2012-PH-'40-52'

1

EE24BTECH11035 - KOTHAPALLI AKHIL

1) The ground state wavefunction for the hydrogen atom is given by

$$\psi_{100} = \frac{1}{\sqrt{4\pi}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0},$$

where a_0 is the Bohr radius.

The plot of the radial probability density, P(r), for the hydrogen atom in the ground state is:

 r/a_0

 r/a_0

c)

- 2) Total binding energies of 15 O, 16 O, and 17 O are 111.96 MeV, 127.62 MeV, and 131.76 MeV, respectively. The energy gap between $1p_{1/2}$ and $1d_{5/2}$ neutron shells for the nuclei whose mass number is close to 16, is:
 - a) 4.1 MeV
 - b) 11.5 MeV
 - c) 15.7 MeV
 - d) 19.8 MeV
- 3) A particle of mass m is attached to a fixed point O by a weightless inextensible string of length a. It is rotating under the gravity as shown in the figure.

The Lagrangian of the particle is

$$L(\theta, \phi) = \frac{1}{2} ma^2 \left(\dot{\theta}^2 + \sin^2 \theta \, \dot{\phi}^2 \right) - mga \cos \theta$$

where θ and ϕ are the polar angles.

The Hamiltonian of the particle is

$$H = \frac{1}{2ma^2} \left(p_{\theta}^2 + \frac{p_{\phi}^2}{\sin^2 \theta} \right) - mga \cos \theta$$

$$H = \frac{1}{2ma^2} \left(p_{\theta}^2 + \frac{p_{\phi}^2}{\sin^2 \theta} \right) + mga \cos \theta$$

$$H = \frac{1}{2ma^2} \left(p_\theta^2 + p_\phi^2 \right) - mga \cos \theta$$

$$H = \frac{1}{2ma^2} \left(p_\theta^2 + p_\phi^2 \right) + mga \cos \theta$$

4) Given $\mathbf{F} = \mathbf{r} \times \mathbf{B}$, where $\mathbf{B} = B_0(\hat{i} + \hat{j} + \hat{k})$ is a constant vector and \mathbf{r} is the position vector. The value of $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where C is a circle of unit radius centered at origin is,

- a) 0
- b) $2\pi B_0$
- c) $-2\pi B_0$
- d) 1
- 5) The value of the integral $\oint_C \frac{e^z}{z} dz$, using the contour C of circle with unit radius |z| = 1 is
- a) 0
- b) $-2\pi i$
- c) $1 + 2\pi i$
- d) $2\pi i$
- 6) A paramagnetic system consisting of N spin-half particles, is placed in an external magnetic field. It is found that N/2 spins are aligned parallel and the remaining N/2 spins are aligned antiparallel to the magnetic field. The statistical entropy of the system is
 - a) $2Nk_B \ln 2$

 - b) $\frac{Nk_B}{2} \ln 2$ c) $\frac{3N}{2} k_B \ln 2$
 - d) $Nk_B \ln 2$
- 7) The equilibrium vibration frequency for an oscillator is observed at 2990 cm⁻¹. The ratio of the frequencies corresponding to the first and the fundamental spectral lines is 1.96. Considering the oscillator to be anharmonic, the anharmonicity constant is
 - a) 0.005
 - b) 0.02
 - c) 0.05
 - d) 0.1
- 8) At a certain temperature T, the average speed of nitrogen molecules in air is found to be 400 m/s. The most probable and the root mean square speeds of the molecules are, respectively,
 - a) 355 m/s, 434 m/s
 - b) 820 m/s, 917 m/s
 - c) 152 m/s, 301 m/s
 - d) 422 m/s, 600 m/s

Common Data for Questions 48 and 49:

The wavefunction of a particle moving in free space is given by

$$\psi = e^{ikx} + 2e^{-ikx}.$$

- 9) The energy of the particle is
 - a) $\frac{5\hbar^2k^2}{2}$
 - b) $\frac{3\hbar^2k}{\hbar^2}$
- 10) The probability current density for the real part of the wavefunction is
 - a) 1
 - b) $\frac{\hbar k}{}$
 - c) $\frac{m}{2m}$

Common Data for Ouestions 50 and 51:

The dispersion relation for a one-dimensional monatomic crystal with lattice spacing a, which interacts via nearest neighbour harmonic potential, is given by

$$\omega = A \left| \sin \frac{ka}{2} \right|,$$

where A is a constant of appropriate unit.

- 11) The group velocity at the boundary of the first Brillouin zone is
 - a) 0
 - b) 1
 - c) $\frac{Aa}{2}$
- 12) The force constant between the nearest neighbour of the lattice is (M) is the mass of the atom)

 - a) $\frac{MA^2}{4}$ b) $\frac{MA^2}{2}$ c) MA^2

 - d) $2MA^2$

Statement for Linked Answer Questions 52 and 53:

In a hydrogen atom, consider that the electronic charge is uniformly distributed in a spherical volume of radius $a = 0.5 \times 10^{-10} \,\mathrm{m}$ around the proton. The atom is placed in a uniform electric field $\mathbf{E} = 30 \times 10^6 \,\text{V/m}$. Assume that the spherical distribution of the negative charge remains undistorted under the electric field.

- 13) In the equilibrium condition, the separation between the positive and the negative charge centers is
 - a) 8.66×10^{-16} m
 - b) 2.60×10^{-15} m
 - c) 2.60×10^{-16} m
 - d) 8.66×10^{-15} m