

Volunteer

Donate

Intakes (information on animals brought to the shelter) and outcomes (information on animals when they leave the shelter).

We have One main questions that we are interested in answering, along with related subquestions.

Can we predict the outcome for an animal based on other characteristics?

- What are the possible outcomes that we should consider?

- What factors most influence the determination of the outcome?

Intakes

81%

Remained after duplicate Animal ID's dropped from dataset

- Initial file contained 130,617 rows data.
- 106,233 remain .
- Duplicated animal ID due to animal recurrinly leaving owner.

Cleaning the data Phase

Remained after duplicate Animal ID's dropped from dataset

• 106,266 remain .

Preliminary Machine Learning Mo<mark>del</mark>

predicting For the animal outcome, our current sketch of our pipeline is to move from the SQL data into Python for cleaning, splitting into the training and testing sets, and then utilize a Random Forest Classifier.

Load in data output from SQL server Clean, convert, and scale data Split data into training and testing sets

Train model with Random Forest Classifier

Test model and evaluate performance

Description of the data exploration phase of the project

The data exploration for the Austin Animal Rescue on this phase of the project started by focusing on the database.

	animal_id	animal_name	animal_type	breed	color	intake_type	date_of_birth	intake_date	found_location	intake_condition	sex_upon_inta
0	A786884	*Brock	Dog	Beagle Mix	Tricolor	Stray	2017-01-03	2019-01-03	2501 Magin Meadow Dr in Austin (TX)	Normal	Neutered Male
1	A682524	Rio	Dog	Doberman Pinsch/Australian Cattle Dog	Tan/Gray	Stray	2010-06-29	2014-06-29	800 Grove Blvd in Austin (TX)	Normal	Neutered Male
2	A696408	*Pearl	Dog	Chihuahua Shorthair	Tricolor	Stray	2013-02-04	2015-02-04	9705 Thaxton in Austin (TX)	Normal	Intact Female
3	A736287	*Twilight	Cat	Domestic Shorthair Mix	Torbie	Stray	2016-08-08	2016-10-08	South First And Stassney in Austin (TX)	Normal	Intact Female
4	A810994	NaN	Other	Bat	Brown	Wildlife	2017-12-24	2019-12-25	7900 Rm 1826 Rd in Travis (TX)	Normal	Unknown

This informations helps to see what data was available to explore deeper.

Description of the data exploration phase of the project

The data contains 5 animal types:

- Cat
- Dog
- Bird
- Livestock
- other

We decided to make a model for just **cats & dogs**

Description of the analysis phase of the project

		outcome_subtype
outcome_type	outcome_subtype	
	Foster	9975
Adoption	Offsite	309
	Barn	3
	In Kennel	605
	In Foster	281
Died	At Vet	87
	Enroute	86
	In Surgery	24

	Rabies Risk	3845
	Suffering	3265
	Aggressive	403
Euthanasia	Medical	305
Euthanasia	At Vet	177
	Behavior	124
	Underage	36
	Court/Investigation	13
	In Foster	21
Missing	In Kennel	14
	Possible Theft	7
	Field	45
Return to Owner	Prc	9
	Customer S	7
	Partner	29595
	SCRP	2942
T	Snr	2612
Transfer	Out State	14
	Barn	7
	Emer	5

The data show the outcome type of the animals: Adoption, die, euthanasia. missing, return to the owner and transfer. There are 9975 animals that ended being adopted.

The data show the income type of the animals
Abandoned, Euthanesia requested, owner surrender, public assist, stray and wildlife, however 34046 animals were take back from being adopted

Description of the analysis phase of the project

		outcome_type
intake_type	outcome_type	(V
	Adoption	216
	Transfer	172
	Return to Owner	41
Abandoned	Euthanasia	5
	Died	4
	Rto-Adopt	3
	Disposal	2
· · · · · · · · · · · · · · · · · · ·	Euthanasia	190
	Transfer	28
Euthanasia Request	Adoption	8
	Return to Owner	4
	Died	3
	Disposal	2
	Adoption	9804
	Transfer	5744
	Return to Owner	734
	Euthanasia	610
Owner Surrender	Died	154
	Rto-Adopt	142
	Disposal	14
	Missing	7
	Return to Owner	3509
	Transfer	886
	Adoption	838
Public Assist	Euthanasia	323
	Disposal	57
	Died	45

Graph Analysis per Animal breed

Cat Breed

- Domestic Shorthair Mix Domestic Shorthair
- Domestic Medium Hair Mix
 Domestic Longhair Mix
- Siamese Mix

Technologies, languages, tools, and algorithms used throughout the

Technologies

jupyter

Languages

Tools & algorithms | | | | pandas

Result 02

Result of analysis

Result 01

Recommendation 01

• For future analysis it is important to define the problem and the goal from the beginning to be able to build a model that will identify the data flowing in the system.

 It is important to have a clear targets and create a clear metric for the project.

Recommendation 02

 It is important to fully understand the data, by making sure that the data is accurate as you want your model to be also.

Recommendation 03

• Usually simple solutions are more valuable when the time invested is taken into account, it is better to solve the problem with a simple solution and move forward to move complex solutions, if is needed.

Anything the team would have done differently?

The roles will change during the final project so that each member has the opportunity to learn about each piece of the project and practice the related skills.

Communication Protocol

- **Role 1:** Repository management. This team member leads efforts to maintain the GitHub repository, including resolving merge conflicts, and help keep the main branch as the source of our most recent working code. This person also updates the Readme.md file on the main branch as changes are made to the GitHub repo.

- Role 2: Project management. This team member leads the efforts for knowing what deliverables are required for the UT Bootcamp at each stage and assuring that the work the team is doing leads to successful fulfillment of the deliverables. This includes comparing the work to the rubric requirements as posted for class and helping to decide which technologies are used at each step of the project.

Communication Protocol

- **Role 3:** ML modeling. This team member works on the coding aspect of the ML model as well as data cleaning and exploratory data analysis.
- **Role 4:** Database & Dashboard management. This team member maintains and updates the database (PgAdmin 4) as needed and leads the efforts for creating and maintaining our final dashboard.
- **Role 5:** Presentation management. This team member writes the presentation files and helps other team members as needed.

