

Tutorial. Nov 18, 2024 1:30-5 pm

Distributed Deep Learning on GPU-based Clusters

Abhinav Bhatele, Siddharth Singh, Prajwal Singhania Department of Computer Science

How are neural networks used?

What are neural networks?

Neural networks are "parametrized" function approximators that can be used to model complex functions

Several layers that process input data

How is a neural network trained?

Problem: Find a set of weights/parameters that best fits the function we are trying to learn over a given training dataset

Other terms and definitions

- Loss: a scalar proxy that when minimized leads to higher accuracy
- Learning/training: task of selecting weights that lead to an accurate function / minimizes the loss
- **Gradient descent:** process of updating the weights using gradients (derivatives) of the loss weighted by a learning rate
- Batch: Small subsets of the dataset processed independently
- **Epoch:** One pass over all the batches
- Fine-tuning: updating weights for a specific task
- Inference: using a trained or fine-tuned model to generate output

Stochastic Gradient Descent

```
while (remaining_batches) {
   Read a single batch

Forward pass: perform matrix multiplies to compute
   output activations, and a loss on the batch

Backward pass: matrix multiplies to compute gradients of
   the loss w.r.t. parameters via backpropagation

Optimizer step: use gradients to update the weights or
   parameters such that loss is gradually reduced
```

Why is LLM training well-suited for HPC?

Get the tutorial repository

Clone the git repository as follows:

```
ssh <username>@login.zaratan.umd.edu
git clone https://github.com/axonn-ai/distrib-dl-tutorial.git
```


PyTorch

- torch a Python library for tensor computations with GPU support
- torch.nn implementations of various neural network layers

PyTorch Lightning

- High-level API as an alternative to using PyTorch directly
 - Automatic Mixed Precision
 - Vendor Agnostic CPU, GPU, TPU
 - Seamlessly switch between parallel frameworks
- We will start with looking at single GPU training using PyTorch Lightning

Fine-tuning LLMs

- Fine-tuning is a popular approach to tune pretrained LLMs for specific tasks
- Instruction fine-tuning (IFT): Train on datasets of [instruction, output] pairs.
- Example use case: build a chatbot by tuning an LLM to follow instructions.

Samples from an IFT dataset

These are from the **alpaca** dataset, which we will be using in the tutorial

Using PyTorch Lightning

Code location in the tutorial repo: train.py

sbatch --ntasks-per-node=1
train.sh

Parameter	Value
model_id	microsoft/phi-1_5
dataset_id	alpaca
strategy	single-gpu
global_batch_size	32

Mixed-precision Training

- GPUs have FP32, FP64 and tensor cores
- We can optimize performance by doing some operations in lower precision (16-bit)

Mixed-precision Training

Code location in the tutorial repo: train.py

```
CONFIG_FILE=configs/single_gpu.json sbatch --ntasks-per-
node=1 train.sh
```


How to download a different model?

cd external; python download.py <model-name>

To get a list of available models in LitGPT - python download.py list

Where does a model file come from?

- Write your own
- Get a pre-implemented model from somewhere (huggingface, LitGPT, ...)

Abhinav Bhatele and Siddharth Singh

Department of Computer Science

bhatele@umd.edu, ssingh37@umd.edu

