$$\mathsf{u}_{\cdot} = \mathsf{v}_{\cdot}$$

$$X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow X_4$$

complements

$$(x,y) = (x,y)$$

Axioms: * = a generic gate, you can also think of this as a generic type of operation (like +, .). commy fativity: X * y = y * X - gate input order should not matter, so ve expect: 9 Sume as) (1) x+y=y+x X * 19 = X = 19 * X for a given gute, we expect there to exist some unique input (element) which when operated on any other input, x, outputs x. We call this input / element the identity id* x = x, so the identity
allows x to pass through the . . . gute. . unaffeeted. To We have 2 identities with t, boolean algebra: 0 := additive identity x +0 = x 0 := Multiplication identity X-1=X X

complement: . x + x' = multiplicative id not

· x · x = additive id not

Prantice:	
X * y = y * x	$0 \times x \times x' = 0$
ex1: x 0 1 2 3 x 0 1 2 3 x 0 1 2 3 x 0 0 0 0 0 x 0 0 0 0 x 0 0 0 0 x 0 0 0 0	ex 2: * 9 6 c d 9 a b c d b b c d c d c d d d b q
- Commutative? 48	- Commutative? 428
- identity?	- identity? 9
- a'? C - b'? b	- d'? 2 - b'? 2 - c'? x vone exist - d'? 2, b x x must be
- valid? Yes.	- valid? Wol

Focus Question closure, curdinality, and distributivity? (1) What about > Kindy weird! X + y = (x+y) (x+2) 2) X (y+2) = Xy + XZ by just like regular algebru! proof of (1) (x+y)(x+z) = xx+xz+xy+yz= x + x 2 + xy + y 2 (idempotercy on X.) = 1x (1 + 2+4) + y 2 × (1 1 2) + y z =(x) + yz

$$ex 3: f(x,y,z) = x'y' + y'z + xz$$

$$y_{\overline{z}}$$
 0 | $y_{\overline{z}}$ 0 | y_{\overline

2) consumus:
$$(x/y) + x'(z) = xy + x'z + y$$

=
$$\leq$$
' m (0,1,5,7) workinsus: $(xy+x'z)=xy+x'z+yz$

$$x'y'z' + x'y'z + xy'z + xy z$$