

ggplot2: Going further in the tidyverse

Michael Friendly Psych 6135

https://friendly.github.io/6135/

A larger view: Data science

- Data science treats statistics & data visualization as parts of a larger process
 - Data import: text files, data bases, web scraping, ...
 - Data cleaning → "tidy data"
 - Model building & visualization
 - Reproducible report writing

.

The tidyverse of R packages

The tidyverse expands

Topics

- Data import / export
- Data wrangling: getting your data into shape
 - dplyr & tidyr
 - pipes: %>%
 - grouping & summarizing
 - Example: NASA data on solar radiation
- Working with models: broom
 - Example: gapminder data
- Nice tables in R
- Bootstrapping

5

Ready for some heavy lifting?

6

Data Import / Export

- The readr package is the modern, tidy way to import and export data
 - Tabular data:
 - comma delimited (read.csv)
 - any other delimiters (";" = read.csv2; <tab> = read_tsv)
 - Data types:
 - specify column types or let functions guess
- Other data formats

package	Data types
haven	SAS, SPSS, Stata
readxl	Excel files (.xls and xlsx)
DBI	Databases (SQL,)
rvest	HTML (web scraping)

Data Import: RStudio

Data transformation tools

Some common data types can be messy when imported. Tidy tools are there to help

dates/times	lubridate	read dates/times in various formats; extract components	lubridate
factors	forcats	Change order of levels, drop levels, combine levels	forçals
strings	stringr	detect matches, subset, replace	stringr

2:01

12

lubridate: Dates & times

PARSE DATE-TIMES (Convert strings or numbers to date-times)

- 1. Identify the order of the year (y), month (m), day (d), hour (h), minute (m) and second (s) elements in your data.
- 2. Use the function below whose name replicates the order. Each accepts a wide variety of input formats.

ymd_hms(), ymd_hm(), ymd_h(). ymd_hms("2017-11-28T14:02:00") 2017-11-28T14:02:00

ydm_hms(), ydm_hm(), ydm_h(). 2017-22-12 10:00:00 ydm_hms("2017-22-12 10:00:00")

mdy_hms(), mdy_hm(), mdy_h(). mdy_hms("11/28/2017 1:02:03") 11/28/2017 1:02:03

1 Jan 2017 23:59:59 dmy_hms(), dmy_hm(), dmy_h(). dmy_hms("1 Jan 2017 23:59:59")

ymd(), ydm(). ymd(20170131) 20170131

mdy(), myd(). mdy("July 4th, 2000") July 4th, 2000

4th of July '99 dmy(), dym(). dmy("4th of July '99") 2001: 03 yq() Q for quarter. yq("2001: Q3")

> hms::hms() Also lubridate::hms(), hm() and ms(), which return periods.* hms::hms(sec = 0, min= 1,

parse dates in various formats

ymd("20210604") #>[1] "2021-06-04"

mdy("06-04-2021") #>[1] "2021-06-04" dmy("04/06/2021")

#>[1] "2021-06-04"

extract date components

minard_bday <- ymd("1781-03-27")

year(minard bday)

#>[1] 1781

month.name[month(minard_bday)]

#> [1] "March"

date arithmetic: how old is Minard? year(today()) - year(minard_bday)

#>[1]241

Learn more at: http://lubridate.tidyverse.org

forcats: Working with factors

R represents categorical variables as factors, useful for analysis (e.g., ANOVA) In graphics, we often want to recode levels or reorder them

Learn more at: http://forcats.tidyverse.org

Tidy tools: overview

Tidy operations

Reshape wide to long synonym: tidyr::pivot longer() Reshape long to wide synonym: tidyr::pivot longer()

Separate parts of a value into several variables

Unite several columns into one. Join related variables into one

to create an ordered factor or numeric version

Data wrangling with dplyr & tidyr

What is Tidy Data?

A dataset is said to be tidy if:

- observations are in rows
- variables are in columns
- each value is in its own cell.

