

Calibrating fire insulation models through Bayesian Inference

Presentation

Author(s):

Wagner, Paul-Remo (D); Fahrni, Reto; Klippel, Michael; Sudret, Bruno (D)

Publication date:

2017-10-24

Permanent link:

https://doi.org/10.3929/ethz-b-000226869

Rights / license:

In Copyright - Non-Commercial Use Permitted

Calibrating fire insulation models through Bayesian Inference

P.-R. Wagner^a, R. Fahrni^b, M. Klippel ^b, B. Sudret^a

Outline

- 1 Problem Formulation
- 2 Calibration through Bayesian Inference
- 3 Results

Fire Insulation in Timber Structures

Design Approach

- Restrict the spread of fire (separating function)
- Simulation of behavior largely based on temperature-dependent parameters $(\lambda(T), c(T))$
- Design method requires $\lambda(T)$, c(T)

Schleifer (2009), Breu (2016)

Need for an efficient method to determine $\lambda(T)$, c(T)

Computational Model ${\cal M}$

Experimental Data

Setup

- test specimens subjected to ISO-fire curve
- temperature measured over time at interface between the insulation material and a particle board

Experimental Data

Observations for Isofloc insulation

- non-homogeneous material
- cracking
- non-uniform heating

Dubach (2016)

Experimental Data

Observations for Isofloc insulation

- non-homogeneous material
- cracking
- non-uniform heating

Dubach (2016)

How to account for these uncertainties during calibration?

Outline

- Problem Formulation
- 2 Calibration through Bayesian Inference
- Results

Bayesian Inference

Allows the combination of prior information with new acquired data $\mathcal D$ to posterior information

Bayes' Theorem

$$\underbrace{p(\boldsymbol{\theta}|\mathcal{D})}_{\text{Posterior}} \propto \underbrace{p(\mathcal{D}|\boldsymbol{\theta})}_{\text{Likelihood}} \underbrace{p(\boldsymbol{\theta})}_{\text{Prior}}$$

Samples from the posterior distribution correspond to the most plausible parameters θ given the data \mathcal{D} and prior information.

Samples from the posterior can be obtained through MCMC

Surrogate Model $\overline{\mathcal{M}}^{PC}$

Surrogate Model $\overline{\mathcal{M}}^{PC}$

Surrogate Model \mathcal{M}^{PC}

Polynomial Chaos

$$\mathcal{M}^{PC} = \sum_{oldsymbol{lpha} \in \mathbb{N}} oldsymbol{y_{oldsymbol{lpha}}} oldsymbol{\Psi_{oldsymbol{lpha}}}(oldsymbol{X})$$

Much faster:

1 run of \mathcal{M} : 70 sec.

 $1e6 \text{ runs of } \mathcal{M}^{PC}$: 17 sec.

Surrogate Model \mathcal{M}^{PC}

\mathcal{M}^{PC} Polynomial Chaos

$$\mathcal{M}^{PC} = \sum_{oldsymbol{lpha} \in \mathbb{N}} oldsymbol{y}_{oldsymbol{lpha}} oldsymbol{\Psi}_{oldsymbol{lpha}}(oldsymbol{X})$$

Much faster:

 $1 \text{ run of } \mathcal{M}$: 70 sec.

1e6 runs of \mathcal{M}^{PC} : 17 sec.

Total cost for Bayesian Calibration:

- 2 hours using PCE
- 6.7 years using original model

Outline

- Problem Formulation
- 2 Calibration through Bayesian Inference
- 3 Results

For one measurement

For one measurement

For all measurements

For all measurements

A hierarchical model shall be used to account for the variability between measurements and test panels

Conclusion

- Calibration of models with experiments is of general interest in D-BAUG
- Bayesian framework allows the efficient combination of simulations and experiments
- PCE is a general non-intrusive method for surrogate modeling that saves 5-6 orders of magnitude of time in simulations for model calibration
- All the tools are available in UQLab

You're welcome to come to us with your problem!

Thank You!

Questions?