PPL Theory Aeronautical Radio Operation

RARO 1 – Radio Wave Propagation

Document Identification	
Document Category	Training Material
Document Revision Number	
Document Issue Date	
Document Status	Active
Document Title	
Document Identification	MBWTRG-TRM-XXX

2. Related Documents

Related Documents	Document Identification

Amendments made to this document since the previous version are listed below. All amendments to this document have been made in accordance with CAE OAAM's document management procedure.

Slide	Changes

CHARACTERISTICS OF RADIO WAVES

Radio Waves vs. Sound Waves

What is the purpose of the radio?

Sound Waves	Radio Waves

- What is the purpose of the radio?
- ➤ To convert our voices (sound waves) into radio waves. These can be transmitted to other stations and converted back to sound waves, allowing them to hear us from a great distance.

Sound Waves	Radio Waves

- What is the purpose of the radio?
- ➤ To convert our voices (sound waves) into radio waves. These can be transmitted to other stations and converted back to sound waves, allowing them to hear us from a great distance.

Sound Waves	Radio Waves
Air pressure variations	

- What is the purpose of the radio?
- ➤ To convert our voices (sound waves) into radio waves. These can be transmitted to other stations and converted back to sound waves, allowing them to hear us from a great distance.

Sound Waves	Radio Waves
Air pressure variations	Strength variations in electric and magnetic fields

- What is the purpose of the radio?
- ➤ To convert our voices (sound waves) into radio waves. These can be transmitted to other stations and converted back to sound waves, allowing them to hear us from a great distance.

Sound Waves	Radio Waves
Air pressure variations	Strength variations in electric and magnetic fields
Require a medium to travel e.g. water	

- What is the purpose of the radio?
- ➤ To convert our voices (sound waves) into radio waves. These can be transmitted to other stations and converted back to sound waves, allowing them to hear us from a great distance.

Sound Waves	Radio Waves
Air pressure variations	Strength variations in electric and magnetic fields
Require a medium to travel e.g. water	Do not require a medium i.e. can travel through space

- What is the purpose of the radio?
- ➤ To convert our voices (sound waves) into radio waves. These can be transmitted to other stations and converted back to sound waves, allowing them to hear us from a great distance.

Sound Waves	Radio Waves
Air pressure variations	Strength variations in electric and magnetic fields
Require a medium to travel e.g. water	Do not require a medium i.e. can travel through space
Speed of sound 340 m/sec	

- What is the purpose of the radio?
- ➤ To convert our voices (sound waves) into radio waves. These can be transmitted to other stations and converted back to sound waves, allowing them to hear us from a great distance.

Sound Waves	Radio Waves
Air pressure variations	Strength variations in electric and magnetic fields
Require a medium to travel e.g. water	Do not require a medium i.e. can travel through space
Speed of sound 340 m/sec	Speed of light 300 million m/sec

- What is the purpose of the radio?
- ➤ To convert our voices (sound waves) into radio waves. These can be transmitted to other stations and converted back to sound waves, allowing them to hear us from a great distance.

Sound Waves	Radio Waves
Air pressure variations	Strength variations in electric and magnetic fields
Require a medium to travel e.g. water	Do not require a medium i.e. can travel through space
Speed of sound 340 m/sec	Speed of light 300 million m/sec
Cannot tune selectively	

- What is the purpose of the radio?
- ➤ To convert our voices (sound waves) into radio waves. These can be transmitted to other stations and converted back to sound waves, allowing them to hear us from a great distance.

Sound Waves	Radio Waves
Air pressure variations	Strength variations in electric and magnetic fields
Require a medium to travel e.g. water	Do not require a medium i.e. can travel through space
Speed of sound 340 m/sec	Speed of light 300 million m/sec
Cannot tune selectively	Can tune a single frequency

Radio Waves vs. Sound Waves

- What is the purpose of the radio?
- ➤ To convert our voices (sound waves) into radio waves. These can be transmitted to other stations and converted back to sound waves, allowing them to hear us from a great distance.

Sound Waves	Radio Waves
Air pressure variations	Strength variations in electric and magnetic fields
Require a medium to travel e.g. water	Do not require a medium i.e. can travel through space
Speed of sound 340 m/sec	Speed of light 300 million m/sec
Cannot tune selectively	Can tune a single frequency

Note: Both types of waves can be attenuated (weakened)

Why do you use the radio in aviation?

Why do you use the radio in aviation?

Ease of communication:

Why do you use the radio in aviation?

