

Assigment - 1

- 8) A process vessel is to be designed for maximum operating pressure of 800 kPa. The vessel has a nominal diameter (0.0.) of 1.5 m. It is made of I6: 2002-1962 grade 2B quality steel having allowable design stress of 120 HPa, at working temperature. Use weld joint efficiency as 0.85
- (i) Find standard thickness of plate to fabricate this vessel
- (ii) Find out thickness of flat head Chead is flanged and butt welded to chell)
- (iii) Find out thickness of a conical head having apex angle of 45°

 (iv) Find out thickness of blate required
 - Find out thickness of plate required to fabricate a torispherical head for this vessel. It is assumed that there is no wo uncompensated opening in the head.

 Specifications of the head are:

Ri = Do; Ti = 0.05 Do; St = 30 mm

(vi)

- (v) Find out thickness of a standard 2:1 euipsoidal head.
 - Find out thickness of hemispherical head.

 Determine which head thickness is maninum

A)	Pa (Design Prescure) = 0.0+5% extra
	Pd = 1.05 x 800 x 1000
	= 840 kPa
	Do = 1.5m J = 0.85
	f: 120 x 106 Pa (Allowable besign Stress)
ů)	Minimum wall thickness without
	Corrosion allowance
	t= Pa Do_
To the second se	2fJ+ P
1	$= 840 \times 10^{3} \times 1.5$
	2x120 x 106 x 0-85 + 840 x 10 3
	= 6.151 × 10 ⁻³ m
	Considering corrosion allowance for
	curbon steel to be 2mm
	ca = 2mm
	t' = t + ca
	= 2 + 6.151
	: t' = 8.151 mm
- 11	

Standard thickness available (near nighest) is 9mm

Hence, so as to fabricate the vessel we use thickness of 9mm

(ii) Thickness of flat head CHead is flanged and but welded to shell)

⇒ C = 0.45

Thickness (t) = CDot P

 $D_6 = Di - 2t'$ $= 1.5 - 2(9 \times 10^{-3})$

= 1.482 mi

= 1482 mm

 $t = 0.45 \times 1482 \sqrt{\frac{840 \times 10^3}{120 \times 10^6}} = 55.796 \text{ mm}.$

Considering corrosion allowance Thickness = (55.796 +2) mm

= 57.696 mm

	Final thickness considering od 6%.
	safety of measure
1	t'= (1.06) (57.696)
	= 61.26 mm
-	Standard available thickness Chear
	highest) is 63 mm
(iii)	Thickness of conical head
a)	Thickness of head at function of head and
	Shell_
	t = PDez
	24J
	Griven apex angle (x) = 45° => z=2.05
	f = 120 x 106 Pa P = 890 kPa
	J = 0.85 De = 1481 mm.
100-1-1-1-1	.: t = 840×103×1482× 842.05×10-3
	2× 120×106× 0.85
	= 12.51 mm
	Corrossion allwoance ta'= t+c = 12.51 +2mm
	= 14.51 mm
	Standard thickness near highest avialable
	is 16 mm
21	No. 2 Programme and the second se

Thickness away from junction 6) where Dr is maximum inside diameter of cone at a distance $\frac{1}{2} \left(\frac{00t}{2} \right)^{1/2}$ 1 (1500 x16) 1/2 2 (1500 x16) 32112 MM = 92.12 mm De = 1500 - 2x16 - 2x92·12 cos (45') = 1337.72 mm t = 0.840 x 1337.72 x 1 mm 2 x 120 x 0.85 - 0.84 = 7.822 mm Corrosion Allowance ta' = 2mm+ t = (7.823 +, 2) mm = 9.822 mm .. Thickness of conical head to be used is 16 mm as that is the max of

two.

