3.4- Application : regression aux moindres carrés.

Cadre euclidien.

 \mathbb{R}^n muni de la base canonique \mathcal{B} et du produit scalaire usuel.

On suppose : rg(X) = p, sinon on réduit la matrice.

Soit F s-e-v de \mathbb{R}^n , de dimension p, dont X décrit une base dans \mathcal{B} :

$$\begin{pmatrix} f_1(x_1) & \dots & f_j(x_1) & \dots & f_p(x_1) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_1(x_i) & \dots & f_j(x_i) & \dots & f_p(x_i) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_1(x_n) & \dots & f_j(x_n) & \dots & f_p(x_n) \end{pmatrix}$$

Résoudre ce problème d'optimisation linéaire revient à déterminer d(y, F). Soit \hat{y} le projeté orthogonal de y sur F et $X\alpha$ sa matrice colonne dans \mathcal{B} . 3.4- Application : regression aux moindres carrés.

Distance euclidienne.

- 1 $d(y, F) = ||y \hat{y}||$.
- $\mathbf{2}$ La base de F n'est ni orthogonalisée, ni normalisée.
- 3 On calcule : $\alpha = ({}^t XX)^{-1} {}^t XY$ (cf. § *Méthodes de projections orthogonales*).

Exemple: régression quadratique page 41.

3.4- Application : regression aux moindres carrés.

✓ Afficher l'équation sur le graphique

46/1

___3.4- Application : regression aux moindres carrés.

16	Matrice X				Coeff. du syst. linéaire			2d mer	2d membre		
7											
8	x^0	x^1	2	x^2	^t XX			^t X Y			
9	1		1	1	5	15	55	15,6			
0	1		2	4	15	55	225	52,1			
1	1		3	9	55	225	979	201,5			
2	1		4	16	dét	700					
3	1		5	25	(^t XX) -1			Soluti	on α		
4					4,600	-3,300	0,500	0,58	coeff de x^0		
5					-3,300	2,671	-0,429	1,34	coeff de x^1		
6					0,500	-0,429	0,071	-0,14	coeff de x^2		
7											