TD 3 : Applications linéaires

Exercice 1. Les applications suivantes sont-elles injectives, surjectives, bijectives?

1.
$$f_1: \mathbb{R} \to \mathbb{R}; \quad f_1(x) = x^2$$

2.
$$f_2: \mathbb{R} \to \mathbb{R}; \quad f_2(x) = \frac{2x}{1+x^2}$$

3.
$$f_3: \mathbb{R} \setminus \{1\} \to \mathbb{R}; \quad f_3(x) = \frac{x+1}{x-1}$$

4.
$$f_4: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{1\}; \quad f_4(x) = \frac{x+1}{x-1}$$

5.
$$f_5: \mathbb{R}^2 \to \mathbb{R}; \quad f_5(x,y) = 2x + 5y$$

6.
$$f_6: \mathbb{R}^2 \to \mathbb{R}^2$$
; $f_6(x, y) = (2x, 5y)$

6.
$$f_6: \mathbb{R}^2 \to \mathbb{R}^2; \quad f_6(x,y) = (2x, 5y)$$

7.
$$f_7: \mathbb{R}^2 \to \mathbb{R}^2$$
; $f_7(x,y) = (2x + 5y, 3x)$

8.
$$f_8: \mathbb{R}^2 \to \mathbb{R}^2$$
; $f_8(x,y) = (x^2, x+y)$

9.
$$f_9: \mathbb{R}^3 \to \mathbb{R}; \quad f_9(x, y, z) = x + y + z$$

10.
$$f_{10}: \mathbb{R}^3 \to \mathbb{R}^2$$
; $f_{10}(x, y, z) = (x + y + z, y + z)$

11.
$$f_{11}: \mathbb{R}^3 \to \mathbb{R}^2$$
; $f_{11}(x, y, z) = (x + y + z, xyz)$

12.
$$f_{12}: \mathbb{R}^3 \to \mathbb{R}^3$$
; $f_{12}(x, y, z) = (2x + 5z, 2y + 5z, z)$

Exercice 2. Les applications suivantes de \mathbb{R}^n dans \mathbb{R}^p sont-elles linéaires?

1.
$$f_1(x, y, z) = (3x + 2y - z, x - y - 3z)$$

4.
$$f_4(x,y) = (x^2, x+y)$$

2.
$$f_2(x, y, z) = (x + y + z, xyz)$$

5.
$$f_5(x) = (x, 2x)$$

3.
$$f_3(x,y) = (2x + 3y, x)$$

6.
$$f_6(x,y) = \cos(x) + \cos(y)$$

On considère les applications linéaires suivantes de \mathbb{R}^n dans \mathbb{R}^p . Pour chacune d'elle, déterminer une base de l'image de f, le rang de f, une base du noyau de f ainsi qu'un système d'équation de l'image de f.

1.
$$f(x,y) = (2x + y, 4x + 6y)$$

2.
$$f(x,y) = (x+y, 2x-y, -4x+5y)$$

3.
$$f(x,y) = (3x + 2y + z, 2y + 5z)$$

4.
$$f(x, y, z) = (y, z, 0)$$

5.
$$f(x,y,z) = (x-y,x+z)$$

6
$$f(x, y, z) = (x + 2z - x + 4y + 10z - 2x + y + 7z)$$

7.
$$f(x, y, z, t) = (y - t, x + z, y - t, x + z)$$

1.
$$f(x,y) = (2x+y,4x+6y)$$

2. $f(x,y) = (x+y,2x-y,-4x+5y)$
3. $f(x,y) = (3x+2y+z,2y+5z)$
4. $f(x,y,z) = (y,z,0)$
5. $f(x,y,z) = (x-y,x+z)$
6. $f(x,y,z) = (x+2z,-x+4y+10z,2x+y+7z)$
7. $f(x,y,z,t) = (y-t,x+z,y-t,x+z)$
8. $f(x,y,z,t) = \begin{pmatrix} 2x+y+3t\\-x+3y+4z+2t\\x+4y+4z+5t\\7y+8z+7t \end{pmatrix}$
9. $f(x,y,z,t,u) = \begin{pmatrix} x-y-z\\2y+z+2t+3u\\2x+2y+t+3u\\x+y+t+2u \end{pmatrix}$

9.
$$f(x, y, z, t, u) = \begin{pmatrix} x - y - z \\ 2y + z + 2t + 3u \\ 2x + 2y + t + 3u \\ x + y + t + 2u \end{pmatrix}$$

Exercice 4. Soit $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n. Soit T l'application de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$ définie par T(P) = P + P' + P''.

- a) Montrer que T est une application linéaire.
- b) Montrer que T est injective et en déduire que T est bijective.

Exercice 5. Soit f l'application de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$ définie par f(P) = Q avec

$$Q(X) = P(X+1) + P(X-1) - 2P(X).$$

- a) Montrer que f est une application linéaire.
- b) Calculer $f(X^p)$; quel est son degré? En déduire ker f, Imf et le rang de f.

Exercice 6. Soit f une application linéaire de E dans F. Montrer que si f est bijective, alors sa bijection réciproque f^{-1} est linéaire.

Exercice 7. On considère l'application:

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x,y) \mapsto (2x - y, x + y).$$

- a) f est-elle linéaire?
- b) Prouver que $f \circ f = 3(f Id)$.
- c) En déduire que f est inversible et calculer f^{-1} .

Exercice 8. Soit f une application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 . Montrer que f est de la forme suivante:

$$f(x,y,z) = (a_1x + a_2y + a_3z, b_1x + b_2y + b_3z, c_1x + c_2y + c_3z).$$

Exercice 9. Trouver une application linéaire f de \mathbbm{R}^3 dans \mathbbm{R}^3 telle que

$$f(1,1,0) = (1,2,1), \quad f(1,0,1) = (2,1,3), \quad f(1,1,1) = (4,2,1).$$

Pour tout $(x, y, z) \in \mathbb{R}^3$, calculer f(x, y, z).

Exercice 10. A quelle condition sur a et b existe-t-il une application linéaire $f: \mathbb{R}^2 \to \mathbb{R}^2$ telle que

$$f(1,1) = (1,2), f(1,2) = (3,6), f(2,3) = (a,b)$$
?

Exercice 11. Soit, pour un réel α , l'application f_{α} de \mathbb{R}^2 dans lui-même définie par:

$$f_{\alpha}(x,y) = (x\cos\alpha - y\sin\alpha, x\sin\alpha + y\cos\alpha).$$

- a) Montrer que f_{α} est linéaire.
- b) Monter que $f_{\alpha}f_{\beta}=f_{\alpha+\beta}$. En déduire que f_{α} est bijective.

http://hfahs.free.fr/