Large-Context Models for Large-Scale Machine Translation

John DeNero
Dissertation Talk

Translation for donde esta la universidad: Spanish » English

Translation for donde esta la universidad: Spanish » English

How?

Google spent \$5.6 billion on infrastructure in the last 3 years ¹

How?

Google spent \$5.6 billion on infrastructure in the last 3 years ¹

¹ Google.com annual report of capital expenditure, "the majority of which was related to IT infrastructure investments."

[PDF] Tailoring Word Alignments to Syntactic Machine Translation

denero@berkeley.edu. Dan Klein. Computer Science Division union for French and a hard union for Chinese, both ...

How?

Google spent \$5.6 billion on infrastructure in the last 3 years ¹

¹ Google.com annual report of capital expenditure, "the majority of which was related to IT infrastructure investments."

[PDF] Tailoring Word Alignments to Syntactic Machine Translation

denero@berkeley.edu. Dan Klein. Computer Science Division union for French and a hard union for Chinese, both ...

How?

Google spent \$5.6 billion on infrastructure in the last 3 years ¹

- "People use [Google Translate] hundreds of millions of times a week." 2
- 1 Google.com annual report of capital expenditure, "the majority of which was related to IT infrastructure investments."
 - ² "Google's Computing Power Refines Translation Tool," New York Times, 9 March 2010, Technology Section.

Assimilation	Dissemination	Communication

Assimilation

Dissemination

Communication

- Document translation
- Broadcast monitoring
- Intelligence gathering

Assimilation

Dissemination

Communication

- Document translation
- Broadcast monitoring
- Intelligence gathering

Assimilation

Dissemination

Communication

- Document translation
- Broadcast monitoring
- Intelligence gathering

Assimilation

Dissemination

Communication

- Document translation
- Broadcast monitoring
- Intelligence gathering

73%

Assimilation

Dissemination

Communication

- Document translation
- Broadcast monitoring
- Intelligence gathering

Assimilation

Dissemination

Communication

- Document translation
- Broadcast monitoring
- Intelligence gathering

John I'm in Berkeley

73%

Assimilation

Dissemination

Communication

- Document translation
- Broadcast monitoring
- Intelligence gathering

John I'm in Berkeley

Juan Estoy en Berkeley

Assimilation

- Document translation
- Broadcast monitoring
- Intelligence gathering

Most Internet users can't read the English Web

Dissemination

John I'm in Berkeley

Juan Estoy en Berkeley

Communication

- Emergency room triage
- Military deployments
- Multilingual education
- 9-1-1 Response
- Commerce with tourists

Assimilation

- Document translation
- Broadcast monitoring
- Intelligence gathering

Most Internet users can't read the English Web

Dissemination

John I'm in Berkeley

Juan Estoy en Berkeley

Communication

- Emergency room triage
- Military deployments
- Multilingual education
- 9-1-1 Response
- Commerce with tourists

Data-Driven Machine Translation

Target language corpus gives examples of well-formed sentences

I will get to it later

See you later

He will do it

Parallel corpus gives translation examples

I will do it gladly

Yo lo haré de muy buen grado

You will see later

Después lo veras

Machine translation system:

Data-Driven Machine Translation

Target language corpus gives examples of well-formed sentences

I will get to it later

See you later

He will do it

Parallel corpus gives translation examples

I will do it gladly

Yo lo haré de muy buen grado

You will see later

Después lo veras

Machine translation system:

Model of translation

Data-Driven Machine Translation

Target language corpus gives examples of well-formed sentences

I will get to it later

See you later

He will do it

Parallel corpus gives translation examples

I will do it gladly

Yo lo haré de muy buen grado

You will see later

Después lo veras

Machine translation system:

Source language

Yo lo haré después

Novel Sentence

Model of translation

Target language

I will do it later

Parallel corpus gives translation examples

Yo lo haré de muy buen grado

Después lo veras

Machine translation system:

Yo lo haré después

Model of translation

I will do it later

Parallel corpus gives translation examples

Yo lo haré de muy buen grado

Machine translation system:

Model of translation

I will do it later

Arabic source sentence:

ورفض الباز الادلاء باى تصريحات فور وصوله الى المقاطعة

Arabic source sentence:

ورفض الباز الادلاء باى تصريحات فور وصوله الى المقاطعة

Reference translation from a human translator:

Al-baz declined to make any statements upon his arrival in the province

feature	weight	value	product
derivation-size	0.41	8	3.30
glue-rule	3.89	2	7.78
green	-0.08	0	0
gt_prob	0.40	36.18	14.43
identity	-9.97	0	0
is_lexicalized	-0.65	6	-3.91
lex_pef	1.02	5.47	5.60
lex_pfe	0.31	4.44	1.39
lm1	1	22.76	22.76
lm1-unk	30.08	0	0
lm2	0.74	26.66	19.79
lm2-unk	-39.18	0	0
missingWord	-1.29	0	0
model1inv	1.02	10.60	10.81
model1nrm	1.35	11.29	15.22
nonmonotone	4.17	0	0
olive	1.95	0	0
psm1n	0.50	24.65	12.30
text-length	-3.87	15	-58.05
trivial_cond_prob	0.41	3.34	1.38
unk-rule	19.28	0	0
reported totalcost	52.82	$\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}$	52.82

Learn a model

Apply the model

Choose a translation

Choose a translation

Learn a model

Apply the model

Choose a translation

The Alignment Problem in Translation

```
Thank you, I will do it gladly.
```

Gracias

•

lo

haré

de

muy

buen

grado

•

Thank you , I will do it gladly .

Gracias

,

lo

haré

de

muy

buen

grado

•

Thank you, I will do it gladly.

Gracias

,

lo

haré

de

muy

buen

grado

•

Thank you , I will do it gladly .

				Gracias
				,
				lo
				lo haré
				de
				muy
				buen
				de muy buen grado
				•

Thank you , I will do it gladly .

Gracias

lo haré de muy buen grado

About the task:

- A lot can be inferred from lexical statistics
- Correct alignments are not one-to-one
- Some cases are tricky, even for people

Thank you , I will do it gladly .

Gracias

haré muy buen grado

About the task:

- A lot can be inferred from lexical statistics
- Correct alignments are not one-to-one
- Some cases are tricky, even for people

Thank you , I will do it gladly .

Gracias

, lo haré de muy buen grado

About the task:

- A lot can be inferred from lexical statistics
- Correct alignments are not one-to-one
- Some cases are tricky, even for people

About solutions:

- Word-to-word links
- Learning driven by conditional word distributions

Thank you , I will do it gladly .

About the task:

- A lot can be inferred from lexical statistics
- Correct alignments are not one-to-one
- Some cases are tricky, even for people

About solutions:

- Word-to-word links
- Learning driven by conditional word distributions

 $\mathbb{P}(\text{gracias}|\text{you})$

Large-Context Alignment Challenges

Goal: Model multi-word structures during alignment

Thank you , I will do it gladly .

Large-Context Alignment Challenges

Goal: Model multi-word structures during alignment

$$\mathbb{P}(\text{gracias}|\text{you})$$
 $\mathbb{P}(\text{gracias}, \text{Thank you})$

Gracias

lo

haré de

muy

buen

grado

Challenge II

- Jointly infer phrase boundaries and alignments
- Boundaries depend on both languages

Large-Context Alignment Challenges

Goal: Model multi-word structures during alignment

$$\frac{\mathbb{P}(\text{gracias}|\text{you})}{\mathbb{P}(\text{gracias}, \text{Thank you})}$$

$$\phi(\text{lo haré}, \text{I will do it})$$

Challenge II

- Jointly infer phrase boundaries and alignments
- Boundaries depend on both languages

