

CS3243 Tutorial 3 Heuristics

Gu Zhenhao

February 8, 2023

Admissibility & Consistency

How to judge if a heuristic is good?

Summary

- admissible (optimistic), $h(n) \le h^*(n)$ for all n,
 - **Property**: for all states n on the path to goal G, $f(n) \le f(G)$.
 - Tree search and Graph search (version 2) are optimal.

- consistent, $h(n) \le c(n, a, n') + h(n')$ for all n and its successor n'.
 - Property: f value never decreases along an optimal path to a goal.
 - Graph search (version 2 & 3) is optimal*.

- admissibility, $h(n) \le h^*(n)$ for all n.
- consistency, $h(n) \le c(n, a, n') + h(n')$.

	S	A	В	G	Admissible?	Consistent?
h_1	0	0	0	0		
h_2	8	1	1	0		
h_3	9	3	2	0		
h_4	6	3	1	0		
h_5	8	4	2	0		

 *		
<i>I</i> L		

- admissibility, $h(n) \le h^*(n)$ for all n.
- consistency, $h(n) \le c(n, a, n') + h(n')$.

	S	A	В	G	Admissible?	Consistent?
h_1	0	0	0	0	Yes	
h_2	8	1	1	0	Yes	
h_3	9	3	2	0	Yes	
h_4	6	3	1	0	Yes	
h_5	8	4	2	0	No	

h^*	9	3	2	0

- admissibility, $h(n) \le h^*(n)$ for all n.
- consistency, $h(n) \le c(n, a, n') + h(n')$.

	S	A	В	G	Admissible?	Consistent?
h_1	0	0	0	0	Yes	Yes
h_2	8	1	1	0	Yes	
h_3	9	3	2	0	Yes	
h_4	6	3	1	0	Yes	
h_5	8	4	2	0	No	

1. *	0	2	2	n
n	9	3	2	U

- admissibility, $h(n) \le h^*(n)$ for all n.
- consistency, $h(n) \le c(n, a, n') + h(n')$.

	S	A	R	G	Admissible?	Consistent?
h_1	h(S) = 8	> h(A) + c(S)	S(A) = 7	0	Yes	Yes
h_2	8	1	1	0	Yes	No
h_3	9	3	2	0	Yes	
h_4	6	3	1	0	Yes	
h_5	8	4	2	0	No	

1. *	0	2	2	n
n	9	3	2	U

- admissibility, $h(n) \le h^*(n)$ for all n.
- consistency, $h(n) \le c(n, a, n') + h(n')$.

	S	A	В	G	Admissible?	Consistent?
h_1	0	0	0	0	Yes	Yes
h_2	8	1	1	0	Yes	No
h_3	9	3	2	0	Yes	Yes
h_4	6	3	1	0	Yes	
h_5	8	4	2	0	No	

h^*	9	3	2	0

- admissibility, $h(n) \le h^*(n)$ for all n.
- consistency, $h(n) \le c(n, a, n') + h(n')$.

	S	A	В	G	Admissible?	Consistent?
h_1	0	0	0	0	Yes	Yes
h_2	8	1	1	0	Yes	No
h_3	9		> h(B) + c(A)	(A, B) = 2	Yes	Yes
h_4	6	3	1	0	Yes	No
h_5	8	4	2	0	No	

h^*	9	3	2	0

- admissibility, $h(n) \le h^*(n)$ for all n.
- consistency, $h(n) \le c(n, a, n') + h(n')$.

	S	A	В	G	Admissible?	Consistent?
h_1	0	0	0	0	Yes	Yes
h_2	8	1	1	0	Yes	No
h_3	9	3	2		Yes	Yes
h_4	6	n(A) =	4 > h(B) + c	(A,B)=3	Yes	No
h_5	8	4	2	0	No	No

h^*	9	3	2	0
-------	---	---	---	---

 h_3 is the best as $h_3 = h^*$,

- ⇒ it is admissible and consistent,
- ⇒ dominates other admissible heuristics.

	S	A	В	G	Admissible?	Consistent?
h_1	0	0	0	0	Yes	Yes
h_2	8	1	1	0	Yes	No
h_3	9	3	2	0	Yes	Yes
h_4	6	3	1	0	Yes	No
h_5	8	4	2	0	No	No

h^*	9	3	2	0

Question: is $\max\{h_3(n), h_5(n)\}$ admissible?

No! $\max\{h_3(A), h_5(A)\} = 4 > h^*(A)$.

	S	A	В	G	Admissible?	Consistent?
h_1	0	0	0	0	Yes	Yes
h_2	8	1	1	0	Yes	No
h_3	9	3	2	0	Yes	Yes
h_4	6	3	1	0	Yes	No
h_5	8	4	2	0	No	No

h^*	9	3	2	0

	S	A	В	G
h_4	6	3	1	0

 A^* graph search using h_4 .

