Determinant

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i,j} M_{i,j}$$

$$a_{1*} a_{2*} a_{3*} \dots a_{n*}$$

By: Fred E. Khoury

The determinant is associated with a square matrix $(n \times n)$.

The total terms (summation) of a determinant is equal to n! with n entries (elements) to each product term. Half are positive (product sign stay the same) and the other half sign has to be multiplied by negative sign (or opposite sign).

Block Method

$$\left| \frac{A \mid 0}{0 \mid B} \right| = \left| A \right| \cdot \left| B \right|$$

Proof

$$\begin{vmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ \hline 0 & 0 & e & f \\ 0 & 0 & g & h \end{vmatrix} = a \begin{vmatrix} d & 0 & 0 \\ 0 & e & f \\ 0 & g & h \end{vmatrix} - b \begin{vmatrix} c & 0 & 0 \\ 0 & e & f \\ 0 & g & h \end{vmatrix}$$
$$= ad \begin{vmatrix} e & f \\ g & h \end{vmatrix} - bc \begin{vmatrix} e & f \\ g & h \end{vmatrix}$$
$$= (ad - bc) \begin{vmatrix} e & f \\ g & h \end{vmatrix}$$
$$= \begin{vmatrix} a & b \\ c & d \end{vmatrix} \begin{vmatrix} e & f \\ g & h \end{vmatrix}$$
$$= |A| \cdot |B|$$

Example

$$\begin{vmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & -2 & 5 \\ 0 & 0 & -2 & 7 \end{vmatrix} = \underline{8}$$

$$A = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = \underline{-2}$$

$$B = \begin{vmatrix} -2 & 5 \\ -2 & 7 \end{vmatrix} = \underline{-4}$$

$$8 = (-2)(-4)$$

Example

$$\begin{vmatrix} 1 & 2 & 2 & 0 & 0 \\ 3 & 4 & 5 & 0 & 0 \\ 6 & 7 & 8 & 0 & 0 \\ \hline{0} & 0 & 0 & -5 & 7 \\ 0 & 0 & 0 & 3 & 4 \end{vmatrix} = -123 \begin{vmatrix} 1 & 2 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{vmatrix} = 3 \begin{vmatrix} B & -5 & 7 \\ 3 & 4 \end{vmatrix} = -41 \begin{vmatrix} 1 & 2 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{vmatrix}$$

$$-123 = (3)(-41)$$

$$2\times2$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

 3×3

Co-Factor Method

$$\begin{vmatrix} + & - & + \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33}$$

$$= a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33}$$

Diagonal Method

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \\ a_{21} & a_{22} & a_{23} & a_{31} & a_{32} \\ a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$
(2)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Plus

Another Method

$$=a_{11}\left(a_{22}a_{33}-a_{23}a_{32}\right)+a_{12}\left(a_{23}a_{31}-a_{21}a_{33}\right)+a_{13}\left(a_{21}a_{32}-a_{22}a_{31}\right)$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
(Opposite sign)

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

- 1- Copy the 2^{nd} & 3^{rd} rows bellow 4^{th} row respectively.
- 2- Copy the 1^{st} , 2^{nd} and 3^{rd} column next to the 4^{th} column respectively as is shown below

+	_	+	_			
a ₁₁	a ₁₂	a ₁₃	a ₁₄	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃
a ₂₁	<i>a</i> ₂₂	<i>a</i> ₂₃	<i>a</i> ₂₄	<i>a</i> ₂₁	<i>a</i> ₂₂	<i>a</i> ₂₃
a ₃₁	<i>a</i> ₃₂	<i>a</i> ₃₃	a ₃₄	<i>a</i> ₃₁	a_{32}	<i>a</i> ₃₃
a ₄₁	<i>a</i> ₄₂	<i>a</i> ₄₃	a ₄₄	<i>a</i> ₄₁	<i>a</i> ₄₂	<i>a</i> ₄₃
<i>a</i> ₂₁	$a_{22}^{}$	a_{23}	<i>a</i> ₂₄	a_{21}	a_{22}	<i>a</i> ₂₃
<i>a</i> ₃₁	$a_{32}^{}$	a_{33}	<i>a</i> ₃₄	<i>a</i> ₃₁	<i>a</i> ₃₂	a ₂₃ a ₃₃ a ₄₃ a ₂₃ a ₃₃

