

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER DAEN/NAP-53842/NJ00469-81/05	2. GOVT ACCESSION NO. AD-A09967	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Substite) Phase I Inspection Report National Dam Safety Program Silver Lake Dam, NJ00469 Sussex County, N.J.		5. TYPE OF REPORT & PERIOD COVERED FINAL 6. PERFORMING ORG. REPORT NUMBER
McDermott, Richard, P.E. Gribbin, John E. P.E.		B. CONTRACT OR GRANT NUMBER(*) DACW61-79-C-0011
3. PERFORMING ORGANIZATION NAME AND ADDRESS Storch Engineers 220 Ridgedale Ave. Florham Park, N.J.		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
II. CONTROLLING OFFICE NAME AND ADDRESS NJ Department of Environmental Pro Division of Water Resources P.O. Box CNO29 Trenton, NJ 08625		12. REPORT DATE May, 1981 13. NUMBER OF PAGES 65 15. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRESS(II different U.S. Army Engineer District, Phila: Custom House, 2d & Chestnut Street: Philadelphia, PA 19106	delphia	Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

16. SUPPLEMENTARY NOTES

Copies are obtainable from National Technical Information Service, Springfield, Virginia 22151.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Dams
Embankments
Wallkill River Basin, NJ
Visual Inspection
Structural Analysis
National Dam Safety Program
Wallkill River Basin, NJ
Silver Lake Dam, NJ
Spillways

This report cites results of a technical investigation as to the dam's adequacy. The inspection and evaluation of the dam is as prescribed by the National Dam Inspection Act, Public Law 92-367. The technical investigation includes visual inspection, review of available design and construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam's general condition is included in the report.

	\
	•
•	
	·
	•

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST CUPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

DEPARTMENT OF THE ARMY PHILADELPHIA DISTRICT, CORPS OF ENGINEERS CUSTOM HOUSE—2 D & CHESTNUT STREETS PHILADELPHIA, PENNSYLVANIA 19106

2 7 MAY 1981

Honorable Brendan T. Byrne Governor of New Jersey Trenton, New Jersey 08621

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Silver Lake Dam in Sussex County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given in the front of the report.

Based on visual inspection, available records, calculations and past operational performance, Silver Lake Dam, initially listed as a high hazard potential structure but reduced to a low hazard potential structure as a result of this inspection, is judged to be in good overall condition. However, the spillway is considered inadequate, as five percent of the 100 year design flood would cause the dam to be overtopped. The low hazard potential classification means that in the event of failure of the dam, no loss of life and only minimal economic loss is expected. For the same reasons no further studies or increase of spillway capacity are recommended. However, to assure the continued functioning of the dam and its impoundment, the following remedial actions could be undertaken by the owner:

- a. Replace deteriorated stoplogs in the spillway.
- b. Repair deteriorated concrete in the spillway structure.
- c. Monitor the observed seepage at the left side of the dam at the toe of the slope on a periodic basis in order to detect any changes in volume or condition.
- d. Develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congressman Courter of the Thirteenth District. Under the provision of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, five days after the date of this letter.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

'NAPEN-N Honorable Brendan T. Byrne

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

An important aspect of the Dam Inspection Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely,

l Incl As stated KENNETH R. MOSER Major, Corps of Engineers Acting District Engineer

Copies furnished: Mr. Dirk C. Hofman, P.E., Deputy Director Division of Water Resources N.J. Dept. of Environmental Protection P.O. Box CN029 Trenton, NJ 08625

Mr. John O'Dowd, Acting Chief Bureau of Flood Plain Regulation Division of Water Resources N.J. Dept. of Environmental Protection P.O. Box CN029 Trenton, NJ 08625

Acces	sion Fo	r		
NTIS	GRARI			
DTIC :	rab .			
Unann	ounced			
Just1:	ficatio	n		
Avai	labilit	y C	odes	
	Avail :	and,'	or	
Dist	Spec	ial		
A	} 			

SILVER LAKE DAM (NJ00469)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 19 December 1980 by Storch Engineers, under contract to the State of New Jersey. The State, under agreement with the U.S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

Silver Lake Dam, initially listed as a high hazard potential structure but reduced to a low hazard potential structure as a result of this inspection, is judged to be in good overall condition. However, the spillway is considered inadequate, as five percent of the 100 year design flood would cause the dam to be overtopped. The low hazard potential classification means that in the event of failure of the dam, no loss of life and only minimal economic loss is expected. For the same reasons no further studies or increase of spillway capacity are recommended. However, to assure the continued functioning of the dam and its impoundment, the following remedial actions could be undertaken by the owner:

- a. Replace deteriorated stoplogs in the spillway.
- b. Repair deteriorated concrete in the spillway structure.
- c. Monitor the observed seepage at the left side of the dam at the toe of the slope on a periodic basis in order to detect any changes in volume or condition.
- d. Develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

APPROVED: Sonneth

KENNETH R. MOSER

Major, Corps of Engineers Acting District Engineer

DATE: 26 May 1981

PHASE I REPORT NATIONAL DAM SAFETY PROGRAM

Name of Dam:

Silver Lake Dam, I.D. NJ00469

State Located:

New Jersey

County Located:

Sussex

Drainage Basin:

Wallkill River

Stream:

Tributary to Franklin Pond Creek

Date of Inspection:

December 19, 1980

Assessment of General Condition of Dam

Based on visual inspection, past operational performance and Phase I engineering analyses, Silver Lake Dam is assessed as being in good overall condition.

Based on investigations of the downstream flood plain made in connection with this report, it is recommended that the hazard potential classification be downgraded from high to low hazard.

Hydraulic and hydrologic analyses indicate that the spillway is inadequate. Discharge from the spillway is not sufficient to pass the designated spillway design flood (100-year storm) without an overtopping of the dam. The spillway is capable of passing approximately 4 percent of the SDF. However, because of the low hazard classification, no further studies or increase of spillway capacity are recommended.

