Attorney Docket No.: 60824 (71719)

INVENT**O**K(S): Yoshinori KANESAKA

U.S.S.N.: 10/777,928

ART UNIT: 2621

FILED: February 11, 2004

EXAMINER: Not Yet Assigned

FOR: DRIVE METHOD OF CCD COLOR IMAGE SENSOR AND COLOR IMAGE

INPUT APPARATUS

I certify that this document fee is being deposited with the U.S. Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. in an envelope addressed to Mail Stop AMENDMENT, Commissioner for Patents, P.O. Box 1450,

Alexandria, VA 22313-1450 on June 10, 2004,

Nicole M. McKinnon

By:

Attention: Mail Stop AMENDMENT

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

TRANSMITTAL OF CERTIFIED COPIES

Sir:

Attached please find two certified copies of the foreign application from which priority is claimed for this case:

Country:

JAPAN

Country:

JAPAN

Application Number:

2001-377168

Application Number:

2001-278263

Filing Date:

11 December 2001

Filing Date:

13 September 2001

Date: <u>June 10, 2004</u> Customer No. 21874

Respectfully submitted,

John J. Penny, Jr. (Reg. No. 36,984)

EDWARDS & ANGELL, LLP

P.O. Box 55874 Boston, MA 02205

Tel: (617) 517-5549 Fax: (617) 439-4170

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2001年 9月13日

出願番号 Application Number:

特願2001-278263

[ST. 10/C]:

Applicant(s):

[JP2001-278263]

出 願 人

セイコーエプソン株式会社

2004年 4月 2日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

SE010906

【提出日】

平成13年 9月13日

【あて先】

特許庁長官 殿

【国際特許分類】

H04N 1/04

【発明の名称】

CCDカラーイメージセンサの駆動方法及びカラー画像

入力装置

【請求項の数】

4

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

金坂 芳則

【特許出願人】

【識別番号】

000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】

100093779

【弁理士】

【氏名又は名称】

服部 雅紀

【手数料の表示】

【予納台帳番号】

007744

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9901019

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 CCDカラーイメージセンサの駆動方法及びカラー画像入力装置

【特許請求の範囲】

【請求項1】 シフトレジスタで各色の光電変換素子群の不要電荷を転送した後、各色のシフトゲートを開通し各色の前記光電変換素子群の信号電荷を前記シフトレジスタに転送する段階と、

前記シフトレジスタで各色の前記光電変換素子群の信号電荷を転送する期間中 、各色の前記シフトゲートを遮断して各色の前記光電変換素子群に不要電荷を蓄 積する段階と、

各色の前記シフトゲートを開通し各色の前記光電変換素子群で生ずる不要電荷をシフトレジスタに転送する段階と、

各色のシフトゲートを順次遮断し、各色に設定されている期間に応じてシフトゲートの遮断を継続し各色の前記光電変換素子群に信号電荷を蓄積する段階と、を含むことを特徴とするCCDカラーイメージセンサの駆動方法。

【請求項2】 各色の光電変換素子群で生ずる不要電荷を、各色の前記光電変換素子群に信号電荷を蓄積する期間にシフトレジスタで転送し、

各色の前記光電変換素子群に設定されている色毎に異なる期間に応じて各色の前記光電変換素子群に蓄積された信号電荷を、各色の前記光電変換素子群に不要電荷を蓄積する期間に前記シフトレジスタで転送することを特徴とするCCDカラーイメージセンサの駆動方法。

【請求項3】 各色の光電変換素子群、各色のシフトゲート及び各色のシフトレジスタを有するCCDカラーイメージセンサと、

前記シフトレジスタに各色の前記光電変換素子群の不要電荷を転送させた後、 各色の前記シフトゲートを開通させ各色の前記光電変換素子群の信号電荷を前記 シフトレジスタに転送させる手段と、

前記シフトレジスタに各色の前記光電変換素子群の信号電荷を転送させる期間中、各色の前記シフトゲートを遮断させて各色の前記光電変換素子群に不要電荷を蓄積させる手段と、

各色の前記シフトゲートを開通させ各色の前記光電変換素子群で生ずる不要電荷をシフトレジスタに転送させる手段と、

各色のシフトゲートを順次遮断し、各色に設定されている期間に応じてシフトゲートの遮断を継続させ各色の前記光電変換素子群に信号電荷を蓄積させる手段と、

を備えることを特徴とするカラー画像入力装置。

【請求項4】 各色の光電変換素子群及びシフトレジスタを有するCCDカラーイメージセンサと、

各色の前記光電変換素子群で生ずる不要電荷を、各色の前記光電変換素子群に 信号電荷を蓄積する期間に前記シフトレジスタで転送させる手段と、

各色の前記光電変換素子群に設定されている色毎に異なる期間に応じて各色の前記光電変換素子群に蓄積された信号電荷を、各色の前記光電変換素子群に不要電荷を蓄積させる期間に前記シフトレジスタで転送させる手段と、

