Hash Table

Introduction

- Dictionary: a dynamic set that supports INSERT, SEARCH, and DELETE
- Hash table: an effective data structure for dictionaries
 - O(n) time for search in worst case
 - O(1) expected time for search

Direct-Address Tables

- An Array is an example of a direct-address table
 - Given a key k, the corresponding is stored in T[k]
 - Assume no two elements have the same key
 - Suitable when the universe U of keys is reasonably small
 - U={0, 1, 2,..., m-1} → T[0..m-1] → Θ(m)
 - What if the no. of keys actually occurred is small
- Operations of direct-address tables: all ⊕(1) time
 - DIRECT-ADDRESS-SEARCH(T, k): return T[k]
 - DIRECT-ADDRESS-INSERT(T, x): T[key[x]] ← x
 - DIRECT-ADDRESS-DELETE(T, x): T[key[x]] ← NIL

If the set contains no element with key k, T[k] = NIL

Implementing a dynamic set by a direct-address table T. Each key in the universe $U = \{0, 1, ..., 9\}$ corresponds to an index in the table. The set $K = \{2, 3, 5, 8\}$ of actual keys determines the slots in the table that contain pointers to elements. The other slots, heavily shaded, contain NIL.

Alternative Illustration of Direct-Address Tables

Use separate arrays for key and satellite data if the programming language does not support objects (parallel array)

If the programming language can support object-element arrays

Hash Tables

Overview

- Difficulties with direct addressing
 - If U is large, storing a table T of size |U| may be impractical
 - The set K of keys actually stored may be small relative to U
- When the set K of keys stored in a dictionary is much smaller than U of all possible keys, a hash table requires much less storage than a direct-address table
 - Θ(|K|) storage
 - O(1) average time to search for an element
 - • Θ(1) worst case to search for an element in direct-address table

Hash Table

- Direct addressing: an element with key k → T[k]
- Hash table: an element with key k → T[h(k)]
 - h(k): hash function; usually can be computed in O(1) time
 - h: U \rightarrow {0, 1, ..., m-1}
 - An element with key k hashes to slot h(k)
 - h(k) is the hash function of key k
 - Instead of |U| values, we need to handle only m values
 - Collision may occur
 - Two different keys hash to the same slot (h(k₁) = h(k₂) = x)
 - Eliminating all collisions is impossible
 - But a well-designed "random"-looking hash table can minimize collisions

Using a hash function h to map keys to hash-table slots. Keys k_2 and k_5 map to the same slot, so they collide.

Collision Resolution by Chaining

Idea

- Put all the elements that hash to the same slot in a linked list
- Slot j contains a pointer to the head of the list of all stored elements that hash to j

Operations

- CHAINED-HASH-INSERT(T, x): O(1) (no check for duplication)
 - Insert x at the head of list T[h(key[x])]
- CHAINED-HASH-SEARCH(T, k): proportional to the list length
 - Search for an element with key k in list T[h(k)]
- CHAINED-HASH-DELETE(T, x): O(1) for doubly linked list
 - Delete x from the list T[h(key[x])]

另一種方式:open addressing

Collision resolution by chaining. Each hash-table slot T[j] contains a linked list of all the keys whose hash value is j. For example, $h(k_1) = h(k_4)$ and $h(k_5) = h(k_2) = h(k_7)$.

Analysis of Hashing with Chaining for Searching

- Load factor α = n elements/m slots (負載因子)
 - Average number of elements stored in a chain
- Worst case: ⊕(n) + time to compute the hash function
 - all n keys hash into the same slot
- Average performance
 - How well the hash function h distributes the set of keys to be stored among the m slots, on the average
 - Assume simple uniform hashing
 - Any given element is equally likely to hash into any of the m slots, independently of where any other elements has hashed to
 - The time required for a successful or unsuccessful search is $\Theta(1+\alpha)$
 - $n = O(m) \rightarrow \alpha = n/m = O(m)/m = O(1)$

Hash Functions

Overview

- Interpreting keys as natural numbers N={0, 1, 2,...}
 - If the keys are not natural number → convert
 For example "pt": p=112,t=116,using radix-128 integer→pt becomes 112*128+116=14452
- What makes a good hash function?
 - Each key is equally likely to hash to any of the m slots, independently of where any other key has hashed to
 - Rarely knows the probability distribution
 - Keys may not be drawn independently
 - Hash by division: heuristic
 - Hash by multiplication: heuristic
 - Universal hashing: randomization to provide provably good performance

Hash By Division

- h(k) = k mod m
 - $m = 12 \text{ and } k=100 \rightarrow h(k) = 4$
 - Must avoid certain values of m → rely on characteristics of k values
 - m should not be a power of 2 → h(k) is the lowest-order bits of k
 - Good values for m are primes not too close to an 2^P
 - For example: n=2000 character string, we don'n mind examing 3 elements in unsuccessful search → allocate a hash table of size 701 701 is prime near 2000/3, not near any power of 2 h(k)=k mod 701

