Feuille d'exercices 12 : Limites et continuité

Limites de fonctions 1

Exercice 1. Montrer que les fonctions cos est sin n'ont pas de limite en $+\infty$.

Exercice 2. Montrer que $x \mapsto \frac{1}{x} \sin\left(\frac{1}{x}\right)$ n'a pas de limite à droite en 0.

Exercice 3. On considère la fonction : $f: \mathbb{R}^* \to \mathbb{R}$ $x \mapsto \frac{(-1)^{\lfloor \frac{1}{x} \rfloor}}{x}$

$$x \mapsto \frac{(-1)^{\lfloor \frac{1}{x} \rfloor}}{r}$$

Montrer que f n'admet pas de limite finie en 0.

A t-on $\lim_{x\to 0} f(x) = \pm \infty$?

Exercice 4. Soit f une fonction périodique sur \mathbb{R} . Montrer que si f admet une limite finie en $+\infty$, alors f est constante.

Exercice 5. Etudier les limites suivantes :

1. $\frac{e^{2x} + x + 2}{e^x + e^{-x}} \text{ en } +\infty$ 2. $x + \sqrt{x^2 - 1} \text{ en } -\infty$ 3. $\frac{\tan 5x}{\sin 2x} \text{ en } 0$ 4. $x \begin{vmatrix} 1 \\ x \end{vmatrix} \text{ en } +\infty$

1.
$$\frac{e^{2x} + x + 2}{e^x + e^{-x}}$$
 en $+\infty$

2.
$$x + \sqrt{x^2 - 1}$$
 en $-\infty$

3.
$$\frac{\tan 5x}{\sin 2x}$$
 en 0

4.
$$x \left| \frac{1}{x} \right|$$
 en $+\infty$

5.
$$\arctan\left(\frac{\sin(x)}{x}\right) \text{ en } 0$$
6. $(1+x)^{1/x} \text{ en } 0$

6.
$$(1+x)^{1/x}$$
 en 0

Exercice 6. Calculer $\lim_{x \to +\infty} \frac{x - \lfloor x \rfloor}{x + \lfloor x \rfloor}$

Exercice 7. Etudier les limites suivantes :

a.
$$\frac{x^2+1}{\sin^2(x)} \text{ en } 0.$$
f.
$$\frac{\sqrt{x^3-2x^2+x}}{x-1} \text{ en } 1$$
g.
$$x(e^{\frac{1}{x}}+e^{\frac{2}{x}}-2) \text{ en } +\infty$$
h.
$$\frac{\sin x-\sin 5x}{\sin x+\sin 5x} \text{ en } 0$$
i.
$$\frac{\sin^2 x-\sin^2 \alpha}{x^2-\alpha^2} \text{ en } \alpha \neq 0$$
e.
$$\frac{x^2-x-12}{x-4} \text{ en } 4$$
j.
$$\frac{\tan x-\sin x}{x^3} \text{ en } 0$$

f.
$$\frac{\sqrt{x^3 - 2x^2 + x}}{x - 1}$$
 en 1

k.
$$x \sin \frac{1}{x} en +\infty$$

b.
$$\frac{\sqrt{x+3-2}}{\sqrt{2x+7}-3}$$
 en 1
c. $\frac{x^5-6x^2+1}{3x^5+2x^3+7}$ en $+\infty$

g.
$$x(e^{\frac{1}{x}} + e^{\frac{2}{x}} - 2)$$
 en $+\infty$
h. $\frac{\sin x - \sin 5x}{\sin x + \sin 5x}$ en 0

1.
$$\frac{\sin x}{x}$$
 en $+\infty$
m. $\frac{x}{\alpha} \left| \frac{b}{x} \right|$ en 0

d.
$$x - \ln(x + \sqrt{x^2 + 1})$$
 en $+\infty$
 $x^2 - x - 12$

i.
$$\frac{\sin^2 x - \sin^2 \alpha}{x^2 - \alpha^2}$$
 en $\alpha \neq 0$

n.
$$\frac{\sqrt{3}\cos(x) - \sin(x)}{x - \frac{\pi}{3}}$$
 en $\frac{\pi}{3}$

avec $(\alpha, a, b) \in \mathbb{R}^* \times \mathbb{R}_+ \times \mathbb{R}$ de telle sorte que l'expression considérée soit définie.

