

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 3 по дисциплине «Электротехника и схемотехника»

Тема: «Ключевой режим работы транзистора»

Вариант 1

Выполнил: Антипов И.С., студент группы ИУ8-43

Проверил: Ковынёв Н.В., преподаватель каф. ИУ8

1. Цель работы

Исследовать статические режимы и переходные процессы в схеме простого транзисторного ключа.

2. Теоретическая часть

$$\begin{aligned} \mathbf{t}_{3} &\approx \mathbf{\tau}_{\mathrm{BX}} \ln(1 + \frac{\mathbf{U}_{60}}{\mathbf{E}_{60}}) \\ \mathbf{t}_{\varphi} &\approx \mathbf{\tau}_{\mathrm{B}} \ln \frac{\mathbf{S}}{\mathbf{S} - \mathbf{1}} \\ \mathbf{t}_{p} &= \mathbf{\tau}_{\mathrm{U}} \ln \frac{\mathbf{S} \, \mathbf{I}_{6\mathrm{H}} + \mathbf{I}_{62}}{\mathbf{I}_{6\mathrm{H}} + \mathbf{I}_{62}} \\ \mathbf{t}_{c} &= \mathbf{\tau}_{\mathrm{B}} \ln \frac{\frac{\mathbf{I}_{62}}{\mathbf{S}} + \mathbf{I}_{6\mathrm{H}}}{\mathbf{I}_{6\mathrm{H}}} \end{aligned}$$

3. Практическая часть

1 задание:

Построим схему, необходимую для выполнения задания. (Рис. 1)

Рисунок 1 – Схем для испытания работы транзисторного ключа

Рисунок 2 – Показание осциллографа для схемы для испытания работы транзисторного ключа

Рисунок 3 — Показание частотомера для схемы для испытания работы транзисторного ключа.

Результаты измерений приведены в таблице 1.

Rк	130 Ом	910 Ом	5,1 кОм	10 кОм	22 кОм
t φ	12 нс	8 нс	7 нс	7 нс	7 нс
t c	150 нс	122 нс	115 нс	113 нс	101 нс

Экспериментально посчитаем t и найдем сопротивление в режиме насыщения:

Rк	\mathbf{t}_{Φ}	t c	t p	t ₃
90 Ом	16 нс	232 нс	4,71мкс	10,6 мкс

2 задание:

Замкнем ключ, получив форсирующий конденсатор.

Рисунок 4 — Схем для испытания работы транзисторного ключа с форсирующим конденсатором.

Рисунок 5 — Показание осциллографа для схемы для испытания работы транзисторного ключа с форсирующим конденсатором.

Рисунок 6 – Показание частотомера для схемы для испытания работы транзисторного ключа с форсирующим конденсатором.

Результаты измерений приведены в таблице 2.

Rк	130 Ом	910 Ом	5,1 кОм	10 кОм	22 кОм
t φ c1	484 пкс	6 нс	37 нс	72 нс	156 нс
t c c1	963 пкс	452 пкс	444 пкс	440 пкс	436 пкс

При использовании форсирующего конденсатора возрастает t_{φ} при увеличении R_k .

4. Выводы

В данной лабораторной работе мною были получены навыки работы в среде Multisim. Для выполнения заданий необходимо было построить схему для испытания работы транзисторного ключа. Затем, необходимо было посчитать **t**ф, **t**c, **t**p, **t**з. После этого, необходимо было подключить форсирующий конденсатор и сравнить результаты. Результаты, полученные экспериментально и с помощью частотомера совпали, что говорит о корректности проведенных вычислени.