

AERODYNAMIC COMPUTER CODE FOR ANALYZING HEAT TRANSFER AND PRESSURE LOADS ON MISSILES

Prepared by Kenneth K. Wang R. H. Weatherford

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY 5301 BOLSA AVENUE HUNTINGTON BEACH, CALIFORNIA 92647

MARCH 1982

FINAL REPORT
CONTRACT NUMBER N60921-80-C-0259
12 SEPTEMBER 1980 TO 11 MARCH 1982

Approved for Public Release Distribution Unlimited

Prepared for NAVAL SURFACE WEAPONS CENTER WHITE OAK, SILVER SPRING, MARYLAND 20910

THE COLL

This technical report has been reviewed and is approved.

P. C. Huang Naval Surface Weapons Center

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
AD-A111 997	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
AERODYNAMIC COMPUTER CODE FOR ANALYZING HEAT	Final Report, September 12, 1980 to March 11, 1982
TRANSFER AND PRESSURE LOADS ON MISSILES	6. PERFORMING ORG. REPORT NUMBER
	MDC H0006
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(a)
Kenneth K. Wang and R. H. Weatherford	N60921-80-C-0259
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
McDonnell Douglas Astronautics Company	AREA & WORK UNIT NUMBERS
5301 Bolsa Avenue	
Huntington Beach, California 92647	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Naval Surface Weapons Center White Oak	March 1982
Silver Spring, Maryland 20910	81
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15e. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>
17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different fro	om Report)
	TE
18. SUPPLEMENTARY NOTES	382
19. KEY WORDS (Continue on reverse side II necessary and Identify by block number, Aerodynamics Pressure Distribution Structural Analysis Heat Transfer	
20. ABSTRACT (Continue on reverse side it necessary and identify by block number) An aerodynamic computer code was developed for calculating the pressure distribution on a missile or its components, e.g., body and wings and subsequently interpolating the results by surface fit at locations as specified for structural analysis using the NASTRAN computer code. The code is valid from subsonic up to high supersonic speeds and for generalized attitudes of the missile. Subroutines have been added to the code to enable calculation of temperature histories, equilibrium temperature and heat flux at arbitrary locations on a missile. In addition capability for treating	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

PREFACE

This document reports the work performed by McDonnell Douglas Astronautics Company for the Naval Surface Weapons Center, White Oak Laboratory, Silver Spring, Maryland, for the development of an aerodynamic code for heat transfer analysis of a missile at high supersonic speed and nose pressure distribution of a missile with a slightly blunted nose.

For heat transfer calculations, the code has been modified to generate temperature history, equilibrium temperature and the rate of heat transfer at the locations specified by the output of the NSWC computer code PING and BING for stress analysis by NASTRAN. For a blunted nose, the code provides the pressure distribution at the specified locations also.

Theoretical background for the methods used in the development is described. For convenience, only a minimum of inputs have been added. Test cases for verification purposes are presented together with sample inputs to reduce the effort of preparation.

A complete listing is included.

CONTENTS

		Page
	LIST OF SYMBOLS	iii
	SUMMARY	iv
Section 1	INTRODUCTION	1
Section 2	AERODYNAMIC HEATING OF A MISSILE AT SUPERSONIC SPEEDS	3
Section 3	AERODYNAMIC PRESSURE ON A SLIGHTLY BLUNTED NOSE OF A MISSILE	6
Section 4	COMPUTER PROGRAM	8
	4.1 Code Capabilities and Restrictions	8
	4.2 Input Description	9
	4.2.1 Aerodynamic Heating Analysis	19
	4.2.2 Blunted Nose	20
Section 5	TEST CASES	21
	5.1 Heat Transfer of a Sharp Cone at M_{∞} = 4.98	21
	5.2 Pressure Distribution of a Slightly Blunted Nose Missile	21
Section 6	SAMPLE INPUTS AND OUTPUTS	28
	6.1 Sample Inputs	28
	6.1.1 Aerodynamic Heating Case	28
	6.1.2 Blunted Nose Case	30
	6.2 Output of Calculations	32
	6.2.1 Aerodynamic Heating Case	32
	6.2.2 Blunted Nose Pressure Distribution	61
Section 7	CONCLUSIONS AND RECOMMENDATIONS	69
Section 8	REFERENCES	70
	DISTRIBUTION LIST	72

LIST OF SYMBOLS

c _F	local skin friction coefficient
с _Р	specific heat
c _p	pressure coefficient, $2(p-p_{\infty})/(\gamma p_{\infty}M_{\infty}^2)$
g _C	universal gravitation constant
h _C	heat transfer coefficient
M_{δ}	local Mach number
р	pressure
Pr	Prandtl number
^p t	total pressure
p _∞	free stream pressure
• q	heat transfer rate
r	recovery factor
${\sf Re}_{\delta}$	local Reynolds number
T_{R}	recovery temperature
TW	wall temperature
υ _δ	local fluid velocity
Υ	ratio of fluid specific heats
ε	infrared emittance of wall
θ	angle between the free stream velocity and the
n	surface normal
ρ	fluid density
σ	Stefan-Boltzmann constant

SUMMARY

This report represents the work performed under contract number N60921-80-C-0259 for the Naval Surface Weapons Center, White Oak Laboratory, Silver Spring, Maryland, under Naval Sea Systems Command Sponsorship for the development of an aerodynamic code for analyzing aerodynamic heating of a missile at high supersonic speeds and the pressure distribution on a slightly blunted nose.

For analyzing the aerodynamic heating of a missile, a number of subroutines have been added to the existing MDAC aerodynamic code. For missiles with a slightly blunted nose, additional calculations have been incorporated to provide the pressure distribution on the nose as required.

Section 1

INTRODUCTION

In 1979, a computer code for aerodynamic load analysis for a complete missile (Reference 1) was completed by McDonnell Douglas Astronautics Company (MDAC) under Contract N60921-78-C-0203 for the Naval Surface Weapons Center, White Oak Laboratory, Silver Spring, Maryland. It analyzes the complete missile or its components (wing or body) and provides pressure distributions at given locations, as specified by the outputs of NSWC computer code PING (Reference 2) or BING (Reference 3) on the missile surface.

For missile flight at high supersonic speeds ($2 \le M_\infty \le 6$) the problem of aerodynamic heating becomes important and needs to be analyzed. As an example, for an insulated flat plate aligned parallel to the flow, the surface temperature can reach anywhere from $1000^\circ R$ to $3000^\circ R$ for a speed range of $M_\infty = 2$ to 6. Thus, the induced thermal stress can seriously affect the structural integrity of the missile and failure of a missile component could result. Consequently, development of capability for analyzing the aerodynamic heating and the skin temperature of the missile is needed to complement the pressure load calculation. Furthermore, with the development of the code based on the linearized, small-disturbance equations of motion, the inability of the code to treat bodies with a slightly blunted nose also needs be remedied.

To accomplish these tasks, the code was substantially modified and new subroutines added. The principal effort consists of calculating additional flow field quantities, i.e., Mach number and temperature, at the specified locations and the pressure in the nose region. After much manipulation, the desired results of the computation, e.g., the temperature history, equilibrium

temperature, heat flux and nose pressure can be produced as punched output in the NASTRAN format or saved on tape (temperature history of element) as specified.

To minimize the development effort and for the user's convenience, the structure of the original code was retained to a large extent. Consequently, only a few additional input parameters are required for analyzing the aerodynamic heating or the pressure distribution on the blunt nose. For high supersonic cases $(M_{\infty} \leq 2.5)$, the code is restricted in its application to a complete missile (body and wing) as was developed previously.

Section 2

AERODYNAMIC HEATING OF A MISSILE AT SUPERSONIC SPEEDS

At supersonic speeds, aerodynamic heat transfer can heat up the skin of an airplane or missile to temperatures at which the allowable strength of the skin is reduced. Several methods have been developed by different authors to account for aerodynamic heating effects at high speeds. Among these are Eckert (References 4, 5 and 6), Wilson (Reference 7), Van Driest (References 8, 9 and 10) and Spalding and Chi (Reference 11). Out of these, Eckert's reference temperature method was selected for incorporation into the aerodynamic computer code because of its reliability in predicting experimental heat transfer results and its compatibility with analyses used in the original MDAC/NSWC Aerodynamic Code.

