

Summary of Current Global-Distortion Knowledge and Tools for Resolving them in General

Jim Pivarski

Texas A&M University

19 March, 2010

- ▶ There is evidence that a persistent effect in muon residuals is due to a global distortion of the tracker
 - it is probably a tracker- χ^2 -invariant weak mode, resolved by the external information— the muon chamber hits
- Strongest indication is that a true tracker weak mode, generated intentionally with Millepede, reproduces/cancels some of the features of the bias
- ▶ The effect is not fully understood, but is too important to ignore
 - shape of the apparent bias:

$$\Delta \kappa(\rho_T, \phi, \theta) - \Delta \kappa(\rho_T \to 0, \phi, \theta) = (0.0005 \; \text{GeV}^{-1}) \sin(\phi - 0.7) \exp\left(-\frac{(100 \; \text{GeV})^2}{2 \; \rho_T^{\; 2}}\right)$$

- implies either 2.5% modulation of Z mass in ϕ or complete washing-out of Z' mass, or a little of both
- This "unpleasant discovery" could be turned into a technique for correcting the bias and even providing definite uncertainty estimates on curvature bias: systematic errors for physics analyses

Diagnostic method

Jim Pivarski

- ► Tracker-only track fit
- Propagate to only one muon layer (single rigid-body alignable)
- ▶ Dependence of residuals (Δx) on tracker-track curvature (q/p_T) cannot be attributed to muon misalignment

The Δx vs q/p_T plot

Jim Pivarski 4/2

- Originally made to distinguish alignment errors from magnetic field map errors
- ➤ Top: first plot, Dec 2008, rough because all chambers combined (not yet aligned), shows the high-momentum feature
- ▶ Bottom-left: a more focused plot, single sector, $\Delta x_1 \Delta x_2$ for two stations, shows antisymmetric magnetic field effect but no high-momentum feature
- ► Feature only present in residuals on tracks from the tracker, in both CRAFTs

Interpretation of this plot

Jim Pivarski 5/22

- Both magnetic field and material budget errors lead to antisymmetric effects on Δx
 - high-momentum feature effect is therefore neither
- When it is made with a single muon layer, layer misalignment (in $r\phi$) corresponds to vertical translation
 - ignore vertical offsets

▶ Transform
$$\Delta(q/p_T) = \frac{\epsilon}{x(q/p_T) - x(q/p_T + \epsilon)} \Delta x$$
, numerical

derivative calculated by running propagator twice (purely mathematical); $\Delta(q/p_T)$ vs q/p_T quantifies tracker only

What we can constrain

Jim Pivarski 6/2

▶ $\frac{\partial x}{\partial (q/p_T)}$ is nearly constant vs q/p_T (within a ϕ region), so $\Delta(q/p_T)$ has the same behavior as Δx

- needs to be studied as a function of ϕ !
- ▶ Therefore, vertical offsets in $\Delta(q/p_T)$ vs q/p_T should be ignored, because they are equivalent to muon alignment
- We constrain only curvature bias differences:

$$\Delta \kappa(\kappa, \phi, \theta) - \Delta \kappa(\kappa \to \infty, \phi, \theta)$$

in 12 ϕ bins (sectors) and 5 $\cot\theta$ bins (wheels), $\kappa=q/p_T$

Observed form is

$$\Delta\kappa(\kappa,\phi,\theta) - \Delta\kappa(\infty,\phi,\theta) = (0.0005 \text{ GeV}^{-1})\sin(\phi - 0.7)\exp\left(-\frac{(100 \text{ GeV})^2}{2\,p_T^2}\right)$$

- In these plots, we show how the differences between the tops and bottoms of the Gaussians vary in ϕ , θ
- ► Top is from raw residuals Δx
- ▶ Bottom is from curvatures $\Delta(q/p_T)$
- $\sin(2\phi) \rightarrow \sin(\phi)$ in the transformation is not understood, but consistent (when considering different tracker geometries and differences of geometries)

