{-1})^n = (\lambda^{-1})^nv$$

$$T^{-n} = \lambda^{-n}v$$