Analysis 3

Lev Leontev

February 16, 2023

Contents

1.	Mea	asure	1
	1.1	Introduction	1
	1.2	Lebesgue Outer Measure	2
	1.3	The σ -algebra of Lebesgue-measurable sets	4

1. Measure

1.1 Introduction

We want to generalize the notion of the *length* towards all the subsets of \mathbb{R} . Such a generalized function is usually called *measure*. But, unfortunately, such a function does not exist.

Theorem 1. There exist no such function $\mu: 2^{[0,1]} \to [0,+\infty)$ that satisfies the following properties:

- 1. The function is non-negative;
- 2. It's countably additive;
- 3. It's monotonic: the measure of a subset is not greater than the entire set;
- 4. Translation does not change the measure;
- 5. The measure of the unit interval is 1.

Proof. First, several definitions:

- Step 1. Let's define the following equivalence relation: if x, y are from the unit interval, we'll say that $x \sim y$ if $x y \in \mathbb{Q}$.
- Step 2. Let's choose $N \subset [0, 1/3]$ such that it contains *precisely one* element from each equivalence class. (Such an N exists if the axiom of choice holds true).
- Step 3. For all $r \in \mathbb{Q}$ define $N_r = N + r$.
- Claim 1. The sets N_R are congruent to N and are pairwise disjoint.
 - Proof. The sets are congruent by definition. Let's prove that they are pairwise disjoint.

Assume that $x \in N_{r_1} \cap N_{r_2}$ for some $r_1, r_2 \in \mathbb{Q}$. Then $x - r_1 \in N$, $x - r_2 \in N$, but $(x - r_1) \sim (x - r_2) \implies r_1 = r_2$.

Claim 2.

$$\left[\frac{1}{3}, \frac{2}{3}\right] \in \bigcup_{r \in \mathbb{Q} \cap [0, 2/3]} N_r$$

Proof. If $x \in [1/3, 2/3]$, then $\exists ! y \in N$ such that x = y + q for some $q \in \mathbb{Q}$, as N contains exactly one representative from each of the equivalence classes. It is easy to see that such $q \in [0, 2/3]$.

We arrive at the following conclusion:

$$\frac{1}{3} = \mu([1/3, 2/3]) \leqslant \mu(\bigcup_{r \in \mathbb{Q} \cap [0, 2/3]} N_r) = \sum_{r \in \mathbb{Q} \cap [0, 2/3]} \mu(N_r) \leqslant 1$$

What is $\mu(N)$ then? If $\mu(N) = 0$, then

$$\mu\Big(\bigcup_{r\in\mathbb{Q}\cap[0,2/3]} N_r\Big) = \sum 0 = 0$$

If $\mu(N) = \varepsilon > 0$, then the sum is $+\infty$. But it's supposed to be in [1/3, 1]?!

Consequence. We cannot generalize the notion of length to all subsets of real numbers.

1.2 Lebesgue Outer Measure

Definition 1. If $I \subset \mathbb{R}$ is an interval, then l(I) = the length of I. If I is unbounded, then $l(I) = \infty$.

Definition 2 (Outer Measure).

$$\begin{split} m^*: 2^{\mathbb{R}} &\to [0, +\infty] \\ m^*(A) &= \inf \Bigl\{ \sum_{j=1}^{\infty} l(I_j) \mid I_j \text{— open intervals, } A \subseteq \bigcup_{j=1}^{\infty} I_j \Bigr\} \end{split}$$

In words, it's the infimum of all countable covers of A. (A countable sum either converges or diverges to infinity).

Remark. This is certainly not a measure — otherwise, it would contradict Theorem 1.

Example. If A is countable, then $m^*(A) = 0$.

Proof. Let's choose an arbitrary $\varepsilon > 0$ and prove that $m^*(A) \leq 2\varepsilon$. Let's choose a cover of the points with segments of lengths ε , $\varepsilon/2$, $\varepsilon/2^2$, and so on. Then

$$m^*(A) = \inf\{\dots\} \leqslant \varepsilon + \frac{\varepsilon}{2} + \frac{\varepsilon}{2^2} + \dots = 2\varepsilon$$

Proposition 1. If A is an interval, then $m^*(A) = l(A)$.

Proof. a) A is a closed interval, A = [a, b].

1. $m^*(A) \leq b - a$. To prove this, we can cover A with a single interval:

$$(a-\varepsilon,b+\varepsilon) \implies \sum l(I_j) = b-a+2\varepsilon$$

Now take $\varepsilon \to 0$.

