Part 1

```
clc
clear all
allGPS
% Do the histograms make sense?
% The histograms do make sense. They have a degree of fit trends with
% different movement directions. North has the best fit and Vertical
% the least best fit. The stacked bar representation makes this easy
to
% see.
% Is there anthing strage in the histograms?
% The only strange thing is how poorley fit the vertical moevement is
% compared to North and East
% Would it be usefull to change the histogram bin size?
% The bin size is almost reflective of the error size within the fit.
Yes,
% the bins can visually represent the residual data.
% What kind of model represents the residual data?
% The residual data follos gausian distribution.
h =
  Figure (19) with properties:
      Number: 19
        Name: ''
       Color: [0.9400 0.9400 0.9400]
    Position: [488 342 560 420]
       Units: 'pixels'
  Use GET to show all properties
h =
  Figure (21) with properties:
      Number: 21
       Name: ''
       Color: [0.9400 0.9400 0.9400]
```

```
Position: [488 342 560 420]
       Units: 'pixels'
  Use GET to show all properties
h =
  Figure (23) with properties:
      Number: 23
       Name: ''
       Color: [0.9400 0.9400 0.9400]
    Position: [488 342 560 420]
       Units: 'pixels'
  Use GET to show all properties
h =
 Figure (25) with properties:
      Number: 25
       Name: ''
       Color: [0.9400 0.9400 0.9400]
    Position: [488 342 560 420]
       Units: 'pixels'
  Use GET to show all properties
h =
  Figure (27) with properties:
      Number: 27
       Name: ''
       Color: [0.9400 0.9400 0.9400]
    Position: [488 342 560 420]
       Units: 'pixels'
  Use GET to show all properties
h =
  Figure (29) with properties:
      Number: 29
       Name: ''
       Color: [0.9400 0.9400 0.9400]
    Position: [488 342 560 420]
       Units: 'pixels'
```

Use GET to show all properties

h =

Figure (31) with properties:

Number: 31
Name: ''

Color: [0.9400 0.9400 0.9400] Position: [488 342 560 420]

Units: 'pixels'

Use GET to show all properties

Etable =

Station	East_poly_cm_yr_	East_HW7_cm_yr_	Diffcm_yr_
'ana1'	-4.08	-4.07	0.01
'bbdm'	-4.1	-4.09	0.01
'cirx'	-3.97	-3.96	0.01
'cmp9'	-3.64	-3.67	-0.03
'dam2'	-3.64	-3.63	0.01
'kbrc'	-3.87	-3.87	0
'p729'	-4.1	-4.18	-0.08

Ntable =

Station	North_poly_cm_yr_	North_HW7_cm_yr_	Diffcm_yr_
			
'ana1'	2.2148	2.22	0.0052
'bbdm'	2.0346	2.02	-0.0146
'cirx'	1.9719	2	0.0281
'cmp9'	1.3429	1.38	0.0371
'dam2'	1.3365	1.34	0.0035
'kbrc'	1.2675	1.28	0.0125
'p729'	1.93	1.87	-0.06

Vtable =

Station	Vert_poly_cm_yr_	Vert_HW7_cm_yr_	Diffcm_yr_
		-	
'anal'	0.0006	0.127	0.1264
'bbdm'	0.066	0.068	0.002
'cirx'	-0.0272	0.0245	0.0517
'cmp9'	-0.0281	0.0908	0.1189

'dam2'	0.0557	0.05	-0.0057
'kbrc'	-0.0401	0.015	0.0551
'p729'	-0.3295	-0.45	-0.1205

Part 2

```
load('cavecreek.txt')
%caveCreekArray=importdata('cavecreek.txt');
timeArray=datetime(1953,10,01):calmonths(1):datetime(1971,09,30);
figure;
plot(timeArray,cavecreek,'k')
xlabel('Time [monthly]');
ylabel('Runoff [inches/100]');
title('Cave Creek Runoff');
% Why do we need t sort the data?
% This is becuase it is water year format. So, in order to plot in
 annual
% or chronological order, the data has to be in annual or
 chronological
% order.
timeArrayCol= transpose(cavecreek);
T = reshape(cavecreek,[12,18]);
Tnew = transpose(T);
h2=figure;
imagesc(Tnew)
```

```
c=colorbar;
colormap('jet')
xlabel('Time [month]');
ylabel('Time [year]');
title('Matrix Representation of Streamflow Data');
xticks = 1:2:12;
xticksLabels = {'Oct','Dec','Feb','Apr','Jun','Aug'};
set(gca,'xtick',xticks,'xticklabels',xticksLabels);
yticks = 2:2:18;
yticksLabels =
 {'1954','1956','1958','1960','1962','1964','1966','1968','1970'};
set(gca,'ytick',yticks,'yticklabels',yticksLabels);
meanArray = mean(Tnew,1);
medianArray = median(Tnew);
h3 = figure;
x = 1:12;
plot(x,meanArray,'*');
axis([0,13,0,500]);
hold on;
plot(x,medianArray,'o');
title('Median and Mean');
ylabel('Runoff [inches/100]')
xticks = 1:12;
xticksLabels =
 {'Oct','Nov','Dec','Jan','Feb','Mar','Apr','May','Jun','July','Aug','Sept'};
set(gca,'xtick',xticks,'xticklabels',xticksLabels);
legend('Mean','Median')
% Why do the mean and median not match?
% The mean is the average and the median is the middle sample value.
Thev
% are completely different. They would only be the same if data was
% distributed the perfectly.
hold on
h4 = boxplot(Tnew);
set(gca,'xtick',xticks,'xticklabels',xticksLabels);
ylabel('Runoff [inches/100]');
title('Box and Whisker Plot');
% Explain information in boxplot.
% The box and whisker plot is just a visual representation of
frequency or
% concentration, with the whiskers representing the extremes. The red
% indicators show outliers (abnormal values). In this data set,
% could refer to a higher than normal water storage year, resulting in
% higher or lower streamflow numbers. The data representing streamflow
```

- % numbers coresponds to what you would expect to see in a given water vear;
- % higher runoff numbers located in the Spring, when water is melting, when
- % alternately water is frozen in the winter months, showing little to
- % streamflow.

