1) The figure shows the cross sections of two aluminum alloy 2114-T6 bars that are used as compression members, each with effective length of L_e . Find (a) the wall thickness of the hollow square bar so that the bars have the same cross-sectional area and (b) the critical load of each bar. Given: $L_e = 3 \text{ m}$ and E = 72 GPa (from Table D.1).

2) Based on a factor of safety of n=1.8, determine the maximum load F that can be applied to the truss shown. Given: Each column is of $50 \ mm$ -diameter aluminum bar having $E=70 \ GPa$.

3) Brace BD of the structure shown is made of a steel rod (E=210~GPa and $\sigma_{yp}=250~MPa$) with a square cross section (50~mm on a side). Calculate the factor of safety n against failure by buckling.

4) A horizontal rigid bar AB is supported by a pin-ended column CD and carries a load F. The column is made of steel bar having 50 by $50 \, mm$ square cross section, 3 m length, and $E=200 \, GPa$. What is the allowable value of F based a factor of safety of n=2.2 with respect to buckling of the column?

