Homework 2, Part 2

1 K-Means

Algorithm¹:

Step 1: Choose the number of clusters k (in our case, 3)

Step 2: Make an initial selection of k centroids (this is already done for us)

Step 3: Assign each data element in S to its nearest

centroid (in this way k clusters are formed one for each centroid, where each cluster consists of all the data elements assigned to that centroid)

Step 4: For each cluster make a new selection of its centroid

Step 5: Go back to step 3, repeating the process until the centroids dont change or some other convergence criterion is met

Original Data and First iteration calculations:

Point	X	Y	Euclidean 1	Euclidean 2	Euclidean 3	Centroid
A	4	9	2.236067977	7.615773106	1.414213562	3
В	2	10	0	8.062257748	3.605551275	1
С	1	2	8.062257748	0	7.211102551	2
D	2	5	5	3.16227766	.242640687	2
E	6	4	7.211102551	5.385164807	4.123105626	3
F	8	4	8.485281374	7.280109889	5	3
G	7	5	7.071067812	6.708203932	3.605551275	3
Н	5	8	3.605551275	7.211102551	0	3

Centriod	X	Y
1	2	10
2	1	2
3	5	8

Legend:

Centroid	Number	Color
Alpha	1	Orange
Beta	2	Red
Gamma	3	Yellow
Data	NA	Blue

¹http://www.real-statistics.com/multivariate-statistics/cluster-analysis/k-means-cluster-analysis/

Update 1:

Centriod	X	Y
1	2	10
2	1.5	3.5
3	6	6

2 Agglomerative Hierarchical

MIN

	▼ X	▼ y	₩
p1		0.4	0.53
p2		0.21	0.38
р3		0.35	0.32
p4		0.26	0.19
p5		0.08	0.41
p6		0.45	0.3

	▼ p1	▼	p2 🔻	p3	₩	p4 ▼	p5 ▼	p6	₩
p1									
p2	0.2420	7437							
р3	0.2158	7033	0.152315462	2					
p4	0.3676	9553	0.196468827	0.15811	388				
p5	0.3417	6015	0.13341664	0.28460	499	0.28425341			
p6	0.2353	7205	0.25298221	0.10198	039	0.21954498	0.38600518		-

Cluster $\{3,6\}$

```
\begin{array}{l} d(\{1\},\{3,6\}) = \min(d(1,3),\,d(1,6)\,\,) = d(1,3) \\ d(\{2\},\{3,6\}) = \min(d(2,3),\,d(2,6)\,\,) = d(2,3) \\ d(\{4\},\{3,6\}) = \min(d(4,3),\,d(4,6)\,\,) = d(4,3) \end{array}
```

		, ,	,
$d({5},{3,6}) =$	$\min(d(5,3),$	d(5,6)) =	= d(5,3)

	▼ p1	▼ p2	▼ p3,p	6 ▼ p4	▼ p5	₩
p1						
p2	0.24207	437				
p3,p6	0.21587	033 0.15	2315462			
p4	0.36769	553 0.19	6468827 0.15	811388		
p5	0.34176	015 0.13	3416641 0.28	3460499 0.284	125341	

Cluster
$$\{2,5\}$$
 d($\{1\},\{2,5\}$) = min(d(1,2), d(1,5)) = d(1,2) d($\{3\},\{2,5\}$) = min(d(3,2), d(3,5)) = d(3,2) d($\{4\},\{2,5\}$) = min(d(4,2), d(4,5)) = d(4,2)

	▽ p	1	p2,p5	4	7	p3,p6	₩	p4	₩
p1									
p2,p5	0	0.2420743	7						
p3,p6	0	0.2158703	0.15	5231546	2				
p4	(0.3676955	3 0.19	9646882	7	0.158113	88		

Cluster $\{2,3,5,6\}$

$$\begin{array}{l} d(\{1\},\{2,3,5,6\}) = \min(\ d(p1,p5),\ d(p1,p2),\ d(p1,p6),\ d(p1,p3) = d(1,3) \\ d(\{4\},\{2,3,5,6\}) = \min(\ (p4,p5),\ d(p4,p2),d(p4,p6),\ d(p4,p3) = d(3,4) \end{array}$$

▼	p1	T	p2,p3,p5,p6	v	p4	₩
p1						
p2,p3,p5,p6	0.215870	33				
p4	0.367695	53	0.1581138	83		