Challenge 2

- Capture context
- Compose phrases

Paradigm: Train a generative model that explains

observed translations via latent structure

Paradigm: Train a generative model that explains

observed translations via latent structure

Process: Phrase pairs are generated independently

Paradigm: Train a generative model that explains

observed translations via latent structure

Process: Phrase pairs are generated independently

Thank you, I will do it gladly

Gracias, lo haré de muy buen grado

Paradigm: Train a generative model that explains

observed translations via latent structure

Process: Phrase pairs are generated independently

Thank you, I will do it gladly

Gracias, lo haré de muy buen grado

Paradigm: Train a generative model that explains

observed translations via latent structure

Process: Phrase pairs are generated independently

Thank you, I will do it gladly

Gracias, lo haré de muy buen grado

Paradigm: Train a generative model that explains

observed translations via latent structure

Process: Phrase pairs are generated independently

Thank you, I will do it gladly

Gracias, lo haré de muy buen grado

Paradigm: Train a generative model that explains

observed translations via latent structure

Process: Phrase pairs are generated independently

Thank you, I will do it gladly

Gracias, lo haré de muy buen grado

Paradigm: Train a generative model that explains

observed translations via latent structure

Process: Phrase pairs are generated independently

Thank you , I will do it gladly

Gracias , lo haré de muy buen grado

Paradigm: Train a generative model that explains

observed translations via latent structure

Process: Phrase pairs are generated independently

Thank you , I will do it gladly

Gracias , lo haré de muy buen grado

Optimization: Explain all translations with shared parameters

We learn θ , a multinomial distribution over phrase pairs

$$\mathbb{P}(A=a) = \theta(\text{Thank you, Gracias}) \cdot \theta(\text{I will do, har\'e}) \cdot \theta(\text{it, lo}) \cdots$$

We learn θ , a multinomial distribution over phrase pairs

$$\mathbb{P}(A=a) = \theta(\text{Thank you, Gracias}) \cdot \theta(\text{I will do, har\'e}) \cdot \theta(\text{it, lo}) \cdots$$

$$P(A = a) = \prod_{(e,s)\in a} \theta(e,s)^*$$

^{*}Terms omitted: Phrase pair count and phrase permutation

We learn θ , a multinomial distribution over phrase pairs

$$\mathbb{P}(A=a) = \theta(\text{Thank you, Gracias}) \cdot \theta(\text{I will do, har\'e}) \cdot \theta(\text{it, lo}) \cdots$$

$$P(A = a) = \prod_{(e,s)\in a} \theta(e,s)^*$$

$$\begin{array}{c|c} \text{muy} \\ \text{buen} \\ \text{grado} \end{array} \quad \mathcal{L}(\theta) = \prod_{d \in D} \left[\sum_{a \in \mathcal{A}(d)} P(A=a) \right]$$

^{*}Terms omitted: Phrase pair count and phrase permutation

We learn θ , a multinomial distribution over phrase pairs

$$\mathbb{P}(A=a) = \theta(\text{Thank you, Gracias}) \cdot \theta(\text{I will do, har\'e}) \cdot \theta(\text{it, lo}) \cdots$$

$$P(A = a) = \prod_{(e,s)\in a} \theta(e,s)^*$$

For each sentence pair:

$$\mathcal{L}(\theta) = \prod_{d \in D} \left[\sum_{a \in \mathcal{A}(d)} P(A = a) \right]$$

^{*}Terms omitted: Phrase pair count and phrase permutation

We learn θ , a multinomial distribution over phrase pairs

$$\mathbb{P}(A=a) = \theta(\text{Thank you, Gracias}) \cdot \theta(\text{I will do, har\'e}) \cdot \theta(\text{it, lo}) \cdots$$

$$P(A = a) = \prod_{(e,s)\in a} \theta(e,s)^*$$

For each sentence pair:

$$\mathcal{L}(\theta) = \prod_{d \in D} \left[\sum_{a \in \mathcal{A}(d)} P(A = a) \right]$$

We learn θ , a multinomial distribution over phrase pairs

$$\mathbb{P}(A=a) = \theta(\text{Thank you, Gracias}) \cdot \theta(\text{I will do, har\'e}) \cdot \theta(\text{it, lo}) \cdots$$

$$P(A = a) = \prod_{(e,s)\in a} \theta(e,s)^*$$

$$\mathcal{L}(\theta) = \prod_{d \in D} \left[\sum_{a \in \mathcal{A}(d)}^{\mathsf{T}} P(A = a) \right]$$

Maximizing likelihood gives a degenerate solution: huge phrases!

