Classification: Performance Metrics & Class Imbalance Big Data y Machine Learning para Economía Aplicada

Ignacio Sarmiento-Barbieri

Universidad de los Andes

Agenda

- 1 Recap
 - Computational algorithms
 - Probit
- 2 Confusion Matrix
 - Accuracy
 - TNR
 - TNR
- 3 ROC curve
- 4 Imbalanced Classification
 - Metrics

Agenda

- 1 Recap
 - Computational algorithms
 - Probit
- 2 Confusion Matrix
 - Accuracy
 - TNR
 - TNR
- 3 ROC curve
- 4 Imbalanced Classification
 - Metrics

Classification: Motivation

- Many predictive questions are about classification
 - ► Credit, Poverty, Firm default, Fraud, Unemployment, etc.
- ▶ Aim is to classify *y*, where *y* represents membership in a category
 - Qualitative, not necessarily ordered
 - ► We will focus for now in the binary case

The prediction question is, given a new X, what is our best guess at the response category \hat{y}

Classification: Recap 10,11 - 1 Emplodo, Desemplodo 2 Estados de Ca Naturaleza -> ? No Pobre, Pobre/

 $1[p_i \geq c]$ - Logit, Probit - No param : KNN

- Nave Bayes

C= 95 -> Salia de una pordeda sinetrica P: 3 95 → 1

P. 20,5 -> 0

4/33

Logit

► The log likelihood is

$$l(\beta) = \log L(\beta) = \sum_{i=1}^{n} \left[y_i \log p_i + (1 - y_i) \log(1 - p_i) \right]$$

where
$$p_i = P(y_i = 1 | X_i) = f(X_i)$$

- ► Note:
 - This is a system of *K* non linear equations with *K* unknown parameters.
 - We cannot explicitly solve for $\hat{\beta}$
 - ► It's important to check SOC → Hessissis

Computational algorithms

Computational algorithms

Gradient Descent vs Newton's Method

Computational algorithms

Gradient Descent vs Newton's Method

Classification: Performance Metrics & Class Imbalance

Probit

- ► $Pr(y = 1|X) = \Phi(X'\beta)$ where Φ is the standard normal cdf.
- ► In practice, the probit and logit models generally yield very similar predicted probabilities,
- ► There are practical reasons for favoring one or the other in some cases for mathematical convenience, in other computational convenience, but it is difficult to justify the choice of one distribution or another on theoretical grounds.

Example: Unemployment

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Agenda

- 1 Recap
 - Computational algorithms
 - Probit
- 2 Confusion Matrix
 - Accuracy
 - TNR
 - TNR
- 3 ROC curve
- 4 Imbalanced Classification
 - Metrics

Confusion Matrix

Accuracy

$$\hat{y}_i$$
 0 $\frac{1}{\text{FP}}$ 0 $\frac{1}{\text{FP}}$

According
$$\frac{TP+TN}{TP+TN+FN+FP} = \frac{Accorder}{Total de OS}$$
 (1)

TNR

: _TRUE Negative Rate

 y_i

$$P[\hat{y} = 0 | y = 0] = \frac{|TN|}{TN + FP} = \frac{TRUE \text{ rkg}}{Hc \text{ rkg stres}}$$

Folse Positive Rate =
$$1 - TNR = \frac{FR}{N}$$

Errol tipo I = $P(\hat{y}=1|y=0)$

↓□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 夕久ⓒ

(2)

TPR: True positive Rate

- Sensitivity

 \hat{y}_i $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

 y_i

$$P[\hat{y} = 1|y = 1] = \frac{TP}{TP + FN} = \frac{P_{\text{outtoos}}}{P_{\text{outtoos}}}$$

Error tipo II
$$\Rightarrow \frac{12(\hat{y}=1)(\hat{y}=1)}{Positions} = 1 - TPR = \frac{FN}{Positions}$$

◆ロト ◆個 > ◆意 > ◆意 > 意 り < ②</p>

(3)

Example: Unemployment

 $photo\ from\ \texttt{https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-tumblr-twitter-vine/batman-1966-labels-tumblr-twitter-vine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-tumblr-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-twitter-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/batman-1966-labels-wine/$

Agenda

- 1 Recap
 - Computational algorithms
 - Probit
- 2 Confusion Matrix
 - Accuracy
 - TNR
 - TNR
- 3 ROC curve
- 4 Imbalanced Classification
 - Metrics

Trade-Off between Different Classification Thresholds

Trade-Off between Different Classification Thresholds

Trade-Off between Different Classification Thresholds

$$I[\hat{p}_i>c]$$

$$TPR = 1$$

 $FPR = 1 \leftarrow TNR = 0$

C= 0

False Positive Rate

False Positive Rate

Example: Unemployment

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

Agenda

- 1 Recap
 - Computational algorithms
 - Probit
- 2 Confusion Matrix
 - Accuracy
 - TNR
 - TNR
- 3 ROC curve
- 4 Imbalanced Classification
 - Metrics

Imbalanced Classification: Motivation

- ▶ Interest in one of the classes: Poor, Default, Unemployed, Fraud
- ► Imbalanced classes pose a challenge

Degree of imbalance	Proportion of Minority Class
Mild	20-40% of the data set
Moderate	1-20% of the data set
Extreme	<1% of the data set

TPR & PPV

$$\hat{y}_{i} \quad 0 \quad \boxed{TP} \quad 0 \quad \boxed{FP}$$

$$\hat{y}_{i} \quad 0 \quad \boxed{FP} \quad \boxed{TN}$$

$$P[\hat{y} = 1 | y = 1] = \frac{TP}{TP + FN} = \frac{TP}{Re \, call}$$

$$TNR = \frac{TN}{FP + 7N}$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

TPR & PPV

$$P[\hat{y} = 1 | y = 1] = \frac{TP}{TP + |FN|} = \frac{TP}{Recel()}$$
 (4)

$$P[y=1|\hat{y}=1] = \frac{TP}{TP+|FP|} = Precision$$
 (5)

PR-Curve

F-Scores

$$\hat{y}_{i} = \frac{1}{0} \qquad \frac{1}{\text{TP}} \qquad \frac{\text{FP}}{\text{TN}}$$

$$F1 = 2 \frac{Precision \times Recall}{(Precision + Recall)}$$

$$Precision = 2,90$$

$$Pacall = 2,00$$

$$Pacall = 2,00$$

(6)

F-Scores

$$F_{\beta} = (1 + \beta^2) \frac{Precision \times Recall}{(\beta^2 \times Precision + Recall)}$$
 (7)

Example: Unemployment

photo from https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/

33 / 33