A note on intersections of compact collections of open sets

Martín H. Escardó

10th August 2000, version of 11th August 2000

A topological space is *core-compact* iff each neighbourhood V of a point x contains a neighbourhood U of x with the property that every open cover of V has a finite subcover of U. This is equivalent to saying that its lattice of open sets is continuous in the sense of Dana Scott [2]. For example, locally compact Hausdorff spaces are core-compact. We prove the following.

Let Q be a collection of open sets of a core-compact space X. If Q is compact in the Scott topology of $\mathcal{O} X$, then $\bigcap Q$ is open.

We have never seen a formulation of this fact, but it ought to be known. Our proof is by abstract nonsense. As a preparation, we recall some basic definitions and facts. A topological space X is exponential iff the functor $X \times (-)$ has a right adjoint $(-)^X$. The exponential spaces are characterized precisely as the core-compact spaces [1]. If X is an exponential space and Y is an arbitrary space, the topology of Y^X is the Isbell topology, which is finer than the compact-open topology (but not always strictly finer). The Sierpinski space, denoted by $\mathbb S$, is the two-point lattice $\{0,1\}$ under the Scott topology. Thus, $\{1\}$ is the only non-trivial open set and hence the continuous maps of a space X into $\mathbb S$ are the characteristic functions of opens of X. For any exponentiable space X, the function space $\mathbb S^X$ is homeomorphic to the lattice $\mathcal O X$ of open sets under the Scott topology. We are now ready to prove the proposition.

PROOF The evaluation map $(p,x)\mapsto p(x):\mathbb{S}^X\times X\to\mathbb{S}$, being the transpose of the identity function $\mathbb{S}^X\to\mathbb{S}^X$, is continuous. Hence so are evaluation $X\times\mathbb{S}^X\to\mathbb{S}$ and its transpose $X\to\mathbb{S}^X$. Identifying \mathbb{S}^X with $\mathcal{O}\,X$ under the Scott topology, this gives a continuous map $N:X\to\mathbb{S}^{\mathcal{O}\,X}$ with N(x)(U)=1 iff $x\in U$. Now, the set $\mathcal{V}=\{P\in\mathbb{S}^{\mathcal{O}\,X}\mid \mathcal{Q}\subseteq P^{-1}\{1\}\}$ is open (in the compact-open topology), and $x\in N^{-1}(\mathcal{V})$ iff $N(x)\in\mathcal{V}$ iff N(x)(U)=1 for all $U\in\mathcal{Q}$ iff $x\in U$ for all $u\in \mathcal{O}$ iff $u\in \mathcal{O}$. Therefore $u\in \mathcal{O}$ 0. Therefore $u\in \mathcal{O}$ 1, which shows that it is open.

References

- [1] B.J. Day and G.M. Kelly. On topological quotient maps preserved by pullbacks and products. *Mathematical Proceedings of the Cambridge Philosophical Society*, 67:553–558, 1970.
- [2] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. A Compendium of Continuous Lattices. Springer-Verlag, 1980.

Martín H. Escardó School of Computer Science University of St Andrews, North Haugh St Andrews, Fife KY16 9SS, Scotland

mhe@dcs.st-and.ac.uk
www.dcs.st-and.ac.uk/~mhe/

New address from September 2000: School of Computer Science, The University of Birmingham, Birmingham B15 2TT, England