Algebra I

Alejandro Ceccheto

April 2, 2024

Theorem 1 (Proposiciones Lógicas) Si un número es par entonces es múltiplo de 3

$$x par \Rightarrow x mult. de 3$$

 $\overline{[p, q, r]} = Proposiciones.$

•
$$1, 0 \rightarrow \text{prop.}$$

•
$$1 \text{ y } 0 \rightarrow \text{p} \wedge \text{q}$$

•
$$1 \circ 0 \rightarrow p \vee q$$

• o 1 o 0
$$\rightarrow$$
 p \vee q

• si 1 entonces
$$0 \to p \Longrightarrow q$$

- equivalencia
$$\rightarrow$$
 p \Longleftrightarrow q

• Negación
$$\rightarrow$$
 >p, \vec{p} , \sim p, -p

$$Negación = \frac{P \quad | \quad \sim P}{V \quad | \quad F} \\
F \quad | \quad V$$

$$\label{eq:conjunction} \text{Conjunción} = \begin{array}{c|cccc} P & Q & P & \wedge Q \\ \hline V & V & & V \\ V & F & F \\ F & V & F \\ F & F & F \\ \end{array}$$

$$\label{eq:decomposition} \text{Disyunción} = \begin{array}{c|cc} P & Q & P & V \\ \hline V & V & V \\ F & V & V \\ F & F & F \\ \end{array}$$

$$\begin{array}{c|cccc} P & Q & P \Rightarrow Q \\ \hline V & V & V \\ \hline Condicional = & V & F & F \\ F & V & V \\ F & F & V \\ \hline \end{array}$$

(por cultura general)

Entonces, con estas lógicas algebraicas podemos deducir 3 cosas, si son Tautología, que significa que siempre va a ser verdadero, Contradicción, que significa que son siempre falsas, o Contingencia \rightarrow a veces V, otras F.

				q
P Q	r	$P \vee Q$	$P \lor Q \Rightarrow r$	
VV	V	V	V	~p∨q
VV	F	V	F	
VF	V	V	V	p —— ~p —
VF	F	V	F	
F V	V	V	V	
F V	F	V	F	
F F	V	F	V	
F F	F	F	V	

1.
$$\sim (p \lor q)$$

P Q	$P \vee Q$	$\sim (p \lor q)$
VV	V	F
F V	V	F
VF	V	F
F F	F	V

2.
$$P \Rightarrow (q \land \sim q)$$

P Q	$\sim Q$	$(Q \wedge \sim P)$	$P \Rightarrow (Q \land \sim Q)$
VV	F	F	F
VF	V	F	F
F V	F	F	V
F F	V	F	V

3.
$$p \Rightarrow (q \lor \sim q)$$

P Q	$ \sim Q$	$ \left \; \left(Q \vee \sim Q \right) \right $	$P \Rightarrow (Q \vee \sim Q)$
VV	F	V	V
VF	V	V	V
F V	F	V	V
F F	V	V	V

Para mas referencias y ejemplos visitar¹.

Chapter 2: Propiedades.

En este capitulo veremos como se aplican las propiedades en álgebra, particularmente en proposiciones. Para eso particularmente a mi tendriamos que tener en mente las 3 tablas de y,ó e implica.

$$\begin{array}{c|ccc} P & Q & & P \wedge Q \\ \hline V & V & & V \\ \end{array}$$

$$\begin{array}{c|cccc} P & Q & & P & \vee & Q \\ \hline F & F & & & F \end{array}$$

$$\begin{array}{c|cc} P & Q & & P \Rightarrow Q \\ \hline V & F & & F \end{array}$$

¹Uno de los libros que mas se asemeja a la forma de explicar de la profe. https://archive.org/details/AlgebraIArmandoRojo/page/n13/mode/2up

2 Propiedades.

2 PROPIEDADES.

Estas son las 3 cosas que tendríamos que tener en mente siempre al momento de operar con condicionales. Luego las propiedades hay bastantes una leve lista de ellas seria.

- Propiedad conmutativa.
- Propiedad Distributiva.
- Propiedad Absorción.
- Propiedad Semis-Absorción.
- Propiedad de Morgan.

Entre muchas otras, estas son las que mas se suelen usar.

Propiedad Distributiva.

Theorem 2

$$P \wedge (Q \vee R) \equiv (P \vee Q) \wedge (P \vee R)$$

lo que platea la teoría es que P y $(Q \circ R)$ es equivalente a $(P \circ Q)$ y $(P \circ R)$ siendo que la P se reparte entre Q y R.

Ejemplo

$$(P \vee (\widehat{Q \vee R})) \equiv ((P \wedge Q) \vee (P \vee R))$$

Propiedad Asociativa.

