

InpaLLa: All Inpainting Start From Your Thoughts By mLLm

Architecture

Team InpallA

Team InpallA

Introduction

- Most people have difficulty creating the designs they desire themselves.
- Photo editing software is typically designed for professionals, requiring users to manually draw outlines when editing objects.
- When multiple objects are involved, the complexity and difficulty of the task increase significantly.

Figure 1. Replacing traditional manual tasks with task performed by asking.

- Therefore, we introduce **InpaLLa**: **Inpa**inting with m**LL**m **A**rchitecture which enables users to easily replace specific object in images
- Our model allows seamless replacement of objects in an image based on only user provided text requirements and image.
- InpaLLa helps users by providing an Al agent that assists in generating desired designs efficiently and intuitively.

Pipeline

InpaLLA Pipeline Original (A) Find **Segmentation Mask Prompt Image** the Cat **Seg-Prompt** Inpaint-**Prompt** (B) Fill mask with a Dog Output Prompt ['Change sLLM Cat LLM Model to Dog'] Dog Inpainting Segment Changing Object Mask Prompt

Process of InpaLLa

1. Generating User Prompts for Multimodal-LLM and Inpainting:

$$p_{seg}$$
, $p_{inp} = \mathcal{F}_{SLLM}(x_{txt}, x_{img})$

Figure 2. Pipeline of InpaLLa

sLLM, $\mathcal{F}_{sLLM}(\cdot)$ generates text prompts p_{inp} for inpainting model $\mathcal{F}_{inpaint}(\cdot)$ and p_{seg} for Multimodal-LLM $\mathcal{F}_{MLLM}(\cdot)$ with image x_{img} and prompt x_{txt} .

2. Creating Segmentation Mask: Segmentation mask m is generated by the Multimodal-LLM:

$$m = \mathcal{F}_{MLLM}(p_{seg}, x_{img})$$

3. Applying Inpainting: The inpainting model $\mathcal{F}_{inpaint}$ generates output image \hat{I}

by using the input image x_{img} , mask m, and p_{inp} :

$$\hat{I} = \mathcal{F}_{inpaint}(x_{img}, m, p_{inp})$$

We use LISA for MLLM model \mathcal{F}_{MLLM} , FLUX for inpainting model $\mathcal{F}_{inpaint}$.

Process of LISA: Reasoning Segmentation via LLM

Figure 3. Pipeline of LISA

- **Embedding-as-Mask Paradigm :** A framework where a segmentation mask is generated by decoding the embedding of a specific token < seg>. This allows a multimodal LLM to integrate segmentation capabilities seamlessly.
- Mask generation: Represent Embedding-as-Mask Paradigm

$$\widehat{M} = \mathcal{F}_{dec}(\gamma, (\widetilde{h}_{seg}) \, \mathcal{F}_{enc}(x_{img}))$$

 \widehat{M} is mask that generated by model, \widetilde{h}_{seg} is the hidden embedding of

Process of FLUX

• Rectified flow: More efficient approach to make image

Figure 4. Rectified flow

Rectified flow is based on ODE and is trained to ensure that data points follow the straight path as much as possible.

Training: To learn the drift force $v(Z_t, t)$ of the ODE, a nonlinear least squares optimization problem is solved.

$$\min_{v} \int_{0}^{1} E[\| (X_{1} - X_{0}) - v(X_{t}, t) \|^{2}] dt$$

Here, $X_t = tX_1 + (1-t)X_0$ represents the linear interpolation from X_0 to X_1 .

Result

Result: Example of InpaLLa

<sea>