

Проект «Определение оптимально рекомендованного бида»

Логово программистов

Проблема

Денежный конфликт между участниками рынка такси:

Водитель думает:

Если сделаю цену низкой — заказов будет много, но заработаю мало.

Если сделаю высокую — заработаю много с одной поездки, но заказы будут редко.

Пассажир думает:

Если выберу дешёвый вариант — доеду за небольшие деньги, но машина будет простой, а ждать, возможно, дольше.

Если выберу дорогой вариант — поеду с комфортом и быстро, но заплачу намного больше.

Общая проблема:

Оба ищут свой баланс:

Водитель — между числом заказов и доходом с поездки.

Пассажир — между ценой, временем ожидания и комфортом.

Идеальная система должна помочь **водителю** предложить такую цену, которая устроит **пассажира**, но при этом будет выгодна и самому водителю.

Сегменты пользователей

Водители:

Это люди, исполняющие услуги транспортной перевозки

Пассажиры:

Это люди, которые используют услуги транспортной перевозки

Стек-технологий

- Машинная модель: Python;
- Мобильное приложение: Kotlin, Jetpack compose;
- Прочее: Git, Docker, Figma.

Решение

Проблема поиска оптимальной цены, которая балансирует между вероятностью получения заказа и доходом с поездки, эффективно решается через внедрение интеллектуальной системы динамического ценообразования

Преимущества решения:

Для водителей: увеличение общего заработка за счет интеллектуального баланса между ценой и спросом

Для пассажиров: справедливая цена, соответствующая рыночной ситуации

Для платформы: повышение эффективности matching'а водителей и пассажиров

Альтернативные решения

- **Uber :** Тестирует или внедряет опцию **"Назначь свою цену"**, где водители могут повышать базовый тариф на определенный процент, чтобы компенсировать низкий спрос или неудобный маршрут.
- Аналитические приложения (например, «Такси-Аналитика»): Показывают статистику по часам, районам, доходности. Они могут давать рекомендации: "В 8 утра в этом районе можно поднять цену на 10% и все равно получать заказы", или "Сейчас в вашем районе избыток машин, лучше снизить цену или переехать в соседний".

Схема работы прототипа

Сбор данных

• Система постоянно получает информацию

Анализ и расчет

• Модель машинного обучения обрабатывает данные

Генерация рекомендации

• Система предлагает водителю 1-3 варианта цен

Обучение системы

Интерфейс водителя

• Простой экран с кнопками и текущая рекомендованная цена

Команда и участники

Сергей Афиногенов

Менеджер

@linveq

Душа команды

Матвей Зайцев **Дизайнер**

@Ded_domsosed

Создатель прекрасного

Команда и участники

Анна Туйкова

Васkend-разработчик

@k_kerra
Призер регионального конкурса
«Профессионалы 2025».

Никита Матигоров

Васkend-разработчик

Full-stack разработчик

Андрей Горелкин **ML-разработчик**

@moiceo

Разработчик моделей нейросетей

Конкурс «Моя профессия – ИТ» #МПИТ25/26 MPIT.PRO