BOILERS-MARINE&LAND

THOMAS W. TRAILL.

F. E. R. N.

FOURTH EDITION, REVISED & ENLARGED

Shelf Ng 623,873 Case & Institution of David Architects, This Book must not be removed from The Library Furchased Date 1900 5, Adelphi Terrace, Bresented by London, W.C.

Date: 12.8.69 Case:

BOILERS, MARINE AND LAND; THEIR CONSTRUCTION AND STRENGTH.

CRIFFIN'S STANDARD PUBLICATIONS.

Steam and Steam Engines: including Turbines and Boilers.
By Prof. JAMIESON, M. Inst. C. E. With over 700 pp., over 350 Illustrations,
10 folding Plates, and very numerous examination papers. FOURTEENTH
EDITION. 10s. 6d.

"The BEST BOOK yet published for the use of Students."-Engineer.

Marine Engineering (A Manual of). The Designing, Construction, and Working of Marine Machinery. By A. E. SEATON, M.Inst.C.E., M.I. Mech.E., M.I.N.A. FIFTEENTH EDITION, Revised, Enlarged. Re-set throughout. With 708 pp., 280 Illustrations, and 8 Plates. 21s. net.

"The most valuable handbook of reference on the marine engine now in

existence."—Marine Engineer.

Gas, Oil, and Air Engines. A Practical Text-Book on Internal Combustion Motors without Boiler. By BRYAN DONKIN, M.Inst. C.E. In large 8vo. With numerous Illustrations. FOURTH EDITION. "The BEST BOOK now published on the subject."-Engineer.

GRIFFIN'S POCKET-BOOKS.

Seaton and Rounthwaite's Marine Engineering Rules and Tables
(A Pocket-Book of). For Marine Engineers, Naval Architects, and all engaged in the design and construction of Marine Machinery. By A. E. SEATON, M. Inst. C. E., and H. M. ROUNTHWAITE, M. Inst. Mech. E. With Illustrations. EIGHTH EDITION. 8s. 6d.

"ADMIRABLY fulfils its purpose."-Marine Engineer.

Munro and Jamieson's Electrical Pocket-Book. Electrical Rules and Tables for Electricians and Engineers. By John Munro, C.E., and Prof. Jamieson, M. Inst. C.E., M.I.E.E. Seventeenth Edution. 8s. 6d. "Wonderfully Perfect."—Electrician.

The Mechanical Engineer's Reference Book. A Handbook of Tables, Formulæ, and Methods. By Henry Harrison Suplée, B.Sc., M.E. A Handbook of Printed on special Thin Paper. pp. i-xii+834. 18s. net. "Will be of great service to mechanical engineers."-Engineering.

GRIFFIN'S NAUTICAL SERIES.

EDITED BY EDW. BLACKMORE, Master Mariner, First Class Trinity House Certificate, Assoc. Inst. N.A. AND WRITTEN, MAINLY, by SAILORS for SAILORS.

Know Your Own Ship: A Simple Explanation of the Stability, Construction, Tonnage, and Freeboard of Ships. By Thos. Walton, Naval Architect. Eighth Edition. 7s. 6d.

Latitude and Longitude: How to find them. By W. J. MILLAR, C.E. SECOND EDITION, Revised. 2s.

Practical Mechanics: Applied to the requirements of the Sailor. By THOS. MACKENZIE, Master Mariner, F.R.A.S. SECOND EDITION, Revised. 3s. 6d.

The British Mercantile Marine: An Historical Sketch of its Rise and Development, etc. By the EDITOR, Capt. BLACKMORE. 3s. 6d.

Elementary Seamanship (A Manual of). By D. WILSON-BARKER, Master Mariner, F.R.S.E., F.R.G.S. FOURTH EDITION. 6s.

Navigation: Theoretical and Practical. By D. WILSON-BARKER, F.R.S.E., etc., and WILLIAM ALLINGHAM. SECOND EDITION. 3s. 6d.

Marine Meteorology: For Officers of the Merchant Navy. By WM. ALLINGHAM, First-class Honours, Navigation, Science and Art Dep. 7s. 6d.

Trigonometry: For the Young Sailor, etc. By RICH. C. BUCK. THIRD EDITION, thoroughly Revised. 3s. 6d.

Practical Algebra. By Rich. C. Buck, of the Thames Nautical Training College, H.M.S. Worcester. SECOND EDITION. 3s. 6d.

LONDON: CHARLES GRIFFIN & CO., LTD., EXETER ST., STRAND.

BOILERS, MARINE AND LAND;

THEIR CONSTRUCTION AND STRENGTH.

A HANDBOOK OF RULES, FORMULÆ, TABLES, &c.,

RELATIVE TO

MATERIAL, SCANTLINGS AND PRESSURES, SAFETY VALVES, SPRINGS, FITTINGS AND MOUNTINGS ETC., ETC.,

FOR THE USE OF

ENGINEERS, SURVEYORS, DRAUGHTSMEN, BOILER-MAKERS, AND STEAM USERS.

ву

THOMAS W. TRAILL, F.E.R.N.,

MEMBER OF THE INSTITUTION OF CIVIL ENGINEERS, AUTHOR OF "CHAIN CABLES AND CHAINS."

FOURTH EDITION.

WITH ILLUSTRATIONS.

LONDON:

CHARLES GRIFFIN AND COMPANY, EXETER STREET, STRAND.

1906.

[All Rights Reserved.]

Digitized by the Internet Archive in 2012 with funding from Gordon Bell

PREFACE TO THE FOURTH EDITION.

The three previous editions (comprising over five thousand copies) having been so favourably received, the Author hopes that the Fourth Edition may be found of service to those who have to deal with Boilers, and be as well received as the former editions.

THE CHASE, CLAPHAM COMMON, S.W., November 1905.

PREFACE TO THE THIRD EDITION.

ALTERATIONS, additions, and many new Tables are introduced in this Edition, all of which, it is hoped, will be found useful to those who have to deal with Boilers.

THE CHASE, CLAPHAM COMMON, S.W., July 1896.

PREFACE TO THE SECOND EDITION.

In the New Issue, the subject matter dealt with in the First Edition has been considerably extended; Tables have been added for Pressures up to 200 lbs. per square inch, so as to be abreast of the requirements of the time, and some of the Tables have been altered; besides which new ones and other matter have been introduced, all of which have been specially prepared and computed for the Second Edition.

The same methods have been adopted as were followed in the preparation of the First Edition, so as to ensure accuracy in the

alterations and extensions.

The Author offers his thanks to those who favourably received the First Edition, and hopes that the work in its extended form may be welcomed by those who found the First Edition of service, and also by those who may now use it for the first time. He can wish for the Second Edition no kindlier or more cordial reception than was accorded to the First.

THE CHASE, CLAPHAM COMMON, S.W., January 1890.

PREFACE TO THE FIRST EDITION.

A BOOK with the title BOILERS may be expected by some to be one in which the subject is treated more fully than it has been dealt with in the following pages; but there are many reasons why the scope of the present work is limited—amongst others,

considerations of time and space.

Nevertheless it is hoped that the book will be found of practical service "all round," and helpful, specially, in at least two essential points, viz., in settling the Scantlings for Boilers in process of construction, and in determining the Pressures for those already made. Should the work prove useful in these respects—both of vital importance as regard the safety and efficiency of Boilers—it will have achieved its object.

The Author desires gratefully to acknowledge the able assistance afforded him in the preparation of the Tables by the Computers and Re-computers, who have spared no pains to ensure accuracy

in the calculations throughout.

THE CHASE, CLAPHAM COMMON, S.W., December 1888.

CONTENTS.

PAGES

MATERIAL FOR BOILERS.

Properties of Material—Definitions of Terms used—Iron Boiler Plates, Qualities, Results of Tests, &c.—Iron Stay Bars—Iron Rivets Bars—Iron Rivets—Steel Boiler Plates, Qualities, &c.—Steel Stay Bars—Steel Rivet Bars—Steel Rivets—Steel for Boilers: Treatment and Peculiarities—"Doctored" Material—Testing—Plates and Bars from the same Charge—Plates and Bars made from Different Parts of the same Ingot—Difference due to Temperature when Rolled, &c.—Plates which have been Heated or Worked—Flanging—Bending Plates when Cold—Welding—Drilling and not Punching,

1-16

IRON BOILERS.

Cylindrical Shells—Strength of Iron—Nominal Factors—Riveted Joints of Cylindrical Shells, Receivers, Domes, &c.—Diagonal Pitches—Iron Butt Straps—Double Butt Straps—Thickness of Butt Straps—Pressures, &c., in Cylindrical Shells—Curved Ends of Cylindrical Iron Boilers—Cylindrical Superheaters—Circular Iron Furnaces—Vertical Furnaces or Fire Boxes—Curved Tops of Combustion Boxes—Corrugated Iron Furnaces—Flat Surfaces—Direct Iron Stays for Flat Surfaces—Direct Stays attached to Wrought Iron Cross Bars or Beams—Diagonal Iron Stays—Stays in General—Gusset Iron Stays—Girders for Flat Surfaces—Compressive Stress on Iron Tube Plates—Uptakes—Hemispherical Ends—Dished Ends—Welded Seams,

17-39

STEEL BOILERS.

Testing and Marking Material—Working Stress—Test Strips— Bending Tests—Tensile Strength, &c., Shell Plates—Tensile Strength, &c., Furnace and Flanging Plates, &c.—Tensile Strength, &c., Bars and Stays—Tensile Strength, &c., Rivets—Annealing—Local Heating—Welded Plates—Drilling

· ·	TO A CITTA
in Place—Punching and Boring—Punching and Annealing—Riveted Joints for Cylindrical Shells, Receivers, Domes, &c.—Steel Plates and Iron Rivets—Diagonal Pitches, &c.—Pressures on Cylindrical Shells, &c.—Curved Ends of Cylindrical Boilers—Plates for Furnaces, Combustion Boxes, &c.—Constants for Furnaces—Vertical Furnaces or Fire Boxes—Curved Tops of Combustion Boxes—Corrugated Furnaces—Constants for Flat Surfaces—Girders for Flat Surfaces—Crushing Stress on Tube Plates—Superheaters and Uptakes—Hemispherical Ends—Dished Ends—General Remarks,	PAGES 40-52
Boilers, General.	
Neutral Parts of ShellsManholes, Mudholes, and Openings Manhole and Mudhole DoorsCross Bars for Manhole and Mudhole DoorsOpenings in Boiler Shells, Superheaters, Steam Receivers and DomesSteam Stop Valves or Cocks Expansion Joints for Steam PipesSteam PipesGlass Water GaugesWater Test CocksSteam Pressure Gauges Lights for Gauge Glasses and Steam GaugesBlow-off Cocks -Steam Pressure Gauges Plow-off Cocks	
Guards for Blow-off Cocks—Seum or Brine Cocks—Feed Cocks or ValvesNecks of Valves and Cocks—Testing	
Boilers by Hydraulic Pressure—Testing and Examining Small Boilers, &c.—Examination of Boilers—Baffle or Shield	
Plates—Lifting Boilers for Inspection—Setting and Fixing Boilers,	52-58 559-561
RIVETING-IRON AND STEEL.	
Joints of Special Construction—Diagonal Pitches—Thickness of Butt Straps, &c.,	59-61
FLANGED MOUTHPIECES—IRON AND STEEL.	
Depths of Flanges, &c., Table No. 1,	61-63
FLAT SURFACES—IRON PLATES.	
Notes as to use of Tables—Tables of Pressures, Pitches, and Surfaces for Plates from ½ inch to 1½ inch thick— Tables Nos. 2 to 30 for Pressures from 5 lbs. to 160 lbs., ,, Nos. 225 to 253 for Pressures from 165 lbs. to	64-125 426-454
,, Nos. 225 to 253 for Pressures from 165 lbs. to 200 lbs.,	420-404
Iron Stays—Stress per Square Inch, 5000 lbs.	
Notes as to use of Tables—Tables of Pressures, Greatest Surfaces, and Sizes of Stays from ½ inch to 3¼ inches diameter—	
Tables Nos. 31 to 35 for Pressures from 5 lbs. to 160 lbs., Nos. 254 to 256 for Pressures from 165 lbs. to	126-131
	455-457

	IRON STAYS—STRESS PER SQUARE INCH, 7000 LBS.	PAGES
	Notes as to use of Tables—Tables of Pressures, Greatest Surfaces, and Sizes of Stays from 1/2 inch to 31/2 inches dispersion at the stay of the stay o	
	Nos. 257 to 259 for Pressures from 165 lbs. to 160 lbs.,	132-137
	200 lbs.,	458-460
	Notes as to use of Tables—Tables of Numbers for determining Pressures, &c., in connection with Thicknesses of Girders from 1/2 inch to 13/2 inch and denths from 13/2 inch to 13/3 inch	
	, Nos. 260 to 270 for Pressures from 165 lbs. to 200 lbs.	138-150
	CYLINDRICAL BOILER SHELLS—IRON.	461-466
	Notes as to use of Tables—Tables of Numerals for determining Pressures, Diameters, and calculated Percentage Strength of Joints in connection with Iron Plates from ½ inch to 1½ inch thick, and nominal factors from 5 to 6.9—	
	,, No. 351, Nominal Factors 4.5 to 4.9,	151-155 540
,	IRON PLATES AND IRON RIVETS—RIVETED JOINTS.	
1	Notes as to use of Tables—Tables of Proportions of different descriptions of Riveted Joints by which the Diameter of Boilers, and the Working Pressure or Nominal Factor of Safety may be found—	
	Tables Nos. 54 to 64, . RIVETED JOINTS—IRON.	156-169
1	Multipliers for finding the vertical distance between D. C.	
	Rivets, and also the thickness of Butt Straps—Notes for use of Tables— Tables Nos. 345 to 347,	
	FURNACES, PLAIN CYLINDRICAL—IRON PLATES.	531-536
N	Notes as to use of Tables—Tables of Numerals by which the Pressures, Lengths, and Diameters may be determined for Plates from 1/4 inch to 5/4 inch thick.	
	Nos. 271 to 283 for Pressures from 5 lbs. to 160 lbs.,	170-186
	200 108.,	467-473
N	FURNACES WITH FLANGED JOINTS—IRON PLATES.	
	otes as to use of Tables—Table of Numerals and Constants for determining Pressures, Diameters, and Lengths for Plates from ¼ inch to ½ inch thick, with maximum lengths for each thickness—	
	Table No. 78 for Pressures from 5 lbs. to 160 lbs., , No. 284 for Pressures from 165 lbs. to 200 lbs., Proportion, Construction, and Formula for Pressure, &c.,	187-190 474 530

	PAGES
FURNACES, CORRUGATED, CYLINDRICAL—IRON PLATES.	
Notes as to use of Tables—Tables of Diameters and Pressures	
for Thicknesses of Plates from ¼ inch to ½ inch— Tables Nos. 79 and 80 for Pressures from 5 lbs. to 160 lbs.,	191-194
No. 285 for Pressures from 165 lbs. to 200 lbs.,	475
,, =,	
Commanda Paranna	
STEEL BOILERS.	
FLAT SURFACES—STEEL PLATES.	
Notes as to use of Tables-Tables of Pressures, Pitches, and	
Surfaces for Plates from 1/4 inch to 11/8 inch thick—	105 058
Tables Nos. 81 to 109 for Pressures from 5 lbs. to 160 lbs., ,, Nos. 286 to 314 for Pressures from 165 lbs. to	195–257
200 lbs.,	476-504
STEEL STAYS—STRESS PER SQUARE INCH 9000 LBS.	
Notes as to use of Tables-Tables of Pressures, Greatest Surfaces,	
and Sizes of Stays from ½ inch to 3¼ inches diameter—	250 000
Tables Nos. 110 to 114 for Pressures from 5 lbs. to 160 lbs.,	258-263
", Nos. 315 to 317 for Pressures from 165 lbs. to 200 lbs.,	505-506
STEEL GIRDERS FOR FLAT SURFACES.	
Notes as to use of Tables Tables of Numbers for determining	
Pressures, &c., in connection with Thicknesses of Girders from \(\frac{1}{3}\) inch to 1\(\frac{3}{4}\) inch, and depths from 1\(\frac{3}{4}\) inch to 10\(\frac{3}{4}\)	
inches—	
Tables Nos. 115 to 125 for Pressures from 5 lbs. to 160 lbs.,	264-276
" Nos. 318 to 328 for Pressures from 165 lbs. to 200 lbs.,	508- 513
CYLINDRICAL BOILER SHELLS—STEEL.	
Notes as to use of Tables—Tables of Numerals for determining	
Pressures, Diameters, and calculated Percentage Strength of Joint in connection with Steel Plates from ¼ inch to 13%	
inch thick; of different tensile strengths, of from 26 to 32	
tons per square inch; and nominal factors from 5 to 6.9—	277293
Tables Nos. 126 to 139,, Nos. 366 to 379, Plates from 113/32 inch to 15/8 inch	211295
thick,	552-558
,, Nos. 352 to 305 for Nominal Factors from 4.5 to	- 17
4.9, Plates from 1/4 inch to 45% inches thick, .	541-551
STEEL PLATES AND STEEL RIVETS—RIVETED JOINTS.	
Notes as to use of Tables—Tables of Proportions of different	
Descriptions of Riveted Joints and Numerals applicable to same, for Steel Plates having tensile strengths varying from	
26 to 32 tons per square inch; by which Tables the Diameter	

	PAGES
of Boilers, the Working Pressure or Nominal Factor of Safety may be found—	FAGES
Tables Nos. 140 to 161,	294-319 537-538
RIVETED JOINTS—STEEL.	
Multipliers for finding the <i>vertical</i> distance between Rows of Rivets, and also the thickness of Butt straps—Notes for use of— Tables Nos. 345 to 347,	531–536
PITCH OF RIVETS (DIFFERENT DIAMETERS)—STEEL AND IRON AND RIVETS—LAP JOINTS, SINGLE, DOUBLE AND TREBLE RIV	
Notes as to use of Tables—Tables of Pressures and Percentage Strength of Joints, Diameters of Rivets from ½ inch to 1½ inch, Plates from ¼ inch to 1½ inch thick—	562-567
	302-301
FURNACES, PLAIN CYLINDRICAL—STEEL PLATES.	
Notes as to use of Tables—Tables of Numerals by which the Pressures, Lengths, and Diameters may be determined for	
Plates from ½ inch to ½ inch thick— Tables Nos. 162 to 174 for Pressures from 5 lbs. to 160 lbs., Nos. 329 to 341 for Pressures from 165 lbs., to	320-337
200 lbs.,	514-520
FURNACES WITH FLANGED JOINTS-STEEL PLATES.	
Notes as to use of Tables—Table of Numerals and Constants for determining Pressures, Diameters, and Lengths for Plates from ¼ inch to ½ inch thick, with maximum Lengths for each thickness—	
Table No. 175 for Pressures from 5 lbs. to 160 lbs., , No. 342 for Pressures from 165 lbs. to 200 lbs., Proportion, Construction, and Formula for Pressure, &c.,	338–342 521 530
FURNACES, CORRUGATED, CYLINDRICAL—STEEL PLATES.	
Notes as to use of Tables—Tables of Diameters and Pressures for Thicknesses of Plates from ½ inch to ½ inch— Tables Nos. 176 and 177 for Pressures from 5 lbs. to 160 lbs.,	343-346 522
FURNACES WITH RIBBED PROJECTIONS-STEEL PLATES.	
Notes as to use of Tables—Tables of Diameters and Pressures for Thicknesses of Plates from ½ inch to ½ inch— Tables Nos. 178 and 179 for Pressures from 5 lbs, to	
160 lbs.,	347-350 523
Furnaces, CamberedSteel Plates,	348

	PAGES
SPIRAL CORRUGATED FURNACES—STEEL PLATES.	
Notes as to Proportions and Pressures,	351
Morison's Suspension Furnace—Steel Plates.	
Notes as to use of Tables—Tables of Diameters, and Pressures, for Thicknesses of Plates from 1/4 inch to 5/8 inch— Tables Nos. 385 and 386 for Pressures from 60 lbs. to 200 lbs.	368-571
	500-571
AREAS OF CIRCLES.	
Diameters advancing by hundredths from '01 to 9 99—Notes as to extended use of Tables up to 999, Tables Nos. 180 to 184, Diameters advancing by thirty Seconds from ½2 to 21, by sixteenths from 21 to 49, and by eighths from 49 to 104 %—	352-357
Tables Nos. 185 to 191,	358–365
CIRCUMFERENCE OF CIRCLES.	
Diameters advancing by thirty seconds from $\frac{1}{32}$ to $\frac{7^3\frac{1}{32}}{12}$. Table No. 192,	366
Numbers, Vulgar Fractions, Decimal Equivalents, Squares, and Cubes.	
Notes as to use of Tables— Advancing by sixty-fourths, from $\frac{1}{64}$ to $1^{\circ 3}$ / ₆₄ , Tables $193-196a$,, thirty-seconds,, $\frac{2}{5}$, $\frac{6}{6}$, $\frac{196a-198}{198-198a}$,, sixteenths,, $\frac{6}{6}$, $\frac{12}{5}$, $\frac{198-198a}{198a-199}$,, quarters,, $\frac{24}{5}$, $\frac{29}{3}$ / ₄ ,, $\frac{199}{5}$	367–373 373–376 376–377 377–378 378
INCHES AND THEIR EQUIVALENT DECIMALS OF A FOOT.	
Advancing by sixty-fourths from ½,4 to 1 inch, by thirty seconds from 1 inch to 2 inches, by sixteenths from 2 inches to 3 inches, and by eighths from 3 inches to 11% inches—	
Table No. 200,	379-380
DECIMAL FRACTIONS AND THEIR APPROXIMATE VALUES I VULGAR FRACTIONS.	IN
Advancing by hundredths from '01 to '99— Table No. 201,	381
FOURTH POWERS.	
Advancing by '25 from 1 to 32—Notes as to extending Tables,	
&c.— Table No. 202,	382-383
WEIGHTS AND MEASURES—IMPERIAL AND METRIC.	
	384-391
Legal Standard Wire Gauge, Equivalent Millimetres— Table No. 203,	392

Volume of Water at Different Temperatures,	PAGES 393
	393-394
WATER—PURE AND SEA.	
Composition—Boiling Points—Specific Gravities, &c.,	394–395
WEIGHTS AND SPECIFIC GRAVITIES OF METALS.	
Table No. 204,	396
SAFETY VALVES.	
Notes as to Construction, Proportion, &c.—Testing and Adjusting Safety Valves, &c.—Areas of Valves—	
Table No. 205,	397-401
SPRING SAFETY VALVES.	
Notes as to use of Tables—Drawing of Safety Valves— Tables of Proportions, Nos. 206 to 215,	402-413
SPIRAL SPRINGS FOR SAFETY VALVES.	
Notes, &c., as to Proportions—Tables of Results of Tests—	
	414-417
"Peerie" Spring Safety Valves.	
Drawing of Valve, Description of, Proportions of the different	#01 #00
parts,	524-526
"PEERIE-WEERIE" SPRING SAFETY VALVES.	
Drawing of Valve, Description of, Proportions of the different	527-529
parts,	921-929
Easing Gear Shafts—Safety Valves.	
Notes as to use of Tables—Multipliers for finding Diameters of Shafts—	
	572-573
PROPERTIES OF SATURATED STEAM.	
Properties of Saturated Steam—	
Tables Nos. 218-224,	418-425
EVAPORATORS AND FEED HEATERS—CAST IRON.	
Formulæ for Thicknesses, &c.,	560-561
Whitworth Screws, V Threads.	
Number of Threads per Inch, Depth of Thread, Diameter and	
Area at bottom of Thread, and Angle of Thread—	. 539
Table No. 350,	
INDEX,	. 574

INTRODUCTION.

THE Handbook now offered to Engineers and others, while dealing generally with the questions concerned in the Construction and Strength of Boilers, is yet (as stated in the Preface) more especially designed to afford ready and reliable assistance to those who have to settle the SCANTLINGS and determine the suitable WORKING PRESSURES of Boilers.

In regard to the first point, it should be noted at the outset that thin plate Scantlings, although included in the Tables, are not given with a view to their being adopted in making new Boilers. They are intended to be used, as approximate Scantlings only, by those who have to settle prudent Pressures for old Boilers. In such cases, no hard and fast rule can be laid down, and a good deal must be left to

the experience and judgment of the Inspector.

The range to which thick plate Scantlings go up in the Tables is as high as is generally necessary for the various parts of boilers; the Tables for Shells are not carried above 1 % inch thick; but, should it be advisable in any case to use thicker plates, formulæ are given which will enable such cases to be dealt with. Tables, &c., for Furnaces made of plates as thick as % inch will be found, although we may note here in passing that when it was proposed not very many years since to use plates 1/2 inch thick, this was said to be "too risky," and it was held not advisable to exceed 1/16 inch. Again, when compound engines were fitted in almost every new vessel, and the use of Steel had become well established and High Pressures were required, even then, when it was suggested that plates %16 inch might be used, the proposal was not favourably received, and the use of such plates in furnaces was condemned in no measured language. Nevertheless, it can now be stated as a fact that plates % inch in thickness may be used if necessary. Several successful types of furnaces are now made which meet the requirements of the time, the thickness of the plates of which need not exceed % inch, and may even be less, except in a few extreme cases. However, it will be prudent for those who have to pay for boilers, &c., not to sanction a greater thickness for furnaces.

The Tables are all original, and have been specially computed for the work. The form in which many of them appear is (to the Author's knowledge at least) also new, and their range exceeds that of any set of Tables hitherto published. The arrangement adopted throughout, will, it is hoped, be found both simple and convenient. The scope of the work does not admit of giving all the data by which the results have been arrived at, but it is believed that these results will be found to represent the best modern practice according to the method of con-

struction adopted.

As regards the accuracy of the Tables, the methods adopted in computation have been of such a nature, that the results may be used with confidence. The calculations throughout have been made by two or three independent computers, and the checking has been done by re-working, and not by merely going over the figures of the first calculation. When differences were observed in the results of any two

calculators' work, the computations were re-made.

Those who prefer to calculate results independently, will find numerous simple formulæ given for the purpose throughout the work. There are many, however, who have neither the time nor the inclination to work out formulæ when they can arrive at a decision by a shorter, easier, and more rapid method, and it is for these that the Tables are chiefly intended. It may be mentioned that there are about 75,000 results given in the Tables, and in order to obtain these results in the ordinary way, it has been estimated that about 7,500,000 figures would be necessary. That the use of the Tables, then, will save both time and toil is self-evident. The Notes at the foot of the Tables, and those preceding each Set, will be found of service—examples being given explanatory of the method to be followed.

Among the Illustrations will be found several of Spring Safety Valves, and in the accompanying Tables and Notes the dimensions, &c., of the various parts for different pressures and sizes are given; these Illustrations, Tables, and Notes, as well as those which refer to Riveted Joints, will be of service to draughtsmen and others when preparing drawings, &c.; the Tables for Flat Surfaces, Cylindrical Boiler Shells, &c., Multipliers for Vertical Distances between Rivets, &c., may also be referred to, as by their use much labour and time will be saved when Scantlings have to be determined, weights got out, and plans, &c., prepared. The Tables throughout the book will be found to be "labour-

saving."

In conclusion, the Author has to point out, that although the results arrived at, both by the Tables and the Formulæ given, may be used without hesitation—yet that it is often advisable, on grounds applicable to the special case, to adopt a more cautious course—i.e., to settle the Scantlings for slightly higher pressures than those actually required, or determine the Pressures for Boilers already constructed at a few pounds lower than the amount arrived at by the Tables. In the interest of the boiler-owner, it will frequently be found a wise economy, "in the long run," to keep the Scantlings rather above, and the Pressures slightly below, the Standards fixed by the Tables. These Standards are, as stated above, safe; but it is not always true economy on the part of those who have to pay for repairs and renewals, to adopt the lightest Scantlings and the highest Pressures that safety will admit of.

In this, as in other cases, a little "generosity" in the use of material—if one may be allowed to use the phrase—will "pay" best in the end, by ensuring to the boiler a longer and more efficient working-life.

BOILERS, MARINE AND LAND: THEIR CONSTRUCTION AND STRENGTH.

MATERIAL FOR BOILERS.

DEFINITION OF TERMS.

In the following section, some of the properties of Iron and Steel, as employed in the construction of boilers, are given. It is, therefore, desirable that the meanings applied to the various terms used should be clearly understood at the outset. These terms and the meanings assigned to them may, or may not, be precisely those given by other writers, for there is no universal concord of opinion on the subject—a matter much to be regretted. These variations in terminology may have arisen from a desire to avoid the use of any term or any definition which was not accurate in a "commercial" as well as a "scientific" sense; for there can be no doubt that certain terms and definitions, although perfectly correct from a scientific standpoint, may be of little or no value to the practical engineer. However this may be, it is not intended to enter here into the merits or the demerits of terms and their meanings. All that can be attempted now is to give such definitions as shall prevent any possible confusion in the mind of the reader, and make the author's own meaning clear, when dealing with the materials used in the construction of boilers. The definitions necessary for our present purpose are, then, briefly as follows:—

Tensile strength is equivalent to the amount of force which, steadily and slowly applied in a line with the axis of the test-piece, just overcomes the cohesion of the particles, and pulls it into separate parts.

Contraction of area is the amount by which the area, at the point where the specimen has broken, is reduced below what it was before any strain or pulling force was applied.

Elongation is the amount to which the specimen stretches, between two fixed points, due to a steady and slowly applied force, which pulls and separates it into parts. Elongation is made up of two parts; one due to the general stretch, more or less, over the length; the other, due to contraction of area at about the point of fracture.

Shearing strength is equivalent to the force which, if steadily and slowly applied at right angles or nearly so, to the line of axis of the rivet, causes it to separate into parts, which slide over each other, the planes of the surfaces at the point of separation being at right angles,

or nearly so, to the axis of the rivet.

Elastic limit is the point where the addition to the permanent set produced by each equal increment of load or force, steadily and slowly applied, ceases to be fairly uniform, and is suddenly, after this point is reached, increased in amount. It is expressed as a percentage of the tensile strength.

Tough.—The material is said to be "tough," when it can be bent first in one direction, then in the opposite, without fracturing. The greater the angles it bends through (coupled with the number of times

it bends), the tougher it is.

Ductile.—The material is "ductile" when it can be extended by a pulling or tensile force, and remains extended after the force is removed. The greater the permanent extension, the more ductile the material.

Elasticity is that quality in a material by which, after being stretched or compressed by force it apparently regains its original

dimensions when the force is removed.

Fatigued is a term applied to the material when it has lost in some degree its power of resistance to fracture, due to the repeated application of forces, more particularly when the forces or strains have varied considerably in amount.

Malleable is a term applied to the material when it can be extended by hammering, rolling, or otherwise, without fracturing, and remains extended. The more it can be extended without being fractured, the

more malleable it is.

Weldable is a term applied to the material if it can be united when hot by hammering or pressing together the heated parts. The nearer the properties of the material after being welded are to what they were before being heated and welded, the more weldable it is

Cold-short is a name given to the material, when it cannot be worked under the hammer or by rolling, or be bent when cold without cracking at the edges. Such a material may be worked or bent when at a great heat, but not at any temperature which is lower than about that assigned to dull red.

Hot-short is when the material cannot be easily worked under the hammer, or by rolling at a red heat at any temperature which is higher than about that assigned to a red heat, without fracturing or cracking.

Such a material may be worked or bent at a less heat.

Homogeneous describes a material which is all of the same structure and nature.

A Homogeneous material is the best for boilers, and it should be of suitable Tensile strength with Contraction of area and Elongation best suited for the purpose, having an Elastic limit that will insure the structure being reliable; it should be Tough and Ductile, and its Elasticity fairly good; and be capable of enduring strains without becoming too quickly or easily Fatigued. The material should be Malleable and in some cases Weldable; that which is of a decidedly Cold-short or Hot-short nature should be avoided.

If the physical properties ascertained by the results of tests made with the testing-machine, coupled with suitable bending tests, are satisfactory, and the material is not improperly treated during the progress of manipulation, while being put into the boiler, the latter, so far as the material is concerned, will generally turn out well, the plates

being of moderate dimensions.

IRON BOILER PLATES.

Particulars of plates from about three-eighths of an inch to about five-eighths of an inch thick, of six qualities, which were carefully prepared and tested, and such as are used in the construction of boilers, will to some extent illustrate the various qualities of iron plates (within the limits of thickness stated) for boilers, although they may only represent a few of the qualities used.

The "special" quality is very seldom obtained, notwithstanding that it is most suitable for furnaces, combustion boxes, uptakes, and all

parts subject to the impact of heat or flame.

"A" quality is such as may be used with confidence for furnaces, and when the plates are exposed to the impact of heat or flame; but even

that is a better quality than can be usually obtained.

B, C, D, and E qualities were made by four different makers, and probably represent the best which the respective makers manufacture, as they were made with the view of being equal to a stipulated standard, although they may not all have actually been equal to the standard intended.

B quality need not be considered a low quality for furnaces, &c.; and

indeed a much better quality is not easily procured.

C, D, and E qualities are such as are used for shells, although they should not be employed if exposed to the impact of heat or flame.

D quality comes within the range of common plates for shells, even

when not exposed to the impact of heat or flame.

E quality is a low-class one for any purpose in a boiler.

Special Quality.

Tensile strength, with the grain, .			23 tons per sq. in.
,, ,, across ,,			23 ,, ,,
Contraction of area, with the grain,			29 per cent.
Elongation, with the grain,	,		19 ,,
		•	19 ,,
", across ",		v	13 ,,

A Quality.

	-		
Tensile strength, with the grain, .			22 tons per sq. in.
Contraction of area, with the grain,			21 ,, ,,
		•	27 per cent.
Elongation, with the grain,	:		18 ,,
across		ì	12

,,

,,

B Quality

- 4	
Tensile strength, with the grain,	. 22 tons per sq. in.
,, ,, across ,,	. 20 ,, ,,
Contraction of area, with the grain,	. 24 per cent.
,, across ,,	. 12 ,,
Elongation, with the grain,	. 16 ,,
,, across ,,	. 8 ,,
C Quality.	
Tensile strength, with the grain,	. 22 tons per sq. iu.
,, ,, across ,,	. 21 ,, ,,
Contraction of area, with the grain,	. 14 per cent.
", ", across ", .	. 8 ,,
Flongation, with the grain,	. 10 ,,
,, across ,,	. 7 ,,

D Quality.

Tensile strength, with the grain, .		21 tons per sq. in.
,, ,, across ,,		20 ,, ,,
Contraction of area, with the grain,		11 per cent.
Elongation, with the grain,		10 ,,
Elongation, with the grain,		8 ,,
across		7

,,

,,

E Quality.*

Tensile strength, with the grain, 20 to	ns per sq. in
,, ,, across ,,	,, ,,
Contraction of area, with the grain, 9 p	er cent.
,, across ,, 6	,,
Elongation, with the grain, 8	,,
,, across ,, 5	,,

Notwithstanding the foregoing results, it is difficult to get good

711	JUNITURISTAL	ruing on	101020	71115	1000	11109 10	113	amou	10 00	200	2000
mak	ers to gua	rantee a	better q	uali	ty of	plates	tha	in the	followi	ng:	
Te	nsile stre	ngth, wi	th the g	rain,				21 to	ns per	sq.	in.
	,, ,,	ac	ross ,	,				19	,,	,,	
Co	ntraction	of area,	with th	e gra	in,			20 pe	r cent.		
771	ongation,	,,,,,	across	,,				12	9 9		
El	ongation,		e grain,		٠	•	٠	16	, ,		
	,,	across	,,		•		•	10	,,		

The foregoing do not refer to plates above about five-eighths of an inch thick, and include those as thin as about three-eighths of an inch.

The elongation was in all cases taken in a length of 10 inches; the test pieces were 2 inches broad, except in the case of the special quality, in which they were not quite so broad.

The appearance of the fracture of Special, A, and B qualities was

^{*} There are one or two qualities inferior to E.

fibrous; that of the others was more or less crystalline. D quality showed about 60 per cent. fibrous and 40 per cent. crystalline. All the plates were made, as previously stated, with the knowledge that they would be tested, which may account for the results obtained.

Iron having the same brand as A quality, has been proved by carefully made tests to be inferior to C quality in tensile strength, contraction of area, and elongation. It is, therefore, not well to rely too much on brands; the only satisfactory plan is to prove the quality by testing.

Brands, unfortunately, may be found to be delusory.

It is not probable that the results of any two series of tests will agree in all respects; but when a quality is stipulated for, the results of the tests should closely approximate to the standard agreed upon. Nevertheless, when the difference of the results, length-way and cross-way, is not very great as compared with that stipulated for, and the respective means of the results, length-way and cross-way, either as regards the tensile strength, contraction of area, and elongation, are about equal to the respective means of the quality settled upon, the material may be considered as fairly representing that required.

It is better to sacrifice a ton or so in tensile strength, than to lessen the contraction of area and elongation; and, generally, if the two latter be above that stipulated for, even if the tensile strength is rather less, the iron may be considered to be better and more to be relied upon,

particularly for flanging.

Thicker plates of a different description, and such as have been more exclusively used for the shells of boilers of considerable size, are dealt with next. The higher qualities only can be accepted as those that can with any degree of propriety be employed for tube-plates, &c., although all the descriptions mentioned have been used for the shells, and even for other parts.

The lower qualities are objectionable, even for shells, and should never be used for tube-plates, or for plates to be flanged or worked. Qualities much better than the highest class specified have not been so generally used as could be desired, and steel plates have almost entirely taken their place. The particulars of these will be given further on.

Three-Quarters of an Inch Thick.

Tensile strength, with the grain, .			21 tons per sq. in.
,, ,, across ,, .			19 ,, ,,
Contraction of area, with the grain,			18 per cent.
,, across ,,			10 ,,
Elongation, with the grain,	٠	•	14 ,,
across ,,		٠	8 ,,
Tensile strength, with the grain, .			21 tons per sq. in.
Contraction of area, with the grain,	•	٠	19 ,, ,,
	•	٠	9 per cent.
Elongation, with the grain,	•	•	7 ,,
0.000.00	•	•	2 ,,
,, across ,,	•	•	0 11

One Inch Thick.

Tensile strength,	with the grain	ì, .			21 tons per sq. in.
Contraction of are	across ,,	. •			19 ,, ,,
			•		
Elongation, with	the grain	,	•		11 ,,
			•	•	16 ,,
Tensile strength,	with the orain		•	•	21 tons per sq. in.
					18 ,, ,,
Contraction of are	a, with the gr	ain,			8 per cent.
					3 ,,
Elongation, with	the grain, .				9 ,,
, across	,,,				3

One and One-Quarter Inch Thick.

ono ana ono quanter	THOU THICK.	
Tensile strength, with the grain, .	. 21 tons per sq. in.	
Contraction of area, with the grain,	20 ,, ,,	
	6 ,,	
Elongation, with the grain,	11 ,,	
Tensile strength, with the grain, .	6 ,,	
	16 ,, ,,	
Contraction of area, with the grain,	. 14 per cent.	
Elongation, with the grain,	4 ,,	
,, across ,,	2 ,,	

The elongation was taken in every case in the standard length of 10 inches, and all the test pieces were carefully prepared to about a width of 2 inches.

Several of the higher qualities showed a considerable amount of fibre at fracture; some off the same plates were more crystalline, while others of the same batch were so decidedly crystalline that they could not be considered fit for any part of a boiler. Moreover, the tensile strength, contraction of area, and elongation, varied considerably in some cases, even when the test pieces were cut from the same plate.

Iron plates being so different in quality, no two series of tests are exactly alike; but the means of the foregoing results, thin and thick (not including the special quality) practically agree with the means of another series of tests that have been made. The tensile strength is rather more, and the contraction of area and elongation are slightly better; but this may be accounted for, as all the plates in the series described above were made or supplied with the knowledge that they would be tested; whereas in the series with which they have been compared, it was not known that they would all be tested, and consequently, perhaps, the plates were not quite so good. Unless the higher qualities

are specified for, they are not likely when tested to be found equal to anything above medium quality, and frequently might be found to be of a quality that could not be recommended for use in boilers.

If the contraction of area and elongation can be increased by lowering the tensile strength, it may be repeated that it is better to

forego a ton or so in tensile strength.

Too much reliance should not be placed on any plate, unless a piece has been cut from it, and by the results of the tests it has been found suitable for the purpose intended.

Brands may be deceptive; and if the quality is judged by the

stamp upon it, too frequently the result may be disappointing.

Thick iron boiler-plates are not, as a rule, very satisfactory, particularly as to ductility; hence, steel plates, which are made more ductile and of greater tensile strength, have almost superseded them.

Iron Bar Stays.

Iron manufactured by the same makers, and having the same brand, has been found, when tested, to vary considerably as regards tensile strength, elongation, and contraction of area. The following results of carefully made tests on iron supplied by different makers represent neither the worst nor the best obtainable; and while it is not desirable to use a quality inferior to the lowest referred to, if the results of tests are equivalent to the highest recorded here, they may be considered to represent a fair quality, such as is frequently used in good boilers.

Tensile strength, from about 21 to about 23 tons per square inch. Elongation, from about 18 to about 25 per cent. (or even about 30

per cent.), taken in a length of 10 inches.

Contraction of area, from about 33 to about 40 per cent.; but the contraction should be more if the ends of the stays are to be riveted. The small bars may be expected to have the greatest tensile strength

and the greatest contraction of area.

The test pieces of the greatest diameter, if of good quality, may be

expected to have the greatest elongation.

If the small sizes are of good quality, they may be expected to be more fibrous in appearance at the point of fracture than the large sizes; the latter are frequently crystalline to the extent of about 10 to 15 per cent. In the common qualities this amount is increased. The best and finest iron should be fibrous.

Iron Rivet Bars.

Rivet bars are frequently of an indifferent quality, but the following has been found to make good rivets:-

Tensile strength, about 25 tons per square inch.

Elongation, about 25 per cent., taken in a length of 10 inches; the elongation should be rather more when the diameter of the test piece is large.

Contraction of area, about 45 per cent. The appearance of fracture fibrous.

Iron Rivets.

Tensile strength, about 25 tons per square inch.

Contraction of area, about 45 per cent.

When in single shear, the shearing resistance may be about 17 tons per square inch in plate joints; but when in double shear, it is usual to take it at 1.75 times the single shear. The single shear of the rivets in some joints is not worth more than about 16 tons, in others it may be equal to about 18 tons per square inch.

The tensile strength of rivets may be higher than those of the bars

from which they are made.

The rivets should be prepared in a careful and uniform manner for testing, and the length of the part turned parallel should always be 2.5 times the turned diameter.

The appearance of fracture should be fibrous.

STEEL BOILER PLATES.

The following remarks are based on the results of carefully made tests on such plates as are used in the construction of good boilers. The plates were tested in their normal condition—that is, as they left the rolls, and not after having been annealed.

The mean tensile strength is about 29 tons per square inch.

For the shells, the tensile strength should not exceed 32 tons per

square inch (as steel is now made), and 27 tons is low enough.

For furnaces, in those exposed to the impact of heat or flame and those to be flanged or worked, the tensile strength should not exceed 30 tons per square inch, and should not be less than 26 tons, although for special purposes a very good quality is made having about the same tensile strength as good wrought iron plates.

For general use throughout the boiler, 28 tons per square inch is a good tensile strength, such as is suitable for furnaces, flanging, &c.,

and for shells.

The mean elongation, taken in a length of 10 inches, is about 25 per

cent

The elongation, taken in a length of 10 inches, seldom exceeds 30 per

The elongation, taken in a length of 10 inches, should not be less than

20 per cent.

As the tensile strength increases, the elongation may be expected to

diminish, but plates having less than 20 per cent. elongation should not be used; about 25 per cent. elongation should be aimed at, more particularly for furnaces and flanging plates, and those exposed to the

impact of heat or flame.

All plates when cold should be capable of bending to a radius of 1.5 times the thickness of the plate, and until the sides are parallel at a distance of not more than three times the thickness of the plate; but if the plates are to be used for furnaces, or to be flanged or exposed to the impact of heat or flame, they should stand bending to the same extent after being heated to a cherry-red, and at such heat plunged into water of 80° Fahrenheit, and kept in the water until the plate and water are of the same temperature.

There is no difficulty in obtaining plates which will comply with the above conditions if the test pieces are carefully prepared, and are about 2 inches broad, or even slightly less when the plates are thick, and the elongation taken in a length of 10 inches.

All steel plates should be tested before being used for boilers, and

should not be annealed before the tests are made.

Brands may be delusory.

The contraction of area is generally greatest when the plates are thick; good thick plates may show about 48 per cent. with the grain, and thin ones about 45 per cent.

The elongation of good thick plates may be about 27 per cent., and that of thin ones 25 per cent.

Across the grain both the contraction of area and elongation may be

from about 5 to 10 per cent. less than with the grain.

The elastic limit may be expected to be about the same with and across the grain. The elastic limit of thin plates may be about 60 per cent, of the ultimate strength, and that of thick ones may only be about 50 per cent.

If a plate has a high tensile strength and only a moderate amount of contraction of area and elongation, the elastic limit may be higher

than if the plate were very soft.

Steel Stay Bars.

The properties of steel stay bars vary; the following remarks refer to carefully made tests and bars within such limits as are used in good

Tensile strength, from 27 to 32 tons per square inch.

Mean elongation, about 25 per cent, when taken in a length of

The elongation should not be less than 20 per cent. The elongation seldom exceeds about 30 per cent.

The elongation should be greatest in the test pieces having the greatest diameter.

Contraction of area, from about 40 to about 50 per cent.

Steel Rivet Bars.

Mean tensile strength, about 28 tons per square inch.

The tensile strength should not be less than 26 tons per square inch.

The tensile strength should not exceed 30 tons per square inch.

The elongation should not be less than 25 per cent. when taken in a length of 10 inches, and more should be aimed at, more particularly when the diameter of the test piece is large.

The elongation seldom exceeds about 30 per cent.

The contraction of area should be as a minimum about 50 per cent.,

but about 60 per cent. should be aimed at.

All the results of the tests of the stay and rivet bars refer to tests made on bars in their normal condition—that is, not annealed; and all such tests should be made when the material is in its normal condition.

Good steel bars are made which are no stronger than iron. Pieces from each bar should be tested for tensile strength, elongation, &c.

Steel Rivets.

The results of the tensile tests of rivets are frequently slightly higher than those obtained from the bars from which the rivets are made

The contraction of area should be from about 50 as a minimum to

about 60 per cent.

The shearing strength, if of the above quality, is usually considered as 23 tons per square inch when in single shear in riveted joints, but when the rivets are in double shear they are considered to be worth 1.75 times the single shear.

The rivets should be carefully prepared for testing; the length of the part turned parallel should always be 2.5 times the turned

diameter.

STEEL FOR BOILERS.

Treatment and Peculiarities.

The general physical properties of steel such as is used for boilers having been briefly dealt with in the preceding remarks, its treatment and some of its peculiarities will now be referred to.

"Doctored" Material.

The term "doctored" is used, possibly for want of one more expressive, to describe that which takes place when mild steel boiler plates, &c., are subjected to such treatment that the results of mechanical tests are considerably different after the material has been so doctored.

It has been found that the physical properties of doctored plates differ materially from those of plates tested in their normal condition -that is, as they left the rolls-e.g., plates from 1/4 inch to about 11/4 inch thick, which had a tensile strength of about 27 tons to 29 tons per square inch, with an elongation of about 20 to 25 per cent, in lengths of 10 inches, when tested in their normal condition, having been laid on the mill floor to cool immediately they left the rolls, had their physical properties altered by being heated to a bright red in a furnace. and then laid on the mill floor to cool, as such treatment reduced the tensile strength from about 2 to 10 per cent.; but the elongation, when compared with the elongation of the plates in their normal condition, was found to be increased from about 12 to 22 per cent. There was, moreover, a still greater difference found when the material was heated to a bright red, and allowed to remain in the furnace to cool down, as by this method the reduction in the tensile strength varied from about 6 to 17 per cent.; and the elongation, when compared with the elongation in the normal condition, was increased, except in some thin plates, from about 19 to 30 per cent. Makers can and do produce a quality that is not so much affected by doctoring as stated above.

When pieces from the same plates were doctored in a different way, the results of the tests made after the treatment were found to differ still further from those made when the test pieces were in the normal condition of the plates, as it was found that heating to a bright red, and then cooling in water of about 80° F. increased the tensile strength from about 11 to 29 per cent. above the tensile strength when tested in their normal condition; but the elongation in 10 inch lengths, when compared with the elongation in the normal condition, was reduced from about 26 to 80 per cent. Again, when heated in the same way, but cooled in water at about 55° F., the tensile strength was still further increased, as it was found to be from about 15 to 42 per cent. above what it was when the pieces were tested in their normal condition; and the elongation, when compared with the elongation of the pieces tested in their normal condition, was reduced from about 50 to 88 per cent.

Testing.

Unless a piece of each plate and bar be tested, so as to ascertain the physical properties of the material, steel not only irregular and indifferent in quality, but that which is of a dangerous description, may get worked into a boiler. If the results of the tests from a portion cut from the end of a plate, which is rolled of a moderate size, be satisfactory, it is not as a rule necessary to have further tests made from the same plate; but when the plate is large, there should be pieces cut and tested from each end of the plate and if very large from each corner. Bars may be rolled, say 30 or 40 feet long, &c., and generally one test piece off the bar is sufficient, although the bar may be subsequently cut into two or more lengths. All test pieces should be cut off the plates and bars in their normal condition, and the pieces should be tested in their normal condition—that is, as they leave the rolls, and not after being annealed.

Plates and Bars from the same Charge.

Plates and bars made from the same charge are frequently found to vary in ductility and tensile strength. In some cases the elongation has been found to vary several hundred per cent., and the tensile strength has been below that of ordinary iron; and in other cases pieces have had a tensile strength much higher than is considered suitable for boiler construction; in some instances it has been found that the pieces which had the lowest tensile strength were also the most deficient in elongation.

Plates and Bars made from Different Parts of the same Ingot.

Plates and bars made from the same ingot, but from a different part of it, have frequently been found to vary so much, that while that made from one part of the ingot was well within the usual limits as to tensile strength and elongation, &c., that rolled from another part of the same ingot was not such as could with prudence be used in any part of a boiler.

Difference due to Temperature when Rolled.

The physical properties of plates and bars have been found to differ even when made from about the same part of the ingot. This difference may possibly be attributed to the temperature at which they were rolled, although when heated to a bright red, after being rolled and allowed to cool gradually, the difference may not exist. It is always better to avoid such doctoring, and it is more prudent to use such material as comes within the prescribed suitable limits when tested in its normal condition—that is, as it leaves the rolls, and without being annealed—as it is a more certain way of getting material of uniform and suitable quality—material, in short, which has not been "doctored."

The best way to avoid questionable material is to avoid those who cannot make reliable plates without doctoring them. The majority of good makers do not doctor their material, and have fewer "wasters."

Plates which have been Heated or Worked.

Plates which are not heated uniformly in one operation, or heated and worked, no matter how they may be heated, should after such treatment be immediately and in one operation heated to a bright red, and allowed to cool gradually. When this has not been done, plates have in many instances cracked, sometimes within an hour; in other cases hours and days, and even weeks and months, have elapsed before the plate cracked; in some cases they have cracked without being touched at the time; while in others they have cracked when struck a slight blow, the plates being of a mild description—that is, of moderate tensile strength, and having good elongation. The failures which have taken place with steel plates of good quality have in nearly all cases been traced to the treatment which they received; and in every case when the plate had been satisfactorily proved to be of good quality before it had been heated or worked, improper usage or want of proper treatment had been the cause of failure. Steel should not be worked when hot below a red heat.

Flanging.

All flanging, so far as practicable, should be done in one operation; hydraulic appliances are the most desirable, and the plate *immediately* after it has been flanged should be heated to a bright red, and allowed to cool gradually.

Bending Plates when Cold.

Plates should be bent when they are cold to the required curvature for cylindrical shells, receivers and domes, &c. Plates which will not stand bending when cold should not be used; there are rolls well adapted for such work, being capable of bending large plates, and thicker than any yet used for shells of boilers.

Welding.

Any part of a boiler which is to be subjected to a tensile stress should not be welded. Although welds in tension are very uncertain and even dangerous, they may not be so when subjected to a compressive stress, such as in the longitudinal seams of furnaces, but after being welded the whole should be efficiently annealed.

Drilling and not Punching.

Plates should not be punched, as such treatment has been found not only to impair the strength of the material, but also to make it dangerously unreliable, which is much more serious than if it only

reduced the tensile strength. With suitable drilling appliances, boilers can be constructed at less cost than by the barbarous method of punching the holes; and no boiler works can now be considered as a first-class establishment which has not suitable appliances for drilling the holes in place. It has been proved, in several good boiler works, that the cost of construction is less when the holes are drilled by suitable machines than when they are punched. Good machines can be obtained, which will soon repay the outlay, and ultimately effect a saving of labour; moreover, a reliable and safe boiler can be turned out, instead of one in which, when the holes are punched, no confidence can be placed, and which may explode without giving warning, through the material having been ruined by punching.

Steel Serviceable and Reliable.

Notwithstanding the peculiarities of mild steel, it is a material which may be used with safety and advantage, if proper precautions be taken and due consideration given to these peculiarities; possibly it has fewer infirmities than iron; and there can be no doubt that it is a better and more serviceable material for general use in the construction of boilers.

IRON BOILERS.

Cylindrical Shells.

Iron as our oldest friend has the first place in this section, although our comparatively new acquaintance, Steel, may merit equal if not more consideration.

The shells of cylindrical iron boilers, before they can be considered first-class, should be made of the highest quality of iron plates. All the seams should be at least double riveted, and fitted with double butt straps;* all the rivet holes should be drilled after the plates are bent and bolted in place, and the holes in the butt straps should be countersunk with a slight taper from the outside (about three-fourths the thickness of the butt strap), and the plates afterwards taken apart and the burr removed before they are riveted up; the minimum thickness of each butt strap should never be less than five-eighths the thickness of the shell plate, but may require, both for strength and to insure a steam-tight joint, to be considerably thicker;† the allowance for rivets in double shear should not exceed 1.75 times that for single shear.

* Shell seams exposed to impact of heat or flame not double butt straps, 'ongitudinal seams can generally be kept free from impact of heat or flame.

tudinal seams can generally be kept free from impact of heat or flame.

† The minimum thickness of the butt straps can be ascertained, and the distance
between rows of rivets should be proportioned in accordance with the formulæ applicable to the particular description of riveting, or by Tables Nos. 346 and 347,
which will be found further on.

If the foregoing conditions have been complied with, and the boiler has been efficiently inspected during the whole period of construction, and it is in all other respects satisfactory, then 5 may be used as a nominal factor of safety in finding the "working pressure," which throughout the book means the load on the safety valves.

From what follows it will be seen that under certain circumstances additions should be made to the nominal factor 5, varying according to the circumstances of the case; but when the plates are thick and the holes punched, it is desirable that a higher factor than 5 be used to

commence with.

If, instead of being fitted with double butt straps, and at least double riveted, the circumferential seams are lap and at least treble riveted, it need not prevent the factor 5 being used, if the circumstances of the case make it desirable to do so; but in such cases the percentage strength of the circumferential seams should be as high as practicable, with moderate pitches. Treble riveting applies principally to the middle seams, not necessarily to end seams, which should be at least double riveted.

The tensile strength of the iron may be considered as equal to 47000 pounds per square inch with the grain, and 40000 pounds across the grain. But if the foregoing conditions be not complied with. the additions in the following Table should be made to the nominal factor 5, according to the circumstances of each case, and the sum, 5 plus the appropriate additions, used as the nominal factor in calculating the working pressure. If lightness be absolutely necessary and each plate be tested, and the elongation in 10 inches be not less than 14 per cent. with and 8 per cent. across the grain, and the plates and rivets found to be in all respects satisfactory, then the nominal factor 5 may be reduced to 4.5, but the actual lowest tensile strength of the plates should be used in calculating the working pressure. When such a low nominal factor as 4.5 is used, the percentage strength of the rivets should not be less than that of the plates. See clause "Rivets and Plates of Equal Strength (Iron)," page 22, or use the Tables for Steel Plates and Steel Rivets, which are very suitable for Iron Plates and Iron Rivets.

The nominal factors are factors of safety and not of economy, and it would be to the ultimate pecuniary interest of boiler owners were they increased; except in cases where lightness is of paramount importance, the cost of the extra weight of material would be small in comparison

with the ultimate saving.

Circumferential Seams.

Table of Additions.

Table of Additions.				
	† A	When all the holes are fair and good in the longitudinal seams, but drilled out of place after bending, add But if all the holes be afterwards bored or rimered out in place, and are as fair as if they had been drilled in place, A may be omitted.	·15	A
The second secon	† B	When all the holes are fair and good in the longitudinal seams, but drilled out of place before bending, add But if all the holes be afterwards bored or rimered out in place, and are as fair as if they had been drilled in place, B may be '2.	•3	В
	† C	When all the holes are fair and good in the longitudinal seams, but punched after bending, add But if all the holes be afterwards bored or rimered out, and are as fair as if they had been drilled in place, C may be 2.	•3	С
	† D	When all the holes are fair and good in the longitudinal seams, but punched before bending, add But if all the holes be afterwards bored or rimered out in place, and are as fair as if they had been drilled in place, D may be '4.	•5	D
	* E	When all the holes are not fair and good in the longitudinal seams, at least add	·75	E
	† F	When all the holes are fair and good in the circumferential seams, but drilled out of place after bending, add But if all the holes be afterwards bored or rimered out in place, and are as fair as if they had been drilled in place, F may be omitted.	•1	F
-	† G	When all the holes are fair and good in the circumferential seams, but drilled before bending, add But if all the holes be afterwards bored or rimered out in place, and are as fair as if they had been drilled in place, G may be 1.	·15	G

Circumferential Seams.

Longitudinal Seams.

Circumferential Seams.

		Table of Additions—continued.	
(† H	When all the holes are fair and good in the circumferential seams, but punched after bending, add '15 But if all the holes be afterwards bored or rimered out in place, and are as fair as if they had been drilled in place, H may be '1.	н
	† I	When all the holes are fair and good in the circumferential seams, but punched before bending, add '2 But if all the holes be afterwards bored or rimered out in place, and are as fair as if they had been drilled in place, I may be '15.	I
l	J	When all the holes are not fair and good in the circumferential seams, at least add 2	J
	K	When double butt straps are not fitted to the longitudinal seams, and the said seams are lap and double riveted, add '2	К
	L	When double butt straps are not fitted to the longitudinal seams, and the said seams are lap and treble riveted, add '1	L
}	M	When only single butt straps are fitted to the longitudinal seams, and the said seams are double riveted, add 3	М
	N	When only single butt straps are fitted to the longitudinal seams, and the said seams are treble riveted, add '15	N
(0	When any description of longitudinal joint is single riveted, add1.	0
(Р	When the circumferential seams are fitted with single butt straps and are double riveted, add '1	Р
	Q	When the circumferential seams are fitted with single butt straps and are single riveted, add '2	Q
-	R	When the circumferential seams are fitted with double butt straps and are single riveted, add '1	R
-	S	When the circumferential seams are lap and are only double riveted, add '1	s
	Т	When the circumferential seams are lap and are single riveted, add '2	Т

Table of Additions—continued.

U	the strakes of plates are not entirely under or over, add	•25	U
V	When the boiler is of such a length as to fire from both ends, or is of unusual length, such as flue boilers, and the circumferential seams are fitted as described opposite, P, R and S, add	•3	v
	When the circumferential seams are as described opposite Q and T, V ·3 should become V ·4. But V may be omitted altogether if the circumferential seams be treble riveted and lap, and at least equal to 65 per cent. of the solid plate.		
W	When the seams are not properly crossed, add	•4	W

X When the iron is in any way doubtful, and the Engineer Inspector is not satisfied that it is of the best quality, at least . . . add '4

X

Y

§ Y When the boiler is not specially inspected during the whole period of its construction, . add 1.65

*Where marked with an asterisk, it may be advisable to increase the additions to the *nominal* factor still further, if the workmanship or material be very doubtful or very unsatisfactory; or when the iron plates are very thick, it may be advisable to add something more, particularly if the joints be lap, as is stated in the paragraphs immediately preceding the table of additions.

† When the holes are bored or rimered out in place, the case should be carefully considered, as the circumstances may warrant a reduction of the additions of A, B, C, D, F, G, H, or I, to the extent stated in the table.

§ Iron boilers that have not been specially inspected by the Engineer Inspector during the whole period of construction should be particularly examined, and the whole circumstances carefully considered, with the view of determining what additions should be added and the nominal factor that should be used; the addition Y being equal to D + E + I + J or 5 + 75 + 2 + 2 equals 1.65.

Riveted Joints of Cylindrical Shells, Receivers, Domes, &c. (Iron).

The diameter of the rivets should never be less than the thickness of the plate, and in most cases should be greater.

When the plates are thin, or when joints are lap, or when only a single butt strap is fitted, the diameter of the rivets should always

exceed the thickness of the plate.

The actual shearing strength of rivets is about five-sixths the tensile strength of the plate, but in iron plate joints it is usual to assume the shearing strength of the rivets as being equal to the tensile strength of the plate, and on this assumption the percentage strength of any joint or other particulars of the joint may be found by the following formulæ :-

p = Pitch of rivets in inches.

d = Diameter of rivets in inches.

A = Area of one rivet in square inches.

n =Number of rivets in one pitch (greatest pitch).

 p_p = Diagonal pitch in inches.

V = Distance between rows of rivets in inches.

% = Percentage of plate left between rivets in greatest pitch. %1 = Percentage of rivet section as compared with solid plate.
%2 = Percentage of combined plate and rivet section when the

number of rivets in the second row is twice that in the outer row.

c=1 For lap or single butt strap joints.

c=1.75 For double butt strap joints.

T=Thickness of plate in inches.

To find the percentage strength of any given joint-

$$\frac{100(p-d)}{p} = \% . . . (1)$$

$$\frac{100 \times A \times n \times c}{p \times T} = \%_1 . . . (2)$$

$$\frac{100 \times A \times n \times c}{p \times T} = \%_1 \qquad . \qquad . \qquad (2)$$

When the number of rivets in the second row is twice that in the outer row-

$$\frac{100(p-2d)}{p} + \frac{\%_1}{n} = \%_2 \quad . \quad . \quad (3)$$

The lowest of the values so found is the percentage strength of the joint.

The formula (3) is given, although its use will seldom be found necessary. In double butt strapped joints % or $%_1$ is always less than $%_2$ so long as the diameter of the rivet is not less than the thickness of

the plate, and in lap joints when the diameter is not less than .7854

To find
$$d$$
 when p , n , c , T are known so that $%$ may be equal to $%_1$ —
$$\sqrt{\frac{T}{1.57 \times n \times c} \left\{ \frac{T}{1.57 \times n \times c} + 2p \right\} - \frac{T}{1.57 \times n \times c}} = d \qquad (4)$$

To find p when d, n, c, T are known so that % may be equal to $%_1$ —

$$\frac{\mathbf{A} \times n \times c}{\mathbf{T}} + d = p \qquad . \qquad . \qquad . \tag{5}$$

To find d and p when n, c, T and the required percentages are known-

$$\frac{\% \times \mathbf{T}}{(100 - \%) \times .7854 \times n \times c} = d \qquad . \qquad . \qquad . \qquad (6)$$

$$\frac{100 \times \% \times T}{(100 - \%)^2 \times \cdot 7854 \times n \times c} = p \qquad (7)$$

Rivets and Plate of Equal Strength (Iron).

If it be desired to construct the joints so that the shearing strength of the rivets may be equal to the tensile strength of the plates, equation (2) and the first term of equation (5) should be multiplied by $\frac{5}{6}$, and equation (6) and (7) by 1.2; 1.309 should be substituted for 1.57 in equation (4), and equation (3) becomes applicable to lap joints when the diameter of the rivets is less than -6545.

Diagonal Pitches (Iron).

In any case the diagonal pitch, p_{D} , between the outside and the next row of rivets should not be less than is found by the following formula:-

(1) Ordinary zigzag riveting, and chain riveting when each alternate rivet is omitted in the outside row-

$$^{\cdot 6p + \cdot 4d} = p_{\text{D}}.$$
 $\sqrt{(\overline{11p + 4d)(p + 4d)}} = V.$

But V should not be less than $\frac{4d+1}{2}$ in chain riveted joints.

(2) Zig-zag riveting, when each alternate rivet is omitted in the outside row-

$$3p+d = p_{\text{D}}$$
.
 $\sqrt{(11p+20d)(p+20d)} = V$.

The value of the metal in the diagonal pitch is only about five-sixths of what it is in the horizontal pitch; therefore the net section in the diagonal pitch should be one-fifth greater than it is in the horizontal pitch, or in the part of the horizontal pitch to which it is required to be equivalent in strength.

Iron Butt Straps.

Butt straps should always be cut from plates, and not from bars; they should be of as good a quality as the shell plates, and for the longi-

tudinal seams should be cut across the fibre.

When the plates are drilled in place, the butt straps should also be drilled in place, and after drilling they should always be taken apart, the burr taken off, and the holes in the straps countersunk with a slight taper from the outside.

Double Butt Straps (Iron).

When double butt straps are fitted, each butt strap should not be less than five-eighths of the thickness of the shell plate, but it may be necessary to have them thicker. With wide pitches an efficient and tight joint cannot be made unless the butt straps are sufficiently thick, and the thickness of each in such cases should considerably exceed five-eighths of the thickness of the shell plate.

When the pitch is not the same in each row, or the rivets in each row are not the same size, the thickness of the butt straps requires to be increased to obtain the strength as well as to enable a tight joint to

be made.

The minimum thickness of butt straps is found from the following formula:

Thickness of Butt Straps (Iron).

p =Pitch of rivets in outside row of rivets.

d = Diameter of rivets in inches.

T = Thickness of plate in inches.

T₁=Thickness of each butt strap in inches (minimum). When the pitch of rivets is the same in each row—

$$\frac{5 \times T}{8}$$
 = T_1 Double butt straps.

$$\frac{9 \times T}{8}$$
 = T_1 Single butt straps.

When the pitch of rivets in the outside row is double that in the row next the butt of plates—

$$\frac{5(p-d)\times T}{8(p-2d)}$$
 = T_1 Double butt straps.

$$\frac{9}{8} \left(\frac{p-d}{p-2d} \right) \times \mathbf{T} = \mathbf{T}_1$$
 Single butt straps.

Pressures, &c., on Cylindrical Shell, &c. (Iron).

Unless the iron plates be proved to possess superior qualities, as to elongation and contraction of area, and with such ductile properties to

have a tensile strength exceeding 21 tons per square inch, they should not be assumed to have a greater tensile strength than 47000 lbs. per square inch. The smallest of the percentages as found by the preceding formulæ (1) (2) or (3) should be used as the percentage strength of the joint, and the nominal factor of safety should not be less than that found from the preceding table and the paragraphs immediately preceding it (see pages 17, 18, 19, and 20).

The working pressure should not exceed that found by the following

formula:-

T = Thickness of plate in inches.

D=Inside diameter of boiler in inches.

F = Factor of safety.

r = Lowest of the percentages % $%_1$ %2 divided by 100. B = Working pressure per square inch in lbs.

e per square inch in los.
$$\frac{47000 \times r \times 2T}{D \times F} = B$$

$$\frac{B \times D \times F}{47000 \times 2 \times r} = T$$

$$\frac{47000 \times r \times 2T}{B \times F} = D$$

$$\frac{47000 \times r \times 2T}{D \times B} = F$$

$$\frac{B \times D \times F}{2T \times 47000} = r.$$

Iron boiler plates which are to be subjected to flame or to the impact of heat should be of suitable quality, and those equal to what follows may be considered so: tensile strength with the grain about 21 or 22 tons per square inch, contraction of area about 20 per cent. and elongation about 16 per cent.; across the grain, tensile strength about 19 tons per square inch, contraction of area about 12 per cent. and elongation 10 per cent., when the specimens are tested in strips 2 inches wide and the elongation taken in a length of 10 inches. The plates for furnaces, combustion boxes, and all parts exposed to the direct impact of flame and heat should not be of a low quality.

Iron plates may be considered suitable for the shells of boilers, if not exposed to flame and the direct impact of heat, and if not to be flanged, if they have a tensile strength with the grain of about 21 or 22 tons and across the grain of about 18 tons per square inch, with a contraction of area and elongation slightly less than that for furnace plates; but when the plates are about three-quarters of an inch thick and upwards, they are not generally quite so good. In another part will be found some remarks as to iron boiler plates (see p. 4 et seq.), from which it will be seen that better qualities of plates can be made, but better qualities than those given above are seldom guaranteed by really good makers except at a very high price.

Curved Ends of Cylindrical Iron Boilers.

When the ends of cylindrical boilers are curved to join the shell, the working pressure should not exceed that found by the following formula :-

R = Radius of curved end in inches.

d = Diameter of tubes outside in inches.

T=Thickness of tube plate in inches.

p= Pitch of tubes in inches horizontally. %= Percentage of iron left between each tube as compared with the solid plate of a length equal to p.

C=9500 when the stress is with the grain of the iron. C=8000 when the stress is across the grain of the iron.

B = Boiler pressure per square inch in lbs.

r = Percentage of plate section (%) divided by 100.

$$\frac{100(p-d)}{p} = \%$$

$$\frac{100d}{100-\%} = p$$

$$\frac{C \times r \times T}{R} = B + *$$

$$\frac{R \times B}{C \times r} = T *$$

As all the tube plates are more or less injured by expanding or drifting the tubes, the above constants should be considered as maximum ones, and when the iron is not of very good quality, both as regards tensile strength and ductility, the constants should be reduced from 9500 to about 7500, and from 8000 to about 6500.

Cylindrical Superheaters (Iron).

The strength of the joints of cylindrical superheaters and the factor of safety should, when made of the best quality of iron plates, be found in a similar manner as for cylindrical boilers and steam receivers, but instead of using 47000 lbs. as the tensile strength of iron, 30000 lbs. should be used; where the heat or flame impinges at or nearly at right angles to the plate, 22400 lbs. should be substituted.

When a superheater is constructed with a tube subject to an external or collapsing pressure, the working pressure should be ascertained in the same way as the working pressure for circular furnaces, but the

^{*} If the percentage strength of the horizontal riveted seam above the tubes be less than the percentage of plate left between the tubes, it should be used in the above formula for calculating the working pressure, &c. + If the thickness of the curved plate be less than that of the tube plate, the percentage left in each should be multiplied by its respective thickness, and the lesser of the two values used in place of $r \times T$, as given in the formula.

constants should be reduced at least 36 per cent., and if much flame passes through the tube it may be necessary to reduce the constants a great deal more, as the iron plate when hot may be less than about

one-fifth of the strength of the cold plate.

When superheaters are constructed so that they cannot be entered on account of their size, &c., they should have a sufficient number of openings through which a thorough inspection of the whole of the interior can be made, and the doors for these openings should be made and secured in the same way as manhole and mudhole doors, and the openings stiffened and strengthened in like manner.

When a superheater can be shut off from the main boiler or boilers it should be fitted with a safety valve of sufficient size, and so constructed that the pressure on it cannot be increased when steam is up.

The least size of safety valve on a superheater, unless there be some very good reason to the contrary, should be 3 inches diameter.

Drain pipes should in all cases be fitted to each superheater in which a collection of water in the bottom is possible; a drain pipe is also desirable to allow of any mud being washed away.

Circular Iron Furnaces.

The working pressure on plain circular furnaces, when they are horizontal, and made of wrought iron plates of the best quality, should not exceed that found by the use of the constants and formula which follow, provided the pressure so found does not exceed that arrived at by the use of the formula $\frac{9000 \times T}{D}$

D=Outside diameter of furnace in inches.

*L=Length of furnace in feet.

T = Thickness of plate in inches.

B=Working pressure per square inch in pounds, which should not exceed that found by the formula $\frac{9000 \times T}{D} = B$.

C=Constant according to the circumstances of the case, the values of which are as follows:—

Furnaces with Welded Seams or Butt Joints and Drilled Rivet Holes.

* The length should be measured between the rings, Bowling hoops, &c., if so fitted.

C = 65000

Furnaces	with Butt	Joints	an	d Pun	ched I	Rivet	Holes.
When the	longitudinal	seams	are	double	riveted	and	
							C = 85000
	ingle butt stra longitudinal		are	single	riveted	and	
fitted with si	ngle butt straj e longitudinal	ps,				:	C = 75000
When the	e longitudinal						~ ~~~
ntted with d	ouble butt stra	ips, .	•				C = 85000
Furnaces	with Lappe	ed Join	$_{ m nts}$	and D	rilled	Rive	Holes.
When the	longitudinal	seams	are	double	riveted	and	
bevelled, .							C = 80000
	longitudinal		are	double	riveted	and	
not bevelled,			•		: :	:	C = 75000
	longitudinal						~ =
bevelled, .	longitudinal					i	C = 70000
when the	e iongituainai	seams	are	single	riveted	ana	C = 65000
							-
Furnaces	with Lappe	d Join	its a	and \mathbf{P}	inched	Rive	et Holes.
When the	e longitudinal	seams	are	double	riveted	and	
bevelled, .							C = 75000
	longitudinal		are	double	riveted	and	
					: . :		C = 70000
When the	longitudinal	seams	are	single	riveted	and	

When the longitudinal seams are single riveted and not bevelled, C=60000 The following formula for the working pressure is intended for furnaces up to about 10 feet long and of ordinary diameters, and when the length exceeds that, it is advisable in all cases to fit strengthening

rings or hoops, &c. :-

bevelled, .

$$\frac{C \times T^{2}}{(L+1) \times D} = B^{*}$$

$$\frac{C \times T^{2}}{(L+1) \times B} = D$$

$$\sqrt{\frac{(L+1) \times D \times B}{C}} = T$$

$$\frac{C \times T^{2}}{D \times B} - 1 = L$$

$$\frac{(L+1) \times D \times B}{T^{2}} = C.$$

^{*} The working pressure should not exceed that found by the limiting formula $\left(\frac{9000\times T}{2}\right)$. The pressures arrived at by the use of the Tables Nos. 65 to 77, also Nos. 271 to 283 may be used. When the furnaces are made with flanged joints, Table No. 78 may be used, or Table No. 284, or the formulæ page 530.

Vertical Furnaces or Fire Boxes (Iron).

In the case of upright fire boxes of donkey or similar boilers, 10 per cent. should be deducted from the constants applicable to the respective classes of work, description of seam or joint; but a greater reduction should be made if the diameter does not decrease at least one inch per foot of height.

Curved Tops of Combustion Boxes (Iron).

The curved tops of combustion boxes, on account of the want of continuity, are not capable of withstanding nearly the same pressure as a complete cylinder of the same radius, and should be stiffened by τ bars. The constants for plain cylindrical furnaces, when applied to the top of combustion boxes, should be considerably reduced; the tops of combustion boxes have been known to come down at about half the pressure suitable for a round furnace having the same thickness of plate and radius.

The curved tops of combustion boxes should be efficiently stayed to the end of the boiler; and when there are double combustion boxes, back to back, they should be efficiently tied together. The length of the box in inches, multiplied by the radius of curvature in inches, is the least surface in square inches for which stay power is required; but it may be necessary to provide more stay power if the longitudinal stays are not sufficient to support the end plates to about the level of the top of the combustion boxes.

It is desirable that the radius of curvature be not less than the width of the box, in order to avoid, as far as practicable, any flat surface on the top corner next the tube plate.

The plates should be of a very good quality.

Corrugated Iron Furnaces.

The working pressure for corrugated furnaces made of the highest quality of iron plate, provided they are practically circular, and machine-made, and the plain parts at the ends do not exceed 6 inches in length, and the plates not less than ${}^6/_6$ inch thick, when new, should not be greater than found by the following formula, where

T = Thickness of plate in inches.

D = Mean diameter in inches.

C = 9000.

B = Working pressure per square inch in lbs.

$$\frac{C \times T}{D} = B$$

$$\frac{C \times T}{B} = D$$

$$\frac{B \times D}{D} = T$$

When a furnace is riveted in two or more lengths, the case should be well considered, as it may not be prudent to allow the same pressure

as when there is no circumferential seam.

Iron corrugated furnaces should be made of plates of the highest quality, and free from laminations, otherwise they will probably very soon become defective, and necessitate portions being cut out and patches put on; it is therefore most desirable, when iron is used, that every plate be tested and also carefully examined, both before and after it is corrugated. If this be not particularly attended to, trouble is sure to ensue, and great expense will be caused by renewing the furnaces. See Tables Nos. 79, 80, and 285.

Flat Surfaces (Iron).

The pressure on wrought iron plates forming flat surfaces should not exceed that found by the following formula, but when the surface is small, such as is the case in launch boilers and several descriptions of land boilers, the pressure found in the Tables in another part is that which should be used. The pressure in all cases may be taken from the Tables Nos. 2 to 30, flat surfaces, iron plates, but when the pitch is about 6 inches or under the pressure should always be taken from the Tables, and not arrived at by the formula. If the pressure is above 160 lbs., see Tables No. 225 to 253.

t = Thickness of the plate in sixteenths of an inch.

B = Working pressure in pounds per square inch. C = Constant according to the following circumstances:— Constants. C=160. When the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and with doubling strips not less in width than two-thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates, C=150. When the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and with washers of not less diameter than two-thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates, C=100. When the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and with washers, the latter being at least three times the diameter of the stay and two-thirds the thickness of the plates they cover.		face supported in square inches.	
C=160. When the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and with doubling strips not less in width than two-thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates. C=150. When the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and with washers of not less diameter than two-thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates, C=100. When the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and with washers, the latter being at least three times the diameter of the stay and two-	B = Wor	rking pressure in pounds per square inch.	
C=160. When the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and with doubling strips not less in width than two-thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates,	C = Con	stant according to the following circumstances:-	
heat or flame, and the stays are fitted with nuts and with doubling strips not less in width than two-thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates,			onstants.
and with doubling strips not less in width than two-thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates,	C = 160.		
two-thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates,			
in thickness than the plates they cover, and are riveted to the plates. C=150. When the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and with washers of not less diameter than two-thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates,			
riveted to the plates,			
C=150. When the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and with washers of not less diameter than two-thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates,			
heat or flame, and the stays are fitted with nuts and with washers of not less diameter than two-thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates,			160
and with washers of not less diameter than two- thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates,	C = 150.		
thirds the pitch of the stays, and not less in thickness than the plates they cover, and are riveted to the plates,			
thickness than the plates they cover, and are riveted to the plates,			
riveted to the plates,			
C=100. When the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and with washers, the latter being at least three times the diameter of the stay and two-			
heat or flame, and the stays are fitted with nuts and with washers, the latter being at least three times the diameter of the stay and two-			150
nuts and with washers, the latter being at least three times the diameter of the stay and two-	C = 100.	When the plates are not exposed to the impact of	
three times the diameter of the stay and two-			
		nuts and with washers, the latter being at least	
thirds the thickness of the plates they cover 100		three times the diameter of the stay and two-	
thirds the thickness of the places they cover, . 100		thirds the thickness of the plates they cover, .	10 0
C= 90. When the plates are not exposed to the impact of	C = 90.	When the plates are not exposed to the impact of	
heat or flame, and the stays are fitted with nuts		heat or flame, and the stays are fitted with nuts	
only,		only,	90

4			
		Co	nstants
	C =	60. When the plates are exposed to the impact of	
		heat or flame, and steam is in contact with the	
		plates, and the stays fitted with nuts and	
		washers, the latter being at least three times	
		the diameter of the stay and two-thirds the	
		thickness of the plate they cover,	60
	C ===	54. When the plates are exposed to the impact of heat	
		or flame, and steam is in contact with the	
		plates, and the stays are fitted with nuts only,	54
	C=	80. When the plates are exposed to the impact of heat	
		or flame, with water in contact with the plates,	
		and the stays screwed into the plate and fitted	
		with nuts,	80
	C ==	60. When the plates are exposed to the impact of heat	
		or flame, with water in contact with the plates,	
		and the stays screwed into the plates having	
		the ends riveted over to form substantial	
		heads,	60*
	C==	36. When the plates are exposed to the impact of heat	
		or flame, and steam is in contact with the	
		plates, with the stays screwed into the plates,	
		and having the ends riveted over to form sub-	
		.442.11	0.0

The values of the letters in the following formulæ will be found

immediately preceding the table of constants:—

$$\frac{\mathbf{C} \times (t+1)^2}{\mathbf{S} - 6} = \mathbf{B}$$

$$\frac{\mathbf{B} \times (\mathbf{S} - 6)}{(t+1)^2} = \mathbf{C}$$

$$\frac{\mathbf{C} \times (t+1)^2}{\mathbf{B}} + 6 = \mathbf{S}$$

$$\sqrt{\frac{\mathbf{B} \times (\mathbf{S} - 6)}{\mathbf{C}}} - 1 = t.$$

When the stays are screwed into the plates and the ends riveted, the Engineer Inspector should see that the stays are a good fit; for if they

^{*} When there is neither flame nor heat impinging on the plates, and water is in contact with the plates on one side, such as the outside shell or ends of the boiler, the pressure found by the constant 60 may be increased about 12 per cent., if after specially considering the case it is thought advisable to do so.

are not, the pressure, as found by the formula and appropriate constant, or by the tables which are in another part, should be reduced; the amount of such reduction should be settled according to the circum-

stances of the case.

When the ends of riveted stays are worn, or any of the nuts are burnt, the Engineer Inspector should be particularly careful as to the pressure he allows the boiler to be worked at, since it may be necessary to reduce the constant 60 by one half or even more, so as to insure that the pressure is not too great; but in all such cases, if it be possible, new stays and nuts should be fitted rather than work, even for a short time, at a reduced pressure; neglect of such easily remedied imperfections has frequently resulted in disastrous explosions.

If a plate be cracked at the hole for the stay, the piece should be cut out and a washer or plate riveted on and caulked, the stay should be renewed by a larger one, and screwed into the washer, and the ends riveted or nuts fitted; the latter is far the better way. If nuts are properly fitted, and proper fire bars used, those in the furnaces will not as a rule get burned off unless through carelessness or want of attention. This more particularly applies to marine boilers with natural draught, and not to boilers in which forced draught is used.

When stays are screwed into the plates, the tap used should be long

enough to tap both plates.

The iron of which screwed stays are made should be of a particularly fine and ductile quality, more particularly when the ends are to be riveted, otherwise the riveted heads will be of little or no use, and the threads will probably be so damaged as to greatly impair the efficiency

of the stay. Cold-short iron should not be used.

The plates forming flat surfaces are sometimes stiffened with T or L bars, but such a method of construction has many disadvantages and few advantages, except when used round manhole or mudhole openings; however, if they be used, little allowance should be made for them, and then only after specially considering the case.

Direct Iron Stays for Flat Surfaces.

There should not be a greater stress on solid wrought iron screwed stays which support the flat surfaces of boilers, than 7000 lbs. per square inch of net section, but the stress should not exceed 5000 lbs. when the stays have been welded or worked in the fire. Stays which have the ends "jumped on" are not reliable, and should never be used; palm ended stays are objectionable; welded stays are not desirable. It is advisable, even when solid wrought iron screwed stays are used, not to have a greater stress on them, when new, than about 5000 lbs. per square inch, and about 4000 lbs. on welded or worked stays; the extra cost, at first, will ultimately be more than saved to those who have to pay for renewals and repairs of boilers.

The size of stay, &c., may be found by the following formulæ or

from the Tables Nos. 31 to 40 and Nos. 254 to 259.

A = Surface to be supported in square inches.

S = Stress on stays per square inch of net section in lba

B = Pressure (working) per square inch in lbs.

 α = Area of stay in square inches.

d = Diameter of stay at bottom of thread in inches.

$$\frac{A \times B}{S} = \alpha$$

$$\sqrt{\frac{\alpha}{.7854}} = \alpha$$

$$\frac{S \times \alpha}{B} = A$$

$$\frac{A \times B}{\alpha} = S$$

$$\frac{S \times \alpha}{A} = B$$

When a stay is attached by bolts or rivets, the aggregate area of the

bolts or rivets should exceed the area of the stay.

When a stay is attached by bolts or rivets, and they are subjected to a single shearing stress, their area should be about 20 per cent. more than the stay; but if subjected to double shear, their area may be about 25 per cent. less than the stay; if the stay be welded, the 20 per cent. may be reduced to 10 per cent. and the 25 per cent. increased to 30 per cent.

Direct Stays attached to Wrought Iron Cross Bars or Beams.

When a direct stay is attached to the centre of a wrought iron cross bar or beam, and the cross bar or beam is attached by two smaller stays to the plate, the aggregate area of the small stays should be about 25 per cent. more than the area of the main direct stay.

The working pressure, breadth, depth and length of the wrought

iron cross bar or beam can be found by the following formula:-

B = Working pressure per square inch in pounds.
 b = Breadth of beam in inches minus the diameter of the hole in inches for main stay.

*D = Depth of beam in inches.

L=Length of beam from centre to centre of small stays in feet.

S = Surface in square inches to be supported.

C = 500.

^{*} The total breadth of such cross bars or beams is generally considerably in excess of their depth.

$$\begin{array}{ccc} \frac{\mathbb{C} \times \mathrm{D}^2 \times b}{\mathrm{S} \times \mathrm{L}} &=& \mathrm{B} \\ \\ \frac{\mathbb{C} \times \mathrm{D}^2 \times b}{\mathrm{L} \times \mathrm{B}} &=& \mathrm{S} \\ \\ \frac{\mathbb{C} \times \mathrm{D}^2 \times b}{\mathrm{S} \times \mathrm{B}} &=& \mathrm{L} \\ \\ \sqrt{\frac{\mathrm{B} \times \mathrm{S} \times \mathrm{L}}{\mathrm{C} \times b}} &=& \mathrm{D} \\ \\ \frac{\mathrm{B} \times \mathrm{S} \times \mathrm{L}}{\mathrm{C} \times \mathrm{D}^2} &=& b. \end{array}$$

All the holes in the cross bar should be carefully drilled, so that they are made all true with the faces of the cross bar, and so that all the nuts on each face will bed properly. The end holes should be exactly equidistant from the centre of centre hole; care should also be taken that the small stays are fitted in so that they are parallel. If this be not attended to, undue stress will be put upon them when there is a strain on the main stay; it is also essential to have each set of small stays exactly opposite each other, for if not, they will be unduly strained when a stress comes on the main stay.

Diagonal Iron Stays.

The area of diagonal stays should not be less than that found in the

following manner: -

First find the area of a direct stay needed to support the surface, then multiply this area by the length of the diagonal stay, and divide the product by the length of a line drawn at a right angle from the surface to be supported to the end of the diagonal stay; the quotient will be the area at the smallest part of the diagonal stay required, or it may be found by the following formulæ:—

a =Area required for a direct stay in square inches.

H = Length of diagonal stay in inches. *

L = Length of line drawn at a right angle from the surface to be supported to the end of the diagonal stay in inches.

 a_1 = Area of diagonal stay in square inches.

 \vec{d} = Diameter of diagonal stay in inches. A = Surface to be supported in square inches.

S = Working stress per square inch on stay in lbs.

B = Working pressure in lbs.

* Although H and L are given in inches, feet may be used if both H and L are used in terms of feet.

$$\frac{a \times H}{L} = a_1$$

$$\frac{a_1 \times L}{a} = H$$

$$\sqrt{\frac{a_1}{.7854}} = d$$
or
$$\sqrt{\frac{a \times H}{.7854 \times L}} = d$$
or
$$\sqrt{\frac{A \times B \times H}{.78548 \times L}} = d$$

$$\frac{.7854 \times d^2 \times S \times L}{A \times H} = B$$

When the palm end of a diagonal stay is attached to the shell, the area of the rivets or bolts, subjected to single shear, should have an aggregate area of about 20 per cent. greater than the stay; if, however, the end is so made as to be attached between two angle bars, the bolt or pin may have an area of about 25 per cent. less than the diagonal stay, but the area of the rivets attaching the angle bars to the shell should be about 20 per cent. greater than the area of the diagonal stay.

It is desirable that all diagonal stays be forged and worked out of the solid; but when this is not done, and they are welded or if the holes in the palms or ends are punched or drifted, instead of being drilled so as to entitle them to be considered as first class, the additional rivet area, as stated in the foregoing, may be 10 per cent. instead of 20 per cent.; and the reduction of area, when the bolts, pins, &c., are in double shear, may be about 30 per cent. instead of 25 per cent. Punching the holes is very objectionable.

Diagonal stays are not recommended except when direct stays cannot be fitted; when they are used they should be well made, properly fitted, and specially looked after by the Engineer Inspector.

The ends of diagonal stays should not be bent, and bevelled washers

should be fitted under the nuts inside and outside the boiler.

The palm ends of diagonal stays should be forged out of the solid, and the holes in the palm should be drilled, and either the shell drilled when the stay is in place, or the shell may be drilled first and the stay drilled in place.

Ends "jumped on" are not only objectionable, but dangerous. The length of diagonal stays should be as great as practicable.

The most desirable and efficient method of fitting diagonal stays, when it is necessary that they should be used, is to have a palm on one end riveted to the shell, and the other end screwed and having nuts inside and outside the boiler, with properly fitted bevelled washers under the nuts.

Stays in General (Direct and Diagonal).

The stays should be well fitted, and each one carefully tightened, and, as far as possible, every stay in a group should have the same normal strain on it. If care be not taken in fitting and tightening up stays they are liable to give way, and with them the plates to which they are attached, owing to too much strain coming on one stay.

When diagonal stays are fitted it is particularly necessary to see that the bolts or rivets by which they are secured are made to fit properly, so that each has only its fair amount of strain. Stays should not be reduced in the body. When a strain comes on those which are so reduced they stretch more than stays which are of the same diameter all over as at the top of the threads of the screwed parts, and such stretching is very injurious to the boiler; moreover, stays in almost every case corrode in the body, and not at the screwed ends. Besides, not being as efficient, such stays require renewing much sooner, which is expensive, the original cost for properly proportioned stays being much the same, and the increased weight very little.

Gusset Iron Stays.

When gusset stays are used, their area should be considerably in

excess of that required for diagonal stays.

When a gusset stay is attached between double angle bars (which they should always be in preference to a single angle bar) the aggregate area of the rivets attaching the angle bars to the shell should be about 20 per cent. greater than that required for a diagonal stay, and the aggregate area of the rivets which attach a gusset to a single angle bar should also be about 20 per cent. greater than that required for a diagonal stay; but the area of the rivets when the gusset stay is attached between two angle bars, the rivets being in double shear, may be about 25 per cent. less than the area required for a diagonal stay.

Gusset stays have many disadvantages, and only one advantage as compared with direct stays; but as a diagonal stay can be used in most cases where a gusset stay can, it should be used in preference; but solid screwed direct stays should be fitted wherever it is practicable,

as they are by far the best and most reliable.

When, however, gusset stays are used they should be fitted properly; the holes in them and in the angle bars rimered out when in place and the rivets should fit well; care should be taken that the angle bars are placed at the proper distance apart, so that the gusset plate is a good

fit between the sides of the angle bars.

A good quality of plate should always be used, and the holes should not be punched but drilled for the rivets; the edges of the plate should have a sufficient quantity planed off so as to insure that the injury caused by shearing is removed.

Girders for Flat Surfaces (Iron).

When the tops of combustion boxes or other parts of a boiler are supported by wrought iron plates or solid wrought iron rectangular girders; provided that the girders are not subjected to a greater temperature than the ordinary heat of steam, and, in the case of combustion chambers, that the ends are properly fitted to the edges of the tube plate, and the back plate of the combustion box, or to the tube plates when the boiler is fired from each end, and the combustion box is in the middle; the working pressure should not exceed that found by the following formula (or by Table No. 41 et seq., above 160 lbs. No. 260 et seq.):—

W = Width of combustion box in inches.

P = Pitch of supporting bolts in inches.

D = Distance between the girders from centre to centre in inches.

L = Length of girder in feet. d = Depth of girder in inches.

T = Thickness of girder in inches.

B = Working pressure per square inch in lbs.

C = 500 when the girder is fitted with one supporting bolt.

C = 750 when the girder is fitted with two or three supporting bolts. C = 850 when the girder is fitted with four supporting bolts.

$$\frac{\mathbf{C} \times d^2 \times \mathbf{T}}{(\mathbf{W} - \mathbf{P})\mathbf{D} \times \mathbf{L}} = \mathbf{B}$$

$$\sqrt{\frac{(\mathbf{W} - \mathbf{P})\mathbf{D} \times \mathbf{L} \times \mathbf{B}}{\mathbf{T} \times \mathbf{C}}} = d$$

$$\frac{(\mathbf{W} - \mathbf{P})\mathbf{D} \times \mathbf{L} \times \mathbf{B}}{d^2 \times \mathbf{C}} = \mathbf{T}$$

$$\frac{d^2 \times \mathbf{T} \times \mathbf{C}}{(\mathbf{W} - \mathbf{P})\mathbf{L} \times \mathbf{B}} = \mathbf{D}$$

$$\frac{d^2 \times \mathbf{T} \times \mathbf{C}}{\mathbf{D} \times \mathbf{L} \times \mathbf{B}} + \mathbf{P} = \mathbf{W}$$

$$\mathbf{W} - \frac{d^2 \times \mathbf{T} \times \mathbf{C}}{\mathbf{D} \times \mathbf{L} \times \mathbf{B}} = \mathbf{P}$$

$$\frac{d^2 \times \mathbf{T} \times \mathbf{C}}{(\mathbf{W} - \mathbf{P})\mathbf{D} \times \mathbf{B}} = \mathbf{L}$$

The working pressure for the supporting bolts and for the plate between them should not exceed that found by the formulæ for direct stays and flat surfaces, or by the Tables Nos. 31 to 40 and 2 to 30; above 160 lbs. 254 et seq. and 225 et seq. When the pitch is about 6 inches or under use the Tables for Flat Surfaces, not the formulæ.

Compressive Stress on Iron Tube Plates.

The working pressure on iron tube plates should not exceed that found by the following formula:—

D = Least horizontal distance between the centres of tubes in inches.

d = Inside diameter of the ordinary tubes in inches.

T = Thickness of the tube plate in inches.

W = Extreme width of combustion box in inches, from the front of tube plate to back of fire box, or the distance between the combustion box tube plates when the boiler is double ended and the box common to the furnaces at both ends.

C = 15000.

B=Working pressure per square inch in lbs.

$$\frac{(D-d)T \times C}{W \times D} = B$$

$$\frac{B \times W \times D}{(D-d) \times C} = T$$

$$\frac{(D-d)T \times C}{B \times D} = W$$

$$\frac{C \times d \times T}{CT - BW} = D$$

$$\frac{D(CT - BW)}{CT} = d.$$

If the iron for tube plates be not of good quality they are very liable to crack, more particularly the tube plate in the combustion chamber, and the tube plate opposite the furnace when the tubes directly face it. Scale and dirt being particularly liable to accumulate on the plate around the end of the tubes, it is therefore more liable to be affected by the intense heat to which the plate is subjected. The plate, after the tubes are expanded or drifted, has a considerable amount of strain on it, and therefore should be of a very duetile and homogeneous quality.

Uptakes (Iron).

The strength of iron uptakes of vertical boilers and others of this type, should be considerably in excess of that required for ordinary

superheaters, subject to external pressure.

Bowling rings or flanged joints add to the strength and allow for expansion; T or L hoops riveted round, although not so desirable, may be employed to increase the resistance of the tubes against collapse. The use of Bowling rings or flanged joints with a moderate thickness of plate is very much better than very thick plating.

When flaming coal is used, great care is required and extra strength absolutely necessary in the uptakes; the tensile strength of the iron

plates when heated to the degree which they sometimes are, is frequently only about 9000 lbs. per square inch, or less than about one-fifth of what it is when cold.

Hemispherical Ends (Iron).

Hemispherical ends made of wrought iron plates, when subjected to internal pressure, should not have a pressure exceeding double the pressure that is suitable for a cylinder of the same diameter and thickness. The working pressure is found by the formula:—

$$\frac{4\mathbf{T} \times 40000 \times r}{\mathbf{D} \times \mathbf{F}} = \mathbf{B}.$$

D being equal to the diameter, F to the suitable factor of safety, T to the thickness of the plate in inches, % to the calculated percentage strength of joint, r to the percentage divided by 100, and 40000 the tensile strength per square inch in lbs. of the iron plate, B equalling the working pressure. Generally it is advisable to make the ends of the same thickness as the cylindrical part.

$$\begin{array}{rcl} \frac{\mathbf{B} \times \mathbf{D} \times \mathbf{F}}{4 \times 40000 \times r} & = & \mathbf{T} \\ \frac{40000 \times r \times 4\mathbf{T}}{\mathbf{B} \times \mathbf{D}} & = & \mathbf{F} \\ \frac{\mathbf{D} \times \mathbf{F} \times \mathbf{B}}{4 \times \mathbf{T} \times 40000} & = & \mathbf{r} \end{array}$$

Dished Ends (Iron).

Dished ends should be stayed. If they be theoretically equal to the pressure needed, when considered as portions of spheres; the iron stays, when solid, not welded or worked in the fire, should not have a stress on them exceeding 14000 lbs. per square inch of net section, but the stress should not exceed 10000 lbs. when the stays have been welded or worked in the fire. If they are not theoretically equal to the pressure needed, they should be stayed the same as flat surfaces.

Welded Seams (Iron).

Welding seams in the shells, receivers or domes of iron boilers is not the most reliable method of construction, there being at the best a certain amount of uncertainty about such seams, as they have been known to give out when least expected. They are not worth more than from about 60 to 70 per cent. of the solid plate, and may be worth much less. The plate near the weld is injured, due to excessive heating, &c., during the process of welding, and has been proved to be very brittle, and has broken even at less than one-fourth of what it was considered

to be worth. 9000 lbs. per square inch is a low strength for the shell plate of a cylindrical boiler, and welded seams have given way at that stress. Heating the plate, &c., as is done when welding, causes portions of it to be in tension, and portions in compression, and the stresses set up are such as to cause it to fracture at a low tensile stress, or when vibration takes place. Although these great drawbacks as to welded iron seams exist, and welding is not recommended, cases may occasionally arise when an Engineer Inspector may not always feel justified in refusing to accept them, but in no case should more than from about 60 to 70 per cent. as a maximum of the strength of the solid plate be allowed, as that is the utmost value when the iron is very good, and the workmanship and method of welding the best that they can be.

When seams are welded, if the whole plate were heated and allowed to cool gradually, it would remove some of the evil, but that is not practicable with large shells, yet the joint and about 12 inches on each side may be heated and allowed to cool gradually. In smaller cylindrical articles, such as domes, they should when welded always be heated carefully all over and allowed to cool gradually; although this may not be so necessary in the case of furnaces, as they have to bear a compressive strain, yet it is desirable that the injurious effects of

welding should be removed as much as possible by annealing.

STEEL BOILERS.

There being many descriptions or qualities of steel, before it is used in the construction of boilers, it is essential that the general quality of the particular steel to be used should have been proved suitable for the purpose; the quality of iron varies very considerably, but the variations are small compared with the variations in steel. Iron is frequently used without testing, although such indiscriminate use of iron is not recommended, but to use steel without proving its quality, is fraught with very great danger; however, if proper precautions be taken to prove that the quality is suitable, and all good makers are quite willing to prove the quality of their steel, it may with much advantage be employed in the construction of boilers, provided that attention be paid to the following:—

Testing and Marking by Makers.

One or more pieces cut from each plate and bar should be tested for tensile strength and elongation, and both results stamped on the plate or bar, when practicable, where they can be easily seen when the boiler is constructed; this should be done by the steel maker, but if by accident it be not done at the steel works, it should be done at the boiler works before the plates are accepted.

Testing and Marking, &c., by Inspectors.

It is very desirable that the Engineer Inspector responsible for the boiler should witness the whole of the tests, but if unable to do so he should select at least one in four of the plates, either at the steel works or in the boiler maker's works, and witness the testing of at least one strip cut from each selected plate; he should also see that the plates which the maker tests are all properly marked, so that he can afterwards distinguish those he saw tested from those which were tested by the maker, but not in his presence, and so be in a position to know the quality of all the plates. The foregoing as to testing and marking plates also applies to bars for stays and rivets, except that only one in twenty need be tested when not over 1 inch diameter, one in twelve when not over $1\frac{1}{2}$ inch, and one in eight when exceeding $1\frac{1}{2}$ inch.

There should be at least one test piece cut off each end of plates that are 15 feet long or over, and one from each corner when over 20 feet long; if the results of testing are within the prescribed limits, the mean of the results of the tests of the pieces off each end should be stamped on the plate. In all cases where the results of the first tests are unsatisfactory, duplicate and triplicate tests should be made, and if these fulfil

the conditions, the plates may be considered suitable.

Working Stress not Over Iron.

If for the plates from which the Inspector selects the foregoing proportions, a greater working stress is wished than is approved of for iron, tests for tensile strength and elongation should be made, and those for which no allowance over iron is wished may be tested for resistance to bending, if preferred. In the latter case, the tensile strength and elongation stamped on each plate by the maker should be noted by the Inspector, as well as the results of the bending tests. In all cases some bending tests should be made on strips both tempered and otherwise.

Test Strips or Pieces.

The breadth of test strips for tensile strength should be about 2 inches, and the elongation taken in a length of 10 inches should be about 25 per cent., but never less than 20 per cent. The test strips should be carefully prepared and measured. Sufficient should be cut off the edges of the plates by a planing or shaping machine to remove the injury done by shearing. The test pieces from bars may be prepared in a lathe or by a machine, and should never be heated and worked down under the hammer.

Bending Tests.

The bending tests for plates not exposed to flame should be made with strips in their normal condition, and occasionally also some tempering tests should be made; but strips cut from furnace and combustion box plates, &c., should be heated to a cherry-red, then plunged into water of about 80° F., and kept there until of the same temperature as the water, and then bent. The bending strips should not be less than 2 inches broad and 10 inches long, and they should be bent until they break, or until the sides are parallel at a distance from each other of not more than three times the thickness of the plate, which test they should bear without cracking

Tensile Strength, &c .- Shell Plates.

The tensile strength of the plates not exposed to flame should be about 28 tons, and should not exceed 32 tons per square inch of section, but the tensile strength of the weakest shell plate, either 26, 27, or 28 tons, etc., should be used in the calculations for the working pressure, if the plates comply with all the conditions which have been previously stated. Unless for very special reasons, it is not advisable to limit the steel maker to a less range than 3 tons; that is, accept plates, although some of them may be 3 tons stronger than is actually required, provided all the conditions previously enumerated are complied with. When steel having a higher tensile strength than that named here has been proved suitable for boilers, the weight of the

boiler may be further reduced, but it is to the steel maker that we must look to accomplish this; but taking into account the effect of corrosion, &c., it is a question which should be well considered before approval is given to the lightening of the scantlings, for, except in a few cases, such will not be economical to shipowners and owners of boilers. When a high tensile strength is aimed at, care should be taken that the ductility and reliability of the plate are not sacrificed.

Tensile Strength, &c.—Furnace and Flanging Plates, &c.

The tensile strength of furnace, flanging, and combustion box plates may range from 26 to 30 tons per square inch, and should have an elongation, taken in 10 inches, of about 25 per cent., and never less than 20 per cent.; it is very desirable that the elongation should not be less than 25 per cent.

Bars, Stays-Tensile Strength, &c.

Bars for stays should be tested. Solid steel screwed stays, which have not been welded or otherwise worked after heating, may have a working stress of 9000 lbs. per square inch of net section, provided the tensile strength be from 27 to 32 tons per square inch, and the elongation in 10 inches about 25 per cent., and not less than 20 per cent.; but if a stress of only about 7000 lbs. per square inch of net section be adopted, it will prevent the necessity of renewing the stays at such an early period in the life of the boiler, and so be more economical, except where a slight saving in weight is of great importance. Steel stays which have been welded or worked in the fire have been found to be unreliable; therefore, they should not be used.

Rivets-Tensile Strength, &c.

Bars from which rivets are made should be tested, and generally a few rivets of each size should also be selected, and should be turned and tested for tensile strength, &c. The bars for rivets should be from 26 tons to 30 tons per square inch, and the elongation in 10 inches not less than 25 per cent., and the contraction of area about 60 per cent. The tensile strength of rivets may be from 26 to 32 tons per square inch, and the contraction of area about 60 per cent.

The rivet before being tested should be turned, and the length of the parallel part should be 2.5 times the diameter of the turned

part.

Recording the Results of Tests.

The results of all the tests of the plates, bars, rivets, &c., should be tabulated by the Engineer Inspector who witnesses the tests, and carefully preserved for reference.

Annealing.

All plates that are punched, flanged, or locally heated should be carefully annealed after being so treated. The plates should be heated all over at one operation in a properly constructed furnace, and then allowed to cool gradually.

Local Heating.

Local heating of the plates is very objectionable, and should be avoided, as many plates have failed from having been so treated. If this be not attended to, serious accidents are likely to result.

Welded Plates.

Steel plates which have been welded should not be used when subject to a tensile stress, and those welded and subject to a compressive stress should be efficiently annealed in a properly constructed furnace.

Drilling in Place.

The rivet holes in the furnace and shell seams of cylindrical boilers should be drilled after bending. If proper machines be used, it is not only better to drill in place, but drilling is also cheaper than punching.

Punching and Boring.

Punching plates and afterwards boring them is not recommended; but if this is done care should be taken that a sufficient quantity is bored out so as to remove as far as possible the very injurious effect of punching. It is found that when a half inch plate is punched nine-sixteenths inch it requires to be bored out to fully twelve-sixteenths, and an inch plate punched one inch and one-sixteenth requires to be bored out to one inch and five-sixteenths to remove the pernicious effect of the punch on the plates, and consequently plates of greater thickness require to have more bored out so as to remove the injurious effects of punching. There is nothing gained by punching and afterwards boring, and there is also more or less risk of the injury done by the punch not being removed, and therefore such a barbarous tool as a punch should never be used to steel plates.

Punching and Annealing.

Punching plates and afterwards annealing them is decidedly an objectionable method, and before it is done the *special* assent of the Engineer Inspector should be obtained; if he assents, it is essential

that he should satisfy himself that the annealing is done properly and in a properly constructed furnace. Punching the holes before the plates are bent is very objectionable, and generally this cannot be conveniently done afterwards, and as all punching should be avoided it cannot be too strongly urged upon those interested that drilling in place is the only really satisfactory method of perforating the plates. There can seldom or never be any good reason for punching, or punching and afterwards boring, and there are many good reasons why this should not be done. There are several very suitable drilling machines, which are used by all first class boiler makers and found to be of great advantage, and the purchaser of boilers and all interested will be acting with prudence if they object to such inferior work as punching; they can get first class work for about the same price, and will be less likely to come under the Employers' Liability Act from having used, to say the least, very indifferently constructed if not dangerous boilers.

Riveted Joints for Cylindrical Shells, Receivers, Domes, &c. (Steel).

If the plates for cylindrical shells, receivers, domes, &c., and the rivets, comply with the foregoing conditions, the percentage of strength of any joint or other particulars of the joint may be found by the following formulæ :-

p = Pitch of rivets in inches.

d = Diameter of rivets in inches.

A = Area of one rivet in square inches.

n =Number of rivets in one pitch (greatest pitch).

% = Percentage of plate left between rivets in greatest pitch.

%1= Percentage of rivet section as compared with solid plate.
%2= Percentage of combined plate and rivet section when the number of rivets in the second row is twice that in the outer

c=1 for lap or single butt strap joints.

c = 1.75 for double butt strap joints.

T=Thickness of plate in inches.

To find the percentage strength of any given joint-

$$\frac{100(p-d)}{p} = \%$$
 . . (1)

$$\frac{100 \times 23 \times A \times n \times c}{28 \times p \times T} = \%_1 \qquad . \qquad . \qquad (2)$$

When the number of rivets in the second row is twice that in the outer row-

The lowest of the values so found is the percentage strength of the joint.

The use of formula (3) will seldom be found necessary.

In double butt strapped joints % or $\%_1$ is always less than $\%_2$ so long as the diameter of the rivets is not less than the thickness of the plate, and in lap joints when the diameter is not less than $\frac{T}{64515}$.

To find d when p, c, n, T are known so that % may be equal to $%_1$ -

$$\sqrt{\frac{.775 \times T}{n \times c} \left\{ \frac{.775 \times T}{n \times c} + 2p \right\}} - \frac{.775 \times T}{n \times c} = d . \qquad (4)$$

To find p when d, n, c, T are known so that % may be equal to $%_{1}$ —

$$\frac{23 \times A \times n \times c}{28 \times T} + d = p \qquad . \qquad . \qquad . \tag{5}$$

To find d and p when n, c, T and the required percentages are known—

$$\frac{1.55 \times \% \times T}{(100 - \%) \times n \times c} = d \qquad . \qquad . \qquad . \qquad (6)$$

$$\frac{100 \times 1.55 \times \% \times T}{(\overline{100} - \%)^2 \times n \times c} = P \qquad (7)$$

Steel Plates and Iron Rivets.

If iron rivets be used in steel plates; to find the particulars of any joint, the foregoing formulæ should be modified as follows:—

In equations (2) and (5) substitute $^8/_{13}$ for $^{23}/_{28}$, in equation (4) substitute 1 0345 for '775, and in equations (6) and (7) substitute 2 069 for 1 55.

Diagonal Pitches, &c.

Diagonal pitches and thickness of butt straps are found by the formulæ previously given for iron boilers. The diameter of the rivets should not be less than the thickness of the plate.

Pressures on Cylindrical Shells, &c. (Steel).

When determining the working pressure to be allowed for cylindrical shells of boilers, domes, &c., the smallest of the percentages, as found by the preceding formulæ (1), (2), or (3), should be used as the percentage strength of the joint, and the nominal factor of safety should not be less than that found from the table of additions to be made to the factor 4.5 or 5, as given for iron boilers.

The pressure and other particulars may be found by the following

formulæ :-

T = Thickness of plate in inches.

D=Inside diameter of boiler in inches.

F = Factor of safety.

r =Lowest of the percentages %, %, or % divided by 100.

B = Working pressure per square inch in lbs.

$$\begin{array}{cccc}
* & \frac{62720 \times r \times 2T}{D \times F} & = & B \\
* & \frac{B \times D \times F}{62720 \times 2 \times r} & = & T \\
* & \frac{62720 \times r \times 2T}{B \times F} & = & D \\
* & \frac{62720 \times r \times 2T}{D \times B} & = & F \\
* & \frac{B \times D \times F}{62720 \times 2T} & = & r.
\end{array}$$

* If the minimum tensile strength of the shell plates be less or more than 28 tons, the constant 62720 should be modified accordingly. If 26 tons, the constant is 58240; if 27 tons, the constant is 60480; if 29 tons, it becomes 64960; if 30 tons, 67200; if 31 tons, 69440; and if 32 tons, 71680.

Curved Ends of Cylindrical Boilers (Steel).

The constant given in the previous remarks on iron boilers for curved ends may be increased about one-third, or may be 13000, thus:—

$$\frac{13000 \times r \times T}{R} = B,$$

r being equal to the percentage of plate section (%) divided by 100, T to the thickness of tube plate in inches, R to the radius of curved end in inches, and B to the boiler pressure per square inch in lbs.

If the percentage strength of the horizontal seam above the tubes be less than the percentage strength of the plate left between the tubes, such lesser percentage should be used in calculating the working pressure; and if the plate above the tube plate be of less thickness than the tube plate, its thickness should be used in the formula—that is, the smallest of the products $r \times T$ should be used.

Plates for Furnaces, Combustion Boxes, &c. (Steel).

If the flanging plates and those exposed to flame comply with the conditions stated in the preceding paragraphs relating to such plates, the constants in the rules for iron boilers, which precede these remarks on steel boilers, may be increased as follows:—

Constants for Furnaces (Steel).

The appropriate constants for plain iron furnaces may have 10 per cent. added, or-

 $\frac{1 \cdot 1 \times C \times T^2}{(L+1) \times D} = B,$

C being the constant applicable to the circumstance of the case or method of construction, T the thickness of plate in inches, L the length of the furnace in feet, D the outside diameter of the furnace in inches, and B the working pressure per square inch in lbs. See Tables Nos. 162 to 174, also Nos. 329 to 341, if above 160 lbs.

The working pressure should not exceed that found by the formula-

$$\frac{9900 \times T}{D} = B.$$

Vertical Furnaces or Fire Boxes (Steel).

In the case of upright fire boxes of donkey or similar boilers, when the decrease in diameter is at least one inch for every foot of height, 10 per cent. should be deducted from the constants applicable for horizontal furnaces with similar descriptions of seams or joints. When the decrease in diameter is less than one inch per foot of height, a greater reduction than 10 per cent. should be made. See Tables Nos. 162 to 174, and notes preceding the Tables, above 160 lbs. Nos. 329 to 341.

Curved Tops of Combustion Boxes (Steel).

The constant suitable for curved tops of iron combustion boxes, as determined by reference to the remarks on *iron* boilers preceding this, may be increased by 10 per cent. The remarks on T bars for stiffening, and the radius of curvature, should be attended to.

Corrugated Furnaces (Steel).

When furnaces are corrugated and machine made, and practically true circles, the working pressure may be found by the following formula,* provided that the plain parts at the ends do not exceed 6 inches in length, and that the plates are not less than $\frac{6}{16}$ inch thick. See Tables Nos. 176 and 177, also No. 343, when above 160 lbs.*

^{*} Provided that the pitch of the corrugations is not more than 6 inches, and the depth, including thickness of plate, not less than 2 inches, or the maximum outside diameter not less than 4 inches more than the minimum inside diameter; when the depth of the corrugations is less, the pitches should be proportionally reduced.

T = Thickness of plate in inches.

D = Diameter of furnace, outside at the bottom of the corrugations, in inches.

C = 14000.

B = Working pressure per square inch in 11 s.

$$\frac{C \times T}{D} = B$$

$$\frac{C \times T}{B} = D$$

$$\frac{B \times D}{C} = T.$$

If the furnace be riveted in two or more lengths, it may be advisable to reduce the constant.

Constants for Flat Surfaces (Steel).

When flat surfaces are supported by stays, screwed into the plate and riveted over so as to form a substantial head, 10 per cent. may be added to the appropriate constant for iron plates; or—

$$\frac{1\cdot 1\times C\times (t+1)^2}{S-6} - B,$$

C being equal to the constant according to the circumstances of the case, t the thickness of the plate in sixteenths of an inch, S the surface supported in square inches, and B working pressure per square inch in lbs.

When flat surfaces are supported by stays screwed into the plate and nutted, or when the stays are nutted in the steam space, 25 per cent. may be added to the appropriate constant for iron plates, and also when the plates are stiffened by riveted washers or doubling strips and supported by nutted stays, thus:—

$$\frac{1\cdot 25\times C\times (t+1)^2}{S-6} = B.$$

The pressures for pitches, about 6 inches and under, should be taken from the Tables Nos. 81 to 109. If above 160 lbs., see Tables Nos. 286 to 314.

Girders for Flat Surfaces (Steel).

The constants applicable for solid wrought iron girders, as given in the preceding remarks on iron boilers, may be increased 10 per cent. when mild steel girders, made of rolled plates and not worked in the fire, are used, or,

 $\frac{1 \cdot 1 \times C \times d \times T}{(W - P)D \times L} = B,$

C being the constant applicable to the number of bolts fitted, d depth of girder in inches, T thickness of girder in inches, W width of combustion box in inches, P pitch of supporting bolts in inches, D distance between the girders from centre to centre in inches, L length of girder in feet, and B working pressure per square inch in lbs.

The stress on the supporting bolts should not exceed that stated previously in the section on Steel, in clause "Bar Stays," page 42, or the working pressure can be found in Tables No. 110 et seq., also 315 et seq., and the working pressure for the plate can be found by the formula in this section on Steel, clause "Constants for Flat Surfaces," or may be taken from Tables No. 81 et seq., also No. 286 et seq.; but when the pitches are about 6 inches or under the pressures from the Tables should always be used, and not those arrived at by the use of the formula. Above 160 lbs. see Tables 286 et seq. and 315 et seq.

Crushing Stress on Tube Plates (Steel).

Tube plates should not have a greater working pressure on them than that found by the following formula:—

D = Least horizontal distance between the centres of tubes in inches.

d = Inside diameter of the ordinary tubes in inches.

T = Thickness of the tube plate in inches.

W = Extreme width of combustion box in inches, from the front of tube plate to back of fire box, or the distance between the combustion box tube plates, when the boiler is double ended and the box common to the furnaces at both ends.

C = 20000.

B - Working pressure per square inch in lbs.

$$\begin{array}{rcl} \frac{(\mathbf{D}-d)\mathbf{T}\times\mathbf{C}}{\mathbf{W}\times\mathbf{D}} & = & \mathbf{B} \\ & & & \\ \frac{\mathbf{B}\times\mathbf{W}\times\mathbf{D}}{(\mathbf{D}-d)\times\mathbf{C}} & = & \mathbf{T} \\ & & & \\ \frac{\mathbf{D}-d)\mathbf{T}\times\mathbf{C}}{\mathbf{B}\times\mathbf{D}} & = & \mathbf{W} \\ & & & \\ \frac{\mathbf{C}\times d\times\mathbf{T}}{\mathbf{C}\mathbf{T}-\mathbf{B}\mathbf{W}} & = & \mathbf{D} \\ & & & \\ \frac{\mathbf{D}(\mathbf{C}\mathbf{T}-\mathbf{B}\mathbf{W})}{\mathbf{C}\mathbf{T}} & = & \mathbf{d} \end{array}$$

Superheaters and Uptakes (Steel).

Although steel may not be considered so suitable for superheaters and the unshielded uptakes of boilers, including those of ordinary vertical donkey boilers, as first-class iron, Engineer Inspectors may assent to its being used; but when they do so the actual strength of the

steel should, in calculating the working pressure, be reduced 36 per cent.

Hemispherical Ends (Steel).

The internal pressure on hemispherical ends made of steel plates, may be found in the same manner as for hemispherical ends made of iron plates; but the constant 40,000 may be increased to the number represented by the tensile strength of the plates in lbs. per square inch when within the range of 26 to 30 tons, although, as when made of iron, it is generally advisable for the ends to be of the same thickness as the cylindrical part.

Dished Ends (Steel).

Dished ends made of steel should be dealt with in the same manner as those made of iron; but when solid steel-screwed stays, of suitable quality, which have not been welded or otherwise worked after heating, are used, the stress on them may be 18,000 lbs. per square inch of net section, when the dished ends are theoretically equal to the pressure required when considered as a portion of a sphere. The plates used for dished ends should not exceed in tensile strength 30 tons per square inch.

General Remarks.

If the foregoing remarks in regard to quality, testing, and construction, &c., be attended to, and in other respects the boilers are made in accordance with the conditions for iron boilers, which precede this, steel may be advantageously used for boilers; but although the steel boiler may be equally safe, or even more so, it is not generally advisable to reduce the scantlings so much below that required for iron boilers, and it is not always to the interest of owners to have boilers made so light. There is a limit to lightness as well as to strength, when new, and when full advantage of the extra strength of steel over iron is taken, the owner ultimately will not get the proper value out of the steel, and it would be better, in some cases, to use first class iron than to reduce the thickness of the plate and sizes of stays, &c., so that the strength when new of the steel boiler is only equal to that of a good iron one.

Having regard to the extra material required to keep the steel scantlings a little above the minimum given in the foregoing remarks, it will not always prove economical to sanction the scantlings being run down to the lowest possible margin of strength when new. So long as the general custom is to lower the scantlings, so long will it suit makers to use the minimum quantity of material, and in doing so they are only doing that which may be considered as fair in trade, when competition is keen and each maker guerantees to be up to given standards.

Those interested should remember that standards as to scantlings of steel boilers, like other things, are generally minimum scantlings as to safety, and not standards as to ultimate economy; therefore in many cases on the score of ultimate economy, it would be well were only about half the allowance over iron that safety admits when the boiler is new taken advantage of, and in a large number of cases it would ultimately be to the interest of those who have to pay for the boiler and for keeping it in an efficient condition, were the scantlings kept up

to the same standard as given previously for iron boilers.

Although this has been stated, it should not be thought that good mild steel is despised or looked upon with distrust in comparison with good iron; on the contrary, use steel, but use it with discretion, and if properly treated, it will turn out as good as, or even better than, iron. This is said after thirty-seven years' experience of steel, and although that made so long ago had not exactly the same physical properties as that now made, nevertheless the material was such that boilers made of it then stood well when judiciously treated; the failures in years past were in many cases traced to the manipulation which the material received in the boiler shop, and to injudicious treatment of the boilers. Experiments made thirty-seven years ago on the steel then made showed that the tensile strength was in some cases nearly double that of iron, but the tensile strength of that now made varies from about that of iron to about 30 per cent. in excess, such as is generally used in boilers. It was claimed for it that its tenacity was equal in all directions, and the tensile strength with and across the grain of that now made does not generally differ much. It has been stated that the steel of the period in question was as ductile and malleable as copper; however that may have been, it is an undoubted fact that some of it was as capable of being bent and flanged as the best iron. and that with proper care it stood as well in the boilers of that time as any iron. In no case where steel has been judiciously used has the writer known it to turn out worse than iron, if such a quality as could be made were used and proper precautions were taken, and in almost every case when it has not come up to the expectations of those interested, good reasons could be given for its not succeeding and turning out better than iron.

BOILERS, GENERAL REMARKS.

NEUTRAL PARTS OF SHELLS, MANHOLES, STEAM PIPES, FITTINGS, TESTING, EXAMINATION, LIFTING FOR INSPECTION, SETTING, &C.

Neutral Parts of Shells.

It is essential that the neutral part of boiler shells under steam domes should be efficiently stiffened and stayed, and this may be done by stays from the shell to the top of dome, or gusset stays attached to the shell and sides of dome. If by stays to the top of the dome, large washers well bedded should be fitted under the nuts inside the shell of the boiler, or T bars may be riveted circumferentially to the top of the shell of the boiler, and the stays attached to the T bars. The size of the stays should not be less than those for dished ends.

Manholes, Mudholes, and Openings.

The openings in the shells of cylindrical boilers should have their

shorter axis placed longitudinally.

All manholes, mudholes, and other openings should be strengthened and stiffened with compensating rings of at least the same effective sectional area as the part of the plate cut out. In no case should a plate ring be less in thickness than the plate to which it is attached. A flanged plate ring riveted on inside the manhole or mudhole opening makes a very good job; the edge should be faced, then a good joint can be made with the door. A ring of iron angle or T bar riveted on the outside with the weld placed at the larger axis makes an efficient job, but welded steel rings or plates should not be used round openings.

Manhole and Mudhole Doors.

The doors should always be fitted inside the boiler, if practicable. The bolts should be screwed into the door, with a shoulder or collar, with a nut inside, and the ends of the bolts riveted over. There should be four bolts in large doors which are not embossed, but two bolts are generally sufficient in large embossed doors, and one in very small ones. The size of bolts must depend on the circumstances of each case. Except in the case of very small mudhole or sight doors, the diameter of the bolts should not be less than one and one quarter inch. The doors should fit well, and so prevent the material used for making the joints getting blown out. They should be made from wrought iron or steel plate from about '4 to 1 inch thick, according to size and pressure; the doubling plate should be about one half the thickness of the plate to which it is riveted. Embossed steel doors are recommended.

Cast manhole or mudhole doors should not be fitted.

Cross Bars for Manhole and Mudhole Doors.

Manhole doors should not have less than two cross bars, nor should mudhole doors unless they be very small.

The cross bars should always be forged out of the solid, and if the holes are punched or drifted when hot, proper dies, &c., should be used, but drilling the holes makes a first class job. The feet or ends should bed well on the strengthening ring round the opening, or, if the ring is inside, on the part of the shell to which the ring is riveted.

Openings in Boiler Shells, Superheaters, Steam Receivers and Domes.

All holes cut for mountings should have wrought iron or steel plates and rings riveted round the openings, and the plate rings at the thinnest part should be at least as thick as the plate they are riveted on, with true and flat surfaces on the top of the rings; this not only compensates for the part cut out, but enables a steam-tight joint to be easily made, more particularly in the case of cylindrical shells. The net section of the ring should not be less than the part cut out—in general it will be found better to make it greater; it is also advisable to have the diameter of the ring larger than the diameter of the flange which is to be jointed to it. In cases where the tube plate is carried down to stiffen the openings over the furnaces, and mountings are fitted on such parts, rings are not necessary, and a true surface can easily be made for the flanges of the mountings or fittings.

Steam Stop Valves or Cocks.

Each boiler should be fitted with a stop valve, and it should be connected directly to the boiler, the neck of the casting being as short as practicable. When two or more boilers are connected with the steam receiver or superheater, a stop valve should be fitted between each boiler and the steam receiver or superheater. This is necessary to avoid the failure of all the boilers through the failure of one.

When the boiler is very small, a cock attached directly to the boiler may answer the purpose of a stop valve, but the neck of the cock should be as short as is practicable, and should be attached to the

boiler by a flange.

When the stop valve cannot be attached directly to the boiler, a short length of wrought iron pipe, made of the highest quality of iron plate, should be riveted to the boiler, and the stop valve attached to the pipe. In such cases the pipe should be made considerably thicker than required for the pressure when new, so as to allow for corrosion, as it will waste much more rapidly than the shell of the boiler.

It is desirable that arrangements should be made so that the stop valve can be shut without going on the boiler, and when practicable it should be so arranged for marine boilers that it can be shut from the

deck.

Expansion Joints for Steam Pipes.

Expansion joints should be fitted to steam pipes, and there should be a fixed collar with bolts fitted so as to prevent the end of the pipe being forced out of the socket. This is particularly desirable in the case of bent steam pipes which are fitted with socket expansion joints, and even when the steam pipes are straight the ends are liable to be forced out of the sockets.

Steam Pipes.

Copper steam pipes should be made of the best material and of ample strength for the pressure to which they are to be subjected; solid drawn pipes are preferable to those which are brazed.

Cast iron steam pipes are not recommended, and if used they should be carefully examined and drilled in several places, so that their thick-

ness may be accurately ascertained.

When made of cast iron, extra precautions as to expansion joints are

absolutely necessary.

All steam pipes should be particularly examined and tested by cold water; new pipes to about two and a half or three times the working pressure.

Neither east iron nor copper steam pipes should pass through the uptake, or be subjected to the impact of heat or flame. When a steam pipe passes through the uptake, it should be made of the highest quality of wrought iron and shielded from the impact of flame.

Glass Water Gauges.

There should be at least one glass water gauge fitted to each boiler, but it is desirable to have two.

A boiler which is fired from both ends should have at least two glass

water gauges-that is, one at each end.

A marine boiler of an unusual width should have at least two glass water gauges; and if of an unusual width, and fired from both ends,

each boiler should have four glass water gauges.

When the fittings for the glass water gauge are not attached directly to the boiler, but to a hollow casting or pipe, there should always be a cock directly on the boiler at the top and bottom ends of the casting or pipe, unless there is a plug or cock on the latter. When there are no cocks between the boiler and the pipes, hollow casting, or column, the bore of the pipes, hollow casting, or column should not be less than 3 inches.

If a cock be fitted so that communication through the hollow casting or pipe, between the top and bottom of the glass can be stopped without shutting either the top or bottom gauge glass cock, then it can be ascertained if the height of the water, as it appears in the glass, correctly indicates the height of water in the boiler without interfering with the cocks directly on the boiler, which are at the ends of the hollow casting or pipe; and such an arrangement is very desirable, when the glass water gauge is attached to a hollow casting or pipe, as the absence of such a cock may be very serious. When cocks have not been on the ends of the castings or pipes, the want of such a cock placed in the position described has led to disastrous results.

It is desirable, more particularly when the pressure is high, that the fittings are such that the cocks can be shut without the risk of scalding when the glass breaks, and when practicable it is desirable that arrangements are made so that the glass water gauge can be tried from the starting platform.

Asbestos-fitted cocks, such as made by Dewrance or by Hopkinson, are recommended. Hopkinson's Equilibrium and Absolute gauges are substantial and well made: both firms turn out first-class boiler fittings.

Water Test Cocks.

Each boiler should have at least three water test cocks.

A marine boiler that is fired from both ends should have at least three water test cocks at each end.

A marine boiler of unusual width should have at least six water test cocks; and if in addition to being of an unusual width the boiler is fired from both ends, there should be at least twelve water test cocks fitted to each boiler.

The test cocks should not be fitted to the hollow casting or pipe to which glass water gauges are sometimes attached, but should be attached directly to the boiler, or each by a separate pipe to the boiler. Test cocks on a stand pipe, when the passage in the pipe is permanently closed, are worse than useless.

Asbestos-fitted cocks are those which are recommended; those made by Dewrance or by Hopkinson are well and substantially made.

Steam Pressure Gauges.

There should be at least one pressure gauge fitted to each boiler. When a boiler is fired from both ends, there should not be less than two pressure gauges fitted to each boiler—that is, one at each end. Duplex pressure gauges are those which are recommended.

Lights for Gauge Glasses and Steam Gauges.

There should always be suitable fittings for lights and efficient means provided, so that the glass water gauges and pressure gauges can be distinctly seen at all times.

Blow-off Cocks.

The blow-off cock should be fitted directly on the boiler, and the neck of the cock should be as short as practicable. The neck and flange of the cock should be of ample strength, and it is most desirable that a wrought iron or steel plate ring be riveted to the shell of the boiler, considerably larger in diameter than the flange of the cock, and that the cock be attached to the ring plate, instead of being attached directly to the shell. This not only adds strength to the boiler, but greatly does away with the chance of the shell becoming dangerously corroded, owing to the joint leaking.

Guards for Blow-off Cocks.

There should be guards fitted to all blow-off cocks, so that the spanner or handle cannot be taken off unless the cock be shut; this is essential when the cock is below the plates, or not always distinctly in sight, and is desirable in whatever position the cock may be placed. In any case where the cock is always visible, and the arrangement is such that there is no guard fitted, the spanner or handle should be securely fixed to the plug of the cock, and not merely shrunk on. On board ship, in addition to the cock directly on the boiler, there should be one placed directly on the skin of the vessel, or on the side of the Kingston valve; and the same arrangement of spanners, with guards, &c., should be fitted as in the case of the cock directly on the boiler. Kingston valves are not now generally fitted.

Scum or Brine Cocks.

The seum or brine cock or valve should be attached directly to the boiler, and the handle of the cock should be securely fixed to the plug, not merely shrunk on; and if it be so placed that it is not always visible and easy of access, there should be a guard fitted so that the handle or spanner cannot be taken off when the cock is open.

Feed Cocks or Valves.

There should be separate feed arrangements fitted in addition to and also unconnected with the main feed pipes and valves. In the case of very small boilers, an efficient hand pump, by which the boilers can be fed when steam is up, may be in some cases found sufficient, but it should not be considered so unless properly tried; it is desirable that a donkey engine be fitted for working the additional feeding arrangements which are separate and independent of the main feeds.

It is most desirable that there should be a non-return valve fitted between the feed cock or valve and feed pipe, and so arranged that when the feed cock or valve is shut, the non-return valve can be taken out and any defects remedied; and when there is a separate inlet for each feed, which is most desirable, one can be at work while the other

feed is shut off, and the non-return valve is being put right.

There should be a separate feed cock or feed valve to each boiler; but when this is not the case, there should be a non-return valve, with an adjusting screw on each boiler between the single feed cock or feed valve and the boiler; one cock or valve to feed more than one boiler is impracticable.

Necks of Valves and Cocks.

The necks of all valves and cocks should be as short as practicable, but when they are obliged to be of an unusual length they should be well and efficiently bracketed, and the flanges thicker, and an extra number of bolts or studs fitted, for attaching them to the boiler, or the bolts or studs should be considerably larger.

Testing Boilers by Hydraulic Pressure.

All new boilers should be tested by hydraulic pressure to twice the working pressure, but not above that; the working pressure should only be fixed after the boiler has been carefully examined inside and outside, the method of construction considered, and the working pressure should not exceed that found by the formulae preceding this, or by the use of the Tables. If the test be not satisfactory, and any defects are observed, they should be made good, and the boiler again subjected to twice the working pressure.

Steam chests, receivers, domes, and superheaters should be tested in the same manner, and the pressure fixed in the same way, care being taken that they are, by the preceding rules applicable to them. fit for

the same pressure as the boiler.

Testing and Examining Small Boilers, &c.

If any boiler be too small to allow the Inspector to get inside, the working pressure should not be fixed until the case has had careful consideration, and the boiler should be tested by hydraulic pressure at least every twelve months. If it be only stays which prevent the Engineer Inspector getting in, they should be removed; but it is essential that he should, before finally approving of the efficiency of the boiler, see that they are properly replaced.

Examination of Boilers.

Previous to finally examining any boiler, with a view to fixing the working pressure, it should be thoroughly cleaned inside and out, and it should be cool enough to enable a thorough examination to be made, and until it has been thoroughly cleaned and carefully examined the working pressure should not be fixed; all plates the thickness of which is in any way doubtful should be drilled, so that their actual thickness be ascertained. Superheater plates, steam space plates, and those under and in proximity to the bridges, should be frequently drilled, as they are specially liable to get thin.

Baffle or Shield Plates.

Baffle or shield plates should be fitted to the flat ends of boilers, as far as the steam space extends, also to the ends of superheaters, where exposed to the hot gases, &c.; in the uptake, all plates on which the direct impact of heat or flame acts, being very liable to be injured unless water be in contact with them on the one side, should be efficiently protected by baffle or shield plates.

Lifting Boilers for Inspection.

When all the outside of any boiler cannot be seen, it should be lifted from its seat and thoroughly inspected at least once in every four years.

It may be advisable to reduce the pressure before the expiration of four years, if the boiler be not lifted, so as to enable the Inspector to satisfy

himself as to its efficiency for the pressure.

If for special reasons it is not wished to lift a boiler, the circumstances of the case should be *specially* considered, so that the efficiency of the boiler for a short time and for the pressure wished may be decided.

When any boiler is lifted, all temporary patches, if any, should be

removed and permanent ones riveted on.

All boilers when lifted for inspection or for other reasons should be tested by hydraulic pressure to twice what they are intended to be worked at, after all the repairs are made and before they are reset. A record should be made by the Inspector of the test—as to when made, the condition of the boiler, and what repairs, if any, have been made, and by whom.

Setting and Fixing Boilers.

Before a boiler is set the outside of the bottom should be thoroughly scraped and well rubbed with sandstone, then well brushed with a hard brush and painted with two coats of red lead, which should be well ground and mixed; each coat of paint should be allowed to harden thoroughly, and when the last coat is well hardened, a coat of coal tar should be applied, and when it is quite hard the boiler can be set or fixed. In the case of land boilers set in brick-work, it is necessary that all lime be kept away from the boiler plates; it is also very desirable that the boiler be bedded in red lead, as when this is done the plates do not corrode, the cost will ultimately be more than amply repaid, and the chance of explosion greatly lessened. If the boiler be on board ship, care should be taken that the boiler be set so that there is as little chance as possible of bilge water getting to the plates.

Want of such precautions shortens the life of a boiler, besides fre-

quently contributing to that which is worse, viz., an explosion.

Land boilers, after about twenty years' work, have been found free from corrosion outside, they having been always painted and set, &c., at the suggestion of the writer, as stated above.

RIVETING (IRON AND STEEL).

Joints of Special Construction.

Formulæ have been given in a former part of the book, for ascertaining the proportions and finding the value of riveted joints as usually made, but by what follows the value of joints of special construction may be determined, such as joints in which the rivets are not all of the same diameter, or in the case of joints where some of the rivets are in single shear and some in double shear, or where the rivets are of different diameters, as well as some of them being in single shear and some in double shear.

The formulæ which follow are applicable when the rivets in any one row are of the same diameter, although the diameters may differ in each

row.

The formulæ are also applicable to ordinary joints, although not so convenient for use when applied to such joints as the formulæ previously given for ordinary riveting.

 p_1 = Pitch of rivets in inches in outer row.

 p_2 = Pitch of rivets in inches in second row. p_3 = Pitch of rivets in inches in third row.

 $p_3 = 1$ item of fivets in inches in fourth row. $p_4 =$ Pitch of rivets in inches in fourth row.

 d_1 = Diameter of rivets in inches in outer row. d_2 = Diameter of rivets in inches in second row.

 d_2 = Diameter of rivets in inches in second row. d_3 = Diameter of rivets in inches in third row. d_4 = Diameter of rivets in inches in fourth row.

 $A_1 =$ Area of one rivet in square inches in outer row.

 A_2 = Area of one rivet in square inches in second row. A_2 = Area of one rivet in square inches in third row.

 $A_4' = Area$ of one rivet in square inches in fourth row. $\%_{P1} = Percentage$ of plate left between rivets in outer row.

 $^{\circ}_{p_2}$ = Percentage of plate left between rivets in second row. $^{\circ}_{p_3}$ = Percentage of plate left between rivets in third row. $^{\circ}_{p_4}$ = Percentage of plate left between rivets in fourth row.

 ${}^{\circ}_{R_1}$ = Percentage of rivet section in outer row as compared with solid plate.

%R2 = Percentage of rivet section in second row as compared with solid

%r₃=Percentage of rivet section in third row as compared with solid plate.

%R4=Percentage of rivet section in fourth row as compared with solid

C = 1 when the rivets are in single shear.

C =1.75 when the rivets are in double shear.

T = Thickness of plate, in inches.

Having found the percentages by the foregoing formulæ, the percentage value of the joint is determined as follows:-

The lowest of the values so found is the percentage value of the joint.

The working pressure for iron boilers is found by the formula

$$+\frac{47000 \times r \times 2T}{D \times F} = B,$$

B being the working pressure, T the thickness of the plate, r the percentage applicable divided by 100, D the diameter of the boiler, and F the *nominal* factor of safety. See formula for iron boilers page 24.

Diagonal Pitches.

The value of the metal in the diagonal pitch is only about five-sixths of what it is in the horizontal pitch, therefore the net section in the diagonal pitch should be one-fifth greater than it is in the horizontal pitch, or in the part of the horizontal pitch to which it is required to be equivalent in strength.

^{*} If steel plates and steel rivets, multiply by $\frac{2}{3}$ %, + 1f steel plates, substitute 62720 for 47000, if 28 tons steel, but for any other tensile strength the number which it represents in lbs. per square inch should be used.

Thickness of Butt Straps.

The minimum thickness of butt straps is found by the following formulæ:—

T = Thickness of plate in inches.

T₁=Thickness of each butt strap in inches (minimum).

 $\frac{5 \text{ (Plate percentage at outer row)} \times T}{8 \text{ (Plate percentage at inner row)}} = T_1 \text{ Double butt straps };$

 $\frac{9 \text{ (Plate percentage at outer row)} \times T}{8 \text{ (Plate percentage at inner row)}} = T_1 \text{ Single butt straps.}$

Flanged Mouthpieces (Iron and Steel), Flat Surfaces.

The piece cut out before flanging should be cut by machine if practicable, but, if not, it should be drilled out, never punched. The edge of the flange should be "trued up" so as to enable a tight joint to be made. The flange should not be jumped up; but when the plate is of less thickness than, say about § inch, a flanged ring may be tightly fitted on the flange and both faces trued up together; this will insure a good surface, and enable a tight joint to be made. Solid recessed doors are very suitable for flanged mouthpieces.

The depths given in the following Table include the thickness of

the plate.

The width of the material used for making the joint of doors which are not recessed for the flange should be considerably in excess of the thickness of the flange.

The jointing material should not be square or round.

When the door is recessed, the jointing material should be a tight fit in the recess, and the recess should not be too easy a fit for the thickness of the flange.

H
Ĭ.
=
TABLE
IV.
_
ŝ
E
A(
SURF
<u>D</u>
02
FLAT
Ţ
T
÷
EEI
STEE
02
QN
7
101
(IB
CES
Ĕ
巴
Ь
10
뭅
5
AN
FL
-

						_	_							_			
W 15 ins.	D	116/16	2 1/16	2 3/16	2 1/4	2 %	2 7/16	2 %	2 %	2 3/4	213/16	2 7/8	တ	3 1/16	3 1/8	3 3/16	17
W 14 ins.	P	1 7/8	7	2 1/16	2 3/16	2 5/16	2 %	2 1/2	2 %	2 %	2 3/4	213/16	2 1/8	216/16	ග	3 1/8	74 F
W 13 ins.	A	113/16	115/16	7	2 1/8	2 3/16	2 %	2 %	2 7/16	2 %	2 %	211/16	2 3/4	2 %	215/16	හ	7 - Forest 400 200 F
W 12 ins.						2 1/8											door a
W 11 ins,	D	111/16	1 %	1 1/8	116/16	7	2 1/8	2 %	2 1/4	2 %	2 7/16	2 1/2	2 %	2 %	211/16	2 %	oo longth
W 10 ins.	P	1 %16	111/16	1 3/4	1 %	115/16	2	2 1/16	2 %	2 1/4	2 % c	2 %	2 7/16	2 1/2	2 %	2 %	ononing whose
W 9 ins.	D	1 1/2	1 %	111/16	1 %	113/16	115/16	23	2 1/16	2 1/8	2 %	2 1/4	2 %16	2 %	2 7/16	2 1/2	for oneni
W 8 ins.	-					1 %			_								intended f
W 7 ins.	Q	1 %16	1 %	1 1/2	1 %	1 %	111/16	1 3/4	113/16	1 %	115/16	7	2 1/16	2 1/16	2 1/8	2 %16	ni one so
W 6 ins.	Q	1 1/4	1 5/16	1 %	1 7/16	1 1/2	1 %	1 %	111/16	1 %	113/16	113/16	1 %	116/16	7	2	compensating flanges are
W 5 ins.	D	1 1/8	1 3/13	1 1/4	1 5/16	1 %	1 7/16	1 1/2	1 1/2	1 %	1 %	111/16	1 %	1 %	113/16	1 7/8	1 mponeat
W 4 ins.	Д		1 1/16	1 1/8	1 %16	1 1/4	1 1/4	1 5/16	1 %	1 7/16	1 7/16	1 1/2	1 %	1 %	1 %	111/16	of the co
W 3 ins.	D	×2/2	16/16	15/16	П	1 1/18	1 1/8	1 1/8	1 3/16	1 1/4	1 1/4	1 5/16	1 5/16	1 %	1 %	1 7/16	denths
Thickness of Plate in inches.	T	74	9/32	2/16	11/32	<u>%</u>	13/32	7/16	16/32	1/2	17/32	9/18	19/32	%	21/32	11/16	The

The depths of the compensating flanges are intended for openings whose length does not exceed 1.5 time the width of the opening of the manhole or mudhole.

The opening of the manhole or mudhole.

The opening in inches.

The opening is inches. D = Depth of flange in inches.

W = Width of opening in inches.

σ_2
CES.
(7
\preceq
4
URE
2
ب
T(1)
-FLAT
-
7
-
Ξ
1
-
<u></u>
EE
20
02
_
ND
Z
A
z
NO
RON
RON
(IRON
(IRON
S (IRON
ES (IRON.
CES (IRON
CES (IRON
ECES (IRON
TECES (IRON
PIECES (IRON
HPIECES (IRON
HPIECES (IRON
THPIECES (IRON
UTHPIECES (IRON
OUTHPIECES (IRON.
OUTHPIECES (IRON.
MOUTHPIECES (IRON.
MOUTHPIECES (IRON
ANGED
ANGED

TABLE No. 1 continued.

_		_		_	_	_			_		_	_				_	_
	W 15 ins.	D	3 5/16	3 %	3 7/16	3 1/2	3 %	3 %	311/16	3 3/4	313/16	3 %	315/16	4	4 1/16	4 1/8	time the
	W 14 ins.	D													315/16		d 1.5 tin
	W 13 ins.	D	3 1/16	3 1/8	3 3/16	3 1/4	3 % 8	3 %	3 7/16	3 1/2	3 %	3 %	311/16	311/16	3 3/4	313/16	not exceed 1.5
	W 12 ins.	Q	215/16	හ											8 %		n does n
	W 11 ins.	P	3/16	2%	5/16		1/16	1/8	3/16	3/16	1/4	2/16	%	7/16	3 7/16	1/2	whose length does
	W 10 ins.	ا ا	1/16	3,4	3/16	2%	2%	2/16		1/16	1/8	3/16	3/16	1/4	3 %	%	igs who
	W 9 ins. 1	Q	9/18	%	2%	1/16	3/4	3/16	1/8/	% %	1,16		1/16	1/16	3 1/8	3/16	the compensating flanges are intended for openings
	W ins.	Q	%	7/16	1/2	9/16	2%	8/8	1/16	%	3/16	3/16	1.80	5/16		_	ended fo
	W 8	- a	7,4	6/16	2/16	%	7/16	1/2	1/2	9/16	%	%	1/16	3/4	3/4	13/16	are inte
	W 7	- 0													9/16 2		flanges
	6 1														31		ting
	W 5 ins.	D	1 7/8		2	2									2 %		ompensa
	W 4 ins.	А	111/16	1 %	1 %	113/16	113/16	1 1/8	1 7/8	115/16	115/16	23	2		2 1/16	2 1/8	of the co
	W 3 ins.	D,	1 7/16	1 1/2	1 1/2	1 %	1 %	1 %	1 %	111/16	111/16	1 %	1 34	113/18	113/16	113/16	The depths of
	Thickness of Plate in inches.	L	2 3/3 2	3/4	2 5/3 2	13/16	27/32	%	29/32	15/16	31/32	-	1 1/32	1 1/16	1 3/32	1 1/8	The

D=Depth of flange in inches. width of the opening of the manhole or mulhole. $\Gamma = Thickness$ of plate in inches. V = Width of opening in inches.

PRESSURES, PITCHES, AND SURFACES.

Iron Plates.

In the Tables Nos. 2 to 30, which immediately follow, and Nos. 225 to 253, Pitches are given from about 21 inches to 3.5 inches, and surfaces from about 440 square inches to 12 square inches, with the thickness of plates and Pressures suitable for the different Pitches and Surfaces, according to the particular conditions under which the Pressures, Pitches, and Surfaces are applicable. The Pressures range from 5 lbs. to 200 lbs. per square inch. The thickness of the plates ranges from $\frac{1}{4}$ to $1\frac{1}{8}$ inch, each Table advancing by $\frac{1}{32}$ of an inch.

The following notes and remarks will facilitate the use of the

Tables Nos. 2 to 30 and Nos. 225 to 253.

The distinguishing letters over the different Columns in each Table, refer to the conditions under which the Pitches and Surfaces are suitable for the Working Pressure opposite the particular Pitch and Surface, when the plates are of the thickness given at the head of the Table; and, consequently, opposite the particular Pressures will be found the Pitches and Surfaces suitable for the Working Pressure for the thickness of plate at the head of the Table.

The following are the conditions to which each distinguishing letter in the Tables refers; they show under which distinguishing letter the Pitches and Surfaces should be looked for in the Table for the suitable

thickness of plate:-

Distinguishing Letters. Distinguishing Letters.

B.

A. If the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and strips of at least the thickness of the plates they cover, and of a width of not less than \(\frac{2}{3} \) the pitch of the stays, and the strips are properly riveted to the outside of the plates; then the maximum Working Pressure is that found opposite the Pitch or Surface in Column

B. If the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and washers of at least the thickness of the plates they cover, and of a diameter not less than \(\frac{2}{3} \) the pitch of the stays, and the washers are properly riveted on the outside of the plates; then, the maximum Working Pressure is that found opposite the Pitch or Surface in Column

C. If the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and washers of at least \$\frac{2}{3}\$ the thickness of the plates they cover, and of a diameter of not less than three times the diameter of the stay over the thread; then the maximum Working Pressure is that found opposite the Pitch or Surface in Column

Distinguishing Distinguishing Letters. If the plates are not exposed to the impact of heat or flame, D. and the stays are fitted with nuts only; then the maximum Working Pressure is that found opposite the Pitch or Surface in Column E. water is in contact with the plates, and the stays are screwed into the plates, and fitted with nuts; then, the maximum Working Pressure is that found opposite the Pitch or Surface in Column If the plates are not exposed to the impact of heat or flame. and water is in contact with the plates, and the stays are screwed into the plates, and the ends of the stays are riveted over so that substantial heads are formed; then the maximum Working Pressure is that found opposite the Pitch or Surface in Column If the plates are exposed to the impact of heat or flame, and G. steam is in contact with the plates, and the stays are fitted with nuts and washers of at least 3 the thickness of the plates they cover, and of a diameter not less than three times the diameter of the stay, over the thread; then the maximum Working Pressure is that found opposite the Pitch or Surface in Column . If the plates are exposed to the impact of heat or flame, and G. water is in contact with the plates, and the stays are screwed into the plates, and the ends of the stays are riveted over so that substantial heads are formed; then the maximum Working Pressure is that found opposite the Pitch or Surface in Column . If the plates are exposed to the impact of heat or flame, and H. steam is in contact with the plates, and the stays are fitted with nuts only; then the maximum Working Pressure is that found opposite the Pitch or Surface in Column, . H. If the plates are exposed to impact of heat or flame, and I. steam is in contact with the plates, and the stays are screwed into the plates, and the ends of the stays are riveted over so as to form substantial heads; then the maximum Working Pressure is that found opposite the

In any case where the material or workmanship is defective, or the nuts or ends of the stays, &c., are defective, the Working Pressure should be less than that found opposite the Pitches and Surfaces, which are applicable for cases where all is first class as to material, workmanship, and condition.

Pitch or Surface in Column

The following examples will further facilitate the use of the Tables:—
(1) To find the Working Pressure for a given Thickness of Iron Plate and a given Pitch or Surface:—

I.

If the Iron Plate be % inch thick, the Surface 70, and Pitch 8.36 inches, and the conditions of the case make the Surface and Pitch in column E applicable; in Table No. 12, which is for % inch Iron Plates, in column E, the surface 70 is found. and the Pitch 8.36, or say 8% inches, opposite which the Pressure is 125 lbs. per square inch.

(2) To find the Pitch or Surface for a given Pressure and a given

Thickness of Iron Plate :-

If the Iron Plate be % inch thick and the Pressure 125 lbs. per square inch, and the conditions of the case make it necessary to select the Surface in column E; in Table No. 12, which is for % inch Iron Plates, opposite 125 lbs. in Column E, is found 70, which is the Surface in square inches, the Pitch being 8.36 or, say, 8% inches.

(3) To find the thickness of Iron Plate for a given Pitch or Surface and

a given Pressure :-

If the Surface be 70 square inches and the Pressure 125 lbs. per square inch, and the conditions of the case make it necessary to select the Surface or Pitch in column E; then, opposite 125 lbs. Pressure, the Surface 70, and Pitch 8:36 or, say, 8% inches, are found in Column E in Table No. 12, and the Thickness of the Iron Plate is found to be % inch.

Or, if W = Working Pressure, P = Pitch, S = Surface, and T = Thickness of Iron Plate, and if A, B, C, D, E, F, G, H and I are the letters at the heads of the different Columns, indicating the Columns where the Surface applicable to the case must be looked for,

(1) To find W — when T=1 inch, S=408, P=20.2, and A the distinguishing letter of Column from which the Surfaces or Pitch must be selected :-

In Table No. 26 for 1 inch Iron Plates, in Column A the Surface 408 is found, and opposite the Surface is 115 lbs.,

which is the Working Pressure required to be found.

(2) To find S or P—— when T=1 inch, W=115 lbs., and A the distinguishing letter of Column in which the Surface or Pitch must be looked for :-

In the Table No. 26 for 1 inch Iron Plates, and opposite 115 lbs. in Column A, 408 and 20.2 are found, which are the Surface

and Pitch required.

(3) To find T- when W=115 lbs., S=408, P=20.2, and A the distinguishing letter of Column in which the Surface must be

As the Surface and Pitch are large, and the Pressure moderately high, the Iron Plates must be thick, and on looking down Table No. 26 for 1 inch Iron Plates, opposite 115 lbs. in Column A, are found 408 and 20.2; therefore T=1 inch, which is the Thickness of Iron Plates required to be found.

If in any of the foregoing examples, the Pitches only, or the Surfaces only, had been under consideration instead of both Pitches and Surfaces, the method of ascertaining either would have been exactly the same as the Pitches and Surfaces in each case are given opposite the Pressure

under the distinguishing letter applicable to the case.

The Pitches are given in inches and decimal parts of an inch; the latter can, if required, be easily converted into vulgar fractions, and when this is done, if the decimal part is not found equal to say ½6 part of an inch, it is advisable in practice to make the pitch to the sixteenth below, and such a small difference will be on the side of safety. If, for example, the Pitch in the Table be 20.2 inches, it may in practice be 20.4 inches, if vulgar fractions be preferred to decimals. As it is desirable that flat surfaces should be supported by stays forming squares, the following Tables have been prepared for Surfaces with stays pitched in squares, or nearly so. When there is a considerable difference in the Pitches, it is thought prudent that the Pressure should not be so great; therefore, when the surface to be supported is obtained by the product of two Pitches which are considerably different, the Pressure which may be used will not be that opposite the Surface, but may be easily found.

For example-

If the Pitches are as 4 to 3, the Pressure opposite the Surface or product of the two Pitches may be reduced about 4 per cent.; when as 3 to 2, about 8 per cent.; when as 5 to 3, about 12 per cent.; and when as 2 to 1, the reduction of Pressure may be about 20 per cent.

The thicknesses given in the Tables are intended to provide for stresses due to the steam pressure upon the stayed flat plate, and when a flat plate is subjected to additional stresses, such stresses should be duly considered. These additional stresses may be tensile or compressive; in both cases the thickness of the plate should be adequately increased, or other efficient means adopted to meet the requirements of the case.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{1}{4}$ inch thick.

Pressure per sq. in	A	*	В	*	C	*	D	*	Е	*			
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface			
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins. 20.15	sq. ins.			
10	20.15	406.0	19.52	381.0	16:00	256.0	15.19	231.0	14.35	206.0			
15	16:51	272.6	16.00	256.0	13.14	172.6	12.49	156.0	11.80	139.3			
20	14.35	206.0	13.91	193.5	11.44	131.0	10.88	118.5	10.29	106.0			
25	12.88	166.0	12.49	156.0	10.29	106.0	9.79	96.0	9.27	86.0			
	11.80	139.3	11.44	131.0	9.45	89.3	9.00	81.0	8.52	72.6			
30 35	10.96	120.2	10.63	113.1	8.80	77.4	8.38	70.2	7.94	63.1			
	10.29	106.0	9.98	99.7	8.27		7.89	62.2	7.48	56.0			
40	9.74	94.8	9.45	89.3	7.84	68.5	7.48	56.0	7.10				
45						61.5 56.0	7.14	51.0	6.78	50.4			
50	9.27	89.0	9.00	81.0	7.48					46.0			
55				•••	7.17	51.4	6.84	46.9	6.50	42.3			
60		•••		•••	6.90	47.6	6.59	43.5	6.27	39.3			
65					6.66	44.4	6.37	40.6	6.04	36.4			
70				• • • • • • • • • • • • • • • • • • • •	6.45	41.7	6.17	38.1	5.78	33.4			
75					6.27	39.3	5.95	35.4	5.56	30.9			
80					6.09	37.1	5.73	32.8	5.36	28.7			
85					5.88	34.5	5.23	30.6	5.19	26.9			
90					5.69	32.3	5.36	28.7	5.04	25.4			
95					5.2	30.4	5.21	27.1	4.90	24.0			
100					5.36	28.7	5.07	25.7	4.78	22.8			
105					5.55	27.3	4.95	24.5	4.67	21.8			
110					5.10	26.0	4.83	23.3	4.57	20.8			
115					4.98	24.8	4.73	22.3	4.47	20.0			
120					4.88	23.8	4.63	21.5	4.39	19.3			
125					4.78		4.55	20.7	4.31	18.6			
130					4.69		4.47	19.9	4.24	18.0			
135					4.61	21.2	4.39	19.3	4.17	17.4			
140					4.53		4.32	18.7	4.11	16.9			
145					4.46		4.26	18.1	4.06	16.4			
150					4.39		4.20		4.00	16.0			
155					4.33		4.14		3.93	15.4			
160					4.27	18.2	4.09	16.7	3.87	15.0			
	1	A*		B*		C*]	D*	1	E*			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

Table No. 2 continued.

Pressures, Pitches, and Surfaces.

Iron Plate ¹/₄ inch thick.

Pressure per sq. in.	F	1*	G	·*	Е	I*	I	*
Pres	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.						
5	18.53	343.5	17.49	306.0	16.61	276.0	13.63	186.0
10	13.22	174.7	12.49	156.0	11.87	141.0	9.79	96.0
15	10.88	118.4	10.29	106.0	9.79	96.0	8.12	66.0
20	9.50	90.3	9.00	81.0	8.57	73.5	7.14	51.0
25	8.57	73.5	8.12	66.0	7.74	60.0	6.48	42.0
30	7.89	62.2	7.48	56.0	7.14	51.0	5.95	35.4
35	7.36	54.2	6.99	48.8	6.67	44.5	5.45	29.7
40	6.94	48.1	6.59	43.5	6.30	39.7	5.07	25.7
45	6.59	43.4	6.27	39.3	5.95	35.4	4.78	22.8
50	6.30	39.7	5.95	35.4	5.60	31.3	4.55	20.7
55	6.03	36.3	5.63	31.7	5.31	28.2	4.36	19.0
60	5.73	32.8	5.36	28.7	5.07	25.7	4.20	17.6
65	5.47	30.0	5.14	26.4	4.87	23.7	4.06	16.5
70	5.26	27.6	4.95	24.5	4.70	22.0	3.92	15.4
75	5.07	25.7	4.78	22.8	4.55	20.7	3.79	14.4
80	4.91	24.1	4.63	21.5	4.41	19.5	3.67	13.5
85	4.76	22.7	4.50	20.3	4.30	18.5	3.56	12.7
90	4.63	21.5	4.39	19.3	4.20	17.6		
95	4.52	20.4	4.29	18.4	4.10	16.8		
100	4.41	19.5	4.20	17.6	4.02	16.2		
105	4.32	18.7	4.11	16.9	3.92	15.4		
110	4.23	17.9	4.04	16.3	3.83	14.7		
115	4.16	17.3	3.95	15.6	3.75	14.0		
120	4.09	16.7	3.87	15.0	3.67	13.5		
125	4.02	16.2	3.79	14.4	3.60	12.9		
130	3.94	15.5	3.72	13.8	3.53	12.4		
135	3.87	15.0	3.65	13.3				
140	3.80	14.4	3.58	12.8				
145	3.73	13.9	3.52	12.4				
150	3.67	13.5						
155	3.61	13.0						
160								
	1	*		3*	1	I*		[*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

TABLE No. 3.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{9}{32}$ inch thick.

-												
Pressure per sq. in.	A	*	E	3*	(*	I)*	E	*		
Pre: per	Pitch	Surface										
lbs.	ins.	sq. ins.										
5	•••		•••						1312.			
10					17.56	308.5	16.68	278.2	15.74	248.0		
15	18.13	328.6	17.56	308.2	14.41	207.6	13.69	187.5	12.93	167.3		
20	15.74	248.0	15.26	232.8	12.54	157.2	11.92	142.1	11.27	127.0		
25	14.12	199.6	13.69	187.5	11.27	127.0	10.72	114.9	10.14	102.8		
30	12.93	167.3	12.54	157.2	10.33	106.8	9.83	96.7	9.31	86.6		
35	12.01	144.2	11.64	135.6	9.61	92.4	9.15	83.7	8.66	75.1		
40	11.27	127.0	10.92	119.4	9.03	81.6	8.60	74.0	8.15	66.5		
45	10.65	113.5	10.33	106.8	8.55	73.2	8.15	66.5	7.73	59.7		
50	10.14	102.8	9.83	96.7	8.15	66.5	7.77	60.4	7:37	54.4		
55	9.69	94.0	9.40	88.5	7.81	61.0	7.45	55.5	7.07	50.0		
60	9.31	86.6	9.03	81.6	7.51	56.4	7.16	51.3	6.80	46.3		
65					7.24	52.5	6.92	47.8	6.57	43.2		
70					7.01	49.2	6.70	44.8	6.37	40.5		
75					6.80	46.3	6.50	42.3	6.18	38.2		
80					6.62	43.8	6.32	40.0	5.98	35.7		
85					6.44	41.5	6.16	38.0	5.77	33.3		
90					6.29	39.6	5.98	35.7	5.58	31.2		
95					6.15	37.8	5.79	33.5	5.42	29.3		
100					5.98	35.7	5.62	31.6	5.27	27.8		
105					5.81	33.7	5.47	29.9	5.13	26.4		
110					5.65	32.0	5.33	28.4	5.01	25.1		
115					5.51	30.4	5.21	27.1	4.90	24.0		
120					5.39	29.0	5.09	25.9	4.80	23.0		
125					5.27	27.8	4.99	24.9	4.70	22.1		
130					5.16	26.6	4.89	23.9	4.62	21.3		
135					5.06	25.6	4.80	23.0	4.54	20.6		
140					4.97	24.7	4.71	22.2	4.46	19.9		
145					4.88	23.8	4.64	21.5	4.39	19.3		
150					4.80	23.0	4.56	20.8	4.33	18.7		
155					4.72	22.3	4.50	20.2	4.27	18.2		
160		•••			4.65	21.6	4.43	19.6	4.51	17.7		
	A	*	F	3*	(J*	I)*	I	2*		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{9}{3.2}$ inch thick.

Table No. 3 continued.

Pressure per sq. in	F	*	G	r*	F	I*	1	*		
Pres per s	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5	20.35	414.3	19.21	369.0	18.24	332.7	14.96	223.8		
10	14.49	210.1	13.69	187.5	13.01	169.3	10.72	114.9		
15	11.92	142.1	11.27	127.0	10.72	114.9	8.86	78.6		
20	10.39	108.0	9.83	96.7	9.36	87.6	7.77	60.4		
25	9.36	87.6	8.86	78.6	8.44	71.3	7.04	49.5		
30	8.60	74.0	8.15	66.5	7.77	60.4	6.50	42.3		
35	8.05	64.3	7.60	57.8	7.25	52.6	6.08	36.9		
40	7.55	57.0	7.16	51.3	6.84	46.8	5.62	31.6		
45	7.16	51.3	6.80	46.3	6.50	42.3	5.27	27.8		
50	6.84	46.8	6.50	42.3	6.21	38.6	4.99	24.9		
55	6.56	43.1	6.24	39.0	5.91	34.9	4.76	22.6		
60	6.32	40.0	5.98	35.7	5.62	31.6	4.56	20.8		
65	6.11	37.3	5.70	32.5	5.38	28.9	4.40	19.4		
70	5.85	34.2	5.47	29.9	5.17	26.7	4.26	18.1		
75	5.62	31.6	5.27	27.8	4.99	24.9	4.14	17.1		
80	5.42	29.4	5.09	25.9	4.83	23.3	4.03	16.3		
85	5.25	27.5	4.94	24.4	4.69	22.0	3.92	15.3		
90	5.09	25.9	4.80	23.0	4.56	20.8	3.81	14.5		
95	4.95	24.5	4.67	21.8	4.45	19.8	3.70	13.7		
100	4.83	23.3	4.56	20.8	4.35	18.9	3.61	13.0		
105	4.71	22.2	4.46	19.9	4.26	18.1	3.52	12.4		
110	4.61	21.3	4.37	19.1	4.18	17.4		•••		
115	4.52	20.4	4.29	18.4	4.10	16.8				
120	4.43	19.6	4.21	17.7	4.03	16.3				
125	4.35	18.9	4.14	17.1	3.96	15.6		•••		
130	4.28	18.3	4.07	16.6	3.88	15.0		•••		
135	4.21	17.7	4.01	16.1	3.81	14.5		•••		
140	4.15	17.2	3.94	15.5	3.74	14.0		•••		
145	4.09	16.7	3.87	15.0	3.67	13.5				
150	4.03	16.3	3.81	14.5	3.61	13.0		•••		
155	3.97	15.8	3.74	14.0	3.55	12.6	• • • •	•••		
160	3.91	15.3	3.69	13.6	3.20	12.2	•••	•••		
	F	1%	G	*	H*			I*		
M. FT	7		7 11	. 1	1	c ,	41	1		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

TABLE No. 4.

Pressures, Pitches, and Surfaces.

Iron Plate $\frac{5}{16}$ inch thick.

Pressure per sq. in.	A	*	H	3*)*	I)*	E	<u></u> *				
Pre:	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface				
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.				
5 10		•••		•••	10.19	366.0	10.10	330.0	17:14	294.0				
15	19.74	390.0	19:13	366.0	19.13	246.0	18·16 14·90	222.0	14.07	198.0				
20	17.14	294.0	16.61	276.0	13.63	186.0	12.96	168.0	12.24	150.0				
25	15.36	236.0	14.90	222.0	12.24	150.0	11.64	135.6	11.01	121.2				
30	14.07	198.0	13.63	186.0	11.22	126.0	10.67	114.0	10.10	102.0				
35	13.06	170.5	12.66	160.5	10.43	108.8	9.92	98.5	9.39	88.2				
40	12.24	150.0	11.87	141.0	9.79	96.0	9.32	87.0	8.83	78.0				
45	11.57	134.0	11.22	126.0	9.27	86.0	8.83	78.0	8.36	70.0				
50	11.01	121.2	10.67	114.0	8.83	78.0	8.41	70.8	7.97	63.6				
55	10.52	110.7	10.20	104.1	8.45	71.4	8.05	64.9	7.64	58.3				
60	10.10	102.0	9.79	96.0	8.12	66.0	7.74	60:0	7.34	54.0				
65	9.72	94.6	9.43	89.0	7.83	61.3	7.47	55.8	7.09	50.3				
70	9.39	88.2	9.11	83.1	7.57	57.4	7.23	52.2	6.86	47.1				
75	9.10	82.8			7.34	54.0	7.01	49.2	6.66	44.4				
80					7.14	51.0	6.82	46.5	6.48	42.0				
85	•••				6.95	48.3	6.64	44.1	6.31	39.8				
90	•••				6.78	46.0	6.48	42.0	6.16	38.0				
95	•••				6.62	43 3	6.33	40.1	5.98	35.8				
100	• • •				6.48	42.0	6.19	38.4	5.81	33.7				
105	• • • •		•••		6.34	40.2	6.05	36.6	5.65	31.9				
110					6.22	38.7	5.88	34.6	5.50	30.2				
115					6.10	37.2	5.73	32.9	5.37	28.8				
120					5.95	35.4	5.60	31.3	5.25	27.5				
125					5.81	33.7	5.47	29.9	5.13	26.3				
130					5.68	32.2	5.35	28.7	5.03	25.3				
135					5.56	30.9	5.25	27.5	4.93	24.3				
140					5.45	29.7	5.15	26.5	4.85	23.5				
145					5.34	28.5	5.05	25.5	4.76	22.7				
150					5.25	27.5	4.97	24.7	4.69	21.9				
155					5.16	26.6	4.88	23.8	4.61	21.3				
160					5.07	25.7	4.81	23.1	4.55	20.7				
	A	*	В	*	C	*	D	*	E	*				

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 4

Pressures, Pitches, and Surfaces. Iron Plate $\frac{5}{16}$ inch thick.

Pressure per sq. in	F	*	G	r*]	H*	1	*
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ms.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5	15.50	240.0	20.92	438.0	19.87	394.8	16.28	265.2
10	15.78	249.0	14.90	222.0	14.15	200.4	11.64	135.6
15	12.96	168.0	12.24	150.0	11.64	135.6	9.61	92.4
20	11.29	127.5	10.67	114.0	10.15	103.2	8.41	70.8
25	10.15	103.2	9.61	92.4	9.15	83.7	7:60	57.8
30	9.32	87.0	8.83	78.0	8.41	70.8	7.01	49.2
35	8.68	75.4	8.22	67.7	7.84	61.5	6.56	43.4
40	8.17	66.7	7.74	60.0	7:39	54.6	6.19	38.0
45	7.74	60.0	7:34	54.0	7.01	49.2	5.81	33.7
50	7.39	54.6	7.01	49.2	6.70	44.8	5.47	29.9
55	7.08	50.1	6.72	45.2	6.43	41.3	5.20	27.0
60	6.82	46.5	6.48	42.0	6.19	38.4	4.97	24.7
65	6.58	43.3	6.26	39.2	5.94	35.2	4.77	22.8
70	6.38	40.7	6.05	36.6	5.69	32.3	4.61	21.2
75	6.19	38.4	5.81	33.7	5.47	29.9	4.46	19.9
80	5.99	35.9	5.60	31.3	5.28	27.9	4.34	18.8
85	5.78	33.4	5.41	29.3	5.11	26.1	4.22	17.8
90	5.60	31.3	5.25	27.5	4.97	24.7	4.13	17.0
95	5.43	29.5	5.10	26.0	4.83	23.3	4.04	16.3
100	5.28	27.9	4.97	24.7	4.71	22.2	3.94	15.5
105	5.15	26.5	4.85	23.5	4.61	21.2	3.84	14.8
110	5.02	25.2	4.74	22.4	4.51	20.3	3.76	14.1
115	4.91	24.1	4.64	21.5	4.42	19.5	3.67	13.5
120	4.81	23.1	4.55	20.7	4.34	18.8	3.60	12.9
125	4.71	22.2	4.46	19.9	4.26	18.1	3.52	12.4
130	4.63	21.4	4.38	19.2	4.19	17.5		
135	4.55	20.7	4.31	18.6	4.13	17.0		
140	4.47	20.0	4.25	18.0	4.07	16.5		
145	4.40	19.4	4.18	17.5	4.01	16.1		
150	4.34	18.8	4.13	17.0	3.94	15.5		•••
155	4.28	18.3	4.07	16.6	3.88	15.0		
160	4.22	17.8	4.02	16.2	3.81	14.5		•••
	F	*	G	*	Н	[*	I,	+

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

74

Pressures, Pitches, and Surfaces. Iron Plate 11 inch thick.

