Propriété

Un polygone régulier à n côtés est inscrit dans un cercle. Tous les angles au centre déterminés par deux sommets consécutifs du polygone ont la même mesure : $\frac{360^{\circ}}{n}$.

Conséquence : construction d'un polygone régulier

Pour construire un polygone régulier, on doit :

- 1. construire un cercle,
- 2. placer un sommet,
- 3. placer les suivants de sortes que l'angle au centre entre deux sommets consécutifs soit égal à $\frac{360^{\circ}}{n}$.

EXEMPLE

« Construire un pentagone régulier. »

Réponse : Un pentagone ayant 5 côtés, les angles au centre déterminés par deux sommets consécutifs du polygone seront tous égaux à $\frac{360}{5}=72^\circ$.

On construit le cercle et l'un de ses rayons [OA]. On trace ensuite rayon [OB] tel que AOB = 72°

On trace ensuite le rayon [OC] tel que BOC = 72°

Et ainsi de suite jusqu'à obtenir un pentagone

Propriété

Le centre du cercle est un centre de symétrie pour le polygone. Il existe également des axes de symétrie qui passent par ce centre.

Constructions particulières

Outre la méthode décrite, il existe d'autres façons de construire certains de ces polygones réguliers.

Dodécagone régulier : C'est le polygone régulier à 12 côtés. Il suffit de construire un hexagone régulier puis les médiatrices des côtés, qui coupent le cercle circonscrit aux autres sommets du dodécagone.

Octogone régulier : C'est le polygone régulier à 8 côtés. Il suffit de construire un carré puis les médiatrices des côtés, qui coupent le cercle circonscrit aux autres sommets de l'octogone.

FRISES

DÉFINITION

Une frise est la répétition d'un même motif indéfiniment dans une seule direction.

EXEMPLE

Dans la frise ci-dessous, le motif est encadré en rouge. La frise est obtenue par translation de vecteurs $\stackrel{\longrightarrow}{\lambda u}$ où λ est un entier.

Propriétés

Le motif répété peut-être construit à partir de réflexions ou de symétries centrales d'une maille élémentaire (appelé certaines fois motif élémentaire).

LXEMPLE

Dans la frise ci-dessous, la maille élémentaire est encadrée en bleu. Le motif et obtenu par deux symétries axiales, d'axes les médiatrices des côtés du rectangle rouge. La frise est obtenue par translation de vecteurs $\lambda \stackrel{\longrightarrow}{u}$ où λ est un entier.

Pavages

On étend la notion de frises au plan (on passe de une à deux dimensions).

72CHAPITRE 3: Figures régulières