Analiza danych rzeczywistych przy pomocy modelu ARMA

Autorzy

Kacper Budnik, 262286 Maciej Karczewski, 262282

Politechnika Wrocławska

Wydział Matematyki 9 lutego 2023

Spis treści

1	Wprowadzenie	2					
2	Przygotowanie danych do analizy 2.1 Sprawdzenie stacjonarności	. 2					
3	Dekompozycja szeregu czasowego						
	3.1 Wykresy dla surowych danych	. 3					
	3.2 Różnicowanie sezonowe	. 3					
4	Dobranie modelu ARMA	5					
	4.1 Rząd modelu	. 5					
	4.2 Estymacja paremetrów modelu						
5	Ocena dopasowania modelu	5					
6	Analiza szumu	6					
	6.1 Stała średnia równa 0	. 6					
	6.2 Stała wariancja	. 8					
	6.3 Niezależność szumu						
	6.4 Założenie o normalności rozkładu	. 9					
7	Wnioski autorów	10					

1 Wprowadzenie

Analizowane dane pochodzą ze strony Kaggel. Zawierają one dane pogodowe z Indyjskiego miasta Delhi od dnia 1 listopada 1996 do 24 kwiecień 2017. Dane były pobierane w przynajmniej ośmiu ustalonych momentach dnia w odstępach trzygodzinnych. W pierwszych latach dane w większości były pobierane w odstępach godzinnych. Zawierają one informacje między innymi o wilogtności, temperaturze punktu rosy, zjawiskach atmosferycznych, czyli informacjie czy wystąpiły opady, burze, mgły i tym podobne oraz dacie pomiaru. Przykładowe dane przezentują się następująco.

datetime_utc	_dewptm	_fog	_hail	_hum	_tempm
19961101-11:00	9	0	0	27	30
19961101-12:00	10	0	0	32	28
19961101-13:00	11	0	0	44	24
19961101-14:00	10	0	0	41	24
19961101-16:00	11	0	0	47	23
19961101-17:00	12	0	0	56	21

W analizie interesują nas jedynie kolumny datetime_utc przechowująca informację o dacie pomiaru oraz _tempm zawierająca odnotowaną temperaturę. Będziemy analizować zachowanie średniej temperatury dziennej w zależności od średnich z poprzednich dni.

2 Przygotowanie danych do analizy

Analizowane dane obejmują okres od listopada 1996 roku, jednak w pierwszych latach dane były pobierane w nieregularnie. Dlatego rozpatrujemy dane z okresu od 1 stycznia 2008 do 31 grudnia 2015 roku, równo 8 lat. Pozostałe dane tj. pochodzące z okresu 1 styczeń 2016 – 24 kwiecień 2017 pozostawiliśmy jako dane testowe. W tych okresach pomiary były robione 8 razy dziennie, co 3 godziny każdy, rzadkie przypadki pomiarów w dodatkowych porach zostały pominięte. Za obserwacje odstające uznaliśmy te, które spełniają poniższą własność

$$y \notin (Q_1 - 1.5IQR, Q_3 + 1.5IQR)$$
,

gdzie y jest kandydatem na obserwacje odstającą, Q_1 i Q_3 to odpowiednio pierwszy i trzeci kwantyl, a IQR jest rozstępem międzykwantylowym. W wyniku tej obserwacji odrzuciliśmy jedynie 4 obserwacje rzędu 90°C. Pozostałe wyniki należą do przedziału od 1°C do 47°C. Naszym celem jest analiza średniej dziennej temperatury, zatem w kolejnym kroku obliczyliśmy tą średnią. Jej wartości mieszą się w przedziale od 6°C do 40°C. Uzyskane średnie temperatury rzeczywiście były osiągane w Indiach w odpowiednich czasach.

2.1 Sprawdzenie stacjonarności

W celu sprawdzenia, czy nasze dane w postaci surowej są stacjonarne, posłużymy się testem ADF (Augmented Dickey-Fuller Test). W tym celu skorzystaliśmy z funkcji ADFTest z pakietu HypothesisTests dla języka Julia. Ponieważ nasze dane są pobierane codziennie, rozpatrywaliśmy lag do wartości 365. W ten sposób p-value=0.2619, zatem nie mamy podstaw do odrzucenia hipotezy zerowej głoszącej, że szereg nie jest stacjonarny.