Pressure per sq. in.	A	*	E	3*) *	I)*	I	E*		
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5		•••		•••	20.70	420.5	10.05	000.0	10.74	011.0		
10			20.70	100.5	20.70	428.5	19.65	386.2	18.54	344.0		
15	10.51	011.0	20.70	428.5	16.96	287.6	16.10	259.8	15.21	231.3		
20	18.54	344.0	17.96	322.8	14.74	217.2	14.00	196.0	13.22	175.0		
25	16.62	276.4	16.11	259.5	13.22	175:0	12.57	158.1	11.88	141.2		
30	15.21	231.3	14.74	217.2	12.11	146.8	11.52	132.7	10.89	118.6		
35	14.11	199.1	13.67	187.0	11.25	126.7	10.70	114.6	10.12	102.5		
40	13.22	175.0	12.82	164.4	10.56	111.6	10.05	101.0	9.51	90.5		
45	12.49	156.2	12.11	146.8	9.99	99.8	9.51	90.5	9.00	81.0		
50	11.88	141.2	11.52	132.7	9.51	90.5	9.05	82.0	8.58	73.6		
55	11.35	128.9	11.01	121.2	9.10	82.8	8.66	75.1	8.21	67.4		
60	10.89	118.6	10.56	111.6	8.74	76.4	8.33	69.3	7.89	62.3		
65	10.48	110.0	10.17	103.5	8.42	71.0	8.03	64.5	7.61	58.0		
70	10.13	102.5	9.82	96.5	8.14	66.3	7.76	60.3	7.36	54.2		
75	9.80	96.1	9.51	90.5	7.89	62.3	7.53	56.7	7.14	51.0		
80	9.51	90.5	9.23	85.2	7.66	58.8	7:31	53.5	6.94	48.2		
85	9.24	85.5	• • • •		7.46	55.7	7.12	50.7	6.76	45.7		
90	9.00	81.0	• • •	•••	7.27	52.9	6.94	48.2	6.60	43.5		
95					7.10	50.4	6.78	46.0	6.44	41.5		
100					6.94	48.2	6.63	44.0	6.30	39.8		
105					6.80	46.2	6.49	42.2	6.18	38.1		
110					6.66	44.4	6.37	40.5	6.03	36.4		
115					6.23	42.7	6.25	39.0	5.87	34.5		
120					6.42	41.2	6.13	37.6	5.73	32.9		
125					6.30	39.8	6.00	36.0	5.60	31.4		
130					6.50	38.2	5.86	34.3	5.48	30.0		
135					6.10	37.2	5.73	32.9	5.37	28.8		
140					5.97	35.6	5.61	31.5	5.26	27.7		
145					5.85	34.2	5.21	30.3	5.17	26.7		
150					5.73	32.9	5.40	29.2	5.07	25.7		
155					5.63	31.6	5.31	28.2	4.99	24.9		
160					5.23	30.5	5.22	27.2	4.91	24.1		
	A*					C*		*	E*			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces.

Iron Plate \(\frac{1}{3} \) inch thick.

Table No. 5

Pressure per sq. in.	H	**	G	r*	H	[*	I	*					
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface					
lbs.	ins.	sq. ins.											
5							17.61	310.5					
10	17.06	291.1	16.11	259.5	15.30	234.1	12.57	158.1					
15	14.00	196.0	13.22	175.0	12.57	158.1	10.36	107.4					
20	12.19	148.5	11.52	132.7	10.95	120.0	9.05	82.0					
25	10.95	120.0	10.36	107.4	9.86	97.2	8.17	66.8					
30	10.05	101.0	9.51	90.5	9.05	82.0	7.53	56.7					
35	9.35	87.4	8.85	78.4	8.43	71.1	7.03	49.4					
40	8.79	77.2	8.33	69.3	7.94	63.0	6.63	44.0					
45	8.33	69.3	7.89	62.3	7.53	56.7	6.30	39.8					
50	7.94	63.0	7.53	56.7	7.18	51.6	6.00	36.0					
55	7.60	57.8	7.21	52.0	6.89	47.4	5.67	32.2					
60	7.31	53.2	6.94	48.2	6.63	44.0	5.40	29.2					
65	7.06	49.8	6.70	45.0	6.41	41.1	5.18	26.8					
70	6.83	46.7	6.49	42.2	6.21	38.2	4.98	24.8					
75	6.63	44.0	6.30	39.8	6.00	36.0	4.81	23.1					
80	6.45	41.6	6.14	37.6	5.77	33.3	4.66	21.7					
85	6.28	39.5	5.92	35.1	5.28	31.1	4.53	20.5					
90	6.13	37.6	5.73	32.9	5.40	29.2	4.42	19.5					
95	5.95	35.4	5.56	30.9	5.25	27.5	4.31	18.6					
100	5.77	33.3	5.40	29.2	5.11	26.1	4.22	17.8					
105	5.61	31.5	5.26	27.7	4.98	24.8	4.14	17.1					
110	5.47	29.9	5.13	26.4	4.87	23.7	4.06	16:5					
115	5.34	28.5	5.02	25.2	4.76	22.7	3.98	15.8					
120	5.22	27.2	4.91	24.1	4.66	21.7	3.90	15.2					
125	5.11	26.1	4.81	23.1	4.58	20.9	3.82	14.6					
130	5.00	25.0	4.72	22.3	4.49	20.2	3.74	14.0					
135	4.91	24.1	4.64	21.5	4.42	19.5	3.67	13.5					
140	4.82	23.2	4.56	20.8	4.35	18.9	3.61	13.0					
145	4.74	22.5	4.49	20.1	4.28	18.3	3.54	12.5					
150	4.66	21.7	4.42	19.5	4.22	17.8							
155	4.59	21.1	4.35	18.9	4.16	17:3							
160	4.53	20.5	4.29	18.4	4.11	16.9	•••						
	F*		F* G*			*	I*						

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces.

Iron Plate 3/8 inch thick.

ł											
Pressure per sq. in.	A	*	Е	3*	()*	I)*	I	E*	
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surfac	
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins	
5		•••		•••				• • •			
10		•••		•••					19.95	398.0	
15					18.24	332.6	17:32	300.0	16.35	267.3	
20	19.95	398.0	19.32	373.5	15.84	251.0	15.05	226.5	14.21	202.0	
25	17.87	319.6	17.32	300.0	14.21	202.0	13.50	182.4	12.76	162.8	
30	16.35	267.3	15.84	251.0	13.01	169.3	12.37	153.0	11.69	136.6	
35	15.16	230.0	14.69	216.0	12.08	146.0	11.49	132.0	10.86	118.0	
40	14.21	202.0	13.77	189.7	11.33	128.5	10.78	116.2	10.19	104.0	
45	13.42	180.2	13.01	169.3	10.71	114.8	10.19	104.0	9.65	93.1	
50	12.76	162.8	12.37	153.0	10.19	104.0	9.70	94.2	9.18	84.4	
55	12.18	148.5	11.81	139.6	9.75	95.0	9.28	86.1	8.79	77.2	
60	11.69	136.6	11.33	128.5	9.36	87.6	8.91	79.5	8.44	71.3	
65	11.25	126.6	10.91	119.0	9.02	81.3	8.59	73.8	8.14	66.3	
70	10.86	118.0	10.53	111.0	8.71	76.0	8.30	69.0	7.87	62.0	
75	10.51	110.5	10.19	104.0	8.44	71.3	8.05	64.8	7.63	58.2	
80	10.19	104.0	9.89	97.8	8.20	67.2	7.81	61.1	7.41	55.0	
85	9.91	98.2	9.61	92.4	7.97	63.6	7.60	57.8	7.22	52.1	
90	9.65	93.1	9.36	87.6	7.77	60.4	7.41	55.0	7.04	49.5	
95	9.40	88.2	9.13	83.3	7.58	57.5	7.24	52.4	6.87	47.2	
100	9.18	84.4		•••	7.41	55.0	7.07	50.1	6.72	45.2	
105					7.25	52.6	6.92	48.0	6.58	43.3	
110				•••	7.11	50.5	6.78	46.0	6.45	41.6	
115					6.97	48.6	6.66	44.3	6.33	40.0	
120					6.84	46.8	6.23	42.7	6.21	38.6	
125					6.72	45.2	6.42	41.2	6.10	37.3	
130					6.61	43.6	6.31	39.9	5.96	35.6	
135					6.50	42.2	6.21	38.6	5.83	34.0	
140				•••	6.40	41.0	6.12	37.5	5.71	32.6	
145					6.30	39.7	5.99	35.9	5.60	31.4	
150			• • • •		6.21	38.6	5.88	34.5	5.49	30.2	
155	•••		•••		6.13	37.6	5.77	33.2	5.40	29.1	
160					6.02	36.2	5.66	32.0	5.30	28.1	
	A	*	В	*	C	*	D	*	E	*	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces.

Iron Plate $\frac{3}{8}$ inch thick.

Table No. 6 continued.

Pressure per sq. in.	F	*	G	*	Н	*	I	*		
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5							18.94	358.8		
10	18.35	336.7	17:32	300.0	16.45	270.6	13.20	182.4		
15	15.05	226.5	14.21	202.0	13:50	182.4	11.11	123.6		
20	13.09	171.3	12:37	153.0	11.76	138.3	9.70	94.2		
25	11.76	138.3	11.11	123.6	10.57	111.8	8.75	76.5		
30	10.78	116.2	10.19	104.0	9.70	94.2	8.05	64.8		
35	10.05	100.5	9.48	90.0	9.03	81.6	7.51	56.4		
40	9.41	88.6	8.91	79.5	8.49	72.1	7.07	50.1		
45	8.91	79.5	8.44	71.3	8.05	64.8	6.72	45.2		
50	8.49	72.1	8.05	64.8	7.67	58.9	6.42	41.2		
55	8.13	66.1	7.71	59.4	7.35	54.1	6.17	38.0		
60	7.81	61.1	7.41	55.0	7.07	50.1	5.88	34.5		
65	7.54	56.8	7.15	51.2	6.83	46.7	5.61	31.5		
70	7.29	53.2	6.92	48.0	6.61	43.8	5.39	29.0		
75	7.07	50.0	6.72	45.2	6.42	41.2	5.19	26.9		
80	6.88	47.3	6.23	42.7	6.25	39.0	5.02	25.2		
85	6.70	44.9	6.37	40.5	6.08	36.9	4.87	23.7		
90	6.23	42.7	6.21	38.6	5.88	34.5	4.73	22.4		
95	6.38	40.8	6.06	36.7	5.70	32.4	4.61	21.3		
100	6.25	39.0	5.88	34 5	5.23	30.6	4.50	20.3		
105	6.12	37.5	5.71	32.6	5.39	29.0	4.41	19.4		
110	5.95	35.4	5.56	31.0	5.25	27.6	4.32	18.6		
115	5.80	33.7	5.43	29.5	5.13	26.3	4.24	17.9		
120	5.66	32.0	5.30	28.1	5.02	25.2	4.16	17.3		
125	5.23	30.6	5.19	26.9	4.92	24.2	4.09	16.7		
130	5.41	29.3	5.08	25.8	4.82	23.2	4.03	16.2		
135	5.30	28.1	4.99	24.9	4.73	22.4	3.96	15.6		
140	5.20	27.1	4.90	24.0	4.65	21.6	3.88	15.1		
145	5.11	26.1	4.81	23.1	4.57	20.9	3.82	14.5		
150	5.02	25.2	4.73	22.4	4.20	20.3	3.75	14.1		
155	4.94	24.3	4.66	21.7	4.44	19.7	3.69	13.6		
160	4.86	23.6	4.59	21.0	4.38	19.1	3.63	13.2		
	F	**	0	1 *	1	1*	I	*		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

TABLE No. 7.

Pressures, Pitches, and Surfaces.

Iron Plate \(\frac{1}{3} \frac{3}{2} \) inch thick.

-										
Pressure per sq. in.	A	*	E	*	(*	D	*	E	*
Pres per	Pitch	Surface								
lbs.	ins.	sq. ins.								
5										
10										
15					19.52	381.0	18.53	343.5	17.49	306.0
20			20.68	427.8	16.94	287.2	16.09	259.1	15.19	231.0
25	19.13	366.0	18.53	343.5	15.19	231.0	14.44	208.5	13.63	186.0
30	17.49	306.0	16.94	287.2	13.91	193.5	13.22	174.7	12.49	156.0
35	16.22	263.1	15.71	247.0	12.91	166.7	12.27	150.6	11.60	134.5
40	15.19	231.0	14.72	216.9	12.10	146.6	11.21	132.5	10.88	118.5
45	14.35	206.0	13.91	193.5	11.44	131.0	10.88	118.2	10.59	106.0
50	13.63	186.0	13.22	174.7	10.88	118.5	10.35	107.2	9.79	96.0
55	13.02	169.6	12.62	159.4	10.40	108.2	9.90	98.0	9.37	87.8
60	12.49	156.0	12.10	146.6	9.98	99.7	9.50	90.3	9.00	81.0
65	12.02	144.4	11.65	135.8	9.62	92.5	9.15	83.8	8.67	75.2
70	11.60	134.5	11.54	126.5	9.59	86.3	8.85	78.3	8.38	70.2
75	11.55	126.0	10.88	118.5	9.00	81.0	8.57	73.5	8.15	66.0
80	10.88	118.5	10.55	111.4	8.73	76.3	8.35	69.2	7.89	62.2
85	10.57	111.8	10.26	105.2	8.49	72.1	8.09	65.5	7.67	58.9
90	10.29	106.0	9.98	99.7	8.27	68.5	7.89	62.2	7.48	56.0
95	10.03	100.7	9.73	94.8	8.07	65.2	7.70	59.2	7:30	53.3
100	9.79	96.0	9.50	90.3	7.89	62.2	7.52	56.6	7.14	51.0
105	9.57	91.7	9.29	86.3	7.71	59.5	7.36	54.2	6.99	48.8
110	9.37	87.8	9.09	82.7	7.55	57.1	7.21	52.0	6.84	46.9
115	9.18	84.2			7.41	54.9	7.07	50.0	6.71	45.1
120	9.00	81.0			7.27	52.8	6.94	48.1	6.59	43.5
125					7.14	51.0	6.85	46.5	6.48	42.0
130					7.02	49.2	6.70	44.9	6.37	40.6
135					6.90	47.6	6.59	43.5	6.27	39.3
140					6.79	46.1	6.49	42.1	6.17	38.1
145					6.69	44.7	6.39	40.9	6.07	36.8
150					6.29	43.5	6.30	39.7	5.95	35.4
155					6.20	42.2	6.21	38.6	5.83	34.0
160					6.41	41.1	6.13	37.6	5.73	32.8
	A	*	F	*	()*	I)*	f	E*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{13}{3}$ inch thick.

Table No. 7

Pressure per sq. in.	F	*	G	*	H	[*	I	*
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5							20.27	411.0
10	19.63	385.6	18.53	343.5	17.60	309.7	14.44	208.5
15	16.09	259.1	15.19	231.0	14.44	208.5	11.87	141.0
20	13.99	195.8	13.22	174.7	12.56	157.8	10.35	107.2
25	12.56	157.8	11.87	141.0	11.29	127.5	9.32	87.0
30	11.21	132.5	10.88	118.5	10.35	107.2	8.57	73.5
35	10.70	114.4	10.12			7.99	63.8	
40	10.04	100.9	9.50	90.3	9.05	81.9	7.52	56.6
45	9.50	90.3	9.00	81.0	8.57	73.5	7.14	51.0
50	9.05	81.9	8.57	73.5	8.17	66.7	6.82	46.5
55	8.66	75.0	8.50	67.3	7.82	61.2	6.54	42.8
60	8.32	69.2	7.89	62.2	7.52	56.6	6.30	39.7
65	8.03	64.4	7.61	57.9	7.26	52.7	6.08	37.0
70	7.76	60.2	7:36	54.2	7.02	49.3	5.82	33.9
75	7.52	56.6	7.14	51.0	6.82	46.5	5.60	31.3
80	7.31	53.4	6.94	48.1	6.63	43.9	5.40	29.1
85	7.11	50.6	6.76	45.7	6.46	41.7	5.23	27:3
90	6.94	48.1	6.59	43.5	6.30	39.7	5.07	25.7
95	6.78	45.9	6.44	41.5	6.16	37.9	4.93	24.3
100	6.63	43.9	6.30	39.7	5.99	35.9	4.81	23.1
105	6.49	42.1	6.17	38.1	5.82	33.9	4.70	22.0
110	6.36	40.5	6.03	36.3	5.67	32.1	4.59	21.1
115	6.24	39.0	5.87	34.5	5.53	30.5	4.50	20.2
120	6.13	37.6	5.73	32.8	5.40	29.1	4.41	19.5
125	5.99	35.9	5.60	31.3	5.28	27.9	4.34	18.8
130	5.85	34.3	5.47	30.0	5.17	26.7	4.26	18.2
135	5.73	32.8	5.36	28.8	5.07	25.7	4.20	17.6
140	5.61	31.5	5.26	27.6	4.98	24.8	4.13	17.1
145	5.20	30.3	5.16	26.6	4.89	23.9	4.07	16.6
150	5.40	29.1	5.07	25.7	4.81	23.1	4.02	16.2
155	5.30	28.1	4.99	24.9	4.73	22.4	3.96	15.6
160	5.21	27.2	4.91	24.1	4.66	21.7	3.89	15.1
	F	1 *	G	*	E	[*	I	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate 7 inch thick.

-				-						
Pressure per sq. in	A	*	В	*	C	*	D	*	Е	*
Pres per	Pitch	Surface								
ibs.	ins.	sq. ins.								
5										
10										
15					20.80	432.6	19.74	390.0	18.63	347.3
20					18.05	326.0	17.14	294.0	16.18	262.0
25	20.38	415.6	19.74	390.0	16.18	262.0	15.37	236.4	14.51	210.8
30	18.63	347.3	18.05	326.0	14.81	219.3	14.07	198.0	13.29	176.6
35	17.28	298.5	16.74	280.2	13.74	188.8	13.06	170.5	12.34	152.2
40	16.18	262.0	15.68	246.0	12.88	166.0	12.24	150.0	11.57	134.0
45	15.28	233.5	14.81	219.3	12.17	148.2	11.57	134.0	10.94	119.7
50	14.51	210.8	14.07	198.0	11.57	134.0	11.01	121.2	10.41	108.4
55	13.86	192.1	13.43	180.5	11.06	122.3	10.52	110.7	9.95	99.0
60	13.29	176.6	12.88	166.0	10.61	112.6	10.10	102.0	9.55	91.3
65	12.78	163.5	12.39	153.6	10.55	104.4	9.72	94.6	9.20	84.7
70	12.34	152.2	11.96	143.1	9.87	97.4	9.39	88.2	8.89	79.1
75	11.93	142.5	11.57	134.0	9.55	91.3	9.10	82.8	8.61	74.2
80	11.57	134.0	11.22	126.0	9.27	86.0	8.83	78.0	8 36	70.0
85	11.24	126.4	10.90	118.9	9.01	81.2	8.58	73.7	8.13	66.2
90	10.94	119.7	10.61	112.6	8.78	77.1	8.36	70.0	7.93	62.8
95	10.66	113.7	10.34	107.0	8:56	73.3	8.16	66.6	7.74	59.8
100	10.41	108.4	10.10	102.0	8.36	70.0	7.97	63.6	7.56	57.2
105	10.17	103.5	9.87	97.4	8.18	66.9	7.80	60.8	7.40	54.7
110	9.95	99.0	9.65	93.2	8.01	64.1	7.64	58.3	7.24	52.5
115	9.75	95.0	9.46	89.4	7.85	61.6	7.49	56.0	7.10	50.5
120	9.55	91.3	9.27	86.0	7.70	59.3	7.34	54.0	6.97	48.6
125	9.37	87.9	9.10	82.8	7.56	57.2	7.21	52.0	6.85	46.9
130	9.20	84.7			7.43	55.2	7.09	50.3	6.73	45.3
135	9.04	81.8			7.30	53.4	6.97	48.6	6.62	43.9
140				•••	7.19	51.7	6.86	47.1	6.2	42.5
145		• • • •		•••	7.08	50.1	6.76	45.7	6.42	41.3
150				•••	6.97	48.6	6.66	44.4	6.33	40.1
155				•••	6.87	47.2	6.57	43.1	6.24	39.0
160				•••	6.78	46.0	6.48	42.0	6.16	38.0
	A	*	E	}*	C	*	I)*	F	C*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{7}{16}$ inch thick.

Table No. 8. continued.

Pressure per sq. in.	F	1 *	G	*	Н	L*	I	*		
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
10	20.92	438.0	19.74	390.0	18.75	351.6	15.37	236.4		
15	17.14	294.0	16.18	262.0	15.37	236.4	12.63	159.6		
20	14.90	222.0	14.07	198.0	13.37	178.8	11.01	121.2		
25	13.37	178.8	12.63	159.6	12.01	144.2	9.90	98.1		
30	12.24	150.0	11.57	134.0	11.01	121.2	9.10	82.8		
35	11:37	129.4	10.75	115.7	10.23	104.7	8.47	71.8		
40	10.67	114.0	10.10	102.0	9.61	92.4	7.97	63.6		
45	10.10	102.0	9.55	91.3	9.10	82.8	7.56	57.2		
50	9.61	92.4	9.10	82.8	8.66	75.1	7.21	52.0		
55	9.19	84.5	8.70	75.8	8.29	68.8	6.92	47.8		
60	8.83	78.0	8.36	70.0	7.97	63.6	6.66	44.4		
65	8.51	72.4	8.06	65.0	7.69	59.1	6.43	41.4		
70	8.22	67.7	7.80	60.8	7.44	55.3	6.23	38.9		
75	7.97	63.6	7.56	57.2	7.21	52.0	6.03	36.4		
80	7.74	60.0	7.34	54.0	7.01	49.2	5.81	33.7		
85	7.53	56.8	7.15	51.1	6.83	46.6	5.61	31.4		
90	7.34	54.0	6.97	48.6	6.66	44.4	5.43	29.5		
95	7.17	51.4	6.81	46.4	6.21	42.3	5.28	27.8		
100	7.01	49.2	6.66	44.4	6.36	40.5	5.13	26.3		
105	6.86	47.1	6.52	42.5	6.23	38.6	5.01	25.1		
110	6.72	45.2	6.39	40.9	6.11	37.3	4.89	23.9		
115	6.60	43.5	6.27	39.3	5.95	35.4	4.78	22.9		
120	6.48	42.0	6.16	38.0	5.81	33.7	4.69	21.9		
125	6.36	40.5	6.03	36.4	5.67	32.2	4.60	21.1		
130	6.26	39.2	5.89	34.7	5.55	30.8	4.51	20.4		
135	6.16	38.0	5.76	33.2	5.43	29.5	4.44	19.7		
140	6.05	36.6	5.65	31.9	5.33	28.4	4.37	19.0		
145	5.92	35.1	5.23	30.6	5.23	27.3	4.30	18.5		
150	5.81	33.7	5.43	29.5	5.13	26.3	4.24	17.9		
155	5.70 32.5		5.34	28.5	5.05	25.5	4.18	17.5		
160	5.60	31.3	5.25	27.5	4.97	24.7	4.13	17.0		
	F	*	G	*	Н	*	I*			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{15}{32}$ inch thick.

Pressure per sq. in.	A	*	E	}*	C	(*	Ι)*	F	C*		
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5												
10												
15			•••				20.96	439.5	19 78	391.3		
20					19.16	367.2	18.19	331.1	17.17	295.0		
25			20.91	437.5	17.17	295.0	16.31	266.1	15.40	237.2		
30	19.78	391.3	19.16	367.2	15.71	246.8	14.92	222.7	14.09	198.6		
35	18.33	336.5	17.76	315.6	14.57	212.4	13.84	191.7	13.08	171.1		
40	17.17	295.0	16.64	276.9	13.66	186.6	12.98	168.5	12.26	150.5		
45	16.21	262.8	15.71	246.8	12.90	166.5	12.26	150.5	11.59	134.4		
50	15.40	237.2	14.92	222.7	12.26	150.5	11.66	136.0	11.02	121.6		
55	14.70	216.1	14.25	203.0	11.72	137.3	11.14	124.2	10.54	111.0		
60	14.09	198.6	13.66	186.6	11.24	126.4	10.69	114.3	10.11	102.3		
65	13.55	183.8	13.14	172.7	10.82	117.1	10.29	106.0	9.74	94.9		
70	13.08	171.1	12.68	160.8	10.45	109.2	9.94	98.8	9.41	88.5		
75	12.65	160.1	12.26	150.5	10.11	102.3	9.62	92.7	9.11	83.0		
80	12.26	150.5	11.89	141.4	9.81	96.3	9.34	87.2	8.84	78.2		
85	11.91	142.0	11.55	133.5	9.54	91.0	9.08	82.5	8.60	74.0		
90	11.59	134.4	11.24	126.4	9.28	86.5	8.84	78.2	8.38	70.2		
95	11.30	127.6	10.95	120.0	9.05	82.0	8.62	74.4	8.17	66.8		
100	11.02	121.6	10.69	114.3	8.84	78.2	8.42	71.0	7.98	63.8		
105	10.77	116.0	10.45	109.2	8.65	74.8	8.24	67.9	7.81	61.0		
110	10.54	111.0	10. 22	104.5	8.46	71.6	8.07	65.1	7.65	58.5		
115	10.32	106.5	10.01	100.2	8.29	68.8	7.90	62.5	7.50	56.2		
120	10.11	102.3	9.81	96.3	8.13	66.2	7.75	60.1	7.36	54.1		
125	9.92	98.4	9.62	92.7	7.98	63.8	7.61	58.0	7.22	52.2		
130	9.74	94.9	9.45	89.3	7.84	61.5	7.48	56.0	7.10	50.4		
135	9.57	91.6	9.28	86.2	7.71	59.5	7.36	54.1	6.98	48.8		
140	9.41	88.5	9.13	83.4	7.59	57.6	7.24	52.4	6.87	47.2		
145	9.25	85.7			7.47	55.8	7.13	50.8	6.77	45.8		
150	9.11	83.0			7.36	54.1	7.02	49.3	6.67	44.5		
155		•••			7.25	52.6	6.92	47.9	6.58	43.2		
160					7.15	51.1	6.83	46.6	6.49	42.1		
	A	*	Е	*	C	*	D	*	E	*		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces. Iron Plate 1/2/5 inch thick.

Table No. 9 continued.

	Tion 1 mile 32 men chien,											
Pressure per sq. in.	F	1*	G	*	Н	[*	I	*				
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface				
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.				
5												
10			20.96	439.5	19.90	396.1	16.31	266.1				
15	18.19	331.1	17.17	295.0	16.31	266.1	13.39	179.4				
20	15.80	249.8	14.92	222.7	14.18	201.0	11.66	136.0				
25	14.18	201.0	13:39	179.4	12.73	162.0	10.49	110.0				
30	12.98	168.5	12.26	150.5	11.66	136.0	9.62	92.7				
35	12.05	145.3	11.39	129.8	10.83	117.4	8.96	80.3				
40	11.31	127.9	10.69	114.3	10.17	103.5	8.42	71.0				
45	10.69	114.3	10.11	102.3	9.62	92.7	7.98	63.8				
50	10.17	103.5	9.62	92.7	9.16	84.0	7.61	58.0				
55	9.73	94.6	9.21	84.8	8.77	76.9	7:30	53.2				
60	9.34	87.2	8.84	78.2	8.42	71.0	7.02	49.3				
65	9.00	81.0	8.52	72.6	8.12	66.0	6.78	46.0				
70	8.69	75.6	8.24	67.9	7.85	61.7	6.57	43.1				
75	8.42	71.0	7.98	63.8	7.61	58.0	6.37	40.6				
80	8.18	66.9	7.75	60.1	7.40	54.7	6.20	38.5				
85	7.96	63.3	7.55	57.0	7.20	51.9	6.02	36.2				
90	7.75	60.1	7.36	54.1	7.02	49.3	5.82	33.8				
95	7.57	57.3	7.18	51.6	6.86	47.0	5.64	31.8				
100	7.40	54.7	7.02	49.3	6.71	45.0	5.48	30.0				
105	7.24	52.4	6.87	47.2	6.57	43.1	5.34	28.5				
110	7.09	50.3	6.73	45.4	6.44	41.4	5.20	27.1				
115	6.95	48.4	6.61	43.6	6.31	39.9	5.08	25.8				
120	6.83	46.6	6.49	42.1	6.20	38.5	4.97	24.7				
125	6.71	45.0	6.37	40.6	6.09	37.1	4.87	23.7				
130	6.59	43.5	6.27	39.3	5.95	35.4	4.78	22.8				
135	6.49	42.1	6.17	38.1	5.82	33.8	4.69	22.0				
140 145	6.39	40.8	6.06	36.7	5.70	32.5	4.61	21.3				
145	6.29	39.6	5.93	35·2 33·8	5.58 5.48	31.2	4.54	20.6				
155			5.82			30.0	4.47	20.0				
160	6.12	37·4 36·0	5·71 5·61	32.6 31.4	5·38 5·29	29.0	4·40 4·34	19.4				
100	0 00	50 0	5 01	51 4	5 49	20 0	4 04	100				
	F	1*	G	*	Н	*	I	*				

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

TABLE No. 10.

Pressures, Pitches, and Surfaces. Iron Plate ½ inch thick.

Pressure per sq.in.	A	*	В	*	()*	Ι)*	F	C*	
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	
lbs.	ins.	sq.ins.	ins.	sq. ins.							
5											
10											
15									20.92	438.0	
20					20.27	411.0	19.24	370.5	18.16	330.0	
25					18.16	330.0	17.25	297.6	16.28	265.2	
30	20.92	438.0	20.27	411.0	16.61	276.0	15.78	249.0	14.90	222.0	
35	19:39	376.2	18.79	353.1	15.40	237 4	14.63	214.2	13.85	191.1	
40	18.16	330.0	17.60	309.7	14.44	208.5	13.72	188.2	12.96	168.0	
45	17.14	294.0	16.61	276.0	13.63	186.0	12.96	168.0	12.24	150.0	
50	16.28	265.2	15.78	249.0	12.96	168.0	12.32	151.8	11.64	135.6	
55	15.24	241.6	15.06	226.9	12.38	153.2	11.77	138.5	11.12	123.8	
60	14.90	2 22 ·0	14.44	208.5	11.87	141.0	11.29	127.5	10.67	114.0	
65	14.33	205.3	13.89	192.9	11.42	130.6	10.87	118.1	10.28	105.6	
70	13.82	191.1	13.40	179.5	11.03	121.7	10.49	110.1	9.92	98.5	
75	13.37	178.8	12.96	168.0	10.67	114.0	10.12	103.2	9.61	92.4	
80	12.96	168.0	12.56	157.8	10.35	107.2	9.85	97.1	9.32	87.0	
85	12.58	158.4	12.20	148.9	10.06	101.2	9.58	91.7	9.06	82.2	
90	12.24	150.0	11.87	141.0	9.79	96.0	9.32	87.0	8.83	78.0	
95	11.93	142.4	11.57	133.8	9.55	91.2	9.09	82.7	8.61	74.2	
100	11.64	135.6	11.29	127.5	9.32	87.0	8.88	78.9	8.41	70.8	
105	11.37	129.4	11.03	121.7	9.11	83.1	8.68	75.4	8.22	67.7	
110	11.12	123.8	10.79	116.4	8.92	79.6	8.50	72.2	8.05	64.9	
115	10.89	118.6	10.56	111.6	8.74	76.4	8.33	69.3	7.89	62.3	
120	10.67	114.0	10.35	107.2	8.57	73.5	8.17	66.7	7.74	60.0	
125	10.47	109.6	10.15	103.2	8.41	70.8	8.02	64.3	7.60	57.8	
130	10.28	105.6	9.97	99.4	8.26	68.3	7.87	62.0	7.47	55.8	
135	10.10	102.0	9.79	96.0	8.12	66.0	7.74	60.0	7.34	54.0	
140	9.92	98.5	9.63	92.7	7.99	63.8	7.62	58.0	7.23	52.2	
145	9.76	95.3	9.47	89.7	7.86	61.8	7.50	56.2	7.12	50.6	
150	9.61	92.4	9.32	87.0	7.74	60.0	7:39	54.6	7.01	49.2	
155	9.46	89.6	9.18	84.3	7.63	58.2	7.28	53.0	6.91	47.8	
160	9.32	87.0	9:05	81.9	7.52	56.6	7.18	51.5	6.82	46.5	
	A	*	F	3*	C	*	I)*	E	*	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces. Iron Plate ½ inch thick.

Table No. 10 continued.

	4											
Pressure per sq. in.	F	*	G	*	Н	[*	I	*				
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface				
lbs.	ins.	sq. ins.										
5		•••						•••				
10							17.25	297.6				
15	19.24	370.5	18.16	330.0	17.25	297.6	14.15	200.4				
20	16.71	279.3	15.78	249.0	14.99	224.7	12.32	151.8				
25	14.99	224.7	14.15	200.4	13.45	180.9	11.07	122.6				
30	13.72	188.2	12.96	168.0	12.32	151.8	10.15	103.2				
35	12.73	162.2	12.03	144.8	11.44	130.9	9.45	89.3				
40	11.94	142.6	11.29	127.5	10.74	115.3	8.88	78.9				
45	11.29	127.5	10.67	114.0	10.15	103.2	8.41	70.8				
50	10.74	115.3	10.15	103.2	9.66	93.4	8.02	64.3				
55	10.26	105.4	9.71	94.3	9.24	85.5	7.68	59.0				
60	9.85	97.1	9.32	87.0	8.88	78.9	7.39	54.6				
65	9.49	90.1	8.98	80.7	8.56	73.2	7.13	50.8				
70	9.17	84.1	8.68	75.4	8.27	68.4	6.90	47.6				
75	8.88	78.9	8.41	70.8	8.02	64.3	6.70	44.8				
80	8.62	74.3	8.17	66.7	7.79	60.6	6.51	42.4				
85	8.38	70.3	7.94	63.1	7.58	57.4	6.34	40.3				
90	8.17	66.7	7.74	60.0	7:39	54.6	6.19	38.4				
95	7.97	63.5	7.56	57.1	7.21	52.0	6.03	36.3				
100	7.79	60.6	7:39	54.6	7.05	49.7	5.85	34.2				
105	7.62	58.0	7.23	52.2	6.90	47.6	5:69	32.3				
110	7.46	55.7	7:08	50.1	6.76	45.7	5.54	30.7				
115	7:31	53.5	6.94	48.2	6.63	44.0	5.40	29.2				
120	7.18	51.5	6.82	46.5	6.21	42.4	5.28	27.9				
125 130	7.05	49.7	6.70	44.8	6.40	40.9	5.17	26.7				
	6.93	48.0	6.58	43.3	6.59	39.6	5.06	25.6				
135	6.82	46.5	6.48	42.0	6.19	38.4	4.97	24.7				
140	6.71	45.0	6.38	40.7	6.09	37.1	4.88	23.8				
145	6.61	43.7	6.28	39.5	5.96	35.6	4.79	23.0				
150 155	6.51	42.4	6.19	38.4	5.85	34.2	4.71	22.2				
160	6.42	41.2	6.10	37.3	5.74	32.9	4.64	21.5				
100	6.33	40.1	5.99	35.9	5.64	31.7	4.57	20.9				
	F*		G*		Н*		1*					

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate \(\frac{17}{32} \) inch thick.

Pressure per sq. in.	A	*	В	*	, C	*	D	*	E	*
Pres per	Pitch	Surface								
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ms.	ins.	sq. ins.	ins.	sq. ins.
5	•••									
10	•••		•••							
15	•••		•••		• • • •					
20							20.30	412.1	19.15	367.0
25					19.15	367.0	18.19	330.9	17.17	294.8
30	20.42	470.5			17.51	306.8	16.63	276.7	15.70	246.6
35	20.46	418.5	19.81	392.7	16.24	263.8	15.25	238.0	14.57	212.2
40	19.15	367.0	18.56	344.4	15.22	231.6	14.45	209:0	13.65	186.5
45 50	18.08 17.17	326.8 294.8	17.51	306.8	14:37	206.5	13.65	186.5	12.90	166.4
55	16:38	268.5	16.63 15.87	276·7 252·1	13.65	186.5	12.97	168.4	12.26	150.4
60	15.70	246.6	15.57	231.6	13.04 12.50	170·0 156·4	12·39 11·89	153.6 141.3	11·71 11·24	137·2 126·3
65	15.10	228.1	14.63	214.2	12.03	144.8	11.44	130.9	10.82	117.0
70	14.57	212.2	14.12	199.3	11.61	134.9	11.04	122.0	10.44	109.1
75	14 09	198.5	13.65	186.2	11.24	126.3	10.69	114.3	10.11	109 1
80	13.65	186.5	13.23	175.2	10.90	118.8	10 09	107.5	9.81	96.2
85	13.26	175.8	12.85	165.2	10.59	112.1	10.07	101.5	9.53	90.9
90	12.90	166.4	12.50	156.4	10.31	106.2	9.81	96.5	9.28	86.2
95	12.57	158.0	12.18	148.5	10.05	101.0	9.56	91.5	9.05	82.0
100	12.26	150.4	11.89	141.3	9.81	96.2	9.34	87.2	8.84	78.2
105	11.98	143.5	11.61	134.9	9.59	91.9	9.13	83.3	8.64	74.7
110	11.71	137.2	11.36	129.0	9.38	88.0	8.93	79.8	8.46	71.6
115	11.47	131.5	11.12	123.7	9.19	84.4	8.75	76.6	8.29	68.7
120	11.24	126.3	10.90	118.8	9.01	81.2	8.58	73.6	8.13	66.1
125	11.02	121.5	10.69	114.3	8.84	78.2	8.42	70.9	7.98	63.7
130	10.82	117.0	10.49	110.1	8.68	75.4	8.27	68.4	7.84	61.5
135	10.62	112.9	10.31	106.2	8.53	72.8	8.13	66.1	7.71	59.4
140	10.44	109.1	10.13	102.6	8.39	70.4	8.00	64.0	7.58	57.5
145	10.27	105.5	9.96	99.3	8.26	68.2	7.87	62.0	7.47	55.7
150	10.11	102.2	9.81	96.2	8.13	66.1	7.75	60.1	7.35	54.1
155	9.57	99.1	9.66	93.3	8.01	64.2	7.64	58.4	7.25	52.5
160	9.81	96.2	9.51	90.6	7.90	62.4	7.53	56.7	7.15	51.1
	1	A*	I	3*	()*)*	F	E*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{1}{3}$? inch thick. Table No. 11 continued.

-										
Pressure er sq. in.	F	·*	G	*	Н	*	I	*		
Pre per a	Pitch.	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5					•••	•••		•••		
10							18.19	330.9		
15	20.30	412.1	19.15	367.0	18.19	330.9	14.92	222.6		
20	17.62	310.5	16.63	276.7	15.80	249.6	12.97	168.4		
25	15.80	249.6	14.92	222.6	14.17	200.9	11.66	135.9		
30	14.45	209.0	13.65	186.5	12.97	168.4	10.69	114.3		
35	13.41	180.0	12.67	160 7	12.05	145.2	9.94	98.8		
40	12.58	158.2	11.89	141.3	11.30	127.8	9.34	87.2		
45	11.89	141.3	11.24	126.3	10.69	114.3	8.84	78.2		
50	11.30	127.8	10.69	114.3	10.17	103.4	8.42	70.9		
55	10.80	116.7	10.22	104.4	9.72	94.6	8.06	65.0		
60	10.37	107.5	9.81	96.2	9.34	87.2	7.75	60.1		
65	9.98	99.7	9.45	89.3	8.99	80.9	7.48	55.9		
70	9.64	93.0	9.13	83.3	8.69	75.6	7.24	52.4		
75	9.34	87.2	8.84	78.2	8.42	70.9	7.02	49.3		
80	9.06	82.1	8.58	73.6	8.18	66.9	6.82	46.6		
85	8.81	77.6	8.34	69.7	7.95	63.3	6.65	44.2		
90	8.58	73.6	8.13	66.1	7.75	60.1	6.48	42.1		
95	8.37	70.1	7.93	63.0	7.57	57.3	6:34	40.2		
100	8.18	66.9	7.75	60.1	7.39	54.7	6.50	38.4		
105	8.00	64.0	7.58	57.5	7.24	52.4	6.06	36.7		
110	7.83	61.3	7.43	55.2	7.09	50.3	5.89	34.7		
115	7.68	58.9	7.28	53.0	6.95	48.3	5.74	33.0		
120	7:53	56.7	7.15	51.1	6.82	46.6	5.60	31.4		
125	7:39	54.7	7.02	49.3	6.70	44.9	5.48	30.0		
130	7.27	52.8	6.90	47.6	6.59	43.4	5.36	28.7		
135	7.15	51.1	6.79	46.1	6.48	42.1	5.25	27.6		
140	7.03	49.5	6.68	44.6	6.38	40.8	5.15	26.5		
145 150	6.93	48.0	6.58	43.3	6:29	39.6	5.06	25.6		
155	6.82	46.6	6.48	42.1	6.20	38.4	4.97	24.7		
160	6.73	45.3	6:39	40.9	6:11	37.4	4.89	23.9		
100	6.63	44.0	6.31	39.8	6.00	36.0	4.82	23.2		
	F*		G*		H*		I*			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces.

Iron Plate 9 inch thick.

Pressure per sq. in.	A*		В*		C*		D*		E*	
Pres per	Pitch	Surface								
lbs.	ins.	sq. ins.								
5										
10										
15										•••
20									20.15	406.0
25					20.15	406.0	19.13	366.0	18.05	326.0
30					18.42	339.3	17.49	306.0	16.51	272.6
35			20.84	434.2	17.08	291.7	16.22	263.1	15.31	234.5
40	20.15	406.0	19.52	381.0	16.00	256.0	15.19	231.0	14.35	206.0
45	19.01	361.5	18.42	339.3	15.10	228.2	14.35	206.0	13.55	183.7
50	18.05	326.0	17.49	306.0	14.35	206.0	13.63	186.0	12.88	166.0
55	17.23	296.9	16.69	278.7	13.70	187.8	13.02	169.6	12.30	151.4
60	16.51	272.6	16.00	256.0	13.14	172.6	12.49	156.0	11.80	139.3
65	15.88	252.1	15.38	236.7	12.64	159.8	12.02	144.4	11.36	129.0
70	15.31	234.5	14.84	220.2	12.20	148.8	11.60	134.5	10.96	120.2
75	14.81	219.3	14.35	206.0	11.80	139.3	11.52	126.0	10.61	112.6
80	14.35	206.0	13.91	193.5	11.44	131.0	10.88	118.5	10.29	106.0
85	13.93	194.2	13.20	182.4	11.12	123.6	10.57	111.8	10.00	100.0
90	13.55	183.7	13.14	172.6	10.82	117.1	10.29	106.0	9.74	94.8
95	13.20	174.4	12.80	163.8	10.54	111.5	10.03	100.7	9.49	90.2
100	12.88	166.0	12.49	156.0	10.29	106.0	9.79	96.0	9.27	86.0
105	12.58	158.3	12.20	148.8	10.06	101.2	9.57	91.7	9.06	82.1
110	12.30	151.4	11.93	142.3	9.84	96.9	9.37	87.8	8.87	78.7
115	12.04	145.1	11.68	136.4	9.64	92.9	9.18	84.2	8.69	75.5
120	11.80	139.3	11.44	131.0	9.45	89.3	9.00	81.0	8.52	72.6
125	11:57	134.0	11.22	126.0	9.27	86.0	8.83	78.0	8.36	70.0
130	11.36	129.0	11.01	121.3	9.10	82.9	8.67	75.2	8.21	67.5
135	11.12	124.5	10.82	117.1	8.94	80.0	8.52	72.6	8.07	65.2
140	10.96	120.2	10.63	113.1	8.80	77.4	8.38	70.2	7.94	63.1
145	10.78	116.3	10.46	109.4	8.65	74.9	8.25	68.0	7.82	61.1
150	10.61	112.6	10.29	106.0	8.52	72.6	8.12	66.0	7.70	59.3
155	10.45	109.2	10.13	102.7	8.39	70.5	8.00	64.0	7.59	57.6
160	10.29	106.0	9.98	99.7	8.27	68.5	7.89	62.2	7.48	56.0
	A*		В*		C*		D*		E*	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Table No. 12 continued.

Iron Plate 9 inch thick.

Pressure	F	*	G	*	Н	[*	I	*
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	⁸ q. ins.
5							***	
10							19.13	366.0
15			20.15	406.0	19.13	366.0	15.68	246.0
20	18.53	343.5	17.49	306.0	16.61	276.0	13.63	186.0
25	16.61	276.0	15.68	246.0	14.90	222.0	12.24	150.0
30	15.19	231.0	14.35	206.0	13.63	186.0	11.22	126.0
35	14.10	198.8	13.32	177.4	12.66	160.2	10.43	108.8
40	13.22	174.7	12.49	156.0	11.87	141.0	9.79	96.0
45	12.49	156.0	11.80	139.3	11.22	126.0	9.27	86.0
50	11.87	141.0	11.22	126.0	10.67	114.0	8.83	78.0
55	11.34	128.7	10.72	115.0	10.50	104.1	8.45	71.4
60	10.88	118.5	10.29	106.0	9.79	96.0	8.12	66.0
65	10.48	109.8	9.91	98.3	9.43	89.0	7.83	61.3
70	10.15	102.4	9.57	91.7	9.11	83.1	7.57	57.4
75	9.79	96.0	9.27	86.0	8.83	78.0	7.34	54.0
80	9.50	90.3	9.00	81.0	8:57	73.5	7.14	51.0
85	9.24	85.4	8.75	76.5	8.33	69.5	6.95	48.3
90	9.00	81.0	8.52	72.6	8.12	€6.0	6.78	46.0
95	8.77	77.0	8.31	69.1	7.92	62.8	6.62	43.8
100	8.57	73.5	8.12	66.0	7.74	60.0	6.48	42.0
105	8.38	70.2	7.94	63.1	7.57	57.4	6.34	40.2
110	8.20	67.3	7.78	60.5	7.42	55.0	6.22	38.7
115	8.04	64.6	7.62	58.1	7.27	52.9	6.10	37.2
120	7.89	62.2	7.48	56.0	7.14	51.0	5.95	35.4
125	7.74	60.0	7.34	54.0	7.01	49.2	5.81	33.7
130	7.61	57.9	7.22	52.1	6.89	47.5	5.68	32.2
135	7.48	56.0	7.10	50.4	6.78	46.0	5.56	30.9
140	7.36	54.2	6.99	48.8	6.67	44.5	5.45	. 29.7
145	7.25	52.5	6.88	47.3	6.57	43.2	5.34	28.5
150	7.14	51.0	6.78	46.0	6.48	42.0	5.25	27.5
155	7.04	49.5	6.68	44.7	6.39	40.8	5.16	26.6
160	6.94	48.1	6.59	43.5	6.30	39.7	5.07	25.7
	I	r*	(* *	I	1*]	[*
-	1 -			-				THE RESERVE AND ADDRESS OF THE PERSON NAMED IN

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{19}{32}$ inch thick.

_										_
Pressure per sq. in.	A	*	I	3*	()*	Ι)*	F	E*
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										**1
10		•••								• • • •
15			•••							•••
20										
25		•••			10.00		20.07	402.9	18.94	358.8
30		•••			19:32	373.5	18:35	336.7	17.32	300.0
35		•••			17.91	321.0	17.01	289.5	16.06	258.0
40	10.05		20.48	419.4	16.78	281.6	15.94	254.0	15.05	226.5
45	19.95	398.0	19.32	373.5	15.84	251.0	15.05	226.5	14.21	202.0
50	18.94	358.8	18.35	336.7	15.05	226.5	14.29	204.4	13.50	182.4
55	18.07 326.7 17.32 300.0		17.51	306.6	14.36	206.4	13.65	186.4	12.89	166.3
60			16.78	281.6	13.77	189.7	13.09	171.3	12:37	153.0
65	16.65	277:3	16.13	260.4	13.25	175.6	12:59	158.6	11.90	141.6
70	16.06	258.0	15.56	242.2	12.78	163.5	12.15	147.7	11.49	132.0
75	15.53	241.2	15.05	226.5	12:37	153.0	11.76	138.3	11.11	123.6 116.2
80	15.05	226.5	14.58	212.7	11.99	143.8	11:40	130.0	10.78	109.7
85	14.61	213.5	14.16	200.5	11.65	135.7	11.07	122.7	10.47	109.7
90	14.21	202.0	13.77	189.7	11:33	128.5	10.78	116.2	10.19	
95 100	13.84	191.6	13.42	180.0	11.04	122.0	10.51	110.4	9.94	98·8 94·2
	13.50	182.4	13.09	171.3	10.78	116.2	10.25	105.2		
105	13.19	174.0	12.78	163.5	10.53	111.0	10.02	100.5	9.48	90.0
$\begin{array}{c} 110 \\ 115 \end{array}$	12.89 12.62	166.3	12.50 12.24	156.3	10.30	106.2	9.80	96.2	9.09	82.6
$\frac{115}{120}$	12.37	159.3	11.99	149.8	9.89	101·8 97·8	9.60	92.2	8.91	79.5
$120 \\ 125$	12.13	153.0	11.76	143.8	9.70	94.2	9.24	88.6	8.75	76.5
130	11.90	147·1 141·6	11.54	138·3 133·2	9.53	90.8	9.07	85·3 82·3	8.59	73.8
135	11.69	136.6	11.33	128.5	9.36	87.6	8.91	79.5	8.44	71.3
140	11.49	132.0	11.14	124.1	9.20	84.7	8.76	76.8	8.30	69.0
145	11.29	127.6	10.95	120.0	9.05	82.0	8.62	74.4	8.17	66.8
150	11.11	123.6	10.78	116.2	8.91	79.5	8.49	72.1	8.05	64.8
155	10.94	119.8	10.61	112.6	8.78	77.1	8.36	70.0	7.93	62.9
160	10.78	116.5	10.45	109.3	8.65	74.9	8.24	68.0	7.81	61.1
	A	*	В	*	C	*	D	*	Е	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces. Iron Plate 19/2 inch thick.

Table No. 13 continued.

	32												
Pressure per sq. in.	F	1*	G	*	H	[*]	[*					
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface					
lbs.	ins.	sq. ins.											
5													
10							20.07	402.9					
15					20.07	402.9	16.45	270.6					
20	19.44	378.0	18.35	336.7	17.42	303.6	14.29	204.4					
25	17.42	303.6	16.45	270.6	15.62	244.1	12.83	164.7					
30	15.94	254.0	15.05	226.5	14.29	204.4	11.76	138.3					
35	14.78	218.6	13.96	195.0	13.27	176.1	10.92	119.4					
40	13.85	192.0	13.09	171.3	12.44	154.8	10.25	105.2					
45	13.09	171.3	12.37	153.0	11.76	138.3	9.70	94.2					
50	12.44	154.8	11.76	138.3	11.18	125.0	9.24	85.3					
55	11.88	141.3	11.23	126.2	10.68	114.2	8.84	78.1					
60	11.40	130.0	10.78	116.2	10.25	105.2	8.49	72.1					
65	10.97	120.4	10.38	107.7	9.87	97.5	8.19	67.0					
70	10.59	112.3	10.02	100.5	9.54	91.0	7.91	62.7					
75	10.25	105.2	9.70	94.2	9.24	85.3	7.67	58.9					
80	9.95	99.0	9.41	88.6	8.96	80.4	7.45	55.6					
85	9.67	93.5	9.15	83.8	8.72	76.0	7.25	52.6					
90	9.41	88.6	8.91	79.5	8.49	72.1	7.07	50.1					
95	9.18	84.3	8.69	75.6	8.58	68.6	6.91	47.7					
100	8.96	80.4	8.49	72.1	8.09	65.5	6.76	45.6					
105	8.76	76.8	8.30	69.0	7.91	62.7	6.61	43.8					
110	8.58	73.6	8.13	66.1	7.75	60.1	6.48	42.0					
115	8.41	70.7	7.97	63.5	7.60	57.7	6.36	40.5					
120	8.24	68.0	7.81	61.1	7.45	55.6	6.25	39.0					
125	8.09	65.5	7.67	58.9	7.32	53.6	6.14	37.7					
130	7.95	63.2	7.54	56.8	7.19	51.7	6.01	36.1					
135	7.81	61.1	7.41	55.0	7.07	50.1	5.88	34.5					
140	7.69	59.1	7.29	53.2	6.96	48.5	5.75	33.1					
145	7.57	57.3	7.18	51.6	6.86	47.0	5.64	31.8					
150	7.45	55.6	7.07	50.1	6.76	45.6	5.23	30.6					
155	7.35	54.0	6.97	48.6	6.66	44.4	5.43	29.5					
160	7.24	52.5	6.88	47.3	6.57	43.2	5.34	28.5					
	F	*	G	*	Н	*	I	*					

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces Iron Plate 5 inch thick.

Pressure per sq. in.	A	*	I	3*	C	*	D	*	E	*
Pres per s	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10										
15										
20										
25									19.83	393.3
30					20.53	409.3	19.21	369.0	18.13	328.6
35					18.75	351.7	17.80	317.1	16.81	282.5
40					17.56	308.5	16.68	278.2	15.74	248.0
45	20.88	436.2	20.23	409.3	16.28	274.8	15.74	248.0	14.87	221.1
50	19.83	393.2	19.21	369.0	15.74	248.0	14.96	223.8	14.12	199.6
55	18.92	358.0	18.33	336.0	15.03	226.0	14.28	204.0	13.49	182.0
60	18.13	328.6	17.56	308.5	14.41	207.6	13.69	187.5	12.93	167.3
65	17.43	303.8	16.88	285.2	13.86	192.1	13.17	173.5	12.44	154.9
70	16.81	282.5	16.28	265.2	13.37	178.8	12.71	161.5	12.01	144.2
75	16.25	264.1	15.74	248.0	12.93	167.3	12.29	151.2	11.62	135.0
80	15.74	248.0	15.26	232.8	12.54	157.2	11.92	142.1	11.27	127.0
85	15.29	233.7	14.81	219.5	12.18	148.3	11.58	134.1	10.95	119.8
90	14.87	221.1	14.41	207.6	11.85	140.4	11.27	127.0	10.65	113.5
95	14.48	209.7	14.03	197.0	11.54	133 3	10.98	120.6	10.38	107.8
100	14.12	199.6	13.69	187.5	11.27	127.0	10.72	114.9	10.14	102.8
105	13.79	190.3	13.37	178.8	11.01	121.2	10.47	109.7	9.91	98.1
110	13.49	182.0	13.07	171.0	10.77	116.0	10.24	105.0	9.69	94.0
115	13.20	174.3	12.80	163.8	10.54	111.2	10.03	100.6	9.49	90.1
120	12.93	167.3	12.54	157.2	10.33	106.8	9.83	96.7	9.31	86.6
125	12.68	160.8	12.29	151.2	10.14	102.8	9.65	93.1	9.13	83.4
130	12.44	154.9	12.06	145.6	9.95	99.0	9.47	89.7	8.97	80.4
135	12.22	149.4	11.85	140.4	9.78	95.6	9.31	86.6	8.81	77:7
140	12.01	144.2	11.64	135.6	9.61	92.4	9.15	83.7	8.66	75.1
145	11.81	139.5	11.45	131.1	9.45	89.4	9.00	81.0	8.53	72.7
150	11.62	135.0	11.27	127.0	9.31	86.6	8.86	78.6	8.39	70.5
155	11.44	130.9	11.09	123.0	9.16	84.0	8.73	76.2	8.27	68.4
160	11.27	127.0	10.92	119.4	9.03		8.60	74.0	8.15	66.5
	I I	/ *]	B*	()*	1)*	H	C*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 14 continued.

Pressures, Pitches, and Surfaces. Iron Plate 5 inch thick.

Pressure per sq. in.	F	*	G	*	В	[*	I	*
Pres per s	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.						
5	•••							
10	•••							
15	•••						17.21	296.4
20	20.32	414.3	19.21	369.0	18.24	332.7	14.96	223.8
25	18.24	332.7	17.21	296.4	16.35	267.3	13.42	180.2
30	16.68	278.2	15.74	248.0	14.96	223.8	12.29	151.2
35	15.47	239.3	14.61	213.4	13.88	192.6	11.42	130.4
40	14.49	210.1	13.69	187:5	13.01	169.3	10.72	114.9
45	13.69	187.5	12.93	167.3	12.29	151.2	10.13	102.8
50	13.01	169.3	12.29	151.2	11.69	136.6	9.65	93.1
55	12.43	154.5	11.74	138.0	11.17	124.8	9.23	85.2
60	11.92	142.1	11.27	127.0	10.72	114.9	8.86	78.6
65	11.47	131.6	10.84	117:6	10.32	106.5	8.54	73.0
70	11.07	122.6	10.47	109.7	9.96	99.3	8.26	68.2
75	10.72	114.9	10.13	102:8	9.65	93.1	8.00	64.0
80	10.39	108.0	9.83	96.7	9.36	87.6	7.77	60.4
85	10.10	102.0	9.56	91.4	9.10	82.8	7.56	57.2
90	9.83	96.7	9.31	86.6	8.86	78.6	7.37	54.4
95	9.59	91.9	9.07	82.4	8.64	74.7	7.20	51.8
100	9.36	87.6	8.86	78:6	8.44	71.3	7.04	49.5
105	9'15	83.7	8.66	75.1	8.26	68.2	6.89	47.4
110	8.95	80.2	8.48	72.0	8.08	65.4	6.75	45.6
115	8.77	77.0	8.31	69.1	7.92	62.8	6.62	43.8
120	8.60	74.0	8.15	66.5	7.77	60.4	6.50	42.3
125	8.44	71.3	8.00	64.0	7.63	58.2	6.39	40.8
130	8.59	68.8	7.86	61.8	7.50	56.2	6.28	39.5
135	8.12	66.5	7.73	59.7	7.37	54.4	6.18	38.2
140	8.02	64.3	7.60	57.8	7.25	52.6	6.08	36.9
145	7.89	62.3	7.48	56.0	7.14	51.0	5.95	35.4
150	7.77	60.4	7.37	54.4	7.04	49.5	5.83	34.0
155	7.66	58.6	7.27	52.8	6.94	48.1	5.72	32.8
160	7.55	57.0	7.16	51.3	6.84	46.8	5.62	31.6
	1	Fr*		;*	I	I*	1	[*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 15.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{2}{3}$ inch thick.

Pressure per sq. in.	A	*	E	8*	C	*	I)*	H	*
Pre per	Pitch	Surface								
lbs.	ins.	sq. ins.								
5										
10										
15										
20										
25									20.71	429.2
30							20.06	402.7	18.93	358.6
35					19.59	383.8	18.60	346.0	17.55	308.2
40		•••			18.34	336.6	17.42	303.5	16.44	270.5
45					17:31	299.8	16.44	270.5	15.2	241.1
50	20.71	429.2	20.06	402.7	16.44	270.5	15.62	244.0	14.75	217.6
55	19.76	390.7	19.14	366.6	15.69	246.4	14.91	222.4	14.08	198.3
60	18.93	358.6	18.34	336.6	15.04	226.4	14.29	204.3	13.50	182.3
65	18.20	331.5	17.64	311.1	14.47	209.4	13.75	189.1	12.99	168.7
70	17.55	308.2	17.01	289.3	13.96	194.9	13.26	176.0	12.53	157.1
75	16.97	288.1	16.44	270.5	13.50	182.3	12.83	164.7	12.12	147.0
80	16.44	270.5	15.93	253.9	13.08	171.3	12.44	154.7	11.75	138.2
85	15.96	254.9	15.47	239.3	12.71	161.5	12.08	146.0	11.42	130.4
90	15.52	241.1	15.04	226.4	12.36	152.9	11.75	138.2	11.11	123.5
95	15.12	228.7	14.65	214.8	12.05	145.2	11.45	131.2	10.83	117.3
100	14.75	217.6	14.29	204.3	11.75	138.2	11.18	125.0	10.57	111.8
105	14.40	207.5	13.96	194.9	11.48	131.9	10.92	119.3	10.33	106.7
110	14.08	198.3	13.65	186.3	11.23	126.2	10.68	114.2	10.10	102.1
115	13.78	190.0	13.36	178.5	11.00	121.0	10.46	109.5	9.90	98.0
120	13.50	182.3	13.08	171.3	10.78	116.2	10.25	105.1	9.70	94.1
125	13.24	175.2	12.83	164.7	10.57	111.8	10.06	101.2	9.52	90.6
130	12.99	168.7	12.59	158.5	10.38	107.7	9.87	97.5	9.34	87.3
135	12.75	162.7	12:36	152.9	10.19	103.9	9.70	94.1	9.18	84.3
140	12.53	157.1	12.15	147.6	10.02	100.4	9.54	91.0	9.03	81.5
145	12.32	151.9	11.95	142.8	9.86	97.2	9.38	88.0	8.88	78.9
150	12.12	147.0	11.75	138.2	9.70	94.1	9.23	85.3	8.74	76.5
155	11.93	142.5	11.57	133.9	9.55	91.3	9.09	82.7	8.61	74.2
160	11.75	138.2	11.40	129.9	9.41	88.6	8.96	80.3	8.49	72.1
	A	*	E	3*	()*	I)*	H	<u></u> *

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Table No. 15 continued.

Iron Plate $\frac{21}{32}$ inch thick.

Pressure per sq. in.	F	*	G	*	Н	[*	I	*
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5	•••		•••					•••
10			• • • •				77.00	000.4
15			20.00	400.7	70.05	0.00.0	17.98	323.4
20	19.05	0.00.0	20.06	402.7	19.05	363.0	15.62	244.0
25 30	17.42	363.0	17.98	323.4	17:07	291.6 244.0	14.01	196·4 164·7
35	16.15	261.0	16·44 15·25	270·5 232·7	15.62 14.49	210.0	12·83 11·91	142.0
40	15.13	229.1	14.29	204.3	13.58	184.5	11.18	125.0
45	14.29	204.3	13.50	182.3	12.83	164.7	10.57	111.8
50	13.58	184.5	12.83	164.7	12.20	148.8	10.06	101.2
55	12.97	168.3	12.25	150.2	11.65	135.8	9.62	92.5
60	12.44	154.7	11.75	138.2	11.18	125.0	9.23	85.3
65	11.97	143.3	11.31	128.0	10.76	115.8	8.90	79.2
70	11.55	133.5	10.92	119.3	10.39	108.0	8.60	74.0
75	11.18	125.0	10.57	111.8	10.06	101.2	8.33	69.4
80	10.84	117.5	10.25	105.1	9.76	95.2	8.09	65.5
85	10.53	111.0	9.96	99.3	9.48	90.0	7.87	62.0
90	10.25	105.1	9.70	94.1	9.23	85.3	7.67	58.9
95	9.99	99.9	9.46	89.5	9.01	81.1	7.49	56.1
100	9.76	95.2	9.23	85.3	8.79	77.4	7.32	53.6
105	9.54	91.0	9.03	81.5	8.60	74.0	7.16	51.3
110	9.33	87.1	8.84	78.1	8.42	70.9	7.02	49.2
115	9.14	83.6	8.66	75.0	8.25	68.1	6.88	47.4
120	8.96	80.3	8.49	72.1	8.09	65.5	6.75	45.6
125	8.79	77.4	8.33	69.4	7.94	63.1	6.64	44.0
130	8.64	74.6	8.18	67.0	7.80	60.9	6.52	42.6
135	8.49	72.1	8.04	64.7	7.67	58.9	6.42	41.2
140	8.35	69.7	7.91	62.6	7.55	57.0	6.32	40.0
145	8.22	67.5	7.79	60.7	7.43	55.2	6.23	38.8
150	8.09	65.5	7.67	58.9	7.32	53.6	6.14	37.7
155	7.97	63.5	7.56	57.1	7.21	52.0	6.03	36.3
160	7.86	61.7	7.45	55.5	7.11	50.6	5.92	35.0
	F	*	G	1 *	F	I*		*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

TABLE No. 16.

Pressures, Pitches, and Surfaces.

Iron Plate 11 inch thick.

							1		_	
Pressure per sq. in.	A	*	E	*	C	*	r)*	E	*
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5								1		
10										
15										
20										
25										
30						47.5.4	20.92	438.0	19.74	390.0
35					20.43	417.4	19.39	376.2	18.30	335.1
40				•••	19.13	366.0	18.16	330.0	17.14	294.0
45		•••			18.05	326.0	17.14	294.0	16.18	262.0
50			20.92	438.0	17.14	294.0	16.28	265.2	15.37	236.4
55	20.61	424.9	19.96	398.7	16.36	267.8	15.54	241.6	14.67	215.4
60	19.74	390.0	19.13	366.0	15.68	246.0	14.90	222.0	14.07	198.0
65	18.98	360.4	18:39	338.3	15.08	227.5	14.33	205.3	13.53	183.2
70	18.30	335.1	17.73	314.5	14.55	211.7	13.82	191.1	13.06	170.5
75	17.69	313.2	17.14	294.0	14.07	198.0	13.37	178.8	12.63	159.6
80	17.14	294.0	16.61	276.0	13.63	186.0	12.96	168.0	12.24	150.0
85	16.64	277.0	16.12	260.1	13.24	175.4	12.58	158.4	11.89	141.5
90	16.18	262.0	15.68	246.0	12.88	166.0	12.24	150.0	11.57	134.0
95	15.76	248.5	15.27	233.3	12.55	157.5	11.93	142.4	11.28	127.2
100	15.37	236.4	14.90	222.0	12.24	150.0	11.64	135.6	11.01	121.2
105	15.01	225.4	14.55	211.7	11.96	143.1	11.37	129.4	10.75	115.7
110	14.67	215.4	14.22	202.3	11.70	136.9	11.12	123.8	10.52	110.7
115	14.36	206.3	13.92	193.8	11.45	131.2	10.89	118.6	10.30	106.1
120	14.07	198·0 190·3	13.63	186.0	11.22	126.0	10.67	114.0	10.10	102.0
125 130	13·79 13·53	183.2	13·37 13·12	178.8	11.01	121·2 116·7	10.47 10.28	109.6	9.90	98·1 94·6
135	13.29	176.6	12.88	172·1 166·0	10.61	112.6		105.6 102.0	9.55	91.3
	13.06		12.66				10.10		9.39	88.2
140 145	12.84		12.44	160·2 154·9	10.43	108·8 105·3	9.92	98·5 95·3	9.24	85.4
150	12.63		12.24	150.0	10.20	102.0	9.76	92.4	9.24	82.8
155	12.43		12.05	145.3	9.94	98.9	9.46	89.6	8.96	80.3
160	12.24	150.0	11.87	141.0	9.79	96.0	9.32	87.0	8.83	78.0
-	12.24 150.0 11.87			10 9 19 90 0						
	A* B			B*	1	7*]	D*	E*	
-		-	-							

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

Pressures, Pitches, and Surfaces.

Iron Plate 11 inch thick.

Table No. 16 continued.

Pressure per sq. in.	F	1*	G	r*	Н	[*	I	*
Pres per s	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.						
5								
10		,						
15							18.75	351.6
20			20.92	438.0	19.87	394.8	16.28	265.2
25	19.87	394.8	18.75	351.6	17.80	317.0	14.60	213.3
30	18.16	330.0	17.14	294.0	16.28	265.2	13.37	178.8
35	16.84	283.7	15.90	252.8	15.10	228.1	12.41	154.1
40	15.78	249.0	14.90	222.0	14.15	200.4	11.64	135.6
45	14.90	222.0	14.07	198.0	13.37	178.8	11.01	121.2
50	14.15	200.4	13.37	178.8	12.71	161.5	10.47	109.6
55	13.21	182.7	12.77	163.0	12.14	147.3	10.01	100.2
60	12.96	168.0	12.24	150.0	11.64	135.6	9.61	92.4
65	12.47	155.5	11.78	138.9	11.20	125.6	9.26	85.7
70	12.03	144.8	11.37	129.4	10.82	117.0	8.94	80.0
75	11.64	135.6	11.01	121.2	10.47	109.6	8.66	75.1
80	11.29	127.5	10.67	114.0	10.15	103.2	8.41	70.8
85	10.97	120.3	10.37	107.6	9.87	97.4	8.18	66.9
90	10.67	114.0	10.10	102.0	9.61	92.4	7.97	63.6
95	10.40	108.3	9.84	96.9	9.37	87.8	7.78	60.5
100	10.15	103.2	9.61	92.4	9.15	83.7	7.60	57.8
105	9.92	98.5	9.39	88.2	8.94	80.0	7.44	55.3
110	9.71	94.3	9.19	84.5	8.75	76.6	7.28	53.1
115	9.51	90.5	9.00	81.0	8.58	73.6	7.14	51.0
120	9.32	87.0	8.83	78.0	8.41	70.8	7.01	49.2
125	9.15	83.7	8.66	75.1	8.25	68.2	6.89	47.4
130	8.98	80.7	8.51	72.4	8.11	65.8	6.77	45.8
135	8.83	78.0	8.36	70.0	7.97	63.6	6.66	44.4
140	8.68	75.4	8.22	67.7	7.84	61.5	6.56	43.0
145	8.54	73.0	8.09	65.5	7.72	59.6	6.46	41.7
150	8.41	70.8	7.97	63.6	7.60	57.8	6.36	40.5
155	8.59	68.7	7.85	61.7	7.49	56.1	6.28	39.4
160	8.17	66.7	7.74	60.0	7:39	54.6	6.19	38.4
	F*		G*		H*		I*	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{23}{33}$ inch thick.

Pressure per sq. in.	A	L *	I	3*	(Y*	I)*	I	<u>:</u>
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10										
15										• • • •
20				•••						
25										
30								. ::	20.55	422.6
35							20.19	407.7	19.05	363.1
40					19.91	396.6	18.91	357.5	17.84	318.5
45					18.79	353.2	17.84	318.5	16.84	283.7
50					17.84	318.5	16.94	287.2	16.00	256.0
55			20.78	432.1	17.03	290.0	16.17	261.6	15.27	233.2
60	20.55	422.6	19.91	396.6	16.35	266.4	15.50	240.3	14.64	214.3
65	19.76	390.6	19.14	366.2	15.69	246.3	14.91	222.3	14.08	198.3
70	19.05	363.1	18.46	340.8	15.14	229.2	14.38	206.8	13.58	184.5
75	18.42	339.3	17.84	318.5	14.64	214.3	13.91	193.5	13.14	172.6
80	17.84	318.5	17.29	298.9	14.18	201.3	13.48	181.7	12.73	162.2
85	17.32	300.1	16.78	281.7	13.77	189.8	13.09	171.4	12.37	153.0
90	16.84	283.7	16.32	266.4	13.40	179.6	12.73	162.2	12.03	144.8
95	16.40	269.1	15.89	252.7	13.05	170.4	12.41	154.0	11.73	137.5
100	16.00	256.0	15.20	240.3	12.73	162.2	12.10	146.6	11.44	131.0
105	15.62	244.0	15.14	229.2	12.44	154.8	11.83	139.9	11.18	125.0
110	15.27	233.2	14.80	219.0	12.16	148.0	11.56	133.8	10.93	119.6
115	14.94	223.3	14.48	209.8	11.91	141.8	11.32	128.2	10.71	114.6
120	14.64	214.3	14.18	201.3	11.67	136.2	11.09	123.1	10.49	110.1
125	14.35	206.0	13.91	193.5	11.44	131.0	10.88	118.5	10.59	106.0
130	14.08	198.3	13.64	186.2	11.53	126.1	10.68	114.1	10.10	102.1
135	13.82	191.1	13.40	179.6	11.03	121.7	10.49	110.1	9.93	98.5
140	13.58	184.5	13.16	173.4	10.84	117.6	10.31	106.4	9.76	95.2
145	13.35	178.4	12.94	167.6	10.66	113.7	10.14	102.9	9.60	92.2
150	13.14	172.6	12.73	162.2	10.49	110.1	9.98	99.7	9.45	89.3
155	12.93	167.2	12.53	157.2	10.33	106.8	9.83	96.7	9.30	86.6
160	12.73	162.2	12.34	152.4	10.18	103.6	9.69	93.8	9.17	84.1
	A*		В*		C*		D*		E*	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

Table No. 17 continued.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{2}{3}\frac{3}{2}$ inch thick.

Pressure per sq. in.	I	**	G	*	E	l*		*				
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface				
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.				
5												
10												
15							19.52	381.0				
20					20.68	427.8	16.94	287.2				
25	20.68	427.8	19.52	381.0	18.53	343.5	15.19	231.0				
30	18.91	357.5	17.84	318.5	16.94	287.2	13.91	193.5				
35	17.53	307.3	16.54	273.8	15.71	247.0	12.91	166.7				
40	16.42	269.6	15.50	240.3	14.72	216.9	12.10	146.6				
45	15.50	240.3	14.64	214.3	13.91	193.5	11:44	131.0				
50	14.72	216.9	13.91	193.5	13.22	174.7	10.88	118.5				
55	14.06	197.7	13.28	176.4	12.62	159.4	10.40	$108.2 \\ 99.7$				
60 65	13.48	181.7	12·73 12·25	162.2	12·10 11·65	146·6 135·8	9.62	99.7				
70	12.97	168.2		150.2			9.62	86.3				
75	12·51 12·10	156.6 146.6	11.83 11.44	139 9 131·0	11·24 10·88	126.5 118.5	9.00	81.0				
80	11.74	137.8	11.09	123.1	10.55	111.4	8.73	76.3				
85	11.40	130.0	10.78	116.2	10.26	105.2	8.49	72.1				
90	11.09	123.1	10.49	110.1	9.98	99.7	8.27	68.5				
95	10.81	117.0	10.23	104.6	9.73	94.8	8.07	65.2				
100	10.55	111.4	9.98	99.7	9.50	90.3	7.89	62.2				
105	10.31	106.4	9.76	95.2	9.29	86.3	7.71	59.5				
110	10.09	101.8	9.55	91.2	9.09	82.7	7.55	57.1				
115	9.88	97.7	9.35	87.5	8.90	79.3	7.41	54.9				
120	9.69	93.8	9.17	84.1	8.73	76.3	7.27	52.8				
125	9.50	90.3	9.00	81.0	8.57	73.5	7.14	51.0				
130	9.33	87.1	8.83	78.1	8.42	70.9	7.02	49.2				
135	9.17	84.1	8.68	75.4	8.27	68.5	6.90	47.6				
140	9.01	81.3	8.54	72.9	8.14	66.2	6.79	46.1				
145	8.87	78.7	8.40	70.6	8.01	64.1	6.69	44.7				
150	8.73	76.3	8.27	68.5	7.89	62.2	6.59	43.5				
155	8.60	74.0	8.15	66.4	7.77	60.4	6.50	42.2				
160	8.48	71.9	8.03	64.5	7.66	58.7	6.41	41.1				
	F*		G	(*	H	[*	I*					

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 18.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{3}{4}$ inch thick.

Pressure per sq. in.	l A	*	E	3*)*	I)*	F	*
sst		1		1						1
Pre per	Pitch	Surface								
lbs.	ins.	sq. ins.								
5										
10										
15										
20										
25										
30										
35							20.99	440.5	19.80	392.5
40		•••			20.70	428.5	19.65	386.5	18.54	344.0
45					19.53	381.5	18.54	344.0	17.50	306.4
50					18.54	344.0	17.61	310.5	16.62	276.4
55					17.70	313.5	16.81	282.5	15.86	251.8
60	•••		20.70	428.5	16.96	287.6	16.10	259.5	15.21	231.3
65	20.54	422.0	19.90	396.0	16:31	266.0	15.49	240.0	14.62	214.0
70	19.80	392.2	19.18	368.1	15.73	247.4	14.94	223.2	14.11	199.1
75	19.14	366.5	18.54	344.0	15.21	231.3	14.45	208.8	13.64	186.2
80	18:54	344.0	17.96	322.8	14.74	217.2	14.00	196.1	13.22	175.0
85	18.00	324.1	17.44	304.2	14.31	204.8	13.60	184.9	12.84	165.0
90	17.50	306.4	16.96	287.6	13.92	193.7	13.22	175.0	12.49	156.2
95	17.04	290.6	16.51	272.8	13.56	183.8	12.88	166.1	12.17	148.3
100	16.62	276.4	16.11	259.5	13.22	175.0	12.57	158.1	11.88	141.2
105	16.23	263.5	15.73	247.4	12.92	166.9	12.28	150.8	11.60	134.7
110	15.86	251.8	15.37	236.4	12.63	159.6	12.01	144.2	11.35	128.9
115	15.52	241.1	15.04	226.4	12:36	152.9	11.75	138.2	11.11	123.5
120	15.21	231.3	14.74	217.2	12.11	146.8	11.52	132.7	10.89	118.6
125	14.91	222.3	14.45	208.8	11.88	141.2	11.30	127.6	10.68	114.1
130	14.62	214.0	14.17	201.0	11.66	136.0	11.09	123.0	10.48	110.0
135	14.36	206.2	13.92	193.7	11.45	131.1	10.89	118.6	10.30	106.1
140	14.11	199.1	13.67	187.0	11.25	126.7	10.70	114.6	10.12	102.5
145	13.87	192.4	13.44	180.8	11.07	122.5	10.53	110.8	9.96	99.2
150	13.64	186.2	13.22	175.0	10.89	118.6	10.36	107.4	9.80	96.1
155	13.43	180.4	13.05	169.5	10.72	115.0	10.50	104.1	9.65	93.2
160	13.22	175.0	12.82	164.4	10.56	111.6	10.05	101.0	9.51	90.5
	A*		B*		C	*	D*		E*	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces. Iron Plate $\frac{3}{4}$ inch thick.

Table No. 18 continued.

Pressure per sq. in.	F	*	G	*	I	1*	I	*	
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	
lbs.	ins.	sq. ins.							
5									
10		•••	• • • •		•••				
15	•••				•••		20.28	411.6	
20	•••						17.61	310.2	
25			20.28	411.6	19.26	371.0	15.79	249.3	
30	19.65	386.2	18.54	344.0	17.61	310.2	14.45	208.8	
35	18.21	331.9	17.19	295.7	16.33	266.7	13.41	179.8	
40	17:06	291.1	16.11	259.5	15.30	234.1	12.57	158.1	
45	16.10	259.5	15.21	231.3	14.45	208.8	11.88	141.2	
50	15:30	234·1 213·4	14.45	208.8	13.73	188.5	11·30 10·79	127.6 116.6	
55	14.60 14.00	196.1	13.79 13.22	190.3	13.11	171.9	10.79	107.4	
60	13.47	181.2	12.72	175·0 162·0	12.57	158.1	9.98	99.6	
65	12.99	168.9	12.72	150.8	12.10	146.4	9.64	92.9	
70	12.57	158.1	11.88	141.2	11.67 11.30	136.3	9.04	87.1	
75 80	12.19	148.5	11.52	132.7	10.95	127.6 120.0	9.05	82.0	
85	11.84	140.2	11.19	125.2	10.64	113.3	8.80	77.5	
90	11.52	132.7	10.89	118.6	10.36	107.4	8.58	73.6	
95	11.22	126.0	10.61	112.7	10.10	107.4	8.37	70.0	
100	10.95	120.0	10.36	107.4	9.86	97.2	8.17	66.8	
105	10.70	114.6	10.12	102.5	9.64	92.9	7.99	63.9	
110	10.47	109.7	9.90	98.1	9.43	88.9	7.83	61.3	
115	10.25	105.1	9.70	94.1	9.23	85.3	7.67	58.9	
120	10.05	101.0	9.51	90.5	9.05	82.0	7.53	56.7	
125	9.86	97.2	9.33	87.1	8.88	79.0	7.39	54.6	
130	9.68	93.7	9.16	84.0	8.73	76.2	7.26	52.8	
135	9.51	90.5	9.00	81.0	8.58	73.6	7.14	51.0	
140	9.35	87.4	8.85	78.4	8.43	71.1	7.03	49.4	
145	9.20	84.6	8.71	75.9	8.30	68.9	6.92	47.9	
150	9.05	82.0	8.58	73.6	8.17	66.8	6.82	46.5	
155	8.92	79.5	8.45	71.4	8.05	64.8	6.72	45.2	
160	8.79	77.2	8.33	69.3	7.94	63.0	6.63	44.0	
	F*		G*		F	I*	I*		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 19.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{25}{32}$ inch thick.

Pressure per sq. in	A	*	E	*	C	*	D	*	E	*
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5		• • • •			•••					
10										
15										
20										
25										•••
30										
35									20.55	422.5
40							20.39	416.0	19.24	370.5
45	• • • •				20.27	411.0	19.24	370.5	18.16	330.0
50					19.24	370.5	18.27	334.0	17.25	297.6
55	***				18.36	337.3	17.44	304.5	16.46	271.0
60					17.60	309.7	16.71	279.3	15.78	249.0
65			20.65	426.5	16.92	286.3	16.07	258.3	15.17	230.3
70	20.55	422.5	19.91	396.5	16.32	266.3	15.20	240.3	14.63	214.2
75	19.87	394.8	19.24	370.5	15.78	249.0	14.99	224.7	14.15	200.4
80	19.24	370.5	18.64	347.7	15.29	233.8	14.52	211.0	13.72	188.2
85	18.68	349.0	18.10	327.6	14.84	220.4	14.10	198.9	13.32	177.5
90	18.16	330.0	17.60	309.7	14.44	208.5	13.72	188.2	12.96	168.0
95	17.69	312.9	17.14	293.7	14.06	197.8	13.36	178.6	12.62	159.4
100	17.25	297.6	16.71	279.3	13.72	188.2	13.04	170.0	12.35	151.8
105	16.84	283.7	16.35	266.3	13.40	179.5	12.73	162.2	12.03	144.8
110	16.46	271.0	15.95	254.5	13.10	171.6	12.45	155.1	11.77	138.5
115	16.11	259.5	15.61	243.7	12.85	164.4	12.19	148.6	11.2	132.7
120	15.78	249.0	15.29	233.8	12.56	157.8	11.94	142.6	11.29	127.5
125	15.46	239.2	14.99	224.7	12.32	151.8	11.71	137.2	11.07	122.6
130	15.17	230.3	14.70	216.2	12:09	146.1	11.49	132.1	10.87	118.1
135	14.90	222.0	14.44	208.5	11.87	141.0	11.29	127.5	10.67	114.0
140	14.63	214.2	14.18	201.2	11.67	136.1	11.09	123.1	10.49	110.1
145	14.39	207.1	13.94	194.5	11.47	131.6	10.91	119.1	10.32	106 5
150	14.15	200.4	13.72	188.2	11.29	127.5	10.74	115.3	10.15	103.2
155	13.93	194.1	13.20	182.3	11.11	123.5	10.57	111.3	10.00	100.0
160	13.72	188.2	13.29	176.8	10.95	119.9	10.41	108.5	9.85	97.1
	A	*	I	3*	(* .	I)*	H	E*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces.

Iron Plate $\frac{2}{3}$ inch thick.

Table No. 19 continued.

Pressure per sq. in.	F	*	G	*	Н	*	I	*
Pre: per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5								
10								
15								
20							18.27	334.0
25					19.99	399.6	16.38	268.4
30	20.39	416.0	19.24	370.5	18.27	334.0	14.99	224.7
35	18.90	357.4	17.84	318.4	16.94	287.1	13.90	193.4
40	17.70	313.5	16.71	279.3	15.87	252.0	13.04	170.0
45	16.71	279.3	15.78	249.0	14.99	224.7	12.32	151.8
50	15.87	252.0	14.99	224.7	14.24	202.8	11.71	137.2
55	15.15	229.6	14.31	204.8	13.60	184.9	11.19	125.2
60	14.52	211.0	13.72	188.2	13.04	170.0	10.74	115.3
65	13.97	195.2	13.20	174.2	12.54	157.4	10.34	106.9
70	13.48	181.7	12.73	162.2	12.10	146.5	9.98	99.7
75	13.04	170.0	12.32	151.8	11.71	137.2	9.66	93.4
80	12.64	159.7	11.94	142.6	11.35	129.0	9.38	88.0
85	12.27	150.7	11.60	134.6	11.03	121.7	9.12	83.1
90	11.94	142.6	11.29	127.5	10.74	115.3	8.88	78.9
95	11.64	135.4	11.00	121.1	10.46	109.5	8.66	75.0
100	11.35	129.0	10.74	115.3	10.21	104.4	8.46	71.6
105	11.09	123.1	10.49	110.1	9.98	99.7	8.27	68.4
110	10.85	117.8	10.26	105.4	9.77	95.4	8.10	65.6
115	10.62	112.9	10.05	101.0	9.57	91.5	7.94	63.0
120	10.41	108.5	9.85	97.1	9.38	88.0	7.79	60.6
125	10.21	104.4	9.66	93.4	9.20	84.7	7.64	58.4
130	10.03	100.6	9.49	90.1	9.04	81.7	7.51	56.4
135	9.85	97.1	9.32	87.0	8.88	78.9	7:39	54.6
140	9.68	93.8	9.17	84.1	8.73	76.2	7.27	52.8
145	9.53	90.8	9.02	81.4	8.59	73.8	7.15	51.2
150	9.38	88.0	8.88	78.9	8.46	71.6	7.05	49.7
155	9.24	85.3	8.75	76.5	8.33	69.4	6.95	48.3
160	9.10	82.8	8.62	74.3	8.21	67.5	6.85	47.0
	1	7*	(*]	H*]	[*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 20.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{13}{16}$ inch thick.

-										
Pressure per sq. in.	A	*	В	*	C)*	D)*	E	*
Pre	Pitch	Surface								
lbs.	ins.	sq. ins.								
5										
10										
15										
20										
25										
30										
35										
40									19.95	398.0
45							19.95	398.0	18.82	354.4
50					19.95	398.0	18.94	358.8	17.87	319.6
55					19.03	362.3	18.07	326.7	17.06	291.0
60					18.24	332.6	17.32	300.0	16.32	267.3
65					17.53	307.5	16.65	277.3	15.72	247.2
70			20.64	426.0	16.91	286.0	16.06	258.0	15.16	230.0
75	20.59	424.1	19.95	398.0	16.35	267:3	15.23	241.2	14.66	215.0
80	19.95	398.0	19.32	373.5	15.84	251.0	15.05	226.5	14.21	202.0
85	19:36	374.9	18.75	351.8	15.38	236.5	14.61	213.5	13.80	190.4
90	18.82	354.4	18.24	332.6	14.96	223.7	14.21	202.0	13.42	180.2
95	18.33	336.1	17.76	315.4	14.57	212.3	13.84	191'6	13.07	171.0
100	17.87	319.6	17:32	300.0	14.21	202.0	13.20	182.4	12.76	162.8
105	17.45	304.6	16.91	286.0	13.88	192.6	13.19	174.0	12.46	155.3
110	17.06	291.0	16.53	273.2	13.57	184.1	12.89	166.3	12.18	148.5
115	16.69	278.6	16.17	261.6	13.28	176.4	12.62	159.3	11.93	142.3
120	16.35	267.3	15.84	251.0	13.01	169.3	12.37	153.0	11.69	136.6
125	16.02	256.8	15.53	241.2	12.76	162.8	12.13	147.1	11.46	131.4
130	15.72	247.2	15.23	232.1	12.52	156.7	11.90	141.6	11.25	126.6
135	15.43	238.2	14.96	223.7	12.29	151.1	11.69	136.6	11.05	122.1
140	15.16	230.0	14.69	216.0	12.08	146.0	11.49	132.0	10.86	118.0
145	14.90	222.2	14.44	208.7	11.88	141.1	11.29	127.6	10.68	114.1
150	14.66	215.0	14.21	202.0	11.69	136.6	11.11	123.6	10.51	110.5
155	14.43	208.3	13.98	195.6	11.20	132.4	10.94	119.8	10.35	197 1
160	14.21	202.0	13.77	189.7	11.33	128.5	10.78	116.2	10.19	104.0
		A*		B*		C*	1)*		E*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces. Iron Plate $\frac{1.6}{1.6}$ inch thick.

Table No. 20 continued.

Pressure per sq. in.	F	**	G	*	Н	[*	I	*
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5								•••
10								
15								
20						400.0	18.94	358.8
25	•••				20.72	429.3	16.97	288.2
30			19.95	398.0	18.94	358.8	15.53	241.2
35	19.59	384.0	18.49	342.0	17.56	308.4	14.40	207.6
40	18.35	336.7	17:32	300.0	16.45	270.6	13:50	182.4
45	17:32	300.0	16.35	267.3	15.53	241.2	12.76	162.8
50	16.45	270.6	15.53	241.2	14.75	217.6	12.13	147.1
55	15.70	246.5	14.82	219.8	14.08	198.4	11.58	134.2
60	15.05	226.5	14.21	202.0	13.50	182.4	11.11	123.6
65	14.47	209.5	13.67	186.9	12.99	168.8	10.70	114.5
70	13.96	195.0	13.19	174.0	12:53	157.2	10.33	106.8
75	13:50	182.4	12.76	162.8	12.13	147.1	10.00	100.0
80	13.09	171.3	12.37	153.0	11.76	138.3	9.70	94.2
85	12.71	161.6	12.01	144.3	11.42	130.5	9.43	89.0
90	12:37	153.0	11.69	136.6	11.11	123.6	9.18	84.4
95	12.05	145.2	11.39	129.7	10.83	117.4	8.96	80.2
100	11.76	138.3	11.11	123.6	10.57	111.8	8.75	76.5
105	11.49	132.0	10.86	118.0	10.33	106.8	8.55	73.2
110 115	11.23	126.2	10.62	112.9	10.11	102.2	8.37	70.1
120	11.00	121.0	10.40	108.2	9.90	98.0	8·20 8·05	67.3
120	10.78	116·2 111·8	10.00	104.0	9·70 9·52	94·2 90·6	7.90	64.8
130	10.38	107.7	9.82	160·0 96·4	9.35	87.4	7.76	60.2
135	10.38	107.7	9.82	98.1	9.35	84.4	7.76	58.2
140	10.19	104.0	9.65	90.0	9.18	81.6	7.51	56.4
145	9.86	97.2	9.48	87.1	8.88	78.9	7.39	54.6
150	9.70	94.2	9.18	84.4	8.75	76.5	7.28	53.0
155	9.55	91.3	9.18	81.8	8.61	74.2	7.17	51.5
160	9.41	88.6	8.91	79.5	8.49	72.1	7.07	50.1
	F	*	G	*	E	I*	I	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 21.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{27}{32}$ inch thick.

<u> </u>					-	-			-	
Pressure per sq. in	A	*	E	8*	(*	I)*	F	<u>c</u> *
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
Ibs.	ins.	sq. ins.	ins.	sq. ins.						
5										• • • •
10								• • • •		
15										
20					,				• • • •	
25										
30										
35										
40									20.65	426.5
45							20.65	426.5	19.48	379.7
50					20.65	426.5	19.60	384.4	18.50	342.4
55					19.70	388.5	18.71	350.0	17.65	311.8
60					18.87	356.4	17.92	321.3	16.92	286.3
65					18.12	329.4	17.23	297.1	16.27	264.7
70					17.50	306.3	16.62	276.3	15.69	246.2
75			20.65	426.5	16.92	286.3	16.07	258.3	15.17	230.2
80	20.65	426.5	17.32	300.5	16.39	268.8	15.57	242.5	14.70	216.2
85	20.04	401.7	19.41	377.0	15.91	253.3	15.12	228.6	14.27	203.8
90	19.48	379.7	18.87	356.4	15.48	239.6	14.70	216.2	13.88	192.8
95	18.97	360.1	18.38	337.9	15.07	227.3	14.32	205.1	13.53	183.0
100	18.50	342.4	17.92	321.3	14.70	216.2	13.97	195.2	13.19	174.2
105	18.06	326.3	17.50	306.3	14.36	206.2	13.64	186.2	12.89	166.1
110	17.65	311.8	17.10	292.7	14.04	197.1	13.34	178.0	12.60	158.9
115	17.27	298.5	16.74	280.2	13.74	188.8	13.06	170.5	12.34	152.2
120	16.92	286.3	16.39	268.8	13.46	181.2	12.79	163.6	12.09	146.1
125	16.58	275.1	16.07	258.3	13.19	174.2	12.24	157.3	11.85	140.5
130	16.27	264.7	15.76	248.5	12.95	167.7	12.31	151.5	11.63	135.3
135	15.97	255.1	15.48	239.6	12.71	161.7	12.09	146.1	11.42	130.5
140	15.69	246.2	15.20	231.2	12.49	156.1	11.88	141.1	11.23	126.1
145	15.42	238.0	14.95	223.5	12.28	151.0	11.68	136.5	11.04	122.0
150	15.17	230.2	14.70	216.2	12.09	146.1	11.49	132.1	10.86	118.1
155	14.93	223.0	14.47	209 4	11.90	141.6	11.31	128.0	10.70	114.5
160	14.70	216.2	14.25	203.1	11.72	137.4	11.14	124.2	10.54	111.1
	A	*	E	3*	C	*	D)*	F	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces. Iron Plate $\frac{2}{3}$ inch thick.

Table No. 21 continued.

Pressure per sq. in.	F	*	G	*	Н	[*	I	*
Pres per a	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	bas.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5						• • • •		
10								
15			• • • •	• • • • • • • • • • • • • • • • • • • •				
20							19.60	384.4
25			00.05	400.5	70.00	904.4	17.57	308.7
30	20.20	411.4	20.65	426.5	19.60	384.4	16.07	258.3
35	20.28	411.4	19.14	366.4	18·17 17·02	330·3 289·8	14.90	222·2 195·2
40 45	18·99 17·92	360·7 321·3	16.92	321·3 286·3	16.07	258.3	13.97	174.2
50	17.02	289.8	16.07	258.3	15.26	233.0	12:54	157.3
55	16.25	264.0	15.34	235.3	14.57	212.4	11.98	143.6
60	15.57	242.5	14.70	216.2	13.97	195.2	11.49	132.1
65	14.97	224.3	14.14	200.0	13.44	180.6	11.06	122.4
70	14.44	208.7	13.64	186.2	12.96	168.1	10.68	114.1
75	13.97	195.2	13.19	174.2	12:54	157.3	10.31	106.9
80	13:54	183.3	12.79	163.6	12.16	147.9	10.03	100.6
85	13.15	172.9	12.42	154.4	11.81	139.5	9.75	95.0
90	12.79	163.6	12.09	146.1	11.49	132.1	9.49	90.1
95	12.46	155.3	11.78	138.7	11.20	125.5	9.25	85.6
100	12.16	147.9	11.49	132.1	10.93	119.5	9.03	81.6
105	11.88	141.1	11.23	126.1	10.68	114.1	8.83	78.0
110	11.62	135.0	10.98	120.6	10.45	109.2	8.65	74.8
115	11.37	129.4	10.75	115.6	10.23	104.7	8.47	71.8
120	11.14	124.2	10.54	111.1	10.03	100.6	8.31	69.0
125	10.93	119.5	10.34	106.9	9.84	96.8	8.15	66.5
130	10.73	115.1	10.12	103.0	9.66	93.3	8.01	64.2
135	10.54	111.1	9.97	99.4	9.49	90.1	7.87	62.0
140	10.36	107.3	9.80	96.1	9.33	87.0	7.75	60.0
145	10.19	103.8	9.64	93.0	9.18	84.3	7.62	58.2
150	10.03	100.6	9.49	90.1	9.03	81.6	7.51	56.4
155	9.87	97.5	9.34	87.3	8.90	79.2	7.40	54.8
160	9.73	94.7	9.21	84.8	8.77	76.9	7.30	53.3
	F	1*	G	*	Н	[*	I	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{7}{8}$ inch thick.

Pressure per sq. in.	A	*	В	*	C	*	Ι)*	E	*
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10	•••									
15										
20										
25									• • • •	
30							***			
35										• • • •
40						•••			00.15	100.0
45							20.27	411.0	20.15	406.0
50						(75.0	20.27	411.0	19.13	366.0
55			• • • •		20:37	415.0	19:34	374.1	18.25	333.2
60					19.52	381.0	18:53	343.5	17.49 16.82	$306.0 \\ 282.9$
65 70					18.76	352.1	17.82	317.5	16.22	263.1
					18.09	327.4	17.18	295.2	15.68	
75			00.00	107.0	17:49	306.0	16.61	276.0	15.19	246.0
80	20.72	400.5	20.68	427.8	16.94	287.2	16.09	259.1	15.19 14.75	217.7
85	20.72	429.5	20.07	403.0	16.45	270.7	15.62	244.2		
90 95	19.62	406·0 384·9	19.00	381·0 361·2	16.00	256·0 242·8	15.19	231·0 219·1	14·35 13·98	206·0 195·4
100	19.02	366.0	18:53	343.5	15.58 15.19	231.0	14.80	208.5	13.63	186.0
105	18.67	348.8	18.09	327.4	14.84	220.2	14·44 14·10	198.8	13.32	177.4
110	18.25	333.2	17.68	312.8	14.51	210.2	13.78	190.0	13.02	169.6
115	17.86	319.0	17.30	299.4	14.20	201.6	13.49	182.0	12.74	162.5
120	17.49	306.0	16.94	287.2	13.91	193.5	13.22	174.7	12.49	156.0
125	17.14	294.0	16.61	276.0	13.63	186.0	12.96	168.0	12.24	150.0
130	16.82	282.9	16.29	265.6	13.38	179.0	12.71	161.7	12.02	144.4
135	16.51	272.6	16.00	256.0	13.14	172.6	12.49	156.0	11.80	139.3
140	16.22	263.1	15.71	247.0	12.91	166.7	12.27	150.6	11.60	134.5
145	15.94	254.2	15.45	238.7	12.69	161.1	12.06	145.6	11.40	130.1
150	15.68	246.0	15.19	231.0	12.49	156.0	11.87	141.0	11.22	126.0
155	15.43	238.2	14.95	223.7	12.29	151.1	11.69	136.6	11.05	122.1
160	15.19	231.0	14.72	216.9	12.10	146.6	11.21	132.5	10.88	118.5
		1*	I	3*)*	I)*	1	<u>:</u> *

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces.

Iron Plate 7/8 inch thick.

Table No. 22 continued.

Pressure per sq. in.	F	*	G	*	F	I*	I	*
Pres per s	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.						
5					•••			
10	•••							
15	•••					•••		•••
20					•••		20.27	411.0
25							18.16	330.0
30					20.27	411.0	16.61	276.0
35	20.97	439.9	19.79	391.7	18.79	353.1	15.40	237.4
40	19.63	385.6	18.53	343.5	17.60	309.7	14.44	208.5
45	18.53	343.5	17.49	306.0	16.61	276.0	13.63	186.0
50	17.60	309.7	16.61	276.0	15.78	249.0	12.96	168.0
55	16.79	282.1	15.85	251.4	15.06	226.9	12.38	153.2
60	16.09	259.1	15.19	231.0	14.44	208.5	11.87	141.0
65	15.48	239.6	14.61	213.6	13.89	192.9	11.42	130.6
70	14.93	222.9	14.10	198.8	13.40	179.5	11.03	121.7
75	14.44	208.5	13.63	186.0	12.96	168.0	10.67	114.0
80	13.99	195.8	13.22	174.7	12.56	157.8	10.35	107.2
85	13.59	184.6	12.83	164.8	12.20	148.9	10.06	101.2
90	13.22	174.7	12.49	156.0	11.87	141.0	9.79	96.0
95	12.87	165.8	12.17	148.1	11.57	133.8	9.55	91.2
100	12.56	157.8	11.87	141.0	11.29	127.5	9.32	87.0
105	12.27	150.6	11.60	134.5	11.03	121.7	9.11	83.1
110	12.00	144.0	11.34	128.7	10.79	116.4	8.92	79.6
115	11.75	138.0	11.10	123.3	10.56	111.6	8.74	76.4
120	11.51	132.5	10.88	118.5	10.35	107.2	8.57	73.5
125	11.29	127:5	10.67	114.0	10.15	103.2	8.41	70.8
130	11.08	122.8	10.48	109.8		99.4	8.26	68.3
135	10.88	118.5	10.29	106.0	9.79	96.0	8.12	66.0
140	10.70	114.4	10.12	102.4	9.63	92.7	7.99	63.8
145	10.52	110.7	9.95	99.1	9.47	89.7	7.86	61.8
150	10.35	107.2	9.79	96.0	9:32	87.0	7.74	60.0
155	10.19	103.9	9.64	93.0	9.18	84.3	7.63	58.2
160	10.04	100.9	9.50	90.3	9.05	81.9	7.52	56.6
	1	r*)*	I	H*	I	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{2}{3}\frac{9}{2}$ inch thick.

Pressure per sq. in.	I	7*	1	B*	1	C*	1)*	1	E*
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10										
15		• · · ·								
20						• • • •				• • • •
25		• • • •								
30										
35										
40										
45		• • • •							20.81	433.1
50							20.94	438.4	19.75	390.4
55		• • • •		•••			19.97	399.1	18.85	355.4
60		• • • •		•••	20.16	406.4	19.14	366.3	18.06	326.3
65					19:38	375.6	18.40	338.6	17.37	301.6
70				•••	18.68	349.2	17.74	314.8	16.75	280.5
75					18.06	326.3	17.15	294.3	16.19	262.2
80			20.70	420.0	17.50	306.3	16.62	276.2	15.69	246.2
,85			20.73	429.9	16.99	288.6	16.13	260.3	15.23	232.1
90	20.81	433.1	20.16	406.4	16.52	272.9	15.69	246.2	14.81	219.5
95	20.26	410.6	19.63	385.3	16:09	258.8	15.28	233.6	14.43	208.3
100	19.75	390.4	19.14	366.3	15.69	246.2	14.90	222.2	14.07	198.2
105	19:29	372.0	18.68	349.2	15:32	234.8	14.55	211.9	13.75	189.0
110	18.85	355.4	18.26	333.6	14.98	224.4	14·23 13·93	202.5	13:44	180.7
$\frac{115}{120}$	18·44 18·06	340.2	17.87 17.50	319.3	14.66	214·9 206·2	13.64	194·0 186·1	13·15 12·89	173·1 166·1
						198.2	13.37	178.9	12.64	159.7
$\frac{125}{130}$	17·70 17·37	313.5	17·15 16·82	294·3 283·2	14.07 13.81	190.8	13.12	178.9	12.40	153.8
135	17.05	290.7	16.52	272.9	13.26	183.9	12.89	166.1	12.18	148.3
140	16.75	280.5	16.23	263.4	13.26	177.6	12.66	160.4	11.97	143.2
145	16.46	271.1	15.95	254.5	13.10	171.6	12.45	155.1	11.77	138.5
150	16.19	262.2	15.69	246.2	12.89	166.1	12.25	150.1	11.58	134.1
155	15.93		15.44	238.5	12.68	161.0	12.06	145.5	11.40	130.0
160			15.44	231.2	12.49	156.1	11.88	141.1	11 23	126.1
100	10 00	240 2	15 20	201 2	12 40	130 1	11 00	111 1	11 29	120 1
	A*		A* B*		C*		D*		E*	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

Table No. 23 continued.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{29}{32}$ inch thick.

Pressure per sq. in.	ŀ	**	0	1 *	I	I*	I	*
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5								
10								
15								
20							20.94	438.4
25		• • •					18.76	351.9
30		•••			20.94	438.4	17.15	294.3
35			20.44	417.8	19.40	376.6	15.91	253 ·1
40	20.28	411.4	19.14	366.3	18.17	330.3	14.90	222.2
45	19.14	366.3	18.06	326.3	17.15	294.3	14.07	198.2
50	18.17	330.3	17.15	294.3	16.29	265.4	13.37	178.9
55	17:34	300.8	16.37	268.0	15.55	241.8	12.77	163.2
60	16.62	276.2	15.69	246.2	14.90	222.2	12.25	150.1
65	15.98	255.4	15.09	227.7	14.33	205.5	11.79	139.0
70	15.41	237.6	14.55	211.9	13.83	191.3	11.38	129.5
75	14.90	222.2	14.07	198.2	13.37	178.9	11.01	121.3
80	14.44	208.7	13.64	186.1	12.96	168.1	10.68	114.1
85	14.02	196.7	13.25	175.5	12.59	158.6	10.38	107.7
90	13.64	186.1	12.89	166.1	12.25	150.1	10.10	102.1
95	13.29	176.7	12.56	157.7	11.94	142.5	9.85	97.0
100	12.96	168.1	12.25	150.1	11.65	135.7	9.61	92.4
105	12.66	160.4	11.97	143.2	11.38	129.5	9.40	88.3
110	12.38	153.4	11.70	137.0	11.13	123.9	9.20	84.6
115	12.12	147.0	11.46	131.3	10.90	118.8	9.01	81.2
120	11.88	141.1	11.23	126.1	10.68	114.1	8.83	78.0
125	11.65	135.7	11.01	121.3	10.47	109.7	8.67	75.1
130	11.43	130.7	10.81	116.8	10.28	105.7	8.51	72.5
135	11.23	126.1	10.62	112.7	10.10	102.1	8:37	70.0
140	11.03	121.8	10.43	108.9	9.93	98.6	8.23	67.7
145	10.85	117.8	10.26	105.4	9.77	95.4	8.10	65.6
150	10.68	114.1	10.10	102.1	9.61	92.4	7.97	63.6
155	10.51	110.6	9.95	99.0	9.47	89.7	7.86	61.8
160	10.36	107.3	9.80	96.0	9.33	87.0	7.75	60.0
	F	*	G	*	Н	*	I	*

^{*} The distinguishing letter in each column refers to the conditions o which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preeding these Tables.

FLAT SURFACES.

TABLE No. 24.

Pressures, Pitches, and Surfaces.

Iron Plate 15 inch thick,

Pressure per sq. in.	A	*	I	3*	()*	I)*	I	E*
Pres per s	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
ibs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. in .	ins.	sq. ins.	ins.	sq. ins.
5										
10										• • • •
15										
20										
25										
30										
35									•••	
40										
45	• • • •									
50									20.38	415.6
55							20.61	424.9	19.45	378.3
60	• • • •				20.80	432.6	19.74	390.0	18.63	347.3
65				•••	19.99	399.8	18.98	360.4	17.91	321.0
70				•••	19.28	371.7	18.30	335.1	17.28	298.5
75					18.63	347.3	17.69	313.5	16.70	279.0
80					18.05	326.0	17.14	294.0	16.18	262.0
85					17.52	307.1	16.64	277.0	15.71	246.9
90			20.80	432 6	17.04	290.4	16.18	262.0	15.28	233.5
95	20.90	437.1	20.25	41.).2	16.59	275.4	15.76	248.5	14.88	221.5
100	20.38	415.6	19.74	330.0	16.18	262.0	15.37	236.4	14:51	210.8
105	19.90	396.0	19.28	371.7	15.80	249.8	15.01	225.4	14.18	201.0
110	19.45	378.3	18.84	355.0	15.45	238.7	14.67	215.4	13.86	192.1
115	19.03	362.1	18.43	339.9	15.12	228.6	14.36	206.3	13.56	184.0
120	18.63	347.3	18.02	326.0	14.81	219.3	14.07	198.0	13.29	176.6
125	18.26	333.6	17.69	313.2	14.51	210.8	13.79	190.3	13.03	169.8
130	17.91	321.0	17.36	301.3	14.24	202.9	13.53	183.2	12.78	163.2
135	17.59	309.4	17:04	290.4	13.98	195.6	13.29	176.6	12.55	157.7
140	17.28	298.5	16.74	280.2	13.74	188.8	13.06	170.5	12.34	152.2
145	16.98	288.4	16.45	270.8	13.21	182.5	12.84	164.8	12.13	147.2
150	16.70	279.0	16.18	262.0	13.29	176.6	12.63	159.6	11.93	142.5
155	16.44	270.2	15.93	253.7	13.08	171.1	12.43	154.6	11.75	138.1
160	16.18	262.0	15.68	246.0	12.88	166.0	12.24	150.0	11.57	134.0
	A	*	В	*	C	*	D	*	Е	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

Pressures, Pitches, and Surfaces.

Iron Plate 15 inch thick.

Table No. 24 continued.

			1		1			
Pressure per sq. in.	F	*		j *	1	I*		[*
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.						
5				•••				
10								
15				•••				•••
20		•••				•••		
25		***	•••	•••			19.35	374.6
30							17.69	313.2
35					20.02	400.9	16.41	269.3
40	20.92	438.0	19.74	390.0	18.75	351.6	15.37	236.4
45	19.74	390.0	18.63	347.3	17.69	313.2	14.51	210.8
50	18.75	351.6	17.69	313.2	16.80	282.4	13.79	190.3
55	17.89	320.1	16.89	285.2	16.04	257.3	13.17	173.5
60	17.14	294.0	16.18	262.0	15.37	236.4	12.63	159.6
65	16.48	271.8	15.56	242.3	14.78	218.6	12.15	147.7
70	15.90	252.8	15.01	225.4	14.26	203 • 4	11.73	137.6
75	15.37	236.4	14.51	210.8	13.79	190.3	11.35	128.8
80	14.90	222.0	14.07	198.0	13.37	178.8	11.01	121.2
85	14.46	209.2	13.66	186.7	12.98	168.6	10.69	114.4
90	14.07	198.0	13.29	176.6	12.63	159.6	10.41	108.4
95	13.70	187.8	12.95	167.6	12.81	151.5	10.12	103.0
100	13.37	178.8	12.63	159.6	12.01	144.2	9.90	98.1
105	13.06	170.5	12:34	152.2	11.73	137.6	9.68	93.7
110	12.77	163.0	12.06	145.6	11.47	131.6	9.47	89.7
115	12.50	156.2	11.81	139.5	11.23	126.2	9.28	86.1
120	12.24	150.0	11.57	134.0	11.01	121.2	9.10	82.8
125	12.01	144.2	11.35	128.8	10.79	116.5	8.93	79.7
130	11.78	138.9	11.14	124.1	10.59	112.3	8.76	76.8
135	11.57	134.0	10.94	119.7	10.41	108.4	8.61	74.2
140	11.37	129.4	10.75	115.7	10.23	104.7	8.47	71.8
145	11.18	125.1	10.58	111.9	10.06	101.3	8:34	69.5
150	11.01	121.2	10.41	108.4	9.90	98.1	8.21	67.4
155	10.83	117.4	10.25	105.0	9.75	95.1	8.09	65.4
160	10.67	114.0	10.10	102.0	9.61	92.4	7.97	63.6
	F	*	· G	*	Н	*	I,	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 25.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{31}{2}$ inch thick.

Pressure per sq. in.	A	*	E	3*	()*	I)*	I	E*
Pres per s	Pitch	Surface								
lbs.	ins.	sq. ins.								
5										
10								• • • •		
15										
20										
25										
30										
35										
40										
45										
50									21.01	441.6
55									20.05	402.0
60							20.35	414.3	19.21	369.0
65					20.61	424.8	19.57	382.9	18.46	341.0
70					19.87	394.9	18.86	356.0	17.80	317.1
75					19.21	369.0	18.24	332.7	17.21	296.4
80					18.61	346.3	17.67	312.2	16.68	278.2
85					18.06	326.2	17.15	294.2	16.19	262.2
90					17.56	308.5	16.68	278.2	15.74	248.0
95			20.87	435.8	17.10	292.5	16.24	263.9	15.33	235.2
100			20.35	414.3	16.68	278.2	15.84	251.0	14.96	223.8
105	20.51	420.8	19.87	394.9	16.28	265.2	15.47	239.3	14.61	213.4
110	20.05	402.0	19.42	377.2	15.92	253.5	15.12	228.7	14.28	204.0
115	19.61	384.7	19.00	361.1	15.58	242.7	14.80	219.0	13.97	195.3
120	19.21	369.0	18.61	346.3	15.26	232.8	14.49	210.1	13.69	187.5
125	18.82	354.4	18.24	332.7	14.96	223.8	14.21	202.0	13.42	180.2
130	18.46	341.0	17.89	320.1	14.67	215.4	13.94	194.4	13.17	173.5
135	18.13	328.6	17:56	308.5	14.41	207.6	13.69	187.5	12.93	167.3
140	17.80	317.1	17.25	297.6	14.15	200.4	13.45	181.0	12.71	161.5
145	17.50	306.4	16.96	287.6	13.92	193.7	13.22	174.9	12.49	156.2
150	17.21	296.4	16.68	278.2	13.69	187.5	13.01	169.3	12.29	151.2
155	16.94	287.0	16.41	269.4	13.47	181.6	12.81	164.0	12.10	146.5
160	16.68	278.2	16.16	261.2	13.27	176.1	12.61	159.1	11.92	142.1
	A	*	В	*	C	*	D	*	E	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces.

Iron Plate 31 inch thick.

Table No. 25 continued.

			-					
Pressure per sq. in.	F	*	G	*	Н	*	I	*
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.						
5								
10								
15								
20								
25							19.95	398.0
30							18.24	332.7
35					20.64	426.0	16.91	286.0
40			20.35	414.3	19.32	373.5	15.84	251.0
45	20.35	414.3	19.21	369.0	18.24	332.7	14.96	223.8
50	19.32	373.5	18.24	332.7	17:32	300.0	14.21	202.0
55	18.44	340.1	17.40	303.0	16.53	273.3	13.57	184.2
60	17.67	312.2	16.68	278.2	15.84	251.0	13.01	169.3
65	16.99	288.7	16.04	257.3	15.23	232.1	12.52	156.7
70	16.38	268.5	15.47	239.3	14.69	216.0	12.08	146.0
75	15.84	251.0	14.96	223.8	14.21	202.0	11.69	136.6
80	15.35	235.7	14.49	210.1	13.77	189.7	11.33	128.5
85	14.90	222.1	14.07	198.1	13.37	178.9	11.01	121.3
90	14.49	210.1	13.69	187.5	13.01	169.3	10.72	114.9
95	14.12	199.4	13.34	177.9	12.6.	160.7	10.44	109.1
100	13.77	189.7	13.01	169.3	12.37	153.0	10.19	104.4
105	13.45	181.0	12.71	161.5	12.08	146.0	9.96	99.3
110	13.15	173.0	12.43	154.5	11.81	139.6	9.75	95.1
115	12.87	165.7	12.16	148.0	11.56	133.8	9.55	91.2
120	12.61	159.1	11.92	142.1	11.33	128.5	9.36	87.6
125	12.37	153.0	11.69	136.6	11.11	123.6	9.18	84.4
130	12.14	147:3	11.47	131.6	10.91	119.0	9.01	81.2
135	11.92	142.1	11.27	127.0	10.72	114.9	8.86	78.6
140	11.71	137.2	11.07	122.6	10.53	111.0	8.71	76.0
145	11.52	132.7	10.89	118.6	10.36	107:3	8.57	73.5
150	11.33	128.5	10.72	114.9	10.19	104.0	8.44	71.3
155	11.16	124.5	10.55	111.3	10.04	100.8	8.32	69.2
160	10.99	120.8	10.39	108.0	9.89	97.8	8.20	67.2
	F	*		*]	H*]]	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

in.

FLAT SURFACES.

TABLE No. 26.

E*

D*

Pressures, Pitches, and Surfaces.
Iron Plate 1 inch thick.

C*

ssa.	A		1)		,		,	1	
Pressu per sq.	Pitch	Surface								
lbs.	ins.	sq. ins.								
5										
10										
15										
20										
25		•••								
30										
35										
40										
45										
50										
55									20.64	426.3
60							20.96	439.5	19.78	391.3
65							20.15	406.1	19.01	361.6
70					20.46	418.8	19.43	377.5	18.33	336.5
75					19.78	391.3	18.78	352.8	17.72	314.2
80					19.16	367.2	18.19	331.1	17.17	295.0
85					18.60	346.0	17.66	312.0	16.67	278.0
90					18.08	327.1	17.17	295.0	16.21	262.8
95					17.61	310.5	16.72	279.7	15.79	249.3
100					17.17	295.0	16.31	266.1	15.40	237.2
105			20.46	418.8	16.77	281.2	15.92	253.7	15.04	226.1
110	20.64	426.3	20.00	400.0	16.39	268.7	15.57	242.4	14.70	216.1
115	20.50	408.0	19.57	382.9	16.04	257:3	15.23	232.1	14.39	207.0
120	19.78	391.3	19.16	367.2	15.71	246.8	14.92	222.7	14.09	198.6
125	19.38	375.9	18.78	352.8	15.40	237.2	14.63	214.0	13.81	190.9
130	19.01	361.6	18.42	339.4	15.11	228.3	14.35	206.0	13.55	183.8
135	18.66	348.5	18.08	327.1	14.83	220.0	14.09	198.6	13.31	177.2
140	18:33	336.2	17.76	315.6	14.57	212.4	13.84	191.7	13.08	171.1
145	18.02	324.8	17.46	304.9	14.35	205.3	13.61	185.3	12.86	165.4
150	17.72	314.2	17.17	295.0	14.09	198.6	13:39	179.4	12.65	160.1
155	17.44	304.3	16.90	285.6	13.87	192.4	13.18	173.8	12.45	155.1
160	17.17	295.0	16.64	276.9	13.66	186.6	12.98	168.5	12.26	150.5
	A*		В	*	C	*	D*		E*	
	rm 1					,			2.0	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces. Iron Plate 1 inch thick.

Table No. 26 continued.

Pressure per sq. in.	F	**	G	1 *	Н	[*]]	[*		
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5										
10				•••						
15								•••		
20				•••	•••	•••				
25		•••		•••	•••	•••	20.54	422.1		
30	•••	•••		•••		•••	18.78	352.8		
35		•••					17.41	303.2		
40			20.96	439.5	19.90	396.1	16.31	266.1		
45	20.96	439.5	19.78	391.3	18.78	352.8	15.40	237.2		
50	19.90	396.1	18.78	352.8	17.83	318.1	14.63	214.0		
55	18.99	360.6	17.92	321.2	17.02	289.7	13.97	195.1		
60	18.19	331.1	17.17	295.0	16.31	266.1	13.39	179.4		
65	17.49	306.1	16.51	272.7	15.68	246.0	12.88	166.0		
70	16.87	284.6	15.92	253.7	15.13	228.9	12.43	154.6		
75	16.31	266.1	15.40	237.2	14.63	214.0	12.03	144.2		
80	15.80	249.8	14.92	222.7	14.18	201.0	11.66	136.0		
85	15.34	235.5	14.49	210.0	13.77	189.6	11.33	128.4		
90	14.92	222.7	14.09	198.6	13.39	179.4	11.02	121.6		
95	14.53	211.3	13.73	188.5	13.04	170.2	10.74	115.5		
100	14.18	201.0	13.39	179.4	12.73	162.0	10.49	110.0		
105	13.84	191.7	13.08	171.1	12.43	154.6	10.25	105.0		
110	13.54	183.3	12.79	163.6	12.16	147.8	10.03	100.5		
115	13.25	175.6	12.52	156.7	11.90	141.7	9.82	96.4		
120	12.98	168.5	12.26	150.5	11.66	136.0	9.62	92.7		
125	12.73	162.0	12.03	144.7	11.43	130.8	9.44	89.2		
130	12.49	156.0	11.80	139.3	11.22	126.0	9.27	86.0		
135	12.26	150.5	11.59	134.4	11.02	121.6	9.11	83.0		
140	12.05	145.3	11.39	129.8	10.83	117.4	8.96	80.3		
145	11.85	140.5	11.20	125.5	10.66	113.6	8.81	77.5		
150	11.66	136.0	11.02	121.6	10.49	110.0	8.68	75.3		
155	11.48	131.8	10.85	117.8	10.32	106.6	8.55	73.1		
160	11.31	127.9	10.69	114.3	10.17	103.5	8.42	71.0		
	F	*	G	*	Н	*	I	*		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate $1\frac{1}{3}$ inch thick.

Pressure per sq. in.	A	*	H	3*	0)*	I)*	F	*
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										•••
10										
15		•••								
20		•••		•••						
25									•••	• • • •
30				•••						
35		•••		•••						
40				•••						• • • •
45										
50										
55		•••				• • • •				47.4.0
60									20.35	414.3
65							20.73	430.0	19.56	382.9
70							19.99	399.7	18.86	356.0
75					20.35	414.3	19.32	373.5	18.24	332.6
80				•••	19.71	388.8	18.72	350.5	17.67	312.2
85					19.13	366.5	18.17	330.2	17.15	294.2
90					18.60	346.2	17.67	312.2	16.68	278.2
95	•••			•••	18.12	328.3	17.20	296.1	16.24	263.8
100	• • •				17.67	312.2	16.78	281.6	15.84	251.0
105	• • • •				17.25	297.6	16.38	268.5	15.47	239.3
110	00.70		20.58	423.6	16.86	284.4	16.01	256.5	15.12	228.7
115	20.78	432.0	20.13	405.4	16.50	272.3	15.67	245.6	14.80	219.0
120	20.35	414.3	19.71	388.8	16.16	261.2	15.35	235.6	14.49	210.1
125	19.95	398.0	19:32	373.5	15.84	251.0	15.05	226.5	14.21	202.0
130	19.56	382.9	18.95	359.3	15.54	241.5	14.76	218.0	13.94	194.4
135	19.20	368.9	18.60	346.2	15.26	232.8	14.49	210.1	13.69	187.4
140	18.86	356.0	18.28	334.1	14.99	224.7	14.24	202.8	13.45	181.0
145	18.54	343.9	17.96	322.8	14.73	217.2	14.00	196.0	13.22	174·9 169·3
150 155	18.24	332.6	17.67	312.2	14.49	210.1	13.77	189.7	13.01	164.0
160	17.94	322.1	17:38	302.3	14.26	203.5	13.55	183.8	12.80	159.1
100	17.67	312.2	17.12	293.1	14.05	197.4	13.35	178.2	12.61	199.1
	A	*	В	*	C	*	I	*	E	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate 132 inch thick.

Table No. 27 continued

-				1					
Pressure per sq. in	F	**	(*	F	*	I	*	
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	
lbs.	ins.	sq. ins.							
5		•••							
10		• · ·		• • • •					
15								•••	
20									
25		•••							
30							19.32	373.5	
35	•••	• • • •					17.91	321.0	
40		•••			20.48	419.4	16.78	281.6	
45			20.35	414.3	19.32	373.5	15.84	251.0	
50	20.48	419.4	19.32	373.5	18.35	336.7	15.05	226.5	
55	19.54	381.8	18.44	340.0	17.51	306.6	14.36	206.4	
60	18.72	350.5	17.67	312.2	16.78	281.6	13.77	189.7	
65	18.00	324.0	16.99	288.6	16.13	260.4	13.25	175.6	
70	17:35	301.3	16.38	268.5	15.56	242.2	12.78	163.5	
75	16.78	281.6	15.84	251.0	15.05	226.5	12.37	153.0	
80	16.26	264.3	15.35	235.6	14.58	212.7	11.99	143.8	
85	15.78	249.1	14.90	222.1	14.16	200.5	11.65	135.7	
90	15.35	235.6	14.49	210.1	13.77	189.7	11.33	128.5	
95	14.95	223.5	14.12	199.4	13.42	180.0	11.04	122.0	
100	14.58	212.7	13.77	189.7	13.09	171.3	10.78	116.2	
105	14.24	202.8	13.45	181.0	12.78	163.5	10.53	111.0	
110	13.92	193.9	13.15	173.0	12.50	156.3	10.30	106.2	
115	13.63	185.7	12.87	165.7	12.24	149.8	10.09	101.8	
120	13.35	178.2	12.61	159.1	11.99	143.8	9.89	97.8	
125	13.09	171.3	12.37	153.0	11.76	138.3	9.70	94.2	
130	12.84	165.0	12.13	147.3	11.54	133.2	9.53	90.8	
135	12.61	159.1	11.92	142.1	11.33	128 5	9.36	87.6	
140	12.39	153.6	11.71	137.2	11.14	124.1	9.20	84.7	
145	12.18	148.5	11.52	132.7	10.95	120.0	9.05	82.0	
150	11.99	143.8	11.33	128.5	10.78	116.2	8.91	79.5	
155	11.80	139.3	11.16	124.5	10.61	112.6	8.78	77.1	
160	11.62	135.1	10.99	120.8	10.45	109.3	8.65	74.9	
	F	*	G	*	Н	*	I	*	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Iron Plate $1\frac{1}{16}$ inch thick.

ssure sq.in.	A	*	I	3*		1* /)*	ŀ	C*
Pressure per sq.in.	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10		•••		•••						
15										
20										
25										
30										
35										
40										
45		• • • •						•••		
50		• • •								
55		• • • •								
60								•••	20.92	438.0
65						•••		400 7	20.11	404.7
70		***				400.0	20.55	422.5	19:39	376.2
75					20.92	438.0	19.87	394.8	18.75	351.6
80					20.27	411.0	19.24	370.5	18.16	330.0
85					19.67	387.1	18.68	349.0	17.63	310.9
90					19.13	366.0	18.16	330.0	17.14	294.0
95					18.63	347.0	17.69	312.9	16.69	278.8
100				•••	18.16	330.0	17.25	297.6	16.28	265.2
105	• • • •			•••	17.73	314.5	16.84	283.7	15.90	252.8
110	•••		20.70	400.0	17:33	300.5	16.46	271.0	15.24	241.6
115	20.02	490.0	20.70	428.6	16.96	287.7	16.11	259.5	15.21	231.3
$\frac{120}{125}$	20.92	438.0	20.27	411.0	16.61	276.0	15.78	249.0	14.90	222.0
130	20.51	420.7	19·87 19·49	394.8	16.28	265·2 255·2	15.46	239.2	14.60	213.3
135		404.7		379.8	15.97				14:33	
140	19.74	390.0	19.13	366.0	15.68	246.0	14.90	222.0	14.07	198.0
$140 \mid 145 \mid$	19·39 19·06	376·2 363·5	18·79 18·47	353·1 341·1	15.40	237·4 229·4	14.63 14.39	214·2 207·1	13.82 13.59	191·1 184·7
150	18.75	351.6	18.47	330.0	15.14	229 4	14.39	207.1	13.37	178.8
155	18.45	340.4	17.87	319.5	14.66	215.0	13.93	194.1	13.16	173.2
160	18.16	330.0	17.60	309.7	14.44	208.5	13.72	188.2	12.96	168.0
100	10 10	990 0	17 00	309 7	14 44	200 0	15 /2	100 2	12 50	100 0
	A	*	В	*	С	*	D	*	E	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Iron Plate 11 inch thick.

Table No. 28 continued.

Pressure per sq. in.	F	*	G	*	Н	[*	1	*			
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface			
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.			
5											
10					• • •	•••	•••				
15						***					
20						•••		• • • •			
25											
30				•••			19.87	394.8			
35			•••		• • • •		18.41	339.2			
40							17.25	297.6			
45		• • • •	20.92	438.0	19.87	394.8	16.28	265.2			
50			19.87	394.8	18.86	355.9	15.46	239.2			
55	20.09	403.6	18.96	359.4	18.00	324.1	14.76	218.0			
60	19.24	370.5	18.16	330.0	17.25	297.6	14.15	200.4			
65	18.50	342.4	17.46	305.0	16.58	275.1	13.61	185.4			
70	17.84	318.4	16.84	283.7	15.99	255.9	13.13	172.6			
75	17.25	297.6	16.28	265.2	15.46	239.2	12.71	161.5			
80	16.68	278.2	15.78	249.0	14.99	224.7	12.32	151.8			
85	16.22	263.2	15.32	234.7	14.55	211.8	11.96	143.2			
90	15.78	249.0	14.90	222.0	14.15	200.4	11.64	135.6			
95	15.37	236.2	14.51	210.6	13.79	190.1	11:34	128.7			
100 105	14·99 14·63	224.7	14·15 13·82	200·4 191·1	13·42 13·13	180·9 172·6	11.07	117:0			
110	14.03	204.8	13.82	182.7	12.84	165.0	10.82 10.58	112.0			
115	14.00	196.1	13.51		12.84	158.1	10.36	107.4			
120	13.72	188.2	12.96	175·0 168·0	12.37	151.8	10.36	107.4			
125	13.42	180.9	12.71	161.5	12.08	145.9	9.96	99.3			
130	13.20	174.2	12.47	155.5	11.85	140.5	9.78	95.7			
135	12.96	168.0	12.24	150.0	11.64	135.6	9.61	92.4			
140	12.73	162.2	12:03	144.8	11.44	130.9	9.45	89.3			
145	12.52	156.8	11.83	140.0	11.25	126.6	9.29	86.4			
150	12.32	151.8	11.64	135.6	11.07	122.6	9:15	83.7			
155	12.12	147.0	11.46	131.4	10.90	118.8	9.01	81.2			
160	11.94	142.6	11.29	127.5	10.74	115.3	8.88	78.9			
	F	*	G	*	F	I*	I	*			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces Iron Plate $1\frac{3}{32}$ inch thick.

Pressure per sq. in.	A	*	E	}*	C	*	D	*	E	C*	
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	
5											
10	•••										
15											
20										•••	
25											
30											
35											
40											
45								• • • •		•••	
50											
55										•••	
60										407.0	
65									20.67	427.2	
70						•••	20.47	170.7	19.92	397.1	
75							20.41	416.7	19.26	371.0	
80					20.82	433.8	19.77	391.0	18.66	348.2	
85					20.21	408.6	19.19	368.3	18.11	328.1	
90					19.65	386.2	18.66	348.2	17.61	310.2	
95					19.13	366.2	18.17	330.2	17.15	294.2	
100					18.66	348.2	17.72	314.0	16.72	279.8	
105					18.22	331.9	17:30	299.3	16.33	266.7	
110		• • •			17.80	317.1	16.91	286.0	15.96	254.9	
115			20.00	400.0	17.42	303.6	16.54	273.8	15.62	244.0	
120		• • • •	20.82	433.8	17.06	291.2	16.20	262.6	15:30	234.1	
125	20.457	127.0	20.41	416.7	16.72	279.8	15.88	252.4	15.00	225.0	
130	20.67	427.2	20.02	400.9	16.41	269.2	15.58	242.9	14.71	216.6	
135	20.28	411.6	19.65	386.2	16.11	259.5	15.30	234.1	14.45	208.8	
140	19.92 19.58	397·1 383·6	19:30 18:97	372.6	15.82	250·4 242·0	15.03 14.78	226.0	14·19 13·95	194.8	
145 150	19.58	371.0	18.66	360.0	15.55 15.30	234.1	14.78	218.4	13.95 13.73	188.5	
155	18.95	359.2	18.36	348·2 337·2	15.30	226.8	14.30	204.7	13.73	188.9	
160	18.66	348.2	18.08	326.8	14.83	219.9	14.30	198.5	13.30	177.1	
100	10 00	940 Z	10 00	520 8	14.00	219 9	14 09	130 5	19 90	111 1	
	A	/ *	I	3*	C	*	I)*	E	C*	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Iron Plate $1\frac{3}{32}$ inch thick

Table No. 29

,										
Pressure per sq. in.	F	*r	G	! *	Е	I*	I	*		
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5								•••		
10										
15										
20		•••						• • • •		
25										
30							20.41	416.7		
35		• • • •					18.92	358.0		
40						470 5	17.72	314.0		
45		• • • •			20.41	416.7	16.72	279.8		
50	00.01	100.0	20.41	416.7	19:38	375.6	15.88	252.4		
55	20.64	426.0	19.47	379.3	18:49	342.0	15.16	230.0		
60	19.77	391.0	18.66	348.2	17.72	314.0	14.53	211.3		
65	19.01	361.4	17.94	321.9	17:04	290.3	13.98	195.5		
70	18.33	336.0	17:30	299.3	16.43	270.0	13.49	182.0		
75	17.72	314.0	16.72	279.8	15.88	252.4	13.05	170.2		
80	17.16	294.7	16.20	262.6	15:39	237.0	12.65	160.0		
85	16.66	277.7	15.73	247.5	14.94	223.4	12.28	150.9		
90 95	16.20	262.6	15.30	234.1	14.53	211.3	11.95	142.9		
100	15.78	249.1	14.90	222.1	14.16	200.5	11.64	135.6		
105	15.39	237.0	14.53	211.3	13.81	190.8	11:36	129.2		
110	15·03 14·69	226.0	14.19	201.5	13.49	182.0	11·10 10·86	123.3		
115	14.38	206.8	13.88	192.6	13.19	174.0		118.0		
120	14.09	198.5	13.58 13.30	184.5 177.1	12.91 12.65	166·7 160·0	10.63 10.42	113·1 108·6		
125	13.81	190.8	13.05	170.2	12.40	153.8	10.42	108.6		
130	13.55	183.7	12.80	163.9	12.40	148.1	10.03	104.5		
135	13.30	177.1	12.57	158.1	11.95	142.9	9.86	97.2		
140	13.07	171.0	12.35	152.6	11.74	138.0	9.69	94.0		
145	12.85	165.3	12.15	147.6	11.55	133.4	9 69	90.9		
150	12.65	160.0	11.95	142.9	11.36	129.2	9.38	88.1		
155	12.45	155.0	11.76	138.4	11.19	125.2	9.24	85.4		
160	12.26	150.3	11.59	134.3	11.02	121.5	9.11	83.0		
	T	1*	C		Т	r*	Т	*		
	F*		F* G*				H* I*			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 30.

Pressures, Pitches, and Surfaces. Iron Plate $1\frac{1}{8}$ inch thick.

Pressure per sq. in.	A	*	I	3*	()*	I)*	I	C*
Pre:	Pitch	Surface								
lbs.	ins	sq. ins.	ins.	sq. ins.						
5										
10										•••
15										
20										•••
25		• • • •				•••				•••
30										•••
35										
40										• • •
45										
50										
55										
60										•••
65										
70									20.46	418.5
75							20.95	439.2	19.77	391.0
80							20.30	412.1	19.15	367.0
85					20.75	430.7	19.70	388.2	18.59	345.7
90					20.17	407.1	19.15	367.0	18.08	326.0
95					19.64	386.0	18.65	340.0	17.60	310.0
100					19.15	367.0	18.19	330.9	17.17	294.8
105					18.70	349.8	17.76	315.4	16.76	281.0
110					18.28	334.1	17:36	301.3	16.38	268.5
115					17.88	319.9	16.98	288.5	16.03	257.1
120					17.51	306.8	16.63	276.7	15.70	246.6
125			20.95	439.2	17:17	294.8	16.30	265.9	15.39	237.0
130			20.55	422.5	16.84	283.6	15.99	255.9	15.10	228.1
135	20.83	433.8	20.17	407.1	16.53	273.4	15.70	246.6	14.83	219.9
140	20.46	418.5	19.81	392.7	16.24	263.8	15.43	238.0	14.57	212.2
145	20.10	404.3	19.48	379.4	15.96	254.9	15.16	230.0	14.32	205.1
150	19.77	391.0	19.15	367.0	15.70	246.6	14.92	222.6	14.09	198.5
155	19.45	378.6	18.85	355.3	15.45	238.9	14.68	215.6	13.86	192.3
160	19.15	367.0	18.56	344.4	15.22	231.6	14.45	209.0	13.65	186.5
	A	*	В	*	C	*	D	*	Е	*

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Jron Plate 1½ inch thick.

Table No. 30 continued.

Pressure oer sq. in.	I	7*	(j*	F	I*]	[*				
Pre per	Pitch.	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface				
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.				
5												
10												
15								• • • •				
20							j	•••				
25												
30							20.95	439.2				
35							19 42	377.3				
40		•••					18.19	330.9				
45					20.95	439.2	17.17	294.8				
50			20.95	439.2	19.89	395.8	16:30	265.9				
55			19.99	399.8	18.98	360.4	15.56	242.2				
60	20.30	412.1	19.15	367.0	18.19	330.9	14.92	222.6				
65	19.51	380.8	18.41	339.2	17.49	305.9	14.35	205.9				
70	18.81	354.1	17.76	315.4	16.86	284.4	13.84	191.6				
75	18.19	330.9	17.17	294.8	16.30	265.9	13.39	179.2				
80	17.62	310.5	16.63	276.7	15.80	249.6	12.97	168.4				
85	17.10	292.6	16.15	260.8	15.34	235.3	12.60	158.8				
90	16.63	276.7	15.70	246.6	14.92	222.6	12.26	150.4				
95	16.20	262.5	15.29	234.0	14.53	211.2	11.95	142.8				
100	15.80	249.6	14.92	222.6	14.17	200.9	11.66	135.9				
105	15.43	238.0	14.57	212.2	13.84	191.6	11.39	129.7				
110	15.08	227.5	14.24	202.9	13.53	183.2	11.14	124.1				
115	14.76	217.8	13.94	194.3	13.24	175.5	10.91	119.0				
120	14.45	209.0	13.65	186.5	12.97	168.4	10.69	114.3				
125	14.17	200.9	13.39	179.2	12.72	161.9	10.48	109.9				
130	13.50	193.4	13.13	172.6	12.48	155.9	10.29	105.9				
135	13.65	186.5	12.90	166.4	12.26	150.4	10.11	102.2				
140	13.42	180.0	12.67	160.7	12.05	145.2	9.94	98.8				
145	13.19	174.0	12.46	155.3	11.85	140.4	9.77	95.6				
150	12.97	168.4	12.26	150.4	11.66	135.9	9.62	92.6				
155	12.77	163.2	12.07	145.7	11.48	131.7	9.47	89.8				
160	12:58	158.2	11.89	141.3	11.30	127.8	9.34	87.2				
	F	*	G.	*	Н	*	I,	16-				

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Stress on Iron Stays, 5000 lbs. per square inch of net section.

The following notes will facilitate the use of the Tables which immediately follow, numbered 31 to 35 and Nos. 254 to 256.

(1) If the working pressure be 120 lbs., the surface to be supported by one stay 175 square inches, and the size of the stay be required:—

Then, opposite 120 lbs. in Table No. 34, the surface, 175 square inches, is found under the diameter $2\frac{5}{16}$ inches, and area $4\cdot 2$ square inches, which is the size of stay required.

(2) If the surface be 120 square inches, the stay 1% inch diameter, area 2.7612 square inches, and working pressure be required:—

Then, in Table No. 33, 1% inch diameter stay is found; and in the column under the area 2.7612 square inches, and 1% inch diameter, the surface is 120 square inches, and opposite it the pressure is 115 lbs.; this is the working pressure suitable.

(3) If the stay be 1 inch diameter, the area '7854 square inch, the working pressure 80 lbs., and the greatest surface for such size of stay and working pressure be required:—

Then, in Table No. 31, 1 inch stay is found, and opposite 80 lbs. in the column for 1 inch diameter, area '7854 inch, the surface is 49 square inches; this is the surface suitable for such stay and pressure.

When the surface is not found opposite the pressure, it will be on the side of safety to adopt the larger size of stay over the next greater surface on the right.

The diameter is always the net effective diameter, or diameter at the bottom of the thread, if screwed; and the area, the net sectional

area at the smallest part of the stay.

When the stays are not screwed, but have eyes or palms on the ends, the net sectional area of the Iron in the eyes or palms should be in excess of that in the body of the stay. The eyes should have a sectional area of metal of about 50 per cent. greater than that in the body of the stay, and the palm ends should also have a net section of at least 50 per cent. above that in the body of the stay. The distance from the centre of the holes, for the bolts or rivets, to the outer end of palms should be about twice the diameter of the bolts or rivets.

TABLE No. 31.

Pressure square inch.	Area 0·1963 sq. inch.	Area 0·2485 sq. inch.	Area 0·3068 sq. inch.	Area 0·3712 sq. inch	Area 0.4417 sq. inch.	Area 0.5184 sq. inch.	Area 0.6013 sq. inch.	Area 0.6902 sq. inch.	Area 0.7854 sq. inch.
Pressur per square	Diam. 1/2 inch.	Diam. 9/16 inch.	Diam. 5/8 inch.	Diam. 11/16 inch.	Diam. 3/4 inch.	Diam. 1 3/16 inch.	Diam. 7/8 inch.	Diam. 15/16 inch.	Diam. 1 inch.
	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
lbs.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.
5	196.3	248.5	306.8	371.2	441.7	518.4	601.3	690.2	785.4
10	98.1	124.2	153.4	185.6	220.8	259.2	300.6	345.1	392.7
15	65.4	82.8	102.2	123.7	147.2	172.8	200.4	230.0	261.8
20	49.0	62.1	76.7	92.8	110.4	129.6	150.3	172.5	196.3
25	39.2	49.7	61.3	74.2	88.3	103.6	120.2	138.0	157.0
30	32.7	41.4	51.1	61.8	73.6	86.4	100.2	115.0	130.9
35	28.0	35.5	43.8	53.0	63.1	74.0	85.9	98.6	112.2
40	24.5	31.0	38.3	46.4	55.2	64.8	75.1	86.2	98.1
45	21.8	27.6	34.0	41.2	49.0	57.6	66.8	76.7	87.2
50	19.6	24.8	30.6	37.1	44.1	51.8	60.1	69.0	78.5
55	17.8	22.5	27.8	33.7	40.1	47.1	54.6	62.7	71.4
60	16.3	20.7	25.5	30.9	36.8	43.2	50.1	57.5	65.4
65	15.1	19.1	23.6	28.5	33.9	39.8	46.2	53.1	60.4
70	14.0	17.7	21.9	26.5	31.5	37.0	42.9	49.3	56.1
75	13.0	16.5	20.4	24.7	29.4	34.5	40.0	46.0	52.3
80	12.2	15.5	19.1	23.2	27.6	32.4	37.5	43.1	49.0
85		14.6	18.0	21.8	25.9	30.5	35.3	40.6	46.2
190		13.8	17.0	20.6	24.5	28.8	33.4	38.3	43.6
195		13.0	16.1	19.5	23.2	27.2	31.6	36.3	41.3
100		12.4	15.3	18.5	22.0	25.9	30.0	34.5	39.5
105			14.6	17.6	21.0	24.6	28.6	32.8	37.4
110			13.9	16.8	20.0	23.5	27.3	31.3	35.7
115			13.3	16.1	19.2	22.5	26.1	30.0	34.1
120			12.7	15.4	18.4	21.6	25.0	28.7	32.7
1.25			12.2	14.8	17.6	20.7	24.0	27.6	31.4
130		• • • •		14.2	16.9	19.9	23.1	26.5	30.2
135				13.7	16.3	19.2	22.2	25.5	29.0
1.40				13.5	15.7	18.5	21.4	24.6	28.0
1.45				12.8	15.2	17.8	20.7	23.8	27.0
1.50		•••		12.3	14.7	17.2	20.0	23.0	26.1
.55		•••			14.2	16.7	19.3	22.2	25.3
1.60					13.8	16.2	18.7	21.5	24.5
-		Marine Marine There	The state of the s		-			-	

^{* 5000} lbs. per square inch of net section is the greatest working stress to which iron stays, which have been welded or worked in the fire, should be subjected.

TABLE No. 32.

ı						1 1				
	Pressure square inch.	Area 0.8866 sq. inch.	Area 0.9940 sq. inch.	Area 1·1075 sq. inch.	Area 1·2272 sq. inch.	Area 1.3530 sq. inch.	Area 1.4849 sq. inch.	Area 1.6230 sq. inch.	Area 1.7671 sq. inch.	Area 1·9175 sq. inch
	Pres per sque	Diam. 1 1/16 inch.	Diam. 1½ inch.	Diam. 1 ³ / ₁₆ inch	Diam. 1 1/4 inch.	Diam. 15/16 inch.	Diam. 1 % inch.	Diam. 17/16 inch.	Diam. 1½ inch.	Diam. 1 9/16 inch.
١		Surface	Surface	Surface	Surface	Surface		Surface	Surface	Surface
١	lbs.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.
ı	5	886.6	994.0	553.7	619.6	676.5	742.4	811.5	883.5	958.7
1	10 15	443·3 295·5	497·0 331·3	369.1	613.6	676.5 451.0	494.9	541.0	589.0	639.1
ı	20	221.6	248.5	276.8	306.8	338.2	371.2	405.7	441.7	479.3
ı	25	177.3	198.8	221.5	245.4	270.6	296.9	324.6	353.4	383.5
ı	30	147.7	165.6	184.5	204.5	225.5	247.4	270.5	294.5	319.5
1	35	126.6	142.0	158.2	175.3	193.2	212.1	231.8	252.4	273.9
١	40	110.8	124.2	138.4	153.4	169.1	185.6	202.8	220.8	239.6
Į	45	98.5	110.4	123.0	136.3	150.3	164.9	180.3	196.3	213.0
ı	50	88.6	99.4	110.7	122.7	135.3	148.4	162.3	176.7	191.7
1	55	80.6	90.3	100.6	111.2	123.0	134.9	147.5	160.6	174.3
	60	73.8	82.8	92.2	102.2	112.7	123.7	135.2	147.2	159.7
١	65	68.2	76.4	85.1	94.3	104.0	114.2	124.8	135.9	147.5
i	70	63.3	71.0	79.1	87.6	96.6	106.0	115.9	126.2	136.9
1	75	59.1	66.2	73.8	81.8	90.2	98.9	108.2	117.8	127.8
ı	80	55·4 52·1	62.1	69.2	76.6 72.1	84.5	92·8 87·3	101·4 95·4	110.4	119·8 112·7
ı	85	49.2	58·4 55·2	61.5	68.1	79·5 75·1	82.4	90.1	98.1	106.5
	90 95	46.6	52.3	58.2	64.5	71.2	78.1	85.4	93.0	100.9
١	100	44.3	49.7	55.3	61.3	67.6	74.2	81.1	88.3	95.8
	105	42.2	47.3	52.7	58.4	64.4	70.7	77.2	84.1	91.3
1	110	40.3	45.1	50.3	55.7	61.5	67.4	73.7	80.3	87.1
	115	38.5	43.2	48.1	53.3	58.8	64.5	70.5	76.8	83.3
1	120	36.9	41.4	46.1	51.1	56.3	61.8	67.6	73.6	79.8
Į	125	35.4	39.7	44.3	49.0	54.1	59.3	64.9	70.6	76.7
1	130	34.1	38.2	42.5	47.1	52.0	57.1	62.4	67.9	73.7
	135	32.0	36.8	41.0	45.4	50.1	54.9	60.1	65.4	71.0
	140	31.6	35.5	39.5	43.8	48.3	53.0	57.9	63.1	68.4
۱	145	30.2	34.2	38.1	42.3	46.6	51.2	55.9	60.9	66.1
ı	150	29.5	33.1	36.9	40.9	45.1	49.4	54.1	58.9	63.9
ı	155	28.6	32.0	35.7	39.5	43.6	47.8	52.3	57.0	61.8
	160	27.7	31.0	34.6	38.3	42.2	40.4	90.7	55.2	59.9

^{* 5000} lbs. per square inch of net section is the greatest working stress to which iron stays, which have been welded or worked in the fire, should be subjected.

129

PRESSURES, GREATEST SURFACES, AND SIZES OF STAYS.

TABLE No. 33.

			J ,		1 1				
Pressure square inch.	Area 2.0739 sq. ins.	Area 2·2365 sq. ins.	Area 2.4053 sq. ins.	Area 2.5802 sq. ins.	Area 2·7612 sq. ins.	Area 2·9483 sq. ins.	Area 3·1416 sq. ins.	Area 3.3410 sq. ins.	Area 3.5466 sq. ins.
Pres per squ	Diam. 1 ½ inch.	Diam. 1 1 1/16 inch.	Diam. 13/4 inch.	Diam. 1 1 3/16 inch.	Diam. 17/8 inch.	Diam. 1 1 5/16 inch.	Diam. 2 inches.	Diam. $2\frac{1}{16}$ inches.	Diam. $2\frac{1}{8}$ inches.
	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
lbs.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.
5									
10									•••
15	691.3	745.5	801.7	860.0	920.4	982.7			•••
20	518.4	559.1	601.3	645.0	690.3	737.0	785.4	835.2	886.6
25	414.7	447.3	481.0	516.0	552.2	589.6	628.3	668.2	709.3
30	345.6	372.7	400.8	430.0	460.2	491.3	523.6	556.8	591.1
35	296.2	319.5	343.6	368.6	394.4	421.1	448.8	477.2	506.6
40	259.2	279.5	300.6	322.5	345.1	368.5	392.7	417.6	443.3
45	230.4	248.5	267.2	286.6	306.8	327.5	349.0	371.2	394.0
50	207:3	223.6	240.5	258.0	276.1	294.8	314.1	334.1	354.6
55	188.5	203.3	218.6	234.5	251.0	268.0	285.6	303.7	322.4
60	172.8	186.3	200.4	215.0	230.1	245.6	261.8	278.4	295.5
65	159.5	172.0	185.0	198.4	212.4	226.7	241.6	257.0	272.8
70	148.1	159.7	171.8	184.3	197.2	210.5	224.4	238.6	253.3
75	138.2	149.1	160.3	172.0	184.0	196.5	209.4	222.7	236.4
80	129.6	139.7	150.3	161.2	172.5	184.2	196.3	208.8	221.6
85	121.9	131.5	141.4	151.7	162.4	173.4	184.8	196.5	208.6
90	115.2	124.2	133.6	143.3	153.4	163.7	174.5	185.6	197.0
95	109.1	117.7	126.5	135.8	145.3	155.1	165.3	175.8	186.6
100	103.6	111.8	120.2	129.0	138.0	147.4	157.0	167.0	177.3
105	98.7	106.5	114.5	122.8	131.4	140.3	149.6	159.1	168.8
110	94.2	101.6	109.3	117.2	125.5	134.0	142.8	151.8	161.2
115	90.1	97.2	104.5	112.1	120.0	128.1	136.5	145.2	154.2
120	86.4	93.1	100.5	107.5	115.0	122.8	130.9	139.2	147.7
125	82.9	89.4	96.2	103.2	110.4	117.9	125.6	133.6	141.8
130	79.7	86.0	92.5	99.2	106.2	113.3	120.8	128.5	136.4
135	76.8	82.8	89.0	95.5	102.2	109.1	116.3	123.7	131.3
140	74.0	79.8	85.9	92.1	98.6	105.2	112.2	119.3	126.6
145	71.5	77.1	82.9	88.9	95.2	101.6	108.3	115.2	122.2
150	69.1	74.5	80.1	86.0	92.0	98.2	104.7	111.3	118.2
155	66.9	72.1	77.5	83.2	89.0	95.1	101.3	107.7	114.4
160	64.8	69.8	75.1	80.6	86.2	92.1	98.1	104.4	110.8
-									

^{* 5000} lbs. per square inch of net section is the greatest working stress to which iron stays, which have been welded or worked in the fire, should be subjected.

130

PRESSURES, GREATEST SURFACES, AND SIZES OF STAYS.

TABLE No. 34.

Pressure square inch.	Area 3.7583 sq. ins.	Area 3.9761 sq. ins.	Area 4.2000 sq. ins.	Area 4.4301 sq. ins.	Area 4.6664 sq. ins.	Area 4·9087 sq. ins.	Area 5·1572 sq. ins.	Area 5.4119 sq. ins.	Area 5.6727 sq. ins.
Pres	Diam.	Diam.	Diam.	Diam.	Diam.	Diam.	Diam,	Diam	Diam.
per	23/16 inches.	2 1/4 inches,	$2^{5}/_{16}$ inches.	2 % inches.	27/16 inches.	2½ inches,	2%16 inches,	25/8 inches.	21 1/16 inches
-	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
lbs.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.
5									
10									
15									
20	939.5	994.0							
25	751.6	795.2	840.0	886.0	933.2	981.7			
30	626.3	662.6	700.0	738.3	777.7	818.1	859.5	901.9	945.4
35	536.9	568.0	600.0	632.8	666.6	701.2	736.7	773.1	810.3
40 45	469.7	497.0	525.0	553.7	583.3	613.5	644.6	676.4	709.0
50	417.5	441.7	466.6 420.0	492.2	518.4	545.4	573.0	601.3	630.3
55	375·8 341·6	397·6 361·4	381.8	443·0 402·7	466·6 424·2	490.8 446.2	515.7	541·1 491·9	567·2 515·7
60	313.1	331.3	350.0	369.1	388.8	409.0	468·8 429·7	450.9	472.7
65	289.0	305.8	323.0	340.7	358.9	377.5	396.7	416.3	436.3
70	268.4	284.0	300.0	316.4	333.3	350.6	368.3	386.5	405.1
75	250.5	265.0	280.0	295.3	311.0	327.2	343.8	360.7	378.1
80	234.8	248.5	262.5	276.8	291.6	306.7	322.3	338.2	354.5
85	221.0	233.8	247.0	260.6	274.4	288.7	303.3	318.3	333.6
90	208.7	220.8	233.3	246.1	259.2	272.7	286.5	300.6	315.1
95	197.8	209.2	221.0	233.1	245.6	258.3	271.4	284.8	298.5
100	187.9	198.8	210.0	221.5	233.3	245.4	257.8	270.5	283.6
105	178.9	189.3	200.0	210.9	222.2	233.7	245.5	257.7	270.1
110	170.8	180.7	190.9	201.3	212.1	223.1	234.4	245.9	257.8
115	163.4	172.8	182.6	192.6	202.8	213.4	224.2	235.3	246.6
120	156.5	165.6	175.0	184.5	194.4	204.5	214.8	225.4	236.3
125	150.3	159.0	168.0	177.2	186.6	196.3	206.2	216.4	226.9
130	144.5	152.9	161.5	170.3	179.4	188.7	198.3	208.1	218.1
135	139.1	147.2	155.5	164.0	172.8	181.8	191.0	200.4	210.1
140	134.2	142.0	150.0	158.2	166.6	175.3	184.1	193.2	202.5
145	129.5	137.1	144.8	152.7	160.9	169.2	177.8	186.6	195.6
150	125.2	132.5	140.0	147.6	155.5	163.6	171.9	180.3	189.0
155	121.2	128.2	135.4	142.9	150.5	158.3	166.3	174.5	182.9
160	117.4	124.2	131.2	138.4	145.8	153.3	161.1	169.1	177.2

^{* 5000} lbs. per square inch of net section is the greatest working stress to which iron stays, which have been welded or worked in the fire, should be subjected.

Table No. 35.

	1	-		1	1	_		(
Pressure square inch.	Area 5.9396	Area 6.2126	Area 6.4918	Area 6.7771	Area 7.0686	Area 7.3662	Area 7.6699	Area 7.9798	Area 8.2958
ure e i	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.
ess	Diam.	Diam.	Diam.	Diam.	Diam.	Diam.	Diam.	Diam.	Diam.
Pr sq	23/4	213/16	27/8	215/16	3	31/16	31/8	33/16	3 1/4
per	inches.	inches.	inches.	inches.	inches.	inches.	inches.	inches,	inches.
		-	-		-	-	-	1	
	Surface	Surface	Surface			Surface	Surface	Surface	
lbs.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.
10				• • •				•••	• • • •
			• • • •						•••
15		• • • •		•••				•••	***
20 25			•••						
30	989-9								•••
35		887.5	927.4	000.7					
40	848.5			968·1 847·1	883.5	920.7	958.7	997:4	
45	659.9	776·5 690·2	811.4		785.4	818.4	852.2	886.6	921.7
50	593.9	621.2	649.1	753·0 677·7	706.8	736.6	766.9	797.9	829.5
55	539.9	564.7	590.1	616.1	642.6	669.6	697.2	725.4	754.1
60	494.9					613.8	639.1	664.9	691.3
65	456.8	517.7	540.9	564.7	589.0	566.6	589.9	613.8	638.1
70	424.2	477.8 443.7	499·3 463·7	521·3 484·0	543·7 504·9	526.1	547.8	569.9	592.5
75	395.9	414.1		451.8		491.0	511.3	531.9	553.0
80	371.2	388.2	432·7 405·7	423.5	471·2 441·7	460.3	479.3	498.7	518.4
85	349.3	365.4	381.8		415.8	433.3	479 3	469.4	487.9
90	329.9	345.1		398·6 376·5	392.7	409.2	426.1	443.3	460.8
95	312.6	326.9	360.6	356.6	372.0	387.6	403.6	419.9	436.6
100	296.9	310.6	324.5	338.8	353.4	368.3	383.4	398.9	414.7
105	282.8	295.8	309.1	322.7	336.6	350.7	366.5	379.9	395.0
110	269.9	282.3	295.0	308.0	321.3	334.8	348.6	362.7	377.0
115	258.2	270.1	282.2	294.6	307.3	320.2	333.4	346.9	360.6
120	247.4	258.8	270.4	282.3	294.5	306.9	319.5	332.4	345.6
125	237.5	248.5	259.6	271.0	282.7	294.6	306.7	319.1	331.8
130	228.4	238.9	249.6	260.6	271.8	283.3	294.9	306.9	319.0
135	219.9	230.0	249 6	251.0	261.8	272.8	284.0	295.5	307.2
140	212.1	221.8	231.8	242.0	252.4	263.0	273.9	284.9	296.2
145	204.8	214.2	223.8	233.6	243.7	254.0	264.4	275.1	286.0
150	197.9	207.0	216.3	225.9	235.6	245.5	255.6	265.9	276.5
155	191.5	200.4	209.4	218.6	228.0	237.6	247.4	257.4	267.6
160	185.6	194.1	202.8	211.7	220.8	230.1	239.6	249.3	259.2
-00	100	1011	2020	211 /	2200	200 1	250 0	_10 0	200 2

^{* 5000} lbs. per square inch of net section is the greatest working stress to which iron stays, which have been welded or worked in the fire, should be subjected.

Stress on Solid Iron Screwed Stays, which have not been welded or worked in the fire, 7000 lbs. per square inch of net section.

The following notes will facilitate the use of the Tables which immediately follow, numbered 36 to 40 and Nos. 257 to 259.

(1) If the working pressure be 140 lbs., the surface to be supported by one stay 210 square inches, and the size of stay be required:—

Then, opposite 140 lbs. in Table No. 39, the surface 210 square inches is found under the diameter 25/16 inches and area 4.2 square inches, which is the size of stay required.

(2) If the surface be 138 square inches, the stay 1% inch diameter, area 2.7612 square inches, and the working pressure be required:—

Then, in Table No. 38, 1% diameter stay is found, and in the column under the area 2.7612 square inches, and 1% inch diameter, the surface is 138 square inches, and opposite it the pressure is 140 lbs.; this is the working pressure suitable.

(3) If the stay be 1 inch diameter, the area '7854 square inch, the working pressure 80 lbs., and the greatest surface for such size of stay and working pressure be required:—

Then, in Table No. 36, 1 inch stay is found, and opposite 80 lbs. in the column for 1 inch diameter, area '7854 inch, the surface is 68'7 square inches; this is the surface suitable for such stay and pressure.

When the surface is not found opposite the pressure, it will be on the side of safety to adopt the larger size of stay over the next greater surface on the right.

The diameter is always the net effective diameter, or diameter at the bottom of the thread, and the area the net sectional area at the smallest part of the stay. Stress on Solid Iron Screwed Stays, which have not been welded or worked in the fire, 7000 lbs. per square inch of net section.*

-									
Pressure square inch.	Area 0.1963	Area 0.2485	Area 0.3068	Area 0.3712	Area 0:4417	Area 0.5184	Area 0.6013	Area 0:6902	Area 0.7854
in								sq. inch.	sq. inch.
sui					bq. mon.	oq. men.		oq. men.	
dna	Diam.	Diam.	Diam,	Diam.	Diam.	Diam.	Diam.	Diam.	Diam.
r s	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/	1
per	inch.								
	Surface								
lbs.	sq. ins.								
5	274.8	347.9	429.5	519.6	618.3	725.7	841.8	966.2	
10	137.4	173.9	214.7	259.8	309.1	362.8	420.9	483.1	549.7
15	91.6	115.9	143.1	173.2	206.1	241.9	280.6	322.0	366.5
20	68.7	86.9	107.3	129.9	154.5	181.4	210.4	241.5	274.8
25	54.9	69.5	85.9	103.9	123.6	145.1	168.3	193.2	219.9
30	45.8	57.9	71.5	86.6	103.0	120.9	140.3	161.0	183.2
35	39.2	49.7	61.3	74.2	88.3	103.6	120.2	138.0	157.0
40	34.3	43.4	53.6	64.9	77.2	90.7	105.2	120.7	137.4
45	30.5	38.6	47.7	57.7	68.7	80.6	93.5	107.3	122.1
50	27.4	34.7	42.9	51.9	61.8	72.5	84.1	96.6	109.9
55	24.9	31.6	39.0	47.2	56.2	65.9	76.5	87.8	99.9
60	22.9	28.9	35.7	43.3	51.5	60.4	70.1	80.5	91.6
65	21.1	26.7	33.0	39.9	47.5	55.8	64.7	74.3	84.5
70	19.6	24.8	30.6	37.1	44.1	51.8	60.1	69.0	78.5
75	18.3	23.1	28.6	34.6	41.2	48.3	56.1	64.4	73.3
80	17.1	21.7	26.8	32.4	38.6	45.3	52.6	60.4	68.7
85	16.1	20.4	25.2	30.5	36.3	42.7	49.5	56.8	64.6
90	15.2	19.3	23.8	28.8	34.3	40.3	46.7	53.6	61.0
95	14.4	18.3	22.6	27.3	32.5	38.2	44.3	50.8	57.8
100	13.7	17.3	21.4	25.9	30.9	36.2	42.0	48.3	54.9
105	13.0	16.5	20.4	24.7	29.4	34.5	40.0	46.0	52.3
110	12.4	15.8	19.5	23.6	28.1	32.9	38.2	43.9	49.9
115		15.1	18.6	22.5	26.8	31.5	36.6	42.0	47.8
120		14.4	17.8	21.6	25.7	30.2	35.0	40.2	45.8
125		13.9	17.1	20.7	24.7	29.0	33.6	38.6	43.9
130		13.3	16.5	19.9	23.7	27.9	32.3	37.1	42.2
135		12.8	15.9	19.2	22.9	26.8	31.1	35.7	40.7
140		12.4	15.3	18.5	22.0	25.9	30.0	34.5	39.2
145			14.8	17.9	21.3	25.0	29.0	33.3	37.9
150			14.3	17.3	20.6	24.1	28.0	32.2	36.6
155			13.8	16.7	19.9	23.4	27.1	31.1	35.4
160			13.4	16.2	19.3	22.6	26.3	30.2	34.3
			1		1		1		

^{* 7000} lbs. per square inch of net section is the greatest working stress to which solid iron screwed stays, which have not been welded or worked in the fire, should be subjected.

TABLE No. 37.

Stress on Solid Iron Screwed Stays, which have not been welded or worked in the fire, 7000 lbs. per square inch of net section.*

sure re inch.	Area 0.8866 sq. inch.	Area 0.9940 sq. inch.	Area 1·1075 sq. inch.	Area 1·2272 sq. inch.	Area 1.3530 sq. inch.	Area 1.4849 sq. inch	Area 1.6230 sq. inch.	Area 1·7671 sq. inch.	Area 1.9175 sq. inch.
Pressure per square in	Diam. 1 1/16 inch.	Diam. 1 1/8 inch.	Diam. 1 3/16 inch.	Diam. 1 1/4 inch.	Diam. 15/16 inch.	Diam. 1 % inch.	Diam. 17/16 inch.	Diam. 1½ inch.	Diam 1% 16 inch.
lbs.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.				
5	000.0	205.0	777.0	0	0.47.0	• • • •			
10	620.6	695.8	775.2	859.0	947.0	000.0	H-7.1	004.3	004.0
15 20	413·7 310·3	463·8 347·9	516.8	572.6	631.4	692.9	757.4	824.6	894.8
25	248.2	278.3	387·6 310·1	429·5 343·6	473·5 378·8	519.7	568·0 454·4	618.4	671·1 536·9
30	206.8	231.9	258.4	286.3		415.7			
35	177.3	198.8	221.5	245.4	315·7 270·5	346.4	378·7 324·6	412·3 353·4	447·4 383·5
40	155.1	173.9	193.8	214.7	236.7	259.8	284.0	309.2	335.5
45	137.9	154.6	172.2	190.8	210.4	230.9	252.4	274.8	298 2
50	124.1	139.1	155.0	171.8	189.4	207.8	227.2	247.3	268.4
55	112.8	126.5	140.9	156.1	172.1	188.9	206.5	224.9	244.0
60	103.4	115.9	129.2	143.1	157.8	173.2	189.3	206.1	223.7
65	95.4	107.0	119.2	132.1	145.6	159.9	174.7	190.3	206.5
70	88.6	99.4	110.7	122.7	135.2	148.4	162.2	176.7	191.7
75	82.7	92.7	103.3	114.5	126.2	138.5	151.4	164.9	178.9
80	77.5	86.9	96.9	107.3	118.3	129.9	142.0	154.6	167.7
85	73.0	81.8	91.2	101.0	111.4	122.2	133.6	145.5	157.9
90	68.9	77:3	86.1	95.4	105.2	115.4	126.2	137.4	149.1
95	65.3	73.2	81.6	90.4	99.6	109.4	119.5	130.2	141.2
100	62.0	69.5	77.5	85.9	94.7	103.9	113.6	123.6	134.2
105	59.1	66.2	73.8	81.8	90.1	98.9	108.1	117 8	127.8
110	56.4	63.2	70.4	78.0	86.0	94.4	103.2	112.4	122.0
115	53.9	60.5	67.4	74.6	82.3	90.3	98.7	107.5	116.7
120	51.7	57.9	64.6	71.5	78.9	86.6	94.6	103.0	111.8
125	49.6	55.6	62.0	68.7	75.7	83.1	90.8	98.9	107.3
130	47.7	53.5	59.6	66.0	72.8	79.9	87.3	95.1	103.5
135	45.0	51.5	57.5	63.6	70.1	76.9	84.1	91.6	99.4
140	44.3	49.7	55.3	61.3	67.6	74.2	81.1	88.3	95.8
145	42.8	47.9	53.4	59.2	65.3	71.6	78.3	85.3	92.5
150	41.3	46.3	51.6	57.2	63.1	69.2	75.7	82.4	89.4
155 160	40·0 38·7	44.8	50.0	55.4	61.0	67.0	73.2	79.8	86.5
100	50.1	43.4	48.4	53.6	59.1	64.9	71.0	77.3	83.8

^{* 7000} lbs. per square inch of net section is the greatest working stress to which solid iron screwed stays, which have not been welded or worked in the fire, should be subjected.

TABLE No. 38.

Stress on Solid Iron Screwed Stays, which have not been welded or worked in the fire, 7000 lbs. per square inch of net section.*

Pressure square inch.	Area 2.0739 sq. ins.	Area 2·2365 sq. ins.	Area 2.4053 sq. ins.	Area 2.5802 sq. ins.	Area 2.7612 sq. ins.	Area 2.9483 sq. ins.	Area 3·1416 sq. ins.	Area 3.3410 sq. ins.	Area 3.5466 sq. ins.
Press per squa	Diam. 1 ½ inch.	Diam. 1 1 1/16 inch.	Diam. 1 3/4 inch.	Diam. 1 ¹³ / ₁₆ inch.	Diam. 1% inch.	Diam. 1 1 5/16 inch.	Diam. 2 inches.	Diam, $2\frac{1}{16}$ inches.	Diam. 21/8 inches.
lbs.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.
5	·			·					·
10									
15	967.8								
20	725.8	782.7	841.8	903.0	966.4				
25	580.6	626.2	673.4	722.4	773.1	825.5	879.6	935.4	993.0
30	483.9	521.8	561.2	602.0	644.2	687.9	733.0	779.5	827.5
35	414.7	447.3	481.0	516.0	552.2	589.6	628.3	668.2	709.3
40	362.9	391.3	420.9	451.5	483.2	515.9	549.7	584.6	620.6
45	322.6	347.9	374.1	401.3	429.5	458.6	488.6	519.7	551.6
50	290.3	313.1	336.7	361.2	386.5	412.7	439.8	467.7	496.5
55	263.9	284.6	306.1	328.3	351.4	375.2	399.8	425.2	451.3
60	241.9	260.9	280.6	301.0	322.1	343.9	366.5	389.7	413.7
65 70	223.3	240·8 223·6	259·0 240·5	277·8 258·0	297·3 276·1	317·5 294·8	338.3	359·8 334·1	381·9 354·6
75	207·3 193·5	208.7	224 4	240.8	257.7	275.1	314·1 293·2	311.8	331.0
80	181.4	195.6	210.4	225.7	241.6	257.9	274.8	292.3	310.3
85	170.7	184.1	198.0	212.4	227:3	242.8	258.7	275.1	292.0
90	161.3	173.9	187.0	200.6	214.7	229.3	244.3	259.8	275.8
95	152.8	164.7	177.2	190.1	203.4	217.2	231.4	246.1	261.3
100	145.1	156.5	168.3	180.6	193.2	206.3	219.9	233.8	248.2
105	138.2	149.1	160.3	172.0	184.0	196.5	209.4	222.7	236.4
110	131.9	142.3	153.0	164.1	175.7	187.6	199.9	212.6	225.6
115	126.2	136.1	146.4	157.0	168.0	179.4	191.2	203.3	215.8
120	120.9	130.4	140.3	150.5	161.0	171.9	183.2	194.8	206.8
125	116.1	125.2	134.6	144.4	154.6	165.1	175.9	187.1	198.6
130	111.6	120.4	129.5	138.9	148.6	158.7	169.1	179.9	190.9
135	107.5	115.9	124.7	133.7	143.1	152.8	162.8	173.2	183.8
140	103.6	111.8	120.2	129.0	138.0	147.4	157.0	167.0	177.3
145	100.1	107.9	116.1	124.5	133.2	142.3	151.6	161.2	171.2
150	96.7	104.3	112.2	120.4	128.8	137.5	146.6	155.9	165.5
155	93.6	101.0	108.6	116.2	124.6	131.1	141.8	150.8	160.1
160	90.7	97.8	105.2	112.8	120.7	128.9	137.4	146.1	155.1

^{* 7000} lbs. per square inch of net section is the greatest working stress to which solid iron screwed stays, which have not been welded or worked in the fire, should be subjected.

TABLE No. 39.

Stress on Solid Iron Screwed Stays, which have not been welded or worked in the fire, 7000 lbs. per square inch of net section.*

			,		L 1				
Pressure square inch.	Area 3.7583 sq. ins.	Area 3.9761 sq. ins.	Area 4.2000 sq. ins.	Area 4.4301 sq. ins.	Area 4.6664 sq. ins.	Area 4·9087 sq. ins.	Area 5.1572 sq. ins.	Area 5.4119 sq. ins.	Area 5.6727 sq. ins.
Pres per squa	Diam. $2\frac{3}{16}$ inches.	Diam. $2\frac{1}{4}$ inches.	Diam. $2\frac{5}{16}$ inches.	Diam. 23/8 inches.	Diam. 27/16 inches.	Diam. 2½ inches.	Diam. $2\frac{9}{16}$ inches.	Diam. $2\frac{5}{8}$ inches.	Diam. $2\frac{1}{1}\frac{1}{16}$ inches.
	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
lbs.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.
5									
10									
15								•••	
20			• • • •				•••	•••	
25 30	070.0	007.7	000.0					•••	
35	876.9	927.7	980.0	000.0	00000	001.7			
	751.6	795.2	840.0	886.0	933.2	981.7	902.5	947.0	000.7
40	657·7 584·6	695.8	735·0 653·3	775·2 689·1	816·6 725·8	859·0 763·5	802.2	841.8	992·7 882·4
50	526.1	556.6	588.0	620.2	653.2	687.2	722.0	757.6	794.1
55	478.3	506.0	534.5	563.8	593.9	624.7	656.3	688.7	721.9
60	438.4	463.8	490.0	516.8	544.4	572.6	601.6	631.3	661.8
65	404.7	428.1	452.3	477.0	502.5	528.6	555.3	582.8	610.9
70	375.8	397.6	420.0	443.0	466.6	490.8	515.7	541.1	567.2
75	350.7	371.0	392.0	413.4	435.5	458.1	481.3	505.1	529.4
80	328.8	347.9	367.5	387.6	408:3	429.5	451.2	473.5	496.3
85	309.5	327.4	345.8	364.8	384.2	404.2	424.7	445.6	467.1
90	292.3	309.2	326.6	344.5	362.9	381.7	401.1	420.9	441.2
95	276.9	292.9	309.4	326.4	343.8	361.6	380.0	398.7	417.9
100	263.0	278.3	294.0	310.1	326.6	343.6	361.0	378.8	397.0
105	250.5	265.0	280.0	295.3	311.0	327.2	343.8	360.7	378.1
110	239.1	253.0	267.2	281.9	296.9	312.3	328.1	344.3	360.9
115	228.7	242.0	255.6	269.6	284.0	298.7	313.9	329.4	345.2
120	219.2	231.9	245.0	258.4	272.2	286.3	300.8	315.6	330.9
125	210.4	222.6	235.2	248.0	261.3	274.8	288.8	303.0	317.6
130	202.3	214.0	226.1	238.5	251.2	264.3	277.7	291.4	305.4
135	194.8	206.1	217.7	229.7	241.9	254.5	267.4	280.6	294.1
140	187.9	198.8	210.0	221.5	233.3	245.4	257.8	270.5	283.6
145	181.4	191.9	202.7	213.8	225.2	236.9	248.9	261.2	273.8
150	175.3	185.5	196.0	206.7	217.7	229.0	240.6	252.5	264.7
155	169.7	179.5	189.6	200.0	210.7	221.6	232.9	244.4	256.1
160	164.4	173.9	183.7	193.8	204.1	214.7	220.6	236.7	248.1
_									

^{* 7000} lbs. per square inch of net section is the greatest working stress to which solid iron screwed stays, which have not been welded or worked in the fire, should be subjected.

