

(means it's not 0) Observations: - If u,u, solve 2/4 = k2/4 then c, u, t c, u, also does (c, c2 coust.) - if u, uz satisfy u(0,+)=u(1,+)=0 then so does c, u, + czuz [If u,(x,0) = f(x), u2(x,0) = f(x) U, (x,0) + U2(x,0) = 2 f(x) But if u(x,0) = f(x), u2(x,0) = f(x) then Gu, (x, 0) + Czuz (x,0) = C,f,+ 62 f2 Strategy: find building blocks u; j=0,1,2,-. $-\partial_{\xi}u'_{1} = \xi \partial_{\chi}^{2}u'_{1} \qquad o < x < L, \ \xi > 0$ - u;(0,t)= u;(1,t)=0 t>0 cend form infinite sum $u(x,t) = \sum_{j=0}^{\infty} c_j u_j(x,t)$ where c_j are determined later, so that u(x, v) = f(x). If f precenise smooth, infinite sum converges to a solu, the solin is unique.

Now	find 1	acilding	blocks,		
	a ration			Educated	quess:
	u;(x,t)	= X(x			
	1	function	function of t	1	
				•	
Want:		$k \partial_{x}^{2} u$			
		T'(4)=	k X 6		
	= T'	(t) =	X"(x)) = g(x)
	depe	nds y on t	X(x) Leneuds	X Sxq	= 0 (t) = c
	oul	y on t	depends only on	x 8 × 9 × 9	= G $(x) = C$
3)	+ x	Cous-	faut.	0	
	T' =	- \(\)	<u>X</u> =	- A	
		coust.			
<i>→</i> >	T'= - X	eT)	X :	$= -\lambda \times$	

Recall:
$$u_{j}(0,t)=u_{j}(L,t)=0$$
 $\Rightarrow X(0) T(t)=X(L) T(t)=0$
 $T(1) \neq 0$
 $X(0)=X(L)=0$

Look at:
$$\begin{cases} X''=-\lambda X & \text{and seek} \\ X(\delta)=X(L)=0 & \text{non-trivial solutions}. \end{cases}$$

If $\lambda=0$:
$$X''=0\Rightarrow X(x)=A_{x+1}B & \text{solutions}. \end{cases}$$
 $X(0)=0\Rightarrow B=0 & \text{Non-trivial sols}. \end{cases}$

If $\lambda=-\alpha^{2}<0$
 $X''=\alpha^{2}X & \text{sols: } e^{\alpha X}, e^{-\alpha X} & \text{or } X(x)=A\cosh(\alpha X) + B\sinh(\alpha X) \end{cases}$
 $X(0)=0\Rightarrow A=0 & \text{Non-trivial sols}. \end{cases}$

If $\lambda=-\alpha^{2}<0$
 $X''=\alpha^{2}X & \text{sols: } e^{\alpha X}, e^{-\alpha X} & \text{or } X(x)=A\cosh(\alpha X) + B\sinh(\alpha X) \end{cases}$
 $X(0)=0\Rightarrow A=0 & \text{Non-trivial sols}. \end{cases}$

No non-trivial sols.

If
$$k = \alpha^2 > 0$$
 $X'' + \alpha^2 \times = 0$
 $X(x) = Acos(\alpha x) + Bsin(\alpha x)$
 $X(0) = 0 \Rightarrow A = 0$
 $X(L) = 0 \Rightarrow Bsin(\alpha L) = 0$

want $B \neq 0$, nont $sin(\alpha L) = 0$

want: $\alpha L = n\pi$, n integer

 $A = \frac{n\pi}{L} \Rightarrow \lambda = \frac{n^2\pi^2}{L^2}$

Summanize: If $\lambda_n = \left(\frac{n\pi}{L}\right)^2$ (and only than)

there are non-trivial sols to $\{X' = -\lambda_n X \times (0) = X(L) = 0\}$

of the form $Bsin(\frac{n\pi}{L}x)$.

Now:

 $X'' + \alpha^2 \times = 0$
 $X'' + \alpha^2 \times = 0$

Form infinite sum:

$$u(x,t) = \sum_{n=1}^{\infty} c_n e^{-\frac{(n\pi)^2 t}{L}} \sin\left(\frac{n\pi}{L}x\right)$$

Wout:
$$u(x,0) = f(x) \quad (\text{qiven initial condition})$$

$$u(x,0) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi}{L}x\right) = f(x)$$

So:
$$c_n = \frac{2}{L} \int_{0}^{L} f(x) \sin\left(\frac{n\pi}{L}x\right) dx$$

$$coef. \quad of sine serves of f.$$

Summarize:
$$Too \quad \text{solve problem}$$

$$\int_{0}^{\infty} f(x) = \int_{0}^{\infty} f(x) = \int_{0}^{\infty} f(x) \sin\left(\frac{n\pi}{L}x\right) dx$$

take:
$$u(x,t) = \int_{0}^{\infty} f(x) \sin\left(\frac{n\pi}{L}x\right) dx$$

$$o \quad \int_{0}^{\infty} f(x) \sin\left(\frac{n\pi}{L}x\right) dx$$