Exercice 8. Déterminer si elle existe, la limite en a de f fonction définie sur I où :

1.
$$I = \mathbb{R}$$
, $f(x) = x \sin x$, $a = +\infty$,

3.
$$I = \mathbb{R}^*, f(x) = \cos x \cos \frac{1}{x}, a = 0,$$

2.
$$I = \mathbb{R}^*, f(x) = \sin x \sin \frac{1}{x}, a = 0,$$

3.
$$I = \mathbb{R}^*, f(x) = \cos x \cos \frac{1}{x}, a = 0,$$

4. $I = [0, \frac{\pi}{2}[, f(x) = \cos x + \lfloor \tan x \rfloor, a = \frac{\pi}{2},$
5. $I = [0, \pi] \setminus \{\frac{\pi}{2}\}, f(x) = \cos x + \lfloor \tan x \rfloor, a = \frac{\pi}{2}.$

Exercice 9. On pose pour tout $x \in [1, +\infty[$, $f(x) = \int_{x}^{2x} \frac{dt}{t + \sqrt{t}}$.

- 1. Que vaut, pour x > 0, l'intégrale $\int_{-\infty}^{2x} \frac{dt}{t}$?
- 2. Démontrer que pour tout $t \in [1, +\infty[$, on $a : 0 \le \frac{1}{t} \frac{1}{t + \sqrt{t}} \le \frac{1}{t^{3/2}}$.
- 3. En déduire une majoration de $|\ln(2) f(x)|$.
- 4. Quelle est la limite de f(x) lorsque x tend vers $+\infty$?

2 Continuité

Exercice 10. 1. Montrer que si f et q sont continues de \mathbb{R} dans \mathbb{R} et coïncident sur \mathbb{Q} , alors f = q sur \mathbb{R} .

- 2. Soient $f, g : \mathbb{R} \to \mathbb{R}$ continues telles que $\forall x \in \mathbb{Q}, f(x) < g(x)$.
 - (a) Montrer que $f \leq g$.
 - (b) Montrer qu'on n'a pas nécessairement : $\forall x \in \mathbb{R}, f(x) < g(x)$.
- 3. Soit $f: \mathbb{R} \to \mathbb{R}$ continue dont la restriction à \mathbb{Q} est strictement croissante. Montrer que f est strictement croissante.

Exercice 11. Soit $f: \mathbb{R} \to \mathbb{R}$ définie par :

$$\forall x \in \mathbb{R}, f(x) = \left\{ \begin{array}{l} x - 1 \text{ si } x \in \mathbb{Q} \\ x + 1 \text{ si } x \in \mathbb{R} \setminus \mathbb{Q} \end{array} \right..$$

Montrer que f est bijective et discontinue en tout point de \mathbb{R} .

Exercice 12. Déterminer si les fonctions suivantes sont prolongeables par continuité en 0 :

1.
$$f(x) = \frac{|x|}{x}$$

2.
$$f(x) = x \left| \frac{1}{x} \right|$$

3.
$$f(x) = \exp\left(\frac{1}{x}\right)$$

$$6. \ f(x) = x \cos(\frac{1}{x})$$

$$2. \ f(x) = x \bigg| \frac{1}{x}$$

4.
$$f(x) = (1+x)^{1/x}$$

5. $f(x) = \cos(\frac{1}{x})$

7.
$$f(x) = \frac{1}{x} \sin \frac{1}{x}$$

Exercice 13. Etudier la continuité des fonctions définies par :

1.
$$f(x) = x - \lfloor x \rfloor - (x - \lfloor x \rfloor)^2$$
,

2.
$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$
.

Exercice 14. Etudier la continuité de la fonction définie par : $f(x) = \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}$,

Exercice 15. Montrer qu'une fonction continue sur I ne s'annulant pas garde un signe strict constant.

Exercice 16. Montrer que l'équation $x^{17} = x^{11} + 1$ admet au moins une solutions $x \in \mathbb{R}_+$.

Exercice 17. Soient f et g deux fonctions continues sur un intervalle I vérifiant $\forall x \in I$, |f(x)| = |g(x)| et $f(x) \neq 0$. Montrer que f = g ou f = -g.

Exercice 18. Soit $f: I \to \mathbb{R}$ continue. Montrer que si f prend un nombre fini de valeurs, alors f est constante.

Exercice 19. Soit $a \leq b$ et soit $f: [a, b] \to \mathbb{R}$ une fonction continue.

- 1. On suppose que $f([a,b]) \subset [a,b]$. Montrer qu'il existe $c \in [a,b]$ tel que f(c) = c.
- 2. Même question lorsqu'on suppose que $[a,b] \subset f([a,b])$.

Exercice 20. Soit f une application de l'intervalle I dans \mathbb{R} continue et injective.

Montrer que f est strictement monotone.

On pourra considérer la fonction $\phi: t \mapsto f((1-t)x_1 + tx_2) - f((1-t)y_1 + ty_2)$.

