Problem 6.1.1

For these problems, we will use Lagrange interpolation, where $l_i = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$.

a. From this, we find $l_0 = \frac{x-7}{10}$ and $l_1 = \frac{x-3}{10}$, so our interpolation becomes

$$p_1(x) = 5 * \frac{x-7}{10} - \frac{x-3}{10}.$$

b. Using the table, we find $l_0 = \frac{(x-1)(x-2)}{30} = \frac{x^2-3x+2}{30}$, $l_1 = \frac{x^2-9x+14}{6}$, $\frac{x^2-8x+7}{-5}$. So we find

$$p_2(x) = 146 * \frac{x^2 - 3x + 2}{30} + 2 * \frac{x^2 - 4x + 14}{6} - \frac{x^2 - 8x + 7}{5}.$$

c. We find $l_0 = \frac{(x-7)(x-1)(x-2)}{(3-7)(3-1)(3-2)}, l_1 = \frac{(x-3)(x-1)(x-2)}{(7-3)(7-1)(7-2)}, l_2 = \frac{(x-3)(x-7)(x-2)}{(1-3)(1-7)(1-2)}, \text{ and } l_3 = \frac{(x-3)(x-7)(x-1)}{(2-1)(2-7)(2-3)}.$ Then

$$p_3(x) = 10l_0 + 146l_1 + 2l_2 + l_3.$$

d. This problem will have the same l_i for $0 \le i \le 3$, but with different y_i values. So,

$$p_3(x) = 12l_0 + 146l_1 + 2l_2 + l_3.$$

e. Since most of the y-values are zero, we find that

$$p_5(x) = \frac{(x-1.5)(x-2.7)(x-3.1)(x+6.6)(x-11.0)}{(-2.1-1.5)(-2.1-2.7)(-2.1-3.1)(-2.1+6.6)(-2.1-11.0)}.$$

Problem 6.1.2

From Lagrange, we know $p(x) = \sum_{k=0}^{n} y_k l_k(x)$. From the problem, we know $\exists L: f \mapsto p \Rightarrow Lf = p(x)$ and $Lf = \sum_{k=0}^{n} y_k l_k$. But, $y_k = f(x_k)$, so we have $Lf = \sum_{k=0}^{n} f(x_k) l_k$ as desired. Now let's apply L to (af + bg). We then find

$$L(af + bg) = \sum_{i=0}^{n} (af(x_i) + bg(x_i))l_i$$
$$= \sum_{i=0}^{n} af(x_i)l_i + bg(x_i)l_i$$
$$= a\sum_{i=0}^{n} f(x_i)l_i + b\sum_{i=0}^{n} g(x_i)l_i$$
$$= aLf + bLq.$$

Problem 6.1.3

Let $Gf = \sum_{i=0}^{n} f(x_i) l_i^2$. From the text, l_i is a polynomial of degree i. Thus, there is a term $f(x_n) l_n^2$, where l_n is a polynomial of degree n. Since l_n is squared, its leading term of ax^n will become a^2x^{2n} for some nonzero a. Thus, Gf is a polynomial of degree at most 2n. Each $l_i = \prod_{j=0, j\neq i}^{n} \frac{x-x_j}{x_i-x_j}$. Thus, $l_i(x_j) = 0$ if $i \neq j$ and $l_i(x_i) = 1$ if i = j. So for any given x_i , $Gf(x_i) = f(x_i)$, so it interpolates f at the nodes. Regardless of what x_i we choose, $(l_i(x_i))^2$ will be positive by the squaring. Thus, only $f(x_i)$ determines the sign, so Gf

is nonnegative so long as f is too.

Problem 6.1.4

Let q be an arbitrary polynomial of degree at most n, and let p = Lq, so $p(x) = Lq = \sum_{i=0}^{n} q(x_i)l_i$. Thus, p(x) is a polynomial of degree at most n, and $p(x_i) - q(x_i) = 0$ for $0 \le i \le n$. This implies that p - q is a polynomial of degree at most n with n+1 distinct roots, so $p - q \equiv 0$. Thus, p = q and Lq = q.

Problem 6.1.5

Recall that $Lf = \sum_{i=0}^n f(x_i)l_i$. Suppose $f(x_i) = 1$ for $0 \le i \le n$. Then $q(x) = Lf = \sum_{i=0}^n f(x_i)l_i = \sum_{i=0}^n l_i$. Since q(x) interpolates f(x), we know $q(x_i) - 1 = 0$. This implies q(x) - 1, a polynomial of degree at most n, has n+1 zeros. Therefore, $q(x) - 1 \equiv 0$ for all x and q(x) = 1, so $\sum_{i=0}^n l_i = 1$.

Problem 6.1.9

Suppose g interpolates f at $x_0, x_1, x_2, ..., x_{n-1}$ and suppose h interpolates f at $x_1, x_2, x_3, ..., x_n$. Let $f(x_i) = g(x_i) + \frac{x_0 - x_i}{x_n - x_0} [g(x_i) - h(x_i)]$. Plugging in x_0 , we find $f(x_0) = g(x_0) + 0$, and since $g(x_0)$ interpolates $f(x_0)$, this is true. For $1 \le i \le n-1$, plugging in x_i results in $f(x_i) = g(x_i) + 0$, since $g(x_i) = h(x_i)$ for the given range, so again this interpolates f. For x_n , we have $f(x_n) = g(x_n) + \frac{x_0 - x_n}{x_n - x_0} [g(x_n) - h(x_n)] = g(x_n) - [g(x_n) - h(x_n)] = h(x_n)$, which interpolates $f(x_n)$, so the given formula interpolates f at all the nodes.

Problem 6.1.10

Let
$$p(x) = y_0 l_0 + y_1 l_1 + \dots + y_n l_n = \sum_{i=0}^n y_i l_i$$
, where $l_i = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$. The coefficient for x_n will thus

be computed with $\sum_{i=0}^{n} y_i \prod_{\substack{j=0 \ j \neq i}} \frac{x-x_j}{x_i-x_j}$. Notice for the numerator in the product, we will obtain a polynomial

of degree n who is monic. We may thus break this up and focus on $\sum_{i=0}^{n} y_i \prod_{\substack{j=0 \ i \neq i}}^{n} \frac{1}{x_i - x_j} x^n$. Thus we see

$$\sum_{i=0}^{n} y_i \prod_{\substack{j=0\\j\neq i}}^{n} (x_i - x_j)^{-1} \text{ is } x^n\text{'s coefficient.}$$

Problem 6.1.11

From 6.1.10, we found $\sum_{i=0}^{n} y_i \prod_{\substack{j=0 \ j \neq i}}^{n} (x_i - x_j)^{-1}$ to be the coefficient for x^n . For any polynomial q of degree

 $\neq n-1$, this coefficient must be zero, or it would not be of degree at most n-1. Since $q(x_i) = y_i$,

$$\sum_{i=0}^{n} y_i \prod_{\substack{j=0\\j\neq i}}^{n} (x_i - x_j)^{-1} = \sum_{i=0}^{n} q(x_i) \prod_{\substack{j=0\\j\neq i}}^{n} (x_i - x_j)^{-1} = 0, \text{ as desired.}$$