Introdução as Derivadas – <u>Aula 1</u>

$$\frac{\partial f(x)}{\partial x} = D_x f(x) = f'(x)$$

1)
$$f(x)=c \rightarrow f'(x)=0$$

2)
$$f(x)=x \rightarrow f'(x)=1$$

3)
$$f(x) = x^p \rightarrow f'(x) = p \cdot x^{p-1}$$

4)
$$f(x)=e^x \rightarrow f'(x)=e^x$$

5)
$$f(x) = \ln(x) \rightarrow f'(x) = \frac{1}{x}$$

Exercício I

a)
$$y=8 \rightarrow y'=0$$

b) $y=\sqrt{3} \rightarrow y'=0$
c) $f(x)=\pi \rightarrow f'(x)=0$
d) $g(x)=(\pi-1)^{\pi} \rightarrow g'(x)=0$ (1)

Exercício II

a)
$$y=x^5 \rightarrow y'=5 x^{5-1}=5 x^4$$

b) $h(x)=x^{-5} \rightarrow h'(x)=-5 x^{-5-1}=-5 x^{-6}=-5 \cdot \frac{1}{x^6}=-\frac{5}{x^6}$
c) $g(x)=5 x^3 \rightarrow g'(x)=5 \cdot 3 x^{3-1}=15 x^2$ (2)

Exercício III

$$h(x) = 8x \rightarrow h'(x) = 8.1 = 8$$
 (3)

Exercício IV

$$f(x) = 7x^{3} - 2x - 400$$

$$f'(x) = 7 \cdot 3x^{3-1} - 2 \cdot 1 - 0 = 21x^{2} - 2$$
 (4)

Derivada com X no Denominador – Aula 2

Exercício I

$$g(x) = \frac{3}{x^5} = 3x^{-5}$$

$$g'(x) = 3(-5x^{-5-1}) = -15x^{-6} = -\frac{15}{x^6}$$
(5)

Exercício II

$$h(x) = 3x^{5} - \frac{2}{x^{4}} = 3x^{5} - 2x^{-4}$$

$$h'(x) = 3(5x^{5-1}) - 2(-4x^{-4-1}) = 15x^{4} + 8x^{-5} = 15x^{4} + \frac{8}{x^{5}}$$
(6)

Derivada de Função Raiz – Aula 3

Exercício I

$$y = \sqrt[3]{x^4} = x^{\frac{4}{3}}$$

$$y' = \frac{4}{3}x^{\frac{4}{3}-1} = \frac{4}{3}x^{\frac{1}{3}} = \frac{4}{3}\sqrt[3]{x}$$
(7)

Exercício II

$$g'(x) = 7\left(\frac{1}{3}x^{\frac{1}{3}-1}\right) = \frac{7}{3}x^{-\frac{2}{3}} = \frac{7}{3} \cdot \frac{1}{x^{\frac{2}{3}}} = \frac{7}{3\sqrt[3]{x^2}} \left(\frac{\sqrt[3]{x}}{\sqrt[3]{x}}\right) = \frac{7\sqrt[3]{x}}{3x}$$
(8)

Derivada de uma Função Potência – <u>Aula 4</u>

Exercício I

$$y = x^3 \Rightarrow y' = 3x^2 \tag{9}$$

Exercício II

$$y = \frac{5x^{4}x^{3}}{x^{2}} = 5x^{4+3-2} = 5x^{5}$$

$$y' = 5(5x^{5-1}) = 25x^{4}$$
(10)

Derivada de uma Função Potência – <u>Aula 5</u>

Exercício I

$$y = \frac{x^{2}\sqrt{x}}{\sqrt[3]{x}} = x^{2} \frac{x^{\frac{1}{2}}}{\frac{1}{3}} = x^{2 + \frac{1}{2} - \frac{1}{3}} = x^{\frac{12 + 3 - 2}{6}} = x^{\frac{13}{6}}$$

$$y' = \frac{13}{6} x^{\frac{13}{6} - 1} = \frac{13}{6} x^{\frac{7}{6}} = \frac{13}{6} \sqrt[6]{x^{\frac{7}{6}}}$$
(11)

Derivada de Função Exponencial e Logarítmica – <u>Aula 6</u>

Exercício I

$$f(x) = 3e^{x} + 10 \cdot \ln(x)$$

$$f'(x) = 3e^{x} + \frac{10}{x} = \frac{3xe^{x} + 10}{x}$$
 (12)

Exercício II

$$g(x) = 7e^{x} + 9 \cdot \ln(x) + 3x^{4} - 4x + 100$$

$$g'(x) = 7e^{x} + \frac{9}{x} + 12x^{3} - 4 = \frac{7xe^{x} + 9 + 12x^{4} - 4x}{x}$$
(13)