Lecture 4

Demand

Review

Given preferences and budget constraint, the optimal consumption bundle can be expressed as functions of prices and income $(x_1*(p_1,p_2,y), x_2*(p_1,p_2,y))$

$$(x_1*(p_1,p_2,y), x_2*(p_1,p_2,y))$$

- Ordinary demand function

Review

Review

Review: A Cobb-Douglas Example

When
$$U(x_1, x_2) = x_1^a x_2^b$$
, we have

$$-\frac{ax_2^*}{bx_1^*} = -\frac{p_1}{p_2}$$
 (A)

$$p_1x_1^* + p_2x_2^* = m.$$
 (B)

Solving for x_1^* and $x_2^* =>$

Review: A Cobb-Douglas Example

Today's Lecture

Properties of Demand Functions

Comparative statics analysis of ordinary demand functions -- the study of how ordinary demands $x_1^*(p_1,p_2,y)$ and $x_2^*(p_1,p_2,y)$ change as prices p_1 , p_2 and income y change.

比较静态分析:研究所关心的变量如何随某一参数的变化而变化的分析方法。

How does $x_1^*(p_1,p_2,y)$ change as p_1 changes, holding p_2 and y constant? Suppose only p_1 increases, from p_1 ' to p_1 " and then to p_1 ".

The curve containing all the utility-maximizing bundles traced out as p_1 changes, with p_2 and y constant, is the p_1 - price offer curve.

价格提供曲线:收入和其它价格不变时,最优商品组合随某一商品价格变化的轨迹线。

The plot of the x_1 -coordinate of the p_1 - price offer curve against p_1 is the ordinary demand curve for commodity 1.

普通需求曲线:收入和其它价格不变时,描述某种商品的最优消费数量和自身价格关系的曲线。

Fixed p₂ and y.

Own-Price Changes A graph for quantity Fixed p₂ and y. and own-price X_2 $p_1 = p_1$ p_1 x₁*(p₁') X_1 x₁*(p₁')

What does a p₁ price-offer curve look like for Cobb-Douglas preferences?

What does a p₁ price-offer curve look like for Cobb-Douglas preferences?

Take

$$U(x_1,x_2) = x_1^a x_2^b$$
.

Then the ordinary demand functions for commodities 1 and 2 are

$$U(x_1,x_2) = x_1^a x_2^b$$
.

Recall that under C-D utility function, the consumer always spends $\frac{a}{a+b}y$

on
$$x_1$$
 and $\frac{b}{a+b}y$ on x_2

$$p_1x_1^* = \frac{a}{a+b}y$$

$$p_2x_2^*=\frac{b}{a+b}y$$

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$
 $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}$

and

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$
 $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}$

and

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is flat

$$x_1^*(p_1,p_2,y) = \frac{a}{a+b} \times \frac{y}{p_1}$$
 $x_2^*(p_1,p_2,y) = \frac{b}{a+b} \times \frac{y}{p_2}.$

and

Notice that x_2^* does not vary with p_1 so the p_1 price offer curve is **flat** and the ordinary demand curve for commodity 1 is a **rectangular hyperbola**.

What does a p₁ price-offer curve look like for a perfect-complements utility function?

What does a p₁ price-offer curve look like for a perfect-complements utility function?

$$U(x_1,x_2) = \min\{x_1,x_2\}.$$

Then the ordinary demand functions for commodities 1 and 2 are

$$x_1^* = x_2^*$$
 (A)
 $p_1 x_1^* + p_2 x_2^* = y$ (B)

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

$$x_1^*(p_1,p_2,y) = x_2^*(p_1,p_2,y) = \frac{y}{p_1 + p_2}.$$

With p_2 and y fixed, higher p_1 causes smaller x_1^* and x_2^* .

As
$$p_1 \rightarrow 0$$
, $x_1^* = x_2^* \rightarrow \frac{y}{p_2}$.

As
$$p_1 \rightarrow \infty$$
, $x_1^* = x_2^* \rightarrow 0$.

Fixed p₂ and y.

