PRISM ARRAY FILM AND EDGE LIGHT TYPE SURFACE LIGHT SOURCE

Publication number: JP10253807

Publication date: 1998-09-25

Inventor: KOJIMA HIROSHI; KASHIMA KEIJI
Applicant: DAINIPPON PRINTING CO LTD

Classification:

- international: G02B6/00: F21V8/00: G02B5/02: G02F1/1335:

G02F1/13357; G02B6/00; F21V8/00; G02B5/02; G02F1/13; (IPC1-7): G02B5/02; F21V8/00; G02B6/00;

G02F1/1335

- European:

Application number: JP19970054440 19970310
Priority number(s): JP19970054440 19970310

Report a data error here

Abstract of JP10253807

PROBLEM TO BE SOLVED: To improve a luminance value in the normal direction of a light conductive plate light output surface of the emitting light by arranging a ridgeline of a unit prism composed of a triangle pole light transmissive substance so as to cross a main lobe of the incident light on an incident surface, and specifying an angle of two base angles running along a light input surface in its triangular cross section, SOLUTION: In a prism array film 10, a unit prism 12 composed of a triangle pole light transmissive substance is integrally arranged with this on a light transmissive film 18 in an incident surface 14 in a condition where a ridgeline 12A crosses a main lobe of the incident light on the incident surface 14 so that ridgelines 12A become parallel to each other by forming the incident surface 14 with one side of the triangular cross section. The main cutting surface of the unit prism 12 is formed in a scalene triangle shape different in incident surface 14 side base angles &beta 1 and &beta 2. Here, of the base angles &beta 1 and &beta 2, the main lobe directional base end side base angle &beta 1 of the incident light is substantially set to 45 deg., and the opposite side base angle &beta 2 is substantially set larger than 55 deg..

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-253807

(43)公開日 平成10年(1998) 9月25日

(51) Int.Cl. ⁶		識別配号	FΙ							
G02B	5/02		G 0 2 B	5/02		С				
F 2 1 V	8/00	601	F 2 1 V	8/00	601.	601A				
					601C					
G02B	6/00	3 3 1	G 0 2 B	6/00	3 3 1					
G02F	1/1335	5 3 0	G 0 2 F	1/1335	5 3 0					
			審査請	求 未請求	請求項の数5	OL	(全 5 頁)			
(21)出願番号	特	順平9-54440	(71) 出嶼.	(71) 出顧人 000002897						
				大日本	印刷株式会社					
(22)出願日	平	成9年(1997)3月10日		東京都	新宿区市谷加賀	町一丁目	31番1号			
			(72)発明:	(72)発明者 小島 弘						
				東京都	新宿区市谷加賀	町一丁目	11番1号			
				大日本	印刷株式会社内					
			(72)発明:	者 鹿島	啓二					
			- 2	東京都新宿区市谷加賀町一丁目1番						
				大日本	印刷株式会社内					
			(74)代理,	人 弁理士	松山 圭佑	O124	各)			

(54) 【発明の名称】 プリズム配列フィルム、及びエッジライト型面光源

(57)【要約】

【課題】 液晶表示装置等のバックライト光源の出射光 における、出光面の法線方向の輝度を向上させる。 【解決手段】 3角柱形状の単位プリズム12を並列し て形成したプリズム配列フィルム10において、単位プ リズム12の3角形断面における2つの底角β1、β2 のうち、入射光16の主ローブ基端側の底角β1を45 °、反対側の底角 B2 を55°以上とする。

【特許請求の範囲】

【請求項1】3角柱形状の透光性物質からなる単位プリズムを、その断面形状における3角形の一辺が入射面を 形成し、且つ、稜線が相互に平行でなるように配列した プリズム配列フィルムにおいて、前記稜線は前記入射面 への入射光の主ローブと変更するように配列され、

前配単位プリズムを、その3角形の粉面形状が、該断面 における前配入光面に沿う2つの底角が相関なる不等辺 3角形となり、且つ、前配2つの底角のうち、前配入射 光の主ローブ方向基端側の底角が実質的に45°、他方 の底角が実質的に55°以上となるようにしたことを特 徴とするアリズム配列フィルム。