The observed seepage at the left side of the dam at the toe of slope should be monitored on a periodic basis by a professional engineer experienced in the design and construction dams in order to detect any changes in volume or condition.

In addition, it is recommended that the following remedial measures be undertaken in the future:

- 1) Deteriorated stoplogs in the spillway should be replaced.
- 2) Deteriorated concrete in the spillway structure should be repaired.

In the future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

Richard & McDermott, P.E.

John E. Gribbin, P.E.

John E Gribbin

OVERVIEW - SILVER LAKE DAM

20 JANUARY 1981

TABLE OF CONTENTS

	<u>Page</u>
ASSESSMENT OF GENERAL CONDITION OF DAM	i
OVERVIEW PHOTO	iii
TABLE OF CONTENTS	iv
PREFACE	vi
SECTION 1 - PROJECT INFORMATION	1
1.1 General	
1.2 Description of Project	
1.3 Pertinent Data	
SECTION 2 - ENGINEERING DATA	6
2.1 Design	
2.2 Construction	
2.3 Operation	
2.4 Evaluation	
SECTION 3 - VISUAL INSPECTION	7
3.1 Findings	
SECTION 4 - OPERATIONAL PROCEDURES	9
4.1 Procedures	
4.2 Maintenance of Dam	
4.3 Maintenance of Operating Facilities	
4.4 Description of Warning System	
4.5 Evaluation	

TABLE OF CONTENTS (cont.)

		Page
SECTION 5	- HYDRAULIC/HYDROLOGIC	11
5.1	Evaluation of Features	
SECTION 6	- STRUCTURAL STABILITY	13
6.1	Evaluation of Structural Stability	
SECTION 7	- ASSESSMENT AND RECOMMENDATIONS	15
7.1	Dam Assessment	
7.2	Recommendations	
PLATES		
1	KEY MAP	
2	VICINTIY MAP	
3	SOIL MAP	
4	GENERAL PLAN	
5	SPILLWAY PLAN	
6	SECTIONS	
7	PHOTO LOCATION PLAN	
APPENDICES	5	
1	Check List - Visual Inspection	
	Check List - Engineering Data	
2	Photographs	
3	Engineering Data	
4	Hydraulic/Hydrologic Computations	
5	Bibliography	

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for suc studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. It is important to note that the condition of dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that the unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydraulic and hydrologic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydraulic and hydrologic studies, considering the size of the dam, its general condition and the downstream damage potential.

PHASE I INSPECTION REPORT

NATIONAL DAM SAFETY PROGRAM

SILVER LAKE DAM, I.D. NJ00469

SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The Division of Water Resources of the New Jersey Department of Environmental Protection (NJDEP) in cooperation with the Philadelphia District of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the State of New Jersey. Storch Engineers has been retained by the NJDEP to inspect and report on a selected group of these dams. The NJDEP is under agreement with the Philadelphia District of the Corps of Engineers.

b. Purpose of Inspection

The visual inspection of Silver Lake Dam was made on December 19, 1980. The purpose of the inspection was to make a general assessment of the structural integrity and operational adequacy of the dam structure and its appurtenances.

1.2 Description of Project

a. Description

The dam is an earth dam with a stone masonry wall comprising the upstream face and a stone rubble wall forming the downstream face. In the center of the dam is a concrete spillway structure. The spillway is formed by three sets of timber stoplogs fitted at the upstream end of two concrete piers and two concrete abutments. The center stoplogs serve as a primary crest while the outer sets comprise secondary crests. The primary and secondary spillway crest elevations are 1069.7 and 1070.2, respectively, while that of the crest of dam is 1071.0, National Geodetic Vertical Datum (N.G.V.D.). A timber walkway spans the discharge channels which are formed by the concrete abutments and piers described above. The overall length of dam is 171 feet and its height is 10.7 feet.

b. Location

Silver Lake Dam is located in the Township of Hardyston,
Sussex County, New Jersey. Principal access to the dam is by
Silver Lake YMCA Camp of which Silver Lake is a part. The
camp is located approximately 1 mile north of N.J. Route 23.
Discharge from the spillway of the dam flows into a tributary
of the Franklin Pond Creek.

c. Size and Hazard Classification

The dam is classified in accordance with criteria presented in "Recommended Guidelines for Safety Inspection of Dams" published by the U.S. Army Corps of Engineers. Size categories consist of Small, Intermediate and Large while hazard categories are designated as Low, Significant and High.

<u>Size Classification:</u> Silver Lake Dam is classified as "Small" size since its maximum storage volume is 88 acre-feet (which is less than 1000 acre-feet) and its height is 10.7 feet (which is less than 40 feet).

Hazard Classification: Visual inspection of the downstream flood plain of the dam indicates that failure of the dam would not cause significant property damage downstream from the dam. It is anticipated that dam failure during a storm equivalent to the SDF could cause minor damage to a road bridge located 1800 feet downstream from the dam. Loss of life resulting from dam failure would not be anticipated. Reportedly, no Silver Lake YMCA Camp activities are designated for the area downstream from the dam. Accordingly, Silver Lake Dam is classified as "Low" hazard.

d. Ownership

Silver Lake Dam is owned by the Y.M.C.A. of Northern Passaic Valley, 128 Ward St., Paterson, N.J. 07505.

e. Purpose of Dam

The purpose of the dam is the impoundment of a recreational lake facility.

f. Design and Construction History

Reportedly, Silver Lake Dam was constructed in 1948. Reportedly, no records or plans for the dam are on file.

g. Normal Operational Procedures

The dam and appurtenances are operated and maintained by the Silver Lake YMCA Camp maintenance crew. There is a weekly

check of water level and outlet works made by the maintenance personnel.

The lake was last lowered in 1976 in order to reconstruct the spillway.

