THE CLAIMS

WHAT IS CLAIMED IS:

1. A source reagent composition comprising at least one tantalum and/or titanium species selected from the group consisting of:

i) tethered amine tantalum complexes of the formula:

each of R_1 - R_5 is independently selected from the group consisting of H, C_1 - C_4 alkyl, aryl, C_1 - C_6 perfluoroalkyl and trimethylsilyl;

15

10

(ii) β -diimines of the formula:

$TaG_{x}Q_{5\text{-}x}$

wherein:

G is a β -diimino ligand;

each Q is selected from the group consisting of H, C₁-C₆ alkyl, aryl and C₁.C₆

5 perfluoroalkyl; and

x is an integer from 1 to 4 inclusive;

(iii) tantalum diamide complexes of the formula

wherein:

x is 1 or 2;

y is 1 or 2;

each of R₁-R₄ is independently selected from the group consisting of H, C₁-C₄

 $\dot{T}_{a}(N(R_{1})(CH_{2})_{x}N(R_{2}))_{y}(NR_{3}R_{4})_{5-2y}$

- 15 alkyl, aryl, perfluoroalkyl, and trimethylsilyl;
 - (iv) tantalum amide compounds of the formula

Ta(NRR'),

wherein each R and R' is independently selected from the group consisting of H,

20 C_{1.}C₄ alkyl, phenyl, perfluoroalkyl, and trimethylsilyl, subject to the proviso that in each

NRR' group, R R';

(v) β -ketoimines of the formula

wherein each of R₁, R₂, R_a, R_b, R_c and R_d is independently selected from H, aryl,

- 5 C_1 - C_6 alkyl, and C_1 - C_6 perfluoroalkyl; and
 - (vi) tantalum cyclopentadienyl compounds of the formula:

- wherein each R is independently selected from the group consisting of H, methyl, ethyl, isopropyl, t-butyl, and trimethylsilyl;
 - (vii) $Ta(NR_1R_2)_x(NR_3R_4)_{5-x} / Ti(NR_1R_2)_x(NR_3R_4)_{4-x}$
- where each of R_1 , R_2 , R_3 and R_4 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, C_1 - C_8 perfluoroalkyl or a silicon-containing group selected from the

10

15

group consisting of silane, alkylsilane, perfluoroalkylsilyl, triarylsilane and alkylsilylsilane;

(viii) Ta(NR₁)(NR₂R₃)₃

where each of R_1 , R_2 , and R_3 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, C_1 - C_8 perfluoroalkyl or a silicon-containing group selected from the group consisting of silane, alkylsilane, perfluoroalkylsilyl, triarylsilane and alkylsilylsilane;

(ix) $Ta(SiR_1R_2R_3)_x(NR_4R_5)_{5-x}/Ti(SiR_1R_2R_3)_x(NR_4R_5)_{4-x}$

where each of R₁₋₅ is independently selected from the group consisting of H, Me, Et, ^tBu, Ph, ⁱPr, CF₃, SiH₃, SiMe₃, Si(CF₃)₃, Si(Et)₃, Si(ⁱPr)₃, Si(^tBu)₃, Si(Ph)₃, and Si(SiMe₃)_x(Me)_{3-x}; and

(x) $(Cp^n)Ta(SiR_1R_2R_3)_x(NR_4R_5)_{4-x}/(Cp^n)_2Ti(SiR_1R_2R_3)(NR_4R_5)$

where each of R_{1-5} is independently selected from the group consisting of H, Me, Et, tBu , 20 Ph, iPr , CF₃, SiH₃, SiMe₃, Si(CF₃)₃, Si(Et)₃, Si(iPr)₃, Si(iPr)₄, Si(iPr)₅, Si(iP

2. A source reagent composition according to claim 1, further comprising a solvent for said tantalum and/or titanium species.

10

3. A source reagent composition according to claim 2, wherein said solvent is selected from the group consisting of C_6 - C_{10} alkanes, C_6 - C_{10} aromatics, and compatible mixtures thereof.

A source reagent composition according to claim 2, wherein said solvent is selected from the group consisting of hexane, heptane, octane, nonane, decane, toluene and xylene.

A method of forming Ta or Ti material on a substrate from a precursor, comprising vaporizing said precursor to form a precursor vapor, and contacting the precursor vapor with the substrate to form said Ta or Ti material thereon, wherein the precursor comprises at least one tantalum and/or titanium species selected from the group consisting of:

(i) tethered amine tantalum complexes of the formula:

$Ta(N(R_1)(CH_2)_xN(R_2))_y(NR_3R_4)_{5-2y}$

wherein:

x i or 2;

5 y is 1 ox 2;

each of R_1 - R_4 is independently selected from the group consisting of H, C_1 - C_4 alkyl, aryl, perfluoroalkyl, and trimethylsilyl;

(iv) tantalum amide compounds of the formula

Ta(NRR')₅

wherein each R and R is independently selected from the group consisting of H, $C_1.C_4$ alkyl, phenyl, perfluoroalkyl, and trimethylsilyl, subject to the proviso that in each

NRR' group, R R';

(v) β-ketoimines of the formula

wherein each of R_1 , R_2 , R_a , R_b , R_c and R_d is independently selected from H, aryl, C_1 - C_6 alkyl, and C_1 - C_6 perfluoroalkyl; and

