

"PYTHON" LANGUAGE

Jean Didier KOUAKOU

jeandidikouakou@gmail.com

Initiation in python

What you have to know (Basic):

- Documentation and comments
- Variables and Data Types
- Input and output
- Using Modules and Libraries
- Mathematical operations
- Flow Control (Loops and conditional structures)
- Functions
- List

Try ...

- Ask the user for his year of birth and calculate his current age.
- Write a program that asks the user for a number and displays whether it's odd or even (Nombre pair ou impair).

Initiation in python - Basic Game

Game 1 : Rock-Paper-Scissors Game

Create an interactive game where the user plays against the computer in the classic Rock-Paper-Scissors. The program will display the result of each round.

Key Steps:

- Prompt the user to choose between rock, paper, or scissors.
- Use a function to have the computer randomly select one of the same options.
- > Establish rules to determine the winner based on the choices of the user and the computer.
- Allow the user to play multiple rounds, displaying the result of each round and asking if they want to continue.
- Include a mechanism to handle invalid entries by the user.

Libraries to Use

random: To generate the computer's random choice.

Initiation in python - Basic Game

Game 2: Mystery Number Game

Create a guessing game where the user attempts to guess a randomly generated number between 1 and 250. The program will provide hints and track the time taken to guess correctly.

Key Steps

- Use a random number generator to select a number between 1 and 250.
- Ask the user to enter their guess.
- > Compare the user's guess to the generated number and provide hints (too high, too low).
- > Count the number of attempts the user makes until they guess correctly.
- > Use a timer to measure the duration from the start of the game until the correct guess.

Libraries to Use

random: To generate the random number.

time: To track the duration taken by the user to guess the number.

Initiation in python - Basic Exercise

- Exercise 1: Print the sum of the current number and the previous number
- Exercise 2: Print characters from a string.
- Exercise 3: Remove first 5 characters from a string
- Exercise 4: Remove last 5 characters from a string
- Exercise 5: Remove first or last n characters from a string

Initiation in python - Basic Exercise

- Exercise 6: Write a function to solve 2nd order equation
- Exercise 7: Ask a number and displays its multiplication table (from 1 to 10)
- Exercise 8: Ask the user to enter a string and display it in reverse
- Exercise 9: Ask for a password of 4 digits. Try until the password is not all positive value and 4 digits. Show the final password
- Exercise 10: Generate and display a list of squares of numbers from 1 to 10

Pandas and DataFrame: Basics

- Exercise 1: Create a DataFrame with the following data:
- Columns: "Name", "Age", "City"
- Rows: ("Maxwell", 27, "Kumasi"), ("Zossin", 24, "Abomey") and ("Nafi", 23, "Ouaga")
- Exercise 2: Display the first 2 rows
- Exercise 3: Calculate and print the average age of the people in the DataFrame
- Exercise 4: Filter the DataFrame to show only the rows where the country is "Ghana"
- Exercise 5: Add a new column "Salary" to the DataFrame with arbitrary values, and display the updated DataFrame
- Exercise 6: Rename the column "Gender" to " M/F" in the DataFrame and display the updated DataFrame
- Exercise 7: Group the DataFrame by "Gender" and count the number of occurrences for each city.
- Exercise 8: Sort the DataFrame by the "Age" column in descending order and display the result

Country	GDP (Billion \$)	Education Spending (% of GDP)	Unemploym ent Rate (%)	Life Expectancy (years)
CountryA	1500	5	4.5	78
CountryB	3000	6	3.2	82
CountryC	2000	4	5.1	75
CountryD	4000	3	6.0	80
CountryE	2500	7	2.8	85

GDP and Education

Exercise 1: Calculate the amount spent on education for each country in billion dollars. Display the results as a DataFrame.

Exercise 2: Identify the country with the lowest unemployment rate. Display the country and the unemployment rate.

Exercise 3: Calculate the average life expectancy for all countries. Display the result.

Exercise 4: Calculate the correlation between GDP and education spending. Interpret the result.

Exercise 5: Suppose each country's GDP increases by 3% per year for 4 years. Calculate and display the projected GDP for each country after 4 years.

