CS11-711 Advanced NNLP

Word Representation and Text Classifiers

Graham Neubig

https://phontron.com/class/anlp-fall2024/

Reminder: Bag of Words (BOW)

Features *f* are based on word identity, weights *w* learned Which problems mentioned before would this solve?

What's Missing in BOW?

- Handling of conjugated or compound words
 - I love this move -> I loved this movie
- Handling of word similarity
 - I love this move -> I adore this movie
- Handling of combination features
 - I love this movie -> I don't love this movie
 - I hate this movie -> I don't hate this movie
- Handling of sentence structure
 - It has an interesting story, **but** is boring overall

Subword Models

Word Embeddings

Neural Networks

Sequence Models

Subword Models

Basic Idea

Split less common words into multiple subword tokens

```
the companies are expanding

the compan _ies are expand _ing
```

- Benefits:
 - Share parameters between word variants, compound words
 - Reduce parameter size, save compute+memory

Byte Pair Encoding

(Sennrich+ 2015)

Incrementally combine together the most frequent token pairs

```
\{'low </w>': 5, 'lower </w>': 2, 'newest </w>': 6, 'widest </w>': 3\}
                              pairs = get_stats(vocab)
[(('e', 's'), 9), (('s', 't'), 9), (('t', '</w>'), 9), (('w', 'e'), 8), (('l', 'o'), 7), ...]
                       vocab = merge_vocab(pairs[0], vocab)
   {'low</w>': 5, 'lower</w>': 2, 'newest</w>': 6, 'widest</w>': 3}
                              pairs = get_stats(vocab)
[(('es', 't'), 9), (('t', '</w>'), 9), (('l', 'o'), 7), (('o', 'w'), 7), (('n', 'e'), 6)]
                       vocab = merge_vocab(pairs[0], vocab)
      {'low</w>': 5, 'lower</w>': 2, 'newest</w>': 6, 'widest</w>': 3}
```

Example code:

https://github.com/neubig/anlp-code/tree/main/02-subwords

Unigram Models (Kudo 2018)

- Use a unigram LM that generates all words in the sequence independently (more next lecture)
- Pick a vocabulary that maximizes the log likelihood of the corpus given a fixed vocabulary size
 - Optimization performed using the EM algorithm (details not important for most people)
- Find the segmentation of the input that maximizes unigram probability

SentencePiece

 A highly optimized library that makes it possible to train and use BPE and Unigram models

Python bindings also available

https://github.com/google/sentencepiece

Subword Considerations

- Multilinguality: Subword models are hard to use multilingually because they will over-segment less common languages naively (Ács 2019)
 - Work-around: Upsample less represented languages
- Arbitrariness: Do we do "es t" or "e st"?
 - Work-around: "Subword regularization" samples different segmentations at training time to make models robust (Kudo 2018)

Continuous Word Embeddings

Basic Idea

- Previously we represented words with a sparse vector with a single "1" a one-hot vector
- Continuous word embeddings look up a dense vector

Continuous Bag of Words (CBOW)

What do Our Vectors Represent?

- No guarantees, but we hope that:
 - Words that are similar (syntactically, semantically, same language, etc.) are close in vector space
 - Each vector element is a **features** (e.g. is this an animate object? is this a positive word, etc.)

Shown in 2D, but in reality we use 512, 1024, etc.

A Note: "Lookup"

 Lookup can be viewed as "grabbing" a single vector from a big matrix of word embeddings num. words

 Similarly, can be viewed as multiplying by a "onehot" vector

Former tends to be faster

Training a More Complex Model

Reminder: Simple Training of BOW Models

Use an algorithm called "structured perceptron"

Full Example:

https://github.com/neubig/anlp-code/tree/main/01-simpleclassifier

How do we Train More Complex Models?

- We use gradient descent
 - Write down a loss function
 - Calculate derivatives of the loss function wrt the parameters
 - Move in the parameters in the direction that reduces the loss function

Loss Function

- A value that gets lower as the model gets better
- Examples from binary classification using score s(x)

Hinge Loss

Sigmoid + Negative Log Likelihood

more closely linked to acc

probabilistic interpretation, gradients everywhere

Calculating Derivatives

- Calculate the derivative of the parameter given the loss function
- Example from BOW model + hinge loss

$$\frac{\partial \max(0, -y * \sum_{i}^{|\mathcal{V}|} w_i \text{freq}(v_i, x))}{\partial w_i} =$$

$$\begin{cases} -y \cdot \text{freq}(v_i, x) & \text{if } -y \cdot \sum_{i}^{|\mathcal{V}|} w_i \text{freq}(v_i, x) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Optimizing Parameters

Standard stochastic gradient descent does

$$g_t = \nabla_{\theta_{t-1}} \ell(\theta_{t-1})$$
Gradient of Loss

$$\theta_t = \theta_{t-1} - \underline{\eta}g_t$$
 Learning Rate

 There are many other optimization options! (see Ruder 2016 in references)

What is this Algorithm?

