```
eax,edx
        eax,1
sar
        8048803 <register_tm_clones+0x33-
       8048803 <register_tm_clones+0x33=
```

Darmstadt University of Applied Sciences, da/sec Security Group

Towards Exact and Inexact Approximate Matching of Executable Binaries

DFRWS-EU 2019, Oslo, Norway

Lorenz Liebler, Harald Baier

General

- a.k.a Approximate Matching: is a similarity preserving hash function
- ▶ in contrary to cryptographic hash functions
 - → determines similarity of two files
- ▶ introduced more than a decade ago
 - \rightarrow deal with spam
 - \rightarrow forensic challenges
- ▶ simple to implement, few computational resources

Overview and History

ssdeep [13]: Jesse Kornblum. Identifying almost identical files using context triggered piecewise hashing. Digital investigation, 3:91–97, 2006

sdhash [26]: Vassil Roussev. Data fingerprinting with similarity digests. In IFIP International Conference on Digital Forensics, pages 207–226. Springer, 2010

mrsh-v2 [5]: Frank Breitinger and Harald Baier. Similarity preserving hashing: Eligible properties and a new algorithm mrsh-v2. In International conference on digital forensics and cyber crime, pages 167–182. Springer, 2012

tlsh [17]: Jonathan Oliver, Chun Cheng, and Yanggui Chen. TLSH–A Locality Sensitive Hash. In Cybercrime and Trustworthy Computing Workshop (CTC). 2013

Overview and History

Schemes

Internal implementations differ heavily

- ► Context-Triggered Piecewise Hashing (ssdeep, mrsh-v2)
- Statistically Improbable Features (sdhash)
- ► N-Grams (tlsh)

Simplified overview similar to Ren, Liwei [21] (DFRWS EU 2015):

ssdeep: chunks of sequences (splitted string) ssdeep: mapped chunks into 80 byte digest ssdeep: Levenshtein distance (0-100) mrsh-v2: chunks of sequences (extracted by PRF) mrsh-v2: chunks hashed into Bloom filter mrsh-v2: Hamming distance (0-100) sdhash: bag of 64-byte blocks (selected by entropy) sdhash: blocks mapped into Bloom filter sdhash: Hamming distance (0-100) tlsh: bag of triplets (selected from all 5-grams) tlsh: mappend into 32 byte container tlsh: Distance score (0-1000+) File Feature Digest → Digest ➤ Features • -- Comparison Binary Selection Generation 1st Model 2nd Model

Binary Analysis in Academia (Pagani et al. [19])

Fabio Pagani, Matteo Dell'Amico, and Davide Balzarotti. Beyond precision and recall: Understanding uses (and misuses) of similarity hashes in binary analysis. In Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, pages 354–365. ACM, 2018

- no academic consensus about usefulness
- different evaluation datasets lead to different conclusions for same approaches (e.g., ssdeep)
- avoid: yet another large scale experiment
- inspect reasons for results (*why*; not *if*):
 - → four different schemes
 - \rightarrow in three binary analysis case studies

Scenarios - Pagani et al. [19]

Scenarios - Pagani et al. [19]

- I **Library Identification:** detecting embedded object files inside a binary
 - I.1 Object-to-Program Comparison;
 - ightarrow whole executable (.o)
 - ightarrow .text segment only.
 - 1.2 Impact of Relocation considers
 - \rightarrow relocations performed by linker / dynamic loader
 - → original and relocated object file / final executable

Scenarios - Pagani et al. [19]

II Re-Compilation: detection of the same program after Re-Compilation

II.1 Effect of Compiler Flags (same compiler; i.e., O0, O1, O2, O3, Os)

II.2 Effect of Different Compilers

Scenarios - Pagani et al. [19]

- III Program Similarity: three tests which consider adaptations to the underlying code
 - III.1 Small Assembly Differences:
 - → randomly inserts an increasing amount of NOPs
 - → increasing amount of instructions are swapped
 - III.2 Minor Source Code Modifications:
 - → Different Comparison Operator
 - → New Condition
 - → Change a constant value
 - III.3 Malware Code Modifications (Mirai, Grum):
 - → C2 Domain Adaptation
 - → Evasion and New Functionality

