

Exploratory Data Analysis

Hate Speech Detection using Transformers

Nov. 2023

Agenda

Problem Description Project Plan Data Understanding Data Cleansing and Transformation Model Selection Model Building & Training Model Performance Evaluation Model Test LSTM Model Building & Training Model Deployment **Model Inference Conclusion and Limitations Future Work**

Problem Description

- Rise of hate speech on social media
- Importance of addressing hate speech for a safe online environment
- Derived from a sentiment classification task on labeled Twitter data

Project Plan

- Understanding the problem with a focus on sentiment classification
- Extensive data cleaning and normalization
- Leveraging Transformer-based architecture for expression learning
- Development of a deep learning model for hate speech detection
- Thorough performance evaluation and reporting
- Deployment of models for real-time inference

Data Understanding

- Hate speech dataset from Twitter with attributes: label and text_format
- Challenges addressed: noise in text, data cleaning strategies
- No missing values, outliers, or class imbalance

Data Cleansing and Transformation

- Implementation of text cleaning techniques
- Tokenization, lowercasing, and handling contractions
- Removal of special characters and punctuation
- Word frequency analysis and word clouds for cleaned data

Model Selection

- Consideration of various classifiers:
 - 1. Multinomial Naive Bayes
 - 2. Random Forest
 - 3. Decision Tree
 - 4. Logistic Regression
 - 5. SVM
 - 6. KNN
 - 7. SGD
 - 8. XGBoost
- Feature extraction technique: TF-IDF

Model Building & Training

- Data preprocessing steps, including oversampling for class balance
- Training and evaluation of multiple machine learning models
- In-depth evaluation metrics: accuracy, precision, recall, F1 score, ROC-AUC

Model Performance Evaluation

- F1-scores for 8 models
- Precision-recall curves for 8 models
- ROC scores and curves for 6 models

f1-scores for 8 models

model	weighted avg	macro avg	accuracy	1	0
multinomialnb	0.952371	0.952229	0.952305	0.954137	0.950320
randomforestclassifier	0.984527	0.984515	0.984522	0.984838	0.984192
decisiontreeclassifier	0.951841	0.951577	0.951716	0.954175	0.948978
logisticregression	0.975363	0.975341	0.975353	0.975899	0.974783
svc	0.994533	0.994532	0.994532	0.994590	0.994473
kneighborsclassifier	0.689607	0.568605	0.629542	0.730741	0.406469
sgdclassifier	0.969640	0.969624	0.969633	0.970163	0.969085
xgbclassifier	0.909037	0.908780	0.908900	0.905473	0.912087

precision-recall curves for 8 models

ROC scores and curves for 6 models

Model Test

- Results on the training dataset, including word frequency analysis
- Highlights of significant terms associated with hate speech
- Results on the test dataset and the consistency of identified terms

| Value | Valu

{'love': 1523, 'day': 1417, 'happy': 937, 'amp': 708, 'time': 666, 'life': 627, 'today': 580, 'new': 533, 'get': 509, 'positive': 489}

{'trump': 196, 'amp': 117, 'white': 111, 'black': 92, 'woman': 91, 'racist': 72, 'people': 64, 'like': 59, 'libtard': 57, 'politics': 51}

Test Dataset Result (total 17197 tweets)

LSTM Model Building & Training

- Addressing imbalanced data through oversampling
- Tokenization, padding, and loading GloVe embeddings for LSTM model
- Defined sequential neural network architecture
- Training process with validation accuracy progression

Layer (type)	Output	Shape	Param #
embedding_3 (Embedding)		30, 100)	1000000
lstm_6 (LSTM)	(None,	30, 64)	42240
lstm_7 (LSTM)	(None,	64)	33024
dense_4 (Dense)	(None,	64)	4160
dropout_3 (Dropout)	(None,	64)	0
dense_5 (Dense)	(None,	2)	130
Total params: 1079554 (4.12 Trainable params: 79554 (310 Ion-trainable params: 100000	.76 KB)	MB)	======

Model: "sequential_3"

Model Deployment

- Deployment using Flask for real-time hate speech detection
- Challenges faced during deployment, including TensorFlow import issues
- Exploration of alternative deployment platforms for a potential solution

Model Inference

- Real-time results and their significance for hate speech detection
- Demonstrates the practical application of the models on live data

Conclusion and Limitations

- Successes in hate speech detection, including the development of an accurate LSTM model
- Recognition of challenges during deployment, emphasizing TensorFlow import issues and console opening failures on deployment platforms
- Future recommendations for deploying in controlled environments and exploring alternative platforms

Future Work

- Recommendations for alternative deployment platforms
- Consideration of controlled environments during development
- Suggestions for refining and enhancing the project based on
 - encountered challenges

GitHub Repo Link:

https://github.com/syoungk7/Hate_Speech_Detection/

Thank You

