Exam 2 - Solution

Versions

0

b) For this element, if the nodal displacements are found to be $u_1=v_1=u_2=v_2=0$ mm and $u_3=v_3=0.01$ mm, determine the strains ε_x , ε_y and γ_{xy} at the centroid of the element.

(2)

b) For this element, if the nodal displacements are found to be $u_1=v_1=v_2=u_3=v_3=0$ mm and $u_2=0.02$ mm, determine the strains ε_x , ε_y and γ_{xy} at the centroid of the element

3

b) For this element, if the nodal displacements are found to be $u_1=v_1=u_2=u_3=v_3=0$ mm and $v_2=0.04$ mm, determine the strains ε_x , ε_y and γ_{xy} at the centroid of the element

10)

	Number of rows	Number of columns
[D]	3	3
[B]	3	6
{σ}	3	l

(1)
$$\beta_3 = \gamma_1 - \gamma_2 = 0$$
, $\delta_3 = x_2 - x_1 = 2$, $2A = 4$
 $\{ \epsilon_3^2 = \frac{1}{2A} \left\{ \begin{cases} \beta_3 & \mu_3 \\ \gamma_3 & \gamma_3 \\ \gamma_3 & \gamma_3 + \beta_3 & \gamma_3 \end{cases} \right\} = \begin{cases} 0.005 \\ 0.005 \end{cases}$

(2)
$$\beta_2 = \gamma_3 - \gamma_1 = 2$$
, $\delta_2 = \chi_1 - \chi_3 = -1$, $2A = \gamma$
 $\{\epsilon\} = \frac{1}{24} \left\{ \begin{cases} c_2 u_2 \\ c_2 u_2 \end{cases} = \begin{cases} -0.05 \end{cases}$

(3)
$$\beta_2 = \gamma_3 - \gamma_1 = 2$$
, $\delta_2 = \lambda_1 - \lambda_3 = -1$, $2A = 4$
 $\{\epsilon\} = \frac{1}{2A} \{ \frac{t_2}{2} v_2 \} = \{ \frac{0}{0.02} \}$

	- 3	1
1	14	1
۲,	mi.	

	Number of rows	Number of columns
[D]	3	3
[B]	3	JZ.
{σ }	3	1

$$\begin{cases} f_{5} \\ f_{5} \\ f_{5} \\ f_{6} \\ f$$

$$G$$
 h=2m, t=0.1m, Po=2000 psi
 $f_{2x} = 66.7 \, 15$
 $f_{3x} = 133.3 \, 15$

(2)
$$h=3m$$
, $t=0.1m$, $p_0=2000psi$
 $f_{2x}=100 15$
 $f_{3x}=200 15$
(3) $h=4m$, $t=0.1m$, $p_0=2000psi$
 $f_{2x}=133.3 15$

$$f_{3x} = 267.7 15$$

3.
$$1\times 1$$
 $I \simeq 4 f(0,0)$ 2×2 $I \subseteq f(-1/5, -1/5) + f(1/5, -1/5) + f(1/5, 1/5) + f(1/5, 1/5)$

(3)
$$1 \times 1 = 16$$

 $2 \times 2 = 13.41$ $(e \times ect = 13.46)$