ML development process

Short overview

MLOps resource scheduling

- Small team
 - No scheduling, i.e. ssh or jupyter notebook
- Mid/large size team
 - Use job scheduling tool to submit ML jobs
 - Each submitted job contains, ML code, resource requirements (# cpus, size Mem, # GPUs, network, storage)
 - Large companies are running their ML infrastructures with their scheduling sw
 - Example job scheduling tools are from cloud providers and companies: AWS sagemaker, run.ai, slurm, grid.ai (link for tool summary)

- Advantages of using scheduler
 - Resources (CPU, GPU, network) are managed globally within the organization
 - Resources can be managed more efficiently compared to interactive usage

Development phase

- Development phase
 - Developers need think times
 - *i.e.* run model, monitor the convergence, restart the training with different parameters, and repeat
 - Explore dataset and develop ML model
 - GPU can be used either interactively (ssh or jupyter notebook) or with a job scheduler
 - May need small resource (# cpus, size Mem, # GPUs)

Production model training phase

- production model training
 - Training with full data set
 - To find best model, run many times for hyperparameters search
 - Parallel training runs for hyperparamter searching will shorten the searching time
 - Requires more resource than development phase, may require multiple GPUs
 - Generally runs much longer duration
- Periodic re-train after the deployment

Inference (serving) phase

- Inference (serving) phase
 - Requires less powerful resources, since inference requires less compute power
 - Need reliable (redundant) system to serve customer requests
 - For real-time inference task has strict latency requirement
 - Long running sw services are used, so hw resource is already allocated for the running sw services

