

$\rm MA2201/TMA4150$

Vår 2015

Norges teknisk—naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag — Øving 6

Seksjon 14

34 La $|G| = n < \infty$ og la $H \leq G$ være eneste undergruppe av G av orden m.

La $g \in G$, og betrakt $K = gHg^{-1}$. K er en undergruppe av G (se siste avsnitt av seksjon 14). Siden K har orden m må $gHg^{-1} = K = H$. Følgelig er H en normal undergruppe.

a) Vi lar $A = \{\phi: G \to G | \phi \text{ er en gruppeisomorfi} \}$. Mengden A er lukket under komposisjon av funksjoner, siden komposisjonen av to bijeksjoner er en bijeksjon, og komposisjonen av to homomorfier er en homomorfi. Vi sjekker så gruppeaksiomene:

Assosiativ Oppfylt fordi sammensetningen av funksjoner er assosiativt.

Identitetselement Identitetshomomorfien $\iota:G\to G$ fungerer som identitetselement i A

Inverser Anta at $\phi \in A$. Siden ϕ er en bijeksjon, har den en invers ψ ; vi må sjekke at denne inversen er en homomorfi (den er automatisk en bijeksjon). Vi ser at

$$\phi(\psi(xy)) = xy = \phi(\psi(x))\phi(\psi(y)) = \phi(\psi(x)\psi(y)).$$

Dermed er $\psi(xy) = \psi(x)\psi(y)$, så ψ er en homomorfi.

b) La I være mengden av indre automorfier. Vi sjekker aksiomene for undergrupper:

Lukket

$$(i_g \circ i_h)(x) = i_g(i_h(x)) = ghxh^{-1}g^{-1} = (gh)x(gh)^{-1} = i_{gh}(x)$$

for alle $x \in G$. Dermed er $i_g \circ i_h = i_{gh} \in I$.

Identitet i_e er identitetsautomorfien.

Invers $(i_g)^{-1} = i_{g^{-1}} \in I$

For å undersøke om I er en normal undergruppe, lar vi $i_g \in I$, $\phi \in A$ og $x \in G$:

$$(\phi \circ i_g \circ \phi^{-1})(x) = \phi(g\phi^{-1}(x)g^{-1}) = \phi(g)x\phi(g)^{-1} = i_{\phi(g)}(x),$$

og dermed er $\phi i_g \phi^{-1} = i_{\phi(g)} \in I$, og I er en normal undergruppe.

La G og G' være grupper, og la $H \leq G$ og $H' \leq G'$. La $\phi : G \to G$ være en homomorfi slik at $\phi[H] \subseteq H'$.

Vi blir bedt om å vise at det eksisterer en naturlig homomorfi $\phi_*: G/H \to G'/H'$, så vårt første problem er å finne ut hva denne ϕ_* skal være! At ϕ_* beskrives som naturlig, indikerer at det kun bør finnes en åpenbar definisjon for ϕ_* . Vi vet at ϕ_* skal ta et element $gH \in G/H$ til et element $g'H' \in G'/H'$. Vi prøver derfor med

$$\phi_*(gH) = \phi(g)H'.$$

Neste steg er nå å sjekke at ϕ_* er en veldefinert avbildning, det vil si at den er uavhengig av valget av representant for gH. Anta at gH = g'H; da kan vi skrive g' = gh for en $h \in H$. Vi har at

$$\phi_*(g'H) = \phi(g')H' = \phi(gh)H' = \phi(g)\phi(h)H' = \phi(g)H,$$

der den siste likheten kommer av at $\phi[H] \subseteq H'$. ϕ_* er altså veldefinert.

Til slutt må vi sjekke at ϕ_* er en homomorfi. Vi regner ut:

$$\phi_*((gH)(g'H)) = \phi_*(gg'H) = \phi(gg')H'$$

= $\phi(g)\phi(g')H' = (\phi(g)H')(\phi(g')H') = \phi_*(gH)\phi_*(g'H).$

Seksjon 15

La $\phi: G \to G'$ være en gruppehomomorfi, og la $N \leq G$ være en normal undergruppe. Vi vet at $\phi[N]$ er en undergruppe av $\phi[G]$ (se teorem 13.12), men vi må sjekke at den er en normal undergruppe.

La $\phi(g) \in \phi[G]$ og la $\phi(n) \in \phi[N]$. Da har vi at

$$\phi(g)\phi(n)\phi(g)^{-1} = \phi(gng^{-1}) \in \phi[N],$$

så $\phi[N]$ er en normal undergruppe.

