Introduction to Deep Learning

Lecture 5 Modern CNNs

Maria Vakalopoulou & Stergios Christodoulidis

MICS Laboratory

CentraleSupélec Université Paris-Saclay

Wednesday, December 6, 2023

Last Lecture

2D Discrete Convolution

$$C[i,j] \triangleq \sum_{m=0}^{(M_a-1)} \sum_{n=0}^{(N_a-1)} f[m,n] \cdot g[i-m,j-n]$$

30	3,	22	1	0
02	02	1_{0}	3	1
30	1,	2_2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

How can convolutions be used in Deep Learning?

- Convolution kernels can be trainable.
- Essentially it can be performed by applying a dot product (Toepliz matrix transformation).
- The convolution operation can be applied in any number of dimensions (1D, 2D, 3D, ... etc.)
- The gradient w.r.t. it's parameters and inputs:

$$\frac{\partial a_{rc}}{\partial w_{ij}} = x_{r-i,c-j}$$

$$\frac{\partial \mathcal{L}}{\partial w_{ij}} = \sum_{r} \sum_{c} \frac{\partial \mathcal{L}}{\partial a_{rc}} x_{r-i,c-j}$$

What Input Maximizes Feature Map Outputs?

Transfer Learning

- Assume two datasets S and T
- Dataset S (source) is
 - Fully annotated, plenty of images
 - We can build a model h_S
- Dataset T (target) is
 - Not a much annotated, or much fewer images
 - The annotations of S do not need to overlap with T
- We can use the model h_S to learn a better h_T
- This is called transfer learning

(Source, e.g. ImageNet 1M samples)

(Target, 1K samples)

Today's Lecture

Today's Lecture

- Modern/ Popular CNN architectures
- Go deeper on what makes them tick
 - What makes them different

VGG16

• 7.3% error rate in ImageNet

Compared to 18.2% of Alexnet

VGG16

- Input size: 224 x 224
- Filter sizes: 3 x 3
- Convolution stride: 1
 - Spatial resolution preserved
- Padding: 1
- Max pooling: 2 x 2 with a stride of 2
- ReLU activations
- No fancy input normalizations
 - No local response normalizations
- Although deeper, number of weights in not exploding

ConvNet Configuration							
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	input (224×224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
			pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
			pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool	10			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
maxpool							
FC-4096							
FC-4096							
FC-1000							
soft-max							

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	Е
Number of parameters	133	133	134	138	144

Why 3x3 filters?

- The smallest possible filter to capture the "up", "down", "left", "right"
- Two 3x3 filters have the receptive field of one 5 x 5
- Three 3x3 filters have the receptive field of ...

Why 3x3 filters?

- The smallest possible filter to capture the "up", "down", "left", "right"
- Two 3x3 filters have the receptive field of one 5 x 5
- Three 3x3 filters have the receptive field of 7 x 7
- 1 large filter can be replaced by a deeper stack of successive smaller filters
- Benefit?

Why 3x3 filters?

- The smallest possible filter to capture the "up", "down", "left", "right"
- Two 3x3 filters have the receptive field of one 5 x 5
- Three 3x3 filters have the receptive field of 7 x 7
- 1 large filter can be replaced by a deeper stack of successive smaller filters
- Benefit?
- Three more nonlinearities for the same "size" of pattern learning
- Also fewer parameters and regularization
 - (3x3xC)x3 = 27 C, (7x7xC)x1 = 49C
- Conclusion: 1 large filter can be replaced by a deeper, potentially more powerful, stack of successive smaller filters

Even smaller filters?

- Also 1x1 filters are used
- Followed by a nonlinearity
- Why?

Even smaller filters?

- Also 1x1 filters are used
- Followed by a nonlinearity
- Why?
- Increasing nonlinearities without affecting receptive field sizes
 - Linear transformation of the input channels

Training

- Batch size: 256
- SGD with momentum = 0.9
- Weight decay $\lambda = 5 \cdot 10^{-4}$
- Dropout on first two fully connected layers
- Learning rare $\eta_0 = 10^{-2}$, then decreased by factor of 10 when validation accuracy stopped improving
 - Three times this learning rate decrease

Inception

- Basic idea
 - Salient parts have great variation in sizes
 - Naively stacking convolutional operations is expensive
 - Very deep nets are prone to overfitting

Picture credit: Bharath Raj

Inception

- Module
 - Multiple kernel filters of different sizes (1x1,3x3,5x5)
 - Naive version
 - Problem?