Determinant =

$$a_{11}\left(a_{22}a_{33}a_{44} + a_{24}a_{32}a_{43} + a_{23}a_{34}a_{42} - a_{24}a_{33}a_{42} - a_{22}a_{34}a_{43} - a_{23}a_{32}a_{44}\right) \\ -a_{12}\left(a_{23}a_{34}a_{41} + a_{21}a_{33}a_{44} + a_{24}a_{31}a_{43} - a_{21}a_{34}a_{43} - a_{23}a_{31}a_{44} - a_{24}a_{33}a_{41}\right) \\ +a_{13}\left(a_{24}a_{31}a_{42} + a_{22}a_{34}a_{41} + a_{21}a_{32}a_{44} - a_{22}a_{31}a_{44} - a_{24}a_{32}a_{41} - a_{21}a_{34}a_{42}\right) \\ -a_{14}\left(a_{21}a_{32}a_{43} + a_{22}a_{33}a_{41} + a_{23}a_{31}a_{42} - a_{21}a_{33}a_{42} - a_{22}a_{31}a_{43} - a_{23}a_{32}a_{41}\right)$$

$$\begin{array}{c} \begin{array}{c} \mathbf{a}_{11} \\ \mathbf{a}_{12} \\ \mathbf{a}_{21} \\ \mathbf{a}_{22} \\ \mathbf{a}_{23} \\ \mathbf{a}_{34} \\ \mathbf{a}_{21} \\ \mathbf{a}_{22} \\ \mathbf{a}_{23} \\ \mathbf{a}_{34} \\ \mathbf{a}_{34} \\ \mathbf{a}_{34} \\ \mathbf{a}_{34} \\ \mathbf{a}_{31} \\ \mathbf{a}_{32} \\ \mathbf{a}_{33} \\ \mathbf{a}_{34} \\ \mathbf{a}_{31} \\ \mathbf{a}_{32} \\ \mathbf{a}_{33} \\ \mathbf{a}_{34} \\ \mathbf{a}_{31} \\ \mathbf{a}_{32} \\ \mathbf{a}_{33} \\ \mathbf{a}_{34} \\ \mathbf{a}_{41} \\ \mathbf{a}_{41} \\ \mathbf{a}_{41} \\ \mathbf{a}_{42} \\ \mathbf{a}_{43} \\ \mathbf{a}_{34} \\ \mathbf{a}_{31} \\ \mathbf{a}_{32} \\ \mathbf{a}_{33} \\ \mathbf{a}_{34} \\ \mathbf{a}_{41} \\ \mathbf{a}_{42} \\ \mathbf{a}_{43} \\ \mathbf{a}_{41} \\ \mathbf{a}_{42} \\ \mathbf{a}_{43} \\ \mathbf{a}_{41} \\ \mathbf{a}_{42} \\ \mathbf{a}_{43} \\ \mathbf{a}_{31} \\ \mathbf{a}_{32} \\ \mathbf{a}_{33} \\ \mathbf{a}_{34} \\ \mathbf{a}_{41} \\ \mathbf{a}_{42} \\ \mathbf{a}_{43} \\ \mathbf{a}_{41} \\ \mathbf{a}_{41} \\ \mathbf{a}_{42} \\ \mathbf{a}_{43} \\ \mathbf{a}_{34} \\ \mathbf{a}_{31} \\ \mathbf{a}_{32} \\ \mathbf{a}_{33} \\ \mathbf{a}_{34} \\ \mathbf{a}_{$$

2nd Method

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

Row number always 1 2 3 4 sequence to all the terms values $a_{1*}a_{2*}a_{3*}a_{4*}$

As for the column numbers:

The red product terms have to be opposite sign (multiply by minus)

3rd Method

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

$$=a_{11}a_{22}a_{33}a_{44}-a_{11}a_{22}a_{34}a_{43}+a_{12}a_{23}a_{34}a_{41}-a_{12}a_{23}a_{32}a_{44}+a_{13}a_{24}a_{31}a_{42}\\-a_{13}a_{24}a_{32}a_{41}+a_{14}a_{21}a_{32}a_{43}-a_{14}a_{21}a_{33}a_{42}-a_{13}a_{22}a_{31}a_{44}+a_{13}a_{22}a_{34}a_{41}\\-a_{12}a_{21}a_{34}a_{43}+a_{12}a_{21}a_{33}a_{44}-a_{11}a_{24}a_{33}a_{42}+a_{11}a_{24}a_{32}a_{43}-a_{14}a_{23}a_{32}a_{41}\\+a_{14}a_{23}a_{31}a_{42}+a_{11}a_{23}a_{34}a_{42}-a_{11}a_{23}a_{32}a_{44}+a_{12}a_{24}a_{31}a_{43}-a_{12}a_{24}a_{33}a_{41}\\+a_{13}a_{21}a_{32}a_{44}-a_{13}a_{21}a_{34}a_{42}+a_{14}a_{22}a_{33}a_{41}-a_{14}a_{22}a_{31}a_{43}$$

$$\begin{vmatrix} 2 & 6 & 2 & 2 \\ 2 & 5 & 2 & 2 \\ 1 & 3 & 8 & 9 \\ 1 & 3 & 2 & -3 \end{vmatrix} = 2 \begin{vmatrix} 1 & 3 & 1 & 1 \\ 2 & 5 & 2 & 2 \\ 1 & 3 & 8 & 9 \\ 1 & 3 & 2 & -3 \end{vmatrix} R_2 - 2R_1$$

$$= 2(7) \begin{vmatrix} 1 & 3 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & \frac{8}{7} \\ 0 & 0 & 1 & -4 \end{vmatrix}$$

$$= 14 \begin{vmatrix} 1 & 3 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & \frac{8}{7} \\ 0 & 0 & 1 & -4 \end{vmatrix} R_4 - R_3$$

$$= 14 \begin{vmatrix} 1 & 3 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & \frac{8}{7} \\ 0 & 0 & 0 & -\frac{36}{7} \end{vmatrix}$$

$$= 14(1)(-1)(1)(-\frac{36}{7})$$

$$= 72 \begin{vmatrix} 1 & 3 & 1 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -\frac{36}{7} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{vmatrix} =$$

