O que é e para que serve Inferência Estatística?

- ? Esta moeda é justa?
- **?** Esta droga "funciona"?
- **?** Quantos casos de Dengue teremos mês que vem?
- ? Renda básica universal aumenta o PIB?

Todas essas perguntas podem ser abordadas com as ferramentas que a Estatística nos fornece.

Ideia 2

A Estatística é a gramática da Ciência⁴. O mundo é incerto; medições são imperfeitas. A Estatística é a linguagem que nos permite expressar e quantificar as incertezas associadas às afirmações científicas através da teoria de probabilidades⁵.

⁴Título do livro de Karl Pearson (1857–1936) ("The Grammar of Science"), publicado em 1982.

⁵Chamada por E.T. Jaynes (1922-1998) de lógica da Ciência ("Probability Theory: The Logic of Science").

Definição 4

Modelo estatístico (De Groot, def 7.1.1, pág. 377). Um modelo estatístico consiste na identificação de variáveis aleatórias de interesse (observáveis e potencialmente observáveis), na especificação de uma distribuição conjunta para as variáveis aleatórias observáveis e na identificação dos parâmetros (θ) desta distribuição conjunta. Às vezes é conveniente assumir que os parâmetros são variáveis aleatórias também, mas para isso é preciso especificar uma distribuição conjunta para θ .

Definição 5

Modelo estatístico (McCullagh, 2002). Seja \mathcal{X} um espaço amostral qualquer, Θ um conjunto não-vazio arbitrário e $\mathcal{P}(\mathcal{X})$ o conjunto de todas as distribuições de probabilidade em \mathcal{X} . Um modelo estatístico paramétrico é uma função $P: \Theta \to \mathcal{P}(\mathcal{X})$, que associa a cada $\theta \in \Theta$ uma distribuição de probabilidade P_{θ} em \mathcal{X} .

Exemplos:

• Faça $\mathcal{X} = \mathbb{R}$ e $\Theta = (-\infty, \infty) \times (0, \infty)$. Dizemos que P é um modelo estatístico normal se para cada $\theta = \{\mu, \sigma^2\} \in \Theta$,

$$P_{ heta}(x) \equiv rac{1}{\sqrt{2\pi}\sigma} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight), \ x \in \mathbb{R}.$$

• Faça $\mathcal{X} = \mathbb{N} \cup \{0\}$ e $\Theta = (0, \infty)$. P é um modelo estatístico Poisson se para $\lambda \in \Theta$,

$$P_{\lambda}(k) \equiv \frac{e^{-\lambda}\lambda^k}{k!}, \ k=0,1,\ldots$$

⁶Note o abuso de notação: estritamente falando, P_{θ} é uma **medida** de probabilidade e não uma *densidade* como apresentamos aqui.

Pergunta 3

Suponha que uma moeda tenha sido lançada dez vezes, obtendo o seguinte resultado:

KKKCKCCCKC

- a) Esta moeda é justa?
- b) Quanto eu espero ganhar se apostar R\$ 100,00 que é justa?

Podemos formalizar o problema ao, por exemplo, assumir que cada lançamento é uma variável aleatória Bernoulli com probabilidade de cara (K), p. Desta forma $X_i = 1$ se o lançamento deu cara e $X_i = 0$ caso contrário. E queremos saber se p = 1/2. Por ora, não temos as ferramentas necessárias para responder a essa pergunta, mas voltaremos a ela no futuro.

Inferência Estatística

Definição 6

Afirmação probabilística. Dizemos que uma afirmação é probabilística quando ela utiliza conceitos da teoria de probabilidade para falar de um objeto. Exemplos:

- $\Pr(\bar{Y}_n \in (0,1)) \leq 2^{-n}$;
- $E[X \mid Y = y] = 2y + 3$;
- $Var(X) = 4p^2$.
- $Pr(Var(X) \le 4p^2) \le p^2$

Definição 7

Inferência Estatística. Uma inferência estatística é uma afirmação probabilística sobre uma ou mais partes de um modelo estatístico. Considerando o exemplo 3, queremos saber:

- Quantos lançamentos até termos 80% de certeza de que a moeda é justa?
- Quanto vale $E[\bar{X}_n]$;
- $\Pr(X_n = 1 \mid X_{n-1} = 1)$.

Definição 8

Estatística. Suponha que temos uma coleção de variáveis aleatórias $X_1, X_2, ..., X_n \in \mathbf{X} \subseteq \mathbb{R}^n$ e uma função $r: \mathbf{X} \to \mathbb{R}^m$. Dizemos que a variável aleatória $T = r(X_1, X_2, ..., X_n)$ é uma **estatística**.

São exemplos de estatísticas:

- A média amostral, \bar{X}_n ;
- A soma, $\sum_{i=1}^{n} X_i$;
- O mínimo, min (X_1, X_2, \ldots, X_n) ;
- $r(X_1, X_2, ..., X_n) = a, \forall X_1, X_2, ..., X_n, a \in \mathbb{R}.$

- **Predição**: prever o valor de uma variável aleatória (ainda) não observada; No exemplo 3, qual será o valor do próximo lançamento, X_{n+1} ;
- Decisão Estatística: Acoplamos o modelo estatístico a uma decisão a ser tomada. Devo emprestar esta moeda ao Duas-Caras? Aqui, temos a noção de risco.;
- **Desenho experimental**: Quantas vezes é preciso lançar esta moeda para ter 95% de certeza de que ela é (ou não) justa? Quantas pessoas precisam tomar uma droga para sabermos se ela funciona? Onde devemos cavar para procurar ouro/petróleo?;

O que aprendemos?

- ♀ Inferência Estatística;
- Sestatística (amostral);
- - ♦ Predição;
 - ♦ Decisão;
 - Desenho experimental.

Leitura recomendada

De Groot seção 7.1;

* McCullagh, 2002.