【請求項2】過光性材料からなり、一面が光反射面、他面が出光面とされた導光板と、この導光板の一側端面に治って配置され、該・側端面から準光板内に光を入射する光線と、前記導光板の前記出光面内に配置され、略3角矩形状の透光性物質からなる単位プリズムを、3角形の一辺が前記出光面に沿ってこれと平行、且つ、稜線が相互に平行になるように、前記光源側の一側端面から反対側の端面に向かって、複数隣接して配列したプリズム配列フィルムと、を有してなるエッジライト型面光源において、複数隣接して配列したプリズム記列フィルムと、を有してなるエッジライト型面光源において、

前記導光板から前記単位プリズムへの主ローブの光の入 射角を40°以上とすると共に、前記単位プリズムを、 その3角形の断面形状が、酸断面における前記出光面に 沿う2つの底角が相異なる不等辺3角形となり、且つ、 前記2つの底角のうち、前記光源側の底角が実質的に4 5°、他方の底角が実質的に55°以上となるようにし たことを特徴とするエッジライト型面光源。

【請求項3】請求項2において、前記導光板から前記単位プリズムへの光の入射角がほば80°となるようにしたことを特徴とするエッジライト型面光源。

【請求項4】透光性材料からなり、一面が光反射面、他面が出光面とされた導光板と、この導光板の一側端面に 治つて配置され、該一側端面から導光板内に光を入射する光線と、前記導光板の前正出光面側に配置され、略引 角柱形状の透光性物質からなる単位プリズムを、3 角形 の対が前記出光面に沿ってこれと平行、且つ、稜線が 相互に平行になるように、前記光鏡側の一側端面から反 対側の端面に向かって、複数開接して配列したプリズム 記述フィルムと、を有してなるエッジライト型面光源に おいて、

前起単位プリズムを、その3角形の所面形状が、該断面 における前記出光面に沿う2つの底角が相異なる不等辺 3角形となり、且つ、前記2つの底角のうち、前記光源 側の底角が実質的に45° 他方の底角が46°以上、 78.1°以下となるようにしたことを特徴とするエッ ジライト型面光源。

【請求項5】請求項2、3又は4において、前記導光板の出光面と前記プリズム配列フィルムとの間に、光拡散

シートを介在させたことを特徴とするエッジライト型面 光源。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶表示装置等の バックライトに用いるエッジライト型面光源及びこれに 利用して好適なプリズム配列フィルムに関する。

[0002]

【総来の技術】 総来の、液晶表示装置等に用いられるエッジライト型面光源は、遠光性材料からなり、一面が光反射面、他面が出た過された導光板と、この導光板の一側端面に沿って配置され、壊・側端面から導光板内に光を入射する光源とを有している。

【0003】このようなエッジライト型面光源として、 前記導光板の出光面側に多数の凸状部が波形に並ぶプリ ズム面を液晶パネル側の表面に備えたプリズムフィルム を設けられたものが、例えば実期平4-107201号 公報等に開示されている。

【0004】このアリズムフィルムにおける前記出状部は、一般的に、断面が2等辺3角形状の3角柱アリズムであって、導光板からのが比が減3角柱アリズム部分で使用者方向に強く指向性を与えられ、これによって液晶パネルの画面における薄度の向上を図るようにしている。【0005】しかしをがら、上記のようなエッジライト型面光源は、前述の如く、光源が導光板の一側端面側にのみ設けられた片間薄光型とした場合、主ローブ(輝度計で偏角源度したときの主ビーク)が、全体として前記光源の反対方向に傾斜してしまい、液晶表示装置の使用者方向への指向性が弱められてしまうという問題点があった。

[0006] これに対して、例えば特開平8-6242 8号公報に開示されるように、前記プリズムフィルムに おける3角形プリズムを左右非対称(断面不等辺3角 形)としたものがある。

[0007]

【発明が解決しようとする課題】前記特開平8-624 28号公報に開示されているプリズムフィルムは、主ロープの領きを導光板の出光面に立てた法線方向に補正できるという利点はあるものの、具体的なプリズム形状、特に3角形プリズムにおける角度が不明確であった。更に、出射光における、薄光板世光面の法線方向の輝度値が能率の左右対称形プリズムと比較して必ずしも向上するものではないという問題点があった。

