25

CLAIMS

- 1. A protein crystal comprising the processivity clamp factor of DNA polymerase and a peptide of about 3 to about 30 amino acids, in particular of about 16 amino acids, said peptide comprising all or part of the processivity clamp factor binding sequence of a processivity clamp factor interacting protein, such as prokaryotic Pol I, Pol II, Pol IV, Pol V, MutS, ligase I, α subunit of DNA polymerase, UmuD or UmuD', or eukaryotic pol ϵ , pol δ , pol η , pol ι , pol κ .
- 2. A protein crystal according to claim 1, wherein the processivity clamp factor of DNA polymerase is the β subunit of DNA polymerase, in particular the β subunit of DNA polymerase III of Escherichia coli, and the peptide has the following sequence:
 VTLLDPQMERQLVLGL (SEQ ID NO: 1)
- 3. A protein crystal according to claim 1 or 2, comprising the β subunit of DNA polymerase III of *Escherichia coli* and the peptide of SEQ ID NO: 1, said crystal being triclinic and its cell dimensions being approximately a = 41.23 Å, b = 65.22 Å, c = 73.38 Å, $\alpha = 73.11^{\circ}$, $\beta = 85.58^{\circ}$, $\gamma = 85.80^{\circ}$.
- 4. A protein crystal according to claim 3, characterized by the atomic coordinates such as obtained by the X-ray diffraction of said crystal, said atomic coordinates being represented in Figure 1.
 - 5. A protein crystal according to claim 3 or 4, characterized by the atomic coordinates representing the peptide and the peptide binding site of the β subunit of DNA polymerase III of Escherichia coli, and being as follows:

```
4045
                                LEU B 155
                                                 5.874
                                                         17.816
                                                                 22.109
             ATOM
                     4046
                                                                                 1.00
                           CA
                                LEU B 155
                                                                                            В
                                                 6.029
                                                         16.359
                                                                 22.087
             ATOM
                                                                          1.00
                                                                                 1.00
                     4047
                                LEU B 155
                           CB
                                                                                            В
30
                                                 5.055
                                                         15.686
                                                                 23.064
             ATOM
                                                                          1.00
                                                                                 1.00
                     4048
                           CG
                                LEU B 155
                                                                                            В
                                                 5.260
                                                         16.046
                                                                 24.536
                                                                          1.00
             ATOM
                     4049
                           CD1
                               LEU B 155
                                                                                 1.00
                                                                                            В
                                                 4.256
                                                         15.237
                                                                 25.360
             ATOM
                    4050
                                                                          1.00
                                                                                 1.00
                           CD2
                               LBU B 155
                                                 6.686
                                                         15.757
                                                                 24.980
             ATOM
                                                                          1.00
                    4051
                                                                                 1.00
                           C
                                                                                            В
                               LEU B 155
                                                 5.808
                                                         15.776
                                                                 20.682
             MOTA
                    4052
                           0
                               LEU B 155
                                                                          1.00
                                                                                 1.00
                                                                                            В
35
                                                 6.177
                                                         14.613
                                                                 20.431
             MOTA
                                                                          1.00
                    4177
                           N
                                                                                 1.00
                               THR B 172
                                                                                            В
                                                 9.112
                                                         11.246
                                                                 22.902
             ATOM
                                                                          1.00
                    4178
                           CA
                                                                                 1.00
                                                                                            В
                               THR B 172
                                                 8.212
                                                         10.730
                                                                 23.917
             MOTA
                                                                          1.00
                    4179
                           CB
                                                                                 1.00
                                                 8.776
                               THR B 172
                                                                                           В
                                                         11.014
                                                                 25.344
             ATOM
                    4180
                                                                          1.00
                                                                                 1.00
                           OG1
                               THR B 172
                                                                                           В
                                                 7.931
                                                        10.400
             ATOM
                                                                 26.328
                                                                          1.00
                                                                                 1.00
                    4181
                           CG2
                               THR B 172
                                                                                           В
40
                                                 8.870
                                                        12.532
                                                                 25.619
             ATOM
                                                                          1.00
                                                                                 1.00
                    4182
                           C
                               THR B 172
                                                                                           В
                                                 6.805
                                                        11.269
                                                                 23.709
             ATOM
                                                                          1.00
                                                                                1.00
                    4183
                          0
                               THR B 172
                                                                                           В
                                                 6.588
                                                        12.352
                                                                 23.145
                                                                         1.00
            ATOM
                    4192
                          N
                               GLY B 174
                                                                                1.00
                                                                                           В
                                                 4.562
                                                        10.770
                                                                 26.397
                                                                         1.00
                                                                                1.00
```