0.70 square miles

117

88

1.3 Pertinent Data

a.

Drainage Area

Design surcharge

Top of dam

	•	•
b.	Discharge at Damsite	
	Maximum flood at damsite	Unknown
	Outlet Works at pool elevation	62 cfs.
	Spillway capacity at top of dam	30 cfs
c.	Elevation (N.G.V.D.)	
	Top of Dam	1071.0
	Maximum pool-design surcharge	1072.3
	Recreation pool	1070.0
	Spillway crest	1070.0
	Stream bed at centerline of dam	1060.1
	Maximum tailwater	1065 (Estimated)
d.	Reservoir	
	Length of maximum pool	2000 feet (Estimated)
	Length of recreation pool	1800 feet (Scaled)
e.	Storage (Acre-feet)	
	Recreation pool	67

f. Reservoir Surface (acres)

Top of dam

Maximum pool - design surcharge
Recreation pool

21.0 (Estimated)24.5 (Estimated)

20.2

g. Dam

Type Length Height

Sideslopes - Upstream

- Downstream

Zoning

Impervious core

Cutoff

Grout curtain

Earthfill

171 feet 10.9 feet

Vertical

1 horiz. to 2 vert.

Unknown Unknown Unknown Unknown

h. Diversion and Regulating Tunnel

N.A.

i. Spillway

Type

Length of weir - Primary

- Secondary

Crest elevation - Primary

- Secondary

Approach channel

Discharge channel

Sharp Crested Weir (Stoplogs)

5.0 feet

9.6 feet

1069.7

1070.2

N.A.

Concrete rectangular channels

through dam

j. Regulating Outlet

3 sets of stoplogs

SECTION 2: ENGINEERING DATA

2.1 Design

No plans or calculations pertaining to the original construction of the dam could be obtained.

2.2 Construction

No data or reports pertaining to the construction of the dam are available.

2.3 Operation

No data or reports pertaining to the operation of the dam are available.

2.4 Evaluation

a. Availability

No data or reports pertaining to the operations of the dam are available.

b. Adequacy

Available engineering data pertaining to Silver Lake Dam is not adequate to be of significant assistance to the performance of a Phase I evaluation. A list of absent information is included in paragraph 7.1.b.

c. Validity

The validity of engineering data cannot be assessed due to the absence of data.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

The inspection of Silver Lake Dam was performed on December 19, 1980 by staff members of Storch Engineers. A copy of the visual inspection check list is contained in Appendix 1. The following procedures were employed for the inspection:

- 1) The embankment of the dam, appurtenant structures and adjacent areas were examined.
- The embankment and accessible appurtenant structures were measured and key elevations determined by surveyor's level.
- 3) The embankment, appurtenant structures and adjacent areas were photographed.
- 4) The downstream flood plain was toured to evaluate downstream development and restricting structures.

b. Dam

The walls forming the upstream and downstream face of embankment appeared to be in satisfactory condition. The crest of dam was uniformly graded and grass covered. An earth slope was observed on the downstream side of the dam extending downward from the toe of the stone rubble wall. The slope, which was covered with trees ranging in size from one inch to six inches, is reportedly part of the original terrain existing before the dam was constructed. At the toe of this slope left of the spillway, two areas of standing water were observed. The standing water could possibly be due to seepage.

c. Appurtenant Structures

The concrete surfaces in the discharge channels appeared to be generally sound, although there was some deterioration noted at the downstream end. The left abutment was spalled and cracked near its downstream end. The slabs forming the bottoms of the channels were eroded and spalled at their downstream ends where the water spills over. Also the interface between the training walls and the bottom slabs appeared to be eroded.

Some of the timber stoplogs were buckled and leaking. The remaining stoplogs appeared to be in satisfactory condition. The timber walkway spanning the discharge channel was in satisfactory condition.

d. Reservoir Area

The right side of the reservoir consisted of a camp with camp buildings. The buildings appeared to be approximately 5 feet above the reservoir level. The upstream end and left side of the reservoir are thickly wooded. The shore slopes are approximately 50 percent. The shore slopes on the right side are also 50 percent but then level off after a height of about 5 feet.

e. Downstream Channel

The downstream channel is a natural stream with a sandy, gravelly bottom and some rocks along the banks. The stream is wooded to its banks. It has banks about 1 foot high with the terrain beyond sloping away at approximately a 5 percent grade. Approximately 8 to 10 feet downstream from the spillway there is a drop in the channel bed formed by rocks. The channel bed between the spillway and the drop is gravelly and did not appear to be scoured.

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

The level of water in Silver Lake is regulated by discharge over the spillway weirs. Reportedly, during severe storms, the spillway capacity is augmented by pulling stoplogs.

The most recent drawdown of the lake occurred in 1976 when camp personnel drew the lake down a total of three feet in order to reconstruct the spillway.

4.2 Maintenance of the Dam

Reportedly, maintenance is performed on an "as needed" basis. The camp maintenance department inspects the water level on a weekly basis and performs repairs, if necessary. The most recent maintenance consisted of the reconstruction of the spillway in 1976.

4.3 Maintenance of Operating Facilities

Reportedly, maintenance of operating facilities is performed on an "as needed" basis.

4.4 Description of Warning System

Reportedly, no warning system is currently in use for the dam although the dam is checked during storms by camp maintenance personnel.

4.5 Evaluation of Operational Adequacy

The operation of the dam has been successful to the extent that the dam reportedly has not been overtopped.

Although maintenance has been good in some areas, a few aspects of dam maintenance have not been adequately performed, inlouding the following:

- 1) Spalled and cracked concrete in spillway structure not repaired.
- 2) Deformed stoplogs not replaced.