Frontier: [S(/), 0+6]

Visited nodes:

	S	A	В	G
h_4	6	3	1	0

A* graph search using h_4 .

Frontier: [A(S), 6+3]

Visited nodes: S(/),

	S	A	В	G
h_4	6	3	1	0

 A^* graph search using h_4 .

Frontier: [B(A), 7+1], [G(A), 10+0]

Visited nodes: S(/), A(S),

	S	A	В	G
h_4	6	3	1	0

 A^* graph search using h_4 .

Frontier: [G(A), 10+0], [G(B), 9+0]

Visited nodes: S(/), A(S), B(A)

Can push G again because it hasn't been popped from frontier yet.

	S	A	В	G
h_4	6	3	1	0

 A^* graph search using h_4 .

Frontier: [G(A), 10+0]

Visited nodes: S(/), A(S), B(A), G(B)

Building Heuristics

How to define a good heuristic function?

Strategies

Idea 1: Find the *optimal cost* of a relaxed (simplified) problem.

Strategies:

Relax the rules.

- **e.g.** a tile can only be moved to a position that is
- empty, and
- adjacent to it

Optimal cost = sum of Manhattan distances.

Strategies

Idea 1: Find the *optimal cost* of a relaxed (simplified) problem.

Strategies:

- Relax the rules.
- Solve a sub-problem.

only tile 1

e.g. the goal is to place all tiles 1-9 to their correct positions.

Optimal cost = minimum no. of steps to move tile 1 to the correct position.

Strategies

Idea 1: Find the *optimal cost* of a relaxed (simplified) problem.

Strategies:

- Relax the rules.
- Solve a sub-problem.
- Learn from experience*.

Figure. SameGame Puzzle.

- State: $n \times m$ grid,
 - initial state: initial placement of nm tiles.
 - goal state: empty grid.
- Action: legal removal of a group of tiles:
 - a set of ≥ 2 tiles that are connected, and
 - of the same colour.
- Transition model: apply gravity and column shifting after removal of the group.

Figure. SameGame Puzzle.

• Attempt: h(n) = number of groups.

$$h(n) = 3, h^*(n) = 2$$

Actions can merge groups together.

⇒ not admissible!

Figure. SameGame Puzzle.

• Attempt: h(n) = number of singletons.

$$h(n) = 3, h^*(n) = 2$$

Again, actions can merge singletons together.

⇒ not admissible!

Figure. SameGame Puzzle.

- State: $n \times m$ grid,
 - initial state: initial placement of nm tiles.
 - goal state: empty grid.
- Action: legal removal of a group of tiles:
 - a set of ≥ 2 tiles that are connected, and
 - of the same colour.
- Transition model: apply gravity and column shifting after removal of the group.

Optimal cost = number of remaining colours.

Figure. Tetris Puzzle.

- State: the Tetris field, and the next piece.
 - initial state: empty field.
 - **goal state**: completely filled field with no gaps after placing all *N* pieces.

Action:

choose the orientation and position of the next piece from where it descends.

- Action cost: 1.
- Transition model: returns the field after the piece descended onto the field.

Figure. Tetris Puzzle.

• $h_1(n)$ = number of unfielded tetriminos.

Admissible! because we will need to place all the tetriminos to get to a goal state.

This is the "sub-problem" strategy:

- State: the Tetris field, and the next piece.
 - initial state: empty field.
 - goal state: completely filled field with no gaps after placing all N pieces.

Question: what is the problem with this heuristic? g(n) + h(n) = N for all states...

Figure. Tetris Puzzle.

• $h_2(n) =$ number of gaps.

Note. A gap is an empty cell on the board Not admissible! because we can fill multiple gaps with one action.

Question: How can we make it admissible? Use $h_2(n)/4$, since each piece fills 4 gaps.

Figure. Tetris Puzzle.

• $h_3(n)$ = number of incomplete rows.

Note. A row is not complete if there's a gap in the row.

Not admissible! because we can make multiple rows complete with one action.

Question: How can we make it admissible?

Use $h_3(n)/4$, since each piece completes at most 4 rows.

Figure. Tetris Puzzle.

• $h_4(n)$ = number of blocked gaps.

Note. A blocked gap is a gap that has an occupied cell above it.

Admissible! If $h_4(n) > 0$, then $h^*(n) = \infty$.

This is the *'learn from experience'* strategy:

- State: the Tetris field, and the next piece.
 - initial state: empty field.
 - goal state: completely filled field with no gaps after placing all N pieces.

We will never reach goal if a gap is blocked.