	ATOM		CA GLY B 174	3.99	3 10			
	MOTA MOTA		C GLY B 174	3 76		_		В
	ATOM		O GLY B 174 N HIS B 175	3.66				В
5	ATOM		N HIS B 175 CA HIS B 175		0 8.34			В
	MOTA		CB HIS B 175	7		3 27.796		B B
	ATOM		CG HIS B 175	4.54			1.00 1.00	В
	ATOM		CD2 HIS B 175	0.99 0.10	_		1.00 1.00	В
10	MOTA MOTA		ND1 HIS B 175	0.42			2.00	В
	ATOM		CE1 HIS B 175	-0.76			2.00	В
	ATOM		NE2 HIS B 175 C HIS B 175	-0.97	7 7.938			В
	MOTA		O HIS B 175	4.70		27.641	1.00 1.00	₿
15	MOTA		N ARG B 176	4.99			1.00 1.00	8 8
13	MOTA	4207	CA ARG B 176	5.48: 6.71:			1.00 18.76	В
	ATOM	4208	CB ARG B 176	6.575			1.00 18.30	В
	ATOM ATOM	4209	CG ARG B 176	6.32			1.00 19.53	В
••	ATOM		CD ARG B 176 NE ARG B 176	4.876			1.00 22.88	В
20	ATOM		NE ARG B 176 CZ ARG B 176	4.435	5.312		1.00 22.11 1.00 22.09	В
	NOTA		NH1 ARG B 176	4.555		21.202	1.00 20.17	B B
	ATOM	4214	NH2 ARG B 176	5.159 3 <i>.</i> 914			1.00 17.04	В
	ATOM	4215	C ARG B 176	7.684	,		1.00 20.02	B
25	ATOM ATOM		O ARG B 176	7.255	,		1.00 17.30	В
	ATOM		N LEU B 177	8.957	6.504		1.00 18.10	В
	ATOM		CA LEU B 177 CB LEU B 177	10.049	7.360		1.00 17.97 1.00 17.85	В
	ATOM		CG LEU B 177	10.664		26.827	1.00 18.29	B B
30	MOTA	4221	CD1 LEU B 177	11.921 11.819		26.611	1.00 16.28	В
50	ATOM	4222 (CD2 LEU B 177	13.191		27.559	1.00 19.52	В
	ATOM ATOM	4223 (C LEU B 177	11.110		26.839 24.964	1.00 19.12	B
	ATOM	4224 (4710 h	DEU B 177	11.291	5.329	25.281	1.00 18.45	В
25	ATOM		PRO B 242 D PRO B 242	11.254	17.279	27.890	1.00 18.33 1.00 1.00	В
35	MOTA		TA PRO B 242	9.987		27.286	1.00 1.00	B
	MOTA		D PRO B 242	11.660 10.688	16.404	28.997	1.00 1.00	В
	ATOM		G PROB 242	9.448	15.230 15.869	28.874	1.00 1.00	В
	MOTA MOTA	4715 (13.124	15.947	28.336 28.987	1.00 1.00	B
40	ATOM	4716 C		13.728	15.748	27.925	1.00 1.00 1.00 1.00	В
	MOTA		ARG B 246 A ARG B 246	16.133	11.840	33.560	1.00 1.00 1.00 1.00	В
	ATOM	_	B ARG B 246	15.239	11.808	34.707	1.00 1.00	B B
