IN THE CLAIMS

Please amend the claims as follows:

- 1-31 (cancelled)
- 1 32. (previously presented) A method for estimating a property of a fluid, comprising:
- 2 (a) transmitting a first acoustic pulse in a first member that is in contact with the
- 3 fluid;
- 4 (b) detecting a plurality of acoustic pulse echo returns from an interface between
- 5 the first member and the fluid; and
- 6 (c) estimating the property of the fluid from the plurality of acoustic pulse echo
- 7 returns.
- 1 33. (currently amended) The method of claim 32.4, wherein the property of the fluid
- 2 comprises one at least one of the set consisting of acoustic impedance, density and
- 3 viscosity of the fluid.
- 1 34. (currently amended) The method of claim 32.1, further comprising:
- 2 estimating a reflection coefficient of the interface between the first member and
- 3 the fluid.
- 1 35. (currently amended) The method of claim 32.4, further comprising:
- 2 estimating an acoustic impedance of the first member.

1	36.	(currently amended) The method of claim 32 1, further comprising:
2		estimating a slope of energy decay for the plurality of acoustic pulse echo
3		returns.
1	37.	(currently amended) The method of claim 36.5, wherein estimating the slope of
2		energy decay comprises performing a least squares fit to the plurality of acoustic
3		pulse echo returns.
1	38.	(currently amended) The method of claim 36.5, wherein estimating the slope of
2		energy decay comprises dividing each of the plurality of acoustic pulse echo
3		returns into a plurality of time windows.
1	39.	(currently amended) The method of claim 387, wherein estimating the slope of
2		energy decay further comprises integrating over each of the plurality of time
3		windows.
l	40.	(currently amended) The method of claim 36.5, wherein estimating the slope of
2		energy decay further comprises subtracting noise from each of the plurality of
3		acoustic pulse echo returns.
1	41.	(currently amended) The method of claim 32.1, further comprising:

transmitting a second acoustic pulse through the fluid; and

2

15:36

3	estimating speed of sound through the fluid, using round trip travel time for the
4	second acoustic pulse between the first member and a second member that is in
5	contact with the fluid.
1	42. (currently amended) The method of claim 32.1, further comprising:
2	transmitting a second acoustic pulse through the fluid; and
3	estimating attenuation of the second acoustic pulse through the fluid.
1	43. (currently amended) The method of claim 42 11, wherein estimating the attenuation
2	includes estimating the attenuation at a plurality of frequencies.
1	44. (currently amended) The method of claim 41 10, wherein transmitting the second
2	acoustic pulse further comprises transmitting a plurality of acoustic pulses at a
3	plurality of frequencies.
1	45. (currently amended) The method of claim 32.1, wherein the method is performed
2	downhole.
1	46 (marriagaly magament) An announce for anti-soil a second of 5144

- 1 46. (previously presented) An apparatus for estimating a property of a fluid, comprising:
- 2 a vessel that contains the fluid;
- an acoustic pulser that transmits a first acoustic pulse into a first vessel member
- 4 that is in contact with the fluid;

5	a transducer that detects a plurality of acoustic pulse echo returns from an
6	interface between the first vessel member and the fluid; and
7	a processor that estimates the property of the fluid from the plurality of acoustic
8	pulse echo returns.
	•
1	47. (currently amended) The apparatus of claim 46 15, wherein the vessel comprises one
2	of at least one of the set consisting of a flask, pipe, conduit, sample chamber,
3	flow pipe, tube, channel, and downhole tool housing.
	•
1	48. (currently amended) The apparatus of claim 46.15, wherein the property comprises
2	one of at least one of the set consisting of acoustic impedance, density and
3	viscosity of the fluid.
1	49. (currently amended) The apparatus of claim 48 17, wherein the processor estimates
2	a reflection coefficient of the interface between the first vessel member and the
3	fluid.
1	50. (currently amended) The apparatus of claim 49 18, wherein the processor measures
2	acoustic impedance of the first vessel member.
1	51. (currently amended) The apparatus of claim 45 15, wherein the processor estimates
2	a slope of energy decay for the plurality of acoustic pulse echo returns.

