Análisis de Resultados

Estudiante 1: Eliana Palacio Pinzón

Código: 202112428

	Máquina 1	
Procesadores	AMD Athlon Gold	
	3150 (hasta	
	3.30GHz)	
Memoria RAM (GB)	8GB de RAM	
Sistema	Windows 10	
Operativo	Home (64 bits)	

1. Resultados de las pruebas para el tiempo de ejecución y en cada uno de los requerimientos implementados.

A continuación, se presenta el tiempo de carga en ms de los requerimientos:

No° de	Carga de	Requerimiento	Requerimiento	Requerimiento
Experimento	datos	1	2	3
1	1734.375	375.0	437.5	1515.625
2	1531.25	455.0	343.75	921.875
3	1631.75	400.5	350.75	890.625

2. Análisis de complejidad en notación O para cada uno de los requerimientos.

Requerimiento	Complejidad
1	O(V + E)
2	O(1)
3	O(a log n)

3. Análisis de tiempo de ejecución y consumo de memoria para cada uno de los requerimientos.

- En el requerimiento #1 el algoritmo de Kosaraju realiza dos recorridos completos del gráfico y, por lo tanto, se ejecuta en un tiempo O (V + E) (lineal)
- La complejidad del requerimiento #2 recae sobre la obtención y búsqueda de valores y ya que estos se han organizado dentro de una tabla de Hash la complejidad de búsqueda es O(1)
- En el requerimiento #3 tuvimos que encontrar la red de expansión mínima y para ello usamos el algoritmo de Prim. Este a su vez tiene una complejidad de O(n^2). Sin embargo si dicho algoritmo se implementa con montículos, el tiempo requerido por este algoritmo es O(a log n).