Geometrie

Einführung zu Mannigfaltigkeiten und Komplexer Analysis

Contents

1.	Kurzrepetition Topologie	1
2.	Topologische Mannigfaltikeiten	3
3.	Glatte Mannigfaltigkeiten	5
4.	Hügelfunktionen und die Zerlegung der Eins	9
5.	Tangentialräume von Mannigfaltigkeiten	13
References		14

1. Kurzrepetition Topologie

Definition 1.1. Seit X eine Menge. Eine Topologie auf X ist eine Familie τ von Teilmengen von X, welche Folgendes erfüllen:

- (1) X und \varnothing sind in τ enthalten,
- (2) die Vereiningung jeder Familie von Elementen in τ ist wieder in τ enthalten,
- (3) jeder Schnitt von endlich vielen Elementen in τ ist wieder in τ enthalten.

Die Elemente in τ nennt man offene Mengen. Ein topologischer Raum ist ein paar (X, τ) , wo τ eine Topologie auf X ist. Wenn $U \in \tau$, dann nennt man $X \setminus U$ abgeschlossen.

Eine Teilmenge von X nennt man abgeschlossen, wenn sie das Komplement einer offenen Teilmenge von X ist.

Example 1.2. (1) $\tau = \{X, \emptyset\}$ ist die triviale Topologie auf einer Menge X.

- (2) Wenn τ die Potenzmenge von X ist, dann nennt man τ die diskrete Topologie. Dann ist jedes $x \in X$ offen und abgeschlossen.
- (3) $X = \mathbb{R}^n$, τ is ist die Familie der Mengen $U \subset X$, so dass für jedes $x \in U$ gibt es ein $\varepsilon > 0$, so dass $B_{\varepsilon}(x) \subset U$.
- (4) Sei (X, d) ein metrischer Raum. Die Familie τ_d folgender Mengen ist die von d induzierte Topologie auf $X: U \subset X$ und für jedes $x \in U$ gibt es $\varepsilon > 0$, so dass $\{y \in X \mid d(x, y) < \varepsilon\} \subset U$.
- (5) $X = \mathbb{Z}$, τ die Familie der endlichen Mengen in \mathbb{Z} und \mathbb{Z} is *keine* Topologie, weil die Vereiningung aller endlichen Teilmengen von \mathbb{Z} , welche nicht 0 enthalten nicht endlich ist und nicht \mathbb{Z} ist.
- (6) Seien $(X, \tau), (Y, \tau')$ topologische Räume. Wir definieren die *Produkttopologie* auf $X \times Y$ wie folgt: eine offene Menge in $X \times Y$ is eine (beliebiege) Vereiningung endlicher Schnitte von Mengen $U \times V$ ist, wobei $U \subset X, V \subset Y$ offen.
- (7) Die Euklidische Topologie auf \mathbb{R}^n ist die Produkttopologie der Euklidischen Topologie auf \mathbb{R} (Übung).
- (8) Sei $Y \subset X$ eine Teilmenge. Die induzierte Topologie auf Y is wie folgt definiert: eine Menge $U \subset Y$ is offen, wenn es $V \subset X$ offen gibt, so dass $U = Y \cap V$.

Definition 1.3. Sei (X, τ) ein topologischer Raum.

- (1) Sei $x \in X$. Eine Umgebung von x ist eine Teilmenge $V \subset X$, welche eine offene Menge U enthält, so dass $x \in U$.
- (2) Eine Basis von τ ist eine Familie \mathcal{B} von offenen Mengen von X, so dass jede offene Teilmenge von X eine Vereinigung von Elementen aus \mathcal{B} ist.

Example 1.4. (1) (X, d) ein metrischer Raum. Dann ist die Familie der offenen Kugeln eine Basis für τ_d .

(2) Seien $(X, \tau), (Y, \tau')$ ein topologischer Raum. Dann ist $\mathcal{B} = \{ \cap_{i=1}^n U_i \times V_i \mid U_i \subset X, V_i \subset Y \text{offen}, n \geq 1 \}$ eine Basis der Produkttopologie auf $X \times Y$.

Wenn \mathcal{B}' (resp. \mathcal{B}'') eine Basis von τ (resp. τ') ist, dann ist $\{ \cap_{i=1}^n U_i \times V_i \mid U_i \in \mathcal{B}', V_i \in \mathcal{B}'', n \geq 1 \}$ eine Basis der Produkttopologie auf $X \times Y$.

Definition 1.5. Sei (X, τ) ein topologischer Raum.

- (1) (X, τ) ist kompakt, wenn es für jede Überdeckung $X = \bigcup_{i \in I} U_i$ von offenen Mengen in $X i_1, \ldots, i_n \in I$ gibt, so dass $X = U_{i_1} \cup \cdots \cup U_{i_n}$.
- (2) (X, τ) ist *Hausdorff*, wenn es für jede $x, y \in X$ zwei disjunkte Umgebungen $U, V \in X$ gibt, so dass $x \in U$ und $y \in V$.
- (3) (X, τ) erfüllt das zweite Abzählbarkeitsaxiom (is second-countable), wenn τ eine abzählbare Basis hat.

Example 1.6. (1) Die diskrete Topologie auf einer Menge X ist Hausdorff aber nicht kompakt (ausser X is endlich).

- (2) Die triviale Topologie ist kompakt aber nicht Hausdorff.
- (3) Abgeschlossene beschränkte Mengen in einem Metrischen Raum sind kompakt.
- (4) Jeder Metrische Raum (X, d) ist Haudroff und hat eine abzählbare Basis. Wenn X nicht beschränkt ist, ist X nicht kompakt.
- (5) Die diskrete Topologie auf $\mathbb R$ hat keine abzählbare Basis.

Lemma 1.7. Sei (X, τ) ein Topologischer Raum und $Y \subset X$ eine Teilmenge mit der induzierten Topologie. Wenn X Hausdorff ist, dann ist Y Hausdorff. Wenn X das 2. Abzählbarkeitsaxiom erfüllt, dann tut dies auch Y.

Proof. Topologievorlesung

Definition 1.8. Seien $(X, \tau), (Y, \tau')$ topologische Räume und $f: X \longrightarrow Y$ eine Abbildung. Sei \mathcal{B} eine Basis von τ' . Wir sagen, dass f stetig ist, wenn das Urbild jeder offenen Menge in Y wieder offen ist.

Equivalent, und praktischer in der Anwendung

Lemma 1.9. Seien $(X, \tau), (Y, \tau')$ topologische Räume und $f: X \longrightarrow Y$ eine Abbildung. Sei \mathcal{B} eine Basis von τ' . Dann ist f stetig genau dann, wenn $\forall x \in X$ und $\forall V \in \mathcal{B}'$ mit $f(x) \in V$, die Menge $f^{-1}(V)$ eine Umgebung von x ist.

Proof. Topologievorlesung.

Example 1.10. Sei Y = X.

- (1) Wenn $\tau = \{X, \emptyset\}$ und $\tau' = \mathcal{P}(X)$, dann ist die Identität nicht stetig
- (2) Wenn $\tau = \mathcal{P}(X)$ und $\tau' = \{X, \emptyset\}$, dann ist die Identität stetig.

Seien $(X,\tau),(Y,\tau')$ topologische Räume und betrachte die Produkttopologie auf $X\times Y$. Dann sind beide Projektionen $p_X\colon X\times Y\longrightarrow X$ und $p_Y\colon X\times Y\longrightarrow Y$ stetig. In der Tat, wenn $U\subset X$ offen, dann ist $p_X^{-1}(U)=U\times Y$ und wenn $V\subset Y$ offen, dann ist $p_X^{-1}(V)=X\times V$.

