Matthew Lovert

Joint Work With Cliff Jones Newcastle University

September 13th 2010

Introduction

- Terms that involve the application of partial functions and operators can fail to denote
- Classical (two-valued) logic has no meaning for non-denoting logical values
- The Logic of Partial Functions (LPF) is used to reason about propositions that include terms that can fail to denote
- Interested in providing a mechanisation of LPF
- Semantic formalisations for LPF:
 - Structural Operational Semantics
 - Denotational Semantics

- Partial Functions
- 2 The Logic of Partial Functions
- 3 Language
 - Abstract Syntax
 - Context Conditions
- Semantics
 - Structural Operational Semantics
 - Denotational Semantics

- Partial Functions
- 2 The Logic of Partial Functions
- 3 Language
 - Abstract Syntax
 - Context Conditions
- Semantics
 - Structural Operational Semantics
 - Denotational Semantics

- Total Function: A function which produces a result for every argument within its domain
- Partial Function: A function which may not produce a result for some argument(s) within its domain:
 - The application of a partial function may lead to a non-denoting term
- Partial functions and operators arise frequently in program specifications:
 - Division
 - Taking the head of a list
 - Recursive function definitions
 - ...

Language

Partial Functions Examples

The zero Function

zero : $\mathbb{Z} \to \mathbb{Z}$

$$zero(i) \triangleq if i = 0 then 0 else $zero(i-1)$$$

000

Partial Functions Examples

The zero Function

zero : $\mathbb{Z} \to \mathbb{Z}$

 $zero(i) \triangleq if i = 0 then 0 else <math>zero(i-1)$

Property 1

 $\forall i \in \mathbb{Z} \cdot i \geq 0 \Rightarrow zero(i) = 0$

The zero Function

zero : $\mathbb{Z} \to \mathbb{Z}$

$$zero(i) ext{ } ext$$

Property 1

$$\forall i \in \mathbb{Z} \cdot i \geq 0 \Rightarrow \mathsf{zero(i)} = 0$$

Possible Non-denoting Term

The zero Function

 $zero: \mathbb{Z} \to \mathbb{Z}$

$$zero(i) ext{ } ext$$

Property 1

$$\forall i \in \mathbb{Z} \cdot i \geq 0 \Rightarrow \text{zero(i)} = 0$$

Which Could Lead to a Possible Non-denoting Logical Value

The zero Function

zero : $\mathbb{Z} \to \mathbb{Z}$

Partial Functions

zero(i) riangleq if i = 0 then 0 else zero(i-1)

Property 1

$$\forall i \in \mathbb{Z} \cdot i \geq 0 \Rightarrow \textit{zero}(i) = 0$$

$$1 \ge 0 \Rightarrow zero(1) = 0$$

$$\rightarrow$$
 true \Rightarrow 0 = 0

$$\rightarrow$$
 true \Rightarrow true

 \rightarrow true

Language

Partial Functions Examples

The zero Function

zero : $\mathbb{Z} \to \mathbb{Z}$

 $zero(i) \triangleq if i = 0 then 0 else <math>zero(i-1)$

Property 1

$$\forall i \in \mathbb{Z} \cdot i \geq 0 \ \Rightarrow \ \textit{zero}(i) = 0$$

$$-1 \geq 0 \Rightarrow zero(-1) = 0$$

$$ightarrow$$
 false \Rightarrow $\perp_{\mathbb{Z}} = 0$

$$ightarrow$$
 false \Rightarrow $\perp_{\mathbb{B}}$

$$\rightarrow \bot_{\mathbb{B}}$$

The zero Function

 $zero: \mathbb{Z} \to \mathbb{Z}$

 $zero(i) ext{ } ext$

Property 2

 $\forall i \in \mathbb{Z} \cdot zero(i) = 0 \lor zero(-i) = 0$

The zero Function

zero : $\mathbb{Z} \to \mathbb{Z}$

Partial Functions

zero(i) riangleq if i = 0 then 0 else zero(i-1)

Property 2

$$\forall i \in \mathbb{Z} \cdot zero(i) = 0 \lor zero(-i) = 0$$

$$zero(1) = 0 \lor zero(-1) = 0$$

$$\rightarrow 0 = 0 \lor \bot_{\mathbb{Z}} = 0$$

$$\to \text{true} \vee \bot_{\mathbb{B}}$$

$$\rightarrow \perp_{\mathbb{R}}$$

- First-Order Predicate Calculus (FOPC):
 - The logical operators and quantifiers have no meaning for non-denoting logical values
- We need some way of coping with non-denoting terms
- John Harrison: Four main approaches to coping with non-denoting terms:
 - Return a value for input outside of the domain
 - Return an arbitrary value
 - Type error
 - Logic of partial terms

- Partial Functions
- 2 The Logic of Partial Functions
- 3 Language
 - Abstract Syntax
 - Context Conditions
- Semantics
 - Structural Operational Semantics
 - Denotational Semantics

The Logic of Partial Functions

- First-Order Predicate Logic
- Extend the meaning of the logical operators so they can handle non-denoting logical values
- Three-valued logic:
 - true
 - false
 - undefined (⊥)
- Blamey's notion of "gaps" in the value space

 The truth tables are the strongest extension of their classical interpretations

V	true	$\perp_{\mathbb{B}}$	false	\Rightarrow	true	$\perp_{\mathbb{B}}$	false
			true				false
$\perp_{\mathbb{B}}$	true	$\perp_{\mathbb{B}}$	$\perp_{\mathbb{B}}$	$oldsymbol{oldsymbol{oldsymbol{oldsymbol{eta}}}}{false}$	true	$\perp_{\mathbb{B}}$	$\perp_{\mathbb{B}}$
false	true	$\perp_{\mathbb{B}}$	false	false	true	true	true

- Parallel evaluation of the operands
- Return a result as soon as enough information becomes available:
 - No contradiction
 - true $\vee \perp_{\mathbb{R}}, \perp_{\mathbb{R}} \vee$ true

- Equivalences with classical logic:
 - Contrapositive of implication
 - Commutativity of disjunction
 - ...
- Quantifiers
- No law of the excluded middle ($e \lor \neg e$):

•
$$zero(-1) = 0 \lor \neg (zero(-1) = 0)$$

- Definedness operator (δ):
 - $\delta(e) = e \vee \neg e$

$$\frac{e_1 \vdash e_2}{e_1 \Rightarrow e_2}$$

The Logic of Partial Functions Continued...

- Equivalences with classical logic:
 - Contrapositive of implication
 - Commutativity of disjunction
 -
- Quantifiers
- No law of the excluded middle ($e \lor \neg e$):

•
$$zero(-1) = 0 \lor \neg (zero(-1) = 0)$$

- Definedness operator (δ):
 - $\delta(e) = e \vee \neg e$

The Logic of Partial Functions Continued...

The zero Function

zero : $\mathbb{Z} \to \mathbb{Z}$

 $zero(i) ext{ } ext$

Property 1

$$\forall i \in \mathbb{Z} \cdot i \geq 0 \Rightarrow \textit{zero}(i) = 0$$

$$-1 \geq 0 \Rightarrow zero(-1) = 0$$

$$ightarrow$$
 false $\Rightarrow \perp_{\mathbb{Z}} = 0$

$$ightarrow$$
 false \Rightarrow $\perp_{\mathbb{B}}$

→ true

Language

The Logic of Partial Functions Continued...

The zero Function

zero : $\mathbb{Z} \to \mathbb{Z}$

 $zero(i) \triangleq if i = 0 then 0 else <math>zero(i-1)$

Property 2

$$\forall i \in \mathbb{Z} \cdot zero(i) = 0 \lor zero(-i) = 0$$

$$zero(1) = 0 \lor zero(-1) = 0$$

$$\rightarrow 0 = 0 \lor \bot_{\mathbb{Z}} = 0$$

$$\rightarrow$$
 true $\lor \bot_{\mathbb{R}}$

 \rightarrow true

- Partial Functions
- The Logic of Partial Functions
- 3 Language
 - Abstract Syntax
 - Context Conditions
- Semantics
 - Structural Operational Semantics
 - Denotational Semantics

Expression Constructs

- All expressions must be of the type BOOL or INT
- Quantification only over the integers

 $Expr = Value \mid Id \mid Equality \mid Or \mid Exists \mid FuncCall$

 $Value = \mathbb{B} \mid \mathbb{Z}$

Equality :: a: Expr b: Expr

Or :: a: Expr b: Expr

Exists :: a: Id b: Expr

Functions

- Single integer argument
- Return an integer result
- No free variables

FuncCall :: func: Id arg: Expr

Func :: param: ld result: Expr

 $\Gamma = Id \xrightarrow{m} Func$

Context Conditions

 Remove ill-formed expressions and function definitions from consideration in our semantics

Type = Bool | INT

Types =
$$Id \xrightarrow{m} Type$$

wf-Func : Func
$$\times$$
 Types \times $\Gamma \to \mathbb{B}$
wf-Func(mk-Func(p, r), vars, γ) \triangleq
wf-Expr(r, { $p \mapsto \mathsf{INT}$ }, γ) = INT

Context Conditions Continued...

```
wf	extit{-}Expr: Expr 	imes Types 	imes \Gamma 	o (Type \mid \mathsf{ERROR})
wf	extit{-}Expr(e, vars, \gamma) 	o \Delta
\mathbf{cases} \ e \ \mathbf{of}
\dots 	o \dots
e \in Id \land e \in \mathbf{dom} \ vars 	o vars(e)
mk	extit{-}Or(a, b) 	o \mathbf{let} \ I = wf	extit{-}Expr(a, vars, \gamma) \ \mathbf{in}
\mathbf{if} \ I = \mathsf{Bool} \land I = wf	extit{-}Expr(b, vars, \gamma)
\mathbf{then} \ \mathsf{Bool}
\mathbf{else} \ \mathsf{ERROR}
\dots 	o \dots
```

others Error end

Outline

- Partial Functions
- 2 The Logic of Partial Functions
- 3 Language
 - Abstract Syntax
 - Context Conditions
- Semantics
 - Structural Operational Semantics
 - Denotational Semantics

Structural Operational Semantics

Memory store

$$\Sigma = Id \stackrel{m}{\longrightarrow} Value$$

Semantic Relation

$$\stackrel{e}{\longrightarrow}$$
: $\mathcal{P}((Expr \times \Sigma \times \Gamma) \times Expr)$

Identifiers

$$\boxed{ \begin{array}{c|c} \textit{id} \in \textit{Id} \\ \hline \textit{(id}, \sigma, \gamma) \stackrel{e}{\longrightarrow} \sigma(\textit{id}) \end{array} }$$

$$\begin{array}{c} (a,\sigma,\gamma) \stackrel{e}{\longrightarrow} a' \\ \hline (\textit{mk-Equality}(a,b),\sigma,\gamma) \stackrel{e}{\longrightarrow} \textit{mk-Equality}(a',b) \\ \hline \\ \textit{Equality-R} \\ \hline (\textit{mk-Equality}(a,b),\sigma,\gamma) \stackrel{e}{\longrightarrow} \textit{mk-Equality}(a,b') \\ \hline \end{array}$$

Partial Functions

$$(a, \sigma, \gamma) \xrightarrow{e} a'$$

$$(mk-Equality(a, b), \sigma, \gamma) \xrightarrow{e} mk-Equality(a', b)$$

$$Equality-R \xrightarrow{(b, \sigma, \gamma) \xrightarrow{e} b'} (mk-Equality(a, b), \sigma, \gamma) \xrightarrow{e} mk-Equality(a, b')$$

$$a \in \mathbb{Z}; b \in \mathbb{Z}$$

$$Equality-E \xrightarrow{(mk-Equality(a, b), \sigma, \gamma) \xrightarrow{e}} \llbracket = \rrbracket (a, b)$$

$$\begin{array}{c|c} (a,\sigma,\gamma) \stackrel{e}{\longrightarrow} a' \\ \hline (\textit{mk-Or}(a,b),\sigma,\gamma) \stackrel{e}{\longrightarrow} \textit{mk-Or}(a',b) \\ \hline \textit{Or-R} & (b,\sigma,\gamma) \stackrel{e}{\longrightarrow} b' \\ \hline (\textit{mk-Or}(a,b),\sigma,\gamma) \stackrel{e}{\longrightarrow} \textit{mk-Or}(a,b') \\ \hline \end{array}$$

$$(a, \sigma, \gamma) \xrightarrow{e} a'$$

$$(mk-Or(a, b), \sigma, \gamma) \xrightarrow{e} mk-Or(a', b)$$

$$Or-R \xrightarrow{(b, \sigma, \gamma)} \xrightarrow{e} b'$$

$$(mk-Or(a, b), \sigma, \gamma) \xrightarrow{e} mk-Or(a, b')$$

$$Or-E1 \xrightarrow{(mk-Or(true, b), \sigma, \gamma)} \xrightarrow{e} true$$

$$Or-E2 \xrightarrow{(mk-Or(a, true), \sigma, \gamma)} \xrightarrow{e} true$$

$$Or-E3 \xrightarrow{(mk-Or(false, false), \sigma, \gamma)} \xrightarrow{e} false$$

"copes with gaps"

...
$$\lor (e, \sigma \dagger \{t \mapsto -1\}, \gamma) \xrightarrow{e}$$
 false $\lor (e, \sigma \dagger \{t \mapsto 0\}, \gamma) \xrightarrow{e}$ false $\lor (e, \sigma \dagger \{t \mapsto 1\}, \gamma) \xrightarrow{e}$ false $\lor ...$

$$\begin{array}{c|c} (\textit{arg}, \sigma, \gamma) \stackrel{e}{\longrightarrow} \textit{arg'} \\ \hline \textit{FuncCall-A} & (\textit{mk-FuncCall}(\textit{id}, \textit{arg}), \sigma, \gamma) \stackrel{e}{\longrightarrow} \textit{mk-FuncCall}(\textit{id}, \textit{arg'}) \\ \hline \\ \textit{FuncCall-E} & \textit{arg} \in \mathbb{Z} \\ \hline & (\textit{mk-FuncCall}(\textit{id}, \textit{arg}), \sigma, \gamma) \stackrel{e}{\longrightarrow} \\ & \textit{mk-FuncInter}(\gamma(\textit{id}).\textit{result}, \gamma(\textit{id}).\textit{param}, \textit{arg}) \\ \hline \end{array}$$

Structural Operational Semantics Continued...

Structural Operational Semantics Continued...

$$(arg,\sigma,\gamma) \stackrel{e}{\longrightarrow} arg' \\ \hline (mk\text{-}FuncCall(id,arg),\sigma,\gamma) \stackrel{e}{\longrightarrow} mk\text{-}FuncCall(id,arg')} \\ \hline arg \in \mathbb{Z} \\ \hline (mk\text{-}FuncCall(id,arg),\sigma,\gamma) \stackrel{e}{\longrightarrow} \\ mk\text{-}FuncInter(\gamma(id).result,\gamma(id).param,arg)} \\ \hline FuncInter\text{-}A \hline (res,\sigma\dagger\{paramid\mapsto param\},\gamma) \stackrel{e}{\longrightarrow} res' \\ \hline (mk\text{-}FuncInter(res,paramid,param),\sigma,\gamma) \stackrel{e}{\longrightarrow} \\ mk\text{-}FuncInter(res',paramid,param)} \\ \hline res \in \mathbb{Z} \\ \hline (mk\text{-}FuncInter(res,paramid,param),\sigma,\gamma) \stackrel{e}{\longrightarrow} res \\ \hline (mk\text{-}FuncInter(res,paramid,param),\sigma,\gamma) \stackrel{e}{\longrightarrow} res \\ \hline \end{array}$$

Denotational Semantics

Set theoretic definition of the values denoted by expressions

$$\mathcal{E} \mathpunct{:} \mathcal{P}((\textit{Expr} \times \Sigma \times \Gamma) \times \textit{Value})$$

Defined in parts as

$$\mathcal{E} = \mathcal{E}$$
 exists $\cup \mathcal{E}$ funccall

Partial Functions

```
 \begin{array}{l} \mathcal{E}\textit{exists} = \\ \{((\textit{mk-Exists}(t, e), \sigma, \gamma), \mathsf{true}) \mid \\ )\} \cup \\ \{((\textit{mk-Exists}(t, e), \sigma, \gamma), \mathsf{false}) \mid \\ \} \end{array}
```

```
\mathcal{E} exists =
     \{((\textit{mk-Exists}(t, e), \sigma, \gamma), \mathsf{true}) \mid
                   (\{(\boldsymbol{e}, \sigma \dagger \{t \mapsto i\}, \gamma) \mid i \in \mathbb{Z}\})\} \cup
     \{((mk-Exists(t,e),\sigma,\gamma), false) \mid
```

```
\mathcal{E} exists =
    \{((\textit{mk-Exists}(t, e), \sigma, \gamma), \mathsf{true}) \mid
                  (\{(e, \sigma \dagger \{t \mapsto i\}, \gamma) \mid i \in \mathbb{Z}\} \lhd \mathcal{E})\} \cup
    \{((mk-Exists(t,e),\sigma,\gamma), false) \mid
```

Partial Functions

```
\mathcal{E} exists =
    \{((mk-Exists(t,e),\sigma,\gamma), true)\}
                  \mathsf{rng}\left(\{(e, \sigma \dagger \{t \mapsto i\}, \gamma) \mid i \in \mathbb{Z}\} \lhd \mathcal{E}\right)\} \cup
    \{((mk-Exists(t,e),\sigma,\gamma), false) \mid
```

```
\mathcal{E} exists =
    \{((\textit{mk-Exists}(t, e), \sigma, \gamma), \mathsf{true}) \mid
                  true \in rng (\{(e, \sigma \dagger \{t \mapsto i\}, \gamma) \mid i \in \mathbb{Z}\} \triangleleft \mathcal{E})\} \cup
    \{((mk-Exists(t,e),\sigma,\gamma), false) \mid
```

Partial Functions

```
\mathcal{E} exists =
     \{((\textit{mk-Exists}(t, e), \sigma, \gamma), \mathsf{true}) \mid
                   true \in rng (\{(e, \sigma \dagger \{t \mapsto i\}, \gamma) \mid i \in \mathbb{Z}\} \triangleleft \mathcal{E})\} \cup
     \{((mk-Exists(t,e),\sigma,\gamma), false) \mid
                   \{((e, \sigma \dagger \{t \mapsto i\}, \gamma), \mathsf{false}) \mid i \in \mathbb{Z}\}\}
```

Partial Functions

```
\mathcal{E} exists =
     \{((\textit{mk-Exists}(t, e), \sigma, \gamma), \mathsf{true}) \mid
                    true \in rng (\{(e, \sigma \dagger \{t \mapsto i\}, \gamma) \mid i \in \mathbb{Z}\} \triangleleft \mathcal{E})\} \cup
     \{((mk-Exists(t,e),\sigma,\gamma), false) \mid
                    \{((e, \sigma \dagger \{t \mapsto i\}, \gamma), \mathsf{false}) \mid i \in \mathbb{Z}\} \subseteq \mathcal{E}\}
```

Language

Partial Functions

```
((mk\text{-}FuncCall(zero, 1), \sigma, \gamma), 0) \in \mathcal{E}
(mk-FuncCall(zero, -1), \sigma, \gamma) \notin dom \mathcal{E}
\mathcal{E} function f(x) = \frac{1}{2} \mathcal{E}
    \{((mk-FuncCall(f, arg), \sigma, \gamma), res) \mid
```

Proofs can be based upon this definition

```
((mk\text{-}FuncCall(zero, 1), \sigma, \gamma), 0) \in \mathcal{E}

(mk\text{-}FuncCall(zero, -1), \sigma, \gamma) \notin \mathbf{dom} \, \mathcal{E}

\mathcal{E}funccall = \{((mk\text{-}FuncCall(f, arg), \sigma, \gamma), res) \mid ((arg, \sigma, \gamma), arg') \in \mathcal{E}}
```

Proofs can be based upon this definition

Semantics

```
((\textit{mk-FuncCall}(\textit{zero}, 1), \sigma, \gamma), 0) \in \mathcal{E} (\textit{mk-FuncCall}(\textit{zero}, -1), \sigma, \gamma) \notin \mathbf{dom} \, \mathcal{E} \mathcal{E} \textit{funccall} = \{ ((\textit{mk-FuncCall}(f, \textit{arg}), \sigma, \gamma), \textit{res}) \mid \\ ((\textit{arg}, \sigma, \gamma), \textit{arg'}) \in \mathcal{E} \, \land \\ ((\gamma(f).\textit{result}, \sigma \dagger \{\gamma(f).\textit{param} \mapsto \textit{arg'}\}, \gamma), \textit{res}) \in \mathcal{E} \}
```

Proofs can be based upon this definition

References

J. H. Cheng and C. B. Jones On the usability of logics which handle partial functions. In C. Morgan and J. C. P. Woodcock, editors, 3rd Refinement Workshop, 51-69, 1991.

C. B. Jones.

Reasoning about partial functions in the formal development of programs.

Electronic Notes in Theoretical Computer Science. 145:3-25, 2006.

S. C. Kleene Introduction to Metamathematics. Van Nostrad, 1952

Thank you.

Any Questions?