Algorithms and their Applications CS2004 (2020-2021)

Dr Mahir Arzoky

6.1 Classic Algorithms - Sorting

NOTICES

Note on Laboratory Worksheets

☐ Class tests ☐ As of Friday (last week): ☐ Mock Test: 174 attempts ☐ Class Test 2: CR I: 71 attempts ☐ Class Test 3 will be released in week 8 ☐ Task 1 and Task 2 components are based on the content of laboratory worksheets ☐ Remember not to let these worksheets "pile up" Do not leave any worksheet longer than 2 weeks Don't miss the introduction at the beginning of the laboratory

Previously On CS2004...

- ☐ So far we have looked at:
 - ☐ Concepts of Computation and Algorithms
 - ☐ Comparing algorithms
 - Some mathematical foundation
 - ☐ The Big-Oh notation
 - Computational Complexity
 - ☐ Last week we also looked at data structures...

Classic Algorithms - Sorting

- ☐ Within this lecture we are going to look at three sorting algorithms in detail
 - ☐ Bubble Sort
 - Quick Sort
 - ☐ Radix Sort
- ☐ We will also look [very] briefly at other sorting algorithms

Growth Rates of Algorithms

- \square A plot of n against a number of possible T(n)
- ☐ The y-axis is in logarithmic scale so that all the data can be viewed
 - ☐ I am using log base 10, but often log base 2 is used
- \square When n = 100
 - $\square \log(n) = 2$, n = 100, $n\log(n) = 200$, $n^2 = 10{,}000$ and $n^3 = 1{,}000{,}000$

Recap – Why Bother With Sorting?

☐ Sorting applications are one of the most common algorithms ☐ They are implemented in computer games, network routing software, operating systems, Al algorithms, bin packing algorithms, etc.... ☐ The sorting problem itself is easily understood ☐ It does not require a large amount of background knowledge before you can start implementing it ☐ The algorithms are quite small and manageable They can be implemented in a short period of time ☐ They are relatively simple to analyse

Formal Definition of Sorting

 \Box The sorting problem is a mapping from x to y, where \square x and y are both n length real vectors (lists and/or arrays) \Box y is a permutation of x (different ordering) $\Box y_i < y_{i+1} \text{ for all } i=0,...,n-1$ ☐ The problem of reordering items of an array in a certain order ☐ The algorithms can easily be applied to integers or character vectors ☐ Sorting whole numbers ☐ Sorting names and/or addresses ☐ Essentially anything that can be ordered/compared...

Applications

☐ When an array is sorted, many problems
involving this array becomes easier, for
example:
☐ To search for a specific value
☐ To find the smallest and/or largest value (min/max)
To count how many times a specific value appear in array
☐ To find out how unique are the values and delete duplicates
☐ To do intersection and/or union between two different
arrays
□ etc

Recap: Selection Sort

- ☐ So far you only looked at Selection Sort...
- ☐ It sorts an array by repeatedly finding the minimum element from unsorted part of the array and puts it at the beginning...

Monkey Sort!

☐ Bogosort, stupid sort, slowsort, shotgun sort, permutation sort... ☐ Highly inefficient sorting algorithm ■ Successively generates permutations of its input until it finds one permutation that is sorted! ■ Best case: \Box O(n) ■ Worst case: \Box O(n!)

Bubble Sort

- ☐ Repeatedly compare adjacent pairs of elements
- ☐ Swap the elements in pair putting the smaller element first
- When it reaches end of list, starts over
- ☐ It stops when no more swaps can be made

Bubble Sort Worked Example

Classic Algorithms - Sorting

Bubble Sort: Summary

- ☐ If we compare pairs of adjacent elements and none are out of order, the list is sorted
- ☐ If any are out of order, we must have to swap them to get an ordered list
- ☐ Bubble sort will make passes though the list swapping any elements that are out of order

Bubble Sort: An Example – Part 1

Observations:

- After the first pass, the list has not been sorted yet!
- 8 (or n-1) comparisons have been made!
- The largest element (the bubble), 9, has been moved to the end!
- ☐ The smaller elements have been shifted towards to the beginning

Questions:

- ☐ How many elements do we need to sort in the next pass?
- ☐ When will the sort algorithm stop?
- ☐ What about the best case? How many passes?
- ☐ What about the worst case? How many passes?

Bubble Sort: An Example – Part 2

Overall result:

Original	7	3	9	4	2	5	6	1	8
Pass 1	3	7	4	2	5	6	1	8	9
Pass 2	3	4	2	5	6	1	7	8	9
Pass 3	3	2	4	5	1	6	7	8	9
Pass 4	2	3	4	1	5	6	7	8	9
Pass 5	2	3	1	4	5	6	7	8	9
Pass 6	2	1	3	4	5	6	7	8	9
Pass 7	1	2	3	4	5	6	7	8	9
Pass 8	1	2	3	4	5	6	7	8	9

In each pass, how many operations (comparisons) are needed?

Bubble Sort

```
Algorithm 1. BubbleSort(x)
Input: x - a list of n numbers
 1) Let NoSwaps = False
 2) While NoSwaps = False
 3)
       Let NoSwaps = True
 4) For i = 0 to n-2
 5)
          If x_i > x_{i+1} then
 6)
             Swap x_i and x_{i+1}
 7)
             Let NoSwaps = False
 8)
          End If
 9)
       End For
10) End While
Output: x - sorted (ascending)
```

- ☐ The algorithm works by running through the list of numbers, swapping pairs that are out of order
- ☐ The algorithm terminates when no swaps need to be made
- ☐ Smaller numbers "bubble" to the top whilst larger numbers sink to the bottom
- ☐ Line 5 needs changing to < in order to get the algorithm to sort the list in descending order
- Note: to fit the pseudo code onto one slide, I have not reduced the list size index by one each iteration...

Best-Case Analysis

- ☐ If the elements are in sorted order at the start, the for loop will compare the adjacent pairs but not make any changes
- ☐ This means that the NoSwaps variable will remain true
 - ☐ The While loop is only done once
- ☐ Thus, comparisons are done but not the swaps...
- ☐ There are n-1 comparisons in the best case
 - $\square B(n) \equiv O(n)$

Worst-Case Analysis

- ☐ If in the best case the while loop is done once, in the worst case the while loop must be done as many times as possible
 - ☐ This will be when the data is in reverse order
- ☐ Each pass of the For loop must make at least one swap of the elements
- ☐ The number of comparisons will be:

$$W(n) = \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2} \equiv O(n^2)$$

Quick Sort

necessarily in order)

☐ Quicksort is a divide and conquer algorithm
 ☐ Quicksort picks an element from the list as the pivot, and partitions the list into two pieces:
 ☐ Those elements smaller than the pivot value (not necessarily in order)

Quicksort is then called recursively on both pieces

☐ Those elements larger than the pivot value (not

Quick Sort: Example – Part 1

Quick Sort: Example – Part 2

The Quick Sort Algorithm

```
Algorithm 2. QuickSort(List, First, Last)
Input: List, the elements to be put into order
       First, the index of the first element
       Last, the index of the last element
1) If First < Last Then
2)
      Let Pivot = PivotList(List, First, Last)
      Call QuickSort(List, First, Pivot-1)
3)
4)
      Call QuickSort(List, Pivot+1, Last)
  End If
Output: List in a sorted order
```

Two Algorithms: **QuickSort** (recursive), **PivotList** (defined later)

The PivotList Algorithm

First

```
Algorithm 3. PivotList(list, first, last)
   Input: List- the elements to be put into order
            First- the index of the first element
           Last- the index of the last element

    Pick the first element as the pivot

   1) PivotValue = list[first] 
   2) PivotPoint = first _____Set the pivot point as the first location of the list
                                               Move through the list comparing the pivot
   3) For index = first+1 to last
          If list[index] < PivotValue Then element to the rest
   4)
                                                           If an element is smaller
   5)
              PivotPoint=PivotPoint+1
              Swap(list[PivotPoint], list[index]
   6)
                                                              Increase the pivot point
          End if
   7)
                                                        Swap this element into the
   8) End For
                                                        new pivot point location
   9) Swap(list[first], list[PivotPoint])
   Output: PivotPoint
                                                     Move pivot value into correct place
                   < pivot
                                       ≥ pivot
                                                           unknown
pivot
```

Pivot point

Index

Variations of Quick Sort

- ☐ There are many different versions of Quick Sort, based on the different ways of picking the pivot:
 - ☐ Pivot always being the first element
 - ☐ Pivot always being the last element
 - ☐ Pivot is selected randomly
 - ☐ The median is chosen as the pivot

Worst-case Analysis

- In the worst case, PivotList will do n-1 comparisons, but creates one partition that has n-1 elements and the other will have no elements
 - When will this happen?
- ☐ Because we wind up just reducing the partition by one element each time
- ☐ The worst case is given by:

$$W(n) = \sum_{i=2}^{n} (i-1) = \frac{n(n-1)}{2} \equiv O(n^2)$$

Best-case Analysis

That leaves only size 1 problems – so we are done!

- ☐ PivotList creates two parts that are the same size
- ☐ And then all subsequent parts are the same size as the algorithm calls itself, this can be modelled as a binary tree
- \square Summing up over the partitions we get $B(n)=B(nh)=O(n\text{Log}_2(n))$

*h=number of levels

Comparison of Sorting Algorithms

Method	Best	Average	Worse
Bubblesort	O(n)	$O(n^2)$	$O(n^2)$
Insertion sort	$\mathrm{O}(n)$	$O(n^2)$	$O(n^2)$
Mergesort	$O(nLog_2(n))$	$O(nLog_2(n))$	$O(nLog_2(n))$
Quicksort	$O(nLog_2(n))$	$O(nLog_2(n))$	$O(n^2)$
Selection sort	$O(n^2)$	$O(n^2)$	$O(n^2)$

- ☐ We are interested in the worse case performance
- ☐ Useful to consider the average
- \square Can we do O(n) for the worst case?

Radix Sort – Part 1

- ☐ The Radix sort method works only on binary or integer data
- ☐ Radix sort works by using a binary bucket sort for each binary digit
- ☐ We first "sort" by the least significant bit
- ☐ Split input into 2 sets based on the bit those that have a 0 or those that have a 1
 - ☐ Otherwise maintain the order...
- ☐ Then proceed to the next least significant bit and repeat until we run out of bits...

Radix Sort – Part 2

Radix Sort - Part 3

- \Box The Radix sort takes O(nb) time complexity
 - \square n is the numbers items
 - \Box b is the numbers of bits (in the representation)
 - ☐ Best, worse and average case
- ☐ It is very, very fast!
- ☐ Can be used for alphabetical sorting, i.e. strings

This Week's Laboratory

- ☐ This laboratory is also one of the worksheets you may be assessed on for Task #1 and Task #2
- ☐ We will look at testing three sorting algorithms

Next Lecture

- We will be looking at classic graph based algorithms
- ☐ Next week is ASK/Reading week
 - ☐ There will be no lectures or laboratories for this module...