Likewise $\mathbf{W} = [w_{ij}]$ is a matrix $(r \times s)$ with elements w_{ij} random variables in \mathbb{R}

Then $E[\mathbf{W}] = [E[w_{ij}]]$ defined elementwise

Definition

$$\mathsf{Cov}(\mathbf{Y}) = \mathsf{E}[(\mathbf{Y} - \mu)(\mathbf{Y} - \mu)^T] = egin{array}{cccc} \sigma_1 & \dots & \sigma_{1n} \ dots & \sigma_2 \dots & dots \ dots & \ddots & dots \ \sigma_{n1} & \dots & \sigma_{n} \end{array} \equiv \mathbf{\Sigma}$$