GNU APL Reference Card (for GNU APL version 1.8)

Use C-x gnu-apl to start GNU APL in Emacs.

Emacs mode

Interaction mode:

beginning of defun end of defun find function at point apropos symbol edit function show help for symbol finnapl list show keyboard plot line edit variable	C-M-a C-M-e M C-c C-a C-c C-f C-c C-h C-c TAB C-c C-k C-c RET C-c C-v
•	C-c C-v C-c C

Edit mode:	
go to beginning of defun	C-M-a
go to end of defun	C-M-e
find function at point	M
apropos symbol	C-c C-a
interactive send current function	C-c C-c
help for symbol	C-c C-h
finnapl list	C-c TAB
show keyboard	C-c C-k
interactive send buffer	C-c C-1
interactive send region	C-c C-s
switch to interactive	C-c C-z
trace	C-c C
indent	C-M-q

System

Notation for commands:

F	filename	L	library	P	path
G	logging facility	0	object	S	symbol
W	workspace				

APL standard commands

check workspace intergity) CHECK
clear workspace)CLEAR
save workspace as CONTINUE and exit) CONTINUE
copies objects from given workspace)COPY [L] W [O]
remove W)DROP [L] W
dump W (readable, HTML escaped))DUMP-HTML [[L] W]
dump W (readable APL))DUMP [[L] W]
dump W (readable APL, verbose))DUMPV [[L] W]
erase symbol(s))ERASE S
show functions)FNS [from-to]
help)HELP [primitive]
history)HIST [CLEAR]
runs command on host)HOST command

loads workspace (IBM .atf format) show libraries and paths show saved workspaces load workspace W show more error info lists symbols matching name quit APL show operators dump workspace (IBM .atf format) protects during copying protects during loading quiet load reset state indicator save workspace as W clear suspended functions see suspended functions see suspended functions state indicator show symbol count show values in use by interpreter show variables get/set workspace ID)IN F [O])LIBS [[L] path])LIB [L P] [from-to])LOAD [L] W)MORE)NMS [from-to])OFF)OPS [from-to])OUT name [O])PCOPY [L] W [O])PIN F [O])QLOAD [[L] W])RESET)SAVE [[L] W])SIC)SINL)SIS)SI)SYMBOLS [count])VALUES)VARS [from-to])WSID [W]
GNU extension commands (most	ly for debugging)
toggles boxing of values when printing toggle colored output dump W in HTML file expected error count in test suite help show keyboard layout as)LIB, but shows fil eextensions show/set logging facilities next testcase file performance statistics]BOXING [OFF num]]COLOR [ON OFF]]DOXY [path]]EXPECT error_count]HELP [primitive]]KEYB]LIB [L P] [from-to]]LOG [G [ON OFF]]]NEXTFILE]PSTAT [CLEAR SAVE]
	_

]SIS

]SI

]SVARS

]SYMBOL S

]USERCMD [...]

]XTERM [ON|OFF]

System variables:

define user command

shared variables

as)SIS, with more details

as)SI, with more details

describe internal details of symbol S

toggle output coloring on console

character input/output evaluated input/output account information command line arguments	∐ □ □AI □ARG
atomic vector	☐AV
comparison tolerance	CT
event message	□EM
event type	□ET
format control	FC
index origin (default 1, can set to 0)	
left argument	L
line counters	LC
latent expr (run on workspace load)	
print precision (number of digits)	□PP
print style	□PS
print width (max chars in each printed line)	□PW
right argument	\square R
random link	\square RL

shared variable event	SVE
system limits	SYL
terminal control characters	TC
time stamp (current time)	TS
time zone (offset from GMT)	TZ
user load	∏ՄԼ
axis argument	\Box x
workspace available (bytes for workspace)	₩A
dfn axis argument	X
dfn result	λ
dfn left value arg	α
dfn left function arg	α
dfn right value arg	ω
dfn right function arg	ω
9	
System functions:	_
atomic function	∐AF
attributes	∐AT
char representation	∐CR
delay	∐DL
D. Knuth's dancing links	DLX
execute alternate	∐EA
execute both	∐EB
execute controlled	∐EC
environment	∐ENV
event simulate	∐ES
expunge	∐EX
fast Fourier transform	∐FFT
file I/O	∐FI0
FiX (FFI/call native functions)	∐FX
Gtk GUI	∐GTK
MAP ravel elements	∐MAP
input from script	∐INP
name association	∐NA
name class	∐NC
name list	∐NL
plot a graph	∐PLOT
regular expression, regex □RE string	∐RE
random APL value	∐RVAL
state indicator	∐SI
SQL functions	∐sQL
shared variable control	SVC
shared variable offer	_svo
shared variable query	□svQ
shared variable retraction	SVR
shared variable state	□svs

Notation

STOP vector

transfer form

TRACE vector

unicode character

comment	Α
statement separator	♦
assignment	A ←
assignment	$(\texttt{A} \; \texttt{B} \; \texttt{C}) \leftarrow \; \ldots \; \ldots$
function definition	∇
zilde (empty vector)	0
a	+ a

