Intervals, Transformations, and Slope Solution (version 169)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7, -3) \cup (2, 3)$
Negative	$(-10, -7) \cup (-3, 2)$
Increasing	$(-9, -5) \cup (-1, 3)$
Decreasing	$(-10, -9) \cup (-5, -1)$
Domain	(-10,3)
Range	(-3,3)

Intervals, Transformations, and Slope Solution (version 169)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=45$ and $x_2=70$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 7 & 45 \\ 42 & 70 \\ 45 & 42 \\ 70 & 7 \\ \end{array}$$

$$\frac{g(70) - g(45)}{70 - 45} = \frac{7 - 42}{70 - 45} = \frac{-35}{25}$$

The greatest common factor of -35 and 25 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{5}$$

2