(1)	Thickness of hemispherical head
	$t = \frac{p D_0 C}{2f J}$
	From the geometry of hemisphere
	we see that he = 0.5, hence
	C = 0.55
	t = 0.84 x 1500 x 0.55
	2× 120 × 0.85
100	= 3·397 mm
	1000 CF + 661 =
	Corrosion allowance ta' = (2+t) mm
	= 5.397 mm
- 11	FOR THE BEST SECTION OF THE SECTION
	Final thickness considering of 6%
	Final thickness considering of 6%. safety of measure
	safety of measure
	safety of measure $t' = (1.06) 5.397$
	safety of measure $t' = (1.06) 5.397$
	safety of measure $t' = (1.06) \cdot 5.397$ $= 5.72 \text{ mm}$
	safety of measure t' = (1.06) 5.397 = 5.72 mm

(v) Thickness of a standard 2:1 ellipsoidal head:

$$\frac{t}{D_0C} = \frac{P}{240 \times 10^3}$$

For
$$t = 0.002 \Rightarrow t = 0.002 = 0.00145$$
Do DoC 1.38

For
$$t = 0.005 \Rightarrow t = 0.005 = 0.0439$$
 $p_0 = 0.005 = 0.0439$

.. The c value for t = 0.00411 is

C = (-81.6326) x 0.00411 + 1.14

 $t = D_0 CP$ 2fJ

= 840×10³×1500× 1.162 2×120×10⁶× 0.85

= 7.1771 mm

Corrosion allowance ta' = 9.177mm

Final thickness considering of 6%.

8 a fety of measure

t' > (1.06) 9.177

= 9.727 mm

Standard thickness near highest available

(viv)	Thickness using Torospherical Head
	Ri = Do ri = 0.0500 Sp = 30 mm
	Ro = Do = 1.5 m ro = 0.05 Do = 0.75m
	& = 30 mm
	$h_0 = R_0 - \left[\left(R_0 - D_0 \right) \times \left(R_0 + D_0 - 2 \eta \right) \right]$
	= 1.5 - \1.4625
	= 1.5 - 1.209
	= 0.291 m
	2
	0 = 1.72
	4R ₀ 4x 1.5
	Poro = 1:5x m. DTE
	$\frac{1.5 \times 0.075}{2} = 0.237 \text{ m}$
of a trial	he = min [h n?]
	10. Do Dox
	120 12
	= 0·237 m
	he = 0.224
	n 0.237 = 0.150
	1.2 1.20 m % 0.10 m

	D _O C =	2fJ :	0.84 2x 120x 0.8	5 0.0	1000
			2x 120x 0.0		Merinda de la compania del compania de la compania del compania de la compania del la compania de la compania della compania de la compania della compania d
he la	0.002	0.005	0.01	0.02	0.04
0.15	4.55	2.66	2-15	1.95	1.75
0.16	9.19	2.468	2.01	1.842	1.664
0.20	2:3	1.7	1:45	1.37	1.32
			6	+	territorio de la compressa per un compressa de la compressa de la compressa de la compressa de la compressa de
	Anna 61	*5 fb	and the same	By Int	erpolat

P	age	No			
D	ete		Ц	garrent c	

Interpolation

tlp, c

C

0.002

0.0004

4.19

4.19

0.002

2.5

0.0049

- 0.01

2.039 2.04

.. C = 2.143

 $PD_0C = 840 \times 10^3 \times 2.143$ 2x120 x106 x 0.85

= 13.89 mm

Corrosion allowance = (2+6) mm

= 15.89 mm

Considering 64. safety of measure, final thickness = 16.84 mm

Standard thickness (near highest) available is 18 mm/

Page	No.		
1	1	-	
Date		- 11	

Head	Minimum Thickness		
Flat	63 mm		
	2 1 40 41 41		
conical Head (a = 450)	16 mm		
.0.0	in p		
Hemispherical	6 mm		
Torispherical Head	18 mm		
(with give specifications)	4.		
2:1 Ellipsoidal Head	10 mm		
LAGREST VESTXULARE 10			
Pressure vessel	9 mm		

Minimum thickness is for hemisphere and its value is 6mm