2023-ST-53-65

AI24BTECH11011 - Himani Gourishetty

1) Let X be a random variable with probability density function

$$f(x) = \begin{cases} e^{-x} & if x \ge 0\\ 0 & otherwise \end{cases}$$

For a < b, if U(a,b) denotes the uniform distribution over the interval (a,b), then which of the following is/are true?

- a) e^{-x} follows U(-1,0) distribution
- b) $1 e^{-x}$ follows U(0, 2) distribution
- c) $2e^{-x} 1$ follows U(-1, 1) distribution
- d) The probability mass function of Y = [X] is

$$P(Y = k) = (1 - e^{-1})e^{-k}$$
 for $k = 0, 1, 2, \cdots$

where [x] denotes the largest integer not exceeding x

2) Suppose that X is a discrete random variable with the following probability mass function

$$P(X=0) = \frac{1}{2} \left(1 + e^{-1} \right) \tag{1}$$

1

$$P(X = k) = \frac{e^{-1}}{2k!}$$
 for $k = 0, 1, 2, 3, \cdots$ (2)

Which one of the following is/are true?

- a) E(X) = 1
- b) E(X) < 1
- c) $E(X|X > 0) < \frac{1}{2}$ d) $E(X|X > 0) > \frac{1}{2}$
- 3) Suppose that U and V are two independent and identically distributed random variables each having probability density function

$$f(x) = \begin{cases} \lambda^2 x e^{-\lambda x} & if x > 0\\ 0 & otherwise \end{cases}$$

where $\lambda > 0$. Which of the following statements is/are true?

- a) The distribution of U V is symmetric about 0
- b) The distribution of UV does not depend on λ
- c) The distribution of $\frac{U}{V}$ does not depend on λ
- d) The distribution of $\frac{U}{V}$ is symmetric about 1.
- 4) Let (X, Y) have joint probability mass function

$$p(x) = \begin{cases} \frac{e^{-2}}{x!(y-x)!} & \text{if } x = 0, 1, 2 \dots, y; \ y = 0, 1, 2, \dots \\ 0 & \text{otherwise} \end{cases}$$

Then which of the following is/are true?

- a) E(X|Y=4)=2
- b) The moment generating function of Y is $e^{2(e^{v}-1)}$ for all $v \in \mathbb{R}$

- c) E(X)=2
- d) The joint moment generating the function of (X,Y) is $e^{-2+(1+e^u)e^v}$ or all $(u,v) \in \mathbb{R}^2$
- 5) Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables with mean 0 and variance 1, all of them defined on the same probability space. For $n = 1, 2, 3, \dots$, let

$$Y_n = \frac{1}{n} (X_1 X_2 + X_3 X_4 + \dots + X_{2n-1} X_{2n})$$

Then which of the following is/are true?

- a) $\{\sqrt{n}Y_n\}_{n\geq 1}$ converges in distribution to a standard normal random variable
- b) $\{Y_n\}_{n\geq 1}$ converges in 2^{nd} mean to 0. c) $\{Y_n + \frac{1}{n}\}_{n\geq 1}$ converges in probability 0
- d) $\{X_n\}_{n\geq 1}$ converges almost surely to 0
- 6) Consider the following regression model

$$y_t = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \epsilon_t, \ t = 1, 2, \dots, 100$$

where α_0, α_1 and α_2 are unknown parameters and $\epsilon_t's$ are independent and identically distributed random variables each having $N(\mu, 1)$ distribution with $\mu \in \mathbb{R}$ unknown. Then which of the following statements is/are true?

