Don't use array in following problems. Suppose rand() can generate data with uniform distribution from 0 to RAND MAX.

1. (a) Generate 10 random integer numbers of which range is [12, 34)

Use % to complete this program.

- (b) Print the value of RAND_MAX
- (c) Generate 10 random integer numbers of which range is [12, 34)

Note that the distribution should be uniform. You cannot use method in problem 3.

(d) Generate 10 random numbers of which range is [1.2, 3.4) with accurate to the 4th decimal point, i.e. 0.0001.

Note that the distribution should be uniform. You cannot use method in problem 3.

1.2776 1.6791 1.6439 1.6039 3.0141 2.2839 2.9898 2.8541 3.0926 1.3930

(e) The range of N is [1.2, 3.4) with accurate to the 4th decimal point. Simulate the probability of N>=2.3 by generate N 1e8 times.

N should be generate by 2 methods, one is uniform and another is not (ues %). Print both results and theoretical value.

Theoretical: 0.500000 NonUniform: 0.335652 Uniform: 0.500070

2. (a) Print the result of the following statement:

```
rand () * (RAND_MAX + 1) + rand ();
```

(b) Write a program to generate 10 random integer numbers of which range is [0, 99999].

Note that the distribution should be uniform. You cannot use method in problem 3.

3. (a) Understand the following two methods of random number generation.

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int main()
   int x;
   int RANGE = 10000;
   srand (time (NULL));
//method (a)
   x = rand()%RANGE;
   printf("x=%d\n",x);
//method (b)
   int RAND_INV_RANGE=((int) ((RAND_MAX + 1) / (RANGE)));
   do {
       x = rand();
   } while (x >= RANGE * RAND_INV_RANGE);
   x /= RAND_INV_RANGE;
   printf("x=%d",x);
   return 0;
```

(b) Write a program to randomly generate 10 random real numbers of which range is [0, 1) with accurate to the fifth decimal point, i.e. 0.00001. Please use method (b) in part (a) to solve this problem.