を備えることを特徴とするカラー画像入力装置。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、CCDカラーイメージセンサの駆動方法及びカラー画像入力装置に 関するものである。

[0002]

【従来の技術】

従来、光電変換により光学像の濃淡に応じた電気信号を出力する撮像デバイスとしてイメージセンサが広く用いられている。このイメージセンサの一種に、CCDカラーイメージセンサが知られている。CCDカラーイメージセンサは、光電変換素子とシフトレジスタとを備える。光電変換素子にはR(Red),G(Green),B(Blue)等の所定色のフィルタが設けられ、光電変換素子はフィルタの透過光を受光してその受光量に応じた電荷を蓄積する。シフトレジスタには各光電変換素子での生成電荷がシフトゲートの開通により転送され、シフトレジスタはその転送された電荷をCCDにより出力部に転送する。

[0003]

ところで、CCDカラーイメージセンサは例えばイメージスキャナ、複写機等のカラー画像入力装置にその撮像デバイスとして搭載される。カラー画像入力装置では、ネガフィルム,ポジフィルム等の光透過性シートに記録された像(以下、透過原稿という。)や印刷用紙、印画紙等の光反射性シートに記録された像(以下、反射原稿という。)をCCDカラーイメージセンサで走査して読み取る。このとき例えばネガフィルムを読み取る場合には、ネガフィルムが3原色光のうちB(Blue)光を最も透過させ難い性質を有していることから、Bフィルタの設けられている光電変換素子について信号電荷の蓄積時間を長くする。

[0004]

光電変換素子の電荷蓄積時間を任意に変える技術として電子シャッタが公知である。電子シャッタは、出力信号として取り出すための電荷(信号電荷)の蓄積時以外に光電変換素子で生じた不要電荷を廃棄するための技術である。図14には、この電子シャッタを実現するために従来採用されているCCDカラーイメージセンサ2000構成例が示されている。CCDカラーイメージセンサ200はリニアイメージセンサであって、互いに同一色のフィルタが設けられた複数の光電変換素子202からなる光電変換素子群204を直線状に複数列備えている。CCDカラーイメージセンサ200には、シフトゲート206、シフトレジスタ208、シャッタゲート210及びドレイン212が各列の光電変換素子群204に沿って直線状に設けられている。

[0005]

CCDカラーイメージセンサ200に信号電荷を蓄積するときには、シフトゲート206及びシャッタゲート210を遮断する。CCDカラーイメージセンサ200から信号電荷を読み出すときには、信号電荷の蓄積後にシフトゲート206を開通して信号電荷をシフトレジスタ208に転送する。信号電荷をシフトレジスタ208に転送した後、再び信号電荷の蓄積を開始するまでの期間は、シフトゲート206を遮断する一方シャッタゲート210を開通して光電変換素子での生成電荷(不要電荷)をドレイン212に廃棄する。

[0006]

【発明が解決しようとする課題】

しかしながら、従来のCCDカラーイメージセンサ200では、各色の光電変換素子群204に不要電荷廃棄用のシャッタゲート210及びドレイン212を設けているため、構造が複雑となり製造コストの上昇を招いている。

[0007]

本発明は、このような問題に鑑みて創作されたものであって、その目的は、信号電荷の蓄積時間が色毎に異なる電子シャッタ機能を簡易な構造で実現するCCDカラーイメージセンサの駆動方法を提供することにある。

また、本発明の他の目的は、CCDカラーイメージセンサにおいて信号電荷の 蓄積時間が色毎に異なる電子シャッタ機能を簡易な構造で実現するカラー画像入 力装置を提供することにある。

[0008]

【課題を解決するための手段】

本発明に係るCCDカラーイメージセンサの駆動方法によると、シフトレジスタで各色の光電変換素子群の不要電荷を転送した後、各色のシフトゲートを開通し各色の前記光電変換素子群の信号電荷を前記シフトレジスタに転送する段階と、前記シフトレジスタで各色の前記光電変換素子群の信号電荷を転送する期間中、各色の前記シフトゲートを遮断して各色の前記光電変換素子群に不要電荷を蓄積する段階と、各色の前記シフトゲートを開通し各色の前記光電変換素子群で生ずる不要電荷をシフトレジスタに転送する段階と、各色のシフトゲートを順次遮断し、各色に設定されている期間に応じてシフトゲートの遮断を継続し各色の前記光電変換素子群に信号電荷を蓄積する段階とを含む。この駆動方法によると、信号電荷を各色に設定されている期間で蓄積できるだけでなく、不要電荷をシフトレジスタに転送して廃棄することができる。したがってこの駆動方法によれば、信号電荷の蓄積時間が色毎に異なる電子シャッタ機能を、ドレイン等を設けることなく簡易な構造で実現することができる。

