Московский Физико-Технический Институт (государственный университет)

Лабораторная работа 5.2.2

Изучение спектра атома водорода

Автор:

Овсянников Михаил Б01-008

Долгопрудный, 2022

Содержание

Теоретические сведения	3
Экспериментальная установка	4
Ход работы	5
Вывод	10

Цель работы: исследовать спектральные закономерности в оптическом спектре водорода. По результатам измерений вычислить постоянную Ридберга для водорода.

Теоретические сведения

Атом водорода является простейшей атомной системой; для него уравнение Шредингера может быть решено точно. Поэтому спектр атома водорода является предметом тщательного экспериментального и теоретического исследования.

Объяснение структуры спектра излучения атомов требует знания схемы атомных энергетических уровней, что, в свою очередь, требует решения задачи о движении электрона в эффективном поле атома. Для атома водорода и водородоподобных (одноэлектронных) атомов определение энергетических уровней значительно упрощается, так как квантовомеханическая задача об относительном движении электрона (заряд -e, масса m_e) и ядра (заряд Ze, масса M) сводится к задаче о движении частицы с эффективной массой $\mu = m_e M/(m_e + M)$ в кулоновском поле $-Ze^2/r$. Однако даже для водородоподобных атомов это решение не является простым.

Длины волн спектральных линий водородоподобного атома описываются формулой

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right),\tag{1}$$

где R – константа, называемая постоянной Ридберга, а m и n – целые числа. Эта формула достаточно правильно описывает экспериментальные значения линий водорода при $R=109677,6~{\rm cm}^{-1}.$

В данной работе изучается серия Бальмера, линии которой лежат в видимой области. Для серии Бальмера n=2. Величина m для первых четырех линий этой серии принимает значение 3,4,5,6. Эти линии обозначаются символами $H_{\alpha},\,H_{\beta},\,H_{\gamma},\,H_{\delta}$.

Энергия уровня с квантовым числом n определяется формулой:

$$E_n = -\frac{m_e Z^2 e^4}{2\hbar^2} \frac{1}{n^2} = -R \frac{Z^2}{n^2}.$$
 (2)

Экспериментальная установка

Для измерения длин волн спектральных линий в работе используется стеклянно-призменный монохроматор-спектрометр УМ-2, предназначенный для спектральных исследований в диапазоне от 0,38 до 1,00 мкм. Первые две призмы с преломляющими углами 30° изготовлены из тяже-

Рис. 1. Устройство монохроматора УМ-2

лого флинта, обладающего большой дисперсией. Промежуточная призма Π_3 сделана из крона. Лучи отражаются от ее гипотенузной грани и поворачиваются на 90°. Благодаря такому устройству дисперсии призм Π_1 и Π_2 складываются.

Для отсчета положения спектральной линии ее центр совмещается с острием указателя. Отсчет проводится по делениям барабана.

Для градуировки в коротковолновой части спектра удобно применять ртутную лампу ПРК-4, а в длинноволновой и средней части спектра –

неоновую лампу.

Для увеличения яркости интересующих нас линий атомарного водорода в состав газа, которым заполняют трубку при ее изготовлении, добавляют пары воды. Молекулы воды в электрическом разряде разлагаются, образуя атомарный водород. Трубка заполняется газом до давления 5–10 Тор.

Ход работы

1. Проградуируем спектрометр УМ-2 по спектрам неона и ртути. Отсчитываем угол по барабану. Погрешность измерения углов $\sigma_{\theta} = 5^{\circ}$. Результаты для неона и ртути запишем в таблицу 1.

Неон			
		0	
Линия	Угол θ°	Длина волны, Å	
1	2542	7032	
2	2518	6929	
3	2444	6717	
4	2436	6678	
5	2410	6599	
6	2386	6533	
7	2376	6507	
8	2338	6402	
9	2330	6383	
10	2310	6334	
11	2296	6305	
12	2284	6267	
13	2264	6217	
14	2244	6164	
15	2234	6143	
16	2214	6096	
17	2204	6074	
18	2186	6030	
19	2156	5976	
20	2146	5945	
21	2114	5882	
22	2098	5852	
23	1836	5401	
24	1800	5341	
25	1796	5331	

Ртуть			
Линия	Угол θ°	Длина волны, Å	
K1	2506	6907	
K2	2270	6234	
1	2068	5791	
2	2056	5770	
3	1876	5461	
4	1452	4916	
5	786	4358	
6	226	4047	

Таблица 1. Градуировка по спектрам неона и ртути

Построим градуировочный график, основываясь на этих данных.

Рис. 2. Зависимость $\lambda(\theta)$

Использовалась аппроксимация:

$$\lambda(\theta) = A + \frac{B}{\theta - C}.$$

Из расчетов получаем следующее:

- $A = (2343 \pm 4) \text{ Å}$
- $B = (-6200 \pm 14) \cdot 10^3 \text{ Å}$
- $C = (3865 \pm 2)$
- 2. Измерим положения линий атома водорода. Результаты пишем в таблицу 2.