 $a_{11}a_{22}a_{33}a_{44}a_{55} + a_{11}a_{22}a_{34}a_{45}a_{53} + a_{11}a_{22}a_{35}a_{43}a_{54} + a_{11}a_{23}a_{35}a_{44}a_{52} + a_{11}a_{23}a_{32}a_{45}a_{54} + a_{11}a_{23}a_{34}a_{42}a_{55}$ $-a_{11}a_{22}a_{33}a_{45}a_{54} - a_{11}a_{22}a_{34}a_{43}a_{55} - a_{11}a_{22}a_{35}a_{44}a_{53} - a_{11}a_{23}a_{35}a_{42}a_{54} - a_{11}a_{23}a_{32}a_{44}a_{55} - a_{11}a_{23}a_{34}a_{45}a_{52}$ $+a_{11}a_{24}a_{32}a_{43}a_{55} + a_{11}a_{24}a_{33}a_{45}a_{52} + a_{11}a_{24}a_{35}a_{42}a_{53} + a_{11}a_{25}a_{34}a_{43}a_{52} + a_{11}a_{25}a_{32}a_{44}a_{53} + a_{11}a_{25}a_{33}a_{42}a_{54}$ $-a_{11}a_{24}a_{32}a_{45}a_{53} - a_{11}a_{24}a_{33}a_{42}a_{55} - a_{11}a_{24}a_{35}a_{43}a_{52} - a_{11}a_{25}a_{34}a_{42}a_{53} - a_{11}a_{25}a_{32}a_{43}a_{54} - a_{11}a_{25}a_{33}a_{44}a_{52}$ $+a_{12}a_{21}a_{35}a_{44}a_{53} + a_{12}a_{21}a_{33}a_{45}a_{54} + a_{12}a_{21}a_{34}a_{43}a_{55} + a_{12}a_{23}a_{31}a_{44}a_{55} + a_{12}a_{23}a_{34}a_{45}a_{51} + a_{12}a_{23}a_{35}a_{41}a_{54}$ $-a_{12}a_{21}a_{35}a_{43}a_{54} - a_{12}a_{21}a_{33}a_{44}a_{55} - a_{12}a_{21}a_{34}a_{45}a_{53} - a_{12}a_{23}a_{31}a_{45}a_{54} - a_{12}a_{23}a_{34}a_{41}a_{55} - a_{12}a_{23}a_{35}a_{44}a_{51}$ $+a_{12}a_{24}a_{35}a_{43}a_{51} + a_{12}a_{24}a_{31}a_{45}a_{53} + a_{12}a_{24}a_{33}a_{41}a_{55} + a_{12}a_{25}a_{31}a_{43}a_{54} + a_{12}a_{25}a_{33}a_{44}a_{51} + a_{12}a_{25}a_{34}a_{41}a_{53}$ $-a_{12}a_{24}a_{35}a_{41}a_{53} - a_{12}a_{24}a_{31}a_{43}a_{55} - a_{12}a_{24}a_{33}a_{45}a_{51} - a_{12}a_{25}a_{31}a_{44}a_{53} - a_{12}a_{25}a_{33}a_{41}a_{54} - a_{12}a_{25}a_{34}a_{43}a_{51}$ $+a_{13}a_{21}a_{32}a_{44}a_{55} + a_{13}a_{21}a_{34}a_{45}a_{52} + a_{13}a_{21}a_{35}a_{42}a_{54} + a_{13}a_{22}a_{35}a_{44}a_{51} + a_{13}a_{22}a_{31}a_{45}a_{54} + a_{13}a_{22}a_{34}a_{41}a_{55}$ $-a_{13}a_{21}a_{32}a_{45}a_{54} - a_{13}a_{21}a_{34}a_{42}a_{55} - a_{13}a_{21}a_{35}a_{44}a_{52} - a_{13}a_{22}a_{35}a_{41}a_{54} - a_{13}a_{22}a_{31}a_{44}a_{55} - a_{13}a_{22}a_{34}a_{45}a_{51}$ $+a_{13}a_{24}a_{31}a_{42}a_{55} + a_{13}a_{24}a_{32}a_{45}a_{51} + a_{13}a_{24}a_{35}a_{41}a_{52} + a_{13}a_{25}a_{31}a_{44}a_{52} + a_{13}a_{25}a_{32}a_{41}a_{54} + a_{13}a_{25}a_{34}a_{42}a_{51}$ $-a_{13}a_{24}a_{31}a_{45}a_{52} - a_{13}a_{24}a_{32}a_{41}a_{55} - a_{13}a_{24}a_{35}a_{42}a_{51} - a_{13}a_{25}a_{31}a_{42}a_{54} - a_{13}a_{25}a_{32}a_{44}a_{51} - a_{13}a_{25}a_{34}a_{41}a_{52}$ $+a_{14}a_{21}a_{35}a_{43}a_{52} + a_{14}a_{21}a_{32}a_{45}a_{53} + a_{14}a_{21}a_{33}a_{42}a_{55} + a_{14}a_{22}a_{31}a_{43}a_{55} + a_{14}a_{22}a_{33}a_{45}a_{51} + a_{14}a_{22}a_{35}a_{41}a_{53}$ $-a_{14}a_{21}a_{35}a_{42}a_{53} - a_{14}a_{21}a_{32}a_{43}a_{55} - a_{14}a_{21}a_{33}a_{45}a_{52} - a_{14}a_{22}a_{31}a_{45}a_{53} - a_{14}a_{22}a_{33}a_{41}a_{55} - a_{14}a_{22}a_{35}a_{43}a_{51}$ $+a_{14}a_{23}a_{35}a_{42}a_{51} + a_{14}a_{23}a_{31}a_{45}a_{52} + a_{14}a_{23}a_{32}a_{41}a_{55} + a_{14}a_{25}a_{31}a_{42}a_{53} + a_{14}a_{25}a_{32}a_{43}a_{51} + a_{14}a_{25}a_{33}a_{41}a_{52}$ $-a_{14}a_{23}a_{35}a_{41}a_{52} - a_{14}a_{23}a_{31}a_{42}a_{55} - a_{14}a_{23}a_{32}a_{45}a_{51} - a_{14}a_{25}a_{31}a_{43}a_{52} - a_{14}a_{25}a_{32}a_{41}a_{53} - a_{14}a_{25}a_{33}a_{42}a_{51}$

