

INSTRUCTIONS GENERALES

- ✓ L'utilisation de la calculatrice non programmable est autorisée ;
- ✓ Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- ✓ L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter.

COMPOSANTES DU SUJET

L'épreuve est composée de trois exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Suites numériques	4 points
Exercice 2	Nombres complexes	5 points
Exercice 3	Limites, dérivabilité et calcul intégral	4 points
Problème	Etude d'une fonction numérique	7 points

- ✓ On désigne par \overline{z} le conjugué du nombre complexe z
- ✓ In désigne la fonction logarithme népérien

الصفحة	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 – الموضوع مادة: الدياضيات- شعبة العاد و التحديدة مسلك على و الحياة و الأرض و مسلك العاد و الذياد (خيار NS 22F			
4	- مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية (خيار فرنسية)			
	Exercice 1: (4 points)			
	Soit (u_n) la suite numérique définie par : $u_0 = \frac{3}{2}$ et $u_{n+1} = \frac{2u_n}{2u_n + 5}$ pour tout n de IN			
0.25	1) Calculer u_1			
0.5	2) Montrer par récurrence que pour tout n de IN , $u_n > 0$			
1	3)a) Montrer que pour tout n de IN , $0 < u_{n+1} \le \frac{2}{5}u_n$			
	puis en déduire que pour tout n de IN , $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$			
0.5	b) Calculer $\lim u_n$			
	4) On considère la suite numérique (v_n) définie par $v_n = \frac{4u_n}{2u_n + 3}$ pour tout n de IN .			
0.75	a) Montrer que (v_n) est une suite géométrique de raison $\frac{2}{5}$			
1	b) Déterminer v_n en fonction de n et en déduire u_n en fonction de n pour tout n de IN .			
	Exercice 2: (5 points)			
	1) Dans l'ensemble 🗌 des nombres complexes, on considère l'équation :			
	$(E): z^2 - 2(\sqrt{2} + \sqrt{6})z + 16 = 0$			
0.5	a) Vérifier que le discriminant de l'équation (E) est $\Delta = -4(\sqrt{6} - \sqrt{2})^2$			
1	b) En déduire les solutions de l'équation (E) .			
	2) Soient les nombres complexes $a = (\sqrt{6} + \sqrt{2}) + i(\sqrt{6} - \sqrt{2}), b = 1 + i\sqrt{3}$ et $c = \sqrt{2} + i\sqrt{2}$			
0.75	a) Vérifier que $b\overline{c}=a$, puis en déduire que $ac=4b$			
0.5	b) Ecrire les nombres complexes b et c sous forme trigonométrique.			
0.5	c) En déduire que $a=4\left(\cos\frac{\pi}{12}+i\sin\frac{\pi}{12}\right)$			
	3) Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les			
	points B , C et D d'affixes respectives b , c et d telle que $d=a^4$. Soit z l'affixe d'un point			
	M du plan et z' l'affixe de M' image de M par la rotation R de centre O et d'angle $\dfrac{\pi}{12}$			
0.5	a) Vérifier que $z' = \frac{1}{4}az$			
0.25	b) Déterminer l'image du point C par la rotation R			
0.25	c) Déterminer la nature du triangle OBC .			
0.75	d) Montrer que $a^4 = 128b$ et en déduire que les points O , B et D sont alignés			

