# CHEMISTRY ASESORÍA



TOMO V









 $Zn + HNO_3$   $Zn(NO_3)_2 + NO_2 + H_2O$ 

#### **Indique lo incorrecto:**

- A) El agente oxidante es el HNO<sub>3</sub>
- B) El nitrógeno se reduce
- El cinc no se oxida ni se reduce
- D) En el NO<sub>2</sub>, el nitrógeno tiene como carga 4+
- E) El H<sub>2</sub>O es el espectador.



#### Resolución:









Dada la siguiente reacción para purificar el cadmio que se puede emplear como catalizador:

$$CdO + H_2 \qquad Cd + H_2O$$

De ella se deduce que las semirreacciones de oxidación y de reducción, respectivamente son:

I) 
$$Cd^{2+} + 2e^{-}$$
 Cd

III) 
$$H_2$$
  $2H^+ + 2e^-$ 

IV) 
$$Cd^{2+}$$
  $Cd + 2e^{-}$ 

Son correctas:

C) III y IV D) I y II

#### Resolución:

#### Sea la reacción:



Las semirreacciones son:

Oxidación: 
$$H_2$$
  $2H^+ + 2e^-$ 

**Rpta:** A



Al balancear la siguiente reacción química:

$$Na_2Cr_2O_7 + HBr$$
  $NaBr + CrBr_3 + Br_2 + H_2O$ 

La diferencia entre los coeficientes de los productos y reactantes es

$$A) - 4$$



$$Na_2Cr_2O_7 + 3x2HBr$$

$$Na_2Cr_2O_7 + 3x^2HBr$$
  $NaBr + 2CrBr_3 + 3Br_2 + H_2O$ 

Luego se completa por tanteo:

$$Na_2Cr_2O_7 + 14 HBr$$
 2 NaBr + 2CrBr<sub>3</sub> + 3Br<sub>2</sub> + 7H<sub>2</sub>O

$$\Sigma$$
 Coef. React.= 1 + 14 = 15

$$\Sigma$$
 Coef. Prod.= 2 + 2 + 3 + 7 = 14

Rpta: C





A) 0,2 m<sup>3</sup>



C) 400 L

D) 4 000 L

# Resolución:

La ecuación balanceada es:

$$C_3H_8 + 5O_2 + 4H_2O$$

**21%***Vaire* = 
$$\frac{84 \ 5V}{V}$$

Rpta: B



 $m^3$ 



Calcule la masa, en gramos, de cloruro de potasio que se obtiene al descomponerse 332 g de clorato de potasio por acción del calor. Dato:

m.F.: KClO<sub>3</sub> = 122 g/mol; KCl = 74 g/mol. 
$$(A)$$
 201,4 B) 402,8 C) 10

E) 2,01

#### Resolución:

Recordar:

Reacción de descomposición

La reacción de descomposición del clorato de potasio es:

$$\frac{2}{2}$$
 KClO<sub>3(s)</sub> →2 KCl<sub>(s)</sub>  $\frac{3}{3}$ + O<sub>2(g)</sub>

$$m_{KCI} = 201,4 g$$





Se hace reaccionar una mezcla gaseosa compuesta de 100 g de hidrógeno molecular y 100 g de oxígeno molecular de modo que se forme agua. Determine la masa, en gramos, de agua formada. Dato. m.A.(u): H = 1; O =

A) 161,4



E) 34,2

# Resolución:

#### Planteando y balanceando la reacción:

$$2H_2 + O_2$$
  $2 H_2O$   
 $32 g$   $2 \cdot 18 g$   
 $100 g$   $m H_2O$ 

### Determinando el Reactivo Limitante (R.L.) y Reactivo en Exceso (R.E.)

Para 
$$\frac{100}{2 \cdot 2} = 25$$
 R.E.  $H_2$ : Para  $O_2$ :  $\frac{100}{32} = 3,125$  R.L.



$$mH_2O = 112,5 g$$



7 Con respecto a la ley del equivalente químico, determine la masa equivalente de Q en la siguiente reacción. <u>Dato</u>: m.E. (E) = 9



## Por la "LEY DE EQUIVALENCIA" #Eq-g (E) = #Eq-g (Q)

#### Reemplazando

Rpta: A



Determine el número de equivalentes de sulfuro de hidrógeno (H<sub>2</sub>S) si en condiciones normales ocupa un volumen de 112 L. <u>Datos</u>: m.A.: H = 1; S = 32.

A) 1,25

B) 2,50

C) 5,00

**D**) 10,00

E) 20,00

## Resolución:

"Para el número de equivalentes"

#### **Donde**

$$mE_{(H2S)} = \frac{M}{\Theta}$$

$$H_{2S} = 2 \times 1 + 1 \times 32 = 34$$

$$\Theta = 2$$

Hallando  
m.E.:  

$$m.E_{(H_2S)} = \frac{\overline{M}}{\Theta} = \frac{34}{2} = 17$$

**Rpta:** D



9 En la reacción química mostrada

$$H_3PO_4$$
 +  $KHSO_4$   $KH_2PO_4$  +  $H_2SO_4$ 

determine la masa equivalente del ácido fosfórico  $H_3PO_4$ . Datos: mA(H = 1, O = 16, P = 31)

Resolución:

$$H_{3}PO_{4}^{2}$$
 3 x 1 + 31 + 4 x 16 = 98  
 $\Theta = 1$ 

m.E. 
$$H_3PO_4 = \frac{1}{\Theta} = - = 98$$
  $mE_{(H_3PO_4)} = -$ 

**Rpta:** B



Los alimentos que se ingieren son degradados o desdoblados en el cuerpo para proporcionar la energía necesaria, para el crecimiento y otras funciones. La ecuación global para este complicado proceso está representada por la degradación de la glucosa  $(C_6H_{12}O_6)$  en dióxido de carbono y agua

$$C_6H_{12}O_6 + O_2 + CO_2 + H_2O$$

$$CO_2 + H_2O$$

Si la persona consume 630 g de glucosa durante cierto periodo; determine el volumen en litros de dióxido de carbono producido en condiciones normales. <u>Dato</u>: m.A.(u): H = 1; O = 16; C =12.

10

#### Resolución:

Balanceando la reacción:

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6 CO_2 + 6H_2O$$

Luego:

$$V_{CO_2} = V_{CO_2} = 470,4 L$$

Rpta: A