$$+a_{15}a_{21}a_{32}a_{43}a_{54} + a_{15}a_{21}a_{33}a_{44}a_{52} + a_{15}a_{21}a_{34}a_{42}a_{53} + a_{15}a_{22}a_{34}a_{43}a_{51} + a_{15}a_{22}a_{33}a_{41}a_{54} + a_{15}a_{22}a_{31}a_{44}a_{53} \\ -a_{15}a_{21}a_{32}a_{44}a_{53} - a_{15}a_{21}a_{33}a_{42}a_{54} - a_{15}a_{21}a_{34}a_{43}a_{52} - a_{15}a_{22}a_{34}a_{41}a_{53} - a_{15}a_{22}a_{33}a_{44}a_{51} - a_{15}a_{22}a_{31}a_{43}a_{54} \\ +a_{15}a_{23}a_{31}a_{42}a_{54} + a_{15}a_{23}a_{32}a_{44}a_{51} + a_{15}a_{23}a_{34}a_{41}a_{52} + a_{15}a_{24}a_{33}a_{42}a_{51} + a_{15}a_{24}a_{31}a_{43}a_{52} + a_{15}a_{24}a_{32}a_{41}a_{53} \\ -a_{15}a_{23}a_{31}a_{44}a_{52} - a_{15}a_{23}a_{32}a_{41}a_{54} - a_{15}a_{23}a_{34}a_{42}a_{51} - a_{15}a_{24}a_{33}a_{41}a_{52} - a_{15}a_{24}a_{31}a_{42}a_{53} - a_{15}a_{24}a_{32}a_{43}a_{51} \\ -a_{15}a_{23}a_{31}a_{44}a_{52} - a_{15}a_{23}a_{32}a_{41}a_{54} - a_{15}a_{23}a_{34}a_{42}a_{51} - a_{15}a_{24}a_{33}a_{41}a_{52} - a_{15}a_{24}a_{31}a_{42}a_{53} - a_{15}a_{24}a_{32}a_{43}a_{51} \\ -a_{15}a_{23}a_{31}a_{44}a_{52} - a_{15}a_{23}a_{32}a_{41}a_{54} - a_{15}a_{23}a_{34}a_{42}a_{51} - a_{15}a_{24}a_{33}a_{41}a_{52} - a_{15}a_{24}a_{31}a_{42}a_{53} - a_{15}a_{24}a_{32}a_{43}a_{51} \\ -a_{15}a_{24}a_{31}a_{42}a_{52} - a_{15}a_{24}a_{31}a_{42}a_{52} - a_{15}a_{24}a_{32}a_{43}a_{51} \\ -a_{15}a_{24}a_{31}a$$

The Row subscript (first) always will be $123 \cdots n$

$$a_{1*}a_{2*}a_{3*}\cdots a_{1*}a_{2*}a_{3*}\cdots a_{1*}a_{2*}a_{3*}\cdots -a_{1*}a_{2*}a_{3*}\cdots -a_{1*}a_{2*}a_{3*}\cdots -a_{1*}a_{2*}a_{3*}\cdots$$

It is the combination of the second subscript number (column). a_{ij}

$$a_{1*}a_{2*}a_{3*}a_{4*}\cdots a_{n*}$$
 where ***...* the ways that we can arrange 1 trough n
****: 1234 1324 1423 2134 2314 2413
1243 1342 1432 2143 2341 2431

First write the first sequence, then when you switch the last 2 numbers (34 to 43) change the sign to negative. However, see below for more when you have to do that.

