Физика

Exonaut

4 април 2021 г.

Съдържание 1

Съдържание

1	Лен	кция 1	: Кинематика	3				
	1.1	Основ	вни понятия	3				
	1.2	Право	олинейно движение	3				
		1.2.1	Средна скорост	3				
		1.2.2	Моментна скорост	4				
		1.2.3	Средно ускорение	4				
		1.2.4	Моментно ускорение	4				
	1.3	Движ	сение с постоянна скорост	5				
	1.4	Движ	сение при произволна форма на траекторията	8				
2	Лекция 2: Динамика на материална точка							
	2.1	Прин	ципи на механиката (Принципи на Нютон)	11				
		2.1.1	Първи принцип	11				
		2.1.2	Втори принцип	11				
		2.1.3	Трети принцип	12				
	2.2	Няког	и видове сили	12				
		2.2.1	Гравитационна сила	12				
		2.2.2	Сила на тежестта	12				
		2.2.3	Реакция на опората	13				
		2.2.4	Сила на триене	14				
	2.3	Инерциални и неинерциални отправни системи. Класичес-						
		ки принцип на относителността						
	2.4	Импулс. Закон за запазване на импулса						
	2.5	Работ	а и мощност	18				
		2.5.1	Работа	18				
		2.5.2	Мощност	19				
	2.6	Енерг	' и и и и и и и и и и и и и и и и и и и	19				
		2.6.1	Кинетична енергия	19				
		2.6.2	Консервативни сили и потенциална енергия	19				
		2.6.3	Закон за запазване на енергията	20				
3	Лекция 3: Механика на идеално твърдо тяло 22							
	3.1	Кинем	матика на въртеливо движение на материална точка.	22				
		3.1.1	Ъглова скорост	22				
		3.1.2	Моментна ъглова скорост	22				
		3.1.3		22				

Съдържание 2

	3.2	Момент на сила и момент на импулса. Основно уравнение . 2	23
	3.3		24
	3.4	-	25
	3.5	Аналогия между величини при постъпателно и въртеливо	
		движение	25
	3.6		26
			26
		3.6.2 Закон за запазване на момента на импулса	26
		3.6.3 Условия за равновесие	27
4	Лен	хция 4:	8
5	Фор	омули 2	9
	5.1	Лекция 1:	29
	5.2	Лекция 2:	29
	5.3	Лекция 3:	29
	5.4	Лекция 4:	29

1 Лекция 1: Кинематика

Механиката се дели на:

- Кинематика: описва движението, без да се интересува от причините, които го пораждат.
- Динамика: изучава законите за движение и причините, които го предизвикват.
- Статика: изучава условията за равновесие на телата.

1.1 Основни понятия

- Материална точка: тяло, чиито форма и размери могат да се пренебрегнат при изучаване на движението му.
- Отправно тяло: тяло, спрямо което отчитаме движението.
- Отправна система: състои се от отправно тяло, координатна система и часовник.
- Радиус вектор: вектор от началото на отправната система до материалната точка. Означава се с $\vec{r}(t)$
- Траектория: линията, описвана от материалната точка при движението й.
- Път: дължината на траекторията от началното до крайното положение.
- Преместване: вектор от началното до крайното положение.

1.2 Праволинейно движение

Като начало ще разгледаме движението само по едно направление, например по оста x. Такова движение се нарича праволинейно.

1.2.1 Средна скорост

Средна скорост: преместването по Δx разделена на интервала време $\Delta t,$ или $V(t)=\frac{\Delta x}{\Delta t}.$

1.2.2 Моментна скорост

Ако интеравала е много малък ($\Delta t \to 0$) скоростта се нарича моментна : $V(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$. dx е много малко преместване извършено в за много малък интервал от време dt.

Моментната скорост е първа производна на радиус-вектора по времето. или

$$V(t) = \frac{d\vec{r}}{dt}$$

$$V = \left[\frac{m}{s}\right] = \left[\frac{km}{h}\right], \quad 1\frac{m}{s} = 3, 6\frac{km}{h}$$

1.2.3 Средно ускорение

Средно ускорение наричаме изменението на скоростта ΔV , разделено на интервала време, за който е извършено това изменение: $a(t)=\frac{\Delta V}{\Delta t}$.

1.2.4 Моментно ускорение

Ако интеравала е много малък ($\Delta t \to 0$) ускорението се нарича моментно : $a(t) = \lim_{\Delta t \to 0} \frac{\Delta V}{\Delta t} = \frac{dV}{dt}$.

Моментното ускорение е първа производна на скоростта по времето и втора производна на радиус-вектора по времето: или

$$a(t) = \frac{dV}{dt} = \frac{d^2\vec{r}}{dt^2}$$
$$a = \left[\frac{m}{c^2}\right]$$

Пример 1.2.1. Тяло се движи по закон $x = 5t^3 + 2t^2 + 1$. Да се намери скоростта и ускорението в момента t = 1s. Решение:

$$V(t) = \frac{dx}{dt}, \quad a(t) = \frac{dV}{dt}$$

$$V(t) = 5 \cdot 3 \cdot t^{3-1} + 2 \cdot 2 \cdot t^{2-1} + 0 = 15 \cdot t^2 + 4 \cdot t$$

$$a(t) = 15 \cdot 2 \cdot t^{2-1} + 4 = 30 \cdot t + 4$$

$$V(1) = 15 \cdot 1^2 + 4 \cdot 1 = 15 + 4 = 19 \frac{m}{s}$$

$$a(1) = 30 \cdot 1 + 4 = 30 + 4 = 34 \frac{m}{s^2}$$

1.3 Движение с постоянна скорост

Нека материална точка се движи с начална скорост V_0 . В момента $t_0=0$ тя започва да се движи с постоянно ускорение a=const. В някакъв покъсен момент t материалната точка се движи със скорост V. От дефиницията за ускорение $a=\frac{\Delta V}{\Delta t}$ можем да запишем

$$a = \frac{V - V_0}{t - t_0} = \frac{V - V_0}{t}$$

$$a = \frac{V - V_0}{t} \implies V - V_0 = at \implies V = V_0 + at$$

Изразът за зависимостта на скоростта от времето $(V = V_0 + at)$ се нарича закон за скоростта.

