

EVALUASI TENGAH SEMESTER GASAL 2024/2025 DEPARTEMEN MATEMATIKA FSAD ITS PROGRAM SARJANA

Matakuliah : Kalkulus Peubah Banyak Hari, Tanggal : Jumat, 18 Oktober 2024 Waktu / Sifat : 100 menit / Tertutup

Kelas, Dosen : A. Dra. Nur Asiyah, M.Si.

B. Drs. Suhud Wahyudi, M.Si.C. Drs. Lukman Hanafi, M.Si.

D. Dr. Didik Khusnul Arif S.Si., M.Si.

HARAP DIPERHATIKAN !!!

Segala jenis pelanggaran (mencontek, kerjasama, dsb) yang dilakukan pada saat ETS/EAS akan dikenakan sanksi pembatalan matakuliah pada semester yang sedang berjalan.

Petunjuk:

- Dilarang Membuka Hp, Kalkulator Dan Sejenisnya.
- Bobot Nilai Setiap Soal Sama.
- Kerjakan Yang Lebih Mudah Dahulu Menurut Anda.
- 1. Sketsa permukaan $x^2 y^2 z^2 = 16$.
- 2. Dapatkan $z_x, z_y, z_{xx}, z_{yy},$ dan z_{xy} dari $x^2 + y^2 z^2 = 4.$
- 3. Dapatkan hampiran persentase kesalahan maksimum untuk isi kerucut jika tingginya $30\,\mathrm{cm}$ terjadi kesalahan pengukuran sebesar 1% dan jari-jari lingkaran alasnya $10\,\mathrm{cm}$ dengan kesalahan pengukuran sebesar $\frac{1}{2}\%$. Tentukan nilai hampiran ukuran minimum dan maksimum isi kerucut tersebut.
- 4. Dapatkan persamaan bidang singgung dan garis normal terhadap permukaan $z + 1 = xe^y \cos z$ di titik (1,0,0).
- 5. Kuadrat jarak titik asal ke permukaan xyz = 1 adalah $d^2 = x^2 + y^2 + z^2$. Dapatkan jarak terpendek dari titik asal ke permukaan xyz = 1 tersebut.

Selamat mengerjakan semoga sukses

SOLUSI

- 1. Andaikan kita tidak mengetahui bahwa itu adalah hiperboloid, kita bisa pandang persamaan diatas dalam 3 POV yaitu bidang xy, xz, dan yz.
 - Pada bidang xy (jika z=0), maka diperoleh $x^2-y^2=16$, yaitu hiperbola terbuka ke arah sumbu x. Gambarnya seperti berikut.

 $y = \pm x$ $x^{2} - y^{2} = 16$ x = -6

• Pada bidang xz (jika y=0), maka diperoleh $x^2-z^2=16$, yaitu hiperbola terbuka ke arah sumbu x. Gambarnya seperti berikut.

 $z = \pm x$ $x^2 - z^2 = 16$ $x = \pm x$

• Pada bidang yz (jika x=5 atau x=-5), maka diperoleh $-y^2-z^2=16-25=-9 \implies y^2+z^2=9$, yaitu lingkaran dengan jari-jari 3. Gambarnya seperti berikut.

Kemudian jika kita gabungkan ketiga gambar diatas dalam bentuk 3D, maka kita akan mendapatkan gambar berikut.

2. Diketahui $z^2=x^2+y^2-4$ atau bisa k
ta tulis $z=\sqrt{x^2+y^2-4}$. Agar lebih mudah, cukup kita turunkan secara implisit untuk persama
an $z^2=x^2+y^2-4$.

Ketika diturunkan secara implisit terhadap x, diperoleh

$$\frac{\partial}{\partial x}(z^2) = \frac{\partial}{\partial x}(x^2 + y^2 - 4)$$
$$2z\frac{\partial z}{\partial x} = 2x + 0 - 0$$
$$z_x = \frac{x}{z} = \frac{x}{\sqrt{x^2 + y^2 - 4}}.$$

Ketika diturunkan secara implisit terhadap y, diperoleh

$$\frac{\partial}{\partial y}(z^2) = \frac{\partial}{\partial y}(x^2 + y^2 - 4)$$
$$2z\frac{\partial z}{\partial y} = 0 + 2y - 0$$
$$z_y = \frac{y}{z} = \frac{y}{\sqrt{x^2 + y^2 - 4}}.$$