***:
$$\begin{vmatrix} 123 & 213 & 312 \\ 132 & 231 & 321 \end{vmatrix} = 3! \text{ terms}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11}a_{22}a_{33} & +a_{12}a_{23}a_{31} & +a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} & -a_{12}a_{21}a_{33} & -a_{13}a_{22}a_{31} \end{vmatrix}$$

Change sign when the subscript

*****: 12345 12453 12534 13245 13452 13524 14235 14325 14523 15234 15342 15423 12544 12435 12435 12543 13254 13452 13542 14253 14352 14532 14243 15324 15432

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{vmatrix} =$$

$a_{11}a_{22}a_{33}a_{44}a_{55}$	$+a_{12}a_{21}a_{35}a_{44}a_{53}$ starts 2-1, down
$-a_{11}a_{22}a_{33}a_{45}a_{54}$	$a_{12}a_{21}a_{35}a_{43}a_{54}$
$+a_{11}a_{22}a_{34}a_{45}a_{53}$	$+a_{12}a_{21}a_{34}a_{43}a_{55}$
$-a_{11}^{a}_{22}^{a}_{34}^{a}_{45}^{}$	$-a_{12}a_{21}a_{34}a_{45}a_{53}$
$+a_{11}a_{22}a_{35}a_{43}a_{54}$	$+a_{12}a_{21}a_{33}a_{45}a_{54}$
$-a_{11}^{a}_{22}^{a}_{35}^{a}_{44}^{a}_{53}^{}$	$-a_{12}a_{21}a_{33}a_{44}a_{55}$
$+a_{11}a_{23}a_{35}a_{44}a_{52}$	$+a_{12}a_{23}a_{34}a_{45}a_{51}$
$-a_{11}a_{23}a_{35}a_{42}a_{54}$	$-a_{12}a_{23}a_{34}a_{41}a_{55}$
$+a_{11}a_{23}a_{32}a_{45}a_{54}$	$+a_{12}a_{23}a_{35}a_{41}a_{54}$
$-a_{11}a_{23}a_{32}a_{44}a_{55}$	$-a_{12}a_{23}a_{35}a_{44}a_{51}$
$+a_{11}a_{23}a_{34}a_{42}a_{55}$	$+a_{12}a_{23}a_{31}a_{44}a_{55}$
$-a_{11}a_{23}a_{34}a_{45}a_{52}$	$-a_{12}a_{23}a_{31}a_{45}a_{54}$
$+a_{11}a_{24}a_{32}a_{43}a_{55}$	$+a_{12}a_{24}a_{33}a_{41}a_{55}$
$-a_{11}a_{24}a_{32}a_{45}a_{53}$	$-a_{12}a_{24}a_{33}a_{45}a_{51}$
$+a_{11}a_{24}a_{33}a_{45}a_{52}$	$+a_{12}a_{24}a_{35}a_{43}a_{51}$
$-a_{11}a_{24}a_{33}a_{42}a_{55}$	$-a_{12}a_{24}a_{35}a_{41}a_{53}$
$+a_{11}a_{24}a_{35}a_{42}a_{53}$	$+a_{12}a_{24}a_{31}a_{45}a_{53}$
$-a_{11}a_{24}a_{35}a_{43}a_{52}$	$-a_{12}a_{24}a_{31}a_{43}a_{55}$
$+a_{11}a_{25}a_{34}a_{43}a_{52}$	$+a_{12}a_{25}a_{31}a_{43}a_{54}$
$-a_{11}a_{25}a_{34}a_{42}a_{53}$	$-a_{12}a_{25}a_{31}a_{44}a_{53}$
$+a_{11}a_{25}a_{32}a_{44}a_{53}$	$+a_{12}a_{25}a_{33}a_{44}a_{51}$
$-a_{11}a_{25}a_{32}a_{43}a_{54}$	$-a_{12}a_{25}a_{33}a_{41}a_{54}$
$+a_{11}a_{25}a_{33}a_{42}a_{54}$	$+a_{12}a_{25}a_{34}a_{41}a_{53}$
$-a_{11}a_{25}a_{33}a_{44}a_{52}$	$-a_{12}a_{25}a_{34}a_{43}a_{51}$

