20/10/23 O Find the critical point on what internal (bay
$$32$$
)
30/10/23 this A is increasing, decreasing, local maximum, local minimum and cacarity and inflection point. $f(x) = 2x^3 + 3x^2 - 36x$
Soln: Given:

 $f(x) = 2x^3 + 3x^2 - 36x$

• Step 1 Critical point

$$f(0) = 60c^2 + 6x - 36$$

 $f'(x) = 0 \Rightarrow 6x^2 + 6x - 36 = 0$
 $(=6) \Rightarrow x^2 + x - 6 = 0$

Step: 2 To find increasing & decreasing function.

Interval	Sign of f	Behaviour of t
-P <x<-3< td=""><td>+ 2.81</td><td>Increasing</td></x<-3<>	+ 2.81	Increasing
-342640	Flection point 1	Decreasing
0 < x < 2	6 - x - 5 x e &	Decreasing
2 < x < 20	+	Increasing

Step: 3 To find local maxima & local minima.

Put
$$x = -3$$

 $f(x) = 2x^3 + 3x^2 - 36x$
 $f(-3) = 2(-3)^3 + 3(-3)^2 - 36(-3)$
 $= .81$ (old Maxima)

Put sc = 2

 $f(x) = 2x^3 + 3 > (2^2 - 36) = 2(2)^3 + 3(2)^3 - 36(2)$ = -44 local minimum.

step 4: Concave ups & cancave down (Concavity) f''(x) = 12x + 6 f''(x) = 0

$$(=6) \text{ act} + 1 = 0$$

$$2x = -1 =) \text{ oc} = -1/2 =) x = -0.5$$

$$-0.6 = -0.7$$

$$-0.5 = 0.8$$

Interval sign of
$$f''$$
 Behaviour of f
 $-x \ge x < -0.5$ — Concave down

 $-0.5 < x < 0$ + Concave up

Step: $s = 70$ find inflection point

 $f(70) = 2x^3 + 3x^2 - 36x$
 $f(-0.5) = 2 \cdot 60.5)^3 + 3 \cdot (-0.5)^2 - 34 \cdot (-0.5)$
 $= 18.5$

The inflection point is 18.5