Линия	Угол θ°
H_{α}	2394
H_{eta}	1404
H_{γ}	756
H_{δ}	338

Таблица 2. Линии атома водорода

Используя аппроксимирующую формулу и градуировочный график, найдем значения длин волн для этих линий. Погрешность для каждой:

$$\sigma_{\lambda} = \sqrt{\left(\frac{\partial \lambda}{\partial A}\right)^{2} \sigma_{A}^{2} + \left(\frac{\partial \lambda}{\partial B}\right)^{2} \sigma_{B}^{2} + \left(\frac{\partial \lambda}{\partial C}\right)^{2} \sigma_{C}^{2} + \left(\frac{\partial \lambda}{\partial \theta}\right)^{2} \sigma_{\theta}^{2}}$$

$$\sigma_{\lambda} = \sqrt{\sigma_{A}^{2} + \frac{\sigma_{B}^{2}}{(\theta - C)^{2}} + \frac{B^{2} \sigma_{C}^{2}}{(\theta - C)^{4}} + \frac{B^{2} \sigma_{\theta}^{2}}{(\theta - C)^{4}}}$$

Линия	Угол θ°	Длина волны λ , Å	Табличное значение $\lambda_{ ext{табл}}, \mathring{\mathrm{A}}$
H_{α}	2394	6560 ± 20	6563
H_{eta}	1404	4862 ± 9	4861
H_{γ}	756	4338 ± 7	4340
H_{δ}	338	4101 ± 6	4102

Таблица 3. Сводная таблица по линиям атома водорода

Как видим, результаты чрезвычайно близки к табличным. Ошибка определения длин волн составляет $\sim 0.1-0.3\%$.

3. Теперь рассчитаем постоянную Ридберга R для каждой линии. Результаты в таблице 4.

Линия	Угол <i>ө</i> °	Длина волны λ , Å	Постоянная Ридберга R , см $^{-1}$
H_{α}	2394	6560 ± 20	109756 ± 300
H_{β}	1404	4862 ± 9	109679 ± 200
H_{γ}	756	4338 ± 7	109772 ± 200
H_{δ}	338	4101 ± 6	109726 ± 200

Таблица 4. Значение постоянной Ридберга, рассчитанное по линиям водорода

В среднем получаем:

$$R = (109733 \pm 100) \text{ cm}^{-1}$$

Попробуем задействовать сразу все линии, чтобы разово вычислить постоянную Ридберга. Построим график такой вот зависимости величин $\frac{1}{\lambda} = f\left(\frac{1}{n^2} - \frac{1}{m^2}\right)$ и по наклону найдем значение R. Поскольку

Линия	Длина волны λ , Å	σ_{λ} , Å	$1/\lambda, 10^{-4} \text{ Å}^{-1}$	$\sigma_{1/\lambda}, 10^{-4} \text{ Å}^{-1}$
H_{α}	6560	20	1,524	0,005
H_{eta}	4862	9	2,057	0,004
H_{γ}	4338	7	2,305	0,004
H_{δ}	4101	6	2,438	0,004

Таблица 5. Таблица-приготовление для построения графика

n и m – это целые числа, то погрешности по оси абсцисс нет. Вдобавок, мы знаем погрешность для каждого значения $1/\lambda$. Именно поэтому выбираем метод построения χ^2 .

В нашем приближении: $1/\lambda = R \cdot (\frac{1}{n^2} - \frac{1}{m^2})$.

$$\chi^{2} = \sum_{i=1}^{4} \frac{(y_{i} - kx_{i})^{2}}{\sigma_{y_{i}}^{2}} \to \min \Longrightarrow k = \frac{\sum_{i=1}^{4} \frac{x_{i}y_{i}}{\sigma_{y_{i}}^{2}}}{\sum_{i=1}^{4} \frac{x_{i}^{2}}{\sigma_{y_{i}}^{2}}}$$

Рис. 3. Зависимость $1/\lambda$ от $1/n^2 - 1/m^2$

Из графика получаем (k = R):

$$R = (109736 \pm 100) \text{ cm}^{-1}$$

То есть найденное только что значение находится в согласии с ранее посчитанными. Учитывая, что табличное значение R=109677,6 см $^{-1}$, то можно сказать, что найденные результаты с отличной точностью совпадают как между друг с другом, так и с табличным значением.

Вывод

	٥	0	
Линия	Длина волны λ , Å	Табличное значение, А	Постоянная Ридберга R , см ⁻¹
H_{α}	6560 ± 20	6563	109756 ± 300
H_{eta}	4862 ± 9	4861	109679 ± 200
H_{γ}	4338 ± 7	4340	109772 ± 200
H_{δ}	4101 ± 6	4102	109726 ± 200
		Среднее	109733 ± 100
		По графику	109736 ± 100
		Итоговое	109735 ± 100
		Табличное	109678

Таблица 6. Итоговая таблица

В данной работе мы исследовали спектральные закономерности в оптическом спектре водорода. Мы измерили значения спектральных линий водорода, соответствующих серии Бальмера. Они оказались чрезвычайно точными. Погрешности составляют доли процентов. Также, мы рассчитали постоянную Ридберга для атома водорода. Она оказалась тоже крайне точной. В пределах погрешностей все найденные величины совпадают с табличными.