BIOS 660/BIOS 672 (3 Credits): Probability and Statistical Inference I

Jianwen Cai

https://sakai.unc.edu/portal/site/bios660-bios672-3-credits
Notes 12

Normal Distribution	2
Normal Distribution	 3
Normal Moments	
Standartization	 5
Density integrates to 1	 6
cont	 7
Notes	 8
χ^2 distribution	 9
Student's t and F distributions	
More Distributions	11
Gamma distribution	 12
Notes	 13
Weibull distribution	 14
Cauchy distribution	 15
Beta distribution	 16
cont	 17
Larger Families of Distributions	18
Location and Scale families	 19
Group families	
Group families: Examples	21

Normal Distribution

Introduced by De Moivre (1667 - 1754) in 1733 as an approximation to the binomial. Later studied by Laplace and others as part of the Central Limit Theorem. Gauss derived the normal as a suitable distribution for outcomes that could be thought of as sums of many small deviations.

sample space: $R = (-\infty, \infty)$

pdf: For $Y \sim N(\mu, \sigma^2)$,

$$f(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(y-\mu)^2/2\sigma^2} \qquad -\infty < y < \infty$$

If $\mu=0$ and $\sigma^2=1$ is referred to as the *standard normal*.

cdf: There is no closed form. The notation $\Phi(x)$ is often used for $F(x) = P(Y \le x)$ for the standard normal case. Many books have tables of its values for x > 0. Values for x < 0 can be obtained by the formula $\Phi(-x) = 1 - \Phi(x)$.

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 3 / 21

Normal Moments

Mean:

$$\mathsf{E} Y = \mu$$

Variance:

$$Var(Y) = E(Y - \mu)^2 = \sigma^2$$

Higher central moments:

$$\mathsf{E}(Y-\mu)^m = \begin{cases} \frac{m!}{2^{m/2}(m/2)!} \sigma^m & m \text{ even} \\ 0 & m \text{ odd} \end{cases}$$

In particular:

$$\mu_3 = \mathsf{E}(Y - \mu)^3 = 0$$
 (Skewness)

$$\mu_4 = \mathsf{E}(Y - \mu)^4 = 3\sigma^4$$

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 4 / 21

Standartization

Standartization:

$$Y \sim N(\mu, \sigma^2) \Leftrightarrow Z = \frac{Y - \mu}{\sigma} \sim N(0, 1)$$

Shifting and scaling:

$$Z \sim N(0,1) \Leftrightarrow Y = \sigma Z + \mu \sim N(\mu, \sigma^2)$$

Easy to prove using the mgf.

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 5 / 21

Density integrates to 1

Theorem:

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} \, dy = 1$$

Proof:

This is not as easy as one might think. Call the integral I. Then,

$$I^{2} = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^{2}/2} dy \cdot \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{(x^{2}+y^{2})}{2}} dx dy$$

Now make a change of variables to polar coordinates, i.e. put

$$y = r \sin \theta$$
 $x = r \cos \theta$, $0 < \theta \le 2\pi$, $0 < r < \infty$

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 6 / 21

cont.

Now, $dxdy \rightarrow rdrd\theta$, because

$$I^{2} = \int_{r=0}^{\infty} \int_{\theta=0}^{2\pi} \frac{e^{-r^{2}/2}}{2\pi} r dr d\theta$$
$$= \int_{0}^{\infty} e^{-r^{2}/2} r dr = -e^{-r^{2}/2} \Big|_{0}^{\infty} = 0 - (-1) = 1$$

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 7 / 21

Notes

- Normal distribution useful in many practical settings
- Plays an important role in sampling distributions in large samples, since the Central Limit theorem says that sums of independent identically distributed random variables are approximately normal
- There are many important distributions that can be derived from functions of normal random variables (e.g. χ^2 , t, F). We will see much more on this later, for now, we will briefly present the *pdf*'s and sample spaces of these distributions.

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 8 / 21

χ^2 distribution

If $Z \sim N(0,1)$, then $X = Z^2$ has the χ^2 distribution with 1 degree of freedom.

More generally, we have the χ^2 distribution with ν degrees of freedom with pdf:

$$f(x) = \frac{(x/2)^{\frac{\nu}{2} - 1} e^{-x/2}}{2\Gamma(\nu/2)}, \qquad x > 0$$

where $\Gamma(a)$ is the complete gamma function,

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$$

Note that if a is an integer, $\Gamma(a) = (a-1)!$.

The $\chi^2(\nu)$ distribution is a special case of the gamma distribution, so it is easier to derive its properties from the gamma.

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 9 / 21

Student's t and F distributions

Y has a t_k distribution (t with ν degrees of freedom) if its pdf can be written as:

$$f(y) = \frac{\Gamma[(\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)} \frac{1}{(1+y^2/\nu)^{(\nu+1)/2}}, \quad -\infty < y < \infty$$

Y has an $F(\nu_1, \nu_2)$ distribution if its *pdf* can be written as:

$$f(y) = \frac{(\nu_1/\nu_2)\Gamma[(\nu_1 + \nu_2)/2)](\nu_1 y/\nu_2)^{\nu_1/2 - 1}}{\Gamma(\nu_1/2)\Gamma(\nu_2/2)(1 + \nu_1 y/\nu_2)^{(\nu_1 + \nu_2)/2}}, \qquad 0 \le y < \infty$$

There are many important properties and relationships between these three distributions (e.g. χ^2_k is the distribution of the sum of the squares of k independent standard normals). We'll come back to these in a few weeks when we do sampling distributions and transformations of the normal distribution.

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 10 / 21

More Distributions 11 / 21

Gamma distribution

Notation: $Y \sim gamma(a, \lambda)$. pdf:

$$f(y) = \frac{\lambda e^{-\lambda y} (\lambda y)^{a-1}}{\Gamma(a)}, \qquad y \ge 0$$

where $\Gamma(a)$ is the *complete gamma function*,

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$$

Note that if a is an integer, $\Gamma(a) = (a-1)!$.

cdf: In general, there is no closed form, unless a is an integer.

moments

$$\begin{array}{rcl} \mathsf{E}(Y) & = & a/\lambda \\ \mathsf{Var}(Y) & = & a/\lambda^2 \end{array}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 12 / 21

Notes

- The special case a = 1 corresponds to an exponential(λ)
- Can be thought of as a flexible generalization of the exponential (a can be interpreted as a shape parameter)
- The special case gamma(n/2,1/2), for integer n, corresponds to the χ^2 distribution with n degrees of freedom.
- We will see later in the class that the gamma distribution can be derived as the sum of a independent exponential(λ) distributions
- When a is an integer, the $gamma(a, \lambda)$ distribution can be derived as the distribution of time until the occurrence of the a^{th} event in a Poisson process.

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 13 / 21

Weibull distribution

This is another useful generalization of the exponential. It is useful to begin with the *cdf* instead of the *pdf*:

sample space: $[v, \infty]$ cdf:

$$F(y) = 1 - \exp\left[-\left(\frac{y-v}{\alpha}\right)^{\beta}\right], \quad y \ge v$$

It follows that the pdf is:

$$f(y) = \frac{\beta}{\alpha} \left(\frac{y - v}{\alpha} \right)^{(\beta - 1)} \exp \left[-\left(\frac{y - v}{\alpha} \right)^{\beta} \right], \qquad y \ge v$$

The usual case is v = 0.

If $\beta = 1$ we get an exponential with parameter $\lambda = 1/\alpha$.

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 14 / 21

Cauchy distribution

This is a famous distribution to mathematical statisticians, since it often serves as a useful counterexample.

pdf

$$f(y) = \frac{1}{\pi} \frac{1}{[1 + (y - \mu)^2/\sigma^2]} \quad \text{ for } -\infty < y < \infty$$

The Cauchy with $\mu = 0$, $\sigma = 1$, corresponds to the *t*-distribution with 1 degree of freedom.

While the moments of the Cauchy are not defined, its quantiles are (HW).

The Cauchy is not just a pathological case. We'll see later that the ratio of two standard normals is Cauchy. So ratios of observations can be problematic (e.g. BMI).

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 15 / 21

Beta distribution

Notation: $Y \sim beta(a, b)$. sample space: [0,1]

pdf:

$$f(y) = \frac{y^{a-1}(1-y)^{b-1}}{B(a,b)}, \qquad 0 \le y \le 1$$

where B(a,b) is the (complete) Beta function,

$$B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)},$$

where $\Gamma(a)$ is the complete gamma function. The normalizing constant is required so that $\int_0^1 f(x) dx = 1$.

Note that if a and b are integers, then B(a,b) can be calculated in closed form.

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 16 / 21

cont.

 $\it cdf:$ In general, there is no closed form, except if $\it a$ and $\it b$ are integers. $\it moments$

$$\begin{array}{lcl} \mathsf{E}(Y) & = & \frac{a}{a+b} \\ \\ \mathsf{Var}(Y) & = & \frac{ab}{(a+b)^2(a+b+1)} \end{array}$$

The beta distribution is very flexible, and can take a wide variety of shapes by varying its parameters. Special case: beta(1,1) = U(0,1).

* Read C-B Section 3.3 (normal, beta, Cauchy, lognormal and double exponential)

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 17 / 21

Location and Scale families

Let f(x) be any pdf. Then the family of pdfs

$$f_{\mu,\sigma}(x) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$$

for $\mu \in \mathbb{R}$, $\sigma > 0$, is called a location-scale family.

If $\mu = 0$ we get a scale family; if $\sigma = 1$ we get a location family.

Examples: Normal, Laplace, Cauchy, exponential.

Properties: Let $Z \sim f(z)$ and $X = \sigma Z + \mu$. Then

1. X has pdf $f_{\mu,\sigma}(x)$.

2.

$$\mathsf{E}(X) = \sigma \mathsf{E}(Z) + \mu, \qquad \mathsf{Var}(X) = \sigma^2 \mathsf{Var}(Z)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 19 / 21

Group families

Let \mathcal{G} be a class of 1-to-1 functions $g: \mathbb{R} \to \mathbb{R}$. The class of transformations \mathcal{G} is called a *transformation group* if

- 1. \mathcal{G} is closed under composition: $g_1,g_2\in\mathcal{G}$ implies $g_2\cdot g_1\in\mathcal{G}$.
- 2. \mathcal{G} is closed under inversion: $g \in \mathcal{G}$ implies $g^{-1} \in \mathcal{G}$.

Given a rv Z with cdf F(z), the class

$${X = g(Z), g \in \mathcal{G}}$$

is a group family.

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 20 / 21

Group families: Examples

- Parametric: Location-scale families, $g(z) = \sigma z + \mu$, $\sigma > 0$, $\mu \in \mathbb{R}$.
- Non-parametric: Let $\mathcal G$ is the class of all continuous strictly increasing functions g(z) such that

$$\lim_{z\to -\infty} g(z) = -\infty, \qquad \lim_{z\to \infty} g(z) = \infty$$

Let Z be a rv supported on $(-\infty,\infty)$. Then the class $\{X=g(Z),g\in\mathcal{G}\}$ is the class of all rvs suported on $(-\infty,\infty)$ whose cdfs are continuous and strictly increasing.

• Non-parametric: Same as before with the additional restriction that Z has a symmetric distribution about 0 and g is odd: g(-z) = -g(z). The generated rvs are now the class of all rvs with symmetric distributions about 0.

BIOS 660/BIOS 672 (3 Credits)

Notes 12 - 21 / 21