

做一个"挥手机器人

郑祥 浙江省温州市第四中学 李曙强 浙江省乐清中学

"挥手机器人"的想法源自于大脑 突然闪过的一个灵感,即当用户举手挥 动手臂的时候,机器人也会跟着一起 挥手,且挥手的方向保持一致,就像跟 机器人一起参加演唱会一样。

● 工作原理

每一款手机都会自带一个加速度

传感器,即陀螺仪。加速度传感器可以 感知手机当前所处状态的X、Y、Z轴的 3个分量的加速度,图1为手机平放时X、 Y、Z轴加速度分量的方向。

当手机摇晃的时候,X、Y、Z轴上 的3个加速度分量会发生相应的变化, 如下页表1所示。当然,表中的这些数据

其他动画属性的名字或数值上来关联 动画属性,如图3、图4所示。

(动画预设),这样在其他工程文件中就 可以直接调用这些动画预设。

0:00:00:18 P-4. 1 4 4 9 9 5 ta - * \ fx | | | O | O | O | Rlack Solid 11 viggle(10,100) Black Solid 1 同日本

图4

如果在保

存的动画预设

中,动画属性仅 包含有表达式 而没有任何关 键帧,那么动 画预设只保存 表达式的信息: 如果动画属性 中包含有一个 或多个关键帧, 那么动画预设 将同时保存关 键帧和表达式

● 表达式的保存与调用

1.动画预设

在After Effects中,可以将含有表 达式的动画保存为Animation Presets 的信息。

2.复制表达式和关键帧

在同一个合成项目中,可以复制动 画属性的关键帧和表达式,然后将其粘 贴到其他的动画属性中, 当然也可以只 复制属性中的表达式。

如果要将一个动画属性中的表达 式连同关键帧一起复制到其他的一个 或多个动画属性中,可以在Timeline (时间线)面板中选择源动画属性并进 行复制,然后将其粘贴到其他的动画属 性中。

3.只复制表达式

如果只想将一个动画属性中的表 达式(不包括关键帧)复制到其他的一 个或多个动画属性中,可在Timeline(时 间线)面板中选择源动画属性,然后执行 "Edit(编辑)→Copy Expression Only (只复制表达式)"菜单命令,接着将其 粘贴到选择的目标动画属性中即可。

本期专栏的介绍到此结束,在后续 的专栏中笔者将继续介绍和讲解其他 模块的具体技术。 2

是根据我们的手机测试出来的,不同的 手机,测出来的数据未必一样。

其实我们只需要手机在垂直状态 下左右摇晃的传感器数据,从中我们可 以发现,手机向左或向右摇晃,与X轴加 速度分量的变化是——对应的,因此可 以根据X轴加速度分量的变化判断手 机摇晃的方向,如表2所示。

表1 手机摆放与X、Y、Z轴分量加速度值

手机摆放 示意图	X轴	Y轴	Z轴	
į	-10	0	0	
	-7.89034	5.8696	0.61496	
	0	10	0	
	7.78624	5.84686	2.4012	
į	10	0	0	

反之Xh-Xq<0,则手机向右摇晃。

● 材料选择

根据需求,"挥手机器人"若要根 据手机的挥动控制机器人执行"挥手" 动作,则手机与机器人间需要通讯模 块;而机器人执行"挥手"动作,则需要 一个控制器及舵机等执行模块。

手机与机器人之间的通讯方式有 很多,我们选择了最常见的一种通讯 方式——蓝牙。手机在挥动时,通过手 机的蓝牙通讯模块将相应的指令(如 "L",即向左挥手)发送给"挥手机器 人"的控制器;控制器根据接收到的指 令对"挥手机器人"的执行模块舵机做 出相应的动作。

