Introduction to KRR Notions in Propositional Logic

Objectives

Objective

Explain the concepts of satisfiability, tautology, equivalence, entailment in propositional logic

Objective

Explain how these concepts are related to each other

Satisfiability, Tautology, Equivalence, Entailment

Satisfiability

A propositional formula F is satisfiable if some interpretation satisfies F

Q: Which one is satisfiable? Choose all

A set of propositional formulas is satisfiable if some interpretation satisfies all formulas in the set.

Tautology

A propositional formula F is a tautology if every interpretation satisfies F

Q: Which one is a tautology? Choose all

$$(1/(p \rightarrow q) \rightarrow (\neg p \lor q)$$

$$(2)(p \to (q \to p))$$

$$3. (p \rightarrow (p \rightarrow q))$$

Equivalence

F is equivalent to G(symbolically, $F \Leftrightarrow G$) if, for every interpretation $I, F^I = AG^{\mathcal{I}}$

- In other words, $F \leftrightarrow G$ is a tautology

Q: Which formulas are equivalent to each other?

1)
$$(p \rightarrow (q \rightarrow p))$$
 and $(p \lor \neg p)$
2. $(p \rightarrow (p \rightarrow q))$ and $p \rightarrow p$
3. $(p \rightarrow q)$ and $(q \rightarrow p)$
4. $(p \rightarrow q) \rightarrow (p \land \neg q)$ and $p \rightarrow p$

More examples

$$\begin{array}{cccc}
-p & \rightarrow q \iff \neg q \rightarrow \neg p \\
-p & \rightarrow q \iff \neg p \lor q \\
-\eta (p \rightarrow q) \iff (p \land \neg q) \\
-(p \land q) \rightarrow r \iff p \rightarrow (q \rightarrow r)
\end{array}$$

Some Useful Equivalence

$$F \rightarrow G \Leftrightarrow \neg F \vee G$$

$$F \leftrightarrow G \iff (F \rightarrow G) \land (G \rightarrow F)$$

$$\neg \neg F \iff F$$

$$\neg (F \land G) \Leftrightarrow \neg F \lor \neg G$$

$$\neg (F \lor G) \Leftrightarrow \neg F \land \neg G$$

$$(F \lor (G \land H)) \Leftrightarrow (F \lor G) \land (F \lor H)$$

$$(F \land (G \lor H)) \Leftrightarrow (F \land G) \lor (F \land H)$$

Entailment

A set Γ of formulas entails a formula F (symbolically, $\Gamma \models F$) if, every interpretation that satisfies all formulas in Γ satisfies F also.

c.f. Entailment uses the same
 symbol as satisfaction, the difference
 being what appears on the left of ⊨.

Q: True or false?

The formulas entailed by Γ are also called the logical consequences of Γ .

Algorithm for Entailment Checking

To check a set Γ of formulas entails a formula F

For each interpretation I,

- For each formula G in Γ , check if I satisfies G:
 - If no, continue to next interpretation
 - If yes: check if I satisfies F
 - If yes: continue to next interpretation
 - If no: exit and report "Not Entailed"
- (When all checking all interpretations are done)
 - Report "Entailed"

Entailment: Example

Reductions between Problems

Starting Points

Intuitively, these problems are strongly related

A reduction from problem P_1 to P_2 is a function f such that

- For each input x to P_1 , the answer of P_1 for input x coincides with the answer of P_2 for input f(x),
- Given x, the input f(x) can be efficiently computed.

These (and many other) problems can be reduced to (un)satisfiability

Satisfiability solvers are a useful tool for KR

How are Tautology and Satisfiability related?

F is a tautology iff $\neg F$ is unsatisfiable

Example: $p \lor \neg p$ is a tautology iff $\neg (p \lor \neg p)$ is unsatisfiable

How are Tautology and Tautology related?

F is equivalent to G iff $F \leftrightarrow G$ is a tautology

Example: $p \rightarrow q$ is equivalent to $\neg p \lor q$ iff $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$ is a tautology

How are Equivalence and Entailment related?

F is equivalent to G iff

- F entails G and
- G entails F

Example: $p \rightarrow q$ is equivalent to $\neg p \lor q$ iff

- $-p \rightarrow q$ entails $\neg p \lor q$ and
- $-\neg p \lor q$ entails $p \to q$

How are Entailment and Tautology related?

$$\{F_1, ..., F_n\} \vDash G \text{ iff } (F_1 \land \cdots \land F_n) \rightarrow G \text{ is a tautology}$$

- $\{p \lor q, \neg p \lor q\} \vDash q \text{ iff } (p \lor q) \land (\neg p \lor q) \rightarrow q \text{ is a tautology}$

$$\emptyset \models G \text{ iff } G \text{ is a tautology}$$

How are Entailment and Satisfiability related?

 $F \models G \text{ iff } F \land \neg G \text{ is unsatisfiable}$ $-\{p \lor q, \neg p \lor q\} \models q \text{ iff } \{p \lor q, \neg p \lor q, \neg q\} \text{ is unsatisfiable}$

Wrap-Up

