

1219256

Certified by

Jon W Dudas

Acting Under Secretary of Commerce
for Intellectual Property
and Acting Director of the U.S.
Patent and Trademark Office

PROVISIONAL APPLICATION FOR PATENT COVER SHEET

This is a request for filing a PROVISIONAL APPLICATION FOR PATENT under 37 CFR 1.53 (c).

	DOCKET NUMBER	21349PV		
INVENTOR(S)				
Given Name (first and middle [if any])		Family Name or Surname	Residence (City and either State or Foreign Country)	
Anderson Kuklin Jansen		Annaliesa S. Nelly Kathrin Ute	Westfield, New Jersey 07090 Collegeville, Pennsylvania 19426 Doylestown, Pennsylvania 18901	
<input type="checkbox"/> Additional inventors are being named on the _____ separately numbered sheets attached hereto			16235 U.S. PTO 60/489840 87784783	
TITLE OF THE INVENTION (500 characters max)				
POLYPEPTIDES FOR INDUCING A PROTECTIVE IMMUNE RESPONSE AGAINST STAPHYLOCOCCUS AUREUS				
CORRESPONDENCE ADDRESS				
Direct all Correspondence to: Merck & Co., Inc. Patent Department - RY60-30 P.O. Box 2000 Rahway				
<input checked="" type="checkbox"/> Customer Number		000210		
STATE	New Jersey	ZIP CODE	07065	
COUNTRY				U.S.A.
ENCLOSED APPLICATION PARTS (check all that apply)				
<input checked="" type="checkbox"/> Specification Number of Pages		32	<input type="checkbox"/> CD(s), Number _____ <input checked="" type="checkbox"/> Other (specify) _____ Sequence Listing (82 pages)	
<input checked="" type="checkbox"/> Drawing(s) Number of Sheets		18		
<input type="checkbox"/> Application Data Sheet. See 37 CFR 1.76				
METHOD OF PAYMENT OF FILING FEES FOR THIS PROVISIONAL APPLICATION FOR PATENT (check one)				
<input type="checkbox"/> A check or money order is enclosed to cover the filing fees			FILING FEE AMOUNT (\$) \$160.00	
<input checked="" type="checkbox"/> The Director is hereby authorized to charge filing fees or credit any overpayment to Deposit Account Number:			13-2755	
The invention was made by an agency of the United States Government or under a contract with an agency of the United States Government. <input checked="" type="checkbox"/> No. <input type="checkbox"/> Yes, the name of the U.S. Government agency and the Government contract number are: _____				
Respectfully submitted, SIGNATURE <u>Sheldon O. Heber</u>				
TYPED or PRINTED NAME <u>Sheldon O. Heber</u> TELEPHONE <u>732-594-1958</u>			Date 07/24/2003 REGISTRATION NO. 38,179 <i>(if appropriate)</i>	
NOTE: Mail to Mail Stop Provisional Application				
EXPRESS MAIL CERTIFICATE DATE OF DEPOSIT <u>July 24, 2003</u> EXPRESS MAIL NO. <u>EV321988340US</u> I HEREBY CERTIFY THAT THIS CORRESPONDENCE IS BEING DEPOSITED WITH THE UNITED STATES POSTAL SERVICE AS EXPRESS MAIL "POST OFFICE TO ADDRESSEE" ON THE ABOVE DATE IN AN ENVELOPE ADDRESSED TO COMMISSIONER FOR PATENTS, P.O. BOX 1450, ALEXANDRIA, VA 22313-1450. MAILED BY <u>Lori Schepisi</u> DATE <u>July 24, 2003</u>				

In Duplicate

TITLE OF THE INVENTION**POLYPEPTIDES FOR INDUCING A PROTECTIVE IMMUNE RESPONSE
AGAINST *STAPHYLOCOCCUS AUREUS*****5 BACKGROUND OF THE INVENTION**

The references cited throughout the present application are not admitted to be prior art to the claimed invention.

10 *Staphylococcus aureus* is a pathogen responsible for a wide range of diseases and conditions. Examples of diseases and conditions caused by *S. aureus* include bacteremia, infective endocarditis, folliculitis, furuncle, carbuncle, impetigo, bullous impetigo, cellulitis, botryomycosis, toxic shock syndrome, scalded skin syndrome, central nervous system infections, infective and inflammatory eye disease, osteomyelitis and other infections of joints and bones, and respiratory tract infections. (*The Staphylococci in Human Disease*, Crossley and Archer (eds.),
15 Churchill Livingstone Inc. 1997.)

20 Immunological based strategies can be employed to control *S. aureus* infections and the spread of *S. aureus*. Immunological based strategies include passive and active immunization. Passive immunization employs immunoglobulins targeting *S. aureus*. Active immunization induces immune responses against *S. aureus*.

25 Potential *S. aureus* vaccines target *S. aureus* polysaccharides and polypeptides. Targeting can be achieved using *S. aureus* polysaccharides or polypeptides as vaccine components. Examples of polysaccharides that may be employed as possible vaccine components include *S. aureus* type 5 and type 8 capsular polysaccharides. (*Shinefield et al., N. Eng. J. Med.* 346:491-496, 2002.) Examples of polypeptides that may be employed as possible vaccine components include collagen adhesin, fibrinogen binding proteins, and clumping factor. (Mamo
30 *et al., FEMS Immunology and Medical Microbiology* 10:47-54, 1994, Nilsson *et al., J. Clin. Invest.* 101:2640-2649, 1998, Josefsson *et al., The Journal of Infectious Diseases* 184:1572-1580, 2001.)

35 Information concerning *S. aureus* polypeptide sequences has been obtained from sequencing the *S. aureus* genome. (Kuroda *et al., Lancet* 357:1225-1240, 2001, Baba *et al., Lancet* 359:1819-1827, 2000, Kunsch *et al., European Patent Publication EP 0 786 519*, published July 30, 1997.) To some extent bioinformatics has been employed in efforts to characterize polypeptide sequences obtained from

genome sequencing. (Kunsch *et al.*, European Patent Publication EP 0 786 519, published July 30, 1997.)

Techniques such as those involving phage display technology and sera from infected patients can be used in an effort to identify genes coding for potential 5 antigens. (Foster *et al.*, International Publication Number WO 01/98499, published December 27, 2001.)

SUMMARY OF THE INVENTION

The present invention features hybrid polypeptides providing 10 ORF0657n and ORF0190 epitopes, ORF0657n polypeptides, nucleic acid encoding for the different polypeptides, and a method for evaluating the ability of an immunogen to produce a protective immune response against *Staphylococcus* infection. ORF0657n and ORF0190 are both *S. aureus* proteins.

A preferred use of hybrid and ORF0657n polypeptides is to induce a 15 protective immune response against *S. aureus*. Protective immunity or immune response provides a detectable level of protection against *S. aureus* infection. The level of protection can be assessed using animal models such as those described in Example 1 *infra*.

Thus, a first aspect of the present invention describes a hybrid 20 polypeptide comprising a modified ORF0657n sequence segment at least about 100 amino acids in length. An ORF0657n "sequence segment" provides all or a portion of an ORF0657n protein as a reference sequence.

Hybrid polypeptides comprise a modified ORF0657n sequence 25 segment containing one or more alterations increasing sequence similarity to SEQ ID NO: 1 (ORF0190). The modified ORF0657n sequence segment comprises one or more alterations increasing sequence similarity to SEQ ID NO: 1. An amino acid alteration is an addition, deletion, or substitution. Different combinations of amino acids alterations may be present.

Reference to an alteration or modification is a structural distinction 30 between a reference sequence and is not a method of production limitation. Altered and modified sequences can be produced, for example, by altering a preexisting sequence or synthesizing a desired sequence.

Reference to "polypeptide" includes salt forms and does not provide a 35 size limitation or function. A polypeptide may include, for example, a protein or a fragment thereof.

Another aspect of the present invention features a method of making a hybrid polypeptide comprising a modified ORF0657n sequence. The method comprises the step of introducing one or more alterations into a ORF0657n sequence segment at least about 100 amino acids in length, wherein at least one of the alterations increases sequence similarity to SEQ ID NO: 1.

5 Another aspect of the present invention describes an isolated ORF0657n polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, and SEQ ID NO: 7. An isolated polypeptide is a polypeptide that is present in a different 10 form than found in nature. The different form may be, for example, a purified form.

10 Another aspect of the present invention describes a mutated ORF0657n polypeptide comprising amino acids 2-646 of SEQ ID NO: 44. In different embodiments the polypeptide consists of an amino acid sequence starting at either amino acid 1 or 2 of SED ID NO: 44 and ending at an amino acid from 646-654 15 of SEQ ID NO: 44. In preferred embodiments the polypeptide consists of amino acids 1-646 or 2-646 of SEQ ID NO: 44.

20 Preferably, the mutated ORF0657n polypeptide is substantially pure. Reference to a substantially pure polypeptide indicates that polypeptide is at least about 80% of the protein present in a sample. In different embodiment the substantially pure polypeptide provides at least 85%, at least 95%, or at least 99% of 25 the protein present in a sample.

Another aspect of the present invention features an immunogen comprising a polypeptide that induces protective immunity against *S. aureus*. The immunogen comprises a polypeptide described herein.

Reference to "immunogen" indicates the ability to produce an immune response. An immunogen contains one or more polypeptide regions, and may also contain one or more regions that are not polypeptides and/or one or more moieties that are not amino acids.

30 Another aspect of the present invention describes a composition able to induce a protective immune response in a patient. The composition comprises an immunologically effective amount of an immunogen that induces protective immunity against *S. aureus* and a pharmaceutically acceptable carrier.

35 An immunologically effective amount is an amount sufficient to provide protective immunity against *S. aureus* infection. The amount should be sufficient to significantly prevent the likelihood or severity of a *S. aureus* infection.

Another aspect of the present invention describes a method of inducing a protective immune response in a patient against *S. aureus*. The method comprises the step of administering to the patient an immunologically effective amount of an immunogen.

5 Another aspect of the present invention describes a nucleic acid comprising a nucleotide sequence encoding a polypeptide described herein. In a preferred embodiment the nucleic acid is a recombinant nucleic acid. Recombinant nucleic acid is nucleic acid that by virtue of its sequence or form does not occur in nature.

10 Another aspect of the present invention describes a cell comprising a recombinant gene encoding a polypeptide described herein. A recombinant gene contains recombinant nucleic acid encoding a polypeptide along with regulatory elements for proper transcription and processing.

15 Another aspect of the present invention describes a method for evaluating the efficacy of an immunogen to produce a protective immune response against *Staphylococcus*. The method comprises the steps of:

- (a) immunizing an animal model with an immunogen;
- (b) challenging the immunized animal model with a *Staphylococcus* challenge at a potency that provides about 80 to 90% death in an non-immunized 20 animal model over a period of about 7-10 days starting on the first or second day, wherein the *Staphylococcus* challenge is produced from *Staphylococcus* grown to stationary phase, and the *Staphylococcus* challenge is intravenously introduced into the animal; and
- (c) measuring the ability of the immunogen to provide protective 25 immunity.

Reference to "animal model" excludes humans. Suitable animal models are non-human mammals able to mount an immune defensive against *S. aureus*. Examples of animal models include mice, rats, primates and cattle.

Unless particular terms are mutually exclusive, reference to "or" 30 indicates either or both possibilities. Occasionally phrases such as "and/or" are used to highlight either or both possibilities.

Other features and advantages of the present invention are apparent from the additional descriptions provided herein including the different examples. The provided examples illustrate different components and methodology useful in 35 practicing the present invention. The examples do not limit the claimed invention.

Based on the present disclosure the skilled artisan can identify and employ other components and methodology useful for practicing the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

5 Figures 1A, 1B and 1C illustrate a sequence comparison between ORF0190 (SEQ ID NO: 1), 0657n (SEQ ID NO: 2), 0657nHybrid1 (SEQ ID NO: 8), 0657nHybrid2 (SEQ ID NO: 9), and 0657nHybrid3 (SEQ ID NO: 10). SEQ ID NOs: 8, 9 and 10 are examples of hybrid polypeptides comprising a modified ORF0657n sequence segment.

10 Figures 2A-2L provide examples of different hybrid sequences (SEQ ID NOs: 8-43).

Figure 3 illustrates forward and reverse PCR primer sequences for amplifying a nucleic acid sequence to encode a mutated form of ORF 0657n. ORF 0657n amino acids are indicated in non italics; added amino acids (the initiator M and G) coded by the forward primer are indicated by italics. Restriction sites are underlined. Non-expressed regions are in parenthesis. SEQ ID NOs: 46 and 48 are forward and reverse primer sequences. SEQ ID NOs: 47 and 49 are the amino acid sequences encoded by the forward and reverse primers.

20 Figures 4A and 4B illustrate translation of a cloned and expressed mutated form of ORF 0657n. The mutated form of ORF 0657n contains modifications to facilitate cloning and purification. Figure 4A illustrates the expressed sequence including additional histidine residues (SEQ ID NO: 44). Figure 4B illustrates an abbreviated alignment of the native and mutated forms of ORF 0657n showing differences between the two forms.

25 Figure 5 illustrates survival data using a mutated ORF 0657n in aluminum hydroxyphosphate adjuvant (AHP).

DETAILED DESCRIPTION OF THE INVENTION

The present invention features a hybrid polypeptide comprising a modified ORF0657n sequence segment, different ORF0657n polypeptides, nucleic acid encoding such polypeptides and a method for evaluating the ability of an immunogen to produce a protective immune response against *Staphylococcus* infection. Hybrid polypeptides and different ORF0657n polypeptides have therapeutic and diagnostic applications, such as being used to provide protective immunity against a *S. aureus* infection, being used to generate antibodies to detect

the presence of *S. aureus*, and being used to generate therapeutic antibodies targeting *S. aureus*.

Hybrid Polypeptides

5 Hybrid polypeptides comprise a modified ORF0657n sequence segment containing one or more alterations increasing sequence similarity to ORF0190 (SEQ ID NO: 1). The hybrid polypeptide contains one or more epitopes for ORF0657n and ORF0190.

10 Hybrid polypeptides can be designed taking into account the similarity and differences between ORF0657n and ORF0190 proteins sequences. An amino acid alignment of ORF0657n (SEQ ID NO: 2) and ORF0190 (SEQ ID NO: 1) revealed a central region having a high degree of homology between the two proteins. The region for ORF0657n spans 327 amino acids from position 122 to 448. The ORF0190 homologous region spans 328 amino acids from position 323 to 650.

15 Within the central region, 64% of the amino acids were identical and there was an over all level of 80% similarity.

Sequence similarity was determined using a local alignment tool utilizing the program lalign (developed by Huang and Miller, *Adv. Appl. Math.* 12:337-357, 1991, for the «sim» program). The options and environment variables are:-f # Penalty for the first residue a gap (-14 by default); -g # Penalty for each additional residue in a gap (-4 by default)-s str (SMATRIX) the filename of an alternative scoring matrix file. For protein sequences, PAM250 is used by default-w # (LINLEN) output line length for sequence alignments (60).

25 Figures 1A-1C illustrate the central region of homology between an ORF0657n (SEQ ID NO: 2) and ORF0190 (SEQ ID NO: 1) and provides examples of hybrid polypeptides that can be designed taking into account ORF0657n and ORF0190 sequences. Additional hybrid polypeptides can be obtained based on the ORF0657n and ORF0190 sequence alignment provided in Figures 1A-1C, and alignments produced using other ORF0657 sequences.

30 Additional hybrids may, for example, contain one or more modifications exemplified in SEQ ID NOs: 8, 9, and 10, or additional modifications that are apparent based on different amino acid sequences for an ORF0657n variant and ORF0190. Apparent modifications are those based on aligned amino acids differing between an ORF0657n and ORF0190, where an ORF0657n amino acid is

changed to an ORF0190 amino acid. Examples of additional hybrid sequences include those provided by SEQ ID NOs: 11-43 (Figures 2A-2L).

- Hybrid polypeptides may comprise modified ORF0657n sequence segments of different sizes. Preferably, the modified sequence is based on the
- 5 ORF0657n central region spanning amino acids 122 to 448 or a fragment thereof. In different embodiments, the modified sequence segment is at least about 100, at least about 150, at least about 200, at least about 250, or at least about 300 amino acids in length.

- Reference to "modified" or "altered" ORF0657n is a structural
- 10 description taking into account the amino acid sequence of an ORF0657n polypeptide and ORF0190. A modified ORF0657n can be identified based on the presence of one or more stretches of at least 9 contiguous amino acids of a naturally occurring ORF0657n sequence. In different embodiments at least two, three, or four stretches of at least 9 contiguous amino acids of a naturally occurring ORF0657n sequence are present in the modified sequence segment.
- 15

- Examples of naturally occurring ORF0657n sequences are provided by SEQ ID NOs: 2-7. Other naturally occurring sequences can be identified based on the presence of a high degree of sequence similarity or contiguous amino acids.
- Contiguous amino acids provide characteristic tags. In different embodiments, a
- 20 naturally occurring ORF0657n sequence is a sequence found in a *Staphylococcus*, preferably *S. aureus*, having at least 20, at least 30, or at least 50 contiguous amino acids as in SEQ ID NO: 2; and/or having at least 75% sequence similarity or identity with SEQ ID NO: 2.

- Sequence similarity and identity can be determined by different
- 25 algorithms and techniques well known in the art. Generally, sequence similarity and identity is determined by aligning two sequences to obtain maximum amino acid identity between the two sequences, allowing for gaps, additions and substitutions in one of the sequences. Sequence similarity and identity can be determined based on the differences in the aligned sequence taking into account the overall length of the
- 30 compared sequence.

- Sequence identity can be determined by calculating the minimum number of amino acid alterations to an amino acid sequence required to arrive at a reference sequence divided by the number of amino acids in the reference sequence. Reference sequences for naturally occurring ORF0657n sequences provided herein are SEQ ID NOs: 2-7 and fragments thereof.

Reference sequences for naturally occurring ORF0657n can also be used to determine sequence similarity. Sequence similarity can be determined, for example, as indicated above using the program lalign (developed by Huang and Miller, *Adv. Appl. Math.* 12:337-357, 1991, for the «sim» program).

5 Different numbers of alterations may be present in a modified ORF0657n sequence segment. On the one hand, as the number of alterations increases similarity to ORF0190 more ORF0190 epitopes may be present. On the other hand, increasing the number of ORF0190 epitopes may decrease the number of ORF0657n epitopes.

10 Other factors that can be taken into account for an alteration include amino acid size, charge, polarity, and hydrophobicity. The effect of different amino acid side chains on properties of an amino acid are well known in the art. (See, for example, Ausubel, *Current Protocols in Molecular Biology*, John Wiley, 1987-2001, Appendix 1C.)

15 In exchanging amino acids to maintain activity, the replacement amino acid should have one or more similar properties such as approximately the same charge and/or size and/or polarity and/or hydrophobicity. For example, substituting valine for leucine, arginine for lysine, and asparagine for glutamine are good candidates for not causing a change in polypeptide functioning.

20 In different embodiments the minimum number of alterations is 8, 20, 25, 35, 45, or 55; and the maximum number of alterations, which may be present with any of the indicated minimum number of alterations having a lower number is 50, 60, 70, 79, 90, or 100. Each alteration is independently a deletion, addition, or substitution.

25 Amino acids can be represented by different designations as follows:
A=Ala=Alanine: C=Cys=Cysteine: D=Asp=Aspartic acid: E=Glu=Glutamic acid:
F=Phe=Phenylalanine: G=Gly=Glycine: H=His=Histidine: I=Ile=Isoleucine:
K=Lys=Lysine: L=Leu=Leucine: M=Met=Methionine: N=Asn=Asparagine:
P=Pro=Proline: Q=Gln=Glutamine: R=Arg=Arginine: S=Ser=Serine:
30 T=Thr=Threonine: V=Val=Valine: W=Trp=Tryptophan: and Y=Tyr=Tyrosine.

In different embodiments the hybrid ORF0657n sequence segment comprises, consists, or consists essentially, of at least about 100 contiguous amino acids of the following Hybrid Structure:

X¹-AIKNPAI-X²- DK-X³-H-X⁴-APN-X⁵- RPIDFEMK-X⁶-X⁷-X⁸-G-X⁹-
 QQFYHYAS-X¹⁰-V-X¹¹- PARVIFT-X¹²-X¹³-K-X¹⁴-IELGLQ-X¹⁵-X¹⁶-X¹⁷-
 X¹⁸-W-X¹⁹-KFEVYEGDKKLP-X²⁰- KLVSYD-X²¹-X²²-KDYAYIRFSVSN
 GNT-X²³-X²⁴-VKIVSSTH-X²⁵-X²⁶-X²⁷-N-X²⁸-X²⁹-EKYDYTL
 M-X³⁰- FAQPIYN-
 5 X³¹-X³²-DK-X³³-X³⁴-X³⁵- EEDY-X³⁶-X³⁷-X³⁸- KLLAPYKKAKTLERQVY
 EL-X³⁹- K-X⁴⁰- Q-X⁴¹-KLPEKLKA
 EYKKKL-X⁴²-X⁴³-T-X⁴⁴- KAL-X⁴⁵-X⁴⁶-
 QVKSA-X⁴⁷- TEFQNV-X⁴⁸-PTN-X⁴⁹-K-X⁵⁰- TDLQ-X⁵¹-X⁵²-X⁵³-X⁵⁴-VV-
 X⁵⁵-ESVEN-X⁵⁶-ES-X⁵⁷-MDTFV-X⁵⁸-HPIKT-X⁵⁹-X⁶⁰-LNGKKY-X⁶¹-VM-
 X⁶²- TTND-X⁶³-YWKDF-X⁶⁴- VEG-X⁶⁵- RVRT-X⁶⁶- SKD-X⁶⁷- KNN-X⁶⁸-
 10 RT-X⁶⁹- IFPY-X⁷⁰- EGK-X⁷¹-X⁷²-YDAIVKV-X⁷³- VKTI-X⁷⁴-Y-X⁷⁵-
 GQYHVRI-X⁷⁶- DK-X⁷⁷-X⁷⁸-X⁷⁹

where

- X¹ is either E or a D alteration;
- 15 X² is either K or an I alteration;
- X³ is either D or an E alteration;
- X⁴ is either S or a T alteration;
- X⁵ is either S or a W alteration;
- X⁶ is either K or an N alteration;
- 20 X⁷ is either K or a D alteration;
- X⁸ is either D or a K alteration;
- X⁹ is either T or an E alteration;
- X¹⁰ is either S or a T alteration;
- X¹¹ is either K or an E alteration;
- 25 X¹² is either D or a K alteration;
- X¹³ is either S or a T alteration;
- X¹⁴ is either E or an I alteration;
- X¹⁵ is either S or a T alteration;
- X¹⁶ is either G or an A alteration;
- 30 X¹⁷ is either K or a S alteration;
- X¹⁸ is either F or a T alteration;
- X¹⁹ is either R or a K alteration;
- X²⁰ is either I or a V alteration;
- X²¹ is either T or an S alteration;

- X22 is either V or a D alteration;
- X23 is either K or an R alteration;
- X24 is either A or an E alteration;
- X25 is either F or a Y alteration;
- 5 X26 is either an optionally present G insertion alteration;
X27 is either N or a E alteration;
X28 is either K or a I alteration
X29 is either E or a H alteration;
X30 is either E or a V alteration;
- 10 X31 is either S or a N alteration;
X32 is either A or a P alteration;
X33 is either F or an Y alteration;
X34 is either K or a V alteration;
X35 is either T or a D alteration;
- 15 X36 is either K or a N alteration;
X37 is either A or an L alteration;
X38 is either E or a Q alteration;
X39 is either N or an E alteration;
X40 is either I or a L alteration;
- 20 X41 is either D or an E alteration;
X42 is either E or a D alteration;
X43 is either D or a Q alteration;
X44 is either K or an R alteration;
X45 is either D or an A alteration;
- 25 X46 is either E or a D alteration;
X47 is either I or a V alteration;
X48 is either Q or a T alteration;
X49 is either E or a D alteration;
X50 is either M or an L alteration;
- 30 X51 is either D or an E alteration;
X52 is either T or an A alteration
X53 is either K or H alteration;
X54 is either Y or an F alteration;
X55 is either Y or an F alteration;

- X⁵⁶ is either N or a S alteration;
- X⁵⁷ is either M or a V alteration;
- X⁵⁸ is either K or an E alteration;
- X⁵⁹ is either G or an A alteration;
- 5 X⁶⁰ is either M or a T alteration;
- X⁶¹ is either M or a V alteration;
- X⁶² is either E or a K alteration;
- X⁶³ is either D or a S alteration;
- X⁶⁴ is either M or an I alteration;
- 10 X⁶⁵ is either Q or a K alteration;
- X⁶⁶ is either I or a V alteration;
- X⁶⁷ is either A or a P alteration;
- X⁶⁸ is either T or an S alteration;
- X⁶⁹ is either I or a L alteration;
- 15 X⁷⁰ is either V or an I alteration;
- X⁷¹ is either T or an A alteration;
- X⁷² is either L or a V alteration;
- X⁷³ is either H or a V alteration;
- X⁷⁴ is either D or a G alteration;
- 20 X⁷⁵ is either D or an E alteration;
- X⁷⁶ is either V or an I alteration;
- X⁷⁷ is either E or a D alteration;
- X⁷⁸ is either A or an I alteration;
- X⁷⁹ is either F or a N alteration;
- 25 provided that at least 20 of the alterations are present.

