COMP90018 Mobile Networks

Anthony Quattrone

Wireless Wide Area Networks

Fundamentals I

Analog signals

- Continuous electrical signals varying in time
- Usually analog signals are not smooth waveforms
- Voice overlays carrier signal
- Used in 1st generation wireless signals

Fundamentals II

Digital signals

- Use of analog signals to transmit numbers
- Conversion into bits
- Transmission: streams of 1s and 0s
- Used in all 2nd generation networks

Benefits of Digital Networks I

Efficiency

- Higher data transfer than analog networks
- Enables compression for higher efficiency
- Smaller power consumption

Security

- Simple eavesdropping for analog signals with radio tuner
- Even true for encrypted packets on analog networks
- Digital networks: encryption of different strengths

Benefits of Digital Networks II

Degradation and restoration

- Degraded signals can be restored because each bit is either0 or 1
- Leads to better sound quality with less interference

Error detection

- Parity bit signals if transmission was successful
- Otherwise: retransmission or even error correction

Features

- Caller ID and call answer
- Data traffic

Switching Mechanisms

Circuit switching

- Establish a physical connection between sender and receiver
- Used for landline telephone networks
- Good voice but inefficient for data transmission
- Lost connection results in long connection times

Packet switching

- Share a connection between users
- Divide data into small units with a destination address
- Receiver restores original data format
- No dedicated connection is established (quick)
- Basis for 3G networks

Signal Propagation

Transmission range

Communication with low errors

Detection range

 Detection but no communication (or with too many errors)

Interference range

- Signal cannot be detected
- Signal is part of the background noise

Issues in Wireless Transmission

Problems for wave propagation

- Large objects: shadowing & reflection (important indoors)
- Small objects -> signal diffusion (scattering)
- Large edges and corners -> signal deviation (diffraction)
- Variation in medium density -> signal change and reflection (refraction)

Multipath propagation

Signal takes different paths between sender and mobile device

Multiplexing

- □ Idea
 - Multiple channels share one medium with minimal interference
- Multiplexing in 4 dimensions
 - Space
 - Frequency
 - Time
 - Code
- Guard spaces
 - Reduce risk of interference between channels

Space Division Multiplexing

SDM

- Communication using a single channel
- Space channels physically apart to avoid interference

Cellular network

- Reuse frequencies if certain distance between the base stations
- How often can we reuse frequencies?
- Graph coloring problem

Frequency Division Multiplexing

■ FDM

- Division of spectrum into smaller non-overlapping frequency bands with guard spaces in between to avoid overlapping
- Channel gets band of the spectrum for the whole time

Advantages

- No dynamic coordination required
- Can be used for analog networks

Disadvantages

- Waste of bandwidth if traffic distributed unevenly
- Guard spaces

Time Division Multiplex

TDM

- A channel gets the whole spectrum for a short time
- All channels use same frequency at different times
- Co-channel interference: overlap of transmissions

Advantage

High throughput for many channels

Disadvantage

Precise clock synchronisation

Combining FDM & TDM

□ FDM/TDM

- Each channel gets a certain frequency band for a certain amount of time
- More efficient use of resources

Advantage

Higher data rates compared to CDM

More robust against interference and tapping

Disadvantage

Precise clock synchronisation

Code Division Multiplex

- Each channel has a unique code (chipping sequence)
- All channels use the same frequency
- Each code must be sufficiently distinct for appropriate guard spaces
- Uses spread spectrum technology

Advantage

- No coordination and synchronization required
- Bandwidth efficient

Disadvantage

Lower user data rates

Wireless Personal Area Networks

Overview of Wireless Networks

4 types of networks

Туре	Coverage	Function	Cost	Through put	Standards
WPAN	Personal space, 10 m	Cable replacement	Very low	0.1 Mbps -4 Mbps	IrDA, 802.15, Bluetooth
WLAN	Building, 100 m	Extension/ alternative to wired LAN	Low – medium	1 Mbps – 540 Mbps	802.11 a, b, g, n, ac
WWAN	City or country	Extension of LAN	Medium – high	8 Kbps – 2 Mbps	GSM, TDMA, CDMA, GPRS, EDGE, WCDMA
Satellite	Global coverage	Extension of LAN	Very high	2 Kbps – 19.2 Kbps	TDMA, CDMA

WPANs

- WPANs: wireless personal area networks
 - Short range communication (personal space)
 - Low power consumption
 - Low cost
 - Small networks
 - No pre-existing infrastructure or direct connectivity other networks

WPAN Standards

- Sorted by data rate
 - UWB (Ultra-wideband)
 - Wireless monitors, data transfer from digital camcorders, wireless printing of digital pictures
 - File transfer among cell phones and mobile devices
 - Bluetooth
 - ZigBee

Body Area Networks

□ Idea

■ Use natural electrical conductivity of the human body to transmit electronic data (2.4 KB/s up to 400 KB/s)

Possible applications

- Car or phone recognizes a user
- Pay by touching a device in a bus
- Device configures itself through touch

http://www.almaden.ibm.com/cs/user/pan/pan.html

Ultra Wide Band I

UWB

- Possible successor of Bluetooth for transmitting high data rates at short ranges
- Operates in the 3.1–10.6 GHz frequency band
- Radio always transmits at 640 Mbps but maximum actual data rate is 480 Mbps due to error correction

Applications

- Stream compressed video short distances, e.g., from a settop box to a TV or from a camcorder to a PC
- Wireless printing and wireless monitors

Ultra Wide Band II

What makes UWB special?

- P_t is transmit power and P_r is receive power or receiver sensitivity, and d is distance: $d \sim (P_t/P_r)^{1/2}$ or $P_r * d^2 \sim P_t$
- Send a short pulse of an electrical charge into an antenna instead of varying the frequency or power level of a wave
- Signal cannot be detected
 by conventional radios A UWB pulse on the air

High power efficiency

 Data is transmitted in short periods of time, i.e., the radio is mostly in low power state

Ultra Wide Band III

Security

- Stronger security than Bluetooth and WLAN
- All devices have unique IDs
- Generate cryptographic checksums to ensure that a message originated from a specific device ID
- Cryptographic sequence number: guards against replay attacks

Future applications

- Precise location systems and real time location systems
- Precision radar imaging technology, even through walls

Bluetooth (IEEE 802.15.1)

Goal

- Ad-hoc wireless connectivity for electronic devices
- Low-cost replacement for wires

Name

- Suggested by Ericsson
- Harald Bluetooth
 - Viking king in Denmark, 10th century
 - United the country and introduced Christianity

Bluetooth Technology

Radio Technology

- Short-range: 10 m 100 m
- Unlicensed ISM (Industrial, Scientific and Medical) frequency band (2.45 GHz)
- 1 mW transmission power

Networking

- Point to point: serial wire replacement between 2 devices
- Point to multipoint: ad-hoc networking of up to 8 devices

Bluetooth as a Cable Replacement

Communication medium

IrDA: infrared light

Bluetooth: radio waves

	Bluetooth	IrDA	
Obstacles	Radio waves penetrate obstacles	Light is blocked by obstacles	
Alignment	Omni-directional	Narrow focused beam	
Data rate	2 Mbps	1 – 4 Mbps	
Range	10 – 100m	2m	
Energy	More power	Less power	
Price	Moderate (\$10)	Cheap (\$1)	

Bluetooth Applications

Headsets for mobile phones

Peripherals: mouse, keyboard, printer

Game controllers

File transfers for mobile devices

Remote control

. . .

Piconets

Ad-hoc network of up to 8 active devices

- One device acts as a master, the other devices as slaves
- Each active slave has a 3-bit active member address; up to
 7 active slaves
- Additional slaves synchronized to the master but not active are called parked
- A parked device has an 8-bit parked member address; up to 255 parked slaves

Scatternets

□ Idea

- Connecting 2 up to 10 piconets
- A device acts a master in one piconet and as a slave in another piconet
- Devices were expected 2008 ...

Bluetooth Specification

Specification

- Radio technology
- Software stack
- Profiles

Spread spectrum frequency hopping

- Packets are transmitted to a receiver over 79 hop frequencies in a pseudo random pattern
- Transmitter switches hop frequencies 1,600 times per second

Bluetooth security

Authentication and data encryption

Pairing

Trusted relationship between two devices

- Share a secret passkey
- Passkeys are stored on the device's file system (and not the Bluetooth chip)
- Trusted devices can encrypt data for exchange (128 bit)
- Trusted devices can cryptographically authenticate the identity
- Device either requires pairing or asks whether a remote device can use its services

ZigBee

ZigBee in Action

ZigBee Introduction

Goal

- Wireless standard for sensing and control applications
- Highly reliable and secure, interoperable
- Started in 1999 and completed (1.0) end of 2004

□ ZigBee (IEEE 802.15.4: low rate WPAN)

- Extremely low power
- 200 Kbps maximum
- Sensors, interactive toys, smart badges, remote controls, home automation
- Routing protocol: AODV

What is ZigBee?

- Standard for control and sensor networks
 - Developed by the ZigBee alliance
 - Based on the IEEE 802.15.4 Standard
- **802.15.4**
 - Coded into the chip CC2420
 - SunSPOTs have this chip
 - Requires a license (not free)
- Compliancy
 - Requires no changes to the code
 - Not ideal for research purposes

IEEE 802.15.4

- Huge address space
 - 18,450,000,000,000,000,000 devices (64 bit IEEE address)
- Dual PHY
 - 2.4GHz (16 channels), 250kbps
 - 868/915MHz (1/10 channels), 20/40kbps
- Power
 - Designed for months to years on batteries
 - Optimized for low-duty cycle (less than 0.1%)
 - 50m range (5-500m environment dependent)

Comparison: ZigBee vs Bluetooth

ZigBee

Smaller packets over a large network: 264

Low memory requirement: 4 – 32KB

Rapid network joins in milliseconds

Very Low cost: less than a dollar

Small bandwidth: 20 – 250kbps

Medium range: 10 – 100m

Battery lifetime: years

Bluetooth

Larger packets over a small network: 8

Require more system resources: 250KB

Long network joins in seconds

Complex design: ~dollars

Medium bandwidth: 1Mbps

Medium range: 10m (up to 100m)

Battery lifetime: days

Components of a ZigBee Network

PAN Coordinator

- Acts as a master
- Governs the network

Routers

- Relay information to the end devices
- Can communicate among each other and the coordinator

End device (actual sensor motes)

- Can sleep (but not the coordinator or routers)
- Can be battery-powered (but not the coordinator or routers)
- Can only (!) communicate with routers or the coordinator

Topologies

- Coordinator/Sink Node
- Beacon/Router Node
- Leaf, Edge, Data Source Node

Source: http://www.zigbee.org/en/resources/#SlidePresentations

Packet Collisions in ZigBee I

ZigBee does not specify coordination between routers if they communicate with their end devices

Packet Collisions in ZigBee II

ZigBee does not specify coordination between routers if they communicate with their end devices

802.15.4 and Interference

□ CSMA-CA

- Carrier Sense Multiple Access-Collision Avoidance
- A node listen to the medium before transmission
- If energy found is higher than a threshold a the node waits during a random time and tries again

Guarantee Time Slots (GTS)

- A centralized node (PAN coordinator) assigns one of 16 time slots to each node when they have to transmit
- A node sends a GTS request message to the PAN coordinator
- The coordinator sends the allocated slots

