Лабораторная работа № 4

по курсу «Программное обеспечение цифрового проектирования» «Синтез регистровых схем»

Необходимое программное обеспечение:

- Aldec Active-HDL;
- Evita_VHDL;
- Xilinx ISE либо Mentor Graphics (в качестве средств синтеза);
- 1. Составить структурное и поведенческое vhdl-описание n-разрядного синхронного и асинхронного регистра хранения, произвести его функциональное моделирование (см. рис. 1):

Рис. 1. Структура регистра хранения.

2. Составить структурное и поведенческое vhdl-описание сдвигового n-разрядного регистра (см. рис. 2) и произвести его функциональное моделирование

Рис. 2. Структура сдвигового регистра.

- 3. Выполните индивидуальное задание (составление поведенческой модели и функциональное моделирование при помощи TestBench):
- 3.1. п-разрядный счетчик Джонсона;

Генератор М-последовательности с внешними сумматорами по модулю два и полиномом (см. Рис. 3):

Рис. 3. Структура генератора М-последовательности с внешними сумматорами по модулю 2.

```
3.2. \varphi(x) = 1 \oplus x;
```

3.3.
$$\varphi(x) = 1 \oplus x \oplus x^2$$
;

3.4.
$$\varphi(x) = 1 \oplus x \oplus x^3$$
;

3.5.
$$\varphi(x) = 1 \oplus x \oplus x^4$$
;

3.6.
$$\varphi(x) = 1 \oplus x^2 \oplus x^5$$
;

3.7.
$$\varphi(x) = 1 \oplus x \oplus x^6$$
;

3.8.
$$\varphi(x) = 1 \oplus x \oplus x^7$$
;

3.9.
$$\varphi(x) = 1 \oplus x \oplus x^5 \oplus x^6 \oplus x^8$$
;

3.10.
$$\varphi(x) = 1 \oplus x^4 \oplus x^9$$
;

3.11.
$$\varphi(x) = 1 \oplus x^3 \oplus x^{10}$$
;

Генератор М-последовательности с внутренними сумматорами по модулю два и полиномом (см. рис. 4):

Рис. 4. Структура генератора М-последовательности с внешними сумматорами по модулю 2.

```
3.12. \varphi(x) = 1 \oplus x;
```

3.13.
$$\varphi(x) = 1 \oplus x \oplus x^2$$
;

3.14.
$$\varphi(x) = 1 \oplus x \oplus x^3$$
;

3.15.
$$\varphi(x) = 1 \oplus x \oplus x^4$$
;

3.16.
$$\varphi(x) = 1 \oplus x^2 \oplus x^5$$
;

3.17.
$$\varphi(x) = 1 \oplus x \oplus x^6$$
;

3.18.
$$\varphi(x) = 1 \oplus x \oplus x^7$$
;

3.19.
$$\varphi(x) = 1 \oplus x \oplus x^5 \oplus x^6 \oplus x^8$$
;

3.20.
$$\varphi(x) = 1 \oplus x^4 \oplus x^9$$
;

3.21.
$$\varphi(x) = 1 \oplus x^3 \oplus x^{10}$$
;

Одноканальный сигнатурный анализатор с полиномом (см. рис. 5):

Рис. 5. Структура и пример функционирования сигнатурного анализатора для полиномов $\phi(x) = 1 \oplus x \oplus x^3, \, p(x) = 1 \oplus x \oplus x^6 \oplus x^7.$

```
3.22. \varphi(x) = 1 \oplus x;
```

3.23.
$$\varphi(x) = 1 \oplus x \oplus x^2$$
;

3.24.
$$\varphi(x) = 1 \oplus x \oplus x^3$$
;

3.25.
$$\varphi(x) = 1 \oplus x \oplus x^4$$
;

3.26.
$$\varphi(x) = 1 \oplus x^2 \oplus x^5$$
;

3.27.
$$\varphi(x) = 1 \oplus x \oplus x^{6}$$
;

3.28.
$$\varphi(x) = 1 \oplus x \oplus x^7$$
;

3.29.
$$\varphi(x) = 1 \oplus x \oplus x^5 \oplus x^6 \oplus x^8$$
;

3.30.
$$\varphi(x) = 1 \oplus x^4 \oplus x^9$$
;

3.31.
$$\varphi(x) = 1 \oplus x^3 \oplus x^{10}$$
;

В общем виде полином выглядит следующим образом:

$$\varphi(x) = \bigoplus_{k=0}^{n} \alpha_k x^k$$

- а. Генератор Джонсона (4 балла).
- b. Задание а и генератор М-последовательности с внутренними сумматорами по модулю два (**6 баллов**).
- с. Задание в и генератор М-последовательности с внешними сумматорами по модулю два (8 баллов).
- d. Задание с и одноканальный сигнатурный анализатор (10 баллов).
- 4. В результате выполнения лабораторной работы составьте отчет. Отчет должен содержать следующую информацию:
 - а. Постановка задачи;
 - b. Vhdl-описания выполненных заданий;
 - с. Vhdl-описания Test Bench;
 - d. Анализ результатов RTL-синтеза каждого задания;
 - е. Выводы.