One Model, Any CSP: Graph Neural Networks as Fast Global Search Heuristics for Constraint Satisfaction

IJCAI 2023

Jan Tönshoff, Berke Kisin, Jakob Lindner, Martin Grohe

Stanford CS/MS&E 331

Motivation

Constraint Satisfaction Problems (CSPs):

• Unify SAT, Graph Coloring, MAXCUT, and all NP-hard problems

Motivation for ANYCSP:

- Classical heuristics are hand-engineered, domain-specific
- Desire a single, general-purpose solver across CSPs

Goals:

- Learn global search heuristics through a shared GNN
- Train on small synthetic instances, generalize to large real ones

Key ideas

Unified View of CSPs

Represent any CSP as a Constraint-Value Graph (CVG)

General search policy

- A single Graph Neural Network (GNN) operates on the CVG
- Learns to propose coordinated updates to all variables
 - Produces global actions rather than one-variable-at-a-time flips

Training objective

- Use RL (REINFORCE) to maximize solution quality
- No supervision from known solutions

CSPs: Recap

CSP instance $\mathcal{I} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$:

- Variables X
- \mathcal{D} assigns to each variable $X \in \mathcal{X}$ a **domain** $\mathcal{D}(X)$
- Assignment α assigns each variable $\alpha(X) \in \mathcal{D}(X)$
- Constraint $C \in \mathcal{C}$
 - Defined by:
 - 1. Scope $s^{c} = (X_1, ..., X_k)$
 - 2. Relation $R^C \subseteq \mathcal{D}(X_1) \times \cdots \times \mathcal{D}(X_k)$
 - Satisfied if $(\alpha(X_1), ..., \alpha(X_k)) \in R^C$

Goal: find α that satisfies as many constraints as possible

Constraint-value graph (CVG)

Constraint-value graph (CVG)

•
$$\mathcal{X} = \{X_1, X_2, X_3\}$$

•
$$\mathcal{D}(X_1) = \{1,2,3\}$$

•
$$\mathcal{D}(X_2) = \mathcal{D}(X_3) = \{1,2\}$$

- $\alpha = (2,1,2)$
- $C_1: X_1 \leq X_2$
- $C_2: X_2 = X_3$

• For constraint C, variable X_i , value d, label is 1 iff $(\alpha(X_1), \dots, \alpha(X_{i-1}), d, \alpha(X_{i+1}), \dots, \alpha(X_k)) \in R^C$

ANYCSP architecture

GNN has four directional layers:

- $V \rightarrow C$: inform constraints about tentative assignments
- $C \rightarrow V$: send satisfaction feedback to connected values
- $V \rightarrow X$: values aggregate into per-variable summaries
- $X \rightarrow V$: broadcast updated intent back to candidate values

Reward design

- Goal: reward policy iff it improves the best-so-far solution
- $Q_{I}(\alpha)$ = fraction of satisfied constraints
- Naive reward $Q_{I}(\alpha^{(t)})$ caused stagnation at local maxima

• Define running best:
$$q^{(t)} = \max_{t' < t} Q_{\mathcal{I}}(\alpha^{(t')})$$
• Reward
$$r^{(t)} = \begin{cases} 0, & Q_{\mathcal{I}}(\alpha^{(t)}) \leq q^{(t)} \\ Q_{\mathcal{I}}(\alpha^{(t)}) - q^{(t)}, & Q_{\mathcal{I}}(\alpha^{(t)}) > q^{(t)} \end{cases}$$

- No penalty for exploratory worse steps
- Training: vanilla REINFORCE, T=40 iterations

Experimental setup

- Benchmark setup: MODEL RB [Xu, Li, '03]
 - Generates dense, random CSPs near satisfiability threshold
 - Training distribution: random MODEL RB instances
 - 30 variables and constraint arity 2
 - Test dataset (RB50): 50 satisfiable instances
 - 50 variables, domain size 23, \approx 500 constraints
 - Standard benchmark in the XCSP Competition
- Baselines: ACE, CoSoCo, Picat
 - Picat: SAT-based solver, 2022 XCSP Competition winner
- Each solver runs once per instance with a 20-minute timeout
 - ANYCSP performs $\approx 500 \text{ k}$ search iterations in this window

ModelRB results

MaxCut: Experimental setup

- Training: unweighted Erdős-Rényi graphs with 100 vertices
- Testing: Gset [Ye'03]—diverse instances with 800-10k vertices
- Neural baselines
 - RUNCSP [Tönshoff, '21] (supervised)
 - ECO-DQN [Barrett et al., '20] (RL)
 - ECORD [Barrett et al., '22] (RL)
- Classical baselines: Greedy, Goemans-Williamson SDP
- Evaluation protocol
 - 20 parallel runs, 180-second timeout
 - Report mean deviation from best-known cuts [Benlic, Hao, '13]

MaxCut results

METHOD	V =800	V =1K	V =2K	$ V \ge 3K$
GREEDY	411.44	359.11	737.00	774.25
SDP	245.44	229.22	-	-
RUNCSP	185.89	156.56	357.33	401.00
ECO-DQN	65.11	54.67	157.00	428.25
ECORD	8.67	8.78	39.22	187.75
ANYCSP	1.22	2.44	13.11	51.63

Additional domains (see paper)

- Graph coloring:
 - Better than existing neural solvers; on par with best heuristic
- MAX-3-SAT
 - Baselines: neural approaches and conventional stochastic search
 - Neural approaches generally can't compete w/ CDCL solvers
- MAX-k-SET
 - Compares against SOTA local search algorithms
 - Global updates of ANYCSP beat local search in # iterations
 - Local-only variant of ANYCSP loses to strong heuristics
 - Classic baselines use CPU and have better runtimes

Motivation

Constraint Satisfaction Problems (CSPs):

• Unify SAT, Graph Coloring, MAXCUT, and all NP-hard problems

Motivation for ANYCSP:

- Classical heuristics are hand-engineered, domain-specific
- Desire a single, general-purpose solver across CSPs

Goals:

- Learn global search heuristics through a shared GNN
- Train on small synthetic instances, generalize to large real ones