Hash By Multiplication

- $h(k) = \lfloor m^*(k^*A \mod 1) \rfloor$
 - multiply the key k by a $A \in (0, 1)$ and extract the fractional part of kA
 - multiply the fractional part of kA by m and take the floor of the result
- The value of m is not critical
 - Typically, m = 2^P (for easy implementation on computers)
 - (Knuth) $A \approx (\sqrt{5} 1)/2 = 0.6180339887...$
 - For example:k=123456,m=10000,a=0.618
 H(k)=floor(10000*(123456*0.618... mod 1))
 =floor(10000*(76300.004151...mod 1))
 =floor(10000*0.0041151....)=41.

Universal Hashing

Idea:

- Choose the hash function randomly in a way that is independent of the keys that are actually going to be stored
- Select the hash function at random from a carefully designed class of functions at the beginning of execution
 - The algorithm can behave differently on each execution, even for the same input

Universal Hashing (Cont.)

- Let H be a finite collection of hash functions that map a given universe U of keys into the range {0, 1,..., m-1}.
- H is universal if for each pair of distinct keys k, l ∈ U, the number of hash functions h ∈H for which k(h) = k(l) is at most |H|/m
 - Collision chance = 1/m
- Theorem 11.3.
 - Suppose that a hash function h is chosen from a universal collection of hash function and is used to hash n keys into a table T of size m, using chaining to resolve collisions. If key k is not in the table, then the expected length $E[n_{h(k)}]$ of the list that key k hashes to is at most α . If key k is in the table, then the expected length $E[n_{h(k)}]$ of the list containing key k is at most 1+ α

Designing A Universal Class of Hash Functions

- Steps to design a universal class of hash functions
 - Choose a prime number p, so that k ∈ [0, p-1] and p > m
 - $-Z_p=\{0, 1, ..., p-1\}$
 - $-Z_{p}^{*}=\{1, 2, ..., p-1\}$
 - $h_{a,b}(k)$ = ((ak+b) mod p) mod m, for any a ∈ Z_p^* and b ∈ Z_p
- The family of all such hash functions is
 - $H_{p,m} = \{h_{a,b} : a \in Z_p^* \text{ and } b \in Z_p\}$
 - Total: p(p-1) hash functions in $H_{p,m}$

Other hash function(1)

 Mid-square: 先將數值平方在取中 間部分位元

$$(39)^2 = (100111)^2 = (10111110001)_2$$

 $F(39) = (11110)_2 = (29)_{10}$

 Digital analysis:位數分析,對資料 每一位數加以分析,剔除不均勻分 布之位數,剩下位數作為hash位址

> 適合static data 且位數相同 For example

Х	F(x)
1 <mark>510</mark> 327	5107
1857384	8574
2621439	6219
1796333	7963
1038420	0380
7142481	1421
7 <mark>203</mark> 326	2036
2385425	3855

Other hash function(2)

- Folding(摺疊法):
- (1)shift folding
- (2)folding at boundaries

Open Addressing

Overview

- All elements are stored in the hash table itself
 - Each table entry contains either an set element or NIL
 - Search: systematically examine table slots until the desired element is found or it is clear that the element is not in the table
 - No lists and no elements are stored outside the table
 - Load factor α ≤ 1
 - At most m elements can be stored in the hash table
 - The extra memory freed by not storing pointers provides the hash table with a larger number of slots for the same amount of memory, potentially yielding fewer collisions and faster retrieval

Probe

- Insertion: successively examine (probe) the hash table until
 we find an empty slot in which to put the key
 - The sequence of positions probed relies on the key being inserted
 - Probe sequence for every key k must be a permutation of <0,1,..,m-1>
 - Extended hash function → h: U * {0,1,...,m-1} → {0,1,..., m-1}
 - $\langle h(k,0), h(k,1),...,h(k,m-1) \rangle$
- Assume uniform hashing
 - Each key is equally likely to have any of the m! permutations of <0,1,...,m-1> as its probe sequence

INSERT and SEARCH in Open Addressing

```
HASH-INSERT(T, k)

1 i \leftarrow 0

2 repeat j \leftarrow h(k, i)

3 if T[j] = \text{NIL}

4 then T[j] \leftarrow k

5 return j

6 else i \leftarrow i + 1

7 until i = m

8 error "hash table overflow"
```

```
HASH-SEARCH(T, k)

1 i \leftarrow 0

2 repeat j \leftarrow h(k, i)

3 if T[j] = k

4 then return j

5 i \leftarrow i + 1

6 until T[j] = \text{NIL} or i = m

7 return NIL
```

Assume keys are not deleted from the table

Example

h'(k)=k mod 5
h(k,i)=(h'(k) + i) mod 5
For k=9
$$\rightarrow$$
 h(k,i) = <4, 0, 1, 2, 3>
For k=3 \rightarrow h(k,i) = <3, 4, 0, 1, 2>

HASH-INSERT(T,2) HASH-INSERT(T,9) HASH-INSERT(T,14)

0	14
1	
2	2
3	
4	DELETED

We have to mark a deleted slot, instead of letting it be NIL

HASH-DELETE(T, 9)

HASH-SEARCH(T, 14)

DELETE in Open Addressing

Difficult !!

