Solution Book of Mathematic

Senior 2 Part I

MELVIN CHIA

Written on 9 October 2022

Contents

12	Sequ	ence and Series	3
	12.1	Sequence and Series	3
		12.1.1 Practice 1	3
		12.1.2 Practice 2	3
		12.1.3 Exercise 12.1	3
	12.2	Arithmetic Progression	5
		12.2.1 Practice 3	5
		12.2.2 Practice 4	6
		12.2.3 Practice 5	6
		12.2.4 Exercise 12.2	7
	12.3	Geometric Progression	14
		12.3.1 Practice 6	14
		12.3.2 Practice 7	15
		12.3.3 Practice 8	15
		12.3.4 Practice 9	16
		12.3.5 Exercise 12.3	17
	12.4	Simple Summation of Special Series	23
		12.4.1 Practice 10	24
		12.4.2 Exercise 12.4	25
	12.5	Revision Exerise 12	27
13	Syste	em of Equations	35
	-	System of Equations with Two Variables	35
	13.1		35
		13.1.2 Exercise 13.1	36

13.2 Sys	stem of Equations with Three Variables		39
----------	--	--	----

Chapter 12

Sequence and Series

12.1 Sequence and Series

12.1.1 Practice 1

1. Find the first 5 terms of the sequence $a_n = \frac{2^n}{n+1}$.

Sol.
$$a_1 = \frac{2}{2} = 1$$
, $a_2 = \frac{4}{3}$, $a_3 = \frac{8}{4}$, $a_4 = \frac{16}{5}$, $a_5 = \frac{32}{6}$

2. Write the general term of the sequence 1, 8, 27, 64, ...

Sol.
$$a_n = n^3$$

12.1.2 Practice 2

1. Express the series $\sum_{n=1}^{10} n^2 + 1$ in the form of numbers.

Sol.
$$\sum_{n=1}^{10} n^2 + 1$$

$$= (1^2 + 1) + (2^2 + 1) + (3^2 + 1) + (4^2 + 1)$$

$$+ (5^2 + 1) + (6^2 + 1) + (7^2 + 1)$$

$$+ (8^2 + 1) + (9^2 + 1) + (10^2 + 1)$$

$$= 2 + 5 + 10 + 17 + 26 + 37 + 50 + 65$$

$$+ 82 + 101$$

2. Write the first term, last term and the number of terms of the series $\sum_{n=1}^{10} (3^n - 2^n)$.

Sol. First term =
$$(3^1 - 2^1) = 1$$

Last term = $(3^{10} - 2^{10}) = 59049$
Number of terms = 10

3. Express the series $2 \times 5 + 3 \times 7 + 4 \times 9 + ... + 15 \times 31$ in the form of Σ .

Sol.

$$a_1 = 2 \times 5 = 10$$

 $a_2 = 3 \times 7 = 21$
 $a_3 = 4 \times 9 = 36$
 $a_4 = 5 \times 11 = 55$
:
 $a_{15} = 15 \times 31 = 465$
: $2 \times 5 + 3 \times 7 + 4 \times 9 + ... + 15 \times 31$
 $= \sum_{n=0}^{15} a_n$

12.1.3 Exercise 12.1

- 1. Find the general term of the following sequences.
 - (a) 5, 8, 11, 14, ... **Sol.** $a_n = 3n + 2$
 - (b) $2, 4, 8, 16, \dots$ **Sol.** $a_n = 2^n$
 - (c) $\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \dots$ **Sol.** $a_n = \frac{n+1}{2}$
 - (d) $\frac{2}{5}, \frac{4}{7}, \frac{6}{9}, \frac{8}{11}, \dots$ **Sol.** $a_n = \frac{2n}{2n+1}$
- 2. Find the first 5 terms of the following sequences.
 - (a) $a_n = 2n + 3$ **Sol.** $a_1 = 2 \times 1 + 3 = 5, a_2 = 2 \times 2 + 3 = 7, a_3 = 2 \times 3 + 3 = 9, a_4 = 2 \times 4 + 3 = 11, a_5 = 2 \times 5 + 3 = 13$
 - (b) $a_n = n(n-2)$ **Sol.** $a_1 = 1 \times (-1) = -1, a_2 = 2 \times 0 = 0, a_3 = 3 \times 1 = 3, a_4 = 4 \times 2 = 8, a_5 = 5 \times 3 = 15$
 - (c) $a_n = \frac{n}{2n+1}$ **Sol.** $a_1 = \frac{1}{2\times 1+1} = \frac{1}{3}, a_2 = \frac{2}{2\times 2+1} = \frac{2}{5}, a_3 = \frac{3}{2\times 3+1} = \frac{3}{7}, a_4 = \frac{4}{2\times 4+1} = \frac{4}{9}, a_5 = \frac{5}{2\times 5+1} = \frac{5}{11}$
 - d) $a_n = (-3)^n$ **Sol.** $a_1 = (-3)^1 = -3, a_2 = (-3)^2 = 9, a_3 = (-3)^3 = -27, a_4 = (-3)^4 = 81, a_5 = (-3)^5 = -243$
- 3. Express the following series in the form of numbers.
 - (a) $\sum_{n=1}^{5} n(n+3)$

Sol.
$$\sum_{n=1}^{5} n(n+3)$$

$$= (1 \times 4) + (2 \times 5) + (3 \times 6) + (4 \times 7)$$

$$+ (5 \times 8)$$

$$= 4 + 10 + 18 + 28 + 40$$

(b)
$$\sum_{n=2}^{6} \frac{1}{3n}$$

Sol.
$$\sum_{n=2}^{6} \frac{1}{3^n}$$

$$= \frac{1}{3^2} + \frac{1}{3^3} + \frac{1}{3^4} + \frac{1}{3^5} + \frac{1}{3^6}$$

$$= \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \frac{1}{243} + \frac{1}{729}$$

(c)
$$\sum_{n=1}^{6} \frac{1}{n(2n+1)}$$

Sol.
$$\sum_{n=1}^{6} \frac{1}{n(2n+1)}$$

$$= \frac{1}{1(2\times 1+1)} + \frac{1}{2(2\times 2+1)}$$

$$+ \frac{1}{3(2\times 3+1)} + \frac{1}{4(2\times 4+1)}$$

$$+ \frac{1}{5(2\times 5+1)} + \frac{1}{6(2\times 6+1)}$$

$$= \frac{1}{3} + \frac{1}{10} + \frac{1}{21} + \frac{1}{36} + \frac{1}{55} + \frac{1}{78}$$

(d)
$$\sum_{n=2}^{5} \frac{1}{n^2+2}$$

Sol.
$$\sum_{n=2}^{5} \frac{1}{n^2 + 2}$$

$$= \frac{1}{4+2} + \frac{1}{9+2} + \frac{1}{16+2} + \frac{1}{25+2}$$

$$= \frac{1}{6} + \frac{1}{11} + \frac{1}{18} + \frac{1}{27}$$

4. Find the first term, last term and the number of terms of the following series.

(a)
$$\sum_{n=3}^{10} 2^2$$

Sol. $a_3 = 2^2 = 4$, $a_{10} = 2^2 = 4$, $n = 10 - 3 + 1 = 8$

(b)
$$\sum_{n=1}^{8} \frac{n+2}{n}$$

Sol.
$$a_1 = \frac{1+2}{1} = \frac{3}{1} = 3, a_8 = \frac{8+2}{8} = \frac{10}{8} = \frac{5}{4}, n = 8 - 1 + 1 = 8$$

(c)
$$\sum_{n=1}^{10} 3n^2 - n$$

Sol. $a_1 = 3 \times 1^2 - 1 = 2, a_{10} = 3 \times 10^2 - 10 = 290, n = 10 - 1 + 1 = 10$

(d)
$$\sum_{n=9}^{14} n^2(n-7)$$

Sol. $a_9 = 9^2(9-7) = 9^2 \times 2 = 162, a_{14} = 14^2(14-7) = 14^2 \times 7 = 2744, n = 14-9+1=6$

5. Express the following series in the form of Σ .

(a) $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{30}$

Sol.

$$a_{1} = 1$$

$$a_{2} = \frac{1}{2}$$

$$a_{3} = \frac{1}{3}$$

$$\vdots$$

$$a_{30} = \frac{1}{30}$$

$$\therefore 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{30} = \sum_{n=1}^{30} \frac{1}{n}$$

(b)
$$1^3 + 2^3 + 3^3 + \dots + 50^3$$

$$a_{1} = 1^{3}$$

$$a_{2} = 2^{3}$$

$$a_{3} = 3^{3}$$

$$\vdots$$

$$a_{50} = 50^{3}$$

$$\therefore 1^{3} + 2^{3} + 3^{3} + \dots + 50^{3} = \sum_{n=1}^{50} n^{3}$$

(c)
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16}$$

$$a_1 = (-\frac{1}{2})^{1-1}$$

$$a_2 = (-\frac{1}{2})^{2-1}$$

$$a_3 = (-\frac{1}{2})^{3-1}$$

$$a_4 = (-\frac{1}{2})^{4-1}$$

$$a_5 = (-\frac{1}{2})^{5-1}$$

$$\therefore 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16}$$

$$= \sum_{n=1}^{5} (-\frac{1}{2})^{n-1}$$

(d)
$$2 \times 4 + 4 \times 7 + 6 \times 10 + 8 \times 13 + 10 \times 16$$

Sol.

$$a_1 = 2 \times 1 \times (3 \times 1 + 1)$$

$$a_2 = 2 \times 2 \times (3 \times 2 + 1)$$

$$a_3 = 2 \times 3 \times (3 \times 3 + 1)$$

$$a_4 = 2 \times 4 \times (3 \times 4 + 1)$$

$$a_5 = 2 \times 5 \times (3 \times 5 + 1)$$

$$\therefore 2 \times 4 + 4 \times 7 + 6 \times 10 + 8 \times 13$$

$$+ 10 \times 16 = \sum_{n=1}^{5} 2n(3n+1)$$

12.2 Arithmetic Progression

General term of an Arithmetic Progression (AP) is given by

$$a_n = a_1 + (n-1)d$$

where a_1 is the first term, d is the common difference and n is the number of terms.

12.2.1 Practice 3

1. Find the number of terms of the AP $-4 - 2\frac{3}{4} - 1\frac{1}{2} - \frac{1}{4} + \dots + 16$.

$$a_{1} = -4$$

$$a_{n} = 16$$

$$d = -2\frac{3}{4} - (-4)$$

$$= -2\frac{3}{4} + 4$$

$$= \frac{5}{4}$$

$$16 = -4 + (n - 1)\frac{5}{4}$$

$$20 = \frac{5}{4}(n - 1)$$

$$80 = 5(n - 1)$$

$$n - 1 = 16$$

$$n = 17$$

2. Given that $a_2 = 4$ and $a_6 = -8$, find the 10th term of the AP.

Sol.

$$a_2 = 4$$
 $a + (2 - 1)d = 4$
 $a_6 = -8$
 $a + (6 - 1)d = -8$

$$\begin{cases} a+d = 4 & (1) \\ a+5d = -8 & (2) \end{cases}$$

(2)
$$-(1): 4d = -12$$

 $d = -3$
 $a + (-3) = 4$
 $a = 7$
 $\therefore a_{10} = 7 + (10 - 1)(-3)$
 $= 7 - 27$
 $= -20$

3. How many multiples of 7 are there between 50 and 500?

$$a_{1} = 56$$

$$a_{n} = 497$$

$$d = 7$$

$$497 = 56 + (n - 1)7$$

$$441 = 7(n - 1)$$

$$n - 1 = 63$$

$$n = 64$$

4. Find 5 numbers between 30 and 54 such that these numbers form an AP.

Sol.

$$a_1 = 30$$

 $a_7 = 54$
 $54 = 30 + (7 - 1)d$
 $24 = 6d$
 $d = 4$

:. These 5 numbers are 34, 38, 42, 46, and 50.