Using Eckert's reference temperature method, net aerodynamic heat transfer to a missile skin is calculated from

$$\dot{q} = h_c \cdot (T_R - T_W) - \varepsilon \sigma T_W^4 \tag{1}$$

The heat transfer coefficient, $\mathbf{h}_{\mathbf{C}}$, is calculated from

$$h_c = (C_f^*/2)(P_r)^{-2/3} \rho^* U_\delta c_p g_c$$
 (2)

= 4.851
$$C_f * \rho * U_\delta$$
 (2a)

The skin friction coefficient, C_{f}^{*} , is calculated as follows

$$C_{f}^{*} = C_{f_{\ell}}^{*} \qquad (R_{e_{\delta}} \le 10^{5})$$
 (3a)

$$C_f^* = C_{f_t}^* \qquad (R_{e_{\delta}} > 10^6)$$
 (3b)

$$C_{f}^{*} = C_{f_{\ell}}^{*} + (C_{f_{t}}^{*} - C_{f_{\ell}}^{*})(\log_{10} R_{e_{\delta}}^{-5})$$

$$(10^{5} < R_{e_{\delta}} \le 10^{6})$$
(3c)

where

$$C_{f_{\varrho}}^{\star} = .664/(R_{e}^{\star}/N_{\varrho})^{1/2}$$
 (4)

and

$$C_{f_t}^* = .370/(\log_{10} (R_e^*/N_t))^{2.584}$$
 (5)

Reference values, indicated by an asterisk (*) are evaluated at a reference temperature, which is given by

$$T^* = (T_{\delta} + T_{W})/2 + .22r \frac{\gamma - 1}{2} M_{\delta}^2 T_{\delta}$$
 (6)

values for N_{ℓ} and N_{t} are

$$N_{g} = \begin{cases} 3 & \text{body of revolution} \\ 1 & \text{planar body (wing)} \end{cases}$$
 (7)

$$N_{t} = \begin{cases} 2 & \text{body of revolution} \\ 1 & \text{planar body (wing)} \end{cases}$$
 (8)

The governing differential equation from which the skin element temperatures and heat fluxes are calculated is

$$\rho_{W}c_{p}b\frac{dT_{W}}{dt} = h_{c}(T_{R} - T_{W}) - \varepsilon\sigma T_{W}^{4}$$
(9)

The skin equilibrium temperature for each skin element is calculated from Equation (9) when the rate of change of temperature goes to zero

$$h_{c} (T_{R} - T_{eq}) = \varepsilon \sigma T_{eq}^{4}$$
 (10)

The temperature and heat flux for each skin element at time j are calculated from

$$T_{j} = T_{j-1} + [h_{c}(T_{R} - T_{j-1}) - \varepsilon \sigma T_{j-1}^{4}] \Delta t_{j}/p_{w}c_{p}b$$

and

$$q_j = h_c(T_R - T_j) - \omega T_j^4$$

respectively.

Computation intervals are spaced closely together during early times and farther apart at later times so that precision will be retained during periods of rapid temperature rise but excessive computation time will not be required after the period of initial temperature rise. Temperatures and heat fluxes are printed at each tenth computation. Computation and print intervals are shown below

Time (sec)	^{Δt} j (sec)	^{Δt} print (sec)
0-2	0.05	0.5
2-6	0.10	1.0
6-10	0.20	2.0
10-50	0.50	5.0

Section 3

AERODYNAMIC PRESSURE OF A MISSILE WITH A SLIGHTLY BLUNTED NOSE

The MDAC/NSWC Aerodynamic Code as developed and modified in the past few years, is based on the linearized, small disturbance equations of motion. Consequently, its application is limited to sharp nose, streamlined bodies. However, it is recognized that for some missile configurations, a hemispherical nose is required for operational reasons. The aerodynamic characteristics of blunt nosed configurations can be considerably different from those of the sharp nosed geometry. In particular, the pressure distribution on the nose will greatly influence the aerodynamic coefficients. An appropriate assessment of the effect of the nose is needed.

To provide the capability for analyzing the nose pressure and thereby extending the ability of the aerodynamic code to bodies with a blunted nose, the code was modified based on the following approach.

In the subsonic/transonic case, the pressure distribution over a spherical nose is calculated from the Janzen-Rayleigh relation (Reference 17) for $\rm M_{\infty}\stackrel{<}{\sim} 0.75$

$$C_p = 1 - \frac{9}{4}\sin^2\theta + \frac{M_{\infty}^2}{4}(1 + \frac{3}{110}\sin^2\theta + \frac{1053}{352}\sin^4\theta)$$
 (11)

and the empirical relation suggested in Reference 18 for 0.75 $\stackrel{?}{\sim}$ M $_{\infty}$ $\stackrel{?}{\sim}$ 2.0.

$$C_p(\theta) = C_{pmax} \cos^2 \theta + F(\theta, M_{\infty})$$
 (12)

where

$$c_{pmax} = \left[\left(1 + \frac{\gamma - 1}{2} M_{\infty}^{2} \right)^{\gamma/\gamma - 1} - 1 \right] / \left(\frac{\gamma}{2} \right) M_{\infty}^{2}$$
 (13)

and

$$F(\theta, M_{\infty}) = \{0.78 M_{\infty}^{-2.27} \cos \theta - 0.95 \exp[-2.235 (M_{\infty} - 1)]\} \sin \theta$$
 (14)

For supersonic flows, the modified Newtonian method as suggested by Lees (Reference 12) in a survey by Isaacson and Jones (Reference 13) is used.

$$C_{D}(\theta) = C_{DMax} \cos^{2} \theta \tag{15}$$

$$C_{pmax} = (\frac{p_t}{p_{\infty}} - 1)/(\frac{\gamma}{2} M_{\infty}^2)$$
 (16)

$$\frac{p_{t}}{p_{\infty}} = \left[\frac{\gamma+1}{2} M_{\infty}^{2}\right]^{\frac{\gamma}{\gamma-1}} \left[\frac{\gamma+1}{2\gamma M_{\infty}^{2} - (\gamma-1)}\right]^{\frac{1}{\gamma-1}}$$
(17)

In both cases, these expressions are valid only in the neighborhood of the nose region. Taking into consideration the basic assumptions of the analysis used in the code, the application of the nose pressure option must be limited to slender bodies with a slightly blunted nose. More precisely, the ratio of the nose radius to the body radius must not greatly exceed 0.1.

Section 4

COMPUTER PROGRAM

In 1979, under the contract number N60921-78-C-0203 from NSWC-WOL, the MDAC/NSWC Aerodynamic Code (Reference 1) was developed for calculating the aerodynamic pressure distribution over the missile traveling at high supersonic speeds and generalized attitudes. To extend further the capability of the code, it has been modified to include the aerodynamic heating at supersonic speeds. Additionally, analysis for the pressure distribution over a slightly blunted nose has also been incorporated.

As before, the code accepts as input the output of NSWC computer codes PING and BING which prescribe the finite element on the missile. The code generates as output the pressure distribution and heat transfer results for subsequent stress analysis by NASTRAN. At the user's option, both the pressure load and the equilibrium temperature may be produced as punched-card output in the NASTRAN format. For convenience, results of the aerodynamic heating analysis are saved on tape (TAPE 12) for future studies.

4.1 CODE CAPABILITIES AND RESTRICTIONS

Using appropriate input values, the code can be utilized to analyze a missile flying under a combination of the following conditions:

- (a) Circular or near circular body
- (b) Single or multiple wings
- (c) Subsonic or supersonic speed (M_∞ ₹ 6.0)*
- (d) Small angle of attack, < 10°
- (e) Small angle of yaw, < 10°

^{*} For higher subsonic case $(M_{\infty} \ge 2.5)$, code applies to complete missile only.

- (f) Sharp or slightly blunted nose, $r_{\rm N}/r_{\rm b} \leq 0.1$
- (g) Aerodynamic heating at supersonic speed

Although the small disturbance basis of the code generally excludes operation in the transonic regime, e.g., $0.8 < M_{\infty} < 1.2$, the blunt nose relations include an expression for pressure coefficient valid in this regime (Equation 12).