- 2. $m^*(A) \ge b a$. Suppose we an infinite cover of A by open intervals. Since A is a compact set, we can choose a finite subcover. The case of a finite cover with open intervals is simple. We can prove it as follows: if we have two intersecting open intervals, we can replace them with a single interval of a lesser length. Then we can continue this process using induction.
- b) If A is unbounded, then all of the covers would have infinite sum, and thus the infimum will be infinite as well.
- c) If A is an open or semiclosed interval, we can approximate it from both sides by closed intervals. Let's denote the closure of A by \bar{A} . Since we're adding points, the Outer Measure will not decrease:

$$A \subset \overline{A} \implies m^*(A) \leqslant m^*(\overline{A}) = l(a)$$

Chapter #1 2 of 10 Author: Lev Leontev

Now suppose we have a closed interval B strictly inside A. Then we get

$$m^*(A) \geqslant m^*(B) = l(B) = l(A) - \varepsilon$$

Now take $\varepsilon \to 0 \implies m^*(A) \geqslant l(A)$.

Lemma. m^* is translation-invariant.

Proof. If we translate the set, we can translate all of its covers as well. Since translating an interval does not change its length, the lengths of the covers won't change either. \Box

Proposition 2 (Countable subadditivity). For any countable collection of sets $\{E_k\}_{k=1}^{\infty}$ we have

$$m^* \Big(\bigcup_{k=1}^{\infty} E_k\Big) \leqslant \sum_{k=1}^{\infty} m^*(E_k)$$

Remark. We don't ask for the sets E_k to be disjoint. If we proved that we have an equality sign for the disjoint case, we would have proved that m^* is a measure, which we proved does not exist in Theorem 1.

Proof. Choose open intervals $I_{k,i}$, such that

$$E_k \subset \bigcup_{i=1}^{\infty} E_{k,i} \ (E_{k,i} \text{ are a cover of } E_k)$$

and

$$\sum_{i=1}^{\infty} l(I_{k,i}) < m^*(E_k) + \frac{\varepsilon}{2^k}$$

Such intervals exist from the definition of the infimum.

On the other hand, $\{I_{k,i} \mid 1 \leqslant k, i < \infty\}$ covers each of the E_k , and thus it's a cover of $\bigcup_{k=1}^{\infty} E_k$. Then

$$m^* \Big(\bigcup_{k=1}^{\infty} E_k\Big) \overset{\text{it's a cover}}{\leqslant} \sum_{1 \leqslant k, i < \infty} l(I_{k,i}) < \sum_{k=1}^{\infty} m^*(E_k) + \varepsilon \Big(\frac{1}{2} + \frac{1}{4} + \dots\Big) = \sum_{k=1}^{\infty} m^*(E_k) + \varepsilon$$

Now take $\varepsilon \to 0$.

Remark. Here we assume that all of the E_k have finite outer measures. Otherwise, both of the sides of the inequality would diverge to infinity, and we get $\infty \leq \infty$ which is "true".

Chapter #1 3 of 10 Author: Lev Leontev

1.3 The σ -algebra of Lebesgue-measurable sets.

Definition 1. A set E is (Lebesgue) measurable if for any set A,

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^C)$$
 $E^C = \mathbb{R} \setminus E$

Figure 1: The set E "splits" A into two parts

Remark. We already have the \leq sign from countable subadditivity.

Remark. Motivation: If $A \cap B = \emptyset$ and A (or B) is measurable, then

$$m^*(A \cup B) = m^*((A \cup B) \cap A) + m^*((A \cup B) \cap A^C) = m^*(A) + m^*(B)$$

Proposition 1. If $m^*(E) = 0$, then E is measurable.

Proof. For all A we have:

$$m^*(A \cap E) \leqslant m^*(E) = 0 \implies m^*(A \cap E) = 0$$

$$m^*(A) \geqslant m^*(A \cap E^C) = m^*(A \cap E) + m^*(A \cap E^C)$$

As we noted earlier, the inequality in the other side follows from countable subadditivity.

Proposition 2. If E_1, \ldots, E_n are measurable, then $\bigcup_{1}^{n} E_k$ is measurable.

