THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA

Department of Electrical and Computer Engineering

ELEC 318 Electromagnetic Fields

HW #1, due January 22, 2015

Reading Assignment: Chapter 3 (all)

Written Assignment:

- 1. Determine the unit vector along the direction OP, where O is the origin and P is the point (4, -5, 1).
- 2. If $\mathbf{A} = 4\hat{\mathbf{x}} 2\hat{\mathbf{y}} + 6\hat{\mathbf{z}}$ and $\mathbf{B} = 12\hat{\mathbf{x}} + 18\hat{\mathbf{y}} 8\hat{\mathbf{z}}$, determine
 - (a) $\mathbf{A} 3\mathbf{B}$
 - (b) $\left(2\mathbf{A} + 5\mathbf{B}\right) / \left|\mathbf{B}\right|$,
 - (c) $\hat{\mathbf{x}} \times \mathbf{A}$
 - (d) $(\mathbf{B} \times \hat{\mathbf{x}}) \cdot \hat{\mathbf{y}}$
- 3. For the following vectors, determine (a) the dot product of ${\bf P}$ and ${\bf Q}$, (b) the cross product of ${\bf P}$ and ${\bf Q}$, and (c) the angle between ${\bf P}$ and ${\bf Q}$.

$$\mathbf{P} = 2\hat{\mathbf{x}} - 6\hat{\mathbf{y}} + 5\hat{\mathbf{z}} \qquad \mathbf{Q} = 3\hat{\mathbf{y}} + \hat{\mathbf{z}}$$

- 4. Let $\mathbf{A} = 2x \,\hat{\mathbf{x}} + y \,\hat{\mathbf{y}} z^2 \hat{\mathbf{z}}$ and $\mathbf{B} = 3x^2 \,\hat{\mathbf{x}} + 6 \,\hat{\mathbf{y}} + \hat{\mathbf{z}}$. At point (1, 2, -4), determine
 - (a) the dot product of \boldsymbol{A} and \boldsymbol{B} ,
 - (b) the angle between \boldsymbol{A} and \boldsymbol{B} , and
 - (c) the vector component of ${\bf A}$ in the direction of ${\bf B}$.
- 5. For $\mathbf{E} = 2x \,\hat{\mathbf{x}} + \hat{\mathbf{y}} + yz \,\hat{\mathbf{z}}$ and $\mathbf{F} = xy \,\hat{\mathbf{x}} y^2 \,\hat{\mathbf{y}} + xyz \,\hat{\mathbf{z}}$, determine
 - (a) the magnitude of \mathbf{E} at (1, 2, 3),
 - (b) the vector component of \mathbf{E} in the direction of \mathbf{F} at (1, 2, 3), and
 - (c) a vector perpendicular to both \mathbf{E} and \mathbf{F} at (0, 1, -3) whose magnitude is one.