Universidade Federal de Campina Grande Centro de Engenharia Elétrica e Informática Coordenação de Pós-Graduação em Ciência da Computação

Título da Dissertação

Arthur Silva Freire

Dissertação submetida à Coordenação do Curso de Pós-Graduação em Ciência da Computação da Universidade Federal de Campina Grande - Campus I como parte dos requisitos necessários para obtenção do grau de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Computação Linha de Pesquisa: Engenharia de *Software*

> Hyggo Oliveira de Almeida Angelo Perkusich (Orientadores)

Campina Grande, Paraíba, Brasil © Arthur Silva Freire, dd/mm/aaaa

Resumo

Resumo aqui

Abstract

Abstract Here

Agradecimentos

Agradecimentos aqui

Conteúdo

1	Intr	rodução	1
	1.1	Problemática	2
	1.2	Objetivos	3
		1.2.1 Objetivos Específicos	3
	1.3	Contribuições e Resultados	4
	1.4	Relevância	4
	1.5	Estrutura da Dissertação	4
2	Fud	amentação Teórica	5
	2.1	Metodologias Ágeis	5
		2.1.1 Fatores-Chave do Trabalho em Equipe	5
	2.2	Redes Bayesianas	5
		2.2.1 Construção de Redes Bayesianas	5
		2.2.2 Nós Ranqueados	5
3	Tral	balhos Relacionados	6
4	Apr	resentação do Modelo	7
	4.1	Construção do GAD	7
	4.2	Definição das Funções de Probabilidade	12
5	Desc	crição da Abordagem Proposta	19
6	Estu	ido de Caso	23
	6.1	Design do Estudo de Caso	23

CONTEÚDO

В	Segu	ındo ap	êndice	38
A	Que	stionári	os para Alimentação do Modelo	37
7	Con	clusão		33
	6.4	Resulta	ados	32
	6.3	Anális	e dos Dados	31
	6.2	Coleta	dos Dados	30
		6.1.8	Ameaças à Validade	29
		6.1.7	Procedimento	28
		6.1.6	Métodos	28
		6.1.5	Sujeitos - Quem utiliza a abordagem e o modelo?	27
		6.1.4	Unidades de Análise	25
		6.1.3	Questões de Pesquisa	24
		6.1.2	Objetos de Estudo	24
		6.1.1	Objetivos	23

Lista de Símbolos

GAD - Grafo Acíclico Dirigido

TE - Trabalho em Equipe

TI - Tecnologia da Informação

TPN - Tabela de Probabilidade dos Nós

UFCG - Universidade Federal de Campina Grande

Lista de Figuras

4.1	Modelo Proposto por Freire et al	8
4.2	Representação do modelo proposto em alto nível	8
4.3	Colaboração e os fatores que a influenciam	11
4.4	Auto-Gerenciamento e os fatores que o influenciam	12
4.5	Atributos da Equipe e os fatores que o influenciam	12
4.6	Estrutura final do modelo proposto	13
4.7	Exemplos de Funções TNormal	14
4.8	Exemplos das Funções Ponderadas	15
4.9	Exemplo de nó filho com dois pais	15
4.10	Exemplo de nó filho com três pais	17
5.1	Abordagem para utilização do modelo proposto	20

Lista de Tabelas

4.1	Tabela para definição das Funções de Probabilidade de nós com dois pais .	16
4.2	Tabela para definição das Funções de Probabilidade de nós com três pais	17
4.3	Definição das Funções de Probabilidade	18
6.1	Descrição das Unidades de Análise.	25
6.2	Perfis dos Sujeitos	28

Lista de Códigos Fonte

Introdução

De acordo com Emam et al. [9], a porcentagem de projetos de TI que sucedem varia entre 46 e 55 porcento. Além disso, o sucesso de projetos de TI depende de cinco fatores: satisfação do cliente, orçamento, cronograma, qualidade do produto e produtividade da equipe. De acordo com os autores, para uma disciplina aplicada, esses números representam um alto índice de falhas.

Boehm et al. [3] identificaram seis principais razões de falha em projetos de *software*: requisitos imcompletos, ausência de envolvimento do cliente, falta de recursos, expectativas irrealistas, ausência de suporte executivo e mudança de requisitos e especificações. A ocorrência da maioria desses fatores se dá por conta de problemas na comunicação e interação entre desenvolvedores e *stakeholders*. Uma das principais razões pelas quais as metodologias ágeis têm se tornado popular no contexto do desenvolvimento de *software*, é a necessidade de focar na melhoria da colaboração entre desenvolvedores e *stakeholders*, além de melhorar a velocidade de resposta com relação à mudança de requisitos.

No Manifesto Ágil [1], é dito que projetos que utilizam métodos ágeis devem focar nos indivíduos e nas relações entre eles em vez de focar em processos e ferramentas. Além disso, como é esperado que as equipes ágeis sejam auto-organizáveis, é necessário que os membros da equipe colaborem entre si, e adotem os conceitos de responsabilidade e compromisso com as atividades da equipe. De acordo com Bustamante et al. [5], numa equipe ágil ideal, os membros da equipe compartilham o mesmo ambiente de trabalho e comunicam-se cara-a-cara diariamente. Lalsing et al. [15] afirmam que o gerente de projeto deve definir as relações entre os papéis para garantir a efetividade na coordenação da equipe e o controle do

1.1 Problemática 2

projeto. Nesse último trabalho, os autores também afirmam que indivíduos com diferentes personalidades, geralmente, devem trabalhar juntos para garantir uma equipe coesa.

A utilização de metodologias ágeis requer a adoção de uma série de práticas que aumentam as chances de sucesso do projeto, pois a adoção dessas práticas é capaz de resolver a maioria dos problemas responsáveis por falhas em projetos de *software*. Assim, uma vez que a saída de um processo de *software* é o próprio *software*, a qualidade do produto final é dependente de uma série de artefatos e fatores que compõem esse processo.

Chow et al. [6] identificaram os três principais fatores que influenciam o sucesso de projetos de desenvolvimento de *software* que utilizam métodos ágeis: estratégia de entrega, técnicas de engenharia de *software* no contexto ágil e a capacidade do time. Esse último, de acordo com os autores, está relacionado com o ato de construir projetos em volta de indivíduos motivados. Tendo em vista que as equipes são consideradas os recursos mais valiosos de projetos que utilizam métodologias ágeis, e sua capacidade, como citado anteriormente, é um dos principais fatores que influenciam o sucesso desses projetos, faz-se necessário atentar para os aspectos que influenciam a eficiência dessas equipes.

Em algumas pesquisas sobre equipes de desenvolvimento de *software*, foi identificado que a eficiência dessas equipes está relacionada a eficiência da coordenação do TE [13] [11]. Logo, se o TE está relacionado com a eficiência das equipes, que, por sua vez, influencia o sucesso de projetos de desenvolvimento de *software*, pode-se afirmar que o TE também está relacionado com o sucesso desses projetos. Assim, a avaliação e melhora contínua do TE é importante para garantir boa qualidade do *software* resultante de um processo, assim como o sucesso do projeto.