As a result of the basic assumptions used, some limitations on the use of the code need be noted. For a missile with a blunted nose, aerodynamic heating of the nose region represents an extremely complex phenomenon. The present approach selected for the heat transfer analysis is valid only for analyzing the sharp nose case and should not be used for the blunt nose case.

The inputs specifying the missile dimensions and the free stream pressure must be consistent with each other. As an example, when the missile dimensions are given in inches, free stream pressure (PINF) must be in pounds per sq. in. However, in the case of heat transfer analysis, the missile dimension must be in inches and the free stream pressure in psi.

Based on the operating experience with the CDC CYBER 174 computer with the NOS system, the code requires a field length of 166,000 for execution. The computing time varies between one to three minutes for different cases.

4.2 INPUT DESCRIPTION

Several input parameters have been added to the input list (NAMELIST/UNIFID) for specifying either the heat transfer analysis or the pressure distribution analysis for a slightly blunted nose. The original input parameters retain

their function as explained in great detail in Reference 1 (pp. 9-16) and are repeated here for convenience.

XMACH	Mach number of flow. Higher supersonic routine
	employed when greater than 2.5, default value $= 2.0$.
PINF	Free stream pressure, default value = 14.7 psi.
DADEG	Incremental angle of attack of missile in degrees,
	default value = 0.
SID	Case identification number for each missile component
	(up to 20 allowed); default values have been set at
	1. Also used for selecting the sign convention for
	pressure output. Code uses the accepted rule for
	pressure, i.e., positive acting toward the surface and
	negative acting away from the surface. For
	opposite-sign convention, set SID(L) as negative for
	pressure output on the desired component L (in the
	order of body, wing surfaces, upper or lower).
YAW	Angle of yaw in degrees with respect to the flow.
BROLL	Missile roll about body axis (degree).

The following input parameters are required for the case where missile body is included:

NBPFL	Number of body profile stations for specifying body
	geometry inputs $r = r(x)$; up to 51 stations allowed.
X8 <u><</u> 51	Axial coordinate of body stations in the direction of
	flow for specifying the body profile.
RB <u><</u> 51	Radial coordinate of body profile at corresponding
	body stations.
ZD < 51	Body camber at corresponding body stations.

ARB

Angle of attack of missile body in degrees, default value = 0.

In accordance with the overall organization of the code, the input parameters and data have been organized into two main groups in accordance with their assigned functions. The first group contains all the parameters needed for the specification of case selection, missile configuration, and flow conditions. They form the input parameter of the namelist UNIFID. The second group specifies the finite-element and grid-point system as generated by the NSWC computer codes BING and/or PING. It includes the specification for the coordinate system used for the finite elements.

For the convenience of the user, card format for inputs are described in their sequential order as required by the code.

A. Aerodynamic Control Parameters.

Card 1 Title and case description, format (20A4), alphanumeric.

Card 2 SUNIFID, begins at Column 2 with the symbol S.

Card 3 And additional cards if necessary, contain the following as input:

ICASE = 1 Wing only.

= 2 Body only.

= 3 Complete missile.

NTRANS

Number of coordinate transformations required to convert the coordinates for the finite element to the coordinates used in the aerodynamic code. Two transformations are allowed for each missile component, in the following order; body, wings, and nacelles.

IPUNCH	= 0	No punched card output, default value.
	= 1	Punched card output requested.
IRW	= 2	Computation results are not saved on tape, default value.
	= 1	Aerodynamic computation results are saved on tape 12 for
		restart, first run only.
	= 2	Restart run, bypass all aerodynamic computations and
		begins computation at the start of pressure
		interpolation.
POLAR		Number of incremental angles of attack, default value =
		0.

The following inputs are required for the case where the missile wing is included:

ISOLID	= 0 .	Wing of built-up construction, pressure load on both upper and lower wing surface generated, default value.
	= 1	Wing of solid section, sum of the pressure loads on wing
		surface generated.
I FORM	= 0	Wing of built-up construction, both upper and lower
		surface height (ZWI) are given at identical locations
		(XWI, YWI).
	= 1	Wing of built-up construction, upper and lower surface
		height (ZWI) are not given at identical locations.
	= 2	Flat wing surface.
NWPI		Number of coordinate points specify the wing surface
		contour (≤30). Code allows a maximum of 20 wing
		surfaces (upper and lower). Each wing surface must be

defined in the form of equation of a surface, ZWI = f(XWI, YWI). A maximum of 30 points are permitted with the provision that the first four points are restricted to the specification of the corners of the wing only. The coordinates for the corners must be given in the following order. Starting with the innermost point of the leading edge, the remaining corners are to be given in a counter clockwise order viewing from the above. Number of wings or tails. A maximum of 10 is allowed,

NWING

default value = 0.

XWI(i, j), YWI(i, j), ZWI(i, j)

Wing-surface coordinates where indices i and j designate the surface coordinate point and wing surface, respectively.

DIHED

Dihedral angle, degrees.

TOVIS

Indicates dihedral, 0 for no dihedral, and >0 for dihedral present.

ARW

Angle of attack of wing in degrees, with respect to the body axis if complete missile is considered, default value = 0.

The following input parameters are required for the complete-missile case (ICASE = 3) except for high-supersonic-speed (M > 2.5) case:

NWPANL

Number of wings directly connected to the body.

XLG

Axial distance at the intersection of wing leading edge and body for each wing.

XTG

Axial distance at the intersection of wing trailing edge and body for each wing.

Card 4 SEND

Begin at column 2 the symbol S for ending input.

8. Finite-Element and Grid Inputs. The second group of input cards are arranged immediate following Card 4, as follows:

Cards 5 and 6

Coordinate-system specifications in the format of NASTRAN bulk-data deck [page 2.4-49 - 2.4-54, NASTRAN User's Manual, NAS SP-221(01), 1972]. Three position vectors -A, B, and C - are used to define the coordinate system. The first defines the origin, the second defines the Z axis, and the third defines a point in the XZ plane.

For Card 5 the following format is used:

Col 1-8 Coordinate system CORDJRbb for rectangular, CORDJCbb for cylindrical, CORDJSbb for spherical, where J identifies the coordinate system numbers.

Col 9-16 Coordinate identification number J, integer.

Col 17-24 Reference coordinate system, integer, optional

Col 25-32, 33-40, 41-48, Components of vector A (3F8.2).

Col 49-56, 57-64, 65-72, Components of vector B (3F8.2).

For Card 6:

Col 1-8 blank.

Col 9-16, 17-24, 25-32, Components of vector C (3F8.2).

Cards 5 and 6 are to be repeated as many times as there are coordinate systems (NTRANS) required for specifying the finite element. They are to be arranged in the order of body and wings.

The finite element and grid specifications are arranged immediately following the coordinate-system input in the same order, i.e., body, wings.

Card 7: Specifies the number of grid cards (NGRIDP) and element cards (NE), Format (2110).

The grid and the element cards as generated by the NSWC computer-code BING are sorted into two separate groups. They are then placed immediately after card 7 with the grid cards in front.

Some remarks regarding the input parparation need to be made here to facilitate the use of the aero code.

For the body-only case, inputs of the body profiles, expressed as r = r(x), for aero-panel generation must be in the aero-coordinate system. It is required that x be the axial distance from the tip and r the radius of the body cross section (Figure 4-1). For the finite element and grid point, their

Figure 4-1. Body Profile Input

relationship to the basic coordinate system and the basic coordinate system to aero-coordinate system are to be specified in the coordinate input card immediately following the namelist input. The grid card and the element card are to be separated and placed after the coordinate system specification, with a card specifying their numbers placed behind the coordinate card.

The input for the wing-only case requires the specification of both the wing planform and its surface contour. The input for the description of the wing planform requires the coordinates of corner points and break points. For each individual wing, inputs for those of quadrilateral shape are their four corner coordinates. The codes have allocated the first four values of the coordinates XWI, YWI and ZWI for each wing or wing region, arranged in a counterclockwise order starting from the leading-edge corner of break point.