[0009]

尚、本明細書において「各色の光電変換素子群」とは、互いに同一色のフィルタの透過光を受光する光電変換素子群を意味する。ただし、各色の光電変換素子

群は、互いに隣接する複数の光電変換素子から構成しても、他の色の光電変換素子群をなす光電変換素子を挟んで互いに隣接しない複数の光電変換素子から構成してもよい。また「各色のシフトゲート」とは、各色の光電変換素子群毎に設けられたシフトゲートを意味する。

[0010]

本発明に係るCCDカラーイメージセンサの駆動方法によると、各色の光電変換素子群で生ずる不要電荷を、各色の前記光電変換素子群に信号電荷を蓄積する期間にシフトレジスタで転送し、各色の前記光電変換素子群に設定されている色毎に異なる期間に応じて各色の前記光電変換素子群に蓄積された信号電荷を、各色の前記光電変換素子群に不要電荷を蓄積する期間に前記シフトレジスタで転送する。この駆動方法によると、信号電荷を色毎に異なる期間で蓄積できるだけでなく、信号電荷の蓄積期間を利用することで不要電荷をシフトレジスタで転送して廃棄することができる。したがってこの駆動方法によれば、信号電荷の蓄積時間が色毎に異なる電子シャッタ機能を簡易な構造で実現することができる。

[0011]

本発明に係るカラー画像入力装置によると、各色の光電変換素子群、各色のシフトゲート及び各色のシフトレジスタを有するCCDカラーイメージセンサと、前記シフトレジスタに各色の前記光電変換素子群の不要電荷を転送させた後、各色の前記シフトゲートを開通させ各色の前記光電変換素子群の信号電荷を前記シフトレジスタに転送させる手段と、前記シフトレジスタに各色の前記光電変換素子群の信号電荷を転送させる期間中、各色の前記シフトゲートを遮断させて各色の前記光電変換素子群に不要電荷を蓄積させる手段と、各色の前記シフトゲートを開通させ各色の前記光電変換素子群で生ずる不要電荷をシフトレジスタに転送させる手段と、各色のシフトゲートを順次遮断し、各色に設定されている期間に応じてシフトゲートの遮断を継続させ各色の前記光電変換素子群に信号電荷を蓄積させる手段とを備える。このカラー画像入力装置によると、CCDカラーイメージセンサにおいて信号電荷を各色に設定されている期間で蓄積できるだけでなく、不要電荷をシフトレジスタに転送して廃棄することができる。したがってこのカラー画像入力装置では、CCDカラーイメージセンサにおいて信号電荷の蓄

積時間が色毎に異なる電子シャッタ機能を簡易な構造で実現することができる。

[0012]

本発明に係るカラー画像入力装置によると、各色の光電変換素子群及びシフトレジスタを有するCCDカラーイメージセンサと、各色の前記光電変換素子群で生ずる不要電荷を、各色の前記光電変換素子群に信号電荷を蓄積する期間に前記シフトレジスタで転送させる手段と、各色の前記光電変換素子群に設定されている色毎に異なる期間に応じて各色の前記光電変換素子群に蓄積された信号電荷を、各色の前記光電変換素子群に不要電荷を蓄積させる期間に前記シフトレジスタで転送させる手段とを備える。このカラー画像入力装置によると、CCDカラーイメージセンサにおいて信号電荷を色毎に異なる期間で蓄積できるだけでなく、信号電荷の蓄積期間を利用することで不要電荷をシフトレジスタで転送して廃棄することができる。したがってこのカラー画像入力装置では、CCDカラーイメージセンサにおいて信号電荷の蓄積時間が色毎に異なる電子シャッタ機能を簡易な構造で実現することができる。

[0013]

【発明の実施の形態】

本発明の実施の形態を示す一実施例を図面に基づいて説明する。

$[0\ 0\ 1\ 4]$

図2は、本発明に係るカラー画像入力装置の一実施例であるイメージスキャナ 10の構造を示す模式図である。イメージスキャナ10は、筐体12の上面に原 稿台14を備えたいわゆるフラットベッド型イメージスキャナである。

[0015]

原稿台14はガラス板等の透明板で形成され、その盤面上に原稿Mが載置される。原稿台14の周縁部には、原稿台14の盤面上に原稿Mを位置決めするための原稿ガイド16が設けられている。

