In-place BFS a DFS

V LINEÁRNÍM ČASE NA MODELU RAM

Tomáš Sláma

7. 4. 2020

$\mathbf{\acute{U}vod}$

PŘEDPOKLADY

- pracujeme s modelem RAM
 - \bullet paměť je pole slov velikosti w
 - operace se slovy (čtení, psaní, přístupy) jsou konstantní
 - vstup je na prvních $n \in \mathbb{N}$ slovech
 - velikost $w = \Omega(\log n)$
 - restore model: vstup může být měněn v průběhu výpočtu, ale na jeho konci musí být v původním stavu
- graf je zadán v setříděném seznamu sousedů

Obrázek: setřízená reprezentace

$\overline{\mathrm{DFS}}$

Přehled

- 1. graf převedeme do speciální reprezentace
- 2. budeme v ní kódovat stav DFS (a trochu ji tím rozbijeme)
- 3. obnovíme původní stav
- 4. převedeme zpět do setřízené reprezentace

 $\overline{2}$

DISCLAIMER

operace	$v\acute{y}znam$	podpora
pre-process	po vstoupení do vrcholu	✓
pre-explore	po iteraci přes souseda	
post-process	po zpracovaní všech sousedů	\checkmark
post-explore	po vrácení z vrcholu	

Tabulka: podporované funkce DFS

REPREZENTACE

Obrázek: setřízená, pointerová a prohozená reprezentace

• pozor na stupně 0 (zachovávají si jména vrcholů)!

SETŘÍZENÁ \rightarrow POINTEROVÁ

Lemma 1

Setříděná reprezentace jde do pointerové reprezentace převést in-place v čase $\mathcal{O}(n)$.

Důkaz

Nastavíme
$$A[i] = T[A[i]] \forall i \in \{n+2, ..., n+m+2\}$$
 a $T[v] = v$ (pro vrcholy v stupně 0).

POINTEROVÁ \longleftrightarrow PROHOZENÁ

Lemma 2

Pointerová jde do prohozené reprezentace (a zpět) převést in-place v čase $\mathcal{O}(n)$.

Důkaz

 $P\check{r}evod \rightarrow:$

$$T[i] = A[T[i]] \text{ a } A[T[i]] = i \quad \forall i \in \{1, ..., n\}, i \neq T[i]$$

 $P\check{r}evod \leftarrow:$

$$T[A[i]] = i \text{ a } T[A[i]] = i \quad \forall i \in \left\{n+2, \dots, n+m+2\right\}, A[i] < n$$

PROHOZENÁ ightarrow SETŘÍZENÁ

Lemma 3

Prohozená jde do setřízené reprezentace převést in-place v čase $\mathcal{O}\left(n\right)$.

PROHOZENÁ \rightarrow SETŘÍZENÁ

Důkaz

Nejprve nastavíme

$$A[i] = A[A[i]] \ \forall i \in \{n+2, \dots, n+m+2\}, A[i] > n$$

$$a$$

$$T[i] = A[T[i]] \ \forall i \in \{1, \dots, n\}$$

Pak postupně hledáme jména vrcholů v na pozicích p v každém poli sousednosti a nastavujeme:

$$A[p] = T[v] \text{ a } T[v] = p$$

Nakonec opravíme vrcholy stupně0procházením ${\cal T}$ a nastavením

$$T[i] = T[i-1] \ \forall i \in \{1, \dots, n\}, T[i] = i$$

PROHOZENÁ \rightarrow SETŘÍZENÁ

 důkaz z článku je problematický¹, jelikož nepoznáme, když procházíme nové pole sousednosti

Obrázek: problematický případ

Důkaz (fix)

Při nalezení chybného prohození iterujeme o rozdíl správného v s aktuálním a prohazujeme zpět.

¹Pokud jsem ho tedy pochopil správně:).

