Problem Statement

Linear Regression

Import Libraries

```
In [2]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
In [4]:
          a=pd.read_csv("drug.csv")
                                              Na_to_K
Out[4]:
                   Sex
                                  Cholesterol
              Age
                                                       Drug
                      F
           0
                23
                            HIGH
                                       HIGH
                                               25.355
                                                       drugY
                47
                            LOW
           1
                     Μ
                                       HIGH
                                               13.093
                                                      drugC
           2
                47
                            LOW
                                       HIGH
                                                      drugC
                     Μ
                                               10.114
           3
                28
                      F
                        NORMAL
                                       HIGH
                                                7.798
                                                       drugX
                      F
           4
                61
                            LOW
                                       HIGH
                                               18.043
                                                       drugY
         195
                56
                      F
                            LOW
                                       HIGH
                                               11.567 drugC
                                               12.006 drugC
         196
                16
                            LOW
                                       HIGH
                     Μ
         197
                52
                        NORMAL
                                       HIGH
                                                9.894
                                                      drugX
                     Μ
                23
                        NORMAL
                                    NORMAL
                                               14.020 drugX
                     Μ
                      F
         199
                40
                            LOW
                                    NORMAL
                                               11.349 drugX
```

200 rows × 6 columns

To display top 10 rows

```
In [5]:
          c=a.head(15)
Out[5]:
              Age
                   Sex
                             BP
                                  Cholesterol
                                              Na_to_K
                                                        Drug
           0
                     F
               23
                           HIGH
                                       HIGH
                                                25.355
                                                      drugY
               47
                            LOW
                                       HIGH
                                                13.093
                                                       drugC
                    Μ
           2
               47
                            LOW
                                                       drugC
                    Μ
                                       HIGH
                                                10.114
           3
               28
                        NORMAL
                                       HIGH
                                                 7.798
                                                       drugX
                            LOW
                                       HIGH
                                                18.043 drugY
               61
```

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
5	22	F	NORMAL	HIGH	8.607	drugX
6	49	F	NORMAL	HIGH	16.275	drugY
7	41	М	LOW	HIGH	11.037	drugC
8	60	М	NORMAL	HIGH	15.171	drugY
9	43	М	LOW	NORMAL	19.368	drugY
10	47	F	LOW	HIGH	11.767	drugC
11	34	F	HIGH	NORMAL	19.199	drugY
12	43	М	LOW	HIGH	15.376	drugY
13	74	F	LOW	HIGH	20.942	drugY
14	50	F	NORMAL	HIGH	12.703	drugX

To find Missing values

To display summary of statistics

```
In [7]:
          a.describe()
Out[7]:
                               Na_to_K
          count 200.000000
                             200.000000
          mean
                  44.315000
                              16.084485
            std
                  16.544315
                               7.223956
                  15.000000
                               6.269000
           min
           25%
                  31.000000
                              10.445500
           50%
                  45.000000
                              13.936500
           75%
                  58.000000
                              19.380000
                  74.000000
                              38.247000
           max
```

To display column heading

```
In [8]: a.columns
Out[8]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')
```

Pairplot

```
In [9]: s=a.dropna(axis=1)
s
```

Out[9]:		Age	Sex	ВР	Cholesterol	Na_to_K	Drug
	0	23	F	HIGH	HIGH	25.355	drugY
	1	47	М	LOW	HIGH	13.093	drugC
	2	47	М	LOW	HIGH	10.114	drugC
	3	28	F	NORMAL	HIGH	7.798	drugX
	4	61	F	LOW	HIGH	18.043	drugY
	•••						
	195	56	F	LOW	HIGH	11.567	drugC
	196	16	М	LOW	HIGH	12.006	drugC
	197	52	М	NORMAL	HIGH	9.894	drugX
	198	23	М	NORMAL	NORMAL	14.020	drugX
	199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

```
In [10]: s.columns
Out[10]: Index(['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug'], dtype='object')
In [11]: sns.pairplot(a)
```

Out[11]: <seaborn.axisgrid.PairGrid at 0x1a187030fd0>

Distribution Plot

```
In [12]: sns.distplot(a['Age'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarn
ing: `distplot` is a deprecated function and will be removed in a future version. Pl
ease adapt your code to use either `displot` (a figure-level function with similar f
lexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[12]: <AxesSubplot:xlabel='Age', ylabel='Density'>

Correlation

```
In [13]: b=s[['Age', 'Sex', 'BP', 'Cholesterol', 'Na_to_K', 'Drug']]
    sns.heatmap(b.corr())
```

Out[13]: <AxesSubplot:>

Train the model - Model Building

```
In [14]: g=s[['Age']] h=s['Age']
```

To split dataset into training end test

```
In [15]:
    from sklearn.model_selection import train_test_split
    g_train,g_test,h_train,h_test=train_test_split(g,h,test_size=0.6)
```

To run the model

Coeffecient

Best Fit line

```
prediction=lr.predict(g_test)
plt.scatter(h_test,prediction)
```

Out[20]: <matplotlib.collections.PathCollection at 0x1a1892f6d00>

To find score

```
In [21]: print(lr.score(g_test,h_test))
1.0
```

Import Lasso and ridge

```
In [22]: from sklearn.linear_model import Ridge,Lasso
```

Ridge

Lasso