

ET660 - Séries Temporais para Atuária - 2020/2

Profa. Francyelle L. Medina

Atividades: Semanas 03 e 04

Morettin e Toloi(2004)

1 - Considere o modelo $Z(t) = f(t) + a_t, t =$ 1, ..., N, em que f(t) é o sinal e a_t é o ruído. Para $f(t) = \alpha + \beta(t)$, sob adequadas suposições, obtenha os estimadores de mínimos quadrados de α e β para os dados da Tabela 1.

2 - Suponha $a_t, t = 1, 2, \dots$ uma sequência de variáveis aleatórias i.i.d., com

$$P(a_t = 0) = P(a_t = 1) = 1/2.$$

(a) O processo $a_1 + a_2 \cos(t)$ é estacionário?

(b) O processo $a_1 + a_2 \cos(t) + a_3 \cos(t) + \sin(t)$ é estacionário?

 ${\bf 3}$ - Seja Z_t um processo estacionário com média μ_Z e função de autocovariância γ_Z . Um novo processo é definido por $Y_t = Z_t - Z_{t-1}$.

(a) Obtenha a média e a função de autocovariância Y_t em termos de μ_Z e γ_Z .

(b) Mostre que Y_t é um processo estacionário.

4 - Considere $\{a_t, t = 0, \pm 1, \pm 2, ...\}$ obtido de uma sequência $u_t \sim N(0,1)$ independentes da seguinte forma

$$a_t = \begin{cases} u_t, & \text{se } t \text{ par,} \\ 2^{-1/2} \left(u_{t-1}^2 - 1 \right), & t \text{ impar.} \end{cases}$$

O processo a_t é estacionário?

5 - Seja $Z_t = a_t + c \sum_{j=1}^{t-1} a_j, \ t \ge 1$, em que c é uma constante e $a_t \sim RB\left(0, \sigma_a^2\right)$.

(a) Calcule a média e a função de autocovariância de Z_t e responda se é estacionária.

(b) Calcule a média e a função de autocovariância de $(1-B)Z_t$ e responda se é estacionária.

6 - Suponha que $\{X_t \mid t=0,\pm 1,\pm 2,\ldots\}$ seja uma

sequência de v.a. independentes, todas com a mesma distribuição, com $E(X_t) = \mu$, $Var(X_t) = \sigma^2$, $\forall t$. Considere o processo $\{X_t \mid t=0,\pm 1,\pm 2,\ldots\}$, em que

$$Y_t = \frac{1}{2}X_t + \frac{1}{4}X_{t-1} + \frac{1}{8}X_{t-2}.$$

(a) O processo Y_t é estacionário?

(b) Calcule $E(Y_t)$, $Var(Y_t) \in Cov(Y_t, Y_s)$.

7 - Dado o processo X_t , é definida a primeira diferença como $\Delta X_t = X_t - X_{t-1}$ e, sucessivamente $\Delta^2 X_t = \Delta (\Delta X_t), \ \Delta^3 X_t = \Delta (\Delta^2 X_t), \text{ etc. Suponha}$

$$Y_t = \alpha + \beta t + \gamma t^2 + X_t,$$

em que α , β e γ são constantes e X_t é estacionário, com função de autocovariância $\gamma_X(t)$. Mostre que $\Delta^2 Y_t$ é estacionário.

8 - Seja $Z_t = a_t + c \sum_{j=1}^{t-1} a_j, \ t \geq 1,$ em que c é uma constante e $a_t \sim RB(0, \sigma_a^2)$.

(a) Calcule a média e a função de autocovariância de Z_t e responda se é estacionária.

(b) Calcule a média e a função de autocovariância de $(1-B) Z_t$ e responda se é estacionária.

9 - Suponha que $\{X_t | t = 0, \pm 1, \pm 2, ...\}$ seja uma sequência de v.a. independentes, todas com a mesma distribuição, com $E(X_t) = \mu$, $Var(X_t) = \sigma^2$, $\forall t$. Considere o processo $\{X_t \mid t=0,\pm 1,\pm 2,\ldots\}$, em que

$$Y_t = \frac{1}{2}X_t + \frac{1}{4}X_{t-1} + \frac{1}{8}X_{t-2}.$$

(a) O processo Y_t é estacionário?

(b) Calcule $E(Y_t)$, $Var(Y_t) \in Cov(Y_t, Y_s)$.

10 - Dado o processo X_t , é definida a primeira diferença como $\Delta X_t = X_t - X_{t-1}$ e, sucessivamente $\Delta^2 X_t = \Delta \left(\Delta X_t \right), \ \Delta^3 X_t = \Delta \left(\Delta^2 X_t \right)$, etc. Suponha que

$$Y_t = \alpha + \beta t + \gamma t^2 + X_t,$$

em que α , β e γ são constantes e X_t é estacionário, com função de autocovariância $\gamma_X(t)$. Mostre que $\Delta^2 Y_t$ é estacionário.