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design Data

The quantity of storm water runoff that the spillway should be able to handle is based on the size and hazard classification of the dam. This runoff quantity, called the spillway design flood (SDF) is described in terms of return frequency or probable maximum flood (PMF) depending on the extent of the dam's size and potential hazard. According to the "Recommended Guidelines for Safety Inspection of Dams" published by the U.S. Army Corps of Engineers, the SDF for Silver Lake Dam falls in a range of 50-year frequency to 100-year frequency. In this case, the high end of the range, 100-year frequency, is chosen since the factors used to select hazard classification are on the high end of their range.

The SDF peak computed for Silver Lake Dam is 761 c.f.s. This value is derived from the 100-year flood hydrograph computed by the use of the HEC-1-DAM Flood Hydrograph Computer Program using the Soil Conservation Service triangular unit hydrograph with curvilinear transformation. Hydrologic computations and computer output are contained in Appendix 4.

The spillway discharge rates were computed by the use of weir and orifice formulae appropriate for the configuration of the spillway structure with stoplogs left in place. The total spillway discharge with lake level equal to the top of the dam was computed to be 30 c.f.s. The SDF was routed through the dam by use of the HEC-1-DAM computer program using the modified Puls Method. In routing the SDF, it was found that the dam crest would be overtopped by a depth of 1.3 feet. Accordingly, the subject spillway is assessed as being inadequate in accordance with criteria developed by the U.S. Army Corps of Engineers.

b. Experience Data

Reportedly, the dam has not been overtopped since its construction.

c. Visual Observation

No evidence was found at the time of inspection that would indicate that the dam had been overtopped.

d. Overtopping Potential

As indicated in paragraph 5.1.a. a storm of magnitude equal to the SDF would cause overtopping of the dam by a depth of 1.3 feet over the crest of the dam. The spillway is capable of passing approximately 4 percent of the SDF with the lake level equal to the top of dam.

e. Drawdown Data

Drawdown of the lake is accomplished by removing the timber stoplogs. The lake can be drawn down a total of 2.3 feet in this manner. Total time for drawdown is estimated to be approximately 27 hours (see Appendix 4).

SECTION 6: STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations

The dam appeared, at the time of inspection to be outwardly structurally sound with no evidence of embankment cracks or distress. Evidence of possible seepage was observed at the left side of the dam at the toe of slope. The vertical cracks observed in the downstream abutment wall on the left side of the spillway did not appear to be an indication of distress in the spillway structure or the embankment.

b. Generalized Soils Description

The generalized soils description of the dam site consists of the gray granitoid gneiss identified as the "Pre-Cambrian Byram Gneiss" on the Geologic Map of New Jersey. The bedrock, presumably extends below the dam foundation. Shallow soils of silt, sand and boulders, derived from the gneiss cover shallow pockets in the bedrock.

A muck area flanks the northwest. This area consists of poorly drained material composed primarily of peat deposits which accumulated during the Wisconsin stage of continental glaciation.

c. Design and Construction Data

Analysis of structural stability and construction data for the embankment are not available.

d. Operating Records

No operating records are available for the dam. The water level of Silver Lake is monitored by observation on a weekly basis by the maintenance crews.

e. Post-Construction Changes

Reportedly, in 1976 the lake was drawn down 3 feet for the reconstruction of the spillway.

f. Seismic Stability

Silver Lake Dam is located in Seismic Zone 1 as defined in "Recommended Guidelines for Safety Inspection of Dams" which is a zone of very low seismic activity. Experience indicates that dams in Seismic Zone 1 will have adequate stability under seismic loading conditions if they have adequate stability under static loading conditions. Silver Lake Dam appeared to be stable under static loading conditions at the time of inspection.

SECTION 7: ASSESSMENT AND RECOMMENDATIONS

7.1 Dam Assessment

a. Safety

Based on hydraulic and hydrologic analyses outlined in Section 5 and Appendix 4, the spillway of Silver Lake Dam is assessed as being inadequate. The spilllway is not able to pass the SDF without an overtopping of the dam.

The embankment appeared, at the time of inspection, to be generally outwardly stable. Observed cracks in the spillway structure and possible seepage are not considered to be evidence of immediate dam instability

b. Adequacy of Information

Information sources for this report include 1) field inspections, 2) USGS quadrangle, and 3) consultation with YMCA personnel. The information obtained is sufficient to allow a Phase I assessment as outlined in "Recommended Guidelines for Safety Inspection of Dams."

Some of the absent data are as follows:

- 1. Construction and as-built drawings.
- 2. Description of fill material for embankment.
- 3. Design computations and reports.
- 4. Soils report for the site.
- 5. Inspection reports.

c. Necessity for Additional Data/Evaluation

Although some data pertaining to Silver Lake Dam are not available, additional data are not considered imperative for this Phase I evaluation.

7.2 Recommendations

a. Remedial Measures

Based on hydraulic and hydrologic analyses outlined in paragraph 5.1.a, the spillway is considered to be inadequate. However, because of the low hazard classification, no further studies or increase of spillway capacity are recommended.

However, it is recommended that the following remedial measures be undertaken by the owner in the near future.

- Deteriorated stoplogs in the spillway should be replaced.
- 2) Deteriorated concrete in the spillway structure should be repaired.

b. Maintenance

In the future, the owner of the dam should develop written operating procedures and a periodic maintenance plan to ensure the safety of the dam.

c. Additional Studies

The observed seepage at the left side of the dam at the toe of slope should be monitored on a periodic basis by a professional engineer experienced in the design and construction of dams in order to detect any changes in volume or condition.

PLATES

PLATE I

STORCH ENGINEERS FLORHAM PARK, NEW JERSEY

DIVISION OF WATER RESOURCES N.J. DEPT. OF ENVIR PROTECTION TRENTON, NEW JERSEY

INSPECTION AND EVALUATION OF DAMS

KEY MAP

SILVER LAKE DAM

SCALE: NONE

DATE: FEB. 1981

Legend

Gneissic bedrock, shown as Losee gneiss on the Geologic Map MMg

of New Jersey

GL Poorly drained material composed primarily of peat deposits

which accumulated in shallow glacial lakes and swamps, formed

during the Wisconsin stage of continental glaciation.

