

Python data structures and collections

A wide choice of containers for your data

Giuseppe Averta

Carlo Masone

Francesca Pistilli

Davide Buoso

Gaetano Falco

https://realpython.com/python-collections-module/https://realpython.com/python-data-structures/https://docs.python.org/3/library/collections.htmlhttps://docs.python.org/3/library/datatypes.html

Data structures

- The Python language offers very powerful built-in data structures
 - list and tuple
 - set
 - dict
- They can be used to store and search information, and each is specialized to support some use cases
- Additional data structures are available in the standard library, to cover other use cases

Dictionaries, Maps, Hash Tables

- dict
- OrderedDict
- defaultdict
- ChainMap
- MappingProxyT ype

Array Data Structures

- list
- tuple
- array
- str
- bytes
- bytearray

Records, Structs, Data Transfer Objects

- dict
- tuple
- class
- dataclass
- namedtuple, NamedTuple
- Struct

Sets, Multisets

- set
- frozenset
- Counter

Stacks (LIFO)

- list
- deque
- LifoDeque

Queues (FIFO)

- list
- deque
- Queue

Priority Queues

- list
- heapq
- PriorityQueue

Some types are extremely versatile (list, dict)

Some types are "improvements" of basic types

Some types are very specialized (e.g. for parallel computation)

Remember...

Operation	str	list	tuple	set	dict
Create	"abc" 'abc'	[a, b, c]	(a, b, c)	{a, b, c}	{a:x, b:y, c:z}
Create empty	II II	[] list()	() tuple()	set()	{} dict()
Access i-th item	s[i]	1[i]	u[i]		d[k]
					<pre>d.get(k,default)</pre>
Modify i-th item		1[i]=x			d[k]=x
Add one item (modify value)		<pre>1.append(x)</pre>		t.add(x)	d[k]=x
Add one item at position (modify value)		<pre>l.insert(i,x)</pre>			
Add one item (return new value)	s+'x'	1+[x]	u+(x,)		
Join two containers (modify value)		<pre>1.extend(11)</pre>		t.update(t1)	
Join two containers (return new value)	s+s1	1+11	u+u1	t.union(t1) $t t1$	
Does it contain a value?	x in s	x in l	x in u	x in s	<pre>k in d (search keys) x in d.values()</pre>
Where is a value? (returns index)	s.find(x) s.index(x)	<pre>l.index(x)</pre>	u.index(x)		(search values)
Delete an item, by index		1.pop(i) 1.pop()			d.pop(k)
Delete an item, by value		l.remove(x)		t.remove(x) t.discard(x)	
Sort (modify value)		1.sort()			
Sort (return new list)	sorted(s)	sorted(1)	sorted(u)	sorted(t)	<pre>sorted(d) (keys) sorted(d.items())</pre>

https://polito-informatica.github.io/Materiale/CheatSheet/Python_Cheat_Sheet-3.2.pdf

Comparison and ordering

- Objects can be compared if they define an ___eq__ method
 - Used internally by == and != operators
 - Used internally by find, index, in, …
- Objects can be ordered if they define a ___lt__ method (and optionally, other comparison dunder methods)
 - Must define __eq__, in addition
 - Used internally by < <= > >= operators
 - Used internally by sort, sorted

Special case: predefined types

- Some built-in collections already define __eq__ and __lt__, therefore they are comparable and sortable
 - str, list, tuple compare their elements in left-to-right order
 - The contained values must be comparable/sortable, too
- Dictionaries support __eq__ but not __lt__
 - dict object cannot be ordered
- Sets support __eq__, but define __lt__ to mean "subset"
 - Misleading, do not try to order a list of sets

Special case: dataclasses

- By default, a dataclass defines the ___eq__ method
 - To prevent, define it as @dataclass(eq=False)
- By default, a dataclass does not define the ___lt__ method
 - To generate it, define with @dataclass(order=True): will generate
 __lt__(), __le__(), __gt__(), and __ge__()
 - Automatically generated methods compare all the fields of the object, in the order in which they are declared
 - One or more fields may be omitted from comparison and ordering methods, by inizializing them with field(compare=False)

Example

```
@dataclass(order=True)
class Voto:
    esame: str
    cfu: int
    punteggio: int
    lode: bool
    data: str = field(compare=False)
```