	ATOM		G ARG B 246	14.755 15.880	13.227	34.984	1.00 1.00	B
45	ATOM		D ARG B 246	16.443	14.252 14.295	35.113	1.00 1.00	В
	ATOM ATOM		B ARG B 246	15.374	14.318	36.529 37.524	1.00 1.00	B
	ATOM		Z ARG B 246 H1 ARG B 246	14.316	15.126	37.477	1.00 1.00 1.00 1.00	В
	ATOM	4756 N	H2 ARG B 246	14.169	15.992	36.481	1.00 1.00 1.00 1.00	В
50	ATOM	4757 C	ARG B 246	13.396	15.067	38.430	1.00 1.00	B
30	ATOM	4758 O	ARG B 246	14.022 13.384	10.889	34.566	1.00 1.00	B
	ATOM	4759 N	VAL B 247	13.695	10.536 10.532	35.560	1.00 1.00	В
	ATOM ATOM	4760 C		12.553	9.675	33.327 33.018	1.00 1.00	В
<i>c</i> -	ATOM	4761 CI	B VAL B 247 G1 VAL B 247	12.061	9.942	31.585	1.00 1.00 1.00 1.00	B
55	ATOM	4763 C	32 VAL B 247	10.930	8.991	31.216	1.00 1.00	8
	MOTA	4764 C	VAL B 247	11.624	11.391	31.462	1.00 1.00	B B
	ATOM	4765 O	VAL B 247	12.962 12.125	8.218	33.133	1.00 1.00	В
	MOTA	4996 N	PHE B 278	-7.702	7.334 -1.352	33.308	1.00 1.00	В
60	ATOM ATOM	4997 C		-6.698	-1.155	24.244 25.300	1.00 1.00	В
	ATOM	4998 CE		-7.318	-1.432		1.00 1.00 1.00 1.00	В
	ATOM		F PHE B 278	-8.431	-0.459		1.00 1.00 1.00 1.00	В
	MOTA		2 PHE B 278	-8.142	0.882	27.268	1.00 1.00	B
65	MOTA	5002 CE	1 PHE B 278	-9.760 -9.177	-0.869	27.021	1.00 1.00	В
05	ATOM	5003 CE	2 PHE B 278	-10.795	1.816 0.052		1.00 1.00	В
	MOTA MOTA	5004 C2	PHE B 278	-10.496	1.391		1.00 1.00	В
	ATOM	5005 C	PHE B 278	-5.403	-1.957		1.00 1.00	В
70	ATOM	5006 O 5332 N	PHE B 278	-4.356	-1.582		1.00 1.00 1.00 1.00	В
70	MOTA	5333 CA	ASN B 320	0.635	~2.143		1.00 1.00 1.00 1.00	В
	ATOM	5334 CB		-0.051			1.00 1.00	B B
	ATOM	5335 CG	ASN B 320	-0.055 -0.561	-0.504	25.796 :	1.00 1.00	B
	MOTA	5336 OD	1 ASN B 320	-0.226		24.407	1.00 1.00	В
75	ATOM	5337 ND:	2 ASN B 320	-1.362		-	1.00 1.00	В
	ATOM ATOM	5338 C	ASN B 320	0.927			1.00 1.00	В
		5339 O 5353 N	ASN B 320	2.093	_		1.00 1.00 1.00 1.00	В
		14	TYR B 323			~	00 1.00	B B
								6