Own-Price Changes Fixed p_2 and y. X_2 $p_1 = p_1'$ y/p₂ **p**₁' $p_1'+p_2$ p₁'+ p₂

Own-Price Changes Fixed p_2 and y. X_2 $p_1 = p_1$ " y/p₂ p₁" p₁'

Ordinary Own-Price Changes demand curve Fixed p₂ and y. p₁"" for commodity 1 is X_2 p₁' $p_1 + p_2$

What does a p₁ price-offer curve look like for a perfect-substitutes utility function?

$$U(x_1,x_2) = x_1 + x_2.$$

Then the ordinary demand functions for commodities 1 and 2 are

$$\begin{aligned} x_1^*(\textbf{p}_1,\textbf{p}_2,y) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ y/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ \text{and} \\ x_2^*(\textbf{p}_1,\textbf{p}_2,y) &= \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ y/\textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2. \end{cases} \end{aligned}$$

What if $p_1 = p_2$?

Fixed p_2 and y.

$$\frac{\mathbf{p_1}}{\mathbf{p_2}} < \mathbf{1} = \frac{\mathbf{MU_1}}{\mathbf{MU_2}}$$

i.e. indiff. curves are steeper than the budget constraint

$$\mathbf{x}_2^* = \mathbf{0}$$

$$x_1^* = \frac{y}{p_1}, x_1$$

$$\mathbf{x}_{2}^{*}=\mathbf{0}$$

$$\mathbf{x}_1^* = \frac{\mathbf{y}}{\mathbf{p}_1}, \mathbf{x}$$

Fixed p_2 and y.

p₁'

All bundles on the budget line are optimal

Fixed p₂ and y.

Fixed
$$p_2$$
 and y.
$$x_2^* = \frac{y}{p_2}$$

$$x_2^* = 0$$

p₁'

$$\mathbf{x}_1^* = \frac{\mathbf{y}}{\mathbf{p}_1}$$

Own-Price Changes Fixed p₂ and y. X_2 $p_1 = p_1" = p_2$ $p_2 = p_1''$ p₁' $0 \le x_1^* \le$ $\mathbf{x}_2^* = \mathbf{0}$

$$\frac{x_1}{p_2} > 1 = \frac{MU_1}{MU_2}$$

Ordinary Own-Price Changes demand curve Fixed p_2 and y. for commodity 1 X_2 $p_2 = p_1$ " p₁ price p₁' offer curve $0 \le \mathbf{x}_1^* \le -$

Ordinary and Inverse Demand

A Cobb-Douglas example:

$$\mathbf{x}_1^* = \frac{\mathbf{ay}}{(\mathbf{a} + \mathbf{b})\mathbf{p}_1}$$

is the ordinary demand function and

$$p_1 = \frac{ay}{(a+b)x_1^*}$$

is the inverse demand function.

Ordinary and Inverse Demand

A perfect-complements example:

$$x_1^* = \frac{y}{p_1 + p_2}$$

is the ordinary demand function and

$$p_1 = \frac{y}{x_1} - p_2$$

is the inverse demand function.

How does the value of $x_1^*(p_1,p_2,y)$ change as y changes, holding both p_1 and p_2 constant?

$$\mathbf{p}_1 \mathbf{x}_1 + \mathbf{p}_2 \mathbf{x}_2 = \mathbf{y}$$

$$p_1 x_1 + p_2 x_2 = y$$

$$p_1 x_1 + p_2 x_2 = y$$

Income offer curve

describes how the optimal bundle changes as y changes, holding p_1 and p_2 constant.

收入提供曲线:价格不变的情况下,最优商品组合随收入变化的轨迹线。

 X_1

A plot of quantity demanded against income is called an Engel curve.

描述某种商品的最优消费数量与收入关系的曲线叫做恩格尔曲线。

Income Changes and Cobb-Douglas Preferences

An example of computing the equations of Engel curves; the Cobb-Douglas case.

$$U(x_1,x_2) = x_1^a x_2^b$$
.

The ordinary demand equations are

$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Income Changes and Cobb-Douglas Preferences

$$x_1^* = \frac{ay}{(a+b)p_1}; \quad x_2^* = \frac{by}{(a+b)p_2}.$$

Rearranged to isolate y, these are:

$$y = \frac{(a+b)p_1}{a}x_1^*$$
 Engel curve for good 1

$$y = \frac{(a+b)p_2}{b}x_2^*$$
 Engel curve for good 2

Income Changes and Cobb-Douglas Preferences

Income Changes and Perfectly-Complementary Preferences

Another example of computing the equations of Engel curves; the perfectly-complementary case.

$$U(x_1,x_2) = \min\{x_1,x_2\}.$$

The ordinary demand equations are

$$x_1^* = x_2^* = \frac{y}{p_1 + p_2}.$$

Income Changes and Perfectly-Complementary Preferences

$$x_1^* = x_2^* = \frac{y}{p_1 + p_2}.$$

Rearranged to isolate y, these are:

$$y = (p_1 + p_2)x_1^*$$
 Engel curve for good 1
 $y = (p_1 + p_2)x_2^*$ Engel curve for good 2

Fixed p₁ and p₂.