We learn θ , a multinomial distribution over phrase pairs

$$\mathbb{P}(A=a) = \theta(\text{Thank you, Gracias}) \cdot \theta(\text{I will do, har\'e}) \cdot \theta(\text{it, lo}) \cdots$$

$$P(A = a) = \prod_{(e,s)\in a} \theta(e,s)^*$$

Maximizing likelihood gives a degenerate solution: huge phrases!

$$\theta \sim \mathrm{DP}(\theta_0, \alpha)$$

Base distribution:

 θ_0

Prefers short phrases

Dirichlet process: $\mathrm{DP}(\ \cdot\ , \alpha)$ Non-parametric cache model

English-Spanish phrase pair	Count
(Thank you, Gracias)	Ш
(Thanks, Gracias)	111
(Thank you, Muchas gracias)	П

$$\theta \sim \mathrm{DP}(\theta_0, \alpha)$$

Base distribution:

 θ_0

Prefers short phrases

Dirichlet process: $\mathrm{DP}(\ \cdot\ , \alpha)$ Non-parametric cache model

English-Spanish phrase pair	Count
(Thank you, Gracias)	Ш
(Thanks, Gracias)	111
(Thank you, Muchas gracias)	П

Count

 $\Pi\Pi\Pi$

Ш

(Thanks, Gracias)

(Thank you, Muchas gracias)

 θ_0

Prefers short phrases

Dirichlet process: $\cdot \cdot \cdot \mathrm{DP}(\ \cdot\ , \alpha)$

Non-parametric cache model

$$\mathbb{P}(z|c) = \frac{c(z) + \alpha \cdot \theta_0(z)}{|c| + \alpha}$$

 θ_0

Prefers short phrases

Dirichlet process: $\cdot \cdot \cdot \mathrm{DP}(\ \cdot\ , \alpha)$

Non-parametric cache model

$$\mathbb{P}(z|c) = \frac{c(z) + \alpha \cdot \theta_0(z)}{|c| + \alpha}$$

 θ_0

Prefers short phrases

Dirichlet process: $\cdot \cdot \cdot \mathrm{DP}(\ \cdot\ , \alpha)$

Non-parametric cache model

$$\mathbb{P}(z|c) = \frac{c(z) + \alpha \cdot \theta_0(z)}{|c| + \alpha}$$

Prefers short phrases

Non-parametric cache model

$$\mathbb{P}(z|c) = \underbrace{ \begin{bmatrix} c(z) + \alpha \cdot \theta_0(z) \\ |c| + \alpha \end{bmatrix}}_{\text{grow}} \text{fixed}$$

Iterative realignment of all the data by sampling

Consistent, efficient estimation

What Happens in Practice

A state-of-the-art word-level alignment

A sampled phrase alignment from our system

What Happens in Practice

A state-of-the-art word-level alignment

A sampled phrase alignment from our system

Performance Results

Translation performance in a phrase-based system (Moses) for Spanish-to-English parliamentary proceedings (Europarl)

- Word-level baseline
- Phrase-level model [DeNero et al. EMNLP '08]*

^{*} John DeNero, Alex Bouchard-Côté, and Dan Klein. Sampling Alignment Structure under a Bayesian Translation Model, EMNLP 2008.

1

Subsequent Work

We described a non-parametric Bayesian prior and a consistent sampling procedure (EMNLP 2008)

- Phil Blunsom, Trevor Cohn, Chris Dyer, and Miles Osborne. A Gibbs sampler for phrasal synchronous grammar induction, ACL 2009.
- Matt Post and Daniel Gildea. Bayesian Learning of a Tree Substitution Grammars, ACL 2009.
- Trevor Cohn and Phil Blunsom. A Bayesian Model of Syntax-Directed Tree to String Grammar Induction, EMNLP 2009.
- Ding Liu and Daniel Gildea. Bayesian Learning of Phrasal Tree-to-String Templates, EMNLP 2009.
- Abhishek Arun, Chris Dyer, Barry Haddow, Phil Blunsom, Adam Lopez, and Philipp Koehn. Monte Carlo inference and maximization for phrase-based translation, CoNLL 2009.
- Phil Blunsom and Trevor Cohn. *Inducing Synchronous Grammars* with Slice Sampling, NAACL 2010.

A model can predict the whole analysis above, including minimal links
& composed phrase pairs .

A model can predict the whole analysis above, including minimal links
& composed phrase pairs .

A model can predict the whole analysis above, including minimal links

& composed phrase pairs .