Fuzzy Hashing - Pagani et al. [19] Summary

- ▶ the distinction between data and code is of crucial importance
- even small changes on the (source) code / additional insertions → influence the overall binary and code structure in a broad way
 - → especially has a great impact on CTPH-based approaches
 - ightarrow similarity is not just a consequence of the size of the change
- Summarized, sdhash and tlsh clearly outperformed CTPH-based schemes.
 - ightarrow Each of both have their strengths and weaknesses in different disciplines.
- ▶ CTPH (ssdeep) the de-facto industry standard is not very well suited to binary analysis in general

Approach

RQs

mrsh-mem

- \rightarrow approxis $\times 86/\times 64$ instruction carver
- → interfaced with mrsh-v2
- → bulk extraction / identification of code
 - What impact has the discrimination of code and data?
 - Could we utilize an additional layer of approximate disassemble?
 - What is the actual improvement in the case of a CTPH-based approaches? Could we improve the performance only by refining the feature selection?

mrsh-mem [16]: Lorenz Liebler and Frank Breitinger. mrsh-mem: Approximate matching on raw memory dumps. In International Conference on IT Security Incident Management and IT Forensics. pages 47–64. IEEE. 2018

approxis [15]: Lorenz Liebler and Harald Baier. Approxis: A fast, robust, lightweight and approximate disassembler considered in the field of memory forensics. In International Conference on Digital Forensics and Cyber Crime, pages 158–172. Springer, 2017

Approach

apx-bin: Utilizing mrsh-mem

Approach

apx-bin: Utilizing mrsh-mem

Original mrsh-mem approach:

- extraction of Code-related fragments only
 - → now also Data-related
- no scoring of the different buffers
 - → scoring of different streams; use Mnemonic- (M) and Byte-Stream (B)

Naive Approach

Prove impact of data- or code-related features by adapted score-model:

- 1. Extract chunks of code and data by parametrization via au_{min} and au_{max} ; number of all chunks (from both buffers) defined as z
- 2. Multi-layered extraction processing mapped buffer of mnemonics (M) and its byte representation (B)

$$sim_{pre} = min\left(\frac{\left(\sum_{i=1}^{y} f_c(\ b_i\)\right) \cdot \ 1.5 \ + \sum_{i=1}^{y} f_c(\ m_i\)}{z}, 100\right),$$
 where
$$f_c(x) = \begin{cases} 1, & \text{if } \tau_{min} \le x \le \tau_{max} \\ 0, & \text{else} \end{cases} . \tag{1}$$

Naive Approach

Prove impact of data- or code-related features by adapted score-model:

- 1. Extract chunks of code and data by parametrization via τ_{min} and τ_{max} ; number of all chunks (from both buffers) defined as z
- Multi-layered extraction processing mapped buffer of mnemonics (M) and its byte representation (B)

$$sim_{pre} = min\left(\frac{\left(\sum_{i=1}^{y} f_c(\ b_i\)\right) \cdot \ 1.5 \ + \sum_{i=1}^{y} f_c(\ m_i\)}{z}, 100\right),$$
 where
$$f_c(x) = \begin{cases} 1, & \text{if } \tau_{min} \le x \le \tau_{max} \\ 0, & \text{else} \end{cases}. \tag{1}$$

au-values filter each extracted chunk:

$ au_{max}$ - $ au_{min}$	Meaning
100-0	All chunks
100-80	Code chunks
20-0	Data chunks

Naive Approach

Prove impact of data- or code-related features by adapted score-model:

- 1. Extract chunks of code and data by parametrization via au_{min} and au_{max} ; number of all chunks (from both buffers) defined as z
- Multi-layered extraction processing mapped buffer of mnemonics (M) and its byte representation (B)

$$sim_{pre} = min\left(\frac{\left(\sum_{i=1}^{y} f_c(\begin{array}{c} b_i \end{array})\right) \cdot \begin{array}{c} 1.5 \\ \\ z \end{array}, 100}{z}, 100\right),$$
 where $f_c(x) = \begin{cases} 1, & \text{if } \tau_{min} \leq x \leq \tau_{max} \\ 0, & \text{else} \end{cases}$. (1)

Scenario I. Library Identification

Object-to-Program (Whole Object File)

Object-to-Program (Text Section)