Example 1.11. Wir betrachten \mathbb{R}^n , \mathbb{R} mit der Euklidischen Topologie. Sei $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ eine Abbildung. Dann ist Stetigkeit im analytischen Sinne equivalent zur Stetigkeit im topologischen Sinne. Nämlich:

$$\forall x_0 \in \mathbb{R}^n, \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{sd} \; \forall x_1 \in X \; \text{sd} \; d(x_0, x_1) < \delta \; \text{gilt} \; d(f(x_0), f(x_1)) < \varepsilon$$

$$\iff \forall x_0 \in \mathbb{R}^n, \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{sd} \; \forall x_1 \in B_\delta(x_0) \subset X \; \text{gilt} \; f(x_1) \in B_\varepsilon(f(x_0))$$

$$\iff \forall x_0 \in \mathbb{R}^n, \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{sd} \; f(B_\delta(x_0)) \subset B_\varepsilon(f(x_0))$$

$$\iff \forall x_0 \in \mathbb{R}^n, \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{sd} \; B_\delta(x_0) \subset f^{-1}(B_\varepsilon(f(x_0)))$$

$$\iff \forall x_0 \in \mathbb{R}^n, \forall \varepsilon > 0 \; \text{ist} \; f^{-1}(B_\varepsilon(f(x_0))) \; \text{eine Umgebung von} \; x_0$$

Definition 1.12. Seien $(X, \tau), (Y, \tau')$ topologische Räume und $f: X \longrightarrow Y$ eine Abbildung. Wir sagen, dass f ein *Homöomorphismus* ist, wenn f bijektiv und sowohl f als auch f^{-1} stetig sind. Wir sagen, dass X und Y homeomorph sind.

Example 1.13. (1) Wenn Y = X und $\tau' = \tau$, dann ist die Identität ein Homöomorphisms.

- (2) $\mathbb{R}_{>0} \longrightarrow \mathbb{R}_{>0}$, $x \mapsto x^2$, ist ein Homöomorphismus.
- (3) $\mathbb{R} \longrightarrow \mathbb{R}_{>0}$, $x \mapsto e^x$ ist ein Homöomorphismus.

2. Topologische Mannigfaltikeiten

Mannigfaltigkeiten sind topologische Räume, die lokal aussehen wir \mathbb{R}^n .

Definition 2.1. Eine topologische Mannigfaltigkeit M (von dimension n) ist ein nicht-leerer Hausdorff topologischer Raum, welcher das zweite Abzählbarkeitsaxiom erfüllt, und so dass es für jeden Punkt $p \in M$ eine Umgebung $U \subset M$ gibt, welche homöomorph (in der induzierten Topologie) zu einer offenen Teilmenge von \mathbb{R}^n ist.

Wir sagen, dass n die dimension von M ist und schreiben $n = \dim M$.

Lemma 2.2. Sei M eine topologische Mannigfaltigkeit. Die Hausdorffbedingung impliziert: jede endliche Teilmenge ist abgeschlossen, Grenzwerte von konvergenten Folgen sind eindeutig.

Proof. Topologievorlesung. \Box

Die Bedingung des 2. Abzählbarkeitsaxioms wird für sogenannte Zerlegung der Eins wichtig, welche

Lemma 2.3. Sei M eine topologische Mannigfaltigkeit und $U \subset M$ eine offene Menge. Dann ist U (mit der induzierten Topologie) eine Mannigfaltigkeit.

Proof. Nach Lemma 1.7, ist U Hausdorff und erfüllt das 2. Abzählbarkeitsaxiom. Sei $p \in U$ und $n = \dim M$. Dann gibt es eine offene Teilmenge $p \in V \subset M$, eine offene Teimenge $\hat{V} \subset \mathbb{R}^n$ und einen Homöomorphismus $f \colon V \longrightarrow \hat{V}$. Dann ist $U \cap V \subset M$ offen und $f|_{U \cap V} \colon U \cap V \longrightarrow f(U \cap V) \subset \hat{V}$ ein Homöomorphismus.

Definition 2.4. Sei M eine n-dimensionale topologische Mannigfaltigkeit. Eine Karte von M ist ein Paar (U,φ) , wobei $U \subset M$ eine offene Teilmenge ist und $\varphi \colon U \longrightarrow \hat{U}$ ein Homöomorphismus von U zu einer offenen Menge $\varphi(U) = \hat{U} \subset \mathbb{R}^n$. Wir nennen U auch den Domain von (U,φ) .

Wenn $p \in U$, sagen wir, dass (U, φ) eine Koordinatenumgebung von p ist. Den Homöomorphismus φ nennt man Koordinatenabbildung. Wir können $\varphi(p) = (x_1(p), \dots, x_n(p) \text{ schreiben}, \text{ und die } x_i \text{ nennt man } lokale Koordinaten von } U$. Wenn $\varphi(U)$ eine Kugel (bzw Würfel) ist, dann nennt man (U, φ) eine Koordinatenkugel (bzw -würfel).

Example 2.5. (1) $M = \mathbb{R}^n$

- (2) M eine abzählbare Vereinigung von Punkten, n = 0
- (3) $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ (Übungen)
- (4) $\mathbb{S}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_n^2 = 1\}$ (Übungen)
- (5) Graph: sei $U \subset \mathbb{R}^n$ offene Menge und $f: U \longrightarrow \mathbb{R}^k$ stetig. Sei

$$\Gamma(f) := \{(x, y) \mid \mathbb{R}^n \times \mathbb{R}^k \mid x \in U, y = f(x)\} \subset \mathbb{R}^k \times \mathbb{R}^n$$

mit der induzierten Topologie von $\mathbb{R}^k \times \mathbb{R}^n$. Die Projektion $p_1 \colon \Gamma(U) \longrightarrow U$ die Projektion auf U is stetig (da sie die Einschränkung der stetigen Projektion $\mathbb{R}^n \times \mathbb{R}^k \longrightarrow \mathbb{R}^n$ ist). p_1 hat ein Inverses, nämlich $q_1 \colon x \mapsto (x, f(x))$, und q_1 is stetig, weil f stetig ist. Also ist $\Gamma(f)$ eine topologische Mannigfaltigkeit.

- (6) Ein endlich dimensionaler Vektorraum über \mathbb{R} (Übungen).
- (7) Das Produkt $M_1 \times \cdots \times M_k$ von topologischen Mannigfaltigkeiten M_1, \ldots, M_k ist wieder eine topologische Mannigfaltigkeit.

Sein (X,d) ein metrischer Raum. Dann ist $A\subset X$ relativ kompakt (oder präkompakt) wenn \overline{A} kompakt in X ist.

Lemma 2.6. Jede topologische Mannigfaltigkeit hat eine abzählbare Basis von präkompakten Koordinatenkugeln, und sie ist überdeckt von abzählbar vielen präkompakten Koordinatenkugeln.

Proof. Sei M eine Mannigfaltigkeit. Jeder Punkt $p \in M$ ist in einer Koordinatenumgebung (U_p, φ_p) enthalten. Die Menge $\varphi_p(U_p) \subset \mathbb{R}^n$ hat eine abzählbare Basis von präkompakten offenen Kugeln, nämlich die abzählbare Familie der Kugeln $B_r(x), x \in \mathbb{Q}^n \cap \varphi_p(U_p), r \in \mathbb{Q}_{>0}$, so dass $B_s(x) \subset \varphi_p(U)$ mit s > r. Jeder solche Ball ist präkompakt in $\varphi_p(U_p)$. Da M das zweite Abzählbarkeitsaxiom erfüllt, hat M eine Überdeckung von abzählbar vielen Koordinatenumgebungen (U_p, φ_p) . Daher bilden die Urbilder der offenen Kugeln $B_r(x)$ eine abzählbare Basis für die Topologie von M. Sei $V \subset U_p$ das Urbild einer solchen Kugel. Weil φ_p ein homöomorphismus ist, ist der Abschluss von V in U_p (bzgl der induzierten Topologie auf U_p) kompakt. Da M Hausdorff ist, ist V in M abgeschlossen. Also ist der Abschluss von V in M gleich dem Abschluss von V in U_i . Es folgt, dass V auch in M präkompakt ist.

Ein topologischer Raum (X, τ) ist lokal kompakt, wenn es für jeden Punkt $p \in X$ eine Umgebung U gibt und eine kompakte Menge $K \subset X$, so dass $p \in U \subset K$. Man nennt K eine kompakte Umgebung von p.

Lemma 2.7. Jede Mannigfaltigkeit ist lokal kompakt.

Proof. Nach Lemma 2.6 hat jede Mannigfaltigkeit eine Basis aus präkompakten Mengen. Also hat jeder Punkt eine präkompakte Umgebung und daher auch eine kompakte Umgebung (den Abschluss der präkompakten Umgebung).