$[0\ 0\ 1\ 6]$

光学系30は、透過原稿用光源38、反射原稿用光源22、ミラー34、集光 レンズ36等から構成されている。透過原稿用光源38はいわゆる面光源装置で ある。反射原稿用光源22は蛍光管ランプ等の管照明から構成され、主走査方向 に延びる姿勢でキャリッジ24に搭載されている。図2に一点鎖線で示すように、透過原稿用光源38に照射された透過原稿Mの透過光像及び反射原稿用光源22に照射された反射原稿Mの反射光像はミラー34、集光レンズ36等によりCCDカラーイメージセンサ20に結像される。

$[0\ 0\ 1\ 7]$

CCDカラーイメージセンサ20は、受光した光を光電変換して得られる電荷を所定時間蓄積し受光量に応じた電気信号を出力する。本実施例で使用するCCDカラーイメージセンサ20はレンズ縮小型のリニアイメージセンサであるが、密着型のリニアイメージセンサや密着型エリアイメージセンサを用いてもよい。CCDカラーイメージセンサ20は複数の光電変換素子50が図2において紙面垂直方向に直線状に並列する姿勢でキャリッジ24に搭載されている。光電変換素子50の並列方向が主走査方向である。

[0018]

キャリッジ24は、原稿台ガラス14の盤面と平行に往復移動自在に筐体12に収容されている。キャリッジ24は光学系30とリニアイメージセンサ20を搭載している。キャリッジ24は原稿台ガラス14の盤面に対し平行なガイド用のシャフト等にスライド自在に係止されている。ガイド用のシャフトの長手方向軸は図2のa方向に延伸している。キャリッジ24は例えばベルトにより牽引されてリニアイメージセンサ20及び光学系30を図2のa方向に運搬する。

$[0\ 0\ 1\ 9]$

図3はイメージスキャナ10を示すブロック図である。

[0020]

主走査駆動部102は、CCDカラーイメージセンサ20を駆動するために必要なパルスを生成し、CCDカラーイメージセンサ20に出力する。主走査駆動部102は、例えば同期信号発生器、駆動用タイミングジェネレータ等から構成される。

[0021]

副走査駆動部26は、キャリッジ24、キャリッジ24に係止されたベルト、 このベルトを回転させるモータ及び歯車列、駆動回路等を備え、主走査線を副走 査方向に移動させる。キャリッジ24はシャフト等にスライド自在に係止され、 原稿台14の盤面に対し平行な方向(図2においてa方向)に往復移動自在であ る。キャリッジ24はベルトにより牽引されることで、イメージセンサ20及び 光学系30を原稿台14の盤面に対し平行に運搬する。

[0022]

信号処理部100は、アナログ信号処理部104、A/D変換器106及びディジタル信号処理部108等から構成されている。アナログ信号処理部104は、CCDカラーイメージセンサ20から出力されたアナログ表現の電気信号に対して増幅、雑音低減処理等のアナログ信号処理を施し、処理された信号をA/D変換器106に出力する。A/D変換器106は、アナログ信号処理部104から出力されたアナログ表現の電気信号を所定階調のディジタル表現の画像信号に量子化し、その画像信号をディジタル信号処理部108に出力する。ディジタル信号処理部108は、A/D変換器106から出力された画像信号に対しシェーディング補正、ガンマ補正、画素補間等の各種の処理を施し、画像処理装置150へ転送する画像データを生成する。尚、ディジタル信号処理部108で施す各種の処理は、制御部110又は画像処理装置150で実行するコンピュータプログラムによる処理に置き換えてもよい。

[0023]

制御部110はCPU130、RAM132及びROM134を備えるマイクロコンピュータで構成され、光源38,22の駆動回路、主走査駆動部102、副走査駆動部26、信号処理部100等にバスで接続されている。この制御部110は、画像処理装置150からの指令に応じてROM134に記憶されたコンピュータプログラムを実行し、光源38,22、主走査駆動部102、副走査駆動部26、信号処理部100等を制御する。

[0024]

イメージスキャナ10は以上説明した各要素の他に、制御部110にバスで接続されたインターフェイス(I/F)140を備えている。I/F140にはパーソナルコンピュータ等の画像処理装置150を接続可能であり、制御部110は処理部100から出力される画像データをI/F140を介して画像処理装置

150に転送する。

[0025]

図4及び図5はCCDカラーイメージセンサ20の構造を示す模式図である。CCDカラーイメージセンサ20は、直線的に延伸し互いに並列するセンサ部52a,52b,52cを同一チップ上に3列有し、各センサ部52a,52b,52cにそれぞれR(Red),G(Green),B(Blue)のフィルタアレイをオンチップで形成した構造である。以下では、各色のフィルタアレイが設けられたセンサ部52a~52cということもある。尚、センサ部52の列数は3以外にも例えば6等であってもよい。また、センサ部52の列数に応じてC(Cyan),M(Magenta)及びY(Yellow)あるいはC,M,Y及びG(Green)のフィルタアレイを形成したり、一列のセンサ部52について複数色のフィルタからなるフィルタアレイを形成してもよい。カラー出力方式についてはオンチップ方式の他にも例えばダイクロイックミラー方式を採用してもよい。

