UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Discussion 6

Fall 2023

1. Chernoff Bound

Prove that

- $P(X > t) \le \frac{M_X(\lambda)}{e^{\lambda t}} \ \forall \lambda > 0$, and $P(X < t) \le \frac{M_X(\lambda)}{e^{\lambda t}} \ \forall \lambda < 0$. For $X \sim \mathcal{N}(\mu, \sigma^2)$, upper bound the probability of deviation from mean $P(|X \mu| > t)$.

2. Exponential Bounds

Let $X \sim \text{Exponential}(\lambda)$. For $x > \lambda^{-1}$, find bounds on $\mathbb{P}(X \geq x)$ using Markov's inequality, Chebyshev's inequality, and the Chernoff bound.

3. Almost Sure Convergence Implies Convergence in Probability

For random variables X_1, X_2, \ldots and X on a common probability space (Ω, \mathcal{F}, P) , prove that if $X_n \stackrel{\text{a.s.}}{\to} X$ then $X_n \stackrel{\text{p}}{\to} X$.