Proof. Case n = 2: for all A we have

$$m^*(A) = m^*(A \cap E_1) + m^*(A \cap E_1^C) =$$

$$= m^*(A \cap E_1) + m^*((A \cap E_1^C) \cap E_2) + m^*((A \cap E_1^C) \cap E_2^C) = (*)$$

$$X := A \cap E_1, \ Y := (A \cap E_1^C) \cap E_2, \ Z := (A \cap E_1^C) \cap E_2^C$$

With Venn diagrams it's possible to prove that $Z = A \cap (E_1 \cup E_2)^C$, $X \cup Y = A \cap (E_1 \cup E_2)$. Now let's apply countable subadditivity to X and Y. Then we get:

$$(*) \ge m^* (A \cap (E_1 \cup E_2)) + m^* (A \cap (E_1 \cup E_2)^C)$$

Yet again, the inequality in the other side follows from countable subadditivity.

Induction step: Apply case n=2 to the sets $\bigcup_{1}^{n-1} E_k$, E_n .

Chapter #1 4 of 10 Author: Lev Leontev

Definition 2 (Algebra). Let X be a non-empty set. $\Omega \subset 2^X$ is an algebra, if:

- 1. $X \in \Omega$;
- 2. Ω is closed under the formation of complements in X and finite unions.

Remark. It follows that Ω is also closed under intersections:

$$(X_1^C \cup \dots \cup X_n^C)^C = X_1 \cap \dots \cap X_n$$

Definition 3 (σ -algebra). Let X be a non-empty set. $\Omega \subset 2^X$ is a σ -algebra, if:

- 1. $X \in \Omega$;
- 2. Ω is closed under the formation of complements in X and countable unions.

Remark. Every σ -algebra is an algebra, but not vice versa.

Corollary 1. The collection \mathcal{M} of all measurable subsets of \mathbb{R} is an algebra.

Proof. For the proof, we'll need to show that:

1. \mathbb{R} is measurable.

$$m^*(A) = m^*(A \cap \mathbb{R}) + m^*(A \cap \mathbb{R}^C) = m^*(A) + m^*(\emptyset)$$

- 2. It is closed under complements. It follows from the symmetry of the definition of a measurable set.
- 3. It is closed under unions. We have already proved this one.

Proposition 3. $\{E_k\}_1^n$ — disjoint measurable sets. Then for every set A

$$m^* \Big(A \cap \Big[\bigcup_{1}^n E_k\Big] \Big) = \sum_{1}^n m^* (A \cap E_k)$$

In particular, for $A = \mathbb{R}$ we have

$$m^*\left(\bigcup_{1}^n E_k\right) = \sum_{1}^n m^*(E_k)$$

Proof. Induction on n.

Base n = 1 is obvious.

Step
$$n-1 \to n$$
. Take $\hat{A} := A \cap \left[\bigcup_{1}^{n} E_{k}\right]$. Then

$$\hat{A} \cap E_n = A \cap E_n$$

We also have

$$\hat{A}\cap E_n^C=A\cap \left[\bigcup_{1}^{n-1}E_k\right]$$

That is true, as intersecting with E_n^C is equivalent to subtracting E_n from \hat{A} , and since $\{E_k\}$ are disjoint, no other parts of \hat{A} except E_n will be removed. Then:

$$m^*(\hat{A}) \stackrel{E_n \text{ is } \underline{\text{measurable}}}{=} m^*(\hat{A} \cap E_n) + m^*(\hat{A} \cap E_n^C) =$$

$$= m^*(A \cap E_n) + m^*\left(A \cap \left[\bigcup_{1}^{n-1} E_k\right]\right) \stackrel{\text{induction}}{=} m^*(A \cap E_n) + \sum_{1}^{n-1} m^*(A \cap E_k)$$

Proposition 4. The union of a countable collection of measurable sets is the union of a countable collection of *disjoint* measurable sets.

Proof. If $A = \bigcup_{1}^{\infty} A_k$, define $\hat{A}_1 := A_1$ and $\hat{A}_k := A_k \setminus \bigcup_{1}^{k-1} A_j$. As \mathcal{M} is an algebra, all \hat{A}_k are measurable, and $A = \bigcup_{1}^{\infty} \hat{A}_k$, which is what we wanted.

Theorem 1. \mathcal{M} is a σ -algebra.

Proof. We need to show that if all $\{E_k\}_1^{\infty}$ are measurable sets, then $E = \bigcup_1^{\infty} E_k$ is measurable. By Proposition 4, without the loss of generality, assume that E_k are all pairwise disjoint. Let $F_n := \bigcup_1^n E_k$, then $F_n \in \mathcal{M}$ (as a finite union). As $F_n \subset E$, we have $E^C \subset F_n^C$.