Guess: Model Prediction

过去 [past]

两 [two]

年 [year]

中 [in]

Guess: Model Prediction Gold: Human Annotation

过去 [past] 两 [two] 年 [year]

中 [in]

Guess: Model Prediction Gold: Human Annotation

过去 [past]

两 [two]

年 [year]

中 [in]

Guess: Model Prediction Gold: Human Annotation

Guess: Model Prediction Gold: Human Annotation

Loss function: Number of differing rounded rectangles

Guess: Model Prediction Gold: Human Annotation

Loss function: Number of differing rounded rectangles

Online learning (MIRA) adjusts model parameters to prefer the gold over the guess by a margin of the loss

$$\underset{y \in \text{ITG}(x)}{\text{arg max}} \ \theta \cdot [\ \phi_{word}(x, y) \ + \ \phi_{phrase}(x, y) \]$$

_

过去 [past]

两 [two]

年 [year]

中 [in]

In the past two years

ln

Finding the Optimal Correspondence

$$\underset{y \in \text{ITG}(x)}{\text{arg max}} \ \theta \cdot [\ \phi_{word}(x,y) \ + \ \phi_{phrase}(x,y) \]$$

Hierarchical decomposition

			过去	[past]
			两	[two]
			年	[year]
			中	[in]

the past two years

$$\underset{y \in \text{ITG}(x)}{\text{arg max}} \ \theta \cdot [\ \phi_{word}(x,y) \ + \ \phi_{phrase}(x,y) \]$$

$$\underset{y \in \text{ITG}(x)}{\text{arg max}} \ \theta \cdot [\ \phi_{word}(x,y) \ + \ \phi_{phrase}(x,y) \]$$

$$\underset{y \in \text{ITG}(x)}{\text{arg max}} \ \theta \cdot [\ \phi_{word}(x,y) \ + \ \phi_{phrase}(x,y) \]$$

$$\underset{y \in \text{ITG}(x)}{\text{arg max}} \ \theta \cdot [\ \phi_{word}(x, y) \ + \ \phi_{phrase}(x, y) \]$$

$$\underset{y \in \text{ITG}(x)}{\text{arg max}} \ \theta \cdot [\ \phi_{word}(x,y) \ + \ \phi_{phrase}(x,y) \]$$

ITG parser with a state space that tracks peripheral alignments for each region

Experimental Results

- Unsupervised word model baseline
- Supervised word model [Haghighi, Blitzer, DeNero, and Klein. ACL '09]*
- Composed Phrase Pair Model [DeNero and Klein. In submission]**

Alignment quality relative to human-annotated data

Phrase Pair F1

Translation quality for Chinese-to-English

^{*} Aria Haghighi, John Blitzer, John DeNero, and Dan Klein. Better Word Alignments with Supervised ITG Models, ACL 2009.

^{**} John DeNero and Dan Klein. Supervised Modeling of Extraction Sets for Machine Translation, in submission.

Learn a model

Apply the model

Learn a model

Apply the model

Choose a translation

Large data sets provide statistics for larger structures

Learn a model

Apply the model

- Large data sets provide statistics for larger structures
- Non-parametric models scale with the data

Learn a model

Apply the model

- Large data sets provide statistics for larger structures
- Non-parametric models scale with the data
- ▶ The more context we incorporate, the better we do

Learn a model

Apply the model

Extracting Translation Rules

Thank you, I will do it gladly.

Extracting Translation Rules

Gracias

lo haré de muy buen grado

Extracting Translation Rules

Grammar	
Derivation	
Translation:	

Grammar

Derivation

Translation:

Grammar

Derivation

Translation:

Grammar

Derivation

NN

Translation: bedroom

Grammar

Derivation

NN Secondations

Translation: bedroom

Grammar

Derivation

Translation: new bedroom big small

JJ new nuevo

NP Mi NN JJ

Grammar

Derivation

Translation:

JJ new

NN bedroom **JJ** big

JJ small

Derivation

Grammar

Derivation

Source: Mi dormitorio nuevo no es ni grande ni pequeño

IJ

NN

The Size of the Grammar

A grammar learned from 220 million words of Arabic-to-English example translations:

332,000 rules match a 30-word sentence to be translated

John DeNero, Adam Pauls, Mohit Bansal, and Dan Klein. Efficient Parsing for Transducer Grammars, NAACL 2009.

The Size of the Grammar

A grammar learned from 220 million words of Arabic-to-English example translations:

332,000 rules match a 30-word sentence to be translated

John DeNero, Adam Pauls, Mohit Bansal, and Dan Klein. Efficient Parsing for Transducer Grammars, NAACL 2009.