With respect to the Hybrid Structure, in different embodiments the minimum number of alterations is 25, 35, 45, or 55; the maximum number of alterations, which may be present with any of the indicated minimum number of alterations having a lower number is 50, 60, 70, or 79; and/or one or more of the

- 30 following combinations of alterations are present:
 - X⁶-X⁷-X⁸ is either KKD or NDK alterations;
 - X¹⁷-X¹⁸ is either KF or ST alterations;
 - X²⁶-X²⁷ is either N or GE alterations;
 - X²⁸-X²⁹ is either KE or IH alterations;

X³¹-X³² is either SA or NP alterations;
X³⁴-X³⁵ is either KT or VD alterations;
X³⁶-X³⁷-X³⁸ is either KAE or NLQ alterations; and
X⁵²-X⁵³ is either TK or AH alterations.

5 Hybrid polypeptides may contain additional amino acid regions. Such regions should not prevent the hybrid polypeptide from providing ORF0190 and ORF0657n epitopes. Additional regions can be based on ORF0190, ORF0657n or other amino acid sequences.

10 Preferably, additional regions if present provide a useful purpose such as providing epitopes from other bacterial polypeptides, providing an affinity tag to facilitate polypeptide purification, enhancing polypeptide efficacy, or enhancing polypeptide stability. Polypeptide production can, for example, be facilitated through the use of an initiation codon (e.g., coding for methionine) suitable for recombinant expression, and the introduction of restriction enzyme recognition sites.

15 The introduction of a restriction site can be illustrated by Example 1 provided *infra* and Figure 3. For example, using the forward primer provided in Figure 3, a restriction recognition site can be introduced into a hybrid or 0657n polypeptide. The illustrated restriction site is accompanied by a glycine addition after methionine.

20 Efficacy of a polypeptide to induce an immune response can be enhanced through epitope enhancement. Epitope enhancement can be performed using different techniques such as those involving alteration of anchor residues to improve peptide affinity for MHC molecules and those increasing affinity of the peptide-MHC complex for a T-cell receptor. (Berzofsky *et al.*, 2001. *Nature Review Immunology* 1:209-219.)

25 Polypeptide purification can be enhanced by adding a group to the carboxy or N-terminus to facilitate purification. Examples of groups that can be used to facilitate purification include polypeptides providing affinity tags. Examples of affinity tags include a six-histidine tag, trpE, glutathione and maltose-binding protein.

30 The ability of a polypeptide to produce an immune response can be enhanced using groups that generally enhance an immune response. Examples of groups that can be joined to a polypeptide to enhance an immune response against the polypeptide include cytokines such as IL-2. (Buchan *et al.*, 2000. *Molecular Immunology* 37:545-552.)

ORF0657n Sequences

ORF0657n has been implicated to have a role in *S. aureus* iron acquisition. (Andrade *et al.*, *Genome Biology* 3(9):47.1-47.5, 2003.) ORF0657n sequences, some of which are from different sources, have been given different designations in different references. (For example, see, Etz *et al.*, *PNAS USA*, 99:6573-6578, 2002 (LPXTGVI); Baba *et al.*, *The Lancet* 359:1819-1827, 2002 (MW1011); Kuroda, *et al.*, *The Lancet* 357, 1225-1240, 2001 (SA0976); Andrade *et al.*, *Genome Biology* 3(9):47.1-47.5, 2003 (S_aur2); Mazmanian *et al.*, *Science* 299:906-909, 2003 (isdB); Mazmanian *et al.*, *Molecular Microbiology* 40:1049-1057, 2001 (sasJ); and Taylor *et al.*, *Mol. Microbiol.* 43:1603-1614, 2002 (sirH).

A polypeptide sequence corresponding to a ORF0657n protein sequence appears to be provided in different patent publications. (Meinke *et al.*, International Publication Number WO 02/059148, published August 1, 2002, Wang *et al.*, International Publication Number WO 02/077183, published October 3, 2002, Massignani *et al.*, International Publication Number WO 02/094868, published November 28, 2002, Foster *et al.*, International Publication Number WO 02/102829, published December 27, 2002, and Foster *et al.*, International Publication Number WO 03/011899, published February 13, 2003.)

Additional examples of *S. aureus* ORF0657n protein sequences are provided by SEQ ID NOS: 3-7. *S. aureus* ORF0657n cDNA encoding SEQ ID NOS: 3-7 are provided by SEQ ID NOS: 52-56.

Immunogens

Immunogens containing a hybrid or ORF0657n polypeptide can also contain one or more additional regions or moieties joined to the polypeptide. The additional regions may be polypeptide regions or may be regions that are not polypeptides. Additional regions and moieties, if present, are preferably covalently joined to the carboxy or amino terminus of the hybrid or ORF0657n polypeptide.

An additional region or moiety that is present should not significantly prevent a hybrid or ORF0657n polypeptide from providing *S. aureus* epitopes that can be used for diagnostic or therapeutic purposes. Preferably, an additional region or moiety is present to achieve a particular purpose, such as to enhance polypeptide stability, purification, or the ability to produce an immune response.

Polypeptide stability can be enhanced by modifying the carboxy or N-terminus. Examples of possible modifications include amino terminus protecting groups such as acetyl, succinyl, benzyl, benzyloxycarbonyl or *t*-butyloxycarbonyl; carboxy terminus protecting groups such as amide, methylamide, and ethylamide; and groups such as polyethylene glycol that may be present on the amino or carboxy terminus.

Polypeptide Production

Polypeptides can be produced using standard techniques including those involving chemical synthesis and those involving purification from a cell producing the polypeptide. Techniques for chemical synthesis of polypeptides are well known in the art. (See e.g., Vincent, *Peptide and Protein Drug Delivery*, New York, N.Y., Decker, 1990.)

Polypeptides can be purified from a cell using techniques well known in the art. (See for example, Ausubel, *Current Protocols in Molecular Biology*, John Wiley, 1987-1998.)

Obtaining polypeptides from a cell is facilitated using recombinant nucleic acid techniques to produce the polypeptide. Recombinant nucleic acid techniques for producing a polypeptide involve introducing, or producing, a recombinant gene encoding the polypeptide in a cell and expressing the polypeptide.

Recombinant nucleic acid is nucleic acid that by virtue of its sequence or form does not occur in nature. Possible forms for recombinant nucleic acid include isolation from nucleic acid found in a cell; or a combination of nucleic acid sequences not found in nature.

A recombinant gene contains recombinant nucleic acid encoding a polypeptide along with regulatory elements for proper transcription and processing. The encoding nucleic acid is in a form different than naturally occurring nucleic acid encoding the polypeptide. Differences in form include separation from other nucleic acid naturally associated with the encoding nucleic acid or present in a combination with other nucleic acid not naturally associated with the encoding nucleic acid. The recombinant gene can be present in a cellular genome or can be part of an extrachromosomal element or vector.

The regulatory elements that may be present as part of a recombinant gene include those naturally associated with the polypeptide encoding sequence and exogenous regulatory elements not naturally associated with the polypeptide

encoding sequence. Exogenous regulatory elements such as an exogenous promoter can be useful for expressing a recombinant gene in a particular host, or increasing the level of expression. Generally, the regulatory elements that are present in a recombinant gene include a transcriptional promoter, a ribosome binding site, a 5 terminator, and an optionally present operator. A preferred element for processing in eukaryotic cells is a polyadenylation signal.

Expression of a recombinant gene in a cell is facilitated through the use of an expression vector. Preferably, an expression vector in addition to a recombinant gene also contains an origin of replication for autonomous replication in 10 a host cell, a selectable marker, useful restriction enzyme sites, and a potential for high copy number. Examples of expression vectors are cloning vectors, modified cloning vectors, specifically designed plasmids and viruses.

- Due to the degeneracy of the genetic code, a large number of different encoding nucleic acid sequences can be used to code for a particular polypeptide.
- 15 The degeneracy of the genetic code arises because almost all amino acids are encoded by different combinations of nucleotide triplets or "codons". Amino acids are encoded by codons as follows:
- A=Ala=Alanine: codons GCA, GCC, GCG, GCU
C=Cys=Cysteine: codons UGC, UGU
20 D=Asp=Aspartic acid: codons GAC, GAU
E=Glu=Glutamic acid: codons GAA, GAG
F=Phe=Phenylalanine: codons UUC, UUU
G=Gly=Glycine: codons GGA, GGC, GGG, GGU
H=His=Histidine: codons CAC, CAU
25 I=Ile=Isoleucine: codons AUA, AUC, AUU
K=Lys=Lysine: codons AAA, AAG
L=Leu=Leucine: codons UUA, UUG, CUA, CUC, CUG, CUU
M=Met=Methionine: codon AUG
N=Asn=Asparagine: codons AAC, AAU
30 P=Pro=Proline: codons CCA, CCC, CCG, CCU
Q=Gln=Glutamine: codons CAA, CAG
R=Arg=Arginine: codons AGA, AGG, CGA, CGC, CGG, CGU
S=Ser=Serine: codons AGC, AGU, UCA, UCC, UCG, UCU
T=Thr=Threonine: codons ACA, ACC, ACG, ACU
35 V=Val=Valine: codons GUA, GUC, GUG, GUU

W=Trp=Tryptophan: codon UGG

Y=Tyr=Tyrosine: codons UAC, UAU

Suitable cells for recombinant nucleic acid expression of hybrid or ORF0657 polypeptides are prokaryotes and eukaryotes. Examples of prokaryotic cells that can be employed include *E. coli*; members of the *Staphylococcus* genus, such as *S. aureus*; members of the *Lactobacillus* genus, such as *L. plantarum*; members of the *Lactococcus* genus, such as *L. lactis*; and members of the *Bacillus* genus, such as *B. subtilis*. Examples of eukaryotic cells that can be employed include mammalian cells; insect cells; yeast cells such as members of the *Saccharomyces* genus (e.g., *S. cerevisiae*) and members of the *Pichia* genus (e.g., *P. pastoris*).

Techniques for recombinant gene production, introduction into a cell, and recombinant gene expression are well known in the art. Examples of such techniques are provided in references such as Ausubel, *Current Protocols in Molecular Biology*, John Wiley, 1987-1998, and Sambrook et al., *Molecular Cloning, A Laboratory Manual*, 2nd Edition, Cold Spring Harbor Laboratory Press, 1989.

If desired, expression in a particular host can be enhanced through codon optimization. Codon optimization includes using more preferred codons for the host and removal of inhibitory regions. Techniques for codon optimization in different hosts are well known in the art.

Preferably, a hybrid or ORF0657 polypeptide is present as a purified polypeptide. In different embodiments, the purified polypeptide represents at least about 10%, at least about 50%, at least about 75%, or at least about 95% of the total protein in a sample or preparation. Reference to "purified polypeptide" does not require that the polypeptide has undergone any purification and may include, for example, chemically synthesized polypeptide that has not been purified.

Adjuvants

Adjuvants are substances that can assist an immunogen in producing an immune response. Adjuvants can function by different mechanisms such as one or more of the following: increasing the antigen biologic or immunologic half-life; improving antigen delivery to antigen-presenting cells; improving antigen processing and presentation by antigen-presenting cells; and inducing production of immunomodulatory cytokines. (Vogel, *Clinical Infectious Diseases* 30(suppl. 3):S266-270, 2000.)

A variety of different types of adjuvants can be employed to assist in the production of an immune response. Examples of particular adjuvants include aluminum hydroxide, aluminum phosphate, other salts of aluminum, calcium phosphate, DNA CpG motifs, monophosphoryl lipid A, cholera toxin, *E. coli* heat-labile toxin, pertussis toxin, muramyl dipeptide, Freund's incomplete adjuvant, MF59, SAF, immunostimulatory complexes, liposomes, biodegradable microspheres, saponins, nonionic block copolymers, muramyl peptide analogues, polyphosphazene, synthetic polynucleotides, IFN- γ , IL-2 and IL-12. (Vogel *Clinical Infectious Diseases* 30(suppl 3):S266-270, 2000, Klein *et al.*, *Journal of Pharmaceutical Sciences* 89, 10 311-321, 2000.)

Patients For Inducing Protective Immunity

A "patient" refers to a mammal capable of being infected with *S. aureus*. A patient can be treated prophylactically or therapeutically. Prophylactic treatment provides sufficient protective immunity to reduce the likelihood, or severity, of a *S. aureus* infection. Therapeutic treatment can be performed to reduce the severity of a *S. aureus* infection.

Prophylactic treatment can be performed using a vaccine containing an immunogen described herein. Such treatment is preferably performed on a human. Vaccines can be administered to the general population or to those persons at an increased risk of *S. aureus* infection.

Persons with an increased risk of *S. aureus* infection include health care workers; hospital patients; patients with a weakened immune system; patients undergoing surgery; patients receiving foreign body implants, such as a catheter or a vascular device; patients facing therapy leading to a weakened immunity; and persons in professions having an increased risk of burn or wound injury. (*The Staphylococci in Human Disease*, Crossley and Archer (ed.), Churchill Livingstone Inc. 1997.)

Non-human patients that can be infected with *S. aureus* include horses, cows, pigs, sheep, goats, rabbits, horses, dogs, cats and mice. Treatment of non-human patients is useful in protecting pets and livestock, and in evaluating the efficacy of a particular treatment.

Combination Vaccines

Hybrid or ORF0657 polypeptides can be used alone, or in combination with other immunogens, to induce an immune response. Additional immunogens that

may be present include: one or more additional *S. aureus* immunogens, such as those referenced in the Background of the Invention *supra*; one or more immunogens targeting one or more other *Staphylococcus* organisms such as *S. epidermidis*, *S. haemolyticus*, *S. warneri*, or *S. lugunensis*; and one or more immunogens targeting other infections organisms.

5

Animal Model System

An animal model system was developed to evaluate the efficacy of an immunogen to produce a protective immune response against *Staphylococcus*. Two 10 obstacles encountered in setting up a protective animal model were: (1) very high challenge dose needed to overcome innate immunity and (2) death rate too fast to detect a protective response. Specifically, after bacterial challenge mice succumbed to infection within 24 hours which did not provide sufficient time for the specific immune responses to resolve the infection. If the dose was lowered both control and 15 immunized mice survived the infection.

These obstacles were addressed by developing a slow kinetics lethality model involving *Staphylococcus* prepared from cells in stationary phase, appropriately titrated, and intravenously administered. This slow kinetics of death provides sufficient time for the specific immune defense to fight off the bacterial 20 infection (e.g., 10 days rather 24 hours).

Staphylococcus cells in stationary phase can be obtained from cells grown on solid medium. They can also be obtained from liquid, however the results with cells grown on solid media were more reproducible. Cells can conveniently be grown overnight on solid medium. For example, *S. aureus* can be grown from about 25 18 to about 24 hours under conditions where the doubling time is about 20-30 minutes.

Staphylococcus can be isolated from solid or liquid medium using standard techniques to maintain *Staphylococcus* potency. Isolated *Staphylococcus* can be stored, for example, at -70°C as a washed high density suspension ($> 10^9$ 30 colony forming units (CFU)/mL) in phosphate buffered saline containing glycerol.

The *Staphylococcus* challenge should have a potency providing about 80 to 90% death in an animal model over a period of about 7 to 10 days starting on the first or second day. Titration experiments can be performed using animal models to monitor the potency of the stored *Staphylococcus* inoculum. The titration

experiments can be performed about one to two weeks prior to an inoculation experiment.

Initial potency for titration experiments can be based on previous experiments. For *S. aureus* and the animal model strain Becker a suitable potency 5 was generally found in the range of 5×10^8 to 8×10^8 CFU/ml.

Different types of *Staphylococcus* can be evaluated in the animal model, such as *S. aureus*, *S. epidermidis*, *S. haemolyticus*, *S. warneri*, or *S. lugunensis*. In a preferred embodiment the *Staphylococcus* is *S. aureus*.

10 **Administration**

Immunogens can be formulated and administered to a patient using the guidance provided herein along with techniques well known in the art. Guidelines for pharmaceutical administration in general are provided in, for example, *Vaccines* Eds. Plotkin and Orenstein, W.B. Sanders Company, 1999; *Remington's Pharmaceutical Sciences 20th Edition*, Ed. Gennaro, Mack Publishing, 2000; and *Modern Pharmaceutics 2nd Edition*, Eds. Banker and Rhodes, Marcel Dekker, Inc., 1990, each of which are hereby incorporated by reference herein.

Pharmaceutically acceptable carriers facilitate storage and administration of an immunogen to a patient. Pharmaceutically acceptable carriers 20 may contain different components such as a buffer, sterile water for injection, normal saline or phosphate buffered saline, sucrose, histidine, salts and polysorbate.

Immunogens can be administered by different routes such as subcutaneous, intramuscular, or mucosal. Subcutaneous and intramuscular administration can be performed using, for example, needles or jet-injectors.

25 Suitable dosing regimens are preferably determined taking into account factors well known in the art including age, weight, sex and medical condition of the patient; the route of administration; the desired effect; and the particular compound employed. The immunogen can be used in multi-dose vaccine formats. It is expected that a dose would consist of the range of 1 μ g to 1.0 mg total polypeptide, in an embodiment of the present invention the range is 0.1 mg to 1.0 mg.

The timing of doses depends upon factors well known in the art. After 30 the initial administration one or more booster doses may subsequently be administered to maintain or boost antibody titers. An example of a dosing regime would be day 1, 1 month, a third dose at either 4, 6 or 12 months, and additional booster doses at distant times as needed.

Generation of Antibodies

A hybrid or ORF0657 polypeptide can be used to generate antibodies and antibody fragments that bind to the polypeptide or to *S. aureus*. Such antibodies and antibody fragments have different uses including use in polypeptide purification, 5 *S. aureus* identification, or in therapeutic or prophylactic treatment against *S. aureus* infection.

Antibodies can be polyclonal or monoclonal. Techniques for producing and using antibodies are well known in the art. Examples of such techniques are described in Ausubel, *Current Protocols in Molecular Biology*, John 10 Wiley, 1987-1998, Harlow *et al.*, *Antibodies, A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988, and Kohler *et al.*, *Nature* 256:495-497, 1975.

EXAMPLES

Examples are provided below further illustrating different features of 15 the present invention. The examples also illustrate useful methodology for practicing the invention. These examples do not limit the claimed invention.

Example 1: Use of ORF0657n to Provide Protective Immunity

This example illustrates the ability of ORF0657n to provide protective 20 immunity in a model.

Mutated ORF 0657n Cloning and Expression

An ORF0657n DNA sequence (SEQ ID NO: 23) was translated using Vector NTI software and the resulting 645 amino acid sequence (SEQ ID NO: 2) was 25 analyzed. PCR primers were designed to amplify the gene starting at the first asparagine residue and ending prior to the stop codon at the terminal asparagine residue (Figure 3). These PCR primers also had additional NcoI (forward primer) and XhoI (reverse primer) sites to facilitate cloning into the expression vector.

The protein was designed to be expressed from the pET28 vector with 30 the terminal His residues and the stop codon encoded by the vector. In addition, a glycine residue was added to the protein after the methionine initiator. The resulting amplified (1964 bp) DNA sequence encodes a 654 amino acid mutated form of mature ORF 0657n (Figure 4a). Figure 4B shows an alignment of the translation of the native 0657n ORF with that of the expressed construction.

PCR amplified sequences were ligated into the pET28 vector (Novagen) using the NcoI/XhoI sites that had been engineered into the PCR primers and introduced into *E. coli* DH5 α (Invitrogen) by heat shock. Colonies were selected, grown in LB with 30 μ g/mL kanamycin, DNA minipreps made (Promega), and insert 5 integrity determined by restriction digestion and PCR. Four minipreps with correct insert size were sequenced using the primers listed in Table 1. A clone was selected containing no DNA changes from the desired sequence.

Table 1

10

SEQ ID NO:	Description	Sequence
50	M13F	5'-CTGGCCGTCGTTTAC
51	M13R	5'-CAGGAAACAGCTATGAC
46	ORF0657nF	5'-AACCGGTTTCCATGGGAACAAA CAGCAAAAAGAATT-3'
48	ORF0657nR	5'- ACCGGTTTCTCGAGTTAGTTTA CGTTTCTAGGTAATAC-3'

E. coli HMS174(DE3) cells (Novagen) were transformed and grown on LB plates containing kanamycin (30ug/ml); 3 colonies (UnkC-1, UnkC-2 and UnkC-3) were selected for expression testing. Liquid LB (kanamycin) cultures were 15 incubated at 37°C, 250 rpm until the A_{600} was between 0.6 and 1.0 and then induced by the addition of IPTG to final concentrations of 1 mM followed by three hours further incubation. Cultures were harvested by centrifugation at 5000 x g for 5 minutes at 4°C. Cells were resuspended in 500 μ l lysis buffer (Bug Buster, with protease inhibitors, Novagen). An equal volume of loading buffer (supplemented with 20 β -mecapto ethanol to 5% final volume) was added prior to heating the samples at 70°C for 5 minutes. Extracts were run on Novex 4-20% Tris-Glycine gels and assayed for protein (Coomassie Blue stained) and blotted onto nitrocellulose and probed with anti-HIS6 antibodies (Zymed).

25 *Mutated ORF0657n Purification*

Direct scale-up of the above small scale procedure into stirred tank fermenters (75 liter scale) with a 50 liter working volume was achieved. Inoculum

was cultivated in a 250 mL flask containing 50 mL of Luria-Bertani (LB) medium (plus Kanamycin) and inoculated with 1 mL of frozen seed culture and cultivated for 3 hours. One mL of this seed was used to inoculate a 2 liter flask containing 500 mL of LB medium (plus Kanamycin) and incubated for 16 hours. A large scale fermenter 5 (75 liter scale) was cultivated with 50 liters of LB medium (plus Kanamycin). The fermentation parameters of the fermenter were: pressure = 5 psig, agitation speed = 300 RPMs, airflow = 15 liters/minute and temperature = 37°C. Cells were incubated to an optical density (OD) of 0.8 optical density units, at a wavelength of 600nm, and induced with Isopropyl-B-K-Thiogalactoside (IPTG) at a concentration of 1 mM.

