Kirchhoff Index as a Measure of Edge Centrality in Weighted Networks: Nearly Linear Time Algorithms

Huan $\operatorname{Li}^{1,2}$ Zhongzhi Zhang 1,2

¹School of Computer Science, Fudan University

 2 Shanghai Key Laboratory of Intelligent Information Processing, Shanghai 200433

Speaker: 李寰

Outline

- Kirchhoff index as a centrality measure
 - Background of centrality measures and related works
 - Graph Laplacians, Effective resistances, and Kirchhoff index
 - Advantages of Kirchhoff index as a centrality measure
- Nearly linear time algorithms
 - Schur complements, Cholesky factorization, and fast Laplacian solvers
 - Johnson-Lindenstrauss lemma and Hutchinson's trace estimation
 - Offline divide and conquer
 - Sherman-Morrison and Woodbury formulas

Clustering by the Laplacian $L=D-A^{\scriptscriptstyle{[1]}}$

Input: Adjacency matrix $A \in \mathbb{R}^{n \times n}$, number of clusters q

- q = 2
 - ullet Cluster by the signs of the 2nd eigenvector of L
- q > 2
 - Let u_1, \cdots, u_q be the first q eigenvectors of L
 - Let $U=(u_1,\cdots,u_q)\in\mathbb{R}^{n imes q}$

$$\bullet \ \operatorname{Let} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = U$$

• Cluster the points $y_1, \cdots, y_n \in \mathbb{R}^q$ with k-means

^[1]Ulrike Luxburg (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416.

Clustering by the Adjacency Matrix $A^{\scriptscriptstyle{[2]}}$

^[2]Avrim Blum, John Hopcroft, and Ravindran Kannan (2016). Foundations of Data Science (pp. 275-281).

Spectral Clustering in Sparse Networks

- ullet Clustering based on A fails to detect communities
- Locally tree-like structure
- \bullet Leading eigenvalues of A are dictated by the vertices of highest $\operatorname{degree}^{\mathrm{[3]}}$
- Corresponding eigenvectors are localized around these vertices^[3]

^[3]Michael Krivelevich and Benny Sudakov (2003). The largest eigenvalue of sparse random graphs. Combinatorics, Probability and Computing, 12(01):61-72.

Clustering by the Non-Backtracking Matrix^[4]

ullet The 2m imes 2m non-backtracking matrix B

$$B_{(u \to v),(x \to y)} = \begin{cases} 1 & \text{if } v = x \text{ and } u \neq y \\ 0 & \text{otherwise} \, . \end{cases}$$

- ullet The spectrum of B is not sensitive to high-degree vertices
- ullet Properties of B
 - A tree contributes zero eigenvalues to the spectrum
 - ullet Unicyclic components yield eigenvalues either 1 or -1

^[4]Florent Krzakala, Cristopher Moore, et al (2013). Spectral redemption in clustering sparse networks. Proceedings of the National Academy of Sciences, 110(52):20935–20940.

Stochastic Block Model

- Stochastic block model
 - ullet q groups of vertices with size n/q
 - ullet Each vertex v has a group label $g_v \in \{1, \cdots, q\}$
 - ullet Adjacency matrix A is generated according to the distribution

$$\Pr[A_{u,v} = 1] = egin{cases} c_{
m in}/n & g_u = g_v \\ c_{
m out}/n & g_u
eq g_v \end{cases}$$
 , where $c_{
m in} > c_{
m out}$

- \bullet Average degree $c=(c_{\rm in}+c_{\rm out})/2~$ when q=2
- ullet G becomes sparse when n is large

Spectrum of A and B

(a) The spectrum of ${\cal A}$

(b) The spectrum of ${\cal B}$

•
$$n = 4000$$
, $c_{\rm in} = 5$, $c_{\rm out} = 1$, $c = (c_{\rm in} + c_{\rm out})/2 = 3$

- The radius of the bulk
 - For A, $2\sqrt{c} = 3.46$
 - For B, $\sqrt{c} = 1.73$

Experiments $n=10^5$

• Overlap
$$\triangleq \left(\frac{1}{n}\sum_u \delta_{g_u,\tilde{g}_u} - \frac{1}{q}\right) \bigg/ \left(1 - \frac{1}{q}\right)$$

• Theoretical threshold $^{\text{[5]}} \approx 3.46$

^[5]Elchanan Mossel, Joe Neeman, and Allan Sly (2012). Stochastic block models and reconstruction. arXiv preprint, arXiv:1202.1499.

