Regularization

Machine Learning 2022-2023 - UMONS Souhaib Ben Taieb

Exercise 1

Consider the problem of multiple linear regression, where the aim is to find $\hat{\beta}^{LS} = (\beta_0, ..., \beta_p)^{\mathsf{T}} \in \mathbb{R}^{p+1}$ such that:

$$\hat{\beta}^{LS} = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{i=1}^{p} \beta_i x_{ij} \right)^2.$$

Assuming that $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$ is invertible, we can show that the ordinary least squares estimate is given by $\hat{\boldsymbol{\beta}}^{LS} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$ where $\mathbf{X} \in \mathbb{R}^{n \times p}$ and $\mathbf{y} \in \mathbb{R}^n$. Consider the problem of ridge regression, where the optimization problem is now formulated as finding $\hat{\boldsymbol{\beta}}^R = (\beta_0, ..., \beta_p)^{\mathsf{T}} \in \mathbb{R}^{p+1}$ such that:

$$\hat{\beta}^R = \underset{\beta}{\operatorname{argmin}} \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^p \beta_j^2,$$

where $\lambda \ge 0$. The solution is given by $\hat{\beta}^R = (\mathbf{X}^\mathsf{T}\mathbf{X} + \lambda \mathbf{I}_p)^{-1}\mathbf{X}^\mathsf{T}\mathbf{y}$, where \mathbf{I}_p is the $p \times p$ identity matrix. Let us consider a simple scenario where p = n and that $\mathbf{X} = \mathbf{I}_p$.

- Prove that $\hat{\beta}^R = \frac{\hat{\beta}^{LS}}{\lambda + 1}$.
- Given that Bias($\hat{\beta}^{LS}$) = 0, compute the bias of the ridge estimator.
- Assuming that the data generative process is $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where $\boldsymbol{\varepsilon} \in \mathbb{R}^n$ is a random noise vector, derive the covariance matrices of $\hat{\boldsymbol{\beta}}^{LS}$ and $\hat{\boldsymbol{\beta}}^R$ and show how they relate to one another. You can assume that $\mathbb{E}[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}^T] = \sigma^2\mathbf{I}_n$ and $\mathbb{E}[\boldsymbol{\varepsilon}] = 0$.

The covariance matrix of a random vector $\mathbf{a} \in \mathbb{R}^p$ is given by $Cov(\mathbf{a}) = \mathbb{E}\left[(\mathbf{a} - \mathbb{E}[\mathbf{a}])(\mathbf{a} - \mathbb{E}[\mathbf{a}])^{\mathsf{T}}\right] \in \mathbb{R}^{p \times p}$.

Exercise 2

Suppose that the columns of X_1 are orthonormal, and that $X_2 = 10X_1$. Show that the ordinary least squares estimates are equivariant, meaning that multiplying X by a constant c scales the coefficients estimates by a factor $\frac{1}{c}$. Is it also the case for the ridge estimates?