Information taken from Rutgers University, Soil Survey of New Note:

Jersey, Report No. 11, Sussex County, November 1953 and Geologic Map of New Jersey prepared by J. V. Lewis and H. Kummel

1910-1912, revised by H. B. Kummel 1931 and M. Johnson 1950.

PLATE 3

STORCH ENGINEERS FLORHAM PARK, NEW JERSEY.

DIVISION OF WATER RESOURCES N.J. DEPT. OF ENVIR. PROTECTION TRENTON, NEW JERSEY.

INSPECTION AND EVALUATION OF DAMS

SOIL MAP

SILVER LAKE DAM

SCALE: NONE

FEB. 1981

SILVER LA

Overall Length of Dan

Treated Timber Walkway

Stone Masonry Wall with
a 2' Wide Corcrete Cap

Stone Rubble Wall

Stope (Reportedly Original terrain)

Note Information taken from field Inspection December 19, 1980

SILVER LA

Overall Length of Dam

Treated Timber Walkway

Stone Masonry Wall with
a 2' Wide Concrete Cap

Stone Rubble Wall

Stone Rubble Wall

Original terrain

Note Information taken from field Inspection December 19, 1980.

APPENDIX 1

Check List - Visual Inspection

Check List - Engineering Data

Check List

Inspection	ase I
Visual	돖

Name of Dam	Silver Lake Dam	County	Sussex	State N.J.	Coordinators NJDEP
Date(s) Inspection_	ion_12/19/80	Weather	P. Cloudy	Temperature 30 ⁰ F	
Pool Elevation	Pool Elevation at time of Inspection 1070.0	1070.0	. M.S.L.	Tailwater at Time of	Tailwater at Time of Inspection 1060.0 M.S.L.
Inspection Personnel:	onne]:				
John Gribbin	ibbin	William Carson	DO		
Charles	Charles Osterkorn Daniel Buckelew	Richard McDermott	rmott		
		John Gribbin	bbin	Recorder	,

EMBANKMENT

	EMBANKMENI	
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
GENERAL .	Crest covered with grass. Slope downstream from toe of downstream wall covered with trees (1" to 6").	Downstream slope reportedly part of original terrain before dam was constructed.
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	Appeared sound.	
ANY NOTICEABLE SEEPAGE	Two areas of standing water observed at toe of slope, left of spillway. Standing water could possibly be seepage.	Possible seepage should be monitored.
STAFF GAGE AND RECORDER	None observed.	•
DRAINS	None observed.	

EMBANKMENT

	TION NT OR BEYOND ABUTMENT ABUTMENT HE CREST
	No riprap observed. However, ups stream sides stabilized by stone rubble walls, respectively. Wall condition.
No riprap observed. However, upstream and downstream sides stabilized by stone masonry and stone rubble walls, respectively. Walls in satisfactory condition.	Vertical: Horizontal:
AL AND HORIZONTAL ENT OF THE CREST	
	•
NT OR BEYOND ABUTMENT ABUTMENT HE CREST	

OUTLET WORKS

	UNILE! MUKNS	
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE SURFACES IN OUTLET CONDUIT	See Spillway	Spillway serves as outlet works
INTAKE STRUCTURE	N.A	
OUTLET STRUCTURE	See Spillway	
OUTLET CHANNEL	See Spillway	•
GATE AND GATE HOUSING	Stoplogs serve as gates. See Spillway	Invert of stoplogs above invert of downstream channel. Outlet may not be suitable as low level outlet.

SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
WEIR	Three sets of timber stoplogs. Some of the stoplogs were buckled and deformed allowing leakage.	Deformed stoplogs should be replaced.
APPROACH CHANNEL	N.A.	
DISCHARGE CHANNEL	Concrete piers, abutments and bottom slabs appeared sound. However, concrete surfaces near downstream end were eroded, spalled and cracked.	Concrete should be repaired.
MALKWAY	. Timber walkway spanning discharge channel appeared to be in satisfactory condition.	

INSTRUMENTATION

	INSTRUMENTATION	
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None observed	
OBSERVATION WELLS	None observed	
WEIRS	None observed .	•
PIEZOMETERS	None observed	·
OTHER	7. A.	

RESERVOIR

SEDIMENTATION OF GOSENATIONS REWARKS OR RECOMMENDATIONS SEDIMENTATION Unknown. SEDIMENTATION Unknown. SEDIMENTATION Camp related buildings along right shore. BANKS BANKS BANKS SANOR GOSENATIONS SEDIMENTATION Unknown. SEDIMENTATION Unknown.

DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION (OBSTRUCTION, DEBRIS, ETC.)	Natural stream with sandy, gravelly bottom with rocks along banks, wooded to water line.	
SLOPES	Banks about l' high. Terrain beyond banks slopes up at about 5%.	
STRUCTURES ALONG BANKS	Road bridge about 1800 feet from dam.	
Live Stringer		

CHECK LIST ENGINEERING DATA DESIGN, CONSTRUCTION, OPERATION

ITEM		REMARKS
DAM	PLAN .	Not available
	SECTIONS	
SPILLWAY -	PLAN	Not available
	SECTIONS	
	DETAILS	
OPERATING EQUIPMENT PLANS & DETAILS	UI PMENT ILS	Not available .
OUTLETS -	PLAN	Not available
	DETAILS	•
	CONSTRAINTS	
•	DISCHARGE RATINGS	
HYDRAULIC/HYDROLOGIC	DROLOGIC BATA	Not available
RAINFALL/RESI	RAINFALL/RESERVOIR RECORDS	Not available
CONSTRUCTION HISTORY	HISTORY	Not available