Arithmetic mean

If A is in between x and y, and x, A, y are in AP, then

$$A = \frac{x + y}{2}$$

12.2.2 Practice 4

1. If 9, x, 17 are in AP, find x.

Sol.

$$x = \frac{9+17}{2}$$
$$= \frac{26}{2}$$
$$= 13$$

2. Find the arithmetic mean of 26 and -11.

Sol.

$$A = \frac{26 - 11}{2}$$
$$= \frac{15}{2}$$

3. Find x and y when 3, x, 12, y, 21 are in AP.

Sol.

$$x = \frac{3+12}{2}$$
$$= \frac{15}{2}$$
$$y = \frac{12+21}{2}$$
$$= \frac{33}{2}$$

Summation of Arithmetic Progression

The summation formula for AP is given by

$$S_n = \frac{n}{2}(2a + (n-1)d)$$

or

$$S_n = \frac{n}{2}(a_1 + a_n)$$

12.2.3 Practice 5

1. Find the sum of the first 16 terms of the AP 22 + 18 + 14 + 10 + ...

$$a_1 = 22$$

$$n = 16$$

$$d = -4$$

$$S_n = \frac{16}{2}(2 \times 22 + (-4)(16 - 1))$$

$$= \frac{16}{2}(44 + (-4)(15))$$

$$= \frac{16}{2}(44 - 60)$$

$$= \frac{16}{2}(-16)$$

$$= -128$$

2. If the sum of AP $23 + 19 + 15 + \dots$ is 72, find the number of terms.

Sol.

$$a_{1} = 23$$

$$S_{n} = 72$$

$$d = -4$$

$$72 = \frac{n}{2}(2 \times 23 + (-4)(n-1))$$

$$72 = \frac{n}{2}(46 + (-4)(n-1))$$

$$144 = n(46 + (-4)(n-1))$$

$$144 = n(46 - 4n + 4)$$

$$144 = n(50 - 4n)$$

$$144 = 50n - 4n^{2}$$

$$72 = 25n - 2n^{2}$$

$$2n^{2} - 25n + 72 = 0$$

$$(n-8)(2n-9) = 0$$

$$n = 8$$

3. Given that $S_n = 2n + 3n^2$, find the first term and the common difference of the AP.

Sol.

$$S_n = 2n + 3n^2$$

$$2n + 3n^2 = \frac{n}{2}(2a + (n-1)d)$$

$$4n + 6n^2 = n(2a + (n-1)d)$$

$$4n + 6n^2 = 2na + (n-1)nd$$

$$4n + 6n^2 = 2na + n^2d - nd$$

$$4n + 6n^2 = (2a - d)n + dn^2$$

Comparing both sides,

$$2a - d = 4$$
$$a = 6$$
$$d = 2$$

12.2.4 Exercise 12.2

1. Find the 10th terms of the AP 5, 13, 21, ...

Sol.

$$a_1 = 5$$

 $n = 10$
 $d = 8$
 $a_{10} = 5 + (10 - 1) \times 8$
 $= 5 + 72$
 $= 77$

2. Find the 8th term of the AP $5, 4\frac{1}{4}, 3\frac{1}{2}, 2\frac{3}{4}, ...$

Sol.

$$a_{1} = 5$$

$$n = 8$$

$$d = -\frac{3}{4}$$

$$a_{8} = 5 + (8 - 1) \times -\frac{3}{4}$$

$$= 5 - \frac{3}{4} \times 7$$

$$= 5 - \frac{21}{4}$$

$$= -\frac{1}{4}$$

3. Find the number of terms of the following AP.

(a)
$$4, 9, \dots, 64$$

$$a_1 = 4$$

 $a_n = 64$
 $d = 5$
 $64 = 4 + (n - 1) \times 5$
 $60 = 5(n - 1)$
 $12 = n - 1$
 $n = 13$

(b)
$$4\frac{1}{3}, 3\frac{2}{3}, 3, \dots, -10\frac{1}{3}$$

$$a_1 = 4\frac{1}{3}$$

$$a_n = -10\frac{1}{3}$$

$$d = -\frac{2}{3}$$

$$-10\frac{1}{3} = 4\frac{1}{3} + (n-1) \times -\frac{2}{3}$$

$$-\frac{31}{3} = \frac{13}{3} - \frac{1}{3}(n-1)$$

$$-31 = 13 - 2n + 2$$

$$-46 = 2n$$

$$n = 23$$

4. The 6th term of an AP is 43, and its 10th term is 75. Find the first term and common difference of this AP.

Sol.

$$a_6 = 43$$
 $a_{10} = 75$
 $43 = a + (6 - 1)d$
 $75 = a + (10 - 1)d$
 $32 = 4d$
 $d = 8$
 $43 = a + 5 \times 8$
 $43 = a + 40$
 $3 = a$
 $a = 3$
 $\therefore a_1 = 3, d = 8$

5. The 7th term of an AP is -10, and the 12th term -25, find the 15th term of this AP.

Sol.

$$a_7 = -10$$

$$a_{12} = -25$$

$$-10 = a + (7 - 1)d$$

$$-25 = a + (12 - 1)d$$

$$-15 = 5d$$

$$d = -3$$

$$-10 = a + 6 \times -3$$

$$-10 = a - 18$$

$$a = 8$$

$$a_{15} = 8 + (15 - 1) \times -3$$

$$= 8 - 42$$

$$= -34$$

6. How many multiples of 7 are there between 100 and 200?

Sol.

$$a = 105$$

$$d = 7$$

$$a_n = 196$$

$$196 = 105 + (n - 1) \times 7$$

$$91 = 7(n - 1)$$

$$13 = n - 1$$

$$n = 14$$

- 7. Find the arithmetic mean of the following number pairs.
 - (a) (8, 20)

Sol.

$$\frac{8+20}{2} = 14$$

(b) (-9, 17)

Sol.

$$\frac{-9+17}{2} = 4$$

8. Find 5 numbers between 22 and 58 such that these 7 numbers are in AP.

$$a_1 = 22$$

 $a_7 = 58$
 $58 = 22 + (7 - 1)d$
 $36 = 6d$
 $d = 6$
 \therefore These 5 numbers are 22, 28, 34, 40, 46

9. Find the sum of first 20 terms of AP 12 + 15 + 18 + ...

Sol.

$$a_1 = 12$$

$$n = 20$$

$$d = 3$$

$$S_{20} = \frac{20}{2}(2 \times 12 + (20 - 1) \times 3)$$

$$= 10(24 + 57)$$

$$= 10(81)$$

$$= 810$$

10. Find the sum of first 12 terms of the AP $18 + 10 + 2 - 6 - \dots$

Sol.

$$a_1 = 18$$

$$n = 12$$

$$d = -8$$

$$S_{12} = \frac{12}{2}(2 \times 18 + (12 - 1) \times -8)$$

$$= 6(36 - 88)$$

$$= 6(-52)$$

$$= -312$$

11. Find the sum of first 14 terms of the AP $\frac{1}{6} + \frac{4}{3} + \frac{5}{2} + \dots$

Sol.

$$a_{1} = \frac{1}{6}$$

$$n = 14$$

$$d = \frac{7}{6}$$

$$S_{14} = \frac{14}{2}(2 \times \frac{1}{6} + (14 - 1) \times \frac{7}{6})$$

$$= 7(\frac{1}{3} + \frac{91}{6})$$

$$= 7 \times \frac{93}{6}$$

$$= 7 \times \frac{31}{2}$$

$$= \frac{217}{2}$$

12. Find the sum of all the multiples of 13 in between 200 and 800.

Sol.

$$a_1 = 208$$

$$a_n = 793$$

$$d = 13$$

$$793 = 208 + (n-1) \times 13$$

$$585 = 13(n-1)$$

$$45 = n - 1$$

$$n = 46$$

$$S_{46} = \frac{46}{2}(2 \times 208 + (46 - 1) \times 13)$$

$$= 23(416 + 585)$$

$$= 23(1001)$$

$$= 23023$$

13. If the sum of first n terms of the AP -3, -7, -11, ... is -903, find the value of n.

$$a_{1} = -3$$

$$d = -4$$

$$-903 = \frac{n}{2}(2 \times (-3) - 4(n-1))$$

$$-1806 = -2n - 4n^{2}$$

$$4n^{2} + 2n - 1806 = 0$$

$$2n^{2} + n - 903 = 0$$

$$(n-21)(2n+43) = 0$$

$$n = 21, -43(invalid)$$

$$\therefore n = 21$$

- 14. Given that the first 3 terms of an AP are x, 3x-4, 2x+7, find:
 - (a) The value of x

Sol.

$$3x - 4 = \frac{x + 2x + 7}{2}$$
$$6x - 8 = 3x + 7$$
$$3x = 15$$
$$x = 5$$

(b) The common difference

Sol.

$$a_1 = x = 5$$

 $a_2 = 3x - 4 = 3 \times 5 - 4 = 11$
 $d = 11 - 5$
 $= 6$

(c) The sum of first 10 terms.

Sol.

$$a_1 = x = 5$$

$$n = 10$$

$$d = 6$$

$$S_{10} = \frac{10}{2}(2 \times 5 + (10 - 1) \times 6)$$

$$= 5(10 + 54)$$

$$= 5(64)$$

$$= 320$$

15. Let the sum of the first n terms of an AP to be $S_n = \frac{n(n+1)}{4}$, find:

(a) The first term

Sol.

$$\frac{n(n+1)}{4} = \frac{n}{2}(2a + (n-1)d)$$

$$n(n+1) = 2n(2a + dn - d)$$

$$n^2 + n = 4na + 2dn^2 - 2nd$$

$$n^2 + n = 2dn^2 + (4a - 2d)n$$

Comparing both sides,

$$2d = 1$$

$$d = \frac{1}{2}$$

$$4a - 2d = 1$$

$$4a - 1 = 1$$

$$4a = 2$$

$$a = \frac{1}{2}$$

(b) The common difference

Sol.

$$d = \frac{1}{2}$$

gg

(c) The 6th terms

Sol.

$$a_{1} = \frac{1}{2}$$

$$n = 6$$

$$d = \frac{1}{2}$$

$$a_{6} = \frac{1}{2} + (6 - 1) \times \frac{1}{2}$$

$$= \frac{1}{2} + \frac{5}{2}$$

$$= 3$$

(d) The sum from 6th term to 10th term

$$a = \frac{1}{2}$$

$$d = \frac{1}{2}$$

$$S_{10} = \frac{10}{2} (2 \times \frac{1}{2} + (10 - 1) \times \frac{1}{2})$$

$$S_{10} = \frac{10}{2}(2 \times \frac{1}{2} + (10 - 1) \times \frac{1}{2})$$

$$= \frac{10}{2}(1 + \frac{9}{2})$$

$$= 5 \times \frac{11}{2}$$

$$= \frac{55}{2}$$

$$S_5 = \frac{5}{2}(2 \times \frac{1}{2} + (5 - 1) \times \frac{1}{2})$$
$$= \frac{5}{2}(1 + 2)$$
$$= \frac{15}{2}$$

$$S_{10} - S_6 = \frac{55}{2} - \frac{15}{2}$$
$$= \frac{40}{2}$$
$$= 20$$

16. Given three numbers in an AP, the sum of these three numbers is 30, and the sum of square of these numbers is 318, find these three numbers.

Sol.

$$a_{1} + a_{2} + a_{3} = 30$$

$$a_{1}^{2} + a_{2}^{2} + a_{3}^{2} = 318$$

$$a_{2} - a_{1} = a_{3} - a_{2}$$

$$a_{1} - 2a_{2} + a_{3} = 0$$

$$3a_{2} = 30$$

$$a_{2} = 10$$

$$a_{1} - 20 + a_{3} = 0$$

$$a_{1} + a_{3} = 20$$

$$a_{3} = 20 - a_{1}$$

$$a_{1}^{2} + 100 + (20 - a_{1})^{2} = 318$$

$$a_{1}^{2} + 100 + 400 + a_{1}^{2} - 40a_{1} = 318$$

$$2a_{1}^{2} - 40a_{1} + 182 = 0$$

$$a_{1}^{2} - 20a_{1} + 91 = 0$$

$$(a_{1} - 7)(a_{1} - 13) = 0$$

$$a_{1} = 7ora_{1} = 13$$

:. These three numbers are 7, 10, and 13

17. Find the sum of all the numbers between 100 and 200 that are both the multiples of 2 and 3.

$$a_{1} = 102$$

$$d = 6$$

$$a_{n} = 198$$

$$198 = 102 + (n - 1) \times 6$$

$$96 = 6(n - 1)$$

$$6n - 6 = 96$$

$$6n = 102$$

$$n = 17$$

$$S_{17} = \frac{17}{2}(2 \times 102 + (17 - 1) \times 6)$$

$$= \frac{17}{2}(204 + 96)$$

$$= \frac{17}{2}(300)$$

$$= 150 \times 17$$

$$= 2550$$

- 18. Given an AP -100 96 92 ...:
 - (a) Find the term where the number become positive.

$$a_1 = -100$$

$$d = 4$$

$$a_n = -100 + (n-1) \times 4 > 0$$

$$-100 + 4n - 4 > 0$$

$$4n > 104$$

$$n > 26$$

 $\therefore n = 27$

(b) Find the term where the sum of this AP becomes positive.