Figure. Tetris Puzzle.

- $h_1(n)$ = number of unfielded tetriminos. \checkmark
- $h_2(n) =$ number of gaps. X
- $h_3(n)$ = number of incomplete rows. X
- $h_4(n)$ = number of blocked gaps. \checkmark

- $\max\{h_1, h_2\}$. X
- $\min\{h_2, h_3\}$. X
- $\max\{h_3, h_4\}$. X
- $\min\{h_1, h_4\}$.

Pause and Ponder

Suppose h_1 and h_2 are admissible heuristics.

Question 1: Is $min\{h_1, h_2\}$ admissible?

Question 2: Is $\max\{h_1, h_2\}$ admissible?

Suppose h_3 and h_4 are consistent heuristics.

Question 3: Is $min\{h_3, h_4\}$ consistent?

Question 4: Is $\max\{h_3, h_4\}$ consistent?

Figure. Tetris Puzzle.

- $h_1(n)$ = number of unfielded tetriminos. \checkmark
- $h_2(n) = \text{number of gaps. } X$
- $h_3(n)$ = number of incomplete rows. X
- $h_4(n)$ = number of blocked gaps. \checkmark

• h_1 dominates h_2 .

No! because $h_2(n) = 4h_1(n)$ for all n.

^{*} We are assuming dominance doesn't imply admissibility here.

Figure. Tetris Puzzle.

- $h_1(n)$ = number of unfielded tetriminos. \checkmark
- $h_2(n) = \text{number of gaps. } X$
- $h_3(n)$ = number of incomplete rows. X
- $h_4(n)$ = number of blocked gaps. \checkmark

• h_2 dominates h_4 .

Yes! blocked gaps is just a subset of all gaps.

^{*} We are assuming dominance doesn't imply admissibility here.

Figure. Tetris Puzzle.

- $h_1(n)$ = number of unfielded tetriminos. \checkmark
- $h_2(n) = \text{number of gaps. } X$
- $h_3(n)$ = number of incomplete rows. X
- $h_4(n)$ = number of blocked gaps. \checkmark

• h_3 does not dominates h_2 .

Yes! in this case $h_3 = 1$, $h_2 = 4$.

^{*} We are assuming dominance doesn't imply admissibility here.

Figure. Tetris Puzzle.

- $h_1(n)$ = number of unfielded tetriminos. \checkmark
- $h_2(n) =$ number of gaps. X
- $h_3(n)$ = number of incomplete rows. X
- $h_4(n)$ = number of blocked gaps. \checkmark

• h_4 does not dominates $h_2/2$.

Yes! in this case $h_4 = 0$, $h_2/2 = 2$.

^{*} We are assuming dominance doesn't imply admissibility here.

Summary

Idea 1: Find the *optimal cost* of a relaxed (simplified) problem.

Strategies:

- Relax the rules.
- Solve a sub-problem.
- Learn the heuristics*.

Idea 2: Combine several heuristics together.

If h_1, h_2 admissible/consistent, then $\max\{h_1, h_2\}$ is also admissible/consistent and dominates h_1 and h_2 .

The closer to the original

environment, the better.

Question: what about $h_1 + h_2$?

* Learning agents, not in the scope of CS3243.

Comparing Heuristics

Which heuristic function do we choose?

Figure. Pac-man.

- **State**: position of pac-man and positions remaining pallets.
 - **Initial state**: starting position of pac-man and grid entirely filled with pallets.
 - goal state: no pallets left on field.
- Action: move up/down/left/right.
 - Action cost: 1.
- Transition model: returns the field after the pac-man moved and consumed pallet.

Figure. Pac-man.

- $h_1(n) = \#$ remaining pallets,
- $h_2(n) = \#$ remaining pallets + Manhattan distance to closest pallet,
- $h_3(n) = \max \text{imum Manhattan distance to a remaining pallet}$,
- $h_4(n)$ = average Euclidean distance to all pallets.

Claim: h_2 dominates h_1^* .

Since Manhattan distance to closest pallet ≥ 0 .

^{*} We are assuming dominance doesn't imply admissibility here.

Figure. Pac-man.

- $h_1(n) = \#$ remaining pallets,
- $h_2(n) = \#$ remaining pallets + Manhattan distance to closest pallet,
- $h_3(n) = \max \text{imum Manhattan distance to a remaining pallet}$,
- $h_4(n)$ = average Euclidean distance to all pallets.

Claim: h_3 dominates h_4 *.

"Maximum" \geq "average", "Manhattan distance" \geq "Euclidean distance".

End of File

Thank you very much for your attention!

References

- D. Ler, "Heuristics", 2023. [Online].
- S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach,"
 3rd ed., Prentice Hall, 2010.