10 Induction time, with IPTG, was three hours. Cells were harvested by lowering the temperature to 15°C, concentration through a 500KMWCO hollow fiber cartridge, and centrifuged at 9,000 times gravity at 4°C for 20 minutes. Supernates were decanted and the recombinant *E. coli* wet cell pellets were frozen at -70°C.

15 Recombinant *E. coli* cells (19.2 grams wet cell weight) were suspended in Lysis Buffer (50 mM Tris-HCl, pH 8.0, 0.1 M NaCl, 2 mM MgCl₂, 10 mM imidazole, 0.1% Tween™-80, and 6 M guanidine-HCl) at 8 ml per gram of cell wet weight. Protease Inhibitor Cocktail for use with poly-(Histidine)-tagged proteins (Sigma, P8849) was added to the suspension at 0.05 ml per gram of cell paste. Additionally, Lysozyme was added to 1 mg/mL, and Benzonase™ (EM Ind.) was 20 added to 1 μL/mL. Cell lysis was accomplished by passing the suspension through a microfluidizer at 14,000 PSI (Microfluidics Model 110S) four times at 4°C. Cell debris was pelleted at 11,000 x g for 30 minutes at 4°C, and the supernatant retained.

25 Proteins bearing a His-tag were purified from the supernatant. The supernatant was mixed with 20 mL of Ni⁺-NTA agarose (Qiagen) at 4°C with gentle inversion for 2 hours. The mixture was poured into an open column (1.5 cm x 20 cm) and the non-bound fraction was collected in bulk. The column was washed with Wash Buffer (20 mM Tris-HCl, pH 8.0, 0.15 M NaCl, 0.1% Tween™-80). His-tagged ORF0657n was eluted with a step gradient of 300 mM imidazole, 20 mM Tris-HCl, pH 7.5, 0.15 M NaCl, 0.1% Tween™-80.

30 Fractions containing mutated ORF0657n were detected by Coomassie stained SDS-PAGE and pooled. Pooled fractions were filtered through a 0.2 micron filter to remove particulate material, and were applied on a size-exclusion column (Sephacryl S-300 26/60 column, Amersham Biosciences) and eluted at 1 mL/min with 10 mM MOPS pH 7.1, 150 mM NaCl. Fractions containing mutated ORF0657n 35 were detected by Coomassie stained SDS-PAGE and Western blotting (anti-tetra His

Mab, Qiagen). Endotoxin was removed by filtration through a Zeta-Plus™ Biofilter (CUNO). Protein was determined by BCA (Pierce). Purity was determined by densitometry of Coomassie stained gels.

5 *Preparation of S. Aureus Challenge*

S. aureus was grown on TSA plates at 37°C overnight. The bacteria were washed from the TSA plates by adding 5 ml of PBS onto a plate and gently resuspending the bacteria with a sterile spreader. The bacterial suspension was spun at 6000 rpm for 20 minutes using a Sorvall RC-5B centrifuge (DuPont Instruments).

10 The pellet was resuspended in 16% glycerol and aliquots were stored frozen at -70°C.

Prior to use, inocula were thawed, appropriately diluted and used for infection. Each stock was titrated at least 3 times to determine the appropriate dose inducing slow kinetics of death in naive mice. The potency of the bacterial inoculum (80 to 90% lethality) was constantly monitored to assure reproducibility of the model.

15 Ten days before each challenge experiment, a group of 10 control animals (immunized with adjuvant alone) were challenged and monitored.

Protection Studies for Mutated ORF0657n

Twenty-five BALB/c mice were immunized with three doses of mutated ORF0657n (20 µg per dose) on aluminum hydroxyphosphate adjuvant (450 µg per dose). Aluminum hydroxyphosphate adjuvant (AHP) is described by Klein *et al.*, *Journal of Pharmaceutical Sciences* 89, 311-321, 2000. The doses were administered as two 50 µl injections on days 0, 7 and 21. The mice were bled on day 28, and their sera were screened by ELSIA for reactivity to mutated ORF0657n.

25 On day 35 of the experiment the mice were challenged by intravenous injection of S. aureus grown at a dose (7.3×10^8 CFU/ml) determined in titration experiments to cause death over a period of approximately 2 to 7 days. Survival in this lethal model with slow kinetics of death was evaluated against a control set of mice that had just been sham-immunized with AHP. The mice were monitored over a 30 14 day period for survival (Figure 5). At the end of the experiment 11 mice survived the ORF 0657n immunized group compared to three surviving in the AHP control group.

Example 2: Obtaining ORF0657n Sequences.

Different *S. aureus* clinical isolates were added to 3 ml of Difco Tryptic Soy Broth (Becton Dickinson, Sparks, MD) and incubated overnight at 37°C and 150 rpm. The overnight cultures were centrifuged in 1.5 ml Eppendorf tubes at 5 14,000 rpm for 5 minutes. The broth was decanted and the pellets re-suspended in 500 µl re-suspension buffer (25% sucrose, 10 mM Tris pH 7.5). A 5 µl of a 2 mg/ml lysostaphin (Sigma-Aldrich, St. Louis, MO) solution was added to each resuspended pellet. Suspensions were then incubated at 37°C for 1 hour. At the end of the 10 incubation period, 250 µl of 2% SDS was added to each tube and vortexed until the viscosity of the solution noticeably decreased. 250 µl phenol-chloroform-isoamyl 15 solution (25:24:1, v/v) (Gibco/Invitrogen Corporation, Grand Island, NY) were added. The mixture was vortexed for 30 seconds and centrifuged for 5 minutes at 14,000 rpm. The top aqueous phase was removed and the precipitation steps were repeated until barely any interface remained. 0.1 volume of 3 M NaOAc, pH 4.8, was added to each tube and mixed. One volume of isopropanol was then added and mixed again. The tubes were left to incubate 5 minutes at room temperature and then centrifuged at 14,000 rpm for 15 minutes. The supernatant was decanted and tubes were allowed to dry upside-down on tissue. The pellets were resuspended in 50 µl sterile H₂O.

20 The isolated DNA was used as a template for PCR. The gene was amplified using the following PCR primers: forward primer (SEQ ID NO: 46) and reverse primer (SEQ ID NO: 48). PCR products were sequenced using standard Big Dye protocols.

25 Other embodiments are within the following claims. While several embodiments have been shown and described, various modifications may be made without departing from the spirit and scope of the present invention.

WHAT IS CLAIMED IS:

1. A hybrid polypeptide comprising a modified ORF0657n sequence segment at least about 100 amino acids in length, wherein said modified sequence segment comprises one or more alterations that increases sequence similarity to SEQ ID NO: 1.
5
 2. The hybrid polypeptide of claim 1, wherein said modified sequence segment comprises at least about 100 amino acids of a modified amino acid sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 3, SEQ
10 ID NO: 4, SEQ ID NO: 5, and SEQ ID NO: 6, provided that said modified amino acid sequence contains at least 8 amino acid alterations that increase sequence similarity to SEQ ID NO: 1.
15
 3. The hybrid polypeptide of claim 3, wherein said modified amino acid sequence is SEQ ID NO: 2 containing 8 to 100 amino acid alterations that increase sequence similarity to SEQ ID NO: 1.
20
 4. The hybrid polypeptide of claim 2, wherein said modified amino acid sequence has the following sequence:
X¹-AIKNPAI-X²- DK-X³-H-X⁴-APN-X⁵- RPIDFEMK-X⁶-X⁷-X⁸-G-X⁹-
QQFYHYAS-X¹⁰-V-X¹¹- PARVIFT-X¹²-X¹³-K-X¹⁴-IELGLQ-X¹⁵-X¹⁶-X¹⁷-
X¹⁸-W-X¹⁹-KFEVYEGDKKL-P-X²⁰- KLVSYD-X²¹-X²²-KDYAYIRFSVSNGT-
X²³-X²⁴-VKIVSSTH-X²⁵-X²⁶-X²⁷-N-X²⁸-X²⁹-EKYDYTLM-X³⁰- FAQPIYN-
25 X³¹-X³²-DK-X³³-X³⁴-X³⁵- EEDY-X³⁶-X³⁷-X³⁸- KLLAPYKKAKTLERQVY-
EL-X³⁹- K-X⁴⁰- Q-X⁴¹-KLPEKLKAELYKKL-X⁴²-X⁴³-T-X⁴⁴- KAL-X⁴⁵-X⁴⁶-
QVKSA-X⁴⁷- TEFQNV-X⁴⁸-PTN-X⁴⁹-K-X⁵⁰- TDLQ-X⁵¹-X⁵²-X⁵³-X⁵⁴-VV-
X⁵⁵-ESVEN-X⁵⁶-ES-X⁵⁷-MDTFV-X⁵⁸-HPIKT-X⁵⁹-X⁶⁰-LNGKKY-X⁶¹-VM-
X⁶²- TTND-X⁶³-YWKDF-X⁶⁴- VEG-X⁶⁵- RVRT-X⁶⁶- SKD-X⁶⁷- KNN-X⁶⁸-
30 RT-X⁶⁹- IFPY-X⁷⁰- EGK-X⁷¹-X⁷²-YDAIVKV-X⁷³- VKTI-X⁷⁴-Y-X⁷⁵-
GQYHVRI-X⁷⁶- DK-X⁷⁷-X⁷⁸-X⁷⁹
- wherein
- X¹ is either E or a D alteration;
- 35 X² is either K or an I alteration;

- X³ is either D or an E alteration;
X⁴ is either S or a T alteration;
X⁵ is either S or a W alteration;
X^{6-X7-X8} is either KKD or NDK alterations;
- 5 X⁹ is either T or an E alteration;
X¹⁰ is either S or a T alteration;
X¹¹ is either K or an E alteration;
X¹² is either D or a K alteration;
X¹³ is either S or a T alteration;
- 10 X¹⁴ is either E or an I alteration;
X¹⁵ is either S or a T alteration;
X¹⁶ is either G or an A alteration;
X^{17-X18} is either KF or ST alterations;
X¹⁹ is either R or a K alteration;
- 15 X²⁰ is either I or a V alteration;
X²¹ is either T or an S alteration;
X²² is either V or a D alteration;
X²³ is either K or an R alteration;
X²⁴ is either A or an E alteration;
- 20 X²⁵ is either F or a Y alteration;
X^{26-X27} is either N or GE alterations;
X^{28-X29} is either KE or IH alterations;
X³⁰ is either E or a V alteration;
X^{31-X32} is either SA or NP alterations;
- 25 X³³ is either F or an Y alteration;
X^{34-X35} is either KT or VD alterations;
X^{36-X37-X38} is either KAE or NLQ alterations;
X³⁹ is either N or an E alteration;
X⁴⁰ is either I or a L alteration;
- 30 X⁴¹ is either D or an E alteration;
X⁴² is either E or a D alteration;
X⁴³ is either D or a Q alteration;
X⁴⁴ is either K or an R alteration;
X⁴⁵ is either D or an A alteration;

- X⁴⁶ is either E or a D alteration;
X⁴⁷ is either I or a V alteration;
X⁴⁸ is either Q or a T alteration;
X⁴⁹ is either E or a D alteration;
5 X⁵⁰ is either M or an L alteration;
X⁵¹ is either D or an E alteration;
X⁵²-X⁵³ is either TK or AH alterations;
X⁵⁴ is either Y or an F alteration;
X⁵⁵ is either Y or an F alteration;
10 X⁵⁶ is either N or a S alteration;
X⁵⁷ is either M or a V alteration;
X⁵⁸ is either K or an E alteration;
X⁵⁹ is either G or an A alteration;
X⁶⁰ is either M or a T alteration;
15 X⁶¹ is either M or a V alteration;
X⁶² is either E or a K alteration;
X⁶³ is either D or a S alteration;
X⁶⁴ is either M or an I alteration;
X⁶⁵ is either Q or a K alteration;
20 X⁶⁶ is either I or a V alteration;
X⁶⁷ is either A or a P alteration;
X⁶⁸ is either T or an S alteration;
X⁶⁹ is either I or a L alteration;
X⁷⁰ is either V or an I alteration;
25 X⁷¹ is either T or an A alteration;
X⁷² is either L or a V alteration;
X⁷³ is either H or a V alteration;
X⁷⁴ is either D or a G alteration;
X⁷⁵ is either D or an E alteration;
30 X⁷⁶ is either V or an I alteration;
X⁷⁷ is either E or a D alteration;
X⁷⁸ is either A or an I alteration;
X⁷⁹ is either F or a N alteration;
provided that at least 20 of said alterations are present.

5. The hybrid polypeptide of claim 4, wherein said modified sequence segment comprises at least 200 amino acids of said modified amino acid sequence.

5

6. The hybrid polypeptide of claim 5, wherein said modified sequence segment comprises said modified amino acid sequence and at least 55 of said alterations are present.

10

7. The hybrid polypeptide of claim 1, wherein said hybrid polypeptide consists of a sequence selected from the group consisting of SEQ ID NOs: 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, and 43.

15

8. A method of making a hybrid polypeptide comprising the step of introducing one or more alterations into a ORF0657n sequence segment at least about 100 amino acids in length, wherein at least one of said alterations increases sequence similarity to SEQ ID NO: 1.

20

9. An isolated polypeptide comprising an amino acid sequence selected the group consisting of: SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, and SEQ ID NO: 7.

25

45.

10. A polypeptide comprising amino acids 2-646 of SEQ ID NO: 45.

11. The polypeptide of claim 10, wherein said polypeptide consists of either amino acids 1-646 of SED ID NO: 44 or 2-646 of SEQ ID NO: 44.

30

12. An immunogen comprising a polypeptide that induces protective immunity against *Staphylococcus aureus*, wherein said polypeptide is either:

- a) the hybrid polypeptide of any one of claims 1-7; or
- b) the polypeptide of any one of claims 9-11.

35

13. The immunogen of claim 12, wherein said immunogen consists of said polypeptide and an optionally present region or moiety, wherein said region or moiety, if present, is covalently joined to said polypeptide at the carboxy or amino terminus and said region or moiety has at least one of the following properties:
5 enhances the immune response, facilitates purification, or facilitates polypeptide stability.

14. The immunogen of claim 13, wherein said immunogen consists of said polypeptide joined to said region or moiety.

10

15. A composition able to induce a protective immune response in a patient comprising an immunologically effective amount of the immunogen of claim 12 and a pharmaceutically acceptable carrier.

15

16. The composition of claim 15, wherein said composition further comprises an adjuvant.

20

17. A method of inducing a protective immune response in a patient comprising the step of administering to said patient an immunologically effective amount of the immunogen claim 12.

18. The method of claim 17, wherein said patient is either a cow, pig, sheep, goat, rabbit, horse, dog, or cat.

25

19. The method of claim 17, wherein said patient is a human.

20. The method of claim 17, wherein said patient is being treated prophylactically against *S. aureus* infection.

30

21. A method of inducing a protective immune response in a patient comprising the step of administering to said patient an immunologically effective amount of the composition of claim 16.

35

22. The method of claim 21, wherein said patient is either a cow, pig, sheep, goat, rabbit, horse, dog, or cat.

23. The method of claim 21, wherein said patient is a human.

24. A nucleic acid comprising a nucleotide sequence encoding the polypeptide of any one of claims 1-7, 10 and 11.

5

25. The nucleic acid of claim 24, wherein said nucleic acid is an expression vector and said nucleotide sequence is part of a recombinant gene.

26. A cell comprising the recombinant gene of claim 25, wherein
10 said recombinant gene expresses said nucleic acid sequence in said cell to produce said polypeptide.

27. A recombinant nucleic acid comprising a nucleotide sequence encoding the polypeptide of claim 9.

15

28. The recombinant nucleic acid of claim 27, wherein said nucleic acid is an expression vector and said nucleotide sequence is part of a recombinant gene.

20

29. A cell comprising the recombinant gene of claim 28, wherein said recombinant gene expresses said nucleic acid sequence in said cell to produce said polypeptide.

25

30. A method for evaluating the efficacy of an immunogen to produce a protective immune response against *Staphylococcus* comprising the steps of:

(a) inoculating an animal model with said immunogen to produce an immunized animal model;

(b) challenging said immunized animal model with a *Staphylococcus* challenge at a potency that provides about 80 to 90% death in said animal model over a period of about 7 to 10 days starting on the first or second day, wherein said *Staphylococcus* challenge is produced from *Staphylococcus* grown to stationary phase, and said *Staphylococcus* challenge is intravenously introduced into said immunized animal model; and

(c) measuring the ability of said immunogen to provide protective immunity.

31. The method of claim 30, wherein said animal model is a rat or
5 mouse.

32. The method of claim 31, wherein said *Staphylococcus* grown to stationary phase is produced on solid media.

10 33. The method of claim 32, wherein said *Staphylococcus* is grown about 18 to 24 hours with a doubling about 20-30 minutes.

34. The method of claim 33, wherein said *Staphylococcus* is *Staphylococcus aureus*.

15 35. The method of claim 34, wherein said immunogen is the immunogen of claim 12.

20

TITLE OF THE INVENTION

**POLYPEPTIDES FOR INDUCING A PROTECTIVE IMMUNE RESPONSE
AGAINST *STAPHYLOCOCCUS AUREUS***

5 ABSTRACT OF THE DISCLOSURE

The present invention features hybrid polypeptides providing ORF0657n and ORF0190 epitopes, ORF0657n polypeptides, nucleic acid encoding for the different polypeptides, and a method for evaluating the ability of an immunogen to produce a protective immune response against *Staphylococcus aureus* infection. ORF0657n and ORF0190 are both *S. aureus* proteins.

21349PV

0657n MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNT-----EAQ--
0657nHybrid1 MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNT-----EAQ--
0657nHybrid2 MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNT-----EAQ--
0657nhybrid3 MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNT-----EAQ--
ORF0190 MNKHHPKLRSFYSIRKSTLGVASVIVSTLFLITSQHQAQAA--EN--TNTSDKISENQNN

0657n -----PKTEAVASPTTT-----SEK-----APETK-----
0657nHybrid1 -----PKTEAVASPTTT-----SEK-----APETK-----
0657nHybrid2 -----PKTEAVASPTTT-----SEK-----APETK-----
0657nhybrid3 -----PKTEAVASPTTT-----SEK-----APETK-----
ORF0190 NATTTQPPKDTNQTQPATQPANTAKNYPAADESLKDAIKDPALENKEHDIGPREQVNQQL

0657n -----PVANAVSV
0657nHybrid1 -----PVANAVSV
0657nHybrid2 -----PVANAVSV
0657nhybrid3 -----PVANAVSV
ORF0190 LDKNNETQYYHFFSIKDPADVYYTKKAEVELDINTASTWKKFEVYENNQKLPVR-LVSY

0657n SNK-EVEA---PTS-ETKEAKEV-----KEVKAP---KETKEVK----
0657nHybrid1 SNK-EVEA---PTS-ETKEAKEV-----KEVKAP---KETKEVK----
0657nHybrid2 SNK-EVEA---PTS-ETKEAKEV-----KEVKAP---KETKEVK----
0657nhybrid3 SNK-EVEA---PTS-ETKEAKEV-----KEVKAP---KETKEVK----
ORF0190 SPVPEDHAYIRFPVSDGTQELKIVSSTQIDDGEETNYDYTKLVFAKPIYNPDSLVKSDTN

0657n -----PA-----
0657nHybrid1 -----PA-----
0657nHybrid2 -----PA-----
0657nhybrid3 -----PA-----
ORF0190 DAVVTNDQSSVASNQNTNTSNQNTSTINNANNQPQATTNMSQPAQPKSSTNAQASSQ

0657n -AKATN---NT-----YPILNQELREAIKNPAIKDKDHISAPNSRPIDFE
0657nHybrid1 -AKATN---NT-----YPILNQELREAIKNPAIIDIKDHISAPNWRIRIPIDFE
0657nHybrid2 -AKATN---NT-----YPILNQELREAIKNPAIKDKIEIHISAPNSRPIDFE
0657nhybrid3 -AKATN---NT-----YPILNQELRDAIKNPAIKDKIEHTAPNSRPIDFE
ORF0190 PAHETNSNGNTNDKTNESSNQSDVNQQYPPADESLQDAIKNPAIIIDIEHTADNWRIRIDFQ

Fig. 1A

21349PV

0657n MKKKDGTQQFYHYASSVKPARVIFTDSKPEIELGLQSGQFWRKFEVYEGDKKLPIKLVSY
0657nHybrid1 MKNDKGEQQFYHYASSVEPARVIFTKSKPIIELGLQSASTWKKFEVYEGDKKLPIKLVSY
0657nHybrid2 MKKKDGTQQFYHYASSVKPARVIFTDSKPEIELGLQSGQFWRKFEVYEGDKKLPVKLVSY
0657nhybrid3 MKKKDGTQQFYHYASTVKPARVIFTDTKPEIELGLQTAQFWKKFEVYEGDKKLPVKLVSY
ORF0190 MKNDKGERQFYHYASTVEPATVIFTKTGPIELGLKTASTWKKFEVYEGDKKLPVELVSY

0657n DTVKDYAYIRFSVSNGTKAVKIVSSTHF-NNKEEKYDYTLMEFAQPIYNSADFKTEEDY
0657nHybrid1 DSDKDYAYIRFSVSNGTKEVKIVSSTHFGENIHEKYDYTLMVFAQPIYNNPDKFVDEDY
0657nHybrid2 DTVKDYAYIRFSVSNGTKAVKIVSSTHF-NNKEEKYDYTLMEFAQPIYNSADFKTEEDY
0657nhybrid3 DSVKDYAYIRFSVSNGTRAVKIVSSTHX-NNKEEKYDYTLMEFAQPIYNSADKYKTEEDY
ORF0190 DSDKDYAYIRFPVSNGTREVKIVSSIEYGENIHEDYDYTLMVFAQPITNNPDDYVDEETY

0657n KAEKLLAPYKKAKTLERQVYELNKIQDKLPEKLKAEYKKLEDTKKALDEQVKSAITEFQ
0657nHybrid1 NLQKLLAPYKKAKTLERQVYEELEKIQDKLPEKLKAEYKKLDQTKKALDQVKSAITEFQ
0657nHybrid2 KAEKLLAPYKKAKTLERQVYELNKLQEKLPEKLKAEYKKLEDTKKALDEQVKSATEFQ
0657nhybrid3 KAEKLLAPYKKAKTLERQVYELNKLQEKLPEKLKAEYKKLDDTRKALDQVKSATEFQ
ORF0190 NLQKLLAPYHKAKTLERQVYEELEKLQEKLPEKAEYKKLDQTRVELADQVKSATEFQ

0657n NVQPTNEKMTDLQDTKYVVYESVENNESMMDFVKHPIKTGMLNGKKYMVMETTNDDYWK
0657nHybrid1 NVTPTNDKLTDLQDAHFVVESEVENSESMMDFVEHPIKTATLNGKKYMVMKTNDSYWK
0657nHybrid2 NVQPTNDKMTDLQDTKYVVYESVENNESMMDFVKHPIKTGMLNGKKYMVMETTNDDYWK
0657nhybrid3 NVQPTNDKLTDLQETKFVVVESEVENNESVMDTDFVKHPIKTAMLNGKKYVVMETTNDDYWK
ORF0190 NVTPTNDQLTDLQEAHFVVESESEMDGFVEHPFTATLNGQKYVVMKTDDSSYWK

0657n DFMVEGQRVRTISKDAKNNTRTIIFPYVEGKTLYDAIVKVHVKTIDYDGQYHVRIDKEA
0657nHybrid1 DFIVEGKRVRTISKDPKNNSRTIIFPYIEGKALYDAIVVVVKTIGDGQYHVRIIDKDI
0657nHybrid2 DFMVEGQRVRTISKDAKNNTRTLIFPYIEGKTLYDAIVKVHVKTIDYEGQYHVRIDKEA
0657nhybrid3 DFIVEGQRVRTVSKDAKNSRTLIFPYIEGKTVYDAIVKVHVKTIDYEGQYHVRIIDKDA
ORF0190 DLIVEGKRVTTVSKDPKNNSRTLIFPYIPDKAVNAIVVVVANIGYEGQYHVRIINQDI

