MA0505 - Análisis I

Lección X: Variación Acotada

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- Funciones de Variación Acotada
 - Motivación
 - La Definición de la Variación Acotado
 - Variación con Signo
 - Caracterización

Motivación La Definición de la Variación Acotado Variación con Signo

Dos Problemas

Veremos dos problemas que muestran la necesidad de extendar las funciones que se pueden abordar por métodos usuales como el uso de la integral de Riemann.

Longitud de una Curva

Considere $\gamma: [a, b] \to \mathbb{R}^2$ con $\gamma(t) = (\gamma_1(t), \gamma_2(t))$. Inicialmente nuestra función no es continua ni acotada.

¿Cuál es la longitud de la curva?

Primeras Ideas

Podemos aproximar la curva por segmentos.

- Dados $a = t_0 < t_1 < t_2 < \cdots < t_n = b$, consideramos los segmentos $[\gamma(t_i), \gamma(t_{i+1})]$ con $0 \le i \le n-1$ donde $P = \{t_0, t_1, \dots, t_n\}$.
- Tomando particiones cada vez más finas esperaríamos que la longitud de las curvas poligonales aproximen la longitud de la curva. ¿Será cierto que el límite es finito?
- Note que estos límites no pueden ser aproximados por la integral de Riemann a menos que γ₁, γ₂ sean diferenciables.

Componentes Diferenciables

En el caso que γ_1, γ_2 sean diferenciables, vale el teorema del valor medio:

$$(\gamma(t_{i+1})-\gamma(t_i))=\gamma'(\xi_i)(t_{i+1}-t_i).$$

En general no es claro que el conjunto $L(\Gamma, \rho)$ es acotado.

Masa de un Alambre

Un problema similar surge a la hora de medir la masa de un alambre. Aquí el área transversal es *A*.

Motivación

Análisis del Problema

En este caso podemos considerar

$$\sum_{i=1}^{n-1} \rho(t_i) A(t_i, t_{i+1}),$$

donde $\triangleright(t_i)$ es la densidad del alambre en el punto t_i y $A(t_i, t_{i+1})$ es el area del segmento t_i a t_{i+1} . Es decir

$$A(t_i, t_{i+1}) \approx A \|\gamma(t_i) - \gamma(t_{i+1})\|$$
.

La masa se aproxima por

$$\sum_{i=1}^{n-1} \rho(t_i) A \|\gamma(t_i) - \gamma(t_{i+1})\|.$$

Variación Acotada

Antes de explorar una nueva definición de integral que nos permite abordar estos problemas, vamos a centrarnos en el problema de las funciones tales que existe un $M \ge 0$ con

$$\sum_{i=1}^{n-1} |f(t_i) - f(t_{i+1})| \leqslant M$$

para cualquier partición.

Variación Acotada

Definición

Decimos que $f:[a,b]\to\mathbb{R}$ es de variación acotada si existe un M>0 tal que para toda partición

$$\Gamma = \{ t_0 = a < t_1 < \cdots < t_n = b \}$$

se tiene que

$$S(f,\Gamma) := \sum_{i=1}^{n-1} |f(t_i) - f(t_{i+1})| \leqslant M.$$

En otras palabras f es variación acotada si vale que

sup
$$S$$
(f , $Γ$) < $∞$.

Ejemplos de Funciones de Variación Acotada

1. Si f es creciente, entonces

$$\sum_{i=1}^{n-1} |f(t_i) - f(t_{i+1})| = \sum_{i=1}^{n-1} f(t_i) - f(t_{i+1}) = f(b) - f(a).$$

Análogamente si f es decreciente $S(f, \Gamma) = f(a) - f(b)$. Por lo tanto toda función monótona es de variación acotada.

Ejemplos de Funciones de Variación Acotada

2. Tomemos $\phi: [0,1] \to \mathbb{R}$ dada por

$$\phi(x) = \begin{cases} 0, & x \in \mathbb{Q} \\ 1, & x \notin \mathbb{Q} \end{cases}$$

y sea x_n tal que $x_{2k}\in\mathbb{Q}$ para $0\leqslant k\leqslant n$ mientras que $x_{2k+1}\in\mathbb{R}\setminus\mathbb{Q}$ para $0\leqslant k\leqslant n-1$. Tomamos $x_0=0$ y $x_{2n}=1$. Así vale que

$$S(\phi,\Gamma) = \sum_{i=0}^{n-1} |\phi(x_{i+1}) - \phi(x_i)| = n$$

y por tanto ϕ no es de variación acotada.