- Cannot simply mark the deleted slot i as empty by storing NIL
 - Impossible to retrieve any key k during whose insertion we had probed slot i and found it occupied
- Solution: mark the slot by storing in it a special value DELETED
 - Modify HASH-INSERT: treat a DELETED slot as a NIL slot
 - No modification of HASH-SEARCH is needed
 - Search times are no longer dependent on α
 - Therefore, chaining is more commonly selected as a collision resolution technique when keys must be deleted

Linear Probing

- $h(k,i) = (h'(k) + i) \mod m (i = 0, 1,..., m-1)$
 - h': U → {0,1,...,m-1} is called an auxiliary hash function
 - $T[h'(k)] \rightarrow T[h'(k)+1] \rightarrow ... \rightarrow T[m-1] \rightarrow T[0] \rightarrow ... \rightarrow T[h'(k)-1]$
 - Only m distinct probe sequences
 - Easy to implement
 - Problem: Primary clustering
 - Long runs of occupied slots tend to get longer, and the average search time increases
 - Secondary clustering
 - If two keys have the same initial probe position, then their probe sequences are the same
 - Example:f(x)=x, table size=19(0..18), data={1.0.5.1.18.3.8.9.14.7.5.5.1.13.12.5}

Quadratic Probing

- $h(k,i) = (h'(k) + c_1i + c_2i^2) \mod m \ (i = 0, 1,..., m-1)$
 - h': auxiliary hash function; c_1 , $c_2 \neq 0$ (auxiliary constants)
 - The values of c₁, c₂, m are constrained (See Problem 11-3)
 - Work much better than linear probing (alleviate primary clustering)
 - Secondary clustering
 - If two keys have the same initial probe position, then their probe sequences are the same
 - Only m distinct probe sequences

Double Hashing: the best

- $h(k,i) = (h_1(k) + i*h_2(k)) \mod m \ (i = 0, 1,..., m-1)$
 - h₁ and h₂ are auxiliary hash functions
 - Depends in two ways upon the key i, since the initial probe position, the offset, or both, may vary → ⊕(m²) distinct probing sequences
 - The value of h₂(k) must be relative prime to the hash-table size m for the entire hash table to be searched (Exercise 11.4-3)
 - Let m = 2^P and design h₂ so that it always produces an odd number
 - Let m be prime and design h₂ so that it always produces a positive integer less than m
 - $-h_1(k) = k \mod 701$
 - $-h_2(k) = 1 + (k \mod 700)$

Example of Double Hashing

Insertion by double hashing. Here we have a hash table of size 13 with $h_1(k) = k \mod 13$ and $h_2(k) = 1 + (k \mod 11)$. Since $14 \equiv 1 \pmod 13$ and $14 \equiv 3 \pmod 11$, the key 14 is inserted into empty slot 9, after slots 1 and 5 are examined and found to be occupied.

Analysis of Open-Address Hashing

Theorem 11.6

- Given an open-address hash table with load factor $\alpha = n/m < 1$, the expected number of probes in an unsuccessful search is at most $1/(1-\alpha)$, assuming uniform hashing
 - If α is a constant \rightarrow an unsuccessful search runs in O(1) time

Corollary 11.7

- Inserting an element into an open-address hash table with load factor α requires at most $1/(1-\alpha)$ probes on average, assuming uniform hashing
- Theorem 11.8
 - Given an open-address hash table with load factor $\alpha = n/m < 1$, the expected number of probes in an successful search is at most $1/\alpha * \ln(1/(1-\alpha))$, assuming uniform hashing and that each key in the table is equally likely to be searched for
 - If α is a constant \rightarrow an unsuccessful search runs in O(1) time

Self-Study

- Proof of Theorems
- Section 11.5 Perfect Hashing
 - The worst-case number of memory accesses required to perform a search is O(1)

example

- A hashed table is constructed using the division hash algorithm function with 5 buckets (a bucket at most 4 records). If the following key field values are to be placed in buckets: 3,5,24,22,109,10,8,6,23,28, 100, 103, 9, 39, 27, 0.
 - Identify the number of records in each bucket.
 - Which bucket overflows?

