Prática Avançada de Programação A

Estrutura de Dados: Heap

Prof. Alexandre Donizeti Alves

Bacharelado em Ciência da Computação

Terceiro Quadrimestre - 2017

FILAS DE PRIORIDADE

Filas de Prioridade

- Motivação
- Conceitos básicos
- Operações básicas
- Heap

Motivação

- Os dados possuem prioridades.
- A prioridade de um dado pode variar ao longo do tempo.
- Quando desejado, deve-se selecionar o dado de maior de prioridade.

Conceitos básicos

- Fila de prioridade é estrutura de dados que mantém uma coleção de elementos, cada um com uma prioridade associada
 - Fila de prioridade máxima
 - Fila de prioridade mínima

Operações básicas

- Seleção do elemento de maior prioridade
- Inserção de um novo dado
- Remoção do dado de maior prioridade

- Também é desejada a seguinte operação:
 - alteração de prioridade de um dado

HEAP

Heap

Um heap é uma lista linear composta com chaves
s₁, ..., s_n, satisfazendo

$$s_i \le s_{L^{i/2}J}$$

- A chave representa a prioridade do elemento
- Os heaps formam uma estrutura conveniente para implementar listas de prioridades

Exemplo

S _i	95	60	78	39	28	66	70	33
i	1	2	3	4	5	6	7	8

$$s_8 \le s_4 = 33 \le 39$$

$$s_7 \le s_3 = 70 \le 78$$

$$s_6 \le s_3 = 66 \le 78$$

- - -

Exercício

Verifique se as seguintes listas constituem heaps:

(ii) 33 32 28 31 29 26 25 30 27

Heap

- Um heap pode ser visualizado através de uma árvore binária completa T
- Os nós de T são numerados sequencialmente, da raiz para os níveis mais altos, da esquerda para a direita
- Cada nó de T corresponde a uma chave, sendo o rótulo do nó igual à prioridade da chave
- Os nós do último nível de T são preenchidos da esquerda para a direita

Exemplo

8

s _i	95	60	78	39	28	66	70	33
i	1	2	3	4	5	6	7	8

Heap implementado com vetor

- A raiz está em v[1]
- O filho esquerdo de v[i] é v[2i]
- O filho direito de v[i] é v[2i + 1]
- O pai de v[i] será v[Li / 2」]

Bibliografia Básica

Cormen, T. H. et. al. **Algoritmos: Teoria e Prática**.

3ª Edição. Editora Elsevier, 2012 Capítulo 6

Szwarcfiter, J. L. e Markenzon, L. **Estruturas de Dados e seus Algoritmos**.

3ª Edição. Editora LTC, 2010

Capítulo 6

Referências