Нека материална точка започва да се движи в момента t_0-0 от положение с координата x_0 с постоянна скорост $V_0=const.$ В някакъв по-късен момент t материалната точка има координата x. От дефиницията за скорост $V_0=\frac{\Delta x}{\Delta t}$ можем да запишем $V_0=\frac{x-x_0}{t-t_0}$ или $x=x_0+V_0(t-t_0),$ но $t_0=0$ от където следва

$$x = x_0 + V_0 t$$

При движение с постоянно ускорение a към горния израз се добавя още един член, отчитащ промяната в скоростта:

$$x = x_0 + V_0 t + \frac{at^2}{2}$$

Изразът, даващ зависимостта на радиус-вектора от времето се нарича закон за движение.

Знаците пред скоростта и ускорението в горните изрази могат да бъдат като положителни, така и отрицателни. Знакът е положителен, ако посоката на V или а съвпада с посоката на оста х и отрицателен, ако посоката е противоположна на оста х.

Ако ускорението е константа и скоростта на тялото нараства с времето, движението се нарича *равноускорително*. Ако скоростта на тялото намалява — *равнозакъснително*, а ако ускорението е нула и скоростта на тялото не се променя, говорим за *равномерно* движение.

Пример 1.3.1. Кола се движи със скорост V_0 . След задействане на спирачката, колата започва да се движи равнозакъснително с ускорение a и скоростта на колата намалява до V. Намерете спирачния път. Решение:

$$V = V_0 - at$$
$$x = V_0 t - \frac{at^2}{2}$$

От първото равенство имаме $t=\frac{V_0-V}{a}$ и заместваме във второто равенство

$$x = V_0 \frac{V_0 - V}{a} - \frac{1}{2}a \left(\frac{V_0 - V}{a}\right)^2$$

$$x = \frac{V_0^2 - VV_0}{a} - \frac{a}{2} \left(\frac{V_0^2 - 2VV_0 + V^2}{a^2}\right)$$

$$x = \frac{V_0^2 - VV_0}{a} - \frac{a(V_0^2 - 2VV_0 + V^2)}{2a^2}$$

$$x = \frac{2(V_0^2 - VV_0)}{2a} - \frac{V_0^2 - 2VV_0 + V^2}{2a}$$

$$x = \frac{2V_0^2 - 2VV_0 - V_0^2 + 2VV_0 - V^2}{2a}$$

$$x = \frac{V_0^2 - V^2}{2a}$$

Пример 1.3.2. Тяло е хвърлено вертикално нагоре от височина $h_0=1m$ с начална скорост $V_0=10\frac{m}{s}$. След колко време тялото ще достигне максимална височина? До каква максимална височина ще се издигне тялото?

След колко време и с каква скорост тялото ще падне до h=0.

Решение:
$$g = 9.8 \frac{m}{s^2} \approx 10 \frac{m}{s^2}$$
.

$$V = V_0 - gt$$
$$y = h_0 + V_0 t - \frac{gt^2}{2}$$

Знакът пред V_0 е положителен, защото посоката й съвпада с посоката на оста y, а знакът пред g е отрицателен, защото посоката му е противоположна на оста y.Когато тялото се издига, скоростта му намалява, в най-високата точка става нула, след което тялото започва да пада, скоростта му става отрицателна, понеже е насочена срещу оста y. В най-високата точка V=0 или $0=V_0-gt$. От тук намираме времето, за което тялото ще достигне най-високата точка $t=\frac{V_0}{g}=\frac{10}{10}=1s$. Заместваме това време в израза за y за да получим максималната височина:

$$h_{max} = h_0 + V_0 t - \frac{gt^2}{2} = 1 + 10 \cdot 1 - \frac{10 \cdot 1^2}{2} = 11 - 5 = 6m$$

$$h = 0 \implies y = 0$$

$$0 = h_0 + V_0 t - \frac{gt^2}{2}$$

$$0 = 1 + 10t - \frac{10t^2}{2}$$

$$-5t^2 + 10t + 1 = 0$$

$$D = 10^2 - 4 \cdot (-5) \cdot 1 = 100 + 20 = 120$$

$$t_{1,2} = \frac{-10 \pm \sqrt{120}}{2 \cdot (-5)} = \frac{-10 \pm 2\sqrt{30}}{-10} = \frac{-5 \pm \sqrt{30}}{-5}$$

$$t_1 = \frac{-5 - \sqrt{30}}{-5} \approx -0.1s$$

$$t_2 = \frac{-5 + \sqrt{30}}{-5} \approx 2.1s$$

Физичен смисъл има само положителното време. Заместваме го в израза за скоростта $V=V_0-gt=10-10\cdot 2.1=-11m/s$ Това е скоростта, с която тялото пада на земята. Тя е отрицателна, защото е насочена срещу оста y.

Движение при произволна форма на траектори-1.4

Когато движението не е праволинейно, скоростта и ускорението се записват за всяка от компонентите на радиус-вектора:

$$V_x = \frac{dx}{dt}, \quad V_y = \frac{dy}{dt}, \quad V_z = \frac{dz}{dt} \qquad \vec{V} = \frac{d\vec{r}}{dt}$$

Скоростта \vec{V} е векторна величина - тя се характеризира с големина и посока. Големината на скоростта се определя от координатите на скоростта (по Питагоровата теорема) $V = \sqrt{V_x^2 + V_y^2 + V_z^2}$ Аналогично:

$$\vec{a} = \frac{d\vec{V}}{dt} = \frac{d^2\vec{r}}{dt^2}$$

Тъй като скоростта е вектор, тя може да се изменя поради промяна на големината и поради промяна на посоката си.