F		
$+a_{11}a_{22}a_{33}a_{44}a_{55}$	$+a_{11}a_{22}a_{33}a_{44}a_{55}$	$+a_{11}^{a}_{22}^{a}_{33}^{a}_{44}^{a}_{55}$
$-a_{11}a_{22}a_{33}a_{45}a_{54}$	$-a_{11}a_{22}a_{33}a_{45}a_{54}$	$-a_{11}a_{22}a_{33}a_{45}a_{54}$
$+a_{11}a_{22}a_{34}a_{45}a_{53}$	$+a_{11}a_{22}a_{34}a_{45}a_{53}$	$+a_{11}a_{22}a_{34}a_{45}a_{53}$
$-a_{11}a_{22}a_{34}a_{43}a_{55}$	$-a_{11}a_{22}a_{34}a_{43}a_{55}$	$-a_{11}a_{22}a_{34}a_{43}a_{55}$
$+a_{11}a_{22}a_{35}a_{43}a_{54}$	$+a_{11}a_{22}a_{35}a_{43}a_{54}$	$+a_{11}a_{22}a_{35}a_{43}a_{54}$
$-a_{11}a_{22}a_{35}a_{44}a_{53}$	$-a_{11}a_{22}a_{35}a_{44}a_{53}$	$-a_{11}a_{22}a_{35}a_{44}a_{53}$
$+a_{11}^{a_{23}^{a_{35}^{a_{44}^{a_{52}^{}}}$	$+a_{11}^{a}_{23}^{a}_{35}^{a}_{}^{a}_{52}$	$+a_{11}a_{23}a_{35}a_{44}a_{52}$
$-a_{11}a_{23}a_{35}a_{42}a_{54}$	$-a_{11}a_{23}a_{35}a_{42}a_{54}$	$-a_{11}a_{23}a_{35}a_{42}a_{54}$
$+a_{11}a_{23}a_{32}a_{45}a_{54}$	$+a_{11}a_{23}a_{32}a_{45}a_{54}$	$+a_{11}a_{23}a_{32}a_{45}a_{54}$
$-a_{11}a_{23}a_{32}a_{44}a_{55}$	$-a_{11}a_{23}a_{32}a_{44}a_{55}$	$-a_{11}a_{23}a_{32}a_{44}a_{55}$
$+a_{11}a_{23}a_{34}a_{42}a_{55}$	$+a_{11}a_{23}a_{34}a_{42}a_{55}$	$+a_{11}a_{23}a_{34}a_{42}a_{55}$
$-a_{11}a_{23}a_{34}a_{45}a_{52}$	$-a_{11}a_{23}a_{34}a_{45}a_{52}$	$-a_{11}a_{23}a_{34}a_{45}a_{52}$
$+a_{11}a_{24}a_{32}a_{43}a_{55}$	$+a_{11}^{a}a_{24}^{a}a_{32}^{a}a_{43}^{a}a_{55}$	$+a_{11}^{a}_{24}^{a}_{32}^{a}_{43}^{a}_{55}^{a}$
$-a_{11}a_{24}a_{32}a_{45}a_{53}$	$-a_{11}a_{24}a_{32}a_{45}a_{53}$	$-a_{11}a_{24}a_{32}a_{45}a_{53}$
$+a_{11}a_{24}a_{33}a_{45}a_{52}$	$+a_{11}^{}a_{24}^{}a_{33}^{}a_{45}^{}a_{52}^{}$	$+a_{11}a_{24}a_{33}a_{45}a_{52}$
$-a_{11}a_{24}a_{33}a_{42}a_{55}$	$-a_{11}a_{24}a_{33}a_{42}a_{55}$	$-a_{11}a_{24}a_{33}a_{42}a_{55}$
$+a_{11}a_{24}a_{35}a_{42}a_{53}$	$+a_{11}a_{24}a_{35}a_{42}a_{53}$	$+a_{11}a_{24}a_{35}a_{42}a_{53}$
$-a_{11}a_{24}a_{35}a_{43}a_{52}$	$-a_{11}a_{24}a_{35}a_{43}a_{52}$	$-a_{11}a_{24}a_{35}a_{43}a_{52}$
$+a_{11}a_{25}a_{34}a_{43}a_{52}$	$+a_{11}a_{25}a_{34}a_{43}a_{52}$	$+a_{11}a_{25}a_{34}a_{43}a_{52}$
$-a_{11}a_{25}a_{34}a_{42}a_{53}$	$-a_{11}a_{25}a_{34}a_{42}a_{53}$	$-a_{11}a_{25}a_{34}a_{42}a_{53}$
$+a_{11}a_{25}a_{32}a_{44}a_{53}$	$+a_{11}^{}a_{25}^{}a_{32}^{}a_{44}^{}a_{53}^{}$	$+a_{11}a_{25}a_{32}a_{44}a_{53}$
$-a_{11}a_{25}a_{32}a_{43}a_{54}$	$-a_{11}a_{25}a_{32}a_{43}a_{54}$	$-a_{11}a_{25}a_{32}a_{43}a_{54}$
$+a_{11}^{a_{25}^{a_{33}^{a_{42}^{a_{54}^{}}}$	$+a_{11}a_{25}a_{33}a_{42}a_{54}$	$+a_{11}a_{25}a_{33}a_{42}a_{54}$
$-a_{11}a_{25}a_{33}a_{44}a_{52}$	$-a_{11}a_{25}a_{33}a_{44}a_{52}$	$-a_{11}a_{25}a_{33}a_{44}a_{52}$