Kemudian, kita turunkan z_x terhada
p \boldsymbol{x} untuk mendapatkan $z_{xx}.$

$$z_{xx} = \frac{\partial}{\partial x} \left(\frac{x}{z}\right)$$

$$= \frac{z \cdot 1 - x \cdot z_x}{z^2}$$

$$= \frac{\sqrt{x^2 + y^2 - 4} - x \frac{x}{\sqrt{x^2 + y^2 - 4}}}{x^2 + y^2 - 4}$$

$$= \frac{(x^2 + y^2 - 4) - x^2}{(x^2 + y^2 - 4)^{3/2}}$$

$$= \frac{y^2 - 4}{(x^2 + y^2 - 4)^{3/2}}$$

Selanjutnya, kita turunkan z_y terhadap y untuk mendapatkan z_{yy} .

$$z_{yy} = \frac{\partial}{\partial y} \left(\frac{y}{z}\right)$$

$$= \frac{z \cdot 1 - y \cdot z_y}{z^2}$$

$$= \frac{\sqrt{x^2 + y^2 - 4} - y \frac{y}{\sqrt{x^2 + y^2 - 4}}}{x^2 + y^2 - 4}$$

$$= \frac{(x^2 + y^2 - 4) - y^2}{(x^2 + y^2 - 4)^{3/2}}$$

$$= \frac{x^2 - 4}{(x^2 + y^2 - 4)^{3/2}}$$

Terakhir, kita turunkan z_x terhadap y atau z_y terhadap x untuk mendapatkan z_{xy} .

$$z_{xy} = \frac{\partial}{\partial y} \left(\frac{x}{z}\right)$$

$$= \frac{z \cdot 0 - x \cdot z_y}{z^2}$$

$$= \frac{-x \frac{y}{\sqrt{x^2 + y^2 - 4}}}{x^2 + y^2 - 4}$$

$$= \frac{-xy}{(x^2 + y^2 - 4)^{3/2}}$$

3. Diketahui tinggi kerucut $h=30\,\mathrm{cm}$ dan jari-jari lingkaran alasnya $r=10\,\mathrm{cm}$. Kemudian diketahui pula kesalahan pengukuran tinggi kerucut $\Delta h=0.01h=0.3\,\mathrm{cm}$ dan kesalahan pengukuran jari-jari lingkaran alasnya $\Delta r=0.005r=0.05\,\mathrm{cm}$. Isi kerucut dapat dihitung dengan rumus

$$V = \frac{1}{3}\pi r^2 h.$$

Dengan menggunakan diferensial total, maka diperoleh

$$\Delta V \approx dV = \frac{\partial V}{\partial r} \Delta r + \frac{\partial V}{\partial h} \Delta h.$$

Selanjutnya, kita hitung turunan parsialnya.

$$\begin{split} \frac{\partial V}{\partial r} &= \frac{1}{3}\pi \cdot 2r \cdot h = \frac{2}{3}\pi r h, \\ \frac{\partial V}{\partial h} &= \frac{1}{3}\pi r^2. \end{split}$$

Sehingga diperoleh

$$\Delta V \approx dV = \frac{2}{3}\pi r h \Delta r + \frac{1}{3}\pi r^2 \Delta h$$
$$= \frac{2}{3}\pi (10)(30)(0.05) + \frac{1}{3}\pi (10)^2 (0.3)$$
$$= 10\pi + 10\pi = 20\pi \,\text{cm}^3.$$

Volume kerucut sebenarnya adalah

$$V = \frac{1}{3}\pi(10)^2(30) = 1000\pi \,\mathrm{cm}^3.$$

Jadi, agar isi kerucut tersebut minimum dan maksimum, maka

$$V_{\text{min}} = V - \Delta V = 1000\pi - 20\pi = 980\pi \,\text{cm}^3,$$

 $V_{\text{max}} = V + \Delta V = 1000\pi + 20\pi = 1020\pi \,\text{cm}^3.$

4. Untuk mendapatkan persamaan bidang singgung, kita mulai dengan menurunkan secara implisit persamaan

$$z + 1 = xe^y \cos z$$
.

