Equity: Section 3 ¹

Leonel Drukker

University of California - Berkeley

¹Exercises inherited from Vinicio De Sola

Pset 1 review

1

a.
$$V = \begin{bmatrix} 0.09 & 0.06 \\ 0.06 & 0.16 \end{bmatrix}$$

b.
$$\sigma_P = 0.2989 = 29.89\%$$

c.
$$\psi_P = 0.0180 = 1.80\%$$

d.
$$V^{-1} \cdot e = \begin{bmatrix} 9.26 \\ 2.78 \end{bmatrix}$$
, $e^{\mathsf{T}} \cdot V^{-1} \cdot e = 12.04$, $h_C = \begin{bmatrix} 0.77 \\ 0.23 \end{bmatrix}$, $\sigma_C = 0.29 = 28.83\%$

2. 3%

3.

a.
$$b = (X^{T}X)^{-1}X^{T}r = \begin{bmatrix} \frac{1}{N}\sum_{i=1}^{N}r_{i} \\ \frac{1}{N}\left(\sum_{i=1}^{N/2}r_{i} - \sum_{i=N/2+1}^{N}r_{i}\right) \end{bmatrix}$$

b.
$$h_{mkt} = \begin{bmatrix} 1/n & \cdots & 1/n \end{bmatrix}^{\mathsf{T}}$$

c.
$$h_{size} = \begin{bmatrix} 1/n & \cdots & 1/n & -1/n & \cdots - 1/n \end{bmatrix}^T$$

Pset 1 review

4. $N \approx 19$ or 20

5.

a.
$$\omega_P = 0.0208 = 2.08\%$$

b.
$$U = 0.0052 = 0.52\%$$

6.

a.
$$L = h_{PA}^{\mathsf{T}} \cdot \alpha - \lambda h_{PA}^{\mathsf{T}} \cdot V \cdot h_{PA} + c \cdot h_{PA}^{\mathsf{T}} \cdot e$$

b.
$$h_{PA} = \frac{V^{-1}}{2\lambda} \left(\alpha - e^{\top} V^{-1} \alpha \cdot h_C \right), e^{\top} V^{-1} \alpha = 0 \Rightarrow h_{PA} = \frac{V^{-1} \alpha}{2\lambda}$$

c.
$$\alpha_Q = \frac{\alpha^{\mathsf{T}} V^{-1} \alpha}{e^{\mathsf{T}} V^{-1} \alpha}$$
, $\omega_Q^2 = \frac{\alpha^{\mathsf{T}} V^{-1} \alpha \alpha}{e^{\mathsf{T}} V^{-1} \alpha}$, $IR_Q^2 = \alpha^{\mathsf{T}} V^{-1} \alpha$, $h_{PA} = \frac{e^{\mathsf{T}} V^{-1} \alpha}{2\lambda} (h_Q - h_C)$

Pset 1 Review

7.

```
lv means
                monthly std dev
                        0.010645
aug
       -0.000112 aug
sep
       -0.000039 sep
                        0.010518
oct
       -0.000034 oct
                        0.010393
      -0.000254 nov
nov
                        0.010245
dec
      -0.000311 dec
                        0.010500
jan
      -0.000260 ian
                        0.010232
feb
      -0.000517 feb
                        0.010217
mar
      -0.000653 mar
                        0.010219
apr
      -0.000663 apr
                        0.010343
       -0.000910 may
                        0.010547
      -0.000756 jun
jun
                        0.010530
jul
       -0.000707 jul
                        0.010681
```

- b. Average breadth = 367
- 8. ψ_P = 5.6%. If we accounted for the true capitalization weighting of the index, we should be able to do better than this. That's because with capitalization weights, some stocks have higher weights in the index than other stocks.

Pset 1 Review

9.

a. annual %

b. 😊

stock volatility								
	index	TICKER	SRISL	vol	specific_frac	factor_frac		
16	135	JPM	20.383	37.324897	0.298222	0.701778		
24	346	SLB	16.896	35.292517	0.229194	0.770806		
21	477	AMZN	22.748	31.134311	0.533836	0.466164		
6	212	GE	15.804	29.745258	0.282292	0.717708		
0	97	AAPL	20.002	29.373444	0.463700	0.536300		
12	303	WFC	13.373	28.706688	0.217016	0.782984		
23	411	QCOM	17.499	28.655694	0.372911	0.627089		
15	308	ORCL	17.452	27.679183	0.397543	0.602457		
18	240	INTC	12.771	26.654558	0.229566	0.770434		
7	136	CVX	12.343	26.411229	0.218406	0.781594		
8	8	GOOG	17.727	26.121620	0.460543	0.539457		
3	280	MSFT	13.839	24.386447	0.322042	0.677958		
1	188	XOM	12.343	24.112597	0.262031	0.737969		
17	279	MRK	17.212	24.037009	0.512745	0.487255		
11	321	PFE	14.189	22.099406	0.412233	0.587767		
14	71	PM	12.343	21.298026	0.335863	0.664137		
5	359		12.343	21.125308	0.341378	0.658622		
19	114	VZ	12.343	20.673251	0.356471	0.643529		
2	398	WMT	13.955	20.450331	0.465649	0.534351		
4	241	IBM	12.343	20.212299	0.372915	0.627085		
22	72	ABT	12.618	19.513421	0.418133	0.581867		
13	332	PG	12.343	19.354487	0.406704	0.593296		
9	247	ראר	12.343	18.462053	0.446973	0.553027		
20	320	PEP	12.631	17.954640	0.494905	0.505095		
10	145	KO	12.343	17.845016	0.478418	0.521582		