Ease of communication:

> With other aircraft

Why do you use the radio in aviation?

Ease of communication:

- ➤ With other aircraft
- With ground stations

Why do you use the radio in aviation?

Ease of communication:

- ➤ With other aircraft
- ➤ With ground stations
- Between crew members

Why do you use the radio in aviation?

Ease of communication:

- > With other aircraft
- With ground stations
- > Between crew members

Flight Safety:

Why do you use the radio in aviation?

Ease of communication:

- ➤ With other aircraft
- With ground stations
- Between crew members

Flight Safety:

Increases our situational awareness as we can hear what others are doing

Why do you use the radio in aviation?

Ease of communication:

- ➤ With other aircraft
- ➤ With ground stations
- > Between crew members

Flight Safety:

- Increases our situational awareness as we can hear what others are doing
- ➤ Allows quick communication with ground stations that can assist us in certain in-flight emergencies

BAND	Frequencies	Uses
Audio Frequency (AF)	20 Hz – 20,000Hz	Sounds humans can detect

BAND	Frequencies	Uses
Audio Frequency (AF)	20 Hz – 20,000Hz	Sounds humans can detect
Very Low Frequency (VLF)	3 KHz – 30 KHz	Comms with submarines

BAND	Frequencies	Uses
Audio Frequency (AF)	20 Hz – 20,000Hz	Sounds humans can detect
Very Low Frequency (VLF)	3 KHz – 30 KHz	Comms with submarines
Low Frequency (LF)	30 KHz – 300 KHz	Upper end for NDBs (radio navigation aid)

BAND	Frequencies	Uses
Audio Frequency (AF)	20 Hz – 20,000Hz	Sounds humans can detect
Very Low Frequency (VLF)	3 KHz – 30 KHz	Comms with submarines
Low Frequency (LF)	30 KHz – 300 KHz	Upper end for NDBs (radio navigation aid)
Medium Frequency (MF)	300 KHz – 3000 KHz (3 MHz)	Lower end for NDBsAM Radio Stations

BAND	Frequencies	Uses
Audio Frequency (AF)	20 Hz – 20,000Hz	Sounds humans can detect
Very Low Frequency (VLF)	3 KHz – 30 KHz	Comms with submarines
Low Frequency (LF)	30 KHz – 300 KHz	Upper end for NDBs (radio navigation aid)
Medium Frequency (MF)	300 KHz – 3000 KHz (3 MHz)	Lower end for NDBsAM Radio Stations
High Frequency (HF)	3 MHz – 30 MHz	Long range comms in aviation

BAND	Frequencies	Uses
Audio Frequency (AF)	20 Hz – 20,000Hz	Sounds humans can detect
Very Low Frequency (VLF)	3 KHz – 30 KHz	Comms with submarines
Low Frequency (LF)	30 KHz – 300 KHz	Upper end for NDBs (radio navigation aid)
Medium Frequency (MF)	300 KHz – 3000 KHz (3 MHz)	Lower end for NDBsAM Radio Stations
High Frequency (HF)	3 MHz – 30 MHz	Long range comms in aviation
Very High Frequency (VHF)	30 MHz – 300 MHz	Common in aircraft & ATCVOR (radio navigation aid)FM Radio Stations

BAND	Frequencies	Uses
Audio Frequency (AF)	20 Hz – 20,000Hz	Sounds humans can detect
Very Low Frequency (VLF)	3 KHz – 30 KHz	Comms with submarines
Low Frequency (LF)	30 KHz – 300 KHz	Upper end for NDBs (radio navigation aid)
Medium Frequency (MF)	300 KHz – 3000 KHz (3 MHz)	Lower end for NDBsAM Radio Stations
High Frequency (HF)	3 MHz – 30 MHz	Long range comms in aviation
Very High Frequency (VHF)	30 MHz – 300 MHz	Common in aircraft & ATCVOR (radio navigation aid)FM Radio Stations
Ultra High Frequency (UHF)	300 MHz – 3000 MHz (3 GHz)	ILS glideslopeMilitary aircraft*

BAND	Frequencies	Uses
Audio Frequency (AF)	20 Hz – 20,000Hz	Sounds humans can detect
Very Low Frequency (VLF)	3 KHz – 30 KHz	Comms with submarines
Low Frequency (LF)	30 KHz – 300 KHz	Upper end for NDBs (radio navigation aid)
Medium Frequency (MF)	300 KHz – 3000 KHz (3 MHz)	Lower end for NDBsAM Radio Stations
High Frequency (HF)	3 MHz – 30 MHz	Long range comms in aviation
Very High Frequency (VHF)	30 MHz – 300 MHz	Common in aircraft & ATCVOR (radio navigation aid)FM Radio Stations
Ultra High Frequency (UHF)	300 MHz – 3000 MHz (3 GHz)	ILS glideslopeMilitary aircraft*
Super High Frequency (SHF)	3 GHz – 30 GHz	Not commonly used in
Extra High Frequency (EHF)	30 GHz – 300 GHz	aviation

QUESTIONS/COMMENTS?