Sorting by other criteria

- If you want to sort a collection using criteria different from the ___1t___
 method (or if __1t___ is not defined), use the key= argument
- **key**=operator.**itemgetter**('keyname')
 - sort by dictionary['keyname']
- key=operator.itemgetter(itemnumber)
 - Sort by list/tuple[itemnumber]
- key=operator.attrgetter('attrname')
 - Sort by object.attrname
- key = lambda obj: something(obj)
 - Sort by value of something() function
 - Example: lambda v: v.voto is equivalent to operator.attrgetter('voto')

Dictionaries, Maps, Hash Tables

- dict
- OrderedDict
- defaultdict
- ChainMap
- MappingProxyT ype

Array Data Structures

- list
- tuple
- array
- str
- bytes
- bytearray

Records, Structs, Data Transfer Objects

- dict
- tuple
- class
- dataclass
- namedtuple, NamedTuple
- Struct

Sets, Multisets

- set
- frozenset
- Counter

Stacks (LIFO)

- list
- deque
- LifoDeque

Queues (FIFO)

- list
- deque
- Queue

Priority Queues

- list
- heapq
- PriorityQueue

Some types are extremely versatile (list, dict)

Some types are "improvements" of basic types

Some types are very specialized (e.g. for parallel computation)

Dictionaries

- Map a "key" to a "value"
 - Key: unique value of a hashable type
 - Value: any object
- dict
 - Very efficient, constant time for insertion, search, deletion
 - Retains insertion order of elements
 - Has built-in syntax { key: val }
 for creation

<pre>d[key] = value</pre>	Set a new value for a key
d[key]	Retrieve value from the key. May raise KeyError
d.clear()	Clears a dictionary.
<pre>d.get(key, default)</pre>	Returns the value for a key if it exists in the dictionary. Otherwise, returns a default value
d.items()	Returns a list of key-value pairs in a dictionary.
d.keys()	Returns a list of keys in a dictionary.
<pre>d.values()</pre>	Returns a list of values in a dictionary.
<pre>d.pop(key, default)</pre>	Removes a key from a dictionary, if it is present, and returns its value. Otherwise, returns a default value
<pre>d.popitem()</pre>	Removes the last key-value pair from a dictionary.
<pre>d.update(obj)</pre>	Merges a dictionary with another dictionary

"Hashable"?

- A hashable object
 - Has a hash value that never changes during its lifetime (defines __hash___)
 - It can be compared to other objects (defines __eq__)
- Hashable objects that compare as equal <u>must</u> have the same hash value
 - $-a == b \Rightarrow hash(a) == hash(b)$

• Note: instances of user-defined classes are hashable by default. They all compare unequal (except with themselves), and their hash value is derived from their id(). You can redefine this behavior

Hash functions

- A hash function is a function that maps any object into an integer number (over 64 bit)
- It is needed to quickly discover if two objects are
 - Surely different
 - Very likely equal
- Used in the hash() function and internally in set, frozenset and dict.

Other dictionaries

- collections.defaultdict
 - A class that automatically provides a default value for non-existent keys
 - Requires a "factory" function to build the default values: list, str, int, ... or custom
 - d = collections.defaultdict(int)
- types.MappingProxyType
 - Creates a "read-only" dictionary, without copying it
 - readonly_d = types.MappingProxyType(normal_d)
 - All modifications will generate an exception
 - TypeError: 'mappingproxy' object does not support item assignment

Dictionaries, Array Data Maps, Hash 🥕 Structures Tables 🤌 • dict • list • OrderedDict • tuple • defaultdict • array ChainMap • str MappingProxyT • bytes ype • bytearray

Records, Structs, Data Transfer Objects

- dict
- tuple
- class
- dataclass
- namedtuple, NamedTuple
- Struct

Sets, Multisets

- set
- frozenset
- Counter

Stacks (LIFO)

- list
- deque
- LifoDeque

Queues (FIFO)

- list
- deque
- Queue

Priority Queues

- list
- heapq
- PriorityQueue

Some types are extremely versatile (list, dict)

Some types are "improvements" of basic types

Some types are very specialized (e.g. for parallel computation)

Main Array types

list

- The most versatile one, mutable ordered sequence of objects of any value
- Indexed by number (0...len()-1)

tuple

- An immutable version of a list: elements cannot be added, removed nor replaced
 - But... elements can be mutated, if they are mutable
- Hashable, if its elements are hashable

