

ColosAAL

Collaborative Ambient Assisted Living Design

How to build scenarios for simulations

Introduction

ColosAAL Collaborative development of AAL solutions

Human Factor

Assistive Technology

Accessible Spaces

Simulations

UCM Team @ Bologna

Débora Álvarez

Juan Pavón

Marlon Cárdenas

Carlos Cervigón

What role each member of the UCM team

Human Factor

Professionals Users

- See the experts up close
- Know how to interact with users
- Scope of the *technology*

A goal: Compare *Reality* vs. *Simulations*

•••

Accessible Spaces

- Create the drawings (with scale)
- Create and locate accessories or objects (environmental objects)
 - Areas of the house
 - Furniture
 - Decoration

Assistive Technology

Modeling Accessible Spaces

- Identify important spaces.
- Define the passive and active objects
 of the environment.
- Identify **technology** in these spaces.
- Define relevant *user actions*.
 - Thinking about user comfort.
 - Improve the quality of life and independence of users.

How do I build my own scenarios?

The basic steps for modeling scenarios are:

Modeling of spaces

step 1: resize the drawings

step 2: decomposition of objects

step 3: define physical structure

step 4: define logical structure

step 5: import in the simulation the objects

What tools do I need?

Tools

Sweet Home 3D: to design the drawings.

jMonkeyEngine 3.0 (Recommended): to configure the logical structure that the drawings need within the simulation.

PHAT-SIM: to use the plans and create the simulations.

Step 1: resize de drawings

- Unify the scales:
 - design of JMonkey and simulations PHAT
- Positioning the objects on the scene:
 - Use the spatial nodes to represent all relevant objects in the scenario

Step 2: decomposition of objects

- Identify:
 - Passive objects: no animation
 - Interactive objects: they need animation
- Tag all interactive objects in the simulation

interactive objects

Step 3: define physical structure

"only on interactive objects"

- Create nodes with the position of the object in the scenario
- Add meta information (*ID*, *ROLE*)

Step 4: define logical structure "only on interactive objects"

- Create nodes for each space in the scenario
- Create nodes of the objects
- Define the *center* and *access* points of the object
- Setting the *light* point and set the perimeter

Step 4: define logical structure "only on interactive objects"

Generate the navigation mesh

(NavMesh)

Step 5: import the objects in the simulation

 Build use cases and import modelled objects

What has been done?

step 1: resize the drawings

step 2: decomposition of objects Only passive objects

step 3: define physical structure

step 4: define logical structure

step 5: import in the simulation the objects

Tools and Examples

- Project websites:
 https://grasia.fdi.ucm.es/newmain/language/en

 /
 http://grasia.fdi.ucm.es/colosaal/
 http://grasia.fdi.ucm.es/sociaal/
 http://grasia.fdi.ucm.es/aide/
- Modeling:
 AIAS http://grasiagroup.fdi.ucm.es/aias/

- Examples:
 https://github.com/mfcardenas/phat_examples
 https://github.com/Grasia/sample-ami-developm
 ent
 https://github.com/Grasia/base-ami-prototyping
- Tools:
 Hack4People (CamAssistance)
 http://grasiagroup.fdi.ucm.es/hackwithpeople/

Any questions?

Thank you