Clusters: $\{1\}, \{2,3,4,5,6\}$

MAX

	x w	y $\overline{}$
p1	0.4	0.53
p2	0.21	0.38
p3	0.35	0.32
p4	0.26	0.19
p5	0.08	0.41
p6	0.45	0.3

	▼ p1	▼	p2 =	p3	▼ p4	▼	p5 🔻	p6	₹
p1									
p2	0.24	207437							
р3	0.21	587033	0.15231546	5					
p4	0.36	769553	0.19646883	0.1581138	88				
p5	0.34	176015	0.13341664	0.2846049	9 0.2	28425341			
p6	0.23	537205	0.25298221	0.1019803	9 0.2	1954498	0.38600518	3	٠,

Cluster $\{3,6\}$

```
d(\{1\},\{3,6\}) = \max(d(1,3),d(1,6)) = d(1,6)
```

$$d(\{2\},\{3,6\}) = \max(d(2,3), d(2,6)) = d(2,6)$$

$$d({4},{3,6}) = max(d(4,3),d(4,6)) = d(4,6)$$

$$d({5},{3,6}) = max(d(5,3),d(5,6)) = d(5,6)$$

	▼ p1	▼ p2	▼	p3,p6 ▼	p4 ▼	p5 ▼
p1						
p2	0.2420	7437				
p3,6	0.2353	7205 0.25	298221			
p4	0.3676	9553 0.19	9646883	0.21954498		
p5	0.3417	6015 0.13	3341664	0.38600518	0.28425341	

Cluster $\{2,5\}$

$$d(\{1\},\{2,5\}) = \max(d(1,2),d(1,5)) = d(1,5)$$

$$d({4},{2,5}) = max(d(2,4),d(4,5)) = d(4,5)$$

$$d(\{6\},\{2,5\}) = \max(d(2,6),d(5,6)) = d(2,6)$$

	▼ p1	▼ p2,p5	▼ p3,p6	▼ p4	₩
p1					
p2,p5	0.3417	6015			
p3,6	0.2353	7205 0.386	00518		
p4	0.3676	9553 0.284	25341 0.2195	4498	

Cluster $\{3,4,6\}$

$$d(\{1\}, \{3,4,6\}) = \max(d(1,4), d(1,6), d(1,3)) = d(1,4])$$

$$d(\{2,5\}, \{3,4,6\}) = \max(d(4,2), d(6,2), d(\{3\}, \{2\}), d(4,5), d(6,5), d(p3,p5)) = d(5,6])$$

	₩	p1	₩	p2,p5	7	p3,p4,p6	₩
p1							
p2,p5		0.341760	15				
p3,6,p4		0.367695	53	0.386005	18		

Clusters: $\{1,2,5\}, \{2,5,6\}$

AVG

	▼ X	▽ y	▼
p1		0.4	0.53
p2		0.21	0.38
p3		0.35	0.32
p4		0.26	0.19
p5		0.08	0.41
p6		0.45	0.3

	▼ p1	₩	p2 ▼	р3	₩	p4 ▼	p5 ▼	р6	₩
p1									
p2	0.2420	7437							
p3	0.2158	7033	0.15231546	;					
p4	0.3676	9553	0.19646883	0.158113	88				
p5	0.3417	5015	0.13341664	0.284604	99	0.28425341			
p6	0.2353	7205	0.25298221	0.101980	39	0.21954498	0.38600518		

Cluster $\{3,6\}$

	₩	p1	₩	p2	₩	p4	₩	p5	₩	p3,p6	~
p1											
p2		0.2420743	37								
p4		0.3676955	53	0.196468	83						
p5		0.341760	15	0.133416	64	0.284253	41				
p3,p6		0.0	22	0.202484	57	0.184390	89	0.335261	09		

Cluster $\{2,5\}$

Cluster $\{4,6\}$

	Y	p1	∇	p2,p5	₩	p3,p4,p6	¥
p1							
p2,p5		0.288530	76				
p3,p6,p4		0.27297	93	0.242956	33		

Clusters: $\{1\}, \{2,3,4,5,6\}$

3 DBSCAN

```
DBSCAN (= 7.5, MinPts = 3)
```

pt 0: 2 < MinPts, so cluster=-1

pt 1: $3 \ge \text{MinPts}$, so cluster=0 to_visit=[40, 75], visited=1

- pt 40: cluster=0, 3 \ge MinPts, so adding neighbors to_visit=[75, 28], visited=1, 40
- pt 75: cluster=0, 3 \ge MinPts, so adding neighbors to_visit=[28, 4], visited=1, 40, 75
- pt 28: cluster=0, 3 \ge MinPts, so adding neighbors to_visit=[4, 12], visited=1, 28, 40, 75
- pt 4: cluster=0, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[12, 56], visited=1, 4, 28, 40, 75
- pt 12: cluster=0, 2 < MinPts, to_visit=[56], visited=1, 4, 12, 28, 40, 75
- pt 56: cluster=0, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[66], visited=1, 4, 12, 28, 40, 56, 75
- pt 66: cluster=0, 2 < MinPts to_visit=[], visited=1, 4, 12, 28, 40, 56, 66, 75

pt 2: 1 < MinPts, so cluster=-1

pt 3: 2 < MinPts, so cluster=-1

pt 4: cluster=0, so skip

pt 5: $3 \ge \text{MinPts}$, so cluster=1 to_visit=[70, 74], visited=5:

- pt 70: cluster=1, $5 \ge \text{MinPts}$, so adding neighbors to_visit=[74, 32, 69, 72], visited=5, 70
- pt 74: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[32, 69, 72, 19, 54], visited=5, 70, 74
- pt 32: cluster=1, $5 \ge \text{MinPts}$, so adding neighbors to_visit=[69, 72, 19, 54, 63, 69], visited=5, 32, 70, 74
- pt 69: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[72, 19, 54, 63], visited=5, 32, 69, 70, 74
- pt 72: cluster=1, $7 \ge \text{MinPts}$, so adding neighbors to_visit=[19, 54, 63, 8, 60], visited=5, 32, 69, 70, 72, 74
- pt 19: cluster=1, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[54, 63, 8, 60], visited=5, 19, 32, 69, 70, 72, 74
- pt 54: cluster=1, 4 ≥ MinPts, so adding neighbors to_visit=[63, 8, 60, 25], visited=5, 19, 32, 54, 69, 70, 72, 74
- pt 63: cluster=1, $7 \ge \text{MinPts}$, so adding neighbors to_visit=[8, 60, 25], visited=5, 19, 32, 54, 63, 69, 70, 72, 74
- pt 8: cluster=1, $5 \ge \text{MinPts}$, so adding neighbors to_visit=[60, 25, 11], visited=5, 8, 19, 32, 54, 63, 69, 70, 72, 74

- pt 60: cluster=1, $6 \ge \text{MinPts}$, so adding neighbors to_visit=[25, 11, 50, 68], visited=5, 8, 19, 32, 54, 60, 63, 69, 70, 72, 74
- pt 25: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[11, 50, 68, 26, 67], visited=5, 8, 19, 25, 32, 54, 60, 63, 69, 70, 72, 74
- pt 11: cluster=1, 3 \ge MinPts, so adding neighbors to_visit=[50, 68, 26, 67, 14], visited=5, 8, 11, 19, 25, 32, 54, 60, 63, 69, 70, 72, 74
- pt 50: cluster=1, $5 \ge \text{MinPts}$, so adding neighbors to_visit=[68, 26, 67, 14, 39], visited=5, 8, 11, 19, 25, 32, 50, 54, 60, 63, 69, 70, 72, 74
- pt 68: cluster=1, 5 ≥ MinPts, so adding neighbors to_visit=[26, 67, 14, 39], visited=5, 8, 11, 19, 25, 32, 50, 54, 60, 63, 68, 69, 70, 72, 74
- pt 26: cluster=1, 3 ≥ MinPts, so adding neighbors to_visit=[67, 14, 39, 34], visited=5, 8, 11, 19, 25, 26, 32, 50, 54, 60, 63, 68, 69, 70, 72, 74
- pt 67: cluster=1, 2 < MinPts, to_visit=[14, 39, 34], visited=5, 8, 11, 19, 25, 26, 32, 50, 54, 60, 63, 67, 68, 69, 70, 72, 74
- pt 14: cluster=1, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[39, 34, 6], visited=5, 8, 11, 14, 19, 25, 26, 32, 50, 54, 60, 63, 68, 69, 70, 72, 74
- pt 39: cluster=1, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[34, 6, 10, 71], visited=5, 8, 11, 14, 19, 25, 26, 32, 39, 50, 54, 60, 63, 68, 69, 70, 72, 74
- pt 34: cluster=1, 4 \ge MinPts, so adding neighbors to_visit=[6, 10, 71, 29, 46], visited=5, 8, 11, 14, 19, 25, 26, 32, 34, 39, 50, 54, 60, 63, 68, 69, 70, 72, 74
- pt 6: cluster=1, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[10, 71, 29, 46, 42], visited=5, 6, 8, 11, 14, 19, 25, 26, 32, 34, 39, 50, 54, 60, 63, 68, 69, 70, 72, 74
- pt 10: cluster=1, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[71, 29, 46, 42, 22], visited=5, 6, 8, 10, 11, 14, 19, 25, 26, 32, 34, 39, 50, 54, 60, 63, 68, 69, 70, 72, 74
- pt 71: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[29, 46, 42, 22], visited=5, 6, 8, 10, 11, 14, 19, 25, 26, 32, 34, 39, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 29: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[46, 42, 22, 16], visited=5, 6, 8, 10, 11, 14, 19, 25, 26, 29, 32, 34, 39, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 46: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[42, 22, 16], visited=5, 6, 8, 10, 11, 14, 19, 25, 26, 29, 32, 34, 39, 46, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 42: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[22, 16, 17, 20], visited=5, 6, 8, 10, 11, 14, 19, 25, 26, 29, 32, 34, 39, 42, 46, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 22: cluster=1, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[16, 17, 20], visited=5, 6, 8, 10, 11, 14, 19, 22, 25, 26, 29, 32, 34, 39, 42, 46, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 16: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[17, 20, 48], visited=5, 6, 8, 10, 11, 14, 16, 19, 22, 25, 26, 29, 32, 34, 39, 42, 46, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 17: cluster=1, 3 \ge MinPts, so adding neighbors to_visit=[20, 48], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 22, 25, 26, 29, 32, 34, 39, 42, 46, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74

- pt 20: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[48, 38], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 32, 34, 39, 42, 46, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 48: cluster=1, 2 < MinPts, to_visit=[38], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 32, 34, 39, 42, 46, 48, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 38: cluster=1, $5 \ge \text{MinPts}$, so adding neighbors to_visit=[30, 37, 45], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 32, 34, 38, 39, 42, 46, 48, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 30: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[37, 45, 52], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 30, 32, 34, 38, 39, 42, 46, 48, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 37: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[45, 52, 53], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 30, 32, 34, 37, 38, 39, 42, 46, 48, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 45: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[52, 53], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 30, 32, 34, 37, 38, 39, 42, 45, 46, 48, 50, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 52: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[53, 49, 64], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 30, 32, 34, 37, 38, 39, 42, 45, 46, 48, 50, 52, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 53: cluster=1, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[49, 64, 47], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 30, 32, 34, 37, 38, 39, 42, 45, 46, 48, 50, 52, 53, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 49: cluster=1, $4 \ge \text{MinPts}$, so adding neighbors to_visit=[64, 47, 31, 76], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 30, 32, 34, 37, 38, 39, 42, 45, 46, 48, 49, 50, 52, 53, 54, 60, 63, 68, 69, 70, 71, 72, 74
- pt 64: cluster=1, 2 < MinPts, to_visit=[47, 31, 76], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 30, 32, 34, 37, 38, 39, 42, 45, 46, 48, 49, 50, 52, 53, 54, 60, 63, 64, 68, 69, 70, 71, 72, 74
- pt 47: cluster=1, 2 < MinPts, to_visit=[31, 76], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 30, 32, 34, 37, 38, 39, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 60, 63, 64, 68, 69, 70, 71, 72, 74
- pt 31: cluster=1, 2 < MinPts, to_visit=[76], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 30, 31, 32, 34, 37, 38, 39, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 60, 63, 64, 68, 69, 70, 71, 72, 74
- pt 76: cluster=1, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[21], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 22, 25, 26, 29, 30, 31, 32, 34, 37, 38, 39, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 60, 63, 64, 68, 69, 70, 71, 72, 74
- pt 21: cluster=1, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[], visited=5, 6, 8, 10, 11, 14, 16, 17, 19, 20, 21, 22, 25, 26, 29, 30, 31, 32, 34, 37, 38, 39, 42, 45, 46, 47, 48, 49, 50, 52, 53, 54, 60, 63, 64, 68, 69, 70, 71, 72, 74

pt 6: cluster=1, so skip

pt 7: 1 < MinPts, so cluster=-1

pt 8: cluster=1, so skip

pt 9: $3 \ge \text{MinPts}$, so cluster=2, to_visit=[33, 78], visited=9

- pt 33: cluster=2, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[78], visited=9, 33
- pt 78: cluster=2, $3 \ge \text{MinPts}$, so adding neighbors to_visit=[], visited=9, 33, 78
- pt 10: cluster=1, so skip
- pt 11: cluster=1, so skip
- pt 12: cluster=0, so skip
- pt 13: 2 < MinPts, so cluster=-1
- pt 14: cluster=1, so skip
- pt 15: 1 < MinPts, so cluster=-1
- pt 16: cluster=1, so skip
- pt 17: cluster=1, so skip
- pt 18: 1 < MinPts, so cluster=-1
- pt 19: cluster=1, so skip
- pt 20: cluster=1, so skip
- pt 21: cluster=1, so skip
- pt 22: cluster=1, so skip
- pt 23: 1 < MinPts, so cluster=-1
- pt 24: 1 < MinPts, so cluster=-1
- pt 25: cluster=1, so skip
- pt 26: cluster=1, so skip
- pt 27: 2 < MinPts, so cluster=-1
- pt 28: cluster=0, so skip
- pt 29: cluster=1, so skip
- pt 30: cluster=1, so skip
- pt 31: cluster=1, so skip
- pt 32: cluster=1, so skip

- pt 33: cluster=2, so skip
- pt 34: cluster=1, so skip
- pt 35: 2 < MinPts, so cluster=-1
- pt 36: 1 < MinPts, so cluster=-1
- pt 37: cluster=1, so skip
- pt 38: cluster=1, so skip
- pt 39: cluster=1, so skip
- pt 40: cluster=0, so skip
- pt 41: 1 < MinPts, so cluster=-1
- pt 42: cluster=1, so skip
- pt 43: 2 < MinPts, so cluster=-1
- pt 44: 1 < MinPts, so cluster=-1
- pt 45: cluster=1, so skip
- pt 46: cluster=1, so skip
- pt 47: cluster=1, so skip
- pt 48: cluster=1, so skip
- pt 49: cluster=1, so skip
- pt 50: cluster=1, so skip
- pt 51: 2 < MinPts, so cluster=-1
- pt 52: cluster=1, so skip
- pt 53: cluster=1, so skip
- pt 54: cluster=1, so skip
- pt 55: 2 < MinPts, so cluster=-1
- pt 56: cluster=0, so skip
- pt 57: 1 < MinPts, so cluster=-1

- pt 58: 1 < MinPts, so cluster=-1
- pt 59: 2 < MinPts, so cluster=-1
- pt 60: cluster=1, so skip
- pt 61: 1 < MinPts, so cluster=-1
- pt 62: 2 < MinPts, so cluster=-1
- pt 63: cluster=1, so skip
- pt 64: cluster=1, so skip
- pt 65: 1 < MinPts, so cluster=-1
- pt 66: cluster=0, so skip
- pt 67: cluster=1, so skip
- pt 68: cluster=1, so skip
- pt 69: cluster=1, so skip
- pt 70: cluster=1, so skip
- pt 71: cluster=1, so skip
- pt 72: cluster=1, so skip
- pt 73: 1 < MinPts, so cluster=-1
- pt 74: cluster=1, so skip
- pt 75: cluster=0, so skip
- pt 76: cluster=1, so skip
- pt 77: 2 < MinPts, so cluster=-1
- pt 78: cluster=2, so skip
- pt 79: 1 < MinPts, so cluster=-1

4 Extra Credit

Magazine: AI Magazine, Vol 38, No 3: Fall 2017 (current) Article: Steps Toward Robust Artificial Intelligence

Author: Thomas G. Dietterich

Employment: Oregon State University

Facts: One of the founders of ML, Born in MA, Has obtained over 30 million in research grants