Week 2

The Schrödinger Equation

2.1 Ehrenfest Theorem and Uncertainty Principle

• Announcement: PSet 1 due Friday at midnight.

• Recap.

1/8:

- $-\psi(\vec{r},t)$ is a wave function to which we associate a **probability density**.
 - \blacksquare Integrating this probability density over a volume yields the probability that the particle is in V.
 - \blacksquare Moreover, ψ is not arbitrary but must satisfy the Schrödinger equation.
- $-\hat{\vec{p}}$ is the momentum operator, defined as the differential operator $-i\hbar\vec{\nabla}$.
- Expressing the Schrödinger equation in terms of $\hat{\vec{p}}$, we see that it represents the application of a Hamiltonian operator in the usual form from last quarter (i.e., kinetic plus potential energy) to a certain function.
- $-\langle \hat{\vec{r}} \rangle$ is the mean position, and $\langle \hat{\vec{p}} \rangle$ is the mean momentum.
 - The mean position and mean momentum satisfy the classical relation, i.e., $d\langle \hat{\vec{r}} \rangle / dt = \langle \hat{\vec{p}} \rangle / m$.
- Probability density: The quantity given as follows. Given by

$$|\psi(\vec{r},t)|^2$$

- We now prove something even more amazing than the classical relation result: An analogy to the classical Newton's law.
- Ehrenfest's theorem: The time derivative of the expectation value of the momentum operator is related to the expectation value of the force $F := -\vec{\nabla}V$ on a massive particle moving in a scalar potential $V(\vec{r},t)$ as follows.

$$\frac{\mathrm{d}\langle \hat{\vec{p}} \rangle}{\mathrm{d}t} = \langle -\vec{\nabla}V(\vec{r}, t) \rangle$$

Proof. Consider the Schrödinger equation:

$$-i\hbar\frac{\partial\psi}{\partial t} = \frac{\hbar^2}{2m}\vec{\nabla}^2\psi - V(\vec{r},t)\psi$$

Take the complex conjugate of it. This means that we're sending $i \mapsto -i$, keeping V fixed (it's real), and sending $\psi \mapsto \psi^*$ (the inclusion of i in the Schrödinger equation means that ψ is complex in general and thus has a nontrivial complex conjugate).

$$-i\hbar\frac{\partial\psi^*}{\partial t} = -\frac{\hbar^2}{2m}\vec{\nabla}^2\psi^* + V(\vec{r},t)\psi^*$$

We will use the above two equations to substitute into the following algebraic derivation.

$$\begin{split} \frac{\mathrm{d}\langle\hat{\vec{p}}\rangle}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left(\int \mathrm{d}^{3}\vec{r} \; \psi^{*}(-i\hbar\vec{\nabla}\psi) \right) \\ &= \int \mathrm{d}^{3}\vec{r} \; \frac{\partial\psi^{*}}{\partial t} (-i\hbar\vec{\nabla}\psi) + \int \mathrm{d}^{3}\vec{r} \; \psi^{*} \left(-i\hbar\vec{\nabla}\frac{\partial\psi}{\partial t} \right) \\ &= \int \mathrm{d}^{3}\vec{r} \; \left[-i\hbar\frac{\partial\psi^{*}}{\partial t} (\vec{\nabla}\psi) \right] + \int \mathrm{d}^{3}\vec{r} \; \psi^{*}\vec{\nabla} \left(-i\hbar\frac{\partial\psi}{\partial t} \right) \\ &= \int \mathrm{d}^{3}\vec{r} \; \left[-\frac{\hbar^{2}}{2m}\vec{\nabla}^{2}\psi^{*}(\vec{\nabla}\psi) \right] + \int \mathrm{d}^{3}\vec{r} \; \psi^{*}\vec{\nabla} \left(\frac{\hbar^{2}}{2m}\vec{\nabla}^{2}\psi \right) \\ &+ \int \mathrm{d}^{3}\vec{r} \; \left[V(\vec{r},t)\psi^{*}(\vec{\nabla}\psi) + \psi^{*}\vec{\nabla}(-V(\vec{r},t)\psi) \right] \\ &= \int \mathrm{d}^{3}\vec{r} \; \psi^{*}\vec{\nabla}(-V(\vec{r},t)\psi) \\ &= \int \mathrm{d}^{3}\vec{r} \; \psi^{*}(-\vec{\nabla}V(\vec{r},t))\psi \\ &= \langle -\vec{\nabla}V(\vec{r},t) \rangle \end{split}$$

as desired.

