Table of Common Distributions

taken from $Statistical\ Inference$ by Casella and Berger

Discrete Distributions

distribution	pmf	mean	variance	mgf/moment			
$\overline{\operatorname{Bernoulli}(p)}$	$p^x(1-p)^{1-x}; \ x=0,1; \ p\in(0,1)$	p	p(1-p)	$(1-p) + pe^t$			
Beta-binomial (n, α, β)	$\binom{n}{x}\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\frac{\Gamma(x+\alpha)\Gamma(n-x+\beta)}{\Gamma(\alpha+\beta+n)}$	$\frac{n\alpha}{\alpha+\beta}$	$\frac{n\alpha\beta}{(\alpha+\beta)^2}$				
Notes: If $X P$ is binomial (n,P) and P is $beta(\alpha,\beta)$, then X is $beta-binomial(n,\alpha,\beta)$.							
Binomial(n, p)	$\binom{n}{x} p^x (1-p)^{n-x}; \ x=1,\ldots,n$	np	np(1-p)	$[(1-p)+pe^t]^n$			
$\operatorname{Discrete\ Uniform}(N)$	$\frac{1}{N}; \ x = 1, \dots, N$	$\frac{N+1}{2}$	$\frac{(N+1)(N-1)}{12}$	$\frac{1}{N} \sum_{i=1}^{N} e^{it}$			
Geometric(p)	$p(1-p)^{x-1}; p \in (0,1)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$			
Note: $Y = X - 1$ is negative binomial $(1, p)$. The distribution is memoryless: $P(X > s X > t) = P(X > s - t)$.							
${\bf Hypergeometric}(N,M,K$	$\left(\frac{\binom{M}{x}\binom{N-M}{K-x}}{\binom{N}{K}}; \ x = 1, \dots, K\right)$	$\frac{KM}{N}$	$\frac{KM}{N} \frac{(N-M)(N-k)}{N(N-1)}$?			
	$M - (N - K) \le x \le M; \ N, M, K > 0$						
Negative $Binomial(r, p)$	$\binom{r+x-1}{x}p^r(1-p)^x; \ p \in (0,1)$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{p}{1 - (1 - p)e^t}\right)^r$			
	$\binom{y-1}{r-1}p^r(1-p)^{y-r};\ Y=X+r$						
$Poisson(\lambda)$	$\frac{e^{-\lambda}\lambda^x}{r!}$; $\lambda \geq 0$	λ	λ	$e^{\lambda(e^t-1)}$			

Notes: If Y is $\operatorname{gamma}(\alpha,\beta)$, X is $\operatorname{Poisson}(\frac{x}{\beta})$, and α is an integer, then $P(X \geq \alpha) = P(Y \leq y)$.

Continuous Distributions

distribution	pdf	mean	variance	mgf/moment		
$\overline{\mathrm{Beta}(\alpha,\beta)}$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}; \ x \in (0,1), \ \alpha,\beta > 0$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$		
$\operatorname{Cauchy}(\theta,\sigma)$	$\frac{1}{\pi\sigma} \frac{1}{1 + (\frac{x - \theta}{2})^2}; \ \sigma > 0$	does not exist	does not exist	does not exist		
Notes: Special case of Students's t with 1 degree of freedom. Also, if X, Y are iid $N(0,1), \frac{X}{Y}$ is Cauchy						
χ_p^2 Notes: Gamma($\frac{p}{2}$, 2).	$\frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}}x^{\frac{p}{2}-1}e^{-\frac{x}{2}}; \ x>0, \ p\in N$	p	2p	$\left(\frac{1}{1-2t}\right)^{\frac{p}{2}},\ t<\frac{1}{2}$		
Double Exponential (μ, σ)	$\frac{1}{2\sigma}e^{-\frac{ x-\mu }{\sigma}};\ \sigma>0$	μ	$2\sigma^2$	$\frac{e^{\mu t}}{1 - (\sigma t)^2}$		
Exponential (θ)	$\frac{1}{\theta}e^{-\frac{x}{\theta}}; \ x \ge 0, \ \theta > 0$	θ	θ^2	$\frac{1}{1-\theta t}$, $t<\frac{1}{\theta}$		
Notes: Gamma $(1,\theta)$. Memoryless. $Y=X^{\frac{1}{\gamma}}$ is Weibull. $Y=\sqrt{\frac{2X}{\beta}}$ is Rayleigh. $Y=\alpha-\gamma\log\frac{X}{\beta}$ is Gumbel.						
$F_{ u_1, u_2}$	$\frac{\Gamma\left(\frac{\nu_1+\nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} \frac{x^{\frac{\nu_1-2}{2}}}{\left(1+\left(\frac{\nu_1}{\nu_2}\right)x\right)^{\frac{\nu_1+\nu_2}{2}}}; \ x>0$	$\frac{\nu_2}{\nu_2 - 2}, \ \nu_2 > 2$	$2(\frac{\nu_2}{\nu_2-2})^2 \frac{\nu_1+\nu_2-2}{\nu_1(\nu_2-4)}, \ \nu_2 > 4$	$EX^{n} = \frac{\Gamma(\frac{\nu_{1}+2n}{2})\Gamma(\frac{\nu_{2}-2n}{2})}{\Gamma(\frac{\nu_{1}}{2})\Gamma(\frac{\nu_{2}}{2})} \left(\frac{\nu_{2}}{\nu_{1}}\right)^{n}, \ n < \infty$		
Notes: $F_{\nu_1,\nu_2} = \frac{\chi_{\nu_1}^2/\nu}{\chi_{\nu_2}^2/\nu}$	$\frac{\gamma_1}{\gamma_2}$, where the χ^2 s are independent. $F_{1,\nu}=t_{\nu}^2$.					
$\operatorname{Gamma}(\alpha,\beta)$	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{-\frac{x}{\beta}}; \ x>0, \ \alpha,\beta>0$	lphaeta	$lphaeta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha},\ t<\frac{1}{\beta}$		
Notes: Some special cases are exponential $(\alpha = 1)$ and χ^2 $(\alpha = \frac{p}{2}, \beta = 2)$. If $\alpha = \frac{2}{3}$, $Y = \sqrt{\frac{X}{\beta}}$ is Maxwell. $Y = \frac{1}{X}$ is inverted gamma.						
$\operatorname{Logistic}(\mu,\beta)$	$\frac{1}{\beta} \frac{e^{-\frac{x-\mu}{\beta}}}{\left[1+e^{-\frac{x-\mu}{\beta}}\right]^2}; \ \beta > 0$	μ	$\frac{\pi^2\beta^2}{3}$	$e^{\mu t}\Gamma(1+\beta t), t <\frac{1}{\beta}$		
Notes: The cdf is $F(x \mu,\beta) = \frac{1}{1+e^{-\frac{x-\mu}{\beta}}}$.						
$\operatorname{Lognormal}(\mu,\sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma} \frac{1}{x} e^{-\frac{(\log x - \mu)^2}{2\sigma^2}}; \ x > 0, \sigma > 0$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2(\mu+\sigma^2)} - e^{2\mu+\sigma^2}$	$EX^n = e^{n\mu + \frac{n^2\sigma^2}{2}}$		
$Normal(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}; \ \sigma > 0$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$		
$Pareto(\alpha, \beta)$	$\frac{\beta\alpha^{\beta}}{x^{\beta+1}}; \ x > \alpha, \ \alpha, \beta > 0$	$\frac{\beta\alpha}{\beta-1}, \ \beta>1$	$\frac{\beta\alpha^2}{(\beta-1)^2(\beta-2)}, \ \beta > 2$	does not exist		
$t_ u$	$\frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \frac{1}{\sqrt{\nu\pi}} \frac{1}{(1+\frac{x^2}{2})^{\frac{\nu+1}{2}}}$	$0, \ \nu > 1$	$\frac{\nu}{\nu-2}, \nu > 2$	$EX^n = \frac{\Gamma(\frac{\nu+1}{2})\Gamma(\nu-\frac{n}{2})}{\sqrt{\pi}\Gamma(\frac{\nu}{2})}\nu^{\frac{n}{2}}, \ n \text{ even}$		
Notes: $t_{\nu}^2 = F_{1,\nu}$.	$\left(1+\frac{\omega}{\nu}\right)^{-2}$. (2)		
Uniform (a, b) Notes: If $a = 0, b = 1$	$\frac{1}{b-a}$, $a \le x \le b$ 1, this is special case of beta $(\alpha = \beta = 1)$.	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$		
Weibull (γ, β) Notes: The mgf only	$\frac{\gamma}{\beta}x^{\gamma-1}e^{-\frac{x^{\gamma}}{\beta}}; \ x>0, \ \gamma,\beta>0$ exists for $\gamma\geq 1$.	$\beta^{\frac{1}{\gamma}}\Gamma(1+\frac{1}{\gamma})$	$\beta^{\frac{2}{\gamma}} \left[\Gamma(1 + \frac{2}{\gamma}) - \Gamma^2(1 + \frac{1}{\gamma}) \right]$	$EX^n = \beta^{\frac{n}{\gamma}} \Gamma(1 + \frac{n}{\gamma})$		