2.7 Properties of Infinite Series

The convergence of a series $\sum_{k=1}^{\infty} a_k$ is defined by the terms of sequence (s_n)

$$\sum_{k=1}^{\infty} a_k = A \text{ means that } \lim s_n = A$$

THEOREM 2.7.1 (Algebraic Limit Theorem for Series). If $\sum_{k=1}^{\infty} a_k = A$ and $\sum_{k=1}^{\infty} b_k = B$, then

- 1. $\sum_{k=1}^{\infty} ca_k = cA \text{ for all } c \in \mathbf{R} \text{ and }$
- 2. $\sum_{k=1}^{\infty} (a_k + b_k) = A + B$

Proof. 1. The sequence of partial sums for ca_n must converge to cA if and only if $\sum_{k=1}^{\infty} ca_k$, so

$$t_m = ca_1 + ca_2 + ca_3 + \dots + ca_m$$

converges to cA. But we are given that $\sum_{k=1}^{\infty} a_k$ converges to A, so

$$s_m = a_1 + a_2 + a_3 + \dots + a_m$$

converges to A. Since $t_m = cs_m$, $(t_m) \to cA$.

2. TODO: Exercise 2.7.8

THEOREM 2.7.2 (Cauchy Criterion for Series). The series $\sum_{k=1}^{\infty} a_k$ converges if and only if, given $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that whenever $n > m \geq N$ it follows that

$$|a_{m+1} + a_{m+2} + \dots + a_n| < \epsilon$$

Proof. Observe that

$$|s_n - s_m| = |a_{m+1} + a_{m+2} + \dots + a_n|$$

and apply the Cauchy Criterion for sequences.

THEOREM 2.7.3. If the series $\sum_{k=1}^{\infty} a_k$ converges, then $(a_k) \to 0$.

Proof. Consider the special case n=m+1 in the Cauchy Criterion for Convergent Series.

The converse of this statement is not true. Ex: Harmonic Series.

THEOREM 2.7.4 (Comparison Test). Assume (a_k) and (b_k) are sequences satisfying $0 \le a_k \le b_k$ for all $k \in \mathbb{N}$

1. If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.

2. If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges.

 ${\it Proof.}$ Both statements follow immediately from the Cauchy Criterion for Series and the observation that

$$|a_{m+1} + a_{m+2} + \dots + a_n| \le |b_{m+1} + b_{m+2} + \dots + b_n|$$

Just like before $a_k \leq b_k$ just has to be eventually true.

THEOREM 2.7.5 (Absolute Convergence Test). If the series $\sum_{k=1}^{\infty} |a_k|$, then $\sum_{k=1}^{\infty} a_k$ converges as well.

Proof. Since $\sum_{k=1}^{\infty} |a_k|$ converges, we know that, given an $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$|a_{m+1}| + |a_{m+2}| + \dots + |a_n| < \epsilon$$

for all $n > m \ge N$. By the triangle inequality,

$$|a_{m+1} + a_{m+2} + \dots + a_n| \le |a_{m+1}| + |a_{m+2}| + \dots + |a_n| < \epsilon$$

so the sufficiency of the Cauchy Criterion guarantees that $\sum_{k=1}^{\infty} a_k$ also converges.

The converse is not always true. Consider an alternating harmonic series, which converges.

THEOREM 2.7.6 (Alternating Series Test). Let (a_n) be a sequence satisfying

- 1. $a_{n+1} > a_n$ for all $n \in \mathbb{N}$ and
- $2. (a_n) \rightarrow 0$

Then, the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Proof. TODO: Exercise 2.7.1

Definition 2.7.8. If the series $\sum_{k=1}^{\infty} |a_k|$, then $\sum_{k=1}^{\infty} a_k$ converges absolutely. If $\sum_{k=1}^{\infty} a_k$ converges, but $\sum_{k=1}^{\infty} |a_k|$ diverges, then $\sum_{k=1}^{\infty} a_k$ converges conditionally.

Rearrangements

Rearrangements are just different orders, or you are just permuting the terms in the sum into some other order. **Definition 2.7.9.** Let $\sum_{k=1}^{\infty} a_k$ be a series. A series $\sum_{k=1}^{\infty} b_k$ is called a *rearrangement* of $\sum_{k=1}^{\infty} a_k$ if there exists a one-to-one, onto function $f \colon \mathbf{N} \to \mathbf{N}$ such that $b_{f(k)} = a_k$ for all $k \in \mathbf{N}$.

THEOREM 2.7.10. If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then any rearrangement of this series converges to the same limit.

Proof. Assume $\sum_{k=1}^{\infty} a_k$ converges absolutely to A, and let $\sum_{k=1}^{\infty} b_k$ be a rearrangement of $\sum_{k=1}^{\infty} a_k$. Let's use

$$s_n = \sum_{k=1}^n a_k \qquad t_m = \sum_{k=1}^m b_k$$

We want to show $(t_m) \to A$.

Let $\epsilon > 0$. By hypothesis, $(s_m) \to A$ so choose N_1 such that

$$|s_n - A| < \frac{\epsilon}{2}$$

for all $n \geq N_1$. Since the convergence is absolute, we can choose N_2 such that

$$\sum_{m+1}^{n} |a_k| < \frac{\epsilon}{2}$$

for all $n > m \ge N_2$. Now, take $N = max\{N_1, N_2\}$. We know that the terms $a_1, a_2, a_3, \ldots, a_N$ must all appear in the rearrangement so choose an M so they are all apparent within the partial sum.

$$M = maxf(k) : 1 \le k \le M$$

Now for $m \geq M$, $(t_m - s_N)$ consists of a finite set of terms, the absolute values of which appear in the tail $\sum_{N+1}^{\infty} |a_k|$. Our choice of N_2 earlier then guarantees $|t_m - s_N| < \frac{\epsilon}{2}$, so

$$\begin{aligned} |t_m - A| &= |t_m - s_N + s_N - A| \\ &\leq |t_m - s_N| + |s_N - A| \\ &\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \end{aligned}$$