

MAC Protocol and Channel Hopping Sequence algorithm

Georgios Z. PAPADOPOULOS, Professor, IMT Atlantique georgios.papadopoulos@imt-atlantique.fr www.georgiospapadopoulos.com www.youtube.com/c/gzpapadopoulos

Click me!

The **6TiSCH** Protocol Stack

- ✓ TSCH: Time-Slotted (synchronized), allows both distributed and centralized implementations.
- ✓ TS**CH**: Channel Hopping, to give resilience to interference and multi-path fadings.

Timeline

- ≥ 2006: TSCH approach emerges in the <u>proprietary</u> *Time Synchronized Mesh Protocol* (TSMP)
- ≥2008: TSMP is standardized in ISA100.11a
 - The IEEE 802.15.4e Working group is created:

Issue: IEEE 802.15.4-2006 MAC is ill-suited for low-power multi-hop network because of

- (i) high energy consumption due to relay/router nodes
- (ii) use of a single channel that implies interference and multi-path fading

Final aim: to redesign the existing IEEE 802.15.4-2006 MAC Std. and make it suitable for low-power multi-hop networks in industrial applications

- 2009: TSMP is standardized in WirelessHART
- 2010: Part of IEEE 802.15.4e draft
- ➤ 2011: IEEE802.15.4e draft in Sponsor Ballot (opened on 27 July 2011 and closed on 28 August with 96% of votes being affirmative)
- ≥2012: IEEE802.15.4e TSCH published
- ≥ 2016: IEEE802.15.4-2015-TSCH published

IEEE STANDARDS ASSOCIATION

♦IEEE

IEEE Standard for Low-Rate Wireless Personal Area Networks (WPANs)

IEEE Computer Society

Sponsored by the LAN/MAN Standards Committee

IEEE 3 Park Avenue New York, NY 10016-5997 USA IEEE Std 802.15.4³⁶-2015 (Revision of IEEE Std 802.15.4-2011)

Authorized licensed use limited to: TELECOM Bretagne. Downloaded on July 12,2016 at 16:2655 UTC from EEEE Xplore. Pleatrictions apply.

IEEE 802.15.4-2015 TSCH:

➤ Targets low-power, low-data-rate, and low-cost wireless meshes.

IEEE STANDARDS ASSOCIATION

♦IEEE

IEEE Standard for Low-Rate Wireless Personal Area Networks (WPANs)

Sponsored by the LAN/MAN Standards Committee

3 Park Avenue New York, NY 10016-5997 USA IEEE Std 802.15.4³⁶-2015 (Revision of IEEE Std 802.15.4-2011)

Authorized licensed use limited to: TELECOM Bretagns. Downloaded on July 12,2016 at 16:2655 UTC from IEEE Xplors. Restrictions apply

IEEE 802.15.4-2015 TSCH:

- ➤ Targets low-power, low-data-rate, and low-cost wireless meshes.
- Time-Slotted Channel Hopping (TSCH) was added in the 2015 revision of the IEEE 802.15.4 standard.

IEEE STANDARDS ASSOCIATION

♦IEEE

IEEE Standard for Low-Rate Wireless Personal Area Networks (WPANs)

Sponsored by the LAN/MAN Standards Committee

IEEE 3 Park Avenue New York, NY 10016-5997 USA IEEE Std 802.15.4³⁴-2015 (Revision of IEEE Std 802.15.4-2011)

Authorized licensed use limited to: TELECOM Bretagne. Downloaded on July 12,2016 at 16.2655 UTC from IEEE Xplore. Pleatrictions apply

IEEE 802.15.4-2015 TSCH:

- ➤ Targets low-power, low-data-rate, and low-cost wireless meshes.
- ► Time-Slotted Channel Hopping (TSCH) was added in the 2015 revision of the IEEE 802.15.4 standard.
- ► TSCH is designed for *reliable and deterministic communication*.

IEEE 802.15.4-2015 TSCH:

- ➤ Targets low-power, low-data-rate, and low-cost wireless meshes.
- Time-Slotted Channel Hopping (TSCH) was added in the 2015 revision of the IEEE 802.15.4 standard.
- ► TSCH is designed for *reliable and deterministic communication*, and for *low-power operation*.

By enabling long radio sleep intervals, the low-power operation is to guaranteed.

It is a combination of **time-division** and **frequency-division multiple access**

IEEE 802.15.4-2015 TSCH:

- ► Time Division Multiple Access (TDMA)
- ► Frequency Division Multiple Access (FDMA)

It is a combination of **time-division** and **frequency-division multiple access** in conjunction with a **radio channel hopping** technique.

The 16 radio channels in 2.4 GHz band.

Institut Mines-Télécom

IEEE 802.15.4-2015 TSCH:

- ► Time Division Multiple Access (TDMA)
- Frequency Division Multiple Access (FDMA)
- ► Radio Channel Hopping technique

In a TSCH network, the continuous time is divided into timeslots of equal length.

Then, a set of timeslots are grouped into a Slotframe structure that repeats in time for the whole duration of the network.

Timeslot

Timeslot

A timeslot is long enough (typically 10 ms) for a node in the network to send a maximum sized 127 Byte frame to its radio neighbor

Timeslot

A timeslot is long enough (typically 10 ms) for a node in the network to send a maximum sized 127 Byte frame to its radio neighbour and for that neighbour to send back a link-layer acknowledgment.

Timeslot

For each timeslot, there are 16 radio channels available to be employed, where each radio channel has a bandwidth of 2MHz and a channel separation of 5MHz.

"A schedule orchestrates all the possible communications of a node with its neighbors, and it is managed by a Scheduling Function. Indeed, the actions of a node on each timeslot within a Slotframe are determined by the schedule of that node."

