Segment 3: Causal Inference with Regression (in randomized studies)

Section 04: Regression for Causal Inference

Regression for Causal Inference: What's Different?

- Most often motivated as a prediction problem
 - Model how values of Y differ across values of X
 - Tailored to comparisons between units

But causal inference is all about comparing what would happen if different treatments were applied to the same units

 $\hbox{What is the average difference between units with $Z=0$ and $Z=1$?}$

What would be the difference if units with Z=0 had actually had $Z=1/\ref{2}$

Causal Inference Doesn't Need Unfamiliar Statistics!

Especially with ranomization....

- Can rely on familiar inferential tools, like regression
- Main difference will be formalizing the underlying structure/assumptions to assess causal validity
 - What are the units?
 - What is the treatment?
 - ▶ What are the potential outcomes?
 - What is the assignment mechanism?
 - What is the role of covariates (blocking)?
- Much of the above is fairly trivial for randomized studies
- Eventually, we will consider non-randomized (observational)
 studies where the above are more critical

Regression Models in Randomized Experiments

- Common for the analysis of both experimental and observational data
- Four key features
 - 1. Models for the *observed* outcomes
 - 2. Model for the conditional mean only (not the full distribution)
 - Average Treatment Effect will be a parameter of statistical model
 - 4. Whether the model accurately describes the conditional mean is immaterial for the large-sample unbiasedness of estimators for the average causal effect
 - ► I.e., Randomization guarantees unbiased estimation of the ATE even if the regression model is the "wrong" specification of the conditional mean of Y

Units, Covariates, Treatments, Outcomes
$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

$$Y_0 = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

General guidance: Think of a single "treatment" as distinct from X

Observed Y vs. Y^z

$$Y_{i} = \alpha + \tau Z_{i} + X_{i}\beta + \epsilon_{i}$$

$$E(Y|Z=1) = \omega + C + K\beta = E(Y'|Z=1)$$

$$E(Y|Z=0) = \omega + K\beta = E(Y'|Z=0)$$

$$E(Y|Z=0) = \omega + K\beta = E(Y'|Z=0)$$

Causal Inference as Prediction

- Special case of prediction
 - Predict what would have happened to the same unit(s) under different treatments
 - Vs. Predict what would happen for a unit with a particular set of features, treatments
- ▶ That is, try to predict the *other* potential outcome
 - A regression model may help to generate a "close substitute"

Table: Observed Data from the Hypothetical Dietary Experiment

Unit, i	Treatment Z_i	Potential Outcome, Y_i^c	Potential Outcome, Y_i^t	Observed Outcome, Y_i	
Audrey	0	140	?	140	.
Anna	0	140	? 🚣	140	los.
Bob	0	150	?	150	L'EL
Bill	0	150	?	150	
Caitlin	1	?	155	155	
Cara	1	?	155	155	
Dave	1	?	160	160	
Doug	1	?	160	160	
				A STATE OF THE PARTY OF THE PAR	1

Regression with No Covariates

and randomized treatment assignment

$$Y_i^{obs} = \alpha + \tau Z_i + \epsilon_i$$

$$\hat{\tau}^{\text{ols}} = \bar{Y}_t^{\text{obs}} - \bar{Y}_c^{\text{obs}} = \hat{\tau}_{SATE} = \hat{\tau}_{PATE}$$

16. deniz

- ▶ stan_glm(y~ z)
- ▶ Posterior distribution of τ dictates estimation of τ
 - ▶ Posterior median, sd, 95% interval, etc.

Different Ways to Balance Covariates

Randomization is motivated in large part for its production of covariate balance across treatment groups

- Some methods can improve balance by design
 - Stratified randomized experiments / blacking
 - ▶ Paired randomized experiments

(but balance is not *guaranteed* for any individual randomization)

- Could also attempt to correct covariate imbalance by analysis
 - Separate analysis within subgroups
 - Regression adjustment

Regression with Covariates

(still with complete randomization)

$$Y_i^{obs} = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

- α, β regarded as "nuisance" parameters that do not get a causal interpretation
- We do not assume that the regression function is correctly specified
 - lacksquare I.e., that the Y_i^{obs} is actually linear in X_i and Z_i
- ullet $\hat{ au}^{
 m ols}$ is unbiased for au_{SATE} and au_{PATE}
- ightharpoonup stan_glm(y \sim z + x1 + x2 + ...+ xp)
- lacktriangle Posterior distribution of au dictates estimation of au
 - ▶ Posterior median, sd, 95% interval, etc.

