Chapter 07

Mingjia Huo

Problem 7.2. Proof by contradiction: if $g = (f(x_1), x_2)$ is not a one-way function, there is an PPT \mathcal{A} , such that:

$$\Pr[\operatorname{Invert}_{\mathcal{A},q}(n) = 1] > \operatorname{negl}(n)].$$

Construct \mathcal{A}' based on \mathcal{A} :

- 1. When \mathcal{A}' is given $y(=f(x_1))$, he uniformly chooses a $x_2 \in \{0,1\}^n$, and give (y,x_2) to \mathcal{A} .
- 2. When \mathcal{A} return (x'_1, x'_2) , then \mathcal{A}' output x'_1 .

The input of \mathcal{A} and \mathcal{A}' are both poly($|x_1|$), so \mathcal{A} is PPT. If \mathcal{A} can invert g correctly, then $x_1' \in f^{-1}(f(x_1))$, thus \mathcal{A}' can invert f correctly. So:

$$\Pr[\operatorname{Invert}_{\mathcal{A}',f}(n)=1] \ge \Pr[\operatorname{Invert}_{\mathcal{A},g}(n)=1] > \operatorname{negl}(n),$$

a contradiction.

Thus, g is a one-way function.

Problem 7.3. Let f be a one-way function and let $p(\cdot)$ be a polynomial such that |f(x)| < p(|x|). (If p doesn't exist, then there is no algorithm which can compute f(x) in poly(|x|).) Without loss of generality, p is increasing with n.

Let function q(n) denotes the largest value len such that $p(len) \le n$. So we have p(q(n) + 1) > n, and n = poly(q(n) + 1) = poly(q(n)).

Then given $x \in \{0,1\}^n$, x_q denotes the first q(n) bits of x. (That is: if $x = x_1 \cdots x_n$, then $x_q = x_1 \cdots x_{q(n)}$.)

Finally, define $f': \{0,1\}^* \to \{0,1\}^*$ as followed:

$$f'(x) = f(x_q) ||10^{|x| - |f(x_q)| - 1}.$$

• f' is length-preserving:

$$|f(x_q)||10^{|x|-|f(x_q)|-1}|$$
=|f(x_q)| + 1 + |x| - |f(x_q)| - 1
=|x|.

And $|f(x_q)| < p(|x_q|) \le |x|$, thus $|x| - |f(x_q)| - 1 \ge 0$.

So it's length-preserving.

• f' is one-way:

If f' is not one-way, assume there is an PPT \mathcal{A}', n' , such that

$$\Pr[\operatorname{Invert}_{A',f'}(n')=1] > \operatorname{negl}(n')].$$

Assume q(n') = n, construct \mathcal{A} of f based on \mathcal{A}' when \mathcal{A}' is given 1^n :

- 1. Given $y, 1^n$, \mathcal{A} constructs $y||10^{n'-|y|-1}$, and gives it and $1^{n'}$ to \mathcal{A}' .
- 2. When \mathcal{A}' outputs a value $x' = x_1 \cdots x_{n'}$, get the first n bits $(x_1 \cdots x_n = x)$ and output x.

By the definition of f', if $f'(x') = y || 10^{n'-|y|-1}$, then f(x) = y. Thus

$$\Pr[\operatorname{Invert}_{\mathcal{A},f}(n)=1] \ge \Pr[\operatorname{Invert}_{\mathcal{A}',f'}(n')=1] > \operatorname{negl}(n')$$

We have proved that n' = poly(n), thus A is PPT and

$$\Pr[\operatorname{Invert}_{\mathcal{A},f}(n)=1] > \operatorname{negl}(n).$$

That's a contradiction.

Thus f' is one-way.

Problem 7.6. No.

Let $f': \{0,1\}^{n-1} \to \{0,1\}^{n-1}$ be a length-preserving one-way function, construct $f: \{0,1\}^n \to \{0,1\}^n$:

$$f(x) = f'(x_1 \cdots x_{n-1}) ||0, x = x_1 \cdots x_n.$$

First prove f is a length-preserving one-way function.

