

Rahul Dipak Talreja

Topic selection

Our topic is optimizing delivery logistics for e-commerce warehouses in the United States. We aim to reduce delivery costs while ensuring timely shipments, focusing on improving operational efficiency and customer satisfaction.

Importance:

- Enhance operational profitability
- Improve customer satisfaction

Objective of the problem

- Minimize total delivery costs while ensuring that shipments reach customers on time.
- Identify the factors contributing to delayed deliveries and improve delivery prediction accuracy.
- Develop recommendations for optimal shipment modes and logistics planning to enhance customer satisfaction.

Practical Implications of solving the problem

- Cost Reduction: Through optimized shipment mode and warehouse selection.
- Improved Timeliness: Higher customer satisfaction rates
- Operational Efficiency: Streamlined processes to handle higher order volumes.
- Sustainability: Reduced carbon footprint via route optimization.

Known and unknown variables

Known Variables:

- Warehouse block
- Mode of shipment
- Customer care calls
- Product importance
- Gender
- Discount offered
- Weight in grams
- Prior purchases
- Product importance

Unknown variables:

- Future delays in shipment
- Ideal shipment mode and warehouse allocation for cost reduction
- Factors leading to variability in customer satisfaction.

Predictive Models

support	f1-score	recall	precision	7,007 017 10020	support	f1-score	recall	precision	
895	0.67	0.78	0.59	0	895	0.63	0.70	0.57	0
1305	0.70	0.62	0.81	1	1305	0.69	0.64	0.76	1
2200	0.69			accuracy	2200	0.67			accuracy
2200	0.69	0.70	0.70	macro avg	2200	0.66	0.67	0.67	macro avg
2200	0.69	0.69	0.70	weighted avg	2200	0.67	0.67	0.68	weighted avg

=== Logistic Regression Evaluation ===

Accuracy: 0.6372727272727273

AUC: 0.7248605492412081

	precision	recall	f1-score	support
0	0.56	0.54	0.55	895
1	0.69	0.70	0.70	1305
accuracy			0.64	2200
macro avg	0.62	0.62	0.62	2200
weighted avg	0.64	0.64	0.64	2200

Feature Importance (Random Forest)

Prescriptive Analytics

Formulating LP model

• Decision Variables:

Air units shipped : $X_1=C2$

Ship Units Shipped: X₂=C3

Road Units Shipped: X₃=C4

Objective Function: Min: $10X_1+5X_2+2X_3$

Total Demand:

$$X_1 + x_2 + x_3 = 700$$

Capacity Constraints:

Air: $x_1 \le 100$

Ship: $x_2 \le 300$

Road: $x_3 \le 500$

Non-negativity Constraint: $X_1+x_2+x >= 0$

Optimal Solution

Air Units Shipped: 0

Ship Units Shipped: 200

Road Units Shipped: 500

The optimal solution indicates that to minimize shipping costs while satisfying the constraints, it is best to ship:

- All **200 units** by ship, due to its lower cost per unit compared to air.
- All **500 units** by road, which also has a lower cost and meets capacity requirements.
- No units should be shipped by air as it does not provide a cost advantage in this scenario.

Sensitivity Analysis

Variable Cells

		Final	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$2	Air Units shipped	0	5	10	1E+30	5
\$C\$3	Ship Units shipped	200	0	5	5	3
\$C\$4	Road Units shipped	500	-3	2	3	1E+30

Constraints

		Final	Shadow	Constraint	Allowable	Allowable
Cell	Name	Value	Price	R.H. Side	Increase	Decrease
\$G\$3	Ship Total units shipped	700	5	700	100	200

- Air Mode: Too expensive unless its cost per unit decreases to \$5.
- Ship Mode: Currently cost-effective but could lose priority if its cost increases above \$10.
- Road Mode: Most cost-effective; can tolerate up to a \$5 per unit cost before being replaced by ship or air.
- **Demand Constraint:** Increasing demand raises costs by \$5 per additional unit.

Trade-off Analysis and Recommendations

Trade-Off Analysis

- Cost vs. Shipment Capacity: Using road maximizes cost-efficiency, but relaxing the capacity constraints of ship or air could alter the solution.
- Flexibility vs. Cost:
 Increasing the allowable capacity of ship might allow for lower total costs if road costs rise.

Recommendations

- **Dynamic Costs:** Explore seasonal changes in shipment costs.
- **Environmental Impact:** Introduce carbon emissions as a factor to evaluate sustainability trade-offs.
- Multi-Period Demand: Extend the model for multiple time periods to capture demand fluctuations.

Thank you