

2019 交大競技程式訓練冬令營 NCTU_Fox

警告

前方大量破梗, 請斟酌服用

月リノノン/里 WX 7天, 6月 四1日 3 71X 777

大綱

書籍

Introduction to Algorithms

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein

Combinatorial Optimization

Bernhard Korte, Jens Vygen

實戰用的 flow 演算法

- Ford-Fulkerson
 - O(fE), f 為最大流流量
 - 適合流量小的題目
- Dinic
 - \circ O(min(f,V²)E)
 - 常數很小
- ISAP
 - \circ O(V³)

實戰用的 cost flow 演算法

- Successive shortest path algorithm
 - O(fnm), f 為最大流流量
 - Ford—Fulkerson algorithm 的一般化
 - 利用 SPFA 優化加速
- Minimum mean cycle canceling
 - \circ O(n²m³log n)
 - 不斷利用最小平均環來擴增
 - 多項式時間演算法,不用擔心因為流量很大而 TLE

模版們

- flow
 - o dinic.cpp
- cost flow
 - o min cost flow.cpp

Flow 建模 - 無向圖

Flow 建模 - 無向圖

兩個介於 [0,18] 的數字相差不會超過 18

Flow 建模 - 多源點多匯點 Flow

Flow 建模 - 多源點多匯點 Flow

砲塔問題(Formosa OJ 683)

有一個 n x n (n<=64) 棋盤格世界。每個 row, column 都有一個砲塔, 砲塔有個別的子彈數量, 棋盤格世界有 m 隻龍, 每隻龍有個別的血量。每顆子彈可以讓被打到的龍的血量減少一, 當龍的血量變成 0 就會神奇的消失不見。

如何判斷是否存在一個策略讓全部的 龍不見?

https://bit.ly/2T5Ym0b

砲塔問題(Formosa OJ 683)

Daejeon15 C

nxm(n,m <= 30)的棋盤格,每個格子有一個非負整數。每次操作可以將兩個相鄰的格子的數值同時減一(減到變成0為止)

至少要幾次才能將所有格子都變成 0?

Daejeon15 C

最少化操作次數 = 最大化兩格都有減到數字的操作數 棋盤格為二分圖,將節點們分成兩群

Daejeon16 K

有一個 n x m (n, m <= 200)的表格, 每個格子有一個浮點數, 每個 row 最後一個後面會加上這個 row 的總和, 每個 column 也做一樣的事情。

為每個非整數的數字決定是否要進位,最後的表格要滿足每個 row 的最後一個數字是前面的總和, column 也是。

	1	2	3	row sum
1	4.3	6.7	7.1	18.1
2	9.2	3.0	0.2	12.4
3	4.0	7.7	1.3	13.0
column sum	17.5	17.4	8.6	

Company Company		
(a)	Original	Table
(4)	Originar	I dore

	1	2	3	row sum
1	4	7	7	18
2	9	3	0	12
3	4	7	2	13
column sum	17	17	9	

(b) A feasibly rounded table

Daejeon16 K

0.2	0.5	0.7
1.3	2.7	4.0
1.5	3.2	

限制每條邊的流量範圍

● 先考慮沒有起點終點的 case

● 每條邊都先給下界的流量, 觀察每個節點的(流入-流出)的流量

● 本來有上下界 [L,R], 的流量限制變成一般的流量限制 R-L

● (流入-流出) > 0 的節點, 從 s 連邊

- (流入-流出) > 0 的節點, 從 s 連邊
- (流入-流出) < 0 的節點, 連向 t

● 上下界流有解 iff 最大流 = 起點連出去的邊權總和

- 有起點終點 s, t 的 case
 - 從 t 連一條限制是 [0,INF] 的邊到這 s
 - 就變成沒有起點終點的 case
- 先做完一次無起點終點的上下界流使得每個節點流入等於流出,再求一次原始的 s-t max flow
- 有起點終點的上下界 max flow
 - = 無起點終點的上下界流 + 新的圖的 s-t max flow

min-cost half max flow

如何找到流量是最大流的一半的 flow 中, cost 最小的?

Min Cut Problem (最小割問題)

max-flow min-cut theorem (最大流最小割定理)

max-flow min-cut theorem (最大流最小割定理)

max-flow min-cut theorem (最大流最小割定理)

NP-hard

NP-hard

- ½ approximation with high probability
 - 隨機將點分成兩群
 - cut 期望有 E/2 條邊
- derandomization
 - 找最大degree 的節點
- Formosa OJ 635

Daejeon17 E

給一個 n (<=100) 個節點, m (<=500) 條邊的無向帶權圖

對每條邊, 求出要使得這條邊有可能在 MST 上至少要刪除幾條邊?

題單 NCTU_Fox

- <u>Daejeon15 C</u> max flow
- <u>Daejeon17 E</u> min cut
- Ho Chi Minh 17 E KM
- Samara Intercollegiate 18 D bipartite matching
- <u>Daejeon16 D</u> bipartite matching
- Singapore Preliminary 18 E bipartite matching
- <u>Formosa OJ 745</u> bipartite matching, game
- ASC13 A cost flow
- Arab14 F cost flow
- NTHU18 C cost flow

題單 NCTU_Foudre

- <u>Daejeon15 C</u> max flow
- <u>SWERC15 F</u> min cut
- NCTU17 L max flow
- <u>UVA 10735</u> max flow
- GCJ18R2 C bipartite matching
- <u>PTC1806 D</u> bipartite matching, DAG edge cover
- <u>CF512 C</u> cycle cover in bipartite graph
- <u>BubbleCupX D</u> dynamic flow
- BAPC14 A dynamic flow
- Moscow Pre-Finals 18 Day2 C

題單 其他

- PTC1901 E cost flow, vertex disjoint path
- <u>競程日記 189</u> min cut, 平面圖 cut
- <u>NCPC18 I</u> flow, I2A 例題
- Daejeon16 K flow, 上下界流
- Formosa OJ 683 flow
- JAG Practice 15 J cost flow, duality
- ASC26 D all pair min cut property
- <u>CF343 E</u> Gomory-Hu tree
- NCPC17 L Gomory-Hu tree
- POJ2914 SW min-cut, all pair min cut