Федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича»

Факультет Радиотехнологий связи

Кафедра Радиосистем и обработки сигналов

Дисциплина «Техническая электродинамика»

Лабораторная работа № 4

Исследование электромагнитного поля в линиях передачи с волнами класса Т

Выполнили:	Громов А.А. Миколаени М.С. ИКТЗ-83
Проверил:	Гуреев А. Е.

Санкт-Петербург

Цель работы:

- 1. Экспериментальное исследование электромагнитного поля Т-волны в измерительной плоскостной линии и в коаксиальном круглом волноводе.
- 2. Измерение длины волны в плоскостной линии и в коаксиальном круглом волноводе для Т-волны.

Схема установки:

Схема лабораторной установки представлена на рис. 4.8, где 1 — генератор высокочастотных колебаний, 2 — коаксиальный волновод, 3 — измерительная линия Р1-3, построенная на основе плоскостной линии (рис. 4.3), 4 — переход с измерительной линии на коаксиальный волновод, 5 — коаксиальный волновод, короткозамкнутый или согласованный, 6 — индикаторный прибор (микроамперметр или измерительный усилитель).

Теоретическая часть:

Рис. 4.6

Рис. 4.7

- 1. Волна может распространяться только в таких линиях передачи, по которым возможны передачи энергии постоянного тока, т.е. в линиях, состоящих не менее чем из двух изолированных друг от друга параллельных металлических проводников.
- 2. Для определения диапазона одноволнового режима плоской линии 2a> λ >а следует определить $\lambda_{\rm kp}$ поля первого высшего тока H_{11} :

$$\lambda_{\rm km} = 2d + \pi b / 2$$

В этом случае условие принимает вид

$$2d+\pi b/2 < \lambda < \infty$$

Для коаксиального:

$$\pi(d+b)/2 < \lambda < \infty$$
, где $\lambda_{\kappa p} = \pi(d+b)/2$

3. Характеристическое сопротивление:

$$z_i = \sqrt{\frac{\mu_a}{\epsilon_a}} \left(O_{\rm M} \right)$$

4. Волновое сопротивление

$$z_{\beta} + \frac{U_{\pm}(z)}{I(z)} = \frac{U_{0+}}{I_{0+}}$$

Для коаксиального:

$$z_{\beta} = \frac{Z_{\lambda}}{2\pi} ln(\frac{b}{d}) = \frac{60}{\sqrt{\epsilon_r}} ln(\frac{b}{d})$$
 (Om)

- 5. Коэффициент отражения по напряжению. отношение напряжению отраженной волны к напряжению падающей волны
- 6. В Ян = ∞ ("холостой ход") установлен режим стоячей волны т.к. в режиме стоячей волны амплитуда поля изменяется, то излучение существует.

Предварительные расчеты:

1. d=6mm, b=11mm

2. b=10mm, d=4.34mm

$$\pi^*(d+b)/2 < \lambda < \inf => 3.14*(10*10^{-3} +4.34*10^{-3})/2 < \lambda < \inf => 23 mm < \lambda < \inf$$

Таблицы измерений:

Таблица 1:

z	a(z)	$\sqrt{\mathrm{a}(z)/\mathrm{a}_{\mathrm{Max}}}$
4.9	2.6	1
5.4	0.02	0.08
5.9	2.3	0.94
5.7	0.9	0.58
6.2	2.5	0.98
6.7	1.5	0.75
6.6	2.4	0.96
7.1	0.01	0.06
7.6	2.4	0.96

Таблица 2:

x	a(x)	$\sqrt{\mathrm{a}(x)/\mathrm{a}_{\mathrm{Max}}}$
3.9	1.7	0.82
4.4	0.01	0.06
4.9	2.0	0.89
4.6	0.6	0.48
5.1	2.5	1
5.6	1.5	0.77
5.6	1.5	0.77
6.1	0.01	0.06
6.6	2.2	0.93

Обработка результатов измерений:

1.

Для плоскостной линии

Для коаксиального волновода

2.
$$\lambda = \frac{c}{f} = \frac{3*10^8}{9000*10^6} = 0.0(3) = 3.3 \text{ cm}$$
 - теоретическая длина волны $\Lambda = 1, 7*2 = 3.4 \text{ cm}$ - экспериментальная длина волны для плоскостной линии. $\Lambda = 1, 7*2 = 3.4 \text{ cm}$ - экспериментальная длина волны для коаксиального волновода.

3.

Для a(x):

$$K_{cb} = \frac{E_{maxm}}{E_{min m}} = \sqrt{\frac{\alpha_{max}}{\alpha_{min}}} = \sqrt{\frac{2.5}{0.01}} = 15.8$$

Для a(z):

$$K_{cB} = \frac{E_{maxm}}{E_{min m}} = \sqrt{\frac{\alpha_{max}}{\alpha_{min}}} = \sqrt{\frac{2.6}{0.01}} = 16.1$$

Выводы:

- 1. Значения теоретической и экспериментальной длин волн для обоих типов волноводов почти совпали, и входят в рассчитанный диапазон частот.
- Коэффициенты стоячей волны для плоскостной линии и коаксиального волновода практически совпадают по значениям.