Country	Solar Energy Capacity (GW)	Solar Energy Production (TWh)	Populatio n (millions)	Solar Percentage (%)		
CountryA	50	70	60	15		
CountryB	120	180	100	25		
CountryC	30	40	30	10		
CountryD	200	300	200	30		
CountryE	80	120	80	20		

SOLAR ENERGY

Exercise 1: Calculate the solar energy production per capita for each country (in MWh). Display the results as a DataFrame.

Exercise 2: Identify the country with the highest solar energy capacity per capita. Display the country and the capacity per capita.

Exercise 3: Calculate the ratio of solar energy production to installed capacity for each country. Display the results.

Exercise 4: Calculate the correlation between solar energy capacity and solar energy production. Interpret the result.

Exercise 5: Suppose each country increases its solar energy capacity by 10% per year for 5 years. Calculate and display the projected capacity for each country after 5 years.

Country	Energy Consumption (TWh)	Energy Efficiency Rating (1-10)	Industry Energy Use (%)	Residential Energy Use (%)		
CountryA	600	8	40	30		
CountryB	2500	6	50	25		
CountryC	1200	7	35	20		
CountryD	4000	5	55	35		
CountryE	1800	9	45	40		

ENERGY EFFICIENCY

Exercise 1: Calculate the total energy efficiency for each country (in TWh) by multiplying energy consumption by the efficiency rating. Display the results as a DataFrame.

Exercise 2: Identify the country with the lowest energy consumption per efficiency point. Display the country and the consumption per point.

Exercise 3: Calculate the share of energy consumption used by the residential and industrial sector for each country. Display the results.

Exercise 4: Calculate the correlation between energy efficiency rating and the share of energy consumption in the industrial sector. Interpret the result.

Country	Energy Consumption (TWh)	Renewable Energy (%)	CO ₂ Emissions (Mt)	Population (millions)	
CountryA	450	30	50	67	
CountryB	4000	20	500	331	
CountryC	600	40	80	83	
CountryD	6500	25	900	1439	
CountryE	1200	15	200	1380	

ENERGY and CO₂ EMISSION

Exercise 1: Calculate the energy consumption per capita for each country. Display the results as a DataFrame.

Exercise 2: Identify the country with the highest CO2 emissions per capita. Display the country and the amount of emissions per capita.

Exercise 3: Calculate the total renewable energy consumption for each country and display the results.

Exercise 4: Calculate the correlation between total energy consumption and CO2 emissions. Interpret the result.

Exercise 5: Suppose each country increases its energy consumption by 5% per year for 5 years. Calculate and display the projected energy consumption for each country after 5 years.

Pandas Basic Exercise (20 min)

Exercise 1: Basic DataFrame Operations with Pandas

You have a small dataset containing information about different fruits. You will perform basic operations to manipulate the data.

Tasks:

- 1. Import the necessary libraries
- 2. Create a DataFrame from the dataset
- 3. Display the first few rows of the DataFrame

Fruit	Quantity	Price per Unit (\$)
Apple	30	0.5
Banana	20	0.25
Orange	25	0.75
Grape	15	1.0
Pineapple	10	1.5

- 4. Calculate the total price for each fruit and add it as a new column.
- 5. Filter the DataFrame to show only fruits with a total price greater than \$10.

Matplotlib and Pandas: Simple Plotting with Matplotlib

You will use the data from Exercise 1 to create a bar chart showing the total price for each fruit.

Tasks:

- 1. Import Matplotlib.
- 2. Create a bar chart representing the total price of each fruit.
- 3. Add titles and labels to the chart.
- 4. Display the chart

Combining Pandas and Matplotlib

You will analyze a small dataset of sales data and visualize the total sales over a few months.

Tasks:

- 1. Import the necessary libraries.
- 2. Create a DataFrame from the dataset.
- 3. Calculate the cumulative sales and add it as a new column.
- 4. Create a line plot for the cumulative sales over the months.
- 5. Add titles and labels to the plot.
- 6. Display the plot.