Definition 2.8. Sei X ein topologischer Raum und $\mathcal{U} := \{U_{\alpha}\}_{{\alpha} \in A}$ eine Familie von Teilmengen von M. Wir nennen \mathcal{U} lokal endlich, wenn es für jeden Punkt $x \in X$ eine Umgebung gibt, welche nur endlich viele U_{α} nicht-leer schneidet.

Lemma 2.9. Sei X ein topologischer Raum und $\mathcal{X} = \{X_{\alpha}\}_{{\alpha} \in A}$ eine lokal endliche Familie von Teilmengen von X. Dann ist $\{\overline{X_{\alpha}}\}_{{\alpha} \in A}$ lokal endlich und $\overline{\cup_{\alpha} X_{\alpha}} = \cup_{\alpha} \overline{X_{\alpha}}$.

Proposition 2.10. Sei M eine Mannigfaltigkeit und $U := \{U_{\alpha}\}_{{\alpha} \in A}$ irgendeine eine offene Überdeckung von M. Dann hat M es eine lokal endliche offene Überdeckung $\mathcal{V} := \{V_{\beta}\}_{{\beta} \in B}$, so dass $\forall {\beta} \in B$ es ${\alpha} \in A$ gibt mit $V_{\beta} \subset U_{\alpha}$.

Mehr noch, wenn \mathcal{B} eine Basis der Topologie von M ist, dann gibt es eine offene Überdeckung \mathcal{V} wie oben, welche abzählbar ist, so dass $V_{\beta} \in \mathcal{B} \ \forall \beta \in \mathcal{B}$.

Proof. Wir bemerken, dass die zweite Aussage stärker als die erste ist. Es reicht also, nur die zweite zu zeigen. Sei $\{K_j\}_{j=1}^{\infty}$ eine Überdeckung von M von kompakten Mengen K_j , so dass $K_j \subset \operatorname{Int} K_{j+1}$ for alle $j \geq 1$; sie existiert, weil M Haudroff und lokal kompakt ist und das zweite Abzählbarkeitsaxiom erfüllt [1, Prop A.60]. Für jedes j, sei $V_j := K_{j+1} \setminus \operatorname{Int} K_j$ und $W_j := \operatorname{Int} K_{j+2} \setminus K_{j-1}$ (wobei $K_j := \emptyset$ für j < 1). Dann ist V_j kompakt, W_j ist offen und $V_j \subset W_j$. Da \mathcal{B} eine Basis der Topologie von M ist, gibt es $B_x \in \mathcal{B}$ mit $x \in B_x \subset W_j$. Die Familie $\{B_x\}_{x \in V_j}$ ist eine offene Überdeckung von V_j . Da V_j kompakt ist, hat diese Überdeckung eine endliche Teilüberdeckung $\{B_{x_{k,j}}\}_{k=1}^{N_j}$. Die Vereinigung $\cup_{k,j} B_{x_{k,j}}$ ist eine abzählbare Überdeckung von M und $B_{x_{k,j}} \subset W_j \ \forall j$. Wir bemerken, dass $W_j \cap W_i = \emptyset$, ausser $j-2 \leq i \leq j+2$:

Es folgt, dass es für jeden Punkt $x \in M$ eine Umgebung gibt, die in nur endlich vielen $B_{x_{k,j}}$ enthalten ist.

3. Glatte Mannigfaltigkeiten

Definition 3.1. Seien $U \subset \mathbb{R}^n, V \subset \mathbb{R}^m$ offene Mengen und $F: U \longrightarrow V$ eine Abbildung. Wir nennen F glatt, wenn jede Komponente von $F = (F_1, \dots, F_m)$ stetige partielle Ableitungen jeder Ordnung hat. Wir sagen auch, dass F C^{∞} ist.

Wenn F zusätzlich bijektiv ist und F^{-1} glatt, nennen wir F ein Diffeomorphismus.

Wir bemerken, dass glatte Abbildungen stetig sind und Diffeomorphismen sind im Speziellen Homöomorphismen.

Definition 3.2. Sei M eine topologische Mannigfaltigkeitund $(U, \varphi), (V, \varphi)$ Koordinatenumgebungen auf M, so dass $U \cap V \neq \emptyset$.

(1) Wir nennen $\psi \circ \varphi^{-1} : \varphi(U \cap V) \longrightarrow \psi(U \cap V)$ einen Kartenwechsel.

Da φ, ψ homöomorphismen sind, ist $\psi \circ \varphi^{-1}$ auch ein Homöomorphismus.

- (2) Wir sagen, (U, φ) , (V, φ) sind glatt kompatibel, wenn entweder $U \cap V = \emptyset$ oder $\psi \circ \varphi^{-1}$ glatt ist.
- (3) Ein Atlas von M ist eine Familie von Karten, deren Domain M überdecken. Ein Atlas is glatt, wenn jedes Paar von Karten glatt kompatibel sind. In diesem falle, auch der Kartenwechsel $\varphi \circ \psi^{-1}$ glatt und daher ist $\psi \circ \varphi^{-1}$ ein Diffeomorphismus.
- (4) Ein glatter Atlas \mathcal{A} ist *maximal*, wenn er in keinem anderen glatten Atlas enthalten ist (i.e. jede Karte, die glatt kompatibel mit jeder Karte in \mathcal{A} ist, ist schon in \mathcal{A} enthalten).

Wir sagen, dass M eine glatte Struktur hat, wenn sie einen glatten Atlas hat. Eine glatte Mannigfaltigkeitist ein paar (M, \mathcal{A}) , wo \mathcal{A} ein maximaler Atlas ist. Meistens lassen schreiben wir M anstatt (M, \mathcal{A}) .

Example 3.3. Sei $\{(\mathbb{R}, x^3)\}$ eine glatte Struktur auf \mathbb{R} , da $x \mapsto x^3$ ein homöomorphismus ist und jeder Kartenwechsel glatt ist. Diese glatte Struktur ist nicht mit der standard glatten Struktur (\mathbb{R}, id) glatt kompatibel, da der Kartenwechsel $id_{\mathbb{R}} \circ (x^3)^{-1} = \sqrt[3]{x}$ nicht glatt in ist.

Proposition 3.4. Sei M eine topologische Mannigfaltigkeit.

- (1) Jeder glatte Atlas A von M ist in einem eindeutigen maximalen Atlas enthalten, welchen wir die durch A bestimmte glatte Struktur nennen.
- (2) Zwei glatte Atlase von M bestimmen die gleiche glatte Struktur genau dann, wenn ihre Vereinigung ein glatter Atlas ist.

Proof. (1) Sei \mathcal{A} ein glatter Atlas von M und sei $\overline{\mathcal{A}}$ die Familie aller Karten von M, welche glatt kompatibel mit den Karten in \mathcal{A} sind. Wir bemerken, dass $\mathcal{A} \subset \overline{\mathcal{A}}$. Wir zeigen, dass $\overline{\mathcal{A}}$ ein glatter Atlas ist. Seine $(U, \varphi), (V, \psi)$ zwei Karten in $\overline{\mathcal{A}}$ und $x = \varphi(p) \in \varphi(U \cap V)$ irgendein Punkt. Da die Domains der Karten in \mathcal{A} die Mannigfaltigkeit M überdecken, gibt es eine Karte (W, θ) in \mathcal{A} , so dass $p \in W$ (siehe Bild).

Jede Karte in $\overline{\mathcal{A}}$ ist glatt kompatibel mit (W, θ) , also sind $\theta \circ \varphi^{-1}$ und $\psi \circ \theta^{-1}$ glatt (da, wo sie definiert sind). Da $p \in U \cap V \cap W$, ist $\psi \circ \varphi^{-1} = (\psi \circ \theta^{-1}) \circ (\theta \circ \varphi^{-1})$ glatt in einer Umgebung von x. Es folgt, dass $\psi \circ \varphi^{-1}$ in jeder Umgebung des Punktes von $\varphi(U \cap V)$ glatt ist. Also ist $\overline{\mathcal{A}}$ ein glatter Atlas.

