Multi-Stage End-to-End Supply Chain Network Design to Minimize the Cost and Maximize the Service Level

SUPPLY CHAIN NETWORK MODEL

SUPPLY CHAIN NETWORK MODEL (CONTD.)

NETWORK DESIGNER'S OBJECTIVES:

- Minimize the total supply-chain cost. Total supply-chain cost includes:
 - Operating costs of different network entities such as Wholesale stores and DCs
 - Transportation cost of shipping the products from Plants \to Wholesale stores \to DCs \to Customers
 - Inventory cost at warehouses
- Maximize the service-level i.e. maximize the satisfiability of customer demand within a specified interval of time

SUPPLY CHAIN NETWORK MODEL (CONTD.)

FACTORS:

- Which of the network entities (e.g. Wholesale stores and DCs) to be used?
- Which DC will serve to which customers because in general a customer is uniquely assigned to a DC
- \bullet Quantity of each product to be transported from Plant \to Wholesale store
- \bullet Quantity of each product to be transported from Wholesale store \to DC
- \bullet Quantity of each product to be transported from DC \to Customer

SUPPLY CHAIN NETWORK MODEL (CONTD.)

Necessary data:

- Demand of the customers for each product
- Maximum supply level for each Plant
- Maximum capacity of Wholesale stores and DCs
- Transportation cost per unit amount of product from one location to other
- Cost of holding unit amount of each product at warehouses
- Maximum allowable delivery time to ship the products from DCs to Customers

MATHEMATICAL NOTATIONS

Indices:

- 1 : Set of customers indexed by i
- *J* : Set of DCs indexed by *j*
- K : Set of wholesale stores indexed by k
- ullet S : Set of manufacturing plants indexed by s
- L : Set of products indexed by I

Model Variables:

- b_{lsk}: Quantity of product l to be shipped from plant s to wholesale store k
- f_{lkj}: Quantity of product / to be shipped from wholesale store k to DC j
- q_{lji} : Quantity of product l to be shipped from DC j to customer i

MATHEMATICAL NOTATIONS (CONTD.)

Model Variables (contd.):

$$z_j = \begin{cases} 1, & \text{if DC } j \text{ is open} \\ 0, & \text{otherwise} \end{cases}$$

$$y_{ji} = \begin{cases} 1, & \text{if DC } j \text{ serves the product to the customer } i \\ 0, & \text{otherwise} \end{cases}$$

$$p_k = \begin{cases} 1, & \text{if warehouse } k \text{ is open} \\ 0, & \text{otherwise} \end{cases}$$

MATHEMATICAL NOTATION (CONTD.)

Model parameters:

- D_k : Capacity of wholesale store k
- W_j: Capacity of DC j
- sup_{ls} : Supply limit of plant s for product l
- d_{li} : Demand for product l at customer i
- v_i: Fixed cost for operating DC j
- g_k : Fixed cost for wholesale store k
- h_{li} : Holding cost for product l at DC j
- c_{lsk}^{pw} : Unit transportation cost for product l from plant s to wholesaler k

MATHEMATICAL NOTATION (CONTD.)

Model parameters (contd.):

- c_{lkj}^{wd} : Unit transportation cost for product l from wholesaler k to Dc j
- c_{lji}^{dc} : Unit transportation cost for product / from DC j to customer i
- \bullet τ : Maximum allowable delivery time (hours) from DCs to customers to customers
- $x_{ji}(\tau)$: Binary values indicating whether customer i can be reached from DC j in τ hours
- \bullet η_{li} : Ratio of ordered amount to the demand amount given at customer i for product l

OPTIMIZATION PROBLEM FORMULATION

Objective function to be minimized:

• f_1 : Total cost of supply-chain network.