الصفحة	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 – الموضوع				
4	مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار فرنسية)				
	Exercice 3: (4 points)				
	On considère la fonction numérique g définie sur $]0, +\infty[$ par $g(x) = 2\sqrt{x} - 2 - \ln x$				
0.5	1)a) Montrer que pour tout x de $]0, +\infty[$, $g'(x) = \frac{\sqrt{x}-1}{x}$				
0.5	b) Montrer que g est croissante sur $[1, +\infty[$				
0.5	c) en déduire que pour tout x de $[1, +\infty[$, $0 \le \ln x \le 2\sqrt{x}$ (remarquer que $2\sqrt{x} - 2 \le 2\sqrt{x}$)				
1	d) Montrer que pour tout x de $\left[1, +\infty\right[, 0 \le \frac{\left(\ln x\right)^3}{x^2} \le \frac{8}{\sqrt{x}}$ et en déduire $\lim_{x \to +\infty} \frac{\left(\ln x\right)^3}{x^2}$				
0.75	2) a) Montrer que la fonction $G: x \mapsto x \left(-1 + \frac{4}{3}\sqrt{x} - \ln x\right)$ est une primitive de g sur $]0, +\infty[$				
0.75	b) Calculer l'intégrale $\int_{1}^{4} g(x)dx$				
	Problème : (7 points)				
	On considère la fonction numérique f définie sur \Box par $f(x) = -x + \frac{5}{2} - \frac{1}{2}e^{x-2}(e^{x-2} - 4)$				
	et (C) sa courbe représentative dans un repère orthonormé $\left(O,\vec{i}\;;\vec{j}\right)$ (unité : 2cm)				
0.5	1) Montrer que $\lim_{x \to -\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} f(x) = -\infty$				
0.5	2) a) Démontrer que la droite (Δ) d'équation $y = -x + \frac{5}{2}$ est une asymptote à la courbe (C) au				
	voisinage de −∞				
0.75	b) Résoudre l'équation $e^{x-2}-4=0$ puis montrer que la courbe (C) est au dessus de (Δ) sur				
	l'intervalle $\left]-\infty,2+\ln 4\right]$ et en dessous de (Δ) sur l'intervalle $\left[2+\ln 4,+\infty\right[$				
0.5	3) Montrer que $\lim_{x\to +\infty} \frac{f(x)}{x} = -\infty$ puis interpréter géométriquement le résultat				
0.5	4) a) Montrer que pour tout x de \Box $f'(x) = -(e^{x-2} - 1)^2$				
0.25	b) Dresser le tableau de variations de la fonction f				
0.75	5) Calculer $f''(x)$ pour tout x de \square puis montrer que $A(2,2)$ est un point d'inflexion de (C)				
0.5	6) Montrer que l'équation $f(x) = 0$ admet une solution unique α telle que $2 + \ln 3 < \alpha < 2 + \ln 4$				
1	7) Construire (Δ) et (C) dans le repère $\left(O, \vec{i}; \vec{j}\right)$ ci-dessous (on prend $\ln 2 \square 0.7$ et $\ln 3 \square 1.1$)				

الصفحة	4 NS 22F	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 - الموضوع - مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيانية (خيار فرنسية)			
0.5	0.5 8) a) Montrer que la fonction f admet une fonction réciproque f^{-1} définie sur \square				
0.75	b) Construire dans le même repère $\left(O,\vec{i}\;,\vec{j} ight)$ la courbe représentative de la fonction f^{-1}				
	(remarquer que la droite (Δ) est perpendiculaire à la première bissectrice du repère)				
0.5	c) Calculer $(f^{-1})'(2-\ln 3)$ (Remarquer que $f^{-1}(2-\ln 3) = 2+\ln 3$)				

·**/**·

On prendra en compte les différentes étapes de la solution et on acceptera toute méthode correcte .

	Numéros des questions	Notes	Eléments de réponses
Exercice 1	1	0.25	
	2	0.5	
	3-a	1	0.5 pour le premier encadrement et 0.5 pour le deuxième
	3-b	0.5	
xer	4-a	0.75	
<u> </u>	4-b	1	0.5 pour $v_n = \left(\frac{2}{5}\right)^n$ et 0.5 pour u_n en fonction de n
	1-a	0.5	
	1-b	1	0.5 pour chaque solution
	2 -a	0.75	0.5 pour la vérification et 0.25 pour la déduction .
2	2-b	0.5	0.25 pour chaque forme trigonométrique
Exercice 2	2-c	0.5	
Xer	3-a	0.5	
	3-b	0.25	
	3-c	0.25	O est isocèle de sommet OBC Le triangle
	3-d	0.75	0.5 pour l'égalité et 0.25 pour la déduction .
	1-a	0.5	
	1-b	0.5	
8	1-c	0.5	
Exercice 3	1-d	0.5	0.5 pour l'encadrement et 0.5 pour la limite
Ä	2 -a	0.75	
	2-b	0.75	
	1	0.5	0.25 pour chaque limite
	2-a	0.5	On accepte toute méthode correcte
Problème	2-b	0.75	0.25 pour l'équation et 0.25 pour la position relative dans chaque intervalle .
	3	0.5	0.25 pour la limite et 0.25 pour l'interprétation géométrique
	4-a	0.5	
	4-b	0.25	La mention de f ' (2) dans le tableau de variation n'est pas nécessaire

الصفحة الصفحة	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2020 – عناصر الإجابة	
2 NR 22F	- مادة: الرياضيات- شعبة العلوم التجريبية مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية (خيار فرنسية)	

	5	0.75	0.25 pour le calcul de la dérivée seconde et 0.5 pour le point d'inflexion
lème	6	0.5	
	7	1	Voir le graphe ci-dessous
Prol	8-a	0.5	
_	8-b	0.75	Voir le graphe ci-dessous
	8-c	0.5	

