MATH3322 Matrix Computation Homework 5

Due date: 26 April, Monday

1. Compute an eigenvalue decomposition of \boldsymbol{A} as follows

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a non-symmetric matrix with eigenvalues λ_i , $i = 1, \dots, n$ satisfying

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \ldots \ge |\lambda_n|$$
.

Prove that λ_1 is real. (Hint: Eigenvalues are roots of a polynomial of real coefficients, so complex eigenvalues are in conjugate pairs.)

3. Let $A \in \mathbb{R}^{n \times n}$ be a non-symmetric matrix with eigenvalues λ_i , $i = 1, \ldots, n$ satisfying

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \ldots \ge |\lambda_n|$$
.

Prove that λ_1 is real.

- 4. In this problem, we convert the eigenvalue decomposition of a complex Hermitian matrix to the eigenvalue decomposition of a real matrix. Let C be an $n \times n$ complex matrix. Define $C^* = \overline{C^T}$ be the conjugate transpose of C. Assume that $C^* = C$ (i.e., C is Hermitian).
 - (a) Prove that all eigenvalues of C are real.
 - (b) Let $A, B \in \mathbb{R}^{n \times n}$ be the real and imaginary parts of C respectively, i.e., C = A + iB. Prove that C is Hermitian if and only if the following matrix M is symmetric

$$oldsymbol{M} = egin{bmatrix} A & -B \ B & A \end{bmatrix}$$

- (c) Show that if $\lambda \in \mathbb{R}$ is an eigenvalue of C, then λ is also an eigenvalue of M.
- (d) Let $z = x + iy \in \mathbb{C}^n$ with $x, y \in \mathbb{R}^n$ be an eigenvector of C associated to the eigenvalue λ . Construct two orthogonal eigenvectors of M of the same eigenvalue λ .
- 5. Write a program of power iteration. Use the criteria $||Ay^{(k)} \mu^{(k)}y^{(k)}||_2 \le \epsilon$ to stop the iteration. Check that a random initialization will converge to the same solution $(\lambda_1, \pm x_1)$ almost surely. A sample code is PowerIter.m provided.