

## Espectro Bluetooth (comparação)



- (a) Bluetooth tradicional; 79 canais com largura de 1 MHz
- (b) BLE (4,0-4,2 e 5,0); 40 canais com 2 MHz de largura; 3 'canais de publicidade'
- (c) 16 canais usados pelo IEEE Redes baseadas em 802.15.4 (por exemplo, ZigBee)
- (d) canais DSS IEEE 802.11b™; 22 MHz de largura canais

Imagem do acesso IEEE: "Sem fio de baixa potência para a Internet das coisas: padrões e aplicações. https://www.researchgate.net/publication/328843842\_Low-Power\_Wireless\_for\_the\_Internet\_of\_Things\_Standards\_and\_Applications



#### Banda base em Bluetooth



## Gerencia canais físicos e linhas lógicas

- Controla o endereçamento de dispositivos, controle de canal, operações de economia de energia e controle de fluxo e sincronização entre dispositivos
- Implementa aspectos TDD: switch mestre e escravo nas comunicações

- Funciona em estreita colaboração com o controlador Link:
  - Gerencia o sincronismo do link (a)
  - Controla paginação e consultas
  - Controla os modos de economia de energia



#### Tipos de link de banda base

- Transmissões de quadros baseadas em polling (TDD)
  - 1 slot: 0,625 uS (máximo de 1600 slots/seg)
  - Slots mestre/escravo (slots pares/ ímpares)
  - Votação: mestre sempre "pesquisa" escravos
- Link Orientado à Conexão Síncrona (SCO)
  - "Circuito comutado"
    - Atribuição periódica de quadros de slot único
  - Full-duplex simétrico de 64 Kbps
- Link assíncrono sem conexão (ACL)
  - Troca de quadros
  - Largura de banda assimétrica
    - Tamanho de quadro variável (1-5 slots)
      - máx. 721 kbps (canal de retorno de 57,6 kbps)
      - 108,8 432,6 kbps (simétrico)







#### Quadro de banda base



- Código de acesso: sincronização de tempo, deslocamento, paginação, consulta
  - 3 tipos:
    - Código de acesso de canal (CAC), identificação de piconet, sincronização, deslocamento DC
    - Código de acesso do dispositivo (DAC), paginação e respostas
    - Código de acesso de consulta (IAC), consultas (GIAC, geral; DIAC, dedicado)
- Cabeçalho: reconhecimento e numeração de pacotes, controle de fluxo, endereço escravo, verificação de erros
- Carga útil: voz, dados ou ambos (pacotes DV)
  - Quando dados, a carga útil tem um cabeçalho interno adicional



#### Pacote de banda base



endereço 000 é para transmissão

TIPO 16 tipos

Também especifica o comprimento do pacote

Depende do tipo de conexão, ou seja, ACL ou SCO

FLUXO Se o buffer do destinatário estiver cheio, um STOP (0) será enviado

Um GO (1) é enviado para indicar que mais pacotes de dados podem ser recebidos

ARQN ACK (1) é enviado se os dados forem recebidos com sucesso

Um NAK (0) é enviado se os dados não foram recebidos ou contêm erros

SEQN Determina a sequência do pacote recebido

HEC Valor para verificar a integridade das informações do cabeçalho



## Pacotes: Comum

| TIPO  | NOME#   |   | DESCRIÇÃO                                                                                                                                                                                                                     |  |  |  |
|-------|---------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Comum | EU IA   | 1 | Carrega código de acesso do dispositivo (DAC) ou código de acesso de consulta (IAC).                                                                                                                                          |  |  |  |
|       | NULO    | 1 | O pacote NULL não tem carga útil. Usado para obter informações de link e controle de fluxo. Não reconhecido.                                                                                                                  |  |  |  |
|       | ENQUETE | 1 | Sem carga útil. Reconhecido. Usado pelo mestre para consultar os escravos para saber se eles estão ativos ou não.                                                                                                             |  |  |  |
|       | ESF     | 1 | Um pacote de controle especial para revelar o endereço do dispositivo Bluetooth e o relógio do remetente. Usado na resposta mestre da página, resposta à consulta e sincronização de salto de frequência. 2/3 codificado FEC. |  |  |  |
|       | DM1     | 1 | Para suportar mensagens de controle em qualquer tipo de link. também pode<br>transportar dados regulares do usuário. Ocupa um slot.                                                                                           |  |  |  |



