حمعية أصدقاء الرياضيات

ASSOCIATION DES AMIS DE MATHEMATIQUES

Bac Blanc

Epreuve de Maths

Proposée le 28 décembre 2018 de 8h à 12h

Exercice 1 (4 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte.

Ecrire le numéro de chaque question et donner, sans justification, la réponse qui lui correspond.

	7 9 3 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
N°	Questions	Réponses			
	14214	77 / a)	17/1/6 7 7/	11 (c) 1	7 7 d
1	π	VV.C		ucul	U . 1
	Si $\frac{\pi}{2}$ est un argument de z, alors on a	$z^2 < 0$	$\bar{z} = z$	zz = i	z-i = z +1
2	Si $z = -\sqrt{3} + 2e^{i\frac{\pi}{6}}$, alors la forme	$e^{i\frac{\pi}{2}}$	$2\sqrt{3}e^{i\frac{\pi}{6}}$	$2\sqrt{3}e^{i\frac{7\pi}{6}}$	$\left(2-\sqrt{3}\right)e^{i\frac{\pi}{6}}$
	exponentielle de z est :	17			
3	Si z est un nombre complexe tel que $ z = 1$, alors on a toujours	z-1 =0	$\frac{1}{z} = \frac{1}{z}$	$\left \mathbf{z}\right ^2 = 1$	z = 1 ou -1
4	$\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{2019} =$	1	i	-1	2019
_	www.amimain.i				

Exercice 2(3 points)

On considère la suite numérique (U_n) définie pour tout n > 0 par: $U_1 = 1$; $U_{n+1} = \frac{U_n}{5U_1 + 1}$.

1) Calculer U_2 , U_3 .

2) Pour tout n > 0 on pose $V_n = \frac{1}{U_n}$. At M

- a) Montrer que (V_n) est une suite arithmétique. Ecrire V_n puis U_n en fonction de n.
- b) Calculer $\lim_{n\to +\infty} U_n$
- c) Calculer en fonction de n : $S_n = V_1 + V_2 + \dots + V_n$.

Exercice 3 (5 points)

Soit (u_n) la suite numérique définie par $u_1 = 1$ et pour tout entier $n \ge 1$: $u_{n+1} = \frac{3n}{n+1} u_n + \frac{4}{n+1}$

- **1.a)** Vérifier que $u_2 = \frac{7}{2}$ et $u_3 = \frac{25}{3}$.
- b) Justifier que la suite $(u_n)n$ est in arithmétique, ni géométrique.
- c) Montrer par récurrence que $\forall n \in \mathbb{N}^*, u_n > 0$
- d) Etudier la monotonie de la suite (u_n)
- 2) On considère la suite (v_n) définie pour tout entier $n \ge 1$ par : $v_n = nu_n + 2$

4 heures

- a) Montrer que $\left(v_{\scriptscriptstyle n}\right)$ est une suite géométrique dont on précisera la raison et le premier terme.
- b) Exprimer v_n en fonction de n.
- c) Montrer que pour tout entier $n \ge 1$: $u_n = \frac{3^n 2}{n}$.
- 3) Soit $S_n = u_1 + 2u_2 + 3u_3 + ... + nu_n$.

A l'aide de v_n , exprimer la somme S_n en fonction de n.

Exercice 4 (8 points)

- 1) Résoudre dans l'ensemble des nombres complexes l'équation : $z^2 2iz + 2 + 4i = 0$
- 2) On considère le polynôme P définie sur \mathbb{C} par : $P(z) = z^3 4iz^2 + (-2+4i)z + 8 4i$.
- a) Calculer P(2i) et déterminer deux réels a et b tels que P(z) = $(z-2i)(z^2+az+b)$
- b) Résoudre, dans l'ensemble \mathbb{C} l'équation P(z) = 0.
- 3) Dans le plan complexe muni d'un repère orthonormé direct, on désigne par A, B et C les points d'affixes

respectives $z_A = (1+i)^2$, $z_B = \frac{7+i}{3+4i}$ et $z_C = \frac{1+7i}{2-i}$.

- a) Donner la forme algébrique de z_A , z_B et z_C
- b) Placer les points A, B et C
- c) Déterminer et construire l'affixe du point D tel que ABDC soit un parallélogramme.
 4) Soit f l'application définie pour tout complexe z ≠ -1+3i par f(z) = (1+i)z-2/(z+1-3i)

Montrer que pour tout $z \neq -1+3i$, on a : $f(z)=(1+i)\frac{z-1+i}{z+1-3i}$

- 5) Déterminer et construire les ensembles de points M dans chacun des cas suivants :
- a. Γ_1 tel que $|f(z)| = \sqrt{2}$. b. Γ_2 tel que $\arg(f(z)) = \frac{\pi}{4} [\pi]$
- c. Γ_3 tel que $arg(f(z)) = \frac{3\pi}{4} [\pi]$,
- d. Γ_4 tel que $|f(z)-1-i| = 2\sqrt{10}$
- 6.a) Calculer le nombre $\alpha = f(-2)$ et l'écrire sous forme algébrique et trigonométrique
- b) Montrer que le nombre α^{2018} est imaginaire pur.

www.amimathfinmr

www.amimath.i

vww.amimath.mr

www.amimatha