Accessing predicted values

James Thorson

2023-12-22

Description

FishLife is an R package for estimating evolutionary trade-offs among traits for >34,000 described fishes. It also applies phylogenetic trait imputation, i.e., is used to predict and reposit predicted life-history parameters for all fishes, where imputed values are informed by both life-history correlations and similarities among related species. The package comes with three databases and pre-run results:

- The database and results described by Thorson et al. (2023), introducing phylogenetic structural equation models and combining this with phylogenetic comparative methods to describe trade-offs among a larger set of life-history, morphometric, behavioral, trophic, and reproductive traits;
- The database and results described by Thorson (2020), applying phylogenetic factor analysis to the original database as well as RAM Legacy database records of stock-recruit relationships to estimate a full life-cycle model for all species;
- The original database and results described by Thorson Munch Cope Gao (2017), introducing phylogenetic factor analysis and using records of size, growth, maturity, and mortality parameters from FishBase as downloaded in 2016.

In this vignete, we show how to access output from these various models.

Explore predictions online

A graphical user interface (GUI) is available online. However, it has not been updated recently, and only shows results from Thorson Munch Cope Gao (2017).

```
# Install and load package
# devtools::install_github("james-thorson/FishLife", dep=TRUE)
library( FishLife )
```

Thorson et al. 2023 results

Starting with Thorson et al. (2023), FishLife uses ape class phylo to represent relatedness among taxa. This has several benefits:

- It facilitates collaboration between evolutionary and ecological researchers for fishes;
- It represents relatedness based on evolutionary distance, rather than simply approximating relatedness based on taxonomy;
- It allows FishLife to use well-maintained dependencies to input(read, subset, and merge) or output (plot and tabulate) results.

However, this also results in changes in how results are accessed. Although we provide a function as(FishLife::FishBase_and_Morphometrics,"phylo4d"), we find that it is too slow to be useful. Therefore, we instead recommend searching for a taxon name manually. We demonstrate this for red snapper:

	Mean	SE
log(age_max)	3.573	0.136
trophic_level	4.133	0.323
log(aspect_ratio)	0.614	0.140
log(fecundity)	15.976	0.518
log(growth_coefficient)	-1.863	0.111
temperature	23.815	0.730
$\log(\text{length_max})$	4.451	0.090
log(length_infinity)	4.546	0.046
log(length_maturity)	3.526	0.126
log(age_maturity)	1.175	0.231
log(natural_mortality)	-1.420	0.123
log(weight_infinity)	9.415	0.145
$\log(\max_body_depth)$	-0.038	0.010
$\log(\max_body_width)$	-0.895	0.010
log(lower_jaw_length)	-0.874	0.010
log(min_caudal_pedoncule_depth)	-1.230	0.010
log(offspring_size)	-0.234	0.150
base	0.906	0.244
spawning_typeguarders	0.035	0.140
spawning_typebearers	0.058	0.202
base	0.109	0.151
habitatbathymetric	0.043	0.138
habitatbenthopelagic	0.026	0.081
habitatreefassociated	0.786	0.258
habitatpelagic	0.036	0.123
base	0.019	0.029
feeding_modemacrofauna	0.944	0.159
feeding_modeplanktivorous_or_other	0.037	0.154
base	0.859	0.234
body_shapeelongated	0.025	0.081
body_shapeshort_and_or_deep	0.068	0.153
body_shapeeellike	0.035	0.146
body_shapeother	0.013	0.096

Thorson 2020 results

The Thorson (2020) analysis sought to maintain customized code for accessing and plotting results. We again demonstrate this for red snapper, which is within the FishBase database used to train the model so its predictions are relatively precise.

```
# Get basic plot for Lutjanus campechanus
Taxa = Search_species( Genus = "Lutjanus",
                       Species = "campechanus")$match_taxonomy
Predict = Plot_taxa( Taxa,
                    mfrow=c(3,2) )
#>
       [,1]
                       [,2]
#> [1,] "K"
#> [2,] "Winfinity"
                       "Loo"
#> [3,] "tmax"
                       "tm"
                       "Temperature"
#> [4,] "Lm"
                       "rho"
#> [5,] "ln_margsd"
#> [6,] "logitbound_h" "ln_r"
```


We then show updated values for the predictive mean and standard errors. . .