Detecting Number of Clusters

- $\bullet \;$ Each circle's radius is $\sqrt{\rho(B)}$
- $\bullet\,$ The number of real eigenvalues outside the circle indicates the number q of clusters

Reducing the Computational Complexity

ullet All eigenvalues λ of B not ± 1 are the roots of the equation $^{ extsf{[6]}}$

$$\det[H(\lambda)] = \det\left[\lambda^2\mathbb{1} - \lambda A + (D - \mathbb{1})\right] = 0 \tag{1}$$

 By the first companion linearization^[7], roots of eq. (1) are eigenvalues of

$$B' = \begin{pmatrix} 0 & D - \mathbb{1} \\ -\mathbb{1} & A \end{pmatrix}$$

 \bullet Clustering by a $2n \times 2n$ matrix rather than a $2m \times 2m$ one

^[6]Omer Angel, Joel Friedman, and Shlomo Hoory (2015). The non-backtracking spectrum of the universal cover of a graph. Trans. Amer. Math. Soc., 367(6):4287-4318.

^[7]Francoise Tisseur and Karl Meerbergen (2001). The quadratic eigenvalue problem. SIAM Review, 43(2):235-286.

The Bethe Hessian Matrix

ullet All eigenvalues λ of B not ± 1 are the roots of the equation

$$\det[H(\lambda)] = \det\left[\lambda^2\mathbb{1} - \lambda A + (D - \mathbb{1})\right] = 0 \tag{1}$$

ullet The Bethe Hessian matrix H(r)

$$H(r) := r^2 \mathbb{1} - rA + (D - \mathbb{1})$$

- \forall real eigenvalue λ of B, $H(\lambda)$ has a eigenvalue 0
 - ullet $H(\lambda)$'s null space $\longleftrightarrow B$'s eigenvector corresponding to λ
 - Let $r_c = \sqrt{\rho(B)}$
 - ullet Eigenvectors of $H(r_c)$'s negative eigenvalues reveal clustering

The Bethe Hessian Matrix

ullet All eigenvalues λ of B not ± 1 are the roots of the equation

$$\det[H(\lambda)] = \det\left[\lambda^2\mathbb{1} - \lambda A + (D - \mathbb{1})\right] = 0 \tag{1}$$

ullet The Bethe Hessian matrix H(r)

$$H(r) := r^2 \mathbb{1} - rA + (D - \mathbb{1})$$

- ullet real eigenvalue λ of B, $H(\lambda)$ has a eigenvalue 0
 - ullet $H(\lambda_2)$'s null space $\buildrel B$'s eigenvector corresponding to λ_2
 - Let $r_c = \sqrt{\rho(B)}$
 - ullet Eigenvectors of $H(r_c)$'s negative eigenvalues reveal clustering

Spectrum of B and H(r)

Experiments

PART	Non-backtracking [9]	Bethe Hessian
D 11 1 / 9\[11]	0.740057	0.7571.49
Polbooks $(q = 3)$ [1]	0.742857	0.757143
Polblogs $(q = 2)$ [10]	0.864157	0.865794
Karate $(q = 2)$ [24]	1	1
Football $(q = 12)$ [6]	0.924111	0.924111
Dolphins $(q = 2)$ [16]	0.741935	0.806452
Adjnoun $(q=2)$ [8]	0.625000	0.660714

Conclusions

- Comparing to non-backtracking clustering
 - ullet $H(r_c)$ is n imes n symmetric, while B' is 2n imes 2n non-symmetric
 - Need to compute ho(B) to calculate $r_c = \sqrt{
 ho(B)}$
 - By solving quadratic eigenproblem (2) using a SLP algorithm^[8]

$$\det H(\lambda) = \det \left[\lambda^2 \mathbb{1} - \lambda A + (D - \mathbb{1}) \right] = 0 \tag{2}$$

- Detecting the communities in sparse network
 - All the way down to the threshold in SBM
- The number of negative eigenvalues indicating the number of clusters

^[8] Axel Ruhe (1973). Algorithms for the nonlinear eigenvalue problem. SIAM Journal on Numerical Analysis. 10(4):674–689.

The End