Wir zeigen jetzt, dass $\overline{\mathcal{A}}$ ein maximaler glatter Atlas ist. In der Tat, nach Definition von $\overline{\mathcal{A}}$, jede Karte von M, welche glatt kompatibel mit jeder Karte in $\overline{\mathcal{A}}$ ist, ist auch glatt kompatibel mit jeder Karte in \mathcal{A} . Jeder solche Karte ist also schon in $\overline{\mathcal{A}}$ enthalten. Also ist $\overline{\mathcal{A}}$ maximal. Eindeutigkeit: Sei \mathcal{B} ein weiterer maximaler glatter Atlas, welcher \mathcal{A} enthält. Da jede Karte in \mathcal{B} glatt kompatibel mit jeder Karte von \mathcal{A} ist, ist jede Karte in \mathcal{B} schon in \mathcal{A} enthalten. Da \mathcal{B} maximal ist, folgt $\mathcal{B} = \overline{\mathcal{A}}$.

(2) Seien \mathcal{A} und \mathcal{B} zwei glatte Atlase von M, welche die selbe glatte Struktur \mathcal{C} bestimmen. Nach (1), ist \mathcal{C} die Familie der Karten von M, welche mit allen Karten in \mathcal{A} und allen Karten in \mathcal{B} glatt kompatibel sind, und $\mathcal{A}, \mathcal{B} \subset \mathcal{C}$. Es folgt, dass alle Karten in $\mathcal{A} \cup \mathcal{B}$ mit allen Karten in $\mathcal{A} \cup \mathcal{B}$ glatt kompatibel sind.

Seien \mathcal{A} und \mathcal{B} zwei glatte Atlase von M, so dass $\mathcal{A} \cup \mathcal{B}$ ein glatter Atlas ist. Nach (1), ist $\mathcal{A} \cup \mathcal{B}$ in einem eindeutigen maximalen Atlas \mathcal{C} enthalten. Jede Karte in \mathcal{C} ist glatt kompatibel mit \mathcal{A} (bzw \mathcal{B}), also ist $\mathcal{C} \subset \overline{\mathcal{A}}$ (bzw. $\subset \overline{\mathcal{B}}$). Da \mathcal{C} maximal ist, folgt $\mathcal{C} = \overline{\mathcal{A}} = \overline{\mathcal{B}}$.

Definition 3.5. Sei M eine glatte Mannigfaltigkeit. Eine Karte (U, φ) von M, welche in einem maximalen glatten Atlas enthalten ist, nenne wir glatte Karte, und φ glatte Koordinatenabbildung etc.

Definition 3.6. Sei M eine Mannigfaltigkeit. Wir nennen eine Teilmenge $B \subset M$ eine reguläre Koordinatenkugel, wenn es eine glatte Koordinatenkugel $B' \supset \overline{B}$ gibt und glatte Koordinatenabbildung $\varphi \colon B' \longrightarrow \mathbb{R}^n$, so dass

$$\varphi(B) = B_r(0), \quad \varphi(\overline{B}) = \overline{B_r(0)}, \quad \varphi(B') = B_{r'}(0)$$

für irgendwelche $r, r' \in \mathbb{R}, r' > r$.

Lemma 3.7. Jede glatte Mannigfaltigkeit hat eine abzählbare Basis von regulären Koordinatenkugeln

Proof. Wie Lemma 2.6 (Übung).

Lemma 3.8 (Smooth manifold Chart Lemma). Sei M eine Menge, $\{U_{\alpha}\}_{\alpha}$ eine Familie von Teilmengen $U_{\alpha} \subset M$ und $\varphi_{\alpha} \colon U_{\alpha} \longrightarrow \mathbb{R}^n$ Abbildungen, so dass die folgenden Bedingungen gelten.

- (1) $\forall \alpha, \varphi_{\alpha}(U_{\alpha})$ ist offen in \mathbb{R}^n und φ_{α} ist eine Bijektion zwischen U_{α} und $\varphi_{\alpha}(U_{\alpha})$.
- (2) $\forall \alpha, \beta, \text{ sind die Mengen } \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \text{ und } \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \text{ offen in } \mathbb{R}^{n}.$
- (3) Wenn $U_{\alpha} \cap U_{\beta} \neq \emptyset$, dann ist $\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \longrightarrow \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ glatt (C^{∞}) .
- (4) M wird von abzählbar vielen U_{α} überdeckt.
- (5) Wenn $p, q \in M$ verschiedene Punkte sind, dann gibt es entweder ein U_{α} , so dass $p, q \in U_{\alpha}$, oder es gibt U_{α}, U_{β} , so dass $U_{\alpha} \cap U_{\beta} = \emptyset$ und $p \in U_{\alpha}$ und $q \in U_{\beta}$.

Dann hat M eine eindeutige Mannigfaltigkeitstruktur, so dass jedes $(U_{\alpha}, \varphi_{\alpha})$ eine Karte von M ist.

Proof. Zuerst definieren wir eine Topologie: wir nehmen alle Mengen der Form $\varphi_{\alpha}^{-1}(V)$, $V \subset \mathbb{R}^n$ offen, als Basis. Wir zeigen jetzt, dass dies eine Topologie bestimmt. Dazu reicht es zu zeigen, dass für alle offenen Mengen $V, W \subset \mathbb{R}^n$ und alle α, β , die Menge $\varphi_{\alpha}^{-1}(V) \cap \varphi_{\beta}^{-1}(W)$

wieder in der Basis ist (siehe Bild)

(3) impliziert, dass $(\varphi_{\beta} \circ \varphi_{\alpha}^{-1})^{-1}(W) \subset \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ offen ist. (2) impliziert, dass $(\varphi_{\beta} \circ \varphi_{\alpha}^{-1})^{-1}(W)$ offen in \mathbb{R}^n ist. Es folgt, dass

$$\varphi_{\alpha}^{-1}(V) \cap \varphi_{\beta}^{-1}(W) = \varphi_{\alpha}^{-1}(V \cap (\varphi_{\beta} \circ \varphi_{\alpha}^{-1})^{-1}(W))$$

eine Basis Menge ist. Wir haben also eine Topologie auf M definiert. Nach Definition dieser Topologie und nach (1), ist jedes φ_{α} ein Homöomorphismus. Die Topologie auf M ist Haudorff nach (5) und erfüllt das zweite Abzählbarkeitsaxiom nach (4) und weil die $\varphi_{\alpha}(U_{\alpha})$ das zweite Abzählbarkeitsaxiom erfüllen. Also ist M eine topologische Mannigfaltigkeit. (3) impliziert, dass M eine glatte Mannigfaltigkeitist. Übung: diese glatte Mannigfaltigkeitsstruktur ist eindeutig.

Definition 3.9. Sei M eine glatte Mannigfaltigkeit und $f: M \longrightarrow \mathbb{R}^k$ eine Abbildung. Wir sagen, dass f glatt ist, wenn es für jeden Punkt $p \in M$ eine Karte (U, φ) von M gibt, mit $p \in U$, so dass $f \circ \varphi^{-1} \colon \varphi(U) \longrightarrow \mathbb{R}^k$ glatt ist. Wir nennen $(f \circ \varphi^{-1})(x)$ die Koordinatenrepräsentation von f.

Die Menge aller glatten Abbildungen $M \longrightarrow \mathbb{R}$ wird mit $C^{\infty}(M)$ notiert.

- **Example 3.10** (Exercises). (1) Sei $U \subset \mathbb{R}^n$ eine offene Menge mit ihrer standard Mannigfaltigkeitsstruktur und sei $f \colon U \longrightarrow \mathbb{R}^k$ eine Abbildung. Zeige, sie ist glatt wie oben definiert, dann und nur dann wenn sie glatt im calculus Sinne ist.
 - (2) Sei M eine Mannigfaltigkeit und sei $f: M \longrightarrow \mathbb{R}^k$ eine glatte Abbildung. Zeige, dass $f \circ \varphi^{-1} \colon \varphi(U) \longrightarrow \mathbb{R}^k$ glatt ist für jede glatte Karte (U, φ) von M.

