MA 503: Homework 19

Dane Johnson

December 8, 2020

Proposition 14 Let f be a nonnegative function which is integrable over a set E. Then given ϵ , there is a δ such that for every set $A \subset E$ with $m(A) < \delta$ we have

$$\int_A f < \epsilon \ .$$

Proof: If f is bounded with $|f| \leq M$, then to get $\int_A f < \epsilon$, require that $m(A) < \delta = \epsilon/M$ so that $\int_A f \leq \int_A M = Mm(A) < M\epsilon/M = \epsilon$. So consider the case that f is not bounded but still f is integrable over E, meaning that $0 \leq \int_E f < \infty$ is bounded. Define

$$f_n(x) = \begin{cases} f(x) & f(x) \le n \\ n & f(x) > n \end{cases}.$$

Each f_n is bounded and nonnegative as $0 \le f_n(x) \le n$. If $f(x) < \infty$, then there is an N such that $f(x) \le N$. Then $f_n(x) = f(x)$ for all $n \ge N$ and so $f_n(x) \to f(x)$. If $f(x) = \infty$ (measurable functions by definition may be extended real valued functions so it is necessary to consider this it's unclear whether $\int_E f < \infty$ guarantees that f(x) is finite for all $x \in E$, only that $f(x) = \infty$ on a set of measure zero), then $f_n(x) = n$ for all n. But then $f_n(x) = n \to \infty = f(x)$ as well. So $f_n \to f$ pointwise on E. Since f(x) is measurable and g(x) = n is measurable for each n, each f_n is measurable. For each n, $f_n(x)$ is increasing since either $f_n(x) = n$ for all n or $f_n(x) = n$ for finitely many n and then constantly $f_n(x) = f(x)$ for all $n \ge N$ for some n. We have established that $f_n(x)$ is an increasing sequence of nonnegative measurable functions that $f_n(x) = n$ pointwise (and thereby satisfies the weaker condition of a.e. convergence). That each f_n is integrable follows from Proposition 8 (iii). By Theorem 10 (Monotone Convergence Theorem),

$$\int_E f = \lim \int f_n \ .$$

Then given $\epsilon > 0$, there is an N such that $\int_E f_n > \int_E f - \epsilon/2$ and so $\int_E (f - f_n) < \epsilon/2$ for all $n \ge N$. In particular this holds for N specifically. Then for any $A \subset E$ with $m(A) < \delta = \epsilon/2N$.

$$\int_{A} f = \int_{A} [(f - f_{N}) + f_{N}] = \int_{A} (f - f_{N}) + \int_{A} f_{N}$$

$$\leq \int_{E} (f - f_{N}) + \int_{A} N$$

$$< \frac{\epsilon}{2} + \int_{A} N$$

$$= \frac{\epsilon}{2} + Nm(A)$$

$$< \frac{\epsilon}{2} + \frac{N\epsilon}{2N}$$

$$= \epsilon$$

Problem 24 Use proposition 14 to prove directly that if $f_n \to f$ in measure and if there is an integrable function g such that for all n we have $|f_n| \le g$, then $\int |f_n - f| \to 0$.

By proposition 18, there is a subsequence (f_{n_k}) of (f_n) that converges to f almost everywhere. Since $|f_{n_k}| \leq g$ for each k, it follows that $|f| \leq g$ almost everywhere. Therefore $\int |f| \leq \int g$. Since

 $|f_n| \le g$ for each n, $\int |f_n| \le \int g$ for each n. Then $\int |f_n - f| \le \int |f_n| + |f| \le 2 \int g < \infty$.

Let $\epsilon > 0$. Since g is integrable, there is an $M \in \mathbb{N}$ such that $\int_{[-M,M]^c} g < \epsilon/4$. Given $\epsilon/4$, there exists by proposition 14 a $\delta > 0$ such that $\int_A |f_n - f| < \epsilon/4$ if $m(A) < \delta$. Let $\delta^* = \min\{\delta, \epsilon/(8M)\}$. Since (f_n) converges to f in measure, there is an $N \in \mathbb{N}$ such that for all $n \geq N$, $m(\{x: |f_n(x) - f(x)| \geq \delta^*\}) < \delta^* \leq \delta$. Let $A_n = \{x: |f_n(x) - f(x)| \geq \delta^*\}$. By proposition 14, $\int_{A_n} |f_n(x) - f(x)| < \epsilon/4$.

$$\int |f_n - f| = \int_{[-M,M]^c} |f_n - f| + \int_{[-M,M]} |f_n - f|
\leq \int_{[-M,M]^c} 2g + \int_{[-M,M]} |f_n - f|
< \frac{2\epsilon}{4} + \int_{[-M,M]} |f_n - f|
= \frac{\epsilon}{2} + \int_{[-M,M]\cap A_n} |f_n - f| + \int_{[-M,M]\cap A_n^c} |f_n - f|
\leq \frac{\epsilon}{2} + \int_{A_n} |f_n - f| + \int_{[-M,M]\cap A_n^c} |f_n - f|
< \frac{\epsilon}{2} + \frac{\epsilon}{4} + \int_{[-M,M]\cap A_n^c} |f_n - f|
\leq \frac{\epsilon}{2} + \frac{\epsilon}{4} + \int_{[-M,M]\cap A_n^c} \delta^*
= \frac{\epsilon}{2} + \frac{\epsilon}{4} + m([-M,M]\cap A_n^c) \delta^*
\leq \frac{\epsilon}{2} + \frac{\epsilon}{4} + m([-M,M]) \delta^*
= \frac{\epsilon}{2} + \frac{\epsilon}{4} + 2M\delta^*
\leq \frac{\epsilon}{2} + \frac{\epsilon}{4} + \frac{2M\epsilon}{8M}
= \epsilon.$$

