Lecture 9 Digital Filter Structure

Digital Signal Porcessing by Yu Yajun @ SUSTech

433

Block Diagram Representation

 It has advantages to represent time domain inputoutput relation, for example the convolution, or the difference equations, as block diagrams.

$$y[n] = \sum_{k=0}^{N-1} h[k]x[n-k]$$
$$y[n] = \sum_{m=0}^{M} a_m x[n-m] - \sum_{m=1}^{N} b_m y[n-m]$$

A First Order LTI Digital Filter

$$y[n] = -b_1y[n-1] + a_0x[n] + a_1x[n-1]$$

Digital Signal Porcessing by Yu Yajun @ SUSTech

435

Analysis of Block Diagrams

$$W_1 = X - \alpha S_2$$
 $S_2 = z^{-1}W_3$ $W_1 = X - \alpha z^{-1}W_3$
 $W_2 = W_1 - \delta S_1$ $S_1 = z^{-1}W_2$ $W_2 = W_1 - \delta z^{-1}W_2$
 $W_3 = \varepsilon W_2 + S_1$ $W_3 = \varepsilon W_2 + z^{-1}W_2$
 $Y = \beta W_1 + \gamma S_2$ $Y = \beta W_1 + \gamma z^{-1}W_2$

$$S_2 = z^{-1} W_3$$

$$S_1 = z^{-1} W_2$$

$$W_1 = X - \alpha S_2$$
 $S_2 = z^{-1}W_3$ $W_1 = X - \alpha z^{-1}W_3$
 $W_2 = W_1 - \delta S_1$ $S_1 = z^{-1}W_2$ $W_2 = W_1 - \delta z^{-1}W_2$
 $W_3 = \varepsilon W_2 + S_1$ $W_3 = \varepsilon W_2 + z^{-1}W_2$
 $Y = \beta W_1 + \gamma S_2$ $Y = \beta W_1 + \gamma z^{-1}W_3$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\beta + (\beta \delta + \gamma \varepsilon)z^{-1} + \gamma z^{-2}}{1 + (\delta + \alpha \varepsilon)z^{-1} + \alpha z^{-2}}$$

Digital Signal Porcessing by Yu Yajun @ SUSTech

Delays in Block Diagram

• A block diagram containing **delay-free loop**, i.e., a feedback loop without any delay element, is physically **IMPOSSIBLE** to achieve.

• The number of delays in a **canonic structure** is equal to the order of the transfer function (or the order of the difference equation).

Digital Signal Porcessing by Yu Yajun @ SUSTech

437

Equivalent Structure

$$H(z) = \frac{a_0 + a_1 z^{-1}}{1 + b_1 z^{-1}}$$

• Two digital filter structures are defined to be equivalent if they have the same transfer function.

- Transpose Operation to obtain an equivalent structure
 - Reverse all paths
 - Replace branching nodes with adders, and vice versa,
 - Interchange the input and output nodes.

Basic FIR Digital Filter Structures

Direct-Form Structures

$$Y(z) = H(z)X(z) = \sum_{k=0}^{N-1} h[k]z^{-k}X(z)$$

$$y[n] = \sum_{k=0}^{N-1} h[k]x[n-k]$$

$$x[n] \qquad z^{-1} \qquad z^{-1} \qquad z^{-1} \qquad h[1] \qquad h[2] \qquad h[3] \qquad h[4] \qquad y[n]$$

Digital Signal Porcessing by Yu Yajun @ SUSTech

439

Transposed Direct Form Structures

Cascade-Form Structures

$$H(z) = h[0] \prod_{k=1}^{K} (1 + \beta_{1,k} z^{-1} + \beta_{2,k} z^{-2})$$

where K = (N - 1)/2 if N is odd,

and K = N/2 if N is even, with $\beta_{2,K} = 0$

Digital Signal Porcessing by Yu Yajun @ SUSTech

441

Linear-Phase FIR Filter Structure

$$h[n] = h[N-1-n]$$
, or $h[n] = -h[N-1-n]$

• For example, a length-7 Type I filter

$$= h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3} + h[2]z^{-4} + h[1]z^{-5}$$

$$+ h[0]z^{-6}$$

$$= h[0](1 + z^{-6}) + h[1](z^{-1} + z^{-5}) + h[2](z^{-2} + z^{-4})$$

$$+ h[3]z^{-3}$$

Digital Signal Porcessing by Yu Yajun @ SUSTech

442

a length-8 Type IV filter H(z) $= h[0] + h[1]z^{-1} + h[2]z^{-2} + h[3]z^{-3} - h[3]z^{-4}$ $-h[2]z^{-5}-h[1]z^{-6}-h[0]z^{-7}$ $= h[0](1 - z^{-7}) + h[1](z^{-1} - z^{-6})$ $+ h[2](z^{-2} - z^{-5}) + h[3](z^{-3} - z^{-4})$ h[3]h[2]h[0]h[1]Digital Signal Porcessing by Yu Yajun @ SUSTech

Basic IIR Digital Filter Structure

$$y[n] = \sum_{m=0}^{M} a_m x[n-m] - \sum_{m=1}^{N} b_m y[n-m]$$

$$H(z) = \frac{B(z)}{A(z)} = \frac{\sum_{m=0}^{M} a_m z^{-m}}{1 + \sum_{m=1}^{N} b_m z^{-m}} = H_1(z)H_2(z)$$