TABLE No. 40.

Stress on Solid Iron Screwed Stays, which have not been welded or worked in the fire, 7000 lbs. per square inch of net section.*

					1 1				
Pressure square inch.	Area 5.9396 sq. ins.	Area 6·2126 sq. ins.	Area 6·4918 sq. ins.	Area 6:7771 sq. ins.	Area 7.0686 sq. ins.	Area 7.3662 sq. ins.	Area 7.6699 sq. ins.	Area 7·9798 sq. ins.	Area 8.2958 sq. ins.
Pres per squa	Diam. 23/4 inches.	Diam. 2 1 3/16 inches.	Diam. 27/8 inches.	Diam. 2 ¹⁵ / ₁₆ inches.	Diam. 3 inches.	Diam. $3\frac{1}{16}$ inches.	Diam. 31/8 inches.	Diam. 3 3/16 inches.	Diam. 3½ inches.
	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
lbs.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.
5				•••		•••			
10				• • • •	•••	•••		• • •	
15						• • • •		•••	•••
20	• • • •	•••	• • • •	• • • •				•••	•••
25	•••			• • • •	•••				***
30	•••			• • • •	• • • •			•••	•••
35					• • • •	• • •	•••	•••	
40	923.9	966.4				• • • •			
50	831.5	869.7	908.8	948.7	989.6				
55	755.9	790.6	826.2	862.5	899.6	937.5	976.1	•••	
60	692.9	724.8	757.3	790.6	824.6	859.3	894.8	930.9	967 8
65	639.6	669.0	699.1	729.8	761.2	793.2	825.9	859.3	893.3
70	593.9	621.2	649.1	677.7	706.8	736.6	766.9	797.9	829.5
75	554.3	579.8	605.9	632.5	659.7	687.5	715.8	744.7	774.2
80	519.7	543.6	568.0	593.0	618.5	644.5	671.1	698.2	725.8
85	489.1	511.6	534.6	558.1	582.1	606.6	631.6	657.1	683.1
90	461.9	483.2	504.9	527.1	549.7	572.9	596.5	620.6	645.2
95	437.6	457.7	478.3	499.3	520.8	542.7	565.1	587.9	611.2
100	415.7	434.8	454.4	474.3	494.8	515.6	536.8	558.5	580.7
105	395.9	414.1	432.7	451.8	471.2	491.0	511.2	531.9	553.0
110	377.9	395.3	413.1	431.2	449.8	468.7	488.0	507.7	527.9
115	361.5	378.1	395.1	412.5	430.2	448.3	466.8	485.7	504.9
120	346.4	362.4	378.6	395.3	412.3	429.6	447.4	465.4	483.9
125	332.6	347.9	363.5	379.5	395.8	412.5	429.5	446.8	464.5
130	319.8	334.5	349.5	364.9	380.6	396.6	412.9	429.6	446.6
135	307.9	322.1	336.6	351.4	366.5	381.9	397.6	413.7	430.1
140	296.9	310.6	324.5	338.8	353.4	368.3	383.4	398.9	414.7
145	286.7	299.9	313.3	327.1	341.2	355.6	370.2	385.2	400.4
150	277.1	289.9	302.9	316.2	329.8	343.7	357.9	372.3	387.1
155	268.2	280.5	293.1	306.0	319.2	332.6	346.3	360.3	374.6
160	259.8	271.8	284.0	296.5	309.7	322.2	335.5	349.1	362.9
_									

^{* 7000} lbs. per square inch of net section is the greatest working stress to which solid iron screwed stays, which have not been welded or worked in the fire, should be subjected.

IRON GIRDERS FOR FLAT SURFACES.

The following notes will facilitate the use of the Tables, numbered from 41 to 51, which immediately follow, and Nos. 260 to 270.

W = Width of combustion box, in inches.

D = Distance between centres of girders, in inches.

P = Pitch of supporting bolts, in inches.

N = Number of supporting bolts in a girder.

When the number of supporting bolts in a girder is odd, the number in the Table under the particular depth of girder is the maximum value that $W^2 \times D$ may have for the particular working pressure opposite to it in column 1.

When the number of supporting bolts in a girder is even, the number in the Table under the particular depth of girder is the maximum value that $(W^2 - P^2)D$ may have for the particular working pressure opposite to it in column 1.

(1) If the working pressure is required when the width of the box, the distance between centres of girders, the pitch of supporting bolts, the number of supporting bolts in the girder, and the dimensions of girder are known:—

If the width, W, of the combustion box be 28 inches, the number, N, of bolts 3 (which is an *odd* number), the distance, D, between the centres of the girders 7 inches, and the dimen-

sions of the girder 6 inches deep by 1 inch thick :-

Then, $W^2 \times D$ or $28^2 \times 7 = 5488$. This number is not found in the Table, it being between 5400 and 5760 (see Table No. 45 for Iron Plates 1 inch thick), but by the note at the foot of the Tables, when the exact number is not found, the next higher number should be taken; hence the pressure opposite 5760, the next higher number, being 75 lbs., is the working pressure obtained. When the difference is very little, however, as it is in this case, between 5488 and 5400, the pressure opposite the lower number may be used; therefore, 80 lbs. may be adopted as the working pressure.

(2) When the depth of girder necessary for a given working pressure

and thickness of girder is required :-

If the width, W, of the combustion box be 24 inches, the number, N, of supporting bolts 2 (which is an even number), the distance, D, between the centres of the girders 8\(^3\)4 inches, the pitch of the supporting bolts 8 inches, the thickness of the girders 1 inch, and the working pressure 80 lbs.:—

Then, $(W^2 - P^2)D$ or $(24^2 - 8^2) \cdot 8\% = 4480$ and opposite 80 lbs. working pressure in column 1, the number 4537 is found (see Table No. 45 for Iron Plates 1 inch thick), which is the next

greater number to 4480, and at the head of column over 4537 will be found $5\frac{1}{2}$ inches, the depth of girder necessary.

P may in all cases be found by dividing W, the width of the combustion box, by N, the number of supporting bolts in the girder, plus 1, or $\frac{W}{N+1} = P$ in all cases.

D, when the number of supporting bolts is *odd*, may be found by dividing the number in the Table opposite the given working pressure by W².

When the number of supporting bolts is even, D can be found by dividing the number in the Table opposite the given working pressure

by $W^2 - P^2$.

The working pressure and the thickness of plate regulate P, the pitch, and D, the distance between the centres of girders; and the surface due to $P \times D$ should be regulated by the Tables for Iron Plates (Pitches, Surfaces, and Pressures). The girders should be so proportioned as to be effective for the pressure, pitch of supporting bolts, number of supporting bolts in a girder, and the distance between the centres of girders. By the following Tables the dimensions of iron girders can be fixed, or the working pressure suitable for any given wrought iron girder ascertained.

The thicknesses in the Tables are the total thicknesses whether the girders be solid or formed of two plates.

Pressure er sq. in.			De	pths of	Girders	s in incl	hes.					
Pres per s	1 3/4	2	21/4	21/2	23/4	3	3 1/4	31/2	33/4			
lbs.												
5	3675	4800	6075	7500	9075	10800	12675	14700	16875			
10	1837	2400	3037	3750	4537	5400	6337	7350	8437			
15	1225	1600	2025	2500	3025	3600	4225	4900	5625			
20	918	1200	1518	1875	2268	2700	3168	3675	4218			
25	735	960	1215	1500	1815	2160	2535	2940	3375			
30	612	800	1012	1250	1512	1800	2112	2450	2812			
35	525	685	867	1071	1296	1542	1810	2100	2410			
40		600	759	937	1134	1350	1584	1837	2109			
45		533	675	833	1008	1200	1408	1633	1875			
50			607	750	907	1080	1267	1470	1687			
55			552	681	825	981	1152	1336	1534			
60			506	625	756	900	1056	1225	1406			
65				576	698	830	975	1130	1298			
70				535	648	771	905	1050	1205			
75				500	605	720	845	980	1125			
80					567	675	792	918	1054			
85					533	635	745	864	992			
90					504	600	704	816	937			
95						568	667	773	888			
100						540	633	735	843			
105						514	603	700	803			
110							576	668	767			
115							551	639	733			
120							528	612	703			
125							507	588	675			
130								565	649			
135								544	625			
140								525	602			
145								506	581			
150									562			
155									544			
160									527			

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

Pressure er sq. in.			De	pths of	Girders	in inch	nes.		
Pres per s	21/4	21/2	23/4	3	31/4	31/2	3¾	4	4 1/4
lbs.			1						
5	7593	9375	11343	13500	15843	18375	21093	24000	27093
10	3796	4687	5671	6750	7921	9187	10546	12000	13546
15	2531	3125	3781	4500	5281	6125	7031	8000	9031
20	1898	2343	2835	3375	3960	4593	5273	6000	6773
25	1518	1875	2268	2700	3168	3675	4218	4800	5418
30	1265	1562	1890	2250	2640	3062	3515	4000	4515
35	1084	1339	1620	1928	2263	2625	3013	3428	3870
40	949	1171	1417	1687	1980	2296	2636	3000	3386
45	843	1041	1260	1500	1760	2041	2343	2666	3010
50	759	937	1134	1350	1584	1837	2109	2400	2709
55	690	852	1031	1227	1440	1670	1917	2181	2463
60	632	781	945	1125	1320	1531	1757	2000	2257
65	584	721	872	1038	1218	1413	1622	1846	2084
70	542	669	810	964	1131	1312	1506	1714	1935
75	506	625	756	900	1056	1225	1406	1600	1806
80		585	708	843	990	1148	1318	1500	1693
85		551	667	794	931	1080	1240	1411	1593
90		520	630	750	880	1020	1171	1333	1505
95			597	710	833	967	1110	1263	1425
100			567	675	792	918	1054	1200	1354
105			540	642	754	875	1004	1142	1290
110			515	613	720	835	958	1090	1231
115				586	688	798	917	1043	1177
120				562	660	765	878	1000	1128
125				540	633	735	843	960	1083
130	• • • •			519	609	706	811	923	1042
135				500	586	680	781	888	1003
140			•••		565	656	753	857	967
145		•••			546	633	727	827	934
150					528	612	703	800	903
155					511	592	680	774	873
160						574	659	750	846

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2-P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D=Distance between centres of girders in inches.

sssure sq. in.		Depths of Girders in inches.										
Pressure per sq. in	23/4	3	31/4	3½	33/4	4	4 1/4	4 1/2	4 3/4			
lbs.												
5	13612	16200	19012	22050	25312	28800	32512	36450	40612			
10	6806	8100	9506	11025	12656	14400	16256	18225	20306			
15	4537	5400	6337	7350	8437	9600	10837	12150	13537			
20	3403	4050	4753	5512	6328	7200	8128	9112	10153			
25	2722	3240	3802	4410	5062	5760	6502	7290	8122			
30	2268	2700	3168	3675	4218	4800	5418	6075	6768			
35	1944	2314	2716	3150	3616	4114	4644	5207	5801			
40	1701	2025	2376	2756	3164	3600	4064	4556	5076			
45	1512	1800	2112	2450	2812	3200	3612	4050	4512			
50	1361	1620	1901	2205	2531	2880	3251	3645	4061			
55	1237	1472	1728	2004	2301	2618	2955	3313	3692			
60	1134	1350	1584	1837	2109	2400	2709	3037	3384			
65	1047	1246	1462	1696	1947	2215	2500	2803	3124			
70	972	1157	1358	1575	1808	2057	2322	2603	2900			
75	907	1080	1267	1470	1687	1920	2167	2430	2707			
80	850	1012	1188	1378	1582	1800	2032	2278	2538			
85	800	952	1118	1297	1488	1694	1912	2144	2388			
90	756	900	1056	1225	1406	1600	1806	2025	2256			
95	716	852	1000	1160	1332	1515	1711	1918	2137			
100	680	810	950	1102	1265	1440	1625	1822	2030			
105	648	771	905	1050	1205	1371	1548	1735	1933			
110	618	736	864	1002	1150	1309	1477	1656	1846			
115	591	704	826	958	1100	1252	1413	1584	1765			
120	567	675	792	918	1054	1200	1354	1518	1692			
125	544	648	760	882	1012	1152	1300	1458	1624			
130	523	623	731	848	973	1107	1250	1401	1562			
135	504	600	704	816	937	1066	1204	1350	1504			
140		578	679	787	904	1028	1161	1301	1450			
145		558	655	760	872	993	1121	1256	1400			
150		540	633	735	843	960	1083	1215	1353			
155		522	613	711	816	929	1048	1175	1310			
160		506	594	689	791	900	1016	1139	1269			

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is even, it equals (W² - P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D=Distance between centres of girders in inches.

essure sq. in.		Depths of Girders in inches.										
Pressure per sq. in	31/2	33/4	4	4 1/4	41/2	43/4	5	51/4	51/2			
lbs.	1		1		1	1						
5	25725	29531	33600	37931	42525	47381						
10	12862	14765	16800	18965	21262	23690	26250	28940	31762			
15	8575	9843	11200	12643	14175	15793	17500	19293	21175			
20	6431	7382	8400	9482	10631	11845	13125	14470	15881			
25	5145	5906	6720	7586	8505	9476	10500	11576	12705			
30	4287	4921	5600	6321	7087	7896	8750	9646	10587			
35	3675	4218	4800	5418	6075	6768	7500	8268	9075			
40	3215	3691	4200	4741	5315	5922	6562	7235	7940			
45	2858	3281	3733	4214	4725	5264	5833	6431	7058			
50	2572	2953	3360	3793	4252	4738	5250	5788	6352			
55	2338	2684	3054	3448	3865	4307	4772	5261	5775			
60	2143	2460	2800	3160	3543	3948	4375	4823	5293			
65	1978	2271	2584	2917	3271	3644	4038	4452	4886			
70	1837	2109	2400	2709	3037	3384	3750	4134	4537			
75	1715	1968	2240	2528	2835	3158	3500	3858	4235			
80	1607	1845	2100	2370	2657	2961	3281	3617	3970			
85	1513	1737	1976	2231	2501	2787	3088	3404	3736			
90	1429	1640	1866	2107	2362	2632	2916	3215	3529			
95	1353	1554	1768	1996	2238	2493	2763	3046	3343			
100	1286	1476	1680	1896	2126	2369	2625	2894	3176			
105	1225	1406	1600	1806	2025	2256	2500	2756	3025			
110	1169	1342	1527	1724	1932	2153	2386	2630	2887			
115	1118	1283	1460	1649	1848	2060	2282	2516	2761			
120	1071	1230	1400	1580	1771	1974	2187	2411	2646			
125	1029	1181	1344	1517	1701	1895	2100	2315	2541			
130	989	1135	1292	1458	1635	1822	2019	2226	2443			
135	952	1093	1244	1404	1575	1754	1944	2143	2352			
140	918	1054	1200	1354	1518	1692	1875	2067	2268			
145	887	1018	1158	1307	1466	1633	1810	1995	2190			
150	857	984	1120	1264	1417	1579	1750	1929	2117			
155	829	952	1083	1223	1371	1528	1693	1867	2049			
160	803	922	1050	1185	1328	1480	1640	1808	1985			

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W2D; but when the number of bolts is even, it equals (W2-P2)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

Pressure er sq. in.			De	pths of	Girders	in incl	ies.		
Pres per s	4 1/4	41/2	4 3/4	5	51/4	5 1/2	53/4	. 6	61/4
lbs.								1	
5	43350	48600							
10	21675	24300	27075	30000	33075	36300	39675	43200	46875
15	14450	16200	18050	20000	22050	24200	26450	28800	31250
20	10837	12150	13537	15000	16537	18150	19837	21600	23437
25	8670	9720	10830	12000	13230	14520	15870	17280	18750
30	7225	8100	9025	10000	11025	12100	13225	14400	15625
35	6192	6942	7735	8571	9450	10371	11335	12342	13392
40	5418	6075	6768	7500	8268	9075	9918	10800	11718
45	4816	5400	6016	6666	7350	8066	8816	9600	10416
50	4335	4860	5415	6000	6615	7260	7935	8640	9375
55	3940	4418	4922	5454	6013	6600	7213	7854	8522
60	3612	4050	4512	5000	5512	6050	6612	7200	7812
65	3334	3738	4165	4615	5088	5584	6103	6646	7211
70	3096	3471	3867	4285	4725	5185	5667	6171	6696
75	2890	3240	3610	4000	4410	4840	5290	5760	6250
80	2709	3037	3384	3750	4134	4537	4959	5400	5859
85	2550	2858	3185	3529	3891	4270	4667	5082	5514
90	2408	2700	3008	3333	3675	4033	4408	4800	5208
95	2281	2557	2850	3157	3481	3821	4176	4547	4934
100	2167	2430	2707	3000	3307	3630	3967	4320	4687
105	2064	2314	2578	2857	3150	3457	3778	4114	4464
110	1970	2209	2461	2727	3006	3300	3606	3927	4261
115	1884	2113	2354	2608	2876	3156	3450	3756	4076
120	1806	2025	2256	2500	2756	3025	3306	3600	3906
125	1734	1944	2166	2400	2646	2904	3174	3456	3750
130	1667	1869	2082	2307	2544	2792	3051	3323	3605
135	1605	1800	2005	2222	2450	2688	2938	3200	3472
140	1548	1735	1933	2142	2362	2592	2833	3085	3348
145	1494	1675	1867	2068	2281	2503	2736	2979	3232
150	1445	1620	1805	2000	2205	2420	2645	2880	3125
155	1398	1567	1746	1935	2133	2341	2559	2787	3024
160	1354	1518	1692	1875	2067	2268	2479	2700	2929

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is even, it equals (W²-P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

145

Pressure er sq. in.			De	pths of	Girder	s in inc	hes.		
Pressure per sq. in.	5	51/4	5 ½	53/4	6	61/4	61/2	63/4	7
lbs.									
5									•••
10	33750	37209	40837	44634	48600				•••
15	22500	24806	27225	29756	32400	35156	38025	41006	44100
20	16875	18604	20418	22317	24300	26367	28518	30754	33075
25	13500	14883	16335	17853	19440	21093	22815	24603	26460
30	11250	12403	13612	14878	16200	17578	19012	20503	22050
35	9642	10631	11667	12752	13885	15066	16296	17574	18900
40	8437	9302	10209	11158	12150	13183	14259	15377	16537
45	7500	8268	9075	9918	10800	11718	12675	13668	14700
50	6750	7441	8167	8926	9720	10546	11407	12301	13230
55	6136	6765	7425	8115.	8836	9588	10370	11183	12027
60	5625	6201	6806	7439	8100	8789	9506	10251	11025
65	5192	5724	6282	6866	7476	8112	8775	9462	10176
70	4821	5315	5833	6376	6942	7533	8148	8787	9450
75	4500	4961	5445	5951	6480	7031	7605	8201	8820
80	4218	4651	5104	5579	6075	6591	7129	7688	8268
85	3970	4377	4804	5251	5717	6204	6710	7236	7782
90	3750	4134	4537	4959	5400	5859	6337	6834	7350
95	3552	3916	4298	4698	5115	5550	6003	6474	6963
100	3375	3720	4083	4463	4860	5273	5703	6150	6615
105	3214	3543	3889	4250	4628	5022	5432	5858	6300
110	3068	3382	3712	4057	4418	4794	5185	5591	6013
115	2934	3235	3551	3881	4226	4585	4959	5348	5752
120	2812	3100	3403	3719	4050	4394	4753	5125	5512
125	2700	2976	3267	3570	3888	4218	4563	4920	5292
130	2596	2862	3141	3433	3738	4056	4387	4731	5088
135	2500	2756	3025	3306	3600	3906	4225	4556	4900
140	2410	2657	2916	3188	3471	3766	4074	4393	4725
145	2327	2566	2816	3078	3351	3636	3933	4242	4562
150	2250	2480	2722	2975	3240	3515	3802	4100	4410
155	2177	2400	2634	2879	3135	3402	3679	3968	4267
160	2109	2325	2552	2789	3037	3295	3564	3844	4134

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is even, it equals (W² – P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D=Distance between centres of girders in inches.

	-	-		A. 100 11 11 11 11 11 11 11 11 11 11 11 11			-		-
Pressure per sq. in.			De	epths of	Girder	s in inc	hes.		
Pres per s	53/4	6	61/4	61/2	63/4	7	71/4	7 1/2	7 3/4
lbs.				1			1	1	
5									
10	49593								
15	33062	36000	39062	42250	45562	49000			
20	24796	27000	29296	31687	34171	36750	39421	42187	45046
25	19837	21600	23437	25350	27337	29400	31537	33750	36037
30	16531	18000	19531	21125	22781	24500	26281	28125	30031
35	14169	15428	16741	18107	19526	21000	22526	24107	25741
40	12398	13500	14648	15843	17085	18375	19710	21093	22523
45	11020	12000	13020	14083	15187	16333	17520	18750	20020
50	9918	10800	11718	12675	13668	14700	15768	16875	18018
55	9017	9818	10653	11522	12426	13363	14335	15340	16380
60	8265	9000	9765	10562	11390	12250	13140	14062	15015
65	7629	8307	9014	9750	10514	11307	12129	12980	13860
70	7084	7714	8370	9053	9763	10500	11263	12053	12870
75	6612	7200	7812	8450	9112	9800	10512	11250	12012
80	6199	6750	7324	7921	8542	9187	9855	10546	11261
85	5834	6352	6893	7455	8040	8647	9275	9926	10599
90	5510	6000	6510	7041	7593	8166	8760	9375	10010
95	5220	5684	6167	6671	7194	7736	8299	8881	9483
100	4959	5400	5859	6337	6834	7350	7884	8437	9009
105	4723	5142	5580	6035	6508	7000	7508	8035	8580
110	4508	4909	5326	5761	6213	6681	7167	7670	8190
115	4312	4695	5095	5510	5942	6391	6855	7336	7834
120	4132	4500	4882	5281	5695	6125	6570	7031	7507
125	3967	4320	4687	5070	5467	5880	6307	6750	7207
130	3814	4153	4507	4875	5257	5653	6064	6490	6930
135	3673	4000	4340	4694	5062	5444	5840	6250	6673
140	3542	3857	4185	4526	4881	5250	5631	6026	6435
145	3420	3724	4040	4370	4713	5068	5437	5818	6213
150	3306	3600	3906	4225	4556	4900	5256	5625	6006
155	3199	3483	3780	4088	4409	4741	5086	5443	5812
160	3099	3375	3662	3960	4271	4593	4927	5273	5630

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

Pressure er sq. in.			De	epths of	Girder	s in inc	hes.		
Pres per s	61/2	63/4	7	71/4	71/2	73/4	8	81/4	81/2
lbs.									
5									
10									
15	46475								
20	34856	37589	40425	43364	46406	49551			
25	27885	30071	32340	34691	37125	39641	42240	44921	47685
30	23237	25059	26950	28909	30937	33034	35200	37434	39737
35	19917	21479	23100	24779	26517	28315	30171	32086	34060
40	17428	18794	20212	21682	23203	24775	26400	28075	29803
45	15491	16706	17966	19272	20625	22022	23466	24956	26491
50	13942	15035	16170	17345	18562	19820	21120	22460	23842
55	12675	13668	14700	15768	16875	18018	19200	20418	21675
60	11618	12529	13475	14454	15468	16517	17600	18717	19868
65	10725	11565	12438	13342	14278	15246	16246	17277	18340
70	9958	10739	11550	12389	13258	14157	15085	16043	17030
75	9295	10023	10780	11563	12375	13213	14080	14973	15895
80	8714	9397	10106	10841	11601	12387	13200	14037	14901
85	8201	8844	9511	10203	10919	11659	12423	13212	14025
90	7745	8353	8983	9636	10312	11011	11733	12478	13245
95	7338	7913	8510	9129	9769	10431	11115	11821	12548
100	6971	7517	8085	8672	9281	9910	10560	11230	11921
105	6639	7159	7700	8259	8839	9438	10057	10695	11353
110	6337	6834	7350	7884	8437	9009	9600	10209	10837
115	6061	6537	7030	7541	8070	8617	9182	9765	10366
120	5809	6264	6737	7227	7734	8258	8800	9358	9934
125	5577	6014	6468	6938	7425	7928	8448	8984	9537
130	5362	5782	6219	6671	7139	7623	8123	8638	9170
135	5163	5568	5988	6424	6875	7340	7822	8318	8830
140	4979	5369	5775	6194	6629	7078	7542	8021	8515
145	4807	5184	5575	5981	6400	6834	7282	7745	8221
150	4647	5011	5390	5781	6187	6606	7040	7486	7947
155	4497	4850	5216	5595	5987	6393	6812	7245	7691
160	4357	4698	5053	5420	5800	6193	6600	7018	7450

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

_									
Pressure per sq. in.			De	pths of	Girders	s in incl	nes.		
Pres per s	71/4	71/2	73/4	8	81/4	81/2	83/4	9	91/4
lbs.	1								
5						•••			•••
10	• • • • •					•••	•••		•••
15		•••				•••			• • • •
20	47306				40005				
25	37845	40500	43245	46080	49005				
30	31537	33750	36037	38400	40837	43350	45937	48600	44000
35	27032	28928	30889	32914	35003	37157	39375	41657	44003
40	23653	25312	27028	28800	30628	32512	34453	36450	38503
45	21025	22500	24025	25600	27225	28900	30625	32400	34225
50	18922	20250	21622	23040	24502	26010	27562	29160	30802
55	17202	18409	19656	20945	22275	23645	25056	26509	28002
60	15768	16875	18018	19200	20418	21675	22968	24300	25668
65	14555	15576	16632	17723	18848	20007	21201	22430	23694
	13516	14464	15444	16457	17501	18578	19687	20828	22001
75	12615	13500	14415	15360	16335	17340	18375	19440	20535
80	11826	12656	13514	14400	15314	16256	17226	18225	19251
85	11130	11911	12719	13552	14413	15300	16213	17152	18119
90	10512	11250	12012	12800	13612	14450	15312	16200	17112
95	9959	10657	11380	12126	12896	13689	14506	15347	16211
100	9461	10125	10811	11520	12251	13005	13781 13125	14580	15401
105	9010	9642	10296 9828	10971	$11667 \\ 11137$	12385 11822	12528	13885 13254	14667
110	8601	9204	9828	10472 10017	10653	11308	11983	$13254 \\ 12678$	14001
115 120	8227	8804 8437	9401	9600	10000	10837	11484	12078	$13392 \\ 12834$
$\frac{120}{125}$	7884	8100	8649	9216	9801	10404	11025	11664	$12834 \\ 12321$
$\frac{125}{130}$	7569 7277	7788	8316	8861	9424	10003	10600	11215	11847
				8533	9075	9633	10208	10800	
135 140	7008 6758	7500 7232	8008 7722	8228	8750	9289	9843	10414	11408
	6525	6982	7456	7944	8449	8968	9504	10055	10621
145 150	6307	6750	7207	7680	8167	8670	9187	9720	10021
155	6104	6532	6975	7432	7904	8390	8891	9406	9936
		6328		7200	7657	8128		9112	9625
160	5913	0028	6757	1200	1001	0120	8613	9112	9020

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is even, it equals (W² - P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

_							il the second		
Pressure per sq. in.			De	pths of	Girders	in incl	ies.		
Pres per s	8	81/4	81/2	83/4	9	91/4	91/2	93/4	10
lbs.			!	1	1				
5									
10									
15									
20									
	49920								
	41600	44240		49765					
	35657	37920	40253	42656	45128	47670			
	31200	33180	35221	37324	39487	41711	43996	46342	48750
	27733	29493	31308	33177	35100	37077	39108	41193	43333
50	24960	26544	28177	29859	31590	33369	35197	37074	39000
55	22690	24131	25615	27144	28718	30335	31997	33703	35454
60	20800	22120	23481	24882	26325	27807	29331	30895	32500
	19200	20418	21675	22968	24300	25668	27075	28518	30000
	17828	18960	20126	21328	22564	23835	25141	26481	27857
	16640	17696	18785	19906	21060	22246	23465	24716	26000
	15600	16590	17610	18662	19743	20855	21998	23171	24375
	14682	15614	16575	17564	18582	19629	20704	21808	22941
	13866	14746	15654	16588	17550	18538	19554	20596	21666
	13136	13970	14830	15715	16626	17562	18525	19512	20526
	12480	13272	14088	14929	15795	16684	17598	18537	19500
105	11885	12640	13417	14218	15042	15890	16760	17654	18571
110	11345	12065	12807	13572	14359	15167	15998	16851	17727
115	10852	11541	12251	12982	13734	14508	15303	16119	16956
120	10400	11060	11740	12441	13162	13903	14665	15447	16250
125	9984	10617	11271	11943	$12636 \\ 12150$	13347	14079	14829	15600
130	9600	10209	10837	11484		12834	13537	14259	15000
135	9244	9831	10436	11059	11700	12359	13036	13731	14444
140	8914	9480	10063 9716	$10664 \\ 10296$	$11282 \\ 10893$	11917	12570	13240	13928 13448
145	8606	9153				11506	12137 11732	12784	
150	8320	8848	9392	9953	10530	11123	11732 11354	12358 11959	$13000 \\ 12580$
155	8051	8562	9089	9632	10190	10764			
160	7800	8295	8809	9331	9871	10427	10999	11585	12187

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is even, it equals (W² – P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

Pressure oer sq. in.			De	pths of	Girders	in incl	nes.		
Pres per s	83/4	9	91/4	91/2	93/4	10	101/4	10½	10¾
lbs.	1			İ					
5								,	
10									
15									
20									
25									
30									
35	45937	48600		47007	40005				
40	40195	42525	44920	47381	49907	10000			
45	35729	37800	39929	42116	44362	46666	49029	10005	40504
50	32156	34020	35936	37905	39926	42000	44126	46305	48536
55	29232	30927	32669	34459	36296	38181	40114	42095	44123
60	26796	28350	29946	31587	33271	35000	36771	38587	40446
65	24735	26169	27643	29157	30712	32307	33943	35619	37335
70	22968	24300	25668	27075	28518	30000	31518	33075	34668
75	21437	22680	23957	25270	26617	28000	29417	30870	32357
80	20097	21262	22460	23690	24953	26250	27578	28940	30335
85	18915	20011	21138	22297	23486	24705	25956	27238	28550
90	17864	18900	19964	21058	22181	23333	24514	25725	26964
95	16924	17905	18913	19950	21013	22105	23224	24371	25545
100	16078	17010	17968	18952	19963	21000	22063	23152 22050	24268 23112
105	15312 14616	16200 15463	17112 16334	18050 17229	19012 18148	20000	21012 20057	21047	22061
115	13980	14791	15624	16480	17359	18260	19185	20132	21102
120	13398	14175	14973	15793	16635	17500	18385	19293	20223
125	12862	13608	14374	15162	15970	16800	17650	18522	19414
130	12367	13084	13821	14578	15356	16153	16971	17809	18667
135	11909	12600	13309	14038	14787	15555	16343	17150	17976
140	11484	12150	12834	13537	14259	15000	15759	16537	17334
145	11088	11731	12391	13070	13767	14482	15215	15967	16736
150	10718	11340	11978	12635	13308	14000	14708	15435	16178
155	10372	10974	11592	12227	12879	13548	14234	14937	15656
160	10048	10631	11230	11845	12476	13125	13789	14470	15167
100	10040	10001	11200	11040	12410	10120	10100	11110	10101

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D=Distance between centres of girders in inches.

CYLINDRICAL BOILER SHELLS. Iron Plates from 1 Inch to 11 Inch Thick.

Numerals and Nominal Factors from 4.5 to 6.9.*

By the use of the Tables Nos. 52 and 53 immediately following, and No. 351, the working pressure can be determined for any given thickness of plate and given diameter, when the calculated percentage strength of the longitudinal joint is known, and nominal factor fixed; the diameter can be found for a given thickness of plate, when the calculated percentage of the longitudinal joint is known and factor determined; the calculated percentage of the longitudinal joint can be obtained for a given thickness of plate, a given diameter and a given working pressure and nominal factor; and the thickness of the plate can be found when it is known what the diameter, working pressure, nominal factor, and the calculated percentage of longitudinal joint are The nominal factor at which the boiler is, or will be, worked can also be ascertained, if between 5 and 6.9, when the thickness of the plate, the working pressure, diameter, and calculated percentage of the longitudinal joints, are known.

The Tables are computed on the assumption that the plates have a tensile strength of about 47,000 lbs. per square inch, which is usually taken as the strength in calculating the working pressure for Cylindrical Shells, Cylindrical Steam Receivers, or Domes of Boilers.

N = Numeral for the thickness and nominal factor of safety.

%=Calculated percentage of joint. D=Diameter of boiler, inside, in inches.

B = Working pressure, in lbs., per square inch.

F = Nominal factor of safety.

$$\begin{array}{ccc} \frac{\mathbf{N} \times \%}{\mathbf{D}} & = & \mathbf{B} \\ \frac{\mathbf{N} \times \%}{\mathbf{B}} & = & \mathbf{D} \\ \frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} & = & \% \\ \end{array}$$

(1) If the working pressure has to be found when the plates are 14 inch, and the nominal factor 5, the calculated percentage of the joints 85.23, and the diameter 144 inches:-

Then, opposite the thickness of the plates, 14 inch, and under F 5, the nominal factor, the numeral is 235; and if it be multiplied by 85.23 (the calculated percentage of the joints), and the

^{*} For factors below 5 see Table No. 351.

product divided by 144 (the diameter), the quotient equals the working pressure, or

$$\frac{235 \times 85.23}{144} = 139.09 = B,$$

which is the working pressure required to be found, or, say, 140 lbs. per square inch.

(2) If the thickness of the plates is required to be determined, when the diameter is 144 inches, the pressure 140 lbs., the nominal factor 5, and the calculated percentage of joints 85.23:—

Then, if 144 (the diameter) be multiplied by 140 (the pressure), and the product divided by 85 23 (the calculated percentage of joints), the quotient equals the numeral applicable to the case, which should be looked for under F 5, the nominal factor, and opposite the numeral the thickness required may be found, or

$$\frac{144 \times 140}{85.23} = 236.5 = N.$$

But the nearest numeral under F5 is 235, and as it varies so little from 236.5 (that found by the formula $\frac{D \times B}{\%}$), the thick-

ness opposite N 235 is the thickness which practically meets the requirements of the case, viz., 1¼ inch.

(3) If the diameter has to be settled for a working pressure of 140 lbs. at a nominal factor 5, the thickness of plates 1¼ inch, and the calculated percentage of joint 85.23:—

Then, under F 5, the factor, and opposite 1½, the thickness of the plates, the numeral is 235; and if it be multiplied by 85 23, (the calculated percentage of joint), and the product divided by 140 (the pressure), the quotient equals what the diameter should be, or

$$\frac{235 \times 85.23}{140} = 143.06 = D,$$

or, the diameter to meet the requirements of the case may be, say, 144 inches.

(4) If the calculated percentage of joints has to be determined, when the plates are 1½ inch thick, the nominal factor 5, the working pressure 140 lbs., and the diameter 144 inches:—

Then, if 140, the pressure, be multiplied by 144, the diameter, and the product divided by the numeral 235 found opposite 1½ inch, the thickness, and under F5, the nominal factor, the quotient equals the calculated percentage of joint, or

$$\frac{140 \times 144}{235} = 85.78 = \%,$$

but a suitable calculated percentage of joint for such a thickness of plate, when the riveting is as illustrated in Tables Nos. 63 and 64, is 85.23, which may be adopted without materially affecting the result.

The calculated percentages of joints made of iron plates and iron rivets, of various descriptions of riveting and of different thickness

of plates, are given in Tables Nos. 54 to 64.

The nominal factor can be found by the tables when N, the numeral, is obtained (by the formula $\frac{D \times B}{\%}$) for the given thickness, as above

the numerals in any one column, the factor under F is the nominal factor in the particular case If the exact numeral is not found opposite any given thickness, within the range of the Tables, but a numeral is between any two numerals, opposite the given thickness, then the nominal factor is between the factors at the top of the two columns in which the numerals are found—one slightly under and the other rather higher. Therefore the factor can always be determined within about one per cent., although the exact numeral may not be found in the Tables.

Thus, if the thickness be 11/4 inch and

$$\frac{D \times B}{\%} = 235,$$

235 is found opposite 1¼, and at the top of column in which 235 is found, the *nominal* factor is 5; but if by the formula the numeral arrived at had been, say, 232'2 (which is a number between the two numerals given in the Table opposite 1¼), then the *nominal* factor would be rather less than 5'1, but slightly over 5.

CYLINDRICAL BOILER SHELLS. TABLE No. 52.

Iron Plates from 1 inch to 11 inch Thick.

Numerals and Nominal Factors from 5 to 5.9.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thickness of Plate.	F 5:0	F 5·1	F 5·2	F 53	F 5·4	F 5.5	F 5·6	F 5·7	F 5·8	F 5·9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ins. 1/4 5/3 2 5/16 11/3 2 3/8 13/8 13/8 15/9 16/3 2 17/9 21/3 2 11/16 22/3 2 11/16 22/3 2 11/16 21/3 2 15/16 21/3 2 15/16 21/3 2 15/16 21/3 2 15/16 21/3 2 15/16 21/3 2 15/16 21/3 2 15/16 21/3 2 15/16 21/3 2 15/16 21/3 2 15/16 21/3 2 15/16 21/3 2 15/16 21/3 2	47·0 52·87 58·75 64·62 70·50 76·37 82·25 88·12 94·0 99·87 105·75 111·62 117·50 123·37 129·25 135·12 141·0 146·87 152·75 188·0 193·87 199·75 205·62 211·50 217·37 223·25 229·12	46·07 51·83 57·59 63·35 69·11 74·87 80·63 86·39 92·15 97·91 103·67 109·43 115·19 120·95 126·71 132·47 138·23 143·75 155·51 161·27 167·03 172·79 178·55 184·31 190·07 195·83 201·59 207·35 213·11 224·63	45·19 50·84 56·49 62·13 67·78 73·43 90·38 84·73 90·38 96·03 101·68 112·98 112·99 135·57 141·22 158·17 163·82 169·47 175·12 180·46 192·06 186·41 192·06 192·06 1214·66 209·01 214·66 220·31	44·33 49·88 55·42 60·96 66·50 72·05 77·59 83·13 88·67 105·30 110·84 116·39 121·93 127·47 133·01 138·56 144·10 149·64 155·18 160·73 166·27 171·81 177·35 188·44 193·98 205·07 210·61 216·15	43:51 48:95 54:39 59:83 65:27 70:71 76:15 81:59 87:03 92:47 97:91 103:35 108:79 114:23 119:67 125:11 130:55 135:99 141:43 146:87 152:31 157:75 163:19 168:63 174:07 179:51 184:95 190:39 201:27 206:71 212:15	42·72 48·06 53·40 58·75 64·09 69·48 74·77 80·11 85·45 90·79 96·13 101·47 106·81 112·15 117·50 122·84 128·18 133·52 149·54 154·88 160·22 165·56 170·90 176·25 181·59 186·93 1	41.96 47.20 52.45 57.70 62.94 73.43 78.68 83.92 88.17 99.66 110.491 110.491 112.64 112.589 131.13 136.38 141.62 157.36 167.85 173.10 178.33 181.83 183.83 194.93 189.93 18	41-22 46:38 56:68 61:84 77:30 82:45	40:51 45:58 50:64 55:71 60:77 50:66 81:03 86:09 91:16 96:22 101:29 106:35 111:42 121:55 126:61 131:68 136:74 141:81 172:19 167:13 177:26 187:38 187:3	39·83 44·80 49·78 54·76 59·74 64·72 69·70 74·68 79·66 84·63 89·61 94·59 99·57 104·55 109·53 114·51 119·49 124·47 119·40 114·38 149·36 154·34 159·32 164·30 169·27 174·25 179·23 184·21 189·19

 $\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B}, \quad \frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D}, \quad \frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \% \quad \frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}.$

N=Numeral. %=Calculated percentage strength of joint, D=Inside diameter in inches.

B=Working pressure per square inch in pounds.

TABLE No. 53. CYLINDRICAL BOILER SHELLS.

Iron Plates from 1 inch to 11 inch Thick.

Numerals and Nominal Factors from 6 to 6.9.

Thickness	F	F	F	F	F	F	F	F	F	F
of Plate.	6:0	6·1	6·2	6·3	6·4	6.5	6.6	6·7	6.8	6.9
ins. 1/4 6/3 2 6/1 6 11/3 2 3/3 2 7/1 6 15/2 2 7/1 6 15/3 2	N 39:16 44:06 48:95 53:85 58:75 63:64 68:54 73:43 78:33 83:22 88:12 93:02 97:91 102:81 107:70 112:60 117:50 117:50 117:50 117:50 117:50 117:117 156:66 161:46 171:35 171:35 176:2	N 38·52 43·34 48·15 52·97 57·78 62·60 67·41 72·23 77·04 81·86 86·68 91·49 96·31 101·12 105·94 110·75 115·57 120·38 125·20 130·02 130·02 134·83 139·65 144·46 149·28 154·09 158·91 163·72 168·54 173·36 178·17 182·99 187·80 192·62	N 37:90 42:64 47:37 52:11 56:85 61:59 66:33 71:06 75:80 80:54 85:28 90:02 94:75 99:49 104:23 108:97 113:70 118:44 123:18 127:92 132:66 137:39 142:13 161:08 165:82 170:56 175:50 180:04 184:77 189:51	N 37:30 41:96 46:62 51:28 55:95 60:61 65:27 69:94 74:60 79:26 83:92 88:59 93:25 97:91 102:57 107:24 111:90 121:23 125:89 135:81 144:54 149:20 153:86 163:19 167:85 172:51 177:18 181:84 186:50	N 36·71 41·30 45·89 50·48 55·07 59·66 64·25 68·84 73·43 78·02 82·61 87·20 91·79 96·38 100·97 105·56 114·74 119·33 123·92 128·51 133·10 137·69 142·28 146·87 151·46 165·23 160·64 165·23 174·41 179·0 183·59	N 36:15 40:67 45:19 49:71 54:23 58:75 63:26 67:78 72:30 76:82 81:34 85:86 90:38 94:90 99:42 103:94 112:98 117:50 112:01 124:01 125:65 135:57 140:09 144:61 149:13 153:65 158:17 162:69 167:21 171:73 176:25 180:76	106·81 111·26 115·71 120·17 124·62 129·07 133·52 137·97 142·42 146·87 151·32 155·77 160·22 164·67 169·12 173·57	109·60 113·99 118·37 122·76 127·14 131·52 135·91 140·29 144·68 149·06 153·45 162·22 166·60 170·98	103·67 107·99 112·31 116·63 120·95 125·27 129·59 133·91 138·23 142·55 146·87 151·19 159·83 164·15	97·91 102·17 106·43 110·68 114·94 119·20 123·46 127·71 131·97 136·23 140·48 144·74 0149·20 153·26

 $\frac{N \times \%}{D} = B, \quad \frac{N \times \%}{B} = D, \quad \frac{D \times B}{N} = \% \quad \frac{D \times B}{\%} = N.$

N=Numeral. %=Calculated percentage strength of joint. D=Inside diameter in inches.

B=Working pressure per square inch in pounds.

IRON PLATES AND IRON RIVETS.

Riveted Joints.

In the Tables Nos. 54 to 64, which immediately follow these remarks, the particulars as to the proportions of riveted joints, made of iron plates with iron rivets, are given. By the use of these tables the working pressure may be found for any given diameter of boiler and nominal factor of safety, or the diameter determined for a given working pressure and nominal factor, or the nominal factor ascertained for a given pressure and diameter.

The tables have been computed on the assumption that the tensile strength of iron boiler plates is about 47000 lbs. per square inch, which is the usual recognised number used in making such calculations; the shearing strength of the rivets, per square inch, is assumed as equal to the tensile strength of the plates, which is generally done

when iron plates and iron rivets are used in boilers.

The calculated percentage of joint, as given opposite the thickness of plate, in each case, is applicable when the diameter and pitch of rivets are in accordance with the tables, and centre of rivets to edge of plates and distance between rows of rivets, not less than given opposite the particular thickness of plate.

The pitches of the rivets, in Column p, are given in the tables in decimal parts of an inch, but the nearest $\frac{1}{32}$ part of an inch may be

adopted without materially affecting the result.

The distance between the rows of rivets, in Column V, and centre of rivets to edge of plates, in Column E, should not be less than that given in the table for the description of joint shown by the sketches at the top of the table, and opposite the particular thickness of plate.

N=Numeral opposite the thickness of the plate, and applicable to the description of riveting, as shown in the sketches at the top of the table from which the numeral is selected, and the riveting proportioned as given opposite the thickness in question. The table used must always be that for the particular description of joint which is being dealt with.

D = Diameter of boiler, inside, in inches.

B = Working pressure, in lbs., per square inch.

F = Nominal factor of safety, the value of which should, in a great measure, be determined according to the method of construction (see pages 17, 18, 19, and 20).

$$D \times B \times F = N.$$

$$\frac{N}{B \times F} = D.$$

$$\frac{N}{D \times F} = B.$$

$$\frac{N}{D \times B} = F.$$

(1) If the working pressure be required to be found, when the longitudinal seams are of the ordinary double riveted description, either zig-zag or chain riveted, and have double butt straps, the plates being of iron \(\frac{1}{2} \) inch thick, and the rivets also of iron, the inside diameter of the boiler 90 inches, and the nominal factor of safety 5:—

In the table of iron plates and iron rivets, double riveted double butt straps, ordinary zig-zag or chain riveting, as shown in the sketches at the top of Table No. 60, then, on the left, opposite \(\frac{\psi}{8} \), the thickness of the plate, the numeral N is found to be 45901, and if that be divided by the product of 90, the diameter, and 5, the nominal factor, the quotient is the working pressure. The calculated percentage strength of the joint is 78·13, as found on the right, opposite the thickness \(\frac{\psi}{8} \) inch, which is the value, if the riveting be of the description stated, and the pitch and rivets, \(\frac{\psi}{8} \) c., are as given opposite the thickness of plate, or—

$$\frac{45901}{90 \times 5} = 102 = B,$$

the working pressure, in lbs., per square inch.

(2) If the diameter of a boiler is required to be determined when the riveting is the same as above, the plates being also \% inch thick, the nominal factor 5, and the pressure 100 lbs.:—

Opposite % inch, thickness of plate, the numeral N is 45901, which divided by 100×5 (the pressure and factor respectively) equals the working pressure, or

$$\frac{45901}{100 \times 5} = 91.8 = D,$$

the inside diameter, in inches, which the boiler may have, or, say, 92 inches.

(3) If it is wished to determine what factor of safety a boiler is working at when the riveting is the same as above, the plates ½ inch thick (opposite the calculated percentage 78:13 is found on the right) the numeral N (opposite ½, on the left), 45901, the diameter being 90 inches, and the pressure 100 lbs.:—

The factor of safety is found by dividing the numeral 45901 by the product of 90, the diameter, and 100, the pressure, or

$$\frac{45901}{100 \times 90} = 5.1 = F,$$

the nominal factor at which such a boiler works under the circumstances stated.

(4) If it is wished to determine what thickness the shell of an iron boiler should be, if the working pressure is required to be 100 lbs., the diameter 90 inches, and the *nominal* factor 5.1, the joints being double riveted with double butt straps fitted:—

The product of 100, the pressure, 90 the diameter, and 5·1, the nominal factor, equals 45900; the nearest numeral N, in the table for the description of joints specified, is 45901, and opposite it the thickness of plate is ½ inch, which is the thickness the shell should be. The particulars of the riveting and calculated percentage of joint are found on the right, opposite the thickness ½ inch.

The foregoing remarks will facilitate the use of any of the Tables Nos. 54 to 64 for iron plates and iron rivets; but, as stated before, the table for the particular description of joint must be used, as each table is only applicable to the description of joint shown in the sketch at the

top of the table.

The pressure, &c. arrived at may sometimes be fractionally over or under a whole number, but such slight differences can be adjusted according to the circumstances of the case, even a pound or two nore or less will not generally be a serious matter; for instance, if the pressure arrived at is, say, 102 lbs., no great loss would result from working at 100 lbs., and no great harm at 105 lbs., if the circumstances of the case should make it desirable to do so.

IRON PLATES AND IRON RIVETS.

TABLE No. 54.

Single Riveted Lap Joints.

D×B×F.	Thickness of Plates.	Diameter of Rivets.	Pitch of Rivets.	Centre of Rivets to Edge of Plates.	Percentage of Joint.
N	T	d	р	E	
13865	1/4	5/3	1.524	937	59.00
15598	9/32	21/32	1.600	.984	59.00
17331	5/16	11/16	1.676	1.031	59.00
19064	11/32	23/32	1.753	1.078	59.00
20797	3/8	3/	1.829	1.125	59.00
22530	13/32	2 5/3 2	1.905	1.171	59.00
24263	7/16	18/16	1.981	1.218	59.00
25798	15/32	27/32	2.036	1.265	58.55
27198	1/2	7/8	2.077	1.312	57.87
28589	17/32	29/32	2.120	1:359	57 . 25
29964	9/16	15/16	2.164	1.406	56.67
31344	19/32	31/32	2.210	1.453	56.16
32706	5/0	1	2.256	1:500	55.67
34076	21/32	1 1/32	2.304	1.546	55.24
35427	1 1/2 0	1 1/16	2.352	1.593	54.82
36767	23/32	1 3/32	2.400	1.640	54.42
38126	1/4	1 1/8	2.450	1.687	54.08
39472	25/32	1 5/32	2.500	1.734	53.75
40807	1 3/16	1 3/16	2.550	1.781	53.43
42146	27/32	1 7/32	2.601	1.828	53.14
43477	7/8	1 1/4	2.652	1.875	52.86
44900	29/32	1 %32	2.703	1.921	52.59
46133	15/16	1 5/16	2.755	1.968	52.35

N=Numeral. D=Diameter of boiler, inside, in inches.
B=Working pressure, in pounds, per square inch. F=Nominal factor of safety.

 $D \times B \times F = N$

 $\overline{B \times F}$

 $\frac{N}{D \times F}$

 $\overline{D \times B}$

Double Riveted Lap Joints.

Durburb	Thick- ness of Plates.	Diameter of Rivets.	Pitch of Rivets.	Centre of Rivets	Distance Rows of	D	
D×B×F.				to Edge of Plates.	Zig Zag Riveting.	Chain Riveting.	Percent- age of Joint.
N	T	d	p	Е	V	V	
21296	5/16	5/8	2.272	.937	1.145	1.750	72.50
23426	11/32	21/20	2.386	•984	1.202	1.812	72.50
25556	3/6	11/16	2.500	1.031	1.260	1.875	72.50
27685	13/32	23/32	2.613	1.078	1.317	1.937	72.50
29815	1/20	3/4	2.727	1.125	1.374	2.000	72.50
31879	15/32	25/32	2.826	1.171	1.426	2.062	72.35
33764	1/2	13/16	2.886	1.218	1.465	2.125	71.84
35640	17/32	27/32	2.948	1.265	1.504	2.187	71.37
37514	9/16	7/8	3.013	1.312	1.544	2.250	70.95
39381	19/32	29/32	3.079	1.359	1.585	2:312	70.56
41242	5/8	15/16	3.146	1.406	1.626	2.375	70.20
43094	21/32	31/32	3.212	1.453	1.667	2.437	69.86
44940	11/16	1	3.284	1.500	1.709	2.500	69.54
46793	23/32	1 1/32	3.355	1.546	1.751	2.562	69.26
48630	3/4	1 1/16	3.426	1.593	1.794	2.625	68.98
50473	25/32	1 3/32	3.498	1.640	1.836	2.687	68.73
52309	13/16	1 1/8	3.571	1.687	1.879	2.750	68.49
54146	27/32	1 5/32	3.645	1.734	1.923	2.812	68.27
55979	7/8	1 3/16	3.718	1.781	1.966	2.875	68.06
57808	29/32	1 7/32	3.793	1.828	2.009	2.937	67.86
59634	15/16	1 1/4	3.867	1.875	2.053	3.000	67.67
61458	31/32	1 %32	3.942	1.921	2.096	3.062	67.49
63290	1	1 5/16	4.018	1.968	2.140	3.125	67 33

N=Numeral. D=Diameter of boiler, inside, in inches.
B=Working pressure, in pounds, per square inch. F=Nominal factor of safety.

 $\overline{\mathbf{B} \times \mathbf{F}} = \mathbf{D}$ $D \times B \times F = N$ $\overline{D \times B}$ 161

IRON PLATES AND IRON RIVETS. Treble Riveted Lap Joints.

TABLE No. 56.

Zig Zag Riveting.

DBE	Thick- Diam- ness of eter of		Pitch of	Centre of Rivets	Distance Rows of	between f Rivets.	D
D×B×F.	Plates.	Rivets.	Rivets.	to Edge of Plates.	Zig Zag Riveting.	Chain Riveting.	Percentage of Joint.
N	T	d	р	Е	V	V	
27671	3/8	5/8	2.906	.937	1.365	1.750	78.50
29977	13/32	21/32	3.052	·984	1.433	1.812	78.50
32283	1/4 0	11/16	3.197	1.031	1.501	1.875	78.50
34505	15/32	2 3/3 2	3.315	1.078	1.560	1.937	78.31
36631	1/2	3/4	3.400	1.125	1.607	2.000	77.94
38751	17/32	25/	3.488	1.171	1.656	2.062	77.60
40861	9/16	13/16	3.577	1.218	1.705	2.125	77.28
42970	19/32	27/32	3.668	1.265	1.754	2.187	76.99
45078	5/6	7/8	3.761	1.312	1.805	2.250	76.73
47178	21/39	29/20	3.854	1:359	1.855	2.312	76.48
49276	11/16	15/16	3.949	1.406	1.905	2.375	76.25
51374	23/32	31/32	4.045	1.453	1.957	2.437	76.04
53474	3/4	1	4.141	1.500	2.008	2.500	75.85
55562	25/32	1 1/32	4.238	1.546	2.060	2:562	75.66
57655	13/16	1 1/16	4.336	1.593	2.111	2.625	75.49
59746	27/32	1 3/32	4.434	1.640	2.163	2.687	75.33
61827	7/2	1 1/8	4.533	1.687	2.215	2.750	75.17
63916	29/00	1 5/32	4.632	1.734	2.268	2.812	75.03
65996	15/16	1 3/16	4.731	1.781	2.320	2.875	74.89
68087	31/32	1 7/32	4.831	1.828	2.372	2.937	74.77
70171	1	1 1/4	4.931	1.875	2.425	3.000	74.65
72247	1 1/32	1 %32	5.031	1.921	2.478	3.062	74.53
74326		1 5/16	5.132	1.968	2.530	3.125	74.42

N=Numeral. D=Diameter of boiler, inside, in inches.

B=Working pressure, in pounds, per square inch. F=Nominal factor of safety.

 $D \times B \times F = N$

N = D $\overline{B \times F}$

Ν = B $\overline{D \times F}$

= F $\overline{D \times B}$

162 IRON PLATES AND IRON RIVETS.

TABLE No. 57. Treble Riveted Lap Joints; each alternate Rivet omitted in the outer rows.

Zig Zag Riveting.

Chain Riveting.

	Thick-	noss of otor of Pi		Centre of Rivets		Distance between Rows of Rivets.		
D×B×F.	ness of Plates.	Rivets.	Rivets.	to Edge of Plates.	Zig Zag Riveting	Chain Riveting.	Percent- age of Joints.	
N	T	d	p	E	V	V		
33627	7/16	5/8	3.430	.937	1.414	1.750	81.77	
35897	15/32	21/32	3.542	.984	1.473	1.812	81.47	
38164	1/2	11/16	3.657	1.031	1.532	1.875	81.20	
40424	17/32	23/32	3.773	1.078	1.592	1.937	80.95	
42680	9/16	3/4	3.891	1.125	1.652	2.000	80.72	
44934	19/32	25/32	4.010	1.171	1.712	2.062	80.51	
47188	5/8	13/16	4.130	1.218	1.772	2.125	80.32	
49442	21/20	27/32	4-251	1.265	1.833	2.187	80.15	
51700	11/16	7/0	4.375	1.312	1.894	2.250	80.00	
54050	23/32	15/16	4.687	1.406	2.029	2.375	80.00	
56400	3/4	31/32	4.843	1.453	2.097	2.437	80.00	
58750	25/32	1	5.000	1.500	2.165	2.500	80.00	
61100	13/16	1 1/32	5.156	1.546	2.232	2.562	80.00	
63450	27/32	1 3/32	5.468	1.640	2.368	2.687	80.00	
65800	1/8	1 1/8	5.625	1.687	2.435	2.750	80.00	
68150	25/32	1 5/32	5.781	1.734	2.503	2.812	80.00	
70500	15/16	1 7/32	6.093	1.828	2.638	2.937	80.00	
72850	31/32	1 1/4	6.250	1.875	2.706	3.000	80.00	
75200	1	1 %32	6.406	1.921	2.773	3.062	80.00	
77550	1 1/32	1 5/16	6.562	1.968	2.841	3.125	80.00	
79900	1 1/16	1 3/4	6.875	2.062	2.976	3.250	80.00	
82250	1 3/32	113/32	7:031	2.109	3.044	3.312	80.00	
84600	1 1/8	1 7/16	7.187	2.156	3.115	3.375	80.00	

N=Numeral. D=Diameter of boiler, inside, in inches.

B=Working pressure, in pounds, per square inch. F=Nominal factor of safety.

 $D \times B \times F = N$ $\overline{D \times B}$ $\overline{B \times F}$ $\overline{D \times F}$

163

IRON PLATES AND IRON RIVETS. Quadruple Riveted Lap Joints.

TABLE No. 58.

Zig Zag Riveting.

Chain Riveting.

D. D. D	Thick-	Diam-	Pitch of	Centre of Rivets		between f Rivets.	
D×B×F.	ness of Plates.	eter of Rivets.	Rivets.	to Edge of Plates.	Zig Zag Riveting.	Chain Riveting.	Percent- age of Joint.
N	T	d	p	Е	V	V	
33627	7/16	5/8	3.430	0.937	1.544	1.750	81.77
35897	15/32	2 1/3 2	3.542	0.984	1.601	1.812	81.47
38164	1/2	11/16	3.657	1.031	1.659	1.875	81.20
40424	17/32	2 3/3 2	3.773	1.078	1.717	1.937	80.95
42680	9/16	3/4	3.891	1.125	1.776	2.000	80.72
44934	19/32	25/	4.010	1.171	1.835	2.062	80.51
47188	5/0	13/16	4.130	1.218	1.895	2.125	80.32
49442	21/32	27/32	4.251	1.265	1.955	2.187	80.15
51693	11/	7/8	4.373	1:312	2.015	2.250	79.99
53941	23/32	29/29.	4.496	1.359	2.076	2.312	79.84
56188	3/4	15/16	4.619	1.406	2.136	2.375	79.70
58434	25/	31/32	4.742	1.453	2.197	2.437	79.57
60672	18/16	1	4.866	1.500	2.258	2.500	79.44
62918	27/32	1 1/32	4.990	1.546	2:319	2.562	79.33
65158	7/8	1 1/16	5.112	1.593	2:380	2.625	79.22
67400	29/	1 3/32	5.240	1.640	2.441	2.687	79.12
69645	15/10	1 1/8	5.366	1.687	2.503	2.750	79.03
71884	31/32	1 5/32	5.491	1.734	2.564	2.812	78.94
74119	1	1 3/18	5.617	1.781	2.626	2.875	78.85
76357	1 1/32	1 7/32	5.743	1.828	2.688	2.937	78.77
78601	1 1/16	1 1/4	5.870	1.875	2.749	3.000	78.70
80841	1 3/32	1 %32	5.996	1.921	2.811	3.062	78.63
83077	1 1/8	1 5/16	6.123	1.968	2.873	3.125	78.56

N=Numeral. D=Diameter of boiler, inside, in inches. B=Working pressure, in pounds, per square inch. F=Nominal factor of safety.

 $D \times B \times F = N$

$$\frac{N}{B \times F} = D$$

$$\frac{N}{D \times F} = B$$

$$\frac{N}{D \times B} = F$$

IRON PLATES AND IRON RIVETS. Single Riveted Double Butt Joints.

TABLE No. 59.

D×B×F.	Thickness of Plates.	Diameter of Rivets.	Pitch of Rivets.	Centre of Rivets to Edge of Plates.	Thickness of Butt Straps.	Percentage of Joint.
N	T	d	P	E	T_1	
23970	3/8	5/8	1.953	0.937	•234	68.00
25967	13/32	21/32	2.050	0.984	•253	68.00
27965	7/16	1/16	2.148	1.031	.273	68.00
29878	15/32	23/	2.233	1.078	•292	67.81
31645	1/2	3/4	2.296	1.125	·312	67:33
33403	17/32	25/32	2:360	1.171	.332	66.89
35156	9/16	13/16	2.425	1.218	•351	66.49
36903	19/32	27/32	2.491	1.265	.371	66.12
38651	5/8	7/8	2.558	1.312	*390	65.79
40392	21/20	29/32	2.626	1.359	·410	65.48
42135	11/16	15/16	2.694	1.406	·429	65.20
43868	23/32	31/32	2.763	1.453	•449	64.93
45599	3/4	1	2.832	1.500	*468	64.68
47337	25/32	1 1/32	2.902	1.546	·488	64.46
49063	13/16	1 1/16	2.972	1.593	.507	64.24
50791	27/32	1 3/32	3.042	1.640	•527	64.04
52524	7/8	1 1/8	3.113	1.687	.546	63.86
54238	2 9/3 2	1 5/32	3.183	1.734	•566	63.67
55959	15/ 16	1 3/16	3.254	1.781	.585	63.20
57688	31/32	1 7/32	3.326	1.828	605	63.35
59408	1	1 1/4	3.397	1.875	625	63.20
61128	1 1/32	1 %32	3.469	1.921	*644	63.06
62841	1 1/16	1 5/16	3.540	1.968	664	62.92

N=Numeral. D=Diameter of boiler, inside, in inches. B=Working pressure, in pounds, per square inch. F=Nominal factor of safety. D×R×F = N $\frac{N}{N}$ = D $\frac{N}{N}$ = B $\frac{N}{N}$ = F

 $D \times B \times F = N$

 $\overline{B \times F}$

 $\frac{N}{D \times F}$

 $\frac{N}{D \times B}$

IRON PLATES AND IRON RIVETS.

TABLE No. 60.

Double Riveted Double Butt Joints.

Zig Zag Riveting.

Chain Riveting.

D×B×F.	Thick- ness of	Diam- eter of	Pitch of	Centre of Rivets		Rivets.	Thick- ness of	Percent-
DADA	Plates.	Rivets.	Rivets.	of Plates.	Zig Zag Riveting.	Chain Riveting.	Butt Straps.	age of Joint.
N	T	d	p	E	V	1,	T_1	
32776	7/16	1 %	3.079	0.937	1.424	1.750	. 273	79.70
34972	15/32	21/32	3.181	0.984	1.477	1.812	.292	79.37
37162	1/2	11/16	3.286	1.031	1.532	1.875	.312	79.07
39350	17/32	23/32	3.391	1.078	1.586	1.937	.332	78.80
41538		3/4	3.498	1.125	1.641	2.000	.351	78.56
43717	19/32	25/32	3.606	1.171	1.697	2.062	.371	78.33
45901	1/8	13/16	3.716	1.218	1.753	2.125	-390	78.13
48079	21/32	27/32	3.825	1.265	1.808	2.187	·410	77.94
50252	1 1/18	7/8	3.936	1.312	1.865	2.250	•429	77.76
52428	23/32	29/32	4.047	1.359	1.921	2.312	.449	77.60
54602	3/4	15/16	4.158	1.406	1.978	2.375	.468	77.45
56774	25/32	31/32	4.270	1.453	2.035	2.437	*488	77.31
58946	13/16	1	4.383	1.500	2.092	2.500	•507	77.18
61110	27/32	1 1/32	4.495	1.546	2.149	2.562	•527	77.05
63283	1/8	1 1/16	4.609	1.593	2.206	2.625	.546	76.94
65449	29/29	1 3/32	4.722	1.640	2.263	2.687	*566	76.83
67618	15/16	1 1/8	4.836	1.687	2.320	2.750	•585	76.73
69781	31/32	1 5/32	4.949	1.734	2.377	2.812	*605	76.63
71947	1	1 3/16	5.063	1.781	2.435	2.875	.625	76.54
74118	1 1/32	1 7/32	5.178	1.828	2.493	2.937	.644	76.46
76274	1 1/16	1 1/4	5.292	1.875	2.550	3.000	.664	76.37
78435	1 3/32	1 %32	5.406	1.921	2.608	3.065	.683	76.29
80602	1 1/8	1 5/16	5.521	1.968	2.665	3.125	•703	76.22

N=Numeral. D=Diameter of boiler, inside, in inches.

B=Working pressure, in pounds, per square inch. F=Nominal factor of safety.

DNBAFE N N N D N D N N D N N D N N D N N D N N D N N D N N D N N D N N D N N D N N D N N D N N D N N D N N D N N D N N D N N D N D N N D N D N D N N D

 $D \times B \times F = N$ $\overline{B \times F}$ $\overline{D \times B}$ 166

IRON PLATES AND IRON RIVETS.

Table No. 61.

Double Riveted Double Butt Joints, each alternate Rivet omitted in the outer rows.

Zig Zag Riveting.

Chain Riveting.

D×B×F.	Thick- ness of	Diam- eter of	Pitch of	Centre of Rivets		Rivets.	Thick- ness of	Percent-
DXBXF.	Plates.	Rivets.	Rivets.	to Edge of Plates.	Zig Zag Riveting.	Chain Riveting.	Butt Straps.	age of Joint.
N	T	d	p	E	V	V	T_1	
39357	1/2	5/8	3.846	0.937	1.496	1.750	.387	83.74
41737	17/32	21/32	3.998	0.984	1.563	1.812	·413	83.58
44118	1/10	11/16	4.152	1.031	1.630	1.875	·438	83.44
46491	19/32	2 3/3 2	4.306	1.078	1.698	1.937	.464	83.30
48868	0/2	3/4	4.461	1.125	1.765	2.000	.489	83.18
51243	2 1/3 2	25/32	4.616	1.171	1.833	2.062	.515	83.07
53619	11/20	13/16	4.771	1.218	1.900	2.125	.540	82.97
55989	2 3/3 2	2 7/3 2	4.927	1.265	1.968	2.187	.566	82.87
58359	3/4	7/8	5.084	1.312	2.036	2.258	.591	82.78
60732	25/32	29/	5.240	1.359	2.103	2.330	.617	82.70
63101	13/	15/16	5.397	1.406	2.171	2.402	.642	82.62
65472	27/32	31/32	5.555	1.453	2.239	2.475	.668	82.55
67848	7/8	1	5.712	1.500	2.307	2.547	·694	82.49
70211	2 9/3 2	1 1/32	5.869	1.546	2.375	2.619	.719	82.42
72588	15/16	1 1/10	6.027	1.593	2.443	2.692	.745	82.37
74953	31/32	1 3/32	6.185	1.640	2.511	2.765	.771	82.31
77324	1	1 1/8	6.343	1.687	2.579	2.837	·796	82.26
79692	1 1/32	1 5/32	6.501	1.734	2.647	2.910	*822	82.21
82057	1 1/16	1 3/16	6.659	1.781	2.715	2.983	.848	82.16
84429	1 3/32	1 7/32	6.818	1.828	2.783	3.056	·873	82.15
86799	1 1/8	1 1/4	6.976	1.875	2.851	3.128	.899	82.08
89167	1 1/32	1 %32	7.135	1.921	2.920	3.201	.925	82.04
91532	1 3/16	1 5/18	7.294	1.968	2.988	3.274	.950	82.00

N=Numeral. D=Diameter of boiler, inside, in inches.

B = Working pressure, in pounds, per square inch. F = Nominal factor of safety.

 $D \times B \times F = N$ $\frac{N}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = F$

D×B×F.	Thick- ness of	Diam- eter of	Pitch of	Rivets	Rows of	Rivets.	ness of	Percent-
DXBXr.	Plates.	Rivets.	Rivets.	to Edge	Zig Zag	Chain	Butt	age of
	I Italico.	1011000		of Plates.	Riveting.	Riveting.	Strap.	Joint.
N	T	d	p	Е	V	V	T_1	
39357	1/2	5/8	3.846	0.937	1.686	1.750	·312	83.74
41737	17/32	21/32	3.998	0.984	1.756	1.812	.332	83.58
44118	9/10	11/16	4.152	1.031	1.828	1.875	.351	83.44
46491	19/32	23/	4.306	1.078	1.899	1.937	.371	83.30
48868	3/0	3/4	4.461	1.125	1.971	2.000	.390	83.18
51243	21/32	25/	4.616	1.171	2.042	2.062	.410	83.07
53619	11/10	1 3/16	4.771	1.218	2.114	2.125	·429	82.97
55989	23/32	27/32	4.927	1.265	2.186	2.187	.449	82.87
58359	3/4	7/8	5.084	1.312	2.258	2.250	·468	82.78
60732	25/32	29/32	5.240	1.359	2.330	2:312	·488	82.70
63101	13/18	1 5/16	5.397	1.406	2.402	2.375	.507	82.62
65472	27/32	31/32	5.555	1.453	2.475	2.437	.527	82.55
67848	1/2	1	5.712	1.500	2.547	2.500	.546	82.49
70211	29/32	1 1/32	5.869	1.546	2.619	2.562	.566	82.42
72588	15/16	1 1/16	6.027	1.593	2.692	2.625	.585	82.37
74953	31/	1 3/32	6.185	1.640	2.765	2.687	.605	82.31
77324	1	1 1/8	6.343	1.687	2.837	2.750	.625	82.26
79692	1 1/32	1 5/32	6.501	1.734	2.910	2.812	.644	82.21
82057	1 1/16	1 3/16	6.659	1.781	2.983	2.875	.664	82.16
84429	1 3/32	1 7/32	6.818	1.828	3.056	2.937	.683	82.12
	1 1/8	1 1/4	6.976	1.875	3.128	3.000	.703	82.08
89167	1 5/32	1 %32	7.135	1.921	3.201	3.062	.722	82.04
91532	1 3/16	1 5/16	7.294	1.968	3.274	3.125	.742	82.00

F=Nominal factor of safety. $D \times B \times F = N$ = D= B $\overline{\mathbf{B} \times \mathbf{F}}$ $\overrightarrow{D \times F}$ $\overline{D \times B}$

N=Numeral. D=Diameter of boiler, inside, in inches.

6.864

7.066

7.268

7.470

7.673

7.876

8.078

8.281

8.484

8.686

8.888

75285

77767

80257

82736 1 $\frac{1}{3}_{2}$

85223

87709 1 3/3 2 1

90194 1

92688

95171

97653

100145

1

1

1

1

1

1 /32

1

1

1/16

3 2

1/32 1/ /16 3/32

5/3 2 3/1 6 7/2 9

3/3 2 5/16

1.968 B=Working pressure, in pounds, per square inch. F = Nominal factor of safety. N N

1:500

1.546

1:593

1.640

1.687

.734

.781

.828

.875

1.921

2:532

2.609

2.686

2.762

2.839

2.916

2.993

3.070

3.147

3.223

3.300

2.938

3.026

3.114

3.201

3.289

3.377

3.465

3.553

3.641

3.728

3.816

 $D \times B \times F = N$ = B= DB×F D×F

F D×B

.585

.605

.625

.644

.664

.683

.703

.722

.742

.761

.781

85.43

85.40

85.38

85:35

85:33

85.31

85.29

85.28

85.26

85.24

85.23

B = Working pressure, in pounds, per square inch, F = Nominal factor of safety. N

 $D \times B \times F = N$ = DВ $\overline{B \times F}$ $\overline{D \times F}$ $\overline{D \times B}$

FURNACES-PLAIN CYLINDRICAL.

Iron Plates.

Tables Nos. 65 to 77, immediately following, and Nos. 281 to 283, are only intended for furnaces of ordinary diameters when the length does not exceed 10 feet, and for the given thickness of plate at the head of the table. The diameter should never exceed that found in the column opposite the particular pressure. When A1 is the distinguishing letter, Table No. 78 may be used or No. 284.

By the tables, if the diameter is determined, the length, thickness, and pressure can be found; the length can be found if the diameter, thickness, and pressure are determined; the pressure, if the diameter, thickness, and length are known; and when the diameter, length, and pressure are determined, the required thickness can be ascer-

tained.

The numerals in each table, under each distinguishing letter, are those applicable to the circumstances of the case to which the letter refers, and to the thickness of the plate at the head of the table.

The distinguishing letters refer to the method adopted in construct-

ing the furnaces, as the following will explain.

0	0 1	
Distinguish: Letters.		inguishing etters.
Al.	Longitudinal seams welded,	A1.
A.	Longitudinal seams, double riveted, single butt straps, and holes drilled,	A.
A	Longitudinal seams, single riveted, double butt straps, and holes drilled.	Α.
В.	Longitudinal seams, double riveted, single butt	
В.	straps, and holes <i>punched</i> ,	В.
О.	straps, and holes punched,	В.
C.	Longitudinal seams, single riveted, single butt	0
C.	straps, and holes drilled, Longitudinal seams, double riveted, lap joints	C.
	bevelled, and holes drilled,	C.
D.	Longitudinal seams, single riveted, single butt	D.
D.	straps, and holes <i>punched</i> , Longitudinal seams, double riveted, lap joints <i>not</i>	D.
	bevelled, and holes drilled,	D.
D.	Longitudinal seams, double riveted, lap joints bevelled, and holes punched,	D
E.	Longitudinal seams, single riveted, lap joints	
E.	bevelled, and holes drilled,	E,
Ci.	Longitudinal scams, double liveted, lap joints not	-

E.

bevelled, and holes punched,

Distinguishing
Letters.

F. Longitudinal seams, single riveted, lap joints not
bevelled, and holes drilled,
F. Longitudinal seams, single riveted, lap joints
bevelled, and holes punched,
G. Longitudinal seams, single riveted, lap joints not

bevelled, and holes punched, G.

From the foregoing it will be seen that the distinguishing letter A has reference to three different methods of construction, the letter B to two, the letter C to two, the letter D to three, the letter E to two.

the letter F to two, and G to one method.
N=Numeral in the tables, applicable to the method of construction.
L=Length of furnace in feet (for the limits of L, see the first paragraph of these notes).

D = Diameter of furnace, in inches, outside. B = Working pressure, in lbs., per square inch.

(1) The maximum diameter in inches of a horizontal furnace for any pressure, if the length of the furnace, the thickness of plate, and pressure be determined, may be found by dividing the numeral, in the column applicable to the class of furnace or method of construction and opposite to the given pressure, by the length of furnace in feet, plus 1;

or the outside diameter in inches should not exceed $\frac{N}{L+1}$ = D.

If the thickness of plates be ½ inch, the length 5.25 feet, and the pressure 100 lbs., and the horizontal furnace is of the description to which the distinguishing letter A is applicable, and it is required to determine the maximum outside diameter:—

Then, in the table for ½-inch iron plates (No. 73) opposite 100 lbs., the pressure, in the column A, applicable to the case, 225, the numeral is found; and if this be divided by 6-25, the length in feet plus 1, the result is 36, which is the greatest outside diameter in inches which the furnace should be,

or
$$\frac{225}{5.25+1} = 36 = D$$
.

(2) The maximum length in feet of a horizontal furnace, for any pressure, if the diameter of the furnace and thickness of plate be determined, may be found by dividing the numeral applicable to the class of furnace, or method of construction; and opposite the given pressure, by the diameter in inches, and diminishing the result by 1; or the length should not exceed $\frac{N}{N}-1 = L$.

If the thickness of the iron plates be ½ inch, the outside diameter 36 inches, and the pressure 100 lbs., and the horizontal furnace is of the description to which the distinguishing letter A is applicable, and it is required to determine the greatest length:—

Then, in the table for ½-inch iron plates (No. 73) opposite 100 lbs., the pressure, in the column A applicable to the case, 225, the numeral, is found, and if it be divided by 36, the outside diameter, the result is 6.25, and if this be lessened by 1 it equals 5.25, which is the greatest length in feet the furnace should be,

$$\frac{225}{36} = 6.25,$$
and $6.25-1 = 5.25 - L$.

(3) The maximum pressure for any horizontal furnace, if the diameter of the furnace, the thickness of plate, and the length be known, may be found by multiplying the diameter in inches by the length in feet plus 1; the result gives the numeral, which should be looked for under the distinguishing letter applicable to the class of furnace or method of construction, and opposite the numeral so arrived at, the greatest pressure is found on the left in the first column on the page,

or
$$D \times (L+1) = N$$
,

and the pressure found on the left of the page, opposite the numeral, in the column under the distinguishing letter applicable to the case,

is the greatest pressure.

If the thickness of the iron plates be ½ inch, the outside diameter 36 inches, and the length 5.25 feet, and the furnace is of the description to which the distinguishing letter A is applicable, and the greatest working pressure is required to be determined:—

Then, if 36, the outside diameter, be multiplied by 6.25, which is the length, plus 1, the result is 225, the numeral, and in the table for ½ inch plate, in column A, applicable to the case, opposite 225 on the left of the page, 100 lbs. pressure is found, which is the greatest working pressure,

or
$$36 \times (5 \cdot 25 + 1)$$
 or $36 \times 6 \cdot 25 = 225 = N$,

and opposite the numeral 225, the pressure found is 100 lbs. = B.

(4) The minimum thickness of the plate of a horizontal furnace if the pressure, diameter, and length of furnace and class of furnace, or method of construction, be known, may be found by multiplying the diameter in inches by the length in feet, plus 1, which gives the numeral; which numeral should be looked for opposite the pressure in a column of the tables under the distinguishing letter applicable to the class of furnace, and if such a number is not found, the next higher number is the numeral to adopt, and at the head of the table the thickness of plate given is the least thickness,

or
$$D \times (L+1) = N$$
.

If the outside diameter of a horizontal iron furnace be 36 inches, the length 5.25 feet, and the pressure 100 lbs., and the class of furnace

is such as the distinguishing letter A refers to, and the minimum

thickness of plate is required:-

Then, if 36, the outside diameter, be multiplied by 5.25+1=6.25, which is the length increased by 1, the result is 225, which is the numeral; then opposite 100, the pressure, in Column A, of table No. 73, 225 is found, and at the head of the table the thickness is 1/2 inch, which is the least thickness the plate should be. If the nearest numeral had been in excess of 225, the next higher numeral found opposite 100, the pressure stipulated for, and in Column A, would be the right one to use; for instance, had it been 247, the next higher number found opposite 100, the pressure, is 254, and in the column under the distinguishing letter A, applicable to the circumstances of the case in the example, the thickness of the plate at the head of the table is 17/32 inch: therefore, the plates would have been required to be practically 11/32 inch thick. Furnaces which are found to be too weak may be materially

strengthened, so as to be fit for greater pressures, by fitting rings, as properly fitted rings are about equivalent to shortening the length.

(5) If a furnace be vertical, its diameter should not exceed '9 of that suitable for a horizontal one of the same dimensions, in other respects

and constructed in the same manner.

Thus, if 36 inches is the proper diameter for a horizontal furnace. $36 \times 9 = 32.4 = D$,

is the outside diameter, in inches, which the vertical furnace should be.

(6) In finding the length of a vertical furnace, the appropriate numeral for a horizontal one, of the same dimensions and constructed in the same manner, should be multiplied by '9.

Thus, if 225 be the appropriate numeral for a horizontal furnace,

and 36 inches the outside diameter.

then,
$$\frac{.9 \times 225}{36} - 1 = 4.625 = L$$
,

which is the length the vertical furnace should be.

(7) In finding the pressure for a vertical furnace, the numeral is found by multiplying the length in feet, plus 1, by the outside diameter in inches and dividing by '9. Then, opposite the numeral the pressure will be found in the same way as for a horizontal furnace.

(8) In determining the thickness of a vertical furnace, having found the numeral by multiplying the length in feet, plus 1, by the diameter in inches and dividing the result by 9, the nearest numeral (which should not be less), should be looked for opposite the pressure in the tables and in the column under the distinguishing letter applicable to the construction of the furnace, and the thickness is that at the head of the table.

When the diameter of a vertical furnace does not decrease 1 in 12, instead of using the number '9, alluded to in the former paragraphs, it should be '85; and if the furnace is parallel, it should not exceed '8.

ure n.				Numerals.				. a c.
Pressure per sq. in.	Al†A N	B N	C	D N	E	F N	G N	Maxi- mum Diam.*
lbs.							- 1	ins.
5								
10								
15	375	354	333	313	292	271	250	72
20	281	266	250	234	219	203	188	70.31
25	225	213	200	188	175	163	150	66.17
30	188	177	167	156	146	135	125	62.5
35	161	152	143	134	125	116	107	59.21
40	141	133	125	117	109	102	93.8	56.25
45	125	118	111	104	97.2	90.3	83.3	50
50	113	106	100	93.8	87.5	81.3	75	45
55	102	96.6	91	85.2	79.5	73.9	68.2	40.9
60	93.8	88.5	83.3	78.1	72.9	67.7	62.5	37.5
65	86.5	81.7	76.9	72.1	67.3	62.5	57.7	34.61
70	80.4	75.9	71.4	67	62.5	58	53.6	32.14
75	75	70.8	66.7	62.5	58.3	54.2	50	30
80	70.3	66.4	62.5	58.6	54.7	50.8	46.9	28.12
85	66.2	62.5	58.8	55.1	51.5	47.8	44.1	26.47
90	62.5	59	55.6	52.1	48.6	45.1	41.7	25
95	59.2	55.9	52.6	49.3	46.1	42.8	39.5	23.68
100	56.3	53.1	50	46.9	43.8	40.6	37.5	22.5
105	53.6	50.6	47.6	44.6	41.7	38.7	35.7	21.42
110	51.1	48.3	45.5	42.6	39.8	36.9	34.1	20.45
115	48.9	46.2	43.5	40.8	38	35.3	32.6	19.56
120	46.9	44.3	41.7	39.1	36.5	33.9	31.3	18.75
125	45	42.5	40	37.5	35	32.5	30	18
130	43.3	40.9	38.5	36.1	33.7	31.3	28.8	17:3
135	41.7	39.4	37	34.7	32.4	30.1	27.8	16.66
140	40.2	37.9	35.7	33.5	31.3	29	26.8	16.07
145	38.8	36.6	34.5	32.3	30.2	28	25.9	15.21
150	37.5	35.4	33.3	31.3	29.2	27.1	25	15
155	36.3	34.3	32.3	30.2	28.2	26.2	24.2	14.51
160	35.2	33.2	31.3	29.3	27.3	25.4	23.4	14.06

The length L should never exceed 10 ft. and $\frac{N}{D} - 1$ should not be more than 10 ft.

† When Al is the distinguishing letter Table No. 78 may be used when the length does not exceed 1.5 feet; above 160 lbs., see Table No. 284.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure. D = Diameter of furnace in inches. N=Numeral applicable to the case.

 $\frac{N}{D} - 1 = L$, $\frac{N}{L+1} = D$. (L+1) D=N. L=Length of furnace in feet.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

Pressures and Numerals for Lengths and Diameters.

ure r n.				Numerals				÷ # •
Pressure per sq. in.	A1†A N	B N	C N	D N	E N	F N	G N	Maxi- num Diam.*
lbs.								ins.
5								
10	•••	•••						
15				1.72				
20	356	336	316	297	277	257	237	72
25	285	269	253	237	221	206	190	70.31
30	237	224	211	198	185	171	158	66.17
35	203	192	181	170	158	147	136	62.5
40	178	168	158	148	138	129	119	59.21
45	158	149	141	132	123	114	105	56.25
50	142	134	127	119	111	103	94.9	50.62
55	129	122	115	108	101	93.5	86.3	46.02
60	119	112	105	98.9	92.3	85.7	79.1	42.18
65	110	103	97.4	91.3	85.2	79.1	73	38.94
70	102	96.1	90.4	84.8	79.1	73.5	67.8	36.16
75	94.9	89.6	84.4	79.1	73.8	68.6	63.3	33.75
80	89	84	79.1	74.2	69.2	64.3	59.3	31.64
85	83.8	79.1	74.4	69.8	65.1	60.5	55.8	29.77
90	79.1	74.7	70.3	65.9	61.5	57.1	52.7	28.12
95	74.9	70.8	66.6	62.4	58.3	54.1	50	26.64
100	71.2	67.2	63.3	59.3	55.4	51.4	47.5	25.31
105	67.8	64	60.3	56.5	52.7	49	45.2	24.1
110	64.7	61.1	57.5	53.9	50.3	46.7	43.1	23.01
115	61.9	58.5	55	51.6	48.1	44.7	41.3	22.01
120	59.3	56	52.7	49.4	46.1	42.8	39.6	21.09
125	57	53.8	50.6	47.5	44.3	41.1	38	20.25
130	54.8	51.7	48.7	45.6	42.6	39.6	36.5	19.47
135	52.7	49.8	46.9	43.9	41	38.1	35.2	18.75
140	50.9	48	45.2	42.4	39.6	36.7	33.9	18.08
145	49.1	46.4	43.6	40.9	38.2	35.5	32.7	17.45
150	47.5	44.8	42.2	39.6	36.9	34.3	31.6	16.87
155	45.9	43.4	40.8	38.3	35.7	33.2	30.6	16.33
160	44.5	42	39.6	37.1	34.6	32.1	29.7	15.82

The length L should never exceed 10 ft. and $\frac{N}{D}$ - 1 should not be more than 10 ft.

When Al is the distinguishing letter Table No. 78 may be used when the length does not exceed 1.812 feet; above 160 lbs., see Table No. 284.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D = Diameter of furnace in inches. N=Numeral applicable to the case.

 $\frac{N}{D} - 1 = L$, $\frac{N}{L + 1} = D$, (L+1) D=N. L=Length of furnace in feet.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

FURNACES PLAIN CYLINDRICAL. TABLE No. 67.

Iron Plates $\frac{5}{16}$ inch thick. Pressures and Numerals for Lengths and Diameters.

ure n.			:	Numerals.				 1. *
Pressure per sq. in.	A1†A N	B N	C N	D N	E N	F N	G N	Maxi- mum Diam.*
lbs.								ins.
5		•••	•••	•••	•••			•••
10			•••	•••	•••		•••	
15		•••	•••	• • •				
20								
25	352	332	313	293	273	254	234	72
30	293	277	260	244	228	212	195	70.31
35	251	237	223	209	195	181	167	66.17
40	220	208	195	183	171	159	146	62.5
45	195	184	174	163 146	152 137	141 127	130	59.21
50	176 160	166 151	156 142	133	124	115	117 107	56·25 51·13
55	146	131	130	122	114	106	97.7	
60	135	128	120	113	105	97.7	90.1	46.87
65 70	126	119	112	105	97.7	90.7	83.7	40.17
75	117	111	104	97.7	91.1	84.6	78.1	37.5
80	110	104	97.7	91.6	85.4	79.3	73.2	35.15
85	103	97.7	91.9	86.5	80.4	74.7	68.9	33.08
90	97.7	92.2	86.8	81.4	76	70.5	65.1	31.25
95	92.5	87.4	82.2	77.1	72	66.8	61.7	29.60
100	87.9	83	78.1	73.2	68.4	63.5	58.6	28.12
105	83.7	79.1	74.4	69.8	65.1	60.5	55.8	26.78
110	79.9	75.5	71	66.6	62.1	57.7	53.3	25.56
115	76.4	72.2	67.9	63.7	59.4	55.2	51	24.45
120	73.2	69.2	65.1	61	57	52.9	48.8	23.43
125	70.3	66.4	62.5	58.6	54.7	50.8	46.9	22.5
130	67.6	63.9	60.1	56.3	52.6	48.8	45.1	21.63
135	65.1	61.5	57.9	54.3	50.6	47	43.4	20.83
140	62.8	59.3	55.8	52.3	48.8	45.3	41.9	20.08
145	60.6	57.2	53.9	50.5	47.1	43.8	40.4	19.39
150	58.6	55.3	52.1	48.8	45.6	42.3	39.1	18.75
155	56.7	53.6	50.4	47.3	44.1	41	37.8	18.14
160	54.9	51.9	48.8	45.8	42.7	39.7	36.6	17.57
		1	1		1	1	1	

The length L should never exceed 10 ft. and $\frac{N}{D}$ -1 should not be more than 10 ft.

† When A1 is the distinguishing letter Table No. 78 may be used when the length does not exceed 2 125 feet; above 160 lbs., see Table No. 284.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D=Diameter of furnace in inches. N=Numeral applicable to the case.

L=Length of furnace in feet. $\frac{N}{D}-1=L$. $\frac{N}{L+1}=D$. (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

FURNACES PLAIN CYLINDRICAL, TABLE No. 68. Iron Plates \(\frac{1}{3.2} \) inch thick.

Pressures and Numerals for Lengths and Diameters.

th.				Numerals.				÷ 8 ÷
sq. 1	Al†A N	B N	C	D N	E N	F N	G N	Maxi- mum Diam.*
s.								ins.
5	••	•••	•••	•••	•••	•••		•••
15						•••		
20	•••		•••			•••	•••	
25			•••	•••				
30	354	335	315	295	276	256	236	72
35	304	287	270	253	236	219	203	70 31
40	266	251	236	222	207	192	177	66.17
45	236	223	210	197	184	171	158	62:5
50	213	201	189	177	165	154	142	59.21
55	193	183	172	161	150	140	129	56.25
60	177	167	158	148	138	128	118	51:56
65	164	155	145	136	127	118	109	47.59
70	152	143	135	127	118	110	101	44.19
75	142	134	I26	118	110	102	94.5	41.25
80	133	126	118	111	103	96	88.6	38.67
85	125	118	111	104	97.3	90.4	83.4	36.39
90	118	112	105	98.5	91.9	85.3	78.8	34.37
95	112	106	99.5	93.3	87.1	80.8	74.6	32.56
100	106	100	94.5	88.6	82.7	76.8	70.9	30.93
105	101	95.7	90	84.4	78.8	73.1	67.5	29.46
110	96.7	91.3	85.9	80.6	75.2	69.8	64.5	28.12
115	92.5	87.3	82.2	77.1	71.9	66.8	61.7	26.9
120	88.6	83.7	78.8	73.9	68.9	64	59.1	25.78
125	85.1	80.4	75.6	70.9	66.2	61.4	56.7	24.75
130	81.8	77.3	72.7	68.2	63.6	59.1	54.5	23.79
135	78.8	74.4	70	65.6	61.3	56.9	52.5	22.91
140	76	71.7	67.5	63.3	59.1	54.9	50.6	22.09
145	73.3	69.3	65.2	61.1	57	53	48.9	21.33
150	70.9	67	63	59.1	55.1	51.2	47.3	20.62
155	68.6	64.8	61	57.2	53.4	49.6	45.7	19.95
160	66.5	62.8	59.1	55.4	51.7	48	44.3	19.33

The length L should never exceed 10 ft. and $\frac{N}{D}$ – 1 should not be more than 10 ft.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D=Diameter of furnace in inches. N=Numeral applicable to the case.

L=Length of furnace in feet. $\frac{N}{D} - 1 = L$, $\frac{N}{L+1} = D$, (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that apposite the given pressure in this table, but may be less.

† When A1 is the distinguishing letter Table No. 78 may be used when the length does not exceed 2.437 feet; above 160 lbs., see Table No. 284.

FURNACES PLAIN CYLINDRICAL, TABLE No. 6

Iron Plates 3 inch thick. Pressures and Numerals for Lengths and Diameters.

sure er in.				Numerals.				÷a
Pressure per sq. in.	A1†A N	B	C	D N	E N	F N	G N	Maxi- mum
lbs.	1/	- 1	N	N	N		7/	ins
5								- 1
10		•••	•••			•••		
15							•••	11.9
20								
25								
30								
35	362	342	321	301	281	261	241	72
40	316	299	281	264	246	229	211	70.3
45	281	266	250	234	219	203	188	66.1
50	253	239	225	211	197	183	169	62.5
55	230	217	205	192	179	166	153	59.2
60	211	199	188	176	164	152	141	56.2
65	195	184	173	162	151	141	130	51.9
70	181	171	161	151	141	131	121	48.2
75	169	159	150	141	131	122	113	45
80	158	149	141	132	123	114	105	42.1
85	149	141	132	124	116	108	99.3	39.7
90	141	133	125	117	109	102	93.8	37.5
95	133	126	118	111	104	96.5	88.88	35.5
100	127	120	113	105	98.4	91.4	84.4	33.7
105	121	114	107	100	93.8	87.1	80.4	32.1
110	115	109	102	95.9	89.5	83.1	76.7	30.6
115	110	104	97.8	91.7	85.6	79.5	73.4	29.3
120	105	99.6	93.8	87.9	82	76.2	70.3	28.1
125	101	95.6	90	84.4	78.8	73.1	67.5	27
130	97.4	91.9	86.5	81.1	75.7	70.3	64.9	25.9
135	93.8	88.2	83.3	78.1	72.9	67.7	62.5	25
140	90.4	85.4	80.4	75.3	70.3	65.3	60.3	24.1
145	87.3	82.4	77.6	72.7	67.9	63	58.2	23.2
150	84.4	79.7	75	70.3	65.6	60.9	56.3	22.5
155	81.7	77.1	72.6	68	63.5	59	54.4	21.7
160	79.1	74.7	70.3	65.9	61.5	57.1	52.7	21.09

The length L should never exceed 10 ft. and $\frac{N}{D}$ - 1 should not be more than 10 f

f When A1 is the distinguishing letter, Table No. 78 may be used when the length does not exceed 2.75 feet; above 160 lbs., see Table No. 284.

The numeral N should always be taken from the column under the distin-

guishing letter applicable to the case and opposite the given pressure.

D = Diameter of furnace in inches. N=Numeral applicable to the case.

L=Length of furnace in feet.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

FURNACES PLAIN CYLINDRICAL, TABLE No. 70. Iron Plates $\frac{13}{32}$ inch thick.

Pressures and Numerals for Lengths and Diameters.

in.				Numerals,				= *
sq. ii	A1†A N	B	C	D N	E	F	G N	Maxi- mum Diam.
3.	- 11	1	1	1				ins.
5					•••			
10								
15					•••			
20								
25			•••				• • • •	
30	•••			•••				
35							240	
40	371	351	330	309	289	268	248	72
15	330	312	293	275	257	238	220	70.31
50	297	281	264	248	231	215	198	66.17
55	270 248	25 5 23 4	240 220	225 206	210 193	195 179	180	62.5
60	248	216	203	190	178	165	165 152	59·21 56·25
70	212	200	189	177	165	153	141	52.23
75	198	187	176	165	154	143	132	48.75
80	186	175	165	155	144	134	124	45.7
85	175	165	155	146	136	126	116	43.01
90	165	1.56	147	138	128	119	110	40.62
95	156	148	139	130	122	113	104	38.48
00	149	140	132	124	116	107	99	36.26
05	141	134	126	118	110	102	94.3	34.82
10	135	128	120	113	105	97.5	90	33.23
15	129	122	115	108	100	93.3	86.1	31.79
20	124	117	110	103	96.3	89.4	82.5	30.46
25	119	112	106	99	92.4	85.8	79.2	29.25
30	114	108	102	95.2	88.9	82.5	76.2	28.12
35	110	104	97.8	91.7	85.6	79.5	73.4	27.08
40	106	100	94.3	88.4	82.5	76.6	70.7	26.11
45	102	96.7	91.1	85.4	79.7	74	68.3	25.21
50	99	93.5	88	82.5	77	71.5	66	24.37
55	95.8	90.5	85.2	79.9	74.5	69.2	63.9	23.58
60	92.8	87.7	82.5	77.4	72.2	67	61.9	22.85

The length L should never exceed 10 ft. and $\frac{N}{D}$ - 1 should not be more than 10 ft.

The numeral N should always be taken from the column under the distin-

uishing letter applicable to the case and opposite the given pressure. D = Diameter of furnace in inches. N=Numeral applicable to the case.

L=Length of furnace in feet. -1 = L. (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that posite the given pressure in this table, but may be less.

† When A1 is the distinguishing letter, Table No. 78 may be used when the ngth does not exceed 3 062 feet; above 160 lbs., see Table No. 284.

180

FURNACES PLAIN CYLINDRICAL. TABLE No.

Iron Plates $\frac{7}{16}$ inch thick. Pressures and Numerals for Lengths and Diameters.

Pressure per sq. in.			1	Numerals.				-5 8
ressur per sq. in.	Al†A N	В	C	D	E	F	G N	Maxi-
	N	N	N	N	N	N	N.	
lbs.								ir
5		•••		•••	•••	•••	•••	
10		•••		•••	•••		•••	
15	•••	•••	•••	•••	•••	•••	• • • •	
20					•••		•••	
25				•••	• • •	•••	• • • •	
30			•••		• • •			
35		•••					•••	
40								
45	383	362	340	319	298	276	255	72
50	345	325	306	287	268	249	230	70
55	313	296	278	261	244	226	209	66
60	287	271	255	239	223	207	191	62
65	265	250	236	221	206	191	177	59
70	246	232	219	205	191	178	164	56
75	230	217	204	191	179	166	153	52
80	215	203	191	179	167	156	144	49
85	203	191	180	169	158	146	135	46
90	191	181	170	160	149	138	128	43.
95	181	171	161	151	141	131	121	41.
100	172	163	153	144	134	124	115	39.
105	164	155	146	137	128	118	109	37.
110	157	148	139	131	122	113	104	35.
115	150	141	133	125	117	108	99.9	34.
120	144	136	128	120	112	104	95.7	32.
125	138	130	123	115	107	99.5	91.9	31.
130	133	125	118	110	103	95.7	88.3	30.
135	128	121	113	106	99.2	92.2	85.1	29.
140	123	116	109	103	95.7	88.9	82	28.
145	119	112	106	99	92.4	85.8	79.2	27.
150	115	108	102	95.7	89.3	82.9	76.6	26.
155	111	105	98.8	92.6	86.4	80.3	74.1	25.
160	108	102	95.7	89.7	83.7	77.8	71.8	24.

The length L should never exceed 10 ft. and $\frac{N}{D}$ - 1 should not be more than 10

length does not exceed 3.375 feet; above 160 lbs., see Table No. 284.

The numeral N should always be taken from the column under the distin guishing letter applicable to the case and opposite the given pressure.

N=Numeral applicable to the case. D = Diameter of furnace in inches.

 $\frac{N}{D} - 1 = L$, $\frac{N}{L + 1} = D$, (L+1) D=N. L=Length of furnace in feet.

^{*} The diameter D should not be greater for any given pressure than th opposite the given pressure in this table, but may be less.
† When A1 is the distinguishing letter Table No. 78 may be used when t

FURNACES PLAIN CYLINDRICAL. TABLE No. 72. Iron Plates $\frac{1}{3}\frac{5}{2}$ inch thick.

Pressures and Numerals for Lengths and Diameters.

in ii	1			Numerals				·- 8 -
sq. il	Al†A N	B N	C	D	E N	F	G N	Maxi- mum Diam.*
4-	N	N	N	N	N	N	N	
11 5.	1							ins.
. 5	•••	***	•••	•••	•••	•••	***	
	0.0-0	•••	•••	•••	•••	•••	•••	
15 20		•••	•••	***	***	***	•••	
25		•••	•••	•••	•••	***	•••	
30			***	***	•••	***	•••	
35		•••	•••	•••	***	***	•••	
40			•••	•••	•••	•••		
45		•••	•••	•••	***	9.00		
50	396	374	352	330	308	286	264	72
55	360	340	320	300	280	260	240	70.31
60	330	311	293	275	256	238	220	66.17
65	304	287	270	254	237	220	203	62.5
70	283	267	251	235	220	204	188	59.21
75	264	249	234	220	205	190	176	56.25
80	247	233	220	206	192	179	165	52.73
85	233	220	207	194	181	168	155	49.63
90	220	208	195	183	171	159	146	46.87
95	208	197	185	173	162	150	139	44.4
00	198	187	176	165	154	143	132	42.18
.05	188	178	167	157	146	136	126	40.17
10	180	170	160	150	140	130	120	38.35
15	172	162	153	143	134	124	115	36.68
120	165	156	146	137	128	119	110	35.15
125	158	149	141	132	123	114	105	33.75
130	152	144	135	127	118	110	101	32.45
135	146	138	130	122	114	106	97.7	31.25
140	141	133	126	118	110	102	94.2	30.13
145	136	129	121	114	106	98.5	90.9	29.09
150	132	125	117	110	103	95.2	87.9	28.12
155	128	120	113	106	99.2	92.1	85.1	27.21
160	124	117	110	103	96.1	89.3	82.4	26.36
	1					000	02.7	

The length L should never exceed 10 ft. and $\frac{N}{D}$ –1 should not be more than 10 ft.

† When A1 is the distinguishing letter Table No. 78 may be used when the ength does not exceed 3.687 feet; above 160 lbs., see Table No. 284.

The numeral N should always be taken from the column under the distinuishing letter applicable to the case and opposite the given pressure. D=Diameter of furnace in inches. N=Numeral applicable to the case,

D=Diameter of furnace in inches. N=Numeral applicable to the case. L=Length of furnace in feet. N= $\frac{N}{D}-1$ =L. $\frac{N}{L+1}$ =D. (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that positive the given pressure in this table, but may be less. † When A1 is the distinguishing letter Table No. 78 may be used when the

FURNACES PLAIN CYLINDRICAL. TABLE No. 73. Iron Plates 1 inch thick.

Pressures and Numerals for Lengths and Diameters.

sure r in.			:	Numerals.				:t 8 ti
Pressure per sq. in.	Al†A N	B N	C N	D N	E N	F N	G N	Maxi- mum Diam.*
lbs.								ins.
5	•••	•••	•••	•••	•••	•••		
10	•••	•••	•••	•••	•••	•••		
15	•••		•••		•••	•••		
20	•••	•••	•••	•••	•••			
25	•••	•••	•••	•••	•••	•••	•••	
30	•••	•••	•••	•••	•••	•••		
35	•••	• • •	•••		•••	•••		
40		• • • •				***		
45	• • •	•••	•••	•••	•••	• • •	•••	
50	400	•••					273	
55	409	386	364	341	318	295	273	72
60	375	354	333	313	292	271	250	70.31
65	346	327	308	288	269	250	231	66.17
70	321	304	286	268	250	232	214	62.5
75	300	283	267	250	233	217	200	59.21
80	281	266	250	$\frac{234}{221}$	219	203	188	56.25
85	265	250	235		206	191	176	52.94
90	250	236	222	208 197	194	181 171	167	50
95 100	$\frac{237}{225}$	224	211 200	188	184 175	163	158 150	47:36
105	214	$\frac{213}{202}$	190	179	167	155	143	45
110	205	193	182	179	159	148	136	42.85
115	196	185	174	163	152	141	130	39.13
120	188	177	167	156	146	135	$\frac{130}{125}$	37.5
125	180	170	160	150	140	130	120	36
130	173	163	154	144	135	125	115	34.61
135	167	157	148	139	130	120	111	33.33
140	161	152	143	134	125	116	107	32.14
145	155	147	138	129	121	112	103	31.03
150	150	142	133	125	117	108	100	30
155	145	137	129	121	113	105	96.8	29.03
160	141	133	125	117	109	102	93.8	28.12
100	1 11	130	120	1	100	102	030	2012

The length L should never exceed 10 ft., and $\frac{N}{D} - 1$ should not be more than 10 ft.

† When Al is the distinguishing letter, Table No. 78 may be used when the length does not exceed 4 feet; above 160 lbs., see Table No. 284.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D = Diameter of furnace in inches.

N = Numeral applicable to the case. $\frac{N}{D} - 1 = L.$ $\frac{N}{L+1} = D.$ (L+1) D = N.L= Length of furnace in feet.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

183 FURNACES PLAIN CYLINDRICAL. TABLE No. 74. Iron Plates $\frac{1}{3}\frac{7}{2}$ inch thick.

Pressures and Numerals for Lengths and Diameters.

sure r in.	AND DESCRIPTION OF THE PARTY OF			Numerals				* # # # # # # # # # # # # # # # # # # #
Pressure per sq. in.	Al†A	В	C	D	Е	F	G N	Maxi- mum Diam.*
	N	N	N	N	N	N	N	1
lbs.								ins.
5 10				•••		•••	•••	•••
15				•••	•••	•••	•••	
20				•••	•••	•••	•••	•••
25				•••	•••	•••	•••	
30	•••			•••	•••	•••	•••	
35	***	***		•••	•••		• • • •	
40		•••	•••	•••	•••			
45			•••	***	•••		•••	
50				•••		•••	•••	
55			•••		•••	***	~**	
60	423	400	376	353	329	306	282	72
65	391	369	347	326	304	282	261	70.31
70	363	343	323	302	282	262	242	66.17
75	339	320	301	282	263	245	226	62.5
80	318	300	282	265	247	229	212	59.21
85	299	282	266	249	232	216	199	56.25
90	282	267	251	235	220	204	188	53.12
95	267	253	238	223	208	193	178	50.32
100	254	240	226	212	198	183	169	47.81
105	242	228	215	202	188	175	161	45.53
110	231	218	205	192	180	167	154	43.46
115	221	209	196	184	172	160	147	41.59
120	212	200	188	176	165	153	141	39.84
125	203	192	181	169	158	147	135	38.25
130	195	185	174	163	152	141	130	36.77
135	188	178	167	157	146	136	125	35.41
140	181	171	161	151	141	131	121	34.15
145	175	165	156	146	136	127	117	32.97
150	169	160	151	141	132	122	113	31.87
155	164	155	146	137	127	118	109	30.84
160	159	150	141	132	123	115	106	29.88

The length L should never exceed 10 ft., and $\frac{N}{D}-1$ should not be more than 10 ft.

† When AI is the distinguishing letter, Table No. 78 may be used when the length does not exceed 4 312 feet; above 160 lbs., see Table No. 284.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D=Diameter of furnace in inches. N=Numeral applicable to the case.

L=Length of furnace in feet. $\frac{N}{D}-1=L$, $\frac{N}{L+1}=D$, (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

184

FURNACES PLAIN CYLINDRICAL. TABLE No. 75. Iron Plates $\frac{9}{16}$ inch thick. Pressures and Numerals for Lengths and Diameters.

Pressure per sq. in.				Numerals.				Maxi-
ressure per sq. in.	A1†A	В	C	D	E	F	G	mum Diam.*
E S	N	N	N	N	N	N	N	
lbs.								ins.
5	•••	•••	•••	•••	•••	•••	•••	•••
10		•••	•••		•••	•••	•••	
15	•••		•••	•••	••	•••	•••	•••
20	•••		•••	•••	• • •	•••	•••	•••
25				•••	•••	•••	•••	•••
30		•••		•••	•••	•••	•••	
35	•••		• • •	***	•••	•••	•••	•••
40	•••	***				•••	•••	
45	•••		•••	•••	•••	•••	•••	•••
50	• • • •	•••				• • •		•••
55	•••		• • • •		• • •	•••		
60	400			0.05	0.47			
65	438	414	389	365	341	316	292	72
70	407	384	362	339	316	294	271	70.31
75	380	359	338	316	295	274	253	66.17
80	356	336	316	297	277	257	237	62.5
85	335	316	298	279	261	242	223	59.21
90	316	299	281	264	246	229	211	56.25
95	300	283	266	250	233	216	200	53.58
100	285	269	253	237	221	206	190	50.62
105	271	256	241	226	211	196	181	48.21
110	259	244	230	216	201	187	173	46.02
115	248	234	220	206	193	179	165	44.02
120	237	224	211	198	185	171	158	42.18
125	228	215	203	190	177	165	152	40.50
130	219	207	195	183	170	158	146	38.94
135	211	199	188	176	164	152	141	37.50
140	203	192	181	170	158	147	136	36.16
145	196	185	175	164	153	142	131	34.91
150	190	179	169	158	148	137	127	33.75
155	184	174	163	153	143	133	122	32.66
160	178	168	158	148	138	129	119	31.64
			The second second		The second second second			The second secon

The length L should never exceed 10 ft. and $\frac{N}{D}$ -1 should not be more than 10 ft.

† When Al is the distinguishing letter Table No. 78 may be used when the length does not exceed 4.625 feet; above 160 lbs., see Table No. 284.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D=Diameter of furnace in inches. N=Numeral applicable to the case.

 $\frac{N}{D} - 1 = L.$ $\frac{N}{L+1} = D.$ (L+1) D=N. L=Length of furnace in feet.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

FURNACES PLAIN CYLINDRICAL. TABLE No. 76. Iron Plates $\frac{19}{32}$ inch thick.

Pressures and Numerals for Lengths and Diameters.

sure or in.	Numerals.									
Pressure per sq. in.	A1†A	B N	C N	D N	E N	F	G N	mum Diam.*		
lbs.								ins.		
5										
10										
15				•••						
20						•••	•••			
25		•••				•••				
30		• • •	•••				***			
35		•••	• • •				•••			
40	•••	•••	• • •	•••			***			
45	•••	•••	•••	•••	•••		***			
50	•••	***	•••	•••	•••		•••			
55		***			•••		• • •			
60	***	•••	•••	•••	•••	•••	***			
65	***	400	***			•••	***	70		
70	453	428	403	378	353	327	302	72		
75	423	400	376	353	329	306	282	70.31		
80	397	375	353	331	308	286	264	66·17 62·5		
85	373	353	332 313	311 294	290	$\frac{270}{255}$	249	59.21		
90 95	353 334	333 315	297	278	274 260	255	$\frac{235}{223}$	56.25		
100	317	300	282	264	247	229	212	53.43		
105	302	285	269	252	235	218	201	50.89		
110	288	272	256	240	224	208	192	48.57		
115	276	261	245	230	215	199	184	46.46		
120	264	250	235	220	206	191	176	44.53		
125	254	240	226	212	197	183	169	42.75		
130	244	231	217	203	190	176	163	41.10		
135	235	222	209	196	183	170	157	39.58		
140	227	214	201	- 189	176	164	151	38.16		
145	219	207	195	182	170	158	146	36.85		
150	212	200	188	176	165	153	141	35.62		
155	205	193	182	171	159	148	136	34.47		
160	198	187	176	165	154	143	132	33.39		
	1	1	1	1	1	1	1			

The length L should never exceed 10 ft. and $\frac{N}{D}$ - 1 should not be more than 10 ft.

† When Al is the distinguishing letter Table No. 78 may be used when the length does not exceed 4.937 feet; above 160 lbs., see Table No. 284.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D = Diameter of furnace in inches.

N=Numeral applicable to the case. $\frac{N}{D}$ -1=L. $\frac{N}{L+1}$ =D. (L+1) D=N. L = Length of furnace in feet.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

FURNACES PLAIN CYLINDRICAL. TABLE No. 77. Iron Plates $\frac{5}{3}$ inch thick.

Pressures and Numerals for Lengths and Diameters.

Pressure per sq. in.			1	Numerals				÷ = *
per per sq. in.	Al†A N	В	C	D N	E	F	G N	Maxi- mum Diam.*
_	N	N	N	N	N	N	N	
lbs.								ins.
5	•••	•••		•••	•••	•••	•••	
10	***	•••	•••	•••	•••	•••		
15	•••	•••	•••	•••	•••	•••	•••	
20	•••	•••	•••	•••	•••	•••		
25		•••	•••		•••	•••		
30	•••	•••	•••	•••	•••	•••	•••	•••
35	***	•••	•••	•••	•••	•••	•••	•••
40	•••	•••	•••		•••	•••	•••	•••
45		•••	•••	•••	•••	•••	***	•••
50	•••	***	•••	•••	•••	***	•••	
55	•••	•••	•••	• • • •	•••	•••	•••	
60	••	•••	•••	•••	•••	•••	•••	••
65	• • •	•••	•••	***	•••	•••	•••	
70	***	110	4117			***	***	70
75	469	443	417	391	365	339	313	72
80	439	415	391	366	342	317	293	70.31
85	414	391	368	345	322	299	276	66.17
90	391	369	347	326	304	282	260	62.5
95	370	350	329	308	288	267	247	59.21
100	352	332	313	293	273	254	234	56.25
105	335	316	298	279	260	242	223	53.57
110	320	302	284	266	249	231	213	51.13
115	306	289	272	255	238	221	204	48.91
120	29 3	277	260	244	228	212	195	46.87
125	281	266	250	234	219	203	188	45
130	270	255	240	225	210	195	180	43.26
135	260	246	231	217	203	188	174	41.66
140	251	237	223	209	195	181	167	40.17
145	242	229	216	202	189	175	162	38.79
150	234	221	208	195	182	169	156	37.5
155	227	214	202	189	176	164	151	36.29
160	220	208	195	183	171	159	146	35.15
		-	-	-		1		-

The length L should never exceed 10 ft., and $\frac{N}{D} - 1$ should not be more than 10 ft.

† When AI is the distinguishing letter, Table No. 78 may be used when the length does not exceed 5.25 feet; above 160 lbs., see Table No. 284.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D = Diameter of furnace in inches. N=Numeral applicable to the case.

L=Length of furnace in feet. $\frac{N}{D}-1=L$. $\frac{N}{L+1}=D$. (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

FURNACES WITH FLANGED JOINTS.

Iron Plates from 1/4 inch to 5/8 inch thick.

Table No. 78, immediately following, and No. 284, are only for furnaces of ordinary diameters, made of rings welded longitudinally and flanged at the ends, and, when there is more than one ring, riveted together so as to form a complete furnace, and for furnaces whose length is equal to or shorter than that given opposite the thickness, being dealt with and found in the column "maximum lengths for thickness."

These Tables are only intended for furnaces made of the highest quality of iron, and when the length, or the distance, between the centres of flanges of the rings, when they are made of more than one ring, does not exceed that given in the column headed "maximum lengths for thickness;" when the length, or the distance, between the rings exceeds that given, the pressure or other particulars should be found from the Tables Nos. 65 to 77, or Nos. 271 to 283.

N = Numeral for pressure.

C = Constant for thickness.

D = Diameter of furnace, in inches, outside.

l = Length or distance between centres of flanges, in inches.

B = Working pressure, in lbs., per square inch.

$$\frac{C-l}{N} = D.$$

$$C-ND = l.$$

$$ND+l = C.$$

$$\frac{C-l}{D} = N.$$

(1) The maximum diameter a furnace should be for a given working pressure, if the thickness of iron plate and the length, or the distance, in inches, between the centres of the flanges be known, may be found by subtracting the length, or the distance, between the centres of flanges, in inches, from the thickness constant opposite the given thickness, and dividing the result by the numeral opposite the given C - L

pressure; or, the diameter should not exceed $\frac{C-l}{N}$.

If the thickness of the iron plates of a furnace be %,6 inch, the length, or the distance, between the centres of flanges 24 inches, the pressure required 150 lbs., and the maximum diameter has to be determined:—

Then, if 24, the length, or distance, in inches, between the centres of flanges, be subtracted from 156.75, the constant found opposite the thickness, and the remainder divided by 3, the

numeral found opposite the pressure, 150, the result is the maximum outside diameter the furnace should be,

or
$$\frac{156.75 - 24}{3} = 44.25 = D$$
,

or 441/4 inches.

(2) The maximum length, or the distance, in inches, between the centres of the flanges of a furnace, can be determined if the working pressure, thickness of iron plates, and diameter are known, by multiplying the numeral, opposite the given pressure, by the diameter and subtracting the product from the thickness constant opposite the given thickness; or, the length, or distance, in inches, between the centres of flanges, should not exceed C-ND.

If the working pressure is required to be 135 lbs., the thickness of the iron plate ½ inch, and the outside diameter 34 inches, and the maximum length, or distance, in inches, between the centres of flanges

has to be determined :-

Then if 2.7, the numeral found opposite the pressure, 135, be multiplied by 34, the diameter, and the product subtracted from 138, the constant found opposite the thickness, ½, the remainder is the maximum length, or distance, in inches, between the centres of the flanges,

or,
$$2.7 \times 34 = 91.8$$
, and $138 - 91.8 = 46.2 = l$,

or the maximum length should be, say, 461/4 inches.

(3) The minimum thickness of iron plates of a furnace can be determined if the working pressure, diameter and length, or distance, in inches, between the centres of the flanges, be known, by adding the length, or distance, in inches, between the centres of the flanges to the product of the diameter and the numeral opposite the given pressure; or, the thickness constant should not exceed ND+L

If the working pressure is required to be 100 lbs., the outside diameter 38 inches, and the length, or distance, between the centres of flanges 24 inches, and the minimum thickness of the iron plate has to

be determined :-

Then if 24, the length, be added to the product of 2 the numeral found opposite 100, the working pressure, and 38 the diameter, the result is 100, which is practically the constant found opposite 3/4, the thickness,

or,
$$2 \times 38 + 24 = 100 = C$$
,

which gives % inch, the thickness of the plate.

(4) The working pressure for a furnace made of iron plates, if the thickness, diameter, and length, or distance, in inches, between the centres of the flanges, is known, may be found opposite the numeral obtained by subtracting the length, in inches, from the thickness

constant, opposite the given thickness, and dividing by the diameter; or, the numeral should not be greater than $\frac{C-l}{D}$.

(5) If the thickness of the iron plate be \(^{7}\)_{6} inch, the outside diameter 36 inches, and the length, or distance, between the centres of the flanges 20 inches, and the working pressure is required to be determined:—

Then, if 20, the length, or distance, in inches, between the centres of the flanges, be subtracted from 119.25, the constant opposite \(\frac{1}{6} \), the thickness, and the remainder divided by 36, the diameter, the result is the numeral opposite which the working pressure is found,

or,
$$119 \cdot 25 - 20 = 99 \cdot 25$$
.
and $\frac{99 \cdot 25}{36} = 2 \cdot 756 = N$,

which is slightly in excess of the numeral found opposite 135 lbs. pressure; therefore, the working pressure is, say, 135 lbs. = B.

When furnaces are made with flanged joints, it is well to have the

radius of the flange on the fire side about 1.5 inch.

The flanges should be kept as near the original thickness of the plate as is practicable, and after all heating, welding, and flanging is completed, the lengths should be efficiently annealed before being riveted. If there are any signs of defects in the flanging, the defective

length should not on any account be used.

The distance between the edges of the rivet holes to the edges of the flange should not be less than the diameter of the rivet. The rivets should be of good size, the diameter at least ¾ inch more than the thickness of the plates, and the heads should not be too large. The depth of the strip or ring between the flanges should not be less than three times the diameter of the rivets, and the thickness may be about one half the thickness of the furnace plates. To make a first-class job the ring should be turned.

The holes in the flanges should be drilled; but when not drilled in place, they should be drilled sufficiently less in diameter to insure that when rimered out, fair and perfect holes are formed. It is advisable to have a little taper in the holes in each flange; this will allow the

heads of the rivets to be kept of moderate size.

So long as the pressure and diameter remain the same, then for every thirty-second of an inch the plate is increased in thickness, the length between the centres of the flanges may be increased about 9% inches, provided it does not exceed the length in column "Maximum Lengths for Thickness in Inches" opposite the thickness being dealt with. See Table No. 78.

These notes and the Table which follows are only intended for furnaces which are flanged by a suitable machine and one flange

completed at one heat.

FURNACES WITH FLANGED TABLE No. 78. JOINTS.

Iron Plates from $\frac{1}{4}$ inch to $\frac{5}{8}$ inch thick.

Pressure per sq. in.	† Pressure Numerals.	Consta Thiel	nts and Maximum Ler knesses which they are	igths for the e opposite.
lbs. 5 10 15 20	N	Thickness.	Constants.	*Maximum Lengths for Thickness in inches.
25		Inches.	С	
30				
35		1/4	63.0	18.0
40 45		9/32	72:375	21.75
50 55	1·0 1·1	5/16	81.75	25.20
60 65	1·2 1·3	11/32	91.125	29.25
70 75	1·4 1·5	3/8	100.50	33.0
80 85	1.6 1.7	13/32	109.875	36.75
90 95	1.8 1.9	7/16	119.25	40.50
100 105	2·0 2·1 2·2	15/32	128.625	44.25
110 115 120	2·3 2·4	1/2	138.0	48.0
125 130	2·5 2·6	17/32	147.375	51.75
135 140	2·7 2·8	%16	156.75	55.20
145 145 150	2·9 3·0	1 9/3 2	166.125	59.25
155 160	3·1 3·2	5/8	175.50	63.0

^{*} The lengths opposite the thickness in each case are the maximum lengths, in inches, between the centres of the flanges, for which the Tables should be used. When the length exceeds that opposite the given thickness then the pressure may be found from Tables Nos. 65 to 77.

pressure may be found from Tables Nos. 65 to 77. N=Pressure numeral. C=Thickness constant. D=Diameter, outside, in inches. l=Length between centres of flanges, in inches. + Above 160 lbs., see Table 284.

$$\frac{C-l}{N}$$
 = D. C-ND = l. ND+l = C. $\frac{C-l}{D}$ = N.

FURNACES, CORRUGATED, CYLINDRICAL. Iron Plates from ¼ inch to ¼ inch thick.

By the Tables Nos. 79 and 80, immediately following, and No. 285, the maximum diameter, the working pressure, and the thickness of the plate, can be determined when the plates, of which the furnaces are

made, are of the highest quality.

The tables are only intended for furnaces which are machine-made and when the pitch of the corrugations is 6 inches, the depth from top of corrugation outside, to bottom of corrugation inside, not less than 2 inches, and the plain parts at the ends not more than 6 inches in length. When the corrugations are not made by machine, the working pressure should not be so great as that found by the tables, as furnaces, when they are not corrugated by a machine, are not so reliable.

The mean diameter, for the purpose of determining the pressure or thickness, is half the sum of the two outside diameters, the one being that measured from the top of the corrugations, the other from the bettom of the corrugations; or, the sum of the maximum and minimum diameters inside, *plus* four times the thickness of the plate divided by

two, equals the mean diameter.

D = Mean diameter, in inches.

T = Thickness, in inches.

B = Working pressure, in lbs., per square inch.

The maximum mean diameter, in inches, to which corrugated furnaces should be made, if constructed of iron plates of the highest quality, the thickness of plate and the working pressure being determined, is found in the column under the given thickness of plate, and opposite the given pressure; or if the pressure and diameter be determined, the thickness to which the plate should be made is found at the head of the column above the given diameter, opposite the given pressure; or the pressure for a known thickness and diameter is that found opposite such diameter in the column under the given thickness.

If the pressure is required to be 100 lbs., and the thickness of the iron plate is ½ inch, and the maximum mean diameter is required:—

Then, opposite 100 lbs., the pressure, and in the column under ½ inch, the thickness, 45 is found, which is the maximum mean diameter in inches.

45 - D.

If the pressure is required to be 100 lbs., the mean diameter 45 inches, and the thickness of the iron plate has to be determined:—

Then, opposite 100 lbs., the pressure, 45, the diameter, is found in the column under ½ inch, which is the minimum thickness the iron plate should be,

If the working pressure has to be determined when the thickness of the iron plate is $\frac{1}{2}$ inch and the mean diameter is 45 inches:—

Then, in the column under ½ inch, the thickness, 45, the diameter, is found, and opposite it the pressure is 100 lbs., which is the maximum working pressure in lbs.

100 = B

If the plates of which iron corrugated furnaces are made, are not entirely free from laminations, they will be sure to become defective at a very early period of their existence.

193 FURNACES, CORRUGATED, CYLINDRICAL.

Iron Plates from ¼ inch to ¼ inch thick.

Pressures and Diameters when Machine made.

per nch.			Thicknes	sses and Di	ameters.*				
Pressure per square inch.	1/4 in.	9/32 in.	5/16 in.	1 1/3 2 in.	3% in.	13/32 in.	7/16 in.		
Pre squ	Diameter in inches.								
lbs.									
5	,	•••		•••					
10			•••	***	•••	•••			
15	•••		•••	••• •	•••				
20	•••	•••		***	•••				
25		•••	***	***	•••	•••			
30	•••	***		•••	•••	•••			
35	***			•••	•••	•••	***		
40	56.25	F 2.05	•••		***	•••			
45 50	50.0	56.25	 *a.o*		•••				
55	45.0	50.62	56.25	FA.05	***	***	***		
60	40·9 37·5	46.02 42.18	51·13 46·87	56.25	F0.0F	•••	•••		
65				51.56	56.25	F.G. OF	•••		
70	34.61 32.14	38·94 36·16	43.26 40.17	47.59 44.19	51.92 48.21	56.25	F.C.OF		
75	30.0	33.75	37:5	41.25	45.0	52·23 48·75	56·25 52·5		
80	28.12	31.64	35.15	38.67	42.18	48.75	49.21		
85	26.47	29.77	33.08	36.39	39.70	43.01	46.32		
90	25.0	28.12	31.25	34.37	37.5	40.62	43.75		
95	23.68	26.64	29.60	32.56	35.52	38.48	41.44		
100	22.5	25.31	28.12	30.93	33.75	36.56	39.37		
105	21.42	24.10	26.78	29.46	32.14	34.82	37.5		
110	20.45	23.01	25.56	28.12	30.68	33.23	35.79		
115	19.56	22.01	24.45	26.90	29.34	31.79	34.23		
120	18.75	21.09	23.43	25.78	28.12	30.46	32.81		
125	18.0	20.25	22.5	24.75	27.0	29.25	31.5		
130	17:3	19.47	21.63	23.79	25.96	28.12	30.28		
135	16.66	18.75	20.83	22.91	25.0	27.08	29.16		
140	16.07	18.08	20.08	22.09	24.10	26.11	28.12		
145	15.51	17.45	19:39	21.33	23.27	25.21	27.15		
150	15.0	16.87	18.75	20.62	22.5	24.37	26.25		
155	14.51	16.33	18.14	19.95	21.77	23.58	25.4		
160	14.06	15.82	17.57	19:33	21.09	22.85	24.6		

^{*} The diameter is the mean diameter, which is half the sum of the outside diameters, the one being that measured from the top of the corrugations, the other from the bottom of the corrugations.

Iron Plates from 15/32 inch to 5/8 inch thick. Pressures and Diameters when Machine made.

TABLE No. 80.

per nch.		Т	Thicknesses a	nd Diameter	s.*					
Pressure per square inch.	15/32 in.	½ in.	¹⁷ / ₃₂ in.	%16 in.	19/32 in.	5/8 in.				
Pre	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.				
lbs.										
5		•••	•••	•••	•••					
10		•••	•••							
15		•••	•••		•••					
20		***	•••	•••	•••	•••				
25		•••	•••	•••	•••	•••				
30			•••	•••	•••	***				
35 40	•••	***	•••	•••	•••	••				
45		•••	•••	•••	•••	•••				
50		•••	•••	•••		•••				
55		•••	•••	•••	•••	•••				
60		•••	***	•••	•••	***				
65		•••	•••	•••	•••	•••				
70		•••	•••	•••	•••	•••				
75	56.25	•••	•••	•••	•••	•••				
80	52.73	56.25	•••		•••					
85	49.63	52.94	56.25		•••	•••				
90	46.87	50.0	53.12	56.25		•••				
95	44 40	47.36	50.32	53.28	56.25					
100	42.18	45.0	47.81	50.62	53.43	56.25				
105	40.17	42.85	45.53	48.21	50.89	53.57				
110	38.35	40.90	43.46	46.02	48.57	51.13				
115	36.68	39.13	41.57	44.02	46.46	48.91				
120	35.15	37.5	39.84	42.18	44.53	46.87				
125	33.75	36.0	38.25	40.5	42.75	45.0				
130	32.45	34.61	36.77	38.94	41.1	43.26				
135	31.25	33.33	35.41	37.5	39.58	41.66				
140	30.13	32.14	34.15	36.16	38.16	40.17				
145	29.09	31.03	32.97	34.91	36.85	38.79				
150	28.12	30.0	31.87	33.75	35.62	37.5				
155	27.21	29.03	30.84	32.66	34.47	36.29				
160	26.36	28.12	29.88	31.64	33.39	35 15				

^{*} The diameter is the mean diameter, which is half the sum of the outside diameters, the one being that measured from the top of the corrugations, the other from the bottom of the corrugations.

FLAT SURFACES, PRESSURES, PITCHES, AND SURFACES.

Steel Plates.

In the Tables Nos. 81 to 109, which immediately follow, and Nos. 286 to 314, pitches are given from about 21 inches to 3½ inches, and surfaces, from about 440 square inches to 12½ square inches, with the thickness of plates and pressures suitable for the different pitches and surfaces, according to the particular conditions under which the pressures, pitches, and surfaces are applicable. The pressures range from 5 lbs. to 200 lbs. per square inch. The thicknesses of the plates range from ½ to 1½ inch, each Table advancing by ½ of an inch.

The following notes and remarks will facilitate the use of the Tables

Nos. 81 to 109, also Nos. 286 to 314.

The distinguishing letters over the different columns in each table, refer to the conditions under which the pitches and surfaces are suitable for the working pressure, opposite the particular pitch and surface, when the plates are of the thickness given at the head of the table; and consequently opposite the particular pressure will be found the pitches and surfaces suitable for the working pressure for the thickness of plate at the head of the table.

The following are the conditions to which each distinguishing letter in the tables refers, showing under which distinguishing letter the pitches and surfaces should be looked for in the table for the suitable

thickness of plate.

Distinguishing Letters. IX tinguishing Letters.

A₁. If the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and strips of at least the thickness of the plates they cover, and of a width not less than ½ the pitch of the stays, and the strips are properly riveted to the outside of the plates, then the maximum working pressure is that found opposite the pitch or surface in column.

A1.

B₁. If the plates are *not* exposed to the impact of heat or flame, and the stays are fitted with nuts and washers of at least the thickness of the plates they cover, and of a diameter not less than % the pitch of the stays, and the washers are properly riveted on the outside of the plates, then the maximum working pressure is that found opposite the pitch or surface in column, . . .

В.,

Distinguishing Letters. Distinguishing Letters.

Letter	s. L	ette.
C _{1*}	If the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts and washers of at least % the thickness of the plates they cover, and of a diameter of not less than 3 times the diameter of the stay, over the thread, then the maximum working pressure is that found opposite the pitch or surface in column,	C ₁ .
D ₁ .	If the plates are not exposed to the impact of heat or flame, and the stays are fitted with nuts only, then the maximum working pressure is that found opposite the pitch or surface in column,	Dı
E ₁ .	If the plates are exposed to the impact of heat or flame, and water is in contact with the plates, and the stays are screwed into the plates and fitted with nuts, then the maximum working pressure is that found opposite the pitch or surface in column,	E ₁ .
F ₁ G ₁ .	If the plates are not exposed to the impact of heat or flame, and water is in contact with the plates, and the stays are screwed into the plates, and the ends of the stays are riveted over, so that substantial heads are formed, then the maximum working pressure is that found opposite the pitch or surface in column,	$\mathbf{F_1G_2}$
F ₁ G ₁ .	flame, and steam is in contact with the plates, and the stays are fitted with nuts and washers of at least % the thickness of the plates they cover, and of a diameter not less than 3 times the diameter of the stay, over the thread, then the maximum work- ing pressure is that found opposite the pitch or surface	$\mathbf{F_1}\mathbf{G}$
r G ₁ .	If the plates are exposed to the impact of heat or flame, and water is in contact with the plates, and the stays are screwed into the plates, and the ends of the stays are riveted over, so that substantial heads are formed, then the maximum working pressure is that found opposite the pitch or surface in column,	r G,

Distinguishing Letters.

Distinguishing Letters.

H,. If the plates are exposed to the impact of heat or flame, and steam is in contact with the plates, and the stays are fitted with nuts only, then the maximum working pressure is that found opposite the pitch or surface in H1.

If the plates are exposed to the impact of heat or flame, L1. and steam is in contact with the plates, and the stays are screwed into the plates, and the ends of the stays are riveted over, so as to form substantial heads, then the maximum working pressure is that found opposite the pitch or surface in column, .

In any case where the material or workmanship is defective, or the nuts or ends of the stays, &c., are defective, the working pressure should be less than that found opposite the pitches and surfaces which are applicable for cases where all is first-class as to material, workmanship, and condition.

The following examples will further facilitate the use of the

tables :-

(1) To find the working pressure for a given thickness of steel plate

and a given pitch or surface.

If the steel plate be % inch thick, the surface 256 and pitch 16 inches, and the conditions of the case make the surface and pitch in column B, applicable: then, in Table No. 91, which is for ⁹/₁₆ inch steel plates in column B₁, the surface 256 is found, and the pitch is 16 inches, opposite which the pressure is found to be 75 lbs. per square inch.

(2) To find the pitch or surface for a given pressure and a given

thickness of steel plate.

If the steel plate be $\frac{9}{16}$ inch thick, and the pressure 75 lbs. per square inch, and the conditions of the case make it necessary to select the surface in column B1: then, in Table No. 91, which is for % inch steel plates, opposite 75 lbs. in column B1, is found 256, which is the surface in square inches, the pitch being 16 inches.

(3) To find the thickness of steel plate for a given pitch or surface

and a given pressure.

If the surface be 256 square inches, and the pressure 75 lbs. per square inch, and the conditions of the case make it necessary to select the surface or pitch in column B₁: then, opposite 75 lbs. pressure, the surface 256 and pitch 16 inches are found in column B, in Table No. 91, and the thickness of steel plate is found to be 9/16 inch.

Or, if W=working pressure, p=pitch, S=surface, and T=thickness of steel plate, and if $A_1-B_1-C_1-D_1-E_1-F_1G_1-r$ G_1-H_1 and I_1 , are the letters at the heads of the different columns, indicating the columns where the surface applicable to the case must be looked for then:—

(1) To find W—when $T={}^{9}\!/_{16}$ inch, S=256, p=16, and B_{1} the distinguishing letter of column from which the surface or pitch must be selected.

In the Table No. 91 for $\%_{16}$ inch steel plates in column B_1 the surface 256 is found, and opposite the surface is 75 lbs., which is the working pressure required to be found.

(2) To find S or p—when $T=\frac{9}{16}$ inch, W=75 lbs., and B_1 the distinguishing letter of column, in which the surface or pitch must be looked for.

In the Table No. 91 for $^{9}/_{16}$ inch steel plates, opposite 75 lbs. in column B_{1} , 256 and 16 are found, which are the surface and pitch required.

(3) To find T—when W = 75 lbs., S = 256, p = 16, and B_1 the distinguishing letter of column in which the surface must be selected:—

The surface and pitch are large, but as the pressure is only moderately high and there are riveted washers, the steel plates need not be thick, and on looking down the Table No. 91 for $\%_{16}$ inch steel plates, opposite 75 lbs. in column B_1 are found 256 and 16, therefore $=T\%_{16}$ inch, which is the thickness of steel plate required to be found.

If in any of the foregoing examples the pitches only, or the surfaces only had been under consideration instead of both pitches and surfaces, the method of ascertaining either would have been exactly the same; as the pitches and surfaces are in each case given opposite the pressure

under the distinguishing letter applicable to the case.

The pitches are given in inches and decimal parts of an inch, the latter can, if required, be easily converted into vulgar fractions, and when this is done, if the decimal part is not found equal to, say, \(\frac{1}{4}\epsilon\) part of an inch, it is advisable in practice to make the pitch to the sixteenth below, and such a small difference will be on the side of safety. If, for example, the pitch in the Table be 10.77 inches, it may in practice be 10% inches, if vulgar fractions be preferred to decimals.

As it is desirable that flat surfaces should be supported by stays forming squares, the following tables have been prepared for surfaces with stays pitched in squares or nearly so. When, however, there is a considerable difference in the pitches, it is thought prudent that the

pressure should not be so great; therefore, when the surface to be supported is obtained by the product of two pitches which are considerably different, the pressure which may be used will not be that opposite the surface, but may be easily found.

For example:—

If the pitches are as 4 to 3, the pressure opposite the surface or product of the two pitches may be reduced about 4 per cent.; when as 3 to 2, about 8 per cent.; when as 5 to 3 about 12 per cent.; and when as 2 to 1, the reduction of pressure may be about 20 per cent

The thicknesses given in the Tables are intended to provide for stresses due to the steam pressure upon the stayed flat plate, and when a flat plate is subjected to additional stresses, these should be duly considered; such additional stresses may be tensile or compressive; in both cases the thickness of the plate should be adequately increased, or other efficient means adopted to meet the requirements of the case.

TABLE No. 81.

Pressures, Pitches, and Surfaces.
Steel Plate 4 inch thick.

Pressure per sq. in.	*	A ₁	*	B_1	*	C ₁	*	D ₁	*]	Ξ_1
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5 10	•••	•••	•••	•••	17.84	318.5	16.94	287.2	16.00	256.0
15	70.40	339.3	17.84	318.5	14.64	214.3	13.91	193.5	13.14	172.6
20	18·42 16·00	256.0	15.50	240.3	12.73	162.2	12.10	146.6	11.44	131.0
$\frac{20}{25}$	14.35	206.0	13.91	193.5	11.44	131.0	10.88	118.5	10.29	106.0
30	13.14	172.6	12.73	162.2	10.49	110.1	9.98	99.7	9.45	89.3
35	12.20	148.8	11 83	139.9	9.76	95.2	9.29	86.3	8.80	77.4
	11.44	131.0	11.09	123.1	9.17	84.1	8.73	76.3	8.27	68.5
40 45	10.82	117.1	10.49	110.1	8.68	75.4	8.27	68.5	7.84	61.5
50	10.29	106.0	9.98	99.7	8.27	68.5	7.89	62.2	7.48	56.0
55	9.84	96.9	9.55	91.2	7.92	62.8	7.55	57.1	7.17	51.4
60	9.45	89.3	9.17	84.1	7.62	58.0	7.27	52.8	6.90	47.6
65	9.10	82.9	9 17		7.35	54.0	7.02	49.2	6.66	44.4
70			• • • •	•••	7.11	50.6	6.79	46.1	6.45	41.7
75		•••	•••	•••	6.90	47.6	6.59	43.5	6.27	39.3
80	•••	•••	•••	•••	6.71	45.0	6.41	41.1	6.09	37.1
85	•••	•••	•••	•••	6.54	42.7	6.25	39.0	5.88	34.5
90	•••		•••	•••	6.38	40.7	6.09	37.1	5.69	32.3
95	•••	•••	•••	•••	6.23	38.8	5.90	34.8	5.52	30.4
100	•••		•••	•••	6.09	37.1	5.73	32.8	5.36	28.7
105	•••	•••	•••		5.92	35.0	5.57	31.0	5.22	27.3
110	•••	***	•••		5.76	33.2	5.43	29.5	5.10	26.0
115	•••	•••	•••	•••	5.62	31.5	5.30	28.1	4.98	24.8
$\frac{110}{120}$	•••	•••		•••	5.48	30.1	5.18	26.8	4.88	23.8
$\frac{120}{125}$	•••	•••	•••	•••	5.36	28.7	5.07	25.7	4.78	22.8
$\frac{125}{130}$	•••	•••	•••	•••	5.25	27.6	4.97	24.7	4.69	22.0
135	•••	***	•••	•••	5.15	26.5	4.88	23.8	4.61	21.2
140	•••	•••	•••	•••	5.05	25.5	4.79	22.9	4.53	20.5
145	•••	•••	***	•••	4.96	24.6	4.71	22.2	4.46	19.9
150	•••	•••	•••	***	4.88	23.8	4.63	21.5	4.39	19.3
155	•••	•••	•••		4.80	23.0	4.56	20.8	4.33	18.7
160			•••		4.72	22.3	4.20	20.2	4.27	18.2
	*,	A ₁	*	B_1	*(*]	D_1	*	E_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Table No. 81 continued.

Steel Plate 1/4 inch thick.

Pressure per sq. in.	*F	1G1	*	H_1	*r	G_1	*	I ₁
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins. 19.52	sq. ins. 381.0	ins. 18.53	sq. ins. 343.5	ins. 18.33	sq. ins.	ins. 14.28	sq. ins. 204.0
5 10	13.91	193.5	13.22	174.7	13.07	171.0	10.24	105.0
15	11:44	131.0	10.88	118.5	10.77	116.0	8.48	72.0
20	9.98	99.7	9.50	90.3	9.40	.88.5	7.45	55.5
25	9.00	81.0	8.57	73.5	8.48	72.0	6.75	45.6
30	8.27	68.5	7.89	62.2	7.81	61.0	6.24	39.0
35	7.71	59.5	7.36	54.2	7.29	53.1	5.75	33.0
40	7.27	52.8	6.94	48.1	6.87	47.2	5.33	28.4
45	6.90	47.6	6.59	43.5	6.53	42.6	5.01	25.1
50	6.59	43.5	6.30	39.7	6.24	39.0	4.76	22.6
55	6.33	40.0	6.03	36.3	5.95	35.4	4.55	20.7
60	6.09	37.1	5.73	32.8	5.65	32.0	4.37	19.1
65	5.81	33.8	5.47	30.0	5.41	29.2	4.22	17.8
70	5.57	31.0	5.26	27.6	5.20	27.0	4.10	16.8
75	5.36	28.7	5.07	25.7	5.01	25.1	3.98	15.8
80	5.18	26.8	4.91	24.1	4.85	23.5	3.85	14.8
85	5.02	25.2	4.76	22.7	4.71	22.2	3.73	13.9
90	4.88	23.8	4.63	21.5	4.58	21.0	3.63	13.2
95	4.75	22.5	4.52	20.4	4.47	20.0	3.53	12.5
100	4.63	21.5	4.41	19.5	4.37	19.1		
105	4.53	20.5	4.32	18.7	4.28	18.3		
110	4.43	19.7	4.24	17.9	4.20	17.6		
115	4.35	18.9	4.16	17:3	4.12	17.0		
120	4.27	18.2	4.09	16.7	4.05	16.4		•••
125	4.20	17.6	4.02	16.2	3.98	15.8		
130	4.13	17.0	3.94	15.5	3.90	15.2		
135	4.07	16.5	3.87	15.0	3.83	14.6		
140	4.01	16.0	3.80	14.4	3.76	14.1	•••	
145	3.94	15.5	3.73	13.9	3.69	13.6	***	
150	3.87	15.0	3.67	13.5	3.63	13.2		•••
155	3.81	14.5	3.61	13.0	3 57	12.7	***	•••
160	3.75	14.0	3.22	12.6	3.21	12.3	•••	•••
	*F	G_1	*]	I_1	*r	G_1	*	I ₁

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No 82.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{9}{32}$ inch thick.

Pressure per sq. in.	*	A_1	*	B_1	*	C ₁	*]	D_1	*	E ₁
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10					19.60	384.1	18.61	346.3	17.56	308.2
15	20.23	409.3	19.60	384.1	16.06	258.0	15.26	232.8	14.41	207.6
20	17.56	308.5	17.01	289.5	13.96	195.0	13.27	176.1	12.54	157.2
25	15.74	248.0	15.26	232.8	12.24	157.2	11.92	142.1	11.27	127.0
30	14.41	207.6	13.96	195.0	11.49	132.0	10.95	119.4	10.33	106.8
35	13.37	178.8	12.96	168.0	10.67	114.0	10.16	103.2	9.61	92.4
40	12.54	157.2	12.15	147.7	10.02	100.5	9.54	91.0	9.03	81.6
45	11.85	140.4	11.49	132.0	9.48	90.0	9.03	81.6	8.55	73.2
50	11.27	127.0	10.92	119.4	9.03	81.6	8.60	74.0	8.15	66.5
55	10.77	116.0	10.44	109.1	8.64	74.7	8.23	67.8	7.81	61.0
60	10.33	106.8	10.02	100.5	8.30	69.0	7.92	62.7	7.51	56.4
65	9.95	99.0	9.65	93.2	8.01	64.1	7.64	58.3	7.24	52.5
70	9.61	92.4	9.32	87.0	7.74	60.0	7.39	54.6	7.01	49.2
75	9.31	86.6	9.03	81.6	7.51	56.4	7.16	51.3	6.80	46.3
80	9.03	81.6			7.29	53.2	6.96	48.5	6.62	43.8
85					7.10	50.4	6.78	46.0	6.44	41.5
90					6.93	48.0	6.62	43.8	6.29	39.6
95			***		6.76	45.8	6.46	41.8	6.12	37.8
100					6.62	43.8	6.35	40.0	5.98	35.7
105					6.48	42.0	6.19	38.4	5.81	33.7
110					6.35	40.3	6.06	36.7	5.65	32.0
115					6.23	38.8	5.90	34.8	5.21	30.4
120					6.12	37.5	5.75	33.1	5.39	29.0
125					5.98	35.7	5.62	31.6	5.27	27.8
130					5.84	34.1	5.50	30.2	5.16	26.6
135					5.71	32.6	5.39	29.0	5.06	25.6
140					5.60	31.3	5.28	27.9	4.97	24.7
145					5.49	30.1	5.18	26.9	4.88	23.8
150					5.39	29.0	5.09	25.9	4.80	23.0
155				•••	5.29	28.0	5.01	25.1	4.72	22.3
160		•••		•••	5.20	27.1	4.93	24.3	4.65	21.6
	* :	1,	*	В	*	C ₁	*	D_1	*	E_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 82 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{9}{32}$ inch thick.

Pressure per sq. in.	*F	₁ G ₁	*]	H ₁	*r	G_1	*	I_1			
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	P:tch	Surface			
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.			
5			20.35	414.3	20.13	405.3	15.67	245.5			
10	15.26	232.8	14.49	210.1	14:34	205.6	11.21	125.7			
15	12.54	157.2	11.92	142.1	11.79	139.0	9.26	85.8			
20	10.92	119.4	10.39	108.0	10.28	105.8	8.11	65.8			
25	9.83	96.7	9.36	87.6	9.26	85.8	7:34	53.9			
30	9.03	81.6	8.60	74.0	8.51	72.5	6.77	45.9			
35	8.41	70.8	8.02	64.3	7.94	63.0	6.34	40.2			
40	7.92	62.7	7.55	57.0	7.47	55.9	5.94	35.3			
45	7.51	56.4	7.16	51.3	7.09	50.3	5.55	30.8			
50	7.16	51.3	6.84	46.8	6.77	45.9	5.24	27.5			
55	6.87	47.2	6.56	43.1	6.50	42.3	4.99	24.9			
60	6.62	43.8	6.35	40.0	6.26	39.2	4.78	22.8			
65	6.39	40.9	6.11	37.3	6.03	36.4	4.58	21.0			
70	6.19	38.4	5.85	34.2	5.77	33.3	4.44	19.7			
75	5.98	35.7	5.62	31.6	5.55	30.8	4.31	18.6			
80	5.75	33.1	5.42	29.4	5.36	28.7	4.19	17.6			
85	5.26	30.9	5.25	27.5	5.19	26.9	4.09	16.7			
90	5.39	29.0	5.09	25.9	5.03	25.3	4.00	16.0			
95	5.23	27.4	4.95	24.5	4.90	24.0	3.89	15.1			
100	5.09	25.9	4.83	23.3	4.78	22.8	3.79	14.3			
105	4.97	24.7	4.71	22.2	4.66	21.7	3.70	13.6			
110	4.85	23.5	4.61	21.3	4.56	20.8	3.61	13.0			
115	4.75	22.5	4.52	20.4	4.47	20.0	3.23	12.5			
120	4.65	21.6	4.43	19.6	4.39	19.2		•••			
125	4.56	20.8	4.35	18.9	4.31	18.6		•••			
130	4.48	20.1	4.28	18.3	4.24	17.9	***	•••			
135	4.41	19.4	4.21	17.7	4.17	17.4		•••			
140	4.34	18.8	4.15	17.2	4.11	16.9		•••			
145	4.27	18.2	4.09	16.7	4.05	16.4					
150	4.21	17.7	4.03	16.3	4.00	16.0		•••			
155	4.15	17.2	3.97	15.8	3.93	15.4					
160	4.10	16.8	3.91	15.3	3.87	14.9	•••	•••			
	*F	$_{1}G_{1}$	*1	\mathbf{H}_{1}	*r	G_1	*	I ₁			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{5}{16}$ inch thick.

-	-									
Pressure per sq. in.	. *	'A ₁	*	$^{+}B_{1}$	*	$^{\dagger}\mathrm{C}_{1}$	*	D_1	*	E_1
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.		sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
10		•••		•••		• • • •				
15		•••		•••	17.40		20.27	411.0	19.13	366.0
20	19.13	366.0	18.53	0.40.5	17.49	306.0	16.61	276.0	15.68	246.0
25	17.13	293.5		343.5	15.19	231.0	14.44	208.5	13.63	186.0
30	15.68	246.0	16.61 15.19	276.0	13.63	186.0	12.96	168.0	12.24	150.0
35	14.55	211.7	14.10	231.0	12.49	156.0	11.87	141.0	11.55	126.0
40	13.63	186.0	13.22	198.8	11.60	134.5	11.03	121.7	10.43	108.8
45	12.88	166.0	12.49	174.7	10.88	118.5	10.35	107.2	9.79	96.0
50	12.24	150.0		156.0	10.29	106.0	9.79	96.0	9.27	86.0
55	11.70	136.9	11.87	141.0	9.79	96.0	9.32	87.0	8.83	78.0
60	11.22	126.0	11:34	128.7	9.37	87.8	8.92	79.6	8.45	71.4
65	10.80	116.7	10.88	118.5	9.00	81.0	8.57	73.5	8.12	66.0
70	10.43	108.8	10.48	109.8	8.67	75.2	8.26	68.3	7.83	61.3
75	10.10	102.0	10·12 9·79	102.4	8:38	70.2	7.99	63.8	7.57	57.4
80	9.79	96.0		96.0	8.12	66.0	7.74	60.0	7.34	54.0
85	9.52	90.7	9.50	90.3	7.89	62.2	7.52	56.6	7.14	51.0
90	9 52		9.24	85.4	7.67	58.9	7.32	53.6	6.95	48.3
95	9.04	86.0	9.00	81.0	7.48	56.0	7.14	51.0	6.78	46.0
100		81.7	•••		7.30	53.3	6.97	48.6	6.62	43.8
105	•••	•••	***		7.14	51.0	6.82	46.5	6.48	42.0
110	***		•••		6.99	48.8	6.67	44.5	6.34	40.2
115	•••	•••	• • • •		6.84	46.9	6.54	42.8	6.22	38.7
120	•••	•••	•••		6.71	45.1	6.42	41.2	6.10	37.2
125			•••		6.59	43.5	6.30	39.7	5.95	35.4
130	•••		•••		6.48	42.0	6.19	38.4	5.81	33.7
135	•••		•••		6.37	40.6	6.08	37.0	5.68	32.2
140	•••		•••		6.27	39.3	5.95	35.4	5.26	30.9
	•••		•••		6.17	38.1	5.82	33.9	5.45	29.7
45	•••	•••			6.07	36.8	5.70	32.5	5.34	28.5
55	•••	•••	***		5.95	35.4	5.60	31.3	5.25	27.5
	•••	•••	•••		5.83	34.0	5.49	30.2	5.16	26.6
60	•••		•••		5.73	32.8	5.40	29.1	29.1 5.07 25	
	*A	1	*B ₁		*C	1	*D ₁		*E ₁	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 83 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{5}{16}$ inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*F	I_1	*r	G ₁	*1	1			
Pres per s	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface			
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins. 17:06	sq. ins. 291.1			
5	10.07	276:0	15.78	249.0	15.60	243.6	12.18	148.5			
10	16.61	186.0	12.96	168.0	12.82	164.4	10.05	101.0			
15	13.63 11.87	141.0	11.29	127.5	11.17	124.8	8.79	77.2			
20	10.67	114.0	10.15	103.2	10.05	101.0	7.93	63.0			
25 30	9.79	96.0	9.32	87.0	9.23	85.2	7.31	53.5			
35	9.11	83.1	8.68	75.4	8.59	73.8	6.83	46.7			
40	8.57	73.5	8.17	66.7	8.08	65.4	6.45	41.6			
45	8.12	66.0	7.74	60.0	7.66	58.8	6.13	37.6			
50	7.74	60.0	7.39	54.6	7.31	53.5	5.77	33.3			
55	7.42	55.0	7.08	50.1	7.01	49.2	5.47	29.9			
60	7.14	51.0	6.82	46.5	6.75	45.6	5.22	27.2			
65	6.89	47.5	6.58	43.3	6.52	42.5	5.00	25.0			
70	6.67	44.5	6.38	40.7	6.32	39.9	4.82	23.2			
75	6.48	42.0	6.19	38.4	6.13	37.6	4.66	21.7			
80	6.30	39.7	5.99	35.9	5.91	34.9	4.53	20.5			
85	6.14	37.7	5.78	33.4	5.71	32.6	4.40	19.4			
90	5.95	35.4	5.60	31.3	5.23	30.2	4.29	18.4			
95	5.76	33.2	5.43	29.5	5.36	28.8	4.20	17.6			
100	5.60	31.3	5.28	27.9	5.22	27.2	4.11	16.9			
105	5.45	29.7	5.15	26.5	5.09	25.9	4.03	16.2			
110	5.31	28.2	5.02	25.2	4.97	24.7	3.94	15.5			
115	5.19	26.9	4.91	24.1	4.86	23.6	3.85	14.8 14.2			
120	5.07	25.7	4.81	23.1	4.76	22.6	3.77	13.6			
125	4.97	24.7	4.71	22.2	4.66	21.7	3.70	13.1			
130	4.87	23.7	4.63	21.4	4.58	20.9	3.56	12.6			
135	4.78	22.8	4.55	20.7	4.50	20.2		120			
140	4.70	22.0	4.47	20.0	4.43	19.6		•••			
145	4.62	21.3	4.40	19.4	4.36	18.4					
150	4.55	20.7	4.34	18.8	4.29	16.4					
155	4.48	20.0	4.28	18.3	4.00	16.0					
160	4.41	19.5	4.22	17.8	4.01	100					
	*F ₁ G ₁		*H ₁		*r G ₁		*11				

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

TABLE No. 84.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{1}{32}$ inch thick.

-										
Pressure per sq. in.	*	A_1	*	В ₁	*	C ₁	*	D_1	Е	*1
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5	***			• • • •						
10									20.70	428.5
15					18.92	358.0	17.96	322.8	16.96	287.6
20	20.70	428.5	20.05	402.0	16.43	270.0	15.61	243.6	14.74	217.2
25	18.54	344.0	17:96	322.8	14.74	217.2	14.00	196.0	13.22	175.0
30	16.96	287.6	16.43	270.0	13.49	182.0	12.82	164.4	12.11	146.8
35	15.73	247.4	15.24	232.3	12.52	156.8	11.90	141.8	11.25	126.7
40	14.74	217.2	14.28	204.0	11.74	138.0	11.17	124.8	10.56	111.6
45	13.92	193.7	13.49	182.0	11.10	123.3	10.56	111.6	9.99	99.8
50	13.22	175.0	12.82	164.4	10.56	111.6	10.05	101.0	9.51	90.5
55	12.63	159.6	12.24	150.0	10.10	102.0	9.61	92.4	9.10	82.8
60	12.11	146.8	11.74	138.0	9.69	94.0	9.23	85.2	8.74	76.4
65	11.66	136.0	11.30	127.8	9.34	87.2	8.89	79.1	8.42	71.0
70	11.25	126.7	10.91	119.1	9.02	81.4	8.59	73.9	8.14	66.3
75	10.89	118.6	10.56	111.6	8.74	76.4	8.33	69.3	7.89	62.3
80	10.56	111.6	10.24	105.0	8.48	72.0	8.08	65.4	7.66	58.8
85	10.26	105.4	9.96	99.1	8.25	68.1	7.86	61.9	7.46	55.7
90	9.99	99.8	9.69	94.0	8.04	64.6	7.66	58.8	7.27	52.9
95	9.74	94.9	9.45	89.3	7.84	61.5	7.48	56.0	7.10	50.4
100	9.51	90.5	9.23	85.2	7.66	58.8	7.31	53.5	6.94	48.2
105	9.30	86.4	9.02	81.4	7.50	56.2	7.16	51.2	6.80	46.2
110	9.10	82.8			7.35	54.0	7.01	49.2	6.66	44.4
115					7.20	51.9	6.88	47.3	6.53	42.7
120					7.07	50.0	6.75	45.6	6.42	41.2
125					6.94	48.2	6.63	44.0	6.30	39.8
130					6.82	46.6	6.52	42.5	6.20	38.5
135					6.71	45.1	6.42	41.2	6.10	37.2
140					6.61	43.7	6.32	39.9	5.97	35.6
145					6.51	42.4	6.22	38.7	5.85	34.2
150					6.42	41.2	6.13	37.6	5.73	32.9
155					6.33	40.0	6.02	36.3	5.63	31.6
160					6.24	39.0	5.91	34.9	5.53	30.5
	* 1	Λ_1	*]	B ₁	*(C ₁	*]	01	E,	1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 84 continued.

Pressures, Pitches, and Surfaces.

Steel Plate 11 inch thick.

	5 2										
Pressure per sq. in.	*F	$_1G_1$	*	H_1	*r	G_1	*	[1			
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface			
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.			
5							18.45	340.6			
10	17.96	322.8	17.06	291.1	16.87	284.8	13.16	173.3			
15	14.74	217.2	14.00	196.0	13.85	191.9	10.84	117.5			
20	12.82	164.4	12.19	148.5	12 06	145.4	9.46	89.6			
25	11.52	132.7	10.95	120.0	10.84	117.5	8.54	72.9			
30	10.56	111.6	10.05	101.0	9.94	98.9	7.86	61.7			
35	9.82	96.5	9.35	87.4	9.25	85.6	7.33	53.8			
40	9.23	85.2	8.79	77.2	8.70	75.7	6.91	47.8			
45	8.74	76.4	8.33	69.3	8.24	67.9	6.57	43.1			
50	8.33	69.3	7.94	63.0	7.86	61.7	6.28	39.4			
55	7.97 63.6 7.66 58.8		7.60	57.8	7.53	56.7	6.00	36.0			
60		58.8	7:31	53.5	7.24	52.4	5.70	32.5			
65	7.40	54.7	7.06	49.8	6.99	48.9	5.45	29.7			
70	7.16	51.2	6.83	46.7	6.77	45.8	5.23	27.4			
75	6.94	48.2	6.63	44.0	6.57	43.1	5.05	25.5			
80	6.75	45.6	6.45	41.6	6.39	40.8	4.89	23.9			
85	6.57	43.2	6.28	39.5	6.23	38.8	4.74	22.5			
90	6.42	41.2	6.13	37.6	6.06	36.7	4.61	21.3			
95	6.27	39.3	5.95	35.4	5.87	34.5	4.50	20.2			
100	6.14	37.6	5.77	33.3	5.70	32.5	4.40	19.3			
105	5.97	35.6	5.61	31.5	5.54	30.7	4.30	18.5			
110	5.81	33.7	5.47	29.9	5.40	29.2	4.22	17.8			
115	5.66	32.0	5.34	28.5	5.27	27.8	4.14	17.2			
120	5.23	30.5	5.22	27.2	5.16	26.6	4.07	16.6			
125	5.40	29.2	5.11	26.1	5.05	25.5	4.01	16.0			
130	5.29	28.0	5.01	25.0	4.95	24.5	3.93	15.4			
135	5.18	26.9	4.91	24.1	4.86	23.6	3.85	14.8			
140	5.09	25.9	4.82	23.2	4.77	22.7	3.78	14.3			
145	5.00	25.0	4.74	22.5	4.69	22.0	3.72	13.8			
150	4.91	24.1	4.66	21.7	4.61	21.3	3.65	13.3			
155	4.83	23.3	4.59	21.1	4.54	20.6	3.59	12.9			
160	4.76	22.6	4.23	20.5	4.48	20.0	3.54	12.5			
	*F ₁ G ₁		*E	[1	*r G ₁ *I ₁			1			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{3}{8}$ inch thick.

_										
Pressure per sq. in	*	A ₁	*	B ₁	*	C ₁	*]	D_1	*]	E ₁
Pre: per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5				• • • •	• • • •					
10				•••			***			
15				•••	20.35	414.3	19.32	373.5	18.24	332.6
20					17.67	312.2	16.78	281.6	15.84	251.0
25	19.95	398.0	19.32	373.5	15.84	251.0	15.05	226.5	14.21	202.0
30	18.24	332.6	17.67	312.2	14.49	210.1	13.77	189.7	13.01	169.3
35	16.91	286.0	16.38	268.5	13.45	181.0	12.78	163.5	12.08	146.0
40	15.84	251.0	15.35	235.6	12.61	159.1	11.99	143.8	11.33	128.5
45	14.96	223.7	14.49	210.1	11.92	142.1	11.33	128.5	10.71	114.8
50	14.21	202.0	13.77	189.7	11.33	128.5	10.78	116.2	10.19	104.0
55	13.57	184.1	13.15	173.0	10.83	117.3	10.30	106.2	9.75	95.0
60	13.01	169.3	12.61	159.1	10.39	108.0	9.89	97.8	9.36	87.6
65	12.52	156.7	12.13	147.3	10.01	100.5	9.53	90.8	9.02	81.3
70	12.08	146.0	11.71	137.2	9.67	93.5	9.20	84.7	8.71	76.0
75	11.69	136.6	11.33	128.5	9.36	87.6	8.91	79.5	8.44	71.3
80	11.33	128.5	10.99	120.8	9.08	82.5	8.65	74.9	8.20	67.2
85	11.01	121.2	10.68	114.0	8.83	78.0	8.41	70.8	7.97	63.6
90	10.71	114.8	10.39	108.0	8.60	74.0	8.20	67.2	7.77	60.4
95	10.44	109.1	10.13	102.7	8.39	70.4	8.00	64.0	7.58	57.5
100	10.19	104.0	9.89	97.8	8.50	67.2	7.81	61.1	7.41	55.0
105	9.96	99.3	9.67	93.5	8.03	64.3	7.64	58.5	7.25	52.6
110	9.75	95.0	9.46	89.5	7.85	61.6	7.49	56.1	7.11	50.5
115	9.55	91.2	9.26	85.8	7.69	59.2	7.34	53.9	6.97	48.6
120	9.36	87.6	9.08	82.5	7.55	57.0	7.20	51.9	6.84	46.8
125	9.18	84.4			7.41	55.0	7.07	50.1	6.72	45.2
130	9.02	81.3	•••	•••	7.28	53.1	6.95	48.4	6.61	43.6
135					7.16	51.3	6.84	46.8	6.50	42.2
140					7.05	49.7	6.73	45.3	6.40	41.0
145					6.94	48.2	6.63	44.0	6.30	39.7
150					6.84	46.8	6.53	42.7	6.21	38.6
155					6.74	45.5	6.44	41.5	6.13	37.6
160					6.65 44.2		6.36 40.4		4 6.02 36.2	
	*	A ₁	*	B_1	*	C_1	*]	D_1	*	E_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 85 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{3}{8}$ inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*1	\mathbf{I}_1	*r	G ₁		$*I_1$			
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface			
lbs.	ins.	sq. ins.	ins.	sq. ins.	ıns.	sq. ins.	ins.	sq. ins.			
10	19.32	373.5	18.35	336.7	18.15	329.4	14.14	200.0			
15	15.84	251.0	15.05	226.5	14.88	221.6	11.63	135.3			
20	13.77	189.7	13.09	171.3	12.95	167.7	10.15	103.0			
25	12.37	153.0	11.76	138.3	11.63	135.3	9.14	83.6			
30	11.33	128.5	10.78	116.2	10.66	113.8	8.40	70.6			
35	10.53	111.0	10.02	100.5	9.92	98.4	7.83	61.4			
40	9.89	97.8	9.41	88.6	9.32	86.8	7.38	54.5			
45	9.36	87.6	8.91	79.5	8.82	77.8	7.00	49.0			
50	3.91	79.5	8.49	72.1	8.40	70.6	6.69	44.8			
55	8.53	72.8	8.13	66.1	8.05	64.8	6.42	41.2			
60	8.20	67.2	7.81	61.1	7.74	59.9	6.19	38.3			
65	7.90	62.5	7.54	56.8	7.46	55.7	5.93	35.1			
70	7.64	58.5	7.29	53.2	7.22	52.2	5.68	32.3			
75	7.41	55.0	7.07	50.1	7.00	49.0	5.46	29.9			
80	7.20	51.9	6.88	47.3	6.81	46.4	5.28	27.8			
85	7.01	49.2	6.70	44.9	6.63	44.0	5.11	26.1			
90	6.84	46.8	6.53	42.7	6.47	41.9	4.96	24.6			
95	6.68	44.6	6.38	40.8	6.32	40.0	4.83	23.3			
100	6.23	42.7	6.25	39.0	6.19	38.3	4.71	22.2			
105	6.40	41.0	6.12	37.5	6.04	36.5	4.60	21.2			
110	6.27	39.4	5.95	35.4	5.88	34.5	4.50	20.3			
115	6.16	37.9	5.80	33.7	5.73	32.8	4.41	19.5			
120	6.02	36.2	5.66	32.0	5.59	31.2	4.33	18.8			
125	5.88	34.5	5.23	30.6	5.46	29.9	4.26	18.1			
130	5.74	33.0	5.41	29.3	5.35	28.6	4.19	17.5			
135	5.62	31.6	5.30	28.1	5.24	27.5	4.12	17.0			
140	5.21	30.3	5.20	27.1	5.14	26.4	4.06	16.5			
145	5.40	29.2	5.11	26.1	5.05	25.5	4.01	16.0			
150	5.30	28.1	5.02	25.2	4.96	24.6	3.94	15.5			
155	5.21	27.2	4.94	24.3	4.88	23.8	3.87	15.0			
160	5.13	26.3	4.86	23.6	4.80	23.1	3.81	14.5			
	*F ₁ G ₁		*F ₁ G ₁		*F ₁ G ₁ *H		H_1	*r	G_1	*	I_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{13}{32}$ inch thick.

Pressure per sq. in.	*,	A_1	*	B_1	*	C_1	*1	01	*	E_1
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5			•••							
10										
15	•••			•••			20.68	427.8	19.52	381.0
20					18.91	357.5	17.95	322.4	16.94	287.2
25			20.68	427.8	16.94	287.2	16.09	259.1	15.19	231.0
30	19.52	381.0	18.91	357.5	15.20	240.3	14.72	216.9	13.91	193.5
35	18.09	327.4	17.53	307:3	14.38	206.8	13.66	186.8	12.91	166.7
40	16.94	287.2	16.42	269.6	13.48	181.7	12.81	164.2	12.10	146.6
45	16.00	256.0	15.20	240.3	12.73	162.2	12.10	146.6	11.44	131.0
50	15.19	231.0	14.72	216.9	12.10	146.6	11.51	132.5	10.88	118.5
55	14.51	210.5	14.06	197.7	11.56	133.8	11.00	121.0	10.40	108.2
60	13.91	193.5	13.48	181.7	11.09	123.1	10.55	111.4	9.98	99.7
65	13.38	179.0	12.97	168.2	10.68	114.1	10.16	103.3	9.62	92.5
70	12.91	166.7	12.51	156.6	10.31	106.4	9.81	96.4	9.29	86.3
75	12.49	156.0	12.10	146.6	9.98	99.7	9.50	90.3	9.00	81.0
80	12.10	146.6	11.74	137.8	9.69	93.8	9.22	85.1	8.73	76.3
85	11.76	138.3	11.40	130.0	9.42	88.7	8.97	80.4	8.49	72.1
90	11.44	131.0	11.09	123.1	9.17	84.1	8.73	76.3	8.27	68.5
95	11.15	124.4	10.81	117.0	8.94	80.0	8.52	72.6	8.07	65.2
100	10.88	118.5	10.55	111.4	8.73	76.3	8.32	69.2	7.89	62.2
105	10.63	113.1	10.31	106.4	8.54	72.9	8.14	66.2	7.71	59.5
110	10.40	108.2	10.09	101.8	8.36	69.9	7.97	63.5	7.55	57.1
115	10.19	103.8	9.88	97.7	8.19	67.1	7.81	61.0	7.41	54.9
120	9.98	99.7	9.69	93.8	8.03	64.5	7.66	58.7	7.27	52.8
125	9.79	96.0	9.50	90.3	7.89	62.2	7.52	56.6	7.14	51.0
130	9.62	92.5	9.33	87.1	7.75	60.0	7.39	54.6	7.02	49.2
135	9.45	89.3	9.17	84.1	7.62	58.0	7.27	52.8	6.90	47.6
140	9.29	86.3	9.01	81.3	7.49	56.2	7.15	51.2	6.79	46.1
145	9.14	83.5			7.38	54.4	7.04	49.6	6.69	44.7
150	9.00	81.0			7.27	52.8	6.94			43.5
155				***	7.16	51.3			6.50	42.2
160		•••			7.06	49.9	6.75	45.5	6.41	41.1
	*	A ₁	4	$^{\circ}B_{1}$,	$^{t}C_{1}$	*	D_1	E	*1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 86 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{13}{32}$ inch thick.