-	ATOM	5354	CA	TYR I	3 3 2 3	4 11					
	ATOM	5355		TYR I		4.110 3.87	_ :			1.00	E
	ATOM	5356	_		3 3 2 3	2.81			1.00	1.00	E
5	ATOM ATOM	5357		TYR I		2.39			1.00	1.00	E
•	MOTA	5358 5359				1.45			1.00	1.00	E B
	ATOM	5360				2.28			1.00	1.00	E
	ATOM	5361		TYR E		1.354 0.95			1.00	1.00	В
10	MOTA	5362	OH	TYR E		0.112			1.00	1.00	В
10	ATOM	5363		TYR E	3 323	5.32			1.00	1.00	В
	MOTA	5364		TYR E		6.468			1.00	1.00	В
	MOTA MOTA	5519		VAL E		3.837			1.00	1.00	B
	ATOM	5520 5521		VAL E		3.324		39.030	1.00	1.00	19 19
15	MOTA	5522		VAL E		2.676			1.00	1.00	В
	ATOM	5523		VAL E	3 344	1.474 3.687	_		1.00	1.00	В
	ATOM	5524	C	VAL E	3 344	4.405			1.00	1.00	В
	MOTA	5525		VAL E		4.199			1.00	1.00	В
20	ATOM	5532	N	SER E		7.618			1.00	1.00 21.53	В
20	ATOM ATOM	5533	CA	SER E		8.060			1.00	21.50	В
	ATOM	5534 5535	OG CB	SER E		8.655				21.47	B
	ATOM	5536	C	SER E		9.793				26.08	В
0.5	ATOM	5537	ŏ	SER B		9.107			1.00	20.70	В
25	ATOM	5632	N	VAL B		9.755 11.730				21.55	В
	ATOM	5633	CA	VAL B	360	11.023			1.00	1.00	В
	ATOM	5634	CB	VAL B	360	11.276		28.812 29.641	1.00	1.00	В
	MOTA MOTA	5635	CG1	VAL B	360	10.448		30.934	1.00	1.00	В
30	ATOM	5636 5637		VAL B		12.753		29.937	1.00	1.00	B B
	MOTA	5638	С 0	VAL B		9.562		28.501	1.00	1.00	В
	ATOM	5639	Ŋ	VAL B	360	9.008		27.753	1.00	1.00	В
	ATOM	5640	CA	VAL B		8.905 7.488		29.069	1.00	19.72	В
35	ATOM	5641	CB	VAL B		7.216		28.831		18.92	В
23	MOTA	5642	CG1	VAL B	361	5.743		28.069 27.716	1.00		В
	ATOM	5643	CG2	VAL B	361	8.065		26.786	1.00	17.76	В
	ATOM ATOM	5644 5645	C	VAL B		6.793	2.100	30.167	1.00		B B
4.4	ATOM	5646	O N	WET B	361	7.232		31.038	1.00		В
40	ATOM	5647	CA	MET B	362	5.737		30.318	1.00	1.00	В
	MOTA	5648	CB	MET B		4.962 4.226		31.540	1.00	1.00	В
	ATOM	5649	CG	MET B		3.918		31.682 33.122	1.00	1.00	В
	ATOM	5650	SD	MET B	362	5.405		34.163	1.00 1.00	1.00	В
45	ATOM ATOM	5651	CE	MET B		4.575		35.731	1.00	1.00	B B
,	ATOM	5652 5653	С 0	MET B MET B		3.949	1.731	31.471	1.00	1.00	В
	ATOM	5654	N	PRO B		3.385	1.438	30.410	1.00	1.00	В
	ATOM	5655	CD	PRO B		3.698 4.521	1.069	32.599	1.00	1.00	В
50	ATOM	5656	CA	PRO B	363	2.729	1.025 -0.038	33.818 32.579	1.00	1.00	В
50	MOTA	5657	CB	PRO B		3.155	-0.883	33.776	1.00 1.00	1.00	В
	ATOM ATOM	5658	CG	PRO B		3.665	0.160	34.754	1.00	1.00	B B
	ATOM	5659 5660	0	PRO B	363	1.272	0.395	32.672	1.00	1.00	В
~ ~	ATOM	5661	и	PRO B MET B		0.959	1.574	32.811	1.00	1.00	B
55	ATOM	5662	CA	MET B		0.368 -1.037	-0.568	32.537	1.00	1.0p	В
	ATOM	5663	CB	MET B		-1.780	-0.272 -0.391	32.674	1.00	1.00	В
	ATOM	5664	CG	met b		-1.636	-1.670	31.332 30.568	1.00	1.00	В
	ATOM ATOM	5665	SD	MET B		-2.386	-1.510	28.872	1.00 1.00	1.00	В
60	ATOM	5666	CE	MET B	364	-4.155	-1.253	29.308	1.00	1.00	B B
	ATOM	5667 5668		MET B		-1.602	-1.218	33.725	1.00	1.00	В
	ATOM	5669	Ŋ	ARG B	365	-0.999	-2.251	34.035	1.00	1.00	В
	MOTA	5670	CA	ARG B	365	-2.732 -3.383	-0.836	34.307	1.00	1.00	В
65	MOTA	5671	CB	ARG B	365	-4.029	-1.655 -0.756	35.324	1.00	1.00	В
05	ATOM	5672		ARG B		-4.785	-1.490	36.394 37.505	1.00	1.00	В
	MOTA	5673		ARG B		-3.859	-2.316	38.398	1.00 1.00	1.00	В
	MOTA MOTA	5674		ARG B		-4.571	-2.956	39.505	1.00	1.00	B B
5 0	ATOM	5675 5676	CZ NH1	ARG B	365 265	-3.984	-3.707	40.434	1.00	1.00	В
70	MOTA	5677	NH3	ARG B	365	-2.678	-3.913	40.385	1.00	1.00	В
	ATOM	5678		ARG B		-4.698	-4.247	41.418	1.00	1.00	В
	ATOM	5679		ARG B		-4.459 -5.449	-2.492	34.648	1.00	1.00	В
	ATOM	5680	N	LEU B	366	-4.267	-1.961 -3.801	34.150 34.609	1.00	1.00	В
75	ATOM	5681	CA	LEU B	366	-5.272	-4.665	33.996	1.00 4		В
	ATOM ATOM	5682 5683	CB :	LEU B	366	-4.615	-5.908	33.366	1.00 4		B B
	ATOM	5683 5684	CG :	LEU B	366 366	-3.640	-5.701	32.202	1.00 4		B
				ACO B	300	-4.331	-5.029	31.031	1.00 4		В

	ATOM		CD2	LEU	B 366	-2.48	0 4				
	ATOM		С	LEU		-6.26				46.71	В
	ATOM ATOM	,	0	LEU	B 366	-6.42			1.00	45.55	В
5	ATOM		OXT		B 366	-6.86				46.32	В
	ATOM	5689 5690	CB		C 10	-5.66					В
	ATOM	5691	CG CD		C 10	-7.07	3 -0.397		0.76		C
	ATOM	5692	NE	ARG (-	-7.74		31.408	0.76		C
10	MOTA	5693	CZ	ARG (-8.728		31.268	0.76		C
10	ATOM	5694	NHl			-9.99		30.875	0.76	1.00	c
	ATOM	5695	NH2	ARG (-10.464		30.582	0.76	1.00	ć
	MOTA	5696	С	ARG (-10.779 -4.106		30.749	0.76	1.00	Ċ
	ATOM	5697	0	ARG (-3.278		32.497	0.76	1.00	č
15	ATOM	5698	N	ARG (-6.417		33.369	0.76	1.00	Ċ
	MOTA MOTA	5699		ARG (-5.587		31.464	0.76	1.00	C
	ATOM	5700 5701		GLN C		-3.805		32.625 31.408	0.76	1.00	C
	ATOM	5701 5702		GLN C		-2.458	3.321	31.094	0.76 0.76	1.00	C
20	ATOM	5702		GLN C	_	-2.423	3.866	29.662	0.76	1.00	C
20	ATOM	5704		GLN C		-1.047		29.231	0.76	1.00 1.00	C
	ATOM	5705		GLN C		-0.039		29.174	0.76	1.00	C
	ATOM	5706		GLN C		-0.263	2.232	28.494	0.76	1.00	c
	ATOM	5707		GLN C		1.082 -1.895	3.415	29.876	0.76	1.00	Ċ
25	ATOM	5708		CIN C		-2.494	4.396	32.038	0.76	1.00	č
23	ATOM	5709		LEU C	12	-0.732	5.467 4.111	32.217	0.76	1.00	Ċ
	MOTA MOTA	5710		LEU C		-0.065	5.046	32.618 33.519	0.76	1.00	C
	ATOM	5711 5712		LEU C		0.754	4.277	34.561	0.76	1.00	C
	ATOM	5713		PEA C	12	-0.036	3.305	35.450	0.76 0.76	1.00	C
30	ATOM	5714		PEA C	12	0.907	2.681	36.468	0.76	1.00 1.00	C
	ATOM	5715		TEA C	12 12	-1.184	4.040	36.153	0.76	1.00	C
	MOTA	5716	_	EU C	12	0.845	5.948	32.680	0.76	1.00	C C
	ATOM	5717		AL C	13	1.111	5.653	31.510	0.76	1.00	c
35	MOTA	5718		AL C	13	1.317 2.166	7.044	33.273	0.76	1.00	č
55	MOTA	5719		AL C	13	1.473	7.987 9.371	32.543	9.76	1.00	Ċ
	MOTA MOTA	5720	CG1 7		13	0.217	9.239	32.386	0.76	1.00	C
	ATOM		CG2 V		13	1.113	9.929	31.523 33.750	0.76	1.00	C
40	ATOM			AL C	13	3.542	8.211	33.750	0.76 0.76	1.00	C
40	ATOM		-	AL C	13	3.740	8.050	34.381	0.76	1.00	C
	ATOM			EUC	14	4.498	8.596	32.339	0.76	1.00 1.00	C
	ATOM	_		EU C	14 14	5.860	8.846	32.803	0.76	1.00	C
	ATOM	5727		EU C	14	6.836	8.819	31.619	0.76	1.00	c
45	ATOM		CD1 L	EU C	14	6.972 7.666	7.481	30.889	0.76	1.00	č
	ATOM		CD3 F		14	7.744	7.705 6.495	29.557	0.76	1.00	Ċ
	ATOM ATOM			EU C	14	6.010	10.186	31.769	0.76	1.00	C
	ATOM			EU C	14	5.238	11.126	33.517 33.284	0.76	1.00	C
	ATOM			TA C	15	7.000	10.263	34.396	0.76	1.00	С
50	ATOM			ΓΆ C ΓΆ C	15	7.264	11.510	35.090	0.76 0.76	1.00	C
	ATOM			ΓX C ΓX C	15	8.263	12.275	34.234	0.76	1.00	C
	ATOM	5736		EU C	15 16	9.472	12.210	34.462	0.76	1.00	C
55	ATOM			en c	16	7.750	12.995	33.241	0.76	1.00	C
	ATOM			EU C	16	8.576	13.756	32.306	0.76	1.00	c
	MOTA	5739 (SO C	16	7.732	14.157	31.094	0.76	1.00	č
	ATOM		Dl L	ΣU C	16	7.258 6.303	12.955	30.269	0.76	1.00	č
	ATOM		103 Fi		16	8.467	13.411 12.233	29.171	0.76	1.00	Ċ
60	ATOM ATOM	5742		EU C	16	9.263	14.982		0.76	1.00	С
	ATOM	5743 C		₹U C	16	10.182	15.515		0.76	1.00	С
	END	J/44 (XT LE	SU C	16	8.870	-	-	0.76 0.76	1.00	C
									~ . /0	1.00	C

