A. **Polar Coordinates.** The **standard** coordinates x and y are not always the most convenient coordinates to describe a particular region in the xy-plane. A useful alternative is captured by **polar coordinates**.

When \mathbf{r} is positive, \mathbf{r} equals the distance of the point from the origin, and $\mathbf{\theta}$ measures the counterclockwise angle of the position vector of the point from the positive \mathbf{x} -axis.

The point with polar coordinates \mathbf{r} and $\boldsymbol{\theta}$ has position vector obtained by rotating the vector $\langle \mathbf{r}, \mathbf{0} \rangle$ counterclockwise by angle $\boldsymbol{\theta}$.

Sketch the point with polar coordinates r = -2 and $\theta = \frac{\pi}{2}$.

Assuming **r** is nonnegative, the level sets $\theta = A$ and r = C look as follows.

The level set $\theta = A$ is the ray emanating from the origin obtained by rotating the positive x-axis counterlockwise by θ . The level set r=C is the circle of radius C centered at the origin.

Example 1. Sketch the region determined by $2 \leqslant r \leqslant 3$ and $-\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}$.

B. Polar Conversion. We convert between standard and polar coordinates.

By standard coordinates are the x- and y-coordinates.

Key Relations Between Polar and Standard Coordinates.

x in terms of polar:

y in terms of polar:

relation bewtween r and standard:

relation between θ and standard:

When **r** is nonnegative we may write:

$$r = \sqrt{x^2 + y^2}$$

The relation between θ and standard is more often written:

$$\tan\theta = \frac{y}{x}$$

but the relation presented here is more symmetric, and also applies even when tangent is undefined.

Example 2. Graph $r = 2\cos\theta$ by first converting to standard coordinates.

The right side is quite nearly the expression for 2x in terms of polar, however the r is missing in front of $\cos \theta$. Our first step is introducing the missing r.

The next step will involve completing the square:

$$x^2 + bx = \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2$$

C. Polar Integration. Now we will discuss polar integration. Imagine the infinitesimal bit of area dA obtained from the point with polar coordinates \mathbf{r} and θ by increasing θ by $d\theta$ and r by dr.

In polar coordinates:

$$dA =$$

Example 3. Let D be the region in the first quadrant bounded by $x^2 + y^2 = 1$ and The first quadrant is defined by $x \ge 0$ and $x^2 + y^2 = 4$.

 $y \geqslant 0$.

The goal in this process is to try to

This dA is exactly what appears in

double-integration.

has length equal to $\mathbf{r} \cdot \mathbf{\theta}$.

understand how small changes dr and $d\theta$ are related to small changes dA in area.

For example, we know that small changes dx and dy effect the change dA = dxdy in area, essentially because the picture we would sketch in this case would be a rectangle with sides dx and dy.

It is a standard fact from geometry that the arc of a circle of radius r traced out by a positive angle θ , measured in radians,

and find:
$$\iint_D e^{x^2+y^2} dA$$