制作本作品所需要的材料及其说 明,如表3所示。

● 结构搭建

"挥手机器人"的结构一定要稳 固,不然在执行"挥手"动作时,会影响 "挥手机器人"的平衡。

搭建机器人"骨架"结构时,我们采

用轻巧且又 便宜的亚克

力板,用激光

切割机进行

切割。利用 这些板子和

表2 手机摇摆方向与X轴加速度分量的变化

手机位置	位置1	位置2	位置3	位置4	位置5	
示意图	į				į	
X轴加速 度分量值	10	7.78624	0	-7.89034	-10	

怎么知道手机的运动方向呢?很 简单,只要隔一定的时间,获取传感器 数值,然后相减,根据结果进行判断。 具体如下:

定义: Xq为前一位置X轴加速度 分量,Xh为当前位置X轴加速度分量。

若Xh-Xq>0,则手机向左摇晃;

螺丝螺母,我们很快完成了"挥手机器 人"的"骨架",并将Arduino Uno控制 板、蓝牙通讯模块、舵机安装在机器人 "骨架"上,效果如图2所示。

● 代码编程

1.安卓手机App编程

手机若要与Arduino Uno控制板

表3 挥手机器人材料选择

名称	数量	说明
ArduinoUno	1个	机器人控制模块
Bluetooth V2.0	1个	机器人与手机 的通讯模块
Arduino 拓展板	1个	带蓝牙通讯 模块的接口
SG90舵机	1个	机器人挥手动 作的重要模块
亚克力板 切割块	若干	挥手机器人的 支撑和支架
螺丝、螺母	若干	固定机器 人的结构
扎带	若干	辅助固定机 器人的结构

相互通信,则需要借助蓝牙通讯等方 式进行。App Inventor支持传感器编 程和蓝牙通讯,利用这一图形化编程 平台,就能制作一个专用的App应用程 序。下页图3所示为App的界面设计与 组件使用情况。

根据表2所示,根据手机当前摇晃 位置与前一位置的X轴加速度分量的 值可以判断手机摇晃的方向,因此手机 App应用程序只需向Arduino Uno控 制板发送"L"或"R"字符,分别表示"向 左"或"向右"的舵机控制指令,具体编 程代码如下页图4所示。

调用App中的蓝牙客户端给 Arduino Uno控制板发送"L"或"R" 字符指令时,蓝牙通讯模块须处于连 接状态,否则提示错误;具体编程代码

图3

```
initialize global x1 to 0
```

```
列表选择框1 v . Element
    call 蓝牙客户端1 ·
    bluetoothLink . Text
                             无法与蓝牙连接,请检查蓝牙设备
                             连接失败
```

图5

如图5所示。

2. "挥手机器 人"控制端编程

当Arduino Uno控制板通过蓝牙 通讯模块接收到字 符"L"时,则执行舵 机转向45度,即机器 人手臂向左摆动;若 蓝牙通讯模块接收 到的字符为"R",则 执行舵机转向135度, 即机器人手臂向右摆 动。具体代码如下: #include <Servo.

```
h >
     Servo serpin;
     unsigned char
resaveChar;
     void setup() {
           Serial.
begin(9600):
        serpin.attach(9);
        serpin.write(90);
     void loop() {
```

available()){

```
resaveChar=Serial.read();
if(resaveChar=='R'){
                  serpin.
write(135);
             delay(100);
```

if(Serial.

```
if(resaveChar=='L'){
  serpin.write(45);
  delay(100);
```

● 造型制作

"挥手机器人"的外观有些单一, 为了赋予"挥手机器人"以人的形象。 我们利用卡纸为"挥手机器人"做了一 件外衣,同时为它用超轻粘土捏了一个 头像和两只手。

● 运行效果

手机App的运行与"挥手机器 人"的工作效果如图6所示。需要说明 的是,我们还在这个机器人上安装了 3个红外测障传感器,在没有手机的情 况下,也能感测到我们的手势,实现同 步挥手。

借助"挥手机器人"的案例制 作,我们初步实现了用手机App控制 Arduino硬件设备中的舵机模块。除 此之外,还可以尝试用手机App控制 更多的Arduino执行模块,如蜂鸣器、 LED灯、继电器、电机等,那将会更加 有趣。e

如果对相关内容感兴趣,请关注主 持人博客。