- In these plots, we show how the differences between the tops and bottoms of the Gaussians vary in ϕ , θ
- ► Top is from raw residuals Δx
- ▶ Bottom is from curvatures $\Delta(q/p_T)$
- ▶ $\sin(2\phi) \rightarrow \sin(\phi)$ in the transformation is not understood, but consistent (when considering different tracker geometries and differences of geometries)

Parameterization and combined fit

Jim Pivarski

9/22

using the $\Delta(q/p_T)$ plots and expanding the expression to include wheels

$$(A)\kappa + \left[(F + F_{\theta} \cot \theta) + (S + S_{\theta} \cot \theta) \sin(\phi) + (C + C_{\theta} \cot \theta) \cos(\phi) \right] \exp(-\kappa^2 W^2/2)$$

 $\chi^2/N_{dof} = 2194/1066 = 2.06$

- Coherent distortion of tracker with no tracker χ² sensitivity
- We can see its effect with muon reisduals

$$(A)\kappa + \left[(F + F_{\theta} \cot \theta) + (S + S_{\theta} \cot \theta) \sin(\phi) + (C + C_{\theta} \cot \theta) \cos(\phi) \right] \exp(-\kappa^2 W^2 / 2)$$

	χ^2/N_{dof}	Α	$F (GeV^{-1})$	F_{θ} (GeV ⁻¹)
$mode{ imes}0$	2194/1066	-0.00070	-0.000082	-0.000039
$mode{ imes}{1}$	2171/1068	-0.00063	0.000098	-0.000063
$mode{ imes}3$	1991/942	-0.00068	0.000277	-0.000070
uncertainty		0.00009	0.000 005	0.000 009

	S (GeV $^{-1}$)	$S_ heta$ (GeV $^{-1}$)	$C~(GeV^{-1})$	$C_ heta$ (GeV $^{-1}$)	W (GeV)
$mode{ imes}0$	0.000 3533	-0.000113	-0.000345	-0.000057	95.0
$mode{ imes}{1}$	0.000 3892	-0.000156	-0.000335	-0.000063	93.1
$mode{ imes}3$	0.000 4310	-0.000170	-0.000386	-0.000096	84.1
uncertainty	0.000 0064	0.000 011	0.000010	0.000016	2.1

- Coherent distortion of tracker with no tracker χ² sensitivity
- We can see its effect with muon reisduals

$$(A)\kappa + \left[(F + F_{\theta} \cot \theta) + (S + S_{\theta} \cot \theta) \sin(\phi) + (C + C_{\theta} \cot \theta) \cos(\phi) \right] \exp(-\kappa^2 W^2 / 2)$$

	χ^2/N_{dof}	Α	$F (GeV^{-1})$	F_{θ} (GeV ⁻¹)
$mode{ imes}0$	2194/1066	-0.00070	-0.000082	-0.000039
$mode{ imes}{1}$	2171/1068	-0.00063	0.000098	-0.000063
$mode{ imes}3$	1991/942	-0.00068	0.000277	-0.000070
uncertainty		0.00009	0.000 005	0.000 009

	S (GeV^{-1})	$S_ heta$ (GeV $^{-1}$)	$C~(GeV^{-1})$	$C_{ heta}$ (GeV $^{-1}$)	$W\ (GeV)$
$mode{ imes}0$	0.000 3533	-0.000113	-0.000345	-0.000057	95.0
$mode{ imes}{1}$	0.000 3892	-0.000156	-0.000335	-0.000063	93.1
$mode{ imes}3$	0.000 4310	-0.000170	-0.000386	-0.000096	84.1
uncertainty	0.000 0064	0.000 011	0.000010	0.000 016	2.1

Graphical presentation

Jim Pivarski 12/22

	χ^2/\textit{N}_{dof}	Α	$F~(GeV^{-1})$	$F_ heta$ (GeV $^{-1}$)
$mode{ imes}0$	2194/1066	-0.00070	-0.000082	-0.000039
$mode{ imes}{1}$	2171/1068	-0.00063	0.000098	-0.000063
$mode{ imes}3$	1991/942	-0.00068	0.000 277	-0.000070
uncertainty		0.00009	0.000 005	0.000 009