A "messy" dataset: Survey of income by religion from Pew Research

- Values of income are in separate columns, not one variable
- Column headers are values, not variable names
- Cell values are frequencies--- implicit, not explicit

religion	<\$10k	\$10-20k	\$20-30k	\$30-40k	\$40-50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116

This organization is easy in Excel But, this makes data

analysis and graphing hard

Tidying: reshaping wide to long

We can tidy the data by reshaping from wide to long format using tidyr::gather()

```
value
                                                                                     columns
> pew <- read.delim(
  file = "http://stat405.had.co.nz/data/pew.txt",
  header = TRUE.
  stringsAsFactors = FALSE, check.names = FALSE)
                                                      >library(tidyr)
                                                        gather (pew1, "income", "frequency", 2:6)
> (pew1 <- pew[1:4, 1:6]) # small subset
                                                         religion income frequency
                                                         Agnostic
                                                                   <$10k
  religion <$10k $10-20k $20-30k $30-40k $40-50k
                                                         Atheist
                                                                   <$10k
                                                                                12
1 Agnostic 27
                     34
                             60
                                    81
                                             76
                                                         Buddhist
                                                                   <$10k
                             37
                                     52
                                             35
2 Atheist
                                                         Catholic
                                                                   <$10k
3 Buddhist
                     21
                             30
                                    34
                                             33
                                                         Agnostic $10-20k
                                                                                34
4 Catholic
            418
                            732
                                                                                27
                                                         Atheist $10-20k
                                                         Buddhist $10-20k
                                                                                21
                                                         Catholic $10-20k
                                                                               617
                                                         Agnostic $20-30k
                                                                                60
 Another solution, using reshape2::melt()
                                                      10 Atheist $20-30k
                                                                                37
                                                      11 Buddhist $20-30k
                                                      12 Catholic $20-30k
 > library(reshape2)
                                                      13 Agnostic $30-40k
                                                                                81
 > pew_tidy <- melt(
                                                      14 Atheist $30-40k
                                                                                52
     data = pew1,
                                                     15 Buddhist $30-40k
                                                                                34
     id = "religion",
                                                     16 Catholic $30-40k
                                                                               670
     variable.name = "income",
     value.name = "frequency"
                                                     NB: income is a character variable: we might want
```

Using pipes: %>%

R is a functional language

- This means that f(x) returns a value, as in y <- f(x)
- That value can be passed to another function: g(f(x))
- And so on: h(g(f(x)))

```
> x <- c(0.109, 0.359, 0.63, 0.996, 0.515, 0.142)
> exp(diff(log(x)))
[1] 3.29 1.75 1.58 0.52 0.28
```

This gets messy and hard to read, unless you break it down step by step

```
> # Compute the logarithm of `x`, calculate lagged differences,
> # return the exponential function of the result
> log(x)
[1] -2.216 -1.024 -0.462 -0.004 -0.664 -1.952
> diff(log(x))
                    #calculate lagged diffs
[1] 1.19 0.56 0.46 -0.66 -1.29
> exp(diff(log(x))) # convert back to original scale
[1] 3.29 1.75 1.58 0.52 0.28
```

Using pipes: %>%

• Pipes (%>%) change the syntax to make this easier

```
> # use pipes
> x %>% log() %>% diff() %>% exp()
[1] 3.29 1.75 1.58 0.52 0.28
```

- Basic rules
 - x %>% f() passes object on left hand side as first argument (or . argument) of function on right hand side
 - x %>% f() is the same as f(x)
 - x %>% f(y) is the same as f(x, y)
 - y %>% f(x, ., z) is the same as f(x, y, z)
 - x %<>% f () does the same, but assigns the result to x
 - Shortcut for x <- x %>% f()

18

>%

Using pipes: %>% ggplot()

For the Pew data, mutate income \rightarrow ordered factor and make a ggplot

```
pew1 %>%
gather("income", "frequency", 2:6) %>% # reshape
mutate(income = ordered(income, levels=unique(income))) %>% # make ordered
ggplot(aes(x=income, fill=religion)) + # plot
geom_bar(aes(weight=frequency)) # as freq bars
```

mutate() calculates or transforms column variables ordered(income) levels are now ordered appropriately.

