

SISTEMAS INTELIGENTES

Prática 4 – Implementação do ADALINE

Ivan Nunes da Silva

TSP

Problema de Aplicação Prática

- ➤ Em uma planta de usina sucro-alcooleira, a eficiência do processo de fabricação do álcool pode ser otimizado a partir do controle adequado da injeção de dois tipos de reagentes (R₁ ou R₂) em um determinado estágio do processo de fermentação.
- ➢ Assim, uma equipe de engenheiros, por meio de pesquisas e ensaios em laboratório, concluíram que os reagentes (R₁ ou R₂) poderiam ser adicionados ao processo dependendo da concentração de algumas substâncias (x₁, x₂ e x₃) e de mais outras duas grandezas físico-químicas (x₄ e x₅).
- Na sequência, a equipe pretende desenvolver um sistema automático de acionamento das válvulas constituintes dos dois tipos de reagentes, cujo diagrama esquemático pode ser observado na figura a seguir.

Esquema Ilustrativo do Processo

> Entretanto, notou-se que os sinais sofriam interferências durante a sua transmissão, distorcendo-se assim as informações retornadas pelos sensores. Para contornar este problema, a equipe decidiu treinar uma rede ADALINE para classificar estes sinais ruidosos e enviar a ação de controle ao driver de acionamento das válvulas dos reagentes.

TSP

Configuração do ADALINE

- > Como existe cinco variáveis que estão sendo monitoradas, o neurônio constituinte do **ADALINE** terá então cinco entradas $\{x_1, x_2, x_3, x_4, x_5\}$.
- Consequentemente, a saída { y } do ADALINE estará então decidindo, levando-se em consideração as suas cinco entradas, qual dos reagentes será adicionado ao processo, ou sejam:
 - Reagente R₁ \rightarrow "Classe C_1 " \rightarrow { y = -1 } Reagente R₂ \rightarrow "Classe C_2 " \rightarrow { y = 1 }
- > A figura seguinte ilustra o ADALINE a ser implementado.

TSP

Configuração da Base de Treinamento

➤ A base de dados de treinamento do *ADALINE*, disponibilizada no arquivo {treinamento.txt}, foi levantada por meio de sucessivos ensaios experimentais e contem o formato seguinte.

	<i>X</i> ₁	X ₂	X ₃	X ₄	X ₅	d
1	1.9007	1.0664	1.9147	0.089	0.9267	-1
2	2.3616	1.6669	4.8792	1.6663	0.343	-1
3	4.2315	2.0403	2.3101	2.4789	3.5831	-1
4	4.956	2.6197	4.6272	2.2171	3.0343	-1
5	2.8372	4.8439	4.1225	2.8788	4.4959	1
6	3.2317	1.8979	2.3829	2.7357	3.7906	1
7	0.0743	0.7835	2.3578	1.629	0.7725	1
8	0.2985	3.2902	4.4482	0.3289	0.6065	-1
9	2.1889	1.4012	4.9262	1.8263	0.0954	-1
10	1.2687	0.6631	2.725	2.4834	1.6525	1
)	()	()	()	()	()	()

5

Implementação do Treinamento (I)

a) Carregar a matriz de treinamento $\emph{\textbf{M}}$ usando a seguinte instrução:

M = load('nome_do_arquivo'); {Mostre M para conferência}

- b) Implementar as seguintes instruções a partir da matriz M:
 - Definir a matriz T, referentes aos sinais de entrada do ADALINE, que seja composta pelas cinco primeiras colunas de M, inserindo-se ainda o elemento -1 (relativo ao termo θ) em sua primeira coluna.
 - Definir o vetor d, referente aos sinais de saída do ADALINE, que seja composto pela última coluna de M. {Mostre T e d para conferência}

Implementação do Treinamento (II)