Ketika diturunkan terhadap x, diperoleh

$$\frac{\partial}{\partial x}(z+1) = \frac{\partial}{\partial x}(xe^y \cos z)$$

$$\frac{\partial z}{\partial x} = e^y \cos z + xe^y(-\sin z)\frac{\partial z}{\partial x}$$

$$z_x = e^y \cos z - xe^y \sin z \cdot z_x$$

$$z_x(1+xe^y \sin z) = e^y \cos z$$

$$z_x = \frac{e^y \cos z}{1+xe^y \sin z}.$$

Ketika diturunkan terhadap y, diperoleh

$$\frac{\partial}{\partial y}(z+1) = \frac{\partial}{\partial y}(xe^y \cos z)$$

$$\frac{\partial z}{\partial y} = xe^y \cos z + xe^y(-\sin z)\frac{\partial z}{\partial y}$$

$$z_y = xe^y \cos z - xe^y \sin z \cdot z_y$$

$$z_y(1+xe^y \sin z) = xe^y \cos z$$

$$z_y = \frac{xe^y \cos z}{1+xe^y \sin z}.$$

Selanjutnya, kita substitusi titik (1,0,0) ke dalam z_x dan z_y .

$$z_x(1,0,0) = \frac{e^0 \cos 0}{1 + 1e^0 \sin 0} = \frac{1 \cdot 1}{1 + 1 \cdot 0} = 1,$$

$$z_y(1,0,0) = \frac{1e^0 \cos 0}{1 + 1e^0 \sin 0} = \frac{1 \cdot 1 \cdot 1}{1 + 1 \cdot 0} = 1.$$

Dengan demikian, persamaan bidang singgung di titik (1,0,0) adalah

$$z - z_0 = z_x(x - x_0) + z_y(y - y_0)$$

$$z - 0 = 1(x - 1) + 1(y - 0)$$

$$z = x + y - 1.$$

Untuk mendapatkan persamaan garis normal, kita gunakan vektor normal dari bidang singgung, yaitu $\langle -z_x, -z_y, 1 \rangle = \langle -1, -1, 1 \rangle$. Dengan demikian, persamaan parametris garis normal di titik (1,0,0) adalah

$$\begin{cases} x = 1 - t, \\ y = 0 - t, \implies x - 1 = y = -z. \\ z = 0 + t, \end{cases}$$

5. Diketahui permukaan xyz=1 dan jarak kuadrat titik asal ke permukaan tersebut adalah $d^2=x^2+y^2+z^2$. Kita ingin meminimalkan d^2 dengan syarat xyz=1. Kita gunakan metode Lagrange, yaitu dengan mendefinisikan fungsi

$$\mathcal{L}(x, y, z, \lambda) = d^2 + \lambda(xyz - 1) = x^2 + y^2 + z^2 + \lambda(xyz - 1).$$

Kemudian kita hitung turunan parsialnya dan setarakan dengan nol.

$$\frac{\partial \mathcal{L}}{\partial x} = 2x + \lambda yz = 0,$$

$$\frac{\partial \mathcal{L}}{\partial y} = 2y + \lambda xz = 0,$$

$$\frac{\partial \mathcal{L}}{\partial z} = 2z + \lambda xy = 0,$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = xyz - 1 = 0.$$

Dari persamaan pertama, kedua, dan ketiga, kita dapatkan

$$\lambda = -\frac{2x}{yz},$$

$$\lambda = -\frac{2y}{xz},$$

$$\lambda = -\frac{2z}{xy}.$$

Dengan menyamakan ketiga persamaan di atas, kita peroleh

$$-\frac{2x}{yz} = -\frac{2y}{xz} \implies x^2 = y^2,$$

$$-\frac{2y}{xz} = -\frac{2z}{xy} \implies y^2 = z^2,$$

$$-\frac{2z}{xy} = -\frac{2x}{yz} \implies z^2 = x^2.$$

Dari sini, kita dapatkan $x^2 = y^2 = z^2$ atau |x| = |y| = |z|. Namun dengan mempertimbangkan syarat xyz = 1, maka akan ada 4 kemungkinan nilai (x, y, z), yaitu

$$(1,1,1), (-1,-1,1), (-1,1,-1), (1,-1,-1).$$

Dengan menggunakan turunan kedua, kita dapatkan

$$\frac{\partial^2 \mathcal{L}}{\partial x^2} = 2,$$
$$\frac{\partial^2 \mathcal{L}}{\partial y^2} = 2,$$

Karena $\frac{\partial^2 \mathcal{L}}{\partial x^2} > 0$ dan $\frac{\partial^2 \mathcal{L}}{\partial y^2} > 0$, maka keempat titik tersebut adalah titik minimum. Artinya jarak terpendek dari titik asal ke permukaan xyz = 1 adalah

$$d = \sqrt{d^2} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}.$$