[0026]

イメージセンサ20の各色のセンサ部52a~52cは、複数の光電変換素子50、シフトゲート54、シフトレジスタ56及び出力部57を備える。

[0027]

複数の光電変換素子50は、各センサ部52a~52cにおいてその延伸方向に直線状に並んでいる。各光電変換素子50の受光面上には、R,G,Bいずれかのフィルタアレイを構成するカラーフィルタ58が設けられている。各光電変換素子50は例えばフォトダイオードであり、カラーフィルタの透過光を受光し受光量に応じた電荷を光電変換により生成し所定時間蓄積する。各センサ部52a,52b,52cを構成する複数の光電変換素子50からR,G,B各色の光電変換素子群51が構成されている。

[0028]

シフトゲート54は光電変換素子群51(各光電変換素子50)で生成される 電荷をシフトレジスタ56に転送するか、光電変換素子群51に蓄積させるかを 制御する。シフトゲート54は、光電変換素子群51の列に沿って主走査方向軸 に平行に延びる姿勢で設けられている。シフトゲート 54 は、複数のゲート電極 60 を備える例えば電界効果トランジスタである。各ゲート電極 60 は各光電変換素子 50 に一対一で対応して各光電変換素子 50 の近傍に形成され、主走査方向軸に平行な方向に並んでいる。各ゲート電極 60 には、主走査駆動部 102 によりシフトゲートパルス ϕ S (図 1 参照)を印加可能である。各ゲート電極 60 に後述のシフトゲートパルス ϕ Sが印加されるときシフトゲート 54 は開通し、光電変換素子群 51 (各光電変換素子 50)で生成される電荷はシフトレジスタ 56 に転送される。各ゲート電極 60 にシフトゲートパルス ϕ Sが印加されないときシフトゲート 54 は遮断され、光電変換素子群 51 (各光電変換素子 50)で生成される電荷は光電変換素子群 51 に蓄積される。

[0029]

シフトレジスタ56は、シフトゲート54を通じて転送された光電変換素子群51で生成される電荷を出力部57に転送する。シフトレジスタ56は、シフトゲート54に隣接し主走査方向軸に平行に延びる姿勢で設けられている。シフトレジスタ56は、複数の転送電極62と電荷転送体64とから構成されるCCDである。各転送電極62は、ゲート電極60の光電変換素子群51とは反対側端部に接続され主走査方向軸に平行な方向で互いに並んでいる。尚、本実施例では1つのゲート電極60に対し転送電極62を2つずつ対応させているが、ゲート電極60と転送電極62とを一対一で対応させてもよい。また、本実施例では機能上、ゲート電極60と転送電極62とを区別しているが、それら電極60,62を1つの電極で構成してもよい。各転送電極62には主走査駆動部102により駆動パルス々Dを印加可能である。電荷転送体64は主走査方向軸に平行に延伸し、絶縁体66を介して各転送電極62に接続されている。電荷転送体64は、各転送電極62への駆動パルス々Dの印加に応答して電荷を転送する。電荷の転送方向は電荷転送体64の延伸方向に一致している。

[0030]

出力部57は、電荷転送体64から転送された電荷のうち信号電荷については電気信号に変換して信号処理部100に出力し、また不要電荷については例えばチップの基板に廃棄する。出力部57は、電荷転送体64の電荷転送方向側端部

に設けられている。出力部 5 7 は信号出力のために、出力電極 7 0 を備える例えば電界効果トランジスタ、リセット電極 7 4 を備える例えばダイオード等を有し、不要電荷の廃棄のために、出力電極 7 6 を備える例えば電界効果トランジスタ等を有する。出力電極 7 0 , 7 6 及びリセット電極 7 4 はそれぞれ出力ゲートパルス ϕ 01, ϕ 02 及びリセットパルス ϕ RSを主走査駆動部 1 0 2 により印加可能である。出力部 5 7 は、出力電極 7 0 及びリセット電極 7 4 に出力ゲートパルス ϕ 0 及びリセットパルス ϕ RSが印加されるのに応答し、電荷転送体 6 4 から信号電荷を受け取り電気信号として出力する。また出力部 5 7 は、出力電極 7 6 への出力ゲートパルス ϕ 0 の印加に応答して電荷転送体 6 4 から不要電荷を受け取り捨てる。

[0031]