La Variación Total

Dada $f:[a,b] \to \mathbb{R}$ una función de variación acotada, definimos

$$Var(f, [a, b]) = \sup_{\Gamma} S(f, \Gamma).$$

Sea $\Gamma_1 = \{ x_0 = a < x_1 < \dots < x_n = x \} \text{ con } a < x < b,$ entonces $\Gamma = \Gamma_1 \cup \{ b \}$ es una partición de [a, b]. Si $x_{n+1} = b$,

$$S(f,\Gamma) = \sum_{i=1}^{n-1} |f(t_{x+1}) - f(x_i)| = S(f,\Gamma_1) + |f(b) - f(x)|.$$

Por lo tanto $f:[a,x]\to\mathbb{R}$ es de variación acotada y

$$Var(f, [a, x]) \leq Var(f, [a, b]).$$

Además

$$|f(a) - f(x)| + |f(x) - f(b)| \leq \operatorname{Var}(f, [a, b])$$

$$\Rightarrow 2|f(x)| \leq \operatorname{Var}(f, [a, b]) + |f(a)| + |f(b)|.$$

Propiedades

Lema

Sean $f, g : [a, b] \to \mathbb{R}$ de variación acotada. Entonces

- (I) cf + g es de variación acotada para $c \in \mathbb{R}$.
- (II) fg es de variación acotada.
- (III) Si existe $\varepsilon > 0$ tal que $|g(x)| \ge \varepsilon$ para $x \in [a, b]$, entonces $\frac{1}{g}$ es de variación acotada.
- (IV) f, g son acotadas.

La prueba de este lema es un ejercicio.

Usando los argumentos expuestos se prueba que si Γ_1 es una partición de $[a_1,b_1]$ con $a < a_1 < b_1 < b$. Tome $\Gamma = \Gamma_1 \cup \{a,b\}$, entonces

$$S(f, \Gamma_1) \leqslant S(f, \Gamma) \leqslant \text{Var}[f, [a, b]]$$

 $\Rightarrow \text{Var}[f, [a_1, b_1]] \leqslant \text{Var}[f, [a, b]].$

■ Sea a < c < b, considere Γ una partición de [a, b] con

$$\Gamma = \{ x_0 = a < x_1 < \cdots < x_n = x \}.$$

- Tome x_{m_0} tal que $x_{m_0} \le c < x_{m_0+1}$.
- Defina $\Gamma' = \Gamma \cup \{c\}$ y

$$\Gamma_1 = \{ x_0 = a < x_1 < \ldots \le x_{m_0} \le c \}$$

 $\Gamma_2 = \{ c \le x_{m_0+1} < \cdots < b = x_n \}.$

Entonces

$$S(f,\Gamma) \leqslant S(f,\Gamma') = S(f,\Gamma_1) + S(f,\Gamma_2)$$

 $\leqslant \operatorname{Var}[f,[a,c]] + \operatorname{Var}[f,[c,b]]$

Por lo tanto

$$Var[f, [a, b]] \leq Var[f, [a, c]] + Var[f, [c, b]]$$

Por otro lado si Γ_1 es una partición de [a, c] y Γ_2 es una partición de [c, b], entonces $\Gamma = \Gamma_1 \cup \Gamma_2$ es una partición de [a, b]. Es decir

$$S(f,\Gamma_1) + S(f,\Gamma_2) = S(f,\Gamma) \leqslant Var[f,[a,b]].$$

Así tenemos que

$$\sup_{\Gamma_1} S(f, \Gamma_1) + S(f, \Gamma_2) \leqslant \operatorname{Var} [f, [a, b]]$$

$$\Rightarrow \sup_{\Gamma_1} S(f, \Gamma_1) + \sup_{\Gamma_2} S(f, \Gamma_2) \leqslant \operatorname{Var} [f, [a, b]]$$

$$\Rightarrow \operatorname{Var} [f, [a, c]] + \operatorname{Var} [f, [c, b]] \leqslant \operatorname{Var} [f, [a, b]].$$