$\overline{\mathrm{DF}}\mathrm{S}$

Vrcholy se stupněm ≥ 2

ZAVEDENÍ INVARIANTU

Invariant

Vrchol v je bílý $\iff A[T[v]] \le n$.

- stav vrcholů budeme udržovat přes invariant
- na začátku platí pro všechny vrcholy

Obrázek: prohozená reprezentace

Procházení přes obrácené pointery

- \bullet jsme ve vrcholu u a iterujeme přes jeho sousedy
- na pozici p jsme narazili na pointer q do bílého vrcholu v, jehož nejmenší soused je na pozici q'
- nastavíme T[v] = p a A[p] = q'

Obrázek: diagram konstrukce obráceného pointeru

 \bullet pozorování: vrchol v už není bílý

Problémy s obrácenými pointery

- na pozici p uvažujeme první hranu vrcholu u (uložená na A[T[u]]) směřující do v: kam nasměrovat obrácený pointer?
 - 1. uložit do A[p] ztratíme pojem o tom, kde u začíná
 - 2. uložit do T[u] tam už je obrácený pointer
- problém vyřešíme tím, že ho nebudeme řešit:
 - pokud by měl nastat, tak prohodíme T[u] s A[p+1]
 - jelikož jsou pointery setřízené, tak prohození poznáme

Obrázek: problémy a řešení konstrukce obráceného pointeru

BACKTRACKOVÁNÍ

- $\bullet\,$ po prozkoumání sousedů vnarazíme na poziciq''na vrcholv''
 - poznáme tak, že $A[q''] \le n$
- iterujeme zpět do té doby, než $A[p] \leq n$

Obrázek: backtrackování přes obrácený pointer

- \bullet vrcholvuž je zase bílý vyřešíme nastavením q'=q'+1
 - $\bullet\,$ stupně všech vrcholů jsou $\geq 2,\ q'$ ukazuje na pointer

$\overline{ m DFS}$

Průběh algoritmu

Invarianty před a po follow/backtrack

- 1. Vrchol v je bílý \iff není startovní a $1 \le A[T[v]] \le n$.
- 2. Každý šedočerný vrchol (kromě startovního) na aktuální DFS cestě si ukládá obrácený pointer na pozici T[v], která ukazuje, kde byl pointer na v původně uložen v poli sousednosti svého rodiče.
- 3. První pointer aktuálně neprocházeného šedočerného vrcholu v (uložený v T[v]), ukazuje na druhou pozici pole sousedů nějakého vrcholu.

Pseudokód Python

$\overline{\mathrm{DFS}}$

Vrcholy se stupněm 0

Rozšíření invariantu

Invariant

Vrchol v je bílý $\iff A[T[v]] \le n \lor T[v] = v$.

• chováme se normálně

• vytvoříme pointer do T[u]

- na rozdíl od vrcholů stupně 2 po sobě neuklízíme
 - vlastně vytváříme smyčky (bude se hodit při obnovení)

$\overline{ m DFS}$

Vrcholy se stupněm 1

Dokončení invariantu

Invariant

Vrchol
$$v$$
 je bílý $\iff \underbrace{\left(T\left[v\right]=v}_{\text{stupeň 0}} \lor \underbrace{T[v]>n}_{\text{stupeň 1 a 2}}\right) \land \underbrace{A[T[v]] \leq n}_{\text{stupeň } \geq 2}.$

- \bullet z vrcholu u stupně ≥ 2 navštívíme bílý vrchol v stupně 1
- podle stupně jediného souseda v' vrcholu v se chováme různě:
 - 0) jako jsme popisovali výše
 - 1) nastavíme T[v'] = v a pokračujeme
 - ≥ 2) nastavíme $A[\overline{p}] = T[v'']$ a T[v''] = v'