Figure 4-2. Subdivision of Complex Wing

In the case of triangular wings, there are only three corner points. To satisfy the same requirement, the apex or wing tip is to be considered as two coincident points of the same coordinate. The inputs are to be arranged like those of the quadrilateral shape, with leading-edge body-corner point as the starting point. Wings with complex shapes (see Figure 4-2) must be subdivided into appropriate quadrilateral or triangular regions and the inputs prepared accordingly. The only requirement is that the control chords, apart from either the leading edge or the trailing edge, must be in the streamwise direction.

All inputs for the wing surface are to be given in the form of the equation of surface Z = f(x, y) in terms of XWI, YWI and ZWI. Starting with the fifth value, XWI (5,I), YWI (5,I), ZWI (5,I), their total number may not exceed 26 points. For wings with flat surfaces, only the first four points are necessary.

Inputs defining wing thickness, camber and twist have been eliminated to reduce the input preparation effort. The code generates the required values of camber, thickness slope, and twist angle for the wing using the existing surface—fit scheme from the input.

Similar to the body-only case, the finite-element and grid-point coordinate-system cards are placed immediately behind the namelist input. They are followed by a card specifying the number of grid cards and element cards. The grid-point and element card as generated by PING occupies the last position in the input.

The coordinate system used for the wing can be any one of three systems, i.e., rectilinear (x,y,z), cylindrical (r,θ,z) and spherical (r,θ,ϕ) . In terms of the input parameters, they are represented by XWI, YWI and ZWI, respectively, for all three systems.

For the complete-missile case, the input can be considered as a combination of these two cases, i.e., the body-only and the wing-only cases. Only the parameters ICASE and NTRANS need be corrected to reflect the changes.

Both coordinate-system cards and finite-element cards are to be grouped together in the order of body, wings, and nace!les.

As a result of the approach used for the analysis, the computations for the high-supersonic-flow case are considerably simpler. Accordingly, the code treats the complete missile as a rule.

As previously noted, for aerodynamic heating analysis, inputs for missile dimensions such as XB, RB, ZD, XWI, YWI, ZWI, XLG, XTG and the finite element grid inputs must be given in inches. The free stream pressure PINF should be in psi.

The additional inputs, required for either the heating transfer analysis or the blunted nose case are described below.

4.2.1 Aerodynamic Heating Analysis

IHTRANF	= 0	No heat transfer analysis, default value
	= 1	Heat transfer analysis requested
TI	= 518.0°R	Free stream temperature, default value
TEMPI	= 540.0°R	Initial temperature of missile, default value
BMATL		Body skin material flag
	= 1.0	Aluminum (Al), default value
	= 2.0	Titanium
	= 3.0	Input, as desired, the specific heat (Btu/lb-°F),
		Density (lb/ft ³) and emittance
BSPHT	= 0.2	Specific heat of body skin material (Btu/lb-°F),
		default value (A1)
BDENS	= 173.0	Density of body skin material (lb/ft^3), default value (AL)
BEPS	= 0.2	Infrared emittance of body skin material, default value
		(A ²)
BTHICK	= 0.1	Thickness of body skin (inch), default value
WMATL		Wing skin material flag
	= 1.0	Aluminum, default value

= 2.0 Titanium

= 3.0 Input, as desired, the specific heat (Btu/lb-°F), density (lb/ft^3) and emittance

WSPHT = 0.2 Specific heat of wing skin material (Btu/lb-°f), default value (A ℓ)

WDENS = 173.0 Density of wing skin material (lb/ft 3), default value (A ℓ)

WEPS = 0.2 Infrared emittance of wing skin material, default value (A ℓ)

WTHICK = 0.1 Thickness of wing skin (inch), default value

4.2.2 Blunted Nose

INOSE = 0 Sharp nose case

= 1 Slightly blunted nose

RNOSE Nose radius

Section 5

TEST CASES

Test cases were selected for aerodynamic heating analysis and nose pressure modification using the present code for the purpose of verifying the theoretical approach and the code operation.

5.1 SHARP CONE AT $M_{\infty} = 4.98$

Results of computations for heat transfer to a sharp, five degree semi-apex angle cone at M_{∞} = 4.98 are shown in Figure 5-1 compared with experimental data from Reference 14. The calculated results demonstrate a transition criterion of a local Reynolds number between 4 x 10⁶ and 6 x 10⁶ to correspond with transition observed in the test data. Comparison of calculated results with experimental data for both laminar and turbulent boundary layer heat transfer is seen to be very good.

5.2 PRESSURE DISTRIBUTION OF A SLIGHTLY BLUNTED NOSE MISSILE For analyzing a missile with a slightly blunted nose, the test results of a circular cone with a 15° half-cone angle at $M_{\infty} = 1.9$ as reported in Reference 15 was available. In Reference 16, a test for an ogive with a blunted nose was conducted at $M_{\infty} = 2.17$ and 4.84. In Figures 5-2, 5-3 and 5-4 their measured pressure data were compared with the calculated results generated by the code. It can be seen that the correlation is good.

For subsonic speeds, test results for a hemisphere-cylinder at M_{∞} = 0.8 were reported in Reference 18. In Figure 5-5, it can be seen that calculated results compare favorably with these data.

The input requirement for the blunted nose code is relatively simple. Only two additional inputs are needed, i.e., INOSE and RNOSE.

Figure 5-2. Pressure Coefficient of a Slightly Blunted Cone.

Figure 5-3. Pressure Coefficient of a Slightly Blunted Ogive.

PRESSURE COEFFICIENT OF A SLIGHTLY BLUNTED OGIVE

Figure 5-4. Pressure Coefficient of a Slightly Blunted Ogive

Figure 5-5. Pressure Coefficient of Hemisphere-Cylinder

Section 6 SAMPLE INPUTS AND OUTPUTS

For the convenience of the user, sample inputs and outputs from calculations are presented.

6.1 SAMPLE INPUTS

6.1.1 Aerodynamic Heating Case

For clarity, grid points and elements selected for the sample test case are shown in the sketch (only a few are shown for demonstration purposes).

EXPANDED VIEW OF NOSE ELEMENTS

. GRID POINT OF ELEMENT USED IN THE TEST CASE

ELEMENTS AND GRID POINTS OF SAMPLE TEST CASE

6.1.2 Blunted Nose Case

In the sketch shown, the blunted nose ogive has its elements and grid points as given by the input. With the method of analysis for the blunted nose restricted to a slightly blunted body, the number of elements can be small as used for the test case.

EXPANDED VIEW OF NOSE ELEMENTS

6.2 OUTPUT OF CALCULATIONS

Printouts of the results as calculated using the code are reproduced in the following pages. For the heating analysis case only a few selected elements were used for demonstration purposes. In application when a large number of elements is involved, the temperature history will be written on tape 12 to reduce the punched output and facilitate the handling of output.

6.2.1 Aerodynamic Heating Analysis

AO1 SAP	AD) SAMPLE CASE FOR HEAT TRANSFER ANALSIS OF A COMPLETE MISSILE	A01
EO1 SUNIFID		E01
ICASE	: 3,	
NTRANS	= 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	
IPUNCH	-1,	
IRM	*O*	
POLAR	* O°O =	
150.10	= 0°	-
SID	= 18-01, 18-01, 18-01, 18-01, 18-01, 18-01, 18-01, 18-01, 18-01, 18-01, 18-01, 18-01, 18-01, 18-01, 18-01,	
NBPFL	= 15,	_
æ	= 0.06 .5€ 000 .1€ 01 .15€ 01 .25€ 01 .25€ 01 .35€ 01 .35€ 01 .35€ 01 .35€ 01 .35€ 01 .35€ 01 .35€ 01 .35€ 01 .05€ 010 .000 .000 .000 .000 .000 .000 .000	
89	= 0.0, 0.881E-01, .1763E-00, .2664E-00, .3524E-00, .4408E-00, .5289E-00, .5818E-00, .4E-00, .6E-00, .6E-00, . 6E-00, .6E-00, .6E-00, .6E-00, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,	
22	= 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	
d. W	= 0.0,	
MAPI	= 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	
YAV	= 0.0,	
BROLL	± 0.0,	
NAING	-1,	
IFORM	= 2, 0, 0, 0, 0, 0, 0, 0, 0, 0,	
P1V0T	= 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	
THICK	. 1840)	
DIHED	= 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	
XMI		


```
ğ
                                                                                   = .1476.402,
                             MCELP
                                                                                            PINF
DADEG
                                                                                                                    INOSE
                                                                                                                                      BSPMT
                                                                                                                                           EDENS
ᅙ
                                 Ş
```