Definition 3.11. Seien M, N glatte Mannigfaltigkeiten und $F: M \longrightarrow N$ eine Abbildung. Wir sagen, dass F glatt ist, wenn für jeden Punkt $p \in M$ glatte Karten (U, φ) von M und (V, ψ) von N existieren, so dass $p \in U$ und $F(p) \in V$ und $F(U) \subset V$ und $\psi \circ F \circ \varphi^{-1} \colon \varphi(U) \longrightarrow \psi(V)$ glatt ist.

Lemma 3.12. Jede glatte Abbildung ist stetig.

Lemma 3.13 (Glueing lemma for smooth maps). Seien M, N glatte Mannigfaltigkeiten und sei $\{U_{\alpha}\}_{\alpha \in A}$ eine offene Überdeckung von M. Wir nehmen an, dass für jedes $\alpha \in A$ eine glatte Abbildung $F_{\alpha} \colon U_{\alpha} \longrightarrow N$ haben, so dass $F_{\alpha}|_{U_{\alpha} \cap U_{\beta}} = F_{\beta}|_{U_{\alpha} \cap U_{\beta}}$ für alle $\alpha, \beta \in A$. Dann gibt es eine eindeutige glatte Abbildung $F \colon M \longrightarrow N$ so dass $F|_{U_{\alpha}} = F_{\alpha}$ für alle $\alpha \in A$.

Definition 3.14. Zwei Mannigfaltigkeiten M und N sind diffeomorph, wenn es eine glatte bijektive Abbildung $F: M \longrightarrow N$ gibt, so dass F^{-1} glatt ist. Wir schreiben auch $M \approx N$.

Example 3.15. Sei \mathbb{B}^n die offene Einheitskugel in \mathbb{R}^n . Wir betrachten die Abbildungen $F \colon \mathbb{B}^n \longrightarrow \mathbb{R}^n$ und $G \colon \mathbb{R}^n \longrightarrow \mathbb{B}^n$

$$F(x) = \frac{x}{\sqrt{1-|x|^2}}, \quad G(y) = \frac{y}{\sqrt{1+|y|^2}}$$

Übung: F und G sind glatt und inverse zu einander. Also haben wir $\mathbb{R}^n \approx \mathbb{B}^n$.

4. Hügelfunktionen und die Zerlegung der Eins

Motivation: Abbildung zusammenkleben können, ohne, dass sie auf Überschneidungen übereinstimmen.

Lemma 4.1. Die Funktion
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = \begin{cases} e^{-1/t}, & t > 0 \\ 0, & t \leq 0 \end{cases}$, ist glatt.

Proof. Exercise. \Box

Lemma 4.2 (Existenz cutoff function). Seien $r_1, r_2 \in \mathbb{R}$, $r_1 < r_2$. Dann gibt es eine glatte Funktion $h: \mathbb{R} \longrightarrow \mathbb{R}$, so dass $h(t) \equiv 1$ für $t \leqslant r_1$, 0 < h(t) < 1 für $t \in (r_1, r_2)$ und $h(t) \equiv 0$ für $t \geqslant r_2$.

Wir nennen h eine cut-off Funktion.

Proof. Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \begin{cases} e^{-1/t}, & t > 0 \\ 0, & t \leq 0 \end{cases}$, von Lemma 4.1. Wir setzen

$$h(t) = \frac{f(r_2 - t)}{f(r_2 - t) + f(t - r_1)}$$

Wir haben $f(r_2 - t) + f(t - r_1) > 0$ (weil immer $r_2 - t$ oder $t - r_1$ positive sind) und $h(t) \le 1$ für alle $t \in \mathbb{R}$. Für $t \le r_1$ haben wir $f(t - r_1) = 0$ und somit h(t) = 1. Für $t \ge r_2$ haben wir $f(r_2 - t) = 0$ und somit h(t) = 0.

Lemma 4.3. Seien $r_1, r_2 \in \mathbb{R}$, $r_1 < r_2$. Dann gibt es eine glatte Funktion $H : \mathbb{R}^n \longrightarrow \mathbb{R}$, so dass $H(x) \equiv 1$ für $x \in \overline{B_{r_1}(0)}$, 0 < H(x) < 1 für $x \in B_{r_2}(0) \setminus \overline{B_{r_1}(0)}$ und H(x) = 0 für $x \in \mathbb{R}^n \setminus B_{r_2}(0)$.

Proof. Wir setzen H(x) = h(|x|), wobei h die Funktion von Lemma 4.2 ist. Die Funktion H ist glatt auf $\mathbb{R}^n \setminus \{0\}$. Da H(x) = 1 für $x \in \overline{B_{r_1}(0)}$, ist H auch bei 0 glatt.

Die Funktion H ist ein Beispiel einer Hügelfunktion.

Definition 4.4. Sei M eine Mannigfaltigkeit und $f: M \longrightarrow \mathbb{R}$ eine Abbildung. Wir nennen

$$\operatorname{supp} f = \overline{\{p \in M \mid f(p) \neq 0\}}$$

den Support (Träger) von f.

Example 4.5. Für f von Lemma 4.1, ist $\operatorname{supp} f = \mathbb{R}_{\geq 0}$. Für h von Lemma 4.2 ist $\operatorname{supp} h = \{x \in \mathbb{R} \mid x \leq r_2\}$. Für H von Lemma 4.3 ist $\operatorname{supp} H = \overline{B_{r_2}(0)}$.

Definition 4.6. Sei M ein topologischer Raum und $\mathcal{X} := \{X_{\alpha}\}_{{\alpha} \in A}$ eine offene Überdeckung von M. Eine \mathcal{X} untergeordnete Zerlegung der Eins ist eine Familie $\{\psi_{\alpha}\}_{{\alpha} \in A}$ von stetigen Abbildungen $\psi_{\alpha} \colon M \longrightarrow \mathbb{R}$, welche folgende Bedingungen erfüllt:

- (1) $0 \le \psi_{\alpha}(x) \le 1 \ \forall \alpha \in A \text{ und } \forall x \in M.$
- (2) supp $\psi_{\alpha} \subset X_{\alpha} \ \forall \alpha \in A$.
- (3) Die Familie $\{\operatorname{supp}\psi_{\alpha}\}_{\alpha\in A}$ ist lokal endlich.
- (4) $\sum_{\alpha \in A} \psi_{\alpha}(x) = 1$ für alle $x \in M$.

Wenn M eine glatte Mannigfaltigkeit ist und alle ψ_{α} glatt sind, sagen wir, dass $\{\psi_{\alpha}\}_{{\alpha}\in A}$ eine glatte \mathcal{X} untergeordnete Zerlegung der Eins ist.

Remark 4.7. Nach (3), ist hat für jedes $x \in M$ die Summe $\sum_{\alpha \in A} \psi_{\alpha}(x)$ in (4) nur endlich viele nicht-null Summanden.

Theorem 4.8. Sei M eine glatte Mannigfaltigkeit und $\mathcal{X} := \{X_{\alpha}\}_{{\alpha} \in A}$ eine offene Überdeckung von M. Dann existiert eine glatte \mathcal{X} untergeordnete Zerlegung der Eins

Proof. Nach Lemma 2.3, ist jedes X_{α} eine Mannigfaltigkeit. Als solche hat es eine Basis \mathcal{B}_{α} von Koordinatenkugeln (Lemma 3.7). Dann ist $\mathcal{B} := \cup \mathcal{B}_{\alpha}$ eine Basis für die Topologie auf M. Proposition 2.10 sagt, dass es eine offene abzählbare Überdeckung $\{B_i\}_{i=1}^{\infty}$ von M gibt, so dass $B_i \in \mathcal{B}$ $\forall i$, für jedes i gibt es ein $\alpha \in A$, so dass $B_i \subset X_{\alpha}$, und jeder Punkt $x \in M$ hat eine Umgebung, die in nur endlich viele B_i nicht-leer schneidet. Die letzte Bedingung gilt auch für die Überdeckung $\{\overline{B_i}\}_{i=1}^{\infty}$ nach Lemma 2.9. Da B_i eine reguläre Koordinatenkugel ist und $B_i \subset X_{\alpha}$ für ein $\alpha \in A$, impliziert, dass es eine Koordinatenkugel $B_i' \subset X_{\alpha}$ gibt, so dass $\overline{B_i} \subset B_i'$. Und es gibt eine glatte Koordinate $\varphi_i \colon B_i' \longrightarrow \mathbb{R}^n$, so dass $\varphi_i(\overline{B_i}) = \overline{B_{r_i}(0)}$ und $\varphi_i(B_i') = B_{r_i'}(0)$ für irgendwelche $r_i, r_i' \in \mathbb{R}$, $r_i < r_i'$. Für jedes i definieren wir

$$f_i = \begin{cases} H_i \circ \varphi_i, & \text{auf } B_i' \\ 0, & \text{auf } M \backslash \overline{B_i} \end{cases},$$

wobei $H_i: \mathbb{R}^n \longrightarrow \mathbb{R}$ eine glatte Funktion ist, die auf $B_{r_i}(0)$ positiv ist und null auf $\mathbb{R}^n \backslash B_{r_i}(0)$, wie in Lemma 4.3. Wir bemerken, dass $H_i \circ \varphi_i$ null auf $B'_i \backslash \overline{B_i}$ ist, als ist f_i wohl-definiert, glatt und supp $f_i = \overline{B_i}$.

