IN THE CLAIMS:

Please amend the following claims:

ShDI

1. (Previously amended) A cement shoe assembly for use in a wellbore comprising:

a tubular housing for disposal at an end of a tubular string, the housing having an enlarged inner diameter portion at a lower end of the housing; and

a drillable cement shoe portion disposed in the housing, the cement shoe portion in selective fluid communication with the tubular string.

X

- 2. (Previously amended) The cement shoe assembly of claim 1, further comprising a drillable, nose portion disposed on the lower end of the housing to facilitate insertion of the assembly into the wellbore, the nose portion having a bore therethrough substantially coincident with a bore of the cement shoe portion.
- 3. (Cancelled) The cement shoe assembly of claim 2, wherein the enlarged inner diameter portion is located at a lower end of the housing.

34D2

62

- 4. (Previously amended) The eement shoe assembly of claim 2, wherein a drillable material of the assembly adjacent the enlarged inner diameter portion of the housing is constructed and arranged to become dislodged from the housing when the shoe is drilled with a drill having an outer diameter smaller than the enlarged inner diameter portion of the housing.
- 5. (Original) The cement shoe assembly of claim 4, wherein the drillable material is weakened by voids formed therein.
- 6. (Cancelled) The cement shoe assembly of claim 5, wherein the voids formed in the drillable material terminate at an inner surface of the enlarged inner diameter portion of the housing.

- 7. (Cancelled) The cement shoe assembly of claim 6, wherein the voids formed in the drillable material each extend radially from a point proximate a central tubular member to the inner surface of the enlarged diameter portion.
- 8. (Cancelled) The cement shoe assembly of claim 7, wherein some of the drillable material comprises a composite material.
- 9. (Cancelled) The cement shoe assembly of claim 8, wherein some of the composite material comprises fiberglass.

SLOBI

- 10. (Original) The cement shoe assembly of claim 1, wherein the drillable cement shoe includes a valve member providing the selective communication with the tubular.
- 11. (Allowed) A method of connecting a first tubular to a second tubular in a wellbore, the method comprising:

providing a cement shoe assembly having a housing and drillable cement shoe, the assembly disposed at a lower end of a first tubular string;

cementing the housing in the wellbore by injecting cement into an annular area defined by the housing and a borehole there around;

drilling the cement shoe to leave only the housing thereof, the housing having an area of increased inside diameter at a lower end thereof;

aligning an upper portion of the second tubular with the area of increased inside diameter of the housing; and

expanding the upper portion of the second tubular by placing a radially expansive force upon an inner wall thereof, until the second tubular is in frictional contact with the area of increased inside diameter of the housing and the outer diameter of the housing is not substantially expanded.

12. (Allowed) A cement shoe assembly for completion of a lined wellbore, the assembly comprising:

a housing for disposal at a lower end of a tubular string, the housing having a first upper inside diameter and a lower, enlarged inside diameter;

a drillable shoe portion in the housing including.

a bore extending longitudinally therethrough for the selective passage of fluids;

drillable material disposed in an annular area between the bore and the inside surface of the housing, the drillable material selected from a list including cement, concrete, sand and composite materials;

a nose portion disposed on a lower end of the housing, the nose portion having at least one aperture therethrough; and

formations formed in the drillable material adjacent the lower, enlarged inside diameter portion of the housing, the formations constructed and arranged to urge the material away from the housing when the cement shoe is drilled.

- 13. (Original) A connection made in a wellbore between two tubulars, the connection comprising:
 - a first tubular having an inside surface; and
- a second tubular having an expanded diameter in contact with the inside surface of the first tubular, whereby the diameter of the first tubular is not substantially expanded and an inside diameter of both tubulars is substantially the same.
- 14 (Original) The connection of claim 13, wherein the inside surface of the first tubular is an enlarged diameter portion.
- 15. (Cancelled) The connection of claim 14, wherein the first tubular is a housing of a cement shoe.
- 16. (Cancelled) The connection of claim 15, wherein the second tubular includes a string of tubulars, all of which have an expanded diameter.