Sol.

$$S_n = \frac{n}{2}(2(-100) + (n-1) \times (4)) > 0$$

$$\frac{n}{2}(-200 + 4n - 4) > 0$$

$$\frac{n}{2}(-204 + 4n) > 0$$

$$n(2n - 102) > 0$$

$$n(n - 51) > 0$$

$$n > 51$$

 $\therefore n = 52$

19. Find the first negative term of the AP 20, $19\frac{1}{5}$, $18\frac{2}{5}$, ...

Sol.

$$a_1 = 20$$

$$d = -\frac{4}{5}$$

$$a_n = 20 + (n-1) \times (-\frac{4}{5}) < 0$$

$$100 - 4n + 4 < 0$$

$$4n > 104$$

$$n > 26$$

 $\therefore n = 27$

20. Given an AP $10 + 9\frac{1}{5} + 8\frac{2}{5} + ...$, what is the first negative term? When will the sum of the terms become negative, and what's the value of it?

Sol.

$$a_n = 10 + (n-1) \times (-\frac{4}{5}) < 0$$

$$10 - \frac{4}{5}(n-1) < 0$$

$$50 - 4n + 4 < 0$$

$$-4n < -54$$

$$n > 13\frac{1}{2}$$

 $\therefore n = 14$

$$\begin{split} S_n &= \frac{n}{2}(2\times 10 + (n-1)\times (-\frac{4}{5})) < 0 \\ &\frac{n}{2}(20 - \frac{4}{5}(n-1)) < 0 \\ &20n - \frac{4}{5}(n^2 - n) < 0 \\ &100n - 4n^2 + 4n < 0 \\ &25n - n^2 + n < 0 \\ &26n - n^2 < 0 \\ &n(n-26) > 0 \\ &n > 26 \end{split}$$

 $\therefore n = 27$

$$S_{27} = \frac{27}{2}(2 \times 10 + (27 - 1) \times (-\frac{4}{5}))$$

$$= \frac{27}{2}(20 - \frac{4}{5}(27 - 1))$$

$$= \frac{27}{2}(20 - \frac{4}{5}(26))$$

$$= \frac{27}{2} \times (-\frac{4}{5})$$

$$= -\frac{54}{5}$$

- :. The first negative term is the 14th term
- :. The first term where the sum of the terms becomes negative is the 27th term
- :. The value of the sum of the terms when it becomes negative is $-\frac{54}{5}$

21. Given a polygon which all their internal angles are in AP. The common difference of this AP is 6°, the largest angle is 135°. How many sides does this polygon have?

Sol.

$$a_{1} = 135$$

$$d = -6$$

$$\frac{n}{2}(2 \times 135 + (n-1) \times (-6)) = 180(n-2)$$

$$n(270 - 6(n-1)) = 360(n-2)$$

$$n(276 - 6n) = 360n - 720$$

$$276n - 6n^{2} = 360n - 720$$

$$46n - n^{2} = 60n - 120$$

$$n^{2} + 14n - 120 = 0$$

$$(n+20)(n-6) = 0$$

$$n = -20 \text{ (invalid)}$$

$$n = 6$$

:. The number of sides is 6

22. Given an AP which its 5th term is 3 and the sum of its first 10 terms is $26\frac{1}{4}$. Wheih term in this AP is 0?

Sol.

$$a_{5} = a + (5 - 1)d = 3$$

$$a + 4d = 3$$

$$S_{10} = \frac{10}{2}(2a + (10 - 1)d) = 26\frac{1}{4}$$

$$5(2a + 9d) = 26\frac{1}{4}$$

$$20(2a + 9d) = 105$$

$$4(2a + 9d) = 21$$

$$8a + 36d = 21$$

$$8a + 32d = 24$$

$$4d = -3$$

$$d = -\frac{3}{4}$$

$$a = 3 + \frac{3}{4} \times 4$$

$$= 6$$

$$a_{n} = 6 + (n - 1) \times (-\frac{3}{4}) = 0$$

$$6 - \frac{3}{4}(n - 1) = 0$$

$$24 - 3n + 3 = 0$$

$$3n = 27$$

$$n = 9$$

23. Given that the sum of the first 6 terms of an AP is 96, and the sum of the first 20 terms is 3 times the sum of the first 10 terms of this AP. Find the first term and the 10th term of it.

Sol.

$$S_{6} = \frac{6}{2}(2a + (6 - 1)d) = 96$$

$$3(2a + 5d) = 96$$

$$2a + 5d = 32$$

$$S_{20} = 3S_{10}$$

$$\frac{20}{2}(2a + (20 - 1)d) = 3 \times \frac{10}{2}(2a + (10 - 1)d)$$

$$10(2a + 19d) = 15(2a + 9d)$$

$$2(2a + 19d) = 3(2a + 9d)$$

$$4a + 38d = 6a + 27d$$

$$2a - 11d = 0$$

$$16d = 32$$

$$d = 2$$

$$a = \frac{11 \times 2}{2}$$

$$= 11$$

$$a_{10} = 11 + (10 - 1) \times 2$$

24. Given that $5^2 \times 5^4 \times 5^6 \times ... \times 5^{2n} = (0.04)^{-28}$, find the value of n.

$$(0.04)^{-28} = \frac{1}{25}^{-28}$$

$$= (5^{-2})^{-28}$$

$$= 5^{56}$$

$$\therefore n^a \times n^b = n^{a+b}$$

$$2 + 4 + 6 + \dots + 2n = 56$$

$$S_n = \frac{n}{2}(2 \times 2 + (n-1) \times 2) = 56$$

$$n(4 + 2(n-1)) = 112$$

$$n(2 + 2n) = 112$$

$$2n^2 + 2n = 112$$

$$n^2 + n - 56 = 0$$

$$(n+8)(n-7) = 0$$

$$n = -8 \text{ (invalid)}$$

$$n = 7$$

25. Given that the 9th term of an AP is double the 5th term of it. Find the ratio of the sum of first 9 terms and the sum of first 5 terms of the AP.

Sol.

$$a_{9} = 2a_{5}$$

$$a + (9-1)d = 2(a + (5-1)d)$$

$$a + 8d = 2a + 8d$$

$$a = 0$$

$$S_{9} : S_{5} = \frac{9}{2}(2a + a_{9}) : \frac{5}{2}(2a + a_{5})$$

$$= \frac{9}{2}(2a + 2a_{5}) : \frac{5}{2}(2a + a_{5})$$

$$= 9(a + a_{5}) : \frac{5}{2}(2a + a_{5})$$

$$\frac{S_{9}}{S_{5}} = \frac{9(a + a_{5})}{\frac{5}{2}(2a + a_{5})}$$

$$= \frac{18(a + a_{5})}{5(2a + a_{5})}$$

$$= \frac{18 \times a_{5}}{5 \times a_{5}}$$

$$= \frac{18}{5}$$

$$\therefore S_{9} : S_{5} = 18 : 5$$

12.3 Geometric Progression

The general formula of a geometric progression (GP) is given by

$$a_n = a_1 \times r^{n-1}$$

where a_1 is the first term, r is the common ratio, and n is the number of terms.

12.3.1 Practice 6

1. Find the 6th term of the GP 12, -18, 27, ...

Sol.

$$a_{1} = 12$$

$$r = \frac{-18}{12}$$

$$= -\frac{3}{2}$$

$$a_{6} = 12 \times (-\frac{3}{2})^{6-1}$$

$$= 12 \times (-\frac{3}{2})^{5}$$

$$= 12 \times (-\frac{243}{32})$$

$$= -\frac{729}{8}$$

2. Find the number of terms of GP $\frac{1}{64} - \frac{1}{32} + \frac{1}{16} - \frac{1}{8} + \dots - 512$

Sol.

$$a_1 = \frac{1}{64}$$

$$r = \frac{-\frac{1}{32}}{\frac{1}{64}}$$

$$= -2$$

$$-512 = \frac{1}{64}(-2)^{n-1}$$

$$(-2)^9 = \frac{1}{2^6}(-2)^{n-1}$$

$$(-2)^{15} = (-2)^{n-1}$$

$$n - 1 = 15$$

$$n = 16$$

3. The 5th term of a GP is 3, and its 9th term is $\frac{1}{27}$, find the first term and the common ratio of this GP.

$$a_5 = ar^4 = 3$$

$$a_9 = ar^8 = \frac{1}{27}$$

$$r^4 = \frac{1}{27} \times \frac{1}{3}$$

$$= \frac{1}{81}$$

$$r = \frac{1}{3}$$

$$a_1 = 3 \times 81$$

$$= 243$$

4. Find 5 numbers between $\frac{1}{2}$ and frac1128 such that these 7 numbers are in GP.

Sol.

$$a_1 = \frac{1}{2}$$

$$n = 7$$

$$\frac{1}{128} = \frac{1}{2}r^{7-1}$$

$$r^6 = \frac{1}{64}$$

$$r = \frac{1}{2}$$

:. These 5 numbers are $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{64}$

Geometric Mean

The geometric mean G of two numbers x and y is given by

$$\frac{G}{x} = \frac{G}{y}$$

$$G^{2} = xy$$

$$G = \mp \sqrt[2]{xy}$$

12.3.2 Practice 7

Find the geometric mean of $\frac{27}{8}$ and $\frac{2}{3}$.

Sol.

$$G = \pm \sqrt[2]{\frac{27}{8} \times \frac{2}{3}}$$
$$= \pm \sqrt[2]{\frac{9}{4}}$$
$$= \pm \frac{3}{2}$$

Summation of Geometric Progression

The sum of n terms of a GP is given by

$$S_n = \frac{a_1(1 - r^n)}{1 - r} \ (r \neq 1)$$

12.3.3 Practice 8

1. Find the sum of the first 8 terms of GP 3 + 6 + 12 + ...

Sol.

$$a_{1} = 3$$

$$r = \frac{6}{3}$$

$$= 2$$

$$n = 8$$

$$S_{n} = \frac{3(1 - 2^{8})}{1 - 2}$$

$$= \frac{3(1 - 256)}{1 - 2}$$

$$= 3 \times 255$$

$$= 765$$

2. Find the sum of the GP $1 + \sqrt{3} + 3 + ... + 81$

Sol.

$$a_{1} = 1$$

$$r = \sqrt{3}$$

$$81 = 1 \times (\sqrt{3})^{n-1}$$

$$3^{4} = (\sqrt{3})^{n-1}$$

$$(\sqrt{3})^{8} = (\sqrt{3})^{n-1}$$

$$(\sqrt{3})^{8} = (\sqrt{3})^{n-1}$$

$$n - 1 = 8$$

$$n = 9$$

$$S_{n} = \frac{1(1 - (\sqrt{3})^{9})}{1 - \sqrt{3}}$$

$$= \frac{1 - 81\sqrt{3}}{1 - \sqrt{3}}$$

$$= \frac{(1 - 81\sqrt{3})(1 + \sqrt{3})}{-2}$$

$$= \frac{1 - 81\sqrt{3} + \sqrt{3} - 243}{-2}$$

$$= \frac{-242 - 80\sqrt{3}}{-2}$$

$$= 121 + 40\sqrt{3}$$

3. Given that the sum of the first n terms of GP $4\frac{4}{5}, 1\frac{3}{5}, \frac{8}{15}, \dots$ is $7\frac{145}{729}$, find n.

$$a_{1} = \frac{24}{5}$$

$$r = \frac{8}{5} \times \frac{5}{24}$$

$$= \frac{1}{3}$$

$$S_{n} = \frac{24}{5} \times \frac{1 - (\frac{1}{3})^{n}}{1 - \frac{1}{3}}$$

$$\frac{5248}{729} = \frac{24}{5} \times \frac{1 - (\frac{1}{3})^{n}}{\frac{2}{3}}$$

$$\frac{5248}{729} \times \frac{5}{24} \times \frac{2}{3} = 1 - (\frac{1}{3})^{n}$$

$$\frac{6560}{6561} = 1 - (\frac{1}{3})^{n}$$

$$-\frac{1}{6561} = -(\frac{1}{3})^{n}$$

$$(\frac{1}{3})^{8} = (\frac{1}{3})^{n}$$

$$n = 8$$

Summation of Infinite Geometric Progression

The sum of infinite GP is given by

$$S_{\infty} = \frac{a_1}{1 - r} \; (-1 < r < 1)$$

12.3.4 Practice 9

- 1. Find the sum of the following infinite GP.
 - (a) $16 + 8 + 4 + \dots$

Sol.