Wir definieren $f: M \longrightarrow \mathbb{R}$, $f(x) = \sum_i f_i(x)$. Da jeder $\{\overline{B_i}\}$ lokal endlich ist, hat diese Summe nur endlich viele nicht-null Summanden in einer Umgebung jedes Punktes. Also ist f glatt. Da jedes f_i positiv auf $\overline{B_i}$ ist und jeder Punkt von M in einem B_i enthalten ist, ist f positiv auf M. Also ist $g_i := f_i/f$ glatt, da wo es definiert ist. Ausserdem ist $0 \le g_i \le 1$ und $\sum_i g_i(x) = 1$ $\forall x \in M$.

Jetzt müssen wir die Indizes anpassen, damit wir $\alpha \in A$ wiederfinden. Für jedes i gibt es $a(i) \in A$, so dass $B'_i \subset X_{a(i)}$ (a(i) ist vielleicht nicht eindeutig). Für $\alpha \in A$ definieren wir

$$\psi_{\alpha} = \sum_{i \text{ sd } a(i) = \alpha} g_i \colon M \longrightarrow \mathbb{R}.$$

(Wenn es keine i gibt, so dass $\alpha = a(i)$, dann ist diese Summe Null.) Wir haben

$$\operatorname{supp}\psi_{\alpha} = \overline{\cup_{i \text{ sd } a(i) = \alpha} B_i} \stackrel{Lem}{=} {}^{2.9} \cup_{i \text{ sd } a(i) = \alpha} \overline{B_i} \subset X_{\alpha}$$

Jedes ψ_{α} ist glatt und $0 \leq \psi_{\alpha} \leq 1$. Mehr noch, für jeden Punk $x \in M$ gibt es eine Umgebung, die in nur endlich vieln supp ψ_{α} nicht-leer schneidet (weil das schon für die $\overline{B_i}$ stimmt). Wir haben daher $\sum_{\alpha} \psi_{\alpha} = \sum_{i} g_i = 1$.

Definition 4.9. Sein M eine glatte Mannigfaltigkeit, $A \subset M$ abgeschlossen und $U \subset M$ offen mit $A \subset U$. Eine stetige Abbildung $\psi \colon M \longrightarrow \mathbb{R}$ heisst $H\ddot{u}gelfunktion \ f\ddot{u}r \ A \ auf \ U$, wenn $0 \le \psi \le 1$ auf M, $\psi = 1$ auf A und $\sup \psi \subset U$.

Corollary 4.10. Sein M eine glatte Mannigfaltigkeit, $A \subset M$ abgeschlossen und $U \subset M$ offen mit $A \subset U$. Dann gibt es eine glatte Hügelfunktion für A auf U.

Proof. Sei $U_0 = U$ und $U_1 = M \setminus A$. Dann ist $\{U_0, U_1\}$ eine offene Überdeckung von M. Nach Theorem 4.8 gibt es eine glatte $\{U_0, U_1\}$ untergeordnete Zerlegung der Eins $\{\psi_0, \psi_1\}$. Dann ist $\psi_1 = 0$ auf A und somit $\psi_0 = \psi_0 + \psi_1 = 1$ auf A. Also ist ψ_0 die gesuchte glatte Hügelfunktion.

Definition 4.11. Seinen M, N glatte Mannigfaltigkeiten und $A \subset M$ eine Teilmenge. Eine Abbildung $F: A \longrightarrow N$ ist glatt auf A, wenn es für jeden Punkt $x \in A$ eine Umgebung $x \in U \subset M$ und eine glatte Abbildung $\tilde{F}: U \longrightarrow N$ gibt, so dass $\tilde{F}|_{A \cap U} = F|_{A \cap U}$.

Corollary 4.12. Sei M eine glatte Mannigfaltigkeit, $A \subset M$ eine abgeschlossene Teilmenge und $f: A \longrightarrow \mathbb{R}^k$ eine glatte Abbildung. Sei $U \subset M$ eine offene Menge mit $A \subset U$. Dann gibt es eine glatte Abbildung $\tilde{f}: M \longrightarrow \mathbb{R}^k$, so dass $\tilde{f}_A = f$ und $\operatorname{supp} \tilde{f} \subset U$.

Proof. Für jedes $p \in A$ gibt es eine Umgebung $W_p \subset M$ und eine glatte Abbildung $\tilde{f}_p \colon W_p \longrightarrow \mathbb{R}^k$, so dass $\tilde{f}_p|_{W_p \cap A} = f|_{W_p \cap A}$. Wir ersetzen W_p durch $W_p \cap U$ und können somit annehmen, dass $W_p \subset U$. Dann ist $\mathcal{W} := \{W_p \mid p \in A\} \cup \{M \setminus A\}$ eine offene Überdeckung von M. Nach Theorem 4.8 gibt es eine glatte \mathcal{W} untergeordnete Zerlegung der Eins $\{\psi_p \mid p \in A\} \cup \{\psi_0\}$. Es gilt supp $\psi_p \subset W_p$ und supp $\psi_0 \subset M \setminus A$.

Für jedes $p \in A$ ist $\psi_p \tilde{f}_p$ glatt auf W_p und hat eine glatte Erweiterung auf M, welche null auf $M \setminus \sup \psi_p$ ist. (Die so definierte Abbildung ist tatsächlich glatt, weil sie null auf $W_p \setminus \sup \psi_p$ ist.) Wir definieren

$$\tilde{f}(x) := \sum_{p \in A} \psi_p(x) \tilde{f}_p(x).$$

Da die Familie $\{\text{supp}\psi_p\}$ lokal endlich ist, hat diese Summe in einer Umgebung jedes Punktes nur endlich viele nicht-null Summanden. Also ist f glatt. Wenn $x \in A$, dann ist $\psi_0(x) = 0$ und $\tilde{f}_p(x) = f(x) \ \forall p \in A$, und somit

$$\tilde{f}(x) = \sum_{p \in A} \psi_p(x) \tilde{f}_p(x) = (\psi_0(x) + \sum_{p \in A} \psi_p(x)) f(x) \stackrel{ZdE}{=} f(x)$$

Also ist $\tilde{f}|_A = f$. Ausserdem haben wir

$$\operatorname{supp} \tilde{f} = \overline{\cup_{p \in A} \operatorname{supp} \psi_p} \stackrel{Lem}{=} {\overset{2.9}{=}} \cup_{p \in A} \operatorname{supp} \psi_p \subset \cup_{p \in A} W_p \subset U.$$

Remark 4.13. Die Bedingung, dass $f \colon A \longrightarrow \mathbb{R}^k$ und nicht $f \colon A \longrightarrow N$ für irgendeine glatte Mannigfaltigkeit N ist wichtig. Nehmen wir die abgeschlossene Menge $\mathbb{S}^1 \subset \mathbb{R}^2$ und die Identität $f \colon \mathbb{S}^1 \longrightarrow \mathbb{S}^1$. Sie ist glatt. Aber es gibt keine stetige Erweiterung $\mathbb{R}^2 \longrightarrow \mathbb{S}^1$ (denke an Fundamentalgruppen) und daher kann Korollar 4.12 in diesem Fall nicht stimmen. Allerdings kann man f als Abbildung $f \colon \mathbb{S}^1 \longrightarrow \mathbb{R}^2$ sehen und dann können wir sie zur Identitätsabbildung $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ erweitern.