3 Dekompozycja szeregu czasowego

3.1 Wykresy dla surowych danych

Dekompozycję zaczniemy od analizy wykresów funkcji autokowariancji oraz częściowej autokowariancji. Prezentują się one następująco

Rysunek 1: Funkcjie empircznej autokowariancji i częściowej autokowariancji.

Na powyższym wykresie widać okresowe zachowanie funkcji autokowariancji z okresem około 365. Liczba ta pokrywa się z liczbą dni w roku, co wydaje się intuicyjne. Z powodu na globalne ocieplenie możemy podejrzewać, że będzie istniał dodatni trend. Rzeczywiście, korzystając z funkcji polyfit, otrzymaliśmy trend

$$m(h) = 24.8564 + 9 \cdot 10^{-5} h,$$

gdzie m oznacza zmianę średniej temperatury w ciągu dnia. Zatem w ciągu 10 lat średnia temperatura w Delhi, według naszych obliczeń, wzrosła w przybliżeniu o $m(10\cdot 365)-m(0)\approx 0.3287^{\circ}$ C. Według danych w tym samym okresie średnia temperatura na ziemi wzrosła, w zależności od regionu i źródeł, o więcej niż 0.2° C, zatem nasze wyniki częściowo pokrywają się z obserwowanymi zdarzeniami.

3.2 Różnicowanie sezonowe

Tak jak już wspomnieliśmy, przy analizie wykresu 1, nasze dane wykazują okresowość z okresem ok. 365 dni. By pozbyć się tych sezonowości zastosowaliśm różnicowanie sezonowe, czyli analizowaliśmy dalej dane w postaci

$$W_t = Y_t - Y_{t-a}.$$

W naszym przypadku a powinno być blisko 365. Dokładną wartość a=366 dobraliśmy w taki sposób, by funkcjia autokowariancji była jak najmniejsza dla początkowych 10 wartości. Dla szeregu $W_t=Y_t-Y_{t-366}$ wygenerowaliśmy ponownie wykresy autokowariancji i częściowej autokowariacji.

Rysunek 2: Funkcjie empircznej autokowariancji i częściowej autokowariancji.

Na wykresach widać, że funkcja częściowej i zwykłej autokowariancji szybko zbiega do wartości bliskich zeru i pozostaje w jego otoczeniu. Zatem możemy założyć, że nasz szereg jest już stacjonarny. By sprawdzić to założenie ponownie wykonaliśmy ADF-Test. W tym przypadku p-value= 0.002, zatem możemy odrzucić hipotezę głoszącą, że szereg nie jest stacjonarny. Histogram naszych danych po transformacji wygląda następująco.

Rysunek 3: Dane przed i po transformacji. Dolna oś wskazuje na dane oryginalne, na górze widnieje oś dla danych po transformacji.

4 Dobranie modelu ARMA

4.1 Rząd modelu

W celu znalezienia rzędu medelu skorzystaliśmy z kryterium informacyjnego Akkaike. Jest to metoda największej wiargodności z karą dla danego p i q w postaci

$$AIC = -2l(x; \phi; \theta, \sigma^2) + 2(p+q+1),$$

gdzie l jest funkcjią wiarygodności. Zatem dla różnych wartości p oraz q otzrymamy różne wyniki. Wybieramy wtedy ten z najmniejszą wartością. W symulacji sprawdziliśmy krytorium AIC dla wartości p, q od 0 do 10. Poniżej przedstawiliśmy jedynie część tabeli zawierającą wartość najmniejszą.

	q = 0	q = 1	q=2	q=3	q=4
p = 0	13053.2	11716.4	11333.5	11180.9	11124.3
p = 1	11039.6	11040.7	11035.9	11034.7	11032.6
p=2	11040.8	11040.5	11027.3	11028.3	11030.2
p=3	11036.6	11027.6	11030.0	11029.9	11031.7
p=4	11036.7	11028.3	11030.4	11032.8	11030.8

Więc naszym modelem będzie model ARMA(2, 2).

