Lot C1

Tom Gilgenkrantz

Mardi 26 Mars 2024

1 Introduction

Soit $n \in \mathbb{N}$.

On modélise l'experience du placement de tetrominos carrés (2x2) dans une grille de taille $2n \times 2n$ pour la remplir parfaitement, avec chaque pièce qui vaut aléatoirement 1, 2 ou 3 points. Ce problème est équivalent à celui de remplir totalement une grille de taille $n \times n$ avec des carrés de taille (1x1) qui valent aléatoirement 1, 2 ou 3 points.

On modélise ainsi cela en posant $\forall (i,j) \in [1 ; n]^2, X_{i,j} \sim \mathcal{U}(\{1,2,3\})$ les variables aléatoires (i.i.d) associées au score de la case (i,j).

2 Calculs préliminaires

On commence par calculer l'espérance et la variance de $X \sim \mathcal{U}(\{1,2,3\})$.

$$\mathbb{E}(X) = \sum_{i=1}^{3} iP(X = i)$$

$$= \sum_{i=1}^{3} \frac{i}{3}$$

$$= \frac{1}{3}(1 + 2 + 3)$$

$$= 2$$

$$\mathbb{E}(X^{2}) = \sum_{i=1}^{3} i^{2}P(X = i)$$

$$= \sum_{i=1}^{3} \frac{i^{2}}{3}$$

$$= \frac{1}{3}(1^2 + 2^2 + 3^2)$$

$$= \frac{14}{3}$$

$$Var(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

$$= \frac{14}{3} - 2^2$$

$$= \frac{2}{3}$$

On obtient donc que $\mathbb{E}(X) = 2$ et $Var(X) = \frac{2}{3}$.

3 Cas de G_4

On note G_4 la variable aléatoire représentant le score total obtenu en remplissant une grille de taille 4×4 avec des carrés de taille (1x1) qui valent aléatoirement 1, 2 ou 3 points.

Il faudra alors $4^2 = 16$ carrés pour remplir la grille.

En se servant de nos calculs préliminaires on va calculer l'espérance et la variance de G_4 .

$$\mathbb{E}(G_4) = \mathbb{E}(\sum_{i=1}^4 \sum_{j=1}^4 X_{i,j})$$

$$= \sum_{i=1}^4 \sum_{j=1}^4 \mathbb{E}(X_{i,j}) \quad \text{par linéarité de l'espérance}$$

$$= 16 \times \mathbb{E}(X) \quad \text{car les } X_{i,j} \text{ sont i.i.d}$$

$$= 16 \times 2$$

$$= 32$$

$$Var(G_4) = Var(\sum_{i=1}^4 \sum_{j=1}^4 X_{i,j})$$

$$=\sum_{i=1}^4\sum_{j=1}^4 Var(X_{i,j}) \quad \text{car les } X_{i,j} \text{ sont indépendantes}$$

$$=16\times Var(X) \quad \text{car les } X_{i,j} \text{ sont i.i.d}$$

$$=16\times\frac{2}{3}$$

$$=\frac{32}{3}$$

On obtient donc que $\mathbb{E}(G_4) = 32$ et $Var(G_4) = \frac{32}{3}$.

4 Cas de G_n

On note G_n la variable aléatoire représentant le score total obtenu en remplissant une grille de taille $n \times n$ avec des carrés de taille (1x1) qui valent aléatoirement 1, 2 ou 3 points.

Il faudra alors n^2 carrés pour remplir la grille.

$$\mathbb{E}(G_n) = \mathbb{E}(\sum_{i=1}^n \sum_{j=1}^n X_{i,j})$$

$$= \sum_{i=1}^n \sum_{j=1}^n \mathbb{E}(X_{i,j}) \quad \text{par linéarité de l'espérance}$$

$$= n^2 \times \mathbb{E}(X) \quad \text{car les } X_{i,j} \text{ sont i.i.d}$$

$$= 2n^2$$

$$Var(G_n) = Var(\sum_{i=1}^n \sum_{j=1}^n X_{i,j})$$

$$= \sum_{i=1}^n \sum_{j=1}^n Var(X_{i,j}) \quad \text{car les } X_{i,j} \text{ sont indépendantes}$$

$$= n^2 \times Var(X) \quad \text{car les } X_{i,j} \text{ sont i.i.d}$$

$$= \frac{2n^2}{3}$$

On obtient donc que $\mathbb{E}(G_n) = 2n^2$ et $Var(G_n) = \frac{2n^2}{3}$.