Final Exam Part B, Math 227-Version T

Please answer the following problems in details and attach your solution as a single pdf file to the canvas link: Final Exam Part B Work Upload

Please write your answers in order according to this test

Problem 1:

Consider the vectors
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$ in \mathbb{R}^3 .

Consider the vector space of all polynomials of degree less than or equal to 2, P_2 . Let $\beta = \{1, t, t^2\}$ be the standard basis for P_2 . Find three vectors (i.e. polynomials) p_1 , p_2 and p_3 in P_2 , such that $[p_1]_\beta = v_1$, $[p_2]_\beta = v_2$ and $[p_3]_\beta = v_3$.

Problem 2:

the following matrix
$$A = \begin{bmatrix} 1 & 4 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 and the linear operator $T_A : R^3 \to R^3$ that is defined by the matrix

Find the rank(A) and the nullity of T_A and determine whether that transformation is one-to-one or not with a clear explanation

Problem 3:

Diagonalize the matrix
$$A=\begin{bmatrix}0&1&1\\2&1&2\\3&3&2\end{bmatrix}$$
 given that the eigenvalues of A are $\lambda=-1,5.$

Problem 4:

Find the matrix that defines a rotation of the xy-plane about the origin through an angle of $\frac{\pi}{3}$ radians (in the counterclockwise direction), and find the image of the point $\begin{bmatrix} 1\\1 \end{bmatrix}$ under that transformation.

Problem5:

Consider the bases $B = \{(1,3), (3,0)\}$ and $B' = \{(2,1), (0,2)\}$ of \mathbb{R}^2 . If u is a vector in \mathbb{R}^2 such that $u_B = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$ (the coordinate vector of u relative to the basis B), find u_B (the coordinate vector of u relative to the basis B').