1. Descriere lucrare

Circuitul utilizat în acest experiment include un tranzistor bipolar cu joncțiune, alimentat de o singură sursă de curent și polarizat printr-un divizor rezistiv.

În prima parte a experimentului, se vor măsura tensiunile de intrare și de ieșire, urmând să se calculeze amplificarea în diferite condiții.

În a doua parte, tensiunea va fi menținută constantă în zona liniară de funcționare a tranzistorului, iar frecvența semnalului va fi variată pentru a analiza comportamentul circuitului.

2. Date experimentale

Pentru Rs1 = 10k(ohmi)

Vin(V)	Vout(V)	A
0,5	1	2
1	2,1	2,1
1,5	3,15	2,1
2	4,2	2,1
2,5	5,1	2,04
3	5,4	1,8
3,5	5,6	1,6
4	5,7	1,425

Pentru Rs3 = 2,2k(ohmi), f = 1000hz

Vin(V)	Vout(V)	A
0,5	0,5	1
1	1	1
1,5	1,43	0,95
2	1,9	0,95
2,5	2,3	0,92
3	2,6	0,86
3,5	2,9	0,82

In partea a doua vom lua Vin = 2

Vin(V)	Vout(V)	A	F(Hz)
1,6	3,3	2,06	2
1,9	5,1	2,68	5
2	6	3,00	10
2	6,2	3,10	50
2	6,2	3,10	100
2	6,2	3,10	1K
2	6,3	3,15	10K
2	6	3,00	50K
2	5,9	2,95	60K

2	5,7	2,85	70K
2	5,6	2,80	80K
2	5,4	2,70	90K
2	5,3	2,65	100K
1,9	0,7	0,37	500K
2	0,06	0,03	1M

3. Concluzie

În cadrul acestui experiment, am investigat comportamentul unui amplificator în configurație cu emitor comun, utilizând un tranzistor bipolar. Analiza s-a concentrat pe variațiile tensiunii de ieșire și ale amplificării în funcție de tensiunea de intrare și de frecvență .

Prima parte

Am analizat amplificarea pentru două valori ale rezistenței de sarcină (RsR_sRs):

- 1. Pentru Rs1= $10k\Omega R$
 - Amplificarea s-a menţinut constantă (A≈2.1A) în intervalul liniar pentru valori mici ale VinV.
 - o La creșterea VinV, amplificarea a scăzut treptat, indicând saturația tranzistorului.
- 2. Pentru Rs3= $2.2k\Omega R$:
 - o Amplificarea a fost mai mică, iar variațiile au fost mai uniforme.
 - Rezistența de sarcină redusă a influențat semnificativ comportamentul tranzistorului, diminuând amplificarea.

A doua parte

Am studiat comportamentul amplificatorului la frecvențe variabile, menținând Vin=2VV:

Pentru frecvențe mici (<100kHz):

- o Amplificarea s-a mentinut constantă (A≈3.1A).
- Pentru frecvențe mari (F>100kHzF):
 - o Amplificarea a scăzut progresiv, atingând A=0. 03 la F=1MHzF.

Acest comportament evidențiază limitările frecvențiale ale tranzistorului, cauzate de efectele capacitive interne și pierderile din circuit.