Informe	previo	Práctica-	-3
---------	--------	-----------	----

Apellidos y nombre:	Eric Diez Apolo	Grupo: 13
Apellidos y nombre:		Grupo:

(por orden alfabético)

Pregunta 1

a)

	Χ	0	1
· Constitution ·	0	0	0
	1	0	1

Tiene 1 bit de entrada Y Salida

 $W = X \bullet y$

- un numero por un digito, solo nos puede dar o o el
- d) Son necesarios 16 bits para poder Kerresentario

Pregunta 2

a)
$$X = 1101 - 7 \times_0 = 13$$
 $Y = 1011 - 7 \times_0 = 14$
 $Y = 1011 - 7 \times_0 = 14$
 $Y = 10011 - 7 \times_0 = 143$
 $Y = 10011 - 7 \times_0 = 143$

X ₁₁ = 22	
$X_0 = 23$ — $X = 00010111$ $Y_0 = 17$ — $Y = 00010001$ W = 03.17	00010111
W= 23.17=391	0001001

Pregunta 3

Estado inicial	WHILE	W(0) =	D(0) =	B(0) =		
Iteración / ciclo j	M = MULBit (D(j), B(j)<0>)	W(j+1) = ADD(W(j), M)	D(j+1) = SL-1(D(j))	B(j+1) = SRL-1(B(j))		
0	0004040	001040	00101100	00100110		
1	00000000	00010110	01011000	00010011		
2	01011000	01101110	10110000	00001001		
3	10110000	0011110	01100000	00000100		
4	00000000	00011110	1100000	00000010		
5	0000000	colulo	1000000	0000001		
6	10000000	10011110	00000000	00000000		
7	000000	10011110	0000000	00000000		
Resul. Final W		20011110	A A A			

¿Cuál es el resultado correcto de la multiplicación, $W_u = X_u \times Y_u$?

 $W_0 = X_0 \times Y_0 = 22 \times 77 = 4964$ ¿Los 8 bits que se obtienen como resultado del algoritmo anterior, representan el resultado correcto de la multiplicación?

No es correcto Porque W= 10011110-7 W= 158,0 Y no es correcto, debido a que no hemas tenido en cuenta Copyright © 2017, Juan J. Navarro, Universitat Politècnica de Catalunya.

Pregunta 5

	ROM_Q+MUL											
OXOO	0001	OXo2	OXo2	0%03	OXo3	OXOY	OXGY	0x05				
OXO5	006	0X06	GNOP	FOXO	OXOS	OXO8	0009	P0X0				
OXOA	OXOA	OXOB	OXOS	OXOC	OXOC	(OXO)	OXOD	OXE				
OXOE												

			***********	4		RC	M_OutN	/UL
0%2	OKas	Okao	OYas	OXO	0)/00	02/00	OXOO	000
							Охоо	/

Pregunta 6

Prequete 5

Pregunte f