Usuwanie zakłóceń

Rysowanie w przestrzeni dyskretnej powoduje powstanie w obrazie zakłóceń (Aliasing)

Metody odkłócania (Antyaliasing)

- zwiększenie rozdzielczości
 - Zwiększenie rozmiaru pamięci obrazu

- Zwiększenie czasu rysowania prymitywu
- Zwiększenie pasma pamięci i pasma monitora

Usuwanie zakłóceń(2)

Metoda z dwoma pikselami w kolumnie

- Piksele leżą najbliżej idealnej linii
- Odcień piksela NE zależy od długości odcinka NE-Q, odcień piksela E od Q-E
- Suma odcieni pikseli
 NE i E jest stała

Próbkowanie powierzchni

- Kwadratowe piksele
- Odcinek ma określoną szerokość
- Odcinek ma wnosić pewien udział w zaczernienie piksela
- Wymagana jest wielobitowa reprezentacja piksela
- Podczas rysowania ustawianych jest kilka pikseli

Bezwagowe próbkowanie powierzchni

Jasność zaznaczonego piksela jest proporcjonalna do powierzchni zakrytej przez odcinek

Obliczanie jasności piksela

 Nadpróbkowanie (Oversampling)

Możliwe jest rysowanie linii o grubości mniejszej niż jeden piksel

Instytutu Informatyk

Nadpróbkowanie (oversampling)

- Odcinek o grubości jednego piksela rysujemy tak jakby był odcinkiem złożonym z pewnej liczby mniejszych pikseli
- O jasności piksela decyduje liczba zakrytych pikseli

Przykład

Piksel złożony z 16 "małych pikseli"

Jasność piksela = 4/16 I _{max} = 1/4 I _{max}

Właściwości bezwagowego próbkowania powierzchni

- jasność piksela zależy od odległości odcinka od środka piksela
 - im odcinek jest dalej, tym jego wpływ na jasność jest mniejszy
- odcinek nie wpływa na jasność piksela jeśli go nie przecina
- takie samo pole wnosi równą jasność np. poziome odcinki o grubości ułamkowej wyglądają tak samo

Wagowe próbkowanie powierzchni

Wpływ takich samych powierzchni na jasność piksela jest różny.

- okrągłe piksele
 - pełne pokrycie (powierzchnia koła większa od powierzchni kwadratu)
 - brak zależności kierunkowych
- wprowadzenie funkcji wagowej która określa wpływ wycinka powierzchni na jasność piksela

Filtr stożkowy

waga zależy liniowo od odległości od środka obszaru

Filtr stożkowy dla kołowego piksela o średnicy dwóch skoków siatki

Mapy bitowe

- Kanwa
- Układy współrzędnych
- Atrybuty kanwy (kontekst kanwy)
 - pisak (kolor, kształt)
 - wypełnienie
- Kopiowanie
- Maski
- Przysłanianie
- Przesuwanie/Skalowanie

Kopiowanie map bitowych

Rodzaje map bitowych

- 1- bitowe
- 8- bitowe odcienie szarości
- 8-bitowe z paletą kolorów (indeksowane)
- 24-bitowe RGB, Lab
- 32-bitowy CMYK, RGBA
- do 12, 14, 16 bitów/kanał

Wypełnianie wielokątów

- Wyznaczenie współrzędnych piksela do wypełnienia
- Ustalić czy i czym należy wypełnić piksel
 - Wypełnianie stałym kolorem
 - Wypełnianie tonalne
 - Wypełnianie wzorami

Wypełnianie rysunków rastrowych

- · kolor obrysu
- kolor (wzór) wypełniania

Segment to poziomy odcinek pikseli wewnątrz wielokata

Algorytmy wypełnianie wielokatów

Rvsunki rastrowe

- Wypełnianie rekurencyjne np. metoda z czterema sąsiadami
- Wypełnianie liniami poziomymi

np. Algorytm Smitha

Rysunki wektorowe

Wypełnianie prostokąta

```
for(y = ymin; y <= ymax; y++)
for(x = xmin; x <= xmax; x++) /* wypełnianie
segmentu */
WritrePixel(x,y, color);</pre>
```

Problemy

- Wielokrotne zapisywania tego samego piksela
- Wypełnianie przez przeglądanie liniami poziomymi

Wypełnianie wielokątów z przeglądaniem linii

Kroki algorytmu:

for $(y = y_{min}; y \le y_{max}; y + +)$

wyznaczenie przecięć poziomej prostej y z krawędziami

wielokata

 posortować te punkty według współrzędnej x

wypełnić segmenty
 (piksele leżące wewnątrz wielokąta) korzystając z reguły parzystości

Problemy:

- wartości ułamkowe przecięć
- krawędzie poziome
- wspólny wierzchołek
 Instytutu Informatyki P. W.