Obviously, it's length-preserving. Then \forall algorithm \mathcal{A} for f, construct an \mathcal{A}' for f':

- 1. When \mathcal{A}' is given y, construct y||0 and give it to \mathcal{A} .
- 2. When \mathcal{A} output $x_1 \cdots x_n$, output $x = x_1 \cdots x_{n-1}$

If A can invert f with non negligible probability, then

$$\Pr[\operatorname{Invert}_{\mathcal{A},f}(n)=1] > \operatorname{negl}(n).$$

And

$$\Pr[\operatorname{Invert}_{\mathcal{A}',f'}(n-1) = 1] = \Pr[f'(x_1 \cdots x_{n-1}) = y]$$

$$= \Pr[f(x_1 \cdots x_n) = y || 0]$$

$$= \Pr[\operatorname{Invert}_{\mathcal{A},f}(n) = 1]$$

Thus,

$$\Pr[\operatorname{Invert}_{\mathcal{A}',f'}(n-1) = 1] > \operatorname{negl}(n),$$

a contradiction. So f is a length-preserving one-way function.

Use $G(x) = f(x) \| \operatorname{hc}(x) = f'(x_1 \cdots x_{n-1}) \| 0 \| \operatorname{hc}(x)$, here we have $x \in \{0, 1\}^n$. And construct D, when the input is $s \in \{0, 1\}^{n+1}$:

- 1. if $s_n = 0$, output 0;
- 2. if $s_n = 1$, output 1.

So $\Pr[D(G(x)) = 0] = 1$. But if we uniformly draw $r \in \{0, 1\}^{n+1}$, $\Pr[D(r) = 0] = \frac{1}{2}$. So it's not a pseudorandom generator.

Problem 7.8. Part1: g = f(f(x)) is not necessarily a one-way function.

By problem 7.3, we have if there is a one-way function, there is also a length-preserving one-way function, denoted as f.

Given $x = x_1, \dots x_n$, we prove $f'(x) = f(x_1 \dots x_{n-1})$ is also a one-way function. (Specifically, if n = 1, then f'(x) = f(x).)

Assume we have \mathcal{A}' to invert f', construct \mathcal{A} to invert f:

- 1. Given y and 1^n , \mathcal{A} give $y, 1^{n+1}$ to \mathcal{A}' .
- 2. When \mathcal{A}' outputs $x' = x_1 \cdots x_{n+1}$, output $x = x_1 \cdots x_n$.

So,

$$\Pr[\operatorname{Invert}_{\mathcal{A}',f'}(n+1) = 1] = \Pr[f'(x_1 \cdots x_n || x_{n+1}) = y]$$
$$= \Pr[f(x_1 \cdots x_n) = y]$$
$$= \Pr[\operatorname{Invert}_{\mathcal{A},f}(n) = 1]$$

Since f is a one-way function, $\Pr[\operatorname{Invert}_{\mathcal{A},f}(n)=1] \leq \operatorname{negl}(n)$. Thus, $\forall \mathcal{A}', \Pr[\operatorname{Invert}_{\mathcal{A}',f'}(n+1)=1] \leq \operatorname{negl}(n)$, that is

$$\Pr[\operatorname{Invert}_{\mathcal{A}',f'}(n)=1] \leq \operatorname{negl}(n).$$

So $f': \{0,1\}^n \to \{0,1\}^{n-1} (n>1)$ is also a one-way function.

And if f'(f'(x)) is a one-way function, then $f'^{(2^t)}(x)$ is a one-way function. Note that $f'^{(2^t)}: \{0,1\}^n \to \{0,1\}^{n-2^t}$.

Define $n=2^k+1$, then if we set t=k, given $x=x_1\cdots x_n$, $f'^{(2^t)}(x)=f'(x_1)=b, b\in\{0,1\}$. However, an algorithm \mathcal{A} could compute $f(x_1)=b$ and get x_1 in constant time, then randomly choose $x_2\cdots x_n\in\{0,1\}^{n-1}$, and output $x_1\|x_2\cdots x_n$, which is a valid answer. That is

$$\Pr[\text{Invert}_{A = f'(2^t)}(n+1) = 1] = 1.$$

So g = f(f(x)) is not necessarily a one-way function.

