

planetmath.org

Math for the people, by the people.

subsheaf of abelian groups

Canonical name SubsheafOfAbelianGroups

Date of creation 2013-03-22 17:39:21 Last modified on 2013-03-22 17:39:21

Owner jirka (4157) Last modified by jirka (4157)

Numerical id 5

Author jirka (4157)
Entry type Definition
Classification msc 14F05
Classification msc 54B40
Classification msc 18F20
Synonym subsheaf
Synonym subsheaves

Let \mathcal{F} be a sheaf of abelian groups over a topological space X. Let \mathcal{G} be a sheaf over X, such that for every open set $U \subset X$, $\mathcal{G}(U)$ is a subgroup of $\mathcal{F}(U)$. And further let the on \mathcal{G} be by those on \mathcal{F} . Then \mathcal{G} is a *subsheaf* of \mathcal{F} .

Suppose a sheaf of abelian groups \mathcal{F} is defined as a disjoint union of stalks \mathcal{F}_x over points $x \in X$, and \mathcal{F} is topologized in the appropriate manner. In particular, each stalk is an abelian group and the group operations are continuous. Then a subsheaf \mathcal{G} is an open subset of \mathcal{F} such that $\mathcal{G}_x = \mathcal{G} \cap \mathcal{F}_x$ is a subgroup of \mathcal{F}_x .

When \mathcal{G} is a subsheaf of \mathcal{F} , then $\mathcal{F}_x/\mathcal{G}_x$ is an abelian group. Considering this to be the stalk over x we have a sheaf which is denoted by \mathcal{F}/\mathcal{G} , with the topology being the quotient topology.

Example. Suppose M is a complex manifold. Let \mathcal{M}^* be the sheaf of germs of meromorphic functions which are not identically zero. That is, for $z \in M$, the stalk \mathcal{M}_z^* is the abelian group of germs of meromorphic functions at z with the group operation being multiplication. Then \mathcal{O}^* , the sheaf of germs of holomorphic functions which are not identically 0 is a subsheaf of \mathcal{M}^* .

The sheaf $\mathcal{M}^*/\mathcal{O}^*$ is then the sheaf of divisors. If M is of (complex) dimension 1, then $\mathcal{M}^*/\mathcal{O}^*$ is just the sheaf of functions into the integers with finite support.

References

- [1] Glen E. Bredon, Springer, 1997.
- [2] Robin Hartshorne., Springer, 1977.
- [3] Lars Hörmander., North-Holland Publishing Company, New York, New York, 1973.