Chapter 7. Symmetric Matrices and Quadratic Forms

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr

7.1. Diagonalization of Symmetric Matrices

7.1. Diagonalization of Symmetric Matrices

Symmetric Matrix

- A symmetric matrix is a matrix A such that $A^T = A$.
- Such a matrix is necessarily square.
- Its main diagonal entries are arbitrary, but its other entries occur in pairs—on opposite sides of the main diagonal.
- Theorem 1: If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.
- Theorem 2: An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is symmetric matrix.

• Example 3:: Orthogonally diagonalize the matrix $A=\begin{bmatrix}3&-2&4\\-2&6&2\\4&2&3\end{bmatrix}$, whose characteristic equation is $-\lambda^3+12\lambda^2-21\lambda-98=-(\lambda-7)^2(\lambda+2)=0$

Solution:

The usual calculations produce bases for the eigenspaces:

$$\lambda = 7 : \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -1/2 \\ 1 \\ 0 \end{bmatrix}; \ \lambda = -2 : \mathbf{v}_3 = \begin{bmatrix} -1 \\ -1/2 \\ 1 \end{bmatrix}$$

• Although \mathbf{v}_1 and \mathbf{v}_2 are linearly independent, they are not orthogonal. The projection of \mathbf{v}_2 onto \mathbf{v}_1 is $\frac{\mathbf{v}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1$. The component of \mathbf{v}_2 orthogonal to \mathbf{v}_1 is

$$\mathbf{z}_2 = \mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \begin{bmatrix} -1/2\\1\\0 \end{bmatrix} - \frac{-1/2}{2} \begin{bmatrix} -1\\0\\1 \end{bmatrix} = \begin{bmatrix} -1/4\\1\\1/4 \end{bmatrix}$$

- ullet Then $\{{f v}_1,{f z}_2\}$ is an orthogonal set in the eigenspace for λ = 7
- (Note that \mathbf{z}_2 is linear combination of the eigenvectors \mathbf{v}_1 and \mathbf{v}_2 , so \mathbf{z}_2 is in the eigenspace.)

- (solution continued:)
 - Since the eigenspace is two-dimensional (with basis $\mathbf{v}_1, \mathbf{v}_2$), the orthogonal set $\{\mathbf{v}_1, \mathbf{z}_2\}$ is an *orthogonal basis* for the eigenspace, by the Basis Theorem.
 - Normalize ${\bf v}_1$ and ${\bf z}_2$ to obtain the following orthonormal basis for the eigenspace for $\lambda=7$:

$$\mathbf{u}_1 = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -1/\sqrt{18} \\ 4/\sqrt{18} \\ 1/\sqrt{18} \end{bmatrix}$$

ullet An orthonormal basis for the eigenspace for $\lambda=-2$ is

$$\mathbf{u}_3 = \frac{1}{\|2\mathbf{v}_3\|} 2\mathbf{v}_3 = \frac{1}{3} \begin{bmatrix} -2\\ -1\\ 2 \end{bmatrix} = \begin{bmatrix} -2/3\\ -1/3\\ 2/3 \end{bmatrix}$$

- By Theorem 1, \mathbf{u}_3 is orthogonal to the other eigenvectors \mathbf{u}_1 and \mathbf{u}_2 . Hence $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthonormal set.
- Let $P = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{18} & -2/3 \\ 0 & 4/\sqrt{18} & -1/3 \\ 1/\sqrt{2} & 1/\sqrt{18} & 2/3 \end{bmatrix}$. Then P orthogonally diagonalizes A, and $A = PDP^{-1}$.

7.1. Diagonalization of Symmetric Matrices

○○○○●○○○

Suggested Excercises

- 7.5.1
- 7.5.3
- 7.6 (p.450)

7.1. Diagonalization of Symmetric Matrices

○○○○○●○

Acknowledgement

- This lecture note is based on the instructor's lecture notes (formatted as ppt files) provided by the publisher (Pearson Education) and the textbook authors (David Lay and others)
- The pdf conversion project for this chapter was possible thanks to the hard work by Bongseok Kim (IISE 16'). Mr. Kim earned both B.S. (IISE) and M.S. (Data Science) degrees in SeoulTech.