	0.2										
Pressure per sq. in.	*F	$_{1}G_{1}$	*1	\mathbf{I}_1	*r	G ₁	*]	[1			
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface			
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.			
5 10	20.68	427.8	19.63	385.6	19.42	377.2	15.12	228.7			
15	16.94	287.2	16.09	259.1	15.92	253.5	12.43	154.5			
20	14.72	216.9	13.99	195.8	13.84	191.6	10.83	117.3			
25	13.22	174.7	12.56	157.8	12.43	154.5	9.75	95.1			
30	12.10	146.6	11.51	132.5	11.39	129.7	8.95	80.2			
35	11.24	126.5	10.70	114.4	10.58	112.0	8:34	69.6			
40	10.55	111.4	10.04	100.9	9.94	98.8	7.85	61.6			
45	9.98	99.7	9.50	90.3	9.40	88.5	7.45	55.5			
50	9.50	90.3	9.05	81.9	8.95	80.2	7.11	50.5			
55	9.09	82.7	8.66	75.0	8.57	73.5	6.82	46.5			
60	8.73	76.3	8.32	69.2	8.23	67.8	6.56	43.1			
65	8.42	70.9	8.05	64.4	7.94	63.1	6.34	40.2			
70	8.14	66.2	7.76	60.2	7.68	59.0	6.12	37.8			
75	7.89	62.2	7.52	56.6	7.45	55.5	5.91	34.9			
80	7.66	58.7	7:31	53.4	7.24	52.4	5.69	32.4			
85	7.45	55.6	7.11	50.6	7.04	49.6	5.20	30.3			
90	7.27	52.8	6.94	48.1	6.87	47.2	5.33	28.4			
95	7.10	50.4	6.78	45.9	6.71	45.0	5.18	26.8			
100	6.94	48.1	6.63	43.9	6.26	43.1	5.04	25.4			
105	6.79	46.1	6.49	42.1	6.43	41.3	4.92	24.2			
110	6.66	44.3	6.36	40.5	6.30	39.7	4.81	23.1			
115	6.53	42.6	6.24	39.0	6.18	38.2	4.71	22.1			
120	6.41	41.1	6.13	37.6	6.06	36.7	4.61	21.3			
125	6.30	39.7	5.99	35.9	5.91	34.9	4.53	20.5			
130	6.20	38.4	5.85	34.3	5.78	33.4	4.45	19.7			
135	6.09	37.1	5.73	32.8	5.65	32.0	4.37	19.1			
140	5.96	35.5	5.61	31.5	5.54	30.7	4.30	18.5			
145	5.84	34.1	5.50	30.3	5.43	29.5	4.24	17.9			
150	5.73	32.8	5.40	29.1	5.33	28.4	4.18	17.4			
155 160	5.62	31.6	5·30 5·21	28.1	5·24 5·15	27.4	4·12 4·07	17.0			
	*F ₁ G ₁					*r G ₁ *I					

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{7}{16}$ inch thick.

-										
Pressure per sq. in.	*,	A ₁	*:	B ₁	*	C ₁	*	D_1	*	E ₁
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5							•••			
10		•••								
15		•••							20.80	432.6
20					20.15	406.0	19.13	366.0	18.05	326.0
25					18.05	326.0	17.14	294.0	16.18	262.0
30	20.80	432.6	20.15	406.0	16.21	272.6	15.68	246.0	14.81	219.3
35	19.28	371.7	18.67	348.8	15.31	234.5	14.55	211.7	13.74	188.8
40	18.05	326.0	17.49	306.0	14.35	206.0	13.63	186.0	12.88	166.0
45	17.04	290.4	16.51	272.6	13.55	183.7	12.88	166.0	12.17	148.2
50	16.18	262.0	15.68	246.0	12.88	166.0	12.24	150.0	11.57	134.0
55	15.45	238.7	14.97	224.1	12:30	151.4	11.70	136.9	11.06	122.3
60	14.81	219.3	14.35	206.0	11.80	139.3	11.22	126.0	10.61	112.6
65	14.24	202.9	13.80	190.6	11.36	129.0	10.80	116.7	10.22	104.4
70	13.74	188.8	13.32	177.4	10.96	120.2	10.43	108.8	9.87	97.4
75	13.29	176.6	12.88	166.0	10.61	112.6	10.10	102.0	9.55	91.3
80	12.88	166.0	12.49	156.0	10.29	106.0	9.79	96.0	9.27	86.0
85	12.51	156.5	12.13	147.1	10.00	100.0	9.52	90.7	9.01	81.2
90	12.17	148.2	11.80	139.3	9.74	94.8	9.27	86.0	8.78	77.1
95	11.86	140.7	11.50	132.3	9.49	90.2	9.04	81.7	8.56	73.3
100	11.57	134.0	11.22	126.0	9.27	86.0	8.83	78.0	8.36	70.0
105	11.31	127.9	10.96	120.2	9.06	82.1	8.63	74.5	8.18	66.9
110	11.06	122.3	10.72	115.0	8.87	78.7	8.45	71.4	8.01	64.1
115	10.83	117:3	10.50	110.3	8.69	75.5	8.28	68.6	7.85	61.6
120	10.61	112.6	10.29	106.0	8.52	72.6	8.12	66.0	7.70	59.3
125	10.41	108.4	10.10	102.0	8.36	70.0	7.97	63.6	7.56	57.2
130	10.22	104.4	9.91	98.3	8.21	67.5	7.83	61.3	7.43	55.2
135	10.04	100.8	9.74	94.8	8.07	65.2	7.70	59.3	7.30	53.4
140	9.87	97.4	9.57	91.7	7.94	63.1	7.57	57.4	7.19	51.7
145	9.71	94.2	9.42	88.7	7.82	61.1	7.46	55.6	7.08	50.1
150	9.55	91.3	9.27	86.0	7.70	59.3	7.34	54.0	6.97	48.6
155	9.41	88.5	9.13	83.4	7.59	57.6	7.24	52.4	6.87	47.2
160	9.27	86.0	9.00	81.0	7.48	56.0	7.14	51.0	6.78	46.0
	*	A ₁	*	B_1	*(C_1	*]	D_1	*	E_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 87 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{7}{16}$ inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*H	\mathbf{I}_1	*1	G ₁	*]	1		
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5 10	•••	***	20.92	438.0	20:69	428.4	16.10	259.4		
15	18.05	326.0	17.14	294.0	16.95	287.6	13.22	174.9		
20	15.68	246.0	14.90	222.0	14.73	217.2	11.52	132.7		
25	14.07	198.0	13.37	178.8	13.22	174.9	10.36	107.3		
30	12.88	166.0	12.24	150.0	12.11	146.8	9.51	90.4		
35	11.96	143.1	11.37	129.4	11.25	126.6	8.85	78.4		
40	11.22	126.0	10.67	114.0	10.56	111.6	8.32	69.3		
45	10.61	112.6	10.10	102.0	9.99	99.8	7.89	62.3		
50	10.10	102.0	9.61	92.4	9.51	90.4	7.53	56.6		
55	9.65	93.2	9.19	84.5	9.10	82.8	7.21	52.0		
60	9.27	86.0	8.83	78.0	8.74	76.4	6.94	48.2		
65	8.93	79.8	8.51	72.4	8.42	70.9	6.70	44.9		
70	8.63	74.5	8.22	67.7	8.14	66.3	6.49	42.2		
75	8.36	70.0	7.97	63.6	7.89	62.3	6.30	39.7		
80	8.12	66.0	7.74	60.0	7.66	58.8	6.13	37.6		
85	7.90	62.4	7.53	56.8	7.46	55.6	5.92	35.1		
90	7.70	59.3	7.34	54.0	7.27	52.9	5.73	32.8		
95	7.51	56.5	7.17	51.4	7.10	50.4	5.26	30.9		
100	7:34	54.0	7.01	49.2	6.94	48.2	5.40	29.2		
105	7.19	51.7	6.86	47.1	6.80	46.2	5.26	27.7		
110	7.04	49.6	6.72	45.2	6.66	44.4	5.13	26.3		
115	6.91	47.7	6.60	43.5	6.53	42.7	5.02	25.2		
120	6.78	46.0	6.48	42.0	6.41	41.2	4.91	24.1		
125	6.66	44.4	6.36	40.5	6.30	39.7	4.81	23.1		
130	6.55	42.9	6.26	39.2	6.20	38.4	4.72	22.3		
135	6.44	41.5	6.16	38.0	6.10	37.2	4.64	21.5		
140	6.34	40.2	6.05	36.6	5.97	35.6	4.56	20.8		
145	6.25	39.1	5.92	35.1	5.84	34.2	4.49	20.1		
150	6.16	38.0	5.81	33.7	5.73	32.8	4.42	19.5		
155	6.06	36.7	5.70	32.5	5.63	31.6	4.35	18.9		
160	5.95	35.4	5.60	31.3	5.53	30.5	4.29	18.4		
	*F	$_{1}G_{1}$	*1	H_1	*r	G_1	÷	$^{\circ}I_{1}$		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

TABLE No. 88.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{15}{32}$ inch thick.

_											
Pressure per sq. in.	*	A ₁	*	B ₁	*	C ₁	*	D_1	*	E_1	
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	
5		•••		•••		•••		•••	•••	•••	
10		•••		•••	•••	•••		•••	•••	•••	
15		•••		•••		•••	20.00	470.4	70.70	0	
20		•••	•••	•••	10.70	207.0	20:30	412.4	19.16	357.2	
25		•••		•••	19.16	367.2	18.19	331.1	17.17	295.0	
30		4700			17.52	307.0	16.64	276.9	15.71	246.8	
35	20.46	418.8	19.82	393.0	16.25	264.0	15.43	238.2	14.57	212.4	
40	19.16	367.2	18.56	344.6	15.22	231.7	14.46	209.2	13.66	186.6	
45	18.08	327.1	17.52	307.0	14.37	206.6	13.66	186.6	12.90	166.5	
50	17.17	295.0	16.64	276.9	13.66	186.6	12.98	168.5	12.26	150.5	
55	16.39	268.7	15.88	252.3	13.04	170.2	12.40	153.7	11.72	137.3	
60	15.71	246.8	15.22	231.7	12.51	156.5	11.89	141.4	11.24	126.4	
65	15.11	228.3	14.64	214.4	12.04	144.9	11.44	131.0	10.82	117.1	
70	14.57	212.4	14.12	199.5	11.62	135.0	11.05	122.1	10.45	109.2	
75	14.09	198.6	13.66	186.6	11.24	126.4	10.69	114.3	10.11	102.3	
80	13.66	186.6	13.24	175.3	10.90	118.8	10.37	107.6	9.81	96.3	
85	13.26	176.0	12.86	165.3	10.59	112.2	10.08	101.6	9.54	91.0	
90	12.90	166.5	12.51	156.5	10.31	106.3	9.81	96.3	9.28	86.2	
95	12.57	158.1	12.19	148.5	10.05	101.0	9.56	91.5	9.05	82.0	
100	12.26	150.5	11.89	141.4	9.84	96.9	9.34	87.2	8.84	78.2	
105	11.98	143.6	11.62	135.0	9.59	92.0	9.13	83.4	8.65	74.8	
110	11.72	137.3	11.36	129.1	9.38	88.1	8.93	79.8	8.46	71.6	
115	11.47	131.6	11.12	123.7	9.19	84.5	8.75	76.6	8.29	68.8	
120	11.24	126.4	10.90	118.8	9.01	81.2	8.58	73.7	8.13	66.2	
125	11.02	121.6	10.69	114.3	8.84	78.2	8.42	71.0	7.98	63.8	
130	10.82	117.1	10.49	110.2	8.68	75.4	8.27	68.5	7.84	61.5	
135	10.63	113.0	10.31	106.3	8.53	72.8	8.13	66.2	7.71	59.5	
140	10.45	109.2	10.13	102.6	8.39	70.5	8.00	64.0	7.59	57.6	
145	10.27	105.6	9.97	99.4	8.26	68.2	7.87	62.0	7.47	55.8	
150	10.11	102.3	9.81	96.3	8.13	66.2	7.75	60.1	7.36	54.1	
155	9.96	99.2	9.66	93.3	8.01	64.2	7.64	58.4	7.25	52.6	
160	9.81	96.3	9.52	90.6	7.90	62.4	7.53	56.8	7.15	51.1	
	*/	Λ_1	*]	B_1	*(*1	O_1	*	E_1	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 88 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{15}{32}$ inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*]	Н1	*r	G_1	*	I ₁		
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
10		•••	•••	•••	•••	•••	17:09	292.1		
15	19.16	367.2	18.19	331.1	17:99	323.9	14.02	196.7		
20	16.64	276.9	15.80	249.8	15.63	244.4	12.20	149.0		
25	14.92	222.7	14.18	201.0	14.02	196.7	10.97	120.4		
30	13.66	186.6	12.98	168.5	12.84	164.9	10.06	101.3		
35	12.68	160.8	12.05	145.3	11.92	142.2	9.36	87.7		
40	11.89	141.4	11.31	127.9	11.19	125.2	8.80	77.5		
45	11.24	126.4	10.69	114.3	10.58	111.9	8.34	69.5		
50	10.69	114.3	10.17	103.2	10.06	101.3	7.95	63.2		
55	10.52	104.5	9.73	94.6	9.62	92.7	7.61	58.0		
60	9.81	96.3	9.34	87.2	9.24	85.4	7.32	53.6		
65	9.45	89.3	9.00	81.0	8.90	79.3	7.07	50.0		
70	9.13	83.4	8.69	75.6	8.61	74.1	6.84	46.8		
75	8.84	78.2	8.42	71.0	8:34	69.5	6.64	44.1		
80	8.58	73.7	8.18	66.9	8.10	65.6	6.46	41.7		
85	8.35	69.7	7.96	63.3	7.88	62.1	6.29	39.6		
90	8.13	66.2	7.75	60.1	7.68	58.9	6.14	37.7		
95	7.94	63.0	7.57	57.3	7.49	56.1	5.96	35.5		
100	7.75	60.1	7.40	54.7	7.32	53.6	5.78	33.4		
105	7.59	57.6	7.24	52.4	7.17	51.4	5.62	31.6		
110	7.43	55.2	7.09	50.3	7.02	49.3	5.48	30:0		
115	7.28	53.1	6.95	48.4	6.89	47.4	5.35	28.6		
120	7.15	51.1	6.83	46.6	6.76	45.7	5.23	27.3		
125	7.02	49.3	6.71	45.0	6.64	44.1	5.12	26.2		
130	6.90	47.6	6.59	43.5	6.53	42.6	5.01	25.1		
135	6.79	46.1	6.49	42.1	6.42	41.3	4.92	24.2		
140	6.68	44.7	6.39	40.8	6.33	40.0	4.83	23.3		
145	6.58	43.3	6.29	39.6	6.23	38.8	4.75	22.5		
150	6.49	42.1	6.20	38.5	6.14	37.7	4.67	21.8		
155	6.40	40.9	6.12	37.4	6.04	36.4	4.60	21.1		
160	6.31	39.8	6.00	36.0	5.92	35.1	4.53	20.5		
	*F ₁	G_1	*H	[1	*r	G_1	*1	1		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Steel Plate ½ inch thick.

Pressure per sq. in.	*	A_1	*	B_1	*	C1	*	D_1	*	E_1
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5	• • • •	• • • •		•••						
10	•••	• • • •	• • • •			•••				
15		•••								
20									20.27	411.0
25	•••				20.27	411.0	19.24	370.5	18.16	330.0
30	•••	•••			18.53	343.5	17.60	309.7	16.61	276.0
35	***		20.97	439.9	17.18	295.2	16.32	266.3	15.40	237.4
40	20.27	411.0	19.63	385.6	16.09	259.1	15.29	233.8	14.44	208.5
45	19.13	366.0	18.53	343.5	15.19	231.0	14.44	208.5	13.63	186 0
50	18.16	330.0	17.60	309.7	14.44	208.5	13.72	188.2	12.96	168.0
55	17.33	300.5	16.79	282.1	13.78	190.0	13.10	171.6	12.38	153.2
60	16.61	276.0	16.09	259.1	13.22	174.7	12.56	157.8	11.87	141.0
65	15.97	255.2	15.48	239.6	12.71	161.7	12.09	146.1	11.42	130.6
70	15.40	237 • 4	14.93	222.9	12.27	150.6	11.67	136.1	11.03	121.7
75	14.90	222.0	14.44	208.5	11.87	141.0	11.29	127.5	10.67	114.0
80	14.44	208.5	13.99	195.8	11.21	132.5	10.95	119.9	10.35	107.2
85	14.02	196.5	13.59	184.6	11.18	125.1	10.64	113.2	10.06	101.2
90	13.63	186.0	13.22	174.7	10.88	118.5	10.35	107.2	9.79	96.0
95	13.28	176.5	12.87	165.8	10.61	112.5	10.09	101.9	9.55	91.2
100	12.96	168.0	12.56	157.8	10.35	107.2	9.85	97.1	9.32	87.0
105	12.66	160.2	12.27	150.6	10.15	102.4	9.63	92.7	9.11	83.1
110	12.38	153.2	12.00	144.0	9.90	98.0	9.42	88.8	8.92	79.6
115	12.11	146.8	11.75	138.0	9.69	94.0	9.53	85.2	8.74	76.4
120	11.87	141.0	11.51	132.5	9.50	90.3	9.05	81.9	8.57	73.5
125	11.64	135.6	11.59	127.5	9.32	87.0	8.88	78.9	8.41	70.8
130	11.42	130.6	11.08	122.8	9.15	83.8	8.72	76.0	8.26	68.3
135	11.52	126.0	10.88	118.5	9.00	81.0	8.57	73.5	8.12	66.0
140	11.03	121.7	10.70	114.4	8.85	78.3	8.43	71.0	7.99	63.8
145	10.85	117.7	10.52	110.7	8.70	75.8	8.29	68.8	7.86	61.8
150	10.67	114.0	10.35	107.2	8.57	73.5	8.17	66.7	7.74	60.0
155	10.21	110.5	10.19	103.9	8.44	71.3	8.05	64.7	7.63	58.2
160	10.35	107.2	1 - 0 - 0 - 0 - 0		8.32	69.2	7.93 62.9		7.52 56.6	
	*	A_1	*	B_1	*	C_1	*]	D_1	*	E_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 89 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{1}{2}$ inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*1	H_1	*r	G_1	*	I ₁			
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface			
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.			
10	•••	•••	•••	•••	•••	•••	18:07	326.7			
15	20.27	411:0	19.24	370:5	19.03	362.4	14.82	219.8			
20	17.60	309.7	16.71	279.3	16.53	273.3	12.89	166.3			
25	15.78	249.0	14.99	224.7	14.82	219.8	11.58	134.3			
30	14.44	208.5	13.72	188.2	13.57	184.2	10.62	112.9			
35	13.40	179.5	12.73	162.2	12.60	158.7	9.88	97.6			
40	12:56	157.8	11.94	142.6	11.81	139.6	9.28	86.1			
45	11.87	141.0	11.29	127.5	11.17	124.8	8.79	77.2			
50	11.29	127.5	10.74	115.3	10.62	112.9	8.37	70.1			
55		10.79 116.4		105.4	10.15	103.2	8.02	64.3			
60	10.35	107.2	10·26 9·85	97.1	9.75	95.1	7.71	59.4			
65	9.97	99.4	9.49	90.1	9.39	88.2	7.44	55.3			
70	9.63	92.7	9.17	84.1	9.07	82.3	7.19	51.8			
75	9.32	87.0	8.88	78.9	8.79	77.2	6.98	48.7			
80	9.05	81.9	8.62	74.3	8.53	72.8	6.79	46.0			
85	8.80	77.4	8.38	70.3	8.30	68.8	6.61	43.7			
90	8.57	73.5	8.17	66.7	8.08	65.4	6.45	41.6			
95	8.36	69.9	7.97	63.5	7.89	62.2	6.30	39.7			
100	8.17	66.7	7.79	60.6	7.71	59.4	6.17	38.0			
105	7.99	63.8	7.62	58.0	7.54	56.9	6.01	36.1			
110	7.82	61.2	7.46	55.7	7:39	54.6	5.85	34.2			
115	7.67	58.8	7.31	53.5	7.24	52.4	5.70	32.5			
120	7.52	56.6	7.18	51.5	7.11	50.5	5.26	31.0			
125	7.39	54.6	7.05	49.7	6.98	48.7	5.44	29.6			
130	7.26	52.7	6.93	48.0	6.86	47.1	5.32	28.3			
135	7.14	51.0	6.82	46.5	6.75	45.6	5.22	27.2			
140	7.02	49.3	6.71	45.0	6.64	44.1	5.12	26.2			
145	6.92	47.8	6.61	43.7	6.54	42.8	5.03	25.3			
150	6.82	46.5	6.51	42.4	6.45	41.6	4.94	24.4			
155	6.72	45.1	6.42	41.2	6.36	40.4	4.86	23.6			
160	6.63	43.9	6.33	40.1	6.27	39.4	4.78	22.9			
	*F	$_{1}G_{1}$	*	H_1	*r	G_1	*	$^{\dagger}I_{1}$			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{1}{3}\frac{7}{2}$ inch thick.

Pressure per sq. in.	*	A_1	*	B_1	*	C_1	*]	O_1	. *	E_1
Pres per s	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq.ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10									•••	
15										
20										
25							20.30	412.1	19.15	367.0
30					19.54	382.0	18.56	344.4	17.51	306.8
35					18.12	328.3	17.20	296.0	16.24	263.8
40			20.71	429.0	16.97	288.0	16.12	259.8	15.22	231.6
45	20.17	407.1	19.54	382.0	16.02	256.6	15.22	231.6	14.37	206.5
50	19.15	367.0	18.56	344.4	15.22	231.6	14.45	209.0	13.65	186.5
55	18.28	334.1	17.71	313.6	14.53	211.1	13.80	190.6	13.04	170.0
60	17.51	306.8	16.97	288.0	13.93	194.0	13.23	175.2	12.50	156.4
65	16.84	283.6	16.32	266.3	13.40	179.5	12.73	162.2	12.03	144.8
70	16.24	263.8	15.74	247.7	12.93	167.1	12.29	151.0	11.61	134.9
75	15.70	246.6	15.22	231.6	12.50	156.4	11.89	141.3	11.24	126.3
80	15.22	231.6	14.74	217.5	12.12	147.0	11.52	132.9	10.90	118.8
85	14.77	218.3	14.32	205.0	11.77	138.7	11.20	125.4	10.59	112.1
90	14.37	206.5	13.93	194.0	11.46	131.3	10.90	118.8	10.31	106.2
95	14.00	196.0	13.57	184.1	11.17	124.7	10.62	112.8	10.05	101.0
100	13.65	186.5	13.23	175.2	10.90	118.8	10.37	107.5	9.81	96.2
105	13.33	177.9	12.93	167.1	10.65	113.4	10.13	102.6	9.59	91.9
110	13.04	170.0	12.64	159.8	10.42	108.5	9.91	98.3	9.38	88.0
115	12.76	162.9	12.37	153.1	10.20	104.0	9.71	94.2	9.19	84.4
120	12.50	156.4	12.12	147.0	10.00	100.0	9.51	90.6	9.01	81.2
125	12.26	150.4	11.89	141.3	9.81	96.2	9.34	87.2	8.84	78.2
130	12.03	144.8	11.67	136.1	9.63	92.7	9.17	84.1	8.68	75.4
135	11.82	139.7	11.46	131.3	9.46	89.5	9.01	81.2	8.53	72.8
140	11.61	134.9	11.26	126.8	9:30	86.5	8.86	78.5	8.39	70.4
145	11.42	130.4	11.07	122.7	9.15	83.8	8.72	76.0	8.26	68.2
150	11.24	126.3	10.90	118.8	9.01	81.2	8.58	73.6	8.13	66.1
155	11.06	122.4	10.73	115.1	8.87	78.7	8.45	71.5	8.01	64.2
160	10.90	118.8	10.57	111.7	8.74	76.5	8.33	69.4	7.90	62.4
	*A ₁		*	B_1	*	C_1	*	D_1	*	\mathbf{E}_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 90 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{17}{32}$ inch thick.

Pressure per sq. in.	*F	₁ G ₁	*	H_1	*r	G_1	*	I ₁		
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
10	•••	•••	•••			•••	19:06	363:3		
15	•••	•••	20:30	412.1	20.07	403.1	15.62	244.2		
20	18.56	344.4	17.62	310.5	17:43	303.8	13.59	184.6		
25	16.63	276.7	15.80	249.6	15.62	244.2	12.20	148.9		
30	15.22	231.6	14.45	209.0	14.30	204.5	11.18	125.1		
35	14.12	199.3	13.41	180.0	13.27	176.1	10.39	108.1		
40	13.23	175.2	12.58	158.2	12.44	154.9	9.76	95.3		
45	12.50	156.4	11.89	141.3	11.76	138.3	9.24	85.4		
50	11.89	141.3	11.30	127.8	11.18	125.1	8.80	77.4		
55	11.36	129.0	10.80	116.7	10.69	114.3	8.42	70.9		
60	10.90	118.8	10.37	107.5	10.03	105.2	8.09	65.5		
65	10.49	110.1	9.98	99.7	9.88	97.6	7.81	60.9		
70	10.13	102.6	9.64	93.0	9.54	91.0	7.55	57.0		
75	9.81	96.2	9.34	87.2	9.24	85.4	7.32	53.6		
80	9.51	90.6	9.06	82.1	8.97	80.4	7.11	50.6		
85	9.25	85.6	8.81	77.6	8.72	76.0	6.93	48.0		
90	9.01	81.2	8.58	73.6	8.49	72.1	6.76	45.7		
95	8.79	77.2	8.37	70.1	8.28	68.7	6.60	43.6		
100	8.58	73.6	8.18	66.9	8.09	65.5	6.46	41.7		
105	8.39	70.4	8.00	64.0	7.92	62.7	6.32	40.0		
110	8.21	67.5	7.83	61.3	7.75	60.1	6.20	38.4		
115	8.05	64.8	7.68	58.9	7.60	57.7	6.07	36.9		
120	7.90	62.4	7.53	56.7	7.46	55.6	5.92	35.1		
125	7.75	60.1	7.39	54.7	7.32	53.6	5.78	33.4		
130	7.62	58.0	7.27	52.8	7.19	51.8	5.65	32.0		
135	7.49	56.1	7.15	51.1	7.08	50.1	5.23	30.6		
140	7.37	54.3	7.03	49.5	6.96	48.5	5.42	29.4		
145	7.25	52.6	6.93	48.0	6.86	47.0	5.32	28.3		
150	7.15	51.1	6.82	46.6	6.76	45.7	5.23	27.3		
155	7.04	49.6	6.73	45.3	6.66	44.4	5.14	26.4		
160	6.95	48.3	6.63	44.0	6.57	43.2	5.05	25.5		
	*F	$_{1}G_{1}$	*	H_1	*r	G_1	,	1		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

TABLE No. 91.

Pressures, Pitches, and Surfaces.
Steel Plate $\frac{9}{16}$ inch thick.

0 =	1 ,		1				1			
ssure sq.in.	*	A_1	*]	B_1	*(C_1	*]	D_1	*]	Ξ_1
Pressure per sq.in.	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5				•••				•••		
10				•••			•••	•••	•••	
15				•••		•••		•••		• • • •
20						•••				
25		•••		•••					20.12	406.0
30		•••			20.55	422.6	19.52	381.0	18.42	339.3
35		•••		•••	19.05	363.1	18.09	327.4	17.08	291.7
40					17.84	318.5	16.94	287.2	16.00	256.0
45			20.55	422.6	16.84	283.7	16.00	256.0	15.10	228.2
50	20.15	406.0	19.52	381.0	16.00	256.0	15.19	231.0	14.35	206.0
55	19.22	369.6	18.62	346.9	15.27	233.2	14.51	210.5	13.70	187.8
60	18.42	339.3	17.84	318.5	14.64	214.3	13.91	193.5	13.14	172.6
65	17.71	313.6	17.16	294.4	14.08	198.3	13.38	179.0	12.64	159.8
70	17.08	291.7	16.54	273.8	13.58	184.5	12.91	166.7	12.20	148.8
75	16.51	272.6	16.00	256.0	13.14	172.6	12.49	156.0	11.80	139.3
80	16.00	256.0	15.20	240.3	12.73	162.2	12.10	146.6	11.44	131.0
85	15.53	241.2	15.05	226.5	12.37	153.0	11.76	138.3	11.12	123.6
90	15.10	228.2	14.64	214.3	12.03	144.8	11.44	131.0	10.82	117.1
95	14.71	216.5	14.26	203.3	11.73	137.5	11.15	124.4	10.54	111.2
$\begin{array}{c} 100 \\ 105 \end{array}$	14.35	206.0	13.91	193.5	11.44	131.0	10.88	118.5	10.29	106.0
105 110	14.01	196.4	13.58	184.5	11.18	125.0	10.63	113.1	10.06	101.2
$\frac{110}{115}$	13·70 13·41	187·8 179·9	13·28 13·00	176.4	10.93	119.6	10.40	108.2	9.84	96.9
$\frac{115}{120}$	13.14	179.9		169.0	10.49	114.6	10.19	103.8	9.64	92.9
$\frac{120}{125}$	12.88	166.0	12.73	162.2		110.1	9.79	99.7	9.45	89.3
$\frac{125}{130}$	12.88	159.8	12·49 12·25	156.0 150.2	10.29	106.0 102.1	9.79	90.0	9.27	86.0
135	12.41	154.1	12.03	144.8	9.93	98.5	9.45	89.3	8.94	80.0
140	12.41	148.8	11.83	139.9	9.76	95.2	9.45	86.3	8.80	77.4
$140 \\ 145$	11.99	143.9	11.63	135.3	9.60	92.2	9 29	83.5	8.65	74.9
150	11.80	139.3	11.44	131.0	9.45	89.3	9.00	81.0	8.52	72.6
155	11.62	135.0	11.26	126.9	9.30	86.6	8.86	78.5	8.39	70.5
160	11.44	131.0	11.09	123.1	9.17	84.1	8.73	76.3	8.27	68.5
	*_	A ₁	*1	31	*	C_1	*]	\mathcal{O}_1	*]	\mathbb{E}_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces.
Steel Plate $\frac{9}{16}$ inch thick.

Table No. 91 continued.

Pressure per sq. in.	*F	G_1	*1	\mathbf{I}_1	*r	G_1	*	I ₁			
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface			
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.			
5	***		***	•••	•••	•••					
10	***	•••	•••	•••	•••	•••					
15							16.43	270.0			
20	19.52	381.0	18.53	343.5	18.33	336.0	14.28	204.0			
25	17.49	306.0	16.61	276.0	16.43	270.0	12.82	164.4			
30	16.00	256.0	15.19	231.0	15.03	226.0	11.74	138.0			
35	14.84	220.2	14.10	198.8	13.94	194.5	10.91	119.1			
40	13.91	193.5	13.22	174.7	13.07	171.0	10.24	105.0			
45	13.14	172.6	12.49	156.0	12.35	152.6	9.69	94.0			
50	12.49	156.0	11.87	141.0	11.74	138.0	9.23	85.2			
55	11.93	142.3	11.34	128.7	11.22	126.0	8.83	78.0			
60	11.44	131.0	10.88	118.5	10.77	116.0	8.48	72.0			
65	11.01	121.3	10.48	109.8	10.37	107.5	8.18	66.9			
70	10.63	113.1	10.12	102.4	10.01	100.2	7.91	62.5			
75	10.29	106.0	9.79	96.0	9.69	94.0	7.66	58.8			
80	9.98	99.7	9.50	90.3	9.40	88.5	7.45	55.5			
85	9.70	94.2	9.24	85.4	9.14	83.6	7.25	52.5			
90	9.45	89.3	9.00	81.0	8.90	79.3	7.07	50.0			
95	9.21	84.9	8.77	77.0	8.68	75.4	6.90	47.6			
100	9.00	81.0	8.57	73.5	8.48	72.0	6.75	45.6			
105	8.80	77.4	8.38	70.2	8.29	68.8	6.61	43.7			
110	8.61	74.1	8:20	67.3	8.12	66.0	6.48	42.0			
115	8.44	71.2	8.04	64.6	7.96	63.3	6.35	40.4			
120	8.27	68.5	7.89	62.2	7.81	61.0	6.24	39.0			
125	8.12	66.0	7.74	60.0	7.66	58.8	6.13	37.6			
130	7.98	63.6	7.61	57.9	7.53	56.7	6.00	36.0			
135	7.84	61.5	7.48	56.0	7:40	54.8	5.87	34.4			
140	7.71	59.5	7:36	54.2	7.29	53.1	5.75	33.0			
145	7.59	57·7 56·0	7·25 7·14	52.5	7.17	51.5	5.63 5.55	31·7 30·8			
150	7.48	0 - 0		51.0	7.07	50.0		29.4			
155	7·37 7·27	54·3 52·8	7.04	49.5	6.97	48.5	5·43 5·33	29.4			
160	1.21	52.8	6.94	48.1	6.87	47.2	9.99	20.4			
	*F ₁ G ₁		*F ₁ G ₁ *H ₁		*r	G_1	*11				

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces. Steel Plate \(\frac{1}{3} \frac{9}{2} \) inch thick.

Pressure per sq. in. .*C1 *D1 *E, *A1 *B1 Pitch Surface Pitch Surface Pitch Surface Pitch Pitch Surface Surface lbs. ins. sq. ins. 5 10 ... 15 20 ... 25 ... 419.4 373.5 20.48 19:32 19.99 399.7 18.98 360.3 17.91 321.0 ... 17.77 40 350.5 316.0 16.78 281.6 18.72 312.2 251.0 45 17.67 16.78 281.6 15.84 226.5 20.48 419.4 16.78 281.6 15.94 254.0 15.05 381.8 14.36 20.17 406.9 19:54 16.01 256.5 15.21 206.4 19:32 373:5 18.72 15:35 14.58 212.7 13.77 189.7 60 235.6 65 18:58 345.2 18:00 324.0 14.76 218.01 14.03 196.8 13.25 175.6 17.91 321.0 17:35 301.3 202.8 13.53 183.1 12.78 163.5 14.24 17:32 300.0 16.78 281.6 13.77 189.7 13.09 171.3 12:37 153.0 80 16.78 281.6 16.26 264.3 13:35 178.2 12:69 161.0 11.99 143.8 85 16:29 265.4 15.78 249.1 168.1 12:32 151.9 11.65 135.7 12.96 159.1 11.99 128:5 90 15.84 251.0 15.35 235.6 12.61 143.8 11.33 95 15.43 238.1 14.95 223:5 12.29 151.0 11.68 136.5 11.04 122.0 116.2 100 15.05 226.5 14:58 212.7 11.99 143.8 11:40 130.0 10.78 14.69 216.0 14.24 202.8 11.71 137.2 11.14 194.1 10.53 111:0 110 14:36 206.4 13.92 193.9 11:45 131.2 10.89 118.7 10:30 106.2 14.06 197.7 101.8 13.63 185.7 11.21 125.8 10.67 113.8 10.09 120 13.77 189.7 13.35 178.2 10.99 120.8 10.45 109.3 9.89 97.8 13.50 182.4 13.09 171.3 10.78 116.2 10.25 105.2 9.70 94.2 130 13.25 175.6 12.84 165.0 10.58 112.0 10.07 101.4 9:53 90.8 13:01 169:3 12.61 159.1 10.39 108.0 9.89 97.8 9:36 87.6 135 12.78 163.5 12:39 153.6 9.20 84.7 140 10.22 104.4 9.72 94.5 145 12:57 158.0 12.18 148.5 10.05 101.0 9:56 91.5 9.05 82.0 150 12:37 153.0 11.99 9.89 97.8 9.41 88.6 8.91 79:5 143.8 155 12:17 148.2 111.80 8.78 77.1 139.3 9.74 94.9 9.27 86:0 160 11.99 143.8 11.62 135.1 9.59 92.1 9.13 83.5 8.65 74.9 *A1 *C1 *D1 *E, *B1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 92

Pressures, Pitches, and Surfaces. Steel Plate $\frac{19}{32}$ inch thick.

Pressure per sq. in	*F	$_{1}G_{1}$	*1	\mathbf{H}_1	*r	G_1	*	[1	
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	
5	•••		•••	•••	•••	•••	• • • •	•••	
10 15	•••	•••	***	•••	•••	•••	17:23	297:0	
20	20.48	419.4	19:44	378.0	19:23	369.8	14.97	297.0	
25	18:35	336.7	17.42	303.6	17.23	297.0	13.44	180.6	
30	16.78	281.6	15.94	254.0	15.76	248.5	12.31	151.5	
35	15.56	242.2	14.78	218.6	14.62	213.9	11.43	130.7	
40	14.58	212.7	13.85	192.0	13.70	187.9	10.73	115.1	
45	13.77	189.7	13.09	171.3	12.95	167.7	10.15	103.0	
50	13.09	171.3	12.44	154.8	12.31	151.5	9.66	93.3	
55	12.50	156.3	11.88	141.3	11.76	138.3	9.24	85.3	
60	11.99	143.8	11.40	130.0	11.28	127.2	8.87	78.7	
65	11.54	133.2	10.97	120.4	10.86	117.9	8.55	73.1	
70	11.14	124.1	10.59	112.3	10.48	109.9	8.26	68.3	
75	10.78	116.2	10.25	105.2	10.15	103.0	8.01	64.2	
80	10.45	109.3	9.95	99.0	9.84	96.9	7.78	60.5	
85	10.16	103.2	9.67	93.5	9.57	91.6	7.57	57.3	
90	9.89	97.8	9.41	88.6	9.32	86.8	7.38	54.5	
95	9.64	93.0	9.18	84.3	9.08	82.5	7.20	51.9	
100	9.41	88.6	8.96	80.4	8.87	78.7	7.04	49.6	
105	9.20	84.7	8.76	76.8	8.67	75.3	6.89	47.5	
110	9.01	81.1	8.58	73.6	8.49	72.1	6.76	45.6	
115	8.82	77.9	8.41	70.7	8.32	69.2	6.63	43.9	
120	8.65	74.9	8.24	68.0	8.16	66.6	6.51	42.3	
125	8.49	72.1	8.09	65.5	8.01	64.2	6.39	40.9	
130	8.34	69.6	7.95	63.2	7.87	61.9	6.29	39.5	
135	8.20	67.2	7.81	61.1	7.74	59.9	6.19	38.3	
140	8.06	65.0	7.69	59.1	7.61	57.9	6.08	37.0	
145	7.93	63.0	7.57	57.3	7.49	56.1	5.96	35.5	
150	7.81	61.1	7.45	55.6	7.38	54.5	5.84	34.1	
155	7.70	59.3	7:35	54.0	7.27	52.9	5.73	32.9	
160	7.59	57.6	7.24	52.5	7.17	51.4	5.63	31.7	
	*F	$_{1}G_{1}$	*1	I_{τ}	*r	G_1	*	I_1	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{5}{8}$ inch thick.

ure i. in.	*	A_1	*	B_1	*	C_1	*	D_1	*	E_1
Pressure per sq. in.	Pitch	Surface		Surface		Surface	1	Surface		Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		sq. ins.
5										
10										
15										
20					l					
25										
30							4	•••	20.23	409.3
35	1			•••	20.93	438.1	19.87	394.9	18.75	351.7
40		***	•••	•••	19.60	384.1	18.61	346.3	17.56	308.5
45	•••	•••	***	•••	18.49	342.1	17.56	308.5	16.58	274.8
50		•••	•••	•••	17.56	308.5	16.68	278.2	15.74	248.0
55	•••	•••	20.45	418.5	16.76	281.0	15.92	253.5	15.03	226.0
60	20.23	409.3	19.60	384.1	16.06	258.0	15.26	232.8	14.41	207.6
65	19.45	378.3	18.84	355.0	15.45	238.6	14.67	215.4	13.86	192.1
70	18.75	351.7	18.16	330.1	14.90	222.0	14.15	200.4	13.37	178.8
75	18.13	328.6	17.56	308.5	14.41	207.6	13.69	187.5	12.93	167.3
80	17.56	308.5	17.01	289.5	13.96	195.0	13.27	176.1	12.54	157.2
85	17.05	290.7	16.52	272.9	13.56	183.9	12.89	166.1	12.18	148.3
90	16.58	274.8	16.06	258.0	13.19	174.0	12.54	157.2	11.85	140.4
95	16.14	260.7	15.64	244.8	12.85	165.2	12.21	149.2	11.54	133.3
100	15.74	248.0	15.26	232.8	12:54	157.2	11.92	142.1	11.27	127.0
105	15.37	236.4	14.90	222.0	12.25	150.0	11.64	135.6	11.01	121.2
110	15.03	226.0	14:56	212.2	11.98	143.5	11.39	129.7	10.77	116.0
115	14.71	216.4	14.25	203.2	11.72	137.5	11.15	124.3	10.54	111.2
120	14.41	207.6	13.96	195.0	11.49	132.0	10.92	119.4	10.33	106.8
125	14.12	199.6	13.69	187.5	11.27	127.0	10.72	114.9	10.14	102.8
130	13.86	192.1	13.43	180.5	11.06	122.3	10.52	110.7	9.95	99.0
135	13.61	185.2	13.19	174.0	10.86	118.0	10.33	106.8	9.78	95.6
140	13.37	178.8	12.96	168.0	10.67	114.0	10.16	103.2	9.61	92.4
145	13.15	172.8	12.74	162.4	10.50	110.3	9.99	99.8	9.45	89.4
150	12.93	167.3	12.24	157.2	10.33	106.8	9.83	96.7	9.31	86.6
155	12.73	162.1	12.34	152.3	10.17	103.5	9.68	93.8	9.16	84.0
160	12.54	157.2	12.15	147.7	10.02	100.5	9.54	91.0	9.03	81.6
	* [Λ_1	*E	31	*() ₁	*1	\mathcal{O}_1	*]	E ₁

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 93 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{5}{8}$ inch thick.

Pressure per sq. in.	*F	$^{\prime}_{1}G_{1}$	*	H_1	*r	G ₁	*	I_1		
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5	•••	•••	•••	•••	•••	•••	•••	•••		
10	•••	•••	•••	•••	***	•••	****			
15	***	•••	•••				18.04	325.4		
20		000.0	20.35	414.3	20.13	405.3	15.67	245.5		
25	19.21	369.0	18.24	332.7	18.04	325.4	14.06	197.6		
30	17·56 16·28	308.5	16.68 15.47	278.2	16.49	272·2 234·1	12·87 11·95	165·7 142·9		
35	15.26	265·2 232·8	14.49	239·3 210·1	15·30 14·34	205.6	11.21	125.7		
40	14.41	207.6	13.69	187.5	13.54	183.4	10.60	112.4		
45	13.69	187.5	13.01	169.3	12.87	165.7	10.09	101.8		
50	13.07	171.0	12.43	154.5	12.29	151.2	9.65	93.1		
55 60	12.54	157.2	11.92	142.1	11.79	139.1	9.26	85.8		
65	12.06	145.6	11.47	131.6	11.35	128.8	8.92	79.7		
70	11.64	135.6	11.07	122.6	10.95	120.0	8.62	74.4		
75	11.27	127.0	10.72	114.9	10.60	112.4	8.36	69.8		
80	10.92	119.4	10.39	108.0	10.28	105.8	8.11	65.8		
85	10.62	112.7	10.10	102.0	9.99	99.9	7.89	62.3		
90	10.33	106.8	9.83	96.7	9.73	94.7	7.69	59.2		
95	10.07	101.5	9.59	91.9	9.49	90.0	7.51	56.4		
100	9.83	96.7	9.36	87.6	9.26	85.8	7.34	53.9		
105	9.61	92.4	9.15	83.7	9.05	82.0	7.18	51.6		
110	9.40	88.5	8.95	80.2	8.86	78.6	7.04	49.5		
115	9.21	84.9	8.77	77.0	8.68	75.4	6.90	47.6		
120	9.03	81.6	8.60	74.0	8.51	72.5	6.77	45.9		
125	8.86	78.6	8.44	71.3	8.36	69.8	6.65	44.3		
130	8 70	75.8	8.29	68.8	8.21	67.4	6.54	42.8		
135	8.55	73.2	8.15	66.5	8.07	65.1	6.44	41.4		
140	8.41	70.8	8.02	64.3	7.94	63.0	6.34	40.2		
145	8.28	68.5	7.89	62.3	7.81	61.0	6.24	39.0		
150	8.15	66.5	7.77	60.4	7.69	59.2	6.16	37.9		
155	8.03	64.5	7.66	58.6	7.58	57.5	6.05	36.6		
160	7.92	62.7	7.55	57.0	7.47	55.9	5.94	35.3		
	*F ₁ G ₁		*H ₁		*1	G_1	*	I_1		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{21}{32}$ inch thick.

Pressure per sq. in.	*_	A_1	*]	В ₁	*	C ₁	*	*D ₁		*E ₁	
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	
5											
10								•••			
15		•••									
20		•••		•••		•••			•••	•••	
25		•••				•••		•••			
30		•••				•••					
35		•••		•••			20.76	431.0	19.59	383.8	
40		•••			20.47	419.2	19.44	377.9	18.34	336.6	
45		•••		•••	19.32	373.3	18.34	336.6	17.31	299-8	
50					18.34	336.6	17.42	303.5	16.44	270.5	
55		•••			17.51	306.5	16.62	276.5	15.69	246.4	
60			20.47	419.2	16.77	281.5	15.93	253.9	15.04	226.4	
65	20.32	412.9	19.68	387.4	16.13	260.3	15.32	234.8	14.47	209.4	
70	19.59	383.8	18.98	360.2	15.56	242.1	14.78	218.5	13.96	194.9	
75	18.93	358.6	18.34	336.6	15.04	226.4	14.29	204.3	13.50	182.3	
80	18.34	336.6	17.77	315.9	14.58	212.6	13.82	191.9	13.08	171.3	
85	17.81	317.1	17.25	297.7	14.16	200.4	13.45	181.0	12.71	161.5	
90	17.31	299.8	16.77	281.5	13.77	189.6	13.08	171.3	12.36	152.9	
95	16.86	284.4	16.34	267.0	13.41	180.0	12.75	162.6	12.05	145.2	
100	16.44	270.5	15.93	253.9	13.08	171.3	12.44	154.7	11.75	138.2	
105	16.06	257.9	15.56	242.1	12.78	163.4	12.15	147.6	11.48	131 9	
110	15.69	246.4	15.21	231.4	12.50	156.2	11.88	141.2	11.23	126.2	
115	15.36	236.0	14.88	221.6	12.23	149.7	11.63	135.3	11.00	121.0	
120	15.04	226.4	14.58	212.6	11.99	143.7	11.40	129.9	10.78	116.2	
125	14.75	217.6	14.29	204.3	11.75	138.2	11.18	125.0	10.57	111.8	
130	14.47	209.4	14.02	196.7	11.54	133.1	10.97	120.4	10.38	107.7	
135	14.21	201.9	13.77	189.6	11.33	128.4	10.78	116.2	10.19	103.9	
140	13.96	194.9	13.53	183.1	11.14	124.0	10.59	112.2	10.02	100.4	
145	13.72	188.4	13.30	177.0	10.95	120.0	10.42	108.6	9.86	97.2	
150	13.50	182.3	13.08	171.3	10.78	116.2	10.25	105.1	9.70	94.1	
155	13.29	176.6	12.88	165.9	10.61	112.6	10.09	101.9	9.55	91.3	
160	13.08	171.3	12.68	160.9	10.45	109.3	9.95	98.9	9.41	88.6	
	*A ₁		*]	B_1	*C ₁		*1	*D ₁		\mathbb{E}_1	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 94 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{2}{3}\frac{1}{2}$ inch thick.

Pressure per sq. in.	*F ₁	G ₁	*1	I_1	*r	G_1	*]	-1		
Pre per	Pitch.	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5			•••	•••	***	***				
10	***		***	***	***	***				
15		***	•••		***	***	18.84	355.1		
20							16.36	267.8		
25	20.06	402.7	19.05	363.0	18.84	355.1	14.68	215.4		
30	18.34	336.6	17.42	303.2	17.23	296.9	13.43	180.5		
35	17.01	289.3	16.15	261.0	15.98	255.3	12.47	155.6		
40	15.93	253.9	15.13	229.1	14.97	224.2	11.70	136.9		
45	15.04	226.4	14.29	204.3	14.14	199.9	11.06	122.3		
50	14.29	204.3	13.58	184.5	13.43	180.5	10.52	110.7		
55	13.65	186.3	12.97	168.3	12.83	164.7	10.06	101.2		
60	13.08	171.3	12.44	154.7	12:30	151.4	9.65	93.2		
65	12.59	158.5	11.97	143.3	11.84	140.2	9.30	86.5		
70	12.15	147.6	11.55	133.2	11.43	130.6	8.99	80.8		
75	11.75	138.2	11.18	125.0	11.06	122.3	8.70	75.8		
80	11.40	129.9	10.84	117.5	10.72	115.1	8.45	71.4		
85	11.07	122.6	10.23	111.0	10.42	108.6	8.22	67.6		
90	10.78	116.2	10.25	105.1	10.14	102.9	8.01	64.1		
95	10.20	110.4	9.99	99.9	9.89	97.8	7.81	61.1		
100	10.25	105.1	9.76	95.2	9.65	93.2	7.64	58.3		
105	10.02	100.4	9.54	91.0	9.44	89.1	7.47	55.8		
110	9.80	96.1	9.33	87.1	9.23	85.3	7.32	53.6		
115	9.60	92.2	9.14	83.6	9.05	81.9	7.18	51.5		
120	9.41	88.6	8.96	80.3	8.87	78.7	7.04	49.6		
125	9.23	85.3	8.79	77.4	8.70	75.8	6.92	47.8		
130	9.07	82.2	8.64	74.6	8.55	73.1	6.80	46.2		
135	8.91	79.4	8.49	72.1	8.40	70.6	6.69	44.7		
140	8.76	76.8	8.35	69.7	8.26	68.3	6.58	43.4		
145	8.62	74.4	8.22	67.5	8.13	66.1	6.49	42.1		
150	8.49	72.1	8.09	65.5	8.01	64.1	6.39	40.9		
155	8.36	69.9	7.97	63.5	7.89	62.3	6.30	39.7		
160	8.24	67.9	7.86	61.7	7.78	60.5	6.22	38.7		
	*F ₁ G ₁		*H ₁		*r	G_1	*1,			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

228

TABLE No. 95.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{11}{16}$ inch thick.

Pressure per sq. in.	*_	A_1	*	В1	*	C ₁	*	D_1	*	E_1
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ns.	sq. ins.	ins.	sq. ins.
5										
10					•••			•••		
15										
20	•••				•••	•••			•••	
25	•••			•••		•••		•••		
30	•••		***	***		•••				
35						•••			20.43	417.4
40		•••		•••			20.27	411.0	19.13	366.0
45	***	•••			20.15	406.0	19.13	366.0	18.05	326.0
50				•••	19.13	366.0	18.16	330.0	17.14	294.0
55					18.25	333 •2	17:33	300.5	16.36	267.8
60		•••			17.49	306.0	16.61	276.0	15.68	246.0
65			20.52	421.3	16.82	282.9	15.97	255.2	15.08	227.5
70	20.43	417.4	19.79	391.7	16.22	263.1	15.40	237.4	14.55	211.7
75	19.74	390.0	19.13	366.0	15.68	246.0	14.90	222.0	14.07	198.0
80	19.13	366.0	18.53	343.5	15.19	231.0	14.44	208.5	13.63	186.0
85	18 57	344.8	17.99	323.6	14.75	217.7	14.02	196.5	13.24	175.4
90	18.05	326.0	17.49	306.0	14.35	206.0	13.63	186.0	12.88	166.0
95	17.58	309.1	17.03	290.2	13.98	195.4	13.28	176.5	12.55	157.5
100	17.14	294.0	16.61	276.0	13.63	186.0	12.96	168.0	12.24	150.0
105	16.74	280.2	16.22	263.1	13.32	177 .4	12.66	160.2	11.96	143.1
110	16.36	267.8	15.85	251.4	13.02	169.6	12.38	153.2	11.70	136.9
115	16.01	256.4	15.51	240.7	12.74	162.5	12.11	146.8	11.45	131.2
120	15.68	246.0	15.19	231.0	12.49	156.0	11.87	141.0	11.55	126.0
125	15.37	236.4	14.90	222.0	12.24	150.0	11.64	135.6	11.01	121.2
130	15.08	227.5	14.61	213.6	12.02	144.4	11.42	130.6	10.80	116.7
135	14.81	219.3	14.35	206.0	11.80	139.3	11.22	126.0	10.61	112.6
140	14.55	211.7	14.10	198.8	11.60	134.5	11.03	121.7	10.43	108.8
145	14.30	204.6	13.86	192.2	11.40	130.1	10.85	117.7	10.26	105.3
150	14.07	198.0	13.63	186.0	11.22	126.0	10.67	114.0	10.10	102.0
155	13.85	191.8	13.42	180.1	11.05	122.1	10.51	110.5	9.94	98.9
160	13.63	186.0	13.22	174.7	10.88	118.5	10.35	107.2	9.79	96.0
	*	A_1	*	B_1	*(*	D_1	*	E_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. continued.

TABLE No. 95

Steel Plate 11 inch thick.

Pressure	*F	$_{1}G_{1}$	*1	I_1	*r	G_1	*	I ₁		
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5		•••	•••	•••	•••	•••	•••	•••		
10		•••	•••	•••		• • •				
15		***	•••	•••			19.65	386.1		
20		400.0	***		20.82	433.6	17.06	291.1		
25	20.92	438.0	19.87	394.8	19.65	386.1	15.30	234.0		
30	19.13	366.0	18.16	330.0	17.96	322.8	14.00	196.0		
35	17.73	314.5	16.84	283.7	16.66	277.5	12.99	168.9		
40	16.61	276.0	15.78	249.0	15.60	243.6	12.18	148.5		
45	15.68	246.0	14.90	222.0	14.73	217.2	11.52	132.7		
50	14.90	222.0	14.15	200.4	14.00	196.0	10.95	120.0		
55	14.22	202.3	13.51	182.7	13.37	178.8	10.47	109.6		
60	13.63	186.0	12.96	168.0	12.82	164.4	10.05	101.0		
65	13.12	172.1	12.47	155.5	12:33	152.2	9.68	93.7		
70	12.66	160.2	12.03	144.8	11.90	141.7	9.35	87.4		
75	12.24	150.0	11.64	135.6	11.52	132.7	9.05	82·0 77·2		
80 85	11.87	141·0 133·0	11.29	127.5	11.17	124.8	8·79 8·55			
90	11.53 11.22	126.0	10.97 10.67	120·3 114·0	10.85	117·8 111·6	8.35	73.0		
95	10.94	119.6	10.40	108.3	10.56	106.0	8.12	66.0		
100	10.67	119 0	10.40	103.2	10.05	101.0	7.93	63.0		
105	10.43	108.8	9.92	98.5	9.82	96.5	7.76	60.3		
110	10.43	104.1	9.71	94.3	9.61	92.4	7.60	57.8		
115	9.99	99.9	9.51	90.5	9.41	88.6	7.45	55.5		
120	9.79	96.0	9.32	87.0	9.23	85.2	7.31	53.5		
125	9.61	92.4	9.15	83.7	9.05	82.0	7.18	51.6		
130	9.43	89.0	8.98	80.7	8.89	79.1	7.06	49.8		
135	9.27	86.0	8.83	78.0	8.74	76.4	6.94	48.2		
140	9.11	83.1	8.68	75.4	8.59	73.8	6.83	46.7		
145	8.97	80.4	8.54	73.0	8.45	71.5	6.73	45.3		
150	8.83	78.0	8.41	70.8	8.32	69.3	6.63	44.0		
155	8.70	75.6	8.29	68.7	8.20	67.3	6.54	42.7		
160	8.57	73.5	8.17	66.7	8.08	65.4	6.45	41.6		
	*F ₁ G ₁		*H	I_1	*r	G_1	*I1			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 96.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{23}{32}$ inch thick.

Pressure per sq. in.	*A ₁		*	B_1	*	C ₁	*D ₁		*E ₁	
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5	•••			•••	•••	•••			•••	
10	•••	•••	•••	•••		•••		•••		
15	•••		•••	•••				•••	•••	
20	•••	•••	•••	•••	•••	•••	•••		•••	•••
25		•••	•••	•••	•••	***	•••	•••	•••	•••
30	•••	***	•••	•••	•••		•••		•••	•••
35	•••		***	•••	•••		•••	•••		
40	•••	•••	•••	•••					19.91	396.6
45	•••		***	***	20.97	440.0	19.91	396.6	18.79	353.2
50	*** .	•••	•••	•••	19.91	396.6	18.91	357.5	17.84	318.5
55	•••	***	•••	•••	19.00	361.0	18.04	325.6	17.03	290.0
60	•••		•••	•••	18.20	331.5	17.29	298.9	16.32	266.4
65		•••			17.50	306.4	16.62	276.4	15.69	246.3
70			20.60	424.5	16.88	285.0	16.03	257.1	15.14	229.2
75	20.55	422.6	19.91	396.6	16.32	266.4	15.50	240.3	14.64	214.3
80	19.91	396.6	19.29	372.2	15.81	250.1	15.02	225.7	14.18	201.3
85	19.33	373.6	18.72	350.6	15.35	235.7	14.58	212.8	13.77	189.8
90	18.79	353.2	18.20	331.5	14.93	223.0	14.18	201.3	13.40	179.6
95	18.30	334.9	17.73	314.3	14.54	211.5	13.82	191.0	13.05	170.4
100	17.84	318.5	17.29	298.9	14.18	201.3	13.48	181.7	12.73	162.2
105	17.42	303.6	16.88	285.0	13.85	192.0	13.16	173.4	12.44	154.8
110	17.03	290.0	16.50	272.3	13.54	183.5	12.87	165.8	12.16	148.0
115	16.66	277.7	16.14	260.7	13.26	175.8	12.60	158.8	11.91	141.8
120	16.32	266.4	15.81	250.1	12.99	168.7	12.34	152.4	11.67	136.2
125	16.00	256.0	15.50	240.3	12.73	162.2	12.10	146.6	11.44	131.0
130	15.69	246.3	15.21	231.3	12.50	156.2	11.88	141.2	11.23	126.1
135	15.41	237.4	14.93	223.0	12.27	150.6	11.67	136.2	11.03	121.7
140	15.14	229.2	14.67	215.2	12.06	145.5	11.47	131.5	10.84	117.6
145	14.88	221.5	14.42	208.0	11.86	140.6	11.28	127.2	10.66	113.7
150	14.64	214.3	14.18	201.3	11.67	136.2	11.09	123.1	10.49	110.1
155	14.40	207.6	13.96	195.0	11.49	132.0	10.92	119.4	10.33	106.8
160	14.18	201.3	13.75	189.1	11.31	128.0	10.76	115.8	10.18	103.6
	*	A ₁	*	B_1	*(C ₁	*	D_1	*E ₁	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{23}{39}$ inch thick.

Table No. 96 continued.

Pressure per sq. in.	*F	1G1	*]	H_1	*r	G_1	*	I ₁			
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface			
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.			
5	•••	•••	•••	•••		•••					
10		•••	•••	•••		•••					
15	•••	•••	• • • •	•••		•••	20.45	418.5			
20	•••		20.00	4057.0			17.75	315.3			
25	70.01	900.0	20.68	427.8	20.45	418.5	15.92	253.5			
30	19.91	396.6	18.91	357.5	18.70	349.7	14.56	212.2			
35	18.46	340·8 298·9	17.53 16.42	307·3 269·6	17:34	300.6	13.52	182.7			
40	17.29	266.4	15.50	240.3	16.24	263.8	12.67	160.6			
45 50	16·32 15·50	240.3	13.50 14.72	216.9	15.33 14.56	$235.1 \\ 212.2$	11·98 11·39	143.5			
55	14.80	219.0	14.06	197.7	13.91	193.5	10.88	129·7 118·5			
60	14.18	201.3	13.48	181.7	13.33	177.8	10.44	109.1			
65	13.64	186.2	12.97	168.2	12.83	164.6	10.06	101.1			
70	13.16	173.4	12.51	156.6	12.38	153.3	9.71	94.3			
75	12.73	162.2	12.10	146.6	11.98	143.5	9.40	88.5			
80	12.34	152.4	11.74	137.8	11.61	134.9	9.13	83.3			
85	11.99	143.8	11.40	130.0	11.28	127.3	8.87	78.7			
90	11.67	136.2	11.09	123.1	10.98	120.5	8.64	74.7			
95	11.37	129.3	10.81	117.0	10.70	114.5	8.43	71.1			
100	11.09	123.1	10.55	111.4	10.44	109.1	8.23	67.8			
105	10.84	117.6	10.31	106.4	10.20	104.2	8.05	64.9			
110	10.60	112.5	10.09	101.8	9.98	99.7	7.89	62.2			
115	10.38	107.9	9.88	97.7	9.78	95.6	7.73	59.8			
120	10.18	103.6	9.69	93.8	9.58	91.9	7.58	57.5			
125	9.98	99.7	9.50	90.3	9.40	88.5	7.45	55.5			
130	9.80	96.1	9.33	87.1	9.23	85.3	7.32	53.5			
135	9.63	92.8	9.17	84.1	9.07	82.3	7.20	51.8			
140	9.47	89.7	9.01	81.3	8.92	79.6	7.08	50.1			
145	9.31	86.8	8.87	78.7	8.78	77.1	6.97	48.6			
150	9.17	84.1	8.73	76.3	8.64	74.7	6.87	47.2			
155	9.03	81.6	8.60	74.0	8.51	72.5	6.77	45.9			
160	8.90	79.2	8.48	71.9	8.39	70.4	6.68	44.6			
	*F	$_{1}G_{1}$	*	H ₁	*r	G_1	*I1				

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces. Steel Plate 3/4 inch thick.

Pressure per sq. in.	*.	A ₁	*:	B_1	*	C ₁	*D ₁		*E ₁	
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5								•••		
10				•••				•••		
15						•••		•••	• • •	
20		•••							•••	
25		•••		• • •				•••		•••
30		•••		•••			•••		•••	
35	•••		***	***		•••		•••		
40	***			•••					20.70	428.5
45	•••	•••		***			20.70	428.5	19.53	381.5
50	•••	***			20.70	428.5	19.65	386.2	18.54	344.0
55	•••	•••	• • •	•••	19.75	390.0	18.75	351.6	17.70	313.2
60	•••		•••	•••	18.92	358.0	17.96	322.8	16.96	287.6
65	•••	•••	•••	•••	18.19	331.0	17.27	298.5	16.31	266.0
70	•••	•••	00.70	400.5	17.54	307.7	16.66	277.6	15.73	247.4
75 80	20.70	428.5	20.70	428.5	16.96	287.6	16.10	259.5	15.21	231.3
			20.05	402.0	16.43	270.0	15.61	243.6	14.74	217.2
85 90	20.09	403.6 381.5	19.46	378.7	15.95	254.5	15.15	229.6	14.31	204.8
95	19·53 19·02	361.7	18·92 18·42	358·0 339·5	15.51 15.11	240.7	14.74	217.2	13.92 13.56	193·7 183·8
100	18.54	344.0	17.96	322.8	14.74	228.3	14.35	206·1 196·0	13.50	175.0
105	18.10	327.9	17.54	307.7	14.39	217·2 207·1	14·00 13·67	187.0	12.92	166.9
110	17.70	313.2	17.14	294.0	14 07	198.0	13.37	178.8	12.63	159.6
115	17.31	299.9	16.78	281.5	13.77	189.6	13.09	171.3	12.36	152.9
120	16.96	287.6	16.43	270.0	13.49	182.0	12.82	164.4	12.11	146.8
125	16.62	276.4	16.11	259.5	13.22	175.0	12.57	158.1	11.88	141.2
130	16.31	266.0	15.80	249.7	12.98	168.5	12.33	152.2	11.66	136.0
135	16.01	256.3	15.51	240.7	12.74	162.4	12.11	146.8	11.45	131.1
140	15.73	247.4	15.24	232.3	12.52	156.8	11.90	141.8	11.25	126.7
145	15.46	239.1	14.98	224.5	12.31	151.6	11.71	137.1	11.07	122.5
150	15.21	231.3	14.74	217.2	12.11	146.8	11.52	132.7	10.89	118.6
155	14.97	224.0	14.50	210.4	11.92	142.2	11.34	128.6	10.72	115.0
160	14.74	217.2	14.58	204.0	11.74	138.0	11.17	124.8	10.2	111.6
	*A ₁ *B ₁		B_1	*C ₁		*D ₁		*E ₁		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 97 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{3}{4}$ inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*]	H_1	*r	G_1	*	I_1
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5	•••	••	•••	***	•••	•••	•••	•••
10	•••	***	•••	•••	•••	•••	•••	•••
15	•••	•••			***	•••	10.45	0.40.0
20 25	•••	•••	•••	•••	•••	•••	18·45 16·54	340.6
30	20.70	428.5	19:65	386.2	19:43	377.8	15.13	273·6 229·0
35	19.18	368.1	18.21	331.9	18.02	324.6	14.04	197.2
40	17.96	322.8	17:06	291.1	16.87	284.8	13.16	173.3
45	16.96	287.6	16.10	259.5	15.93	253.8	12.43	154.7
50	16.11	259.5	15.30	234.1	15.13	229.0	11.82	139.8
55	15.37	236.4	14.60	213.4	14.45	208.8	11.30	127.6
60	14.74	217.2	14.00	196.0	13.85	191.9	10.84	117.5
65	14-17	201.0	13.47	181.5	13.32	177.6	10.43	108.9
70	13.67	187.0	12.99	168.9	12.85	165.3	10.08	101.6
75	13.22	175.0	12.57	158.1	12.43	154.7	9.75	95.2
80	12.82	164.4	12.19	148.5	12.06	145.4	9.46	89.6
85	12.45	155.1	11.84	140.2	11.71	137.2	9.20	84.7
90	12.11	146.8	11.52	132.7	11.39	129.9	8.96	80.3
95	11.80	139.4	11.22	126.0	11.11	123.4	8.74	76.4
100	11.52	132.7	10.95	120.0	10.84	117.5	8.54	72.9
105	11.25	126.7	10.70	114.6	10.59	112.2	8.35	69.7
110	11.01	121.2	10.47	109.7	10.36	107.4	8.17	66.8
115	10.78	116.2	10.25	105.1	10.14	102.9	8.01	64.1
120	10.56	111.6	10.05	101.0	9.94	98.9	7.86	61.7
125	10.36	107.4	9.86	97.2	9.75	95.2	7.71	59.5
130	10.17	103.5	9.68	93.7	9.58	91.8	7.58	57.4
135	9.99	99.8	9.51	90.5	9.41	88.6	7.45	55.5
140	9.82	96.5	9.35	87.4	9.25	85.6	7:33	53.8
145	9.66	93.4	9.20	84.6	9.10	82.9	7.22	52.1
150	9.51	90.5	9.05	82.0	8.96	80.3	7.11	50.6
155	9.36	87.7	8.92	79.5	8.83	77.9	7.01	49.1
160	9.23	85.2	8.79	77.2	8.70	75.7	6.91	47.8
	*F	$_{1}G_{1}$	*1	\mathbf{H}_{1}	*r	G_1	*]	[1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 98.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{25}{32}$ inch thick.

Pressure per sq. in.	* Pitch	A ₁	*	R.	*	a 1	*7	. 1	*	
Pre ler	Pitch			D ₁		C ₁	*1	^J 1		E ₁
	TICH	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq.ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq.ins.	ins.	sq. ins.
5										
10										
15					•••				•••	
20			•••							
25	•••								•••	
30									•••	
35					•••					
40			•••				•••			
45	•••	• • •	•••						20.27	411.0
50			•••				20.39	416.0	19.24	370.5
55	•••			•••	20.49	420.2	19.46	378.7	18.36	337.3
60	• • •	• • •	***		19.63	385.6	18.64	347.7	17.60	309.7
65	•••		•••		18.88	356.4	17.92	321.4	16.92	286.3
70	***			•••	18.20	331.4	17.28	298.9	16.32	266.3
75					17.60	309.7	16.71	279.3	15.78	249.0
80			20.81	433.1	17.05	290.7	16.19	262.2	15.29	233.8
	20.85	434.8	20.20	408.0	16.55	274.0	15.72	247.2	14.84	220.4
90	20.27	411.0	19.63	385.6	16.09	259.1	15.29	233.8	14.44	208.5
95	19.74	389.6	19.12	365.7	15.67	245.8	14.89	221.8	14.06	197.8
100	19.24	370.5	18.64	347.7	15.29	233.8	14.52	211.0	13.72	188.2
	18.79	353.1	18.20	331.4	14.93	222.9	14.18	201.2	13.40	179.5
	18:36	337.3	17.79	316.6	14.59	213.1	13.87	192.3	13.10	171.6
115	17.97	322.9	17.41	303.1	14.28	204.0	13.57	184.2	12.82	164.4
120	17.60	309.7	17.05	290.7	13.99	195.8	13.29	176.8	12.56	157.8
125	17.25	297.6	16.71	279.3	13.72	188.2	13.04	170.0	12.35	151.8
130	16.92	286.3	16.39	268.8	13.46	181.2	12.79	163.7	12.09	146.1
	16.61	276.0	16.09	259.1	13.22	174.7	12.56	157.8	11.87	141.0
140	16.32	266.3	15.81	250.0	12.99	168.7	12.34	152.4	11.67	136.1
145	16.04	257.3	15.54	241:6	12.77	163.1	12.14	147.4	11.47	131.6
150	15.78	249.0	15.29	233.8	12.56	157.8	11.94	142.6	11.59	127.5
155	15.23	241.1	15.04	226.4	12.36	152.9	11.76	138.2	11.11	123.5
160	15.29	233 .8	14.81	219.5	12.18	148.3	11.28	134.1	10.95	119.9
	*_	A_1	*	B_1	*	C_1	*	D_1	*	E_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Table No. 98 continued.

Steel Plate $\frac{25}{32}$ inch thick.

Pressure per sq. in.	*F	1G1	*	H_1	*r	G_1	*	I_1			
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface			
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.			
5	•••	•••	•••		•••		•••	•••			
10	•••		•••	•••	•••	•••	•••	•••			
15	•••	•••	•••	•••	•••	•••					
20	***		•••	***	***	•••	19.15	366.8			
25	•••	•••	00.00	47.0.0	00.17	100.0	17.16	294.6			
30	10.01	000.	20.39	416.0	20.17	406.9	15.70	246.5			
35	19.91	396.5	18.90	357.4	18.70	349.6	14.56	212.2			
40	18.64	347.7	17.70	313.5	17.51	306.7	13.65	186.4			
45	17.60	309.7	16.71	279.3	16.53	273.3	12.89	166.3			
50	16.71	279.3	15.87	252.0	15.70	246.5	12.26	150.3			
55	15.95	254.5	15.15	229.6	14.99	224.7	11.71	137.2			
60	15.29	233.8	14.52	211.0	14.37	206.4	11.23	126.2			
65 70	14.70	216.2	13.97	195.2	13.82	191.0	10.81	117.0			
75	14.18	201.2	13.48	181.7	13.33	177·8 166·3	10.44	109.1			
	13.72	188.2	13.04	170.0	12.89		9.80	96.2			
80 85	13·29 12·91	176.8	12.64	159.7	12.50 12.14	156·3 147·5	9.53	90.9			
90	12.56	166.8	12.27	150.7		139.6	9.28	86.1			
95	12.24	157.8	11.94	142.6 135.4	11.81 11.51	132.6	9.05	81.9			
100	11.94	149·8 142·6	11.64	129.0	11.51	126.2	8.84	78.1			
105	11.67	136.1	11.35		10.98	120.5	8.64	74.7			
110	11.41	130.5	10.85	123·1 117·8	10.74	115.3	8.46	71.6			
115	11.17	124.8	10.62	112.9	10.74	110.5	8.29	68.7			
120	10.95	119.9	10.41	108.5	10.31	106.2	8.13	66.1			
125	10.74	115.3	10.21	104.4	10.30	100 2	7.98	63.7			
130	10.54	111.1	10.03	100.6	9.92	98.5	7.84	61.5			
135	10.35	107.2	9.85	97.1	9.75	95.1	7.71	59.4			
140	10.18	103.6	9.68	93.8	9.58	91.9	7.58	57.5			
145	10.01	100.5	9.53	90.8	9.43	88.9	7.46	55.7			
150	9.85	97.1	9.38	88.0	9.43	86.1	7:35	54.1			
155	9.70	94.1	9.24	85.3	9:14	83.6	7.25	52.5			
160	9.56	91.4	9.10	82.8	9.01	81.1	7.14	51.1			
	*F	$_{1}G_{1}$	*	H_1	*r	G_1	*	I_1			

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces Steel Plate $\frac{13}{16}$ inch thick.

ure q. in.	*_	A ₁	*	B_1	*	C_1	*]	D_1	*	E_1
Pressure per sq. in.	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5			•••				•••		•••	•••
10		•••								
15		•••		•••						
20	• • •		•••						•••	
25									•••	
30		•••								
35			•••							
40		•••		•••						
45										
50	• • •					•••			19.95	398.0
55							20.17	406.9	19.03	362.3
60				•••	20.35	414.3	19.32	373.5	18.24	332.6
65					19.56	382.9	18.58	345.2	17.53	307.5
70	** /	***			18.86	356.0	17.91	321.0	16.91	286.0
75	•••				18.24	332.6	17.32	300.0	16.35	267.3
80	•••				17.67	312.2	16.78	281.6	15.84	251.0
85			20.93	438.3	17.15	294.2	16.29	265.4	15.38	236.5
90			20.35	414.3	16.68	278.2	15.84	251.0	14.96	223.7
95	20.46	418.6	19.82	392.8	16.24	263.8	15.43	238.1	14.57	212.3
100	19.95	398.0	19.32	373.5	15.84	251.0	15.05	226.5	14.21	202.0
105	19.47	379.3	18.86	356.0	15.47	239.3	14.69	216.0	13.88	192.6
110	19.03	362.3	18.44	340.0	15.12	228.7	14.36	206.4	13.57	184.1
115	18.62	346.8	18.04	325.5	14.80	219.0	14.06	197.7	13.28	176.4
120	18.24	332.6	17.67	312.2	14.49	210.1	13.77	189.7	13.01	169.3
125	17.87	319.6	17.32	300.0	14.21	202.0	13.50	182.4	12.76	162.8
130	17.53	307.5	16.99	288.6	13.94	194.4	13.25	175.6	12.52	156.7
135	17.21	296.3	16.68	278.2	13.69	187.4	13.01	169.3	12.29	151.1
140	16.91	286.0	16.38	268.5	13.45	181.0	12.78	163.5	12.08	146.0
145	16.62	276.3	16.10	259.4	13.22	174.9	12.57	158.0	11.88	141.1
150	16.35	267.3	15.84	251.0	13.01	169.3	12.37	153.0	11.69	136.6
155	16.09	258.9	15.59	243.0	12.80	164.0	12.17	148.2	11.20	132.4
160	15.84	251.0	15.35	235.6	12.61	159.1	11.99	143.8	11.33	128.5
	*.	Λ_1	*	B_1	*	C_1	*	D_1	*	E_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 99 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{13}{16}$ inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*]	H_1	*r	G_1	*	I_1	
Pre: per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	
5	•••	•••	•••	•••	•••	•••		•••	
10	•••		•••	•••	•••	•••		••	
15	•••	•••	•••	•••	•••	•••			
20	•••	•••	•••	•••	•••	•••	19.85	394.0	
25	***	•••	•••	***			17.79	316.4	
30					20.91	437.2	16.27	264.7	
35	20.64	426.0	19.59	384.0	19.38	375.6	15.09	227.7	
40	19.32	373.5	18.35	336.7	18.12	329.4	14.14	200.0	
45	18.24	332.6	17.32	300.0	17.13	293.4	13.36	178.4	
50	17:32	300.0	16.45	270.6	16.27	264.7	12.69	161.2	
55	16.53	273.2	15.70	246.5	15.23	241.2	12.13	147.1	
60	15.84	251.0	15.05	226.5	14.88	221.6	11.63	135.3	
65	15.23	232.1	14.47	209.5	14.31	205.0	11.19	125.4	
70	14.69	216.0	13.96	195.0	13.81	190.8	10.81	116.8	
75	14.21	202.0	13.50	182.4	13.36	178.4	10.46	109.4	
80	13.77	189.7	13.09	171.3	12.95	167.7	10.15	103.0	
85	13.37	178.9	12.71	161.6	12.57	158.1	9.86	97.3	
90	13.01	169.3	12.37	153.0	12.23	149.7	9.60	92.2	
95	12.67	160.7	12.05	145.2	11.92	142.1	9.36	87.7	
100	12.37	153.0	11.76	138.3	11.63	135.3	9.14	83.6	
105	12.08	146.0	11.49	132.0	11.36	129.2	8.94	79.9	
110	11.81	139.6	11.23	126.2	11.11	123.6	8.75	76.5	
115	11.56	133.8	11.00	121.0	10.88	118.4	8.57	73.4	
120	11.33	128.5	10.78	116.2	10.66	113.8	8.40	70.6	
125	11.11	123.6	10.57	111.8	10.46	109.4	8.25	68.0	
130	10.91	119.0	10.38	107.7	10.27	105.5	8.10	65.7	
135	10.71	114.8	10.19	104.0	10.09	101.8	7.96	63.4	
140	10.53	111.0	10.02	100.5	9.92	98.4	7.83	61.4	
145	10.36	107:3	9.86	97.2	9.75	95.2	7.71	59.5	
150	10.19	104.0	9.70	94.2	9.60	92.2	7.59	57.7	
155	10.04	100.8	9.55	91.3	9.45	89.4	7.48	56.0	
160	9.89	97.8	9.41	88.6	9.32	86.8	7.38	54.5	
	*F	$_{1}G_{1}$	*]	\mathbf{H}_1	*r	G_1	*	I_1	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{27}{32}$ inch thick.

Pressure per sq. in.	*	A ₁	*	B_1	*	C_1	*	D_1	*	$\mathbf{E_1}$
Pre:	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5		• • • •								
10		•••								
15	•••	•••								•••
20	•••	•••		•••		•••	•••			•••
25	•••	•••				•••	•••	•••	•••	
30	•••	•••		•••			•••	••		•••
35	•••	•••		•••		•••	•••	•••	•••	•••
40	•••	•••		•••		•••		•••		
45	•••	••	•••	•••		•••	•••	•••	20.05	100.5
50 55	***	•••	•••	•••		•••		•••	20.65	426·5 388·2
60	•••	***	•••	•••		•••	20.00	400.0	18.87	356.4
65	•••	•••	•••	•••	20.25	410.3	19.23	369.8	18.15	329.4
70	•••	•••		•••	19.53	381.4	18.54	343.9	17.50	306.3
75	•••	•••	•••	•••	18.88	356.4	17.92	321.3	16.92	286.3
80	•••	•••	•••	•••	18.29	334.5	17.36	301.6	16.39	268.8
85	•••	•••	•••	•••	17.75	315.1	16.86	284.2	15.91	253.3
90			•••		17.26	298.0	16.39	268.8	15.48	239.6
95	•••	•••	20.51	420.9	16.81	282.6	15.96	254.9	15.07	227.3
100	20.65	426.5	20.00	400.0	16.39	268.8	15.57	242.5	14.70	216.2
105	20.16	406.4	19.53	381.4	16.01	256.2	15.20	231.2	14.36	206.2
110	19.70	388.2	19.08	364.3	15.65	244.9	14.86	221.0	14.04	197.1
115	19.27	371.6	18.67	348.7	15.31	234.5	14.55	211.6	13.74	188.8
120	18.87	356.4	18.29	334.5	15.00	225.0	14.25	203.1	13.46	181.2
125	18.50	342.4	17.92	321.3	14.70	216.2	13.97	195.2	13.19	174.2
130	18.15	329.4	17.58	309.2	14.42	208.1	13.71	187.9	12.95	167.7
135	17.81	317.4	17.26	298.0	14.16	200.6	13.46	181.2	12.71	161-7
140	17.50	306.3	16.95	287.5	13.91	193.7	13.22	174.9	12.49	156 .1
145	17.20	296.0	16.67	277.8	13.68	187.2	13.00	169.0	12.28	151 .0
150	16.92	286.3	16.39	268.8	13.46	181.2	12.79	163.6	12.09	146.1
155	16.65	277.2	16.13	260.3	13.25	175.5	12.59	158.6	11.90	141.6
160	16:39	268.8	15.88	252.3	13.04	170.2	12.40	153.8	11.72	137.4
	*A ₁		*B ₁		*	C ₁	*D ₁		*E ₁	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 100 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{27}{32}$ inch thick.

Pressure per sq. in.	*F	$_1G_1$	*]	H_1	*r	G_1	*:	[₁		
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.		
5						•••		•••		
10		•••		•••		***		•••		
15		•••		•••		•••		1000		
20	•••	•••		•••		•••	20.55	422.2		
25	•••	•••	•••	•••		•••	18.41	339.0		
30		•••		.::: .		***	16.83	283.5		
35			20.28	411.4	20.06	402.4	15.61	243.8		
40	20.00	400.0	18.99	360.7	18.78	352.9	14.63	214.1		
45	18.87	356.4	17.92	321.3	17.73	314.3	13.82	191.0		
50	17.92	321.3	17.02	289.8	16.83	283.5	13.13	172.5		
55	17.10	292.7	16.25	264.0	16.07	258.3	12.54	157.3		
60	16.39	268.8	15.57	242.5	15.40	237.2	12.03	144.7		
65	15.76	248.5	14.97	224.3	14.81	219.4	11.58	134.0		
70	15.20	231.2	14.44	208.7	14.29	204.2	11.17	124.9		
75	14.70	216.2	13.97	195.2	13.82	191.0	10.81	117.0		
80	14.25	203.1	13.54	183.3	13.39	179.4	10.49	110.0		
85	13.83	191.5	13.15	172.9	13.01	169.2	10.19	103.9		
90.	13.46	181.2	12.79	163.6	12.65	160.1	9.92	98.5		
95	13.11	171.9	12.46	155.3	12.33	152.0	9.67	93.6		
100	12.79	163.6	12.16	147.9	12.03	144.7	9.44	89.2		
105	12.49	156.1	11.88	141.1	11.75	138.1	9.23	85.2		
110	12.22	149.3	11.62	135.0	11.49	132.1	9.03	81.6		
115	11.96	143.1	11.37	129.4	11.25	126.6	8.85	78.3		
120	11.72	137.4	11.14	124.2	11.02	121.6	8.68	75.3		
125 130	11·49 11·28	132.1	10.93	119.5	10.81	117.0	8.52	72.6		
135	11.08	127.2	10.73	115.1	10.61	112.7	8·37 8·22	70.0		
140	10.89	122.8	10.54	111.1	10.43	108.7	0 ==	67.6		
145		118.6	10.36	107:3	10.25	105.1	8.09	65.4		
150	10.71 10.54	114.7	10.19	103.8	10.08	101 7	7.96	63.4		
155	10.38	111.1	10.03	100.6	9.92	98.5	7.84	61.5		
160	10.38	107.7	9.87	97.5	9.77	95.5	7.72	59·7 58·0		
100	10.22	104.5	9.73	94.7	9.63	92.7	7.61	98.0		
	*F ₁	G_1	*H	\mathbf{H}_1	*r	G_1	*	I ₁		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 101.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{7}{8}$ inch thick.

Pressure per sq. in.	*	A_1	*	B_{1}	*	C_1	*	D_1	*	E_1
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10										•••
15					• • •			***		
20										
25										•••
30	•••				•••	•••				•••
35			•••	•••						
40			•••							
45	•••		•••		•••				•••	
50			•••		***	•••		***		
55			•••			•••			20.37	415.0
60			***	•••			20.68	427.8	19.52	381.0
65		•••		•••	20.94	438.6	19.88	395.4	18.76	352.1
70			•••		20.19	407.7	19.17	367.6	18.09	327.4
75	•••		***		19.52	381.0	18.53	343.5	17.49	306.0
80				***	18.91	357.5	17.95	322.4	16.94	287.2
85			***		18.35	336.8	17.43	303.7	16.45	270.7
90					17.84	318.5	16.94	287.2	16.00	256.0
95					17.38	302.0	16.50	272.4	15.28	242.8
100			20.68	427.8	16.94	287.2	16.09	259.1	15.19	231.0
105	20.84	434.5	20.19	407.7	16.54	273.8	15.71	247.0	14.84	220.2
110	20.37	415.0	19.73	389.5	16.17	261.6	15.36	236.1	14.51	210.5
115	19.93	397.3	19.31	372.8	15.83	250.5	15.03	226.1	14.20	201.6
120	19.52	381.0	18.91	357.5	15.50	240.3	14.72	216.9	13.91	193.5
125	19.13	366.0	18.53	343.5	15.19	231.0	14.44	208.5	13.63	186.0
130	18.76	352.1	18.18	330.2	14.91	222.3	14.16	200.7	13.38	179.0
135	18.42	339.3	17.84	318.5	14.64	214.3	13.91	193.5	13.14	172.6
140	18.09	327.4	17.53	307.3	14.38	206.8	13.66	186.8	12.91	166.7
145	17.78	316.3	17.23	296.9	14.14	199.9	13.43	180.5	12.69	161.1
150	17.49	306.0	16.94	287.2	13.91	193.5	13.22	174.7	12.49	156.0
155	17.21	296.3	16.67	278.1	13.69	187.4	13.01	169.3	12.29	151.1
160	16.94	287.2	16.42	269.6	13.48	181.7	12.81	164.2	12.10	146.6
	*	A_1	*	B_1	*	C_1	*	D_1	*	$\mathbf{E_1}$

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces. Steel Plate $\frac{7}{8}$ inch thick.

Table No. 101 continued.

Pressure per sq. in.	*F	$_{1}G_{1}$	*	H_1	*r	G_1		*I_1		
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface		
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq ins.		
5				•••		•••				
10						•••				
15										
20						•••				
25		•••					19.03	362.4		
30		•••					17.40	303.0		
35		•••	20.97	439.9	20.74	430.2	16.14	260.5		
40	20.68	427.8	19.63	385.6	19.42	377.2	15.12	228.7		
45	19.52	381.0	18.53	343.5	18.33	336.0	14.28	204.0		
50	18.53	343.5	17.60	309.7	17.40	303.0	13.57	184.2		
55	17.68	312.8	16.79	282.1	16.61	276.0	12.96	168.0		
60	16.94	287.2	16.09	259.1	15.92	253.5	12.43	154.5		
65	16.29	265.6	15.48	239.6	15.31	234.4	.11.96	143.0		
70	15.71	247.0	14.93	222.9	14.77	218.1	11.24	133.2		
75	15.19	231.0	14.44	208.5	14.28	204.0	11.17	124.8		
80	14.72	216.9	13.99	195.8	13.84	191.6	10.83	117.3		
85	14.30	204.5	13.59	184.6	13.44	180.7	10.52	110.8		
90	13.91	193.5	13.22	174.7	13.07	171.0	10.24	105.0		
95	13.55	183.6	12.87	165.8	12.74	162.3	9.99	99.7		
100	13.22	174.7	12.56	157.8	12.43	154.5	9.75	95.1		
105	12.91	166.7	12.27	150.6	12.14	147.4	9.23	90.8		
110	12.62	159.4	12.00	144.0	11.87	141.0	9.32	87.0		
115	12.35	152.7	11.75	138.0	11.62	135.1	9.13	83.4		
120	12.10	146.6	11.51	132.5	11.39	129.7	8.95	80.2		
125	11.87	141.0	11.29	127.5	11.17	124.8	8.79	77.2		
130	11.65	135.8	11.08	122.8	10.96	120.2	8.63	74.5		
135	11.44	131.0	10.88	118.5	10.77	116.0	8.48	72.0		
140	11.24	126.5	10.70	114.4	10.58	112.0	8.34	69.6		
145	11.06	122.3	10.52	110.7	10.41	108.4	8.21	67.4		
150	10.88	118.5	10.35	107.2	10.24	105.0	8.08	65.4		
155	10.71	114.8	10.19	103.9	10.09	101.8	7.96	63.4		
160	10.55	111.4	10,04	100.9	9.94	98.8	7.85	61.6		
	*F	$_{1}G_{1}$	* I	\mathbf{H}_1	*r	G_1	*	I_1		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 102.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{29}{32}$ inch thick.

Pressure per sq. in	*	A_1	*	В1	*	C_1	*1	01	*1	Ξ_1
Pres per s	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5		•••					•••		•••	
10		•••		•••	•••		•••		•••	•••
15	•••				•••	•••	•••	•••	•••	
20		•••		•••	•••		•••	•••	•••	
25		•••	• • • •	***	•••	•••	•••	•••	•••	
30	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
35	•••			•••	•••		•••	•••	•••	
40			•••	•••	•••	•••	•••	•••	•••	•••
45		•••	•••		•••	•••	•••	•••	•••	•••
50	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••
55	•••	•••	•••	•••	•••	•••	•••			100.4
60		•••	•••	•••	•••	•••			20.16	406.4
65	•••	•••	•••	***			20.53	421.8	19.38	375.6
70	•••	•••	•••	•••	20.85	435.0	19.80	392.1	18.68	349.2
75	•••	•••	•••	•••	20.16	406.4	19.14	366.3	18.06	326.3
80	•••		•••	•••	19.53	381.3	18.54	343.8	17:50	306.3
85	•••	•••	•••	***	18.95	359.3	18.00	324.0	16.99	288.6
90	***	•••	•••	•••	18.43	339.6	17.50	306.3	16.52	272.9
95	•••	•••	•••		17.94	322.1	17.04	290.5	16.09	258.8
100	***	•••	20.05	405.0	17.50	306.3	16.62	276.2	15.69	246.2
105	•••	•••	20.85	435.0	17.08	292.0	16.23	263.4	15.32	234.8
110	00.50	400.0	20.38	415.5	16.70	279.0	15.86	251.7	14.98	224.4
115	20.58	423.8	19.94	397.7	16.34	267.1	15.52	241.0	14.66	214.9
120	20.16	406.4	19.53	381.3	16.00	256.0	15.20	231.2	14.36	
$\frac{125}{130}$	19.75	390.4	19.14	366.3	15.69	246.2	14.90	222.2	14.07	198·2 190·8
	19.38	375.6	18.77	352.5	15:39	237.0	14.62	213.9	13.81	
135	19.02	361.9	18.43	339.6	15.11	228.4	14.36	206.2	13.56	183.9
140	18.68	349.2	18.10	327.7	14.85	220.5	14.10	199.0	13·32 13·10	177.6
145	18:36	337:3	17.79	316.6	14.59	213.1	13.87	192.4	12.89	171.6
150	18.06 17.77	326.3	17.50 17.22	306.3	14:36	206.2	13.64	186.1		166·1 161·0
$155 \\ 160$	17.77 17.50	316.0	16.95	296.6	14.13	199.7	13.43	180.3	12.68 12.49	156.1
100	17.50	900.3	10.95	287.5	13.91	193.6	13.22	174.9	12.49	190.1
	*	A_1	*	B_{1}	*	C_1	*	D_1	*	E_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Table No. 102 continued.

Steel Plate $\frac{29}{32}$ inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*]	$\mathbf{I_1}$	*r	G_1	9	$^{\epsilon}\mathrm{I}_{1}$
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5	•••	•••	•••	•••	•••	***	***	
10	•••	•••	•••	***	•••	•••	•••	•••
15	***	•••	•••	•••	•••	•••		• • •
20	•••	•••	•••		•••	***		
25	•••	***	•••	•••	•••	•••	19.66	386.2
30	•••	***	•••	•••	•••	•••	17.97	323.1
35	•••	•••					16.66	277.8
40			20.28	411.4	20.06	402.4	15.61	243.8
45	20.16	406.4	19.14	366.3	18.93	358.3	14.74	217.4
50	19.14	366.3	18.17	330.3	17.97	323.1	14.01	196.2
55	18.26	333.6	17:34	300.8	17.15	294.3	13.37	178.9
60	17.50	306.3	16.62	276.2	16.44	270.2	12.82	164.5
65	16.82	283.2	15.98	255.4	15.81	249.9	12.34	152.3
70	16.23	263.4	15.41	237.6	15.24	232.5	11.91	141.9
75	15.69	246.2	14.90	222.2	14.74	217.4	11.52	132.8
80	15.20	231.2	14.44	208.7	14.29	204.2	11.17	124.9
85	14.76	217.9	14.02	196.7	13.87	192.5	10.86	117.9
90	14.36	206.2	13.64	186.1	13.49	182.1	10.57	111.7
95	13.98	195.6	13.29	176.7	13.15	172.9	10.30	106.1
100	13.64	186.1	12.96	168.1	12.82	164.5	10.05	101.1
105	13.32	177.6	12.66	160.4	12.53	157.0	9.82	96.6
110	13.03	169.8	13.38	153.4	12.25	150.1	9.61	92.5
115	12.75	162.6	12.12	147.0	11.99	143.8	9.42	88.7
120	12.49	156.1	11.88	141.1	11.75	138.1	9.23	85.2
125	12.25	150.1	11.65	135.7	11.52	132.8	9.06	82.1
130	12.02	144.6	11.43	130.7	11.31	127.9	8.89	79.1
135	11.81	139.4	11.23	126.1	11.11	123.4	8.74	76.4
140	11.60	134.7	11.03	121.8	10.92	119.2	8.60	73.9
145	11.41	130.2	10.85	117.8	10.74	115.3	8.46	71.6
150	11.23	126.1	10.68	114.1	10.57	111.7	8.34	69.6
155	11.05	122.2	10.51	110.6	10.40	108.3	8.20	67.3
160	10.89	118.6	10.36	107.3	10.25	105.1	8.09	65.4
	*F	$_{1}G_{1}$	*	H_1	*r	G_1	*]	1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 103.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{15}{6}$ inch thick

Pressure per sq.in.	*	A_1	*	B_1	*	C_1	*]	D_1	*]	Ξ_1
Pre:	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10								•••		
15		•••		•••		•••				
20		•••				•••	•••			
25				• • •		•••				•••
30								•••		
35			•••	•••		•••			•••	
40				•••		•••				
45	***	•••		•••		•••				•••
50		•••	•••	•••		•••		•••		
55		•••	***	•••						
60		•••	***	•••		•••			20.80	432.6
65	***					•••			19.99	399.8
70	***	***		•••			20.43	417.4	19.28	371.7
75				•••	20.80	432.6	19.74	390.0	18.63	347.3
80				•••	20.15	406.0	19.13	366.0	18.05	326.0
85		•••	•••		19.55	382.4	18.57	344.8	17.52	307.1
90				•••	19.01	361.5	18.05	326.0	17.04	290.4
95		***	***	•••	18.51	342.8	17.58	309.1	16.59	275.4
100		•••			18.05	326.0	17.14	294.0	16.18	262.0
105		•••			17.62	310.7	16.74	280.2	15.80	249.8
110	•••				17.23	296.9	16.36	267.8	15.45	238.7
115			20.57	423.3	16.86	284.2	16.01	256.4	15.12	228.6
120	20.80	432.6	20.15	406.0	16.51	272.6	15.68	246.0	14.81	219.3
125	20.38	415.6	19.74	390.0	16.18	262.0	15.37	236.4	14.21	210.8
130	19.99	399.8	19.37	375.2	15.88	252.1	15.08	227.5	14.24	202.9
135	19.62	385.2	19.01	361.5	15.59	243.0	14.81	219.3	13.98	195.6
140	19.28	371.7	18.67	348.8	15.31	234.5	14.55	211.7	13.74	188.8
145	18.95	359.1	18.35	337.0	15.05	226.6	14.30	204.6	13.51	182.2
150	18.63	347.3	18.05	326.0	14.81	219.3	14.07	198.0	13.29	176.6
155	18.34	336.3	17.76	315.6	14.57	212.4	13.85	191.8	13.08	171.1
160	18.05	326.0	17.49	306.0	14.35	206.0	13.63	186.0	12.88	166.0
	*1	A ₁	*1	31	*(C ₁	*1)1	*E	2,

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 103 continued.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{15}{16}$ inch thick.

Pressure	*F	'1G1	*1	I_1	*r	G_1	*	I_1
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5		•••	•••	•••		•••	•••	•••
10		•••	•••	•••			•••	***
15	•••		•••	•••	***	•••	•••	•••
20		•••	•••	•••	•••	•••		
25	•••	•••	***	•••	•••	•••	20.28	411.5
30	***	***	•••	***	•••	•••	18.54	343.9
35	***	•••					17.19	295.6
40			20.92	488.0	20.69	428.4	16.10	259.4
45	20.80	432.6	19.74	390.0	19.53	381.4	15.20	231.2
50	19.74	390.0	18.75	351.6	18.54	343.9	14.44	208.7
55	18.84	355.0	17:89	320.1	17.69	313.2	13.79	190.3
60	18.05	326.0	17.14	294.0	16.95	287.6	13.22	174.9
65	17·36 16·74	301.3	16.48	271.8	16:30	265.9	12.72	161.9
70	16.18	280.2	15.90	252.8	15.72	247.3	12·28 11·88	150.8
75	15.68		15.37	236.4	15.20	231.2		141·1 132·7
80 85	15.22	246.0	14·90 14·46	209.2	14.73	217.2	11.52 11.19	125.2
90	14.81	219.3	14.07	198.0	14·31 13·91	193.7	10.89	118.6
95	14.42	208.1	13.70	187.8	13.56	183.8	10.61	112.7
100	14.07	198.0	13.37	178.8	13.22	174.9	10.36	107.3
105	13.74	188.8	13.06	170.5	12.92	166.9	10.12	107.5
110	13.43	180.5	12.77	163.0	12.63	159.6	9.90	98.1
115	13.15	172.9	12.50	156.2	12.36	152.9	9.70	94.1
120	12.88	166.0	12.24	150.0	12.11	146.8	9.51	90.4
125	12.63	159.6	12.01	144.2	11.88	141.1	9.33	87.1
130	12.39	153.6	11.78	138.9	11.66	135.9	9.16	83.9
135	12.17	148.2	11.57	134.0	11.45	131.1	9.00	81.0
140	11.96	143.1	11.37	129.4	11.25	126.6	8.85	78.4
145	11.76	138.4	11.18	125.1	11.07	122.5	8.71	75.9
150	11.57	134.0	11.01	121.2	10.89	118.6	8.57	73.5
155	11.39	129.8	10.83	117.4	10.72	115.0	8.45	71.4
160	11.22	126.0	10.67	114.0	10.56	111.6	8.32	69.3
	*F	$_{1}G_{1}$	*]	H_1	*r	G_1	*]	1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

TABLE No. 104.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{3}{3}\frac{1}{2}$ inch thick.

Pressure per sq. in.	*	A_1	*	B_1	,	⁺ C ₁	*	D_1	*	$\mathbf{E_1}$
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5						•••				
10		• • •		• • • •		• • • •		***		• • • •
15						• • • •		•••		•••
20		•••	•••			•••				•••
25		• • •				•••		•••		•••
30		•••		•••				•••		•••
35		•••	•••		•••	•••		•••	•••	•••
40		•••	•••	•••		•••	•••	•••	•••	•••
45		•••	•••	•••		•••		***	•••	•••
50		•••	•••	•••		•••	•••	•••	•••	•••
55		•••	•••	•••		•••	•••	•••	•••	* ***
60			•••	•••		•••		•••		101 -
65		•••	• • • •	•••	•••	•••	•••	•••	20.61	424.8
70		•••	•••	•••		•••			19.87	394.9
75		•••	***				20.35	414.3	19.21	369.0
80		•••	•••	•••	20.77	431.3	19.72	388.8	18.61	346.3
85	•••	•••	•••	***	20.15	406.3	19.14	366.3	18.06	326.2
90		•••	•••	•••	19.60	384.1	18.61	346.3	17.56	308.5
95		•••	•••	•••	19.08	364.2	18.12	328.4	17.10	292.5
100	•••	•••	***	• • •	18.61	346.3	17.67	312.2	16.68	278.2
105		•••	•••	•••	18.16	330.1	17.25	297.6	16.28	265.2
110		•••	•••	**1	17.75	315.3	16.86	284.4	15.92	253.5
115		•••	20.77	491.0	17:37	301.9	16.50	272.3	15.58	242.7
$\frac{120}{125}$		•••	20.77	431.3	17.01	289.5	16.16	261.2 251.0	15.26	232.8
$\frac{125}{130}$	20.67	404.0	20.35	414.3	16.68	$278.2 \\ 267.7$	15.84 15.54		14.96	223.8
135	20.61	424·8 409·3	19.96	398.6	16.36			241.6	14.67	215.4
		394.9	19.00	384.1	16.06	258.0	15.26	232.8	14:41	207.6
$\frac{140}{145}$	19·87 19·53	381.5	18.92	370.6 358.0	15.78 15.51	249.0	14·99 14·73	224·7 217·2	14·15 13·92	200.4
150	19.21	369.0	18.61	346.3	15.26	232.8	14.73	217.2	13.69	193·7 187·5
150 155	18.90	357.2	18:31	335.3	15.01	225.5	14.49	203.6	13.47	181.6
160	18.61	346.3	18.02	325.0	14.78	218.6	14.05	197.4	13.27	176.1
100	10 01	040 0	10 02	020 0	14 /8	210 0	14.00	19/4	19.21	1/0.1
	* /	11	*1	31	*0	1	*1	O_1	*]	\mathbb{E}_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Table No. 104 continued.

Steel Plate $\frac{31}{32}$ inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*	H_1	*r	G_1	*	I ₁
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5		•••	•••	***	•••	•••	•••	•••
10		•••		•••		•••	•••	•••
15		•••		•••	177	•••	•••	***
20		•••	•••	***	***	***		
25	•••		•••	•••		•••	20.91	437.2
30			***	•••	- 111	•••	19.11	365.3
35	•••	•••	1273	171	m		17.72	314.0
40	•••	PET					16.60	275.5
45			20.35	414.3	20.13	405.3	15.67	245.5
50	20.35	414.3	19.32	373.5	19.11	365.3	14.88	221.6
55	19.42	377.2	18.44	340.1	18.24	332.7	14.21	202.0
60	18.61	346.3	17.67	312.2	17.47	305.4	13.62	185.6
65	17.89	320.1	16.99	288.7	16.80	282.4	13.11	171.8
70	17.25	297.6	16.38	268.5	16.20	262.6	12.65	160.0
75	16.68	278.2	15.84	251.0	15.67	245.5	12.23	149.7
80	16.16	261.2	15.35	235.7	15.18	230.6	11.86	140.7
85	15.69	246.2	14.90	222.1	14.74	217.3	11.52	132.8
90	15.26	232.8	14.49	210.1	14.34	205.6	11.21	125.7
95	14.86	220.9	14.12	199.4	13.97	195.1	10.93	119.4
100	14.49	210.1	13.77	189.7	13.62	185.6	10.66	113.8
105	14.15	200.4	13.45	181.0	13.30	177.1	10.42	108.6
110	13.84	191.6	13.15	173.0	13.01	169.3	10.19	104.0
115	13.54	183.5	12.87	165.7	12.73	162.2	9.98	99.7
120	13.27	176.1	12.61	159.1	12.48	155.7	9.79	95.8
125	13.01	169.3	12.37	153.0	12·23 12·01	149.7	9.60	92.2
130	12.77	163.0	12.14	147:3		144.2	9.42	88.8
135	12.54	157.2	11.92	142.1	11.79	139.1	9.26	85.8
140	12:36	152.8	11.71	137.2	11.59	134.3	9.11	83.0
145	12.11	146.8	11.52	132.7	11:39	129.9	8.96 8.82	80·3 77·8
150	11.79	142·1 137·7	11.33	128.5 124.5	11·21 11·04	125·7 121·9	8.69	75.5
155 160	11.73	133.6	10.99	124.9	10.87	118.3	8.26	73.3
100	11,20	199.0	10.99	120.8	10.87	119.9	0.50	13.3
	*F ₁	G_1	*]	H_1	*r	G_1	*	[1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 105.

Pressures, Pitches, and Surfaces. Steel Plate 1 inch thick.

-					1		1			
Pressure per sq. in	*	A_1	*	В1	*	C_1	*	D_1	*:	E ₁
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs,	ins,	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10										
15										
20										
25								•••		
30										
35										
40		•••								
45										
50										
55										
60										
65	• • •									
70									20.46	418.8
75							20.96	439.5	19.78	391.3
80							20.30	412.4	19.16	367.2
85					20.76	431.0	19.71	388.5	18.60	346.0
90					20.18	407.3	19.16	367.2	18.08	327.1
95					19.65	386.2	18.66	348.2	17.61	310.2
100					19.16	367.2	18.19	331.1	17.17	295.0
105					18.71	350.0	17.76	315.6	16.77	281.2
110		,			18.28	334.4	17.36	301.5	16.39	268.7
115					17.89	320.1	16.99	288.7	16.04	257.3
120					17.52	307.0	16.64	276.9	15.71	246.8
125					17.17	295.0	16.31	266.1	15.40	237.2
130			20.56	422.8	16.85	283.8	16.00	256.0	15.11	228.3
135	20.83	434.1	20.18	407:3	16.54	273.5	15.71	246.8	14.83	220.0
140	20.46	418.8	19.82	393.0	16.25	264.0	15.43	238.2	14.57	212.4
145	20.11	404.6	19.48	379.7	15.97	255.1	15.17	230.2	14.32	205.3
150	19.78	391.3	19.16	367.2	15.71	246.8	14.92	222.7	14.09	198.6
155	19.46	378.9	18.85	355.5	15.46	239.0	14.68	215.7	13.87	192.4
160	19.16	367.2	18.56	344.6	15.22	231.7	14.46	209.2	13.66	186.6
T	*	\mathbf{A}_1	*	B_1	*	C_1	*]	D_1	*1	E ₁

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Table No. 105 continued.

Steel Plate 1 inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*	H_1	*r	G_1	*]	[1
Pre	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5						•••	•••	•••
10	***	•••		•••		•••	•••	•••
15	•••	•••		•••		•••	•••	•••
20		•••	•••	•••		•••		•••
25		•••	•••	•••		•••		
30	•••	•••	•••	•••		• • •	19.68	387.4
35		•••		•••		•••	18.24	332.9
40	•••	•••		400.5	00.70	400.0	17.09	292.1
45			20.96	439.5	20.73	429.8	16.13	260.3
50	20.96	439.5	19.90	396.1	19.68	387.4	15.32	234.8
55	20.00	400.0	18.99	360.6	18.78	352.8	14.63	214.0
60	19.16	367.2	18.19	331.1	17.99	323.9	14.02	196.7
65	18.42	339.4	17:49	306.1	17:30	299.4	13.49	182.0
70	17.76	315.6	16.87	284.6	16.68	278.4	13.01	169.4
75	17.17	295.0	16:31	266.1	16.13	260.3	12.59	158.5
80	16.64	276.9	15.80	249.8	15.63	244·4 230·4	12.20	149.0
85	16·15 15·71	261·0 246·8	15.34	235.5	15·17 14·76	217.9	11.86	140·6 133·1
90	15.30	234.1	14.92 14.53	222.7	14.38	206.7	11.54	126.4
100	14.92	222.7	14.18	201.0	14.02	196.7	10.97	120.4
105	14.57	212.4	13.84	191.7	13.69	187.6	10.72	114.9
110	14.25	203.0	13.54	183.3	13.39	179.4	10.49	110.0
115	13.94	194.4	13.25	175.6	13.11	171.8	10.43	105.5
120	13.66	186.6	12.98	168.5	12.84	164.9	10.06	101.3
125	13.39	179.4	12.73	162.0	12.59	158.5	9.87	97.5
130	13.14	172.7	12.49	156.0	12.35	152.7	9.69	94.0
135	12.90	166.5	12.26	150.5	12.13	147.2	9.52	90.7
140	12.68	160.8	12.05	145.3	11.92	142.2	9.36	87.7
145	12.47	155.4	11.85	140.5	11.72	137.5	9.21	84.9
150	12.26	150.5			9.07	82.2		
155	12.07	145.8	11.48	131.8	11.36	129.0	8.93	79.8
160	11.89	141.4	11.31	127.9	11.19	125.2	8.80	77.5
	*F ₁	G_1	*E	I_1	*r	G_1	*1	1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

TABLE No. 106.

Pressures, Pitches, and Surfaces. Steel Plate $1\frac{1}{32}$ inch thick.

_										_
Pressure per sq. in.	*	A_1	*	B_1	*	C_1	*	D_1	*	E ₁
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10								•••		
15								•••	•••	•••
20				• • • •						•••
25						•••		•••		
30				•••		•••		•••	•••	•••
35								•••	•••	•••
40				•••				•••	•••	•••
45				•••		•••		•••	•••	•••
50				• • • •		•••				•••
55	•••		•••	•••				•••	•••	•••
60				•••		•••	•••	•••	•••	•••
65				•••		•••	•••	•••		. ::-
70				•••	•••	•••	•••	•••	21.06	443.5
75		•••			•••	•••			20.35	414.3
80				**.	•••	•••	20.89	436.6	19.71	388.8
85		•••				•••	20.28	411.3	19.13	366.5
90					20.76	431.3	19.71	388.8	18.60	346.2
95				•••	20.22	408.9	19.20	368.6	18.12	328.3
100				•••	19.71	388.8	18.72	350.5	17.67	312.2
105				•••	19.25	370.5	18.28	334.1	17.25	297.6
110				• • • •	18.81	354.0	17.86	319.2	16.86	284.4
115				•••	18.40	338.8	17.48	305.5	16.50	272.3
120					18.02	325.0	17.12	293.1	16.16	261.2
125					17.67	312.2	16.78	281.6	15.84	251.0
130					17:33	300.4	16.46	271.0	15.54	241.5
135	•••		20.76	431.3	17.01	289.5	16.16	261.2	15.26	232.8
140			20.40	416.1	16.71	279.4	15.87	252.0	14.99	224.7
145	20.69	428.4	20.05	402.0	16.43	270.0	15.60	243.6	14.73	217.2
150	20.35	414.3	19.71	388.8	16.16	261.2	15.35	235.6	14.49	210.1
155	20.03	401.1	19.40	376.4	15.90	252.9	15.10	228.2	14.26	203.5
160	19.71	388.8	19.10	364.8	15.66	245.2	14.87	221.3	14.05	197.4
	* A	1 ₁	*1	B_1	*(71	*1	01	*]	Ξ_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Table No. 106 continued.

Steel Plate 1 1 inch thick.

Pressure per sq. in.	*F	'1G1	*	H_1	*r	G_1	,	I ₁
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5	•••	•••	•••	•••		•••		•••
10		•••	•••	•••	•••	•••	•••	****
15		•••	***	•••	•••	•••		•••
20		•••	•••	***	•••	***	•••	***
25	•••	•••	•••	***		•••	00.05	470.0
30	•••	•••	•••	•••	•••	•••	20.25	410.2
35	•••	•••	•••	***	***	***	18.77	352.5
40	•••	•••	•••	•••	***	•••	17.58	309.1
45	•••	•••	00.40	470.4	20.05	470.0	16.59	275.5
50	20:58	400.0	20.48	419.4	20.25	410.2	15.76	248.5
55 60	19.71	423.6	19.54	381.8	19:32	373.5	15.05	226.5
		388.8	18.72	350.5	18.51	342.8	14.42	208.1
65 70	18.95 18.28	359.3	18.00	324.0	17:80	316.9	13.87	192.5
75	18.28	334.1	17.35	301.3	17.16	294.7	13.38	179.2
		312.2	16.78	281.6	16.59	275.5	12.95	167.7
80 85	17.12	293.1	16.26	264.3	16.08	258.6	12.55	157.5
90	16.62 16.16	276.2	15.78	249.1	15.61	243.7	12·19 11·86	148.6
95	15.74	261.2	15.35	235.6	15.18	230.5		140.7 133.6
100	15.35	247·7 235·6	14.95 14.58	$223.5 \\ 212.7$	14.79 14.42	218·7 208·1	11.56 11.28	127.2
105	14.99	233 6	14.24		14.42	198.5	11.02	121.5
110	14.65	214.8		202·8 193·9		189.7	10.78	116.2
115	14.34	205.7	13.92 13.63	185.7	13.77 13.48	181.7	10.78	111.4
120	14.05	197.4	13.35	178.2	13.48	174.4	10.34	107.0
125	13.77	189.7	13.35	178.2	12.95	167.7	10.34	103.0
130	13.21	182.6	12.84	165.0	12.70	161.4	9.96	99.2
135	13.27	176.1	12.61	159.1	12.47	155.7	9.79	95.8
140	13.04	170.0	12.39	153.6	12.47	150.3	9.62	92.6
145	12.82	164.4	12.18	148.5	12.05	145.3	9.46	89.6
150	12.61	159.1	11.99	143.8	11.86	140.7	9.32	86.8
155	12.41	154.1	11.80	139.3	11.68	136.4	9.17	84.2
160	12.23	149.5	11.62	135.1	11.50	132.3	9.04	81.7
	*F	G_1	*F	I _t	*r	G_1	*	[1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

TABLE No. 107.

Pressures, Pitches, and Surfaces. Steel Plate $1\frac{1}{16}$ inch thick.

1											
Pressure per sq. in.	*,	A ₁	*	B_{1}	*	C ₁	*	D_1	*	E ₁	
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	
5							•••	•••		•••	
10			•••	•••	•••		•••			•••	
15			• • •	•••	•••		•••	•••	•••	•••	
20		•••			•••	•••	•••	•••		•••	
25	•••	•••		•••		•••	•••	•••		•••	
30	•••	•••	•••	•••	•••	•••	•••	•••		•••	
35	•••	•••		•••		***	•••	•••	•••	•••	
40	•••	•••		•••	***	•••	•••	•••		•••	
45	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	
50 55	•••	•••	•••	•••	***	***	***	***		•••	
60	•••	•••	•••	•••	•••	•••	•••	•••		•••	
65	•••	•••	•••	•••	•••	•••	•••	•••		•••	
70	•••	•••		•••	•••	•••	•••	•••	•••		
75	•••	•••	•••	•••	•••	•••		•••	20.92	438.0	
80	•••	•••	•••	•••	•••	•••			20.27	411.0	
85		***	•••	***	***		20.85	434.8	19.67	387.1	
90	***						20.27	411.0	19.13	366.0	
95					20.79	432.3	19.74	389.6	18.63	347.0	
100					20.27	411.0	19.24	370.5	18.16	330.0	
105					19.79	391.7	18.79	353.1	17.73	314.5	
110				•••	19.34	374.1	18.36	337.3	17:33	300.5	
115					18.92	358.1	17.97	322.9	16.96	287.7	
120					18.53	343.5	17.60	309.7	16.61	276.0	
125					18.16	330.0	17.25	297.6	16.28	265.2	
130		•••			17.82	317.5	16.92	286.3	15.97	255.2	
135		•••			17.49	306.0	16.61	276.0	15.68	246.0	
140			20.97	439.9	17.18	295.2	16.32	266.3	15.40	237.4	
145			20.61	424.9	16.89	285.3	16.04	257.3	15.14	229.4	
150	20.92	438.0	20.27	411.0	16.61	276.0	15.78	249.0	14.90	222.0	
155	20.59	424.0	19.94	397.9	16.35	267.2	15.53	241.1	14.66	215.0	
160	20.27	411.0	19.63	385.6	16.09	259.1	15.29	233.8	14.44	208.5	
	*.	A_1	*	B_1	*	C ₁	*	D_1	*	E_1	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Table No. 107 continued.

Pressures, Pitches, and Surfaces. Steel Plate $1\frac{1}{16}$ inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*]	H_1	*r	G_1	*]	1
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5	***		•••		•••		•••	•••
10	•••	•••			•••		•••	•••
15	***	•••	•••	•••	•••	•••	•••	
20	***	***	•••	•••		•••	•••	•••
25	•••	•••	•••	•••	•••	•••		
30	•••	•••	•••	•••	•••	***	20.82	433.6
35	***	•••	•••	•••	•••	***	19.30	372.5
40	***	•••	•••	•••	•••	•••	18.07	326.7
45	***	•••	07.05	440.4	20.00	100.0	17.06	291.1
50	•••	•••	21.05	443.4	20.82	433.6	16.20	262.6
55	20.27	411.0	20.09	403.6	19.87	394.8	15·46 14·82	239.2
60 65	19.49	379.8	18.50	370.5 342.4	18.30	362·4 334·9	14.82	219.8
70	18.79	353.1	17.84	318.4	17.64	311.4	13.75	189.2
75	18.16	330.0	17.25	297.6	17.04	291.1	13.30	177.0
80	17.60	309.7	16.68	278.2	16.53	273.3	12.89	166.3
85	17.08	291.8	16.22	263.2	16.05	257.5	12.52	156.9
90	16.61	276.0	15.78	249.0	15.60	243.6	12.18	148.5
95	16.18	261.7	15.37	236.2	15.20	231.0	11.87	141.0
100	15.78	249.0	14.99	224.7	14.82	219.8	11.58	134.3
105	15.40	237.4	14.63	214.2	14.48	209.6	11.32	128.1
110	15.06	226.9	14.31	204.8	14.15	200.4	11.07	122.6
115	14.74	217.3	14.00	196.0	13.85	191.9	10.84	117.5
120	14.44	208.5	13.72	188.2	13.57	184.2	10.62	112.9
125	14.15	200.4	13.45	180.9	13.30	177.0	10.42	108.6
130	13.89	192.9	13.20	174.2	13.05	170.4	10.23	104.6
135	13.63	186.0	12.96	168.0	12.82	164.4	10.05	101.0
140	13.40	179.5	12.73	162.2	12.60	158.7	9.88	97.6
145	13.17	173.5	12.52	156.8	12.38	153.4	9.72	94.4
150	12.96	168.0	12.32	151.8	12.18	148.5	9.56	91.5
155	12.75	162.7	12.12	147.0	11.99	143.9	9.42	88.7
160	12.56	157.8	11.94	142.6	11.81	139.6	9.28	86.1
	*F	$_{1}G_{1}$	*1	I_1	*1	G_1	*	\mathfrak{l}_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES.

TABLE No. 108.

Pressures, Pitches, and Surfaces. Steel Plate $1\frac{3}{32}$ inch thick.

Pressure per sq. in.	*	A_1	*	В1	*	C ₁	*:	D_1	*	$\mathbf{E_1}$
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5										
10										
15				•••						
20		•••		•••						
25				•••		•••				
30			•••	•••		•••	•••	•••		
35				•••		•••				
40			•••	•••	***	•••		***		
45	***	•••	•••	•••		•••		***		***
50		•••		•••	***	•••			•••	143
55		***	•••	•••	***	***		***		***
60	•••	•••		•••	***	•••			•••	***
65	•••		•••	•••		884		•••	•••	
70	•••	•••	•••	•••	***	•••		•••		
75	•••			•••	***			***		
80	•••		•••	•••	•••	•••			20.82	433.8
85	• • • •			•••	***	•••			20.21	408.6
90	•••		•••	•••	***		20.82	433.8	19.65	386.2
95				•••		• • • •	20.28	411.2	19.13	366.2
100		***	•••	•••	20.82	433.8	19.77	391.0	18.66	348.2
105			•••	•••	20.33	413.4	19.30	372.6	18.22	331.9
110			***	•••	19.87	394.9	18.86	356.0	17.80	317.1
115		•••	•••	•••	19.44	378.0	18.46	340.8	17.42	303.6
120	•••		•••	•••	19.04	362.5	18.08	326.8	17.06	291.2
125		•••	•••	•••	18.66	348.2	17.72	314.0	16.72	279.8
130		•••	•••	•••	18.30	335.0	17.38	302.1	16.41	269.2
135	•••	•••	•••	•••	17.96	322.8	17.06	291.2	16.11	259.5
140		•••	•••	•••	17.65	311.5	16.76	281.0	15.82	250.4
145		•••			17.35	301.0	16.47	271.5	15.55	242.0
150	•••	•••	20.82	433.8	17.06	291.2	16.20	262.6	15.30	234.1
155		•••	20.49	420.0	16.79	282.0	15.95	254.4	15.06	226.8
160	•••		20.17	407.0	16.53	273.3	15.70	246.6	14.83	219.9
	*.	A_1	*	B_1	*(*	D_1	*	E_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Table No. 108 continued.

Steel Plate $1\frac{3}{32}$ inch thick.

Pressure per sq. in.	*F	$_{1}G_{1}$	*1	\mathbf{I}_1	*r	G_1	*	I_1
Pres per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.						
5				•••				•••
10		•••						•••
15		•••	•••	•••	•••	•••	• • • •	•••
20		•••		•••		•••		•••
25	***	•••	***	•••		•••		•••
30	•••	•••		***	•••	•••		
35	•••	•••		•••	•••	•••	19.83	393.2
40	***	•••	***	•••	***	•••	18.57	344.8
45	•••	•••	***	•••		•••	17.52	307.1
50	•••	•••		4000		470.5	16.64	277.0
55			20.64	426.0	20.41	416.7	15.88	252.4
60	20.82	433.8	19.77	391.0	19.55	382.4	15.22	231.8
65	20.02	400.9	19.01	361.4	18.80	353.5	14.64	214.5
70 75	19.30	372.6	18:33	336.0	18.13	328.6	14.12	199.6
80	18.08	348.2	17·72 17·16	314.0	17.52	307.1	13.66	186.7
85		326.8		294.7	16.98	288.3	13.24	175.4
90	17.55 17.06	307.9	16.66	277.7	16.48	271.7	12.86	165.4
95	16.62	291·2 276·1	16·20 15·78	262.6	16.03	256.9	12.51	156.5
100	16.20	262.6	15.78	249·1 237·0	15.61 15.22	243·7 231·8	12.19	148.6
105	15.82	250.4	15.03	226.0	14.87	221.1	11·89 11·62	141.5 135.0
110	15.47	239.3	14.69	216.0	14.53	211.3	11.36	129.2
115	15.14	229.2	14 09	206.8	14.33	202.4	11.12	129 2
120	14.83	219.9	14.09	198.5	13.93	194.2	10.90	118.9
125	14.53	211.3	13.81	190.8	13.66	186.7	10.69	114.4
130	14.26	203.4	13.55	183.7	13.40	179.7	10.50	110.2
135	14.00	196.0	13.30	177.1	13.16	173.3	10.31	106.3
140	13.76	189.3	13.07	171.0	12.93	167.3	10.14	102.8
145	13.52	183.0	12.85	165.3	12.72	161.7	9.97	99.4
150	13.30	177.1	12.65	160.0	12.51	156.5	9.81	96.3
155	13.10	171.6	12.45	155.0	12.31	151.7	9.66	93.4
160	12.90	166.4	12.26	150.3	12.13	147.1	9.52	90.7
	*F	G_1	*E	I_1	*r	G_1	*	I_1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

Pressures, Pitches, and Surfaces.
Steel Plate 1½ inch thick.

I										
Pressure per sq. in.	*_	A ₁	*	B_1	*	0,	*]	D ₁	*1	E ₁
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.
5									•••	
10		•••								
15		• • •						• • • •	• • • •	
20	•••	•••		•••				•••		•••
25						•••				
30			•••					•••	•••	
35	•••	•••		•••						• • •
40	•••	•••	•••			•••		•••		•••
45		•••		•••		•••	•••		•••	
50		•••		•••		•••	•••			•••
55	•••	•••		• • • •			•••			
60	•••		•••	•••		•••	•••		•••	•••
65	• • •	•••	***			•••	•••			•••
70	•••	•••	•••	•••		•••			•••	,
75		•••	***	•••		•••	•••			
80	•••					•••	•••		• • •	
85	•••				•••				20.75	430.7
90	•••			•••		•••			20.17	407.1
95	***	•••	•••				20.85	433.5	19.64	386.0
100	•••	•••	•••				20.30	412.1	19.15	367.0
105	•••		•••		20.87	435.7	19.81	392.7	18.70	349.8
110	•••		•••		20.40	416.2	19.37	375.2	18.28	334.1
115	•••				19.96	398.3	18.95	359.1	17.88	319.9
120	•••				19.54	382.0	18.55	344.4	17.51	306.8
125	•••	•••			19.15	367.0	18.19	330.9	17.17	294.8
130			•••		18.79	353.1	17.84	318.4	16.84	283.6
135	•••		•••		18.44	340.2	17.51	306.8	16.53	273.4
140	•••	•••	•••	•••	18.15	328.3	17.20	296.0	16.24	263.8
145	•••	•••	***	•••	17.81	317.2	16.91	286.0	15.96	254.9
150	•••		•••		17.51	306.8	16.63	276.7	15.70	246.6
155	•••	•••			17.23	297.1	16.37	268.0	15.45	238.9
160	•••		20.71	429.0	16.97	288.0	16.12	259.8	15.22	231.6
	*/	1,	*1	31	*(C_1	*]	01	*1	E ₁

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

FLAT SURFACES. Pressures, Pitches, and Surfaces. Steel Plate 1 inch thick.

Table No. 109 continued.

	Steel Hate 1g then thick.												
Pressure per sq. in.	*F	$_{1}G_{1}$	*1	\mathbf{H}_{1}	*r	G_1	*]	[1					
Pre per	Pitch	Surface	Pitch	Surface	Pitch	Surface	Pitch	Surface					
lbs.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.	ins.	sq. ins.					
5					•••								
10	•••			•••	•••	•••		•••					
15	•••		•••		•••	•••		•••					
20	•••	•••	•••			•••	•••	•••					
25					•••	•••	•••	•••					
30	***		•••		•••	•••							
35			***	•••	•••	•••	20.35	414.4					
40	•••	•••	•••	•••	•••	•••	19.06	363.3					
45	•••		•••	•••	•••	•••	17.99	323.6					
50	•••			•••			17.08	291.9					
55	•••	•••		470.7	20.95	439.2	16.30	265.9					
60			20.30	412.1	20.07	403.1	15.62	244.2					
65	20.55	422.5	19.51	380.8	19.30	372.5	15.03	225.9					
70	19.81	392.7	18.81	354.1	18.61	346.3	14.50	210.2					
75	19.15	367.0	18.19	330.9	17.99	323.6	14.02	196.6					
80	18.55	344.4	17.62	310.5	17.43	303.8	13.59	184.6					
85	18.01	324.5	17.10	292.6	16.92	286.3	13.19	174.1					
90	17.51	306.8	16.63	276.7	16.45	270.7	12.84	164.8					
95	17.05	291.0	16.20	262.5	16.02	256.8	12.51	156.4					
100	16.63	276.7	15.80	249.6	15.62	244.2	12.20	148.9					
105	16.24	263.8	15.43	238.0	15.26	232.9	11.92	142.1					
110	15.87	252.1	15.08	227.5	14.92	222.6	11.66	135.9					
115	15.53	241.4	14.76	217.8	14.60	213.1	11.41	130.3					
120	15.22	231.6	14.45	209.0	14.30	204.5	11.18	125.1					
125	14.92	222.6	14.17	200.9	14.02	196.6	10.97	120.3					
130	14.63	214.2	13.90	193.4	13.75	189.2	10.76	115.9					
135	14.37	206.5	13.65	186.5	13.50	182.4	10.57	111.8					
140	14.12	199.3	13.42	180.0	13.27	176.1	10.39	108.1					
145	13.88	192.7	13.19	174.0	13.05	170.3	10.22	104.5					
150	13.65	186.5	12.97	168.4	12.84	164.8	10.06	101.3					
155	13.44	180.6	12.77	163.2	12.63	159.7	9.91	98.2					
160	13.23	175.2	12.58	158.2	12.44	154.9	9.76	95.3					
	*F	$_{1}G_{1}$	*H ₁		*	r G ₁	*I1						

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found immediately preceding these Tables.

PRESSURES, GREATEST SURFACES AND SIZES OF STAYS.

Stress on solid Steel screwed Stays which have not been welded or worked in the fire 9000 lbs. per square inch of net section.

The following notes will facilitate the use of the Tables which immediately follow, numbered 110 to 114 and Nos. 315 to 317.

(1) If the working pressure be 150 lbs., the surface to be supported by one stay 252 square inches, and the size of stay be required:

Then, opposite 150 lbs. in Table No. 113, the surface, 252 square inches, is found under the diameter 25/16 inches, and area 4.2 square inches, which is the size of stay required.

(2) If the surface be 160 square inches, the stay 1% inch diameter, area 2.7612 square inches, and working pressure be required:

Then, in Table No. 112, 1% inch diameter stay is found, and in the column under the area 2.7612 square inches and 1% inch diameter, the surface is 160.3 square inches, and opposite it the pressure is 155 lbs., which is the working pressure suitable.

(3) If the stay be 1 inch diameter, the area '7854 square inch, and the working pressure is to be 80 lbs., and the greatest surface for such size of stay and working pressure be required :-

Then, in Table No. 110, 1 inch stay is found, and opposite 80 lbs. in the column for 1 inch diameter, area '7854 inch, the surface is 88.3 square inches, which is the surface suitable for such stay and pressure.

When the surface is not found opposite the pressure, it will be on the side of safety to adopt the larger size of stay, over the next greater

surface on the right.

The diameter is always the net effective diameter, or diameter at the bottom of the thread, and the area the net sectional area at the smallest part of the stay.

Stress on solid Steel screwed Stays, which have not been welded or worked in the fire, 9000 lbs. per square inch of net section.*

	WOIKeu	In the	1110, 500	70 103.	or squa	tro mon	. OI HOU	SCOULOII.	
Pressure square inch.	Area 0·1963 sq. in.	Area 0·2485 sq. in.	Area 0.3068 sq. in.	Area 0.3712 sq. in,	Area 0.4417 sq. in.	Area 0.5184 sq. in.	Area 0.6013 sq. in,	Area 0.6902 sq. in.	Area 0.7854 sq. in.
Pres per squa	Diam. 1/2 inch.	Diam. 9/16 inch.	Diam. 5/8 inch.	Diam. 11/16 inch.	Diam. 3/4 inch.	Diam. 13/16 inch.	Diam. 7/8 inch.	Diam. 15/16 inch.	Diam. 1 inch.
1bs. 5 10 15 20 25 30 35 40 45 50 65 70 75 80 85 90 95	Surface sq. ins. 353 3 176 6 117 7 88 3 70 6 58 8 50 4 44 1 39 2 35 3 32 1 29 4 27 1 25 2 23 5 22 0 20 7 19 6 18 5	Surface sq. ins. 447 3 223 6 149 1 1111 8 89 4 74 5 63 9 49 7 44 6 37 2 34 4 31 9 29 8 27 9 26 3 24 8 23 5	Surface sq. ins. 552 · 2 276 · 1 184 · 0 138 · 0 110 · 4 92 · 0 78 · 8 69 · 0 61 · 3 55 · 2 50 · 2 46 · 0 42 · 4 39 · 4 39 · 4 36 · 8 34 · 5 32 · 4 30 · 6 29 · 0	Surface sq. ins. 668·1 334·0 1222·7 167·0 133·6 111·3 95·4 266·8 60·7 55·6 51·3 47·7 39·3 37·1	Surface sq. ins. 795 · 0 397 · 5 265 · 0 198 · 7 159 · 0 132 · 5 113 · 5 99 · 3 88 · 3 79 · 5 66 · 2 66 · 2 61 · 1 56 · 7 53 · 0 49 · 6 46 · 7 44 · 1 41 · 8		Surface sq. ins. 541 1 360 7 270 5 216 4 180 3 154 6 135 2 120 2 108 2 98 3 90 1 83 2 77 3 72 1 67 6 63 6 60 1 56 9	Surface sq. ins. 	Surface sq. ins. 706 · 8 471 · 2 353 · 4 282 · 7 235 · 6 201 · 9 176 · 7 157 · 0 141 · 2 128 · 5 117 · 8 108 · 7 100 · 9 4 · 2 88 · 3 83 · 1 78 · 5 74 · 4
100 105 110 115 120 125 130 135 140 145 150	18 5 17 6 16 18 16 18 16 18 16 18 16 18 16 17 14 11 13 15 13 10 12 16	23°5 22°3 21°3 20°3 19°4 18°6 17°8 17°2 16°5 15°9 15°4 14°9 14°4 13°9	29 °0 27 °6 26 °2 25 °0 24 °0 23 °0 21 °2 20 °4 19 °7 19 °0 18 °4 17 °8 17 °2	35°1 31°8 30°3 29°0 27°8 26°7 25°6 24°7 23°8 23°0 22°2 21°5 20°8	39·7 37·8 36·1 34·5 33·1 31·8 30·5 29·4 28·3 27·4 26·5 25·6 24·8	49°1 46°6 44°4 40°5 38°8 37°3 35°8 34°5 33°3 32°1 30°1 29°6	50.9 54.1 51.5 49.1 47.0 45.0 43.2 41.6 40.0 38.6 37.3 36.0 34.9 33.8	62.1 59.1 56.4 54.0 51.7 49.7 47.7 46.0 44.3 42.8 41.4 40.0 38.8	70.6 67.6 64.2 61.4 58.9 56.5 54.3 52.3 50.4 48.7 47.1 45.6 44.1

^{* 9000} lbs. per square inch of net section is the greatest working stress to which solid steel screwed stays should be subjected. Steel stays which have been welded or worked in the fire are not reliable, and should not be used.

PRESSURES, GREATEST SURFACES, AND SIZES OF STAYS.

TABLE No. 111.

Stress on *solid* Steel screwed Stays, which have *not* been welded or worked in the fire, 9000 lbs, per square inch of net section.*

	worked	in the	nre, 900	o ros. I	per squa	ire men	or ner	section.	
Pressure square inch.	Area 0.8866 sq. in.	Area 0.9940 sq. in.	Area 1·1075 sq. in.	Area 1.2272 sq. in.	Area 1.3530 sq. in.	Area 1.4849 sq. in.	Area 1.6230 sq. in.	Area 1.7671 sq. in.	Area 1.9175 sq. in.
Pres per squa	Diam. $1\frac{1}{16}$ inch.	Diam. 1½ inch.	Diam. 13/16 inch.	Diam. 1¼ inch.	Diam. $1^{5}/_{16}$ inch.	Diam. 1 % inch.	Diam. 17/16 inch.	Diam. 1½ inch.	Diam. 1 9/16 inch.
lbs.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.
5		•••				•••			
10	797.9	894.6	996.7						
15	531.9	596.4	664.5	736.3	811.8	890.9	973.8		
20	398.9	447.3	498.3	552.2	608.9	668.2	730.3	795.1	862.8
25	319.1	357.8	398.7	441.7	487.0	534.5	584.2	636.1	690.3
30	265.9	298.2	332.2	368.1	405.9	445.4	486.9	530.1	575.2
35	227.9	255.6	284.7	315.5	347.9	381.8	417.3	454.3	493.0
40	199.4	223.6	249.1	276.1	304.4	334.1	365.1	397.5	431.4
45	177.3	198.8	221.5	245.4	270.6	296.9	324.6	353.4	383.5
50	159.5	178.9	199.3	220.8	243.5	267.2	292.1	318.0	345 1
55	145.0	162.6	181.2	200.8	221.4	242.9	265.5	289.1	313.7
60	132.9	149.1	166.1	184.0	202.9	222.7	243.4	265.0	287.6
65	122.7	137.6	153.3	169.9	187.3	205.6	224.7	244.6	265.5
70	113.9	127.8	142.3	157.7	173.9	190.9	208.6	227.1	246.5
75	106.3	119.2	132.9	147.2	162.3	178.1	194.7	212.0	230.1
80	99.7	111.8	124.5	138.0	152.2	167.0	182.5	198.7	215.7
85	93.8	105.2	117.2	129.9	143.2	157.2	171.8	187.1	203.0
90	88.6	99.4	110.7	122.7	135.3	148.4	162.3	176.7	191.7
95	83.9	94.1	104.9	116.2	128.1	140.6	153.7	167.4	181.6
100	79.7	89.4	99.6	110.4	121.7	133.6 127.2	146·0 139·1	159·0 151·4	172·5 164·3
105	75.9	85·2 81·3	94.9	105.1	115·9 110·7	127 2	132.7	144.5	156.8
110	72.5	77.7	90.6	96.0	105.8	116.2	127.0	138.2	150.0
115	69.3		86.6	92.0	103.8	111.3	121.7	132.5	143.8
120	66.4	74.5	83.0	88.3	97.4	106.9	116.8	127.2	138.0
125		68.8	76.6	84.9	93.6	100.9	112.3	127 2	132.7
130 135	61·3 59·1	66.2	73.8	81.8	90.5	98.9	108.2	117.8	127.8
140	56.9	63.9	71.1	78.8	86.9	95.4	104.3	113.5	123 2
145	55.0	61.6	68.7	76.1	83.9	92.1	104 3	109.6	119.0
150	50.1	59.6	66.4	73.6	81.1	89.0	97.3	106.0	115.0
155	51.4	57.7	64.3	71.2	78.5	86.2	94.2	102.6	111.3
160	49.8	55.9	62.2	69.0	76.1	83.5	91.2	99.3	107.8
100	490	911 9	02 2	000	,01	00 0	01 2	000	107 0

^{* 9000} lbs. per square inch of net section is the greatest working stress to which solid steel screwed stays should be subjected. Steel stays which have been welded or worked in the fire are not reliable, and should not be used.

PRESSURES, GREATEST SURFACES, AND SIZES OF STAYS.

TABLE No. 112.

Stress on Solid Steel Screwed Stays, which have not been welded or worked in the fire, 9000 lbs. per square inch of net section. *

Pressure square inch.	Area 2.0739 sq. ins.	Area 2·2365 sq. ins.	Area 2.4053 sq. ins.	Area 2.5802 sq. ins.	Area 2.7612 sq. ins.	Area 2.9483 sq. ins.	Area 3·1416 sq. ins.	Area 3.3410 sq. ins.	Area 3.5466 sq. ins.
Pressure per square in	Diam. 1 ½ inch.	Diam. 1 1 1/1 6 inch.	Diam. 1 3/4 inch.	Diam. 1 1 3/16 inch.	Diam. 1 % inch.	Diam. 1 1 5/16 inch.	Diam. 2 inches.	Diam. $2\frac{1}{16}$ inches.	Diam. 2½8 inches.
lbs.	Surface sq. ins.	Surface sq. ins.	Surface sq. ins.	Surface	Surface	Surface sq. ins.	Surface	Surface sq. ins.	Surface sq. ins.
5	sq. ms.			sq. ins.	sq. ins.	_	sq. ins.	sq. ms.	sq. ms.
10		•••		•••	• · · •	•••	•••		
15				•••	•••		•••		
20	933.2					•••			
25	746.6	805.1	865.9	928.8	994.0	•••			
30	622.1	670.9	721.5	774.0	828.3	884.4	942.4		
35	533.2	575.1	618.5	663.4	710.0	758.1	807.8	859.1	911.9
40	466.6	503.2	541.1	580.5	621.2	663.3	706.8	751.7	797.9
45	414.7	447.3	481.0	516.0	552.2	589.6	628.3	668.2	709.3
50	373.3	402.5	432.9	464.4	497.0	530.6	565.4	601.3	638.3
55	339.3	365.9	393.5	422.2	451.8	482.4	514.0	546.7	580.3
60	311.0	335.4	360.7	387.0	414.1	442.2	471.2	501.1	531.9
65	287.1	309.6	333.0	357.2	382.3	408.2	434.9	462.6	491.0
70	266.6	287.5	309.2	331.7	355.0	379.0	403.9	429.5	455.9
75	248.8	268.3	288.6	309.6	331.3	353.7	376.9	400.9	425.5
80	233.3	251.6	270.5	290.2	310.6	331.6	353.4	375.8	398.9
85	219.5	236.8	254.6	273.1	292.3	312.1	332.6	353.7	375.5
90	207.3	223.6	240.5	258.0	276.1	294.8	314.1	334.1	354.6
95	196.4	211.8	227.8	244.4	261.5	279.3	297.6	316.5	335.9
100	186.6	201.2	216.4	232.2	248.5	265.3	282.7	300.6	319.1
105	177.7	191.7	206.1	221.1	236.6	252.7	269.2	286.3	303.9
110	169.6	182.9	196.7	211.0	225.9	241.2	257.0	273.3	290.1
115	162.3	175.0	188.2	201.9	216.0	230.7	245.8	261.4	277.5
120	155.5	167.7	180.3	193.5	207.0	221.1	235.6	250.5	265.9
125	149.3	161.0	173.1	185.7	198.8	212.2	226.1	240.5	255.3
130	143.5	154.8	166.5	178.6	191.1	204.1	217.4	231.3	245.5
135	138.2	149.1	160.3	172.0	184.0	196.5	209.4	222.7	236.4
140	133.3	143.7	154.6	165.8	177.5	189.5	201.9	214.7	227.9
145	128.7	138.8	149.2	160.1	171.3	182.9	194.9	207.3	220.1
150	124.4	134.1	144.3	154.8	165.6	176.8	188.4	200.4	212.7
155	120.4	129.8	139.6	149.8	160.3	171.1	182.4	193.9	205.9
160	116.6	125.8	135.2	145.1	155.3	165.8	176.7	187.9	199.4

^{* 9000} lbs. per square inch of net section is the greatest working stress to which solid steel screwed stays should be subjected. Steel stays which have been welded or worked in the fire are not reliable and should not be used.

PRESSURES, GREATEST SURFACES, AND SIZES OF STAYS.

TABLE No. 113.

Stress on Solid Steel Screwed Stays, which have not been welded or worked in the fire, 9000 lbs. per square inch of net section.*

Pressure square inch.	Area 3.7583 sq. ins.	Area 3.9761 sq. ins.	Area 4.2000 sq. ins.	Area 4·4301 sq. ins.	Area 4.6664 sq. ins.	Area 4·9087 sq. ins.	Area 5·1572 sq. ins.	Area 5:4119 sq. ins.	Area 5.6727 sq. ins.
Pres per squa	Diam. $2^3/_{16}$ inches.	Diam. $2\frac{1}{4}$ inches.	Diam. $2^{5}/_{16}$ inches.	Diam. $2\frac{3}{8}$ inches.	Diam. $2\frac{7}{16}$ inches.	Diam. $2\frac{1}{2}$ inches.	Diam. $2\frac{9}{16}$ inches.	Diam. $2\frac{5}{8}$ inches.	Diam. $2^{11}/_{16}$ inches.
. 1	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
lbs.	sq. ins.	sq. ins.	sq, ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.
10			•••	•••	•••	•••	•••	•••	
15		•••	•••	•••	•••	•••	•••	•••	•••
20		•••	•••	•••	•••	•••	• • • •	•••	•••
25		•••	•••	•••	•••	•••	•••	•••	
30		•••	•••	•••	•••	•••	•••	•••	
35	966.4	•••	•••	•••	•••	•••	•••	•••	•••
40	845.6	894.6	945.0	996.7	•••	•••	•••	•••	•••
45	751.6	795.2	840.0	886.0	933.2	981.7	•••	•••	•••
50	676.4	715.6	756.0	797.4	839.9	883.5	928.2	974.1	•••
55	614.9	650.6	687.2	724.9	763.5	803.2	843.9	885.5	928.2
60	563.7	596.4	630.0	664.5	699.9	736.3	773.5	811.7	850.9
65	520.3	550.5	581.5	613.4	646.1	679.6	714.0	749.3	785.4
70	483.2	511.2	540.0	569.5	599.9	631.1	663.0	695.8	729.3
75	450.9	477.1	504.0	531.6	559.9	589.0	618.8	649.4	680.7
80	422.8	447.3	472.5	498.3	524.9	552.2	580.1	608.8	638.1
85	397.9	421.0	444.7	469.0	494.0	519.7	546.0	573.0	600.6
90	375.8	397.6	420.0	443.0	466.6	490.8	515.7	541.1	567.2
95	356.0	376.6	397.9	419.7	442.0	465.0	488.5	512.7	537.4
100	338.2	357.8	378.0	398.7	419.9	441.7	464.1	487.0	510.5
105	322.1	340.8	360.0	379.7	399.9	420.7	442.0	463.8	486.2
110	307.4	325.3	343.6	362.4	381.7	401.6	421.9	442.7	464.1
115	294.1	311.1	328.7	346.7	365.1	384.1	403.6	423.5	443.9
120	281.8	298.2	315.0	332.2	349.9	368.1	386.7	405.8	425.4
125	270.5	286.2	302.4	318.9	335.9	353.4	371.3	389.6	408.4
130	260.1	275.2	290.7	306.7	323.0	339.8	357.0	374.6	392.7
135	250.5	265.0	280.0	295.3	311.0	327.2	343.8	360.7	378.1
140	241.6	255.6	270.0	284.7	299.9	315.5	331.5	347.9	364.6
145	233.2	246.7	260.6	274.9	289.6	304.6	320.1	335.9	352.0
150	225.4	238.5	252.0	265.8	279.9	294.5	309.4	324.7	340.3
155	218.2	230.8	243.8	257.2	270.9	285.0	299.4	314.2	329.3
160	211.3	223.6	236.2	249.1	262.4	276.1	290.0	304.4	319.0
							-		

^{* 9000} lbs. per square inch of net section is the greatest working stress to which solid steel screwed stays should be subjected. Steel stays which have been welded or worked in the fire are *not* reliable and should *not* be used.

PRESSURES, GREATEST SURFACES, AND SIZES OF STAYS.

TABLE No. 114.

Stress on Solid Steel Screwed Stays, which have not been welded or worked in the fire, 9000 lbs. per square inch of net section.*

Pressure square inch.	Area 5.9396 sq. ins.	Area 6·2126 sq. ins.	Area 6.4918 sq. ins.	Area 6.7771 sq. ins.	Area 7.0686 sq. ins.	Area 7.3662 sq. ins.	Area 7.6699 sq. ins.	Area 7.9798 sq. ins.	Area 8·2958 sq. ins.
lua	Diam.	Diam.	Diam.	Diam.	Diam.	Diam.	Diam.	Diam.	Diam.
	23/4	213/16	2 1/8	215/16	3	31/16	31/8	33/16	31/4
per.	inches.	inches.	inches.	inches.	inches.	inches.	inches.	inches.	inches.
	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
lbs.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.	sq. ins.
5									
10	l								
15									
20									
25							•••		
30									
35									***
40					•••				
45					•••				
50				•••	•••				
55	971.9			•••			•••		***
60	890.9	931.8	973.7				•••		***
65	822.4	860.2	898.8	938.3	978.7				
70	763.6	798.7	834.6	871.3	908.8	947.0	986.1		
75	712.7	745.5	779.0	813.2	848.2	883.9	920.3	957.5	995.4
80	658.2	698.9	730.3	762.4	795.2	828.6	862.8	897.7	933.2
85	628.8	657.8	687.3	717.5	748.4	779.9	812.1	844.9	878.3
90	593.9	621.2	649.1	677.7	706.8	736.6	766.9	797.9	829.5
95	562.6	588.5	615.0	642.0	669.6	697.8	726.6	755.9	785.9
105	534·5 509·1	559·1 532·5	584·2 556·4	609·9 580·9	636·1 605·8	662·9 631·3	690.2	718·1 683·9	746.6
110	485.9	508.3	531.1	554.4	578.3	602.6	627.5	652.8	711·0 678·7
115	464.8	486.2	508.0	530.3	553.1	576.4	600.2	624.5	649.2
120	445.4	465.9	486.8	508.2	530.1	552.4	575.2	598.4	622.1
125	427.6	447.3	467.4	487.9	508.9	530.3	552.2	574.5	597.2
130	411.2	430.1	449.4	469.1	489.3	509.9	530.9	552.4	574.3
135	395.9	414.1	432.7	451.8	471.2	491.0	511.3	531.9	553.0
140	381.8	399.3	417:3	435.6	454.4	473 5	493.0	512.9	533.3
145	368.6	385.6	402.9	420.6	438.7	457.2	476.0	495.2	514.9
150	356.3	372.7	389.5	406.6	424.1	441.9	460.1	478.7	497.7
155	344.8	360.7	376.9	393.5	410.4	427.7	445.3	463.3	481.6
160	334.0	349.4	365.1	381.2	397.6	414.3	431.4	448.8	466.6
-									

^{* 9000} lbs. per square inch of net section is the greatest working stress to which *solid* steel screwed stays should be subjected. Steel stays which have been welded or worked in the fire are *not* reliable and should *not* be used.

STEEL GIRDERS FOR FLAT SURFACES.

The following notes will facilitate the use of the Tables numbered from 115 to 125, which immediately follow, and Nos. 318 to 328.

W = Width of combustion box, in inches.

D = Distance between centres of girders, in inches.

P = Pitch of supporting bolts, in inches. N = Number of supporting bolts in a girder.

N = Number of supporting boits in a girder.

When the number of supporting bolts in a girder is odd, the number in the table under the particular depth of girder is the maximum value that $W^2 \times D$ may have for the particular working pressure opposite to it in column 1.

When the number of supporting bolts in a girder is even, the number in the table under the particular depth of girder is the maximum value that (W²-P²)D may have for the particular working

pressure opposite to it in column 1.

(1) If the working pressure is required when the width of the box, the distance between centres of girders, the pitch of supporting bolts, the number of supporting bolts in the girder, and the dimensions of girder are known.

If the width, W, of the combustion box be 28 inches, the number, N, of the bolts 3 (which is an *odd* number), the distance, D, between the centres of the girders 7 inches, and the dimensions

of the girder 6 inches deep by 1 inch thick :-

Then, $W^2 \times D$ or $28^2 \times 7 = 5488$. This number is not found in the table, as it is between 5280 and 5590 (see Table No. 119 for steel plates 1 inch thick), but by the note at the foot of the tables when the exact number is not found, the next higher number should be taken, and the pressure opposite 5590, the next higher number being 85 lbs., is the working pressure obtained; although, should the difference be very little over the lower number, such lower number may be used, and the pressure opposite it taken.

(2) When the depth of girder necessary for a given working pressure

and thickness of girder is required :-

If the width, W, of the combustion box be 24 inches, the number, N, of supporting bolts 2 (which is an even number), the distance, D, between the centres of the girders 8¾ inches, the pitch of the supporting bolts 8 inches, the thickness of the girders 1 inch, and the working pressure 80 lbs.:—

Then, $(W^2 - P^2)D$ or $(24^2 - 8^2)8^3/4 = 4480$, and opposite 80 lbs. the working pressure in column 1, the number 4547 is found (see Table No. 119 for steel plates 1 inch thick), which is the next greater number to 4480, and at the head of column over 4547 will

be found 51/4 inches, the depth of girder necessary.

P may in all cases be found by dividing W, the width of the combustion box, by N, the number of supporting bolts in the girder, plus 1, or

 $\frac{W}{N+1}$ = P in all cases.

D, when the number of supporting bolts is odd, may be found by lividing the number in the table opposite the given working pressure by W².

When the number of supporting bolts is even, D can be found by lividing the number in the table opposite the given working pressure

by $W^2 - P^2$.

The working pressure and thickness of plate regulate P, the pitch, and D, the distance between the centres of girders and the surface due to $P \times D$, should be regulated by the Tables for Steel Plates (Pitches, Surfaces, and Pressures). The girders should be proportioned so as to be effective for the pressure, pitch of supporting bolts, number of supporting bolts in a girder, and the distance between the centres of girders. By the following tables the dimensions of steel girders can be fixed, or the working pressure suitable for any given mild rolled steel plate girder ascertained.

The thicknesses in the Tables are the total thicknesses whether the girders be solid or formed of two plates.

Pressure er sq. in.			De	pths of	Girders	s in incl	hes.				
Pres per s	13/4	2	21/4	21/2	23/4	3	31/4	3½	33/4		
lbs.											
5	4042	5280	6682	8250	9982	11880	13942	16170	18562		
10	2021	2640 .	3341	4125	4991	5940	6971	8085	9281		
15	1347	1760	2227	2750	3327	3960	4647	5390	6187		
20	1010	1320	1670	2062	2495	2970	3485	4042	4640		
25	808	1056	1336	1650	1996	2376	2788	3234	3712		
30	673	880	1113	1375	1663	1980	2323	2695	3093		
35	577	754	954	1178	1426	1697	1991	2310	2651		
40	505	660	835	1031	1247	1485	1742	2021	2320		
45		586	742	916	1109	1320	1549	1796	2062		
50		528	668	825	998	1188	1394	1617	1856		
55			607	750	907	1080	1267	1470	1687		
60			556	687	831	990	1161	1347	1546		
65			514	634	767	913	1072	1243	1427		
70			•••	589	713	848	995	1155	1325		
75			•••	550	665	792	929	1078	1237		
80				515	623	742	871	1010	1160		
85			•••		587	698	820	951	1091		
90					554	660	774	898	1031		
95				•••	525	625	733	851	976		
100				•••		594	697	808	928		
105			•••		•••	565	663	770	883		
110			•••	•••	•••	540	633	735	843		
115			•••	•••	•••	516	606	703	807		
120		**1	•••	•••	•••		580	673	773		
125			•••	•••	•••		557	646	742		
130				•••			536	621	713		
135				•••	•••		516	598	687		
140				• • •	•••			577	662		
145			•••			•••		557	640		
150					•••			539	618		
155				• • •	• • • •			521	598		
160								505	580		

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is even, it equals (W² – P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

P = Pitch of supporting bolts in inches.

rressure er sq. in.			De	epths of	Girders	s in incl	nes.		
rres per s	21/4	21/2	23/4	3	31/4	31/2	33/4	4	41/4
lbs.	0050	10010	10470	1.4050	17400	00010	00000	22400	20000
5	8353	10312	12478	14850	17428	20212	23203	26400	29803
10.	4176	5156	6239	7425	8714	10106	11601	13200	14901
15	2784 2088	3437 2578	4159 3119	4950 3712	5809 4357	6737 5053	7734 5800	8800 6600	9934 7450
20	1670	2062	2495	2970	3485	4042	4640	5280	5960
25	1392	1718	2079	2970	2904	3368	3867	4400	4967
30 35	1193	1473	1782	2121	2489	2887	3314	3771	4257
40	1044	1289	1559	1856	2178	2526	2900	3300	3725
45	928	1145	1386	1650	1936	2245	2578	2933	3311
50	835	1031	1247	1485	1742	2021	2320	2640	2980
55	759	937	1134	1350	1584	1837	2109	2400	2709
60	696	859	1039	1237	1452	1684	1933	2200	2483
65	642	793	959	1142	1340	1554	1784	2030	2292
70	596	736	891	1060	1244	1443	1657	1885	2128
75	556	687	831	990	1161	1347	1546	1760	1986
80	522	644	779	928	1089	1263	1450	1650	1862
85		606	734	873	1025	1188	1364	1552	1753
90		572	693	825	968	1122	1289	1466	1655
95		542	656	781	917	1063	1221	1389	1568
100		515	623	742	871	1010	1160	1320	1490
105			594	707	829	962	1104	1257	1419
110		•••	567	675	792	918	1054	1200	1354
115			542	645	757	878	1008	1147	1295
120		•••	519	618	726	842	966	1100	1241
125		•••		594	697	808	928	1056	1192
130				571	670	777	892	1015	1146
135		•••		550	645	748	859	977	1103
140		•••		530	622	721	828	942	1064
145		•••		512	600	696	800	910	1027
150		•••		•••	580	673	773	880	993
155		•••	•••	•••	562	652	748	851	961
160					544	631	725	825	931

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

P = Pitch of supporting bolts in inches.

sure 1. in.		Depths of Girders in inches.										
Pressure per sq. in.	23/4	3	31/4	3½	3¾	4	4 1/4	41/2	4 3/4			
lbs.			2227.0	21255	07040	07.000	07740	40005	11070			
5	14973	17820	20913	24255	27843	31680	35763	40095	44673			
10	7486	8910	10456	12127	13921	15840	17881	20047	22336			
15	4991	5940	6971	8085	9281	10560	11921	13365	14891			
20	3743	4455	5228	6063	6960	7920	8940	10023	11168			
25	2994	3564	4182	4851	5568	6336	7152	8019	8934			
30	2495	2970	3485	4042	4640	5280	5960	6682	7445			
35	2139	2545	2987	3465	3977	4525	5109	5727	6381			
40	1871	2227	2614	3031	3480	3960	4470	5011	5584			
45	1663	1980	2323	2695	3093	3520	3973	4455	4963			
50	1497	1782	2091	2425	2784	3168	3576	4009	4467			
55	1361	1620	1901	2205	2531	2880	3251	3645	4061			
60	1247	1485	1742	2021	2320	2640	2980	3341	3722			
65	1151	1370	1608	1865	2141	2436	2751	3084	3436			
70	1069	1272	1493	1732	1988	2262	2554	2863	3190			
75	998	1188	1394	1617	1856	2112	2384	2673	2978			
80	935	1113	1307	1515	1740	1980	2235	2505	2792			
85	880	1048	1230	1426	1637	1863	2103	2358	2627			
90	831	990	1161	1347	1546	1760	1986	2227	2481			
95	788	937	1100	1276	1465	1667	1882	2110	2351			
100	748	891	1045	1212	1392	1584	1788	2004	2233			
105	713	848	995	1155	1325	1508	1703	1909	2127			
110	680	810	950	1102	1265	1440	1625	1822	2030			
115	651	774	909	1054	1210	1377	1554	1743	1942			
120	623	742	871	1010	1160	1320	1490	1670	1861			
125	598	712	836	970	1113	1267	1430	1603	1786			
130	575	685	804	932	1070	1218	1375	1542	1718			
135	554	660	774	898	1031	1173	1324	1485	1654			
140	534	636	746	866	994	1131	1277	1431	1595			
145	516	614	721	836	960	1092	1233	1382	1540			
150		594	697	808	928	1056	1192	1336	1489			
155		574	674	782	898	1021	1153	1293	1441			
160		556	653	757	870	990	1117	1252	1396			

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

P = Pitch of supporting bolts in inches.

er sq. in.			De	epths of	Girder	s in inc	hes.				
per s	3½	33/4	4	41/4	41/2	4 3/4	5	51/4	51/2		
bs.	28297	32484	36960	41724	46777						
5		16242	18480	20862	23388	26059	28875	31834	0.4000		
10 15	$14148 \\ 9432$	10828	12320	13908	15592	17373	19250	21223	34938 23292		
20	7074	8121	9240	10431	11694	13029	14437	15917			
25	5659	6496	7392	8344	9355	10423	11550	12733	17469 13975		
30	4716	5414	6160	6954	7796	8686	9625	10611	11646		
35	4042	4640	5280	5960	6682	7445	8250	9095	9982		
40	3537	4060	4620	5215	5847	6514	7218	7958	8734		
45	3144	3609	4106	4636	5197	5791	6416	7074	7764		
50	2829	3248	3696	4172	4677	5211	5775	6366	6987		
55	2572	2953	3360	3793	4252	4738	5250	5788	6352		
60	2358	2707	3080	3477	3898	4343	4812	5305	5823		
65	2176	2498	2843	3209	3598	4009	4442	4897	5375		
70	2021	2320	2640	2980	3341	3722	4125	4547	4991		
75	1886	2165	2464	2781	3118	3474	3850	4244	4658		
80	1768	2030	2310	2607	2923	3257	3609	3979	4367		
85	1664	1910	2174	2454	2751	3065	3397	3745	4110		
90	1572	1804	2053	2318	2598	2895	3208	3537	3882		
95	1489	1709	1945	2196	2461	2743	3039	3351	3677		
100	1414	1624	1848	2086	2338	2605	2887	3183	3493		
105	1347	1546	1760	1986	2227	2481	2750	3031	3327		
:10	1286	1476	1680	1896	2126	2369	2625	2894	3176		
115	1230	1412	1606	1814	2033	2266	2510	2768	3038		
120	1179	1353	1540	1738	1949	2171	2406	2652	2911		
125	1131	1299	1478	1668	1871	2084	2310	2546	2795		
130	1088	1249	1421	1604	1799	2004	2221	2448	2687		
135	1048	1203	1368	1545	1732	1930	2138	2358	2588		
140	1010	1160	1320	1490	1670	1861	2062	2273	2495		
145	975	1120	1274	1438	1613	1797	1991	2195	2409		
150	943	1082	1232	1390	1559	1737	1925	2122	2329		
55	912	1047	1192	1345	1508	1681	1862	2053	2254		
160	884	1015	1155	1303	1461	1628	1804	1989	2183		

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, he next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

270	STHEE CHICAGO										
Pressure ber sq. in.			Dej	pths of	Girders	in inch	ies.				
Pressure per sq. in	4 1/4	41/2	4 3/4	5	51/4	51/2	5 3/4	6	61/4		
lbs.											
5	47685		:								
10	23842	26730	29782	33000	36382	39930	43642	47520			
15	15895	17820	19855	22000	24255	26620	29095	31680	34375		
20	11921	13365	14891	16500	18191	19965	21821	23760	25781		
25	9537	10692	11913	13200	14553	15972	17457	19008	20625		
30	7947	8910	9927	11000	12127	13310	14547	15840	17187		
35	6812	7637	8509	9428	10395	11408	12469	13577 11880	14732 12890		
40	5960	6682	7445	8250	9095	9982	10910 9698	10560	11458		
45	5298	5940 5346	6618	7333	8085 7276	7986	8728	9504	10312		
50 55	4768 4335	4860	5956 5415	6000	6615	7260	7935	8640	9374		
60	3973	4455	4963	5500	6063	6655	7273	7920	8593		
65	3668	4112	4581	5076	5597	6143	6714	7310	7932		
70	3406	3818	4254	4714	5197	5704	6234	6788	7366		
75	3179	3564	3971	4400	4851	5324	5819	6336	6875		
80	2980	3341	3722	4125	4547	4991	5455	5940	6445		
85	2805	3144	3503	3882	4280	4697	5134	5590	6066		
90	2649	2970	3309	3666	4042	4436	4849	5280	5729		
95	2509	2813	3135	3473	3829	4203	4593	5002	5427		
100	2384	2673	2978	3300	3638	3993	4364	4752	5156		
105	2270	2545	2836	3142	3465	3802	4156	4525	4910		
110	2167	2430	2707	3000	3307	3630	3967	4320	4687		
115	2073	2324	2589	2869	3163	3472	3795	4132	4483		
120	1986	2227	2481	2750	3031	3327	3636	3960	4296		
125	1907	2138	2382	2640	2910	3194	3491	3801	4125		
130	1834	2056	2290	2538	2798	3071	3357	3655	3966		
135	1766	1980	2206	2444	2695	2957	3232	3520	3819		
140	1703	1909	2127	2357	2598	2852	3117	3394	3683		
145	1644	1843	2053	2275	2509	2753	3009	3277	3556		
150	1589	1782	1985	2200	2425	2662	2909	3168	3437		
155	1538	1724	1921	2129	2347	2576	2815	3065	3326		
160	1490	1670	1861	2062	2273	2495	2727	2970	3222		

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

er sq. in.			De	epths of	Girder	s in inc	hes.		
per so	5	51/4	51/2	5 3/4	6	61/4	61/2	63/4	7
bs.									
5 10	37125	40930	44921	49097	•••	•••	•••	***	•••
15	24750	27286	29947	32731	35640	38671	41827	45106	48510
20	18562	20465	22460	24548	26730	29003	31370	33830	36382
25	14850	16372	17968	19639	21384	23203	25096	27064	29106
	12375	13643	14973	16365	17820	19335	20913	22553	24255
35	10607	11694	12834	14027	15274	16573	17926	19331	20790
40	9281	10232	11230	12274	13365	14501	15685	16915	18191
45	8250	9095	9982	10910	11880	12890	13942	15035	16170
50	7425	8186	8984	9819	10692	11601	12548	13532	14553
55	6750	7441	8167	8926	9720	10546	11407	12301	13230
60	6187	6821	7486	8182	8910	9667	10456	11276	12127
65	5711	6296	6910	7553	8224	8924	9652	10409	11194
70	5303	5847	6417	7013	7637	8286	8963	9665	10395
75	4950	5457	5989	6546	7128	7734	8365	9021	9702
80	4640	5116	5615	6137	6682	7250	7842	8457	9095
85	4367	4815	5284	5776	6289	6824	7381	7960	8560
90	4125	4547	4991	5455	5940	6445	6971	7517	8085
95	3907	4308	4728	5168	5627	6106	6604	7122	7659
.00	3712	4093	4492	4909	5346	5800	6274	6766	7276
.05	3535	3898	4278	4675	5091	5524	5975	6443	6930
.10	3375	3720	4083	4463	4860	5273	5703	6150	6615
15	3228	3559	3906	4269	4648	5044	5455	5883	6327
.20	3093	3410	3743	4091	4455	4833	5228	5638	6063
.25	2970	3274	3593	3927	4276	4640	5019	5412	5821
.30	2855	3148	3455	3776	4112	4462	4826	5204	5597
.35	2750	3031	3327	3636	3960	4296	4647	5011	5390
.40	2651	2923	3208	3506	3818	4143	4481	4832	5197
45	2560	2822	3098	3386	3686	4000	4326	4666	5018
.50	2475	2728	2994	3273	3564	3867	4182	4510	4851
.55	2395	2640	2898	3167	3449	3742	4047	4365	4694
60	2320	2558	2807	3068	3341	3625	3921	4228	4547

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

sure q. in.			De	pths of	Girders	s in incl	hes.		
Pressure per sq. in.	5 3/4	6	61/4	61/2	63/4	7	71/4	71/2	73/4
lbs.									
5				•••	•••			•••	
10	54553					•••	•••		•••
15	36368	39600	42968	46475					
20	27276	29700	32226	34856	37589	40425	43364	46406	49551
25	21821	23760	25781	27885	30071	32340	34691	37125	39641
30	18184	19800	21484	23237	25059	26950	28909	30937	33034
35	15586	16971	18415	19917	21479	23100	24779	26517	28315
40	13638	14850	16113	17428	18794	20212	21682	23203	24775
45	12122	13200	14322	15491	16706	17966	19272	20625	22022
50	10910	11880	12890	13942	15035	16170	17345	18562	19820
55	9918	10800	11718	12675	13668	14700	15768	16875	18018
60	9092	9900	10742	11618	12529	13475	14454	15468	16517
65	8392	9138	9915	10725	11565	12438	13342	14278	15246
70	7793	8485	9207	9958	10739	11550	12389	13258	14157
75	7273	7920	8593	9295	10023	10780	11563	12375	13213
80	6819	7425	8056	8714	9397	10106	10841	11601	12387
85	6418	6988	7582	8201	8844	9511	10203	10919	11659
90	6061	6600	7161	7745	8353	8983	9636	10312	11011
95	5742	6252	6784	7338	7913	8510	9129	9769	10431
100	5455	5940	6445	6971	7517	8085	8672	9281	9910
105	5195	5657	6138	6639	7159	7700	8259	8839	9438
110	4959	5400	5859	6337	6834	7350	7884	8437	9009
115	4743	5165	5604	6061	6537	7030	7541	8070	8617
120	4546	4950	5371	5809	6264	6737	7227	7734	8258
125	4364	4752	5156	5577	6014	6468	6938	7425	7928
130	4196	4569	4957	5362	5782	6219	6671	7139	7623
135	4040	4400		5163	5568	5988	6424	6875	7340
140	3896	4242	4603	4979	5369	5775	6194	6629	7078
145	3762	4096	4445	4807	5184	5575	5981 5781	6400	6834
150	3636	3960	4296	4647	5011	5216	5595	6187	6393
155 160	3519 3409	3832 3712	4028	4357	4698	5053	5420	5800	6193
100	0409	0/14	4020	4501	4090	0000	9420	1 2000	0199

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is even, it equals (W² – P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

Fressure per sq. in.			De	pths of	Girders	in incl	ies.				
Prei	61/2	63/4	7	71/4	7 1/2	73/4.	8	81/4	8½		
lbs.											
5			•••		• • • •						
10		• • • •	•••	• • • •							
15	38341	41347	44467	47700	• • • •	• • • •					
20 25	30673	33078	35574	38160	40837	43605	46464	49413			
30	25561	27565	29645	31800	34031	36337	38720	41177	43711		
35	21909	23627	25410	27257	29169	31146	33188	35295	37466		
40	19170	20673	22233	23850	25523	27253	29040	30883	32783		
45	17040	18376	19763	21200	22687	24225	25813	27451	29140		
50	15336	16539	17787	19080	20418	21802	23232	24706	26226		
55	13942	15035	16170	17345	18562	19820	21120	22460	23842		
60	12780	13782	14822	15900	17015	18168	19360	20588	21855		
65	11797	12722	13682	14677	15706	16771	17870	19005	20174		
70	10954	11813	12705	13628	14584	15573	16594	17647	18733		
75	10224	11026	11858	12720	13612	14535	15488	16471	17484		
80	9585	10336	11116	11925	12761	13626	14520	15441	16391		
85	9021	9728	10462	11223	12011	12825	13665	14533	15427		
90	8520	9188	9881	10600	11343	12112	12906	13725	14570		
95	8071	8704	9361	10042	10746	11475	12227	13003	13803		
100	7668	8269	8893	9540	10209	10901	11616	12353	13113		
.05	7303	7875	8470	9085	9723	10382	11062	11765	12488		
.10	6971	7517	8085	8672	9281	9910	10560	11230	11921		
15	6668	7190	7733	8295	8877	9479	10100	10742	11402		
.20	6390	6891	7411	7950	8507	9084	9680	10294	10927		
.25	6134	6615	7114	7632	8167	8721	9292	9882	10490		
.30	5898	6361	6841	7338	7853	8385	8935	9502	10087		
.35	5680	6125	6587	7066	7562	8075	8604	9150	9713		
.40	5477	5906	6352	6814	7292	7786	8297	8823	9366		
45	5288	5703	6133	6579	7040	7518	8011	8519	9043		
.50	5112	5513	5929	6360	6806	7267	7744	8235	8742		
55	4947	5335	5737	6154	6586	7033	7494	7969	8460		
60	4792	5168	5558	5962	6380	6813	7260	7720	8195		

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

sure l. in.			De	pths of	Girders	in incl	nes.		
Pressure per sq. in	71/4	71/2	73/4	8	81/4	81/2	83/4	9	91/4
lbs.									
5									
10									
15									
20									
25	41629	44550	47569						
30	34691	37125	39641	42240	44921	47685			
35	29735	31821	33978	36205	38503	40872	43312	45822	48403
40	26018	27843	29730	31680	33690	35763	37898	40095	42353
45	23127	24750	26427	28160	29947	31790	33687	35640	37647
50	20814	22275	23784	25344	26952	28611	30318	32076	33882
55	18922	20250	21622	23040	24502	26010	27562	29160	30802
60	17345	18562	19820	21120	22460	23842	25265	26730	28235
65	16011	17134	18295	19495	20732	22008	23322	24673	26063
	14867	15910	16989	18102	19251	20436	21656	22911	24201
	13876	14850	15856	16896	17968	19074	20212	21384	22588
80	13009	13921	14865	15840	16845	17881	18949	20047	21176
	12243	13102	13991	14908	15854	16830	17834	18868	19931
	11563	12375	13213	14080	14973	15895	16843	17820	18823
	10955	11723	12518	13338	14185	15058	15957	16882	17833
	10407	11137	11892	12672	13476	14305	15159	16038	16941
105	9911	10607	11326	12068	12834	13624	14437	15274	16134
110	9461	10125	10811	11520	12251	13005	13781	14580	15401
115	9049	9684	10341	11019	11718	12439	13182	13946	14731
120	8672	9281	9910	10560	11230	11921	12632	13365	14117
125	8325	8910	9513	10137	10781	11444	12127	12830	13553
130	8005	8567	9147	9747	10366	11004	11661	12336	13031
135	7709	8250	8809	9386	9982	10596	11229	11880	12549
140	7433	7955	8494	9051	9625	10218	10828	11455	12100
145	7177	7681	8201	8739	9294	9865	10454	11060	11683
150	6938	7425	7928	8448	8984	9537	10106	10692	11294
155	6714	7185	7672	8175	8694	9229	9780	10347	10929
160	6504	6960	7432	7920	8422	8940	9474	10023	10588

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

-	Depths of Girders in inches.										
ssure sq. in.			De	epths of	Girder	s in inc	hes.				
Pressure per sq. in.	8	81/4	81/2	83/4	9	91/4	91/2	93/4	10		
lbs.	1										
5					•••				•••		
10			•••		•••	•••			•••		
15					•••				•••		
20								• • • •	•••		
25			•••	•••	• • • •	• • • • • • • • • • • • • • • • • • • •			***		
30	45760	48664				•••	• • •	• • • •	•••		
35	39222	41712	44278	46921	49641			> • •	• • •		
40	34320	36498	38744	41056	43436	45882	48396				
45	30506	32443	34439	36494	38610	40784	43019	45313	47666		
50	27456	29198	30995	32845	34749	36706	38717	40781	42900		
55	24960	26544	28177	29859	31590	33369	35197	37074	39000		
60	22886	24332	25829	27371	28957	30588	32264	33984	35750		
65	21120	22460	23842	25265	26730	28235	29782	31370	33000		
	19611	20856	22139	23460	24820	26218	27655	29129	30642		
	18304	19465	20663	21896	23166	24470	25811	27187	28600		
	17160	18249	19372	20528	21718	22941	24198	25488	26812		
	16150	17175	18232	19320	20440	21591	22774	23989	35235		
	15253	16221	17219	18247	19305	20392	21509	22656	23833		
	14450	15367	16313	17287	18288	19319	20377	21464	22578		
	13728	14599	15497	16422	17374	18353	19358	20390	21450		
105	13074	13904	14759	15640	16547	17479	18436	19419	20428		
	12480	13272	14088	14929	15795	16684	17598	18537	19500		
115	11937	12695	13476	14280	15108	15959	16833	17731	18652		
120	11440	12166	12914	13685	14478	15294	16132	16992	17875		
125	10982	11679	12398	13138	13899	14682	15486	16312	17160		
	10560	11230	11921	12632	13365	14117	14891	15685	16500		
135	10168	10814	11479	12164	12870	13594	14339	15104	15888		
140	9805	10428	11069	11730	12410	13109	13827	14564	15321		
145	9467	10068	10688	11325	11982	12657	13350	14062	14793		
150	9152	9732	10331	10948	11583	12235	12905	13593	14300		
155	8856	9418	9998	10595	11209	11840	12489	13155	13838		
160	8580	9124	9686	10264	10859	11470	12099	12744	13406		

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

Pressure er sq. in.			De	pths of	Girders	s in incl	nes.		
Pressu per sq.	83/4	9	91/4	91/2	93/4	10	101/4	101/2	10%
lbs.	1		1		1				
5									
10			• • •						
15			•••		•••				
20		•••					•••		
25							•••		
30				•••			•••		
35				•••	• • • •				
40	44214	46777	49412				•••		
45	39302	41580	43922	46328	48798				•••
50	35371	37422	39529	41695	43918	46200	48538		
55	32156	34020	35936	37905	39926	42000	44126	46305	48536
60	29476	31185	32941	34746	36599	38500	40449	42446	44491
65	27209	28786	30407	32073	33783	35538	37337	39181	41069
70	25265	26730	28235	29782	31370	33000	34670	36382	38135
75	23581	24948	26353	27797	29279	30800	32359	33957	35593
80	22107	23388	24706	26059	27449	28875	30336	31834	33368
85	20806	22012	23252	24526	25834	27176	28552	29962	31405
90	19651	20790	21961	23164	24399	25666	26966	28297	29661
95	18616	19695	20805	21945	23115	24315	25546	26808	28099
100	17685	18711	19764	20847	21959	23100	24269	25467	26694
105	16843	17820	18823	19855	20913	22000	23113	24255	25423
110	16078	17010	17968	18952	19963	21000	22063	23152	24268
115	15379	16270	17186	18128	19095	20086	21103	22145	23212
120	14738	15592	16470	17373	18299	19250	20224	21223	22245
125	14148	14968	15811	16678	17567	18480	19415	20374	21355
130	13604	14393	15203	16036	16891	17769	18668	19590	20534
135	13100	13860	14640	15442	16266	17111	17977	18865	19774
140	12632	13365	14117	14891	15685	16500	17335	18191	19067
145	12197	12904	13630	14377	15144	15931	16737	17563	18410
150	11790	12474	13176	13898	14639	15400	16179	16978	17796
155	11410	12071	12751	13450	14167	14903	15657	16430	17222
160	11053	11694	12353	13029	13724	14437	15168	15917	16684

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is even, it equals (W² - P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

Steel Plates from 1/4 inch to 1 1/4 inch thick.