Month	Sales (\$)
January	1200
February	1500
March	1700
April	2000
May	2500
June	2700
July	2900
August	3200
September	3570
October	3750
November	3800
December	4000

Country	Year	Energy Consumption (TWh)	CO2 Emission (Million tons)	Population (Millions)		
CountryA	2020	500	300	50		
CountryA	2021	550	320	51		
CountryA	2022	600	340	52		
CountryB	2020	700	400	70		
CountryB	2021	750	420	71		
CountryB	2022	800	450	72		
CountryC	2020	300	150	30		
CountryC	2021	350	160	31		
CountryC	2022	400	170	32		
CountryD	2020	400	250	40		
CountryD	2021	450	260	41		
CountryD	2022	500	270	42		
CountryD	2020	600	350	60		
CountryD	2021	650	370	61		
CountryD	2022	700	390	62		

Problem on Matplotlib

Energy Consumptionand CO₂ Emissions

You are analyzing the relationship between energy consumption and CO2 emissions for different countries over a period of time.

Country	Year	Energy Consumption (TWh)	CO2 Emission (Million tons)	Population (Millions)		
CountryA	2020	500	300	50		
CountryA	2021	550	320	51		
CountryA	2022	600	340	52		
CountryB	2020	700	400	70		
CountryB	2021	750	420	71		
CountryB	2022	800	450	72		
CountryC	2020	300	150	30		
CountryC	2021	350	160	31		
CountryC	2022	400	170	32		
CountryD	2020	400	250	40		
CountryD	2021	450	260	41		
CountryD	2022	500	270	42		
CountryD	2020	600	350	60		
CountryD 2021		650	370	61		
CountryD	2022	700	390	62		

Problem on Matplotlib

Energy Consumptionand CO₂ Emissions

Task:

1.Import the data into a Pandas DataFrame.

2.Calculate the CO2 emissions per capita (tons per person) for each country and year.

Country	Year	Energy Consumption (TWh)	CO2 Emission (Million tons)	Population (Millions)	
CountryA	2020	500	300	50	
CountryA	2021	550	320	51	
CountryA	2022	600	340	52	
CountryB	2020	700	400	70	
CountryB	2021	750	420	71	
CountryB	2022	800	450	72	
•••	•••	•••	•••	•••	

Problem on Matplotlib

Energy Consumptionand CO₂ Emissions

- 3. Create a line plot showing the trend of CO2 emissions for each country over the three year.
- 4. Identify the country with the highest CO2 emissions per capita in 2022 and display the country and the value.
- 5. Calculate the total energy consumption for each country over the three years and display the results.
- 6. Create a bar chart comparing the total CO2 emissions for each country in 2022
- 7. Determine the average CO2 emissions per capita for each country across the three years.

Meteorological Data Analysis and Processing

The goal of this study is to explore relationships between solar radiation and other meteorological variables.

The data looks like, ...