$$f_1 = \sum_{k} g_k p_k + \sum_{j} v_j z_j + \sum_{l} \sum_{s} \sum_{k} c_{lsk}^{pw} b_{lsk}$$
Cost of operating wholesale stores
$$Cost of operating pocus of products from plants to wholesalers$$

$$+ \sum_{l} \sum_{k} \sum_{j} c_{lkj}^{wd} f_{lkj} + \sum_{l} \sum_{j} \sum_{i} \eta_{li} c_{lji}^{dc} q_{lji} + \sum_{l} \sum_{j} \sum_{i} (1 - \eta_{li}) h_{lj} q_{lji}$$
Tansportation cost of products from products from cost of products from cost for unsold wholesalers to DCs
$$Costs of transportation of products from cost of products from cost of products from products from products from products from products from cost of products from products from$$

Objective function to be maximized:

 f₂: The fraction of total customer demand that can be delivered within the stipulated access time τ.

$$f_2 = \frac{\sum_{l} \sum_{j} \sum_{i} \eta_{li} q_{lji} x_{ji}(\tau)}{\sum_{l} \sum_{i} \eta_{li} d_{li}}$$

Constraints:

• Unique assignment of a DC to a customer

$$\sum_{j} y_{ji} \le 1, \, \forall i \in I$$

ullet Outflow from DC \leq Capacity constraint for DC

$$\sum_{l}\sum_{i}q_{lji}\leq W_{j}z_{j},\,\forall j\in J$$

Inward flow into a DC ≤ Capacity constraint for DC

$$\sum_{l}\sum_{k}f_{lkj}\leq W_{j}z_{j},\,\forall j\in J$$

Constraints (contd.):

• Satisfaction of customer demand for the product

$$q_{lji} = d_{li}y_{ji}, \forall l \in L, i \in I, j \in J$$

• Ensure that $y_{ji} = 0$ when $z_j = 0$

$$\sum_{i} y_{ji} \le z_{j} |I|, \ \forall j \in J$$

 Inward flow into a wholesale store = Outflow from the wholesale store

$$\sum_{k} f_{lkj} = \sum_{i} q_{lji}, \, \forall l \in L, j \in J$$

Factory supply restriction

$$\sum_{l} b_{lsk} \leq sup_{ls}, \, \forall l \in L, s \in S$$

Constraints (contd.):

• Number of DCs that can be opened

$$\sum_{j} z_{j} \leq |J|$$

ullet Inward flow into a wholesale store \leq Capacity of wholesale store

$$\sum_{l}\sum_{s}b_{lsk}\leq D_{k}p_{k},\ \forall k\in K$$

Wholesale store outflow ≤ Inward flow of the wholesale store

$$\sum_{j} f_{lkj} \leq \sum_{s} b_{lsk}, \, \forall l \in L, k \in K$$

Constraints (contd.):

• Wholesale store outflow \leq Wholesale store capacity

$$\sum_{l}\sum_{j}f_{lkj}\leq D_{k}p_{k},\,\forall k\in K$$

Outflow from a wholesale store

Inward flow into the wholesale store

$$\sum_{i} f_{lkj} \leq \sum_{s} b_{lsk}, \, \forall I \in L, k \in K$$

• Number of plants that are opened

$$\sum_{k} p_{k} \leq |K|$$

Constraints (contd.):

• Binary restriction on the decision variables z_j, p_k, y_{ij}

$$z_j \in \{0,1\}, \ \forall j \in J$$
 $p_k \in \{0,1\}, \ \forall k \in K$ $y_{ij} \in \{0,1\}, \ \forall i \in I, j \in J$

• Non-negativity restriction on decision variables b_{lsk} , f_{lkj} , q_{lij}

$$b_{lsk} \ge 0, \forall I \in L, s \in S, k \in K$$
 $f_{lkj} \ge 0, \forall I \in L, j \in J, k \in K$
 $q_{lji} \ge 0, \forall I \in L, i \in I, j \in J$

ϵ -Constraint Method for Multi-objective Optimization

• Keep just one of the objectives and restrict the other objective to be greater than or equal to a user-specified value (ϵ) .

$$min f_1$$

s.t.
$$f_2 \ge \epsilon$$
 and other constraints.

• For example, $\epsilon=0.9$ means 90% of the customer demand should be satisfied within time τ while minimizing the total cost of the end-to-end supply chain.

RESULTS (CONTD.)

 $\ensuremath{\mathrm{Figure}}$: Total supply chain cost to provide 90% service level in 24 hours time.

The End