The Oval Tank Treated with Shell Elements

www.calculixforwin.com

This document is licensed under the Creative Commons Attribution-No Derivative Works 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

See the movies here: $| \underline{1} | \underline{2} |$

Input data: Ref. Ovaltank.STEP geometry, Uniform pressure = 0.1 psi; Thickness of
the wall = 3/8''; material: steel.

Fig. 1 The model of tank in SolidWorks Simulation.

Fig. 2 Max. Displacemet = 0.97 in, Max. Von-Mises Stress (bottom) 4220 psi

Fig.3 ANSYS 4160 psi / 0.94 in

Fig. 4 CalculiX (S8R shell elements, with GMSH) $$\operatorname{Max}$.$ Displacement 0.94''

Fig. 5 CalculiX Von Mises Stress (S8R elements) (max 4180 psi)

Fig. 6 CalculiX Von Mises Stress (S6 elements) (max 4440 psi for rough mesh)

Fig. 8 CalculiX (S6 shell elements)
Max. Displacement 0.81'' for rough mesh