Let A be any set. Then:

$$m^*(A) = m^*(A \cap F_n) + m^*(A \cap F_n^C) \ge m^*(A \cap F_n) + m^*(A \cap E^C) \stackrel{\text{Proposition 3}}{=}$$

$$= \sum_{1}^{n} m^*(A \cap E_k) + m^*(A \cap E_C)$$

Now take $n \to \infty$:

$$m(A) \geqslant \sum_{1}^{\infty} m^*(A \cap E_k) + m^*(A \cap E_C) \stackrel{\text{countable subadditivity}}{\geqslant} m^*(A \cap E) + m^*(A \cap E^C)$$

Now we have the inequality in the difficult direction. The inequality in the other direction is obvious (again, from countable subadditivity). \Box

Proposition 5 (Countable additivity). If $\{E_k\}_1^{\infty} \subset \mathcal{M}$ — collection of disjoint sets, then $\cup_1^{\infty} E_k \in \mathcal{M}$ and

$$m^* \Big(\bigcup_{1}^{\infty} E_k \Big) = \sum_{1}^{\infty} m^* (E_k)$$

Proof. We know that:

1.

$$m^* \left(\bigcup_{1}^{\infty} E_k \right) \leqslant \sum_{1}^{\infty} m^* (E_k)$$
 (countable *sub* additivity)

2.

$$m^* \left(\bigcup_{1}^{\infty} E_k \right) \geqslant m^* \left(\bigcup_{1}^{n} E_k \right) \stackrel{\text{Proposition } 3}{=} \sum_{1}^{n} m^* (E_k)$$

Take $n \to \infty$, then

$$m^* \left(\bigcup_{1}^{\infty} E_k \right) \geqslant \sum_{1}^{\infty} m^* (E_k)$$

Which is what we wanted.

Definition 4. The restriction of m^* on \mathcal{M} is called the Lebesgue measure and denoted by m.

$$m(E) := m^*(E) \quad \forall E \in \mathcal{M}$$

Definition 5. If X is a non-empty set and \mathcal{A} is a σ -algebra on X, then any function $\mu : \mathcal{A} \to [0, +\infty]$ is called the measure on (X, \mathcal{A}) , if:

Chapter #1 6 of 10 Author: Lev Leontev

- 1. $\mu(\emptyset) = 0$.
- 2. μ is countable additive.

Definition 6 (Measurable space). A measurable space is a tuple (X, \mathcal{A}) , where:

- 1. X is a set.
- 2. \mathcal{A} is a σ -algebra on X.

Definition 7 (Measure space). A measure space is a triple (X, \mathcal{A}, μ) , where:

- 1. X is a set.
- 2. \mathcal{A} is a σ -algebra on X.
- 3. μ is a measure on (X, \mathcal{A}) .

Example 1. $\{\emptyset, X\}$ is a σ -algebra. Any μ , such that $\mu(\emptyset) = 0$ and $\mu(X) \geqslant 0$ will be a measure.

Example 2. 2^X is a σ -algebra. We can have the following measures:

- a) $\mu(E) = |E|$ is called a *counting measure*. Here |E| denotes the cardinality of E (number of elements in E).
- b) δ -measure (also called Dirac measure):

$$\mu(E) = \begin{cases} 1, & 0 \in E \\ 0, & \text{otherwise} \end{cases}$$

Definition 8. A countable collection of sets $\{E_k\}_{k=1}^{\infty}$ is called ascending if $E_k \subset E_{k+1}$.

Definition 9. A countable collection of sets $\{E_k\}_{k=1}^{\infty}$ is called descending if $E_k \supset E_{k+1}$.

Theorem 2 (Continuity of measure).

1. If $\{A_k\}_{k=1}^{\infty} \subset \mathcal{A}$ and the sequence is ascending, then

$$\mu\Big(\bigcup_{k=1}^{\infty} A_k\Big) = \lim_{k \to \infty} \mu(A_k)$$

2. If $\{B_k\}_{k=1}^{\infty} \subset \mathcal{A}$, the sequence is descending and $\mu(B_1) < \infty$, then

$$\mu\Big(\bigcap_{k=1}^{\infty} B_k\Big) = \lim_{k \to \infty} \mu(B_k)$$

Proof. 1. Let $C_k := A_k \setminus A_{k-1}$. Then we have:

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \mu\left(\bigsqcup_{k=1}^{\infty} C_k\right) = \sum_{k=1}^{\infty} \mu(C_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(C_k) = \lim_{n \to \infty} \mu(A_n)$$