WAVE PROPAGATION

Wave Propagation

- Radio waves interact with the medium through which they are travelling i.e. air
- > They may be:

- Radio waves interact with the medium through which they are travelling i.e. air
- > They may be:
 - Reflected

- Radio waves interact with the medium through which they are travelling i.e. air
- > They may be:
 - Reflected
 - Refracted (bent)

- Radio waves interact with the medium through which they are travelling i.e. air
- > They may be:
 - Reflected
 - Refracted (bent)
 - Attenuated

- Radio waves interact with the medium through which they are travelling i.e. air
- > They may be:
 - Reflected
 - Refracted (bent)
 - Attenuated
 - Absorbed

- Radio waves interact with the medium through which they are travelling i.e. air
- > They may be:
 - Reflected
 - Refracted (bent)
 - Attenuated
 - Absorbed
 - Diffracted (divided

- ➤ Radio waves interact with the medium through which they are travelling i.e. air
- > They may be:
 - Reflected
 - Refracted (bent)
 - Attenuated
 - Absorbed
 - Diffracted (divided
- ➤ The degree to which radio waves are affected by a medium is dependent on their frequency

Wave Propagation – Space Waves

Wave Propagation – Space Waves

> Space Waves are **line of sight** – no physical obstructions or barriers between the transmitter and the receiver

Wave Propagation – Space Waves

- > Space Waves are **line of sight** no physical obstructions or barriers between the transmitter and the receiver
- > This includes VHF radio

Wave Propagation – Space Waves

- > Space Waves are **line of sight** no physical obstructions or barriers between the transmitter and the receiver
- This includes VHF radio

Wave Propagation – Space Waves

➤ Line of sight will be greater if you are **higher**

Wave Propagation – Space Waves

➤ Line of sight will be greater if you are **higher**

VHF range in nm =
$$\sqrt{1.5 X \ altitude \ in feet}$$

Wave Propagation – Space Waves

➤ Line of sight will be greater if you are **higher**

VHF range in nm =
$$\sqrt{1.5 X \ altitude \ in feet}$$

> Is there any way to extend VHF coverage beyond line of sight?

Wave Propagation – Reflection

Wave Propagation – Reflection

Space Waves may be reflected off a repeater station to extend beyond line of sight coverage

Wave Propagation – Phase Comparison

Wave Propagation – Phase Comparison

- One hazard caused by reflection is fading
- ➤ When two radio waves (a line of sight & a reflected wave) meet at the same point, they may cancel each other out

Wave Propagation – Phase Comparison

- One hazard caused by reflection is fading
- ➤ When two radio waves (a line of sight & a reflected wave) meet at the same point, they may cancel each other out

Wave Propagation – Phase Comparison

- One hazard caused by reflection is fading
- ➤ When two radio waves (a line of sight & a reflected wave) meet at the same point, they may cancel each other out

Perfectly in-phase: Signal will be stronger

Wave Propagation – Phase Comparison

- One hazard caused by reflection is fading
- ➤ When two radio waves (a line of sight & a reflected wave) meet at the same point, they may cancel each other out

Perfectly in-phase: Signal will be stronger

Anti-phase: Signal cancels out completely

QUESTIONS/COMMENTS?

Wave Propagation – Ground Waves

Wave Propagation – Ground Waves

> Follow paths close to the Earth's surface and roughly parallel to it

Wave Propagation – Ground Waves

- > Follow paths close to the Earth's surface and roughly parallel to it
- > They never leave the Earth's atmosphere

Wave Propagation – Ground Waves

- > Follow paths close to the Earth's surface and roughly parallel to it
- > They never leave the Earth's atmosphere

Wave Propagation – Ground Waves

- > Follow paths close to the Earth's surface and roughly parallel to it
- > They never leave the Earth's atmosphere

Ground Waves can extend beyond line-of-sight due to diffraction

Wave Propagation – Ground Waves

- > Follow paths close to the Earth's surface and roughly parallel to it
- > They never leave the Earth's atmosphere

- Ground Waves can extend beyond line-of-sight due to diffraction
- > Diffraction (a scattering of the radio waves over the earth's surface)

Wave Propagation – Ground Waves

- > Follow paths close to the Earth's surface and roughly parallel to it
- > They never leave the Earth's atmosphere

- Ground Waves can extend beyond line-of-sight due to diffraction
- > Diffraction (a scattering of the radio waves over the earth's surface)
- > Typically LF and MF, but can be as high as 3 MHz (HF)

QUESTIONS/COMMENTS?

