The goal of this short reference is to show the Python equivalents to the morphology functions of Matlab. As far as the author of this document knows, there is not a single package that implements all morphology functions of Matlab. For this reason, three packages are presented, each offering a wide range of morphology functions for image processing. To include these three packages, the following lines must be inserted into your code:

```
import scipy.ndimage.morphology
import cv2
import skimage.morphology
```

1 Structuring Elements

Hint: All introduced packages work with normal arrays. This means a structuring element can simply be created in numpy or other packages.

Matlab	scipy	OpenCV	scikit-image	Description
	17			•
strel(nhood)	-	-	-	Creates a flat structuring elment with specified neighborhood.
strel('diamond', r)	-	-	diamond(r)	Creates a diamond-shaped structuring element with radius r.
strel('disk', r, n)	-	<pre>getStructuringElement(cv2.MORPH_ELLIPSE, (m,n))</pre>	disk(r)	Creates a disk-shaped structuring element with radius r an n line structuring elements to approximate the disk shape.
<pre>strel('rectangle', [m,n])</pre>	-	<pre>getStructuringElement(cv2.MORPH_RECT, (m,n))</pre>	rectangle(m, n)	Creates a rectangular structuring element of size $m \times n$.
strel('square', w)	-	-	square(w)	Creates a square structuring element with width w.
-	-	<pre>getStructuringElement(cv2.MORPH_CROSS, (m,n))</pre>	-	Creates a cross-shaped structuring element with size $m \times n$.
strel('cube', w)	-	-	cube(w)	Creates a 3-D cubic structuring element with width w.
strel('cuboid', [m,n,p])	-	-	-	creates a 3-D cuboidal structuring element of size $m \times n \times p$.
strel('sphere', r)	-	-	ball(r)	Creates a 3-D spherical structuring element with radius r.

2 Dilation and Erosion

Matlab	scipy	OpenCV	scikit-image	Description
<pre>imdilate(img, se)</pre>	<pre>binary_dilation(img, se) gray_dilation(img, se)</pre>	dilate(img, se)	dilation(img, se)	Dilates image img with structuring element se
<pre>imerode(img, se)</pre>	<pre>binary_erosion(img, se) gray_erosion(img, se)</pre>	erode(img, se)	erosion(img, se)	Erodes image img with structuring element se
<pre>imopen(img, se)</pre>	<pre>binary_opening(img, se) gray_opening(img, se)</pre>	<pre>morphologyEx(img, cv2.MORPH_OPEN, se)</pre>	opening(img, se)	Perform morphological opening
<pre>imclose(img, se)</pre>	<pre>binary_closing(img, se) gray_closing(img, se)</pre>	<pre>morphologyEx(img, cv2.MORPH_CLOSE, se)</pre>	<pre>closing(img, se)</pre>	Perform morphological closing
bwskel(img)	-	-	skeletionize(img)	Erodes all objects to centerlines without changing the essential structure
<pre>bwperim(img)</pre>	-	-	-	Find perimeter of an binary image
bwhitmiss(img, se1, se2)	<pre>binary_hit_or_miss(img, se1, se2)</pre>	<pre>morphologyEx(img, cv2.MORPH_HITMISS, se)</pre>	-	Binary hit-miss transformation in a binary image whose neighboorhoods match the shape of se1 and do not match the shape of se2
<pre>imtophat(img, se)</pre>	<pre>white_tophat(img, se)</pre>	<pre>morphologyEx(img, cv2.MORPH_TOPHAT, se)</pre>	<pre>white_tophat(img, se)</pre>	Top-hat filtering
<pre>imbothat(img, se)</pre>	<pre>black_tophat(img, se)</pre>	<pre>morphologyEx(img, cv2.MORPH_BLACKHAT, se)</pre>	<pre>black_tophat(img, se)</pre>	Bottom-hat filtering

3 Morphological Reconstruction

Matlab	scipy	OpenCV	scikit-image	Description
<pre>imreconstruct(mrk, msk)</pre>	-	-	reconstruction(mrk, msk)	Morphological reconstruction
<pre>imregionalmax(img)</pre>	-	-	local_maxima(img)	Regional maxima
<pre>imregionalmin(img)</pre>	-	-	<pre>local_minima(img)</pre>	Regional minima
<pre>imhmax(img, H)</pre>	-	-	h_maxima(img, H)	Suppresses all maxima in the intensity image img whose height is less than H
<pre>imhmin(img, H)</pre>	-	-	h_minima(img, H)	Suppresses all minima in the grayscale image img whose depth is less than H
<pre>imimposemin(img, bw)</pre>	_	-	-	Modifies the grayscale mask image img using morphological reconstruction so it only has regional minima wherever binary marker image bw is nonzero.
imfill(img,)	fill_holes(img, se)	floodFill(img, se)	flood_fill(img,)	Fill image regions and holes.