Income Changes

Fixed p_1 and p_2 .

$$\mathbf{y} = (\mathbf{p}_1 + \mathbf{p}_2)\mathbf{x}_2^*$$

$$y = (p_1 + p_2)x_1^*$$

Another example of computing the equations of Engel curves; the perfectly-substitution case.

$$U(x_1,x_2) = x_1 + x_2.$$

The ordinary demand equations are

$$\begin{aligned} & x_1^*(p_1,p_2,y) = \begin{cases} 0 & \text{, if } p_1 > p_2 \\ y/p_1 & \text{, if } p_1 < p_2 \end{cases} \\ & x_2^*(p_1,p_2,y) = \begin{cases} 0 & \text{, if } p_1 < p_2 \\ y/p_2 & \text{, if } p_1 > p_2. \end{cases}$$

$$\begin{aligned} & \textbf{x}_1^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y}/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ & \textbf{x}_2^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y}/\textbf{p}_2 & \text{, if } \textbf{p}_1 > \textbf{p}_2. \end{cases}$$

Suppose
$$p_1 < p_2$$
. Then $x_1^* = \frac{y}{p_1}$ and $x_2^* = 0$

$$\begin{aligned} & \textbf{x}_1^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 > \textbf{p}_2 \\ \textbf{y}/\textbf{p}_1 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases} \\ & \textbf{x}_2^*(\textbf{p}_1,\textbf{p}_2,\textbf{y}) = \begin{cases} 0 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \\ \textbf{y}/\textbf{p}_2 & \text{, if } \textbf{p}_1 < \textbf{p}_2 \end{cases}$$

Suppose
$$p_1 < p_2$$
. Then $x_1^* = \frac{y}{p_1}$ and $x_2^* = 0$

$$y = p_1 x_1^* \text{ and } x_2^* = 0.$$

Income Changes

In every example so far the Engel curves have all been straight lines? Q: Is this true in general?

A: No. Engel curves are straight lines if the consumer's preferences are homothetic.

消费者的偏好满足位似性时, 恩格尔曲线是一条直线。

A consumer's preferences are homothetic if and only if

$$(x_1,x_2) \prec (y_1,y_2) \Leftrightarrow (kx_1,kx_2) \prec (ky_1,ky_2)$$

for every $k > 0$.

A consumer's preferences are homothetic if and only if the consumer's MRS is the same anywhere on a straight line drawn from the origin.

若偏好具有位似性,则经过原点的任意一条射线上的所有点具有相同的MRS。

The indiff.
curves have
the same
slope at any
intersection.

 X_1

An example of C-D utility:

$$U=x_1^ax_2^b$$

Suppose
$$(x_1, x_2) < (y_1, y_2)$$
. Then

$$U(x_1, x_2) = x_1^a x_2^b < U(y_1, y_2) = y_1^a y_2^b$$

$$\forall t>0,$$

$$U(tx_1, tx_2) = (tx_1)^a (tx_2)^b = t^{a+b} x_1^a x_2^b$$

 $U(ty_1, ty_2) = (ty_1)^a (ty_2)^b = t^{a+b} y_1^a y_2^b$

$$U(tx_1, tx_2) < U(ty_1, ty_2)$$

$$U=x_1^ax_2^b$$

If
$$(x_1, x_2) < (y_1, y_2)$$
,

$$\forall t>0,$$

$$(tx_1, tx_2) < (ty_1, ty_2)$$

By definition, the preferences are homothetic.

An example of C-D utility:

$$U = x_1^a x_2^b$$

$$MRS = -\frac{MU_1}{MU_2} = -\frac{ax_1^{a-1}x_2^b}{bx_1^a x_2^{b-1}} = -\frac{ax_2}{bx_1}$$

Consider another point on the same ray from the origin: (tx_1, tx_2)

$$MRS' = -\frac{a(tx_2)}{b(tx_1)} = -\frac{ax_2}{bx_1}$$

When $U=x_1^ax_2^b$,

- any two points along the same ray from the origin, (x_1, x_2) and (tx_1, tx_2) , have the same MRS.

