

# Scikit-learn and Tour of Classifiers

Recap



### Classification pipeline

- Goal: Train a classifier that generalizes well on unseen data
- Train (for training) / Test (unseen) split to get better estimate of generalization error via error on the test set
  - Randomize and stratify to get equal class distribution in test & train set
- Feature Scaling/Transformations
  - Always apply identical transformations to test & train set
  - Avoid information leakage! Standardization: compute mean/stddev on the training set
- Accuracy: 1.0 misclassified\_samples / all\_samples



# Scikit-learn and Tour of Classifiers

Overfitting



#### Train a logistic regression model – Parameter C

#### Code example:

03\_logreg\_iris.ipynb

- Use Iris data set in scikit-learn
- Use ALL features
- Split the data into training and test set (test\_size=0.3, random\_state=1)
- Intialise LogisticRegression class with LogisticRegression(C=100.0, random\_state=1)
- Print out number of misclassified samples
- Print out classification accuracy for training data & test data
- Does accuracy change with C?



#### Train logistic regression model on cancer data set

#### Exercise:

- Use Wisconsin breast cancer data set in scikit-learn.
- Use ALL features
- Split the data into training and test set (test\_size=0.3, random\_state=1)
- Intialise LogisticRegression class with LogisticRegression(C=100.0, random\_state=1)
- Print out number of misclassified samples
- Print out classification accuracy for training data & test data
- Does accuracy change with C?



# Overfitting / Underfitting



## Overfitting

Overfitting is a common problem in machine learning

We want the model to generalize well on unseen data

• A model that is overfitted performs well on training data but does not generalise well to unseen data (test data)



#### Overfitting – Underfitting

#### A model that suffers from **overfitting**

- Has high variance
- High variance may be caused by too many parameters that lead to a model that is too complex given the training data
- → poor performance on unseen data because of high variance

#### A model that suffers from underfitting

- Has high bias
- High bias means that the model is not complex enough to capture the pattern in the training data well
- → poor performance on unseen data because of high bias



# Overfitting – Underfitting (Examples)



Linear decision boundary

Nonlinear decision boundary

Nonlinear decision boundary



# Overfitting – Underfitting (Examples)





Classification

Regression



## Bias – Variance and Overfitting – Underfitting

# Low Variance (Precise) High Variance (Not Precise)



Underfitting



High Bias (Not Accurate)





#### Bias - Variance

#### **Variance**

- Measures consistency (variability) of the model prediction for a particular sample
- If model is retrained on different subsets of training data and prediction for a particular sample differ much each time → high variance
- The model is sensitive to the randomness in the training data

#### Bias

- Measures how far off the predictions are from the correct values in general
- If model is retrained multiple times on different training datasets → bias measures the systematic error that is not due to randomness



#### Bias - Variance

Given a true value y and an estimator  $\hat{y}$ 

#### **Bias**

$$Bias(\widehat{y}) := E[\widehat{y}] - y$$

#### **Variance**

$$Var(\widehat{y}) := E[(E[\widehat{y}] - \widehat{y})^2] = E[\widehat{y}^2] - E[\widehat{y}]^2$$

 $E[\hat{y}]$ : the expected value (expectation) of the estimator  $\hat{y}$  (here: expectation over training sets)



#### Bias – Variance decomposition of squared loss

Given a true value y and an estimator  $\hat{y}$ ;  $Bias(\hat{y}) = E[\hat{y}] - y$ ;  $Var(\hat{y}) = E[(E[\hat{y}] - \hat{y})^2]$ 

For y (true outcome) and  $\hat{y}$  (estimated outcome):

Squared loss: 
$$L = (y - \hat{y})^2 = (y - E[\hat{y}] + E[\hat{y}] - \hat{y})^2$$
 using:  $(a + b)^2 = a^2 + b^2 + 2ab$ 

$$= (\mathbf{y} - E[\widehat{\mathbf{y}}])^2 + (E[\widehat{\mathbf{y}}] - \widehat{\mathbf{y}})^2 + 2(\mathbf{y} - E[\widehat{\mathbf{y}}])(E[\widehat{\mathbf{y}}] - \widehat{\mathbf{y}})$$

Take expected value of both sides:

$$E[L] = E[(\mathbf{y} - E[\widehat{\mathbf{y}}])^2 + (E[\widehat{\mathbf{y}}] - \widehat{\mathbf{y}})^2] = Bias^2 + Variance$$

using:  $E[2(\mathbf{y} - E[\widehat{\mathbf{y}}])] = 2(\mathbf{y} - E[\widehat{\mathbf{y}}])$  and  $E[(E[\widehat{\mathbf{y}}] - \widehat{\mathbf{y}})] = (E[\widehat{\mathbf{y}}] - E[\widehat{\mathbf{y}}]) = 0$ 















# Tackling overfitting via regularization



## Tackling overfitting

- Finding the appropriate **complexity bias-variance trade-off** important for good performance
  - Collect more training data
  - Introduce a **penalty for complexity** via **regularization**
  - Choose a **simpler model** with fewer parameters
  - Reduce the dimensionality of the data (feature selection, dimensionality reduction, Ch.06)



### Tackling overfitting via regularization

- Finding the appropriate complexity bias-variance trade-off important for good performance
- Good option: Tune complexity of model using regularisation
- Regularisation is very useful for
  - Handling collinearity (high correlation among features)
  - Filter out noise from data
  - Preventing overfitting
- To make regularisation work properly, features need to be scaled / standardised
- Concept of regularisation
  - Introduce additional information (bias) to penalise extreme parameter (weight) values
  - Most common form of regularisation is so-called L2 regularisation (sometimes also called L2 shrinkage or weight decay) (details see Ch.04 in book)