Numerals and Nominal Factors from 4.5 to 6.9.*

By the use of the Tables Nos. 126 to 139 immediately following, and Nos. 352 to 379, the working pressure can be determined, for any given thickness of plate and given diameter, when the calculated percentage strength of the longitudinal joint is known and nominal factor fixed; the diameter can be determined for a given thickness of plate, when the calculated percentage of the longitudinal joint is known and factor determined; and what the calculated percentage of the longitudinal joint should be, for a given thickness of plate, a given diameter and a given working pressure and nominal factor; what the thickness of the plate should be, when it is known what the diameter, working pressure, nominal factor, and the calculated percentage of the longitudinal joint are to be; and the nominal factor which the boiler is, or will be, worked at can also be determined, if between 4.5 and 6.9, when the thickness of the plate, the working pressure, diameter, and calculated percentage of the longitudinal joints are known.

The tables are calculated for tensile strengths of steel plates of 26, 27, 28, 29, 30, 31, and 32 tons per square inch, and they apply equally to cylindrical shells, cylindrical steam receivers, or domes of boilers.

The nominal factors are given at the top of the column under the

heading F.

The numerals in the columns N are those applicable to the thicknesses which they are opposite and tensile strength at the head of the table, and to the nominal factors at the head of the columns in which they are placed.

N = Numeral for the thickness, tensile strength, and nominal factor of safety.

% = Calculated percentage of joint.
D = Diameter of boiler, inside, in inches.

B = Working pressure, in lbs., per square inch.

F = Nominal factor of safety.*

$$\begin{array}{rcl} \frac{\mathbf{N} \times ^{\circ}/_{\circ}}{\mathbf{D}} & = & \mathbf{B}. \\ \frac{\mathbf{N} \times ^{\circ}/_{\circ}}{\mathbf{B}} & = & \mathbf{D}. \\ \frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} & = & ^{\circ}/_{\circ}. \\ \frac{\mathbf{D} \times \mathbf{B}}{^{\prime}/_{\bullet}} & = & \mathbf{N}. \end{array}$$

^{*} For factors below 5 see Tables Nos. 352 to 365.

(1) If the working pressure has to be found when the plates are 1½ inch thick, having a tensile strength of 28 tons per square inch, the nominal factor being 5, the calculated percentage of the joints 84.95, and the diameter of the boiler 174 inches:—

Then, opposite the thickness of the plate 1¼ inch, in the table for 28 tons, and under F5, the nominal factor, the numeral is 313.6, and if this be multiplied by 84.95, the calculated percentage of the joints, and the product divided by 174, the diameter, the quotient equals the working pressure, or

$$\frac{313.6 \times 84.95}{174} = 153.105 = B,$$

which is the working pressure required to be found, or, say, 155 lbs. per square inch.

If the tensile strength had been 29 tons per square inch, then, in the table for that tensile strength the numeral would be found to be 324.8, or

$$\frac{324.8 \times 84.95}{174} = 158.57 = B,$$

(2) If the thickness of the plates is required to be determined, when the steel is assumed at 28 tons, the diameter of the boiler being 82 inches, the pressure 155 lbs., the nominal factor 5, and the calculated percentage of joints 81.49 (see Tables No. 140 to 161 on Riveting, Steel Plates and Steel Rivets):—

Then, if 82, the diameter, be multiplied by 155, the pressure, and the product divided by 81 49, the calculated percentage of joints, the quotient equals the numeral applicable to the case, which should be looked for under F5 (in the table for 28 tons steel), the numeral factor, and opposite the numeral the thickness required may be found, or

$$\frac{82 \times 155}{81.49} = 155.97 = N,$$

but the nearest numeral under F 5 is 156.8, and as it differs so little from 155.97 (that found by the formula $\frac{D \times B}{\%}$), the thickness opposite N 156.8, and under F 5, is the thickness which practically meets the requirements of the case, viz., % inch.

(3) If the diameter has to be settled for a working pressure of 160 lbs. at a nominal factor 5, the thickness of plates being 1% inch, and the calculated percentage of joints 84.95, and the tensile strength of the plates being 28 tons per square inch:—

Then, under F 5, the factor, and opposite 1% inch, the thickness of the plates, in the table for 28 tons steel, the numeral is 344.96, and if it be multiplied by 84.95, the calculated percentage

of joint, and the product divided by 160, the pressure, the quotient equals what the diameter should be, or

$$\frac{344.96 \times 84.95}{160} = 183.15 = D,$$

or say 15 feet 3 inches.

(4) If the calculated percentage of joints has to be determined when the plates are ½ inch thick, the tensile strength 28 tons, the nominal factor 5, the working pressure 100 lbs. and the diameter of the boiler of inches:—

Then, if 100, the pressure, be multiplied by 97, the diameter, and the product divided by the numeral, 125 '44, found opposite ½ inch, the thickness (in table for 28 tons steel), and under F 5, the nominal factor, the quotient equals the calculated percentage of joint, or,

 $\frac{100 \times 97}{125.44} = 77.32 = \%,$

but a suitable calculated percentage of joint for such a thickness of plate, when the riveting is as illustrated in Table No. 150, is 77.2, which is practically that arrived at, and may be adopted without materially affecting the result.

The calculated percentage of joints made of steel plates and steel rivets of various descriptions of riveting and of different thickness

of plates, is given in Tables No. 140 to 161.

The nominal factor can be found by the tables, for each tensile strength of plate given, when, N, the numeral is found (by the formula $D \times B$), for a given thickness, as above the numerals in any one column,

the factor under F is the nominal factor in the particular case. If the exact numeral is not found opposite any given thickness, within the range of the tables, but a numeral comes between any two numerals, opposite the given thickness, then the nominal factor is between the factors at the top of the two columns in which the numerals are found—one slightly under and the other rather higher; therefore, the factor can always be determined within about 1 per cent., although the exact numeral may not be found in the tables.

Thus if the thickness be $\frac{1}{2}$ inch and $\frac{D \times B}{\%} = 125.44 = N$,

125 '44 is found opposite ½ inch, for 28 tons steel, and at the top of the column the nominal factor is 5; but if by the formula the numeral arrived at had been, say, 124, which is a numeral between two numerals given in the tables opposite ½, then the nominal factor in such a case would be a little higher than 5, but less than 5.1. If the numeral found by the formula had been 104.53, the nominal factor would be 6, as 104.53 is found opposite ½ inch under the column F 6 in table for 28 tons steel.

TABLE No. 126.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 26 tons per square inch. Numerals and Nominal Factors from 5 to 5.9.

inches. N N N N N N N N N N N N N N N N N N N	Thick- ness of Plate.	F 5.0	F 5·1	F 5·2	F 5·3	F 5·4	F 5·5	F 5·6	F 5·7	F 5.8	F 5·9
	ness of Plate. inches. 1/4 9/3 2 6/4 6 11/3 2 8/8 13/3 2 7/1 6 16/3 2 1/3 2 1/4 6 1/4 2 1/4 6 1/4 2 1/4 6 1/4 2 1/4 6 1/4 2 1/4 6 1/4 2 1/4 6 1/4 2 1/4 6 1/4 2 1/4 6 1/4 2 1/4 6 1/4 2 1/4 6 1/4 2 1/4 6 1/4 6 1/4 6 1/4 6	5·0 N 5·5·24 6·5·52 7·2·80 8·0·88 8·7·36 9·4·64 101·92 109·20 116·48 123·76 131·04 138·32 145·60 152·88 160·16 117·4 72 182·0 189·28 221·12 247·52 25·48 225·68 262·0 269·3 262·2 298·4 313·4 310·4 31	5·1 N 57·09 64·23 71·37 78·50 85·64 92·78 99·92 107·05 114·19 121·33 128·47 135·60 142·74 149·88 157·01 164·15 171·29 178·43 185·56 192·70 199·84 206·98 214·11 221·25 228·39 235·52 242·66 249·80 256·98 264·07 271·21 2278·35 228·39 292·62 298·36 299·76 306·90	5·2 N 56-0 68·0 70·0 68·0 77·0 91·0 91·0 105·0 112·0 112·0 112·0 112·0 112·0 126·0 112·0 128·0	5-3 N 54-94 61-81 68-67 75-54 82-41 103-01 109-88 116-75 123-62 130-49 137-35 144-22 151-09 157-96 164-83 171-69 178-56 199-16 206-03 212-90 219-77 226-64 233-50 240-37 247-2-2 254-11 260-98 267-88 267-88 274-71 281-58 288-48 295-38	N 53 · 92 60 · 66 67 · 40 74 · 14 80 · 88 87 · 62 94 · 37 101 · 11 107 · 85 114 · 59 121 · 33 128 · 07 134 · 81 141 · 55 148 · 29 155 · 03 161 · 77 168 · 51 175 · 25 182 · 00 188 · 74 195 · 48 202 · 22 208 · 96 215 · 70 229 · 18 235 · 92 4242 · 66 249 · 46 249 · 46 240 · 46	5·5 N 52·94 59·56 66·18 72·80 79·41 86·03 92·65 99·26 112·50 112·50 113·12 125·74 132·36 152·21 158·83 165·45 172·07 178·69 185·30 191·92 1178 221·63 225·01 221·63 225·01 221·48 225·01 221·49 221 221 221 221 221 221 221 221 221 22	5.6 N 52-0 58-5 65-0 71-5 78-0 84-5 110-5 110-5 117-0 123-5 143-0 149-5 143-0 162-5 188-5 182-0 201-5 221-5 221-5 221-5 221-5 221-5 221-5 221-5 221-5 221-7	5·7 N N 5·1·08 5·7·47 63·85 7·0·24 7·6·63 83·01 108·56 114·94 121·33 127·71 134·10 140·49 1159·64 116·03 1172·42 178·80 185·19 191·57 197·96 204·33 210·77 217·12 223·56 242·66 268·2 2242·66 255·43 261·83 27·45 261·83 27·45 27·45 27·45	5·8 N Solve the state of the	N 49:35 55:52 61:69 67:86 74:02 80:20 86:37 92:54 98:71 104:88 111:05 117:22 123:38 129:55 135:72 141:89 148:91 148:

$$\frac{N \times \%}{D} = B$$

$$\frac{N \times \%}{R} = 1$$

results per square filer in points. Because the interest points. By the state that the square
$$\frac{N \times \%}{D} = B$$
 $\frac{N \times \%}{B} = D$ $\frac{D \times B}{N} = \%$ $\frac{D \times B}{\%} = N$

$$\frac{D \times B}{\%} = N$$

TABLE No. 127.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{2}{8}$ inch thick. Tensile Strength 26 tons per square inch. Numerals and *Nominal* Factors from 6 to 6.9.

	-								-	
Thick-	F	F	F	F	F	F	F	F	F	F
ress of	6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9
Plate.	0.0	0.1	0.2	0.5	0 4	0.5	0.0	0 ,	0.0	0.9
	1				1	1				
nches.	N	N	N	N	N	N	N	N	N	N
1/4	48.53	47.73	46.96	46.22	45.50	44.80	44.12	43.46	42.82	42.20
/32	54.60	53.70	52.83	52.0	51.18	50.40	49.63	48.89	48.17	47.47
5/16	60.66	59.67	58.70	57.77	56.87	56.0	55.15	54.32	53.52	52.75
5/16 11/32 3/3	66.73	65.63	64.58	63.55	62.56	61.60	60.66	59.76	58.88	58.02
3/8	72.80	71.60	70.45	69.33	68.25	67.20	66.18	65.19	64.23	63.30
13/20	78.86	77.57	76.32	75.11	73.93	72.80	71.69	70.62	69.58	68.57
13/3 2 7/16	84.93	83.54	82.19	80.88	79.62	78.40	77.21	76.05	74.94	73.85
15/32	91.0	89.50	88.06	86.66	85.31	84.0	82.72	81.49	80.29	79.13
1732	97.06	95.47	93.93	92.44	91.0	89.60	88.24	86.92	85.64	84.40
	103.13		99.80	98.22	96.68	95.20	93.75	92.35	91.0	89.68
17/32	109.20			104.0		100.80	99.27	97.79	96.35	94.95
	115.26				108.06				101.70	
19/32			117.41			112.0		108.65		105.50
217	127.40						115.81			110.78
11/32	133.46	121.07	190.16	197.11	105.10	103.00	121.33	110.50	117.76	116.05
/16							126.84			
23/32							132.36			126.60
	151.66							135.82		
13/32										
							143.39			
27/32	163.80						148.90			
/8							154.42			
15/32 15/16	175.93									
15/16					170.62		165.45			
/32	188.06						170.96			
1	194.13			184.88			176.48			
1 1/32	200.20							179.28		
- /16							187.51			179.36
	212.33						193.03			
	218.40						198.54			
1 5/3 2		220.78	217.22	213.77	210.43	207.20	204.06	201.01	198.05	195.18
	230.53	226.75	223.09	219.55	216.12	212.80	209.57	206.44	203.41	200.46
1 7/32	236.60	232.72	228.96	225.33	221.81	218.40	215.09	211.88	208.76	205.73
1 1/4	242.66	238.68	234.83	231.11	227.5	224.0	220.60	217:31	214.11	211.01
1 %32	248.73	244.65	240.70	236.88	233.18	229.60	226.12	222.74	219.47	216.28
1 6/2		250.62	246.58	242.66	238.87	235.20	231.63	228.17	224.82	
111/16	260.86									
111/32 1 3/8	266.93									
/8		00				-10 10	30			

$$\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B} \qquad \frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D} \qquad \frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \% \qquad \frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}$$

TABLE No. 128.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 27 tons per square inch. Numerals and Nominal Factors from 5 to 5.9.

Thick- ness of	F	F	F	F	F	F	F	F	F	F
Plate.	5.0	2.1	5.2	2.3	5.4	9.9	9.6	5.7	5.8	5.9
ness of Plate. inches. 1/4 //4 //2 //2 //4 //4 //4 //4 //4 //4 /	5·0 N 60·48 68·04 75·60 83·16 90·72 98·28 105·84 113·40 120·96 128·52 136·08 143·64 151·20 166·32 173·88 181·44 189·0 199·56	N 59·29 66·70 74·11 81·52 88·94 96·35 103·76 111·17 118·58 126·0 133·41 140·82 148·23 170·47 177·88 185·29 192·70	N 58·15 65·42 72·69 79·96 87·23 94·50 101·76 109·03 116·30 123·57 130·84 138·11 145·38 152·65 159·92 167·19 174·46 181·73 189·0	5·3 N 57·05 64·18 71·32 78·45 85·58 92·71 99·84 106·98 114·11 121·24 121·24 128·37 135·50 142·64 149·77 156·90 161·03 171·16 178·30 185·43	5·4 N 56·0 63·0 77·0 84·0 91·0 98·0 105·0 112·0 119·0 147·0 161·0 168·0 175·0 182·0	5·5 N 54·98 61·852 75·60 82·47 89·34 96·21 103·09 110·96 116·83 123·70 130·58 137·45 144·32 151·20 158·07 164·94 171·81 178·69	5·6 N 54·0 60·75 67·50 74·25 81·0 87·75 94·50 101·25 108·0 114·75 121·5 128·25 141·75 155·25 162·0 168·75 175·5	5·7 N 53·05 59·68 66·31 72·94 79·57 86·21 99·47 106·10 112·73 119·36 126·0 132·63 139·26 145·89 152·52 159·15 165·78 172·42	5·8 N 52·13 58·65·17 71·68 78·20 84·72 91·24 97·75 104·27 110·79 117·31 123·82 130·34 136·86 41 136·86 41 162·93 169·44	5·9 N 51·25 57·66 64·06 70·47 76·83 83·28 89·69 96·10 102·50 102·50 115·32 121·72 128·13 134·54 140·94 147·35 153·76 160·16 166·57
15/3 2 27/3 2 26/8 2 16/16 31/3 2 1 1/2 2 1 1/4 6 1 1/5 2 1 1/4 6 1 1/	196.56 204.12 211.68 219.24 226.80 234.86 241.92 249.48 257.04 264.60 272.16 279.72 287.28 294.84 302.40 309.96 317.52 325.08	192·70 200·11 207·52 214·94 222·35 229·76 237·17 244·58 252·0 259·41 266·82 274·23 281·64 289·05 296·47 303·88 311·29 318·70		185·43 192·56 199·69 206·83 213·96 221·09 228·22 235·35 242·49 249·62 256·75 263·88 271·01 278·15 285·28 292·41 299·54 306·67	$\begin{array}{c} 182 \cdot 0 \\ 189 \cdot 0 \\ 196 \cdot 0 \\ 203 \cdot 0 \\ 210 \cdot 0 \\ 217 \cdot 0 \\ 224 \cdot 0 \\ 231 \cdot 0 \\ 238 \cdot 0 \\ 252 \cdot 0 \\ 252 \cdot 0 \\ 259 \cdot 0 \\ 266 \cdot 0 \\ 273 \cdot 0 \\ 280 \cdot 0 \\ 287 \cdot 0 \\ 294 \cdot 0 \\ 301 \cdot 0 \end{array}$	178·69 185·56 192·43 199·30 206·18 213·05 219·92 226·80 233·67 240·54 247·41 254·29 261·16 268·03 274·90	$\begin{array}{c} 175.5 \\ 182.25 \\ 189.0 \\ 195.75 \\ 202.5 \\ 209.25 \\ 216.0 \\ 222.75 \\ 229.5 \\ 236.25 \\ 243.0 \\ 249.75 \\ 256.5 \\ 263.25 \\ 270.0 \\ 276.75 \\ 283.5 \\ 290.25 \end{array}$	$\begin{array}{c} 172 \cdot 42 \\ 179 \cdot 05 \\ 185 \cdot 68 \\ 192 \cdot 31 \\ 198 \cdot 94 \\ 205 \cdot 57 \\ 212 \cdot 21 \\ 218 \cdot 84 \\ 225 \cdot 47 \\ 232 \cdot 10 \\ 238 \cdot 73 \\ 245 \cdot 36 \\ 252 \cdot 0 \\ 258 \cdot 63 \\ 265 \cdot 26 \\ 271 \cdot 89 \\ 278 \cdot 52 \\ 285 \cdot 15 \\ \end{array}$	169·44 175·96 182·48 189·0 195·51 202·03 208·55 215·06 221·58 228·10 234·62 241·13 247·65 254·17 260·68 267·20 273·72	166·57 172·98 179·38 185·79 192·20 198·61 205·01 211·42 221·28 224·23 230·64 237·05 243·45 249·86 256·27 262·67 269·08 275·49

N=Numeral. %=Calculated percentage strength of joint. B=Working pressure per square inch in pounds. D=Inside diameter in inches. $\frac{N \times \%}{D} = B \qquad \frac{N \times \%}{B} = D \qquad \frac{D \times B}{N} = \% \qquad \frac{D \times B}{\%} = N$

$$\frac{N \times \%}{D} = B$$

$$\frac{N \times \%}{D} = D$$

$$\frac{D = Inside}{D \times B} = e$$

$$\frac{D \times B}{\%} = N$$

TABLE No. 129.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 27 tons per square inch. Numerals and *Nominal* Factors from 6 to 6.9.

hick-	F	F	F	F	F	F	F	F	F	F
ess of	6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9
Plate.	0.0	0.1	0.2	0.9	0.4	0.9	0.0	0.7	0.9	0.9
					1	1				
iches.	N	N	N	N	N	N	N	N	N	N
1/4 9/3 2	50.40	49.57	48.77	48.0	47.25	46.52	45.81	45.13	44.47	43.82
9/22	56.70	55.77	54.87	54.0	53.15	52.33	51.54	50.77	50.02	49.30
6/16	63.0	61.96	60.96	60.0	59.06	58.15	57.27	56.41	55.58	54.78
11/32	69.30	68.16	67.06	66.0	64.96	63.96	63.0	62.05	61.14	60.26
3/8	75.60	74.36	73.16	72.0	70.87	69.78	68.72	67.70	66.70	65.73
13/20	81.90	80.55	79.25	78.0	76.78	75.60	74.45	73.34	72.26	71.21
13/32	88.20	86.75	85.35	84.0	82.68	81.41	80.18	78.98	77.82	76.69
15/16	94.50	92.95	91.45	90.0	88.59	87.23	85.90	84.62	83.38	82.17
1/32	100.80	99.14	97.54	96.0	94.50	93.04	91.63	90.26	88.94	87.65
172	107.10	105.34		102.0	100.40	98.86	97.36	95.91	94.50	93.13
9/32		111.54			106.31		103.09			98.60
19/16		117.73			112.21				105.61	
57	126.0	123.93			118.12					
219		130.13		126.0		122.12			116.73	
11/32		136.32			129.93				122.29	
23/16		142.52			135.84					
332		148.72							133.41	
		154.91			147.65					
/82		161.11			153.56					
13/16		167.31			159.46					
772		173.50								
200					165:37					
15/16		179.70			171.28					
31/16	189.0	185.90			177.18					
3/32		192.09			183.09					
1 1/		198.29			189.0				177.88	
1/32		204.49		198.0		191.90			183.44	
1 /16		210.68		204.0			194.72			186.26
1 3/3 2		216.88		210.0	206.71				194.55	
		223.08		216.0					200.11	
1 5/3 2		229.27		222.0					205.67	
		235.47		228.0					211.23	
1 1/3 2		241.67		234.0					216.79	
		247.86		240.0					222.35	
1 9/32		254.06		246.0					227.91	
1 5/16			256.06	252.0						230.08
11/32		266.45		258.0						235.56
1 3/8	277.20	272.65	268.25	264.0	259.87	255.87	252.0	248.23	244.58	241.04
	1						1			

$$\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B} \qquad \frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D} \qquad \frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \% \qquad \frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}$$

TABLE No. 130.

Steel Plates from 1/4 inch to 1/8 inch thick. Tensile Strength 28 tons per square inch. Numerals and Nominal Factors from 5 to 5.9.

Thick- ness of Plate.	F 5·0	F 5·1	F 5·2	F 5·3	F 5·4	F 5·5	F 5.6	F 5·7	F 5·8	F 5·9
ness of Plate. inches, 1/4,6	5·0 N 62·72 70·56 78·40 86·24 94·08 109·76 117·60 125·48 141·12 148·96 156·80 164·64 172·48 180·32 188·16 196·0 203·84 211·68 219·52 227·36 235·20 243·04 258·88 258·72 258·72	5·1 N 61·49 69·17 76·86 84·54 99·92 107·69 115·29 122·98 136·61 146·93 153·72 161·41 169·99 176·78 184·47 192·15 199·84 207·52 215·21 222·90 230·58 238·27 245·96 253·64	5-2 N 60·30 67·84 75·38 82·92 90·46 98·0 105·53 113·07 120·61 128·15 135·69 143·23 150·76 158·30 165·84 173·38 180·92 188·46 196·0 203·53 211·07 226·15 233·69 241·23 248·76	5-3 N 59-16 66-56 73-96 88-75 96-15 103-544 110-94 118-33 125-73 133-13 140-52 147-92 170-11 177-50 184-90 199-69 207-09 214-49 221-88 229-28 236-67 244-07	5'4 N 58'07 65'33 72'59 79'85' 87'11 94'37 101'62 108'88 116'14 123'40 130'66 137'92 145'18 152'44 159'70 166'96 174'22 181'48 188'74 196'0 203'25f 232'25 232'25 233'55	5·5 N 57·01 64·14 71·27 78·40 85·52 92·65 99·78 106·90 114·03 121·16 128·29 135·41 142·54 144·67 156·80 163·92 171·02 17	5·6 N 56·0 63·0 70·0 84·0 91·0 91·0 105·0 112·0 112·0 113·0 147·0 154·0 1154·0 1182·0 1182·0 1217·0 224·0 224·0 224·0	5·7 N 55·01 61·89 68·77 75·64 82·52 89·40 96·28 103·15 110·03 116·91 123·78 130·66 137·54 144·42 151·29 178·80 185·68 192·56 192·56 191·29 206·31 213·19 220·97	5·8 N 54·06 60·82 67·58 74·34 81·10 87·86 94·62 101·37 108·13 114·89 121·65 128·41 135·17 141·93 148·68 189·24 162·20 168·96 175·72 182·48 189·24 196·0 020·75 209·51 216·27 223·03	5.9 N 53-15 59-79 66-44 79-72 86-37 79-72 99-66 106-33 112-99 119-56 112-92 119-51 146-11 152-8 139-66 146-11 172-7 179-3 186-0 199-3 205-9 205-9 212-6 219-2 212-6 219-2
1 31/32	250 · 88 258 · 72 266 · 56 274 · 40 282 · 24 290 · 08 297 · 92 305 · 76 313 · 60 321 · 44 329 · 28 337 · 12	245 96 253 64 261 33 269 01 276 70 284 39 292 07 299 76 307 45 315 13 322 82	241·23 248·76 256·30 263·84 271·38 278·92 286·46 294·0 301·53 309·07 316·61 324·15	236·67 244·07 251·47 258·86 266·26 273·66 281·05 288·45 295·84 303·24 310·64 318·03	232·29 239·55 246·81 254·07 261·33 268·59 275·85 283·11 290·37 297·62 304·88 312·14	228·07 235·20 242·32 249·45 256·58 263·70 270·83 277·96 285·09 292·21 299·34	224·0 231·0 238·0 245·0 252·0 252·0 266·0 273·0 280·0 287·0 294·0 301·0	220·07 226·94 233·82 240·70 247·57 254·45 261·33 268·21 275·08 281·96 288·84 295·71	216.27	212.6 219.2 225.8 232.5 239.1 245.8 252.4 259.1 265.7 272.4 279.0 285.6

$$\frac{N \times \%}{D} = B$$

$$\frac{N \times \%}{B} = D \qquad \frac{D \times B}{N} = \%$$

$$\frac{D \times B}{N} =$$

$$\frac{D \times B}{\%} = N$$

Table No. 131.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 28 tons per square inch. Numerals and *Nominal* Factors from 6 to 6 9.

	2. another blief 2. on one 2 declars from 0 to 0 %											
'hick-	F	F	F	F	F	F	F	F	F	F		
ess of	6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9		
late.	00	0.1	0 2	0.0	01					00		
ches.	N	N	N	N	N	N	N	N	N	N		
1/4	52.26	51.40	50.58	49.77	49.0	48.24	47.51	46.80	46.11	45.44		
	58.80	57.83	56.90	56.0	55.12	54.27	53.45	52.65	51.88	51.13		
5/16	65:33	64 26	63.22	62.22	61.25	60.30	59.39	58.50	57.64	56.81		
5/16 11/32 3/8	71.86	70.68	69.54	68.44	67:37	66.33	65.33	64.35	63.41	62.49		
	78.40	77.11	75.87	74.66	73.50	72.36	71.27	70.20	69.17	68.17		
13/32	84.93	83.54	82.19	80.88	79.62	78.40	77.21	76.05	74.94	73.85		
	91.46	89.96	88.51	87.11	85.75	84.43	83.15	81.91	80.70	79.53		
1 3 2	98.0	96.39	94.83	93.33	91.87	90.46	89.09	87.76	86.47	85.21		
1/2		102.81		99.55	98.0	96.49	95.03	93.61	92.23	90.89		
1/2 17/3 2 9/16			107.48			102.52		99.46	98.0	96.57		
			113.80			108.55			103.76			
19/32		122.09			116.37							
						120.61			115.29			
21/30						126.64						
1/16						132.67						
23/32 3/4						138.70						
			151.74			144.73						
						150 76						
13/ 16 27/ 29						156.80						
4.72			170.70			162.83						
/8						168.86						
3 5 /						174.89						
						180.92						
31/32		199.21				186.95						
1			202:32			192.98						
1/32						199·01 205·04			190.23	193.15		
3/16						203.04 211.07						
1/16 3/32 1/6			227.61		220.5				207.52			
78						223.13						
1/8 5/32 3/						229.16						
						235.20				213.56		
1/32			252.90			241.23						
67		263.47				247.26						
5/32						253.29						
11/16						259.32						
3/82			278.19						253.64			
/8	120, 10	101	2.010	2.011	200 0	200 00	-02 00	10, 10	200 01			

$$\frac{N \times \%}{D} = B \qquad \frac{N \times \%}{B} = D \qquad \frac{D \times B}{N} = \% \qquad \frac{D \times B}{\%} = N$$

TABLE No. 132.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 29 tons per square inch. Numerals and *Nominal* Factors from 5 to 5.9.

Thick-	F	F	F	F	F	F	F	F	F	F
ness of Plate.	5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9
	-									
inches.	N	N	N	N	N	N	N	N	N	N
1/4	64.96	63.68	62:46	61.28	60.14	59.05	58.0	56.98	56.0	55.05
/32	73.08	71.64	70.26	68.94	67.66	66.43	65.25	64.10	63.0	61.93
110	81.20		78.07	76.60	75.18	73.81	72.5	71.22	70.0	68.81
27-	89·32 97·44		85.88	84·26 91·92	82·70 90·22	81·20 88·58	79·75 87·0	78·35 85·47	77.0	75.69 82.57
		103.49	93.69		90.22	95.96		92.59	84·0 91·0	89.45
13/32		111:45				103.34		99.71	98.0	96.33
/10		119.41				110.72		106.84	105.0	103.22
15/32		127.37				118.10		113.96	112.0	110.10
12		135.33				125.49			119.0	116.98
		143.29					130.5	128.21	126.0	123.86
		151.25							133.0	130.74
19/32		159.21				147.63		142.45	140.0	137.62
		167.17							147.0	144.50
2 1/3 2 1 1/1 6		175.13						156.70	154.0	151.38
23/		183.09							161.0	158.27
23/32		191.05						170.94	168.0	165.15
	203.0					184.54			175.0	172.03
25/32 13/16		206.98				191.92		185.19	182.0	178.91
27/16	219.24			206.83			195.75		189.0	185.79
27/32	227.36					206.69		199.43	196.0	192.67
29/30		230.86				214.07			203.0	199.55
2 9/3 2 1 5/1 6		238.82				221.45		213.68	210.0	206.44
31/32		246.78				228.83		220.80	217.0	213.32
1 /32		254.74						227.92	224.0	220.20
1 1/32	267.96	262.70	257.65	252.79	248.11	243.60	239.25	235.05	231.0	227.08
1 /16	276.08	270.66	265.46	260.45	255.62	250.98	246.5	242.17	238.0	233.96
	284.20	278.62	273.26	268.11	263.14	258:36	253.75	249.29	245.0	240.84
1 1/8		286.58						256.42	252.0	247.72
1 5/32	300.44	294.54	288.88	283.43	278.18	273.12	268.25	263.54	259.0	254.61
	308.56	302.50	296.69	291.09	285.70	280.50	275.5	270.66	266.0	261.49
1 7/32		310.47						277.78	273.0	268.37
		318.43						284.91	280.0	275.25
1 % 32		326.39							287.0	282.13
		334.35						299.15	294.0	289.01
111/32		342.31							301.0	295.89
1 3/8	357.28	350.27	343.53	337.05	330.81	324.80	319.0	313.40	308.0	302.77
	-	OR PLOTED FOR A						-	-	

$$\frac{N \times \%}{D} = B$$
 $\frac{N \times \%}{B} = D$ $\frac{D \times B}{N} = \%$ $\frac{D \times B}{\%} = N$

Table No. 133.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 29 tons per square inch. Numerals and *Nominal* Factors from 6 to 6.9.

					1	1		1		
hick- ess of	F	F	F	F	F	F	F	F	F	F
late.	6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6·S	6.9
ratio.										
ches.	N	N	N	N	N	N	N	N	N	N
1/4	54.13	53.24	52.38	51.55	50.75	49.96	49.21	48.47	47.76	47.07
9/32	60.90	59.90	58.93	58.0	57.09	56.21	55:36	54.53	53.73	52.95
5/16	67.66	66.55	65.48	64.44	63.43	62.46	61.51	60.59	59.70	58.84
1 1/3 2	74.43	73.21	72.03	70.88	69.78	68.70	67.66	66.65	65.67	64.72
	81.20	79.86	78.58	77.33	76.12	74.95	73.81	72.71	71.64	70.60
13/32	87.96	86.52	85.12	83.77	82.46	81.20	79.96	78.77	77.61	76.49
/16	94.73	93.18	91.67	90.22	88.81	87.44	86.12	84.83	83.58	82.37
15/32	101.50	99.83	98.22	96.66	95.15	93.69	92.27	90.89	89.55	88.26
12		106.49			101.50	99.93	98.42	96.95	95.52	94.14
/32		113.14							101.50	
E /16		119.80		116.0			110.72		107.47	105.91
19/32		126.45					116.87		113.44	111.79
/ / 0	135.33		130.96					121.19		117.68
732	142.10		137.51			131.16				
		146.42	144.06			137.41			131.35	
23/3 2 3/4						143.66				135.33
057						149.90				
18/32			163.70			156.15				
/16			176.80			162·40 168·64				
7/32						174.89				164.75
18						181.13				170.63
15/32 15/16						187.38				176.52
31/		206.32				193.63				
/32			209.54					193.91		
1/			216.09					199.97		194.17
1/32						212:36				200.05
116						218.61		212.08		
192			235.74					218.14		
5/8						231.10				
3/32		252.91				237 35				
3/16						243.60				
1/32						249.84				
9/20						256.09				
9/32	284.20	279.54	275.03	270.66	266.43	262.33	258:36	254.50	250.76	247.13
11/16	290.96	286.19	281.58	277.11	272.78	268.58	264.51	260.56	256.73	253.01
11/32 3/8	297.73	292.85	288.12	283.55	279.12	274.83	270.66	266.62	262.70	258.89
. 8	1	1	1	1		1				1

$$\frac{N \times \%}{D} = B \qquad \frac{N \times \%}{B} = D \qquad \frac{D \times B}{N} = \% \qquad \frac{D \times B}{\%} = N$$

TABLE No. 134.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 30 tons per square inch. Numerals and *Nominal* Factors from 5 to 5.9.

Thick-	F	F	F	F	F	F	F	F	F	F
ness of Plate.	5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9
inches.) NT	NT	NT) AT	NT	NT.	NT.	37	NT.	N
1/4	N 67·20	N 65.88	N 64.61	N 63·39	N 62·22	N 61·09	N 60·0	N 58.94	N 57.93	N 56.94
9/3 2 5/1 e	75.60	74.11	72.69	71.32	70.0	68.72	67.5	66.31	65.17	64.06
	84.0	82.35	80.76	79.24	77.77	76.36	75.0	73.68	72.41	71.18
11/32	92.40			87.16	85.55	84.0	82.5	81.05	79.65	78.30
	100.80	98.82	96.92	95.09	93.33	91.63	90.0	88.42	86.89	85.42
13/32		107.05		103.01		99.27	97.5	95.78	94.13	92.54
					108.88		105.0	103.12		99.66
/32	126.0				116.66		112.5		108.62	
					124.44		120.0		115.86	
	142.80				132.22		127.5		123.10	
					140·0 147·77		135·0 142·5	140.0	130·34 137·58	
19/32					155.55		150.0		144.82	
21/					163.33		157.5		152.06	
11/18					171.11		165.0		159.31	
1 1/1 6 2 3/3 3/4					178.88		172.5		166.55	
3/4					186.66		180.0		173.79	
25/32	210.0				194.44		187.5	184.21	181.03	177.96
13/16		214.11			202.22		195.0		188.27	
27/32 7/32						206.18	202.5		195.51	
29/8					217.77		210.0		202.75	
/32						221.45	217.5	213.68		206.44
31/16	252.0				233.33		225.0		217.24	
1 732					241·11 248·88		232·5 240·0		224·48 231·72	
	277.20	203 32	256.53	261.50	256.66	252.0	247.5		238.96	
1 ½32 1 ½16 1 ¾6	285.60		274.61	269.43	264.44	259.63	255.0		246.20	
1 3/2	294.0				272.22		262.5		253.44	
		296.47				274.90	270.0		260.68	
1 ½ 1 ½ 1 ¾ 1 ¾	310.80	304.70	298.84	293.20	287.77	282.54	277.5	272.63	267.93	263.38
1 3/16					295.55		285.0	280.0		270.50
1 7/32		321.17			303.33		292.5		282.41	
1 1/4	336.0					305.45	300.0		289.65	
1 3/16 1 7/32 1 1/4 1 9/32 1 5/16						313.09	307.5		296.89	
7 7 7 7 0						320.72	315.0			298.98
1 3/8					334.44 342.22	328.36		324.21		306.10
1 7/8	1909 00	302 38	355 50	040 01	394 22	550 0	350 0	024 21	510 02	010 44

$$\frac{N \times \%}{D} = B$$

$$\frac{N \times \%}{D} = D$$

$$\frac{D \times B}{X} = \%$$

$$\frac{D \times B}{\sqrt{}} = N$$

TABLE No. 135.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick.

Tensile Strength 30 tons per square inch. Numerals and *Nominal* Factors from 6 to 6.9.

Thick-	F	F	F	F	F	F	F	F	F	F
ness of	6.0	6.1	6.5	6.3	6.4	6:5	6.6	6.7	6.8	6.9
Plate.	00	0.1	0.2	0.5	0.4	0.9	0.0	0.7	0.9	0.9
inches.	N	AT	NT	37	3.7	37	3"	N	N7	NT.
	56.0	N 55.08	N 54·19	N 53·33	N 52·50	N 51.69	N 50.90	N 50·14	N 49·41	N 48.69
1/4	63.0	61.96	60.96		59.06	58.15	57.27	56.41	55.58	54.78
5/32	70.0	68.85	67.74	66.66	65.62	64.61	63.63	62.68	61.76	60.86
11/32	77.0	75.73	74.51	73.33	72.18	71.07	70.0	68.95	67.94	66.95
11/32 3/8	84.0	82.62	81.29	80.0	78.75	77.53	76.36	75.22	74.11	73.04
	91.0	89.50	88.06		85.31	84.0	82.72	81.49	80.29	79.13
13/32 7/16	98.0	96.39	94.83	93.33	91.87	90.46	89.09	87.76	86.47	85.21
15/39	105.0	103.27			98.43	96.92	95.45	94.02	92.64	91.30
15/32	112.0			106.66			101.81		98.82	97:39
1 1/32	119.0			113:33						103.47
	126.0	123.93								
9/16 19/32 5/8	133.0	130.81								
5/8	140.0	137.70								
21/32 11/ ₁₆	147.0	144.59								
11/16	154.0	151.47							135.88	
23/32	161.0	158.36						144.17	142.05	140.0
	168.0	165.24			157.5	155.07	152.72	150.44	148.23	146.08
25/3 2 13/16	175.0	172.13	169.35	166.66	164.06	161.53	159.09	156.71	154.41	$152 \cdot 17$
13/16	182.0	179.01	176.12	173.33	170.62	168.0	165.45	162.98	160.58	158.26
27/32	180.0	185.90	182.90	180.0	177.18	174.46	171.81	169.25	166.76	164.34
18 /8	196.0	192.78								
29/32 15/16	203.0	199.67								
15/16	210.0	206.55								
31/32	217.0	213.44		206.66						
1	224.0	220.32				206.76				
1 1/32	231.0	227.21								
/16	238.0			226.66						206.95
102	245.0	240.98								
1 1/8	252.0	247.86				232.61				
	259.0	254.75								
/16	266.0	261.63								
1 1/3 2	273.0	268.52			255.93				240.88	
	$280.0 \\ 287.0$	275·40 282·29								
/32	294.0	289.18								
111/16	301.0	296.06								
1 3/8		302.95								
78	3000	002 99	290 00	290 00	200 10	704 90	200 0	210 02	21110	201 02

$$\frac{N \times \%}{D} = B \qquad \frac{N \times \%}{B} = D \qquad \frac{D \times B}{N} = \% \qquad \frac{D \times B}{\%} = N$$

290

CYLINDRICAL BOILER SHELLS.

TABLE No. 136.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick.

Tensile Strength 31 tons per square inch. Numerals and Nominal Factors from 5 to 5.9.

Thick- ness of	F 5.0	F 5·1	F 5:2	F 5.3	F 5·4	F 5:5	F 5:6	F 5:7	F 5.8	F 5.9
Plate.	30	0 1	0 4	00	0 4	., .,	• > - (>	0 1	.,, 0	00
inches.	N	N	N	N	N	N	N	N	N	N
1/4 9/3 2 5/1 0	69·44 78·12	68.07 76.58	66·76 75·11	65·50 73·69	64.29 72.33	63·12 71·01	62·0 69·75	60·91 68·52	59·86 67·34	58·84 66·20
/3 2 5/	86.80		83.46		80.37		77.5	76.14	74.82	73.55
	95.48				88.40	86.80		83.75	82.31	80.91
11/32 3/8		102.11			96.44		93.0	91.36	89.79	88.27
13/					104.48			98.98	97.27	95.62
7/20					112.51					102.98
15/32					120.55		116.25	114.21	112.24	110.33
1/2					128.59					117.69
1/32										125.05
	156.24									132.40
										139.76
217					160.74					
/32					168.77 176.81					
23/										161.83 169.18
1 1/1 6 2 3/3 2 3/4					192.88					176.54
8 9 %										183.89
13/16		221.25			208.96					191.25
27/32 7/32					217.0					
7/8					225.03					205.96
29/32										213.32
15/16	260.40	255.29	250.38	245.66	241.11	236.72	232.5	228.42	224.48	220.67
31/32								236.03	231.96	228.03
1					257.18					235.38
1 ½32 1 ½16 1 ¾20										242.74
1 1/16					273.25					250.10
					281.29					257.45
1 1/8					289.33					264.81
1 /32										272.16
1 7/16					305.40					279·52 286·88
					321.48					286.88
										301.59
					337.55					308.94
111/00										316.30
$\begin{bmatrix} 1 & 5/16 \\ 1 & 11/3 & 2 \\ 1 & 3/8 \end{bmatrix}$					353.62					323.66
PARTICIPATION OF CO.	1									
N=Nu	meral.	%=0	Calculat	ted per	centage	strens	rth of i	oint.	B=Wo	rking

pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{N \times \%}{D} = B \qquad \frac{N \times \%}{B} = D \qquad \frac{D \times B}{N} = \% \qquad \frac{D \times B}{\%} = N$$

$$\frac{D \times B}{M} = \%$$

$$\frac{D \times B}{\%} = N$$

TABLE No. 137.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick.

Tensile Strength 31 tons per square inch.

Numerals and *Nominal* Factors from 6 to 6.9.

	Numerals and Nominal Pactors from 6 to 6 9.										
Thick-	F	F	F	F	F	F	F	F	F	F	
ness of Plate.	6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	
riate.		0 1	-					• •		-	
inches.	N	N	N	N	N	N	N	N	N	N	
1/4	57.86	56.91	56.0	55.11	54.25	53.41	52.60	51.82	51.05	50.31	
/32	65.10	64.03	63.0	62.0	61.03	60.09	59.18	58.29	57.44	56.60	
	72.33	71.14	70.0	68.88	67.81	66.76	65.75	64.77	63.82	62.89	
2/	79.56	78.26	77.0	75.77 82.66	74·59 81·37	73·44 80·12	72·33 78·90	71.25	70.20	69.18	
	86.80 94.03	85·37 92·49	84·0 91·0	89.55	88.15	86.80	85.48	77·73 84·20	76.58 82.97	75·47 81·76	
732	101.26	99.60	98.0	96.44	94.93	93.47	92.06		89.35	88.05	
15/32	108.50				101.71		98.63	97.16	95.73		
1/2	115.73		112.0	110.22	108.50	106.83	105.21	103.64		100.63	
17/32		120.95					111.78			106.92	
		128.06		124.0			118.36				
19/32		135.18								119.50	
		142·29 149·40								125.79 132.08	
132		156.52					144.66				
23/16		163.63								144.66	
23/32		170.75	168.0							150.95	
25/32 13/16	180.83	177.86	175.0							157.24	
13/16 27/32		184.98								163.53	
27/32		192.09	189.0	186.0						169.82	
		199.21								176.11	
15/32	209.76 217.0	206.32 213.44	203.0							182·40 188·69	
31/32		220.55	217.0							194.98	
1 /32		227.67	224.0	220.44						201.27	
1 1/32		234.78	231.0			220.33				207:56	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		241.90					223.57			213.85	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		249.01	245.0	241.11						220.14	
1 1/8		256.13		248.0						226.43	
1 ½ 1 ½ 1 ½ 1 ¾		263.24								232.72	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		270·36		268.66	264.46	260.40	256.45	252.69	242 32	2239.01 245.30	
$\hat{1}_{4}^{132}$		3 284.59		275.55	271.95	267.07	263.03	259.10	255.29	251.59	
1 %32		3291.70								257.88	
1 5/16	303.80	298.81	294.0	289.38	3 284.81	280.48	3276.18	3 272 05	268.05	264.17	
		305.93								1270.46	
1 3/8	318.26	313.04	308.0	303.11	298.37	293.78	3 289 33	285.01	280.82	2 276.75	

$$\frac{N \times \%}{D} = B \qquad \frac{N \times \%}{B} = D \qquad \frac{D \times B}{N} = \% \qquad \frac{D \times B}{\%} = \frac{$$

TABLE No. 138.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick.

Tensile Strength 32 tons per square inch. Numerals and *Nominal* Factors from 5 to 5.9.

Thick- ness of	F	F	F	F	F	F	F	F	F	F
Plate.	5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7	5.8	5.9
ness of	N 71·68 80·64 89·60 107·52 116·48 125·44 143·36 152·32 170·24 179·20 206·08 221·90 221·90 221·90 227·77 668·86 277·77	5·1 N 70·27 79·05 87·84 81·84 114·19 122·98 140·54 141·19 123·76 140·54 149·33 175·68 202·03 223·33 219·60 228·33 237·17 245·96 254·77 263·52 272·31	5-2 N 68-92 77-53 86-15 94-76 103-38 112-0 129-23 137-84 146-46 155-07 163-69 172-30 178-95 198-15 206-76 215-38 224-0 232-61 241-23 249-84 258-46 267-07	5·3 N 67·62 76·07 84·52 92·98 101·43 109·88 118·33 126·79 135·24 143·69 152·15 160·60 169·05 177·50 185·96 211·32 219·77 245·13 228·22 236·67 245·13 253·58 262·03	5-4 N 66-37 74-66 82-96 91-25 99-55 107-85 116-14 124-44 132-74 141-03 149-33 157-62 182-51 190-81 190-81 199-11 207-40 215-70 224-0 232-29 240-59 248-88 257-18	5·5 N 65·16 73·30 81·45 89·60 97·74 105·89 114·03 122·18 130·32	N 64·0 72·0 80·0 88·0 96·0 104·0 112·0 128·0 136·0 144·0 152·0 168·0 176·0 184·0 192·0 200·0	5·7 N 62·87 70·73 78·59 94·31 102·17 110·03 117·89 125·75 133·61 141·47 149·33 157·19 165·05 172·91 180·77 188·63 196·49 204·35 212·20 227·92 235·78 243·64	5·8 N 61·79 69·51 77·24 84·96 92·68 100·41 108·13 115·86 123·58 131·31 139·03 146·75 154·48 162·20 169·93 177·65 183·10 200·82 208·55 216·27	N 60·74 68·33 75·93 83·52 91·11 98·71 106·30 113·89 121·49 129·08 136·67 144·27 151·86 167·05 174·64 182·23 189·83 197·42 205·01 212·61 220·20 227·79 235·38
1 1/3 2 1 1/6 1 3/3 2 1 1/8 1 6/3 2 1 1/8 1 1/9 2 1 1/9 3 2 1 1/9	304·64 313·60 322·56 331·52 340·48 349·44 358·40 367·36 376·32 385·28	298·66 307·45 316·23 325·01 333·80 342·58 351·37 360·15 368·94 377·72	292 · 92 301 · 53 310 · 15 318 · 76 327 · 38 336 · 0 344 · 61 353 · 23 361 · 84 370 · 46	287 · 39 295 · 84 304 · 30 312 · 75 321 · 20 329 · 66 338 · 11 346 · 56 355 · 01 363 · 47	282·07 290·37 298·66 306·96 315·25 323·55 331·85 340·14 348·44 356·74	268·80 276·94 285·09 293·23 301·38 309·52 317·67 325·81 333·96 342·10 350·25 358·40	264·0 272·0 280·0 288·0 296·0 304·0 312·0 320·0 328·0 344·0 352·0	267·22 275·08 282·94 290·80 298·66 306·52 314·38 322·24 330·10 337·96	254·89 262·62 270·34 278·06 285·79 293·51 301·24 308·96 316·68 324·41 332·13 339·86	258·16 265·76 273·35 280·94 288·54 296·13 303·72 311·32 318·91 326·50

$$\frac{N \times \%}{D} = B \qquad \frac{N \times \%}{B} = D \qquad \frac{D \times B}{N} = \% \qquad \frac{D \times B}{\%} = N$$

TABLE No. 139.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 32 tons per square inch. Numerals and *Nominal* Factors from 6 to 6.9.

		1	ı	1		1		1		
Thick-	F	F	F	F	F	F	F	F	F	F
ness of Plate.	6.0	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6·S	6.9
1 1416.				-						
inches.	N	N	N	N	N	N	N	N	N	N
	59.73	58.75	57.80	56.88	56.0	55.13	54:30	53.49	52.70	51.94
1/4	67.20	66.09	65.03	64.0	63.0	62.03	61.09	60.17	59.29	58.43
5/3 2 5/16	74.66	73.44	72.25	71.11	70.0	68.92	67.87	66.86	65.88	64.92
11/20	82.13	80.78	79.48	78.22	77.0	75.81	74.66	73.55	72.47	71.42
11/32	89.60	88.13	86.70	85.33	84.0	82.70	81.45	80.23	79.05	77.91
	97.06	95.47	93.93	92.44	91.0	89.60	88.24	86.92	85.64	84.40
13/32	104.53		101.16	99.55	98.0	96.49	95.03	93.61	92.23	90.89
15/16		110.16			105.0	103.38		100.29	98.82	97.39
15/32		117.50		113.77	112.0	110.27				103.88
17/20		124.85			119.0		115.39			110.37
17/32		132.19			126.0	124.06				
9/16 19/32	141.86				133.0	130.95				
19/32	149.33				140.0	137.84				
21/32	156.80					144.73				
11/18	164.26					151.63				
11/16	171.73					158.52				
67	179.20					165.41				
25/32	186.66					172.30				
13/	194.13					179.20				
27/32	201.60					186.09				
1/8	209.06					192.98				
7/8 29/32 15/16	216.53					199.87				
15/16		220.32		213.33		206.76				
31/32	231.46			220.44	217.0	213.66	210.42	207.28	204.23	201.27
1	238.93	235.01	231.22	227.55	224.0	220.55	217.21	213.97	210.82	207.76
1 1/32	246.40	242:36	238.45	234.66	231.0	227.44	224.0	220.65	217.41	214.26
1 1/16	253.86	249.70	245.67	241.77	238.0	234 33 2	230.78	227.34	224.0	220.75
1 3/32	261 33	257.04	252.90	248.88	245.0	241.23	237.57	234 02	230.58	$227 \cdot 24$
1 1/8	268.80	264.39	260.12	256.0	252.0	248.12	244.36	240.71	237 · 17	233.73
1 5/3 2	276.26	271.73	267.35	233.11	259.0	255.01	251.15	247.40	243.76	240.23
/16	283.73	279.08	274.58	270.22	266.0	261 90 2	257 93	254.08	250.35	246.72
1 7/3 2	291.20	286.42	281.80	277.33	273.0	268.80	264.72	260.77	256.94	253.21
1 1/4	298.66	293.77	289.03	284.44	280.0	275.69	271.51	267.46	263.52	259.71
1 %32	306.13	301.11	296.25	291.55	287.0	282.58	278.30	274.14	270.11	266.20
5/.	313.60	308.45	303.48	298.66	294.0	289 47 2	285.09	280.83	276.70	272.69
11/32	321.06					296.36				
11/32 3/8	328.53	323.14	317.93	312.88	308.0	303.26	298.66	294.20	289.88	285.68

$$\frac{N \times \%}{D} = B \qquad \frac{N \times \%}{B} = D \qquad \frac{D \times B}{N} = \% \qquad \frac{D \times B}{\%} = N$$

STEEL PLATES AND STEEL RIVETS.

Riveted Joints.

In the Tables Nos. 140, to 161, immediately following, and No. 348, the particulars as to the proportions of riveted joints made of steel plates with steel rivets are given. By the use of the Tables the working pressure may be found for any given diameter of boiler and nominal factor of safety, or the diameter determined for a given working pressure and nominal factor, or the nominal factor ascertained for a given pressure and diameter.

Tables Nos. 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 348, have been computed on the assumption that the tensile strength of steel boiler plates is 28 tons per square inch, and the shearing strength of the rivets 23 tons per square inch; the tables on the right hand side of each of these tables give the numerals applicable for steel plates, having tensile strengths of 26, 27, 28, 29, 30, 31 and 32 tons per square inch.

There is frequently a difference of a few tons in the tensile strength of a batch of plates, but the strength either 26, 27, or 28 tons, &c., according to which is the weakest plate in the batch, should be used in making the calculations, and the numerals should be selected from the column with the suitable strength at the top.

The calculated percentage of joint as given opposite the thickness of plate, in each case, is when the diameter of rivets and pitch of rivets are in accordance with the tables, and centre of rivets to edge of plates and distance between rows of rivets, not less than given opposite the particular thickness of plate.

The pitches of the rivets in column p are given in the tables in decimal parts of an inch, but the nearest $\frac{1}{32}$ part of an inch may be adopted without materially affecting the result.

The distance between the rows of rivets in column V. and centre of rivets to edge of plates, in column E, should not be less than given in the table for the description of joint, as shown by the sketches at the top of the table and opposite the particular thickness of plate.

N=Numeral opposite the thickness of the plate, and applicable to the description of riveting as shown in the sketches at the top of the table from which the numeral is selected, and the riveting proportioned as given opposite the thickness in question. The table used must always be that for the particular description of joint that is being dealt with, and the numeral that for the particular tensile strength of the plate.

D = Diameter of boiler, inside, in inches.

B = Working pressure, in lbs. per square inch.

F=Nominal factor of safety, the value of which should in a great measure be determined according to the method of construction.

$$\begin{array}{rcl} D \times B \times F & = & N. \\ & \frac{N}{B \times F} & = & D. \\ & \frac{N}{D \times F} & = & B. \\ & \frac{N}{D \times B} & = & F. \end{array}$$

(1) If the working pressure is required to be found when the longitudinal seams are treble riveted, double butt joints with each alternate rivet omitted in the outer row, either zigzag or chain riveted, the plates of steel 1½ inch thick and the rivets also of steel, the inside diameter of the boiler 172 inches, the nominal factor of safety 5, and the tensile strength of the plate 28 tons:—

In the table of steel plates and steel rivets, treble riveted double butt joints, with each alternate rivet omitted in the outer row, either zigzag or chain riveted, as shown in the sketch at the top of the Table No. 160 * opposite 1½, the thickness of the plate, the numeral N (for 28 tons steel) is found to be 133201, and if that be divided by the product of 172, the diameter, and 5, the nominal factor, the quotient is the working pressure. The calculated percentage strength of the joint is 84°95, as found on the right opposite the thickness 1½ inch, which it is, if the riveting be of the description stated, and the pitch and rivets, &c., are as given opposite the thickness of plate, or

$$\frac{133201}{172 \times 5}$$
 = 154.8 = B,

or, say, 155 lbs., which is the working pressure in lbs. per square inch. *

If 30 tons is taken as the tensile strength instead of 28, the pressure

^{*} See note (a), page 297.

can be found in the same way. The numeral in this case is 142715, then

$$\frac{142715}{172 \times 5} = 165.9 = B,$$

or, say, 166 lbs. per square inch.

(2) If the diameter of a boiler is required to be determined when the riveting is the *same* as before and the plates also 1½ inch thick, the *nominal* factor 5, and the pressure 155 pounds:—

Opposite $1\frac{1}{4}$ inch, thickness of plate, the numeral N (for 28 tons steel) is 133201, which divided by 155×5 (the pressure and factor respectively), equals the working pressure, or

$$\frac{133201}{155 \times 5}$$
 = 171.8 inches = D,

which is the inside diameter, in inches, the boiler may be, or, say, 172 inches.

If 32 tons were assumed as the tensile strength of the plate, instead of 28 tons, as above, the numeral will be found to be 152229, then

$$\frac{152229}{155 \times 5}$$
 = 196.4 inches = D,

or, say, $196\frac{1}{2}$ inches.

(3) If it is wished to determine what thickness the shell of a steel boiler should be if the working pressure is required to be 155 lbs., the diameter 172 inches, and the nominal factor 5, and the joints, treble riveted double butt joints with each alternate rivet omitted in the outer row, either zigzag or chain riveted, the steel being assumed at 28 tons tensile strength:—

The product of 155, the pressure, 172, the diameter, and 5, the nominal factor, equals 133300, which is practically equal to the numeral 133201, which is the nearest numeral, N (for 28 tons steel), in the table for the description of joint specified, and opposite this numeral the thickness of plate is 1½ inch, which is the thickness the shell should be. The particulars of the riveting and calculated percentage of joint are found on the right opposite the thickness 1½ inch.

(4) If it is wished to determine what factor of safety a boiler is working at when the riveting is the same as before, the plates 1½ inch thick (opposite which the calculated percentage 84 95 is found on the right), the numeral, N (for 28 tons steel), opposite 1½ inch on the left, 133201, the diameter 172 inches and the pressure 155 lbs.:—

The factor of safety is found by dividing the numeral 133201 by the product of 172, the diameter, and 155, the pressure, or

$$\frac{133201}{172 \times 155} = 4.99 = F,$$

or, say, 5, which is the nominal factor such a boiler works at under the circumstances stated.

The foregoing remarks will facilitate the use of Tables 140 to 161, 48, and 349, Steel Plates and Steel Rivets, but the Table for the articular description of joint must be used, as each Table is only pplicable to the description of joints shown in the sketches at the top f the Table, and the numeral for the particular tensile strength of lates which is being dealt with.

The pressure, &c., arrived at may sometimes be fractionally over or nder a whole number, but such slight differences can be adjusted ecording to the circumstances of the case, even a lb. or two more or ss will not generally be a serious matter; for instance, if the pressure rrived at is, say, 158 lbs., no great loss would result from working at 55 lbs., and no great harm if at 160 lbs., if the circumstances of the

ase should make it desirable to do so.

(a) In Tables Nos. 348 and 349 with the same description of riveting as in Table No. 160, a greater percentage of riveting is obtained, and, consequently, also a higher pressure for the same thickness of plates, but the riveting in Table No. 160 is recommended, as the pitches are not quite so wide.

STEEL PLATES AND STEEL RIVETS.

TABLE No. 140.

Single Riveted Lap Joints.

28 tons. D×B×F.	Thickness of Plates.	Diameter of Rivets.	Pitch of Rivets.	Centre of Rivets to Edge of Plates.	Percentage of Joint.
N	T	d	p	E	
17561	1/4	11/16	1.562	1.031	56.00
19756	9/32	23/32	1.633	1.078	56.00
21952	5/16	3/4	1.704	1.125	56.00
24147	11/32	25/32	1.775	1.171	56.00
26342	1 %	13/16	1.846	1.218	56.00
28537	1 3/3 2	2 7/3 2 7/3 2	1.917	1.265	56.00
30732	7/22	/8	1.988	1.312	56.00
32622	15/32	29/32	2.036	1.359	55.48
34326	1/2	15/16	2.071	1.406	54.73
36012	17/32	31/32	2.108	1.453	54.04
37679	9/16	1	2.146	1.200	53.40
39340	1 9/3 2	11/32	2.186	1.546	52.82
40995	5/8	11/16	2.227	1.593	52.29
42633	21/32	13/32	2.269	1.640	51.79
44275	11/16	1 1/8	2.312	1.687	51.34
45909	23/32	15/32	2.356	1.734	50.92
47529	3/4	13/16	2.400	1.781	50.52
49147	25/00	17/32	2.445	1.828	50.15
50572	13/10	1 1 1/4	2.500	1.875	49.62
51851	27/32	19/32	2.562	1.921	48.99
53101	1/8	15/16	2.625	1.968	48.38
54355	29/32	111/32	2.687	2.015	47.84
55636	15/16	1 %	2.750	2.062	47:31

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B=Working pressure, in pounds, per square inch.
D=Diameter of boiler, inside, in inches. F=Nominal factor of safety.

 $D \times B \times F = N$ $\frac{N}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = F$

NUMERALS.

For Riveted Joints in Steel Plates having a Tensile Strength of 26, 27, 28, 29, 30, 31 and 32 tons per square inch.

These numerals are applicable to the thickness of plate which they are opposite, provided the calculated percentage of the joints is as given opposite the same thickness in the Table immediately preceding.

nickness f Plates.	26 tons. D×B×F.	27 tons. D×B×F.	28 tons. D×B×F.	29 tons. D×B×F.	30 tons. $D \times B \times F$.	31 tons.	32 tons. $D \times B \times F.$
T	N	N	N	N	N	N	N
1/4	16306	16933	17561	18188	18815	19442	20069
9/32	18344	19050	19756	20461	21167	21872	22578
5/16	20384	21168	21952	22736	23520	24304	25088
11/32	22422	23284	24147	25009	25871	26734	27596
3/8	24460	25401	26342	27282	28223	29164	30105
13/32	26498	27517	28537	29556	30575	31594	32613
7/10	28536	29634	30732	31829	32927	34024	35122
15/32	30291	31456	32622	33787	34952	36117	37282
1/2	31874	33100	34326	35551	36777	38003	39229
17/32	33439	34725	36012	37298	38584	39870	41156
/16	34987	36333	37679	39024	40370	41716	43061
19/32	36530	37935	39340	40745	42150	43555	44960
5/8	38066	39530	40995	42459	43923	45387	46851
21/32	39587	41110	42633	44155	45678	47200	48723
11/16	41112	42693	44275	45856	47437	49018	50600
23/32	42629	44269	45909	47548	49188	50827	52467
3/4	44134	45831	47529	49226	50923	52621	54318
25/32	45636	47391	49147	50902	52657	54412	56168
13/16	46959	48765	50572	52378	54184	55990	57796
27/32	48147	49999	51851	53702	55554	57406	59258
7/8	49308	51204	53101	54997	56893	58790	60686
29/32	50472	52413	54355	56296	58237	60178	62120
15/16	51662	53649	55636	57623	59610	61597	63584

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B=Working pressure, in pounds, per square inch. D=Diameter of boiler, inside, in inches. F=Nominal factor of safety. $D\times B\times F=N \qquad \frac{N}{B\times F}=D \qquad \frac{N}{D\times F}=B \qquad \frac{N}{D\times B}=F$

STEEL PLATES AND STEEL RIVETS. Double Riveted Lap Joints.

TABLE No. 142.

28 tons.	Thick- ness of	Diam- eter of	Pitch of	Centre of Rivets	Distance between Rows of Rivets.		Damaant
D×B×F.	Plates.	Rivets.	Rivets.	to Edge of Plates.	Zig Zag Riveting.	Chain Riveting.	Percentage of Joint.
N	T	d	p	E	V	V	
27440	5/16	11/16	2.291	1.031	1.187	1.875	70.00
30184	11/32	2 3/3 2	2.395	1.078	1.240	1.937	70.00
32928	3/8	3/4	2.500	1.125	1.295	2.000	70.00
35672	13/32	25/32	2.604	1.171	1.349	2.062	70.00
38416	7/16	13/16	2.708	1.218	1.403	2.125	70.00
41095	15/32	27/32	2.803	1.265	1.453	2.187	69.89
43458	1/2	1/8	2.850	1.312	1.487	2.250	69.29
45815	17/32	2 9/3 2	2.900	1.359	1.522	2.312	68.75
48157	9/16	15/16	2.953	1.406	1.558	2.375	68.25
50489	19/32	31/32	3.008	1.453	1.595	2.437	67.79
52810	5/8	1	3.064	1.500	1.631	2.500	67.36
55121	2 1/3 2	11/32	3.122	1.546	1.669	2.562	66.96
57427	1 1/16	11/16	3.181	1.593	1.707	2.625	66.59
59731	23/32	13/32	3.241	1.640	1.745	2.687	66.25
62017	3/4	11/8	3.302	1.687	1.784	2.750	65.92
64307	25/32	15/32	3.364	1.734	1.823	2.812	65.62
66594	1 3/16	13/16	3.427	1.781	1.863	2.875	65.34
68870	27/32	17/32	3.490	1.828	1.902	2.937	65.07
71146	7/8	1/4	3.554	1.875	1.942	3.000	64.82
73414	29/	19/32	3.618	1.921	1.981	3.062	64.58
75687	15/16	10/16	3.683	1.968	2.021	3.125	64.36
77942	31/32	111/32	3.748	2.015	2.061	3.187	64.14
80206	1	1 1/8	3.814	2.062	2.102	3.250	63.94

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B = Working pressure in pounds per square inch.

D=Diameter of boiler, inside, in inches. F=Nominal factor of safety.

 $D \times B \times F = N$ $\frac{N}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = F$

NUMERALS.

For Riveted Joints in Steel Plates having a Tensile Strength of 26, 27, 28, 29, 30, 31 and 32 tons per square inch.

These numerals are applicable to the thickness of plate which they are opposite, provided the calculated percentage of the joint is as given opposite the same thickness in the Table immediately preceding.

-		_					
'hick- ess of	26 tons.	27 tons.	28 tons.	29 tons.	30 tons	31 tons.	32 tons.
'lates.	$D \times B \times F$.						
T	N	N	N	N	N	N	N
5/16	25480	26460	27440	28420	29400	30380	31360
11/32	28028	29106	30184	31262	32340	33418	34496
3/8	30576	31752	32928	34104	35280	36456	37632
13/32	33124	34398	35672	36946	38220	39494	40768
7/16	35672	37044	38416	39788	41160	42532	43904
15/32	38159	39627	41095	42562	44030	45498	46965
1/2	40353	41905	43458	45010	46562	48114	49666
17/	42542	44178	45815	47451	49087	50723	52360
9/16	44717	46437	48157	49876	51596	53316	55036
19/	46882	48685	50489	52292	54095	55898	57701
5/8	49037	50923	52810	54696	56582	58468	60354
21/32	51183	53152	55121	57089	59058	61026	62995
1/10	53325	55376	57427	59477	61528	63579	65630
3/32	55464	57597	59731	61864	63997	66130	68264
3/1	57587	59802	62017	64231	66446	68661	70876
5/32	59713	62010	64307	66603	68900	71197	73493
1/16	61837	64215	66594	68972	71350	73729	76107
/32	63950	66410	68870	71329	73789	76248	78708
1/0	66064	68605	71146	73686	76227	78768	81309
19/32	68170	70792	73414	76035	78657	81279	83901
1/18	70280	72983	75687	78390	81093	83796	86499
7/32	72374	75158	77942	80725	83509	86292	89076
1	74477	77341	80206	83070	85935	88799	91664

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

 $B\!=\!Working$ pressure, in pounds, per square inch. $D\!=\!Diameter$ of boiler, inside, in inches. $F\!=\!\mathit{Nominal}$ factor of safety

 $D \times B \times F = N$ $\frac{\dot{N}}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = F$

STEEL PLATES AND STEEL RIVETS. Treble Riveted Lap Joints.

Table No. 144.

Zig Zag Riveting.

Chain Riveting.

28 tons.	Thick-	Diam-	Pitch of	Centre of Rivets	Distance between Rows of Rivets.		
D×B×F.	ness of Plates.	eter of Rivets.	Rivets.	to Edge of Plates.	Zig Zag Riveting.	Chain Riveting.	Percent- age of Joint.
N	T	d	p	Е	V	V	
35750	3/8	11/16	2.864	1.031	1.386	1.875	76.00
38729	13/32	2 3/3 2	2.994	1.078	1.449	1.937	76.00
41708	1/20	3/4	3.125	1.125	1.513	2.000	76.00
44688	15/32	257	3.255	1.171	1.576	2.062	76.00
47579	1/2	1 3/16	3.367	1.218	1.632	2.125	75.86
50279	17/32	27/32	3.437	1.265	1.674	2.187	75.45
52962	9/16	7/8	3.209	1.312	1.717	2.250	75.06
55636	19/32	29/32	3.583	1.359	1.761	2.312	74.70
58306	5/8	15/16	3.659	1.406	1.805	2.375	74.37
60966	21/32	31/32	3.736	1.453	1.850	2.437	74.06
63627	11/10	1	3.815	1.500	1.895	2.500	73.78
66276	23/32	11/32	3.894	1.546	1.940	2.562	73.51
68932	3/4	11/16	3.975	1.593	1.986	2.625	73.27
71579	25/32	13/32	4.057	1.640	2.032	2.687	73.04
74207	13/16	11/8	4.139	1.687	2.078	2.750	72.81
76850	27/32	15/32	4.222	1.734	2.125	2.812	72.61
79488	7/8	13/16	4.306	1.781	2.172	2.875	72.42
82111	29/32	17/32	4.390	1.828	2.219	2.937	72.23
84742	15/16	11/4	4.475	1.875	2.266	3.000	72.06
87372	31/	1%32	4.560	1.921	2.313	3.062	71.90
89990	1	15/16	4.646	1.968	2.361	3.125	71.74
92621	11/32	111/32	4.732	2.015	2.409	3.187	71.60
95241	11/16	1 %	4.818	2.062	2.456	3.250	71.46

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B=Working pressure, in pounds, per square inch.

D=Diameter of boiler, inside, in inches. F=Nominal factor of safety.

 $D \times B \times F = N$

$$\frac{N}{B \times F} = I$$

$$\frac{N}{D \times F} =$$

$$\frac{N}{N} = F$$

NUMERALS.

For Riveted Joints in Steel Plates having a Tensile Strength of 26, 27, 28, 29, 30, 31 and 32 tons per square inch.

These numerals are applicable to the thickness of plate which they are opposite, provided the calculated percentage of the joint is as given opposite the same thickness in the Table immediately preceding.

hick-	26 tons.	27 tons.	28 tons.	29 tons.	30 tons.	31 tons.	32 tons.		
ss of lates.	$D \times B \times F$.	$D \times B \times F$.	$D \times B \times F$.	$D \times B \times F$.	$D \times B \times F$.	$D \times B \times F$.	$D \times B \times F$.		
T	N	N	N	N	N	N	N		
3/8	33196	34473	35750	37026	38303	39580	40857		
3/3 2	35962	37345	38729	40112	41495	42878	44261		
7/16	38728	40218	41708	43197	44687	46176	47666		
5/32	41496	43092	44688	46284	47880	49476	51072		
1/2	44180	45879	47579	49278	50977	52676	54376		
7/32	46687	48483	50279	52074	53870	55666	57461		
9/16	49179	51070	52962	54853	56745	58636	60528		
9/32	51662	53649	55636	57623	59610	61597	63584		
5/8	54141	56223	58306	60388	62470	64553	66635		
1/32	56611	58788	60966	63143	65320	67498	69675		
1/16	59082	61354	63627	65899	68171	70444	72716		
3/32	61542	63909	66276	68643	71010	73377	75744		
3/4	64008	66470	68932	71393	73855	76317	78779		
5/32	66466	69022	71579	74135	76691	79248	81804		
3/16	68906	71556	74207	76857	79507	82157	84808		
7/32	71360	74105	76850	79594	82339	85083	87828		
7/8	73810	76649	79488	82326	85165	88004	90843		
9/32	76245	79178	82111	85043	87976	90908	93841		
5/16	78689	81715	84742	87768	90795	93821	96848		
1/32	81131	84251	87372	90492	93612	96733	99853		
	83562	86776	89990	93203	96417	99631	102845		
1/32	86005	89313	92621	95928	99236	102544	105852		
1/16	88438	91839	95241	98642	102043	105445	108846		
N-N	N - Numeral appropriate to the thickness of plete and tensile strongth of steel								

N=Numeral appropriate to the thickness of plate and tensile strength of steel, B= Working pressure, in pounds, per square inch.

D = Diameter of boiler, inside, in inches. F = Nominal factor of safety.

$$D \times B \times F = N$$
 $\frac{N}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = F$

STEEL PLATES AND STEEL RIVETS. Quadruple Riveted Lap Joints.

TABLE No. 146.

Zig Zag Riveting.

Chain Riveting.

28 tons.	Thick- ness of Plates.	Diam- eter of Rivets.	Pitch of	Centre of Rivets	Rows of Rivets.		70
$D \times B \times F$.			Rivets.	to Edge of Plates.	Zig Zag Riveting.	Chain Riveting.	Percentage of Joint.
N	T	d	p	E	V	V	
43904	7/16	1 1/16	3.437	1.031	1.584	1.875	80.00
46934	15/32	23/32	3.562	1.078	1.645	1.937	79.82
49837	1/2	3/4	3.653	1.125	1.694	2.000	79.46
52738	17/32	25/32	3.746	1.171	1.745	2.062	79.14
55629	9/16	13/16	3.841	1.218	1.795	2.125	78.84
58511	19/32	27/32	3.937	1.265	1.847	2.187	78.56
61402	5/8	7/8	4.036	1.312	1.899	2.250	78.32
64275	21/32	29/32	4.135	1.359	1.952	2.312	78.08
67146	11/16	15/16	4.236	1.406	2.005	2.375	77.86
70018	23/32	31/32	4.338	1.453	2.058	2.437	77.66
72883	3/4	1	4.440	1.500	2.111	2.500	77.47
75754	25/32	11/32	4.544	1.546	2.165	2.562	77.30
78621	13/16	11/16	4.648	1.593	2.219	2.625	77.14
81475	27/32	13/32	4.752	1.640	2.273	2.687	76.98
84328	7/8	11/8	4.857	1.687	2.328	2.750	76.83
87192	29/32	15/30	4.963	1.734	2.382	2.812	76.70
90046	15/16	13/16	5.069	1.781	2.437	2.875	76.57
92889	31/32	17/32	5.175	1.828	2.492	2.937	76.44
95748	1	1 1/4	5.282	1.875	2.547	3.000	76.33
98598	11/32	1%32	5.389	1.921	2.602	3.062	76.22
101439	11/16	15/16	5.496	1.968	2.657	3.125	76.11
104299	13/32	111/32	5.604	2.015	2.712	3.187	76.02
107138	11/8	1 %	5.711	2.062	2.767	3.250	75.92

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B=Working pressure, in pounds, per square inch. D=Diameter of boiler, inside, in inches. F=Nominal factor of safety.

 $D \times B \times F = N$

$$\frac{N}{B \times F} = D$$

$$\frac{N}{D \times F} = B$$

$$\frac{N}{D \times B} = F$$

For Riveted Joints in Steel Plates having a Tensile Strength of 26, 27, 28, 29, 30, 31 and 32 tons per square inch.

These numerals are applicable to the thickness of plate which they are opposite, provided the calculated percentage of the joint is as given opposite the same thickness in the Table immediately preceding.

	1	1	1				
Thick-	26 tons.	27 tons.	28 tons.	29 tons.	30 tons.	31 tons.	32 tons.
ness of Plates.	D×B×F.	D×B×F.	D×B×F.	$D \times B \times F$	D×B×F.	$D \times B \times F$.	$D \times B \times F$.
			. ,, ., ,,	2 / 2 / 2 /			- // - // 11
T	N	N	N	N	N	N	N
7/16	40768	42336	43904	45472	47040	48608	50176
15/32	43581	45257	46934	48610	50286	51962	53638
1/2	46277	48057	49837	51616	53396	55176	56956
17/32	48971	50854	52738	54621	56505	58388	60272
9/16	51655	53642	55629	57615	59602	61589	63576
19/32	54331	56421	58511	60600	62690	64780	66869
5/8	57032	59226	61420	63613	65807	68000	70194
21/32	59683	61979	64275	66570	68866	71161	73457
11/16	62350	64748	67147	69545	71943	74341	76739
23/32	65016	67517	70018	72518	75019	77519	80020
3/4	67677	70280	72883	75485	78088	80691	83294
25/32	70343	73048	75754	78459	81165	83870	86576
16	73005	75813	78621	81428	84236	87044	89852
27/32	75655	78565	81475	84384	87294	90204	93114
7/8	78304	81316	84328	87339	90351	93363	96374
29/32	80964	84078	87192	90306	93420	96534	99648
15/16	83614	86830	90046	93261	96477	99693	102909
31/32	86254	89571	92889	96206	99523	102841	106158
1	88908	92328	95748	99167	102587	106006	109426
11/32	91555	95076	98598	102119	105640	109162	112683
11/16	94193	97816	101439	105061	108684	112307	115930
13/32	96849	100574	104299	108023	111748	115473	119198
11/8	99485	103311	107138	110964	114790	118617	122443

 $N\!=\!N$ unneral appropriate to the thickness of plate and tensile strength of steel. $B\!=\!W$ orking pressure, in pounds, per square inch.

D=Diameter of boiler, inside, in inches. F=Nominal factor of safety.

 $D \times B \times F = N$ $\frac{N}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = F$

STEEL PLATES AND STEEL RIVETS. Single Riveted Double Butt Joints.

TABLE No. 148.

28 tons. D×B×F.	Thickness of Plates.	Diameter of Rivets.	Pitch of Rivets.	Centre of Rivets to Edge of Plates.	Thickness of Butt Straps.	Percentage of Joint.
N	T	d	p	E	T_1	
30576	3/8	1 1/16	1.964	1.031	.234	65.00
33124	13/32	23/32	2.053	1.078	•253	65.00
35672	7/16	3/4	2.142	1.125	.273	65.00
38220	15/32	25/32	2.232	1.171	•292	65.00
40586	1/2	13/16	2.303	1.218	*312	64.71
42769	17/32	27/32	2.356	1.265	.332	64.18
44946	9/16	7/8	2.411	1.312	'351	63.70
47116	19/32	29/32	2.467	1.359	'371	63.26
49290	5/8	15/16	2.525	1.406	.390	62.87
51441	21/32	31/32	2.583	1.453	.410	62.49
53589	11/16	1	2.642	1.500	.429	62.14
55727	23/32	1 1/32	2.701	1.546	.449	61.81
57868	3/4	1 1/16	2.761	1.593	.468	61.51
60015	25/32	1 3/32	2.822	1.640	*488	61.24
62140	13/16	1 1/8	2.883	1.687	.507	60.97
64276	27/32	1 5/32	2.945	1.734	.527	60.73
66393	7/8	1 3/16	3.006	1.781	.546	60.49
68526	29/32	1 7/32	3.069	1.828	.566	60.28
70642	15/16	1 1/4	3.131	1.875	•585	60.07
72766	31/32	1 % 2	3.194	1.921	·605	59.88
74887	1	1 1/16	3.257	1.968	.625	59.70
76995	1 1/32	111/32	3.320	2.015	644	59.52
79101	1 1/16	1 %	3.383	2.062	.664	59.35

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B=Working pressure, in pounds, per square inch. D=Diameter of boiler, inside, in inches. F=Nominal factor of safety.

 $\overline{B \times F} = D$ $\overline{D \times B} = F$ $D \times B \times F = N$ $\overline{D \times F}$

For Riveted Joints in Steel Plates having a Tensile Strength of 26. 27, 28, 29, 30, 31, and 32 tons per square inch.

These numerals are applicable to the thickness of plate which they are opposite provided the calculated percentage of the joint is as given opposite the same thickness in the Table immediately preceding.

Thick-	26 tons.	27 tons.	28 tons.	29 tons.	30 tons.	31 tons.	32 tons.
ness of Plates.	$D \times B \times F$	$D \times B \times F$.	$D \times B \times F$.	D×B×F.	D×B×F.	$D \times B \times F$.	D×B×F.
T	N	N	N	N	N	N	N
3/8	28392	29484	30576	31668	32760	33852	34944
13/32	30758	31941	33124	34307	35490	36673	37856
1/20	33124	34398	35672	36946	38220	39494	40768
15/32	35490	36855	38220	39585	40950	42315	43680
1/2	37687	39136	40586	42035	43485	44934	46384
17/32	39714	41241	42769	44296	45823	47351	48878
9/10	41735	43340	44946	46551	48156	49761	51366
19/32	43750	45433	47116	48798	50481	52164	53846
1/0	45769	47529	49290	51050	52810	54571	56331
21/20	47766	49603	51441	53278	55115	56952	58789
11/10	49761	51675	53589	55502	57416	59330	61244
23/32	51746	53736	55727	57717	59707	61697	63688
3/4	53734	55801	57868	59934	62001	64068	66134
25/00	55728	57871	60015	62158	64301	66445	68588
1 3/16	57701	59920	62140	64359	66578	68797	71017
27/32	59684	61980	64276	66571	68867	71162	73458
7/8	61650	64021	66393	68764	71135	73506	75877
2 9/3 2	63631	66078	68526	70973	73420	75868	78315
16/16	65596	68119	70642	73164	75687	78210	80733
31/32	67568	70167	72766	75364	77963	80562	83161
	69537	72212	74887	77561	80236	82910	85585
1/32	71495	74245	76995	79744	82494	85244	87994
1/16	73450	76275	79101	81926	84751	87576	90401
NT N							

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B=Working pressure, in pounds, per square inch.
D=Diameter of boiler, inside, in inches. F=Nominal factor of safety.

 $D \times B \times F = N$ = B= F $\overline{\mathbf{B} \times \mathbf{F}}$ $\overline{D \times B}$

STEEL PLATES AND STEEL RIVETS.

TABLE No. 150.

Double Riveted Double Butt Joints.

Zig Zag Riveting.

Chain Riveting.

28 tons. D×B×F.	Thick- ness of Plates.	Diam- eter of Rivets.	Pitch of Rivets.	Centre of Rivets to Edge of Plates.	Distance Rows of Zig Zag Riveting.	Chain Riveting.	Thick- ness of Butt Straps.	Percentage of Joint.
N	T	d	p	Е	V	V	T_1	
42806	7/16	1 1/16	3.126	1.031	1.477	1.875	.273	78.00
45617	15/32	23/32	3.206	1.078	1.522	1.937	.292	77.58
48419	1/2	37.	3.290	1.125	1.570	2.000	312	77.20
51212	1 7/3 2	25/32	3.375	1.171	1.617	2.062	.332	76.85
53999	9/16	/16	3.462	1.218	1.665	2.125	.351	76.53
56776	19/32	2 7/3 2	3.551	1.265	1.714	2.187	.371	76.23
59552	5/8	7/8	3.641	1.312	1.763	2.250	.390	75.96
62324	2 1/3 2	29/32	3.732	1.359	1.812	2.312	*410	75.71
65093	11/16	15/16	3.824	1.406	1.862	2.375	.429	75.48
67854	2 3/3 2	31/32	3.917	1.453	1.912	2.437	.449	75.26
70616	3/4	1	4.010	1.500	1.963	2.500	.468	75.06
73372	25/32	1 1/32	4.104	1.546	2.013	2.562	.488	74.87
76124	13/	1 1/16	4.199	1.593	2.064	2.625	.507	74.69
78882	27/32	1 3/32	4.295	1.640	2.115	2.687	.527	74.53
81628	7/8	1 1/8	4.391	1.687	2.166	2.750	.546	74.37
84384	29/32	1 5/32	4.487	1.734	2.217	2.812	.566	74.23
87118	15/16	1 3/16	4.583	1.781	2.269	2.875	.585	74.08
89864	3 1/3 2	1 7/32	4.680	1.828	2.320	2.937	.605	73.95
92612	1	1 1/4	4.778	1.875	2.372	3.000	.625	73.83
95351	1 1/32	1 % 2	4.875	1.921	2.423	3.062	.644	73.71
98094	1 1/16	1 5/18	4.973	1.968	2.475	3.125	.664	73.60
100842	1 3/32	111/32	5.071	2.015	2.527	3.187	.683	73.50
103567	1 1/8	1 3/8	5.169	2.062	2.579	3.250	.703	73.39

N=Numeral appropriate to the thickness of plate and tensile strength of steel. B=Working pressure, in pounds, per square inch. D=Diameter of boiler, inside, in inches. F=Nominal factor of safety. N

 $D \times B \times F = N$

 $\overline{B \times F}$

N $\overline{D \times F} = B$ $\overline{D \times B}$

For Riveted Joints in Steel Plates having a Tensile Strength of 26, 27, 28, 29, 30, 31 and 32 tons per square inch.

These numerals are applicable to the thickness of plate which they are opposite, provided the calculated percentage of the joint is as given opposite the same thickness in the Table immediately preceding.

		_					
Thick- ness of	26 tons.	27 tons.	28 tons.	29 tons.	30 tons.	31 tons.	32 tons.
Plates.	$D \times B \times F$.						
T	N	N	N	N	N	N	N
7/16	39748	41277	42806	44334	45863	47392	48921
15/32	42358	43987	45617	47246	48875	50504	52133
1/	44960	46689	48419	50148	51877	53606	55336
172 17/ 32	47554	49383	51212	53041	54870	56699	58528
9/16	50141	52070	53999	55927	57856	59784	61713
1 9/3 2	52720	54748	56776	58803	60831	62859	64886
5/8	55298	57425	59552	61678	63805	65932	68059
21/32	57872	60098	62324	64549	66775	69001	71227
11/10	60443	62768	65093	67417	69742	72067	74392
2 3/3 2	63007	65430	67854	70277	72700	75124	77547
%	65572	68094	70616	73138	75660	78182	80704
25/	68131	70751	73372	75992	78612	81233	83853
13/16	70686	73405	76124	78842	81561	84280	86998
27/32	73247	76064	78882	81699	84516	87333	90150
7/8	75797	78712	81628	84543	87458	90373	93289
29/32	78356	81370	84384	87397	90411	93425	96438
15/16	80895	84006	87118	90229	93340	96452	99563
3 1/3 2	83445	86654	89864	93073	96282	99492	102701
1	85996	89304	92612	95919	99227	102534	105842
$\frac{1}{3} \frac{1}{3} \frac{1}{3}$	88540	91945	95351	98756	102161	105567	108972
1 1/16	91087	94590	98094	101597	105100	108604	112107
1 3/32	93639	97240	100842	104443	108045	111646	115248
1 1/8	96169	99868	103567	107265	110964	114663	118362

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B=Working pressure, in pounds, per square inch.
D=Diameter of boiler, inside, in inches. F=Nominal factor of safety.

 $D \times B \times F = N$ $\frac{N}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = F$

STEEL PLATES AND STEEL RIVETS.

Zig Zag Riveting.

Chain Riveting.

TABLE No. 152.

28 tons. D × B × F.	Thick- ness of Plates.	Diam- eter of Rivets.	Pitch of Rivets.	Centre of Rivets to Edge of Plates.	Rows of Rivets. Zig Zag Chain Riveting.		Thick- ness of Butt Straps.	Percentage of Joint.
N	T	d	p	E	V	V	T_1	
51631	1/2	11/16	3.889	1.031	1.578	1.875	.398	82.32
54698	17/32	23/32	4.012	1.078	1.639	1.937	.424	82.08
57767	1 0/2 2	3/4	4.137	1.125	1.701	2.000	.451	81.87
60820	19/32	25/32	4.262	1.171	1.762	2.062	.478	81.66
63888		13/16	4.390	1.218	1.824	2.125	.505	81.49
66942	21/32	27/32	4.518	1.265	1.886	2.187	.532	81.32
69992	11/16	7/8	4.646	1.312	1.948	2.250	.559	81.16
73047	23/32	29/32	4.776	1.359	2.011	2.312	.586	81.02
76101	3/4	15/16	4.906	1.406	2.073	2.375	.613	80.89
79144	25/32	31/32	5.037	1.453	2.136	2.437	.640	80.76
82198	13/10	1	5.168	1.500	2.198	2.500	.668	80.65
85243	27/32	1 1/32	5.300	1.546	2.261	2.562	.695	80.54
88279	1/0	1 1/16	5.432	1.593	2.324	2.625	.722	80.43
91330	29/32	1 3/32	5.564	1.640	2.387	2.687	.749	80.34
94374	1 5/16	1 1/8	5.697	1.687	2.450	2.750	.777	80.25
97410	31/32	1 5/32	5.830	1.734	2.513	2.812	.804	80.16
100452	1	1 3/16	5.963	1.781	2.576	2.875	.831	80.08
103500	1 1/32	1 7/32	6.097	1.828	2.639	2.937	.859	80.01
106530	1 1/16	1 1/4	6.230	1.875	2.702	3.000	.886	79.93
109567	1 3/32	1 %32	6.364	1.921	2.765	3.065	.913	79.86
112613	1 1/8	1 5/16	6.499	1.968	2.828	3.125	.941	79.80
115654	1 5/32	111/32	6.633	2.015	2.891	3.187	.968	79.74
118691	1 3/16	1 %	6.767	2.062	2.955	3.250	.996	79.68

N=Numeral appropriate to the thickness of plate and tensile strength of steel.
B=Working pressure, in pounds, per square inch.
D=Diameter of boiler, inside, in inches. F=Nominal factor of safety.

 $D \times B \times F = N$

$$\frac{N}{B \times F} = 1$$

$$\frac{N}{D \times F} = B$$

$$\frac{N}{D \times B} = B$$

For Riveted Joints in Steel Plates having a Tensile Strength of 26, 27, 28, 29, 30, 31 and 32 tons per square inch.

These numerals are applicable to the thickness of plate which they are opposite, provided the calculated percentage of the joint is as given opposite the same thickness in the Table immediately preceding.

Thickness	26 tons.	27 tons.	28 tons.	29 tons.	30 tons.	31 tons.	32 tons.
of Plates.	$D \times B \times F$.						
Т	N	N	N	N	N	N	N
1/2	47943	49787	51631	53474	55318	57162	59006
17/32	50791	52744	54698	56651	58605	60558	62512
/16	53640	55703	57767	59830	61893	63956	66019
19/32	56475	58647	60820	62992	65164	67336	69508
5/2	59324	61606	63888	66169	68451	70733	73014
21/32	62160	64551	66942	69332	71723	74114	76505
	64992	67492	69992	72491	74991	77491	79990
23/32	67829	70438	73047	75655	78264	80873	83482
%	70665	73383	76101	78818	81536	84254	86972
25/20	73490	76317	79144	81970	84797	87623	90450
13/	76326	79262	82198	85133	88069	91004	93940
27/32	79154	82198	85243	88287	91331	94376	97420
1/8	81973	85126	88279	91431	94584	97737	100890
29/32	84806	88068	91330	94591	97853	101115	104377
1 0/16	87633	91003	94374	97744	101115	104485	107856
31/32	90452	93931	97410	100888	104367	107846	111325
1	93276	96864	100452	104039	107627	111214	114802
1 1/32	96107	99803	103500	107196	110892	114589	118285
1 1/16	98920	102725	106530	110334	114139	117943	121748
1 3/32	101740	105653	109567	113480	117393	121306	125219
1 1/8	104569	108591	112613	116634	120656	124678	128700
1 3/32	107393	111523	115654	119784	123915	128045	132176
1 3/16	110213	114452	118691	122929	127168	131407	135646
37 37					4		

N = Numeral appropriate to the thickness of plate and tensile strength of steel.

B = Working pressure, in pounds, per square inch.<math>D = Diameter of boiler, inside, in inches. F = Nominal factor of safety

 $D \times B \times F = N$ $\frac{N}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = F$

Steel Plates and Steel Rivets.

$ \begin{array}{c} 28 \text{ tons.} \\ D \times B \times F. \\ \hline N \end{array} $	Thickness of Plates.	Diameter of Rivets.	Pitch of Rivets.	Centre of Rivets to Edge of Plates.	Rows of	Chain Riveting.	Thickness of Butt Straps.	Percent- age of Joint.
			-					
51631	1/2	11/16	3.889	1.031	1.738	1.875	*312	82.32
54698	/32	/32	4.012	1.078	1.799	1.937	*332	82.08
57767	/16	3/4	4.137	1.125	1.860	2.000	351	81.87
60820	/32	25/32	4.262	1.171	1.921	2.062	·371	81.66
63888	5/8	1 3/16	4.390	1.218	1.984	2.125	.390	81.49
66942	21/32	27/32	4.518	1.265	2.046	2.187	.410	81.32
69992	11/16	7/8	4.646	1.312	2.109	2.250	.429	81.16
73047	23/32	29/32	4.776	1.359	2.172	2.312	.449	81.02
76101	3/4	15/16	4.906	1.406	2.235	2.375	.468	80.89
79144	25/32	31/32	5.037	1.453	2.298	2.437	.488	80.76
82198	13/	1	5.168	1.500	2.361	2.500	.507	80.65
85243	27/32	1 1/32	5.300	1.546	2.425	2.562	.527	80.54
88279	7/8	1 1/16	5.432	1.593	2.489	2.625	.546	80.43
91330	29/32	1 3/32	5.564	1.640	2.553	2.687	.566	80.34
94374	15/10	1 1/8	5.697	1.687	2.617	2.750	.585	80.25
97410	31/32	1 5/32	5.830	1.734	2.681	2.812	.605	80.16
100452	1	1 3/16	5.963	1.781	2.745	2.875	.625	80.08
103500	1 1/32	1 7/32	6.097	1.828	2.809	2.937	.644	80.01
106530	1 1/16	1 1/4	6.230	1.875	2.873	3.000	.664	79.93
109567	1 3/32	1 %32	6.364	1.921	2.937	3.062	.683	79.86
112613	1 1/8	1 5/16	6.499	1.968	3.002	3.125	.703	79.80
115654	1 1 2 2	111/32	6.633	2.015	3.067	3.187	.722	79.74
118691	1 3/16	1 3/8	6.767	2.062	3.131	3.250	.742	79.68

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B=Working pressure, in pounds, per square inch.
D=Diameter of boiler, inside, in inches. F=Nominal factor of safety. $D \times B \times F = N$ $\overline{\mathbf{B} \times \mathbf{F}}$ $\overline{D \times F}$ $\overline{D \times B}$

For Riveted Joints in Steel Plates having a Tensile Strength of 26, 27, 28, 29, 30, 31 and 32 tons, per square inch.

These numerals are applicable to the thickness of plate which they are opposite, provided the calculated percentage of the joint is as given opposite the same thickness in the Table immediately preceding.

hickness of Plates.	26 tons.	27 tons.	28 tons.	29 tons.	30 tons.	31 tons.	32 tons.
il Hates.	$D \times B \times F$.	$D\times B\times F$.	$D \times B \times F$.	D×B×F.	$D \times B \times F$.	$D \times B \times F$.	$D \times B \times F$.
T	N	N	N	N	N	N	N
1/2	47943	49787	51631	53474	55318	57162	59006
17/32	50791	52744	54698	56651	58605	60558	62512
9/16	53640	55703	57767	59830	61893	63956	66019
19/32	56475	58647	60820	62992	65164	67336	69508
5/8	59324	61606	63888	66169	68451	70733	73014
21/32	62160	64551	66942	69332	71723	74114	76505
11/16	64992	67492	69992	72491	74991	77491	79990
23/32	67829	70438	73047	75655	78264	80873	83482
3/4	70665	73383	76101	78818	81536	84254	86972
25/32	73490	76317	79144	81970	84797	87623	90450
13/16	76326	79262	82198	85133	88069	91004	93940
27/32	79154	82198	85243	88287	91331	94376	97420
7/8	81973	85126	88279	91431	94584	97737	100890
29/32	84806	88068	91330	94591	97853	101115	104377
15/16	87633	91003	94374	97744	101115	104485	107856
31/32	90452	93931	97410	100888	104367	107846	111325
1	93276	96864	100452	104039	107627	111214	114802
1 1/32	96107	99803	103500	107196	110892	114589	118285
1 1/16	98920	102725	106530	110334	114139	117943	121748
1 3/32	101740	105653	109567	113480	117393	121306	125219
1 1/8	104569	108591	112613	116634	120656	124678	128700
1 5/32	107393	111523	115654	119784	123915	128045	132176
1 1/16	110213	114452	118691	122929	127168	131407	135646

N=Numeral appropriate to the thickness of plate and tensile strength of steel. B=Working pressure, in pounds, per square inch.

D=Diameter of boiler, inside, in inches. F=Nominal factor of safety.

 $\mathbf{D} \times \mathbf{B} \times \mathbf{F} = \mathbf{N}$ $\frac{\mathbf{N}}{\mathbf{B} \times \mathbf{F}} = \mathbf{D}$ $\frac{\mathbf{N}}{\mathbf{D} \times \mathbf{F}} = \mathbf{B}$ $\frac{\mathbf{N}}{\mathbf{D} \times \mathbf{B}} = \mathbf{F}$

			Steel Pla	tes and Ste	eel Rivets.			
28 tons. D×B×F.	Thick- ness of Plates.	Diameter of Rivets.	Pitch of Rivets.	Centre of Rivets to Edge of Plates.	Distance Rows of Zig Zag Riveting.	Rivets.	Thickness of Butt Straps.	Percent age of Joint.
N	T	d	p	Е	V	V	T ₁	
59736	9/16	11/16	4.482	1.031	1.695	1.940	·351	84.66
62957	19/32	23/32	4.648	1.078	1.764	2.015	.371	84.53
66185	1/8	3/4	4.814	1.125	1.834	2.090	.390	84.42
69403	21/32	25/32	4.981	1.171	1.904	2.166	·410	84.31
72622	11/16	13/16	5.148	1.218	1.974	2.242	.429	84.21
75842	23/32	27/32	5.316	1.265	2.044	2.318	•449	84.12
79064	3/4	7/8	5.485	1.312	2.114	2.394	.468	84.04
82280	25/32	29/32	5.653	1.359	2.184	2.470	*488	83.96
85500	13/16	15/16	5.822	1.406	2.255	2.547	.507	83.89
88715	27/32	81/32	5.991	1.453	2.325	2.623	.527	83.85
91934	7/8	1	6.161	1.500	2.395	2.700	.546	83.7€
95150	29/	1 1/32	6.330	1.546	2.466	2.776	.566	83.70
98372	16	1 1/16	6.500	1.593	2.536	2.853	.585	83.65
101590	31/32	1 3/32	6.670	1.640	2.607	2.930	.605	83.60
104805	1	1 1/8	6.840	1.687	2.677	3.007	.625	83.25
108015	1 1/32	1 5/32	7.010	1.734	2.747	3.083	.644	83.20
111235	1 1/16	1 3/16	7.181	1.781	2.818	3.160	.664	83.46
114452	1 3/32	1 7/32	7.351	1.828	2.889	3.237	.683	83.42
117665	1 1/8	1 1/4	7.522	1.875	2.959	3.314	.703	83.38
120876	1 5/32	1 %32	7.692	1.921	3.030	3.391	.722	83.34
124083	1 3/18	1 5/16	7.863	1.968	3.100	3.468	.742	83.30
127303	1 7/32	111/32	8.034	2.015	3.171	3.545	.761	83.2
130520	1 1/4	1 %	8.205	2.062	3.242	3.622	.781	83.24

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B = Working pressure, in pounds, per square inch.

D = Diameter of boiler, inside, in inches. F = Nominal factor of safety. $D \times B \times F = N$ = D = F $\overline{B \times F}$ $\overline{D \times F}$ $\overline{D \times B}$

For Riveted Joints in Steel Plates having a Tensile Strength of 26, 27, 28, 29, 30, 31 and 32 tons per square inch.

These numerals are applicable to the thickness of plate which they are opposite, provided the calculated percentage of the joint is as given opposite the same thickness in the Table immediately preceding.

Thickness of Plates.	26 tons. D×B×F.	27 tons. D×B×F.	28 tons. $D \times B \times F$.	29 tons. $D \times B \times F$.	30 tons.	31 tons. $D \times B \times F$.	32 tons. $D \times B \times F.$
T	N	N	N	N	N	N	N
9/16	55469	57602	59736	61869	64002	66136	68269
19/32	58460	60708	62957	65205	67453	69702	71950
5/8	61457	63821	66185	68548	70912	73276	75640
21/20	64445	66924	69403	71881	74360	76839	79317
11/16	67434	70028	72622	75215	77809	80402	82996
2 3/3 2	70424	73133	75842	78550	81259	83967	86676
	73416	76240	79064	81887	84711	87535	90358
25/ 32	76402	79341	82280	85218	88157	91095	94034
/16	79392	82446	85500	88553	91607	94660	97714
27/32	82378	85546	88715	91883	95051	98220	101388
7/8	85367	88650	91934	95217	98500	101784	105067
29/32	88353	91751	95150	98548	101946	105344	108742
15/16	91345	94858	98372	101885	105398	108911	112425
31/32	94333	97961	101590	105218	108846	112474	116102
1	97318	101061	104805	108548	112291	116034	119777
1 1/32	100299	104157	108015	111872	115730	119588	123445
1 1/16	103289	107262	111235	115207	119180	123153	127125
1 3/32	106276	110364	114452	118539	122627	126714	130802
1 1/8	109260	113462	117665	121867	126069	130271	134474
1 5/32	112242	116559	120876	125193	129510	133827	138144
1 3/16	115219	119651	124083	128514	132946	137377	141809
1 7/32	118209	122756	127303	131849	136396	140942	145489
1 1/4	121197	125858	130520	135181	139842	144504	149165

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B = Working pressure, in pounds, per square inch. D = Diameter of boiler, inside, in inches. F = Nominal factor of safety.

 $D \times B \times F = N$ $\frac{N}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = B$

N = Numeral appropriate to the thickness of plate and tensile strength of steel.

B=Working pressure, in pounds, per square inch.

D = Diameter of boiler, inside, in inches. F = Nominal factor of safety.

 $D \times B \times F = N$ $\frac{\dot{N}}{B \times F} = D$ $\frac{\dot{N}}{D \times F} = B$ $\frac{\dot{N}}{D \times B} = F$

For Riveted Joints in Steel Plates having a Tensile Strength of 26, 27, 28, 29, 30, 31 and 32 tons per square inch.

These numerals are applicable to the thickness of plate which they are opposite, provided the calculated percentage of the joint is as given opposite the same thickness in the Table immediately preceding.

-								
	hickness	26 tons.	27 tons.	28 tons.	29 tons.	30 tons.	31 tons.	32 tons.
0.	Plates.	$D \times B \times F$.						
-	T	N	N	N	N	N	N	N
-							-	
	9/16	55469	57602	59736	61869	64002	66136	68269
	19/32	58460	60708	62957	65205	67453	69702	71950
	%	61457	63821	66185	68548	70912	73276	75640
	21/	64445	66924	69403	71881	74360	76839	79317
	11/10	67434	70028	72622	75215	77809	80402	82996
	23/32	70424	73133	75842	78550	81259	83967	86676
	3/4	73416	76240	79064	81887	84711	87535	90358
	25/	76402	79341	82280	85218	88157	91095	94034
	10/10	79392	82446	85500	88553	91607	94660	97714
	27/32	82378	85546	88715	91883	95051	98220	101388
	7/8	85367	88650	91934	95217	98500	101784	105067
	29/20	88353	91751	95150	98548	101946	105344	108742
	15/16	91345	94858	98372	101885	105398	108911	112425
	31/32	94333	97961	101590	105218	108846	112474	116102
	,,,,	97318	101061	104805	108548	112291	116034	119777
1	1/32	100299	104157	108015	111872	115730	119588	123445
		103289	107262	111235	115207	119180	123153	127125
	3/32	106276	110364	114452	118539	122627	126714	130802
		109260	113462	117665	121867	126069	130271	134474
1		112242	116559	120876	125193	129510	133827	138144
1	1 3/16	115219	119651	124083	128514	132946	137377	141809
1	1 7/32	118209	122756	127303	131849	136396	140942	145489
1	1 1/4	121197	125858	130520	135181	139842	144504	149165

N=Numeral appropriate to the thickness of plate and tensile strength of steel

B=W orking pressure, in pounds, per square inch. D=D immeter of boiler, inside, in inches. F=N or E

 $D \times B \times F = N$ $\overline{D \times B}$ $\overline{\mathbf{B} \times \mathbf{F}}$

Steel Plates and Steel Rivets.

			DUCCU	1 000003 001	000 8700	00 2000	000			
28 tons. D×B×F.	Thickness of Plates.	Diameter of Rivets.	Pitch of Rivets.	Centre of Rivets to Edge		ance be of Ri Zag		Rows	Thick- ness of Butt	Percentage of Joint.
28 D×	Thi of 1	Dia of I	Pit	of Plates.		ting.	Rive		Straps.	ercel of Jo
N	T	d	p	E	V	V_1	V	V_1	T_1	P
73260	1 1/16	11/16	4.568	1.031	1.711	1.184	1.969	1.875	.522	84.95
76590	23/32	2 3/3 2	4.776	1.078	1.789	1.238	2.059	1.937	.545	84.95
79920	3/4	%	4.983				2.148			84.95
83251	25/32 13/	25/32	5.191	1.171	1.945	1.346	2.237	2.062	.593	84.95
86581	16	1 3/16	5.399	1.218	2.023	1.399	2.327	2.125	.617	84.95
89911	27/	27/32	5.606				2.416			84.95
93241	1/0	7/8	5.814	1.312	2.178	1.507	2.506	2.250	*664	84.95
96571	29/32	29/32	6.022	1.359			2.596			84.95
99901	15/10	16	6.229	1.406	2.334	1.615	2.685	2.375	.712	84.95
103231	31/32	31/32	6.437	1.453			2.775			84.95
106561	1	1	6.645				2.864			84.95
109891	1 1/32	1 1/32	6.852		2.567		2.954			84.95
113221	1 1/16	1 1/16	7.060		2.645	1.830	3.043	2.625	.807	84.95
116551	1 3/32	1 3/32	7.268				3.132			84.95
119881	1 1/8	1 1/8	7.475				3.222			84.95
123211	1 5/32	1 5/32	7.683				3.315			84.95
126541	1 3/16	1 3/16	7.890				3.401		1	84.95
129871	1 7/32	1 7/32	8.098				3.491			84.95
133201	1 1/4	1 1/4	8.306				3.280			84.95
136531	1 %32	1 %32	8.213				3.670			84.95
139861	1 5/16	1 5/16	8.721	1.968			3.759			84.95
143191	111/32	111/32	8.929	2.015			3.849			84.95
146521	1 %	1 3/8	9.136	2.062	3.423	2.369	3.938	3.250	1.044	84.95

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B = Working pressure, in pounds, per square inch.

D = Diameter of boiler, inside, in inches. F = Nominal factor of safety.

 $D \times B \times F = N$ $\frac{N}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = F$

o face page 318.

Table No. 160 continued for Plates up to 1% inch thick.

28 tons. $D \times B \times F$.	Thickness of Plates.	Diameter of Rivets.	Pitch of Rivets.	Centre of Rivets to Edge of Plates.	Zig	of Riving.	cween R vets. Cha Rivet	in	Thick- ness of Butt Straps.	ercentage of Joint.
N	T	d	p	E	V	V ₁	V_1	V_1	T_1	4
49851	113/32	113/32	19:334	2.109	3.501	2.423	4.028	3.312	1.068	84.95
53181	1 7/16	1 7/16	9.552	2.156	3.579	2.477	4.118	3.375	1.091	84.95
56511	115/32	1 15/32	9.769	2.203	3.657	2.530	4.207	3.437		84.95
59841	- /4	1 ½	9.967	2.250	3.735	2.584	4.297	3.20	1.139	84.95
62653		117/32	10.	2.296	3.779	2.607	4.327	3.562	1.168	84.68
.65365	1 9/16	1 %16	10.	2.343	3.816	2.625	4.346	3.625	1.198	84.37
68052	119/32	119/32	10.	2.390	3.853	2.642	4.365	3.687	1.229	84.06
70716	1 %	1 %	10.	2.437	3.891	2.659	4.384	3.750	1.260	83.75

To face page 319. Table No. 161 continued for Plates up to 1% inch thick.

Thickness of Plates.	26 tons. $D \times B \times F.$	27 tons. $D \times B \times F$.	28 tons.	29 tons. D×B×F.	30 tons. D×B×F.	31 tons. D×B×F.	32 tons.
T	N	N	N	N	N	N	N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139148 142240 145332 148424 151035 153653 156048 158522	144499 147711 150922 154133 156844 159459 162050 164619	149851 153181 156511 159841 162653 165365 168052 170716	155203 158652 162101 165550 168462 171271 174054 176813	161555 164123 167691 171259 174271 177177 180056 182910	165937 169594 173281 176967 180080 183082 186058 189007	171259 175064 178870 182776 185889 188988 192059 195104

For Riveted Joints in Steel Plates having a Tensile Strength of 26, 27, 28, 29, 30, 31 and 32 tons per square inch.

These numerals are applicable to the thickness of plate which they are opposite, provided the calculated percentage of the joint is as given opposite the same thickness in the Table immediately preceding.

ickness	26 tons.	27 tons.	28 tons.	29 tons.	30 tons.	31 tons.	32 tons.
f Plate.	$D \times B \times F$.	$D \times B \times F$.	$D \times B \times F$.	D×B×F.	$D \times B \times F$.	$D \times B \times F$.	$D \times B \times F$.
T	N	N	N	N	N	N	N
11/16	68027	70643	73260	75876	78492	81109	83725
23/32	71119	73854	76590	79325	82060	84796	87531
3/4	74211	77065	79920	82774	85628	88482	91337
25/32	77304	80277	83251	86224	89197	92170	95144
13/16	80396	83488	86581	89673	92765	95857	98949
27/32	83488	86699	89911	93122	96333	99544	102755
7/8	86580	89910	93241	96571	99901	103231	106561
00/	89673	93122	96571	100019	103468	106917	110366
15/32 15/16	92765	96333	99901	103468	107036	110604	114172
31/32	95857	99544	103231	106917	110604	114291	117978
/32	98949	102755	106561	110366	114172	117978	121784
1/32	102041	105966	109891	113815	117740	121665	125589
1/16	105133	109177	113221	117264	121308	125351	129395
3/32	108225	112388	116551	120713	124876	129038	133201
1/8	111318	115599	119881	124162	128443	132725	137006
5/32	114410	118810	123211	127611	132011	136412	140812
3/16	117502	122021	126541	131060	135579	140098	144618
7/32	120594	125232	129871	134509	139147	143785	148424
1/4	123686	128443	133201	137958	142715	147472	152229
9/32	126778	131654	136531	141407	146283	151159	156035
5/16	129870	134865	139861	144856	149851	154846	159841
11/32	132963	138077	143191	148304	153418	158532	163646
1 3/8	136055	141288	146521	151753	156986	162219	167452

N=Numeral appropriate to the thickness of plate and tensile strength of steel.

B = Working pressure, in pounds, per square inch. D = Diameter of boiler, inside, in inches. F = Nominal factor of safety.

D×B×F = N $\frac{N}{B\times F}$ = D $\frac{N}{D\times F}$ = B $\frac{N}{D\times B}$ = F

Steel Plates.

The Tables Nos. 162 to 174, immediately following, and Nos. 329 to 341, are only intended for furnaces of ordinary diameters, when the length does not exceed 10 feet, and for the given thickness of plate a the head of the Table. The diameter should never exceed that found in the column opposite the particular pressure. When A1 is the distinguishing letter, Table No. 175 may be used, or No. 342.

By the tables, if the diameter is determined, the length, thickness and pressure can be found; the length can be found if the diameter thickness, and pressure are determined; the pressure can be ascertain: if the diameter, thickness, and length are known; and when the dia meter, length, and pressure are determined, the required thickness ca

be found.

Dist

The numerals in each table, under each distinguishing letter, as those applicable to the circumstances of the case to which the letter refers and to the thickness of plate at the head of the table.

The distinguishing letters refer to the method adopted in construc-

ing the furnaces, as the following will explain:-

,	, 8 1	
tinguish Letters		nguish
		culcis.
A1.	Longitudinal seams welded, and the furnace an-	
	nealed afterwards,	A1.
A	Longitudinal seams double riveted, single butt	
A.		
	straps, and holes drilled,	A.
Α.	Longitudinal seams single riveted, double butt	
	straps, and holes drilled,	A
-		A.
В.	Longitudinal seams double riveted, single butt	
	straps, holes punched, and the plates annealed	
		В.
-	afterwards,	D,
В.	Longitudinal seams single riveted, double butt	
	straps, holes punched, and the plates annealed	
		D
_	afterwards,	В.
C.	Longitudinal seams single riveted, single butt	
	straps, and holes drilled,	C.
0		0,
C_{\bullet}	Longitudinal seams double riveted, lap joints	_
	bevelled, and holes drilled,	C.
D.		
	straps, holes punched, and the plates annealed	_
	afterwards,	D.
D.	Longitudinal seams double riveted, lap joints not	
D.		D
_	bevelled, and holes drilled,	D.
D.	Longitudinal seams double riveted, lap joints	
	bevelled, holes punched, and the plates annealed	
		n
	afterwards	D.

Dis	tinguish	ing Di	stinguishin
	Letters.		Letters.
	E.	Longitudinal seams single riveted, lap joints	
		bevelled, and holes drilled,	E.
	E.	Longitudinal seams double riveted, lap joints not	
		bevelled, holes punched, and the plates annealed	
		afterwards,	E.
	F.	Longitudinal seams single riveted, lap joints not	
ш		bevelled, and holes drilled,	F.
ш	F.	Longitudinal seams single riveted, lap joints	
п		bevelled, holes punched, and the plates annealed	
ш		afterwards	F.
	G.	Longitudinal seams single riveted, lap joints not	
		bevelled, holes punched, and the plates annealed	
1		afterwards,	G.

Punching the holes is always objectionable, more particularly when the plates are not very thin. If punched, the plates should be annealed

before they are bent.

From the foregoing it will be seen that the distinguishing letter A has reference to three different methods of construction, the letter B to two, the letter C to two, the letter D to three, the letter E to two, the letter F to two, and G to one method.

N = Numeral in the table applicable to the method of construction, L = Length of furnace in feet (for the limits of L, see the first paragraph of these notes).

D = Diameter of furnace, in inches, outside.

B = Working pressure, in lbs. per square inch.

(1) The maximum diameter in inches of a horizontal furnace for any pressure, if the length of the furnace, the thickness of plate, and pressure be determined, may be found by dividing the numeral in the column applicable to the class of furnace, or method of construction, and opposite the given pressure, by the length of furnace in feet plus 1.

Or, the outside diameter in inches should not exceed $\frac{I^N}{L+1}$

If the thickness of the plates be % inch, the length 10 feet, and the pressure 75 lbs., and the horizontal furnace is of the description to which the distinguishing letter A is applicable, and it is required to determine the maximum outside diameter :-

Then, in the table for % inch steel plates (No. 172), opposite 75 lbs., the pressure, in the column A, applicable to the case, 418, the numeral, is found, and if this be divided by 11, the length in feet plus 1, the result is 38, which is the greatest outside diameter in inches the furnace should be.

$$\frac{418}{10+1} = 38 = D.$$

(2) The maximum length in feet of a horizontal furnace for any pressure, if the diameter of the furnace and thickness of plate be determined, may be found by dividing the numeral applicable to the class of furnace or method of construction, and opposite the given pressure, by the diameter in inches, and diminishing the result by 1.

Or, the length should not exceed $\frac{N}{D} - 1 = L$.

If the thickness of the steel plates be %6 inch, the outside diameter 30 inches, and the pressure 100 lbs., and the horizontal furnace is of the description to which the distinguishing letter A is applicable, and it is required to determine the greatest length:—

Then, in the table for $\frac{7}{16}$ inch steel plates (No. 168), opposite 100 lbs., the pressure in the column A, applicable to the case, 189, the numeral, is found, and if this be divided by 30, the outside diameter, the result is 6.3, which lessened by 1 equals 5.3, which is the greatest length in feet the furnace should be,

or
$$\frac{189}{30} = 6.3$$

and $6.3-1 = 5.3 = L$.

(3) The maximum pressure for any horizontal furnace, if the diameter of the furnace, the thickness of plate, and the length be known, may be found by multiplying the diameter in inches by the length in feet plus 1, the result is the numeral which should be looked for under the distinguishing letter applicable to the class of furnace or method of construction, and opposite the numeral so arrived at the greatest pressure is found, on the left in the first column on the page,

or
$$D \times (L+1) = N$$
,

and the pressure found on the left of the page opposite the numeral, in the column under the distinguishing letter applicable to the case, is

the greatest pressure.

If the thickness of the steel plates be % inch, the outside diameter 23 inches, and the length 10 feet, and the furnace is of the description to which the distinguishing letter A is applicable, and the greatest working pressure is required to be determined:—

Then, if 23, the outside diameter, be multiplied by 11, which is the length plus 1, the result is 253, the numeral, and in the table for $\frac{3}{5}$ inch plate in column A applicable to the case, opposite 253, on the left of the page, 55 lbs. pressure is found, which is the greatest working pressure,

or
$$23 \times (10+1)$$
 or $23 \times 11 = 253 = N$,

and opposite the numeral 253, the pressure found is 55 lbs. = B.

(4) The minimum thickness of the plate of a horizontal furnace, if the pressure, diameter, and length of furnace, and class of furnace or nethod of construction be known, may be found by multiplying the iameter in inches by the length in feet plus 1, which gives the numeral, hich numeral should be looked for opposite the pressure in a column f the tables under the distinguishing letter applicable to the class of arnace, and if such a number is not found, the nearest to it, but not lower number, is the numeral to adopt, and at the head of the table he thickness of plate given is the least thickness,

or
$$D \times (L+1) = N$$
.

If the outside diameter of a horizontal steel furnace be 40 inches, the ength 7 feet, and the pressure 120 lbs., and the class of furnace is such a the distinguishing letter A refers to, and the minimum thickness of late is required:—

Then, if 40, the outside diameter, be multiplied by 7+1=8, which is the length increased by 1, the result is 320, which is practically the numeral found opposite 120, the pressure, in column A of Table No. 174; the numeral found opposite 120 lbs. only differs by 2, and such difference is of no material consequence. At the head of the table, in which 322 is found, the thickness is \% inch, which is the least thickness the plates should be.

Had the numeral arrived at been much in excess of 322, then the pressure could not be so high as 120 lbs., for the length and diameter stipulated, as the tables do not include plates above 5% inch thick; but if the plates had been less than % inch thick, and the numeral arrived at was in excess of that found opposite the stipulated pressure in one table, then the next higher numeral, found opposite the stipulated pressure, and in a column under the distinguishing letter applicable, in a table for thicker plates, is the numeral to be used; for instance, if the numeral arrived at in a case be 125, and in a table opposite the stipulated pressure and under the distinguishing letter applicable to the circumstances of the case, 116 is found, and in the table for next thicker plates, opposite the stipulated pressure, and in the column under the distinguishing letter, the numeral is 136, the thickness at the head of the table in which 136 is found is the required thickness.

Furnaces which are found too weak may be materially strengthened as to be fit for greater pressures, by fitting rings, as properly fitted ings are equivalent to shortening the length.

(5) If a furnace be *vertical*, its diameter should not exceed '9 of that attable for a *horizontal* one of the same dimensions in other respects and constructed in the same manner:—

Thus, if 40 inches is the proper diameter for a horizontal furnace, then

$$40 \times 9 = 36 = D$$
.

which is the outside diameter the vertical furnace should be.

(6) In finding the length of a vertical furnace, the appropriate numeral for a horizontal one of the same dimensions, and constructed in the same manner, should be multiplied by '9:—

Thus, if 322 be the appropriate numeral for a horizontal furnace and 40 inches the outside diameter,

Then
$$\frac{.9 \times 322}{40} - 1 = 6.245 = L$$
,

which is the length the vertical furnace should be.

- (7) In finding the pressure for a vertical furnace, the numeral is found by multiplying the length in feet plus 1, by the outside diameter in inches and dividing by 9. Then opposite the numeral will be found the pressure in the same way as for a horizontal furnace.
- (8) In determining the thickness of a vertical furnace, having found the numeral by multiplying the length in feet, plus 1, by the diameter in inches, and dividing the result by '9, the nearest numeral (but not a lower one) should be looked for opposite the pressure in the tables, and in the column under the distinguishing letter applicable to the construction of the furnace, and the thickness is that at the head of the table.

When the diameter of a *vertical* furnace does not decrease 1 in 12, instead of using the number '9 alluded to in the former paragraphs, it should be '85, and if the furnace is parallel it should not exceed '8.

FURNACES PLAIN CYLINDRICAL. Steel Plates 1/4 inch thick.

TABLE No. 162.

Pressures and Numerals for Lengths and Diameters.

sure or in.				Numerals,				± # d
Pressure per sq. in.	Al†A N	B N	C	D N	E N	F N	G N	Maxi- main Diam.
MAINTAIN THE PARTY	N	N	N	N	IN	N	IN	
lbs.								ins.
10			•••	•••		•••	•••	***
15	•••	•••	***	• • •		•••		•••
20		•••	•••			•••		
25	248	234	220	206	193	179	165	72
30	206	195	183	172	160	149	138	68.75
35	177	167	157	147	138	128	118	65.13
40	155	146	138	129	120	112	103	61.87
45	138	130	122	115	107	99.3	91.7	55
50	124	117	110	103	96.3	89.4	82.5	49.5
55	113	106	100	93.7	87.5	81.2	75	45
60	103	97.4	91.7	85.9	80.2	74.5	68.8	41.25
65	95.2	89.9	84.6	79.3	74	68.8	63.5	38.07
70	88.4	83.2	78.6	73.7	68.8	63.8	58.9	35.35
75	82.5	77.9	73.3	68.8	64.2	59.6	55	33
80	77.3	73	68.8	64.5	60.2	55.9	51.6	30.93
85	72.8	68.8	64.7	60.7	56.6	52.6	48.5	29.11
90	68.8	64.9	61.1	57.3	53.5	49.7	45.8	27.5
95	65.1	61.5	57.9	54.3	50.7	47	43.4	26.05
100	61.9	58.4	55	51.6	48.1	44.7	41.3	24.75
105	58.9	55.7	52.4	49.1	45.8	42.6	39.3	23.57
110 115	56·2 53·8	53.1	50 47·8	46·9 44·8	43.7	40.6 38.9	37.5	22.5
120	51.6	50·8 48·7	45.8	44 0	40.1	37.2	35·9 34·4	21.52
125	49.5	46.8	45 6	41.3	38.5	35.8	33	20.62
130	49.6	45	42.3	39.7	37	34.4	31.7	19.8
135	45.8	43.3	40.7	38.2	35.6	33.1	30.6	18.33
140	44.2	41.7	39.3	36.8	34.4	31.9	29.5	17.67
145	42.7	40.3	37.9	35.6	33.5	30.8	28.4	17.06
150	41.3	39	36.7	34.4	32.1	29.8	27.5	16.5
155	39.9	37.7	35.5	33.3	31	28.8	26.6	15.96
160	38.7	36.5	34.4	32.2	30.1	27.9	25.8	15.46
200	00,	000	011		001	2,0	200	10 10

The length L should never exceed 10 ft. and $\frac{N}{D} - 1$ should not be more than 10 ft.

opposite the given pressure in this table, but may be less.

† When A1 is the distinguishing letter, Table No. 175 may be used when the length does not exceed 1.5 feet; above 160 lbs., see Table No. 342.

The numeral N should always be taken from the column under the distin-

guishing letter applicable to the case and opposite the given pressure.

D=Diameter of furnace in inches. N=Numeral applicable to the case.

 $\overline{L+1} = D$. L=Length of furnace in feet. (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that

TABLE No. 163.

Steel Plates 9/32 inch thick. Pressures and Numerals for Lengths and Diameters.

ure ure				Numerals.				÷8÷
Pressure per sq. fu.	A1†A	B	C	D N	E	F N	G N	Maxi- mum Diam.*
lbs.	1							ins,
5								
10				• • • •		***		
15						•••		
20								
25			• • •		• • • •			
30	261	247	232	218	203	189	174	72
35	224	211	199	186	174	162	149	68.75
40	196	185	174	163	152	141	131	65.13
45	174	164	155	145	135	126	116	61.87
50	157	148	139	131	122	113	104	55.68
55	142	134	127	119	111	103	94.9	50.62
60	131	123	116	109	102	94.3	87	46.4
65	120	114	107	100	93.7	87	80.3	42.83
70	112	106	99.4	93.2	87	80.8	74.6	39.77
75	104	98.6	92.8	87	81.2	75.4	69.6	37.12
80	97.9	92.4	87	81.6	76.1	70.7	65.3	34.8
85	92.1	87	81.9	76.8	71.7	66.5	61.4	32.75
90	87	82.2	77.3	72.5	67.7	62.8	58	30.93
95	82.4	77.9	73.3	68.7	64.1	59.5	55	29.3
100	78.3	74	69.6	65.3	60.9	56.6	52.2	27.84
105	74.6	70.4	66.3	62.2	58	53.9	49.7	26.51
110	71.2	67.2	63.3	59.3	55.4	51.4	47.5	25.31
115	68.1	64.3	60.5	56.7	53	49.2	45.4	24.21
120	65.3	61.6	58	54.4	50.8	47.1	43.5	23.2
125	62.6	59.2	55.7	52.2	48.7	45.2	41.8	22.27
130	60.2	56.9	53.5	50.2	46.9	43.5	40.2	21.41
135	58	54.8	51.6	48.3	45.1	41.9	38.7	20.62
140 145	55·9 54	52.8	49.7	46.6 45	43.5	40·4 39	37·3 36	19.88 19.2
		51			42	37.7	34.8	
150 155	52·2 50·5	49.3	46.4	43.5 42.1	40.6	36.5	33.7	18.56 17.96
160		47.7	44.9		39.3		32.6	
100	48.9	46.2	43.5	40.8	38.1	35.3	52.0	17.4

The length L should never exceed 10 ft. and $\frac{N}{D}$ - 1 should not be more than 10 ft. * The diameter D should not be greater for any given pressure than that

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D = Diameter of furnace in inches.

N = Numeral applicable to the case.

 $\frac{N}{D} - 1 = L$. $\frac{N}{L+1} = D$. (L+1) D=N. L = Length of furnace in feet.

opposite the given pressure in this table, but may be less. † When Al is the distinguishing letter, Table No. 175 may be used when the length does not exceed 1 812 feet; above 160 lbs., see Table No. 342.

TABLE No. 164.

Steel Plates $\frac{5}{18}$ inch thick. Pressures and Numerals for Lengths and Diameters.

	110550	aros and	1 umora		ing this a	na Dian	100015.	
Pressure per sq. in.				Numerals.				Maxi- mum Diam.*
ressur per sq. in.	A1†A N	В	C	D N	E N	F	G N	Maxi- mum Dium.
Pr	N	N	N	N	N	N	N	W.U
lbs.								ins.
5	•••		•••	•••				•••
10								•••
15	•••		•••	•••		•••		
20	•••		• • •	•••		•••		•••
25			•••		• • •	•••		
30	•••		• • • •			***		
35	276	261	246	230	215	199	184	72
40	242	228	215	201	188	175	161	68.75
45	215	203	191	179	167	155	143	65.13
50	193	183	172	161	150	140	129	61.87
55	176	166	156	146	137	127	117	56.25
60	161	152	143	134	125	116	107	51.56
65	149	140	132	124	116	107	99.2	47.59
70	138	130	123	115	107	99.7	92.1	44.19
75	129	122	115	107	100	93.1	85.9	41.25
80	121	114	107	101	94	87.3	80.6	38.67
85	114	107	101	94.8	88.5	82.1	75.8	36.39
90	107	101	95.5	89.5	83.5	77.6	71.6	34.37
95	102	96.1	90.5	84.8	79.2	73.5	67.8	32.56
100	96.7	91.3	85.9	80.6	75.2	69.8	64.5	30.93
105	92.1	87	81.8	76.7	71.6	66.5	61.4	29.46
110	87.9	83	78.1	73.2	68.4	63.5	58.6	28.12
115	84.1	79.4	74.7	70.1	65.4	60.7	56	26.90
120	80.6	76.1	71.6	67 ·1	62.7	58.2	53.7	25.78
125	77.3	73	68.8	64.5	60.2	55.9	51.6	24.75
130	74.4	70.2	66.1	62	57.8	53.7	49.6	23.79
135	71.6	67.6	63.7	59.7	55.7	51.7	47.7	22.91
140	69.1	65.2	61.4	57.5	53.7	49.9	46	22.09
145	66.7	63	59.3	55.6	51.9	48.2	44.4	21.33
150	64.5	60.9	57.3	53.7	50.1	46.5	43	20.62
155	62.4	58.9	55.4	52	48.5	45	41.6	19.95
160	60.4	57.1	53.7	50.4	47	43.6	40.3	19.33

The length L should never exceed 10 ft. and $\frac{N}{D}$ - 1 should not be more than 10 ft.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

N=Numeral applicable to the casc. D = Diameter of furnace in inches.

L=Length of furnace in feet. $\frac{1}{D}$ -1=L. $\overline{L+1} = D.$ (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

† When Al is the distinguishing letter, Table No. 175 may be used when the length does not exceed 2:125 feet; above 160 lbs., see Table No. 342.

TABLE No. 165.

Steel Plates $\frac{1}{3}\frac{1}{2}$ inch thick. Pressures and Numerals for Lengths and Diameters.

ure n.				Numerals.	0			.i. a .i
Pressure per sq. in.	A1†A N	B N	C N	D N	E N	F	G N	Maxi- mum Diam.
lbs.	14	IN .	IN	14	14	1/2	7/	ins.
5								
10								
15								
20								
25			•••		•••			
30								
35								
40	292	276	260	244	227	211	195	72
45	260	246	231	217	202	188	173	68.75
50	234	221	208	195	182	169	156	65.13
55	213	201	189	177	165	154	142	61.87
60	195	184	173	162	152	141	130	56.71
65	180	170	160	150	140	130	120	52.35
70	167	158	149	139	130	121	111	48.61
75	156	147	139	130	121	113	104	45.37
80	146	138	130	122	114	106	97.5	42.53
85	138	130	122	115	107	99.4	91.7	40.03
90	130	123	116	108	101	93.9	86.7	37.81
95	123	116	109	103	95.8	88.9	82.1	35.82
100	117	110	104	97.5	91	84.5	78	34.03
105	111	105	99	92.8	86.7	80.5	74.3	32.41
110	106	100	94.5	88.6	82.7	76.8	70.9	30.93
115	102	96.1	90.4	84.8	79.1	73.5	67.8	29.59
120	97.5	92.1	86.7	81.2	75.8	70.4	65	28.35
125	93.6	88.4	83.2	78	72.8	67.6	62.4	27.22
130	90	85	80	75	70	65	60	26.17
135	86.7	81.8	77	72.2	67.4	62.6	57.8	25.2
140	83.6	78.9	74.3	69.6	65	60.3	55.7	24.3
145	80.7	76.2	71.7	67.2	62.7	58.3	53.8	23.46
150	78	73.7	69.3	65	60.7	56.3	52	22.68
155	75.5	71.3	67.1	62.9	58.7	54.5	50.3	21.95
160	73.1	69.1	65	60.9	56.9	52.8	48.7	21.26

The length L should never exceed 10 ft. and $\frac{N}{D}$ -1 should not be more than 10 ft.

D=Diameter of furnace in inches. N=Numeral applicable to the case.

L=Length of furnace in feet, $\frac{N}{D}-1=L$, $\frac{N}{L+1}=D$, (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

t When Al is the distinguishing letter, Table No. 175 may be used when the length does not exceed 2.437 feet; above 160 lbs., see Table No. 342.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

FURNACES PLAIN CYLINDRICAL. Steel Plates & inch thick.

TABLE No. 166.

Pressures and Numerals for Lengths and Diameters.

n				Numerals				÷ 8 ÷
per sq. in.	A1†A	В	C	D	E	F	G	Maxi- mum Diam.*
4 62	N	'N	N	N	N	N	.\'	4 4
lbs.								ins.
5	***	•••	•••	•••	•••			
10		•••	•••	•••	•••	•••		***
15	•••	•••	•••	•••	•••	•••		
20	•••	•••		•••	•••	•••	•••	•••
25	***	•••	•••	•••	•••	•••	• • • •	
30	***	****	•••	•••		• • •		+ + 17
35	•••	****	• • • •	•••		• • •	• • • •	
40	•••		075		0.17		200	70
45	309	292	275	258	241	223	206	72
50	278	263	248 225	232	217	201	186	68.78
55	253 232	239 219	206	211 193	197 180	183	169	65.13
60	214	202	190	178	167	168 155	155 143	61·87 57·11
65 70	199	188	177	166	155	144	133	53.03
	186	175	165	155	144	134	124	49.5
75 80	174	164	155	145	135	126	116	46.4
85	164	155	146	136	127	118	109	43.67
90	155	146	138	129	120	112	103	41.25
95	147	138	130	129	114	106	97.7	39.07
100	139	131	124	116	108	100	92.8	37.12
.05	133	125	118	110	103	95.8	88.4	35.35
.00	127	120	113	105	98.4	91.4	84.4	33.75
.15	121	114	108	101	94.2	87.4	80.7	32.28
.20	116	110	103	96.7	90.2	83.8	77.3	30.93
.25	111	105	99	92.8	86.6	80.4	74.3	29.7
30	107	101	95.2	89.2	83.3	77.3	71.4	28.55
.35	103	97.4	91.7	85.9	80.2	74.5	68.8	27.5
.40	99.4	93.9	88.4	82.9	77:3	71.8	66.3	26.51
45	96	90.7	85.3	80	74.7	69.3	64	25.6
50	92.8	87.7	82.5	77:3	72.2	67	61.9	24.75
55	89.8	84.8	79.8	74.8	69.9	64.9	59.9	23.95
60	87	82.2	77.3	72.5	67.7	62.8	58	23.2
			.,,					

The length L should never exceed 10 ft., and $\frac{N}{D}-1$ should not be more than 10 ft.

posite the given pressure in this table, but may be less.
† When A1 is the distinguishing letter, Table No. 175 may be used when the ength does not exceed 2.75 feet; above 160 lbs., see Table No. 342.

The numeral N should always be taken from the column under the distinuishing letter applicable to the case and opposite the given pressure.

D = Diameter of furnace in inches. N=Numeral applicable to the case.

L=Length of furnace in feet.

^{*} The diameter D should not be greater for any given pressure than that

FURNACES PLAIN CYLINDRICAL. Steel Plates $\frac{13}{32}$ inch thick.

TABLE No. 167.

Pressures and Numerals for Lengths and Diameters.

ure r n.				Numerals.				÷ = *:
Pressure per sq. in.	A1†A N	B N	C	D N	E N	F N	G N	Maxi- mum Diam.*
lbs.	N	N	N	IN	IN I	IN	N	ins.
5						•••		1118.
10								
15					•••	•••		
20					•••	***		
25					•••	•••		
30								
35								
40					•••			
45					•••			
50	327	309	290	272	254	236	218	72
55	297	281	264	248	231	215	198	68.75
60	272	257	242	227	212	197	182	65.13
65	251	237	223	209	196	182	168	61.17
70	233	220	207	195	182	169	156	57.45
75	218	206	194	182	169	157	145	53.62
80	204	193	182	170	159	148	136	50.27
85	192	182	171	160	150	139	128	47.31
90	182	171	161	151	141	131	121	44.68
95	172	162	153	143	134	124	115	42.33
100	163	154	145	136	127	118	109	40.21
105	156	147	138	130	121	112	104	38.3
110	149	140	132	124	116	107	99	36.56
115 120	142	134	126	118 113	111 106	103	94.7	34·97 33·51
125	136	129 123	121	109		94.4	87.1	32.17
130	131 126	119	116 112	109	102 97·8	90.8	83.8	30.93
135	120	119	108	105	94.1	87.4	80.7	29.79
140	121	114	108	97.3	90.8	84.3	77.8	28.72
145	117	106	100	93.9	87.6	81.4	75.1	27.73
150	109	103	96.8	90.8	84.7	78.7	72.6	26.81
155	105	99.6	93.7	87.8	82	76.1	70.3	25.94
160	102	96.4	90.8	85.1	79.4	73.8	68.1	25.13

The length L should never exceed 10 ft., and $\frac{N}{D}$ -1 should not be more than 10 ft.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D = Diameter of furnace in inches. N=Numeral applicable to the case.

L=Length of furnace in feet.

 $\frac{1}{D}$ -1=L. $\overline{L+1} = D.$ (L+1) D = N.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

† When A1 is the distinguishing letter, Table No. 175 may be used when the length does not exceed 3:062 feet; above 160 lbs., see Table No. 342.

FURNACES PLAIN CYLINDRICAL. Steel Plates $\frac{7}{16}$ inch thick.

TABLE No. 168.

Pressures and Numerals for Lengths and Diameters.

0											
Pressure per sq. in.				Numerals				Maxi- mum Diam.*			
pe d.	A1†A N	В	C	D N	E	F N	G N	Maxi- mum Diam.*			
P _I	N	N	N	N	N	N	N	MAA			
lbs.								ins.			
5	•••	•••			•••	•••	•••				
10	•••	•••			•••	•••	•••	•••			
15			•••	•••	•••			***			
20	•••	•••	•••		•••						
25	•••	•••	•••	•••		•••					
30			•••								
35	•••	•••	•••		•••	•••	•••	***			
40	•••	•••	•••		•••	••		•••			
45		•••	• • •		•••	••					
50											
55	345	325	306	287	268	249	230	72			
60	316	298	281	263	246	228	211	68.75			
65	292	275	259	243	227	211	194	65.13			
70	271	256	241	226	211	196	180	61.87			
75	253	239	225	211	197	182	168	57.75			
80	237	224	211	197	184	171	158	54.14			
85	223	211	198	186	173	161	149	50.95			
90	211	199	187	175	164	152	140	48.12			
95	199	188	177	166	155	144	133	45.59			
100	189	179	168	158	147	137	126	43.31			
105	180	170	160	150	140	130	120	41.25			
110	172	163	153	144	134	124	115	39.37			
115	165	156	146	137	128	119	110	37.66			
120	158	149	140	132	123	114	105	36.09			
125	152	143	135	126	118	109	101	34.65			
130	146	138	130	121	113	105	97.2	33.31			
135	140	133	125	117	109	101	93.6	32.08			
140	135	128	120	113	105	97.8	90.2	30.93			
145	131	123	116	109	102	94.4	87.1	29.87			
150	126	119	112	105	98.3	91.2	84.2	28·87 27·94			
155	122	115	109	102	95.1	88.3	81.5				
160	118	112	105	98.7	92.1	85.5	79	27.07			

The length L should never exceed 10 ft., and $\frac{N}{D}$ - 1 should not be more than 10 ft.

D = Diameter of furnace in inches. N = Numeral applicable to the case.

L=Length of furnace in feet,
$$\frac{N}{D} - 1 = L$$
, $\frac{N}{L+1} = D$, (L+1) $D = N$.

^{*} The diameter D should not be greater for any given pressure than that

opposite the given pressure in this table, but may be less.
† When A1 is the distinguishing letter, Table No. 175 may be used when the length does not exceed 3 375 feet; above 160 lbs., see Table No. 342.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

FURNACES PLAIN CYLINDRICAL. Steel Plates $\frac{15}{32}$ inch thick.

TABLE No. 169.

Pressures and Numerals for Lengths and Diameters.

r in.	Numerals.							
Pressure per sq. in.	A1†A N	B N	C	D N	E	F N	G N	Maxi- mum Diam.*
lbs.	74	14	14	14	14	74	14	ins.
5								1115.
10			***		•••			
15	•••		***		***			
20	•••		***		•••			1
25	•••		•••	•••				
30	***		•••	***				
35								
40				***	***	•••		
45		•••	• • •	***	***			
50		•••	• • •	•••	***	•••		
55		• • •	•••	•••	***	•••		
60	363	342	322	302	282	262	242	72
65	335	316	297	279	260	242	223	68.75
70	311	293	276	259	242	224	207	65.13
75	290	274	258	242	226	209	193	61.87
80	272	257	242	227	211	196	181	58
85	256	242	227	213	199	185	171	54.59
90	242	228	215	201	188	175	161	51.56
95	229	216	204	191	178	165	153	48.84
100	218	205	193 184	181 173	169 161	157	145	46.4
105 110	207 198	196 187	176	165	154	150 143	138 132	44.19
115	189	179	168	158	147	137	126	40.35
120	181	171	161	151	141	131	121	38.67
125	174	164	155	145	135	126	116	37.12
130	167	158	149	139	130	121	112	35.69
135	161	152	143	134	125	116	107	34.37
140	155	147	138	129	121	112	104	33.14
145	150	142	133	125	117	108	100	32
150	145	137	129	121	113	105	96.7	30.93
155	140	133	125	117	109	101	93.6	29.93
160	136	128	121	113	106	98.2	90.6	29
		1		1				

The length L should never exceed 10 ft., and $\frac{N}{D}$ - 1 should not be more than 10 ft.

opposite the given pressure in this table, but may be less.
† When A1 is the distinguishing letter, Table No. 175 may be used when the length does not exceed 3 %87 (ect; above 160 lbs., see Table No. 342.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

N = Numeral applicable to the case. D = Diameter of furnace in inches.

 $\bar{D}^{-1}=L$. $\overline{L+1} = D$. (L+1) D = N.L=Length of furnace in feet.

^{*} The diameter D should not be greater for any given pressure than that

TABLE No. 170.

Steel Plates 1 inch thick. Pressures and Numerals for Lengths and Diameters.

e le	Name of the state										
ressur per sq. in.				Numerals.				Maxi- mum Diam.*			
Pressure per sq. in.	Al†A N	B N	C	D N	E	F N	G N	Ma mu Dia			
	- 11	14	74	14	74	14	14	ina			
lbs.								ins.			
10				•••	•••	•••					
15											
20											
25	***		***								
30		•••	•••	***	•••	•••					
35											
40				***	***						
45				811.8	***						
50					•••						
55		F4+		***	•••						
60		***		• • •	•••						
65	381	360	338	317	296	275	254	72			
70	354	334	314	295	275	255	236	68.75			
75	330	312	293	275	257	238	220	65.13			
80	309	292	275	258	241	223	206	61.87			
85	291	275	259	243	226	210	194	58.23			
90	275	260	244	229	214	199	183	55			
95	261	246	232	217	203	188	174	52.1			
100	248;	234	220	206	193	179	165	49.5			
105	236 225	223	210	196	183	170	157	47.14			
110 115	215	213	200 191	187 179	175 167	162 155	150 143	45 43·04			
120	206	195	183	179	160	149	138	41.25			
125	198	187	176	165	154	143	132	39.6			
130	190	180	169	159	148	138	127	38.07			
135	183	173	163	153	143	132	122	36.66			
140	177	167	157	147	138	128	118	35.35			
145	171	161	152	142	133	123	114	34.13			
150	165	156	147	138	128	119	110	33			
155	160	151	142	133	124	115	106	31.93			
160	155	146	138	129	120	112	103	30.93			
	1 200	1	1 200	10	1220	1	1 200				

The length L should never exceed 10 ft., and $\frac{N}{D}$ -1 should not be more than 10 ft.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D = Diameter of furnace in inches. N = Numeral applicable to the case.

L=Length of furnace in feet.
$$\frac{N}{D}-1=L$$
. $\frac{N}{L+1}=D$. (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

† When Al is the distinguishing letter, Table No. 175 may be used when the length does not exceed 4 feet; above 160 lbs., see Table No. 342.

TABLE No. 171.

Steel Plates $\frac{1}{3}\frac{7}{2}$ inch thick. Pressures and Numerals for Lengths and Diameters.

Đ	Numerals.							
er in.								
Pressure per sq. in.	A1†A N	B	C	D N	E N	F N	G N	Maxi- mum Diam.*
lbs.					21	21	-11	ins.
5								1115.
10					•••			
15								
20	•••	•••		•••	•••	•••	•••	
25	•••	•••	•••	•••		•••		
30	•••		***				***	
35	•••		•••	•••	***	***	•••	
40		•••	•••		•••	•••		
45	•••	•••	•••				•••	
50	•••	•••	•••		•••			
55	•••	•••	• • •					•••
60	•••	•••	• • • •			•••		•••
65	***		.::				•••	
70	399	377	355	333	310	288	266	72
75	373	352	331	310	290	269	248	68.75
80	349	330	310	291	272	252	233	65.13
85	329	310	292	274	256	237	219	61.87
90	310	293	276	259	241	224	207	58.43
95	294	278	261	245	229	212	196	55.36
100	279	264	248	233	217	202	186	52.59
105 110	266 254	251 240	$\frac{237}{226}$	222 212	207 198	192	177	50.08
115	243	229	216	202	189	183 175	169 162	47.81
120	233	229	207	194	181	168	155	45.73 43.82
125	224	211	199	186	174	161	149	42.07
130	215	203	191	179	167	155	143	40.45
135	207	195	184	172	161	149	138	38.95
140	200	188	177	166	155	144	133	37.56
145	193	182	171	161	150	139	128	36.27
150	186	176	166	155	145	135	124	35.06
155	180	170	160	150	140	130	120	33.93
160	175	165	155	146	136	126	116	32.87
200	-10	200	200	_ 10	200	220	210	0201

The length L should never exceed 10 ft., and $\frac{N}{D}$ - 1 should not be more than 10 ft.

N=Numeral applicable to the case. D=Diameter of furnace in inches.

L=Length of furnace in feet,
$$\frac{N}{D}-1=L$$
. $\frac{N}{L+1}=D$. (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

† When Al is the distinguishing letter, Table No. 175 may be used when the length does not exceed 4 312 feet; above 160 lbs., see Table No. 342.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

TABLE No. 172.

Steel Plates $\frac{9}{16}$ inch thick. Pressures and Numerals for Lengths and Diameters.

, _E	Numerals.							
per sq. in.	A1†A N	B N	C	D N	E N	F N	G N	Maxi- mum Diam.*
lbs.		1					-	ins.
5								
10		•••						
15								
20	•••		•••		•••	•••		
25		•••	•••			•••	•••	
30		•••				•••		
35	•••	•••			•••	•••	***	
40		•••	•••	***		•••		
45		•••	•••	•••	•••			
50		•••	•••		• • •			
55	•••	•••	•••	• • • •	•••	• • •		
60		•••	• • • •	•••		• • •		
65		•••	•••	•••		•••		
70		***	***	•••		•••		
75	418	394	371	348	325	302	278	72
80	392	370	348	326	305	283	261	68.75
85	369	348	328	307	287	266	246	65.13
90	348	329	309	290	271	251	232	61.87
95	330	311	293	275	256	238	220	58.61
100	313	296	278	261	244	226	209	55.68
105 110	298 285	282 269	265 253	249 237	$\frac{232}{221}$	$\frac{215}{206}$	199 190	53.03
115	285	257	253	237	212	197	182	50.62 48.42
120	261	257	232	218	203	189	174	48.42
125	251	337	223	209	195	181	167	44.55
130	241	428	214	209	187	174	161	42.83
135	232	219	206	193	180	168	155	41.25
140	224	211	199	186	174	162	149	39.77
145	216	204	192	180	168	156	144	38.4
150	209	197	186	174	162	151	139	37.12
155	202	191	180	168	157	146	135	35.92
160	196	185	174	163	152	141	131	34.8
100	1470	100	114	100	104	141	101	940

The length L should never exceed 10 ft., and $\frac{N}{D}$ -1 should not be more than 10 ft.

pposite the given pressure in this table, but may be less.
† When A1 is the distinguishing letter, Table No. 175 may be used when the

ength does not exceed 4.625 feet; above 160 lbs., see Table No. 342. The numeral N should always be taken from the column under the distinruishing letter applicable to the case and opposite the given pressure.

D=Diameter of furnace in inches. N=Numeral applicable to the case.

L=Length of furnace in feet. $\overline{L+1} = D.$ (L+1) D=N.

^{*} The diameter D should not be greater for any given pressure than that

TABLE No. 173.

Steel Plates \(\frac{19}{32}\) inch thick. Pressures and Numerals for Lengths and Diameters.

r in.				Numerals				÷ = *:
Pressure per sq. in.	A1†A N	B N	C N	D N	E N	F	G N	Maxi- mum Diam.
lbs.								ins.
5		•••	•••	•••	•••	•••	•••	
10	***	•••	•••	•••	•••	•••	•••	
15		***		•••	•••	•••	•••	
20	•••		***	•••	•••		•••	•••
25		•••	• • •	•••	•••	rm.		•••
30		•••		•••	•••	•••	•••	•••
35	•••	•••	•••	•••	•••	••		
40	•••	•••	•••	•••	•••		•••	
45	•••	***	•••	•••	***	•••	•••	
50	•••	•••	•••	•••	•••	•••	• • •	
55			•••	•••				
60		•••	•••	•••	• • •	***	***	•••
65		•••	•••	•••	• • •	***	***	
70		•••	** *	•••	• • •		•••	
75	40.6	470	•••	0.04	•••			
80	436	412	388	364	339	315	291	72
85	411	388	365	342	319	297	274	68.75
90	388	366	345	323	302	280	259	65.13
95	367	347	327	306	286	265	245	61.87
100	349	330	310	291	271	252	233	58.78
105	332	314	295	277	259	240	222	55.98
110	317 303	300 287	282 270	$\frac{264}{253}$	$\frac{247}{236}$	229 219	212	53·43 51·11
115		275		255	226	219	202	48.98
120	291 279	264	$\frac{259}{248}$	233	217	202	194	47.02
125 130	268	254	239	233	209	194	186 179	45.21
	259	244	239	215	209	187	179	43.21
135	259	235	222	208	194	180	166	41.98
140	$\frac{249}{241}$	235	214	208	187	174	160	40.53
145	233	227	214	194	181	168	155	39.18
150 155	225	213	207	188	175	163	150	37.92
	218	206	194	182	170	158	145	36.73
160	210	200	194	102	170	190	140	30 13

The length L should never exceed 10 ft., and $\frac{N}{D}$ -1 should not be more than 10 ft.

† When Al is the distinguishing letter, Table No. 175 may be used when the length does not exceed 4.937 feet; above 160 lbs., see Table No. 342.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D = Diameter of furnace in inches. N=Numeral applicable to the case.

L=Length of furnace in feet.

 $\frac{\alpha}{D}$ -1=L. $\overline{L+1} = D$. (L+1) D = N.

^{*} The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

FURNACES PLAIN CYLINDRICAL. Steel Plates 5 inch thick.

TABLE No. 174.

Pressures and Numerals for Lengths and Diameters.

a. I	Numerals.									
per per sq. in.	4714	В		D	E I	F		Maxi- mum Diam.*		
sq	A1†A N	N	C N	N	E N	N	G N	NEG		
lbs.							-	ins.		
5				•••	•••					
10			***	***						
15				**	•••					
20		97.5	•••	**.	•••	•••		•••		
25		6 1	•••	•••	•••	•••		**.		
30		•••	•••	•••	•••	•••	•••	•••		
35		•••	***		***	***	•••	• • •		
40		***	•••	•••	•••	***	•••	•••		
45 50	•••	•••	•••	•••	•••	•••	***	•••		
55	3.00	***	***	•••	•••	•••	•••			
60		***	•••		•••	•••	•••			
65			• • •	•••						
70		•••	•••	•••				•••		
75		•••								
80										
85	455	430	404	379	354	329	303	72		
90	430	406	382	358	334	310	286	68.75		
95	407	384	362	339	317	294	271	65.13		
100	387	365	344	322	301	279	258	61.87		
105	368	348	327	307	286	266	246	58.92		
110	352	332	313	293	273	254	234	56.25		
115	336	318	299	280	262	243	224	53.80		
120	322	304	286	269	251	233	215	51.56		
125	309	292	275	258	241	223	206	49.5		
130	297	281	264	248	231	215	198	47.59		
135	286	271	255	239	223	207	191	45.83		
140	276	261	246 237	230 222	215	199	184	44.19		
145	267	252 243	237	215	207 201	193 186	178 172	42.67		
150	258 249	243	229	208	194	180	166	39.91		
155 160	249	228	215	200	188	175	161	38.67		
100	242	440	210	201	100	110	101	30 01		
	NT.									

The length L should never exceed 10 ft., and $\frac{N}{D}$ - 1 should not be more than 10 ft.

poposite the given pressure in this table, but may be less.
† When Al is the distinguishing letter, Table No. 175 may be used when the length does not exceed 5-25 feet; above 160 lbs., see Table No. 342.

The numeral N should always be taken from the column under the distinsuishing letter applicable to the case and opposite the given pressure.

N = Numeral applicable to the case. D=Diameter of furnace in inches.

 $\frac{N}{L+1} = D.$ (L+1) D=N L=Length of furnace in feet.

^{*} The diameter D should not be greater for any given pressure than that

FURNACES WITH FLANGED JOINTS.

Steel Plates from 1/4 inch to 5/8 inch thick.

Table No. 175, immediately following, and No. 342 are only for furnaces made of rings welded longitudinally and flanged at the ends, and, when there is more than one ring, riveted together so as to form a complete furnace, and for furnaces whose length is equal to or shorter than that given opposite the thickness being dealt with, and found in

the column "Maximum Lengths for Thickness."

The Table which immediately follows, and Table No. 342 are only for furnaces when the length or the distance between the centres of flanges of the rings, when they are made of more than one ring, does not exceed that given in the column headed "Maximum Lengths for Thickness;" but when the length or the distance between the rings exceeds that given, the pressure or other particulars should be found from the Tables Nos. 162 to 174, or Nos. 329 to 341.

N = Numeral for pressure.

C = Constant for thickness.

D = Diameter of furnace, in inches, outside.

l = Length or distance between centres of flanges, in inches.

B = Working pressure, in lbs. per square inch.

$$\frac{C-l}{N} = D.$$

$$C-ND = l.$$

$$ND+l = C.$$

$$\frac{C-l}{D} = N.$$

(1) The maximum diameter a furnace should be for a given working pressure, if the thickness of steel plate and the length or the distance, in inches, between the centres of the flanges be known, may be found by subtracting the length or the distance between the centres of flanges, in *inches*, from the thickness constant opposite the *given* thickness, and dividing the result by the numeral opposite the *given* pressure; or, the diameter should not exceed $\frac{C-l}{N}$.

If the thickness of the steel plates of a furnace be %16 inch, the length or the distance between the centres of flanges 24 inches, and the pressure required 150 lbs., and the maximum diameter has to be determined:—

Then, if 24, the length or distance, in inches, between the centres of flanges be subtracted from 156.75, the constant found opposite the thickness, and the remainder divided by 2.7272, the

numeral found opposite the pressure, 150, the result is the maximum outside diameter the furnace should be.

or
$$\frac{156.75 - 24}{2.7272}$$
 = 48.67 = D.

or, say, 48% inches.

(2) The maximum length or the distance, in inches, between the centres of the flanges of a furnace can be determined if the working pressure, thickness of steel plates, and diameter are known, by multiplying the numeral opposite the given pressure by the diameter, and subtracting the product from the thickness constant opposite the given thickness; or the length, or distance, in inches, between the centres of flanges should not exceed C-ND.

If the working pressure is required to be 150 lbs., the thickness of the steel plate $^{9}/_{16}$ inch, and the outside diameter 48% inches, and the maximum length, or distance, in inches, between the centres of

flanges has to be determined :-

Then, if 2.7272, the numeral found opposite the pressure, 150, be multiplied by 48.625, the diameter, and the product subtracted from 156.75, the constant found opposite the thickness, %/46, the remainder is the maximum length, or distance, in inches, between the centres of the flanges,

or
$$2.7272 \times 48.625 = 132.61$$
,
and $156.75 - 132.61 = 24.1 = l$,

or the maximum length should be, say, 24 inches.

(3) The minimum thickness of steel plates of a furnace can be determined if the working pressure, diameter, and length, or distance, in inches, between the centres of the flanges be known, by adding the length or distance, in inches, between the centres of the flanges to the product of the diameter and the numeral opposite the given pressure; or the thickness constant should not exceed ND+l.

If the working pressure is required to be 150 lbs., the outside diameter 48% inches, and the length, or distance between the centres of flanges, 24 inches, and the minimum thickness of the steel plate has

to be determined :-

Then, if 24, the length, be added to the product of 2.7272, the numeral found opposite 150, the working pressure, and 48.625, the diameter, the result is 156.61, which is practically the constant found opposite ${}^{9}/_{6}$, the thickness,

or $2.7272 \times 48.625 + 24 = 156.61 = C$.

which gives % inch, the thickness of the plate.

(4) The working pressure for a furnace made of steel plates, if the thickness, diameter, and length, or distance, in inches, between the

centres of the flanges is known, may be found opposite the numeral obtained by subtracting the length, in inches, from the thickness constant opposite the given thickness, and dividing by the diameter; or

the numeral should not be greater than $\frac{C-b}{D}$

If the thickness of the steel plate be $\frac{5}{8}$ inch, the outside diameter 48 inches, and the length or distance between the centres of the flanges 18 inches, and the working pressure is required to be determined:—

Then, if 18, the length or distance, in inches, between the centres of the flanges, be subtracted from 175.5, the constant opposite %, the thickness, and the remainder divided by 48, the diameter, the result is the numeral opposite which the working pressure is found,

or
$$175.5 - 18 = 157.5$$

and $\frac{157.5}{48} = 3.28 = N$.

and opposite the numeral 3.27, which is practically 3.28, the pressure is 180 = B.

When furnaces are made with flanged joints, it is well to have the

radius of the flange on the fire side about 1.5 inch.

The flanges should be kept as near the original thickness of the plate as is practicable, and after all heating, welding, and flanging are completed, the lengths should be efficiently annealed before being riveted. If there are any signs of defects in the flanging, the defective length

should not on any account be used.

The distance between the edges of the rivet holes and the edges of the flange should not be less than the diameter of the rivet. The rivets should be of good size, the diameter at least ¾ inch more than the thickness of the plates, and the heads should not be too large. The depth of the strip or ring between the flanges should not be less than three times the diameter of the rivets, and the thickness may be about one-half the thickness of the furnace plates. To make a first-class job the ring should be turned.

The holes in the flanges should be drilled, but when not drilled in place they should be drilled sufficiently less in diameter to ensure that, when rimered out, fair and perfect holes are formed. It is advisable to have a little taper in the holes in each flange; this will allow the

heads of the rivets to be kept of moderate size.

So long as the pressure and diameter remain the same, then for every thirty-second of an inch the plate is increased in thickness, the length between the centres of the flanges may be increased about 9% inches. For maximum lengths see Tables Nos. 175 and 342.

Furnaces with flanged joints, or those well known as Adamson's joints or seams, or sometimes as "coxcomb" joints, are by no means a new idea, as they have for a long period been used successfully in

land boilers, but to a more limited extent in marine boilers than they might have been with advantage. It is not improbable, with the improved appliances now available for making these joints, more particularly when good mild steel plates are used, that they may in the future be more frequently seen in modern marine boilers constructed for high pressures, although it is not known that they are the favourite furnace for marine boilers at present, except with one well-known firm of Marine Engineers, and in the opinion of that firm they are the best description of furnace that can be adopted. Whether this be so or not, they are worthy of being considered one of the descriptions of furnaces which, if properly constructed and well made, are serviceable in the modern high pressure marine boiler, and had they been more generally used in land boilers there would have been fewer collapses of furnaces.

Since the foregoing was written, the use of furnaces with flanged joints has very greatly increased, both in marine and land boilers, as was anticipated. Several makers have got special flanging machines. A length can be heated and flanged at both ends easily in forty minutes or even in less time, more particularly when the plates are not thick. Furnaces made as stipulated for in the preceding notes have given every satisfaction.

The Table which follows is only intended for furnaces which are flanged by a suitable machine, and one flange completed at one heat,

FURNACES WITH FLANGED JOINTS.

TABLE No. 175.

Steel Plates from $\frac{1}{4}$ inch to $\frac{5}{8}$ inch thick.

Pressure per sq. in.	† Pressure Numerals.	Constants and Maximum Lengths for the Thicknesses which they are opposite.								
1bs. 5 10 15 20	N. 	Thickness.	Constants.	*Maximum Lengths for Thickness in inches.						
25		Inches.	С							
30										
35 40		1/4	63 •0	18.0						
40	8181818	9/32	72.375	21.75						
50	9090909	/32	, 2 0, 0	22.10						
55	1.0	5/16	81.75	25.50						
60	1.0909090	11/	01.107	20.05						
65 70	1·1818181 1·2727272	11/32	91.125	29.25						
75	1.3636363	3/8	100.50	33.0						
80	1.4545454									
85	1.5454545	13/32	109.875	36.75						
90 95	1.6363636 1.7272727	7/16	119.25	40.50						
100	1.8181818	/16	119 20	40 50						
105	1.9090909	15/32	128.625	44.25						
110	2.0		100							
115 120	2.0909090 2.1818181	1/2	138	48.0						
125	2.2727272	17/32	147:375	51.75						
130	2.3636363	/32	22, 0,0	02.0						
135	2.4545454	%16	156.75	55.20						
140 145	2.5454545	19/	166.125	59.25						
145	2·6363636 2·7272727	19/32	100 120	09 20						
155	2.8181818	5/8	175.50	63.0						
160	2.9090909	, 0								

^{*} The lengths opposite the thickness in each case are the maximum lengths, The lengths opposite the thickness in each case are the maximum lengths, in inches, between the centres of the flanges, for which the Tables should be used. When the length exceeds that opposite the given thickness then the pressure may be found from the Tables Nos. 162 to 174. N = Pressure numeral. C=Thickness constant. D = Diameter, outside, in inches. l = Length between centres of flanges, in inches. † Above 160 lbs., see Table 342.

$$\frac{C-l}{N} = D \quad C-ND = l \quad ND+l = C. \quad \frac{C-l}{D} = N$$

FURNACES, CORRUGATED, CYLINDRICAL.

Steel plates from 1/4 inch to 5/8 inch thick.

By the Tables Nos. 176 to 177, immediately following, and No. 343, the maximum diameter, the working pressure, and the thickness of the plate can be determined when the plates of which the furnaces are

made are of the best mild steel.

The tables are only intended for furnaces which are machine made, and the pitch of the corrugations 6 inches, the depth from top of corrugation outside to bottom of corrugation inside not less than 2 inches, and the plain parts at the ends not more than 6 inches in length. When the corrugations are not made by machine, the working pressure should be less than that found by the tables, as furnaces, when they are not corrugated by a machine, are not so reliable.

The diameter for the purpose of determining the pressure or thickness is the outside diameter, measured from the bottom of the corrugations; or, the minimum diameter inside, plus twice the

thickness of the plate.

D = Diameter outside, in inches at the bottom of the corrugations.

T=Thickness, in inches.

B = Working pressure in lbs. per square inch.

The maximum diameter, in inches, to which a corrugated furnace should be made, if constructed of the best mild steel plates, if the thickness of the plate and the working pressure be determined, is found in the column under the given thickness of plate and opposite the given pressure; or if the pressure and diameter be determined, the thickness the plate should be is found at the head of the column above the given diameter, which is found opposite the given pressure; or the pressure for a given thickness and diameter is that opposite the given diameter, which is in the column under the given thickness.

If the pressure is required to be 160 lbs. and the thickness of

the steel plate is % inch, and the diameter is required :-

Then, opposite 160 lbs., the pressure, and in the column under %/16 inch, the thickness, 49.21 is found, which is the diameter in inches, or say

$$49\frac{1}{4} = D.$$

If the pressure is required to be 160 lbs., and the diameter 43.75 inches, and the thickness of the steel plate has to be determined:—

Then, opposite 160 lbs., the pressure, 43.71, the diameter, is

found (say 43%) in the column under ½ inch, which is the minimum thickness the steel plate should be,

$\frac{1}{2}$ inch = T.

If the working pressure has to be determined when the thickness of the steel plate is $\frac{1}{2}$ inch, and the mean diameter 43.75 inches:—

Then, in the column under % inch, the thickness, 43.75, the diameter, is found, and opposite it the pressure is 200 lbs., which is the maximum working pressure in lbs.,

200 = B.

The corrugated furnace to which these remarks refer is generally known as Fox's furnace, and it has been very extensively used for a good many years. When pressures in marine boilers were getting up to about, say, 100 lbs., these furnaces were launched into the market with considerable success, and became the furnace generally fitted in marine boilers, when high pressures were required; and, as the pressures gradually crept up to what they now are, this furnace has kept its own against other descriptions, and it may be considered to have had its share of patronage; but while the corrugated furnace has decided advantages over others, had not the manufacturers wisely taken to making it of steel, the corrugated furnace would never have become so universally adopted. Up to this time, it is not known that any serious casualty has resulted from the collapse of a corrugated furnace, although some may have "come down;" but when this has been the case, the plates have, it is believed, always been overheated, due to dirt or other easily assigned cause, not attributable to defects in the furnace; and such deformations as have taken place would have been of a much more serious nature, had the furnace been plain instead of corrugated. The furnace is well known, and Samson Fox, the patentee, may well be contented with the success he has achieved in reputation, and probably in a pecuniary sense; nevertheless, it is thought that there is still sufficient vitality in the Fox corrugated furnace to enable it to compete successfully with any that may come into the market against it.

per ich.			Thicknesse	es and Dian	neters.*		
Pressure per square inch.	1/4 in.	9/32 in.	5/16 in.	¹ ½ _{3 2} in.	3/8 in.	13/32 in.	7/16 in.
Pre	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.
lbs.							
5							
10							
15		•••		•••			
20							
25		•••	•••				
30	•••	•••	•••			• • • •	
35	•••	•••	• • •	•••			
40 45	•••	•••	•••		***	***	•••
50	•••	•••	***	***	•••	***	•••
55	•••	***	•••	***	•••	•••	•••
60	58:33	•••	•••	***	•••	• • •	
65	53.84	•••	•••		•••	•••	•••
70	50.0	56.25	•••		***	•••	•••
75	46.66	52.50	58.33	•••	***	***	***
80	43.75	49.21	54.68	•••	***	***	
85	41.17	46.32	51.47	56.61	***	***	•••
90	38.88	43.75	48.61	53.47	58:33	***	•••
95	36.84	41.44	46.05	50.65	55.26	•••	•••
100	35.0	39.37	43.75	48.12	52.50	56.87	
105	33.33	37.50	41.66	45.83	50.0	54.16	58.33
110	31.81	35.79	39.77	43.75	47.72	51.70	55.68
115	30.43	34.23	38.04	41.84	45.65	49.45	53.26
120	29.16	32.81	36.45	40.10	43.75	47.39	51.04
125	28.0	31.50	35.0	38.50	42.0	45.50	49.0
130	26.92	30.28	33.65	37.01	40.38	43.75	47.11
135	25.92	29.16	32.40	35.64	38.88	42.12	45.37
140	25.0	28.12	31.25	34.37	37.50	40.62	43.75
145	24.13	27.15	30.17	33.18	36.20	39.22	42.24
150	23.33	26.25	29.16	32.08	35.0	37.91	40.83
155	22.58	25.40	28.22	31.04	33.87	36.69	39.51
160	21.87	24.60	27.34	30.07	32.81	35.54	38.28

^{*} The diameter is that measured at the bottom of the corrugations outside.

346 FURNACES, CORRUGATED, CYLINDRICAL. TABLE
Steel Plates from ¹⁵%₂ inch to ⁵% inch thick.
Pressures and Diameters when *Machine* made.