Part2: g' = f(x)||f(f(x))| is a one-way function. If g' is not, then

$$\exists \mathcal{A}, \Pr[\operatorname{Invert}_{\mathcal{A}, q'}(n) = 1] > \operatorname{negl}(n).$$

Construct A_f for f:

- 1. Given y, compute z = f(y), and give y||z| to A.
- 2. When A output x, output x.

Then if f(x)||f(f(x)) = y||z, then f(x) = y. So

$$\Pr[\operatorname{Invert}_{A_f,f}(n) = 1] \ge \Pr[\operatorname{Invert}_{A,g'}(n) = 1] > \operatorname{negl}(n),$$

a contradiction.

Thus, g'f = f(x)||f(f(x))|| is also a one-way function.

Problem 7.11. (a).

First, to invert a function of $\{0,1\}^n \to \{0,1\}^{p(n)}$ is in NP. That is, given y(=f(x)), we can guess a value for each $x_i, i = 1, 2, \dots, n$, which can be done by a non deterministic turing machine.

Second, if one - way function exists, then there is no PPT algorithm \mathcal{A} which can invert it (except with negligible probability). Since a deterministic algorithm is also a PPT algorithm. Thus there is no deterministic algorithm can invert it in polynomial time. So it's not in P.

To sum up, $P \neq NP$.

(b).

Assume the parameter is n.

If $P \neq NP$, we have a language L and there is a non deterministic Turing Machine M such that: If $l \in L$, M accepts it in polynomial time (bounded by t(n)). But there is no deterministic Turing Machine which can do that.

Since M is non-determinism, it can take multiple paths and branch into multiple copies, each of which tries a different path. Define the path as $p \in \{0,1\}^{t(n)}$. Then we define,

$$f(w, p, flag) = \begin{cases} (1, w), & M(p) = accept \land flag = 0^n \\ (0, w), & otherwise \end{cases}$$

Here flag is uniformly drawn from $\{0,1\}^n$.

- (1). Since there are at most t(n) steps along the path, f(w,p) can be computed in polynomial time.
- (2).If $\exists PPTA$, s.t. $\Pr[f(A(f(x))) = f(x)] = 1$, then we can replace the randomness by a type and get a deterministic algorithm A', such that A'(1, w) = (w, p).

Construct M'. When the input is w, run (1, w) on \mathcal{A}' and get (w, p). Then run M following the path p. And M' accept w if and only if M accepts. Thus $M' \in P$, a contradiction.

So f does not have a polynomial time computable right inverse and f is a hard to invert.

- (3). Just construct A:
- when A is given (0, w), then randomly choose p, output $(w, p, 1^n)$.
- When A is given (1, w), output an arbitrary value.

So \mathcal{A} can invert when $flag \neq 0^n$. Since $\Pr[flag = 0^n] = 2^{-n}$, thus

$$\begin{split} &\Pr[f(\mathcal{A}(f(w,p,flag))) = f(w,p,flag)] \\ > &\Pr[f(\mathcal{A}(f(w,p,flag))) = f(w,p,flag) \land flag \neq 0^n] \\ = &\Pr[flag \neq 0^n] = 1 - 2^{-n}. \end{split}$$

So f is not one-way.

And since 2^{-n} is negligible for n, so f is not weakly one-way.

Problem 7.16. Construct D with oracle access to $\mathcal{O}(\cdot)$ (Given (L_0, R_0) , the oracle returns (L_2, R_2)):

- 1. Run 1^n . Randomly choose L_0, R_0 in $\{0, 1\}^n$.
- 2. Get $\mathcal{O}(L_0, R_0) = (L_2, R_2)$. Then compute $L'_0 = L_2 \oplus L_0$.
- 3. Get $\mathcal{O}(L'_0, R_0) = (L'_2, R'_2)$.
- 4. If $L'_2 = 0^n$, output 1; otherwise, output 0.

If $\mathcal{O} = \pi$ which is truly random, then L_2' is a random string, thus

$$\Pr[D^{\pi(\cdot)}(1^n) = 1] = 2^{-n}.$$

If $\mathcal{O} = \text{Feistel}_{f_1, f_2}$, then

$$L'_2 = L'_0 \oplus f_1(R_0)$$

= $L_2 \oplus L_0 \oplus f_1(R_0)$
= $L_2 \oplus L_2 = 0^n$

Thus

$$\Pr[D^{\text{Feistel}_{f_1, f_2}(\cdot)}(1^n) = 1] = 1.$$

And

$$\Pr[D^{\text{Feistel}_{f_1, f_2}(\cdot)}(1^n) = 1] - \Pr[D^{\pi(\cdot)}(1^n) = 1] = 1 - 2^{-n}.$$

So it's not a pseudorandom permutation.

