Assignment 2 - FOL Theory Mihael Zlatev - 1MI3400543

This report presents a logical theory approach for solving a maze problem using a Forward Chaining and Backward chaining algorithm. The problem is described in terms of First-Order Logic (FOL), and the process of inference through logical rules is demonstrated. The maze is represented as a grid with cells that may have obstacles (cells in the maze which can't be visited)

Forward Chaining

Facts are defined to represent the state of the maze:

- MazeCell(row, col)
 - Example for the 2 x 2 maze:

MazeCell(0, 0), MazeCell(0, 1), MazeCell(1, 0), MazeCell(1, 1)

- Obstacle(row, col) each MazeCell which contains an obstacle.
- Start(n, m) ↔ (MazeCell(n, m) ∧ ¬Obstacle(n, m))
 For example Start(0, 0)
- End(n, m) ↔ (MazeCell(n, m) ∧ ¬Obstacle(n, m))
 For example Start(4, 5)

Rules describe how new facts are inferred:

- ValidMove ∀x,y,dx,dy (InMaze(x,y) ∧ InMaze(x+dx, y+dy) ∧
 ¬Obstacle(x+dx, y+dy)) → ValidMove(x+dx, y+dy)
- 2. **Neighbours** \forall x1,y1,x2,y2 (ValidMove(x1,y1) \land ValidMove(x2,y2) \land (|x1-x2| + |y1-y2| = 1)) \rightarrow Neighbours(x1,y1,x2,y2)
- 3. Explorable:

 $\forall x,y (Start(x,y) \rightarrow Explorable(x,y))$

 \forall x1,y1,x2,y2 (ValidMove(x1,y1) \land ValidMove(x2,y2) \land Neighbours(x1,y1,x2,y2) \land Explorable(x1, y1)) \rightarrow Explorable(x2, y2)

Forward chaining - Pseudo code:

The Forward Chaining algorithm iteratively applies rules to infer new facts until no new facts can be derived, or the goal is reached:

- 1. Initialize:
 - Mark Start cell as Explorable
- 2. Inference Process:
 - Repeat until no new Reachable cells can be found: For each known Explorable cell (x1,y1) Examine all neighboring cells (x2,y2) If (x2,y2) is a ValidMove add (x2,y2) to Explorable set
- 3. Termination:
 - Stop when no new Explorable cells can be added or Path is constructed through Explorable

Backward Chaining

Facts

- Reusing the same facts as forward chaining

Rules

1. Predecessor:

```
\forallx1,y1,x2,y2 ( ValidMove(x1,y1) \land ValidMove(x2,y2) \land (x2 = x1 - dx \land y2 = y1 - dy) \land ( (dx == 1 \land dy= 0) \lor (dx == 0 \land dy= 1) \lor (dx == -1 \land dy= 0) \lor (dx == 0 \land dy == -1) )) \rightarrow Predecessor(x2,y2,x1,y1)
```

2. Path Existence:

```
\forall x,y (End(x,y) \rightarrow PathExists(x,y))
```

 \forall x1,y1,x2,y2 (ValidMove(x1,y1) \land ValidMove(x2,y2) \land Predecessor(x1,y1,x2,y2) \land PathExists(x2,y2) \rightarrow PathExists(x1,y1))

Pseudo code:

- 1. Initialize:
 - Set that Path exists to goal
- 2. Inference process:
 - Recursively check if PathExistence rule applies for predecessors (Build path backwards from goal to start)
- 3. Termination:
 - stop when current cell is Start and path is constructed though the PathExistence rule

Unification of formulas

Unification is the process of finding a consistent substitution of variables in logical formulas, enabling general rules to match specific facts. However, **unification is not necessary in this maze-solving problem** because the algorithm works by directly matching specific facts and rules without needing to generalize them.