An ICP variant using a point-to-line metric

Andrea Censi

Ph.D. student, Control & Dynamical Systems California Institute of Technology

ICP: Iterative Closest/Corresponding Point

- Used in many contexts vision being one of the largest.
- But robotics scan-matching is special:
 - few data points, large uncertainties
 - performance:
 - convergence is slow
 - correspondence search is expensive
 - occlusions and dynamic environments
 - need to characterize uncertainty for SLAM

The problem with ICP

- We cannot characterize the **global** behavior.
- ... but we can say something about the **local** behavior, using a mix of statistics and computational geometry
 - ICRA'07: "On achievable accuracy for range-finder localization"
 - ICRA'07: "An accurate closed-form estimate of ICP's covariance"
- ... if we concede some white lies:
 - let's assume it converges "near" the true solution
 - let's ignore trimming and other "impurities"

PL-ICP: ICP with point-to-line metric

- What happens if we use a point-to-line metric?
- Good things:
 - quadratic convergence instead of linear
 - convergence in a finite number of steps
 - much faster in practice
- Bad things:
 - less robust for large rotations

Metrics zoo

"True" distance to surface (unknown)

Point-to-point (vanilla ICP)

Distance to polyline

Point-to-line (PL-ICP)

Metrics zoo

 Vanilla ICP and PL-ICP both use the same global function:

$$\rightarrow$$

same **statistical** properties

different **numerical**properties

• but a **different incremental** one:

ICP: point-to-point

$$\min_{\boldsymbol{q}_{k+1}} \sum_{i} \! \left\| \boldsymbol{p}_{i} \! \oplus \! \boldsymbol{q}_{k+1} \! - \! \Pi \! \left\{ \mathcal{S}^{\text{ref}}, \boldsymbol{p}_{i} \! \oplus \! \boldsymbol{q}_{k} \right\} \right\|^{2}$$

PL-ICP: point-to-line

```
\min_{\boldsymbol{q}_{k+1}} \sum_{i} \! \left( \boldsymbol{n}_{i}^{\scriptscriptstyle \mathrm{T}} \left[ \boldsymbol{p}_{i} \! \oplus \! \boldsymbol{q}_{k+1} \! - \! \boldsymbol{\Pi} \! \left\{ \boldsymbol{\mathcal{S}}^{\mathrm{ref}}, \boldsymbol{p}_{i} \! \oplus \! \boldsymbol{q}_{k} \right\} \right] \right)^{2}
```

```
robot pose (world frame)
```

 p_i points in the first scan

 $\Pi\{\mathcal{S}^{ref},\cdot\}$ projection on the reference surface

 $egin{array}{ll} \oplus & \mathbf{r} \end{array}$ rototranslation: $oldsymbol{p}_i \oplus oldsymbol{q}_k = \mathbf{R}(heta_k) \, oldsymbol{p}_i + oldsymbol{t}_k \ oldsymbol{n}_i & ext{normal to surface} \end{array}$

Convergence theorems

- The following results obtained by Pottman *et al.*, in the general 3D case.
- Point-to-point metric:
 - linear convergence.
 - convergence rate depends on approaching direction
- Point-to-line metric:
 - equivalent to Gauss-Newton iteration.
 - quadratic convergence for a zero-residual problem
- Note: these results are not robust to tricks like trimming (valid in practice, however)
- (No closed-form exists for 3D case)

Convergence in a finite number of steps

 Key observation: the error function depends only on point-to-segment correspondences.

There is a finite number of such correspondences.

Proof

- ICP is the iterative application of two operations:
 - Match: given current pose q_k , find correspondences C_k
 - Solve: given C_k , solve for next pose q_{k+1} .
- We always see ICP as iteration among poses:

...but for PL-ICP it's more convenient to group S+M:

 Because there are a finite number of Cs, after a finite number of steps, we reach either a <u>fixed point or a</u> <u>loop.</u>

Experimental results

• Same experiments as Minguez et al (T-RO 2007).

• Precision:

	Method	МвІСР	IDC	ICP	PLICP	GPM	GPM ∘ PLICP
	Precision (m,rad)	(%)	(%)	(%)	(%)	(%)	(%)
	< 0.001	80.84	82.95	56.62	99.51	0.91	99.95
Experiment 3	(0.001, 0.005)	19.15	16.96	43.37	0.03	18.64	0.01
(0.15m, 0.15m, 8.6°)	(0.005, 0.01)	0.00	0.00	0.00	0.05	24.58	0.02
(0.1311, 0.1311, 8.0)	(0.01, 0.05)	0.00	0.05	0.00	0.33	50.16	0.02
	> 0.05	0.00	0.03	0.002	0.08	5.71	0
	< 0.001	80.38	74.94	52.18	73.46	0.61	99.79
Experiment 6 (0.20m, 0.20m, 45°)	(0.001, 0.005)	18.86	16.53	42.01	0.23	14.05	0.01
	(0.005, 0.01)	0.00	0.37	0.00	0.35	21.79	0.02
(0.2011, 0.2011, 43)	(0.01, 0.05)	0.00	0.81	0.01	1.14	54.25	0.07
	> 0.05	0.75	7.32	5.78	24.81	9.3	0.11

