CFGs and PCFGs

(Probabilistic)
Context-Free
Grammars

A phrase structure grammar

 $S \rightarrow NPVP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

people fish tanks
people fish with rods

Phrase structure grammars = context-free grammars (CFGs)

- G = (T, N, S, R)
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \subseteq N$)
 - R is a set of rules/productions of the form $X \rightarrow \gamma$
 - $X \subseteq N$ and $\gamma \subseteq (N \cup T)^*$
- A grammar G generates a language L.

Phrase structure grammars in NLP

- G = (T, P, N, S, L, R)
 - T is a set of terminal symbols
 - P is a set of preterminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol (S ∈ N)
 - L is the lexicon, a set of items of the form $X \rightarrow x$
 - $X \subseteq P$ and $x \subseteq T$
 - R is the grammar, a set of items of the form $X \rightarrow \gamma$
 - $X \subseteq N$ and $\gamma \subseteq (N \cup P)^*$
- By usual convention, S is the start symbol, but in statistical NLP, we usually have an extra node at the top (ROOT, TOP)
- We usually write e for an empty sequence, rather than nothing

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

people fish tanks
people fish with rods

Probabilistic – or stochastic – context-free grammars (PCFGs)

- G = (T, N, S, R, P)
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \subseteq N$)
 - R is a set of rules/productions of the form $X \rightarrow \gamma$
 - P is a probability function
 - P: $R \to [0,1]$
 - $\forall X \in \mathbb{N}, \sum_{X \to \gamma \in \mathbb{R}} P(X \to \gamma) = 1$
- A grammar G generates a language model L.

$$\sum_{\gamma \in T^*} P(\gamma) = 1$$

A PCFG

1.0	$N \rightarrow people$	0.5
0.6	$N \rightarrow fish$	0.2
0.4	$N \rightarrow tanks$	0.2
0.1	$N \rightarrow rods$	0.1
0.2	$V \rightarrow people$	0.1
0.7	$V \rightarrow fish$	0.6
1.0	V → tanks	0.3
	$P \rightarrow with$	1.0
	0.60.40.10.20.7	0.6 $N \rightarrow fish$ 0.4 $N \rightarrow tanks$ 0.1 $N \rightarrow rods$ 0.2 $V \rightarrow people$ 0.7 $V \rightarrow fish$ 1.0 $V \rightarrow tanks$

[With empty NP removed so less ambiguous]

The probability of trees and strings

- P(t) The probability of a tree t is the product of the probabilities of the rules used to generate it.
- P(s) The probability of the string s is the sum of the probabilities of the trees which have that string as their yield

$$P(s) = \Sigma_j P(s, t)$$
 where t is a parse of s
= $\Sigma_j P(t)$

Tree and String Probabilities

- s = people fish tanks with rods
- $P(t_1) = 1.0 \times 0.7 \times 0.4 \times 0.5 \times 0.6 \times 0.7$ $\times 1.0 \times 0.2 \times 1.0 \times 0.7 \times 0.1$
 - = 0.0008232
- $P(t_2) = 1.0 \times 0.7 \times 0.6 \times 0.5 \times 0.6 \times 0.2 \times 0.7 \times 1.0 \times 0.2 \times 1.0 \times 0.7 \times 0.1$
 - = 0.00024696
- $P(s) = P(t_1) + P(t_2)$ = 0.0008232 + 0.00024696 = 0.00107016

Verb attach

Noun attach

CFGs and PCFGs

(Probabilistic)
Context-Free
Grammars

Grammar Transforms

Restricting the grammar form for efficient parsing

Chomsky Normal Form

- All rules are of the form X → Y Z or X → w
 - $X, Y, Z \subseteq N$ and $w \subseteq T$
- A transformation to this form doesn't change the weak generative capacity of a CFG
 - That is, it recognizes the same language
 - But maybe with different trees
- Empties and unaries are removed recursively
- n-ary rules are divided by introducing new nonterminals (n > 2)

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow NP VP$

 $S \rightarrow VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V$

 $VP \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V$

 $S \rightarrow V$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow PP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

 $PP \rightarrow P$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $S \rightarrow V NP PP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP_V$

 $@VP V \rightarrow NP PP$

 $S \rightarrow V @S V$

 $@S_V \rightarrow NPPP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP_V$

 $@VP V \rightarrow NP PP$

 $S \rightarrow V @S V$

 $@S_V \rightarrow NPPP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

Chomsky Normal Form

- You should think of this as a transformation for efficient parsing
- With some extra book-keeping in symbol names, you can even reconstruct the same trees with a detransform
- In practice full Chomsky Normal Form is a pain
 - Reconstructing n-aries is easy
 - Reconstructing unaries/empties is trickier
- Binarization is crucial for cubic time CFG parsing
- The rest isn't necessary; it just makes the algorithms cleaner and a bit quicker

An example: before binarization...

After binarization...

Treebank: empties and unaries

Grammar Transforms

Restricting the grammar form for efficient parsing

CKY Parsing

Exact polynomial time parsing of (P)CFGs

Constituency Parsing

PCFG

Rule Prob θ_i	
$S \rightarrow NP VP$	Θ_0
$NP \rightarrow NP NP$	$\Theta_{\mathtt{1}}$
•••	
$N \rightarrow fish$	θ_{42}
N → people	θ_{43}
V → fish	θ_{44}
•••	

Cocke-Kasami-Younger (CKY) Constituency Parsing

Viterbi (Max) Scores

Viterbi (Max) Scores

Extended CKY parsing

- Unaries can be incorporated into the algorithm
 - Messy, but doesn't increase algorithmic complexity
- Empties can be incorporated
 - Use fenceposts
 - Doesn't increase complexity; essentially like unaries
- Binarization is vital
 - Without binarization, you don't get parsing cubic in the length of the sentence and in the number of nonterminals in the grammar
 - Binarization may be an explicit transformation or implicit in how the parser works (Early-style dotted rules), but it's always there.