Exercice 21. Soient $f, g \in \mathcal{C}^0([0,1], \mathbb{R})$ telles que f(0) = g(1) = 0 et f(1) = g(0) = 1. Montrer que :

$$\forall \lambda \in \mathbb{R}^+, \exists x \in [0,1], f(x) = \lambda g(x).$$

Exercice 22. Soit $f \in \mathcal{C}^0([0,1],\mathbb{R})$ telle que f(0) = f(1). Montrer que :

$$\forall n \in \mathbb{N}^*, \exists x \in [0,1], f\left(x + \frac{1}{n}\right) = f(x).$$

Exercice 23. Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ continue telle que :

$$\lim_{x \to 0} f(x) = \lim_{x \to +\infty} f(x) = +\infty$$

Montrer que f admet un minimum sur \mathbb{R}_{+}^{*} .

Exercice 24. Soit f une fonction continue sur \mathbb{R} telle que :

$$\lim_{x \to +\infty} f(x) = a \in \mathbb{R} \quad \text{ et } \quad \lim_{x \to -\infty} f(x) = b \in \mathbb{R}.$$

Montrer que f est bornée sur \mathbb{R} . La fonction f atteint-elle ses bornes?

Exercice 25. Soient $f, g : [0, 1] \to \mathbb{R}$ continues telles que $\forall x \in [0, 1], f(x) < g(x)$. Montrer qu'il existe m > 0 tel que $\forall x \in [0, 1], f(x) + m \leq g(x)$.

Exercice 26. Soit $f: \mathbb{R} \to \mathbb{R}$, bornée sur \mathbb{R} et $g: \mathbb{R} \to \mathbb{R}$ continue sur \mathbb{R} . Montrer que $g \circ f$ et $f \circ g$ sont bornées sur

Exercice 27. Soient $a, b \in \mathbb{R}$, a < b et $f : [a, b] \to \mathbb{R}$ continue. Montrer que :

$$\sup_{x \in]a,b[} f(x) = \sup_{x \in [a,b]} f(x) \text{ et } \inf_{x \in]a,b[} f(x) = \inf_{x \in [a,b]} f(x).$$

Exercice 28. Soient f et g deux fonctions de [-1,1] dans \mathbb{R} .

On définit pour tout $x \in \mathbb{R}$, la fonction $M(x) = \sup_{x \in \mathbb{R}} (f(t) + xg(t))$

- 1. Montrer que $M:\mathbb{R}\to\mathbb{R}$ est bien définie.
- 2. Montrer que : $\forall h > 0, \ \forall x \in \mathbb{R}, \ \Big(M(x+h) \le M(x) + h \sup_{t \in [-1,1]} g \quad \text{et} \quad M(x+h) \ge M(x) + h \inf_{t \in [-1,1]} g \Big).$
- 3. Montrer que pour tout $(a,x) \in \mathbb{R}^2$, $|M(x) M(a)| \le |x-a|$. En déduire que $M: \mathbb{R} \to \mathbb{R}$ est continue.

Exercice 29. On considère la fonction suivante :

$$\begin{array}{cccc} f: &]0,1[& \rightarrow & \mathbb{R} \\ & x & \mapsto & \frac{1}{x} + \frac{1}{x-1}. \end{array}$$

- 1. Montrer que f est bijective.
- 2. Déterminer :

$$\lim_{n \to +\infty} f^{-1}(2^{-n}).$$

Exercice 30. Soit f la fonction définie par : $f(x) = \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right|$.

- 1. Comparer $f\left(\frac{1}{x}\right)$ et f(x).
- 2. On désigne par $\stackrel{'}{\varphi}$ la restriction de f à] -1,1[. Montrer que φ est une bijection de] -1,1[dans \mathbb{R} .
- 3. Déterminer la fonction $\varphi^{-1} \circ f$.

Equations fonctionnelles 3

Exercice 31. Trouver toutes les applications $f: \mathbb{R} \to \mathbb{R}$ continues en 0 telles que : $\forall x \in \mathbb{R}, \ f(x) = f\left(\frac{x}{2}\right)$.

Exercice 32. Trouver toutes les applications $f: \mathbb{R} \to \mathbb{R}$ continues en 0 telles que : $\forall x \in \mathbb{R}, \ f(3x) = f(x)$

Exercice 33. Déterminer toutes les fonctions f continues sur \mathbb{R} telles que :

$$\forall x \in \mathbb{R}, \ f(x)^2 = f(x)$$

Exercice 34. Déterminer toutes les fonctions $f: \mathbb{R}_+ \to \mathbb{R}$ continues telles que :

$$\forall x \in \mathbb{R}_+, \ f(x^2) = f(x).$$

On pourra étudier les suites $(x^{2^n})_{n\in\mathbb{N}}$ et $(x^{2^{-n}})_{n\in\mathbb{N}}$.

Exercice 35. Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues sur \mathbb{R} vérifiant les équations fonctionnelles suivantes:

- 1. $\forall x, y \in \mathbb{R}$, f(x+y) = f(x) + f(y);
- 2. $\forall x, y \in \mathbb{R}$, f(x+y) = f(x)f(y).