

Basic population genomics

Learning outcomes

- Basic population genetics
 - theory
 - using SNP data

Population genetics Using genomic data

- Study of genetic variation within populations
 - changes in frequencies of genes and alleles over space and time
 - many genes in a population will be polymorphic - they will occur in a number of different forms

Population genetics Using genomic data

- Principles in fungal populations include:
 - mutation
 - gene flow
 - transfer of genes among populations
 - genetic drift
 - natural selection

What is a population? Using wgSNPs

- Principal component analysis (PCA)
 - reduces data to its essential features - principal components
 - principal components explain the variance of the variables

What is a population? Using wgSNPs

- Discriminant analysis of principal components (DAPC)
 - PCA fails to discriminate groups accurately; DAPC maximises the separation between groups while minimising variation within groups

Principal component analysis (PCA) In practice

- In R/RStudio
- Need:
 - multiFASTA file
 - installation of packages: ape, adegenet, viridis
 - txt file with all isolates plus group assignment

Discriminant Analysis of Principal Components (DAPC)

In practice

- Same inputs as for PCA. How does it look?
- Do other groupings explain the variation better?
 - finding the true 'k' value (hypothetically)
 - 'find.clusters(x)' in the dapc package

