Introduction à l'ingénierie logicielle ENSEEIHT / SN

Parcours SEmblloT Systèmes Embarqués et IoT Industriel

> Marc Boyer Septembre 2020

Informations pratiques (3SN)

- 6H CM (Distance et présence)
- 8H TP (Présence)
- 2H examen (Présence)
- Un enseignement issu de l'ex filière TR
- De possibles redites
- Tous retours bienvenus

Quel est le problème ?

Conception système à base logicielle

- Quel est le problème ?
 - On a UML
 - On sait programmer
 - On est super fort

Positionner le problème: un problème d'échelle

- Projet(s) SN
 - Lignes de code: 5.000 ↔ 10.000 ?
- Temps travail ingénieur: 120h/mois
- 600h = Stage...
- Nouvelle unité: LoC (Line of Code)

Une avalanche de chiffres (1/2)

- Commande de col A350
 - 90KLoC
 - 85.000 h
 - => 1h/ligne...
- ISS: 80MLoC
- Mars Path Finder: 3MLoC
- Continental (équipementier auto)
 - Powertrain 2011: 250KLoC
 - Moteur 2015 : 5MLoC
- Automobile : logiciel représente 15 % du coût (2020)

Une avalanche de chiffres (2/2)

- Avion F-35
 - 24MLoC
- Linux Kernel (2015)
 - 20 MloC
- Et si on imprimait ?
 - 80 LoC / pages, 200 pages/cm (papier bible)
 - 2 MloC => 1,2m

Quelques bugs célèbres

- La légende urbaine Voyager/Mariner (1962)[1,2]
 - DO 17 I = 1,10 vs DO 17 I = 1.10
- Constructeur automobile français (199x)
- Ariane 5 (1996)[5]
 - Problème complexe
- Mars climate orbiter (1999)[3,4]
 - Problème d'unité
- A400M Seville (2015)
 - Problème de configuration
 - [1] https://fr.wikipedia.org/wiki/Mariner_1#Ou_alors_le_point_le_plus_cher_.3F
 - [2] http://catless.ncl.ac.uk/Risks/9.54.html#subj1
 - [3] https://en.wikipedia.org/wiki/Mars_Climate_Orbiter#Cause_of_failure
 - [4] "Mars Climate Orbiter Mishap Investigation Board Phase I Report". NASA. Nov. 10, 1999.
 - [5] https://en.wikipedia.org/wiki/Cluster %28spacecraft%29#Launch failure

Quelques autres échecs célèbres...

- Orange, projet Simba
- Virtual case file, FBI, 2005
 - 170 M\$
- Louvois : logiciel de paye de l'armée française, 1996-2014
 - Échec complet, 470M€
- Toyota, 2010
 - Rappel 10 millions véhicules
- Toyota, 2014
 - Rappel 2 millions Prius

Les taux d'échec dans le logiciel (1994-2015)

Sources: Standish group, Chaos Report 2015

Taux d'échec par taille de projet

CHAOS RESOLUTION BY PROJECT SIZE

	SUCCESSFUL	CHALLENGED	FAILED
Grand	2%	7%	17%
Large	6%	17%	24%
Medium	9%	26%	31%
Moderate	21%	32%	17%
Small	62%	16%	11%
TOTAL	100%	100%	100%

The resolution of all software projects by size from FY2011-2015 within the new CHAOS database.

Les sources de bug

- On sait faire des briques logicielles robustes
- On ne sait toujours pas les assembler

Comment gérer le problème ?

Le(s) cycle(s) en V

- Un principe de gestion de projet
- Plutôt pour les «gros» projets
- Adapté par chaque industriel à son processus
- Production de documents en sortie de chaque phase
 - Lien client/fournisseur ou donneur d'ordre/soustraitant

Un cycle en V

Source Christophe Moustier, Wikimedia

Un autre

Source: S@uR@bH ThE tEsTeR http://softwaretestingwiki.blogspot.fr/2011/11/softwatre-testing-life-cycle-with-v.html

Réflexions sur le cycle en V

- Un cycle «fractal»
 - Une activité de spécification peut avoir son propre cycle en V
 - Utilisation de modèles et/ou prototypes

Réflexions sur le cycle en V

 Le cycle en V se déploie en profondeur

Cycle en V et effort

- L'effort croît puis décroît
- Coût polynomial de la découvertes d'erreur

Comprendre

- Spécificités du logiciel
 - Fragilité
 - Marge de sécurité ?
 - Fonction discontinue (résultat et fiabilité)
 - Sauvegarde
 - Existe pas dans le monde réel
 - Une facilité ?
 - Invisible
 - Flexible

Conception

- Décomposer un système en
 - Sous-systèmes
 - Interfaces
 - Interactions
 - avec politique de gestion d'erreur

Processus de traçabilité

- Ingénierie:
 - Faire des choix
 - Les justifier
 - Les tracer

Tout ça pour ça

- Tout ça c'est du blabla
- Aucun intérêt
- Ça n'arriverait pas dans mes projets

Néanmoins

- Ceci est une sensibilisation
- Un problème informel peut être un problème important
- C'est un enjeux majeur

Questions finales

- À quoi sert une spécification ?
- À quoi sert un modèle ?