- 1 52. (currently amended) The apparatus of claim 51 20, wherein the processor performs a 2 least squares fit to the plurality of acoustic pulse echo returns. 1 53. (currently amended) The apparatus of claim 51 20, wherein the processor divides 2 each of the plurality of acoustic pulse echo returns into a plurality of time 3 windows to reduce noise. 1 54. (currently amended) The apparatus of claim 53 22, wherein the processor integrates 2 over each of the plurality of time windows. 1 55. (currently amended) The apparatus of claim 51 20, wherein the processor estimates 2 the slope of energy decay from a value adjusted for noise for each of the plurality 3 of acoustic pulse echo returns. I 56. (currently amended) The apparatus of claim 46 15, wherein the acoustic pulser 2 transmits a second acoustic pulse through the fluid and the processor estimates the 3 speed of sound through the fluid using the round trip travel time for the second acoustic pulse between the first vessel member and a second member that is in 5 contact with the fluid.
- 57. (currently amended) The apparatus of claim 46.15, wherein the acoustic pulser transmits a second acoustic pulse through the fluid and the processor estimates attenuation of the second acoustic pulse through the fluid.

6

1	58. (currently amended) The apparatus of claim 57 26, wherein the processor estimates
2	the attenuation at a plurality of frequencies.
1	59. (currently amended) The apparatus of claim 56.25, wherein the acoustic pulser
2	transmits a plurality of pulses at a plurality of frequencies.
1	60. (currently amended) The apparatus of claim 46.15, wherein the apparatus is located
2	downhole.
1	61. (previously presented) A method for estimating a property of a fluid, comprising:
2	(a) generating a first acoustic pulse in the fluid that is in contact with a first
3	member;
4	(b) detecting a plurality of acoustic pulse echo returns from an interface between
5	the first member and the fluid; and
6	(c) estimating the property of the fluid from the plurality of acoustic pulse echo
7	returns.
I	62. (previously presented) An apparatus for estimating a property of a fluid, comprising
2	a chamber that contains the fluid;
3	a transmitter that sends a first acoustic pulse into the fluid that is in contact with a
4	first chamber member;
5	a transducer that detects a plurality of acoustic pulse echo returns from an

Fax:7132668510

interface between the first chamber member and the fluid; and

7	a processor that estimates the property of the fluid using the plurality of acoustic
8	pulse echo returns.
1	63. (previously presented) A downhole tool which is deployed in a borehole for
2	estimating a property of a downhole fluid, comprising:
3	a vessel that contains the fluid;
4	an acoustic pulser that transmits a first acoustic pulse into a first vessel member
5	that is in contact with the fluid;
6	a transducer that detects a plurality of acoustic pulse echo returns from an
7	interface between the first vessel member and the fluid; and
8	a processor that estimates the property of the fluid using the plurality of acoustic
9	pulse echo returns.
1	64. (currently amended) The downhole tool of claim 63 32, wherein the vessel
2	comprises one of a flask, pipe, conduit, sample chamber, flow pipe, tube, channe
3	and downhole tool housing.
1	65. (currently amended) The downhole tool of claim 64 33, wherein the property
2	comprises one of acoustic impedance, density and viscosity of the fluid.
1	66. (currently amended) The downhole tool of claim 65 34, wherein the processor
2	estimates a reflection coefficient of the interface between the first vessel member
3	and the fluid.
-	

- 67. (currently amended) The downhole tool of claim 63 32, wherein the processor
- estimates a slope of energy decay for the plurality of acoustic pulse echo returns.
- 1 68. (currently amended) The downhole tool of claim 67 36, wherein the processor
- 2 performs a least squares fit to the plurality of acoustic pulse echo returns.
- 1 69. (previously presented) A method for estimating a property of a fluid, comprising:
- 2. (a) generating a first acoustic pulse in a first member that is in contact with the fluid:
- 3 (b) detecting a plurality of acoustic pulse echo returns from an interface between the
- 4 first member and the fluid; and
- 5 (c) estimating the property of the fluid from the plurality of acoustic pulse echo
- 6 returns.