 $(44135 \text{ rows} \times 38 \text{ columns})$

\square	Α	В	С	D	E	F	G	Н	1	J	K		L	М	N	0	Р	Q	R	S
1	Date	Time	Temp	Hi	Low	Out	Dew	Wind	Wind	Wind	Hi	Hi	i	Wind	Heat	THW	THSW	Press	Pluie	Rain
2	Date	Time	Out	Temp	Temp	Hum	Pt,	Speed	Dir	Run	Speed	Di	ir	Chill	Index	Index	Index	Bar	Rain	Rate
3	01/01/2018	0:01	24.0	5 24.6	24.6	78	20.5	0.900	SSE	0.05	5	1.3 SS	SE	24.6	26.1	26.1	25.3	1014.1	(0
4	01/01/2018	0:02	24.0	5 24.6	24.6	78	20.5	0.900	SSE	0.05	i	0.9 SS	SE	24.6	26.1	26.1	. 25.3	1014.1	(0
5	01/01/2018	0:03	3 24.0	5 24.6	24.6	78	20.5	0.400	SSE	0.03	1	0.9 SS	SE	24.6	26.1	26.1	. 25.3	1014.1	(0
6	01/01/2018	0:04	24.0	5 24.6	24.6	78	20.5	0.400	SSE	0.03	3	0.9 SS	SE	24.6	26.1	26.1	. 25.3	1014.1	(0
7	01/01/2018	0:05	24.0	5 24.6	24.6	78	20.5	0.400	SSE	0.03	3	0.9 SS	SE	24.6	26.1	26.1	. 25.3	1014.1	(0
8	01/01/2018	0:06	24.0	5 24.6	24.6	78	20.5	0.900	SSE	0.05	i	1.3 SS	SE	24.6	26.1	26.1	. 25.2	1014	(0
9	01/01/2018	0:07	7 24.0	5 24.6	24.6	78	20.5	0.400	SSE	0.03	3	0.9 SS	SE	24.6	26.1	26.1	. 25.2	1014	(0
10	01/01/2018	0:08	3 24.0	5 24.6	24.6	78	20.5	0.400	SSE	0.03	3	1.8 SS	SE	24.6	26.1	26.1	. 25.2	1014	(0
11	01/01/2018	0:09	24.0	5 24.6	24.6	78	20.5	0.900	S	0.05	i	1.8 S		24.6	26.1	26.1	. 25.2	1014	(0
12	01/01/2018	0:10	24.	5 24.6	24.5	78	20.4	0.900	S	0.05	i	1.8 SS	SE	24.5	26	26	25.2	1014	(0
13	01/01/2018	0:11	24.	5 24.5	24.5	78	20.4	0.900	SE	0.05	i	1.8 SS	SE	24.5	26	26	25.2	1014	(0
14	01/01/2018	0:12	24.	24.5	24.5	78	20.4	0.900	SSE	0.05	i	1.8 SS	SE	24.5	26	26	25.2	1014	(0
15	01/01/2018	0:13	3 24.	24.5	24.5	78	20.4	0.900	SSE	0.05	i	1.8 SS	SE	24.5	26	26	25.2	1014	(0
16	01/01/2018	0:14	24.	5 24.5	24.4	78	20.4	0.900	SSE	0.05	i	1.8 SS	SE	24.5	26	26	25.2	1014	(0
17	01/01/2018	0:15	24.4	1 24.5	24.4	78	20.4	0.400	SSE	0.03	3	0.9 SS	SE	24.4	25.9	25.9	25.1	1013.9	(0
18	01/01/2018	0:16	24.4	1 24.4	1 24.4	78	20.4	0.900	SSE	0.05	i	0.9 \$5	SE	24.4	25.9	25.9	25.1	1013.9	(0
19	01/01/2018	0:17	24.4	1 24.4	1 24.4	78	20.4	0.900	SSE	0.05	5	1.8 SS	SE	24.4	25.9	25.9	25.1	1013.9	(0
20	01/01/2018	0:18	3 24.4	1 24.4	1 24.4	79	20.6	0.900	SSE	0.05	5	1.8 SS	SE	24.4	26	26	25.2	1013.9	(0
21	01/01/2018	0:19	24.4	1 24.4	1 24.4	79	20.6	0.400	SSE	0.03	1	0.9 SS	SE	24.4	26	26	25.2	1013.9	(0
22	01/01/2018	0:20	24.4	1 24.4	1 24.4	79	20.5	0.400	S	0.03	1	0.9 S		24.4	25.9	25.9	25.1	1013.8	(0
23	01/01/2018	0:21	24.4	1 24.4	1 24.4	79	20.5	0.400	S	0.03	3	0.9 S		24.4	25.9	25.9	25.1	1013.8	(0
24	01/01/2018	0:22	24.4	1 24.4	1 24.4	79	20.5	0.400	S	0.03	1	0.9 S		24.4	25.9	25.9	25.1	1013.9	(0
25	01/01/2018	0:23	3 24.4	1 24.4	1 24.4	79	20.5	0.900	S	0.05	5	1.8 S		24.4	25.9	25.9	25.1	1013.8	(0
26	01/01/2018	0:24	24.4	1 24.4	1 24.4	79	20.5	0.900	S	0.05	5	1.8 S		24.4	25.9	25.9	25.1	1013.9	(0
27	01/01/2018	0:25	24.4	1 24.4	24.3	79	20.5	0.900	SSE	0.05	i	1.3 SS	SE	24.4	25.9	25.9	25.1	1013.8	(0
28	01/01/2018	0:26	24.	3 24.4	24.3	79	20.5	0.900	SSE	0.05	i	1.3 SS	SE	24.3	25.8	25.8	25	1013.8	(0
29	01/01/2018	0:27	24.	3 24.3	3 24.3	79	20.5	0.900	SSE	0.05	i	1.3 \$5	SE	24.3	25.8	25.8	25	1013.8	(0
30	01/01/2018	0:28	3 24.	3 24.3	3 24.3	80	20.7	0.900	SSE	0.05	i	0.9 SS	SE	24.3	25.9	25.9	25.1	1013.8	(0
	01/01/2018		24.	3 24.3	3 24.3	80	20.7	0.400	SSE	0.03	1	0.9 SS	SE	24.3	25.9	25.9	25.1	1013.8	(0
32	01/01/2018	0:30	24.	3 24.3	3 24.3	80	20.7	0.400	SSE	0.03	}	0.9 SS	SE	24.3	25.9	25.9	25.1	1013.8	(0
	01/01/2018						20.7	0.900	SSE	0.05		0.9 \$5		24.3				1013.8		0
31	01/01/2010	NVIER 201		_	2/1.2	90	20.6	0.400	CCE	U U3		1 2 00	: I	2/1/2	25.0	25.0	25	1012 7		0
4	,		- reuni	(+)									- 1							