$$a_1 = 16$$

$$r = \frac{8}{16}$$

$$= \frac{1}{2}$$

$$S_{\infty} = \frac{16}{1 - \frac{1}{2}}$$

$$= \frac{16}{\frac{1}{2}}$$

$$= 32$$

(b) $18 - 12 + 8 + \dots$

Sol.

$$a_{1} = 18$$

$$r = \frac{8}{-12}$$

$$= -\frac{2}{3}$$

$$S_{\infty} = \frac{18}{1 + \frac{2}{3}}$$

$$= \frac{18}{\frac{5}{3}}$$

$$= \frac{54}{5}$$

(c)
$$1 + \frac{3}{4} + \frac{9}{16} + \dots$$

Sol.

$$a_1 = 1$$

$$r = \frac{9}{16} \times \frac{16}{9}$$

$$= \frac{3}{4}$$

$$S_{\infty} = \frac{1}{1 - \frac{3}{4}}$$

$$= \frac{1}{\frac{1}{4}}$$

$$= 4$$

(d)
$$\sqrt{2} + 1 + \frac{1}{\sqrt{2}} + \dots$$

Sol.

$$a_1 = \sqrt{2}$$

$$r = \frac{1}{\sqrt{2}}$$

$$S_{\infty} = \frac{\sqrt{2}}{1 - \frac{1}{\sqrt{2}}}$$

$$= \frac{\sqrt{2}}{\frac{\sqrt{2} - 1}{\sqrt{2}}}$$

$$= \frac{2}{\sqrt{2} - 1}$$

$$= 2(\sqrt{2} + 1)$$

2. Convert the following recurring decimals to fraction using the summation of inifinite geometric series.

(a)
$$0.\overline{3}$$

$$a_1 = 0.3$$

$$r = 0.1$$

$$S_{\infty} = \frac{0.3}{1 - 0.1}$$

$$= \frac{0.3}{0.9}$$

$$= \frac{1}{3}$$

$$\therefore 0.\overline{3} = \frac{1}{3}$$

(b)
$$0.5\overline{3}$$

Sol.

$$a_1 = 0.03$$

$$r = 0.01$$

$$S_{\infty} = \frac{0.03}{1 - 0.01}$$

$$= \frac{0.03}{0.99}$$

$$= \frac{3}{99}$$

$$∴0.5\overline{3} = \frac{5}{10} + \frac{3}{99}$$
$$= \frac{53}{99}$$

12.3.5 Exercise 12.3

1. Find the 10th term of the GP 2, 4, 8, ...

Sol.

$$a_1 = 2$$
 $r = \frac{4}{2}$
 $= 2$
 $a_{10} = 2 \times 2^{10-1}$
 $= 2 \times 512$
 $= 1024$

2. Find the 8th term of the GP 243, -162, 108, ...

Sol.

$$a_1 = 243$$

$$r = \frac{-162}{243}$$

$$= -\frac{2}{3}$$

$$a_8 = 243 \times (-\frac{2}{3})^{8-1}$$

$$= 243 \times (-\frac{128}{2187})$$

$$= -\frac{128}{9}$$

- 3. Find the number of terms of the following GP.
 - (a) $8, 4, 2, 1, \dots, \frac{1}{64}$

Sol.

$$a_{1} = 8$$

$$r = \frac{4}{8}$$

$$= \frac{1}{2}$$

$$\frac{1}{64} = 8 \times (\frac{1}{2})^{n-1}$$

$$\frac{1}{512} = (\frac{1}{2})^{n-1}$$

$$\frac{1}{2^{9}} = (\frac{1}{2})^{n-1}$$

$$n - 1 = 9$$

$$n = 10$$

(b)
$$6, -18, 54, \dots, -13122$$

$$a_{1} = 6$$

$$r = \frac{-18}{6}$$

$$= -3$$

$$-13122 = 6 \times (-3)^{n-1}$$

$$-2187 = (-3)^{n-1}$$

$$(-3)^{7} = (-3)^{n-1}$$

$$n - 1 = 7$$

$$n = 8$$

(c)
$$54, 36, 24, \dots, 3\frac{13}{81}$$

$$a_{1} = 54$$

$$r = \frac{36}{54}$$

$$= \frac{2}{3}$$

$$\frac{256}{81} = 54 \times (\frac{2}{3})^{n-1}$$

$$\frac{256}{81} \times \frac{1}{54} = (\frac{2}{3})^{n-1}$$

$$\frac{128}{2187} = (\frac{2}{3})^{n-1}$$

$$(\frac{2}{3})^{7} = (\frac{2}{3})^{n-1}$$

$$n - 1 = 7$$

$$n = 8$$

4. Given that the 2nd term of a GP is 12, and its 4th term is 108, find the first term and the common ratio of it.

Sol.

$$a_2 = ar = 12$$

 $a_4 = ar^3 = 109$
 $r^2 = 9$
 $r = \pm 3$
 $a_1 = \pm 4$
 $\therefore a_1 = 4, r = 3 \text{ or } a_1 = -4, r = -3$

5. Given that the 3rd term of an GP is $1\frac{1}{3}$, and its 8th term is $-10\frac{1}{8}$. Find the 5th term of this AP.

Sol.

$$a_{3} = ar^{2} = \frac{4}{3}$$

$$a_{8} = ar^{7} = -\frac{81}{8}$$

$$r^{5} = -\frac{81}{8} \times \frac{3}{4}$$

$$= -\frac{243}{32}$$

$$= (-\frac{3}{2})^{5}$$

$$r = -\frac{3}{2}$$

$$a = \frac{4}{3} \times \frac{4}{9}$$

$$= \frac{16}{27}$$

$$a_{5} = \frac{16}{27} \times (\frac{3}{2})^{4}$$

$$= \frac{16}{27} \times \frac{81}{16}$$

$$= 3$$

6. Find the geometric mean of 2 and 18.

Sol.

$$G = \pm \sqrt[2]{2 \times 18}$$
$$= \pm \sqrt[2]{36}$$
$$= \pm 6$$

7. Given that x+12, x+4 and x-2 are in GP, find the value of x and the common ratio of this GP.

Sol.

$$x + 4 = \pm \sqrt{(x + 12)(x - 2)}$$

$$x^{2} + 8x + 16 = x^{2} + 10x - 24$$

$$2x = 40$$

$$x = 20$$

$$a_{1} = 20 + 12 = 32$$

$$a_{2} = 20 + 4 = 24$$

$$r = \frac{24}{32}$$

$$= \frac{3}{4}$$

8. Find 3 numbers between 14 and 224 such that these 5 numbers are in GP.

$$a_1 = 14$$

$$a_5 = 224$$

$$244 = 14 \times r^4$$

$$16 = r^4$$

$$(\pm 2)^4 = r^4$$

$$r = \pm 2$$

∴ These 3 numbers are 28, 56, 112 or -28, 56, -112

9. Calculate the sum of the first 6 terms of the GP 2+6+18+...

Sol.

$$a_1 = 2$$

$$r = \frac{6}{2}$$

$$= 3$$

$$S_6 = \frac{2(1 - 3^6)}{1 - 3}$$

$$= \frac{2(1 - 729)}{-2}$$

$$= 728$$

10. Calculate the sum of the first 8 terms of the GP $32-16+8-\dots$

Sol.

$$a_1 = 32$$

$$r = \frac{-16}{32}$$

$$= -\frac{1}{2}$$

$$S_8 = \frac{32(1 - (\frac{1}{2})^8)}{1 + \frac{1}{2}}$$

$$= \frac{32(1 - \frac{1}{256})}{\frac{3}{2}}$$

$$= 32 \times \frac{255}{256} \times \frac{2}{3}$$

$$= \frac{85}{4}$$

11. Find the sum of the GP 14 - 28 + 56 - ... + 3584

Sol.

$$a_{1} = 14$$

$$r = \frac{-28}{14} = -2$$

$$3584 = 14 \times (-2)^{n-1}$$

$$256 = (-2)^{n-1}$$

$$(-2)^{8} = (-2)^{n-1}$$

$$n - 1 = 8$$

$$n = 9$$

$$S_{9} = \frac{14(1 - (-2)^{9})}{1 - (-2)}$$

$$= \frac{14(1 + 512)}{3}$$

$$= \frac{14 \times 513}{3}$$

$$= 2394$$

12. If the first term of a GP is 7, its common ratio is 3, and the sum of its terms is 847, find the number of terms and the last term of this GP.

Sol.

$$a_{1} = 7$$

$$r = 3$$

$$S_{n} = \frac{7(1 - 3^{n})}{1 - 3} = 847$$

$$7(1 - 3^{n}) = -1694$$

$$1 - 3^{n} = -242$$

$$3^{n} = 243$$

$$3^{n} = 3^{5}$$

$$n = 5$$

$$a_{5} = 7 \times 3^{4} = 567$$

13. Find the sum of the following infinite GP.

(a)
$$24 + 18 + 13\frac{1}{2} + \dots$$

$$a_1 = 24$$

$$r = \frac{18}{24} = \frac{3}{4}$$

$$S_{\infty} = \frac{24}{1 - \frac{3}{4}}$$

$$= \frac{24}{\frac{1}{4}}$$

$$= 96$$

(b)
$$27 - 9 + 3 - 1 + \dots$$

Sol.

$$a_{1} = 27$$

$$r = \frac{-9}{27} = -\frac{1}{3}$$

$$S_{\infty} = \frac{27}{1 + \frac{1}{3}}$$

$$= \frac{27}{\frac{4}{3}}$$

$$= \frac{81}{4}$$

(c)
$$2 - \frac{1}{2} + \frac{1}{8} - \frac{1}{32} + \dots$$

Sol.

$$a_1 = 2$$

$$r = \frac{-\frac{1}{2}}{2} = -\frac{1}{4}$$

$$S_{\infty} = \frac{2}{1 + \frac{1}{4}}$$

$$= \frac{2}{\frac{5}{4}}$$

$$= \frac{8}{5}$$

14. Given an infinite GP which has a sum of 24 and first term of 30, find the common difference.

Sol.

$$a_1 = 30$$

$$S_{\infty} = 24$$

$$24 = \frac{30}{1 - r}$$

$$24(1 - r) = 30$$

$$24 - 24r = 30$$

$$-24r = 6$$

$$r = -\frac{1}{4}$$

- 15. Convert the following recurring decimals into fractions.
 - (a) $0.\overline{45}$

Sol.

$$a_1 = 0.45$$

$$r = 0.01$$

$$S_{\infty} = \frac{0.45}{1 - 0.01}$$

$$= \frac{0.45}{0.99}$$

$$= \frac{45}{99}$$

$$= \frac{5}{11}$$

$$\therefore 0.\overline{45} = \frac{5}{11}$$

(b) $0.\overline{037}$

Sol.

$$a_1 = 0.037$$

$$r = 0.001$$

$$S_{\infty} = \frac{0.037}{1 - 0.001}$$

$$= \frac{0.037}{0.999}$$

$$= \frac{37}{999}$$

$$= \frac{1}{27}$$

$$\therefore 0.\overline{037} = \frac{1}{27}$$

(c) $0.2\overline{18}$

$$a_1 = 0.018$$

$$r = 0.01$$

$$S_{\infty} = \frac{0.018}{1 - 0.01}$$

$$= \frac{0.018}{0.99}$$

$$= \frac{18}{990}$$

$$= \frac{1}{55}$$

$$\therefore 0.2\overline{18} = \frac{1}{5} + \frac{1}{55}$$
$$= \frac{12}{55}$$

(d) $1.\overline{3}$

Sol.

$$a_1 = 0.3$$

$$r = 0.1$$

$$S_{\infty} = \frac{0.3}{1 - 0.1}$$

$$= \frac{0.3}{0.9}$$

$$= \frac{1}{3}$$

$$\therefore 1.\overline{3} = 1 + \frac{1}{3}$$
$$= \frac{4}{3}$$

16. Three integers are in GP, summing up to 42 while accumulating up to 512, find these three integers.

Sol.

