Reg. No	-															
---------	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

B.Tech DEGREE EXAMINATION, DECEMBER 2023

Fifth Semester

18ASE201T - INDUSTRIAL AERODYNAMICS

(For the candidates admitted during the academic year (2020-2021 & 2021-20222))

Note:

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours					Max. Marks: 100				
PART - A (20 × 1 = 20 Marks) Answer all Questions					CO				
1.	Atmospheric turbulence intensity is the me (A) mean wind speed (C) humidity in the wind	(B) fluctuations in wind speed (D) wind temperature variations	1	1	1				
2.	Wind from Land to Sea is called as (A) Sea Breeze (C) Air Breeze	(B) Land Breeze (D) Thermal Breeze	1	percent	1				
3.	The pseudo force that acts because of earth (A) Drag force (C) Coriolis force	's rotation is called (B) Lift force (D) Gravitational force	and the state of t	- Second	1				
4.	Which terrain has a high aerodynamic roug (A) Open sea (C) Ice	hness length? (B) Forest (D) City center	1	1	and the state of t				
5.	Which of the following wind turbines has h (A) Savonius WT (C) Three bladed HAWT	nigher C _p value? (B) Darrieus WT (D) American multi-bladed WT	Permit	I	2				
6.	The available power (P) at any wind site de (A) P α V (C) P α V ³	pends on the local wind speed (V) as (B) P α V ² (D) P α V ^{0.5}	1	1	2				
7.	Which of the following is not considered turbine? (A) Wind speed (C) air density	(B) Wind turbine diameter (D) number of blades	1	1	2				
8.	The yaw drive in a wind turbine is used for (A) aligning all the wind turbines in same direction (C) aligning the wind turbine to face east	(B) aligning the wind turbine to face the wind direction(D) aligning the wind turbine perpendicular to the wind direction	1	1	2				
9.	Flow separation on a vehicle is due to (A) Favorable pressure gradient (C) Zero pressure gradient	(B) Adverse pressure gradient(D) Fluctuating pressure gradient	1	 	3				
10.	The simplest model to study Car Aerodynar (A) Akbar model (C) ARAI model	nics is (B) Ahmed model (D) F1 model	1	Percept	3				

		v .			
	Drag coefficient is high for (A) Sedan (C) Hatchback	(B) SUV (D) Wagon	1	passed	3
12.	. The lift and drag coefficients of a car are surface slantness) is	e high when the cut-back angle (or rear	1	1	3
	(A) θ =10 deg. (C) θ =30 deg.	(B) θ=20 deg.(D) θ=40 deg.			
	Galloping occurs for flow (A) Inside a pipe (C) over a flat plate	(B) over a cylinder (D) inside a channel	1	1	4
14.	Flow over a circular cylinder at Re=30 show (A) Vortex shedding (C) Turbulent wake		1	¥ <u>•</u>	4
15.	Reynolds number is the ratio of (A) viscous to buoyancy forces (C) inertial to buoyancy forces	(B) inertial to viscous forces(D) laminar to turbulent forces	1	1	4
16.	Which of the following is true for flow over (A) smooth sphere has less form drag (C) both smooth and rough spheres will have same form drag	smooth and rough spheres? (B) rough sphere has less form drag (D) form drag will be zero for smooth sphere	1	1	4
17.	The wind loads in low-rise buildings are pri (A) vortex shedding (C) corner vortices	marily due to (B) roof suction (D) vortex induced vibrations	1	1	5
18.	In building ventilation, stack effect arises du (A) Buoyancy (C) Gusts	ne to (B) Turbulence (D) Blowers	Table 1	1	5
19.	A tall building of length 100 m and width 15 Hz in a wind speed 20 m/s. Its Strouhal nu (A) 10 (C) 25		1	T and a second	5
20.	Helical strake around a tall chimney is used (A) Boundary layer (C) Turbulence	to suppress (B) Vortex induced vibrations (D) Gusts	1	1	5
	Marks	BL	CO		
21.	Write power-law and logarithmic-law that boundary layer.	it are used to represent an atmospheric	4	2	1
22.	Define power coefficient, tip speed ratio and solidity ratio of a wind turbine. Write their formulae.		4	2	2
23.	Sketch the pressure distribution (Cp) over regions of flow separation.	a generic car model. Mark the possible	4	2	3
24.	Define stall flutter and galloping flutter		4	2	4
25.	Explain TVL formula and Funneling effect.		4	2	5
	What is Ahmed body? Explain its significant		4	2	3
	List the advantages and disadvantages of H		4	2	2
	PART - C ($5 \times 12 = 0$ Answer all Ques		Mark	s BL	СО
	TIME OF SHE YOUR			ACREE	4045530

28.	(a) (i) Explain the evolution of atmospheric boundary layer over the course of a day. [6 Marks]	12	2	1
	(ii) Discuss the effect of terrain on the mean velocity profile of the atmospheric boundary layer. [6 Marks] (OR)			
	(b) With a neat sketch, explain how the atmospheric boundary layer is simulated in a wind tunnel.			
29.	(a) (i) Obtain the power coefficient of wind turbine which is a drag translator device. [6 Marks]	12	3	2
	(ii) Discuss in detail the airfoil selection for wind turbines. [6 Marks] (OR)			
	(b) Obtain the Betz limit for the maximum power coefficient of an ideal wind			
	turbine. State all the assumptions involved.			
30.	(a) With suitable sketches, discuss the effects of adding a (i) rear spoiler and (ii)	12	3	3
30.	rear wing to a car.	12	_	
	(OR)			
	(b) With suitable sketches, discuss in detail the various methods for generating			
	downforce in a car.			
31.	(a) Explain the following w.r.t the aerodynamics of a cricket ball with sketches	12	3	4
31.	(i) Swing and (ii) Spin	12	9	•
	(OR)			
	(b) With necessary sketches, discuss the various methods to control the vortex			
	induced vibrations of a cylinder.			
32.	(a) With neat sketches of streamline patterns, explain the flow past a low-rise	12	3	5
32.	building (cuboid shape).			
	(OR)			
	(b) Discuss the wind loads acting on the launch vehicles.			
	**			

,Ã