

Introduction To Artificial Neural Networks

Jose Luis Paniagua Jaramillo ilpaniagua@uao.edu.co

Outline

- Biological Neuron
- Artificial Neuron
 - Weight Matrix
 - Net Input
 - Activation Functions
- Artificial Neural Networks
 - Perceptron
 - Multi-Layer Perceptron
 - Other Network Architectures
- 4 Applications
- 6 References

Biological Neuron

Figura: source[1]

The neurons have three principal components:

- Dendrites
- Cell body
- Axon

Artificial Neuron

Single-Input Neuron

$$Net = xw + b$$

 $y = f(Net)$

Multiple-Input Neuron

$$Net = x_1w_1 + x_2w_2 + x_3w_3 + x_nw_n + b_1$$
$$y = f(Net)$$

Weight Matrix

$$W_{MN}$$

$$\boldsymbol{W} = \begin{bmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,N} \end{bmatrix}$$

Where:

- M indicates where the connection goes
- N indicates where the connection comes from
- It represents the connection between neurons, similar to what the synapse does in biological neurons.

Net Input

$$Net = WX + b$$

• Represents the total input of information or stimulus that a neuron receives

Activation Functions: Binary Step

Activation Functions: Identity

Activation Functions: Sigmoid

Activation Functions: Tanh

Activation Functions: ReLU (Rectified Linear Unit)

Artificial Neural Networks

Single-layer Network

 layer: set of neurons that receive the same information.

Mathematical Process:

$$Net = WX + b$$
$$Y = f(Net)$$

Matrix Notation:

$$[Y] = f([Net])$$

where:

$$W = \begin{bmatrix} W_{1,1} & W_{1,2} & \cdots & W_{1,N} \\ W_{2,1} & W_{2,2} & \cdots & W_{2,N} \\ \vdots & \vdots & & \vdots \\ W_{M,1} & W_{S,2} & \cdots & W_{M,N} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_M \end{bmatrix}$$

Artificial Neural Networks I

Multi-Layer Network

Artificial Neural Networks II

Multi-Layer Network

Input Hidden Hidden Hidden Output layer layer 1 layer 2 layer 3 layer

$$Y^{(4)} = f^{(4)}(W^{(4)}Y^{(3)} + b^{(4)})$$

$$Y^{(3)} = f^{(3)}(W^{(3)}Y^{(2)} + b^{(3)})$$

$$Y^{(2)} = f^{(2)}(W^{(2)}Y^{(1)} + b^{(2)})$$

$$Y^{(1)} = f^{(1)}(W^{(1)}X + b^{(1)})$$

$$Y^{(4)} = f^{(4)}(W^{(4)}f^{(3)}(W^{(3)}f^{(2)}(W^{(2)}f^{(1)}(W^{(1)}X + b^{(1)}) + b^{(2)}) + b^{(3)}) + b^{(4)})$$

Artificial Neural Networks Winters

Timeline

- 1943: Electronic Brain S. McCulloch and W. Pitts.
- 1957: Perceptron F. Rosenblatt
- 1960: ADALINE B. Widrow and M. Hoff
- 1969: XOR Problem (first winter) M. Minsky and S. Papert
- 1986: Multi-Layer Perceptron (Backpropagation)
- 1999: Vanishing Gradient (second winter) Y. Bengio, G. Hinton and Y. LeCun
- 2006: Deep Neural Netwookrs (Deep Learning) G. Hinton et al.

https://playground.tensorflow.org

Artificial Neural Networks

Other Network Architectures

Figura: Recurrent Neural Network source[1]

Figura: Convolutional Neural Network source[1]

Applications

Optimization

Signal Processing

Clustering

Automatic Control

Classification

Robotics

Computer Vision

Time Series Modeling

Recommended Textbook

Deep Learning

Teoría y aplicaciones

Jesús Alfonso López Sotelo

El aprendizaje profundo o Deep Learning es una evolución de las redes neuronales artificiales (RNA). Las RNA constituyen una de las técnicas más relevantes de la inteligencia artificial que trata de emular la manera como trabajan las neuronas del cerebro. Este enfoque se encuentra dentro de la vertiente denominada conexionista, pues se basa en imitar el funcionamiento cerebral por medio de redes formadas por unidades sencillas (neuronas artificiales) interconectadas entre sí. Además, el conocimiento se modifica

Seguir leyendo

O DETALLES DEL LIBRO

Categoría: Alphaeditorial > COMPUTACIÓN

Editorial: ALPHAEDITORIAL Año de Edición: 2021 Formato: Rústica Número de Paginas: 216 Número de Edición: 1 ISBN: 9789587786866

References

Aurélien Géron.

Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems.

O'Reilly Media, 2019.

M.T. Hagan, H.B. Demuth, M.H. Beale, and O. De Jesús.

Neural Network Design.

Martin Hagan, 2014.