0657n FTKANTDKS--NKKE---QQDNSAKKEATP-----ATPSKPTPSP---VEKESQKQ
0657nHybrid1 NTKANTDKS--NKKE---QQDNSAKKEATP-----ATPSKPTPSP---VEKESQKQ
0657nHybrid2 FTKANTDKS--NKKE---QQDNSAKKEATP-----ATPSKPTPSP---VEKESQKQ
0657nhybrid3 FTKANTDKS--NKKE---QQDNSAKKEATP-----ATPSKPTPSP---VEKESQKQ
ORF0190 NTKD-DDTSQNNTSEPLNVQTGQEGKVADTDVAENSSTATNPK-DASDKADVIEPES---

Fig. 1B

21349PV

0657n	DSQKD-DN---K--QLPSVEKENDASSESGKDK-----TPATKPTKG-----EVE
0657nHybrid1	DSQKD-DN---K--QLPSVEKENDASSESGKDK-----TPATKPTKG-----EVE
0657nHybrid2	DSQKD-DN---K--QLPSVEKENDASSESGKDK-----TPATKPTKG-----EVE
0657nhybrid3	DSQKD-DN---K--QLPSVEKENDASSESGKDK-----TPATKPTKG-----EVE
ORF0190	DVVKDADNNIDKDVQHD-VDHLSMSDNHFDKYDLKEMDTQIAKDTDRNVDKADNSVG
0657n	SSSTTPTKVVSTTQNVAKPTTASSKTTKD-VVQT-----SAGSSEAKDSAPLQKAN-
0657nHybrid1	SSSTTPTKVVSTTQNVAKPTTASSKTTKD-VVQT-----SAGSSEAKDSAPLQKAN-
0657nHybrid2	SSSTTPTKVVSTTQNVAKPTTASSKTTKD-VVQT-----SAGSSEAKDSAPLQKAN-
0657nhybrid3	SSSTTPTKVVSTTQNVAKPTTASSKTTKD-VVQT-----SAGSSEAKDSAPLQKAN-
ORF0190	MSS-----NVD--TDKDSNKNKDVKVIQLNHIADKNNHTG-KAAKLDVVKQNYNN
0657n	-----IKNTNDG-----HTQSQNNKNTQENKA KSLPQTGEESNKDM
0657nHybrid1	-----IKNTNDG-----HTQSQNNKNTQENKA KSLPQTGEESNKDM
0657nHybrid2	-----IKNTNDG-----HTQSQNNKNTQENKA KSLPQTGEESNKDM
0657nhybrid3	-----IKNTNDG-----HTQSQNNKNTQENKA KSLPQTGEESNKDM
ORF0190	TDKVTDKKTTEHLPSDIHKTVDKTVKTKEAGTPSKENKLSQS---KMLPKTGETTSSQS
0657n	TLPLMALL---ALSSIVAFV-----
0657nHybrid1	TLPLMALL---ALSSIVAFVLPKRKRKN
0657nHybrid2	TLPLMALL---ALSSIVAFV-----
0657nhybrid3	TLPLMALL---ALSSIVAFV-----
ORF0190	WWGLYALLGMLALF-IPKFRKESK---

Fig. 1C

21349PV

SEQ ID NO: 8

MNQQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIIDKDHSAAPNWRPIDFEMKNDKGTTQFYHYASSVEPARVIFTK
SKPIIELGLQSGSTWRKFEVYEGDKKLPIKLVSYDTKDYAYIRFSVNSGTKEVKIVSST
HFGENIHKYDYLTMVFAQPIYNNDPDKFVDEEDYLNQKLLAPYKKAKTLERQVYELKIQD
KLPEKLKAEYKKKLEQTKKALAEQVKSIAITEFQNVQPTNEKMTDLQDAHYVVYESVENSE
SMMDTFVHEPIKTGTLNGKKYVMKTTNDSYWKDFMVEGKRVRTISKDPKNNTRTIIFPY
VEGKALYDAIVVVVKTIDYDGQYHVRIVDKEINTKANTDKSNKKEQQDNSAKKEATPAT
PSKPTPSVKEESQKQDSQKDDNKQLPSVEKENDASSESGKDTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPKRKN

SEQ ID NO: 11

MNQQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIKDKDHSAAPNWRPIDFEMKKKGTTQFYHYASSVKPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTKDYAYIRFSVNSGTKEVKIVSST
HFNNKEEKYDYLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNIQD
KLPEKLKAEYKKKLEDTKKALDEQVKSIAITEFQNVQPTNEKMTDLQDTKYYVVYESVENNE
SMMDTFVHKPIKTGMLNGKKYVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPY
VEGKTLYDAIVVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKKEQQDNSAKKEATPAT
PSKPTPSVKEESQKQDSQKDDNKQLPSVEKENDASSESGKDTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPKRKN

SEQ ID NO: 12

MNQQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIKDKDHSAAPNWRPIDFEMKKKGTTQFYHYASSVEPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTKDYAYIRFSVNSGTKEVKIVSST
HFNNKEEKYDYLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNIQD
KLPEKLKAEYKKKLEDTKKALDEQVKSIAITEFQNVQPTNEKMTDLQDTKYYVVYESVENNE
SMMDTFVHKPIKTGMLNGKKYVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPY
VEGKTLYDAIVVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKKEQQDNSAKKEATPAT
PSKPTPSVKEESQKQDSQKDDNKQLPSVEKENDASSESGKDTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPKRKN

SEQ ID NO: 13

MNQQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIKDKDHSAAPNWRPIDFEMKKKGTTQFYHYASSVEPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTKDYAYIRFSVNSGTKEVKIVSST
HFNNKEEKYDYLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNIQD
KLPEKLKAEYKKKLEDTKKALDEQVKSIAITEFQNVQPTNEKMTDLQDTKYYVVYESVENNE
SMMDTFVHKPIKTGMLNGKKYVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPY
VEGKTLYDAIVVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKKEQQDNSAKKEATPAT
PSKPTPSVKEESQKQDSQKDDNKQLPSVEKENDASSESGKDTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPKRKN

Fig. 2A

21349PV

SEQ ID NO: 14

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNPAIKDKDHSAPNWRPIDFEMKKKDGTQQFYHYASSVEPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTVKDYAYIRFSVSNGTKEVKIVSST
HFNKEEKYDYLTMVFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNKIQC
KLPEKLKAЕYKKLEDTKKALAEQVKSАITEFQNVQPTNEKMTDLQDTKYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYMVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPY
VEGKTLDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDSNKKEQQDNSAKKEATPAT
PSKPTPSVKESESQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSTT
PTKVVTTQNVAKPTTASSKTTKDVVQTTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPMLALLSSIVAFVLPRKRKN

SEQ ID NO: 15

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNPAIKDKDHSAPNWRPIDFEMKKKDGTQQFYHYASSVEPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTDKDYAYIRFSVSNGTKEVKIVSST
HFNKEEKYDYLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELEKIQC
KLPEKLKAЕYKKLEDTKKALAEQVKSАITEFQNVQPTNEKMTDLQDTKYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYMVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPY
VEGKTLDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDSNKKEQQDNSAKKEATPAT
PSKPTPSVKESESQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSTT
PTKVVTTQNVAKPTTASSKTTKDVVQTTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPMLALLSSIVAFVLPRKRKN

SEQ ID NO: 16

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNPAIKDKDHSAPNWRPIDFEMKKKDGTQQFYHYASSVEPARVIFTK
SKPEIELGLQSGSTWRKFEVYEGDKKLPIKLVSYDTDKDYAYIRFSVSNGTKEVKIVSST
HFNKEEKYDYLTMVFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELEKIQC
KLPEKLKAЕYKKLEDTKKALAEQVKSАITEFQNVQPTNEKMTDLQDTKYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYMVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPY
VEGKTLDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDSNKKEQQDNSAKKEATPAT
PSKPTPSVKESESQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSTT
PTKVVTTQNVAKPTTASSKTTKDVVQTTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPMLALLSSIVAFVLPRKRKN

SEQ ID NO: 17

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNPAIKDKDHSAPNWRPIDFEMKKKDGTQQFYHYASSVEPARVIFTK
SKPEIELGLQSGSTWRKFEVYEGDKKLPIKLVSYDTDKDYAYIRFSVSNGTKEVKIVSST
HFNKEEKYDYLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELEKIQC
KLPEKLKAЕYKKLEDTKKALAEQVKSАITEFQNVQPTNEKMTDLQDTKYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYMVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPY
VEGKTLDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDSNKKEQQDNSAKKEATPAT
PSKPTPSVKESESQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSTT
PTKVVTTQNVAKPTTASSKTTKDVVQTTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPMLALLSSIVAFVLPRKRKN

Fig. 2B

21349PV

SEQ ID NO: 18

MNQQQKEFKSFYSIRKSSLGVASVAI STLLLLMSNGEAQAAAETGGTNT EAQP KTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNPAIKDKDHSAPNWRPIDEFEMKNDKGTTQQFYHYASSVEPARVIFTK
SKPII ELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTDKDYAYIRFSVNSGTKEVKIVSST
HFNNKEEKYDYTLMVFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKA EYKKLEDTKKALAEQVKS AITEFQNVQPTNEKMTDLQDTKYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYVMMETTNDDYWKDFMVEGQRVRTISKDAKNNRTIIIFPY
VEGK TLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPV EKESQKQDSQKDDNKQLPSVEKENDASSESGKD KTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQT SAGSSEAKDSAPLQKANIKNTNDGHTQS QNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 19

MNQQQKEFKSFYSIRKSSLGVASVAI STLLLLMSNGEAQAAAETGGTNT EAQP KTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNPAIKDKDHSAPNWRPIDEFEMKNDKGTTQQFYHYASSVEPARVIFTK
SKPII ELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTDKDYAYIRFSVNSGTKEVKIVSST
HFNNKEEKYDYTLMVFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKA EYKKLEQT KALAEQVKS AITEFQNVQPTNEKMTDLQDAHYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYVMMETTNDDYWKDFMVEGQRVRTISKDAKNNRTIIIFPY
VEGK TLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPV EKESQKQDSQKDDNKQLPSVEKENDASSESGKD KTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQT SAGSSEAKDSAPLQKANIKNTNDGHTQS QNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 20

MNQQQKEFKSFYSIRKSSLGVASVAI STLLLLMSNGEAQAAAETGGTNT EAQP KTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNPAIKDKDHSAPNWRPIDEFEMKNDKGTTQQFYHYASSVEPARVIFTK
SKPII ELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTDKDYAYIRFSVNSGTKEVKIVSST
HFNNKEEKYDYTLMVFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKA EYKKLEQT KALAEQVKS AITEFQNVQPTNEKMTDLQDAHYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYVMMETTNDDYWKDFMVEGQRVRTISKDAKNNRTIIIFPY
VEGKALYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPV EKESQKQDSQKDDNKQLPSVEKENDASSESGKD KTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQT SAGSSEAKDSAPLQKANIKNTNDGHTQS QNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 21

MNQQQKEFKSFYSIRKSSLGVASVAI STLLLLMSNGEAQAAAETGGTNT EAQP KTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNPAIKDKDHSAPNWRPIDEFEMKNDKGTTQQFYHYASSVEPARVIFTK
SKPII ELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTDKDYAYIRFSVNSGTKEVKIVSST
HFNNKEEKYDYTLMVFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKA EYKKLEQT KALAEQVKS AITEFQNVQPTNEKMTDLQDAHYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYVMMETTNDDYWKDFMVEGQRVRTISKDAKNNRTIIIFPY
VEGKALYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPV EKESQKQDSQKDDNKQLPSVEKENDASSESGKD KTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQT SAGSSEAKDSAPLQKANIKNTNDGHTQS QNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

Fig. 2C

21349PV

SEQ ID NO: 22

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIKDKDHSAPNWRPIDFEMKNDKGTTQFYHYASSVEPARVIFTK
SKPIIELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTDKDYAYIRFSVNSGTKEVKIVSST
HFNNEEKYDYTLMVFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKAEYKKLEQTKKALAEQVKSIAITEFQNVQPTNEKMTDLQDAHYVVYESENSE
SMMDFVEHPPIKTGTLNGKKYVMKTTNDDYWKDFMVEGKRVRTISKDAKNNTRTIIFPY
VEGKALYDAIVKVHVVKTDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPVKESESQKQDSQKDDNKQLPSVEKENDASSESGKDKTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 23

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIDKDHSAPNWRPIDFEMKNDKGTTQFYHYASSVEPARVIFTK
SKPIIELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTDKDYAYIRFSVNSGTKEVKIVSST
HFNNEEKYDYTLMVFAQPIYNSADKFKTEEDYNAEKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKAEYKKLEQTKKALAEQVKSIAITEFQNVQPTNEKMTDLQDAHYVVYESENSE
SMMDFVEHPPIKTGTLNGKKYVMKTTNDDYWKDFMVEGKRVRTISKDAKNNTRTIIFPY
VEGKALYDAIVKVHVVKTDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPVKESESQKQDSQKDDNKQLPSVEKENDASSESGKDKTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 24

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIIDKDHSAPNWRPIDFEMKNDKGTTQFYHYASSVEPARVIFTK
SKPIIELGLQSGQFWRKFEVYEGDKKLPIKLVSYDTDKDYAYIRFSVNSGTKEVKIVSST
HFNNEEKYDYTLMVFAQPIYNSADKFKTEEDYNAEKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKAEYKKLEQTKKALAEQVKSIAITEFQNVQPTNEKMTDLQDAHYVVYESENSE
SMMDFVEHPPIKTGTLNGKKYVMKTTNDDYWKDFMVEGKRVRTISKDAKNNTRTIIFPY
VEGKALYDAIVKVHVVKTDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPVKESESQKQDSQKDDNKQLPSVEKENDASSESGKDKTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 25

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIIDKDHSAPNWRPIDFEMKNDKGTTQFYHYASSVEPARVIFTK
SKPIIELGLQSGSTWRKFEVYEGDKKLPIKLVSYDTDKDYAYIRFSVNSGTKEVKIVSST
HFNNEEKYDYTLMVFAQPIYNSADKFKTEEDYNLQKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKAEYKKLEQTKKALAEQVKSIAITEFQNVQPTNEKMTDLQDAHYVVYESENSE
SMMDFVEHPPIKTGTLNGKKYVMKTTNDDYWKDFMVEGKRVRTISKDAKNNTRTIIFPY
VEGKALYDAIVKVHVVKTDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPVKESESQKQDSQKDDNKQLPSVEKENDASSESGKDKTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

Fig. 2D

21349PV

SEQ ID NO: 26

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTAEQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIIDKDHSAPNWRPIDFEMKNDKGTTQFYHYASSVEPARVIFTK
SKPIIELGLQSGSTWRKFEVYEGDKKLPIKLVSYDTDKYAYIRFSVNSGTKEVKIVSST
HFNNEEKYDYTLMVFAQPIYNSADFKTEEDNLQKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKAEYKKLEQTKKALAEQVKAITEFQNQOPTNEKMTDLQDAHYVVYESVENSE
SMMDTFVEHPIKTGTLNGKKYVMKTTNDDYWKDFMVEGKVRVTISKDAKNNTRTIIFPY
VEGKALYDAIVKVVVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSVVEKESQKQDSQKDDNKQLPSVEKENDASSESGKDTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 27

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTAEQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIIDKDHSAPNWRPIDFEMKNDKGTTQFYHYASSVEPARVIFTK
SKPIIELGLQSGSTWRKFEVYEGDKKLPIKLVSYDTDKYAYIRFSVNSGTKEVKIVSST
HFNNEEKYDYTLMVFAQPIYNSADFKTEEDNLQKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKAEYKKLEQTKKALAEQVKAITEFQNQOPTNEKMTDLQDAHYVVYESVENSE
SMMDTFVEHPIKTGTLNGKKYVMKTTNDDYWKDFMVEGKVRVTISKDPKNNTRTIIFPY
VEGKALYDAIVKVVVKTIDYDGQYHVRIVDKEINTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSVVEKESQKQDSQKDDNKQLPSVEKENDASSESGKDTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 28

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTAEQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIIDKDHSAPNWRPIDFEMKNDKGTTQFYHYASSVEPARVIFTK
SKPIIELGLQSGSTWRKFEVYEGDKKLPIKLVSYDTDKYAYIRFSVNSGTKEVKIVSST
HFNNEEKYDYTLMVFAQPIYNSADFKTEEDNLQKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKAEYKKLEQTKKALAEQVKAITEFQNQOPTNEKMTDLQDAHYVVYESVENSE
SMMDTFVEHPIKTGTLNGKKYVMKTTNDDYWKDFMVEGKVRVTISKDPKNNTRTIIFPY
VEGKALYDAIVKVVVKTIDYDGQYHVRIVDKEINTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSVVEKESQKQDSQKDDNKQLPSVEKENDASSESGKDTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 29

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTAEQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIAKNPAIIDKDHSAPNWRPIDFEMKNDKGTTQFYHYASSVEPARVIFTK
SKPIIELGLQSGSTWRKFEVYEGDKKLPIKLVSYDTDKYAYIRFSVNSGTKEVKIVSST
HFGNNEEKYDYTLMVFAQPIYNNPDKFTEEDYNLQKLLAPYKKAKTLERQVYELEKIQD
KLPEKLKAEYKKLEQTKKALAEQVKAITEFQNQOPTNEKMTDLQDAHYVVYESVENSE
SMMDTFVEHPIKTGTLNGKKYVMKTTNDDYWKDFMVEGKVRVTISKDPKNNTRTIIFPY
VEGKALYDAIVKVVVKTIDYDGQYHVRIVDKEINTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSVVEKESQKQDSQKDDNKQLPSVEKENDASSESGKDTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

Fig. 2E

21349PV

SEQ ID NO: 9

MNKQQKEFKSFYSIRKSSLGVASVAI~~STLLLLMSNGEAQAAAETGGTNT~~TEAQPKTEAVA
SPTTSEKAPETKPVANAVSVNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREA~~IKNPAIKDKEHSAPNSRPIDFEMKKKDGTQQFYHYASSV~~KPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKL~~PVKLVSYDTVKDYAYIRFSVSNGT~~KAVKIVSST
HFNNEEKYDYLMEFAQPIYNSADKF~~KTEEDYKAEKLLAPYKKAKTLERQVYELNK~~LQE
KLPEKLKA~~EYKKLEDTKALDEQVKS~~AVTEFQNVQPTNDKMTDLQDTKYVVYESVENNE
SMMDTFVKHPIKTGMLNGKKYVMETTNDDYW~~KDFMVEGQRVRTIS~~DAKNNTRTLIFPY
IEGKTL~~YDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQ~~DNSAKKEATPAT
PSKPTPSPVEKESQKQDSQKDDNQ~~QLPSVEKENDASSESGKD~~KTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTDV~~VQTSAGSSEAKDS~~APLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPKRKN

SEQ ID NO: 30

MNKQQKEFKSFYSIRKSSLGVASVAI~~STLLLLMSNGEAQAAAETGGTNT~~TEAQPKTEAVA
SPTTSEKAPETKPVANAVSVNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREA~~IKNPAIKDKEHSAPNSRPIDFEMKKKDGTQQFYHYASSV~~KPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKL~~PVKLVSYDTVKDYAYIRFSVSNGT~~KAVKIVSST
HFNNEEKYDYLMEFAQPIYNSADKF~~KTEEDYKAEKLLAPYKKAKTLERQVYELNK~~IQD
KLPEKLKA~~EYKKLEDTKALDEQVKS~~AVTEFQNVQPTNDKMTDLQDTKYVVYESVENNE
SMMDTFVKHPIKTGMLNGKKYVMETTNDDYW~~KDFMVEGQRVRTIS~~DAKNNTRTIIFPY
VEGKTL~~YDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQ~~DNSAKKEATPAT
PSKPTPSPVEKESQKQDSQKDDNQ~~QLPSVEKENDASSESGKD~~KTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTDV~~VQTSAGSSEAKDS~~APLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPKRKN

SEQ ID NO: 31

MNKQQKEFKSFYSIRKSSLGVASVAI~~STLLLLMSNGEAQAAAETGGTNT~~TEAQPKTEAVA
SPTTSEKAPETKPVANAVSVNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREA~~IKNPAIKDKEHSAPNSRPIDFEMKKKDGTQQFYHYASSV~~KPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKL~~PVKLVSYDTVKDYAYIRFSVSNGT~~KAVKIVSST
HFNNEEKYDYLMEFAQPIYNSADKF~~KTEEDYKAEKLLAPYKKAKTLERQVYELNK~~IQD
KLPEKLKA~~EYKKLEDTKALDEQVKS~~AVTEFQNVQPTNDKMTDLQDTKYVVYESVENNE
SMMDTFVKHPIKTGMLNGKKYVMETTNDDYW~~KDFMVEGQRVRTIS~~DAKNNTRTIIFPY
IEGKTL~~YDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQ~~DNSAKKEATPAT
PSKPTPSPVEKESQKQDSQKDDNQ~~QLPSVEKENDASSESGKD~~KTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTDV~~VQTSAGSSEAKDS~~APLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPKRKN

SEQ ID NO: 32

MNKQQKEFKSFYSIRKSSLGVASVAI~~STLLLLMSNGEAQAAAETGGTNT~~TEAQPKTEAVA
SPTTSEKAPETKPVANAVSVNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREA~~IKNPAIKDKEHSAPNSRPIDFEMKKKDGTQQFYHYASSV~~KPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKL~~PVKLVSYDTVKDYAYIRFSVSNGT~~KAVKIVSST
HFNNEEKYDYLMEFAQPIYNSADKF~~KTEEDYKAEKLLAPYKKAKTLERQVYELNK~~IQD
KLPEKLKA~~EYKKLEDTKALDEQVKS~~AVTEFQNVQPTNDKMTDLQDTKYVVYESVENNE
SMMDTFVKHPIKTGMLNGKKYVMETTNDDYW~~KDFMVEGQRVRTIS~~DAKNNTRTIIFPY
IEGKTL~~YDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQ~~DNSAKKEATPAT
PSKPTPSPVEKESQKQDSQKDDNQ~~QLPSVEKENDASSESGKD~~KTPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTDV~~VQTSAGSSEAKDS~~APLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPKRKN

Fig. 2F

21349PV

SEQ ID NO: 33

MNQQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNPAIKDKEHSAPNSRPIDFEMKKKDGTQQFYHYASSVKPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKLPVKLVSYDTVKDYAYIRFSVSNGTKAVKIVSST
HFNNKEEKYDYLMEFAQPIYNSADKFTEEDYKAEKLLAPYKKAKTLERQVYELNKIQLD
KLPEKLKAEYKKLEDTKALDEQVKSATTEFQNVQPTNDKMTDLQDTKYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTLIFPY
IEGKTLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKKEQQDNSAKKEATPAT
PSKPTPSPVEKESQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 34

MNQQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNPAIKDKEHSAPNSRPIDFEMKKKDGTQQFYHYASSVKPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKLPVKLVSYDTVKDYAYIRFSVSNGTKAVKIVSST
HFNNKEEKYDYLMEFAQPIYNSADKFTEEDYKAEKLLAPYKKAKTLERQVYELNKIQLD
KLPEKLKAEYKKLEDTKALDEQVKSATTEFQNVQPTNDKMTDLQDTKYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYVMETTNDDYWKDFMVEGQRVRTISKDAKNNTRTLIFPY
IEGKTLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKKEQQDNSAKKEATPAT
PSKPTPSPVEKESQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

