$$W_{1} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$W_{2} = V_{2} - \left(\frac{W_{1} \cdot V_{2}}{W_{1} \cdot W_{1}} \right) W_{1}$$

$$W_{3} = V_{3} - \left(\frac{W_{1} \cdot V_{2}}{W_{1} \cdot W_{1}} \right) \left(\frac{W_{2} \cdot V_{3}}{W_{2} \cdot W_{2}} \right) W_{2} = 0$$
1. Consider the following vectors in \mathbb{R}^{4} :

The set $\mathcal{B} = \{v_1, v_2, v_3\}$ is a basis of some subspace V of \mathbb{R}^4 .

- a) Find an orthogonal basis $\mathcal{D} = \{w_1, w_2, w_3\}$ of the subspace V.
- b) Compute the vector $\operatorname{proj}_{V} \mathbf{u}$, the orthogonal projection of \mathbf{u} on V.

)
$$W_1 = V_1$$
, $W_2 = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$
 $W_3 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$
 $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$

$$W_{3} = \begin{bmatrix} 2 \\ -2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ -3 \\ 0 \end{bmatrix}$$

$$D = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -3 \\ -1 & 0 & 0 \\ 1 & -1 & 3 \end{bmatrix}$$

)
$$P_{1}O_{2}V_{1} = \left(\frac{0.V_{1}}{V_{1}.V_{1}}\right)V_{1} + \left(\frac{0.V_{2}}{V_{2}.V_{2}}\right)V_{2} + \left(\frac{0.V_{3}}{V_{3}.V_{3}}\right)V_{3}$$

$$= \left(\frac{3}{3}\right)\left[\frac{1}{0}\right] + \left(\frac{3}{3}\right)\left[\frac{1}{0}\right] + \left(\frac{0}{3}\right)\left[\frac{0}{3}\right]$$

$$P_{Y_0,V} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$