ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: First class of 14th week

P1.

P2. a) The state diagram is

Present	Next	Output	
state	w = 0	w = 0 $w = 1$	
A	A	В	0 0 0
B	В	C	0 0 1
C	C	D	010
D	D	E	0 1 1
E	E	F	100
F	F	A	101

The state-assigned table is

Present	Next		
state	w = 0	w = 1	Output
$y_2y_1y_0$	Y_2Y	$z_2 z_1 z_0$	
0 0 0	000	0 0 1	000
0 0 1	0 0 1	0 1 0	0 0 1
010	010	0 1 1	010
0 1 1	0 1 1	100	0 1 1
100	100	101	100
101	101	0 0 0	101

ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: First class of 14th week

The next-state expressions are

$$\begin{array}{rcl} Y_2 & = & \overline{y}_0 y_2 + \overline{w} y_2 + w y_0 y_1 \\ Y_1 & = & \overline{y}_0 y_1 + \overline{w} y_1 + w y_0 \overline{y}_1 \overline{y}_2 \\ Y_0 & = & \overline{w} y_0 + w \overline{y}_0 \end{array}$$

The outputs are: z2 = y2, z1 = y1, and z0 = y0.

b) Using the state-assigned table given in the solution for P1, the excitation table for JK flip-flops is

Present	Flip-flop inputs						
state		w = 0			w = 1		Outputs
$y_2 y_1 y_0$	J_2K_2	J_1K_1	J_0K_0	J_2K_2	J_1K_1	J_0K_0	$z_2 z_1 z_0$
000	0 d	0 d	0 d	0 d	0 d	1 d	000
001	0 d	0 d	d 0	0 d	1 d	d 1	001
010	0 d	d 0	0 d	0 d	d 0	1 d	010
011	0 d	d 0	d 0	1 d	d 1	d 1	011
100	d 0	0 d	0 d	d 0	0 d	1 d	100
101	<i>d</i> 0	0 d	d 0	d 1	0 d	d 1	101

The expressions for the inputs of the flip-flops are

$$J_2 = wy_1y_0$$

 $K_2 = wy_2y_0$
 $J_1 = w\overline{y}_2y_0$
 $|K_1 = wy_0$
 $J_0 = w$
 $K_0 = w$

The outputs are: z2 = y2, z1 = y1, and z0 = y0.

c) Using the state-assigned table given in the solution for P1, the excitation table for T flip-flops is

2

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: First class of 14th week

Present	Flip-flo		
state	w = 0	Outputs	
$y_2y_1y_0$	$T_{2}T_{1}T_{0}$	$T_{2}T_{1}T_{0}$	$z_2 z_1 z_0$
000	000	001	000
001	000	011	001
010	000	001	010
011	000	111	011
100	000	001	100
101	000	101	101

The expressions for T inputs of the flip-flops are

$$T_2 = wy_1y_0 + wy_2y_0$$

$$T_1 = w\overline{y}_2y_0$$

$$T_0 = w$$

The outputs are: z2 = y2, z1 = y1, and z0 = y0.

P3. Using straight forward state assignment:

	Present	Next state				
	state	DN=00	01	10	11	Output
	$y_4y_3y_2y_1$		z			
S1	0000	0000	0010	0001	_	0
S2	0001	0001	0011	0100	_	0
S3	0010	0010	0101	0110	_	0
S4	0011	0000	_	_	_	1
S5	0100	0010	_	_	_	1
S6	0101	0101	0111	1000	_	0
S7	0110	0000	_	_	_	1
S8	0111	0000	_	_	_	1
S9	1000	0010	_	_	_	1

The next state and output expressions are:

$$\begin{array}{rcl} Y_4 & = & Dy_3 \\ Y_3 & = & Dy_1 + Dy_2 + Ny_2 + \overline{D}y_3\overline{y}_2y_1 \\ Y_2 & = & N\overline{y}_2 + y_3\overline{y}_1 + \overline{N}\overline{y}_3y_2\overline{y}_1 \\ Y_1 & = & Ny_2 + D\overline{y}_2\overline{y}_1 + \overline{D}\overline{y}_2y_1 \\ z & = & y_4 + y_1y_2 + \overline{y}_1y_3 \end{array}$$

Using the same approach for the second table:

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: First class of 14th week

	Present					
	state	DN=00	01	10	11	Output
	$y_3y_2y_1$		z			
S1	000	000	010	001	_	0
S2	001	001	011	100	_	0
S3	010	010	001	011	_	0
S4	0 1 1	000	_	_	_	1
S5	100	010	_	_	_	1

The next state and output expressions are:

$$\begin{array}{rcl} Y_3 & = & D\overline{y}_2y_1 \\ Y_2 & = & y_3 + \overline{N}y_2\overline{y}_1 + N\overline{y}_2 \\ Y_1 & = & \overline{D}\overline{y}_2y_1 + Ny_2\overline{y}_1 + D\overline{y}_3\overline{y}_1 \\ z & = & y_3 + y_2y_1 \end{array}$$

These expressions define a circuit that has considerably lower cost than the expressions resulting from the first table.

P4.

(a)

(b)

(c)

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: First class of 14th week

- d) a. State 01
 - b. State 10
 - c. State 11

P5.

(a)

	Current State Next State					Output			
X	Y	Z	(Symbol)	X	Y	Z	A	В	C
0	0	0	(S0)	0	0	1	1	0	0
0	0	1	(S1)	0	1	0	1	0	1
0	1	0	(S2)	0	1	1	1	1	1
0	1	1	(S3)	1	0	0	1	1	1
1	0	0	(S4)	1	0	1	0	0	0
1	0	1	(S5)	1	1	0	0	0	1
1	1	0	(S6)	1	1	1	0	1	1
1	1	1	(S7)	0	0	0	0	1	1

(b)

ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Synchronous Sequential Circuits Assigned Date: Thirteenth Week Due Date: First class of 14th week

P6. A Moore machine with six states is shown below.

P7. A minimum state table is shown below. We assume that the 3-bit patterns do not overlap.

Present	Next	Output	
state	w = 0	w = 1	p
A	В	С	0
В	D	E	0
С	Ε	D	0
D	A	F	0
Е	F	A	0
F	В	C	1

P8.