Ускорението, дължащо се на изменение на скоростта по големина се нарича тангенциално ускорение $\vec{a_{\tau}}$. То има посока, съвпадаща с направлението на скоростта.

Ускорението, дължащо се на изменение на скоростта по посока се нарича нормално ускорение $\vec{a_n}$. То има посока, перпендикулярна на направле-

., пориоданкульрна на направлението на скоростта. Може да се покаже, че $\vec{a_n} = \frac{V^2}{R}$, като R е радиусът на кривината на траекторията в разглежданата точка.

От казаното по-горе е ясно, че при праволинейно движение нормалното ускорение е винаги нула. При движение по крива, дори и с постоянна скорост, нормалното ускорение е различно от нула. Пълното ускорение се получава като векторна сума от тангенциалното и нормалното ускорение:

$$\vec{a} = \vec{a_{\tau}} + \vec{a_{n}}$$

При постоянно ускорение законът за скоростта и за движение се записват във векторен вид:

$$\vec{V} = \vec{V_0} + \vec{a}t$$

$$\vec{r} = \vec{r_0} + \vec{V_0}t + \frac{\vec{a}t^2}{2}$$

След това се записват уравненията за всяка от компонентите на векторите.

Пример 1.4.1. Тяло е хвърлено под ъгъл $\alpha=30^\circ$ спрямо хоризонта с начална скорост $V_0=10\frac{m}{s}$. Намерете максималната височина, до която се издига тялото и разстоянието, което то прелита. Решение: $\vec{r_0}=0$.

$$\vec{V} = \vec{V_0} + \vec{g}t$$
$$\vec{r} = \vec{V_0}t + \frac{\vec{g}t^2}{2}$$

Всеки от векторите може да бъде разложен на две компоненти xи y.

По оста x: $V_x = V_{0x}$, $x = V_{0x}t$

По оста
$$y$$
: $V_y = V_{0y} - gt$, $y = V_{0y}t - \frac{\vec{g}t^2}{2}$
Тук сме взели предвид, че по оста x ня

Тук сме взели предвид, че по оста x няма ускорение, а по оста y ускорението е g, насочено надолу, в посока обратна на оста y(и затова с отрицателен знак).

$$V_{0x} = V_0 \cos 30^\circ = \frac{\sqrt{3}}{2} V_0$$
 $V_{0y} = V_0 \sin 30^\circ = \frac{V_0}{2}$

В най високата точка V_y е равна на 0: $0=V_{0y}-gt$ и времето за което тялото достига максимална височина е $t=\frac{V_{0y}}{g}$ Заместваме това време в израза за у и получаваме

$$y_{max} = V_{0y} \frac{V_{0y}}{g} - \frac{g}{2} \cdot \left(\frac{V_{0y}}{g}\right)^{2}$$

$$y_{max} = \frac{V_{0y}^{2}}{g} - \frac{1}{2} \cdot \frac{V_{0y}^{2}}{g}$$

$$y_{max} = \frac{1}{2} \cdot \frac{V_{0y}^{2}}{g} = \frac{1}{2} \cdot \frac{\left(\frac{10}{2}\right)^{2}}{10} = \frac{5^{2}}{20} = \frac{25}{20} = 1.25m$$

В общия случай, когато ускорението не е постоянно, законът за скоростта се получава с интегриране.

$$\vec{a} = \frac{d\vec{V}}{dt} \Leftrightarrow d\vec{V} = \vec{a}dt$$

$$\vec{V} = \int_0^t \vec{a}(t)dt + \vec{V_0}$$

Аналогично закона за движение:

$$\vec{V} = \frac{d\vec{r}}{dt} \Leftrightarrow d\vec{r} = \vec{V}dt$$

$$\vec{r} = \int_0^t \vec{V}(t)dt + \vec{r_0}$$

Ще използваме този резултат за да получим закона за движение при постоянно ускорение. При движение с постоянно ускорение

$$\vec{V} = \int_0^t \vec{a}dt + \vec{V_0} = \vec{V_0} + \vec{a} \int_0^t dt = \vec{V_0} + \vec{a}t$$

Заместваме този резултат в $\vec{r} = \int_0^t \vec{V}(t) dt + \vec{r_0}$ и получаваме

$$\vec{r} = \int_0^t (\vec{V_0} + \vec{a}t)dt + \vec{r_0} = \vec{r_0} + \int_0^t \vec{V_0}dt + \int_0^t \vec{a}tdt$$
$$\vec{r} = \vec{r_0} + \vec{V_0}t + \frac{\vec{a}t^2}{2}$$

2 Лекция 2: Динамика на материална точка

2.1 Принципи на механиката (Принципи на Нютон)

2.1.1 Първи принцип

Всяко тяло запазва състоянието си на покой или на праволинейно равномерно движение, докато външно въздействие не го изведе от това състояние.

Този принцип не е в сила за всички отправни системи. Отправните системи, за които той е в сила, се наричат *инерциални отправни системи*. Величината, която количествено характеризира взаимодействието между телата, се нарича сила. Силата е векторна величина – има големина, посока и приложна точка. Означава се с буквата F. Мерната единица за сила е нютон N.

Телата притежаватсвойството инертност – съпротивляват се на въздействие, което се стреми да ги извади от състоянието им на покой или на праволинейно равномерно движение. Това свойство се характеризира с величината маса т. Измерва се в килограми kg. Колкото по-голяма масата на едно тяло, толкова по-трудно е да изменим неговата скорост. Произведението на масата и скоростта на едно тяло се нарича импулс

$$\vec{p} = m\vec{V}$$

Мерната единица за импулс е $\frac{kg \cdot m}{s}$

2.1.2 Втори принцип

Първата производна на импулса по времето е равна на силата, действаща на тялото.

$$\vec{F} = \frac{d\vec{p}}{dt}$$

Ако масата не се променя можем да запишем

$$\vec{F} = \frac{d\vec{p}}{dt} = \frac{dm\vec{V}}{dt} = m\frac{d\vec{V}}{dt} = m\vec{a}$$

Мерната единица за сила $N=\frac{kg\cdot m}{s^2}$, Когато на тялото действат няколко сили, \vec{F} е векторната сума на тези сили.