Not available

LOCATION MAP

ITEM	REMARKS
DESIGN REPORTS	Not available
GEOLOGY REPORTS	Not available
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM INSTABILITY SEEPAGE STUDIES	Not available .
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	Not available
POST-CONSTRUCTION SURVEYS OF DAM	Not available

Not available

BORROW SOURCES

ITEM	REMARKS
MONITORING SYSTEMS	None
MODIFICATIONS	Reportedly, spillway reconstructed in 1976; data not available
HIGH POOL RECORDS	Not available
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	Not available
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	None
MAINTENANCE OPERATION RECORDS	Not available

APPENDIX 2

Photographs

PHOTO 1
UPSTREAM VIEW OF SPILLWAY

PHOTO 2

DOWNSTREAM VIEW OF SPILLWAY

PHOTO 3

DOWNSTREAM SIDE OF SPILLWAY AND EMBANKMENT - RIGHT SECTION

PHOTO 4

DOWNSTREAM SIDE OF SPILLWAY AND EMBANKMENT - LEFT SECTION

PHOTO 5

LEFT SPILLWAY DISCHARGE CHANNEL WITH STOPLOGS AT UPSTREAM END

PHOTO 6
SPILLOVER AT DOWNSTREAM END OF SPILLWAY

PHOTO 7

STEP IN DOWNSTREAM CHANNEL BED ABOUT 10 FEET FROM SPILLWAY

PHOTO 8

DOWNSTREAM CHANNEL

APPENDIX 3

Engineering Data

CHECK LIST

HYDROLOGIC AND HYDRAULIC DATA

ENGINEERING DATA

DRAINAGE AREA CHARACTERISTICS: HOUSES, HITTY	_
ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 1070.0 (67 acre-feet)	
ELEVATION TOP FLOOD CONTROL POOL (STORAGE CAPACITY): N.A.	_
ELEVATION MAXIMUM DESIGN POOL: 1072.3	
ELEVATION TOP DAM: 1071.0	
SPILLWAY CREST: 2-Stage Weir	
a. Elevation 1069.7 (Primary), 1070.2 (Secondary)	
b. Type Sharp - Crested Weir	
c. Width 0.2 Feet	
d. Length 5 Feet (Primary) 9.6 Feet (Secondary)	
e. Location Spillover Upstream Side of Dam	
f. Number and Type of Gates 3 Sets of Stoplogs	
OUTLET WORKS: Same as Spillway	
a. Type Timber Stoplogs	
b. Location Spillway	
c. Entrance Invert 1067.2	
d. Exit Invert1067.1	
e. Emergency Draindown Facilities: Pull Stoplogs	
HYDOMETEOROLOGICAL GAGES: None	
a. TypeN.A.	
b. Location N.A.	
c. Records N.A.	
MAXIMUM NON-DAMAGING DISCHARGE:	
(Lake Stage Equal to Top of Dam) 30 c.f.s.	

APPENDIX 4

Hydraulic/Hydrologic Computations

STORCH ENGINEERS	4.4 5		,		/ of _/C
ProjectSILVER_L	AKE DAI	7	_Made By_	Ji Ha De	te 2/2/
			Chkd By	16_D	ste <u>3/23/8</u>

HYDROLOGY:					. '
					,
HYDROLOGIC ANAL	YS15			<u>; ; </u>	
	· · · · · · · · · · · · · · · · · · ·		1 . 1	<u> </u>	<u>:</u>
INFLOW HYDROGR	APH FOR	R SILVE	R LAKE	EDAM	1 WILL
		: 	·		
BE DEVELOPED BY	HEC-1- DA	M COM	PUTER	PRC	OGRAM
LICING CCC TRIANC	11/00 110	//- ///N	Po c D	2011	
USING SCS TRIANG	ULAR GIV	מוח חום	KOGKA	IPM A	VD
CURVILINEAR TRANS	ENP HATI	<u></u>			· · · · · · · · · · · · · · · · · · ·
CORVILIVEAR TRAINS	NORTHALL				
		,	<u> </u>		· · · · · · · · · · · · · · · · · · ·
DRAINAGE AREA	= (0.7 50	D 171.		
/					
,					
INFILTRATION DAT	<u>74 :</u>				
					
DRAINAGE AREA	is NOC	DED	USE:		
INITIAL IN				/,5	
CONSTANT IN	IFILIKAI	70/(/		0.75	IN/HY
the second secon		*** ****			
	t a como escene esc	-		~***	• • • • •
					• • • •
	Bargir i tira shugar (sahur sagah simu up pupu u ta	At the second of the second of the second	· · · · · · · · · · · · · · · · · · ·		
		•• •• • • • • • • • • • • • • • • • • •			
The second secon				- · · · ·	
				_	