The CKY algorithm (1960/1965) ... extended to unaries

```
function CKY(words, grammar) returns [most_probable_parse,prob]
  score = new double[#(words)+1][#(words)+1][#(nonterms)]
  back = new Pair[#(words)+1][#(words)+1][#nonterms]]
  for i=0; i<#(words); i++
    for A in nonterms
      if A -> words[i] in grammar
        score[i][i+1][A] = P(A \rightarrow words[i])
   //handle unaries
    boolean added = true
    while added
      added = false
      for A, B in nonterms
        if score[i][i+1][B] > 0 && A->B in grammar
          prob = P(A->B)*score[i][i+1][B]
          if prob > score[i][i+1][A]
            score[i][i+1][A] = prob
            back[i][i+1][A] = B
            added = true
```

The CKY algorithm (1960/1965) ... extended to unaries

```
for span = 2 to \#(words)
  for begin = 0 to \#(words) - span
    end = begin + span
    for split = begin+1 to end-1
      for A,B,C in nonterms
        prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
        if prob > score[begin][end][A]
          score[begin]end][A] = prob
          back[begin][end][A] = new Triple(split,B,C)
    //handle unaries
    boolean added = true
    while added
      added = false
      for A, B in nonterms
        prob = P(A->B)*score[begin][end][B];
        if prob > score[begin][end][A]
          score[begin][end][A] = prob
          back[begin][end][A] = B
          added = true
return buildTree(score, back)
```

CKY Parsing

Exact polynomial time parsing of (P)CFGs

CKY Parsing

A worked example

The grammar: Binary, no epsilons,

$S \rightarrow NP VP$	0.9
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \rightarrow V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow VPP$	0.1
$@VP_V \rightarrow NPPP$	1.0
$NP \rightarrow NP NP$	0.1
$NP \rightarrow NP PP$	0.2
$NP \rightarrow N$	0.7
$PP \rightarrow P NP$	1.0

$$N \rightarrow people$$
 0.5
 $N \rightarrow fish$ 0.2
 $N \rightarrow tanks$ 0.2
 $N \rightarrow rods$ 0.1
 $V \rightarrow people$ 0.1
 $V \rightarrow fish$ 0.6
 $V \rightarrow tanks$ 0.3
 $P \rightarrow with$ 1.0

0_	fish 1	L people	2 fish	3 tanks 4
1	score[0][1]	score[0][2]	score[0][3]	score[0][4]
2		score[1][2]	score[1][3]	score[1][4]
3			score[2][3]	score[2][4]
4				score[3][4]

C NDVD	0.0	fish 1 people 2 fish 3 tanks 4	ļ
$S \rightarrow NP VP$	0.9	$0 \longrightarrow \text{fish } 0.2$	
$S \rightarrow VP$	0.1	$V \rightarrow fish \ 0.6$	
$VP \rightarrow V NP$	0.5	$NP \rightarrow N \ 0.14$	
$VP \rightarrow V$	0.1	$VP \rightarrow V \ 0.06$	
$VP \rightarrow V @VP_V$	0.3	$1 S \rightarrow VP 0.006$	
$VP \rightarrow VPP$	0.1	$N \rightarrow \text{people 0.5}$	Ì
$@VP_V \rightarrow NPPP$	1.0	V → people 0.1	
$NP \rightarrow NP NP$	0.1	NP → N 0.35	
$NP \rightarrow NP PP$	0.2	$VP \rightarrow V 0.01$	
$NP \rightarrow N$	0.7	$S \rightarrow VP \ 0.001$	
$PP \rightarrow P NP$	1.0	$N \rightarrow \text{fish } 0.2$	
		$V \rightarrow \text{fish } 0.6$ $NP \rightarrow N \ 0.14$	
$N \rightarrow people$	0.5	$VP \rightarrow V \ 0.06$	
$N \rightarrow fish$	0.2	3 S → VP 0.006	
$N \rightarrow tanks$		N \rightarrow tanks 0.2	i
0.2		prob=score[begin][split][B]*score[split][end][C]*P(A->BC)	
$N \rightarrow rods$	0.1	if (prob > score[begin][end][A]) score[begin]end][A] = prob NP → N 0.14	
$V \rightarrow people$	0.1	back[begin][end][A] = new Triple(split,B,C) VP → V 0.03	
$V \rightarrow fish$	0.6	$S \rightarrow VP \ 0.003$	
$V \rightarrow tanks$	0.3		

 $D \rightarrow with$

1 0

CKY Parsing

A worked example

Constituency Parser Evaluation

Evaluating constituency parsing

Gold standard brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets: S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6-10), NP-(7,10)

Evaluating constituency parsing

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Labeled Precision 3/7 = 42.9%

Labeled Recall 3/8 = 37.5%

LP/LR F1 40.0%

Tagging Accuracy 11/11 = 100.0%

How good are PCFGs?

- Penn WSJ parsing accuracy: about 73% LP/LR F1
- Robust
 - Usually admit everything, but with low probability
- Partial solution for grammar ambiguity
 - A PCFG gives some idea of the plausibility of a parse
 - But not so good because the independence assumptions are too strong
- Give a probabilistic language model
 - But in the simple case it performs worse than a trigram model
- The problem seems to be that PCFGs lack the lexicalization of a trigram model

Constituency Parser Evaluation