The result is piped to ggplot()

. .

Tidying: separate() and unite()

It sometimes happens that several variables are crammed into one column, or parts of one variable are split across multiple columns

For example, for the pew data, we might want separate income into low & high

```
pew_long %>%
  mutate(inc = gsub("[\\$k]", "", income)) %>%
  mutate(inc = gsub("<", "0-", inc)) %>%
  separate(inc, c("low", "high"), "-") %>%
  head()
```

religion	income fre	quency lo	w hi	.gh	
1 Agnostic	<\$10k	27	0	10	
2 Atheist	<\$10k	12	0	10	
3 Buddhist	<\$10k	27	0	10	
4 Catholic	<\$10k	418	0	10	
5 Agnostic	\$10-20k	34	10	20	
6 Atheist	\$10-20k	27	10	20	

dplyr: Subset observations (rows)

dplyr implements a variety of verbs to select a subset of observations from a dataset

dplyr::filter(iris, Sepal.Length > 7)

Extract rows that meet logical criteria.

dplyr::distinct(iris)

Remove duplicate rows.

dplyr::sample_frac(iris, 0.5, replace = TRUE)

Randomly select fraction of rows.

dplyr::sample_n(iris, 10, replace = TRUE)

Randomly select n rows.

dplyr::slice(iris, 10:15)

Select rows by position.

dplyr::top_n(storms, 2, date)

Select and order top n entries (by group if grouped data).

In a pipe expression, omit the dataset name

iris %>% filter(Sepal.Length >7)
iris %>% filter(Species=="setosa")

iris %>% sample_n(10)
iris %>% slice(1:50) # setosa

dplyr: Subset variables (columns)

dplyr::select(iris, Sepal.Width, Petal.Length, Species)

Select columns by name or helper function.

Many helper functions in dplyr allow selection by a function of variable names:

select(iris, contains("."))

Select columns whose name contains a character string.

select(iris, ends_with("Length"))

Select columns whose name ends with a character string.

select(iris, everything())

Select every column.

select(iris, matches(".t."))

Select columns whose name matches a regular expression.

select(iris, num_range("x", 1:5))

Select columns named x1, x2, x3, x4, x5.

select(iris, one_of(c("Species", "Genus")))

Select columns whose names are in a group of names.

select(iris, starts_with("Sepal"))

Select columns whose name starts with a character string.

select(iris, Sepal.Length:Petal.Width)

Select all columns between Sepal.Length and Petal.Width (inclusive).
select(iris, -Species)

Select all columns except Species.

22

dplyr: group_by() and summarise()

- Fundamental operations in data munging are:
 - grouping a dataset by one or more variables
 - calculating one or more summary measures
 - ungrouping: expand to an ungrouped copy, if needed

Example: NASA data on solar radiation

Surface meteorology and Solar Energy

A renewable energy resource web site (rclcasc 6.0)
spontoned by NASA's Applied Science Program in the Science Mission Directoral
developed by POWER: Prediction of Worldwide Energy Resource Project

- over 200 satellite-derived meteorology and solar energy parameter
- monthly averaged from 22 years of data
 data tables for a particular location
- GIS Web Mapping Application & Service

How does solar radiation vary with latitude, over months of the year?

How to make this plot?

Q:

what are the basic plot elements?