4.2 Estymacja paremetrów modelu

Przy znanych parametrach p i q możemy zacząć estymować współczynniki modelu. Do estymacji korzystaliśmy z metody największej wiarygodności. Skorzystaliśmy z numerycznego przybliżenia przy pomocy funkcji ARIMA.fit () z pakietu statsmodels.tsa.arima.model w języku Python. W wyniku dostaliśmy model

$$Y_t - 1.6118 Y_{t-1} + 0.6232 Y_{t-2} = Z_t - 0.8640 Z_{t-1} - 0.0688 Z_{t-2}$$

gdzie Z_t jest białym szumem o wariancji $\sigma^2 = 4.3478$.

5 Ocena dopasowania modelu

W celu oceny dopasowania modelu do danych zobaczymy jak wyglądają przedziały ufności,wyznaczone za pomocą Monte Carlo, na poziomie $\alpha=5\%$ dla ACF i PACF

Rysunek 4: Przedziały ufności dla ACF i PACF dla naszego modelu

Jak możemy zobaczyć na wykresie 4 istnieje tylko krótko okresowa zależność pomiędzy danymi w modelu. Ta zależność pokrywa się z naszymi oczekiwaniami, ponieważ używamy modelu ARMA(2,2) o parametrach 4.2 gwarantujących racjonalność.

Następnie porównamy trajektorię z liniami kwantylowymi dla naszego modelu.

Rysunek 5: Porównanie orginalnych danych z liniami kwantylowymi modelu

Analizując linie kwantylowe naszego modelu,wyznaczone również za pomocą symulacji Monte Carlo, pokazane na wykresie 5 możemy zauważyć, że model w miarę dobrze się sprawdza dla naszych danych. 80% danych leży pomiędzy linią kwantylową rzędu 0.9 i 0.1. Natomiast 89% danych leży pomiędzy linią kwantylową rzędu 0.95 i 0.05

Patrząc na wykres zależności w modelu 4 oraz na wykres z liniami kwantylowymi 5 dochodzimy do wniosku, że model dobrze się sprawdza dla naszych danych.

6 Analiza szumu

Podczas tworzenia modelu ARMA i późniejszej analizy zakładaliśmy następujące warunki odnośnie szumu

- 1. $\mathbb{E}\xi_i = 0 \ \forall i$,
- 2. $Var\xi_i = \sigma^2 < \infty \quad \forall i$,
- 3. $\xi_i \perp \!\!\!\perp \xi_i \text{ dla } i \neq j$,
- 4. ξ_i mają rozkład normalny,

6.1 Stała średnia równa 0

Sprawdzimy, czy residua naszego modelu mają stałą średnią równą 0. W tym celu zobaczymy jak wyglądają nasze wartości resztowe.

Rysunek 6: Residua naszego modelu

Jak możemy zobaczyć na wykresie 6 średnia jest stała w czasie i wynosi w przybliżeniu 0 a dokładnie $7.9 \cdot 10^{-4}$. W celu upewnienia się wykonamy też t test dla jednej zmiennej.

```
One sample t-test
Population details:
    parameter of interest:
                              Mean
    value under h 0:
                              0
    point estimate:
                              0.000791916
    95% confidence interval: (-0.08009, 0.08167)
Test summary:
    outcome with 95% confidence: fail to reject h 0
    two-sided p-value:
                                  0.9847
Details:
    number of observations:
                               2557
    t-statistic:
                               0.019200134473658807
    degrees of freedom:
                               2556
    empirical standard error: 0.04124531616232871
```

Rysunek 7: Test t dla naszych wartości resztowych

Jak możemy zobaczyć test t 7 nie miał podstaw do odrzucenia hipotezy zerowej, która mówiła ,że średnia wynosi 0. Test zwrócił p-value równe 0.9847 co jest bardzo dużą wartością. Tak więc z pewnością możemy przyjąć, że średnia jest stała i równa 0

6.2 Stała wariancja

Z wykresu 6 możemy odczytać, także że wariancja jest stała. Dodatkowo możemy obliczyć ,że należy ona do przedziału [4.141; 4.554] na poziomie ufności $\alpha=5\%$

6.3 Niezależność szumu

Sprawdzimy teraz założenie dotyczące niezależności szumu w czasie. Sprawdzimy na początek wykres autokowariancji i częściowej autokowariancji.

