

SWEN90016

Software Processes & Project Management

Introduction
Project Initiation
Medic Case Study
Assignment 1

What is the first project management process?

Planning

Execution

Initialization

Monitor and Control

Today's aim

MIELDWWIKNE

Understand the initialization phase by doing an activity for each phase

- 1. Business needs analysis
- 2. Analyse constraints
- 3. Stakeholder analysis

Initialization Phase

The first Project Management *process*: initialization

Project Management Terminology

Activity: You want to cycle from Melbourne to Sydney. Groups of 4

analyze Case Study (business needs)

 What are the challenges for such a project?

 What risks would this project need to consider?

Research - understand the project

Where to start on any project?

Research

Project Goal: You want to cycle from Melbourne to Sydney.

Create a fun & exciting adventure

It is difficult to travel along distance with a bicycle

Challenge: This characteristic is known to exist.

The solution requires resources, (fitness).

MATERIANAMIE

Risk - This possible future event **may** or **may not** happen and impact the project

May get a flat tyre

- Sometimes it happens that you ride over a nail or something sharp....need to prepare
- Impact= delay the project
- Better plan a mitigation strategy to fix, replace the tyre

MIELDUUKNE

Know your project's Triple Constraint But there can be more!

analyze constraints (scope, time, cost)

MIELLIDUU KINIE

Is rain (weather) a constraint? risk? challenge?

Melbourne weather- research

Month	High / Low (°C)	Rain
January	26° / 16°	5 days
February	27° / 16°	4 days
March	24° / 15°	5 days
April	21° / 12°	7 days
May	17° / 10°	8 days
June	15° / 8°	7 days
July	14° / 7°	8 days
August	16° / 8°	9 days
September	18° / 9°	9 days
October	20° / 11°	8 days
November	22° / 12°	7 days
December	24° / 14°	6 days

Medic Case Study

WATER DOOR WINE

Case Study 1 - Virtual Temporal Bone Surgery

- Who has read the Case Study?
- Do you know what Person Days are?
- Divide the Case Study into components

What kind of system is this?

What are the project's characteristics?

Medic Case Study

Discuss and plan and question

Get into groups of 4-5 people.

Fill in the exercise sheet.

Person Days clues:

Project duration is 2 university semesters = 30 weeks

4th year SWEN students take 4 subjects a semester = ½ time allocation

IT support developers at \$50,000 pa = fractional time allocation

Cost clues:

Experienced developers at \$100,000 pa Experienced surgeons at \$200,000 pa Junior developers (4th year SWEN students) at zero cost Junior surgeon users at zero cost IT support developers at \$50,000 pa

Medic Case Study Exercise

Project Information and Estimation

ltem	Value	Reason	
Team Size			
Person Days			-
reison Days			
Cost			-
Project Goal			
Key			•
Characteristics	VR si	mulation enacting	g real-world tasks, integrate mult
	hardw	are devices, god	od graphics & embedded softwar
Possible Risks	focus		

Medic Case Study Exercise

MATERDOWNIE

Working through the exercise-

Team Size:

2 client surgeons, 12 junior developers, 2 experienced developers, multiple users (10 junior surgeons?), IT support (2 people part time?)

Person Days: 2 semesters = 30 weeks university project If students take 4 subjects, then they are available a quarter of the time.

Calculator:

(12 + 2 developers) * 30 weeks * ½ allocation = 105 person weeks = 525 person days
Cost: 2 experienced developers * 0.25 allocation * \$100,000 pa * (30 weeks /52) = ~\$29,000
2 experienced surgeons * 0.125 allocation * \$200,000 pa * (30 weeks /52) = ~\$29,000
4th year software engineering students?
users?

2 IT support developers * 0.125 allocation * \$50,000 pa = \sim \$12,000 (estimate)

In Australia- a working week is 5 days per week (and this is used in all calculations)

Project Risks

Know your project's risks

- If this project was to fail, what do you think would be the reason?
- What harm minimization strategies would you plan to use?

Risks

- 1. Unexpected behavior of new hardware
- 2. Compare availability of Graphical libraries in C++ / Java
- 3. Algorithmic complexity

TATE INDOMINATE

Thank You!