Scenario II. Recompilation

Optimization flags

Compiler Variation

Conclusion

- prove of ambivalence of the different use cases
 - ▶ matching code: primarily detecting used libraries
 - ▶ matching data: different compilers / configurations
- ▶ small constant data fragments versus large amount of code per binary
- a match on the byte level should be considered as more meaningful
- we stick to the extraction of sequences

apx-bin

Approach

Results and observations from the pre-evaluation have been used:

ightharpoonup au now defines center bounds of selected chunks (ignore vague chunks)

$$\begin{split} f_d(x) &= \begin{cases} 1, & \text{if } 0 \leq x \leq \tau_{min} \\ 0, & \text{else} \end{cases} \\ f_c(x) &= \begin{cases} 1, & \text{if } 100 \geq x \geq \tau_{max} \\ 0, & \text{else} \end{cases} \end{split}$$

Score model

$$\begin{split} sim_{bm} &= \frac{\gamma_d + \gamma_c}{2} \text{ ,where} \\ \gamma_d &= min \left(\frac{\left(\sum_{i=0}^{y-1} f_d(b_i) \cdot 2 + \sum_{i=0}^{z-1} f_d(m_i)\right) \cdot 1.5}{2 \cdot \sum_{i=0}^n f_d(c_i)}, 0.99 \right). \\ \gamma_c &= min \left(\frac{\sum_{i=0}^{y-1} f_c(b_i) \cdot 2 + \sum_{i=0}^{z-1} f_c(m_i)}{2 \cdot \sum_{n=0}^{n-1} f_c(c_i)}, 0.99 \right). \end{split}$$

sequence of extracted chunks represented by their specific code coverage:

$$\langle c_0, c_1, \ldots, c_{n-1} \rangle$$

hits are defined by their values of code coverage for matching byte chunks $\langle b_0,b_1,\dots,b_{y-1}\rangle \rangle$ and for matching mnemonic chunks $\langle m_0,m_1,\dots,m_{z-1}\rangle$

match either as a sequence of mnemonics and bytes, or as a sequence of mnemonics only $y \leq z$

apx-bin

Approach

Results and observations from the pre-evaluation have been used:

ightharpoonup au now defines center bounds of selected chunks (ignore vague chunks)

$$f_d(x) = egin{cases} 1, & \text{if} & 0 \leq x \leq au_{min} \\ 0, & \text{else} \end{cases}$$
 $f_c(x) = egin{cases} 1, & \text{if} & 100 \geq x \geq au_{max} \\ 0, & \text{else} \end{cases}$

Score model

$$\begin{split} sim_{bm} &= \frac{\gamma_d + \gamma_c}{2} \text{ ,where} \\ \gamma_d &= min \left(\frac{\left(\sum_{i=0}^{y-1} f_d(b_i) \cdot 2 + \sum_{i=0}^{z-1} f_d(m_i)\right) \cdot 1.5}{2 \cdot \sum_{i=0}^n f_d(c_i)}, 0.99 \right), \\ \gamma_c &= min \left(\frac{\sum_{i=0}^{y-1} f_c(b_i) \cdot 2 + \sum_{i=0}^{z-1} f_c(m_i)}{2 \cdot \sum_{i=0}^{n-1} f_c(c_i)}, 0.99 \right). \end{split}$$

au-values filter code and data chunks:

values ii	reer code		aaca	Cildinio
Range		Me	aning	
100 - τ	max	Coc	le chi	ınks
τ_{min}	- 0	Dat	a chu	ınks

Scenario I - 1. Object-to-Program Comparison

	.0		.text		
Alg.	$ ext{TPR}\%$	$\mathrm{FPR}\%$	$ ext{TPR}\%$	$\mathbf{FPR}~\%$	${f Err}\%$
ssdeep	0	0	0	0	0
mrsh-v2	11.7	0.5	7.7	0.2	0
sdhash	12.8	0	24.4	0.1	53.9
tlsh	0.4	0.1	0.2	0.1	41.7
apx-bin	48.9	0.0	44.1	0.0	0

Scenario I - 2. Impact of Relocation

	Average				
Scheme	Score (%)				
ssdeep	0.0				
tlsh	12.3				
sdhash	26.0				
mrsh-v2	10.67				
apx-bin	22.67				

Scenario II Re-Compilation - 1. Optimization Flags

[→] no comparisons of same configuration (same flags)

[→] zero false positives

^{ightarrow} coloured area: highest score of a false match

Scenario II Re-Compilation - 2. Different Compilers

^{ightarrow} no comparisons of same configuration (same compiler)

