

Enhance & Explore: an Adaptive Algorithm to Maximize the Utility of Wireless Networks

Adel Aziz

joint work with
Julien Herzen, Ruben Merz, Seva Shneer, and Patrick Thiran

September 21st 2011

CH-1015 Lausanne adel.aziz@epfl.ch http://people.epfl.ch/adel.aziz

Problem Statement

$$U_{max}(\vec{x}[n]) = \sum_{i=1}^{F} x_i[n]$$
$$U_{prop}(\vec{x}[n]) = \sum_{i=1}^{F} \ln(x_i[n] + 1)$$

- What is the network utility?
 - $lue{}$ Based on per-flow throughput $ec{x}[n] \in \mathbb{R}_+^{F}$
 - Captures an objective
- How to maximize the network utility?
 - Avoid wasted resource (e.g. buffer overflow)
 - Optimal share of resource between flows

Problem Motivation

WLAN Setting

Inter-Flow Problem

Multi-hop Setting

Intra-Flow Problem

Network Model

- □ Flow = <IP src; IP dst>

Architecture of node j

- Information to set at node j at time slot n
 - $figural{\square}$ Rate allocation vector: $ec{
 ho}[n] \in \mathbb{R}_+^F$
- Information to monitor at GW at time slot n
 - $figural{\Box}$ Measured throughput: $\vec{x}[n] \in \mathbb{R}_+^F$

Network Model

- Useful information at time slot n
 - $lue{x}$ Measured throughput: $ec{x}[n] \in \mathbb{R}_+^F$
 - $lue{}$ Capacity region: $\Lambda[n]$ (unknown *a priori*)
 - lue Rate allocation vector: $ec{
 ho}[n] \in \mathbb{R}_+^F$
 - figs Last stable allocation: $ec{r}[n] \in \mathbb{R}_+^F$
 - □ Utility function: $U_{max}(\vec{x}[n]) = \sum_{i=1}^{n} x_i[n]$
 - Level set: $L(\mu[n]) = \{\vec{x}[n] : \vec{x}[n] \in \mathbb{R}_+^F, U(\vec{x}[n]) = \mu[n]\}$

'Enhance & Explore' in WLAN

- o Throughput vector: $x_0 = \rho_0$ [rate allocation]
- o Level set of utility μ_0 : $L(x_0, \mu_0)$ $[u(x_0) = \mu_0]$
- o Remember allocation: $r_0 = x_0$
- o Move to next slot: 0 -> 1

- \Rightarrow o If $(x_{i-1} = \rho_{i-1})$
 - μ_i obtained by a full-size gradient ascent
- o Else
 - ullet μ_i obtained by dividing by 2 the last gradient ascent size
 - o Go to Explore phase

- \Rightarrow o Pick point ρ_i randomly in $L(\rho_i, \mu_i)$
- o Measure throughput: x_i
- \Rightarrow o If $(x_i = \rho_i)$
 - Remember new allocation: r_i = x_i
 - Go to Enhance phase and move to next slot (i -> i+1)
- o Else
 - Move to next slot: i -> i+1
 - Keep old variables: μ_i = μ_{i-1}; r_i = r_{i-1};

■ Repeat Explore phase at most **N** times, then move to Enhance

Example: **N** = 2

Optimality Theorem

Theorem

THEOREM 3.1. Assume that the capacity region Λ is fixed and coordinate-convex. Then the E&E algorithm guarantees that, for any initial rate allocation $\vec{r}[0]$, the utility of the last stable allocation $\vec{r}[n]$ converges to the maximal utility for $n \to \infty$.

- Assumptions

 - Coordinate-convex capacity region
 - Much weaker than convexity!

