

Pixel-Pair Occlusion Relationship Map (P2ORM): Formulation, Inference & Application

Xuchong Qiu¹, Yang Xiao¹, Chaohui Wang¹, Renaud Marlet^{1,2}

¹LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, ESIEE Paris, France

²valeo.ai, Paris, France

Oriented occlusion boundary

Key Idea: Classifying Pairs of Pixels

Classifying the occlusion status of neighbor pixel pairs

Pixel-wise occlusion boundary detection

Evaluation on oriented occlusion boundary

Input image

Ground truth

OFNet prediction [30]

Ours

Evaluation on depth refinement

Input image

Ground truth

SharpNet prediction [40]

Our refined depth

Generated occlusion boundary

Image

Thresholding depth difference

Edge detection on depth

Ours

What we have

A typical RGBD dataset

RGB image Depth map

Surface normal map

Image

Thresholding depth difference

Ours

Pixel-Pair Occlusion Relationship Map

Foreground/background mask

Pixel-Pair Occlusion Relationship Map

Pixel-Pair Occlusion Relationship Map (P2ORM)

Pixel-Pair Occlusion Relationship Map

Pixel-Pair Occlusion Relationship Map (P2ORM)

P2ORM and Figure/Ground notion

Pixel-Pair Occlusion Relationship Map (P2ORM)

Figure/Ground notion

P2ORM and Figure/Ground notion

Pixel-Pair Occlusion Relationship Map (P2ORM)

 S_1 occludes S_2 , S_3 S_2 occludes S_3

Figure/Ground notion

 S_1 occludes S_2 , S_3 S_2 occludes S_3

P2ORM and oriented occlusion boundary

Pixel-Pair Occlusion Relationship Map (P2ORM)

Oriented occlusion boundary notion

Modelling P20RM

- Pixel-pair occlusion status label

$$\omega_{p,q} = r = \left\{ egin{array}{c} 1 \\ 0 \\ -1 \end{array}
ight.$$

 $\omega_{p,q} = r = \left\{ \begin{array}{ll} 1 & p \text{ occludes } q \\ 0 & \text{no occlusion between } p,q \\ -1 & p \text{ is occluded by } q \end{array} \right.$

- Four inclinations for pixel-pairs

Modelling P20RM

Estimating P2ORM: A segmentation task

Evaluation on oriented occlusion boundary

Table 2. Oriented occlusion boundary estimation. *Our re-implementation.

Method	BSDS ownership			NYUv2-OR			iBims-1-OR		
Metric	ODS	OIS	AP	ODS	OIS	AP	ODS	OIS	AP
SRF-OCC [49]	.419	.448	.337	-	-	-	-	-	_
DOC-DMLFOV [53]	.463	.491	.369	-	-	-	-	-	-
DOC-HED [53]	.522	.545	.428	-	-	-	-	-	-
DOOBNet [51]	.555	.570	.440	-	-	-	-	-	-
OFNet [30]	.583	.607	.501	-	-	-	-	-	-
DOOBNet*	.529	.543	.433	.343	.370	.263	.421	.440	312
OFNet*	.553	.577	.520	.402	.431	.342	.488	.513	.432
baseline	.571	.605	.524	.396	.428	.343	.482	.507	.431
ours (4-connectivity)	.590	.612	.512	.500	.522	.477	.575	.599	.508
ours (8-connectivity)	.607	.632	.598	.520	.540	.497	.581	.603	.525

P2ORM: Application in depth refinement

Evaluation on depth refinement

Thank You

Project webpage: http://imagine.enpc.fr/~qiux/P2ORM/

Email: xuchong.qiu@enpc.fr