A / 11 - 11 - 11

FROM TP40 U.S. WEATHER BUREAU

≥

0.18

0.09

0.08

0.08

7.2

20

21

22

23

24

24 Hr

A . U . Im

TORCH		SILIVE	יאו עי					_ 4.,,		2/5/
roject		SILVE	K LA	<u> </u>	UNIT			e By JiHa		
	·	•					Chk	1 By_ JG	Date <u>=</u>	3/23/8
	!		i				t .			
	HYDE	RAUL	ICS	:	:	1 :	i		· · · · · · · · · · · · · · · · · · ·	:
	1	: 1								1
					- - -					
	DIECH	ADCE			+++					
	DISCH	ARGE		· · ·			- ! ! - !			+ + +
				 _	- !					<u> </u>
	THE	SPILLA	IAY	AT.		SILVE	R LAKE	DAM C	ONSIS T	25
									· · ·	
	OF THR	EE (3)	SHARE	CR	ESTE	D \	IEIRS A	VITH CA	EST	
					<u> </u>	:		; :		, ,
	ELEVA	TIONS	106	9.7	(PRI	MARY	CLEST)	AND	,	;
	: .		1		;					
	/		1070	2	(SEC	ONDAR	Y CRES	T\ H1	TH	
1			:		1					: .
	FFF	CTIVE	/=	N/C =	'	- OF	50	F = = =	- AA	^
	EFFE	C //VE	ZE	1461	73	<u> </u>	3.0	FEET	7/1/	<u>. </u>
	•									
	0 ()	LP =	20						•	-,,
	9.6 F	EET,	RES	PEC	TIVE	y			;	
	9.6 7	FET	RES	PēC	TIVE	<u>y</u>				
	9.6	EET				CTION				
	9.6 7	FET				•		Height o	f openi	ng
			SPI	LLWA		•		Corifice	flow)	
	Spi//h	uay crest	SPI	LLWA		•		(orifice	flow) tondge	
		uay crest	SPI	LLWA		•		(orifice top	flow) tonidge	_
	Spillin	vay crest	SPI	LLWA		CTION		(orifice top	flow) tondge	_
	Spi//h	vay crest	SPI	LLWA		•	7	(orifice top	flow) tonidge	_
	Spillin	vay crest	SPI	LLWA		CTION		(orifice top	flow) tonidge	_
	Spillin	vay crest	SPI	LLWA		CTION	7	(orifice top	flow) tonidge	_
	Spillin	vay crest	SPI	LLWA		CTION		(orifice top	flow) tonidge	_
	Spille elw. 106 water s	ay crest	SPI	LLWA		CTION	3	(orifice top	flow) tonidge	_
	Spille elw. 106 water s	vay crest	SPI	LLWA		CTION		(orifice top	flow) tonidge	_
	Spille elw. 106 water s	ay crest	SPI	LLWA		CTION	7	(orifice top	flow) tonidge	_
	Spille elw. 106 water s	ay crest	SPI	LLWA		CTION	7	(orifice top	flow) tonidge	_
	Spille elw. 106 water s	ay crest	SPI	LLWA		CTION	3\	(orifice top	flow) tonidge	_
	Spille elw. 106 water s	ay crest	SPI	LLWA		CTION		(orifice top	flow) tonidge	_
	Spille elw. 106 water s	ay crest	SPI	LLWA		CTION	3	(orifice top	flow) tonidge	_
	Spille elw. 106 water s	ay crest	SPI	LLWA		CTION		(orifice top	flow) tonidge	_
	Spille elw. 106 water s	ay crest	SPI	LLWA		CTION	3	(orifice top	flow) tonidge	_
	Spille elw. 106 water s	ay crest	SPI	LLWA		CTION		(orifice top	flow) tonidge	_

Q.

STORCH ENGINEER	_	1 111 -	P.4 M			eet_ <u>8</u>	
Project	SILVER	LAKE	DAM	Made	By <u>√// //</u>	9_Date_	2/2/41
	· · · · · · · · · · · · · · · · · · ·			Chkd	By JG	Date_	3/23/81
From e	lev. 1070.6	and ab	ove			!	
USING	ORIFICE	FORMU	LA: [Hand book	of he	drau Gics	-A 4-27
							1
Q =	Callah.		Q -	dischar	9e [cfs7	
	7						
			C =	coeffici	eut c	£ - 0	.6
			1				1
		6	a =	area	of chis	charce	[F+27
į		1					
			9 -	32.2		•	
	:	•					
:			h -	head	to ce	ntroid	[F+]
							
							+
STA	GE DISC	HARGE	TABULA	TION:			:

				WE	R		,		OR.	IFICE			
	Nater	Pri	mary		S	ecana	lary	prim			wdary	ΣQ	
	eler.	H	C	8	Н	C	Q	Н	Q	Н	Q		
	[F+]	[F+]		[cfs]	[4]		[cfs]	[4]	[cfs]	[H]	[cfs]	[cfs]	
	1069.7	0	0	0	0	0	0	D	0	0	0	0	
	1070.2	0.5	3,46	6.1	0	0	0	0	0	0	0	6.1	
	1070.6	0.9	3.46	14.3	0,4	3.47	8.4	0.45	14.5	0.2	8.3	22.8	
- -	1071.6	0	0	0	0	0	0	1.45	26.1	1.2	14.3	40.4	
	1072.6	0	0	0	O	0	0	2.45	33.9	2.2	27.4	61.3	
	1073.6	0	0	0	0	0	0	345	40.3	3.2	33.1	73.4	

HEC - 1 - DAM PRINTOUT

Overtopping Analysis

1						TY PROGRA			 -	
2 3			٠.		ER LAKE Ar etnem	DAM ROUTINB	•	• •		
<u> </u>	- 30 0			100 15						
1	- 300									
	1	1	1							
 1	<u>_</u>	LAKE			0		1			
[1		_	DROGRAPH		ER LAKE					
)]	96	_								
)1	0.019		0.019	0.012	0.019	0.019	0.019	0.019	0.019	0.019
D 1	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019
01	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019
31	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019
D 1	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.038	0.038
01	0.038	0.038	0.038	0.038	850.9	0.038	0.038	0.038	0.038	0.038
	0.083		0.083	0.083	0.163	0.163	0.163	0.163	0.750	0.750
	0.750			-0.163-	-0.167		-0.063-	0.053	-C.0EJ	0.083
01	0.083	0.083	0.083	0.083	0.038	0.038	0.038	0.038	0.038	0.038
01 T	850.0	0.038	0.038	0.038	0.038	0.038	1 5			
u 2		1.2								
-		-0.05	2.0				1			
K1			SCHARGE T	HROUGH D	An					
Ϋ́			····•• •	1	1					
<u> .</u> 1_	1						-1070.0	1		
Y41	069.7	1070.2	1070.6	1071.6	1072.6	1073.6				
Y5	0	6.1	22.8	40.4	61.3	73.4				
14	ŏ			44-8						
SE SE	1060		1080	1100						
	_1071		1.5	157						
к <u>-</u>	1						1			
К1 Ү—	_	_	ROUTING R	EACH 1	1					
Y1	1									
Υ <u>΄</u> Υ΄	0.08	0.04		1056.5	1062.5	100		1054_5	0.5	1054 5
*/- Y7	85			1040.5	125					
K	1		103		123	100113	1			
N K-1	_	_	37-2HITU O	ACH 7						
7 3 - Y		THE PARTY	UU-1 1 NO-1 C	1	1					
Y1	1			•	•	•				
7.4 1.1	<u>•</u> مــمــ			1038.2	1044-7	500	AATO.O			
7 0 77				1042.2	80			1038.2	86	1038.
Y7	84			1042.2	126		50	. 400.2	56	*****
			440							

Ú.