Wypełnianie wzorami

Mapa pikselowa musi być wpisana we wnętrze wielokąta.

W tym celu należy:

- określić punkt zaczepienia wzoru (prostokąt ograniczający)
- kopiować wybrane fragmenty wzoru
- stosowanie maski blokującej

Wypełnianie wzorami

Mapa pikselowa musi być wpisana we wnętrze wielokąta.

W tym celu należy:

- określić punkt zaczepienia wzoru (prostokąt ograniczający)
- kopiować wybrane fragmenty wzoru
- stosowanie maski blokującej

Wypełnianie bez wielokrotnej konwersji

- konwersja w niewidocznej pamięci (budowanie masek wnętrza obiektu)
- wykorzystując tę maskę wpisujemy wzór prostokątny w obszar prostokątny

- 1. Konwersja wielokąta tworzenie maski bitowej
- Zerowanie tła z wykorzystaniem maski
- 3. Przygotowanie mapy obiektu ze wzorem
- 4. Zapis mapy obiektu

Algorytmy obcinania

- Obcinanie w kanwach (operacjami Copy)
- Obcinanie w trakcie konwersji
 - obcinanie wartości krańcowych
 - warunkowy zapis piksela
 - próbkowanie co kilka pikseli
 - obcinanie złożonych prymitywów

Efektywne gdy mało pikseli leży poza obszarem obcinania

Obcinanie analityczne

Obcinanie analityczne

- operacje zmiennoprzecinkowe
- latwe dla odcinków i wielokątów
- obcinanie prostokatem
 - prostokata
 - wielokąta wypukłego
 - dowolnego wielokąta
 - okręgu

daje

prostokąt wielokąt wypukły kilka wielokątów

łuki

Instytutu Informatyki P. W.

Zakład Grafiki Komputerowej

Obcinanie odcinków

Obcinanie punktów

 $X_{\min} \le X \le X_{\max}$ $y_{min} \le y \le y_{max}$ Obcinanie odcinków z rozwiązywaniem układu rownan

- analiza punktów końcowych odcinka
- obliczanie współrzędnych punktu przecięcia odpowiednich prostych
- sprawdzenie czy punkt przecięcia leży na odcinku
- sprawdzenie czy punkt przecięcia leży na krawędzi obcinającej

Przykład 1 - Obcinanie z rozwiązywaniem układu równań

Czy odcinek (0, 0) - (100, 200), będzie narysowany na monito o rozdzielczości 1024x800) ?

Parametryczne równanie odcinka

$$Q(t) = (1-t) P_p + t P_k = P_p + t (P_k - P_p)$$

$$x = x_0 + t(x_1 - x_0)$$
 $(x_0, y_0) = (0, 0)$
 $y = y_0 + t(y_1 - y_0)$ $(x_1, y_1) = (100, 200)$

$$x = 100t$$

 $y = 200t$ $t \in <0, 1>$

Przecięcie z linią
$$x = 1024$$

 $x = 100t = 1024$
 $t = 10.24$ $t \notin <0, 1>$
nie zostanie obcięty

c, b, a

Przykład 2 - Obcinanie z rozwiazywaniem układu równań

Czy odcinek opisany równaniem parametrycznym

$$\begin{cases} x = 200t - 100 \\ y = 100t \end{cases}$$
 $t \in <0, 1>$

zostanie obcięty prostą x = 0?

Przecięcie z linią
$$x = 0$$

 $x = 200t - 100 = 0$
 $t = 100/200 = \frac{1}{2}t \in <0, 1>$
Zostanie obcięty

Współrzędne punktu przecięcia:

$$x = 0$$

 $y = y(\frac{1}{2}) = 100 * \frac{1}{2} = 50$

Instytutu Informatyki P.W.