Fig. 2G

21349PV

SEQ ID NO: 10

MNKQQKEFKSFYSIRKSSILGVASVAISTLLLLMSNGEAQAAAETGGTNTAEQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELRDAIKNPAIKDKDEHTAPNSRPIDFEMKKKDGTQQFYHYASTVKPARVIFTD
TKPEIELGLQTAQFWKKFEVYEGDKKLKVLSYDSVKDYAYIRFSVSNGTRAVKIVSST
HYNNEEKYDTLMEFAQPIYNSADKYKTEEDYKAEKLLAPYKKAKTLERQVYELNKLQD
KLPEKLKAЕYKKLDDTRAKALDDQVKSAVTEFQNQPTNDKLTDLQETKFVVFESVENNE
SMMDTFVVKHPIKTAMLNGKKYVMETTNDDYWKDFIVEGQRVRTVSKDAKNNSRTLIFPY
IEGKTVYDAIVKVHVKTIDYEGQYHVRIIDKDAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPVEKESQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 35

MNKQQKEFKSFYSIRKSSILGVASVAISTLLLLMSNGEAQAAAETGGTNTAEQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNAIKDKDHSAAPNSRPIDFEMKKKDGTQQFYHYASSVKPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKLKVLSYDTVKDYAYIRFSVSNGTRAVKIVSST
HFNNEEKYDTLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNKIQD
KLPEKLKAЕYKKLDEDTKAKALDEQVKSATEFQNQPTNEKMTDLQDTKYVVYESVENNE
SMMDTFVVKHPIKTGMLNGKKYVMETTNDDYWKDFMVEGQRVRTISKDAKNNRTIIFPY
VEGKTLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPVEKESQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 36

MNKQQKEFKSFYSIRKSSILGVASVAISTLLLLMSNGEAQAAAETGGTNTAEQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNAIKDKDHSAAPNSRPIDFEMKKKDGTQQFYHYASSVKPARVIFTD
SKPEIELGLQSGQFWRKFEVYEGDKKLKVLSYDSVKDYAYIRFSVSNGTRAVKIVSST
HYNNEEKYDTLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNKIQD
KLPEKLKAЕYKKLDEDTKAKALDEQVKSATEFQNQPTNEKMTDLQDTKYVVYESVENNE
SMMDTFVVKHPIKTGMLNGKKYVMETTNDDYWKDFMVEGQRVRTISKDAKNNRTIIFPY
VEGKTLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPVEKESQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 37

MNKQQKEFKSFYSIRKSSILGVASVAISTLLLLMSNGEAQAAAETGGTNTAEQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNAIKDKDHSAAPNSRPIDFEMKKKDGTQQFYHYASSVKPARVIFTD
TKPEIELGLQSGQFWRKFEVYEGDKKLKVLSYDSVKDYAYIRFSVSNGTRAVKIVSST
HYNNEEKYDTLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNKIQD
KLPEKLKAЕYKKLDEDTKAKALDEQVKSATEFQNQPTNEKMTDLQDTKYVVYESVENNE
SMMDTFVVKHPIKTGMLNGKKYVMETTNDDYWKDFMVEGQRVRTISKDAKNNRTIIFPY
VEGKTLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDKSNKEQQDNSAKKEATPAT
PSKPTPSPVEKESQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSGSSEAKDSAPLQKANIKNTNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

Fig. 2H

21349PV

SEQ ID NO: 38

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELREAIKNPAIKDKDHSAPNSRPIDFEMKKKDGTQQFYHYASTVKPARVIFTD
TKPEIELGLQSGQFWRKFEVYEGDKKLPVKLVSYDSVKDYAYIRFSVSNGTRAVKIVSST
HYNNEEEKYDYTLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNKIQC
KLPEKLKAЕYKKLEDTKALDEQVKSАITEFQNVQPTNEKMTDLQDTKYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYMVMETTNDDYWKDFMVEGQRVRTISKDAKNNRTIIIFPY
VEGKTLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDSNKKEQQDNSAKKEATPAT
PSKPTPSPVKEQSQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 39

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELRDAIKNPAIKDKEHTAPNSRPIDFEMKKKDGTQQFYHYASTVKPARVIFTD
TKPEIELGLQSGQFWRKFEVYEGDKKLPVKLVSYDSVKDYAYIRFSVSNGTRAVKIVSST
HYNNEEEKYDYTLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNKIQC
KLPEKLKAЕYKKLEDTKALDEQVKSАITEFQNVQPTNEKMTDLQDTKYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYMVMETTNDDYWKDFMVEGQRVRTISKDAKNNRTIIIFPY
VEGKTLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDSNKKEQQDNSAKKEATPAT
PSKPTPSPVKEQSQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

SEQ ID NO: 40

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTEAQPKTEAVA
SPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNN
TYPILNQELRDAIKNPAIKDKEHTAPNSRPIDFEMKKKDGTQQFYHYASTVKPARVIFTD
TKPEIELGLQTAQFWRKFEVYEGDKKLPVKLVSYDSVKDYAYIRFSVSNGTRAVKIVSST
HYNNEEEKYDYTLMEFAQPIYNSADKFKTEEDYKAEKLLAPYKKAKTLERQVYELNKIQC
KLPEKLKAЕYKKLDKALDDQVKSАITEFQNVQPTNEKMTDLQDTKYVVYESVENNE
SMMDFVKHPIKTGMLNGKKYMVMETTNDDYWKDFMVEGQRVRTISKDAKNNRTIIIFPY
VEGKTLYDAIVKVHVKTIDYDGQYHVRIVDKEAFTKANTDSNKKEQQDNSAKKEATPAT
PSKPTPSPVKEQSQKQDSQKDDNKQLPSVEKENDASSESGKDCKPATKPTKGEVESSTT
PTKVVSTTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNK
NTQENAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

Fig. 2I

21349PV

SEQ ID NO: 41

MNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGGTNTAEQPKTEAVASPTTSEKAPETKPVANA
VSVSNKEVEAPTSETKEAKEVKEVKAPKETKEVKPAAKATNNNTYPILNQELREAIKNPAIIDKDHSAPNSRPIDFEMK
KKDGTQQFYHYASSVKPARVIFTKTGPVIELGLKTASTWRKFVYEGDKKLPIKLVSYDTVKDYAYIRFPVSNGLRDV
KIVSSIEYGENIHEDYDYLTMVFAQPITNNPDDYVDEETYNLQKLLAPYHKAKTLERQVYELNKIQDKLPEKLKAEYK
KKLEDTKKALDEQVKSIAITEFQNVQPTNEKMTDLQDTKYVVFESEENSESVMDFVVEHPFYATLNGQKYVVMKTKDD
SYWKDLIVEGKRVTTSKDPKNNSRRIIFPYVEGKAVYNAIVKVVVKTIIDYDGQYHVRIVDKEAFTKANTDKSNKKEQ
QDNSAKKEATPATPSKPTPSVKEESQKQDSQKDDNKQLPSVEKENDASSESGKDTPATKPTKGEVESSTTPTKVV
STTQNVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNNDGHTQSQNNKNTQENKAKS LPQTGEESNKDMTL
PLMALLALSSIVAFV

Fig. 2J

21349PV

SEQ ID NO: 42

MNKHPKLRSFYSIRKSTLGVASVIVSTLFLITSQHQAAENTNTSDKISENQNNNATTTQQPKDTNQTQPATQPVI
TAKNYPAADES LKDAIKDPALENKEHDIGPREQVN FQLLDKNNETQYYHFFS IKDPADVYYTKKAEVELDINTASTW
KKFEVYENNQKL PVRVLVSYSPVPEDHAYIRFPVSDGTQELKIVSSTQIDGEETNYDYTKLVFAKPIYNDPSLVKS DT
NDAVVTNDQSSDASNQNTNTSNQNTSTTNANNQPA TNMSQPAQPKSSANADQASSQPAHETNSNGNTNDKTNE
SSNQSDVNQQYPPADESLQDAIKNPAIKDKDH SAPNSRPIDFEMKKDG TQQFYHYASSVKPARVIFTDSKPEIELGL
QSGQFWRKFEVYEGDKKLPIKLVSYDTVKDYAYIREFSVSNGTKAVKIVSSTHFNNKEEKYD YTLMEFAQPIYNSADKF
KTEDYKAEKLLAPYKKAKTLERQVYELNKIQDKLPEKLKA EYKKKLEDTKKALDEQVKAITEFQNVQPTNEKMTDL
QDTKYVVYESVENNESMDTFVKHPIKTGMLNGKKYVMETTNDDYWKDFMVEGQRVRTISKDAKNNRTIIIFPYVEG
KTLYDAIVKVHVKTIDYDGQYHVRIINQDINTKDDDSQNNTSEPLNVQTGQEGKVADTDVAENSSTATNPKDASDKA
DVIEPESDVVKDADNNIDKDVQHDVDHLS DMSDNNHFDKYDLKEMDTQIAKDTDRNV DNSVG MSSNV DTDKDSNKNKD
KVIQLAHIA DKNNHTGKA KLDVVVKQNYNN TDKVTDKKTTEHLPDIHKTVKTKEAGTPSKENKL SQSKMLPK
TGETTSSQS WNWGLYALLGMLALFIPKFRKESK

Fig. 2K

21349PV

SEQ ID NO: 43

MNQQQKEFKSFYSIRKSSLGVASVAI~~STLLLLMSNGEAQAAAETGGTNT~~EAQPKTEAVASPTTSEKAPETKPVANA
VS~~VSNKE~~APTSETKEAKEVKEV~~KAPKET~~KEVKPAAKATNN~~TYPILNQELREA~~IKNPAI~~IDKEHTADNWRP~~IDFQMK
NDKGERQFYHYASTVEPATVIFTKTGPVIELGLKTA~~STWKKFEVYEGDKL~~PVELSYDSDKDYAYIRFPV~~SGTRDV~~
KIVSSIEYGENIHEDYDY~~TLMVFAQPITNNPDDYVDEETYNLQKLL~~APYHKAKTLERQVYELEKLQEKLP~~EKYKAEYK~~
KKLDQTRVELADQVKS~~AVTEFENVTP~~TNDQLTDI~~QEAHFVVFESEENSESVMDFV~~EHPFY~~TATLNGQKYVVMKT~~KDD
SYWKDLIVEGKRVTTVSKDPKNN~~SRTLIFPYIPDKAVYNAIVKV~~VVANIGYEGQYHVRIVDKEAFTKANTDKSNKKEQ
QDNSAKKEATPATPSKPTPSV~~EKSQKQDSQKDDNKQLPS~~VEKENDASSESGKD~~KTPATKPT~~GEVESSSTTPTKVV
STTQN~~VAKPTTASSKTT~~DVVQTSAGSSEAKDS~~APLQKANI~~KNTNDGHTQSQNNKNTQENKAKSLPQTGEESNKDM~~TL~~
PLMALLALSSIVAFV

Fig. 2L

21349PV

a. Forward

aac cg_g ttt tcc atg ggg aac aaa cag caa aaa gaa ttt
N R F S M G N K Q Q K E F

b. Reverse

gta tta cct aga aaa cgt aaa aac ctc gag aaa ccg gt
V L P R K R K N (L E K P)

Fig. 3

21349PV

MGNQQKEFK SFYSIRKSSL GVASVAISTL LLLMSNGEAQ AAAEETGGTN TEAQPKTEAV ASPTTTSEKA
PETKPVANAV SVSNKEVEAP TSETKEAKEV KEVKAPKETK EVKPAAKATN NTYPILNQEL REAIKNPAIK
DKDHSAPNSR PIDFEMKKKD GTQQFYHYAS SVKPARVIFT DSKPEIELGL QSGQFWRKFE VYEGDKKLPI
KLVSYDTVKD YAYIRFSVSN GTKAVKIVSS THFNNKEEKY DYTLMEFAQP IYNSADKFKT EEDYKAEKLL
APYKKAKTLE RQVYELNKIQ DKLPEKLKAE YKKKLEDTKK ALDEQVKSAI TEFQNVQPTN EKMTDLQDTK
VVYESVENN ESMMDTFVKH PIKTGMLNGK KYMVMETTND DYWKDFMVEG QRVRTISKDA KNNTRTIIFP
YVEGKTLYDA IVKVHVKTID YDGQYHVRIV DKEAFTKANT DKSNKKEQQD NSAKKEATPA TPSKPTPSPV
EKESQKQDSQ KDDNKQLPSV EKENDASSES GKDKTPATKP TKGEVESSST TPTKVVSTTQ NVAKPTTASS
KTTKDVVQTS AGSSEAKDSA PLQKANIINT NDGHTQSQNN KNTQENKAKS LPQTGEESNK DMTLPLMALL
ALSSIVAFVL PRKRKNLEHH HHHH

Fig. 4A

MN-----/ /----RKRKN*

MGN-----/ /----RKRKNLEHHHHHH*

Fig. 4B

21349PV

Fig. 5

SEQUENCE LISTING

<110> Anderson, Annaliesa S.
Kuklin, Nelly
Jansen, Kathrin Ute

<120> POLYPEPTIDES FOR INDUCING A PROTECTIVE
IMMUNE RESPONSE AGAINST STAPHYLOCOCCUS AUREUS

<130> 21349PV

<160> 56

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 895
<212> PRT
<213> Staphylococcus aureus

<400> 1
Met Asn Lys His His Pro Lys Leu Arg Ser Phe Tyr Ser Ile Arg Lys
1 5 10 15
Ser Thr Leu Gly Val Ala Ser Val Ile Val Ser Thr Leu Phe Leu Ile
20 25 30
Thr Ser Gln His Gln Ala Gln Ala Ala Glu Asn Thr Asn Thr Ser Asp
35 40 45
Lys Ile Ser Glu Asn Gln Asn Asn Ala Thr Thr Thr Gln Pro Pro
50 55 60
Lys Asp Thr Asn Gln Thr Gln Pro Ala Thr Gln Pro Ala Asn Thr Ala
65 70 75 80
Lys Asn Tyr Pro Ala Ala Asp Glu Ser Leu Lys Asp Ala Ile Lys Asp
85 90 95
Pro Ala Leu Glu Asn Lys Glu His Asp Ile Gly Pro Arg Glu Gln Val
100 105 110
Asn Phe Gln Leu Leu Asp Lys Asn Asn Glu Thr Gln Tyr Tyr His Phe
115 120 125
Phe Ser Ile Lys Asp Pro Ala Asp Val Tyr Tyr Thr Lys Lys Ala
130 135 140
Glu Val Glu Leu Asp Ile Asn Thr Ala Ser Thr Trp Lys Lys Phe Glu
145 150 155 160
Val Tyr Glu Asn Asn Gln Lys Leu Pro Val Arg Leu Val Ser Tyr Ser
165 170 175
Pro Val Pro Glu Asp His Ala Tyr Ile Arg Phe Pro Val Ser Asp Gly
180 185 190
Thr Gln Glu Leu Lys Ile Val Ser Ser Thr Gln Ile Asp Asp Gly Glu
195 200 205
Glu Thr Asn Tyr Asp Tyr Thr Lys Leu Val Phe Ala Lys Pro Ile Tyr
210 215 220
Asn Asp Pro Ser Leu Val Lys Ser Asp Thr Asn Asp Ala Val Val Thr
225 230 235 240
Asn Asp Gln Ser Ser Ser Val Ala Ser Asn Gln Thr Asn Thr Asn Thr
245 250 255
Ser Asn Gln Asn Thr Ser Thr Ile Asn Asn Ala Asn Asn Gln Pro Gln
260 265 270

Ala Thr Thr Asn Met Ser Gln Pro Ala Gln Pro Lys Ser Ser Thr Asn
 275 280 285
 Ala Asp Gln Ala Ser Ser Gln Pro Ala His Glu Thr Asn Ser Asn Gly
 290 295 300
 Asn Thr Asn Asp Lys Thr Asn Glu Ser Ser Asn Gln Ser Asp Val Asn
 305 310 315 320
 Gln Gln Tyr Pro Pro Ala Asp Glu Ser Leu Gln Asp Ala Ile Lys Asn
 325 330 335
 Pro Ala Ile Ile Asp Lys Glu His Thr Ala Asp Asn Trp Arg Pro Ile
 340 345 350
 Asp Phe Gln Met Lys Asn Asp Lys Gly Glu Arg Gln Phe Tyr His Tyr
 355 360 365
 Ala Ser Thr Val Glu Pro Ala Thr Val Ile Phe Thr Lys Thr Gly Pro
 370 375 380
 Ile Ile Glu Leu Gly Leu Lys Thr Ala Ser Thr Trp Lys Lys Phe Glu
 385 390 395 400
 Val Tyr Glu Gly Asp Lys Lys Leu Pro Val Glu Leu Val Ser Tyr Asp
 405 410 415
 Ser Asp Lys Asp Tyr Ala Tyr Ile Arg Phe Pro Val Ser Asn Gly Thr
 420 425 430
 Arg Glu Val Lys Ile Val Ser Ser Ile Glu Tyr Gly Glu Asn Ile His
 435 440 445
 Glu Asp Tyr Asp Tyr Thr Leu Met Val Phe Ala Gln Pro Ile Thr Asn
 450 455 460
 Asn Pro Asp Asp Tyr Val Asp Glu Glu Thr Tyr Asn Leu Gln Lys Leu
 465 470 475 480
 Leu Ala Pro Tyr His Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu
 485 490 495
 Leu Glu Lys Leu Gln Glu Lys Leu Pro Glu Lys Tyr Lys Ala Glu Tyr
 500 505 510
 Lys Lys Leu Asp Gln Thr Arg Val Glu Leu Ala Asp Gln Val Lys
 515 520 525
 Ser Ala Val Thr Glu Phe Glu Asn Val Thr Pro Thr Asn Asp Gln Leu
 530 535 540
 Thr Asp Leu Gln Glu Ala His Phe Val Val Phe Glu Ser Glu Glu Asn
 545 550 555 560
 Ser Glu Ser Val Met Asp Gly Phe Val Glu His Pro Phe Tyr Thr Ala
 565 570 575
 Thr Leu Asn Gly Gln Lys Tyr Val Val Met Lys Thr Lys Asp Asp Ser
 580 585 590
 Tyr Trp Lys Asp Leu Ile Val Glu Gly Lys Arg Val Thr Thr Val Ser
 595 600 605
 Lys Asp Pro Lys Asn Asn Ser Arg Thr Leu Ile Phe Pro Tyr Ile Pro
 610 615 620
 Asp Lys Ala Val Tyr Asn Ala Ile Val Lys Val Val Val Ala Asn Ile
 625 630 635 640
 Gly Tyr Glu Gly Gln Tyr His Val Arg Ile Ile Asn Gln Asp Ile Asn
 645 650 655
 Thr Lys Asp Asp Asp Thr Ser Gln Asn Asn Thr Ser Glu Pro Leu Asn
 660 665 670
 Val Gln Thr Gly Gln Glu Gly Lys Val Ala Asp Thr Asp Val Ala Glu
 675 680 685
 Asn Ser Ser Thr Ala Thr Asn Pro Lys Asp Ala Ser Asp Lys Ala Asp
 690 695 700

Val Ile Glu Pro Glu Ser Asp Val Val Lys Asp Ala Asp Asn Asn Ile
 705 710 715 720
 Asp Lys Asp Val Gln His Asp Val Asp His Leu Ser Asp Met Ser Asp
 725 730 735
 Asn Asn His Phe Asp Lys Tyr Asp Leu Lys Glu Met Asp Thr Gln Ile
 740 745 750
 Ala Lys Asp Thr Asp Arg Asn Val Asp Lys Asp Ala Asp Asn Ser Val
 755 760 765
 Gly Met Ser Ser Asn Val Asp Thr Asp Lys Asp Ser Asn Lys Asn Lys
 770 775 780
 Asp Lys Val Ile Gln Leu Asn His Ile Ala Asp Lys Asn Asn His Thr
 785 790 795 800
 Gly Lys Ala Ala Lys Leu Asp Val Val Lys Gln Asn Tyr Asn Asn Thr
 805 810 815
 Asp Lys Val Thr Asp Lys Lys Thr Thr Glu His Leu Pro Ser Asp Ile
 820 825 830
 His Lys Thr Val Asp Lys Thr Val Lys Thr Lys Glu Lys Ala Gly Thr
 835 840 845
 Pro Ser Lys Glu Asn Lys Leu Ser Gln Ser Lys Met Leu Pro Lys Thr
 850 855 860
 Gly Glu Thr Thr Ser Ser Gln Ser Trp Trp Gly Leu Tyr Ala Leu Leu
 865 870 875 880
 Gly Met Leu Ala Leu Phe Ile Pro Lys Phe Arg Lys Glu Ser Lys
 885 890 895

<210> 2
 <211> 645
 <212> PRT
 <213> Staphylococcus aureus

<400> 2
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190

Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620

Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 3
<211> 649
<212> PRT
<213> Staphylococcus aureus

<400> 3
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu Lieu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gin Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350

Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Lys Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn Leu Glu Lys Thr
 645

<210> 4
 <211> 647
 <212> PRT
 <213> Staphylococcus aureus

<400> 4
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80

Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly
 145 150 155 160
 Glu Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510

Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Thr Thr Pro Thr Lys Val Val
 530 535 540
 Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Ala Ser Ser Lys Thr Thr
 545 550 555 560
 Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser
 565 570 575
 Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His Thr
 580 585 590
 Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser Leu
 595 600 605
 Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro Leu Met
 610 615 620
 Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro Arg Lys
 625 630 635 640
 Arg Lys Asn Leu Glu Lys Pro
 645

<210> 5
 <211> 645
 <212> PRT
 <213> Staphylococcus aureus

<400> 5
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Glu Glu Thr Gly Gly Thr Asn
 35 40 45
 Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr
 50 55 60
 Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val
 65 70 75 80
 Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys
 85 90 95
 Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro
 100 105 110
 Ala Thr Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu
 115 120 125
 Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala
 130 135 140
 Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu
 145 150 155 160
 Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile
 165 170 175
 Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln
 180 185 190
 Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile
 195 200 205
 Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe
 210 215 220
 Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His
 225 230 235 240

Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala
 245 250 255
 Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr
 260 265 270
 Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu
 275 280 285
 Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys
 290 295 300
 Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu
 305 310 315 320
 Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro
 325 330 335
 Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr
 340 345 350
 Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His
 355 360 365
 Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu
 370 375 380
 Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg
 385 390 395 400
 Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile
 405 410 415
 Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val
 420 425 430
 His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val
 435 440 445
 Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys
 450 455 460
 Glu Gln Gln Asp Asn Ser Ala Lys Arg Glu Ala Thr Pro Ala Thr Pro
 465 470 475 480
 Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln Asp
 485 490 495
 Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu Asn
 500 505 510
 Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys Pro
 515 520 525
 Ala Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val
 530 535 540
 Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys Thr
 545 550 555 560
 Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp
 565 570 575
 Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His
 580 585 590
 Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser
 595 600 605
 Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro Leu
 610 615 620
 Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro Arg
 625 630 635 640
 Lys Arg Lys Asn Leu
 645

<210> 6
<211> 645

<212> PRT

<213> Staphylococcus aureus

<400> 6

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Glu Glu Thr Gly Gly Thr Asn
 35 40 45
 Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr
 50 55 60
 Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser Val
 65 70 75 80
 Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys
 85 90 95
 Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Ala Val Lys Pro
 100 105 110
 Ala Thr Lys Ala Asp Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu
 115 120 125
 Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala
 130 135 140
 Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Glu Asn Gly Glu
 145 150 155 160
 Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile
 165 170 175
 Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln
 180 185 190
 Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile
 195 200 205
 Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe
 210 215 220
 Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His
 225 230 235 240
 Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala
 245 250 255
 Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr
 260 265 270
 Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu
 275 280 285
 Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys
 290 295 300
 Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu
 305 310 315 320
 Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro
 325 330 335
 Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr
 340 345 350
 Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His
 355 360 365
 Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu
 370 375 380
 Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln Arg
 385 390 395 400

Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile
 405 410 415
 Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val
 420 425 430
 His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val
 435 440 445
 Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys
 450 455 460
 Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro
 465 470 475 480
 Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln Asp
 485 490 495
 Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu Asn
 500 505 510
 Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys Pro
 515 520 525
 Ala Lys Gly Glu Val Glu Ser Ser Thr Thr Pro Thr Lys Val Val
 530 535 540
 Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys Thr
 545 550 555 560
 Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp
 565 570 575
 Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His
 580 585 590
 Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser
 595 600 605
 Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro Leu
 610 615 620
 Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro Arg
 625 630 635 640
 Lys Arg Lys Asn Leu
 645

<210> 7
 <211> 654
 <212> PRT
 <213> Staphylococcus aureus

<400> 7

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys			
1 5 10 15			
Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu			
20 25 30			
Met Ser Asn Gly Glu Ala Lys Ala Ala Glu Glu Thr Gly Gly Thr Ile			
35 40 45			
Thr Glu Thr Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr Thr			
50 55 60			
Thr Glu Lys Ala Pro Glu Ala Lys Pro Val Ala Asn Ala Val Ser Val			
65 70 75 80			
Ser Asn Lys Glu Val Val Ala Pro Thr Thr Glu Thr Lys Glu Ala Lys			
85 90 95			
Glu Val Lys Glu Val Lys Ala Pro Asn Glu Thr Lys Glu Val Lys Pro			
100 105 110			
Ala Ala Lys Ser Asp Asn Asn Thr Tyr Pro Ile Leu Asn Glu Glu Leu			
115 120 125			

Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser Ala
 130 135 140
 Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly Thr
 145 150 155 160
 Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val Ile
 165 170 175
 Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln
 180 185 190
 Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile
 195 200 205
 Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe
 210 215 220
 Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr His
 225 230 235 240
 Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala
 245 250 255
 Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr
 260 265 270
 Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu
 275 280 285
 Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys
 290 295 300
 Leu Lys Ala Glu Tyr Lys Lys Leu Glu Glu Thr Lys Lys Ala Leu
 305 310 315 320
 Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln Pro
 325 330 335
 Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr
 340 345 350
 Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys His
 355 360 365
 Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met Glu
 370 375 380
 Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Glu Arg
 385 390 395 400
 Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile
 405 410 415
 Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys Val
 420 425 430
 His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile Val
 435 440 445
 Asp Lys Glu Ala Phe Thr Lys Ala Asn Ala Asp Lys Ser Asn Lys Lys
 450 455 460
 Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro
 465 470 475 480
 Ser Lys Pro Thr Thr Ala Pro Val Glu Lys Glu Ser Gln Lys Gln Asp
 485 490 495
 Ser Gln Lys Asp Asp Asn Lys Gln Ser Pro Ser Val Glu Lys Glu Ile
 500 505 510
 Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys Pro
 515 520 525
 Ala Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val Val
 530 535 540
 Ser Ala Thr Gln Asn Val Ala Lys Pro Thr Ser Ala Ser Ser Glu Thr
 545 550 555 560

Thr Lys Gly Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp
 565 570 575
 Asn Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly His
 580 585 590
 Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser
 595 600 605
 Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro Leu
 610 615 620
 Met Ala Leu Leu Ala Leu Ser Ser Ile Ile Ala Phe Val Leu Pro Arg
 625 630 635 640
 Lys Arg Lys Asn Leu Glu Lys Pro Val Arg Ala Asn Ser Ser
 645 650

<210> 8

<211> 645

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 8

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Ile Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Ser Thr Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Gly Glu Asn Ile His Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255

Ala Gln Pro Ile Tyr Asn Asn Pro Asp Lys Phe Val Asp Glu Glu Asp
 260 265 270
 Tyr Asn Leu Gln Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Gln Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Ala His Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Ser Glu Ser Met Met Asp Thr Phe Val Glu
 355 360 365
 His Pro Ile Lys Thr Gly Thr Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Lys Thr Thr Asn Asp Ser Tyr Trp Lys Asp Phe Met Val Glu Gly Lys
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Pro Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Ala Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val Val Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ile Asn Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 9
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 9

Met	Asn	Lys	Gln	Gln	Lys	Glu	Phe	Lys	Ser	Phe	Tyr	Ser	Ile	Arg	Lys
1					5			10					15		
Ser	Ser	Leu	Gly	Val	Ala	Ser	Val	Ala	Ile	Ser	Thr	Leu	Leu	Leu	Leu
					20			25					30		
Met	Ser	Asn	Gly	Glu	Ala	Gln	Ala	Ala	Ala	Glu	Glu	Thr	Gly	Gly	Thr
					35			40				45			
Asn	Thr	Glu	Ala	Gln	Pro	Lys	Thr	Glu	Ala	Val	Ala	Ser	Pro	Thr	Thr
					50			55				60			
Thr	Ser	Glu	Ala	Pro	Glu	Thr	Lys	Pro	Val	Ala	Asn	Ala	Val	Ser	
					65			70			75		80		
Val	Ser	Asn	Lys	Glu	Val	Glu	Ala	Pro	Thr	Ser	Glu	Thr	Lys	Glu	Ala
					85			90				95			
Lys	Glu	Val	Lys	Glu	Val	Lys	Ala	Pro	Lys	Glu	Thr	Lys	Glu	Val	Lys
					100			105			110				
Pro	Ala	Ala	Lys	Ala	Thr	Asn	Asn	Thr	Tyr	Pro	Ile	Leu	Asn	Gln	Glu
					115			120			125				
Leu	Arg	Glu	Ala	Ile	Lys	Asn	Pro	Ala	Ile	Lys	Asp	Lys	Glu	His	Ser
					130			135			140				
Ala	Pro	Asn	Ser	Arg	Pro	Ile	Asp	Phe	Glu	Met	Lys	Lys	Lys	Asp	Gly
					145			150			155		160		
Thr	Gln	Gln	Phe	Tyr	His	Tyr	Ala	Ser	Ser	Val	Lys	Pro	Ala	Arg	Val
					165			170			175				
Ile	Phe	Thr	Asp	Ser	Lys	Pro	Glu	Ile	Glu	Leu	Gly	Leu	Gln	Ser	Gly
					180			185			190				
Gln	Phe	Trp	Arg	Lys	Phe	Glu	Val	Tyr	Glu	Gly	Asp	Lys	Lys	Leu	Pro
					195			200			205				
Val	Lys	Leu	Val	Ser	Tyr	Asp	Thr	Val	Lys	Asp	Tyr	Ala	Tyr	Ile	Arg
					210			215			220				
Phe	Ser	Val	Ser	Asn	Gly	Thr	Lys	Ala	Val	Lys	Ile	Val	Ser	Ser	Thr
					225			230			235		240		
His	Phe	Asn	Asn	Lys	Glu	Glu	Lys	Tyr	Asp	Tyr	Thr	Leu	Met	Glu	Phe
					245			250			255				
Ala	Gln	Pro	Ile	Tyr	Asn	Ser	Ala	Asp	Lys	Phe	Lys	Thr	Glu	Glu	Asp
					260			265			270				
Tyr	Lys	Ala	Glu	Lys	Leu	Leu	Ala	Pro	Tyr	Lys	Ala	Lys	Thr	Leu	
					275			280			285				
Glu	Arg	Gln	Val	Tyr	Glu	Leu	Asn	Lys	Leu	Gln	Glu	Lys	Leu	Pro	Glu
					290			295			300				
Lys	Leu	Lys	Ala	Glu	Tyr	Lys	Lys	Leu	Glu	Asp	Thr	Lys	Lys	Ala	
					305			310			315		320		
Leu	Asp	Glu	Gln	Val	Lys	Ser	Ala	Val	Thr	Glu	Phe	Gln	Asn	Val	Gln
					325			330			335				
Pro	Thr	Asn	Asp	Lys	Met	Thr	Asp	Leu	Gln	Asp	Thr	Lys	Tyr	Val	Val
					340			345			350				
Tyr	Glu	Ser	Val	Glu	Asn	Asn	Glu	Ser	Met	Met	Asp	Thr	Phe	Val	Lys
					355			360			365				
His	Pro	Ile	Lys	Thr	Gly	Met	Leu	Asn	Gly	Lys	Lys	Tyr	Met	Val	Met
					370			375			380				
Glu	Thr	Thr	Asn	Asp	Asp	Tyr	Trp	Lys	Asp	Phe	Met	Val	Glu	Gly	Gln
					385			390			395		400		

Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Leu
 405 410 415
 Ile Phe Pro Tyr Ile Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Glu Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 10
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 10
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95

Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Asp Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Glu His Thr
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Thr Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Thr Lys Pro Glu Ile Glu Leu Gly Leu Gln Thr Ala
 180 185 190
 Gln Phe Trp Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Val Lys Leu Val Ser Tyr Asp Ser Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Arg Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Tyr Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Tyr Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Leu Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Asp Asp Thr Arg Lys Ala
 305 310 315 320
 Leu Asp Asp Gln Val Lys Ser Ala Val Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Asp Lys Leu Thr Asp Leu Gln Glu Thr Lys Phe Val Val
 340 345 350
 Phe Glu Ser Val Glu Asn Asn Glu Ser Val Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Ala Met Leu Asn Gly Lys Lys Tyr Val Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Ile Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Val Ser Lys Asp Ala Lys Asn Asn Ser Arg Thr Leu
 405 410 415
 Ile Phe Pro Tyr Ile Glu Gly Lys Thr Val Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Glu Gly Gln Tyr His Val Arg Ile
 435 440 445
 Ile Asp Lys Asp Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525

Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 . 645

<210> 11

<211> 645

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 11

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220

Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 12
<211> 645
<212> PRT
<213> Artificial Sequence

<220>
<223> Hybrid sequence

<400> 12
Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
1 5 10 15
Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
20 25 30
Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
35 40 45
Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
50 55 60
Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
65 70 75 80
Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
85 90 95
Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
100 105 110
Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
115 120 125
Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
130 135 140
Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
145 150 155 160
Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
165 170 175
Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
180 185 190
Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
195 200 205
Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
210 215 220
Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
225 230 235 240
His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
245 250 255
Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
260 265 270
Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
275 280 285
Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
290 295 300
Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
305 310 315 320
Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
325 330 335
Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
340 345 350
Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
355 360 365

His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 13
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 13
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60

Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495

Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 14

<211> 645

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 14

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190

Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620

Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
625 630 635 640
Arg Lys Arg Lys Asn
645

<210> 15
<211> 645
<212> PRT
<213> Artificial Sequence

<220>
<223> Hybrid sequence

<400> 15

Met	Asn	Lys	Gln	Gln	Lys	Glu	Phe	Lys	Ser	Phe	Tyr	Ser	Ile	Arg	Lys
1					5				10					15	
Ser	Ser	Leu	Gly	Val	Ala	Ser	Val	Ala	Ile	Ser	Thr	Leu	Leu	Leu	
					20				25				30		
Met	Ser	Asn	Gly	Glu	Ala	Gln	Ala	Ala	Ala	Glu	Glu	Thr	Gly	Gly	Thr
					35			40				45			
Asn	Thr	Glu	Ala	Gln	Pro	Lys	Thr	Glu	Ala	Val	Ala	Ser	Pro	Thr	Thr
					50		55				60				
Thr	Ser	Glu	Lys	Ala	Pro	Glu	Thr	Lys	Pro	Val	Ala	Asn	Ala	Val	Ser
					65	70			75				80		
Val	Ser	Asn	Lys	Glu	Val	Glu	Ala	Pro	Thr	Ser	Glu	Thr	Lys	Glu	Ala
					85				90				95		
Lys	Glu	Val	Lys	Glu	Val	Lys	Ala	Pro	Lys	Glu	Thr	Lys	Glu	Val	Lys
					100			105				110			
Pro	Ala	Ala	Lys	Ala	Thr	Asn	Asn	Thr	Tyr	Pro	Ile	Leu	Asn	Gln	Glu
					115			120				125			
Leu	Arg	Glu	Ala	Ile	Lys	Asn	Pro	Ala	Ile	Lys	Asp	Lys	Asp	His	Ser
					130		135				140				
Ala	Pro	Asn	Trp	Arg	Pro	Ile	Asp	Phe	Glu	Met	Lys	Lys	Lys	Asp	Gly
					145		150				155				160
Thr	Gln	Gln	Phe	Tyr	His	Tyr	Ala	Ser	Ser	Val	Glu	Pro	Ala	Arg	Val
					165				170				175		
Ile	Phe	Thr	Asp	Ser	Lys	Pro	Glu	Ile	Glu	Leu	Gly	Leu	Gln	Ser	Gly
					180			185				190			
Gln	Phe	Trp	Arg	Lys	Phe	Glu	Val	Tyr	Glu	Gly	Asp	Lys	Lys	Leu	Pro
					195			200				205			
Ile	Lys	Leu	Val	Ser	Tyr	Asp	Thr	Val	Lys	Asp	Tyr	Ala	Tyr	Ile	Arg
					210			215				220			
Phe	Ser	Val	Ser	Asn	Gly	Thr	Lys	Glu	Val	Lys	Ile	Val	Ser	Ser	Thr
					225		230				235				240
His	Phe	Asn	Asn	Lys	Glu	Glu	Lys	Tyr	Asp	Tyr	Thr	Leu	Met	Glu	Phe
					245				250				255		
Ala	Gln	Pro	Ile	Tyr	Asn	Ser	Ala	Asp	Lys	Phe	Lys	Thr	Glu	Glu	Asp
					260			265				270			
Tyr	Lys	Ala	Glu	Lys	Leu	Leu	Ala	Pro	Tyr	Lys	Lys	Ala	Lys	Thr	Leu
					275			280				285			
Glu	Arg	Gln	Val	Tyr	Glu	Leu	Glu	Lys	Ile	Gln	Asp	Lys	Leu	Pro	Glu
					290		295				300				
Lys	Leu	Lys	Ala	Glu	Tyr	Lys	Lys	Lys	Leu	Glu	Asp	Thr	Lys	Lys	Ala
					305			310				315			320

Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 16
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 16
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15

Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445

Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 17

<211> 645

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 17

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140

Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Ser Thr Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575

Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 18
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 18
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270

Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 19
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 19

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Gln Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Ala His Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Ser Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415

Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 20

<211> 645

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 20

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110

Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Gln Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Ala His Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Ser Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Lys Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Lys
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Ala Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540

Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 21
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 21
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240

His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Gln Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Ala His Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Ser Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Thr Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Lys Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Lys
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Ala Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 22

<211> 645

<212> PRT
 <213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 22

Met	Asn	Lys	Gln	Gln	Lys	Glu	Phe	Lys	Ser	Phe	Tyr	Ser	Ile	Arg	Lys
1					5			10					15		
Ser	Ser	Leu	Gly	Val	Ala	Ser	Val	Ala	Ile	Ser	Thr	Leu	Leu	Leu	
					20			25					30		
Met	Ser	Asn	Gly	Glu	Ala	Gln	Ala	Ala	Ala	Glu	Glu	Thr	Gly	Gly	Thr
					35			40				45			
Asn	Thr	Glu	Ala	Gln	Pro	Lys	Thr	Glu	Ala	Val	Ala	Ser	Pro	Thr	Thr
					50			55			60				
Thr	Ser	Glu	Lys	Ala	Pro	Glu	Thr	Lys	Pro	Val	Ala	Asn	Ala	Val	Ser
					65			70			75			80	
Val	Ser	Asn	Lys	Glu	Val	Glu	Ala	Pro	Thr	Ser	Glu	Thr	Lys	Glu	Ala
					85			90			95				
Lys	Glu	Val	Lys	Glu	Val	Lys	Ala	Pro	Lys	Glu	Thr	Lys	Glu	Val	Lys
					100			105			110				
Pro	Ala	Ala	Lys	Ala	Thr	Asn	Asn	Thr	Tyr	Pro	Ile	Leu	Asn	Gln	Glu
					115			120			125				
Leu	Arg	Glu	Ala	Ile	Lys	Asn	Pro	Ala	Ile	Lys	Asp	Lys	Asp	His	Ser
					130			135			140				
Ala	Pro	Asn	Trp	Arg	Pro	Ile	Asp	Phe	Glu	Met	Lys	Asn	Asp	Lys	Gly
					145			150			155			160	
Thr	Gln	Gln	Phe	Tyr	His	Tyr	Ala	Ser	Ser	Val	Glu	Pro	Ala	Arg	Val
					165			170			175				
Ile	Phe	Thr	Lys	Ser	Lys	Pro	Ile	Ile	Glu	Leu	Gly	Leu	Gln	Ser	Gly
					180			185			190				
Gln	Phe	Trp	Arg	Lys	Phe	Glu	Val	Tyr	Glu	Gly	Asp	Lys	Lys	Leu	Pro
					195			200			205				
Ile	Lys	Leu	Val	Ser	Tyr	Asp	Thr	Asp	Lys	Asp	Tyr	Ala	Tyr	Ile	Arg
					210			215			220				
Phe	Ser	Val	Ser	Asn	Gly	Thr	Lys	Glu	Val	Lys	Ile	Val	Ser	Ser	Thr
					225			230			235			240	
His	Phe	Asn	Asn	Lys	Glu	Glu	Lys	Tyr	Asp	Tyr	Thr	Leu	Met	Val	Phe
					245			250			255				
Ala	Gln	Pro	Ile	Tyr	Asn	Ser	Ala	Asp	Lys	Phe	Lys	Thr	Glu	Glu	Asp
					260			265			270				
Tyr	Lys	Ala	Glu	Lys	Leu	Leu	Ala	Pro	Tyr	Lys	Lys	Ala	Lys	Thr	Leu
					275			280			285				
Glu	Arg	Gln	Val	Tyr	Glu	Leu	Glu	Lys	Ile	Gln	Asp	Lys	Leu	Pro	Glu
					290			295			300				
Lys	Leu	Lys	Ala	Glu	Tyr	Lys	Lys	Lys	Leu	Glu	Gln	Thr	Lys	Lys	Ala
					305			310			315			320	
Leu	Ala	Glu	Gln	Val	Lys	Ser	Ala	Ile	Thr	Glu	Phe	Gln	Asn	Val	Gln
					325			330			335				
Pro	Thr	Asn	Glu	Lys	Met	Thr	Asp	Leu	Gln	Asp	Ala	His	Tyr	Val	Val
					340			345			350				
Tyr	Glu	Ser	Val	Glu	Asn	Ser	Glu	Ser	Met	Met	Asp	Thr	Phe	Val	Glu
					355			360			365				
His	Pro	Ile	Lys	Thr	Gly	Thr	Leu	Asn	Gly	Lys	Lys	Tyr	Met	Val	Met
					370			375			380				

Lys Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Lys
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Ala Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 23
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 23
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80

Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Ile Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Gln Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Ala His Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Ser Glu Ser Met Met Asp Thr Phe Val Glu
 355 360 365
 His Pro Ile Lys Thr Gly Thr Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Lys Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Lys
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Ala Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510

Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 24

<211> 645

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 24

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Ile Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205

Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Asn Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Gln Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Ala His Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Ser Glu Ser Met Met Asp Thr Phe Val Glu
 355 360 365
 His Pro Ile Lys Thr Gly Thr Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Lys Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Lys
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Ala Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640

Arg Lys Arg Lys Asn
645

<210> 25
<211> 645
<212> PRT
<213> Artificial Sequence

<220>
<223> Hybrid sequence

<400> 25
Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
1 5 10 15
Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu Leu
20 25 30
Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
35 40 45
Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
50 55 60
Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
65 70 75 80
Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
85 90 95
Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
100 105 110
Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
115 120 125
Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Ile Asp Lys Asp His Ser
130 135 140
Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
145 150 155 160
Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
165 170 175
Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
180 185 190
Ser Thr Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
195 200 205
Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
210 215 220
Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
225 230 235 240
His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
245 250 255
Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
260 265 270
Tyr Asn Leu Gln Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
275 280 285
Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
290 295 300
Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Gln Thr Lys Lys Ala
305 310 315 320
Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
325 330 335

Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Ala His Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Ser Glu Ser Met Met Asp Thr Phe Val Glu
 355 360 365
 His Pro Ile Lys Thr Gly Thr Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Lys Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Lys
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Ala Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 26

<211> 645

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 26

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30

Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Ile Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Ser Thr Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Asn Leu Gln Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Gln Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Ala His Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Ser Glu Ser Met Met Asp Thr Phe Val Glu
 355 360 365
 His Pro Ile Lys Thr Gly Thr Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Lys Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Lys
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Ala Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val Val Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460

Lys Glu Gln Gln Asp Asn Ser Ala Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 27

<211> 645

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 27

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Ile Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
 145 150 155 160

Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Ser Thr Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Asn Leu Gln Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Gln Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Ala His Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Ser Glu Ser Met Met Asp Thr Phe Val Glu
 355 360 365
 His Pro Ile Lys Thr Gly Thr Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Lys Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Lys
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Ala Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val Val Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ile Asn Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590

His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 28

<211> 645

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 28

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Ile Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Ser Thr Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Asn Leu Gln Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285

Glu Arg Gln Val Tyr Glu Leu Glu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Gln Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Ala His Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Ser Glu Ser Met Met Asp Thr Phe Val Glu
 355 360 365
 His Pro Ile Lys Thr Gly Thr Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Lys Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Lys
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Pro Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Ala Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val Val Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ile Asn Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 29
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 29

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Ile Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Trp Arg Pro Ile Asp Phe Glu Met Lys Asn Asp Lys Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Glu Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Lys Ser Lys Pro Ile Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Ser Thr Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Glu Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Gly Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Val Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Asn Pro Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Asn Leu Gln Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Gln Thr Lys Lys Ala
 305 310 315 320
 Leu Ala Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Ala His Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Ser Glu Ser Met Met Asp Thr Phe Val Glu
 355 360 365
 His Pro Ile Lys Thr Gly Thr Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Lys Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Lys
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Pro Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Ala Leu Tyr Asp Ala Ile Val Lys
 420 425 430

<210> 30
<211> 645
<212> PRT
<213> Artificial Sequence

<220>
<223> Hybrid sequence

<400> 30

Met Asn Lys Gln

Ser	Ser	Leu	Gly	Val	Ala	Ser	Val	Ala	Ile	Ser	Thr	Leu	Leu	Leu
		20					25					30		
Met	Ser	Asn	Gly	Glu	Ala	Gln	Ala	Ala	Ala	Glu	Glu	Thr	Gly	Gly
		35					40					45		
Asn	Thr	Glu	Ala	Gln	Pro	Lys	Thr	Glu	Ala	Val	Ala	Ser	Pro	Thr
		50				55					60			
Thr	Ser	Glu	Lys	Ala	Pro	Glu	Thr	Lys	Pro	Val	Ala	Asn	Ala	Val
		65				70				75			80	
Val	Ser	Asn	Lys	Glu	Val	Glu	Ala	Pro	Thr	Ser	Glu	Thr	Lys	Glu
			85					90					95	
Lys	Glu	Val	Lys	Glu	Val	Lys	Ala	Pro	Lys	Glu	Thr	Lys	Glu	Val
		100						105					110	
Pro	Ala	Ala	Lys	Ala	Thr	Asn	Asn	Thr	Tyr	Pro	Ile	Leu	Asn	Gln
		115					120		.			125		

Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Val Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Asp Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560

Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 31
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 31
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255

Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Val Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Asp Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Ile Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 32
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 32

