I hereby pledge that I have not copied from anyone of my classmates/ seniors or any other sources. (Put tick mark if you are taking the pledge)

Roll Number: CED19I027

Due: 9th Nov 2020; '-4' marks for late submission

1. For the below binary tree write

a) Preorder: ABDCEGFHI

b) Inorder: BDAGECHFI

c) Postorder: DBGEHIFCA

d) Levelorder: ABCDEFGHI

2. Construct an expression tree for the following expression

a) A-(C/5*2)+(D*5%4)

Let us first find the postfix expression for this infix expression

Infix	stack	Postfix
A		A
-	-	A
(-(A
С	-(A C

/	-(/	A C
5	-(/	A C 5
*	-(/*	A C 5
2	-(/*	A C 5 2
)	-	A C 5 2 * /
+	- +	A C 5 2 * /
(- +(A C 5 2 * /
D	- +(A C 5 2 * / D
*	-+(*	A C 5 2 */ D
5	-+(*	A C 5 2 * / D 5
%	-+(%	A C 5 2 * / D 5 *
4	-+(%	AC52*/D5*4
)	-+	AC52*/D5*4%
		AC52*/D5*4%+-

POSTFIX	STACK
A	A
С	C A
5	5 C A
2	2 5 C A

*	* 2 5 C A
/	C * 2 A
D	C * 2
5	5 D (7) * (5) (2)

*	(C) (*) (Z) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A
4	4 * D 5 * C * 5 2
9%	* 4 D 5

3. For the above constructed expression tree write the following

a) Preorder: -A + /C * 52 % * D54

b) Inorder: A - C / 5 * 2 + D * 5 % 4

c) Postorder: A C 5 2 * / D 5 * 4 % + -

d) Levelorder: -A + / % C * * 452 D5

4. Convert the following postfix expression to expression tree

a) a b + c d e + * *

5. Construct binary tree using the order given below

inOrder = {20, 30, 35, 40, 45, 50, 55, 60, 70}; postOrder = {20, 35, 30, 45, 40, 55, 70, 60, 50};

final Binary tree Structure will look like this:

It is also an ordered Binary Search tree.

6. Construct binary tree using the order given below

Inorder sequence: D B E A F C Preorder sequence: A B D E C F

Final binary tree will look as follows:

7. How many binary trees are possible with 'n' nodes in general? Draw them for the following 'n' values.

- b) n=2 c) n=3 d) n=4

ans)

(a) for n=1, only one binary tree is possible

(b) for n=2, two binary trees are possible

(c) for n=3, five binary trees are possible

(d) for n=4, 14 binary trees are possible

now for n nodes in general,

Let N(x) = number of binary trees for x nodes in general

then, N(0)=1 (one empty tree)

$$N(1) = 1$$

$$N(2) = 2$$

$$N(3) = 5$$

N(3) can also be written as

$$N(3) = N(2)*N(0) + N(1)*N(1) + N(0)*N(2)$$

in general,

$$N(n) = \sum\nolimits_{\scriptscriptstyle i=1}^{n} N(i\text{-}1)*N(n\text{-}i)$$

8. Convert a tree to a binary tree

SOL)

STEP 1:

Remove all links except left most links and join all sibling nodes in the same level

STEP 2:

Redraw

9. A binary tree T has 'n' leaf nodes. The number of nodes of degree '2' in T is

Sol) In a binary tree,

number of leaves = 'n'

let the number of nodes with one child = N_1

let the number of nodes with two children = N_2

let e be the number of edges in the binary tree.

now we know that e = (total number of nodes) -1

$$e = n + N_1 + N_2 - 1$$

also, number of edges = (sum of degrees+1)'s of all nodes)/2

$$e = [(n*1) + (N_1*2) + (N_2*3)]/2$$

$$e = (n + 2N_1 + 3N_2)/2$$

Combining both equations of e, we get

$$(n+2N_1+3N_2)/2 = n+N_1+N_2-1$$

$$n = N_2 + 1$$

Number of leaf nodes = (Number of nodes with 2 children) + 1

Number of nodes with 2 children = n-1

10. Match the following (Applications of different data structures)

- a) Doubly Linked list (F) Time sharing problem/round robin scheduling algorithm
- b) Stack (E) Digital Image
- c) Queue (B) Recursive calls and function calls
- d) Priority queue (A) The cache in the browser that allows you to hit the BACK button
- e) 2D-Array (D)No longer FIFO
- f) Circular linked list (G) Computer file system
- g) Tree (C)CPU scheduling and Disk Scheduling

************THE END *******