PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS

Primer semestre del 2019

Profesor: Rodrigo Vargas (rsvargas@mat.puc.cl)

Ayudante: Odette Ríos (ovrios@uc.cl)

Cálculo II - MAT1620

Ayudantía 7

Funciones multivariables

Ejercicio 1

Es posible redefinir f(x, y) tal que sea continua en (0, 0)?

$$f(x,y) = \frac{x^2 y^3}{2x^2 + y^2}$$

Ejercicio 2

Calcule las derivadas parciales pedidas:

- a) $f(x, y, z) = \ln(x + 2y + 3z)$, de primer orden
- b) $f(x, y, z) = ze^{xyz}$, de primer orden
- c) $f(x,y) = x^3 + x^2y^3 2y^2$, de segundo orden y compruebe la regla de Clairaunt.

Ejercicio 3

Comprobar que $z = \ln(e^x + e^y)$ es solución de las ecuaciones diferenciales:

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1 \text{ y } \frac{\partial^2 z}{\partial^2 x} \frac{\partial^2 z}{\partial^2 y} - \frac{\partial^2 z}{\partial x \partial y} = 0$$

Ejercicio 4

Mediante derivación implícita determine $\frac{\partial z}{\partial x}$ y $\frac{\partial z}{\partial y}$:

- a) $e^z = xyz$
- b) $yz + x \ln(y) = z^2$

Ejercicio 5

Determine la ecuación del plano tangente en los puntos dados:

a)
$$z = 3y^2 - 2x^2 + x$$
, $(2, -1, -3)$

- b) $z = xe^{xy}$, (2, 0, 2)
- c) $z = x \operatorname{sen}(x + y), (-1, 1, 0)$

Ejercicio 6

Suponga que f es una función derivable en x e y y que $g(u,v)=f(e^u+\mathrm{sen}\,(v),e^u+\mathrm{cos}\,(v))$. Mediante la tabla de valores calcule $g_u(0,0)$ y $g_v(0,0)$:

	f	g	f_x	f_y
(0,0)	3	6	4	8
(1,2)	6	3	2	5