### $\ell_2$ - regularization (or L2 regularization / Ridge)

- $\ell_2$ -regularization: Add Euclidean norm (two-norm) of weights to the loss function
- $\ell_2$ -regularized logistic regression:

$$L(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[ y^{(i)} \log(\sigma(z)) + (1 - y^{(i)}) \log(1 - \sigma(z)) \right] + \frac{\lambda}{2} ||\mathbf{w}||_{2}^{2}$$

recall that 
$$||\mathbf{w}||_2^2 = \sum_{i=1}^m w_i^2$$
 and  $\pmb{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_m \end{bmatrix} := \begin{bmatrix} b \\ \mathbf{w} \end{bmatrix}$ 

and 
$$z := b + \mathbf{x}^{(i)}\mathbf{w} = \mathbf{x}^{(i)}oldsymbol{ heta}$$



#### $\ell_2$ - regularization

$$L(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[ y^{(i)} \log(\sigma(z)) + (1 - y^{(i)}) \log(1 - \sigma(z)) \right] + \frac{\lambda}{2} ||\mathbf{w}||_{2}^{2}$$

- Now two objectives: minimize the "distance" to the data but also keep the weights small
- Other classifiers and regression models can be regularized in the same way!



# $\ell_2$ - regularization

$$+\frac{\lambda}{2}||\mathbf{w}||_2^2$$

#### Regularisation parameter $\lambda$

- Provides control for how well the training data are fitted while keeping the weights small
- Increasing the value of  $\lambda \rightarrow$  increases regularisation strength
- The LogisticRegression class in scikit-learn implements a parameter C for regularisation
- C is the inverse of  $\lambda$  (C is the inverse regularisation parameter)

$$C := \frac{1}{\lambda}$$

- Decreasing value of C → **increases** regularisation strength
- Effect of regularisation can be visualised by plotting the " $\ell_2$ -regularization path"

# $\ell_2$ - regularized logistic regression

 $10^{-2}$ 

-2

 $10^{-4}$ 



10°

10<sup>2</sup>

10<sup>4</sup>







#### **Code example**

- Use Wisconsin breast cancer data set in scikit-learn
- Use ALL features
- Split the data 100 times into different training and test sets (test\_size=0.3)
- Intialise LogisticRegression class with LogisticRegression (C=100.0, random\_state=1)
- Print out average and standard deviation of validation accuracy across the 100 splits

# $\ell_2$ - regularized logistic regression

$$+\frac{\lambda}{2}||\mathbf{w}||_{2}^{2} \qquad C := \frac{1}{\lambda}$$

#### **Code example**

- Use Wisconsin breast cancer data set in scikit-learn
- Use ALL features
- Split the data 100 times into different training and test sets (test\_size=0.3)
- Intialise LogisticRegression class with LogisticRegression(C=10.0\*\*c, random\_state=1)
  - small c varies from -8 to 10 (step by 1)
- Print out average and standard deviation of validation accuracy across the 100 splits
- Plot train and test accuracy across each C in one plot
- For which C does the model provide the best test accuracy? For which C does the model overfit? For which C do does the model underfit?

03\_logreg\_cancer\_regularization.ipynb



### $\ell_2$ - regularized logistic regression (exercise)











## $\ell_2$ - regularized logistic regression (example)





# Tackling overfitting via regularization

Sparsity-promoting regularization



### $\ell_1$ - regularization (or L1 / Lasso)

$$L(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[ y^{(i)} \log(\sigma(z)) + (1 - y^{(i)}) \log(1 - \sigma(z)) \right] + \lambda ||\mathbf{w}||_{1}$$

where 
$$||\mathbf{w}||_1 = \sum_{i=1}^m |w_i|$$
 and  $m{ heta} = egin{bmatrix} heta_0 \ heta_1 \ dots \ heta_m \end{bmatrix} := egin{bmatrix} b \ \mathbf{w} \end{bmatrix}$ 

and 
$$z := b + \mathbf{x}^{(i)} \mathbf{w} = \mathbf{x}^{(i)} \boldsymbol{\theta}$$



## Geometric interpretation



Two features





### Geometric interpretation: $\ell_2$ - regularization





### Geometric interpretation: $\ell_1$ - regularization

Example: Mean squared error

Two features





### Geometric interpretation: $\ell_1$ - regularization

Due to the shape of the  $\ell_1$ -loss this leads to a selection of weight such that many weights are zero (here: "automatic feature selection")  $w_1 = 0$ 

We say  $\ell_1$  regularization promotes "sparsity"

It leads to models with less parameters / lower complexity

Minimize loss  $\frac{1}{N}\sum_{i=1}^{N}\left(y^{(i)}-\hat{y}^{(i)}\right)^2$  $w_1$ Minimize loss + penalty Minimize penalty  $\lambda \|\mathbf{w}\|_1$ 

Figure from Python Machine Learning (Raschka & Mirjalili)



# Geometric interpretation: $\ell_p$ - regularization



• Due to computational restriction in practice used are  $\ell_1$ (Lasso),  $\ell_2$ (Ridge),  $\ell_1$ +  $\ell_2$  (Elastic net)

$$+ \frac{\lambda}{p} ||\mathbf{w}||_p^p$$

$$||\mathbf{w}||_p^p = \sum_{i=1}^m |w_i|^p$$