d. The total risk of cap-weighted 25 stock portfolio is 16.4%. Its variance is 95% common factor and 5% specific.

Exercise 1 – APT

Suppose you have the following set of factor forecasts and exposures

Factors	Forecasts	Exposures
Heavy electrical (industry)	6%	1
Growth	2%	-0.24
Bond beta	-1%	0.13
Size	-0.5%	1.56
ROE	1%	0.15

If the market's expected excess return is 6%, and the stock's beta w.r.t. the market is 1.1, what is the stock's alpha?

Exercise 1 – APT

$$E[r] = X\beta$$

Exercise 1 – APT

tldr; APT is a straightforward way of getting you the residual return given a factor model.

Information processing

Raw information examples:

- Earnings estimates
- Measures of price momentum
- Brokers' buy recommendations

We use information to make forecasts:

- Naïve forecasts the consesnsus expected return, informationless, leads to benchmark holdings.
- Raw forecasts utilizes information in a raw form.
- Refined forecasts transforms raw forecasts into refined forecasts

Signals

Exercise 2 – Signals

You model quarterly residual returns and information with the following binary model:

$$\theta = \sum_{i=1}^{100} \phi_i$$

$$g = \phi_3 + \phi_{76} + \sum_{i=1}^{23} \eta_i$$

Note: $\phi_i, \eta_i \sim N(0,1)$ and ϕ_i 's and η_i 's uncorrelated $\forall i$. Calculate:

- a. Quarterly standard deviation of θ and g.
- b. Covariance of θ and g.
- c. The IC.
- d. You receive information signal of 23. Forecast alpha.

Exercise 2 – Signals

- a. $Var(\theta)$ Var(g)
- b. $Cov(\theta, g)$
- c. $IC = corr(\theta, g)$
- d. $\alpha = IC \cdot \omega \cdot z$

Active bets

- How much risk are we taking on with each stock in our portfolio?
- Optimizing $U_P = h_{PA}^{\top} \alpha \lambda h_{PA}^{\top} V h_{PA} \Rightarrow h_{PA}^{*}(i) = \frac{\alpha_i}{2\lambda \omega_i^2}$
- $\alpha_i = IC_i \cdot \omega_i \cdot z_i$
- $\Rightarrow h_{PA}^*(i) = \frac{IC_i\omega_iz_i}{2\lambda\omega_i^2} = \left(\frac{IC}{2\lambda}\right)\frac{z_i}{\omega_i}$
- Active bet $\equiv h_{PA}^*(i) \cdot \omega_i = \left(\frac{IC}{2\lambda}\right) \cdot z_i$
- Active bet $\propto z_i$

August 26, 2021 13 / 16

Exercise 3 – Forecasting

You have developed a model that forecasts stock returns. It provides stock ratings of 1 to 5 where 1 is a strong negative and 5 is a strong positive. The correlation of these ratings with subsequent residual return is 0.04.

- a. The model currently gives a rating of 4 to Alphabet (residual risk of 30%). Translate that into a forecast α for Alphabet.
- b. The model gives a rating of 2 to Berkshire Hathaway (residual risk of 15%). Translate that into a forecast α for Berkshire Hathaway.
- c. You now implement these alphas in an active strategy. Compare the size of the bet (active position times risk) on Alphabet vs. Berkshire Hathaway.

Exercise 3 – Forecasting

a.
$$\alpha_A = IC \cdot \omega \cdot z$$

b.
$$\alpha_B = IC \cdot \omega \cdot z$$

c. Active bet =
$$\left(\frac{IC}{2\lambda}\right) \cdot z$$

Pset 2 hints

There is a theme in this pset – combine our structure (equations) with what you are given

Q3.c - Recall Ron story from lecture desire 2% active risk

•
$$\psi_P^2 = h_{PA}^{\mathsf{T}} V h_{PA}$$
. From Pset 1: $h_{PA}^* = \frac{1}{2\lambda} \left(V^{-1} \alpha - e^{\mathsf{T}} V^{-1} \alpha h_C \right)$.

Q4 – Remember that your signals z_i are standardized.

Q6 – Don't think too hard about it.

Q9 - Ex ante and ex post IR.

August 26, 2021 16 / 16