$S (GeV^{-1})$	S_{θ} (GeV $^{-1}$)	$C (GeV^{-1})$	C_{θ} (GeV ⁻¹)	W (GeV)
0.000 3533	-0.000113	-0.000345	-0.000057	95.0
0.000 3892	-0.000156	-0.000335	-0.000063	93.1
0.000 4310	-0.000170	-0.000386	-0.000096	84.1
0.000 0064	0.000 011	0.000010	0.000 016	2.1
	0.000 3533 0.000 3892 0.000 4310	0.000 3533 -0.000 113 0.000 3892 -0.000 156 0.000 4310 -0.000 170	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

How it can be used

Jim Pivarski 13/22

4.4

- ► The observed bias must be corrected in the geometry, *even* if only to verify that the diagnostic is being correctly interpreted
- ► However, *uncertainties* on fitted parameters quantify systematic errors in momentum for physics analyses
- Covariance matrix for fit on previous page:

$$(A)\kappa + \left[(F + F_{\theta} \cot \theta) + (S + S_{\theta} \cot \theta) \sin(\phi) + (C + C_{\theta} \cot \theta) \cos(\phi) \right] \exp(-\kappa^2 W^2/2)$$

$$7.2 \cdot 10^{-9} \quad 1.9 \cdot 10^{-11} \quad 5.1 \cdot 10^{-12} \quad -8.3 \cdot 10^{-12} \quad -1.7 \cdot 10^{-11} \quad -6.4 \cdot 10^{-11} \quad 4.5 \cdot 10^{-11} \quad -1.2 \cdot 10^{-6} \\ 2.9 \cdot 10^{-11} \quad -1.2 \cdot 10^{-12} \quad 3.2 \cdot 10^{-12} \quad 4 \cdot 10^{-12} \quad 1.4 \cdot 10^{-13} \quad 1.8 \cdot 10^{-12} \quad 1 \cdot 10^{-8} \\ 8.2 \cdot 10^{-11} \quad 3.8 \cdot 10^{-12} \quad 1 \cdot 10^{-11} \quad 2.2 \cdot 10^{-12} \quad -4.9 \cdot 10^{-12} \quad -2.4 \cdot 10^{-7} \\ 4.1 \cdot 10^{-11} \quad -2.9 \cdot 10^{-12} \quad 1.9 \cdot 10^{-12} \quad 6.6 \cdot 10^{-12} \quad 1.8 \cdot 10^{-6} \\ 1.2 \cdot 10^{-10} \quad 6.2 \cdot 10^{-12} \quad -1 \cdot 10^{-11} \quad -1.7 \cdot 10^{-6} \\ 9.7 \cdot 10^{-11} \quad -4.6 \cdot 10^{-12} \quad 2.5 \cdot 10^{-6}$$

- ► Regardless of any remaining global distortions of the tracker, we would have measured limits on how wrong the momenta might be
- ▶ Precision with CRAFT-09: a few percent momentum uncertainty at 1 TeV (depending on parameterization; 0.5% for simple constant)

What this says about charge ratio

Jim Pivarski

- ➤ Shape of the effect has maximum effect on cosmic rays and resonances decaying at rest
- ▶ Top and bottom are both affected by 0.0005 GeV^{-1} $\rightarrow 50\%$ at 1 TeV or 0.05% at 1 GeV
- ▶ But there's a fundamental uncertainty here: we measure $\Delta\kappa(\text{high}) \Delta\kappa(\text{low})$ where "high" momentum tracks have $p_T\gg 100$ GeV, and "low" have $p_T\ll 100$ GeV
- ► From what we know now, either the Z will be unaffected and the Z' completely smeared, or vice-versa, or a little of each
- ▶ If we assume that CRAFT-08, CRAFT-09, and the current alignment have the same weak modes (not guaranteed), then it seems that the Z' will be okay: effect on charge ratio and cosmics endpoint are $\sim 0.000\,05~\text{GeV}^{-1}$