17 (Previously amended) A method of forming a connection in a wellbore between a first, larger diameter tubular and a second, smaller diameter tubular without enlarging the diameter of the first tubular, comprising:

providing the first tubular with an area of enlarged inside diameter at a lower end thereof:

locating the second tubular coincident with the enlarged inside diameter of the first tubular:

expanding the second tubular using a hydraulically operated expander tool to apply radial force on an inside surface thereof; whereby

an outer surface of the second tubular expands outward to meet and frictionally contact the enlarged inside diameter portion of the first tubular without substantially enlarging the diameter of the first tubular.

18. (Previously amended) A method of forming a connection between two wellbore tubulars comprising the steps of:

placing a first wellbore tubular having an outer diameter and a first end in proximity of a second wellbore tubular having an enlarged inner diameter portion and a second end wherein the enlarged inner diameter portion is proximate the second end;

inserting the first end of the first tubular into the second end of the second tubular; and

expanding the first end of the first tubular using an expander tool with radially extendable members, such that the outer diameter comes into connecting contact with the enlarged inner diameter portion.

19. (Allowed) A cement shoe assembly for use in a wellbore, comprising:

a tubular housing for disposal at an end of a tubular string, the housing having an enlarged inner diameter portion located at a lower end of the housing;

a drillable cement shoe portion disposed in the housing, the cement shoe portion in selective fluid communication with the tubular string;

a-drillable, nose-portion-disposed on a lower end of the housing to facilitate insertion of the assembly into the wellbore and having a bore therethrough substantially coincident with a bore of the cement shoe portion;

wherein the drillable material of the assembly adjacent the enlarged inner diameter portion of the housing is constructed and arranged to become dislodged from the housing when the shoe is drilled with a drill having an outer diameter smaller than the enlarged inner diameter portion of the housing and the drillable material is weakened by voids formed therein that terminate at an inner surface of the enlarged inner diameter portion of the housing.

- 20. (Allowed) The cement shoe assembly of claim 19, wherein the voids formed in the drillable material each extend radially from a point proximate a central tubular member to the inner surface of the enlarged diameter portion.
- 21. (Allowed) The cement shoe assembly of claim 20, wherein some of the drillable material is a composite material.
- 22. (Allowed) The cement shoe assembly of claim 21, wherein some of the composite material is fiberglass.
- 23. (Currently amended) A method of forming a connection in a wellbore between a first, larger diameter tubular and a second, smaller diameter tubular without enlarging the diameter of the first tubular, comprising:

providing the first tubular with an area of enlarged inside diameter at a lower end thereof, wherein the first tubular comprises a housing of a cement shoe;

locating the second tubular coincident with the enlarged inside diameter of the first tubular;

expanding the second tubular through the use of radial force on the inside surface-thereof; whereby

5JbD4)

the outer surface of the second tubular expands outward to meet and frictionally contact the enlarged inside diameter portion of the first tubular without substantially enlarging the diameter of the first tubular.

24. (Allowed) A method of forming a connection between two wellbore tubulars comprising the steps of:

placing a first wellbore tubular having an outer diameter and a first end in proximity of a second wellbore tubular having an enlarged inner diameter portion and a second end wherein the enlarged inner diameter portion is proximate the second end and the second tubular comprise a housing of a cement shoe;

inserting the first end of the first tubular into the second end of the second tubular; and

expanding the first end of the first tubular such that the outer diameter comes into connecting contact with the enlarged inner diameter portion.

Please add the following new claims:

SPAY

25. (New) A connection made in a wellbore between two tubulars, the connection comprising:

a first tubular having an inside surface, wherein the inside surface is an enlarged inner diameter portion and the first tubular is a housing of a cement shoe; and

a second tubular having an expanded diameter in contact with the inside surface of the first tubular, whereby the diameter of the first tubular is not substantially expanded and an inside diameter of both tubulars is substantially the same.

26. (New) The connection of claim 25, wherein the second tubular includes a string of tubulars, all of which have an expanded diameter.