Тема 1.1. Системы счисления <u>↑</u> <u>↑</u>

- 1.1.1. Числа, цифры и коды
- 1.1.2. Десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления
- 1.1.3. Контрольные вопросы по теме «Системы счисления»
- 1.1.4. Тестовые задания по теме «Системы счисления»

1.1.1. Числа, цифры и коды

Число - основное понятие математики, которое обычно означает либо количество, размер, вес и тому подобное, либо порядковый номер, расположение в последовательности, код, шифр и тому подобное. В простейшем случае мы будем иметь дело с множеством целых неотрицательных чисел, которое начинается с нуля и продолжается до бесконечности: 0, 1, 2, 3, 4, ... В информатике эти числа, начинающиеся с нуля, называются натуральными.

Цифра – специальные графические знаки, используемые для представления и записи чисел. Например, число 256состоит из трех цифр 2, 5 и 6, число 16 состоит из двух цифр 1 и 6, а число 0– из одной цифры 0. Цифра – условный знак для обозначения чисел. Числа записываются при помощи цифр. Цифра в узком смысле – один из **10** знаков десятичной системы счисления: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Код — это правило отображения одного набора объектов или знаков в другой набор знаков без потери информации. Чтобы избежать потерь информации, это отображение должно быть таким, чтобы можно было всегда однозначно возвратиться к прежнему набору объектов или знаков. Например, любую информацию можно передать русским языком с помощью 33 букв русского алфавита и добавочных знаков препинания.

Кодирование — это представление, моделирование одного набора знаков другим с помощью кода. Кодовая таблица — это соответствие между набором знаков и их кодами, обычно разными числами. Так, например, однозначными десятичными числами можно закодировать 10 предметов, приписав каждому предмету одно из 10 однозначных чисел, а двузначными десятичными числами — 100 предметов. В качестве примера можно привести универсальную компьютерную кодовую таблицу **ASCII**.

Система счисления, или просто счисление, — набор конкретных знаков-цифр вместе с системой приемов записи, которая представляет числа этими цифрами. Различные системы счисления могут отличаться друг от друга по следующим признакам:

- разное начертание цифр, которые обозначают одни и те же числа;
- разные способы записи чисел цифрами;
- разное количество цифр.

По способу записи чисел цифрами системы счисления бывают позиционные и непозиционные.

Непозиционная система счисления— система, в которой значение символа не зависит от его положения в числе. Непозиционные системы счисления возникли раньше позиционных систем. Примером непозиционной системы счисления служат цифры в римской системе, обозначающиеся знаками: 1-I, 3-III, 5-V, 10-X, 50-L, 100-C, 500-D, 1000-M. Тогда, например, десятичное число 27 будет представляться как XXVII = 10+10+5+1+1, то есть количественное значение числа представляется суммой значений символов. Основной

недостаток непозиционных систем - большое число разных знаков и сложность выполнения арифметических операций.

Позиционная система счисления – система, в которой значение символа зависит от его места в ряду символов (цифр), изображающих число. Это значение меняется в однозначной зависимости от позиции, занимаемой цифрой, по некоторому закону. Например, в числе 7382 первая цифра слева означает количество тысяч, вторая – количество сотен, третья – количество десятков, четвертая — количество единиц. Номер позиции, определяющий вес единицы, называется разрядом.

Позиционные системы счисления более удобны для вычислительных операций, поэтому они и получили наибольшее распространение. Позиционная система счисления характеризуется основанием или базисом.

Основание (базис) позиционной системы счисления - количество знаков или символов, используемых в разрядах для изображения числа в данной системе счисления.

Для позиционной системы счисления справедливо равенство:

$$x(g) = a_n g^n + a_{n-1} g^{n-1} + \dots + a_1 g^1 + a_0 g^0 + a_{-1} g^{-1} + \dots + a_{-m} g^{-m},$$
 (1.1)

где: g — основание позиционной системы счисления — целое положительное число; x(g) — произвольное число, записанное в системе счисления с основанием q; a_n — коэффициент ряда (цифры системы счисления); n, m— количество целых и дробных разрядов.

