Assignment 2

Marks Total marks for Assignment 2: 68

- [5] 1. Neatly sketch the curve with the vector equation $\vec{r}(t) = \langle -t^2, 4, t \rangle$. Identify any special points on its graph and indicate with an arrow the orientation of this curve.
- [4] 2. At what point(s) (x, y, z) does the helix $\vec{r}(t) = \langle \sin t, \cos t, t \rangle$ intersect the sphere $x^2 + y^2 + z^2 = 5$? Show all work and give an exact answer.
- [4] 3. Find a single vector function, in simplified form, that represents the curve of intersection of the two surfaces $y^2 z^2 = x 2$ and $y^2 + z^2 = 9$.
 - 4. Given $\vec{r}(t) = \langle e^t \sin t, e^t \cos t, 1 \rangle$, $t \ge 0$, find, in simplified form,
- [5] a) The velocity function, the acceleration function and the speed function at time *t* .
- [3] b) The exact arc length of the curve for $0 \le t \le \ln(4)$.
- [5] c) A re-parametrization of the curve in terms of its arc length.
- [5] 5. Find parametric equations for the tangent line to the curve $\vec{r}(t) = \langle t^2, \ln(2t), t \rangle$ when $t = \frac{1}{2}$.
 - 6. Given $\vec{r}(t) = \langle \cos(\pi t), \sin(\pi t), t \rangle$, find exactly
- [5] a) The unit tangent vector at t = 2.
- [5] b) The unit normal vector at t = 2.
- [3] c) The curvature at t = 2.

A2-2 Assignment File

[15] 7. Determine the exact tangential component vector $a_T \vec{T}$ and the exact normal component vector $a_N \vec{N}$ of acceleration for the curve $\vec{r}(t) = \left\langle 2t^2, \ 2t - 3 \right\rangle$ at t = 2 and verify that $\vec{a} = a_T \vec{T} + a_N \vec{N}$ at t = 2.

- 8. Let $\vec{s}(t) = \langle 2, e^{2t}, 1 \rangle$.
- [5] a) Given $f(t) = \vec{r}(t) \cdot \vec{s}(t)$, where $\vec{r}(3) = \langle -1, 9, 9 \rangle$, $\vec{r}'(3) = \langle 0, 6, 3 \rangle$, find f'(3) exactly.
- [4] b) Find exactly: $\int_0^2 \vec{s}(t) dt$