[0008] これに対して、導光板の両側端に光源を設ける両側端光型とすることも考えられるが、この場合は 部品点数、重量及び消費電力が増加してしまうという新 たな問題成が生じる。

【0009】この発明は、上記従来の問題点に鑑みてなされたものであって、部品点数、重量、消費電力等を増大することなく、出射光の、導光板出光面の法線方向の

輝度値がより向上するプリズム配列フィルム及びエッジ ライト型面光源を提供することを目的とする。 [0010]

【課題を解決するための手段】この発明は、3角柱形状 の透光性物質からなる単位プリズムを、その断面形状に おける3角形の一辺が入射面を形成し、且つ、稜線が相 互に平行になるように配列したプリズム配列フィルムに おいて、前記稜線は前記入射面への入射光の主ローブと 交叉するように配列され、前記単位プリズムを、その3 角形の断面形状が、該断面における前記入光面に沿う2 つの底角が相異なる不等辺3角形となり、且つ、前記2 つの底角のうち、前記入射光の主ローブ方向基端側の底 角が実質的に45°、他方の底角が実質的に55°以上 となるようにして、上記目的を達成するものである。 【0011】又、請求項2の発明は、透光性材料からな り、一面が光反射面、他面が出光面とされた導光板と、 この遵光板の一側端面に沿って配置され、該一側端面か ら進光板内に光を入射する光源と、前記進光板の前記出 光面側に配置され、略3角柱形状の透光性物質からなる 単位プリズムを、3角形の一辺が前記出光面に沿ってこ れと平行、目つ、稜線が相互に平行になるように、前記 光源側の一側端面から反対側の端面に向かって、複数隣 接して配列したプリズム配列フィルムと、を有してなる エッジライト型面光源において、前記導光板から前記単 位プリズムへの主ローブの光の入射角を40°以上とす ると共に、前記単位プリズムを、その3角形の断面形状 が、該断面における前記出光面に沿う2つの底角が相異 なる不等辺3角形となり、目つ、前記2つの底角のう ち、前記光源側の底角が実質的に45°、他方の底角が 実質的に55°以上となるようにして、上記目的を達成

【0012】 ト記エッジライト型面光源において、請求 項3のように、前記導光板から前記単位プリズムへの光 の入射角がほぼ80°となるようにしてもよい。

するものである。

【0013】請求項4の発明は、透光性材料からなり、 一面が光反射面、他面が出光面とされた導光板と、この 導光板の一側端面に沿って配置され、該一側端面から導 光板内に光を入射する光源と、前記導光板の前記出光面 側に配置され、略3角柱形状の透光性物質からなる単位 プリズムを、3角形の一辺が前記出光面に沿ってこれと 平行、且つ、稜線が相互に平行になるように、前記光源 側の一側端面から反対側の端面に向かって、複数隣接し て配列したプリズム配列フィルムと、を有してなるエッ ジライト型面光源において、前記単位プリズムを、その 3角形の断面形状が、該断面における前記出光面に沿う 2つの底角が相異なる不等辺3角形となり、且つ、前記 2つの底角のうち、前記光源側の底角が実質的に45 *、他方の底角が46*以上、78.1*以下となるよ

うにして、上記目的を達成するものである。

【0014】上記エッジライト型面光源は、請求項5の

ように、前記導光板の出光面と前記プリズム配列フィル ムとの間に、光拡散シートを介在させるようにしてもよ

【0015】この発明は、3角形プリズムの3角形を不 等辺3角形とし、且つ、この3角形の2つの底角のうち 入射光の主ローブ方向基端側の底角を45°とすると最 も出射光の法線方向の輝度値を向上させることを実験に より確認し、更に、反対側の底角の最適値を計算により **求め** 前記法線方向の輝度値が最大となるようにしたも のである。

[0016]