1.1.2. Десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления

Кроме десятичной системы счисления, в вычислительной технике используются позиционные системы счисления с основанием **2**, **8**, **16**. Значения шестнадцати целых чисел в этих системах приведены в таблице 1.1.2-1.

q=10	q=16	q=8	q=2
0	0	0	0000
1	1	1	0001
2	2	2	0010
3	3	3	0011
4	4	4	0100
5	5	5	0101
6	6	6	0110
7	7	7	0111
8	8	10	1000
9	9	11	1001
10	A	12	1010
11	В	13	1011
12	C	14	1100
13	D	15	1101
14	Е	16	1110
15	F	17	1111

Таблица 1.1.2-1

В десятичной системе счисления (q=10) любое целое число записывается как сумма величин 10^0 , 10^1 , 10^2 и т.д., каждая из которых может быть взята0-9раз. Например, числа 4627 и 674.25 соответственно представляют собой сокрашенную запись выражения:

$$4627 = 4 \cdot 10^{3} + 6 \cdot 10^{2} + 2 \cdot 10^{1} + 7 \cdot 10^{0}$$

$$674.25 = 6 \cdot 10^{2} + 7 \cdot 10^{1} + 4 \cdot 10^{0} + 2 \cdot 10^{-1} + 5 \cdot 10^{-2}.$$

В двоичной системе (q=2) счисления для записи чисел используются две цифры: 0 и 1. Основание системы q=2. В данной системе любое число может быть представлено последовательностью двоичных цифр. Эта запись соответствует сумме степеней цифры 2, взятых с указанными в ней коэффициентами:

$$x(2)=a_n \cdot 2^n + a_{n-1} \cdot 2^{n-1} + ... + a_1 \cdot 2^1 + a_0 \cdot 2^0 + a_{-1} \cdot 2^{-1} + a_{-2} \cdot 2^{-2} + ...$$

Например, числа в двоичной системе счисления (q=2):

$$101_{2} = 1.2^{2} + 0.2^{1} + 1.2^{0} = 5_{10}$$

$$10101101_{2} = 1.2^{7} + 0.2^{6} + 1.2^{5} + 0.2^{4} + 1.2^{3} + 1.2^{2} + 0.2^{1} + 1.2^{0} = 173_{10}$$

$$11011.1_{2} = 1.2^{4} + 1.2^{3} + 0.2^{2} + 1.2^{1} + 1.2^{0} + 1.2^{-1} = 27.5_{10}$$

Подобным же образом записываются числа и в других системах.

Например, числа в восьмеричной системе счисления (q=8):

$$11_8 = 1.8^{1} + 1.8^{0} = 9_{10}$$

$$115_8 = 1.8^{2} + 1.8^{1} + 5.8^{0} = 77_{10}$$

$$355.44_8 = 3.8^{2} + 5.8^{1} + 5.8^{0} + 4.8^{-1} + 4.8^{-2} = 237.5625_{10}$$

Числа в шестнадцатеричной системе счисления (q=16):

$$11_{16} = 1 \cdot 16^{1} + 1 \cdot 16^{0} = 17_{10}$$

$$1F_{16} = 1 \cdot 16^{1} + F \cdot 16^{0} = 1 \cdot 16^{1} + 15 \cdot 16^{0} = 31_{10}$$

$$A1_{16} = A \cdot 16^{1} + 1 \cdot 16^{0} = 10 \cdot 16^{1} + 1 \cdot 16^{0} = 161_{10}$$

$$ED.9_{16} = E \cdot 16^{1} + D \cdot 16^{0} + 9 \cdot 16^{-1} = 14 \cdot 16^{1} + 13 \cdot 16^{0} + 9 \cdot 16^{-1} = 237.5625_{10}.$$

1.1.3. Контрольные вопросы по теме «Системы счисления»

- 1. Что такое число?
- 2. Что такое цифра?
- 3. Что такое коды и кодирование?
- 4. Что такое система счисления?
- 5. Какие системы счисления называются позиционными?
- 6. Какие позиционные и непозиционные системы счисления вы знаете?
- 7. Что такое основание (базис) позиционной системы счисления?

1.1.4. Тестовые задания по теме «Системы счисления»

