The ECL Translator Guide

ECL • TTL • PECL • LVECL • LVPECL • CMOS • LVTTL

How To Make Them Talk To Each Other

Prepared by: Paul Shockman, Paul Hunt

ON Semiconductor Logic Applications Engineering

http://onsemi.com

APPLICATION NOTE

Are You Designing with Different I/O Levels?

This document guides you to the appropriate interface. For interfacing between ECL devices and the TTL/CMOS world, discrete interfaces could be used. But the switching points are usually not controlled and may vary with temperature, device variation, or supply voltage. This results in duty cycle variation. To avoid this signal quality, uncertainty translating devices with controlled switching levels and specified propagation delays and skews are available.

Translation between ECL signals off different power supplies might be done by capacitive coupling. But this is only possible for clock signals or RZ coded signals. For this reason, special translators are available.

If you are looking for interfaces between LVDS and ECL, refer to Application Note AN1568/D, "Interfacing Between LVDS and ECL."

You will find the right device for your application in the translator table on page 3. The tables give you additional information on the bit—width and the databook location.

Translators from TTL-World to ECL-World

TTL to ECL Translators (Dual Supply +5 V, -5 V)

Width	Device	Function	Databook
1	MC10/100ELT24	ELT24 TTL to Differential ECL	
4	MC10124	Quad TTL to MECL	DL122
4	MC10H124	Quad TTL to MECL with TTL Strobe	DL122
4	MC10H424	Quad TTL to PECL with ECL Strobe	
6	MC10/100H604	Registered Hex TTL/ECL	DL122
9	MC10/100H600	9 Bit TTL/ECL	DL122
9	MC10/100H602	9 Bit Latch TTL/ECL	DL122

TTL/ECL Transceiver (Dual Supply +5 V, -5 V)

Width	Device	Function	Databook
4	MC10/100H680	4 Bit Differential ECL Bus/TTL Bus Transceiver with Latches	DL122
6	MC10/100H681	Hex Differential ECL/TTL Transceiver with Latches	DL122

TTL to PECL (Single Supply +5 V)

Width	Device	Function	Databook
1	MC10/100ELT20	TTL to Differential PECL	DL140
2	MC10/100ELT22	Dual TTL to Differential PECL	DL140
4	MC10H351	Quad TTL/NMOS to PECL	DL122
6	MC10/100H606	Registered Hex TTL/PECL	DL122

LVTTL to LVPECL (Single Supply +3.3 V)

Width	Device	Function	Databook
2	MC100LVELT22	Dual LVPECL to LVTTL	onsemi.com
1	MC10EPT20	LVPECL to LVTTL	BR1513
2	MC100EPT22	Dual LVPECL to LVTTL	BR1513

AN1672/D

Translators from ECL-World to TTL-World

ECL to TTL (Dual Supply +5 V, -5 V)

Width	Device	Device Function	
1	MC10/100ELT25	Differential ECL to TTL	DL140
4	MC10125	Quad MECL to TTL	DL122
4	MC10H125	Quad MECL to TTL	DL122
4	MC10/100H660	4 Bit ECL TTL Load Reducing DRAM Driver	DL122
6	MC10/100H605	Registered Hex ECL/TTL	DL122
9	MC10/100H601	9 Bit ECL/TTL	DL122
9	MC10/100H603	9 Bit Latch ECL/TTL	DL122

PECL to TTL (Single Supply +5 V)

Width	Device	Function	Databook
1	MC10/100ELT21	Differential PECL to TTL	DL140
2	MC100ELT23	Dual Differential PECL to TTL	DL140
4	MC10H350	Differential PECL to TTL	DL122
6	MC10/100H607	Registered Hex PECL/TTL	DL122

LVPECL to LVTTL (Single Supply +3.3 V)

Width	Device	Function	Databook
1	1 MC100EPT21 Differential LVPECL to LVTTL		BR1513
2	MC100EPT23	Dual Differential LVPECL to LVTTL	BR1513
2	MC100LVELT23	Dual Differential LVPECL to LVTTL	onsemi.com
2	MC100EPT26	1:2 Differential LVPECL to TTL	BR1513

