Polinomios de Taylor

EJERCICIO 5.-

Calcula aproximadamente $\sin(0.15)$ con error absoluto menor que 10^{-6} , utilizando un polinomio de Taylor de la función $f(x) = \sin(x)$ centrado en $x_0 = 0$. Representa gráficamente la función f(x) y dicho polinomio.

SOLUCIÓN:

Definimos la función $f(x) = \sin(x)$

In [1]: $f(x)=\sin(x)$

In [2]: f Out[2]: $x \mid --> \sin(x)$

Sabemos que la expresión del error para el polinomio de Taylor $P_n(x) = P_n(f, a)(x)$ de la función f centrado en el punto a, de

 $|f(x) - P_n(x)| \le \frac{\|f^{(n+1)}\|_{[a,x]}}{(n+1)!} |x - a|^{n+1}$

Por tanto, debemos estimar

OBSERVACIÓN GENERAL:

grado $\leq n$, viene dada por

 $M_n = ||f^{(n+1)}||_{[a,x]}$

EN EL CASO EN EL QUE NOS COMPETE

En concreto, para x = 0.15 y a = 0

 $|f(0.15) - P_n(0.15)| \le \frac{||f^{(n+1)}||_{[0,0.15]}}{(n+1)!} |0.15 - 0|^{n+1}$

y estimamos

 $M_n = ||f^{(n+1)}||_{[0,0.15]}$

Como las sucesivas derivadas de $\sin(t)$ son $\cos(t)$, $-\sin(t)$, $-\cos(t)$, y $\sin(t)$, podemos concluir que $M_n=1$ para todo n.

Por tanto, la cota es:

In [3]: cota(n)=(0.15)^(n+1)/factorial(n+1)

Ahora buscamos un n para el que dicha cota sea menor que 10^{-6} :

In [4]: n=1; while $cota(n) >= 10^{(-6)}$: n=n+1n

Out[4]: 4

Por tanto, n=4 es suficiente y podemos trabajar con el polinomio de Taylor de orden 4. Calculamos dicho polinomio con el comando "taylor":

In [5]: P(x) = taylor(f, x, 0, 4);show(P(x)) $-\frac{1}{6}x^3 + x$

La aproximación pedida es

In [6]: aprox=P(0.15).n(); aprox

Out[6]: 0.149437500000000

Comprobamos que el error real de esta aproximación es menor que 10^{-6} :

In [7]: f(0.15)

Out[7]: 0.149438132473599

In [8]: abs(f(0.15)-P(0.15))

Out[8]: 6.32473599215810e-7

In [9]: abs $(f(0.15)-P(0.15)).n() < 10^(-6).n()$

Out[9]: True

Hacemos una representación gráfica de la función f(x) y el polinomio P(x) en el intervalo [-3,3]:

In [10]: $plot(f,(x,-3,3),legend_label='\$y=f(x)\$')+plot(P,(x,-3,3),legend_label='\$y=P(x)\$',color='red')$

Out[10]:

Se observa que P(x) es una buena aproximación de f(x) para valores de x próximos a 0.

OBSERVACIONES ADICIONALES:

Podemos verlo mejor dibujando la función de "error" |f(x) - P(x)| en el intervalo [-0.25, 0.25]. Apreciamos con el plot que para x en el intervalo (-0.15,0.15), la aproximación |f(x) - P(x)| es menor o igual que 10^{-6} .

In [11]: $plot(abs(f(x)-P(x)),(x,-0.25,0.25))+plot(10^(-6),(x,-0.25,0.25),color='red')$ Out[11]:

Si queremos más precisión, tan sólo hay que encontrar los puntos de intersección de las dos curvas:

Out[12]: -0.16439633760318853

In [12]: $a=find_root (abs(f(x)-P(x)) - 10^(-6), -0.2,0)$

In [13]: $b=find_root (abs(f(x)-P(x)) - 10^(-6), 0,0.2)$

Out[13]: 0.16439633760318853

Con lo cual el intervalo es donde se mantiene la cota de error 10^{-6} es:

In [14]: [a,b] Out[14]: [-0.16439633760318853, 0.16439633760318853]