onafhankelijkheid van gebeurtenissen

2 gebeurtenissen A en B zijn stochastisch onafhankelijk als P(A \cap B) = P(A) P(B) als P(B) \neq 0 dan is P(A | B)=P(A)

Als A en B onafhankelijk zijn, dan zijn A^c en B dat ook en A^c en B^c ook.

bewijs

omdat A en B onafhankelijk zijn, is P(A \cap B) = P(A) P(B). Uit de totalekansformule halen we dan dat

P (A) = P(A
$$\cap$$
 B) + P(A \cap B^c) = P(A) P(B) + P(A \cap B^c)
en dus is
P(A \cap B^c) = P(A) - P(A) P(B) = P(A)(1- P(B)) = P(A) P(B^c)

hieruit volgt dat A en B^c onafhankelijk zijn. Door nu dezelfde redenering te gebruiken op A zien we dat ook A^c en B^c onafhankelijk zijn.

onafhaneklijkheid van een stel gebeurtenissen

We noemen gebeurtenissen onafhankelijk als

$$P\left(\bigcap_{i\in I}A_i\right)=\prod_{i\in I}P(A_i)\quad \text{ voor alle }I\subseteq\{1,\ldots,n\} \text{ met }I\neq\emptyset.$$