Problem 25 A sequence f_n is said to be Cauchy in measure if given $\epsilon > 0$ there is an N such that for all $m, n \geq N$ we have

$$m\left(\left\{x:\left|f_{n}(x)-f_{m}(x)\right|>\epsilon\right\}\right)<\epsilon$$
.

Show that if (f_n) is a Cauchy sequence in measure, then there is a function f to which the sequence (f_n) converges in measure.

I had trouble figuring out how to work with the hint so did something probably much more complicated instead.

Since (f_n) is Cauchy, for each $v \in \mathbb{N}$, there is an n_v such that for all $k, j \geq n_v$ we have $m(\{x : |f_{k}(x) - f_{j}(x)| \geq 2^{-v}\}) < 2^{-v}$. In particular, $m(\{x : |f_{n_v} - f_{n_{v+1}}(x)| \geq 2^{-v}\}) < 2^{-v}$ and we can choose each n_{v+1} such that $n_{v+1} > n_v$. Let $E_v = \{x : |f_{n_{v+1}}(x) - f_{n_v}(x)| \geq 2^{-v}\}$ and $F_v = \bigcup_{j=v}^{\infty} E_j$ so that F_v is measurable and $m(F_v) < 2^{-(v-1)}$. If $i \geq j \geq v$ and $x \notin F_v$, then

$$|f_{n_i}(x) - f_{n_j}(x)| \le |f_{n_i}(x) - f_{n_{i-1}}(x)| + \dots + |f_{n_{j+1}}(x) - f_{n_j}(x)| \le \frac{1}{2^{i-1}} + \dots + \frac{1}{2^j} < \frac{1}{2^{j-1}}$$

Let $F = \bigcap_{v=1}^{\infty} F_v$ so that F is measurable and m(F) = 0. Then (f_{n_j}) converges outside of F. Define,

$$f(x) = \begin{cases} \lim f_{n_j}(x) & x \notin F \\ 0 & x \in F \end{cases}$$

so that (f_{n_j}) converges a.e. to the measurable real valued function f. As $i \to \infty$, we have that if $j \ge v$ and $x \notin F_v$, then

$$|f(x) - f_{n_j}(x)| \le \frac{1}{2^{j-1}} \le \frac{1}{2^{k-1}}$$
.

This shows that (f_{n_j}) converges uniformly to f on the complement of each set F_v . Let α, ϵ be positive real numbers and take v large enough such that $m(F_v) < 2^{-(v-1)} < \min\{\alpha, \epsilon\}$. If $j \geq v$, we have

$${x: |f(x) - f_{n_i}(x)| \ge \alpha} \subseteq {x: |f(x) - f_{n_i}(x)| > 2^{-(v-1)}} \subseteq F_v$$

But then $m(x:|f(x)-f_{n_j}(x)| \ge \alpha\}) \le m(F_v) < \epsilon$ for all $j \ge v$ so that (f_{n_j}) converges in measure to f.

We have seen that there is a subsequence (f_{n_v}) of (f_n) which converges in measure to f and next need to show that the entire sequence converges in measure to f. Since,

$$|f(x) - f_n(x)| \le |f(x) - f_{n_n}(x)| + |f_{n_n}(x) - f_n(x)|,$$

it follows that,

$$\{x: |f(x) - f_n(x)| \ge \alpha\} \subseteq \{x: |f(x) - f_{n_v}(x) \ge \frac{\alpha}{2}\} \bigcup \{x: |f_{n_v}(x) - f_n(x)| \ge \frac{\alpha}{2}\}.$$

The convergence in measure of (f_n) to f follows from this relation above and since (f_{n_v}) converges to f in measure and (f_n) converges in measure to f_{n_v} (I think this is how it would work but not totally sure).

This function f is a.e. unique. Suppose that (f_n) converges to f and g in measure.

$$|f(x) - q(x)| \le |f(x) - f_n(x)| + |f_n(x) - q(x)|$$

$${x: |f(x) - g(x)| \ge \alpha} \subseteq {x: |f(x) - f_n(x)| \ge \frac{\alpha}{2}} \bigcup {x: |f_n(x) - g(x)| \ge \frac{\alpha}{2}}.$$

Then $m(\{x: |f(x)-g(x)| \ge \alpha\}) = 0$ for all $\alpha > 0$. Then taking $\alpha = 1/n$ for each $n \in \mathbb{N}$, conclude that f = g except on a set of measure zero.