

პერმუტაცია

ფარაონები პლანეტების ფარდობით მოძრაობასა და გრავიტაციას იყენებენ თავიანთი კოსმოსური ხომალდების დასაჩქარებლად დავუშვათ, კოსმოსური ხომალდი გაივლის n პლანეტას ორბიტალური სიჩქარეებით $p[0],p[1],\ldots,p[n-1]$ თანმიმდევრობით. თითოეული პლანეტისთვის ფარაონის მეცნიერებს შეუძლიათ აირჩიონ დააჩქარონ კოსმოსური ხომალდი ამ პლანეტის გამოყენებით თუ არა. ენერგიის დაზოგვის მიზნით, p[i], ორბიტალური სიჩქარის მქონე პლანეტის მიერ აჩქარების შემდეგ, კოსმოსური ხომალდი არ შეიძლება აჩქარდეს უფრო ნაკლები ორბიტალური სიჩქარის მქონე პლანეტის გამოყენებით p[j] < p[i]. სხვა სიტყვებით, არჩეულმა პლანეტებმა უნდა შექმნან $p[0],p[1],\ldots,p[n-1]$ -ის **ზრდადი ქვემიმდევრობა**. p-ს ქვემიმდევრობა ეწოდება მიმდევრობას, რომელიც მიიღება p-დან მასში ნული ან მეტი ელემენტის წაშლით. მაგალითად, $[0],\ [0,2]$, და [0,1,2] წარმოადგენენ [0,1,2]-ის ქვემიმდევრობებს, ხოლო [2,1] -არა.

მეცნიერებმა დაადგინეს, რომ არსებობს პლანეტების არჩევის სულ k განსხვავებული ვარიანტი კოსმოსური ხომალდის დასაჩქარებლად, მაგრამ მათ დაკარგეს ჩანაწერი ორბიტალური სიჩქარეების შესახებ (მათ შორის n-ის მნიშვნელობაც). თუმცა მათ ახსოვთ, რომ $(p[0],p[1],\ldots,p[n-1])$ არის პერმუტაცია $0,1,\ldots,n-1$. პერმუტაცია წარმოადგენს მიმდევრობას, რომელიც შეიცავს ყველა მთელ რიცხვს 0-დან (n-1)-მდე გუსტად ერთხელ. თქვენი ამოცანაა აღადგინოთ მიმდევრობა $p[0],p[1],\ldots,p[n-1]$ საკმარისად მცირე სიგრძით.

თქვენ დაგჭირდებათ პრობლემის გადაჭრა q სხვადასხვა კოსმოსური ხომალდისთვის. i-ური კოსმოსური ხომალდისთვის, თქვენ მიიღებთ მთელ რიცხვს k_i , რომელიც წარმოადგენს პლანეტების ნაკრების არჩევის სხვადასხვა გზების რაოდენობას კოსმოსური ხომალდის დასაჩქარებლად. თქვენი ამოცანაა იპოვოთ ორბიტალური სიჩქარეების თანმიმდევრობა საკმარისად მცირე n_i სიგრძით ისე, რომ შეიძლებოდეს ზუსტად k_i განსხვავებული გზის არჩევა პლანეტათა ორბიტალური სიჩქარეების მზარდი თანმიმდევრობით.

იმპლემენტაციის დეტალები

თქვენ უნდა მოახდინოთ შემდეგი პროცედურის იმპლემენტაცია:

```
int[] construct permutation(int64 k)
```

- k: ზრდადი ქვემიმდევრობების სასურველი რაოდენობა.
- ამ პროცედურამ უნდა დააბრუნოს n ელემენტისაგან შედგენილი მასივი, რომლის ელემენტთა მნიშვნელობები მოთავსებულია 0-დან (n-1)-მდე ჩათვლით.

- დაბრუნებული მასივი უნდა იყოს სწორი პერმუტაცია, რომელსიც შეიცავს ზუსტად k ცალ ზრდად ქვემიმდევრობას.
- ეს პროცედურა სულ გამოიძახება q-ჯერ. ყოველი გამოძახება ხდება განსხვავებული სცენარისთვის.

შეზღუდვები

- $1 \le q \le 100$
- ullet 2 $\leq k_i \leq 10^{18}$ (ყველა $0 \leq i \leq q-1$)

ქვეამოცანები

- 1. (10 ქულა) $2 \le k_i \le 90$ (ყველა $0 \le i \le q-1$). თუკი თქვენს მიერ გამოყენებული ყველა პერმუტაცია სიგრძით 90-ს არ აღემატება და ისინი სწორია, მაშინ მიიღებათ 10 ქილას, წინააღმდეგ შემთხვევაში 0-ს.
- 2. (90 ქულა) დამატებითი შეზღუდვების გარეშე. ამ ქვეამოცანაში m-ს ექნება მაქსიმალური მნიშვნელობა (გადანაცვლების მაქსიმალური სიგრძე), ხოლო თქვენი შეფასება გამოითვლება შემდეგი ცხრილის მიხედვით:

პირობა	შეფასება
$m \leq 90$	90
$90 < m \leq 120$	$90-rac{(m-90)}{3}$
$120 < m \leq 5000$	$80 - \frac{(m-120)}{65}$
m > 5000	0

მაგალითი

მაგალითი 1

განვიხილოთ შემდეგი გამოძახება:

ამ პროცედურამ უნდა დააბრუნოს გადანაცვლება ზუსტად 3 ზრდადი ქვემიმდევრობით. შესაძლო პასუხია [1,0], რომელიც შეიცავს [] (ცარიელი ქვემიმდევრობა), [0] და [1] ზრდად ქვემიმდევრობებს.

მაგალითი 2

განვიხილოთ შემდეგი გამოძახება:

```
construct_permutation(8)
```

ამ პროცედურამ უნდა დააბრუნოს გადანაცვლება ზუსტად 8 ზრდადი ქვემიმდევრობით. შესაძლო პასუხია [0,1,2].

სანიმუშო გრადერი

სანიმუშო გრადერი კითხულობს შესატამ მონაცემებს შემდეგი ფორმატით:

- სტრიქონი 1: q
- ullet სტრიქონი 2+i ($0\leq i\leq q-1$): k_i

სანიმუშო გრადერი ბეჭდავს ერთადერთ სტრიქონს, რომელიც ყოველი k_i -თვის შეიცავს construct_permutation-ის მიერ დაბრუნებულ მნიშვნელობებს, ან ბეჭდავს შეტყობინებას შეცდომის შესახებ.