NASA data: solar radiation

This is easy to do for the total Annual solar radiation, a column in the data

> str(nasa) 'data frame': 64800 obs. of 15 variables: \$ Lat: int -90 -90 -90 -90 -90 -90 -90 -90 -90 \$ Lon: int -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ... \$ Apr: num 0000000000... \$ May: num 0000000000... \$ Jun: num 0000000000... \$ Jul: num 0000000000. \$ Aug: num 0000000000. \$ Dec: num 11 11 11 11 11 .


```
nasa %>%

filter(abs(Lat) < 60) %>%

mutate(Latf = cut(Lat, pretty(Lat, n=10))) %>%

ggplot(aes(x=Latf, y=Ann)) +

geom_violin(fill="pink", alpha=0.3) +

labs(x="Latitude", y="Solar radiation G(0) (kWh/m²)")
```

Faceting & tidy data

This is complicated to do for the separate months, because the data structure is **untidy**--- months were in separate variables (wide format)

```
> str(nasa)
'data.frame': 64800 obs. of 15 variables:
$ Lat: int -90-90-90-90-90-90-90-90-90
$ Lon: int -180 -179 -178 -177 -176 -175 -174 -173 -172 -171 ...
$ Apr: num 000000000.
$ May: num 000000000.
$ Jun: num 0000000000...
$ Jul: num 0 0 0 0 0 0 0 0 0 0 ...
$ Aug: num 0000000000
```


tidying the data

To plot solar radiation against latitude by month (separate panels), we need to:

- remove the Ann column
- reshape the data to long format, so solar is all in one column

```
library(tidyr)
library(dplyr)
library(ggplot2)

nasa_long <- nasa %>%
select(-Ann) %>%
gather(month, solar, Jan:Dec, factor_key=TRUE) %>%
filter( abs(Lat) < 60 ) %>%
mutate( Lat_f = cut(Lat, pretty(Lat, 12)))
```

%>% "pipes" data to the next stage

select() extracts or drops columns gather() collapses columns into key-value pairs filter() subsets observations mutate() creates new variables

27

tidying the data

For ease of plotting, I created a factor version of Lat with 12 levels

> head(nasa_long) Lat Lon month solar Lat_f 1 -59 -180 Jan 5.19 (-60,-50] 2 -59 -179 Jan 5.19 (-60,-50] 3 -59 -178 Jan 5.25 (-60,-50] 4 -59 -177 Jan 5.25 (-60,-50] 5 -59 -176 Jan 5.17 (-60,-50] 6 -59 -175 Jan 5.17 (-60,-50]

The data are now in a form where I can plot solar against Lat or Lat_f and facet by month

plotting the tidy data

Using geom violin() shows the shapes of the distributions for levels of Lat f

```
ggplot(nasa_long, aes(x=Lat_f, y=solar)) +
geom_violin(fill="pink") +
facet_wrap(~ month) +
theme_bw() +
theme(axis.text.x =
element_text(angle = 70,
hjust = 1))
```

facet_wrap(~month) does the right thing

I had to adjust the x-axis labels for Lat_f to avoid overplotting

plotting the tidy data: smoothing

ggplot(nasa_long, aes(x=Lat, y=solar)) +
 geom_smooth(color="blue") +
 facet_wrap(~ month) +
 theme_bw()

Here we treat Lat as quantitative. geom_smooth() uses method = "gam" here because of large n

The variation in the smoothed trends over the year suggest quite lawful behavior

Can we express this as a statistical model?

build a model

What we saw in the plot suggests a generalized additive model, with a smooth, s(Lat)

library(mgcv)
nasa.gam <- gam(solar ~ Lon + month + s(Lat), data=nasa_long)
summary(nasa.gam)

The violin plots suggest that variance is not constant. I'm ignoring this here by using the default gaussian model.

Model terms:

- Lon wasn't included before
- · month is a factor, for the plots
- s(Lat) fits a smoothed term in latitude, averaged over other factors

There are other model choices, but it is useful to visualize what we have done so far

31

33

visualize the model

Effect plots show the fitted relationship between the response and model terms, averaged over other predictors.