1.1 Problemática

Conforme citado na Seção 1, é importante avaliar e garantir a melhoria contínua do TE. Portanto, a adoção de um método que proporcione essas oportunidades aos gerentes é de importante valor para o produto. Entretanto, conforme descrito na Seção 2.1.1, há diversos fatores que podem vir a influenciar o TE. Além disso, os fatores que influenciam o TE, são, em sua grande maioria, subjetivos. Dessa forma, o método utilizado para avaliar o TE precisa minimizar o viés e a incerteza que pode ser introduzido por conta da subjetividade

1.2 Objetivos

desses fatores, garantindo que os resultados sejam fiéis ao cenário no qual a avaliação será realizada.

1.2 Objetivos

Considerando o que foi abordado na seções anteriores, o principal objetivo deste trabalho é mitigar os problemas descritos, principalmente na Seção 1.1, propondo um modelo para avaliar o TE de equipes ágeis, além de uma abordagem para utilizar esse modelo. A utilização desse abordagem deve auxiliar na identificação de oportunidades de melhorias do TE de equipes ágeis.

Como forma de representar o TE em função do relacionamento dos fatores que a influenciam, optou-se pelo uso de *Redes Bayesianas*, uma vez que modelos probabilísticos dessa família são adequados para se modelar incerteza em um determinado domínio [2]. Essa decisão foi tomada com o objetivo de diminuir a incerteza em relação à confiança nos resultados finais do modelo, tendo em vista que, como citado na Seção 1.1, a maioria dos fatores que influenciam o TE são subjetivos.

1.2.1 Objetivos Específicos

Para simplificar os objetivos descritos na Seção 1.2, podemos especificá-los da seguinte maneira:

- 1. Propor um modelo baseado em *Redes Bayesianas* para avaliar o TE de equipes ágeis;
- 2. Propor uma abordagem para utilizar o modelo proposto.
- 3. Proporcionar aos gerentes de projeto uma abordagem menos sensível à subjetividade na avaliação do TE, que auxilie na identificação de oportunidades de melhorias do trabalho em equipe;
- 4. Aplicar a abordagem em projetos reais de desenvolvimento de *software* para avaliar sua utilidade e seu custo-benefício.

1.3 Contribuições e Resultados

O modelo proposto neste trabalho foi construído com base numa densa revisão literária com foco na identificação dos fatores-chave que influenciam o TE. Em posse desse modelo, é possível avaliar, de forma menos subjetiva, a qualidade do TE de equipes ágeis.

Entretanto, a utilização desse modelo pode ser complexa para alguns indivíduos. Com isso, neste trabalho, também é proposta uma abordagem que auxilia na utilização desse modelo. Essa abordagem é dividida em etapas que englobam desde a coleta de dados para alimentação do modelo, até o processo de tomada de decisões corretivas e preventivas por parte dos gerentes de projeto.

Os resultados serão inseridos ao final do estudo de caso...

1.4 Relevância

A abordagem proposta é uma alternativa promissora para auxiliar no processo de tomada de decisões por parte dos gerentes de projeto. Os resultados calculados pelo modelo permitem que eles avaliem quais fatores merecem mais atenção caso mais de um fator esteja diminuindo a qualidade do TE, e quais atitudes podem ser tomadas para evitar riscos. Além disso, a utilização do modelo também permite identificar quais atitudes podem ser tomadas para melhorar o TE.

Como a utilização do modelo proposto proporciona os benefícios supracitados, e sabendo da relação entre o TE e a qualidade do produto de *software* resultante dos processos de desenvolvimento, além do processo em si, a sua utilização proporciona o aumento das chances de sucesso do projeto. Além disso, o modelo proposto pode ser integrado em outras abordagens e modelos que utilizam *Redes Bayesianas* para avaliação do processo de *software* como um todo [22] [20].

1.5 Estrutura da Dissertação

A estrutura da dissertação será adicionada no final da escrita...

Fudamentação Teórica

Introdução...

2.1 Metodologias Ágeis

Metodologias Ágeis...

2.1.1 Fatores-Chave do Trabalho em Equipe

Fatores Chave...

2.2 Redes Bayesianas

Redes Bayesianas...

2.2.1 Construção de Redes Bayesianas

Construção...

2.2.2 Nós Ranqueados

Nós Ranqueados...

Trabalhos Relacionados

Trabalhos Relacionados...

Apresentação do Modelo

Conforme explicado na Seção 2.2.1, a construção de uma *Rede Bayesiana* pode ser dividada em duas fases: a construção do GAD, e a definição das funções de probabilidade. Portanto, neste capítulo, serão descritas essas duas fases do processo de construção do modelo proposto neste trabalho. À princípio, será explicado como foram identificados os relacionamentos entre os fatores-chave do modelo. Em seguida, será descrito o processo adotado para a definição das funções de probabilidade, e porque foi decidido utilizar funções de probabilidade em vez de tabelas de probabilidade.

4.1 Construção do GAD

Nesta fase da construção do modelo é necessário identificar os fatores-chave que influenciam a qualidade do TE de equipes ágeis e os relacionamentos entre esses fatores. Como base para a construção do GAD, optou-se por utilizar o modelo proposto em [24] (Figura 4.1). De acordo com os autores, o modelo apresentado é uma boa representação do mundo real. Entretanto, uma de suas limitações é que ele foi construído com base em apenas um trabalho. Assim, a partir desse modelo e dos fatores descritos na Seção 2.1.1, é possível refinar o GAD, e, assim, obter uma representação mais fiel ao mundo real.

No modelo apresentado em [24], a qualidade do TE depende diretamente de três principais nós: *Colaboração*, *Esforço* da equipe de desenvolvimento e *Atributos da Equipe*. Entretanto, como foi decidido considerar o TE no contexto das relações entre os membros da equipe para alcançar os objetivos propostos, o nó *Esforço* não se enquadra no contexto deste

Figura 4.1: Modelo Proposto por Freire et al.

trabalho. Como é esperado que as equipes ágeis sejam auto-organizáveis [1], o nó *Esforço* foi substituído por *Auto-Gerenciamento*. Dessa forma, o fator principal, *Trabalho em Equipe*, passa a depender diretamente dos nós: *Colaboração*, *Auto-Gerenciamento* e *Atributos da Equipe* (Figura 4.2).

Figura 4.2: Representação do modelo proposto em alto nível.

No modelo tomado como base, o nó Colaboração depende diretamente dos nós Comu-

nicação e Reuniões. Comunicação, por sua vez, depende diretamente dos seguintes nós: Frequência, Informalidade, Estrutura - possibilidade dos membros da equipe se comunicarem diretamente uns com os outros - e Abertura, que está relacionada com o ato de não haver contenção de informação entre os membros da equipe. Como forma de minimizar a complexidade dos cálculos efetuados [] e o viés que pode ser introduzido em virtude da subjetidade que esse nós representam, optou-se por substituir esses quatro nós por Distribuição da Equipe e Cara-a-Cara. Esse nós estão relacionados, respectivamente, com o fato dos membros da equipe compartilharem a mesma localidade e conversarem cara-a-cara diariamente. Dessa forma, a Distribuição da Equipe substitui a Frequência, uma vez que o fato de os membros da equipe compartilharem o mesmo local facilita a comunicação [15] e, assim, contribui para que a comunicação ocorra em maior frequência. Já o nó Cara-a-Cara substitui a Informalidade, Estrutura e Abertura, tendo em vista que essa prática contribui para que essas características se façam na presentes na Comunicação.

O nó Reuniões, que no modelo base depende diretamente dos nós Planejamento da Iteração, Retrospectiva da Iteração e Reuniões Diárias foi substituído apenas pelo nó Reuniões Diárias. Essa decisão foi tomada porque o que ocorre na Retrospectiva da Iteração não influenciará mais o TE na iteração que se passou. O Planejamento da Iteração, por sua vez, está relacionado com a utilização de técnicas de Engenharia de Software que facilitam na prevenção contra riscos e estimativa de tempo para cumprimento de atividades. Além disso, não é objetivo do Planejamento da Iteração melhorar a Comunicação e a Colaboração das equipes.

Conforme descrito em [24], o nó *Reuniões Diárias* depende diretamente dos seguintes nós: *Limite de 15 Minutos*, *3 Perguntas* (i.e., "O que eu fiz hoje?", "O que farei amanhã?"e "Quais obstáculos estão impedindo o meu progresso?") e *Presença de Todos os Membros*. Entretanto, de acordo com Moe et al. [17], é necessário aplicar o *Monitoramento* para que os membros da equipe observem as atividades e a eficiência dos outros integrantes, além de reconhecerem quando um membro da equipe atua corretamente, provendo *feedback* e apoio. Logo, como o objetivo das perguntas é permitir aos participantes identificar potenciais barreiras e manter a coordenação da equipe, e isso está relacionando com o *Monitoramento*, decidiu-se renomear o nó *3 Perguntas* para *Monitoramento*. Além disso, as três perguntas as quais o nó está relacionado são referentes ao contexto de *Scrum*, e o modelo proposto neste

trabalho é para avaliação do TE de equipes ágeis em geral. Também foi decidido remover o nó *Limite de 15 minutos* porque ele não é considerado um indicador de qualidade dessas reuniões.

Em [18], são descritos cinco fatores que precisam ser levados em conta para melhorar o TE de equipes ágeis. São eles: *Liderança Compartilhada*, *Orientação da Equipe*, *Redundância*, *Aprendizagem da Equipe* e *Autonomia da Equipe*. A seguir, há a definição de cada um desses fatores com base nesse trabalho anteriormente citado:

- Liderança Compartilhada: Todos os membros da equipe compartilham a autoridade das decisões em vez centralizá-la. Dessa forma, evita que apenas uma pessoa tome as decisões, ou todos os membros da equipe tomem decisões levando em consideração apenas o seu trabalho individual, independente dos outros membros da equipe. Geralmente, o indivíduo que possui o conhecimento necessário durante uma determinada fase do projeto assume a liderança, compartilhando os seus conhecimentos, e permitindo que todos participem do processo de tomada de decisões;
- *Orientação da Equipe*: Priorização dos objetivos da equipe em vez dos objetivos indivíduais, respeitando o compartamento de cada um dos membros da equipe;
- *Redundância*: Os membros da equipe podem substituir uns aos outros sem treinamento extenso;
- Aprendizagem da Equipe: Melhoria contínua dos métodos de trabalho com base nos feedbacks fornecidos à equipe;
- Autonomia da Equipe: As decisões tomadas pela equipe são respeitadas pelos gerentes que estão fora dela.

Ainda sobre as *Reuniões Diárias*, durante elas, os membros da equipe tem a possibilidade de regular seus limites e condições, escolhendo em quais atividades desejam trabalhar, além de negociar e discutir sobre prevenção contra riscos e medidas corretivas. Como isso está relacionado à *Autonomia da Equipe*, também foi decidido adicioná-lo como nó que influencia as *Reuniões Diárias*. Dessa forma, tem-se que as *Reuniões Diárias* tornam-se diretamente dependentes de *Monitoramento*, *Presença de Todos os Membros* e *Autonomia da Equipe*.

Além disso, conforme supracitado, pode-se concluir que a *Orientação da Equipe* contribui diretamente para a *Colaboração* da equipe, pois há uma preocupação em priorizar os objetivos da equipe em vez dos objetivos individuais. Dessa forma, é necessário que os membros da equipes trabalhem de forma coesa, colaborando para que os objetivos da equipe sejam sempre alcançados. Por isso, decidiu-se adicionar o nó *Orientação da Equipe* como influenciate do nó *Colaboração*. Com isso, conforme representado na Figura 4.3, o nó *Colaboração* passa a depender diretamente dos nós *Comunicação*, *Orientação da Equipe* e *Reuniões Diárias*.

Figura 4.3: Colaboração e os fatores que a influenciam.

Auto-Gerenciamento é um dos novos nós que foi adicionado ao modelo, e influencia diretamente o TE. Na literatura, é estabelecido que a autoridade da decisão e da liderança de equipes auto-organizáveis precisa ser compartilhada [19] [4]. Além disso, ainda em [19], é dito que equipes auto-organizáveis requerem uma capacidade de aprendizagem das equipes para que elas possam adaptar-se às transformações que ocorrem no ambiente. Ainda de acordo com [19], toda equipe que possui a capacidade de se auto-gerenciar precisa de um certo grau de Redundância. Logo, com base nessas afirmações, os nós Liderança Compartilhada, Aprendizagem da Equipe e Redundância foram adicionados como pais do nó Auto-Gerenciamento. Na Figura 4.4 está representado o nó Auto-Gerenciamento em conjunto com seus nós pai.

O nó *Atributos da Equipe* foi mantido como proposto no modelo em [24]. A Figura 4.5 contém a representação gráfica desse nó em particular.

Figura 4.4: Auto-Gerenciamento e os fatores que o influenciam.

Figura 4.5: Atributos da Equipe e os fatores que o influenciam.

Finalmente, após definir os nós do GAD e os relacionamentos entre eles, na Figura 4.6 é possível verificar o GAD completo.

4.2 Definição das Funções de Probabilidade

Apesar de *Redes Bayesianas* serem um úteis para resolverem problemas reais relacionados com risco e subjetividade, o seu uso ainda é restrito devido a dificuldade em definir as TPN. Há duas maneiras de se coletar dados para definir as TPN de uma *Rede Bayesiana*: base de dados ou opinião de especialistas. Contudo, não é fácil encontrar uma base de dados adequada para um cenário específico de um problema prático. Por outro lado, a definição das TPN com a ajuda de especialistas requer bastante esforço (e.g., definir TPN para nós com um número muito alto de estados ou alta quantidade de pais, pois a quantidade de linhas de

Figura 4.6: Estrutura final do modelo proposto.

uma TPN aumenta exponencialmente em função da quantidade de pais do nó em questão). De acordo com Fenton et al. [10], isso pode acarretar em vários tipos de inconsistências no modelo.

Há vários métodos que têm como objetivo diminuir a complexidade e para codificar a experiência em grandes TPN. Noisy-OR [12] e Noisy-MAX [8] são dois métodos bem estabelicidos. Contudo, Noisy-OR só pode ser aplicado a nós booleanos, e Noisy-MAX não é capaz de modelar o intervalo de relacionamentos que precisamos neste trabalho. Das [7] propôs um algoritmo para popular as TPN que visa diminuir o tempo de duração para adquirir conhecimento de especialistas. Perkusich et al. [21], por sua vez, propõem um algoritmo cujo objetivo é ordenar os nós pai dadas as suas magnitudes relativas para o nó filho. Em seguida, com os nós filho ordenados, deve-se gerar as funções ponderadas com base na relevância dos nós pais e, finalmente, aplicá-las como funções de probabilidade dos nós.

Por outro lado, Fenton et al. [10] propõem uma abordagem para *Redes Bayesianas* que faz utiliza *Nós Ranqueados*. Essa abordagem é baseada numa distribuição normal duplamente truncada (TNormal) que usa como média um tipo de função ponderada em função dos valores dos nós pai. Essa distribuição é baseada em quatro parâmetros: u, média (i.e., tendência central); σ^2 , variância (i.e., confiança dos resultados); a, limite inferior (i.e., 0);

e b, limite superior (i.e., 1). Essa distribuição permite que quem a utilize modele uma varidade de formas (i.e., relacionamentos. Por exemplo: uma distribuição uniforme ($\sigma^2 = \infty$) e distribuições muito enviesadas ($\sigma^2 = 0$). Na Figura 4.7 há alguns exemplos de funções TNormal.

Figura 4.7: Exemplos de Funções TNormal.

Nessa abordagem, u é definido por uma função ponderada baseada nos nós pai. Existem quatro tipos de funções ponderadas: média ponderada (WMEAN), mínimo ponderada (WMIN), máximo ponderada (WMAX) e uma mistura da função WMIN e WMAX (MIX-MINMAX). De acordo com os autores, essas funções são suficientes para representar os tipos de relações necessárias para definir as TPN. A Figura 4.8 contém exemplos de TPN calculadas com essas funções. Entretanto, apesar de WMEAN e MIXMINMAX apresentarem os mesmos valores, há uma diferença entre elas. A função WMEAN calcula a média ponderada dos nós pai, baseado nos pesos de cada nó pai, e a função MIXMINMAX mescla as funções WMIN e WMAX, também baseado nos pesos dos nós pai.

Para definir qual função deve ser utilizada, o indivíduo que está construindo o modelo deve definir perguntas para coletar respostas e definir as TPN. Tomando como base a *Rede Bayesiana* representada na Figura 4.9, um exemplo de pergunta seria: "Se o nó X1 for Muito Alto e o nó X2 for Muito Baixo, qual o valor esperado para o nó Y?". Baseado nas respostas, o indivíduo que está construindo a *Rede Bayesiana* deve definir qual a função e quais o pesos para adequados para definir as TPN. A variância deve ser definida empiricamente e deve refletir a confiança dos especialistas nos resultados.

Entretanto, a base da abordagem proposta em [10] consiste em mapear os estados dos nós em uma escala numérica. Logo, quanto menos precisa a tendência central do nó filho, mais

Figura 4.8: Exemplos das Funções Ponderadas.

Figura 4.9: Exemplo de nó filho com dois pais.

vaga será a distribuição da função atribuida. Como forma de mitigar esses problemas, em [14] é proposta uma abordagem similar. Contudo, nessa abordagem, em vez do especialista avaliar a função de probabilidade de um determinado nó filho atribuindo a qual dos estados desse nó a tendência central corresponde, são atríbuidas probabilidades para cada um dos

estados do nó filho - a soma dessas probabilidades deve ser igual a 1. De acordo com os autores, essa abordagem provê uma transparência maior na elicitação dos pesos dos nós pai na função ponderada. Portanto, decidiu-se utilizar essa abordagem para definir as funções de probabilidade do modelo proposto.

Um especialista em *Redes Bayesianas* e Métodos Ágeis foi o responsável por realizar essa atividade. Para cada nó filho, o especialista deve definir quais as probabilidades desse nó estar em cada estado, com base nos estados dos nós pai. Portanto, para um nó com dois pais, e tomando como exemplo a *Rede Bayesiana* apresentada na Figura 4.9, o especialista precisou preencher as células em branco da Tabela 4.1 com os valores esperados, de forma que, para cada combinação possível

$$\sum_{i=1}^{n} Pi = 1, (4.1)$$

onde Pi é a probabilidade de cada estado e n é a quantidade de estados possíveis do nó filho

(4.2)

Tabela 4.1. Tabela para definição das Funções de Flobabilidade de nos com dois pars								
		Valores Esperados para Y						
X1	X2	Muito Baixa	Baixa	Média	Alta	Muito Alta		
Muito Alta	Muito Baixa	P_1	P_2	P_3	P_4	P_5		
Muito Baixa	Muito Alta	P_1	P_2	P_3	P_4	P_5		
Muito Alta	Média	P_1	P_2	P_3	P_4	P_5		
Média	Muito Alta	P_1	P_2	P_3	P_4	P_5		

Tabela 4.1: Tabela para definição das Funções de Probabilidade de nós com dois pais

De maneira análoga, para cada nó filho com três pais (e.g., Figura 4.10), porém com uma maior quantidade de combinações possíveis, o especialista precisou preencher as células em branco de uma similar à Tabela 4.2.

Assim, de acordo com a quantidade de nós pai de um determinado nó, foram definidas tabelas para cada um dos nós presentes no modelo proposto, exceto os nós de entrada. Uma vez que essas tabelas foram definidas, o especialista, com a ajuda de uma ferramenta, calculou os resultados reais para cada estado. Esses cálculos foram feitos diversas vezes, pois

Figura 4.10: Exemplo de nó filho com três pais.

Tabela 4.2: Tabela para definição das Funções de Probabilidade de nós com três pais

	Va	alores Es	sperados	para Y	7		
X1	X2	Х3	Muito Baixa	Baixa	Média	Alta	Muito Alta
Muito Alta	Muito Alta	Muito Baixa	P_1	P_2	P_3	P_4	P_5
Muito Alta	Muito Baixa	Muito Alta	P_1	P_2	P_3	P_4	P_5
Muito Baixa	Muito Alta	Muito Alta	P_1	P_2	P_3	P_4	P_5
Muito Baixa	Muito Baixa	Muito Alta	P_1	P_2	P_3	P_4	P_5
Muito Baixa	Muito Alta	Muito Baixa	P_1	P_2	P_3	P_4	P_5
Muito Alta	Muito Baixa	Muito Baixa	P_1	P_2	P_3	P_4	P_5

há a necessidade de definir qual função ponderada representa a tabela de probabilidade do nó em questão, além dos pesos de cada um dos nós pai praquela função. Esses cálculos são realizados diversas vezes até que a função e os pesos adequados, que mais se aproximem dos valores esperados, sejam encontrados. Além disso, o processo de definição das funções de probabilidade por parte do especialista é muito importante, pois caso haja inconsistências na definição do GAD, é necessário reorgarnizar a estrutura do grafo para garantir a consistência entre os conceitos e relacionamentos que estão sendo representados. Finalmente, ao final desse processo, o modelo está pronto para ser utilizado. A Tabela 4.3 contém as funções e os pesos dos nós pai de todos os nós do modelo, exceto os nós de entrada.

Tabela 4.3: Definição das Funções de Probabilidade

			Pais			Pesos		
Nó	Função	Variância	Pai 2	Pai 2	Pai 3	Peso do Pai 1	Peso do Pai 2	Peso do Pai 3
Trabalho em Equipe	wmin	0,0005	Colaboração	Auto-Gerenciamento	Autonomia da Equipe	10	10	10
Colaboração	wmin	0,0005	Comunicação	Reuniões Diárias	Orientação da Equipe	10	10	10
Auto-Gerenciamento	wmin	0,0005	Expertise	Liderança Compartilhada	Aprendizagem da Equipe	3	2	1
Comunicação	wmin	0,0005	Distribuição da Equipe	Meio de Comunicação	Х	3	5	Х
Reuniões Diárias	wmin	0,0005	Monitoramento	Presença de Todos os Membros	X	7	7	Х
Orientação da Equipe	wmin	0,0005	Atributos Pessoais	Expertise	X	5	5	X

Descrição da Abordagem Proposta

Como apresentado na Seção 1.2.1, dois dos principais objetivos desta pesquisa são: Propor um modelo baseado em *Redes Bayesianas* para avaliar o TE de equipes ágeis e uma abordagem para utilizar o modelo proposto. Portanto, para utilizar o modelo proposto no Capítulo 4, neste capítulo será descrita a abordagem proposta.

Essa abordagem é dividida em quatro etapas que englobam. Propõe-se que essa aborgadem seja utilizada ao final das iterações e antes da reunião de *Retrospectiva da Iteração*. Dessa forma, durante essa reunião, os gerentes de projeto possam reportar os resultados obtidos para a equipe. Além disso, eles podem utilizar esses resultados para auxiliá-los na tomada de decisões para o *Planejamento da Iteração* que acontecerá em seguida. Portanto, neste capítulo, serão descritas todas as etapas dessa abordagem. A Figura 5.1 contém o fluxo completo da abordagem e as interações entre as etapas.

Etapa I - Avaliação do Modelo

Esta é a etapa inicial da abordagem. Nesta etapa, o indivíduo que deseja utilizar a abordagem deve avaliar se a estrutura do modelo representa fielmente o contexto atual em que ele será aplicado. Por exemplo, se a equipe para a qual o modelo será utilizado não realiza *Reuniões Diárias*, há a necessidade de remover esse nó do GAD. Por outro lado, caso o modelo não contemple algum fator que seja importante naquele contexto, talvez seja importante adicionar outro nó que represente esse fator ao GAD. Além disso, também podem haver irregularidades nas funções de probabilidade (i.e., a função para um determinado nó deveria ser diferente, ou os pesos de uma função não fazem sentido naquele contexto). Assim, caso julgue necessário,

Figura 5.1: Abordagem para utilização do modelo proposto.

o indivíduo precisará modificar o GAD e/ou as funções de probabilidade para garantir a consistência do modelo em relação ao contexto em que ele está sendo aplicado. Entretanto, caso seja necessário muito esforço para modificar o modelo, talvez seja melhor construir um novo modelo desde o princípio.

O resultado desta etapa deve ser um modelo consistente com o contexto atual do projeto. Portanto, ao final de cada iteração, que é o momento em que essa abordagem deve ser colocada em prática, esta etapa deve ser realizada. Essa periodicidade se deve porque podem haver mudanças no processo e na equipe que venham a contribuir para que o modelo não corresponda ao contexto atual do projeto.

Etapa II - Alimentação do Modelo

Nesta etapa, o indivíduo precisa alimentar os nós de entrada. Idealmente, seria possível alimentar todos os nós de entrada com evidências. Contudo, como o fator principal abordado neste trabalho e os fatores que o influenciam são subjetivos, a incerteza deve ser a mesma para todos os estados possíveis. Dessa forma, em vez de alimentar os nós de entrada do modelo com dados objetivos, os indivíduos que desejarem utilizar esta abordagem devem indicar, dentre os estados possíveis, um estado para cada um dos nós de entrada. Como forma

de facilitar a realização desta etapa, facilitando a interpretação dos conceitos representados pelos nós de entrada, no Apêndice A estão definidas perguntas que correspondem aos nós de entrada do modelo.

De acordo com a Seção 4.1, todos os nós do modelo são *Nós Ranqueados* com cinco estados - Muito Baixo, Baixo, Médio, Muito Alto e Alto. Assim, como as perguntas definidas no Apêndice A possuem cinco respostas possíveis, é possível mapeá-las para um estado possível de um determinado nó da seguinte maneira:

- Falso → Muito Baixo
- Mais Falso que Verdadeiro → Baixo
- Nem Verdadeiro nem Falso → Médio
- Mais Verdadeiro que Falso → Alto
- *Verdadeiro* → *Muito Alto*

Contudo, a pergunte referente ao nó *Autonomia da Equipe* deve ser interpretada de maneira inversa, mas seguindo a mesma lógica:

- $Falso \rightarrow Muito Alto$
- Mais Falso que Verdadeiro → Alto
- Nem Verdadeiro nem Falso → Médio
- Mais Verdadeiro que Falso → Baixo
- *Verdadeiro* → *Muito Baixo*

Após selecionar um estado para cada um dos nós de entrada, os resultados devem ser calculados utilizando uma ferramenta específica de *Redes Bayesianas* (e.g., GeNIe¹, Netica² e AgenaRisk³. Os resultados do modelo são dados com probabilidades para cada estado possível de todos os nós do modelo.

¹http://genie.sis.pitt.edu/

²http://www.norsys.com/

³http://www.agenarisk.com/

Etapa III - Análise dos Resultados

Após obter os resultados calculados pelo modelo, há a necessidade de analisá-los para detectar possíveis problemas que estão afetando a qualidade do TE. O objetivo desta etapa é avaliar a qualidade do TE na recém-acabada iteração e elaborar um plano de ações corretivas e preventivas para garantir a melhoria contínua do produto final e do processo.

Como o fator principal e os fatores que o influenciam são subjetivos, talvez haja dificuldade em avaliar os resultados. Contudo, a qualidade do TE influencia na eficiência da equipe. Esse fator, por sua vez, depende não apenas da qualidade do TE, mas também do *Planejamento da Iteração*, da complexidade das estórias que precisam ser entregues, dentre outros. Portanto, para facilitar a análise dos dados, propõe-se que os indivíduos que utilizam esta abordagem adotem os resultados calculados pelo modelo como indicadores de uma determinada métrica que represente a eficiência da equipe. Dessa forma, em vez de analisar os resultados calculados comparando-os com resultados esperados pelos gerentes de projeto, a análise será menos sujeita a viés. Entretanto, é necessário atentar para o fato de que o TE não é o único fator que influencia a eficiência da equipe. Logo, para realizar a análise dos dados, talvez seja necessário fazer algumas presunções, que podem afetar a validade dessa análise.

Etapa IV - Ações Corretivas e Preventivas

Baseado nos resultados calculados pelo modelo e pelas análises realizadas, um plano preventivo e corretivo é elaborado para garantir a melhoria contínua do produto final e do processo. Portanto, nesta etapa da abordagem essa plano é executado. Ao final da execução do plano, é necessário verificar o compromisso da equipe em relação às açoes que foram tomadas e quais as suas consequências.