wherein atoms 4045 to 5688 represent the peptide binding site and atoms 5689 to 5748 represent the peptide.

6. A method to obtain a protein crystal as defined in claims 1 to 5, comprising the following steps:

- mixing a solution of processivity clamp factor of DNA polymerase, with a solution of a peptide of about 3 to about 30 amino acids, in particular of

about 16 amino acids, said peptide comprising all or part of the processivity clamp factor binding sequence of a processivity clamp factor interacting protein, such as prokaryotic Pol I, Pol II, Pol III, Pol IV, Pol V, MutS, ligase I, α subunit of DNA polymerase, UmuD or UmuD', or eukaryotic pol ϵ , pol δ , pol η , pol ι , pol κ , and with a solution of MES pH 6.0 0.2 M, CaCl₂ 0.2 M, PEG 400 60%, to obtain a crystallisation drop,

- letting the crystallisation drop concentrate against a solution of MES pH 6.0 0.1 M, CaCl₂ 0.1 M, PEG 400 30%, by vapour diffusion, to obtain a protein crystal.

10

5

7. A method according to claim 6, wherein the processivity clamp factor of DNA polymerase is the β subunit of DNA polymerase, in particular the β subunit of DNA polymerase III of *Escherichia coli*, and the peptide has the following sequence:

VTLLDPQMERQLVLGL (SEQ ID NO: 1).

15

8. The use of the atomic coordinates as defined in claims 4 and 5, for the screening, the design or the modification of ligands of the processivity clamp factor of DNA polymerase, in particular of the β subunit of DNA polymerase, in particular the β subunit of DNA polymerase III of *Escherichia coli*.