The {mgcv} package has its own versions of these.

plot(nasa.gam, cex.lab=1.25) termplot(nasa.gam, terms="month", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25) termplot(nasa.gam, terms="Lon", se=TRUE, lwd.term=3, lwd.se=2, cex.lab=1.25)

why the dip at the equator?

effect of longitude is very small, but maybe interpretable

month should be modeled as a cyclic time variable

Visualizing models

- R modeling functions [lm(), glm(), ...] return model objects, but these are "messy"
 - extracting coefficients takes several steps: data.frame(coef(mymod))
 - some info (R², F, p.value) is computed in print() method, not stored
 - can't easily combine models
- Some have associated plotting functions
 - plot(model): diagnostic plots
 - car package: many model plot methods
 - effects package: plot effects for model terms
- But what if you want to:
 - make a table of model summary statistics
 - fit a collection of models, compare, summarize or visualize them?

broom: manipulating models

- The broom package turns model objects into tidy data frames
 - glance(models) extracts model-level summary statistics (R², df, AIC, BIC)
 - tidy(models) extracts coefficients, SE, p-values
 - augment(models) extracts observation-level info (residuals, ...)

Image from: https://opr.princeton.edu/workshops/Downloads/2016Jan_BroomRobinson.pdf

34

Example: gapminder data

How to model this?

How to extract & plot model statistics?

How to fit & display multiple models for subsets?

Example: gapminder data

Predict life expectancy from year, population, GDP and continent:

gapmod <- lm(lifeExp ~ year + pop + log(gdpPercap) + continent, data=gapminder) summary(gapmod)

```
lm(formula = lifeExp ~ year + pop + log(gdpPercap) + continent, data = gapminder)
           10 Median
                           30
   Min
                                                            observation level
-24.928 -3.285 0.314 3.699 15.221
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                -4.58e+02 1.67e+01 -27.43 < 2e-16 ***
(Intercept)
                                                             component level
                 2.38e-01 8.61e-03 27.58 < 2e-16 ***
                                                             (coefficients)
                 5.40e-09
                           1.38e-09
                                      3.91 9.5e-05 ***
log(gdpPercap)
                 5.10e+00 1.60e-01
                                      31.88 < 2e-16 ***
continentAmericas 8.74e+00
                          4.63e-01
                                     18.86 < 2e-16 ***
                                     16.22 < 2e-16 ***
continentAsia
                 6.64e+00 4.09e-01
continentEurope
                 1.23e+01
                           5.10e-01
                                      24.11 < 2e-16 ***
continentOceania 1.26e+01 1.27e+00
                                      9.88 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.79 on 1696 degrees of freedom
                                                               model level
Multiple R-squared: 0.8,
                          Adjusted R-squared: 0.799
F-statistic: 969 on 7 and 1696 DF, p-value: <2e-16
```

glance() gives the model level summary statistics

```
> glance(gapmod) r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual 1 0.8 0.7992 5.789 969 0 8 -5406 10830 10879 56835 1696
```

tidy() gives the model component (term) statistics

augment() gives the observation level statistics

```
> augment(gapmod) %>% slice(1:5)
# A tibble: 5 x 12
 lifeExp year
                  pop log.gdpPercap. continent .fitted .se.fit .resid
   <dbl> <int>
                <int>
                               <dbl> <fct>
                                               <dbl>
                                                      <dbl> <dbl>
                                                                   <dbl>
   28.8 1952 8425333
                               6.66 Asia
                                                46.0 0.408 -17.1 0.00496
    30.3 1957 9240934
                                6.71 Asia
                                                47.4 0.390 -17.1 0.00454
    32.0 1962 10267083
                                6.75 Asia
                                                48.8 0.376 -16.8 0.00423
    34.0 1967 11537966
                               6.73 Asia
                                                49.9 0.372 -15.9 0.00413
                                                                           5.78
    36 1 1972 13079460
                               6.61 Asia
                                                50 5 0 382 -14 4 0 00435
# ... with 2 more variables: .cooksd <dbl>, .std.resid <dbl>
```

tidyr:: "nest – map – unnest" trick

- In many cases, we want to perform analysis for each subset of a dataset defined by one or more variables
 - dplyr::group_by(), summarise(), ungroup() is one way
- tidyr::nest(), purrr::map(), tidyr::unnest() is more general

