CSE 2321 HOMEWORK 9

BRENDAN WHITAKER

1. (a) We find the bounds of the summation for the first while loop.

iterations	i = n
1	6n
2	6^2n
:	:
	$6^{k}n$
k	\mathfrak{o} n

So we have $5n^3 = 6^k n \Rightarrow 6^k = 5n^2 \Rightarrow k = \log_6(5n^2) = 2\log_6(n) + \log_6(5)$. So $1 \le k \le |2\log_6(n)|$. Now we find the bounds for the second while loop

iterations	$j = 6n^2$
1	$6n^2/4$
2	$6n^2/4^2$
:	:
$\stackrel{\cdot}{l}$	$6n^2/4^l$

So we have $3 = 6n^2/4^l \Rightarrow 4^l = 2n^2 \Rightarrow l = \log_4(2n^2) = 2\log_4(n) + \log_4(2)$. Thus $1 \le l \le 2\log_4(n)$. Hence the running time is given by

$$t = \sum_{k=1}^{\lfloor 2\log_6(n)\rfloor} \sum_{l=1}^{\lfloor 2\log_4(n)\rfloor} c = \sum_{k=1}^{\lfloor 2\log_6(n)\rfloor} 2\log_4(n)c = \frac{4}{\log_2(4)\log_2(6)} (\log_2(n))^2 c$$

$$= \boxed{\Theta((\log_2(n))^2).}$$
(1)

(b) We find the bounds for the while loop

iterations	j=2i
1	$3 \cdot 2i$
2	$3^2 \cdot 2i$
:	
$\stackrel{\cdot}{k}$	$3^k \cdot 2i$

So $3^k \cdot 2i = i^4 \Rightarrow k =$

 $log_3(i^3/2) = 3 log_3(i) + log_3(2)$. So $1 \le k \le |3|$

 $log_3(i)$]. Thus the running time is given by

$$t = \sum_{i=1}^{3n^2} \sum_{k=1}^{\lfloor 3\log_3(i)\rfloor} c = \sum_{i=1}^{3n^2} 3\log_3(i)c = \sum_{i=1}^{n^2-1} 3\log_3(i)c + \sum_{i=n^2}^{3n^2} 3\log_3(i)c.$$
 (2)

We find an upper bound, plugging in $3n^2$ for i

$$t \le \sum_{i=1}^{3n^2} 3\log_3(3n^2)c = 9n^2(2(\log_3(n)) + 1)c = \boxed{18cn^2\log_3(n)} + 9cn^2.$$
 (3)

Date: AU17.

Now we find a lower bound, splitting the sum and plugging in n^2 for i

$$t \ge \sum_{i=n^2}^{3n^2} 3\log_3(n^2)c = \boxed{12cn^2\log_3(n).}$$
(4)

So $t = c_1 n^2 \log_3(n)$, where $12c \le c_1 \le 18c$, so $t = \Theta(n^2 \log_3(n))$.

(c) We find the bounds of the summation for the first while loop.

iterations	i = n
1	n+5
2	$n+2\cdot 5$.
:	:
k	n+5k

So $2n^3 = n + 5k \Rightarrow 5k = 2n^3 - n \Rightarrow k = \left\lfloor \frac{2}{5}n^3 \right\rfloor - \frac{n}{5}$. So $1 \le k \le \lfloor \frac{2}{5}n^3 \rfloor$. Now we find the bounds of the summation for the second while loop

$$\begin{array}{c|c} \text{iterations} & j=i^2 \\ \hline 1 & i^2/4 \\ 2 & i^2/4^2 \\ \vdots & \vdots \\ l & i^2/4^l \\ \end{array} .$$

So we have $i^2/4^l=i\Rightarrow 4^l=i\Rightarrow l=\lceil \lfloor \log_4(i)\rfloor.\rceil$ Thus $1\leq l\leq \lfloor \log_4(i)\rfloor.$ Then

$$t = \sum_{k=1}^{\lfloor \frac{2}{5}n^3 \rfloor} \sum_{l=1}^{\lfloor \log_4(i) \rfloor} c = \sum_{k=1}^{\lfloor \frac{2}{5}n^3 \rfloor} \log_4(i)c = \sum_{k=1}^{\lfloor \frac{1}{5}n^3 \rfloor - 1} \log_4(i)c + \sum_{k=\lfloor \frac{1}{5}n^3 \rfloor} \log_4(i)c.$$
 (5)

We find an upper bound, plugging in $\frac{2}{5}n^3$ for k. Then $i=n+2n^3$, so since we are taking an upper bound, we let $i=3n^3$. Thus we have

$$t \leq \sum_{k=1}^{\lfloor \frac{2}{5}n^3 \rfloor} \log_4(3n^3)c = \frac{2}{5}cn^3 \log_4(3n^3) = \frac{2}{5}cn^3(3\log_4(n) + \log_4(3))$$

$$= \left[\frac{6}{5}cn^3 \log_4(n)\right] + \frac{2}{5}cn^3 \log_4(3).$$
(6)

Now we find a lower bound, splitting the summation and plugging in $\frac{1}{5}n^3$ for k. Then $i = n + n^3$. So since we are finding a lower bound, we take $i = n^3$. Then we have

$$t \ge \sum_{k=\lfloor \frac{1}{5}n^3 \rfloor}^{\lfloor \frac{2}{5}n^3 \rfloor} \log_4(n^3)c = \frac{1}{5}n^3 \log_4(n^3)c = \boxed{\frac{3}{5}cn^3 \log_4(n)}.$$
 (7)

Hence $t = c_2 n^3 \log_4(n)$, where $\frac{3}{5}c \le c_2 \le \frac{6}{5}c$. So $t = \Theta(n^3 \log_4(n))$.

2. Note

$$f_{a}(n) = \Theta(n^{4} \log(n)),$$

$$f_{b}(n) = \Theta(4^{n}),$$

$$f_{c}(n) = \Theta(n^{0.8}),$$

$$f_{d}(n) = \Theta(1),$$

$$f_{e}(n) = \Theta(n^{0.7}),$$

$$f_{f}(n) = \Theta(n^{5}),$$

$$f_{g}(n) = \Theta(n^{2}),$$

$$f_{h}(n) = \Theta(n^{1.5}),$$

$$f_{i}(n) = \Theta(n^{2.5}),$$

$$f_{j}(n) = \Theta(n^{2} \log(n)),$$

$$f_{k}(n) = \Theta(n \log(n)),$$

$$f_{l}(n) = \Theta(n^{4}),$$

$$f_{m}(n) = \Theta(1),$$

$$f_{n}(n) = \Theta(n^{n}),$$
(8)

Let $\nu \in \{a, b, ..., n\}^{14}$ s.t.

$$f_{\nu_i} = O(f_{\nu_{i+1}}) \tag{9}$$

for $1 \le i \le 14$. Then

$$\nu = (d, m, e, c, k, h, g, j, i, l, a, f, b, n). \tag{10}$$

Also note $f_m(n) = \Theta(f_d(n))$.