E01 WATL = .3E+01, WSPHT = .2E+00, WDENS = .173E+03, WTHICK = .8E-01, WEPS = .4E+00, TEMPI = .52E+03,

705							ט	8
AERODYN SAME	WAIC PRESSURE LOCAL COORDIN	E ON THE BODY IATE SYSTEM	9	NTROID OF	FINITE ELEKENT	AERODYNANIC PRESSURE ON THE BOOT CENTROID OF FINITE ELEKENT AS GENERATED BY NSWC CODE IN THE SAME LOCAL COORDINATE SYSTEM		
ELEMENT	×	THETA	•	PRESSURE	TEMP R	MACH NO.		
-	.26% +00	.345E+03	•	.1936 -02	292.173	4.514		
~	.269£ +00	.3156-03	•	.1936 +02	292.264	4.515		
m	.269£ +00	.285E +03	•	.1936 +02	292.173	4.514		
•	.269€ +00	.255£ +03	•	.1936 +02	292.173	4.514		
•	.269£ +00	.225E+03	•	.193E +02	292.264	4.515		
•	.269£ +00	.1956-03	•	.1936 +02	292.173	4.514		
~	.269€ +00	.165E+03	•	.193E +02	292.173	4.514		
•	.26% +00	.135£ +03	•	.1936 +02	292.264	4.515		
•	.269€ +00	.105E+03	•	.1936 +02	292.173	4.514		
5	.269£+00	.750€ +02	•	.1936 +02	292.173	4.514		
=	.26% +00	.450€ +02	•	.1936 +02	292.264	4.515		
KUE	NUMBER OF CARD	PUNCHED FOR	R THIS	RUN	=			

M - 00000000000000000000000000000000000
ŢŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶŶ
WW WW

02

£()\$						F02
AEROD1	MAMIC PRESSURE E LOCAL COORDIN	ON THE WING	· CENTROID OF FINIT	'E ELEMENT AS GENEA	AERODYNAMIC PRESSURE ON THE WING CENTROID OF FINITE ELEMENT AS GENERATED BY MSWC CODE IN THE SAME LOCAL COORDINATE SYSTEM	
	TOTAL NUMBER OF WINGS	JE WINGS 1				
	WING NO.	-				
	FLOW FIELD ON	FLOW FIELD ON THE UPPER SURFACE OF WING	E OF WING			
ELEMENT	×	>	PRESSURE	TEMP R	MACH NO.	
දුද්දීද්දී	\$ 5.56 \$	**************************************	2.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	255555 255555 25555 25555 2555 2555 25	\$ 5.00000 \$ 7.00000 \$ 7.00000 \$ 7.000000 \$ 7.000000 \$ 7.0000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.000000 \$ 7.00000 \$ 7.00000 \$ 7.00000 \$ 7.00000 \$ 7.00000 \$ 7.00000 \$ 7.0000 \$ 7.	
	FLOW FIELD ON	FLOW FIELD ON THE LOWER SURFACE OF WING	E OF WING			
ELEMENT	×	-	PRESSURE	TEMP R	MACH NO.	
900000	25.55.55.55.55.55.55.55.55.55.55.55.55.5	00000000000000000000000000000000000000	\$221 \$221 \$221 \$221 \$221 \$221 \$221 \$221	251.037 251.037 251.037 750.175 750.175	4,742 4,742 4,742 6,742 742 742 742	
Ş	NUMBER OF CARD	PUNCHED FOR	THIS RUN 10			

	BER 1 HEAT FLUX (BTU/FTZ-SEC)	1.1.2051 1.1.20	2 81 UX	(£70/F12-5£t)	1.1.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5
R BODY ELEMENTS	TEMPERATURE HISTORY FOR BODY ELEMENT NUMBER TIME TEMPERATURE HE (SECONDS) (DEG F)		TA TA	(DEC F) CETU	o
TEMPERATURE HISTORIES FOR BODY ELEMENTS	RATURE HISTORY FOI TIME (SECONDS)	ෙ <i>ౣౣౣౣౣౣౣౣౣౣౣౣౣౣౣౣ</i> ౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢౢ	ERATURE HISTORY FO. TIME	(SECONDS)	○

A03	(SECONDS)	(DEG F.)	(BTU/F72-SEC)	A03
	o	/ ************************************	14.405 14.405 14.405 14.405 16.405	
TEMERATUR	IE HISTORY FOR TIME 1	TEMPERATURE HISTORY FOR BODY ELEMENT NUMBER TIME TEMPERATURE HI (SECONDS) (DEG F)	PMER 4 HEAT FLUX (BTU/FT2-SEC)	
	ం <i></i>	////////////////////////////////////	4.000 (1.000)	
TEPPERATUR	RE MISTORY FOR TIME (SECONDS)	TEMPERATURE HISTORY FOR BODY ELEMENT MURBER TIME TEMPERATURE HI (SECONDS) (DEG F)	UMBER 5 HEAT FLUX (870/F72-SEC)	
	\$250	800 101 800 101 81 100 101	11 6 9250 E 0.3 11 6 75 96 96 96 96 96 96 96 96 96 96 96 96 96	:

E03		
1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	##AT FE UX HEAT FE UX 14.00 \$1.14.95 FE 0.03 1.14.95 FE 0.03 1	8 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
	TEMPERATURE TEMPE	TEMENT CONTRACTOR CONT
**************************************	TEMPERATURE HISTORY FOR BODY ELEMENT MURBER 11/00 11/	TEMPERATURE HISTORY FOR BODY ELEMENT ::UMBER 1 11ME (SECONDS) 1.000

100				£03
3	×පැප දිසිසිපි	80808080 80808080 80808080 80808080	. 1833446-06 . 854746-08 . 4008148-09 . 2087736-10	}
TEMPERATU	JRE HISTORY FO TIME (SECONDS)	TEMPERATURE MISTORY FOR BODY ELEMENT NUMBER TIME TEMPERATURE (SECONDS) (DEG F)	NUMBER 8 HEAT ELUX (BTU/F12-SEC)	
	ం		1.000	
TEMERATI	JRE HISTORY FI TIME (SECONDS)	TEMPERATURE HISTORY FOR BODY ELEMENT MUNBER TIME TEMPERATURE (SECONDS) (DEG F) (BT)	MUMBER 9 HEAT ELUX (BTU/FTZ-SEC)	
	o	くままちゃっちりものものものものももももも くらい こうしししょう こうさい ようそう アップラン こうしょう こうしょう しょう しょう しょう しょう しょう しょう はん かっか アップライン まっかい こうしょう まっかい こうしょう こうしょう こうしょう しょうしゅう しゅうしょう しょうしょう しゅうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょう しょうしょう しょう	1.1.00.00.00.00.00.00.00.00.00.00.00.00.	
TEMPERATI	URE HISTORY F	TEMPERATURE HISTORY FOR BODY ELEMENT NUMBER	MUTBER 10	

£03		
	€ ₩	
	EQUIL IBRIUM Temperature (Deg. F.)	#0. #0. #0.
	EL EMENT NUMBER	→∞
	EDUIL IBRIUM TEMPERATURE (DEG F)	© 00 0°
	ELENENT NUMBER	~ ⊊
STRIBUTION	EQUILIBRIUM TEMPERATURE (DEG F)	හතන උදුරු දැන්න වතන වතන
PERATURE DI	EL EMENT NUMBER	∞ ల్ల
BOOY EQUILIBRIUM TEMPERATURE DISTRIBUTION	EQUIL IBRIUM TEMPERATURE (DEG F)	ଷ୍ଟଦ-ଶ୍ର ଏ.୧.୬- ଶ୍ରଦ-ଶ୍ର ୧୯-୧- ୧୯୧୭
E03	ELEMENT NUMBER	

F03			
			·
	COLD WALL HEAT FLUX (BTU/FTZ-SEC)	######################################	
BODY HEATING PATE INFORMATION	HEAT TRANSFER COEFFICIENT (BTU/FT2-SEC-DEG F)		
SEATING PATE INFOR	REYNOLDS NUMBER	######################################	
H Adol	RUNNING RENOTH (FRET)		
F03	ELENENT NUMBER	-varanor es ST	

603					
INTS	TEMPERATURE HISTORY FOR UPPER WING ELEHENT MUMBER 400 TIME TEMPERATURE HEAT FLUX (SECONOS) (DEG F) (BTU/FTZ-SEC)	**************************************	TEMPERATURE HISTORY FOR UPPER WING ELENENT NUMBER 401 TIME TEMPERATURE HEAT FLUX (SECOMDS) (DEG F) (BTU/FT2-SEC)		TEMPERATURE HISTORY FOR UPPER WING ELEMENT MUMBER 402 TIME TEMPERATURE HEAT FLUX
FOR WING ELEM	T FOR UPPER WING TEMPERATURE)	2444624444446588888888888888888888888888	FOR UPPER WING TEMPERATURE	のからないないないできたとうできることできた。	FOR UPPER WING
GO3 TEMPERATURE HISTORIES FOR WING ELEMENTS	TEMPERATURE HISTORY TIME (SECONDS)	·	TEMPERATURE HISTORY (SECONDS)	######################################	TEMPERATURE HISTORY TIME

A04	(SECONDS)	(DEG F)	(BTU/FT2-SEC)	A04
	<u> </u>		60.44.44.44.44.44.44.44.44.44.44.44.44.44	
TEMERAT	TEMPERATURE HISTORY F. TIME (SECONDS)	FOR UPPER WING EL TEMPERATURE (DEG F)	ELEMENT NUMBER 403 HEAT FLUX (BTU/FTZ-SEC)	
·	。	できるようななのではよれてこれできる。 のなるようなものないないできませる。 とはなるようなものないないできません。 ははなっているというないのできません。 できないなっている。 ははないないないできます。 ははないないないできます。 はないないないできます。 はないないないないできます。 はないないないないないない。 はないないないないないないない。 はないないないないないないない。 はないないないないないないない。 はないないないないないないない。 はないないないないないないない。 はないないないないないないないないない。 はないないないないないないないないないないないない。 はないないないないないないないないないないない。 はないないないないないないないないないないないないないないないないないないない	3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	
TEMPERATURE HI		STORY FOR UPPER WING ELI ONDS) TEMPERATURE ONDS) TEMPERATURE	ELEMENT NUMBER 404 NEAT FLUX (81U/F12-SEC)	
	S	Section 1	55555555555555555555555555555555555555	

15000 581.06 14.7558 4.05.15.00 14.7558 4.05.1558 4.05.	######################################
SS 510	~~ <u>~</u> ;
Story for Lovery Corrections of the Lovery C	22 AAAAAA
01000000000000000000000000000000000000	. 789898
5555 5555 5555	175004E 17 438049E 101 675726E 101 675726E 101 198646E 101 128412E 104
	. 5376/2E-06 . 3476/2E-06 . 3476/2E-09
TEMPERATURE HISTORY FOR LOWER WING ELEMENT NUMBER TIME TEMPERATURE HEAT FLI (SECONOS) (DEG F) (BTU/FTZ-	HEAT MUMBER 401 HEAT FLUX (BTU/FTZ-SEC)
6	

7 00	x232 2222 2222	7779 7779 7779 779,89 779,89	.188874E-04 -20205-605 -218177E-05 -231316E-07	* 00
TEMPERATUR	IE HISTORY FC TIME (SECONDS)	TEMPERATURE HISTORY FOR LOWER WING ELEMENT NUMBER 402 TIME TEMPERATURE HEAT FLUX (SECONDS) (DEG F) (BIU/F12-SEC)	MENT MUMBER 402 HEAT FLUX (BTU/FT2-5EC)	
	ට .	のできる。 のでは、	2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	
TEMERATUR	50.00 TIME (SECONDS)	\$0.00 779.34 .229845E-Ö6 TEMPERATURE HISTORY FOR LOWER WING ELEMENT NUMBER 403 (SECONDS) (DEG F) (BTU/FT2-SEC)		
	o	のであるようななのでとれてアイドアでで あるみないないないないない。 と言えないなのかのであるかのののの。		
TEMPERATUR	E HISTORY FI	TEMPERATURE HISTORY FOR LOWER WING ELEMENT NUMBER 404	MENT NUMBER 404	

60 4									F04
	UPPER	WING EQUILIBRI	JR TEMPERATI	UPPER NING EQUILIBRIUM TEMPERATURE DISTRIBUTION					
-	ELEMENT MUMBER	EQUIL IBRIUM TEMPERATURE (DEG F)	EL EMENT NUMBER	EQUILIBRIUM TEMPERATURE (DEG F)	EL EMENT NUMBER	EQUIL IBRIUM TEMPERATURE (DEG F)	ELENENT	EQUILIBRIUM TEMPERATURE (DEG F)	
	\$\$	£€.	107		207	779.34	. .	779.00	
			İ			i			

F04					F04
	UPPER (COLD WALL HEAT FLUX	WING HEATING RATE	UPPER WING HEATING RATE INFORMATION (COLD WALL HEAT FLUKES BASED ON 80 DEG F WALL TEMPERATURE)		
EL EPENT NUPBER	RUNNING LENGTH (FEET)	RETHOLDS NUMBER	HEAT TRANSFER COEFICIENT (BTU/F12-SEC-DEG F)	COLD WALL HEAT FLUX (BTU/FT2-SEC)	
8 5999	23417E-00 -70548E-00 -16751E-01 -281076E-01	2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	.10904E + 00 .9044E + 00 .9104E - 01 .7355E - 01		
•					

LOWER WING EQUILIBRIUM TEMPERATURE DISTRIBUTION
ELEMENT EQUILIBRIUM ELEMENT EQUILIBRIUM ELEMENT EQUILIBRIUM ELEMENT MUMBER TERPERATURE NUMBER TERPERATURE NUMBER (DEG F) (DEG F)
401 779.89 402
78.75
EQUILIBRIUM ELEMENT TEMPER NUMBER NUMBER 7 20.70 401
780.79 401
ELEMENT EQUIL IBRIUM ELEME NUMBER TEMPERATURE NUMB COEG F) 400 778.75 401
NUMBER TEMPERATURE 400 778.73
NOWBER 400
=

ELEMENT COAD WALL HEAT THOUSE OF THE WALL HEAT THOUSE						A05
HEAT TRANSFER (6TU) FTZ-SEC-DEG F) WEEER (GETICIENT (G		COLD WALL HEAT FLUX	WING HEATING RATE ES BASED ON 80 DE	INFORMATION G F WALL TEMPERATURE)		
3.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3		RUNNING LENGTH (FEET)	RE YNOLDS NUMBER	HEAT TRANSFER COEFFICIENT (BTU/FTZ-SEC-DEG F)	COLD WALL HEAT FLUX (BTU/FT2-SEC)	
		.2347 FE 00 14651 E 01 2167 E 01 2167 E 01	288 288 27775 27775 200 380 380 380 380 380 380 380 380 380 3	.109046 .909466 .909466 .367916 .757916 .755986	. 76857E - 64102E - 57557E - 57557E - 5767E -	
	ŭ S					
				,		

6.2.2 Blunted Nose Pressure Distribution

A01	
	•
DGIVE	
NOSE O	
BI UN TEL	
. IGHTL Y	
F OR SI	
AD) SAMPLE INPUT FOR SLIGHTLY BLUNTED NOSE OGIVE	
SAARA PARS PARS PARS PARS PARS PARS PARS	

E)J		601
SUNIFID		
ICASE	. 5,	
NTRANS	= 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	
1PUNCH	,0,	
H ₂ I	٠٥,	
POLAR	.0.0,	
150.10	. "0"	
SID	= .1E+01, .1E	
ME! FL	± 20,	
9	= 0.0 fs. 25 00. 2512 00. 25475 004395 005295 00. 5295 00. 5100 0. 5115 00. 1055 01. 15515 002035 01. 52455 01. 52455 01. 52515	
£	= 0.0, .928E-01, .1247E+00, .1632E+00, .2002E+00, .2356E+00, .269E+00, .302E+00, .415E+00, .519E+00, .582E+00, .002E+00, .002E	
22	* 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9, 9.9	
2	* 0.0,	
N I P	= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	
AA	*0.0*	
BROLL	* 0.0,	
NN ING	.0,	
I FORM	= 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	
P1V07	* 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	
THICK	: .1£+01,	
DIMED	= 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	
IPX		

9 . ಎರ್ಎರ್ಎರ್ಎರಿಂದ ಎರಂಎರಿಂದರಿಂದರಿಂದರಿಂದರಿಂದರಿಂದರಿಂದರಿ ವರಂಪರಿಯಾಗಿರುವರಿಂದರು දුරුවල්ට ද

₹

ຣ

Ξ

```
ğ
                                  0000
0000
0000
0000
                                  = .1476.02,
                                                                     = 0.0,
                                                                              INTANF
INOSE
RNOSE
                                                                                                     BTHICK
                                                               XMACH
PINF
DADEG
                                                                                               BSPMT
                                                                        8 A §
ᅙ
                        ¥
                                   ₹
```

Service Charles (p)

SYMMETRICAL CONFIGURATION - PANELS LOCATED ON BOTH SIDES OF X-2 PLANE (SYM = 1.) INCLINATION OF BOOT AXIS WITH RESPECT TO DEFINING AXIS = 0.0000 DEG. WING THICKNESS PRESSURES NOT TO BE ADDED ANGLE OF ATTACK WITH RESPECT TO BODY AXIS = 0.0000 DEG. VELOCITY COMPONENTS NOT TO BE PRINTED 0.000 POINT ABOUT WHICH THE MOMENTS ARE TO BE COMPUTED X-COORDINATE = 0.0000 CALCULATE CL, GIVEN SHAPE HEIGHT OF WING PLANE ABOVE BODY AXIS = POLARS REQUESTED 1.1389 NON-LINEAR CP DESCRIPTION OF CASE REQUESTED 930 00.0 REFERENCE CHORD LENGTH = BODY REFERENCE AREA = WING REFERENCE AREA * WING SEMI-SPAN # = 0.0, = 0.0, 0.0= * 0.0 = 0.0 .0.0 MACH NUMBER = BOOV ROLL = CPCALC = 1. POLAR = 1. THICK = 0. CASE = 2. VOUT = 0. WTHICK WSPHT MOENS MAT TEMPI WEPS

E9

f01			
	CYM = -1,0742	•	
	0000°0 = H	# ###################################	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	.0892 CRM	**************************************	4
	: H40 0	0.00 WWW. WWW. WWW. WWW. WWW. WWW. WWW.	Constitution
	0000°0 + 80	*** *** *** *** *** *** *** *** ** *** *** *** *** *** *** *** *** *** *** *** **** *** *** *** *** *** *** *** *** ***	20000000000000000000000000000000000000
HOMENTS ON BOD	02%		
FOT PRESSURES, FORCES AND HOMENTS ON BODY	2420 CL =	# 9 00-144444444444444444444444444444444444	### ##################################
PRES	8	HE THE THE THE THE THE THE THE THE THE T	107AL 800 T

109		
/Willillill /Williocolling Wordacaeuenaciola Wordacaeuenaciola Aceueacaeuenaciola Aceuenaciola Aceuenaciola Aceuenacionacionacionacionacionacionacionacio		
///		
///		
///		
44444444444444444444444444444444444444		
11111111 11111111 11111111 111111111		
9		

A02						A02
AERODYI SAME	NAMIC PRESSUR! LOCAL COORDII	E ON THE BODY -	- CENTROID OF I	FINITE ELEMENT	AERODYNAMIC PRESSURE ON THE BODY CENTROID OF FINITE ELEMENT AS GENERATED BY NSWC CODE IN THE SAME LOCAL COORDINATE SYSTEM	
ELEMENT	×	THETA	PRESSURE	TEMP R	MACH NO.	
-	.269E+00	.345£+03	.1685+02	0000	0.000	
~	.269£+00	.315€+03	.1596+02	000.0	0000	
~	.269£+00	.285£+03	.1685+02	000.0	0.000	
•	.269£ +00	.255E+03	.1685+02	000.0	0000	
•	.269£+00	.225E+03	.159£+02	000.0	0000	
•	.269€ +00	.195E+03	.168E+02	000.0	000.0	
~	.269€+00	.165£+03	.168E+02	000.0	0000	
•	.269E+00	.135£+03	.159£+02	0000	0.000	
•	.269€ +00	.105E+03	.168E+02	000-0	0.000	
2	.269£ +00	.750E+02	.1686+02	000.0	0.000	
=	.269E +(10	.450E+02	.159€+02	000.0	0.000	
2	.269E+00	.150E+02	.1686+02	000-0	0000	
≂.	.1806-01	.345E+03	.4446.02	0000	0.000	
~	.1806-01	.315£+03	.444 -02	000*0	0.000	
ຂ	.1806-01	.285E+03	20+3+++	0000	0000	
*	.1806-01	.255€+03	.444€+02	0000	0.000	
8	.: 80E-01	.2256+03	20+3+5+	000.0	0000	
Ē.	ND OF COMPUTA	END OF CONPUTATIONS				

Section 7

CONCLUSIONS AND RECOMMENDATIONS

The MDAC/NSWC aerodynamic code has been extended to treat (a) aerodynamic heating at high supersonic speeds and (b) nose pressure of a missile with a slightly blunted nose. The input modifications have been kept to a minimum. In the aerodynamic heating case, only a few of the appropriate material properties are required with the default values set for aluminum. Only two new inputs are necessary for the blunt nose case.

As developed, the code represents a unique and versatile tool with missile analysis capability that is paramount to design studies. The advantage of the output generation options available, in the form of NASTRAN input specifications for stress analysis, needs no explanation. Additionally, the small computing effort required for each case, must encourage its use.

When analyzing the operational capability of a missile, often times only a few selected points on its planned trajectory are used for study and evaluation. With the advent of the cruise missile, considerable variation in the flight environment may be encountered. To provide assessment of its performance under this situation, many cases must be analyzed. For this purpose, a flexible restart capability that can meet all the changes required for every case while eliminating unnecessary computational duplication will be most welcome. The present code is well suited for modification to this end.

REFERENCES

- K. K. Wang, "Aerodynamic Computer Code for Computing Pressure Loads on a Missile at High Supersonic Speeds and Generalized Attitudes", Report No. MDC G8223, McDonnell Douglas Astronautics Company, Huntington Beach, California, November 1979.
- 2. P. C. Huang and J. P. Matra, Jr., "Planform Input Generator (PING), A NASTRAN Preprocessor for Lifting Surface-Theoretical Development, User's Manual, and Program Listing", NOLTR-73-199, Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland, December 1973.
- 3. P. C. Huang and J. P. Matra, Jr., "Missile Body Input Generator (BING), A NASTRAN Preprocessor; Theoretical Development, User's Manual and Program Listing, NSWC-NOL-TR-75-9, Naval Surface Weapons Center, White Oak, Silver Spring, Maryland, March 1975.
- 4. E. R. G. Eckert, "Survey on Heat Transfer at High Speeds", Wright Air Development Center report WADC TR 54-70, dated April 1954, reissued as Aeronautical Research Laboratory report ARL 189, dated December 1961.
- 5. E. R. G. Eckert, "Engineering Relations for Heat Transfer and Friction in High-Velocity Laminar and Turbulent Boundary-Layer Flow Over Surfaces with Constant Pressure and Temperature", Transactions of the ASME, Vol. 78, No. 8, pp. 1273-1283, August 1956.
- 6. E. R. G. Eckert, "Survey of Boundary Layer Heat Transfer at High Velocities and High Temperatures", Wright Air Development Center report WADC TR 59-624, dated April 1960.
- 7. Robert E. Wilson, "Turbulent Boundary-Layer Characteristics of Supersonic Speeds Theory and Experiment", Journal of the Aeronautical Sciences, Vol. 17, No. 9, pp. 585-594, September 1950.
- 8. E. R. Van Driest, "Investigation of Laminar Boundary Layer in Compressible Fluids Using the Crocco Method", NACA TN2597, January 1952.
- 9. E. R. Van Driest, "Turbulent Boundary Layer in Compressible Fluids", Journal of the Aeronautical Sciences, Vol. 18, No. 3, pp. 145-160 and 216, March 1951.
- 10. E. R. Van Driest, "The Problem of Aerodynamic Heating", Aeronautical Engineering Review, pp. 26-41, October 1956.
- D. B. Spalding and S. W. Chi, "The Drag of a Compressible Turbulent Boundary Layer on a Smooth Flat Plate With and Without Heat Transfer", Journal of Fluid Mechanics, Vol. 18, Part 1, pp. 117-143, January 1964.
- 12. L. Lees, "Hypersonic Flow", Inst. Aero. Science Preprint No. 554, 1955.

- 13. L. K. Isaacson and J. W. Jones, "Prediction Techniques for Pressure and Heat-Transfer Distributions Over Bodies of Revolution in High-Subsonic to Low-Supersonic Flight", NWC-TP-4570, Naval Weapons Center, China Lake, CA, November 1968.
- 14. Donald M. Wilson, "Measurements of Hypersonic Turbulent Heat Transfer on a Highly Cooled Cone", U.S. Naval Ordnance Laboratory, White Oak, Maryland, NOLTR 67-24, 17 July 1967.
- 15. A. O. Pearson, "Surface Pressure Distribution on 0.0628-Scale Models of Proposed Project Fire Space Vehicle at Mach Numbers From 0.25 to 4.63", NASA TN D-1961, Washington, DC, September 1963.
- 16. K. Okanchi, "Summary of Results of Pressure Coefficient Calculations for a Spherically Tipped Tangent-Ogive Body", Naval Ordnance Test Station, NOTS TP 3050, October 1962.
- 17. W. R. Sears (Editor), General Theory of High Speed Aerodynamics, Volume II High Speed Aerodynamics and Jet Propulsion, Princeton University Press, 1954, pp. 352-7.
- 18. J. S. Andrews, "Steady State Airload Distribution on Hammerhead Shaped Payload of a Multistaged Vehicle at Transonic Speeds", Boeing Company, D2-22947-1, Seattle, Washington, January, 1964.

DISTRIBUTION LIST

For CDRL Item A002 Users Manual - Computer Program

<u>NAVY</u>	Copies
Naval Surface Weapons Center White Oak Laboratory Silver Spring, Maryland 20910 G40 G402 (Huang) G402 (Matra) R14 (Kiddy) K82 (Edwards) X21 S10 S20	1 10 6 1 1 3 1
Naval Surface Weapons Center Dahlgren Laboratory Dahlgren, Virginia 22448 K21 (Blackburn) G04 (Soper) K21	1 1 1
Office of Chief of Naval Operations Operations Evaluation Group (OP-13EG) Washington, D.C. 20350	1
Defense Nuclear Agency Washington, D.C. 20301	2
Defense Documentation Center Cameron Station Alexandria, Virginia 22314	12
Commander Naval Sea Systems Command Washington, D.C. 20360 SEA-03A SEA-0333 SEA-035-13 SEA-035A SEA-55212 SEA-6632 SEA-654312 PMS-403-02	1 1 12 1 1 2 1
Commander Naval Air Systems Command (AIR-320-B) Washington, D.C. 20360	1

	Copies
Commander Pacific Missile Test Center Point Mugu, California 93042 T.W. Elliott (Code 5331)	1
Commander Naval Air Development Center Johnsville, Warminster, Pennsylvania 18974 Dr. E. McQuillan (Code 3033) Herman Rubin (Code 3033) K.T. Yen (Code 30331)]]
Naval Research Laboratory Washington, D.C. 20390 Dr. M.R. Achter (Code 6340)	1
Commander Naval Weapons Center China Lake, California 93557 Code 4062 Code 45703 Mr. E.L. Jeter James E. Serpanos Ken Miller (Code 3242)]]]]
Office of Naval Research Department of the Navy Washington, D.C. 20360 Code 461 Code 439 (N. Perrone) Code 470 Technical Library]]] 2
Naval Postgraduate School Monterey, California 93940 Code 2124 Dr. J.G. Cantin	1
Commanding Officer Naval Ship Research and Development Center Bethesda, Maryland 20034 Code 1844 (Jim McKee) Code 1844 (Gordon Everstine) Code 564	1 1 2

	<u>Copies</u>
Air Force	
AFFDL/PTS (CAPT Gilbert L. Camburn) AF Flight Dynamics Laboratory Wright-Patterson Air Force Base, Ohio 45433	1
AF Materials Laboratory Wright-Patterson Air Force Base, Ohio 45433 Code MAAN (B.R. Emrich)	1
Flight Dynamics Laboratory Structures Division Wright-Patterson Air Force Base, Ohio 45433 Mr. Leo J.D. Bernier	1
AFML/LLM (W.G. Ramke) Wright Patterson Air Force Base, Ohio 45433	1
AFATL/DLRV Eglin Air Force Base, Florida 32542 James M. Heard	2
AFAL/TEM-3 Wright-Patterson Air Force Base, Ohio 45433 Richard A. Ireland	1
Army	
Commanding General U.S. Army Missile Command Redstone Arsenal, Alabama 35809	1
Industry	
Applied Physics Laboratory The Johns Hopkins University 8621 Georgia Avenue Silver Spring, Maryland 20910 L.B. Weckesser W.C. Caywood R.M. Rivello	1 1 1

	Copies
Battelle Memorial Institute Defense Metals Information Center 505 King Avenue	
Columbus, Ohio 43201 H.D. Moran	1
Brunswick Corporation Technical Products Division 325 Brunswick Lane	
Marion, Virginia 24354 Robert Copeland	1
General Dynamics/Pomona P.O. Box 2507 Pomona, California 91766	1
R.A. Miller D.A. Underhill	1
Raytheon Company Missile Systmes Division, VB1-3 Hartwell Road	
Bedford, Massachusetts 01730 R.D. Howe D.H. Sanders	1
McDonnell Douglas Astronautics Co. 5301 Bolsa Avenue	
Huntington Beach, California 92647 W.F. Bozich K.K. Wang R.S. Lee	1 1 1
McDonnell Douglas Astronautics Co.	•
Eastern Division P.O. Box 516 St. Louis, Missouri 63166	
J. Gubser Lockheed Missiles and Space Co.	1
Dept 81-12, Building 154 Box 504 Sunnyvale, California 94088	
J.A. Bailie	1
Lockheed Missile and Space Co. Dept 52-30, Building 103 P.O. Box 504	
Sunnyvale, California 94088 Robert M. Beasley Senior Staff Scientist	1

	<u>Copies</u>
Lockheed Missile and Space Co. Technical Information Center 3251 Hanover Street Palo Alto, California 94034	1
Hughes Aircraft Company Missile System Division Canoga Park, California 91340 R.J. Oedy	1
Hughes Aircraft Company Culver City, California 90230 L.E. GATES, M.S. H-164	1
The Boeing Company P.O. Box 3999 Seattle, Washington 98124 R. Blaisdell K. Brettmann	1
Martin-Marietta Corporation P.O. Box 5837 Orlando, Florida 32805 G.H. Sprague, Jr. (Director Aeromechanical Division) G. Fotieo	1
Honeywill, Incorporated 600 2nd Street North Hopkins, Minnesota 55343 J.D. Brannan	1
Fairchild Republic Co. Farmingdale, New York 11735 Jim Clarke Mail Stop Z-19A-08	1
Raytheon Co. Spencer Lab Burlington, Massachusetts 01803 Doris A. Holden Dept 7113	1
TOTAL	110