Problem 7.17. Construct D with oracle access to $\mathcal{O}(\cdot)$, $\mathcal{O}^{-1}(\cdot)$:

- 1. Run 1^n . Randomly choose L_0, R_0 in $\{0, 1\}^n$.
- 2. Get $\mathcal{O}(L_0, R_0) = (L_3, R_3)$.
- 3. Randomly choose $R_3' \neq R_3$ in $\{0,1\}^n$, ask $\mathcal{O}^{-1}(L_3, R_3') = (L_0', R_0')$.
- 4. Compute $L_0'' = R_3 \oplus R_3' \oplus L_0$, ask $\mathcal{O}(L_0'', R_0) = (L_3'', R_3'')$.
- 5. If $L_3'' = L_3 \oplus R_0 \oplus R_0'$, output 1; otherwise, output 0.

If $\mathcal{O} = \pi$ which is truly random, then L_3'' is a random string, thus

$$\Pr[D^{\pi(\cdot),\pi^{-1}(\cdot)}(1^n) = 1] = 2^{-n}.$$

If $\mathcal{O} = \text{Feistel}_{f_1, f_2, f_3}$,

- 1. After step 2, we have $L_3 = R_0 \oplus f_2(L_0 \oplus f_1(R_0)), R_3 = L_0 \oplus f_1(R_0) \oplus f_3(L_3)$.
- 2. After step 3, we have $L_3 = R'_0 \oplus f_2(L'_0 \oplus f_1(R'_0)), R'_3 = L'_0 \oplus f_1(R'_0) \oplus f_3(L_3).$
- 3. So $L_0'' = R_3 \oplus R_3' \oplus L_0 = (L_0 \oplus f_1(R_0) \oplus f_3(L_3)) \oplus (L_0' \oplus f_1(R_0') \oplus f_3(L_3)) \oplus L_0 = L_0' \oplus f_1(R_0') \oplus f_1(R_0)$.
- 4. And in step 4, $L_3'' = R_0 \oplus f_2(L_0'' \oplus f_1(R_0)) = R_0 \oplus f_2(L_0' \oplus f_1(R_0') \oplus f_1(R_0)) \oplus f_1(R_0) = R_0 \oplus f_2(L_0' \oplus f_1(R_0')) = R_0 \oplus L_3 \oplus R_0'$.

Thus

$$\Pr[D^{\text{Feistel}_{f_1, f_2, f_3}(\cdot), \text{Feistel}_{f_1, f_2, f_3}^{-1}(\cdot)}(1^n) = 1] = 1.$$

And

$$\Pr[D^{\text{Feistel}_{f_1,f_2,f_3}(\cdot),\text{Feistel}_{f_1,f_2,f_3}^{-1}(\cdot)}(1^n) = 1] - \Pr[D^{\pi(\cdot),\pi^{-1}(\cdot)}(1^n) = 1] = 1 - 2^{-n}.$$

So it's not a strong pseudorandom permutation.

Problem 7.19. Let \mathcal{A} be an arbitrary probabilistic polynomial-time algorithm. We show that $\Pr[\text{Invert}_{\mathcal{A},G}(n) = 1]$ is negligible.

To see this, consider the following PPT distinguisher D: on input a string $w \in \{0,1\}^{n+1}$, run $\mathcal{A}(w)$ to obtain output s. If G(s) = w then output 1; otherwise, output 0.

Denote $W_0 = \{ w \mid \exists s \in \{0,1\}^n, s.t. G(s) = w \}.$

If w is chosen by G(s), then

$$\begin{split} \Pr[D(G(s)) = 1] = & \Pr[\operatorname{Invert}_{\mathcal{A}, G}(n) = 1] \\ = & \sum_{w \in W_0} \Pr[G(\mathcal{A}(w)) = w \mid W = w] \Pr[W = w] \\ \geq & 2^{-n} \sum_{w \in W_0} \Pr[G(\mathcal{A}(w)) = w \mid W = w] \end{split}$$

The last inequality holds because if $w \in W_0$, there exists at least one s, such that G(s) = w. So $\Pr[W = w] \ge \Pr[S = s] = 2^{-n}$.