Lema

Sea $f:[a,b] \to \mathbb{R}$ de variación acotada. Entonces

$$Var[f, [a, b]] = Var[f, [a, c]] + Var[f, [c, b]].$$

Dado $x \in \mathbb{R}$ definimos

$$x^{+} = \begin{cases} x, & x \geqslant 0 \\ 0, & x < 0 \end{cases} \qquad x^{-} = \begin{cases} -x, & x \leqslant 0 \\ 0, & x > 0 \end{cases}$$

y así x^+, x^- son positivas. Además $x^+ + x^- = |x|$ y $x^+ - x^- = x$. Dada $f : [a, b] \to \mathbb{R}$ y $\Gamma = \{ x_0 = a < x_1 < \dots < x_n = b \}$, una partición, consideremos

$$P(f,\Gamma) = \sum_{i=1}^{n-1} (f(t_i) - f(t_{i+1}))^+$$

$$N(f,\Gamma) = \sum_{i=1}^{n-1} (f(t_i) - f(t_{i+1}))^-$$

Observaciones

Note que

- $S(f,\Gamma) = N(f,\Gamma) + P(f,\Gamma)$.
- $-N(f,\Gamma) + P(f,\Gamma) \leqslant \sum_{i=1}^{n-1} (f(t_i) f(t_{i+1})) \leqslant f(b) f(a).$

Definimos

$$P(f,[a,b]) = \sup_{\Gamma} P(f,\Gamma), \ N(f,[a,b]) = \sup_{\Gamma} N(f,\Gamma).$$

Entonces

$$S(f,\Gamma) = N(f,\Gamma) + P(f,\Gamma) \leqslant N(f,[a,b]) + P(f,[a,b])$$

y por lo tanto

$$Var(f, [a, b])) \leq N(f, [a, b]) + P(f, [a, b]).$$

El Otro Lado

$$f(a) + P(f, \Gamma) = f(b) + N(f, \Gamma),$$

entonces

$$f(a) + P(f, [a, b]) = f(b) + N(f, [a, b]).$$

Además

$$N(f,\Gamma) + P(f,\Gamma) = S(f,\Gamma) \leqslant Var(f,[a,b]).$$

Entonces

$$f(a) - f(b) + 2P(f, \Gamma) = S(f, \Gamma)$$

 $\Rightarrow f(a) - f(b) + 2P(f, [a, b]) = Var(f, [a, b])$
 $\Rightarrow N(f, [a, b]) + P(f, [a, b]) = Var(f, [a, b]).$

Descomposición

Lema

Sea $f:[a,b] \to \mathbb{R}$ de variación acotada. Entonces vale que

- P(f, [a, b]) N(f, [a, b]) = f(b) f(a).
- P(f,[a,b]) + N(f,[a,b]) = Var(f,[a,b]).

Equivalentemente se tiene que

- $P(f,[a,b]) = \frac{1}{2} \{ Var(f,[a,b]) + f(b) f(a) \}.$
- $N(f,[a,b]) = \frac{1}{2} \{ Var(f,[a,b]) f(b) + f(a) \}.$

Note que

$$f(x) - f(a) = P(f, [a, x]) - N(f, [a, x]).$$

Como P(f, [a, x]) y N(f, [a, x]) son funciones crecientes de x y positivas, entonces

$$f(x) = P(f, [a, x]) + f(a) - N(f, [a, x]).$$

Teorema

Sea $f:[a,b] \to \mathbb{R}$ una función. Entones f es de variación acotada si y sólo si f es la resta de dos funciones crecientes y positivas.

Discontinuidades

Teorema

Sea $f:[a,b] \to \mathbb{R}$ de variación acotada. Entonces f tiene a lo sumo un número contable de discontinuidades. Toda discontinuidad es un salto o es removible.

Dado que $f = f_1 - f_2$ con tales funciones positivas y crecientes, basta analizar las discontinuidades de funciones positivas y crecientes.

Prueba del Teorema

Considere

$$D_n = \left\{ x \in [a, b] : f(x_+) - f(x_-) \geqslant \frac{1}{k} \right\}$$

donde
$$f(x_{+}) = \lim_{y \to x_{+}} f(y) \ y \ f(x_{-}) = \lim_{y \to x_{-}} f(y)$$
.

■ De esta forma, si $x_0 < x_1 < \cdots < x_m \in D_n$, existe y_i, z_i tales que para $i = 1, \ldots, n$

$$a = y_0 \le x_0 < z_0 = y_1 < x_1,$$

 $x_{i-1} < z_{i-1} = y_i < x_i,$
 $x_m \le z_m = b.$

Prueba del Teorema

Entonces

$$= f(y_{i+1}) - f(y_i)$$

 $f(x_i^+) - f(x_i^-) \le f(z_i) - f(y_i)$

Es decir

$$\frac{m}{k} \leqslant \sum_{m=1}^{\infty} f(z_i) - f(y_i) = f(b) - f(a)$$

y así concluimos que $|D_n| < \infty$.