Met	Asn	Lys	Gln	Gln	Lys	Glu	Phe	Lys	Ser	Phe	Tyr	Ser	Ile	Arg	Lys
1.					5			10					15		
Ser	Ser	Leu	Gly	Val	Ala	Ser	Val	Ala	Ile	Ser	Thr	Leu	Leu	Leu	Leu
					20			25				30			
Met	Ser	Asn	Gly	Glu	Ala	Gln	Ala	Ala	Ala	Glu	Glu	Thr	Gly	Gly	Thr
					35			40			45				
Asn	Thr	Glu	Ala	Gln	Pro	Lys	Thr	Glu	Ala	Val	Ala	Ser	Pro	Thr	Thr
					50			55			60				
Thr	Ser	Glu	Lys	Ala	Pro	Glu	Thr	Lys	Pro	Val	Ala	Asn	Ala	Val	Ser
					65			70			75		80		
Val	Ser	Asn	Lys	Glu	Val	Glu	Ala	Pro	Thr	Ser	Glu	Thr	Lys	Glu	Ala
					85			90			95				
Lys	Glu	Val	Lys	Glu	Val	Lys	Ala	Pro	Lys	Glu	Thr	Lys	Glu	Val	Lys
					100			105			110				
Pro	Ala	Ala	Lys	Ala	Thr	Asn	Asn	Thr	Tyr	Pro	Ile	Leu	Asn	Gln	Glu
					115			120			125				
Leu	Arg	Glu	Ala	Ile	Lys	Asn	Pro	Ala	Ile	Lys	Asp	Lys	Glu	His	Ser
					130			135			140				
Ala	Pro	Asn	Ser	Arg	Pro	Ile	Asp	Phe	Glu	Met	Lys	Lys	Lys	Asp	Gly
					145			150			155		160		
Thr	Gln	Gln	Phe	Tyr	His	Tyr	Ala	Ser	Ser	Val	Lys	Pro	Ala	Arg	Val
					165			170			175				
Ile	Phe	Thr	Asp	Ser	Lys	Pro	Glu	Ile	Glu	Leu	Gly	Leu	Gln	Ser	Gly
					180			185			190				
Gln	Phe	Trp	Arg	Lys	Phe	Glu	Val	Tyr	Glu	Gly	Asp	Lys	Lys	Leu	Pro
					195			200			205				
Val	Lys	Leu	Val	Ser	Tyr	Asp	Thr	Val	Lys	Asp	Tyr	Ala	Tyr	Ile	Arg
					210			215			220				
Phe	Ser	Val	Ser	Asn	Gly	Thr	Lys	Ala	Val	Lys	Ile	Val	Ser	Ser	Thr
					225			230			235		240		
His	Phe	Asn	Asn	Lys	Glu	Glu	Lys	Tyr	Asp	Tyr	Thr	Leu	Met	Glu	Phe
					245			250			255				
Ala	Gln	Pro	Ile	Tyr	Asn	Ser	Ala	Asp	Lys	Phe	Lys	Thr	Glu	Glu	Asp
					260			265			270				
Tyr	Lys	Ala	Glu	Lys	Leu	Leu	Ala	Pro	Tyr	Lys	Ala	Lys	Thr	Leu	
					275			280			285				
Glu	Arg	Gln	Val	Tyr	Glu	Leu	Asn	Lys	Ile	Gln	Asp	Lys	Leu	Pro	Glu
					290			295			300				
Lys	Leu	Lys	Ala	Glu	Tyr	Lys	Lys	Leu	Glu	Asp	Thr	Lys	Lys	Ala	
					305			310			315		320		
Leu	Asp	Glu	Gln	Val	Lys	Ser	Ala	Val	Thr	Glu	Phe	Gln	Asn	Val	Gln
					325			330			335				
Pro	Thr	Asn	Asp	Lys	Met	Thr	Asp	Leu	Gln	Asp	Thr	Lys	Tyr	Val	Val
					340			345			350				
Tyr	Glu	Ser	Val	Glu	Asn	Asn	Glu	Ser	Met	Met	Asp	Thr	Phe	Val	Lys
					355			360			365				
His	Pro	Ile	Lys	Thr	Gly	Met	Leu	Asn	Gly	Lys	Lys	Tyr	Met	Val	Met
					370			375			380				
Glu	Thr	Thr	Asn	Asp	Asp	Tyr	Trp	Lys	Asp	Phe	Met	Val	Glu	Gly	Gln
					385			390			395		400		

Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Ile Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 33
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 33
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95

Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Glu His Ser
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Val Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Val Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Asp Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Leu
 405 410 415
 Ile Phe Pro Tyr Ile Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525

Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 34

<211> 645

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 34

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Glu His Ser
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Val Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
 . 210 215 220

Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Leu Gln Glu Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Val Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Asp Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Leu
 405 410 415
 Ile Phe Pro Tyr Ile Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 35
<211> 645
<212> PRT
<213> Artificial Sequence

<220>
<223> Hybrid sequence

<400> 35
Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
1 5 10 15
Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
20 25 30
Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
35 40 45
Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
50 55 60
Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
65 70 75 80
Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
85 90 95
Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
100 105 110
Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
115 120 125
Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
130 135 140
Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
145 150 155 160
Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val
165 170 175
Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
180 185 190
Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
195 200 205
Val Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg
210 215 220
Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser Thr
225 230 235 240
His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
245 250 255
Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
260 265 270
Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
275 280 285
Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
290 295 300
Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
305 310 315 320
Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
325 330 335
Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
340 345 350
Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
355 360 365

His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 36
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 36
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60

Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Val Lys Leu Val Ser Tyr Asp Ser Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Arg Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Tyr Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495

Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 37

<211> 645

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 37

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Thr Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190

Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Val Lys Leu Val Ser Tyr Asp Ser Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Arg Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Tyr Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620

Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645
 <210> 38
 <211> 645
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Hybrid sequence
 <400> 38
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 . 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His Ser
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Thr Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Thr Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Val Lys Leu Val Ser Tyr Asp Ser Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Arg Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Tyr Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320

Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 39
<211> 645
<212> PRT
<213> Artificial Sequence

<220>
<223> Hybrid sequence

<400> 39
Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
1 5 10 15

Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Asp Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Glu His Thr
 130 135 140
 Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Thr Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Thr Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser Gly
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Val Lys Leu Val Ser Tyr Asp Ser Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Arg Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Tyr Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445

Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575
 Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly
 580 585 590
 His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys
 595 600 605
 Ser Leu Pro Gln Thr Gly Glu Ser Asn Lys Asp Met Thr Leu Pro
 610 615 620
 Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro
 625 630 635 640
 Arg Lys Arg Lys Asn
 645

<210> 40
 <211> 645
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 40
 Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Asp Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Glu His Thr
 130 135 140

Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly
 145 150 155 160
 Thr Gln Gln Phe Tyr His Tyr Ala Ser Thr Val Lys Pro Ala Arg Val
 165 170 175
 Ile Phe Thr Asp Thr Lys Pro Glu Ile Glu Leu Gly Leu Gln Thr Ala
 180 185 190
 Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Val Lys Leu Val Ser Tyr Asp Ser Val Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Ser Val Ser Asn Gly Thr Arg Ala Val Lys Ile Val Ser Ser Thr
 225 230 235 240
 His Tyr Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu Phe
 245 250 255
 Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Tyr Lys Thr Glu Glu Asp
 260 265 270
 Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Lys Ala Lys Thr Leu
 275 280 285
 Glu Arg Gln Val Tyr Glu Leu Asn Lys Leu Gln Asp Lys Leu Pro Glu
 290 295 300
 Lys Leu Lys Ala Glu Tyr Lys Lys Leu Asp Asp Thr Lys Lys Ala
 305 310 315 320
 Leu Asp Asp Gln Val Lys Ser Ala Val Thr Glu Phe Gln Asn Val Gln
 325 330 335
 Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val Val
 340 345 350
 Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val Lys
 355 360 365
 His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val Met
 370 375 380
 Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly Gln
 385 390 395 400
 Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr Ile
 405 410 415
 Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val Lys
 420 425 430
 Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg Ile
 435 440 445
 Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn Lys
 450 455 460
 Lys Glu Gln Gln Asp Asn Ser Ala Lys Glu Ala Thr Pro Ala Thr
 465 470 475 480
 Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys Gln
 485 490 495
 Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys Glu
 500 505 510
 Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr Lys
 515 520 525
 Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys Val
 530 535 540
 Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser Lys
 545 550 555 560
 Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala Lys
 565 570 575

Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp Gly		
580	585	590
His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala Lys		
595	600	605
Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro		
610	615	620
Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro		
625	630	635
Arg Lys Arg Lys Asn		
645		

<210> 41
<211> 639
<212> PRT
<213> Artificial Sequence

<220>
<223> Hybrid sequence

<400> 41

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys		
1	5	10
Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu		
20	25	30
Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr		
35	40	45
Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr		
50	55	60
Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser		
65	70	75
Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala		
85	90	95
Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys		
100	105	110
Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu		
115	120	125
Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Ile Asp Lys Asp His Ser		
130	135	140
Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Asp Gly		
145	150	155
Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg Val		
165	170	175
Ile Phe Thr Lys Thr Gly Pro Val Ile Glu Leu Gly Leu Lys Thr Ala		
180	185	190
Ser Thr Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro		
195	200	205
Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile Arg		
210	215	220
Phe Pro Val Ser Asn Gly Thr Arg Asp Val Lys Ile Val Ser Ser Ile		
225	230	235
Glu Tyr Gly Glu Asn Ile His Glu Asp Tyr Asp Tyr Thr Leu Met Val		
245	250	255
Phe Ala Gln Pro Ile Thr Asn Asn Pro Asp Asp Tyr Val Asp Glu Glu		
260	265	270

Thr Tyr Asn Leu Gln Lys Leu Leu Ala Pro Tyr His Lys Ala Lys Thr
 275 280 285
 Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro
 290 295 300
 Glu Lys Leu Lys Ala Glu Tyr Lys Lys Lys Leu Glu Asp Thr Lys Lys
 305 310 315 320
 Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val
 325 330 335
 Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val
 340 345 350
 Val Phe Glu Ser Glu Glu Asn Ser Glu Ser Val Met Asp Gly Phe Val
 355 360 365
 Glu His Pro Phe Tyr Thr Ala Thr Leu Asn Gly Gln Lys Tyr Val Val
 370 375 380
 Met Lys Thr Lys Asp Asp Ser Tyr Trp Lys Asp Leu Ile Val Glu Gly
 385 390 395 400
 Lys Arg Val Thr Thr Val Ser Lys Asp Pro Lys Asn Asn Ser Arg Thr
 405 410 415
 Ile Ile Phe Pro Tyr Val Glu Gly Lys Ala Val Tyr Asn Ala Ile Val
 420 425 430
 Lys Val Val Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg
 435 440 445
 Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn
 450 455 460
 Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala
 465 470 475 480
 Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys
 485 490 495
 Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys
 500 505 510
 Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr
 515 520 525
 Lys Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys
 530 535 540
 Val Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser
 545 550 555 560
 Lys Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala
 565 570 575
 Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp
 580 585 590
 Gly His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala
 595 600 605
 Lys Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu
 610 615 620
 Pro Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val
 625 630 635

<210> 42
 <211> 890
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Hybrid sequence

<400> 42

Met Asn Lys His His Pro Lys Leu Arg Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Thr Leu Gly Val Ala Ser Val Ile Val Ser Thr Leu Phe Leu Ile
 20 25 30
 Thr Ser Gln His Gln Ala Gln Ala Ala Glu Asn Thr Asn Thr Ser Asp
 35 40 45
 Lys Ile Ser Glu Asn Gln Asn Asn Ala Thr Thr Thr Gln Gln Pro
 50 55 60
 Lys Asp Thr Asn Gln Thr Gln Pro Ala Thr Gln Pro Val Ile Thr Ala
 65 70 75 80
 Lys Asn Tyr Pro Ala Ala Asp Glu Ser Leu Lys Asp Ala Ile Lys Asp
 85 90 95
 Pro Ala Leu Glu Asn Lys Glu His Asp Ile Gly Pro Arg Glu Gln Val
 100 105 110
 Asn Phe Gln Leu Leu Asp Lys Asn Asn Glu Thr Gln Tyr Tyr His Phe
 115 120 125
 Phe Ser Ile Lys Asp Pro Ala Asp Val Tyr Tyr Thr Lys Lys Lys Ala
 130 135 140
 Glu Val Glu Leu Asp Ile Asn Thr Ala Ser Thr Trp Lys Lys Phe Glu
 145 150 155 160
 Val Tyr Glu Asn Asn Gln Lys Leu Pro Val Arg Leu Val Ser Tyr Ser
 165 170 175
 Pro Val Pro Glu Asp His Ala Tyr Ile Arg Phe Pro Val Ser Asp Gly
 180 185 190
 Thr Gln Glu Leu Lys Ile Val Ser Ser Thr Gln Ile Asp Asp Gly Glu
 195 200 205
 Glu Thr Asn Tyr Asp Tyr Thr Lys Leu Val Phe Ala Lys Pro Ile Tyr
 210 215 220
 Asn Asp Pro Ser Leu Val Lys Ser Asp Thr Asn Asp Ala Val Val Thr
 225 230 235 240
 Asn Asp Gln Ser Ser Asp Ala Ser Asn Gln Thr Asn Thr Asn Thr
 245 250 255
 Ser Asn Gln Asn Thr Ser Thr Asn Asn Ala Asn Asn Gln Pro Gln
 260 265 270
 Ala Thr Thr Asn Met Ser Gln Pro Ala Gln Pro Lys Ser Ser Ala Asn
 275 280 285
 Ala Asp Gln Ala Ser Ser Gln Pro Ala His Glu Thr Asn Ser Asn Gly
 290 295 300
 Asn Thr Asn Asp Lys Thr Asn Glu Ser Ser Asn Gln Ser Asp Val Asn
 305 310 315 320
 Gln Gln Tyr Pro Pro Ala Asp Glu Ser Leu Gln Asp Ala Ile Lys Asn
 325 330 335
 Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile
 340 345 350
 Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr
 355 360 365
 Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro
 370 375 380
 Glu Ile Glu Leu Gly Leu Gln Ser Gly Gln Phe Trp Arg Lys Phe Glu
 385 390 395 400
 Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp
 405 410 415
 Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr
 420 425 430

Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu
 435 440 445
 Lys Tyr Asp Tyr Thr Leu Met Glu Phe Ala Gln Pro Ile Tyr Asn Ser
 450 455 460
 Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu
 465 470 475 480
 Ala Pro Tyr Lys Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu
 485 490 495
 Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys
 500 505 510
 Lys Lys Leu Glu Asp Thr Lys Lys Ala Leu Asp Glu Gln Val Lys Ser
 515 520 525
 Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr
 530 535 540
 Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn
 545 550 555 560
 Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met
 565 570 575
 Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr
 580 585 590
 Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys
 595 600 605
 Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly
 610 615 620
 Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp
 625 630 635 640
 Tyr Asp Gly Gln Tyr His Val Arg Ile Ile Asn Gln Asp Ile Asn Thr
 645 650 655
 Lys Asp Asp Asp Thr Ser Gln Asn Asn Thr Ser Glu Pro Leu Asn Val
 660 665 670
 Gln Thr Gly Gln Glu Gly Lys Val Ala Asp Thr Asp Val Ala Glu Asn
 675 680 685
 Ser Ser Thr Ala Thr Asn Pro Lys Asp Ala Ser Asp Lys Ala Asp Val
 690 695 700
 Ile Glu Pro Glu Ser Asp Val Val Lys Asp Ala Asp Asn Asn Ile Asp
 705 710 715 720
 Lys Asp Val Gln His Asp Val Asp His Leu Ser Asp Met Ser Asp Asn
 725 730 735
 Asn His Phe Asp Lys Tyr Asp Leu Lys Glu Met Asp Thr Gln Ile Ala
 740 745 750
 Lys Asp Thr Asp Arg Asn Val Asp Asn Ser Val Gly Met Ser Ser Asn
 755 760 765
 Val Asp Thr Asp Lys Asp Ser Asn Lys Asn Lys Asp Lys Val Ile Gln
 770 775 780
 Leu Ala His Ile Ala Asp Lys Asn Asn His Thr Gly Lys Ala Ala Lys
 785 790 795 800
 Leu Asp Val Val Lys Gln Asn Tyr Asn Asn Thr Asp Lys Val Thr Asp
 805 810 815
 Lys Lys Thr Thr Glu His Leu Pro Ser Asp Ile His Lys Thr Val Asp
 820 825 830
 Lys Thr Val Lys Thr Lys Glu Lys Ala Gly Thr Pro Ser Lys Glu Asn
 835 840 845
 Lys Leu Ser Gln Ser Lys Met Leu Pro Lys Thr Gly Glu Thr Thr Ser
 850 855 860

Ser Gln Ser Trp Trp Gly Leu Tyr Ala Leu Leu Gly Met Leu Ala Leu
 865 870 875 880
 Phe Ile Pro Lys Phe Arg Lys Glu Ser Lys.
 885 890

<210> 43

<211> 639

<212> PRT

<213> Artificial Sequence

<220>

<223> Hybrid sequence

<400> 43

Met Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg Lys
 1 5 10 15
 Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30
 Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly Thr
 35 40 45
 Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr Thr
 50 55 60
 Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val Ser
 65 70 75 80
 Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu Ala
 85 90 95
 Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val Lys
 100 105 110
 Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln Glu
 115 120 125
 Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Ile Asp Lys Glu His Thr
 130 135 140
 Ala Asp Asn Trp Arg Pro Ile Asp Phe Gln Met Lys Asn Asp Lys Gly
 145 150 155 160
 Glu Arg Gln Phe Tyr His Tyr Ala Ser Thr Val Glu Pro Ala Thr Val
 165 170 175
 Ile Phe Thr Lys Thr Gly Pro Val Ile Glu Leu Gly Leu Lys Thr Ala
 180 185 190
 Ser Thr Trp Lys Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu Pro
 195 200 205
 Val Glu Leu Val Ser Tyr Asp Ser Asp Lys Asp Tyr Ala Tyr Ile Arg
 210 215 220
 Phe Pro Val Ser Asn Gly Thr Arg Asp Val Lys Ile Val Ser Ser Ile
 225 230 235 240
 Glu Tyr Gly Glu Asn Ile His Glu Asp Tyr Asp Tyr Thr Leu Met Val
 245 250 255
 Phe Ala Gln Pro Ile Thr Asn Asn Pro Asp Asp Tyr Val Asp Glu Glu
 260 265 270
 Thr Tyr Asn Leu Gln Lys Leu Leu Ala Pro Tyr His Lys Ala Lys Thr
 275 280 285
 Leu Glu Arg Gln Val Tyr Glu Leu Glu Lys Leu Gln Glu Lys Leu Pro
 290 295 300
 Glu Lys Tyr Lys Ala Glu Tyr Lys Lys Lys Leu Asp Gln Thr Arg Val
 305 310 315 320

Glu Leu Ala Asp Gln Val Lys Ser Ala Val Thr Glu Phe Glu Asn Val
 325 330 335
 Thr Pro Thr Asn Asp Gln Leu Thr Asp Leu Gln Glu Ala His Phe Val
 340 345 350
 Val Phe Glu Ser Glu Glu Asn Ser Glu Ser Val Met Asp Gly Phe Val
 355 360 365
 Glu His Pro Phe Tyr Thr Ala Thr Leu Asn Gly Gln Lys Tyr Val Val
 370 375 380
 Met Lys Thr Lys Asp Asp Ser Tyr Trp Lys Asp Leu Ile Val Glu Gly
 385 390 395 400
 Lys Arg Val Thr Thr Val Ser Lys Asp Pro Lys Asn Asn Ser Arg Thr
 405 410 415
 Leu Ile Phe Pro Tyr Ile Pro Asp Lys Ala Val Tyr Asn Ala Ile Val
 420 425 430
 Lys Val Val Val Ala Asn Ile Gly Tyr Glu Gly Gln Tyr His Val Arg
 435 440 445
 Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn
 450 455 460
 Lys Lys Glu Gln Gln Asp Asn Ser Ala Lys Lys Glu Ala Thr Pro Ala
 465 470 475 480
 Thr Pro Ser Lys Pro Thr Pro Ser Pro Val Glu Lys Glu Ser Gln Lys
 485 490 495
 Gln Asp Ser Gln Lys Asp Asp Asn Lys Gln Leu Pro Ser Val Glu Lys
 500 505 510
 Glu Asn Asp Ala Ser Ser Glu Ser Gly Lys Asp Lys Thr Pro Ala Thr
 515 520 525
 Lys Pro Thr Lys Gly Glu Val Glu Ser Ser Ser Thr Thr Pro Thr Lys
 530 535 540
 Val Val Ser Thr Thr Gln Asn Val Ala Lys Pro Thr Thr Ala Ser Ser
 545 550 555 560
 Lys Thr Thr Lys Asp Val Val Gln Thr Ser Ala Gly Ser Ser Glu Ala
 565 570 575
 Lys Asp Ser Ala Pro Leu Gln Lys Ala Asn Ile Lys Asn Thr Asn Asp
 580 585 590
 Gly His Thr Gln Ser Gln Asn Asn Lys Asn Thr Gln Glu Asn Lys Ala
 595 600 605
 Lys Ser Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu
 610 615 620
 Pro Leu Met Ala Leu Leu Ala Leu Ser Ser Ile Val Ala Phe Val
 625 630 635

<210> 44

<211> 654

<212> PRT

<213> Artificial Sequence

<220>

<223> 0657 mutated protein

<400> 44

Met Gly Asn Lys Gln Gln Lys Glu Phe Lys Ser Phe Tyr Ser Ile Arg
 1 5 10 15
 Lys Ser Ser Leu Gly Val Ala Ser Val Ala Ile Ser Thr Leu Leu Leu
 20 25 30

Leu Met Ser Asn Gly Glu Ala Gln Ala Ala Ala Glu Glu Thr Gly Gly
 35 40 45
 Thr Asn Thr Glu Ala Gln Pro Lys Thr Glu Ala Val Ala Ser Pro Thr
 50 55 60
 Thr Thr Ser Glu Lys Ala Pro Glu Thr Lys Pro Val Ala Asn Ala Val
 65 70 75 80
 Ser Val Ser Asn Lys Glu Val Glu Ala Pro Thr Ser Glu Thr Lys Glu
 85 90 95
 Ala Lys Glu Val Lys Glu Val Lys Ala Pro Lys Glu Thr Lys Glu Val
 100 105 110
 Lys Pro Ala Ala Lys Ala Thr Asn Asn Thr Tyr Pro Ile Leu Asn Gln
 115 120 125
 Glu Leu Arg Glu Ala Ile Lys Asn Pro Ala Ile Lys Asp Lys Asp His
 130 135 140
 Ser Ala Pro Asn Ser Arg Pro Ile Asp Phe Glu Met Lys Lys Lys Asp
 145 150 155 160
 Gly Thr Gln Gln Phe Tyr His Tyr Ala Ser Ser Val Lys Pro Ala Arg
 165 170 175
 Val Ile Phe Thr Asp Ser Lys Pro Glu Ile Glu Leu Gly Leu Gln Ser
 180 185 190
 Gly Gln Phe Trp Arg Lys Phe Glu Val Tyr Glu Gly Asp Lys Lys Leu
 195 200 205
 Pro Ile Lys Leu Val Ser Tyr Asp Thr Val Lys Asp Tyr Ala Tyr Ile
 210 215 220
 Arg Phe Ser Val Ser Asn Gly Thr Lys Ala Val Lys Ile Val Ser Ser
 225 230 235 240
 Thr His Phe Asn Asn Lys Glu Glu Lys Tyr Asp Tyr Thr Leu Met Glu
 245 250 255
 Phe Ala Gln Pro Ile Tyr Asn Ser Ala Asp Lys Phe Lys Thr Glu Glu
 260 265 270
 Asp Tyr Lys Ala Glu Lys Leu Leu Ala Pro Tyr Lys Ala Lys Thr
 275 280 285
 Leu Glu Arg Gln Val Tyr Glu Leu Asn Lys Ile Gln Asp Lys Leu Pro
 290 295 300
 Glu Lys Leu Lys Ala Glu Tyr Lys Lys Leu Glu Asp Thr Lys Lys
 305 310 315 320
 Ala Leu Asp Glu Gln Val Lys Ser Ala Ile Thr Glu Phe Gln Asn Val
 325 330 335
 Gln Pro Thr Asn Glu Lys Met Thr Asp Leu Gln Asp Thr Lys Tyr Val
 340 345 350
 Val Tyr Glu Ser Val Glu Asn Asn Glu Ser Met Met Asp Thr Phe Val
 355 360 365
 Lys His Pro Ile Lys Thr Gly Met Leu Asn Gly Lys Lys Tyr Met Val
 370 375 380
 Met Glu Thr Thr Asn Asp Asp Tyr Trp Lys Asp Phe Met Val Glu Gly
 385 390 395 400
 Gln Arg Val Arg Thr Ile Ser Lys Asp Ala Lys Asn Asn Thr Arg Thr
 405 410 415
 Ile Ile Phe Pro Tyr Val Glu Gly Lys Thr Leu Tyr Asp Ala Ile Val
 420 425 430
 Lys Val His Val Lys Thr Ile Asp Tyr Asp Gly Gln Tyr His Val Arg
 435 440 445
 Ile Val Asp Lys Glu Ala Phe Thr Lys Ala Asn Thr Asp Lys Ser Asn
 450 455 460