See: https://cran.r-project.org/web/packages/broom/vignettes/broom and dplyr.html

3

purrr::map() & friends

A fundamental operation is doing something, f(), to each element of a vector, list, or column of a data.frame

$$map(1:3, log) \longleftrightarrow list(log(1), log(2), log(3))$$

map(x, f) returns a list of f() applied to each of x
Other variants, map {dbl, int, chr} return vectors

tidyr: fitting multiple models

There may be different effects by continent (GDP x continent interaction)

- What if want to fit (and visualize) a separate model for each continent?
- → nest by continent, then {fit, tidy, glance, augment}

```
models <- gapminder %>%
  filter(continent != "Oceania") %>%  # only two countries
  nest(data = -continent) %>%
  mutate(
   fit = map(data, ~ lm(lifeExp ~ year + pop + log(gdpPercap), data = .x)),
   tidied = map(fit, tidy),
   glanced = map(fit, glance),
  augmented = map(fit, augment)
)
```

What's in this object?

```
names(models)
[1] "continent" "data" "fit" "tidied" "glanced" "augmented"
```

41

```
# view model summaries
                                                                      Model summary
models %>%
                                                                      statistics
  select(continent, glanced) %>%
  unnest(glanced)
# A tibble: 4 x 13
 continent r.squared adj.r.squared sigma statistic
                                                 p.value
                                                           df logLik AIC
 <fct>
                           <dbl> <dbl>
                                          <dbl>
                                                   <dbl> <dbl> <dbl> <dbl> <dbl>
1 Asia
                           0.694 6.56
                                           299. 5.27e-101
                                                           3 -1305. 2620.
              0.797
                           0.795 2.46
2 Europe
                                           466. 7.42e-123
                                                            3 -833. 1675.
3 Africa
              0.500
                           0.498 6.48
                                           207. 5.90e- 93
                                                            3 -2050. 4110.
4 Americas
              9.729
                           0.718 4.97
                                           254. 1.39e- 81
                                                            3 -904 1819
# ... with 4 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>,
# model coefficients & tests
                                                                         Coefficients
models %>%
  select(continent, tidied) %>%
  unnest(tidied)
# A tibble: 16 x 6
  continent term
                          estimate std.error statistic p.value
                                     <dbl>
  <fct>
                            <dbl>
                                              <dbl>
                                             -15.5 1.34e-42
1 Asia
            (Intercept)
                          -6.20e+2
                                   4.00e+1
2 Asia
                          3.23e-1
                                   2.06e-2
                                                    2.41e-43
3 Asia
                          5.13e-9
                                   1.66e-9
                                              3.09 2.15e- 3
4 Asia
            log(gdpPercap)
                          5.04e+0
                                   2.76e-1
                                              18.3
                                                   2.25e-54
5 Europe
           (Intercept)
                         -1.72e+2 1.72e+1
                                            -10.0 4.51e-21
```

```
Observations
# observation-level statistics
models %>%
  select(continent, augmented) %>%
  unnest(augmented)
 # A tibble: 1,680 x 10
   continent lifeExp year
                               pop `log(gdpPercap)` .fitted
                                                             .hat .sigma .cooksd
   <fct>
               <dhl> <int>
                             cints
                                             <dh1>
                                                    <dbl>
                                                            <dbl> <dbl> <dbl>
  1 Asia
                28.8 1952 8425333
                                             6.66
                                                     43.7 0.0101
                                                                   6.53 0.0133
  2 Asia
                30.3 1957 9240934
                                             6.71
                                                     45.6 0.00822
                                                                   6.53 0.0113
                32.0 1962 10267083
  3 Asia
                                                     47.4 0.00685
                                                                   6.53 0.00957
                                             6.75
  4 Asia
                34.0 1967 11537966
                                                     48.9 0.00616
                                             6.73
                                                                   6.53 0.00805
 5 Asia
                36.1 1972 13079460
                                             6.61
                                                     49.9 0.00645
                                                                   6.54 0.00727
  6 Asia
                38.4 1977 14880372
                                                     51.9 0.00640
                                                                   6.54 0.00678
                39.9 1982 12881816
  7 Asia
                                             6.89
                                                     54.6 0.00607
                                                                   6.53 0.00771
 8 Asia
                40.8 1987 13867957
                                                     55.5 0.00795
                                             6.75
                                                                   6.53 0.0101
                41.7 1992 16317921
 9 Asia
                                             6.48
                                                     55.8 0.0114
                                                                   6.53 0.0134
 10 Asia
                41.8 1997 22227415
                                             6.45
                                                     57.3 0.0138
                                                                   6.53 0.0198
 # ... with 1,670 more rows, and 1 more variable: .std.resid <dbl>
                              predictors
                                                                 diagnostics
```

