## Optimal Interpolation and Prediction in Pulsar Timing

Xinping Deng Advisors:

W. Coles, G. Hobbs, R. N. Manchester, J. H. Zheng

National Space Science Center, Chinese Academy of Sciences ATNF, CSIRO

June 26, 2012 arXiv:1204.6111; accepted by MNRAS

### Who I am and what I am doing.

- Not standard pulsar astronomer.
- Doing PhD with J. H. Zheng on spacecraft engineering.
- Co-supervised by George to work on pulsar-based navigation methods.
- Trying to find a job on pulsar astronomy or spacecraft engineering.
- Pulsar-based navigation requires dealing with pulsar timing noise.
- ▶ IPTA research is also affected by pulsar **timing noise**.
- Therefore giving a talk at this conference.

#### Why is this important for the IPTA?

- We need to characterise the timing noise seen in the IPTA data sets in order to predict when we'll be able to detect gravitational waves.
- Need the best quality observations possible => folding pulsar data online requires an optimal extrapolation procedure.
- Need to obtain measurements of the astrometric and orbital parameters of the IPTA pulsars. Need to deal with the red noise when making these measurements.

### Simulated white and red timing residuals

with the real sampling and ToA uncertainties of PSR J1713+0747

We define **timing noise** as **red noise** that has a well defined spectrum model  $P(f) = A \cdot f^{-\alpha}$ .

White timing residuals (ToA uncertainties)



Red timing residuals
(ToA uncertainties
+ Timing noise)



### FITWAVES $(\times)$

FITWAVES is a commonly used algorithm to model **timing noise** by fitting a sequence of harmonically related sinusoids to **pulsar timing residuals**.

- It can **not** be extrapolated **past** the end of real observations (or back-extrapolated **before** the start of real observations).
- It requires an arbitrary choice of the number of harmonics to include in the fitting procedure.
  - ► Too few harmonics implies that not all the features in the timing residuals are completely modelled.
  - ► Too many harmonics leads to an un-physical model for the timing residuals (particularly when large gaps exist in the data).

## Maximum likelihood estimator $(\sqrt{})$

#### **Given observations:**

$$o = s + n$$

o: Timing residuals

s: Timing noise

n: ToA uncertainties

#### The likelihood function:

$$\boldsymbol{s}^{T}\boldsymbol{\mathsf{C}}_{\mathrm{s}}^{-1}\boldsymbol{s}+\boldsymbol{\mathsf{n}}^{T}\boldsymbol{\mathsf{C}}_{\mathrm{n}}^{-1}\boldsymbol{\mathsf{n}}=\boldsymbol{s}^{T}\boldsymbol{\mathsf{C}}_{\mathrm{s}}^{-1}\boldsymbol{s}+(\boldsymbol{\mathsf{o}}-\boldsymbol{\mathsf{s}})^{T}\boldsymbol{\mathsf{C}}_{\mathrm{n}}^{-1}(\boldsymbol{\mathsf{o}}-\boldsymbol{\mathsf{s}})$$

The gradient of the likehood function with respect to s to zero:

$$(\mathbf{C}_{\mathrm{s}}^{-1}+\mathbf{C}_{\mathrm{n}}^{-1})\mathbf{s}=\mathbf{C}_{\mathrm{n}}^{-1}\mathbf{o}$$

C<sub>n</sub>: Covariance matrix of ToA uncertainties

C<sub>s</sub>: Covariance matrix of timing noise

#### The advantages of the MLE algorithm

- It can deal with variable sampling error.
- It can deal with irregular sampling.
- It can be extrapolated past the end of real observations(and back-extrapolated before the start of real observations).
- It can give reasonable interpolation in gaps.
- It can deal with weakly non-stationary observations (e. g. small glitch events).

### Modelling the timing noise for the Vela pulsar

**Note**: The lower panel of each figure shows the **difference** between the **real residuals** and the **timing noise model**.



# Modelling the timing noise for the Vela pulsar (with **gap** created by deleting observations)

**Note**: The lower panel for each figure shows the **difference** between the **real residuals** and the **timing noise model**.





# Timing noise prediction for the Vela pulsar (with 220 days observations deleted)

**Note**: The lower panel for each figure shows the **difference** between the **real residuals** and the **timing noise model**.





## Modelling simulated timing noise with a glitch event

**Glitch**: Frequency change of  $1 \times 10^{-12}$  Hz.

**ToA uncertainties**: 100 ns.



# The effect of quadratic removal in the timing noise modeling for PSR J1939 $\pm$ 2134

**Note**: The lower panel for each figure shows the **difference** between the **real residuals** and the **timing noise model**.

Timing noise modeling without Cholesky procedure.



Timing noise modeling with **Cholesky** procedure.



## The effect of quadratic removal in the absolute arrival time determination for PSR J1939+2134

Timing model + Timing noise model



#### Conclusion

We recommend that our new method is **always** used to model, interpolate or extrapolate pulsar timing noise **because**:

- ► MLE method is applicable even under extreme conditions such as:
  - very steep spectra timing noise;
  - very large gaps;
  - highly variable ToA uncertainties.
- MLE method is close to optimal.

#### Thank you!