Lys	Lys	Glu	Gln	Gln	Asp	Asn	Ser	Ala	Lys	Glu	Ala	Thr	Pro	Ala
465					470				475					480
Thr	Pro	Ser	Lys	Pro	Thr	Pro	Ser	Pro	Val	Glu	Lys	Glu	Ser	Gln
						485			490					495
Gln	Asp	Ser	Gln	Lys	Asp	Asp	Asn	Lys	Gln	Leu	Pro	Ser	Val	Glu
							500		505					510
Glu	Asn	Asp	Ala	Ser	Ser	Glu	Ser	Gly	Lys	Asp	Lys	Thr	Pro	Ala
							515		520					525
Lys	Pro	Thr	Lys	Gly	Glu	Val	Glu	Ser	Ser	Ser	Thr	Thr	Pro	Thr
						530		535						540
Val	Val	Ser	Thr	Thr	Gln	Asn	Val	Ala	Lys	Pro	Thr	Thr	Ala	Ser
							545		550					560
Lys	Thr	Thr	Lys	Asp	Val	Val	Gln	Thr	Ser	Ala	Gly	Ser	Ser	Glu
							565		570					575
Lys	Asp	Ser	Ala	Pro	Leu	Gln	Lys	Ala	Asn	Ile	Lys	Asn	Thr	Asn
							580		585					590
Gly	His	Thr	Gln	Ser	Gln	Asn	Asn	Lys	Asn	Thr	Gln	Glu	Asn	Lys
							595		600					605
Lys	Ser	Leu	Pro	Gln	Thr	Gly	Glu	Glu	Ser	Asn	Lys	Asp	Met	Thr
							610		615					620
Pro	Leu	Met	Ala	Leu	Leu	Ala	Leu	Ser	Ser	Ile	Val	Ala	Phe	Val
							625		630					640
Pro	Arg	Lys	Arg	Lys	Asn	Leu	Glu	His						
							645		650					

<210> 45
<211> 1938
<212> DNA
<213> Artif

<220>
<223> 0657 cDNA

gttgaaggta aaactctata tgatgctatc gttaaagttc acgtaaaaac gattgattat 1320
 gatggacaat accatgtcag aatcggttat aaagaagcat ttacaaaagc caataccgat 1380
 aaatctaaca aaaaagaaca acaagataac tcagctaaga aggaagctac tccagctac 1440
 cctagcaaac caacaccatc acctgttcaa aaagaatcac aaaaacaaga cagccaaaaaa 1500
 gatgacaata aacaattacc aagtgttcaa aaagaaaaatg acgcatactg tgagtcaagg 1560
 aaagacaaaaa cgccctgtac aaaacccaact aaaggtgaag tagaatcaag tagtacaact 1620
 ccaactaagg tagtatctac gactcaaaat gttgcaaaac caacaactgc ttcatcaaaa 1680
 acaacaaaag atgttgtca aacttcagca gggttctagcg aagcaaaaaga tagtgctcca 1740
 ttacaaaaag caaacatcaa aaacacaaaat gatggacaca ctcaaagcca aaacaataaa 1800
 aatacacaag aaaataaagc aaaatcatta ccacaaactg gtgaagaatc aaataaagat 1860
 atgacattac cattaatggc attattagct ttaagtagca tcgttgcatt cgtattacct 1920
 agaaaaacgtaa aaaaactaa 1938

<210> 46
 <211> 39
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> ORF0657nF primer

<400> 46
 aaccgggtttt ccatgggaa caaacagcaa aaagaattt 39

<210> 47
 <211> 12
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> ORF0657n encoded amino acid

<400> 47
 Asn Arg Phe Ser Met Gly Asn Lys Gln Gln Lys Glu
 1 5 10

<210> 48
 <211> 38
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> ORF0657nR primer sequence

<400> 48
 gtattaccta gaaaacgtaa aaacctcgag aaaccgg 38

<210> 49
 <211> 12
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> ORF0657nR encoded amino acid

<400> 49
 Val Leu Pro Arg Lys Arg Lys Asn Leu Glu Lys Pro
 1 5 10

<210> 50
 <211> 16
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> M13F

<400> 50
 ctggccgtcg ttttac 16

<210> 51
 <211> 17
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> M13R

<400> 51
 cagaaaacag ctatgac 17

<210> 52
 <211> 1938
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> cDNA encoding ORF0657n protein of SEQ 3

<400> 52
 atgaacaaac agcaaaaaga atttaaatca ttttattcaa ttagaaagtc atcactaggc 60
 gttgcacatcg tagcaattag tacactttta ttattaaatgt caaatggcga agcacaagca 120
 gcagctgaag aaacaggtgg tacaatataca gaagcacaaac caaaaactga agcagttgca 180
 agtccaacaa caacatctga aaaagctcca gaaactaaac cagtagctaa tgctgtctca 240
 gtatctaata aagaagtta ggcctcact tctgaaacaa aagaagctaa agaagttaaa 300
 gaagttaaag cccctaagga aacaaaagaa gttaaaccag cagaaaaagc cactaacaat 360
 acatatccta ttttgaatca ggaactttaga gaagcgattt aaaaacctgc aataaaagac 420
 aaagatcata ggcacccaaa ctctcggtcca attgattttg aatgaaaaaa gaaagatgga 480
 actaacatgt ttatcatta tgcaagttct gttaaacctg cttaggttat ttcaactgat 540
 tcaaaccag aaatttgaattt aggattacaa tcaggtcaat tttggagaaa atttgaagtt 600
 tatgaaggtg aaaaaaagtt gccaaattaaa tttagtcat acgatactgt taaagattat 660
 gcttacattc gcttctctgt atcaaaccgga aaaaaagctg taaaattgt tagttcaaca 720
 cacttcaata acaaagaaga aaaaatacat tacacattaa tgaaattcgc acaaccaatt 780
 tataacagtg cagataaaatt caaaaactgaa gaagattata aagctgaaaaa attttagcg 840
 ccatataaaaa aagcgaaaaac actagaaaaga caagttttag aataaaataa aattcaagat 900
 aaacttcctg aaaaattaaaa ggcttgatgc aagaagaaaat tagaggatac aaagaaaagct 960
 ttagatgagc aagtggaaatc agcttactt gattccaaa atgtacaacc aacaaatgaa 1020
 aaaaatgactg atttacaaga tacaaaaatat gttgtttatg aaagtgttga gaataacgaa 1080
 tctatgatgg atacttttgt taaacaccctt attaaaacag gtatgcttaa cggcaaaaaa 1140
 tatatggtca tggaaactac taatgacgat tactggaaaag atttcatggt tgaagggtcaa 1200

cgtgttagaa ctataagcaa agatgctaaa aataatacta gaacaattat tttcccatat 1260
 gttgaaggta aaactctata tgatgctatc gttaaaggatc acgtaaaaac gattgattat 1320
 gatggacaat accatgtcag aatcggtgat aaagaagcat ttacaaaagc caataccgat 1380
 aaatctaaca aaaaagaaca acaagataac tcagctaaga aggaagctac tccagctacg 1440
 cctagcaaac caacaccatc acctgttcaa aaagaatcac aaaaacaaga cagccaaaaa 1500
 gatgacaata aacaattacc aagtgttcaa aaagaaaaatc acgcatactag tgagtcaagg 1560
 aaagacaaaaa cgccctgtac aaaacccaact aaaggttaaag tagaatcaag tagtacaact 1620
 ccaactaagg tagtatctac gactcaaaaat gttgcaaaac caacaactgc ttcatcaaaa 1680
 acaacaaaag atgttgtca aacctcagca ggttctagcg aagcaaaaaga tagtgctcca 1740
 ttacaaaaag caaacattaa aaacacaaaat gatggacaca ctcaaagcca aaacaataaa 1800
 aatacacaag aaaataaaagc aaaatcatta ccacaaaactg gtgaagaatc aaataaagat 1860
 atgacattac cattaatggc attattagct ttaagtagca tcgttgcatt cgtattacct 1920
 agaaaaacgtaa aaaactaa 1938

<210> 53
 <211> 1938
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> cDNA encoding ORF0657n protein of SEQ 4

<400> 53
 atgaacaaac agcaaaaaga atttaaatca ttttattcaa ttagaaagtc atcactaggc 60
 gttgcattctg tagcgattag tacacttttta ttattaaatgt caaatggcga agcacaagca 120
 gcagctgaag aaacagggtgg tacaatatacgaagcacaac caaaaactga agcagtgtca 180
 agtccaaacaa caacatctga aaaagctcca gaaactaaac cagtagctaa tgctgtctca 240
 gtatctaata aagaagtgtg ggccttact tctgaaacaa aagaagctaa agaagttaaa 300
 gaagttaaag cccctaagga aacaaaagca gttaaaccag cagcaaaaagc cactaacaat 360
 acatatccta ttttgaatca ggaacttaga gaagcgattttaaaaaccctgc aataaaaagat 420
 aaagatcata ggcgcacccaaa ctctcggtca attgatttttgaatgaaaaa agaaaaatgg 480
 gagcaacaata ttatcatta tgccagctct gttaaacctg ctagagttat ttcaactgat 540
 tcaaaaaccag aaattgtatttggaggatttcaat ttggagaaa atttgaagtt 600
 tatgaaggtg aaaaaaagtt gccaattaaa ttagtatcat acgatactgt taaagattac 660
 gcttacattc gcttctctgt ttcaaatggca aaaaaaggccg ttaaaaattgtt aagttcaact 720
 cacttcaata aaaaaaaaga aaaaatcgtatcatacattaa tggattcgc acaaccaatt 780
 tataacagtg cagataaaat caaaactgaa gaagattata aagctgaaaa attattagcg 840
 ccatataaaa aagcgaaaaac actagaaaga caagtttatg aattaaataa aattcaagat 900
 aaacttcctg aaaaattaaa ggctgagttac aagaagaaat tagaggatac aaagaaaagct 960
 ttagatgagc aagtggaaatc agctattactt gattccaaaatgtacaaacc aacaatgaa 1020
 aaaaatgactg atttacaaga tacaatataatgttatttgc aaagtgttga gaataacgaa 1080
 tctatgtatgg atactttgt taaaacaccctt atttacccatcgtatgttca cggcaaaaaa 1140
 tataatggtca tggaaactac taatgacgt tactggaaatg atttcatgtt tgaaggttca 1200
 cgtgttagaa ctataagcaa agatgctaaa aataatacta gaacaattat tttcccatat 1260
 gttgaaggta aaactctata tgatgctatc gttaaaggatc acgtaaaaac gattgattat 1320
 gatggacaat accatgtcag aatcggtgat aaagaagcat ttacaaaagc caataccgat 1380
 aaatctaaca aaaaagaaca acaagataac tcagctaaga aggaagctac tccagctacg 1440
 cctagcaaac caacaccatc acctgttcaa aaagaatcac aaaaacaaga cagccaaaaa 1500
 gatgacaata aacaattacc aagtgttcaa aaagaaaaatc acgcatactag tgagtcaagg 1560
 aaagacaaaaa cgccctgtac aaaacccaact aaaggtgaag tagaatcaag tagtacaact 1620
 ccaactaagg tagtatctac gactcaaaaat gttgcaaaac caacaactgc ttcatcaaaa 1680
 acaacaaaag atgttgtca aacctcagca ggttctagcg aagcaaaaaga tagtgctcca 1740
 ttacaaaaag caaacattaa aaacacaaaat gatggacaca ctcaaagcca aaacaataaa 1800
 aatacacaag aaaataaaagc aaaatcatta ccacaaaactg gtgaagaatc aaataaagat 1860
 atgacattac cattaatggc attactagct ttaagtagca tcgttgcatt cgtattacct 1920

agaaaaacgta aaaactaa 1938

<210> 54
<211> 1935
<212> DNA
<213> Artificial Sequence

<220>
<223> cDNA encoding ORF0657n protein of SEQ 5

<400> 54
atgaacaaac agcaaaaaga atttaaatca ttttattcaa ttagaaagtc atcactaggc 60
gttgcattctg tagcgattag tacacttttta ttattaatgt caaatggcga agcacaagca 120
gctgaagaaa caggtggtag aaatacagaa gcacaaccacaa aaactgaagc agttgcaagt 180
ccacaacaacaa catctgaaaaa agctccagaa actaaaccag tagctaattgc tgtctcagta 240
tctaataaaag aagttgaggc ccctacttct gaaacacaaaag aagctaaaga agttaaagaa 300
gttaaagccc ctaaggaaac aaaagcagtt aaaccagcaa caaaaagccga taacaataca 360
tatccttattt tgaatcagga acttagagaa gcgattaaaa accctgcaat aaaagataaa 420
gatcatagcg cacccaaactc tcgtccaatt gattttggaaa tgaaaaaaaaga aaatggtgag 480
caacaatttt atcattatgc cagctctgtt aaacctgcta gagttatttt cactgattca 540
aaaccagaaa ttgaatttagg attacaatca ggtcaattt ggagaaaatt tgaagtttat 600
gagggtgaca aaaagttgcc aattaaattt gtatcatacg atactgtta agattatgct 660
tacattcggtt tctctgtatc aaatggaca aaagctgtt aaattgttag ttcaacacac 720
ttcaataaca aagaagaaaa atacgattac acattaatgg aattcgcaca accaatttt 780
aacagtgcag ataaattcaa aactgaagaa gattataaag ctgaaaaattt attagcgcac 840
tataaaaaag cgaaaacact agaaagacaa gtttatgaat taaataaaat tcaagataaa 900
cttcctgaaa aattaaaggc tgagtacaag aagaaaattttagg aggatacaaa gaaagcttta 960
gatgagcaag tgaaatcagc tattactgaa ttccaaaatg tacaaccaac aaatgaaaaa 1020
atgactgatt tacaagatac aaaatatgtt gtttatggaaa gtgttgagaa taacgaatct 1080
atgatggata cttttgttaa acaccctattt aaaaacagta tgcttaacgg caaaaaatata 1140
atgtcatgg aaactactaa tgacgattac tggaaagatt tcatggttga aggtcaacgt 1200
gttagaacta taagcaaga tgctaaaaat aatactagaa caattatttt cccatatgtt 1260
gaaggtaaaa ctctataatga tgctatcggtt aaagttcacg taaaaacgat tgattatgt 1320
ggacaataacc atgtcagaat cgttgataaa gaagcatatta caaaaagccaa taccgataaa 1380
tctaacaaaa aagaacaaca agataactca gctaagaggg aagctactcc agctacgcct 1440
agcaaaccaa caccatcacc tggaaaaaaa gaatcacaacaa aacaagacag caaaaaagat 1500
gacaataaac aattaccaag tggaaaaaaa gaaaatgacg catctagtga gtcaggtaaa 1560
gacaaaacgc ctgctacaaa accagctaaa ggtgaagtag aatcaagtag tacaactcc 1620
actaaggttag tatctacgac tcaaaaatgtt gcaaaaaccaa caactgcttc atcaaaaaca 1680
acaaaagatg ttgttcaaac ttctacggat tctacggatg caaaagatag tgctccat 1740
caaaaagcaa acattaaaaaa cacaatgtt ggacacactc aaagccaaaa caataaaaat 1800
acacaagaaa ataaagcaaa atcattatca caaaactggtg aagaatcaaa taaagatatg 1860
acattaccat taatggcatt attagtttta agtagcatcg ttgcattcgt attacctaga 1920
aacgtaaaaa actaa 1935

<210> 55
<211> 1935
<212> DNA
<213> Artificial Sequence

<220>
<223> cDNA encoding ORF0657n protein of SEQ 6

<400> 55
atgaacaaac agcaaaaaga atttaaatca ttttattcaa ttagaaagtc atcactaggc 60

gttgcattctg tagcgattag tacacttta ttattaatgt caaatggcga agcacaagca 120
 gctgaagaaa cagggtgtac aaatacagaa gcacaaccaa aaactgaagc agttgcaagt 180
 ccaacaacaa catctgaaaa agctccagaa actaaaccag tagctaattgc tgtctcagta 240
 tctaataaaag aagttgaggc ccctacttct gaaacaaaag aagctaaaga agttaaagaa 300
 gttaaagccc ctaaggaaac aaaagcagtt aaaccagcaa caaaagccga taacaataca 360
 tattcttattt tgaatcgga acttagagaa gcgattaaaa accctgcaat aaaagataaaa 420
 gatcatagcg cacccaaactc tcgtccaatt gattttgaaa tgaaaaaaga aaatggtgag 480
 caacaatttt atcattatgc cagctctgtt aaacctgcta gagttttt cactgattca 540
 aaaccagaaa ttgaatttagg attacaatca ggtcaattt ggagaaaaatt tgaagtttat 600
 gagggtgaca aaaagttgcc aattaaattt gtatcatacg atactgtta agattatgtct 660
 tacattcggtt tctctgtatc aaatggaaaca aaagctgtt aaattgttag ttcaacacac 720
 ttcaataaca aagaagaaaa atacgattac acattaatgg aatttcgcaca accaatttt 780
 aacagtgcag ataaattcaa aactgaagaa gattataaag ctgaaaaattt attagcgcca 840
 tataaaaaaag cgaaaaacact agaaaagacaa gtttatgaat taaataaaat tcaagataaaa 900
 cttcctgaaa aattaaaggc tgagtacaag aagaaaattt aggatataaaa gaaagcttta 960
 gatgagcaag tggaaatcagc tattactgaa ttccaaaatg tacaaccaac aaatgaaaaaa 1020
 atgactgatt tgcaagatac aaaatatgtt gtttatgaaa gtgttgagaa taacgaatct 1080
 atgatggata cttttgttaa acaccctattt aaacacaggtt tgcttaacgg caaaaaaaaat 1140
 atggcatgg aaactactaa tgacgattac tggaaagatt tcatgggtga aggtcaacgt 1200
 gttagaacta taagcaaaaga tgctaaaaat aatactagaa caattttttt cccatatgtt 1260
 gaaggtaaaaa ctctatatga tgctatcggtt aaagttcacg taaaaacgt tgattatgtat 1320
 ggacaataacc atgtcagaat cgttgataaa gaagcattt caaaagccaa taccgataaaa 1380
 tctaacaaaaa aagaacaaca agataactca gctaagaagg aagctactcc agctacgcct 1440
 agcaaaccaa caccatcacc tggaaaaaa gaatcacaac aacaagacag cccaaaaagat 1500
 gacaataaac aattaccaag tggaaaaaa gaaaatgacg catctagtga gtcaggtaaa 1560
 gacaaaacgc ctgctacaaa accagctaaa ggtgaagtag aatcaagtag tacaactcca 1620
 actaaggtag tatctacgac tcaaaaatgtt gcaaaaaccaa caactgcttc atcaaaaaaca 1680
 acaaaaagatg ttgttcaaac ttcaagcaggt tctagcgaag caaaagatag tgctccattt 1740
 caaaaagcaa acattaaaaa cacaatgtt ggacacactc aaagccaaaa caataaaaaat 1800
 acacaagaaaa ataaagcaaa atcattacca caaactggtg aagaatcaaa taaagatatg 1860
 acattaccat taatggcatt attagtttta agtagcatcg ttgcattcgt attacctaga 1920
 aaacgtaaaaa actaa 1935

<210> 56
 <211> 1934
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> cDNA encoding ORF0657n protein of SEQ 7

<400> 56

atgaacaaac agaaaaaaga attaaatca ttttattcaa ttagaaagtc atcaacttaggc 60
 gttgcattctg tagcgattag tacacttta ttattaatgt caaatggcga agcaaaaagca 120
 gctgaagaaa cagggtgtac aattacagaa acacaaccaa aaactgaagc agttgcaagt 180
 ccaacaacaa caactgaaaa agctccagaa gctaaaccag tagctaattgc tgtctccgtt 240
 tctaataaaag aagttgtggc ccctactact gaaacaaaaag aagctaaaga agttaaagaa 300
 gttaaagccc ctaatgaaaac aaaagaagtt aaaccagcag caaaatccga taacaataca 360
 tattcttattt tgaatcgga acttagagaa gcgattaaaa acccagcaat aaaagataaaa 420
 gatcatagcg cacccaaactc tcgtccaattt gattttgaaa tgaaaaaagaa agatggcact 480
 caacagtttt atcattatgc aagttctgtt aaacctgcta gagttttt cactgattca 540
 aaaccagaaa ttgaatttagg attacaatca ggtcaattttt ggagaaaaatt tgaagtttat 600
 gaaggtgaca aaaaattacc aatcaaattt gtatcatatg atactgtta agactatgtct 660
 tacattcgct tctctgtttc aaatggaaaca aaagcagttt aatcgtaag ttcaactcact 720
 ttcaataata aagaagaaaa atatgattac acgttaatgg aattcgcgcac accgatttt 780

aacagtgcag ataaattcaa aactgaagaa gattacaag ctaaaaatt attagcgcca 840
tataaaaaag cgaaaacact agaaagacaa gtttatgaat taaataaaat tcaagataaa 900
cttcccgaaa aattgaaagc tgaataacaag aagaaattag aagagactaa aaaagctta 960
gatgaacaag taaaatccgc aataactgaa ttccaaaatg tacaaccaac aaatgaaaaa 1020
atgactgatt tacaagatac aaaatatgtt gtttatgaaa gtgttgagaa taacgaatct 1080
atgatggata cttttgtaa acaccctatt aaaacaggtt tgcttaacgg caaaaaat 1140
atgtaatgg aaactactaa tgacgattac tggaaagatt tcatggttga aggtgaacgt 1200
gttagaacaa ttagcaaaga tgctaaaaat aacactagaa cgattatcccattatgtt 1260
gaaggtaaaa ccctataatga tgctatcggtt aaagttcagc taaaaacgat tgattatgtat 1320
ggacaataacc atgtcagaat cggtgataaa gaagcattta ctaaagccaa tgccgataaa 1380
tctaataaaa aggaacaaca agacaactca gctaagaagg aagctacacc agctacgcct 1440
agcaaaccaa caacagcacc tgttgaaaaa gaatcacaaa acaagacagc caaaaagatg 1500
acaataaaca atcaccaagt gttgaaaaag aaattgtatgc atctagttag tcaggtaaag 1560
acaaaacgcc tgctacaaaaa ccagctaaag gtgaagttagt atcaagtatg acaactccaa 1620
ctaaggtatg atctgcact caaaatgtt caaaacccatc atctgcttct tcagaaacaa 1680
caaaaggtgt tgttcaaact tcagcagggtt cttagcgaagc aaaagataat gctccattac 1740
aaaaagcaaa cattaaaaac acaaatgtatg gacatactca aagccaaaac aataaaaaata 1800
cacaagaaaa taaagctaaa tcattaccac aaactggtga agaatcgaat aaagatatga 1860
cattaccatt aatggcatta ttagctttaa gcagcatcat tgcattcgta ttacctagaa 1920
aacgtaaaaa ctaa 1934

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/US04/023522

International filing date: 22 July 2004 (22.07.2004)

Document type: Certified copy of priority document

Document details: Country/Office: US
Number: 60/489,840
Filing date: 24 July 2003 (24.07.2003)

Date of receipt at the International Bureau: 06 September 2004 (06.09.2004)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse