LibreVNA SCPI Programming Guide

November 13, 2022

Contents

Ι	Intr	oduction	4
2	SCP	PI Server Configuration	4
3	Gen	neral Syntax	4
4	Con	nmands	5
	4.I	General Commands	5
		4.I.I *IDN	5
		4.I.2 *LST	5
	4.2	Device Commands	5
		4.2.I DEVice:DISConnect	5
		4.2.2 DEVice:CONNect	5
		4.2.3 DEVice:LIST	6
		4.2.4 DEVice:MODE	6
		4.2.5 DEVice:REFerence:OUT	7
		4.2.6 DEVice:REFerence:IN	7
		4.2.7 DEVice:STAtus:UNLOcked	7
		4.2.8 DEVice:STAtus:ADCOVERload	8
		4.2.9 DEVice:STAtus:UNLEVel	8
		4.2.10 DEVice:INFo:FWREVision	8
		4.2.11 DEVice:INFo:HWREVision	8
		4.2.12 DEVice:INFo:TEMPeratures	9
		4.2.13 DEVice:INFo:LIMits:MINFrequency	9
		4.2.14 DEVice:INFo:LIMits:MAXFrequency	9
		4.2.15 DEVice:INFo:LIMits:MINIFBW	9
		4.2.16 DEVice:INFo:LIMits:MAXIFBW	9
		4.2.17 DEVice:INFo:LIMits:MAXPoints	9
		4.2.18 DEVice:INFo:LIMits:MINPOWer	10
		4.2.19 DEVice:INFo:LIMits:MAXPOWer	10
		4.2.20 DEVice:INFo:LIMits:MINRBW	10
		4.2.21 DEVice:INFo:LIMits:MAXRBW	10
		4.2.22 DEVice:INFo:LIMits:MAXHARMonicfrequency	10
	4.3	VNA Commands	II
	4.3	4.3.1 VNA:SWEEP	II
		4.3.2 VNA:FREQuency:SPAN	II
		4.3.3 VNA:FREQuency:START	II
		4.3.4 VNA:FREQuency:CENTer	12
		4.3.5 VNA:FREQuency:STOP	12
		4.7.1 Y13111CECUCIICVOICI	12

4.3.6	VNA:FREQuency:FULL	Ι2
4.3.7	VNA:FREQuency:ZERO	Ι2
4.3.8	VNA:POWer:START	Ι2
4.3.9	VNA:POWer:STOP	Ι3
	VNA:ACQuisition:IFBW	13
	· ·	13
	· ·	14
		14
		14
		14
		15
		15
		15
		15
		16
		16
		17
		17
		17
4.3.25	VNA:TRACe:MAXAmplitude	18
4.3.26	VNA:TRACe:MINAmplitude	18
4.3.27	VNA:TRACe:NEW	18
4.3.28	VNA:TRACe:RENAME	18
4.3.29	VNA:TRACe:PAUSE	18
4.3.30	VNA:TRACe:RESUME	19
		19
		19
		19
		19
		20
		20
		20
		20
		21
		21
		21
		21
		22
		22
		22
_		22
4.4.I		22
4.4.2		23
4.4.3		23
Spectri		23
4.5.I	SA:FREQuency:SPAN	23
4.5.2	SA:FREQuency:START	24
4.5.3	SA:FREQuency:CENTer	24
4.5.4		24
		25
		25
	4.3.7 4.3.8 4.3.9 4.3.10 4.3.11 4.3.12 4.3.13 4.3.14 4.3.15 4.3.16 4.3.17 4.3.18 4.3.20 4.3.21 4.3.22 4.3.23 4.3.24 4.3.25 4.3.26 4.3.27 4.3.28 4.3.29 4.3.30 4.3.31 4.3.32 4.3.33 4.3.34 4.3.35 4.3.36 4.3.37 4.3.38 4.3.39 4.3.41 4.3.42 4.3.43 4.3.41 4.3.42 4.3.43 5 Signal 4.4.1 4.4.2 4.4.3 5 Spectr 4.5.1 4.5.2 4.5.3	4.3.7 VNA:FREQuency:ZERO 4.3.8 VNA:POWer:START 4.3.9 VNA:POWer:STOP 4.3.10 VNA:ACQuisition:IFBW 4.3.11 VNA:ACQuisition:AVG 4.3.12 VNA:ACQuisition:AVG 4.3.13 VNA:ACQuisition:AVG 4.3.14 VNA:ACQuisition:IIINished 4.3.15 VNA:ACQuisition:IIINished 4.3.16 VNA:ACQuisition:IIINished 4.3.17 VNA:STIMulus:IVL 4.3.18 VNA:STIMulus:IVL 4.3.18 VNA:STIMulus:IVE 4.3.19 VNA:TRACe:IST 4.3.20 VNA:TRACe:DATA 4.3.21 VNA:TRACe:DATA 4.3.22 VNA:TRACe:ATA 4.3.22 VNA:TRACe:MAXFrequency 4.3.23 VNA:TRACe:MAXFrequency 4.3.24 VNA:TRACe:MINFrequency 4.3.25 VNA:TRACe:MINFrequency 4.3.26 VNA:TRACe:MINFrequency 4.3.27 VNA:TRACe:MINFrequency 4.3.28 VNA:TRACe:PAUSE 4.3.29 VNA:TRACe:PAUSE 4.3.30 VNA:TRACe:PAUSE 4.3.31 VNA:TRACe:PAUSE 4.3.32 VNA:TRACe:PAUSE 4.3.33 VNA:TRACe:PAUSE 4.3.34 VNA:TRACe:PAUSE 4.3.35 VNA:TRACe:PAUSE 4.3.37 VNA:CALibration:ACTIVE 4.3.38 VNA:CALibration:ACTIVE 4.3.39 VNA:CALibration:MMPE 4.3.31 VNA:CALibration:MADRD 4.3.32 VNA:CALibration:MEASUre 4.3.33 VNA:CALibration:MEASUre 4.3.34 VNA:CALibration:MEASUre 4.3.35 VNA:CALibration:MEASUre 4.3.36 VNA:CALibration:MEASUre 4.3.37 VNA:CALibration:MEASUre 4.3.38 VNA:CALibration:MEASUre 4.3.39 VNA:CALibration:MEASUre 4.3.40 VNA:CALibration:MEASUre 4.3.41 VNA:CALibration:MEASUre 4.3.42 VNA:CALibration:MEASUre 4.3.43 VNA:CALibration:MEASUre 4.3.44 VNA:CALibration:MEASUre 4.3.45 VNA:CALibration:MEASUre 4.3.46 CREATER COMMEASURE 4.3.47 VNA:CALibration:MEASURE 4.3.48 VNA:CALibration:MEASURE 4.3.49 VNA:CALibration:MEASURE 4.3.41 VNA:CALibration:MEASURE 4.3.42 VNA:CALibration:MEASURE 4.3.43 VNA:CALibration:MEASURE 4.3.44 VNA:CALibration:MEASURE 4.3.45 VNA:CALibration:MEASURE 4.3.46 VNA:CALibration:MEASURE 4.3.47 VNA:CALibration:MEASURE 4.3.48 VNA:CALibration:MEASURE 4.3.49 VNA:CALibration:MEASURE 4.3.41 VNA:CALibration:MEASURE 4.3.43 VNA:CALibration:MEASURE 4.3.44 VNA:CALibration:MEASURE 4.3.45 VNA:CALibration:MEASURE 4.346 VNA:CALibration:MEASURE 4.347 VNA:CALibration:MEASURE 4.348 VNA:CALibration:MEASURE 4.349 VNA:CALibration:MEASURE 4.341 VNA:CALibration:MEASURE 4.342 VNA:CALibration:MEA

4.5.7	SA:ACQuisition:RBW	25
4.5.8	SA:ACQuisition:WINDow	25
4.5.9	SA:ACQuisition:DETector	25
4.5.10	SA:ACQuisition:AVG	26
4.5.II	SA:ACQuisition:AVGLEVel	26
4.5.12	SA:ACQuisition:FINished	27
4.5.13	SA:ACQuisition:LIMit	27
4.5.14		27
4.5.15	SA:ACQuisition:SIGid	27
4.5.16	SA:TRACKing:ENable	28
4.5.17		28
4.5.18	SA:TRACKing:LVL	28
4.5.19	SA:TRACKing:OFFset	28
4.5.20	SA:TRACKing:NORMalize:ENable	29
4.5.21	a	29
4.5.22	SA:TRACKing:NORMalize:LVL	29
4.5.23	0. HED 10 TYOM	29
4.5.24	0. HPD 1.0. D. HP1	30
4.5.25		30
4.5.26	SA:TRACe:MAXFrequency	30
4.5.27	0.1 777 777 777 777 777 777 777 777 777 7	3 I
4.5.28	SA:TRACe:MAXAmplitude	3 I
4.5.29	SA:TRACe:MINAmplitude	3 I
4.5.30		3 I
4.5.31	SA:TRACe:RENAME	3 I
4.5.32	SA:TRACe:PAUSE	32
4.5.33	SA:TRACe:RESUME	32
4.5.34		32
4.5.35	SA:TRACe:PARAMeter	32
1.5.36	SA·TRACe·TYPE	32

1 Introduction

The LibreVNA-GUI contains a TCP server that can be used to control the LibreVNA with SCPI commands.

2 SCPI Server Configuration

The server is configurable in the preferences: Window Preferences General

If enabled, it will accept any TCP connection at the configured port. Once the connection is established, it can be used to send SCPI commands and receive replies. Only one connection at a time is possible, if a second connection is created, the first one will be closed by the LibreVNA-GUI. Alternatively, a port can be manually configured by setting the "port" argument:

```
./LibreVNA-GUI --port 1234
```

This enables the SCPI server at the specified port, regardless of what is configured in the preferences (useful for starting multiple instances at different ports at the same time). If no graphical user interface is required, the LibreVNA-GUI can be hidden:

```
./LibreVNA-GUI --port 1234 --no-gui
```

3 General Syntax

The syntax follows the usual SCPI rules:

- All commands are case insensitive (implicitly converted to uppercase before evaluated)
- The command tree is organized in branches, separated by a colon:

```
: VNA: TRACE: LIST?
```

• Multiple commands can be concatenated in one line using a semicolon:

```
:DEVice:CONNECT;:DEVice:INFo:FWRevision?
```

• If a command starts with a colon it is evaluated from the root branch, otherwise the last used branch is assumed:

```
:VNA:FREQuency:START 1000000
STOP 2000000 #No colon, VNA:FREQuency branch was used before
```

• Branches and commands can be abbreviated by using only the uppercase part of their name, the following commands are identical:

```
:DEVice:INFo:LIMits:MINFrequency?
:DEV:INF:LIM:MINF?
```

• Every command generates a (possibly empty) response, terminated with a newline character.

• Some commands require additional arguments that have to be passed after the command (separated by spaces):

```
:DEV:REF:OUT 10
```

- Two types of commands are available:
 - Events change a setting or trigger an action. They usually have an empty response (unless there was an error).
 - Queries request information. They end with a question mark.
 Some commands are both events and queries, depending on whether the question mark is present:

```
:VNA:FREQ:SPAN 50000000 # Set the span
:VNA:FREQ:SPAN? # Read the current span
```

```
4 Commands
```

4.1 General Commands

4.1.1 *IDN

Query:

Effect:	Returns the identifications string
Syntax:	*IDN?
Parameters:	None
Return value:	LibreVNA-GUI

4.1.2 *LST

Query:

Effect:	Lists all available commands
Syntax:	*LST?
Parameters:	None
Return value:	List of commands, separated by newline

4.2 Device Commands

This section contains general device commands, available regardless of the current mode.

4.2.1 DEVice:DISConnect

Event:

Effect:	Disconnects from the device
Syntax:	DEVice:DISConnect
Parameters:	None

4.2.2 DEVice:CONNect

Effect:	Connects to a device. If no serialnumber is specified, the connection is made
	with the first device found

Syntax:	DEVice:CONNect [<serialnumber>]</serialnumber>
Parameters:	<serialnumber> Serialnumber of the device that should be connected</serialnumber>

Example

:DEV:CONN 206039903350

Query:

Effect:	Queries the serial number of the connected device
Syntax:	DEVice:CONNect?
Parameters:	None
Return value:	<pre><serialnumber> or "Not connected"</serialnumber></pre>

Example

:DEV:CONN? 206039903350

4.2.3 DEVice:LIST

Query:

Effect:	Lists all available devices by their serial numbers
Syntax:	DEVice:LIST?
Parameters:	None
Return value:	List of serialnumbers

Example

:DEV:LIST? 206039903350,208939A23350

4.2.4 DEVice:MODE

Event:

Effect:	Switches the device to the specified mode
Syntax:	DEVice:MODE <mode></mode>
Parameters:	<mode>: VNA: set to vector analyzer GEN: set to signal generator SA: set to spectrum analyzer</mode>

Example

:DEV:MODE VNA

Effect:	Queries the currently active mode
Syntax:	DEVice:MODE?
Parameters:	None
Return value:	<mode>:</mode>
	VNA: set to vector analyzer
	GEN: set to signal generator
	SA: set to spectrum analyzer

Example

: DEV: MODE? VNA

4.2.5 DEVice:REFerence:OUT

Event:

Effect:	Sets the reference output frequency
Syntax:	DEVice:REFerence:OUT <freq></freq>
Parameters:	<pre><freq> in MHz, either o (disabled), 10 or 100</freq></pre>

Query:

Effect:	Queries the reference output frequency	
Syntax:	DEVice:REFerence:OUT?	
Parameters: None		
Return value:	Output frequency in MHz	

4.2.6 DEVice:REFerence:IN

Event:

Effect:	Set the reference input mode	
Syntax:	DEVice:REFerence:IN <mode></mode>	
Parameters:	<pre><mode>: INT: use internal reference EXT: use external reference AUTO: automatic reference switching</mode></pre>	

Query:

Effect:	Queries the reference source	
Syntax:	DEVice:REFerence:IN?	
Parameters:	None	
Return value:	INT or EXT	

4.2.7 DEVice:STAtus:UNLOcked

Effect: Queries the PLL lock error flag		Effect:	Queries the PLL lock error flag
---	--	---------	---------------------------------

Syntax:	DEVice:STAtus:UNLOcked?
Parameters:	None
Return value:	TRUE or FALSE

4.2.8 DEVice:STAtus:ADCOVERload

Query:

Effect:	Queries the ADC overload error flag
Syntax:	DEVice:STAtus:ADCOVERload?
Parameters:	None
Return value:	TRUE or FALSE

4.2.9 DEVice:STAtus:UNLEVel

Query:

Effect:	Queries the output level error flag	
Syntax:	DEVice:STAtus:UNLEVel?	
Parameters:	None	
Return value:	TRUE or FALSE	

4.2.10 DEVice:INFo:FWREVision

Query:

Effect:	Returns the firmware revision of the connected device	
Syntax:	DEVice:INFo:FWREVision?	
Parameters:	None	
Return value:	<mayor>.<minor>.<patch></patch></minor></mayor>	

Example

:DEV:INF:FWREV?	_	
1.0.0		

4.2.11 DEVice:INFo:HWREVision

Query:

Effect:	Returns the hardware revision of the connected device	
Syntax:	DEVice:INFo:HWREVision?	
Parameters:	None	
Return value:	<revision>, single char</revision>	

Example

:DEV:INF:HWREV?	
В	

4.2.12 DEVice:INFo:TEMPeratures

Query:

Effect:	Queries the temperatures of certain chips
Syntax:	DEVice:INFo:TEMPeratures?
Parameters:	None
Return value:	<source/> /<1.LO>/ <cpu></cpu>

Example

:DEV:INF:TEMP?

45/51/31

4.2.13 DEVice:INFo:LIMits:MINFrequency

Query:

Effect:	Queries the lowest frequency the device can measure
Syntax:	DEVice:INFo:LIMits:MINFrequency?
Parameters:	None
Return value:	lowest frequency in Hz

4.2.14 DEVice:INFo:LIMits:MAXFrequency

Query:

Effect:	Queries the highest frequency the device can measure
Syntax:	DEVice:INFo:LIMits:MAXFrequency?
Parameters:	None
Return value:	highest frequency in Hz

4.2.15 DEVice:INFo:LIMits:MINIFBW

Query:

Effect:	Queries the lowest IF bandwidth setting
Syntax:	DEVice:INFo:LIMits:MINIFBW?
Parameters:	None
Return value:	lowest possible IF bandwidth in Hz

4.2.16 DEVice:INFo:LIMits:MAXIFBW

Query:

Effect:	Queries the highest IF bandwidth setting
Syntax:	DEVice:INFo:LIMits:MAXIFBW?
Parameters:	None
Return value:	highest possible IF bandwidth in Hz

4.2.17 DEVice:INFo:LIMits:MAXPoints

Effect:	Queries the maximum number of points per sweep
Syntax:	DEVice:INFo:LIMits:MAXPoints?
Parameters:	None
Return value:	maximum number of points

4.2.18 DEVice:INFo:LIMits:MINPOWer

Query:

Effect:	Queries the minimum output power
Syntax:	DEVice:INFo:LIMits:MINPOWer?
Parameters:	None
Return value:	minimum output power in dBm

4.2.19 DEVice:INFo:LIMits:MAXPOWer

Query:

Effect:	Queries the maximum output power
Syntax:	DEVice:INFo:LIMits:MAXPOWer?
Parameters:	None
Return value:	maximum output power in dBm

4.2.20 DEVice:INFo:LIMits:MINRBW

Query:

Effect:	Queries the lowest resolution bandwidth setting
Syntax:	DEVice:INFo:LIMits:MINRBW?
Parameters:	None
Return value:	lowest possible resolution bandwidth in Hz

4.2.21 DEVice:INFo:LIMits:MAXRBW

Query:

Effect:	Queries the highest resolution bandwidth setting
Syntax:	DEVice:INFo:LIMits:MAXRBW?
Parameters:	None
Return value:	highest possible resolution bandwidth in Hz

4.2.22 DEVice:INFo:LIMits:MAXHARMonicfrequency

Effect:	Queries the (theoretical) maximum frequency when using harmonic mixing in
	VNA mode
Syntax:	DEVice:INFo:LIMits:MAXHARMonicfrequency?
Parameters:	None
Return value:	maximum frequency in Hz

4.3 VNA Commands

These commands change or query VNA settings. Although most of them are available regardless of the current device mode, they usually only have an effect once the VNA mode is active (e.g. it is possible to change the span while in signal generator mode but it does not effect the LibreVNA until the mode is switched to VNA). Certain commands (like taking a calibration measurement) are only available in VNA mode and will return an error if another mode is active.

4.3.1 VNA:SWEEP

Event:

Effect:	Sets the type of the sweep
Syntax:	VNA:SWEEP
Parameters:	<type>, either FREQUENCY or POWER</type>

Query:

Effect:	Queries the currently selected type
Syntax:	VNA:SWEEP?
Parameters:	None
Return value:	<type>, either FREQUENCY or POWER</type>

4.3.2 VNA:FREQuency:SPAN

Event:

Effect:	Sets the span of the sweep
Syntax:	VNA:FREQuency:SPAN
Parameters:	, in Hz

Query:

Effect:	Queries the currently selected span
Syntax:	VNA:FREQuency:SPAN?
Parameters:	None
Return value:	span in Hz

4.3.3 VNA:FREQuency:START

Event:

Effect:	Sets the start frequency of the sweep
Syntax:	VNA:FREQuency:START
Parameters:	<start frequency="">, in Hz</start>

Effect:	Queries the currently selected start frequency
Syntax:	VNA:FREQuency:START?
Parameters:	None
Return value:	start frequency in Hz

4.3.4 VNA:FREQuency:CENTer

Event:

Effect:	Sets the center frequency of the sweep
Syntax:	VNA:FREQuency:CENTer
Parameters:	<center frequency="">, in Hz</center>

Query:

Effect:	Queries the currently selected center frequency
Syntax:	VNA:FREQuency:CENTer?
Parameters:	None
Return value:	center frequency in Hz

4.3.5 VNA:FREQuency:STOP

Event:

Effect:	Sets the stop frequency of the sweep
Syntax:	VNA:FREQuency:STOP
Parameters:	<stop frequency="">, in Hz</stop>

Query:

Effect:	Queries the currently selected stop frequency
Syntax:	VNA:FREQuency:STOP?
Parameters:	None
Return value:	stop frequency in Hz

4.3.6 VNA:FREQuency:FULL

Event:

Effect:	Sets the device to the maximum span possible
Syntax:	VNA:FREQuency:FULL
Parameters:	None

4.3.7 VNA:FREQuency:ZERO

Event:

Effect:	Sets the device to zero span mode
Syntax:	VNA:FREQuency:ZERO
Parameters:	None

4.3.8 VNA:POWer:START

Effect:	Sets the start power of the power sweep
Syntax:	VNA:POWer:START
Parameters:	<start power="">, in dBm</start>

Query:

Effect:	Queries the currently selected start power
Syntax:	VNA:POWer:START?
Parameters:	None
Return value:	start power in dBm

4.3.9 VNA:POWer:STOP

Event:

Effect:	Sets the stop power of the power sweep
Syntax:	VNA:POWer:STOP
Parameters:	<stop power="">, in dBm</stop>

Query:

Effect:	Queries the currently selected stop power
Syntax:	VNA:POWer:STOP?
Parameters:	None
Return value:	stop power in dBm

4.3.10 VNA:ACQuisition:IFBW

Event:

Effect:	Sets the IF bandwidth
Syntax:	VNA:ACQuisition:IFBW
Parameters:	<if bandwidth="">, in Hz</if>

Query:

Effect:	Queries the currently selected IF bandwidth
Syntax:	VNA:ACQuisition:IFBW?
Parameters:	None
Return value:	IF bandwidth in Hz

4.3.11 VNA:ACQuisition:POINTS

Event:

Effect:	Sets the number of points per sweep
Syntax:	VNA:ACQuisition:POINTS
Parameters:	<pre><points></points></pre>

Effect:	Queries the currently selected number of points
Syntax:	VNA:ACQuisition:POINTS?
Parameters:	None
Return value:	points

4.3.12 VNA:ACQuisition:AVG

Event:

Effect:	Sets the number of sweeps over which a moving average is calculated
Syntax:	VNA:ACQuisition:AVG
Parameters:	<averaging sweeps=""></averaging>

Query:

Effect:	Queries the currently configured number of sweeps	
Syntax:	VNA:ACQuisition:AVG?	
Parameters:	None	
Return value:	<averaging sweeps=""></averaging>	

4.3.13 VNA:ACQuisition:AVGLEVel

Query:

Effect:	Queries the number of sweeps that have been acquired by the average function.
Syntax:	VNA:ACQuisition:AVGLEVel?
Parameters:	None
Return value:	<acquired sweeps=""></acquired>

<acquired sweeps> resets to zero whenever a setting is changed. It is incremented at the end of each sweep, but will not go above the number of configured sweeps for the averaging.

Example (assuming <averaging sweep> = 3):

# of active sweep	<acquired sweeps=""></acquired>
I	0
2	I
3	2
4	3
5	3

4.3.14 VNA:ACQuisition:FINished

Query:

Effect:	Queries whether the average filter has reached a steady state (that is <acquired< th=""></acquired<>	
	sweeps> = <averaging sweeps="">)</averaging>	
Syntax:	VNA:ACQuisition:FINished?	
Parameters:	None	
Return value:	TRUE or FALSE	

4.3.15 VNA:ACQuisition:LIMit

Effect:	Queries the status of limits that maybe set up on any graph	
Syntax:	VNA:ACQuisition:LIMit?	
Parameters:	None	
Return value:	PASS or FAIL	

4.3.16 VNA:ACQuisition:SINGLE

Event:

Effect:	Configures the VNA for single or continuous sweep
Syntax:	VNA:ACQuisition:SINGLE
Parameters:	TRUE or FALSE

Query:

Effect:	Queries whether the VNA is set up for single sweep
Syntax:	VNA:ACQuisition:SINGLE?
Parameters:	None
Return value:	TRUE or FALSE

If single sweep is enabled, the acquisition is stopped when the required number of averages have been reached. There are two ways to trigger a new sweep:

- Change any sweep setting (e.g. center frequency)
- Issue the command again (i.e. VNA:ACQ:SINGLE TRUE always triggers a new sweep)

4.3.17 VNA:STIMulus:LVL

Event:

Effect:	Sets the output power of the stimulus signal when sweep type is frequency	
Syntax:	VNA:STIMulus:LVL	
Parameters:	<pre><power>, in dBm</power></pre>	

Query:

Effect:	Queries the currently selected output power	
Syntax:	VNA:STIMulus:LVL?	
Parameters:	None	
Return value:	power in dBm	

4.3.18 VNA:STIMulus:FREQuency

Event:

Effect:	Sets the frequency of the stimulus signal when sweep type is power
Syntax:	VNA:STIMulus:FREQuency
Parameters:	<freq>, in Hz</freq>

Query:

Effect:	Queries the currently selected frequency	
Syntax:	VNA:STIMulus:FREQuency?	
Parameters:	None	
Return value:	frequency in Hz	

4.3.19 VNA:TRACe:LIST

Effect:	Lists the names of all available traces	
Syntax:	VNA:TRACe:LIST?	
Parameters:	None	
Return value:	comma-separated list of trace name	

Example

VNA:TRAC:LIST?	
S11, S12, S21, S22	

4.3.20 VNA:TRACe:DATA

Query:

Effect:	Returns the data of a trace	
Syntax:	VNA:TRACe:DATA?	
Parameters:	<trace>, either by name or by index</trace>	
Return value:	comma-separated list of tuples [x, real(y), imag(y]	

Depending on the sweep and possible configured math operations, x may be either frequency, power or time.

Example

```
:VNA:TRAC:DATA? S11
[1e+6,0.400172,0.0377869],
[6.67556e+8,-0.0922281,-0.00990373],
[1.33411e+9,-0.0341439,-0.0331184],
[2.00067e+9,0.00750893,0.0490847],
[2.66722e+9,0.0472666,-0.175552],
[3.33378e+9,-0.106545,-0.00952825],
[4.00033e+9,-0.102039,0.0890605],
[4.66689e+9,0.0464292,0.118183],
[5.33344e+9,0.13223,-0.00780554],
[6e+9,-0.0314859,-0.246024]
```

Note: actual response will not include newlines between data points, only at the end

4.3.21 VNA:TRACe:AT

Query:

Effect:	Returns the data at a specific frequency (possibly interpolated)	
Syntax:	VNA:TRACe:AT?	
Parameters:	<trace>, either by name or by index</trace>	
	<pre><frequency>, in Hz</frequency></pre>	
Return value:	real,imag (or "NaN,NaN" if specified frequeny is invalid)	

Example

```
:VNA:TRAC:AT? S11 1200000000
-0.0458452,-0.028729
```

4.3.22 VNA:TRACe:TOUCHSTONE

Query:

Effect:	Returns the content of multiple trace according to the touchstone format
Syntax:	VNA:TRACe:TOUCHSTONE?
Parameters:	<trace1>,<trace2>,<trace3>,</trace3></trace2></trace1>
Return value:	Touchstone file content in ASCII

Some additional constraints apply:

- The number of specified traces must be a square number. The number of ports in the touchstone file is inferred from that.
- · Only frequency domain traces are allowed.
- All traces must have the same number of points and the same start/stop frequency.
- The order in which the traces are specified matters and depending on its index and each trace must be a reflection or transmission measurement:
 - Assuming that n is the number of ports of the desired touchstone file, the n*n number of traces must be specified in this order:

$$S_{11}...S_{1n}, S_{21}...S_{2n}, ..., S_{n1}...S_{nn}$$

- For every trace S_{ij} , the trace must contain a reflection measurement if i = j and a transmission measurement if $i \neq j$.
- Traces can be specified either by name or by index.
- A deviation from any of these points (invalid number of traces, non-existing trace, wrong order, ...) will result in an error being returned.

Example

```
:VNA:TRACE:TOUCHSTONE? S11 S12 S21 S22

# GHZ S RI R 50

1.000000000000 1.000497817993 0.010679213330 0.000013886895
-0.000054684886 -0.000023392624 -0.000021111371
0.401717424393 0.702864229679

1.002000000000 1.000323534012 0.010577851906 -0.000011075452
-0.000013504875 0.000000477609 -0.000007789199
0.413144201040 0.696514129639
...
```

4.3.23 VNA:TRACe:MAXFrequency

Query:

Effect:	Returns the highest frequency contained in the trace
Syntax:	VNA:TRACe:MAXFrequency?
Parameters:	<pre><trace>, either by name or by index</trace></pre>
Return value:	maximum frequency in Hz

4.3.24 VNA:TRACe:MINFrequency

Effect:	Returns the lowest frequency contained in the trace
---------	---

Syntax:	VNA:TRACe:MINFrequency?
Parameters:	<trace>, either by name or by index</trace>
Return value:	maximum frequency in Hz

4.3.25 VNA:TRACe:MAXAmplitude

Query:

Effect:	Returns the datapoint with the highest amplitude in the trace
Syntax:	VNA:TRACe:MAXAmplitude?
Parameters:	<trace>, either by name or by index</trace>
Return value:	<pre><frequency>,<real>,<imag> of the highest amplitude point</imag></real></frequency></pre>

Example

: VNA: TRAC: MAXA? S21	
5.66406e+9,-6.21766e-5,-0.000795846	

4.3.26 VNA:TRACe:MINAmplitude

Query:

Effect:	Returns the datapoint with the lowest amplitude in the trace
Syntax:	VNA:TRACe:MINAmplitude?
Parameters:	<trace>, either by name or by index</trace>
Return value:	<frequency>,<real>,<imag> of the lowest amplitude point</imag></real></frequency>

4.3.27 VNA:TRACe:NEW

Event:

Effect:	Creates a new trace
Syntax:	VNA:TRACe:NEW
Parameters:	<trace name=""></trace>

4.3.28 VNA:TRACe:RENAME

Event:

Effect:	Changes the name of a trace
Syntax:	VNA:TRACe:RENAME
Parameters:	<trace>, either by name or by index</trace>
	<new name=""></new>

4.3.29 VNA:TRACe:PAUSE

Effect:	Pauses (freezes) a trace
Syntax:	VNA:TRACe:PAUSE
Parameters:	<trace>, either by name or by index</trace>

4.3.30 VNA:TRACe:RESUME

Event:

Effect:	Resumes (unfreezes) a trace
Syntax:	VNA:TRACe:RESUME
Parameters:	<trace>, either by name or by index</trace>

4.3.31 VNA:TRACe:PAUSED

Query:

Effect:	Queries whether a trace is paused
Syntax:	VNA:TRACe:PAUSED?
Parameters:	<trace>, either by name or by index</trace>
Return value:	TRUE or FALSE

4.3.32 VNA:TRACe:PARAMeter

Event:

Effect:	Sets the measurement parameter that is stored in the trace
Syntax:	VNA:TRACe:PARAMeter
Parameters:	<trace>, either by name or by index</trace>
	<pre><parameter>, options are S11, S12, S21 or S22</parameter></pre>

Query:

Effect:	Queries the measurement parameter of a trace
Syntax:	VNA:TRACe:PARAMeter?
Parameters:	<trace>, either by name or by index</trace>
Return value:	S11, S12, S21 or S22

4.3.33 VNA:TRACe:TYPE

Event:

Effect:	Sets the storage type of a trace
Syntax:	VNA:TRACe:TYPE
Parameters:	<trace>, either by name or by index <type>, options are OVERWRITE, MAXHOLD or MINHOLD</type></trace>

Query:

Effect:	Queries the storage type of a trace
Syntax:	VNA:TRACe:TYPE?
Parameters:	<trace>, either by name or by index</trace>
Return value:	OVERWRITE, MAXHOLD or MINHOLD

4.3.34 VNA:CALibration:ACTivate

Effect:	Activates a specific calibration. This command fails if the required measurements
	have not been taken yet
Syntax:	VNA:CALibration:ACTivate
Parameters:	<type></type>

Query:

Effect:	Queries the currently available calibration types
Syntax:	VNA:CALibration:ACTivate?
Parameters:	None
Return value:	comma-separated list of available calibration types

4.3.35 VNA:CALibration:ACTIVE

Query:

Effect:	Queries the currently active calibration type
Syntax:	VNA:CALibration:ACTIVE?
Parameters:	None
Return value:	Currently active calibration type

4.3.36 VNA:CALibration:NUMber

Query:

Effect:	Queries the number of available calibration measurements
Syntax:	VNA:CALibration:NUMber?
Parameters:	None
Return value:	<number configured="" measurements="" of=""></number>

4.3.37 VNA:CALibration:RESET

Event:

Effect:	Resets the calibration. Deactivates the calibration and deletes all measurements.
Syntax:	VNA:CALibration:RESET
Parameters:	None

4.3.38 VNA:CALibration:ADD

Effect:	Adds a new empty calibration measurement.
Syntax:	VNA:CALibration:ADD
Parameters:	<type> Measurement type, one of:</type>
	OPEN
	SHORT
	LOAD
	THROUGH
	ISOLATION
	[<standard>], calibration kit standard name, optional</standard>

4.3.39 VNA:CALibration:TYPE

Query:

Effect:	Returns the type of the specified measurement
Syntax:	VNA:CALibration:TYPE?
Parameters:	<measurement number=""></measurement>
Return value:	Measurement type, one of:
	OPEN
	SHORT
	LOAD
	THROUGH
	ISOLATION

4.3.40 VNA:CALibration:PORT

Event:

Effect:	Sets the port for the specified measurement
Syntax:	VNA:CALibration:PORT
Parameters:	<measurement number=""> <port number=""></port></measurement>

Query:

Effect:	Returns the port for the specified measurement
Syntax:	VNA:CALibration:PORT?
Parameters:	<measurement number=""></measurement>
Return value:	<port number=""></port>

4.3.41 VNA:CALibration:STANDARD

Event:

Effect:	Sets the calibration standard which will be used for the specified measurement
Syntax:	VNA:CALibration:STANDARD
Parameters:	<measurement number=""> <standard name=""></standard></measurement>

Query:

Effect:	Returns the standard name for the specified measurement
Syntax:	VNA:CALibration:STANDARD?
Parameters:	<measurement number=""></measurement>
Return value:	Name of used calibration standard (from calibration kit)

4.3.42 VNA:CALibration:MEASure

Effect:	Starts a calibration measurement. This command fails if no device is connected,
	the VNA mode is not active or a calibration measurement is already in progress.
Syntax:	VNA:CALibration:MEASure
Parameters:	<measurement 1="">,<measurement 2="">,</measurement></measurement>

Any number of measurements can be specified (by their number). These measurements will be taken simultaneously. This only works if they are measuring different ports (e.g. measure SHORT on port 1 and OPEN on port 2). If colliding measurements are specified (e.g. SHORT on port 1 and LOAD on port 1), an error is returned and no measurements are started.

4.3.43 VNA:CALibration:BUSY

Query:

Effect:	Queries whether a calibration measurement is ongoing
Syntax:	VNA:CALibration:BUSY?
Parameters:	None
Return value:	TRUE or FALSE

4.3.44 VNA:CALibration:SAVE

Event:

Effect:	Saves the active calibration to a file
Syntax:	VNA:CALibration:SAVE
Parameters:	<filename></filename>

Important points when saving/loading calibration files through SCPI commands:

- Filenames must be either absolute or relative to the location of the GUI application.
- SCPI parsing implicitly capitalizes all commands, the file will be saved using only uppercase letters. Similarly, it is not possible to load a file whose filename contains lowercase characters.
- If the LibreVNA-GUI (and thus also the SCPI server) is running on a different machine than the SCPI client, the calibration files will be saved/loaded from the machine that runs the GUI.

4.3.45 VNA:CALibration:LOAD

Query:

Effect:	Loads a calibration file
Syntax:	VNA:CALibration:LOAD?
Parameters:	<filename></filename>
Return value:	TRUE or FALSE

4.4 Signal Generator Commands

These commands change or query signal generator settings. Although most of them are available regardless of the current device mode, they usually only have an effect once the generator mode is active.

4.4.1 GENerator:FREQuency

Event:

Effect:	Sets the output frequeny
Syntax:	GENerator:FREQuency
Parameters:	<frequency>, in Hz</frequency>

Effect:	Queries the selected output frequency
Syntax:	GENerator:FREQuency?
Parameters:	None
Return value:	frequency in Hz

4.4.2 GENerator:LVL

Event:

Effect:	Sets the output power
Syntax:	GENerator:LVL
Parameters:	<output level="">, in dBm</output>

Query:

Effect:	Queries the selected output power
Syntax:	GENerator:LVL?
Parameters:	None
Return value:	output level in dBm

4.4.3 GENerator:PORT

Event:

Effect:	Sets the active output port
Syntax:	GENerator:PORT
Parameters:	<pre><output port=""> o: output disabled i: output signal at port 1 2: output signal at port 2</output></pre>

Query:

Effect:	Queries the selected output
Syntax:	GENerator:PORT?
Parameters:	None
Return value:	output port

4.5 Spectrum Analyzer Commands

These commands change or query spectrum analyzer settings. Although most of them are available regardless of the current device mode, they usually only have an effect once the spectrum analyzer mode is active.

4.5.1 SA:FREQuency:SPAN

Effect:	Sets the span of the sweep
Syntax:	SA:FREQuency:SPAN
Parameters:	, in Hz

Query:

Effect:	Queries the currently selected span
Syntax:	SA:FREQuency:SPAN?
Parameters:	None
Return value:	span in Hz

4.5.2 SA:FREQuency:START

Event:

Effect:	Sets the start frequency of the sweep
Syntax:	SA:FREQuency:START
Parameters:	<start frequency="">, in Hz</start>

Query:

Effect:	Queries the currently selected start frequency
Syntax:	SA:FREQuency:START?
Parameters:	None
Return value:	start frequency in Hz

4.5.3 SA:FREQuency:CENTer

Event:

Effect:	Sets the center frequency of the sweep
Syntax:	SA:FREQuency:CENTer
Parameters:	<center frequency="">, in Hz</center>

Query:

Effect:	Queries the currently selected center frequency
Syntax:	SA:FREQuency:CENTer?
Parameters:	None
Return value:	center frequency in Hz

4.5.4 SA:FREQuency:STOP

Event:

Effect:	Sets the stop frequency of the sweep
Syntax:	SA:FREQuency:STOP
Parameters:	<stop frequency="">, in Hz</stop>

Effect:	Queries the currently selected stop frequency
Syntax:	SA:FREQuency:STOP?
Parameters:	None
Return value:	stop frequency in Hz

4.5.5 SA:FREQuency:FULL

Event:

Effect:	Sets the device to the maximum span possible
Syntax:	SA:FREQuency:FULL
Parameters:	None

4.5.6 SA:FREQuency:ZERO

Event:

Effect:	Sets the device to zero span mode
Syntax:	SA:FREQuency:ZERO
Parameters:	None

4.5.7 SA:ACQuisition:RBW

Event:

Effect:	Sets the resolution bandwidth
Syntax:	SA:ACQuisition:IFBW
Parameters:	<resolution bandwidth="">, in Hz</resolution>

Query:

Effect:	Queries the currently selected resolution bandwidth
Syntax:	SA:ACQuisition:IFBW?
Parameters:	None
Return value:	resolution bandwidth in Hz

4.5.8 SA:ACQuisition:WINDow

Event:

Effect:	Sets the type of window used in the acquisition
Syntax:	SA:ACQuisition:WINDow
Parameters:	<windowtype></windowtype>
	NONE
	KAISER
	HANN
	FLATTOP

Query:

Effect:	Queries the currently selected type of window
Syntax:	SA:ACQuisition:WINDow?
Parameters:	None
Return value:	NONE, KAISER, HANN or FLATTOP

4.5.9 SA:ACQuisition:DETector

Effect:	Sets the detector type
Syntax:	SA:ACQuisition:DETector
	<detector></detector>
Parameters:	+PEAK
	-PEAK
	NORMAL
	SAMPLE
	AVERAGE

Query:

Effect:	Queries the currently selected detector type
Syntax:	SA:ACQuisition:DETector?
Parameters:	None
Return value:	+PEAK, -PEAK, NORMAL, SAMPLE or AVERAGE

4.5.10 SA:ACQuisition:AVG

Event:

Effect:	Sets the number of sweeps over which a moving average is calculated
Syntax:	SA:ACQuisition:AVG
Parameters:	<sweeps></sweeps>

Query:

Effect:	Queries the currently configured number of sweeps
Syntax:	SA:ACQuisition:AVG?
Parameters:	None
Return value:	sweeps

4.5.11 SA:ACQuisition:AVGLEVel

Query:

Effect:	Queries the number of sweeps that have been acquired by the average function.
Syntax:	SA:ACQuisition:AVGLEVel?
Parameters:	None
Return value:	<acquired sweeps=""></acquired>

<acquired sweeps> resets to zero whenever a setting is changed. It is incremented at the end of each sweep, but will not go above the number of configured sweeps for the averaging.

Example (assuming <averaging sweep> = 3):

# of active sweep	<acquired sweeps=""></acquired>
I	0
2	I
3	2
4	3
5	3

4.5.12 SA:ACQuisition:FINished

Query:

Effect:	Queries whether the average filter has reached a steady state (that is <acquired< th=""></acquired<>
	sweeps> = <averaging sweeps="">)</averaging>
Syntax:	SA:ACQuisition:FINished?
Parameters:	None
Return value:	TRUE or FALSE

4.5.13 SA:ACQuisition:LIMit

Query:

Effect:	Queries the status of limits that maybe set up on any graph
Syntax:	SA:ACQuisition:LIMit?
Parameters:	None
Return value:	PASS or FAIL

4.5.14 SA:ACQuisition:SINGLE

Event:

Effect:	Configures the spectrum analyzer for single or continuous sweep
Syntax:	SA:ACQuisition:SINGLE
Parameters:	TRUE or FALSE

Query:

Effect:	Queries whether the spectrum analyzer is set up for single sweep
Syntax:	SA:ACQuisition:SINGLE?
Parameters:	None
Return value:	TRUE or FALSE

If single sweep is enabled, the acquisition is stopped when the required number of averages have been reached. There are two ways to trigger a new sweep:

- Change any sweep setting (e.g. center frequency)
- Issue the command again (i.e. SA:ACQ:SINGLE TRUE always triggers a new sweep)

4.5.15 SA:ACQuisition:SIGid

Event:

Effect:	Enables/disables signal identification
Syntax:	SA:ACQuisition:SIGid
Parameters:	<pre><enabled>, option are TRUE, FALSE, 1 or 0</enabled></pre>

Effect:	Queries whether signal identification is enabled
Syntax:	SA:ACQuisition:SIGid?
Parameters:	None
Return value:	TRUE or FALSE

4.5.16 SA:TRACKing:ENable

Event:

Effect:	Enables/disables the tracking generator
Syntax:	SA:TRACKing:ENable
Parameters:	<pre><enabled>, option are TRUE, FALSE, 1 or o</enabled></pre>

Query:

Effect:	Queries whether tracking generator is enabled
Syntax:	SA:TRACKing:ENable?
Parameters:	None
Return value:	TRUE or FALSE

4.5.17 SA:TRACKing:PORT

Event:

Effect:	Sets the output port of the tracking generator
Syntax:	SA:TRACKing:PORT
Parameters:	<port>, either 1 or 2</port>

Query:

Effect:	Queries the output port of the tracking generator
Syntax:	SA:TRACKing:PORT?
Parameters:	None
Return value:	I or 2

4.5.18 SA:TRACKing:LVL

Event:

Effect:	Sets the output power of the tracking generator
Syntax:	SA:TRACKing:LVL
Parameters:	<output level="">, in dBm</output>

Query:

Effect:	Queries the selected output power of the tracking generator
Syntax:	SA:TRACKing:LVL?
Parameters:	None
Return value:	output level in dBm

4.5.19 SA:TRACKing:OFFset

Effect:	Sets the offset frequency of the tracking generator
Syntax:	SA:TRACKing:OFFset
Parameters:	<offset>, in Hz</offset>

Query:

Effect:	Queries the selected offset frequency of the tracking generator
Syntax:	SA:TRACKing:OFFset?
Parameters:	None
Return value:	offset in Hz

4.5.20 SA:TRACKing:NORMalize:ENable

Event:

Effect:	Enables/disables normalization. If the span has changed since the last active
	normalization, a normalization measurement is also started.
Syntax:	SA:TRACKing:NORMalize:ENable
Parameters:	<enabled>, option are TRUE, FALSE, 1 or 0</enabled>

Query:

Effect:	Queries whether tracking generator normalization is enabled
Syntax:	SA:TRACKing:NORMalize:ENable?
Parameters:	None
Return value:	TRUE or FALSE

4.5.21 SA:TRACKing:NORMalize:MEASure

Event:

Effect:	Triggers a new normalization measurement
Syntax:	SA:TRACKing:NORMalize:MEASure
Parameters:	None

4.5.22 SA:TRACKing:NORMalize:LVL

Event:

Effect:	Sets the reference level for the normalization
Syntax:	SA:TRACKing:NORMalize:LVL
Parameters:	<normalization level="">, in dBm</normalization>

Query:

Effect:	Queries the selected reference level for the normalization
Syntax:	SA:TRACKing:NORMalize:LVL?
Parameters:	None
Return value:	normalization level in dBm

4.5.23 SA:TRACe:LIST

Effect:	Lists the names of all available traces
Syntax:	SA:TRACe:LIST?
Parameters:	None

Return value: comma-separated list of trace name

Example

```
VNA:TRAC:LIST?
Port1,Port2
```

4.5.24 SA:TRACe:DATA

Query:

Effect:	Returns the data of a trace
Syntax:	SA:TRACe:DATA?
Parameters:	<trace>, either by name or by index</trace>
Return value:	comma-separated list of tuples [x, dBm]

Example

```
: SA:TRACE:DATA? PORT1
[9.75e+8,-100.351],
[9.7505e+8,-95.7394],
[9.751e+8,-97.5749],
[9.7515e+8,-96.9667],
[9.752e+8,-96.2391],
[9.7525e+8,-94.8761],
[9.753e+8,-96.0805],
[9.7535e+8,-95.7997],
[9.754e+8,-95.2021],
[9.754e+8,-96.3472]
```

Note: actual response will not include newlines between data points, only at the end

4.5.25 SA:TRACe:AT

Query:

Effect:	Returns the data at a specific frequency (possibly interpolated)
Syntax:	SA:TRACe:AT?
Parameters:	<trace>, either by name or by index</trace>
	<pre><frequency>, in Hz</frequency></pre>
Return value:	<pre><dbm> or "NaN" if specified frequeny is invalid)</dbm></pre>

Example

```
:SA:TRAC:AT? Port1 1000000000
-96.424
```

4.5.26 SA:TRACe:MAXFrequency

Effect:	Returns the highest frequency contained in the trace
Syntax:	SA:TRACe:MAXFrequency?
Parameters:	<trace>, either by name or by index</trace>
Return value:	maximum frequency in Hz

4.5.27 SA:TRACe:MINFrequency

Query:

Effect:	Returns the lowest frequency contained in the trace
Syntax:	SA:TRACe:MINFrequency?
Parameters:	<pre><trace>, either by name or by index</trace></pre>
Return value:	maximum frequency in Hz

4.5.28 SA:TRACe:MAXAmplitude

Query:

Effect:	Returns the datapoint with the highest amplitude in the trace
Syntax:	SA:TRACe:MAXAmplitude?
Parameters:	<trace>, either by name or by index</trace>
Return value:	<pre><frequency>,<dbm> of the highest amplitude point</dbm></frequency></pre>

Example

:SA:TRAC:MAXA? Port1	
9.63e+8,-12.534	

4.5.29 SA:TRACe:MINAmplitude

Query:

Effect:	Returns the datapoint with the lowest amplitude in the trace
Syntax:	SA:TRACe:MINAmplitude?
Parameters:	<trace>, either by name or by index</trace>
Return value:	<pre><frequency>,<dbm> of the lowest amplitude point</dbm></frequency></pre>

4.5.30 SA:TRACe:NEW

Event:

Effect:	Creates a new trace
Syntax:	SA:TRACe:NEW
Parameters:	<trace name=""></trace>

4.5.31 SA:TRACe:RENAME

Effect:	Changes the name of a trace
Syntax:	SA:TRACe:RENAME

Parameters:	<trace>, either by name or by index</trace>
	<new name=""></new>

4.5.32 SA:TRACe:PAUSE

Event:

Effect:	Pauses (freezes) a trace
Syntax:	SA:TRACe:PAUSE
Parameters:	<trace>, either by name or by index</trace>

4.5.33 SA:TRACe:RESUME

Event:

Effect:	Resumes (unfreezes) a trace
Syntax:	SA:TRACe:RESUME
Parameters:	<trace>, either by name or by index</trace>

4.5.34 SA:TRACe:PAUSED

Query:

Effect:	Queries whether a trace is paused
Syntax:	SA:TRACe:PAUSED?
Parameters:	<trace>, either by name or by index</trace>
Return value:	TRUE or FALSE

4.5.35 SA:TRACe:PARAMeter

Event:

Effect:	Sets the measurement parameter that is stored in the trace
Syntax:	SA:TRACe:PARAMeter
Parameters:	<trace>, either by name or by index</trace>
	<pre><parameter>, options are PORT1 and PORT2</parameter></pre>

Query:

Effect:	Queries the measurement parameter of a trace
Syntax:	SA:TRACe:PARAMeter?
Parameters:	<trace>, either by name or by index</trace>
Return value:	PORT1 or PORT2

4.5.36 SA:TRACe:TYPE

Effect:	Sets the storage type of a trace
Syntax:	SA:TRACe:TYPE
Parameters:	<trace>, either by name or by index <type>, options are OVERWRITE, MAXHOLD or MINHOLD</type></trace>

Effect:	Queries the storage type of a trace
Syntax:	SA:TRACe:TYPE?
Parameters:	<trace>, either by name or by index</trace>
Return value:	OVERWRITE, MAXHOLD or MINHOLD