Teorema

Sea $f: [a,b] \to \mathbb{R}$ de variación acotada y continua. Entonces dado $M < \mathsf{Var}(f,[a,b]) = V$, existe $\delta > 0$ que satisface

$$|\Gamma| < \delta \Rightarrow M < S(f,\Gamma) \leqslant V.$$

Sea $\mu > 0$ tal que $M + \mu < V$. Sea Γ_1 una partición que satisface $M + \mu < S(f, \Gamma_1)$ con

$$\Gamma_1 = \{ \tilde{x}_0 = a < \tilde{x}_1 < \dots < \tilde{x}_k = b \}.$$

Al ser f uniformemente continua, existe $\delta > 0$ tal que

$$|x-y|<\delta \Rightarrow |f(x)-f(y)|<\frac{\mu}{2(k+1)}.$$

Continuamos la Prueba

Sea Γ una partición tal que

$$|\Gamma|<\frac{1}{2}\min\{\,\delta,|\Gamma_1|\,\}.$$

- Si $\Gamma = \{ x_0 = a < x_1 < \cdots < x_n = x \}$, tome $\Gamma_2 = \Gamma \cup \Gamma_1$.
- Vamos a mostrar que $S(f, \Gamma_2) \mu < S(f, \Gamma)$.
- Entonces

$$M < S(f, \Gamma_1) - \mu \leqslant S(f, \Gamma_2) - \mu \leqslant S(f, \Gamma).$$

Continuamos la Prueba

Sean $\{\tilde{x}_i, \dots, \tilde{x}_{i_\ell}\} = \Gamma_2 \setminus \Gamma$, entonces existe $1 \leqslant j \leqslant m$ tal que

$$x_i < \tilde{x}_{i_k} < x_{i+1}$$
.

Note que $1 \leqslant \ell \leqslant k+1$ y además

$$S(f,\Gamma) = \sum_{\{1 \le j \le m: \ \Gamma_1 \cap]x_{j-1}, x_j [\neq \emptyset\}} |f(x_j) - f(x_{j-1})| = \Sigma''$$

$$+ \sum_{\{1 \le j \le m: \ \Gamma_1 \cap]x_{j-1}, x_j [=\emptyset\}} |f(x_j) - f(x_{j-1})| = \Sigma'$$

Terminamos la Prueba

Como
$$\Gamma_2 = \{ x_0 < x_1 < \dots < x_m \} \cup \{ \tilde{x}_{i_1}, \dots, \tilde{x}_{i_m} \}$$
, se tiene que $S(f, \Gamma_2) = \Sigma' + \sum_{\{1 \leqslant j \leqslant m: \ \Gamma_1 \cap] x_{i-1}, x_i [\neq \emptyset \}} |f(x_j) - f(x_{i_k})| + |f(x_{i_k}) - f(x_{j-1})|$ $\leqslant \Sigma' + \frac{2\mu}{2(k+1)} (k+1)$ $\leqslant \Sigma' + \mu$ $\leqslant S(f, \Gamma) + \mu$,

Un Corolario

Corolario

Sea $f:[a,b] \to \mathbb{R}$ tal que f' es continua en [a,b]. Entonces

$$P(f,[a,b]) = \int_a^b (f'(x))^+ dx.$$

$$N(f,[a,b]) = \int_a^b (f'(x))^- dx$$

La prueba de este resultado es un ejercicio.

Resumen

- La definición 1 de una función de variación acotada.
- El lema 1 sobre propiedades de las funciones de variación acotada.
- El lema 2 sobre subintervalos y el comportamiento de la variación.
- El lema 3 sobre la variación positiva y negativa.
- El teorema 1 que caracteriza las funciones de variación acotada.
- El teorema 2 sobre las discontinuidades de una función de variación acotada.
- El teorema 3 sobre las sumas.
- El corolario 1 sobre las integrales y la variación.

Ejercicios

- Lista 10
 - La prueba del lema 1 sobre funciones de variación acotada.
 - La prueba del corolario 1 sobre integrales y variación.

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.