MATH 142A: Introduction to Analysis

math-old.ucsd.edu/~ynemish/teaching/142a

Today: Taylor's formula

Little-o/big-O notation

> Q&A: March 7

Next: -

Week 10:

- Homework 9 (due Sunday, March 13)
- CAPE at www.cape.ucsd.edu

Taylor's formula

Let f: I → IR, f has derivatives up to order n at x o ∈ I.
Taylors formula:

Taylors formula:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f'(x_0)}{2!}(x-x_0)^2 + \cdots + \frac{f'(x_0)}{n!}(x-x_0)^2 + R_n(x_0;x)$$

Taylor's Thm: If $f \in D^{(n)}(\bar{I})$, $f \in D^{(n+1)}(I)$, $f, f, f', f'' \in C(\bar{I})$. then for any function $\varphi \in C(\bar{I})$, $\varphi \in D(I)$, $\forall x \in I$ $\varphi'(x) \neq 0$ there exists $\xi \in \bar{I}$ s.t. $\varphi(x) - \varphi(x_0) C^{(n+1)}(x_0) C^{(n+1)}(x_0)$

 $R_{n}(x_{\circ};x) = \frac{\varphi(x) - \varphi(x_{\circ})}{\varphi'(\xi)n!} f^{(n+1)}(\xi)(x-\xi)^{n}$ Cauchy's form of the remainder term $R_{n}(x_{\circ};x) = \frac{f^{(n+1)}(\xi)}{n!}(x-\xi)^{n}(x-x_{\circ})$

Lagrange's form of the remainder term $R_n(x_0;x) = \frac{f^{(n+1)}(\S)}{(n+1)!}(x-x_0)^{n+1}$

Example

|E |9 Let
$$f(x) = (1+x)^{\alpha}$$
, $\alpha \in \mathbb{R}$, $x > -1$. Then (Lecture 22)
 $\forall n \in \mathbb{N}$ $f^{(n)}(x) = \alpha(d-1)\cdots(\alpha-n+1)(1+x)^{\alpha-n}$

Taylor's formula at x = 0:

$$(1+x)^{d} = 1 + \frac{d}{1!}x + \frac{d(d-1)}{2!}x^{2} + \dots + \frac{d(d-1)-(d-n+1)}{n!}x^{n} + R_{n}(0;x)$$

$$R_{n}(0|x) = \frac{d(d-1)\cdots(d-n)\cdot(1+\frac{1}{3})^{d-n-1}}{n!} \cdot (x-\frac{1}{3})^{n}x = \frac{d(d-1)\cdots(d-n)\cdot(1+\frac{1}{3})}{n!} \cdot (x-\frac{1}{3})^{n}x$$
For $|x|<1$ $\left|\frac{x-\frac{1}{3}}{1+\frac{1}{3}}\right| = \frac{|x|-|\frac{1}{3}|}{|1+\frac{1}{3}|} = \frac{|-\frac{1-|x|}{1-|\frac{1}{3}|}}{|-\frac{1}{3}|} \le \frac{|-\frac{1-|x|}{1-|\frac{1}{3}|}}{|-\frac{1}{3}|} = |x|$ 1 so

For
$$|x| < 1$$
 $|x| = 1 + 3 = 1 - 131 = 1 - 13$

Taylor series. Analytic functions

Def 31.18. If the function f(x) has derivatives of all orders ne N

at x., we call the series
$$f(x_0) + \frac{1}{1!} f'(x_0) (x - x_0) + \frac{1}{2!} f''(x_0) (x - x_0)^2 + \frac{1}{n!} f'''(x_0) (x - x_0)^n + \cdots$$

the Taylor series of f at point xo.

Remarks 1) If f has derivatives of all orders at xo, this

does not imply that the Taylor series of f at xo converges 2) If the Taylor series of f at x_0 converges, than this does not imply that $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n = f(x) \tag{*}$

Functions that satisfy (*) are called analytic Example of a non-analytic function $f(x) = \begin{cases} 0, x=0 \\ -\frac{1}{2}, x\neq 0 \end{cases}$ f(n)(0)=0 H N=0,1,2,-- (exercise)

Comparison of the Asymptotic Behavior of functions Def 31.19 • Let a ∈ R and s ∈ { a , + ∞ }. For f, g: (c, s) → R, cks, we say that f is infinitesimal compared with g as x tends to s, and write f = o(g) as $x \to s$ if there exist c'≥c and h: (c',s) → IR such that $f(x) = g(x) \cdot h(x)$ on (c', s) and $\lim_{x \to s} h(x) = 0$ Let a∈ R and S∈ { a+, -∞}. For f, g: (s,c) → R,c>s we say that f is infinitesimal compared with g as x tends to s, and write f = o(g) as $x \to s$, if there exist $c' \le c$ and h: (s,c') - IR such that $f(x) = g(x) \cdot h(x)$ on (s, c') and $\lim_{x \to s} h(x) = 0$ • f = o(g) as $x \to a$ if f = o(g) as $x \to a^{\dagger}$ and f = o(g) as $x \to a^{-}$

1)
$$x^2 = x \cdot x$$
 $\Rightarrow x^2 = o(x)$ as $x \to o$

2)
$$x = \frac{1}{x} \cdot x^2$$
 on $(0, +\infty)$ $\Rightarrow x = o(x^2)$ as $x \to +\infty$

3)
$$\frac{1}{\chi^2} = \frac{1}{\chi} \cdot \frac{1}{\chi}$$
 on $(0, +\infty) \Rightarrow \frac{1}{\chi^2} = o(\frac{1}{\chi})$ as $\chi \to +\infty$

4)
$$\frac{1}{\chi} = \chi \cdot \frac{1}{\chi^2}$$
 on $(0, 1)$ $\Rightarrow \frac{1}{\chi} = o(\frac{1}{\chi^2})$ as $\chi \to o^{\dagger}$

$$\frac{1}{\chi^2}$$
 on $(0,1) \Rightarrow$

$$\frac{1}{x^2} \quad \text{on} \quad \left(\begin{array}{c} 0 \\ 1 \end{array} \right) \quad \frac{1}{x^2} = 0 \quad x^4$$

$$>1$$
, $\lim_{x\to \infty} \frac{x^n}{a^x} = 0$, x

5) For
$$\alpha > 1$$
, $\lim_{x \to +\infty} \frac{x^n}{\alpha^x} = 0$, $x^n = \alpha^x \cdot \frac{x^n}{\alpha^x}$ on $(0, +\infty) \Rightarrow x^n = o(\alpha^x)$ as $x \to +\infty$

7) $x = x \cdot 1 \Rightarrow x = o(1)$ as $x \rightarrow 0$

8) $\left(\frac{1}{x} + \sin x\right) \cdot x = O(2)$ as $x \to \infty$

 $|0\rangle$ $x^2 + x = x^2(1 + \frac{1}{x}) \Rightarrow x^2 + x \sim x^2 \Leftrightarrow x \to \infty$

$$\lim_{\chi \to +\infty} \frac{\chi^h}{\alpha^{\chi}} = 0, \chi$$

$$\lim_{\chi \to +\infty} \frac{\chi^h}{\alpha^{\chi}} = 0, \chi'$$

$$\frac{1}{2} = 0$$
, χ^{n}

$$x' = \alpha^x \cdot \frac{x}{\alpha^2}$$

$$a^{x} \cdot \frac{x^{n}}{a^{x}}$$
 on

6) $\forall a > 0, a \neq 1, \forall a > 0 \quad \lim_{x \to +\infty} \frac{\log_a x}{x^a} = 0 \Rightarrow \log_a x = o(x^a)$ as $x \to +\infty$

9) (2+sinx)·x = x as x - o, but (1+sinx)x is not of the same

$$\frac{1}{2^{1}}$$
 as

order as x as x+00

Comparison of the Asymptotic Behavior of functions Def 31.19 • Let a∈ R and S∈ { a , + ∞ }. For f, g: (c,s) → R, c < s, we write f = O(g) as $x \rightarrow s$ if there exist c'zc and B: (c',s) -> IR such that f(x) = g(x) B(x) on (c',s) and B is bounded on (c',s) Let a∈ R and s∈{a[†], -∞}. For f, g: (s,c) → R, c>s we write f=O(g) as $x \to s$, if there exist $c' \le c$, $B:(s,c') \to \mathbb{R}$ s.t. $f(x) = g(x) \cdot B(x)$ on (s, c') and B is bounded on (c', s)• f=O(g) as $x \to a$ if f=O(g) as $x \to a^{\dagger}$ and f=O(g) as $x \to a^{-}$ We say that f and g are of the same order as x → s and write f = g as $x \rightarrow s$ if f = O(g) and g = O(f) as $x \rightarrow s$ $\Leftrightarrow \exists c_{1,1}c_{2} \in (0,+\infty) \text{ s.t. } c_{1,1}g(x)| \leq |f(x)| \leq c_{2}|g(x)| \text{ on the corresponding interval}$

Comparison of the Asymptotic Behavior of functions

Def 31.19 • Let a $\in \mathbb{R}$ and $S \in \{a^-, +\infty\}$. For $f, g: (c, s) \to \mathbb{R}$, c < s, we say that f is equivalent to g as χ tends to s,

and write $f \sim g$ as $\chi \to s$, if there exist $c' \ge c$ and $\gamma: (c', s) \to \mathbb{R}$ such that

 $f(z) = g(x) \cdot \gamma(x)$ on (c', s) and $\lim_{x \to s} \gamma(z) = 1$ Let $a \in \mathbb{R}$ and $s \in \{a^+, -\infty\}$. For $f, g: (s, c) \to \mathbb{R}$, c > swe say that f is equivalent to g as χ tends to s, and write $f \sim g$ as $\chi \to s$, if there exist $c' \le c$ and $\gamma: (s, c') \to \mathbb{R}$ such that

 $f(x) = g(x) \cdot \gamma(x) \text{ on } (s,c') \text{ and } \lim_{x \to s} \gamma(x) = 1$ $f \leftarrow g \text{ as } x \to a \text{ if } f \leftarrow g \text{ as } x \to a^{\dagger} \text{ and } f \leftarrow g \text{ as } x \to a^{\top}$

Taylor's formula Lemma 31.20 Let xoe R, I be a closed interval with endpoint xo, let 9 be a function defined on I, $\Psi \in D^{(n)}(\overline{I})$, and $\varphi(x_o) = \varphi'(x_o) = -- = \varphi^{(n)}(x_o) = 0$. Then $\varphi(x) = o((x-x_0)^n)$ as $x \to x_0$ along I. (**)Suppose (**) holds for n=k-1. Consider y'E D(k-1)(]), y'(20)=0 $(\varphi')'(x) = (\varphi')''(x_0) = \cdots = (\varphi')^{(k-1)}(x_0) = 0 \Rightarrow \varphi'(x) = o((x-x_0)^{k-1})$ as $x \to x_0$ along $\overline{1}$ By Lagrange's thm, for xeI close enough to xo 3 & between xo and x $\varphi(x)-\varphi(x_0)=\varphi'(\xi)(x-x_0)=h(\xi)(\xi-x_0)(x-x_0), h(x)\to 0 \text{ as } \overline{1} \Rightarrow x\to x_0$ $\Rightarrow |\varphi(x)| \leq |h(\xi)||x-x_0|| \Rightarrow |\varphi(x)| = o((x-x_0)^{\frac{1}{2}})$, proves induction step

Taylor's formula (local). Peano's form of the remainder

Thm 31.21 Let $x_0 \in \mathbb{R}$, \overline{I} be a closed interval with endpoint x_0 ,

let f be a function defined on \overline{I} , $f \in D^{(n)}(\overline{I})$. Then $f(x) = f(x_0) + \frac{f'(x_0)}{I!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$ $+ O((x - x_0)^n)$ as $x \to x_0$, $x \in \overline{I}$

Proof. Apply Lemma 31.20 with
$$\varphi(x) = Rn(x_0; x)$$

Remark If $f \in D^{(n+1)}(I)$ and $f^{(n+1)}$ is bounded near x_0 , then $f(x) = f(x_0) + \frac{f'(x_0)}{I!}(x - x_0) + \frac{f''(x_0)}{2I!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{I!}(x - x_0)^n$

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + O((x - x_0)^{n+1}) \quad \text{as} \quad x \to x_0, \quad x \in I$$

1) Asymptotic formulas as
$$x \to 0$$

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \cdots + \frac{x^{n}}{n!} + O(x^{n+1})$$

 $\log (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots + \frac{(-1)^{n+1}x^n}{n} + 6(x^n)$

 $(1+x)^{d} = 1 + \frac{d}{1!}x + \frac{d(d-1)}{2!}x^{2} + \cdots + \frac{d(d-1)\cdots(d-n+1)}{n!}x^{n} + O(x^{n})$

2) Approximate sin by a polynomial Pn s.t. max |sinx-Pn(x)| \leq 103

 $|R_{2n+2}(0|x)| = |\frac{\sin(3+\frac{\pi}{2}(2n+3))}{(2n+3)!}|x| \leq \frac{1}{(2n+3)!} < \frac{1}{1000} \quad \text{for } n=2$ $\Rightarrow \sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} \quad \text{on}[-1,1]$

Take Pn = Pn (0:x) Taylors polynomial at O. By Lagrange's form

 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n+1})$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + O(x^{2n+2})$$

 $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x + o(x^2)}{x}$

$$= |+| \lim_{\chi \to 0} \frac{o(\chi^2)}{z^2} \cdot \chi = |$$