- Loss function: Hinge Loss
- Optimizer: SGD w/ learning rate 1

Combination Features

Combination Features

I don't love this movie

There's nothing I don't love about this movie

very good neutral bad very bad

very good good neutral bad very bad very bad

Basic Idea of Neural Networks (for NLP Prediction Tasks)

Deep CBOW

What do Our Vectors Represent?

- Now things are more interesting!
- We can learn feature combinations (a node in the second layer might be "feature 1 AND feature 5 are active")
- e.g. capture things such as "not" AND "hate"

What is a Neural Net?: Computation Graphs

"Neural" Nets

Original Motivation: Neurons in the Brain

Current Conception: Computation Graphs

Image credit: Wikipedia

 \mathbf{X}

graph:

A node is a {tensor, matrix, vector, scalar} value

An **edge** represents a function argument (and also an data dependency). They are just pointers to nodes.

A **node** with an incoming **edge** is a **function** of that edge's tail node.

A **node** knows how to compute its value and the value of its derivative w.r.t each argument (edge) times a derivative of an arbitrary input $\frac{\partial \mathcal{F}}{\partial f(\mathbf{u})}$.

$$\frac{f(\mathbf{u}) = \mathbf{u}^{\top}}{\partial \mathbf{u}} \frac{\partial f(\mathbf{u})}{\partial f(\mathbf{u})} = \left(\frac{\partial \mathcal{F}}{\partial f(\mathbf{u})}\right)^{\top}$$

$$\mathbf{x}^{\top}\mathbf{A}$$

graph:

Functions can be nullary, unary, binary, ... *n*-ary. Often they are unary or binary.

$$\mathbf{x}^{ op}\mathbf{A}\mathbf{x}$$

graph:

Computation graphs are directed and acyclic (in DyNet)

$$\mathbf{x}^{\top}\mathbf{A}\mathbf{x}$$

graph:

$$f(\mathbf{x}, \mathbf{A}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x}$$

$$\begin{split} \frac{\partial f(\mathbf{x}, \mathbf{A})}{\partial \mathbf{x}} &= (\mathbf{A}^\top + \mathbf{A})\mathbf{x} \\ \frac{\partial f(\mathbf{x}, \mathbf{A})}{\partial \mathbf{A}} &= \mathbf{x}\mathbf{x}^\top \end{split}$$

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b} \cdot \mathbf{x} + c$$

graph:

$$y = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b} \cdot \mathbf{x} + c$$

graph:

variable names are just labelings of nodes.

Algorithms (1)

- Graph construction
- Forward propagation
 - In topological order, compute the value of the node given its inputs

Algorithms (2)

Back-propagation:

- Process examples in reverse topological order
- Calculate the derivatives of the parameters with respect to the final value (This is usually a "loss function", a value we want to minimize)

· Parameter update:

Move the parameters in the direction of this derivative

$$W = a * dI/dW$$

Back Propagation

Concrete Implementation Examples

Neural Network Frameworks

Developed by FAIR/Meta

Most widely used in NLP

Favors dynamic execution

More flexibility

Most vibrant ecosystem

Developed by Google

Used in some NLP projects

Favors definition+compilation

Conceptually simple parallelization

Basic Process in Neural Network Frameworks

- Create a model
- For each example
 - create a graph that represents the computation you want
 - calculate the result of that computation
 - if training, perform back propagation and update

Bag of Words (BOW)

Continuous Bag of Words (CBOW)

https://github.com/neubig/anlp-code/tree/main/02-textclass

Deep CBOW

https://github.com/neubig/anlp-code/tree/main/02-textclass

A Few More Important Concepts

A Better Optimizer: Adam

- Most standard optimization option in NLP and beyond
- Considers rolling average of gradient, and momentum

$$m_t=\beta_1 m_{t-1}+(1-\beta_1)g_t$$
 Momentum
$$v_t=\beta_2 v_{t-1}+(1-\beta_2)g_t\odot g_t$$
 Rolling Average of Gradient

Correction of bias early in training

$$\hat{m}_t = \frac{m_t}{1 - (\beta_1)^t} \quad \hat{v}_t = \frac{v_t}{1 - (\beta_2)^t}$$

Final update

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

Visualization of Embeddings

 Reduce high-dimensional embeddings into 2/3D for visualization (e.g. Mikolov et al. 2013)

Non-linear Projection

- Non-linear projections group things that are close in highdimensional space
- e.g. SNE/t-SNE (van der Maaten and Hinton 2008) group things that give each other a high probability according to a Gaussian

t-SNE Visualization can be Misleading! (Wattenberg et al. 2016)

Settings matter

Linear correlations cannot be interpreted

Any Questions?

(sequence models in next class)