(a) Inception module, naïve version

Picture credit: Bharath Raj

Inception

- Module
 - Multiple kernel filters of different sizes (1x1,3x3,5x5)
 - Naive version
 - Problem?
 - Very expensive!
 - Add intermediate 1x1 convolutions

Picture credit: Bharath Raj

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Architecture

- 9 Inception Modules
- 22 layers deep (27 with the pooling layers)
- Global average pooling at the end of last Inception Module
- 6.67% Imagenet error, compared to 18.2% of Alexnet

Main Problem: Vanishing gradients

- The network was too deep (at the time)
- · Roughly speaking, backprop is lots of matrix multiplications

$$\frac{\partial \mathcal{L}}{\partial w^{l}} = \frac{\partial \mathcal{L}}{\partial a^{L}} \cdot \frac{\partial a^{L}}{\partial a^{L-1}} \cdot \frac{\partial a^{L-1}}{\partial a^{L-2}} \cdot \dots \cdot \frac{\partial a^{l}}{\partial w^{l}}$$

- Many of intermediate terms <1 \to the final $\frac{\partial \mathcal{L}}{\partial w^l}$ gets extremely small
- Extremely small gradient → ?

Main Problem: Vanishing gradients

- The network was too deep (at the time)
- Roughly speaking, backprop is lots of matrix multiplications

$$\frac{\partial \mathcal{L}}{\partial w^{l}} = \frac{\partial \mathcal{L}}{\partial a^{L}} \cdot \frac{\partial a^{L}}{\partial a^{L-1}} \cdot \frac{\partial a^{L-1}}{\partial a^{L-2}} \cdot \dots \cdot \frac{\partial a^{l}}{\partial w^{l}}$$

- Many of intermediate terms <1 \rightarrow the final $\frac{\partial \mathcal{L}}{\partial w^l}$ gets extremely small
- Extremely small gradient → Extremely slow learning

Architecture

- 9 Inception Modules
- 22 layers deep (27 with the pooling layers)
- Global average pooling at the end of last Inception Module
- Because of the increased depth → Vanishing gradients
- Inception solution to vanishing gradients: intermediate classifiers
 - Removed after training

Inceptions v2, v3, v4

- Factorize 5x5 in two 3x3 filters
- Factorize nxn in two nx1 and 1xn filters (quite a lot cheaper)
- Make nets wider
- RMSprop, BatchNorms,

ResNets, DenseNets, HighwayNets

Some facts

- The first truly Deep Network, going deeper than 1000 layers
- More importantly the first Deep Architecture that proposed a novel concept on how to gracefully go deeper than a few dozen layers
 - Not simply getting more GPUs, more training time etc
- Smashed Imagenet with a 3.57% error (in ensembles)
- Won all object classification, detection, segmentation, etc. challenges

Hypothesis

- Hypothesis: Is it possible to have a very deep network at least as accurate as averagely deep networks?
- Thought experiment: Let's assume two Convnets A, B. They are almost identical, in that B is same as A, with extra "identity" layers. Since identity layers pass the information unchanged, the errors of the two networks should...

Hypothesis

- Hypothesis: Is it possible to have a very deep network at least as accurate as averagely deep networks?
- Thought experiment: Let's assume two Convnets A, B. They are almost identical, in that B is same as A, with extra "identity" layers. Since identity layers pass the information unchanged, the errors of the two networks should be similar. Thus, there is a Convnet B, which is at least as good as Convnet A w.r.t. training error

Testing the hypothesis

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Testing the hypothesis

- Adding identity layers increases training error!!
 - Training error, not testing error
- Performance degradation not caused by overfitting
 - Just the optimization task is harder
- Assuming optimizers are doing their job fine, it appears that not all networks are the same as easy to optimize

What is the problem?

- Very deep networks stop learning after a bit
 - An accuracy is reached, then the network saturates
- Signal gets lost through so many layers

G and M act as Identity Functions. Both the Networks Give same output

Basic Idea (Residual idea, intuitively)

- Let's say we have the neural network nonlinearity a = F(x)
- Easier to learn a function a = F(x) to model differences $a \sim \delta y$ than to model absolutes $a \sim y$
 - Think of it like in input normalization → you normalize around 0
 - Think of it like in regression → you model differences around the mean value
- So, ask the neural network to explicitly model different mapping

$$F(x) = H(x) - x \Rightarrow H(x) = F(x) + x$$

- F(x) are the stacked nonlinearities
- X is the input to the nonlinear layer

ResNet block

- $\bullet \ \ H(x) = F(x) + x$
- If dimensions don't match
 - Either zero padding
 - Or a projection layer to match dimensions

Figure 2. Residual learning: a building block.

Hard to get F(x)=x and make y=x an identity mapping

Easy to get F(x)=0 and make y=x an identity mapping

Testing Hypothesis

Without the residual connections deeper networks attain worse scores

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

ResNet breaks records

- Ridiculously low error in ImageNet
- Up to 1000 layers ResNets trained
 - Previous deepest network ~30-40 layers on simple datasets

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Table 5. Error rates (%) of **ensembles**. The top-5 error is on the test set of ImageNet and reported by the test server.

