	Utech
Name:	
Roll No.:	To the same (y' Exercising and Exercise)
Invigilator's Signature :	

PHYSICS-II

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following : $10 \times 1 = 10$

- i) The dimension of μ_0 t_0 is
 - a) $L^{-2}T^{-2}$
- b) $L^{-2}T^2$
- c) $L T^{-1}$

- d) $L^{-1}T^{-1}$.
- ii) The displacement current arises due to
 - a) positive charge only
 - b) negative charge only
 - c) time varying electric field
 - d) magnetic monopole.

4157 [Turn over

a) 9 eV

b) 10 eV

c) 15 eV

d) 12 eV.

iv) Which of the following functions are eigen functions of the operator $\frac{d^2}{dx^2}$?

- a) $\psi c \log x$
- b) ψcx^2

c) $\psi \frac{c}{x}$

d) ψce^{-mx}

(where c and m are arbitrary constants).

- v) BE statistics is applicable for
 - a) ideal gas
- b) electron

c) proton

d) photon.

vi) The degrees of freedom for a system of N particles with K constraint relation is given by

a) N-K

b) N-3K

c) 3N - K

d) 3(N-K).

- vii) The number of ways in which 4 identical bosons can be distributed in 3 different energy states is
 - a) 15

b) 6

c) 144

- d) 24.
- viii) The equation of continuity essentially represents
 - a) conservation of mass
 - b) conservation of charge
 - c) conservation of potential
 - d) conservation of force.
- ix) The ignorable co-ordinate corresponding to the motion of a particle under central force is given by
 - a) r

b) θ

c) \dot{r}

- d) $\dot{\theta}$.
- x) An electric field in a certain region has the components $E_x = ax bz$, $E_y = -ay + bz$ and $E_z = b$ (y x).

Then which of the following statements is correct?

- (a, b are positive constants)
- a) \overrightarrow{E} is an electrostatic field
- b) There is free charge in space
- c) \overrightarrow{E} is irrotational
- d) \overrightarrow{E} is solenoidal.

- xi) The vector potential \overrightarrow{A} corresponding to a constant magnetic field \overrightarrow{B} along z-axis can be represented by
 - a) $-Bz \hat{k}$
 - b) $\frac{B}{2} \left(\hat{i}x \hat{j}y \right)$
 - c) $B(\hat{j}x \hat{i}y)$
 - d) $\frac{B}{2} (\hat{j}x \hat{i}y)$.
- xii) Skin depth for a conductor in reference to electromagnetic wave varies
 - a) inversely as frequency
 - b) directly as frequency
 - c) inversely as square root of frequency
 - d) directly as square root of frequency.
- xiii) The expectation value of the position of a particle in a one-dimensional potential box of length

$$L(V(x) = 0; 0 < x < L, V(x) = \infty \text{ at } x = \neq L) \text{ is}$$

a) L

b) $\frac{L}{2}$

c) $\frac{L}{3}$

d) $\frac{L}{4}$.

- xiv) The force experienced by a charged particle in a magnetic field is independent of
 - a) velocity of the particle
 - b) strength of the field
 - c) charge of the particle
 - d) mass of the particle.
- xv) The electronic polarizability (α_e) of an atom is related to its radius ($\it R$) as
 - a) $\alpha_{a} \propto R^{3}$
- b) $\alpha_e \propto R^2$
- c) $\alpha_e \propto R$
- d) $\alpha_e \propto R^0$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Write down the Maxwell's equations of an electromagnetic field. Hence, obtain the wave equation for electric filed in free space. 3+2
- 3. State Stokes theorem in vector calculus. Find the unit vectors perpendicular to $x^2 + y^2 z^2 = 100$ at the point (1, 2, 3).

- 4. State the Amperei's law of mangnetostatics. Obtain its differential form from the integral one. Apply Ampere's law of magnetostatics to deduce an expression of magnetic field B due to a straight conductor of infinite length carrying current I.
- 5. a) Four distinguishable particles each of which can be in one of the energy states ∈, 2∈, 4∈ and 6∈ having total energy 6∈. Find all possible number of distributions of all the particles in the energy states. Write the number of microstates possible and the number of microstates corresponding to each macrostate.
 - b) Sketch the nature of Fermi-Dirac distribution function at T = 0 and T > 0 K in the same graph. 3 + 2
- 6. Show that if the Lagrangian does not depend on time, then the Hamiltonian is a constant of motion. Write down the Hamiltonian and obtain the equation of motion for a simple harmonic oscillator. 3 + 1 + 1
- 7. a) Find the value of $\begin{bmatrix} \hat{L}_x, \hat{z} \end{bmatrix}$.
 - b) Show that the eigenvalues of a Hermitian operation are real. Give an example of a Hermitian operator in quantum mechanics. 2+2+1

6

4157

GROUP - C

(Long Answer Type Questions) Answer any *three* of the following.

