Indian Institute of Technology Guwahati Probability Theory (MA590) Problem Set 07

- 1. Suppose that X_1, \ldots, X_n are independent and identically distributed random variables such that $P(X_i = 0) = 1 p = 1 P(X_i = 1), i = 1, \ldots, n$, for some $p \in (0, 1)$. Let X be the number of X_1, \ldots, X_n that are as large as X_1 . Find the PMF of X.
- 2. The joint PDF of (X, Y) is given by

$$f_{X,Y}(x, y) = \begin{cases} 4xy & \text{if } 0 < x < 1, \ 0 < y < 1 \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Verify whether X and Y are independent.
- (b) Find $P(\{0 < X < 0.5, 0.25 < Y < 1\})$ and $P(\{X + Y < 1\})$.
- 3. Let $X = (X_1, X_2, X_3)$ be a random vector with joint PDF

$$f_{X_1,X_2,X_3}(x_1,x_2,x_3) = \frac{1}{(2\pi)^{\frac{3}{2}}} e^{-\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)} \left(1 + x_1 x_2 x_3 e^{-\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)}\right) \quad \text{if } (x_1,x_2,x_3) \in \mathbb{R}^3$$

- (a) Are X_1 , X_2 , and X_3 independent?
- (b) Are X_1 , X_2 , and X_3 pairwise independent?
- 4. Let X_1, \ldots, X_n be *i.i.d.* random variables with mean μ and variance σ^2 . Then $E\left(\overline{X}\right) = \mu$, $Var\left(\overline{X}\right) = \frac{\sigma^2}{n}$, and $Cov\left(\overline{X}, X_i \overline{X}\right) = 0$ for all $i = 1, 2, \ldots, n$, where $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$.
- 5. Let X and Y be jointly distributed random variables with E(X) = E(Y) = 0, $E(X^2) = E(Y^2) = 2$, and $Corr(X, Y) = \frac{1}{3}$. Find $Corr(\frac{X}{3} + \frac{2Y}{3}, \frac{2X}{3} \frac{Y}{3})$.
- 6. Suppose that the random vector (X, Y) is uniformly distributed over the region $A = \{(x, y) : 0 < x < y < 1\}$. Find Cov(X, Y).
- 7. Let (X, Y) be a continuous random vector with JPDF $f(\cdot, \cdot)$. Show that X and Y are independent if and only if f(x, y) = g(x)h(y) for all $(x, y) \in \mathbb{R}^2$.
- 8. Let (X,Y) be uniform over the interior of the triangle with vertices (0,0),(2,0) and (1,2). Find $P(X \le 1, Y \le 1)$.
- 9. Two numbers are independently chosen at random between 0 and 1. What is the probability that their product is less than a constant k(0 < k < 1)?
- 10. A vertical board is ruled with horizontal parallel lines at constant distance b apart. A needle of length a(< b) is thrown at random on the board. Find the probability that it will intersect one of the lines.

11. Let (X, Y) be a continuous random vector with JPDF $f_{X,Y}$. Let the corresponding marginal PDFs be f_X and f_Y , respectively. Show that mutual information

$$I = E\left(\ln\left\{\frac{f_{X,Y}(X,Y)}{f_X(X)f_Y(Y)}\right\}\right)$$

satisfies $I \geq 0$, with equality if and only if X and Y are independent.

12. Let X and Y are RVs such that $|\rho(X, Y)| = 1$. Show that Y = a + bX for some real constants a and b.