Celah Penelitian (Problem & Research Gap)

Tinjauan Penelitian Terdahulu

Peneliti &	Judul	Fokus	Metode yang	Hasil	Kelemahan
Tahun	Penelitian	Penelitian	Digunakan	Penelitian	Penelitian
Smith et al. (2023)	Pneumonia Detection on Chest X-ray Images Using Ensemble of Deep Convolution al Neural Networks	Mengembangk an model ensemble CNN untuk meningkatkan akurasi deteksi pneumonia dari citra X-Ray.	Ensemble CNN (ResNet50, DenseNet12 1, VGG16)	Akurasi rata-rata 91,7%, lebih tinggi dibanding CNN tunggal.	Kompleksitas model tinggi, waktu pelatihan lama, dan kurang efisien untuk penerapan klinis real- time.
Li et al. (2024)	Efficient Pneumonia Detection Using Vision Transformer s on Chest X- rays	Menerapkan Vision Transformer (ViT) untuk memahami hubungan spasial global pada citra X- Ray dada.	Vision Transformer (ViT)	Akurasi 87,5%, menunjukka n kemampuan generalisasi tinggi.	Performa menurun pada dataset kecil, butuh waktu pelatihan tinggi, dan rentan overfitting.
Rahman & Chowdhur y (2023)	Vision Transformer for Pneumonia Classificatio n in X-ray Images	Mengevaluasi efisiensi ViT murni dengan modifikasi tokenization pada klasifikasi pneumonia.	Vision Transformer (ViT) dengan modifikasi tokenization	Akurasi 85,3%, performa baik untuk citra beresolusi tinggi.	Kurang optimal dalam menangkap fitur lokal, dan belum menggabungk an pendekatan hybrid CNN- Transformer.

Analisis dan Research Gap

Dari tabel di atas dapat disimpulkan bahwa:

- 1. Penelitian Smith et al. (2023) berhasil meningkatkan akurasi dengan *ensemble CNN*, tetapi model menjadi kompleks dan tidak efisien untuk implementasi real-time.
- 2. Penelitian Li et al. (2024) menunjukkan keunggulan ViT dalam memahami konteks global citra, tetapi performanya menurun saat dataset terbatas.
- 3. Penelitian Rahman & Chowdhury (2023) membuktikan potensi ViT untuk klasifikasi pneumonia, namun masih lemah dalam menangkap fitur lokal yang penting.

Oleh karena itu, terdapat celah penelitian (research gap) yang dapat diisi dengan:

- Mengembangkan model hybrid berbasis Inception Convolutional Vision Transformer (ICViT) yang menggabungkan ekstraksi fitur multi-skala dari CNN (Inception) dan pemahaman global dari Transformer.
- Menerapkan model ini secara spesifik pada citra X-Ray paru-paru untuk deteksi pneumonia, dengan evaluasi performa terhadap CNN dan ViT murni.
- Menganalisis efisiensi model (akurasi, presisi, recall, dan waktu pelatihan) untuk memastikan kelayakan implementasi pada sistem deteksi medis berbasis AI.