Université Mohamed khider Biskra

Faculté des sciences exactes et sciences de la nature et de vie Département de mathématiques

Module: Martingale à temps discret

Année:2019/2020

TD2. Martingale à temps discret

Exercice 1:(Changement de tribus)

- 1) Soit $(X_n)_{n\geq 1}$ une sous-martingale pour la filtration $(\mathcal{F}_n)_{n\geq 1}$. Montrer que $(X_n)_{n\geq 1}$ est aussi une sous-martingale pour la filtration canonique $(\sigma(X_1,X_2,...,X_n))_{n\geq 1}$.
- 2) Que dire d'une martingale (resp. d'une sous-martingale, d'une sur-martingale) par rapport à une filtration constante?

Exercice2:(Exemples de Martinguales)

1-Soit $(X_n)_{n\geq 1}$ une suite de v.a.r.indépendantes, de même espérance m finie. Pour tout $n\geq 1$, on pose $S_n=X_1+\ldots+X_n$. Montrer $(S_n)_{n\geq 1}$ est une sous-martingale adapté à la filtration naturelle de $(X_n)_{n\geq 1}$, (resp. une martingale, une sur-martingale) si m>0,(resp. m=0, m<0).

2-Soit X une v.a.r. telle que $\mathbb{E}(|X|) < +\infty$ et soit $(\mathcal{F}_n)_{n\geq 1}$ une suite croissante de sous tribus de \mathcal{F} . Montrer que $(X_n)_{n\geq 1}$ défini par $X_n = E(X/\mathcal{F}_n)$ est une martingale (une telle martingale est dite martingale régulière ou fermée).

Exercice 3: Soient $(X_n)_{n\geq 1}$ et $(Y_n)_{n\geq 1}$ deux sous-martingales.

- 1) Montrere que $(|X_n|)_{n>1}$ est une sous-martingale.
- 2) Si $\forall n \geq 1$, $\mathbb{E}(X_n^2) < -\infty$, montrer que $(X_n^2)_{n \geq 1}$ est une sous-martingales.
- 3) Montrere que $(X_n \wedge Y_n)_{n\geq 1}$ est une sous-martingale et que et $(X_n \vee Y_n)_{n\geq 1}$ est une sur-martingale.

Exercice 4: Soit $(X_n)_{n\geq 0}$ une sur-martingale pour la filtration $(\mathcal{F}_n)_{n\geq 0}$ et $(\beta_n)_{n\geq 1}$ une suite de variables aléatoires positives et bornée, β_n étant \mathcal{F}_{n-1} -mesurable pour $n\geq 1$ et β_0 constante. On pose Z_0 , pour tout $n\geq 1$, $Z_n=X_n-X_{n-1}$ et $Y_n=\beta_0Z_0+\ldots+\beta_nZ_n$. Montrer que la suite $(Y_n)_{n\geq 0}$ est une martingale.

Exercice 5:(Martingale équidistribuée) Soit $(X_n)_{n\geq 1}$ une sous-martingale telle que toutes les v.a.r. X_n aient même loi.

- 1-Montrer que $(X_n)_{n\geq 1}$ est une martingale.
- 2-Montrer que, pour tout réel a, $(X_n \wedge a)_{n\geq 1}$ et $(X_n \vee a)_{n\geq 1}$ sont des martingales. (On note \wedge et \vee pour inf et sup.)
- 3-En déduire que, si n > m pour tout réel a, sur l'ensemble $\{X_m \ge a\}$, X_n est p.s supérieur ou égale à a.
- 4- En déduire que $X_1 = \dots = X_n = \dots$ P-p.s.