

آزمایشگاه مدار های منطقی

آزمایش ۱

گروه ۲

مهدی علی نژاد ۴۰۱۱۰۶۲۶۶

مبین پورعابدینی ۴۰۱۱۱۰۵۵۶

الینا هژبری ۴۰۱۱۷۰۶۶۱

دانشکده ی مهندسی کامپیوتر

	فهرست مطالب
Υ	هدف آزمایش
Υ	وسایل مورد نیاز
	شـرح آزمايش
V	نتیجه ی مورد انتظار
	چالش ها
9	نتیجه ی آزمایش

هدف آزمایش

هدف از این آزمایش آشنایی با وسایل و تجهیزات مورد استفاده در آزمایشگاه مدار منطقی میباشد. در این آزمایش دانشجویان با نحوه کار با بِرِد بورد (board bread)و تراشه های ابتدائی TTL آشنا می شود.

وسایل مورد نیاز

- منبع تغذیه
 - اسکوپ
- مولتی متر
- Bread board
 - پالس
 - پتانسيومتر
- تراشه ی 7404
- تراشه ی 74HC04
 - LED •
- مقاومت های ۳۳۰ و ۱۰۰۰ اهمی
 - سيم هاى اتصال

شرح آزمایش

الف) ولتاژ خروجی منبع تغذیه را با اسکوپ اندازه بگیرید .

ب) با استفاده از مولتی متر نحوه اتصالات داخلی برد بورد را پیدا کنید .

پ) ولتاژ ۵ ولت را روی یک خط افقی بورد و GND را روی خط افقی دیگر قرار دهید. مدار شکل (۱) را ببندید. بدین وسیله یک نشان دهنده ولتاژ ساخته اید .

شكل ١- نشان دهنده ولتاژ

ت) خروجی پالس ساعت را توسط نشان دهنده ولتاژ مشاهده کنید .

ث) با قرار دادن یک پتانسیومتر در خروجی منبع تغذیه، مطابق شکل (۲) یک منبع تغذیه متغیر (۰ تا ۵ولت) بسازید. آزمایش را با دو پتانسیومتر مختلف انجام دهید و نتایج را مقایسه کنید .

شكل ٢- منبع تغذيه

ج) تراشه ۲۴۰ ساده ترین تراشه از نوع TTL است که ۶ معکوسکننده دارد. تراشه را برروی برد بورد قرار دهید. با توجه به شکل (۳) که از کاتالوگ TTL استخراج شده است، پایه های تراشه را شناسایی کنید. پایه های ۱۴ و ۷ که با علامت Vcc و به شکل (۳) که از کاتالوگ GND استخراج شده است، پایه های تراشه های تو با که با علامت GND و و GND و و GND و و GND و و تاژ پایه ۲ را با اسکوپ مشاهده و ثبت کنید. حال ولتاژ پایه ۱ را نیز اندازه بگیرید و ثبت کنید. این آزمایش را برای یک تراشه 74HC04 تکرار کنید.

شكل ٣- تراشه 7404

Description

The 74HC04 provides provides six independent inverters with standard push-pull outputs. The device is designed for operation with a power supply range of 2.0V to 6.0V.

The gates perform the Boolean function:

 $Y=\overline{\boldsymbol{A}}$

| Cop View | Top View

SO-14 / TSSOP-14

چ) ورودی ۱ را از طریق یک مقاومت یک کیلو اهم به ولتاژ ۵ ولت وصل کنید و ولتاژ خروجی را با اسکوپ مشاهده و ثبت کنید. سپس ورودی ۱ را به GND وصل کنید و ولتاژ خروجی را مشاهده و ثبت نمائید .

ح) خروجی منبع تغذیه متغیری که ساخته اید را به پایه ۱ تراشه وصل کنید. از ولتاژ صفر شروع کنید و در هر مرحله نیم ولت افزایش دهید تا به ولتاژ ۵ ولت برسید. در هر مرحله ولتاژ خروجی را مشاهده و ثبت کنید. سپس مشخصه انتقالی را رسم کنید.

نتیجه ی مورد انتظار

الف) انتظار داریم شاهد عدد ۵ در اسکوپ باشیم.

- ب) —
- پ) —
- ت) تغییرات ساعت را مشاهده خواهیم کرد.
- ث) در صورت سالم بودن قطعات باید شاهد نتایج یکسان باشیم.
- ج) احتمالا شاهد ولتاژی ۰ صفر و ۵ از ورودی و ولتاژ مطلق ۰ یا ۵ از خروجی خواهیم بود.
- چ) در صورت متصل بودن ورودی به ولتاژ α ولت شاهد خروجی \cdot و در صورت متصل بودن به GND خروجی α انتظار می رود
 - ح) با افزایش ولتاژ ورودی همان میزان از خروجی کاسته شود و برعکس

چالش ها

به چالش خاصی بر نخوردیم صرفا دو سیم خراب پیدا کردیم.

نتیجه ی آزمایش الف)

ب) متوجه شدیم که دو ردیف اول و آخر به هم متصل اند و هرکدام از ردیف های وسط نیز عمودی با هم ارتباط دارند

پ)

ت)

ث) نتایج همان گونه بود که انتظار داشتیم

((به علت حجم بالای فیلم، در گیت هاب اَ پلود شده است))

https://github.com/Mobin-Pourabedini/Az_madar/tree/main/LDLR1

ج) با متصل بودن به ورودی یا خروجی به ولتاژی حدود یک ولت رسیدیم

چ)

۱۱

ح) در این بخش به نتیجه ی جالبی رسیدیم زیرا ولتاژ خروجی به ازای ولتاژ ورودی بین صفر تا یک ولت، ۵ ولت و به ازای ۱ تا ۵، صفر بود.

((به علت حجم بالای فیلم، در گیت هاب آپلود شده است))

 $\underline{https://github.com/Mobin-Pourabedini/Az_madar/tree/main/LDLR1}$