- 8. a) Distinguish between holonomic and non-holonomic 2 constraints.
 - b) Write down the equation of constant, specify the nature of constant and calculate the degrees of freedom in each case:
 - A particle constrained to move on the surface of a i) sphere
 - A simple pendulum with a fixed suppert. ii) 3 + 3
 - Show that if a generalized coordinate is cyclic in c) corresponding Lagrangian, then the generalized momentum will be conserved. 3
 - d) Find the equation of motion using Hamilton's canonical equation for a system comprising masses m_1 and m_2 connected by a massless string of length L through a frictionless pulley such that $m_1 > m_2$. 4

4157

- 9. a) What do you mean by μ and Γ -phase space ? Find the area in the phase space of a one-dimensional harmonic oscillator of mass m whose total energy is E. 2+2
 - b) Derive Planck's radiation law from BE statistics. State clearly the assumptions made in the theory. 3 + 2
 - c) What is Fermi energy ? Calculate the degeneracy function g(E) as a function of energy E for an ideal Fermi gas. 1+3
 - d) Evaluate the temperature at which there is one per cent probability that a state with energy of 0.6 eV above the Fermi energy will be occupied by an electron.
- 10. a) Give the physical interpretation of the wave of function $\psi(x)$.
 - b) Show that for a stationary state given by the wave $-\frac{i_{Ent}}{h}$ function ψ (x, t) = ψ (x) e^{-h} , the expectation value of energy is equal to the energy eigenvalue.

4157 8

c) A particle is in a cubic box with infinitely hard walls whose edges are L units long. The wave function is given by

$$\psi(x, y, z) = A \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi y}{L}\right) \sin\left(\frac{n\pi z}{L}\right).$$

Find the value of A. Find the ground state and first excited energy eigenvalues. Are they non-degenerate? Explain. 2 + 2 + 2

- d) Show that the function ψ (x) = Cx e $-\frac{x^2}{2}$ is an eigenfunction of the operator $\left(x^2 \frac{d^2}{dx^2}\right)$. Find the corresponding eigenvalue.
- 11. a) If \hat{a} and \hat{b} are unit vectors and θ is the angle between them, show that $2 \sin \frac{\theta}{2} = |\hat{a} \hat{b}|$.
 - b) Show that the electric field is always perpendicular to the equipotential surface.3
 - c) Show the

$$\overrightarrow{A} = \left(6xy + z^3\right) \overrightarrow{i} + \left(3x^2 - z\right) \overrightarrow{j} + \left(3xz^2 - y\right) \overrightarrow{k} \text{ is}$$
 irrotational. Find ϕ such that $\overrightarrow{A} = \overrightarrow{\Delta}\phi$.

e) Show that
$$\int_{S} \left(ax\hat{i} + by\hat{j} + cz\hat{k} \right) \cdot d\vec{S} = \frac{4\pi}{3} (a + b + c)$$

where *S* is the surface of the sphere

$$x^2 + y^2 + z^2 = 1.$$

12. a) A spherically symmetric charge distribution is given by $\rho\left(\,r\,\right) = \rho_{\,0}\left(\,1 - \frac{r^{\,2}}{a^{\,2}}\,\right) \text{for } 0 \leq r \leq a \,\,,\,\, \rho_{\,0} \text{ is a constant}.$

$$= 0$$
 for $r > a$

Calculate the

- i) total charge
- ii) the electric field intensity \overrightarrow{E} and potential V both inside (r < a) and outside (r > a) regimes.

$$1 + 2 + 2$$

b) If ϕ is a scalar potential associated with the electric field \overrightarrow{E} and \overrightarrow{A} is the vector potential associated with the magnetic induction \overrightarrow{B} , show that they must satisfy the equation $\Delta^2 \phi + \frac{\partial}{\partial t} \left(\overrightarrow{\Delta} . \overrightarrow{A} \right) = -\frac{\rho}{\in 0}$.

- c) The intensity of sunlight reaching the earth's surface is about 1300 W/m^2 . Calculate the strength of the electric and magnetic fields of the incoming sunlight. 3
- d) N charged spherical water drops, each having a radius r and charge q, coalesce into a single big drop. What is the potential of the big spherical drop? 2

4157 11 [Turn over