

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

высшего образования «МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №7

по дисциплине «Алгоритмические основы обработки данных»

Выполнил студент группы	ИВБО-01-20	Д.А. Манохин
Принял старший преподават	ель	Ю.С. Асадова
Практические работы выполнен	ы « <u>»</u> 2021г.	
«Зачтено»	« » 2021г.	

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники

	Выполнено	/Д.А. Манохин/
	Зачтено	/Ю.С. Асадова/
	Задание на практическую работу	. № 7
	Дисциплина: «Алгоритмические основы обработки да	анных»
Студент	<u>Манохин Дмитрий Александрович</u> Шифр <u>20И2132</u> Группа	ИВБО-01-20

- 1. Тема: «Методы приближенного вычисления интегралов».
- 2. Срок сдачи студентом законченной работы: 14.10.2021г.
- 3. Исходные данные:

Метод интегрирования, пределы интегрирования, подынтегральная функция.

4. Задание:

Разработать функцию вычисления определенного интеграла с заданной точностью. Использовать разработанную функцию при вычислении интеграла от заданной подынтегральной функции. Вычисление подынтегральной функции оформить в виде функции. Результаты вычисления интеграла для заданных значений параметра представить в виде таблицы. Включить в таблицу с результатами дополнительный столбец с количеством элементарных отрезков, которое использовалось для получения значений интеграла с заданной точностью.

5. Содержание отчета:

- титульный лист;
- задание;
- оглавление;
- введение;
- основные разделы отчета;
- заключение;
- список использованных источников;

Руководитель работы	Ю.С. Асадова	подпись	«	»	2021г.
Задание принял к исполнению	Д.А. Манохин	подпись	«	»	2021г.

ОГЛАВЛЕНИЕ

Введение	4
Основной раздел	5
Заключение	11
Список использованных источников	12

ВВЕДЕНИЕ

В данной практической работе требуется вычислить определенный интеграл методом левых прямоугольников, используя модульное программирование.

Постановка задачи:

Разработать функцию вычисления определенного интеграла с заданной Использовать разработанную функцию точностью. при вычислении подынтегральной заданной функции. интеграла от Вычисление подынтегральной функции оформить в виде функции. Результаты вычисления интеграла для заданных значений параметра представить в виде таблицы. Включить в таблицу с результатами дополнительный столбец с количеством элементарных отрезков, которое использовалось для получения значений интеграла с заданной точностью. Алгоритмы выполнения операций оформить в виде функций.

Функция x^2e^{-tx} , где a=-1, b=1, t- параметр функции (t=0.5, 1.0, 1.5, 2.0) методом левых прямоугольников.

ОСНОВНОЙ РАЗДЕЛ

В программе присутствуют три функции, целочисленная main — основная функция. Также функция func, возвращающая тип double, которая занимается основным выводом программы. И функция method, которая занимается вычислением значения функции и возвращает тип double.

Вычисление интеграла происходит методом левых прямоугольников, по формуле (1):

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n-1} h \cdot f(a+i \cdot h), \tag{1}$$

где h – это шаг, разбиение функции.

Блок – схема алгоритма представлена на рисунках 1.1, 1.2, 1.3.

Рисунок 1.1 – Блок-схема алгоритма – функция main

Рисунок 1.2 – Блок-схема алгоритма – функция func

Рисунок 1.3 – Блок-схема алгоритма – функция method

Исходный код программы представлен в Листингах А.1, А.2, А.3.

 Π истинг $A.1-\Pi$ роцедура запуска программы

```
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main()
    setlocale(LC ALL, "Russian");
   cout << "Функция x^2*e^(-tx)\nПределы интегрирования: a = -1; b = 1;" <<
    cout << "Парметр функции: t = 0.5, 1.0, 1.5, 2.0" << endl;
    cout << "Введите кол-во элементарных отрезков, на которые разделяем [a,b].
n: ";
    int n;
    double a = -1, b = 1;
    cin >> n;
    if (n < 1) {
        cout << "ERROR!" << endl;</pre>
        return 0;
    double h = (b - a) / n;
    cout << "Шаг равен h = " << h << endl;
    for (float t = 0.5; t \le 2.0; t += 0.5) {
        cout << endl << "t = " << t << ": " << endl;</pre>
        double f = func(a, b, n, t, h);
        cout << setprecision(6) << "Интеграл f = " << f << endl;
    return (0);
```