[→] zero false positives

^{ightarrow} coloured area: highest score of a false match

Scenario III Program Similarity - 1. Small Assembly Differences

Scenario III Program Similarity

III.2 Minor Source Code Modifications

Change	ssdeep	mrsh-v2	$_{ m tlsh}$	sdhash	apx
Operator	0-100	21-100	99-100	22-100	76-99
Condition	0-100	22-99	96-99	37-100	83-99
Constant	0-97	28-99	97-99	35-100	81-99

III.3 Minor Source Code Modifications on Malware

Change	ssdeep		mrsh-v2		tlsh		sdhash		apx	
	\mathbf{M}	G	\mathbf{M}	G	\mathbf{M}	G	\mathbf{M}	G	\mathbf{M}	G
C2 domain (r)	0	0	97	10	99	88	98	24	78	99
C2 domain (l)	0	0	44	13	94	84	72	22	76	86
Evasion	0	0	17	0	93	87	16	34	49	99
Functionality	0	0	9	0	88	84	22	7	34	79

 \rightarrow score ranges (min-max)

- \rightarrow real (r) or long (I) domain
- \rightarrow evasion: anti-debugger, anti-VM techniques
- $\xrightarrow{\cdot}$ functionality: enumerate users on infected system

Conclusion

- reassessed previous research
- ▶ demonstrate relevance of feature selection for matching-success
 - \rightarrow apx-bin still relies on CTPH
- outperform several of the existing (also non-CTPH) approaches
- stable scores in all scenarios

Current Work 1/2

- extend approxis-engine:
 - → extend carver / approxis-engine
 - → interface with other schemes (non-CTPH)
- extend scenarios / break approaches:
 - \rightarrow gather different schemes and evaluation data
 - \rightarrow create online-repository to publish results
 - \rightarrow please feel free to contact me

Current Work 2/2

- benign binaries for different architectures, compilers and languages
- ▶ malicious binaries curated by Malpedia [20]
- create a controlled set of obfuscated binaries with the help of Obfuscator-LLVM^a

Conversion of conditional jumps impcond_100pct bcf_5_10pct Bogus Control Flow: across 5 runs bcf_1_100pct Bogus Control Flow: across 1 run max. 15 multi-byte NOPs per Basic Block noop_15_10pct noop_X_Ypct max. X multi-byte NOPs per Basic Block. fla Control-Flow-Flattening split_5 Splitting of Basic Blocks: max. 5 splits sub 2 Substitution of commands with 2 runs

dead Insertion of Dead-Code

split_dead Splitting of Basic-Blocks; max 5 splits; insertion of Dead-Code

ahttps://github.com/obfuscator-llvm/obfuscator/wiki

Thank you.

lorenz.liebler@h-da.de
https://dasec.h-da.de/staff/lorenz-liebler/

Bibliography I

- [1] Ahmad Azab, Robert Layton, Mamoun Alazab, and Jonathan Oliver. Mining malware to detect variants. In 2014 Fifth Cybercrime and Trustworthy Computing Conference, pages 44–53. IEEE, 2014.
- [2] Harald Baier and Frank Breitinger. Security aspects of piecewise hashing in computer forensics. In 2011 Sixth International Conference on IT Security Incident Management and IT Forensics, pages 21–36. IEEE, 2011.
- [3] Frank Breitinger and Ibrahim Baggili. File detection on network traffic using approximate matching. 2014.
- [4] Frank Breitinger and Harald Baier. Properties of a similarity preserving hash function and their realization in sdhash. In 2012 Information Security for South Africa, pages 1–8. IEEE, 2012.
- [5] Frank Breitinger and Harald Baier. Similarity preserving hashing: Eligible properties and a new algorithm mrsh-v2. In *International conference* on digital forensics and cyber crime, pages 167–182. Springer, 2012.
- [6] Frank Breitinger and Vassil Roussev. Automated evaluation of approximate matching algorithms on real data. Digital Investigation, 11: S10–S17, 2014.
- [7] Frank Breitinger, Harald Baier, and Jesse Beckingham. Security and implementation analysis of the similarity digest sdhash. In First international baltic conference on network security & forensics (nesefo), 2012.
- [8] Frank Breitinger, Georgios Stivaktakis, and Harald Baier. Frash: A framework to test algorithms of similarity hashing. Digital Investigation, 10: \$50-\$58, 2013.
- [9] Frank Breitinger, Harald Baier, and Douglas White. On the database lookup problem of approximate matching. Digital Investigation, 11:S1–S9, 2014.
- [10] Frank Breitinger, Georgios Stivaktakis, and Vassil Roussev. Evaluating detection error trade-offs for bytewise approximate matching algorithms. Digital Investigation, 11(2):81–89, 2014.