.

HYDROGRAFH ROUTING

aloss closs 0.000000	ROUTING DATA	IG DATA	•	
		ISANE IOPT	IPMP O	LSTR
	LAG	AMSKK X	TSK STORA ISPRAT	ISPRAT
STAGE 1069.70 1070.20 1070.60	0 1071.60	1072.60	1073.60	
FLOW 6.10 22.80	0 40.40	61.30	73.40	
SURFACE AREA	47			
CAPACITY= 0. 67. 344.	. 1167.			
ELEVATION= 1060. 1070. 1080.	. 1100.			·
CREL SPUID 1070.0 0.0	0.0 0.0 0.0 0.0	0.0	COOL CAREA EXPL	XPL 0.0

647. AT TIME 19.25 HOURS

PEAK OUTFLOW 1S

DATE! 81/03/03. TIME! 04:54:09.
NATIONAL DAM SAFETY PROGRAM SILVER LAKE DAM 100 YEAR STORM ROUTING
JOR SFECIFICATION NO NHR MMIN IDAY INR IMIN METRC IPLT IPRI NSTAN 300 0 15 0 0 0 4 0 JOPER NWT LROPT TRACE 5 0 0
RTIOS= 1.00
SUB-AREA RUNDFF COMPUTATION
INFLOW HYDROGRAPH TO SILVER LAKE DAH
0 0 0 0 0
IHYDG IUHG TAREA SNAF TRSDA TRSPC RATIO ISNOW ISAME LOCAL 0 2 .70 0.00 .70 0.000 0 1 0
LROPT STRKR DLTKR RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSHX RTIMP O 0.00 0.00 1.00 0.00 0.00
UNIT HYDROGRAFH DATA TC= 0.00 LAG= 1.20
RECESSION DATA SIRIO= -1.00 DRCSN# -1.05 RIIOR# 2.00
O HO.DA HR.AN PERIOD RAIN EXCS 1.055 COMP O HO.DA HR.AN PERIOD RAIN EXCS 1.055 COMP O

OBEDATION	er Ar Faw	AREA	PI AN	PATIO	RAT	RATIOS APPLIED TO FLOWS	TO FLOWS		
				1.00					
HYDROGRAPH AT	T LAKE	.70	-	761.					
ROUTED TO	DAM	.70	-	647.					
ROUTED TO	1	.70	-	648. 18.36>(
ROUTED TO	~~	.70	-	647. 18.32)(
		-		NS .	BUNNARY OF DAN	SAFETY	ANALYSIS		
PLAN 1			ELEVATION STORAGE OUTFLOW	INITIAL VAI 1070.00 67.	VALUE .00 .17.	SPILLWAY CREST 1070.00 67.	5	1071.00 88.	r ;
	RATIO OF PMF	Ì	HAXIMUH RESERVOIR W-S-EEEV	MAXINUM DEPTH BVER PAH	HAXIHUH STORAGE AS FT	MAXINUM OUTFLOW OF®	DURATION OVER TOP HOURS	TIME OF MAX OUTFLOW	TIME OF FAILURE HOURG
	1.00	٦	1072.29	1.29	117.	647.	7.75	19.25	0.00
				۵	FLAN 1	BTATION	4		
				RATIO	HAXINUM FLOW, CFS	MAXINUM BTAGE.FT	TIME		
				1.00	648.	1060.9	19.25		·
				<u>a</u>	PLAN 1	STATION	n.		
				RATIO	FLOW, CFS	STAGE, FT	HOURS		
				1.00	647	1042.5	19.25		

APPENDIX 5

Bibliography

- 1. "Recommended Guidelines for Safety Inspection of Dams," Department of the Army, Office of the Chief of Engineers, Washington, D.C. 203".
- 2. <u>Design of Small Dams</u>, Second Edition, United States Department of the Interior, Bureau of Reclamation, United State Government Printing Office, Washington, D.C., 1973.
- 3. Holman, William W. and Jumikis, Alfreds R., <u>Engineering Soil</u>
 <u>Survey of New Jersey</u>, <u>Report No. 11</u>, <u>Sussex County</u>, <u>Rutgers</u>
 University, New Brunswick, N.J., 1953.
- 4. "Geologic Map of New Jersey," prepared by J. Volney Lewis and Henry B. Kummel, dated 1910-1912, revised by H.B. Kummel, 1931 and M. Johnson, 1950.
- 5. Chow, Ven Te., Ed., <u>Handbook of Applied Hydrology</u>, McGraw-Hill Book Company, 1964.
- 6. Herr, Lester A., <u>Hydraulic Charts for the Selection of Highway Culverts</u>, U.S. Department of Transportation, Federal Highway Administration, 1965.
- 7. <u>Safety of Small Dams</u>, Proceedings of the Engineering Foundation Conference, American Society of Civil Engineers, 1974.
- 8. King, Horace Williams and Brater, Ernest F., <u>Handbook of Hydraulics</u>, Fifth Edition, McGraw-Hill Book Company, 1963.
- 9. <u>Urban Hydrology for Small Watersheds, Technical Release No. 55,</u> Engineering Division, Soil Conservation Service, U.S. Department of Agriculture, January 1975.

