hypothesis of (1) is satisfied when we replace a by a^{-1} and b by b^{-1} . Using (1) with a^{-1} , b^{-1} in place of a, b, respectively, we obtain

$$(ab)^{-n} = ((ab)^{-1})^n = (a^{-1}b^{-1})^n = (a^{-1})^n(b^{-1})^n = a^{-n}b^{-n}$$

for $n \in \mathbb{N}$. Thus $(ab)^n = a^n b^n$ is valid also when $n \leq -1$. So $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$.

LEMMA 0.1. Let G be a commutative group. Then $(ab)^n = a^nb^n$ for all $a, b \in G$ and for all $n \in \mathbb{Z}$

Proof. This follows immediately from Lemma 8.14. \Box

So far, we dealt with multiplicative groups. For additive groups, there are some modifications. In the case of an additive group, the unique element in $P_n(a_1,a_2,...,a_n)$ of Lemma 8.3 is called the sum of $a_1,a_2,...,a_n$ and is denoted by $a_1+a_2+....+a_n$ or by $\sum_{i=1}^n a_i$. We write na for $a_1+a_2+....+a_n$ in case $n \in \mathbb{N}$ and $a_1,a_2,...,a_n$ are all equal to $a \in G$. Also, we define 0a = 0 (the first 0 is the integer 0, the second 0 is the identity element of G) and (-m)a = -(ma) for $m \in \mathbb{N}$. Thus we defined na for all $n \in \mathbb{Z}, a \in G$.

Lemma 0.2. Let G be a additively written commutative group. Then

- (1) ma + na = (m+n)a
- (2) (-m)a = m(-a)
- (3) n(ma) = (nm)a
- $(4) \ n(a+b) = na + nb$

for all $m, n \in \mathbb{Z}, a, b \in G$

PROOF. (1),(2),(3) foolow from Lemma 8.7 and (4) from Lemma 8.15.

Notice that commutativity is essential for (4).

Exercises

(1) Let G be a group such that $a^2 = 1$ for all $a \in G$. Prove that G is commutative.