【発明の実施の形態】以下本発明の実施の形態の例を図 面を参照して詳細に説明する。

【0017】本発明に係るプリズム配列フィルム10 は、その一部が図1に模式的に示されるように、3角柱 形状の透光性物質からなる単位プリズム12をその断面 形状における3角形の一辺が入射面14を形成し、且 つ、稜線12Aが相互に平行になるように、且つ、該稜 線12Aが前記入射面14への入射光16の主ローブと 交叉する状態で、前記入射面14において、透光性フィ ルム18上にこれと一体的に設けたものである。

【0018】前記単位プリズム12は、図2に示される ように、その主切断面(プリズムの各角度が最小になる ように切断した面であって、通常は稜線12Aと直交す る平面) において、入射面14側の底角 81、82 が異 なる不等辺3角形とされている。

【0019】ここで、前記底角 $\beta1$ 及び $\beta2$ のうち、入 射光16の主ローブ方向基端側(図1、図2において左 側)の底角β1は実質的に45°、反対側の底角β2は 実質的に45°よりも大きく設定されている。

【0020】単位プリズム12が、主切断面における面 底角が異なる不等辺3角形であって、底角β1 が実質的 に45°である場合、本発明者の実験の結果、単位プリ ズム12からの出射光における、前記透光性フィルム1 8に立てた法線方向の輝度がより向上する現象を確認で

【0021】その理由は、プリズム配列フィルム10に 入射する。 キロープ以外の光線を最も効率良く前記法線 方向に指向させることができるからであり、底角 $\beta1$ は 45°±3°以内であれば、上記のような法線方向の輝 度向上現象を得ることができた。

【0022】前記主ローブ前方側の底角 82 は、次のよ うに決定する。

【0023】図2に示されるように、該単位プリズム1 2の入射面14へ入射する入射光16の入射角を61、 単位プリズム12の傾斜面12Bから出射する出射光線 の出射角度を $\theta4$ 、入射面 14 における屈折角を $\theta2$ 、 該屈折光の前記傾斜面12Bへの入射角を 63 、単位プ リズム12の材質の持つ屈折率をnとしたとき、公知の スネルの公式により、次の(1)式が成り立つ。なお、

周囲の空気の屈折率を1とする。

 $n \sin\theta 2 = \sin\theta 1$, $n \sin\theta 3 = \sin\theta 4$

【0025】又、前記底角 β 2と、 θ 1及び θ 2との間には、幾何学的に次の(2)式が成り立つ。

[0026] $\beta 2 = \theta 1 + \theta 2$... (2)

【0027】上記(1)、(2)式及び公知の3角関数の公式を利用して、単位プリズム12の傾斜面12Bか

ズム12の傾斜面12Bか

【0029】ここで、例えば単位プリズム12の屈折率 n=1.57とした場合、前記 θ 1と θ 2の関係は次の表1のようになる。

 $\beta 2 = \tan^{-1} \left(\sin \theta 1 / \left\{ \sqrt{(n^2 - \sin^2 \theta 1) - 1} \right\} \right) \cdots (3)$

の(3)式が得られる。

... (1)

らの出射光20が、入射面14に対して垂直方向に出射 する関係となるように、 θ 1 を β 2 について解くと、次

【0030】 【表1】

[0028]

[0024]

			10									
1	β2	0	17.2	82.7	45.6	56.1	64.2	70.8	74.7	77.8	78.1	(度)

【0031】一方、前記底角 82 が他方の底角 81 以下になると、出射光 20が、入射面14の法線方向に偏向される作用はあるものの、前記入射面14に立た法線方向の輝度がより向上する現象が即刷されてしまう。 をって、総合的な法線方向の輝度向上効果を減少させないために、底角 82 は 81 よりも大きくしなければならない。 底角 82 は 、45°よりも大きい範囲で入射角 81に応じて決定されることになる。

【0032】これは、片側導光型のバックライト光源における入射角のが大きいことと一致していて好都合であ

と一致していて好都合であ

【0036】この(4) 水において、例えばn=1.5 7、β2=45°とした場合、Ø1=29.4°とな る。従って、この条件では、入射光16の主ロープの入 射角度が0°から29.4°までは表1に従わず、β2 は45°より大きい角度、より好ましくは46°に設定 される。