2. Let $D_k := B_1 \setminus B_k$. Since B_k is descending, it follows that D_k is an ascending sequence. Then from the part 1 of the theorem it follows that:

$$\mu\left(\bigcup_{k=1}^{\infty} D_k\right) = \lim_{k \to \infty} \mu(D_k) \qquad \bigcup_{k=1}^{\infty} D_k = B_1 \setminus \bigcap_{k=1}^{\infty} B_k$$

$$\mu\left(B_1 \setminus \bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} \left(\mu(B_1) - \mu(B_k)\right) = \mu(B_1) - \lim_{k \to \infty} \mu(B_k)$$

$$\mu\left(B_1 \setminus \bigcap_{k=1}^{\infty} B_k\right) = \mu(B_1) - \mu\left(\bigcap_{k=1}^{\infty} B_k\right) \implies \mu\left(\bigcap_{k=1}^{\infty} B_k\right) = \lim_{k \to \infty} \mu(B_k)$$

Definition 10. We say that a statement (property) holds for almost all $x \in X$ with respect to a measure μ , if $\exists N \in \mathcal{A}$, such that $\mu(N) = 0$ and the statement (property) holds for all $x \in X \setminus N$.

Lemma (Borel–Cantelli). Let (X, \mathcal{A}, μ) be a measure space. Let $\{E_k\}_{k=1}^{\infty} \subset \mathcal{A}$ and $\sum_{k=1}^{\infty} \mu(E_k) < \infty$. Then almost all $x \in X$ belong to at most finitely many E_k .

Proof. Let $B_n = \bigcup_{k=n}^{\infty} E_k$. It's easy to see that B_k is a descending measure. At the same time,

$$\mu(B_1) = \mu\left(\bigcup_{k=1}^{\infty} E_k\right) \leqslant \sum_{k=1}^{\infty} \mu(E_k) < \infty$$

By definition of B_n , $\bigcap_{n=1}^{\infty} B_n$ contains all the points that are contained in infinitely many E_k 's. But, by continuity of measure for $\{B_n\}_{n=1}^{\infty}$ we have:

$$\mu\Big(\bigcap_{n=1}^{\infty} B_n\Big) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \Big(\bigcup_{k=n}^{\infty} E_k\Big) \leqslant \lim_{n \to \infty} \sum_{k=n}^{\infty} \mu(E_k) = 0$$

How large is the Lebesgue σ -algebra \mathcal{M} ?

Proposition 6. Every interval is Lebesgue-measurable.

Proof. Proof idea:

$$E \in \mathcal{M} \iff \forall A : m(A) = m(A \cap E) + m(A \cap E^C)$$

Assume $E = (-\infty, a)$. If we prove that such intervals lie in \mathcal{M} , then we'll prove everything (since \mathcal{M} is a σ -algebra). We already have $m(A) \leq m(A \cap E) + m(A \cap E^C)$ from countable subadditivity.

Chapter #1 8 of 10 Author: Lev Leontev

Let's assume $a \notin A$ (since removing one point does not change the measure). Every cover of A can be split into two covers with the same sum of interval lengths: of $A \cap (-\infty, a)$ and $A \cap (a, +\infty)$. Every interval in those covers, that contains a, can be split into two. Therefore, from the definition of Lebesgue measure, $m(A) \ge m(A \cap E) + m(A \cap E^C)$, so we've proved the inequality in both sides.

Definition 11. For any $\mathcal{X} \in 2^{\mathbb{R}}$ let $\mathcal{A}(\mathcal{X})$ be the smallest σ -algebra containing \mathcal{X} .

Lemma. $\mathcal{A}(\mathcal{X})$ always exists and is the intersection of all σ -algebras containing \mathcal{X} .

Proof. We have to prove that if we intersect a bunch σ -algebras, we still get a σ -algebra.

- 1. Such an intersection is closed under complements: if a set belongs to the intersection of σ -algebras, then it belongs to each of the σ -algebras, then its complement belongs to each of the σ -algebras, and thus its complement belongs to the intersection of σ -algebras.
- 2. In a similar way, such an intersection is closed under countable unions: if a number of sets all belong to the intersection of σ -algebras, then they all belong to each of the σ -algebras, then their countable union belongs to each of the σ -algebras, and their countable union belongs to the intersection of σ -algebras.