次に、主走査駆動部102によるCCDカラーイメージセンサ20の駆動方法を説明する。図1(a)~(c)は、各センサ部52a~52cにシフトゲートパルス ϕ S及び駆動パルス ϕ D(図示しない)を印加し信号電荷及び不要電荷を蓄積並びに転送する様子を時系列的に示している。尚、以下では、後述する不要電荷の転送後、各センサ部52a~52cの光電変換素子群51に信号電荷が蓄積されたt=t0の状態を起点に説明する。

[0032]

(1) $t = t_0$ において、各色のセンサ部 $52a \sim 52c$ の各ゲート電極 60c シフトゲートパルス ϕ_S を同時に印加する。これにより各色のセンサ部 $52a \sim 52c$ のシフトゲート 54 が全て開通し、図 $6(a) \sim (c)$ に示す如く各センサ部 $52a \sim 52c$ の光電変換素子群 51 に蓄積されていた信号電荷が図 $7(a) \sim (c)$ に示すようにシフトレジスタ 56 に一斉に転送される。尚、シフトゲートパルス ϕ_S の印加時間(パルス幅)については、各色のセンサ部 $52a \sim 52c$ 毎に全信号電荷の転送に必要な時間に適宜設定できるが、例えば各色のセンサ部 $52a \sim 52c$ について互いに同じな微少時間(幅)に設定すればよい。またゲート電極 60 へのシフトゲートパルス ϕ_S の印加開始時期 t_0 については、各色のセンサ部 $52a \sim 52c$ 毎に異なるように設定してもよい。

[0033]

(2) $t_0 < t < t_1$ の期間では、各色のセンサ部 $52a \sim 52c$ の各転送電極 62c 駆動パルス ϕ_D を所定のシーケンスで印加する。これにより各色のセンサ部 $52a \sim 52c$ の電荷転送体 64c において、上記(1)で転送された信号電荷が 図 $8(a) \sim (c)$ に示す如く出力部 57c に向かって転送される。尚、駆動パルス ϕ_D には、図示しないが例えば 4 相、 2 相等の駆動パルスを用いることができる。

[0034]

また t_0 < t < t_1 の期間では、各色のセンサ部 $52a \sim 52c$ の出力電極 70 及びリセット電極 74 に出力ゲートパルス ϕ_{01} 及びリセットパルス ϕ_{RS} をそれぞれ所定のシーケンスで印加する。これにより各色のセンサ部 $52a \sim 52c$ において信号電荷がシフトレジスタ 56 から出力部 57 に転送され、出力部 57 の出力端から信号電荷に応じた電気信号が出力される。

[0035]

さらに t_0 < t < t_1 の期間では、各色のセンサ部 $52a \sim 52c$ の各ゲート電極 60c に 0 に 0 に 0 に 0 と 0 に 0 を 0 に 0 に 0 に 0 に 0 に 0 に 0 に 0 に 0 に 0 に 0 を 0 に 0 に 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 に 0 を 0 を 0 に 0 を 0 を 0 を 0 を 0 に 0 を

[0036]

(3) センサ部 $52a\sim52c$ の全てについて上記(1)でシフトレジスタ 56 に転送された全信号電荷が出力部 57 に転送された後の $t=t_1$ において、各色 のセンサ部 $52a\sim52c$ の各ゲート電極 60 にシフトゲートパルス ϕ_S を同時 に印加する。これにより各色のセンサ部 $52a\sim52c$ のシフトゲート 54 が全 て開通し、図 $9(a)\sim(c)$ に示すように、各センサ部 $52a\sim52c$ の光電 変換素子群 51 に蓄積された不要電荷がシフトレジスタ 56 に一斉に転送される。尚、ゲート電極 60 へのシフトゲートパルス ϕ_S の印加開始時期 t_1 については、上記(2)での全信号電荷の転送に必要な時間に応じ各色のセンサ部 $52a\sim52c$ 毎に異なるように設定してもよい。

[0037]

(4) $t_1 < t < t_5$ の期間では各色のセンサ部 $52a \sim 52c$ において、それぞれ異なる時間だけ各ゲート電極 60 へのシフトゲートパルス ϕ_S の印加を継続した後、それぞれ異なる時間だけシフトゲートパルス ϕ_S の印加を止める。本実施例では例えば原稿Mとしてネガフィルムを読み取る場合に、R,G,B各色のセンサ部 52a,52b,52c での電荷蓄積時間がこの順(すなわちR,G,B の順)で長くなるようにシフトゲートパルス ϕ_S の印加継続時間を設定する。以下、ネガフィルムを読み取る場合を例に採り、 $t_1 < t < t_5$ の期間における CC Dカラーイメージセンサ 20 の駆動方法について詳細に説明する。

[0038]

[0039]

