1. Arytmetyka modularna

Niech $n \in \mathbb{N}$. Liczba $a \in \mathbb{Z}$ przystaje modulo n do liczby $b \in \mathbb{Z}$ $(a \equiv_n b)$ wtedy i tylko wtedy, gdy n | (a - b).

Uwaga 1. Niech $a, b, c, d \in \mathbb{Z}$. Wtedy

- $a \equiv_n b \land c \equiv_n d \Rightarrow a \pm c \equiv_n b \pm d$
- $a \equiv_n b \land c \equiv_n d \Rightarrow a \cdot c \equiv_n b \cdot d$
- $a \equiv_n b \Rightarrow \forall k \in \mathbb{N}$ $a^k \equiv_n b^k$

Relację równoważności $\equiv_n \subseteq \mathbb{Z} \times \mathbb{Z}$ nazywamy kongruencją.

Twierdzenie 2 (Wilsona). Liczba naturalna p > 1 jest pierwsza wtedy i tylko wtedy, gdy

$$(p-1)! + 1 \equiv_p 0.$$

Twierdzenie 3 (Twierdzenie Eulera). Niech $a, n \in \mathbb{N}$ oraz NWD(a, n) = 1. Wtedy

$$a^{\varphi(n)} \equiv_n 1.$$

Wniosek 4 (Małe Twierdzenie Fermata). Jeżeli p jest liczbą pierwszą oraz $a \in \mathbb{Z}$ jest liczbą niepodzielną przez p, to

$$a^{p-1} \equiv_p 1$$
.

Twierdzenie 5. Niech $n \in \mathbb{N}$ i $a, b \in \mathbb{Z}$. Równanie

$$ax + ny = b \Leftrightarrow ax \equiv_n b$$
 (1)

ma rozwiązanie $x, y \in \mathbb{Z}$ wtedy i tylko wtedy, gdy NWD(a, n)|b.

Jeśli istnieje rozwiązanie równania (1), to istnieje NWD(a, n) rozwiązań $x \in \{0, 1, \dots, n-1\}$.

Twierdzenie 6 (Chińskie Twierdzenie o resztach). Niech $m=m_1\cdot m_2\cdot\ldots\cdot m_r$, gdzie $NWD(m_i,m_j)=1$, gdy $i\neq j$, $a_1,\ldots,a_r\in\mathbb{Z}$. Wtedy układ kongruencji

$$x \equiv_{m_1} a_1$$

$$x \equiv_{m_2} a_2$$

$$\vdots$$

$$x \equiv_{m_r} a_r$$

ma zawsze rozwiązanie całkowite.

 $Ponadto,\ jeśli\ b\ jest\ rozwiązaniem\ układu\ kongruencji,\ to\ każde\ inne\ rozwiązanie\ z\ spełnia\ warunek\ z\equiv_m b.$

Algorytm szybkiego potęgowania modularnego.

Niech $m \in \mathbb{N}$. Dla obliczenia $r \equiv_n a^m$ przedstawiamy liczbę m w postaci dwójkowej:

$$m = \sum_{i=0}^{k} e_i 2^i$$
, gdzie $e_i \in \{0, 1\}$.

Wtedy

$$a^m = a^{\sum_{i=0}^k e_i 2^i} = \prod_{i=0}^k (a^{2^i})^{e_i} = \prod_{0 \le i \le k, e_i = 1} a^{2^i}.$$

Aby otrzymać $r \equiv_n a^m$:

- obliczamy kolejne kwadraty $r_i \equiv_n a^{2^i}$, dla $0 \le i \le k$;
- obliczamy $r \equiv_n a^m$, mnożąc r_i , dla których $e_i = 1$.

Zadania

- 1. Niech $a = a_n 10^n + a_{n-1} 10^{n-1} + \ldots + a_1 10 + a_0$, gdzie $a_i \in \{0, \ldots, 9\}$, dla $i = 0, 1, \ldots, n$. Pokazać, że
 - (a) 3|a wtedy i tylko wtedy, gdy $a_n + a_{n-1} + \ldots + a_1 + a_0 \equiv_3 0$,
 - (b) 11|a wtedy i tylko wtedy, gdy $(a_1 + a_3 + \ldots) (a_0 + a_2 + \ldots) \equiv_{11} 0$.
- 2. Korzystając z własności kongruencji, pokazać, że dla każdej liczby naturalnej n:
 - (a) $31|2^{5n}-1$,
 - (b) $13|4^{2n+1} + 3^{n+2}$.

- 3. Obliczyć resztę z dzielenia:
 - (a) liczby 59^{45} przez 13,
 - (b) liczby 731^{512} przez 56.
- 4. Wykazać, że
 - (a) $61! + 1 \equiv_{71} 0$,
 - (b) $(36!)^2 \equiv_{73} -1$.
- 5. Niech $1 < m \in \mathbb{N}, \ a \in \mathbb{Z}, \ \mathrm{NWD}(a,m) = 1$ oraz $n \equiv_{\varphi(m)} k$. Pokazać, że

$$a^n \equiv_m a^k$$
.

- 6. Obliczyć:
 - (a) ostatnią cyfrę liczby $2^{1000000}$ w systemie o podstawie 7,
 - (b) $2^{1000000}$ modulo 77.
- 7. Znaleźć rozwiązania równania:
 - (a) $20x \equiv_{28} 16$,
 - (b) $15x \equiv_{24} 9$.
- 8. Rozwiązać układ kongruencji:

$$x \equiv_{41} 36$$
$$x \equiv_{17} 5$$

- 9. Znaleźć najmniejszą liczbę całkowitą dodatnią, która daje resztę 4 przy dzieleniu przez 5, resztę 3 przy dzieleniu przez 7 i resztę 1 przy dzieleniu przez 9.
- 10. Korzystając z Chińskiego Twierdzenia o resztach obliczyć 2^{5423} modulo 5005.
- 11. Korzystając z algorytmu szybkiego potęgowania obliczyć:
 - (a) 6^{73} modulo 100,
 - (b) 3¹⁰⁰ modulo 17.
- 12. Jak obliczyć a^{1000} za pomoca 14 mnożeń przy założeniu, że w pamięci mamy tylko a i ostatni wynik pośredni? Jak zmniejszyć liczbę tych mnożeń, gdy pamiętamy wszystkie wyniki pośrednie?