Approaches V1

WHat are the problems

- 1. class imbalance
 - a. Combining classes good vs bad → template matching
- 2. no samples of drift in training
 - a. Autoencoder for anomaly detection struggle to recreate → drift

Many formulations, let's write a few down

- Keep training as it is, add blurs and shakes to create drift class. train 1 classifier for all 6 classes
- 2. Combine all defect classes together. add drift. train a classifier to output → good, defect, drift. then use template matching to correctly classify defects.
- Train 4 separate models based on the part / cut of interest. repeat 2 but for 4 separate models.
- 4. In all the above, instead of a drift class, first train anomaly detection algo like autoencoder, to see if we can eliminate some obvious drifts beforehand

Model selection:

Approaches V1

Model	Pros		Cons					
EfficientNet- B0	Best balance of accuracy & speed, works on low-res images .						Slightly larger than MobileNet.	
MobileNetV3	Fastest & smallest, great for real-time defect detection.							Slightly lower accuracy.
ResNet-18	ınd interp 3.	terpretable, works well on				Not as optimized as EfficientNet.		
ViT (Vision Transformer)		Best for complex defect textures.			Needs more data than CNNs.			

Approaches V1 2