(4-II) $t=t_2$ において、Bフィルタ 5 8 の設けられたセンサ部 5 2 c についてシフトゲートパルス ϕ S の印加を中止する。そして t_2 < t < t < t < t < > 3 の印加を中止する。そして t_2 < t < > 4 < > 5 の印加を実施しないでシフトゲート t t > 4 t > 5 t > 4 t > 6 の印加を実施し図 t > 6 に示す如く光電変換素子群 t > 1 に電荷(信号電荷)を蓄積する。また t = t > 1 の時点においてセンサ部 t > 1

956で転送し出力部 57で廃棄する。 $t_2 < t < t_3$ の期間においてセンサ部 52 a 及び 52 b については、シフトゲートパルス ϕ_S の印加の継続と駆動パルス ϕ_D 及び出力ゲートパルス ϕ_{02} の印加とにより、図 11 (a) 及び (b) にそれ ぞれ示す如く不要電荷を光電変換素子群 51 から出力部 57 にまで転送し廃棄する。

[0040]

(4-III) $t=t_3$ において、Gフィルタ58の設けられたセンサ部52bについてシフトゲートパルス ϕ Sの印加を中止する。そして t_3 <t< t_4 の期間ではセンサ部52b及び52cの各々について、シフトゲートパルス ϕ Sの印加を実施しないでシフトゲート54を遮断し、図12(b)及び(c)にそれぞれ示す如く光電変換素子群51に電荷(信号電荷)を蓄積する。また、 $t=t_3$ の時点においてセンサ部52bのシフトレジスタ56には不要電荷が残存しているので、 t_3 <t< t_4 の期間中、必要によっては t_3 <t< t_5 の期間中にセンサ部52bで駆動パルス ϕ D及び出力ゲートパルス ϕ O2の印加を実施し、残存する不要電荷を図12(b)に示すようにシフトレジスタ56で転送し出力部57で廃棄する。さらに t_3 <t<t< t_4 の期間においてセンサ部52aについては、シフトゲートパルス ϕ Sの印加の継続と駆動パルス ϕ D及び出力ゲートパルス ϕ O2の印加とにより、図12(a)に示すように不要電荷を光電変換素子群51から出力部57にまで転送し廃棄する。

$[0\ 0\ 4\ 1]$

(4-IV) $t=t_4$ において、Rフィルタ58の設けられたセンサ部52aについてシフトゲートパルス ϕ Sの印加を中止する。そして t_4 < t < t 5の期間では全センサ部52a,52b及び52cについて、シフトゲートパルス ϕ Sの印加を実施しないでシフトゲート54を遮断し、図13(a),(b)及び(c)にそれぞれ示すように光電変換素子群51に電荷(信号電荷)を蓄積する。また、 $t=t_4$ の時点においてセンサ部52aのシフトレジスタ56には不要電荷が残存しているので、 t_4 < t < t 5の期間中にセンサ部52aで駆動パルス ϕ D及び出力ゲートパルス ϕ 02の印加を実施し、残存する不要電荷を図13(a)に示す如くシフトレジスタ56で転送し出力部57で廃棄する。

[0042]

このように本実施例では、Rに関するセンサ部 52 a では t_4 < t < t_5 の期間において信号電荷を蓄積しその期間中に不要電荷を転送し、Gに関するセンサ部 52 b ではセンサ部 52 a の場合より長い t_3 < t < t_5 の期間において信号電荷を蓄積しその期間中に不要電荷を転送し、さらにBに関するセンサ部 52 a ではセンサ部 52 a 及び 52 b の場合より長い t_2 < t < t_5 の期間において信号電荷を蓄積しその期間中に不要電荷を転送している。

[0043]

(5) $t=t_5$ では、各色のセンサ部 $52a\sim52c$ に対しシフトゲートパルス ϕ_S を同時に印加しシフトゲート 54 を全て開通させることで、それらセンサ部 $52a\sim52c$ の全てについて信号電荷の蓄積を終了する。すなわち、この $t=t_5$ におけるシフトゲートパルス ϕ_S の印加が次の $t=t_0$ におけるシフトゲート パルス ϕ_S の印加となる。以上で CCD カラーイメージセンサ 20 での 1 ライン 分の走査が終了する。

[0044]

以上説明したCCDカラーイメージセンサ20の駆動方法によると、各色のセンサ部52a~52cの光電変換素子群51で信号電荷を各色毎に異なる期間で蓄積できるのみならず、その各センサ部52a~52cにおける信号電荷の蓄積期間等において、不要電荷をシフトレジスタ56に転送しさらにシフトレジスタ56から出力部57に転送することで当該不要電荷を廃棄することができる。

[0045]

以上、本発明の一実施例について詳述したが、これはあくまでも例示であって、本発明はそのような実施例の記載によって何ら限定的に解釈されるものではない。

[0046]