2.1.3 Трети принцип

Силите на взаимодействие между две тела са равни по големина и противоположни по посока.

2.2 Някои видове сили

2.2.1 Гравитационна сила

Законът на Нютон за гравитацията гласи: Между всеки две материални точки действа сила на привличане, която е правопропорционална на произведението на масите им и обратно пропорционална на квадрата на разстоянието между тях.

$$F = \gamma \frac{m_1 m_2}{r^2}$$

 $\gamma = 6.67 \cdot 10^{-11} \frac{N \cdot m^2}{kg^2}, \, m_1, m_2$ - масите на двете материални точки, а г - разстоянието между тях.

Пример 2.2.1. Две тела с маси $m_1 = m_2 = 100kg$ са разположени на разстояние r = 1 m.Намерете силата на привличане. Решение:

$$F = \gamma \frac{m_1 m_2}{r^2} = 6.67 \cdot 10^{-11} \frac{100 \cdot 100}{1^2} = 6.67 \cdot 10^{-7} N$$

2.2.2 Сила на тежестта

Разглеждаме тяло в близост до земната повърхност. Гравитационната сила, действаща на тялото в този случай ще означим с G, масата Земята с M, а разстоянието до центъра на Земята с R. Записваме закона за гравитацията:

$$G = \gamma \frac{mM}{R^2} = m \left(\gamma \frac{M}{R^2} \right)$$

 $\gamma \frac{M}{R^2}$ е еднаква за всички тела величина, която се означава с g и се нарича земно ускорение. Стойността на $g \approx 9.8 \frac{m}{s^2}$ е измерена експериментално. Оттук може да запишем за силата на тежестта:

$$G = mq$$

При принципите на Нютон въведохме масата като мярка за инерчните свойства на телата. Тук даваме още едно определение за масата – тя характеризира гравитационните свойства на телата. Масата в $\vec{F}=m\vec{a}$ се нарича инертна маса, а масата в G=mg - тежка маса. Съгласно съвременната физика тежката и инертната маса са еквивалентни.

2.2.3 Реакция на опората

Разглеждаме книга поставена на един чин. Книгата действа на чина със силата на тежестта G=mg, насочена надолу. Съгласно третия принцип на Нютон и чинът действа на книгата със същата по големина сила, но насочена нагоре. Тази сила се нарича реакция на опората и ще я означаваме с N. В крайна сметка на книгата действат две равни по големина сили G и N, насочени в противоположни посоки. Тяхната векторна сума е нула и затова книгата остава в покой.

Реакцията на опората винаги е перпендикулярна на повърхността, на която е поставено тялото.

Пример 2.2.2. Тяло се спуска без триене по равнина, наклонена под ъгъл θ . Определете ускорението на тялото и реакцията на опората. Решение:

Избираме отправна система, при която оста х е успоредна на равнината, а оста у е перпендикулярна на равнината. Записваме втория принцип на Нютон $\vec{F}=m\vec{a}$. На тялото действат две сили: сила на тежестта и реакция на опората и следователно силата \vec{F} е сума от тези две сили.

$$\vec{F} = \vec{G} + \vec{N} = m\vec{a}$$

Записваме това уравнение за всяка от осите

$$F_x = G_x = ma$$

$$F_y = N - G_y = 0$$

Тук сме отчели, че по оста у няма движение и ускорението е нула. В горните изрази: $G_x = G \sin \theta = mg \sin \theta, G_y = G \cos \theta = mg \cos \theta$

$$G_x = mg \sin \theta = ma$$

$$a = g \sin \theta$$

$$N = G_y = mg \cos \theta$$

2.2.4 Сила на триене

Разглеждаме тяло, поставено върху хоризонтална поставка. Между молекулите на тялото и на поставката възникват електромагнитни сили, които се противопоставят на движението на тялото спрямо поставката. Тези сили се наричат сили на триене. Силата на триене винаги е насочена срещу посоката на движение (на фигурата външната сила F движи тялото надясно, а силата на триене f е насочена наляво. Големината на силата на триене е пропорционална на реакцията на опората N.

$$f = kN$$

Коефициентът на пропорционалност k се нарича коефициент на триене и зависи от материала, от който са изработени триещите се повърхности, грапавините и други.

Пример 2.2.3. Автомобил с маса m = 1000kg се движи по хоризонтален път със скорост $V_0 = 54km/h$. След задействане на спирачкитеавтомобилът спира за време 5 s. Определете силата на триене и коефициента на триене.

Решение:

Като имаме предвид, че 1 m/s = 3,6 km/h, намираме, че $V_0 = 54$ km/h = 15 m/s.

$$V = V_0 - at$$

В момента на спиране V=0 и $0=V_0-at$ или $a=\frac{V_0}{t}=\frac{15}{5}=3\frac{m}{s^2}.$ От f=ma получаваме $f=1000\cdot 3=3000N$ f=kN Тук, понеже сме на хоризонтален път, N=mg и f=kmg. Последно:

$$k = \frac{f}{ma} = \frac{3000}{1000 \cdot 10} = 0.3$$

Пример 2.2.4. Шейна се движи по хоризонтална повърхност, като коефициентът на триене между шейната и снега е k. Теглим шейната със сила T насочена под ъгъл θ . Напишете уравненията за силите, действащи на шейната

Решение: Записваме втория принцип на Нютон: $\vec{F}=m\vec{a},\,\vec{F}=\vec{T}+\vec{G}+\vec{f}+\vec{N}$ е векторна сума от всички сили, действащи на шейната: силата T, с която теглим, силата на тежестта G=mg, силата на триене f=kNи

силата на реакция на опората N.