Visualizing multiple models

One visual summary might be a plot of R² values, ordered by continent

```
models %>%
   select(continent, glanced) %>% unnest(glanced) %>%
   ggplot(aes(r.squared, reorder(continent, r.squared))) +
      geom_point(size=4) +
      geom_segment(aes(xend = 0, yend = ..y..)) +
      ylab("Continent")
```


Visualizing coefficients

Coefficient plots are often useful, but these are on different scales.

```
models %>% select(continent, tidied) %>% unnest(tidied) # get model stats filter(term != "(Intercept)") %>% # ignore the intercept mutate(term=factor(term, levels=c("log(gdpPercap)", "year", "pop"))) %>% # reorder terms sensibly ggplot(aes(x=term, y=statistic, color=continent, group=continent)) + geom_point(size=5, alpha=0.5) + geom_line(size=1.5) + geom_line(size=1.5) + geom_lhine(yintercept=c(-2, 0, 2), color = c("red", "black", "red")) + whines for non-significance ylab("t statistic") + theme_minimal() + theme(legend.position=c(0.9, 0.8))
```

Here, I plot the *t*-statistics, $t=b_{ij}/se(b_{ij})$ for all terms in all models.

Any values outside ~ ±2 are significant, p < 0.5!

Visualizing model fits

models %>% select(continent, augmented) %>% unnest(augmented) %>% ggplot(aes(x=`log(gdpPercap)`, y=.fitted, color=continent, fill=continent)) + geom_point(size = 0.8, alpha=0.5) + geom smooth(method = "lm", alpha=0.5) + ylab("Fitted Life Expectancy")

The slope for the Americas is noticeably larger than for other continents

Nice tables in R

- Not a ggplot topic, but it is useful to know that you can also produce beautiful tables in R
- There are many packages for this: See the CRAN Task View on Reproducible Research, https://cran.rproject.org/web/views/ReproducibleResearch.html
 - xtable: Exports tables to LaTeX or HTML, with lots of control
 - gt: the ggplot of tables!
 - flextable: similar to gt, but with themes
 - stargazer: Well-formatted model summary tables, side-by-side
 - apaStyle: Generate APA Tables for MS Word

Tables in R: xtable

Just a few examples, stolen from xtable: vignette("xtableGallery.pdf")

fm1 <- aov(tlimth ~ sex + ethnicty + grade + disadvg, data = tli)</pre> xtable(fm1)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
sex	1	75.37	75.37	0.38	0.5417
ethnicty	3	2572.15	857.38	4.27	0.0072
grade	1	36.31	36.31	0.18	0.6717
disadvg	1	59.30	59.30	0.30	0.5882
Residuals	93	18682.87	200.89		

fm3 <- glm(disadvg ~ ethnicty*grade, data = tli, family = binomial)</pre> xtable(fm3)