例えば上述の説明では、R, G, B各色の光電変換素子群における信号電荷の蓄積時間をR, G, Bの順で長くなるように設定する場合を説明したが、電荷蓄積時間を長さの順は例えば読み取る原稿の種類に応じて適宜設定してもよいし、原稿の種類によっては電荷蓄積時間が互いに同じになるように設定するようにし

てもよい。

[0047]

また上述の説明では、光電変換素子群の列に沿う一方の側のみにシフトゲート及びシフトレジスタを有するリニアイメージセンサに本発明を適用した例を説明したが、光電変換素子群の列に沿う両側にそれぞれシフトゲート及びシフトレジスタを有しその両側で電荷の読み出しを行うリニアイメージセンサにも本発明を適用することができる。

[0048]

さらに上述の説明では、本発明をフラットベッド型イメージスキャナに適用した場合を説明したが、本発明はシートフィード型のイメージスキャナや複写機、複合機、ディジタルカメラ等のカラー画像入力装置にも適用できる。

【図面の簡単な説明】

図1

本発明の一実施例によるCCDカラーイメージセンサにシフトゲートパルスを 印加する方法を説明するためのグラフである。

【図2】

本発明の一実施例によるイメージスキャナを概略的に示す断面図である。

【図3】

本発明の一実施例によるイメージスキャナを示すブロック図である。

【図4】

本発明の一実施例によるCCDカラーイメージセンサを模式的に示す平面図である。

【図5】

図4に示すCCDカラーイメージセンサのセンサ部を示す模式図であって、(a) は横断面図であり、(b) は縦断面図である。

【図6】

本発明の一実施例によるCCDカラーイメージセンサの駆動方法を説明するための模式図である。

【図7】

本発明の一実施例によるCCDカラーイメージセンサの駆動方法を説明するための模式図である。

【図8】

本発明の一実施例によるCCDカラーイメージセンサの駆動方法を説明するための模式図である。

図9】

本発明の一実施例によるCCDカラーイメージセンサの駆動方法を説明するための模式図である。

【図10】

本発明の一実施例によるCCDカラーイメージセンサの駆動方法を説明するための模式図である。

【図11】

本発明の一実施例によるCCDカラーイメージセンサの駆動方法を説明するための模式図である。

【図12】

本発明の一実施例によるCCDカラーイメージセンサの駆動方法を説明するための模式図である。

【図13】

本発明の一実施例によるCCDカラーイメージセンサの駆動方法を説明するための模式図である。

【図14】

従来のCCDカラーイメージセンサを概略的に示す平面図である。

【符号の説明】

- 10 イメージスキャナ
- 20 CCDカラーイメージセンサ
- 26 副走查駆動部
- 30 光学系
- 40 駆動部
- 50 光電変換素子

- 52 センサ部
- 54 シフトゲート
- 56 シフトレジスタ
- 5 7 出力部
- 58 カラーフィルタ
- 60 ゲート電極
- 62 転送電極
- 6 4 電荷転送体
- 100 信号処理部
- 102 主走査駆動部
- 110 制御部

【書類名】

図面

【図1】

【図2】

【図4】

【図5】

(a)

(b)

【図6】

(a) フィルタ:R

(b) フィルタ:G

【図7】

(a) フィルタ:R

(b) フィルタ:G

【図8】

(a) フィルタ:R

(b) フィルタ:G

【図9】

(a) フィルタ:R

(b) フィルタ:G

【図10】

(a) フィルタ:R

(b) フィルタ:G

【図11】

(a) フィルタ:R

(b) フィルタ:G

【図12】

(a) フィルタ:R

(b) フィルタ:G

【図13】

(a) フィルタ:R

(b) フィルタ:G

【図14】

【要約】

【課題】 信号電荷の蓄積時間が色毎に異なる電子シャッタ機能を簡易な構造で 実現するCCDカラーイメージセンサの駆動方法を提供する。

【解決手段】 各色の光電変換素子群で生ずる不要電荷を、少なくともR, G, B各色の光電変換素子群に信号電荷を蓄積する期間($t_2 < t < t_5$)にシフトレジスタで転送し、各色の光電変換素子群に設定されている色毎に異なる期間(R : $t_4 < t < t_5$ 、G: $t_3 < t < t_5$ 、B: $t_2 < t < t_5$)に応じて各色の光電変換素子群に蓄積された信号電荷を、各色の光電変換素子群に不要電荷を蓄積する期間($t_0 < t < t_1$)にシフトレジスタで転送する。

【選択図】 図1

特願2001-278263

出願人履歴情報

識別番号

[000002369]

1. 変更年月日

1990年 8月20日

[変更理由] 住 所 新規登録 東京都新宿区西新宿2丁目4番1号

氏 名 セイコーエプソン株式会社