Записваме уравненията за силите по всяка ос:

по х: $T_x - f = ma$

по у: $T_y + N - G = 0$

като: $T_x = T\cos\theta, T_y = T\sin\theta$

От второто уравнение N=G-Ty; т.е. реакцията на опората е по-малка от силата на тежестта, защото ние теглим нагоре. Като заместим тази стойност в силата на триене в първото уравнение, можем да намерим ускорението.

2.3 Инерциални и неинерциални отправни системи. Класически принцип на относителността

Нека инерциалната система K условно е неподвижна, а системата K' се движи спрямо нея праволинейно равномерно със скорост $\vec{V_0}$. Възниква въпросът: изменят ли се законите на класическата механика при преход от една инерциална система K в друга инерциална система K'? Получените резултати по този въпрос се формулират като класически принцип на относителността (принцип на Галилей за относителността). Той гласи: законите на класическата механика са еднакви във всички инерциални системи.

По късно Айнщайн в теорията на относителността е допълнил принципа като всички закони на природата са еднакви във всички инерциални системи. (Става дума не само за законите на механиката, а за всички закони.)

Дотук — системата К' се движи равномерно спрямо К. Нека системата К' се движи с ускорение a_0 спрямо К. В този случай К' вече не е инерциална отправна система. На всички тела в К' ще действа инерчна сила $F_e = -ma_0$ насочена в посока обратна на a_0 . Например автобус потегля с ускорение. Всички пътници политат назад (в посока обратна на ускорението).

Следващия случай, който ще разгледаме е неинерциална система, която се върти с постоянна скорост. В този случай инерчната сила се нарича центробежна сила. Тя е насочена перпендикулярно на оста на въртене и се стреми да отдалечи материалната точка от оста на въртене.

$$F_c = ma_n = \frac{mV^2}{r}$$

Пример 2.3.1. С каква скорост се движи един изкуствен спътник на Земята?

Решение: За да стане едно тяло изкуствен спътник трябва центробежната сила да компенсира гравитационната сила.

$$\gamma \frac{mM}{R^2} = \frac{mV^2}{r}$$

т - маса на спътника, М - масата на земята, г - радиуса на орбитата.

$$V = \sqrt{\gamma \frac{M}{r}} = \sqrt{6.67 \cdot 10^{-11} \frac{5.9 \cdot 10^{24}}{6700 \cdot 1000}} = 7664 \frac{m}{s} \approx 8 \frac{km}{s}$$

Тук сме приели, че радиусът на орбитата е 6700 km, т.е. спътникът се движи на около 330 km над земната повърхност. (От резултата се вижда, че при друг радиус на орбитата на спътника, неговата скорост ще е различна.)

Пример 2.3.2. Автомобил с маса m = 1000kg се движи по завой с радиус r = 100m и коефициент на триене между гумите и асфалта k = 0.4. С каква максимална скорост може да се движи колата без да излезе от пътя?

Решение:

Реакцията на опората $N = G = mq = 1000 \cdot 10 = 10000N$

Силата на триене f=kN трябва да е по голяма или равна на центробежната сила, за да остане колата на пътя

$$kN = \frac{mV^2}{r}$$

$$V = \sqrt{\frac{kNr}{m}} = \sqrt{\frac{0.4 \cdot 10000 \cdot 100}{1000}} = \sqrt{400} = 20\frac{m}{s}$$

2.4 Импулс. Закон за запазване на импулса

Импулс на Сила: От втория принцип на Нютон: $\vec{F}=\frac{d\vec{p}}{dt}$, може да получим $d\vec{p}=\vec{F}dt=$. Изменението на импулса е равно на силата, умножена по времето, за което е станало това изменение.

Втория принцип на Нютон: $\vec{F} = \frac{d\vec{p}}{dt}$ е в сила и за системи, състоящи се

от много тела. В този случай \vec{p} е векторна сума на импулсите на всички тела, изграждащи системата, а \vec{F} е векторна сума от всички действащи сили. Ако сумата от силите е нула, то

$$0 = \frac{d\vec{p}}{dt}$$

Щом производната на една величина е нула, то тази величина е константа.

$$\vec{p} = const$$

Закон за запазване на импулса (ЗЗИ): Импулсът на затворена система от материални точки е постоянна величина.

Затворена система в случая означава система, на която не действат външни сили (или сумата на външните сили е нула).

Пример 2.4.1. Върху неподвижен $(V_{01} = 0\frac{m}{s})$ скейтборд с маса m1 = 5kg скача дете с маса m2 = 45kg и хоризонтална скорост $V_{02} = 2\frac{m}{s}$ и остава върху него. Намерете скоростта на детето със скейтборда. Решение:

Преди скока:

Импулс на скейтборда $p_{01}=m_1V_{01}=0\frac{kg\cdot m}{s}$ Импулс на детето $p_{02}=m_2V_{02}=45\cdot 2=90\frac{kg\cdot m}{s}$ Общ импулс на системата преди скока:

$$p_0 = p_{01} + p_{02} = m_1 V_{01} + m_2 V_{02} = 0 + 90 = 90 \frac{kg \cdot m}{s}$$

След скока: Импулс на скейтборда $p_1 = m_1 V$

Импулс на детето $p_2 = m_2 V$

Скоростта V е с която се пързаля и еднаква за детето и скейтборда.