• str

- An array of Unicode Characters
- Immutable

Specialized Array types

- array.array
 - Implemented in C as an array of elements of the same basic type (byte, int, float)
 - The type is declared at the time of creation
 - arr = array.array("f", (1.0, 1.5, 2.0, 2.5))
 - Uses less memory than normal lists, but less versatile
- bytes: Immutable Arrays of Single Bytes
- bytearray: Mutable Arrays of Single Bytes

Dictionaries, Maps, Hash Tables

- dict
- OrderedDict
- defaultdict
- ChainMap
- MappingProxyT ype

Array Data Structures 🕺

- list
- tuple
- array
- str
- bytes
- bytearray

Records, Structs, Data Transfer Objects

- dict
- tuple
- class
- dataclass
- namedtuple, NamedTuple
- Struct

Sets, Multisets

- set
- frozenset
- Gounter

Stacks (LIFO)

- list
- deque
- LifoDeque

Queues (FIFO)

- list
- deque
- Queue

Priority Queues

- list
- heapq
- PriorityQueue

Some types are extremely versatile (list, dict)

Some types are "improvements" of basic types

Some types are very specialized (e.g. for parallel computation)

Records

 A record is a collection of data of different types, and different meanings, grouped together to represent a single high-level information

```
Implemented
                                                       class Car:
car = {
                                            as...
  "type": "Panda",
                                                            def __init__(self, type, year):
  "year": 2010
                                                                self.type = type
                                         dict
                                                                self.year = year
                                                class
                                        tuple
                                                       @dataclass
                                                       class Car:
car = ("Panda", 2010)
                                                            type: str
                                              dataclass
                                                            year: int
```

Specialized record types

- collections.namedtuple
 - A tuple whose indices are not integers, but attributes (like objects)

```
Car = collections.namedtuple("Car", ("name", "year"))
c1 = Car("Panda", 2010)
c1.name  # 'Panda'
```

- Attribute values are immutable
- typing.NamedTuple
 - Uses a syntax similar to dataclasses

```
class Car(typing.NamedTuple):
    name: str
    year: int
```

Dictionaries, Maps, Hash Tables

- dict
- OrderedDict
- defaultdict
- ChainMap
- MappingProxyT ype

Array Data Structures

- list
- tuple
- array
- str
- bytes
- bytearray

Records, Structs, Data Transfer Objects

- dict
- tuple
- class
- dataclass
- namedtuple, NamedTuple
- Struct

Sets, Sets, Multisets

- set
- frozenset
- Counter

Queues (FIFO)

• list

Stacks (LIFO)

• 11st

• deque

• LifoDeque

- deque
- Queue

Priority Queues

- list
- heapq
- PriorityQueue

Some types are extremely versatile (list, dict)

Some types are "improvements" of basic types

Some types are very specialized (e.g. for parallel computation)

Sets

set

- Mutable container of hashable objects.
- Duplicates are not allowed.
- Simple syntax: { 1, 2, 3 }
- Supports set-theory operations

frozenset

- An immutable version of a set: once created, its elements cannot be changed
- Since it's hashable, it may be used as a key in a dictionary (or as an element in a set)

Multisets and collections. Counter

• The Counter class is useful for computing and storing frequencies of items (i.e. counts of elements that may appear more than once in a set)

```
cnt = collections.Counter([1, 2, 3, 3, 4, 5, 1, 8, 3, 5, 2,
2, 3, 8])
Counter({3: 4, 2: 3, 1: 2, 5: 2, 8: 2, 4: 1})
```

- Great for statistics, frequency counting, histogram, duplicate detection, ranking, ...
- Internally stored as a defaultdict, with keys at the set elements, and values as the occurrence counts, with default value = 0

https://docs.python.org/3/library/collections.html#counter-objects

Creating Counter objects

```
    c = Counter() # a new, empty counter
    c = Counter('gallahad') # a new counter from an iterable
    c = Counter(['eggs', 'ham']) # a new counter from an iterable
    c = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping
    c = Counter(cats=4, dogs=8) # a new counter from keyword args
```

Manually increasing counts:

```
for word in ['red', 'blue', 'red', 'green', 'blue', 'blue']:
     cnt[word] += 1
equivalent to
cnt = Counter(['red', 'blue', 'red', 'green', 'blue', 'blue'])
```

