I-AB 与I-BA

December 6, 2019

Theorem 0.1. Let $A, B \in M_n(\mathbb{C})$.

$$I_n - AB$$
 is invertible $\iff I_n - BA$ is invertible,

where $I_n \in M_n(\mathbb{C})$ is identity matrix.

The key of the proof of above theorem is the following equation:

$$(I_n - BA)(I + B(I - AB)^{-1}A) = I. (1)$$

Now a problem is coming, how can we find (1). Next I will show a intersting idea from StackExchange.

Absolutely, our goal is using $I_n - AB$ and $(I_n - AB)^{-1}$ to construct $I_n - BA^{-1}$. We assume $(I_n - AB)^{-1}$ and $(I_n - BA)^{-1}$ are exist and can be expand series, then

$$(I_n - AB)^{-1} = I_n + AB + (AB)^2 + \cdots,$$

 $(I_n - BA)^{-1} = I_n + BA + (BA)^2 + \cdots.$

Then

$$B(I_n - AB)^{-1}A = BA + (BA)^2 + (BA)^3 + \cdots,$$

= $(I_n - BA)^{-1} - I_n.$

From this we get (1). Of course, this isn't a proof, but the argument is heuristic. Next is a strict proof.

Proof of Theorem 0.1. We should only proof, if $I_n - AB$ is invertible, then $I_n - BA$ is invertible. In fact, assume $I_n - AB$ is invertible, then

$$(I_n - BA)[I_n + B(I_n - AB)^{-1}A]$$

$$= I_n + B(I_n - AB)^{-1}A - BA - BAB(I_n - AB)^{-1}A$$

$$= I_n - BA + B(I_n - AB)(I_n - AB)^{-1}A = I_n.$$

Similar we have

$$[I_n + B(I_n - AB)^{-1}A](I_n - BA) = I_n.$$

So $I_n - BA$ is invertible. This complete the proof of Theorem 0.1.