	1100041	es and Dia	meters wii	011 111 (10101011)	o made.	
per ich.		1	Thicknesses a	nd Diameter	s.*	
Pressure per square inch.	15/32 in.	½ in.	¹ 7/ ₃₂ in.	%16 in.	19/32 in.	½ in.
Pre	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.
lbs.						
5		•••		•••	•••	
10	•••	•••	•••	•••	•••	***
15		•••	•••	•••	•••	•••
20 25	•••	•••	•••	•••	•••	•••
30	•••	•••	•••	•••	•••	•••
35		•••	•••	•••	•••	•••
40		•••	***	•••	•••	•••
45		•••	•••	•••	•••	•••
50			•••		•••	•••
55				•••	•••	
60						•••
65						
70						
75						
80						•••
85				•••	•••	
90			•••	•••	•••	•••
95			•••	•••	•••	•••
100		•••	•••	•••	•••	•••
105			•••	•••	•••	•••
110 115	FF-06	•••	•••	•••		***
120	57.06 54.68	58.83	•••		•••	•••
125	52.50	56.0		•••		•••
130	50.48	53.84	57.21	•••	•••	•••
135	48.61	51.85	55.09	58.33	•••	•••
140	46.87	50.0	53.12	56.25	***	
145	45.25	48.27	51.29	54.31	57:32	
150	43.75	46.66	49.58	52.50	55.41	58.33
155	42.33	45.16	47.98	50.80	53.62	56.45
160	41.01	43.71	46.48	49.21	51.95	54.68

^{*} The diameter is that measured at the bottom of the corrugations outside.

FURNACES WITH RIBBED PROJECTIONS, GROOVED INSIDE.*

Steel Plates from 1/4 inch to 5/8 inch thick.

By the Tables No. 178 and 179 which immediately follow, and No. 44, the maximum diameter, the working pressure, and the thickness of plate can be determined when the furnace is cylindrical throughout

ts whole length and the plate is of the best mild steel.

The tables are only intended for furnaces when the ribs and grooves are formed by rolling and when the height of the ribs is not less than $\frac{4}{6}$ inch above the plain part, the depth of the grooves not more than $\frac{3}{4}$ inch, the length between the centres of the ribs not over 9 nches, and the length of the plain parts at the ends not more than 6 nches. The ends are rolled slightly thicker than the plain parts between the ribs.

The diameter for the purpose of determining the pressure is the outside diameter, measured over the plain parts between the centre of the ribs, or projections; or the inside diameter of the plain parts plus twice

the thickness of the plain parts.

D = Diameter, in inches.

T - Thickness of plate, in inches.

B - Working pressure, in lbs. per square inch.

The maximum outside diameter, in inches, which a ribbed and grooved furnace should be when made of mild steel plate of the best quality if the thickness and pressure be determined, is found in the column under the thickness of plate and opposite the given working pressure; or if the pressure and diameter be determined, the thickness to which the plate should be made is found at the head of the column above the given diameter which is found opposite the given pressure; or the pressure for a given thickness and a given diameter is that opposite the given diameter which is in the column under the given thickness.

If the pressure is required to be 150 lbs. and the thickness of the plates % inch, and the outside diameter has to be determined:—
Then, opposite 150 lbs., the pressure, and in the column under

Then, opposite 150 lbs., the pressure, and in the column under % inch, the thickness, 52.5 is found, which is the maximum diameter, in inches,

 $52\frac{1}{2} = D.$

If the pressure is required to be 155 lbs., and the diameter outside 45 % inches, and the thickness the plate should be has to be determined:—

Then, opposite 155 lbs., the pressure, 45·16, which is practically 45½, the diameter is found in the column under ½ inch, which

is the minimum thickness the steel plate should be,

1/2 inch - T.

If the working pressure has to be determined when the thickness of the plate is % inch, and the outside diameter is 50 inches:—

^{*} See note on next page for furnaces of the cambered section.

If the working pressure has to be determined when the thickness of the plate is % inch, and the outside diameter is 50 inches:—

Then, in the column under 5% inch, the thickness, 50, the diameter, is found, and opposite it the pressure is 175 lbs., which is the maximum working pressure,

175 = B.

The ribbed and grooved furnace to which the previous remarks refer is known as Brown's furnace or Purves's patent. The particular form of rib and groove may not have been adopted until made by Messrs John Brown & Co., who for a good many years have had a good share of the orders for furnaces, particularly those for marine boilers. A few of these furnaces may have come to grief, but it is well known that in many cases it was due to the treatment they received after they left Messrs Brown's works, and not to the quality of the material or type of furnace. Their behaviour and progress up to the present time must be very encouraging both to patentee and manufacturer.

Cambered Furnaces.

NOTE.—There are now few furnaces of the ribbed and grooved section made; Messrs Brown, the makers of the furnaces, have adopted other sections. That known as the cambered section may be allowed the same pressures as found by the Tables Nos. 178, 179 and 344 for ribbed and grooved furnaces. The diameter for determining the working pressure is the outside diameter in inches at the bottom of the camber.

FURNACES WITH RIBBED PROJECTIONS, TABLE GROOVED INSIDE. No. 178.

Steel Plates from $\frac{1}{4}$ inch to $\frac{7}{16}$ inch thick. Pressures and Diameters.*

			11688	ures and	Diamete	15.		
	inch.			Thicknes	sses and Di	ameters.		
	ressur	1/4 in.	% in.	⁵ / ₁₆ in.	11/32 in.	% in.	13/32 in.	7/16 in.
	Pressure per square inch.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.
ī	lbs.		1					
	5							
	10						•••	
	15		•••					
	20	•••	•••	***	•••	•••		
	25			•••	• • •		***	
	30	•••	•••	• • • •			•••	
	35	•••	•••	***	•••	•••	•••	
	40	•••	•••	•••	***	•••	•••	
	45	•••	•••	•••	• • •	•••	•••	
	50		•••	•••	•••	•••	***	
	55	۲۵.00	***	***		•••	•••	
	60	58.33	• • •	•••		•••	***	•••
	65	53.84	F 0.05	• • •	•••	•••	•••	•••
	70	50.0	56.25	ro.00	• • •	•••	•••	•••
	75 80	46.66 43.75	52·50 49·21	58·33 54·68	***	***	***	•••
	85	43.75	46.32	51.47	56.61		***	
	90	38.88	43.75	48.61	53.47	58.33	•••	
	95	36.84	41.44	46.05	50.65	55.26	•••	***
	100	35.0	39.37	48.75	48.12	52.50	56.87	***
	105	33.33	37.50	41.66	45.83	50.0	54.16	58.33
	110	31.81	35.79	39.77	43.75	47.72	51.70	55.68
	115	30.43	34.23	38.04	41.84	45.65	49.45	53.26
	120	29.16	32.81	36.45	40.10	43.75	47.39	51.04
	125	28.0	31.50	35.0	38.50	42.0	45.50	49.0
	130	26.92	30.28	33.65	37.01	40.38	43.75	47.11
	135	25.92	29.16	32.40	35.64	38.88	42.12	45.37
	140	25.0	28.12	31.25	34.37	37.50	40.62	43.75
	145	24.13	27.15	30.17	33.18	36.20	39.22	42.24
	150	23.33	26.25	29.16	32.08	35.0	37.91	40.83
	155	22.58	25.40	28.22	31.04	33.87	36.69	39.51
	160	21.87	24.60	27:34	30.07	32.81	35.54	38.28
							!	

^{*} When the height of the ribs above the plain parts is not less than 15/16 inch, the depth of the grooves not greater than 3/4 inch, the length not greater than 9 inches between the centres of the ribs, and the plain parts at the ends not longer than 6 inches.

FURNACES WITH RIBBED PROJECTIONS, TABLE GROOVED INSIDE. No. 179.

Steel Plates from $\frac{15}{32}$ inch to $\frac{5}{8}$ inch thick.

Pressures and Diameters.*

		Fressur	es and Dia	meters.		
Pressure per square inch.		Т	hicknesses a	nd Diameter	s.	
ressu quare	15/32 in.	½ in.	17/32 in.	% in.	1 % in.	5/8 in.
Per s	Diameter in inches.					
lbs.						
5					•••	•••
10				•••	•••	•••
15		•••	•••	•••	•••	•••
20				•••	•••	•••
25	•••	•••	•••	•••	•••	•••
30		•••		•••	•••	•••
35		•••		•••	•••	•••
40		•••	•••	•••	•••	•••
45		•••	•••	***	•••	***
50		•••	•••	•••	•••	***
55	•••		•••	•••	•••	•••
60		. • •	•••	•••	•••	•••
65		•••	•••	•••	•••	•••
70	•••		•••	•••	•••	•••
75	•••	•••	•••	•••	•••	•••
80	•••	•••	•••	•••	•••	•••
85 90	•••	•••	•••	•••	•••	•••
		•••	•••	•••	•••	•••
95 100		•••	•••	•••	***	***
105		•••	•••	•••	•••	•••
110		***	***	•••	***	•••
115	57.06	•••	•••	•••	•••	•••
120	54.68	58.33	•••	•••	*-*	***
125	52.50	56.0	•••	• • • •	•••	***
130	50.48	53.84	57.21	•••	•••	•••
135	48.61	51.85	55.09	58.33	•••	***
140	46.87	50.0	53.12	56.25	***	•••
145	45.25	48.27	51.29	54.31	57:32	•••
150	43.75	46.66	49.58	52.50	55.41	58:33
155	42.33	45.16	47.98	50.80	53.62	56.45
160	41.01	43.75	46.48	49.21	51.95	54.68
	1	10.0	10 10	10 21	01 00	01 00

^{*} When the height of the ribs above the plain parts is not less than 18/16 inch, the depth of the grooves not greater than 3/4 inch, the length not greater than 9 inches between the centres of the ribs, and the plain parts at the ends not longer than 6 inches.

SPIRAL CORRUGATED FURNACES.

Steel Plates.

These furnaces are known as the Farnley corrugated flue, or as Fenby's Patent flue, but it is not known that many are now made.

The mean outside diameter is the outside diameter of outer corrugations minus the depth of one corrugation, or the inside diameter of the inner corrugations plus twice the thickness of the tube plus the depth of one corrugation. When about 40 inches diameter, the pitch of the corrugations is about 6 feet, and it increases and decreases in about the same ratio as the diameter increases and decreases; when the distance between centres of corrugations is 6 inches, and the depth not less than 1% inch from the top outside to the bottom outside, and when the plain parts at the ends do not exceed 4 inches, if made of the best steel plates not less than 3% inch thick, the working pressure for furnaces of ordinary diameter, and cylindrical throughout their whole lengths and the plates of the best mild steel may be found by the following formulæ:—

T = Thickness of plate, in inches.

D = Mean outside diameter of furnace, in inches.

C = 11100.

B - Working pressure, per square inch in lbs.

$$\frac{C \times T}{D} = B,$$

$$\frac{C \times T}{B} = D.$$

$$\frac{B \times D}{C} = T.$$

The following Tables, Nos. 180 to 184, contain areas of circles whose diameters commence at '01 and increase by one-hundredth part up to 9.99; they are applicable for larger diameters if attention be paid to the position of the decimal point.

For every figure the decimal point is shifted to the right in the diameter, the decimal point should be shifted two to the right in the area.

For example, if it be wished to find the area of 99, the area of 99 is found from the tables to be 76.9769, and the area of 99 is therefore 7697.69, and as the area of 9.99 from the tables is 78.3828, the area of 999 is 783828; the decimal point in the diameter in the latter case having been shifted two to the right, the decimal point in the area is consequently shifted double that number, or four places, also to the right.

By the foregoing method the tables can be made applicable up to 999 diameter, or 100 times greater than given in the tables.

0

H 00 07

TABLE NO. 180	60.	0.06361 0.28588 0.066052 11846 1.1846 1.1846 1.27340 1.9717 1.1122 1.3070 1.5175 1.7437 1.7437 1.7437 1.2856 2.2432 2.5165 2.8055 3.4103
TABLI	80.	005026 025447 061577 11341 18096 26421 36317 47784 75430 91609 114957 114957 114957 114957 11759 22167 22167 22167 22167 22167 22167 22167 22167 22167 22167
EDTHS.	20.	003848 022698 057256 10752 17349 25518 35257 46566 73898 89920 1 0751 1 4741 1 4741 1 6972 1 9859 2 1904 2 7465 3 3654
HUNDREDTHS	90.	002827 020106 053093 110179 146619 24630 34212 45368 72382 8247 1 9568 1 9568 1 9568 1 9568 2 9247 2 1642 1 9113 2 1642 2 7772 3 30172
ING BY	.05	001963 917671 099037 15904 15904 15904 156745 170882 86590 10887 11.2272 11.2272 11.6513 11.65
ADVANC	.04	001256 015394 045239 090792 15205 32170 43008 55418 55418 10207 11.2076 11.4103 11.6286 11.4103 11.6286 11.4103 11.6286 12.6559 2.6590 2.6590 2.6590 2.6590 2.6590
CIRCLES, ADVANCING BY	.03	000706 013273 041548 085530 14522 22062 31172 41854 54106 67929 67929 17883 17
AREAS OF (.03	000314 0000314 0038013 0080425 13854 20123 20131 40115 52810 66476 66476 81713 98520 1.1680 1.3685 1.5837 1.885 1.885 2.6016 2.6016 2.8013 3.2047
AR	.01	000078 0009503 0009503 0009603
	00.	0.07854 0.017854 0.017854 0.070686 1.12566 1.9635 5.60287 5.60287 5.6028 1.310 1.3273 1.3273 1.5394 1.7671 1.5394 1.7671 2.0106 2.2698 2.75447 2.8353 3.1416
	Diam.	010004000000000000000000000000000000000

z

TABLE No. 181.

AREAS OF CIRCLES, ADVANCING BY HUNDREDTHS.

Diam.	00.	.01	.05	80.	•04	.05	90.	20.	80.	60.	Diam.
6.3	3.4636	3.4967	8.5299	3.5633	3.5968	3.6305	3.6644	3.6984	3.7325	3.7668	2.1
2.5	3.8013	3.8360	3.8708	3.9057	3.9408	3.9761	4.0115	4.0471	4.0828	4.1187	2.5
2.3	4.1548	4.1910	4.2273	4.2638	4.3005	4.3374	4.3744	4.4115	4.4488	4.4863	2.3
2.4	4.5239	4.5617	4.5996	4.6877	4.6759	4.7144	4.7529	4.7916	4.8305	4.8695	5.4
2.2	4.9087	4.9481	4.9876	5.0273	5.0671	5.1071	5.1472	2.1875	5.2279	5.2685	2.2
5.6	5.3093	5.3502	5.3913	5.4325	5.4739	5.5155	5.5572	5.5990	5.6410	5.6832	5.6
2.1	5.7256	5.7680	5.8107	5.8535	5 8965	5.9396	5.9828	6.0263	6690.9	6.1136	2.2
2.8	6.1575	6.2016	6.2458	6.2902	6.3347	6.3794	6.4242	6.4692	6.5144	2629.9	8.7
6.7	6.6052	8.6508	9969.9	6.7426	6.7887	6.8349	6.8813	6.9279	6.9747	7.0215	5.3
9.0	9890.2	7.1158	7.1631	7.2107	7.2583	7.3062	7.3542	7.4023	7.4506	7.4991	3.0
3.1	7.5477	7.5964	7.6454	7.6945	7.7437	7.7931	7.8427	7.8924	7.9423	7.9923	3.1
3.5	8.0425	8.0928	8.1433	8.1940	8.2448	8.2958	8.3469	8.3982	8.4496	8.5012	3.5
3.5	8.5530	8.6049	8.6570	8.7092	8.7616	8.8141	8.8668	8.9197	8.9727	9.0259	60 60
5.6	9.0792	9.1327	9.1863	9.2401	9.2941	9.3482	9.4025	9.4569	9.5115	9.5662	3.4
3.5	9.6211	9.6762	9.7314	9.7868	9.8423	0868.6	9.9538	10.0098	10.0660	10.1223	3.5
9.8	10.1788	10.2354	10.2922	10.3491	10.4062	10.4635	10.5209	10.5784	10.6362	10.6941	9.8
3.7	10.7521	10.8103	10.8687	10.9272	10.9858	11.0447	11.1036	11.1628	11.2221	11.2815	3.7
3.00	11.3411	11.4009	11.4608	11.5209	11.5812	11.6416	11.7021	11.7628	11.8237	11.8847	8.8
ත. හ	11.9459	12.0072	12.0687	12.1304	12.1922	12.2542	12.3163	12.3786	12.4410	12.5036	6.8
0. \$	12.5664	12.6293	12.6923	12.7556	12.8190	12.8825	12.9462	13.0100	13.0741	13.1382	4.0
4.1	13.2025	13.2670	13.3317	13.3965	13.4614	13.5265	13.5918	13.6572	13.7228	13.7885	4.1

TABLE No. 182.

	Diam	44444444400000000000000000000000000000
	60.	14 4545 15 13645 16 5468 17 2757 18 7203 18 7203 18 7203 19 5565 20 3482 21 9787 22 8175 24 5423 24 5423 25 3238 27 2471 28 1802 29 1289
zń.	80.	14.3872 15.7633 16.4748 16.4748 17.2021 17.2021 18.7038 20.2683 21.8956 22.7329 22.7329 22.7329 22.7329 22.7329 22.7329 22.7329 22.7329 22.7329 22.7329
HUNDREDTHS	20.	14.3201 15.6930 16.4030 17.1287 17.1287 17.1287 19.4000 20.9928 22.6484 23.4998 24.3669 25.496 25.497 26.4923 27.0624 27.0624
BY HUN	90.	14.2531 14.2531 16.3313 17.0554 17.0554 18.5508 19.3221 20.1090 20.1090 20.1090 20.1090 22.5642 22.5642 23.4140 22.5642 26.0576 26.0576 26.0578 27.8986 28.8426
	90.	14.1863 14.8617 15.5528 16.2597 16.9823 16.9823 19.2442 20.0296 20.0296 20.0296 22.4801 22.4801 22.1922 24.1922 25.0672 26.8783 27.8051
ES, ADV.	•04	14.1196 14.7934 15.4830 16.4833 16.4660 17.4660 18.3984 19.1665 19.4665 19.4665 22.3961 22.3961 22.3961 24.9832 24.9832 25.8770 26.7865 28.77117
AREAS OF CIRCLES, ADVANCING	.03	14.0531 14.7254 15.4134 16.1171 16.8365 17.716 18.3225 19.8713 22.3123 22.3123 24.8947 24.8947 25.7869 26.6948 27.6184
AREAS 0	.02	13.9867 14.6574 15.3439 16.0460 16.7639 17.7923 19.7923 19.7923 22.2267 22.2287 23.0722 24.8063 25.6970 26.6033 27.5254
	.01	13.9205 14.5896 15.2745 16.9751 17.1234 18.14711 18.9345 19.7136 22.1452 22.9871 22.9871 22.9871 22.9871 22.9871 22.9871 22.9871 22.9871 22.9871 22.9871 22.9871 22.9871 22.9871 22.9871 23.9871 24.7181 25.6072 26.5120 27.4325
	00•	13.8544 14.5253 115.2053 116.9043 116.6190 17.8494 18.8574 18.8574 19.6350 22.9023 22.903 22
	Diam.	

TABLE No. 183.

AREAS OF CIRCLES ADVANCING BY HINDREDTHS

	Diam	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	60-	30 0934 31 0736 32 0695 33 0811 34 1084 35 2101 37 2845 39 4805 41 7393 42 8922 44 0609 41 7393 45 2453 46 4454 47 6612 48 8927 48 8927 50 1399
σά	80.	29 9962 31 9692 32 9748 32 97792 34 0049 35 1035 40 4892 41 6248 42 7762 41 6248 45 1262 46 3247 47 5389 50 0145
AKEAS OF CIRCLES, ADVANCING BY HUNDREDTHS	20-	29 8392 31 8690 32 8775 33 9016 33 9016 34 9415 37 0684 38 1554 40 3765 41 5106 42 6604 43 8259 46 50072 46 50072 47 4168 49 8892
BY HUN	90.	29.8024 31.7759 32.7779 32.7759 33.7985 38.0459 38.0459 38.0459 38.0459 41.3965 44.8883 46.0837 44.8883 44.8883 44.8883 44.8883 44.8883 44.8883 44.8883 44.7641
ANCING	.05	29 7057 31 6692 32 6745 32 6745 33 6955 34 7323 35 7847 36 7323 37 9367 41 2825 42 4292 44 7916 44 7936 44 7936 44 7936 44 7936 44 7936 44 7936 44 7936 46 9937 47 1730
ES, ADV	-04	29 6092 31 5696 32 5733 32 5733 34 6279 38 67453 38 7453 41 1.687 42 3138 42 3138 44 6511 45 6513 48 2750
F CIRCL	.03	29 5128 30 4836 31 4700 32 4722 33 4901 34 5237 36 6380 37 7187 39 9272 41 0550 42 1986 44 5328 44 5328 44 5328 44 5328 44 5328
AKEAS	.02	29.4166 30.3858 31.3707 32.3713 33.3876 35.4673 36.5308 37.6099 37.6099 42.0835 44.4146 45.6037 46.8085 48.0290
	.01	29.3206 30.2882 31.2715 32.2705 38.2853 38.2853 38.4353 38.4353 38.75013 38.75013 38.75013 44.9686 41.9686 44.9686 44.9686 44.9686 44.9686 44.9686 44.9686 44.9686 44.9686 44.9686 44.9686 44.9686 44.9686 44.9686 44.9686 44.9686
	00.	29.2247 30.1907 31.1725 32.1699 38.1831 38.1831 38.2169 36.3168 36.3168 37.3928 38.3168 39.5919 40.7150 41.8539 41.786 44.1786 44.77836
	Diam.	

AREAS OF CIRCLES, ADVANCING BY HINDREDTHS.

	Diam	3	0.8	8.1	8.5	e. 8	8.4	8.5	9.8	2.8	00	6.8	0.6	9.1	9.5	9.3	9.4	9.2	9.6	2.6	8.6	6.6
	60.	1	21.4028	52.6814	53.9758	55.2858	56.6116	57.9530	59.3102	60.6831	62.0717	63.4760	64.8960	66.3317	67.7831	69.2502	70.7330	72.2316	73.7458	75-2758	76.8214	78.3828
	*00	1	80/2.10	52.5529	53.8456	55.1541	56.4783	57.8182	59.1738	60.5451	61.9321	63.3348	64.7533	66.1874	67.6372	69.1028	70.5841	72.0810	73.5937	75.1221	76.6662	78-2260
NED IIIS	20.	7	0641.19	52.4245	53.7157	55.0226	56.3452	57.6835	59.0375	60.4073	61.7927	63.1938	64.6107	66.0433	67.4915	68.9555	70.4352	71.9306	73.4417	74.9685	76.5111	78.0693
ANEAS OF CINCLES, ADVANCING BI HUNDREDINS	90.	9000	2770.19	52.2962	53.5858	54.8912	56.2122	57.5490	58.9014	60.2696	61.6534	63.0530	64.4683	65.8993	67.3460	68.8084	70-2865	71.7804	73.2899	74.8151	76.3561	77.9128
NOTING	.05	2	8968.09	52.1681	53.4562	54.7599	56.0794	57.4146	58.7655	60.1320	61.5144	62.9124	64.3261	65.7555	67.2006	68.6615	70-1380	71.6303	73.1382	74.6619	76.2013	77.7564
DADYA	.04	1001.07	507.00	52.0402	53.3267	54.6288	55.9467	57.2803	58.6297	59.9947	61.3754	62.7719	64.1840	6119.99	67.0554	68.5147	2686.69	71.4803	72.9867	74.5088	76.0467	2009. 44
CINCLE	.03	000	20.0432	51.9124	53.1973	54.4979	55.8142	57.1463	58.4940	59.8575	61.2366	62.6315	64.0421	65.4684	66.9104	68.3680	69.8415	71.3306	72.8354	74.3559	75.8922	77.4441
ANERS O	.02	1	1/19.09	51.7848	53.0681	54.3671	6189.99	57.0124	58.3585	59.7204	61.0980	62.4913	63.9003	65.3250	66.7654	68.2216	69.6934	71.1810	72.6842	74.2032	75.7378	77.2882
	.01	1	7168.09	51.6573	52.9391	54.2365	55.5497	56.8786	58.2232	59.5835	60.9595	62.3513	63.7587	65.1818	66.6207	68.0753	69.5455	71.0315	72.5332	74.0506	75.5837	77.1325
	00.	2	9697.09	51.5300	52.8102	54.1061	55.4177	56.7450	58.0881	59.4468	60.8212	62.2114	63.6173	65.0388	66.4761	67.9291	8268-69	70.8822	72.3823	73.8981	75.4296	6926.92
	Diam.		0.8	8.1	8.5	80	8.4	8.5	9.8	2.8	8.8	6.8	0.6	1.6	9.5	9.3	9.4	6.6	9.6	2.6	8.6	6.6

The following Tables, Nos. 185 to 191, contain areas of circles for diameters, increasing by fractional parts of one thirty-second to 21, by one sixteenth from 21 to 49, and by one eighth from 49 to 104% diameter.

Advancing by Thirty-Seconds.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70 1/32 1/16 3/32 1/8 1/8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	99

Advancing by Thirty-Seconds.

Diam.	7	8	9	10	11	12	13	Diam.
1/3 2 1/16 3/3 2 1/8 5/3 2 3/16 7/3 2 1/3 5/16 1/3 2 5/16 1/3 2 1/2 1/3 2 1/3 2 1/3 2 1/4 6 2 3/3 2 3/4 2 1/3 2 11/16 2 3/3 2 3/4 2 1/3 2 11/16 2 3/3 2 3/4 2 1/3 2 1 1/16 2 3/3 2 1 1/16 2 1/3 2 1 1/16 2 1/3 2 1 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/	38·485 38·829 39·175 39·522 39·871 40·222 40·574 40·927 41·282 41·639 41·997 42·357 42·718 43·081 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·548 44·179 44·188 45·290 46·415 46·793 47·173 47·554 47·937 48·321 48·707	50·265 50·659 51·054 61·450 51·849 52·649 53·052 53·456 53·862 54·678 55·088 55·500 55·914 56·329 66·745 57·583 58·02 66·745 57·783 60·132 60·562 60·994 61·427 61·427 61·427 63·176	63·617 64·606 64·504 64·505 65·397 65·845 66·296 66·747 67·201 67·655 68·112 68·570 69·959 70·417 70·882 71·319 71·818 72·288 72·288 73·23 73·708 74·662 75·141 75·622 76·105 76·559 77·074 77·561 78·050	78·540 79·031 79·525 80·019 80·516 81·013 81·513 82·516 83·020 83·525 84·032 84·541 85·051 85·562 86·076 86·7106 87·624 88·143 88·143 88·144 89·186 89·710 90·236 90·736 91·291 91·821 92·353 92·886 93·420 93·956 94·494	95.033 95.574 96.116 96.660 97.205 97.752 98.301 99.402 99.955 100.51 101.07 101.62 102.18 102.74 103.31 103.31 103.87 104.43 105.57 106.71 107.28 107.86 108.43 109.01 109.59 110.17 111.34 111.92 112.51	113·10 113·69 114·28 114·87 115·47 116·06 117·26 117·26 117·86 118·46 119·06 119·06 120·28 120·88 121·49 122·11 122·11 122·12 123·33 123·95 124·57 125·81 126·43 127·05 128·30 128·93 129·56 128·93 129·56 130·99 130·82 131·46 132·09	132·73 133·37 134·01 134·01 134·05 135·30 135·94 136·59 138·54 139·19 139·84 140·50 141·16 141·82 142·48 143·80 144·47 145·13 145·80 146·47 147·82 148·49 149·17 149·84 150·52 151·88 152·57 153·25	1/3 2 1/16 3/3 2 1/8 5/3 2 3/16 7/3 2 5/16 1/4 9/3 2 5/16 1/3 2 1/4 9/3 2 1/4 9/3 2 1/4 9/3 2 1/4 9/3 2 1/4 9/3 2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4

Advancing by Thirty-Seconds.

Diam.	14	15	16	17	18	19	20	Diam.
1/3 2 1/3 6 1/4 6 1/3 2 1/4 9 1/4 9 1/	153 · 94 154 · 63 155 · 32 156 · 01 156 · 70 157 · 39 158 · 09 158 · 09 160 · 89 160 · 89 162 · 30 163 · 71 164 · 42 165 · 13 165 · 84 166 · 56 167 · 27 167 · 99 168 · 71 169 · 43 170 · 15 170 · 15 170 · 15 171 · 60 172 · 32 173 · 05 173 · 78 174 · 51 175 · 98	176 ·71 177 ·45 178 ·19 178 ·93 179 ·67 180 ·42 181 ·91 182 ·65 183 ·40 184 ·15 184 ·91 185 ·66 186 ·42 187 ·17 187 ·93 189 ·45 190 ·92 190 ·98 191 ·75 192 ·52 193 ·26 194 ·83 195 ·60 196 ·38 197 ·15 197 ·15 199 ·49 200 ·28	201·06 201·85 202·64 203·43 204·22 205·01 205·80 208·19 208·99 210·60 211·40 212·21 213·02 213·82 214·64 215·45 217·08 217·08 217·08 218·21 219·53 220·35 221·18 222·03 222·83 222·448 225·31 226·15	226 ·98 227 ·82 228 ·65 229 ·49 230 ·33 231 ·17 232 ·86 233 ·71 234 ·55 235 ·40 237 ·10 237 ·96 238 ·81 240 ·53 241 ·39 242 ·25 243 ·11 243 ·98 244 ·84 245 ·71 246 ·58 247 ·45 248 ·32 249 ·20 250 ·07 250 ·95 251 ·83 252 ·70 253 ·59	254·47 255·35 256·24 257·13 258·02 258·91 259·80 261·59 262·48 263·38 264·38 266·99 266·99 267·90 268·80 299·71 270·62 271·53 272·45 273·36 274·28 275·20 276·12 277·94 277·96 278·88 279·81 280·74 281·67 282·60	283 · 53 284 · 46 285 · 40 286 · 33 287 · 27 288 · 21 290 · 09 291 · 04 291 · 98 292 · 93 293 · 88 294 · 83 295 · 74 297 · 69 298 · 65 299 · 61 300 · 57 301 · 53 302 · 49 303 · 45 304 · 42 305 · 39 306 · 35 307 · 32 308 · 30 309 · 27 310 · 24 311 · 22 313 · 18	314·16 315·14 316·13 317·11 318·10 319·09 320·08 321·07 322·06 323·06 324·05 325·05 326·05 328·05 328·06 331·07 332·08 333·09 333·107 335·11 336·13 337·15 338·16 339·18 340·20 341·23 342·25 343·28 342·25 343·28	1/3 2 1/16 3/8 2 1/8 6/3 2 3/16 7/3 2 1/4 9/3 2 1/4 9/3 2 1/4 9/3 2 1/4 9/3 2 1/4 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5 1/5

Advancing by Sixteenths.

Diam.	21	22	23	24	25	26	27	Diam.
1/16 1/8 \$16 1/4 5/16 3/8 7/16 1/2 9/16 3/4 11/16 3/4 11/16 15/16	346·36 348·43 350·50 352·57 354·66 356·75 358·84 360·94 363·05 365·16 367·28 369·41 371·54 373·68 377·98	380·13 382·30 384·46 386·64 388·82 391·01 393·20 395·40 397·61 399·82 402·04 404·26 406·49 408·73 410·97 413·22	415 · 48 417 · 74 420 · 00 422 · 28 424 · 56 426 · 84 429 · 13 431 · 43 438 · 36 440 · 69 443 · 01 445 · 35 447 · 69 450 · 04	452·39 454·75 457·11 459·49 461·86 464·25 466·64 469·03 471·44 476·26 478·68 481·11 483·54 485·98 488·42	490·87 493·38 495·79 498·26 500·74 505·71 508·20 510·71 513·21 515·72 518·24 520·77 523·30 525·84 528·38	530·93 533·48 536·05 538·61 541·19 543·75 546·75 551·55 556·76 559·38 562·00 564·63 567·27 569·91	572·56 575·21 577·87 580·54 588·21 585·89 588·57 591·26 598·96 602·08 604·81 607·53 610·27 613·01	1/16 1/8 3/16 1/4 5/16 3/8 1/2 9/16 5/8 11/16 3/4 13/16 16/16
Diam.	28	29	30	31	32	33	34	Diam.
1/16 1/8 3/16 1/16 1/16 3/8 7/16 1/16 3/4 11/16 3/4 11/16 16/16	615·75 618·50 621·26 624·03 626·80 629·57 632·36 635·14 637·94 640·74 643·55 646·36 649·18 652·01 654·84 657·68	660·52 663·37 666·23 669·09 671·96 674·83 677·71 680·60 683·49 686·39 689·30 692·21 695·13 698·05 700·98 703·92	706 · 86 709 · 81 712 · 76 715 · 72 718 · 69 721 · 66 724 · 64 727 · 63 730 · 62 733 · 61 736 · 62 739 · 63 742 · 64 745 · 67 748 · 69 751 · 73	754·77 757·81 760·87 763·93 766·99 770·06 773·14 776·22 779·31 782·41 785·51 788·62 791·73 794·85 797·98 801·11	804·25 807·39 810·54 813·70 816·86 820·03 823·21 826·39 829·58 832·77 835·97 835·97 845·61 842·39 845·61 848·83 852·06	855:30 858:54 861:79 865:05 868:31 871:57 874:85 878:13 881:41 884:71 898:00 891:31 894:62 897:93 901:26 904:59	907·92 911·26 911·26 197·96 921·32 924·69 928·69 931·44 934·82 938·21 941·61 945·01 945·01 945·25 958·68	1/16 1/8 3/16 1/4 5/16 3/8 7/16 1/2 9/16 5/8 11/16 3/4 13/16 15/16

Advancing by Sixteenths.

Diam.	35	36	37	38	39	40	41	Diam.
1/16 1/8 3/16 1/4 5/16 3/6 1/2 9/16 5/8 11/16 3/4 13/16 16/16	962·11 965·55 969·00 972·45 975·91 979·37 982·84 986·32 989·29 996·78 1000·3 1000·3 1010·8 1010·8	1017·9 1021·4 1025·0 1028·5 1032·1 1035·6 1039·2 1042·8 1046·3 1049·9 1053·5 1057·1 1060·7 1064·3 1068·0 1071·6	1075·2 1078·8 1082·5 1086·1 1089·8 1093·4 1097·1 1100·8 1104·5 1108·2 1111·8 1115·5 1119·2 1123·0 1126·7 1130·4	1134·1 1137·8 1141·6 1145·3 1149·1 1152·8 1160·4 1164·2 1167·9 1171·7 1175·5 1179·3 1183·1 1186·9 1190·8	1194·6 1198·4 1202·3 1206·1 1210·0 1213·8 1217·7 1221·5 1225·4 1229·3 1233·2 1237·1 1241·0 1244·9 1248·8 1252·7	1256·6 1260·6 1264·5 1268·4 1272·4 1276·3 1280·3 1284·3 1288·2 1292·2 1300·2 1304·2 1308·2 1312·2 1316·2	1320·3 1324·3 1328·3 1332·4 1336·4 1340·5 1344·5 1352·7 1356·7 1356·7 1369·0 1373·1 1377·2 1381·3	1/16 1/8 3/16 1/4 5/16 3/8 7/16 1/2 9/16 5/8 11/16 3/4 13/16 15/16
Diam.	42	43	44	45	46	47	48	Diam.
1/16 1/8 3/16 1/4 5/16 3/16 1/2 9/16 5/8 1 1/8 1 3/4 1 3/4 1 5/16	1385·4 1389·6 1393·7 1397·8 1402·0 1406·1 1410·3 1414·5 1418·6 1422·8 1427·0 1431·2 1435·4 1443·8 1448·0	1452·2 1456·4 1460·7 1464·9 1469·1 1477·6 1481·9 1486·2 1490·4 1494·7 1499·0 1503·3 1507·6 1511·9 1516·2	1520 · 5 1524 · 9 1529 · 2 1533 · 5 1537 · 9 1542 · 2 1550 · 9 1555 · 3 1559 · 7 1564 · 0 1568 · 4 1572 · 8 1577 · 2 1581 · 6 1586 · 0	1590·4 1594·9 1599·3 1603·7 1608·2 1612·6 1617·0 1621·5 1626·0 1630·4 1634·9 1643·9 1648·4 1652·9 1657·4	1661 ·9 1666 ·4 1670 ·9 1675 ·5 1680 ·0 1684 ·6 1693 ·7 1693 ·2 1702 ·8 1707 ·4 1712 ·0 1716 ·5 1721 ·1 1725 ·7 1730 ·3	1734·9 1739·6 1744·2 1748·8 1753·5 1758·1 1762·7 1767·4 1772·1 1776·7 1781·4 1786·1 1790·8 1795·4 1800·1 1804·8	1809 · 6 1814 · 3 1819 · 0 1823 · 7 1828 · 5 1833 · 2 1837 · 9 1842 · 7 1847 · 5 1852 · 2 1857 · 0 1861 · 8 1866 · 5 1871 · 3 1876 · 1 1880 · 9	1/16 1/8 3/16 1/4 5/16 3/6 7/16 1/2 9/16 1.5/8 1.1/6 3/4 1.3/16 1.5/16

Advancing by Eighths.

Diam.	49	50	51	52	53	54	55	Diam.
1/8 1/4 3/8 1/2 5/8 3/4 7/8	1885·7 1895·4 1905·0 1914·7 1924·4 1934·2 1943·9 1953·7	1963·5 1973·3 1983·2 1993·1 2003·0 2012·9 2022·8 2032·8	2042·8 2052·8 2062·9 2073·0 2083·1 2093·2 2103·3 2113·5	2123·7 2133·9 2144·2 2154·5 2164·8 2175·1 2185·4 2195·8	2206 ·2 2216 ·6 2227 ·0 2237 ·5 2248 ·0 2258 ·5 2269 ·1 2279 ·6	2290 ·2 2300 ·8 2311 ·5 2322 ·1 2332 ·8 2343 ·5 2354 ·3 2365 ·0	2375·8 2386·6 2397·5 2408·3 2419·2 2430·1 2441·1 2452·0	1/8 1/4 3/8 1/2 5/8 3/4 7/8
Diam.	56	57	58	59	60	61	62	Diam.
1/8 1/4 3/8 1/2 5/8 3/4 7/8	2463·0 2474·0 2485·0 2496·1 2507·2 2518·3 2529·4 2540·6	2551·8 2563·0 2574·2 2585·4 2596·7 2608·0 2619·4 2630·7	2642·1 2653·5 2664·9 2676·4 2687·8 2699·3 2710·9 2722·4	2734·0 2745·6 2757·2 2768·8 2780·5 2792·2 2803·9 2815·7	2827·4 2839·2 2851·0 2862·9 2874·8 2886·6 2898·6 2910·5	2922·5 2934·5 2946·5 2958·5 2970·6 2982·7 2994·8 3006·9	3019·1 3031·3 3043·5 3055·7 3068·0 3080·2 3092·6 3104·9	1/8 1/4 3/8 1/2 5/8 3/4 7/8
Diam.	63	64	65	66	67	68	69	Diam.
1/8 1/4 3/8 1/4 3/8 1/2 5/8 3/4 7/8	63 3117·2 3129·6 3142·0 3154·5 3166·9 3179·4 3191·9 3204·4	3217·0 3229·6 3242·2 3254·8 3267·5 3280·1 3292·8 3305·6	3318·3 3331·1 3343·9 3356·7 3369·6 3382·4 3395·3 3408·2	3421·2 3434·2 3447·2 3460·2 3473·2 3486·3 3499·4 3512·5	3525·7 3538·8 3552·0 3565·2 3578·5 3591·7 3605·0 3618·3	68 3631.7 3645.0 3658.4 3671.8 3685.3 3698.7 3712.2 3725.7	3739·3 3752·8 3766·4 3780·0 3793·7 3807·3 3821·0 3834·7	Diam. 1/8 1/4 3/8 1/2 5/8 8/4 7/8
	3117·2 3129·6 3142·0 3154·5 3166·9 3179·4 3191·9	3217 · 0 3229 · 6 3242 · 2 3254 · 8 3267 · 5 3280 · 1 3292 · 8	3318·3 3331·1 3343·9 3356·7 3369·6 3382·4 3395·3	3421·2 3434·2 3447·2 3460·2 3473·2 3486·3 3499·4	3525·7 3538·8 3552·0 3565·2 3578·5 3591·7 3605·0	3631·7 3645·0 3658·4 3671·8 3685·3 3698·7 3712·2	3739·3 3752·8 3766·4 3780·0 3793·7 3807·3 3821·0	

AREAS OF CIRCLES. Advancing by Eighths.

Diam.	77	78	79	80	81	82	83	Diam.
1/8 1/4 3/8 1/2 5/8 3/4 7/8	4656.6 4671.8 4686.9 4702.1 4717.3 4732.5 4747.8 4763.1	4778·4 4793·7 4809·0 4824·4 4839·8 4855·2 4870·7 4886·2	4901·7 4917·2 4932·7 4948·3 4963·9 4979·5 4995·2 5010·9	5026·5 5042·3 5058·0 5073·8 5089·6 5105·4 5121·2 5137·1	5153·0 5168·9 5184·9 5200·8 5216·8 5232·8 5248·9 5264·9	5281·0 5297·1 5313·3 5329·4 5345·6 5361·8 5378·1 5394·3	5410.6 5426.9 5443.3 5459.6 5476.0 5492.4 5508.8 5525.3	1/8 1/4 3/8 1/2 5/8 3/4 7/8
Diam.	84	85	86	87	88	89	90	Diam,
1/8 1/4 3/8 1/2 5/8 3/4 7/8	5541·8 5558·3 5574·8 5591·4 5607·9 5624·5 5641·2 5657·8	5674·5 5691·2 5707·9 5724·7 5741·5 5758·3 5775·1 5791·9	5808·8 5825·7 5842·6 5859·6 5876·5 5893·5 5910·6 5927·6	5944·7 5961·8 5978·9 5996·0 6013·2 6030·4 6047·6 6064·9	6082·1 6099·4 6116·7 6134·1 6151·4 6168·8 6186·2 6203·7	6221·1 6238·6 6256·1 6273·7 6291·2 6308·8 6326·4 6344·1	6361 ·7 6379 ·4 6397 ·1 6414 ·9 6432 ·6 6450 ·4 6468 ·2 6486 ·0	1/8 1/4 3/8 1/2 5/8 3/4 7/8
Diam.	91	92	93	94	95	96	97	Diam.
1/8 1/4 3/8 1/2 5/8 3/4 7/8	6503·9 6521·8 6539·7 6557·6 6575·6 6593·5 6611·5 6629·6	6647·6 6665·7 6683·8 6701·9 6720·1 6738·2 6756·4 6774·7	6792·9 6811·2 6829·5 6847·8 6866·1 6884·5 6902·9 6921·3	6939·8 6958·2 6976·7 6995·3 7013·8 7032·4 7051·0 7069·6	7088·2 7106·9 7125·6 7144·3 7163·0 7181·8 7200·6 7219·4	7238·2 7257·1 7276·0 7294·9 7313·8 7332·8 7351·8 7370·8	7389·8 7408·9 7428·0 7447·1 7466·2 7485·3 7504·5 7523·7	1/8 1/4 3/8 1/2 5/8 3/4 7/8
1/8 1/4 3/8 1/2 5/8 3/4 7/8	6521.8 6539.7 6557.6 6575.6 6593.5 6611.5	6665.7 6683.8 6701.9 6720.1 6738.2 6756.4	6811·2 6829·5 6847·8 6866·1 6884·5 6902·9	6958·2 6976·7 6995·3 7013·8 7032·4 7051·0	7106.9 7125.6 7144.3 7163.0 7181.8 7200.6	7257·1 7276·0 7294·9 7313·8 7332·8 7351·8	7408.9 7428.0 7447.1 7466.2 7485.3 7504.5	1/8 1/4 3/8 1/2 5/8 3/4 7/8

CIRCUMFERENCES OF CIRCLES.

Advancing by Thirty-seconds.

Frac- tions.	0	1	2	3	4	5	6	7
1/3 2 1/16 3/3/2 1/16 6/3/2 1/4 6/3/2 1/4 1/3/2	09817 .19635 .29452 .39270 .49087 .58905 .68722 .78540 .88857 .98175 1.0799 1.1781 1.2763 1.3744 1.4726 1.5708 1.6653 1.9635 2.0617 2.1598 2.2580 2.3564 2.4574 2.5525 2.6507 2.7489 2.8471 2.9452 3.0434	3:1416 3:2398 3:3379 3:4361 3:5343 3:6325 3:7306 3:8288 3:9270 4:0252 4:1233 4:2215 4:3197 4:4179 4:5160 4:5160 5:1051 5:0069 5:1051 5:0069 5:1051 5:2033 5:3014 5:3996 5:4978 5:5960 5:6941 5:7923 5:8905 5:9887 6:0868 6:1850	6·2832 6·3814 6·4795 6·5777 6·6759 6·7741 6·8722 6·9704 7·0686 7·1668 7·2649 7·3631 7·4613 7·5595 7·6576 7·7558 8·3449 8·3449 8·3449 8·3449 8·3449 8·349 8·349 9·3266	9·4248 9·5230 9·6211 9·7193 9·8175 9·9157 10·014 10·112 10·210 10·308 10·707 10·505 10·603 10·799 10·897 10·996 11·098 11·192 11·290 11·388 11·488 11·483 11·781 11·877 12·075 12·174 12·272 12·370 12·468	12·566 12·665 12·665 12·763 13·057 13·155 13·254 13·352 13·450 13·548 13·548 13·548 13·646 13·744 13·843 14·039 14·137 14·235 14·530 14·628 14·628 14·923 15·019 15·119 15·119 15·119 15·119 15·413	15·708 15·806 15·904 16·002 16·101 16·199 16·297 16·395 16·493 16·592 16·690 16·788 16·886 16·984 17·082 17·181 17·377 17·377 17·475 17·573 17·671 17·770 17·770 17·816 18·064 18·162 18·359 18·457 18·553 18·555 18·553 18·553 18·553	18·850 18·948 19·046 19·144 19·242 19·340 19·489 19·587 19·635 19·733 19·929 20·028 20·126 20·224 20·322 20·420 20·519 20·617 20·715 20·813 20·911 21·008 21·206 21·304 21·500 21·598 21·697 21·795 21·893	21·991 22·089 22·187 22·286 22·384 22·482 22·580 22·777 22·875 22·973 23·071 23·169 23·267 23·366 23·464 23·562 23·660 23·955 24·053 24·151 24·249 24·347 24·446 24·642 24·740 24·836 25·035

When the circumference is required to be found to greater accuracy than given in above Table, multiply the diameter by 3.14159265359, but the circumferences as given in the Table are sufficiently accurate for general engineering purposes.

NUMBERS, VULGAR FRACTIONS, DECIMAL EQUIVALENTS, SQUARES, AND CUBES.

The following Tables, Nos. 193 to 199, contain decimal equivalents of fractions commencing at one sixty-fourth, and increasing by one

sixty-fourth up to 2, and by one thirty-second from 2 to 6.

The squares and cubes of fractions and numbers are complete up to $3\%_6$. Above $3\%_6$, in Tables Nos. 197 to 199, the squares and cubes are given up to $29\%_4$, but they are only given to three decimal places, which for practical purposes will *generally* be found to be sufficiently accurate. The numbers increase by one thirty-second up to 6, by sixteenths from 6 to 12, by eighths from 12 to 24, and by one quarter from 24 to 29%4.

The following notes may serve to facilitate the obtaining of the squares

and cubes of numbers not included in the tables :-

The square of any given number, multiplied by 4, equals the square of twice the given number.

square of twice the given number

The square of any given number, multiplied by 9, equals the square of three times the given number.

Or, for all cases, it follows that—

If N represents any given number and S the square of N, the square of any multiple of N may be found by multiplying S by the square of the multiple of N determined on; for example—

If N equals a given number and S the square of N, and the square of 8 times N is required, then $S \times 64$ equals the square of

8N or (8N)2.

The cube of any given number, multiplied by 8, equals the cube

of twice the given number.

The cube of any given number, multiplied by 27, equals the cube

of three times the given number.

Or, if N represents any given number and C the cube of whatever N may be, then, if the cube of any multiple of N be required, it can be found by multiplying C by the cube of the multiple of N determined on; for example—

If N equals a given number, C the cube of N, and the cube of 10 times N is required, then $C \times 1000$ equals the cube of 10N or

 $(10N)^3$.

The tables may also be conveniently used for obtaining the square and cube roots of such numbers as are represented by the squares and cubes, the roots being complete up to 3.3125; above that they will be found near enough for ordinary purposes, as the squares and cubes are only a few decimal places short, which is generally of no great practical value.

The tables have a higher range than is necessary for the calculations connected with boilers and safety valves, so as to make them useful for

other purposes.

There are several other tables which will reduce labour, and be found of varied use, such as the fourth power of numbers, Table No. 202; inches, and their decimal equivalents of a foot, Table No. 200; also decimal fractions from '01 to '99, and their equivalent values in vulgar fractions, with the sixty-fourths to which they are nearest, or than which they are greater or less.

VULGAR FRACTIONS DECIMAL ROHIVALENTS SOHARES AND CHEES

Fractions.	8				Control of the Contro
			Equivalents.	Squares.	Cubes,
		1/64	.015625	.000244140625	.000003814697265625
	1/32	2/64	.03125	.0009765625	.000030517578125
		3/64	.046875	.002197265625	.000102996826171875
1/16	3/33	4/64	.0625	.00390625	.000244140625
		64	.078125	.006103515625	.000476837158203125
	3/32	6/64	.09375	.0087890625	.000823974609375
		7/64	109375	.011962890625	.001308441162109375
%	4/33	8/64	.125	.015625	.001953125
		9/64	.140625	.019775390625	.002780914306640625
	6/32	10/64	.15625	.0244140625	.003814697265625
		11/64	.171875	.029541015625	.005077362060546875
3/16	6/32	12/64	.1875	.03515625	.006591796875
		13/64	.203125	.041259765625	.008380889892578125
	/32	14/64	.21875	.0478515625	.010467529296875
		15/64	-234375	.054931640625	.012874603271484375
4/16	8/32	16/64	.55	.0625	.015625
		17/64	.265625	.070556640625	.018741607666015625
	9/32	18/64	28125	.0791015625	.022247314453125
,		19/64	.296875	.088134765625	.026165008544921875
116	10/32	20/64	.3125	.09765625	.030517578125
		21/64	.328125	.107666015625	.035327911376953125
	11/32	22/64	.34375	.1181640625	.040618896484375
	,	23/64	.359375	129150390625	.046413421630859375
6/16	12/32	24/64	.375	.140625	.052734375
	7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	т п п	7,72 7,82 8,82 10,82 11,82	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7/82 11/64 203125 7/82 11/64 203125 5/82 11/64 205625 9/82 11/64 205625 10/84 205625 10/82 20/84 308125 11/82 20/84 38375 12/82 20/84 38375 12/82 20/84 383975

369

	Cubes.	.059604644775390625	.067047119140625	.075084686279296875	.083740234375	.093036651611328125	102996826171875	113643646240234375	.125	137088775634765625	149932861328125	163555145263671875	177978515625	193225860595703125	.209320068359375	.226284027099609375	.244140625	.262912730244140625	.282623291015625	.303295135498046875	.324951171875	.347614288330078125	371307373046875	396053314208984375	.421875
	Squares,	152587890625	.1650390625	177978515625	.19140625	.205322265625	•2197265625	-234619140625	.25	.265869140625	.2822265625	.299072265625	.31640625	.334228515625	.8525590625	.371337890625	.390625	.410400390625	.4306640625	.451416015625	.47265625	.494384765625	.5166015625	.539306640625	.5625
-	Equivalents.	.390625	.40625	.421875	.4375	.458125	.46875	.484375	řů	.515625	.53125	.546875	.5625	.578125	.59375	.609375	.625	.640625	.65625	9.21875	2289.	.703125	.71875	.734375	.75
		25/64	26/64	27/64	28/	29/64	30/64	31/64	3 2/64	33/64	34/64	35/84	36/	37/64	38/	39/	4 0/64	41/64	4 2/64	43/64	4 4/64	4 5/	46/64	47/64	48/64
			13/32		14/32		15/32		16/32		17/32		18/32		19/32		20/32		21/32		22/32		23/32		24/32
	Fractions.				7/16				8/16				9/16	erec f	or comment		10/16				11/16				12/16
	Fì								4/8								8/2								6/8
									2/4																3/4
									27																

NUMBERS, VULGAR FRACTIONS, DECIMAL EQUIVALENTS, SQUARES AND CUBES.

THES AND COBES.	Cubes.	.448795318603515625	476837158203125	.506023406982421875	.536376953125	.567920684814453125	-600677490234375	634670257568359375	-669921875	.706455230712890625	.744293212890625	783458709716796875	823974609375	865863800048828125	909149169921875	953853607177734375	1.0	1.047611236572265625	1.096710205078125	1.147319793701171875	1.199462890625	1.253162384033203125	1.308441162109375	1.365322113037109375	1.423828125
NORDENS, VOLVAN FNACIONS, DECIMAL EXOLVALENIS, SECANES AND CODES	Squares.	586181640625	.6103515625	.635009765625	.66015625	.685791015625	.7119140625	.738525390625	.765625	793212890625	.8212890625	.849853515625	.87890625	.908447265625	.9384765625	.968994140625	1.0	1.031494140625	1.0634765625	1.095947265625	1.12890625	1.162353515625	1.1962890625	1.230712890625	1.265625
INS, DECIMAL	Equivalents.	765625	52187	.796875	.8125	.828125	.84375	.859375	.875	.890625	-90625	.921875	-9375	.953125	62896.	.984375	1.0	1.015625	1.03125	1.046875	1.0625	1.078125	1.09375	1.109375	1.125
FINACIIC		49/64	00/64	51/64	52/64	53/64	54/64	55/84	56/64	57,64	5864	59/64	60/64	61/64	62/64	63/64		1/64	2/64	3/64	4/64	5/64	6,64	7/64	8/64
OLGAN	ıs.	, ,	20/32		26/32		27/32		28/32		29/32		30/32		31/32				1/32		2/32		3/32		4/32
DELEGS, V	Fractions.				13/16				1 4/16				15/16								1/18				2/16
TH O III									1/8																1/8

NUMBERS, VULGAR FRACTIONS, DECIMAL EQUIVALENTS, SQUARES AND CUBES.

Onhas	onnoes.	1.483982086181640625	1.545806884765625	1.609325408935546875	1.674560546875	1.741535186767578125	1.810272216796875	1.880794525146484375	1.953125	2.027286529541015625	2.103302001953125	2.181194305419921875	2.260986328125	2.342700958251953125	2.426361083984375	2.511989593505859375	2.599609375	2.689243316650390625	2.780914306640625	2.874645233154296875	2.970458984375	3.068378448486328125	3.168426513671875	3.270626068115234375	3.375
Source	odanico:	1.301025390625	1.3369140625	1.373291015625	1.41015625	1.447509765625	1.4853515625	1.523681640625	1.5625	1.601806640625	1.6416015625	1.681884765625	1.72265625	1.763916015625	1.8056640625	1.847900390625	1.890625	1.933837890625	1.9775390625	2.021728515625	2.06640625	2.111572265625	2.1572265625	2.203369140625	2.52
Equivalents.		1.140625	1.15625	1.171875	1.1875	1.203125	1.21875	1.234375	1.25	1 265625	1.28125	1.296875	1.3125	1.328125	1.34375	1.359375	1.375	1.390625	1.40625	1.421875	1.4375	1.453125	1.46875	1.484375	1.5
		9/64	6/32 10/64		6/32 12/64	13/64	7/32 14/64		8/32 16/4		9/32 18/64		10/32	_	11/32 22/64	_	12/32 24/64		13/32 26/4		14/32		15/32 30/64		16/32 32/64
Fractions.	-				3/16				8 /16				2/16				8/8 6/16				1/16				8 8/16
	-								1/4 2/8							-	200								1/2 2/4 4/8
	-	, ,						- I		- ·	,		—	- 1	-			,	-	- ,	- ,	٠,	-		1 1/2

NITMBERS VILLGAR ERACTIONS DECIMAL EDITIVALENTS SOFIABES AND CHBES

RES AND COBES.	Cubes.	3.481571197509765625	3.590362548828125	3.701396942138671875	3.814697265625	3.930286407470703125	4.048187255859375	4.168422698974609375	4.291015625	4.415988922119140625	4.543365478515625	4.673168182373046875	4.805419921875	4.940143585205078125	5.077362060546875	5.217098236083984375	5.859375	5.504215240478515625	5.651641845703125	5.801677703857421875	5.954345703125	6.109668731689453125	6.267669677734375	6.428371429443359375	6.591796875
NOMBERS, VOLGAR FRACILONS, DECIMAL EQUIVALENTS, SQUARES AND COBES	Squares.	2.297119140625	2.3447265625	2.392822265625	2.44140625	2.490478515625	2.5400390625	2.590087890625	2.640625	2.691650390625	2.7431640625	2.795166015625	2.84765625	2.900634765625	2.9541015625	3.008056640625	3.0625	3.117431640625	3.1728515625	3.228759765625	3.28515625	3.342041015625	3.3994140625	3.457275390625	3.515625
DECIMAL EQU	Equivalents.	1.515625	1.53125	1.546875	1.5625	1.578125	1.59375	1.609375	1.625	1.640625	1.65625	1.671875	1.6875	1.703125	1.71875	1.734375	1.75	1.765625	1.78125	1.796875	1.8125	1.828125	1.84375	1.829375	1.875
TIOINS,		33/64	34/64	35/	36/	37/64	38/64	39/	40/64	41/64	42/64	43/64	44,64	45/64	46/64	47/84	48/84	49/64	50/64	51/64	52/84	53/64	54/64	55/64	56/64
n FRAC			17/32		18/32		19/32		20/32		21/32		22/32		23/32		24/32		26/32		26/32		27/32		28/32
VOLUGA	Fractions.				9/16				1%			_	11/18				12/16				13/16				14/16
M DEIRS,									8/9								8/9								8/2
TN O																	3/#								
		П	_	_	-	_		-	_	-	_			-	_	-	-	-	-	_	-	-	-	_	-

TABLE No 1960.

ARES AND CUBES.	Cubes,	6.757968902587890625	7.098644256591796875	7.273193359375	7.450580596923828125	7.630828857421875	7.813961029052734375	∞	8.380889892578125	8.773681640625	9.178558349609375	9.595703125	10.025299072265625	10.467529296875	10.922576904296875	11.390625	11.871856689453125	12.366455078125	12.874603271484375	13.396484375	13.932281494140625	14.482177734375	15.046356201171875	15.625	16.218292236328125
NUMBERS, VULGAR FRACTIONS, DECIMAL EQUIVALENTS, SQUARES AND CUBES.	Squares.	3.574462890625 3.6337890625	3.693603515625	3.75390625	3.814697265625	3.8759765625	3.937744140625	4	4.1259765625	4.25390625	4.3837890625	4.515625	4.6494140625	4.78515625	4.9228515625	5.0625	5.2041015625	5.34765625	5.4931640625	5.640625	5.7900390625	5.94140625	6.0947265625	6.25	6.4072265625
ONS, DECIMAL	Equivalents.	1.890625	1.921875	1.9375	1.953125	1.96875	1.984375	23	2.03125	2.0625	2.09375	2.125	2.15625	2.1875	2.21875	2.52	2.28125	2.3125	2.34375	2.375	2.40625	2.4375	2.46875	2.5	2.53125
RACTI		5 8/64	59/94	60/64	61/64	62/64	8 3/84																		
GAR F		68/68	90	30/32		31/32			1/32	38	3/32	4/32	6/32	6/32	7/32	8/32	9/32	10/32	11/32	12/32	13/32	14/32	16/32	16/32	17/32
s, vui	Fractions.			15/18						1/16		2/16		3/16		4/16		2/18		6/16 116		7/16		8/	
BERS	Frac											1/8				8/8				3/8				4/8	
NUM								_		_						1/4								2/4	
			-					2	67	2	2	67	67	7	67	2	67	c1	7	2	61	2	22	2 1/2	2

TABLE No. 197.

NUMBERS, VULGAR FRACTIONS, DECIMAL EQUIVALENTS, SQUARES AND CURES.	Cubes.	16.826416015625	17.449554443359375	18.087890625	18.741607666015625	19.410888671875	20.095916748046875	20.796875	21.513946533203125	22.247314453125	22.997161865234375	23.763671875	24.547027587890625	25.347412109375	26.165008544921875	27	27 852569580078125	28.722900390625	29.611175537109375	30.517578125	31.442291259765625	32.385498046875	33.347381591796875	34.328125	35-327911376953125	36 346923828125
	Squares.	6.56640625	6.7275390625	6.890625	7.0556640625	7.22265625	7.3916015625	7.5625	7.7353515625	7.91015625	8.0869140625	8.265625	8.4462890625	8.62890625	8.8134765625	6	9.1884765625	9.37890625	9.5712890625	9.765625	9.9619140625	10.1601562	10.3603515625	10.5625	10.7666015625	10.97265625
	Equivalents.	2.5625	2.29375	2.625	2.65625	2.6875	2.71875	2.75	2.78125	2.8125	2.84375	2.875	2.90625	2.9375	2.96875	ಣ	3.03125	3.0625	3.09375	3.125	3.15625	3.1875	3.21875	3.25	3.28125	3.3125
FRACT		18/32	13/32	20/32	21/32	22/32	23/	24/32	26/32	26/32	27/32	28/32	29/32	30/32	31/32		1/32	2/32	3/32	4/32	6/32	6/32	7/32	8/32	9/32	10/32
VULGAR	Fractions.	9/16		10/16		11/16		12/16		13/16		14/16		15/16				1/16		2/16		3/16		4/16		6/16
BERS,				8 0				8/9				8/2								1/8				80/20		
NUM								3/																1/4		
		22	27	27	7	7	67	7	2	7	07	2	7	2	67	တ	ಣ	က	ಣ	ಣ	ಣ	ಣ	က	ಣ	ග	හ

375 20 N	Cubes.	118-100 120-371 120-371 120-371 120-374 120-374 131-104 132-104 131-108 141-708 141-708 141-708 141-708 141-708 162-594 163-555 163-555 163-555 163-555 163-555 163-555 163-75
	Squares.	24
IMID GIVE	Numbers and Fractions.	
SOHARES AND CHRES	Cubes.	70-189 71-797 75-928 75-928 87-740 88-740 88-740 88-740 88-740 88-740 99-97 100-951 100-951 100-951 1113-644 1113-644
MIMBERS VIII CAR RRACHIONS	Squares.	17-016 17-274 17-758 18-929 18-929 18-929 18-929 19-415 19
VIII GAR	Numbers and Fractions.	44444444444444444444444444444444444444
NITMBERS	Cubes.	37.88 38.483 40.619 40.619 41.737 44.034 45.413 47.413
	Squares.	11.181 11.891 11.608 11.608 12.25 12.632 12.647 12.647 12.691 13.528 13.528 14.535 14.535 14.535 14.535 16.504 16.504 16.251 16.251
	Numbers and Tractions.	10 00 00 00 00 00 00 00 00 00 00 00 00 0

TABLE No. 198.

NUMBERS, VULGAR FRACTIONS, SQUARES AND CUBES,

Cubes. Squares, 72.25 72.35 72.431 75.4731 76.562 77.660 77.760 77.760 77.760 77.760 77.760 77.760 77.760 77.760 77.760 88.772 89.772 89. Numbers Fractions ∞ 333 · 894 342 342 361 · 705 371 · 705 3 Cubes. Squares. Numbers Fractions 9 9 9 9 9 9 and 183.977 1187.027 1187.027 1187.027 1187.027 1189.501 1199 Cubes. 32.348 33.702 34.702 34 Squares, Numbers ractions

T	
S	
B	
AND CUBES.	
N	
A	
SOUARES	
AB	
nc	
TO	
S	֡
0	
E	
Z.A	
F	
E.	
3	
VIII,GAR FRACTIONS.	
V.	
ER	
IB	
NIMBERS	
Z	

LE No. 198a.	Cubes.	2970 459 2048 625 3128-150 3209-047 3209-047 321-326 3375 3460-080 3546-578 3646-694 3723-875 3906-994 4096-994 4
ES. TABLE	Squares.	206 -641 210 -25 213 -891 217 -562 225 -225 -226 226 -226 227 -226 228 -706 238 -706
AND CUBES,	Numbers and Fractions.	44444400000000000000000000000000000000
SQUARES	Cubes.	1571-010 1596-485 1628-234 1648-259 1674-561 1701-140 1782-266 1885-115 2012-672 2012-672 2012-672 2012-672 2012-672 2013-232 201
FRACTIONS,	Squares.	135-141 136-598 138-598 138-598 139-535 141-016 142-504 144 144 150-062 153-141 165-56 169-55 172-266 177-5-562 177-5-562 177-5-562 178-591 182-25 192-516 199-516 199-516
VULGAR	Numbers and Fractions.	######################################
NUMBERS,	Cubes.	1018-867 1037-971 1067-311 1066-391 1106-771 11157-625 1175-625 1175-625 1175-625 1176-625 1176-625 1176-625 1176-625 1176-625 1266-691 1266-139 12
	Squares.	101 254 102 516 103 785 105 962 106 948 107 641 110 95 111 566 112 891 115 90 118 266 119 629 121 22 379 122 379 122 379 123 129 381 126 562 127 189 189 189 189 189 189 189 189 189 189
	Numbers and Fractions.	

TABLE No. 199.	Cubes.	13824 14260-516 15160-922 15698-453 16681-375 17576 1869-625 19141-297 1968-875 20796-875 21369-234 20796-875 21369-24 2248-26 22169-22 2246-26 23149-125 2248-26 23149-125 2314
	Squares.	576 600-25 600-25 600-25 612-662 651-662 653-652 676-62 715-662 778-62 778-62 778-62 778-62 778-62 778-62 778-62 778-62 778-62 778-62 778-62 778-62 778-62 778-62 778-62 88-63
AND CU	Numbers and · Fractions.	2444825225255552777788888888888888888888
, SQUARES AND CUBES.	Cubes.	8934-172 9096-607 926-607 9427-361 9427-361 9595-703 9766-037 9766-037 9766-037 1012-729 1048-729 10648-729 10648-729 10648-729 10648-729 11011-141 11201-834 11774-547 1174-547 112168-625 11774-547 112168-625 11774-747 12168-625 11774-747 12168-625 11774-747 12168-625 11774-747 12168-625 11774-747 12168-625 11774-747 12168-625 11777-881 12168-678 12168-678
FRACTIONS,	Squares.	480-562 445-766 441-562 441-562 451-562 451-562 458-516 488-516 488-516 488-516 488-516 500-641
VULGAR	Numbers and Fractions.	23222222222222222222222222222222222222
NUMBERS,	Cubes.	5859-375 5475-041 5682-859 5711-342 5832 6692-839 6607-839 6608-839 6591-797 6591-797 6591-797 6591-797 6591-797 6591-797 6591-797 6591-797 6591-797 6591-797 6591-797 6591-797 6591-797 6591-798 6591-797 6591-798 6591-79
	Squares,	306.25 310.641 315.062 315.062 318.516 328.516 383.062 387.641 387.662 381.562
	Numbers and Fractions.	10000000000000000000000000000000000000

TABLE No. 200.

INCHES AND THEIR EQUIVALENT DECIMALS OF A FOOT.

Inches.	Equivalents.	Inches.	Equivalents.	Inches.	Equivalents.	Inches.	Equivalents.	Inches.	Equivalents.
4 2 4 5 4 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5	001302083 00260416 00390625 0052083 006510416 0078125 009114583 010416 01302083 014322916 015625 016927083 016927083 016927083 016927083 016927083 01953125 02083 022135416		0260416 02734375 02864583 028947916 03125 032552083 03356416 03515625 03766416 0390625 040364583 0416 04296875 04427783 044577083 046875	0	0.05078125 0.0508828 0.053885416 0.0548875 0.0548875 0.05889375 0.059893 0.059893 0.05983	0.0 1.0 2.0 0.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	07552083 076822916 078427083 079427083 08072916 08072916 0814583 09114583 09855416 09855416 09855416 1016625 101625 101625 111197916		1171876 1197916 12239583 125 126 12760416 12760416 13802083 13802083 13802083 146025 146025 146025 148375 1484375 1484375 15864583 16864583 1614583 1614583
			Name of the last o	Designation of the latest late	The state of the s				

When 5 is the last decimal figure the equivalent is exact, but when the last figure is 3 or 6 such figures are respectively repeating ones.

Table No. 200—continued. INCHES AND THEIR EQUIVALENT DECIMALS OF A FOOT.

Inches.	Equivalents,	Inches.	Equivalents.	Inches.	Equivalents.	Inches.	Equivalents.	Inches.	Equivalents.
c	91.	91/	60076.	12		73/	2779.	0	0000
1	10	0 74	60012	07/2	6004	1 1/4	04000	10	8555
2 1/16	171875	3%	.28125	2%	.46875	7%	.65625	101%	.84375
2 1/8	.177083	31/2	.2916	53%	.47916	00	9999.	$10^{1/4}$.85416
2 3/16	1822916	3%	.302083	2%	.489583	81%	.677083	10%	.864583
2 1/4	.1875	33/4	.3125	9	÷	81/4	6875	101%	.875
25/16	1927083	3%	.322916	61%	.510416	8%	.697916	10%	.885416
2 %	916261.	4	.9993	61,4	.52083	81/2	.7083	103%	.89583
2 7/16	203125	4 1/8	.34375	63%	.53125	8%	.71875	10%	.90625
2 1/2	.2083	41/4	.35416	61/2	.5416	83%	.72916	11	.916
2 %	.2135416	43%	.364583	65%	.552083	% %	.739583	111%	.927083
2 %	.21875	41/2	.375	63%	.5625	6	.75	111/4	.9375
211/18	.2239583	4 %	.385416	%9	.572916	978	.760416	113%	.947916
2 %	.22916	43/4	.39583	7	.583	91,4	.77083	111/2	.9583
213/16	.234375	47/8	.40625	71%	.59375	9%	.78125	115%	.96875
2 1/8	.239583	70	.416	71%	.60416	91%	.7916	113%	.97916
216/16	.2447916	21/8	.427083	73/	.614583	36	.802083	11 1/2	-989583
က	.25	51/4	.4375	71%	.625	93%	.8125	? :	:
3 1/8	-260416	5%	.447916	7 %	.635416	9%	.822916	:	:

When 5 is the last decimal figure the equivalent is exact, but when the last figure is 3 or 6 such figures are respectively repeating ones. 381 THEIR APPROXIMATE VALUES, &c., IN VULGAR FRACTIONS TABLE NO. 201.

Less than. than Greater Fractions, Vulgar Nearest Decimals, Less than than Greater Fractions. Vulgar Nearest Decimals. 99 advancing Less than than. Greater Fractions, Vulgar to Nearest 0. Decimals. From Less than than DECIMAL FRACTIONS AND Greater Fractions. Vulgar Nearest Decimals. Less than ngut Greater Practions Vulgar Nearest Decimals.

This Table will be found convenient for converting the decimals given in many of the tables into vulgar fractions.

FOURTH POWERS

The fourth powers as given in the following Table, No. 202, in the columns headed Fourth Powers, are complete for the whole numbers, and also for all the others *except* when the fourth or terminal decimal is 4 or 9.

When the fourth or terminal decimal in the column headed Fourth Powers is 4 or 9, if 0625 be placed after the last figure, 4 or 9 as the case may be, the fourth power is completed; but in many cases the fourth power, as given to four decimals, is sufficiently accurate.

The following notes will facilitate calculating the fourth powers of numbers not given in the table:—

The fourth power of any given number, multiplied by 16, equals the fourth power of double the given number.

The fourth power of a given number, divided by 16, equals the fourth power of half the given number.

The fourth power of a number, multiplied by 81, equals the fourth power of three times the given number.

The fourth power of a number, divided by 81, equals the fourth power of one third the given number.

Or the following embraces all cases :-

If N equals any given number and F equals the fourth power of N, the fourth power of any multiple of N may be found by multiplying F by the fourth power of the given multiple of N; for example:—

If the multiple of N be 2, multiply F by 16, which is the fourth power of 2; if 3 N by 81, which is the fourth power of 3; and if the multiple of N be 10, F should be multiplied by 10000, as it is the fourth power of 10.

The fourth power table among other uses may be found convenient when dealing with spiral springs.

FOURTH POWERS.

Nos.	Fourth Powers.	Nos.	Fourth Powers.	Nos	Fourth Powers.
1	1	11.5	17490.0625	22	234256
1.25	2.4414	11.75	19061 2539	22.25	245086.8789
1.5	5.0625	12	20736	22.5	256289:0625
1.75	9:3789	12.25	22518.7539	22.75	267870.9414
2 2.25	16 25.6289	$12.5 \\ 12.75$	24414·0625 26426·5664	23 23·25	279841 292207:8164
2.25	39.0625	13	28561	23.5	304980:0625
2.75	57.1914	13.25	30822:1914	23.75	318166.5039
3	81	13.5	33215.0625	24	331776
3.25	111.5664	13.75	35744.6289	24.25	345817.5039
3.5	150.0625	14	38416	24.5	360300.0625
3.75	197.7539	14.25	41234.3789	24.75	375232.8164
4 4.25	256 326·2539	14.5 14.75	44205·0625 47333·4414	25 25·25	390625 406485:9414
4.25	410.0625	15	50625	25.25	422825.0625
4.75	509.0664	15.25	54085:3164	25.75	439651.8789
5	625	15.5	57720.0625	26	456976
5.25	759.6914	15.75	61535.0039	26.25	474807.1289
5.2	915.0625	16	65536	26.5	493155.0625
5.75	1093.1289	16.25	69729:0039	26.75	512029.6914
6 6.25	1296 1525·8789	16.5 16.75	74120·0625 78715·3164	27 27·25	531441 551399·0664
6.25	1785.0625	16.75	78715.3164 83521	27.25	571914.0625
6.75	2075 9414	17.25	88543.4414	27.75	592996.2539
7	2401	17.5	93789.0625	28	614656
7.25	2762.8164	17.75	99264.3789	28.25	636903 • 7539
7.5	3164.0625	18	104976	28.5	659750.0625
7.75	3607:5039	18.25	110930.6289	28.75	683205.5664
8 8 25	4096 4632:5039	18.5 18.75	117135·0625 123596·1914	29 29·25	707281 731987:1914
8.5	5220.0625	19	130321	29.25	757335.0625
8.75	5861.8164	19.25	137316.5664	29.75	783335.6289
9	6561	19.5	144590.0625	30	810000
9.25	7320.9414	19.75	152148.7539	30.25	837339 3789
9.5	8145.0625	20	160000	30.5	865365.0625
9.75	9036.8789	20.25	168151.2539	30.75	894088:4414
10 10·25	10000 11038·1289	20.5	176610·0625 185384·0664	31 31·25	923521 953674·3164
10.25	12155.0625	20.75	185384 0004	31.5	984560:0625
10.75	13354.6914	21.25	203908.6914	31.75	1016190.0039
11	14641	21.5	213675.0625	32	1048576
11.25	16018.0664	21.75	223788 1289		

WEIGHTS AND MEASURES, &c.

Following these notes are Tables of Imperial and Metric Weights and Measures and equivalents.

There is a bronze bar deposited in London which is marked, and the standard yard is based on the distance between these marks when the bar is at the temperature of 62 degrees Fahrenheit, or about 16.66 degrees Centigrade, or about 13.33 degrees Réaumur.

A piece of platinum, which is also deposited in London, is taken as the standard pound, when weighed *in vacuo* at the temperature of 32 degrees Fahrenheit, or 0 degrees Centigrade, or 0 degrees Réaumur.

A cubic foot of distilled water weighs 62.321 lbs.

A gallon of distilled water weighs 10 lbs., or about 4:5359265 kilogrammes, when the barometer is at 30 inches, or about 761:9862339 millimetres, in the latitude of London at about the sea level, and the temperature is at 62 degrees Fahrenheit, or 13:33 degrees Réaumur, or 16:66 degrees Centigrade.

The weight of a cubic inch of distilled water is taken at 252.458 grains.

The capacity of a gallon is taken at 277.274 cubic inches.

For ordinary purposes, not legal equivalents, the weight of a cubic foot of fresh water, not distilled, may be taken at 62.5 lbs., and the weight of a cubic foot of sea water at 64 lbs., and a ton of sea water may be considered as equal to 35 cubic feet, and to about 218.12 gallons, and a cubic foot to about 6.232 gallons.

In Paris there is a platinum bar, known as the "Mètre des Archives," and when the bar is at the temperature of 0 degrees Centigrade, or 0 degrees Réaumur, or 32 degrees Fahrenheit, it is taken as the length of the metre.

39:37079 inches is the legal equivalent of the metre, but were a brass metre compared at the temperature of 62 degrees Fahrenheit (and not at 0 degrees Centigrade, which is the legal temperature) with a bronze yard at the same temperature, viz., 62 degrees Fahrenheit, the apparent equivalent of the metre is nearly 39:382 inches.

A piece of platinum deposited in Paris, known as the "Kilogramme des Archives," when weighed *in vacuo* at 0 degrees Centigrade, or 0 degrees Réaumur, or 32 degrees Fahrenheit, is taken as the weight of the kilogramme.

The litre, or cubic decimetre, when the barometer is at 760 millimetres, or about 29.9218004 inches, contains one kilogramme weight of distilled water at its maximum density of 4 degrees Centigrade, or 3.2 degrees Réaumur, or 39.2 degrees Fahrenheit.

Imperial and Metric Weights and Measures.

LINEAR MEASURE.

1	Inch,				202	25:39954113 millimetres.
					7.2	·30479449 metre.
1	Yard (3 feet), .					·91438348 ,,
1	Pole (5½ yards),				1003	5.02911 metres.
1	Chain (22 yards or	100	links)	,	-	20.11644 ,,
1	Furlong (220 yards)),				201.16437 ,,
	Mile (1760 yards),				===	1.60931493 kilometres.

SQUARE MEASURE.

1 Square inch,	. ====	6.45137 square centimetres.
1 Square foot (144 square inches)	, ==	9.28997 square decimetres.
1 Square yard (9 square feet),	. =	83609715 square metre.
1 Perch (30 1/4 square yards),	. ====	25.29194 ,,
1 Rood (40 perches),	. =	10.11678 acres.
1 Acre (4840 square yards),	. =	'40467 hectare.
1 Square mile (640 acres),	. ==	258 98945312 hectares.

CUBIC MEASURE.

	Cubic inch, Cubic foot (1728 cubic inches),	=	16:38617589 cubic centimetres.
1	Cubic yard (27 cubic feet), .		28.31531 cubic decimetres. 76451342 cubic metre.

APOTHECARIES' MEASURE

	APOTHECARIES	MEASURE.
1	Gallon* (8 pints or 160 fluid	
	ounces), =	4.54346 litres.
1	Fluid ounce f (8 drachms), . =	
1	Fluid drachm, f3 (60 minims), =	3.54958 ,.
1	Minim, m (0.91146 grain	
	weight),	· 0 5916 ,,
		.,

	MEASURE OF CAPACITY.					
1 Gill,				-	1.41983 decilitres.	
				20122	•56793 litre.	
1 Quart (2 pints),				==	1·13586 litres.	
				2002	4.54345797 litres.	
1 Peck (2 gallons),				-	9.08692 ,,	
1 Bushel (8 gallons),				1000	3.63477 dekalitres.	
1 Quarter (8 bushels),			FOT	2.90781 hectolitres.	

^{*} The apothecaries' gallon is of the same capacity as the imperial gallon.

Avoirdui	POIS WEIGHT.			
	= 64.79895036 milligrammes = 1.77185 grammes. = 28.34954, , = .45359265 kilogramme. = 6.35030,, = 12.70059,, = 50.80238,, or .50802 quintal. = 1.01604754 millier or tonn			
1 Troy ounce (480 grains* avoir-	04 40040			
dupois),	= 31.10350 grammes.			
APOTHECAL	RIES' WEIGHT.			
1 Ounce + (8 drachms),	= 31·10350 grammes. = 3·88794 ,, = 1·29598 ,,			
1 Ounce † (8 drachms), 1 Drachm 3i (3 scruples),	= 3.88794 ,,			
1 Scruple \ni i (20 grains),	= 1.29598 ,,			
Metric and Imperial Weights and Measures. Linear Measure.				
LINEAL	R MEASURE.			
1 Millimetre ('001 m.),				
	= '03937 inch. = '39371 ,, = 3 '93708 inches			
1 Millimetre ('001 m.), 1 Centimetre ('01 ,,),	= '03937 inch. = '39371 ,, = 3.93708 inches (39.37079 ,,			
1 Millimetre ('001 m.), 1 Centimetre ('01 ,,),	= '03937 inch. = '39371 ', = 3'93708 inches (39'37079 ', = {3'28089917 feet.			
1 Millimetre ('001 m.),	= '03937 inch. = '39371 ', = 3'93708 inches (39'37079 ', = { 3'28089917 feet. (1'09363306 yards.			
1 Millimetre ('001 m.),	= '03937 inch. = '39371 ', = 3'93708 inches (39'37079 ', = {3'28089917 feet. 1'09363306 yards. = 10'93633 ',			
1 Millimetre ('001 m.),	= '03937 inch. = '39371 ',' = 3 '93708 inches (39 '37079 ',' 3 '28089917 feet. (1 '09863306 yards. = 10 '936331 ','			
1 Millimetre ('001 m.),	= '03937 inch. = '39371 ', = 3'93708 inches (39'37079 ', = 3'28089917 feet. (1'09363306 yards. = 10'93633 ', = 109'36331 ',			
1 Millimetre ('001 m.),	= '03937 inch '39371 ', - 3'93708 inches (39'37079 ', - 3'28089917 feet. (1'09363306 yards 10'93633 ', - 109'36331 ', - '62138 mile.			
1 Millimetre ('001 m.),	= '03937 inch. = '39371 ', = 3'93708 inches (39'37079 ', = {3'28089917 feet. 1'09363306 yards. = 10'936331 ', = '62138 mile. = 6'21382 miles.			
1 Millimetre ('001 m.),	= '03937 inch. = '39371 ', = '3'93708 inches (39'37079 ', = {3'28089917 feet. 1'09363306 yards. = 10'936331 ', = '62138 mile. = 6'21382 miles. = '001 mm. E MEASURE. = '15501 square inch.			
1 Millimetre ('001 m.),	= '03937 inch. = '39371 ', = 3'93708 inches (39'37079 ', = {3'28089917 feet. {1'09363306 yards.} = 10'93633 ', = '62138 mile. = 6'21382 miles. = '001 mm. **Measure.** = '15501 square inch.			
1 Millimetre ('001 m.),	= '03937 inch. = '39371 ', = 3'93708 inches (39'37079 ', = { 3'28089917 feet. (1'09363306 yards. = 10'93633 ', = 109'36331 ', = 6'2138 mile. = 6'21382 miles. = '001 mm. MEASURE. = '15501 square inch. = 15'50059 square inches.			
1 Millimetre ('001 m.),	= '03937 inch. = '39371 ', = 3'93708 inches (39'37079 ', = 3'28089917 feet. 1 '09363306 yards. = 109'36331 ', = '62138 mile. = 6'21382 miles. = '001 mm. E MEASURE. = '15501 square inches. = 10'76430 square feet.			
1 Millimetre ('001 m.),	= '03937 inch. = '39371 ', = '393708 inches (39°37079 ', = {3°28089917 feet. 1 °09363306 yards. = 10°936331 ', = '62138 mile. = 6°21382 miles. = '001 mm. E MEASURE. = '15501 square inches. = {10°76430 square feet. 1 °19603 square feet. 1 °19603 square yards.			
1 Millimetre ('001 m.),	= '03937 inch. = '393708 inches 3'937079			

^{*} The troy grain is of the same weight as the avoirdupois grain.
† The apothecaries' ounce is of the same weight as the troy ounce. The apothecaries' grain is also of the same weight as the avoirdupois grain.

CUBIC MEASURE.

	CUBICI	MEA	SURE.
1	Cubic centimetre (1000 cubic		
	****		*06103 cubic inch.
	millimetres),	-	oolos cubic inch.
1	Cubic decimetre (1000 cubic		
	centimetres), Cubic metre or stere (1000	=	61.02705 cubic inches. { 35.31658074 cubic feet. 1.30802151 cubic yard
1	Cubic metre or stere (1000		∫ 35.31658074 cubic feet.
	cubic decimetres),	=	1 1 30802151 cubic vard
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(=
	25		
	Measure (OF (CAPACITY.
7	Centilitre ('01 litre),		·07043 gill.
1	Centilitre ('01 litre),	-	
1	Decilitre ('1 ,,),	-	'17608 pint.
1	Litre or 1000 cubic centimetres		
	or 1 cubic decimetre,	=	1.76077 pints.
1	Dekalitre (10 litres),	-	2.20097 gallons.
1	Hectolitre (100 ,,),	===	2.75121 bushels.
1	Kilolitre (1000 ,,),	2002	2·20097 gallons. 2·75121 bushels. 3·43901 quarters
-	KHOHHO (1000 ,,),		o 10001 quartors
	APOTHECAR	IES'	MEASURE.
			(102507 8
1	Cubic centimetre, or 1 gramme		('03527 fluid ounce.
_	weight,	1000	28219 fluid drachm, or
			15.43235 grains weight.
1	Cubic millimetre,	900	28219 fluid drachm, or 15:43235 grains weight.
	W		
_	WEIGHT.		Avoirdupois.
1	Milligramme ('001 gramme), . Centigramme ('01 ,,), . Decigramme ('1 ,,), . Gramme,	===	·01543 grain.
1	Centigramme ('01 ,,), .	===	·15432 ,,
1	Decigramme ('1 ,,), .	===	1.54324 grains.
٦	Gramme.	-	15.43235
Î	Dekagramme (10 grammes)	-	5.64383 drams
1	Hastagramma (100	2002	3.52739 ounces.
1	Hectogramme (100 ,,), Kilogramme (1000 ,,),		o object ouricos.
1	Knogramme (1000 ,,),		2:20462125 lbs., or
			15432 34874 grains.
1	Myriagramme (10 kilos.), . Quintal (100 ,,), .	=	22·04621 lbs.
1	Quintal (100 ,,), .	-	1.96841 cwt.
1	Millier or tonne (1000 ,,),.	-	·98420591 ton.
	, , , , , , , , , , , , , , , , , , , ,		77
			Troy.
			('03215073 ounce troy.
1	Gramme,	60023	64301 pennyweight.
			\begin{cases} \
			Apothecaries'.
			25721 drachm. 77162 scruple. 15 43235 grains.
1	Gramme,	Sale	₹ '77162 scruple.
			15:43235 grains.
			(8.44.10)

IMPERIAL AND METRIC WEIGHTS AND MEASURES, EQUIVALENTS.

	Linear Measure.						
	Inches to Millimetres.	Feet to Metres.	Yards to Metres.	Miles to Kilometres.			
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	25·39954113 50·79908226 76·19862340 101·59816453 126·99770566 152·39724679 177·79678792 203·19632906 228·59587019	30479 60959 91488 1·21918 1·52397 1·82876 2·13356 2·43835 2·74315	91438 1·82877 2·74315 3·65753 4·57192 5·48630 6·40068 7·31507 8·22945	1.60931 3.21863 4.82794 6.48726 8.04657 9.65589 11.26520 12.87452 14.48383			
		Square Measure) ,				
	Square Inches to Square Centimetres.	Square Feet to Square Decimetres	Square Yards to Square Metre				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9·28997 18·57994 27·86990 37·15987 46·44984 55·73981 65·02978 74·31974 83·60971	*83610 1*67219 2*50829 3*34439 4*18049 5*01658 5*85268 6*68878 7*52487	·40467 ·80934 1·21401 1·61868 2·02336 2·42803 2·83270 3·23737 3·64204			
	Cul	oic Measure		Apothecaries' Measure.			
Cubic Inches to Cubic Centimetres.		Cubic Feet to Cubic Metres.	Cubic Yards t				
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	16:38618 32:77235 49:15853 65:54470 81:93088 98:31706 114:70323 131:08941 147:47558	*02832 *05663 *08495 *11326 *14158 *16989 *19821 *22652 *22484	·76451 1·52903 2·29354 3·05805 3·82257 4·58708 5·35159 6·11611 6·88062	3:54958 7:09915 10:64873 14:19831 17:74788 21:29746 24:84704 28:39661 31:94619			

IMPERIAL AND METRIC WEIGHTS AND MEASURES, EQUIVALENTS.

Measure of Capaci

	Quarts to Litres,	Gallons to Litres.	Bushels to Dekalitres.	Quarters to Hectolitres.
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	1·13586 2·27173 3·40759 4·54346 5·67932 6·81519 7·95105 9·08692 10·22278	4·54346 9·08692 13·63037 18·17383 22·71729 27·26075 31·80421 36·34766 40·89112	3·63477 7·26953 10·90430 14·53907 18·17383 21·80860 25·44336 29·07813 32·71290	2·90781 5·81563 8·72344 11·63125 14·53907 17·44688 20·35469 23·26250 26·17032

Avoirdupois Weight.

	Grains to Milligrammes.	Ounces to Grammes.	Pounds to Kilo- grammes.	Hundred- weights to Quintals.	Tons to Milliers or Tonnes.	
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	64.79895036 129.59790072 194.39685109 259.19580145 323.99475181 388.79370218 453.59265255 518.39160291 588.19055327	28:34954 56:69908 85:04862 113:38816 141:74770 170:09724 198:44679 226:79633 255:14587	·45359 ·90719 1·36078 1·81437 2·26796 2·72156 3·17515 3·62874 4·08233	*50802 1:01605 1:52407 2:03209 2:54012 3:04814 3:55617 4:06419 4:57221	1.01605 2.03210 3.04814 4.06419 5.08024 6.09629 7.11233 8.12838 9.14443	

Troy	Weight.

Apothecaries' Weight.

	Ounces to Grammes.	Pennyweights to Grammes.	Scruples to Gramme
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	31 10350 62 20699 93 31059 124 41398 155 51748 186 62098 217 72447 248 82797 279 93147	1.55517 3.11035 4.66552 6.22070 7.77587 9.33105 10.88622 12.44140 13.99657	1·29598 2·59196 3·88794 5·18391 6·47989 7·77597 9·07185 10·36783 11·66381
0 —	210 00111	10 00001	11 00001

METRIC AND IMPERIAL WEIGHTS AND MEASURES, EQUIVALENTS.

	Measure.

	Millimetres to Inches.	Metres to Feet.	Metres to Yards.	Kilometres to Miles.		
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	03987079 07874158 11811237 15748316 19685395 23622474 27559553 31496632 35433711	3·28090 6·56180 9·84270 13·12360 16·40450 19·68540 22·96629 26·24719 29·52809	1·09363 2·18727 3·28090 4·37453 5·46817 6·56180 7·65543 8·74906 9·84270	·62138 1·24276 1·86415 2·48553 3·10691 3·72829 4·34968 4·97106 5·59244		

Square Measure.

	Square Centimetres to Square Inches.	Square Metres to Square Feet.	Square Meters to Square Yards.	Hectares to Acres.
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	·15501 ·31001 ·46502 ·62002 ·77503 ·93004 1.08504 1.24005 1.39505	10.76430 21.52860 32.29290 43.05720 53.82150 64.58580 75.35010 86.11439 96.87869	1·19603 2·39207 3·58810 4·78413 5·98017 7·17620 8·37223 9·56827 10·76430	$\begin{array}{c} 2 \cdot 47114 \\ 4 \cdot 94229 \\ 7 \cdot 41343 \\ 9 \cdot 88457 \\ 12 \cdot 35572 \\ 14 \cdot 82686 \\ 17 \cdot 29800 \\ 19 \cdot 76914 \\ 22 \cdot 24029 \end{array}$

Cubic Measure.

Apothecaries' Measure.

	Cubic Decimetres to Cubic Inches.	Cubic Metres to Cubic Feet.	Cubic Metres to Cubic Yards.	meters to Fluid Drachms.
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	61:02705	35·31658	1:30802	·28219
	122:05410	70·63316	2:61604	·56438
	183:08115	105·94974	3:92406	·84657
	244:10821	141·26632	5:23209	1·12877
	305:13526	176·58290	6:54011	1·41096
	366:16231	211·89948	7:84813	1·69315
	427:18936	247·21607	9:15615	1·97534
	488:21641	282·53265	10:46417	2·25753
	549:24346	317·84923	11:77219	2·53972

METRIC AND IMPERIAL WEIGHTS AND MEASURES, EQUIVALENTS.

Measure	οf	Car	acity	

	Litres to Pints.	Dekalitres to Gallons.	Hectolitres to Bushels.	Kilolitres to Quarters.
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	1.76077 3.52154 5.28231 7.04308 8.80385 10.56462 12.32539 14.08616 15.84693	2·20097 4·40193 6·60290 8·80386 11·00483 13·20580 15·40676 17·60773 19·80870	2.75121 5.50242 8.25362 11.00483 13.75604 16.50725 19.25846 22.00966 24.76087	3:43901 6:87802 10:31703 13:75604 17:19505 20:63406 24:07307 27:51208 30:95110

Avoirdupois' Weight.

		*			
	Milli- grammes	Kilogrammes to Grains.	Kilogrammes to Pounds.	Quintals to Hundred- weights.	Milliers or Tonnes to Tons.
1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 =	*01543 *03086 *04630 *06173 *07716 *09259 *10803 *12346 *13889	15482·34874 30864·69748 46297·04622 61729·39496 77161·74370 92594·09244 108026·44118 123458·78992 138891·13866	2:20462 4:40924 6:61386 8:81849 11:02311 13:22773 15:43235 17:63697 19:84159	1 '96841 3 '93682 5 '90523 7 '87364 9 '84206 11 '81047 13 '77888 15 '74729 17 '71570	98421 1 96841 2 95262 3 93682 4 92103 5 90524 6 88944 7 87365 8 85785
				1	

	Troy Weig	ht.	Apothecaries' Weight.
	Grammes to Ounces Troy.	Grammes to Penny- weights.	Grammes to Scruples.
1 = 2 = 3 = 4 =	·03215 ·06430 ·09645 ·12860	*64301 1 *28603 1 *92904 2 *57206	·77162 1·54323 2·31485 3·08647
5 = 6 = 7 = 8 = 9 =	·16075 ·19290 ·22506 ·25721 ·28936	3·21507 3·85809 4·50110 5·14412 5·78713	3·85809 4·62970 5·40131 6·17294 6·94455
9=	20900	9.19119	0 94499

Numbers	Equ	ivalents.	Numbers	Equivalents.			
S.W.G.	Inch.	Millimetres.	S.W.G.	Inch.	Millimetres.		
7/0 6/0 6/0 5/0 4/0 3/0 9/0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1nch. '500 '464 '432 '400 '372 '348 '324 '300 '276 '252 '232 '212 '192 '176 '160 '144 '128 '116 '104 '092 '080 '072 '064 '056	12·700 11·785 10·978 10·160 9·449 8·839 8·229 7·620 7·010 6·401 5·893 5·385 4·877 4·470 4·064 3·658 3·251 2·946 2·642 2·337 2·032 1·829 1·626 1·422	23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	**O24 **O22 **O20 **O18 **O164 **O136 **O124 **O116 **O100 **O092 **O084 **O076 **O068 **O060 **O052 **O048 **O044 **O040 **O032 **O028 **O024	*** dillimetres. ***610 **559 **508 **457 **4136 **3759 **3454 **3150 **2946 **2743 **2540 **2337 **2134 **1930 **1727 **1524 **1321 **1219 **1118 **1016 **0914 **0813 **0711 **0610		
18 19 20 21 22	*048 *040 *036 *032 *028	1·219 1·016 ·914 ·813 •711	47 48 49 50	.0020 .0016 .0012 .0010			

VOLUME OF WATER AT DIFFERENT TEMPERATURES.

For ordinary practical purposes, the following formulæ will enable the volume of water at different temperatures to be approximately ascertained; the formulæ give the increase of a given volume of fresh water, from the temperature of maximum density, viz., 39°2 degrees Fahrenheit, 4 degrees Centigrade, and 3°2 degrees Réaumur, if the given volume be multiplied by the formula appropriate, viz., either Fahrenheit, Centigrade, or Réaumur.

Let T = Temperature in all cases.

$$1 + \frac{(T - 39 \cdot 2)^2}{711(679 + T)}$$
 for Fahrenheit scale.

$$1 + \frac{(T-4)^2}{395(395+T)}$$
 for Centigrade scale.

$$1 + \frac{(T-3\cdot 2)^2}{316(316+T)} \quad \text{for R\'eaumur scale.}$$

If the volume is increased by difference of temperature, the weight of a given measure will be decreased.

When the volume is diminished, due to temperature, the weight of

a given measure is increased.

The weight of a given measure is inversely as the volume at the different temperatures.

Temperatures.

The thermometers generally used are Fahrenheit, Centigrade, and Réaumur. The Fahrenheit scale is generally used in Great Britain.

32 degrees Fahrenheit is usually termed the freezing point, and 212 degrees Fahrenheit the boiling point of fresh water; 0 degrees Centigrade the freezing point, and 100 degrees Centigrade the boiling point; 0 degrees Réaumur the freezing point, and 80 degrees Réaumur the boiling point.

The boiling point at those temperatures is when the barometer is at 30 inches. The boiling point is about one and a half degrees Fahr. higher when the barometer stands at 31 inches, and about one and a half degrees Fahr. lower when the Barometer is at 29 inches, and about 208.7 degrees when the barometer is at 28 inches.

The equivalent degrees of temperature on Fahrenheit, Centigrade,

and Réaumur scales may be found as follows :-

Water, Pure and Sea.

Their Composition, Temperatures at which they boil, Specific Gravities, &c.

COMPOSITION OF PURE WATER.

One part Hydrogen, and eight of Oxygen by weight. Two parts Hydrogen, and one of Oxygen by volume.

When the Barometer is at 30 inches. Pure water, boiling point, 212 degrees Fahr. Pure water, freezing point, 32 degrees Fahr. Pure water, greatest density at 39 2 degrees Fahr.

COMPOSITION OF SEA WATER.

Sea water varies in its component parts, but the principal ingredients in mid-ocean water are about as follows, in 1000 parts by weight:—

Water,	 *	•	•	 	962:0 27:1 5:4 1:2 0:8 0:4 0:1
Bromide of maguesia, Various ingredients,				•	997·1 2·9 1000

The 2.9 parts consist of various ingredients and in different proportions, depending on a variety of circumstances, locality, &c., where the

water is obtained, such as sulphuretted hydrogen gas, hydrochlorate of ammonia, &c.

Sea water, greatest density at about 25.5 degrees Fahr. Sea water, freezing point at about 27.2 degrees Fahr. Sea water, saturated solution (brine).

Freezing point, about 4 degrees Fahr.

Generally, for practical purposes, sea water may be considered to contain $\frac{1}{32}$ part of salt, and as the proportion of salt increases, the temperature necessary to raise it to the boiling point also increases.

When the barometer is at 30 inches, ordinary sea water boils at

213.2 degrees Fahr.

The following table shows the different boiling points of ordinary sea water according to the quantity of salt in the water, also the specific gravities as compared with pure water, which is considered as 1.

SEA WATER.
Boiling Points, Specific Gravities, &c.

Proportion of Salt	Temperature, Fahrenheit,	Specific
in the Water.	at which it Boils.	Gravity.
1/3 2	213·2°	1.029
2/3 2 3/2	214·4°	1.058
3/32	215.5°	1.087
4/3 2	216·7°	1.116
5/32	217 · 9°	1.145
6/3 2	219·1°	1.174
7/32	220·3°	1.203
8/32	221 · 5°	1.232
9/32	222.7°	1.261
1.0/3.2	223·8°	1.290
1 1/3 2	225·0°	1.319
1 2/3 2	226·1°	1.348

When the water contains ¹²/₃₂ parts of salt, and does not boil until the temperature is 226·1 degrees Fahr., it is then considered to be a saturated solution, as the water will not hold any more salt in solution.

Although it has been stated that generally for practical purposes sea water may be considered to contain $\frac{1}{32}$ part of salt by weight, it has been found to contain, in places, considerably more, and even near our own shores a larger proportion has been found. It is, therefore, advisable to be on the watch in different parts of the ocean, so as not to be deceived by assuming that sea water is always of equal density or saltness, and has only $\frac{1}{32}$ part of salt in it.

When sea water is used in boilers, it is not advisable to let the proportion of salt in the water in the boiler exceed $\frac{3}{3}2$, or the temperature at which it boils exceed 215.5 degrees Fahr. when the barometer is at 30 inches. Keeping the water at such a density necessitates blowing off $\frac{1}{2}3$ of the water put into the boiler, if it be fed with sea water.

TABLE No. 204.

WEIGHT AND SPECIFIC GRAVITY OF METALS.

		Specific Gravity.	1 Cubic Foot.	1 Cubic Inch.	1 Square Foot 1 Inch I Thick.	1 Square Foot & Inch Thick.	1 Square Foot 1/8 Inch Thick.	1 Square Foot 32 Inch Thick.	1 Square Foot 84 Inch Thick.	1 Square Foot τδσ Inch Thick.	Cubic Ins. to One Pound.
			lbs.	lb.	lbs.	lbs.	lbs.	lbs.	lb.	10.	Cubic ins.
		13.560	845	.4890	70.416	8.802	4.401	2.200	1.100	.704	2.044
		11.392	710	.4108	59.166	7.395	3.697	1.848	.924	169.	2.433
		8.825	550	.3182	45.833	5.729	2.864	1.432	.716	.458	3.141
		999.8	540	.3125	45.000	5.625	2.812	1.406	.703	.450	3.200
		8.504	530	.3067	44.166	5.520	2.760	1.380	069.	.441	3.260
		8.0.53	200	.2893	41.666	5.208	2.604	1.302	129.	.416	3.456
mild,	·	7.862	490	.2835	40.833	5.104	2.552	1.276	.638	.408	3.526
		7.814	187	.2818	40.583	5.072	2.536	1.268	.634	.405	3.548
wrought,		7.702	480	.2777	40.000	2.000	2.200	1.250	.625	001.	3.600
		7.124	444	.2569	37.000	4.625	2.312	1.156	829.	.370	3.891
		7.301	455	.2633	37.916	4.739	2.369	1.184	.593	.379	3.797
		006.9	430	.5488	35.833	4.479	2.239	1.119	.559	.358	4.018

The cross sectional area in square inches of a bar or angle, &c., multiplied by the length in inches of the bar or angle, &c., equals the number of cubic inches which it contains; therefore, the number of cubic inches in an article, multiplied by the weight of one cubic inch of the material of which the article is composed, equals the weight in Ibs.

SAFETY VALVES.

There should be at least two safety valves fitted to each boiler, the combined area of which should not be less than that found by the table further on, but the smallest size which should be used is 2

inches in diameter.

Safety valves should always be fitted with serew lifting gear, and arranged so that two or more valves on any one boiler can at all times be eased together, without interfering with the valves on any other boiler. The lifting-gear should in all cases be arranged so that it can be worked by hand from the engine room or stoke hole, and it should be capable of lifting the valves when steam is not up. Unless the lift and means for escape of the waste steam be sufficient, the effect is the same as reducing the area of the valve, or extra loading it.

All safety valves should have a lift equal at least to one-fourth their

diameter.

The openings for the passage of steam to and from the valves, including the waste steam pipe, should have an area not less than the area of the valve as found by the table further on.

Each safety valve box should have a drain pipe fitted at its lowest

part.

When spring safety valves are fitted, the springs and valves should always be so arranged that the valve cannot come out, if the spring should break.

Safety valves should be cased in, so that the boiler attendant cannot

in any way increase the load on the valves.

The springs for safety valves should, as far as practicable, be protected from the steam and impurities issuing from the boiler.

When safety valves are loaded by direct springs, the compressing screws should abut against metal stops or washers, when the loads settled and approved of by the Engineer Inspector are on the valves.

When valves are loaded by dead-weights, care should be taken that they are so fitted that they will not prevent the free escape of the

steam.

Safety valves and their seats should be made of brass, and the seats should be secured by brass studs and brass nuts; the minimum number of the studs and nuts should be three.

The weight necessary to load an ordinary dead-weighted safety valve may be found by multiplying the area of the valve by the working pressure per square inch, and subtracting the weight of the valve and

spindle.

Each weight should represent a given number of lbs. pressure, say 5 lbs., as it is undesirable to have any one weight very heavy or cumbersome; the weights should have the corners rounded, the holes in the centre of the weights should be easy fits for the spindle, and the edges of the holes should also be rounded off; the skin of the casting should not be broken; the weight of each, and also its equi-

valent in lbs. pressure per square inch, should be stamped on it. Means should be provided for lifting each weight separately.

If the safety valve lever be not bushed with brass, the pins should be of brass; iron and iron working together should not be approved of.

The weight required to be placed on the end of the safety valve lever, so that there may be a given working pressure per square inch on the valve, may be found by multiplying the area of the valve by the working pressure, and subtracting from the product the effective weight of the lever and valve, and dividing the remainder by the leverage, which is the total length of lever from the fulcrum to the point where the weight is suspended, divided by the distance from the centre of the valve to the fulcrum in a line parallel to the face of the valve.

If the area of the valve be 10 square inches, and the working pressure 40 lbs. per square inch, the effective weight of lever and valve 20 lbs., the total length of lever 30 inches, and the distance between the centre of the valve and the fulcrum 3 inches, the weight on the end of the

lever is 38 lbs.,

$$(10 \times 40) - 20 = 380$$

 $30 \div 3 = 10$
 $380 \div 10 = 38 \text{ lbs.},$

which is the weight required to be placed on the end of the lever to

load the valve to 40 lbs. per square inch.

When the weight of the valve is 2 lbs., the weight of the lever 4 lbs., the distance between the fulcrum and the centre of gravity of the lever 13 5 inches, and the distance between the fulcrum and centre of valve 3 inches, the effective weight of the lever and valve is 20 lbs.,

$$13.5 \div 3 = 4.5$$

 $(4.5 \times 4) + 2 = 20 \text{ lbs.},$

which is the effective weight of lever and valve. Therefore, if the distance between the fulcrum and centre of gravity of lever be divided by the distance between the fulcrum and centre of valve, and then multiplied by the weight of lever, and the weight of the valve added to the product, the effective weight of lever and valve is found.

In any case in which a spring balance is used to load a lever safety valve, the leverage should be equal to the number of square inches area of the valve; that is, if the area of the valve be 10 square inches, the leverage should be 10, or the total length of lever should be 10 times the distance between the centre of valve and fulcrum. When the leverage and balance are not so arranged, errors frequently take place, and have caused explosions.

TESTING AND ADJUSTING SAFETY VALVES, &c.

All safety valves should be tested for accumulation, when under full steam and hard firing, for at least twenty minutes, with the feeds shut off and stop valves closed; the accumulation of pressure should not exceed 10 per cent. of the loaded pressure. It should not be overlooked that, with the nominal factor of 5, the factor is reduced to about 4.5 when the accumulation is 10 per cent.

It safety valves, particularly spring and lever valves, be not properly tried, to see that there is no undue amount of accumulation of pressure, accidents will surely follow. Valves should be particularly well fitted, but should not be too tight, otherwise when steam is up, more particularly after the water has been priming, the valves are very apt to stick, and an undue accumulation of pressure takes place.

When the Engineer Inspector has settled the working pressure, he should see the valves loaded to that pressure, and the weights or springs fixed in such a manner as to prevent the possibility of their shifting, so as to, in any way, increase the load on the safety valves.

Although different methods of loading safety valves have been remarked on, direct spring loaded valves, when properly constructed, are those which are recommended for marine boilers; if land boilers were always in charge of skilled men, spring loaded valves might also be recommended for them. Very many land boilers are looked after by men who should not be trusted to adjust spring safety valves. Valves loaded by direct weights are those which are most likely to act as real safety valves, when in the hands of the ordinary attendants of land boilers. Although it may not in every case be necessary to have all the valves on such boilers loaded by direct weights, it is desirable that one of them be so fitted, and the others, in some cases if desired, may be loaded by lever and weights, but spring lever loaded valves alone are very undesirable; such a method presents a ready way of overloading, and many explosions of boilers have taken place, due to the extra loading of lever valves. If the load be applied by a spring balance, there should be a stop on the screw to prevent the pressure being increased by merely turning the nut; but, even then, the pressure can be easily increased by reckless or ignorant persons, and even accidentally this has occurred; therefore, it is very undesirable that lever valves should be the only description fitted on any boiler, more particularly if not properly cased in. So far as the valve is concerned, the common flat face or mitre seat keeps longer in order than a lip or lifter one, and gives much less trouble when steam is blowing off freely.

The areas of safety valves as found by the table which follows, No. 205, are minimum areas, and it is desirable that they should be exceeded, for, if not, when the pressure is reduced, due to the age of the boiler, &c., the accumulation will exceed that which it is prudent

When forced draught is used, it is essential that the areas of safety valves should be considerably in excess of those arrived at by the use of the table, otherwise the accumulation will be too great. The amount of increase will depend upon the circumstances of each case; but in no case is less than 25 per cent. increase recommended, and it has been found that, even when the area was double that required by the table, there was more accumulation than was desirable. It is expedient to arrange so that the forced draught can be stopped from the starting platform, more particularly when the draught does not cease when the engine stops.

Although forced draught has been found to be injurious to boilers and to shorten their life, yet it may be desirable to adopt it in some cases, but when practicable it is well that boilers be constructed and proportioned so as to do the work required of them without forced

draught.

-				-				and the latest designation of the latest des			
Boiler Pressure per Square Inch.		Boiler Pressure per Square Inch.	Area of Valve per Square Foot of Fire Grate.	Boiler Pressure per Square Inch.	Area of Valve per Square Foot of Fire Grate.	Boiler Pressure per Square Inch.	Area of Valve per Square Foot of Fire Grate,	Boiler Pressure per Square Inch.	Area of Valve per Square Foot of Fire Grate.	Boiler Pressure per Square Inch.	Area of Valve per Square Foot of Fire Grate.
lbs. 5 6 7 8 9 100 11 112 13 14 15 15 6 17 7 18 19 20 21 22 23 24 25 26 27 27 28 29 30 31 32	sq. ins. 2 · 206 1 · 935 1 · 763 1 · 655 1 · 571 1 · 502 1 · 442 1 · 388 1 · 389 1 · 293 1 · 293 1 · 293 1 · 209 1 · 171 1 · 013 · 986 1 · 937 · 914 · 892 · 872 · 852 · 833 · 815 · 797	lbs. 38 39 40 41 42 43 44 45 46 47 48 45 55 55 55 55 60 61 62 63 64 65	sq. in	lbs. 71	sq. in.	lbs. 104 105 106 107 108 109 110 111 112 113 116 117 120 121 122 125 126 127 128 129 130 131 131 131 131 131 131 131 131 132 133 134 135	sq. in. 315 312 309 307 304 300 297 295 299 288 286 284 281 277 275 273 265 266 4262 266 2558 256	lbs. 137 138 139 140 141 142 143 144 145 146 150 152 153 154 156 157 158 159 160 161 162 163 164	sq. in. ·246 ·245 ·241 ·240 ·238 ·237 ·235 ·234 ·232 ·230 ·228 ·227 ·225 ·224 ·223 ·211 ·210 ·211 ·210 ·209	lbs. 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 199 191 192 195 196 196 197	sq. in.
33 34 35 36 37	·781 ·765 ·750 ·735 ·721	66 67 68 69 70	·462 ·457 ·451 ·446 ·441	99 100 101 102 103	·328 ·326 ·323 ·320 ·317	132 133 134 135 136	·255 ·253 ·251 ·250 ·248	165 166 167 168 169	·208 ·207 ·206 ·204 ·203	198 199 200 201 202	·176 ·175 ·174 ·173 ·172

The above Table gives the minimum areas.

Each boiler should have at least two valves, each not less than 2 inches in diameter.

In the Tables, Nos. 206 to 215, which follow these notes, the dimensions of the different parts of safety valves loaded by spiral springs will be found.

The valves, seats, spindles, compressing screws and their nuts, spring washers, bushes in bottom of spring case, cotters in top of spindle and cap, studs and nuts for securing the seats, and the bushes or bearings for easing gear shaft, should be made of a good quality of brass or gun metal.

The chests, spring cases, and caps may be made of cast iron.

The easing gear shaft should be made of wrought iron or steel; wrought iron shafts are recommended, with the lifting forks forged out of the solid.

The bolts or studs for the flanges and easing gear should be made of wrought iron.

The top of hoods may be made either as shown in the drawing, page 402, or with cross handles, or with hexagon heads, as shown on page 524.

Valves are generally made with a lip, as shown in the drawing, page 402, but valves without lips are less violent in their action.

There should not be a less number of ribs to the neck of the valve chests than four, as shown in the drawing, but it may be desirable to have more than four in the large sizes.

In Table No. 211 the diameter given for flanges of waste steam-pipe may be adopted for all pressures.

The cap of the spring case should be made the same thickness as the top flange of the case.

The point of the compressing screw should be well rounded, and made to enter the recess in the top washer for the spring. The length of the point should be from about ¾ inch in the small sizes to about ¾ inch in the large sizes, the length of the point is in addition to the screwed part which enters the cap.

In the drawing, springs made of round steel are shown, but in the Tables the sizes of springs both of round and square steel, are given.

Particulars and drawings of gun metal safety valves of 2 inches diameter will be found further on. See pages 524 to 529.

TABLE No. 206.	Diameter of Bottom	Flange of Chest.	100 89 89 89 89 89 89 89 89 89 89 89 89 89
TABL	Height of Chest.	Total.	inches 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	Dimensions of Chest above Valves, inside.	Width.	inches. 55174 777 777 778 88 50 50 7174 10 10 10 10 10 10 10 10 10 10 10 10 10
Dimensio	Dimensio above Val	Length.	111 112 113 115 115 115 115 115 115 115 115 115
TY VALVI	t below e,	Width.	in so so so a a a a ro ro ro so o o o o o o o o o o o o o o
SPRING SAFETY VALVES.	Dimensions of Chest below Valves, inside.	Length.	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Dimer	Height.	ш 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Diameter of Outlet.		ii ob oo
	Diameter of Talet	of Thier.	ii
	Diameter of Volvos	or varves.	ni 00 00 00 00 00 00 00 00 00 00 00 00 00

TABLE No. 207.

	Spring Case.	Bottom Flange, Diameter.	inches 8 8 8 9 9 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8
		Height, Total.	in ches. 8
	Drain Pipe, Diameter.		fori for 1. %4%4%4%4%4%4%4%4%%%%%%
	Brass Studs for secur- ing Valve Seats.	Diameter.	E
	Brass Stud ing Val	Number.	00 00 00 00 00 00 00 00 00 00 00 00 00
	Bolts for Bottom Flange of Chest.	Diameter.	iii ig%%%%%%****************************
	Bolts for Bo	Number.	# 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	Top Flange of Valve Chest.	Diameter.	in 88 88 88 88 88 88 88 88 88 88 88 88 88
		Thickness.	**************************************
	Dismeter of Valves.		ii and a a బలలలల 4 4 4 4 గా గా గా గా గా a. ************************************

TABLE No. 208.	Distance between Centres of Valves.		inches. 67% 77% 77% 98% 88% 89% 99% 99% 99% 99% 99% 99% 99
TABE	Lift of Valve and Clearance at Top of Spindle.		inch inch
	Length of Guide of Hood.		inches. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SPRING SAFETY VALVES.	Length of Lifting Lever.		inches 6 6 6 6 7 7 8 7 8 7 7 8
	Bolts connecting Cap to Spring Case.	Diameter.	ii g: %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
		Number.	ਰਾ ਰਾ ਵਾ
	Bolts and Studs connecting Spring Case to Valve Chest.	Diameter.	ii £ <i>%%%%%%%%</i> %%%%%%%%%%%%%%%%%%%%%%%%%%%%
		Number.	\$
	Diameter of Valves.		inco 00 00 00 00 00 00 00 00 00 00 00 00 00

TABLE No. 209.

			Contraction of			
Diameter of Spindles.	r spindles.	Dimensions of Cotters.	or corrers.		Compressing Serew	
Body.	Lower Part,	Breadth,	Thickness,	Diameter.	Length under Head.	Depth of Nut.
in 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in the second se	in the control of the	in the state of th	ii ouuuuuuuuuuuuu 	ii o o o o o o o o o o o o o o o o o o	in u u u u u u u u u u u u u u u u u u u

Springs.		Working Load for Springs.		Spring Case.				Springs, is of s.
Diameter or Side of Steel.	Mean Diameter of Coils.	Round Steel.	Square Steel.	Diameter Inside.	Thickness of Case.	Diameter of Top Flange.	Thickness of Top Flange.	Washers for Springs, Thickness of Flanges.
inch. 1/4 9/32 5/46 11/32 3/8 13/32 7/16 16/32 17/32 9/16 19/16 21/32 21/32 21/32 21/32 21/32 21/32 21/32 21/32 21/32 21/32 13/46 27/32 21/32 13/46 21/32 11/32 11/32 11/32 11/32 11/32 11/32 11/32 11/32 11/32 11/32 11/32	4 7/16 4 7/32 4 18 4 17/32 4 11/16 4 27/32 5 5/32 5 5/32 5 5/32 5 5/32 5 5/32 5 5/32	bs. 100 126 156 189 225 264 306 351 506 564 625 689 756 826 890 976 1056 1139 1225 1314 1406 1501 1600 1701 1806 1914 2025 2139 2256 2376 2500	108. 137 174 214 260 309 363 421 483 550 620 696 775 859 947 1039 1136 1237 1342 1452 1566 1933 2064 2290 2339 2483 2631 2784 2941 3102 3267 3437	inches. 2 2 1/4 2 1/4 3 1/4 3 1/4 3 1/4 3 1/4 3 1/4 4 1/4 4 1/4 4 1/4 4 1/4 5 5 1/4 6 6 6 1/2 6 7 7 1/6 6 7 7 1/6 8 8 1/2 8 1/2 8 1/2	inch. 1/4 1/4 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 5/16 7/16 7/16 7/16 7/16 7/16 7/16 7/16 9	inches. 4 \\ \\ 4 \\ \\ 4 \\ \\ \\ 4 \\ \\ \\ \\	inch. 7/16 9/16 5/8 5/8 5/8 5/8 5/8 5/8 5/8 5/8 5/8 5/8	inch. 1/4 9/3 2 5/16 11/3 2 3/8 13/3 7 16 15/3 2 1/6 16/3 2 1/6 21/3 2 11/4 23/3 3 34 24 25/3 3 15/46 27/8 2 7/8 2 16/46 31/3 2 1 1/4 1 1/3 2 1 1/4 1 1/3 2 1 1/4

TABLE NO. 211. SPRING SAFETY VALVES.

The Dimensions in this Table are for Valves loaded to a Pressure not exceeding 40 Pounds per Square Inch.	Easing Gear Shaf		inci. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Thickness of Chest,	Above Valves.	ii
ot exceeding 4	Thickness	Below Valves.	ii.
o a Pressure n	Flange on Chest for Waste Steam Pipe for all Pressures.	Thickness.	11. 12. 12. 12. 12. 12. 12. 12. 12. 12.
alves loaded t	Flange on Ch Steam Pipe for	Diameter.	inches 7.77 7.77 88 1.25.8.8 8 1.25.8.8 8 1.25.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.
able are for V	Bottom Flange of Chest Thick- ness.		inch 13% 11 13% 12 11,3% 8 12,3% 8 12,3% 8 12,3% 8 13,4% 8 14,5% 8 16,5% 6 17,5% 6
nsions in this 1	Diameter of Body of Spindle.		inch. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The Dime	Diameter of Valves.		in 1000 10

TABLE No. 212.

er Square Inch.	Easing Gear Shaft, Diameter.		
eding 80 Pounds pe	of Chest.	Above Valves.	
a Pressure not exce	Thickness of Chest.	Below Valves.	2.2.2.2.2.4.4.4.4.4.2.2.2.2.2.2.2.2.2.2
The Dimensions in this Table are for Valves loaded to a Pressure not exceeding 80 Pounds per Square Inch.	Bottom Flange of Chest, Thickness.		%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
s in this Table are f	Diameter of Body	of Spindles.	ii. 11111111111111111111111111111111111
The Dimensions	Diameter of Valves.		in on on on on on on a 4 4 4 10 10 10 10 10 10 10 10 10 10 10 10 10

TABLE No. 213.

SPRING SAFETY VALVES.

er Square Inch.	Easing Gear Shaft.	Diameter.	in L L L L L L L L O O O O O O O O
eding 120 Pounds	Thickness of Chest.	Above Valves.	ii * * * * * * * * * * * * * * * * * *
a Pressure not exce	Thicknes	Below Valves.	1.00.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
The Dimensions in this Table are for Valves loaded to a Pressure not exceeding 120 Pounds per Square Inch.	r Valves loaded to Bottom Flange of Chest, Thickness.	Chest, Thickness.	inch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
in this Table are fo	Diameter of Body	of Spindles.	inch 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The Dimensions	Diomoton of Voltos	Diameter of varies.	inched 20 20 20 20 20 20 20 20 20 20 20 20 20

TABLE No. 214.

SPRING SAFETY VALVES.

er Square Inch.	Easing Gear Shaft,	Diameter.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ding 160 Pounds p	of Chest.	Above Valves.	E. 7272747474747474788888874
Pressure not excee	Thickness of Chest.	Below Valves.	in i
The Dimensions in this Table are for Valves loaded to a Pressure not exceeding 160 Pounds per Square Inch.	Bottom Flange of	Chest, Thickness.	in 111111111111111111111111111111111111
in this Table are fo	D'ameter of Body	of Spindles.	п. п
The Dimensions	C A	Diameter of valves.	inches 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

SPRING SAFETY VALVES.

TABLE No. 215.

The Dimensions in this Table are for Valves loaded to a Pressure not exceeding 200 Pounds per Square Inch.

Easing Gear Shaft.	Diameter.	1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
of Chest.	Above Valves.	
Thickness of Chest.	Below Valves.	inch 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Bottom Flange of	Chest, Thickness.	iii
Diameter of Body	of Spindles.	inchinate in the state of the s
	Diameter of Valves.	in 100 00 00 00 00 00 00 00 00 00 00 00 00

SPIRAL SPRINGS FOR SAFETY VALVES.

D = Diameter from centre to centre of wire, in inches, which is usually termed the mean diameter of the spring (without load).

d = Diameter of wire or side of square, in inches.

S = Load on spring, in lbs.

C = 11000, if spring is made of square steel C = 8000, if spring is made of round steel.

K = Compression, in inches.

N = Number of coils in spring.

$$\sqrt[3]{\frac{\overline{S \times D}}{C}} = d$$

$$\frac{d^3 \times C}{S} = D$$

$$\frac{C \times d^3}{D} = S$$

If the ratio $\frac{D}{d}$ be constant, the safe working load varies as the square of the side, or diameter, of the steel of which springs are made; but when D is constant—that is, the same for all sizes of steel—the safe working load varies as the cube of the side, or diameter, of the steel. If r is the ratio which is considered desirable, then:

$$r \times d = D.$$

$$\frac{S \times r \times d}{C} = d^{3}.$$

$$\sqrt{\frac{S \times r}{C}} = d.$$

A convenient value for the ratio r is 5, and the loads given in Table No. 210 are for springs of this ratio. This makes a well-proportioned spring, and it is recommended that springs be so made unless there are good reasons to the contrary. When such is the case, the size of steel is found as follows:—

$$\sqrt{\frac{S}{1600}} = d$$

$$1600d^2 = S$$
for round steel.
$$\sqrt{\frac{S}{2200}} = d$$
for square steel.
$$2200d^2 = S$$

Springs of less strength should not be used for safety valves, as permanent set takes place at from 3.25 to 3.5 times the load found by the formulæ.

The compression due to the load, or the number of coils required for a given compression, can be found approximately by what follows. The compression varies slightly, owing to differences in the hardness, &c., of the steel; but the formulæ will be found sufficiently accurate for practical purposes.

$$\begin{array}{ll} \mathbf{S} \times \mathbf{D^3} \times \mathbf{N} \\ 1400000 \times d^4 \end{array} = \quad \mathbf{K} \; (\mathbf{Springs \; made \; of \; round \; steel}). \\ \\ \frac{\mathbf{S} \times \mathbf{D^3} \times \mathbf{N}}{2000000 \times d^4} = \quad \mathbf{K} \; (\mathbf{Springs \; made \; of \; square \; steel}. \\ \end{array}$$

Or, if d be taken in 1/16 ths, instead of in inches

$$\begin{array}{lll} \frac{\mathbf{S} \times \mathbf{D}^3 \times \mathbf{N}}{22 \times d^4} & = & \mathbf{K} \\ \frac{\mathbf{K} \times 22 \times d^4}{\mathbf{S} \times \mathbf{D}^3} & = & \mathbf{N} \end{array} \right\} \\ \text{Springs made of round steel.} \\ \frac{\mathbf{S} \times \mathbf{D}^3 \times \mathbf{N}}{30 \times d^4} & = & \mathbf{K} \\ \frac{\mathbf{K} \times 30 \times d^4}{\mathbf{S} \times \mathbf{D}^3} & = & \mathbf{N} \end{array} \right\} \\ \text{Springs made of square steel.}$$

The compression of springs of safety valves, due to the working load, should not be less than one-fourth the diameter of the valve, and it is desirable that it should be more. It is better for boilers to have common valves and springs with good elasticity, than lip valves with rigid springs, as the action of the latter is often very violent, and causes excessive vibration, which should be avoided if possible.

SPIRAL SPRINGS MADE OF STEEL.

Tested to ascertain Compression, &c., due to different Loads applied up to Twice the Working Load.

Shape of Steel.	Size of Steel.	Pitch of Coils	Mean Diameter of Coils.	Number of Complete Coils.	Original Length of Spring.	Length of Spring with working load on it.	Working Load.	Compression produced by work-ing load.	Compression produced by twice the working load.	Average compression due to each 56 lbs. applied up to the working load.	Average compression due to each 56 lbs, applied after the load reached the working load up to twice the working load.
Square {	in.	in. 16 16 19 132	ins. 14 24 34 34	7 7 7	ins. 34 675 976	ins. 2.98 5.85 8.84	lbs. 137 550 1237	ins. •27 •46 •72	ins. •55 •92 1•44	in. •110 •046 •032	ins. •112 •046 •032
Square-	250 7 h = 22 9 H = 150 =	·648 ·759 ·870 ·962 1·074 1·185 1·296 1·407 1·509 1·611 1·722	178 356 212 26 357 5 3 34 1 5 4 1 5 5	13 ½ 12 ½ 13 ½ 12 ½ 13 ½ 14 ½ 14 ½ 14 ½ 14 ½ 14 ½ 14 ½ 14	$\begin{array}{c} 8\frac{3}{4} \\ 10\frac{1}{4} \\ 11\frac{3}{4} \\ 13 \\ 14\frac{1}{2} \\ 16 \\ 17\frac{1}{2} \\ 19 \\ 20\frac{3}{4} \\ 23\frac{1}{4} \end{array}$	8·09 9·5 10·73 11·94 13·3 14·65 16·14 17·56 18·73 19·99 21·42	309 421 550 696 859 1039 1237 1452 1684 1933 2200	·66 ·75 1·02 1·06 1·20 1·35 1·36 1·44 1·64 1·76	1:33 1:51 2:02 2:11 2:40 2:69 2:71 2:87 3:29 3:51 3:66	*120 *100 *103 *085 *078 072 *061 *055 *054 *050 *046	120 100 102 084 078 072 061 055 054 050
Round-	SH The 98 16 56 16 16 16 16 16 16 16 16 16 16 16 16 16	*648 *759 *870 *962 1.074 1.185 1.296 1.407 1.509 1.611 1.722	17 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} 13\frac{1}{2} \\ \end{array}$	$\begin{array}{c} 8\frac{3}{4} \\ 10\frac{1}{4} \\ 11\frac{3}{4} \\ 13 \\ 14\frac{1}{2} \\ 16 \\ 17\frac{1}{2} \\ 19 \\ 20\frac{3}{8} \\ 21\frac{3}{4} \\ 23\frac{1}{4} \end{array}$	8·11 9·53 10·83 11·93 13·25 14·78 16·18 17·47 18·69 20·02 21·37	225 306 400 506 625 756 900 1056 1225 1406 1600	·64 ·72 ·92 1·07 1·25 1·32 1·53 1·68 1·73 1·88	1:30 1:50 1:85 2:10 2:46 2:44 2:61 2:99 3:35 3:42 3:76	160 131 128 118 112 090 082 081 076 068 065	·161 ·137 ·129 ·116 ·110 ·090 ·081 ·079 ·076 ·068 ·065
Square {	1410014	16 15 16 121 164	$\frac{1_{\frac{1}{4}}}{2_{\frac{1}{2}}}$ $\frac{3_{\frac{3}{4}}}{3_{\frac{1}{4}}}$	21 21 21	911 187 281	8·98 17·32 26·23	137 550 1237	.70 1.55 2.02	1·39 3·12 3·98	*286 *157 *091	*284 *159 *090

SPIRAL SPRINGS MADE OF STEEL.

Tested to ascertain Compression, &c., due to different Loads applied until the Springs Closed or Broke.

Shape of Steel.	Size of Steel.	Pitch of Coils,	Mean Diameter of Coils.	Number of complete Coils.	Original Length of Spring.	Length of Spring after Test.	Working Load,	Compression produced by working load.	Load which produced permanent set.	Total compression produced by load which produced permanent set.	Load which produced permanent set divided by the working load,	Average compression due to each 112 lbs. applied before permanent set took place.	Permanent set began at	Distortion began at	Spring much distorted at	Spring closed at
Square	in the residence of the state o	ins. 1 \$5 2 1 \$5 2 1 \$6 2 1 \$6 2 1 \$6	ins. 178 2188 2188 2188 3188 3188 318	7 7 7 7 7 7 7	ins. 8 9\frac{1}{4} 10\frac{1}{2} 12 13\frac{1}{1}6 14\frac{1}{8} 16\frac{1}{8}	ins. $5\frac{3}{3}\frac{9}{2}\frac{9}{16}$ $6\frac{1}{16}$ $7\frac{1}{2}$ $8\frac{1}{4}$ $10\frac{1}{2}$ $12\frac{1}{4}$ Broke	lbs. 309 421 550 696 859 1039 1237	in. ·40 •41 ·46 ·60 ·65 ·66 ·8	lbs. 938 1750 2100 2772 2850 4440 4224	ins. 1·14 1·78 1·84 2·34 2·31 3·12 3·03	3·03 4·15 3·81 3·98 3·31 4·27 3·41	in. •138 •109 •097 •091 •089 •077 •078	lbs, 938 1750 2100 2772 2850 4440 4224	lbs. 1344 1897 2744 2961 3814 5068 5355	1bs. 1568 2121 2856 3188 4154 5520 Broke at	lbs. 1792 2352 3192 3864 4480 6272 5600
Round	The standard of the standard o	$\begin{array}{c} 1_{\frac{1}{8}} \\ 1_{\frac{5}{16}} \\ 1_{\frac{1}{2}} \\ 1_{\frac{1}{2}} \\ 1_{\frac{1}{2}} \\ 2_{\frac{1}{16}} \\ 2_{\frac{1}{16}} \end{array}$	178 218 212 2138 2138 318 3178 324	7 7 7 7 7 7 7	$\begin{array}{c} 8\\ 9\frac{1}{4}\\ 10\frac{1}{2}\\ 12\\ 13\frac{5}{16}\\ 16\frac{1}{8} \end{array}$	5 ³ / ₄ 6 ¹ / ₁ ¹ / ₆ 7 ¹ / ₂ 9 ³ / ₃ 9 ³ / ₄ 12 12	625 756	·34 ·35 ·46 ·57 ·68 ·67 ·77	700 1099 1666 1596 2739 3212 3626	1.05 1.40 2.0 1.64 2.93 3.15 3.05	3·11 3·59 4·16 3·15 4·38 4·24 4·02	*166 *140 *135 *113 *117 *109 *093	700 1099 1666 1596 2739 3212 3626	923 1512 2086 2317 3267 3818 5110	1484 1610 2190 2667 3737 4026 5572	1680 2072 2632 2912 4368 4480 6048

The results of the foregoing six series of experiments fairly represent what may be expected in general practice, and although possibly by theoretical investigation, with refinements of measurements, &c., slight irregularities may be found, the results are of more practical value than if they had been selected, as they might have been, from a number of other series, to make them agree more nearly with theory. Many exactly similar conditions must exist, which are never found in practice, to insure the results from a number of series being exactly alike; for instance, the quality of steel and the temper must be the same, both the steel and springs must have exactly the same dimensions, the ends of springs must be finished in precisely the same way, &c.

Formulæ as to springs will be found in another part of the book, by the use of which results practically in accordance with a number of tests and with practice

are obtained.

The following Tables, Nos. 218 to 224, giving the temperature, volume, density, cubic feet per lb., and latent heat and total heat of evaporation of one lb. of steam, have been computed at intervals of one lb. per square inch for pressures ranging from 14 lbs. per square inch below atmospheric pressure to 200 lbs. per square inch above the mean atmospheric pressure of 14.7 lbs. per square inch.

The particulars for intermediate pressures may be obtained by the

following formulæ :-

P=Pressure in lbs. per square inch (absolute).

T = Temperature in degrees, Fahrenheit.

V = Relative volume of the steam.

D = Density or weight of 1 cubic foot of steam in lbs.

C-Cubic feet of the steam per lb.

l = Latent heat of evaporation in thermal units.

H=Total heat in thermal units from 32° Fahrenheit per lb. of the steam.

$$\begin{array}{rclcrcl} 6 \cdot 2269425 & -\frac{2970}{T+375} & = & \text{Log. P.} \\ & & & & \\ \hline 2970 & & & & & \\ \hline 6 \cdot 2269425 - \text{Log. P} & & & & \\ \hline 4 \cdot 3129 & - \cdot 94 \text{ Log. P} & & & & \\ \hline V & & & & \\ \hline 2 \cdot 384 & & & & \\ \hline C & & & & \\ \hline 1 & & & & \\ \hline 1082 + \cdot 305T & & & \\ \hline \end{array}$$

Pressure per Square Inch from Mean At- mospheric Pressure.	Tempera- ture in Fahren- heit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per lb.	Latent Heat of Evaporation in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absolute Pressure per Square Inch.
						1	
- 14	90.4	28740	.002170	460.7	1051.1	1109.5	•7
- 13	120.3	12480	.004998	200.1	1030.3	1118.6	1.7
-12	137.5	8080	.007720	129.5	1018:3	1123.9	2.7
-11	149.8	6009	.01038	96.32	1009.7	1127.6	3.7
-10	159.7	4799	.01300	76.92	1002.8	1130.7	4.7
- 9	167.9	4003	.01558	64.17	997.0	1133.2	5.7
-8	174.9	3439	.01814	55.12	992.1	1135.3	6.7
- 7	181.1	3010	.02072	48.25	987.8	1137.2	7.7
-6	186.7	2690	.02319	43.12	983.9	1138.9	8.7
- 5	191.8	2428	.02568	38.93	980.3	1140.4	9.7
-4	196.4	2215	.02817	35.50	977.1	1141.9	10.7
- 3	200.7	2036	.03063	32.64	974.0	1143.2	11.7
-2	204.7	1886	.03307	30.24	971.2	1144.4	12.7
-1	208.5	1755	.03553	28.14	968.5	1145.5	13.7
Atmosphere.	212.0	1643	.03797	26.34	966.1	1146.6	14.7
1	215.3	1544	.04039	24.76	963.8	1147.6	15.7
2	218.5	1457	.04280	23.36	961.5	1148.6	16.7
3	221.5	1380	.04521	22.12	959.4	1149.5	17.7
4	224.4	1310	.04761	21.0	957.3	1150.4	18.7
5	227 1	1248	.05000	20.0	955.4	1151.2	19.7
6	229.8	1191	.05238	19.09	953.5	1152.0	20.7
7	232.3	1139	.05475	18.26	951.8	1152.8	21.7
8	234.7	1092	.05712	17.51	950.1	1153.5	22.7
9	237.1	1049	.05949	16.81	948.4	1154.3	23.7
10	239.4	1009	.06184	16.17	946.7	1155.0	24.7
11	241.6	971.8	.06419	15.28	945.2	1155.6	25.7
12	243.7	937.5	.06654	15.03	943.7	1156.3	26.7
13	245.8	905.7	.06888	14.52	942.2	1156.9	27.7
14	247.8	876.0	.07122	14.04	940.8	1157.5	28.7
15	249.7	818.2		13.60	939.4	1158.1	29.7
16	251.6	822.2	.07587	13.18	938.1	1158.7	30.7
1							

Pressure per Square Inch from Mean At- mospheric Pressure.	Temperature in Fahrenheit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per 1b.	Latent Heat of Evapora- tion in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absolute Pressure per Square Inch.
17	253.5	797.8	.07819	12.79	936.8	1159.3	31.7
18	255.3	774.9	.08050	12.42	935.5	1159.8	32.7
19	257.0	753.2	.08282	12.07	934 3	1160.3	33.7
20	258.7	732.8	.08513	11.75	933.1	1160.9	34.7
21	260.4	713.5	*08743	11.44	931.9	1161.4	35.7
22	262.0	695.2	.08973	11.14	930.7	1161.9	36.7
23	263.6	677.9	.09203	10.87	929.6	1162.3	37.7
24	265.2	661.4	.09433	10.60	928.4	1162.8	38.7
25	266.7	645.7	.09661	10.35	927.4	1163.3	39.7
26	268.2	630.8	.09890	10.11	926.3	1163.8	40.7
27	269.7	616.6	.1011	9.883	925.2	1164.2	41.7
28	271.1	603.0	1034	9.666	924.3	1164.6	42.7
29	272.6	590.0	1057	9.458	923.2	1165.1	43.7
30	273.9	577.6	1080	9.259	922.3	1165.5	44.7
31	275.3	565.7	1102	9.068	921.3	1165.9	45.7
32	276.7	554.3	1125	8.885	920.3	1166.3	46.7
33	278.0	543.4	1148	8.710	919.3	1166.7	47.7
34	279.3	532.9	1170	8.541	918.4	1167.1	48.7
35	280.5	522.8	1193	8.380	917.6	1167.5	49.7
36	281.8	513.1	1215	8.225	916.6	1167.9	50.7
37	283.0	503.8	1238	8.075	915.8	1168.3	51.7
38	284.2	494.8	1260	7.931	914.9	1168.6	52.7
39	285.4	486.1	1283	7.792	914.1	1169.0	53.7
40	286.6	477 7 469·7	·1305 ·1328	7·658 7·529	913·2 912·3	1169·4 1169·7	54.7
41 42	287.8	•	1328	7.529	912.3	1170.1	55·7 56·7
42	288.9	461.9	1373	7.283	911.6		57.7
43	290·1 291·2	454·4 447·1		7.167	909.9	1170.4	
44	291.2	447.1	·1395 ·1417	7.054	909 9	1170 8	58·7 59·7
46	293.4	433.2	1417	6.944	908.3	1171.4	60.7
47	294.4	426.6	1440	6.839	907.6	1171.7	61.7
	201 1	120 0	1102	0 000	007 0	11/1/	017

Pressure per Square Inch from Mean At- mospheric Pressure.	Temperature in Fahrenheit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per lb.	Latent Heat of Evapora- tion in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absoluted Pressure per Square Inch.
48	295.5	420.2	·1484	6.736	906.8	1172.1	62.7
49	296.5	414.1	·1506	6.636	906.1	1172.4	63.7
50	297.5	408.0	•1529	6.540	905.4	1172.7	64.7
51	298.6	402.2	1551	6.446	904.6	1173.0	65.7
52 53	299.6	396.5	·1573 ·1595	6.356	903.9	1173·3 1173·6	66.7
54	301.5	385.6	1617	6.181	903 2	1173 0	68.7
55	302.5	380.4	1639	6.098	901.8	1174.2	69.7
56	303.5	375.4	1661	6.017	901.1	1174.5	70.7
57	304.4	370.4	.1684	5.938	900.5	1174.8	71.7
58	305.3	365.6	.1706	5.861	899.8	1175.1	72.7
59	306.3	361.0	•1728	5.786	899.1	1175.4	73.7
60	307.2	356.4	·1750	5.714	898.5	1175.6	74.7
61	308.1	352.0	·1772	5.643	897.8	1175.9	75.7
62	309.0	347.7	.1794	5.573	897.2	1176.2	76.7
63	309.9	343.5	•1816	5.206	896.5	1176.5	77.7
64	310.8	339.4	·1838	5.440	895.9	1176.7	78.7
65 66	311·6 312·5	335·4 331·5	*1860 *1882	5·376 5·313	895·3 894·7	1177.0	79.7
67	313.3	327.7	1882	5.252	894.7	1177·3 1177·5	80·7 81·7
68	314.2	323.9	1926	5.192	893.4	1177.8	82.7
69	315.0	320.3	1947	5.134	892.9	1178.0	83.7
70	315.8	316.7	1969	5.077	892.3	1178.3	84.7
71	316.7	313.3	·1991	5.021	891.6	1178.5	85.7
72	317.5	309.9	.2013	4.967	891.1	1178.8	86.7
73	318.3	306.5	•2035	4.914	890.5	1179.0	87.7
74	319.1	303.3	2056	4.862	889.9	1179.3	88.7
75	319.9	300.1	•2078	4.811	889.3	1179.5	89.7
76	320.7	297.0	.2100	4.761	888.8	1179.8	90.7
77 78	321.4	294.0	2122	4.712	888.3	1180.0	91.7
/0	322.2	291.0	*2144	4.664	887.7	1180.2	92.7

Pressure per Square Inch from Mean At- mospheric Pressure,	Tempera- ture in Fahren- heit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per 1b.	Latent Heat of Evapora- tion in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absolute Pressure per Square Inch.
100.			10.				100.
79 80	323·0 323·8	288·0 285·2	·2165 ·2187	4.617 4.572	887·1 886·5	1180·5 1180·7	93·7 94·7
81	324.5	282.4	.2209	4.527	886.0	1180.9	95.7
82	325.2	279.6	•2230	4.483	885.5	1181.1	96.7
83	326.0	276.9	.2252	4.439	885.0	1181.4	97.7
84	326.7	274.3	.2274	4.397	884.4	1181.6	98.7
85	327.4	271.7	•2295	4.356	883.9	1181.8	99.7
86	328.1	269.2	2317	4.315	883.4	1182.0	100.7
87	328.9	266.7	.2339	4.275	882.9	1182.3	101.7
88	329.6	264.3	·2360	4.236	882.4	1182.5	102.7
89	330.3	261.9	.2382	4.198	881.9	1182.7	103.7
90	331.0	259.5	.2404	4.160	881.3	1182.9	104.7
91	331.7	257.2	.2425	4.123	880.8	1183.1	105.7
92	332.3	254.9	.2447	4.087	880.4	1183.3	106.7
93	333.0	252.5	.2468	4.051	879.9	1183.5	107.7
94	333.7	250.5	.2490	4.016	879.4	1183.7	108.7
95	334.4	248.4	.2511	3.981	878.9	1183.9	109.7
96	335.1	246.3	•2533	3.948	878.4	1184.2	110.7
97	335.7	244.2	2554	3.914	878.0	1184.3	111.7
98	336.4	242.2	2576	3.882	877.4	1184.6	112.7
99	337.0	240.1	2598	3.849	877.0	1184.7	113.7
100	337.7	238.2	2619	3.818	976.5	1184.9	114.7
101 102	338.3	236.2	2640	3.787	876.1	1185.1	115.7
102	339.0	234.3	*2662 *2683	3.757	875.6	1185.3	116.7
103	339·6 340·2	232.5	2083	3.727	875·1 874·7	1185·5 1185·7	117·7 118·7
104	340.9	228.8	2704	3.668	874.2	1185.9	119.7
105	340.9	228.8	2726	3.639	873.8	1186.1	120.7
107	342.1	225.1	2769	3.611	873.3	1186.3	121.7
108	342.7	223.6	2799	3.584	872.9	1186.5	122.7
109	343.3	221.9	2811	3.556	872.5	1186.7	123.7
100	349 9	221 0	2011	3 000	3,20	11001	10,

Pressure per Square Inch from Mean At- mospheric Pressure.	Tempera- ture ir Fahret heit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per lb.	Latent Heat of Evapora- tion in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absolute Pressure per Squarė Inch.
110	343.9	220.1	•2833	3.530	872.0	1186.8	124.7
111	344.5	218.5	2854	3.503	871.6	1187.0	125.7
112	345.1	216.9	2875	3.477	871.2	1187.2	126.7
113	345.7	215.3	2897	3.452	870.7	1187.4	127.7
114	346.3	213.7	2918	3.426	870.3	1187.6	128.7
115	346.9	212.2	2939	3.401	869.9	1187.8	129.7
116	347.5	210.7	.2961	3.377	869.4	1187.9	130.7
117	348.1	209.2	•2982	3.353	869.0	1188.1	131.7
118	348.7	207.7	.3003	3.329	868.6	1188.3	132.7
119	349.2	206.2	*3025	3.306	868.2	1188.5	133.7
120	349.8	204.8	*3046	3.283	867.8	1188.6	134.7
121	350.4	203.4	.3067	3.260	867:3	1188.8	135.7
122	351.0	202.0	.3088	3.237	866.9	1189.0	136.7
123	351.5	200.6	·3110	3.215	866.5	1189.2	137.7
124	352.1	199.2	*3131	3.194	866.1	1189.3	138.7
125	352.6	197.9	.3152	3.172	865.7	1189.5	139.7
126	353.2	196.6	*3173	3.151	865.3	1189.7	140.7
127	353.7	195.3	*3194	3.130	864.9	1189.8	141.7
128	354.3	194.0	·3216	3.109	864.5	1190.0	142.7
129	354.8	192.7	•3237	3.089	864.1	1190.2	143.7
130	355.4	191.5	*3258	3.069	863.7	1190.3	144.7
131	355.9	190.2	•3279	3.049	863.3	1190.5	145.7
132	356.4	189.0	.3300	3.030	863.0	1190.7	146.7
133	357.0	187.8	*3321	3.010	862.5	1190.8	147.7
134	357.5	186.6	*3343	2.991	862.2	1191.0	148.7
135	358.0	185.4	*3364	2.973	861.8	1191.1	149.7
136	358.5	184.3	3385	2.954	861.4	1191.3	150.7
137 138	359·1 359·6	182·9 182·0	*3406 *3427	2.936 2.918	861.0 860.6	1191·5 1191·6	151·7 152·7
139	360.1	182.0	*3448	2.918	860.3	1191.8	153.7
140	360.6	179.8	3469	2.882	859.9	1191.9	154.7
110	300 0	1100	0100	2 002	300 0	1101 0	1011

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pressure per Square Inch from Mean At- mospheric Pressure.	Tempera- ture in Fahren- heit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per lb.	Latent Heat of Evapora- tion in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absolute Pressure per Square Inch.
$ \begin{array}{ccccccccccccccccccccccccccccccc$	142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169	361·6 362·1 362·6 363·1 363·6 364·1 365·6 366·1 367·5 368·0 369·4 369·9 370·8 371·3 371·7 372·2 372·7 373·1 373·6 374·0 374·5	177-6 176-6 175-5 174-5 173-5 171-5 169-5 168-6 167-6 165-7 164-8 163-9 162-1 161-2 160-2 158-7 157-8 157-8 157-8 154-6 153-8 153-8 153-8	**3511 **3532 **3554 **2575 **3596 **3617 **3638 **3659 **3680 **3701 **3722 **3743 **3764 **3785 **3806 **3827 **3847 **3868 **3889 **3910 **3931 **3952 **3973 **3994 **4015 **4057 **4077	2·848 2·831 2·914 2·797 2·781 2·765 2·749 2·733 2·717 2·702 2·657 2·642 2·627 2·642 2·627 2·613 2·599 2·585 2·571 2·543 2·530 2·543 2·530 2·544 2·465 2·452	859·2 858·8 858·5 858·1 857·7 857·4 857·6 856·6 856·3 855·9 855·9 854·9 854·9 854·2 853·8 853·1 852·1 852·5 852·1 851·3 851·1 850·8 850·2 849·8	1192·2 1192·4 1192·5 1192·7 1192·8 1193·0 1193·3 1193·5 1193·6 1193·8 1194·0 1194·3 1194·5 1194·6 1194·8 1194·9 1195·0 1195·5 1195·6 1195·7 1195·6 1196·0 1196·0	156·7 157·7 158·7 160·7 160·7 161·7 162·7 163·7 164·7 166·7 167·7 170·7 171·7 172·7 174·7 175·7 178·7 178·7 180·7 181·7 182·7 182·7 183·7

Pressure per Square Inch from Mean At- mospheric Pressure.	Temperature in Fahrenheit Degrees.	Specific or Rela- tive Volume of the Steam.	Density or Weight of 1 Cubic Foot of the Steam.	Cubic Feet of the Steam per lb.	Latent Heat of Evaporation in Thermal Units per lb. of the Steam.	Total Heat in Ther- mal Units from 32° Fahrenheit per lb. of the Steam.	Absolute Pressure per Square Inch.
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186	375·8 376·2 376·7·1 377·5 378·0 378·4 378·8 379·7 380·1 380·5 381·4 381·8 382·2	150 7 149 9 149 2 148 4 147 7 147 0 146 3 145 5 144 8 144 1 143 5 142 8 142 1 141 4 140 8 140 1	'4140 '4161 '4182 '4203 '4223 '4224 '4265 '4286 '4307 '4327 '4348 '4369 '4390 '4410 '4481 '4452	2:415 2:403 2:391 2:379 2:368 2:356 2:344 2:333 2:322 2:311 2:300 2:289 2:278 2:267 2:257 2:246	848.8 848.5 848.2 847.9 847.6 847.6 846.9 846.7 846.3 846.7 845.4 845.7 845.4 844.8 844.8	1196·6 1196·8 1197·0 1197·1 1197·2 1197·4 1197·5 1197·6 1197·9 1198·0 1198·3 1198·4 1198·5	186-7 187-7 188-7 189-7 190-7 191-7 193-7 194-7 195-7 196-7 197-7 198-7 200-7 201-7
188 189 190 191 192 193 194 195 196 197 198 199 200	382.6 383.0 383.5 383.9 384.7 385.1 385.5 385.9 386.7 387.1 387.5	139·5 138·8 138·2 137·5 136·9 136·3 135·7 135·1 134·5 133·3 132·7 132·1	*4473 *4493 *4514 *4535 *4556 *4576 *4597 *4618 *4639 *4659 *4680 *4701 *4721	2·236 2·225 2·215 2·205 2·195 2·185 2·165 2·166 2·146 2·146 2·137 2·127 2·118	843 · 9 843 · 6 843 · 2 842 · 9 842 · 6 842 · 3 842 · 0 841 · 8 841 · 5 841 · 2 840 · 9 840 · 6 840 · 3	1198·6 1198·8 1198·9 1199·0 1199·2 1199·3 1199·4 1199·5 1199·6 1199·8 1149·9 1200·0	202·7 203·7 204·7 205·7 206·7 207·7 208·7 209·7 210·7 211·7 212·7 213·7 214·7

FLAT SURFACES.
Pressures, Pitches, and Surfaces.
Iron Plate 4 inch thick.

TARLE NO. 225.

-							_					
	*	Sur- face	sq. ins.	:	:	:	:		:	:	:	*
		Pitch	ins.	:	:	:	:	:	:	:	:	I
TABLE TO: 220.	*1	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	H*
700	H	Pitch	ins.	:	:	:	:	:	:	:	:	H
	*	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	ď*
	*5	Pitch	ins.	:	:	:	:	:	:	:	:	9
	F*	Sur- face		12.2	:	:	:	:	•	:	:	F*
	F	Pitch	ins.	3.20	:	:	:	:	:	:	:	F
1011	**	Sur- face	sq. ins.	14.5	14.1	13.7	13.3	12.9	12.6		:	E*
4 1	포	Pitch	ins.	3.81	3.75	3.70	3.65	3.60	3.55		:	E
The state of the s	*	Sur- face	100							13.8		D*
	D	Pitch								3.72		D
	*	Sur- face								15.3		*5
	*0	Pitch	ins.	4.21	4.16	4.11	4.07	4.02	3.97	3.92	3.87	0
	B*	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	B*
	В	Pitch	ins.	:	:	:	:	:	:	:	:	E
	A*	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	*
	4	Pitch	ins.	:	:	:	:	:	:	:	:	7
	sure, in.	Press	lbs.	165	170	175	180	185	190	195	200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

Pressures, Pitches, and Surfaces. FLAT SURFACES.

Iron Plate 30 inch thick.

		-	-		_	_	-	_	_	_	_	
	*	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	*
226.	-	Pitch	ins.	:	:	:	:	:	:	:	:	I
TABLE No. 226.	*	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	*
TABL	*H	Pitch	ins.	:	:	:	:	:	:	:	:	*H
	*	Sur- face		13.2	12.8	12.4	:	:	:	:	:	*
	*5	Pitch	ins.	3.63	3.58	3.52	:	:	:	:	:	*5
	*	Sur- face		14.8	14.4	14.0	13.6		12.8		12.5	*
ick.	***	Pitch	ins.	3.00	3.79	3.74	3.69	3.64	3.59	3.54	3.20	F.*
Iron Plate 32 inch thick.	*3	Sur- face	sq. ins.		16.8		16.1	9.91	15.5	14.8	14.5	*
e 32 i	田田	Pitch	ins.	4.16	4.11	4.06	4.01	3.96	3.91	3.86	3.81	*3
n Plat	D*	Sur- face				18	17.7	17.3		9.91	16.3	*
Iro	D	Pitch	ins.	4.37	4.31	4.26	4.21	4.16	4.12	4.07	4.03	D*
	*	Sur- face			50.4	19.9	19.4	18.9	18.5	18.1	17.2	*
	*0	Pitch	ins.	80.4	4.52	94.4	4.41	4.35	4.30	4.56	4.21	*
	*	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	*
	B*	Pitch	ins.	:	:	:	:	:	:	:	:	B*
	*	Sur- face	sq.ins.	:	:	:	:	;	:	:	:	A*
	V	Pitch	ins.	:	:	:	:	:	:	:	:	V
	sure 1. in.	Press	lbs.	165	170	175	180	185	190	195	200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate 15 inch thick.

TABLE No. 227.

			_				_		_		
*	Sur- face	sq. ins.	:	:	•	:	:	:	:	:	*
	Pitch	ins.	:	:	:	:	:	:	:	:	-
H	Sur- face	sq. ins.	14.1	13.7	13.3	12.9	12.6	12.2	:	:	H
H	Pitch	ins.	3.76	3.70	3.65	3.60	3.55	3.50	:	:	H
*	Sur- face			15.2		14.4	14.0		13.2	12.9	*
*5	Pitch	ins.	96.8			8.79			3.64		*5
平*	Sur- face			16.9	16.5				14.9	14.5	*
F	Pitch	ins.	4.16	4.11	4.07	4.05	3.97	3.91	3.86	3.81	*
*	Sur- face	sd. ins.	20.1	19.5	19.0	18.6	18.1	17.7	17.4	12.0	*
*	Pitch	ins.	4.48	4.42	4.37	4.31	4.26	4.21	4.17	4.13	E*
*	Sur- face	sq. ins.	22.4	21.8	21.2	20.7	20.1	19.7	19.2	18.8	*0
*O	Pitch	ins.	4.14	4.67	4.61	4.55	4.49	4.44	4.38	4.34	A
*	Sur- face	sq. ins.	6. 77	24.5	23.2	25.8	25.2	21.7	21.1	20.7	*
*5	Pitch	ins.	4.99	4.92	4.85	4.78	4.72	4.66	4.60	4.55	*0
*	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	B*
B*	Pitch	ins.	:	:	:	:	:	:	:	:	B
*	Sur- face	sq.ins.	:	:	:	:	:	:	:	:	A*
A	Pitch	ins.	:	:	:	:	:	:	:	:	A
oure ni in.	Pres	lbs.	691	170	175	180	185	190	195	200	

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate 32 inch thick.

TABLE NO. 228.

_				_	_	_	_	_	_	_			-
	*I	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	*	
	I	Pitch	ins.	:	:	:	:	:	:	:	:	I	
	*H	Sur- face	sq. ins.	16.2	16.1	9.91	15.2	14.7	14.4	14	13.6	*H	
	H	Pitch	ins.	4.06	4.01	3.95	3.90	3.84	3.79	3.74	3.70	H	
	*	Sur- face	sq. i	17	17.5	17		16.3	16.0		15	*5	
	*5	Pitch	ins.	4.54	4.19	4.14	4.09	4.04	4.00	3.95	3.30	5	
	**	Sur- face	sq. ins.	19.6	19.4	18.9	18.4	18.0	9.21	17.2	16	**	
	H	Pitch	ins.	97.7	4.40	4.35	4.29	4.34	4.50	91.1	4.11	H	
	*	Sur- face	sq ins.	23.4	22.7	22.1			20.4	19.9	19.5	***	
0 0	E*	Pitch	ins.	4.84	4.77	4.70	4.64	4.58	4.52	4.47	4.42	A	
	D*	Sur- face	sq. ins.	26.3	25.5	24.8	24.1	23.4	22.8	22.3	21.7	*0	
	D	Pitch	ins.	5.13	2.06	4.98			4.78	4.72	4.66	Ω	
	*0	Sur- face	sq. ins.	29.2	58.6	27.7	56.9	26.1		24.7	24.1	*5	
	O	Pitch	ins.	5.43	5.35	5.26	5.18	5.11	2.04	4.97	4.91	0	
	B*	Sur- face	sd. ins	:	:	:	:	:	:	:	:	B*	
	B	Pitch	ins.	:	:	:	:	:	:	:	:	B	
	A*	Sur- face	sq. ins.	:	:	:	:	:	;	:	:	A*	
		Pitch	ins.	:	:	:		:	:	:	:	7	
	oure, in.	Press	lbs.	165	170	175	180	185	190	195	200		1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

Pressures, Pitches, and Surfaces. FLAT SURFACES.

_				_	_	_	_	_		_			
229.	*I	Pitch Sur-	S	3.58 12.8	3.52 12.4		:	:	:	:	:	*I	
TABLE No. 229.	*H	Pitch Sur-			4.26 18.1	4.21 17.7				4.03 16.2		*H	
	ď*	Pitch Sur-	ins. sq. ins.		4.46 19.9	4.41 19.4	4.35 18.9	4.30 18.5	4.25 18.1	4.20 17.7	4.16 17.3	*5	
ck.	*1	Pitch Sur- face	ins. sq. ins.			4.65 21.6	4.59 21.0	4.53 20.5	4.48 20.0	4.42 19.6	4.38 19.1	**	
Iron Plate 3 inch thick.	E*	Pitch Sur-	ins. sq. ins.	5.22 27.2	5.14 26.4	5.06 25.6	4.99 24.9	4.92 24.2	4.85 23.5		4.73 22.4	E*	
Iron Pla	D*	Pitch Sur-	ins.	0.18 99.9	2.47	5.39	5.30 28.1	5.23	5.15		20.9	D*	
	*2	Pitch Sur-	ins. sq. ins.	5.91 34.9	5.81 33.7	5.71 32.6	5.62 31.6	5.54 30.6	5.45 29.7	5.38 28.9	5.30 28.1	*5	
	B*	Pitch Sur-	ins. sq. ins.	:	:	:	:	:	:	:	:	B*	
	A*	Pitch Sur-	ins. sq.ins.	:	:	:	:	:	:	:	:	A*	
	eure ni .n.	Press	lbs.	165	170	175	180	185	190	195	200		1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate 13 inch thick.

TABLE No. 230.

	*1	Sur- face	sq. ins. 14.7 113.8 113.5 113.7 112.7 112.4	*
		Pitch	ins. 8:83 8:72 8:72 8:72 8:57 8:57 8:57	
١	*	Snr- face	sq. ins. 21.1 20.5 20.0 19.5 19.0 18.6 18.2 17.8	*
	*H	Pitch	ins. 4.59 4.53 4.47 4.41 4.31 4.26 4.22	*H
	G *	Sur- face	sq. ins. 23.3 22.7 22.0 21.5 20.9 20.4 119.9	*5
	9	Pitch	ins. 4.83 4.76 4.70 4.63 4.57 4.57 4.41	5
	F*	Sur- face	26.3 25.5 24.8 24.1 23.4 22.8 22.8 21.7	F.*
	F	Pitch	ins. 5 13 5 05 4 98 4 98 4 78 4 72 4 66	H
	E*	Sur- face	sq. ins. 31.7 30.6 29.7 28.7 27.9 27.1 26.4	E*
2	E	Pitch	ins. 5 .53 5 .28 5 .28 5 .21 5 .07	E
	D*	Sur- face	sq. ins. 350.0 350.0 320.0 32.8 31.8 30.8 20.0	*
	D	Pitch	ins. 6.03 5.92 5.73 5.73 5.64 5.40	*Q
	*5	Sur- face	sq. ins. 39.0 38.1 37.1 35.9 34.8 33.8 32.8 32.8	*5
	O	Pitch	ins. 6·33 6·25 6·17 6·09 5·99 5·90 5·73	0
	B*	Sur- face	sq. ins.	B*
	B	Pitch	ins.	
	* V	Sur. face	sq.ins.	A*
		Pitch	ths.	A
	oure,	Press per sq	165 170 175 175 180 185 195 195 200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate Ta inch thick.

TABLE No. 231.

						11	7 7 7	tion trace 16 men amon		· ·				TADI	TABLE ING. 201.	.TOT	
	* V		B*	*0		D	*	压*		¥.H	*	*5	*	*H	*	*I	
Press per sq	Pitch Sur-	Pitch	Sur- face	Pitch	Sur- face	Pitch	Sur- face	Pitch	Sur- face	Pitch	Sur- face	Pitch	Sur- face	Pitch	Sur- face	Pitch	Sur- face
lbs. 165	ins. sq.ins.	s. ins.	sq. ins.	ins. s	sq. ins.	ins. 6.39	COD.		sq. ins.	ins. 5.50		ins. 5.16		ins. 4.89		ins. s	sq. ins.
170	::	::	::		42.5				34.3		28.4	5.01		4.75		3.97	15.7
180	::	::	::	6.44	41.5		0.98	5.49	32.5	5.72	27.5	4.87	24.3	4.69	21.9	3.92	15.3
190	: :	: :	: :		9.68	5 5 5 5 5 5 5 5 5	35.8		31 ·2 30 ·3		26.0	4.80	23.1	4.57	20.9	3.81	14.5
200	:	:	:		38.0		23.7		29.2	4.97	24.7	4.69	21.9	4.46	19.9	3.71	13.8
	V	_	B	Ċ		D*	*	* E		* 14	*	*5	*	H	*	*I	
-																	

FLAT SURFACES.
Pressures, Pitches, and Surfaces.
The Date 15 inch thick

.202	*1	Pitch Sur-	ms. sq. ins. 4 · 29 18 · 3 4 · 29 18 · 3 4 · 29 17 · 9 4 · 18 17 · 5 4 · 09 16 · 7 4 · 04 16 · 3 · 95 15 · 6	*1	f
1ABLE INO. 25Z.	H*	Pitch Surface	ins. sq. ins. 57.1 26.2 27.1 26.2 5.05 4.97 24.7 4.84 23.4 4.78 22.8 4.72 22.8	H*	. L J
	5	Pitch Sur-	ins. sq. ins. 57-51 30.4 5 5.42 29.44 28.7 5 5.26 27.6 5 7.18 26.8 5 7.11 26.1 5 6.4 4 97 24.7	G	1.2.1. 41
niek.	*	Pitch Sur-	ins. 89, ins. 55 (18) 25 (18) 25 (18) 25 (18) 25 (19)	F*	C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Iron Flate 32 men tinek.	*	Pitch Sur-	ms. 64.0 41.0 6.32 40.0 6.24 39.0 6.09 37.1 6.00 36.0 5.90 34.9 5.82 33.8	E*	
Iron Fla	D*	Pitch Sur-	ins. 8q. ins. 6.73 45.4 6.65 44.2 6.57 43.1 6.49 42.1 6.34 40.2 6.27 39.3 6.20 38.5	D*	-
	*0	Pitch Sur-	ms. 7.05 49.7 6.96 48.5 6.96 48.5 6.79 46.1 6.71 45.0 6.63 44.0 6.56 43.0 6.49 42.1	*	
	B*	Pitch Sur-	sq. ins.	B*	
	A*	Pitch Sur-	sq. ims.	*V	
	nre,	Press per sq	165 165 170 175 180 185 190 195 200		

FLAT SURFACES.
Pressures, Pitches, and Surfaces.
Iron Plate 4 inch thick.

	-	-	The second secon		_
	*1	h Sur- face	sq. ins. 20 30 30 19 30 19 30 19 30 19 30 19 30 19 30 19 30 10 10 10 10 10 10 10 10 10 10 10 10 10	*1	
. 233		Pitch	ins. 4.45 4.39 4.38 4.28 4.24 4.19 4.15		
TABLE No. 233.	*H	Sur- face	sq. ins. 30.77 28.77 28.77 27.9 27.1 26.3 25.6 25.0	*H	
TAB	I	Pitch	113. 12.20 12.20 13.20 13.00 10.00	ш	
	*5	Sur- face	sq. ins. 33.4 32.3 31.3 30.4 29.5 28.6	*5	
	9	Pitch	ins. 5.88 5.60 5.60 5.51 5.51 5.28	9	
	*	Sur- face	89. ims. 38.1 38.1 35.9 34.7 33.7 32.7 32.7 31.7	*	
ick.	*1	Pitch	ins. 6.25 6.17 6.09 5.99 5.89 5.80 5.72 5.64	**	
nch th	*3	Sur- face	8q. ins. 45.2 45.2 44.1 44.1 44.1 44.1 6 43.0 41.0 6 40.1 8 40.1 8 39.2 8 38.4	*	
rte 🛂 i	田田	Pitch	ins. 6.72 6.64 6.56 6.48 6.40 6.33 6.26 6.19	*	
Iron Plate 1 inch thick.	*	Sur- face	89. ins. 48.8 47.6 446.5 444.3 42.4 42.4	*	
I	D*	Pitch	ins. 7 :08 6 :99 6 :99 6 :73 6 :58 6 6 6 6 6 6 5 1	D*	
	*	Sur- face	8q. ins. 555.0 555.0 52.2 51.0 49.7 48.6 47.5	*	
	*0	Pitch	ins. 7.42 7.32 7.23 7.14 7.05 6.97 6.89	*0	
	B*	Sur- face	sq. ins.	*	
	B	Pitch	ins.	B*	
	*	Sur- face	sq. ins. 84.5 82.2 	*	
	A	Pitch	ins. 9·19 9·06 	A*	
	oure,	Press per sq	165 175 175 185 185 190 195 200		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

FLAT SURFACES.
Pressures, Pitches, and Surfaces.
Tron Plate 17, inch thick

TABLE No 934

.T.07	*1	Pitch Sur-	ins. 8q. ins. 4.74 22.5 4.68 21.8 4.61 21.3 4.55 20.7 4.49 19.7 4.39 19.2 4.34 18.8	*1
TABLE IVO. 201.	H*	Pitch Sur-	has. 8q. ins. 57.9 33.5 57.9 33.5 57.0 32.4 5.60 31.4 5.62 30.5 5.44 29.6 5.89 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.80	H*
	*5	Pitch Sur-	has. sq. ins. 6-23 38 8 6 615 37 8 6 60 86 36 7 5 5 66 34 3 5 5 6 6 3 5 6 6 6 5 7 7 33 3 5 6 6 9 32 3 5 6 6 9 31 4	*5
HCh.	F.*	Pitch Sur- face	ms. sq. ins. 6.55 42.9 6.46 41.8 6.38 40.8 6.31 39.8 6.17 38.0 6.09 37.1 6.00 36.0	*
TION I lake 32 INCH MICH.	*	Pitch Sur-	ins. sq. ins. 7 .05 49 .7 6 .96 48 .4 6 .87 47 .2 6 .79 46 .1 6 .71 45 .0 6 .6 6 .8 44 .0 6 .6 6 48 .0 6 .48 .1	*3
11011 1 19	D*	Pitch Surface	ms. sq. ms. 7.43 55.2 7.33 53.7 7.15 51.1 7.06 6.98 48.7 6.90 47.6 6.82 46.6	D*
	*0	Pitch Sur-	ins. Sq. ins. 7.79 60.6 7.68 59.0 7.58 57.5 7.49 56.1 7.40 54.7 7.31 53.5 7.23 52.2 7.15 51.1	*5
	B*	Pitch Surface	9.38 88.0 9.25 85.6 9.13 83.3 9.01 81.2	B*
	A	Pitch Sur-	9.67 93.59 9.40 88.5 9.28 86.2 9.16 84.0 9.05 82.0	A
	sure q. in.	Pres	165 165 170 175 180 180 190 195 200	

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{9}{16}$ inch thick.

TABLE No. 235.

-	_	-		_	-
	1	Pitch Sur-	ins. sq. ins. 50 25 0 25 0 4 92 24 2 4 78 22 8 4 72 22 2 4 4 6 21 7 4 6 0 21 1 4 55 20 7	1	
	H	Pitch Sur- P	6 '22 38'7 6 (12 38'7 6 (14 37'7 6 (15 38'7 5 (15 38'7 5 (15 38'7 5 (15 38'7 5 (15 38'2	H	
	5	Pitch Sur- F	6.50 42.3 6.42 41.2 6.34 40.2 6.34 40.2 6.27 39.3 6.20 38.4 6.13 37.5 6.04 36.4 5.95 35.4	ď	
	4	Pitch Sur-	ins. sq. ins. 67. ins. 67. 46.9 6.76 445.7 6.75 44.5 6.51 42.4 6.44 41.5 6.80 89.7	F	
7.0	E*	Pitch Sur-	ins. sq. ins. 7.38 54.4 7.28 53.0 7.10 51.4 7.10 51.4 7.01 49.2 6.93 48.1 6.85 47.0 6.78 46.0	E*	
	D*	Pitch Sur-	ms. sq. ins. 7.78 60.5 7.67 58.9 7.75 7.77 7.79 7.49 54.6 7.29 54.6 7.22 52.1 7.14 51.0	D*	
	*5	Pitch Sur- face	ins. sq. ins. 87 ins.	C**	
	B*	Pitch Surface	ms. sq. ins. 9°E4 96°9 9°T0 94°2 9°T5 91°7 9°E3 87°0 9°21 84°9 9°10 82°9 9°10 82°9	B*	
	* V	Pitch Sur-	ins. Sq. ins. 10.14 102.9 10.00 100.0 9.87 97 4 94.8 9.61 92.4 94.8 99.2 9.38 88.0 9.27 86.0	A*	
	oure,	Press per sq	165 165 170 175 180 185 190 195		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

Pressures, Pitches, and Surfaces. FLAT SURFACES.