$$a_{1} + a_{2} + a_{3} = 42$$

$$a_{1}a_{2}a_{3} = 512$$

$$a_{2} = \pm \sqrt{a_{1}a_{3}}$$

$$a_{1}a_{3} = a_{2}^{2}$$

$$a_{2}^{3} = 512$$

$$a_{2} = \sqrt[3]{512}$$

$$= 8$$

$$a_{1}a_{3} = 64$$

$$a_{3} = \frac{64}{a_{1}}$$

$$a_{1} + 8 + \frac{64}{a_{1}} = 42$$

$$a_{1} + \frac{64}{a_{1}} = 34$$

$$a_{1}^{2} + 64 = 34a_{1}$$

$$a_{1}^{2} - 34a_{1} + 64 = 0$$

$$(a_{1} - 32)(a_{1} - 2) = 0$$

$$a_{1} = 32 \text{ or } a_{1} = 2$$

:. These three integers are 2, 8, 32

17. The sum of first 6 term of a GP is 9 times the sum of first 3 terms. Find the common ratio.

Sol.

$$S_6 = 9S_3$$

$$\frac{a(1-r^6)}{1-r} = 9 \times \frac{a(1-r^3)}{1-r}$$

$$a(1-r^6) = 9a(1-r^3)$$

$$1-r^6 = 9(1-r^3)$$

$$= 9-9r^3$$

$$r^6 - 9r^3 + 8 = 0$$

$$(r^3 - 8)(r^3 - 1) = 0$$

$$r^3 = 8 \text{ or } r^3 = 1$$

$$r = 1 \text{ (invalid)}$$

$$r = 2$$

18. Given a GP, its first term is 16, last term is $\frac{1}{2}$ and its sum is $31\frac{1}{2}$, find its common ratio and number of terms.

$$a_{1} = 16$$

$$\frac{1}{2} = 16r^{n-1}$$

$$\frac{1}{32} = r^{n-1}$$

$$= r^{n} \times \frac{1}{r}$$

$$r^{n} = \frac{r}{32}$$

$$\frac{63}{2} = \frac{16(1 - r^{n})}{1 - r}$$

$$63(1 - r) = 32(1 - r^{n})$$

$$63 - 63r = 32 - 32r^{n}$$

$$-31 = 32r^{n} - 63r$$

$$-31 = r - 63r$$

$$-31 = r - 63r$$

$$-31 = -62r$$

$$r = \frac{1}{2}$$

$$(\frac{1}{2})^{n-1} = \frac{1}{32}$$

$$= (\frac{1}{2})^{5}$$

$$n - 1 = 5$$

$$n = 6$$

Let
$$x = a_2$$

$$a_3 = x - 6$$

$$a_1 = x + 9$$

$$x = \pm \sqrt{(x - 6)(x + 9)}$$

$$x^2 = x^2 + 3x - 54$$

$$3x - 54 = 0$$

$$x = 18$$

$$a_2 = 18$$

$$a_1 = 27$$

$$r = \frac{12}{18}$$

$$= \frac{2}{3}$$

$$a_4 = 27 \times (\frac{2}{3})^3$$

$$= 8$$

$$S_4 = \frac{27(1 - (\frac{16}{3})^4)}{1 - \frac{2}{3}}$$

$$= \frac{27(1 - \frac{8}{81})}{\frac{1}{3}}$$

$$= 81 \times \frac{65}{81}$$

$$= 65$$

- 19. Given a GP, its 3rd term is 6 less than its 2nd term, ant its 2nd term is 9 less than its 1st term. Find the 4th term and the sum of the first 4 terms.
- 20. GIven an infinite GP, its common ratio is positive and the sum of it is 9. The sum of the first two terms is 5, find the 4th term.

$$S_{\infty} = \frac{a}{1-r} = 9$$

$$a = 9(1-r)$$

$$= 9-9r$$

$$S_{2} = \frac{a(1-r^{2})}{1-r} = 5$$

$$a - ar^{2} = 5 - 5r$$

$$9 - 9r - (9 - 9r)r^{2} = 5 - 5r$$

$$9 - 9r - 9r^{2} + 9r^{3} = 5 - 5r$$

$$4 - 4r - 9r^{2} + 9r^{3} = 0$$

$$4(1-r) - 9r^{2}(1-r) = 0$$

$$(4 - 9r^{2})(1-r) = 0$$

$$(9r^{2} - 4)(r - 1) = 0$$

$$r = 1 \text{ (invalid)}$$

$$r = -\frac{2}{3} \text{ (invalid)}$$

$$r = \frac{2}{3}$$

$$a = 9(1 - \frac{2}{3})$$

$$= 3$$

$$a_{4} = 3(\frac{2}{3})^{3}$$

$$= 3 \times \frac{8}{27}$$

$$= \frac{8}{9}$$

- 21. If x + 1, x 2, $\frac{1}{2}x$ are the first three terms of an infinite GP, find:
 - (a) The value of x

Sol.

$$x - 2 = \pm \sqrt{(x+1)(\frac{1}{2}x)}$$

$$x^2 - 4x + 4 = \frac{1}{2}x(x+1)$$

$$2x^2 - 8x + 8 = x^2 + x$$

$$x^2 - 9x + 8 = 0$$

$$(x-8)(x-1) = 0$$

$$x = 8 \text{ or } x = 1$$

(b) The common ratio

Sol.

When
$$x = 8$$
,

$$r = \frac{8-2}{8+1}$$

$$= \frac{6}{9}$$

$$= \frac{2}{3}$$

When
$$x = 1$$
,

$$r = \frac{1-2}{1+1}$$

$$= -\frac{1}{2}$$

(c) The sum of the GP

Sol.

When
$$x = 8$$
,

$$S_{\infty} = \frac{a}{1 - r}$$

$$= \frac{9}{1 - \frac{2}{3}}$$

$$= 9 \times 3$$

$$= 27$$

When
$$x = 1$$
,

$$S_{\infty} = \frac{a}{1-r}$$

$$= \frac{2}{1+\frac{1}{2}}$$

$$= 2 \times \frac{2}{3}$$

$$= \frac{4}{3}$$

12.4 Simple Summation of Special Series

Sum formula of natural number:

$$\sum_{i=1}^{n} k = \frac{n(n+1)}{2}$$

Sum formula of square of natural number:

$$\sum_{i=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

Sum formula of cube of natural number:

$$\sum_{i=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$$

12.4.1 Practice 10

1. Find the sum of the following series.

(a)
$$\sum_{k=1}^{8} 3k$$

Sol.

$$\sum_{k=1}^{8} 3k = 3 \sum_{k=1}^{8} k$$

$$= 3 \times \frac{8(8+1)}{2}$$

$$= 3 \times \frac{8 \times 9}{2}$$

$$= 3 \times \frac{72}{2}$$

$$= 3 \times 36$$

$$= 108$$

(b)
$$\sum_{k=1}^{12} k^2$$

Sol.

$$\sum_{k=1}^{12} k^2 = \frac{12(12+1)(2\times12+1)}{6}$$
$$= \frac{12\times13\times25}{6}$$
$$= 650$$

(c)
$$\sum_{k=3}^{10} (2k-3)$$

Sol.

$$\sum_{k=3}^{10} (2k-3)$$

$$= 2\sum_{k=3}^{10} k - \sum_{k=3}^{10} 3$$

$$= 2\left[\sum_{k=1}^{10} k - \sum_{k=1}^{2} k\right] - (30-6)$$

$$= 2\left[\frac{10(10+1)}{2} - \frac{2(2+1)}{2}\right] - 8$$

$$= 2(55-3) - 24$$

$$= 2 \times 52 - 24$$

$$= 104 - 24$$

$$= 80$$

(d)
$$\sum_{k=7}^{13} 3k^2$$

Sol.

$$\sum_{k=7}^{13} 3k^2$$

$$= 3 \left[\sum_{k=1}^{13} k^2 - \sum_{k=1}^{6} k^2 \right]$$

$$= 3 \times \left[\frac{13(13+1)(2 \times 13+1)}{6} - \frac{6(6+1)(2 \times 6+1)}{6} \right]$$

$$= 3 \times \left[\frac{13 \times 14 \times 27}{6} - \frac{6 \times 7 \times 13}{6} \right]$$

$$= 3 \times \left[\frac{4914}{6} - \frac{546}{6} \right]$$

$$= 3 \times \frac{4368}{6}$$

$$= 3 \times 728$$

$$= 2184$$

2. Given that the nth term of a series is n(n+3), find the sum of the first 20 terms of the series.

$$\sum_{k=1}^{20} k(k+3)$$

$$= \sum_{k=1}^{20} k^2 + 3k$$

$$= \sum_{k=1}^{20} k^2 + 3 \sum_{k=1}^{20} k$$

$$= \frac{20(20+1)(2 \times 20+1)}{6} + 3 \times \frac{20(20+1)}{2}$$

$$= \frac{20 \times 21 \times 41}{6} + 3 \times \frac{20 \times 21}{2}$$

$$= 2870 + 630$$

$$= 3500$$

3. Find the sum of series $1 \times 3 + 2 \times 4 + 3 \times 5 + \dots + n(n+2)$.

Sol.

$$\sum_{k=1}^{n} k(k+2)$$

$$= \sum_{k=1}^{n} k^2 + 2k$$

$$= \sum_{k=1}^{n} k^2 + 2 \sum_{k=1}^{n} k$$

$$= \frac{n(n+1)(2n+1)}{6} + 2 \times \frac{n(n+1)}{2}$$

$$= \frac{n(n+1)(2n+1)}{6} + n(n+1)$$

$$= \frac{n(n+1)(2n+1) + 6n(n+1)}{6}$$

$$= \frac{n(n+1)(2n+7)}{6}$$

12.4.2 Exercise 12.4

1. Find the sum of the following series.

(a)
$$\sum k = 1^8 5k^2$$

Sol.

$$\sum_{k=1}^{8} 5k^2 = 5 \sum_{k=1}^{8} k^2$$

$$= 5 \times \frac{8(8+1)(2 \times 8+1)}{6}$$

$$= 5 \times \frac{8 \times 9 \times 17}{6}$$

$$= 5 \times \frac{1368}{6}$$

$$= 5 \times 204$$

$$= 1020$$

(b) $\sum_{k=1}^{9} k^3$

Sol.

$$\sum_{k=1}^{9} k^3 = \left[\frac{9(9+1)}{2} \right]^2$$
$$= 45^2$$
$$= 2025$$

(c)
$$\sum_{n=1}^{10} (3n-5)$$

$$\sum_{n=1}^{10} (3n - 5) = 3 \sum_{n=1}^{10} n - 5 \sum_{n=1}^{10} 1$$

$$= 3 \times \frac{10(10+1)}{2} - 5 \times 10$$

$$= 3 \times \frac{10 \times 11}{2} - 5 \times 10$$

$$= 3 \times 55 - 50$$

$$= 3 \times 5 - 50$$

$$= 165 - 50$$

$$= 115$$

(d)
$$\sum_{k=3}^{6} 2k^3$$

$$\sum_{k=3}^{6} 2k^3 = 2\sum_{k=3}^{6} k^3$$

$$= 2\left(\sum_{k=1}^{6} k^3 - \sum_{k=1}^{2} k^3\right)$$

$$= 2\left\{\left[\frac{6(6+1)}{2}\right]^2$$

$$-\left[\frac{2(2+1)}{2}\right]^2\right\}$$

$$= 2(21^2 - 3^2)$$

$$= 2(441 - 9)$$

$$= 2 \times 432$$

$$= 864$$

(e)
$$\sum_{k=6}^{10} (2k^2 + 3)$$

Sol.

$$\sum_{k=6}^{10} (2k^2 + 3)$$

$$= 2 \sum_{k=6}^{10} k^2 + 3 \sum_{k=6}^{10} 1$$

$$= 2 \left(\sum_{k=1}^{10} k^2 - \sum_{k=1}^{5} k^2 \right)$$

$$+ 3 \times (10 - 5)$$

$$= 2 \times \left[\frac{10 \times 11 \times 21}{6} - \frac{5 \times 6 \times 11}{6} \right]$$

$$+ 3 \times 5$$

$$= 2 \times \left[\frac{2310}{6} - \frac{330}{6} \right] + 3 \times 5$$

$$= 2 \times \frac{1980}{6} + 3 \times 5$$

$$= 2 \times 330 + 3 \times 5$$

$$= 660 + 15$$

$$= 675$$

(f)
$$\sum_{n=11}^{15} (n^2 + 2n)$$

Sol.

