p-channel MOSFET (PMOS)

- Before moving to *NMOS stages with active load*, it will be prudent to visit some details regarding *PMOS*
- Substrate: n-type (N_D)
 - > Bulk Potential:

$$\phi_F = V_T ln(N_D/n_i)$$

- Source/Drain: p+
- Channel Carriers: Holes

PMOS

Aloke Dutta/EE/IIT Kanpur

• Threshold Voltage:

$$V_{TP} = V_{TP0} - \gamma \left(\sqrt{2\phi_F + V_{BS}} - \sqrt{2\phi_F} \right)$$

V_{TP0}: Zero back-bias threshold voltage (negative)

> Body effect coefficient:

$$\gamma = \frac{\sqrt{2q\epsilon_{s}N_{D}}}{C'_{ox}}$$

- $V_{BS} \ge 0$ (to prevent forward biasing of SB junction)
- \succ With back bias, V_{TP} becomes more negative
- $\gt V_{GS}$ has to be less than V_{TP} to turn device on

• Current-Voltage Relation:

- \triangleright Both V_{GS} and V_{DS} negative
- \succ I_D flows from source to drain (the same direction of flow as holes)
- ightharpoonup In saturation $[|V_{DS}| > (|V_{GS}| |V_{TP}|)]$:

$$I_{D} = \frac{k_{P}'}{2} \frac{W}{L} \left(\left| V_{GSp} \right| - \left| V_{TP} \right| \right)^{2} \left(1 + \lambda_{p} \left| V_{DSp} \right| \right)$$

 \gt In non-saturation [|V_{DS}| < (|V_{GS}| - |V_{TP}|)]:

$$I_{D} = k_{P}' \frac{W}{L} \left[\left(\left| V_{GSp} \right| - \left| V_{TP} \right| \right) \left| V_{DSp} \right| - \left| V_{DSp} \right|^{2} / 2 \right]$$

$$k_P' = \mu_p C_{ox}'$$

= Process transconductance parameter

 μ_p = Channel hole mobility

- Based on the value of V_{TN0} and V_{TP0} , there are two classifications:
 - Finhancement Mode: Normally Off (with $V_{GS} = 0$)
 - V_{TN0} positive and V_{TP0} negative
 - \triangleright Depletion Mode: Normally On (with $V_{GS} = 0$)
 - V_{TN0} negative and V_{TP0} positive

Symbols

• Note the *thick band* in the *channel region* for *depletion mode devices*, which implies that *channel is present* even with $V_{GS} = 0$