Theorem 3

$$((P \lor Q) \lor R) \equiv (P \lor (Q \lor R))$$
$$((P \land Q) \land R) \equiv (p \land (Q \land R))$$

Planteo de la propiedad, es lo mismo escribir (P ó Q) ó $R \Leftrightarrow P$ ó (Q ó R) lo mismo sucede si tenemos y ´s (\land).

Theorem 4

$$(P \land Q) \equiv (Q \land P)$$
$$(P \lor Q) \equiv (Q \lor P)$$
$$(P \Leftrightarrow Q) \equiv (Q \Leftrightarrow P)$$
$$(P \lor Q) \equiv (Q \lor P)$$

La propiedad plantea que siempre se puede escribir de distinta forma una operacion simepre y cuando esta sea llevada a la simpleza de $n \ y/o/im/n$.

Negación de <u>Conujuncion/Diyuncion</u>.

Propiedad de Morgan

Theorem 5 Esta propiedad plantea que si tengo una negación antes que un conjunto, dicha negacion puede negar los dos conjuntos por separado e invertir su unión $(\vee, \wedge, \Leftarrow)$

$$\sim (P \lor Q) \equiv \sim P \land \sim Q$$
$$\sim (P \land Q) \equiv \sim P \lor \sim Q$$

Absorción y Semi-Absorción.

F = Contradiccion	V = Tautologia
$\sim (\sim P) \equiv P$	$P \vee \mathbb{V} \equiv \mathbb{V}$
_	$P \lor \sim P \equiv \mathbb{V}$
$P \land \sim P \equiv \mathbb{F}$	—
$P \wedge \mathbb{F} \equiv F$	_
$P \vee \mathbb{F} \equiv P$	_

Propiedades de absorción.

Esto es un diagrama de venn explicando de forma gráfica como seria la composición lógica de $P \wedge (P \vee Q)$ siendo que esto es equivalente a $P \wedge (P \vee Q) \equiv P$.

Esto es un diagrama de venn explicando de forma gráfica como seria la composición lógica de $P \vee (P \wedge Q)$ siendo que esto es equivalente a $P \vee (P \wedge Q) \equiv P$.

 $4 = (\sim P \lor Q)$

Esto es un diagrama de venn explicando de forma gráfica como seria la composición lógica de $P \lor (\sim P \lor Q)$ siendo que esto es equivalente a $P \lor Q$ $P \land (\sim P \lor Q) \equiv P \land Q$.

 $4 = (\sim P \vee Q)$

Esto es un diagrama de venn explicando de forma gráfica como seria la composición lógica de $P \lor (\sim P \land Q)$ siendo que esto es equivalente a P ó Q

$$\underbrace{P}_{1,2} \vee \left(\underbrace{\sim P}_{3,4} \wedge \underbrace{Q}_{2,3}\right) \equiv P \vee Q.$$

Propiedad de morgan.

Theorem 6 Esta propiedad se mete con los implica \Rightarrow , de forma que podemos convertirlos en expresiones mucho mas faciles de resolver sin tener que pensar en la tabla del implica.

$$(P \Rightarrow Q) \equiv (\sim P \lor Q)$$

Ejercicio de ejemplo.

$$\sim (Q \Rightarrow P) \Rightarrow ((P \lor Q) \Rightarrow (Q \land \sim P))$$

$$\underbrace{\sim \left(Q \Rightarrow P\right)}_{\mathbf{P}} \Rightarrow \underbrace{\left(\left(P \vee Q\right) \Rightarrow \left(Q \wedge \sim P\right)\right)}_{\mathbf{Q}}$$

$$\sim (Q \Rightarrow P) \Rightarrow ((P \lor Q) \Rightarrow (Q \land \sim P)) \tag{1}$$

$$\sim (Q \vee P) \vee ((P \vee Q) \Rightarrow (Q \wedge \sim P)) \tag{2}$$

$$\sim (Q \vee P) \vee (\sim (P \vee Q) \vee (Q \wedge \sim P)) \tag{3}$$

$$\sim (\sim Q \lor \sim P) \lor ((\sim P \land \sim Q) \lor (Q \land \sim P)) \tag{4}$$

$$(Q \land \sim P) \lor ((\sim P \land \sim Q) \lor (\sim P \land Q)) \tag{5}$$

$$\sim P \wedge (\sim Q \vee Q) \tag{6}$$

$$\sim P \wedge \mathbb{V} \equiv Absorcion \tag{7}$$

$$(\sim P \land Q) \lor \sim P \equiv \sim P \tag{8}$$

 En^2

 $^{^{2}}$ Fecha de modificación y adición al 2/4/2024