What can I do with a **Counter**?

```
c.most_common(n)
                                  # the 'n' (default: all) most common items
 c.total()
                                  # total of all counts
  list(c)
                                  # list unique elements
• set(c)
                                  # convert to a set
 dict(c)
                                  # convert to a regular dictionary
 c.items()
                                  # convert to a list of (elem, cnt) pairs
 c.elements()
                                  # return a list [elem, ...] with repetitions
  Counter(dict(list of pairs))
                                  # convert from a list of (elem, cnt) pairs
 c.most common()[:-n-1:-1]
                                  # n least common elements
                                  # remove zero and negative counts
  +C
 c.clear()
                                  # reset all counts
```

Dictionaries, Maps, Hash Tables

- dict
- OrderedDict
- defaultdict
- ChainMap
- MappingProxyT ype

Array Data Structures

- list
- tuple
- array
- str
- bytes
- bytearray

Records, Structs, Data Transfer Objects

- dict
- tuple
- class
- dataclass
- namedtuple, NamedTuple
- Struct

Sets, Multisets

- set
- frozenset
- Counter

Stacks (LIFO)

- list
- deque
- LifoDeque

Queues (FIFO) Priority Queues

- •list
- <u>h</u>eapq
- PriorityQueue

Some types are extremely versatile (list, dict)

Some types are "improvements" of basic types

Some types are very specialized (e.g. for parallel computation)

•list

• deque

• **Q**ueue

Queues and Stacks

FIFO Queue – First-In First-Out

LIFO Stack – Larst-In First-Out

List implementations

FIFO Queue – First-In First-Out

LIFO Stack – Larst-In First-Out

deque: double-ended queue

s = collections.deque()

All operations have the same efficiency

https://docs.python.org/3/library/collections.html#deque-objects

Using a deque

As a FIFO Queue

- append and popleft
 - Most popular choice
- appendleft and pop
 - Also possible, same efficiency

As a LIFO Stack

- append and pop
 - Most popular choice
 - Might use a list, instead
- appendleft and popleft
 - Also possible, same efficiency

Other deque methods

<pre>d = deque()</pre>	New empty deque
<pre>d = deque(iterable)</pre>	Deque from list
<pre>d = deque(maxlen=N)</pre>	Hosts max N elements, discards older ones if more are added
<pre>d.extend(iterable)</pre>	Adds list of elements at end
<pre>d.extendleft(iterable)</pre>	Adds list of elements at beginning
<pre>d.rotate(n)</pre>	Rotate elements by n steps
d[i]	Access element (slower than lists)
<pre>d.index(x), d.insert(i, x), d.remove(x), d.reverse()</pre>	Same as lists

https://docs.python.org/3/library/collections.html#deque-objects

Dictionaries, Maps, Hash Tables

- dict
- OrderedDict
- defaultdict
- ChainMap
- MappingProxyT ype

Array Data Structures

- list
- tuple
- array
- str
- bytes
- bytearray

Records, Structs, Data Transfer Objects

- dict
- tuple
- class
- dataclass
- namedtuple, NamedTuple
- Struct

Sets, Multisets

- set
- frozenset
- Counter

Stacks (LIFO)

- list
- deque
- LifoDeque

Queues (FIFO)

- list
- deque
- Queue

Priority Queues

- list
- heapq
- PriorityQueue

Some types are extremely versatile (list, dict)

Some types are "improvements" of basic types

Some types are very specialized (e.g. for parallel computation)

Priority Queues

- Elements are added in any order
- Elements are removed according to their "priority"
- Priority is determined by the sorting order of the elements
- Often, we create a tuple:
 - (priority, value)
- Or we rely on the object's
 1t method

Priority queues in Python

Items x must be comparable (implement __lt__)

heapq – uses plain lists

- h = []
- h = heapify(iterable)
- len(h)
- len(h)==0
- heapq.heappush(h, x)
- x = heapq.heappop(h)

queue.PriorityQueue

- q = queue.PriorityQueue()
- q.qsize()
- q.empty()
- q.full()
- q.put(x)
- x = q.get_nowait()

License

- These slides are distributed under a Creative Commons license "Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)"
- You are free to:
 - Share copy and redistribute the material in any medium or format
 - Adapt remix, transform, and build upon the material
 - The licensor cannot revoke these freedoms as long as you follow the license terms.
- Under the following terms:
 - Attribution You must give <u>appropriate credit</u>, provide a link to the license, and <u>indicate if changes were</u> made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 - NonCommercial You may not use the material for <u>commercial purposes</u>.
 - ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
 - No additional restrictions You may not apply legal terms or <u>technological measures</u> that legally restrict others from doing anything the license permits.
- https://creativecommons.org/licenses/by-nc-sa/4.0/

