

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 1

по курсу «Функциональное и логическое программирование» на тему: «Списки в Lisp. Использование стандартных функций»

Студент <u>ИУ7-66Б</u> (Группа)	(Подпись, дата)	Жаворонкова А. А. (И. О. Фамилия)
Преподаватель	(Подпись, дата)	Толпинская Н. Б. (И. О. Фамилия)
Преподаватель	(Подпись, дата)	Строганов Ю. В. (И. О. Фамилия)

1 Теоретические вопросы

1.1 Элементы языка: определение, синтаксис, представление в памяти

Вся информация (данные и программы) в Lisp представляется в виде символьных выражений — S-выражений. По определению:

```
S-выражение ::= <aтом> | <точечная пара>. 
 Aтомы:
```

- символы синтаксически набор литер (букв и цифр), начинающихся с буквы;
- специальные символы T, Nil;
- самоопределимые атомы натуральные числа, дробные сичла, вещественные числа, строки последовательность символов, заключенная в двойные апострофы.

Списки и точечные пары (структуры) строятся из унифицированных структур — бинарных узлов.

Любая структура (точечная пара или список) заключается в круглые скобки (A.B) — точечная пара, (A) — список из одного элемента, пустой список изображается как Nil или ().

Непустой список по определению может быть изображен: (A.(B.(C.(D())))). Допустимо изображение списка последовательностью атомов, разделенных пробелами — $(A\ B\ C\ D)$.

Элементы списка могут, в свою очередь, быть списками (любой список заключается в круглые скобки), например — (A(BC)(D(E))). Таким образом,

синтаксически наличие скобок является признаком структуры— списка или точечной пары.

Любая непустая структура Lisp в памяти представляется списковой ячейкой, хранящей два указателя: на голову (первый элемент) и хвост — все остальное.

На рисунке 1.1 показано представление в памяти точечной пары (A.B) и списка из двух элементов — $(A\ B)$.

Рисунок 1.1 – Представление в памяти точечной пары и списка

1.2 Особенности языка Lisp. Структура программы. Символ апостроф

Особенности языка Lisp:

- 1. в Lisp используется символьная обработка;
- 2. программа и данные в Lisp представлены в виде списков (едины в своем физическом представлении).
- 3. Lisp является бестиповым языком;
- 4. память выделяется блоками. Lisp сам распределяет память.

Символ апостроф («'») — блокирует вычисление своего аргумента. В качестве своего значения выдает сам аргумент, не вычисляя его. Перед числами, T и Nil апостроф можно не ставить.

1.3 Базис языка Lisp. Ядро языка

Базис — минимальный набор обозначений, к которым можно свести все правильные (вычислимые) формулы системы. Базис Lisp образуют: атомы, структуры, базовые функции, базовые функционалы.

Ядро языка— совокупность базиса языка и наиболее часто используемых функций.

2 Практические задания

1. Представить следующие списки в виде списочных ячеек.

'(open close halph)

'((open1) (close2) (halph3))

'((one) for all (and (me (for you))))

Рисунок 2.1 – Задание №1 (часть 1)

'(((TOOL) (call)) ((sell)))

Рисунок 2.2 – Задание №1 (часть 2)

- 2. Используя только функции CAR и CDR, написать выражения, возвращающие 1) второй; 2) третий; 3) четвертый элементы заданного списка.
 - 1) (CAR (CDR '(a b c d e)))
 - 2) (CAR (CDR (CDR '(a b c d e))))
 - 3) (CAR (CDR (CDR (CDR '(a b c d e)))))
 - 3. Что будет в результате вычисления выражений?

```
a) (CAADR '((blue cube) (red pyramid)))
     (CAR (CAR (CDR '((blue cube) (red pyramid)))))
     (CAR (CAR '((red pyramid))))
     (CAR '(red pyramid))
     red
     Ответ: red
  b) (CDAR '((abc) (def) (ghi)))
     (CDR (CAR '((abc) (def) (ghi))))
     (CDR'(abc))
     Nil
     Ответ: Nil
  c) (CADR '((abc) (def) (ghi)))
     (CAR (CDR '((abc) (def) (ghi))))
     (CAR'((def)(ghi)))
     (def)
     Ответ: (def)
  d) (CADDR '((abc) (def) (ghi)))
     (CAR (CDR (CDR '((abc) (def) (ghi)))))
     (CAR (CDR '((def) (ghi))))
     (CAR'((ghi)))
     (ghi)
     Ответ: (ghi)
     4. Напишите результат вычисления выражений и объясните
как он получен.
   1. (list 'Fred 'and 'Wilma) \rightarrow (Fred and Wilma)
  2. (list 'Fred '(and Wilma)) \rightarrow (Fred (and Wilma))
  3. (cons Nil Nil) \rightarrow (Nil)
  4. (cons T Nil) \rightarrow (T)
```

5. (cons Nil T) \rightarrow (Nil.T)

- 6. (list Nil) \rightarrow (Nil)
- 7. (cons '(T) Nil) \rightarrow ((T))
- 8. (list '(one two) '(free temp)) \rightarrow ((one two) (free temp))
- 9. (cons 'Fred '(and Wilma)) \rightarrow (Fred and Wilma)
- 10. (cons 'Fred '(Wilma)) \rightarrow (Fred Wilma)
- 11. (list Nil Nil) \rightarrow (Nil Nil)
- 12. (list T Nil) \rightarrow (T Nil)
- 13. (list Nil T) \rightarrow (Nil T)
- 14. (cons T (list Nil)) \rightarrow (T Nil)
- 15. (list '(T) Nil) \rightarrow ((T) Nil)
- 16. (cons '(one two) '(free temp)) \rightarrow ((one two) free temp)

5. Написать лямбда-выражение и соответствующую функцию. Представить результаты в виде списочных ячеек.

- 1. Написать функцию (f ar1 ar2 ar3 ar4), возвращающую: ((ar1 ar2) (ar3 ar4)).
 - (defun f(ar1 ar2 ar3 ar4) (list (list ar1 ar2) (list ar3 ar4)))
- 2. Написать функцию (f ar1 ar2), возвращающую: ((ar1) (ar2)). (defun f(ar1 ar2) (list (list ar1) (list ar2)))
- 3. Написать функцию (f ar1), возвращающую: (((ar1))). (defun f(ar1) (list (list ar1))))

((ar1 ar2) (ar3 ar4))

((ar1) (ar2))

(((ar1)))

Рисунок 2.3 – Задание №5