Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) sur le chapitre 13 : structures algébriques usuelles. Les exercices porteront sur des choses élémentaires relatives aux groupes.

Chapitre 13 : Structures algébriques usuelles

Loi de composition interne

Notion de loi de composition interne (abrégé en lci) sur un ensemble E. Associativité, commutativité, élément neutre. Unicité du neutre lorsqu'il existe. Élément inversible, notion d'invers. (\star) Si la lci est associative et admet un neutre, alors tout élément de E admet au plus un inverse. Distributivité d'une lci sur une lci. Stabilité d'une partie de E par une lci.

Structure de groupe

Notion de groupe. $\forall (x,y) \in G^2, (x*y)^{-1} = y^{-1}*x^{-1}$. Groupe commutatif. Groupe des permutations d'un ensemble. Sous-groupes. (*) Soit $H \subset G$ non vide, H est un sous-groupe de G si et seulement si :

$$\forall (x,y) \in H^2, x * y^{-1} \in H$$

Une intersection quelconque de sous-groupes de *G* est un sous-groupe de *G*.

Le sous-groupe engendré par une partie A de G est l'intersection des sous-groupes de G contenant A. Notation $\langle A \rangle$. (\star) Le sous-groupe engendré par A est le plus petit sous-groupe de G (au sens de l'inclusion) contenant A, il est formé des mots de l'alphabet $A \cup A^{-1}$. Groupes monogènes, cycliques. Groupe produit.

Morphismes de groupes. (\star) Soit $f:G\to H$ un morphisme de groupes. Alors $f(e_G)=e_H$ et $\forall x\in G, f(x^{-1})=f(x)^{-1}$. Isomorphisme de groupes, groupes isomorphes, automorphisme de groupes. (\star) Soit $f:G\to H$ un isomorphisme de groupes, alors sa réciproque est un isomorphisme de groupes. Automorphisme intérieur. (\star) Image directe et réciproque d'un sous-groupe par un morphisme de groupes. Noyau, image. (\star) Caractérisation de la surjectivté par l'image, de l'injectivité par le noyau. Correpondance bijective entre les sous-groupes de groupes isomorphes.

* * * * *