Introduction to Probabilistic Graphical Models Practical Session 2

Umut Şimşekli Télécom Paris umut.simsekli@telecom-paristech.fr

Instructions: The codes should be written in Python and no scanned papers will be accepted. Groups of 2 people are allowed. Put all your files (code and report – could be a single notebook file) in a zip file and submit it through moodle before October 29 2019, 23:50. Late submissions will not be accepted.

EM for GMMs

Question 1

In Gaussian Mixture Models, we often need to evaluate quantities that are defined as follows:

$$\gamma_i(x) = \frac{\pi_i \mathcal{N}(x; \mu_i, \Sigma_i)}{\sum_{j=1}^K \pi_j \mathcal{N}(x; \mu_j, \Sigma_j)},$$

where $\pi_i \in [0, 1]$ and \mathcal{N} denotes the multivariate Gaussian distribution. A direct computation of these quantities might be problematic in practice since all the terms $(\pi_i \mathcal{N}(x; \mu_i, \Sigma_i))$ might be very small, and we might end up with 0/0. Derive mathematically (don't try to take the derivative!) and implement a function for numerically stable computation of $\{\gamma_i\}_{i=1}^K$.

Hint: first compute $\ell_i = \log \pi_i \mathcal{N}(x; \mu_i, \Sigma_i)$ in a numerically stable way (be careful when computing $\log \det \Sigma_i$). Then use a trick similar to the one we used for 'log_sum_exp'.

Question 2

Let us consider a Gaussian Mixture Model (GMM), given as follows:

$$p(x_n) = \sum_{i=1}^K \pi_i \mathcal{N}(x_n; \mu_i, \Sigma_i). \tag{1}$$

where $\{x_n\}_{n=1}^N$ is a set of observed data points. Derive the M-Step of the Expectation-Maximization algorithm for this model, to find $\pi_{1:K}^{(t+1)}, \mu_{1:K}^{(t+1)}, \Sigma_{1:K}^{(t+1)}$, where t denotes the iteration number.

Question 3

Consider the model given in Equation 1. Set K=3, $\pi_1=0.3$, $\pi_2=0.2$, $\pi_3=0.5$, $\mu_1=[0;0]$, $\mu_2=[1;2]$, $\mu_3=[2;0]$, $\Sigma_1=[1.00,-0.25;-0.25,0.50]$, $\Sigma_2=[0.50,0.25;0.25,0.50]$, $\Sigma_3=[0.50,-0.25;-0.25,1]$.

- 1. Generate a dataset $\{x_n\}_{n=1}^N$ by using the model definition (set N=1000). Visualize the dataset.
- 2. Implement the EM algorithm for GMMs (be careful about numerical stability!).

- (a) Forget about the true parameters $\pi_{1:K}$, $\mu_{1:K}$, and $\Sigma_{1:K}$ for now. By only considering the dataset $\{x_n\}_{n=1}^N$ that is generated in the previous step, run the EM algorithm after randomly initializing the parameter estimates $\pi_{1:K}^{(0)}$, $\mu_{1:K}^{(0)}$, and $\Sigma_{1:K}^{(0)}$. Visualize the intermediate results by plotting the contours of the estimated Gaussians.
- (b) While running the EM algorithm, compute the log-likelihood. Plot the log-likelihood vs iterations (be careful about numerical stability!).
- (c) Run the EM algorithm with different initializations for $\pi_{1:K}^{(0)}$, $\mu_{1:K}^{(0)}$, and $\Sigma_{1:K}^{(0)}$. How sensitive is the algorithm for different initial values?