Note that a Schedule can be built either in a **centralized** manner, by a Path Computation Element (PCE), or in a **distributed** fashion (6P and MSF) where nodes decide locally which and how many cells, they will use for communicating with their neighbors.

At each timeslot, each node knows (i.e., actions) if:

- it has the "right" to transmit a frame and to whom,
- it must stay "awake" to receive a frame,
- it can "sleep", to save energy.

A schedule provides tunable trade-off:

- Network capacity.
- Bounded latency.
- Network reliability.
- Energy consumption.

A typical industrial trade-off scenario:

to target network reliability and bounded latency at the cost of network capacity and energy.

The schedule can be represented as an M multiplied by N matrix,

The schedule can be represented as an M multiplied by N matrix, where M is the length of the slotframe in timeslots,

The schedule can be represented as an M multiplied by N matrix, where M is the length of the slotframe in timeslots, and N is the number of available radio channels to hop, as you can see here.

An element in the schedule matrix is called a *cell*, which is identified by the (timeslot offset, channel offset) pair.

A cell's **timeslotoffset** indicates its position in time, relative to the beginning of the slotframe.

A cell's **channeloffset** is an index which maps to a frequency (or radio channel) that a node should tune its radio transceiver to.

There are **shared** (i.e., contention-based) cells and/or **dedicated** (contention-free) cells. For the shared cells, a MAC protocol based on random access method is applied, i.e., CSMA/CA!

Enhanced Beacons (EBs) (1/2)

- ► EBs are transmitted in broadcast from the Personal Area Network (PAN) Coordinator to advertise the network.
- ► An EB may contain the following information ASN and Join Metric, Channel Hopping Sequence IDentifier, TSCH slotframe size.
- ►EB are transmitted from the Full Function Devices (FFD) once they are synchronized in the network in order to extend the network.
- ▶ The EB may also be used as a means for a node already part of the network to re-synchronize.
- There are a limited number of timeslots designated as a broadcast timeslot. These timeslots are rare, and with a Slotframe length of 100, there may be only 1 timeslot/slotframe for an EB.

Enhanced Beacons (EBs) (2/2)

- TX EB → the transmitter can send EB only in the first Timeslot of each Slotframe. Each EB is transmitted over a different radio channel.
- ightharpoonup RX EB
 ightharpoonup The Joining node will be listening in one of the 16 radio channels.
- A joining node should wait to receive an EB. When it receives the EB, it extracts the ASN and synchronizes to the Slotframe of the network.

IEEE Terminologies: FFD and RFD | PAN, Coordinator, Network Device (1/3)

IEEE Terminologies: FFD and RFD | PAN, Coordinator, Network Device (2/3)

- ▶ 2 types of nodes
 - Full Function Device (FFD)
 - Any topology
 - PAN coordinator capable
 - Talks to any other device (routing)
 - Implements complete protocol set
 - Reduced Function Device (RFD leaf nodes)
 - Limited to star topology or end-device in a peer-to-peer network.
 - Cannot become a PAN coordinator
 - Reduced (Very simple implementation) protocol set (sensing node)

IEEE Terminologies: FFD and RFD | PAN, Coordinator, Network Device (3/3)

▶ 3 possible roles

- Personal Area Network (PAN) Coordinator
 - A coordinator that is the principal controller of the PAN. A network has exactly one PAN coordinator.
- Coordinator
 - A device that provides coordination and other services to the network (extension of the network of the PAN coordinator (FFD))
- Network Device (leaf)
 - An RFD or FFD implementation containing an IEEE 802.15.4 medium access control and physical interface to the wireless medium (end device of a network (FFD or RFD))

Summary

Each packet exchanged between neighbors happens within one cell.

The 16 radio channels in 2.4 GHz band.

Channel Hopping

➤ The Channel Hopping mechanism of TSCH, allows a node to transmit its subsequent frames over different radio channels.

Timeslot 0 1 2 3 0 1 2 3

The 16 radio channels in 2.4 GHz band.

Channel Hopping

It also allows for two distinct sources to send their frames at the same time over different radio channels to two different destinations, which increases the network capacity.

Timeslot 0 1 2 3 0 1 2 3

CHS is handled by TSCH through a channel hopping sequence,

Slotframe

Channel Hopping Sequence (CHS)

Slotframe

CHS is handled by TSCH through a channel hopping sequence, where at each timeslot,

 $Radio\ Channel = F[(ASN + chOffset)\%nFreq]$ *Slotframe* Slotframe Time (slotted) **Dedicated Timeslots Dedicated Timeslots Shared Timeslot Shared Timeslot Channel Offset** 2MHz 5MHz T→R The 16 radio channels in 2.4 GHz band. 0

0

Timeslot

CHS is handled by TSCH through a channel hopping sequence, where at each timeslot, the physical radio channel to be used by the radio is computed by the following equation:

3

0

2

1

3

Absolute Slot Number (**ASN**) indicates the number of timeslots elapsed since the network started.

The 16 radio channels in 2.4 GHz band.

Channel Hopping Sequence (CHS)

ChannelOffset, we have previously explained.

Channel Hopping Sequence (CHS)

nFreq is the number of available physical radio channels. There are 16 radio channels when using IEEE 802.15.4-compliant radios at 2.4 GHz.

2

3

5

6

7

8

ASN

Channel Hopping Sequence (CHS)

MAC Protocol and Channel Hopping Sequence algorithm

Georgios Z. PAPADOPOULOS, Professor, IMT Atlantique georgios.papadopoulos@imt-atlantique.fr www.georgiospapadopoulos.com www.youtube.com/c/gzpapadopoulos

Click me!

