# 机器学习复习大纲

理解概念最重要!不用知道推导过程!必要的计算一定要会!

6~8 **道大题**,每道大题 3~5 问。只有简答。一道大题考一个分支,小题 3~5 分,大题 15~20 分

# 一、评判指标

准确度、召回率的定义

如何根据表格计算准确率和召回率

F 评判指标的含义

P@K 怎么计算

MAP 怎么计算

DCG 怎么计算

NDCG 怎么计算

MRR 怎么计算

## 二、线性回归模型

目标函数

参数的定义方法是什么

模型的数值形式是什么

目标函数的推导

什么是梯度下降

了解使用梯度下降求解

学习率对于求解的影响

(为什么减是求最小值?)

为什么要进行空间的转换

了解偏置和方差 (考试不考推导 知道即可)

#### 三、逻辑回归

目标函数的定义

为什么叫做逻辑回归?和线性回归的区别?

求偏导的方式

如何更新参数

为什么要进行正则化?

## 四、决策树

给定一个数据集,如何构造决策树

决策树解决的任务 (分类)

决策树的基本思路(总结即可)

信息增益怎么计算

基尼值和基尼指数是什么 怎么算

信息熵和条件熵是怎么定义的

增益率是怎么算的

为什么要提出增益率

预剪枝和后剪枝是什么(思想)

# 五、支持向量机

支持向量机的目标

支持向量机的基本思想

如何计算出来点到给定线的距离

支持向量机的目标函数

知道如何求解目标函数

等高线和向量场的意义是什么

如何用拉格朗日求解目标函数(拉格朗日乘数)

理解什么叫作支持向量

支持向量的作用

支持向量机的优点和缺点

核函数的功能

核函数的种类及其功能(如高斯核函数)

引入核函数的原因

#### 六、KNN

KNN 是用来做什么任务的

KNN 的优缺点

KNN 的敏感度

## 七、集成学习

集成学习的动机是什么

集成学习的经典算法

Bagging 算法是什么?

Boosting 算法是什么?

随机森林不需要掌握

无监督聚类的集成学习的基本思想



#### 八、增CA

一定要了解 PCA!

PCA 的目的是什么?

PCA 的假设是什么?

PCA 的目标是什么?(对应的最优化问题的理解)

PCA 的推导一定要了解清楚!

最小化误差的推导方式

最大化方差的推导方式

(奇异值分解可以不用管它)

它的一些应用和缺陷

# 九、EM 算法

EM 算法是什么

EM 算法的参数 (观察变量 隐变量 模型参数 )/

E 步和 M 步分别做什么

EM 算法的推导过程

(EM 算法的隐变量用在哪里)

EM 算法不能获得全局最优的原因

EM 算法的应用(如何结合高斯混合聚类)

# 十、聚类

C-means 聚类

K-means 聚类是什

K-means 的目标函数和原理

K-means 的步骤

K-means 的终止条件

层级聚类的目标函数

层级聚类的思想

层级聚类的步骤

高斯混合聚类的步骤

高斯混合聚类的均值和方差是怎么更新的

#### 十一、推荐系统

#### 推荐系统的目的

推荐系统的应用

推荐系统的步骤

如何基于内容进行分解

基于内容推荐(适合新闻) 用户协同滤波(找相似用户,根据用户评分矩阵计算) 每个商品分数计算 优缺点:协同滤波有冷启动的问题

冷启动是什么

协同过滤的优缺点

如何求解相似用户(相似度)

如何计算相似商品的打分

如何评估商品的好坏

推荐系统的评判指标

(基于检索的评判指标 或者是前述提到的评判指标)

#### 十二、反向传播神经网络

激活函数及其种类

激活函数的意义

目标函数是什么

模型的参数是怎么更新的

输入信号是怎么传播的

误差是怎么传回的

梯度的更新是如何更新的

动量法的含义(为什么要加一个动量)

反向传播神经网络的应用

(公式不需要去记忆,但需要知道公式的含义)

#### 十三、自动编码器

无监督的方法

目标函数是怎么定义的?

它的网络结构是如何定义的?

损失函数是怎么定义的?

自动编码器的两种类型

PCA 和自动编码器的关系

自动编码器的变种算法及其功能原理

用自动编码器设计一个分类器