1、实验名称及目的

PSP 官方提供实验总览: 熟悉 PSP 官方提供的实验资源,通过对 px4demo_input_rc.slx 实验的讲解,了解硬件在环仿真流程。(注:本文档以 px4demo_input_rc.slx 为主进行讲解,其余实验请参见 Pixhawk_Pilot_Support_Package.pdf 文件或关注本平台其余课程实验)

2、实验效果

通过烧录 px4demo_input_rc.slx 模型编译的固件,实现了遥控器控制飞控板面上的指示等交替显示效果。

3、文件目录

文件夹/文件名称	说明	
SerialCommProtocolExample	串口通信协议文件	
px4demo_ADC_example.slx	读取 ADC 通道实验。	
px4demo_input_rc.slx	遥控器控制红绿灯实验。	
px4demo_rgbled.slx	呼吸灯实验。	
px4demo_tune.slx	蜂鸣器设置实验。	
px4demo_gps.slx	GPS 模块测试实验。	
px4demo_attitude_plant.slx	姿态控制软件在环仿真实验。	
px4demo_attitude_control.slx	姿态控制器文件。	
px4demo_attitude_system.slx	姿态控制实飞实验。	
px4demo_Parameter_CSC_example.slx	Pixhawk 内部参数读取实验。	
px4demo_ParameterUpdate_CSC_example.slx	Pixhawk 内部参数更新实验。	
px4demo_write_uorb_example.slx	uORB 消息写入实验	
px4demo_Serial_TxRx.slx	串口通信(接收端)实验。	
px4demo_fcn_call_uorb_example.slx	调用 uORB 消息实验。	
px4demo_read_uorb_example.slx	读取 uORB 消息实验。	
px4demo_read_uorb_example_dai.slx	读取自定义 uORB 消息实验。	
px4demo_HostSerial_TxRx.slx	串口通信(主机端)实验。	
px4demo_log.slx	飞行日志记录实验	
px4demo_mavlink_rc.slx	MAVLink 接口调用实验	
px4_read_binary_file.m	二进制(.bin)文件读取函数	
Pixhawk_Pilot_Support_Package.pdf	MATLAB 官方 PSP 帮助文件	
datalog_A.bin	飞行日志的二进制文件	
pixhawk_A.bin		
	·	

4、运行环境

序号	软件要求	硬件要求	
		名称	数量(个)
1	Windows 10 及以上版本	笔记本/台式电脑 [®]	1
2	RflySim 平台免费版及以上	卓翼 H7 飞控 ^②	1
3	MATLAB 2017B 及以上	遥控器 [®]	1
4		遥控器接收器	1
5		数据线、杜邦线等	若干

- ① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: droneyee_zyfc-h7_default, 固件版本为: 1.12.1。其他配套飞控请见: http://doc.rflysim.com/hardware.html
- ③:本实验演示所使用的遥控器为:福斯 FS-i6S、配套接收器为:FS-iA6B。遥控器相关配置见: http://doc.rflysim.com/hardware.html

5、实验步骤

Step 1:

打开 MATLAB 软件, 在 MATLAB 中打开 px4demo_input_rc.slx 文件, 点击编译命令。

Step 2:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左侧为生成的编译报告。

Step 3:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行, 弹出 CMD 对话框,显示正在上传固件至飞控中,等待上传成功。

Step 4:

打开遥控器,本实验所使用的遥控器各通道设置如下:

根据 Simulink 模型的设计思路, 当 CH3≤1500 时,指示灯正常闪烁;当 CH3>1500 时,指示灯快速闪烁;当 CH4≤1500 时,指示灯为红灯;当 CH4>1500 时,指示灯为蓝灯;因此,在硬件连接完成后,当摇杆处于位置 1 时为蓝灯正常闪烁,位置 2 时为红灯正常闪烁,位置 3 时为蓝灯快速闪烁,位置 4 时为红灯快速闪烁。指示灯位置如下图。