Estudo de Caso

Estudo de caso é uma metodologia de pesquisa adequada para estudar fenômenos contemporâneos em seu contexto natural [23]. Com base nessa afirmação e na necessidade de avaliar o modelo proposto neste trabalho e sua utilização, foi realizado um estudo de caso no Laboratório de Sistemas Embarcados e Computação Pervasiva (Embedded Lab)¹. O Embedded Lab está localizado na UFCG e foi escolhido em virtude das suas relações envolvendo a academia e a indústria.

Vários projetos são executados no Embedded Lab em parceria com empresas com o objetivo de desenvolver produtos de *software*. Em todos os projetos do Embedded Lab com foco em desenvolvimento de *software*, a metodologia para gestão e planejamento utilizada é o *Scrum*. Portanto, o contexto no qual este estudo de caso foi realizado é o de indústria, com utilização de *Scrum* como metodologia ágil adotada. Assim, os resultados e conclusões obtidos neste estudo de caso são referentes a esse contexto. O estudo de caso foi realizado em X projetos, onde cada um deles foi considerado uma unidade de análise. A duração foi de X dias.

6.1 Design do Estudo de Caso

6.1.1 Objetivos

Para este estudo de caso, foram definidos dois principais objetivos:

¹http://www.embeddedlab.org/

- Verificar a fidelidade do modelo proposto para a avaliação do TE de equipes Scrum com relação ao mundo real;
- 2. Verificar a utilidade da abordagem para utilização do modelo em projetos *Scrum*.

6.1.2 Objetos de Estudo

Os objetos de estudo são:

- 1. O modelo proposto para representar o TE de equipes *Scrum*;
- 2. A abordagem proposta para utilização do modelo.

Logo, com base nos objetos de estudo definidos, deseja-se avaliar: a precisão do modelo proposto, a sua utilidade para auxiliar na liderança de equipes *Scrum* e A facilidade de implementação e utilização da abordagem proposta.

6.1.3 Questões de Pesquisa

Com base nos objetivos definidos para este estudo de caso e visando alcançá-los, foram definidas as seguintes questões de pesquisa:

- PP1: O modelo proposto mensura de forma precisa o TE de equipes Scrum?
- PP2: A utilização do modelo auxília na detecção de oportunidades de melhoria do TE de equipes Scrum?
- PP3: A abordagem proposta é de fácil implementação e utilização?
- PP4: O custo-benefício de utilizar a abordagem é positivo?

Dadas as questões de pesquisa definidas acima, as seguintes hipóteses foram definidas para respondê-las:

• *H0-1*: O modelo proposto não mensura de forma precisa o Trabalho em Equipe de equipes Scrum;

- *HA-1*: O modelo proposto mensura de forma precisa o Trabalho em Equipe de equipes Scrum;
- *H0-2*: A utilização do modelo não auxilia na detecção de oportunidades de melhoria do Trabalho em Equipe de equipes Scrum;
- *HA-2*: A utilização do modelo auxilia na detecção de oportunidades de melhoria do Trabalho em Equipe de equipes Scrum;
- H0-3: A abordagem proposta não é de fácil implementação e utilização;
- HA-3: A abordagem proposta é de fácil implementação e utilização;
- H0-4: O custo-benefício de utilizar a abordagem não é positivo;
- HA-4: O custo-benefício de utilizar a abordagem é positivo.

Assim, *H0-1* e *HA-1* estão relacionadas à *PP1*, *H0-2* e *HA-2* estão relacionadas à *PP2*, *H0-3* e *HA-3* estão relacionadas à *PP3*, e *H0-4* e *HA-4* estão relacionadas à *PP4*.

6.1.4 Unidades de Análise

Tabela 6.1: Descrição das Unidades de Análise.

	Projeto				
Característica	A	В	C		
Experiência, em mé-	2.5	2	2		
dia de anos, dos in-					
tegrantes da equipe					
participando em pro-					
jetos de desenvolvi-					
mento de software					

Continuação da Tabela 6.1								
	Projeto							
Característica	A	В	C					
Experiência, em mé-	1	1	2					
dia de anos, dos inte-								
grantes da equipe tra-								
balhando em equipes								
ágeis								
Breve descrição do	O cronograma inicial	O projeto atual tem	Cronograma sendo					
cronograma do pro-	do projeto parecia ser	um cronograma que	seguido no prazo,					
jeto	tranquilo, mas como	é relativamente fácil	ficando apertado em					
	parte da equipe foi	de alcançar, mas de-	alguns momentos.					
	alocada para dar ma-	pendemos muito de	Algumas mudanças					
	nutenção ao projeto	outra entidade que	de requisitos geraram					
	anterior, acabou fi-	está desenvolvendo o	algum retrabalho,					
	cando mais apertado.	Hardware que iremos	o que pode vir a					
		trabalhar.	comprometer algum					
			item do cronograma					
			inicial.					

Continuação da Tabela 6.1					
	Projeto				
Característica	A	В	С		
Breve descrição do	Moderado. Os apli-	Uma ferramenta para	Projeto de grande re-		
escopo do projeto	cativos a desenvol-	monitoramento e	levância para o cli-		
	ver são relativamente	controle de ativos de	ente e complexo do		
	simples, mas a diver-	segurança patrimo-	ponto de vista de inte-		
	sidade das platafor-	nial, é complexo.	gração entre os com-		
	mas suportadas con-		ponentes. O produto		
	tribui muito para a		final depende da in-		
	complexidade.		tegração de compo-		
			nentes de software e		
			hardware desenvolvi-		
			dos por equipes do		
			Embedded e do cli-		
			ente.		
Breve descrição da	Plataforma: Desk-	A plataforma utili-	Plataforma: Web.		
plataforma e tecno-	top/Tablet (x86),	zada no projeto é	Tecnologias: Django		
logias utilizadas no	Windows 8-10. Tec-	Android. Tecnolo-	e Python.		
projeto	nologias: Visual	gias utilizadas: SIP e			
	Studio (com ReShar-	RTSP.			
	per), .NET / C# e				
	NUnit.				

6.1.5 Sujeitos - Quem utiliza a abordagem e o modelo?

Para cada unidade de análise, os sujeitos são líderes de projeto que atuam como *Scrum Masters*. No Embedded Lab, esses sujeitos realizam atividades relacionadas ao processo e o gerenciamento da equipe, atividades relacionadas ao *design* dos produtos, do ponto de vista gráfico e arquitetural de produto, além de implementação.

Na Tabela 6.2, são apresentados os perfis dos sujeitos em relação à experiência, em anos,

desenvolvendo *software*, liderando projetos de desenvolvimento, utilizando métricas no suporte à tomada de decisões e utilizando métodos ágeis.

Tabela 6.2: Perfis dos Sujeitos

		Sujeito	
Característica		2	3
Experiência, em anos, trabalhando em projetos de desenvolvimento de software		10	10
Experiência, em anos, liderando projetos de desenvolvimento de software		3	2
Experiência, em anos, utilizando métricas e indicadores no suporte à tomada de decisões		2	6
Experiência, em anos, utilizando métodos ágeis		2	7

6.1.6 Métodos

A coleta de dados é uma atividade necessária para responder as questões de pesquisas de um estudo de caso experimental. De acordo com Lethbridge et al. [16], há três diferentes categorias de métodos para coleta de dados: direto (e.g., entrevistas), indireto (e.g., *survey*) e independente (e.g., análise de documentação). Portanto, o método utilizado para coleta de dados desse estudo de caso é o indireto, uma vez que os dados serão coletados por meio de questionários.