- 1. Система счисления это
 - 1) способ представления чисел различными цифрами и символами
 - 2) способ подсчета различных объектов
 - 3) способ записи чисел арабскими или римскими цифрами
 - 4) способ записи чисел латинскими буквами
- 2. Системы счисления бывают
 - 1) позиционные и непозиционные
 - 2) цифровые и буквенные
 - 3) цифровые
 - 4) все ответы верные
- 3. В непозиционной системе счисления
 - 1) количественное значение каждой цифры не зависит от ее положения в числе
 - 2) число записано только латинскими буквами
 - 3) число записывается цифрами и буквами
 - 4) могут быть записаны только целые числа
- 4. В позиционных системах счисления
 - 1) количественное значение каждой цифры зависит от ее положения в числе
 - 2) число записано арабскими цифрами
 - 3) число записано цифрами и буквами
 - 4) в разных разрядах числа стоят разные цифры
- 5. Основание (базис) позиционной системы счисления определяет
 - 1) количество различных символов, которые используются для записи числа
 - 2) количество способов представления числа разными символами
 - 3) количество разрядов, которые могут быть задействованы для записи числа
 - 4) все вышеперечисленное верно
- **6.** В позиционной системе счисления с натуральным основанием **P** должно быть использовано
 - 1) ровно Р различных цифр
 - 2) Р+1 различных цифр
 - 3) Р-1различных цифр
 - 4) любое количество цифр
- 7. Тремя цифрами в двоичной системе счисления можно записать наибольшее десятичное число
 - **1**) 7
 - **2**) 4
 - **3**) 100
 - **4**) 15

- **8.** Тремя цифрами в восьмеричной системе счисления можно записать наибольшее десятичное число
 - **1**) 511
 - **2**) 512
 - **3**) 255
 - **4)** 777
- **9.** Тремя цифрами в шестнадцатеричной системе счисления можно записать наибольшее десятичное число
 - 1) 4095
 - **2**) 256
 - **3**) 4096
 - **4)** 1000
- 10. Существует ### позиционных систем
 - 1) бесконечное количество
 - 2) четыре (десятичная, двоичная, восьмеричная, шестнадцатеричная)
 - 3) пять (латинская, десятичная, двоичная, восьмеричная, шестнадцатеричная)
 - 4) нет правильного ответа
- **11.** Чисел меньше числа 10_{16}
 - **1**) 16
 - **2**) 15
 - **3**) 9
 - **4**) 10
- **12.** Десятичное число 16_{10} равно
 - **1**) 20₈
 - **2**) 18₈
 - **3**) 100₈
 - 4) нет правильного ответа
- **13.** За числом **17**₈следуют
 - **1**) 20₈, 21₈
 - **2**) 18₈, 19₈
 - 3) 20_8 , 30_8
 - 4) нет правильного ответа
- **14.** Перед числом **21**₁₆находятся
 - 1) 20_{16} , $1F_{16}$
 - **2**) 20₁₆, FF₁₆
 - **3**) 20₁₆, 19₁₆
 - 4) нет правильного ответа
- **15.** Числам 10_2 , 10_8 , 10_{16} предшествуют целые числа
 - 1) 1_2 , 7_8 , F_{16}
 - **2**) 10₂, 02₈, 17₁₆
 - **3**) 11₂, 17₈, 1A₁₆
 - **4**) 01₂, 01₈, 01₁₆

- 16. Четное двоичное число заканчивается цифрой.
 - **1**) 0₂
 - **2**) 10₂
 - **3**) 00₂
 - **4**) 1₂
- 17. Нечетное двоичное число заканчивается цифрой
 - **1**) 1₂
 - **2**) 01₂
 - **3**) 0₂
 - **4)** 11₂
- **18.** За числами 1_2 , 1_8 , F_{16} следуют целые числа
 - **1**) 10₂, 2₈, 10₁₆
 - **2**) 11₂, 11₈, 18₁₆
 - **3**) 10₂, 02₈, 17₁₆
 - **4)** 11₂, 11₈, 11₁₆
- **19.** За числами **101**₂, **7**₈, **1F**₁₆ следуют числа
 - **1**) 110₂, 08₈, 20₁₆
 - **2)** 111₂, 11₈, 10₁₆
 - **3**) 101₂, 10₈, FF₁₆
 - **4)** 110₂, 10₈, 20₁₆
- **20.** За числами **111**₂, **37**₈, **FF**₁₆ следуют числа
 - **1**) 1000₂, 40₈, 100₁₆
 - **2**) 111₂, 38₈, 101₁₆
 - **3**) 111₂, 36₈,100₁₆
 - **4**) 101₂,40₈, FD₁₆
- **21.** За числами **1111**₂, **177**₈, **9AF9**₁₆ следуют числа
 - 1) 10000₂, 200₈, 9AFA₁₆
 - **2**) 1110₂, 200₈, 10AF₁₆
 - **3**) 10001₂, 201₈, 10AF₁₆
 - **4)** 10001₂, 201₈, 9AFF₁₆
- **22.** За числами **101011**₂, **7777**₈, **CDEF**₁₆ следуют числа
 - 1) 101100₂, 10000₈, CDF0₁₆
 - 2) 1010111₂, 77771₈, CDEF1₁₆
 - **3**) 110111₂,77700₈,CDF1₁₆