【0037】なお、単位プリズム12における3角形の 項角 α は同底角 β 1、 β 2 により、 α =180° - (β 1+ β 2) により決定される。

【0038】ここで、前記プリズム配列フィルム10は、前記透光性フィルム18に単位プリズム12を直接あるいは別体で成形したりすることによって得られる。【0039】プリズム形状を形成する方法としては、公知の熱プレス法(特開昭56-157310号公報参照)、紫外線硬化性の熱可塑性結節フィルムにロールエンボス版によってエンボス加工した後に、紫外線を照射してそのフィルムを硬化させる方法(特開昭61-156273号公報参照)等がある。

【0040】過光性フィルム18及び単位プリズム12の材質は、ポリメタアクリル酸メチル、ポリアクリル酸メチル、ポリアクリル酸メチルをのアクリル酸エステルスはメタアクリル酸エステルの単独若しくは共重合体、ポリエチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレン等の透明な樹脂、透明なガラス、透明なセラミクス等の透光性材料からなる平

る。

。 【0033】又、入射光16の入射角*θ*1 が小さい場合 も、次のような理由により、底角*β*2 は45° よりも大

【0034】前記(1)、(2)式と公知の3角関数の公式を利用して、前途と同様に出射光16が入射面14と垂直となるような条件で、底角82を入射角81について解くと、次の(4)式が得られる。

[0035]

きいことが望ましい。

$$\theta 1 = \sin^{-1} (-\sin \beta 2 {\cos \beta 2 \pm \sqrt{(n^2 - \sin \beta 2)}}) \cdots (4)$$

面形状をしたシート状又は板状の部材から構成される。 【0041】前記透光性フィルム18は、例えば液晶表 示装置におけるバックライト光源用として用いる場合に は、厚さが20~1000μm程度が好ましい。

【0042】又、単位プリズム12のピッチは $1\sim10$ 00 μ m、より好ましくは 10μ mとする。

【0043】次に、図3を参照して、上記プリズム配列フィルム10を利用したエッジライト型面光源について説明する。

【0044】このエッジライト型面光源30は、透光性 材料からなり、一面が光反射面32人、他面が出光面3 2 Bとされた導光板32と、この導光板32の一間増面 3 2 Cに沿かて配置され、該一間増面32 Cから導光板 3 2 内に光を入射する蛍光灯等からなるが源34と、前 記導光板32における前記出光面32 B側に配置された 前記プリスム配列フィルム10とから構成されている。 【0045】図3における符号36は、前記出光面32 Bとプリズム配列フィルム10との間に配置された光拡 散シート、38は、端光板32の光反射面32 A側にコ ーティングされた光拡散物質をれた光木示す。

【0046】前記導光板32は、プリズム配列フィルム 10と同様な材料によって形成され、光反射面32A は、例えば、白色PET(ボリエチレンテレフタレー

ト)フィルム等から構成される。又、光拡散シート36 は、アクリルビーズ等の微細な小球を含む材料からな り、出光面32Bからの入射光を拡散するものである。 更に、光拡散物質38も、同様に微細なアクリル球等を 含む塗料を塗布して形成されている。

【0047】前記エッジライト型面光源30は、前述の如く、ブリズム配列フィルム10により、入射面14と 垂直方向成分の多い出射光20が出光されるので、これ を液晶表示装置等のバックライト光源として用いた場合 は、画面の確度を大幅に向上させることができる。

[0048]

【発明の効果】本発明は、上記のように構成したので、 部品点数や重量、消費電力を増加することなく、出光面 の法線方向の開度値を向上させることができるという優 れた効果を有する。

【図面の簡単な説明】

【図1】本発明に係るプリズム配列フィルムの要部を拡大して示す斜視図

【図2】同プリズム配列フィルムにおける1個の単位プ リズムを拡大して示す模式図 【図3】上記プリズム配列フィルムを用いたエッジライト型面光源を示す側面図

「谷号の説明」

10…プリズム配列フィルム

12…単位プリズム

12A…稜線

12B…傾斜面

14…入射面

16…入射光

18…透光性フィルム

20…出射光 30…エッジライト型面光源

32…導光板

3 2 A…光反射面

3 2 B…出光面

32C…—側端面

3 4 …光源

36…光拡散シート

[図1]

【図3】

【図2】