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	3.1888	1.5966	2.00	0.0458
ethnictyHISPANIC	-0.2848	2.4808	-0.11	0.9086
ethnictyOTHER	212.1701	22122.7093	0.01	0.9923
ethnictyWHITE	-8.8150	3.3355	-2.64	0.0082
grade	-0.5308	0.2892	-1.84	0.0665
ethnictyHISPANIC:grade	0.2448	0.4357	0.56	0.5742
ethnictyOTHER:grade	-32.6014	3393.4687	-0.01	0.9923
ethnictyWHITE:grade	1.0171	0.5185	1.96	0.0498

Too many decimals are used here, but you can control all that

Tables with {gt}

- The {gt} package aims to provide a grammar of tables just as ggplot2 does for graphs
 - Designed to be simple to use, yet powerful

iris %>% gt()

The Parts of a gt Table

{gt} workflow

Data table -> gt_tbl object

A Typical gt Workflow

iris_tab <iris %>%
 slice(1:5) %>%
 gt() %>%
 tab_header(
 title = "Anderson's Iris Data",
 subtitle = "(Collected in ...)")

Sample 5 rows pipe to gt()

add header

Anderson's Iris Data (Collected in the Gaspe Penninsula)						
Species	Petal.Width	Petal.Length	Sepal.Width	Sepal.Length		
virginica	1.8	5.5	3.1	6.4		
virginica	2.1	5.4	3.1	6.9		
setosa	0.2	1.3	3.2	4.4		
virginica	2.0	6.7	2.8	7.7		
versicolor	1.0	3.3	2.3	5.0		

51

```
iris_tab <-
iris %>%
  slice(1:5) %>%
  gt() %>%
  tab_header(
  title = "Anderson's Iris Data",
  subtitle = "(Collected in ...)")
```

Add table column spanning headers

Anderson's Iris Data (Collected in the Gaspe Penninsula)							
Sepal Petal							
Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species			
6.4	3.1	5.5	1.8	virginica			
6.9	3.1	5.4	2.1	virginica			
4.4	3.2	1.3	0.2	setosa			
7.7	2.8	6.7	2.0	virginica			
5.0	2.3	3.3	1.0	versicolor			

iris_tab <iris_tab %>%
tab_spanner(
label = "Sepal",
columns = c(Sepal.Length,
Sepal.Width)) %>%
tab_spanner(
label = "Petal",
columns = c(Petal.Length,
columns = c(Petal.Length,
sepal.Width)) %>%

iris tab <-

gt() %>%

slice(1:5) %>%

tab_header(

title = "Anderson's Iris Data",

subtitle = "(Collected in ...)")

Petal.Width))

iris %>%

iris_tab <- iris_tab %>%

cols_label(

Sepal.Length = "Length",
Sepal.Width = "Width",
Petal.Length = "Length",
Petal.Width = "Width") %>%

Colorize headings

tab_options(
heading.background.color = "#c6dbef",
column_labels.background.color = "#edf8fb")

Anderson's Iris Data (Collected in the Gaspe Penninsula) Sepal Petal Length Width Length Width Species 5.5 1.8 virginica 6.9 3.1 5.4 2.1 virginica 3.2 1.3 0.2 setosa 7.7 2.8 2.0 virginica 3.3 1.0 versicolor ₅₃ 5.0 2.3

ggpubr

The ggpubr package provides some easy-to-use functions for creating and customizing publication ready plots.

```
ggviolin(df, x = "dose", y = "len", fill = "dose",
    palette = c("#00AFBB", "#E7B800", "#FC4E07"),
    add = "boxplot", add.params = list(fill = "white")) +
    stat_compare_means(comparisons = my_comparisons, label = "p.signif") +
    stat_compare_means(label.y = 50)
```

see the examples at http://www.sthda.com/english/rpkgs/ggpubr/

ggseg: plotting brain atlases


```
# install.packages("remotes")
# remotes::install_github("LCBC-UiO/ggseg")
library(ggseg)
# install.packages("ggplot2")
library(ggplot2)

ggplot() +
    geom_brain(atlas = aseg) +
    theme_void() +
    theme_legend.position = "bottom",
        legend.text = element_text(size = 8)) +
    guides(fill = guide_legend(ncol = 4))
```