	Mean	SE
Loo	4.517	0.053
K	-1.777	0.097
Winfinity	9.287	0.128
tmax	2.763	0.145
tm	1.192	0.250
M	-1.378	0.178
Lm	3.722	0.100
Temperature	24.230	0.573
ln_var	-2.556	0.821
rho	0.663	0.178

	Mean	SE
ln_MASPS	1.223	1.172
ln_margsd	-0.904	0.295
h	0.770	0.157
$logitbound_h$	1.143	1.149
$ln_Fmsy_over_M$	1.089	0.730
ln_Fmsy	-0.288	0.767
\ln_r	-1.171	0.507
\mathbf{r}	0.348	0.158
\ln_G	2.298	0.129
G	10.040	1.300

where Predict[[1]] \$Mean_pred provides mean values, and Predict[[1]] \$Cov_pred provides the predictive covariance for life-history parameters.

Traits are in log-space except for Temperature, generation time G and intrinsict growth rate r. If an analyst wants to back-transform a trait that is reported in log-space, thought should be given to whether an analyst wants to use a predictive median or predictive mean. The predictive median is calculated by exponentiating log-space values, while a predictive mean requires some bias-correction (perhaps based on a lognormal assumption using the predictive variance). Finally generation time G and intrinsict growth rate r are calculated based on a nonlinear transformation of other traits using the Euler-Lotka formula, and we therefore report the mean in either log-space or natural space, obtained by sampling from the constituent traits, calculating the values for each sample, and then computing the mean of those calculations. Given this procedure, exponentiating ln_G will not typically equal G and the same holds for ln_r and r.

Data-poor: Cortez rockfish

Next we demonstrate cortez rockfish, which is not within the FishBase database used to train the model, so its predictions are relatively based on information from related species within genus *Sebastes*.

```
# Get basic plot for Sebastes cortezi
Taxa = Search species (Genus = "Sebastes",
                       Species = "cortezi")$match_taxonomy
Predict = Plot_taxa( Taxa,
                     mfrow=c(3,2))
        [,1]
                        [,2]
#> [1,] "K"
#> [2,] "Winfinity"
                       "Loo"
#> [3,] "tmax"
                       "tm"
#> [4,] "Lm"
                       "Temperature"
#> [5,] "ln_margsd"
                       "rho"
#> [6,] "logitbound h" "ln r"
```


High-level: Scombridae

Third, we demonstrate predictions for family Scombridae, to show how predictions are available for higher-level taxonomies.

Comparison: Trouts

Fourth, we compare predictions for two species, brown and rainbow trout.

```
#> [2,] "Winfinity" "Loo"

#> [3,] "tmax" "tm"

#> [4,] "Lm" "Temperature"

#> [5,] "ln_margsd" "rho"

#> [6,] "logitbound_h" "ln_r"
```


Thorson et al. (2017) results

Results from Thorson et al. (2017) are accessed similarly, but indicating the earlier database:

```
# Get basic plot for Lutjanus campechanus
Taxa = Search_species( Genus = "Lutjanus",
                      Species="campechanus",
                      Database = FishBase )$match_taxonomy
params = matrix( c( "Loo", "K", "Winfinity", "tmax",
                   "tm", "M", "Lm", "Temperature"), ncol=2 )
Predict = Plot_taxa( Taxa,
                    mfrow=c(2,2),
                    Database = FishBase,
                   params = params )
#> [,1]
                   [,2]
#> [1,] "Loo"
                   "tm"
#> [2,] "K"
                   "M"
#> [3,] "Winfinity" "Lm"
#> [4,] "tmax" "Temperature"
```


And we can again access the mean predicted values:

	Mean	SE
Loo	4.497	0.051
K	-1.768	0.103
Winfinity	9.313	0.156
tmax	2.739	0.153
tm	1.181	0.274
M	-1.489	0.174
Lm	3.816	0.103
Temperature	24.221	0.575

Comparison among databases

Finally, given this ongoing effort, it is natural to wonder whether output is consistent across database compilations, statistical assumptions, and associated model specification. We therefore compare results for red snapper

