INDIAN INSTITUTE OF TECHNOLOGY KANPUR

SESSION: 2023-24

COURSE: EE687A
Topic:Emerging NVM-based Reconfigurable Antennas

Presented by: Date:27/4/23

Rahul Kumar Gupta(21204408) Himanshu Yadav (22104269) Manish Yadav (200559)

About Reconfigurable Antennas

- Q. What is an antenna?
- Q. What is a reconfigurable antenna?
- → Reconfigurable properties
 - Freq. of operation Our focus
 - Radiation pattern
 - Polarization behaviour
 - OR any combination of above mentioned properties
- Q. Where do we need reconfigurable antennas?

Can be reconfigured but not independently..!

Where do we need Reconfigurable Antennas?

• Cognitive Radio

Wireless Communication Systems

About Reconfiguration Techniques

Reconfiguration can be achieved by:

- Mechanical means
- Changing material properties
- Switching Our focus

About RRAMs*

One of the most promising Emerging-NVM.

- Low operating voltage
- Fast switching

Our Motivation:

- 1. Grades* (ofcourse..!)
- 2. To explore the potential use of NVM in making smart antennas for future communication systems.

Antenna with a memory

Designing Reconfigurable Monopole Antennas

- Switches \rightarrow Unipolar RRAM with LRS = 50Ω and HRS = $50K\Omega$ Au/Nb₂O₅/Nb is one such stack Logic \rightarrow '0' == 50Ω & '1' == $50K\Omega$ with RRAM

$$\rightarrow$$
 {'0' == 1u Ω & '1' == 1M Ω with pin diode}

• 3 switches → 2³ combinations

sw1(MSB)	sw2	sw3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

STATE OF THE ART(with pin diode):

The simulated and measured reflection coefficient for operation states: (a) 4.82 GHz. (b) 3.5 GHz. (c) 2.43 and 5.18 GHz. (d) 2.1 and 4.14 GHz.

2.5

0.0

5.0

7.5

Freg [GHz]

10.0

12.5

Freq [GHz]

sw1	sw2	sw3	f _{op} (in GHz)	BW (in GHz)
0	0	0	6.78	1.67
0	0	1	5.13 6.97	0.56 1.41
0	1	0	6.8	1.47
0	1	1	7	1.42
1	0	0	5.42	2.24
1	0	1	5.49	1.95
1	1	0	5.38	2.13
1	1	1	5.42	2.11

How variations in RRAM will affect the f_{op} ?

Designing Reconfigurable Antennas

- •From Monopole Antenna to Patch Antenna
- •But Why?
- Small size
- Its applications spacecraft, satellite, mobile & many more

Design Details With PIN DIODE

Reference: Anuradha A. Palsokar, S.L. Lahudkar, Frequency and pattern reconfigurable rectangular patch antenna using single PIN diode, AEU - International Journal of Electronics and Communications, Volume 125, 2020, 153370, ISSN 1434-8411

Design Details With RRAM

Result at 1 micro ohm pin diode on

Result at 100 ohm

Result at 1 Kohm

Result at 10 Kohm

Result at 1 Mohm

Result at 10 Mohm

Result at 10 Gohm pin diode off

Conclusions & Future Work

- ullet RRAM with low LRS(<10 Ω) can be used as a RF switch (with low losses) to design a Reconfigurable Antenna.
- Compared to PIN diodes, RRAM offers the advantage of lower power consumption.
- To design a more realistic model of RRAM for accurate measurements through simulations.
- To incorporate NN with Reconfigurable Antennas to train it various for communication scenarios.

References:

- 1.Rutschlin, Marc and Vratislav Sokol. "Reconfigurable Antenna Simulation: Design of Reconfigurable Antennas with Electromagnetic Simulation." *IEEE Microwave Magazine* 14 (2013): 92-101.
- 2.Costantine, Joseph et al. "Reconfigurable Antennas: Design and Applications." *Proceedings of the IEEE* 103 (2015): 424-437.
- 3.I.A. Shah, S. Hayat, A. Basir, M. Zada, S.A.A. Shah, S. Ullah, S. Ullah, Design and analysis of a hexa-band frequency reconfigurable antenna for wireless communication, AEU International Journal of Electronics and Communications, Volume 98, 2019.
- 4.Anuradha A. Palsokar, S.L. Lahudkar, Frequency and pattern reconfigurable rectangular patch antenna using single PIN diode, AEU International Journal of Electronics and Communications, Volume 125, 2020, 153370, ISSN 1434-8411
- 5.Kundozerova, T. V., Grishin, A. M., Stefanovich, G. B., & Velichko, A. A. (2012). Anodic Nb205 Nonvolatile RRAM. IEEE Transactions on Electron Devices, 59(4), 1144-1148.

THANK YOU..!