$$\sum_{n=11}^{15} (n^2 + 2n)$$

$$= \sum_{n=11}^{15} n^2 + 2 \sum_{n=11}^{15} n$$

$$= \left[\sum_{n=1}^{15} n^2 - \sum_{n=1}^{10} n^2 \right]$$

$$+ 2 \left[\sum_{n=1}^{1} 5n - \sum_{n=1}^{10} n \right]$$

$$= \left[\frac{15 \times 16 \times 31}{6} - \frac{10 \times 11 \times 21}{6} \right]$$

$$+ 2 \left[\frac{15 \times 16}{2} - \frac{10 \times 11}{2} \right]$$

$$= 985$$

(g)
$$\sum_{n=2}^{6} n(n^2 - n + 1)$$

Sol.

$$\sum_{n=2}^{6} n(n^2 - n + 1)$$

$$= \sum_{n=2}^{6} n^3 - \sum_{n=2}^{6} n^2 + \sum_{n=2}^{6} n$$

$$= \left[\sum_{n=1}^{6} n^3 - \sum_{n=1}^{1} n^3 \right] - \left[\sum_{n=1}^{6} n^2 - \sum_{n=1}^{1} n^2 \right]$$

$$+ \left[\sum_{n=1}^{6} n - \sum_{n=1}^{1} n \right]$$

$$= \left[\left(\frac{6 \times 7}{2} \right)^2 - \left(\frac{1 \times 2}{2} \right)^2 \right]$$

$$- \left(\frac{6 \times 7 \times 13}{6} - \frac{1 \times 2 \times 3}{6} \right)$$

$$+ \left(\frac{6 \times 7}{2} - \frac{1 \times 2}{2} \right)$$

$$= 21^2 - 1^2 - (7 \times 13 - 1) + (3 \times 7 - 1)$$

$$= 440 - 90 + 20$$

$$= 370$$

2. Fiven that the nth term of a series is $3n^2 + n$, find the sum of the first 10 terms of the series.

$$\sum_{n=1}^{10} 3n^2 + n = 3 \sum_{n=1}^{10} n^2 + \sum_{n=1}^{10} n$$

$$= 3 \left(\frac{10 \times 11 \times 21}{6} \right) + \left(\frac{10 \times 11}{2} \right)$$

$$= 3 \times \frac{2310}{6} + \frac{110}{2}$$

$$= 3 \times 385 + 55$$

$$= 1210$$

3. Find the sum of first nth term of series $1 \times 3 + 2 \times 7 + 3 \times 11 + \dots$

Sol.

$$\sum_{n=1}^{n} n \times (4n-1)$$

$$= 4 \sum_{n=1}^{n} n^2 - \sum_{n=1}^{n} n$$

$$= 4 \left(\frac{n(n+1)(2n+1)}{6} \right) - \left(\frac{n(n+1)}{2} \right)$$

$$= \frac{4n(n+1)(2n+1) - 3n(n+1)}{6}$$

$$= \frac{n(n+1)(8n+1)}{6}$$

4. Find the sum fo the series $1^2 + 3^2 + 5^2 + ... + 15^2$

Sol.

$$\sum_{n=1}^{8} (2n-1)^2 = \sum_{n=1}^{8} (4n^2 - 4n + 1)$$

$$= 4 \sum_{n=1}^{8} n^2 - 4 \sum_{n=1}^{8} n + \sum_{n=1}^{8} 1$$

$$= 4 \left(\frac{8 \times 9 \times 17}{6} \right) - 4 \left(\frac{8 \times 9}{2} \right) + 8$$

$$= 4 \times 204 - 4 \times 36 + 8$$

$$= 816 - 144 + 8$$

$$= 680$$

12.5 Revision Exerise 12

1. Express the following series in form of Σ .

(a)
$$\frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \dots + \frac{49}{50}$$

Sol.

$$a_{1} = \frac{2 \times 1 - 1}{2 \times 1}$$

$$a_{2} = \frac{2 \times 2 - 1}{2 \times 2}$$

$$a_{3} = \frac{2 \times 3 - 1}{2 \times 3}$$

$$\vdots$$

$$a_{25} = \frac{2 \times 25 - 1}{2 \times 25}$$

$$\therefore \frac{1}{2} + \frac{3}{4} + \frac{5}{6} + \dots + \frac{49}{50} = \sum_{n=1}^{25} \frac{2n - 1}{2n}$$

(b) 6-7+8-9+...

Sol.

$$a_1 = (-1)^6 \times 6$$

$$a_2 = (-1)^7 \times 7$$

$$a_3 = (-1)^8 \times 8$$

$$\vdots$$

$$a_n = (-1)^n n \therefore \quad 6 - 7 + 8 - 9 + \dots = \sum_{n=1}^{\infty} (-1)^n n$$

(c)
$$2 \times 5 + 3 \times 7 + 4 \times 9 + ... + 15 \times 31$$

Sol.

$$a_1 = (1+1)(2 \times 1 + 3)$$

$$a_2 = (2+1)(2 \times 2 + 3)$$

$$a_3 = (3+1)(2 \times 3 + 3)$$

$$\vdots$$

$$a_{14} = (14+1)(2 \times 14 + 3)$$

$$\therefore 2 \times 5 + 3 \times 7 + 4 \times 9 + \dots + 15 \times 31$$

$$= \sum_{n=1}^{14} (n+1)(2n+3)$$

2. Given a general formula $a_n = \frac{3^n}{2n-3}$, state the first 5 terms of the sequence.

$$a_1 = \frac{3^1}{2 \times 1 - 3} = -3$$

$$a_2 = \frac{3^2}{2 \times 2 - 3} = 9$$

$$a_3 = \frac{3^3}{2 \times 3 - 3} = 9$$

$$a_4 = \frac{3^4}{2 \times 4 - 3} = \frac{81}{5}$$

$$a_5 = \frac{3^5}{2 \times 5 - 3} = \frac{243}{7}$$

3. Express the series $\sum_{k=1}^{1} 0(2k^2 - 3)$

Sol.

$$\sum_{k=1}^{10} (2k^2 - 3)$$

$$= (2 \times 1^2 - 3) + (2 \times 2^2 - 3) + (2 \times 3^2 - 3)$$

$$+ (2 \times 4^2 - 3) + (2 \times 5^2 - 3) + (2 \times 6^2 - 3)$$

$$+ (2 \times 7^2 - 3) + (2 \times 8^2 - 3) + (2 \times 9^2 - 3)$$

$$+ (2 \times 10^2 - 3)$$

$$= -1 + 5 + 15 + 29 + 47 + 69 + 95 + 125$$

$$+ 159 + 197$$

4. State the first term, last term and the number of terms of theh series $\sum_{k=3}^{7} (3^k - 2^k - k)$

Sol.

$$a_3 = 3^3 - 2^3 - 3 = 27 - 8 - 3 = 16$$

 $a_7 = 3^7 - 2^7 - 7 = 2187 - 128 - 7 = 2052$
 $n = 5$

5. Find the number of terms of the AP $-4 - 2\frac{3}{4} - 112 - \frac{1}{4} + \dots + 16$

Sol.

$$a = -4$$

$$d = \frac{5}{4}$$

$$16 = -4 + (n - 1)\frac{5}{4}$$

$$20 = \frac{5}{4}(n - 1)$$

$$5n - 5 = 80$$

$$5n = 85$$

$$n = 17$$

6. If x+1, 2x+1, x-3 are the first 3 terms of AP, find:

(a) The value of x

Sol.

$$2x + 1 = \frac{x+1+x-3}{2}$$

$$4x + 2 = 2x - 2$$

$$2x = -4$$

$$x = -2$$

(b) Sum from the 10th term to the 20th term

Sol.

$$a_1 = -1$$

$$a_2 = -3$$

$$r = -2$$

$$S = S_{20} - S_9$$

$$= \frac{20}{2}(-2 + (20 - 1)(-2))$$

$$-\frac{9}{2}(-2 + (9 - 1)(-2))$$

$$= 10 \times (-40) - 9 \times (-9)$$

$$= -400 + 81$$

$$= -319$$

7. Find 4 numbers between 28 and -12 such that these 6 numbers form an AP.

$$a_1 = 28$$

$$a_n = -12$$

$$n = 6$$

$$-12 = 28 + 5d$$

$$5d = 40$$

$$d = 8$$

 \therefore These 4 numbers are -4, 4, 12, 20

- 8. Find the sum of the following AP.
 - (a) 7 + 11 + 15 + ... up to the 10th term

Sol.

$$a_1 = 7$$

$$d = 4$$

$$n = 10$$

$$S_1 0 = \frac{10}{2} (2 \times 7 + (10 - 1)4)$$

$$= 5(14 + 36)$$

$$= 250$$

(b) $20 + 18\frac{1}{2} + 17 + \dots$ up to the 16tm term

Sol.

$$a_1 = 20$$

$$d = -\frac{3}{2}$$

$$n = 16$$

$$S_{16} = \frac{16}{2}(2 \times 20 + (16 - 1)(-\frac{3}{2}))$$

$$= 8(40 - \frac{45}{2})$$

$$= 8 \times \frac{35}{2}$$

$$= 140$$

(c)
$$2\sqrt{2} + 3\sqrt{2} + 4\sqrt{2} + \dots + 13\sqrt{2}$$

Sol.

$$a_1 = 2\sqrt{2}$$

$$d = \sqrt{2}$$

$$n = 12$$

$$S_{12} = \frac{12}{2}(2 \times 2\sqrt{2} + (12 - 1)\sqrt{2})$$

$$= 6(4\sqrt{2} + 11\sqrt{2})$$

$$= 6 \times 15\sqrt{2}$$

$$= 90\sqrt{2}$$

- 9. Given an AP which the sum of the first n terms $S_n = n(1 + 2n)$, find:
 - (a) First term

Sol.

$$\frac{n}{2}(2a + (n-1)d) = n(1+2n)$$

$$n(2a + (n-1d)) = 2n(1+2n)$$

$$2an + dn^2 - dn = 2n - 4n^2$$

$$(2a - d)n + dn^2 = 2n - 4n^2$$

Comparing both sides,

$$a = 3$$
$$d = 4$$

(b) Common Difference

Sol.

According to the sol. of
$$(a)$$
, $d = 4$

(c) Sum of the first 20 terms.

According to the sol. of (a),

$$a = 3$$

 $d = 4$
 $n = 20$
 $S_{20} = \frac{20}{2}(2 \times 3 + (20 - 1)4)$
 $= 10(6 + 76)$
 $= 10 \times 82$
 $= 820$

10. Given an AP 33 + 27 + 21 + ...

(a) If the first sum of the first n terms is 105, find the value of n.

Sol.

$$a_{1} = 33$$

$$d = -6$$

$$105 = \frac{n}{2}(2 \times 33 + (n-1) \times (-6))$$

$$210 = n(66 - (n-1)6)$$

$$35 = 11n - n^{2} + n$$

$$n^{2} - 12n + 35 = 0$$

$$(n-7)(n-5) = 0$$

$$n = 7 \text{ or } n = 5$$

(b) If the sum of the first n terms is negative value, find the minimum value of n.