 $S \rightarrow NP$ no es ni JJ ni JJ

Mi dormitorio nuevo no es ni grande ni pequeño

 $S \rightarrow NP$ no es ni JJ ni JJ


```
S → NP no es ni JJ ni JJ

ADJP → ni JJ ni JJ

VP → es ADJP
```


Mi dormitorio nuevo no es ni grande ni pequeño

Mi dormitorio nuevo no es ni grande ni pequeño

Apply a subset of the grammar with only small rules

Apply a subset of the grammar with only small rules

Mi dormitorio nuevo no es ni grande ni pequeño

- Apply a subset of the grammar with only small rules
- 2 Prune away unlikely portions of the search space

Mi dormitorio nuevo no es ni grande ni pequeño

- Apply a subset of the grammar with only small rules
- 2 Prune away unlikely portions of the search space

- Apply a subset of the grammar with only small rules
- 2 Prune away unlikely portions of the search space

- Apply a subset of the grammar with only small rules
- 2 Prune away unlikely portions of the search space
- 3 Apply the full translation grammar to the pruned space

Experimental Results

Minutes required to analyze a 300 sentence test set

5x speed-up with the largest translation grammars in use today (ISI Syntax-Based MT System) [DeNero et al. NAACL '09]*

^{*} John DeNero, Adam Pauls, Mohit Bansal, and Dan Klein. Efficient Parsing for Transducer Grammars, NAACL 2009.

Learn a model

Apply the model

Choose a translation

Learn a model

Apply the model

Choose a translation

▶ Fully exploiting large data sets requires searching over very large spaces

Learn a model

Apply the model

Choose a translation

- ▶ Fully exploiting large data sets requires searching over very large spaces
- ▶ Coarse-to-fine inference is a powerful technique for doing so

Learn a model

Apply the model

Choose a translation

Even the Best Models are Wrong

Model

Even the Best Models are Wrong

Later do it I will I will later do it That I'll do later Later that I'll do

Later do it I will I will later do it That I'll do later Later that I'll do

- + Samples from output space
- × Samples near maximum
- Highest scoring translation

Translation Quality (BLEU)

Total model score for 1000 sentences

Later do it I will I will later do it That I'll do later Later that I'll do

- + Samples from output space
- × Samples near maximum
- Highest scoring translation

Later do it I will I will later do it That I'll do later Later that I'll do

- + Samples from output space
- × Samples near maximum
- Highest scoring translation

Total model score for 1000 sentences

Later do it I will I will later do it That I'll do later Later that I'll do

- + Samples from output space
- × Samples near maximum
- Highest scoring translation

Later do it I will I will I will later do it
That I'll do later
Later that I'll do

- + Samples from output space
- × Samples near maximum
- Highest scoring translation

Later do it I will I will later do it That I'll do later Later that I'll do

•••

Later do it I will I will later do it That I'll do later Later that I'll do Intuition: "Happy families are all alike; every unhappy family is unhappy in its own way." [Tolstoy. 1877]*

^{*} Leo Tolstoy. Анна Каренина. 1877.

Later do it I will I will later do it That I'll do later Later that I'll do Intuition: "Happy families are all alike; every unhappy family is unhappy in its own way." [Tolstoy. 1877]*

^{*} Leo Tolstoy. Анна Каренина. 1877.

^{**} John DeNero, David Chiang, and Kevin Knight. Fast Consensus Decoding over Translation Forests, ACL 2009.

Later do it I will I will later do it That I'll do later Later that I'll do Intuition: "Happy families are all alike; every unhappy family is unhappy in its own way." [Tolstoy. 1877]*

Idea: Average over sentences to find the phrases that are alike. [DeNero et al. ACL '09]**

"Later" "do" ... "do it" "l'll" "do later"..."do it I will"

^{*} Leo Tolstoy. Анна Каренина. 1877.

^{**} John DeNero, David Chiang, and Kevin Knight. Fast Consensus Decoding over Translation Forests, ACL 2009.

Later do it I will I will later do it That I'll do later Later that I'll do Intuition: "Happy families are all alike; every unhappy family is unhappy in its own way." [Tolstoy. 1877]*

^{*} Leo Tolstoy. Анна Каренина. 1877.

^{**} John DeNero, David Chiang, and Kevin Knight. Fast Consensus Decoding over Translation Forests, ACL 2009.

Later do it I will I will later do it That I'll do later Later that I'll do Intuition: "Happy families are all alike; every unhappy family is unhappy in its own way." [Tolstoy. 1877]*

^{*} Leo Tolstoy. Анна Каренина. 1877.

^{**} John DeNero, David Chiang, and Kevin Knight. Fast Consensus Decoding over Translation Forests, ACL 2009.

Later do it I will I will later do it That I'll do later Later that I'll do Intuition: "Happy families are all alike; every unhappy family is unhappy in its own way." [Tolstoy. 1877]*

"Later"	"do"	•••	"do it"	"[/][//	"do later	,, •••• 	'do it I will'
I	I		ı	0	0		I
I	I		I	0	0		0
I	I		0	I	I		0
I	I		0	I	0		0

^{*} Leo Tolstoy. Анна Каренина. 1877.

^{**} John DeNero, David Chiang, and Kevin Knight. Fast Consensus Decoding over Translation Forests, ACL 2009.

Intuition: "Happy families are all alike; every unhappy family is unhappy in its own way." [Tolstoy. 1877]*

Idea: Average over sentences to find the phrases that are alike. [DeNero et al. ACL '09]**

Later do it I will I will I will later do it
That I'll do later
Later that I'll do

0.120.100.070.07

Lacei	do	•••	40 10	• ••	do lacer	•••	do ic i vviii
I	I		I	0	0		I
I	I		I	0	0		0
I			0		I		0
I	I		0	I	0	_ _	0

"later" "do" "do it" "l'll" "do later" "do it I will"

^{*} Leo Tolstoy. Анна Каренина. 1877.

^{**} John DeNero, David Chiang, and Kevin Knight. Fast Consensus Decoding over Translation Forests, ACL 2009.

Intuition: "Happy families are all alike; every unhappy family is unhappy in its own way." [Tolstoy. 1877]*

Idea: Average over sentences to find the phrases that are alike. [DeNero et al. ACL '09]**

Later do it I will I will later do it That I'll do later Later that I'll do

0.120.100.070.07

Lacci	40	•••	40 10		20 14001	•••	do it i wiii
I	I		I	0	0		I
I	I		I	0	0		0
I	Ī		0	I	I		0
I	I		0	I	0		0

"Later" "do" "do it" "l'll" "do later" "do it I will"

Expected output

1.00

0.97 0.98

0.54

0.41

0.34

0.12

^{*} Leo Tolstoy. Анна Каренина. 1877.

^{**} John DeNero, David Chiang, and Kevin Knight. Fast Consensus Decoding over Translation Forests, ACL 2009.

Yo lo haré después

Yo lo

haré

después

Single System Translation Results

Translation quality in ISI's Full-Scale Arabic-to-English Hierarchical Translation System

- Model-Only Baseline
- Consensus from a List [DeNero et al. ACL '09]*
- Consensus from a Forest [DeNero et al. ACL '09]*

^{*} John DeNero, David Chiang, and Kevin Knight. Fast Consensus Decoding over Translation Forests, ACL 2009.

Q: How do we combine different models?

Q: How do we combine different models?

A: Train a linear consensus model scoring a derivation d:

$$\sum_{i=1}^{I} \left[w_i^{(\alpha)} \alpha_i(d) + \sum_{n=1}^{4} w_i^{(n)} v_i^{(n)}(d) \right] + w^{(b)} \cdot b(d) + w^{(\ell)} \cdot \ell(d)$$

Models

Which model?

Phrase lengths

Expected counts

Model score

Length

Q: How do we combine different models?

A: Train a linear consensus model scoring a derivation d:

$$\sum_{i=1}^{I} \left[w_i^{(\alpha)} \alpha_i(d) + \sum_{n=1}^{4} w_i^{(n)} v_i^{(n)}(d) \right] + w^{(b)} \cdot b(d) + w^{(\ell)} \cdot \ell(d)$$

Length

Models Which Phrase Expected Model model? lengths counts score

Q: What output sentences are considered?

Q: How do we combine different models?

