EE788: Assignment 1

Sai Saketika Chekuri 190070054

October 14, 2022

All parts of the assignment are for an NMOS type transistor.

From the graph given, the following conditions are used in code for the 3 cases:

Case	$L (in \mu m)$	t_{ox} (in nm)	V_{DD} (in V)	V_{th} (in V)
1	1	20	5	0.8
2	0.5	10	3.5	0.55
3	0.35	7	3	0.5

- For fixed mobility calculations, $\mu_n = 200 cm^2/V \cdot s$ is used.
- For all the parts below, based on the V_{th} from the graph, the substrate concentration N_A is obtained via interpolation and used in further calculations.
- Width used is $1\mu m$ for all calculations. For a width of $W\mu m$, the results obtained below would merely have to be scaled W times.
- For $I_D V_D$ characteristics, V_G values of 2.5, 3.5 and 4.5 V are used
- For $I_D V_G$ characteristics, V_D values of 0.5, 2 and 3.5 V are used

For the results of all 3 models,

- As t_{ox} and L decrease, C_{ox} and (W/L) increase, so current increases
- We see that the orders of current in all 3 models are almost identical (Pao-Sah gives a marginally higher value of current. Brews and Piecewise give equal currents)
- In the $I_D V_G$ characteristics for Case 2 and 3, the curves for $V_D = 2$ and 3.5V overlap.

Piecewise Model

Depending on the region of operation, different equations of current are used. Here, $V_{D,sat} = (V_{GS} - V_{th})/m$

Subthreshold region $(V_{GS} < V_{th})$:

$$I_D = \mu C_{ox} \left(\frac{W}{L}\right) (m-1) \left(\frac{kT}{q}\right)^2 e^{q(V_{GS} - V_{th})/mkT} \left(1 - e^{-qV_{DS}/kT}\right)$$

Linear region $(V_{GS} \ge V_{th} \text{ and } V_{DS} < V_{D,sat})$:

$$I_D = \mu C_{ox} \left(\frac{W}{L}\right) \left(V_{GS} - V_{th} - \frac{mV_{DS}}{2}\right) V_{DS}$$

Saturation region $(V_{GS} \ge V_{th} \text{ and } V_{DS} \ge V_{D,\text{sat}})$:

$$I_D = \mu C_{ox} \left(\frac{W}{L}\right) \frac{\left(V_{GS} - V_{th}\right)^2}{2m}$$

Figure 1: Case 1: $I_D - V_D$ characteristics for Piecewise model

Figure 2: Case 1: $I_D - V_G$ characteristics for Piecewise model

Figure 3: Case 2: $I_D - V_D$ characteristics for Piecewise model

Figure 4: Case 2: $I_D - V_G$ characteristics for Piecewise model

Figure 5: Case 3: $I_D - V_D$ characteristics for Piecewise model

Figure 6: Case 3: $I_D - V_G$ characteristics for Piecewise model

Pao-Sah Model

The following equations are used:

$$I_D = q\mu \left(\frac{W}{L}\right) \int_0^{V_{DS}} \left(\int_{\delta}^{\Psi_S} \frac{\frac{n_i^2}{N_A} e^{q(\Psi - V)/kT}}{-\frac{d\Psi}{dx}} d\Psi \right) dV$$
 (1)

$$-\frac{d\Psi}{dx} = \sqrt{\frac{2kTN_A}{\epsilon_{Si}} \left(\frac{q\Psi}{kT} + \frac{n_i^2}{N_A^2} e^{q(\Psi - V)/kT}\right)}$$
 (2)

$$V_{GS} = V_{FB} + \Psi_S + \frac{2\epsilon_{Si}kTN_A}{C_{ox}} \left(\frac{q\Psi}{kT} + \frac{n_i^2}{N_A^2} e^{q(\Psi_S - V)/kT}\right)^{0.5}$$
(3)

For loops are used in the code to evaluate the integral as an approximate sum. From equation 3, the value of Ψ_S is calculated by substituting the other variables and interpolating for the given V_{GS} . Equation 2 is then substituted in equation 1 to evaluate the integral.

Figure 7: Case 1: $I_D - V_D$ characteristics for Pao-Sah model

Figure 8: Case 1: $I_D - V_G$ characteristics for Pao-Sah model

Figure 9: Case 2: ${\cal I}_D - {\cal V}_D$ characteristics for Pao-Sah model

Figure 10: Case 2: $I_D - V_G$ characteristics for Pao-Sah model

Figure 11: Case 3: ${\cal I}_D - {\cal V}_D$ characteristics for Pao-Sah model

Figure 12: Case 3: ${\cal I}_D - {\cal V}_G$ characteristics for Pao-Sah model

Brews Model

Equation 3 from above is used to calculated Ψ_{SS} and Ψ_{SD} , with V as 0 and V_{DS} for the two cases respectively.

$$I_{D} = \mu \left(\frac{W}{L}\right) \int_{\Psi_{SS}}^{\Psi_{SD}} C_{ox} \left(V_{GS} - V_{FB} - \Psi_{S}\right) - \sqrt{2\epsilon_{Si}qN_{A}\Psi_{S}} + \frac{2kT}{q} \frac{C_{ox}^{2} \left(V_{GS} - V_{FB} - \Psi_{S}\right) + \epsilon_{Si}qN_{A}}{C_{ox} \left(V_{GS} - V_{FB} - \Psi_{S}\right) + \sqrt{2\epsilon_{Si}qN_{A}\Psi_{S}}} d\Psi_{S}$$
(4)

Figure 13: Case 1: $I_D - V_D$ characteristics for Brews model

Figure 14: Case 1: $I_D - V_G$ characteristics for Brews model

Figure 15: Case 2: $I_D - V_D$ characteristics for Brews model

Figure 16: Case 2: $I_D - V_G$ characteristics for Brews model

Figure 17: Case 3: $I_D - V_D$ characteristics for Brews model

Figure 18: Case 3: $I_D - V_G$ characteristics for Brews model