For example, when M = N = 3, we have

$$H_1(z) = a_0 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3}$$

$$H_2(z) = \frac{1}{1 + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3}}$$

Digital Signal Porcessing by Yu Yajun @ SUSTech

443

Direct-Form Structure

Cascade Realization

$$H(z) = \frac{\prod_{k=1}^{M_1} (1 - f_k z^{-1}) \prod_{k=1}^{M_2} (1 - g_k z^{-1}) (1 - g_k^* z^{-1})}{\prod_{k=1}^{N_1} (1 - c_k z^{-1}) \prod_{k=1}^{N_2} (1 - d_k z^{-1}) (1 - d_k^* z^{-1})}$$

$$H(z) = \frac{B(z)}{A(z)} = \frac{B_1(z) B_2(z) B_3(z)}{A_1(z) A_2(z) A_3(z)}$$

$$+ \frac{B_1(z)}{A_1(z)} + \frac{B_2(z)}{A_2(z)} + \frac{B_3(z)}{A_3(z)} + \frac{B_1(z)}{A_2(z)} + \frac{B_2(z)}{A_3(z)} + \frac{B_3(z)}{A_1(z)} + \frac{B_2(z)}{A_3(z)} + \frac{B_3(z)}{A_2(z)} + \frac{B_3(z)}{A_2(z)$$

Parallel Realization

$$H(z) = \gamma_0 + \sum_{k} \frac{\gamma_{0k} + \gamma_{1k} z^{-1}}{1 + \alpha_{1k} z^{-1} + \alpha_{2k} z^{-2}}$$

For example:
$$H(z) = \gamma_0 + \frac{B_1(z)}{A_1(z)} + \frac{B_2(z)}{A_2(z)}$$

Can be obtained by partial-fraction expansion

Digital Signal Porcessing by Yu Yajun @ SUSTech

449

Allpass Filter Structure

Transfer function of real coefficient allpass filter

$$A_M(z) = \frac{d_M + d_{M-1}z^{-1} + \dots + d_1z^{-M+1} + z^{-M}}{1 + d_1z^{-1} + \dots + d_{M-1}z^{-M+1} + d_Mz^{-M}}$$

- Objective: efficient structure using *N* multipliers to implement *N*-th order allpass filter, for example:
- First order: $A_M(z) = \frac{d_1 + z^{-1}}{1 + d_1 z^{-1}}$

Digital Signal Porcessing by Yu Yajun @ SUSTech

• Second order: $A_M(z) = \frac{d_2 + d_1 z^{-1} + z^{-2}}{1 + d_1 z^{-1} + d_2 z^{-2}}$

• Allpass filters with this structure have a magnitude gain of 1 even with coefficient errors

Digital Signal Porcessing by Yu Yajun @ SUSTech

451

*Allpass with Lattice Structure

- Lattice Stage:
- Suppose G(z) is all pass: $G(z) = \frac{z^{-N}A(z^{-1})}{A(z)}$

$$V(z) = X(z) - kV(z)G(z)z^{-1}$$

$$V(z) = \frac{1}{1 + kG(z)z^{-1}}X(z)$$

$$Y(z) = kV(z) + V(z)G(z)z^{-1}$$

$$= \frac{k + G(z)z^{-1}}{1 + kG(z)z^{-1}}X(z)$$

$$\frac{Y(z)}{X(z)} = \frac{k + G(z)z^{-1}}{1 + kG(z)z^{-1}} = \frac{kA(z) + z^{-N-1}A(z^{-1})}{A(z) + kz^{-N-1}A(z^{-1})} \triangleq \frac{z^{-(N+1)}D(z^{-1})}{D(z)}$$

Digital Signal Porcessing by Yu Yajun @ SUSTech

• Obtaining $\{d[n]\}$ from $\{a[n]\}$:

$$d[n] = \begin{cases} 1, & n = 0 \\ a[n] + ka[N - n + 1], & 1 \le n \le N \\ k, & n = N + 1 \end{cases}$$

• Obtaining $\{a[n]\}$ from $\{d[n]\}$:

$$k = d[N+1],$$
 $a[n] = \frac{d[n] - kd[N+1-n]}{1-k^2}$

• If G(z) is stable then $\frac{Y(z)}{X(z)}$ is stable if and only if |k| < 1

Digital Signal Porcessing by Yu Yajun @ SUSTech

453

454

Example $A(z) \leftrightarrow D(z)$

• Suppose N = 3, k = 0.5 and $A(z) = 1 + 4z^{-1} - 6z^{-2} + 10z^{-3}$

• $A(z) \rightarrow D(z)$

	z^0	z^{-1}	z^{-2}	z^{-3}	z^{-4}
A(z)	1	4	-6	10	
$z^{-4}A(z^{-1})$		10	-6	4	1
D(z)	1	9	-9	12	0.5

$$D(z) = A(z) + kz^{-4}A(z^{-1})$$

	z^0	z^{-1}	z^{-2}	z^{-3}	z^{-4}
D(z)	1	9	- 9	12	0.5
k = d[N+1]					0.5
$z^{-4}D(z^{-1})$	0.5	12	- 9	9	1
A(z)	1	4	-6	10	

$$A(z) = \frac{D(z) - kz^{-4}D(z^{-1})}{A(z)}$$
Digital Signal Porcessing by Yu Yajun @ SUSTech $1 - k^2$

 $D(z) \rightarrow A(z)$