Общ импулс на системата след скока: $p=p_1+p_2=m_1V+m_2V=(m_1+m_2)V$

Прилагаме закона за запазване на импулса: $p_0 = p$

$$m_1 V_{01} + m_2 V_{02} = (m_1 + m_2)V$$

$$V = \frac{m_1 V_{01} + m_2 V_{02}}{m_1 + m_2} = \frac{90}{50} = 1.8 \frac{m}{s}$$

Пример 2.4.2. От пушка с маса $m_1 = 5kg$ се изстрелва куршум с маса $m_2 = 5g$ и скорост $V_2 = 100 \frac{m}{s}$. Намерете скоростта на отката на пушката. Решение:

В началото преди изстрела всички тела са неподвижни и импулсът е $p_0=0$. След изстрела $p=p_1+p_2=m_1V_1+m_2V_2$ Тук V_1 е неизвестната скорост на пушката след отката. ЗЗИ: $p_0=p$ или $0=m_1V_1+m_2V_2$

$$V_1 = -\frac{m_2}{m_1}V_2 = -\frac{0.005}{5}100 = -0, 1\frac{m}{s}$$

Знакът минус означава, че посоката на скоростта на отката е противоположна на посоката на куршума

2.5 Работа и мощност

2.5.1 Работа

Нека върху т.М действа сила \vec{F} и тя извършва безкрайно малко преместване $d\vec{r}$. Скаларното произведение на силата и преместването се нарича елементарна работа. $dA = \vec{F} \cdot d\vec{r}$.

Съгласно свойствата на скаларното произведение на два вектора, изразът може да се представи във вида $dA = F dr \cos \alpha, \alpha = \sphericalangle(\vec{F}; d\vec{r})$

Нека компонентите на силата \vec{F} са F_x, F_y, F_z , а компонентите на преместването $d\vec{r}$ са dx, dy, dz. Съгласно свойствата на скаларното произведение

$$dA = F_x dx + F_y dy + F_z dz$$

При произволно преместване от положение 1 с радиус-вектор $\vec{r_1}$ до положение 2 с радиус-вектор $\vec{r_2}$, работата и силата се определят с интегриране на елементарните работи.

$$A = \int_{r_1}^{r_2} \vec{F} d\vec{r} = \int_{r_1}^{r_2} F \cos \alpha dr$$

Ако силата е постоянна и ъгълът не се мени

$$A = \int_{r_1}^{r_2} F \cos \alpha dr = F \cos \alpha \int_{r_1}^{r_2} dr = F \cos \alpha (r_2 - r_1) = F \cos \alpha \Delta r$$

Единицата SI за величината работа е $N \cdot m = J$ (джаул). Работа A = 1 J е работата, извършена от сила 1 N при преместване на тялото на разстояние 1 m.

2.6 Енергия 19

2.5.2 Мощност

Мощност на сила \vec{F} се нарича отношението на елементарната работа dA, извършена от силата за интервал от време dt, към този интервал dt, т.е.

$$P = \frac{dA}{dt}$$

Мощността е скаларна величина. В SI [P] = W (ват). Мощността на силата е 1 W, когато силата, извършва работа 1 J за време 1 s.

2.6 Енергия

2.6.1 Кинетична енергия

Може да се покаже, че извършената работа A за промяна на скоростта на тяло от начална стойност v_1 до крайна стойност v_2 е равна на

$$A_{12} = E_{k_2} - E_{k_1}$$

 E_k се нарича кинетична енергия и се дава с формулата

$$E_k = \frac{mV^2}{2}$$

Този резултат показва, че механичната работа е равна на разликата между крайната и началната стойност на кинетичната енергия на материалната точка.

Пример 2.6.1. Камък с маса 2 kg е хвърлен вертикално надолу, като за даден период от време увеличава скоростта си от 5 на $10 \ \frac{m}{s}$. Намерете работата, извършена от силата на тежестта.

$$A = E_{k_2} - E_{k_1} = \frac{mV_2^2}{2} - \frac{mV_1^2}{2} = \frac{2 \cdot 10^2}{2} \cdot \frac{2 \cdot 5^2}{2} = 75J$$

2.6.2 Консервативни сили и потенциална енергия

Консервативни сили: **Консервативни сили се наричат силите, ра- ботата на които не зависи от вида на траекторията, а се опреде- ля само от началното и крайното положение на материалната**

20 Енергия

точка. Работата на консервативните сили, извършена за всяка затворена траектория винаги е равна на нула.

Потенциална енергия $E_p: A_{12} = E_{p_1} - E_{p_2}$ $E_p = mgh$

2.6.3Закон за запазване на енергията

Работата, която извършват консервативните сили в затворена система, в която действат само консервативни сили може да се изрази:

чрез кинетичната енергия: $A_{12} = E_{k_2} - E_{k_1}$ чрез потенциалната енергия: $A_{12} = E_{p_1} - E_{p_2}$

Откъдето $E_{p_1}-E_{p_2}=E_{k_2}-E_{k_1}$ и $E_{k_1}+E_{p_1}=E_{k_2}+E_{p_2}$. $E=E_k+E_p$ се нарича пълна механична енергия.

Закон за запазване на енергията (ЗЗЕ): В една затворена механична система, в която действат само консервативни сили, пълната механична енергия е константа.

Пример 2.6.2. Тяло пада от височина $h_0 = 20m$ без начална скорост. С каква скорост тялото ще достигне земята?

Решение:

В момента на хвърляне:

$$E_{k_1}=0, E_{p_1}=mgh_0 \implies E_1=E_{k_1}+E_{p_1}=mgh_0.$$
 Ha semsta: $E_{k_2}=\frac{mV^2}{2}, E_{p_2}=0 \implies E_2=E_{k_2}+E_{p_2}=\frac{mV^2}{2}.$

$$E_{k_2} = \frac{mV^2}{2}, E_{p_2} = 0 \implies E_2 = E_{k_2} + E_{p_2} = \frac{mV^2}{2}$$
. 33E:

$$E_1 = E_2$$

$$mgh_0 = \frac{mV^2}{2}$$

$$V = \sqrt{2gh_0} = \sqrt{2 \cdot 10 \cdot 20} = 20\frac{m}{s}$$

Пример 2.6.3. Тяло е хвърлено вертикално нагоре от височина $h_0 =$ 1m с начална скорост $v_0 = 10 \frac{m}{s}$. До каква максимална височина ще се издигне тялото?