## Pacotes: Orientados à Conexão Síncrona (SCO)

| SCO | HV1 | 1  | Carrega 10 bytes de informação. Normalmente usado para transmissão de voz. 1/3 FEC codificado.                                                                                   |
|-----|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | HV2 | 1  | Carrega 20 bytes de informação. Normalmente usado para transmissão de voz. 2/3 codificado FEC.                                                                                   |
|     | HV3 | 1  | Carrega 30 bytes de informação. Normalmente usado para transmissão de voz. Não codificado FEC.                                                                                   |
|     | DVD | Ca | Pacote combinado de dados-voz. Campo de voz não protegido pela FEC. 1<br>mpo de dados 2/3 codificado FEC. O campo de voz nunca é retransmitido<br>mas o campo de dados pode ser. |



## Pacotes: Assíncrono Sem Conexão (ACL)

|     | DM1                                                           | 1 | Carrega 18 bytes de informação. 2/3 codificado FEC.                     |  |  |
|-----|---------------------------------------------------------------|---|-------------------------------------------------------------------------|--|--|
|     | DH1                                                           | 1 | Carrega 28 bytes de informação. Não codificado FEC.                     |  |  |
|     | DM3                                                           | 3 | Transporta 123 bytes de informação. 2/3 codificado FEC.                 |  |  |
| LCA | DH3                                                           | 3 | Transporta 185 bytes de informação. Não codificado FEC.                 |  |  |
|     | DM5 5 Transporta 226 bytes de informação. 2/3 codificado FEC. |   | Transporta 226 bytes de informação. 2/3 codificado FEC.                 |  |  |
|     | DH5                                                           | 5 | Transporta 341 bytes de informação. Não codificado FEC.                 |  |  |
|     | AUX1                                                          | 1 | Carrega 30 bytes de informação. Assemelha-se a DH1, mas sem código CRC. |  |  |



## Protocolos de adaptação

- Gerenciador de links
  - Realiza configuração de link acima da banda base, com autenticação, configuração de link e outros protocolos
    - Multiplexação de protocolo de suporte
      - A BT pode suportar outros protocolos além do IP
    - Segmentação e remontagem
- Controle e adaptação da camada de link (L2CAP)
  - Protocolo de controle de link, fornece orientação a conexão e serviços de dados sem conexão para protocolos de camada superior
    - Lida com conexões ACL e SCO
    - Lidar com especificações de QoS por conexão (canal lógico)
    - Gerencia conceitos como "grupo de conexões"



- Interface do controlador host (HCI)
  - Permite acesso de linha de comando à camada de banda base e LM para controle e informações de status
    - Interfaces atuais: USB; UART; RS-232
  - Composto por três partes:
    - Firmware HCI, driver HCI, camada de transporte do controlador host



## Interface Host-Controlador (HCI)

- Especifica todas as interações entre um host e um controlador de rádio Bluetooth
- Define como comandos, eventos, pacotes de dados assíncronos e síncronos são trocados
- Tipos de pacotes HCI
  - Comando (0x01)
    - Cada comando recebe um Opcode de 2 bytes que é dividido em dois campos, chamados OpCode Group Field (OGF) e OpCode Command Field (OCF).
  - Dados assíncronos (0x02)
  - Dados Síncronos (0x03)
  - Eventos (0x04)

Consulte os anexos do guia do Bluetooth Lab para formatos de pacotes

Lista completa de comandos, eventos e códigos de erro HCI: <a href="https://lisha.ufsc.br/teaching/shi/ine5346-2003-1/work/bluetooth/hci\_commands.html">https://lisha.ufsc.br/teaching/shi/ine5346-2003-1/work/bluetooth/hci\_commands.html</a>



## Comunicação entre camadas





## Protocolos (middleware)



Reutilização de protocolo

A BT pretende reutilizar protocolos mais antigos (por exemplo, WAP, OBEX-IrDA)

Interação com aplicativos e telefones, como comumente feito antes

a: protocolo comum

**b**: Protocolo dedicado Bluetooth

SDP: Protocolo de descoberta de serviço

OBEX: Facilita transferências binárias entre dispositivos BT TCP-BIN:

Protocolo binário de controle de telefonia (controle de chamadas)



#### Protocolo de descoberta de serviço(SDP)

- Fornece uma maneira para os aplicativos detectarem quais serviços estão disponíveis e suas características
- Pergunta de protocolo ->responder
  - Pesquisa e navegação de serviços
- Define um formato para registro de serviço
  - Informações fornecidas pelo serviço atributos, um nome (ID) + valor
  - Os IDs podem ser universais (UUID)



- **RFCOMM**(Protocolo de emulação de porta serial)
  - Baseado em GSM TS07.10
  - Emula uma porta serial, suportando todos os aplicativos tradicionais que eram capazes de usar uma porta serial
  - Suporta múltiplas portas em um único canal físico entre dois dispositivos

- Especificações do protocolo de controle de telefonia(TCS)
  - Lida com o controle de chamadas (configuração, liberação)
  - Gerenciamento de grupo para gateways, atendendo a vários dispositivos
    - Audioconferência, por exemplo



- Redes Bluetooth
- Operação piconet
  - Investigação
  - Paginação
- Pilha Bluetooth
- Perfis e segurança
- BT 4.0 BLE



## Interoperabilidade: Perfis

- Perfil: base para interoperabilidade BT (BT muito flexível!)
- "corte vertical" na pilha Bluetooth
- Um determinado modelo de uso (solução típica)
- Cada dispositivo BT suporta um ou mais perfis



https://www.bluetooth.com/specifications/specs/



- Acesso genérico
  - Perfil SDA (*Aplicativo de descoberta de serviço*)
  - Perfis para porta serial, incluindo:
    - Discagem de perfil
    - Fax de perfil
    - Fone de ouvido de perfil
    - Acesso LAN (usa PPP)
    - Perfil para troca de objetos genéricos (OBEX)
      - Transferência de arquivo
      - Sincronização de dados
      - Empurrar puxar
- Perfil de telefone sem fio (TCS-BIN)
  - Interfone de perfil
  - Perfil Telefonia Sem Fio



#### • Perfil avançado de distribuição de áudio(A2DP)

- Fluxo de áudio de canal duplo através de um fone de ouvido estéreo
- Também pode ser usado para fazer chamadas, e os usuários podem alternar entre músicas e chamadas com o toque de um botão

#### Perfil de controle remoto de áudio/vídeo(AVRCP)

- Fornece uma interface padrão para controlar TVs, equipamentos de alta fidelidade e assim por diante
- Um único controle remoto (ou outro dispositivo) para controlar todos os equipamentos AV aos quais o usuário tem acesso
- Define como controlar as características da mídia de streaming (pausar, parar e iniciar a reprodução e controle de volume)

#### Perfil mãos-livres (HFP)

- Use um dispositivo gateway para fazer e receber chamadas em um dispositivo viva-voz
- Exemplo: veículo que utiliza um telemóvel como dispositivo de gateway. O sistema de áudio do carro e um microfone instalado são usados em vez do áudio do telefone



## Bluetooth: segurança

- Os dispositivos podem ser:
  - "Confiável"
  - "Não confiável"
    - Também dispositivos "desconhecidos"
- Tipos de segurança de serviços:
  - Serviços abertos apenas cifrados
  - Apenas autenticação ID da máquina
  - Autenticação e autorização (ID+concessão de serviço explícita)
- Níveis de segurança:
  - Modo 1
    - Sem segurança
  - Modo 2
    - Segurança garantida no nível de serviço
  - Modo 3
    - Segurança garantida no nível do link





## Bluetooth: recursos de segurança

- Mecanismos usados em BT para segurança
  - Salto rápido de frequência
  - Baixo alcance
  - Autenticação
    - Mecanismo bidirecional de desafio/resposta
  - Cypher (para garantir privacidade)
    - Os dados entre dois dispositivos podem ser criptografados
    - Chaves usadas
      - Tamanho da cifra configurável (0-16 bytes) pelos dispositivos, mas há restrições de segurança (governo)
      - Chaves usando algoritmos padrão conhecidos
  - Inicialização de segurança emparelhamento de dispositivos
    - PIN (entrada do usuário)
    - Chave compartilhada



#### Entrada do usuário (inicialização)





- Redes Bluetooth
- Operação piconet
  - Investigação
  - Paginação
- Pilha Bluetooth
- Perfis e segurança
- BT 4.0 BLE



## Bluetooth 4.0: Baixo consumo de energia



# Áreas de aplicação sem fio de curto alcance

|                                                               | Voz                      | Dados | Áudio | Vídeo | Estado |
|---------------------------------------------------------------|--------------------------|-------|-------|-------|--------|
| Bluetooth ACL/HS                                              |                          | S     | S     |       |        |
| Bluetooth SCO/eSCO                                            | S                        |       |       |       |        |
| Bluetooth de baixa energia (BLE)                              |                          |       |       |       | S      |
| Wi-fi                                                         | (VoIP)                   | S     | S     | S     |        |
| Wi-Fi direto                                                  | S                        | S     | S     |       |        |
| ZigBee                                                        |                          |       |       |       | S      |
| Estado =largura de banda baixa, dados de latência média/baixa |                          |       |       |       |        |
|                                                               | Baixo consumo de energia |       |       |       |        |

## O que é Bluetooth de baixa energia (BLE)?

- Bluetooth Low Energy é uma tecnologia de rádio aberta e de curto alcance
  - Design de folha de papel em branco
  - Diferente do Bluetooth clássico (BR/EDR)
  - Otimizado para consumo ultrabaixo
  - Habilitar casos de uso de bateria de célula tipo moeda
    - <Corrente de pico de 20mA
    - Corrente média de 5 uA



### Conceitos básicos de BLE

# •Tudo é otimizado para menor consumo de energia

- Pacotes curtos reduzem a corrente de pico do TX
- Pacotes curtos reduzem o tempo de RX
- Menos canais de RF para melhorar a descoberta e o tempo de conexão
- Máquina de estado simples
- Protocolo único
- Precisa de um gateway para acesso à Internet
- Etc.



## Pilha de protocolo BLE



## Ficha informativa sobre Bluetooth de baixa energia

| Faixa:             | ~ 150 metros de campo aberto                                           |
|--------------------|------------------------------------------------------------------------|
| Potência de saída: | ~ 10mW (10dBm)                                                         |
| Corrente máxima:   | ~ 15 mA                                                                |
| Latência:          | 3ms                                                                    |
| Topologia:         | Estrela                                                                |
| Conexões:          | > 2 bilhões                                                            |
| Modulação:         | GFSK a 2,4 GHz                                                         |
| Robustez:          | Salto de frequência adaptável, CRC de 24 bits                          |
| Segurança:         | CCM AES de 128 bits                                                    |
| Corrente do sono:  | ~ 1µA                                                                  |
| Modos:             | Transmissão, conexão, modelos de dados de eventos, leituras, gravações |