ResNet architecture & ResNeXt

Fig. 4(c)

Fig. 4(d)

Fig. 4(e)

7.84

6.71

6.37

6.14

5.91

5.46

ReLU before addition

full pre-activation

ReLU-only pre-activation

ResNeXt

Figure 1. **Left**: A block of ResNet [14]. **Right**: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

	setting	top-1 err (%)	top-5 err (%)
1× complexity refer	ences:		
ResNet-101	1 × 64d	22.0	6.0
ResNeXt-101	$32 \times 4d$	21.2	5.6
2× complexity mode	els follow:		
ResNet-200 [15]	1 × 64d	21.7	5.8
ResNet-101, wider	1 × 100d	21.3	5.7
ResNeXt-101	2 × 64d	20.7	5.5
ResNeXt-101	64 × 4d	20.4	5.3

Table 4. Comparisons on ImageNet-1K when the number of FLOPs is increased to $2\times$ of ResNet-101's. The error rate is evaluated on the single crop of 224×224 pixels. The highlighted factors are the factors that increase complexity.

Some observations

- BatchNorms absolutely necessary because of vanishing gradients
- Networks with skip connections (like ResNets) converge faster than the same network without skip connections
- Identity shortcuts cheaper and almost equal to project shortcuts

HighwayNet

 Similar to ResNets, only introducing a gate with learnable parameters on the importance of each skip connection

$$y = H(x, W_H) \cdot T(x, W_T) + x \cdot (1 - T(x, W_T))$$

Similar to.... LSTMS as we will see later

DenseNet

Add skip connections to multiple forward layers

$$y = h(x_l, x_{l-1}, \dots, x_{l-n})$$

Why?

DenseNet

 Add skip connections to multiple forward layers

$$y = h(x_l, x_{l-1}, ..., x_{l-n})$$

- Assume layer 1 captures edges, while layer 5 captures faces (and other stuff)
- Why not have a layer that combines both faces and edges (e.g. to model a scarred face)
- Standard ConvNets do not allow for this
 - Layer 6 combines only layer 5 patterns, not lower

State of the art

EfficientNet

- Automatic hyperparameter definition (AutoML)
- Scaling up CNNs. however many many ways to do it

EfficientNet

- Automatic hyperparameter definition (AutoML)
- Scaling up CNNs. however many many ways to do it
- Balance dimensions of width/depth/resolution by scaling with a constant ratio
 - a,b,γ are constant coefficients determined by a small grid search on the original small model
 - Fix $\phi=1$ and do a small grid search of the rest
 - EfficientNet-B0 is with $\phi=1$
 - Fixing afterward the rest we obtain
 - EfficientNet-B1 to B7

depth:
$$d=\alpha^{\phi}$$
 width: $w=\beta^{\phi}$ resolution: $r=\gamma^{\phi}$ s.t. $\alpha\cdot\beta^2\cdot\gamma^2\approx 2$ $\alpha\geq 1, \beta\geq 1, \gamma\geq 1$

EfficientNet

- m denotes accuracy; T denotes target FLOPs
- Search space from NAS

$$ACC(m) \times [FLOPS(m)/T]^w$$

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	#Channels \hat{C}_i	#Layers \hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

R-CNNs, Fully Convolutional Nets

Sliding window on feature maps

- SPPnet [He2014]
- Fast R-CNN [Girshick2015]

Fast R-CNN: Steps

- Process the whole image up to conv5
- Compute possible locations for objects (some correct, most wrong)

Fast R-CNN: Steps

- Process the whole image up to conv5
- Compute possible locations for objects (some correct, most wrong)
- Given single location → ROI pooling module extracts fixed length feature

Region-of-Interest (ROI) Pooling Module

- Divide feature map in TxT cells
 - The cell size will change depending on the size of the candidate location

Fast R-CNN: Steps

- Process the whole image up to conv5
- Compute possible locations for objects (some correct, most wrong)
- Given single location → ROI pooling module extracts fixed length feature
- Connect to two final layers, 1 for classification, 1 for box refinement

Some Results

Fast-RCNN

- Reuse convolutions for different candidate boxes
 - Compute feature maps only once
- Region-of-Interest pooling
 - Define stride relatively → box width divided by predefined number of "poolings" T
 - Fixed length vector
- End-to-end training
- (Very) accurate object detection
- (Very) Faster
 - Less than a second per image
- But: External box proposals needed

Faster R-CNN [Girshick2016]

- Fast R-CNN → External candidate locations
- Faster R-CNN → deep network proposes candidate locations
- Slide the feature map → k anchor boxes per slide

Figure 2: Faster R-CNN is a single, unified network for object detection. The RPN module serves as the 'attention' of this unified network.

proposals

Region Proposal Network

conv lavers

classifier

feature maps

Going Fully Convolutional [LongCVPR2014]

Image larger than network input → slide the network

Going Fully Convolutional [LongCVPR2014]

Image larger than network input → slide the network

Deconvolutional modules

Coarse → Fine Output

Deconvolutional modules

Agony of Choice

- Architecture: depth, width, scales, residuals,
- Loss function: cross entropy, focal loss, MSE, ...
- Optimization: optimizer, learning rate, momentum, ...
- Data normalization
- Modelization of the problem