2017-12-07

- Suppose $A \leq_M B$ holds:
 - ∘ $A \leq_T B$ holds.
 - \circ If B is recognizable, then A is recognizable.
 - If A is not recognizable, then B is not recognizable.
- Suppose $A \leq_T B$ holds:
 - $A \leq_M B$ does not necessarily hold.
 - If B is decidable, then A is decidable.
 - If A is undecidable, then B is decidable.
- A_{TM} and A'_{TM} are Turing reducible but not mapping reducible.
 - $A'_{\text{TM}} \not\leq_M A_{\text{TM}}$ since A'_{TM} is not recognizable but A_{TM} is.
- HALT₀ and HALT'₀ are Turing reducible but not mapping reducible.
 - HALT'₀ $\not\leq_M$ HALT₀ since HALT'₀ is not recognizable but HALT₀ is.
- **Theorem**: If $A \leq_M B$, then $A' \leq_M B'$.
 - If $A \leq_M B$, then there exists a computable function f such that $w \in A$ iff $f(w) \in B$.
 - $w \in A$ iff $w \notin A'$ and $f(w) \in B$ iff $f(w) \notin B'$.
 - $w \notin A'$ iff $f(w) \notin B'$
 - $w \in A'$ iff $f(w) \in B'$. Hence, $A' \leq_M B'$.
- **Theorem**: L_0 is undecidable. (Intuition: $A_{TM} \leq_T L_0$)
 - Let a decider for L_0 be H := On input |M|: Accept if $L(M) = \emptyset$. Reject if $L(M) \neq \emptyset$.
 - Define $M'(M, w) := \text{On input } x : \text{Reject if } x \neq w. \text{ Otherwise, run } M \text{ on } w. \text{ Accept if } M \text{ accepts } w.$
 - Construct a decider $D := \text{On input } (M, w) : \text{Construct } M'(M, w) . \text{Run } H \text{ on } \lfloor M' \rfloor . \text{Accept if } H \text{ rejects } \lfloor M' \rfloor . \text{Reject if } H \text{ accepts } \lfloor M' \rfloor .$
 - If H decides L_0 , then D decides A_{TM} . A_{TM} is undecidable, so L_0 is undecidable.
- **Theorem**: L_1 is undecidable. (Intuition: $A_{TM} \leq_T L_1$)
 - Let a decider for L_1 be $H := \text{On input } \lfloor M \rfloor$: Accept if $L(M) = \Sigma^*$. Reject if $L(M) \neq \Sigma^*$.
 - Define $M'(M, w) := \text{On input } x : \text{Accept if } x \neq w. \text{ Otherwise, run } M \text{ on } w. \text{ Reject if } M \text{ accepts } w.$
 - Construct a decider D := On input (M, w): Construct M'(M, w). Run H on $\lfloor M' \rfloor$. Accept if H rejects $\lfloor M' \rfloor$. Reject if H accepts $\lfloor M' \rfloor$.
 - If H decides L_1 , then D decides A_{TM} . A_{TM} is undecidable, so L_1 is undecidable.
- **Theorem**: L_2 is undecidable. (Intuition: $A_{TM} \leq_T L_2$)
 - Let a decider for L_2 be H := On input |M|: Accept if M accepts ε . Reject if M rejects ε .
 - Define $M'(M, w) := \text{On input } x : \text{Accept if } x \neq \varepsilon. \text{ Otherwise, run } M \text{ on } w. \text{ Accept if } M \text{ accepts } w$
 - Construct a decider D := On input (M, w): Construct M'(M, w). Run H on $\lfloor M' \rfloor$. Accept if H accepts $\lfloor M' \rfloor$. Reject if H rejects $\lfloor M' \rfloor$.

- If H decides L_2 , then D decides A_{TM} . A_{TM} is undecidable, so L_2 is undecidable.
- **Theorem**: L_5 is undecidable. (Intuition: $A_{TM} \le_T L_5$)
 - Let a decider for L_5 be $H := \text{On input } \lfloor M \rfloor$: Accept if L(M) is regular. Reject if L(M) is non-regular.
 - Define M'(M, w) := On input x: Accept if x has the form $0^n 1^n$. Otherwise, run M on w. Accept if M accepts w.
 - Construct a decider $D := \text{On input } (M, w) : \text{Construct } M'(M, w) : \text{Run } H \text{ on } \lfloor M' \rfloor : \text{Accept if } H \text{ accepts } \lfloor M' \rfloor : \text{Reject if } H \text{ rejects } \lfloor M' \rfloor :$
 - If H decides L_5 , then D decides A_{TM} . A_{TM} is undecidable, so L_5 is undecidable.