La $\phi: G \to G'$ være en gruppehomomorfi, og la $N' \leq G'$ være en normal undergruppe. Vi vet at $\phi^{-1}[N']$ er en undergruppe av G (se teorem 13.12), men vi må sjekke at den er en normal undergruppe.

La $g \in G$, $n \in \phi^{-1}[N']$. Siden $\phi(n) \in N'$ har vi at

$$\phi(gng^{-1}) = \phi(g)\phi(n)\phi(g)^{-1} \in N',$$

så $gng^{-1}\in\phi^{-1}[N'],$ så $\phi^{-1}[N']$ er en normal undergruppe av G.

Eksamensoppgaver

Kont 2007, 1 a) Det finnes tre ulike abelske grupper av orden 8, nemlig \mathbb{Z}_8 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, og $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

b) Vi kan observere at (1,1) eller (0,1) vil være en generator for faktorgruppa, som dermed er syklisk. Da må vi ha $\mathbb{Z}_4 \times \mathbb{Z}_8/\langle (1,2) \rangle \cong \mathbb{Z}_8$.

Eventuelt kan vi se at $\phi : \mathbb{Z}_4 \times \mathbb{Z}_8 \to Z_8$ gitt ved $\phi(m,n) = n - 2m$ er en homomorfi med kjerne $\langle 1, 2 \rangle$, og bruke fundamentalteoremet for homomorfier.

Høst 2009, 1 a) Det finnes 7 undergrupper av orden 2, og hver av de er generert av ett element $a \neq (0,0,0)$

Det finnes 7 undergrupper av orden 4, og de er alle generert av to elementer a,b der $a \neq b$ og $a \neq (0,0,0) \neq b$. (Man har 7 valg for element a og 6 valg for element b, men må ta hensyn til at $\langle \{a,b\} \rangle = \langle \{b,a\} \rangle$, og at for $(0,0,0) \neq c \in \langle \{a,b\} \rangle$ er $\langle \{a,b\} \rangle = \langle \{a,c\} \rangle = \langle \{b,c\} \rangle$

b) La $g, h \in G$. Vi ser da at

$$(gh)(gh) = e$$

$$g(gh)(gh)h = gh$$

$$(g^2)hg(h^2) = gh$$

$$hg = gh.$$

c) La G være endelig av orden m. Siden G er abelsk, vet vi at G er isomorf med en gruppe på formen $\mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_r^{n_r}}$ der p_1, \cdots, p_r er primtall (ikke nødvendigvis unike) og n_1, \cdots, n_r er positive heltall

Siden alle elementer i G unntatt identiteten har orden 2, ser vi at $2 = p_1 = \cdots = p_r$ og $1 = n_1 = \cdots = n_r$.

|Kont 2009 2010, 1 | a) Det i

a) Det finnes fem ikke-isomorfe abelske grupper av orden 16:

$$\mathbb{Z}_{16}$$
 $\mathbb{Z}_8 \times \mathbb{Z}_2$ $\mathbb{Z}_4 \times \mathbb{Z}_4$ $\mathbb{Z}_4 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

b) $\mathbb{Z}_6 \times \mathbb{Z}_8 \supseteq \langle (2,0) \rangle = \{(2,0),(4,0),(0,0)\} = (\mathbb{Z}_6 \times \mathbb{Z}_8)/\langle (2,0) \rangle$ inneholder derfor 16 elementer. Vi skriver opp disse elementene og ordenen deres (for enkelhets skyld setter vi $H = \langle (2,0) \rangle$)::

(() - ///				
element	Н	(1,0)+H	(0,1)+H	(1,1)+H
orden	1	2	8	8
element	(0,2)+H	(1,2)+H	(0,3)+H	(1,3)+H
orden	4	4	8	8
element	(0,4)+H	(1,4)+H	(0,5)+H	(1,5)+H
orden	2	2	8	8
element	(0,6)+H	(1,6)+H	(0,7)+H	(1,7) + H
orden	4	4	8	8

Siden faktorgruppen har elementer av orden 8, men ikke av orden 16, må den være isomorf til $\mathbb{Z}_8 \times \mathbb{Z}_2$.

Eventuelt kan man finne en morfisme $\phi : \mathbb{Z}_6 \times \mathbb{Z}_8 \to \mathbb{Z}_2 \times \mathbb{Z}_8 \mod H$ som kjerne; $\phi(m,n) = (m \mod 2, n)$ er et eksempel.