- How does everything cancel from the long line to the following line in the above proof??
- In quantum mechanics, we have **observables** which are in one-to-one correspondence with operators.

Observables	Operators (\hat{O})
$ec{r}$	$\hat{ec{r}}$
$V(\vec{r},t)$	$\hat{V}(ec{r},t)$
$\hat{ec{p}}$	$-i\hbar \vec{ abla}$
\hat{H}	$-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V(\vec{r},t)$

Table 2.1: Observables vs. operators.

- Recall that any Hermitian operator has a real observable.
- Define

$$\hat{O}_{ij} := \int \mathrm{d}^3 \vec{r} \; \psi_i^* \hat{O} \psi_j$$

- Then note that

$$\hat{O}_{ij} = (\hat{O}_{ji})^*$$

- Thus, an equivalent definition of a Hermitian operator is one such that the above equation is satisfied for all relevant i, j.
- Recall that the Schrödinger equation is linear.
 - Let $\psi = \sum_i c_i \psi_i$.
 - Then

$$\int d^3 \vec{r} \; \psi^* \hat{O} \psi = \sum_{i,j} \int d^3 \vec{r} \; c_i^* \psi_i^* \hat{O} c_j \psi_j = \sum_{i,j} c_i^* c_j \hat{O}_{ij}$$

is real.

- Takeaway: Averages over arbitrary wavefunctions are real.
- Similarly, suppose that \vec{r} is Hermitian. Then any function $V(\vec{r})$ of it is also Hermitian.
- Once again,

$$\int d^3 \vec{r} \; \psi_i^*(-i\hbar \vec{\nabla} \psi_j) = \left(\int d^3 \vec{r} \; \psi_j^*(-i\hbar \vec{\nabla} \psi_i)\right)^* = \int d^3 \vec{r} \; \psi_j(i\hbar \vec{\nabla} \psi_i^*) \to -\int d^3 \vec{r} \; \vec{\nabla} \psi_j(i\hbar \psi_i^*)$$

Involves integration by parts?? Perhaps via

$$\int d^3 \vec{r} \; \psi_j (i\hbar \vec{\nabla} \psi_i^*) = i\hbar \int d^3 \vec{r} \; \vec{\nabla} (\psi_j \psi_i^*) - \int d^3 \vec{r} \; \vec{\nabla} \psi_j (i\hbar \psi_i^*)$$

$$= i\hbar \vec{\nabla} \int d^3 \vec{r} \; (\psi_j \psi_i^*) - \int d^3 \vec{r} \; \vec{\nabla} \psi_j (i\hbar \psi_i^*)$$

$$= i\hbar \vec{\nabla} 0 - \int d^3 \vec{r} \; \vec{\nabla} \psi_j (i\hbar \psi_i^*)$$

$$= - \int d^3 \vec{r} \; \vec{\nabla} \psi_j (i\hbar \psi_i^*)$$

What is the takeaway??

- Linear algebra analogy.
 - Recall that we can write any vector \vec{v} componentwise as $\vec{v} = v_x \vec{x} + v_y \vec{y} + v_z \vec{z}$.
 - We can apply matrices A to such vectors to generate other vectors via $A\vec{v} = \vec{v}'$ and the like.
 - Lastly, we have an inner product \cdot such that $\vec{a} \cdot \vec{b} = \delta_{ab}$, where a, b = x, y, z.
 - On an infinite-dimensional vector space, such as that containing all the ψ , we still can decompose $\psi = \sum_n c_n \psi_n$ into an infinite sum of basis components, apply operators $\hat{O}\psi = \psi'$, and have an inner product $\int d^3\vec{r} \ \psi_m^* \psi_n = \delta_{mn}$.
 - Another analogy: Like the inner product of a vector and unit vector is the component of the vector in that direction (e.g., $\vec{v} \cdot \vec{x} = v_x$), we have

$$\int d^3 \vec{r} \; \psi_m^* \psi = \int d^3 \vec{r} \psi_m^* \sum_n c_n \psi_n = c_m$$

- One more analogy: $\vec{x}^T A \vec{x} = A_{xx}$ is like $\langle \psi_i | \hat{O} | \psi_i \rangle = \hat{O}_{ii}$.