802.15.4: Channels

868.3 MHz

Noise: Spread Spectrum Technology I

- Idea
 - Trade bandwidth efficiency for reliability and integrity
- FHSS (frequency hopping spread spectrum)
 - Rapid cycling through frequencies
 - Pseudo random number sequence is known by sender & receiver
 - Fast Hopping: several frequencies per user bit
 - Slow Hopping: several user bits per frequency
- DSSS (direct sequence spread spectrum)
 - Spread the signal across a band of frequencies simultaneously
 - Chip: redundant bit pattern for recovery

Spread Spectrum Technology II

DSSS (direct sequence spread spectrum)

- Spread the signal across a band of frequencies simultaneously
- Chip: pseudorandom bit pattern consisting of +1s and -1s
- Data signal is XORed with the chipping sequence
- Chip rate is much higher than data rate: every data symbol is represented by multiple chips

Spread Spectrum Technology III

DSSS (direct sequence spread spectrum)

Trade bandwidth efficiency for reliability and integrity

Spread the signal across a band of frequencies

simultaneously

 Each bit of information to be transmitted is modulated into 4 different signals

Routing in ZigBee

Topology-based Routing

Approach

Use information about links in the network

Proactive protocols

- Maintain (large) routing tables about routes even if they are currently not used
- High maintenance for frequent topology changes; in particular, if a broadcast to all nodes is required

Reactive protocols

- Maintain only the routes that are currently used
- Requires route discovery → delay for 1st packet

Distance Vector Routing I

Proactive protocols

Important method for wired networks

Approach

- Each node stores a routing table
- Each entry stores: destination, neighbor, distance

Updates

- Occur if a router notices a change in its neighborhood or receives an update message from a neighbor
- Are sent to neighbor nodes

Distance Vector Routing II

Discussion

- Messages are routed along shortest path
- Updates only occur for topology changes
- But: often topology changes are irrelevant for source destination route
- Each node has to store a large table (example for node B)

Destination	Neighbor	Distance
А	С	2
С	С	1
D	D	1
E	D	3
F	D	2

AODV (Ad-Hoc On-Demand DV) I

AODV

- Reactive protocol
- Assumes symmetric links!

RREQ (route request)

- Node S broadcasts request for communication with destination D
- A RREQ is rebroadcasted: nodes forward request and record sending node

Routing table

 Each node maintains destination, neighbor address of the 1st broadcasted packet, destination sequence number, hop count

RREQ

- Destination IP address
- Source IP address
- Current sequence numbers for source and destination
- Message ID (= Broadcast ID and source IP address)
- Hop count

AODV II

Sequence numbers

- Determine if a path known to an intermediate node is more recent
- Prevent loops if RERRs are lost
- Every time a node sends a message it increases its own sequence number

Features

- □ Slow flooding: if route request fails, another route request can be sent after twice the time of the previous timeout
- Link failure detection: send periodic hello messages

AODV: Routing Table & RREP

Routing table of node S

Destination	Neighbor	Distance	Sequence Nr
А	А	1	112
D	Е	4	213
Е	Е	1	178

RREP

- Destination
- Source
- Hop Count
- Destination sequence
 Number

AODV III

RREP (route reply)

- If a node receives the message and has a fresh route to D, it responds and sends a message backwards to S
- Test: destination sequence number in packet ≤ sequence number in table
- Nodes set up forward pointers to D
- S uses the route with the least number of hops to D and the most recent sequence number
- Probability of a RREP is smaller for AODV than for DSR (why?)

RERR (route error)

- If a node dies, moves or is outside communication range, AODV has to adjust routes
- Nodes received a route error remove all occurrences in the route table of that node

Although node C receives a RREQ from node E, it does not forward it again, as it received already a RREQ from S earlier

 Although node F receives a RREQ from node G, it does not forward it again, as it received already a RREQ from S earlier; similarly H (for G)

Node D does not forward the route request because it is the destination

After a few more iterations ...

