Aufgabe 1: Flohmarkt

Teilnahme-Id: 55628

Bearbeiter dieser Aufgabe: Michal Boron

April 2021

Inhaltsverzeichnis

1	L Lösungsidee 1		
		Formulierung des Problems	
		Themenbezogene Arbeiten	
	1.3	Komplexität des Problems	2
		Inhalt: Heuristik	
		Grenzen der Heuristik	
	1.6	Laufzeit	2
2	2. Umsetzung		2
3	Beispiele		2
4	Que	llcode	2

1 Lösungsidee

1.1 Formulierung des Problems

Gegeben sei eine Strecke der Länge N und eine Zeitspanne von B bis E. Außerdem gegeben sei eine Liste von Z Voranmeldungen. Die Voranmeldugen betreffen die Vermietung eines Teils der Strecke in einer konkreten Zeitspanne. So besteht jede Voranmeldug i aus einer Strecke $0 < s_i \le N$, einem Mietbeginn $B \le b_i < E$ und einem Mietende $b_i < e_i \le E$. In diesem Problem behandelt werden Strecken in volltändigen Metern und alle Zeiten werden in vollständigen Stunden angegeben. Obwohl N auf 1000 Meter, B auf 8:00 und E auf 18:00 festgelegt sind, kann mein Programm mit beliebigen Größen umgehen.

Die Aufgabe ist ein Optimierungsproblem. Man soll so eine Teilfolge aus den m Voranmeldugen wählen, dass alle gewählten Strecken in den angebenen Zeiten vermietet werden können und die Mieteinnahmen möglichst hoch sind, wobei der Preis 1 Euro pro Meter pro Stunde beträgt.

Man kann das Problem auf folgende Weise modellieren. Wir setzen: M := E - B. Wir bilden ein Rechteck R der Größe $N \times M$. So kann man analog jede Voranmeldung i als ein kleineres Rechteck r_i der Größe $s_i \times m_i$ darstellen, wobei $m_i := e_i - b_i$.

So können wir die obige Aufgabe umformulieren: Wähle so eine Teilfolge Z' von Rechtecken aus Z, die eine Anordnung innerhalb von R bilden, sodass der Gesamtflächeninhalt aller Rechtecke in Z' maximal ist und kein Paar der Rechtecke sich nicht überdeckt. Genauer gesagt: Jedes Rechteck r_i in Z' besitzt Ecken, die den folgenden Punkten entsprechen: $(x_i, b_i), (x_i, e_i), (x_i + s_i, e_i), (x_i + s_i, b_i)$.

TODO: check, reformulate

Aufgabe 1: Flohmarkt Teilnahme-Id: 55628

1.2 Themenbezogene Arbeiten

1.3 Komplexität des Problems

TODO: Zeige, das Problem ist NP (überprüfbar in P)

Zeige, das Problem ist NP-schwer: Reduktion zu einem anderen NP-voll. oder NP-schweren Problem.

Die Reduktionsfunktion muss in Polynomialzeit laufen.

https://stackoverflow.com/questions/4294270/how-to-prove-that-a-problem-is-np-complete

TODO: Notwendigkeit einer Heuristik

1.4 Inhalt: Heuristik

- 1.5 Grenzen der Heuristik
- 1.6 Laufzeit
- 2 Umsetzung
- 3 Beispiele
- 4 Quellcode