DFS

Obnovení

Obnovení

- ≥ 2) stačí nastavit T[v] = T[v] 1
 - 0) tvoří smyčku, nebo ukazuje na druhou pozici vrcholu:
 - $\bullet\,$ iterujeme přes pole sousednosti a hledáme $v=A[p]:v\leq n$:
 - T[v] = p (smyčka, stupeň 2)
 - $T[v] \leq n \wedge T[T[v]] = p+1$ (prohozený 1 a 2 vrchol, stupeň 2)
 - $T[v] < n \wedge T[T[v]] = v$ (stupeň 1)
 - 1) postupně hledáme vrcholy v' stupně 1
 - pokud ještě nebyly opraveny, obracíme prohozené pointery

BFS

Přehled

- 1. graf získáme v setřízené reprezentaci
- 2. T zkomprimujeme na \mathcal{T} s tím, že:
 - zachováme konstantní přístup
 - uvolníme lineární počet bitů
- 3. uvolněné místo použijeme na datovou strukturu pro ukládání stavů vrcholů
- 4. provedeme BFS
- 5. \mathcal{T} dekomprimujeme na T, čímž obnovíme původní stav

COLOR CHOICE DICTIONARY

- zobecnění struktury choice dictionary
- udržuje S_0, \ldots, S_{c-1} podmnožin $\{1, \ldots, n\}$, kde:

$$\bigcap_{i=0}^{c-1} S_i = \emptyset \qquad \bigcup_{i=0}^{c-1} S_i = \{1, \dots, n\}$$

• vyžaduje řádově nc bitů paměti

operace	význam	složitost
setColor(v, c) getColor(v) choice(c)	nastaví barvu v na c získá barvu v získá libovolný v s barvu c	$ \begin{array}{c} \mathcal{O}(1) \\ \mathcal{O}(1) \\ \mathcal{O}(1) \end{array} $

Tabulka: podporované operace CCD

Komprimace T

- potřebujeme uvolnit nc bitů
- \bullet najdeme pozice, kde se mění c+1 MSbitů ve slovech z T
 - díky setříděnosti jich bude právě 2^{c-1}
 - každé slovo o tolik bitů zkrátíme
 - $\bullet\,$ zapamatujeme si pozice změn v T
- dohromady nw n(w (c+1)) = n(c+1) = nc + n
 - omezení: $n \ge 2^{c-1}w$, abychom mohli uložit pozice

Obrázek: komprimovaná reprezentace \mathcal{T}

Získávání hodnot z $\mathcal T$

- 1. bitovými operacemi získáme w (c + 1) LSbitů slova
 - i-té slovo v \mathcal{T} začíná na pozici (w-(c+1))(i-1)
- 2. procházíme postupně 2^{c-1} pozic, podle kterých zrekonstruujeme c+1 MSbitů

Průběh BFS

```
D = ColorChoiceDictionary(WHITE, LIGHT, DARK, BLACK)
2 D.setColor(start, LIGHT)
3
    while choice(LIGHT) is not None:
        while choice(LIGHT) is not None:
5
            v = D.choice(LIGHT) # pop node
6
            # open all white neighbours
8
            for i in range (\mathcal{T}[v], \mathcal{T}[v+1]):
                 if D.getColor(A[i]) is WHITE:
10
                     D.setColor(A[i], DARK)
11
12
            D.setColor(v, BLACK) # close the node
13
14
        LIGHT, DARK = DARK, LIGHT # next round
15
```

Díky za pozornost!

ZDROJE A DODATEČNÉ MATERIÁLY

- TORBEN HAGERUP.

 Small uncolored and colored choice dictionaries.

 CoRR, abs/1809.07661, 2018.
- Frank Kammer and Andrej Sajenko.

 Linear-time in-place DFS and BFS in the restore model.

 CoRR, abs/1803.04282, 2018.
- FRANK KAMMER AND ANDREJ SAJENKO.
 Space efficient (graph) algorithms.
 https://github.com/thm-mni-ii/sea, 2018.
- Tomáš Sláma.

 Zdrojový kód k prezentaci.

 https://github.com/xiaoxiae/inline-bfs-dfs-presentation.