6.1.7 Procedimento

Neste estudo de caso, foi utilizada a ferramenta AgenaRisk para efetuar os cálculos do modelo. Em virtude de algumas limitações com licensas da ferramenta, o modelo foi criado e todos os cálculos realizados na máquina do pesquisador. Após a obtenção dos resultados, eles foram apresentados aos sujeitos em seguida pelo pesquisador. Após a definição do modelo, e dos questionários para avaliação do TE e da abordagem, este estudo de caso foi dividido em duas fases: *Treinamento* e *Utilização da Abordagem*.

Fase 1 - Treinamento

O objetivo desta fase do estudo de caso é prover aos sujeitos o entendimento dos conceitos relacionados aos objetos de estudo. Assim, espera-se que ao final dessa fase qualquer dúvida

em relação à esses fatores seja sanada para que os resultados não sejam influenciados por má-interpretação das perguntas dos questionários.

À princípio, os conceitos de *Redes Bayesianas*, *Ranked Nodes*, além de *Funções de Probabilidade*, suas aplicações e funcionamento foram explicados para facilitar o entendimento da construção do modelo. Após isso, o modelo proposto nesta dissertação, e o relacionamento entre os fatores que o compõem foram explicados. Em seguida, foi explicado como seria realizado o processo de coleta de dados e quais perguntas do questionário de alimentação do modelo são referentes à quais nós de entrada do modelo. Por fim, foi explicado como é feita a análise dos resultados gerados pelo modelo, e como é possível identificar oportunidades de melhoria no TE. Alguns exemplos foram utilizados nessa fase para auxiliar no entendimento dos sujeitos.

Fase 2 - Utilização da Abordagem

6.1.8 Ameaças à Validade

Runeson et al. [23] afirmam que há diferentes maneiras de classificar aspectos da validade e ameaças à validade na literatura. No trabalho anteriormente citado, eles definem um esquema de classificação que distingue bem quatro aspectos da validade de um estudo de caso. São eles: *Validade de Construção*, *Validade Interna*, *Validade Externa e Confiabilidade*.

O aspecto da *Validade de Construção* está relacionado com o fato de o que é estudado realmente representar o que o pesquisador tem em mente estar de acordo com as questões de pesquisa. Por exemplo, o assunto abordado nas entrevistas é interpretado pelos pesquisador e os entrevistados da maneira diferente. Portanto, neste estudo de caso, apesar do treinamento realizado para os sujeitos envolvidos, há a possibilidade deles interpretarem as perguntas dos questionários de tal forma que não condiz com os objetivos para os quais elas foram elaboradas.

A *Validade Interna* diz respeito ao ato de verificar se um determinado fator afeta o fator investigado, quando há o risco de um terceiro fator que influenciar o fator investigado. Logo, como neste estudo de caso adotou-se o TE como indicador do desempenho da equipe, e há outros fatores como FATOR A, FATOR B e FATOR C que influenciam o desempenho da equipe [], também há ameaças à *Validade Interna deste estudo*.

6.2 Coleta dos Dados

Com relação ao aspecto da *Validade Externa*, que está relacionado em saber até que ponto é possível generalizar os resultados, e em que medida os resultados são de interesse para outras pessoas fora do caso investigado. Durante a análise da *Validade Externa*, o pesquisador precisa analisar se os resultados podem ser relevantes para outros casos. Portanto, como os objetos de estudo deste estudo de caso foram avaliados para apenas X unidades de análise, talvez não seja possível generalizar os resultados para todas as equipes ágeis do mundo.

Além desses aspectos, também há a *Confiabilidade*, que está relacionada à dependência dos dados coletados e sua análise em relação ao pesquisador. Assim, como é necessário que os sujeitos deste estudo de caso respondam questionários com o intuito de poder avaliar as equipes que estão sendo lideradas por eles, há o risco de haver viés nos dados coletados. Isso pode acontecer não apenas pelo fato dos sujeitos estarem envolvidos com suas equipes e o seu trabalho, mas também pela possibilidade dos questionários não serem claros o suficiente para facilitar a sua resposta. Além disso, este estudo de caso foi conduzido apenas com equipes *Scrum*, uma dentre as várias metodologias ágeis existentes. Logo, esses fatores também afetam a *Confiabilidade* deste estudo de caso.

6.2 Coleta dos Dados

A coleta de dados necessária para responder as perguntas de pesquisa deste estudo de caso foi feita com a utilização de questionários, no formato de formulários online. Dessa forma, os sujeitos podem respondê-los quando acharem cômodo, de modo que não venha a incomodar em sua rotina de trabalho. Para a criação desses questionários, foi decidido utilizar o Google Forms², ferramenta que permite criar questionários e armazenar os dados coletados neles em planilhas providas pela ferramenta Google Sheets³. Além de permitir criar os questionários e armazenar os resultados, essas ferramentas também facilitam o compartilhamento de ambos, com a utilização de links.

Como forma de alimentar os nós de entrada do modelo, foi criado um questionário com perguntas simples e diretas, visando diminuir o tempo necessário para respondê-lo. Para cada nó de entrada do modelo, uma ou mais perguntas foram elaboradas, e suas respostas

²https://www.google.com/forms/about/

³https://www.google.com/sheets/about/

6.3 Análise dos Dados 31

são todas objetivas, de única escolha, na seguinta escala: Verdadeiro, Mais Verdadeiro que Falso, Nem Verdadeiro nem Falso, Mais Falso que Verdadeiro, Falso, Não aplicável. Essa escala foi adotada com base na ferramenta Comparative Agility⁴, que mede o quão ágil uma organização/equipe é, pois acredita-se que ela se adequa bem à este caso, uma vez que há uma seção relacionada ao Trabalho em Equipe no *survey* que essa ferramenta utiliza para coletar os dados. Além dos dados para alimentação dos nós, perguntas relacionadas às métricas para o cálculo da medida de desempenho das equipes também foram inseridas nesse questionário.

O questionário referente ao auxílio do modelo na tomada de decisões por parte dos sujeitos, contém perguntas diretas, que seguirão o mesmo padrão supracitado. Contudo, também haverá a oportunidade de inserção de texto puro, onde os sujeitos poderão comentar e dar mais opiniões à respeito da pergunta de pesquisa tratada. Essa mesma estratégia foi adotada para avaliar a facilidade da implementação e utilização da abordagem proposta, como também o custo-benefício de sua utilização.

Falta mapear as hipóteses com as questões dos questionários. Será feito quando os questionários estiverem completamente definidos.

6.3 Análise dos Dados

PP1: O modelo proposto mensura de forma precisa o TE de equipes Scrum?

Descrever como foi respondida essa pergunta

PP2: A utilização do modelo auxília na detecção de oportunidades de melhoria do TE de equipes Scrum?