- ▶ If we could know the absolute curvature bias of either high or low momentum tracks, we could use the muon residuals to predict to the other
- ▶ Cosmics endpoint: assuming \sim flat efficiency for high-momentum muons, cosmic ray spectrum in q/p_T must point at zero (they trail off to infinite momentum)

- identifies high-momentum constant offset in $\Delta(q/p_T)$ vs q/p_T (next slide)
- ► Known resonance masses: identify linear slope in low-momentum $\Delta(q/p_T)$ vs q/p_T
- ightharpoonup Curvature of tracks in zero magnetic field: identify constant offset in low-momentum $\Delta(q/p_T)$ vs q/p_T
- ▶ $K_S \to \pi^+\pi^-$ decay direction constraint: identify constant offset in low-momentum $\Delta(q/p_T)$ vs q/p_T (following slides)

Cosmics endpoint (I. Furić)

Jim Pivarski 16/22

- Distribution of cosmic rays trail off at high p_T , so positive and negative distributions must both point to $q/p_T=0$ (infinite momentum)
- ▶ Doesn't assume charge ratio, only shape of spectrum (well-known "energy^{-2.7}")
- Data are most consistent with \sim 0.000 05 GeV $^{-1}$, ten times smaller than $\Delta\kappa({\rm high}) \Delta\kappa({\rm low}) = 0.000\,5\sin\phi~{\rm GeV}^{-1}$
- Implies that the muon-residuals effect is mostly in $\Delta \kappa$ (low)? Can we check that?

Jim Pivarski 17/22

- ▶ Momentum sum of the $\pi^+\pi^-$ system must be collinear with the displacement of the secondary vertex
- As a constraint on momenta, this is orthogonal to resonance mass

▶ These two are the first terms in a general $\Delta\kappa(\kappa,\phi,\theta)$ expansion in κ

Implementing the K_S constraint Jim Pivarski

18/22

to get a sense of how tight it is from Nov-Dec 2009 data

- Select events using
 - $\begin{tabular}{ll} \star $\pi^+\pi^-$ mass with \\ sideband subtraction \\ \end{tabular}$
 - vertex inside the first pixel layer
- ▶ Pointing to choose the primary vertex in *z* projection

Ks road

|v_,| (cm)

- ▶ Angle between primary-to-secondary displacement vector and $\pi^+\pi^-$ momentum sum in the transverse plane: $\Delta\phi$
- ▶ Not used up by any selection requirements

▶ No observed bias, with some uncertainty

Convert to absolute $\Delta(q/p_T)$ Jim Pivarski

20/22

► Compute $\frac{\partial \Delta(q/p_T)}{\partial \Delta \phi}$ by taking numerical derivatives with the vertex-fitter

- $\Delta \kappa (low) = -0.0003 \pm 0.0024 \text{ GeV}^{-1}$
- 0.24% uncertainty in bias of 1 GeV tracks
- ▶ Uncertainty in bias of 1 TeV tracks = 240% (plus a few percent from the $\Delta \kappa(\text{high}) - \Delta \kappa(\text{low})$ propagation)

- "Muon residuals vs momentum trend" seems to be related to a distortion of the tracker
- Markus has created a true weak mode of the tracker which produces a similar signal in the muon residuals, including the curious 100 GeV characteristic scale
- Muon residuals indicate a high-low bias difference of $\Delta \kappa(\text{high}) - \Delta \kappa(\text{low}) = 0.0005 \sin \phi \text{ GeV}^{-1}$
- ▶ Cosmic spectrum endpoint excludes a $\Delta \kappa$ (high) of 0.000 5 GeV⁻¹, more like 0.00005 GeV^{-1}
- $K_S \to \pi^+\pi^-$ direction constraint is weak, $\Delta \kappa (low) = -0.0003 \pm 0.0024 \text{ GeV}^{-1}$
 - would improve with statistics
 - \triangleright perhaps K_S can help to constrain alignment procedure?
- ▶ Just as importantly: uncertainties on $\Delta \kappa(p_T, \phi, \theta)$ as a deliverable to physics analyses?