Man kann Korollar 4.12 verallgemeinern, vielleicht sehen wir das später.

Definition 4.14. Sei X ein topologischer Raum. Eine Ausschöpfungsfunktion für X ist eine stetige Abbildung $f: X \longrightarrow \mathbb{R}$, so dass $f^{-1}((-\infty, c])$ kompakt ist $\forall c \in \mathbb{R}$. Wir nennen $f^{-1}((-\infty, c])$ Sublevelset von f.

Proposition 4.15. Jede glatte Mannigfaltigkeithat eine glatte positive Ausschöpfungsfunktion.

Proof. Sei M eine glatte Mannigfaltigkeit. Nach Lemma 2.6 gibt es eine abzählbare offene Überdeckung $\{V_j\}_{j=1}^{\infty}$ von präkompakten Mengen V_j (Topologieübung). Nach Theorem 4.8 gibt es eine $\{V_j\}_{j=1}^{\infty}$ untergeordnete Zerlegung der Eins $\{\psi_j\}_{j=1}^{\infty}$. Wir definieren

$$f(x) = \sum_{j=1}^{\infty} j\psi_j(x).$$

Da $\{\sup \psi_j\}_{j=1}^\infty$ lokal endlich ist, sind für jeden Punk in M nur endlich viele Summanden nicht-null in einer Umgebung dieses Punktes. Es folgt, dass f glatt ist. Ausserdem gilt $f(x) \geqslant \sum_{j=1}^\infty \psi_j(x) = 1$. Lass uns zeigen, dass f eine Ausschöpfungsfunktion ist. Sei $c \in \mathbb{R}$ und sei $N \in \mathbb{Z}, N > c$.

Wenn $p \notin \bigcup_{j=1}^N \overline{V_j}$, dann ist $\psi_j(x) = 0$ for $1 \leqslant j \leqslant N$, und dann gilt

$$f(x) = \sum_{j=N+1}^{\infty} j\psi_j(x) = \sum_{j=N+1}^{\infty} N\psi_j(x) = N(\sum_{j=N+1}^{\infty} \psi_j(x)) = N > c.$$

Wir haben gezeigt, dass wenn $f(x) \leq c$, dann ist $x \in \bigcup_{j=1}^N \overline{V_j}$. Also ist die abgeschlossene Menge $f^{-1}((-\infty,c])$ in der kompakten Menge $\bigcup_{j=1}^N \overline{V_j}$ und ist daher selbst kompakt.

Der folgende Satz zeigt, dass jede abgeschlossene Menge einer glatten Mannigfaltigkeit eine Niveaumenge ist.

Theorem 4.16. Sei M eine glatte Mannigfaltigkeit und $K \subset M$ eine abgeschlossene Menge. Dann gibt es eine glatte nicht-negative funktion $f: M \longrightarrow \mathbb{R}$, so dass $f^{-1}(0) = K$.

Proof. Nach Lemma 2.6 gibt es eine offene Überdeckung $\{B_{\alpha}\}_{{\alpha}\in A}$ von glatten Koordinatenkugeln B_{α} . Nach Theorem 4.8 gibt es eine $\{B_{\alpha}\}_{{\alpha}\in A}$ untergeordnete Zerlegung der Eins $\{\psi_{\alpha}\}_{{\alpha}\in A}$.

Behauptung: es $\forall \alpha$ eine nicht-negative glatte Funktion $f_{\alpha} \colon B_{\alpha} \longrightarrow \mathbb{R}$ gibt, so dass $f_{\alpha}^{-1}(0) = B_{\alpha} \cap K$. Wenn dies gezeigt ist, dann nehmen wir $f = \sum f_{\alpha} \psi_{\alpha}$.

Beweis: wir erinnern uns, dass $B_{\alpha} \approx \mathbb{R}^n$, siehe Example 3.15. Es reicht also die Behauptung für \mathbb{R}^n zu zeigen. Sei $\tilde{K} \subset \mathbb{R}^n$ das Bild von $K \cap B_{\alpha}$ unter dem Diffeomorphismus $B_{\alpha} \approx \mathbb{R}^n$. Dann ist $\tilde{K} \subset \mathbb{R}^n$ eine abgeschlossene Menge. Dann ist $\mathbb{R}^n \setminus \tilde{K}$ offen und ist eine glatte Mannigfaltigkeit (Lemma 2.3). Dann ist $\mathbb{R}^n \setminus \tilde{K} = \bigcup_{i=1}^{\infty} B_{r_i}(x_i)$ für irgendwelche $0 < r_i \le 1$ und $x_i \in \mathbb{R}^n \setminus \tilde{K} \ \forall i$ (Lemma 2.6). Nach Lemma 4.3 gibt es $h: \mathbb{R}^n \longrightarrow \mathbb{R}$ eine glatte Hügelfunktion, welche 1 auf $\overline{B_{1/2}(0)}$ ist und 0 < h(x) < 1 for $x \in B_1(0) \setminus \overline{B_{1/2}(0)}$ und h(x) = 0 auf $\mathbb{R}^n \setminus B_1(0)$. Da $\overline{B_1(0)}$ kompakt ist, gibt es für jedes $i \in \mathbb{Z}_{>0}$ eine Konstante $C_i \in \mathbb{R}_{\geq 1}$, so dass

$$|h^{(i)}(x)| \leqslant C_i \ \forall x \in \overline{B_1(0)} \ \forall i$$

(wobei $h^{(i)}$ die *i*-te Ableitung von h ist). Da $h \equiv 0$ auf $\mathbb{R}^n \backslash B_1(0)$, gilt

$$|h^{(i)}(x)| \leqslant C_i \ \forall x \in \mathbb{R}^n \ \forall i.$$

Wir definieren

$$f(x) = \sum_{i=1}^{\infty} \frac{(r_i)^i}{2^i C_i} h\left(\frac{x - x_i}{r_i}\right)$$

Da $0 \le h(x) \le 1 \ \forall x \in \mathbb{R}^n$, gilt

$$|\frac{(r_i)^i}{2^iC_i}h\left(\frac{x-x_i}{r_i}\right)|\leqslant |\frac{(r_i)^i}{2^iC_i}| \overset{0< r_i\leqslant 1}{\leqslant} \frac{1}{2^iC_i} \overset{C_i\geqslant 1}{\leqslant} \frac{1}{2^i} \ \forall i$$

Da die Reihe $\sum_i \frac{1}{2^i}$ konvergiert, konvergiert (nach Weierstrass Majorantenkriterium, siehe Analysis I&II) auch $\sum_{i=1}^N \frac{(r_i)^i}{2^i C_i} h\left(\frac{x-x_i}{r_i}\right)$ absolut und gleichmässig auf \mathbb{R}^n zu einer stetigen Funktion $f \colon \mathbb{R}^n \longrightarrow \mathbb{R}$. Wir bemerken, dass $h\left(\frac{x-x_i}{r_i}\right) > 0$ genau dann, wenn $x \in B_{r_i}(x_i)$. Also ist $f|_{\tilde{K}} \equiv 0$ und $f|_{\mathbb{R}^n \setminus \tilde{K}} > 0$.

Wir zeigen jetzt durch Induktion, dass f glatt ist. Sei $k \ge 1$ und nehmen wir an, dass alle partiellen Ableitungen von f von Ordnung $\le k-1$ existieren und stetig sind. Jede k-te partielle Ableitung von $\frac{(r_i)^i}{2^iC_i}h\left(\frac{x-x_i}{r_i}\right)$ ist von der Form

$$\frac{(r_i)^{i-k}}{2^i C_i} D_k h\left(\frac{x-x_i}{r_i}\right)$$

wobei $D_k h$ eine k-te Ableitung von h ist. Wenn $k \leq i$, dann ist $\frac{(r_i)^{i-k}}{2^i C_i} D_k h\left(\frac{x-x_i}{r_i}\right) \leq \frac{1}{2^i}$. Also konvergiert $\sum_{i=1}^N \frac{(r_i)^{i-k}}{2^i C_i} D_k h\left(\frac{x-x_i}{r_i}\right)$ uniform auf \mathbb{R}^n zu einer stetigen Funktion auf $\mathbb{R}^n \longrightarrow \mathbb{R}$ (wieder nach Weierstrass Majorantenkriterium). Es folgt, dass alle k-ten partiellen Ableitungen von f existieren und stetig sind. Wir haben gezeigt, dass f glatt ist. Dies beweist unsere Behauptung.