Sol.

$$a_{1} = 33$$

$$d = -6$$

$$\frac{n}{2}(2 \times 33 + (n-1) \times (-6)) < 0$$

$$n(66 - 6n + 6) < 0$$

$$12n - n^{2} < 0$$

$$n(12 - n) < 0$$

$$n > 12$$

:. The minimum value of n is 13

11. Find the sum of the numbers between 150 and 300 that are multiple of both 5 and 3.

Sol.

$$a_1 = 165$$

 $a_n = 285$
 $d = 15$
 $285 = 165 + (n-1) \times 15$
 $8 = n-1$
 $n = 9$

$$S_9 = \frac{9}{2}(2 \times 165 + (9 - 1) \times 15)$$
$$= \frac{9}{2} \times 450$$
$$= 2025$$

12. Find the sum of all the numbers between 100 and 200 that can be divided by 2 or 3.

$$a_1 = 102$$
$$a_n = 198$$

When
$$d = 2$$
,
 $198 = 102 + (n - 1) \times 2$
 $48 = n - 1$
 $n = 49$
 $S_49 = \frac{49}{2}(2 \times 102 + (49 - 1) \times 2)$
 $= \frac{49}{2} \times (204 + 96)$
 $= 7350$

When
$$d = 3$$
,
 $198 = 102 + (n - 1) \times 3$
 $32 = n - 1$
 $n = 33$
 $S_3 = \frac{33}{2}(2 \times 102 + (33 - 1) \times 3)$
 $= \frac{33}{2} \times (204 + 96)$
 $= 4950$

When
$$d = 6$$
,
 $198 = 102 + (n - 1) \times 6$
 $16 = n - 1$
 $n = 17$
 $S_17 = \frac{17}{2}(2 \times 102 + (17 - 1) \times 6)$
 $= \frac{17}{2} \times (204 + 96)$
 $= 2550$

$$\therefore S = 7350 + 4950 - 2550$$
$$= 9750$$

13. Find the sum of the numbers between 50 and 100 that cannot be divided by 5.

Sol.

When
$$d = 1$$
,
 $a_1 = 51$
 $a_n = 99$
 $99 = 51 + (n - 1) \times 1$
 $48 = n - 1$
 $n = 49$
 $S_{49} = \frac{49}{2}(2 \times 51 + (49 - 1) \times 1)$
 $= \frac{49}{2} \times (102 + 48)$
 $= 3675$

When
$$d = 5$$
,
 $a_1 = 55$
 $a_n = 95$
 $95 = 55 + (n-1) \times 5$
 $8 = n - 1$
 $n = 9$
 $S_9 = \frac{9}{2}(2 \times 55 + (9 - 1) \times 5)$
 $= \frac{9}{2} \times (110 + 40)$
 $= 675$

$$\therefore S = 3675 - 675 \\
= 3000$$

14. Which term is the first negative term of the AP $20 + 16\frac{1}{4} + 12\frac{1}{2} + \dots$?

Sol.

$$a_{1} = 20$$

$$d = -\frac{15}{4}$$

$$a_{n} = 20 - (n-1) \times \frac{15}{4} < 0$$

$$80 - 15(n-1) < 0$$

$$16 - 3n + 3 < 0$$

$$3n > 19$$

$$n > 6\frac{1}{3}$$

:. The first negative term is 7

15. Three numbers are in AP, thier sum is 15 while the

sum of the square of these numbers is 83. Find this three numbers.

Sol.

$$a_{1} + a_{2} + a_{3} = 15$$

$$a_{1}^{2} + a_{2}^{2} + a_{3}^{2} = 83$$

$$a_{2} - a_{1} = a_{3} - a_{2}$$

$$a_{1} + a_{3} = 2a_{2}$$

$$3a_{2} = 15$$

$$a_{2} = 5$$

$$a_{3} = 10 - a_{1}$$

$$a_{1}^{2} + a_{3}^{2} = 83 - 25$$

$$= 58$$

$$a_{1}^{2} + (10 - a_{1})^{2} = 58$$

$$a_{1}^{2} + 100 - 20a_{1} + a_{1}^{2} = 58$$

$$2a_{1}^{2} - 20a_{1} + 100 = 58$$

$$2a_{1}^{2} - 20a_{1} + 42 = 0$$

$$a_{1}^{2} - 10a_{1} + 21 = 0$$

$$(a_{1} - 7)(a_{1} - 3) = 0$$

$$a_{1} = 7 \text{ or } a_{1} = 3$$

 \therefore The three numbers are 7,5,3

16. Find the sum of the series $18^2 - 17^2 + 16^2 - 15^2 + 14^2 - 13^2 + \dots + 2^2 - 1^2$

Sol.

$$18^{2} - 17^{2} + 16^{2} - 15^{2} + \dots + 2^{2} - 1^{2}$$

$$= (18^{2} - 17^{2}) + (16^{2} - 15^{2}) + \dots + (2^{2} - 1^{2})$$

$$= ((2 \times 9)^{2} - (2 \times 9 - 1)^{2}) + ((2 \times 8)^{2} - (2 \times 8 - 1)^{2})$$

$$+ \dots + ((2 \times 1)^{2} - (2 \times 1 - 1)^{2})$$

$$= \sum_{n=1}^{9} \left[(2n)^{2} - (2n - 1)^{2} \right]$$

$$= \sum_{n=1}^{9} (4n - 1)$$

$$= 4 \sum_{n=1}^{9} n - \sum_{n=1}^{9} 1$$

$$= 4 \times \frac{9 \times 10}{2} - 9$$

$$= 180 - 9$$

$$= 171$$

17. State the general formula of the series $20, -10, 5, -2\frac{1}{2}, \cdots$

Sol.

$$a_1 = 20$$

 $r = -\frac{1}{2}$
 $a_n = 20(-\frac{1}{2})^{n-1}$

18. Given three integers x-3, x+1, 4x-2 that are in GP. If the sum of this GP is S, common ratio is r, find the value of S+r.

Sol.

$$x + 1 = \pm \sqrt{(x - 3)(4x - 2)}$$

$$x^{2} + 2x + 1 = 4x^{2} - 14x + 6$$

$$3x^{2} - 16^{x} + 5 = 0$$

$$(3x - 1)(x - 5) = 0$$

$$x = 5 \text{ or } x = \frac{1}{3}$$

$$a_{1} = x - 3 = 5 - 3 = 2$$

$$a_{2} = x + 1 = 5 + 1 = 6$$

$$a_{3} = 4x - 2 = 4(5) - 2 = 18$$

$$S = a_{1} + a_{2} + a_{3}$$

$$= 2 + 6 + 18$$

$$= 26$$

$$r = \frac{a_{3}}{a_{2}} = \frac{18}{6} = 3$$

$$\therefore S + r = 26 + 3$$

$$= 29$$

19. Find the geometric mean of $\frac{1}{3}$ and $\frac{1}{5}$

$$G = \pm \sqrt{\frac{1}{3} \times \frac{1}{5}}$$
$$= \pm \sqrt{\frac{1}{15}}$$
$$= \pm \frac{1}{\sqrt{15}}$$
$$= \pm \frac{\sqrt{15}}{15}$$

20. Find 5 numbers between $-\frac{1}{4}$ and $-\frac{1}{256}$ such that these 7 numbers form a GP.

Sol.

$$a_1 = -\frac{1}{4}$$

$$n = 7$$

$$-\frac{1}{256} = -\frac{1}{4}r^6$$

$$\frac{1}{64} = r^6$$

$$\left(\pm \frac{1}{2}\right)^6 = r^6$$

$$r = \pm \frac{1}{2}$$

When
$$r = \frac{1}{2}$$
,

These 5 numbers are

$$\frac{1}{8}$$
, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{64}$, $\frac{1}{128}$

When
$$r = -\frac{1}{2}$$
,

These 5 numbers are

$$\frac{1}{8}$$
, $-\frac{1}{16}$, $\frac{1}{32}$, $-\frac{1}{64}$, $\frac{1}{128}$

21. Find the sum of the series $\sum_{n=5}^{1} 5n^2(3n+1)$

Sol.

$$\sum_{n=5}^{15} n^2 (3n+1) = \sum_{n=5}^{15} n^3 + \sum_{n=5}^{15} 3n^2$$

$$= 3 \sum_{n=5}^{15} n^3 + \sum_{n=5}^{15} n^2$$

$$= 3 \left[\sum_{n=1}^{15} n^3 - \sum_{n=1}^4 n^3 \right]$$

$$+ \left[\sum_{n=1}^{15} n^2 - \sum_{n=1}^4 n^2 \right]$$

$$= 3 \left[\left(\frac{15 \times 16}{2} \right)^2 - \left(\frac{4 \times 5}{2} \right)^2 \right]$$

$$+ \left[\frac{15 \times 16 \times 31}{6} - \frac{4 \times 5 \times 9}{6} \right]$$

$$= 3 \left[(15 \times 8)^2 - (2 \times 5)^2 \right]$$

$$+ 1240 - 30$$

$$= 3(14400 - 100) + 1210$$

$$= 42900 + 1210$$

$$= 44110$$

22. Find the sum of the series $5^2 + 7^2 + 9^2 + \dots + 25^2$

Sol.

$$\sum_{n=1}^{11} (2n+3)^2$$

$$= \sum_{n=1}^{11} 4n^2 + 12n + 9$$

$$= 4 \sum_{n=1}^{11} n^2 + 12 \sum_{n=1}^{11} n + 11$$

$$= 4 \left[\frac{11 \times 12 \times 23}{6} \right] + 12 \left[\frac{11 \times 12}{2} \right] + 99$$

$$= 2024 + 792 + 99$$

$$= 2915$$

23. Find the sum of the series $2 \times 3 + 3 \times 12 + 4 \times 27 + \cdots + (n+1) \times 3n^2$

$$\sum_{n=1}^{n} (n+1)3n^{2}$$

$$= \sum_{n=1}^{n} 3n^{3} + \sum_{n=1}^{n} 3n^{2}$$

$$= 3 \left[\sum_{n=1}^{n} n^{3} + \sum_{n=1}^{n} n^{2} \right]$$

$$= 3 \left[\left(\frac{n(n+1)}{2} \right)^{2} + \frac{n(n+1)(2n+1)}{6} \right]$$

$$= 3 \left[\frac{n^{2}(n+1)^{2}}{4} + \frac{n(n+1)(2n+1)}{6} \right]$$

$$= 3 \left[\frac{3n^{2}(n+1)^{2} + 2n(n+1)(2n+1)}{12} \right]$$

$$= \frac{n(n+1) \left[3n^{2} + 3n + 4n + 2 \right]}{4}$$

$$= \frac{n(n+1) \left[3n^{2} + 7n + 2 \right]}{4}$$

$$= \frac{n(n+1)(n+2)(3n+1)}{4}$$

Chapter 13

System of Equations

13.1 System of Equations with Two Variables

13.1.1 Practice 1

Solve the following system of equations.

1.

$$\begin{cases} 2x - 3y &= 11\\ xy &= -5 \end{cases}$$

Sol.

$$\begin{cases} 2x - 3y = 11 & (1) \\ xy = -5 & (2) \end{cases}$$

$$(2) \Rightarrow y = -\frac{5}{x}$$

$$\operatorname{Sub}(3) \operatorname{into}(1) \Rightarrow 2x - \frac{15}{x} = 11$$

$$2x^2 - 15 = 11x$$

$$2x^2 - 11x - 15 = 0$$

$$(2x - 5)(x - 3) = 0$$

$$x = 3 \text{ or } x = \frac{5}{2}$$

$$\operatorname{Sub} x = 3 \operatorname{into}(2) \Rightarrow y = -\frac{5}{3}$$

$$\operatorname{Sub} x = \frac{5}{2} \operatorname{into}(2) \Rightarrow y = -\frac{5}{5}$$

$$\Rightarrow y = -\frac{5}{5}$$

$$\Rightarrow y = -1$$

$$\therefore \left\{ \begin{array}{l} x = 3 \\ y = -\frac{5}{3} \end{array} \right. or \left\{ \begin{array}{l} x = \frac{5}{2} \\ y = -1 \end{array} \right.$$

2.

$$\begin{cases} 3x + y = 5 \\ x^2 - 2xy = 8 \end{cases}$$

$$\begin{cases} 3x + y = 5 \\ x^2 - 2xy = 8 \end{cases}$$
 (1)

$$3(1) \Rightarrow y = 5 - 3x$$

$$Sub (3) \text{ into } (2) \Rightarrow x^2 - 2x(5 - 3x) = 8$$

$$x^2 - 10x + 6x^2 = 8$$

$$7x^2 - 10x + 8 = 0$$

$$(7x + 4)(x - 2) = 0$$

$$x = -\frac{4}{7} \text{ or } x = 2$$

$$Sub \ x = -\frac{4}{7} \text{ into } (1) \Rightarrow y = 5 - 3\left(-\frac{4}{7}\right)$$

$$\Rightarrow y = \frac{47}{7}$$

$$Sub \ x = 2 \text{ into } (1) \Rightarrow y = -1$$

$$\therefore \begin{cases} x = -\frac{4}{7} \\ y = \frac{47}{7} \end{cases} \text{ or } \begin{cases} x = 2 \\ y = -1 \end{cases}$$

13.1.2 Exercise 13.1

Solve the following system of equations.