20

9. The use according to claim 8, for the screening, the design or the modification of ligands liable to be used for the preparation of pharmaceutical compositions useful for the treatment of bacterial diseases or diseases originating from DNA synthesis processes, such as fragile X syndrome, or proliferative disorders, such as cancers.

25

30

10. A method to screen ligands of the processivity clamp factor of DNA polymerase, said method comprising the step of assessing the interaction of tridimensional models of the ligands to screen with the structure of the β subunit of DNA polymerase as defined by the atomic coordinates according to claim 4, and in particular with the structure of the peptide binding site as defined by the atomic coordinates according to claim 5, and more particularly with at least nine of the following amino acids: Leu 155, Thr 172, Gly 174, His 175, Arg 176, Leu 177, Pro 242,

10

15

20

25

30

Arg 246, Val 247, Phe 278, Asn 320, Tyr 323, Val 344, Ser 346, Val 360, Val 361, Met 362, Pro 363, Met 364, Arg 365, Leu 366.

- 11. A method according to claim 10, to screen ligands liable to be used for the preparation of pharmaceutical compositions useful for the treatment of bacterial diseases or diseases originating from DNA synthesis processes, such as fragile X syndrome, or proliferative disorders, such as cancers.
- 12. A method to design or to modify compounds liable to bind to the processivity clamp factor of DNA polymerase, said method comprising the step of designing or modifying a compound, so that the tridimensional model of said compound is liable to interact with the structure of the β subunit of DNA polymerase as defined by the atomic coordinates according to claim 4, and in particular with the structure of the peptide binding site as defined by the atomic coordinates according to claim 5, and more particularly with at least nine of the following amino acids: Leu 155, Thr 172, Gly 174, His 175, Arg 176, Leu 177, Pro 242, Arg 246, Val 247, Phe 278, Asn 320, Tyr 323, Val 344, Ser 346, Val 360, Val 361, Met 362, Pro 363, Met 364, Arg 365, Leu 366.
 - 13. A method according to claim 12, to design or to modify ligands liable to be used for the preparation of pharmaceutical compositions useful for the treatment of bacterial diseases or diseases originating from DNA synthesis processes, such as fragile X syndrome, or proliferative disorders, such as cancers.

14. A peptide of the following sequence: VTLLDPQMERQLVLGL (SEQ ID NO: 1).

- 15. A pharmaceutical composition comprising as active substance the peptide of claim 14 in association with a pharmaceutically acceptable carrier.
 - 16. The use of the peptide of claim 14 as an anti-bacterial compound.
- 17. The use of the peptide of claim 14 for the manufacture of a medicament for the treatment of bacterial diseases or diseases originating from DNA synthesis processes, such as fragile X syndrome, or of proliferative disorders, such as cancers.

10

15

20

18. A method to test *in vitro* the inhibitory effect of compounds on the processivity clamp factor-dependant activity of DNA polymerase, in particular of Pol IV DNA polymerase of *Escherichia. coli*, or of the α subunit of Pol III DNA polymerase of *Escherichia coli*, comprising the following steps:

- adding to assay solutions comprising a labelled nucleotidic primer, a template DNA, and DNA polymerase, in particular Pol IV DNA polymerase of *Escherichia coli*, or the α subunit of Pol III DNA polymerase of *Escherichia coli*, a compound to test at a given concentration for each assay solution, in the presence or the absence of the processivity clamp factor of DNA polymerase, in particular the β subunit of DNA polymerase, in particular the β subunit of DNA polymerase, in particular the β subunit of DNA polymerase III of *Escherichia coli*.

- electrophoretically migrating the abovementioned assay solutions,
- comparing the migration pattern of each assay solutions in the presence or the absence of the processivity clamp factor of DNA polymerase, in particular the β subunit of DNA polymerase, in particular the β subunit of DNA polymerase III of *Escherichia coli*.
- 19. The use of a method according to claim 18, for the screening of compounds liable to be used for the preparation of pharmaceutical compositions useful for the treatment of bacterial diseases or diseases originating from DNA synthesis processes, such as fragile X syndrome, or proliferative disorders, such as cancers.