_				
236.	*I	Pitch Sur-	ins. 57. ins	1*
TABLE NO.	H^*	Pitch Sur-	648 420 648 440 632 400 632 400 635 390 618 381 610 372 601 361	H*
	*5	Pitch Surface	ins. sq. ins. 6 79 46 0 6 70 44 9 6 61 43 8 6 53 42 7 6 8 4 1 7 6 8 6 31 89 9 6 25 89 0	*5
thick.	下*	Pitch Sur-	ins. 8q. ins. 7.14 51.1.7.05 49.7 6.96 48.5 6.88 47.3 6.72 46.2 6.72 45.1 6.64 44.1 6.65 43.2	F*
32 inch	E*	Pitch Sur-	ins. sq. ins. 7.71 59.4 7.71 59.4 7.60 57.8 7.41 55.0 7.32 53.6 7.24 52.4 7.15 51.2	E*
Iron Plate	D*	Pitch Sur-	ins. sq. ins. 8 13 66 1 8 02 64 3 7 91 62 7 7 81 61 1 7 72 59 6 7 54 56 8 7 45 55 6	D*
	*0	Pitch Sur-	ms. Sq. ins. 84. ins. 84. ins. 8. 25. 72.8 8.20 67.0 8.20 67.5 8.10 65.5 8.00 64.0 7.90 62.5 7.81 61.1	C**
	B*	Pitch Sur-	ms. sq. ins. 10°30 106°2°10°16 103°2°10°5°2°10°5°3°3°3°3°3°3°3°3°3°3°3°3°3°3°3°3°3°3°	B*
	4	Pitch Sur-	ins. Sq. ins. 10.62 112:9 10.47 109:7 10:33 106:8 10:19 104:0 10:06 101:3 9:94 98:8 9:82 96:4 9:70 94:2	N
		Pres	165 170 175 175 180 185 190 195 200	

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{5}{6}$ inch thick.

TABLE No 927

_		-		
401.	*I	Pitch Sur-	ins. 50. ins. 50. ins. 5.53 30. 50. 50. 44 29. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50	*1
TABLE ING. 401.	H*	Pitch Sur-	ins. 8q. ins. 6.75 45°6 666 44°4 6°58 43°3 6°50 42°3 6°50 42°3 6°50 6°35 40°3 6°35 40°3 6°38 39°5 6°31 38°6	H*
	Ğ*	Pitch Sur-	ins. sq. ins. 7.07 50.0 6.97 48.7 6.80 47.4 6.50 46.3 6.72 44.2 6.65 44.2 6.65 42.3 6.50 42.8	G*
HOW.	F*	Pitch Sur-	17.45 55.5 7.45 55.5 7.25 54.0 7.16 59.0 7.08 50.1 6.99 48.9 6.92 47.8 6.84 46.8	F*
non riace 8 men thick.	E*	Pitch Sur-	ins. 89. ins. 89. ins. 8.04 64.6 7.93 62.9 7.73 59.7 7.63 58.3 7.64 56.9 7.46 55.6	E*
11011	D*	Pitch Sur-	ins. 89. ins. 848 72.0 8.37 70.0 8.26 68.2 8.15 66.5 8.05 63.8 7.95 63.8 7.76 61.8	D*
	*5	Pitch Sur-	ms. 8q. ms. 8°90 79°3 8°78 77°1 8°76 73°1 8°45 71°4 8°45 71°4 8°34 69°6 8°25 68°0 8°15 68°0	*2
	B*	Pitch Sur-	ins. sq. ins. 10 · 77 116 · 0 10 · 62 112 · 7 110 · 47 109 · 7 10 · 33 106 · 8 10 · 20 104 · 1 10 · 70 104 · 1 10 · 70 104 · 1 10 · 70 104 · 1 10 · 70 104 · 1 10 · 70 104 · 1 10 · 70 104 · 1 10 · 70 104 · 1 10 · 70 104 · 1 10 · 70 104 · 1 10 · 70 104 · 1 10 · 70 104 · 1 100 · 70 104 · 100 · 70 104 · 70 · 70 · 70 · 70 · 70 · 70 · 70 ·	B*
	A*	Pitch Sur-	ins. sq.ins. 11.10 123.3 10.95 119.8 10.84 117.6 10.51 110.6 10.28 107.8 10.26 105.2 10.14 102.8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	sure ni .ni .	Press per sq	165 176 176 175 180 185 190 195 200	

FLAT SURFACES.
Pressures, Pitches, and Surfaces.

-					_
238.	*1	Pitch Sur-	ins. 89, ins. 57, ins. 57, ins. 57, ins. 57, ins. 55, 52, 31, 65, 52, 32, 65, 53, 54, 52, 52, 52, 52, 52, 52, 52, 53, 53, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54	*I	-
TABLE NO.	*H	Pitch Sur-	ms. xq. ms. 7 02 49 2 6 92 48 0 6 84 46 8 6 75 44 6 6 60 43 5 6 60 43 5 6 65 42 42 6	*H	
	*5	Pitch Sur-	ins. 89. ins. 7.35 54.0 7.25 52.6 7.16 51.3 7.07 50.0 6.91 47.7 6.83 46.6 6.75 45.6	*5	
lck.	F.*	Pitch Sur-	ins. 8q. ins. 7.75 60.1. 7.65 58.5 7.95 57.0 7.45 55.5 7.0 7.27 52.9 7.19 51.7 7.11 50.6	F.*	
s 32 inch thick.	*1	Pitch Sur-	lins. sq. ins. 83.7 70.1 8.26 68.2 8.15 66.4 8.04 64.7 7.95 63.1 7.85 61.6 7.76 60.2 7.67 58.9	· 图	
Iron Plate 32	D*	Pitch Sur-	ms. 89, ins. 88.84 78.13 8.71 76.9 8.60 74.0 8.49 72.1 8.38 70.3 8.28 68.6 8.18 67.0 8.99 65.5	\mathbb{D}^*	
	*0	Pitch Sur-	ins. sq. ms. 9°28 86°11 9°15 83°7 9°16 83°7 8°91 79°4 8°80 77°4 8°69 75°6 8°49 75°18 8°49 72°1	*0	
	13*	Pitch Surface	ins. sq. ins. 11.23,126.2 11.07,122.6 10.92,119.3 10.78,116.2 10.64,113.2 10.50,110.4 10.25,105.1	B*	
	* V	Pitch Sur-	ins. 8q.ins. 11.58 134.2 11*42.130.4 11.26 126.9 11.11 123.5 10.97 1120.3 10.70 114.5 10.57 111.8	A*	
		Press	165 170 170 170 180 180 190 195 200		

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{1}{16}$ inch thick.

TABLE No. 239.

*1	Pitch Sur-	ins. 89, ins. 6 11 37 44 6 00 36 00 36 00 5 59 34 8 5 581 33 7 5 5 7 2 32 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	*I
H	Sur- face	ms. sq. ins.] in 7.28 53.1 6 7.19 51.7 7.19 51.7 7.10 50.4 56 6.93 48.0 6 6.55 46.9 6 6.77 45.8 5 6.70 44.8 5	H
-	e Pitch		_
*5	Pitch Sur-	nns. Sq. ins. 7.64 58.3 7.53 56.8 7.44 55.3 7.24 54.0 7.17 51.4 7.17 51.4 7.09 50.3 7.01 49.2	*5
**	Pitch Surface	ins. sq. ins. 8.05 64.9 7.94 63.1 7.74 60.0 7.65 57.1 7.56 57.1 7.47 55.8 57.1 7.47 55.8 57.1 7.47 55.8 7.49 54.6	F*
压*	Pitch Sur-	ins. sq. ins. 87.0 75.8 8.70 75.8 8.34 7 71.8 8.36 68.2 8.16 66.6 8 8.0 65.0 7.97 8.16 66.6 8 8.0 65.0 7.97 63.6	*3
D*	Pitch Sur- face	ins. sq. ins. 99.19 84.5 9.19 84.5 82.2 82.2 82.2 87.2 76.0 8.72 76.0 8.51 74.2 8.51 70.8 8.41 70.8	D*
*0	Pitch Sur- face	ins. sq. ins. 9 65 93 22 95 22 90 77 9 9 27 86 09 9 15 83 88 89 9 04 81 7 88 98 93 78 88 88 88 88 88 88 88 88 88 88 98 98 98	*2
B*	Pitch Sur-	ms. sq. ms. 11.70 136.9 111.53 133.0 111.57 129.4 111.08 122.7 10.94 1119.6 110.8 1119.6 110.8 1119.6 110.67 114.0	B*
A*	Pitch Sur-	ins. sq.ins. 12.06 145 6 11.89 141 5 11.73 137 6 11.57 134 0 11.42 130 5 11.28 127 2 11.14 124 1	Y*
	Press	185. 175 175 185 185 190 195 200	

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate \$\frac{2}{3}\frac{2}{3}\text{ inch thick.}

TABLE No. 240.

-				
	1*	Pitch Sur-	ins. sq. ins. 6.33 40.0 6.25 39.0 6.17 38.1 6.09 37.1 5.99 35.9 5.90 34.8 5.91 33.8 5.73 32.8	*I
-	*H	Pitch Sur-	ins. 8q. ins. 7.55 57.1 7.45 55.6 7.36 54.2 7.27 52.8 7.18 51.6 7.10 50.4 7.02 49.2 6.94 48.1	H*
	5	Pitch Sur-	ins. 89, ins. 7-92 62-8 7-82 61-11 7-71 59-5 7-62 58-0 7-52 56-6 7-44 55-3 7-35 54-0 7-37 52-8	ď
	* 1	Pitch Sur-	ms. 89. ms. 8.36 69.9 8.24 68.0 8.14 66.2 8.03 64.5 7.93 63.0 7.74 61.5 7.75 60.0	F.*
70	E.*	Pitch Sur-	ins. 8q. ins. 9°04 8°91 79°5 8°80 77°4 8°88 77°4 8°87 73°5 8°47 71°7 8°37 70°1 8°37 70°1	E*
	D*	Pitch Sur.	ins. 9.55 9.42 9.42 9.75 9.75 9.05 8.94 8.94 8.95 8.95 8.95 8.96 8.97 8.97 8.97 8.96 8.96 8.96 8.97	D*
	*0	Pitch Surface	ins. Sq. ins. 10.03 100.09 10.	*5
	B*	Pitch Sur-	ins, sq. ins. 12.16.148.0 11.99.143.8 11.67.136.2 11.52.132.9 11.37.129.3 11.23.126.1 11.09.123.1	B*
	A*	Pitch Sur-	ins. sq. ins. 12.55 157.53 0 12.20 148.0 12.03 144.8 11.88 141.1 11.73 137.5 11.58 134.2 11.58 134.2	A*
		Press per sq	165 170 175 175 180 180 190 190 200	

FLAT SURFACES. Pressure, Pitches, and Surfaces. Iron Plate $\frac{3}{4}$ inch thick.

TABLE No. 241.

	-	-		-	_
	*1	Pitch Sur-	ms. sq. ins. 6.54 42.8 6.54 42.8 6.38 40.7 6.30 89.8 6.20 89.8 6.10 88.0 6.09 87.0 88.0 6.00 86.00 86.00 86.00	*1	
	H*	P.tch Surface	10.8. 84 ins. 7.72 59.6. 7.72 55.9. 7.43 55.9. 7.43 55.9. 7.48 55.9. 7.48 55.9. 7.48 55.9. 7.48 55.9. 7.18 51.6. 51.6. 51.6.	H*	
-	*5	Pitch Sur-	84.10 67.4 8.21 67.4 7.99 63.9 7.79 60.8 7.70 59.3 7.70 59.3 7.71 58.0	G*	
The second secon	*	Pitch Surface	ms. sq. ms. 88.66 75.11 8.55 73.11 8.43 71.11 8.42 67.6 8.12 66.0 8.03 64.5 7.94 63.0	下*	
Committee of the contract of t	*	Pitch Surface	ms. sq. ins. 9°37 87°9 9°24 85°5 9°12 83°2 9°10 81°0 81°0 87°8 77°1 8°58 75°3 8°58 75°3 8°58 75°3	*8	
	D*	Pitch Sur-	108. 8q. ins. 9°90 98°17 95°4 92°9 9°51 90°5 9°51 90°5 9°51 90°5 9°51 90°5 9°50 9°50 9°50 9°50 9°50 9°50 9°50	D*	
	*	Pitch Surface	ins. sq. ins. 10.41 108.4 10.26 105.4 10.12 102.5 9.99 99.8 97.8 97.8 97.8 97.8 9.51 99.52 9.51	*2	
	B*	Pitch Sur-	ins. so. ins. 12.63 159.6 12.451155.1 12.28 150.8 12.11 146.8 11.96 143.0 11.86 139.4 11.66 136.0 11.52 132.7	B*	
	A*	Pitch Sur-	ms. sq.ms. 13 03 169 8 12 84 165 0 12 67 160 5 12 49 156 2 12 33 152 1 12 17 148 3 12 02 144 6	A*	-
		Pressi per sq.	1bs. 165 170 175 175 180 190 190 195		-

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

ssures, litches, and surfaces. Iron Plate 32 inch thick.

TABLE No. 242.

_	-			
-	*1	Pitch Surface	ins. 8q. ins. 6.76 45.7 6.65 44.5 6.51 42.4 6.36 40.5 6.29 39.6 6.29 38.8	*1
	H*	Pitch Sur-	sq. ins. sq. ins. 81.0 65.6 77.99 62.3 77.79 60.6 7 60 57.77 7.51 56.4 7.51 56.4 7.51 56.4 7.51 56.4	*H
	¢*5	Pitch Sur-	ins. sq. ins. 88.50 72.2 8.38 70.3 8.27 68.4 8.17 66.7 7.97 63.5 7.87 62.0 7.79 63.5 7.70 7.70 7.70 7.70 7.70 7.70 7.70 7.	*5
	4	Pitch Sur-	ms. sq. ins. 89. ins. 8.97 80.5 78.3 8.65 74.3 76.2 8.51 72.4 8.41 70.7 8.31 69.0 8.21 67.5	下
	**	Pitch Sur-	ins. sq. ins. 97.1 94.3 9.58 91.7 9.45 89.3 9.22 87.0 9.21 84.8 9.09 82.7 8.98 8.98 8.98 78.9	E*
	D*	Pitch Sur-	ms. sq. ms. 10.26 105.4 10.12 102.4 9.98 97.7 9.85 97.1 9.78 94.6 92.3 94.9 90.1 9.38 88.0	D*
	*5	Pitch Sur-	ms. sq. ins. 10.79 116.4 110.64 1113.2 10.49 110.1 10.22 104.5 10.09 101.9 9.4 9.97 99.4 9.85 97.1	*5
	B*	Pitch Surface	sq. ms. ms. sq. ms. 182.7 13.10 171.6 177.5 12.91 166.8 172.6 12.75 163.0 12.56 157.8 163.4 12.24 149.8 155.5 12.09 146.1 151.8 11.94 142.6 142.6 142.	B*
	* 4	Pitch Sur face	ins. 13:35 13:35 13:32 12:96 12:96 12:47 12:32	*A
	ni.e	Press per sq	165 170 170 180 180 190 190 200	

FLAT SURFACES.

Pressures, Pitches, and Surfaces.

Tron. Plate 1.3 inch thick

TABLE No. 243.

	*	Sur- face	sq. ins. 48.75 448.75 46.3 445.2 444.1 42.1 42.1 41.2	*	
410	I	Pitch	ins. 6.98 6.89 6.89 6.72 6.72 6.54 6.54 6.42		
TABLE ING. 410.	*H	Sur- face	sq. ins. 70.1 68.2 66.4 64.8 63.2 61.7 60.2 58.9	H*	
TWD	Н	Pitch	ins. 88.26 88.26 88.15 88.05 77.95 77.76 77.76	H	
	*	Sur- face	sq. ins. 77.2 77.2 75.1 73.2 71.3 69.5 66.3 66.3 64.8	G*	
	*5	Pitch	ins. 88.779 8.557 8.557 8.557 8.344 8.348 8.248 8.248 8.05	9	
	F.*	Sur- face	sq. ins. 86.1 83.8 81.6 79.5 77.5 75.6 73.8 72.1	F*	
HCK.	H	Pitch	ms. 9.15 9.15 9.03 8.01 8.69 8.69 8.69 8.69 8.69	F	
16 men enter	*	Sur- face	sq. ims. 1011.0 98.2 95.6 93.1 90.7 88.5 86.4	*	
1 9 1	**	Pitch	ins. 10.05 9.91 9.77 9.52 9.40 9.29 9.18	E*	
ron riace	*	Sur- face	ins. sq. ins. 10.62112.9 10.47109.7 10.19104.0 10.06101.9 9.94 98.8 9.82 96.4 970 94.2	*	
IL	*Q	Pitch	ins. 10.62 10.47 10.33 10.19 10.06 9.94 9.82 9.82	D*	
	*	Sur- face	ins. sq. ins. 11.17 124.7 11.01 121.2 10.86 118.0 10.71 114.8 10.58 111.9 10.44 109.1 10.32 106.5 10.19 104.0	*	
	*5	Pitch	ins. 11.17 11.01 11.01 10.86 10.71 10.58 10.44 10.32	*5	
	B*	Sur- face		*	
	m m	Pitch	ins. 13.57 13.37 13.19 12.84 12.67 12.52	B*	
	A	Sur- face	196 196 196 185 175 175 166 166	A	
		Pitch		A	
	eni ni.	Press per sq	165 170 175 175 185 190 195 200		-

* The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{2}{3}\frac{T}{2}$ inch thick.

TABLE No. 244.

		-		
	*I	Pitch Sur-	ms. sq. ins. 7 20 51 8 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	*I
		Sur- face Pi	sq. ins. 74.8. 7 72.7 7 70.8 7 69.0 6 65.7 6 64.2 6 62.7 6	
	*H	Pitch	ins. 8.65 8.65 8.53 8.41 8.31 8.26 8.10 8.01 7.92	*H
	*5	Sur- face	sq. ins. 82.4 80.2 78.0 76.0 74.1 72.3 70.6 69.0	G *
	0	Pitch	ins. 9.08 8.95 8.83 8.72 8.61 8.50 8.40	
	F*	Sur- face	92. ins. 92.0 89.4 87.0 84.8 82.7 80.6 78.7	F*
	ř.	Pitch	ins. 9.59 9.46 9.33 9.21 9.09 8.98 8.87	H
	***	Sur- face	sq. ins. 104.9 104.9 102.1 99.4 96.9 94.5 92.2 90.1	压*
0.0	五	Pitch	ins. 10.39 10.24 10.10 9.97 9.84 9.72 9.60	H
	D*	Sur- face	sq. ins. 120°6 117°3 114°1 111°1 108°2 105°5 100°6	D*
		Pitch	ins. 10.98 10.83 10.68 10.54 10.40 10.27 10.27 10.03	I
	*2	Sur- face	ins. sq. ins. 11.55 133.4 11.38 129.6 11.23 126.1 11.08 122.8 10.93 119.6 10.80 116.6 110.80 116.6 110.8 110	C**
		Pitch		
	B*	Sur- face	sq. ins. 197.1 3191.5 1186.2 3181.2 3181.2 177.9 1171.9	B*
	1	Pitch	ins. 14.04 13.83 13.64 13.46 13.28 13.11 12.95 12.95	H
	*	Sur- face	8, 8q.ins, ins. 48,209 8 14 04 27,203 8 13 83 08,198 2 13 64 70 187 8 13 24 70 187 8 13 24 53 183 0 13 11 36 178 5 12 95 19 174 2 12 79	4*
		Pitch	<u></u>	7
		Press per sq	155 170 170 170 180 180 190 195 200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces.

Tron Plate I inch thick

TABLE NO 945

						17	TION TRACE	ne 8 men miler	HCK.				TOWT	ABDE NO.	4. C.	
	A		B	*5	*	D*	*	E*	*4	*	*5	*	*H	*	ī	*
Press per sq	Pitch S	Sur- face	h Sur- face	Pitch	Sur- face	Pitch	Sur- face	Pitch Sur-	Pitch	Sur- face	Pitch	Sur- face	Pitch	Sur- face	Pitch	Sur- face
165 165 170 175 180 185 190 195 200	ins. 14.97 14.75 14.35 113.98 113.80	sq.ins. ins. 224.1 14.51 21.7.7 14.80 211.7 14.10 206 0 13.91 200.5 13.72 195.4 13.55 1190.6 13.22	ins. 8q. ins. 14.51.210.5 14.70.204.5 13.91.193.5 13.72.188.4 18.55.183.6 13.85.183.6 13.85.183.6		ins. sq. ins. 11.93 142.3 11.76 138.3 11.60 134.5 11.44 131.0 11.29 127.6 11.10 121.2 11.0 11.0 11.0 11.0 11.0 11	ins. 11.34 11.18 11.03 10.88 10.74 10.61 10.48		ins. sq. ins. 10.72 115.0. 10.57 111.8 10.43 108.8 10.29 106.0 10.16 103.2 10.03 100.7 9.91 98.3 9.79 96.0	ins. 9.90 9.76 9.63 9.50 9.38 9.27 9.15	sq. ins. 98°0 95°3 92°7 90°3 88°0 85°9 83°8 81°9	ins. 9.37 9.11 9.00 8.88 8.77 8.67	sq. ins. 87.8 85.4 83.1 81.0 77.0 75.2 73.5	ins. 8°92 8°82 8°57 8°57 8°36 8°36 8°36 8°36	79.677.4 77.4 75.4 73.5 71.6 69.9 68.3	ins. 7.442 7.432 7.053 6.97 6.89 6.89	sq. ins. 555.0 553.6 510 449.7 46.5
	A *		B*	*5	*	D	*	正*	F*	*	*5	*	*H	*	H	

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate 29 inch thick.

				Iron Pla	Iron Plate 32 inch thick.	nick.		TABLE NO. 246.	Vo. 246	
	A*	B*	*5	D*	* 3	*	*5	*H	_	*1
Der se	Pitch Sur-	Pitch Sur-	Pitch Surface	Pitch Surface	Pitch Sur-	Pitch Sur-	Pitch Sur-	Pitch Sur-	Pitch	Sur- face
165 170 175 180 185 190 195 200		ms. sv.ins. ins. gq. ins. 15.45 228 9 14 98 224 4 15 -28 232 11 4 76 217 9 14 81 219 9 5 14 35 218 9 14 48 208 8 13 8 98 195 6 14 25 203 1 13 8 1190 8 14 0 7 198 2 13 6 4 186 1	ins. sq. ins. 12:31 1516 112:31 1517 112:13 147:3 11.97 143:2 11.65 135:4 11.50 132:4 11.28 126:1 11.28 126:1	ins. sq. ins. 11.70 137.0 11.70 137.0 11.54 133.1 11.23 126.1 11.08 112.8 10.94 119.8 10.81 116.8 10.68 114.1	ins. sq. ins. 11.06 122.4 10.91119.0 10.76 115.8 10.62 112.7 10.48 109.8 10.35 107.1 10.22 104.5 10.10 10.21 10.10 10.21	ins. Sq. ins. 10 10 21 10 2 9 9 9 9 9 9 9 9 9	ins. sq. ins. 9 66 93 3 9 65 90 7 9 40 88 3 9 9 7 86 0 9 16 83 9 9 0 4 81 8 8 9 4 79 9 8 8 8 8 78 0	ins. 9.02 9.07 8.95 8.72 8.72 8.61 8.51 8.41	9, ins. ins. ss 84.6 7.64 82.3 7.54 88.7 7.44 78.0 7.35 7.61 7.25 7.17 7.25 7.09 7.01 7	89. ins. 58. 4 58. 4 56.8 4 55.4 55.4 55.4 7 51.5 7 51.5 1 49.2
	*	B*	*5	D*	E*	¥.II	*5	*H		*1
	# ml 1:-1:-	* [1] * 1:-1:		1			1 . 1 . 1			

Pressures, Pitches, and Surfaces. FLAT SURFACES.

Iron Plate 15 inch thick.

Sur-face 7.76 TABLE No. 247. Pitch 89.7 882.8 82.8 80.7 78.7 76.8 Sur-face H 9 34 Pitch sq. ins. Sur-face *5 9.81 Pitch sq. ins. 0.37 107.6 Sur-face * Pitch sq. ins. 11.40 130.1 Sur-face * Pitch

7.47 7.29

9.22 9.10 8.98 8.37 8.76 8.66

9.55 9.50 9.10

9.31

6.96 99.4 9.76 92.4

10.66 113.7

127

12.51 156.5 12.34 152.2 12.17 148.2 12.01 144.3 11.86 140.7 11.71 137.2

219.3 213.5

5.28 233.5 .88 221 .5 210.8

180 190

5.08 227

12.51 12.01 12.17

15.01

5.49 240.0

5.71

9.72 9.84

> 00,121.0 14124.1

> > 134

198.0 .24 202.9

216.0

14.69

89.6

0.23 104.7 0.10 102.0

11.09123.0 10.80 116.7

sq. ins. 12.06 145.6 .73 137.6 .57 134.0 130.5 Ċ1

sq. ins. 12.69 161.1

ins. sq. ins. 15.45 238.7 15.22 231.8 4.025

254.2 246.9

sq.ins.

ins. lbs.

Sur-face

Sur-face

Pitch ins.

Sur-face

Pitch ins.

Sur-face

Pitch

per sq. in. Pressure

*0 Pitch

*

*2

d

* The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are

*H

*5

*

* 10.41

*0

*5

B*

V

applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate $\frac{31}{32}$ inch thick.

TABLE No. 248.

	Α*	B*	*5	D*	**	F*	*5	*H		*
Press per sq	Pitch Sur-	Pitch Surface	Pitch Surface	Pitch Sur-	Pitch Sur-	Pitch Sur-	Pitch Sur-	Pitch Sur-	Pitch	Sur- face
165 170 175 180 185 190 195 200	ins. sq.ins. 16 43 270 °0 15 96 226 2 15 96 224 3 15 74 248 °0 15 53 241 4 15 53 235 2 15 14 229 °3 14 96 223 °8	ins. sq. ins. 15 92 253 8 15 92 253 8 15 69 246 2 15 76 239 9 15 05 226 7 14 86 220 9 14 49 210 1	insq. ins. 13.07 1710 12.89 166 1 12.71 161 5 12.57 153 1 12.27 153 1 12.21 149 2 12.06 145 6	ins. sq. ins. 12.43 154.5 154.5 154.5 112.25 150.1 11.92 142.0 11.76 138.4 111.6 1134.9 11.47 131.6	hrs. sq. hrs. 11.74 138.0 11.74 138.0 11.58 134.1 11.27 127.0 11.12 128.7 10.98 120.6 10.72 114.9	ms. sq. ins. 10.83 117.3 10.68 114.0 10.53 111.0 10.26 105.3 108.0 10.26 105.3 10.0 10.0 110.0 110.0 27	ins. 8q. ins. 10°24 105°0 10°10 10°10 10°20 9°96 99°3 96°7 94°2 9°47 89°7 9°36 8°7°6	ins. 8q. ins. 9 75 95 1 9 2 4 9 48 90 0 9 36 87 6 9 24 85 4 9 13 83 3 9 0 2 81 3 8 9 13 8 8 9 13 8 8 9 13 8 9 13 8 9 15 8	1. 808 1. 808 1. 808 0. 7.97 6 7.77 6 7.77 7.58 3 7.58 5 7.41	89. ins. 65.4 62.0 62.0 62.0 62.0 62.0 62.0 62.0 62.0
	A*	B*	*5	*Q	*	**	*5	*H	_	*1

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate 1 inch thick.

TABLE No. 249.

				-	_
	*1	Pitch Sur-	8 31 69 0 8 19 67 2 8 09 65 4 7 98 63 8 7 7 9 60 7 7 7 0 59 3 7 7 0 59 3	*1	
	H*	Pitch Sur-	ins. sq. ins. 10.03100.5 9.89 97.8 975 95.1 9.62 92.7 9.50 90.3 8.8 1 9.27 86.0 9.16 84.0	H*	
	5	Pitch Sur- face		G	
	*	Pitch Sur-	ins. sq. ins. 11.14 124.2 10.98 120.7 10.69 114.3 10.65 111.4 10.42 108.6 10.29 106.0 10.17 103.5	F*	
1011	*3	Pitch Sur-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E*	
	D*	Pitch Surface	ins. sq. ins. ins. sq. ins. 13.46 181.1 12.79 163.6 18.06 176.0 12.61159.0 12.90 166.5 12.26 150.5 12.73 162.2 12.10 146.5 12.57 158.1 11.95 142.8 12.41154.2 11.80 139.3 12.26 150.5 11.66 136.0	D*	,
	*0	Pitch Sur-	lus. eq.ms. ins. sq. ins. sq. ins. eq. ins. sq. ins. lie.43 226.2 16 $12.968.7$ 13 $26.12.79$ 16 $21.969.9$ 11 $1.911.42.0$ 16 $21.92.8$ 15 $11.911.42.0$ 16 $21.92.8$ 15 $11.911.42.0$ 17 $11.911.42.0$ 16 $11.92.8$ 16 $11.911.42.0$ 17 $11.911.42.0$ 18 $11.911.42.0$ 19 $11.911.42.0$ 19 $11.911.42.0$ 19 $11.911.42.0$ 19 $11.911.42.0$ 19 $11.911.42.0$ 19 $11.911.42.0$ 10 $11.911.0$ 10 $11.91.0$ 10 11.91	*2	
	B*	Pitch Sur-	Jus. 8q.ins. ins. 8q. ins. 16.91 286 2 16 39 268 7 16 6 48 270 2 16 48 2010 16 48 2010 16 48 2010 16 48 200 2 15 90 256 9 15 50 240 3 15 59 240 3 15 59 240 3 15 50 240 3 15 5	B*	
	A	Pitch Sur-	Jus. 8q.ins. 16.91 286.2 16.67 278.0 16.43 270.2 16.21 262.8 15.99 255.9 15.79 249.3 15.40 237.2	A	
		Press per sq	165 170 175 180 185 195 200		1

FLAT SURFACES.

Pressures, Pitches, and Surfaces.
Iron Plate 1.7, inch thick.

TABLE No. 250.

					787 - 287					
onre ni .	A*	B*	*5	D*	*3	下*	*5	*H	I*	
Press	Pitch Sur-	Pitch Surface	Pitch Surface	Pitch Sur-	Pitch Sur-	Pitch Sur-	Pitch Sur-	Pitch Surface	Pitch	Sur- face
165 170 175 175 180 185 190 195 200	ins. sq.ins. 17.40 302.9 17.15 294.2 16.91 286 0.16.46 278 2.16.45 24 263 8.16 0.4 257 2.1 16.84 251 0.0 15.84 251	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ins. sq. ins. 13.84 191.6 13.64 186.1 13.45 181.0 13.27 176.1 13.09 171.5 12.93 167.1 12.77 163.0 12.61 159.1	ms. sq. ms. ins. sq. ins. sq. ins. sq. ins. 13.84191.6 13.15173.0 12.43154.4 13.45186.1 12.96168.1 12.25150.1 13.451810 12.78163.5 12.08146.0 13.07176.1 12.61159.1 11.92142.1 13.091715 12.45154.9 11.761184.9 12.93167.1 12.29151.0 11.61184.9 12.77163.0 12.13147.3 11.47131.6	ms. sq. ins. lns. sq. ins. 13.15 173.0 12.43 154.4 12.96 168.1 12.25 150.1 12.61 150.1 12.61 15.9 11.92 151.0 11.61 134.9 12.9 151.0 11.61 134.9 12.13 147.3 11.47 131.6 11.99 143.8 11.33 12.8 5	ins. sq. ins. 11.45 131.2 11.14 124.1 10.99 120.8 10.7 11.14 124.1 10.7 11.14 12.7 10.7 11.7 10.7 11.7 10.7 11.7 10.7 11.7 10.7 11.9 3	ins. 8q. ins. 10°83117°3 10°68114°0 10°53111°0 10°39 108°0 110°1 10°1 10°1 10°1 10°1 10°1 10	ins. sq. ins. 10.30 106.2 110.30 106.2 110.02 100.5 97.8 9.76 95.3 9.64 93.0 9.53 9.64 93.0 9.54 88.6	ins. 8.53 8.41 8.30 8.20 8.10 8.10 8.00 7.90	sq. ins. 72.8 70.8 69.0 67.2 65.6 64.0 62.5
	A*	B*	*2	D*	压*	开*	ď*	*H	*I	
,									0	

FLAT SURFACES.

Pressures, Pitches, and Surfaces, Iron Plates $1\frac{1}{16}$ inch thick.

TABLE No. 251.

72.6 67.3 0.69 Sur-face 8.75 8.63 8.52 8.41 8.31 8.21 8.02 Pitch 10.15 103.2 01 10.58112.0 10.43 108.9 Sur-face 10.29 105 *H 06.6 84.6 99.6 Pitch sq. ins. 11.12123.8 10.97 120.3 10.82 117.0 1111.0 10.40 108.3 Sur-face * *5 Pitch ins. sq. ins. 130.9 11.60 134.6 11.29 127.5 124.2 11.00 121.0 10.87 118.1 10.74 115.3 Sur-face ** 11.44 11.14 Pitch ins. sq. ins. 12.77 163.0 150.0 158.4 142.4 11.78 138.9 154.1 146.1 135.6 Sur-face * * 12.58 12.24 12.08 12.41 Pitch ins. sq. ins. 168.0 163.6 9.991 3.32 177.5 12.32 151.8 Sur-face 2.96 16 2.79 16 2.62 13 * * 3.13 2.47 Pitch ins. sq. ins. 14.22 202.3 13.28 176.5 14.02 196.5 13.82 191.1 13.63 186.0 13.45 181.1 Sur-face Pitch 16.61 276.0 16.39 268.7 sq. ins. 17.33 300.5 17.08 291.8 16.84 283.7 15.97 255.2 16.18 261.7 15.78 249.0 Sur-face 2 B* Pitch sq.ins. 17.63310.9 17.38 302.2 17.14 294.0 16.91 286.2 16.692788 16.48 271.8 16.28 265.2 Sur-face * 4 Pitch 165 Pressure per sq. in.

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces, Iron Plate $1\frac{3}{32}$ inch thick.

80.6 78.4 76.4 74.4 72.6 70.8 69.1 67.6 Sur-face 8.62 8.52 8.41 8.31 8.22 Pitch TABLE No. 252. ins. sq. ins. 10.86 118.0 10.42 108.6 0.29 105.9 0.16 103.2 0.71 114.7 0.03 100.7 Sur-face 0.56 111 Ĥ Ħ Pitch 10.68114.0 ins. sq. ins. 11.42 130.4 11.10 123.3 10.95 120.0 11.26 126.7 Sur-face *5 * Pitch 12.08146.0 sq. ins. 12.92167.0 11.91141.8 12.74162.4 11.74138.0 11.59134.3 óc 11.29 127.5 11.15 124.4 ċ Sur-face 130 11.02 121 * * Pitch ins. sq. ins. 13.11 171.9 1.891 12.41 154.0 11.95 142.9 12.25 150.1 Sur-face * * 12.57 Pitch 13.88 192.6 sq. ins. 177.1 172.5 13.68 187.1 12.80 163.9 12.96 168.1 Sur-face * 13.131 13.30 Pitch sq. ins. 213.4 14.39 207.3 4.00 196.0 13.82 191.0 13.64 186.1 Sur-*5 14.61 Pitch ins. sq. ins. 17.80 317.1 6.408 291.2 283.5 7.30 299.3 269.2 Sur-face * *a 16.83 29.21 17 15 294 2 16 62 16 93 286 8 16 41 Pitch 310.2 302.0 18.38 337.8 17.85 318.9 Sur-face 17.37 Pitch per sq. •ui Pressure

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Iron Plate $1\frac{1}{8}$ inch thick.

TABLE No. 253.

82.4 80.2 78.2 76.2 Sur-face 9.50 8.95 80.6 8.52 Pitch ಪಿ ŵ တဲ sq. ins. 10.98,120.6 10.42 108.6 10.29 105.9 Sur-face *H *H 10.551Pitch sq. ins. 137 ·2 10.82117.0 .24 126.3 .09 123.0 10.69 114.3 .55 133.4 -39 129.7 0.95 120.0 Sur-face *5 *5 Pitch ins. sq. ins. 12.39 153.6 12.05 145.2 ċ 11.44 130.9 $\dot{\infty}$ 12.22 149.3 11.58 134.2 Sur-30 127 * * Pitch sq. ins. 13.45 181.0 13.07 171.0 12.90 166.4 12.57 158 0 12.26 150.4 12.73 162.1 Sur-face * * Pitch sq. ins. 202.9 197.1 13.65 186.5 13.30 177.0 13.13172.6 168.4 Sur-face * * 13.84 12.97 14.04 13.47 Pitch ins. sq. ins. 14.99 224.7 218.3 212.2 2.902 4.00196.0 3.82 191.1 Sur-face * * Pitch sq. ins. 18.01 324.5 17.28298.7 17.05 291.0 8.87 356.0 18.28 334.1 17.76315.4 17.51 306.8 16.84 283.6 Sur-face *9 *a Pitch 8.33 336.0 8.08326.8 17.38,302.2 sd. ins. 7.83 318.2 17-603100 Sur-face * Pitch per sq. in. 170 175 185 Pressure

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 64 and following.

TARLE No 954 PRESSURES, GREATEST SURFACES AND SIZES OF STAYS. Stress on Iron Stay, 5000 lbs. per square inch of net section.*

_			
	Area 1.4849 sq. inch.	Diam. 1 % inch.	Surface sq. ins. 44 9 42 4 42 4 41 2 40 1 39 0 38 0 37 1
0. 204.	Area 1-3530 sq. inch.	Diam. 15/16 inch.	Surface 8q. ins. 41.0 39.7 38.6 37.5 36.5 34.6 33.8
ABLE NO. 294	Area 1-2272 sq. inch.	Diam. 1 1/4 inch.	Surface sq. ins. 37.1 286.0 35.0 34.0 33.1 32.2 31.4 30.6
	Area 1.1075 sq. inch.	Diam. 13/16 inch.	Surface 8q. ins. 33.5 32.5 32.5 31.6 30.7 29.9 29.1 28.3 27.6
SCC110II	Area 0-9940 sq. inch.	Diam. 1 1/8 inch.	Surface sq. ins. 30.1 29.2 28.4 27.6 26.8 26.1 25.4
7077 70	Area 0.8866 sq. inch.	Diam. 11/16 inch.	Surface sq. ins. 26 °8 22 °6 °0 22 °5 °3 24 °6 22 °3 °9 22 °7 22 °7 22 °7
seems on their seal; see the square men of the section.	Area 0.7854 sq. inch.	Diam. 1 inch.	Surface 8q. ins. 23 ·8 23 ·8 23 ·1 22 ·4 21 ·8 21 ·2 20 ·6 20 ·1 19 ·6
hor add	Area 0.6902 sq. inch.	Diam. 15/16 inch.	Surface Sq. ins. 20.9 20.9 20.3 19.7 19.1 18.6 18.1 17.5
100	Area 0.6013 sq. inch.	Diam. 7/8 inch.	Surface sq. ins. 18.2 17.6 17.1 16.7 16.2 15.8 15.4
on's form	Area 0.5184 sq. inch.	Diam. 13/16 inch.	Surface 8q. ins. 15.7 15.2 14.8 14.4 14.0 13.5 12.9
	Area 0.4417 sq. inch.	Diam. 3/4 inch.	Surface Sq. ins. 13.3 12.9 12.6 12.2
200	Area 0.3712 sq. inch.	Diam. 11/16 inch.	Surface sq. ins.
2	Area 0.3068 sq. inch.	Diam.	Surface Surface Surface sq. ins. sq. ins.
	Area 0.2485 sq. inch.	Diam. 9/16 inch.	Surface sq. ins.
	Area 0·1963 sq. inch.	Diam.	Surface sq. ins.
	sure inch.	Pres per squa	165 165 170 175 180 180 190 195 200

^{* 5000} lbs. per square inch of net section is the greatest working stress to which iron stays, which have been welded or worked in the fire, should be subjected. See Notes page 126.

PRESSURES, GREATEST SURFACES AND SIZES OF STAYS.

TABLE No. 255. Stress on Iron Stay, 5000 lbs. per square inch of net section.*

_				
	Area 4·200 sq. ins.	Diam. $2^{5/16}$ inches.	Surface sq. ins. 127.2 123.5 120.0 116.6 1113.5 110.5 110.5 110.5 110.5 105.0	,
	Area 3.9761 sq. ins.	Diam. 21/4 inches.	Surface 8q. ins. 120.4 116.9 113.6 110.4 107.4 104.6 101.9 99.4	
	Area 3.7583 sq. ins.	Diam. $2^{3/16}$ inches.	Surface sq. ins. 113 · 8 · 110 · 5 · 110 · 5 · 100 · 3 · 100 · 3 · 100 · 5 · 98 · 9 · 96 · 3 · 98 · 9 · 98 · 9 · 98 · 9 · 98 · 9 · 9	
	Area 3.5466 sq. ins.	Diam. 24/8 inches.	Surface 8q. ins. 107.4 104.3 101.3 98.5 95.8 93.3 90.9 88.6	
	Area 3.3410 sq. ins.	Diam. $2^{1/16}$ inches.	Surface S 8q. ins. 101.2 98.2 95.4 92.8 90.2 87.9 85.6	1:1:
	Area 3-1416 sq. ins.	Diam. 2 inches.	Surface 95. ins. 95.2 92.4 89.7 87.2 84.9 82.6 80.5 78.5	
	Area 2.9483 sq. ins.	Diam. 1 ¹⁵ / ₁₆ inch.	Surface 89.3 89.7 84.2 84.2 81.8 77.5 77.5 73.7	
	Area 2·7612 sq. ins.	Diam. 1 % inch.	urface q. ins. 83.6 81.2 78.8 76.7 74.6 72.6 69.0	
	Area 2.5802 sq. ins.	Diam. 1 1 3/16 inch.	Surface S 89. ins. s 78.1 75.8 73.7 71.6 69.7 66.1 64.5	
	Area 2.4053 sq. ins.	Diam. 13/4 inch.	Surface 72.8 70.7 68.7 66.8 65.0 63.2 61.6 60.1	
	Area 2.2365 sq. ins.	Diam. 111/16 inch.	Surface 8q. ins. 67.7 65.7 62.1 60.4 58.8 57.3 55.9	
	Area 2.0739 sq. ins.	Diam. 15% inch.	Surface sq. ins. 65.8 60.9 57.6 56.0 54.5 53.1 51.8	0 1
	Area 1-9175 sq. inch.	Diam. 1% inch.	Surface 8q. ins. 58.1 56.3 54.7 53.2 51.8 50.4 49.1 47.9	
	Area 1.7671 sq. inch.	Diam. 1 ½ inch.	Surface sq. ins. 53.5 51.9 50.4 49.0 47.7 46.5 45.3	**
	Area 1.6230 sq. inch.	Diam. $17/16$ inch.	Surface sq. ins. 49.1 47.7 46.3 45.0 43.8 42.7 41.6	11 000
		Pres squa	165 170 175 180 180 195 195	*

* 5000 lbs. per square inch of net section is the greatest working stress to which iron stays, which have been welded or worked in the fire, should be subjected. See Notes page 126.

PRESSURES, GREATEST SURFACES AND SIZES OF STAYS.

Stress on Iron Stay, 5000 lbs. per square inch of net section.*

	Area 8-2958 sq. ins.	Diam. 3 1/4 inches.	Surface sq. ins. 251 :3 243 :9 237 :0 229 :4 224 :2 218 :3 212 :7 207 :3
	Area 7-9798 sq. ins.	Diam. 33/16 inches.	Surface sq. ins. 241 ·8 234 ·7 227 ·9 221 ·6 215 ·6 209 ·9 204 ·6 199 ·4
	Area 7.6699 sq. ins.	Diam. 348 inches.	Surface sq. ins. 232.4 225.5 219.1 213.0 207.2 201.8 196.6
	Arca 7.3662 sq. ins.	Diam. $3^{1/16}$ inches.	Surface 8q. ins. 223.2 216.6 210.4 204.6 199.0 193.8 188.8
	Area 7.0686 sq. ins.	Diam. 3 inches.	Surface sq. ins. 214 ·2 207 ·9 201 ·9 196 ·3 191 ·0 186 ·0 186 ·0
	Area 6·7771 sq. ins.	Diam. $2^{15/16}$ inches.	Surface Sq. ins. 205.3 205.3 199.3 193.6 188.2 183.7 178.3 173.7
	Area 6.4918 sq. ins.	Diam. 27/8 inches.	Surface 8q. ins. 196.7 190.9 185.4 180.3 175.4 170.8 166.4
1	Area 6.2126 sq. ins.	Diam. $2^{13/16}$ inches.	Surface sq. ins. 188°2 182°7 177°5 172°5 167°9 163°4 159°2
	Area 5-9396 sq. ins.	$\begin{array}{c} \text{Diam.} \\ 2\% \\ \text{inches.} \end{array}$	Surface sq. ins. 179°9 174°6 169°7 164°9 160°5 156°3 158°3
	Area 5.6727 sq. ins.	Diam. $2^{11/6}$ inches.	Surface 8q. ins. 171.9 166.8 162.0 157.5 153.3 149.2 145.4
	Area 5.4119 sq. ins.	Diam. 25% inches.	Surface 8q. 198. 163.9 159.1 154.6 150.3 146.2 142.4 138.7
	Area 5-1572 sq. ins.	Diam. $2^{9/16}$ inches.	Surface sq. ins. 156·2 151·6 147·3 143·2 139·3 135·7 128·9
	Area 4.9087 sq. ins.	Diam. $2\frac{1}{2}$ inches.	Surface sq. ins. 148.7 144.3 140.2 136.3 132.6 129.1 125.8
	Area 4.6664 sq. ins.	Diam. $2^{7/16}$ inches.	Surface sq. ins. 141.4 137.2 133.3 129.6 126.1 122.8 119.6 119.6
	Area 4.4301 sq. ins.	Diam. 23% inches.	Surface sq. ins. 134.2 130.2 126.5 123.0 1119.7 1116.5 1113.5
		Pressper squa	165 170 175 175 180 180 190 195 200

^{* 5000} lbs. per square inch of net section is the greatest working stress to which iron stays, which have been welded or worked in the fire, should be subjected. See Notes page 126.

PRESSURES. GREATEST SURFACES AND SIZES OF STAYS.

TABLE NO. 257. Stress on Solid Iron Screwed Stays, which have not been welded or worked in the fire, 7000 lbs. per square inch of net section.*

_		-	
	Area 1.4849 sq. inch.	Diam. 1 % inch.	Surface sq. ins. 62.9 61.1 59.3 57.7 56.1 54.7 53.3
	Area 1.3500 sq. inch.	Diam. $1\frac{5}{16}$ inch.	Surface 87. ins. 57.4 55.7 52.6 51.1 49.8 48.5 47.3
	Area 1.2272 sq. inch.	Diam. 1 1/4 inch.	Surface 5q. ins. 52.0 50.5 49.0 47.7 46.4 45.2 44.0
	Area 1·1075 sq. inch.	Diam. 13/16 inch.	Surface 46.9 45.6 44.2 44.2 43.0 41.9 40.8 39.7
	Area 0-9940 sq. inch.	Diаm. 1 1/8 inch.	Surface 42.1 40.9 39.7 38.6 37.6 35.6 35.6
	Area 0.8866 sq. inch.	Diam. 1 ¹ / ₁₆ inch.	Surface 8q. ins. 37.6 36.5 35.4 34.4 33.5 32.6 31.8 31.0
	Area 0.7854 sq. inch.	Diam. 1 inch.	Surface 89. ins. 33.3 32.3 31.4 30.5 29.7 28.9 28.1
-	Area 0.6902 sq. inch.	Diam. 1 5/16 inch.	Surface sq. ins. 29 22 22 22 24 26 8 26 3 26 3 26 3 24 77 24 71 24 71
	Area 0.6013 sq. inch.	Diam. 7/8 inch.	Surface sq. ins. 25.5 24.7 24.0 23.3 22.7 22.1 21.5
	Area 0.5184 sq. inch.	Diam. 1 3/16 inch.	Surface 21.9 21.9 20.7 20.1 19.6 19.0 18.6 18.1
	Area 0.4417 sq. inch.	Diam. 3/4 inch.	Surface sq. ins. 187 187 176 177 167 167 158
	Area 0.3712 sq. inch.	Diam. 11/16 inch.	Surface 15.7 15.7 14.8 14.4 14.0 13.3
	Area 0.3068 sq. inch.	Diam. 5% inch.	Surface sq. ins. 12.6 112.2
	Area 0.2485 sq. inch.	Diam. 9/16 inch.	Surface sq. ins.
	Area 0-1963 sq. inch.	Diam.	Surface sq. ins.
	sure re inch.	Press per squa	165 165 170 175 180 180 190 195

^{* 7000} lbs. per square inch of net section is the greatest working stress to which solid iron screwed stays, which have not been welded or worked in the fire, should be subjected. See Notes page 132.

TABLE No. 258. PRESSURES, GREATEST SURFACES AND SIZES OF STAYS. Stress on Solid Iron Screwed Stays, which have not been welded or worked in the fire, 7000 lbs. per square inch of net section.

sq. ins. Surface sq. ins. 172.9 168.0 168.9 154.7 154.7 150.7 25/16 inches. 4.200 Diam. Area Surface 142.7 sq. ins. 9.891 sq. ins. 163.7 159.0 154.6 150.4 146.4 21/4 inches. 139.1 3.9761 Diam. Area Surface sq. ins. 159.4 Area 3.7583 sq. ins. 23/16 inches. 154.7 150.3 146.1 42.5 138.4 134.9 31.5 Diam. Surface Area 3.5466 21/8 inches. sq. ins. 150.4 146.0 141.8 137.9 134.1 130.6 127.3 sq. ins. Diam. Surface 141.7 Area 3.3410 sq. ins. 133.6 129.9 126.4 123.0 119.9 21/18 nches. Diam. Surface sq. ins. sq. ins. 133.2 115.7 Area 3.1416 129.3 125.6 118.8 122.1 inches. Diam. C1 1¹⁵/₁₆ inch. sq. ins. 125.0 Area 2.9483 sq. ins. Surface 121.4 117.9 114.6 2.111 9.801 Diam. sq. ins. 117.1 sq. ins. Surface 2.7612 113.6 110.4 107.3 01.7 99.1 Area Diam. 1 7/8 inch. Surface sq. ins. sq. ins. $1^{13/16}$ inch. 106.2 103.2 100.3 95.6 9.46 0.96 Diam. 109.4 2.5802 Area Area 2.4053 Surface 102.0 sq. ins. 0.66 96.2 93.5 91.0 Diam. 13/4 inch. sq. ins. Area 2.2365 1 1 1/16 inch. Surface sd. ins. 94.8 92.0 89.4 86.9 84.6 82.3 80.2 78.2 Diam. sq. ins. sq. ins. 87.9 85.3 Surface 82.9 Area 2.0739 Diam. 1% inch. 78.4 76.4 sq. inch. Surface 81:3 78:9 76:6 74:5 72:5 Area 1-9175 sq. ins. 9.02 1 % inch. Diam. sq. inch. sq. ins. 74.9 72.7 70.6 68.7 Surface Surface Area 1-7671 8.99 1.99 63.4 Diam. 1 ½ inch. sq. inch. 64.8 17/16 inch. 59.7 1.6230 Area Diam. per square inch. 170 175 180 185 lbs. 190 Pressure

^{* 7000} lbs. per square inch of net section is the greatest working stress to which solid iron screwed stays, See Notes page 132 which have not been welded or worked in the fire, should be subjected.

PRESSURES, GREATEST SURFACES AND SIZES OF STAYS.

TABLE No. 259. Stress on Solid Iron Screwed Stays, which have not been welded or worked in the fire, 7000 lbs. per square inch of net section.*

										_	
Area	8-2958 sq. ins.	Diam. 3 1/4 inches.	Surface	sq. ms. 351.9	341.5	331.8	322.6	313.8	305.6	297.7	290.3
Arroa	7.9798 sq. ins.	Diam. 33/16 inches.	Surface	sq. ms. 338.5	328.5	319.1	310.3	301.9	293.9	4.987	2.622
Area Area	7.6699 sq. ins.	Diam. 3 1/8 inches.	Surface	sq. ms. 325.3	315.8	2.908	298.2	290.5	282.2	275.3	268.4
Area	7.3662 sq. ins.	Diam. $3^{1/16}$ inches.	Surface	sq. ms. 312.5	303.3	294.6	1.987	278.7	271.3	264.4	8. 222
Area	7.0686 sq. ins.	Diam. 3 inches.		sq. ms. 299.8		_					_
Area	6.7771 sq. ins.	Diam. $2^{15/16}$ inches.		sq. ms. 287.5	_		_	_	_	_	
Arca	6-4918 sq. ins.	Diam. 27/8 inches.		sq. ms. 275.4							
Area	6.2126 sq. ins.	Diam. 213/16 inches.		sq. ms. 263.5							
Area	5.9396 sq. ins.	Diam. 23/4 inches.	Surface	sq. ms. 251.9	244.5	237.5	230.9	224.7	218.8	213.2	8.202
A 1009	5.6727 sq. ins.	Diam. $2^{11/16}$ inches.	Surface	sq. ins. 240.6	233.5	6.97	9.022	214.6	6.802	203.6	198.5
Area Area Area Area Area Area Area	5.4119 sq. ins.	Diam. 25% inches.		sq. ms. 229.5							
Area	5.1572 sq. ins.	Diam. $2^{9/16}$ inches.	Surface	sq. ms. 218.7	212.3	2.903	2.002	195.1	190.0	185.1	180.2
Arpa	4.9087 sq. ins.	Diam. 2½ inches.	_	sq. ms. 208.2							
Α 1.09	4.6664 sq. ins.	Diam. $27/16$ inches.	Surface	sq. ms. 197.9	192.1	9.981	181.4	2.921	171.9	2. 291	163.3
Area	4.4301 sq. ins.	Diam. 2 3% inches.		sq. ms. 187.9	182.4	177.2	172.2	9. 291	163.2	159.0	155.0
1	sure re inch	Pres	-	165	170	175	180	185	190	195	200

^{* 7000} lbs. per square inch of net section is the greatest working stress to which solid iron screwed stays, which have not been welded or worked in the fire, should be subjected. See Notes page 132.

No. 261.

Z	ı
F-7	ı
3	ı
m _i	ı
~	ı
_	ı
	ľ
N.	ł
1	1
\subseteq	ı
F	ı
	ı
	ı
H	ı
5	ı
5	ı
	ı
	ı
acoleza	Į
20	ı
23	ı
田	ı
0	ı
63	ı
	I
75	ı
	ı
Z	ı
0	ı
2	ľ
-	1
	ı
	ı
~	ı
60.	Į
260.	I
. 260.	
To. 260.	
No. 260.	
E No. 260.	
LE No. 260.	
BLE No. 260.	
[ABLE No. 260.	
TABLE No. 260.	
TABLE No. 260.	
 TABLE No. 260. 	
CK. TABLE No. 260.	
ICK. TABLE No. 260.	
HICK. TABLE No. 260.	
CHICK. TABLE No. 260.	
THICK. TABLE No. 260.	
H THICK. TABLE No. 260.	
CH THICK. TABLE No. 260.	
NCH THICK. TABLE No. 260.	
INCH THICK. TABLE No. 260.	
INCH THICK. TABLE No. 260.	
½ INCH THICK. TABLE No. 260.	
S ½ INCH THICK. TABLE No. 260.	
RS 1 INCH THICK. TABLE No. 260.	
ERS 1 INCH THICK. TABLE No. 260.	
DERS 1 INCH THICK. TABLE No. 260.	
RDERS 1 INCH THICK. TABLE No. 260.	
IRDERS 1 INCH THICK. TABLE No. 260.	
GIRDERS ½ INCH THICK. TABLE No. 260.	
GIRDERS 1 INCH THICK. TABLE No. 260.	
ON GIRDERS 1/2 INCH THICK. TABLE No. 260.	
RON GIRDERS \(\frac{1}{2}\) INCH THICK. Tabiz No. 260. IRON GIRDERS \(\frac{1}{2}\) INCH THICK. Ta	

							_			_
	4 1/4		821	796	774	752	732	712	694	229
	4		727	202	685	999	648	631	615	009
ches.	3%		639	620	602	585	570	555	540	527
in in	31/2		556	540	525	510	:	:	:	:
Depths of Girders in inches.	31/4		:	:	:	:	:	:	:	:
) jo sq	က		:	:	:	:	:	:	:	:
Dept	23/4		:	:	:	:	:	:	:	:
	21/2		:	:	:	:	:	:	:	:
	21/4		:	:	:	:	:	:	:	:
sure q. in.	Pres	lbs.	91	170	175	180	185	061	195	500
	33/4		511	:	:	:	:	:		:
	ತಾ		20	•			:	:	:	:
	31/2 3		::	:	:	:	:	:	:	:
ches.		-	2			:				
s in inches.	31/2		:	:	:		:	:	:	:
Girders in inches.	314 31/2		:	:	:	:	:	:	:	:
hs of Girders in inches.	3 314 31/2		:	:	:	:	:	:	:	:
Depths of Girders in inches.	234 3 314 31/2		:	:		•		:	:	: :
Depths of Girders in inches.	21/2 23/4 3 31/4 31/2			:		•		:		: : : : : : : : : : : : : : : : : : : :
Depths of Girders in inches.	134 2 214 212 234 3 314 312									: : : : : : : : : : : : : : : : : : : :

In the above Tables, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is *even*, it equals (W²-P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1. W = Width of combustion box in inches.

D = Distance between centres of girders in inches. P = Pitch of supporting bolts in inches. See Not

See Notes on pages 138 and 139.

IRON GIRDERS 7 INCH THICK. TABLE No. 263.

IRON GIRDERS \$ INCH THICK. TABLE No. 262.

			+																١
oure ni .p.			Dept) jo sq	Depths of Girders in inches	s in in	ches.			sure q. in.			Dept	Depths of Girders in inches	Rirder	s in in	ches.		
Press per s	23/4	ಣ	31/4	31/2	33/4	4	41/4	41/2	434	Pres per s	31/2	3%	4	41/4	41/4 41/2	43/4	2	51/4	21/2
lbs.										lbs.									
165	:	:	576	899	191	872	985	1104	1230		779	894	1018	1149		1435	1590	1753	1925
170	:	:	559	648	744	847	926	1072	1194		992	868	886	1115		1393	1544	1702	1868
175	:	:	543	630	723	822	928	1041	1160		735	843	096	1083		1353	1500	1653	1815
180	:	:	528	612	703	800	903	1012	1128		714	820	933	1053		1316	1458	1607	1764
185	:	:	513	595	684	778	878	985	1097	185	695	798	806	1025	1149	1280	1418	1564	1716
190	:	:	200	580	999	757	855	959	1068		929	222	884	866		1246	1381	1523	1671
195	:	:	:	565	649	738	833	934	1041		629	757	861	972		1214	1346	1484	1628
200	:	:	:	551	632	720	812	911	1015		643	738	840	948		1184	1312	1447	1588

In the above Tables, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W2D; but when the number of bolts is even, it equals (W2-P2)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.
D = Distance between centres of girders in inches.
P = Pitch of supporting bolts in inches. See Notes on pages 138 and 139.

_				_		-	-	-	_	
265.		1	4009	3891	3780	3675	3575	3481	3392	3307
No.		63/4	3727	3618	3514	3417	3324	3237	3154	3075
TABLE NO.	ches.	6 1/2	3456	3355	3259	3168	3083	3001	2925	2851
	in in	61/4 61/2	3196	3102	3013	6565	2850	2775	2704	2636
THI	irders	9						2557		2430
GIRDERS 13 INCH THICK.	Depths of Girders in inches	534	2705	2625	2550	2479	2412	2349	8877	2231
S 13	Depth	51/2		2402						2041
RDER		51/4						1958	8061	0981
		20				-		1776		1687
IRON	sure q. in.		lbs.	170	175	180	185	190	195	200
264.		61/4	2840	2757	2678	2604	2533	2467	2403	2343
		9	2618	2541	2468	2400	2335	2273	2215	2160
TABLE No.	ches.	534	2404	2333	2267	2204	2144	2088.	2034	1983
	in in	51/2	2200	2135	2074	2016	1962	1910	1861	1815
THI	Depths of Girders in inches	54 5%	2004	1945	1890	1837	1787	1740	1696	1653
INCH	of G	70	1818	1764	1714	1666	1621	1578	1538	1500
RS 1	Deptl	434	1640	1592	1547	1504	1463	1425	1388	1353
GIRDERS 1 INCH THICK.		41/2 43/4	1472	1429	1388	1350	1313	1278	1246	1215
IRON G		41/4	1313	1275	1238	1204	1171	1140	1111	1083
IR	sure q. in.	Pres	lbs.	170	175	180	185	190	195	200

depth of girder equals W^2D ; but when the number of bolts is *even*, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches. In the above Tables, when the number of supporting bolts in a girder is odd, the number under the particular

See Notes on pages 138 and 139. D=Distance between centres of girders in inches. P=Pitch of supporting bolts in inches. See Not

IRON GIRDERS 14 INCH THICK. TABLE No. 266.

IRON GIRDERS 13 INCH THICK. TABLE NO. 267.

	81/4	6806 6606 6417 6239 6070 5910 5759
ches.	8	6400 6211 6034 5866 5708 5557 52415
in in	73/4	6006 5829 55505 5505 50215 5082 5082
Depths of Girders in inches.	7 71/4 71/2 73/4	5625 5459 5303 5156 5016 4884 4759 4640
of G	7 1/4	5256 5101 4955 4818 4688 4564 4447 4336
Deptl	7	4900 4755 4620 4491 4370 4255 4146 4042
	634	4555 44522 44295 44176 4063 3956 3758
	61/2	4225 4100 3983 3872 3768 3569 3575
sure.		5460 165 5299 170 5148 175 5005 180 4869 185 4741 190 4620 195 4504 200
	14	60 999 05 69 69 04
	73/4	4000 4000 4000 4000 4000 4000 4000 400
	71/2	5113 4963 4821 4687 4560 44440 4326 4218
ches.	7 71/4 71/2	4778 4637 4505 4380 4261 4149 4043 3942
s in in		4454 44323 4200 4083 3972 3868 3675
Äirder	634	4142 4020 3905 3796 3694 3597 3504
Depths of Girders in inches.	61/2	3840 3727 3621 3520 3425 3335 3250 3168
Deptl	61/4	3551 3546 3348 3255 3255 3167 3004 2929
	9	3272 3176 3085 3000 2918 22842 2769
	534	3005 2917 2833 2755 2680 2680 2610 2543 2479
eure o. in.		165 170 175 175 185 190 195

7012 6812 6622 6443 6274 6113 5960

7225

81/2

In the above Tables, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is even, it equals (W² – P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number,

See Notes on pages 138 and 139. opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

P = Pitch of supporting bolts in inches. See Not

.693						2		00	0	0
64		10	11818	1147(11145	10832	1054(10268	1000	9750
No.		934	1234	0904	0592	0298	0020 10540	9756 10263	9206	9268
TABLE NO. 269.	shes.	91/4 91/2	06651	03521	9534 10056 10592 11142	9777 10298 1	95121	9262	9025	8799
	Depths of Girders in inches	9 1/4	9572 10111 10665 11234	98141	9534 1	9269	8106	8781	8556	8342
THI	Äirders	6	9572	9291	9025	8775	8537	8313	8100	1897
IRON GIRDERS 15 INCH THICK.	ls of (81/4 81/2 83/4		8782						
10/8 10/8	Dept	81/2		8287	8050	7827	7615	7415		
RDEF		8 1/4	8043	7807	7584	7373	7174	6985	9089	6636
ON GI		∞	lbs. 7563	7341	7131	6933	6745	8999	6400	6240
	sure ni .p.	Pres per s	lbs. 165	9059 170 7	175	180	185	190	195	200
		4	9334	59	00	99	25	00	98	00
268		9 1/4	93	90	88	85	8	81	78	22
E No. 268		6	8836	8576	8331	8100	7881	7673	7476	7290
TABLE No. 268	nches.	6	8352 8836	8106 8576 90	8331	8100	7881	7673	067 7476	890 7290
ICK. TABLE No. 268	rs in inches.	6	7881 8352 8836	7650 8106 8576	7431 7875 8331	8100	7449 7881	6844 7253 7673	6669 7067 7476	6502 6890 7290
H THICK. TABLE NO. 268	Girders in inches.	6	7425 7881 8352 8836	8106 8576	7431 7875 8331	7225 7656 8100	7029 7449 7881	6844 7253 7673	6282 6669 7067 7476	6125 6502 6890 7290
1 INCH THICK. TABLE No. 268	ths of Girders in inches.	6	7881 8352 8836	7650 8106 8576	7431 7875 8331	7225 7656 8100	7029 7449 7881	6448 6844 7253 7673	5907 6282 6669 7067 7476	5760 6125 6502 6890 7290
RS $1\frac{1}{2}$ INCH THICK. TABLE NO. 268	Depths of Girders in inches.	6	6981 7425 7881 8352 8836	6359 6776 7206 7650 8106 8576	6177 6582 7000 7431 7875 8331	6006 6400 6806 7225 7656 8100	5843 6227 6622 7029 7449 7881	5690 6063 6448 6844 7253 7673	5544 5907 6282 6669 7067 7476	5760 6125 6502 6890 7290
IRDERS 1\frac{1}{2} INCH THICK. TABLE NO. 268	Depths of Girders in inches.	6	6136 6552 6981 7425 7881 8352 8836	6359 6776 7206 7650 8106 8576	6177 6582 7000 7431 7875 8331	6006 6400 6806 7225 7656 8100	5843 6227 6622 7029 7449 7881	5690 6063 6448 6844 7253 7673	5544 5907 6282 6669 7067 7476	5760 6125 6502 6890 7290
IRON GIRDERS $1\frac{1}{2}$ INCH THICK. Table No. 268.		74 74 74 8 84 84 81 89 9	6981 7425 7881 8352 8836	6359 6776 7206 7650 8106 8576	6582 7000 7431 7875 8331	6400 6806 7225 7656 8100	5843 6227 6622 7029 7449 7881	5690 6063 6448 6844 7253 7673	4851 5192 5544 5907 6282 6669 7067 7476	6125 6502 6890 7290

depth of girder equals (W²D; but when the number of bolts is *even*, it equals (W²-P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches. In the above Tables, when the number of supporting bolts in a girder is odd, the number under the particular

See Notes on pages 138 and 139. P = Pitch of supporting bolts in inches.

IRON GIRDERS 13 INCH THICK.

TABLE NO. 270.

	103/4		14707	14275	13867	13482	13117	12772	12445	12134
	101/2		14031	13619	13230	12862	12514	12185	11873	11576
	101/4		13371	12978	12607	12257	11926	11612	11314	11031
inches.	10		12727	12352	12000	11666	11351	11052	10769	10500
of Girders in	93/4		12098	11743	11407	11090	10790	10506	10237	1866
Depths	91/2		11486	11148	10830	10529	10244	9975	9719	9476
	91/4		10889	10569	10267	9982	9712	9456	9214	8984
	6		10309	10005	9720	9450	9194	8952	8723	8505
	83/4		9744	9457	9187	8932	8690	8462	8245	8039
oure q. in.	ber se	lbs.	165	170	175	180	185	190	195	200

In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular When the exact value depth of girder equals (W^2D) ; but when the number of bolts is even, it equals $(W^2 - P^2)D$.

or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

P = Pitch of supporting bolts in inches. See Notes on pages 138 and 139.

FURNACES PLAIN CYLINDRICAL.

Iron Plates.

Pressures and Numerals for Lengths and Diameters.

5. 272.	tti	May mm Dian	ins.	15.34	14.88	14.46	14.06	13.68	13.32	12.98	12.65
TABLE No.		OZ		28.8	27.9	27.1	26.4	7.92	25.0	24.3	23.7
		FZ		31.2	30.5	29.4	28.6	27.8	27.1	56.4	25.7
thick.	rô.	MM		33.6	32.6	31.6	30.8	6.67	29.1	28.4	27.7
inch	Numerals.	QN		36.0	34.9	33.9	33.0	32.1	31.2	30.4	29.7
Plates 32 inch	N	NC		38.4	37.2	36.5	35.2	34.2	33.3	32.5	31.6
Iron Pla		NB		40.2	9.68	38.4	37.4	36.3	35.4	34.5	9.88
Ir		A1†A N		43.1	41.9	40.7	9.68	38.5	37.5	36.2	35.6
	J	Press pe sq.	lbs.							195	200
	~.m	Dian		ಯ	က္	10	0	9	4	00	10
. 271.	w	Man mm	ins.	13.6	13.2	12.8	12.5	12.1	11.84	11.53	11.2
	w	nuı		-	22.1 13.2		20.8 12.5	_	19.7 11.8		18.8 11.2
TABLE NO.	w	K&M mm		22.2	22.1	21.4	20.8	_	19.7	19.2	_
TABLE NO.	-iz	QZ RBM		24.6 22.7	23.9 22.1	23.2 21.4	22.6 20.8	22.0 20.3	23.0 21.4 19.7	22.4 20.8 19.2	20.3 18.8
TABLE NO.	-iz	P. Z.		28.4 26.5 24.6 22.7	27.6 25.7 23.9 22.1	26.8 25.0 23.2 21.4	26.0 24.3 22.6 20.8	25.3 23.6 22.0 20.3	24.7 23.0 21.4 19.7	24.0 22.4 20.8 19.2	23.4 21.9 20.3 18.8
TABLE NO.	w	N E N C C N C C N C C N C C N C C C N C		28.4 26.5 24.6 22.7	27.6 25.7 23.9 22.1	26.8 25.0 23.2 21.4	26.0 24.3 22.6 20.8	25.3 23.6 22.0 20.3	24.7 23.0 21.4 19.7	22.4 20.8 19.2	23.4 21.9 20.3 18.8
TABLE NO.	-iz	N E N E N E		30.3 28.4 26.5 24.6 22.7	29.4 27.6 25.7 23.9 22.1	28.6 26.8 25.0 23.2 21.4	27.8 26.0 24.3 22.6 20.8	27.0 25.3 23.6 22.0 20.3	26.3 24.7 23.0 21.4 19.7	24.0 22.4 20.8 19.2	25.0 23.4 21.9 20.3 18.8
	-iz	N H N H N H N H N H N H N H N H N H N H		32.2 30.3 28.4 26.5 24.6 22.7	31.3 29.4 27.6 25.7 23.9 22.1	30.4 28.6 26.8 25.0 23.2 21.4	27.8 26.0 24.3 22.6 20.8	28.7 27.0 25.3 23.6 22.0 20.3	28.0 26.3 24.7 23.0 21.4 19.7	25.6 24.0 22.4 20.8 19.2	26.6 25.0 23.4 21.9 20.3 18.8

The length L should never exceed 10 feet and $\frac{N}{D}$ =1 should not be more than 10 feet.

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. See notes pages 170 to 173.

† When AI is the distinguishing letter Table No. 284 may be used when the length does not exceed for \$\frac{4}{4}\$ fuch, 1.5 feet and, for \$\frac{9}{3.7}\$ inch,

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given .812 feet.

D=Diameter of furnace in inches.

L=Length of furnace in feet.

N=Numeral applicable to the case.

$$\frac{N}{D} - 1 = L$$
, $\frac{N}{L+1} = D$.

(L+1) D=N.

FURNACES PLAIN CYLINDRICAL.

468

Pressures and Numerals for Lengths and Diameters. Iron Plates.

Iron Plates 16 inch	inch t	thick.	- 1	TABLE NO.	. 273.		I	Iron Pla	Plates 3	11 inch	thick.		TABLE No.	. 274.
8	Numerals.				u	J			N	Numerals.				ш
	ON	NR	FZ	D'N.	seM nm nsiG	Press pe sq.	A1†A N	NB	NC	AN	HZ	EZ	σz	Max um naid
					ins.	lbs.								fns.
4	7.71	41.4	38.5	35.5	17.04	165	64.5	6.09	57.3	53.7	50.1	46.5	43.0	18.75
	13.1	40.5	37.3	34.5	16.24	170	62.6	59.1	9.99	52.1	48.7	45.5	41.7	18.19
4	6.11	39.1	36.3	33.5	16.07	175	8.09	4.19	54.0	9.09	47.3	43.9	2.04	12.67
A	2.03	38.0	35.3	32.6	15.62	180	59.1	55.8	52.5	49.5	46.0	42.7	39.4	17.18
	9.68	37.0	34.3	31.7	15.20	185	2.12	54.3	51.1	6.74	7.74	41.5	38.3	16.72
(0,9)	38.5	96.0	33.4	30.8	14.80	190	0.99	6.79	8.64	46.6	43.5	40.4	37.3	16.28
0,0	9.48	35.1	9.78	30.0	14.42	195	54.5	2.19	2.84	4.9.4	42.4	39.4	36.4	15.86
	9.98	34.2	31.7	29.3	14.06	200	53.5	2002	47.3	44.3	41.4	38.4	35.4	15.46

The length L should never exceed 10 feet and $\frac{N}{D}-1$ should not be more than 10 feet.

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. See + When Al is the distinguishing letter Table No. 284 may be used when the length does not exceed for 18 inch, 2.125 feet and, for 18 notes pages 170 to 173.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given inch. 2.437 feet. pressure.

D = Diameter of furnace in inches.

L=Length of furnace in feet

N=Numeral applicable to the case. Note that $\frac{N}{10} - 1 = L$.

FURNACES PLAIN CYLINDRICAL. Iron Plates.

Pressures and Numerals for Lengths and Diameters.

. 276.	un	sM rm siG	ins. 22.15 21.50 20.89 20.31 19.76 19.24 18.73
TABLE NO.		υZ	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.
		HZ	655 653.1 61.3 61.3 55.0 55.0 55.0
thick.	s.	MM	70.0 68.0 64.2 62.4 62.4 60.8 57.8
$\frac{13}{32}$ inch	Numerals.	AZ	75.0 72.8 70.7 68.9 66.9 65.1 63.5
ates 1 8	N	NC .	80.0 77.7 75.4 73.4 71.4 69.5 66.0
Iron Plates		NB	85.0 82.5 80.2 77.9 75.8 71.9
In		A1†A N	90 87.4 84.9 82.5 80.3 76.2 74.3
	I.	Press pe pe	165 170 170 175 180 180 190 195
. 275.	w	.BM num rsia	ms. 20.45 19.85 19.28 18.75 18.24 17.76 17.30
LE No.		ρN	511.1 449.6 46.9 445.6 444.4 423.3
TABLE		FN	555.2 552.2 552.2 552.2 448.1 55.0 7.7
thick.		EN	59.7 57.9 56.3 54.7 53.2 51.8 50.5
inch	Numerals.	AN	63.9 62.0 60.3 57.0 57.0 54.1 52.7
lates 3	Z	NO	688 646 625 625 605 777 777 605 805 805 805 805 805 805 805 805 805 8
Iron Plates 3 inch		MM	72.4 70.3 68.3 66.4 64.6 62.9 61.3 59.8
		A1†A N	76.7 74.4 72.3 70.3 68.4 66.6 64.9
		Press per sq. i	165 170 175 175 180 180 190 195

The length L should never exceed 10 feet and $\frac{N}{D}-1$ should not be more than 10 feet.

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. See notes, pages 170 to 173.

† When A1 is the distinguishing letter Table No. 284 may be used when the length does not exceed for \$\frac{8}{8} \text{inch}, 2.75 \text{ feet and, for \$\frac{12}{8}\$ inch,}

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given

D=Diameter of furnace in inches. L=Length of furnace in feet.

N=Numeral applicable to the case. $\frac{N}{D} - 1 = L.$ $\frac{N}{L+1} = D.$

$$_{1}=D.$$
 (L+1) $D=N.$

FURNACES PLAIN CYLINDRICAL. Iron Plates.

Pressures and Numerals for Lengths and Diameters.

. 278.	m	.BM nm nsiQ	ins.	25.56	24.81	24.10	23.43	25.80	55.50	21.63	51.09	
TABLE No.		o'N.	_	6.62	9. 22	75.3	73.5	71.3	69.4	9. 29	62.9	
		FZ		9.98	84.0	81.6	79.3	77.3	75.5	73.2	71.4	
thick.	rs.	NE		93.5	30.2	6. 28	85.4	83.1	81.0	6.82	6.92	
inch	Numerals	ON		6.66								
Iron Plates 35 inch thick.	Z	NC		107								
on Pla		mz		113	110	107	104	101	8.86	8.96	93.4	
I		A1†A N		120	116	113	110	107	104	101	6.86	,
	I.	Press pe sq. i	lbs.	165								1
			_	-	-							
. 277.	u	naM nm naid	ins.	23.56	23.16	22.50	21.87	21.28	20.72	20.19	19.68	
LE No. 277.	u	nui	ins.	_	_	_	63.8 21.87	_	-	-	57.4 19.68	
TABLE No. 277.	u	Man	ins.	9.69	9. 29	9.99	_	62.1	P.09	6.89		N
	-I3	QZ REM	ins.	75.4 69.6	73.2 67.6	71.1 65.6	63.8	67.3 62.1	P.09 9.49	63.8 58.6	62.5	Z
	-I3	P. Z.	ins.	81.2 75.4 69.6	78.8 73.2 67.6	76.6 71.1 65.6	69.1 63.8	72.4 67.3 62.1	F.09 2.29 2.02	68.2 8.8 28.9	67.0 62.2	Z
	u	EN PN	ins	81.2 75.4 69.6	84.4 78.8 73.2 67.6	82.0 76.6 71.1 65.6	79.8 74.4 69.1 63.8	77.6 72.4 67.3 62.1	75.6 70.5 65.5 60.4	73.6 68.7 63.8 58.9	67.0 62.2	Z
	-I3	N E N C N N S N N N N N N N N N N N N N N N	Sul	92.8 87.0 81.2 75.4 69.6	84.4 78.8 73.2 67.6	87.5 82.0 76.6 71.1 65.6	85.1 79.8 74.4 69.1 63.8	82.8 77.6 72.4 67.3 62.1	F.09 2.29 2.01 9.21 80.8	78.5 73.6 68.7 63.8 58.9	71.8 67.0 62.2	Z
Iron Plates $\frac{7}{16}$ inch thick. TABLE No. 277.	-I3	N N N N N N N N N N N N N N N N N N N	ins.	98.6 92.8 87.0 81.2 75.4 69.6	95.7 90.1 84.4 78.8 73.2 67.6	93.0 87.5 82.0 76.6 71.1 65.6	90.4 85.1 79.8 74.4 69.1 63.8	87.9 82.8 77.6 72.4 67.3 62.1	P.09 82.6 80.6 75.6 70.5 65.5 60.4	83.4 78.5 73.6 68.7 63.8 58.9	76.6 71.8 67.0 62.2	Z

The length L should never exceed 10 feet and $\frac{\pi}{10} - 1$ should not be more than 10 feet.

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. see + When A1 is the distinguishing letter Table No. 284 may be used when the length does not exceed for 🏋 inch, 3375 feet and, for 🕏 notes, pages 170 to 173.

Th's numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given

pressure. D = Diameter of furnace in inches.

L=Length of furnace in feet.

N=Numeral applicable to the case. $\frac{N}{D} - 1 = L$. $\frac{N}{L+1} = D$.

(L+1) D=N.

FURNACES PLAIN CYLINDRICAL.

Iron Plates.

Pressures and Numerals for Lengths and Diameters.

		Iron P	lates 1	inch	Iron Plates $\frac{1}{2}$ inch thick.		TABLE NO.	. 279.		Iı	fron Pla	Plates 17	$\frac{1}{3}\frac{7}{2}$ inch	thick.	-	TABLE NO.	. 280.
1 3			Z	Numerals	ž			u	J			N	umerals.	3.			un
Press per sq. i	A1†A N	NB	NC	QN	NE	E Z	ΦZ	.sM unt isiO	Press pe sq.	A1†A N	M Z	NG	QN	NE	HZ	ΩN	Max nm TisiO
lbs.								ins.	lbs.								ins.
165	136	129	121	114	106		6.06	27.27	165	154	145	137		120	111	103	28.97
170	132	125	118	110	103		88.5	26.47	170	149	141	133		116	108	9.66	28.12
175	129	121	114	107	100		85.7	25.71	175	145	137	129		113	105	8.96	27.32
180	125	118	1111	104	97.2		83.3	25.00	180	141	133	125		110	102	94.1	26.56
185	122	115	108	101	94.6	8.1.8	81.1	24.32	185	137	130	122	114	107	2.66	91.2	25.84
190	118	112	105	2.86	92.1		6.82	23.68	190	134	126	119		104	9.96	89.1	25.16
195	115	109	103	2.96	2.68		6.94	23.07	195	130	123	116		101	94.1	8.98	24.51
200	113	106	100	93.8	2.28		0.92	22.20	200	127	120	113		8.86	91.7	84.7	23.90

The length L should never exceed 10 feet and $\frac{N}{\Sigma}-1$ should not be more than 10 feet.

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. See

notes, pages 170 to 173.

† When A1 is the distinguishing letter Table No. 284 may be used when the length does not exceed for ½ inch, 4 feet and, for ½ inch,

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given

D = Diameter of furnace in inches. L=Length of furnace in feet.

N=Numeral applicable to the case. $\frac{N}{D}-1=L, \qquad \frac{N}{L+1}=D,$

FURNACES PLAIN CYLINDRICAL, Iron Plates.

Pressures and Numerals for Lengths and Diameters.

. 282.	u	Man nun nei T	ins.	32.38	31.43	30.53	29.68	28.88	28.12	27.40	26.71	
TABLE NO.		ůΖ		128	124	121	118	114	111	108	106	-
		EN		139	135	131	127	124	121	118	115	
thick.	s.	ВZ		150	145	141	137	133	130	127	123	
fron Plates $\frac{19}{32}$ inch thick.	Numerals	QΖ		160	156	151	147	143	139	136	132	
ates 3	Z	NC		171	166	161	157	152	148	145	141	
ron Pla		NB		182	176	171	166	162	158	154	150	
I		A1†A N		192	187	181	176	172	167	163	159	
	J	Press pe sq.	lbs.	165	170	175	180	185	190	195	200	
. 281.	u	Ma: nm Dian	ins.	30.68	29.77	28.92	28.12	27.36	26.64	25.96	25.31	-
TABLE NO.		σz		211	112	108	105	103	6.66	97.4	94.9	-
		HZ		125	121	118	114	111	108	105	103	
thick.	· s	NE				_				114 105		
thick.	fumerals.	_		134	130	127	123	120	117		1111	
16 inch thick.	Numerals.	AN		144 134	140 130	136 127	132 123	128 120	125 117	114	111 111	
16 inch thick.	Numerals.	N D N N N N N		153 144 134	149 140 130	145 136 127	141 132 123	137 128 120	133 125 117	122 114	111 111 111	
thick.	Numerals.	C D NE		163 153 144 134	158 149 140 130	154 145 136 127	149 141 132 123	145 137 128 120	142 133 125 117	130 122 114	134 127 119 111	

The length L should nev r exceed 10 feet and $\frac{\Lambda}{D}$ - 1 should not be more than 10 feet.

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. See

notes, pages 170 to 173.

† When AI is the distinguishing letter Table No. 234 may be used when the length does not exceed for To inch, 4.625 feet and, for 33 inch, 4.937 feet.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given

D=D:ameter of furnace in inches.

L=Length of furnace in feet.

N=Numeral applicable to the case,
$$\frac{N}{D}-1=L, \qquad \frac{N}{L+1}=D. \qquad (L+1) \ D=N.$$

FURNACES PLAIN CYLINDRICAL. Iron Plates.

Pressures and Numerals for Lengths and Diameters.

TABLE No. 283.	Maximum	Diameter.*	Ins.	34.09	33.08	32.14	31.25	30.40	59.60	28.84	28.12
T		ρZ		142	138	134	130	127	123	120	117
		¥Z		154	149	145	141	137	134	130	127
thick.		MX		166	161	156	152	148	144	140	137
Iron Plates § inch thick.	Numerals.	AN		178	172	167	163	158	154	150	146
Iron P		NC		189	184	179	174	169	164	160	156
		az		201	195	190	184	179	175	170	166
		AllA		213	207	201	195	190	185	180	176
	Pressure	per sq. fn.	The	165	170	175	180	185	190	195	200

The length L should never exceed 10 feet and $\frac{N}{D}-1$ should not be more than 10 feet.

See notes, pages 170 to 173.

Then A11s the distinguishing letter Table No. 284 may be used when the length does not exceed 5.25 feet.

The nameral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given * The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

pressure.

D=Diameter of furnace in inches.

N=Numeral applicable to the case. $\frac{N}{D} - 1 = L$. $\frac{N}{L+1} = D$.

L=Length of furnace in feet.

FURNACES WITH FLANGED JOINTS.

TABLE No. 284.

Iron Plates from $\frac{1}{4}$ inch to $\frac{5}{8}$ inch thick.

		7:	0	
Pressure per sq. in.	Pressure Numerals.	Const. Thie	ants and Maximum Ler cknesses which they ar	ngths for the e opposite.
lbs.	N.	Thi kness.	Constants.	*Maximum Lengths tor Thickness in inches.
		inches.	C.	
		1/4	63.0	18.0
		9/32	72:375	21.75
165	3.3	5/16	81.75	25.50
170	3.4			
175	3.2	11/32	91.125	29.25
		3/8	100.50	33.0
180	3.6	13/32	109.875	36.75
185	3.7	7/16	119.25	40.50
190	3.8			
195	3.9	15/32	128.625	44.25
		1/2	138.0	48.0
200	4.0	17/32	147:375	51.75
		9/16	156.75	55.20
		19/32	166.125	59.25
		5/8	175.50	63.0

^{*} The lengths opposite the thickness in each case are the maximum lengths, in inches, between the centres of the flanges, for which the Table should be used. When the length exceeds that opposite the given thickness then the pressure may be found from Tables Nos. 271 to 283.

N=Pressure numeral. C=Thickness constant. D=Diameter, outside, in inches. l=Length between centres of flanges, in inches. See notes, page 187 and following.

 $\frac{C-l}{N} = D$.

C - ND = l. ND + l = C.

 $\frac{C-l}{D} = N.$

FURNACES, CORRUGATED, CYLINDRICAL.

Iron Plates from $\frac{1}{4}$ inch to $\frac{5}{8}$ inch thick. Pressures and Diameters when machine made.

TABLE No. 285.

I													
						Thickness	Thicknesses and Diameters.*	ameters.*					
OTT 0:	¼ in.	% in.	5/16 in. 11/32	11/32 in.	% in.	13/32 in.	7/16 in.	15/32 in.	½ in.	17/32 in.	9/16	in. 1 % in.	% in.
enbs	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.						
165	13.63	15.34	17.04	18.75	20.45	22.15	23.86	25.56	27.27	28.97	30.68	32.38	34.09
0	13.93	14.88	16.54	18.19	19.85	21.50	23.16	24.81	26.47	28.12	29.77	31.43	33.08
10	12.85	14.46	16.07	17.67	19.58	20.89	22.50	24.10	25.71	27.32	28.92	30.53	32.14
C	12.50	14.06	15.62	17.18	18.75	20.31	21.87	23.43	25.00	26.56	28.12	89.63	31.25
00	12.16	13.68	15.20	16.72	18.24	19.76	21.28	22.80	24.32	25.84	27.36	28.88	30.40
	11.84	13.32	14.80	16.28	17.76	19.24	20.72	22.20	23.68	25.16	26.64	28.12	29.60
10	11.53	12.98	14.42	15.86	17.30	18.75	20.19	21.63	23.07	24.51	25.96	27.40	28.84
0	11.25	12.65	14.06	15.46	16.87	18.28	19.68	60.12	22.50	53.90	25.31	26.71	28.12
				-	1								1

* The diameter is the *meam* diameter, which is half the sum of the outside diameters, the one being measured from the top of the corrugations, the other from the bottom of the corrugations. See notes page 191 and following.

FLAT SURFACES.
Pressures, Pitches, and Surfaces.
Steel Plate \(^1\) inch thick.

TABLE No. 286.

_			-	-	_	_	-		_	-	_	
	*I1	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	*I1
	*	Pitch	ins.	:	:	:	:	:	:	:	:	*
	G_1	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	*r G1
	* r G_1	Pitch	ins.	:	:	:	:	:	:	:	:	*1
	\mathbf{I}_1	Sur- face	20	12.5	:	:	:	:	:	:	:	I_1
	* H $_1$	Pitch	ins.	3.20	:	:	:	:	:	:	:	*H1
	$*F_1G_1$	Sur- face	ďΩ		13.2			:	:	:	1:	G ₁
	*	Pitch	ins.	3.69	3.63	3.58	3.53	:	:	:	:	$*F_1G_1$
	87	Sur- face	sq. ins.	17.7	17.3	16	2.91	16	15		12.0	-5
#	*E1	Pitch	ins.	4.21	4.16	4.11	4.07	4.02	3.97	3.92	3.87	*E1
	*D_1	Sur- face	sq. ins.	9.61	19	18.7	18		17.4	17	16.7	1,
	*	Pitch	ins.	4.43	4.38	4.32	4.27	4.22	4.17	4.13	4.09	*D1
	*C1	Sur- face	sq. ins.	21.7	21.1	20.2	20.0	19.5	19.0	18.6	18.2	1,1
	*B ₁ *(Pitch	ins.	4.66	4.59	4.53	4.47	4.42	4.36	4.32	4.27	*Cı
		Sur- face	sq. ins.	:	:	:	:	:	:	•	:	31
		Pitch	ins.	:	:	:	:	:	:	:	:	*B1
	*A1	Sur- face	sq.ins.	:	:	:	:	:	:	:	:	*A ₁
		Pitch	ins.	:	:	:	:	:	:	:	:	*
	eure I. in.	Pres	lbs.	165	170	175	180	185	190	195	200	

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate 32 inch thick.

face Sur-: : $*I_1$ Pitch TABLE NO. 287. ins. sq. ins. 13.6 3.3 Sur-face *r G1 5 3.75 3.75 3.70 *1 3.59 3.55 Pitch sq. ins. 113.6 123.5 123.5 123.5 123.5 123.5 Sur-face *H1 H, 3.85 3.69 3.64 3.59 3.54 Pitch sq. ins. 16.4 16.0 15.5 14.3 6 Sur-face *F1G1 $*F_1G_1$ 4.00 3.83 3.83 3.94 Pitch sq. ins. 21.0 20.4 19.9 19.4 18.5 18.5 17.7 Sur-face *E. * E 4.52 .46 .41 :35 .30 .26 Pitch sq. ins. 23.5 22.8 22.2 21.6 20.6 Sur-face *D_1 *D 4.78 .59 .48 .43 Pitch sq. ins. 24.0 23.3 22.7 22.2 Sur-face *C1 °C 5.12 4.77 .97 90 Pitch sq. ins. Sur-face : * B₁ *B Pitch ins. : sq. ins. Surface *A1 *A1 Pitch

ins.

170 175 180 185 190

per. sq. in.

Pressure

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{5}{16}$ inch thick.

TABLE NO. 288.

_		_	_		_	_	_	_	_		-	
	$*I_1$	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	*I_1
	*	Pitch	ins.	:	:	:	:	:	:	:	:	
	G_1	Sur- face	30		16.6				15	14.6	14	*r G1
	*r G1	Pitch	ins.		4.08		3.98		3.87	3.85	3.77	*1
	*H_1	Sur- face			16.9				, ,		14.5	*H_1
	*	Pitch	ins.			4.07			ಎ	3.86	ಎ	*
	$*F_1G_1$	Sur- face	00	19.0					16.8			[G ₁
	*	Pitch		4.36	4.30		4.50	4.15	4.10	90. 4	4.05	*F1G1
	2	Sur- face			24.2							1,1
7.0	* E1	Pitch		66.4		4.85				4.60	4.55	*E1
)1	Sur- face	sq. ins.	28.5	27.3	26.2	25.7	25.0	24.3	23.7	23.1	01
	*D1	Pitch			5.23					4.87	4	*D1
	*C1	Sur- face	sq. ins.	31.7	9.08	29.7	28.7	27.9	27.1	26.4	25.7	*C1
	$*B_1$ $*($	Pitch	ins.	5.63	5.53	5.45	5.36	5.28	5.21	14	20.	*
		Sur- face	sq. ins.	:	:	:	:	:	:	:	:	$^*\mathrm{B}_\mathrm{l}$
	*	Pitch	ins.	:	:	:	:	:	:	:	:	*
	A ₁	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	Aı
	*	Pitch	ins.	:	:	:	:	:	:	:	÷	*
		Press	lbs.	165	170	175	180	185	190	195	200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate 13 inch thick.

TABLE No. 289.

-			_	_			_	_	-	_		
	$*I_1$	Sur- face	sq. ins.		:	:	:	:	:	:	:	$*I_1$
	*	Pitch	ins.	3.48	:	:	:	:	:	:	:	*
	G_1	Sur- face	sq. ins.	19.5	19					16.9	16.6	Gı
	* r G_1	Pitch	ins.	4.42	4.36	4.31	4.55	4.50	4.16	4.11	4.07	*1
	$^*\mathrm{H}_1$	Sur- face	sq. ii	19.9	19.4			18	17		16.9	\mathbf{I}_1
	*	Pitch	ins.	94.46	4.40	4.35	4.29	4.54	4.50	4.15	4.11	$^*\mathrm{H}_1$
	[G ₁	Sur- face	sd. ins.	21.9	21.3	20.8		19.7	19.3	18.8	18.4	G ₁
	$*F_1G_1$	Pitch	ins.	4.69	4.62	96.4	4		4.39	4.34	4.29	$*F_1G_1$
20	$*$ \mathbb{E}_1	Sur- face	sq. ins.	29.2	28.6	27.7	56.9	26.1	4.92	24.7	24.1	l ₁
70	*	Pitch	ins.	5.43	5.35	5.26	5.18	5.11	5.04	4.97	4.91	*E1
)1	Sur- face	sq. ins.	33.7	32.6	31.5	30.2	59.6	28.8	28.0	27.2)1
	*D_1	Pitch	ins.	5.81	2.41	19.9	5.53	2.44	5.36	5.29	5.55	*D_1
	*C1	Sur- face	sq. ins.	98.0	8.98	35.6		33	32.3	31.4	30	7,
	*	Pitch					2.87	2.48	69.9	5.61	5.53	*C1
	B_1	Sur- face	sq. ins.	:	:	:	:	:	:	:	:	*B_1
	$^*\mathrm{B}_1$	Pitch	ins.	:	:	:	:	:	:	:	:	*
	*A1	Sur- face	sq.ins.	:	:	:	:	:	:	:	:	*A_1
		Pitch	ins.	:	:	:	:	:	:	:	:	*
	oure,	Press	lbs.	165	170	175	180	185	190	195	200	

FLAT SURFACES.

Pressures, Pitches, and Surfaces.

Steel Plate 3 inch thick.

TABLE No. 290.

	-			_	_
	$*I_1$	Pitch Surface	ins. sq. ins	*I_1	P. c
	*r G ₁	Pitch Sur-	has. sq. ins. sq. ins. 4 '73 22'4 4 '60 21'2 4 '54 20'6 4 '49 20'1 4 '43 19'6 4 '43 19'6 4 '33 18'8	* r G_1	1.1 1.1 I. I
	*H ₁	Pitch Sur-	lins. 8q. ins. 4.78 22.9 4.72 22.2 4.52 21.6 4.59 21.0 4.48 20.0 4.48 20.0 4.48 19.6 4.48 19.6	*H_1	1
	$^*\mathrm{F}_1\mathrm{G}_1$	Pitch Sur-	ins. 8q. ins. 50.4 25.4 4.97 24.7 4.90 24.0 24.0 4.76 22.7 4.76 22.7 4.76 22.7 4.76 22.7 4.64 21.6	$*F_1G_1$	1
Steel Liane 8 month and	* E ₁	Pitch Sur-	ins. 8q. ins. 5-91 34-9 5-91 33-7 5-71 32-6 5-74 5-90-6 5-45 59-7 5-89-9 5-89-9 5-80-9	$*E_1$	
TOOLG I	*D_1	Pitch Sur-	ins. 8q. ins. 6 27 39 4 6 19 38 4 6 12 37 5 6 0.2 36 2 5 5 1 5 5 6 5 5 6 5 6 6 6 6 6 6 6 6 6 6	$^*\mathrm{D_1}$,
	*C1	Pitch Sur-	6.56 43.1 6.48 42.0 6.40 41.0 6.32 40.0 6.25 39.1 6.18 38.2 6.11 37.3	*C1	
	$*B_1$	Pitch Sur-	ins. sq. ins.	$^*\mathrm{B_I}$	
	*A_1	Pitch Sur-	ins. sq.ins.	*A1	
	oni .	Press per sq	1bs. 165 170 175 185 186 190 195 200		1

Pressures, Pitches, and Surfaces. FLAT SURFACES.

Steel Plate 3 inch thick.

291.	$*I_1$	Pitch Surface	ins. sq. ins. 4 02 16 2 3 96 15 7 3 90 15 7 3 90 15 2 3 85 14 8 3 75 14 4 4 3 77 0 13 7 0 13	$*I_1$
TABLE No. 291.	*r G1	Pitch Sur-	8q. ins. 8q. ins. 50 77 25 77 4 99 24 99 24 92 4 85 23 95 4 77 9 22 99 4 77 9 22 99 4 67 1 21 8	$*_{\Gamma}$ G_1
	$^*\mathrm{H}_1$	Pitch Sur-	sq. ins. sq. ins. 5 · 05 · 13 · 26 · 35 · 5 · 05 · 25 · 5 · 4 · 91 · 24 · 8 · 4 · 72 · 22 · · 8 · 4 · 72 · 22 · · 8 · 4 · 66 · 21 · 7	*H1
hick.	$*F_1G_1$	Pitch Sur-	sq. ins. sq. ins. 5.43 29.5 5.34 28.5 5.36 27.6 5.18 26.7 5.11 26.1 26.1 4.97 24.7 4.91 24.1	$*F_1G_1$
Steel Plate \(\frac{1}{32}\) inch thick.	$*$ \mathbb{E}_1	Pitch Sur-	ms. sq. ms. 6.33 40.0 6.25 39.0 6.09 37.1 5.99 35.9 55.90 34.8 5.90 34.8 5.90 35.9 5.73 32.8	$*E_1$
Steel Pla	*D_1	Pitch Sur- face	ins. 89. ins. 6.66 44.3 6.57 43.2 6.49 42.1 6.41 41.1 6.27 89.3 6.20 38.4 6.13 37.6	$^*\mathrm{D_1}$
	*C1	Pitch Sur-	108. 89. ins. 69. ins. 6. 97 48.6 6.79 46.1 6.71 45.0 6.63 44.0 6.55 43.0 6.48 42.0 6.41 41.1	*C1
	*B ₁	Pitch Sur-	sq. ins.	$*B_1$
	*A_1	Pitch Sur-	sq. ins.	*A1
	orne .ni .	Press per sq	165. 175 175 175 180 185 190 195 200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate T inch thick.

TABLE NO. 292.

	$*I_1$	Pitch Surface	ins. sq. ins. 4°24 17°5 4°19 17°5 4°19 17°5 4°19 17°1 4°19 16°3 4°19 16°3 4°19 16°3 3°35 15°5 3°39 15°5 3°5 3°5 3°5 3°5 3°5 3°5 3°5 3°5 3°5	$*I_1$	
	*r G ₁	Pitch Surface	sq. ins. sq. ins. 55.34 28.6 5.34 28.6 57.7 5.18 26.9 5.11 26.1 26.1 26.1 4.97 24.7 4.91 24.1	*r G1	, , , , , , , , , , , , , , , , , , ,
	$^*\mathrm{H}_1$	Pitch Sur-	ms. sq. ins. 5 541 29 3 5 541 29 3 5 25 27 5 5 17 26 7 5 10 26 0 5 03 25 3 4 97 24 7	*H_1	11. 11.
	$*F_1G_1$	Pitch Sur-	ins. 8q. ins. 55.74 34.1. 55.74 32.9 5 56 30.9 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 55.30 59.1 59.1 59.1 59.1 59.1 59.1 59.1 59.1	$*F_1G_1$	
10	$*$ \mathbb{E}_1	Pitch Sur-	ms. 8q. ins. 66.69 447.7 6.60 43.6 6.52 425.5 6.44 41.5 6.37 40.5 6.30 39.6 6.28 38.8 6.16 38.0	E.*	
	$*D_1$	Pitch Sur-	ms. Sq. ins. 7 '04 49 '6 '95 48 '3 6 '86 47 '1 6 '78 46 '0 6 '70 43 '8 6 '65 42 9 8 '6 '65 42 '9 6 '65 42 '9 6 '65 42 '9	$*D_1$	Contraction of the last of the
	*C1	Pitch Sur-	ins. 84, 118. 7.38 54.4 7.28 53.0 7.19 50.4 7.01 50.4 7.01 50.4 7.01 6.8 6.93 48.1 6.85 47.0 6.78 46.0	*C.	
	*B ₁	Pitch Sur-	kg, ins.	*B ₁	
	*A1	Pitch Sur-	9.14 83.56	*A1	
-		Pressi per sq.	165 165 170 175 180 185 190 195 200		1

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{1.5}{2.5}$ inch thick.

TABLE No. 293.

18.9 18.5 17.6 17.3 16.9 so, ins. Surface *I_1 4.41 4.25 Pitch Sur-face *r G1 *r G, 5.63 5 . 45 5 . 37 5 . 30 5 . 23 Pitch Sur-face *H1 *H 5.89 Pitch 5.52 5.29 sq. ins. 38.8 37.8 36.7 35.5 34.4 33.3 Sur-face *F1G1 *F.G. 6.23 90.9 96.9 5.86 Pitch 48.5 0.97 44.0 46.1 Sur-face * \mathbb{E}_1 *E1 7.05 6.96 6.87 6.79 99.9 6.71 6.49 Pitch sq. ins. 55.2 53.8 49.9 48.7 47.6 Sur-face *D *D1 ins. 7.43 .24 .15 90.2 Pitch 54.8 53.5 52.3 51.1 Sur-face *C1 5 Pitch .49 7.23 sq. ins. 88·1 83.4 Sur-face *B *B, 9.25 Pitch : 93.5 91.0 88.5 86.2 84.1 82.0 sq.ins. Sur-face : *A_1 *A1 ins. 9.67 9.58 9.17 9.24 9.41 Pitch 165 175 185 per sq. in. 180 190 Pressure

Pressures, Pitches, and Surfaces. FLAT SURFACES.

Sq. ins. 22.2 22.2 21.6 21.0 20.5 119.9 119.5 18.6 Surface ins. 4.71 4.47 89.7 4.53 Pitch TABLE No. 294. sq. ins. 38.4 37.4 34.9 33.8 32.8 31.8 5 6.19 , L 5.82 6.01 5.91 Pitch sq. ins. 39.1 38.1 37.1 38.7 38.7 33.7 31.7 Sur-face *H1 6.25 60.9 Pitch 6.17 Sur-face *F1G1 6.46 6.38 6.30 6.16 6.08 6.08 Pitch Plate 1 inch thick. 51.0 48.6 53.6 52.2 Sur-face 찐 7.32 7.23 .14 .05 26.9 Pitch 61.2 59.6 558.0 555.2 552.7 Sur-face Steel $^*\mathrm{D}_1$.52 .34 Pitch 653.5 652.5 57.5 56.5 56.5 56.5 sq. ins. Sur-face 8.20 7.99 7.79 7.70 7.61 Pitch sq. ins. 98.0 95.3 92.7 90.3 888.0 83.0 91.0 Sur-face *B_1 9.76 9.27 Pitch 101.2 98.5 96.0 93.5 Ċ sq. ins. Sur- *A_1 0.50 0.06 9.92 9.6 Pitch

ber sq. in.

Pressure

170 175 180 $*I_1$

*r G1

 * H_1

*F,G,

国

*D

*C1

*B1

 $*A_1$

7.26

9.15

9.43 9.32

195

0

4.32

5.64

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are will be found on page 195 and following. applicable; these conditions, with their distinguishing letters,

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate 17, inch thick.

TABLE No. 295.

_				
	$*I_1$	Sur- face	84. ins. 24.7 24.7 24.0 22.1 4 21.5 8 21.0 8 21.0	$*I_1$
		Pitch	ins. 4.907 4.76 4.76 4.76 4.58 4.58 4.58	
	* r G_1	Sur- face	sq. ins. 42.1 41.0 40.0 39.0 38.1 36.1 35.0	* r G_1
	**	Pitch	ins. 6.48 6.25 6.10 6.10 6.10 6.10 6.10	*
	$^*\mathrm{H_1}$	Sur- face	sq. ins. 42.9 41.8 40.8 39.8 38.0 38.0 36.0	I,
	*	Pitch	6.09 6.00 6.00 6.00 6.00 6.00 6.00	* H $_1$
	G ₁	Sur- face	sq. ins. 47.0 45.8 44.6 42.5 42.5 41.6 40.7 39.8	[G ₁
	$*F_1G_1$	Pitch	ins. 6.785 6.68 6.60 6.52 6.45 6.33 6.31	$*F_1G_1$
	*E1	Sur- face	sq. ins. 59.0 59.0 54.7 5 53.5 55.2 55.2 51.1	5
		Pitch	ins. 7.79 7.68 7.58 7.49 7.40 7.31 7.23	* E ₁
25	*D_1	Sur- face	sq. ins. 67.5 65.7 64.0 62.4 60.8 59.4 58.0 56.7	*D1
		Pitch	ins. 8 210 8 210 8 7 90 7 7 71 7 753 7 753	*
	$*C_1$	Sur- face	sq. ins. 74.3 72.3 70.4 68.6 66.9 65.3 62.4 62.4	*C1
	*	Pitch	ins. 8.62 8.50 8.28 8.28 8.18 8.18 7.99 7.99	*
		Sur- face	sq. ins. 108.5 105.5 100.0 97.4 95.0 92.7	21
	B1	Pitch	ins. 10.42 10.27 10.13 10.00 9.87 9.75 9.63	$^\mathrm{B}_1$
	*A1	Sur- face	89. ins. 115.3 115.3 1109.1 106.2 103.5 101.0 98.5	*A ₁
	*	Pitch	ins. 10.74 10.75 10.59 10.44 10.31 10.17 10.05 9.92 9.92	*
		Press per sq	165 170 170 175 175 180 180 190 190 200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate 19 inch thick.

-				
296.	$*I_1$	Pitch Sur-	ins. 57.5 27.5 57.5 57.5 57.5 57.5 57.5 57.	$*I_1$
TABLE NO.	*r G1	Pitch Sur-	ins. sq. ins. 6.78 46.0 6.69 44.8 6.61 43.7 6.53 42.6 6.38 40.7 6.31 39.8 6.24 39.0	*r G1
	$^*\mathrm{H}_1$	Pitch Sur- face	ms. 89. ins. 6 85 46 9 6 76 45 7 6 50 44 5 7 6 50 43 5 6 50 43 5 6 50 44 1 5 6 37 40 6 6 30 89 7	*H_1
hick.	$*F_1G_1$	Pitch Surface	ins. 8q. ins. 7 17 51 4 51 4 50 1 6 59 4 8 8 6 6 4 4 4 5 4 6 5 6 59 4 8 6 5 6 5 9 4 8 5 6 6 6 6 5 9 4 8 5 6 6 5 9 4 8 5 6 6 6 5 9 4 8 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	$*F_1G_1$
Steel Plate 9 inch thick.	$^*\mathrm{E}_{\scriptscriptstyle \mathrm{I}}$	Pitch Sur-	ins. 89. ins. 87. ins. 8.16 66.6 8.05 64.8 7.94 63.1 7.75 60.0 7.65 58.6 7.56 57.2 7.48 56.0	$^*\mathrm{E}_1$
Steel Plan	$*D_1$	Pitch Sur-	ms sq. ins. 8 · 61 74·11 8 · 49 72·11 8 · 80 7 72·11 8 · 80 7 72·11 8 · 90 7 6 6 · 80 7 · 90 8 · 90 7 · 90 8 · 90 7 · 90 8 · 90 6 5 · 90 7 · 90 8 · 90 6 5 · 90 7 · 90 8 · 90 6 5 · 90 7 · 90 8 · 90 6	*D_1
	$*C_1$	Pitch Sur-	ms. sq. ins. 9°04 81°7 8°90 77°4 88°80 77°4 88°5 75°4 88°5 75°4 8°57 78°5 8°57 78°5 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 70°1 8°57 8°57 70°1 8°57 8°57 8°57 8°57 8°57 8°57 8°57 8°57	*C1
	$^*\mathrm{B}_1$	Pitch Sur-	ns. ins. eq. ins. 210 98119 6 (1610 78118 2) 10 48118 11 110 48110 11 110 36107 3 2 10 28104 6 (1510 10 2) 10 998 997	$^*\mathrm{B}_{\mathrm{l}}$
	*A_1	Pitch Surface	ins. Sq. ins. 11.27 127.22 11.12 123.6 10.96 120.2 117.1 10.68 114.1 10.54 111.2 10.42 108.5 10.42 108.5 10.29 106.0	*A_1
	sure q. in.		165. 165. 170. 175. 180. 190. 195. 200.	

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate 19 inch thick.

TABLE No. 297.

		-			_
	*I_1	Pitch Sur-	8q. ins. 8q. ins. 553 30.6 554 29.6 57.28 27.7 57.29 27.0 57.13 26.3 5.00 27.0 57.13 26.3 56.0 54.9 54.9 54.9	*I_1	
	*r G1	Pitch Surface	ms. sq. ms. 66.50.1 6.98 48.8 6.89 47.5 6.71 6.73 45.3 6.5 44.2 6.58 443.3 6.51 42.3	* r G_1	
	$^*\mathrm{H}_1$	Pitch Sur-	ins. sq. ins. 7 14 51 11 7 05 49 7 6 96 48 5 6 7 9 46 2 6 7 2 45 1 6 6 4 4 4 1 1 6 5 7 4 3 2	*H1	1 . 1 . 1
	$*F_1G_1$	Pitch Sur-	ms. 8q. ins. 7 49 56 11 7 29 53 22 7 20 51 9 7 12 50 6 6 95 48 4 6 88 47 3	$*F_1G_1$	3.7.
40	$*E_1$	Pitch Surface	ms. sq. ms. 87. ms. 88.53 722.8 8.41 70.8 8.30 69.0 87.20 87.20 87.20 87.20 87.20 87.20 62.5 7.90 62.5 7.81 61.1	$*E_1$	
	$*D_1$	Pitch Sur-	ms. sq. ins. 9°00 81°0 81°0 81°0 81°0 81°0 81°0 81°0 8	$^*\mathrm{D_1}$,
	*C1	Pitch Sur-	ins. sq. ins. 9 46 89 5 9 9 33 87 0 9 20 84 7 9 9 08 82 5 8 8 6 7 8 5 8 7 5 6 6 8 6 5 7 4 9	*C1	
	$*B_1$	Pitch Sur-	sq.tins. ins. sq.tins. 139 of 11 45 131 2 132 0 11 14 124 1 128 5 1 10 98 110 85 117 7 122 0 10 71 114 7 119 0 10 58 112 0 116 2 10 45 109 3	$*B_1$	
	*A_1	Pitch Sur-	ins. sq. ins 11.81 139 11.65 135 11.49 132 11.33 128 11.18 125 11.04 122 11.04 122 11.07 11.04 122 11.04 122 11.07	*A1	
		Press	165 175 175 175 185 185 195 195 200		1

FLAT SURFACES.
Pressures, Pitches, and Surfaces.
Steel Plate \$\frac{5}{8}\$ inch thick.

TABLE No. 298.

*I1	Pitch Sur-	ins. Sq. ins. 59, ins. 56, 583 34, 00. 55, 73 32.9, 55, 54, 31.8, 55, 39, 55, 39, 55, 31, 28, 25, 52, 44, 57, 59, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50	*I1
*r G1	Pitch Sur-	ins. sq. ins. 7.37 54.48 7.27 52.9 7.18 51.6 7.09 50.3 7.01 49.1 6.93 48.0 6.85 46.9 6.77 45.9	* r G_1
$^*\mathrm{H}_1$	Pitch Sur-	108. 89. ins. 7.45 55.5 7 7.25 54.0 7.16 51.3 7.08 50.1 7.08 50.1 7.08 60.1 7.08 49.0 6.92 47.8 6.84 46.8	$^*\mathrm{H}_1$
F1 G1	Pitch Sur-	ms. sq. ins. 7.81 61.0 7.70 59.3 7.60 57.8 7.42 556.4 7.33 53.7 7.24 52.5 7.16 51.3	$^\mathrm{F}_1$ G_1
$^*\mathrm{D_1}$ $^*\mathrm{E_1}$ *	Pitch Sur-	ms. 84-ins. 87-ins. 87-8 87-8 87-8 87-8 86 77-11 88-66 75-11 88-34 69-6 88-25 68-0 88-15 66-5	$^*\mathrm{E}_{\scriptscriptstyle \mathrm{I}}$
*D1	Pitch Sur-	9.40 88.5 9.40 88.5 9.27 86.0 9.15 83.7 9.03 81.6 8.92 79.5 8.81 77.6 8.70 75.8	*D_1
*C ₁	Pitch Sur-	ins. 8q. ins. 97.6 97.6 97.6 97.6 97.6 99.48 97.0 99.8 87.7 99.25 85.6 99.14 83.5 99.0 90.0 90.0 90.0 90.0 90.0 90.0 90	*C_1
$*B_1$	Pitch Sur-	ins. sq. ins. 11.98 143.6 11.81 139.4 11.64 135.6 11.49 132.0 11.19 125.4 11.06 122.3 10.92 119.4	$^*\mathrm{B}_\mathrm{l}$
*A1	Pitch Sur-	ins. sq. ins. 12°35 152°6 12°18 148°3 12°01 144°2 11°85 140°4 11°69 138°8 11°54 133°3 11°27 127°0	*A_1
	Pressi per sq.	165 175 175 180 185 190 195 200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressure, Pitches, and Surfaces. Steel Plate 34 inch thick.

99.	*I_1	Pitch Sur-	ins. 6.14 37.46 6.04 36.5 5.94 35.2 5.84 34.1 5.75 33.0 5.56 32.0 5.58 31.1 5.50 30.2	$*I_1$	
TABLE NO. 299.	r G*1	Pitch Sur-	ms, sq. ins, 7.67 58.9 6 7.757 57.8 6 7.3 7.4 7.5 57.3 6 7.2 6 7.2 6 7.2 6 7.2 6 7.0 6 49.6 6 7.0 49.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	*r G1	
	* H $_1$	Pitch Sur-	ins. sq. ins. 7.75 60.1 7.75 60.1 7.55 58.5 7.35 55.5 7.36 54.2 7.27 52.9 7.27 52.9 7.21 52.9	*H_1	
Steel Plate 32 inch thick.	$*F_1 G_1$	Pitch Sur-	ms. 8q. ins. 813 6611 8 902 643 7 911 62 67 7 772 59 69 7 75 59 67 7 75 65 58 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 56 7 7 65 7 7 65 7 6 7 7 65 7 7 65 7 7 65 7 7 7 7	$*F_1$ G_1	
	$*$ \mathbb{E}_1	Pitch Sur-	ms. 8q. ins. 9.28 86.1 9.15 83.7 9.03 81.5 8.91 79.4 8.80 77.4 8.69 75.6 8.49 72.1	* E1	
Steel Pla	*D1	Pitch Sur-	ins. 97. ins. 99.80 96.1 99.67 93.5 99.54 91.0 99.41 88.6 99.07 89.7 89.8 89.9 80.4 89.07 89.2 89.06 80.3	$^*\mathrm{D_1}$	
	*C1	Pitch Sur-	ins. sq. ins. 10.30 106.1 10.16 103.2 10.02 100.4 9.89 97.8 9.78 9.64 93.0 9.52 90.7 9.41 88.6	*C1	
	$*B_1$	Pitch Sur-	ms. sq.ms. ins. sq. ins. 12°50 156°2 12°50 156°2 12°51 151°1 12°15 147°6 12°36 152°9 11°99 143°7 12°20 143°9 11°80 143°7 11°90 141°6 11°54 133°1 11°75 138°2 11°40 129°9	$^*\mathrm{B}_{\mathrm{I}}$	
	*A_1	Pitch Sur-	ins. 12.89 12.71 12.53 12.36 12.20 12.05 11.90	*A1	
		Press per sq	165 170 175 175 180 185 190 195		

FLAT SURFACES.
Pressures, Pitches, and Surfaces.
Steel Plate 14 inch thick.

TABLE No. 300.

1			· · · · · · · · · · · · · · · · · · ·	
	*11	Pitch Sur-	rns. sq. ins. 65. ins	*11
	*r G ₁	Pitch Sur- Face	ms. sq. ms. 7 797 63 6 7 756 60 3 7 76 58 8 7 757 57 67 3 7 748 56 0 7 748 56 0 7 7 78 57 3 7 7 8 58 60 0	*r G1
	$^*\mathrm{H}_1$	Pitch Sur-	ins. 8q. ins. 84.9 7.94 63.1 7.74 60.0 7.65 58.5 7.47 56 67.1 7.47 55.8	*H_1
	$*F_1G_1$	Pitch Sur-	ins. 8q. ins. 8.45 71.4 8.33 69.5 88.22 66.77 8.02 64.3 7.92 64.3 7.92 62.8 7.83 61.3 7.74 60.0	$*F_1G_1$
0.1	$*E_1$	Pitch Sur-	ms. sq. ins. 9 65 93 2 90 7 9 52 90 7 9 23 86 9 9 15 83 8 8 9 04 81 7 8 8 93 78 9 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$*$ \mathbb{E}_1
	*D_1	Pitch Sur-	ins. sq. ins. 10.20 104.1 10.00 101.2 9.2 98.5 9.79 96.5 9.55 9.45 9.43 89.0 9.43 89.0 9.83 89.0	$*D_1$
	*C1	Pitch Sur-	has. Sq. ins. 10.72 115 0. 10.57 1115 0. 10.57 111 0. 29 106 0. 10.16 103 2. 10.03 100 7. 9 91 98 3	*C1
	$^*\mathrm{B}_{\mathrm{l}}$	Pitch Sur-	ins. Sq. ins. 13.02 169.06 12.83 164.8 12.66 160.2 12.49 156.0 12.32 151.9 12.17 148.1 12.02 144.4 11.0	$*B_1$
	*A1	Pitch Sur-	Ins. Sq. ins. 13 +23 180 · 5 · 13 · 24 175 · 4 13 · 06 170 · 5 · 12 · 88 166 · 0 12 · 71 161 · 6 12 · 55 157 · 5 12 · 24 150 · 0	*A1
	orre in,	Pressu	165 175 175 175 185 190 200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{2}{3}\frac{3}{2}$ inch thick.

TABLE No. 301.

	-			
*	I ₁	Pitch Sur-	ins. 6.59 43.5 6.59 43.5 6.51 42.3 6.43 41.3 6.28 39.4 6.21 38.5 6.14 37.7 6.05 36.7	*11
*	T G1	Pitch Surface	ins. sq. ins. 827 68°5° 8°16 66°6° 8°05 64°9° 7°95 63°2° 7°7°76 60°2° 7°7°76 7°5° 8°3° 7°5° 8°3° 8°3° 8°3° 8°3° 8°3° 8°3° 8°3° 8	*r G1
*	п	Pitch Surface	ins. sq. ins. 8.36 69.9 8.24 68.0 8.14 66.2 7.93 64.5 7.74 61.5 7.75 60.0 7.76 65.7 65.7 65.7 65.7 65.7 65.7 65.7	$^*\mathrm{H}_1$
7 5	. F141	Pitch Surface	ms. sq. ins. 87.7 77.0 8.65 74.9 8.54 72.9 8.43 71.1 88.32 69.3 8.22 67.6 8.13 66.0 8.13 66.0	$*F_1G_1$
*	Д	Pitch Sur-	10.03 100.6 9.89 97.9 9.76 95.2 9.51 90.4 9.39 88.2 9.38 86.1 9.17 84.1	$^*\mathrm{E}_1$
	"L1	Pitch Sur-	ins. sq. ins. 10 60 112 5 10 46 109 4 10 31 106 4 10 10 0 5 10 10 0 9 9 9 9 9 8 5 9 6 1 9 6 9 9 8 6	$^*\mathrm{D}_1$
7	ئ ئ	Pitch Sur-	ins. sq. ins. 11.15 124.3 10.99 120.8 10.84117.6 10.70114.5 10.43 108.7 10.30 106.1 10.18 103.6 10.18 103.6	*0,
3	*B1	Pitch Surface	ms. sq. ms. 13.54 183.5 13.35 178.3 13.16 173.4 12.99 168.7 12.65 160.1 12.60 156.2 12.34 152.4	$^*\mathrm{B_1}$
,	*A1	Pitch Sur-	ms. sq.ins. 13.97 195.3 13.77 189.8 13.58 184.5 13.4 179.6 13.22 174.9 13.05 170.4 12.89 166.2	*A1
	Pressure per sq. in.		165 170 170 175 185 185 190 190 200	

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{2}{3}$ inch thick.

TABLE No. 302.

		200		
	$*I_1$	Pitch Surface	ins. 89. ins. 6 82 46 5 6 67 44 2 6 65 44 2 4 6 6 6 4 9 42 1 6 6 9 6 5 4 1 2 6 6 5 6 2 8 9 4 2 1 6 6 2 8 8 9 4	*I_1
	*r G ₁	Pitch Surface	ms. sq. ms. 85. hs. 85. hs. 87. hs. 87. hs. 87. hs. 87. hs. 87. hs. 87. hs. 97. hs. 97	*r G1
	$^*\mathrm{H}_1$	Pitch Sur-	ins. 84, ins. 86, 75.1 8.65 77.1 1 8.43 71.1 8.22 67.6 8.12 66.0 8.03 64.5 7.94 63.0	$^*\mathrm{H}_1$
	$*F_1G_1$	Pitch Sur-	ins. sq. ins. 89.10 82.8 8.97 80.5 8.85 78.4 8.63 74.5 8.63 74.5 8.42 71.0 8.33 69.3	$*F_1G_1$
*	* E ₁	Pitch Sur-	ms. sq. ins. 10°41 10°8.4 10°26 10°5°4 10°12 10°2°5 9°9°9°9°8°8°974 94°9°9°62 9°62 9°65 9°61 9°61	$*E_1$
	*D_1	Pitch Sur-	ins. sq. ins. 11.01 121.2 10.76 114.6 10.56 111.6 10.43 108.7 10.29 106.0 10.17 10.29 106.0 10.17 10.3.5 10.05 10.1.0	*D_1
	*C1	Pitch Surface	ins. sq. ins. 11.57 134.0 11.41 130.2 11.25 126.7 11.10 123.3 10.96 120.1 10.69 114.3 10.59 114.3	*C1
	$*B_1$	Pitch Sur-	ins. Sq. ins. 14.07 198.0 198.0 198.0 198.0 199.2 199.1 199.	*B ₁
	*A1	Pitch Sur-	ins. sq.ins. 14.52 210.8 14.31 204.8 14.11 199.1 18.92 193.7 13.73 188.7 13.56 183.8 13.22 175.0	*A1
	orn in.	Pressi per sq.	1655 170 170 175 185 195 195 200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{2.5}{3.9}$ inch thick.

TABLE No. 303.

				_
*I,	Pitch Sur-	108. 8q. ins. 69. 6 48.4 6 587 47.2 6 6.6 79 46 0 6 6.7 45 2 6 6.3 48.9 6 6.5 48.9 6 6.5 48.9 6 6.5 48.9 6 6.48 42.0	$*I_1$	
*r G1	Pitch Sur-	ms. 89. ins. 89. se. ins. 8.88 78.99 8.76 76.77 8.64 74.77 8.49 71.09 8.42 71.00 8.32 67.6 8.13 66.1	$*_{\Gamma} G_1$	
*H,	Pitch Surface	ms. 89, ins. 89, 805 88, 87 88, 88 88 88 88 88 88 88 88 88 88 81 724 88 831 69 0	*H1	
*F,G,	Pitch Sur-	ins. 89.42 88.88 9.42 88.88 9.29 86.4 9.17 84.1 9.05 81.9 8.89 77.9 8.72 76.0 8.62 74.3	$*F_1G_1$	
* E.	Pitch Sur-	ins. sq. ins. 10.79 116 4. 10.64 113.2 10.49 110.1 10.35 107.2 10.99 10.99 10.99 4. 9.85 9.7 1	$^*\mathrm{E}_1$	
*D,	Pitch Sur-	ins. 6q. ins. 11.41 130.2 11.25 126.6 11.09 123.1 10.95 119.9 10.80 116.8 10.54 111.1 10.41 10.81 10.84 10.85 110.81 10.84 10.85 10.84 10.85 10.	$*D_1$	
5	Pitch Sur-	ins. sq. ins. 12:00 144:0 11:83 140:0 11:67 136:1 11:25 125:9 11:0 11:0 12:0 11:0 11:0 12:0 11:0 11:0	$*C_1$	
*B,	Pitch Sur-	sq.ins. ins. sq.ins. 226.9 14.59 213.1 220.4 14.89 207.0 214.2 14.18 201.2 208.5 13.99 195.8 197.8 13.63 13.	*B_1	
*A,	Pitch Sur-	ins. sq.ins. 15 06 226 9 14 84 220 4 14 63 214 2 14 44 208 5 14 24 203 0 14 06 197 8 13 89 192 9	*A1	
	Pressu per sq.	165 170 175 180 185 190 195 200		

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.
Pressures, Pitches, and Surfaces
Steel Plate $\frac{1}{16}$ inch thick.

		. 0	8.0000000000		Ī	
304.	I,	*11	Sur- face	sq. ins. 551.6 500.3 49.0 46.8 45.8 44.8	I	
	*	Pitch	ins. 7.28 7.128 7.128 7.09 7.00 6.92 6.84 6.76 6.69 6.69	*		
TABLE NO. 304.	25	Sur- face	sq. ins. 84.4 84.4 82.0 79.9 77.8 75.9 74.0 72.3 70.6	, J		
TABL	*r G1	Pitch	ins. 9.18 9.06 8.94 8.82 8.71 8.70 8.50 8.40	*r G1		
		Sur- face	sq. ins. 86.1 88.8 81.6 79.5 77.5 75.6 75.6 72.1		Ì	
	* H $_1$	Pitch	ins. 9 9 28 9 9 15 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	* H $_1$		
	5	Sur- face	89. ims. 92.4 92.4 90.0 87.6 85.4 83.3 79.5	2,1		
ick.	$*F_1G_1$	Pitch	ins. 9.75 9.61 9.48 9.24 9.13 9.02 8.91	*FIG1		
nch th	*E1	Sur- face	sq. ins. 124.7 121.2 118.0 114.8 111.9 109.1 106.5	1		
Steel Plate 13 inch thick.		Pitch	ins. sq. ins. 11.17 124.7 11.01 121.2 10.86 118.0 10.71 114.8 10.58 11.9 10.44 109.1 10.32 106.5 10.19 104.0	*E1		
l Plat	*D_1	Sur- face	sq. ins. 139.6 135.7 132.0 128.5 125.1 122.0 119.0	1		
Stee		Pitch	ins. sq. ins. 11.81.139.6 il. 11.65.135.7 il. 49.132.0 il. 33.128.5 il. 11.04.125.0 il. 0.91.119.0 il. 0.78.116.2	*D_1		
		Sur- face	8. 8q. ins. 43 154 4 25 150 1 0 0 29 142 1 76 138 4 61 134 9 47 131 6 33 128 5			
	*C1	Pitch	ins. sq. ins. lns. sq. ins. 12.43 154.4 11.81 139.6 12.25 150.1 11.65 135.7 12.08 146.0 11.49 132.0 11.76 138.4 11.18 125.1 11.61 134.9 11.04 122.0 11.47 131.6 10.78 116.2	*C1		
	pel	Sur- face	sq. ins. 228.7 222.1 222.1 216.0 210.1 204.6 199.4 194.4 189.7	1		
	*B_1	Pitch	ins. 15.12 14.90 14.80 14.12 14.12 13.94 13.94 13.77	*B_1		
	1	Sur- face	sq.ins. 243.5 243.5 230.0 223.7 217.8 212.3 202.0			
	*A_1	Pitch		*A1		
	sure, rin,	Pres	165 165 170 175 180 180 190 195 200		-	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{2}{3}\frac{T}{2}$ inch thick.

TABLE NO. 305.

AND IN COLUMN	-	WHEN THE PARTY NAMED AND ADDRESS OF THE PARTY NAMED AND ADDRES	-
$*I_1$	Pitch Surface	ins. 5q. ins. 7.51 56.4 7.41 54.9 7.32 53.5 7.722 52.2 7.05 49.8 6.90 47.6	*I_1
*r G1	Pitch Sur-	has. sq. ins. 9.49 90.1 9.36 87.6 9.23 85.2 9.10 85.0 9.00 81.0 88.89 79.0 87.8 77.1 8.68 75.3	$*_{\Gamma}$ G_1
H1	Pitch Sur-	ins. 8q. ins. 9°59 92°0 9°46 89°4 9°33 87°0 9°21 84°8 9°09 82°7 8°98 77 76°9	$^\mathrm{H}_1$
*F1G1	Pitch Surface	ins. sq. ins. 10.07 101.5 9.93 98.7 9.80 96.1 9.55 91.2 9.43 88.9 9.32 86.8 9.31 84.8	$*F_1G_1$
$*D_1$ $*E_1$ $*$	Pitch Sur-	ins. sq. ins. 11.55 133.4 11.38 129.6 11.23 126.1 11.08 122.8 10.93 119.6 10.80 116.6 10.66 113.8 10.54 111.1	*E_1
*D_1	Pitch Sur-	ins. Sq. ins. 12°22149°3 12°04145°1 11°88°141°1 11°72137°4 11°57°13°4 11°42°13°4 11°42°13°4 11°42°13°4 11°42°13°4 11°42°13°4 11°42°13°4 11°42°13°4 11°42°13°4 11°42°13°4 11°41°4 12°4°4 11°41°4 11°4 11°4 11°4	*D_1
*C1	Pitch Sur-	ins. sq. ins. 12.85165-2 12.49166-5 12.49166-1 12.16144-0 12.01144-3 11.86140.7 11.72 137-4	*C1
$^*\mathrm{B_1}$	Pitch Surface	ins. sq. ins. 15.65 244.9 15.42 237.8 15.20 231.2 15.00 225.0 14.80 219.0 14.42 208.1 14.42 208.1 14.25 208.1	*B_1
*A1	Pitch Sur-	ins. 8q.ins. 16.15.260.8 15.91.253.3 15.69.246.2 15.48.239.6 15.77.233.2 16.07.227.8 14.88.221.6	$*A_1$
	Press per sq	1bs. 165 170 175 185 185 190 195 200	

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{Z}{Z}$ inch thick.

TABLE No. 306.

-	1000	-			-
	*I1	h Sur- face	s. sq. ins. 74 60 0 64 58 4 55 55 5 36 54 1 27 52 8 11 50 5	*I_1	
		Pitch	=1-1-1-1-1-1-1=		
	$*_{\Gamma} G_{1}$	Sur- face	sq. ins. 96 °0 95 °3 90 °8 90 °8 86 °2 84 °1 82 °1 80 °2	* r G_1	
	*1	Pitch	9.7.9 9.66 9.53 9.40 9.28 9.17 9.06	*1	
	$^*\mathrm{H}_1$	Sur- face	sq. ins. 98 v.0 95 v.3 95 v.7 90 v.3 88 v.0 85 v.9 85 v.9 85 v.9 83 v.8 81 v.9	* H $_1$	
	*	Pitch	9.50 9.76 9.76 9.50 9.38 9.27 9.15	*	
	$*F_1G_1$	Sur- face	10.40 108.2 10.26 105.2 10.12 102.4 9.98 99.7 9.86 97.2 9.73 94.8 9.62 92.5 9.60 90.3	$*F_1G_1$	
	*F	Pitch	ins. 10.26 10.26 9.98 9.86 9.73 9.62 9.62	* 1	
	* 121	Sur- face	sq. ins. 142:3 138:3 134:5 131:0 127:6 124:4 121:3	$*E_1$	
0		Pitch	ins. 11.93 11.76 11.60 11.44 11.29 11.29 11.01 11.01	*	
	*D_1	Sur- face	ms. sq. ms. 12.62159.4 12.44154.8 12.27150.6 12.10146.6 11.95142.8 11.80139.2 11.65135.8 11.51132.5	*D_1	
	*	Pitch	ins. 12.62 12.44 12.27 12.10 11.95 11.80 11.65	*	
	*C1	Sur- face	sq. ins. 176.4 171.4 166.7 162.2 158.0 154.0 150.2	*C1	
	*	Pitch	ins. 13.28 13.09 12.91 12.73 12.57 12.57 12.25 12.25	*	
	*B ₁	Sur- face	sq. ins. 261.6 254.1 247.0 240.3 234.0 2228.0 222.3 216.9	*B_1	
	*	Pitch	ins. 16.17 15.94 15.71 15.50 15.29 15.10 14.91	*	
	*A ₁	Sur- face		A ₁	
		Pitch	155 15 16 6 15 15 15 15 15 15 15 15 15 15 15 15 15	*	
	eure fin.	Der sq	165 165 170 170 175 180 185 190 195 200		1

are * The distinguishing letter in each column refers to the conditions to which the pitches and surfaces applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate 39 inch thick.

307.	*I1	Pitch Sur-	has. 8q. ma. 7.97 63.6 7.87 61.9 7.67 58.8 7.67 57.4 7.48 56.0 7.40 54.7	$*I_1$
TABLE No. 307.	$*_{\Gamma}$ G_{1}	Pitch Sur-	ms. sq. ins. 10 10 10 10 10 21 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	*r G1
	$*H_1$	Pitch Sur- face	ms. sq. ms. 10 21 104 2 10 0 0 7 101 3 9 9 9 9 9 6 7 9 9 6 9 6 7 9 8 6 9 6 7 9 8 6 9 6 7 9 8 6 9 6 8 9 6 8 9 1 3 9 4 4 8 9 1 9 3 8 7 0	$^*\mathrm{H}_1$
hick.	*F_1G_1	Pitch Sur-	ins. sq. ins. 10.73 115.2 110.58 111.9 10.43 108.9 10.30 106.1 10.16 103.3 10.04 100.8 9.92 9.84 9.80 96.0	$*F_1G_1$
Steel Plate 32 inch thick.	* *E1	Pitch Sur-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	*E1
Steel Pl	$*D_1$	Pitch Sur-	ins. sq. ins. ins. sq. ins. ins. sq. ins	$*D_1$
	*C1	Pitch Sur-	ins. sq. ins. 13.71 188.0 13.51 182.6 13.32 177.6 13.14 172.8 12.97 168.3 12.80 164.0 12.65 160.0	*C1
	$*B_1$	Pitch Sur-	ms. sq. ms. 16.70 279.0 16.48 270.9 16.23 258.4 16.00 256.0 15.79 249.4 15.59 249.4 15.59 243.0	*B ₁
	$^{1}V_{1}$	Pitch Sur-	ins. kq.ins. ins. sq. in 17.24297.216.70279 16.99288.616.46270 16.75222.916.00252 16.50265.715.79229 16.09258.815.59229 16.09258.815.59223 15.88222.415.39237 15.69246.215.20231	*A_1
		Press per sq	165 165 170 170 170 180 185 190 195	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate $\frac{15}{48}$ inch thick,

TARLE NO. 308.

_				
0000	*I_1	Pitch Sur-	lms. sq. ims. 87.11 8.21 67.4 8.29 65.6 7.89 62.9 7.79 60.7 7.70 59.3 7.61 7.61 7.63 7.64 7.65 7.66 7.66 7.67 7.68 7.69 7.69 7.60 7	$*I_1$
TABLE ING. 000.	* r G_1	Pitch Sur-	ins. sq. ins. 10.41 108.4 10.26 105.3 10.12 102.5 9.99 99.8 97.4 94.9 9.62 92.6 9.51 90.4	$*_{\Gamma} G_1$
	H1	Pitch Sur-	ins. Sq. ins. 10.521110.7 10.371107.6 10.23104.7 10.10102.0 9.97 99.4 96.9 9.72 94.6 9.61 92.4	$^\mathrm{H}_1$
HCh.	$*F_1G_1$	Pitch Sur-	ins. sq. ins. 11.06 1222.3 10.90 118.9 10.75 115.7 10.61 112.6 10.47 109.7 10.34 107.0 10.22 104.4 10.10 102.0	$*F_1G_1$
steel 1 lave 16 men tillen.	$*$ \mathbb{E}_1	Pitch Sur-	ins. Sq. ins. 12.69 161.1.1 12.51 156.5 12.34 152.2 12.17 148.2 12.01 144.3 11.86 140.7 11.71 137.2 11.71 137.2 11.57 134.0	*E_1
Preel Lid	$^*\mathrm{D_1}$	Pitch Sur-	ins. sq. ins. 13.43 180.5 13.24 175.4 13.06 170.5 12.88 166.0 12.71 161.6 12.39 153.6 12.24 150.0	*D_1
	*0,	Pitch Sur-	ins. sq. ins. 14.14199.9 13.93194.2 13.74188.8 13.55183.7 13.377178.9 13.20174.4 13.04170.1	$*C_1$
	$^*\mathrm{B}_{\mathrm{I}}$	Pitch Sur-	ins. sq. ins. 17.23 296.9 16.98 288.3 16.74 280.2 16.51 272.6 16.29 265.4 16.08 258.6 15.88 252.1 15.68 246.0	$^*\mathrm{B}_1$
	$*A_1$	Pitch Surface	ins. sq.ins. 17.78 316.3 17.52 307.1 17.28 298.5 17.04 290.4 16.89 25.7 16.89 25.7 16.38 268.5 16.18 262.0	*A_1
	oure.	Pres	165 165 170 175 180 180 190 195 200	

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate \$\frac{31}{28}\$ inch thick.

TABLE No. 309.

	$*I_1$	Pitch Sur-	ins. Sq. ins. 8.44 71.3 8.38 69.4 8.22 67.6 8711 65.8 801 64.2 7.92 62.7 7.82 61.2 7.74 69.9	$*I_1$
	* r G_1	Pitch Sur-	ms. sq. ins. 10.72 114.9 10.56 111.6 110.28 105.8 10.15 103.1 10.02 100.5 9.90 98.1 9.79 95.8	* r G_1
	$^*\mathrm{H}_1$	Pitch Surface	ins. sq. ins. 10.83 117.3 110.681114.0 110.59111.0 110.26105.3 110.13 102.7 110.01 100.2 9.89 97.8	* H $_1$
	*F1G1	Pitch Sur-	ins. sq. ins. 11.39 129.77 11.07 122.61 10.92 1119.4 10.65 1113.4 10.65 1113.4 10.62 110.7 10.839 108.0	*F1G1
20	* *E1	Pitch Sur-	ins. sq. ins. 13.071710 12.89166-1 12.71161-5 12.54167-2 12.37153-1 12.21149-2 12.06145-6 11.921149-1	*E1
	$*D_1$	Pitch Sur-	ins. sq. ins. 13.84 191.6 18.64 186.1 18.45 181.0 18.27 176.1 18.09 171.5 12.93 167.2 12.77 163.0 12.61 15.91	*D1
	*C1	Pitch Sur-	ins. sq. ins. 14.56 212.2 14.36 206.1 14.15 200.4 13.96 195.0 13.78 189.9 13.60 185.1 13.43 180.5 13.27 176.1	*C1
	*B1	Pitch Sur-	sq.ins. ins. sq. ins. 336 o 17.75 315 · 3 226 · 21 7.75 315 · 3 236 · 21 7.1 17.25 297 · 6 208 · 5 20 · 3 16.79 281 · 9 292 · 5 16 · 57 27 4 · 6 285 · 2 16 · 36 287 · 7 278 · 2 16 · 16 261 · 2 288 · 2 16 · 16 261 · 2 288 · 2 16 · 16 261 · 2 288 · 2 16 · 16 261 · 2 288 · 2 16 · 16 261 · 2 288 · 2 16 · 16 261 · 2 288 · 2 16 · 16 261 · 2 288 · 2 2 16 · 16 261 · 2 2 2 2 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3	*B ₁
	*A1	Pitch Sur-	ins. 18.33 18.06 17.80 17.56 17.33 17.10 16.88	*A1
		Press	165 170 170 175 180 185 190 195 200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate 1 inch thick.

TABLE No. 310.

$*I_1$	Sur- face	sq. ins. 75°3 6 73°3 75°3 8 67°5 8 66°5 6 68°5 6 68°5 6 68°5 6 68°5 78 68°5 8 68°5 9 68°5	$*I_1$
	Pitch	ins. 8.68 8.56 8.45 8.23 8.23 8.23 8.13 8.04	
* r G_1	Sur- face	sq. ins. 121.6 118.2 114.9 111.9 109.1 106.3 103.8	$*_{\Gamma} G_1$
*	Pitch	ins. sq. in 11.02 21 10.87 118 10.72 114 10.58 11 10.44 109 10.31 106 10.18 103 10.06 101	*1
* H $_1$	Sur- face	ins. Sq. ins. 11.14 124.2 10.98 120.7 10.83 117.4 10.69 114.3 10.42 10.42 10.29 106.0 10.17 103.5 103.5 103.	$^*\mathrm{H}_1$
*	Pitch		*
$*F_1G_1$	Sur- face	ins. sq. ins. 11.72137.3 11.55133.5 11.39129.8 11.24126.4 11.09123.1 10.95120.0 10.82117.1	$*F_1G_1$
*	Pitch		*F
$*$ \mathbb{E}_1	Sur- face	ins. sq. ins. 13.46 181.1 18.26 176.0 18.08 171.1 12.90 166.5 12.73 162.5 12.57 158.1 12.26 150.5	$*E_1$
*	Pitch		*
*D1	Sur- face	ms. sq. ins. 14.25 203.0 14.04 197.2 13.84 191.7 13.66 186.6 13.48 181.7 13.30 177.1 13.14 172.7 12.98 168.5	*D_1
*	Pitch		*
*C ₁	Sur- face	ins. sq. ins. 15 00 225 0 14 78 218 5 14 4 75 212 4 14 14 37 206 6 14 18 00 196 0 13 83 191 2 13 66 186 6	*C1
*	Pitch		*
$^*\mathrm{B}_{\mathrm{I}}$	Sur- face	ins. 8q. ins. 18°28 834 4°18°18°28 834 4°7 17°76 815°6 17°52 807°0 17°28 298°9 17°06 291°1 16°84 283°8 16°64 276°9	31
*	Pitch	18 18 17 17 17 16 16	*B1
*A1	Sur- face	ins. sq.ins. 18.87,356.3 18.86,386.0 18.83,386.2 18.08,327.1 17.84,318.4 17.64,310.2 117.39,302.4 117.17,29,302.4	*A_1
	Pitch		*
oure,	Press per sq	1bs. 170 170 175 180 180 195 200	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES. Pressures, Pitches, and Surfaces.

Steel Plate $1\frac{1}{2}$ inch thick.

311.	*11	Pitch Sur-	ms. 8q. ins. 8q. ins. 891 79.58 8.79 77.35 8.56 73.3 8.45 71.5 8.35 69.8 8.25 68.1 81.6 66.6	$*I_1$
TABLE No. 311.	*r G1	Pitch Sur-	ins. sq. ins. 11.33 128·5. 11.17 124·8. 10.87 118·2. 10.60 112·3. 10.47 109·6.	*r G1
	*H,	Pitch Sur-	ins. sq. ins. 11.45131.2 11.29127.5 11.14124.1 10.99120.8 10.85117.7 10.71114.7 10.58112.0	* H $_1$
thick.	$*F_1G_1$	Pitch Sur-	ins. sq. ins. 12.05 145.2. 11.87 141.1. 11.71 137.2. 11.55 133.6. 11.26 126.8. 11.12 123.7. 10.99 120.8	$*F_1G_1$
Steel Plate 132 inch thick.	* *E1	Pitch Sur-	ms. sq. ins. 13.84 191.6 13.64 186.1 13.45 181.0 13.27 176.1 12.93 167.1 12.77 163.0 12.61 15.91	* 1
Steel Pla	*D_1	Pitch Sur-	ms. sq. ins. 14.65214.8 14.44208.6 14.24202.8 14.05197.4 13.86187.3 13.68187.3 13.51182.6 13.35178.2	*D_1
	*C1	Pitch Sur-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	*C1
	$*B_1$	Pitch Sur-	ins. gq. ins. lins. gq. ins. lins. gg, ins. 1942/3777-2 18 8 8 1354 0 15 42 238 0 19 428 66 2 18 64 243 7 15 20 231 1 18 86 556 0 18 28 334 1 14 39 224 7 18 60 346 2 18 02 325 0 14 78 2 18 61 38 337 0 17 78 316 3 14 59 212 9 18 12 28 3 17 55 308 2 14 40 207 4 17 89 320 1 17 38 300 4 14 22 20 2 3 17 67 312 2 17 12 293 1 14 05 197 4	$^*\mathrm{B}_\mathrm{I}$
	*A_1	Pitch Sur-		*A_1
	sure,		165 170 170 175 180 185 195 195 200	

FLAT SURFACES, essures, Pitches, and Surface

Pressures, Pitches, and Surfaces. Steel Plate $1\frac{1}{1-R}$ inch thick.

	$*I_1$	h Sur-	sq. ins. 55 83.77 83.77 72 77.25 88 75.35 77 73.55 77 73.55 77 71.77 77 77 77 77 77 77 77 77 77 77 77 77	$*I_1$
312		Pitch	ins. 9 115 9 02 8 8 90 8 8 68 8 8 57 8 8 57 8 8 8 57 8 8 8 57 8 8 8 57	
TABLE No. 312.	*r G1	Pitch Sur-	ins. 8q. ins. 11.64 135.6 11.48 131.7 11.32 128.1 11.17 124.8 11.02 121.5 10.75 115.6 10.62 112.9	*r G1
	* H $_1$	Pitch Sur-	III. 60, 138.5 11.77, 138.5 11.46, 134.6 11.29, 127.5 11.00, 121.0 11.00, 121.0 11.00, 121.0 11.00, 121.0	*H1
thick.	$*F_1G_1$	Pitch Sur-	ins. sq. ins. 12.38 153.2 12.20 148.9 12.03 144.8 11.87 141.0 11.72 137.3 11.57 133.8 11.42 130.6 11.29 127.5	$*F_1G_1$
Steel Plate 1, inch thick.	$^*\mathrm{E}_1$	Pitch Sur-	ms. sq. ins. 14.22 202.3 14.02 196.5 13.82 191.1 13.63 186.0 113.28 176.5 13.12 172.1 12.96 168.0	$^*\mathrm{E}_1$
Steel Plat	*D_1	Pitch Sur-	ms. 8q. ins. 15 06 226 9 14 84 220 4 14 63 214 2 14 43 208 5 114 06 197 8 13 79 118 8 9 118 9	*D1
	*C1	Pitch Surface	ins. 8q. ins. ins. 18q. ins. ins. 19.66 398 77 19 34 374 11 15 85 551 4 19 65 387 19 19 46 363 3 15 62 244 2 19 79 376 2 18 79 353 7 115 40 237 4 19 13 366 0 18 75 344 3 15 19 231 0 18 87 356 2 18 29 334 3 14 99 224 9 18 63 347 0 18 64 325 7 14 80 219 1 18 29 338 3 17 82 317 5 14 61 213 6	*C1
	*B_1	ch Sur-	ins. sq. ins. 19°34°374°11°10°06°35°3°18°79°35°3°18°53°348°5°18°28°3344°317°804°325°717°80°309°7	*B ₁
		Pitch	11 19 0 3 1 1 19 0 3 1 1 19 0 3 1 1 19 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	*A_1	Pitch Surface	ins. gq.ins. ins. gq.ins. 19.96/93887 19.34/874 19.06/838 19.90/838 18.28/838 18.87/828 18.28/838 18.88/838 17.82/838 18.59/838 17.82/838 18.59/838 17.60/839 77/80/839 18.59/838 18.59/88	*A_1
	sure, in.	per s	165 170 170 175 175 180 185 190 195 195 195 195 195 195 195 195 195 195	

FLAT SURFACES.
Pressures, Pitches, and Surfaces,
Steel Plate 1.3, inch thick.

							Ste	eel Plan	Steel Plate 132 inch thick.	thick.		TABLE No. 313.	, 313,	
sure, in.	*A_1	1	*B_1		$*C_1$,1	*	*D_1	* E ₁	$^*\mathrm{F_1G_1}$	*H ₁	*r G ₁	$*I_1$	
Pres	Pitch	Sur- face	Pitch St	Sur- face	Pitch	Sur- face	Pitch	Sur- face	Pitch Sur-	Pitch Sur-	Pitch Sur-	Pitch Sur-	Pitch S	Sur- face
165 2 170 2 175 175 175 185 1195 1195 1195 1195 1195 1195 1195	ins. 20.51 4 20.051 4 19.92 3 19.63 3 19.13 3 18.89 3 18.66 3	sq. ins. 420 °8 440 °8 6 397 °1 386 °2 356 °2 357 °0 348 °2	ins. gq.ins. ins. gq. ins. ins. gq. ins. 20-51 420-8 19-87 834-9 16-28 255-5 20-21 49-8 19-87 834-9 16-05 257-6 19-92 897-1 19-93 872-6 15-82 250-6 19-93 876-0 18-78 852-8 15-40 237-2 19-13 866-2 18-54 437-7 15-20 231-1 18-89 357-0 18-30 835-0 15-01 225-3 18-66 348-2 18-08 326-8 14-83 219-9	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ins. 8q. ins. 16.28 265 2 15 47 239 3 16 25 25 16 2 232 4 15 28 25 25 2 15 47 239 3 15 25 25 2 15 25 25 2 14 25 25 2 14 25 25 2 14 25 25 25 25 25 25 25 25 25 25 25 25 25	sq. ins. 265.2 257.6 250.4 243.6 231.1 225.3 219.9	ins. 15.47 15.24 15.24 14.83 14.83 14.63 14.44 14.44 14.26	ins. sq. ins. lins. sq. ins. l6 -05 28 265 2 15 47 239 3 16 6 05 257 6 15 24 228 2 4 15 61 243 6 14 83 219 9 15 70 235 3 14 26 203 4 15 61 255 3 14 26 203 4 14 88 219 9 14 86 219 14 88 219 9 14 90 198 5	ins. sq. ins. gq. ins. 20-51 4208 19-87 394-9 16-38 265-2 16-47239-3 14-61213-4 20-21 408-6 19-58 382-4 16-05 257-6 15-24 232-4 14-39 207-3 19-30 372-6 15-62 250-4 15-03 226-0 14-19 201-5 19-65 886-2 19-04 362-5 15-61 248-6 14-83 219-9 14-00 196-0 19-39 376-0 18-78 352-8 15-40 237-2 14-63 214-1 13-82 191-0 19-13 366-2 18-54 343-7 15-90 231-1 14-44 208-6 13-64 18-18-18-18-83 357-0 18-30 335-0 15-01 225-3 14-26 203-4 13-47 181-5 18-86 348-2 18-08 326-8 14-88 219-9 14-09 198-5 13-30 177-7 1	ins. sq. ins. 12.71 161.5 12.72 161.5 12.35 152.6 12.09 144.7 11.73 137.6 11.73 137.6 11.59 134.3	ins. 8q. ins. 12.08 146.0 11.91 141.8 11.74 138.0 11.59 134.3 11.29 127.5 11.102 121.5	ins. sq. ins. 11.95 142.9 11.78 138.8 11.62 135.0 11.46 131.4 11.31 128.1 11.7 124.8 11.03 121.8	9.25 9.25 9.13 9.01 8.90 8.79 8.69 8.69	sq. ins. 883.1 85.7 83.4 81.2 77.9 77.3 73.7
	*A_1	_	*B_1		*C1	1,	*D_1	\supset_1	$^*\mathrm{E}_1$	$^*\mathrm{F_1G_1}$	$^*\mathrm{H}_1$	*r G1	*I1	

^{*} The distinguishing letter in each column refers to the conditions to which the pitches and surfaces are applicable; these conditions, with their distinguishing letters, will be found on page 195 and following.

FLAT SURFACES.

Pressures, Pitches, and Surfaces. Steel Plate 13 inch thick.

TABLE NO. 314.

$*I_1$	Sur- face	8q. ins. 92.6 92.6 87.6 87.6 85.4 85.4 11 81.2 0 77.4	$*I_1$
	Pitch	10.5 9.45 9.45 9.24 9.12 9.12 8.90	
* r G_1	Sur- face	sq. ins. sq. ins. 12.26 150.4 12.09 146.1 11.92 142.1 11.76 138.3 11.46 131.4 11.32 128.1 11.18 125.1	*r G ₁
* *	Pitch		* 1
$^*\mathrm{H}_1$	Sur- face	lis. sq. ins. 12.39 153.6 12.20 149.3 12.05 145.2 11.89 141.3 11.78 137.7 11.58 134.2 11.44 130.9 11.30 127.8	$^*\mathrm{H_1}$
*	Pitch		1*
*F1G1	Sur- face	ins. 8q. ins. ins. 8q. ins. 14.99 224.7 13.04170.0 14.7218.3 12.85 165-2 14.57216.7 114.57216.5 12.50156.4 14.78 201.1 12.34152.3 14.00 196.0 12.18 148.5 13.82191.1 12.03 144.8	$*F_1G_1$
*	Pitch		*E
* E ₁	Sur- face	ins. 8q. ins. 14.99 224.7 14.77 218.3 14.57 212.2 14.87 206.5 14.18 201.1 14.06 196.0 13.82 1191.1	$*E_1$
*	Pitch	ins. 14.79 14.77 14.57 14.18 14.18 14.00 13.65	*
*D_1	Sur- face	ms. 8q. ins. lns. 8q. ins. 15.87 252.1 14.99 224.7 15.48 238.0 14.57 218.9 15.42 231.6 14.57 206.5 15.01 225.5 14.18 201.1 14.82 219.7 14.06 196.0 14.63 214.2 13.82 191.1 14.45 209.0 13.65 186.5)1
*	Pitch		*D_1
*C1	Sur- face	ins. sq. ins. 16.71 279 44 16.47 271 44 16.24 263.8 16.02 256.6 15.80 249.9 15.60 243.5 15.40 237.4 15.22 231.6	*C1
*	Pitch	ins. 16.71 16.47 16.24 16.02 15.80 15.60 15.40	*
B_1	Sur- face	sq. ins. 416·2 404·1 392·7 382·0 371·8 362·2 3553·1 344·4	$^\mathrm{B}_1$
*	Pitch		*
*A_1	Sur- face	8.00000000	*A_1
	Pitch	24 24 24 24 24 1 1 1 1 1 1 1	*
nre in.	Press per sq	165 165 170 175 180 185 190 195 200	

PRESSURES, GREATEST SURFACES AND SIZES OF STAYS.

TABLE No. 315. Stress on Solid Steel Screwed Stays, which have not been welded or worked in the fire, 9000 lbs. per square inch of net section.*

Ī	9. h.		8 % 0 0 0 0 0 0 0 0 0 0 0 0	٦,
	Area 1.4049 sq. inch.	Diam. 1 % inch.	Surface sq. ins. 80.9 78.6 76.3 74.2 72.2 70.3 68.5 66.8	
	Area 1.3530 1. sq. inch.	Diam. 15/16 inch.	Surface sq. ins. 73.8 71.6 69.5 67.6 65.8 65.8 62.4 60.8	
	Area 1.2272 sq. inch.	Diam. 1 1/4 inch.	Surface sq. ins. 66.9 64.9 63.1 61.3 59.7 58.1 56.6	
	Area 1·1075 sq. inch.	Diam. $1\frac{3}{16}$ inch.	Surface 8q. ins. 60.4 58.6 55.3 55.3 55.4 551.1	,
	Area 0.9940 sq. inch.	Diam. 1 1/8 inch.	Surface 80. ins. 54.2 52.6 51.1 49.7 48.3 47.0 45.8	
	Area 0.8866 sq. inch.	Diam. 1 ½6 inch.	Surface sq. ins. 48°3 46°9 44°3 44°3 44°3 41°9 40°9 89°8	
	Area 0.7854 sq. inch.	Diam. 1 inch.	Surface 84. ins. 41.5 40.3 39.2 38.1 37.2 36.2 35.3	
1	Area 0.6902 sq. inch.	Diam.	Surface 187.6 36.5 35.4 34.5 33.5 32.6 31.9 31.0	
	Area 0.6013 sq. inch.	Diam. 7/8 inch.	Surface 8q. ins. 32.7 31.8 30.9 30.0 29.2 28.4 27.7	
,	Area 0.5184 sq. inch.	Diam. 13/16 inch.	Surface sq. ins. 28.2 27.4 26.6 25.9 25.9 22.5 24.5 23.9	
	Area 0.4417 sq. inch.	Diam. 34 inch.	Surface sq. ins. 24.0 23.3 22.7 22.0 22.0 20.9 20.9 19.8	
	Area 0.3712 sq. inch.	Diam. 1.1/16 inch.	Surface sq. ins. 20.22 19.6 18.5 18.5 17.5 17.1 16.7	
	Area 0·3068 sq. inch.	Diam. % inch.	Surface 16.7 16.7 15.7 15.7 15.3 14.9 14.5 13.8	
	Area 0.2485 sq. inch.	Diam.	Surface sq. ins. 13.5 12.7 12.7 12.0 	
	Area 0·1963 sq. inch.	Diam.	Surface sq. ins.	-
	ure e inch.	Press per squar	165 170 170 175 180 180 190 195	

9000 lbs. persquare inch of net section is the greatest working stress to which solid steel screwed stays should be subjected. Steel stays which have been welded or worked in the fire are not reliable, and should not be used. See Notes page 258.

PRESSURES. GREATEST SURFACES AND SIZES OF STAYS.

TABLE No. 316. Stress on Solid Steel Screwed Stays, which have not been welded or worked in the fire, 9000 lbs. per square inch of net section.

229.0 222.3 216.0 210.0 204.3 198.9 sq. inch. 26/16 inches. 4.200 Diam. Area sq. ins. 216.8 21/4 inches. Surface 210.2 198.8 188.3 6.871 sq. inch. 204.4 193.4 3.9761 Diam. Area sq. inch. 198.9 Surface 204.9 187.9 182.8 178.0 sq. ins. 173.4 Diam. nches. 3.7583 23/16 sq. inch. Surface 172.5 Area 3.5466 21/8 inches. sq. ins. 193.4 182.3 177.3 Diam. sq. inch. Surface 171.8 162.5 sd. ins. 182.2 176.8 0 3 3.3410 Diam. 21/16 inches. Area 167 54 sq. inch. 152.8 Surface 166.3 10 0.491 6 ŵ 3.1416 nches. Diam. CJ 61 144 141 sq. inch. 115/16 inch. Surface 160.8 156.0 sq. ins. 9.121 139.6 0.981 2.9483 4 43.4 Diam, Area 147 Area 2.7612 sq. inch. Surface sq. ins. 9.091 142.0 138.0 134.3 130.7 146.1 27.4 ç Diam. 1 7/8 inch. 113/16 inch. Surface sq. ins. 140.7 sq. inch. 136.5 132.6 0.67 22.5 0.611 2.5802 25.5 Area Diam. sq. inch. Surface sq. ins. 127.3 123.7 120.2 113.9 108.5 131.1 2.4053 Area Diam. 13/4 inch. 111/16 inch. Area 2.2365 Surface 103.2 sq. inch. 121.9 118.4 115.0 108.8 105.9 Diam. sq. inch. 98.2 Area 2.0739 Surface sq. ins. 113.1 7.601 103.6 100.8 9.90 ŵ Diam. 1% inch. Surface sq. inch. Area 1.9175 sq. ins. 104.5 2.101 8.06 93.2 8.06 S 1% inch. 9. Diam 98 Surface sq. inch. 93.2 88.3 Area 1.7671 Diam. 1 1/2 inch. Surface Area 1.6230 q. inch. sq. ins. 88.5 78.9 Diam. 17/16 inch. 83.4 81.1 185 per square inch. 165 170 175 80 190 Pressure

per square inch of net section is the greatest working stress to which solid steel screwed stays should Steel stays which have been welded or worked in the fire are not reliable, and should not be used. 9000 lbs. be subjected.

Notes page 258.

PRESSURES, GREATEST SURFACES AND SIZES OF STAYS. Stress on Solid Steel Screwed Stays, which have not been welded or

TABLE No. 317. worked in the fire, 9000 lbs. per square inch of net section.*

						22 62	T annua a	La	-			4	T FIRST		
sure re inch.	Area 4.4301 sq. ins.	Area 4.6664 sq. ins.	Area 4.9087 sq. ins.	Area 5·1572 sq. ins.	Area 5.4119 sq. ins.	Area 5.6727 sq. ins.	Area 5.9396 sq. ins.	Area 6.2126 sq. ins.	Area 6.4918 sq. ins.	Area 6-7771 sq. ins.	Area 7.0686 sq. ins.	Area 7-3662 sq. ins.	Area 7.6699 sq. ins.	Area 7.9798 sq. ins.	Area 8-2958 sq. ms.
Pres per squa	Diam. 23% inches.	Diam. $27/16$ inches.	Diam. 21/2 inches.	Diam. $2^{9/16}$ inches.	Diam. 2% inches.	Diam. $2^{11/6}$ inches.	Diam. 23/4 inches.	Diam. 213/46 inches.	Diam. 27% inches.	Diam. $2^{15/16}$ inches.	Diam. 3 inches.	Diam. 31/16 inches.	Diam. 3 1/8 inches.	Diam. 33/16 inches.	Diam. 31/4 inches.
165 165 170 175 185 190 195 200	Surface sq. ins. 241 ·6 234 ·5 227 ·8 221 ·5 215 ·5 209 ·8 199 ·3	Surface sq. ins. 254 · 5 247 · 0 239 · 9 227 · 0 221 · 0 2015 · 3 201 · 0 201 · 0 201 · 0 209 · 9	Surface 8q. ins. 267·7 259·8 252·4 245·4 238·8 232·5 226·5 220·8	Surface sq. ins. 281 · 3 273 · 0 265 · 2 257 · 8 250 · 8 244 · 2 238 · 0 232 · 0	Surface sq. ins. 295·1 286·5 278·3 270·5 266·3 249·7 243·5	Surface sq. ins. 309.4 300.3 291.7 283.6 275.9 268.7 268.7 266.7	Surface sq. ins. 323.9 314.4 305.4 296.9 288.9 288.9 281.3 274.1	Surface sq. ins. 338°8 328°9 319°5 310°6 302°2 294°2 286°7 279°5	Surface sq. ins. 354.0 343.6 333.8 324.5 315.8 307.5 299.6	Surface sq. ins. 369.6 358.7 348.5 338.8 329.6 321.0 312.7 304.9	Surface sq. ins. 385.5 374.2 363.5 353.4 343.8 326.2 318.0	Surface sq. ins. 401.7 389.9 378.8 368.3 358.9 348.9 339.9	Surface sq. ins. 418°3 406°0 394°4 383°4 373°1 363°3 363°3 355°9	Surface 8q. ins. 435.2 422.4 410.3 398.9 388.2 377.9 368.2 368.2	Surface \$q. ins. \$45.24 \$439.1 \$426.6 \$414.7 \$403.5 \$392.9 \$382.8 \$373.3
															-

* 9000 lbs. per square inch of net section is the greatest working stress to which solid steel screwed stays, should be subjected. Steel stays which have been welded or worked in the fire, are not reliable and should not be used. See Notes page 258.

BLE No. 319.

TEEL GIRDERS \(\frac{5}{8}\) INCH THICK. TAI	Depths of Girders in inche
502	sure q. in.
STEEL GIRDERS $\frac{1}{2}$ INCH THICK. Table No. 318. STEEL GIRDERS $\frac{5}{8}$ INCH THICK. Table 1.	Depths of Girders in inches.
S	eure

	41/4	0	306	876	857	827	805	784	764	74
	4	0	800	922	754	733	713	694	929	099
ches.	33/4	1	/03	685	662	644	627	019	594	580
ui ni s	8 31/2		219	594	222	199	546	531	518	505
Depths of Girders in inches.	3 31/4	(278	512	:	:	:	:	:	:
y jo sq	ය		:	:	:	:	:	:	:	:
Dept	234		:	:	:	:	:	:	:	:
	21/2		:	:	:	:	:	:	:	:
	21/4		:	:	:	:	:	:	:	:
eure g, in.	Pres per s	lbs.	165	170	175	180	185	190	195	200
	33/4		299	545	530	515	501	:	:	:
	ಣ									
			:	:	:	:	:	:	:	:
ches.	31/2			:		:	:	:	:	:
s in inches.	3 31/4 31/2		:	_	:		_	:	:	:
Girders in inches.	3 31/4 31/2		:	:	:	:	:	:	:	:
hs of Girders in inches.	3 31/4 31/2		:		• • • • • • • • • • • • • • • • • • • •	:	:	:	:	: : : : : : : : : : : : : : : : : : : :
Depths of Girders in inches.	314 31/2		:			:	:			:
Depths of Girders in inches.	3 31/4 31/2		: : : : : : : : : : : : : : : : : : : :							: : : : : : : : : : : : : : : : : : : :
Depths of Girders in inches.	134 2 24 24 24 3 34 3		: : : : : : : : : : : : : : : : : : : :			:				: : : : : : : : : : : : : : : : : : : :

8917544

or rumber is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girdeers in inches.

P = Pitch of supporting bolts in inches. See Notes on pages 264 and 265. when the number of supporting bolts in a girder is odd, the number under the particular When the exact value depth of girder equals W2D; but when the number of bolts is even, it equals (W2-P2)D. In the above Tables,

Pitch of supporting bolts in inches.

ST	EEL (RDI	ERS 3	INCF	STEEL GIRDERS 3 INCH THICK.		TABLI	TABLE No. 320.	320.	STE	EEL G	IRDE	RS 7	STEEL GIRDERS 7 INCH THICK.	I THI		TABLE No. 321.	E No.	321.
o'ine .ni .p.			Dept	ps of (Depths of Girders in	ni ni s	ches.			sure ni .p.			Deptl) jo sq	dirder	Depths of Girders in inches.	ches.		
Press	23/4	က	31/4		31/2 38/4	4	41/4 41/2		43/4		31/2	33/4		4 41/4	41/2	41/2 43/4	2	51/4	51/2
lbs.		100.75								lbs.									
165	:	540	633	735	843	096	1083	1215	1353 165	291		984	1120	1264	1417	1579	1750		2117
170	:	524	615	713	818	931	1001	1179	1313	170	832	955	1087		1375	1532	1698	1872	2055
175	:	509	269	693	795	902	1021	1145	1276	175		928	1056		1336	1489	1650		1996
180	:	:	580	673	773	880	993	1113	1240	180		905	1026		1299	1447	1604		1941
185		:	565	655	752	856	996	1083	1207	185		877	866		1264	1408	1560		1888
190	:	:	550	638	732	833	941	1055	1175	190		854	972		1230	1371	1519		1838
195		:	536	621	713	812	917	1028	1145	195		832	947		1199	1336	1480		1791

In the above Tables, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W²D; but when the number of bolts is *even*, it equals (W² – P²)D. When the exact value or number is not found under the given depth, the next greater number in the same column is the number,

812

707

792

969 909 522

:

opposite which will be found the working pressure in column 1. W=Width of combustion box in inches.

D = Distance between centres of girders in inches. P = Pitch of supporting bolts in inches. See Not

See Notes on pages 264 and 265.

ABLE No. 323.

