CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 10 OTTOBRE 2018

Svolgere i seguenti esercizi,

$\longrightarrow\hspace{-0.8cm}\longrightarrow$	giustificando pienamente tutte le risposte.	
---	---	-------------

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di polinomio irriducibile su un campo e rispondere alle domande:

- (i) Esistono un campo K ed un polinomio irriducibile $f \in K[x]$ tali che f abbia radici in K?
- (ii) Esiste un campo F tale che il polinomio $(x^2+1)(x^2+1)$ non abbia radici in F?
- (iii) Esiste un campo F tale che il polinomio $(x^2+1)(x^2+1)$ sia irriducibile in F[x]?
- (iv) Esiste un campo F tale che il polinomio $x^3 + 4x + 1$ sia associato in F[x] a $4x^2 + x + 1$?
- (v) Esiste un polinomio $f \in \mathbb{Q}[x]$ che abbia grado 5, sia irriducibile in $\mathbb{Q}[x]$ ma non sia irriducibile in $\mathbb{R}[x]$? Nel caso esista, un tale polinomio ha radici in \mathbb{R} ?

Esercizio 2. Siano \mathbb{P} l'insieme dei numeri primi positivi e $A = \{5, 10, 18, 33\}$. Per ogni intero n > 1poniamo $p_n = \max\{p \in \mathbb{P} \mid p \text{ divide } n\}$ e $q_n = \min\{p \in \mathbb{P} \mid p \text{ divide } n\}$. Descrivere, elencandone gli elementi, $P = \{p_a \mid a \in A\}, \quad Q = \{q_a \mid a \in A\}, \quad P \cup Q, \quad P \triangle Q, \quad D = \{p_a - q_a \mid a \in A\}, \\ E = \{\frac{a}{p_a} \mid a \in A\}, \quad S = E \triangle E \triangle D \triangle \varnothing.$

Esercizio 3. Definiamo in $\mathbb{N} \times \mathbb{N}$ la relazione d'ordine ρ ponendo, per ogni $a, b, c, d \in \mathbb{N}$,

 $(a,b) \rho(c,d) \iff ((a,b)=(c,d) \vee \operatorname{rest}(a+b,7) \text{ divide propriamente } \operatorname{rest}(c+d,7)).$

- (i) Determinare gli eventuali elementi minimali, massimali, minimo, massimo in $(\mathbb{N} \times \mathbb{N}, \rho)$.
- (ii) Tra gli elementi di $\mathbb{N} \times \mathbb{N}$ che hanno 3 come seconda coordinata, determinare quelli che sono elementi massimali in $(\mathbb{N} \times \mathbb{N}, \rho)$.
- (iii) $(\mathbb{N} \times \mathbb{N}, \rho)$ è un reticolo?
- (iv) Il diagramma a destra rappresenta un reticolo? Nel caso, un reticolo distributivo?, complementato?, booleano?
- (v) Se possibile, costruire una parte V di $\mathbb{N} \times \mathbb{N}$ tale che (V, ρ) sia rappresentato dal diagramma di Hasse a destra; se non è possibile farlo spiegare perché.

Esercizio 4. Sia M l'insieme delle matrici 2×2 sull'anello \mathbb{Z}_9 .

(i) Stabilire se la relazione binaria α definita in M ponendo, per ogni $A, B \in M$, $A \alpha B$ se e solo se esistono $a, b, c, d \in \mathbb{Z}$ tali che $A = B + \left(\frac{\overline{3a}}{3c}\frac{\overline{3b}}{\overline{3d}}\right)$ è una relazione di equivalenza.

Si considerino l'applicazione $f:(a,b)\in\mathbb{Z}_9\times\mathbb{Z}_9\mapsto\binom{a-b-a}{a-a+b}\in M$, il suo insieme immagine T= $f(\mathbb{Z}_9 \times \mathbb{Z}_9) \in S = \{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} | a \in \mathbb{Z}_9 \},$

- (ii) f è iniettiva? f è suriettiva?; (iii) Quanto vale |T|?; (iv) Si ha $S \subseteq T$? Si munisca M della moltiplicazione · righe per colonne. Rispetto a questa operazione
 - (v) S è una parte chiusa? T è una parte chiusa?

Se una delle due lo è, chiamata questa C, si stabilisca (facendo esplicito uso dell'algoritmo risolutivo per le equazioni congruenziali, ove possa servire):

- (vi) che tipo di struttura (commutativa o meno, semigruppo, monoide) è (C,\cdot) , specificandone eventuali elementi neutri a destra, neutri a sinistra, neutri;
- (vii) se le domande hanno senso,

 - (a) $\begin{pmatrix} \frac{1}{4} & \frac{1}{4} \end{pmatrix}$ è invertibile in (C, \cdot) ? Nel caso, calcolare l'inverso; (b) $\begin{pmatrix} \frac{6}{6} & \frac{6}{6} \end{pmatrix}$ è invertibile in (C, \cdot) ? Nel caso, calcolare l'inverso;
 - (c) quali e quanti sono gli elementi invertibili in (C,\cdot) ?