Samuel Wiley

678-596-1797 | samcwiley@gmail.com linkedin.com/in/samcwiley | github.com/samcwiley

EDUCATION

Georgia Institute of Technology

Atlanta, Georgia

Bachelor of Science in Physics, GPA: 3.42

May 2021

Minor in Chemistry

Zell Miller Scholar, Leddy Family Scholar

Certification in Data Science, CDC Data Science Upskilling Program

Jul. 2024

EXPERIENCE

Centers for Disease Control and Prevention (CDC)

Jul. 2023 - Present

ORISE Fellow, Influenza Division Bioinformatics

- · Contributed to codebases and pipelines to support CDC's influenza surveillance and vaccine development
- · Collaborated with internal and external partners to fulfill CDC's public health mission
- · Presented on new skills and topics in bioinformatics for colleagues

Georgia Institute of Technology, CHAOS Lab

Jul. 2016 - Mar. 2020

Research Assistant, NSF Frontiers Grant, President's Undergraduate Research Award

- · Designed and conducted electrophysiology experiments to study heart arrhythmias and heart attacks
- · Received grant for researching cardiac dynamics of regenerated zebrafish heart tissue
- · Assisted in upkeep of lab equipment and materials

Georgia Tech School of Physics

Aug. 2016 - Dec. 2019

Teaching Assistant

- · Led lab and recitation sessions for two introductory physics courses and physics freshman seminar
- · Graded assignments for Stellar Astrophysics, introductory classes, and physics freshman seminar

Paper (Tutoring Company)

Feb. 2022 - Jul. 2023

Tutor, Level 3

- · Provided structured academic support in math and sciences to over 4,200 students in grades 1 12
- · Conducted quality assurance reviews of peer tutoring sessions
- · Mentored peers to more effectively help students and progress the company's mission

PROJECTS

UDF-bioutils: Bioinformatics-Related User-Defined Functions for Cloudera Impala Ongoing

https://qithub.com/CDCqov/udf-bioutils

- · Developed and optimized custom user-defined functions in C++ for influenza SQL databases
- · Implemented database functions based on user feedback and requests, including including allele sorting, Tamura-Nei pairwise distance calculation, and amino acid substitution site sorting

IRMA-Core: Iterative Refinement Meta-Assembler

Oct. 2024 - Present

Open-sourcing in progress

- · Collaborated with a team of four and stakeholders to re-write core components of the IRMA data pipeline in Rust for increased efficiency and accuracy
- Optimized algorithm for efficient primer and barcode trimming from DNA sequence reads and handled user command-line arguments

SSWSort2 Multithreading, Grid Substitution, and Configuration Nov. 2023 - Dec. 2024 A tool for viral genome classification via Striped Smith-Waterman Algorithm in Rust

- · Implemented multithreaded and batch cluster job submission for efficient classification of large datasets
- · Designed configuration files and configuration parser to store and implement user preferences for tool used in production

Visualizing Influenza Evolutionary Trajectories in Fitness Landscapes Sep. 2023 - Jul. 2024 CDC Data Science Upskilling Program, 2024 Cohort

- · Collaborated with a team of four to create a data pipeline for analyzing trends between genomic, proteomic, and antigenic characteristics of influenza viral strains
- · Designed and created an interactive data visualization dashboard using Plotly/Dash for communicating findings with Influenza Division leadership
- · Presented on findings and results at the 2024 DSU Symposium and to Influenza Division leadership
- · Completed four week-long bootcamps on data science, machine learning, modeling, and data visualization in Python and R

Zoe Distances Module Ongoing

Zoe: An Open-source Rust Bioinformatics Crate

- · Contributed to open-source Rust crate for handling common bioinformatics functions and files for internal CDC pipelines and external users
- · Created and optimized module for calculating nucleotide substitution distances including Jukes-Cantor, Felsenstein, Tamura-Nei, and General Time-Reversible (in progress, including linear algebra submodule) models

Computational Compost: A Simulational Approach to Compost Thermodynamics 2018

The University Physics Competition, Silver Medal

- · Developed a cellular diffusion model; created a computational framework to simulate a compost pile in Python with visualizations in MatPlotLib
- · Worked in team to research, design and conduct simulation, and write a paper within 48 hr time limit

SKILLS

Languages, Scripting, and Mark-up: Rust, Python, C++, Scala, R, Perl, BASH, SQL, LaTeX Software/Frameworks: MATLAB, Linux, Git, Plotly/Dash, pandas, Fusion360 Bioinformatics: Sequence Alignment, Nucleotide Substitution Models, NGS Primer Trimming, Pro-

Computer Science: Algorithm Development, Fuzz Testing, Unit Testing, Benchmarking, Data Analytics Physics: Computational Methods, Linear/Nonlinear Oscillations, Reaction-Diffusion Mechanisms.

Equipment/Tools: Electronics/Circuits, Microelectrode, Optical Mapping, Wood shop tools **Chemistry:** Computational Methods, Density Functional Theory, Molecular Dynamics

LEADERSHIP AND ACTIVITIES

Bagpipes: Pipe Sergeant, Member at Large, and instructor for the Atlanta Pipe Band
Played at the 2024 Grade 1 World Championships with the City of Dunedin Pipe Band
GT Society of Physics Students: Secretary, Outreach Committee Member
Singing: Section Leader of GT Glee Club; Staff Singer and soloist at All Saints Episcopal Church