Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 7

Abgabe auf Moodle bis zum 15. Januar

Die obere Halbebene ist $\mathbb{H} = \{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$. Darauf operiert $\operatorname{SL}(2,\mathbb{R})$ und insbesondere die Modulgruppe $\Gamma = \operatorname{SL}(2,\mathbb{Z})$ durch Möbius-Transformationen

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \langle \tau \rangle = \frac{a\tau + b}{c\tau + d} \ .$$

Sei $[\Lambda, k]$ der Vektorraum der Modulformen vom Gewicht k zur Kongruenzgruppe $\Lambda \subseteq \Gamma$. Die Variable τ ist immer auf der oberen Halbebene $\mathbb H$ definiert. Die besten vier Aufgaben werden gewertet. Sollpunktzahl 16 Punkte, weitere Punkte zählen als Bonus.

- **29. Aufgabe:** (2+2+2=6 Punkte)
- (a) Bestimmen Sie ein explizites Vertretersystem für die Quotientengruppe $\overline{\Gamma}/\overline{\Gamma}[3]$.
- (b) Skizzieren Sie einen Fundamentalbereich zu $\Gamma[3]$.
- (c) Bestimmen Sie die Spitzen zu $\Gamma[3]$ und ihre Breite.
- **30.** Aufgabe: (2+2+2+2=8 Punkte) Für ein ganzes $N \geq 2$ sei $\omega_{(a,b)} = \frac{a}{N}\tau + \frac{b}{N} \in \frac{1}{N}W$ ein N-Teilungspunkt des Gitters $W = \mathbb{Z}\tau \oplus \mathbb{Z}$, der nicht selbst im Gitter liegt. Hier sind $0 \leq a,b < N$ ganze Zahlen. Wir dürfen annehmen dass $\operatorname{ggT}(a,b,N) = 1$, das bedeutet $(a,b) \in \mathcal{S}_N$. Für ein ganzes $k \geq 3$ definiere die Eisensteinreihe

$$G_{(a,b)}(\tau) = \sum_{\gamma \in W} (\omega_{(a,b)} + \gamma)^{-k} .$$

(a) Zeigen Sie für ungerades k und N=2, dass $G_{(a,b)}(\tau)$ konstant Null ist.

Im Folgenden nehmen wir an k ist gerade oder N > 3. Zeigen Sie:

- (b) $G_{(a,b)} \in [\Gamma[N], k]$ ist eine Modulform vom Gewicht k zur Kongruenzgruppe $\Gamma[N]$.
- (c) Der Grenzwert $\lim_{\tau \to i\infty} G_{(a,b)}(\tau)$ ist gleich Null genau dann wenn $a \neq 0$.
- (d) Zeigen Sie, dass $G_{(a,b)}$ in genau einer Spitze nicht verschwindet.
- 31. Aufgabe: (2+2=4 Punkte) Sei Λ eine Kongruenzgruppe. Zeigen Sie:
- (a) $\mathcal{A}(\Lambda) = \bigoplus_{k \in \mathbb{Z}} [\Lambda, k]$ bildet mit der punktweisen Multiplikation einen Ring. Die Spitzenformen $\mathcal{A}_0(\Lambda) = \bigoplus_{k \in \mathbb{Z}} [\Lambda, k]_0$ bilden ein Ideal in diesem Ring.
- (b) Sei $\Lambda = \Gamma[N]$ und $(M_i)_i$ ein Vertretersystem der Quotientengruppe $\Gamma/\Gamma[N]$. Die Norm definiert einen multiplikativen Homomorphismus

$$\mathcal{N}: \mathcal{A}(\Gamma[N]) \to \mathcal{A}(\Gamma)$$
 , $f \mapsto \mathcal{N}(f) = \prod_{i} (f \mid_{k} M_{i})$.

- **32.** Aufgabe: (2+2+2=6 Punkte) Seien $f,g \in [\Lambda,k]$ Modulformen vom Gewicht k zu einer Kongruenzgruppe $\Lambda \subseteq \Gamma$. Zeigen Sie:
 - (a) Die Funktion $\mathbb{H} \to \mathbb{C}$, $z \mapsto f(z)\overline{g(z)}y^k$ ist invariant unter Möbius-Transformationen im Sinne von $i(z) = i(M\langle z \rangle)$ für $z \in \mathbb{H}$ und $M \in \Lambda$.
 - (b) Sei $\mathcal F$ ein Fundamentalbereich zu $\Lambda.$ Wenn f oder g eine Spitzenform ist, dann konvergiert das Integral

$$\langle f, g \rangle = \int_{\mathcal{F}} f(z) \overline{g(z)} y^k \frac{\mathrm{d}x \mathrm{d}y}{y^2} .$$

(c) Dies definiert ein sesquilineares Skalarprodukt auf dem Raum $[\Lambda, k]_0$ der Spitzenformen, welches unabhängig von der Wahl des Fundamentalbereichs \mathcal{F} ist.

Hier gilt wie üblich x = Re(z) und y = Im(z).

33. Aufgabe: (2+2+2=6 Punkte) Für ganzes $N \geq 3$ sei $\chi : (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}$ ein Charakter mit $\chi(-1) = 1$. Sei \wp die Weierstraß-Funktion zum Gitter $\mathbb{Z}\tau \oplus \mathbb{Z}$. Für $(a,b) \in \mathcal{S}_N$ sei $e_{a,b}(\tau) = \wp(\omega_{(a,b)})$ mit dem N-Teilungspunkt $\omega_{(a,b)} = \frac{a}{N}\tau + \frac{b}{N}$ und definiere damit

$$f_{(a,b)}^{\chi}(\tau) = \frac{1}{2N^2} \sum_{\mu \in (\mathbb{Z}/N\mathbb{Z})^{\times}} \chi(\mu) e_{(\mu a, \mu b)} .$$

(a) Zeigen Sie für alle $M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma$ und $\nu \in (\mathbb{Z}/N\mathbb{Z})^{\times}$:

$$f^{\chi}_{(\nu a,\nu b)} f(M\langle \tau \rangle) = \chi(\nu)^{-1} (\gamma \tau + \delta)^2 f^{\chi}_{(a,b)M}(\tau) .$$

- (b) Sei F^{χ} der Vektorraum aufgespannt von allen $f_{(a,b)}^{\chi}$. Zeigen Sie: $F^{\chi} \cap F^{\chi'} = \{0\}$ für $\chi \neq \chi'$.
- (c) Für den trivialen Charakter $\chi = 1$ gilt $\dim(F^1) \ge N \prod_{p|N} (1+p^{-1}) 1$.

Hinweis: Siehe Skript Abschnitt 9.12.

34. Aufgabe: (2+2=4 Punkte) Sei $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ ein Dirichlet-Charakter, durch Null fortgesetzt zu einer Abbildung $\chi: \mathbb{Z} \to \mathbb{C}$. Die zugehörige Dirichlet-Reihe ist

$$L(s,\chi) = \sum_{n=0}^{\infty} \chi(n) n^{-s} .$$

Zeigen Sie:

- (a) Die Dirichletreihe konvergiert kompakt absolut im Gebiet $\{s \in \mathbb{C} \mid \text{Re}(s) > 1\}$.
- (b) Es gilt die Produktentwicklung $L(s,\chi) = \prod_{ggT(p,N)=1} (1-\chi(p)p^{-s})^{-1}$. Dabei läuft das Produkt über alle Primzahlen die teilerfremd sind zu N.

Hinweis zu a): Integralkriterium.

Frohe Weihnachten!