Решение:

В момента на хвърляне:

2.6 Енергия 21

$$E_{k_1}=rac{mV_0^2}{2}, E_{p_1}=mgh_0 \implies E=E_{k_1}+E_{p_1}=rac{mV_0^2}{2}+mgh_0$$
 На максимална височина: $E_{k_2}=0, E_{p_2}=mgh_{max}\implies E_2=E_{k_2}+E_{p_2}=mgh_{max}.$ ЗЗЕ:

$$E_1 = E_2$$

$$mgh_{max} = \frac{mV_0^2}{2} + mgh_0$$

$$h_{max} = h_0 + \frac{V_0^2}{2g} = 1 + \frac{10^2}{2 \cdot 10} = 6m$$

3 Лекция 3: Механика на идеално твърдо тяло

3.1 Кинематика на въртеливо движение на материална точка

При въртеливо движение траекторията на всяка точка от тялото е окръжност. Нека дадена точка се е завъртяла на ъгъл $\Delta \varphi$ за време Δt

3.1.1 Ъглова скорост

Ъглова скорост $\vec{\omega}$ се нарича векторната величина $\omega = \frac{\Delta \varphi}{\Delta t}$. Когато въртенето е в посока обратна на часовниковата стрела, посоката на вектора е от равнината на въртене нагоре.

$$[\omega] = \frac{rad}{s}$$

3.1.2 Моментна ъглова скорост

Когато интервалът време е много малък, дефинираме моментна ъглова скорост $\omega = \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t} = \frac{d\varphi}{dt}$

3.1.3 Ъглово ускорение

Ъглово ускорение $\vec{\alpha}$ се нарича векторната величина: $\vec{\alpha} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\omega}}{\Delta t} = \frac{d\vec{\omega}}{dt}$ $[\alpha] = \frac{rad}{s^2}$

При ускорително движение, посоката на $\vec{\alpha}$ и $\vec{\omega}$ съвпадат, а при закъснително - посоката на $\vec{\alpha}$ е обратна на $\vec{\omega}$.

По подобие на закона за скоростта и закона за движение при праволинейно движение и тук можем да напишем:

$$\omega = \omega_0 + \alpha t$$

$$\varphi = \varphi_0 + \omega_0 t + \frac{\alpha t^2}{2}$$

При завъртане на ъгъл $\Delta \varphi$ материалната точка изминава път

$$\Delta s = R\Delta \varphi$$

При малък ъгъл на завъртане $\Delta s \approx \Delta r, \Delta r = R \Delta \varphi$. Делим двете страни на това равенство на Δt и получаваме връзка между линейна скорост \vec{V} и ъглова скорост $\vec{\omega}$

$$V = \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} = \lim_{\Delta t \to 0} R \frac{\Delta \varphi}{\Delta t} = R \Delta \omega$$

Тангенциалното ускорение се получава:

$$a_t = \frac{dV}{dt} = R \frac{\Delta \omega}{\Delta t} = R\alpha$$

А нормалното ускорение:

$$a_n = \frac{V^2}{R} = R\omega^2$$

Пример 3.1.1. Да се определи ъгловата скорост, скоростта и нормалното ускорение за точка от екватора на Земята. Радиусът на Земята е $R=6370~\mathrm{km}$.

Решение:

Знаем, че Земята прави едно завъртане около оста си за 24 часа. Т.е. времето за завъртане на ъгъл $\Delta \varphi = 2\pi$ (едно пълно завъртане) е

$$\Delta t = 24h = 24h \cdot 60m \cdot 60s = 86400s$$

$$\omega = \frac{\Delta \varphi}{\Delta t} = \frac{2 \cdot 3.14}{86400} = 7,27 \cdot 10^{-5} \frac{rad}{s}$$

$$V = R\omega = 6370000 \cdot 7,27 \cdot 10^{-5} = 463 \frac{m}{s} = 1666 \frac{km}{h}$$

$$a_n = \frac{V^2}{R} = 0.03 \frac{m}{s^2}$$

3.2 Момент на сила и момент на импулса. Основно уравнение

При въртеливо движение вторият принцип на Нютон се записва с поразлична форма. Нека т.О е произволна неподвижна точка (начало на

отправната система), а в т.А се намира частица с маса m, на коятодейства сила \vec{F} . Записваме втория принцип на Нютон: $\vec{F}=\frac{d\vec{p}}{dt}$. Умножаваме двете страни на това равенство векторно по \vec{r} , където \vec{r} е радиус вектора от т.О до т.А.

$$\vec{r} \times \vec{F} = \vec{r} \times \frac{d\vec{p}}{dt}$$

 $\vec{M}=\vec{r} imes \vec{F}$ - момент на сила спряло т.О $\vec{L}=\vec{r} imes \vec{p}=\vec{r} imes m \vec{V}$ - момент на импулса

От свойствата на векторното произведение може да се получи $\frac{d\vec{L}}{dt}=\vec{r}\times\frac{d\vec{p}}{dt}$ или

$$\vec{M} = \frac{d\vec{L}}{dt}$$

За система от п материални точки (тяло):

Моментът на импулса е равен на векторната сума от моментите на импулсите

$$\vec{L} = \sum_{i=1}^{n} \vec{L_i} = \sum_{i=1}^{n} (\vec{r_i} \times \vec{p_i})$$

Момента на силата е равен на векторната сума на действащите сили

За затворена система от материални точки (т.е. не действат външни сили и сумата от силите на взаимодействие между частиците е нула)

$$\vec{M} = 0 \implies \frac{d\vec{L}}{dt} = 0 \implies \vec{L} = const$$

Този резултат е израз на закона за запазване на момента на импулса. Той гласи: моментът на импулса \vec{L} на затворена система от материални точки (тяло) остава постоянен.

3.3 Инерчен момент

 $I = mr^2$ - инерчен момент на материална точка.