H
B INCH THICK.
INCH
_
L GIRDERS
SLE NO. 322. STEEL (
. 322.
2
. TABLE I
THICK.
CH
Ž
_
GIRDERS
STEEL

	Dept	Jo su	Girder	Depths of Girders in inches.	ches.			eure g. in.			Dept	hs of	Depths of Girders in inches	s in ir	ches.		
41/2	41/2 43/4	5	51/4	51/2	5%	9	61/4	Pres per s	20	514	21/2	534	534 6	61/4	614 61/2	63/4	7
			2205 2140 2079 2071 1966 1914 1865		2645 2567 2493 2424 2359 2238 2238	2880 2795 2715 2715 2640 2568 2501 2436	3125 3033 2046 2946 2787 2787 2713 2644	165 175 175 180 185 190 195	2250 2183 2121 2062 2062 2006 1953			2975 2888 2805 2727 2727 2653 25584 2517	3240 3144 3054 2970 2889 2813 2741	3515 3412 3412 3314 3135 3053 4053		4100 3980 3866 3758 3657 3469	4410 4280 4158 4042 3933 3829 3731
	105. 165 1445 1620 175 1862 1527 180 1324 1485 185 1288 1444 195 1222 1370 195 1222 1370 200 1192 1336	1620 1805 1572 1751 1527 1701 1485 1654 1444 1609 1406 1567 1370 1527	1620 1572 1527 1485 1444 1406 1370	1620 1805 1572 1751 1587 1701 1444 1609 1406 1567 1370 1527	1620 1805 2000 1572 1751 1941 1527 1701 1885 1485 1654 1873 1444 1609 1783 1370 1527 1692 1370 1527 1695	1620 1805 2000 2205 1572 1751 1941 2140 1485 1654 1873 2021 1444 1609 1783 1966 1370 1237 1966 1370 1237 1692 1865 1376 1489 1650 1819	1620 1805 2000 2205 2442 2645 2880 1572 1751 1941 2140 2348 2567 2795 1527 1701 1885 2079 2281 2493 2715 1485 1664 1873 2021 2218 2424 2640 1444 1609 1783 1946 2168 2359 2568 1370 1527 1692 1865 2047 2238 2350 1370 1527 1692 1865 2047 2238 2366 1336 1489 1650 1819 1996 2182 2376	1620 1805 2000 2205 2442 2645 2880 1572 1751 1941 2140 2348 2567 2795 1527 1701 1885 2079 2281 2493 2715 1485 1664 1873 2021 2218 2424 2640 1444 1609 1783 1946 2168 2359 2568 1370 1527 1692 1865 2047 2238 2350 1370 1527 1692 1865 2047 2238 2366 1336 1489 1650 1819 1996 2182 2376	1620 1805 2000 2205 2420 2645 2880 3125 165 1572 1751 1941 2140 2348 2567 2795 3033 176 1527 1701 1885 2079 2281 2493 2715 2946 176 1485 1654 1873 2021 2218 2424 2640 2864 180 1444 1609 1783 1966 2158 2359 2568 2787 185 1406 1567 1736 1914 2101 2296 2501 2713 199 1370 1227 1692 1865 2047 2238 2436 2644 196 1376 1627 1692 1865 2182 2376 2578 200	1620 1805 2000 2205 2420 2645 1572 1751 1941 2140 2348 2567 1527 1701 1885 2079 2281 2424 1485 1654 1873 2021 2218 2424 1444 1609 1783 1966 2158 2359 1370 1657 1786 1914 2208 1370 1627 1685 2047 2288 1386 1489 1650 1881 1996 2182	1620 1805 2000 2205 2420 2645 2880 3125 165 1572 1751 1941 2140 2348 2567 2795 3033 176 1527 1701 1885 2079 2281 2493 2715 2946 176 1485 1654 1873 2021 2218 2424 2640 2864 180 1444 1609 1783 1966 2158 2359 2568 2787 185 1406 1567 1736 1914 2101 2296 2501 2713 199 1370 1227 1692 1865 2047 2238 2436 2644 196 1376 1627 1692 1865 2182 2376 2578 200	1620 1805 2000 2205 2420 2645 2880 3125 165 2250 1572 1751 1941 2140 2348 2567 2795 3033 170 2183 1527 1701 1885 2079 2281 2493 2715 2946 175 2121 1445 1654 1873 2021 2218 2424 2640 2864 180 2062 1444 1609 1783 1966 2158 2359 2568 2787 185 2006 1370 1557 1558 2007 2298 2495 2644 195 1953 1370 1571 1592 1940 1565 1865 2047 2238 2436 2544 195 1953 1336 1489 1650 1819 1996 2182 2376 2578 200 1856 1856 1489 1650 1819 1996 2182 2376 2578 200 1856 1856 1858 2376 2578 200 1856 2007 200	1620 1805 2000 2205 2420 2645 2880 3125 165 2250 2480 1572 1751 1941 2140 2348 2567 2795 3033 170 2183 2407 1527 1701 1885 2079 2281 2498 2751 2946 175 212 238 1485 1654 1873 2021 2218 2424 2640 2864 180 2073 2273 1444 1609 1783 1966 2168 2359 2568 278 185 206 2212 1370 1257 1692 1783 1966 2101 2296 2501 2713 190 1958 2164 1370 1257 1692 1865 2047 2238 2436 2644 195 1998 2048 1386 1489 1650 1819 1996 2182 2376 2578 200	1620 1805 2000 2205 2420 2645 2880 3125 165 2260 2480 2722 1572 1751 1941 2140 2348 2567 2795 3033 170 2183 2407 2642 1572 1701 1885 2079 2281 2498 2715 2946 175 2121 238 2562 1485 1654 1873 2021 2281 2494 2640 2864 180 2062 2273 2495 1444 1609 1783 1966 2158 2369 2568 2787 185 2006 2212 2428 1406 1567 1736 1914 2101 2296 2501 2718 1948 2364 1376 1627 1627 1828 2436 2644 195 2098 2504 2578 2001 1856 2046 2246	1620 1805 2000 2205 2420 2645 2880 3125 165 2260 2480 2567 2795 3033 170 2183 2402 2888 3144 1572 1751 1941 2140 2348 2567 2795 3033 170 2183 2462 2888 3144 157 1701 1885 2079 2281 2493 2775 2946 175 2121 2388 2466 2805 3054 180 2062 2273 2495 2777 2970 1444 1609 1783 1966 2158 2369 2506 2773 1878 1968 2178 2970 1878 1966 2167 2781 190 1958 2169 1968 2178 2486 2644 196 1968 2182 2876 2644 196 1968 2182 2876 2578 200 1868 2046 2282 2466	1620 1805 2000 2205 2420 2645 2880 3125 165 2250 2430 2722 2975 1572 1751 1941 2140 2348 2567 2795 3033 170 2183 2407 2642 2888 1527 1701 1885 2079 2281 2493 2715 2946 175 2121 2388 266 2806 1445 1609 1783 1966 2158 2454 264 2864 180 2062 2273 2426 2577 1446 1609 1783 1966 2158 2589 2567 1781 1996 2164 2568 2787 185 2006 2212 2428 2653 144 1609 1783 1946 2167 2238 2436 2578 185 2306 2308 2561 2578 1992 2308 2508 2561 2578 2500 1	1620 1805 2006 2205 2420 2645 2880 3125 165 2250 2480 2567 2795 3033 170 2642 2888 3144 3412 1572 1701 1885 2079 2281 2498 2757 2946 175 2183 2407 2664 3143 3412 1485 1654 1873 2021 2281 2494 2640 2864 180 2062 2273 2496 277 297 394 3314 1444 1609 1783 1966 2158 2424 2649 2864 180 2062 2273 2496 277 297 392 1444 1609 1783 1966 2158 2568 2787 188 2006 2212 2428 2653 2889 3185 1444 180 1862 2184 2584 1868 2185 2849 2584 1888 2644 1898 1864

In the above Tables, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

P = Pitch of supporting bolts in inches. See Notes on pages 264 and 265.

STI	EEL G	IRDE	RS 1	INC	H TH	STEEL GIRDERS 14 INCH THICK.	TABL	TABLE No.	. 324.	STE	EL G	IRDE	$RS 1\frac{3}{8}$	INC	STEEL GIRDERS 13 INCH THICK.	ICK.	TABL	TABLE NO.	325.
ssure sq. in.			Dept) jo sq	Girder	Depths of Girders in inches.	ches.			eure g. in.			Deptl	of G	Depths of Girders in inches.	in in	ches.		
Pre	534	9	61/4	61/4 61/2 63/4		7 71/4 71/2 73/4	71/4	71/2	734	Pres 2 19q	61/2	634	7	71/4	7 71/4 71/2 73/4	73/4	∞	8 1/4	81/2
165 165 170 175 180 185 190 195 200	3306 3209 3117 3030 2948 2871 2797 2727	3600 3494 3394 3300 3210 3126 3046 2970	3906 3791 3683 3580 3483 3392 3392 3392	4225 4100 3983 3872 3768 3669 3575 3485	4556 4422 4295 4176 4063 3956 3758	4900 4755 4620 4491 4370 4255 4146	5256 5101 4955 4818 4688 4564 4447 4336	5625 5459 5303 5156 5016 4884 4759 4640	6006 5829 55663 5505 5215 5082 4955	1bs. 165 170 175 185 190 195 200	4647 4510 4381 4260 4145 4035 3932 3834	5011 4864 4725 4594 4470 4352 4240 4134	5390 5231 5082 4940 4807 4680 4560	5781 5611 5451 5300 5300 5156 4892 4770	6187 6005 56833 5671 55718 5518 5235 5104	6606 6412 6229 6026 5892 5737 5590 5450	7040 6832 6637 6453 6453 6278 6113 5956 5808	7486 7266 7059 6862 6677 6501 6335	7947 7713 7493 7285 7285 6901 6724

In the above Tables, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is even, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number,

See Notes on pages 264 and 265. opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of girders in inches.

R = Pitch of supporting bolts in inches. See Note . 327.

E No		934	12358	11994	11651	11323	11022	10732	10456	10195
TABI	ches.	91/2	11732	11387	11062	10754	9920 10464 11022	9659 10188 10732	9927 10456	6496
ICK.	s in in	91/4	11123	10795	10487	9652 10196 10754 11323	9920			
STEEL GIRDERS $1\frac{5}{8}$ INCH THICK. Table No.	Girder	6	10530	9660 10220 10795 11387 11994	9928	9652	9391	9144	8910	8687
NI 8	hs of	83/4	9953	0996	9384	9123				8211
RS 1	Dept	81/2	9392	9116	8855	8609		8156	7947	7748
IRDI		81/4	8848	8587	8342	8110		7683	7486	7299
EEL C		∞	8320	8075	7844	7626	7420	7225	7040	6864
ST	sure q. in.	Pres per s	lbs. 165	170	175	180	185	190	195	8470 200
26.		4	197	965	380	111	157	916	87	120
ေ		9.1	105	6	6	6	6	<u>∞</u>	86	
LE No. 35		6 6	9720 103	9434 99	9164 96	8910 94	8669 91	8441 89	8224 86	8019
TABLE No. 35	nches.	83/4 9 9/1	9187 9720 105	8917 9434 9965 170 8	8662	8421	8194	7978	7774	6108 6222
HICK. TABLE NO. 35	rs in inches.	81/2 83/4 9 91	8670 9187 9720 10267 165	8415 8917	8174 8662	7947 8421	732 8194	529 7978	336 7774	7152 7579 8019
CH THICK. TABLE NO. 35	Girders in inches.	81/4 81/2 83/4 9 91	8167 8670 9187 9720 105	8415 8917	7700 8174 8662	7486 7947 8421	7284 7732 8194	7092 7529 7978	6910 7336 7774	6738 7152 7579 8019
12 INCH THICK. TABLE NO. 35	ths of Girders in inches.	8 81/4 81/2 83/4 9 91	7680 8167 8670 9187 9720 105	8415 8917	7241 7700 8174 8662	7040 7486 7947 8421	6849 7284 7732 8194	6669 7092 7529 7978	6498 6910 7336 7774	6336 6738 7152 7579 8019
ERS $1\frac{1}{2}$ INCH THICK. TABLE No. 35	Depths of Girders in inches.	734 8 814 812 834 9 91	7207 7680 8167 8670 9187 9720 105	995 7454 7927 8415 8917	795 7241 7700 8174 8662	606 7040 7486 7947 8421	6428 6849 7284 7732 8194	6259 6669 7092 7529 7978	6098 6498 6910 7336 7774	5946 6336 6738 7152 7579 8019
MRDERS 11 INCH THICK. TABLE No. 35	Depths of Girders in inches.	71/2 73/4 8 81/4 81/2 83/4 9 9	6750 7207 7680 8167 8670 9187 9720 103	995 7454 7927 8415 8917	795 7241 7700 8174 8662	606 7040 7486 7947 8421	6428 6849 7284 7732 8194	6259 6669 7092 7529 7978	6098 6498 6910 7336 7774	5946 6336 6738 7152 7579 8019
STEEL GIRDERS $1\frac{1}{2}$ INCH THICK. Table No. 326.	Depths of Girders in inches.	71/4 71/2 73/4 8 81/4 81/2 83/4 9 9	165 6307 6750 7207 7680 8167 8670 9187 9720 105	8415 8917	795 7241 7700 8174 8662	606 7040 7486 7947 8421	6849 7284 7732 8194	477 5861 6259 6669 7092 7529 7978	6498 6910 7336 7774	6336 6738 7152 7579 8019

1289 1916

8 13000 12257

10

1 12617

1000

In the above Tables, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W^2D ; but when the number of bolts is *even*, it equals $(W^2 - P^2)D$. When the exact value or number is not found under the given depth, the next greater number in the same column is the number,

opposite which will be found the working pressure in column 1

See Notes on pages 264 and 265. W = Width of combustion box in inches.
D = Distance between centres of girders in inches.
P = Pitch of supporting bolts in inches. See Not

STEEL GIRDERS 13 INCH THICK.

TABLE No. 328.

	103/4	16178 15702 15254 14830 14429 14049 13689
	101/2	15435 14981 14553 14148 13766 13404 12733
	101/4	14708 14276 13868 13483 13118 12773 12445
inches.	10	14000 13588 13200 12833 12486 12157 11846
Depths of Girders in inches.	93/4	13308 12917 12548 12199 11869 11557 11261
Depths	91/2	12635 12263 11913 11582 11269 10972 10691
	91/4	11978 11626 11294 10980 10683 10402 10135
	6	11340 11006 10692 10395 10114 9847 9595
	83/4	10718 10403 10106 9825 9559 9308 832
orne q.in.	Press	165 165 170 175 175 180 185 190 195

or number is not found under the given depth, the next greater number in the same column is the number, opposite which will be found the working pressure in column 1.

W = Width of combustion box in inches.

D = Distance between centres of griders in inches.

P = Pitch of supporting bolts in inches. See Notes on pages 264 and 265. In the above Table, when the number of supporting bolts in a girder is odd, the number under the particular depth of girder equals W2D; but when the number of bolts is even, it equals (W2 - P2)D. When the exact value

FURNACES PLAIN CYLINDRICAL. Steel Plates.

Pressures and Numerals for Lengths and Diameters.

. 330.	u	nm Dian	ins.	10.91	16.37	15.91	15.46	15.05	14.65	14.27	13.92
TABLE NO.		ON	9, 10	9.19	30.2	29.8	29.0	28.5	27.5	8.97	26.1
1		HZ	6.7.0	34.3	33,3	32.3	31.4	9.08	8.67	0.63	28.3
thick.	တိ	NN	0.00	8.99	35.00	34.8	33.8	32.9	32.1	31.2	30.2
Steel Plates 9 inch	Numerals.	AZ	0.00	9.68	38.4	37.3	36.3	35.3	34.3	33.5	32.6
tes 3	A	NC	0.07	7.75	6.0	89.8	38.7	37.6	9.98	35.7	34.8
eel Pla		MM	0.4	44.8	43.5	42.3	41.1	40.0	38.9	37.9	37.0
St		A1†A N	1	0.14	46.1	44.7	43.5	42.3	41.2	40.5	39.5
	J.	Press pe sq. i	lbs.	COT	170	175	180	185	190	195	200
					0	4				_	
. 329.	w	isM inm isiA	ins.	CT	14.55	14.1	13.75	13.37	13.02	12.69	12.37
	w	mu	F	CT O	14	14.1	13	133	21.7 13.02	12	12
TABLE No.	w	nu in in	0	CT 0. CZ	24.3 14	23.6 14.1	22.9 13	22.3 13	13	21.2 12	20.6 12
TABLE NO.	u -ix	PN SEM	0.20	CI 0. CZ 1. /Z	26.3 24.3 14	25.5 23.6 14.1	24.8 22.9 13	24.2 22.3 13	21.7 13.	22.9 21.2 12	20.6 12
TABLE NO.	u -ix	PZ PZ	0.70	CI 0. CZ I. /Z Z. 67	28.3 26.3 24.3 14	27.5 25.5 23.6 14.1	26.7 24.8 22.9 13	26.0 24.2 22.3 13	23.5 21.7 13.	24.7 22.9 21.2 12	24.1 22.3 20.6 12
TABLE NO.	w	HN PN	0.70	CI 0. CZ I. /Z Z. 67	30.3 28.3 26.3 24.3 14	29.5 27.5 25.5 23.6 14.1	28.6 26.7 24.8 22.9 13	27.9 26.0 24.2 22.3 13	25.3 23.5 21.7 13.	26.4 24.7 22.9 21.2 12	25.8 24.1 22.3 20.6 12
TABLE NO.	u -ix	N N N N N N N N N N N N N N N N N N N	0.00	CI 0.CZ 1./Z Z.6Z Z.18 8.88	32.4 30.3 28.3 26.3 24.3 14	31.4 29.5 27.5 25.5 23.6 14.1	28.6 26.7 24.8 22.9 13	29.7 27.9 26.0 24.2 22.3 13	28.9 27.1 25.3 23.5 21.7 13.	26.4 24.7 22.9 21.2 12	27.5 25.8 24.1 22.3 20.6 12
	u -ix	N N N N N N N N N N N N N N N N N N N	6.00	01 0.07 1.72 2.62 2.19 2.62 4.09	34.4 32.4 30.3 28.3 26.3 24.3 14	83.4 81.4 29.5 27.5 25.5 23.6 14.1	32.5 30.6 28.6 26.7 24.8 22.9 13	31.6 29.7 27.9 26.0 24.2 22.3 13	28.9 27.1 25.3 23.5 21.7 13.	30.0 28.2 26.4 24.7 22.9 21.2 12	29.2 27.5 25.8 24.1 22.3 20.6 12

The length L should never exceed 10 feet and $\frac{N}{N}$ – 1 should not be more than 10 feet,

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. See

notes, pages 320 to 324.

† When Alls the distinguishing letter Tab e No. 342 may be used when the length does not exceed for \$\frac{1}{4}\$ inch, 1.5 feet and, for \$\frac{9}{32}\$ inch, The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given

D=Diameter of furnace in inches.

L=Length of furnace in feet.

N=Numeral applicable to the case. $\frac{N}{D} - 1 = L$. $\frac{N}{L+1} = D$.

(L+1) D=N.

FURNACES PLAIN CYLINDRICAL. Steel Plates.

Pressures and Numerals for Lengths and Diameters.

The length L should never exceed 10 feet and $\frac{N}{D}-1$ should not be more than 10 feet.

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. See

notes, pages 320 to 324. + When AI is the distinguishing letter Table No. 342 may be used when the length does not exceed for $\frac{5}{16}$ inch, 2.125 feet and, for $\frac{1}{32}$ inch, 2.437 feet.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given

pressure, D = Diameter of furnace in inches.

L=Length of furnace in feet,

N=Numeral applicable to the case.

$$\frac{N}{D}-1=L$$
. $\frac{N}{L+1}=D$.

$$(L+1) D=N.$$

FURNACES PLAIN CYLINDRICAL.

Steel Plates.

Pressures and Numerals for Lengths and Diameters.

. 334.	un	.BM nm siG	ins.	24.37	23.65	22.98	22.34	21.73	21.16	20.62	20.10
SLE No.		o'z		0.99	64.1	62.5	9.09	58.9	57.3	55.9	54.5
TABLE		HZ		71.5	4.69	67.4	9.99	8.89	62.1	2.09	0.69
thick.	rê.	NE		0.22	74.8	72.6	9.02	2.89	6.99	65.5	63.5
$\frac{13}{32}$ inch	Numerals	AZ		82.5	80.1	77.8	9.92	73.6	71.7	8.69	68.1
ates 3	Z	NC		0.88	85.4	83.0	2.08	2.82	76.4	74.5	2.64
Steel Plates		gz		93.5	8.06	88.2	2.98	83.4	81.2	79.1	77.2
St		A1†A N		0.66	1.96	93.4	8.06	88.3	0.98	83.8	81.7
	J	Press pe sq.	lbs.	165	170	175	180	185	190	195	200
. 553.	uı	Max nm Taid	ins.	22.50	21.83	21.21	20.62	20.06	19.53	19.03	18.26
LE No.		υZ		56.5	54.6	53.0	9.19	50.5	48.8	47.6	46.4
TABLE		FZ		6.09	59.1	57.5	55.9	54.3	52.9	9.19	2.00
thick.		HZ		65.6	63.7	6.19	60.5	500	57.0	55.5	54.1
Steel Plates § inch	Numerals.	DX									28.0
lates §	Z	OZ		75.0	79.8	7.07	000	6.99	65.1	63.5	61.9
teel P		MZ	-	7.67	77.3	75.1	73.0	71.1	6.69	67.4	63.7
01		A1†A		84.4	6.18	9.64	77.3	75.3	73.3	71.4	9.69
	1	Press per sq. 1	lhe	165	170	175	180	200	190	195	200

The length L should never exceed 10 feet and $\frac{N}{D}$ - 1 should not be more than 10 feet.

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. See + When A is the distinguishing letter Table No. 842 may be used when the length does not exceed for \$\frac{2}{8}\$ inch, 2.75 feet and, for \$\frac{2}{3}\$ inch, notes, pages 320 to 324.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given pressure.

D=Diameter of furnace in inches.

L=Length of furnace in feet.

N=Numeral applicable to the case. $\frac{N}{D}-1=L$, $\frac{N}{L+1}=D$.

(L+1) D=N.

FURNACES PLAIN CYLINDRICAL.

Steel Plates.

Pressures and Numerals for Lengths and Diameters.

. 336.	·······································	Ma mu Dia	ins. 28.12 27.29 26.51 25.78 25.08 25.08 24.42 23.79 23.20
LE No.		OZ	885.3 885.3 80.6 80.6 80.6 80.6 80.6 80.6 80.6 80.6
TABLE		Y Z	95.2 92.4 889.8 84.9 882.7 880.6 78.6
thick.		EZ	103 99.5 96.7 94.1 91.5 89.0 86.8
inch	Numerals.	AZ	110 107 104 101 98.0 95.4 93.0 90.6
Steel Plates 32 inch	Z	NC	117 114 110 107 102 99.2 96.7
eel Pla		NB	125 121 117 117 118 108 105
St		A1†A N	132 128 124 121 118 118 112 109
	J	Press per sq. i	105. 170 170 175 180 180 190 195 200
535.	u	Max num naid	ins. 26.25 25.47 25.47 24.75 24.06 23.41 22.79 22.79
TABLE No.		OZ	77 74 75 7 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9
TAB		EZ	882 882 778 778 778 778 778 778 778 778
thick.		HZ	89.3 86.7 84.2 81.9 77.6 73.7
inch-	Numerals.	AZ	95.7 90.9 90.9 87.7 85.4 83.1 83.1 79.0
tes $\frac{7}{16}$	Z	oz	102 99.1 96.3 93.6 91.0 88.7 86.4
Steel Plates 7 inch		NR	108 105 105 102 99.4 96.7 91.8 91.8
St		A1†A	115 111 108 105 102 99.7 97.2
	1 .1	per sq. tr	155 170 175 175 185 195 200

The length L should never exceed 10 fee and $\frac{N}{D}-1$ should not be more than 10 feet.

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. See notes, pages 320 to 324. ϕ when A1 is the distinguishing letter Table No. 342 may be used when the length does not exceed for $\frac{7}{16}$ inch, 3.375 feet and, for $\frac{15}{32}$

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given

Then, 3'65' reet.
The numeral N should always be taken pressure.

D=Diameter of furnace in inches.

L = Length of furnace in feet.

N = Numeral applicable to the case. $\frac{N}{D} - 1 = L$. $\frac{N}{L+1} = D$.

(L+1) D = N.

FURNACES PLAIN CYLINL)RICAL. Steel Plates.

Pressures and Numerals for Lengths and Diameters.

No. 338.	tu	Max mu Dian	ins. 31.87							
TABLE N		DN	113	110	106	103	101	0.86	95.2	09.1
		FN	122	119	115	112	109	106	103	101
thick.	ri.	NE	132	128	124	121	117	114	111	100
inch	Numerals.	ND	141	137	133	129	126	123	119	116
Plates $\frac{17}{32}$	N	NG	151	146	142	138	134	131	127	101
Steel Pla		NB	160	155	151	147	143	139	135	130
Sto		A1†A	169	164	160	155	151	147	143	140
	J.	Press pe sq.	lbs. 165	170	175	180	185	190	195	000
. 337.	" w	seM um isiO	ins. 30.00	29.11	28.58	27.50	26.75	26.05	25.38	01.75
TABLE NO.		5 2	100	97.1	94.3	91.7	89.5	8.98	84.6	20.00
AB)										
T		14 Z	108	105	102	8.66	9.96	94.1		1.08
thick.	so.	NE							91.7	-
thick.	umerals.		117	121 113 105	110	107	104	101	7.16 2.86	06.9
thick.	Numerals.	MM	125 117	113	118 110	115 107	111 104	101 601	106 98.7 91.7	102 06.3
thick.	Numerals.	N E	133 125 117	121 113	126 118 110	122 115 107	119 111 104	116 109 101	113 106 98·7 91·7	110 102 06.3
	Numerals.	C D E	142 133 125 117	129 121 113	134 126 118 110	130 122 115 107	126 119 111 104	123 116 109 101	120 113 106 98.7 91.7	117 110 108 06.9

The length L should never exceed 10 fect and $\frac{N}{10} - 1$ should not be more than 10 feet.

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. See notes, pages 320 to 324.

+ When Al is the distinguishing letter Table No. 342 may be used when the length does not exceed for \(\frac{1}{2}\) inch, 4 feet and, for \(\frac{1}{32}\) inch, .312 feet.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given

D = Diameter of furnace in inches.

L=Length of furnace in feet.

N=Numeral applicable to the case. $\frac{N}{D}-1=L$. $\frac{N}{L+1}=D$.

(L+1)D=N

FURNACES PLAIN CYLINDRICAL. Steel Plates.

Pressures and Numerals for Lengths and Diameters.

340.	-iz m *.m	n	Dia uu	ins.	35.62	54.87	10 #0	33.28	32.65	71.16	11 10	26.02	30.14	29.39		
TABLE NO.		1	5		141	101	101	133	129	108	120	122	119	118	011	
		5	Z		153	011	140	144	140	196	001	133	129	100	170	
thick.		F	ZE		165		100	155	151	17	141	143	139	100	100	
19 inch	umerals	6	az		176	P	1/1	166	162	11	/01	153	149	1 7	140	
Plates 3 2	Z		OZ		188	0 0	183	177	179	100	108	163	159	1 1	CCT	
Steel Pla			MZ		000	0 0	194	188	88	1 0	7/8	173	169	a k	COL	
St			AItA	-	919	1 1	205	199	104	H 00 7	189	184	170	1 1	c/.1	
		ie	Pres po sq.	1	10S.	201	170	175	1 80	001	185	190	105	000	500	
339.	-			-	-		_	-		_	_				_	
. 339.	τ	uı	eM nm Bia		111S.	00	32.75	31.82	20.09	00 00	30.10	29.30	20.00	07	27.84	
	τ	uı	nuı	-	_	_	_	119 31.85	_	_	_	_		_	_	
TABLE NO.	τ	uı	eM um		101	171	123	_	911	011	113	110	101	701	104	
thick. Table No.	-i	uı	ON BM		101 101	171 101	133 123	119	201	170 110	122 113	119 110	110	101 011	113 104	
inch thick. Table No.	-i	uı	ON BM		701 701 011	171 /01 941	143 133 123	199 119	201	150 120 110	132 122 113	011 911 861	100	101 011 021	122 113 104	
9 inch thick. Table No.	τ	uı	ON BM		101	171 101 149 171	154 143 133 123	140 130 199 119	211 201 201 271	145 155 120 110	141 132 122 113	137 198 119 110	201 211 201	134 125 110 107	122 113 104	
Plates 9 inch thick. TABLE No.	-i	uı	ON BM		1 C C C C C C C C C C C C C C C C C C C	101 101 101 101 101	164 154 143 133 123	150 140 130 199 119	211 201 201 211 221	155 145 155 120 110	151 141 132 122 113	117 137 198 119 110	101 911 201 101 101	143 134 120 110 107	131 122 113 104	
9 inch thick. Table No.	-i	uı	DZ D		100	171 101 108 108 101 6/1	174 164 154 143 133 123	160 180 180 190 190	211 201 201 211 201 201	164 155 145 155 120 110	160 151 141 132 122 113	158 147 137 198 119 110	101 911 201 101 110 071	107 143 134 120 110 107	139 131 122 113 104	

The length L should never exceed 10 feet and $\frac{N}{N}$ - 1 should not be more than 10 feet.

* The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less. See notes, pages 330 to 324. + When Al is the distinguishing letter Table No. 342 may be used when the length does not exceed for $\frac{9}{16}$ inch, 4.625 feet and, for $\frac{3}{3}$ + When Al is the distinguishing letter Table No. 342 may be used when the length does not exceed for $\frac{9}{16}$ inch, 4.625 feet and, for $\frac{3}{3}$ inch, 4.937 feet.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given

D = Diameter of furnace in inches.

L=Length of furnace in feet.

N=Numeral applicable to the case. $\frac{N}{D}-1=L, \qquad \frac{N}{L+1}=D. \qquad (L+1)\ D=N.$

FURNACES PLAIN CYLINDRICAL. Steel Plates.

Pressures and Numerals for Lengths and Diameters.

TABLE NO. 341.
§ inch thick.
inc
l Plates
Steel

Maximum	Maximum Diameter.*		37.20	36.33	35.35	34.37	33.44	32.26	31.73	30.93
	υZ		156	152	147	143	139	136	132	130
	AN		169	164	160	155	151	147	143	140
	EX		182	177	172	167	163	158	154	150
Numerals.	AZ		195	190	184	179	174	170	165	161
	NC		208	202	196	191	186	181	176	172
	NB		221	215	209	203	197	192	187	183
	A1†A N		234	227	221	215	500	204	198	193
Pressure	per sq. in.	Ths.	165	170	175	180	185	190	195	200

The length L should never exceed 10 feet and $\frac{N}{D}-1$ should not be more than 10 feet.

See * The diameter D should not be greater for any given pressure than that opposite the given pressure in this table, but may be less.

notes, pages 320 to 324.

† When AI is the distinguishing letter Table No. 342 may be used when the length does not exceed 5.25 feet.

The numeral N should always be taken from the column under the distinguishing letter applicable to the case and opposite the given

D=Diameter of furnace in inches. pressure.

N=Numeral applicable to the case. $\frac{N}{D} - 1 = L$, $\frac{N}{L+1} = D$. L=Length of furnace in feet.

(L+1) D=N.

 $\frac{N}{L+1} = D.$

FURNACES WITH FLANGED JOINTS.

TABLE No. 342.

Steel Plates from 1 inch to 5 inch thick.

4 200 4 1000 4 1000 4 1000 1000 1000 100												
Pressure per sq. in.	Pressure Numerals.		Consta	ants and Maximum Len knesses which they are	ngths for the e opposite.							
lbs.	N.		Thickness.	Constants.	*Maximum Lengths for Thickness in inches.							
			inches.	C.								
			1/4	63.0	18.0							
			9/32	72.375	21.75							
165	3.0		5/16	81.75	25.50							
170	3.0909090											
175	3.1818181		1 1/3 2	91.125	29.25							
			3/8	100.50	33.0							
180	3.2727272		13/32	109.875	36.75							
185	3.3636363			119.25	40.50							
190	3.4545454		7/16									
195	3.5454545		15/32	128.625	44.25							
			1/2	138.0	48.0							
200	3.6363636		17/32	147:375	51.75							
			9/16	156.75	55.50							
			19/32	166.125	59.25							
			5/8	175.50	63.0							

^{*} The lengths opposite the thickness in each case are the maximum lengths, in inches, between the centres of the flanges, for which the tables should be used. When the length exceeds that opposite the given thickness then the pressure may be found from the Tables Nos. 329 to 341.

 $\overline{N} = D$.

C - ND = l.

ND+l=C.

N=Pressure numeral. C=Thickness constant. D=Diameter, outside, in inches. l=Length between centres of flanges, in inches. See notes, page 338 and following. C-l

FURNACES, CORRUGATED, CYLINDRICAL, Steel Plates from $\frac{1}{4}$ inch to $\frac{5}{8}$ inch thick.

Pressures and Diameters when machine made.

TABLE No. 343.

1	1	es.		~	_	0		-	10	_	10
	% in.	Diameter in inches		53.0	51.47	50.00	48.6	47.28	46.05	44.87	43.7
	19/32 in.	Diameter in inches.		50.37	48.89	47.50	46.18	44.93	43.75	42.62	41.56
	% in.	Diameter in inches.		47.72	46.32	45.00	43.75	42.56	41.44	40.38	39.37
	17/32 in. 9/16 in. 19/32	Diameter in inches.		45.07	43.75	42.50	41.31	40.50	39.14	38.14	37.18
	½ in.	Diameter in inches.		42.42	41.17	40.00	38.88	37.83	36.84	35.89	32.00
ameters.*	16/32 in.	Diameter Diameter in inches. in inches.		39.77	38.60	37.50	36.45	35.47	34.53	33.65	32.81
Thicknesses and Diameters.*	% in. 13/32 in. 7/16 in. 15/32 in.	Diameter Diameter in inches. in inches.		37.12	36.02	35.00	34.02	33.10	32.23	31.41	30.62
Thicknes	13/3 in.	Diameter in inches.		34.46	33.45	32.20	81.59	30.74	29.93	29.16	28.43
		Diameter Diameter Diameter in inches. in inches.		31.81	30.88	30.00	29.16	28.37	27.63	26.93	26.52
	5/16 in. 11/32 in.	Diameter in inches.		29.16	28.30	27.50	26.73	26.01	25.32	24.67	24.06
	% in.	Diameter in inches.		26.51	25.73	25.00	24.30	23.64	23.02	22.43	21.87
	%2 in.			23.86	23.16	22.50	21.87	21.28	20.72	20.19	19.68
	1/4 in.	Diameter in inches.		21.21	20.28	20.00	19.44	18.91	18.42	17.94	17.50
p.	Pressure per square inch.					175	180	185	190	195	200

* The diameter is measured at the bottom of the corrugations outside. See notes, page 343 and following.

FURNACES WITH RIBBED PROJECTIONS, GROOVED INSIDE.

Steel Plates from 1/4 inch to 1/8 inch thick. Pressures and Diameters.*

TABLE No. 344.

	% in.	Diameter in inches	53.03 51.47 50.00 48.61 47.29 46.05 48.75
	19/32 in.	Diameter I	50.37 48.89 47.50 46.18 44.93 42.75 42.62
	% in. 19/32	Diameter in inches.	47.72 46.32 45.00 43.75 42.56 41.44 40.38 39.37
	17/32 in.	Diameter in inches.	45.07 43.75 42.50 41.31 40.20 39.14 38.14 37.18
	1/2 in.	Diameter Diameter in inches.	42.42 41.17 40.00 38.88 37.83 36.84 35.89
ameters.	7/16 in. 15/32 in.	Diameter in inches.	39.77 38.60 37.50 36.45 35.47 34.53 33.65
Thicknesses and Diameters.		Diameter Diameter in inches.	37.12 36.02 35.00 34.02 33.10 32.23 31.41
Thicknes	. 13/32 in.	Diameter in inches.	34.46 33.45 32.50 31.59 30.74 29.93 29.16
	% in	Diameter Diameter in inches, in inches.	31.81 30.88 30.00 29.16 28.37 27.63 26.92 26.92
	11/32 in.	Diameter in inches.	29.16 28.30 27.50 26.73 26.01 25.32 24.67
	δ/16 in.	Diameter in inches.	26.51 25.73 25.00 24.30 28.64 23.02 22.43 22.43
	%2 in.	Diameter Diameter Diameter Diameter in inches, in inche	23.86 23.16 22.50 21.87 21.28 20.72 20.19 19.68
	1/4 in.	Diameter in inches.	21.21 20.58 20.00 19.44 18.91 17.94 17.94
Pressure per square inch.		Pres	1bs. 165 170 175 180 185 190 195 200

* When the height of the ribs above the plain parts is not less than $15\%_6$ inch, the depth of the grooves not greater than $\%_4$ inch, the length not greater than 9 inches between the centres of the ribs, and the plain parts at the ends not longer than 6 inches. See notes, page 347 and following.

PEERIE 2 INCH SPRING SAFETY VALVES, GUN META L CHESTS, SPRING CASES & FITTINGS.

SAFETY VALVES.

The PEERIE 2 inch Gun Metal Valves.

The design, of which an illustration is given on the page immediately preceding, was got up expressly to meet cases where it is desirable to have valves which are snug and efficient and also out of the control of those who might wish to extra load the valves, or even to accidentally do so, when steam is up. In certain cases safety valves are required by Act of Parliament to be so constructed and arranged that they are out of the control of those in charge of the boiler when steam is up; the load on these valves cannot be altered unless a lock is opened, and are as snug and compact, if not more so, than such valves generally are.

For the purpose of distinguishing the design from others it has been

called the PEERIE, which means little, small, snug, &c.

The dimensions which follow will be of service to draughtsmen and others who wish to make working drawings or construct such 2 inch valves; the dimensions given are intended for pressures up to 160 lbs. per square inch, provided the combined area of the two valves is not less than found sufficient by the use of the Table No. 205, page 401, for the pressure and grate surface.

If the pressure exceeds 160 lbs., and is not over 200 lbs., the diameters of the spindles should be increased one-sixteenth of an inch, the breadth of the cotters being one-sixteenth of an inch, and the thickness

one-thirty-second of an inch greater.

The size of the springs should always be regulated, so as to be suitable for the particular pressure by the formulæ on pages 414 and 415.

able for the particular	Pressu	ic by	UIIO	101111u	100 011	pages	TIT	and	110.
									ins.
Total height over all,									16%
Diameter of valves,									2
Diameter of inlet, .									2 1/8
Diameter of outlet,									3
Diameter of flange of	outlet,								61/8
Thickness of flange of	outlet,								3/8
Height of chest below	valves,	insid	le at	centre	of ch	iest,			23/4
Length of chest below	valves	insid	le,						71/4
Width of chest below v	alves,	inside	3,						3
Thickness of chest below	no valv	res,							7/16
Length of chest above			le.						01/
Width of chest above v									4
Thickness of chest abo									1/4
Total height of valve									5 3/4
Diameter of bottom flan									7
Thickness of bottom fla									5/8
Width of top flange of									5
The same of the sa									

2 inch Gun Metal "PEERIE" Safety Valves.

	ins.
Thickness of top flange of chest,	1/2
Height of spring case,	6 3/8
Diameter of spring case, inside,	3
Thickness of spring case,	3/16
Width of bottom flange of spring case,	5
Thickness of bottom flange of spring case,	1/2
Width of top flange of spring case,	41/8
Thickness of top flange of spring case,	1/2
Width of flange of cover of spring case,	41/8
Thickness of flange of cover of spring case,	1/2
Distance between centres of valves,	41/8
Diameter of body of spindle,	7/8
Length of body of spindle,	9 3%
Diameter of lower part of spindle,	11/18
Clearance at top of spindle,	1/2
Lift of valve,	1/2
Length of guide of hood,	1½
Breadth of cotter,	11/16
Thickness of cotter,	7/32
Length of thread of compressing screw,	1 3/8
Diameter of compressing screw,	11/2
Depth of thread (or part screwed) in top cover for compressing \	
screw,	11/8
Diameter of bolts for bottom flange of chest,	5/8
	six '
Diameter of bolts and studs for spring case at top,	1/2
Diameter of bolts or studs for spring case at bottom,	5/8
	our
Diameter of drain pipe,	8/4
Length of lifting lever,	2
Diameter of easing gear shaft,	7/8
,	70

The bolts, studs, easing gear shaft, and lifting lever should be of

wrought iron.

While the PEERIE design just dealt with can hold its own, as regards snugness, combined with efficiency, with other 2 inch valves of the same type, should it be necessary or desirable to adopt still snugger and lighter valves it may be done by using those made from the design and particulars given of the PEERIE-WEERIE valves which immediately follow.

PERNEWERNE 2 INCH SPRING SAFETY VALVES, GUN METAL CHESTS, SPRING CASES & FITTINGS.

SAFETY VALVES.

The PEERIE-WEERIE 2 inch Gun Metal Valves.

It has been found that the usual designs (although there are many good ones) are not as snug as is desirable, or as they might be for small boilers, which must be placed where there is not much available space for boiler fittings, more particularly when the safety valves had to comply with Statutory regulations; those, of which an illustration is given in the page immediately preceding this, have been specially arranged so as to be efficient, and in every respect to comply with the Statutory requirements for 2 inch safety valves, and is generally more compact and snugger than those designs which have come under the Author's observations, provided they were efficient, and in every respect were such as were in accordance with the requirements of the Act of Parliament for valves which have to be out of the control of those in charge of the boilers when steam is up.

This design has been called the Peerle-Weerle to distinguish it from other designs which are of a particularly snug description.

PEERIE-WEERIE signifies, very small, very snug, &c.

The dimensions which follow will facilitate getting out drawings or constructing such 2 inch valves, and are intended for pressures up to 160 lbs. per square inch, provided the combined area of the two valves is not less than found sufficient by the use of the Table No. 205, p. 401, for the pressure and grate surface.

When the pressure is over 160 lbs., and not exceeding 200 lbs., the diameter of the spindles should be increased one-sixteenth of an inch, the breadth of the cotters one-sixteenth, and the thickness one-thirty-

second of an inch greater.

The dimensions, &c., of the springs should in all cases be regulated to suit the pressure by the formulæ given on pp. 414 and 415.

1					1	ins.
Total height over all,						13
						2
Diameter of valves, · · ·	•	•	•			2 1/8
Diameter of inlet,	•	•		•	•	3
Diameter of outlet,				•	•	4
Length and breadth of flange of outlet,		•	•	•	•	4
Thickness of flange of outlet,		•	•	•	•	91/2
Length of chest above valves, inside,			•	•	•	81/8
Width of chest above valves, inside,		•		•		1/4
Thickness of chest above valves, .	•	•	•	•	•	29/18
Total height of valve chest,	•	*	•	•	•	11 %
Length of bottom flange of chest, .	•		•	•		73/4
Breadth of bottom flange of chest, .		5	•	•	•	5/4
Thickness of bottom flange of chest,		٠	•	•	•	5 78
Width of top flange of chest,	9		•	•	•	-

2 inch Gun Metal "PEERIE-WEERIE" Safety Valves.

Thickness of top flange of chest,		ins.
Height of spring case,	•	. 1/2
Diameter of spring case, inside.	•	. 6%
Thickness of spring case.	•	. 3
Width of bottom flange of spring case	•	. 2/16
Thickness of bottom flange of spring case	•	. 5
Width of top flange of spring case.	•	. ½
Thickness of top flange of spring case	•	. 41/8
Width of flange of cover of spring case	•	. 1/2
Thickness of flange of cover of spring case	•	. 4 1/8
Distance between centres of valves.	•	. 1/2
Diameter of body of spindle	•	. 4 1/8
Length of body of spindle.	•	. 7/8
Diameter of lower part of spindle,	•	9 3/8
Clearance at top of spindle.	•	. 11/18
Lift of valve,	•	· ½ · ½
Length of guide of hood,	•	
Breadth of cotter,	•	. 1½
Thickness of cotter.	,	$1\frac{1}{7}\frac{1}{16}$
Length of thread of compressing screw, .	' ·	7/32
Diameter of compressing screw.		1 3/8
Depth of thread (or part screwed) in top cover for	com	1½
pressing screw.	com.	1 1/8
Diameter of bolts for bottom flange of chest,)
Number of bolts for bottom tlange of chest		nine %
Diameter of bolts and study for spring case at ton		
Diameter of bolts and stilles for spring case at hottom		1/ ₂
Number of bolts of stilds in each flange of spring age		four 5/8
Diameter of drain pipe.		
Length of lifting lever,		$2^{\frac{3}{4}}$
Diameter of easing gear shaft,		7/8
		/8

The bolts, studs, easing gear shaft, and lifting lever should be of wrought iron.

FURNACES WITH FLANGED JOINTS. Iron and Steel Plates.

When horizontal furnaces of ordinary diameter are constructed of rings welded longitudinally, the rings flanged at the ends, made up of more than one ring riveted together, so as to form one complete furnace, and the iron or mild steel plates of which they are made are of the highest quality, a prudent working pressure, &c., may be determined by the following formulæ, provided the length between the centres of the rings does not exceed that stated in the column "maximum lengths for thickness in inches" in Tables Nos. 78 and 284 Iron Plates, and Nos. 175 and 342 Steel Plates, and attention is also paid to the notes which follow the formulæ:

D = Diameter of furnace, in inches, outside. +

l = Length or distance between centre of flanges, in inches.+

T=Thickness of plate, in inches.

B=Working pressure in lbs., per square inch.+

C=9000 for Iron plates. C=9900 for Steel plates.

C=9900 for Steer plates.
$$\frac{C \times T}{3 \times D} \left(5 - \frac{l+12}{60 \times T} \right) = B.$$

$$\frac{C \times T}{3 \times D} \left(5 - \frac{l+12}{60 \times T} \right) = D.$$

$$\frac{1}{5} \left(\frac{3 \times B \times D}{C} + \frac{l+12}{60} \right) = T.$$

$$60 \left(5 \times T - \frac{3 \times B \times D}{C} \right) - 12 = l.$$
† If the pressure and diameter remain the same, then for every thirty-

† If the pressure and diameter remain the same, then for every thirty-second part of an inch the plate is increased in thickness, the length between the centres of the flanges may be increased about 9% inches.;

The radii of the flanges on the fire side should be about 1.5 inch. The depth of the flanges from the fire side should be three times the diameter of the rivet, plus 1.5 inch. The thickness of the flanges should be kept as near the thickness of the plate as practicable. The distance from the side of the rivet holes to the edge of the flange should not be less than the diameter of the rivet. The diameter of the rivets should be at least 3 inch more than the thickness of the plate. The depth of the rings between the flange should not be less than three times the diameter of the rivet. The thickness of the ring may be about one-half the thickness of the plate, and to make a first class job should be turned. The holes in the flanges and rings should be drilled, if not drilled in place they should be rimered out after drilling when in place; the holes should be a little taper and the heads of the rivets of moderate size. After all welding, flanging, and heating, the flanged rings should be efficiently annealed. If there be any signs of defects in the flanges or welding, &c., the length should not be used.

RIVETED JOINTS (Iron and Steel).

MULTIPLIERS for finding the vertical distance between Rows of Rivets and also the thickness of Butt Straps.

The Tables which immediately follow, Nos. 345 to 347, will be found of service when designing riveted joints, either made of iron or mild steel plates, when the proportions of pitch and diameter of rivets differ from those in the joints given in the tables RIVETED JOINTS,

provided all the rivets are of the same diameter.

When the pitch and diameter of rivets have been determined the Multipliers in the tables immediately following may be used to ascertain the least vertical distance between the rows of rivets; the tables may also be used to find the least thickness butt straps should be, when each alternate rivet is omitted in the outer rows and not the inner.

The tables have been constructed for several descriptions of rivet-

ing viz.:-

Ordinary ZIG-ZAG Riveting, double, treble, and quadruple.

ZIG-ZAG Riveting when each alternate rivet has been omitted in the outer rows.

Chain Riveting when each alternate rivet has been omitted in the outer rows.

When the pitch and diameter of rivets have been determined, the percentage of the joint $\left(\frac{p-d}{p}\right)$ 100 may be found in the usual way, p being the pitch and d the diameter of the rivets, then in one of the tables, but it must be the table applicable to the description of riveting, a number will be found, opposite the percentage, by which the pitch p should be multiplied, and the product so obtained is the *least vertical* distance that should be between the rows of rivets.

When there are three rows of rivets and each alternate rivet omitted in the *outer* row, a Multiplier will also be found in one of the tables immediately following, but it must be the table applicable to the description of the joint, and by its use the *least vertical* distance

between the inner rows of rivets can be determined.

In the case of butt joints, where the pitch of the rivets in the row next the butt is only half that of the rivets in the outer row, opposite the given percentages in the table applicable will also be the number by which the thickness of the plate should be multiplied, in order to determine the least thickness that butt straps should be

IRON AND STEEL BOILERS.

The least thickness of butt straps when the rivets in each row are of the same pitch is of course five-eighths the thickness of the plates.

The following examples show the application of the tables, and will

facilitate their use :-

(1) If it be desired to construct an Ordinary Zig-Zag Double Riveted Double Butt Joint of plate ¾ inch thick, rivets 1 inch diameter and the pitch 4 inches:

Then the percentage of the joint $\left(\frac{4-1}{4}\right)$ 100 is found to be 75.

In the Table applicable (No. 345) and opposite the percentage 75 in column M the number is found to be 4899 by which the pitch 4 inches should be multiplied, then 4899 \times 4 = 1 9596 inches, which is the *least vertical* distance that there should be between the rows. In this case, as the plates are $\frac{34}{4}$ inch thick, the *least* thickness of *each* butt strap is $\frac{34}{4} \times \frac{56}{8} = \frac{10}{32}$ inch.

(2) If it be desired to construct a Treble Riveted Zig-Zag Double Butt Joint, but with each alternate rivet omitted in the *outer* rows, such as is illustrated on p. 318, Table No. 160:

Then if the plate be $1\frac{1}{16}$ inch thick, the diameter of rivets $1\frac{1}{16}$ inch, and the pitch 7 inches, then $\left(\frac{7-1\frac{1}{16}}{7}\right)100=84.82$,

which is the percentage, and opposite 84.75 (the nearest number to 84.82) in the table applicable (No. 346) is found in column A '3772, which multiplied by 7, the pitch equals 2.6404 inches, the least vertical distance that there should be between the outer rows of rivets, and in column B, opposite the same percentage, will be found '2604, which multiplied by 7, the pitch equals 1.8228 inches, the least vertical distance that there should be between the inner rows.

As the pitch in the *inner* row in the case dealt with in the preceding paragraph was only *half* that of the *outer* rows, the thickness of plate should be multiplied by the number in column C to obtain the least thickness that the butt straps should be, then $1.0625 \times 7621 = 8097$, or say 1.5/4 inch, which is the *least* thickness *each* butt strap should be.

(3) If it be desired to construct a Treble Riveted (Chain Riveting) Double Butt Joint, with each alternate rivet omitted in the outer rows such as in the previous case, as illustrated on p. 318, Table No. 160, when the thickness of plate is to be 1 1/4 inch, the diameter

of the rivets $1\frac{1}{4}$ inch, and the pitch of rivets in the outer rows $8\frac{1}{4}$ inches:—

Then $\left(\frac{8\frac{1}{4}-1\frac{1}{4}}{8\frac{1}{4}}\right)$ 100 = 84.84, which is the percentage of the joint, and opposite 84.75 (the nearest number to 84.84) in the table applicable (No. 347) will be found in column A '4323, which multiplied by 8\frac{1}{4} inches, the pitch equals 3.566 inches, which is the least vertical distance there should be between the outer rows of rivets. The least distance between the inner rows, in this case, it being Chain Riveting, is equal to

$$\frac{4d+1}{2} = \frac{4 \times 1 \frac{1}{4} + 1}{2} = 3$$
 inches.

If however, the joint last referred to had been Zig-Zag Riveted in the *inner* rows, then, in order to determine the *least* distance that there should be between them (inner rows), the *outside* pitch should be multiplied by the number in column Z in the *same Table*, or $8.25 \times .2604 = 2.148$ inches, which is the *least* distance there should be between the rows.

In this case also, as the pitch of rivets in the *inner* rows is only half that of the *outer* rows, the thickness of plate should be multiplied by the number in column C, the product is the *least* thickness that *each* butt strap should be, thus, 1.25 × .7621 = .9526, or say 3½2 inch is the *least* thickness *each* butt strap should be.

As has been alluded to in another part of the book, as to the minimum thickness of butt straps, it may be desirable in some cases to make them thicker, more particularly in the case of wide pitches, so as to insure tight joints, but the thickness obtained by the use of the following tables is sufficient as far as strength is concerned.

RIVETED JOINTS (IRON AND STEEL).

Ordinary ZIG-ZAG riveting (Lap or Butt).

MULTIPLIERS for finding the *vertical* distance between rows of rivets, the pitch and percentage of joint having already been determined on. The *vertical* distance between rows of rivets is found by multiplying the pitch by the number opposite the given percentage as found by the formula $(\frac{p-d}{p})$ 100, p being the pitch and d the diameter of rivets.

Per- centage of Joint.	Muitipliers for Vertical Distance between Rows of Rivets.	Per- centage of Joint.	Multipliers for Vertical Distance between Rows of Rivets.	Per- centage of Joint.	Multipliers for Vertical Distance between Rows of Rivets.	Per- centage of Joint.	Multipliers for Vertical Distance between Rows of Rivets.
% 60·0 60·25 60·50 60·75 61·0 61·25 61·50 61·75 62·0 62·25 62·25 63·30 63·25 63·55 64·50 64·25 64·50 64·25 64·50 65·75	M -5724 -5710 -5697 -5684 -5670 -5657 -5644 -5630 -5617 -5604 -5590 -5550 -5536 -5523 -5509 -5496 -5482 -5496 -5482 -5442 -5428 -5415	% 66 '25 66 '50 66 '75 67 '05 67 '25 67 '50 68 '0 68 '25 68 '50 68 '70 69 '25 69 '50 70 '05 70 '05 70 '05 71 '05 71 '05 71 '25 71 '50 71 '25 72 '0	M -5387 -5374 -5360 -5346 -5333 -5319 -5305 -5291 -5278 -5264 -5250 -5236 -5222 -5208 -5181 -5167 -5153 -5111 -5097 -5083 -5069	72.50 72.75 73.0 73.25 73.50 73.75 74.0 74.250 74.75 75.25 75.75 76.25 76.25 76.25 76.75 77.25 77.25 77.25 77.25 77.25 77.25	M -5041 -5027 -5013 -4998 -4984 -4970 -4956 -4942 -4928 -4913 -4899 -4856 -4842 -4827 -4813 -4798 -4778 -4778 -4778 -47740 -4726 -4711	78.75 79.0 79.25 79.50 79.75 80.0 80.25 80.55 80.75 81.0 81.25 81.50 81.75 82.0 82.25 82.75 83.0 83.25 83.75 84.0 84.25 84.50	MI -4682 -4668 -4668 -4663 -4663 -4669 -4594 -4559 -4564 -4564 -4549 -4535 -4490 -4475 -4440 -4445 -4430 -4415 -4399 -4384 -4369 -4354 -4339
66.0	*5401	72.25	•5055	78.50	•4697	84.75	•4323

Vertical distance between rows = $p \times M$.

M being the MULTIPLIER opposite the given percentage. The minimum thickness of each butt strap is % the thickness of the shell plate.

535 RIVETED JOINTS (IRON AND STEEL). TABLE No. 346.

ZIG-ZAG riveting when each alternate rivet is omitted in the outer rows (Lap or Butt).

MULTIPLIERS for finding the vertical distance between rows of rivets, the outer pitch and percentage having already been determined on.

The vertical distance between outer or inner row of rivets is found by multiplying the outer pitch by the respective numbers opposite the given percentage as found by the formula $\left(\frac{p-d}{p}\right)$ 100, p being the pitch and d the diameter of rivets.

Per- centage of Joint.	Multipliers for Vertical Distance between outer Rows of Rivets.*	Multipliers for Vertical Distance between inner Rows.	Multi- pliers for Thick- ness of Butt Strap.	Per- centage of Joint.	Multipliers for Vertical Distance between outer Rows of Rivets.*	Multipliers for Vertical Distance between inner Rows.	Multi- pliers for Thick- ness of Butt Strap.
%	A	В	C	%	A	В	C
75.0	•4899	*3122	·9375	80.75	•4243	.2822	*8206
75.25	.4871	·3110	•9313	81.0	·4214	·2808	*8165
75.50	.4843	.3097	9252	81.25	·4185	.2795	*8125
75.75	·4815	*3084	•9193	81.20	•4156	.2782	*8085
76.0	·4786	'3071	·9135	81.75	•4127	•2768	*8046
76.25	•4758	·3058	•9077	82.0	·4098	.2755	*8008
76.50	•4730	*3045	9021	82.25	.4068	•2741	·7970
76.75	•4702	*3032	.8966	82.50	.4039	•2728	•7933
77.0	.4673	*3019	·8912	82.75	•4009	•2714	·7896
77.25	*4645	*3006	.8859	83.0	*3980	.2700	·7860
77.50	.4617	•2993	.8807	83.25	.3950	2687	·7824
77.75	·4588	2980	·8756	83.20	*3921	•2673	.7789
78.0	.4560	•2967	·8705	83.75	*3891	.2659	•7755
78.25	'4531	•2954	·8656	84.0	.3861	•2646	•7721
78.50	•4502	2941	.8607	84.25	*3832	•2632	.7687
78.75	4474	2928	*8560	84.50	*3802	2618	*7654
79.0	•4445	2915	*8513	84.75	*3772	2604	.7621
79.25	•4417	2902	*8467	85.0	*3742	•2590	.7589
79.50	*4388	2888	*8422	85.25	3712	•2576	•7558 •7506
79.75	•4359	2875	·8377	85.50	3681	•2562	7526
80.0	*4330	·2862 ·2849	*8333	85.75	*3651 *3621	·2549 ·2534	·7496 ·7465
80.25	*4301	2849	·8290 ·8248	86.25	*3590	2520	•7435
90.20	•4272	2835	0248	00.25	.9990	-2520	7435

Vertical distance between outer rows $= p \times A$. Vertical distance between inner rows $= p \times B$.

Thickness of Butt Straps $= T \times C$. T = Thickness of shell plates in inches.

^{*} By outer row is meant the row next the edge of butt strap or, in lap joints, the row next the edge of plate.

536 RIVETED JOINTS (IRON AND STEEL). TABLE No. 347.

Chain Riveting when each alternate rivet is omitted in the outer rows. (Lap or Butt.)

MULTIPLIERS for finding the vertical distance between outer rows of rivets, the outer pitch and percentage having been already determined on.

The vertical distance between outer rows of rivets is found by multiplying the outer pitch by the number opposite the given percentages as found by the formula 100, p being the pitch and d the diameter of the rivets.

(4 /							
Per- centage of Joint.	Multipliers for Vertical Distance between outer Rows of Rivets.*	Multipliers for Vertical Distance between inner Rows.†	Multi- pliers for Thick- ness of Butt Strap.	Per- centage of Joint.	Multipliers for Vertical Distance between outer Rows of Rivets.*	Multipliers for Vertical Distance between inner Rows.†	Multi- pliers for Thick- ness of Butt Strap.
%	A	Z+	C	%	A	Z+	C
75.0	•4899	•3122	•9375	80.75	.4564	•2822	*8206
75.25	•4885	*3110	•9313	81.0	.4549	•2808	*8165
75.50	•4870	.3097	.9252	81.25	•4535	.2795	.8125
75.75	•4856	*3084	·9193	81.50	.4520	.2782	*8085
76.0	*4842	•3071	.9135	81.75	.4505	.2768	*8046
76.25	•4827	*3058	.9077	82.0	.4490	.2755	*8008
76.50	•4813	*3045	•9021	82.25	•4475	.2741	•7970
76.75	•4798	*3032	*8966	82.50	•4460	.2728	•7933
77.0	.4784	.3019	*8912	82.75	•4445	.2714	.7896
77.25	•4769	*3006	*8859	83.0	.4430	.2700	•7860
77.50	.4755	•2993	*8807	83.25	·4415	.2687	.7824
77.75	.4740	•2980	·8756	83.20	•4399	.2673	•7789
78.0	.4726	.2967	·8705	83.75	.4384	•2659	.7755
78.25	.4711	.2954	*8656	84.0	•4369	•2646	•7721
78 50	.4697	2941	·8607	84.25	.4354	•2632	.7687
78 75	•4682	2928	*8560	84.50	•4339	2618	.7654
79.0	*4668	•2915	*8513	84.75	•4323	•2604	.7621
79.25	•4653	•2902	*8467	85.0	·4308	2590	.7589
79.50	•4638	2888	*8422	85.25	•4293	•2576	.7558
79.75	•4623	2875	*8377	85.50	*4277	2562	.7526
80.0	*4609	2862	*8333	85.75	*4262	2549	•7496
80.25	4594	2849	·8290 ·8248	86.0	·4247 ·4242	·2534 ·2520	·7465 ·7435
80.50	•4579	•2835	8248	80.52	4242	2520	7435

Vertical distance between outer rows = $p \times A$, but should never be less than

When there are three rows of rivets the vertical distance between inner rows should be $\frac{4d+1}{2}$

Thickness of Butt straps = T x C. T = Thickness of shell plate, in inches.

* By outer row is meant the row next the edge of butt strap or, in lap joints, the row next the edge of the plate.

† Column Z is given to meet cases when the inner rows are zig-zag riveted, then the vertical distance between inner rows = $p \times Z$.

N=Nuneral appropriate to the thickness of plate and tensile strength of steel. Be Working pressure, in pounds, per square inch. D=Diameter of boiler, inside, in inches. F=Nominal factor of safety. See Notes page 294 and following.

 $D \times B \times F = N$ $\frac{N}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = F$.

NUMERALS.

For Riveted Joints in Steel Plates having a Tensile Strength of 26, 27, 28, 29, 30, 31 and 32 tons per square inch.

These numerals are applicable to the thickness of plate which they are opposite, provided the calculated percentage of the joint is as given opposite the same thickness in the Table immediately preceding.

Thickness	26 tons.	27 tons.	28 tons.	29 tons.	30 tons.	31 tons.	32 tons.
of Plate.	$D \times B \times F$.						
T	N	N	N	N	N	N	N
5/8	62695	65106	67518	69929	72340	74752	77163
21/32	65791	68322	70852	73383	75913	78444	80974
11/20	68884	71534	74183	76833	79482	82131	84781
23/32	71982	74751	77519	80288	83056	85825	88593
1/A	75077	77964	80852	83739	86627	89515	92402
25/32	78169	81175	84182	87188	90195	93201	96208
13/16	81267	84393	87518	90644	93770	96895	100021
27/32	84363	87608	90853	94097	97342	100587	103832
7/8	87457	90821	94185	97548	100912	104276	107640
29/32	90549	94032	97514	100997	104480	107962	111445
15/16	93639	97240	100842	104443	108045	111646	115248
31/32	96737	100458	104179	107899	111620	115341	119061
1	99823	103662	107502	111341	115180	119020	122859
1 1/32	102918	106877	110835	114794	118752	122710	126669
1 1/16	106012	110090	114167	118245	122322	126399	130477
1 3/32	109105	113301	117498	121694	125890	130087	134283
1 1/8	112196	116511	120826	125142	129457	133772	138087
1 5/32	115299	119734	124168	128603	133037	137472	141907
1 3/16	118388	122941	127494	132048	136601	141155	145708
1 7/32	121475	126147	130819	135491	140163	144835	149507
1 1/4	124575	129366	134158	138949	143740	148532	153323
1 %32	127674	132585	137495	142406	147317	152227	157138
1 5/16	130742	135771	140800	145828	150857	155885	160914
	,		47.2.2		7 / 17	-4	

N=Numeral appropriate to the thickness of plate and tensile strength of steel, B=Working pressure, in pounds, per square inch. D=Diameter of boiler, inside, in inches. F=Nominal factor of safety. See Notes page 294 and following.

 $D \times B \times F = N$ $\frac{N}{B \times F} = D$ $\frac{N}{D \times F} = B$ $\frac{N}{D \times B} = F$.

WHITWORTH SCREWS.

_									_
Col. 1.	Col. 2.	Col. 3.	Col. 4.	Col. 5.	Col. 1.	Col. 2.	Col. 3.	Col. 4.	Col. 5.
Diam. of Screw.	Num- ber of Threads per inch.	Depth of Thread.	Diam. at Bottom of Thread.	Area at Bottom of Thread.	Diam. of Screw.	Number of Threads per inch.	Depth of Thread.	Diam. at Bottom of Thread.	Area at Bottom of Thread.
inches.		inch.	inch.	sq. ins.	inches.		inch.	inch.	sq. ins.
1/8	40	.0160	.093	.0067	21/8	41/2	·1422	1.840	2.659
5/32	32	.0200	·116	.0105	21/4	4	·1600	1.930	2.925
3/16	24	.0266	.134	.0141	2 %	4	·1600	2.055	3.316
1/4	20	.0320	•186	.0271	21/2	4	·1600	2.180	3.732
5/16	18	.0355	.241	.0456	25%	4	·1600	2.305	4.172
3/8	16	.0400	295	.0683	23/4	31/2	·1828	2.384	4.463
7/16	14	.0457	.346	.0940	2 1/8	3½	·1828	2.509	4.944
1/2	12	.0533	.393	·1213	3	31/2	1828	2.634	5.449
1/ ₂ 5/ ₈	11	.0581	.508	·2026	31/4	31/4	·1969	2.856	6.406
3/4	10	.0640	.622	·3038	31/2	31/4	.1969	3.106	7.576
7 /8	9	.0711	•732	· 42 08	33/4	3	•2133	3.323	8.762
1	8	.0800	·840	.5541	4	3	·2133	3.573	10.026
1 1/8	7	'0914	.542	.6969	4 1/4	2 %	•2226	3.804	11.365
1 1/4	7	.0914	1.067	.8941	41/2	2 1/8	•2226	4.054	12.907
1 %	6	1066	1.161	1.058	43/4	23/4	•2327	4.284	14.414
1 1/2	6	1066	1.286	1.298	5	23/4	•2327	4.534	16.145
1 %	5	1280	1.369	1.471	51/4	25%	•2438	4.762	17.810
1 3/4	5	1280	1.494	1.753	51/2	2 1/8	•2438	5.012	19.729
1 %	4 1/2	1422	1.590	1.985	$5\frac{3}{4}$	21/2	•2560	5.238	21.549
2	41/2	1422	1.715	2.310	6	21/2	2560	5.488	23.654

The threads of screws should be made to an angle of 55 degrees, and one-sixth the depth of the V should be rounded off at the top and at the bottom, although the ratio of pitch to diameter may in some screws differ from the ratios in the above Table if the V threads be made to an angle of 55 degrees (as the V threads of all screws should be), and if one-sixth be rounded off at the top and at the bottom the net diameter at the bottom of the thread will be found by subtracting twice the number in Column 3, opposite its given number of threads per inch from the outside diameter, or diameter over all, of the screw.

TABLE No. 351.

Iron Plates from $\frac{1}{4}$ inch to $1\frac{1}{4}$ inch thick. Numerals and *Nominal* Factors from 4.5 to 4.9.

 $\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B}, \quad \frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D}, \quad \frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \%, \quad \frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}.$

N = Numeral. %=Calculated percentage strength of joint. D = Inside diameter in inches.

B = Working pressure per square inch in pounds.

TABLE No. 352.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 26 tons per square inch.

Numerals and Nominal Factors from 4.5 to 4.9.

Thickness	F	F	F	F	F
of Plate.	4.5	4.6	4.7	4.8	4.9
inches.	N	N	N	N	N
1/	64.71	63.30	61.95	60.66	59.42
9/	72.80	71.21	69.70	68.25	66.85
1ncnes. 1/4 9/3 2 5/16	80.88	79.13	77.44	75.83	74.28
11/6	88.97	87.04	85.19	83.41	81.71
11/32 3/82	97.06	94.95	92.93	91.0	89.14
137	105.15	102.86	100.68	98.58	96.57
732	113.24	110.78	108.42	106.16	104.0
15/16	121.33	118.69	116.17	113.75	111.42
1/32	129.42	126.60	123.91		118.85
177				121.33	
9/32	137.51	134.52	131.66	128.91	126.28
19/16	145.60	142.43	139.40	136.50	133.71
	153.68	150.34	147.14	144.08	141.14
5/8 21/	161.77	158.26	154.89	151.66	148.57
/32	169.86	166.17	162.63	159.25	156.0
	177.95	174.08	170.38	166.83	163.42
23/32	186.04	182.0	178.12	174.41	170.85
2 5/1 6 2 3/3 2 3/4 2 5/3 2	194.13	189.91	185.87	182.0	178.28
26/32	202.22	197.82	193.61	189.58	185.71
13/16 27/32	210.31	205.74	201.36	197.16	193.14
27/32	218.40	213.65	209.10	204.75	200.57
7/-	226.48	221.56	216.85	212.33	208.0
29/32	234.57	229.47	224.59	219.91	215.42
29/32 15/16	242.66	237.39	232:34	227.50	222.85
31/32	250.75	245.30	240.08	235.08	230.28
1	258.84	253.21	247.83	242.66	237.71
1 1/20	266.93	261.13	255.57	250.25	245.14
1 1/16	275.02	269.04	263:32	257.83	252.57
1 3/20	283.11	276.95	271.06	265.41	260.0
1 1/2	291.20	284.87	278.80	273.0	267.42
1 5%	299.28	292.78	286.55	280.58	274.85
1 3/2	307.37	300.69	294.29	288.16	282.28
1 7/0	315.46	308.60	302.04	295.75	289.71
1 1/2	323.55	316.52	309.78	303.33	297.14
1 9/	331.64	324.43	317.53	310.91	304.57
1 6/32	339.73	332.34	325.27	318.50	312.0
111/6	347.82	340.26	333.02	326.08	319.42
1 1/3 2 1 1/16 1 1/3 2 1 1/8 1 6/5 2 1 1/16 1 1/3 2 1 1/4 1 6/3 2 1 1/4 1 1/3 2 1 1/8	355.91	348.17	340.76	333.66	326.85
1 /8	000 01	0101,	0.00,0	000 00	020 00

N=Numeral. %=Calculated percentage strength of joint B=Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B}$$
 $\frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D}$ $\frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \%$ $\frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}$

TABLE No. 353.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick.

Tensile Strength 27 tons per square inch. Numerals and Nominal Factors from 4.5 to 4.9.

Thickness	F	F	F	F	F
of Plate.	4.5	4.6	4.7	4.8	4.9
Thickness of Plate. inches. 1/4 9/3 2 6/4 6 11/3 2 1/4 6 11/3 2 1/4 6 16/3 2 1/4 6 16/3 2 1/4 6 16/3 2 1/4 6 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 2/4 2 1/4 6 1/4		_			

N=Numeral. %=Calculated percentage strength of joint. B=Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{N \times \%}{D} = F$$

$$\frac{N \times \%}{B} =$$

$$\frac{D \times B}{N} = \%$$

$$\frac{N \times \%}{D} = B$$
 $\frac{N \times \%}{B} = D$ $\frac{D \times B}{N} = \%$ $\frac{D \times B}{\%} = N$

Numerals and Nominal Factors from 4.5 to 4.9. Steel Plates from 133 inch to 15 inch thick.

Tensile Strength of Plates 26 tons TABLE

	Tellisile	2	per square inch.	20 00118	No. 354.
Thick- ness of Plate.	F. 4.5	F 4.6	F 4.7	F 4.8	F 4·9
ins. 113,32 11,72 11,72 11,73,2 11,94,6 11,94,6	N 364.0 372.08 380.17 388.26 396.35 404.44 412.53 420.62	N 356.08 364.0 371.91 379.82 387.74 395.65 403.56	N 348.51 356.25 364.0 371.74 379.49 387.23 394.97	N 341.25 348.83 356.41 364.0 371.58 379.16 386.75	N 334.28 341.71 349.14 356.57 364.0 371.42 378.85

CYLINDRICAL BOILER SHELLS.

Steel Plates from 133 inch to 15 inch thick.

Numerals and Nominal Factors from 4.5 to 4.9.

Tensile Strength of Plates 27 tons TABLE per square inch. No. 355.	F F F F F F F F F F F F F F F F F F F	N 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Tensile St	F 4.5	0 4 0 0 0 4 0
	Thick- ness of Plate.	ins. 113.8. 115.82 115.82 117.32 117.32 117.32 119.32

N=Numeral. %=Calculated percentage strength of joint, B=Working pressure per square inch in pounds. D=Inside diameter in inches

$$\frac{N \times \%}{D} = B \qquad \frac{N \times \%}{B} = D \qquad \underline{I}$$

$$D = \frac{D \times B}{N} = %$$

$$N = \frac{D \times B}{\%} = N$$

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick.

Tensile Strength 28 tons per square inch. Numerals and Nominal Factors from 4.5 to 4.9.

TABLE No. 356.

Thickness	F	F	F	F	F
of Plate.	4·5	4·6	4·7	4·8	4.9
Inches. 1/ 9/2 1/16 1//32 3/8 18/17 1/16 18/12 1//2 1//6 18/12 1//16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 21/16 25/18 26/18 26/18 27/18 26/18 27/18 26/18 27	N 69·68 78·40 87·11 95·82 104·53 113·24 121·95 130·66 139·37 148·08 166·50 165·51 174·22 182·93 191·64 200·35 209·06 217·77 226·48 235·20 243·91 252·62 261·33 270·04 278·75 287·46 296·17 304·88 313·60 322·31 331·02 339·73 348·44 357·15 365·86 374·57 383·28	N 68:17 76:79 85:21 93:74 102:26 110:78 119:30 127:82 136:34 14:487 153:39 161:91 170:43 178:95 187:47 196:0 204:52 213:04 221:56 230:08 238:60 247:13 255:65 264:17 272:69 281:21 289:74 298:26 306:78 315:30 323:82 332:84 340:87 349:39 357:91 366:43 374:95	N 66·72 75·06 83·40 91·74 100·08 108·42 116·76 125·10 133·44 141·78 150·12 158·46 166·80 175·14 183·49 191·83 200·17 208·51 216·85 225·19 233·53 241·87 250·21 258·55 266·89 275·23 283·57 291·91 300·25 308·59 316·93 325·27 333·61 341·95 350·29 358·63 366·97	N 65'33 73'50 81'66 89'83 98'0 106'16 114'33 122'50 130'66 138'83 147'0 155'16 163'33 171'50 179'66 187'83 196'0 204'16 212'33 220'50 228'66 236'83 245'0 253'16 261'53 269'50 277'66 302'16 310'33 318'50 326'66 334'83 348'0 351'16 359'33	N 64·0 72·0 80·0 88·0 96·0 104·0 112·0 128·0 136·0 144·0 152·0 160·0 168·0 176·0 200·0 200·0 216·0 224·0 232·0 240·0 248·0 272·0 288·0 296·0 304·0 312·0 328·0 328·0 336·0 344·0 352·0

N=Numeral. %=Calculated percentage strength of joint. B=Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{N \times \%}{D} = 1$$

$$\frac{N \times \%}{B}$$

$$\frac{D \times B}{N} = \%$$

$$\frac{N \times \%}{D} = B \qquad \frac{N \times \%}{B} = D \qquad \frac{D \times B}{N} = \% \qquad \frac{D \times B}{\%} = N$$

TABLE No. 357.

Steel Plates from $1\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 29 tons per square inch.

Numerals and Nominal Factors from 4.5 to 4.9.

Thickness of	F	F	F	F	F
Plate.	4.5	4.6	4.7	4.8	4.9
	4.9	4.0	4.1	4.0	4.9
inches.	N	N	N	N	N
	72·17	70.60	69·10	67·66	66•28
1/4 9/	81.20	79.43	77.74	76.12	74.57
/32	90.22	88.26	86.38	84.58	82.85
11/20	99.24	97.08	95.02	93.04	91.14
3/3 2	108.26	105.91	103.66	101:50	99.42
13/	117.28	114.74	112:29	109.95	107.71
3/8 13/8 13/32 7/16 15/39	126.31	123.56	120.93	118.41	116.0
15/32	135.33	132.39	129.57	126.87	124.28
1/3 2	144.35	141.21	138.21	135.33	132.57
17/32	153.37	150.04	146.85	143.79	140.85
9/18	162.40	158.87	155.49	152.25	149.14
9/16 19/32	171.42	167.69	164.12	160.70	157.42
5/	180.44	176.52	172.76	169.16	165.71
2/32	189.46	185.34	181.40	177.62	174.0
11/16	198.48	194.17	190.04	186.08	182.28
20/20	207.51	203.0	198.63	194.54	190.57
3/4	216.53	211.82	207 • 32	203.0	198.85
25/32	225.55	220.65	215.95	211.45	207.14
13/16 27/32	234.57	229 • 47	224.59	219.91	215.42
27/32	243.60	238•30	233.23	228.37	223.71
7/8	252.62	247.13	241.87	236.83	232.0
/32	261.64	255.95	250.51	245.29	240.28
718	270.66	264.78	259.14	253.75	248.57
31/32	279.68	273.60	267.78	262.20	256.85
1	288.71	282.43	276.42	270.56	265.14
1 1/3 2 1 1/16 1 3/3 2 1 1/8 1 5/3 2 1 7/3 2 1 1/4 1 9/3 2 1 1/3 2	297.73	291.26	285.06	279.12	273.42
1 1/16	306.75	300·08 308·91	293.70	287·58 296·04	281·71 290·0
1 1/16 1 3/3 2 1 1/2	315.77	308.91	302·34 310·97	304.50	290.0
1 1/8	324·80 333·82	326.56	310.97	304.50	306.57
1 5/3 2 1 3/4	333°82 342°84	320 00	319.61	312.95	314.85
1 3/16	342.84	344.21	336.89	329.87	323.14
1 1/32	360.88	353.04	345.53	338 • 33	331.42
1 9/4	369.91	361.87	354.17	346.79	339.71
1 9/3 2 1 5/16	378.93	370.69	362.80	355.25	348.0
111/16	387.95	379.52	371.44	363.70	356.28
1 3/8	396.97	388.34	380.08	372.16	364.57
- /8	30301	55501	557.00	-,	

N=Numeral. %=Calculated percentage strength of joint. B=Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{N \times \%}{D} = B$$
 $\frac{N \times \%}{B} = D$ $\frac{D \times B}{N} = \%$ $\frac{D \times B}{\%} = N$

CYLINDRICAL BOILER SHELLS.	
ICAL BOILE	H
-	ILE
	-

Steel Plates from 113 inch to 15 inch thick.

Numerals and Nominal Factors from 4.5 to 4.9.

	Thick ness o Plate.	ins.
Tensile Strength of Plates 28 tons Table per square inch, No. 358.	F. 4·9	N 360.0 368.0 376.0 384.0 392.0 400.0 408.0
	F 4.8	N 367.50 375.66 383.83 392.0 400.16 408.33 416.50
	F. 4.7	N 375.32 383.66 392.0 400.34 408.68 417.02 425.36 433.70
	F 4.6	883.47 392.0 400.52 409.04 417.56 426.08 434.60
	F 4.5	N 392.0 400.71 409.42 418.13 426.84 485.55 444.26
	Thick- ness of Plate.	ins. 113/32 115/32 115/32 117/16 117/32 119/32 119/32

Steel Plates from 133 inch to 15 inch thick. CYLINDRICAL BOILER SHELLS.

546

Numerals and Nominal Factors from 4.5 to 4.9.

F F 4.9	N 380.62 372.8 389.08 381.1 397.54 889.4 406.0 397.7 414.45 406.0 422.51 422.52 439.83 430.88
F 4.7	N 388·72 397·36 406·0 414·63 423·27 421·91 440·55
F 4.6	N 397.17 406.0 414.82 423.65 432.47 441.30 450.13 458.95
F 4.5	N 406.0 415.02 424.04 433.06 442.08 451.11 460.13
Thick- ness of Plate.	ins.
	F F F 4.5

N=Numeral. %=Calculated percentage strength of joint. B=W orking pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{N \times \%}{D} = B$$
 $\frac{N \times \%}{B} = D$ $\frac{D \times B}{N} = \%$ $\frac{D \times B}{\%} = N$

TABLE No. 360.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 30 tons per square inch.

Numerals and Nominal Factors from 4.5 to 4.9.

Thickness	F	F	F	F	F
of Plate.	4.5	4.6	4.7	4.8	4.9
inches.	N	N	N	N	N
	74.66	73.04	71.49	70.0	68.57
1/4	84.0	82.17	80.42	78.75	77.14
3/3 2 5/	93.33	91.30	89.36	87.50	85.71
11/16	102.66	100.43	98.29	96.25	94.28
3/3 2	112.0	109:56	107.23	105.0	102.85
13/	121.33	118.69	116.17	113.75	111.42
13/32	130.66	127.82	125.10	122.50	120.0
15/16	140.0	136.95	134.04	131.25	128.57
1/32	149:33	146.08	142.97	140.0	137.14
1/2 17/3 2	158.66	155.21	151.91	148.75	145.71
17/3 2 9/16	168.0	164:34	160.85	157.50	154.28
19/32	177.33	173.47	169.78	166.25	162.85
5/32	186.66	182.60	178.72	175.0	171.42
21/32	196.0	191.74	187.66	183.75	180.0
11/10	205.33	200.87	196.59	192.50	188.57
1 1/1 6 2 3/3 2	214.66	210.0	205.53	201.25	197.14
2/-	224.0	219.13	214.46	210.0	205.71
25/32	233.33	228.26	223.40	218.75	214.28
13/20	242.66	.237 •39	232.34	227.50	222.85
27/32	252.0	246.52	241.27	236.25	231.42
7/3 2	261.33	255.65	250.21	245.0	240.0
29/32	270.66	264.78	259.14	253.75	248.57
15/16	280.0	273.91	268.08	262.50	257.14
31/32	289:33	283.04	277.02	271.25	265.71
1	298.66	292.17	285.95	280.0	274.28
1 1/32	308.0	301 • 30	294.89	288.75	282.85
1 ½32 1 ½16 1 ¾39	317.33	310.43	303.83	297.50	291.42
1 3/32	326.66	319.56	312•76	306 • 25	300.0
1 1/8	336.0	328.69	321.70	315.0	308.57
1 1/32	345•33	337.82	330.63	323.75	317.14
	354.66	346.95	339.57	332.50	325.71
	364.0	356.08	348.51	341 • 25	334.28
	373.33	365.21	357 • 44	350.0	342.85
1 %32	382.66	374.34	366•38	358•75	351.42
1 5/16	392.0	383.47	375.32	367.50	360.0
111/32	401 • 33	392.60	384.25	376.25	368.57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	410.66	401.74	393•19	385.0	377.14
		The second second			

N=Numeral. %=Calculated percentage strength of joint. B=Working pressure per square inch in pounds. D=Inside diameter in inches. $\frac{N\times\%}{D}=B \qquad \frac{N\times\%}{B}=D \qquad \frac{D\times B}{N}=\% \qquad \frac{D\times B}{\%}=N$

$$\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B} \qquad \frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D} \qquad \frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \% \qquad \frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}$$

TABLE No. 361.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick. Tensile Strength 31 tons per square inch.

Numerals and Nominal Factors from 4.5 to 4.9.

Thickness of Plate.	F 4.5	F 4*6	F 4•7	F 4.8	F 4•9
of Plate. inches. 14 9/32 6/16 11/3 18 18 19 19 16 16 16 16 17 17 17 17 17 18 18 18 19 19 19 19 19 19 19	_	-	F 4·7 N 73·87 83·10 92·34 101·57 110·80 120·04 129·27 138·51 147·74 156·97 166·21 175·44 184·68 193·91 203·14 212·38 221·61 230·85 240·08 249·32 258·55 267·78 277·02 286·25	F 4·8 N 72·33 81·37 90·41 99·45 108·50 117·54 126·58 135·62 144·66 153·70 162·75 171·79 180·83 189·87 198·91 207·95 217·0 226·04 235·08 244·12 253·16 262·20 271·25 280·29 289·33	F 4·9 N 70·85 79·71 88·57 97·42 106·28 115·14 124·0 132·85 141·71 150·57 159·42 168·28 177·14 186·0 194·85 203·71 212·57 221·42 230·28 239·14 248·0 256·85 265·71 274·57 283·42
7/8 29/32 15/16 31/32	280·01 289·66 299·32	273.60 283.04 292.47	267 • 78 277 • 02 286 • 25	262·20 271·25 280·29	256·85 265·71 274·57
1 1/32 1 1/16 1 3/32 1 1/8 1 5/32 1 5/32 1 7/62 1 1/4 1 9/82 1 1/4 1 1/32 1 1/32 1 3/8	347.60 357.25 366.91 376.56 386.22 395.87 405.53 415.18	339.65 349.08 358.52 367.95 377.39 386.82 396.26 405.69	332·42 341·66 350·99 360·12 369·36 378·59 387·83 397·06	325.50 334.54 343.58 352.62 361.66 370.70 379.75 388.79	318·85 327·71 336·57 345·42 354·28 363·14 372·0 380·85
1 3/8	424 • 84	415.13	406•29	397.83	389.71

N=Numeral. %=Calculated percentage strength of joint. B=Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{N \times \%}{D} = B$$
 $\frac{N \times \%}{B} = D$ $\frac{D \times B}{N} = \%$ $\frac{D \times B}{\%} = N$

	TABLE	No. 362.
	30 tons	
ı		
	of Plates	inch.
ı	Jo	are
	ngth	oer square
	Stre	bei
	Tensile	

Thick- ness of Plate.	F 4.5	F 4.6	F 4.7	F 4.8	F 4.9
	Z	N	N	N	N
	4500	410.87	02.1	393.75	7.98
	29	20.0	\Box	402.20	94
	438.66	29.1	20	411.25	02.8
	48	38.2	28	420.0	11.4
	457.33	47.3	37	428.75	20.0
	466.66	456.52	446.80	437.50	50
	0.94	9.99	55	446.25	37
	485.33	74.7	64	455.0	45.7
۰					

549 Numerals and Nominal Factors from 4.5 to 4.9 Steel Plates from 132 inch to 15 inch thick. CYLINDRICAL BOILER SHELLS.

TABLE	No. 363.
31 tons	
of Plates	inch.
Jo 1	square
gth	sdı
Strength	per
Tensile	

F 4.9	N 898:57 407:42 416:28 425:14 434:0 442:85 442:85 451:71
F 4.8	N 406.87 415.91 424.95 434.0 443.04 452.08 461.12
F 4 • 7	N 415.53 424.76 435.0 443.23 452.46 461.70 470.93
F 4.6	N 424.56 434.0 443.43 452.87 462.30 471.74 481.17
F 4.5	N 434.50 444.15 445.81 463.46 473.12 482.77 492.43 602.08
Thick- ness of Plate.	ins. 11,332 11,532 11,5,16 11,5,12 11,5,12 11,9,16 11,9,16 11,9,16

N=Numeral, %=Calculated percentage strength of joint, B=Working pressure per square inch in pounds, D=Inside diameter in inches,

$$\frac{N \times \%}{D} = B$$
 $\frac{N \times \%}{B} = D$ $\frac{D \times B}{N}$

$$D \times B = \%$$

$$\frac{D \times B}{\%} = N$$

TABLE

No. 364.

Steel Plates from $\frac{1}{4}$ inch to $1\frac{3}{8}$ inch thick.

Tensile Strength 32 tons per square inch.

Numerals and Nominal Factors from 4.5 to 4.9.

F F F F F Thickness of Plate. 4.5 4.6 4.7 4.8 4.9 inches. N N N N 77.91 76.25 79.64 74.66 73.14 89.60 87.65 85.78 84.0 82.28 99.55 97.39 95.32 93.33 91.42 109.51 107.13 104.85 102.66 100.57 119.46 116.87 114.38 112.0 109.71 123.91 129.42 126.60 121.33 118.85 139.37 136.34 133.44 130.66 127.99 142.97 137.14 149.33 146.08 140.0 159.28 155.82 152.51 149.33 146.28 169.24 165.56 162.04 158.66 155.42 179.20 175.30 171.57 168.0 164.57 189.15 185.04 181.10 177.33 173.71 182.85 199.11 194.78 190.63 186.66 209.06 204.52 200.17 196.0 191.99 219.02 214.26 209.70 205.33 201.14 228.97 224.0 219.23 214.66 210.28 233.74 238.93 228.76 224.0 219.42 248.88 238.29 228.56 243.47 233.33 247.83 237.71 258.84 253.21 242.66 268.80 262.95 257:36 252.0 246.85 272.69 255.99 278.75 266.89 261.33 288.71 282.43 276.42 270.66 265.14 298.66 292.17 285.95 280.0 274.28 283.42 308.62 301.91 295.49 289.33 298.66 318.57 311.65 305.02 292.56 321.39 301.71 328.53 314.55 308.0 338.48 324.08 317:33 310.85 348.44 340.87 333.61 326.66 319.99 329.14 358.40 350.60 343.15 336.0 352.68 345.33 368.35 360.34 362.21 370.08 354.66 347.42 378.31 388.26 379.82 371.74 364.0 356.56 398.22 389.56 381.27 365.71 408.17 399.30 390.80 382.66 374.85 418.13 409.04 400.34 392.0 383.99 428.08 418.78 409.87 401.33 438.04 428.52 419.40 410.66 402.28

N=Numeral. %=Calculated percentage strength of joint. B=Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{N \times \%}{D} = B$$
 $\frac{N \times \%}{B} = D$ $\frac{D \times B}{N} = \%$ $\frac{D \times B}{\%} = N$

Steel Plates from $1\frac{1}{3}\frac{2}{2}$ inch to $1\frac{5}{8}$ inch thick.

Numerals and Nominal Factors from 4.5 to 4.9.

TABLE No. 365.	F F 4.9	N 429.0 429.83 420.76 489.66 429.71 448.0 447.99 466.66 457.13 476.0 466.28 475.42
Tensile strength of Plates 32 tons per square inch.	F 4*7	N 428.93 438.46 448.0 457.53 467.06 476.59 486.12
ensile strength of Pla	F 4*6	N 488°26 448°0 457°74 467°47 477°21 486°95 506°43
T	F. 4.5	N 448.0 457.95 477.78 487.77 497.77 507.73
	Thickness of Plate.	inches. 1 1 3 2 1 1 1 3 2 2 1 1 1 3 2 2 1 1 1 5 3 2 1 1 1 5 3 2 1 1 1 1 7 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

N=Numeral. %=Calculated percentage strength of joint, B=Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{N \times \%}{-1} = B$$
 $\frac{N \times \%}{B} = D$ $\frac{D \times B}{N} = \%$ $\frac{D \times B}{\%} = N$

552

CYLINDRICAL BOILER SHELLS.

TABLE No. 366.

Steel Plates from $1\frac{1}{3}\frac{3}{2}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 26 tons per square inch.

Numerals and Nominal Factors from 5 to 5.9

Thick- ness of Plate.	F 5	F 5•1	F 5•2	F 5•3	F 5•4	F 5•5	F 5.6	F 5.7	F 5·8	F 5.9
ins. $1^{13} \stackrel{3}{\cancel{3}}_{2} \\ 1^{7/16} \\ 1^{15/16} \\ 1^{15/2} \\ 1^{17/3} \stackrel{2}{\cancel{3}}_{2} \\ 1^{17/3} \stackrel{1}{\cancel{3}}_{1} \\ 1^{19/16} \\ 1^{19/3} \stackrel{1}{\cancel{3}}_{2} \\ 1^{5/8}$	334.88 342.16 349.44 356.72 364.0 371.28	321·17 328·31 335·45 342·58	322.0 329.0 336.0 343.0 350.0 357.0	315.92 322.79 329.66 336.52 343.39 350.26	310.07 316.81 323.55 330.29 337.03 343.77	297·81 304·43 311·05 327·67 334·29 340·91 347·52	299.0 305.50 312.0 318.50 325.0 331.50	293.75 300.14 306.52 312.91 319.29 325.68	288.69 294.96 301.24 307.51 313.79 320.06	N 277.62 283.79 289.96 296.13 302.30 308.47 314.64 320.81

CYLINDRICAL BOILER SHELLS.

TABLE No. 367.

Steel Plates from $1\frac{1}{3}\frac{3}{2}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 26 tons per square inch.

Numerals and Nominal Factors from 6 to 6.9.

Thick- ness of Plate.	F 6	F 6•1	F 6•2	F 6•3	F 6•4	F 6.5	F 6•6	F 6•7	F 6.8	F 6•9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	279.06 285.13 291.20 297.26 303.33 309.40	268.52 274.49 280.46 286.42 292.39 298.36 304.32	264·19 270·06 275·93 281·80 287·67 293·54 299·41	265.77 271.55 277.33 283.11 288.88 294.66	261.62 267.31 273.0 278.68 284.37 290.06	252.0 257.60 263.20 268.80 274.40 280.0 285.60	248·18 253·69 259·21 264·72 270·24 275·75 281·27	249 · 91 255 · 34 260 · 77 266 · 20 271 · 64 276 · 07	246 · 23 251 · 58 256 · 94 262 · 29 267 · 64 273 · 0	N 237·39 242·66 247·94 253·21 258·49 263·76 269.04 274·31

N=Numeral. %=Calculated percentage strength of joint. B= Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B} \qquad \frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D} \qquad \frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \% \qquad \frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}$$

553

CYLINDRICAL BOILER SHELLS.

TABLE No. 368.

Steel Plates from $1\frac{1}{3}\frac{3}{2}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 27 tons per square inch.

Numerals and Nominal Factors from 5 to 5.9.

Thick- ness of Plate.	F 5	F 5·1	F 5.2	F 5•3	F 5•4	F 5.5	F 5.6	F 5.7	F 5.8	F 5.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	347·76 355·32 362·88 370·44 378·0 385·56	340.94 348.35 355.76 363.17 370.58 378.0	N 327·11 334·38 341·65 348·92 356·19 363·46 370·73 378·0	328·07 335·20 342·34 349·47 356·60 363·73	322.0 329.0 336.0 343.0 350.0 357.0	N 309·27 316·14 323·01 329·89 336·76 343·63 350·51 357·38	310·50 317·25 324·0 330·75 337·50 344·25	305.05 311.68 318.31 324.94 331.57 338.21	299.79 306.31 312.82 319.34 325.86 332.38	294·71 301·11 307·52 313·93 320·33 326·74

CYLINDRICAL BOILER SHELLS.

TABLE No. 369.

Steel Plates from $1\frac{1}{3}\frac{3}{2}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 27 tons per square inch.

Numerals and Nominal Factors from 6 to 6.9.

Thick- ness of Plate.	F 6	F 6.1	F 6.2	F 6.3	F 6•4	F 6.5	F 6•6	F 6.7	F 6.8	F 6.9
ins. 113/32 17/16 115/32 11/7/2 117/32 19/16 119/32 1 5/8	296·1 302·4 308·7 315·0	303.64	280·45 286·54 292·64 298·74 304·83 310·93	276·0 282·0 288·0 294·0 300·0 306·0	271.68 277.59 283.50 289.40 295.31 301.21	N 261.69 267.50 273.32 279.13 284.95 290.77 296.58 302.40	263 · 45 269 · 18 274 · 91 280 · 63 286 · 36 292 · 09	259·52 265·16 270·80 276·44 282·09 287·73	255.70 261.26 266.82 272.38 277.94 283.50	252.0 257.47 262.95 268.43 273.91 279.39

N=Numeral. %=Calculated percentage strength of joint. B= Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B} \qquad \frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D} \qquad \frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \% \qquad \frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}$$

554

CYLINDRICAL BOILER SHELLS.

TABLE No. 370.

Steel Plates from $1\frac{1}{3}\frac{3}{2}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 28 tons per square inch.

Numerals and Nominal Factors from 5 to 5.9.

Thick- ness of Plate.	F 5	F 5·1	F 5•2	F 5•3	F 5·4	F 5•5	F 5•6	F 5.7	F 5.8	F 5•9
ins. 113/32 1 7/16 115/32 1 1/2 117/32	360 •64 368 •48 376 •32 384 •16	353.56 361.25 368.94 376.62	346 • 77 354 • 31 361 • 85 369 • 38	340 · 22 347 · 62 355 · 01 362 · 41	N 326 ·66 333 ·92 341 ·18 348 ·44 355 ·70	327 ·85 334 ·98 342 ·11 349 ·23	322·0 329·0 336·0 343·0	316·35 323·22 330·10 336·98	310.89 317.65 324.41 331.17	N 298.98 305.62 312.27 318.91 325.56
$\begin{array}{c} 1 & 9/16 \\ 1 & 19/3 \\ 1 & 5/8 \end{array}$	399 •84	392.0	384.46	377.20	362 · 96 370 · 22 377 · 48	$363 \cdot 49$	357.0	350.73	344.69	332·20 338·84 345·49

CYLINDRICAL BOILER SHELLS.

TABLE No. 371.

Steel Plates from $1\frac{1}{3}\frac{3}{2}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 28 tons per square inch.

Numerals and Nominal Factors from 6 to 6.9.

Thick- ness of Plate.	F 6	F 6•1	F 6•2	F 6.3	F 6•4	F 6.5	F 6.6	F 6.7	F 6.8	F 6.9
$\begin{array}{c} 1^{15/32} \\ 1^{1/2} \\ 1^{17/32} \end{array}$	307 •06 313 •60 320 •13 326 •66 333 •20	295.60 302.03 308.45 314.88 321.31 327.73	290 · 83 297 · 16 303 · 48 309 · 80 316 · 13 322 · 45	286 • 22 292 • 44 298 • 66 304 • 88 311 • 11 317 • 33	281.75 287.87 294.0 300.12 306.25 312.37	277.41 283.44 289.47 295.50 301.53 307.57	273 ·21 279 ·15 285 ·09 291 ·03 296 ·97 302 ·91	269·13 274·98 280·83 285·68 291·53 297·38	265·17 270·94 276·70 282·47 288·23 294·0	N 255.65 262.33 267.01 272.69 278.37 284.05 289.74 295.42

N=Numeral. %=Calculated percentage strength of joint. B= Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B}$$
 $\frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D}$ $\frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \%$ $\frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}$

555

CYLINDRICAL BOILER SHELLS.

TABLE No. 372.

Steel Plates from $1\frac{13}{32}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 29 tons per square inch.

Numerals and Nominal Factors from 5 to 5.9.

Thick- ness of Plate.	F 5	F 5·1	F 5•2	F 5•3	F 5•4	F 5.5	F 5.6	F 5.7	F 5.8	F 5.9
$\begin{array}{c} 1^{15} \stackrel{?}{\cancel{3}}_{32} \\ 1 \stackrel{?}{\cancel{1}}_{2} \\ 1^{17} \stackrel{?}{\cancel{3}}_{2} \end{array}$	373·52 381·64 389·76 397·88 406·0 414·12	366·19 374·15 382·11 390·07 393·04	359·15 366·96 374·77 382·57 390·38 398·19	360.03 367.69	345.85 353.37 360.88 368.40 375.92 383.44	339.56 346.94 354.32 361.71 369.09 376.47	333.50 340.75 348.0 355.25 362.50 369.75	327.65 334.77 341.89 349.01 356.14	322.0 329.0 336.0 343.0 350.0 357.0	N 309.66 316.54 323.42 330.30 337.18 344.06 350.95 357.83

CYLINDRICAL BOILER SHELLS.

TABLE No. 373.

Steel Plates from $1\frac{1}{3}\frac{3}{2}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 29 tons per square inch.

Numerals and Nominal Factors from 6 to 6.9.

Thick- ness of Plate.	F 6	F 6·1	F F 6.1 6.2		F 6.3 F 6.4		F 6•6	F 6.7	F 6.8	F 6.9
ins. 113/32 17/16 115/32 1 1/2 117/32 1 9/16 119/32 1 5/8	311·26 318·03 324·80 331·56 338·33 345·10	306·16 312·82 319·47 326·13 332·78 339·44	301 · 22 307 · 77 314 · 32 320 · 87 327 · 42 333 · 96	296 • 44 302 • 88 309 • 33 315 • 77 322 • 22 328 • 66	291.81 298.15 304.50 310.84 317.18 323.53	287 *32 293 *57 299 *81 306 *06 312 *30 318 *55	282.97 289.12 295.27 301.42 307.57 313.72	278·74 284·80 290·86 296·92 302·98 309·04	N 268·67 274·64 280·61 286·58 292·55 298·53 304·50 310·47	270.66 276.55 282.43 288.31 294.20 300.08

N=Numeral. %=Calculated percentage strength of joint. B= Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B} \qquad \frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D} \qquad \frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \% \qquad \frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}$$

CYLINDRICAL BOILER SHELLS.

TABLE No. 374.

Steel Plates from $1\frac{1}{3}\frac{3}{2}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 30 tons per square inch.

Numerals and Nominal Factors from 5 to 5.9.

Thick- ness of Plate	F 5	F 5·1	F 5•2	F 5•3	F 5•4	F 5.5	F 5.6	F 5·7	F 5.8	F 5•9
ins. 113/3 2 1 7/16 115/3 2 1 1/2 1 1/3 2 1 1/3 2 1 1/3 2 1 1/3 2 1 1/3 2 1 5/8	N 378*0 386*4 394*8 403*2 411*6 420*0 428*4 436*8	387.05 395.29 403.53 411.76 420.0	371.53 379.61 387.69 395.77 403.84 411.92	364 • 52 372 • 45 380 • 37 388 • 30 396 • 22 404 • 15	357.77 365.55 373.33 381.11 388.88 396.66	351 ·27 358 ·91 366 ·54	345.0 352.50 360.0 367.50 375.0 382.5	338 • 94 346 • 31 353 • 68 361 • 05 368 • 42 375 • 79	333·10 340·34 347·58 354·82 362·06 369·31	N 320·33 327·45 334·57 341·69 348·81 355·93 363·05 370·17

CYLINDRICAL BOILER SHELLS.

TABLE No. 375.

Steel Plates from $1\frac{1}{3}\frac{3}{2}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 30 tons per square inch.

Numerals and Nominal Factors from 6 to 6.9.

Thick- ness of Plate.	F 6	F 6·1	F 6•2	F 6•3	F 6*4	F 6•5	F 6*6	F 6.7	F 6.8	F 6.9
$ \begin{array}{c c} 1^{15/3} \\ 1^{1/3} \\ 1^{1/2} \\ 1^{17/3} \\ 1^{9/16} \\ 1^{19/3} \\ 1^{9/3} \end{array} $	329·0 336·0 343·0 350·0 357·0	N 309*83 316*72 323*60 330*49 337*37 344*26 351*14 358*03	311.61 318.38 325.16 331.93 338.71 345.48	306.66 313.33 320.0 326.66 333.33 340.0	301 •87 308 •43 315 •0 321 •56 328 •12 334 •68	297 •23 303 •69 310 •15 316 •61 323 •07 329 •53	292.72 299.09 305.45 311.81 318.18 324.54	288.35 294.62 309.89 307.16 313.43 319.70	290 • 29 296 • 47 302 • 64 308 • 82 315 • 0	280 • 0 286 • 08 292 • 17 298 • 26 304 • 34 310 • 43

N=Numeral. %=Calculated percentage strength of joint. B= Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B}$$
 $\frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D}$ $\frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \%$ $\frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}$

557

CYLINDRICAL BOILER SHELLS.

TABLE No. 376.

Steel Plates from $1\frac{3}{32}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 31 tons per square inch.

Numerals and Nominal Factors from 5 to 5.9.

Thick- ness of Plate.	F 5	F 5·1	F 5•2	F 5•3	F 5*4	F 5.5	F 5.6	F 5•7	F 5.8	F 5.9
ins. 113/32 1 7/16 115/	3 99•28	391.45	N 375•57 383•92 392•27	376.68	369.70	362.98	356.50	350.24	344.20	333.37
$1^{17/32}$ $1^{9/16}$ $1^{19/32}$	416·64 425·32 434·0 442·68	408·47 416·98 425·49	400.61 408.96 417.30 425.65	393.05 401.24 409.43 417.62	385.77 393.81 401.85 409.88	378.76 386.65 394.54	372·0 379·75 387·50 395·25	365·47 373·08 380·70 388·31	359 • 17 366 • 65 374 • 13 381 • 62	353·08 360·44 367·79 375·15

CYLINDRICAL BOILER SHELLS.

TABLE **No. 377.**

Steel Plates from $1\frac{13}{32}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 31 tons per square inch.

Numerals and Nominal Factors from 6 to 6.9.

Thick- ness of Plate.	F 6	F 6·1	F 6.2	F 6.3	F 6•4	F 6.5	F 6.6	F 6.7	F 6.8	F 6•9
$\begin{array}{c} 1^{17/2} \\ 1^{9/16} \\ 1^{19/32} \end{array}$	332.73 339.96 347.2 354.43 361.66 368.90	N 320·16 327·27 334·39 341·50 348·62 355·73 362·85 369·96	322.0 329.0 336.0 343.0 350.0 357.0	323.77 330.66 337.55 344.44 351.33	311.93 318.71 325.50 332.28 339.06 345.84	340.52	302.48 309.06 315.63 322.21 328.78 335.36	297 •97 304 •44 310 •92 317 •40 323 •88 330 •35	293.58 300.97 306.35 312.73 319.11 325.50	289 •33 295 •62 301 •91

N=Numeral. %=Calculated percentage strength of joint. B= Working pressure per square inch in pounds. D=Inside diameter in inches.

$$\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B}$$
 $\frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D}$ $\frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \%$ $\frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}$

558

CYLINDRICAL BOILER SHELLS.

TABLE No. 378.

Steel Plates from $1\frac{13}{32}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 32 tons per square inch.

Numerals and Nominal Factors from 5 to 5.9.

Thick- ness of Plate.	F 5	F 5·1	F 5•2	F 5.3	F 5·4	F 5.5	F 5.6	F 5•7	F 5.8	F 5.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		395·29 404·07 412·86 421·64 430·43 439·21 448·0	396·30 404·92 413·53 422·15 430·77 439·38	388·83 397·28 405·73 414·18 422·64 431·09	381.63 389.92 398.22 406.51 414.81 423.11	390 • 97 399 • 11 407 • 26	368.0 376.0 384.0 392.0 400.0 408.0	369·40 377·26 385·12 392·98 400·84	355·31 363·03 370·75 378·48 386·20 394·93	N 341·69 349·28 356·88 364·47 372·06 379·66 387·25 394·84

CYLINDRICAL BOILER SHELLS.

TABLE No. 379.

Steel Plates from $1\frac{1}{3}\frac{3}{2}$ inch to $1\frac{5}{8}$ inch thick.

Tensile Strength 32 tons per square inch.

Numerals and Nominal Factors from 6 to 6.9.

Thick- ness of Plate.	F 6	F 6·1	F 6•2	F 6.3	F 6•4	F 6.5	F 6•6	F 6•7	F 6.8	F 6.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N 336·0 343·46 350·93 358·40 365·86 373·33 380·80 388·26	337·83 345·18 352·52 359·86 367·21 374·55	339·61 346·83 354·06 361·29 368·51	327 •11 334 •22 341 •33 348 •44 355 •55 362 •66	329·0 336·0 343·0 350·0 357·0	N 310·15 317·04 323·93 330·83 337·72 344·61 351·50 358·40	312•24 319•03 325•81 332•60 339•39 346•18	307 • 58 314 • 26 320 • 95 327 • 64 334 • 32 341 • 01	303.05 309.64 316.23 322.82 329.41 336.0	298.66 305.16 311.65 318.14 324.63 331.13

N=Numeral. %=Calculated percentage strength of joint. B= Working pressure per square inch in pounds. D=Iuside diameter in inches.

$$\frac{\mathbf{N} \times \%}{\mathbf{D}} = \mathbf{B}$$
 $\frac{\mathbf{N} \times \%}{\mathbf{B}} = \mathbf{D}$ $\frac{\mathbf{D} \times \mathbf{B}}{\mathbf{N}} = \%$ $\frac{\mathbf{D} \times \mathbf{B}}{\%} = \mathbf{N}$

Copper Steam Pipes (Brazed Joints).

When steam pipes are made of good copper, and the brazing and workmanship are in all respects satisfactory, the working pressure should not exceed that found by the following formula:—

T=Thickness of pipe in inches.
D=Diameter of pipe inside inches.

B = Working pressure per square inch in lbs.

$$\begin{array}{cccc} \frac{6000 \times (T^{-1}/_{16})}{D} & = & B \\ \frac{B \times D}{6000} & + & \frac{1}{16} & = & T \\ \frac{6000 \times (T^{-1}/_{16})}{B} & = & D \end{array}$$

Copper Steam Pipes (Solid Drawn).

When copper steam pipes are solid drawn, if good copper and free from all defects, and the inside diameter does not exceed 8 inches, the working pressure may be found by the following formula:—

T=Thickness of pipe in inches.

D = Diameter of pipe inside in inches.

B = Working pressure per square inch in lbs.

$$\frac{6000(T - \frac{1}{32})}{D} = B$$

$$\frac{B \times D}{6000} + \frac{1}{32} = T$$

$$\frac{6000(T - \frac{1}{32})}{B} = D$$

Wrought Iron Steam Pipes (Lap Welded).

When steam pipes are made of good wrought iron, and the welding sound and the workmanship in all respects satisfactory, the working pressure may be found by the following formula:—

* T=Thickness of pipe in inches.

D = Diameter of pipe inside in inches.

B = Working pressure per square inch in lbs.

$$\begin{array}{ccc} \frac{6000 \times T}{D} & = & B \\ \frac{B \times D}{6000} & = & T \\ \frac{6000 \times T}{B} & = & D \end{array}$$

^{*} Wrought iron steam pipes should not be made of less thickness than 1/4 inch

Cast Iron Steam Pipes.

When steam pipes are made out of good cast iron and the casting is sound and of uniform thickness, the working pressure should not exceed that found by the following formula:—

T=Thickness of pipes in inches.

D=Diameter of pipe inside in inches.

B = Working pressure per square inch in lbs.

$$\frac{\frac{3500(T - \frac{1}{4})}{D}}{D} = B$$

$$\frac{B \times D}{3500} + \frac{1}{4} = T$$

$$\frac{3500(T - \frac{1}{4})}{B} = D$$

Feed Pipes.

All boiler feed pipes should be made for pressures 20 per cent. greater than the working pressure, the pressure in the feed pipes being frequently considerably in excess of that at which the safety valves are loaded.

Testing Steam and Feed Pipes.

All new steam and feed pipes should be tested by hydraulic pressures to about two and a half or three times the working pressure, and should be carefully examined both when the full test pressure is on and after all pressure is off; the full pressure should be kept steadily on for a few minutes.

Cast Iron Evaporators and Feed Heaters.

When evaporators or feed heaters are made of good cast iron, the shells being cylindrical and ends flat, the castings sound and of uniform thickness, the working pressure should not exceed that found by the following formula:—

* T = Thickness in inches.

† D = Diameter inside in inches.

B = Working pressure per square inch in lbs.

* See note, next page.

See note, next page.

* The thickness of ends of evaporators or feed heaters should not be

less than % inch.

+ When the pressure has to be determined for a part of a flat surface which is a square, then in the flat surface formulæ the value of D used should be the diagonal of the square; and when the ends are bolted to the shell the value of D used should equal the diameter of the bolt circle.

All the flanges should be substantial, and there should be a good fillet all round the root; and when the ends and shell are cast solid, there

should be a good and substantial fillet inside all round.

The bolts or studs for the ends or doors should not have a greater stress on them than 5000 lbs. per square inch; and the size of bolts or studs should not be less than 34 inch diameter.

Wrought Iron or Steel Boiler Tubes.

When boiler tubes that are subject to external pressure are made of good iron or steel, have the welding sound and the tubes in all respects satisfactory, and the length does not exceed 9 feet, the working pressure may be found by the following formula :-

‡T = Thickness of tube in inches.

D = Diameter of tube outside in inches.

B = Working pressure per square inch in lbs.

$$\frac{9000(T - 093)}{D} = B$$

$$\frac{B \times D}{9000} + 093 = T$$

$$\frac{9000(T - 093)}{B} = D$$

Brass Boiler Tubes (Solid Drawn).

When boiler tubes that are subject to external pressure are made of good brass, solid drawn, and are found sound and satisfactory in every respect, the working pressure may be ascertained by the following formula :-

T=Thickness of tube in inches.

D = Diameter of tube outside in inches.

B = Working pressure per square inch in lbs.

$$\frac{6000(T - .083)}{D} = B$$

$$\frac{B \times D}{6000} + .083 = T$$

$$\frac{6000(T - .083)}{B} = D$$

The thickness of stay tubes at the bottom of the thread should not be less than 1/4 inch.

PITCH OF RIVETS (DIFFERENT DIAMETERS).

Lap Joints.

Different diameters from $\frac{1}{2}$ inch to $1\frac{7}{8}$ inch. Plates from $\frac{1}{4}$ inch to $1\frac{5}{8}$ inch thick. Calculated percentage strength of joints.*

The pitch of rivets of different diameters for lap joints, single, double, and treble-riveted, as given in the five Tables, Nos, 380, 381, 382, 383 and 384, immediately following, will facilitate finding a suitable pitch when the diameter of the rivet is not the same as that given in the Tables for Riveted Joints for the thickness of the plate being dealt with, and will be of use in determining the pitch of rivets for circumferential seams when, for practical reasons, it is considered desirable to adopt the same diameter of rivets in the circumferential seams as in the longitudinal seams, although the latter may be of another description of riveting.

The proportions arrived at by the use of the five tables immediately following should not be considered those which are recommended for boiler work all round, but are given principally to meet cases such as are alluded to in the previous paragraph with reference to circumferential seams. For well-proportioned riveted joints see Tables Riveted Joints, Steel Plates, and Steel Rivets, more particularly for longitudinal seams; the proportions in the tables for steel plates and steel rivets are as well suited for iron plates and iron rivets as they are for steel. The ratio between the shearing and tensile strength is

nearly the same in both cases.

* (a) The calculated percentage strength of joints, as given in the five tables immediately following, is only correct when the lap of the joint and also when the vertical distance between the rows of rivets are sufficient (see clause "Diagonal Pitches," page 22); these important points should in all cases be attended to after the pitch and diameter of rivet have been determined. Badly designed circumferential seams have frequently caused delay, trouble, and expense, even to lifting boilers, and in some cases taking them out of vessels and fitting new plates. Circumferential joints should be made suitable for stresses greater than and different from those due to the pressure of the steam only.

PITCH OF RIVETS (DIFFERENT DIAMETERS). TABLE Lap Joints Single Riveted. No. 380.

Different diameters from $\frac{9}{16}$ inch to $1\frac{1}{8}$ inch.

Plates from $\frac{1}{4}$ inch to $\frac{23}{32}$ inch thick.

Calculated Percentage Strength of Joints.

Thick- ness of Plate.	Diamet of River Pitche Percents of Join	ts, s, age	Diame of Rive Pitche Percent of Join	ets, of Rive es, Pitche tage Percent		f Rive Pitche ercent	ets, es, age	0 Pe	Diame f Rive Pitche ercent f Join	ts, s, age	Pe	Diamet f Rive Pitche ercents f Join	ts, s,
т	$\left d \right p \left $	%	$d \mid p$	%	d	p	%	d	p	%	d	p	%
in characters reconstant a propose spream	11 1 438 1 1 480 2 1 1 524 2 1 568 1 1 568	51·43 50·78	1.402 1.431 1.464 1.50 1.579 2.5 1.621 1.664 2.7 1.708	59·20 57·64 56·32 55·17 54·16 53·29 52·50 51·80 51·17 50·60 50·08	250 101 10 000 01 01 50 000 01 00 00 00 00 00 00 00 00 00 00 0	1.521 1.545 1.574 1.607 1.643 1.681 1.721 1.762 1.804 1.848	54·35 53·52 52·78 52·11 51·49	estormento	1 ·644 1 ·663 1 ·688 1 ·717 1 ·750 1 ·785 1 ·823 1 ·862 1 ·903 1 ·945 1 ·988 2 ·032	55·35 54·48 53·71 53·0 52·37 51·79 51·27 50·78 50·32	Soften ette cate action often ette action etter action etter action often etter action of etter etter action often etter action	1.771 1.785 1.805	59·73 58·44 57·33 56·31 55·42 54·61 53·88 53·21 52·62 52·06 51·56 51·08 50·64

T=Thickness of plate in inches. d= Diameter of rivets in inches. p= Pitch of rivets in inches. %= Calculated percentage strength of joint.

† See Note (α) on page 562.

^{*} When plates are thicker than that for which pitches are given in the Table, the pitches should be made not less than twice the diameter of the rivet, in order that the heads of the rivets may be of sufficient size.

564 PITCH OF RIVETS (DIFFERENT DIAMETERS). TABLE Lap Joints Double Riveted. No. 381.

Different diameters from $\frac{25}{32}$ inch to $1\frac{25}{32}$ inch.

Plates from $\frac{5}{8}$ inch to $1\frac{5}{8}$ inch thick.

Calculated Percentage Strength of Joints.†

		- 04.	01120000	C 1 C	1001166	gc Dt	reng	011 01 6	011100	. ,		
Thick- ness of Plate.	Rive	ameter ets, Pito centag Joints.	ches, e of	Rive	ameter ts, Pito centago Joints.	hes.	Rive	ameter ets, Pito rcentag Joints.	ches, e of	Rive	ameter ets, Pit centag Joints	ches, e of
Т	d	p	%	d	p	%	d	p	%	d	p	%
4-05-4-1-152	True True	2:519 2:590 2:691 2:733 2:804 2:947 3:019 3:162 3:333 3:305 3:448 3:519 3:648 3 3:648 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	57-82 57-82 57-69 57-69 57-69 57-69 57-52 57-50 57-40 57-45 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40 57-45 57-40	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.9522 2423 2.566 2.637 2.708 2.708 2.779 3.136 3.136 3.136 3.136 3.136 3.136 3.136 3.137	58.81 58.72 58.65 58.65 58.65 58.65 58.34 58.29 58.93 58.18 58.19 57.95 57.95 57.95 57.95 57.95 57.75 57.75 57.75 57.75 57.75 57.75 57.75 57.75		2 192 2 262 2 263 2 404 2 545 2 616 2 687 2 758 3 897 3 8184 3 826 3 8397 3 611 3 682 3 8397 4 74 4 74 4 74 4 74 7 74 7 74 7 74 7	6008 59:93 59:65 59:67 59:75 59:75 59:75 59:70 58:90 58:65 58:65 58:51 58:33 58:29 58:14 58:14	**************************************	2.041 2.179 2.319 2.319 2.329 2.529 2.529 2.629 2.810 2.881 3.023 3.164 3.305 3.316	61·72 61·49 61·27 61·69 60·92 60·08 60·08 60·08 59·96 59·75 59·58 59·59 59·59 59·59 59·59 59·59 59·59 59·59 59·59 59·59 58·79 58·75 58·96 58·79 58·75 58 58 58 58 58 58 58 58 58 58 58 58 58

T=Thickness of plate in inches. d=Diameter of rivets in inches. p=Pitch of rivets in inches. $^{o}/_{o}$ =Calculated percentage strength of joint.† $^{+}$ See Note (a) on page 562 .

565 PITCH OF RIVETS (DIFFERENT DIAMETERS). TABLE Lap Joints Double Riveted. No. 382.

Different diameters of Rivets from $\frac{1}{2}$ inch to $1\frac{15}{16}$ inch.

Plates from $\frac{1}{4}$ inch to $1\frac{5}{8}$ inch thick. Calculated Percentage Strength of Joints.†

Diameter of Diameter of Diameter of Diameter of Diameter of Thick-Rivets, Rivets, Rivets, Rivets. Rivets, ness of Pitches. Pitches, Pitches, Pitches, Pitches, Plate. Percentage Percentage Percentage Percentage of Percentage of of Joints. of Joints. of Joints. Joints. Joints. % d % | d | p | % dp inches. 1.790 72.06 1 1 987 73 26 18 2.195 74.37 17 1.826 70.90 $\frac{9}{18}$ 2.014 72.07 $\frac{19}{82}$ 2.049 71.02 2.211 73.14 1 1 868 69 88 2.237 72.06 19 1.917 69.02 2.272 71.11 2.091 70.10 \$\frac{2}{8\frac{1}{2}} \frac{1}{2} \cdot \frac{138}{138} \cdot \frac{69}{30} \cdot \frac{30}{138} \cdot \frac{20}{30} \cdot \frac{20}{30} \cdot \frac{20}{30} \cdot \frac{66}{30} \cdot \frac{83}{30} \cdot \frac{20}{30} \cdot \frac{66}{30} \cdot \frac{83}{30} \cdot \frac{13}{30} \cdot \ 1.806 67.12 1.969 68.25 1 2 313 70 27 $\frac{21}{16}$ 2.024 67.57 $\frac{21}{16}$ 2.081 66.96 1.865.66.48 2.359 69.53 1.926 65.92 2.408 68.88 1 1 988 65 41 3 2.140 66.41 2.461 68.28 2.201 65.92 1.907 63.94 3 2.051 64.95 2.516 67 25 2·263 65·47 13 2·415 66·35 21 2·476 65·92 2·538 65·52 1.973 63.57 2.116 64.5 2.572 67 2.040 63.23 25 2·181 64·17 13 2.326 65.06 2.631 66 25 2·107 62·92 18 2.247 63.84 2.691.66 27 2·390 64·69 2.455 64.35 23 2.601 65.15 2.175 62.64 32 2.313 63.52 2.751 65.92 31 2.813 65.56 32 2.521 64.05 37 2·243 62·38 2.380 63.23 18 2.665 64.82 32 2.447 62.96 \$\frac{1}{2}\$\frac{1}{2}\$\cdot 2.587 \\ 63.76 \\ \frac{3}{2}\$\frac{1}{2}\$\cdot 653 \\ 63.48 \\ 1\$\end{array}\$ 2.311 62.18 $\frac{31}{32}$ 2.730 64.51 2.876 65.22 \$ 2.380 61.92 18 2.515 62.72 $2.795 64.22 1_{\frac{1}{32}} 2.940 64.92$ 31 2.583 62.49 2.720 63.23 13 2 2.860 63.94 11 3.004 64.68 2.449 61.71 2.651 62.2, $1\frac{1}{32} 2.787 62.99$ $1\frac{1}{16} 2.926 63.68$ $1\frac{3}{32} 3.069 64.36$ 2.518 61.52 $2.58861.361_{32}^{1}2.72062.081_{16}^{1}2.85562.781_{32}^{3}$ 2.993 63.45 11 3.134 64.10 $\begin{array}{c} 1_{\frac{1}{2}\frac{1}{2}} = 2.657\ 61 \cdot 181 \mid \frac{1}{\sqrt{6}} \mid 2.788 \mid 61.89 \mid \frac{1}{\sqrt{6}} \mid 2.991 \mid 62.38 \mid 1\frac{1}{\sqrt{6}} \mid 3.127 \mid 63.02 \mid 1\frac{1}{\sqrt{6}} \mid 2.797 \mid 61.08 \mid \frac{1}{\sqrt{6}} \mid 2.857 \mid 61.71 \mid \frac{1}{\sqrt{6}} \mid 2.991 \mid 62.38 \mid \frac{1}{\sqrt{6}} \mid 3.127 \mid 63.02 \mid 1\frac{1}{\sqrt{6}} \mid \frac{1}{\sqrt{6}} \mid 2.866 \mid 60.74 \mid \frac{1}{\sqrt{6}} \mid 2.996 \mid 61.55 \mid \frac{1}{\sqrt{6}} \mid 3.159 \mid 62.28 \mid \frac{1}{\sqrt{6}} \mid \frac{1}{\sqrt{6}} \mid \frac{2.966 \mid 60.74 \mid \frac{1}{\sqrt{6}} \mid \frac{1}{\sqrt{6}} \mid 3.966 \mid 61.25 \mid \frac{1}{\sqrt{6}} \mid \frac{1}{\sqrt{6}$ $\frac{1}{32}$ 2.657 61.18 $1\frac{1}{16}$ 2.788 61.89 $1\frac{3}{32}$ 2.923 62.58 $1\frac{3}{16}$ 3.060 63.23 135 3.200 63.86 3.127 63.02 118 3.266 63.64 3.333 63.43 3.400 63.2 3.467 63.04 3.535 62.87 3.603 62.70 3.670 62.53 3.739 62.38 3.807 62.24 3.876 62.10 3.944 61.96 4.013 61.84 19 4.151 61.60 4.220 61.49 121 4.066 59.26 111 4.189 59.71 123 4.313 60.14 13 4.440 60.58 1 4.568 61 $\begin{array}{c} 132 \pm 9.006 \ 59^{\circ}20 \ 182 \ 4 + 259 \ 159^{\circ}6 \ 1182 \ 4 + 384 \ 60 \cdot 008 \ 182 \ 4 + 510 \ 60 \cdot 50 \ 1 \\ 1182 \ 4 + 207 \ 59 \cdot 10 \ 182 \ 4 + 301 \ 59 \cdot 59 \ 182 \ 4 + 456 \ 60 \cdot 00 \ 1 \ 182 \ 4 + 350 \ 60 \cdot 42 \ 1 \\ 1182 \ 4 + 305 \ 59 \cdot 50 \ 182 \ 4 + 401 \ 59 \cdot 52 \ 182 \ 4 + 525 \ 59 \cdot 94 \ 182 \ 4 + 650 \ 60 \cdot 34 \ 1 \\ 1182 \ 4 + 365 \ 59 \cdot 05 \ 182 \ 4 + 472 \ 59 \cdot 471 \ 182 \ 4 + 595 \ 59 \cdot 87 \ 12 \ 4 + 721 \ 60 \cdot 28 \ 1 \\ 1182 \ 4 + 321 \ 59 \cdot 00 \ 122 \ 4 + 321 \ 59 \cdot 41 \ 12 \ 4 + 666 \ 59 \cdot 81 \ 132 \ 4 + 791 \ 60 \cdot 21 \ 1 \end{array}$ 4.638 60 4.708 60.83 4.778 60.78 4.721 60.28 132 4.848 60.67 4.918 60.60

T=Thickness of plate in inches. d=Diameter of rivets in inches. p=Pitch of rivets in inches. ${}^{0}_{o}$ =Calculated percentage strength of joint.† See Note (a) on page 562.

566 PITCH OF RIVETS (DIFFERENT DIAMETERS). TABLE Lap Joints Treble Riveted. No. 383.

Different Diameters from $\frac{23}{32}$ inch to $1\frac{23}{32}$ inch.

Plates from $\frac{5}{8}$ inch to $1\frac{5}{8}$ inch thick.

Calculated Percentage Strength of Joints. +

Thick- ness of Plate.	Riv	iameter ets, Pit rcentag Joints	ches, e of	Riv	iameter ets, Pit rcentag Joints	ches,	Rive	iameter ets, Pit rcentag Joints	ches, ge of	Riv	iameter ets, Pit rcentag Joints	ches, e of
T	d	p	%	d	p	%	d	p	%	d	p	%
Transfer and Trans	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2935 3027 3:119 3:210 3:485 3:677 3:652 4:127 4:314 4:494 4:219 4:314 4:494 4:586 4:770	65-93 65-93 65-93 65-93 65-93 65-93 65-93 65-93 65-93 65-93 65-93 65-93 65-93 65-93 65-93 65-93		2.722 2.814 2.906 3.181 3.547 3.647 3.731 3.643 3.731 4.006 4.190	66.70 66.68 66.66 66.63 66.52 66.54 66.44 66.43 66.44 66.43 66.44 66.38 66.36 66.36 66.36		2:516 2:607 2:698 3:054 4:352 4:525	67.70 67.63 67.51 67.45 67.31 67.31 67.31 67.31 67.10 67.97 67.94 66.99 66.99 66.98 66.88 66.88 66.88 66.88 66.88	50 6000000 0000000 1 1 1 1 1 1 1 1 1 1 1	2:318 2:408 2:590 2:590 2:771 2:862 2:953 3:135 3:226 3:317 3:591 3:591 3:591 3:591 3:591 3:591 4:323 4:423 4:423 4:423 4:595 4:596 4:779 4:688 4:779 4:962 5:054 5:0554 5:0554 5:0554 5:0554 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	68-99 68-85 68-62 68-33 68-62 68-10 68-10 68-10 68-10 67-85 67-74 67-65 67-67

T=Thickness of plate in inches. d=Diameter of rivets in inches. p=Pitch of rivets in inches. ${}^{9}_{c}$ =Calculated percentage strength of joints.† ${}^{+}$ See Note (a) on page 562.

567 PITCH OF RIVETS (DIFFERENT DIAMETERS). TABLE Lap Joints Treble Riveted. No. 384.

Different diameters from $\frac{1}{2}$ inch to $1\frac{7}{8}$ inch. Plates from $\frac{5}{16}$ inch to $1\frac{5}{8}$ inch thick.

Calculated Percentage Strength of Joint.+

			Jaicu	140	Ju 1 1	orcen	ua _o	0 001	chge	11 01	OUL		. 1		
Thick- ness of Plate.	Р	iameto Rived Pitch Percen of Joi	ts, es, tage	P	iamet Rive Pitch ercen of Joi	ts, es, lage	F	iamet Rive Pitch ercen	ts, es, tage	Р	amete Rivet Pitch ercen of Join	es, tage	Pe	amete Rivet Pitche ercent f Join	s, es, age
Т		p	1%	d	p	%	d	p	%	d	p	1%	d	p	1%
는 마시 (1915) 기계 (1915)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 4 3 1 3 2 2 4 4 9 1 1 2 5 6 1 1 3 2 1 2 1 3 3 2 2 1 4 9 1 2 5 6 1 1 3 2 1 2 1 6 1 2 1 2 1 6 1 2 1 2 1 6 1 2 1 2	68·76 68·68 68·59 68·52 68·42 68·38 68·31 68·25 68·19 68·14 68·08 67·94 67·85 67·77 67·73 67·70 67·66		2 069 2 2499 2 2496 2 2583 2 2496 2 2583 3 258 2 2496 2 2583 3 258 2 2496 2 2583 3 258 2 2583 3 258 2	73.261 72.81 72.42 72.06 70.75 70.36 970.75 70.36 99.89 69.76 69.89 69.76 69.89 69.76 69.89 69.89 68.72 68.86 88.86 68.72 68.86 88.86 68.72 68.86 68.72 68.68 68.72 68.68 68.72 68.68 68.72 68.68 68.72 68.68 68.72 68.68 68.72 68.68 68.72 68.68 68.72 68.68 68.72 68.68 68.72 68.68 68.72 68.73 68.74 68.74 68.76 68.7	4.000	2:517 2:60 2:70 2:70 2:985 3:030 3:030 3:117 3:205 3:470 3:539 3:470 3:559 3:470 3:559 4:409 4:409 4:409 4:456 4:456 4:456 4:456 4:456 4:456 4:456 4:456 4:456 4:456 4:456 5:576 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	74:94 74:37 73:43 773:43 773:43 772:45 772:45 772:45 772:45 772:45 772:45 771:55 771:55 771:52 771:5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2:348 2:413 2:486 2:486 2:486 2:561 2:718 2:718 3:138	74*85 74*37 78*94 78*55 77*3*94 72*88 72*31 72*58 72*31 71*62 71*25 71*2		2 : 578 2 : 641 4 : 627 4 : 716 4 : 627 4 : 716 5 : 641 5 : 64	75-25 74-78 74-73 73-94 73-93 73-94 72-76 72-71 72-71 72-72-72-72 71-72-72-72 71-72-72-72 71-73 71-17 71-12 70-88 70-72-70-72 70-72-70-72 70-72-70-72 70-72-70-72 69-81 69-81 69-69-70-70-70-70-70-70-70-70-70-70-70-70-70-

T=Thickness of plate in inches. d= Diameter of rivets in inches. p= Pitch of rivets in inches. ${}^{o}/_{o}=$ Calculated percentage strength of joint.† \uparrow See Note (a) on page 562.

FURNACES—MORISON'S SUSPENSION CYLINDRICAL.

Steel plates from \(\frac{1}{4}\) inch to \(\frac{5}{8}\) inch thick.

By the Tables Nos. 385 and 386, which immediately follow, the maximum diameter, the working pressure and the thickness of the plate can be determined when the plates of which the furnaces are made are of the best mild steel, not less than $\frac{5}{4}$ inch thick.

The tables are only intended for furnaces which are machine made, practically cylindrical, the pitch of the corrugations not more than 8 inches, the length of the plain parts at the ends not more than 5 inches, and provided the depth of the corrugations from the top outside to the bottom of the corrugations inside be not less than 2 inches; the plain parts should not be unduly thinned in flanging, and it is desirable that the plates be rolled a little thicker at the ends, so as to allow for the thinning in flanging or for trueing up by machine when the furnace is fitted in a flanged mouthpiece in the tube plate.

The diameter used for determining the pressure or thickness is the outside diameter measured from the bottom of the corrugations, or the

minimum inside diameter plus twice the thickness of the plate.

D = Outside diameter in inches at the bottom of corrugations.

T=Thickness in inches.

B = Working pressure in lbs. per square inch.

The maximum diameter in inches which a Morison Suspension Furnace should be made, when constructed of the best mild steel plates (provided the thickness of the plate and the working pressure has been determined), is found in the column under the given thickness of plate and opposite the given pressure; or, if the pressure and diameter be determined, the thickness the plate should be is found at the head of the column above the given diameter, which is found opposite the given pressure; or the pressure for a given thickness and diameter is that opposite the given diameter, which is in the column under the given thickness.

If 165 lbs. be the pressure required and the thickness of the steel plate be % inch, and the outside diameter at the bottom of the corru-

gations has to be determined :-

Then opposite 165 lbs., the pressure, and in column under % inch thickness, 51 13 is found, which is the outside diameter at the bottom of the corrugations in inches, or say

If the pressure is required to be 165 lbs. and the outside diameter at the bottom of the corrugations 46 inches, and the thickness of the

plate has to be determined :-

Then opposite 165 lbs., the pressure, the diameter outside at the bottom of the corrugations 46.02 inches (which is practically 46 inches), is found in the column under %, inches, which is the minimum thickness the plate should be :-

$\frac{9}{16}$ inch = T.

If the working pressure has to be determined when the thickness of the plate is % inch, and the outside diameter at the bottom of the corrugations is 481/4 inches :-

Then in column under 5% inch, the thickness 48.21 (which is practically 481/4), the diameter is found, and opposite it the pressure

170 lbs., which is the maximum working pressure in lbs. :-

170 = B.

The furnace to which these remarks refer is generally known as Morison's Furnace, or "Morison's Suspension Furnace"; it has been in use for a few years, and is one among four types generally used for high pressures in marine boilers, and the latest type in the market.

FURNACES, MORISON'S SUSPENSION, CYLINDRICAL.

TABLE No. 385.

Steel Plates from $\frac{1}{4}$ inch to $\frac{7}{16}$ inch thick. Pressures and Diameters when *Machine* made.

r ressures and Diameters when Machine made.								
nch.	Thicknesses and Diameters.*							
Pressure per square inch.	1/4 in.	% in.	⁵ / ₁₆ in.	11/32 in.	3/8 in.	13/32 in.	7/16 in.	
P ₁	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	Diameter in inches.	
lbs. 60	56.25							
65	51.92	58.41					•••	
70	48.21	54.24					***	
75	45.0	50.62	56.25			•••		
80	42.18	47.46	52.73	58.0		•••		
85	39.70	44.67	49.63	54.59				
90	37.50	42.18	46.87	51.56	56.25			
95	35.52	39.96	44.40	48.84	53.29	57.73		
100	33.75	37.96	42.18	46.40	50.62	54.84		
105	32.14	36.16	40.17	44.29	48.21	52.23	56.25	
110	30.68	34.51	38.35	42.18	46.02	49.85	53.69	
115	29.34	33.01	36.68	40.35	44.02	47.69	51.35	
120	28.12	31.64	35.16	38.68	42.18	45.70	49.21	
125	26.93	30.30	33.66	37.03	40.40	43.76	47.13	
130	25.96	29.20	32.45	35.69	38.94	42.18	45.43	
135	25.0	28.12	31.25	34.37	37.50	40.62	43.75	
140 145	24.10	27.12	30.13	33·14 32·0	36.16	39.17	42.18	
150	23·27 22·50	26·18 25·31	29.09	30.93	34.91	37·82 36·56	40.73 39.37	
155	21.77	24.49	27.21	29.94	32.66	35.38	38.10	
160	21.09	23.73	26.36	29.0	31.64	34.27	36.91	
165	20.45	23.01	25.56	28.12	30.68	33.23	35.79	
170	19.85	22.33	24.81	27.29	29.78	32.26	34.74	
175	19.28	21.69	24.10	26.51	28.92	31.34	33.75	
180	18.75	21.10	23.44	25.79	28.13	30.48	32.82	
185	18.24	20.52	22.80	25.08	27.36	29.64	31.92	
190	17.76	19.98	22.20	24.42	26.64	28.86	31.08	
195	17:30	19.47	21.63	23.79	25.96	28.12	30.28	
200	16.87	18.98	21.09	23.20	25.31	27.42	29.53	

^{*} The diameter is that measured at the bottom of the corrugations outside.

FURNACES, MORISON'S SUSPENSION, CYLINDRICAL.

TABLE No. 386.

Steel Plates from $\frac{15}{32}$ inch to $1\frac{5}{8}$ inch thick. Pressures and Diameters when *Machine* made.

Fressures and Diameters when Machine made.								
nch.	Thicknesses and Diameters.*							
Pressure per square inch	15/32 in.	½ in.	17/32 in.	% in.	19/32 in.	5/8 in.		
Pr per sc	Diameter in inches.							
105 105 80 65 70 75 80 85 90 95 100 105 110 125 130 145 150 165 170 175 180								
185 190 195 200	34·20 33·30 32·45 31·64	36·48 35·52 34·61 33·75	38·76 37·74 36·77 35·86	41.04 39.96 38.94 37.96	43·32 42·18 41·10 40·07	45.60 44.40 43.27 42.18		

^{*} The diameter is that measured at the bottom of the corrugations outside.

EASING GEAR SHAFTS.

In the table immediately following, multipliers are given which will facilitate finding the size of easing gear shafts for safety valves from 2 inches to 6 inches diameter, with lifting forks up to 8 inches in length. See notes at the foot of the table.

The multipliers in the table are for two valves lifted by one shaft, but may be made applicable to three valves or one valve; they also may be made applicable to other pressures than given in the table. See the

following notes: -

(a) When there are three valves lifted by one shaft and the screw lever is overlung, the number C opposite one and one half times the length of the lifting fork should be used *instead* of the number opposite the length of the lifting fork; if the exact half length is not found in

the table, the nearest number C above may be used.

(b) When there is only one valve lifted by the shaft, the number C opposite half the length of the lifting fork should be used, instead of that opposite the length of lifting fork; if the exact half length is not found in the table, then the mean of the two C's opposite the nearest two half lengths should be used, or the nearest number C for the half length above may be used.

The pressures given in the table range from 40 lbs. advancing by multiples of 40 to 200 lbs, per square inch, but the table can easily be used for other pressures not enumerated; but when refinements of size are not necessary, it is, however, just as well when the pressure is between two of the pressures next each other in the table, say 160 lbs., and 200

lbs., to make the shaft equal to 200 lbs.

(c) When the pressure is not found in the table, but is, say B, and G is the diameter of a shaft for 40 lbs. pressure, then the diameter required for the new pressure B_l is $= G \times_3 / \overline{B}_l$

(d) When triple valves are fitted, as is frequently the case, in order to keep down the size of valves, with the high pressures now in use, they are often fitted with a bell crank lifting lever to each valve, and the three cranks connected in tandem with a link; when gear of this description is fitted the pins or journals of the bell cranks need not exceed the diameter of the valve spindle.

Multipliers for finding the Diameters of Easing Shafts of Safety
Valves * loaded at different pressures with Lifting Forks of
different lengths.

Diameter of Valves.	40 lbs. Pressure per sq. in.	80 lbs. Pressure per sq. in,	120 lbs. Pressure per sq. in.	160 lbs. Pressure per sq. in.	200 lbs. Pressure per sq. in.
in ches. 2 44-5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	N -5520 -5646 -6056 -6445 -6840 -7215 -7581 -7987 -8286 -8626 -8963 -9291 -9615 -9992 1-025 1-086	N -65777 -7114 -7632 -8133 -8618 -9091 -9551 -1044 -1086 -1129 -1-170 -1-212 -1-251 -1-291 -1-330 -1-368	N 7528 8143 8736 9309 9865 1 041 1 195 1 244 1 199 1 1389 1 387 1 478 1 566	N -8286 -8693 -9612 -1025 -1086 -1-204 -1-260 -1-315 -1-369 -1-475 -1-576 -1-626 -1-724	N -8926 -9655 1-036 1-104 1-170 1-234 1-297 1-357 1-416 1-475 1-582 1-588 1-644 1-699 1-752 1-805 1-857

Length of Forks. L.	C	Length of Forks. L.	C.	Length of Forks.	C.	Length of Forks L.	C.	Length of Forks L.	C.
inches 1	1.0 1.040 1.077 1.122 1.144 1.175 1.205 1.233 1.260 1.285 1.310 1.334	in ches 213.555 214775 22.555 214775 3.755 14555 14575 3555 14575 145	1·357 1·379 1·401 1·422 1·442 1·462 1·462 1·50 1·518 1·536 1·553 1·570	in ches 4 16-18-18-18-18-18-18-18-18-18-18-18-18-18-	1.587 1.603 1.620 1.635 1.650 1.666 1.680 1.695 1.710 1.724 1.738 1.751	inches 5555566666666666666666666666666666666	1.765 1.778 1.791 1.804 1.817 1.829 1.842 1.854 1.866 1.878 1.889 1.901	inches 7 -{a-{4x-{4x-500}} 7,500 mf4 r.hr 8	1·912 1·924 1·935 1·946 1·957 1·968 1·978 1·989 2·0

When the screw lever of the shaft is overhung, that is outside the bearings, multiply the number N opposite the given diameter of valves and under the given pressure by the number C opposite the given length of lifting fork L; the product is the diameter of shaft required. When the exact length is not found in the Table, the nearest number C above may be used.

When the screw lever is placed on the shaft between the lifting forks, the number C opposite half the length of fork should be used, instead of that opposite the length of lifting forks; if the exact half length of lifting fork is not found in the Table, then the mean of the two C's opposite the nearest two half lengths should be used; or the nearest number C, for the half length above may be used.

* The Table is intended for cases where two valves are lifted by one shaft. When there are three valves, see note (a) in the previous page. When only one valve, see

note (c).

When it is necessary to make shafts for pressures not given in the Table, see note (c) and paragraph preceding it.

INDEX.

AGE	PA	
		48
	Constants for Furnaces, Iron, .	26
	,, Steel, .	47
401	Contraction of Area, Definition	
	of,	1
57	,, Iron Plates, . 4	, 6
14	Bars, .	8
		9
14	Taran Stars	
15		8
41		
55		10
56	Charl Binat	
52		11
57	Steel Rivets	12
		11
		191
	Corrugated Cylindrical Furnaces	203
001	Steel 47	343
395	Corrugated Spiral Furnaces	351
	Cross Bars for Manhole and Mud-	003
		52
		0.
		49
		367
20		001
303		25
	Curved ends of Cylindrical Steel	
	Boilers	46
	Cylindrical Boiler Shells Iron	151
4		151
99		151
20		540
47	Cylindrical Roiler Shells Steel	277
		$\frac{277}{277}$
		$\frac{27}{27}$
004		
97		170
29	riain, Steel,	32
	399 43 352 401 57 14 14 15 41 55 56	Constants for Flat Surfaces, Steel, Constants for Furnaces, Iron, Steel, Contraction of Area, Definition of, Iron Plates, Iron Rivets, Iron Rivets, Iron Rivets, Iron Rivets, Iron Rivets, Iron Stay Bars, Steel Boiler Plates, Steel Rivet, Bars, Steel Rivet Bars, Steel Rivets, Steel Rivets Bars, Steel Rivets Bars, Steel Rivets Bars, Steel Rivets Corrugated Cylindrical Furnaces, Iron, Steel, Steel Rivets, Steel, Steel Bars, Corrugated Cylindrical Furnaces, Crushing Stress on Steel Tube Plates, Curved ends of Cylindrical Iron Boilers, Curved ends of Cylindrical Steel Boilers, Cylindrical Boiler Shells, Iron, Introduction to Tables for, Examples for Use of Tables, Tables, Clyindrical Furnaces, Tables, Clyindrical Furnaces, Clyindrical Boiler Shells, Steel, Introduction to Tables for, Examples for Use of Tables, Tables, Clyindrical Furnaces, Clyindrical Furnaces, Clyindrical Boiler Shells, Iron, Introduction to Tables for, Examples for Use of Tables, Tables, Clyindrical Furnaces, Clyindrical Furnaces, Clyindrical Furnaces, Clyindrical Boiler Shells, Iron, Introduction to Tables for, Examples for Use of Tables, Tables, Clyindrical Furnaces, Clyindrical Fur

PAG		T	PAGE
Cylindrical Shells, Iron, Riveted	Examples for use	of Tables-	
Joints of, 2	Nos. 126-139 C	ylindrical Boiler	
Cylindrical Shells, Steel, Pres-		Shells, Steel, .	277
sures on, 4	,, 2-30 Fl	lat Surfaces,	~
Cylindrical Shells, Steel, Riveted	**	Iron,	65
Joints of, 4	,, 81–109 FI		
Cylindrical Superheaters, Iron, . 2	.,	Steel,	197
	,, 79–80 Fi	urnaces, Corru-	
Decimal Equivalents, 36	*	gated, Cylin-	
Decimal Fractions and approxi-		drical, Iron, .	191
mate Vulgar Fractions, 38.	,, 176–177 Ft		
Definition of Terms used.	• •	gated, Cylin-	
Diagonal Pitches, &c., Rivets for		drical, Steel, .	343
Steel Boilers,	,, 65–77 Fr		
Diagonal Stays, Iron,		Cylindrical,	
Difference in Steel Plates due to		Iron,	170
Temperature when rolled, . 14	,, 162–174 F	urnaces, Plain	
Direct and Diagonal Stays, 38		Cylindrical,	
Direct Stays for Flat Surfaces,		Steel,	320
Iron,	, 78 Ft	urnaces with	
	"	Flanged Joints,	
Dished Ends of Iron Boilers, . 38		Iron,	187
Distinguishing Letters, Flat Surfaces, Iron, 6	, 175 Ft	urnaces, with	
faces, Iron, 69 Distinguishing Letters, Flat Sur-	**	Flanged Joints,	
		Steel,	338
faces, Steel,	., 178-179 Fu	urnaces with	
Distinguishing Letters, Plain Cy-	,,	Ribbed Projec-	
lindrical Furnaces, Iron, 170		tions, Grooved	
Distinguishing Letters, Plain Cy- lindrical Furnaces, Steel 320		Inside, Steel, .	347
lindrical Furnaces, Steel, 320	,, 41-51 Gi	irders for Flat	
"Doctored" Material,	**	Surfaces, Iron,	138
Domes, Iron, Riveted Joints, . 21	., 115-125 Gi	irders for Flat	
,, Steel, ,, 24 Domes of Boilers, Openings in, 55	"	Surfaces, Steel,	264
	., 54-64 Ri	iveted Joints.	
	.,	Iron Plates and	
		Iron Rivets, .	156
	,, 345-347 Ri	iveted Joints,	
		Iron and Steel	
		Plates - Multi-	
Valves,		pliers for find-	
		ing vertical dis-	
Ductility, Definition of, 2		tances between	
		Rows of Rivets	
Easing Gear Shafts for Safety		and thickness	
Valves, 572		of Butt Straps,	531
Introduction to Tables, 572	" 140–161 Ri		
Tables, 573		Steel Plates and	
Tables,		Steel Rivets, .	294
Elastic Limit, ,, 2		ays, Iron (5000	
Elongation, ,, 2		lbs. stress), .	126
Elongation, Iron Plates, 4		ays, Iron (7000	
,, Iron Rivet Bars, . 8		lbs. stress), .	132
,, Iron Stay Bars, 8		ays, Steel (9000	
" Steel Plates, 10		lbs. stress), .	258
,, Steel Rivet Bars, . 11	Expansion-Joints	of Steam Pipes,	53
,, Steel Stay Bars, . 11			
Evaporators, Cast Iron, 560	77 1 00 0		
Examination of Boilers, 57	Factor of Safety,		17
Examples for use of Tables—		dditions to, for	
Nos. 52-53 Cylindrical Boiler		various forms	
Shells. Iron, . 151		of construction,	18

PAGE	PAG	GR
Fahrenheit Thermometer Scale, . 393	Formulæ for—	-
Farnley Furnace, 351		26
Fatigued, Definition of, 2	Stool	47
Feed Cocks or Valves,	Compressed Then	28
Feed Heaters, Cast Iron, 561		47
	Plain Cylindrical	41
	,, Flam Cymurical,	70
		70
Fire Boxes, Iron 28	,, Plain Cylindrical,	00
Flanged Mouthpieces, Iron and		26
rlanged Mouthpieces, Iron and	,, with Flanged	
Steel, 61		87
Flanging Steel Plates, 15	,, with Flanged	
Flat Surfaces, Iron Boilers, . 29, 64	Joints, Iron and	
,, Iron Boilers, Con-		30
stants for, 29 ,, Iron Boilers, direct	,, with Flanged	
,, Iron Boilers, direct	Joints, Steel, . 3.	38
Stays for, 31	,, Vertical,	28
Iron Boilers, direct		36
Stays attached to	Steel	48
wrought iron	Hemispherical Ends of Iron	-
cross bars or		38
beams for, . 32	Percentage Strength of Joints,	00
beams for, 32 ,, Iron Boilers, Dia-		21
gonal Stays for. 33	Riveted Joints, Cylindrical	21
	Challe Bessies Description	
,, Iron Boilers, Stays	Shells, Receivers, Domes,	
in general for, . 35	&c.,	44
,, Iron Boilers, Gir-	Riveted Joints, Iron Plates	
ders for, 36		56
Flat Surfaces, Steel Boilers, . 48	Riveted Joints, Iron and Steel	
" Steel Boilers, Con-	Plates—Multipliers for find-	
stants for, 48	ing vertical distance be-	
Flat Surfaces, Steel Boilers, Gir-	tween rows of Rivets and	
ders for, 48	thickness of Butt Straps, . 5	31
Flat Surfaces, Iron Boilers—	Riveted Joints, Steel Plates,	
Introduction to Tables, . 64		94
Description of different	Riveting, Iron and Steel	
methods of Construction, . 64	Joints of Special Construc-	
Examples for use of Tables, . 65		59
Tables, 5 lbs. to 160 lbs., 68-125	Rivets, Diameter and Pitch	00
, 165 lbs. to 200 lbs., 426-454		22
Flot Curfocos Steel Deilons	Rivets, Diagonal Pitches of.	42
Flat Surfaces, Steel Boilers—	Iron Poilors	00
Introduction to Tables, 195		22
Description of different		34
methods of Construction, . 195	" Direct, Iron, attached	
Examples for use of Tables, . 197	to wrought iron cross	
Tables, 5 lbs. to 160 lbs., 200-257		33
,, 165 lbs. to 200 lbs., 476–504	" Direct, Iron, for Flat	
riat Surfaces, from Girders, 138		32
Steel 264	Spiral Springs for Safety	
Formulæ for—		14
Butt Straps, single and	Tube Plates, Iron, Compres-	
double, 23	Tube Plates, Steel, Compres-	37
Chain riveted Joints, 22	Tube Plates, Steel, Compres-	
Cylindrical Shells, Iron. 24	sive Stress,	49
Cunucd ands Of	Zigzag Riveted Joints,	22
		82
sures on, 46		43
Stool 977	Fractions of Inches and Equiva-	10
" Command and AC		79
Flat Surfaces, Iron Boilers, . 29	Fractions, Decimal Equivalents,	18
	Practions, Decimal Equivalents,	an.
,, Steel ,, . 48	Squares, and Cubes, 36	67
	2 0	

PAGE !	PAGE
Furnaces, Iron, Circular, 26	Furnaces, &c.—
Communicated	Examples for use of Tables, 568-569
,, Constants for, . 26	Tables, 60 lbs. to 200 lbs., 570-571
	145105, 00 155. 00 200 105., 010 011
", Steel, Circular,	Gauge Glasses and Steam Gauges,
,, Steel, Circular, 40	
,, Constants for, . 47 ,, Vertical, 47	Lights for,
Furnace & Flanging Plates, Steel, 42	Girders for Flat Surfaces, Iron, 36,138
	Introduction to Tables, . 138
Furnaces, Corrugated, Cylindrical,	Examples for use of Tables, . 138
Iron,	Tables, 5 lbs. to 160 lbs., 140-150
Introduction to Tables 191	,, 165 lbs. to 200 lbs., 461–466
Examples for use of Tables, . 191	Girders for Flat Surfaces, Steel, 48,264
Tables, 5 lbs. to 160 lbs., 193-194	Introduction to Tables, . 26-
, 165 lbs. to 200 lbs., . 475	Europe les fen use of Tobles
	Examples for use of Tables, . 26
Furnaces, Corrugated Cylindrical	Tables, 5 lbs. to 160 lbs., 266-276
Steel, 343	,, 165 lbs. to 200 lbs., 508-518
Introduction to Tables, 343	Glass Water Gauges, 59
Examples for use of Tables, . 343	Guards for Blow-off Cocks, 56
Tables, 5 lbs. to 160 lbs., 345-346	Gusset Stays, Iron, 35
,, 165 lbs. to 200 lbs., . 522	, , , , , , , , , , , , , , , , , , , ,
Furnaces, Plain Cylindrical, Iron, 170	Hemispherical Ends of Iron
Introduction to Tables, 170	Boilers, 38
	Homogeneous, Definition of,
Description of different	Homogeneous, Deminion of,
methods of construction,	Hot-Short, Definition of,
with distinguishing Letters, 170	
Examples for use of Tables, . 171	Imperial and Metric Weights and
Tables, 5 lbs. to 160 lbs., 174-186	Measures,
Tables, 5 lbs. to 160 lbs., 174-186 ,, 165 lbs. to 200 lbs., 467-473	Inches, Fractions, and equivalent
Furnaces, Plain Cylindrical, Steel, 320	decimals of a Foot, 379
Introduction to Tables, . 320	Inspection of Roilers 90
Description of different	Iron Boilers
methods of construction,	Iron Boilers,
with distinguishing Letters, 320	Factor, 18
	Corrugated Cylindri-
Examples for use of Tables, . 320	
Tables, 5 lbs. to 160 lbs., 325-337	cal Furnaces 191
,, 165 lbs. to 200 lbs., 514–520	,, Cylindrical Shells, 16, 15
Furnaces with Flanged Joints,	,, Cylindrical Shells,
Iron, 187	curved ends of, . 25
Introduction to Table, 187	,, Cylindrical Super-
Examples for use of Table, . 187	heaters, 28
Table, 5 lbs. to 160 lbs., . 190	" Dished Ends, 38
,, 165 lbs. to 200 lbs., . 474	,, Flat Surfaces, . 29, 6
Furnaces with Flanged Joints,	Girders for Flat Sur-
Iron and Steel Plates, Construc-	faces, 138
tion and Formulæ for, 530	Hemispherical Ends, 38
France and with Flanced Leinter	
Furnaces with Flanged Joints,	,, Plain Cylindrical Fur- naces
Steel,	
Introduction to Table, 338	,, Stays (5000 lbs. stress), 120
Examples for use of Table, . 338	,, (7000 lbs. stress), 13' ,, Uptakes, 3'
Table, 5 lbs. to 160 lbs., . 342	,, Uptakes, 3'
,, 165 lbs. to 200 lbs., . 521	
Furnaces with Ribbed Projections	Iron Furnaces, Circular, 2
grooved inside, 347	Corrugated, . 2
Introduction to Tables, 347	Iron Furnaces, Circular,
Examples for use of Tables, 347	Iron Plates,
	Pronds of 6
Tables, 5 lbs. to 160 lbs., 349-350	,, Drands of,
,, 165 lbs. to 200 lbs.; . 523	,, Contraction of Area,
Furnaces, Cambered, 348	,, Elongation,
Furnaces, Spiral Corrugated, . 351	,, Qualities of,
Furnaces, Morison's Suspension, . 568	,, Tensile Strength, .
Introduction to Tables, . 568	Tests,

	PAGE	I .	PAG
	156	Plate Iron,	1 110
Iron Rivets	9	Plates, Iron—	
and Steel Plates	45	D16	
Iron Rivet Bars,	8		
Iron Stay Bars,		,, Contraction of Area	
Iron Stay Bars, Iron Stays for Flat Surfaces, Iron Stays, Diagonal.	31	,, Elongation,	
Thom Stays for Flat Surfaces, .	21	" Qualities of,	
		", Tensile Strength, Tests,	
Iron Gusset Stays,	35	Plates, Steel,	
		Plates, Steel,	1
Joints of Special Construction—		,, Bending,	1
Riveting,	59	" Brands of,	1
		,, Contraction of Area,	1
Legal Standard Wire Gauge	392	" Elastic Limit,	1
Lifting Boilers for Inspection, .	57	", Elongation,	1
Lights for Gauge Glasses and		O1241	î
Steam Gauges,	55	Tonsile Strongth	1
becam outgos,	90		1
Mollochla Definition of	0	, Tests,	1
Malleable, Definition of,	2	,, which have been	
Manhole and Mudhole Doors, .	52	heated or worked,	1
,, Cross Bars for,		Pressure Gauges,	5
Manholes of Boilers,	52	Properties of Saturated Steam, .	41
Material for Boilers,	1	Proportions of Safety Valves, .	40
Metals, Weights, and Specific		Proportions of "Peerie" Safety	
Gravities of,	396	Valves,	52
Metric and Imperial Weights and	000	Proportions of "Peerie-Weerie"	04
	384	Safety Valves	52
Measures,	52	Safety Valves,	02
	92	Thought on William of the	*0
Multipliers for finding distances		Threads,	53
between vertical rows of Rivets		Punching and Annealing Steel	
and thickness of Butt Straps, .	531	Plates,	43
		Punching and Boring Steel Plates	, 43
Necks of Valves and Cocks,	56	Punching Steel Plates,	1
Neutral Parts of Shells of Boilers,	52	Purvis's Furnace,	348
Openings in Boilers,	53	Réaumur Thermometer Scale, .	393
Openings in Boiler Shells, Super-		Receivers, Iron Boilers, Riveted	000
heaters, Steam Receivers, and		Joints of,	2
	53	Receivers, Steel Boilers, Riveted	4.
Domes,	99		44
D1::	7.0	Joints of,	
Peculiarities of Steel,	13	Recording Results of Tests,	42
"Peerie" Safety Valves—		Reliability of Steel,	16
Drawing of,	524	Rivet Bars, Iron,	8
"Peerie" Safety Valves-		,, Steel,	13
Proportions of,	525	Riveted Joints for Cylindrical	
"Peerie-Weerie" Safety Valves-		Shells, &c., Steel,	44
Drawing of,	527	Riveted Joints for Iron Boilers, .	21
"Peerie-Weerie" Safety Valves-		Riveted Joints, Iron Plates, and	
Proportions of	598	Iron Rivets,	156
Pines Wood 550	560	Introduction to Tables for,	156
Proportions of,	500	Examples for use of Tables, .	156
Dital of Pinate (Pigeness Pinas	-900		196
Pitch of Rivets (Different Diam-		Illustrations of Joints of dif-	100
eters), Steel and Iron Plates		ferent construction, . 159	1-10
and Rivets, Lap-Joints, Pitches,		Tables,	-168
Percentage Strength of Joints,	562	Riveted Joints, Iron and Steel	
Introduction to Tables	562	Plates—Multipliers for finding	
Introduction to Tables,	-567	vertical distances between rows	
Plates and Bars, Steel, made from		of Rivets and thickness of Butt	
the same charge,	14	Straps	531
Plates and Bars, Steel, made from		Introduction to Tables,	531
different parts of came inget	14	Examples for use of Tables, .	
different parts of same ingot, .		Tobles	1_594
Plates and Rivets. Iron, Strength of	, 22	Tables, 534	-001

PAGE	PAGE
Riveted Joints, Steel Plates and	Stays, Direct, attached to Wrought-
Steel Rivets 294	Iron Cross Bars, &c. 32
Introduction to Tables for, . 294	Stays, Iron, Diagonal, 33
Examples for use of Tables, . 295	,, General, 35
Illustrations of Joints of dif-	Carret
forest construction 900 910	Stays, Iron, Pressures, &c. (5000
referre construction, . 290-516	
. 937-938	lbs. stress),
ferent construction, . 298-318 537-538 Tables, 298-319	Introduction to Tables, 126 Examples for use of Tables, 126
	Examples for use of Tables, . 126
Riveting Iron and Steel, Joints of	Tables, 5 lbs. to 160 lbs., 127–131 ,, 165 lbs. to 200 lbs., 455–457
special construction, 59 Riveting Steel Boilers, Diagonal	,, 165 lbs. to 200 lbs., 455-457
Riveting Steel Boilers, Diagonal	Stays, Iron, Pressures, &c. (7000
	lbs. stress),
Rivets and Plates, Iron, Strength	lbs. stress),
of,	Examples for use of Tables, . 132
Rivets, Iron	Tables, 5 lbs. to 160 lbs., 133–137
	105 lbs to 200 lbs 450 400
,, Steel, 11	,, 165 lbs. to 200 lbs., 458–460
O A	Stays, Steel, Pressures, &c. (9000
Safety Valves,	lbs. stress),
,, Areas of, 401	Introduction to Tables, 258
Drawing of, 402	Examples for use of Tables, . 258
., Formula for Cal-	Tables, 5 lbs, to 160 lbs., 259-263
culating Spiral	Tables, 5 lbs. to 160 lbs., 259–263 ,, 165 lbs. to 200 lbs., 505–507
Springs for, . 414	Staying, &c., Flat Surfaces, Iron
	Boilers 29
Tables of Propor-	Boilers,
	Chang Draceure Cuerca
	Steam Fressure Guages, 55
,, Tables of Prepor-	Steam Receivers, Openings in, . 53
tions, 404-413	Steam, Saturated Properties of, . 418
,, Table of Tests of	Steam Stop Valves or Cocks, . 53
Springs, . 416-417	Steel Bars and Stays, Tensile
,, Testing and Adjust-	Strength, &c., 42
Safety Valves, "Peerie"—	Steel Boilers—
Drawing of, 524	" Constants for Flat
70	
Safety Valves, "Peerie-Weerie"— Drawing of	Europa and 47
Drowing of	Corrugated Fur
	Corrugated Furnaces, 47
Proportions of, 528	naces, 47
Saturated Steam, Properties of, . 418	,, Crushing Stress on
Introduction to Tables, 418	Tube Plates, . 49
Tables, 419-425	Curved Ends of Cy-
Introduction to Tables, 418 Tables, 419-425 Scam or Brine Cocks, 56	lindrical Boilers, 46
Seams, Welded, Iron Boilers,	,, Curved Tops of Com-
Setting and Fixing Boilers, 58	bustion Boxes, . 47
Shearing Resistance, Iron Rivets, 9	Cylindrical Boiler
" Steel " . 12	Shells, 277
Shearing Strength, Definition of, 2	Diagonal Pitches of
Shells of Boilers, Neutral Parts, . 52	Rivets, 45
Specific Gravities and Weights of	Dishad Ends FO
	Flat Surfaces, Pres-
Metals,	
Specific Gravity of Sea Water, . 395	sures, Pitches,
Spiral Corrugated Furnaces, . 351	and Surfaces, . 195
Spiral Springs for Safety Valves, . 414	Steel Furnaces, Corrugated Cylin-
Spring Safety Valves, . 403, 525, 528	drical, 343
Squares of Numbers and Frac-	,, Plain Cylindrical, 320
tions 367	, with Flanged
Standard Wire Guage	Joints, 338
Stay Bars, Iron	with Ribbed Pro-
Steel 11	jections, grooved
Standard Wire Guage, 392 Stay Bars, Iron, 8 Steel, 11 Stays, Direct, for Flat Surfaces, 31	inside 347

		AGE	PAG
teel Boilers			Steel Plates—
2.2	General Remarks, .	50	,, For Furnaces, Com-
22	Girders for Flat		bustion Boxes, &c., 4
**		, 264	,, Local Heating, . 4
22	Hemispherical	,	Punching and An
"	Ends,	50	nealing, 4
	Pressures, Greatest	00	Danahing,
99			,, Punching and Bor-
	Surfaces, and		ing, 4
	Sizes of Stays, .	258	,, Qualities of, 1
35	Pressures on Cy-		,, Tensile Strength, . 1
	lindrical Shells, .	45	,, ,, Furnace and
**	Riveted Joints for		Flanging
	Cylindrical Shells,		Plates, . 4
	Receivers, Domes		Shull Dieton 4
	&c.,	44	Tooting by To
	Steel Plates and	22	spectors. 4
23		45	
	Iron Rivets, .	45	,, Makers, . 4
99	Steel Plates and		Tests of, 1
	Steel Rivets,		,, Test Strips or Pieces, 4
	Riveted Joints, .	294	,, Welding, 4
11	Superheaters and		,, Working Stress not
"	Ūptakes,	49	over Iron, 4
	Vertical Furnaces	20	Steel Plates and Iron Rivets, . 4
,,	or Fire Boxes, .	47	Steel Rivet Bars,
	of file noxes, .	41	Steel Rivet Bars,
40 al 4 au Tr-21			Steel Rivets,
teel for Boil			Steel Stay Bars, 1
"	Bending Plates		Superheaters, Iron Boilers, 2
	when Cold, .	15	Superheaters and Uptakes, Steel, 4
99	Difference due		
	to Tempera-		Tables:—
	ture when		Areas of Circles, 01 to 9.99 by
	Rolled, .	14	100ths, Nos. 180–184, . 353–35
11	Rolled, Doctored Ma-		Areas of Circles, 1 to 21 by
	terial,	13	32nds, Nos. 185-187, . 359-36
12	Drilling not		Area of Circles, 21 to 49, by
"	Punching, .	15	16ths, Nos. 188-189, . 362-36
- 11	Flanging, .	15	Area of Circles, 49 to 105, by
	Plates and Bars	20	8ths, Nos. 190–191, . 364–36
99	from different		Circumference of Circles, No.
	parts of same		192,
		14	Cylindrical Boiler Shells,
	ingot,	14	
19	Plates and Bars		Iron, Nos. 52-53, 154-15
	from same		No. 351, 54
	charge,	14	Cylindrical Boiler Shells,
25	Plates which have been		Steel, Nos. 126-139, . 280-29
			Nos. 352–365,
	heated or		1105. 000-010,
	Worked, .	15	Decimal Fractions and their
,,,	Reliability of,	16	approximate Vulgar Frac-
11	Testing,	14	tions, No. 201, 38
,,	Treatment and		Easing Gear Shafts, No. 387, 57
""	Peculiarities,	13	Fourth Powers of Numbers,
	Welding,	15	No. 202,
teel Plates -		10	
	Annealing,	43	Flanged Mouth Pieces, Iron and Steel, No. 1, 62-6 Flat Surfaces, Pressures, Pitches and Surfaces Iron
,,	Bending Tests,	41	Flat Surfaces, Pressures,
			Ditabas and Surfaces Tron
31	Brands,	10	Trones, and Surfaces, from
	Contraction of Area,	10	Plates, Nos. 2-30, 5 lbs. to
,,	Drilling in place, .	43	160 lbs., 68-12
. "	Elongation,	10	Nos. 225-253 165 lbs. to
	Elastic Limit.	11	426-45

Ta

PAGE

PAGE
bles:-
Flat Surfaces, Pressures, Pitches, and Surfaces,
Pitches, and Surfaces,
Steel Plates, Nos. 81–109.
5 lbs to 160 lbs 200-257
Nos. 286-314, 165 lbs. to
Furnaces, Plain Cylindrical,
Tron Plates Nos 65 77 5
Iron Plates, Nos. 65-77, 5 lbs. to 160 lbs., 174-186
lbs. to 160 lbs., 174–186 Nos. 271–283, 165 lbs. to
Nos. 271-283, 165 108, to
200 lbs., 467-473
Furnaces, Plain Cylindrical,
Furnaces, Plain Cylindrical, Steel Plates, Nos. 162-174,
5 lbs. to 160 lbs., 325–337 Nos. 329–341, 165 lbs. to
Nos. 329-341, 165 lbs. to
200 lbs 514_520
Furnaces, Corrugated Cylin-
drical Iron Plates Nos
70 80 5 lbe to 160 lbe 102-104
Furnaces, Corrugated Cylindrical, Iron Plates, Nos. 79-80, 5 lbs. to 160 lbs., 193-194 No. 285, 165 lbs. to 200 lbs., 475
France Commented Colin
Furnaces, Corrugated Cynn-
drical, Steel Plates, Nos.
Furnaces, Corrugated Cylindrical, Steel Plates, Nos. 176-177, 5 lbs. to 160 lbs., 345-346 No. 343, 165 lbs. to 200 lbs., 522
No. 343, 165 lbs. to 200 lbs., 522
Furnaces with Flanged Joints,
Iron Plates, No. 78, 5 lbs. to
160 lbs 190
No. 284, 165 lbs. to 200 lbs.
Furnaces with Flanged Joints,
Steel Plates, No. 175, 5 lbs.,
to 160 lbs., 342
No. 240 105 lbs. 4- 200 lbs. 501
to 160 lbs.,
Furnaces with Ribbed Pro-
jections, grooved inside,
jections, grooved inside, Steel Plates, Nos. 178-179, 5 lbs. to 160 lbs., 349-350 No. 344,165 lbs. to 200 lbs., 523 Furnaces, Cambered, 348 Furnaces, Morison's Suspension, Steel Plates, Nos.
5 lbs. to 160 lbs., 349-350
No. 344, 1651bs. to 200 lbs., 523
Furnaces, Cambered, 348
Furnaces, Morison's Suspen-
sion, Steel Plates, Nos.
385-386, 570-571
Girders Iron for FlatSurfaces
Nos. 41–51,5lbs. to160lbs.,140–150 Nos. 260–270, 165 lbs. to
Nos 260-270 165 lbs to
200 lbs.,
Girders, Steel, for Flat Surfaces,
Non 115 105 540 100 lbn 000 070
Nos. 115-125, 5 to 160 lbs., 266-276
Nos. 318–328, 165 lbs. to
200 lbs., 508-513 Imperial and Metric Weights
Imperial and Metric Weights
Inches and Fractions and
Equivalent Decimal Parts
Inches and Fractions and Equivalent Decimal Parts of a Foot, No. 200, 379–380 Legal Standard Wire Gauge,
Legal Standard Wire Gauge
No. 203
Numbers Vulgar Fractions
Decimal Fanivalents
Squared and Cubes Nes
No. 203, 392 Numbers, Vulgar Fractions, Decimal Equivalents, Squares, and Cubes, Nos.

Tables :--Properties of Saturated Steam, Nos. 218-224, Riveted Joints, Iron Plates and Iron Rivets, Nos. 54-64, 159-169 Riveted Joints, Iron and Steel Plates-Multipliers for finding vertical distances between rows of Rivets and thickness of Butt Straps, Nos. 345-347, 534-536 Riveted Joints, Steel Plates and Steel Rivets, Nos. 140-298-319 Ditto, Nos. 348-349, Safety Valve Areas, No. 205, . 401 Safety Valves, Proportions of, Nos. 206-215, . . 404-413 Safety Valves, Tests of Spiral Springs made of Steel, Nos. 216-217, . 416-417 Stays, Iron (5000 lbs. stress), Nos. 31-35, 5 lbs. to 160 lbs., Nos. 254-256, 1651bs. to 200 Stays, Iron (7000 lbs. stress), Nos. 36-40, 5 lbs. to 160 lbs. 133 - 137Nos. 257-259, 165 lbs. to 200 lbs., . 458-460 Stays, Steel (9000 lbs. stress), Nos. 110-114, 5 lbs. to 160 lbs., 259-263 Nos. 315-317, 160 lbs. to 200 lbs., 505-506 Weights and Specific Gravities of Metals, No. 204, Whitworth Screws, No. 350, . 539 Temperature of Steel Plates when Rolled. 14 Temperature of Water, &c., Tensile Strength, Definition of, Iron Plates, 4 Iron Rivet Bars, Iron Rivets. 9 Iron Stay Bars. Steel Boiler Plates. 10, 41 Furnace Steel and Flanging Plates, 42 Steel Rivet Bars, Steel Rivets. Steel Stay Bars, Terms used, Definition of, Test Cocks, Water, 1 55 Testing and Adjusting Safety Valves, 399 Testing and Examining Small Boilers.

	PAGE		PAGE
Testing Boilers,	57	Vertical Furnaces, Iron,	28
" Iron Plates,	4		47
" Steel Plates,	10		393
", Steel Plates, by Inspector	g 40	volumes of water,	1)1)0
,, Steel Flates, by Inspector	5, 40		
Tests of Spiral Springs of Safety	40	***	
Tests of Spiral Springs of Safety		Water, Boiling Points,	
Valves, 416	3-417	, Pure, Composition of, .	394
,, Recording Results of, . Test Strips or Pieces Steel Plates	42	. Sea.	394
Test Strips or Pieces, Steel Plates,	41	,, Sea, Volumes of,	393
Thermometric Scales,		Water Gauges, Glass,	54
Tough, Definition of,		Water Test Cocks,	
Treatment of Steel for Boilers, .		Weights and Measures, Imperial	
Tube Plates, Iron, Compressive		and Metric, Metric and Im-	
Stress, .	37	perial,	384
, Steel, ,,	49	Weights and Specific Gravities of	
Tubes, Wrought-Iron and Steel,.	561	Metals,	396
,, Brass,		Weldable, Definition of,	2
,, Diass,	901	Welded Seams of Iron Boilers,	
Hadalan Ton Dallana	OP		
Uptakes, Iron Boilers,	31	Welding Steel Plates	
" Steel "	49	Whitworth Screws,	
		Wire Gauge, Legal Standard, and	
Valves and Cocks, Necks of,	56	Metric Equivalents	392
,,			50

B1613.01