A: Train a linear consensus model scoring a derivation d:

$$\sum_{i=1}^{I} \left[w_i^{(\alpha)} \alpha_i(d) + \sum_{n=1}^{4} w_i^{(n)} v_i^{(n)}(d) \right] + w^{(b)} \cdot b(d) + w^{(\ell)} \cdot \ell(d)$$

Models

Which model?

Phrase lengths

Expected counts

Model score

Length

Q: What output sentences are considered?

A: The union of output spaces of models:

Multi-System Translation Results

Google's Full-Scale Research Translation System for Arabic-to-English

- Best Single-System Model-Only Baseline
- Multi-System Forest-Based Consensus [DeNero et al. NAACL '10]*

Translation quality (BLEU)

^{*} John DeNero, Shankar Kumar, Ciprian Chelba, and Franz Och. Model Combination for Machine Translation, NAACL 2010.

Learn a model

Apply the model

Learn a model

Apply the model

Choose a translation

Statistical models provide distributions over outputs

Learn a model

Apply the model

- Statistical models provide distributions over outputs
- Leveraging those distributions improves performance

Learn a model

Apply the model

- Statistical models provide distributions over outputs
- Leveraging those distributions improves performance
- ▶ Compact representations can enable large-scale computation

Learn a model

Apply the model

- Large-context models
- ▶ Non-parametric models

Learn a model

Apply the model

Choose a translation

[DeNero et al. EMNLP '08]

[DeNero & Klein. ACL '10]

- Large-context models
- ▶ Coarse-to-fine
- ▶ Non-parametric models

Learn a model

Apply the model

Choose a translation

[DeNero et al. EMNLP '08]

[DeNero et al. NAACL '09]

[DeNero & Klein. ACL '10]

- Large-context models
- ▶ Non-parametric models
- ▶ Coarse-to-fine
- ▶ Full distributions
- Compact encodings

Learn a model

Apply the model

Choose a translation

[DeNero et al. EMNLP '08]

[DeNero & Klein. ACL '10]

[DeNero et al. NAACL '09]

[DeNero et al. ACL '09]

[DeNero et al. NAACL'10]

- Large-context models
- Non-parametric models
- ▶ Coarse-to-fine
- ▶ Full distributions
- Compact encodings

Learn a model

Apply the model

Choose a translation

[DeNero et al. EMNLP '08]

[DeNero & Klein. ACL '10]

[DeNero et al. NAACL '09]

[DeNero et al. ACL '09]

[DeNero et al. NAACL'10]

Are we done yet?

- Large-context models
 - .
- ▶ Coarse-to-fine
- ▶ Full distributions

Non-parametric models

Compact encodings

Learn a model

Apply the model

Choose a translation

[DeNero et al. EMNLP '08]

[DeNero & Klein. ACL '10]

[DeNero et al. NAACL '09]

[DeNero et al. ACL '09]

[DeNero et al. NAACL'10]

Are we done yet?

Morphology in alignment modeling

- Large-context models
- Non-parametric models
- ▶ Coarse-to-fine
- ▶ Full distributions
- Compact encodings

Learn a model

Apply the model

Choose a translation

[DeNero et al. EMNLP '08]

[DeNero & Klein. ACL '10]

[DeNero et al. NAACL '09]

[DeNero et al. ACL '09]

[DeNero et al. NAACL'10]

Are we done yet?

- Morphology in alignment modeling
- Unsupervised composed phrase learning

- Large-context models
- Non-parametric models
- ▶ Coarse-to-fine
- ▶ Full distributions
- Compact encodings

Learn a model

Apply the model

Choose a translation

[DeNero et al. EMNLP '08]

[DeNero & Klein. ACL '10]

[DeNero et al. NAACL '09]

[DeNero et al. ACL '09]

[DeNero et al. NAACL'10]

Are we done yet?

- Morphology in alignment modeling
- Unsupervised composed phrase learning
- Adding information to consensus models

Acknowledgements

John Thank you!

Juan Gracias!

and many thanks to my excellent coauthors on this work:

Berkeley: Mohit Bansal, John Blitzer, Alex Bouchard-Côté, Aria Haghighi, Dan Klein, and Adam Pauls

Information Sciences Institute: David Chiang and Kevin Knight

Google: Ciprian Chelba, Shankar Kumar, and Franz Och