За система от n материални точки инерчният момент е сума от инерчните моменти на отделните точки

$$I = \sum_{i=1}^{n} m_i r_i^2$$

При тела разделяме мислено тялото на много малки части всяка с маса dm. Инерчният момент на всяка част е $dI=r^2dm$ Инерчният момент на тялото намираме чрез интегриране

$$I = \int dI = \int r^2 dm$$

3.4 Въртене около постоянна ос

Разглеждаме материална точка, която се движи по окръжност с радиус г около постоянна ос. В този случай $\vec{r} \perp \vec{V}$, $\vec{L} = \vec{r} \times \vec{p} = \vec{r} \times m\vec{V} \implies L = rmV$. От $V = r\omega \implies L = mr^2\omega$, $I = mr^2 \implies$

$$L = I\omega$$
 Ot $\vec{M} = \frac{d\vec{L}}{dt}$, $L = I\omega \implies M = \frac{d(I\omega)}{dt} = I\frac{d(\omega)}{dt} = I\alpha$
$$M = I\alpha$$

3.5 Аналогия между величини при постъпателно и въртеливо движение

Постъпателно движение	Въртеливо движение
Радиус-вектор \vec{r}	Ъгъл на завъртане $arphi$
Скорост $\vec{V} = \frac{d\vec{r}}{dt}$	Ъглова скорост $\omega = \frac{d\varphi}{dt}$
Ускорение $\vec{a} = \frac{d\vec{V}}{dt}$	Ъглова скорост $\vec{lpha} = rac{d \vec{\omega}}{dt}$
Закон за скоростта $V = V_0 + at$	Закон за ъгловата скорост $\omega = \omega_0 + \alpha t$
Закон за движение $x = x_0 + V_0 t + \frac{at^2}{2}$	Закон за движение $arphi=arphi_0+\omega_0 t+rac{lpha t^2}{2}$
Maca m	Инерчен момент I
Сила \vec{F}	Момент на сила $\vec{M} = \vec{r} \times \vec{F}$
Импулс $\vec{p} = m\vec{V}$	Момент на импулса $\vec{L} = \vec{r} \times \vec{p}, L = I\omega$
Основно уравнение $\vec{F} = \frac{d\vec{p}}{dt}$, $\vec{F} = m\vec{a}$	Основно уравнение $\vec{M}=rac{d\vec{L}}{dt}, M=Ilpha$
Работа $dA = \vec{F} d\vec{\varphi}$	Работа $dA = Md\varphi$
Кинетична енергия $E_k = \frac{mv^2}{2}$	Кинетична енергия $E_k = rac{I\omega^2}{2}$

3.6 Приложения и примери

3.6.1 Момент на сила

В т. А от дадено тяло е приложена сила, която предизвиква въртене на тялото около т. О. От свойствата на векторното произведение $\vec{M} = \vec{r} \times \vec{F}$ се вижда, че в този случай векторът на момента на силата е насочен от листа към нас. Големината на момента на силата е $M = rF \sin \alpha = Fr \sin \alpha = Fl$. Величината $l = r \sin \alpha$ се нарича рамо на силата. Рамото на силата е винаги перпендикулярно към правата, по чиято дължина действа силата.

Пример 3.6.1.
$$l_1=1m,\, F_1=20,\, l_2=0.1m\, F_2=?$$
 $\alpha=\frac{F_1l_1}{I}=\frac{F_2l_2}{I}\implies F_1l_1=F_2l_2$ $F_2=F_1\frac{l_1}{l_2}=20\frac{1}{0.1}=200N\implies$ силата нараства 10 пъти.

Пример 3.6.2.
$$l_1 = 1m$$
, $F_1 = 20$, $l_2 = 0.1m$, $F_2 = 200N$, $\alpha = \frac{\pi}{2}$ $A_1 = ?$, $A_2 = ?$

$$s_{1} = \frac{2\pi l_{1}}{4} = 1.57m$$

$$s_{2} = \frac{2\pi l_{2}}{4} = 0.157m$$

$$dA = Md\varphi \implies$$

$$A_{1} = M_{1}\frac{\pi}{2} = F_{1}r_{1}\frac{\pi}{2} = 20 \cdot 1 \cdot \frac{3.14}{2} = 31.4J$$

$$A_{2} = M_{2}\frac{\pi}{2} = F_{2}r_{2}\frac{\pi}{2} = 200 \cdot 0.1 \cdot \frac{3.14}{2} = 31.4J$$

$$\implies A_{1} = A_{2}$$

3.6.2 Закон за запазване на момента на импулса

От $L=I\omega=const$ е ясно, че когато инерчният момент расте, ъгловата скорост намалява и обратно.

Пример 3.6.3. Човек седи на въртящ се стол и се върти с ъглова скорост $\omega_0 = 5rad/s$ Инерчният момент на човека със стола е $I_h = 1\frac{kg}{m^2}$. Човекът държи две гири всяка с маса m = 2kg. В началото човекът

държи гирите на оста на въртене, а после си разперва ръцете (приемете че дължината на ръцете на човека е r=1m).

Намерете ъгловата скорост.

В началото гирите са по оста и инерчният им момент е нула. Началният инерчен момент I_0 е равен на инерчният момент на човека I_h и $L_0=I_0\omega_0$ След като човекът си разпери ръцете $I=I_h+2I_w=I_h+2mr^2=1+2\cdot 2\cdot 1=5\frac{kg}{m^2}$ и $L=I\omega$. От закона за запазване на момента на импулса

$$L_0 = L \Leftrightarrow I_0 \omega_0 = I\omega$$

$$\omega = \frac{I_0}{I}\omega_0 = \frac{1}{5}5 = 1\frac{rad}{s}$$

3.6.3 Условия за равновесие

За да бъде едно тяло в равновесие, трябва да бъдат изпълнени следните две условия:

Сумата от всички сили трябва да е нула:

$$\vec{F_1} + \vec{F_2} + \vec{F_3} + \dots = 0$$

Сумата от всички моменти на сили трябва да е нула:

$$\vec{M}_1 + \vec{M}_2 + \vec{M}_3 + \dots = 0$$

4 Лекция 4:

- 5 Формули
- 5.1 Лекция 1:
- 5.2 Лекция 2:
- 5.3 Лекция 3:
- 5.4 Лекция 4: