

Specification document of OSS-EC BSL00000058

BSL No. 00000058

Specification Ver 01.00.00 Sep 15,2022 New release 01.00.01 Sep 28,2022 Corrected WMA 01.00.02 Oct 19,2022 Corrected license content

Documentation provided Rui Long Lab Inc. https://rui-long-lab.com/

2. Features ______2 3. OSS-EC Architecture _______2 5. API5 Outline specifications......6 9. 10. 11.

License

Open Source Software for Embedded Components ("OSS-EC") is open source software files and related documentation files for component products used in computer systems and other applications. OSS-EC is provided to those who accept the OSS-EC Terms of Use for the OSS-EC site; see https://oss-ec.com/license_agreement/ for the OSS-EC Terms of Use. By downloading the OSS-EC from the OSS-EC site or obtaining the OSS-EC by any means, you accept the Terms of Use. Please read and accept the Terms of Use before using the OSS-EC. If you do not agree to the Terms of Use, please do not use the OSS-EC.

1. Overview

This software specification is for OSS-EC for ADC components. 本ソフトウェア仕様は、ADC コンポーネント用 OSS-EC の仕様です。

2. Features

- Component type ADC component

Number of Components SingleSupported OS (HAL) Mbed

- Calculation Floating-point

- Conversion type Linear

- Moving average filter Moving average filter select (Non,SMA,EMA,WMA)

- Diagnosis Range (Min to Max)

3. OSS-EC Architecture

The OSS-EC architecture of ADC component (analog output component) is shown in the figure below, according to the component architecture.

ADC コンポーネント (アナログ出力コンポーネント) 用 OSS-EC アーキテクチャは、コンポーネントアーキテクチャに合わせ、下図の通りです。

fig. ADC component architecture & OSS-EC architecture

ABCDEF: Model number

2

4. Components Software Interface

The sensor output voltage to physical quantity conversion is a linear conversion as in the following equation. The nonlinear conversion is provided in a separate BSL.

センサ出力電圧から物理量変換は、下式のような線形変換とする。尚、非線形変換は、別 BSL にて提供する。

ADC value to voltage value conversion formula

$$vi = (ai \times ADC_vdd) / 2^{ADC_bit}$$

Voltage value to physical value conversion formula

$$y = (vi - x_offset) / gain + y_offset$$
 range min to max

y physical value

ai A/D conversion value

vi Sensor output voltage value

ADC_vdd Sensor supply voltage(Vdd) value

ADC_bit A/D conversion bit length

x_offset Sensor output voltage offset value

gain Voltage value to physical value conversion gain

y_offset Physical offset value
min Physical value min
max Physical value max

5. Usage Scenes

The usage scenario of the ADC component is assumed to be a scene to be measured in cycles or events.

ADC コンポーネントの利用シーンは、周期またはイベントでの計測するシーンを想定する。

6. State flow

The state flow of the ADC component shall be as shown in the figure below from the usage scenes. ADC コンポーネントの状態遷移は、利用シーンから下図の通りです。

fig. ADC component state flow

7. API

The API is shown in the figure below.

APIは、下図の通りです。

fig 3. API

8. Outline specifications

The outline specifications of BSL00000058 are as follows BSL00000058の概略仕様は、下記の通りです。

- 1) Analog value read
- 2) Converts analog values to voltage values
- 3) Convert voltage values to physical values
- 4) Range min to max

wk range min to max

Normal iNormal res.sts

More than maximum value iMax_NG Below minimum value iMin NG

5) Moving average filter select

Select a moving average according to the value of iMA.

#define iMA iSMA Simple moving average filter

#define iMA iEMA Exponential moving average filter

#define iMA iWMA Weighted moving average filter

#define iMA iNonMA Non-moving average filter

SMA calculation method

$$phy = (y_n + y_{n-1} + y_{n-2}) / n$$

n: iABCDEF SMA num

$$phy = (y \times k) + (phy_{n-1} \times (1-k))$$

WMA calculation method

EMA calculation method

$$phy = (\ (\ y_n \times n\) + (\ y_{n-1} \times (n-1)\) + \ \cdots \ + (\ y_1 \ \times 1\) \ / \ (\ n + (n-1) + \cdots + 1\)$$

n: iABCDEF_WMA_num


```
#include "user_define.h"
#include "oss_ec_00000058.h"
static uint32 lib_f32_MaxMin( float32* , float32 , float32 );
        iMA == iSMA
                                                // Simple moving average filter
static float32 lib_f32_SMA( float32 , sma_f32_t* );
                                                // Exponential moving average filter
        iMA == iEMA
static float32 lib_f32_EMA( float32 , ema_f32_t* );
                                                // Weighted moving average filter
        iMA == iWMA
static float32 lib_f32_WMA( float32 , wma_f32_t* );
#else
                                                // Non-moving average filter
#endif
// ADC Main Function
pp2ap_adc_t pp_00000058( AnalogIn adc , tbl_adc_t tbl )
        pp2ap adc t res;
        // MP A/D value read
        uint16 ai = adc. read u16();
                                                                         1)
        // CP A/D value to Voltage value conversion
        float32 vi = ( ai * iADC_vdd ) / ( 1<<iaDC_bit );
                                                                          2)
        // SP Voltage value to Physical value : linear conversion
        float32 wk = (( vi - tbl.xoff ) / tbl.gain ) + tbl.yoff;
                                                                          3)
        // range (Min to Max)
        res.sts = lib_f32_MaxMin( &wk , tbl.max , tbl.min );
                                                                          4)
        // Moving average filter select
                                                                          5)
#if
        iMA == iSMA // Simple moving average filter
        res.phy = lib_f32_SMA( wk , tbl. sma );
#elif
        iMA == iEMA // Exponential moving average filter
        res.phy = lib_f32_EMA(wk, tbl.ema);
#elif
        iMA == iWMA // Weighted moving average filter
        res.phy = lib_f32_WMA(wk, tbl.wma);
#else
                       // Non-moving average filter
        res.phy = wk;
#endif
        return( res );
}
```


9. Example

```
An example using XYZ's ABCDEF is shown below.
XYZ 社製 ABCDEF を用いた例は、下記の通りです。
void ap( void )
        pp2ap_adc_t
                       sensor;
        float
                                         // Pressure [kPa]
                       pressure;
                                          // Diagnosis result
        unsigned long diagnosis;
                                               Normal=iNormal, Max NG=iMax_NG, Min NG=iMin_NG
        // ABCDEF sensor read
        do {
                 // Read of Pressure Sensor
                 \underline{sensor} = \underline{ABCDEF}_00000058();
                 pressure = sensor.phy;
                 diagnosis = sensor.sts;
                 // Sensor Application
// Application cycle wait
                 thread_sleep_for( iPCMP_Cyc );
        } while(true);
}
```

10. File configuration

The file configuration of this OSS-EC is shown in the table below.

Folder name	File name	Summary
XYZ_ABCDEF_00000058	ABCDEF. cpp	ABCDEF const data file
	ABCDEF. h	ABCDEF define header file
	ABCDEF_00000058. cpp	ABCDEF code file
	user_setting.h	User setting header file
	pp_00000058. cpp	BSL00000058 code file
	oss_ec_00000058. h	BSL00000058 OSS-EC header file
	License.txt	OSS-EC license text file
XYZ_ABCDEF_00000058/documents	Spec-00000058. pdf	This specification pdf file
	Spec-ABCDEF. pdf	ABCDEF component software specification pdf file
	TestSpec&Result-	ABCDEF component test specifications
	ABCDEF. pdf	and results
XYZ_ABCDEF_00000058/sample	main.cpp	Sample code file

8

11. User setting

User configuration is done by user_setting.h. Select the moving average method, remove the comments as shown below. Also, change the coefficient of each moving average to match the product.

```
#define iADC_bit
                                            // MPU ADC bit
                           16U
                                            // CAUTION : When Mbed is selected, 16 bit is fixed
#define iADC_vdd
                           5. OF
                                            // MPU Vdd Configures the reference voltage [V]
#define iVref
                                            // Configures the reference voltage
                           5. 0F
#define iABCDEF_pin
                                            // ADC pin of ABCDEF
                           <u>A0</u>
Case: Non-moving average filter select
#define iMA
                              i NonMA
                                             // Non-moving average filter
//#define iMA
                                i SMA
                                              // Simple moving average filter
                                i EMA
//#define iMA
                                              // Exponential moving average filter
//#define iMA
                                i WMA
                                              // Weighted moving average filter
//#define iABCDEF_SMA_num
                                4U
                                              // Simple moving average number & buf size
//#define iABCDEF_EMA_K
                                0.25F
                                              // Exponential Smoothing Factor
//#define iABCDEF_WMA_num
                                              // Weighted moving average number & buf size
Case: Simple moving average filter
//#define iMA
                                i NonMA
                                                 // Non-moving average filter
#define iMA
                              i SMA
                                               // Simple moving average filter
                                i EMA
//#define iMA
                                                // Exponential moving average filter
                                i WMA
//#define iMA
                                                 // Weighted moving average filter
#define iABCDEF_SMA_num
                              411
                                               // Simple moving average number & buf size
         CAUTION: iABCDEF SMA num > 0
//#define iABCDEF EMA K
                                0 25F
                                                // Exponential Smoothing Factor
//#define iABCDEF_WMA_num
                                4U
                                                // Weighted moving average number & buf size
Case: Exponential moving average filter
//#define iMA
                                i NonMA
                                                // Non-moving average filter
//#define iMA
                                i SMA
                                                 // Simple moving average filter
#define iMA
                              i EMA
                                               // Exponential moving average filter
//#define iMA
                                i WMA
                                                // Weighted moving average filter
//#define iABCDEF_SMA_num
                                4U
                                                 // Simple moving average number & buf size
#define iABCDEF_EMA_K
                              0. 25F
                                               // Exponential Smoothing Factor
         CAUTION : 0.0 < i ABCDEF_EMA_K < 1.0
//#define iABCDEF_WMA_num
                                4U
                                                // Weighted moving average number & buf size
Case: Weighted moving average filter
//#define iMA
                                i NonMA
                                                // Non-moving average filter
//#define iMA
                                i SMA
                                                // Simple moving average filter
//#define iMA
                                i EMA
                                                // Exponential moving average filter
#define iMA
                                               // Weighted moving average filter
                              i WMA
//#define iABCDEF_SMA_num
                                4U
                                                // Simple moving average number & buf size
//#define iABCDEF_EMA_K
                                0.25F
                                                 // Exponential Smoothing Factor
#define iABCDEF_WMA_num
                              <u>4U</u>
                                               // Weighted moving average number & buf size
         CAUTION: iABCDEF_WMA_num > 0
                              i MA
#define iABCDEF_ma
```