Financial Engineering MAL 7350

Assignment 1- Portfolio Optimization Instructor: Dr. Vivek Vijay

Submitted by

Ajit Kumar (M21CS017)

Nammi Venkata Apparao (P20MA210)

Rajat Rawat (M21CS014)

Portfolio Optimization MAL 7350

Contents

- Introduction
- Ten Risky asset with the return values.
- Markowitz efficient frontier using mean-variance theory
- Obtaining CAPM model & drawing line and tangent to the efficient frontier
- Obtaining SMLs using three risky assets

Introduction

Modern portfolio theory (MPT), or mean-variance analysis, is a mathematical framework for assembling a portfolio of assets such that the expected_return is maximized for a given level of risk. It is a formalization and extension of diversification in investing, the idea that owning different kinds of financial assets is less risky than owning only one type. Its key insight is that an asset's risk and return should not be assessed by itself, but by how it contributes to a portfolio's overall risk and return. It uses the variance of asset prices as a proxy for risk.

Calculation Step

- First we have taken 3 months(01–10–2020 to 31–12–2020) closing price data of 10 risky assets from investing.com.
- Next, we have calculated daily percentage returns for 10 assets.

Return=((Tomorrow price-Today price)/today price)*100

• After that, we have calculated mean of each company's daily percentage returns and it is named as m.

mean=(sum of returns)/Total number of days

• Next we have calculated covariance matrix as "CV".

Ret Apple 1.371008 2.241461 1.236221 0.473874 1.086306 1.274195 -0.68341 -0.14546 Ret Facebo 1.43427 1.236221 4.133185 0.523256 1.334451 1.335432 -1.03127 0.01762 Ret Micros 1.129222 1.274195 1.335432 0.336417 1.669846 1.955906 -0.92308 -0.04598 1.877832 1.384209			-0.68341 -0.14546				1 1 1 1 1 1 1 1 1 1 1		0.063186 - 0.345373 -		Managaria (A)		
	t Micros	1.129222	1.274195	1.335432	0.336417	1.669846	1.95590	6 -0.92308	-0.04598 1	.877832	1.384209		1.
Ret Amazc 2.496236 1.371008 1.43427 0.429043 1.45726 1.129222 -1.06752 -0.00997	Ret A	Apple 1	.371008	2.24146	1 1.236	221 0.4	73874	1.086306	1.274195	-0.68	341 -0.	14546	100

• Then we calculated, inverse of CV and named as "CI".

	0.551	0.551576 -0.19541		- <mark>0.0961</mark>	-0.2864	13 0.509	0.509931		64765	- <mark>0.22674</mark>	-0.09392	0.092	
	-0.19	541	0.874769		-0.01748	-0.1259	99 -0.29	-0.29585		06289	0.113748	0.294068	-0.06
	-0.0961		-0.01748		0.365033	-0.0952	14 0.031	0.031555		16574	-0.01979	-0.07468	-0.00
	-0.28	8643	-0.	12599	-0.09514	1.7303	35 0	.495	-0.	40752	-0.14522	0.011437	-0.02
Inverse	0.509931		-0.29585		0.031555	0.49	95 -1.20	-1.20856		50058	0.65369	-0.14666	-0.04
	-0.22074	U.11:	3/48	-0.013/3	9 -0.14322	U.03309	-0.201/2	-U.1	4332 0.0300		1.9 000000000000000000000000000000000000	U.UU3393	
(-0.09392	0.2940	1068 -0.0746	58 0.011437	-0.14666	0.111463	0.05	0014	3.03743	0.065578			
	0.092473	092473 -0.0		-0.0009	6 -0.02511	-0.04837	-0.01587	0.02	9801 -0.0270		0.095641	-0.0399	
(-0.08755	0.0	1926	-0.052	8 -0.06281	0.035168	-0.01247	0.00	5395	0.06557	-0.0399	0.154998	

Inverse Matrix

Covariance matrix and inverse of it calculated as follows:

Covariance=VARP(Sheet1!\$K\$2:\$K\$64)

Inverse=MINVERSE(CV)

• Expected return $(\mu) = \sum (w_i * \mu_i)$

w_i=weight,

 μ_i =mean percentage return of ith portfolio.

• Variance $(\sigma^2) = var(\Sigma(w_i^*R_i))$

R_i=ith portfolio return.

• Now our aim is to find out weight vector so that for a given expected return μ the variance will be minimum i.e

min (σ^2)

subject to:

$$(\mu) = \Sigma (w_i^* \mu_i)$$

$$\Sigma(w_i) = 1$$

• From Markowitz theory we have calculated W and the variance for different value of μ by using the formula.

$$\begin{vmatrix} 1 & \boldsymbol{u}\boldsymbol{C}^{-1}\boldsymbol{m}^T \\ \mu_V & \boldsymbol{m}\boldsymbol{C}^{-1}\boldsymbol{m}^T \\ \boldsymbol{u}\boldsymbol{C}^{-1}\boldsymbol{u}^T & \boldsymbol{u}\boldsymbol{C}^{-1}\boldsymbol{m}^T \\ \boldsymbol{m}\boldsymbol{C}^{-1}\boldsymbol{u}^T & \boldsymbol{m}\boldsymbol{C}^{-1}\boldsymbol{m}^T \end{vmatrix} \boldsymbol{u}\boldsymbol{C}^{-1} \boldsymbol{u}^T \begin{vmatrix} \boldsymbol{u}\boldsymbol{C}^{-1}\boldsymbol{u}^T & 1 \\ \boldsymbol{m}\boldsymbol{C}^{-1}\boldsymbol{u}^T & \mu_V \end{vmatrix} \boldsymbol{m}\boldsymbol{C}^{-1}$$

mu		Variar	nce	Weight										
(0.01	0.225	92664	-0.17038	0.19861	-0.0469785		0.1	.9878031	0.3670	75 -0	.2266	-0.08185	0.
0.	015	0.223	886478	-0.1391	0.160097	-0.0376719		0	.2205856	0.3153	74 -0.1	19439	-0.06836	0.
(0.05	0.247	30903	0.079805	-0.10949	0.0274745		0.3	7322302	2 -0.046	54 0.03	31053	0.02609	0.
	0.1	0.395	78533	0.39253	-0.49462	0.1205408		0.5	9127641	1 -0.563	55 0.35	53119	0.161016	0.
			356564 2.8943	1.01798 -3.57563	-1.26487 0.8650709		5703523		2.929648				0.430868 9 0.184788	
0.6	9.320	072304	3.5197	78 -4.34588	1.0512034	2.77	1810301	-5.73368	3.573781	1.510275	-1.11389	-0.4555	3 0.222139	
0.71314075	13.2	171219	4.22741	.9 -5.21735	1.2617951	3.26	5224797	-6.90359	4.302557	1.815587	-1.47176	-0.5442	8 0.264397	
0.8	16.6	784234	4.7706	58 -5.88639	1.4234684	3.64	4023857	-7.80174	4.862045	2.049978	-1.74649	-0.6124	0.29684	

• Now we have plotted a graph between σ (x-axis) and μ (y-axis) then we get a Markowitz bullet as follows.

CAPM

- In this model, we consider one risk free asset (HDFC FD) besides those 10 risky assets.
- Now here our aim is to finding weights for the given μ so that our variance is minimum by CAPM model.
- We have calculated W* and then variance for the given μ.

• Plotting graph between μ and σ then it will be a tangent to the Markowitz bullet as shown in figure.

Security market line(SML)

• We consider, the asset SBI, let μ_V be the expected return of asset SBI μ_M be the expected return of the market portfolio, then relation between μ_V and μ_M is given by:

$$\mu_V = r_F + (\mu_M - r_F)\beta_V.$$

Where, β_V is given by:

$$\beta_V = \frac{\text{Cov}(K_V, K_M)}{\sigma_M^2} = \frac{\boldsymbol{w}_M \boldsymbol{C} \boldsymbol{w}_V^T}{\boldsymbol{w}_M \boldsymbol{C} \boldsymbol{w}_M^T}$$

• Then we get following line which is called security market line for SBI: We also did the same for Amazon and Google.

References

•Mathematics for finance, an introduction of Financial Engineering

by: Marek Capinski and Tomasz Zastawniak

•https://www.investing.com/

THANK YOU