EZ-Flow in Multi-Hop

- Nodes passively monitor the next-hop queue^[1]
- lacktriangle Nodes adapt their rate limiter ho_i^{\jmath} accordingly

Rate allocation based on the next-hop queue

Complete Solution: E&E + EZ

- □ GW
 - E&E decides the per-flow rate allocation
- One-hop nodes
 - E&E rate-limits one-hop nodes
- Multi-hop nodes
 - EZ-flow rate-limits multi-hop nodes

Practical Implementation

- □ Based on Click^[1] with MultiflowDispatcher^[2]
- Creation of 5 new elements
 - MFQueue
 - MFLeakyBucket
 - EEscheduler
 - EEadapter
 - EZFlow
- Evaluation with
 - Asus routers
 - □ Ns-3

^[1] Kohler et al., Transactions on Computer Systems, 2000

^[2] Schiöberg et al., SyClick, 2009

Experimental Results in WLAN

Deployment map:

Without E&E:

With E&E:(proportional fairness)

Experimental Results in WLAN

Deployment map:

■ Without E&E:

□ With E&E:(proportional fairness)

Starvation Problem in Mesh

- □ Intra-flow congestion control
- ☐ Inter-flow fairness
 - Appropriate queuing is needed (Fair Queuing [1])
 - ... but it is not enough

Experimental Results in Mesh

Deployment map:

Without E&E:

| 1500 | 1000 | 1500 | 1-hop vs. 3-hop with E&E

1-hop vs. 3-hop with Fair Queuing

□ With E&E:

(proportional fairness)

Simulation Results in WLAN

- Ns-3 simulator
 - Re-use of same Click elements
 - More controlled environment
 - Possible estimation of capacity
 - Computation of optimum

Simulation Results in WLAN

- Adaptability to time-varying environment

Conclusion

- Wireless networks suffer from
 - o Intra-flow problem (e.g., congestion)
 - Inter-flow problem (e.g., unfairness)
 - o Time-variability
 - o Difficulty/impossibility to characterize the capacity region
- ☐ Need for practical algorithm to maximize a desired utility
- ☐ E&E solves the inter-flow problem in WLAN
- ☐ Combining E&E and EZ-Flow in mesh
 - o Solves both inter-flow and intra-flow problem
 - o Avoids network-wide message passing (only one broadcast at GW)
- ☐ Future work
 - o Study and improve the speed of convergence
 - o Analyze new distributions for the *Explore* phase

BOE: Buffer Occupancy Estimation

- Major advantage of EZ-flow
 - The BOE module works passively without any message passing!
 - Uses broadcast nature of the medium
- ☐ Advantages of deriving the buffer occupancy implicitly/passively
 - No messaging overhead
 - No header modification/addition
 - Run on current hardware with standard protocol

- ☐ How to derive the buffer occupancy implicitly?
 - Keep in memory a list of identifiers of the recently sent packets
 - Use the broadcast nature of the medium to monitor the forwarded packet
 - Obtain the current buffer occupancy at successor

Experimental Evaluation of Intra-Flow

□ Intra-flow congestion control

- Stabilizes the queues
- Increases throughput
- Not limited by the MAC
- Higher throughput than TCP

'Enhance & Explore' in WLAN

☐ Starts from IEEE 802.11 allocation

- Throughput vector: $x_0 = \rho_0$ [rate allocation]
- Level set of utility μ_0 : $L(x_0, \mu_0)$ $[u(x_0) = \mu_0]$
- Remember allocation: r₀ = x₀
 Move to next slot: 0 -> 1
- ☐ Enhance phase: (Find the next targeted level set)
 - If $(x_{i-1} = \rho_{i-1})$ $\mu_i \leftarrow \text{full-size gradient ascent}$
 - Else µ_i ← dividing by 2 the size of gradient ascent
 - Go to Explore phase
- ☐ Explore phase: (Find the next allocation)
 - Pick point ρ_i randomly in $L(\rho_i, \mu_i)$
 - Repeat Explore phase at most N times, then move to Enhance phase
- ☐ Utility achieved by r(n)
 - Starts from IEEE 802.11
 - Is non-decreasing over time

