Department of Electrical Engineering, IIT Delhi EEL806 Computer Vision: Major Examination

(Closed book/Closed Notes) Time: 2 hours Maximum Marks: 25

"Thou shalt not covet thy neighbour's answers"

Useful Formulae and Results:

The KLT: $\mathbf{r_i} = \mathbf{U}^T \mathbf{p_i}$. Here $\mathbf{p_i}$ are Type-I normalised $k \times 1$ patterns (n of which can be stacked to get the Type-I normalised pattern matrix \mathbf{P}). \mathbf{U} is a matrix of eigenvectors of the covariance matrix $\mathbf{A} = \frac{1}{n}\mathbf{P}\mathbf{P}^T$. There are k eigenvectors $\mathbf{u_i}$ corresponding to eigenvalues λ_i . Λ is a diagonal matrix having eigenvalues λ_i along the main diagonal.

Useful Result 1: Eigenvectors of a symmetric matrix are orthonormal.

Useful Result 2: Diagonalisation of a square matrix \mathbf{B} : $\mathbf{B} = \mathbf{U}\Lambda\mathbf{U}^{-1}$.

The SVD: $\mathbf{P} = \mathbf{U} \; \Sigma \; \mathbf{V}^T$, where this \mathbf{U} is the $k \times k$ matrix of orthonormal basis vectors, Σ is a $k \times n$ matrix having singular values σ_i along the main diagonal (the other values are all zero), and \mathbf{V} is an $n \times n$ matrix of the eigenvectors of $\mathbf{A}' = \mathbf{P}^T \mathbf{P}$. These eigenvectors \mathbf{v}_i correspond to eigenvalues λ_i , and we define $\sigma_i = \sqrt{\lambda_i}$, and $\mathbf{u}_i = \frac{1}{\sigma_i} \mathbf{P} \mathbf{v}_i$.

1. The long and short of it...

- (a) Explain the concept of compression with regard to the KLT. Use suitable mathematical expressions and explanations. What are the properties of the compression, which are similar to the original KLT?
- (b) Explain the concept of compression in the SVD. ((2+2)+2 marks)
- 2. Reconstruction constriction Given a pattern \mathbf{p} , we project it onto a set of orthonormal basis vectors, and consider a reconstruction $\hat{\mathbf{p}}$ in terms of a linear combination of the basis vectors $\hat{\mathbf{p}} = \sum_j c_j \mathbf{u}_j$.
 - (a) Consider both the KLT and SVD without any compression. Show the following result for both cases, with suitable limits on the summation, and appropriate mathematical expressions: If the input vector \mathbf{p} is one of the pattern vectors $\mathbf{p_i}$ in \mathbf{P} , show what $\hat{\mathbf{p}} = \mathbf{p_i}$. (3+3 marks)
 - (b) If a certain set of linear combination coefficients c_j multiplying a set of basis vectors $\mathbf{u_i}$ gives a result $\hat{\mathbf{p}}$ that set of coefficients is unique. Give a simple proof of the same. (2 marks)
- 3. A cranky rank question What happens in the KLT if the covariance matrix is rank-deficient? Explain in words, with the help of mathematical expressions. You can use suitable examples. (2 marks)
- 4. Prediction, Updating Using the basic laws of probability, prove the Prediction Equation and the Update Equation, below:

$$P(\mathbf{X}_t|\mathbf{Z}_{1:t-1}) = \int P(\mathbf{X}_t|\mathbf{X}_{t-1})P(\mathbf{X}_{t-1}|\mathbf{Z}_{1:t-1})d\mathbf{X}_{t-1}$$
(1)

$$P(\mathbf{X}_t|\mathbf{Z}_{1:t}) \propto P(\mathbf{Z}_t|\mathbf{X}_t)P(\mathbf{X}_t|\mathbf{Z}_{1:t-1})$$
 (2)

Use the discrete case in the proofs. Clearly mention the point where you needed to make assumptions, the assumptions themselves, and some justification for the assumptions. (2+2 marks)

Please turn over...

- 5. Tracker Cracker Explain how a particle filter can track multiple objects of the same kind, in respect of the following points. Mention how this is different for a particle filter tracking a single object.
 - (a) The INITIALISATION step
 - (b) The SELECT step
 - (c) The PREDICT step
 - (d) The MEASURE step
 - (e) The OUTPUT step

(5 marks)