Číslo cvičení: 3 Jméno: Marek Bryša

UČO: 323771 Login: xbrysa1

- 1. (a) $x^6 1 = (1 x + x^2)(1 + x + x^3 + x^4) \implies h(x) = x^2 x + 1$
 - (b) $(x^2 x + 1)(x^5 + x^4 + x^3) = x(-1 + x^6) + (x + x^3 + x^5), (x^2 x + 1)(x^5 + x^4 + x^3 + x) = x(-1 + x^6) + (2x x^2 + 2x^3 + x^5) \implies \text{the words do not belong to } C.$
- 2. (a) Not linear \implies not cyclic, not equivalent to a cyclic code.
 - (b) Not a cyclic code, not equivalent to a cyclic code.
 - (c) Is a cyclic code.
 - (d) Not a cyclic code, not equivalent to a cyclic code.

3.

4. MDS $\iff M=q^{n-d+1}$. Ham(r,2) has a $(r\times (2^r-1))=((n-k)\times n)$ parity check matrix $\implies n=2^r-1, n-k=r, d=3.$ $M=q^k=2^{n-r}.$

$$2^{2^{r}-1-3+1} = 2^{2^{r}-1-r}$$
$$2^{r} - 3 = 2^{r} - 1 - r$$
$$r = 2$$

5. $(x^7 - 1)/(x^3 + x + 1) = x^4 + x^2 + x + 1 = h(x)$.

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{pmatrix}, \bar{h}(x) = x^4 + x^3 + x^2 + 1$$

6. $x^6 - 1 = (x - 1)(x + 1)(x^2 - x + 1)(x^2 + x + 1)$. There are $2^4 = 16$ such codes. Their generator polynomials are: $1, (x - 1), (x + 1), (x^2 - x + 1), (x^2 + x + 1), (x^2 - 1), (x^3 - 2x^2 + 2x - 1), (x^3 - 1), (x^3 + 1), (x^3 + 2x^2 + 2x + 1), (x^4 + x^2 + 1), (x^4 + x^3 - x + 1), (x^4 - x^3 + x - 1), (x^5 - x^4 + x^3 - x^2 + x - 1), (x^5 + x^4 + x^3 + x^2 + x + 1), (x^6 - 1) = 0$

Polynomial	Matrix
1	I_6
x + 1	1 1 0 0 0 0
	0 1 1 0 0 0
	0 0 1 1 0 0
	0 0 0 1 1 0
	0 0 0 0 1 1
$x^2 + 1$	1 0 1 0 0 0
	$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$
	0 0 1 0 1 0
	$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$
	1 0 0 1 0 0
$x^{3} + 1$	0 1 0 0 1 0
	0 0 1 0 0 1
$x^4 + x^2 + 1$	1 0 1 0 1 0
	$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$
$(x^5 + x^4 + x^3 + x^2 + x + 1)$	[1 1 1 1 1 1]

- 7. (a) Let C_1 be a repetition code of length n, C_2 a no-parity code of length $n \implies \neg C_1 = C_1, C_1 \cap C_2 = C_1 = C_3$.
 - (b) C_3 does not exist. There must be at least one non-zero codeword in C_1 . If C_3 were to be cyclic, that non-zero bit would have to be shifted to all positions including the last one.
 - (c) Let C_1 and C_2 be the same as in (a) $\implies C_1 \cup C_2 = C_2 = C_3$.