Benefits of Adjusting for Pre-Treatment Covariates

Under randomization

$$Y_i^{obs} = \alpha + \tau Z_i + X_i \beta + \epsilon_i$$

- lacktriangleright Including ${f X}$ does not change interpretation of au
 - ▶ Not generally true under *nonrandomized* treatment
- Can adjust for random imbalances between groups
 - "Unlucky assignments"
- Can adjust for systematic imbalances between groups
 - Like blocking factors
- ▶ Ultimately bring the estimate $\hat{\tau}$ closer to the truth in any given sample/randomization
 - ▶ Less variability around truth ⇒ smaller standard error of a given estimate

Benefits of Adjustment: Example

Effect of showing children an educational TV show

n=192 elementary school classes

Z: New vs. standard educational TV program

Y: Reading ability measured at end of school year

X: Pre-test reading ability

- lacktriangle Notice that pre-test reading is positively correlated with Y
- \blacktriangleright Notice that the average pre-test reading ability is Δ_x higher in the treatment group
 - ▶ "Unlucky" randomization
- ► (X positively correlated with Y) + ($\Delta_x \rightleftharpoons 0$) \Rightarrow unadjusted comparison will overestimate τ

Benefits of Adjusting for Pre-Treatment Covariates

Under randomization

- ▶ Same idea as the educational TV example applies to any pre-treatment covariate that may predict Y
- ightharpoonup Always the chance to improve precision and bring $\hat{\tau}$ "closer to the truth" by adjusting for *predictors* of Y
- In practice we can't measure (or adjust) for everything
 - May need to prioritize which variable to include for adjustment
 - ► E.g., based on theory
 - E.g., based on some measure of imbalance and correlation with Y
- ▶ Reasoning does not apply to any posttreatment variable!

Special Case: Gain Scores

Setting: One covariate is a "pre-treatment" or "pre-test" or "baseline" version of ${\cal Y}$

Can create a "gain score", $g_i = Y_i - X_i$ $g_i = \omega + \tau Z_i + Z_i \qquad \Rightarrow \hat{\mathcal{E}} : g^{\mathcal{E}} - g$ $Y_i - x_i : \lambda + \tau Z_i + Z_i \qquad \Rightarrow Y_i = \omega + \tau Z_i + \chi_i + Z_i \qquad \Rightarrow Y_i = \omega + \tau Z_i + \chi_i + Z_i \qquad \Rightarrow Y_i = \omega + \tau Z_i + \chi_i + Z_i \qquad \Rightarrow Y_i = \omega + \tau Z_i + \chi_i + Z_i \qquad \Rightarrow Z_i = \omega + \tau Z_i + Z_i + Z_i \qquad \Rightarrow Z_i = \omega + \tau Z_i + Z_i + Z_i \qquad \Rightarrow Z_i = \omega + \tau Z_i + Z_i + Z_i \qquad \Rightarrow Z_i = \omega + \tau Z_i + Z_i + Z_i \qquad \Rightarrow Z_i = \omega + \tau Z_i + Z_i + Z_i \qquad \Rightarrow Z_i = \omega + \tau Z_i + Z_i + Z_i \qquad \Rightarrow Z_i = \omega + \tau Z_i + Z_i + Z_i \qquad \Rightarrow Z_i = \omega + \tau Z_i + Z_i + Z_i \qquad \Rightarrow Z_i = \omega + \tau Z_i + Z_i + Z_i + Z_i \qquad \Rightarrow Z_i = \omega + \tau Z_i + Z_i$

Varying Treatment Effects and Interactions

General Consideration: The treatment effect may vary across units with different ${\bf X}$

$$\tau_{CATE|X} = E[Y'-Y^{\circ} | X=x]$$

Tau hat should be multiplied by a factor of 1/n

Unbiasedness Under Randomization Even when the model is "wrong"

$$Y_{i} = \lambda + \tau Z_{i} + \chi_{i} \beta + Z_{i} \chi_{i} \lambda + \xi_{i}$$
 $E(Y|Z=1) = \chi + \tau + (\beta + \delta)\chi = E(Y'|Z=0)$
 $\chi_{\beta_{i}}$
 $E(Y|Z=0) = \chi_{\beta_{i}} = E(Y'|Z=0)$
 $\chi_{\beta_{i}}$
 $E(Y''''''[Z=1]) = E(Y'|Z=1) = E(Y'|Z=0)$
 $= \chi_{\beta_{i}}$
 $= \chi_{\beta_{i}}$
 $= \chi_{\beta_{i}}$

$$\hat{t} = \frac{1}{n} \sum_{i=1}^{n} Z_{i}(Y_{i}^{obs} - X_{i}\hat{\beta}_{e}) + (1-2i)(X_{i}\hat{\beta}_{e} - Y_{i}^{obs})$$

$$Y^{e} \qquad Y^{e} \qquad Y^{e}$$

$$\begin{aligned}
\hat{\tau}_{k} &= \int_{e}^{\infty} \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= V_{e}^{ols} - X_{e} \hat{\beta}_{c} + X_{c} \hat{\beta}_{c} - Y_{c}^{ols} \\
&= Y_{e}^{ols} - Y_{c}^{obs} + \hat{\beta}_{c} \left(X_{c} - X_{e} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_{i+1}} \left(Y_{i}^{obs} - X_{i} \hat{\beta}_{c} \right) \\
&= \sum_{i: Z_$$

Summary: Regression for Completely Randomized Experiments

- ► Easy to incorporate covariates
- Unbiased point estimates without covariates
- ► Consistent point estimates for the ATE with covariates, even when model is not true
 - ▶ Point estimates biased in finite samples
 - ► Works in large samples
- ► Model for *observed outcomes*
- ► Causal estimand (ATE) is a parameter (or parameters) in the statistical model