- c) Inicializar as seguintes variáveis, além de T e d:
 - Taxa de aprendizagem em 0.0025; $\{\eta \leftarrow 0.0025\}$
 - Contador de épocas em 0; {época ← 0}
 - Parâmetro de precisão em 10⁻⁶; {ε ← 10⁻⁶}
 - Vetor de pesos {w} com valores aleatórios uniformemente distribuídos entre 0 e 1, sendo cada um de seus elementos representando os seguintes parâmetros:

$$\mathbf{W} = [\theta \quad W_1 \quad W_2 \quad W_3 \quad W_4 \quad W_5]^T;$$
 {Mostre \mathbf{w} para conferência}

d) Implementar a instrução que, dada uma linha k da matriz T, obtenha o potencial de ativação do neurônio, ou seja:

 $\mathbf{x} \leftarrow \mathbf{T}(k,:)^T$ {onde \mathbf{x} conterá a k-ésima linha da matriz \mathbf{T} }

 $u \leftarrow \mathbf{w}^{\mathsf{T}}.\mathbf{x}$ {realize eventuais transposições que sejam necessárias}

Teste a sua instrução para k = 2, verificando se o valor de retorno está correto.

TST)

Implementação do Treinamento (III)

e) Implementar a função EQM que receba T, w e d como argumentos de entrada, retornando então o valor do erro quadrático médio, que é obtido pela seguinte expressão:

$$EQM = \frac{1}{\rho} \sum_{k=1}^{\rho} \left(d(k) - u(k) \right)^2$$

onde p é o número de amostras de treinamento.

function
$$z = EQM(T, w, d)$$
 $s \leftarrow 0$;
 $p \leftarrow \text{size}(T,1)$; {quantidade de amostras}

Para k variando de 1 até p , fazer:
$$\begin{cases} x \leftarrow T(k,:)^T; \\ u \leftarrow w^T.x; \text{ {realize eventuais transposições que sejam necessárias} \\ s \leftarrow s + (d(k) - u)^2; \\ \text{Fim_Para} \\ z \leftarrow (1/p).s; \end{cases}$$

Teste se a função está ok (sem erros de programação), utilizando-se os valores de **T**, **w** e **d** que já foram especificados anteriormente.

Implementação do Treinamento (IV)

f) Implementar o processo de treinamento do **ADALINE** inspirado no algoritmo apresentado na aula teórica, ou seja:

{Execute a rede pelo menos três vezes e analise os números de épocas e os valores finais para o vetor \mathbf{w} }

q

TSP

Implementação do Treinamento (V)

g) Após o treinamento do *ADALINE*, aplique a mesma para selecionar que tipo de reagente será inserido no processo industrial em relação a outras configurações operacionais. Carregue numa matriz *V* o arquivo {teste.txt} que contem a relação completa destas situações representadas por medições de x₁, x₂, x₃, x₄ e x₅.

	X ₁	x_2	X ₃	X_4	X ₅	
V = [2.9370	0.7290	4.5267	1.9206	3.7214	$x_1 = w_1$ $\theta = w_2$
	0.8147	2.8296	4.6581	2.3493	1.9144	x ₂
	3.4284	2.3311	1.3016	1.7078	2.5767	$x_3 \Longrightarrow w_3 \Longrightarrow \sum_{i=1}^{u} g(i) \Longrightarrow y$
	1.2439	1.5965	4.5540	2.6557	2.2831	
	3.9729	4.6290	0.8942	1.5526	5.0000	x ₄ erro
	()	()	()	()	()	x ₅ w _e associador
						a a

h) Prepare esta matriz **V**, adicionando-se os elementos -1 em sua primeira coluna, a fim de ser inserida nas entradas do **ADALINE** já treinado.

Implementação do Treinamento (VI)

 Implemente as instruções que permita a classificação, após a realização do processo de treinamento, usando-se o algoritmo seguinte. Forneça também os resultados da classificação.

 (\ldots)

Para k variando de 1 até a quantidade total de amostras em V, fazer:

```
x \leftarrow V(k,:)^T; {atribua o padrão k de V ao vetor x} u \leftarrow w^T.x; {realize as transposições que sejam necessárias} y \leftarrow \text{sinal}(u); Imprima(y); Fim_Para
```

(...)

- Se { y = -1 } → "Adicionar Reagente R₁" → Classe C₁
 Se { y = 1 } → "Adicionar Reagente R₂" → Classe C₂
- j) Trace o gráfico do erro quadrático médio {erro} em função das épocas de treinamento.

11

TZT

Fim da Apresentação