Remark. We can try to construct $\mathcal{A}(\mathcal{X})$ in a different way. Say, \mathcal{X} is not a σ -algebra. Let's enlarge it: first by including all the complements. Then let's enlarge it by all countable unions. Let's call such a set \mathcal{X}_1 . But after such operation, \mathcal{X}_1 may be non-closed under complements. So we repeat such a procedure.

And, in general: \mathcal{X}_{n+1} is obtained from \mathcal{X}_n is obtained by including into \mathcal{X}_n all complements of the sets from \mathcal{X}_n and then including all countable unions of the obtained sets.

It is tempting to think that $\cup_1^{\infty} \mathcal{X}_i$ is $\mathcal{A}(\mathcal{X})$. Is it true? No, not necessarily. If the sequence $\{\mathcal{X}_i\}$ eventually stabilizes, then such a construction works. Let's now assume that every next \mathcal{X}_i is larger than the previous one. Then we can take A from \mathcal{X} , A_1 from $\mathcal{X}_1 \setminus \mathcal{X}$, A_2 from $\mathcal{X}_2 \setminus \mathcal{X}_1$, and so on.

Now let's look at $\bigcup_{1}^{\infty} A_i$. As a countable union, it must be contained in $\mathcal{A}(\mathcal{X}) = \bigcup_{1}^{\infty} \mathcal{X}_i$, thus, there exist an n, such that $\bigcup_{1}^{\infty} A_i \in \mathcal{X}_n$. But $A_{n+1} \in \mathcal{X}_{n+1} \setminus \mathcal{X}_n$?!

Definition 12 (Topological space). A topological space is a set X and a collection of subsets O of X (called open sets), such that \emptyset , $X \in O$, and:

- 1. A union of (possibly infinitely many) sets from O is in O.
- 2. The intersection of finitely many sets from O is in O.

Chapter #1 9 of 10 Author: Lev Leontev

The complements of open sets are called *closed sets*.

Definition 13. A function $f: X \to Y$ between two topological spaces is *continuous* if the preimage of every open set is open.

Remark. It is possible to check that for \mathbb{R} this definition is equivalent to the usual one.

Definition 14 (Borel σ -algebra). For a topological space X its Borel σ -algebra \mathcal{B}_X is the smallest σ -algebra on X that contains all open sets.

Remark. If it's obvious from the context which set we are talking about, we will just write \mathcal{B} (without a subscript).

Theorem 3. $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}$ (all of the sets in $\mathcal{B}_{\mathbb{R}}$ are measurable).

Proposition 7. \mathcal{B} is the smallest σ -algebra that contains all open intervals.

If we prove the proposition, the theorem will follow easily. We know that all the intervals are Lebesgue-measurable. We know that the Lebesgue-measurable sets (\mathcal{M}) are a σ -algebra. Thus, if we take the smallest σ -algebra that contains all open intervals, it will be a subset of \mathcal{M} .

Proof of Proposition 7. We will prove that every open set $O \subset \mathbb{R}$ is a finite or countable union of open intervals.

For every point $x \in O$ let I_x be the largest open interval, such that $x \in I_x$ and $I_x \subset O$. It exists as a union of all such intervals. Since O is open, x lies in O with an open neighborhood, thus, I_x is non-empty.

$$\forall x \in O : x \in I_x \implies O = \bigcup_{x \in O} I_x$$

Let's prove that $I_x \cap I_y \neq \emptyset \implies I_x = I_y$. If the intervals around x and y intersect, then $I_x \cup I_y$ is an interval as well, and $I_x \cup I_y \in O$ as $I_x \in O$ and $I_y \in O$. Since I_x and I_y are the largest such intervals, it follows that $I_x = I_x \cup I_y = I_y$.

Let's say that two points x and y are equivalent if $I_x = I_y$. Since there's a lot of same intervals in $O = \bigcup_{x \in O} I_x$, we can take just a single point from every equivalence class and still get O as a union. Particularly, every open interval contains at least one rational point (as rational numbers are dense). Therefore, there's a rational point in every equivalence class. Thus,

$$O = \bigcup_{x \in O \cap \mathbb{Q}} I_x$$

Since the set of rational numbers is countable, we have represented O as a countable union of open intervals, which is what we wanted.

Remark. A topological space is called *separable*, if it contains a countable dense subset.

Remark. We have proved that the Lebesgue measure exists on $\mathcal{B}_{\mathbb{R}}$, so we have a lot of measurable sets.

Remark. The Lebesgue measure can be generalized to \mathbb{R}^n .

Chapter #1 10 of 10 Author: Lev Leontev