Belief Function Machine Review

Sushila Shenoy University of Kansas July 24, 2003

Topics

- New Features
 - Normalization
 - Approximation
- Java GUI
 - Demonstration
 - To Do

Normalization

- Previously no intermediate normalization
- For some problems, the mass on the empty set grows too large
 - e.g. Target Identification Problem
- Normalization after each combination gives accurate results for these problems with negligible additional solve time.

Normalization

- SOLVE command
 - 3rd argument added
 - 0: No normalization. (default)
 - 1: Use normalization.

```
solve(list_bels, list_vars, normmode);
```

Target Identification Problem

- Unknown target T is either a friend or a foe
- 30 sensors S_i
 - 11 high quality (99% probability of accuracy)
 - 19 low quality (90% probability of accuracy)

From Cobb, B. & P. Shenoy, A Comparison of Methods for Transforming Belief Function Models to Probability Models, ECSQUARU 2003.

Target Identification Problem

Target Identification Problem

• UIL Code: 'uilfiles/friendfoe.txt' DEFINE VARIABLE T {friend foe}; DEFINE RELATION S1 {T}; DEFINE RELATION S30 {T}; SET VALUATION S1 {(friend)} 0.99; SET VALUATION S10 {(friend)} 0.99; SET VALUATION S11 {(foe)} 0.99; SET VALUATION S12 {(friend)} 0.90; SET VALUATION S13 {(foe)} 0.90; SET VALUATION S30 {(foe)} 0.90;

Demonstration

Demo of solution of Target Identification Problem with and without normalization

Demonstration

Exact Solution

The Joint Bpa's and Plausibility Functions for 30 Sensors

$a \square 2^{\square_T}$	Un-normalized bpa	Normalized bpa (<i>m</i>)	Plausibility (<i>Pl_m</i>)
Ø	≈1	0	0
$\{t_1\}$	$\approx 1.00 \times 10^{-20}$	≈ 0.9090	≈ 0.9091
$\{t_{2}\}$	$\approx 1.00 \text{ x } 10^{-21}$	≈ 0.0909	≈ 0.0909
$[t_1, t_2]$	$\approx 1.00 \times 10^{-41}$	≈ 0.0000	1

Approximation

- The complexity of solving large problems increases exponentially
- Approximation allows faster solve times for large problems.

Approximation

- SOLVE command
 - 4th argument added
 - 0: No approximation. (default)
 - 1: Approximation with default threshold (2.22e-15).
 - *x*: Approximation with threshold *x*.

solve(list_bels, list_vars, normmode, threshold);

- Network of nodes arranged in 5 rows
 - Each link has a 90% reliability

•
$$m(\{(n_i = t, n_j = t), (n_i = f, n_j = f)\}) = 0.9, m(\Omega) = 0.1$$

From Haenni, R. & Lehmann, N., Resource Bounded and Anytime Approximation of Belief Function Computations, International Journal of Approximate Reasoning, 2002.

- Additional nodes *A* and *B* linked to network with 80% reliability.
- What is the reliability of the connection between *A* and *B*?

- Measuring approximation performance by solve time and accuracy of solutions
 - Varying problem size (number of nodes)
 - Varying approximation threshold

Comparison of Solve Times (threshold = 1E-5)

→ Exact **–** Using Approx.

% Error in Approximation (threshold = 1E-5)

Varying Approximation Threshold (Nodes = 44)

Java GUI

• To install:

- Download archive from http://www.business.ku.edu/home/pshenoy/BFM/
- Extract archive to folder (e.g. 'BFM072203')
- Start MATLAB
- In MATLAB, type 'edit classpath.txt'
- Add 'path_to_dir/BFM0702203/bfm.jar' to the end of the classpath.txt.
 - e.g. 'C:\MATLABr13\work\BFM072203\bfm.jar' on Windows
 - '/Applications/MATLAB/work/BFM072203/bfm.jar' on Mac OS.
- Restart MATLAB

Java GUI

- To run:
 - Start MATLAB
 - Make 'BFM072203' the working directory
 - Type 'BFM.run' and hit enter

Captain's Decision Problem

• Variables:

- A: Arrival delay (0 to 6 days)
- D: Departure delay (0 to 3 days)
- S: Sailing delay (0 to 3 days)
- L: Loading delay (true or false)
- M: Maintenance delay (true or false)
- W: Weather (foul or fair)
- R: Repair at sea (true or false)

From Almond, R., Graphical Belief Modeling, Chapman & Hall 1995

Captain's Decision Problem

- What will the Arrival delay be?
 - Arrival delay is sum of departure and sailing delays
 - Departure delay depends on loading, maintenance and weather
 - Sailing delay depends on weather and repair
 - Weatherman is reliable 80% of the time
 - Imprecise conditional probabilities of repair at sea given maintenance

Java GUI

- To create a new node, double-click where you want to place the node
- Select the kind of node you want to create (Variable, Valuation, or Conditional Valuation)
- To move a node, simply drag it around
- To delete or edit a valuation or to solve for a variable, double-click on the valuation or variable.
- Results will appear in the MATLAB console

Java GUI - To Do

- Add more solving capabilities
 - Multiple variables
 - Normalization & Approximation
- Ability to save and load documents
- More user-friendly display of results
- Make everything look nicer