• Speed:

	avg. iterations	avg. execution time
MBICP	31.2	0.076 s (13.1 Hz)
ICP	34.7	0.083 s (12.0 Hz)
IDC	30.4	0.240 s (4.1 Hz)
PLICP	7.2	0.0018 s (539 Hz)

Note: MbICP, ICP, IDC stopped by threshold, they have **infinite** iterations.

Summary

- Good properties of PL-ICP:
 - quadratic convergence instead of linear
 - convergence in a finite number of steps (if polyline)
 - great improvement in practice
- Drawbacks: less robust for large rotations
- Software and logs available at my website.

TODO

- Trivial extensions to algorithm hopefully improve robustness:
 - Use Gaussian prior from odometry.
 - Mix point-to-point and point-to-line.

PL-ICP

sets of poses having same point-to-segment correspondences

Vanilla ICP

- No epsilons for termination in PL-ICP.
 - Check for fixed point or loop using hash of correspondences.

	Method	МвІСР	IDC	ICP	PLICP	GPM	GPM ∘ PLICP
	Precision (m,rad)	(%)	(%)	(%)	(%)	(%)	(%)
Experiment 1 (0.05m, 0.05m, 2°)	< 0.001	81.27	83.31	57.78	99.85	1.86	99.98
	(0.001, 0.005)	18.72	16,68	42.22	0.01	36.34	0
	(0.005, 0.01)	0.00	0.00	0.00	0.01	38.42	0.01
(0.0311, 0.0311, 2)	(0.01, 0.05)	0.00	0.01	0.00	0.13	23.37	0.01
	> 0.05	0.00	0.00	0.00	0.00	0.01	0
	< 0.001	80.97	83.12	56.62	99.71	1.3	99.98
Experiment 2	(0.001, 0.005)	19.02	16.84	42.48	0.02	24.56	0.00
(0.10m, 0.10m, 4°)	(0.005, 0.01)	0.00	0.00	0.00	0.03	29.12	0.01
(0.10111, 0.10111, 4)	(0.01, 0.05)	0.00	0.03	0.00	0.22	42.85	0.01
	> 0.05	0.00	0.00	0.00	0.02	2.17	0.00
	< 0.001	80.84	82.95	56.62	99.51	0.91	99.95
Experiment 3	(0.001, 0.005)	19.15	16.96	43.37	0.03	18.64	0.01
(0.15m, 0.15m, 8.6°)	(0.005, 0.01)	0.00	0.00	0.00	0.05	24.58	0.02
(0.15111, 0.15111, 6.0-)	(0.01, 0.05)	0.00	0.05	0.00	0.33	50.16	0.02
	> 0.05	0.00	0.03	0.002	0.08	5.71	0
	< 0.001	81.28	81.96	56.30	98.43	0.61	99.79
Experiment 4	(0.001, 0.005)	18.71	16.79	43.58	0.088	14.05	0.01
(0.20m, 0.20m, 17.2°)	(0.005, 0.01)	0.00	0.00	0.00	0.13	21.79	0.02
(0.2011, 0.2011, 17.2)	(0.01, 0.05)	0.00	0.80	0.00	0.44	54.25	0.07
	> 0.05	0.00	0.44	0.10	0.92	9.3	0.11
	< 0.001	80.92	79.54	54.00	84.48	0.61	99.79
Experiment 5 (0.20m, 0.20m, 32°)	(0.001, 0.005)	18.79	16.36	43.13	0.20	14.05	0.01
	(0.005, 0.01)	0.0	0.04	0.00	0.28	21.79	0.02
(0.2011, 0.2011, 32)	(0.01, 0.05)	0.0	0.81	0.00	0.93	54.25	0.07
	> 0.05	0.28	3.05	2.85	14.11	9.3	0.11
	< 0.001	80.38	74.94	52.18	73.46	0.61	99.79
Experiment 6 (0.20m, 0.20m, 45°)	(0.001, 0.005)	18.86	16.53	42.01	0.23	14.05	0.01
	(0.005, 0.01)	0.00	0.37	0.00	0.35	21.79	0.02
(0.2011, 0.2011, 43)	(0.01, 0.05)	0.00	0.81	0.01	1.14	54.25	0.07
	> 0.05	0.75	7.32	5.78	24.81	9.3	0.11