C&O URA Spring 2017

Zach Dockstader

May 10, 2017

1 Areas of Focus

- 1. Inertia Bounds
 - 1.1. Algorithm to Find Graphs Lacking a Tight Interia Bound

2 Inertia Bounds

2.1 Introduction on Inertia Bounds

Definition 2.1. Independent Set An independent set is a set of vertices belonging to a graph in which no two vertices are adjacent.

Example 2.1. Consider the following graph:

An example of an independent set in this graph is:

However, often the independent set we are most interested in finding is the largest one:

Definition 2.2. Independence Number The independence number of a graph G, denoted $\alpha(G)$, is the size of the largest independent set of G.

Definition 2.3. Weight Matrix The weight matrix of a graph G, is a matrix defined by:

$$W_{i,j} = \begin{cases} 1 & \text{if } v_i \text{ and } v_j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

with v_i a vertice of G.

For any graph G, there exists a bound on $\alpha(G)$, known as the Cvetković bound (also referred to as the Interia Bound). This bound provides a relationship between $\alpha(G)$ and the number of positive, negative, and zero eigenvalues of the weight matrix, W, associated with G. The Cvetković bound of G, is:

$$\alpha(G) \le \min\{|G| - n_{+}(W), |G| - n_{-}(W)\}$$
 (2)

Where $n_{+}(W)$ and $n_{-}(W)$ denote the number of positive and negative eigenvalues of W, respectively.

To prove this, we first need to introduce the Eigenvalue Interlacing Theorem:

Theorem 1. Eigenvalue Interlacing Theorem Let A be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ and let C be a $k \times k$ principal submatrix of A with eigenvalues $\tau_1 \geq \tau_2 \geq \ldots \geq \tau_k$. Then $\lambda_i \geq \tau_i$ for all $i \in \{1, \ldots, k\}$. *****(CITE FROM JOHNS PAPER)*****

Definition 2.4. Principal Submatrix The principal submatrix of an $n \times n$ matrix A is the submatrix obtained where if row_i is excluded in the submatrix, then $column_i$ is excluded as well. Note that all principal submatrices of a weight matrix W, correspond to an induced subgraph in the graph represented by W.

Example 2.2. The following is an example of a principal submatrix in relation to graph theory.

Consider the following graph:

and corresponding weight matrix:

$$\begin{bmatrix} 0 & a & 0 & 0 & 0 & 0 & 0 \\ a & 0 & d & 0 & b & 0 & 0 \\ 0 & d & 0 & g & 0 & 0 & f \\ 0 & 0 & g & 0 & e & h & 0 \\ 0 & b & 0 & e & 0 & c & 0 \\ 0 & 0 & 0 & h & c & 0 & 0 \\ 0 & 0 & f & 0 & 0 & 0 & 0 \end{bmatrix}$$

We can see the following principal submatrix and corresponding induced subgraph:

$$\begin{bmatrix} 0 & a & 0 & 0 & 0 & 0 & 0 \\ a & 0 & d & 0 & b & 0 & 0 \\ 0 & d & 0 & g & 0 & 0 & f \\ 0 & 0 & g & 0 & e & h & 0 \\ 0 & b & 0 & e & 0 & c & 0 \\ 0 & 0 & 0 & h & c & 0 & 0 \\ 0 & 0 & f & 0 & 0 & 0 & 0 \end{bmatrix}$$

As well, we see the following principal submatrix of an independent set of the graph:

$$\begin{bmatrix} 0 & a & 0 & 0 & 0 & 0 & 0 \\ a & 0 & d & 0 & b & 0 & 0 \\ 0 & d & 0 & g & 0 & 0 & f \\ 0 & 0 & g & 0 & e & h & 0 \\ 0 & b & 0 & e & 0 & c & 0 \\ 0 & 0 & f & 0 & 0 & 0 & 0 \end{bmatrix}$$

Now to prove the Cvetković Bound:

Theorem 2. Cvetković Bound Let G be a graph on n vertices, and W be

the weight matrix of G. Then the following inequality holds:

$$\alpha(G) \le \min\{|G| - n_{+}(W), |G| - n_{-}(W)\}$$
(3)

Proof. Let H be the subgraph of G formed by the vertices in an independent set of size s. Then H is an induced subgraph of G and all eigenvalues of the principal submatrix W(H) are 0 since the principal submatrix will just be a zero matrix. Let λ_i denote the ith largest eigenvalue of W and τ_i denote the ith largest eigenvalue of W(H). Now, by interlacing, we have,

$$\lambda_i \ge \tau_i = 0 \text{ for all i } \in \{1, \dots, s\}$$
 (4)

and so

$$n - n_{-}(W) = n_{+}(W) + n_{0}(W) \ge s \tag{5}$$

Also, note that by negating W, the positive eigenvalues become negative eigenvalues and vice versa. Thus,

$$n - n_{+}(W) = n - n_{-}(-W), \tag{6}$$

However, the principal submatrix corresponding to H in -W is still the zero matrix and thus has all zero eigenvalues. Thus, by interlacing, we get a similar result as above,

$$n - n_{+}(W) = n - n_{-}(-W) = n_{+}(-W) + n_{0}(-W) \ge s \tag{7}$$

Therefore, both $n - n_+(W)$ and $n - n_-(W)$ are greater than or equal to s. Since s is the size of the idependent set, we can see that letting $s = \alpha(G)$, we get:

$$\alpha(G) \le \min\{|G| - n_+(W), |G| - n_-(W)\}$$
 (8)