If w is uniformly chosen from $\{0,1\}^{n+1}$, then

$$\Pr[D(w) = 1] = \sum_{w \in W_0} \Pr[G(\mathcal{A}(w)) = w \mid W = w] \Pr[W = w]$$
$$= 2^{-(n+1)} \sum_{w \in W_0} \Pr[G(\mathcal{A}(w)) = w \mid W = w]$$

Let's denote r as a uniform string, so

$$\Pr[D(G(s)) = 1] \ge 2 \times 2^{-(n+1)} \sum_{w \in W_0} \Pr[G(\mathcal{A}(w)) = w \mid W = w] = 2 \times \Pr[D(r) = 1].$$

If $\Pr[\operatorname{Invert}_{\mathcal{A},G}(n)=1] > \frac{1}{p(n)}$, where $p(n) \in \operatorname{poly}(n)$, then

$$\Pr[D(G(s)) = 1] - \Pr[D(r) = 1] \ge \frac{1}{2}\Pr[D(G(s)) = 1] = \frac{1}{2}\Pr[\operatorname{Invert}_{\mathcal{A}, G}(n) = 1] > \frac{1}{2p(n)},$$

which means G is not a pseudorandom generator, a contradiction.

Thus, G is a one-way function.

Problem 7.20. For arbitrary $D \in PPT$, since $\mathcal{X} \stackrel{c}{\equiv} \mathcal{Y}$, we have

$$\left| \Pr_{x \leftarrow X_n} [D(1^n, x) = 1] - \Pr_{y \leftarrow Y_n} [D(1^n, y) = 1] \right| \le \text{negl}(n).$$

Similarly,

$$\left| \Pr_{y \leftarrow Y_n} [D(1^n, y) = 1] - \Pr_{z \leftarrow Z_n} [D(1^n, z) = 1] \right| \le \operatorname{negl}(n).$$

To sum up,

$$\left| \Pr_{x \leftarrow X_n}[D(1^n, x) = 1] - \Pr_{z \leftarrow Z_n}[D(1^n, z) = 1] \right| \le \operatorname{negl}(n).$$

So $\mathcal{X} \stackrel{c}{\equiv} \mathcal{Z}$.

Problem 7.22. For any $D \in PPT$ for $\{A(X_n)\}_{n \in N}$ and $\{A(Y_n)\}_{n \in N}$, construct D':

- 1. When given x, y, compute A(x), A(y), and give them and 1^n to D.
- 2. Output the same as what D outputs.

Thus

$$\Pr_{x \leftarrow X_n}[D(1^n, x) = 1] = \Pr_{\mathcal{A}(x) \leftarrow \mathcal{A}(X_n)}[D(1^n, \mathcal{A}(x)) = 1]$$

$$\Pr_{y \leftarrow Y_n}[D(1^n, y) = 1] = \Pr_{\mathcal{A}(y) \leftarrow \mathcal{A}(Y_n)}[D(1^n, \mathcal{A}(y)) = 1]$$

Since $\mathcal{X} \stackrel{c}{\equiv} \mathcal{Z}$, we have

$$\left| \Pr_{x \leftarrow X_n}[D(1^n, x) = 1] - \Pr_{y \leftarrow Y_n}[D(1^n, y) = 1] \right| \leq \operatorname{negl}(n).$$

So

$$\left| \Pr_{\mathcal{A}(x) \leftarrow \mathcal{A}(X_n)} [D(1^n, \mathcal{A}(x)) = 1] - \Pr_{\mathcal{A}(y) \leftarrow \mathcal{A}(Y_n)} [D(1^n, \mathcal{A}(y)) = 1] \right| \le \text{negl}(n).$$

That is $\{\mathcal{A}(X_n)\}_{n\in\mathbb{N}}\stackrel{c}{\equiv}\{\mathcal{A}(Y_n)\}_{n\in\mathbb{N}}$