Листинг А.2 – Процедура вывода данных программы и таблицы

```
double func(double a, double b, int n, float t, double h) {
    double f = 0;
    string s = "_____";
    cout << s << endl << "|" << setw(10) << left << "i" << "|" << setw(10) <<
    left << "i" << "|" << endl << s <<
    endl ;
    for (int i = 0; i < n; i++) {
        double k = method(a + i * h, t);
        cout << "|" << setw(10) << i << "|" << setw(10) << (a + i * h) << "|"
    </pre>
<< setw(10) << setprecision(4) << k << "|" << endl;
    f += k;
    }
    cout << endl;
    return f * h;
}</pre>
```

Листинг А.3 – Процедура расчета подынтегральной функции

```
double method(double x, float t) {
   return x * x * exp((-1) * t * x);
}
```

Пример работы программы представлен на рисунках 2.1 и 2.2.

```
Функция x^2*e^(-tx)
Пределы интегрирования: a = -1; b = 1;
Парметр функции: t = 0.5, 1.0, 1.5, 2.0
Введите кол-во элементарных отрезков, на которые разделяем [a,b]. n: 10
Шаг равен h = 0.2
t = 0.5:
|i
                     f(x)
           |x[i]
           |-1
                      1.649
1
           -0.8
                      0.9548
2
           -0.6
                      0.4859
           -0.4
                      0.1954
13
                      0.04421
14
           1-0.2
5
           10
                      10
6
           0.2
                      0.03619
           0.4
                      0.131
8
           0.6
                      0.2667
9
           0.8
                      0.429
Интеграл f = 0.838392
t = 1:
li
           |x[i]
                     f(x)
           |-1
                      2.718
1
                      1.424
           -0.8
2
           -0.6
                      0.656
|3
           -0.4
                      0.2387
4
           1-0.2
                      0.04886
15
           10
                      10
6
           0.2
                      0.03275
           0.4
                      0.1073
8
           0.6
                      0.1976
9
           0.8
                      0.2876
Интеграл f = 1.14226
```

Рисунок 2.1 – Пример работы программы (часть 1)

1	[v[4]	[f/v]	T
i	x[i]	f(x)	-
0	-1	4.482	1
1	-0.8	2.125	1
2	-0.6	0.8855	1
3	-0.4	0.2915	1
4	-0.2	0.05399	1
5	[0	0	1
6	0.2	0.02963	1
7	0.4	0.08781	1
8	0.6	0.1464	1
9 Интеграл : = 2:	0.8 f = 1.6588	0.1928 3	1
9 Интеграл : = 2:	0.8	0.1928	_
9 Интеграл : = 2: i	0.8 f = 1.6588	0.1928 3	1
9 Интеграл t = 2: i	0.8 f = 1.6588	0.1928 f(x)	ī
9 Интеграл t = 2: i 0	0.8 f = 1.6588 x[i] -1	0.1928 3 f(x) 7.389	ī
9 Интеграл t = 2: i 0 1	0.8 f = 1.6588 x[i] -1 -0.8	0.1928 f(x) 7.389 3.17	ī
9 Интеграл t = 2: i 0 1	0.8 f = 1.65883 x[i] -1 -0.8 -0.6	0.1928 f(x) 7.389 3.17 1.195	ī
9	0.8 f = 1.6588 x[i] -1 -0.8 -0.6 -0.4	0.1928 f(x) 7.389 3.17 1.195 0.3561	
9 Интеграл t = 2: i 0 1 2 3	0.8 f = 1.6588 x[i] -1 -0.8 -0.6 -0.4 -0.2	0.1928 f(x) 7.389 3.17 1.195 0.3561 0.05967	
9 Интеграл t = 2: i 0 1 2 3 4	0.8 f = 1.65883 x[i] -1 -0.8 -0.6 -0.4 -0.2	0.1928 f(x) 7.389 3.17 1.195 0.3561 0.05967	
9 Интеграл t = 2: i 0 1 2 3	0.8 f = 1.65883 x[i] -1 -0.8 -0.6 -0.4 -0.2 0	0.1928 f(x) 7.389 3.17 1.195 0.3561 0.05967 0	

Рисунок 2.2 – Пример работы программы (часть 2)

ЗАКЛЮЧЕНИЕ

В результате выполнения данной практической работы были закреплены основные знания о вычислении интеграла методом левых прямоугольников, а также построение программы с помощью функций. Были закреплены навыки использования основных библиотек языка программирования С++.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Кубенский А.А. Структуры и алгоритмы обработки данных: объектноориентированный подход и реализация на С++ / А.А. Кубенский.— М.: БХВ-Петербург, 2017.— 300 с.
- 2. Стивен Прата. Язык программирования C++ (C++11). Лекции и упражнения, 6-е издание М.: Вильямс, 2012. 1248 с.
- 3. Седжвик, Р. Алгоритмы на С++ / Р. Седжвик.— М.:Вильямс, 2017.— 1056 с.