Bibliography II

- [11] David French and William Casey. 2 fuzzy hashing techniques in applied malware analysis. Results of SEI Line-Funded Exploratory New Starts Projects, page 2, 2012.
- [12] Vikas Gupta and Frank Breitinger. How cuckoo filter can improve existing approximate matching techniques. In *International conference on digital forensics and cyber crime*, pages 39–52. Springer, 2015.
- [13] Jesse Kornblum. Identifying almost identical files using context triggered piecewise hashing. Digital investigation, 3:91-97, 2006.
- [14] Yuping Li, Sathya Chandran Sundaramurthy, Alexandru G Bardas, Xinming Ou, Doina Caragea, Xin Hu, and Jiyong Jang. Experimental study of fuzzy hashing in malware clustering analysis. In 8th Workshop on Cyber Security Experimentation and Test ({CSET} 15), 2015.
- [15] Lorenz Liebler and Harald Baier. Approxis: A fast, robust, lightweight and approximate disassembler considered in the field of memory forensics. In International Conference on Digital Forensics and Cyber Crime, pages 158–172. Springer, 2017.
- [16] Lorenz Liebler and Frank Breitinger. mrsh-mem: Approximate matching on raw memory dumps. In *International Conference on IT Security Incident Management and IT Forensics*, pages 47–64, IEEE, 2018.
- [17] Jonathan Oliver, Chun Cheng, and Yanggui Chen. Tlsh a locality sensitive hash, pages 7–13, 2013.
- [18] Jonathan Oliver, Scott Forman, and Chun Cheng. Using randomization to attack similarity digests. In *International Conference on Applications* and Techniques in Information Security. pages 199–210. Springer, 2014.
- [19] Fabio Pagani, Matteo Dell'Amico, and Davide Balzarotti. Beyond precision and recall: Understanding uses (and misuses) of similarity hashes in binary analysis. In Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy, pages 354–365. ACM, 2018.
- [20] Daniel Plohmann, Martin Clauss, Steffen Enders, and Elmar Padilla. Malpedia: A Collaborative Effort to Inventorize the Malware Landscape.

 The Journal on Cybercrime & Digital Investigations, 3(1), 2018. URL https://journal.cecyf.fr/ojs/index.php/cybin/article/view/17.
- [21] Liwei Ren. A theoretic framework for evaluating similarity digesting tools, 03 2015. URL https://www.dfrws.org/file/127/download?token=5Y0UdHpV, visited on 2019-01-20.

Bibliography III

- [22] Liwei Ren. Binary similarity: Theory, algorithms and tool evaluation, 09 2015.
- [23] Liwei Ren. Bytewise approximate match: Theory, algorithms and applications, 09 2015.
- [24] Liwei Ren and Ray Cheng. Bytewise approximate matching, searching and clustering, 08 2015.
- [25] Vassil Roussev. Building a better similarity trap with statistically improbable features. In 2009 42nd Hawaii International Conference on System Sciences. pages 1–10. IEEE, 2009.
- [26] Vassil Roussev. Data fingerprinting with similarity digests. In IFIP International Conference on Digital Forensics, pages 207-226. Springer, 2010.
- [27] Vassil Roussey. An evaluation of forensic similarity hashes. digital investigation, 8:S34-S41, 2011.
- [28] Vassil Roussev, Yixin Chen, Timothy Bourg, and Golden G Richard III. md5bloom: Forensic filesystem hashing revisited. digital investigation, 3:82–90, 2006.
- [29] Vassil Roussey, Golden G Richard III, and Lodovico Marziale. Multi-resolution similarity hashing. digital investigation, 4:105-113, 2007.
- [30] Andrew Tridgell, Spamsum readme, 2002. URL https://www.samba.org/ftp/unpacked/junkcode/spamsum/README.
- [31] Jason Upchurch and Xiaobo Zhou. Variant: a malware similarity testing framework. In 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), pages 31–39. IEEE, 2015.
- [32] Christian Winter, Markus Schneider, and York Yannikos. F2s2: Fast forensic similarity search through indexing piecewise hash signatures. Digital Investigation, 10(4):361–371, 2013.