Problem 1. Metric space is first countable. Separable metric space is second countable. *Proof.*

- We show that B = {B_{1/n}(x) : n ∈ N} is a countable neighborhood base for each x in X.
 For any neighborhood V of x, there exists an open set G such that x ∈ G ⊂ V.
 By the definition of open set in metric space, there exist a ball B_ε(x) ⊂ G. Let n be such that ¹/_n ≤ ε, then x ∈ B_{1/n}(x) ⊂ B_ε(x) ⊂ V, i.e., there exists a B_{1/n}(x) ∈ B such that B_{1/n}(x) ⊂ V. So B is a countable neighborhood base.
- If X is separable, we assume A is a countable dense set of X. Then $\mathcal{B} = \left\{B_{1/n}(x) : x \in A, n \in \mathbb{N}\right\}$. Since the Cartesian product of two countable sets A and B is countable, then \mathcal{B} is countable. Let G be an open set in X, for each $x \in G$ there exists a n = n(x) such that $x \in B_{1/n(x)}(x) \subset G$. Furthermore, if $x \in A$, $B_{n(x)}(x) \in \mathcal{B}$. Otherwise, we pick $y \in A$ such that $d(x,y) \leq 1/4n(x)$, thus $B_{1/2n(x)}(y) \in \mathcal{B}$ and $x \in B_{1/2n(x)}(y) \subset B_{1/n(x)}(x) \subset G$. In summary, for each $x \in A$, we are able to find a $B_x \in \mathcal{B}$ such that $x \in B_x \subset G$. Then $G = \bigcup_x B_x$.

Problem 2.

Proof. We first show \mathcal{T} is a topology.

- $\emptyset, X \in \mathcal{T}$:
- Let $\{G_{\alpha}\}$ be a collection of subsets such that $G_{\alpha} \in \mathcal{T}$, i.e., $X \setminus G_{\alpha}$ is countable. Then $X \setminus \bigcup_{\alpha} G_{\alpha}$ is countable. Thus $\bigcup_{\alpha} G_{\alpha} \in \mathcal{T}$.
- Let $\{G_i\}_{i=1}^n$ be a collection of subsets such that $G_i \in \mathcal{T}$, i.e., $X \setminus G_i$ is countable. $X \setminus \bigcap_{i=1}^n G_i = \bigcup_{i=1}^n (X \setminus G_i)$ and $\bigcup_{i=1}^n (X \setminus G_i)$ is countable. Thus $\bigcap_{i=1}^n G_i \in \mathcal{T}$.

It is not first countable. Assume for each x, there is a countable neighborhood base \mathcal{N} . For each neighborhood $W_i \in \mathcal{N}$ of x, there exists an open set G such that $x \in G \subset W$ and $X \backslash G$ is countable, thus $X \backslash W_i$ is countable.

Then $\bigcup_i (X \setminus W_i) = X \setminus \bigcap_i W_i$ is countable. Thus $\bigcap_i W_i$ is an open set with $x \in W_i$. We claim $\bigcap_i W_i = \{x\}$. Since for any $y \neq x$, $X \setminus \{y\}$ is a neighborhood of x. Then there exist a $W \in \mathcal{N}$ such that $W \subset X \setminus \{y\}$, then $y \notin W$ which implies that $y \notin \bigcap_i W_i$.

 $\bigcup_i W_i$ is countable and $X \setminus \bigcup_i W_i$ is countable, thus X is countable, contradiction!

Problem 3.

Proof. Let $x \in X \setminus K$, then for each $y \in K$, there are disjoint neighborhood W_y of x and V_y of y. We pick open set $U_y \subset V_y$, and $\bigcup_y U_y$ is an open cover of K. Since K is compact, there exists a finite open cover $\bigcup_{i=1}^n U_{y_i}$.

Without loss of generality, we can pick W_{y_i} as open. Let $U = \bigcup_{i=1}^n U_{y_i}$ and $W = \bigcap_{i=1}^n W_{y_i}$. Then U and W are open, $U \cap W = \emptyset$ with $K \subset U$ and $x \in W$. Therefore, $x \in W \subset X \setminus K$. By the definition, $X \setminus K$ is open and K is closed.

Take $X=\{1,2\}$ and $\mathcal{T}=\{\emptyset,X\}$. X is not Hausdorff. $K=\{1\}$ is compact but not closed. \square

Problem 4. Homeomorphic spaces can have different completeness.

Proof. (\mathbb{R}, d_e) and $((0, 1), d_e)$ are homeomorphic where d_e is Euclidean distance. But \mathbb{R} is complete while (0, 1) is not complete.

Problem 5.

Proof.

1. Metric topology is the collection of subsets that are the union of open balls. Let \mathcal{T}_1 denote the metric topology induced by d_1 and \mathcal{T}_2 denote the metric topology induced by d_2 . We just need to show an open ball $B_1(x,r) = \{y \in X : d_1(x,y) < r\}$ is open with respect to \mathcal{T}_2 and vice versa.

We need to show for every $y \in B_1(x_0, r)$, there is a $B_2(y, R) = \{z \in X : d_2(z, y) < R\}$ such that $B_2(y, R) \subset B_1(x, r)$.

Let $0 < R < c(r - d_1(x, y))$, then for any $z \in B_2(y, R)$,

$$d_1(z,x) \leqslant d_1(z,y) + d_1(y,x) \leqslant \frac{d_2(z,y)}{c} + d_1(z,y) < \frac{R}{c} + d_1(x,y) = r,$$

which implies that $z \in B_1(x, r)$.

2. Let's define $d_b(x,y) = \frac{d(x,y)}{1+d(x,y)}$. It is clear that $d_b(x,y) \leq 1$. And we need to show $d_b(x,y)$ is a metric

It is obviously that $d_b(x,y) \ge 0$, $d_b(x,y) = d_b(y,x)$ and $d_b(x,y) = 0$ if and only if x = y.

$$d_b(x,z) = \frac{d(x,z)}{1+d(x,z)} \le \frac{d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)} \le \frac{d(x,y)}{1+d(x,y)+d(y,z)} + \frac{d(y,z)}{1+d(x,y)+d(y,z)}$$

$$\le d_b(x,y)+d_b(y,z).$$

Since $d_b = f(d)$ where $f(x) = \frac{x}{1+x}$ is one-to-one, onto and continuous function. And $f^{-1}(x) = \frac{x}{1-x}$ is also one-to-one, onto and continuous function.

So (X,d) and (X,d_b) are homeomorphic, $\mathcal{T}_d = \mathcal{T}_{d_b}$.

3. The above example is when d and d_b are not equivalent. Since $d_b(x,y) = \frac{d(x,y)}{1+d(x,y)} \leq d(x,y)$, however there does not exist a c such that $d_b(x,y) \geq cd(x,y)$.