(vi) tantalum cyclopentadienyl compounds of the formula

Cultarid

wherein each R is independently selected from the group consisting of H, methyl, ethyl, isopropyl, t-butyl, and trimethylsilyl;

(vii)
$$Ta(NR_1R_2)_x(NR_3R_4)_{5-x} / Ti(NR_1R_2)_x(NR_3R_4)_{4-x}$$

10

where each of R_1 , R_2 , R_3 and R_4 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, C_1 - C_8 perfluoroalkyl or a silicon-containing group selected from the group consisting of silane, alkylsilane, perfluoroalkylsilyl, triarylsilane and alkylsilylsilane;

15

20

(viii) $Ta(NR_1)(NR_2R_3)_3$

where each of R_1 , R_2 , and R_3 are independently selected from the group consisting of H, C_1 - C_8 alkyl, aryl, C_1 - C_8 perfluoroalkyl or a silicon-containing group selected from the group consisting of silane, alkylsilane, perfluoroalkylsilyl, triarylsilane and alkylsilylsilane;

 $Ta(SiR_1R_2R_3)_x(NR_4R_5)_{5-x} / Ti(SiR_1R_2R_3)_x(NR_4R_5)_{4-x}$

where each of R₁₋₅ is independently selected from the group consisting of H, Me, Et, ^tBu,

Ph, ⁱPr, CF₃, SiH₃, SiMe₃, Si(CF₃)₃, Si(Et)₃, Si(ⁱPr)₃, Si(^tBu)₃, Si(Ph)₃, and

Si(SiMe₃)_x(Me)_{3-x}, and

(x) $(Cp^n)Ta(\S iR_1R_2R_3)_x(NR_4R_5)_{4-x} / (Cp^n)_2Ti(SiR_1R_2R_3)(NR_4R_5)$

where each of R_{1-5} is independently selected from the group consisting of H, Me, Et, tBu , Ph, iPr , CF_3 , SiH_3 , $SiMe_3$, $Si(CF_3)_3$, $Si(Et)_3$, $Si({}^iPr)_3$, $Si({}^tBu)_3$, $Si({}^tBu)_3$, $Si(SiMe_3)_x(Me)_{3-x}$ and Cp^n is $C_\S H_x Me_{(5-x)}$ (where x=0-5).

- 6. A method according to claim 5, wherein said material formed on the substrate is TaN, and the precursor is selected from the group consisting of:
 - (i) tethered amine tantalum complexes of the formula:

X is 2 or 3;

each of R₁-R₅ is independently selected from the group consisting of H, C₁-C₄

alkyl, aryl, C₁.C₆ perfluoroalkyl, and trimethylsilyl;

(ii) β -dimines of the formula:

 TaG_xQ_{5-x}

wherein:

G is a β -diimino ligand;

each Q is selected from the group consisting of H, C₁-C₆ alkyl, aryl and C₁.C₆

perfluoroalkyl; and

x is an integer from 1 to 4 inclusive;

(iii) tantalum diamide complexes of the formula

$Ta(N(R_1)(CH_2)_xN(R_2))_y(NR_3R_4)_{5-2y}$

wherein:

x iş 1 or 2;

5 y is 1 or 2;

each of R_1 -R-4 is independently selected from the group consisting of H, C_1 - C_4 alkyl, aryl, perfluoroalkyl, and trimethylsilyl;

(iv) tantalum amide compounds of the formula

Ta(NRR')₅

wherein each R and R' is independently selected from the group consisting of H, $C_1.C_4$ alkyl, phenyl, perfluoroalkyl, and trimethylsilyl, subject to the proviso that in each

NRR' group, R R';

(v) β-ketoimines of the formula

15

wherein each of R_1 , R_2 , R_a , R_b , R_c and R_d is independently selected from H, aryl, C_1 - C_6 alkyl, and C_1 - C_6 perfluoroalkyl; and

(vi) tantalum cyclopentadienyl compounds of the formula

Ta H

wherein each R is independently selected from the group consisting of H, methyl, ethyl, isopropyl, t-butyl, trimethylsilyl.

A method according to claim, further comprising a solvent for said precursor.

A method according to claim 7, wherein said solvent is selected from the group consisting of C_6 - C_{10} alkanes, C_6 - C_{10} aromatics, and compatible mixtures thereof.

A method according to claim, wherein said solvent is selected from the group consisting of hexane, heptane, octane, nonane, decane, toluene and xylene.

A method according to claim, comprising liquid delivery chemical vapor deposition of said precursor.

32

20

10

15

A method according to claim, comprising deposition of Ta and/or Ti on said substrate by a technique selected from the group consisting of chemical vapor deposition, assisted chemical vapor deposition, ion implantation, molecular beam epitaxy and rapid thermal processing.

A method according to claim , wherein the substrate comprises a microelectronic device structure.

A method according to claim 12, wherein TaN or TaSiN is deposited on said substrate, and the substrate thereafter is metallized with copper or integrated with a ferroelectric thin film.

A method according to claim 12, wherein TaN is deposited on said substrate, and the substrate thereafter is metallized with copper or integrated with a ferroelectric thin film.

A method according to claims, comprising liquid delivery chemical vapor deposition of said precursor to form TaN on the substrate, and thereafter metallizing the substrate with copper or integrating the substrate with a ferroelectric thin film.

Adel BI