

ECE 602: LUMPED LINEAR SYSTEMS

Professor Jianghai Hu

Systems and Input/Output Signals

Systems

Block diagram of a system

- Systems are mathematical models of physical objects/processes
- Systems are represented by mappings from input signal u to output signal y:

$$y = \mathcal{N}(u)$$

 $\bullet~\mathcal{N}$ may be given by ODEs, PDEs, SDEs, difference equations, algorithms...

Example of Systems

- Electrical systems
- Mechanical systems
- Transportation systems
- Energy/power systems
- Biological systems
- Ecological systems
- Social networks
- Stock market

An electro-mechanical system

Signals

Signals are (real) vector-valued functions defined on a time index \mathcal{I} :

$$u: \mathcal{I} \to \mathbb{R}^n$$

• Continuous-time signals if $\mathcal{I} = \mathbb{R} = (-\infty, \infty)$:

$$u(t), -\infty < t < \infty$$

• Discrete-time signals if $\mathcal{I} = \mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$:

$$u[k], k = \ldots, -1, 0, 1, \ldots$$

A discrete-time signal

 \bullet Causal signals if $\mathcal{I} = [0, \infty)$ or $\mathcal{I} = \{0, 1, \ldots\}$

Admissible Input Signals

Admissible input signal set \mathcal{U} : set of allowable input signals to system \mathcal{N}

Assumptions

- 1 Linear combinations of admissible input signals are still admissible
- 2 Time delays (right shift) of admissible input signals are still admissible

Examples:

- \mathcal{U} is the set of all mappings u from $\mathcal{I} = \mathbb{R}$ to \mathbb{R}^n
- \mathcal{U} is the set of all mappings u from $\mathcal{I} = \mathbb{R}$ to \mathbb{R} whose Laplace transforms exist