By definition, ... homothetic.

Quasilinear preferences are not homothetic.

$$U(x_1,x_2) = f(x_1) + x_2.$$

For example,

$$U(x_1, x_2) = ln(x_1) + x_2$$

$$U(x_1, x_2) = ln(x_1) + x_2$$

MRS =
$$-\frac{MU_1}{MU_2} = -\frac{\frac{1}{x_1}}{1} = -\frac{1}{x_1}$$

$$U(x_1, x_2) = ln(x_1) + x_2$$

$$MRS = -\frac{1}{x_1}$$

MRS is
$$-\frac{1}{x_1}$$
 at (x_1, x_2)

MRS is
$$-\frac{1}{x_1}$$
 at (x_1, x_2)
MRS is $-\frac{1}{tx_1}$ at (tx_1, tx_2)

Non-homothetic

$$U(x_1, x_2) = ln(x_1) + x_2$$

$$MRS = -\frac{1}{x_1}$$

Optimal consumption choice?

$$U(x_1, x_2) = ln(x_1) + x_2$$

$$MRS = -\frac{1}{x_1} = -\frac{p_1}{p_2} \tag{A}$$

$$p_1 x_1 + p_2 x_2 = y (B)$$

$$MRS = -\frac{1}{x_1} = -\frac{p_1}{p_2} \tag{A}$$

$$p_1 x_1 + p_2 x_2 = y (B)$$

(A)=>
$$x_1^* = \frac{p_2}{p_1}$$

Substitute into (B),

$$p_{1}(\frac{p_{2}}{p_{1}}) + p_{2}x_{2} = y$$

$$x_{2}^{*} = \frac{y - p_{2}}{p_{2}} = \frac{y}{p_{2}} - 1$$

When
$$\frac{y}{p_2} > 1$$
 (y > p₂), $x_1^* = \frac{p_2}{p_1}$ $x_2^* = \frac{y - p_2}{p_2} = \frac{y}{p_2} - 1 > 0$

When
$$\frac{y}{p_2} < 1$$
 (y < p₂),

 $x_2^* = 0$ (corner solution)

$$\boldsymbol{x_1^*} = \frac{\boldsymbol{y}}{\boldsymbol{p_2}}$$

Income Changes; Quasilinear Utility

Income Effects

A good for which quantity demanded rises with income is called normal.

Therefore a normal good's Engel curve is positively sloped.

若需求数量随收入的上升而上升(价格不变),则该商品为正常品。恩格尔曲线斜率为正。

Income Effects

A good for which quantity demanded falls as income increases is called income inferior.

Therefore an income inferior good's Engel curve is negatively sloped.

若需求数量随收入的上升而下降(价格不变),则该商品为低档品。恩格尔曲线斜率为负。

Income Changes; Goods

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferior

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferior

Income Changes; Good 2 Is Normal, Good 1 Becomes Income Inferior

A good is called ordinary if the quantity demanded of it always increases as its own price decreases.

若需求数量随自身价格的上升而下降,该商品被称为普通商品。

Giffen Goods

If, for some values of its own price, the quantity demanded of a good rises as its own-price increases then the good is called Giffen.

若存在一个价格区间,使得需求数量随自身价格的上升而上升,该商品被称为吉芬商品。

Fixed p₂ and y.

Cross-Price Effects

If an increase in p₂

- -increases demand for commodity 1 $(\frac{\partial x_1}{\partial p_2} > 0)$, then commodity 1 is a gross substitute for commodity 2
- reduces demand for commodity 1 $(\frac{\partial x_1}{\partial p_2} < 0)$, then commodity 1 is a gross complement for commodity 2.

Cross-Price Effects

A perfect-complements example:

so
$$x_1^* = \frac{y}{p_1 + p_2}$$
$$\frac{\partial x_1^*}{\partial p_2} = -\frac{y}{(p_1 + p_2)^2} < 0.$$

Therefore commodity 2 is a gross complement for commodity 1.

Cross-Price Effects

A Cobb- Douglas example:

so
$$x_{2}^{*} = \frac{by}{(a+b)p_{2}}$$
$$\frac{\partial x_{2}^{*}}{\partial p_{1}} = 0.$$

Therefore commodity 1 is neither a gross complement nor a gross substitute for commodity 2.