Wave Propagation – Sky Waves

Waves that are refracted back to the earth by the ionosphere

- Waves that are refracted back to the earth by the ionosphere
- ➤ The ionosphere is a layer of positively charged ions, which bend and weaken signals

- Waves that are refracted back to the earth by the ionosphere
- ➤ The ionosphere is a layer of positively charged ions, which bend and weaken signals

- Waves that are refracted back to the earth by the ionosphere
- ➤ The ionosphere is a layer of positively charged ions, which bend and weaken signals

Wave Propagation – Sky Waves

Some sky waves will escape into space

Wave Propagation – Sky Waves

- Some sky waves will escape into space
- ➤ However, at a certain angle, waves will begin to be refracted in such a way that they are reflected back to earth

Wave Propagation – Sky Waves

Wave Propagation – Sky Waves

> Reflection off the ionosphere allows radio range to extend as much as 3,000nm

Wave Propagation – Sky Waves

- > Reflection off the ionosphere allows radio range to extend as much as 3,000nm
- High Frequency Band (long range communications)

Wave Propagation – Summary

Frequency Band	Propagation Path
LF	Surface Wave (Groundwave)
MF	Surface Wave (Groundwave)
HF	Sky Wave
VHF	Space Wave (Direct Wave)

QUESTIONS/COMMENTS?

FACTORS AFFECTING RECEPTION

Factors affecting Wave Propagation

Terrain – Terrain and physical objects cause the attenuation (weakening) of radio waves. This means that some radio waves (like VHF) cannot transmit through terrain – they are known as line-of-sight.

Factors affecting Wave Propagation

Terrain – Terrain and physical objects cause the attenuation (weakening) of radio waves. This means that some radio waves (like VHF) cannot transmit through terrain – they are known as line-of-sight.

Factors affecting Wave Propagation

Ionosphere – The height and thickness of the ionosphere varies and this varies the propagation and reception of sky waves. During the day, more ionisation occurs, resulting in more sky wave propagation. There is much less sky wave propagation at night as ionising radiation is largely absent.

Factors affecting Wave Propagation

Ionosphere – The height and thickness of the ionosphere varies and this varies the propagation and reception of sky waves. During the day, more ionisation occurs, resulting in more sky wave propagation. There is much less sky wave propagation at night as ionising radiation is largely absent.

Factors affecting Wave Propagation

Sun Spot Activity – Electrical and magnetic disturbances on the sun emit large quantities of UV radiation, causing intense ionisation in the upper atmosphere. This leads to increased sky wave propagation.

Factors affecting Wave Propagation

Sun Spot Activity – Electrical and magnetic disturbances on the sun emit large quantities of UV radiation, causing intense ionisation in the upper atmosphere. This leads to increased sky wave propagation.

Thunderstorms – Lightning can severely interfere with radio waves, in particular HF and lower frequencies. It can also affect navigation aid reception, resulting in faulty indications.

Factors affecting Wave Propagation

Electrical Equipment Interference

Man-made:

- Ignition interference caused by the extra-high voltage on reciprocating engines.
- Power distribution lines from leaking insulators, causing arcing to nearby receivers

Factors affecting Wave Propagation

Electrical Equipment Interference

Man-made:

- Ignition interference caused by the extra-high voltage on reciprocating engines.
- Power distribution lines from leaking insulators, causing arcing to nearby receivers

Adjacent channel interference:

 Signals on adjacent frequencies often interfere with desired signals, causing severe interference to radio reception.

So why use VHF in aeroplanes?

So why use VHF in aeroplanes?

Although VHF is only line of sight, it is the least susceptible to static interference due to the previous factors we have just discussed

So why use VHF in aeroplanes?

- Although VHF is only line of sight, it is the least susceptible to static interference due to the previous factors we have just discussed
- Some aircraft flying beyond VHF coverage also carry HF radio as a back-up to maintain communications

QUESTIONS/COMMENTS?