- a) There exists an unbiased estimator of α_1
- b) There exists an unbiased estimator of α_2
- c) There exists an unbiased estimator of α_0
- d) There exists an unbiased estimator of μ
- 7) Consider the orthonormal set

$$\left\{\mathbf{v_1} = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}, \mathbf{v_2} = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}, \mathbf{v_3} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{-1}{\sqrt{2}} \end{pmatrix} \right\}$$

with respect to the standard inner product on \mathbb{R}^3 . If $\mathbf{u} = \begin{pmatrix} a \\ b \end{pmatrix}$ is the vector such that inner products of

u with v_1, v_2 and v_3 are 1,2, and 3, respectively, then $a^2 + b^2 + c^2$ (in integer) equals

- 8) Consider the probability space (Ω, G, P) , where $\Omega = \{1, 2, 3, 4\}$, $G = \{\phi, \Omega, \{1\}, \{4\}, \{2, 3\}, \{1, 4\}, \{1, 2, 3\}, \{2, 3, 4\}\}$ and $P(\{1\}) = \frac{1}{4}$. Let X be the random variable defined on the above probability space as X(1) =1, X(2) = X(3) = 2 and X(4) = 3. If $P(X \le 2) = \frac{3}{4}$, then $P(\{1, 4\})$ (rounded off to two decimal places) equals
- 9) Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables each having probability density function

$$f(x) = \begin{cases} e^{-x} & if x > 0\\ 0 & otherwise \end{cases}$$

For $n \ge 1$, let $Y_n = |X_{2n} - X_{2n-1}|$. If $\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i$ for $n \ge 1$ and $\left\{ \sqrt{n} \left(e^{-\bar{Y}_n} - e^{-1} \right) \right\}_{n \ge 1}$ converges in distribution to a normal random variable with mean 0 and variance σ^2 , then σ^2 (rounded off to two decimal places) equals

10) Consider a birth-death process on the state space $\{1, 2, 3, 4\}$. The birth rates are given by $\lambda_0 = 1, \lambda_1 = 1$ $1, \lambda_2 = 2$ and $\lambda_3 = 0$. The death rates are given by $\mu_0 = 0, \mu_1 = 1, \mu_2 = 1$ and $\mu_3 = 1$. If $[\pi_0, \pi_1, \pi_2, \pi_4]$ is the unique stationary distribution, then $\pi_0 + 2\pi_1 + 3\pi_2 + 4\pi_3$ (rounded off to two decimal places) equals ____

- 11) Let $\{-1, -\frac{1}{2}, 1, \frac{5}{2}, 3\}$ be a realization of a random sample of size 5 from a population having $N\left(\frac{1}{2}, \sigma^2\right)$ distribution, where $\sigma > 0$ is an unknown parameter. Let T be an unbiased estimator of σ^2 whose variance attains the Camer-Rao lower bound. Then based on the above data, the realized value of T (rounded off to two decimal places) equals
- 12) Let X be a random sample of size 1 from a population with cumulative distribution function

$$F(x) = \begin{cases} 0 & if x < 0\\ 1 - (1 - x)^{\theta} & if 0 \le x \le 1\\ 1 & if x \ge 1 \end{cases}$$

where $\theta > 0$ is an unknown parameter. To test $H_0: \theta = 1$ against $H_1: \theta = 2$, consider using the critical region $\{x \in \mathbb{R} : x < 0.5\}$. if α and β denote the level and power of the test, respectively, then $\alpha + \beta$ (rounded off to two decimal places) equals

13) Let $\{0.13, 0.12, 0.78, 0.51\}$ be a realization of a random sample of size 4 from a population with cumulative distribution function $F(\cdot)$. Consider testing

$$H_0: F = F_0$$
 against $H_1: F \neq F_0$,

where

$$F_0(x) = \begin{cases} 0 & if x < 0 \\ x & if 0 \le x < 1 \\ 1 & if x \ge 1 \end{cases}$$

Let D denote the Kolmorgov-smirnov test statistics . If P(D > 0.669) = 0.01 under H_0 and

$$\psi = \begin{cases} 1 & \text{if } H_0 \text{ is accepted at level 0,01} \\ 0 & \text{otherwise,} \end{cases}$$

then based on the given data, the observed value of $D + \psi$ (rounded off to two decimal places) equals