G. KARCH & M. KRUPSKI & SZ. CYGAN

Jest tylko 10 rodzajów ludzi na świecie: ci, którzy rozumieją układ dwójkowy,

i ci, którzy go nie rozumieją.

Autor nieznany

Stabilność w sensie Lapunowa

Zadanie 1. Ustal, czy rozwiązania stacjonarne równania x' = -x(1-x) są stabilne czy niestabilne w sensie Lapunowa.

Zadanie 2. Zbadaj stabilność rozwiązań zagadnienia początkowego:

a)
$$y' = 1 + t - y$$
, $y(0) = 0$;

b)
$$y' = 2t(y+1)$$
, $y(0) = 0$.

Zadanie 3. Udowodnij, że wszystkie rozwiązania równania $y' = y^2$ z warunkiem początkowym $x(0) \ge 0$ są niestabilne, natomiast rozwiązania z warunkiem początkowym x(0) < 0 są stabilne w sensie Lapunowa.

Zadanie 4. Udowodnij, że stabilność rozwiązań dowolnego rozwiązania y(t) niejednorodnego układu równań liniowych y' = Ay + f(t) jest równoważna stabilności rozwiązania stacjonarnego $y \equiv 0$ równania jednorodnego y' = Ay.

Punkty stacjonarne układów na płaszczyźnie

Zadanie 5. Nie obliczając wartości własnych poniższej macierzy udowodnij, że każde rozwiązanie układu

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -3 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

zbiega do zera gdy $t \to \infty$.

WSKAZÓWKA: Udowodnij, że proste y = 3x oraz x = 3y dzielą płaszczyznę fazową na cztery obszary, w których pochodne x' i y' mają ustalony znak.

Zadanie 6. Naszkicuj portrety fazowe następujących układów równań różniczkowych:

a)
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -5 & 1 \\ 1 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

c)
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 5 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
,

b)
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -4 & -1 \\ 1 & -6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
,

d)
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -5 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
.

Zadanie 7. Zbadaj charakter punktów stacjonarnych układów równań:

a)
$$x' = y + 3x^2$$
, $y' = x - 3y^2$;

c)
$$x' = e^{x+y} - 1$$
, $y' = \sin(x+y)$;

b)
$$x' = y + \cos y - 1$$
, $y' = -\sin x + x^3$; d) $x' = -xy^4$, $y' = x^4y$.

d)
$$x' = -xu^4$$
, $y' = x^4y$

(Czy punkt jest węzłem, ogniskiem, środkiem? Czy jest stabilny?)

Zadanie 8. Określ, dla jakich wartości parametrów a i b rozwiązanie zerowe jest stabilne

a)
$$x' = ax - 2u + x^2$$
. $y' = x + y + xy$:

a)
$$x' = ax - 2y + x^2$$
, $y' = x + y + xy$; b) $\dot{x} = ax + y + x^2$, $y' = x + by + y^2$.

Stabilność rozwiązań w sensie Lapunowa

Niech bedzie dane równanie

$$x' = f(x),$$

gdzie $f:Q\to\mathbb{R}^m$ oraz $Q\subset\mathbb{R}^m$ jest zbiorem otwartym zawierającym początek układu współrzędnych. Zakładamy, że f jest klasy C^1 oraz spełnia warunek f(0) = 0.

Fakt 1. Jeżeli chcemy badaść przy pomocy powyższego twierdzenia stabilność rozwiązania $\bar{x}(t)$ innego niż tożsamościowo równe zeru, to wówczas w równaniu należy dokonaść podstawienia x(t)=z(t) – $\bar{x}(t)$. Wówczas funkcja z(t) spełnia równanie różniczkowe $z'=f(z-\bar{x})+\bar{x}'$. Zauważmy, że $\bar{z}\equiv 0$ jest rozwiązaniem tego nowego równania i wystarczy badaść jego stabilność.

Stabilność rozwiązań układu równań liniowych

Twierdzenie 2.

Rozważamy układ liniowy o stałych współczynnikach $\bar{x} = A\bar{x}$.

- a) Jeżeli wszystkie wartości własne macierzy A mają ujemną cześć rzeczywistą, to rozwiązane $\tilde{x}(t) \equiv 0$ jest asymptotycznie stabilne. Dodatkowo, istnieją dodatnie stałe Ki α takie, że każde rozwiązanie $\bar{x} = \bar{x}(t)$ tego układu spełnia oszacowanie $\|\bar{x}(t)\| \leq Ke^{-\alpha t} \|x(0)\|$.
- b) Jeżeli co najmniej jedna wartość własna macierzy A ma dodatnią część rzeczywistą, to rozwiązanie $\tilde{x}(t) \equiv 0$ jest niestabilne.

Linearyzacja układu równań różniczkowych

Twierdzenie 3. Rozważamy układ równań różniczkowych

$$\bar{x} = A\bar{x} + g(\bar{x}),$$

gdzie macierzAjest macierzą kwadratową o stałych współczynnikach, natomiast $g=g(\bar{x})=g(x_1,...,x_n)$ jest funkcją klasy C^1 taką, że g(0)=0 oraz $\lim_{x\to 0}\frac{g(x)}{\|x\|}=0$.

- a) Jeżeli wszystkie wartości własne macierzy A mają ujemną część rzeczywistła, to rozwiązane $\tilde{x}(t) \equiv 0$ układu jest asymptotycznie stabilne. Dodatkowo, istnieją dodatnie stałe K i α takie, że każde rozwiązanie $\bar{x}=\bar{x}(t)$ układu z dostatecznie małym warunkiem początkowym $\|x(0)\|$ spełnia oszacowanie $\|\bar{x}(t)\| \le Ke^{-\alpha t} \|x(0)\|$.
- b) Jeżeli co najmniej jedna wartość własna macierzy A ma dodatnią część rzeczywistą, to rozwiązanie $\tilde{x}(t) \equiv 0$ układu () jest niestabilne.

Punkt a) dowodzi się przy pomocy równoważnego sformułowania całkowego

$$\bar{x}(t) = e^{At}\bar{x}(0) + \int_0^t e^{A(t-s)}g(\bar{x}(s)) \ ds.$$

Kluczową rolę odgrywa tutaj oszacowanie rozwiązań układu równań liniowych zawarte w twierdzeniu poprzednim. Dowód punktu b) został pominięty ma wykładzie.

Linearyzacją nieliniowego układu $\bar{x}' = f(\bar{x})$ w pukcie równowagi $\bar{x} \equiv 0$ nazywamy układ równań liniowych $\bar{x}' = A\bar{x}$, gdzie macierz A = Df(0).