DBScan

1. Generate sample data

 First, I use make_blobs of scikit-learn to generate X, which is an array of n_samples points 2D, all of which have x-axis and y-axis are random numbers between -2 and 2

 To make it easier to observe, I plot all of those points on a 2D coordinate plane and get the result like this:

2. Find out about DBScan algorithm for clustering

- We have to notice two parameters:
 - + **eps**: Two points are considered neighbors if the distance between the two points is below the threshold epsilon.
 - + **min_samples**: The minimum number of neighbors a given point should have in order to be classified as a core point.
- The DBSCan algorithm works by computing the distance between every point and all other points. We then place the points into one of three categories.
 - + Core point: A point with at least min_samples points whose distance with respect to the point is below the threshold defined by epsilon.
 - + Border point: A point that isn't in close proximity to at least min_samples points but is close enough to one or more core point. Border points are included in the cluster of the closest core point.
 - + Noise point: Points that aren't close enough to core points to be considered border points. Noise points are ignored. That is to say, they aren't part of any cluster.

3. Find the optimal value for eps

 I calculate the distance from each point to its closest neighbour using the NearestNeighbors. The point itself is included in n_neighbors. The kneighbors method returns two arrays, one which contains the distance to the closest n_neighbors points and the other which contains the index for each of those points.

```
[ ] neigh = NearestNeighbors(n_neighbors=2)
     nbrs = neigh.fit(X)
     distances, indices = nbrs.kneighbors(X)
     distances
    array([[0.
                        , 0.05142838],
C→
                       , 0.02659756],
            [0.
            [0.
                         0.05183912],
            . . . ,
            [0.
                         0.07794371],
                        , 0.0495315 ],
            [0.
            [0.
                         0.05001771]])
```

- Next, I sort and plot results.

```
[ ] distances = np.sort(distances, axis=0)
    distances = distances[:,1]
    plt.plot(distances)
```


- The optimal value for eps will be found at the point of maximum curvature (which is approximately 0.13)
- 4. Train my model, selecting 0.13 for eps and setting min_samples to 6.
 - This is result of estimating number of clusters, noise points, ...

```
db = DBSCAN(eps=0.13, min_samples=6).fit(X)
    core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
    core_samples_mask[db.core_sample_indices_] = True
    labels = db.labels_
    # Number of clusters in labels, ignoring noise if present.
    n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
    n_noise_ = list(labels).count(-1)
    print('Estimated number of clusters: %d' % n_clusters_)
    print('Estimated number of noise points: %d' % n_noise_)
    print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
    print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
    print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
    print("Adjusted Rand Index: %0.3f"
          % metrics.adjusted_rand_score(labels_true, labels))
    print("Adjusted Mutual Information: %0.3f"
         % metrics.adjusted_mutual_info_score(labels_true, labels))
    print("Silhouette Coefficient: %0.3f"
          % metrics.silhouette_score(X, labels))
Estimated number of clusters: 6
    Estimated number of noise points: 178
    Homogeneity: 0.763
    Completeness: 0.563
    V-measure: 0.648
    Adjusted Rand Index: 0.589
    Adjusted Mutual Information: 0.645
    Silhouette Coefficient: 0.179
```

Plot the result:

Reference:

[1]: Code in my Google Colab:

https://colab.research.google.com/drive/1GAXAr0nhVldBUDrNVpvtgjMtWX0-xk0i#scrollTo=q Si3znMelXAf

[2]:

https://towardsdatascience.com/machine-learning-clustering-dbscan-determine-the-optimal-value-for-epsilon-eps-python-example-3100091cfbc