LVTTL/LVCMOS to LVECL (Dual Supply +3.3 V, -3.3 V to -5 V)

Width	Device	Function	Databook
1	MC100EPT24	Differential LVCMOS to LVECL	BR1513

LVECL to LVTTL (Dual Supply +3.3 V, -3.3 V)

Width	Device	Function	Databook
1	MC100EPT25	Differential LVECL to LVTTL	BR1513

PECL-TTL and TTL-PECL (Single Supply +5 V)

Width	Device	Function	Databook
1+1	MC10/100ELT28*	TTL to Differential PECL + Differential PECL to TTL	DL140

CMOS to **PECL** Interfacing

	Width	Device	Function	Databook
CMOS to PECL (Single +5 V)	4	MC10H352	Quad CMOS to PECL	DL122

Different Supplied ECL

	Width	Device	Function	Databook
LVECL to PECL (-3.3 V to +5 V)	3	MC100EL90	Triple ECL to PECL	DL140
LVECL to LVPECL (-3.3 V to +3.3 V)	3	MC100LVEL90	Triple ECL to LVPECL	DL140
LVPECL to ECL (-3.3 V to MECL)	3	MC100EL91	Triple LVPECL to ECL	DL140
LVPECL to LVECL (+3.3 V to -3.3 V)	3	MC100LVEL91	Triple LVPECL to LVECL	DL140
PECL to ECL (+5 V to MECL)	3	MC100EL91	Triple PECL to LVECL	DL140
PECL to LVECL (5 V to -3.3 V)	3	MC100EL91	Triple PECL to LVPECL	DL140
PECL to LVPECL (5 V to +3.3 V)	3	MC100LVEL92	Triple PECL to LVPECL	DL140
ECL to PECL (MECL to +5 V)	3	MC100EL90	Triple ECL to LVPECL	DL140
ECL to LVPECL	3	MC100LVEL90	Triple ECL to LVPECL	DL140

AN1672/D

Translator Table

From/To	TTL V _{CC} = +5 V	ECL V _{EE} = -4.5/-5.2 V	PECL V _{CC} = +5 V	LVTTL V _{CC} = +3.3 V	LVECL V _{EE} = -3.3 V	LVPECL V _{CC} = +3.3 V	CMOS V _{DD} = +5 V
TTL	Standard connection	124 H424 H124 H600 H602 H604 H680* H681* ELT24	H351 H606 ELT20 ELT22 ELT28*	(Use +5 V input tolerant devices)	EL91	ELT20, or ELT22, + LVEL92, or with VIH limited to V _{CC} = 3.3 V use EPT20, or EPT22, or LVELT22	Pull up resistor
ECL V _{EE} = -4.5/-5.2 V	125 H125 H601 H603 H605 H660 H680* H681* ELT25	Standard connection	EL90	EPT25	standard connection	LVEL90	ECL/TTL Translator to HCT or ACT input
PECL V _{CC} = +5 V	H350 H607 ELT21 ELT23 ELT28*	EL91	Standard connection	LVEL92 + LVELT23, EPT23, or EPT21	EL91	LVEL92	PECL/TTL Translator to HCT or ACT input
LVTTL V _{CC} = 3.3 V	Direct connection, as DC levels are identical	EPT24 + ECL Buffer receiver (-5 V required)	(EPT20, EPT22, or LVELT22) + 5 V ECL line receiver, e.g., (EL17) EL90	Standard connection	EPT24	EPT20 EPT22 LVELT22	Pull up resistor
LVECL V _{EE} = -3.3 V	ELT25	Standard connection, as DC levels are identical	EL90	EPT25	standard connection	LVEL90	ECL/TTL Translator to HCT or ACT input (–5 V required)
LVPECL V _{CC} = +3.3 V	ELT21 ELT23 ELT28*	EL91	ECL line receiver, e.g., EL17	EPT21 EPT23 LVELT23 EPT26	LVEL91	Direct connection	LVPECL to LVTTL Translator and HCT or ACT input
CMOS V _{DD} = +5 V	Direct connection	H352 + EL90	H352	VIA LCX	H352 + EL90	LCX + LVELT22, EPT20, or EPT22	Direct connection

*Bidirectional

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 1-303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.