1.

$$\begin{cases} x - y &= 1 \\ xy &= 6 \end{cases}$$

Sol.

$$\begin{cases} x - y = 1 \\ xy = 6 \end{cases} \tag{1}$$

$$(1) \Rightarrow y = x - 1$$
Sub (3) into (2) $\Rightarrow x(x - 1) = 6$

$$x^2 - x = 6$$

$$x^2 - x - 6 = 0$$

$$(x + 2)(x - 3) = 0$$

$$x = -2 \text{ or } x = 3$$

Sub
$$x = -2$$
 into (1) $\Rightarrow y = -2 - 1$
 $\Rightarrow y = -3$
Sub $x = 3$ into (1) $\Rightarrow y = 3 - 1$
 $\Rightarrow y = 2$

$$\therefore \begin{cases} x = -2 \\ y = -3 \end{cases} or \begin{cases} x = 3 \\ y = 2 \end{cases}$$

2.

$$\begin{cases} 3x - y = 4 \\ xy = 4 \end{cases}$$

Sol.

$$\begin{cases} 3x - y = 4 \\ xy = 4 \end{cases} \tag{1}$$

$$(1) \Rightarrow y = 3x - 4$$

$$\operatorname{Sub}(3) \operatorname{into}(2) \Rightarrow x(3x - 4) = 4$$

$$3x^{2} - 4x = 4$$

$$3x^{2} - 4x - 4 = 0$$

$$(3x + 2)(x - 2) = 0$$

$$x = -\frac{2}{3} \text{ or } x = 2$$

$$\operatorname{Sub} x = -\frac{2}{3} \operatorname{into}(1) \Rightarrow y = 3\left(-\frac{2}{3}\right) - 4$$

$$\Rightarrow y = -6$$

$$\operatorname{Sub} x = 2 \operatorname{into}(1) \Rightarrow y = 3(2) - 4$$

$$\Rightarrow y = 2$$

$$\therefore \begin{cases} x = -\frac{2}{3} \\ y = -6 \end{cases} \text{ or } \begin{cases} x = 2 \\ y = 2 \end{cases}$$

3.

(3)

$$\begin{cases} 3x + 4y = -39 \\ xy = 30 \end{cases}$$

$$\begin{cases} 3x + 4y = -39 & (1) \\ xy = 30 & (2) \end{cases}$$

$$(2) \Rightarrow y = \frac{30}{x}$$
Sub (3) into (1) \Rightarrow 3x + 4\frac{30}{x} = -39
$$3x^2 + 120 = -39x$$

$$3x^2 + 39x + 120 = 0$$

$$x^2 + 13x + 40 = 0$$

$$(x+5)(x+8) = 0$$

$$x = -5 \text{ or } x = -8$$
Sub $x = -5$ into (1) \Rightarrow $y = \frac{30}{-5} - 39$

$$Rightarrow y = -6$$
Sub $x = -8$ into (1) \Rightarrow $y = \frac{30}{-8} - 39$

$$Rightarrow y = -\frac{15}{4}$$

$$\therefore \begin{cases} x = -5 \\ y = -6 \end{cases} or \begin{cases} x = -8 \\ y = -\frac{15}{4} \end{cases}$$

4.

$$\begin{cases} y = 2x + 3 \\ y = x^2 - 2x + 1 \end{cases}$$

Sol.

$$\begin{cases} y = 2x + 3 \\ y = x^2 \end{cases} \tag{1}$$

$$(1) = (2) \Rightarrow 2x + 3 = x^{2}$$

$$\Rightarrow x^{2} - 2x - 3 = 0$$

$$\Rightarrow (x + 1)(x - 3) = 0$$

$$\Rightarrow x = -1 \text{ or } x = 3$$
Sub $x = -1$ into $(1) \Rightarrow y = 2(-1) + 3$

$$\Rightarrow y = 1$$
Sub $x = 3$ into $(1) \Rightarrow y = 2(3) + 3$

$$\Rightarrow y = 9$$

$$\therefore \left\{ \begin{array}{l} x = -1 \\ y = 1 \end{array} \right. or \left\{ \begin{array}{l} x = 3 \\ y = 9 \end{array} \right.$$

5.

$$\begin{cases} x - y = 1 \\ x^2 + y^2 = 25 \end{cases}$$

Sol.

$$\begin{cases} x - y = 1 \\ x^2 + y^2 = 25 \end{cases} \tag{1}$$

$$(1) \Rightarrow x = y + 1$$

$$\operatorname{Sub}(3) \operatorname{into}(2) \Rightarrow (y + 1)^{2} + y^{2} = 25$$

$$\Rightarrow y^{2} + 2y + 1 + y^{2} = 25$$

$$\Rightarrow 2y^{2} + 2y = 24$$

$$\Rightarrow y^{2} + y = 12$$

$$\Rightarrow y^{2} + y - 12 = 0$$

$$\Rightarrow (y + 4)(y - 3) = 0$$

$$\Rightarrow y = -4 \text{ or } y = 3$$

$$\operatorname{Sub} y = -4 \operatorname{into}(1) \Rightarrow x = -4 + 1$$

$$\Rightarrow x = -3$$

$$\operatorname{Sub} y = 3 \operatorname{into}(1) \Rightarrow x = 3 + 1$$

$$\Rightarrow x = 4$$

 $\therefore \left\{ \begin{array}{l} x = -3 \\ y = -4 \end{array} \right. or \left\{ \begin{array}{l} x = 4 \\ y = 3 \end{array} \right.$

6. $\begin{cases} 5x - y = 3 \\ y^2 - 6x^2 = 25 \end{cases}$

$$\begin{cases} 5x - y = 3 \\ y^2 - 6x^2 = 25 \end{cases}$$
 (1)

$$(1) \Rightarrow y = 5x - 3$$

$$Sub (3) into (2) \Rightarrow (5x - 3)^{2} - 6x^{2} = 25$$

$$\Rightarrow 25x^{2} - 30x + 9$$

$$- 6x^{2} = 25$$

$$\Rightarrow 19x^{2} - 30x + 16 = 0$$

$$\Rightarrow (19x + 8)(x - 2) = 0$$

$$\Rightarrow x = -\frac{8}{19} \text{ or } x = 2$$

$$Sub \ x = -\frac{8}{19} \text{ into } (1) \Rightarrow y = 5(-\frac{8}{19}) - 3$$

$$\Rightarrow y = -\frac{97}{19}$$

$$Sub \ x = 2 \text{ into } (1) \Rightarrow y = 7$$

$$\therefore \begin{cases} x = -\frac{8}{19} \\ y = -\frac{97}{19} \end{cases} \text{ or } \begin{cases} x = 2 \\ y = 7 \end{cases}$$

7.

$$\begin{cases} x + y = 3\\ (x+2)(y+3) = 12 \end{cases}$$

Sol.

$$\begin{cases} x + y = 3 \\ (x + 2)(y + 3) = 12 \end{cases}$$
 (1)

(1)
$$\Rightarrow x = 3 - y$$
 (3)
Sub (3) into (2) \Rightarrow (3 - y + 2)(y + 3) = 12
 \Rightarrow (5 - y)(y + 3) = 12
 \Rightarrow 5y + 15 - y² - 3y = 12
 \Rightarrow 2y - y² = -3
 \Rightarrow y² - 2y - 3 = 0
 \Rightarrow (y + 1)(y - 3) = 0
 \Rightarrow y = -1 or y = 3

Sub y = 3 into $(1) \Rightarrow x = 0$

Sub y = -1 into $(1) \Rightarrow x = 4$

$$\therefore \left\{ \begin{array}{l} x = 4 \\ y = -1 \end{array} \right. or \left\{ \begin{array}{l} x = 0 \\ y = 3 \end{array} \right.$$

8.

$$\begin{cases} 5x - 6y = -1\\ 25x^2 + 36y^2 = 61 \end{cases}$$

Sol.

$$\begin{cases} 5x - 6y = -1 \\ 25x^2 + 36y^2 = 61 \end{cases} \tag{1}$$

$$5x^2 + 36y^2 = 61$$

$$(1) \Rightarrow y = \frac{5x+1}{6} \tag{3}$$

Sub (3) into (2)
$$\Rightarrow 25x^2 + 36\left(\frac{5x+1}{6}\right)^2$$

= 61
 $\Rightarrow 25x^2 + 36\left(\frac{5x+1}{6}\right)^2$
 $+ 36 = 61$
 $\Rightarrow 25x^2 + 25x^2 + 10x$
 $+ 1 = 61$
 $\Rightarrow 50x^2 + 10x = 60$
 $\Rightarrow 5x^2 + x - 6 = 0$
 $\Rightarrow (5x+6)(x-1) = 0$
 $\Rightarrow x = -\frac{6}{5} \text{ or } x = 1$
Sub $x = -\frac{6}{5} \text{ into } (1) \Rightarrow y = \frac{5(-\frac{6}{5}) + 1}{6}$
 $\Rightarrow y = -\frac{5}{6}$
Sub $x = 1 \text{ into } (1) \Rightarrow y = \frac{5(1) + 1}{6}$

$$\therefore \begin{cases} x = -\frac{6}{5} \\ y = -\frac{5}{6} \end{cases} \text{ or } \begin{cases} x = 1 \\ y = 1 \end{cases}$$

9.

$$\begin{cases} x + 4y = 5 \\ 2x^2 + 21xy + 27y^2 = 0 \end{cases}$$

$$\begin{cases} x + 4y = 5 \\ 2x^2 + 21xy + 27y^2 = 0 \end{cases}$$
 (1)

$$(1) \Rightarrow x = 5 - 4y$$
Sub (3) into (2) \Rightarrow 2 (5 - 4y)^2 + 21 (5 - 4y) y
$$+ 27y^2 = 0$$

$$\Rightarrow 2 (25 - 40y + 16y^2)$$

$$+ 105y - 84y^2 + 27y^2 = 0$$

$$\Rightarrow 50 - 80y + 32y^2 + 105y$$

$$- 57y^2 = 0$$

$$\Rightarrow 25y^2 - 25y - 50 = 0$$

$$\Rightarrow y^2 - y - 2$$

$$\Rightarrow (y + 1)(y - 2) = 0$$

$$\Rightarrow y = -1 \text{ or } y = 2$$

Sub
$$y = -1$$
 into $(1) \Rightarrow x = 5 - 4(-1) = 9$
Sub $y = 2$ into $(1) \Rightarrow x = 5 - 4(2) = -3$

$$\therefore \left\{ \begin{array}{l} x = 9 \\ y = -1 \end{array} \right. or \left\{ \begin{array}{l} x = -3 \\ y = 2 \end{array} \right.$$

10.

$$\begin{cases} \frac{x}{3} - \frac{y}{10} = \frac{5}{6} \\ x(y-2) = 2y + 3 \end{cases}$$

Sol.

$$\begin{cases} \frac{x}{3} - \frac{y}{10} = \frac{5}{6} \\ x(y-2) = 2y+3 \end{cases} \tag{1}$$

$$(1) \Rightarrow 10x - 3y = 25$$

$$(2) \Rightarrow x = \frac{2y + 3}{y - 2}$$
Sub (4) int $3 \Rightarrow 10 \left(\frac{2y + 3}{y - 2}\right) - 3y = 25$

$$\Rightarrow 10(2y + 3) - 3y(y - 2) = 25(y - 2)$$

$$\Rightarrow 20y + 30 - 3y^2 + 6y = 25y - 50$$

$$\Rightarrow 3y^2 - y - 80 = 0$$

$$\Rightarrow (y + 5)(3y - 16) = 0$$

$$\Rightarrow y = -5 \text{ or } y = \frac{16}{3}$$
Sub $y = -5$ into (1) $\Rightarrow 10x - 3(-5) = 25$

$$\Rightarrow 10x + 15 = 25$$

$$\Rightarrow 10x = 10$$

$$\Rightarrow x = 1$$
Sub $y = \frac{16}{3}$ into (1) $\Rightarrow 10x - 3\left(\frac{16}{3}\right) = 25$

$$\Rightarrow 10x = 41$$

$$\Rightarrow x = \frac{41}{10}$$

$$\therefore \begin{cases} x = 1 \\ y = -5 \end{cases} \text{ or } \begin{cases} x = \frac{41}{10} \\ y = \frac{16}{2} \end{cases}$$

(3)

(4)

13.2 System of Equations with Three Variables