Wir nehmen nun

$$f := \sum f_{\alpha} \psi_{\alpha}$$

Da f_{α} glatt ist (nach unserer eben bewiesenen Behauptung) und $\{\psi_{\alpha}\}_{\alpha\in A}$ eine $\{B_{\alpha}\}_{\alpha\in A}$ untergeordnete Zerlegung der Eins, folgt, dass f wohldefiniert und glatt ist (wieder: da $\{\sup(\psi_{\alpha})\}_{\alpha\in A}$ lokal endlich ist, ist für jedes $x\in M$ $\psi_{\alpha}(x)\neq 0$ für nur endlich viele $\alpha\in A$, also ist f wohldefiniert; f ist glatt, weil die f_{α} und ψ_{α} glatt sind.)

5. Tangentialräume von Mannigfaltigkeiten

Wir werden zwei equivalente Definitionen von Tangentialvektoren sehen, die eine durch Derivative und die andere durch Geschwindigkeitsvektorne von Kurven bei Punkten. Lass uns ein einleitendes Beispiel machen, um das Konzept von Derivationen klarer zu machen.

Example 5.1. Intuitiv, wenn eine Mannigfaltigkeit in einem \mathbb{R}^n eingebettet ist:

Für $a \in \mathbb{R}^n$ definieren wir $\mathbb{R}^n_a := \{a\} \times \mathbb{R}^n = \{(a, v) \mid v \in \mathbb{R}^n\}$. Wir schreiben $v_a := (a, v)$. Es gilt $v_a + w_a = (v + w)_a$ und $(cv)_a = c(v_a)$, also ist \mathbb{R}^n_a ein \mathbb{R} -Vektorraum. Ausserdem sind \mathbb{R}^n_a und \mathbb{R}^n_b disjunkt, wenn $b \in \mathbb{R}$, $a \neq b$. Sei $v_a \in \mathbb{R}^n_a$. Er definiert eine Abbildung

$$D_v|_a : C^{\infty}(M) \longrightarrow \mathbb{R}, \quad D_v|_a f = D_v(f)_a = \frac{d}{dt}|_{t=0} f(a+tv)$$

welche \mathbb{R} -linear ist $(D_v|_a(cf)=cD_v|_a(f))$ und $D_v|_a(fg)=f(a)D_v|_a(g)+g(a)D_v|_a(f)$ (Leipniz-Regel / Produktregel). Wenn e_i der i-te Standardvektor ist, dann haben wir $D_{e_i}|_a=\frac{\partial f}{\partial x_i}(a)$ und $D_{\sum_i c_i e_i}|_a=\sum_i c_i \frac{\partial f}{\partial x_i}(a)$ (siehe Analysis II). Für $v_a\in\mathbb{R}^n_a$ schreiben wir $v_a=\sum_i v_i(e_i)_a$, wo e_i der ite Standardvektor ist, und bekommen $D_v|_a=\sum_i v_i \frac{\partial f}{\partial x_i}(a)$

Wir nennen eine Abbildung $w: C^{\infty}(\mathbb{R}^n) \longrightarrow \mathbb{R}$ eine Derivation bei $a \in \mathbb{R}^n$, wenn w \mathbb{R} -linear ist und $w(fg) = f(a)w(g) + g(a)w(f) \ \forall f, g \in C^{\infty}(\mathbb{R}^n)$. Wir schreiben $T_a\mathbb{R}^n$ für die Menge aller

Derivationen bei a. Dann ist $T_a\mathbb{R}^n$ ein \mathbb{R} -Vektorraum durch $(w_1 + w_2)(f) := w_1(f) + w_2(f)$ und $(cw)(f) := c \ w(f)$.

Remark 5.2. Sei $a \in \mathbb{R}^n$, $w \in T_a\mathbb{R}^n$ und $f, g \in C^{\infty}(\mathbb{R}^n)$. Dann gilt:

- (1) Wenn f konstant ist, dann gilt w(f) = 0. In der Tat, sei $f(x) \equiv c$. Dann ist w(f) = cw(1), da w \mathbb{R} -linear. Wir haben $w(1) = w(1 \cdot 1) = 1(a)w(1) + 1(a)w(1) = 2w(1)$, also ist w(1) = 0.
- (2) Wenn f(a) = g(a) = 0, dann gilt w(fg) = 0. Dies folgt aus der Produkt-/Leipnizregel.

Lemma 5.3. Sei $a \in \mathbb{R}^n$. Dann gilt:

- (1) Für $v_a \in \mathbb{R}^n_a$ ist $D_a|_v$ eine Derivation.
- (2) Die Abbildung $v_a \mapsto D_v|_a$ ist ein Isomorphismus (von \mathbb{R} -Vektorräumen) $\mathbb{R}^n_a \longrightarrow T_a\mathbb{R}^n$.

Proof. Die erste Aussage folgt aus der Kettenregel. Lass uns die zweite Aussage beweisen. Wir bemerken, dass $F: v_a \mapsto D_v|_a$ linear ist: $F(cv_a) = D_{cv}|_a = \sum_i cv_i \frac{\partial}{\partial x_i}(a) = cD_v|_a$ und

$$F(v_a + w_a) \stackrel{v_a + w_a = (v + w)_a}{=} D_{v + w}|_a = \sum_{i=1}^n (v_i + w_i) \frac{\partial}{\partial x_i}(a) = D_v|_a + D_w|_a.$$

<u>F ist injektiv:</u> Sei $v_a \in \mathbb{R}^n_a$, so dass $D_v|_a = 0$. Dann gilt $0 = D_v|_a(x_j) = \sum_i v_i \frac{\partial}{\partial x_i}(x_j)(a) = v_j$ für alle $j = 1, \ldots, n$. Also ist $v_a = 0_a$.

F ist surjektiv: Sei $w \in T_a \mathbb{R}^n$ und $v_i := w(x_i)$, i = 1, ..., n (wobei $x_i : \mathbb{R}^n \longrightarrow \mathbb{R}$ die *i*-te Koordinate ist). Sei $v := v_1(e_1)_a + \cdots + v_n(e_n)_a$. Wir zeigen, dass $D_v|_a = w$. Dazu, sei $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ glatt. Dann gilt (siehe Analysisvorlesung, sonst Übung)

$$f(x) = f(a) + \sum_{i} \frac{\partial f}{\partial x_i}(a)(x_i - a_i) + \sum_{i,j} (x_i - a_i)(x_j - a_j) \int_0^1 (1 - t) \frac{\partial^2 f}{\partial x_i \partial x_j}(a + t(x - a)) dt$$

Nach Remark 5.2 folgt

$$w(f) = w(f(a)) + w(\sum_{i} \frac{\partial f}{\partial x_{i}}(a)(x_{i} - a_{i})) + w(\sum_{i,j} (x_{i} - a_{i})(x_{j} - a_{j})) \int_{0}^{1} (1 - t) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a + t(x - a))dt)$$

$$\stackrel{Rmk}{=} 5.2 \quad w(\sum_{i} \frac{\partial f}{\partial x_{i}}(a)(x_{i} - a_{i}))$$

$$= \sum_{i} \frac{\partial f}{\partial x_{i}}(a)(w(x_{i}) - w(a_{i}))$$

$$\stackrel{Rmk}{=} 5.2 \quad \sum_{i} \frac{\partial f}{\partial x_{i}}(a)w(x_{i}) = \sum_{i} \frac{\partial f}{\partial x_{i}}(a)v_{i} = D_{v}|_{a}f$$

REFERENCES

[1] JOHN M. LEE: *Intoduction to Smooth Manifolds*. Graduate Texts in Mathematics, vol. 218, Springer, 2nd Edition. 2

Universität Basel

 $Email\ address:$ susanna.zimmermann@unibas.ch