Graphically

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ \end{bmatrix} \xrightarrow{+a_{11}a_{22}a_{33}a_{44}} + a_{11}a_{23}a_{34}a_{42} + a_{11}a_{24}a_{32}a_{43} + a_{11}a_{24}a_{32}a_{43} + a_{11}a_{24}a_{32}a_{43} + a_{11}a_{24}a_{32}a_{43} + a_{11}a_{24}a_{32}a_{44} + a_{11}a_{24}a_{32}a_{43} + a_{11}a_{24}a_{32}a_{43} + a_{11}a_{24}a_{32}a_{43} + a_{11}a_{24}a_{32}a_{44} + a_{11}a_{24}a_{32}a_{44} + a_{11}a_{24}a_{32}a_{44} + a_{11}a_{24}a_{32}a_{44} + a_{12}a_{24}a_{33}a_{41} + a_{12}a_{21}a_{34}a_{43} + a_{12}a_{21}a_{34}a_{43} + a_{12}a_{21}a_{34}a_{43} + a_{12}a_{21}a_{34}a_{44} + a_{13}a_{21}a_{32}a_{44} + a_{13}a_{21}a_{22}a_{31}a_{44} + a_{13}a_{21}a_{32}a_{31}a_{44} + a_{13}a_{21}a_{32}a_{31}a_{44} + a_{13}a_{21}a_{32}a_{31}a_{44} + a_{13}a_{21}a_{32}a_{31}a_{44} + a_{13}a_{21}a_{32}a_{31}a_{44} + a_{13}a_{21}a_{32}a_{31}a_{44} + a_{13}a_{21}a_{22}a_{22}a_{23}a_{24} + a_$$