Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

4. If $f(x) = -1 + |x - 2|, 0 \le x \le 4$ $g(x) = 2 - |x|, -1 \le x \le 3$

Then find $f \circ g(x)$ & gof (x). Draw rough sketch of the graphs of fog(x) & gof(x).

If f(x) is defined on (0,1), then the domain of definition of f(e^x) + f(ln|x|) is

(A)(-e,-1)

(B) (-e, -1) ∪ (1, e)

(C) $(-\infty, -1)$ \cup $(1, \infty)$

(D) (-e, e)

 $r2 + v \quad v > 0$

8. Let $f(x) = \ln x$ and $g(x) = x^2 - 1$

Column-I contains composite functions and column-II contains their domain. Match the entries of column-I with their corresponding answer is column-II.

Column-I

Column-II

(A) fog

(P) (1, ∞)

(B) gof

 $(Q)(-\infty,\infty)$

(C) fof

 $(R) (-\infty, -1) \cup (1, \infty)$

(D) gog

(S) (0, ∞)

INTEGER TYPE

f 1 1

27. Let f, g: N → N such that f(n + 1) = f(n) + f(1) ∀ n ∈ N and g be any arbitrary function. Which of the following statements is NOT true?
[JEE - Main 2021]

(A) If fog is one one, then g is one one

(B) If f is onto, then $f(n) = n \forall n \in N$

(C) f is one-one

(D) If g is onto, then fog is one-one

- 1

5. Let $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to R$ be given by $f(x) = (\log(\sec x + \tan x))^3$. Then,

[JEE Ad. 2014]

(A) f(x) is an odd function

(B) f(x) is a one-one function

(C) f(x) is an onto function

(D) f(x) is an even function

Atomic Structure:

(D) Deuterium and Tritium

[JEE Main (April) 2021]

Isotope(s) of hydrogen which emits low energy β -particles with t_0 value > 12 years is/are:

(B) Tritium

51.

(A) Protium

(C) Deuterium

Ans.	В			
30.	The ratio of wave length of photon corresponding to the α -line of Lyman series in H-a			
	β-line of Balmer seri	es in He ⁺ is		
	(A) 1:1	(B) 1:2	(C) 1:4	(D) 3:16
27.	Based on the equation			[JEE-Main(online) 2014]
	$\Delta E = -2.0 \times 10^{-18} \text{ J} \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right)$			
	the wavelength of the light that must be absorbed to excite hydrogen electron from level n = to level n = 2 will be (h = 6.625×10^{-34} Js, C = 3×10^8 ms ⁻¹)			
	(1) 2.650×10^{-7} m	(2) 1.325×10^{-7} m	(3) 1.325×10^{-10} m	(4) 5.300×10^{-10} m
10.	Which of the following statements in relation to the hydrogen atom is correct?			
	(1) 3s, 3p and 3d orbitals all have the same energy			[AIEEE-2005]
	(2) 3s and 3p orbitals are of lower energy than 3d orbitals			
	(3) 3p orbital is lower in energy than 3d orbital			
	(4) 3s orbitals is lower in energy than 3p orbital			
64.	For an electron, with $n=3$ has only one radial node. The orbital angular momentum of electron will be			
	(A) 0	(B) $\sqrt{6} \frac{h}{2\pi}$	(C) $\sqrt{2} \frac{h}{2\pi}$	(D) $3\left(\frac{h}{2\pi}\right)$