Task:

- 1.Import the necessary libraries.
- 2.Import the file and read a few lines
- 3. Display the columns and their types
- 4.Extract the columns necessary for the study
- 5.Rename the column names as you want

Meteorological Data Analysis and Processing

The goal of this study is to explore relationships between solar radiation and other meteorological variables.

The data looks like, ...

 $(44135 \text{ rows} \times 38 \text{ columns})$

	Α	В	С	D	Е	F	G	Н	1	J	K		L	М	N	0	Р	Q	R	S
1	Date	Time	Temp	Hi	Low	Out	Dew	Wind	Wind	Wind	Hi	Hi		Wind	Heat	THW	THSW	Press	Pluie	Rain
2	Date	Time	Out	Temp	Temp	Hum	Pt,	Speed	Dir	Run	Speed	Dir	r	Chill	Index	Index	Index	Bar	Rain	Rate
3	01/01/2018	0:01	24.6	24.6	24.6	78	20.5	0.900	SSE	0.05	1.	.3 SSI	E	24.6	26.1	26.1	25.3	1014.1		0
4	01/01/2018	0:02	24.6	24.6	24.6	78	20.5	0.900	SSE	0.05	0.	.9 SSI	E	24.6	26.1	26.1	25.3	1014.1		0
5	01/01/2018	0:03	24.6	24.6	24.6	78	20.5	0.400	SSE	0.03	0.	.9 SSI	E	24.6	26.1	26.1	25.3	1014.1		0
6	01/01/2018	0:04	24.6	24.6	24.6	78	20.5	0.400	SSE	0.03	0.	.9 SSI	E	24.6	26.1	26.1	25.3	1014.1		0
7	01/01/2018	0:05	24.6	24.6	24.6	78	20.5	0.400	SSE	0.03	0.	.9 SSI	E	24.6	26.1	26.1	25.3	1014.1		0
8	01/01/2018	0:06	24.6	24.6	24.6	78	20.5	0.900	SSE	0.05	1.	.3 SSI	E	24.6	26.1	26.1	25.2	1014		0
9	01/01/2018	0:07	24.6	24.6	24.6	78	20.5	0.400	SSE	0.03	0.	.9 SSI	E	24.6	26.1	26.1	25.2	1014		0
10	01/01/2018	0:08	24.6	24.6	24.6	78	20.5	0.400	SSE	0.03	1.	.8 SSI	E	24.6	26.1	26.1	25.2	1014		0
11	01/01/2018	0:09	24.6	24.6	24.6	78	20.5	0.900	S	0.05	1.	.8 S		24.6	26.1	26.1	25.2	1014		0
12	01/01/2018	0:10	24.5	24.6	24.5	78	20.4	0.900	S	0.05	1.	.8 SSI	E	24.5	26	26	25.2	1014		0
13	01/01/2018	0:11	24.5	24.5	24.5	78	20.4	0.900	SE	0.05	1.	.8 SSI	E	24.5	26	5 26	25.2	1014		0
14	01/01/2018	0:12	24.5	24.5	24.5	78	20.4	0.900	SSE	0.05	1.	.8 SSI	E	24.5	26	26	25.2	1014		0
15	01/01/2018	0:13	24.5	24.5	24.5	78	20.4	0.900	SSE	0.05	1.	.8 SSI	E	24.5	26	26	25.2	1014		0
16	01/01/2018	0:14	24.5	24.5	24.4	78	20.4	0.900	SSE	0.05	1.	.8 SSI	E	24.5	26	26	25.2	1014		0
17	01/01/2018	0:15	24.4	24.5	24.4	78	20.4	0.400	SSE	0.03	0.	.9 SSI	E	24.4	25.9	25.9	25.1	1013.9		0
