MECH650-Clearpath Husky Robot: Forward and Inverse Kinematics Mathematical Analysis SOLUTION MANUAL

Nicolas Abboud

10 September 2025

1 Introduction and Robot Specifications

The Clearpath Husky is an unmanned ground vehicle (UGV) designed for outdoor robotics research. It employs a skid-steer configuration with four wheels, where the left and right sides are driven independently.

Figure 1: Husky's front is shown. When commanded with a positive translational velocity (forward), wheels travel in the positive X-direction.

2 Coordinate Frame Conventions

Following ISO 8855 and ROS REP-103 standards:

• x-axis: Points forward (direction of positive linear velocity)

• y-axis: Points left

• z-axis: Points upward

• Origin: Located at the center point between the wheels (for 2-wheel model) or geometric center (for 4-wheel model)

2.1 Key Specifications:

- Track Width (l): 555 mm (0.555 m) distance between left and right wheel centers
- Wheelbase: 512 mm (0.512 m) distance between front and rear axles
- Wheel Radius (r): Approximately 165 mm (0.165 m) based on 13" diameter wheels
- Maximum Speed: 1.0 m/s (A200 series)
- Drive Configuration: 4-wheel differential drive (skid-steer)

2.2 State Vector

The robot's pose in the global frame is represented as:

$$\mathbf{q} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \tag{1}$$

where:

- (x,y) = position in the global coordinate frame
- θ = orientation (yaw angle) with respect to the global x-axis

3 Kinematic Model Development

3.1 \mathcal{T} Task 2: Define parameters and variables

Robot parameters (with symbols and values):

- Track width: l = 0.555 m
- Wheel radius: r = 0.165 m

Motion variables:

- Linear velocity: v = m/s
- Angular velocity: $\omega = \text{rad/s}$

3.2 \mathcal{T} Task 3: Derive the inverse kinematics

For the kinematic model you identified:

1. Write the relationship between robot motion and wheel velocities:

Left side velocity:
$$v_L = v - \frac{l\omega}{2}$$

Right side velocity: $v_R = v + \frac{l\omega}{2}$

2. Convert to wheel angular velocities:

$$\varphi_1 = \frac{v_L}{r} = \frac{v - \frac{l\omega}{2}}{r}$$

$$\varphi_2 = \frac{v_R}{r} = \frac{v + \frac{l\omega}{2}}{r}$$

3. Express in matrix form:

$$\begin{bmatrix} \varphi_1 \\ \varphi_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{r} & -\frac{l}{2r} \\ \frac{1}{r} & \frac{l}{2r} \end{bmatrix} \begin{bmatrix} v \\ \omega \end{bmatrix} \tag{2}$$

3.3 \mathcal{T} Task 4: Derive the forward kinematics

Now derive the forward kinematics - the relationship between wheel motions and robot motion:

1. Express the robot's linear and angular velocities in terms of wheel velocities: Linear velocity: $v = \frac{r(\varphi_1 + \varphi_2)}{2}$

Angular velocity: $\omega = \frac{r(\varphi_2 - \varphi_1)}{l}$

2. Write the transformation from robot body frame to global frame:

$$\dot{x} = v\cos\theta\tag{3}$$

$$\dot{y} = v \sin \theta \tag{4}$$

$$\dot{\theta} = \omega \tag{5}$$

3. Express in matrix form relating wheel velocities to robot pose derivatives:

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r\cos\theta}{2} & \frac{r\cos\theta}{2} \\ \frac{r\sin\theta}{2} & \frac{r\sin\theta}{2} \\ -\frac{r}{l} & \frac{r}{l} \end{bmatrix} \begin{bmatrix} \varphi_1 \\ \varphi_2 \end{bmatrix}$$
(6)

Hint: This should involve both the wheel radius r, track width l, and trigonometric functions of θ .

Hints

- Think about how many degrees of freedom the robot has
- Consider what happens when both left wheels rotate at the same speed
- For skid-steer, front and rear wheels on each side typically rotate together

Part 4 - Numerical Verification

Given parameters: l = 0.555 m, r = 0.165 m

Inverse Kinematics Calculations

Using your derived inverse kinematics equations and the Husky's actual parameters, calculate wheel angular velocities for:

• Pure forward motion at 0.5 m/s

Solution: For pure forward motion: $v = 0.5 \text{ m/s}, \omega = 0 \text{ rad/s}$

- $\begin{array}{l} -\ \varphi_1 = \frac{0.5-0}{0.165} = 3.03\ rad/s \\ -\ \varphi_2 = \frac{0.5+0}{0.165} = 3.03\ rad/s \end{array}$
- Do these values make sense? Why? Yes, both wheels rotate at the same speed for straight motion
- Pure rotation at 1 rad/s (turning in place)

Solution: For pure rotation: v = 0 m/s, $\omega = 1 \text{ rad/s}$

$$\begin{array}{l} -\ \varphi_1 = \frac{0 - \frac{0.555 \times 1}{2}}{0.165} = -1.68\ \mathrm{rad/s} \\ -\ \varphi_2 = \frac{0 + \frac{0.555 \times 1}{2}}{0.165} = +1.68\ \mathrm{rad/s} \end{array}$$

- What do you notice about these values? They are equal in magnitude but opposite in sign
- Following a circular arc: $v = 0.3 \text{ m/s}, \omega = 0.4 \text{ rad/s}$

Solution: For circular arc motion: $v = 0.3 \text{ m/s}, \omega = 0.4 \text{ rad/s}$

$$-\varphi_1 = \frac{0.3 - \frac{0.555 \times 0.4}{2}}{0.165} = 1.15 \text{ rad/s}$$
$$-\varphi_2 = \frac{0.3 + \frac{0.555 \times 0.4}{2}}{0.165} = 2.49 \text{ rad/s}$$

$$-\varphi_2 = \frac{0.3 + \frac{0.555 \times 0.4}{2}}{0.165} = 2.49 \text{ rad/s}$$

- Which wheel is faster? Why? Right wheel is faster because the robot is turning left

4.2 Forward Kinematics Calculations

Using your derived forward kinematics equations, calculate the robot's motion for these wheel speeds:

- Both wheels at 2 rad/s: $\varphi_1 = \varphi_2 = 2 \text{ rad/s}$ **Solution:**
 - Robot linear velocity: $v = \frac{0.165(2+2)}{2} = 0.33 \text{ m/s}$
 - Robot angular velocity: $\omega = \frac{0.165(2-2)}{0.555} = 0~\mathrm{rad/s}$
 - What type of motion is this? Pure translation (straight line motion)
- Opposite wheel speeds: $\varphi_1 = -1.5 \text{ rad/s}, \ \varphi_2 = +1.5 \text{ rad/s}$

Solution:

- Robot linear velocity: $v = \frac{0.165(-1.5+1.5)}{2} = 0$ m/s Robot angular velocity: $\omega = \frac{0.165(1.5-(-1.5))}{0.555} = 0.89$ rad/s
- What type of motion is this? Pure rotation (turning in place)
- Unequal wheel speeds: $\varphi_1 = 1 \text{ rad/s}, \varphi_2 = 3 \text{ rad/s}$

Solution:

- Robot linear velocity: $v = \frac{0.165(1+3)}{2} = 0.33 \text{ m/s}$
- Robot angular velocity: $\omega = \frac{0.165(3-1)}{0.555} = 0.59~\mathrm{rad/s}$
- Is the robot moving forward and turning? Yes, it's moving forward while turning right