Student Id: 06.10.2016

Name Surname: Signature:

BLG311E – FORMAL LANGUAGES AND AUTOMATA

2016 FALL

QUIZ 1

The figure on the right shows the <u>initial state</u> of a marble rolling toy. A marble can be dropped from A or B. Levers X_1 and X_2 cause the marble to fall either to the left(L) or to the right(R) (the setting in the figure is LL, meaning X_1 =Left, X_2 =Left). Whenever a marble encounters a lever, it causes the lever to reverse <u>after</u> the marble passes, so the next marble will take the opposite branch. The marble leaves the toy either from C or D depending on the lever settings. The player wins the game if the marble leaves the toy from C.

Model this machine as a finite state automaton and draw its state transition diagram. Consider the states where the player wins the game as the final (accepted) states.

Signature:

Solution:

Determining possible states that the machine can be in by starting from the initial state, checking transitions for different inputs (A and B) and creating new states for different possible configurations $(X_1,X_2,Output)$:

State				Input	
Label	X ₁	X ₂	Output	Α	В
S ₀	L	L	-	S ₁	S ₂

Both inputs result in different configurations (new states) than $\mathsf{S}_0.$

State				Input	
Label	X ₁	X ₂	Output	Α	В
S ₀	L	L	- (D)	S_1	S ₂
*S ₁	R	L	С	S ₀	
*S ₂	R	R	С		

 $S_1 \stackrel{A}{\to} S_0$: Output of S_0 can be considered as D (not an accepted final state)

State				Input	
Label	X ₁	X ₂	Output	Α	В
S_0	L	L	- (D)	S_1	S ₂
*S ₁	R	L	С	S_0	S ₃
*S ₂	R	R	С		

B results in a different configuration (a new state) than S_0, S_1 and S_2 in S_1 .

State				Input	
Label	X_1	X ₂	Output	Α	В
S ₀	L	L	- (D)	S_1	S ₂
*S ₁	R	L	С	S ₀	S ₃
*S ₂	R	R	С	S ₃	
S ₃	L	R	D		

$$S_2 \stackrel{A}{\rightarrow} S_3$$

State				Input	
Label	X ₁	X ₂	Output	Α	В
S ₀	L	L	- (D)	S_1	S ₂
*S ₁	R	L	С	S ₀	S ₃
*S ₂	R	R	С	S ₃	S ₄
S ₃	L	R	D		

B results in a different configuration (a new state) than S_0, S_1, S_2 and S_3 in S_2 .

$$S_3 \xrightarrow{A} S_2$$

$$S_3 \xrightarrow{B} S_6$$

$$S_4 \stackrel{A}{\rightarrow} S_0$$

$$S_4 \xrightarrow{B} S_3$$

Student Id: 06.10.2016

Name Surname: Signature:

State Transition Diagram:

