Tutorial 03

- 1. Consider the usual vector space $(\mathbb{R}^2, +, \cdot)$. For each of the following subsets of \mathbb{R}^2 , determine whether or not it is a vector subspace of \mathbb{R}^2 :
 - (a) $S = \text{set of all } (x, y) \text{ in } \mathbb{R}^2 \text{ such that } 6x + 8y = 0.$
- (b) $S = \text{set of all } (x, y) \text{ in } \mathbb{R}^2 \text{ such that } 6x + 8y = 1.$
- 2. Recall that $\mathcal{F}(\mathbb{R};\mathbb{R})$ denotes the vector space of functions $f:\mathbb{R}\to\mathbb{R}$ with the usual function addition and scalar multiplication. For each of the following subsets of $\mathcal{F}(\mathbb{R};\mathbb{R})$, determine whether or not it is a vector subspace of $\mathcal{F}(\mathbb{R};\mathbb{R})$:
 - (a) $S = \text{set of all } f \text{ in } \mathcal{F}(\mathbb{R}; \mathbb{R}) \text{ such that } f(x) + f(x+1) + f(x+2) = 1 \text{ for all } x \in \mathbb{R}.$
 - (b) $S = \text{set of all } f \text{ in } \mathcal{F}(\mathbb{R}; \mathbb{R}) \text{ such that } f(x) + f(x+1) + f(x+2) = 0 \text{ for all } x \in \mathbb{R}.$
 - 3. Consider the following vector space

$$\mathbf{W}_2 = \{(x_1, x_2) : x_1, x_2 \in \mathbb{R}, x_1 > 0, x_2 > 0\}$$

under the following operations:

Addition: for any $\mathbf{u} = (x_1, x_2)$ and $\mathbf{v} = (y_1, y_2)$ in \mathbf{W}_2 ,

$$\mathbf{u} + \mathbf{v} = (x_1, x_2) + (y_1, y_2) = (x_1y_1, x_2y_2)$$

Scalar multiplication: for any $\alpha \in \mathbb{R}$ and $\mathbf{u} = (x_1, x_2) \in \mathbf{W}_2$,

$$\alpha \cdot \mathbf{u} = \alpha \cdot (x_1, x_2) = (x_1^{\alpha}, x_2^{\alpha}).$$

- (a) Determine which of the following subsets of W_2 is a subspace of W_2 :
 - (a1) $S = \text{set of all } (x_1, x_2) \text{ in } \mathbf{W}_2 \text{ such that } x_1 x_2 = 0.$
 - (a2) $S = \text{set of all } (x_1, x_2) \text{ in } \mathbf{W}_2 \text{ such that } x_1^2 x_2 = 1.$
- (b) Consider the following vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 in \mathbf{W}_2 defined as follows:

$$\mathbf{v}_1 = (1, 2), \quad \mathbf{v}_2 = (2, 1), \quad \mathbf{v}_3 = (3, 2).$$

- (b1) Is \mathbf{v}_1 in the linear span of $\{\mathbf{v}_2\}$?
- (b2) Is \mathbf{v}_3 in the linear span of $\{\mathbf{v}_1, \mathbf{v}_2\}$?
- 4. Consider \mathbb{R}^3 with the usual (component-wise) addition and scalar multiplication operations. Show that the linear span of the vectors (1,0,0), (1,1,0), (0,1,1) is \mathbb{R}^3 itself.