18	01/01/2018	0:16	24.4	24.4	24.4	78	20.4	0.900	SSE	0.05	0.	.9 SSI	E	24.4	25.9	25.9	25.1	1013.9		0
19	01/01/2018	0:17	24.4	24.4	24.4	78	20.4	0.900	SSE	0.05	1.	.8 SSI	E	24.4	25.9	25.9	25.1	1013.9		0
20	01/01/2018	0:18	24.4	24.4	24.4	79	20.6	0.900	SSE	0.05	1.	.8 SSI	E	24.4	26	26	25.2	1013.9		0
21	01/01/2018	0:19	24.4	24.4	24.4	79	20.6	0.400	SSE	0.03	0.	.9 SSI	E	24.4	26	26	25.2	1013.9		0
22	01/01/2018	0:20	24.4	24.4	24.4	79	20.5	0.400	S	0.03	0.	.9 S		24.4	25.9	25.9	25.1	1013.8		0
23	01/01/2018	0:21	24.4	24.4	24.4	79	20.5	0.400	S	0.03	0.	.9 S		24.4	25.9	25.9	25.1	1013.8		0
24	01/01/2018	0:22	24.4	24.4	24.4	79	20.5	0.400	S	0.03	0.	.9 S		24.4	25.9	25.9	25.1	1013.9		0
25	01/01/2018	0:23	24.4	24.4	24.4	79	20.5	0.900	S	0.05	1.	.8 S		24.4	25.9	25.9	25.1	1013.8		0
26	01/01/2018	0:24	24.4	24.4	24.4	79	20.5	0.900	S	0.05	1.	.8 S		24.4	25.9	25.9	25.1	1013.9		0
27	01/01/2018	0:25	24.4	24.4	24.3	79	20.5	0.900	SSE	0.05	1.	.3 SSI	E	24.4	25.9	25.9	25.1	1013.8		0
28	01/01/2018	0:26	24.3	24.4	24.3	79	20.5	0.900	SSE	0.05	1.	.3 SSI	E	24.3	25.8	25.8	25	1013.8		0
29	01/01/2018	0:27	24.3	24.3	24.3	79	20.5	0.900	SSE	0.05	1.	.3 SSI	E	24.3	25.8	25.8	25	1013.8		0
30	01/01/2018	0:28	24.3	24.3	24.3	80	20.7	0.900	SSE	0.05	0.	.9 SSI	E	24.3	25.9	25.9	25.1	1013.8		0
31	01/01/2018	0:29	24.3	24.3	24.3	80	20.7	0.400	SSE	0.03	0.	.9 SSI	E	24.3	25.9	25.9	25.1	1013.8		0
32	01/01/2018	0:30	24.3	24.3	24.3	80	20.7	0.400	SSE	0.03	0.	.9 SSI	E	24.3	25.9	25.9	25.1	1013.8		0
33	01/01/2018	0:31	24.3	24.3	24.3	80	20.7	0.900	SSE	0.05	0.	.9 SSI	E	24.3	25.9	25.9	25.1	1013.8		0
31	01/01/2010			24.2	24.2	90	20.6	0.400	CCE	0.03	1	2 CC		2/1.2	25.0	25.0	25	1012 7		0
4	JF	ANVIER 2018	Feuil1	+									1 4							

Task (Contd):

- 6. Extract the period between 8:00 AM and 5:00 PM (8h00 and 17h00)
- 7. Remove missing data
- 8. Calculate the correlation between solar radiation and other variables
- 9. Keep only the variables with a correlation greater than 0.3
- 10. Plot graphs of correlated variables (scatter plot) to visualize the relationships between solar radiation and the remaining variables.

BONUS: ANDROID APP CREATION USING APP INVENTOR (no code!)