Rysunek 8: ACF i PACF dla wartości resztkowych modelu

Na wykresie 8 możemy zobaczyć, że mamy szum jest zależny tylko od siebie w tym samym momencie, ponieważ tylko dla h=0 ACF oraz PACF przyjmują wartość niebędącą w otoczeniu zera.

Dodatkowo wykonamy test Ljunga-Boxa by upewnić się, że szum jest niezależny od siebie.

```
Ljung-Box autocorrelation test
Population details:
    parameter of interest:
                              autocorrelations up to lag k
    value under h 0:
                              "all zero"
    point estimate:
                              NaN
Test summary:
    outcome with 95% confidence: fail to reject h 0
    one-sided p-value:
                                  0.9788
Details:
    number of observations:
                                     2557
    number of lags:
    degrees of freedom correction:
                                     0
    Q statistic:
                                     0.000705594
```

Rysunek 9: Test Ljunga Boxa dla naszych wartości resztowych

Test nam potwierdza, że nie mamy podstaw do odrzucenia hipotezy mówiącej, że szum jest niezależny od siebie. Otrzymaliśmy p-value równe 0.9847 co jest bardzo dużą wartością.

Łącząc wykres 4 oraz test Ljunga Boxa stwierdzamy, że szum jest niezależny.

6.4 Założenie o normalności rozkładu

Sprawdzimy teraz założenie mówiące o tym, że szum ma rozkład normalny. Na początku sprawdzimy histogram wraz z gęstością empiryczną i teoretyczną rozkładu normalnego.

Rysunek 10: Histogram, gestość rozkładu szumu wraz z rozkładem normalnym

Patrząc na histogram wraz z gęstościami 10 możemy załuważyć, że rozkład wartości resztowych może być normalny ale nie musi. W celu dalszego sprawdzenia normalności zobaczymy jak będzie wyglądał wykres kwantylowy.

Rysunek 11: Qqplot dla wartości resztowych

Analizując wykres kwantylowy 11 widzimy, że potencjalnie ogony rozkładu nie zgadzają się z rozkła-

dem normalnym. W celu ostatecznej weryfikacji normalności wykonamy test Andersona Darlinga.

```
One sample Anderson-Darling test
Population details:
    parameter of interest:
                              not implemented yet
    value under h 0:
                              NaN
    point estimate:
                              NaN
Test summary:
    outcome with 95% confidence: reject h 0
    one-sided p-value:
                                   0.0334
Details:
    number of observations:
                                2557
    sample mean:
                                0.0007919156167252843
    sample SD:
                                2.0856431385378396
    A<sup>2</sup> statistic:
                                2.830020981780576
```

Rysunek 12: Test Andersona Darlinga dla naszych wartości resztowych

Test Andersona Darlinga 12 odrzuca hipotezę o normalności rozkładu. Dla naszych danych p-value wynosi 3.3%.

Podsumowując rozkład szumu nie ma rozkładu normalnego.

7 Wnioski autorów

Pogodę w Indiach po odpowiednich przekształceniach można modelować modelem ARMA. W naszym przypadku udało się za modelować modelem o wartościach p,q=2 4.2. Parametry modelu mówią nam, że jest on stacjonarny i przyczynowy co pokrywa się z dalszymi testami. Model spełnia założenia, lecz biały szum nie ma rozkładu normalnego. Dużym atutem modelu jest fakt, że wykorzystuje on tylko dwie średnie temperatury z dwóch ostatnich dni. Warto pamiętać, że nadal jest to proces losowy więc nigdy temperatura nie będzie dokładnie się zgadzać z modelem.