Principal Component Analysis (PCA)

Breast Cancer Data Exploration

In this project, you will mainly apply PCA on the two use-cases:

- 1. Data Visualization
- 2. Speeding ML algorithm

Aurther: Irfan Ullah Khan

import numpy as np


```
labels = np.reshape(breast_labels,(569,1))
final_breast_data = np.concatenate([breast_data,labels],axis=1)
final_breast_data.shape
     (569, 31)
import pandas as pd
breast dataset = pd.DataFrame(final breast data)
features = breast.feature_names
features
     array(['mean radius', 'mean texture', 'mean perimeter', 'mean area',
            'mean smoothness', 'mean compactness', 'mean concavity',
            'mean concave points', 'mean symmetry', 'mean fractal dimension',
            'radius error', 'texture error', 'perimeter error', 'area error',
            'smoothness error', 'compactness error', 'concavity error',
            'concave points error', 'symmetry error',
            'fractal dimension error', 'worst radius', 'worst texture',
            'worst perimeter', 'worst area', 'worst smoothness',
            'worst compactness', 'worst concavity', 'worst concave points',
            'worst symmetry', 'worst fractal dimension'], dtype='<U23')
features labels = np.append(features, 'label')
breast dataset.columns = features labels
breast dataset.head()
```

0 17.99 10.38 122.80 1001.0 0.11840 0.27760	0.3001 0.14710 0.2
1 20.57 17.77 132.90 1326.0 0.08474 0.07864	0.0869 0.07017 0.7
2 19.69 21.25 130.00 1203.0 0.10960 0.15990	0.1974 0.12790 0.2
3 11.42 20.38 77.58 386.1 0.14250 0.28390	0.2414 0.10520 0.2
4 20.29 14.34 135.10 1297.0 0.10030 0.13280	0.1980 0.10430 0.7
5 rows × 31 columns	•

breast_dataset['label'].replace(0, 'Benign',inplace=True)
breast_dataset['label'].replace(1, 'Malignant',inplace=True)

breast_dataset.tail()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	syr
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	
5 rows	s × 31 coli	umns							>

Visualizing the Breast Cancer data

(-6.118909323768877e-16, 1.0)

```
feat_cols = ['feature'+str(i) for i in range(x.shape[1])]
normalised_breast = pd.DataFrame(x,columns=feat_cols)
normalised_breast.tail()
```

	feature0	feature1	feature2	feature3	feature4	feature5	feature6	feature7	fe
564	2.110995	0.721473	2.060786	2.343856	1.041842	0.219060	1.947285	2.320965	-0
565	1.704854	2.085134	1.615931	1.723842	0.102458	-0.017833	0.693043	1.263669	-0
566	0.702284	2.045574	0.672676	0.577953	-0.840484	-0.038680	0.046588	0.105777	-0
567	1.838341	2.336457	1.982524	1.735218	1.525767	3.272144	3.296944	2.658866	2
568	-1.808401	1.221792	-1.814389	-1.347789	-3.112085	-1.150752	-1.114873	-1.261820	-0
5 rows × 30 columns									
4									•

```
from sklearn.decomposition import PCA
pca_breast = PCA(n_components=2)
principalComponents_breast = pca_breast.fit_transform(x)
```

principal_breast_Df.tail()

	principal component 1	principal component 2
564	6.439315	-3.576817
565	3.793382	-3.584048
566	1.256179	-1.902297
567	10.374794	1.672010
568	-5.475243	-0.670637

```
import matplotlib.pyplot as plt
plt.figure()
plt.figure(figsize=(10,10))
```

<matplotlib.legend.Legend at 0x7f67dd1dc8e0>
<Figure size 640x480 with 0 Axes>

