Algebraic	curves.	MMA	2023-24

Sheet 1

Name: Gonzalo Ortega Carpintero

Exercise 9. (Gathmann 2.7)

Proof.

Exercise 10. (Gathmann 2.8) Let f, $g \in K[x, y]$ be two polynomials that vanish at the origin. (a) If f, g have no common factor, then the family $\{f^n : n \in \mathbb{Z}_{\leq 0}\}$ is linearly independent in $K[V(g)]_{(0,0)}$.

Proof. We have that $K[V(g)]_{(0,0)} = \frac{D[x,y]_{(0,0)}}{\langle g \rangle}$. Suppose that there are some $a_i \neq 0 \in K, i \leq n$ such that

$$\sum_{i} a_i f^i = 0.$$

That is $\sum_i a_i f^i \in \langle g \rangle$, so for some $h \neq 0$ in $D[x,y]_{(0,0)}$, $\sum_i a_i f^i = hg$, and taking common factor we have

$$\sum_{i} a_i f^i = f^k(a_k + \sum_{i} a_i f^{i-k}) = hg.$$

As f and g have no common factor there has to be h' such as that

$$(a_k + \sum_i a_i f^{i-k}) = h'g,$$

but evaluating in (0,0) we have

$$(a_k + \sum_i a_i f^{i-k}(0,0)) = h'(0,0)g(0,0) \Rightarrow (a_k + \sum_i a_i 0) = h'(0,0)0 \Rightarrow a_k = 0,$$

making a contradiction with $a_i \neq 0$ and proving that $\{f^n : n \in \mathbb{Z}_{\leq 0}\}$ is linearly independent. \square