Selected Froblems - I Problem 1) What is the exact number of bits in a system that contains c. 32 K bytes b. 64 M bytes c. 6.46 bytes Solution. We know that 1 byte = 8 bits 1 K = 2° = 1024, 1M = 2° = 1024² = 1048576 $16 = 2^{30} = 1024^3 = 1073741824$ C. 32 K bytes = 25, 210, 8 = 32.1024.8 = 262144 bits b. 64M bytes = 28.220.8 - 64.1048576.8 = 5365030912 bits C. 6.4 G bytes = 6.4.1073741824.8 ~ 54975581389 bits Problem 2) Convert the decimal 8723 to both BCD and ASCII codes. For ASCII, in even parity bit is to be appended at the left.

PS11

Solution. We represent

300:
1000 0111 0010 0011

Four Different Binar	v Codes for	the Decimal	Dinite
----------------------	-------------	-------------	--------

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
. 3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
2	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

American Standard Code for Information Interchange (ASCII)

	b ₇ b ₆ b ₅							
b4b3b2b1	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	•	р
0001	SOH	DC1	1	1	Α	Q	a	q
0010	STX	DC2	**	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	•	7	G	W	g	w
1000	BS	CAN	(8	H	X	h	X
1001	HT	EM)	9	I	Y	i	у
1010	LF	SUB	*	:	J	Z	j	z
1011	VT	ESC	+	;	K]	k	{
1100	FF	FS	•	<	L	١	1	ĵ
1101	CR	GS	-	=	M	1	m	}
1110	SO	RS		>	N	Λ	n	2
1111	SI	US	1	?	0	-	0	DEL

Control characters

NUL	Null	DLE	Data-link escape
SOH	Start of heading	DC1	Device control 1
STX	Start of text	DC2	Device control 2
ETX	End of text	DC3	Device control 3
EOT	End of transmission	DC4	Device control 4
ENQ	Enquiry	NAK	Negative acknowledge
ACK	Acknowledge	SYN	Synchronous idle
BEL	Bell	ETB	End-of-transmission block
BS	Backspace	CAN	Cancel
HT	Horizontal tab	EM	End of medium
LF	Line feed	SUB	Substitute
VT	Vertical tab	ESC	Escape
FF	Form feed	FS	File separator
CR	Carriage return	GS	Group separator
SO	Shift out	RS	Record separator
SI	Shift in	US	Unit separator
SP	Space	DEL	Delete

ASCII:

perity bit 8 7 2 3 2001_011_010_000 011_0111 011_0010 011_0011

Problem 3) Write the expression "G. Boole" in ASCII using an eight-bit code. Include the period and the space. Treat the the period and the space. Treat the leftmost bit of each character as a parity bit. Each eight-bit code should have even parity.

Solution.

G (dot) (spece) B 01000111 00101110 10100000 01000010 0 01101111 01101111 01101100

01700101

Problem 4) Decode the following ASCII code: 1000010 1101001 1101100 1101100 1000111 1100001 1110100 1100101 1110011

Problem 5)	What bi-	t must be	e complemen
ted to change capital to	ge on A	scil lette	r from
Solution. We			
24b3b2b1 b=	101	b7b	6 b 5 1 1 7
· @	P	C	
	R		
	\wedge	\bigcap	
Hence;			
-the bit (o from -	the right	should be
complemente Problem 6	ed) Assign	a binary	code in
Problem 6 some orderly	menner	to the 5	2 playing core

Solution. We find

Bill Gates

Solution. We calculate the length of the code as follows:

$$S = \lceil log_2 52 \rceil$$

$$= \lceil 5.7004 \rceil$$

$$= 6 \implies we need 6 bits$$
Indeed;

 $2^{6-1} < 52 < 2^{6}$

That is

32 (52 (64

-let the msb's (most significent bit) select the suit, i.e.

dicmonds, hearts, alubs, spaces which can be ENCODED with 2 bits

11 -> speckes

-The remaining 4 bits can be used to ENCODE the "number" of the cords 0000 -7 cce (A) 0001 -> 7 1010 -> 10 1011 -> jcck -> queen -> kins 1101 e-9. 11_1011 -> jeck of spedes Note that; - using 6 bits, we can ENCODE ct most 64 potterns However; -we have used only 52 out of 64 codes