Para responder essa pergunta, foi necessário avaliar as hipóteses *H0-2* e *HA-2*. Assim, como a pergunta X do questionário de satisfação, que é a mesma pergunta que *PP2*, e ela é respondida utilizando uma escala *Likert* de cinco pontos, foi definida a seguinte condição:

Caso $v_{q1B} \leq 3$, onde v_{q1B} representa a média das respostas para PP2, deve-se aceitar H0-2. Caso contrário, rejeita-se H0-2 e, consequentemente, assume-se que HA-2 é verdadeira.

⁴https://comparativeagility.com/

6.4 Resultados 32

PP3: A abordagem proposta é de fácil implementação e utilização?

É necessário avaliar as hipóteses *H0-3* e *HA-3* para responder essa pergunta. Assim, como a pergunta X do questionário de satisfação, que é a mesma pergunta que *PP3*, e ela é respondida utilizando uma escala *Likert* de cinco pontos, foi definida a seguinte condição:

Caso $v_{q2B} \leq 3$, onde v_{q2B} representa a média das respostas para PP3, deve-se aceitar H0-3. Caso contrário, rejeita-se H0-3 e, consequentemente, assume-se que HA-3 é verdadeira.

PP4: O custo-benefício de utilizar a abordagem é positivo?

De forma análoga à *PP2* e *PP3*, para responder essa pergunta, é necessário avaliar as hipóteses *H0-4* e *HA-4*. Também foi definida uma pergunta no questionário de satisfação que corresponde à essa (Pergunta X), e que é respondida utilizando uma escala *Likert* de cinco pontos. Logo, também de forma análoga à *PP2* e *PP3*, foi definida a seguinte condição:

Caso $v_{q3B} \le 3$, onde v_{q3B} representa a média das respostas para PP4, deve-se aceitar H0-4. Caso contrário, rejeita-se H0-4 e, consequentemente, assume-se que HA-4 é verdadeira.

6.4 Resultados

Os resultados serão obtidos após o final do estudo de caso...

Capítulo 7

Conclusão

Conclusões após o final do estudo de caso...

Bibliografia

- [1] The agile manifesto. www.Agilemanifesto.org. Accessed: 28th April 2015.
- [2] Irad Ben-Gal. Bayesian Networks. John Wiley & Sons, Ltd, 2008.
- [3] B. Boehm. Software engineering is a value-based contact sport. *IEEE Softw.*, 19(5):95–96, September 2002.
- [4] Benson Rosen Bradley L. Kirkman. Beyond self-management: Antecedents and consequences of team empowerment. *The Academy of Management Journal*, 42(1):58–74, 1999.
- [5] Bustamante, A., Sawhney, R. Agile xxl: Scaling agile for project teams, seapine software, inc. http://downloads.seapine.com/pub/ebooks/AgileScaling_eBook.pdf, 2011. Accessed: 28th April 2015.
- [6] Tsun Chow and Dac-Buu Cao. A survey study of critical success factors in agile software projects. *Journal of Systems and Software*, 81(6):961 971, 2008. Agile Product Line Engineering.
- [7] Balaram Das. Generating conditional probabilities for bayesian networks: Easing the knowledge acquisition problem. *CoRR*, cs.AI/0411034, 2004.
- [8] F. J. Díez. Parameter adjustment in bayes networks. the generalized noisy or-gate. In *Proceedings of the Ninth International Conference on Uncertainty in Artificial Intelligence*, UAI'93, pages 99–105, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.
- [9] Khaled El Emam and A. Günes Koru. A replicated survey of it software project failures. *IEEE Softw.*, 25(5):84–90, September 2008.

BIBLIOGRAFIA 35

[10] N.E. Fenton, M. Neil, and Jose Galan Caballero. Using ranked nodes to model qualitative judgments in bayesian networks. *Knowledge and Data Engineering, IEEE Transactions on*, 19(10):1420–1432, Oct 2007.

- [11] Martin Hoegl and Hans Georg Gemuenden. Teamwork quality and the success of innovative projects: A theoretical concept and empirical evidence. *Organization science*, 12(4):435–449, 2001.
- [12] Kurt Huang and Max Henrion. Efficient search-based inference for noisy-or belief networks: Topepsilon. In *Proceedings of the Twelfth International Conference on Uncertainty in Artificial Intelligence*, UAI'96, pages 325–331, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.
- [13] Robert E. Kraut and Lynn A. Streeter. Coordination in software development. *Commun. ACM*, 38(3):69–81, March 1995.
- [14] Pekka Laitila. Improving the use of ranked nodes in the elicitation of conditional probabilities for bayesian networks. Master's thesis, Aalto University, Finland, 2013.
- [15] Vikash Lalsing, Somveer Kishnah, and Sameerchand Pudaruth. People factors in agile software development and project management. *International Journal of Software Engineering & Applications (IJSEA)*, 3(1), 2012.
- [16] Timothy C. Lethbridge, Susan Elliott Sim, and Janice Singer. Studying software engineers: Data collection techniques for software field studies. *Empirical Software Engineering*, 10(3):311–341, 2005.
- [17] Nils Brede Moe, Torgeir Dingsøyr, and Tore Dybå. A teamwork model for understanding an agile team: A case study of a scrum project. *Information and Software Technology*, 52(5):480 491, 2010. TAIC-PART 2008TAIC-PART 2008.
- [18] NilsBrede Moe, Torgeir Dingsøyr, and EmilA. Røyrvik. Putting agile teamwork to the test an preliminary instrument for empirically assessing and improving agile software development. In Pekka Abrahamsson, Michele Marchesi, and Frank Maurer, editors, *Agile Processes in Software Engineering and Extreme Programming*, volume 31 of

BIBLIOGRAFIA 36

Lecture Notes in Business Information Processing, pages 114–123. Springer Berlin Heidelberg, 2009.

- [19] Gareth Morgan, Fred Gregory, and Cameron Roach. *Images of organization*. Wiley Online Library, 1997.
- [20] Mirko Perkusich, Hyggo Oliveira de Almeida, and Angelo Perkusich. A model to detect problems on scrum-based software development projects. In *Proceedings of the 28th Annual ACM Symposium on Applied Computing*, pages 1037–1042. ACM, 2013.
- [21] Mirko Perkusich, Angelo Perkusich, and Hyggo Oliveira de Almeida. Using survey and weighted functions to generate node probability tables for bayesian networks. In *Computational Intelligence and 11th Brazilian Congress on Computational Intelligence* (BRICS-CCI & CBIC), 2013 BRICS Congress on, pages 183–188. IEEE, 2013.
- [22] Mirko Perkusich, Gustavo Soares, Hyggo Almeida, and Angelo Perkusich. A procedure to detect problems of processes in software development projects using bayesian networks. *Expert Systems with Applications*, 42(1):437 450, 2015.
- [23] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study research in software engineering. *Empirical Softw. Engg.*, 14(2):131–164, April 2009.
- [24] A. Silva Freire, R.M. Da Silva, M. Perkusich, H. Almeida, and A. Perkusich. A bayesian network model to assess agile teams' teamwork quality. In *Software Engineering* (SBES), 2015 29th Brazilian Symposium on, pages 191–196, Sept 2015.

Apêndice A

Questionários para Alimentação do Modelo

Apêndice B

Segundo apêndice