STATS 700-002 Class 7. Complex Population Dynamics and the Coalescent Under Neutrality

Aaron King and Edward Ionides

October 9, 2025

Outline

Volz, E. M. (2012) Complex population dynamics and the coalescent under neutrality. Genetics **190**: 187–201. doi:10.1534/genetics.111.134627

Figure 1 (Left) The fraction of the population susceptible and infected is shown over time for model (16). (Right) The rates of coalescence $\lambda_2 = fh'^2$ and $\lambda_2^2 = 1/Y$. In all solutions to Equation 16, $N=10^4$, $\beta=2$, $\gamma=1$, $\eta=\frac{1}{10}$. The incidence scaling factor α is varied for each row: $\alpha=0$ (top), $\alpha=\frac{1}{10}$ (middle), and $\alpha=-\frac{1}{10}$ (bottom).

Figure 2 Simulated genealogies (top) and corresponding skyline estimates of N_e (bottom) for exponential growth (left) and FTE growth (right). Simulations were of a pure-birth process with monotonically increasing population sizes. Samples of 30 taxa were taken during a period of growth (either exponential or FTE) at the point when a population size of $Y = 2 \times 10^4$ was reached. In the exponential case, the skyline is unbiased for the harmonic mean of Y/2 2 β within each interval. In the FTE case, the skyline underestimates population size.

Fig 3. n = 250 samples at t = 2.5.

Figure 4 An example gene genealogy that could be generated by the HIV model (Equation 29). Red branches correspond to stage-1 infected hosts. Blue branches correspond to stage 2.

Fig 6. (Left) Model with m=5 states, four birth terms, and seven migration terms. Blue arrows are logistic birth terms. Red arrows are migration. (Center) The population size Y_k over time for each of 5 states. (Right) Likelihood profile of four (relative) birth rates and 95% CIs.