STOP

TRACE

TF

UCS

a + b - a a - b magnitude of a b mod a signal $(-1, 0, +1)$ ab $1/a$ a/b floor of a min (a,b) ceiling of a max (a,b) e^a a^b $log(a)$ $log_b(a)$ first n non-negative integers	a + b - a a - b a a b × a a × b ÷ a a ÷ b [a a [b
where b, short for $\{(,\omega)/,\iota\rho\omega\}$ index of b in interval a	$\underline{\iota}$ b a $\underline{\iota}$ b
$a = b$ $a < b$ $a > b$ $a \le b$ $a \le b$ expression max depth match (value and type) expression min depth not match not a a or b a and b a nor b a nand b a to b a to b a to b bitwise a or b bitwise a and b bitwise a nand b bitwise a \neq b bitwise $a \neq b$	$a = b$ $a < b$ $a > b$ $a < b$ $a > b$ $a \le b$ $a = a$ $a = b$ $a = b$ $a = a$ $a = b$ $a = a$ $a = b$ $a = a$ $a = b$ $a = $
$egin{pmatrix} a! \ inom{b}{a} \end{pmatrix}$!a a!b
$a\pi$ circle (trig) function random integer in [1,a] a distinct random integers in [1,b]	⊕a a ⊕ b ?a a?b
makes a vector out of A append B to A number of components in each dimension of A	, A A, B ρ A
array with shape A and data elements B inverse matrix of A $B^{-1}A$ (solution to $Bx = A$)	Aρ B ∴ A A∴B

reverse elements of A (1^{st} index) rotate B by A positions reverse elements of A (last index) rotate B by A positions (last index) drop first A elements of B select first A elements of B intersection set (remove duplicates) union identity without (set difference) take right hand side (B) take left ($X_i = 0$) or right ($X_i = 1$) null take left hand side (A) in the lement of A with indices i, j, k,	$ \bigoplus A $ $A \bigoplus B $ $ \bigoplus A $ $A \bigoplus B $ $A \uparrow B $ $A \cap B $ $ \cup A $ $A \cup B $ $ \vdash A $ $A \sim B $ $A \vdash B $ $A \vdash B $ $A \vdash [X] B $ $ \dashv A $ $A \dashv B $ $A \vdash [A] B $
element of A w/indices i, j, in 1^{st} dimension, k, l, in second,	A[i; k;]
transpose of A transpose of B, axes ordered by A maps A: 1 for $a \in B$, 0 for $a \notin B$ grade up A grade up B with elements of A as top	⊗ A A ⊗ B A∈B Δ A A Δ B
priority grade down A grade down B with elements of A as low priority	$ _{\mathbf{A}} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $
enclose A enclose B with selected elements given the binary vector A	C A A C B
disclose A recursively pick elements of B given the indices in A	⊃ A A⊃ B
Decode single digits of B with respect	$\mathtt{A} \bot \mathtt{B}$
to base A Encode B with respect to bases given by A	$\mathtt{A} op\mathtt{B}$
line label A branch to line A	$\begin{array}{l} \textbf{A}: \\ \rightarrow \textbf{A} \end{array}$
execute APL expression A format A as chars	<u>ф</u> А
user input	
system var/function	
reduce op over array A compress: select B using A as mask A/B on last dimension expand: insert zeros in B using A as	op/A A/B A/B A\B
mask A\B on last dimension inner product with functions f, g outer product with function f for each b∈B, apply: Ab	$A \downarrow B$ $Af.gB$ $A \circ .fB$ $A \circ B$

```
rank: apply left operand function to A för B cells specified by array on right axis: AfC, over Bth axis Af [B] C commute 1-x over array A 1 - \ddot{\sim} A
```

\Box CR, \Box FIO, \Box PLOT, \Box SQL

When called with an empty string as right argument, these will show a table with all their possible uses.

Circle function

Α	A∘B	Α	A∘B
0	$\sqrt{1-B\times B}$		
$^{-1}$	arcsin B	1	sin B
$^{-2}$	arccos B	2	cos B
-3	arctan B	3	tan B
4	$\sqrt{-}$ 1+B × B	4	$\sqrt{\text{1+B} \times \text{B}}$
-5	arcsinh B	5	sinh B
$^{-6}$	arccosh B	6	cosh B
-7	arctanh B	7	tanh_B
-8	_(8∘B)	8	$\pm\sqrt{-}$ 1+B $ imes$ B
$^{-9}$	В	9	real part of B
$^{-10}$	+ B	10	B
$^{-}11$	0J1×B	11	imag part of B
$^{-12}$	*0J1 $ imes$ B (e^{iB})	12	$\operatorname{arc} B$ (phase of B)

For A=8, the sign before the square root is opposite of B.

Function Definition

Example:
$$f(d, v) = (v_1^d + \dots + v_n^d)^{1/d}$$

Dynamic function definition (dfn):

 α is the left argument, ω is the right argument.

$$f \leftarrow \{ (+/\omega * \alpha) * (\div \alpha) \}$$

Traditional function definition (tradfn):

 ∇ : begin/end defun. " ∇ R \leftarrow A f B ; U ; V" is "f takes left arg A, right arg B, has local vars U, V, and returns result in R".

Copyright © 2020 Jeronimo Pellegrini, Lucas S. Vieira designed by Jeronimo Pellegrini, Lucas S. Vieira and Stephen Gildea, for GNU APL

Released under the terms of the GNU General Public License version 3 or later. For more APL documentation, check the GNU APL site. For the TEX source for this card, see:

https://www.github.com/jpellegrini/gnu-apl-refcard